顶空气相色谱法同时测定水中甲醇及苯

李磊 赵汝松 刁春鹏 茄金鹏 江 婷 (山东省分析测试中心 济南市经十路科院东路 19号 250014)

墙 要 顶空气相色谱同时测定水中甲醇及苯含量, 方法简单、快速, 不需要专门的 FFPA 色谱柱。甲 醇检出限 0.01mg/mL, 苯检出限 0.01μg/mL。

关键词 气相色谱, 检测, 甲醇, 苯。

中图分类号: 0.657, 7+1 文献标 识码: B 文章编号: 1004-8138(2008) 03-0455-04

引言 1

甲醇又名木精或木醇, 对血管有麻痹作用, 能导致神经变性, 特别严重的是甲醇能损害视神经: 苯是具有三致作用的有害污染物,早在1989年,已被列入了中国水环境优先列入控制的污染物黑 名单中。因此对于甲醇, 苯的快速监测具有十分重要的意义。

国家标准中,对水中甲醇的检测采用直接进样法,需要特殊的色谱柱。虽然有对甲醇[1,2]和苯[3] 讲行检测的方法, 但是, 同时测定水中甲醇及苯的方法国内尚未见报道。本文建立了一种同时测定 水中甲醇和苯的检测方法, 并利用该方法对被污染河水样进行了分析, 结果满意。

实验部分

2.1 仪器和试剂

美国 A gilent 公司 6890N 气相色谱仪检测器(氢火焰离子化检测器); HJ-2 数显恒温水浴锅(金 坛市江南仪器厂);色谱甲醇(美国Tedia公司),分析纯苯(天津市北方化学试剂厂);实验用水均为 二次蒸馏水; Agilent 顶空瓶(20mL); 美国 Agilent 10mL 气密进样针。

2.2 色谱条件

DB-WAX(聚乙二醇涂层)毛细管色谱柱; 进样口温度 260℃; 检测器温度 260℃; 程序升温: 起 始温度 40 ℃, 保持 6min, 然后 30℃/ min 的速率升至 220℃, 保持 3min; 柱流速 1mL/ min; 载气高纯 氦, 流速 0.5mL/min; 分流比 0.1:1; 进样量 1mL。

2.3 混合标样的配置

准确称取 1.0g 苯, 置于 100mL 容量瓶中, 加水稀释定容, 得 10mg/mL 苯标准溶液, 4℃保存待 用。

准确称取 0.1g 甲醇、置于 100mL 容量瓶中,加水稀释,再准确量取 100μL 上述苯标准溶液置 于其中,加水定容,得甲醇浓度 1mg/mL,苯浓度 1μg/mL 的混合标准溶液。

¹ 联系人, 电话: (0531) 82605312; E-mail: lile li88@ 163. com

作者简介: 李磊(1983一), 男, 山东省莱芜市人, 主要从事色谱分析工作。

收稿目期)2008-201-32 注新吊界。2008-01-31 ournal Electronic Publishing House. All rights reserved. http://www.c

分别吸取 $10.0_{\rm mL}$, $5.0_{\rm mL}$, $1.0_{\rm mL}$, $500.0_{\mu L}$, $100_{\mu L}$, 混合标准溶液置于 $10_{\rm mL}$ 容量瓶中加水定容, 此溶液每毫升相当于甲醇: $1.0_{\rm mg}$, $0.5_{\rm mg}$, $0.1_{\rm mg}$, $0.05_{\rm mg}$, $0.01_{\rm mg}$, $0.01_{$

2.4 校准曲线的绘制

将上述混和标准溶液分别置于 20mL 玻璃瓶中, 配套硅橡胶帽密封, 放入 70℃恒温水浴中, 平衡 30min, 分别顶空取 1mL 气体注入气相色谱仪。

2.5 样品测定

准确吸取 10mL 样品, 置于 20mL 玻璃瓶中, 密封, 放入 70℃恒温水浴, 30m in 后, 分别顶空取1mL 气体进样。

3 结果与讨论

3.1 两种方法检出限

分别利用 FFPA 色谱柱直接进样和 DB-WAX(聚乙二醇涂层)色谱柱顶空法对甲醇和苯进行分析。发现顶空法检测线优于直接进样法,如表1

表 1 两种方法检出限

方法		检出限(mg/L)		检出限(μg/m L)		
顶空进样	甲醇	10	苯	0. 01		
直接进样	甲醇	14	苯	1		

所示,而且直接进样法还需要特殊的FFPA 色谱柱。鉴于以上考虑,采用顶空法。

3.2 顶空温度

将水样分别在 50,60,70 和 80 ℃下平衡 30min,以考察平衡温度对该方法的影响。结果发现,温度越高灵敏度越高。但是,温度太高时不容易操作。由于 70 ℃时灵敏度较高,而且相对容易操作,所以选择 70 ℃平衡温度。图 1 为甲醇和苯的色谱图。

图 1 甲醇和苯的色谱图 *1* —— 甲醇: 2 —— 苯。

3.3 平衡时间

顶空气相色谱法中,需要待测组分在水相和顶空气相间达到平衡时才能测定,平衡时间直接影响测定的灵敏度和精密度。我们考察了平衡时间为10、20、30、40和50min时对测定的影响。发现,随着平衡时间的增加,灵敏度随之增加。当平衡时间为30min时,灵敏度达到最高,平衡时间继续增加时,灵敏度没有明显变化。这是由于30min时,甲醇和苯已经在水和顶空气相间达到了分配平衡,时间继续增加时,并未对分配平衡造成影响。考虑到测定效率,选用30min的平衡时间。

3.4 方法的线性范围、检出限和精密度

将系列混合标准溶液恒温水浴平衡 30_{min} 后, 顶空 1_{mL} 进样。结果表明, 该方法的线性良好, 甲醇的线性范围 $0.01-1_{\text{mg}}$ /mL, 线性回归方程 y=9021462x-685278, r=0.9988; 苯的线性范围 $0.01-1_{\text{ug}}$ /mL, 线性回归方程 y=10954321x-212264, r=0.9992。

取甲醇浓度分别为 0. $01_{mg/mL}$, $0. 1_{mg/mL}$, $1_{mg/mL}$, 苯浓度分别为 0. $01_{\mu g/mL}$, 0. $1_{\mu g/mL}$, $1_{\mu g/mL}$, $1_{\mu g/mL}$ 的标准混合溶液, 平行测定 5 次, 结果如表 2。可以看出, 精密度非常好。

				117 — 122 — 173				
浓度(mg/ mL)			甲醇峰面积			均值	SD	RS D(%)
0. 01	1533523	1527465	1477692	1545667	1498456	1516560. 6	27804. 5	1. 8
0. 1	8875161	8902314	8799562	8865217	8846972	8857845. 2	38232. 2	0.4
1	87023058	87256498	86986521	87456213	87145679	87173593. 8	190514. 6	0. 2
浓度(µg/ mL)			苯峰面积			均值	SD	RS D(%)
0. 01	672739	674562	669856	680384	671456	673799. 4	4065. 2	0.6
0. 1	7036114	7086421	7123468	6956429	6935792	7027644. 8	80958.4	1. 2
1	96276986	94375565	93789452	91176468	92465677	92951791	1427922. 4	1.5

表 2 精密度试验

3.5 实际样品的测定

按 2.5 中所述对实际样品进行测定, 结果如表 3 所示, 实际水样的色谱图如图 2。

图 2 环境水样的甲醇和苯色谱图

4 结论

建立了顶空气相色谱法同时检测水中甲醇和苯的新方法。将该方法用于实际环境水样的测定,方法的灵敏度高、线性良好,能快速、准确地同时测定水中的甲醇和苯,能满足实际分析的需要,可以作为同时检测水中甲醇和苯的新方法。

参考文献

- [1] 张秋, 张作祥, 杨玉松, 赵兰, 曲红艳. 顶空-气相色谱法分析油田水中低级醇[J]. 仪器仪表学报, 2004, 25(4): 147—148.
- [2] 杨静红, 马亚文, 韩东海. 气相色谱法测定工业污水中的甲醇 J]. 中国 卫生检验杂志, 2001, 11(3): 317—318.
- [3] 主惠娟, 李秋筠, 行兆裡. 松花光光污染 同江段水中硝基苯、苯分析[7]. 黑龙兰环境通报, 2006, 30(1): 21=22. http://www.c

Determination of Methanol and Benzene in Water by Headspace Gas Chromatography

LI Lei ZHAO Ru-Song DIAO Chun-Peng YUAN Jin-Peng JIANG Ting

(A naly sis and Test Center of Shandong, Jinan 250014, P.R. China)

Abstract Methanol and benzene in water were determined simultaneously by headspace gas chromatography without the special FFPA chromatography column. The detection limit of methanol and benzene are respectively 0. 01 mg/mL and 0. $01 \mu \text{g/mL}$, respectively. The method is simple and rapid.

Key words Gas Chrom at ography, Analyze, Methanol, Benzene.

穷酸的西南联大与 3 位诺贝尔奖得主

西南联大的历史,前后不过 8 年半(1937 年 9 月至 1946 年 5 月)。当年的物质条件可够穷酸的: 学生宿舍无一砖一瓦,全是夯黄土为墙,堆茅草为顶,窗户没有一块玻璃,仅有几根树枝聊以象征。绝大多数师生经常是食不果腹,衣不蔽体。在校学生不超过 2000。可是当年的西南联大却培养出 3 位诺贝尔奖得主——杨振宁和李政道,另一位则是朱棣文(其父朱汝瑾是联大助教,其姑朱汝华是教授——曾昭抡的得意门生)。

西南联大身后的三校(北大、清华和南开),当今在校学生总数当在60000—70000之间,相当于当年的30多倍,三校校园内高楼大厦林立,与当年西南联大的茅屋草舍相比,真是天壤之别。所耗费的资金当在西南联大的数百以上。三校的年寿,从1950年算起,已有59年,若从改革开放算起,亦当有30年,亦为当年西南联大寿命的4倍至5倍。以人力、财力和时间来看,都是当年西南联大无法望其项背的。以如此优越的条件和实力,却又无一人获的诺贝尔奖,其故安在?

清华大学前校长梅贻琦说过: "大学者, 非谓有大楼之谓也, 有大师之谓也"。难道不是吗?

(周开亿读 髓笔》杂志 2008 年第 2 期何兆武 佚 于诺贝尔奖情节》一文之后有感)

2008年 光谱实验室》征订启事

光谱实验室》2008年订价与2007年相同:

双月刊, 16 开, 每册 240 页, 单月 25 日出版, 每份年订价为 240 元(1-6 期); 零售价为: 第 1 期 90 元/本, 其余 40 元/本。

欲订阅的读者请到全国各地邮电局(所)办理订阅手续,邮发代号为82-863。错过时间者,可直接通过邮局汇款向本编辑部联络处订阅。

地址: 北京市 81 信箱 66 分箱 刘建林, 邮编: 100095, 电话: (010) 62452937。

光谱实验室》编辑部 2008年1月25日