2023 年上海市高等学校信息技术水平考试试卷

二三级 数据科学技术及应用(模拟卷)

(本试卷考试时间 150 分钟)

一、单选题 (本大题 12 道小题 , 每小题 2 分, 共 24 分), 从下面题目给出的 A、B、
C、D 四个可供选择的答案中选择一个正确答案。
1. 关于数据科学与大数据之间关系描述错误的是。
A. 大数据属于数据科学的范畴
B. 大数据分析遵循数据科学的基本工作流程
C. 大数据分析采用的方法完全不同于数据科学技术
D. 大数据技术是指数据量达到某种规模时引入的分布式存储、计算和传输方法
2. 统计量"方差"描述了。
A. 样本的平均值
B. 样本的离散程度
C. 样本中不同的值占样本容量的比例
D. 样本中出现次数最多的值
3. CSV 文件是常用的数据文件格式,可以使用查看。
A. 文本编辑器、Excel
B. photoshop
C. powerpoint
D. 画图工具
4. 为描述高校教师各种学历占比情况,适合的图形是。
A. 散点图
B. 曲面图
C. 直方图
D. 饼图
5. 机器学习主要模拟了人的过程。
A. 学习
B. 推理
C. 思考
D. 规划
6. 属于机器学习中的有监督学习问题。
6
B. 回归和聚类
C. 分类和回归
D. 聚类和数据降维
D. 水大小B 双加叶柱
7. F1_score可用于衡量分类模型性能,根据以下混淆矩阵,F1 =。
· · · ·。

第 1 页, 共 9 页 34 (模拟卷)

真实类 预测类	Class = Yes	Class = No
Class = Yes (正例)	a	b
Class = No (反例)	С	d

- A. 2a/(2a+b+c)
- B. (a+d)/(a+b+c+d)
- C. a/(a+c)
- D. a/(a+b)
- 8. 关于聚类分析,正确的是
- A. "簇"越少说明聚类效果越好
- B. 聚类是有监督学习方法
- C. 聚类可作为分类等其他任务的预处理过程
- D. 同一个数据集,不同的聚类算法得到的结果是一样的
- 9. 属于机器学习中的回归问题。
- A. 垃圾短信预测
- B. 房价预测
- C. 车牌识别
- D. 人脸识别
- 方法处理 10. 识别文本中的情感通常使用
- A. 文本分类
- B. 文本聚类
- C. 自动问答
- D. 机器翻译
- 11. 关于计算机数字图像的说法, 错误的是
- A. 数字图像存储每个像素点的颜色值
- B. 数字图像存储的是组成图像的几何形状、大小、颜色等信息
- C. 同样大小的图, 存储使用的像素点越多, 图像越清晰
- D. JPEG 是一种有损的图像压缩方式
- 12. 天气预报主要采用 处理技术。
- A. Web
- B. 文本分析
- C. 图分析
- D. 时间序列分析
- 二、多选题 (本大题 5 道小题 ,每小题 2 分,共 10 分),从下面题目给出的 A、B、 C、D四个可供选择的答案中选择所有正确答案。
- 1. 大数据的特征有 。
- A. 规模性

- B. 高速性
- C. 多样性
- D. 低价值性
- 2. 属于聚类问题。
- A. 根据企业校招历史数据,建立应聘者是否被录用的分类器
- B. 给定房屋特征数据,构建出估计房屋价格的模型
- C. 给定文档集,将相似的文档分到同一组
- D. 给定用户的消费数据,将用户分为不同消费特征的群体
- 3. 通常可用于展示离散数据。
- A. 柱状图
- B. 饼图
- C. 折线图
- D. 曲面图
- 4. 神经网络可用于 等问题的建模分析。
- A. 电信用户分类
- B. 根据房屋特性预测房价
- C. 机动车识别
- D. 数据降维
- 5. 智能语音对话系统,主要通过人工智能的技术处理

等数据来实现。

- A. 语音
- B. 文本
- C. 图形
- D. 图像
- 三、程序填空题(本大题 4 道小题,每空 4 分,共 52 分)。
- 1. 提示:
- a) 题目源程序存放在"C:\KS"文件夹下,供程序调试;
- b) Python科学计算库函数使用说明存放在"C:\KS"文件夹下,注意不同类库的函数存放在相应 的sheet下。

某商品的成本(cost)可以根据产量(output)进行计算:

- cost=0.14*output+42.7,编写程序模拟商品的生产数据,估计商品的成本(源程序 fill 1.py) .
- 1) 使用数组记录6次生产的商品产量(千件),分别为10、5、7、9、11、8;
- 2) 根据公式计算每次生产商品的成本;
- 3) 假设实际成本围绕计算的成本值上下波动,波动值服从均值为0、方差为2的正态分布, 随机生成6个数据,模拟每次的波动;
- 4) 加上波动值, 计算6次生产商品的实际成本。

源程序文件(fill 1.py)

import numpy as np

第 3 页, 共 9 页 34 (模拟卷)

import pandas as pd

#设置亚洲文字显示宽度

pd. set_option("display. unicode. east_asian_width", True)

pd. set option ("display. unicode. ambiguous as wide", True)

#1) 使用数组记录6次生产的商品产量(千件),分别为10、5、7、9、11、8;

output = [1]

#2) 根据公式计算每次生产商品的成本;

cost = 0.14*output + 42.7

print('1:cost:',cost)

#3) 实际成本围绕计算成本上下波动,波动值服从均值为0,方差为2的正态分布。

#随机生成6个数据,模拟每次的波动;

varcost = np. (2) (0, 2, 6)

print('2:variance: ', varcost)

#4) 加上波动值, 计算6次生产商品的实际成本。

cost = [3]

print('3:cost:',cost)

2. 提示:

- a) 题目源程序存放在"C:\KS"文件夹下,供程序调试;
- b) Python科学计算库函数使用说明存放在"C:\KS"文件夹下,注意不同类库的函数存放在相应 的sheet下。

根据IDC的统计数据,各品牌手机在中国的年销量如表1所示(源程序fill_2.py)。

- 1) 根据表1的数据,绘制折线图分析各品牌销量发展趋势,如图1所示;
- 2) 计算2018年各品牌手机的同比增幅 ((Y2018-Y2017)/Y2017), 并在原数据中增加新列 "INC2018",如图2所示;
- 3) 显示增幅为正的品牌2015-2018年的销售量。

表1 品牌手机年销量(单位:百万台)

	Y2015	Y2016	Y2017	Y2018
Huawei	62.9	76.6	90.9	104.97
Apple	58.4	44.9	41.1	36.32
OPPO	35.3	78.4	80.5	78.94
vivo	35.1	69.2	68.6	75.97
Mi	64.9	41.5	55.1	51.99

第 5 页, 共 9 页

34 (模拟卷)

【2】(title='2015~2018国内手机销量',linewidth=2, marker='o', linestyle='dashed', grid=True, alpha=0.9) plt.show()

#2) 计算2018年各品牌手机的同比增幅,并在原数据中增加新列"2018同比增幅"; sales["INC2018"] = [3] print(sales)

3. 提示:

- a) 题目源程序存放在"C:\KS"文件夹下,供程序调试;
- b) Python科学计算库函数使用说明存放在"C:\KS"文件夹下,注意不同类库的函数存放在相应 的sheet下。

表2和表3分别记录了部分"人工智能"类图书的一周销售数据(源程序fill 3.py)。

- 1) 根据表2和表3分别创建数据对象,然后将两个数据对象合并, 如表4所示;
- 2) 统计每家出版社出版的图书数,如图3所示;
- 3) 显示一周各出版社销售额,如图4所示。

表2 图书销售量记录表(-

WE DIVELLEDAY ()				
	书名	出版社	单价	销售量
	(bookname)	(press)	(price)	(sales)
A01	Python数据分析基础	人民邮电出版社	38.9	25
A02	数据科学与大数据分析	高等教育出版社	56.4	39
A03	机器学习	清华大学出版社	45.2	44
A04	人工智能简史	人民邮电出版社	23.5	24

表3 图书销售量记录表(二)

	书名	出版社	单价	销售量
	(bookname)	(press)	(price)	(sales)
B01	Python程序设计	清华大学出版社	42.1	30
B02	数据科学导引	高等教育出版社	34.5	18
B03	深度学习	人民邮电出版社	67.1	32
B04	机器学习实战	人民邮电出版社	56.0	20
B05	TensorFlow框架	电子工业出版社	78.2	10

表4 合并后的数据集

	书名	出版社	单价	销售量
	(bookname)	(press)	(price)	(sales)
A01	Python数据分析基础	人民邮电出版社	38.9	25
A02	数据科学与大数据分析	高等教育出版社	56.4	39
A03	机器学习	清华大学出版社	45.2	44
A04	人工智能简史	人民邮电出版社	23.5	24
B01	Python程序设计	清华大学出版社	42.1	30
B02	数据科学导引	高等教育出版社	34.5	18
B03	深度学习	人民邮电出版社	67.1	32
B04	机器学习实战	人民邮电出版社	56.0	20
B05	TensorFlow框架	电子工业出版社	78.2	10

total

press 人民邮电出版社 4803.7 清华大学出版社 3251.8 电子工业出版社 782.0 高等教育出版社 2820.6

图3 每家出版社出版的图书数

图4 一周各出版社销售额

源程序文件(fill_3.py)

import numpy as np

import pandas as pd

from pandas import DataFrame

#设置亚洲文字显示宽度

pd. set_option("display. unicode. east_asian_width", True) pd. set option("display. unicode. ambiguous as wide", True)

#1)分别记录根据表2和表3中数据,然后合并;

books1={"bookname":['Python数据分析基础','数据科学与大数据分析','机器学习','人工智能简史'],

"press":['人民邮电出版社','高等教育出版社','清华大学出版社','人民邮电出版社'],

"price": [38.9, 56.4, 45.2, 23.5], "sales": [25, 39, 44, 24]}
col_name=['bookname', 'press', 'price', 'sales']
dfl=DataFrame(books1, index=['A01', 'A02', 'A03', 'A04'], columns = col_name)
print(dfl)

books2={"bookname": ['Python程序设计', '数据科学导引','深度学习', '机器学习实战','TensorFlow框架',],

"press": ['清华大学出版社', '高等教育出版社', '人民邮电出版社', '人民邮电出版社', '人民邮电出版社', '电子工业出版社'],

"price": [42.1, 34.5, 67.1, 56.0, 78.2], "sales": [30, 18, 32, 20, 10]} df2=DataFrame(books2, index=['B01', 'B02', 'B03', 'B04', 'B05'], columns = col name)

print (df2)

#合并df1和df2

df3=pd. 【1】([df1, df2]) print("数据集合并后:\n", df3)

#2) 统计每家出版社出版的图书数量;

print("\n出版社出版的图书数:\n", df3['press']. 【2】, "\n")

#3)显示一周各出版社销售额

df3['total'] = df3['price']*df3['sales']

grouped = df3. [3]

print(grouped.aggregate(【4】))

4. 提示:

- a) 题目源程序存放在"C:\KS"文件夹下, 供程序调试;
- b) Python科学计算库函数使用说明存放在"C:\KS"文件夹下,注意不同类库的函数存放在相应的sheet下。

台风记录数据集(Typhoon.csv)记录了2014年某区域发生的台风信息,包含台风名、台风等级、气压(百帕)、移动速度(公里/时)、纬度、经度、记录数、顺序、风速(米/秒)等9个属性,具体说明见"数据集说明.txt"文件。(源程序fill 4.py)

- 1) 从文件中读出台风数据;
- 2) 查看是否存在缺失数据,删除包含缺失数据的样本;
- 3)输出达到超强台风等级的台风名字。

源程序文件 (fill_4.py)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

#设置亚洲文字显示宽度

pd. set_option("display. unicode. east_asian_width", True)
pd. set_option("display. unicode. ambiguous_as_wide", True)

#1) 从文件中读出台风数据; filename = 'Typhoon, csv' winds = pd. 【1】(filename) print(winds[0:5])

#2) 查看是否存在缺失数据,删除包含缺失数据的样本; print(winds.isnull())

[2] (inplace = True)

#3 输出达到超强台风等级的台风名;
names = winds.loc[【3】,"windname"].unique()
print("\n达到超强台风等级:\n", names)

四、操作题

(一)、简答题(共2题,每题8分,共16分)

提示: 打开C:\KS\Answer.docx文件,将简答题答案写在该文件的相应题目下并保存。

1. 请描述所学专业或日常生活中某个具体场景所涉及的数据,给出各项数据名称、说明以及数据的类型(连续数值/可选项/文本/图像/视频/声音/时序)等。

第 8 页, 共 9 页

34 (模拟卷)

2. 试简述分类方法和聚类方法的区别,请根据实际案例所涉及的数据以及分析目标进行说 明。

(二)、综合应用题(共10小题,48分)

提示:打开"C:\KS"文件下的程序文件"prog.py",按照程序注释说明,编写代码实现功能要

Wind.csv为Typhoon.csv数据集删除缺失数据后的文件。试基于该数据集分析与台风等级 相关的特征,并建立等级判别模型。

具体要求如下:

- 1) 从文件中读出台风数据(3分);
- 2)统计不同台风等级的台风的平均移动速度和平均风速(4分);
- 3) 数据集中表示台风等级level有六个等级为:热带低压、热带风暴、强热带风暴、台风、强 台风、超强台风。将台风等级字符串依次替换为数字1-6(4分);
- 4) 计算台风的各个特征与台风等级的相关性,筛选出相关性较高(相关系数>0.6)的特征建 立数据集(8分);
- 5) 绘制图形展示筛选出的特征与台风等级的相关性(4分)
- 6) 按照合适比例将分析数据分为训练集和测试集 (3分);
- 7) 在训练集上建立分类模型,至少选用两种分类算法建立模型(8分);
- 8) 在测试集上测试分类模型的性能(10分):
- 9) 根据第8) 步的运行结果,说明分类模型在台风等级判别上的性能,请描述在程序文件给 出的注释行中(4分)。

