Abel Marin

Professor Kanj

CSC 321

October 7, 2019

### Homework #2

#### 1. Problem 1

- a) When T(n) = 2T(n/3)+1 is compared to the master theorem equation  $aT(n/b) + O(n^d)$  then a=2>0, b=3>1 and  $d=0\ge0$  thus satisfying the master theorem. Next, we compare  $c=log_32\approx0.63$  to d=0. Since c>d then  $T(n) = O(n^{log32})$ .
- b) When T(n) = 5T(n/4)+n is compared to the master theorem equation  $aT(n/b) + O(n^d)$  then a=5>0, b=4>1 and  $d=1\ge0$  thus satisfying the master theorem. Next, we compare  $c=log_45\approx1.16$  to d=0. Since c>d then  $T(n) = O(n^{log45})$ .
- d) When  $T(n) = 9T(n/3) + n^2$  is compared to the master theorem equation  $aT(n/b) + O(n^d)$  then a=9>0, b=3>1 and  $d=2\ge0$  thus satisfying the master theorem. Next, we compare  $c=log_39=2$  to d=2. Since c=d then  $T(n) = O(n^2 * log n)$ .
- g) We cannot use the master theorem on this problem since b=1>1. Therefore we must use the iteration method. Iterations:

1st: 
$$T(n) = T(n-1) + 2$$
  
 $T(n-1) = T(n-1-1) + 2 = T(n-2) + 2$   
2nd:  $T(n) = [T(n-2) + 2] + 2 = T(n-2) + 2(2)$   
 $T(n-2) = T(n-2-1) + 2 = T(n-3) + 2$   
3rd:  $T(n) = [T(n-3) + 2] + 2(2) = T(n-3) + 3(2)$   
 $T(n-3) = T(n-3-1) + 2 = T(n-4) + 2$ 

. . .

ith: 
$$T(n) = T(n-i) + i(2)$$

Since the relation seems to grow by i(2) for each iteration  $T(n) = \Theta(n)$ .

## 2. Problem 2



# 3. Problem 3



## 4. Problem 4

### Psuodocode:

```
insertionRecursive(A, n)
If n > 1 then
return insertionRecursive(A, n-1)
last = A[n-1]
j = n-2
while j >= 0 and A[j] > last do {
    A[j+1] = A[j]
    j = j-1 }
arr[j+1]=last
```

Recursive Relation:  $T(n) \{ 1 \text{ when } n = 1; T(n-1) + n \text{ when } n > 1 \}$ 

We cannot use the master theorem on this problem since b=1>1. Therefore we must use the iteration method. Iterations:

1st: 
$$T(n) = T(n-1) + n$$
  
 $T(n-1) = T(n-1-1) + n-1 = T(n-2) + n-1$   
2nd:  $T(n) = [T(n-2) + n-1] + n = T(n-2) + n + n-1$   
 $T(n-2) = T(n-2-1) + n-1-1 = T(n-3) + n-2$   
3rd:  $T(n) = [T(n-3) + n] + 2(n) = T(n-3) + n + n-1 + n-2$   
 $T(n-3) = T(n-3-1) + n-2-1 = T(n-4) + n-3$   
...
ith:  $T(n) = n(n-1)/2 + \theta(1)$ 

Thus the relation is  $n(n-1)/2+\theta(1)$  and thus the running time is  $O(n^2)$ .

### 5. Problem 5

Pseudocode:

```
median(A, last)
if len(I) % 2 == 1 then
    return median(I, len(I) / 2, pivot_fn)
else
```

```
return 0.5 * (median(I, len(I) / 2 - 1, pivot fn)+ median(I, len(I) / 2, pivot fn))
```

### 6. Problem 6

For this problem I will use a modified version of Binary Search since this is essentially finding a value in a sorted array. Pseudocode:

```
indexFind(A, first, last)

if first < last then {
    middle = first + last / 2;
    if middle = A[middle] then return (true);
    if middle > A[middle] then
        return indexFind(A, middle+1, last);
    else return indexFind(A, first, middle-1); }

else { return (false); }
```

The running time of this algorithm is O(lgn) since it is essentially the same as Binary Search except it checks for the index instead of looking for a specific key. Thus the amount of comparisons would be roughly the same.