# Ансамблевые алгоритмы для оценки основных макроэкономических показателей

#### Рогоза Ярослав

Московский Государственный Университет имени М. В. Ломоносова Экономический факультет

> Предмет: Макроэкономика-2 Группа 208

> > 2023

## С помощью чего, по Вашему мнению, можно предсказать значение ВВП в России в 2019 году?



## Самый простой способ составить уравнение линейной регрессии. Но почему этот результат будет плохим?



#### Другие способы оценки:

- ► LASSO, RIDGE регрессии
- ► VAR, ARIMA и их комбинации с другими методами
- Нейросети
- ▶ Машинное обучение

В 2011 году по рейтингу гугла по количеству ежедневных запросов машинное обучение и эконометрика сравнялись, после чего начался резкий рост машинного обучения



#### Публикации в журнале Банка России

- ▶ Шуляк Е. Макроэкономическое прогнозирование с использованием данных социальных сетей - 2022 //
- Джункеев У. Прогнозирование безработицы в России с помощью методов машинного обучения – 2022 //
- Семитуркин О. Шевелев А. Корректное сравнение предиктивных свойств моделей машинного обучения на примере прогнозирования инфляции в Сибири - 2023 // Вывод: "Прогнозирование методом комбинирования моделей машинного обучения в большинстве случаев предпочтительнее, чем с использованием какой-то одной модели."

## Постановка проблемы

Действительно ли методы машинного обучения, а в частности ансамблевые алгоритмы справляются с задачей оценки макроэкономических показателей лучше, чем классические эконометрические модели?

## Эксперимент

#### Условия эксперимента:

- ► Были использованы следующие модели: XgBoost, Lasso, Ridge, Gradient Boosting и Random Forest
- ▶ Обучение моделей происходило на данных ВВП на душу населения в России с 1993 по 2012 года или же 80% от всей выборки
- ▶ В качестве дополнительных факторов, влияющих на ВВП были выбраны объем производство газа, нефти, а также показатели инфляции и безработицы
- ▶ В качестве метрики для сравнения было использовано среднеквадратическое отклонение RMSE

## Эксперимент (80% обучающая выборка)



## Эксперимент (80% обучающая выборка)

#### Увеличенный предыдущий график:



## Эксперимент (80% обучающая выборка)

#### Среднеквадратическое отклонение прогноза каждой модели:



## Эксперимент (90% обучающая выборка)

Если мы возьмем 90% данных в качестве обучающей выборки и будем прогнозировать ВВП на 3 года вперед, то получим следующий результат:



## Сравнение авторегрессий с ансамблевыми алгоритмами

В данной таблице показаны данные полученные на основе прогнозных значений ИПЦ в Сибири. Среднеквадратическое отклонение ARIMA является базовым показателем, на который были поделены RMSE остальных моделей (чем меньше значение, тем лучше модель)

| Метод                   | Горизонт прогнозирования, месяцы |      |      |      |      |
|-------------------------|----------------------------------|------|------|------|------|
|                         | 3                                | 6    | 9    | 12   | 24   |
| Градиентный бустинг     | 0,87                             | 0,76 | 0,98 | 0,70 | 0,76 |
| Комбинированный прогноз | 0,90                             | 0,85 | 0,91 | 0,57 | 0,79 |
| Случайный лес           | 0,78                             | 0,78 | 0,93 | 0,57 | 0,86 |
| Гребневая регрессия     | 1,12                             | 1,03 | 1,06 | 0,66 | 0,88 |
| Эластичная сеть         | 1,10                             | 1,09 | 0,99 | 0,65 | 0,90 |
| LASSO                   | 0,84                             | 0,83 | 0,89 | 0,56 | 0,91 |
| ARIMAX                  | 0,69                             | 0,61 | 0,69 | 0,58 | 0,95 |
| ARIMA                   | 1,00                             | 1,00 | 1,00 | 1,00 | 1,00 |

#### Заключение

## Минусы использования ансамблевых алгоритмов в оценке макроэкономических показателей

- Высокая вычислительная сложность
- Ансамблевые модели обычно более сложны в интерпретации по сравнению с простыми линейными моделями
- ▶ Возможно переобучение

#### Заключение

## Плюсы использования ансамблевых алгоритмов в оценке макроэкономических показателей

- Более точные прогнозы по сравнению с классическими эконометрическими моделями
- Устойчивость к выбросам, шуму, мультиколлинеарности
- Гибкость и разнообразие моделей

## Заключение

Спасибо за внимание!