1

JEE Questions 6

EE24BTECH11012 - Bhavanisankar G S

1) A plane P is parallel to two lines whose direction ratios are (-2, 1, 3) and (-1, 2, -2) and it contains the point (2, 2, -2). Let P intersect the co-ordinate axes at the points A, B, C making the intercepts α , β , γ . If **V** is te volume of the tetrahedron OABC, where O is the origin and $p = \alpha + \beta + \gamma$, then the ordered pair (V, p) is equal to :

a)
$$(48, -13)$$

b)
$$(24, -13)$$
 c) $(48, 11)$

c)
$$(48, 11)$$

d)
$$(24, -5)$$

2) Let S be the set of all $a \in \mathbf{R}$ for which the angle between the vectors $\mathbf{u} = a(\log_e b)\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = \log_{e} b\mathbf{i} + 2\mathbf{j} + 2a\log_{e} b\mathbf{k}$, (b > 1) is acute. Then S is equal to

a)
$$\left(-\infty, -\frac{4}{3}\right)$$

c)
$$\left(-\frac{4}{3}, 0\right)$$
 d) $\left(\frac{12}{7}, \infty\right)$

3) A horizontal park is in the shape of a triangle OAB with AB = 16. A vertical lamp post OP is erected at the point O such that $\angle PAO = \angle PBO = 15^{\circ}$ and $\angle PCO = 45^{\circ}$, where C is the mid-point of AB. Then $(OP)^2$ is equal to

a)
$$\frac{32}{\sqrt{3}} \left(\sqrt{3} - 1 \right)$$
 b) $\frac{32}{\sqrt{3}} \left(2 - \sqrt{3} \right)$ c) $\frac{16}{\sqrt{3}} \left(\sqrt{3} - 1 \right)$ d) $\frac{16}{\sqrt{3}} \left(2 - \sqrt{3} \right)$

b)
$$\frac{32}{\sqrt{3}} (2 - \sqrt{3})$$

c)
$$\frac{16}{\sqrt{3}} \left(\sqrt{3} - 1 \right)$$

d)
$$\frac{16}{\sqrt{3}} (2 - \sqrt{3})$$

4) Let A and B be two events such that $P(B|A) = \frac{2}{5}$, $P(A|B) = \frac{1}{7}$ and $P(A \cap B) = \frac{1}{9}$. Consider

S1:
$$P(A' \cup B) = \frac{5}{6}$$

S2: $P(A' \cap B') = \frac{1}{18}$

- a) Both S1 and S2 are true.
- b) Both S1 and S2 are false.
- c) S1 is true, but S2 is false.
- d) S1 is false, but S1 is true.
- 5) Let

p: Ramesh listens to music.

q: Ramesh is out of his village.

r : It is Sunday.

s: It is Saturday.

Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be expressed as

a)
$$((\neg q) \land (r \lor s)) \implies p$$

c)
$$p \implies (q \land (r \lor s))$$

b)
$$(q \land (r \lor s)) \implies p$$

c)
$$p \implies (q \land (r \lor s))$$

d) $p \implies ((\neg q) \land (r \lor s))$

I. Integer-Type Questions

- 1) Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}} + \beta x\right)^4$, $(1 3\beta x)^2$ and $\left(1 \frac{\beta}{2}x\right)^6$, $(\beta \ge 0)$, respectively form the first three terms of an A.P. If d is the common difference of this A.P., then the value of $50 - \frac{2d}{\beta^2}$ is equal to :
- 2) A class contains b boys and g girls. If the number of ways of selecting 3 boys and 2 girls from the class is 168, then b + 3g is equal to :
- 3) Let the tangents at the points P and Q on the ellipse $\frac{x^2}{2} + \frac{y^2}{4} = 1$ meet at the point $\mathbf{R}(\sqrt{2}, 2\sqrt{2} 2)$.
- If S is the focus of the ellipse on its negative major axis, then $(SP)^2 + (SQ)^2$ is equal to:

 4) If $1 + (2 + {}^{49}C_1 + {}^{49}C_2 + \cdots + {}^{49}C_{49})({}^{50}C_2 + {}^{50}C_4 + \cdots + {}^{50}C_{50})$ is equal to $2^n m$, where m is odd, then n + m is equal to :
- 5) Two tangent lines 11 and 12 are drawn from the point (2,0) to the parabola $2y^2 = x$. If the lines 11 and 12 are also tangent to the circle $(x-5)^2 + y^2 = r$, then 17r is equal to :

- 6) If $\frac{6}{3^{12}} + \frac{10}{3^{11}} + \frac{20}{3^{10}} + \frac{40}{3^9} + \cdots + \frac{10240}{3} = 2^n m$, where m is odd, then $m \cdot n$ is equal to:
 7) Let $S = \left[-\pi, \frac{\pi}{2} \right) \left\{ \frac{-\pi}{2}, \frac{-\pi}{4}, \frac{-3\pi}{4}, \frac{\pi}{4} \right\}$. Then the number of elements in the set

$$A = \left\{ \theta \in S : \tan \theta \left(1 + \sqrt{5} \tan 2\theta \right) = \sqrt{5} - \tan 2\theta \right\}$$

is:

- 8) Let $z = a + ib, b \neq 0$ be complex numbers satisfying $z^2 = \overline{z}2^{1-|z|}$ Then the least value of $n \in \mathbb{N}$ suh that $z^n = (z+1)^n$ is equal to :
- 9) A bag contains white and 6 black balls. Three balls are drawn at random from the bag. Let X be the number of white balls, among the drawn balls. If σ^2 is the variance of X, then 100 σ^2 is equal to
- 10) The value of the integral $\int_0^{\frac{\pi}{2}} 60 \frac{\sin 6x}{\sin x} dx$ is equal to :