Massively Parallel, Portable, and Reproducible Tractography (MaPPeRTrac) - Improvements, Distribution, and Horizon

Paul B Camacho, PhD

https://github.com/pcamach2

Data Scientist – Biomedical Imaging Center @ University of Illinois at Urbana Champaign

Research Team: Lanya T. Cai[†], Joseph Moon[†], Paul B. Camacho, Aaron T. Anderson, Won Jong Chwa,

Bradley P. Sutton, Amy J. Markowitz, Eva M. Palacios, Alexis Rodriguez, Geoffrey T. Manley,

Shivsundaram Shankar, Peer-Timo Bremer, Pratik Mukherjee, Ravi K. Madduri

Overview

- Diffusion MRI & Tractography Primer
- MaPPeRTrac Overview

USING PARSL IN CREATING MAPPERTRAC

RAVI MADDURI

Computational Scientist Data Science and Learning Argonne National Laboratory and University of Chicago

COLLABORATORS

Joseph Moon, Timo Bremer, Pratik Mukherji, Eva Palacios, Mark Xiao and Alex Rodriguez

ParslFest 2020

- Updates Since MaPPeRTrac Presentation @ ParslFest 2020
- Future Directions

Diffusion Weighted Imaging in the Brain

Figure from: Le Bihan D. (2014). Diffusion MRI: what water tells us about the brain. *EMBO molecular medicine*, 6(5), 569–573. https://doi.org/10.1002/emmm.201404055

Diffusion signal reconstruction

Estimating the fiber population in each voxel

- Diffusion tensor imaging (DTI)
 - le Bihan, et al. 2001
 - Early model, common in clinical applications
 - Microstructure characterization

Probabilistic tractography

Tractography

Structural connectome - characterize the wiring of the human brain in health and neurodegeneration

Biomarker source for:
Aging
Multiple Sclerosis
Traumatic Brain Injury
Etc.

MaPPeRTrac: A Massively Parallel, Portable, and Reproducible Tractography Pipeline

A collaboration between the U.S. Department of Energy and TRACK-TBI*

Lanya T. Cai^{1†}, Joseph Moon^{2†}, Paul B. Camacho³, Aaron T. Anderson³, Won Jong Chwa⁴, Bradley P. Sutton⁵, Amy J. Markowitz¹, Eva M. Palacios¹, Alexis Rodriguez⁶, Geoffrey T. Manley¹, Shivsundaram Shankar², Peer-Timo Bremer², Pratik Mukherjee¹, Ravi K. Madduri^{6*}

¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St., San Francisco, 94158, CA, USA.

²Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, 94550, CA, USA.

³Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, 61801, IL, USA.

⁴Department of Radiology, Washington University in St. Louis, 510 S Kingshighway Blvd,

St. Louis, 63110, MO, USA.

⁵Bioengineering Department, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, Urbana, 61801, IL, USA.

^{6*}Argonne National Laboratory, 9700 S Cass Ave, Lemont, 60439, IL, USA.

*Corresponding author e-mail: madduri@anl.gov; †These authors contributed equally to this work.

In submission to Neuroinformatics

MaPPeRTrac

- Edge density imaging (EDI)
- Structural connectome that maps the number of network edges that pass through every white matter voxel
 - Focus on white matter pathways that constitute the edges of the network

MaPPeRTrac Updates

- Dependency Updates Integration
 - Freesurfer, FSL, MRTrix3 versions
- Parsimonious containers -> faster deployment
 - Updated CLI for –multi_container
 - Recipe files & build directions
- Compatibility with DWI data including multiple interleaved b=0 volumes
 - Supports better motion correction and denoising
- Enhanced parallelization
 - Parsl *python_apps* for *probtrackx2* instances for each edge chunk

mappertrac 1.3.1

https://pypi.org/project/mappertrac/

Figure from Mitra-Behura, et al. 2022 - https://doi.org/10.3389/fbinf.2021.757291

Example usage with DataLad:

Benchmarking v1.3.1

<u>BIC HPC</u>			
RAM	192 GB	Total Memory Used: 3.06 GB (Virtual Memory: 29.5 GB)	
CPU	Intel Xeon Gold 6138 @ 2.00 GHz (80 threads)	Total CPU Time: 04:52:43 (hours:minutes:seconds)	
GPU	Nvidia Tesla V100	Peak Memory Used: 1317 MB / 161160 MB	
Run-time (hours:minutes:seconds)			
	s1_freesurfer	s2_bedpostx	s3_probtrackx2
TRACK-TBI Test Data	04:20:26	00:03:00	03:27:50
sub-THP0001_ses-THP0001MGH1	04:20:55	00:02:59	04:24:19

- Anonymized TRACK-TBI dataset
- Traveling Human Phantom session from Siemens site (MGH)

Future Directions

Standard method for segmentation + surface reconstruction 20-48 hours for 7T 0.7 mm isotropic MR2RAGE T1w Freesurfer-equivalent
segmentation + surface
reconstruction
~ 1 hour for 7T 0.7 mm
isotropic MR2RAGE T1w

Acknowledgements

- Department of Energy
 - Grant#KJ040301
- Department of Defense
 - TBI Endpoints Development Initiative (Grant #W81XWH-14-2-0176)
 - TRACK-TBI Precision Medicine (Grant #W81XWH-18-2-0042)
 - TRACK-TBI NETWORK (Grant #W81XWH-15-9-0001)
- NIH-NINDS
 - TRACK-TBI (Grant #U01NS086090)
- National Football League (NFL) Scientific Advisory Board TRACK-TBI LONGITUDINAL.
- Abbott Laboratories
- One Mind
- Yale University School of Medicine