

Tokenizers for Unified Model

Paper Reading by Zhiying Lu 2025.06.18

- □作者介绍
- □背景介绍
- □ 方法1
- □ 方法2
- □总结反思

作者介绍

VILA-U: A Unified Foundation Model Integrating Visual Understanding and Generation

Yecheng Wu 1,2* Zhuoyang Zhang 2*† Junyu Chen 1,2 Haotian Tang 2† Dacheng Li 4† Yunhao Fang 5† Ligeng Zhu 3 Enze Xie 3

Hongxu Yin³ Li Yi¹ Song Han^{2,3} Yao Lu³

Tsinghua University¹ MIT² NVIDIA³ UC Berkeley⁴ UC San Diego⁵

https://hanlab.mit.edu/projects/vila-u

引用次数

J

Yecheng Wu

<u>Tsinghua University</u> 在 mails.tsinghua.edu.cn 的电子邮件经过验证 Computer Vision

标题	引用次数	年份
Vila-u: a unified foundation model integrating visual understanding and generation Y Wu, Z Zhang, J Chen, H Tang, D Li, Y Fang, L Zhu, E Xie, H Yin, L Yi, arXiv preprint arXiv:2409.04429	100	2024
Hart: Efficient visual generation with hybrid autoregressive transformer H Tang, Y Wu, S Yang, E Xie, J Chen, J Chen, Z Zhang, H Cai, Y Lu, arXiv preprint arXiv:2410.10812	44	2024
Cot-vla: Visual chain-of-thought reasoning for vision-language-action models Q Zhao, Y Lu, MJ Kim, Z Fu, Z Zhang, Y Wu, Z Li, Q Ma, S Han, C Finn, Proceedings of the Computer Vision and Pattern Recognition Conference, 1702-1713	22	2025

Enze Xie

NVIDIA Research, MMLab@<u>HKU</u> 在 connect.hku.hk 的电子邮件经过验证 - <u>首页</u> computer vision generative AI > 关注

JIMMXX		
	总计	2020 年至今
引用	25709	25662
h 指数	45	45
i10 指数	74	74

标题

SegFormer: Simple and Efficient Design for Semantic Segmentation with E Xie, W Wang, Z Yu, A Anandkumar, JM Alvarez, P Luo

Conference on Neural Information Processing Systems (NeurIPS), 2021

Pyramid vision transformer: A versatile backbone for dense prediction wit W Wang, E Xie, X Li, DP Fan, K Song, D Liang, T Lu, P Luo, L Shao IEEE International Conference on Computer Vision (ICCV)

PVT v2: Improved baselines with Pyramid Vision Transformer

W Wang, E Xie, X Li, DP Fan, K Song, D Liang, T Lu, P Luo, L Shao Computational Visual Media 8 (3), 415-424

Song Han

Massachusetts Institute of Technology 在 mit.edu 的电子邮件经过验证 - 首页 Computer Architecture Deep Learning Computer Vision

标题	引用次数	年份
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding S Han, H Mao, WJ Dally International Conference on Learning Representations (ICLR'16 best paper award)	12111	2015
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5MB model size FN landola, S Han, MW Moskewicz, K Ashraf, WJ Dally, K Keutzer arXiv preprint arXiv:1602.07360	11337	2016

引田次数

		总计	+	2	2020 4	羊至今
引用 h 指数 i10 指数		7639° 74 148	1			65460 72 145
						17000
		_				12750
	- 1	ł	H			8500
П		ı	ı			4250
2018 2019	2020 2021	2022	2023	2024	2025	0

查看全部

₩ 关注

引用次数

作者介绍

Divot: Diffusion Powers Video Tokenizer for Comprehension and Generation

Yuying Ge Yizhuo Li Yixiao Ge **Ying Shan** ARC Lab, Tencent PCG

https://github.com/TencentARC/Divot

Yuying Ge

Tencent ARC Lab Verified email at tencent.com - Homepage deep learning computer vision

FOLLOW Cited by

	All	Since 2020
Citations	3321	3298
h-index	21	21
i10-index	24	24

TITLE	CITED BY	YEAR
SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension B Li, R Wang, G Wang, Y Ge, Y Ge, Y Shan arXiv preprint arXiv:2307.16125	628	2023
Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation and reidentification of clothing images Y Ge, R Zhang, X Wang, X Tang, P Luo Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern	521	2019
Parser-Free Virtual Try-on via Distilling Appearance Flows Y Ge, Y Song, R Zhang, C Ge, W Liu, P Luo Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern	257	2021

1400 Public access VIEW ALL

All in one: Exploring unified video-language pre-training

J Wang, Y Ge, R Yan, Y Ge, KQ Lin, S Tsutsui, X Lin, G Cai, J Wu, Y Proceedings of the IEEE/CVF Conference on Computer Vision and F

SEED-Bench-2: Benchmarking Multimodal Large Langu B Li, Y Ge, Y Ge, G Wang, R Wang, R Zhang, Y Shan

Proceedings of the IEEE/CVF Conference on Computer Vision and F

Bridging Video-Text Retrieval With Multiple Choice Ques

Y Ge, Y Ge, X Liu, D Li, Y Shan, X Qie, P Luo Proceedings of the IEEE/CVF Conference on Computer Vision and F

SEED-X: Multimodal Models with Unified Multi-granulari Y Ge, S Zhao, J Zhu, Y Ge, K Yi, L Song, C Li, X Ding, Y Shan arXiv preprint arXiv:2404.14396

Ying Shan

Distinguished Scientist at Tencent, Director of ARC Lab & Al Lab CVC Verified email at tencent.com - Homepage

Deep learning computer vision machine learning paid search display ads

FOLLOW

Cited by

not available

TITLE	CITED BY	YEAR
Real-esrgan: Training real-world blind super-resolution with pure synthetic data X Wang, L Xie, C Dong, Y Shan Proceedings of the IEEE/CVF international conference on computer vision	1668	2021
T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models C Mou, X Wang, L Xie, Y Wu, J Zhang, Z Qi, Y Shan AAAI24: The 38th Annual AAAI Conference on Artificial Intelligence	1141	2024
Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation JZ Wu, Y Ge, X Wang, SW Lei, Y Gu, Y Shi, W Hsu, Y Shan, X Qie, ICCV2023: International Conference on Computer Vision	931	2023
SEED-Bench: Benchmarking Multimodal Large Language Models L Bohao, G Yuying, G Yixiao, W Guangzhi, W Rui, Z Ruimao, S Ying CVPR24: The IEEE / CVF Computer Vision and Pattern Recognition Conference	809 *	2024

	All	Since 2020
Citations h-index i10-index	23377 76 220	20389 65 200
		10000
		7500
		5000
		2500
2018 2019 2020 20	021 2022 2023	2024 2025 0
Public access		VIEW ALL
7 articles		83 articles

VIEW ALL

available

- □作者介绍
- □背景介绍
- □ 方法1
- □ 方法2
- □总结反思

- Tokenizer是一种广义的概念,也是所有任务的最上游
- Tokenizer主要将原始输入映射到某种特定的空间,这个空间可以称为 latent space (隐空间)或者codebook (码本)
- 基于这个特定的空间,后续模型可以实现各种下游任务

- $\mathbf{z} = argmin_{\mathbf{z}} ||\mathbf{x} \hat{\mathbf{x}}||^2$ برية شارة \mathbf{z}
- 在NLP中主要为码本的概念,即每个字符或者字母组合都有自己的嵌入 嵌入向量,常见的有BPE编码器等
- 在视觉领域最常见的是VAE,将视觉信息压缩为连续高斯分布
- 在多模态领域, CLIP等也可以被认为是一种Tokenizer, 常用于各种多模态下游任务和MLLM等
- 实际上,任何foundation model都可以被认为是一种Tokenizer!

- Tokenizer在更多情况下是为了特定任务和特定模态实现的,因此很多 时候增加了非常多的先验信息
- 在2023-2024年的MLLM领域,众多工作都在考虑如何mixture of vision expert来赋予各种视觉理解的先验
- 来到统一模型时代,如何同时均衡视觉生成和视觉理解两种任务,是设计Tokenizer的关键

- · 满足理解任务,采用CLIP, SigLIP (2) 即可
- 满足生成任务,则需要采用VAE/VQ-VAE等,因为需要对输出进行解码
- Janus中首先提出了解耦的概念,符合利用现有各种Tokenizer的先验进 行编码的思路,并且能做到两种模型互不干扰
- 是否能设计出单一编码器,同时实现两种功能?
- 涉及到两个关键概念:连续vs离散,低级vs高级

- 由于LLM的输出预测是离散的,因此采用连续码本很难做到预测,这使得大部分人抛弃了原本VAE,转而采用VQ或者是1d tokenizer
- 由于像素级信息比较低级,而LLM是在高级语义信息上进行处理,因此 大部分人考虑将像素级信息隐含到tokenizer中,而输出只有高级语义
- 进而诞生出两条路线
 - CLIP编码器+VQ-VAE
 - 1d tokenizer+Diffusion Decoder

- □作者介绍
- □背景介绍
- □ 方法1
- □ 方法2
- □总结反思

VILA-U

- 单一tokenizer设计,采用离散化的生成码本,加载CLIP的双编码器
- 采用RQ-VAE设计进行量化,使得表征层级更丰富
- RQ-VAE具有残差量化性,重复量化同一特征,每次减去之前的量化值 $\hat{\mathbf{z}} = \sum_{i=1}^{D} \mathbf{e}(k_i)$.

$$\mathcal{RQ}(\mathbf{z}; \mathcal{C}, D) = (k_1, \dots, k_D) \in [K]^D, \qquad \mathcal{Q}(\mathbf{z}; \mathcal{C}) = \underset{k \in [K]}{\operatorname{arg \, min}} \|\mathbf{z} - \mathbf{e}(k)\|_2^2.$$

$$k_d = \mathcal{Q}(\mathbf{r}_{d-1}, \mathcal{C}), \qquad \mathcal{L}_{total} = w_{contra} \mathcal{L}_{contra} + w_{recon} \mathcal{L}_{recon}$$

$$\mathbf{r}_d = \mathbf{r}_{d-1} - \mathbf{e}(k_d), \qquad \mathcal{L}_{text} = -\sum_{i=1}^T \log P_{\theta}(y_i | y_{< i}), \quad \mathcal{L}_{visual} = -\sum_{j=1}^T \sum_{d=1}^D \log P_{\delta}(k_{jd} | k_{j, < d}),$$

VILA-U

• 四种训练失败的策略:

- (1) 只加载clip文本编码器权重—从头训练CLIP过于困难
- (2) 加载RQ-VAE权重到编解码器,但其他从头训练——同上,且batchsize难平衡
- (3) 固定视觉编码器—难以学习到低级视觉信息
- (4) 不固定文本编码器—量化过程破坏了语义对齐性

Model	Pretrained Weights	Resolution	Shape of Code	rFID↓	Top-1 Accuracy ↑
VQ-GAN [22]	_	256×256	16×16	4.98	_
RQ-VAE [33]	_	256×256	$8 \times 8 \times 4$	3.20	_
RQ-VAE [33]	_	256×256	$16 \times 16 \times 4$	1.30	_
Ours	SigLIP-Large	256 × 256	$16 \times 16 \times 4$	1.80	73.3
Ours	SigLIP-SO400M	384×384	$27 \times 27 \times 16$	1.25	78.0

Method	LLM	Visual Token	Res.	VQAv2	GQA	TextVQA	POPE	MME	SEED	MM-Vet
LLaVA-1.5 [51]	Vicuna-1.5-7B	Continuous	336	78.5*	62.0*	58.2	85.9	1510.7	58.6	30.5
VILA [45]	LLaMA-2-7B	Continuous	336	79.9*	62.3*	64.4	85.5	1533.0	61.1	34.9
Unified-IO 2 [52]	6.8B from scratch	Continuous	384	79.4*	_	_	87.7	_	61.8	_
InstructBLIP [15]	Vicuna-7B	Continuous	224	_	49.2	50.1	_	_	53.4	26.2
IDEFICS-9B [32]	LLaMA-7B	Continuous	224	50.9	38.4	25.9	_	_	_	_
Emu [64]	LLaMA-13B	Continuous	224	52.0	_	_	_	_	_	_
LaVIT [31]	LLaMA-7B	Continuous	224	66.0	46.8	_	_	_	_	_
DreamLLM [19]	Vicuna-7B	Continuous	224	72.9*	_	41.8	_	_	_	36.6
Video-LaVIT [30]	LLaMA-2-7B	Continuous	224	80.2*	63.6*	_	_	1581.5	64.4	35.0
CM3Leon-7B [75]	7B from scratch	Discrete	256	47.6	_	_	_	_	_	_
LWM [48]	LLaMA-2-7B	Discrete	256	55.8	44.8	18.8	75.2	_	_	9.6
Show-o [70]	Phi-1.5-1.3B	Discrete	256	59.3*	48.7*	_	73.8	948.4	_	_
Ours	LLaMA-2-7B	Discrete	256	75.3*	58.3*	48.3	83.9	1336.2	56.3	27.7
Ours	LLaMA-2-7B	Discrete	384	79.4*	60.8*	60.8	85.8	1401.8	59.0	33.5

Method	LLM	Visual Token	Res.	MSVD-QA	MSRVTT-QA	TGIF-QA	Activity Net-QA
Unified-IO 2 [52]	6.8B from scratch	Continuous	384	52.1	42.5	_	_
Emu [64]	LLaMA-13B	Continuous	224	_	18.8	8.3	_
VideoChat [40]	Vicuna-7B	Continuous	224	56.3	45	34.4	_
Video-LLaMA [78]	LLaMA-2-7B	Continuous	224	51.6	29.6	_	_
Video-ChatGPT [53]	LLaMA-2-7B	Continuous	224	64.9	49.3	51.4	35.2
Video-LLava [44]	Vicuna-7B	Continuous	224	70.7	59.2	70.0	45.3
Video-LaVIT [30]	LLaMA-2-7B	Continuous	224	73.5	59.5	_	50.2
LWM [48]	LLaMA-2-7B	Discrete	256	55.9	44.1	40.9	-
Ours	LLaMA-2-7B	Discrete	256	73.4	58.9	51.3	51.6
Ours	LLaMA-2-7B	Discrete	384	75.3	60.0	51.9	52.7

体内容计算实验室

Method	Туре	#Training Images	Attribute [†]	Scene↑	Relation [†]			Overall↑
1120220	-JP	gg			Spatial	Action	Part	0,02022
SD v2.1 [60]	Diffusion	2000M	0.80	0.79	0.76	0.77	0.80	0.78
SD-XL [57]	Diffusion	2000M	0.84	0.84	0.82	0.83	0.89	0.83
Midjourney v6 [59]	Diffusion	_	0.88	0.87	0.87	0.87	0.91	0.87
DALL-E 3 [47]	Diffusion	_	0.91	0.90	0.92	0.89	0.91	0.90
Show-o [70]	Discrete Diff.	36M	0.72	0.72	0.70	0.70	0.75	0.70
LWM [48]	Autoregressive	_	0.63	0.62	0.65	0.63	0.70	0.63
Ours (256)	Autoregressive	15M	0.78	0.78	0.77	0.78	0.79	0.76
Ours (384)	Autoregressive	15M	0.75	0.76	0.75	0.73	0.75	0.73

					<u>~</u>				
Pretrained Weights	Data size	Loss Type	Top-1 Accuracy	VQAv2	POPE	MME	SEED	MM-Vet	
SigLIP-Large	25M	Recon.	_	57.7	75.1	937.7	38.7	15.3	
SigLIP-Large	25M	Recon. + Contra.	62.9	68.0	83.7	1219	50.4	20.8	
SigLIP-Large	700M	Recon. + Contra.	73.3	75.3	83.9	1336.2	56.3	27.7	

Table 7: Impact of contrastive loss to visual generation.

Vision Tower	LLM	Resolution	rFID ↓	FID ↓
RQ-VAE [33]	Sheared-LLaMA-1.3B	256×256	1.30	12.0
Ours	Sheared-LLaMA-1.3B	256×256	1.80	13.2

- □作者介绍
- □背景介绍
- □ 方法1
- □ 方法2
- □总结反思

Divot tokenizer de-tokenizer de-tokenizer Text-to-video Generation

Next-word prediction

5 7 3

Divot-LLM

Divot-LLM

Divot-LLM

Divot-LLM

mug moves down

- 1d-tokenizer设计+diffusion decoder
- 没有量化过程,因此LLM输出采用混合高斯
- 训练编码器时引入diffusion监督
- · 主要思想:对于同一视频,如果tokenizer提供的特征作为条件能够使得diffusion预测出噪声,则认为该tokenizer成功捕捉了时间和空间信息
- 采用diffusion方式进行**视觉自监督**地训练一个tokenizer

mug moves down

- 训练LLM时候关于生成任务的监督
- 如果对high-level video特征引入噪声效果会变差,说明高级语义特征需要精确建模
- 在视觉特征中采用双向建模更合适

	Representation		Objective			Mechanism			
	patch-position	patch-position	MSE	SE Diffusion G		GMM	AR	Query	
	dependent	independent		ϵ -pred	v-pred			causal	bidirectional
CLIPSIM (†)	0.3192	0.3265	0.3168	0.2811	0.2842	0.3265	0.2386	0.3080	0.3265
FVD (↓)	378.50	366.60	438.94	418.19	377.17	366.60	447.88	416.60	366.60

实验室

Stage	Type	Dataset				
Tokenize	Pure Video	WebVid-10M [2], Panda-70M [9]				
Pre-train	Video-text	WebVid-10M [2]				
	Image-text	CC3M [52], CapsFusion [87], LAION-COCO [51]				
SFT	Classification	Kinetics-710 [27], SSV2 [18]				
	VQA	TGIF [34], NextQA [76], CLEVRER [85], YouCook2 [92], PerceptionTest[48], EgoQA [19], ActivityNetQA[88]				
	Instruction	Video-ChatGPT[43], LLaVA-mixed[39], Valley [42], LLaVA-Video-178K[37]				
	Generation	WebVid-10M [2]				
	StoryTelling	In-house data				

Model	Data size	Unified	MSR-V	TT
			CLIPSIM (†)	FVD (\psi)
CogVideo [21]	5.4M	×	0.2631	1294
Video LDM [5]	10 M	×	0.2929	-
VideoComposer [66]	10 M	×	0.2932	580
InternVid [68]	28M	×	0.2951	-
Make-A-Video [53]	20M	×	0.3049	-
VideoPoet [29]	270M	×	0.3049	213
PYoCo [14]	22.5M	×	-	-
SVD [4]	152M	×	-	-
Video-LavIT [26]	10 M	\checkmark	0.3012	188.36
Loong [69]	16M	×	0.2903	274
Snap Video [45]	-	×	0.2793	110.4
VILA-U [74]	1 M	\checkmark	0.2937	499.06
Divot-LLM	4.8M	✓	0.2938	301.4

Model	LLM size	Video-Gen	EgoSchema	Perception-Test	MVBench	MSVD	ActivityNet
Gemini 1.0 Pro [58]	-	×	55.7	51.1	-	-	49.8
Gemini 1.5 Pro [59]	-	×	63.2	-	-	-	56.7
GPT4-V [46]	-	×	55.6	-	43.7	-	59.5
GPT4-O [47]	-	×	72.2	-	-	-	<u>61.9</u>
LLaMA-VID [35]	7B	×	38.5	44.6	41.9	69.7	47.4
Video-ChatGPT [43]	7B	×	-	-	-	64.9	35.2
Video-LLaVA [37]	7B	×	38.4	44.3	41.0	70.7	45.3
VideoChat2 [31]	7B	×	42.2	47.3	51.1	70.0	49.1
LLaVA-NeXT-Video [38]	7B	×	43.9	48.8	46.5	67.8	53.5
LLaVA-NeXT-Video [38]	32B	×	60.9	-	-	-	54.3
PLLaVA [81]	34B	×	-	58.1	-	-	60.9
LLaVA-OneVision [30]	72B	×	62.0	-	-	-	62.3
VideoLLaMA2 [10]	7B	×	51.7	51.4	<u>54.6</u>	70.9	50.2
VideoLLaMA2 [10]	72B	×	<u>63.9</u>	<u>57.5</u>	62.0	71.0	55.2
LWM [40]	7B	\checkmark	-	-	-	55.9	-
Video-LaVIT [26]	7B	\checkmark	37.3	47.9	-	73.2	50.1
VILA-U [74]	7B	✓	-	-	-	<u>75.3</u>	52.7
Divot-LLM	7B	✓	46.5	58.3	52.1	76.4	55.8

容计算实验室

20

Back view of a young woman dressed in a yellow dress walking in desert.

A person is applying eye makeup.

A person is applying eye makeup.

- □作者介绍
- □背景介绍
- □ 方法1
- □ 方法2
- □总结反思

总结反思

- 1d tokenizer是统一编码器的主流实现,解耦编码器也仍在广泛实践
- 如何同时构建具有低级和高级语义的空间是关键

谢谢!