Multimédia Beadandó TRUPR6(Vörös Bálint Miklós)

Gimp:

1. Készítse el arcképét. 2. Vágja körül minél pontosabban, majd helyezze el egy másik tetszőleges (háttér)képen úgy, hogy a beillesztés élethű legyen. 3. A montázst exportálja JPG formátumban 90-es és 20-as minőségi beállításokkal. 4. A két JPG képfájl mérete alapján határozza meg a két esetben a hozzávetőleges tömörítés mértékét: = 24 [bit/pixel] / (adott képfájl mérete [bit] / pixelek száma [db]) (megjegyzés: 24 a szorzó, amennyiben színes képről van szó) 5. A gimp rétegműveleteinek és Görbék funkció segítségével mutassa meg a tömörítésből származó hibákat. 6. Írja le a lépéseket és mutassa be a képeket.

1.feladat:

Eredeti választott arckép:

ábra Arckép

2. A kép körül vágása Gimp-ben és egy tetszőleges háttéren való elhelyezés:

→ Körbevágott kép CTRL + X és CTRL + C-vel a másik rétegre illesztés

2. ábra Lasszó eszközzel körbevágás

3. ábra Arc kép ráillesztve a háttérre

Az elkészült kép exportálása 20-as és 90-es minőségben különböző jpg fájlba.

4. ábra 90-es minőség

5. ábra 20-as minőség

Tömörítés méretének meghatározása:

Első kép(90-es):

Fájl méret = 86,016 byte

Képpontok száma: 1000x667 = 667,000 Fájméretbitben 86,016x8 = 688,128

Tömörítési arány: 24/ (175,232/667,000) = 13,59

Második kép(20-as):

Fájl méret = 21,094 byte

Képpontok száma: 1000x667 = 667,000

Fájméretbitben 21,094x8 = 175,232 bit Tömörítési arány: 24/ (175,232/667,000) = 52,25

6. ábra Az összehasonlító görbe

Gimp 2 feladat

Az első kép a lena.bmp 3 féle elmosása:

A) Gauss

7. ábra Lena Original Gauss

8. ábra Lena 0.01 Gauss

9. ábra Lena 0.05 Gauss

B) Medián

10. ábra Medián elmosás tulajdonságai

11. ábra Medián elmosás Lena original

12. ábra Medián elmosás Lena 0.01

13. ábra Medián elmosás Lena 0.05

C) Lineáris elmosás elmozdítással

14. ábra Lineáris elmosás elmozdítással tulajdonságok

15. ábra Lineáris elmosás elmozdítással Lena original

16. ábra Lineáris elmosás elmozdítással Lena 0.01

17. ábra Lineáris elmosás elmozdítással Lena 0.05

- 2) Kép élességének javítása
- A) Unsharp masking

18. ábra Unsharp masking tulajdonságok

19. ábra Lena original Unsharp masking

B) Konvolúciós szűrők:

20. ábra Konvolúciós szűrők: tulajdonságok

21. ábra Konvolúciós szűrők: Lena original

3) Processing

1. Az 1. feladatban létrehozott képet használja (feliratozva)! 2. Készítsen egy 3D-s forgó kockát, amelynek az oldalain az adott kép van! 3. Az egér segítségével lehessen a kocka forgását (sebességét vagy/és irányát módosítani)!

Az elkészült feladat forrás kódja:

```
sketch 3feladat
    PImage img;
    void setup() {
     size(640, 360, P3D);
      img = loadImage("hatterarcProcessing.jpg"); //Cseréld le a saját képed útvonalára
9 void draw() {
     background(255);
     lights();
     translate(width/2, height/2);
     rotateX(mouseY * 0.01);
     rotateY(mouseX * 0.01);
     beginShape(QUADS);
     texture(img);
     // Első oldal
     vertex(-50, -50, 50, 0, 0);
vertex(50, -50, 50, img.width, 0);
vertex(50, 50, 50, img.width, img.height);
     vertex(-50, 50, 50, 0, img.height);
     // Hátsó oldal
     vertex(50, -50, -50, 0, 0);
     vertex(-50, -50, -50, img.width, 0);
vertex(-50, 50, -50, img.width, img.height);
     vertex(50, 50, -50, 0, img.height);
       // Felső oldal
     vertex(-50, -50, -50, 0, 0);
vertex(50, -50, -50, img.width, 0);
vertex(50, -50, 50, img.width, img.height);
31
     vertex(-50, -50, 50, 0, img.height);
        // Alsó oldal
     vertex(-50, 50, 50, 0, 0);
     vertex(50, 50, 50, img.width, 0);
     vertex(50, 50, -50, img.width, img.height);
40
     vertex(-50, 50, -50, 0, img.height);
41
     // Jobb oldal
43
      vertex(50, -50, -50, 0, 0);
      vertex(50, -50, 50, img.width, 0);
      vertex(50, 50, 50, img.width, img.height);
      vertex(50, 50, -50, 0, img.height);
```

22. ábra Forráskód a különböző oldalak vertex-e és a kép betöltése

23. ábra Elkészült feladat futtatása

Magyarázat a kódhoz:

A kód egy 3D-s forgó dobozt hoz létre Processingben, amelynek minden oldalára ugyanaz a textúra kerül. Az egér mozgatásával a doboz az X és Y tengely körül forog. A setup részben beállítja az ablak méretét és tölti be a textúraként használt képet. A draw részben pedig megrajzolja a 3D-s dobozt és kezeli a forgatást.

Beállítások (setup függvény):

size(1000, 600, P3D): A megjelenítő ablak mérete 1000x600 pixel, és a P3D renderelőt használod, ami lehetővé teszi a 3D-s megjelenítést.

img = loadImage("hatterarcProcessing.jpg"): Betölt egy képet, amit később a 3D-s objektum textúrájaként használsz. A fájlnevet cseréld le a saját képed útvonalára.

Rajzolás (draw függvény):

background(255): Beállítja a háttérszínt fehérre.

lights(): Alapértelmezett világítást ad a 3D-s jelenethez.

translate(width/2, height/2): Az origót (a koordináta-rendszer kezdőpontját) az ablak közepére helyezi.

rotateX(mouseY * 0.01) és rotateY(mouseX * 0.01): Forgatja a 3D-s

3D-s szöveges doboz létrehozása:

A beginShape(QUADS) és endShape() között definiálod a 3D-s szöveges doboz hat oldalát, minden oldal négy csúccsal (vertex).

vertex(x, y, z, u, v): Minden csúcs meghatároz egy pontot a 3D térben (x, y, z koordinátákkal), valamint a textúra koordinátáit (u, v), ami meghatározza, hogy a kép mely része kerüljön erre a pontra.

4) Audacity

A palindrom felvétel

24. ábra Palindrom felvétel

B.mp3 elkészítése mikrofon zúgás létrehozásával

25. ábra Mikrofon zaj felvétel

C.mp3 elkészítése a palindrom alá új hangsávon felveszem a B.mp3-ban elkészült zúgást és többször duplikálom, hogy kitöltse a tartalmát:

26. ábra C.mp3 Palindrom zajjal

D) Zajcsökkentés effektus alkalmazás az elkészült C.mp3-on

27. ábra Zajcsökkentő effektus

28. ábra Zajcsökkentet hang fájl D.mp3

29. ábra Megfordítás effektje

30. ábra Megfordított hangfájl E.mp3

Spektogrammok Összehasonlítása:

A vs C:

31. ábra A.mp3 spektogrammja

32. ábra C.mp3 spektogrammja

Összehasonlításuk: Mindkét spektrogram hasonló frekvenciatartományokat mutat, amelyek a bal oldali skálán láthatóak, az alacsony frekvenciáktól a magas frekvenciákig.

A színek intenzitása, amelyek az energiasűrűséget (vagy hangerejét) jelzik, mindkét képen változó, de hasonló mintázatokat követ. A világosabb sávok nagyobb intenzitást mutatnak.

Az időbeli struktúra - amely a vízszintes tengelyen van ábrázolva - mindkét spektrogramon hasonló időbeli mintázatokat mutat, jelezve, hogy a hangforrás időben hasonlóan viselkedhet.

C vs D:

33. ábra C.mp3 spektogrammja

34. ábra D.mp3 spektogrammja

Összehasonlításuk:

Ezek a spektrogramok különböző mintázatokat mutatnak. Az első spektrogramon szabályos, széles, világos sávok láthatók, míg a másodikon a sávok szűkebbek és több sötét terület figyelhető meg köztük. Ez arra utal, hogy az első esetben egyenletesebb hangintenzitást, míg a másodikban változatosabb hangdinamikát ábrázolnak.

A vs E:

35. ábra A.mp3 spektogrammja

36. ábra E.mp3 spektogrammja

Összehasonlításuk:

Ezek a spektrogramok nagyon hasonló jellemzőkkel rendelkeznek: mindkettőben hasonló frekvenciatartomány és intenzitásbeli eloszlás látható, illetve időbeli mintázatuk is nagymértékben egyezik. Ez alapján a két spektrogram valószínűleg ugyanazon hangforrás vagy nagyon hasonló akusztikai eseményeket ábrázol.