Quantum Project

Quantum Walks And Quantum Walk Based Algorithms

Group Members

202003005-Manan Parikh, 202003006-Vraj Chaudhari, 202003031-Shreyansh Kunjera 14th May 2023

Outline

- Introduction
- Classical Random Walk
 - Formulation of Random Walk
 - Probability In Classical Random Walk
- Single Particle Quantum Walk
 - Probability Distribution Of Classical And Quantum Walk
 - Weird behaviour of quantum random walk
- Quantum Random Walk on HyperCube
- References

Introduction

A Random Walk is a walk on the infinite integer line. In this case, we represent the walker's position with an integer, $|j\rangle:j\in\mathbb{Z}$, since the walker can walk all integers in \mathbb{Z} . A coin decides how the walker should move. In classical case if coin tosses Head then walker move to right else left. And in Quantum Walk the coin's computational basis is $[|0\rangle,|1\rangle]$, we move the walker in one direction if the coin is $|0\rangle$ and in the other direction if the coin is $|1\rangle$.

Classical Random Walk

- In a classical random walk, an object starts at a specific point and takes steps in a random direction with equal probabilities for each direction.
- These steps can be represented by a series of random variables, where each variable determines the direction and magnitude of the step.
- The object's position is updated after each step, and this process continues for a certain number of steps or until a specific condition is met.
- In a one-dimensional random walk, where the object can only move forward or backward along a line, the expected value of the object's position after a large number of steps is zero.

Formulation of Random Walk

 Suppose x denotes the position of the random walker and each step is of length L.

$$x_n = x_{n-1} + E_n L$$
 where E_n is $+1$ or -1 with probability $1/2$

Average position after n steps

$$< x_n - x_0 > = 0$$

Probability In Classical Random Walk

Single Particle Random Walk

- Discrete-Time Quantum walk on a line for a single particle.
- The total Hilbert space in given by $H = H_p \otimes H_c$
- H_p represents the position space and H_c represents the coin state.
- H_p is spanned by orthonormal vectors |i⟩ representing the position of the particle.
- H_c is the two-dimensional coin space spanned by two orthonormal vectors, denoted by $|\uparrow\rangle$ and $|\downarrow\rangle$.

Single Particle Random Walk - 2

- Each step is based on the coin operator and shift operator
- $\hat{U} = \hat{S}(\hat{I}_p \otimes \hat{Uc})$ Here \hat{Ip} is the identity operator on H_p .
- H_p is a Hadamard gate

Hadamard gate=
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$S|0\rangle|j\rangle = |0\rangle|j+1\rangle$$
 (1)

•

$$S|1\rangle|j\rangle = |1\rangle|j-1\rangle \tag{2}$$

 With the shift operator defined as above, we can represent one step of the coined quantum as the unitary operator U given by

$$U = SC, (3)$$

Probability Distribution Of Classical And Quantum Walk

Weird behaviour of quantum random walk

Quantum Random Walk On Hypercube

- The binary representation of the neighbors of a node will differ by only one binary number.
- A node is connected to all nodes to which the Hamming distance is 1. The edges are also labeled.

Quantum Random Walk On Hypercube -2

- The Hilbert space representing a coined quantum walk on the hypercube is $H = H^n \otimes H^{2^n}$, where H^n denotes the coin space and H^{2^n} the walker's position.
- The value of the coin computational basis , which is associated with edge , decides where the walker should move.
- Shift operator

$$S|a\rangle |\vec{v}\rangle = |a\rangle |\vec{v} \oplus \vec{e}_a\rangle.$$
 (4)

• Let e_a be an n-tuple where all binary values, except the value with index a, are 0.

Quantum Random Walk On Hypercube - 3

- ullet If coin is in state |11
 angle , we move the walker to direction where first node differs
- ullet If coin is in state |10
 angle , we move the walker to direction where second node differs
- \bullet If coin is in state $|01\rangle$, we move the walker to direction where third qubit differs
- \bullet If coin is in state $|00\rangle$, we move the walker to direction where fourth qubit differs.

References

- https://learn.qiskit.org/course/ch-algorithms/ quantum-walk-search-algorithm#quantum-1-2
- Salvador E. Venegas-Andraca (2012) Quantum walks: a comprehensive review
 https://arxiv.org/pdf/1201.4780.pdf
- Research Gate https://www.researchgate.net/figure/ A-4-dimensional-hypercube-interconnection-network_ fig1_276037252
- Research Gate https://images.app.goo.gl/tio3ov8kKyFjavoR9

Thank You