

Memory and Storage Technologies

CS61, Lecture 12
Prof. Stephen Chong
October 11, 2011

Announcements

- HW 4: Malloc
 - If you haven't yet, please fill in the partner form
 - http://tinyurl.com/CS61-Fa11-malloc-groups
 - Design checkpoint on Thursday Oct 13
- Mid-course evaluation
 - http://tinyurl.com/CS61-fa11-midcourse-eval
 - Opportunity to tell us how the course is going, and how to improve it
 - Responses are anonymous, and do not affect CUE guide scores.

Today

- Memory
- Disk drives
- I/O and memory buses
- Solid-state disks
- Storage technology trends

What's inside a computer anyway?

http://en.wikipedia.org/wiki/File:Motherboard_diagram.svg

What's inside a computer anyway?

Random-Access Memory (RAM)

Key features

- **RAM** is traditionally packaged as a chip.
- Basic storage unit is normally a **cell** (one bit per cell).
- Multiple RAM chips form a memory.
- Static RAM (SRAM)
 - Each cell stores a bit with a four or six-transistor circuit.
 - Retains value indefinitely, as long as it is kept powered.
 - Relatively insensitive to electrical noise (EMI), radiation, etc.
 - Faster and more expensive than DRAM can be 100x more expensive!
- Dynamic RAM (**DRAM**)
 - Each cell stores bit with a capacitor. One transistor is used for access
 - Stored electric charge decays over time -- must be refreshed every 10-100 ms.
 - More sensitive to disturbances (EMI, radiation,...) than SRAM.
 - Slower, but cheaper than SRAM.

Conventional DRAM Organization

- $d \times w$ DRAM:
 - *d*×*w* total bits organized as *d* **supercells** of size *w* bits

Reading DRAM supercell (2,1)

- Step 1(a): Row access strobe (**RAS**) selects row 2
- Step 1(b): Row 2 coped from DRAM array to row buffer

Reading DRAM supercell (2,1)

- Step 2(a): Column access strobe (CAS) selects column 1
- Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to CPU

Memory Modules

11

DRAM packaging

Dual In-Line Package (DIP)

Single In-Line Pin Package (SIPP)

Single In-Line Memory Module (SIMM) 30-pin

72-pin

Double In-Line Memory Module (DIMM) 168-pin

Double Data Rate (DDR) DIMM (184-pin)

http://en.wikipedia.org/wiki/File:RAM_n.jpg

Enhanced DRAMs

- DRAM Cores with better interface logic and faster I/O :
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per cycle per pin
 - RamBusTM DRAM (**RDRAM**)
 - Uses faster signaling over fewer wires with a transaction oriented interface protocol
- Obsolete Technologies :
 - Fast page mode DRAM (**FPM DRAM**)
 - Allowed re-use of row-addresses
 - Extended data out DRAM (EDO DRAM)
 - Enhanced FPM DRAM with more closely spaced CAS signals.
 - Video RAM (**VRAM**)
 - Dual ported FPM DRAM with a second, concurrent, serial interface
 - Extra functionality DRAMS (**CDRAM**, **GDRAM**)
 - Added SRAM (CDRAM) and support for graphics operations (GDRAM)

Nonvolatile Memories

- DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off
 - Read-only memory (**ROM**): programmed during production
 - Magnetic RAM (MRAM): stores bit magnetically (in development)
 - Ferro-electric RAM (**FeRAM**): uses a ferro-electric dielectric
 - Programmable ROM (PROM): can be programmed once
 - Erasable PROM (**EPROM**): can be bulk erased (UV, X-Ray)
 - Electrically erasable PROM (**EEPROM**): electronic erase capability
 - Flash memory: EEPROMs with partial (sector) erase capability

Nonvolatile Memories

- Uses for Nonvolatile Memories
 - Firmware programs stored in ROM
 - BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...
 - Solid state disks (flash cards, memory sticks, etc.)
 - Smart cards, embedded systems, appliances
 - Disk caches

Traditional Bus Structure Connecting CPU and Memory

 A bus is a collection of parallel wires that carry address, data, and control signals.

Buses are typically shared by multiple devices.

Memory Read Transaction

1. CPU places address A on memory bus

Memory Read Transaction

•2. Main memory reads A from memory bus, retrieves word x, and places it on bus

Memory Read Transaction

• 3. CPU reads word x from bus, copies it to register **%eax**

Memory Write Transaction

 1. CPU places address A on memory bus. Main memory reads it and waits for corresponding data word to arrive

Memory Write Transaction

•2. CPU places data word y on memory bus.

Memory Write Transaction

• 3. Main memory reads data word *y* from bus and stores it at address A.

Errors happen!

- Electrical or magnetic interference can cause bits to flip from "1" to "0" (or vice versa)
 - Can be caused by cosmic rays passing through the memory chips
 - Error rates go up as densities increase: Up to one bit error per GB per HOUR
- One solution: Error-Correcting Code (ECC) RAM
 - Contains redundant information used to detect and correct bit errors: Hamming code.
 - Can detect and correct single bit errors; can detect (but not correct) 2-bit errors
 - Costs more: need more memory chips to store ECC information
 - Slower: Requires time to check and correct bit errors

Forced errors

• Around 80° -100°C, memory starts to have more frequent failures

Using Memory Errors to Attack a Virtual Machine Govindavajhala and Appel 2003 IEEE Symposium on Security and Privacy 24

What happens to DRAM when you turn off the power?

- The contents are erased… right? right?
- Not so fast.

30 sec 60 sec

5 min

Lest We Remember: Cold Boot Attacks on Encryption Keys

Halderman et al.

USENIX Security Symposium 2008

What happens to DRAM when you turn off the power?

- The contents are erased... right? right?
- Not so fast.

Lest We Remember: Cold Boot Attacks on Encryption Keys

Halderman et al.

USENIX Security Symposium 2008

Today

- Memory
- Disk drives
- I/O and memory buses
- Solid-state disks
- Storage technology trends

Disk storage

- Storage devices that hold enormous amounts of data
 - Hundreds to thousands of **gigabytes** (=10⁹ bytes)
 - RAM: hundreds to thousands of megabytes

A Disk Primer

- (Rotating) Disks consist of one or more platters divided into tracks
 - Each platter may have one or two heads that perform read/write operations
 - Each track consists of multiple sectors
 - The set of sectors across all platters is a cylinder

Disk Operation (Single-Platter View)

The disk surface spins at a fixed rotational rate

The read/write head is attached to the end of the **actuator arm** and flies about 10 nanometers above the disk surface on a thin cushion of air.

By moving radially, the arm can position the read/write head over any track.

Disk Operation (Multi-Platter View)

Hard disk capacity

- Capacity of disk is maximum number of bits that can be stored on disk
- Determined by:
 - Recording density (bits/inch)
 - Number of bits than can be squeezed into a 1-inch segment of track
 - Track density (tracks/inch)
 - Number of tracks per 1-inch segment of radius
 - Areal density (bits/inch²)
 - Recording density × track density

Hard-drive teardown

http://www.engineerguy.com/videos/video-harddrive.htm

Hard Disk Evolution

- IBM 305 RAMAC (1956)
 - First commercially produced hard drive
 - 5 MB capacity, 50 platters each 24" in diameter!

Hard Disk Evolution

Disk access time

- Command overhead:
 - Time to issue I/O, get the HDD to start responding, select appropriate head
- Seek time:
 - Time to move disk arm to the appropriate track
 - Depends on how fast you can physically move the disk arm
 - These times are not improving rapidly!
- Rotational latency:
 - Time for the appropriate sector to move under the disk arm
 - Depends on the rotation speed of the disk (e.g., 7200 RPM)
- Transfer time
 - Time to transfer a sector to/from the disk controller
 - Depends on density of bits on disk and RPM of disk rotation
 - Faster for tracks near the outer edge of the disk why?
 - Modern drives have more sectors on the outer tracks!

Disk access time

- Access time dominated by seek time and rotational latency.
 - First bit in a sector is the most expensive, the rest are free.
- Disk is sloooooow...
 - •SRAM access time is about 4 ns, DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - •2,500 times slower then DRAM.
 - Requires careful scheduling of I/O requests

Example disk characteristics

- Seagate Constellation ES SAS 6Gb/s 1-TB Hard Drive
 - Form factor: 3.5"
 - Capacity: 1.0 TB
 - Rotation rate: 7,200 RPM
 - Avg. rotational latency: 4.16 ms
 - Platters: 2 (4 surfaces)
 - Cylinders: 248,600
 - Cache: 32MB
 - Average read time: 8.3ms
 - Average write time: 9.3ms
 - Transfer rate: Buffer to/from disk: 95-212 MB/s
 - Host to/from drive (sustained): 60-150 MB/s

Disks are messy

- Disks provide a low level interface for reading and writing sectors
 - Generally read/write an entire sector at a time
 - So, what do you do if you need to write a single byte to a file?
 - No notion of "files" or "directories", just raw sectors
 - Disk may have numerous bad sectors that need to be avoided
- Difficult to use the low level interface

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - Disk presented as sequence of B logical blocks, each of fixed size.
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Benefits of abstraction:
 - Controller can transparently avoid bad sectors
 - Just change mapping
 - Controller can set aside spare cylinders
 - Accounts for the difference in "formatted capacity" and "maximum capacity"

Today

- Memory
- Disk drives
- I/O and memory buses
- Solid-state disks
- Storage technology trends

Reading a disk sector

Reading a disk sector

44

Reading a disk sector

45

Today

- Memory
- Disk drives
- I/O and memory buses
- Solid-state disks
- Storage technology trends

Solid state disks (flash memory)

- Non-volatile, solid state storage
 - No moving parts!
 - Fast access times (about 0.1 msec!!)
 - Lower power (no moving parts)
- Expensive: about \$2.50/GB versus ~\$0.25/GB for HDD.

Solid state disks (flash memory)

- Accessed through logical blocks
 - Presents same interface as rotational disks
- Sequence of B blocks, each with P pages
 - Page typically 512B 4KB, P is typically 32-128

Solid state access times

Reads

Sequential read throughput: 250 MB/s

Random read throughput: 140 MB/s

• Random read access time: 30µs

Writes

Sequential write throughput: 170 MB/s

Random write throughput: 14 MB/s

• Random write access time: 300µs

- Writes significantly slower!
 - To write a page, entire block must first be erased
 - Each block can be erased about 100,000 times before wearing out

Solid state vs. rotating

• Pros:

- faster (no spinup, no seeking)
- less power
- more rugged (no moving parts, handle wider temperature range)
- quieter
- fewer errors

Cons

- wear out (wear leveling to reduce this)
- wear leveling increases fragmentation
- more expensive
 - But cost coming down
- Stay tuned for innovative uses of flash memory...

Today

- Memory
- Disk drives
- I/O and memory buses
- Solid-state disks
- Storage technology trends

Access times in perspective

- 2.26 GHz processor \Rightarrow 1 cycle = 0.44 ns
- Use physical distance as analogy

Data		Distance analogy					
Storage technology	Time	Distance	Intuition				
Access register							
SRAM access							
DRAM access							
Flash read access							
Flash write access							
Disk seek							

Access times in perspective

- 2.26 GHz processor \Rightarrow 1 cycle = 0.44 ns
- Use physical distance as analogy

Data		Distance analogy			
Storage technology Time		Distance	Intuition		
Access register	0.5 ns	0.5 m	Within arms reach		
SRAM access	I0 ns	10 m	Office next door to you		
DRAM access	50 ns	50 m	Office one floor away from you		
Flash read access	30 µs	30 km	1.5 times length of Manhattan island		
Flash write access	300 µs	300 km	арргох. Boston to New York City		
Disk seek	9 ms	9,000 km	арргох. Boston to LA and back		

Storage technology trends

- Different storage technologies have different price and performance trade-offs
- Price and performance properties are changing at different rates

Storage technology trends

	S	R	A	M	١
--	---	---	---	---	---

metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	19,200	2,900	320	256	100	75	60	320 x
access (ns)	300	150	35	15	3	2	1.5	200 x

DRAM

metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	8,000	880	100	30	1	0.1	0.06	130,000 x
access (ns)	375	200	100	70	60	50	40	9 x
typical size(MB)	0.064	0.256	4	16	64	2,000	8,000	125,000 x

Disk

metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	500	100	8	0.30	0.01	0.005	0.0003	1,600,000 x
access (ms)	87	75	28	10	8	5	3	29 x
typical size(MB)	1	10	160	1,000	20,000	160,000	1,500,00	00 1,500,000 x

Storage technology trends

Gap between CPU and memory increasing!

Next lecture

• Caching!