DATABASE SYSTEMS LAB

Course Code: 30102422

Credit Hours: 1

Prerequisite: 30102421

Instructor Information

Name	:Dr. Jihad	:Dr. Jihad Nader			
Office No.	B17 F4 R8	B17 F4 R8			
Tel (Ext)	N/A	N/A			
E-mail	jihadnade	jihadnader@bau.edu.jo			
Office Hours	Thur ,Tue	Thur ,Tues (10-11) mon, wed (1-2)			
Class Times	Building Day Start Time End Time Room No.				
	-	Monday	8	11	مختبر المعالجات

Course Description:

This Lab. practices the concepts introduced in the Database systems course using Oracle

Database. The students are expected to implement a database project for some problem.

Course Title: Database Systems Lab

Credit Hour(1)

[Pre-req. Course Code(30102421)]

Textbook: Oracle Database 10g: SQL Fundamentals I, Volume I • Student Guide

Oracle Database 10g: SQL Fundamentals I Volume I • Student Guide D17108GC11 Edition 1.1 August 2004 D39766 ORACLE"

COURSE OBJECTIVES:

Upon completion of this course, students will have gained knowledge of the DBMS (Oracle) concepts and the ability to:

- Understand the concepts of relational databases and the Oracle Database 10g database technology.
- Use the powerful SQL programming language and its features.
- Identify features of Relational Database Management System (RDBMS).
- Categorize the main database objects
- Understand how constraints are created at the time of table creation.
- Describe each data manipulation language (DML) statement
- List the capabilities of SQL SELECT statements
- Write SELECT statements to access data from more than one table using equijoins and nonequijoins
- Employ SQL functions to generate and retrieve customized data
- Identify when a subquery can help solve a question
- Write subqueries when a query is based on unknown values
- Use a set operator to combine multiple queries into a single query

COURSE SYLLABUS

Week	Course Topic	Notes
Week 1	Creating and Managing Tables: - Database Objects - Naming Conventions - The Create Table Statement - Creating a Table by Using a Subquery - Querying the Data Dictionary - The Alter Table Statement - Truncating a Table - Adding Comments to a Table	
Week 2	Including Constraints - Defining Constraints - The Not Null Constraint - The Unique Constraint - The Primary Key Constraint - The Foreign Key Constraint - The Check Constraint - Adding a Constraint - Dropping a Constraint - Enabling and Disabling Constraints - Viewing Constraints	
Week 3	Manipulating Data Data Manipulating Language. The Insert Statement Copying Rows from another Table The Update Statement The Delete Statement Database Transactions Commit and Rollback Statements Writing Basic SQL Statements	
	 Selecting Specific Columns Arithmetic Expressions Concatenation Operator Using Column Aliases Eliminating Duplicate Rows 	

COURSE SYLLABUS

Week	Course Topic	Notes
Week 5	Restricting and Sorting Data	
	- Where Clause - Comparison Operators	
	- Special Operators	
	- Logical Operator (And, Or, Not)	
	- Order By Clause	
Week 6	Displaying Data from Multiple Tables	
	- Cartesian Product.	
	- Types of Joins - Table Aliases.	
	- Table Allases.	
Week 7	Single-Row Functions	
	- Character Functions.	
	Number FunctionsDate Functions	
	■ ■	
Week 8	Midterm Exam	Midterm Exam
Week 9	Project Proposal	
Week 10	Single-Row Functions	
	- Conversion Functions	
	- General Functions	

COURSE SYLLABUS

Week	Course Topic	Notes
Week 11	Aggregating Data using Group Functions - Types of Group Functions (AVG, SUM, MAX, MIN, COUNT). - Creating Groups of data: Group By Clause. - Excluding Group Results: Having Clause. - Nested Group Functions	
Week 12	Subqueries Types of Subqueries Single-Row Subqueries Multiple-Row Subqueries	
Week 13	Multiple-Column Subqueries - Column Comparisons - Null Values in a subquery - Using a subquery in the From Clause	
Week 14	Using the Set Operators - Union / Union All - Intersect - Minus	
Week 15	Project Discussion	
Week 16	Final Exam	Final Exam

Week 4

Chapter 3:

Basic SQL Statements

RETRIEVING DATA USING THE SQL SELECT STATEMENT

Objectives

After completing this lesson, you should be able to do the following:

- List the capabilities of SQL SELECT statements
- Execute a basic SELECT statement

Capabilities of SQL SELECT Statements

Basic Select Statement

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

- SELECT identifies the columns to be displayed.
- FROM identifies the table containing those columns.

Selecting All Columns

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400
80	Sales	149	2500
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting		1700

8 rows selected.

Selecting Specific Columns

```
SELECT department_id, location_id FROM departments;
```

DEPARTMENT_ID	LOCATION_ID
10	1700
20	1800
50	1500
60	1400
80	2500
90	1700
110	1700
190	1700

8 rows selected.

Writing SQL Statements

- SQL statements are not case sensitive.
- SQL statements can be on one or more lines.
- Keywords cannot be abbreviated or split across lines.
- Clauses are usually placed on separate lines.
- Indents are used to enhance readability.

Arithmetic Expressions

Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
-	Subtract
*	Multiply
1	Divide

Using Arithmetic Operators

```
SELECT last_name, salary, salary + 300
FROM employees;
```

LAST_NAME	SALARY	SALARY+300
King	24000	24300
Kochhar	17000	17300
De Haan	17000	17300
Hunold	9000	9300
Ernst	6000	6300

. . .

20 rows selected.

Operator Precedence

LAST_NAME	SALARY	12*(SALARY+100)
King	24000	289200
Kochhar	17000	205200
De Haan	17000	205200
20 rows selected.		

Defining a Null Value

- A null is a value that is unavailable, unassigned, unknown, or inapplicable.
- A null is not the same as a zero or a blank space.

SELECT last_name, job_id, salary, commission_pct FROM employees;

JOB_ID	SALARY	COMMISSION_PCT
AD_PRES	24000	
AD_VP	17000	
SA_MAN	10500	.2
SA_REP	11000	.3
SA_REP	8600	.2
AC_ACCOUNT	8300	
	AD_PRES AD_VP SA_MAN SA_REP SA_REP	AD_PRES 24000 AD_VP 17000 SA_MAN 10500 SA_REP 11000 SA_REP 8600

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

SELECT last_name, 12*salary*commission_pct
FROM employees;

| Kochhar | King | TAST_NAME |

Defining a Column Alias

A column alias:

- Renames a column heading
- Is useful with calculations
- Immediately follows the column name (There can also be the optional AS keyword between the column name and alias.)
- Requires double quotation marks if it contains spaces or special characters or if it is case sensitive

Using Column Aliases

Concatenation Operator

A concatenation operator:

- Links columns or character strings to other columns
- Is represented by two vertical bars (||)
- Creates a resultant column that is a character expression

```
SELECT last_name||job_id AS "Employees"
FROM employees;
```

```
Employees

KingAD_PRES

KochharAD_VP

De HaanAD_VP

The selected of the select
```

Literal Character Strings

- A literal is a character, a number, or a date that is included in the SELECT statement.
- Date and character literal values must be enclosed by single quotation marks.
- Each character string is output once for each row returned.

Using Literal Character Strings

	Employee Details
King is a AD_PRES	
Kochhar is a AD_VP	
De Haan is a AD_VP	
Hunold is a IT_PROG	
Ernst is a IT_PROG	
Lorentz is a IT_PROG	
Mourgos is a ST_MAN	
Rajs is a ST_CLERK	

• • •

20 rows selected.

Alternative Quote (q) Operator

- Specify your own quotation mark delimiter
- Choose any delimiter
- Increase readability and usability

```
SELECT department name ||
q'[, it's assigned Manager Id: ]'
|| manager_id
AS "Department and Manager"
FROM departments;
```

Department and Manager Administration, it's assigned manager ID: 200 Marketing, it's assigned manager ID: 201 Shipping, it's assigned manager ID: 124 8 rows selected.

Duplicate Rows

The default display of queries is all rows, including duplicate rows. SELECT department_id employees; FROM DEPARTMENT_ID 90 90 90 20 rows selected. SELECT DISTINCT department id FROM employees; DEPARTMENT ID 10 20 50 8 rows selected.

Displaying Table Structure

Use the DESCRIBE command to display the structure of a table:

DESC[RIBE] tablename

Displaying Table Structure

DESCRIBE employees

Name	Null?	Туре
EMPLOYEE_ID	NOT NULL	NUMBER(6)
FIRST_NAME		VARCHAR2(20)
LAST_NAME	NOT NULL	VARCHAR2(25)
EMAIL	NOT NULL	VARCHAR2(25)
PHONE_NUMBER		VARCHAR2(20)
HIRE_DATE	NOT NULL	DATE
JOB_ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION_PCT		NUMBER(2,2)
MANAGER_ID		NUMBER(6)
DEPARTMENT_ID		NUMBER(4)

Summary

In this lesson, you should have learned how to:

- Write a SELECT statement that:
 - Returns all rows and columns from a table
 - Returns specified columns from a table
 - Uses column aliases to display more descriptive column headings

```
SELECT *|{[DISTINCT] column/expression [alias],...}
FROM table;
```