Deviance in the case of Gaussian MLR model.

Yi =
$$x_i^T \beta + \varepsilon_i$$
, ε_i iid $N(0, \sigma^2)$. $\varepsilon_i^{=1}, \ldots, n$.

The pdf of Yi is $f_i(y_i|x_i, \beta, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(-\frac{1}{2\sigma^2}(y_i - \alpha_i^T \beta)^2\right)$

Lik $(\beta, \sigma^2) = \prod_{i=1}^n f_i(y_i|\alpha_i, \beta, \sigma^2) = \ldots = (2\pi)^{n/2} \cdot (\sigma^2)^{-n/2} \cdot \exp\left(-\frac{1}{2\sigma^2}\|y - x\beta\|_2^2\right) \cdot y = (y_i)^{n/2}$

Loplik $(\beta, \sigma^2) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \tau^2 - \frac{1}{2\sigma^2} \|y - x\beta\|_2^2$

Loplik $(\beta, \sigma^2) = +n \cdot \ln 2\pi + n \ln \sigma^2 + \|y_{2r} - x\beta\|_2^2 / \sigma^2$

Joint MLE for (β, σ^2) is $\beta = (x^T x)^{-1} x^T y$, $\sigma^2 = \frac{\|y - x\beta\|_2^2}{2\sigma^2} = \frac{1}{2\sigma^2} \frac{1}{2\sigma^2}$

If $\int_{-\infty}^{\infty} is known$, Deviance = $n \cdot \ln 2\pi + n \cdot \ln \tau^2 + \frac{11}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} = 1$ If $\int_{-\infty}^{\infty} is known$, Deviance = $n \cdot \ln 2\pi + n \cdot \ln \tau^2 + \frac{11}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} = 1$ If σ^2 is anknown, Deviance τ n.ln 2π + n.ln (RSS/n) + $\frac{RSS}{RSS/n}$.

Deviance = -2. Loplik (ô), ô is the MCE for O.

 $\theta \equiv \text{param. vector.}$ Here, $\theta = (\beta, \tau^2)$.