GALOIS THEORY NOTES

1. Splitting fields and Normal extensions

Proposition 1.1. Let $K \leq L$ be fields. Suppose that $\alpha \in L$ is algebraic over K and let $p(x) \in K[x]$ be a minimal polynomial for α . Then there is a unique isomorphism $K[x]/(p(x)) \to K[\alpha] = K(\alpha)$ mapping x to α and fixing K.

Proof. There is a unique map $K[x] \to K[\alpha]$ mapping x to α and fixing K. It is surjective and its kernel is the ideal generated by p(x).

If $\sigma: K \to L$ is a homomorphism of fields and $f = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$, then we let $f^{\sigma} = \sigma(a_0) + \sigma(a_1)x + \cdots + \sigma(a_n)x^n \in F[x]$.

Lemma 1.2. Suppose that $\sigma: K \to L$ is an isomorphism of fields and suppose $K' = K[\alpha]$ is an extension of K where $f \in F[x]$ the minimal polynomial of $\alpha \in K'$. Let $\sigma: K \to L$ be a field homomorphism.

- If $\sigma': K' \to L$ extends σ , then $f^{\sigma}(\sigma'(\alpha)) = 0$
- If $\beta \in L$ satisfies that $f^{\sigma}(\beta) = 0$, then there is precisely one extension of σ mapping α to β .

Proof. The first point is obvious. For the second point, let $\phi: K[x] \to L$ be given by $\phi(P) = P^{\sigma}(\beta)$. This is a ring homomorphism. Now observe that $\phi(f) = f^{\sigma}(\beta) = 0$, thus ϕ vanishes on the ideal generated by f and so there is a well defined field homomorphism $\phi: K[x]/(f) \to L$ mapping x + (f) to β . Finally, we use the isomorphism $K' \cong K[x]/(f)$ that maps α to x and fixes K, giving the desired extension. The extension is clearly unique as $K' = K(\alpha)$.

Proposition 1.3. Let $K \leq K'$ be an algebraic field extension and suppose that $\sigma : K \to L$ is a field homomorphism where L is algebraically closed. Then there exists an extension $\sigma' : K' \to L$. Moreover, σ' must be an isomorphism if K' is algebraically closed and L is algebraic over $\sigma(K)$.

Proof. Use Zorn's lemma to construct a maximal subfield $K'' \subset K$ such that σ extends to K''. If $K'' \neq K'$ then choose $\alpha \in K' \setminus K''$. Now as K' is algebraic over K we can let $f \in K[x]$ be a minimal polynomial of α over K. Now as f^{σ} has a root in L as L is algebraically closed, we can use the previous lemma to extend σ to $K''[\alpha]$, contradicting the maximality of K''. If K' is algebraically closed, then so is $\sigma'(K')$ since any element of $\sigma'(K')[x]$ is of the form $f^{\sigma'}$ for some $f \in K'[x]$ and so we can let α be a root of f, giving that $\sigma'(\alpha)$ is a root of $f^{\sigma'}$. Now $\sigma'(K') \geq \sigma(K)$ so if L is algebraical over $\sigma(K)$, then L is also algebraic over $\sigma'(K')$. So if L is algebraically closed then $L = \sigma'(K')$, giving that σ' is surjective and thus an isomorphism (all field isomorphisms are injective).

Corollary 1.4. The algebraic closure of a field K is unique upto an isomorphism fixing K.

Definition 1.5 (Splitting field). Let $K \leq L$ be fields and let $\mathcal{F} \subset K[x]$ be a family of polynomials. We say that L is a splitting field for \mathcal{F} over F if each $f \in \mathcal{F}$ splits into linear factors in L[x] and L is the field generated by K and the roots of all polynomials in \mathcal{F} .

Proposition 1.6. A splitting field is unique upto an isomorphism fixing F.

Proof. Let $L \geq K$ and $L' \geq K$ be two splitting fields for a family $\mathcal{F} \subset K[x]$. We note that L' and L are both algebraic over K (as they are generated by roots). This means that we may use Proposition 1.3 to extend the identity map $K \to K$ to a field homomorphism $\sigma: L \to \widehat{L'}$ where $\widehat{L'} \geq L'$ is algebraically closed. However, note that $\sigma(L) \subset L'$ since σ maps each root of some $f \in \mathcal{F}$ to a root of f (as σ fixes K). So $\sigma: L \to L'$ is a homomorphism. It remains to show that σ is surjective. To see this, let $f \in \mathcal{F}$ and write $f(x) = \prod_i (x - \alpha_i)$ where $\alpha_i \in L$. Then $f = f^{\sigma} = \prod_i (x - \sigma(\alpha_i))$. This shows that any root in L' of any $f \in \mathcal{F}$ is in the image of σ (using the unique factorization property). Thus as L' is generated by these roots, the surjectivity of σ follows.

If K_1 and K_2 are two fields with a common subfield K, we say that a homomorphism $K_1 \to K_2$ is a K-homomorphism if it restricts to the identity on K.

Theorem 1.7. Let L be an algebraic extension of a field K. Then the following are equivalent.

- (1) L is a splitting field for some family of polynomials in K[x].
- (2) Any K-homomorphism $L \to \overline{L}$, where $\overline{L} \geq L$ is an algebriac closure, restricts to an automorphism of L
- (3) Any irreducible polynomial in K[x] that has a root in L must decompose into linear factors in L[x].
- *Proof.* (i) \Longrightarrow (ii): If L is a splitting field for some polynomials in K[x] and $\sigma: L \to \overline{L}$ is a K-homomorphism, then as in the proof of the uniqueness of splitting fields above, we see that σ maps into L. We also saw that it permutes the roots of a polynomial in K[x] in L and thus the image of σ is L, thus σ is surjective and hence an automorphism.
- (ii) \Longrightarrow (iii): Suppose $f \in K[x]$ is irreducible and has a root $\alpha \in L$. Now if $\alpha' \in \overline{L}$ is another root of f, then since f is irreducible we have an isomorphism $K[\alpha] \to K[\alpha']$ mapping α to α' , which we may extend to an K-homomorphism $\sigma : L \mapsto \overline{L}$ by a previous Lemma. By condition (ii), we see that σ maps L to L and thus $\alpha' = \sigma(\alpha) \in L$. Hence L contains all the roots of f.
- (iii) \Longrightarrow (ii): As L is algebraic, every element $\alpha \in L$ is the root of some irreducible polynomial $f \in K[x]$. We thus let $\mathcal{F} \subset K[x]$ be those irreducible polynomials with at least one root in L, which split into linear factors by assumption. Thus L is the splitting field of \mathcal{F} over K.

Definition 1.8. We say that an extension $K \leq L$ is normal if it is the splitting field of some family of polynomials.

Example 1.9. The extension $\mathbb{Q} \leq \mathbb{Q}[2^{1/3}]$ is not normal. To see this we use the characterization (iii) in the Theorem as follows: The polynomial $x^3 - 2$ is irreducible, has one root $2^{1/3}$ in our extension but not any other. Alternatively, we can use (ii) by noting that although there is \mathbb{Q} -homomorphism $\mathbb{Q}[2^{1/3}] \to \overline{\mathbb{Q}}$ mapping $2^{1/3}$ to $2^{1/3}e^{2\pi i/3}$, it does not restrict to an automorphism of $\mathbb{Q}[2^{1/3}]$.

Example 1.10. Normal is not transitive. As an example, consider the field extensions $\mathbb{Q} \leq \mathbb{Q}[\sqrt{2}] \leq \mathbb{Q}[2^{1/4}]$. The intermediate field extensions are normal (as they are of degree 2) but the extension $\mathbb{Q} \leq \mathbb{Q}[2^{1/4}]$ is not.

Definition 1.11. If $L \geq K$ is an algebraic extension, then we say that $L' \leq L \leq K$ is a normal closure of $L \geq K$ if $L' \geq K$ is a normal extension and any $L' \geq L'' \geq K$ such that $L'' \geq K$ is normal must satisfy L'' = L'. That is, the normal closure if a minimal normal extension.

Proposition 1.12. Every algebraic extension $L \geq K$ has a normal closure. More precisely, let \mathcal{F} be the set of all irreducible polynomials in K[x] such that each element of $L \setminus K$ is the root of some $f \in \mathcal{F}$. Then the splitting field of \mathcal{F} is the normal closure of $L \geq K$.

Proof. Let $\overline{L} \geq L$ be the algebraic closure of L. Define $\overline{L} \geq L' \geq L$ to be the splitting field for the family $\mathcal{F} \subset K[x]$ of minimal polynomials for elements of L. We claim that L' is the normal closure. Thus suppose that $L \leq L'' \leq L'$ is such that $K \leq L''$ is normal. We must show that L'' = L', and since L' is generated by the roots of elements of \mathcal{F} , we must show that any root $\alpha \in L'$ of a polynomial $f \in \mathcal{F}$ is in L''. To see this, note that by definition f is a minimal polynomial of some $\alpha' \in L$. There is a K-homomorphism $\sigma: K[\alpha'] \to \overline{L}$ mapping α' to $\alpha \in L$. As $L'' \geq L \geq K[\alpha']$, we may extend this K-homomorphism to $\sigma: L'' \to \overline{L}$. But by characterization (ii) of the normality of $K \leq L''$, we see that σ is an automorphism of L''. This means that $\alpha = \sigma(\alpha') \in L''$ as $\alpha' \in L \subset L''$. Thus this shows that $L' \subset L''$, and so L' = L'' as required.

Proposition 1.13. If $K \leq L$ is an algebraic extension and $L \leq L_1, L_2 \leq \overline{L}$ are two normal extensions of K, then $L_1 \cap L_2$ is a normal extension of K. In particular, if L_1 and L_2 are both normal closures of $L \geq K$, then $L_1 = L_2$.

Proof. This follows from characterization (iii): If $f \in K[x]$ is irreducible and has a root in $\alpha \in L_1 \cap L_2$, then f decomposes to linear factors in $L_i[x]$ for i = 1, 2. By uniqueness of factorizations, this means that these linear factors are in $(L_1 \cap L_2)[x]$.

Proposition 1.14. A normal closure of an algebraic extension $L \geq K$ is unique upto an L-automorphism.

Proof. By the previous construction, we have one such normal closure given by $L[\mathcal{R}]$ where

$$\mathcal{R} = \{ r \in \overline{L} \mid f(r) = 0 \text{ for some } f \in \mathcal{F} \}$$

where $\mathcal{F} \subset K[x]$ is the set of all irreducible polynomials such that each element of L is the root of some $f \in \mathcal{F}$. We now let $L' \geq L$ be another field such that $L' \geq K$ is the normal closure of $L \geq K$. We now construct an isomorphism $L[\mathcal{R}] \to L'$ which fixes L. We extend the inclusion $L \to \overline{L'}$ to an L-homomorphism $\sigma: L[\mathcal{R}] \to \overline{L'}$. Note that $L'' = \sigma(L[\mathcal{R}]) = L[\sigma(\mathcal{R})]$ contains L and is the splitting field of \mathcal{F} in $\overline{L'}$ over K. Thus L' and L'' are subfields of \overline{L} that are normal extensions of K and both contain L. Moreover, L'' is also a normal closure of $L \geq K$ as it follows the construction given in Proposition 1.12 (i.e., it is a splitting field of minimal polynomials over K[x] of elements in L). By the previous proposition, it follows that L' = L'', thus σ is an isomorphism.

2. Seperable extensions

Lemma 2.1. An irreducible polynomial $f \in K[x]$ splits into distinct linear factors in some algebraic closure if and only if f' = 0.

Proof. By the product rule it follows that if $f(\alpha) = 0$ then α is a repeated root if and only if $f'(\alpha) = 0$. If f is irreducible, has a repeated root α and $f' \neq 0$ then $(X - \alpha)|gcd(f, f')|f$, which contradicts the irreducibility of f.

As a consequence, if charK = 0 then an irreducible polynomial must split into distinct linear factors.

Definition 2.2. We say that $f \in K[x]$ is separable if f splits into distinct linear factors in some (hence any) algebraic closure of K.

Theorem 2.3. If charK = p and $f \in K[x]$ is irreducible, then each root of f has multiplicity p^r where r is minimal non-negative integer such that $f(x) = g(x^{p^r})$ for some $g \in K[x]$.

Proof. Write $g(x) = \sum_{j} c_{j}x^{j}$. Since

$$g'(x) = \sum_{j} j c_j x^j$$

we observe that g'(x) is not the zero polynomial as follows: If g'(x) = 0 then $c_j = 0$ whenever j is not divisible by p. From this it follows that $g(x) = \sum_k c_{kp} x^{kp} = h(x^p)$. It now follows that

$$f(x) = g(x^{p^r}) = h((x^{p^r})^p) = h(x^{p^{r+1}}),$$

which contradicts the maximality of r. Thus $g'(x) \neq 0$. This means that $g(x) = \prod_i (x - \alpha_i)$ where α_i are distinct. Write $\alpha_i = \beta_i^{p^r}$, which exists in an algebraic closure. Note that the β_i must also be distinct. Thus

$$f(x) = \prod_{i} (x^{p^r} - \beta_i^{p^r}) = \prod_{i} (x - \beta_i)^{p^r},$$

where the last equality follows from Freshman's dream in characteristic p. As the β_i are distinct, the proof is complete.

Definition 2.4. If $K \leq L$ is an algebraic field extension then $\alpha \in L$ is called seperable over K if the minimal polynomial is seperable (splits over linear factors in some, hence any, algebraic closure). We say that the extension $K \leq L$ is seperable if all elements of L are separable over K.

Thus from above, in characteristic zero all algebraic extensions are seperable, as all irreducible polynomials are seperable.

Example 2.5. Consider the field $K = \mathbb{F}_p(t)$. The polynomial $f(x) = x^p - t$ is irreducible by Eisenstein's criterion in $\mathbb{F}_p[t]$ as t is prime in this UFD, and hence f(x) is irreducible also over its field of fractions K by Gauss's Lemma. Now, $f(\alpha) = 0$ in for some $\alpha \in \overline{K}$, that is $\alpha^p = t$. But by Freshman's dream we have that

$$x^p - t = x^p - \alpha^p = (x - \alpha)^p,$$

thus α is a root of multiplicity p for f(x). Thus f(x) is irreducible but not separable.

Definition 2.6. If $K \leq L$ is an algebraic extension, then we let

$$Hom_K(L, \overline{K})$$

denote the set of all K-homomorphisms $L \to \overline{K}$. We let

$$|L:K|_s = |Hom_K(L,\overline{K})|$$

be the seperable degree of $K \leq L$, which does not depend on the choice of \overline{K} .

Proposition 2.7. If $K \leq L \leq M$ are algebraic extensions then there is a bijection

$$Hom_K(L, \overline{K}) \times Hom_L(M, \overline{K}) \to Hom_K(M, \overline{K}).$$

In particular

$$|M:K|_s = |L:K|_s |M:L|_s$$
.

Proof. For each $\sigma \in Hom_K(L, \overline{K})$ we choose an arbitrary (there are many choices) $\phi(\sigma) : \overline{K} \to \overline{K}$ automorphism that extends σ , where we have used Proposition???. Now we define a mapping

$$Hom_K(L, \overline{K}) \times Hom_L(M, \overline{K}) \to Hom_K(M, \overline{K})$$

by

$$(\sigma, \tau) \mapsto \phi(\sigma) \circ \tau.$$

Let us first check that it is well defined. If $k \in K$ then

$$(\phi(\sigma) \circ \tau)(k) = \phi(\sigma)(\tau(k)) = \phi(\sigma)(k) = \sigma(k) = k,$$

so indeed $\phi(\sigma) \circ \tau$ is a K-homomorphism. To show injectivity, suppose that

$$\phi(\sigma) \circ \tau = \phi(\sigma') \circ \tau'.$$

Then for any $\ell \in L$ we have that

$$\phi(\sigma)(\tau(\ell)) = \phi(\sigma)(\ell) = \sigma(\ell)$$

and by the same arugment $\phi(\sigma')(\tau'(\ell)) = \sigma'(\ell)$. Thus $\sigma = \sigma'$. This means that $\phi(\sigma) = \phi(\sigma')$ and so by injectivity of field automorphisms, we must have that $\tau'(m) = \tau(m)$ for all $m \in M$. So $\tau = \tau'$. It now remains to show injectivity. Thus suppose that $\gamma \in Hom_K(M, \overline{K})$. Let σ be the restriction of γ to L and observe that $\sigma \in Hom_K(L, \overline{K})$. Now let

$$\tau = \phi(\sigma)^{-1} \circ \gamma : M \to \overline{K}.$$

If $\ell \in L$ then

$$\tau(\ell) = \phi(\sigma)^{-1}(\gamma(\ell)) = \phi(\sigma)^{-1}(\sigma(\ell)) = \phi(\sigma)^{-1}\phi(\sigma)(\ell) = \ell$$

thus indeed $\tau \in Hom_L(M, \overline{K})$. This shows that $\gamma = \phi(\sigma) \circ \tau$ is in the image of our map, thus our map is surjective.

Proposition 2.8. If $K \leq L$ is a finite extension then

- (1) If K has characteristic zero then $|L:K| = |L:K|_s$
- (2) If K has characteristic p then $|L:K| = p^r |L:K|_s$ for some integer $r \geq 0$.

Proof. By finiteness of this extension L can be obtained from K by finitely many simple extensions, so we only need to prove this when $L = K(\alpha)$ is a simple extension and then use the previous proposition to give the general case by induction. If CharK = 0 then we know that $|L:K| = degf = |L:K|_s$ where $f \in K[x]$ is the minimal polynomial of α , where we have used the fact that f is separable and there is a unique K-homomorphism mapping α to any given root of f. If CharK = p then $|L:K| = degf = p^r |L:K|_s$ where r is maximal integer such that $f(x) = g(x^{p^r})$ for some polynomial $g(x) \in K[x]$, as seen in a previously proven result. Thus completing the proof.

Theorem 2.9. Let $K \geq L$ be a finite extension. The following are equivalent.

(1) $K \geq L$ is separable.

- (2) $L = K(a_1, \ldots, a_n)$ for some $a_1, \ldots, a_n \in L$ that are separable over K
- (3) $|L:K|_s = |L:K|$

Proof. (i) \implies (ii) is trivial. (ii) \implies (iii): Letting $K_i = K_{i-1}(a_i)$ we see that a_i is separable over $K_{i-1} \geq K$ and thus $|K_i : K_{i-1}| = deg(f_i) = |K_i : K_{i-1}|_s$ where f_i is the minimal polynomial of a_i over K_{i-1} . We are now done by the multiplicativity formula. (iii) \implies (i): We only need to focus on CharK = p > 0. If $a \in L$ is not separable over K then

$$|K(a):K|_s < |K(a):K|$$

, but then

$$|L:K|_s = |L:K(a)|_s |K(a):L|_s < |L:K(a)| |K(a):K| = |L:K|.$$

Corollary 2.10. If $K \leq L \leq M$ are algebraic extensions then $K \leq M$ is separable if and only if $K \leq L$ and $L \leq M$ are separable.

Proof. First suppose $K \leq M$ is seperable. Then clearly $K \leq L$ is seperable. Now for $a \in M$ we have that the minimal polynomial $f(x) \in K[x]$ of a over K splits into linear factors. If $g(x) \in L[x]$ is the minimal polynomial of a over L, then clearly g(x)|f(x) as $f(x) \in L[x]$. Thus g(x) also splits into linear factors.

Conversely, assume now that $K \leq L$ and $L \leq M$ are separable. Fix $a \in M$. Then $|L(a): L| = |L(a): L|_s$ as $L \leq M$ is separable. Now let $L' \leq L$ be the field generated by K and the coefficients of the minimal polynomial $f(x) \in L[x]$ of a over L. Thus $f(x) \in L'[x]$ which means that a is separable over L' as well (as f(x) splits into linear factors and f(a) = 0). Thus $|L'(a): L'|_s = |L(a): L|$. It now follows that

$$|L'(a):K|_s = |L'(a):L'|_s|L':K|_s = |L'(a):L||L':K| = |L'(a):K|,$$

hence be the previous theorem we have that L'(a) is separable over K, and thus a is separable over K. \square

Theorem 2.11 (Primitive element theorem). If $K \leq L$ is a finite separable extension, then L = K(a) for some $a \in L$.

Proof. If L is finite, then this follows from the fact that the multiplicative group of a field is cyclic. Suppose thus that K and L are infinite. We may reduce to the case where $L = K(\alpha, \beta)$, as the general case then follows by induction (If $L = K(a_1, \ldots, a_n)$ then $L = K'(a_1, a_2)$ where $K' = K(a_3, \ldots, a_n)$ and certainly L is seperable over K'). For $c \in K$, we let $\gamma_c = \alpha + c\beta$. We will show that $L = K(\gamma_c)$ for infinitely many $c \in K$ as follows. If $L \neq K(\gamma_c)$ then definitely $\beta \notin K(\gamma_c)$. As L is seperable over $K(\gamma_c)$, this means that the minimal polynomial of β over $K(\gamma_c)$ has another root $\beta' \in \overline{K}$. Thus there exists a $K(\gamma_c)$ -homomorphism $\sigma: L \to \overline{K}$ with $\sigma(\beta) = \beta' \neq \beta$. We thus get that

$$\sigma(\alpha) + c\sigma(\beta) = \alpha + c\beta$$

and thus

$$c = \frac{\sigma(\alpha) - \alpha}{\beta - \sigma(\beta)}.$$

But the right hand side has only finitely many choices (as there are only finitely many choices of σ) and so if we choose a c not of this form (as K is infinite) we see that $L = K(\gamma_c)$ as desired.

3. Galois Extensions

Definition 3.1. A field extension $K \leq L$ is called *Galois* if it is normal and separable. We also say L is *Galois* over K. We define $Gal(L/K) := Aut_K(L)$ to be the set of K-automorphisms $L \to L$.

Proposition 3.2. Suppose that $K \leq L$ is Galois and $K \leq E \leq L$ is an intermediate field.

- (1) Then L is also Galois over E and $Gal(L/E) \subset Gal(L/K)$.
- (2) If E is also Galois over K, then every $\sigma \in Gal(L/K)$ restricts to an automorphism $\sigma|_E \in Gal(E/K)$. Moreover, this restriction homomorphism is surjective.

Proposition 3.3. Let L be a field and let G be a subgroup of Aut(L). Let

$$K = L^G := \{ a \in L \mid ga = a \text{ for all } g \in G \}$$

be the fixed field of G.

- (1) If G is finite then $K \leq L$ is a finite Galois extension and Gal(L/K) = G and |L:K| = |G|
- (2) If $K \leq L$ is algebraic and G is not necessarily finite, then $K \leq L$ is a Galois Extension with $G \leq Gal(L/K)$.

Proof. We first show that in both case (i) or (ii), the orbit Ga is finite for all $a \in L$. This is obvious in (i). In (ii), since a is algebraic over K then there is a non-zero polynomial $f \in K[x]$ such that f(a) = 0. But now f(g(a)) = 0 for all $g \in G$ as g fixes K and hence f. Thus the orbit Ga is contained in the roots of f, which is a finite set. So now we just assume that Ga is finite for all $a \in L$. Consider the polynomial

$$f_a(x) = \prod_{\alpha \in Ga} (x - \alpha).$$

Note that g permutes these linear factors, thus $f_a(x) \in L^G[x] = K[x]$. Thus a is algebraic over K. Moreover, it now follows that L is the splitting field of $\{f_a \mid a \in L\}$, thus L is normal over K and also separable as these factors are distinct. Thus $K \leq L$ is indeed a Galois extension. We now complete the proof of (i), thus assume from now that G is finite. To show that $K \leq L$ is a finite extension, it will be enough to find a uniform bound on intermediate fields $K \leq L' \leq L$ such that $K \leq L'$ is a finite normal extension (because we know $K \leq L$ is algebraic and thus if it is infinite then we choose finitely many elements in L such that the field they generate is arbitrarily large. The normal closure of this field is also finitely generated hence a finite extension). Now as such an L' is finite, the primitive root theorem says that L' = K(a) for some $a \in L$. But then we know that the minimal polynomial of a is a divisor of $f_a(x) \in K[x]$ above, which is of degree at most |G|, thus $|L' : K| \leq |G|$. It follows that $|L : K| \leq |G|$, so L is indeed a finite extension. Now we use the primitive root theorem to write $L = K(\alpha)$ for some $\alpha \in L$. Observe that if $g\alpha = \alpha$ then $g = Id_L = 1_G$, thus $|G| \leq |L : K|_S = |L : K|$. This completes the proof that |L : K| = |G|.

Theorem 3.4 (Fundamental theorem of Galois Theory). Suppose that $K \leq L$ is a Galois extension. Let Fields(L/K) denote the set of intermediate fields $K \leq E \leq L$. For a group G we let SubGrps(G) denote the set of subgroups $H \leq G$. Define the maps

$$\phi: SubGrps(Gal(L/K)) \rightarrow Fields(L/K)$$

that maps

$$H \leq Gal(L/K)$$

to the fixed field L^H and

$$\psi: Fields(L/K) \rightarrow SubGrps(Gal(L/K))$$

which maps an intermiediate field $K \leq E \leq L$ to the Galois group $Gal(L/E) = Aut_E(L)$. Then

$$\phi \circ \psi = Id_{Fields(L/K)}.$$

Moreover, if the extension $K \leq L$ is finite, then

$$\psi \circ \phi = Id_{SubGrps(Gal(L/E))}$$

and thus these maps bijective and inverses of each other. Moreover, if $K \leq L$ is finite then a subgroup $H \leq Gal(L/K)$ is normal if and only if L^H is normal over K (and thus $K \leq L^H$ is Galois), in which case there is a surjective group homomorphism $Gal(L/K) \to Gal(L^H/K)$ which maps σ to $\sigma|_{L^H}$ and H is the kernel of this map, so

$$Gal(L/K)/H \cong Gal(L^H/K).$$

Proof. Let $K \leq E \leq L$ be an intermediate field, then we know that $E \leq L$ is Galois. Now let H = Gal(L/E) and $E' = L^H$. Clearly $E \leq E'$ (if $a \in E$ then h(e) = e for all $h \in Gal(L/E)$ and so $e \in L^H = E'$). Now suppose for contradiction that $a \in E'$ but $a \notin E$. Hence as L/E is separable, the minimal polynomial of a over E has another root $b \neq a$ and thus there is a $h \in Aut_E(L) = H$ that maps a to b. Thus $a \notin L^H = E'$, a contradiction. This means that E' = E, thus showing that $\psi \circ \phi$ is the identity as claimed.

Now we assume that $K \leq L$ is finite, thus $L = K(\alpha)$ for some $\alpha \in L$ by the primitive root theorem. Clearly G = |Gal(L/K)| is finite since $g \in G$ is uniquely determined by the image of α , which must be a root of the minimal polynomial of α . Choose a subgroup $H \leq Gal(L/K)$. Thus H is finite and we may apply the Proposition 3.3 to deduce that $\psi(\phi(H)) = Gal(L/L^H) = H$. Thus ϕ and ψ are inverses in when $K \leq L$ is a finite extension.

Finally, suppose that $K \leq E \leq L$ is such that E is a normal extension of K. We now wish to show that H = Gal(L/E) is normal in Gal(L/K). To see this, we know from Proposition ??? that there is a surjective homomorphism $Gal(L/K) \to Gal(E/K)$ mapping $\sigma \in Gal(L/K)$ to $\sigma|E$. Observe that $g \in Gal(L/K)$ is in the kernel of this homomorphism if and only if g|E = 1 which happens if and only if g(e) = e for all $e \in E$ which happens if and only if g(e) = E. Thus Gal(L/E) = E is a normal subgroup as desired.

Conversely, suppose that H is a normal subgroup of Gal(L/K) and let $E = L^H$. We wish to show that L^H is normal over K. Thus we wish to show that if $\sigma: L^H \to \overline{K}$ is a K-homomorphism then $\sigma(L^H) = L^H$. To show this, let $a \in L^H$ be arbitrary and let $b = \sigma(a)$. To show $b \in L^H$ we have to show that hb = b for all $h \in H$. Now extend σ to an automorphism $\sigma: L \to L$ (as L is normal over K). Then $\sigma H = H\sigma$ as H is normal in Gal(L/K). Thus $h\sigma = \sigma h'$ for some $h' \in H$ and thus

$$hb = h\sigma a = \sigma h'a = \sigma a = b.$$

Thus $b \in L^H$. So $\sigma(L^H) \subset L^H$. It now remains to show the opposite inclusion. Thus suppose $a \in L^H$, then $\sigma^{-1}H = H\sigma^{-1}$ (note that $\sigma^{-1}: L \to L$ is defined as σ is an automorphism of L). Now the same argument shows that $\sigma^{-1}(a) \in L^H$ and thus $\sigma^{-1}(L^H) \subset L^H$, i.e., $L^H \subset \sigma(L^H)$.

Example 3.5. Let $\alpha = 2^{1/4}$ and let $L = \mathbb{Q}[\alpha, i]$ which is the splitting field of the polynomial $X^4 - 2$. Let as compute the Galois group $G = Gal(L/\mathbb{Q})$. Obseve that for $g \in G$ we have that

$$g(\alpha) \in \{\alpha, i\alpha, -\alpha, -i\alpha\}$$

and

$$g(i) \in \{\pm i\}$$

. Thus $|G| \leq 8$. Let us show that all 8 combinations are possible (realised by some $g \in G$). Let $\sigma: L \to L$ be the complex conjugation map, so $\sigma \in G$. Now we know that for each $k \in \{0,1,2,3\}$ there exists a $g_k \in G$ such that $g(\alpha) = i^k \alpha$ (as $X^4 - 2$ is irreducible over $\mathbb Q$ there is a $\mathbb Q$ -automorphism mapping any root to any other root). Now notice that $g_k \circ \sigma(\alpha) = g_k(\alpha) = i^k \alpha$ and yet $g_k \circ \sigma(i) = g_k(-i) = -g_k(i)$. Thus the elements $g_k \circ \sigma^e \in Gal(L/K)$ are all distrinct for distinct $(k,e) \in \{0,1,2,3\} \times \{0,1\}$ and so all 8 combinations are possible. Let $r \in G$ be the map given by $g(\alpha) = i\alpha$ and g(i) = i. Thus $g(i^k \alpha) = i^{k+1}\alpha$. So r rotates the elements $\alpha, i\alpha, i^2\alpha, i^3\alpha$ cylically. While σ is an involution that swaps $i\alpha$ with $i^3\alpha$ and fixes $\alpha, i^2\alpha$. Every element of G as of the form $r^k\sigma^e$ where $(k,e) \in \{0,1,2,3\} \times \{0,1\}$. Thus G is isomorphic to D_8 since if consider the elements $\alpha, i\alpha, i^2\alpha, i^3\alpha$ as succesive corners of a square, then r is a rotation and σ is a reflection. Note that $|L:\mathbb Q|=8$ and a $\mathbb Q$ -basis is given by

$$\{\alpha^k i^e \mid i \in \{0, 1, 2, 3\}, e \in \{0, 1\}\}.$$

Let us consider some intermediate fields and corresponding subgroups. First, consider the reflection group $\{1,\sigma\}$. The only elements of L fixed by this group are $L \cap \mathbb{R} = \mathbb{Q}[2^{1/4}]$. This subgroup is not normal and indeed $\mathbb{Q}[2^{1/4}]$ is not a normal extension of \mathbb{Q} . On the other hand, the rotation sugroup $\langle r \rangle$ is normal, and so the fixed field should be normal. To compute the fixed field, note that we may write each $x \in L$ as

$$x = \sum_{k=0}^{3} \lambda_k \alpha^k,$$

for some unique $\lambda_k \in \mathbb{Q}[i]$. Thus if rx = x then $\lambda_k = i^k \lambda_k$, thus we must have that $x = \lambda_0 \in \mathbb{Q}[i]$. This shows that the fixed field for this rotation subgroup is $\mathbb{Q}[i]$, which indeed is normal (the splitting field of $x^2 + 1$). Observe now that each $g \in G$ restricts to an automorphism of this fixed field $\mathbb{Q}[i]$ and it restricts to the identity on $\mathbb{Q}[i]$ if and only if g is in this rotation group, giving the isomorphism

$$G/\langle r \rangle \cong Gal(\mathbb{Q}[i]/\mathbb{Q}).$$

Now consider the group of order 4 generated by the reflections σ (complex conjugation) and the map $\tau \in G$ given by $\tau(\alpha) = -\alpha$ and $\tau(i) = i$. The subgroup is abelian of order 4 as σ and τ commute. The fixed field is $\mathbb{Q}[\alpha^2] = \mathbb{Q}[\sqrt{2}]$, which is also normal over \mathbb{Q} (splitting field of $X^2 - 2$).

If $E, E' \leq L$ are two subfields, then we let $E \cdot E'$ denote the subfield of L generated by these two subfields, i.e., that smallest subfield containing both. Explicitly,

$$E \cdot E' = \{ \sum_{i=1}^{n} e_i e_i' \mid n \in \mathbb{Z}_{>0} e_i \in E, e_i' \in E' \}.$$

Corollary 3.6. If $K \leq L$ is a finite Galois extension such that $K \leq E, E' \leq L$ are subfields and H = Gal(L/E) and H' = Gal(L/E') are the corresponding galois groups. Then we have that

- (1) $E \subset E'$ if and only if $H \subset H'$.
- $(2) E \cdot E' = L^{H \cap H'}$
- (3) $E \cap E' = L^{H''}$ where H'' is the smallest subgroup containing both H and H'.

Proof. (i) is clear from the Galois correspondence. For (ii), note that if $e \in E$ and $e' \in E$ and $h \in H \cap H'$; then h(ee') = h(e)h(e') = ee', thus $ee' \in L^{H \cap H'}$. Hence $E \cdot E' \subset L^{H \cap H'}$. For the reverse inclusion, note that if $h \in Gal(L/E \cdot E')$ then h(e) = e and h(e') = e' for all $e \in E, e' \in E'$ as $e, e' \in E \cdot E'$. Thus $h \in H \cap H'$. Thus part (i) and the Galois correspondence shows that $E \cdot E' \supset L^{H \cap H'}$. For (iii), note that if $e \in E \cap E'$ then h(e) = e and h'(e) = e for all $h \in H$ and $h' \in H'$, thus e is fixed by all products of elements in H or H', thus fixed by all elements in H''. This shows that $E \cap E' \subset L^{H''}$. Conversely, as $H \subseteq H''$, then $E = L^H \supset L^{H''}$. Likewise, $E' \supset L^{H''}$ as $H' \subseteq H''$. Thus $E \cap E' \supset L^{H''}$.

Example 3.7. Continuing from the previous examples, let $K = \mathbb{Q}$, L be the splitting field of $X^4 - 2$ and let $E = \mathbb{Q}[2^{1/4}]$ and $E' = \mathbb{Q}[i]$. We already saw the corresponding Galois groups are $H = \{1, \sigma\}$ and $H' = \{1, r, r^2, r^3\}$. Now $E \cdot E' = L$ but $H \cap H' = \{1\}$. The full Galois group is generated by these two groups and indeed $E \cap E' = \mathbb{Q}$ is the corresponding Galois subgroup.

Proposition 3.8. Suppose $K \leq E, E'$ are finite Galois extensions where $E, E' \leq L$ for some field L. Then $E \cdot E'$ is also a finite Galois extension over K. Also:

- (1) The restriction map $\phi: Gal(E \cdot E'/E) \to Gal(E'/E \cap E')$ is a well defined isomorphism.
- (2) The map

$$\psi: Gal(E \cdot E'/K) \to Gal(E/K) \times Gal(E'/K)$$

mapping g to (g|E, g|E) is a well defined injective homomorphism and if $E \cap E' = K$ then ψ is also surjective.

Proof. As E and E' are Galois, it is easy to see that E and E' are splitting fields of two separable (but not necessarily irreducible) polynomials with cofficients in K. Then $E \cdot E'$ is a splitting field of the lowest common multiple, which is also separable and has coefficients in K. Let $g \in Gal(E \cdot E'/E)$ then for $e' \in E'$ we have that $g(e') \in E'$ as E' is normal over K. Now if $e \in E \cap E'$ then $e \in E$ and thus g(e) = e. This shows that g restricts to an element in $Gal(E'/E \cap E')$, so the homomorphism ϕ is well defined. If g(e') = e' for all $e' \in E$ then g acts trivially on $E \cdot E'$ as is already acts trivially on E. Thus this homomorphism has trivial kernel. We now show that surjectivity of ϕ as follows

$$\begin{split} (E')^{Im\phi} &= \{x \in E \cdot E' \mid x \in (E')^{Im\phi}\} \\ &= \{x \in E \cdot E' \mid x \in E' \text{ and } g(x) = x \text{ for all } g \in Gal(E \cdot E'/E)\} \\ &= \{x \in E \cdot E' \mid x \in (E \cdot E')^{Gal(E \cdot E'/E)}\} \cap E' \\ &= E \cap E' \end{split}$$

where in the last equality we used the Galois correspondence. Thus by the Galois correspondence we have that $Gal(E'/(E \cap E')) = Im\phi$, thus showing that ϕ is surjective.

Now to show (2): Clearly the kernel of this map is trivial. Now suppose that $K = E \cap E'$. Let $(\sigma, \sigma') \in Gal(E/K) \times Gal(E'/K)$. Using part (1), this means that we may find extensions $\tilde{sigma} \in Gal(E \cdot E'/E')$ and $\tilde{\sigma}' \in Gal(E \cdot E'/E)$ of σ and σ' respectively. Now we claim that $\psi((\tilde{\sigma} \circ \tilde{\sigma}')) = (\sigma, \sigma')$. This is because for $e \in E$ we have

$$(\tilde{\sigma} \circ \tilde{\sigma}')|_{E}(e) = \tilde{\sigma}(\tilde{\sigma}e) = \tilde{\sigma}(e) = \sigma(e)$$

where we have used the fact that $\tilde{\sigma}' \in Gal(E \cdot E'/E)$ thus fixed e. A similar calculation verifies the second component of this identity, thus completing the proof of surjectivity.

4. Cyclotomic fields

We say that $\zeta \in \mathbb{C}$ is a root of unity if $\zeta^n = 1$ for some n > 0. We say that ζ is a primitive n-th root of unity if $\zeta^n = 1$ but $\zeta^m \neq 1$ for all 0 < m < n. In this section, we wish to understand cylcomotomic fields, i.e., field of the form $\mathbb{Q}[\zeta_n]$ where ζ .

Lemma 4.1. The field $\mathbb{Q}[\zeta_n]$ is a finite Galois extension of \mathbb{Q} . The natural homomorphism

$$Gal(\mathbb{Q}[\zeta_n]/\mathbb{Q}) \to Aut(U_n) \cong (\mathbb{Z}/n\mathbb{Z})^*$$

given by restriction to U_n is injective, thus

$$|Gal(\mathbb{Q}[\zeta_n]/\mathbb{Q})| = |\mathbb{Q}[\zeta_n] : \mathbb{Q}|$$

divides $\phi(n)$.

Proof. It is a Galois extension as it is the splitting field of $X^n - 1$. Note that any \mathbb{Q} -automorphism must permute the roots of unity. Moreover, this permutation induces an isomorphism of the multiplicative group $U_n \cong \mathbb{Z}/n\mathbb{Z}$. The endomorphisms of $\mathbb{Z}/n\mathbb{Z}$ are all of the form $x \mapsto ax$, and these are isomorphisms if and only if gcd(a, n) = 1.

We now strengthen the Lemma by showing that in fact $|\mathbb{Q}[\zeta_n]:\mathbb{Q}|=\phi(n)$.

Theorem 4.2. The field $\mathbb{Q}[\zeta_n]$ is a finite Galois extension of \mathbb{Q} . The natural homomorphism

$$Gal(\mathbb{Q}[\zeta_n]/\mathbb{Q}) \to Aut(U_n) \cong (\mathbb{Z}/n\mathbb{Z})^*$$

given by restriction to U_n is an isomorphism, thus

$$|Gal(\mathbb{Q}[\zeta_n]/\mathbb{Q})| = |\mathbb{Q}[\zeta_n] : \mathbb{Q}| = \phi(n).$$

Proof. Let ζ_n be a primitive *n*-th root of unity. Let $f(x) \in \mathbb{Q}[x]$ be the monic minimal polynomial of ζ_n . We claim that any other primitive *n*-th root of unity is also a root of f. For this, it is enough to show that for primes p not dividing n we have that ζ_n^p is also a root of f (as any other primitive root of unity is of the form ζ_n^m for some gcd(m,n)=1, thus can be obtained by successively raising to such prime powers). Fix such a prime p. Suppose for contradiction that $f(\zeta_n^p) \neq 0$. Now as

$$X^n - 1 = f(X)h(X)$$

for some $h(X) \in \mathbb{Q}[x]$ monic, we get that f(X) and h(X) is monic (as f(X) is monic) and thus by the Gauss Lemma we have that $f(X), h(X) \in \mathbb{Z}[X]$. As $f(\zeta_n^p) \neq 0$ we have that $h(\zeta_n^p) = 0$. Thus $h(X^p) = f(X)g(X)$ for some $g(X) \in \mathbb{Q}[x]$, which by the same argument must also be monic in $\mathbb{Z}[x]$. We reduce this equation modulo p to obtain

$$(\overline{h}(x))^p = \overline{h}(x^p) = \overline{f}(x)\overline{g}(x)$$

in $\mathbb{F}_p[x]$. Thus $\overline{f}(x)$ and $\overline{h}(x)$ must share a zero in some algebraic closure of \mathbb{F}_p . Thus $x^n - 1 = \overline{hf}$ must have multiple zeros thus is not seperable. This however is only possibly if p divides n (as such a zero α would have to vanish on the derivative, i.e., $n\alpha^{n-1} = 0$ which implies that $\alpha^{n-1} = 0$ if p does not divice n, so $\alpha = 0$, but 0 is not a root), a contradiction.

Thus we have shown that f(x) has at least $\phi(n)$ roots, but as degf divices $\phi(n)$, we have that the degree is exactly $\phi(n)$. So the Galois group also has $\phi(n)$ elements thus the injective homomorphism is an isomorphism.

Proposition 4.3. If gcd(n, m) = 1 then

$$\mathbb{Q}[\zeta_n, \zeta_m] = \mathbb{Q}[\zeta_{nm}]$$

and

$$\mathbb{Q}[\zeta_n] \cap \mathbb{Q}[\zeta_m] = \mathbb{Q}.$$

and there is an isomorphism

$$Gal(\mathbb{Q}[\zeta_{nm}]/\mathbb{Q}) \to Gal(\mathbb{Q}[\zeta_n]/\mathbb{Q}) \times Gal(\mathbb{Q}[\zeta_m]/\mathbb{Q})$$

mapping $\sigma \in Gal(\mathbb{Q}[\zeta_{nm}]/\mathbb{Q})$ to the pair pair $(\sigma|_{\mathbb{Q}[\zeta_n]}, \sigma|_{\mathbb{Q}[\zeta_m]})$.

Proof. A simple calculation shows that if gcd(n, m) = 1, then $\zeta_n \zeta_m$ is a primitive nm-th root of unity, thus the first equality. Now let $L = \mathbb{Q}[\zeta_n] \cap \mathbb{Q}[\zeta_m]$. Observe that

$$\phi(n)\phi(m) = \phi(nm) = |\mathbb{Q}[\zeta_{nm} : \mathbb{Q}] = |\mathbb{Q}[\zeta_{nm} : \mathbb{Q}[\zeta_n]]\phi(n)$$

and thus $\mathbb{Q}[\zeta_n, \zeta_m] : \mathbb{Q}[\zeta_n]| = \phi(m)$. This means that ζ_m has degree $\phi(m)$ over the field $\mathbb{Q}[\zeta_n]$. Thus ζ_m has degree at least $\phi(m)$ over the smaller field L, i.e., $|\mathbb{Q}[\zeta_m] : L| \ge \phi(m)$. However

$$\phi(m) = |\mathbb{Q}[\zeta_m] : \mathbb{Q}| = |\mathbb{Q}[\zeta_m] : L||L : \mathbb{Q}| \ge \phi(m)|L : \mathbb{Q}|$$

and thus $L = \mathbb{Q}$. Finally, the last claim follows from Proposition ??.

We let $\phi_n(x) \in \mathbb{Q}[x]$ denote the minimal polynomial of ζ_n over \mathbb{Q} . Note that in the proof of ??? we saw that

$$\phi_n(x) = \prod_{\zeta} (x - \zeta)$$

is a seperable polynomial of degree $\phi(n)$ such that each of the $\phi(n)$ primitive roots of unity are roots, thus the product runs over the $\phi(n)$ different primitive roots of unity.

Definition 4.4. We call $\phi(n)$ the *n*-th cyclotomic polynomial.

Proposition 4.5. The cyclotomic polynomial $\phi_n(x)$ is a monic polynomial in $\mathbb{Z}[x]$. We have the identity

$$x^n - 1 = \prod_{d|n} \phi_d(x).$$

Proof. As $\phi_n(x)$ divides $x^n - 1$ in $\mathbb{Q}[x]$ and is monic, we have that $x^n - 1 = \phi_n(x)h(x)$ for some $h(x) \in \mathbb{Q}[x]$ also monic. The Gauss lemma now shows that these polynomials must have integer coefficients. Finally, the identity follows because each root of unity is a primitive root of unity of some unique divisor d of n.

We can use this identity to compute cyclotomic polynomials recursively, starting with the base case

$$\phi_p(x) = \frac{x^p - 1}{x - 1} = 1 + x + \dots + x^{p-1}$$

for primes p.

5. NORM AND TRACE

Let L/K be a finite field extension. For $a \in L$ we can define $Tr_{L/K}(a) \in L$ to be the trace of the K-linear map $\phi_a : L \to L$ given by $\phi_a(x) = ax$. We define the norm

$$N_{L/K}(a) = \det(\phi(a))$$

to be the determinant of this K-linear map.

Proposition 5.1. Let K be a field and let $\alpha \in \overline{K}$ be algebraic over. Then the characteristic polynomial of the K-linear map $\phi_{\alpha}: K(\alpha) \to K(\alpha)$ is precisely the minimal polynomial of α over K.

Proof. We know that the degree of the minimal polynomial is $|K(\alpha):K|$. Note also that for $P \in K[x]$ we have that $P(\phi_{\alpha}):K(\alpha) \to K(\alpha)$ is the zero map if and only if $P(\alpha)=0$, thus ϕ_{α} has the same minimal polynomial as α over K. But $|K(\alpha):K|$ is the dimension of $K(\alpha)$ of K, thus the minimal polynomial coincides with the characteristic polynomial.

Thus if $P(x) = \prod_{i=1}^{n} (X - \alpha_i)$ is the minimal polynomial of α , then

$$Tr_{K(\alpha):K}(\alpha) = \sum_{i=1}^{n} \alpha_i$$

and

$$N_{K(\alpha):K}(\alpha) = \prod_{i=1}^{n} a_i.$$

Proposition 5.2. If L/K is a finite extension and α in K, then

$$Tr_{L/K}(\alpha) = |L:K(\alpha)|Tr_{K(\alpha)/K}(\alpha)$$

and

$$N_{L/K} = \left(N_{K(\alpha)/K}(\alpha)\right)^{|L:K(\alpha)|}.$$

Proof. Let $y_1, \ldots, y_s \in L$ be a basis for L over $K(\alpha)$, where $s = |L| : K(\alpha)|$. Observe that

$$L = \bigoplus_{i=1}^{S} K(\alpha) y_i$$

splits as a direct sum of K-vector spaces of dimension $|K(\alpha):K|$. Writing $\phi_{\alpha}:K(\alpha)\to K(\alpha)$ and $\psi_{\alpha}:L\to L$ to be the multiplication by α maps (both viewed as K-linear maps on K-vector spaces), we see that for by writing each $x\in L$ as $x=(x_1,\ldots,x_s)$ with respect to this decomposition we have

$$\psi_{\alpha}x = (\phi_{\alpha}x_1, \dots, \phi_{\alpha}x_s)$$

and thus

$$Tr(\psi_{\alpha}) = s \cdot Tr(\phi_{\alpha})$$

and

$$\det(\psi_{\alpha}) = \det(\phi_{\alpha})^{s},$$

as required. \Box

Theorem 5.3. Let L/K be a finite extension and let $\alpha \in K$. Let $r = |L:K|_s$ and let $\sigma_1, \ldots, \sigma_r$ be the distinct elements of $Hom_K(L, \overline{K})$, i.e., the homomorphisms $L \to \overline{K}$ that fix K. Then

$$Tr_{L/K}(\alpha) = \frac{|L:K|}{|L:K|_s} \sum_{i=1}^r \sigma_i(\alpha)$$

and

$$N_{L/K}(\alpha) = \left(\prod_{i=1}^{r} \sigma_i(\alpha)\right)^{\frac{|L:K|}{|L:K|_s}}.$$

Proof. For each $\rho \in Hom_K(K(\alpha), \overline{K})$, fix an extension $\overline{\rho} : \overline{K} \to \overline{K}$ of ρ . Note that each $\sigma \in Hom_K(L, \overline{K})$ may be uniquely written by (the proof of) Proposition CITE in the form $\overline{\rho} \circ \tau$ where $\tau \in Hom_{K(\alpha)}(L : \overline{K})$. As such a τ must fix α we have $(\overline{\rho} \circ \tau)(\alpha) = \rho(\alpha)$ and so we can write

$$Tr_{L/K}(\alpha) = |L:K(\alpha)| \frac{|L:K(\alpha)|}{|L:K(\alpha)|_s} \sum_{\rho} \rho(\alpha)$$

$$= |L:K(\alpha)| \frac{|L:K(\alpha)|}{|L:K(\alpha)|_s} \frac{1}{|L:K(\alpha)|_s} \sum_{\tau} \sum_{\rho} (\overline{\rho} \circ \tau)(\alpha)$$

$$= \frac{|L:K|}{|L:K|_s} \sum_{\sigma} \sigma(\alpha),$$

where a summation over σ is over $\sigma \in Hom_K(L, \overline{K})$, a summation over τ is over $\tau \in Hom_{K(\alpha)}(L : \overline{K})$ and a summation over ρ is over $\rho \in Hom_K(K(\alpha), \overline{K})$.

The proof for the norm is similair.