Sources of DNA damage
• Intrinsic
Metabolic byproduct (ROS, uric acid)
Replication error (nucleotide mismatch, topoisomerase not repaired)
○ rNTP instead of dNTP
○ Spontaneous damage (deamination)
• Extrinsic
○ Ionising radiation (U.V.)
Intercalating agent (Disrupt base stacking)
Alkylating agent (Disrupt sugar phosphate backbone EtBr)
Genotoxic agents (Phthalates)
Base anologues (Replace base nucleotides) (5-bromouracil replaces thymine)
Repair mechanisms
Single strand DNA repair
Post replication mismatch repair (MMR)
Mismatched dNTP identified in the polymerase
 Replication stops, 3' end of daughter strand transferred to exonuclease site
 Mismatched nucleotide cleaved off, 3' end transferred back to catalysing site
Mutator protein (Mut) dependent (In E.Coli)
Mismatch identified immediately after leaving polymerse
Oam methylase hemimethylate the dsDNA GATC sequence, parent strand methylated, not the daughter strand.
 MutS and MutL bind to mismatch site, read bidirectionally, form loop, until hemimethylated GATC
 MutS MutL recruit MutH, cleaves unmethylated daughter strand from GATC.
Helicase II + Pol I unwind and cleave daughter strand to mismatch
○ Pol III add nucleotide to gap, sealed by ligase
Base Excision Repair (BER)
○ Glycosylase bind to mismatch, flip out the base, cleave glycosidic bond of nitrogenous base
AP endonuclease cleave phosphodiester bond of mismatched nucleotide
○ Repaired by Pol I, sealed by ligase
Nucleotide excision repair (NER), bulkier than BER
○ Four Uvr proteins (UvrA~D)
○ UvrA and UvrB scan genome, UvrB stays at site of mismatch
○ UvrA leaves, B recruits C to unwind and excise ~15 nucleotide fragment
○ C leaves, D removes the fragment, all leaves
○ Pol I repair, ligase seal
Direct reversal of modifications
Photolyase can reverse UV induced thymine dimers
Methyltransferase can reverse methylated nucleotides
 No DNA excision, no template needed, but costly as enzyme commit suicide afterwards
Models of transleision synthesis (TLS) (replication across damaged nucleotide)
 Polymerase switching: High fidelity pol stops at lesion, switch to TLS Pol, then switch back
○ Gap filling: High fidelity Pol does not pair dNTP at lesion, filled by TLS Pol

Double strand DNA repair	
Non-homologous end joining	
 Characteristic: Always available, common in non-dividing cells (G0, G1, S), prone to insertion & deletion 	
○ Ku70/80 recognise and bind to double stranded breaks	
 Recruit DNA-protein catalytic subunit (DNA-PKcs), form DNA-PK complex Binding of nuclease Artemis, phosphorylated, activated and trims the end of DSB (prone to deletion) Modification of ends by other enzymes (fixing gaps, trimming, prone to insertion) 	
	○ Joining of blunt ends, ligase seal.
	Homology directed repair
Characteristic: Available in dividing cells (G2/S stage), less error prone	
○ MRN recognise the error sequence	
○ MRN recruit ATM to activate array of downstream proteins. exonuclease resect the end and create 3' overhangs.	
 RPA binds to ssDNA, stabilisation, BRCA2 and RAD51 replace RPA ssDNA, forming nucleofilament 	
RAD51 scans for homolgous sequence in sister chromatid, RAD54 direct invasion	
○ RAD51 dissociate, Polymerase synthesis of invading strand.	
 Invading strand dissociate, bind to 3' overhang other damaged strand, polymerase + ligase seal. 	
Cell cycle checkpoints	
○ G1: before S phase, check for nutrient availability and cell size	
○ G2: Before mitosis check for complete replication and DNA damage	
○ M (Spindle): before anaphase, check if spindles attached to kinetochores	
○ S: Check for DNA fidelity and genome stability	
Proteins involved in cell cycle regulation:	
○ Cyclin: activate CDK, drive division. Different cyclin signal different cycle events	
Cyclin dependent kinase (CDK), upregulate cell cycle	
Cyclin dependent kinase Inhibitor (CDKI), downregulate cell cycle	

Sources of DNA damages, intrinsic 3 and extrinsic 4	
Cingle atrend renair 5	
Single strand repair 5 Models of TLS	
Double stranded repairs 2	
Double stranded repairs 2	
Cell cycle checkpoints, what is assessed	
Con Opera Sinceripennia, milatre dececced	