Determining centroid of the given section

Formulas to remember

• The coordinates of the centroid (\bar{x}, \bar{y}) of a composite area are given by

$$\bar{x} = \frac{\sum a_i x_i}{\sum a_i}$$
 $\bar{y} = \frac{\sum a_i y_i}{\sum a_i}$

Important points to remember and understand

- The coordinates of the centroid (\bar{x}, \bar{y}) depend on the reference axes system chosen
- The centroid of rectangular or square area lies at the centre of these figures
- A basic geometric area (or shape or section) means all those shapes whose location of centroids are known from the readily available formulas. e.g. triangle, square, rectangle, circle, semicircle, sector of a circle, parabola, etc.
- A composite area (or shape or section) means an area made up of a combination of two or more basic geometric shapes.

<u>Problem statement Q1:</u> Locate the centroid of the given T-section (Fig.1) or Determine the coordinates of the centroid for the composite section in Fig. 1

(Use the colour code for easy reference)

Fig. 1: T-section (all dimensions in mm)

- Given composite area (section) whose centroid is to be located
- Observe that all the necessary dimensions are given

Fig. 2: T-section with reference axes

- Choose a reference axis system such that all the necessary distances from the axes are known or can be determined
- There could be multiple options of an axes system for the same problem
- One must pick that option that reduces computation
- In the present problem the dashed green lines (Fig. 2) represent the reference axes system

Fig. 3: T-section with basic geometric shapes

Step 2: Divide the composite area

- Divide the composite area (section) into basic geometric shapes (triangle, square, rectangle, circle, semicircle, etc.
- Name each of the basic shapes as a₁, a₂, a₃, ...
- In the present problem the T-section is divided into two rectangular areas a₁ and a₂

Fig 5: Coordinates (x_2, y_2) of centroid of rectangular area a_2

Step 3: Centroids of each basic geometric shape

- Determining distances to the centroid of each basic shape with respect to the reference axes system chosen
- In the present problem the centroids of rectangular areas a₁ and a₂ are marked (shown in Fig. 4 and 5). It is known that the centroid of a rectangle lies at the geometric centre of the shape.
- From the reference x-axis the centroid of rectangle a_1 is at a distance of $y_1 = 240$ mm and from the reference y-axis the centroid of rectangle a_1 is at a distance of $x_1 = 100$ mm (Fig. 4)
- Therefore, the coordinates of the centroid of area a_1 are $(x_1, y_1) = (100, 240)$ from the reference axes
- Similarly, the coordinates of the centroid of area a_2 are $(x_2, y_2) = (100, 115)$ from the reference axes

Fig. 6: Coordinates of centroid of the T-section

The calculations shown below can be done in tabular form as follows:

A	D: -+ 6	D: -+ 6	1	1
Area, a _i	Dist. from y-	Dist. from x-	$a_i \times x_i$	$a_i \times y_i$
	axis, x _i	axis, y _i		
a ₁ =	100	240	4×10 ⁵	9.6×10 ⁵
200×20=4000				
a ₂ =	100	115	4.6×10 ⁵	5.29×10 ⁵
230×20=4600				
$\Sigma a_i = 8600$			$\Sigma a_i x_i = 8.6 \times 10^5$	$\Sigma a_i y_i = 14.89 \times 10^5$
(8.6×10^5)			(14.89×10^5)	
$\bar{x} = \frac{100}{8600} = 100$			$\bar{y} = \frac{1}{8600} = 173.139$	

Therefore, the coordinated of the centroid of the given T-section is (100, 173.139) from the coordinate axes chosen

Step 4: Determining the coordinates of the centroid of the given composite

• The coordinates of the centroid of the entire composite from the reference axes can be obtained by using the formulas

x axis

$$\bar{x} = \frac{\sum a_i x_i}{\sum a_i}$$
 $\bar{y} = \frac{\sum a_i y_i}{\sum a_i}$

• In the present problem, the composite was divided into two basic shapes of area $a_1 = 200 \times 20 = 4000$ mm² and $a_2 = 230 \times 20 = 4600$ mm². $x_1 = 100$ mm, $y_1 = 240$ mm, $x_2 = 100$ mm and $y_2 = 115$ mm. Substituting in the above formula, we get,

$$\bar{x} = \frac{\sum a_i x_i}{\sum a_i} = \frac{a_1 x_1 + a_2 x_2}{a_1 + a_2} = \frac{(4000 \times 100) + (4600 \times 100)}{4000 + 4600} = 100mm \quad \text{(Shown in Fig. 6)}$$

$$\bar{y} = \frac{\sum a_i y_i}{\sum a_i} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(4000 \times 240) + (4600 \times 115)}{4000 + 4600} = 173.139 mm \quad \text{(Shown in Fig. 6)}$$