

Practice: Calculating Capability Indices

Open the data set **Impurity.jmp**. This example involves the production of a polymer. An important input variable is the temperature (**Temp**, in degrees C). The internal specifications for temperature are 28 +/- 2 degrees C.

In this exercise, you conduct a capability study for **Temp**.

1. Use the C	ontrol Chart Builder to o	create an individuals ar	nd moving range char	t for Temp , and	use the tests for special of	causes to check
	y of the process. Is the			-	·	

Yes, the process is stable.

2. Use the Distribution platform and a normal quantile plot (from the red triangle) to check the normality assumption. Is the underlying distribution approximately normal?

There is a slight curve in the normal quantile plot, but the data appear to be approximately normal.

- 3. Conduct a capability study using the Distribution platform to determine whether the operating specifications for **Temp** are being achieved.
 - a. What is the P_p ?
 - b. What is the P_{pk}?
 - c. Is the process on target?
 - d. For the current process, what is the estimated percent of temperatures that will fall outside the spec limits?
 - a. 0.928
 - b. 0.681
 - c. No, the process is off target. It is shifted toward the lower spec limit.

d. 2.0777 – Approximately 2.056 are estimated to fall below the lower spec, and approximately 0.021% are estimated to fall above the upper spec.
Hide Solution
Statistical Thinking for Industrial Problem Solving Copyright © 2020 SAS Institute Inc., Cary, NC, USA. All rights reserved.
Close