Многоуровневый метод Монте-Карло в финансовой математике Выпускная квалификационная работа

Иван Суворов, 422 группа

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели Научный руководитель: д.ф.-м.н., профессор Ермаков С.М. Рецензент: к.ф.-м.н., доцент Каштанов Ю.Н. Санкт-Петербург 2017г.

Постановка задачи

- В выпускной работе рассматривалась задача вычисления цены европейского опциона в случае, когда цена базового актива описывается СДУ.
- В ходе работы был изучен Многоуровневый метод Монте-Карло, предложена модификация, уменьшающая вычислительную сложность метода по сравнению со стандартным Многоуровневым ММК благодаря использованию квазислучайных чисел.
- На основании модификации написаны программы, проведены вычислительные эксперименты.

Многоуровневый метод Монте-Карло

Будем искать стоимость опциона $\mathbf{E}(Y) = \mathbf{E}(F(S(T)))$ с помощью \hat{Y} :

$$\hat{Y} = \sum_{l=0}^{L} \hat{Y}_l,$$

где

$$\hat{Y}_0 = \frac{1}{N_0} \sum_{i=1}^{N_0} \hat{P}_0^i = \frac{1}{N_0} \sum_{i=1}^{N_0} \Delta \hat{P}_0^i,$$

И

$$\hat{Y}_{l} = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} (\hat{P}_{l}^{i} - \hat{P}_{l-1}^{i}) = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} \Delta \hat{P}_{l}^{i}.$$

 \hat{P}^i_l — прибл. F(S(T)) для одного выборочного пути с шагом h_l . h_l уменьшается при увеличении l — номера уровня.

Многоуровневый метод Монте-Карло

- $oldsymbol{0}$ L=0. Выбираем $M,\;\epsilon,\; \tilde{N},\;T.$
- $m{2}$ Вычислим \hat{Y}_L и V_L выборочную дисперсию разности приближений $\Delta \hat{P}_L^i$, используя \tilde{N} выборочных путей с шагом по времени $h_L=T/M^L$.
- ① Определим оптимальное количество выборочных путей по формуле $N_l = \lceil 2\epsilon^{-2} \sqrt[2]{V_l h_l} \sum_{j=0}^L \sqrt[2]{h_j^{-1} V_j} \rceil$.
- ① Генерируем дополнительные выборочные пути с таким же шагом по времени h_L , если $ilde{N} \leq N_l$.
- ullet Начиная с L=2, проверяем критерий остановки: $max(M^{-1}|\hat{Y}_{L-1}|,\;\hat{Y}_{L})<rac{\epsilon}{\sqrt[2]{M-1}}.$
- Если критерий не выполнен переходим к шагу 2.

Вычислительная сложность метода имеет порядок $\epsilon^{-2}(log\epsilon)^2$.

Предложенная модификация

Выбираем и фиксируем некоторое K. Нахождение $\Delta \hat{P}_l^i$ в некоторый момент будем производить при использовании метода Скремблинга следующим образом:

- f 0 Генерируем K векторов квазислучайных чисел Соболя $areta_{kl},\ k=1\dots K$ в $[0,1]^{M^l}.$
- f 2 Генерируем N_l векторов сл. ч. $ar{lpha}_{il},\ i=1\dots N_l,$ р-ти $M^l,$ каждая коорд. вектора равномерно-распр. в [0,1].
- ullet Метод скремблинга: $ar{\gamma}_{ikl} = \{ar{lpha}_{il} + ar{eta}_{kl}\}.$
- Разбиваем на группы с одинаковым псевдослучайным числом и считаем средние: $\Delta \hat{P}_l^i = \frac{1}{K} \sum_{k=1}^K \Delta \hat{P}_l^i (\bar{\gamma}_{ikl}).$

Будем применять следующий критерий остановки метода: $max(|\hat{Y}_L+3\sigma_L|,\;|\hat{Y}_L-3\sigma_L|)<\frac{(M-1)\epsilon}{\sqrt{2}},$ где σ_L — стандартное отклонение \hat{Y}_L . Ограничим L: L<6, что повлияет только на систематическую ошибку.

Модификация, предложенная Джайлсом и Вотерхаузом

- $oldsymbol{lack}$ Генерируем K_l векторов чисел Соболя $ar{eta}_{kl},\ k=1\dots K_l$ в $[0,1]^{M^l}.$
- ullet Генерируем N=32 векторов сл. ч. $ar{lpha}_{il},\ i=1\dots N,$ р-ти M^l , каждая коорд. вектора равномерно-распр. в [0,1].
- lacktriangle Метод скремблинга: $ar{\gamma}_{ikl} = \{ar{lpha}_{il} + ar{eta}_{kl}\}.$
- ullet Разбиваем на группы с одинаковым псевдослучайным числом и считаем средние: $\Delta \hat{P}_l^i = rac{1}{K_l} \sum_{k=1}^{K_l} \Delta \hat{P}_l^i (ar{\gamma}_{ikl}).$
- Получаем оценку V_l как выборочную дисперсию N=32 оценок $\Delta \hat{P}_l^i$.
- ullet Если $\sum_{l=0}^L V_l/N > rac{\epsilon^2}{2},$ то удваиваем K_l на уровне, на котором $rac{V_l}{2^l K_l}$ наибольшее. Пусть l равно номеру этого уровня. Возвращаясь к шагу 2, пересчитываем V_l .
- lacktriangledown Если L < 2 или критерий остановки не выполнен, то L = l := L + 1 и переходим к шагу 2.

Вычислительная сложность

Будем оценивать вычислительную сложность как общее количество обращений к датчику псевдослучайных чисел и таблице квазислучайных чисел. При использовании Многоуровневого метода Монте-Карло:

$$\sum_{l=0}^{L} N_l h_l.$$

При использовании модификации Джайлса, Вотерхауза:

$$\sum_{l=0}^{L} Nh_l K_l.$$

При использовании авторской модификации:

$$\sum_{l=0}^{L} N_l h_l K.$$

Модель Блэка-Шоулза

Произведены расчёты цены европейского опциона покупки в модели Блэка-Шоулза:

$$F(\{S_t\}_{0 \le t \le T}) = e^{-rT} \max(S_T - X, 0),$$

$$dS(t) = rS(t)dt + \sigma S(t)dW_t,$$

при

 $T=1,~M=2,~\tilde{N}=20,~\epsilon=0.01,~S_0=100,~r=0.05,~\sigma=0.2$ и разных значениях цены исполнения $X=\{80,100,120\}.$

Модель локальных волатильностей

Произведены расчёты цены европейского опциона покупки в модели локальных волатильностей:

$$F(\{S_t\}_{0 \le t \le T}) = e^{-rT} \max(S_T - X, 0),$$

$$dS(t)=rS(t)dt+\sigma(S(t))S(t)dW_t.$$
 при $T=1,\ M=2,\ \tilde{N}=20,\ \epsilon=0.01,\ S_0=100,\ r=0.05,$
$$\sigma(S)=\frac{0.9}{0.08S+1}+0.1$$

и разных значениях цены исполнения $X = \{80, 100, 120\}.$

Модель локальных волатильностей

$$\sigma(S) = \frac{0.9}{0.08S + 1} + 0.1$$

Модель локальных волатильностей. X=80

	l = 0	l=1	l=2	l=3
	K_0 / N_0	K_1 / N_1	K_2 / N_2	K_3 / N_3
Стандарт	0 / 8485576	0 / 339417	0 / 171556	0 / 86291
Суворов	128 / 4932	128 / 341	128 / 187	128 / 126
Дж.,В.	8192 / 32	1024 / 32	512 / 32	512 / 32

l=4	l = 5	Вычисл. слож.	Цена
K_4 / N_4	K_5 / N_5	N	$E(F(\tilde{S}))$
0 / 45646	0 / 22725	11998498	24.74
128 / 67	128 / 39	1239168	24.74
256 / 32	128 / 32	786432	24.74

Модель локальных волатильностей. $X=100\,$

	l = 0	l=1	l=2	l=3
	K_0 / N_0	K_1 / N_1	K_2 / N_2	K_3 / N_3
Стандарт	0 / 4542304	0 / 189980	0 / 101016	0 / 50390
Суворов	256 / 1334	256 / 134	256 / 82	256 / 42
Дж.,В.	8192 / 32	1024 / 32	512 / 32	256 / 32

l=4	l = 5	Вычисл. слож.	Цена
K_4 / N_4	K_5 / N_5	N	$E(F(\tilde{S}))$
0 / 26058	0 / 13599	6563544	10.44
256 / 32	256 / 20	875008	10.46
256 / 32	128 / 32	720896	10.46

Модель локальных волатильностей. $X=120\,$

	l = 0	l=1	l=2	l=3
	K_0 / N_0	K_1 / N_1	K_2 / N_2	K_3 / N_3
Стандарт	0 / 1307492	0 / 102520	0 / 48469	0 / 16346
Суворов	256 / 644	256 / 69	256 / 49	256 / 33
Дж.,В.	8192 / 32	1024 / 32	512 / 32	256 / 32

l=4	l=5	Вычисл. слож.	Цена
K_4/N_4	K_5/N_5	N	$E(F(\tilde{S}))$
0/10851	0/3386	2119143	2.98
256 / 22	256 / 20	736768	2.98
128 / 32	64 / 32	589824	2.98

Заключение

- Предложена собственная модификация Многоуровневого метода Монте-Карло для решения стохастических дифференциальных уравнений, использующая рандомизацию квазислучайных чисел.
- Проведены численные эксперименты, с помощью которых проведено сравнение с известной модификацией М. Джайлса и Б. Вотерхауза.
- Получен приблизительно одинаковый в смысле вычислительной сложности результат.
- Предложенная модификация может быть полезной в задачах, где конструктивная размерность алгоритма ограничена.