

ČASOPIS PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXIV/1975 ČÍSLO 9

V TOMTO SEŠITĚ

Náš interview 321
Spartakiádní liška 322
Polní den 1975 323
Letní tábor ÚDPM JF a AR 325
Sojuz a Apollo 326
Správní oblastní konference UIT 326
Cestou osvobození - Expedice AR 328
Mezinárodní výstava rozhlasu a televize v Berlíně 329
R15
Jak na to
Čtenáři se ptají
Kazetové magnetofony 334
Multimetr
Přesné měření střídavých veličin 338
Kapesní kalkulátory ZST 340
Dekadický čítač s obvody MH7400
Feritová hrníčková jádra (pokračováuí)
Jazýčkový modulátor 345
Zajímavá zapojení ze zahraničí 348
Komunikační přijímač pro
amatérská pásma 351
Feritové toroidní cívky 355
Soutěže a závody 356
DX 357
Amatérská televize – SSTV 357
Naše předpověď 358
Přečteme si 358
Nezapomeňte, že 359
Četli jsme 359
Inzerce

AMATÉRSKÉ RADIO

AMATÉRSKÉ RADIO

Vydává ÚV Svazarmu ve vydavatelství MAGNET, Vladislavova 26, PSČ 113 66 Praha 1, telefon 260651-7. Šéfredaktor ing. František Smolík, zástupce Luboš Kalousek. Redakční rada: K. Bartoš, V. Brzák, K. Donát, A. Glanc, I. Harminc, L. Hlinský, ing. L. Hloušek, A. Hofhans, Z. Hradiský, ing. J. T. Hyan, ing. J. Jaroš, ing. F. Králik, ing. J. Navrátil, K. Novák, ing. O. Petráček, L. Tichý, ing. J. Vackář, CSc., laureát st. ceny KG, Redakce Jungmannova 24, PSČ 113 66, Praha 1, tel. 260651-7, ing. Smolík linka 354, redaktoří Kalousek, ing Engel, I. 353, ing. Myslik I. 348, sekretářka I. 355. Ročné vyjde 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Vladislavova 26, Praha 1. Objednávky příjímá každá pošta i doručovatel. Dohlédací pošta Praha 07. Objednávky do zahraničí vyřizuje PNS, vývoz tisku, Jindříšská 14, Praha 1. Tiskne Polygrafia 1, n. p., Praha. Inzerci přijímá vydavatelství MAGNET, inka 294. Za původnost a správnost příspěvku ručí autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hod. C. indexu 46028

Toto číslo vyšlo 10. září 1975.

Toto číslo vyšlo 10. září 1975 © Vydavatelství MAGNET, Praha

s proděkanem pro slaboproudé studijní obory a předsedou slaboproudé sekce vědecké rady této fakulty prof. ing. Václavem Tyslem, DrSc.

Soudruhu proděkane, mohl byste in-formovat naše čtenáře o dnešním stavu elektrotechnické fakulty ČVUT, o směrech studia a dalším plánova-ném rozvoji fakulty?

Elektrotechnická fakulta ČVUT vznikla před 25 lety rozdělením dřívější fakulty strojního a elektrotechnického inženýrství a vyvíjela se velmi rychle, úměrně potřebám našeho průmyslu a celého našeho hospodářství. Dnes má fakulta 20 kateder, umístěných převážně v Dejvicích v nových objektech v Suchbátarově ulici; některé katedry mají své prostory ještě ve staré budově elektro-technické fakulty na Karlově náměstí a v budovách fakúlty v Poděbradech, kde však studuje jen část prvního a druhého ročníku. Ďnes studuje na naší fakultě téměř 3 500 řádných studentů denního studia, asi 850 studujících při zaměstnání (dálkové a večerní studium), přibližně 350 inženýrů v postgraduálním studiu a přes 100 inženýrů-vědeckých aspirantů řádných a externích. Denní studium trvá 5 let, dálkové při zaměstnání 6 let, postgraduální studium 1 až 2 roky, vědecká aspirantura minimálně 3 roky. V současné době se pracuje na návrzích nových studijních plánů. Uvažuje se o rozšíření tzv. diferencovaného studia (pro vybrané nadané posluchače existuje v malém měřítku již dnes a umožňuje urychlený přechod do vědecké aspiran-tury nebo hlubší specializaci) a o roz-šíření postgraduálního studia pro inženýry z praxe.

Jaké podmínky mají Vaši absolventi při nástupu do praxe?

Minulý týden skončily státní závěrečné zkoušky a obhajoby diplomových prací a většina studentů má již projednán nástup na vhodné pracoviště. Ve vývěsných skříních většiny kateder a u vchodu na fakultu můžete vidět seznamy nabízených míst v různých podnicích spolu s údaji o druhu pracovního zařazení, o možnostech ubytování atd. Naše průmyslové podniky cítí, že na světovém trhu mohou prorazit jen vysokou technickou úrovní výrobků, a proto se snaží posílit nejen vlastní technické úseky, ale i technické složky ve výrobě a v obchodních službách. O zaměstnání tedy není nouze, platová úroveň pak po krátkém nástupním období záleží především na schopnostech, znalostech a iniciativě každého absolventa. Značná část studentů si však vybírá své budoucí zaměstnání spíše podle zajímavosti práce. a možností technického a vědeckého růstu než podle nabízeného platu.

Profesor ing. Václav Tysl, DrSc., proděkan FEL ČVUT v Praze

Které obory je nyní možno na FEL ČVUT studovat?

Studijní obory jsou rozděleny na dvě základní skupiny, a to silnoproudé a slaboproudé. Toto dělení má ovšem spíše historické oprávnění, protože např. elektronika, kybernetika, výpočetní technika a řada dalších disciplín proniká do všech specializací. Mezi silnoproudé obory nyní počítáme např. elektrické stroje a přístroje, výrobu a rozvod energie, užití elektrické energie, jadernou energetiku, ale také silnoproudou elektroniku, elektrotechnologii a ekonomiku energetiky; mezi slaboproudé obory pak sdělovací techniku rozdělenou na tři zaměření – technickou kybernetiku s řídicí a měřicí technikou, automatizované systémy řízení a elektronické počítače.

Jak se uplatňují při studiu radio-amatéři?

Studenti-radioamatéři mají některé výhody, ale také některé nedostatky. Velkou výhodou je jejich zájem o obor, pracovní iniciativa a obvykle též manuální zručnost, které se projevují při praktické realizaci ročníkových pro-jektů, diplomových prací apod. V prvních ročnících studia bývá však častým nedostatkem slabá průprava v matematice a někdy též sklon k podceňování teoretických disciplín. Překoná-li amatér tyto nedostatky, je zpravidla vynika-jícím studentem. Amatéři z řad studentů se ovšem též sdružují a v rámci fakultní organizace SSM, mají svou kolektivní vysílací stanici, Hi-Fi kroužek a řadu dalších zájmových skupin. Nejvýznamnější je jejich účast v tzv. studentských vědeckých kroužcích, které se účastní na řešení dílčích výzkumných úkolů zařazených do plánů výzkumu jednotlivých kateder. Výsledky této práce bývají každoročně hodnoceny na Studentské vědecké konferenci, nejlepší výsledky se odměňují a postupují na celostátní studentskou vědeckou konferenci. Inženýři, kteří vyšli z řad amatérů, mají pak v praxi povětšině rychlý postup a dobré uplatnční. Myslím tedy, že bychom měli lépe využívat talentů a morálních rezerv amatérského hnutí a že bychom v zájmu naší společnosti měli hledat cesty, jak umožnit vysokoškolské vzdělání každému radioamatérovi, který k němu má schopnosti a podmínky.

Rozmlouval ing. J. Vackář, CSc.

25 LET FELL & amatérske: ADD 321

SPARTAKIADNI OVENSKA SONI SPARTAKIA SPART

Do bohatého programu Československé spartakiády 1975 přispěli i radioamatéři – uspořádali celostátní spartakiádní finále v honu na lišku mládeže do 18 let. Ústřední radioklub pověřil uspořádáním soutěže zkušený kolektiv přibramských radioamatérů, kteří pozvali mladé liškaře do Vysoké Pece u Přibrami. Učňovský internát Uranových dolů se stal na tři dny místem pobytu a jeho okolí místem "bojů" naších nejlepších mladých liškařů. O spartakiádní medaile se rozdělili v sobotu večer, aby se v neděli časně ráno mohli zúčastnit v Praze slavnostního spartakiádního průvodu.

Spartakiádního přeboru se zúčastnilo celkem 54 mladých závodníků ve čtyřech kategoriich. Byli členy delegací jednotlivých krajů, které měly vždy dva závodníky kategorie B, jednoho kategorie C a jednu dívku. Některá družstva nebyla úplná, některá měla někoho navíc, ale pozoruhodné bylo, že se zúčastnily všechny kraje Československé socialistické republiky včetně obou hlavních měst – Prahy a Bratislavy. Závodníci přijeli do Vysoké Pece ve čtvrtek 26. 6. během odpoledne a ve-

Závodníci přijeli do Vysoké Pece ve čtvrtek 26. 6. během odpoledne a vecera. Vítalo je pěkné horké letní počasí. Čekaly je dva závody, oba v pásmu 80 m, jejichž výsledky se pro celkové hodnocení sčítaly.

Obr. 1. Mezi závodníky přišel na start i tajemník ÚRK ČSSR pplk. Václav Brzák, OKIDDK

Slavnostního zahájení v pátek ráno se zúčastnili zástupci KV Národní fronty, KV KSČ, KV Svazarmu, OV Svazarmu a závody zahájil tajemník Ústředního radioklubu Svazarmu ČSSR pplk. Václav Brzák, OK1DDK. Hned poté se všichni závodníci odebrali na místo startu prvního závodu. Sluničko přálo všem až přespříliš a pro každého byl start do lesa značnou úlevou. Karel

Koudelka se postaral o průběžné vyhodnocování výsledků podle vzoru orientačních závodů, a tak dostal závod opravdu vzrušující atmosféru. Překvapením bylo vítězství Zdeňka Fedora z Přibrami v kategorii C před zkušeným Jirkou Suchým s náskokem téměř 10 minut. Péčí pořadatele byly ještě týž večer k mání rozmnožené výsledkové listiny prvního závodu.

Na večer zorganizoval předseda OV Svazarmu s. Kohout besedu s přímým účastníkem osvobozovacích bojů, bojovníkem z čety kpt. Jaroše s. Erikem Lánským. I když se dětem v pěkném teplém večeru nejdříve nechtělo zvenku do jídelny, kde se beseda konala, nechtělo se jim nakonec odtud – tak byla beseda živá a zajímavá.

Po večeři jsem pohovořil chvíli s nečekaným vítězem prvního závodu'Zdeňkem Fedorem. Chodí do 8. třídy a o hon na lišku se začal zajímat před dvěma roky. Teprve posledního půl roku však trénoval intenzívněji a jeho vítězství bylo prvním výrazným úspěchem. Trénují často, chodí spolu s kamarády do kolektivky OK1OFA, a to nejen na pravidelné schůzky, ale většinou vždy, když zaslechnou OK1OFA na pásmu. S radioamatérskou činností začal před 3 roky u "táty" příbramských radioamatérů OK1BD. Udělal si RO

Obr. 2. Ošklivému počasí odpovídaly i neveselé obličeje závodníků při startu druhého závodu

Obr. 3. Vedoucí delegace Středoslovenského kraje J. Toman, OK3CIE, dává poslední pokyny před startem své svěřenkyni Martě Durcové

Obr. 4. Ani nitka suchá...

zkoušky, má RP číslo OK1-19569 a chystá se na OL. Telegrafní značky chytá tempem 70 zn/min.

Počasí se rozhodlo, že dokonale prověří brannou připravenost všech závodníků a náhle se prudce zhoršilo. Celou noc pršelo a pršelo i po dobu druhého závodu v sobotu dopoledne. V těžkém rozbahněném terénu pod šedivou oblohou to byl opravdu těžký závod a uznání zaslouží zejména ta nejmladší děvčata; přes veškerou nepřízeň počasí všechna závod dokončila, i když na nich nebyla nitka suchá. Stejně náročný byl závod i pro pořadatele, kteří byli na startu, v cíli a hlavně na jednotlivých liškách. Přesto všechno dobře dopadlo a nastalo celkové sčítání za všeobecného napětí.

A v osm hodin večer nadešla napjatě očekávaná chvíle slavnostního vyhlašování výsledků a rozdílení spartakiádních medailí. V kategorii B, tj. chlapci do 18 let, měli radost domácí, protože zvítězil J. Tesař z Příbrami. V kategorii chlapců do 15 let byl nejlepší přeborník republiky Jirka Suchý z Teplic, ale jeho náskok před vítězem prvního závodu domácím Z. Fedorem byl opravdu minimální. Jirka si závod pochvaloval až na podle něho příliš krátké tratě. V kategorii děvčat byla v obou závodech nejlepší Anička Gulášiová z Východoslovenského kraje. Navštěvuje třetí ročník gymnázia ve Staré Lubovni a lišku honí něco přes rok. Byla jediná z dívek, která v obou závodech našla všechny lišky. Ve škole chodí ještě do pěveckého, střeleckého a radioamatérského kroužku a ráda plave. Prozradila na sebe-

Obr. 5. Poslední liška a rychle do cíle

dívky pozor! – že se dlouho snažila zhubnout bez úspěchu, a když začala běhat lišku, šlo to najednou samo.

V kategorii do 15 let jsou obvykle hodnoceny dívky s chlapci dohromady. Vzhledem k tomu, že děvčat bylo v této kategorii šest a podmínky závodu těžké, rozhodlo se vedení závodu vyhlásit zvlášť i výsledky děvčat do 15 let. Zlatou spartakiádní medaili dostala Zdenka Vinklerová z Teplic. Čtvrté místo v této kategorii obsadila nejmladší účastnice přeboru desetiletá Iveta Suchá z Teplic, sestra J. Suchého.

Třídenní úsilí pořadatelů, vedených ředitelem závodu J. Brožovským,

Obr. 6. Jirka Suchý, vítěz kategorie C, se svojí sestrou Ivetou

Obr. 7. Mezi nejobětavější pořadatele patřili Jožka, OK1FBL, a Sylva, OK1AYA

Obr. 8. Nejúspěšnějším družstvem spartakiádního finále v honu na lišku bylo družstvo Středoslovenského kraje ve složení Tichý, Žuffa, Mečiar, Vabec a Marta Ďurcová, vedené J. Tomanem

OK1AHI, hlavním rozhodčím M. Brokešem, OK1BOK, technickým rozhodčím ing. P. Šrútou, OK1UP, skončilo. Soutěž proběhla úspěšně, zcela neplánovaně díky počasí dokonale prověřila všechny závodníky. Škoda, že slavnostnímu zakončení a rozdílení medailí nebyla již ze strany různých orgánů včnována taková pozornost jako slavnostnímu zahájení; spartakiádní přebor byl tak trochu "ve stinu" hlavních dnů Československé spartakiády, probíhajících v Praze. Všichni účastníci spartakiádního finále v honu na lišku odjeli v neděli velmi časně do Prahy a ve svazarmovských krojích se svými zaměřovacími přijimači reprezentovali Svazarm ve slavnostním spartakiádním průvodu.

Věnec padlým hrdinům

položili při příležitosti spartakiádní soutěže v honu na lišku zástupci OV Svazarmu, organizačního výboru a závodníků u památníku obětem 2. světové války ve Slivici, v místech, kde padly poslední výstřely této války. Tímto aktem, stejně jako uspořádanou besedou s pamětníkem osvobozovacích bojů s. Lánským ukázali, že jsou si plně vědomi, jakých obětí bylo zapotřebí pro naši klidnou a šťastnou souřasnost.

tegorii I. Používali vysílač PETR 104, přijímač "home made" konvertor s AF239 a mf 3 až 6 MHz, anténu desetiprvkovou Yagi. Zařízení napájeli z akumulátorových baterií NKN45 a v "provozním" stanu měli zářivkové osvětlení z měniče. Celý tábor čítal 6 stanů a nepostradatelnou výbavou bylo i 2 m vuřtů a 3 m salámu.

Obr. 1. Mladí operatéři OK10FA z Příbrami Vladimír Šíma a Vladimír Kraidl, OL1ATO

Kozí vrch je nedaleko Slivic, kde padly před 30 lety poslední výstřely druhé světové války, a je odtud vidět několik významných míst těchto posledních bojů. Velmi zajímavě a podrobně nám o nich Karel, OK1ADW, vyprávěl. V příjemném prostředí příbramského kolektivu jsme strávili asi hodinu a vydali jsme se hledat vrch Třemšín.

Vrch Třemšín se nalézá kousek za Rožmitálem. Asi dvě třetiny cesty od hlavní silnice vede pěkná asfaltová silnička, poslední třetina je vykotlaná lesní cesta hodně do kopce, tak spíš pro tank než naše embéčko. Leč vydrželi jsme my i embečko a dojeli jsme až nahoru; až k úzkému kamennému můstku. Ten by se sice dal přejet, ale to jsme již neriskovali. Od tábořiště OK1HBU nás již beztak dělilo jen 30 m. Vláďa, OK1HBU, vyjel na Polní den poprvé. Poprvé také vůbec vysílal na velmi krátkých vlnách. Na Třemšín přijel s celou rodinou a dvěma kamarády a ubytovali se ve svérázném velikém stanu z průhledného igelitu. Na Třemšíně je poměrně vysoký, leč zchátralý "triangl". V době našeho příjezdu byl již od OK1HBU vlastnoručně důkladně vyspraven, takže jsme mohli bez obav vylézt až nahoru. Vláďa měl tranzistorový vysílač řízený krystalem na jediný kmitočet, což bylo pro závod jistě značným handicapem. Velmi dobře mu chodila anténa HB9CV, která vzhledem ke svým rozměrům nebyla na špičce trianglu téměř vidět. Protože OK1HBU se svými

Polni den 1975

Letošní Polní den poněkud vybočil z dlouholeté tradice. Celé dva dny bylo totiž pěkné letní počasí snad na celém území republiky a tak byl PD nejen branným závodem, ale i příjemně stráveným víkendem. Proti minulým ročníkům byl tentokrát závodem národním a jeho začátek byl posunut o jednu hodinu na 17,00 SEČ. Vyjeli jsme z redakce do dvou směrů – šéfredaktor ing. F. Smolík, OKIASF do Krušných a Jizerských hor, ing. A. Myslík s XYL a "průvodcem" Dr. Skřivánkem, OKIFSA, do okolí Příbrami.

Radioklub mladých OK1OFA z Přibrami tábořil na Kozím vrchu nedaleko Přibrami. Málokdo tento název znal, takže nám chvíli trvalo, než jsme Kozí vrch našli. Dorazili jsme těsně po začátku Polního dne mládeže a přivítali nás manželé Zahoutovi, OK1FBL a

OK1ADW. Tábořiště působilo v pěkném letním dnu uklidňujícím dojmem. Mladí vysílali, muži se opalovali a ženy vyšívaly. Úplná pohoda. Od Karla, OK1ADW, jsme se dozvěděli některé základní údaje. Na Kozím vrchu bylo asi 20 lidí, Polního dne se účastnili v ka-

Obr. 2. Vláďa, OK 1HBU, (vpravo) na vrchu Třemšíně u Rožmitálu

Obr. 3. OKIAHB u zařízení OKIKPB na Onom světě

přáteli byli v plné práci v přípravě na začátek závodu, nezdržovali jsme je dlouho – pěkný kopec, malebný palouček s tábořištěm těsně vedle vrcholku a pěkné počasí v nás vzbudilo úvahy také někam napřesrok vyjet.

V neděli jsme se vydali na druhou stranu Vltavy – přejeli jsme v Solenicích orlickou přehradu a zamířili na Onen svět. Různými polními cestami, které nám poradili dobří lidé a kde jsme několikrát málem nadobro uvízli, jsme se dostali až ke kopci nedaleko Stašic, který tento nepravděpodobný název nese. Ještě jsme ho několikrát objeli, než jsme našli tu pravou cestu nahoru a dorazili k pěkné rekreační chatě podniku Restaurace a jídelny z Písku. Jejími jedinými nájemníky byli čtyři členové příbramské kolektivky OKIKPB — OK1EP, OK1YR, OK1AHB, OK1AKM. Vysílací pracoviště měli umístěné na půdě chaty, světlíkem vystrčená anténa tak byla přímo ručně ovladatelná. Měli v době naší návštěvy navázáno asi 70 spojení a podmínky si příliš nepochvalovali.

Obr. 4. Vysílací pracoviště pro 1 296 MHz stanice OK10FG na Javorové skále

Z Onoho světa jsme se vydali na Javorovou skálu. Na jejím druhém – travnatém a plochém – vrcholku byly hned dvě kolektivní stanice. OK1OFG závodili v pásmu 145 MHz a 1296 MHz a OK1KLL v pásmu 435 MHz. Všechna pracoviště byla samostatná a střídavě je obsluhovali operatéři obou kolektivek. Uvítali nás Vašek, OK1FVM, a Josef, OK1IJ, od kterých jsme se také dověděli stručné technické údaje o používaném zařízení. V pásmu 145 MHz vysílali na celotranzistorový směšovací vysílač o výkonu 5 W, poslouchali na konvertor se dvěma PC86 s uzemněnými mřížkami k přijímači US9 s anténou PA0MS. V pásmu 435 MHz méli rovněž směšovací vysílač se dvěma E88CC na koncovém stupni (asi 5 W),

324 Amatérske AD 10 %

přijímač EK10 s konvertorem 3krát AF239, anténu dvacetiprvkovou Yagi. Pro pásmo 1 296 MHz používali vysílač pro 145 MHz s varaktorovými násobiči a pásmovými propustmi, konvertor popsaňý v AR a antény 4krát 15 cl. Yagi, popř. 19 cl. Yagi. Měli připravenou i anténu 4× 15 cl. Yagi a zařízení na 2 304 MHz, ale nenašli prý vhodnou protistanici.

Travnatý vršek Javorové skály měl nevýhodu v tom, že nebylo nikde kousek stínu, a v poledním vedru byla jakákoli činnost velmi vysilující. Přesto jsme se vstoje "zapovídali" a naše návštěva se protáhla téměř na dvě hodiny.

Na zpáteční cestě jsme se ještě jednou zastavili na Kozím vrchu. Bylo asi hodinu před koncem Polního dne a u mikrofonu byli nejmladší operatéři OKIOFA. Bylo pořád hezky, a tak se ještě zdaleka nechystali k odjezdu domů. Pochvalovali si pěkný víkend a spolu s námi vyslovili naději, že to napřesrok snad dopadne zase tak dobře.

Obr. 5. OK10FG měli připravenou i anténu a zařízení pro 2 304 MHz

K účasti na letošním Polním dnu bylo v českých zemích přihlášeno 124 stanic. Na Slovensku údajně jen deset, i když počet byl mnohem větší podle počtu navázaných spojení. V terénu tedy bylo něco okolo dvou tisíc operatérů a rodinných příslušníků. Letošní Polní den byl po několikaletém mezinárodním spolupořadatelství opět jen československým závodem. Částečně se to projevilo i v málé účasti polských a německých stanic.

Počasí bylo vcelku příznivé, sice někde s bouřkami a dokonce i krupobitím, které částečně ovlivnilo i šíření velmi krátkých vln. V některých stanicích bylo v pátek večer dosaženo spojení se Švédskem, Anglií, Holandskem atd. a ve spojení s NSR a NDR byly slyšeny stanice UQ, UR a další.

Poněkud zmatek způsobilo posunutí začátku o jednu hodinu proti celoročnímu kalendáři závodů. Většina účastníků soudí, že dřívější začátek by byl pro přiští rok výhodnější, protože jednak je většina účastníků na kótách již v pátek večer nebo nejpozději v sobotu ráno a všichni – hlavně vzdálenější – se potřebují dříve dostat domů a byl by pro ně dřívější konec výhodnější.

Obr. 6. Transceiver Sněžka pro pásmo 2 m, provoz CW, AM, FM, ve stanici OK1KVK

V západních a severních Čechách bylo navštíveno 10 stanic. Nejvíce obtíží nám způsobila stanice OK1KWN na kótě Špičák u Kraslic (GK53b), kterou jsme hledali mnoho hodin a pochopitelně nenašli. Jak jsme se dozvěděli z dopisu redakci, OK1VMK jako kontrolor rovněž několik hodin tuto stanici hledal a nenašel a vlastně nás dojížděl po stejných kótách – ale nedohonil.

Jestě před závodem byla na pásmu stanice OK1FBI/p, která marně volala výzvu. Měřicí přijímač pro hon na lišku spolehlivě ukazoval na kopec Ptáčník, ale ani jeho jsme nenašli. Zato jsme od řady stanic slyšeli nářek na jeho vysílání na mnoha místech pásma 145 MHz.

Obr. 7. Zařízení stanice OKIKJO na Horní Halži

Obr. 8. Na Měděnci pracovali OK1KWJ v polních podmínkách (RO 7766)

Nejvíce operatérů a hostů jsme našli na Blatenském vrchu, pravidelném QTH karlovarských radioamatérů z OK1KVK. Bylo jich zde okolo třicetí. Přes velký spěch, který o Polním dnu je, jsme se zúčastnili neorganizované besedy o problémech, které pálí naše radioamatéry. Šlo konkrétně hlavně o amatéry. Šlo konkrétně hlavně o amatérské antény a jejich stavbu a povolování, respektive jejich demontáž místními podniky OPBH. Bohužel bez pomoci organizace, ve které jsou radioamatéři členy, došlo k soudnímu řízení, které OPBH prohrál u okresního a po odvolání u krajského soudu. Stížnost, kterou údajně OPBH poslal prokurátorovi za nedodržení zákonnosti, by měl projednat Nejvyšší soud. Jeho rozhodnutí, které by pravděpodobně stejně jako rozhodnutí dvou předchozích soudů pak tvořilo precedens, na který by se mohli všichni amatéři odvolávat při eventuálně

stejných případech. K této otázce se chceme ještě podrobně vrátit v AR. U některých stanic ještě dožívají kom-

binace EK10 + konvertor, ale více stanic již používá celotranzistorová zařízení. Provoz A3-fone již pomalu ustává a používá se hlavně kmitočtová modulace a SSB, a to i na vyšších pásmech. některých stanicích právě letos udělali tu zkušenost, že pokud volali stanici provozem A3 (šlo především o západoněmecké a rakouské stanice), nedovolali se. Jiná stanice, která je volala SSB, se dovolala ihned. Další věcí, která s SSB souvisí, je volání na stejném kmitočtu. Opouští se tedy používání krystalů a používají se transceivery, tak jak je to běžné na pásmech KV. Své příznivce získává také podstatně menší výkon vysílačů.

Obr. 9. OKIAGE na Klínovci. Konvertor + proměnná mf K12

Obr. 10. Nádherné QTH OK1KSO/p s lesem antén

Obr. 11. Zařízení Otava v OK1KSO

V závodě mládeže v sobotu dopoledne mnoho stanic nevčdělo, že od 1. 7. tr. mohou stanice OL pracovat v celém rozsahu 144 až 146 MHz a bohužel

toho nevyužívali.

Snižování příkonu jsme navrhovali již před několika lety – návrh tehdy nebyl pochopen. Dnes se ukazuje jcho správnost. Většinou bylo používáno zařízení PETR, zhotovené ve výrobním středisku ÚRD v Hradci Králové. Nejlépe vybaveni byli ve stanici OK1KIŘ, umístěné na Plešivci (kat. 2, 4, 5, 6). Hlavně to bylo zařízení pro vyšší pásma 430, 1 296, 2 304 MHz, včetně dálkově otáčených antén. S podobným zařízením pracovali OK1AGE a OK1AIB na Klínovci. I když jde o zařízení malého výkonu, přece jen je při jeho množství potřeba vždy zajistit dopravu. Obě zařízení jsme pro vás vyfotografovali a fotografic jsou na II. str. obálky.

Velmi pěkné QTH má vybudováno OK1KSO v Radimovicích. Je pěkně vybaveno především pro práci na krátkých vlnách (dvě otočné Yagiho antény, vertikální anténa pro 80 m atd.). Používají zařízení Otava a naříkali, že za takové množství peněz se k němu nedodává ani schéma a dokumentace. Oscilátor jejich přístroje prý je velmi nestabilní. Na VKV pracovali o PD v kategorii 1, 3, 5, rovněž s otočnými anténami. O zařízení víc praví foto-

grafic.

Letní tábor ÚDPM JF a AR

Jak o tom již byla zmínka v R15 v AR 8/1975, pozvala redakce nejlepší účastníky soutěže 30 × 30 (viz AR 1, 2, v táboře ÚDPM JF poblíž Stráže nad Nežárkou v Jihočeském kraji. Tábora se zúčastnilo celkem 13 mladých radiotechniků z pozvaných dvou desítek nejúspěšnějších účastníků soutěže. Byli to: Viktor Martišovitš z Bratislavy, Jaroslav Doškář z Mladé Boleslavi, Anto-nín Couf a Jaroslav Mikeš z Českých Budějovic, Jakub Černoch a Václav Lomič z Prahy. Vlastimil Kocourek z Blatné, Milan Vašíček z Jablonce, Karol Bitto z Popradu, Ivan Motyčka z Nového Mesta nad Váhom, Bohumil z Noveho Mesta nad vanon, Šťastný z Litvínova, Pavel Stejskal z Dolní Dobrouče a Milan Hajíček z Příbrami.

Odjezd do tábora byl v sobotu 28. června a nebyl právě nejradostnější, protože již od rána nepřetržitě pršelo, pršelo i celou cestu a celou dobu, po níž se stavěly stany a vlastně i celé čtyři první dny tábora. Nevlídné počasí však mělo i své výhody – protože byly všichni účastníci tábora shromážděni v začátcích tábora pod jednou střechou, dobře se seznámili a vzájemně poznali i ti, kteří se do té doby neznali. Pro úplnost je třeba poznamenat, že kromě účastníků soutěže byli na táboře i členové radioklubu ÚDPM JF, které vedl Václav Sirko, a jichž bylo celkem šestnáct. Během tábora při společném zaměstnání byla navázána mnohá přátelství, která jistě přečkají dlouhou dobu a jimž nebude na závadu ani zeměpisná vzdálenost, ani jazyková různost či ne zcela shodné zájmy.

Jaké bylo ono společné zaměstnání účastníků tábora? Pod vedením hlav-ního vedoucího Z. Hradiského byli účastníci tábora rozdělení do dvou skupin, z nichž každá měla obvykle svůj vlastní program (kromě několika besed, které byly společné a kromě celotáborové celodenní hry). Z programu tábora si uvedeme alespoň ty nejzajímavější akce: besedy na téma moderní součástky, věrná reprodukce zvuku, provoz na amatérských pásmech, atd.; návrh a realizace desky s plošnými spoji (s praktickou výrobou); zhotovení výrobku (nf předzesilovač) z dodaných součástek a na desce s plošnými spoji; různé technické kvizy, technická olympiáda; celodenní hra s brannou náplní (telegrafní

abeceda, šifry, střelba ze vzduchovky atd.); exkurse do výrobního podniku ve Stráži nad Nežárkou; celodenní výlet na stanoviště kolektivky OKIKKI o Polním dnu; sestavování přijímače ze stavebnice Junák; instruktáž a několik závodů v honu na lišku; beseda o moderní výpočetní technice; výlet do Tředením výpočetní technice; výlet do Tředením výpočetní technice; výlet do Tředením výpočetní po Hlužicí výlet výlet po Hlužicí výlet výlet po Hlužicí výlet po Hlužicí výlet boně a na rybník Rožmberk, na Hlu-bokou, do Vyššího Brodu; míčové hry, koupání atd. Závěrečnou hrou poslední den tábora byla Stezka odvahy se strašidly a nejrůznějšími zvukovými efekty (záběry z typických činností jsou na 4. str. obálky).

Jak se jasně ukázalo během trvání tábora, prvním předpokladem úspěchu jakékoli činnosti je zájem účastníků – všechny akce a celý tábor byl velmi úspěšný, neboť každý se již ve svém vlastním zájmu snažil, aby byl u všeho, aby všechno viděl, všechno slyšel a aby si domů odnesl co nejvíce poznatků a zkušeností. Proto nebyly na táboře žádné problémy s kázní (snad kromě ranních rozcviček, na něž se mnozí "spáči" vali jako na nutné zlo). Konečně zájem účastníků tábora o prógram nejlépe dokumentuje jedna z připomínek na zá-věrečném hodnocení: je škoda, že tábor nemůže být delší než pouze čtrnáct dnů. K dobrému a nerušenému průběhu tábora sloužily i "potlachy pod vrbou", při nichž se každý večer hodnotil program a náplň uplynulého dne; každý z vedoucích i z účastníků měl možnost navrhnout změny v programu nebo jinak prosazovat svoje připomínky a na jakékoli přání či připomínku byl vzat zřetel při plánování programu na příští den (nebo dny).

Kdybych měl dnes s odstupem hodnotit celý tábor, myslím, že jeho největší přínos byl v tom, že především umožnil osobní styk mladých nadšenců pro radiotechniku a elektroniku z míst, v nichž pro tuto činnost nejsou podmínky (buď proto, že v místě neexistuje žádný radioklub, nebo prodejna sou-částek atd.) s těmi, kdož byli schopni poskytnout jim odpověď na otázky, je-jichž neznalost jim bránila v dalším růstu, že si mohli ověřit, jak dalece jsou správné jejich názory a znalosti a že mnohým z účastníků bylo poprvé v jejich životě umožněno pohybovat se v kolektivu mladých lidí se stejnými zájmy.

Tábor měl samozřejmě významnou důležitost i pro nás, redakci. My jsme si mohli ověřit, jaké aktuální problémy "hýbají" radiotechnickým mládím, jaké mají tito mladí požadavky, vědomosti a zkušenosti. Tyto poznatky se pokusíme použít především v rubrice R15, avšak nejen tam – i ve všech materiálech pro mládež. Mne osobně např. velmi překvapil zájem o práci na amatérských pásmech, při pravidelném každodenním vysílání OKIRAR/p bylo vždy stanovíště stanice obleženo zájemci a nejrůznější otázky nebraly konce. Je škoda, že tento zájem není vždy podchycen v místech a okresech, právě tito mladí by mohli přinést do práce mnohých ko-lektivů potřebné oživení především svým zápalem pro věc.

Tábor ÚDPM JF a AR skončil. Zůstaly jen vzpomínky na rušných čtrnáct dnů, naplněných prací a zábavou. Mnoho zdaru do další práce a nechť všem vydrží to nadšení pro radiotechniku, které se tak osvědčilo na táboře. Na shledanou nad stránkami AR i v budoucnu.

SQJUZ @ AFOLLO

První společný let sovětských a amerických kosmonautů je sice už za námi, jeho význam pro nejrůznější oblasti kosmického podnikání však trvá. Vždyť se podařilo v rámci několikaletých příprav nejen unifikovat celou řadu palubních zařízení, ale dokonce i překonat jazykovou bariéru a rozřešit otázku vzájemných operativních spojů. A právě nad nimi se nyní trochu zamyslíme.

Během společného letu byly radiově spojeny nejen obě kosmické lodi, nýbrž také obě pozemní řídicí střediska. Navíc každé z nich mělo možnost hovořit s kteroukoli kosmickou lodí a samozřejmě existovaly i nejrůznější oklikové spoje. Tak bylo dokonce možno propojit obě lodi přes kterékoli pozemní řídicí středisko nebo dokonce jak přes Houston, tak i Kaliningrad (nikoli ten nedaleko polských hranic, nýbrž v blízkosti Moskvy). Základní pojítka pracovala ovšem v oblasti VKV, navíc však existovalo i spojení kosmonautů se Zemí i na vlnách krátkých.

Důvod, proč se po tolika letech opět sáhlo ke krátkým vlnám, jež dočasně v oblasti kosmických spojů upadly nadlouho v nemilost, je celkem jedno-duchý: při letech kosmických lodí kolem Země trvá totiž možnost přímého spojení kosmonautů s některou pozemní stanicí pouze průměrně deset až dvacet minut; v případě, že je přelétáván Sovětský svaz s mnoha pozemními retranslačními stanicemi, lze dobu spojení prodloužit průměrně na půl hodiny letu. Jestliže do provozní sítě zapojíme i retranslační spojové lodi (známe je pod jmény "Gagarin", "Koroljev", "Ciol-kovskij"), které budou vhodně roz-místěny po světových oceánech, můžeme původní spojení prodloužit ještě o deset až dvacet minut, pohybuje-li se loď po zvláště příznivé dráze. V případě možnosti spojení také s Houstonem může být elektivní čas spojení dále prodloužen, avšak zároveň je třeba počítat s tím, že spojové středisko druhé strany je obvykle zatíženo spojením se svými kosmonauty, a proto ho může být použito k prodloužení radiového spojení pouze omezeně. A tak přišly ke cti opět vlny krátké, které se šíří daleko za obzor kosmické lodi a mohou se dostat do příslušného řídicího střediska i v době, kdy kosmonauti letí na zcela opačné straně Země. Přitom se totiž uplatňuje zvláštní vlnovodový efekt, objevený při studiu signálů prvního sputníka z roku 1957.

Základn spojovou osou byla př nedávném společném letu sovětských a amerických kosmonautů trasa Kaliningrad-Houston. Mohlo na ní probíhat až třináct telefonních hovorů současně a navíc bylo možno předávat dva televizní obrazy. Části telefonní kapacity bylo možno věnovatí provozu dálnopisnému. Ostatně i při spojení s kosmonauty již dálnopis několikrát prokázal své vynikající vlastnosti, protože byl schopen předávat pokyny posádkám i v době, kdy po pracovním dnu odpočívaly. Nemůžeme se v souvislosti se zmíněnými telefonními trasami ubránit vzpomínce na komickou situaci, k níž nečekaně došlo jen několik dnů před zahájením společného letu: jakýsi buldozerista vyrýpl v Rakousku telefonní kabel a přitom, jak se nečekaně ukázalo, přetrhl čtyři ze zmíněných třinácti telefonních vedení mezi oběma letovými středisky. Naštěstí se to podařilo včas opravit, ale snad tato historka stačí jako doklad toho, že při tak důležitých akcích je vždy dobré naplánovat raději více než méně spojovach tras, vedoucích nejrůznějšími směry.

Na VKV byl stanoven jeden "americký" a jeden "sovětský" provozní kmitočet, určený k "veřejnému" provozu. Americký kmitočet byl 296,8 MHz, sovětský 121,75 MHz. Obě kosmické lodi mohly mezi sebou používat kteréhokoli z těchto kmitočtů, takže vlastně mezi nimi existovaly dva duplexní kanály. Navíc bylo kmitočtu 296,8 MHz používáno i ke speciálním telemetrickým účelům ve směru Sojuz—Apollo, zatímco pro týž účel existoval v protisměru další kmitočet 259,7 MHz. Na tomto kmitočtu bylo možno také jednosměrně hovořit.

Další kmitočty, sloužily ke "služebním" spojům včetně palubní telemetrie. Byly to kmitočty 2 106,4 MHz, 2 272,5 MHz, 2 287,5 MHz, 2 077,4 MHz a 2 256 MHz. Poslední dva z nich sloužily k radiovému spojení Apolla přes stacionární družici ATS-F. Za zmínku stojí také to, že na jeden z uvedených kmitočtů fungovalo na Sojuzu zvláštní čidlo, které reagovalo na příjem speciálního signálu, vyslaného z Apolla, okamžitým vysláním zpětného signálu pro potřebu měření okamžité vzdálenosti obou lodí při přibližovacím manévru.

Pokud jde o televizi, Sojuz měl na palubě celkem čtyři televizní kamery, z toho dvě barevné. Čtvrtá kamera byla připevněna venku a umístěna tak, aby snímala detaily při spojovacím manévru. Jedna kamera musela být upravena elektronicky tak, aby jejímu provozu nevadila americká kyslíková atmosféra; této kamery se používalo k reportážním záběrům, když sovětští kosmonauti navštívili Apollo. Do oblasti spojů také náleží systém pro spojení obou posádek v době, kdy obě lodi byly spojeny v dočasné jediné těleso. Tento systém se opíral hlavně o kabelové spoje, které se vzájemně propojily hned po zaklapnutí stykového zařízení.

ření jejich polohy a dokonce směru a velikosti okamžité rychlosti pohybu bez jakékoli pomoci vzdálené Země. Při řešení těchto úloh se používalo i měření iontového toku v prolétávaných částech ionosféry a pokud šlo o komplexní rozbor vzájemného pohybu obou lodí, uplatňovalo se i zmíněné spojové zařízení, umožňující v každém potřebném okamžiku zjistit vzájemnou vzdálenost i rychlost obou lodí. K tomu přistupují ovšem i palubní radary analyzující změny vzájemné polohy při přibližovacím manévru a spojené s palubními počí-tači obou lodí, s nimiž dohromady tvořily jakousi kybernetickou jednotkú vyššího řádu. Kosmonauti přecházeli na ruční řízení vlastně teprve v poslední fázi přibližování, prakticky několik málo minut před koncčným propojením svých lodí. Nakonec jsme si ponechali otázku jazykovou. Během nácviku letu se totiž ukázalo, že nestačí, jestliže posádky obou lodí zvládnou jak ruštinu, tak i angličtinu. Dobře si začaly jazykově rozumět teprve tehdy, hovořil-li každý kosmonaut jazykem druhé strany, tj. jestliže sovětští kosmonauti používali angličtiny a jejich američtí kolegové jim odpovídali rusky. Jen tak se totiž zamezilo používání nečekaných vazeb a idiomů, které mohly být druhou stranou významově špatně pochopeny. Navíc však bylo používáno při spojení také zvláštní

K tomu všemu je třeba ještě poznamenat, že potřebná elektronika doznala

během příprav ke společnému letu několika významných změn: zejména se to týkalo konstrukční přestavby některých

dříve používaných zařízení tak, aby přístroje bezpečně fungovaly i v čistě kyslíkové atmosféře, kdy nejmenší jis-

křička na přepínači by mohľa způsobit

katastrofu. V praxi to tedy znamenalo přechod na klopné obvody a přepínače

ovládané změnou kapacity. Velkých změn doznalo i navigační zařízení, které

umožňovalo kosmonautům přímé mě-

amatérských značek; již dříve používali této "řeči" kosmonauti obou velmocí odděleně, nyní se musely jejich zkratkové výrazové prostředky sjednotit.

Nahlédli jsme stručně pod spojařskou "pokličku" prvního společného letu sovětských a amerických kosmonautů. Je tam toho ovšem mnohem více než jsme dnes uvedli, ale snad jsme poskytli těm, kteří se zajímají o kosmonautiku, alespoň několik základních informací.

kódové řeči, jež musela být vytvořena

zejména pro závěrečnou fázi přibližo-

vacího manévru, kdy používání nor-

málního jazyka by nesmírně zdržovalo.

Tedy jakousi kosmonautickou obdobu

Q-kódu a námi používaných provozních

Dr. Jiří Mrázek, CSc. OKIGM

Správní oblastní konference UIT pro rozhlas v pásmech dlouhých a středních vln

V říjnu letošního roku bude zahájena v Ženevě druhá část Správní oblastní konference UIT (Mezinárodní telekomunikační unie) pro rozhlas v pásmech dlouhých a středních vln, která má za úkol sestavit plán kmitočtů pro dlouhovlnné a středovlnné rozhlasové vysílače v zeměpisných Oblastech 1 a 3. Oblasti 1 a 3 podle rozdělení UIT zahrnují mimo zemí Severní a Jižní Ameriky všechny ostatní země světa. Konference má sestavit plán kmitočtů pro rozhlasové vysílače v kmitočtoých pásmech 150 až 285 kHz (dlouhovlnné

pásmo), 525 až 1 605 kHz (středovlnné pásmo).

V minulém roce v říjnu (7. áž 25. 10. 1974) se konala v Ženevě první část Správní oblastní konference UIT pro rozhlas v pásmu dlouhých a středních vln, která měla za úkol stanovit technická a provozní kritéria pro plánování kmitočtů dlouhovlnných a středovlnných vysílačů. Této první části konference se zúčastnilo 335 delegátů z 90 členských zemí Mezinárodní telekomunikační unie, které patří do zeměpisných Oblastí 1 a 3. Předsedou konference byl

zvolen F. Locher (Švýcarsko) a jeho místopředsedy byli zvoleni V. Šamšin (SSSR), G. C. Okoli (Nigérie) a K. P. R. Menon (Malajsie). Strukturu konference tvořilo 7 komisí. Hlavní těžiště práce konference bylo v komisích č. 4 a 5. Komise č. 4, jejíž předsedou byl J. Rutkowski z PLR, měla za úkol připravit technické parametry a kritéria. Komise č. 5, jíž předsedal R. K. Binz z NSR, se zabývala plánovacími metodami.

První část Správní oblastní konference stanovila pro plánování kmitočtů rozhlasových vysílačů v pásmech dlouhých a středních vln tato technická a provozní kritéria:

Křivky šíření elektromagnetických vln

Pro určení intenzity elektromagnetického pole přízemní vlny přijala konference křivky šíření CCIR (Mezinárodní poradní sbor pro radiokomunikace – stálý orgán UIT) uvedené v doporučení č. 368-2.

Pro Oblast 1, tj. pro Evropu a Afriku a z Oblasti 3 pro Austrálii a Nový Zéland byly přijaty, pro určení intenzity elektromagnetického pole prostorové vlny, křivky šíření uvedené v nové zprávě CCIR č. 575. Ve zbývající větší části Oblasti 3 bude používána pro určení intenzity elektromagnetického pole prostorové vlny tzv. "Káhirská křivka sever—jih". Pro trasy přecházející z jedné oblasti do druhé bude použita odpovídající křivka šíření té oblasti, ve které leží střední bod trasy.

Konference přijala usnesení, že při plánování nebude brán zřetel na ionosférickou transmodulaci (křížovou modulaci).

Normy pro vysílání s amplitudovou modulací

Pro zeměpisné Oblasti 1 a 3 byl přijat jednotný kanálový rozestup 9 kHz pro střední i dlouhé vlny. V pásmu středních vln byly proti současnému stavu nově stanoveny nosné kmitočty tak, aby byly celistvým násobkem kanálového rozestupu 9 kHz. To znamená, že proti současnému stavu se většina nových kmitočtů ve středovlnném pásmu v Oblasti 1 (Evropa, Afrika) změní o + 1 kHz.

Při plánování kmitočtů bude uvažován systém amplitudové modulace s dvojitým postranním pásmem a kompletní nosnou (A3).

Potřebnou vf šířku pásma je možno volit mezi 9 a 20 kHz (což odpovídá nf šířce pásma mezi 4,5 a 10 kHz). Definitivní šířka pásma závisí na dohodě se Správami spojů, které budou vysílat na sousedních kanálech.

Charakteristiky vysílání

Nominální výkon vysílače bude výkon nosné vlny bez modulace.

Současné technické znalosti ukazují, že je možno i v oblasti středních a dlouhých vln konstruovat směrové antény s předozadním poměrem v horizontální rovině až 20 dB. Je také možno konstruovat antény s omezeným zářením ve větších elevačních úhlech, což dovoluje ve večerních hodinách pro přízemní vlnu vzdálit zónu selektivního úniku.

Vyzářený výkon vysílače lze udávat v kW jako efektivní vyžářený výkon nebo ve V jako cymomotrickou sílu.

Ochranné poměry na vf kmitočtech

Byly přijaty tyto vf ochranné poměry ve stejném kanále:

30 dB pro užitečný signál stálý (pří-

zemní vlna) a rušicí signál stálý (přízemní vlna) nebo kolísavý (prostorová vlna).

27 dB pro užitečný signál kolísavý (prostorová vlna) a rušící signál buď stálý (přízemní vlna), nebo kolísavý (prostorová vlna).

Ochranný poměr v sousedním kanálu závisí na vysílané šířce pásma a kompresi modulace. Např. pro vysílaný nf signál 10 kHz se slabou kompresí a pro kanálový rozestup 9 kHz je ochranný poměr na sousedním kanálu nižší o 21 dB než ve stejném kanálu. Může být dosaženo hodnoty nižší až o 30 dB, jestliže je vysílán nf signál do 4,5 kHz se silnou kompresí.

Minimální intenzity elektromagnetického pole

Minimální intenzity elektromagnetického pole byly stanoveny konferencí jen s ohledem na atmosférické šumy (nikoli s ohledem na průmyslové rušení) tak, jak to definuje doporučení CCIR č. 499. Oblasti 1 a 3 byly rozděleny z hlediska minimálních intenzit elektromagnetického pole na 3 zóny A, B a C. Zóna B je určena pro země ležící okolo rovníku, zóna A je určena pro země ležící na sever od zóny B a zóna C je určena pro země ležící na jih od zóny B.

Pro jednotlivé zóny byly přijaty tyto minimální intenzity elektromagnetického pole (E_{\min}) pro 1 MHz:

+60 dB (nad 1 μV/m) pro zónu A (patří sem Evropská rozhlasová oblast)

 $+70~\mathrm{dB}$ (nad 1 $\mu\mathrm{V/m})$ pro zónu B $+63~\mathrm{dB}$ (nad 1 $\mu\mathrm{V/m})$ pro zónu C.

Přijímače

Konference doporučila, aby vzhledem ke zmenšení vnitřního rušení v přijímačích byl v budoucnosti mezifrekvenční kmitočet pro střední a dlouhé vlny celistvým násobkem kanálového rozestupu. Tato podmínka je ovšem podmíněna ještě tím, aby kmitočty jednotlivých vysílacích kanálů byly rovněž celistvým násobkem kanálového rozestupu.

Plánovací metody

Byly stanoveny instrukce, jak je třeba postupovat při plánování kmitočtů na druhé části Správní oblastní konference UIT pro rozhlas v pásmech dlouhých a středních vln v roce 1975.

Byly určeny tak zvané nominální intenzity elektromagnetického pole (E_{nom}) pro střední a dlouhé vlny. Tyto nominální intenzity elektromagnetického pole se od minimálních, které jsou uvedeny výše, liší pro zónu A takto:

Střední vlny:

Oblast pokrytí prostorovou vlnou:

 $66 \text{ dB/1 } \mu\text{V/m}$.

Oblast pokrytí přízemní vlnou ve dne: 63 dB/1 µV/m.

Oblast pokrytí přízemní vlnou v noci na venkově: 71 dB/l μV/m.

Oblast pokrytí přízemní vlnou v noci ve městech: 77 dB/l μ V/m.

Dlouhé vlny:

Pro všechny oblasti: 77 dB/1 μ V/m.

Konference doporučila všem zemím, aby v maximální míře využívaly synchronních sítí. Poukazuje se na to, že synchronní sítě dovolují redukovat počet potřebných kmitočtových kanálů pro pokrytí daného území. Synchronní sítě je možno využívat ve všech kanálech v pásmu středních a dlouhých vln a také současná vysílací technika dovoluje bez velikých potíží dosahovat potřebné stability kmitočtů.

Ing. František Králík

Radioklub Blankyt

S tímto poetickým jménem, připomínajícím blankytnou barvu ionosféry (s níž mají i radioamatéři co dělat), byl 17. července t. r. ustaven "staronový" radioklub Svazarmu ve Výzkumném ústavu spojů v Kobrově ulici v Praze Smíchově. Současně byl klub "pokřtěn" a zvolen jeho předseda, jímž se stal ředitel ústavu doc. dr. ing. M. Joachim, OK1WI, a VO, ing. Květoslav Olbrich, OK1KM.

Radioklub má již svoji historii – i když byl jinde. U kolébky jeho vzniku v Čs. rozhlasu v r. 1951, kde byl ustaven i s kolektivní stanicí OK1KRS, stáli tehdy OK1FO (dnes již po smrti), OK1CC, OK1DS a OK1WI. O rok později přešel klub se stanicí ke spojům a odtud v letošním roce k Výzkumněmu ústavu spojů, kde jsou dobré podmínky, k rozvoji činnosti i k výchově radioamatérského dorostu již od pionýrského věku. Byla navázána i úzká spolupráce s organizací SSM.

Do vínku dostal klub od OKIWI vysílač 30 W pro všechna pásma se směrovou rotační anténou, vysílač pro 160 m a jiná radioamatérská zařízení a součástky. Další nová moderní zařízení si kolektiv amatérů již vybuduje sám. Jakmile budou zařízeny místnosti, dokončeno administrativní převedení kolektivní stanice OKIKRS, začne radioklub v nových podminkách ve Výzkumném ústavu spojů vyvíjet svoji činnost.

V závěru slavnostní schůze se přítomní zavázali, že se přičiní, aby nový radioklub Blankyt s kolektivní stanicí OKIKRS patřil mezi nejaktivnější kluby v Praze a plnil tak dobře i své poslání z hlediska smlouvy mezi Federálním ministerstvem spojů a Ústředním výborem Svazarmu.

-jg-

PŘIPRAVUJEME PRO VÁS

Směšovací pult s tranzistory

Senzorový ovládač TVP

Minilux

Úprava anténního členu z RM31

9 Amatérské AII 1 327

CESTOU OSVOBOZENÍ EXPEDICE AR 50

K našemu rannímu vysílání 11. 3. z Trnavy jsme si "vypůjčili" provozní místnost a anténu OK3KTR. Po navázání 25 spojení jsme vysílání ukončili a vyjeli do hlavního města SSR Bratislavy. Prvním bodem našeho bratislavského programu byla prohlídka televizního vysílače "Kamzík". S vysílačem nás seznámili Vilo, OK3CEK, a Jano, OK3CGG. Obrázkovou reportáž z této exkurze uveřejníme v některém z pozdějších čísel AR. Prohlédli jsme si i moderní zařízení retranslačního uzlu v doprovodu jeho vedoucího a předsedy ZO KSS s. I. Ďurigy. V půdních prostorách staré budovy vysílače je provozní místnost kolektivky OK3KEE—ani tu jsme samozřejmě při naší prohlíde nevynechali. Zajímavá exkurse se protáhla až do oběda. Těsně po obědě

Obr. 1. Před odjezdem z Trnavy

Obr. 2. Kontrolní pracoviště televizního vysílače Kamzík v Bratislavě

jsme zavítali do nejvyššího patra kolejí Slovenského vysokého učení technického, kde sídlí OK3KFF. Jejich místnosti jsou v podstatě na střeše třináctipatrové budovy a třípásmový Quad je umístěn hned vedle, takže na něj lze dosáhnout. Je odtud pěkný rozhled po celé Bratislavě. V OK3KFF mají asi 30 registrovaných operatérů a soutěže k 30. výročí osvobození se zúčastnili téměř nepřetržitým provozem. Začínají s provozem RTTY, a tak jsme odtud vyslali naší značku OK30RAR/p do éteru i tímto druhem provozu.

Obr. 3. Z pracoviště OK3KFF vyšla do éteru značka OK30RAR/p provozem RTTY

Před odchodem jsme si ještě domluvili spojení, o které jsme se pokusili hned po příchodu do auta. Silným signálem se naše Otava zcela zahltila a dlouhou chvíli jsme byli v situaci "vidím dobře, neslyším nic", protože většina členů OK3KFF nám mávala ze střechy a byli z auta dobře vidět.

Potom nás Ivan, OK3CHK, zavedl do "své" kolektivky – do OK3KII, radioklubu Junior, kde je vedoucím operatérem. OK3KII je radioklubem Domu pionýrů a mládeže v Bratislavě. Mají i svoje VKV vysílací středisko v Městské stanici mladých techniků a přírodovědců. Jejich vysílací místnost je zcela "omotána" různými anténami. Mají G5RV, HB9CV, dipóly pro 160, 80 a 40 m a inverted V pro 1,8 MHz – celkem přes 200 m napáječů.

V příštím roce oslaví 20 let své existence. Čení si blavně svých úspěchů při

V příštím roce oslaví 20 let své existence. Cení si hlavně svých úspěchů při Polních dnech a v OK-DX Contestu. Jsou kolektivem mladých a každým rokem vychovají nejméně 10 nových RO. Z jejich provozní místnosti lze vysílat současně na třech zařízeních – Elektron, SD160 a SOKA 747. Nejen ozdobou jejich klubu jsou i dvě aktivní radioamatérky – Jana a Eva – studentky druhého ročníku elektrotechnické fakulty.

Na 17.00 (po našem odpoledním vysílání z OK3KAB) byla svolána beseda s bratislavskými radiomatéry na MěV Svazarmu. Mnoho zájemců se nesešlo a většinu přítomných tvořili členové RK Junior. Debata se točila převážně okolo transceiveru Otava,

Obr. 4. Při besedě v Bratislavě byl největší zájem o Otavu

který jsme na besedu přinesli ukázat. Padl návrh na uveřejnění seriálu "Vybavení radioamatérské stanice".

Večer jsme strávili s kolektivem z RK Junior v "péči" Ivana, OK3CHK, a Libora, OK3CWW.

Poslední den první části naší expedice jsme zahájili v 8.00 vysíláním z OK3KAB. Zájemců o spojení nebylo mnoho, vzhledem k tomu, že jsme odtud již předchozí večer vysílali. Po půl deváté jsme proto mohli vyrazit na cestu do Malacek. Doprovázel nás Tono, OK3LU. V radioklubu Tono, OK3LU. V radioklubu OK3KMY v Malackách je celkem 26 členů, z toho 13 koncesionářů. V běhu byl v té době kurs RO. Děcka doběrciící v televice kurs RO. Děcka docházející do kursů jsou však nestálá a často mění svoje zájmy. Kolektivka se pravidelně zúčastňuje Polních dnů, poměrně úspěšně (mezi nejlepšími 10 v ČSSR). Nejaktivnějším koncesioná-řem je OK3TCI. Z OK3KMY jsme mimo program navázali 8 spojení, vesměs s těmi, kteří naši cestu průběžně sledovali. Po odjezdu jsme pracovali "mobil" a v době mezi 13.14 až 13.30 jsme z okresu Senice navázali několik zajímavých spojení. Kromě OK3KDY, který nás "naváděl" do Senice, to bylo spojení s OK30FF z Prahy (44), OK30AAE z České Třebové (56, 55) a OK30RXB z Bardejova (55). Spojení s Mirkem, OK30FF bylo předem domluvené a dlouho se nám nedařilo se ho dovolat (sami jsme ho slyšeli tak 45—55). Pak jsme přijížděli k takovému malému rybníčku, sotva 30 m dlouhému, ale v ten moment síla jeho signálů stoupla o 3 až 4 S. Krátké zavolání z naší strany bylo úspěšné, vyměnili jsme si reporty a 20 m za rybníčkem jsme se již opět neslyšeli.

Obr. 5. OK3TBU při "uvítacím projevu" na OV Svazarmu v Senici

Do radioklubu OK3KDY jsme byli opět zavedení radiem při spojení, které s námi udržoval OK3TBU. Radioklub existuje od roku 1956, od r. 1966 je v nové budově OV Svazarmu. Mezi jeho 11 členy je 5 koncesionářů – OK3TBU, TDN, TEC, CGQ a TCC. Scházejí se pravidelně každý čtvrtek v téměř plném počtu. Loni uspořádali klasifikační soutěž v moderním víceboji telegrafistů. Před třemi lety dostali na okres jeden PETR 103 a dodnes

si jej každé 3 měsíce půjčují s dalšími dvěma kolektivkami na okrese – OK3KZY a OK3KKQ.

V Senici jsme byli velmi přátelsky

přijati celým kolektivem radioklubu. Pěkně jsme si s nimi popovídali a viděli jsme i maximální pochopení pracovníka OV Svazarmu pro radioamatérské problémy. Jako obvykle z přátelského prostředí se nám těžko "utíkalo".

Na naše poslední expediční vysílání isme se zastavili v Hodoníně v kolektivce OK2KHD. Průměrně 20 radioamatérů

Obr. 6. Pečlivě provedený vysílač pro tř. C nové kolektivky OK2KYK v Kyjově

se tu schází pravidelně každou první neděli v měsíci a část z nich tu čekala i na nás, přestože neděle nebyla. V krátké chvilce, která nám po vysílání zbyla, si všichni prohlédli Otavu a poté jsme v doprovodu Jardy, OK2PBM, odjeli do Kyjova, kde první část naší Expedice končila.

Jarda nás po večeři zavedl do nedávno zřízené kolektivky OK2KYK v budově OV Svazarmu. Kolektivka má zatím 7 členů a téměř všichni se tento večer v provozní místnosti s námi sešli a podiskutovali. Bylo to pěkné zakončení naší cesty a zbývala nám už jenom cesta do Prahy.

První část naší expedice "Cestou osvobození" jsme tedy měli za sebou – její průběh byl velmi úspěšný a díky výborné spolupráci ze strany příslušných orgánů Svazarmu a radioamatérů nám umožnila utvořit si poměrně podloženou představu o radioamatérské činnosti na Slovensku. Získali jsme mnoho nových přátel a strávili s nimi mnoho příjemných chvil. Po pětitýdenní přestávce nás čekala druhá část expedice, začínající v Ostravě.

OK1AMY

MEZINÁRODNÍ VÝSTAVA ROZHLASU A TELEVIZE 1975 V BERLÍNĚ

Tradiční výstava, patřící k největším na světě, se konala ve výstavním areálu pod rozhlasovou věží v západním Berlíně ve dnech 29. srpna až 7. září. Na výstavu bylo přihlášeno asi 350 výrobců z NSR a dalších 24 zemí. Kromě evropských firem se účastnili též výrobci z USA a Kanady, dále z Japonska, Koreje, Tajvanu, Hongkongu a Singapuru. Výstava zabírala celkem 88 000 m^2 zastřešené plochy ve 24 halách a 4 pavilónech, kromě 40 000 m^2 otevřených ploch se zahradní úpravou, které byly též využity k informačním účelům.

Letošní účast jak firem, tak návštěv-níků se při srovnání s roky 1971 a 1973 opět zvyšila. Ubytování bylo připraveno pro 22 000 hostů. Technický program výstavy doplňovala řada kulturních akcí; výstava ovlivnila společenský, kulturní i obchodní život města.

Program výstavy pro veřejnost i ob-chodní zájemce byl letos doplněn technickými a vědeckými přednáškami, mezi jinými např. i pracovníků berlín-ského výzkumného ústavu Heinricha Hertze, kteří réferovali o projektech ústavu, týkajících se teoretických i aplikačních problémů z komunikační techniky (optický přenos informací, digitální přenosové systémy a další). Z ostatních zajímavých přednášek to byly informace o systémech pro řízení dopravy, o systému pro dálkové řízení televizních přenosových zařízení, o sterofonním pře-nosu s pomocí umělé hlavy aj.

Spolkový úřad spojů se účastnil výstavy na ploše 400 m², mezi exponáty

byly informační panely se souhrnnými údaji o poskytovaných službách, o provozu různých spojovacích zařízení, dále byly uváděny zajímavé údaje o systémech dvou televizních programů NSR, o systémech spojení mezi Eurovizí a Intervizí a o spojení s mimoevropskými zeměmi. V expozici byla použita i informační soustava se současným provo-zem několika promítacích přístrojů, připomínající Laternu Magiku. Výstavy se účastnili i některé zájmové organizace, např. klub radioamatérů (DARC), organizace pro spotřebitelské testy výroblů. ků (Stiffung Warentest), autokluby ADAC a AvD a další.

K nejzajímavějším částem výstavy patřila studiová a přenosová technika pro televizi. Návštěvníci se mohli aktivně účastnit natáčení i přímých přenosů oblíbených televizních pořadů.

Z vystavovaných přístrojů je možno si učinit představu o současných tendencích vývoje spotřební elektroniky. V obo-

ru televizních přijímačů se projevuje značně rozšířené používání přenosného TVP jako druhé-ho televizního přijímače v domácnostech, snaha zajistit dobrý příjem TV pomocí vestavěných antén, zlepšování jakosti přijímačů i za cenu vyšších nákladů (ovládání dotykovými tlačítky, dálkové řízení apod.).

Pro použití v automobilech se vytvořily dvě základní skupiny přístrojů: samostatné přehrávače a přehrávače v kombinaci s rozhlasovými přijímači (samozřejmě výhradně kazetové), pozornost se věnuje i zlepšení jakosti stereofonního poslechu v automobilu. Kombinované přístroje mají automatické přepínání obou druhů provozu. Reproduktorové soustavy pro montáž do vozidel se nabízejí také v kulovitém provedení.

Gramofonové přístroje, jednoduché i s měničem, jsou většinou vybaveny automatikou. Spouštění raménka pře-nosky se ovládá dotykovými tlačítky, raménko najíždí na okraj desky libovolného průměru automaticky; síly na hrot jsou co nejmenší, jakošt je zajiš-ťována použitím talířů o velké hmotnosti (1 až 4 kg) z nemagnetického materiálu a přesnou regulací rychlosti otáčení. Sortiment gramofonových přístrojů je velký (na západoněmeckém trhu se nabízí asi 70 až 80 modelů).

Obr. 2.

U stercofonních sluchátek se zvětšil podíl "otevřených" systémů, u nichž nemusí být prostor mezi sluchátkem a uchem těsně uzavřen, na 80 % celkové výroby. Systémy těchto sluchátek se podobají miniaturním reproduktorům, umístěným do těsné blízkosti uší, a přenášejí pásmo 20 Hz až 20 kHz.

Také sortiment přenosných rozhlasových přijímačů je značný – na trhu v NSR je více než 100 typů v cenovém rozpětí 20 až 800 DM. Asi 75 % přístrojů má nejméně tři vlnové rozsahy, 57 % má čtyři a více rozsahů (37 % přijímačů vyráběných v loňském roce bylo určeno pro kombinace přijímač - magnetofon).

Na výstavě byly uveřejněny i první informace o zkušenostech z provozn dvou zkušebních okruhů kabelové televizní sítě, vybudovaných v Ham-burku a v Norimberku. Zajímavostí výstavy bylo také vyhlášení vítězů soutěže "Práce mladých výzkumníků", vyhlášené pro mladé odborníky, zejméná studenty, a dotované částkou 20 000 DM. Autoři vítězných prací o nich přednášeli průběhu výstavy.

Na obrázcích je vlajka s medvědem symbolem Berlína – na pozadí rozhlasové věže a pohled na areál výstavy vstupní palác na Hammarskjöldově náměstí.

Vyhodnocení 6. ročníku soutěže o zadaný výrobek

Porota, která hodnotila výrobky 6. ročníku soutěže o zadaný radiotechnický výrobek, měla tentokráte velmi obtížnou práci. Přes sto výrobků (zkoušečky tranzistorů a poplašné sirény) bylo vesmés dobré úrovně. Dovedete si představit, že při vyzkoušení více než šedesáti kvílejících sirén skutečně "šlo o nervy". Vnější vzhled soutěžních prací ukazoval na nápaditost autorů. Jejich fantazie pracovala výborně: byly tu sirény v podobě megafonu, létajícího talíře, svítícího majáku. Některé byly doplněny o další obvody jako kapacitní snímač, regulace kolísání tónu, světelnou indikaci, dálkové ovládání. Vtipné bylo v mnoha případech i řešení úpravy zkoušeček tranzistorů.

Pozdě odpoledne sestavila konečně porota pořadí všech přihlášených výrobků.

Výsledky v 1. kategorii

1. Šikola Milan	Liberec	29	bodů
 Zelenka Vladimír 	Vimperk	27,5	bodů
3. Havlík Jiří	Bystřice p. H.	27	bodů
4. Janus Pavol	Prešov	26	bodů
5. Bartůšek Pavel	Blatná	26	bodů

Výsledky v 2. kategořii

1. Knobloch Norbert	ÚDPM JF Praha	28	bodů
2. Tůma Petr	Liberec	27	bodů
3. Vilimek Vlastimil	ÚDPM JF Praha	26,5	bodů
4. Dostál Jindřich	Pardubice	26	bodů
5. Panuš Pavel	Praha	25,5	bodů

Nejlepší z obou kategorií byli pozváni na Mistrovství radiotechniků ČSR v Ostravě, k němuž se ještě vrátíme. A protože mnozí zaslali se svým výrobkem i kupón rubriky R15, dostalo těchto deset autorů zkoušeček a sirén balíček materiálu:

Grošek Aleš, Nezamyslice; Šimūnek Jiří, Lánov u Vrchlabi; Holenda Vladimir, Trenčin; Marto-ňák Roman, Žilina; Havlik Jiři, Bystřice n. P.; Janus Pavol, Prešov; Chmelař Zdeněk, Prostějov; Panuš Pavel, Praha; Herink Vladimir, Plzeň; Roth Alois, Cheb.

7. ročník soutěže o zadaný radiotechnický výrobek

Přečtěte si dobře propozice i oba náměty nového ročníku soutěže. Připravili je ing. Jaromír Vondráček a ing. Ladislav Klaboch a jak sami vidíte, náročnost zadaných výrobku stoupá (popis výrobku ing. L. Klabocha bude v AR 10/75). Je připravena také jedna novinka: třetí, konstrukční kategorie. Očekáváme, že právě tato kategorie bude zdrojem nových nápadů a tak se jistě brzy stane, že nebude rubrika R15 stačit

Propozice soutěže pro školní rok 1975/76

- I. Pořadatel: Ústřední dům pionýrů a mládeže Julia Fučíka Praha.
- II. Termíny soutěže:
- a) Výrobky je možno zaslat na adresu Ustřední dům pionýrů a mládeže J. Fučíka, úsek technických soutěží, Havlíčkovy sady 58, 120 28 Praha 2, od 1. října 1975 do 15. května 1976 (platí datum poštovního razítka):

(platí datum poštovního razítka);
b) Národní mistrovství ČSR radiotechniků se uskuteční ve spolupráci s vybraným domem pionýrů a mládeže v letním období. Během

330 Amatérské! AD AD 975

RUBRIKA PRO NEJMLADŠÍ ČTENÁŘE AR

mistrovství vybere porota tři nejlepší účastníky z každé kategorie.

 e) Výrobky vrátí pořadatel autorům na jejich adresy nejpozději do 15. prosince 1976.

III. Přihlášky: přihlášku do soutěže pošle každý jednotlivec samostatně spolu se svým výrobkem. V přihlášce musí být uvedeno plné jméno autora, den, měsíc a rok narození, přesná adresa bydliště, seznam použité literatury, příp. název organizace, kde autor výrobek zhotovil. Soutěžící může přihlásit po jednom výrobku v každé kategorii, pokud vyhoví požadavkům jednotlivých kategorií.

IV. Kategorie A: zhotovit výrobek "Korekční předzesilovač" podle zadaného schématu (viz dnešní rubriku). Přitom je nutno přesně dodržet schéma zapojení a použít desku s plošnými spoji typu I 203 (hotové desky dodává prodejna Svazarmu, Budečská 7, 120 00 Praha 2, i na dobírku).

Výrobky této kategorie může zaslat pouze soutěžící, který v den uzávěrky (tj. 15. 5. 1976) nedosáhl věku 14 let.

Kategorie B: soutěžící si zvolí ke konstrukci z námětu "Nízkofrekvenční zesilovač" (AR 10/75) buď napájecí část přístroje, nebo koncový stupeň. Pro konstrukci jsou závazná schémata zapojení. Doporučené desky s plošnými spoji I 205 a I 206 lze zaměnit deskami podle vlastního návrhu. Výrobky této kategorie může zaslat pouze soutěžící, který v den uzávěrky soutěže (tj. 15. 5. 1976) nedosáhl 20 let.

Kategorie C: soutěžící zkonstruuje prototyp výrobku, který by mohl být podle jeho názoru zařazen jako námět některého z příštích ročníků soutěže v kategorii A nebo B. Návrh má být původní, vždy však s udáním pramenů, z nichž autor čerpal.

Výrobky této kategorie může zaslat pouze soutěžící, který v den uzávěrky (tj. 15. 5. 1976) nedosáhl věku 20 let.

Při návrhu výrobku pro kategorii A musí konstruktér splnit tyto požadavky:

- mohou být použity maximálně tři tranzistory a šest polovodičových diod;
- cena součástek pro výrobek nesmí překročit částku 100 Kčs;
- nebudou přijaty konstrukce s elektronkami;
- výrobek musí být napájen bateriemi do $U_{\text{max}} = 24 \text{ V}.$

Při návrhu výrobku pro kategorii B platí:

 cena potřebných součástí nesmí překročit částku 300 Kčs; - výrobek musí být napájen bateriemi do $U_{\text{max}} = 24 \text{ V}$.

K prototypu zaslané konstrukce musí být přiložena (kromě přihlášky, viz odstavec III) podrobná dokumentace, obsahující text, obrázky, návrh obrazce plošných spojů a případné poznámky pro grafické zpracování.

V. Hodnocení: Všéchny výrobky bude na jednotném zkušebním zařízení hodnotit porota, složená ze zástupců pořadatelských organizací a přizvaných odborníků. K tomu je třeba, aby deska s plošnými spoji byla umístěna tak, aby porota mohla posoudit jakost pájení. Každý výrobek kategorie A nebo B může získat nejvíce 30 bodů:

funkce přístroje 0, 5 nebo 10 bodů

pájení 0 až 10 bodů,

 vtipnost konstrukce, vzhled 0 až 10 bodů.

Ceny: Všichni účastníci soutěže obdrží diplom.

Autoři nejlepších deseti výrobků každé kategorie budou pozváni na Mistrovství ČSR radiotechniků, které bude uspořádáno podle zvláštních propozic mistrovství.

Vybrané náměty kategorie C bůdou po dohodě s autorem zpracovány pro tisk.

-zh

Korekční předzesilovač

U jakostních gramofonů se většinou používají tzv. rychlostní (magnetodynamické) vložky. Signál z této vložky však nelze připojit na vstup běžného nf zesilovače (např. v rozhlasovém přijímači) z důvodů, uvedených dále.

Jmenovité vstupní napětí běžných ní zesilovačů je obvykle asi 50 až 450 mV. Signál z rychlostní přenosky má však úroveň pouze 4 až asi 20 mV; kromě toho je třeba, aby vstup zesilovače pro připojení rychlostní vložky měl impedanci 47 k Ω (krystalové a keramické, tj. výchylkové vložky vyžadují vstupní impedanci zesilovače větší než asi 1 M Ω).

Při záznamu signálu na gramofonovou desku jsou záměrně zdůrazněny výšky a potlačeny hloubky. Tím se dosáhne lepšího odstupu signálu od rušivých složek (brum, šum). Vychylkové vložky jsou konstruovány tak, že na jejich výstupu`je signál kmitočtově vyrovnaný, tj. Samy upravují signál tak, aby odpovídal skutečnosti. K zesílení jejich výstupního signálu je tedy třeba, aby nf zesilovač měl rovný kmitočtový průběh. Pro výstupní signál rychlost-

ních přenosek je třeba upravit kmitočtovou charakteristiku nf zesilovače tak, aby były zdůrazněny hloubky i výšky stejně, jak byly při záznamu potlačeny K tomu účelu se používají tzv. korekční předzesilovače. Přenosová (kmitočtová) charakteristika korekčního předzesilovače pro rychlostní vložky do přenosek stanovena mezinárodně (tzv. křivka RIAA) a je na obr. 2.

Popis zapojení

Schéma zapojení korekčního předzesilovače je na obr. 1. Signál z vložky se přivádí na vstup předzesilovače na svorky I a 2. Dále se vede přes kondenzátor C_1 a odpor R_2 na bázi T_1 . Odpory R₁ a R₂ upravují vstupní imp danci na požadovanou velikost (47 kΩ)

Tranzistory T_1 a T_2 pracují jako přímovázaná dvojice. Z jejího výstupu (z kolektoru tranzistoru T_2) se signál vede přes kondenzátor C_4 na výstupní svorku 3. Z výstupu je do emitoru tranzistoru T_1 zavedena záporná zpětná vazba. Zapojením různých prvků do obvodu zpětné vazby je možné měnit kmitočtový průběh předzesilovače. Při kmitočtový průběh předzesilovače. Při zapojení odporů R₁₀, R₁₁ a kondenzátorů C_5 , C_6 je kmitočtový průběh upraven pro připojení rychlostní vložky přenosky. Zapojí-li se však do obvodu zpětné vazby pouze odpor R₁₂, bude kmitočtový průběh předzesilovače rovný a na jeho vstup lze připojit dynamický mikrofon, nebo jiný zdroj signálu s kmitočtově vyrovnaným průběhem výstupního signálu.

Předzesilovač je napájen ze zdroje 18 V. Pracuje i při menším napětí, zmenšuje se však jeho přemodulovatelnost. V žádném případě nezmenšujte stejnosměrné napájecí napětí pod 12 V, protože by se podstatně zvětšilo zkreslení signálu.

K zesílení stereofonního signálu je třeba použít dva předzesilovače, kažďý na samostatné desce I 203. Napájení je společné.

Obr. 2. Křivka RIAA

Technické údaje

Napájecí napětí: 18 V. Odběr proudu: 4 mA.

Úprava pro rychlostní přenosku

Vstupní impedance: 75 k Ω .

Zesílení při kmitočtu I kHz

75.

Průběh kmitočtové podle normy RIAA. charakteristiky:

Největší vstupní napětí při 1 kHz:

60 mV.

Zkreslení při vstupním

signálu 4 mV a 1 kHz: menší než 0,8 %.

Úprava pro dynamický mikrofon

Vstupní impedance: podle volby R_{12} .

Zesílení: 100.

Největší vstupní napětí: 45 mV.

Průběh kmitočtové 20 Hz až

 $20 \text{ kHz}, \pm 0.8 \text{dB}.$ charakteristiky:

Rozpiska součástek

- ROZPISKA SO

 odpor TR 112 0,1 MΩ

 odpor TR 112 0,2 MΩ

 odpor TR 112 0,22 MΩ

 odpor TR 112 15 kΩ

 odpor TR 112 15 kΩ

 odpor TR 112 120 Ω

 odpor TR 112 120 Ω

 odpor TR 112 120 Ω

 odpor TR 112 2,7 kΩ

 odpor TR 112 150 Ω

 odpor TR 112 150 Ω

 odpor TR 112 150 Ω

 odpor TR 112 12 MΩ

- Obr. 1. Schéma předzesilovače
- C₁ kondenzátor elektrolytický TE 986 2 μF
 C₂ kondenzátor elektrolytický TE 986 20 μF
 - TE 986 20 μF
 C₁ kondenzátor elektrolytický
 TE 002 50 μF
 C₄ kondenzátor elektrolytický
 TE 986 50 μF

 - C_s kondenzátor svitkový TC 181 10 nF C_s kondenzátor svitkový TC 180 47 nF T₁ a T₂ tranzistor KC508, KC509, KC148, KC149
 - Deska s plošnými spoji I 203

Mechanická konstrukce

Zesilovač je sestaven na desce s plošnými spoji I 203, kterou je možné koupit nebo objednat na dobírku v radioama-térské prodejně Svazarmu Praha 2, Budečská 7, PSČ 120 00.

Obrazec plošných spojů je na obr. 3, Všechny díry pro součástky mají průměr 1 mm. Po jejich vyvrtání a začištění hran cuprextitové destičky připájejte nejprve odpory a kondenzátory, nakonec tranzistory. Všechny součástky pájejte pečlivě. Ušetříte si zbytečnou a zdlouhavou práci s hledáním případné závady.

Chcete-li předzesilovač používat pouze pro rychlostní přenosku, můžete vynechat odpor R_{12} . Je však nutné propojit drátem příslušné body na desce (ve schématu označeno čerchovaně). Naopak, použijete-li předzesilovač pou-ze pro dynamický mikroson nebo jiný podobný zdroj signálu, vynechte odpory R_{10} , R_{11} a kondenzátory C_5 , C_6 . Musíte však propojit čárkovaně naznačenou spojku.

Uvedení do chodu

Po pečlivé kontrole zapojení všech součástek a vývodů tranzistorů je předzesilovač připraven k provozu. Připojte napájecí napětí (např. sériově zapojené čtyři ploché bateric). Avometem zkontrolujte odběr proudu, který má být asi 4 mA. Činnost předzesilovače lze jednoduše kontrolovat obyčejnými sluchátky, která připojíte přes elektrolytický kondenzátor tak, aby jeho kladný pól byl na svorce 3. Na kapacitě kondenzátoru příliš nezáleží, stačí několik µF. Dotknete-li se nyní prstem svorky I, musí se ve sluchátkách ozvat vrčení.

Velikost výstupního napětí předzesilovače pro dynamický mikrofon (s odporem R_{12}) je možno měnit vhodnou volbou velikosti odporu R_{12} . Čím bude tento odpor větší, tím větší bude zisk zesilovače. Nezvětšujte však odpor na více než 22 k Ω . Signál na vstup přívádějte zásadně stíněným vodičem.

Literatura

Amatérské radio č. 11/1970, str. 426 Amatérské radio č. 10/1972, str. 374 Technický magazín č. 1/1973, str. 39

Obr. 3. Deska I 203 předzesilovače

Obr. 4. Osazená deska I 203

Několik rad pro začátečníky

- 1. Využití výprodejních plošných spojů: nejlepší je přirozeně použít je k sestavení přijímače, k němuž byly určeny. To však většinou nelze a kromě toho je třeba znát zapojovací schéma. K ulehčení této detektivní práce, zejména pak při použití pro jiný typ přijímače, vyhledáme nejprve "zemnicí" spoj. Poznáme jej podle toho, že zabírá největší plochu; současně poznáme i připojení ladicího kondenzátoru. Druhým důležitým spojem je napájení kolektorů (kladný pól u zapojení s tranzistory n-p-n a záporný u tranzistorů p-n-p), které se zase prozradí možností připojení na mezifrekvenční transformátory, jejichž umístění lze rovněž snadno vyhledat. Pak zbývá najít drobné spoje pro tranzistory, transformátor budicí i výstupní, a spoj pro obvod AVC, tedy od demodulačního obvodu k prvnímu mezifrekvenčnímu transformátoru.
- 2. Pájení hliníku: hliník nelze pájet běžnými způsoby (naštěstí to většinou není třeba). Někdy však by to přece bylo žádoucí, např. pro uzemnění krytů mf transformátorů. Nejschůdnější cestou pro amatéra je připravit si roztavením směs kalafuny a hydrochinonu (dostane se v prodejně s potřebami pro fotoamatéry) v poměru I: 1. Pájené místo na hliníků oškrabeme kouskem skelného papíru, žiletkou nebo pilníčkem a hned překryjeme práškovou pájecí směsí, kterou páječkou roztavíme do slabé vrstvy. Současně naneseme kapičku čisté pájky a roztíráme, až se s hliníkem spojí. Hrotem páječky můžeme povrch hliníku mechanicky "dočisťo-vat".
- 3. Účelné sady odporů a kondenzátorů: pro cejchování přístrojů a různé zkoušky je vhodné mít sadu odporů a kondenzátorů, z nichž lze paralelním nebo sériovým spojením vytvořit řadu hodnot dalších (viz AR 2/74). Tak např. podle obr. la lze různou kombinací paralelního spojení vytvořit z pouhých čtyř kondenzátorů kapacity l až 15, tedy celkem 15 hodnot. Sériovým zapojením odporů podle obr. lb lze získat ze čtyř odporů devět hodnot (1 až 9). Použijeme-li hodnoty udané v závorkách, překleneme týž rozsah a navíc paralelním zapojením odporů l a 1 dostaneme hodnotu poloviční. Protože hodnoty vyráběných řad

Obr. 1. Sada pro výhodné skládání odporů a kondenzátorů

- součástek nejsou klasicky "zakulacené", budeme muset použít nejbližší dosažitelné hodnoty, a to 1—2,2—3,9—4,7—5,6—8,2.
- 4. Rychlé určení odporů a kondenzátorů: často se stane, že označení odporu nebo kondenzátoru je nečitelné, nebo je třeba zkontrolovat, zda odpor či kapacita odpovídá údají apod. K tomu můžeme použít citlivější měřicí přístroj, do jehož obvodu zapojíme baterii 1,5 až 4,5 V a proměnný odpor R podle obr. 2. Svorky S zkratujeme a odporem vyrovnáme ručku měřidla na plnou výchylku. Potom na svorky

Obr. 2. Rychlé měření odporů

- Rx a 0 přikládáme postupně řadu známých odporů a zaznamenáme si výchylky graficky. Neznámý odpor potom snadno určíme přiložením na tytež svorky, když předem při zkratování byla nastavena plná výchylka. U běžných měřidel s vnitřním odpo-rem kolem 400 Ω obsáhneme rozsah 200 až 100 000 Ω ; stupnice je nerovnoměrná, s odporem 5 k Ω asi upronoměrná, s odporem 5 kΩ asi uprostřed. Chceme-li měřít větší odpovy, je třeba použít vyšší napětí nebo citlivější měřicí přístroj. Pro přesnější měření malých odporů lze využít téhož zapojení, avšak zkoušený odpor připojujeme k měřicímu přístroji paralelně (svorky R_x a R_y). Přitom musí být svorky Szkratované, k čemuž může sloužit i jednoduchý spínaž. Pos že sloužit i jednoduchý spínač. Podobně lze zkoušet kondenzátory od kapacity 1 μF výše, a to podle okamžité výchylky ručky měřidla. V tom to případě (při použití čerstvé baterie) lze regulační odpor R vynechat, čímž zvětšíme citlivost.
- 5. Stanovení vnitřního odporu měřidla: je důležité pro doplnění měřidla dalšími měřicími rozsahy, proudovými či napěťovými. Použijeme v podstatě zapojení podle obr. 2. Odporem R opět nastavíme maximální výchylku a pak paralelně k měřicímu přístroji zapojíme proměnný odpor (cejchovaný potenciometr nebo kombinaci pevných odporů), který měníme, až výchylka přístroje klesne právě na polovinu. V tomto případě je vnitřní odpor měřidla roven odporu bočníku. Musíme vzít v úvahu, že v některých měřicích přístrojích je již malý vyrovnávací odpor vestavěn. Známe-li vnitřní odpor a proud nebo napětí pro plnou výchylku měřidla, můžeme třetí veličinu vypočítat z Ohmova zákona U = IR. Přístroj s vnitřním odporem 500 Ω s rozsahem 0,2 V je tedy současně mikroampérmetrem s rozsahem 400 μA.
- 6. Orientační měření středně velkých kapacit (1 nF až 1 μF): potřebujeme jednoduchý tónový generátor, např. multivibrátor ze dvou starších tranzistorů (obr. 3). Kondenzátor C volíme podle požadovaného kmitočtu, nejvýhodnější je C asi 0,47 MF. Podle obř. 3 připojujeme pak na svorky Cx měřený kondenzátor a sledujeme výchylku na

Obr. 3. Jednoduché zapojení k měření kondenzátorů

mikroampermetru, zapojeném do série s hrotovou diodou (ve správné polaritě). Dioda může být buď jedna, zapojená v sérii nebo paralelně, mohou však být zapojeny i dvě (pro zvětšení citlivosti). Přístroj opět ocejchujeme pomocí známých kapacit; pro větší kapacity upravíme rozsah sériovým odporem.

Ing. V. Patrovský

· Dvoustupňová regulace osvětlení

V AR 1/74 (v rubrice "Jak na to") byl uveřejněn návod na dvoustupňovou regulaci osvětlení pomocí diod.

Nevýhody tohoto způsobu (viz uvedený článek) odstraňuje zapojení, ve kterém se používá jako sériový člen místo diod kondenzátor. Toto zapojení se výborně hodí právě k regulaci osvětlení.

Obr. 1. Dvoustupňová regulace osvětlení

Má tyto výhody:

- světlo je klidné, nebliká;
- nehrozí nebezpečí zničení předřazeného prvku při zkratu v žárovce (zkrat vzniká výbojem v nedokonalém vakuu při přerušení vlákna jev velmi častý);
 není zdrojem rušení na rozdíl od tyris-
- torových a triakových regulátorů;
 kompenzuje jalovou zátěž sítě (i když jen nepatrně; např. zvonkový transformátor, částečně i zářivku).

Tento obvod by se mohl uplatnit např. ve fotografické praxi. Drahé osvětlovací žárovky trpi nejvíce přivedením plného napětí na studené vlákno, které má malý odpor a vznikající proudový náraz zkracuje dobu života žárovky. Budou-li se však žárovky zapínat dvoustupňově (tzn. předžhavovat s použitím sériově zapojeného kondenzátoru během přípravných dob mezi expozicemi) prodlouží se tím doba života žárovek.

Na rozdíl od diod jsou kondenzátory vhodné jen k regulaci menších příkonů (do 300 W); i tak už u nich vycházejí úctyhodné rozměry. Kondenzátor pro malé příkony lze umístit do instalační krabice pod kolébkový lustrový přepinač, pro příkony kolem 100 W do insta-

lační krabice KO97. Elektrolytické kondenzátory, i tzv. bipolární, jsou pro toto použití naprosto nevhodné. Nejlepší je použit kondenzátory typu MP na střídavé napětí 250 V, nebo alespoň na stejnosměrné napětí 600 V. Do série s kondenzátorem doporučuji zapojit ochranný odpor $R_0 = 5 \Omega$; zapnutím druhého stupně se

kondenzátor, který většinou bývá nabitý, zkratuje a proudový impuls dosahuje takových hodnot, že se mohou svařit kontakty spinače (kondenzátoru to též neprospívá). Jmenovité zatížení ochranných odporů je uvedeno (s určitou rezervou) v tab. l. Příklad výpočtu kapacity kondenzátorů (ochranný odpor ve výpočtu neuvažuji):

snížený příkon žárovky

$$P_{\bar{z}}' = \frac{u^2}{|\mathcal{Z}|} \cos \varphi,$$
ade
$$|\mathcal{Z}| = \sqrt{R_{\bar{z}}^2 + \left(\frac{1}{\omega C}\right)^2};$$

$$\cos \varphi = \frac{R_{\bar{z}}}{|\mathcal{Z}|}; \quad R_{\bar{z}} = \frac{u^2}{P_{\bar{z}}}.$$

Z toho:

$$P'_{z} = \frac{u^{2}R_{z}}{|\mathcal{Z}|^{2}} = \frac{u^{2}R_{z}}{R_{z}^{2} + \left(\frac{1}{\omega C}\right)^{2}} = \frac{u^{4}}{P_{z}\left[\frac{u^{4}}{P_{z}^{2}} + \left(\frac{1}{\omega C}\right)^{2}\right]};$$

 $P'_{\bar{z}}$ volíme $\frac{1}{2}P_{\bar{z}}$, pak

$$\frac{P_{\dot{z}}}{2} = \frac{u^4}{P_{\dot{z}} \left[\frac{u^4}{P_{\dot{z}}^2} + \left(\frac{1}{\omega C} \right)^2 \right]} ;$$

$$C = \frac{P_{\dot{z}}}{\omega u^2} ,$$

po dosazení u = 220 V, f = 50 Hz

$$C = \frac{P_2}{15,2} \ [\mu F; W].$$

V tab. 1 jsou uvedeny kapacity kondenzátorů (zaokrouhlené) pro poloviční výkon žárovek a jmenovité zatížení ochranných odporů pro nejběžnější osazení svítidel.

J. Drašnar

Tab. 1.

Příkon žárovky [W]	·Kapacita C [μF]	Jmenovité zati- žení odporu R ₀ [W]
1 × 40	2,5	1/4
1 × 60	4	1/2
1 × 100	6	1
2 × 60	10	2
3× 60	/12	4
2 × 100	13	4
3× 100	20	10

Jednoduchá výroba tahového potenciometru

Snad každý amatér si povzdechne nad vysokou cenou tahových potenciometrů. Pokusil jsem se je vyrobit mnohem levněji a bez použití náročných technických poměcek

technických pomůcek.

Princip řešení spočívá v konstrukci převodu mezi otočným potenciometrem a jezdcem, jenž se pohybuje přímočaře (asi jako ukazatel ladění u přijímače). Jezdec musí být veden v dráze, pevně spojené s přední deskou přístroje. U popsané konstrukce (obr. 1) se jezdec pohybuje po vodicí tyčce, upevněné na panel přístroje. Jezdec musí být uložen na vodicí tyčce bez příčné vůle, ale tak,

aby jej bylo možno volně posouvat. Volil jsem délku vodicí tyče 183 mm (pro průměr převodového kola na potenciometru 38 mm – poz. 5) a její průřez 6 × 6 mm. Tyč je z ocelového hranolu s leštěným povrchem. Jezdec je vyroben z hliníkového plechu ohnu-tím do tvaru U (poz. 3) a jeho zalitím do pryskyřice Dentacryl, což je výhodné jak pro přesnost a snadnost výroby, tak pro vlastní činnost (třecí plochy jsou z dentakrylu a ocele). Při odlévání naneseme nejprve Dentacryl na dno a stěny odnutého plechu, do něj vmáčkneme vodicí tyč, jemně namazanou vazelínou, a na ni opět nanesene Dentacryl. Tímto postupem dosáhneme stejno-měrného rozložení Dentacrylu v celé délce jezdce. Délku jezdce jsem volil záměrně tak dlouhou, aby nemohlo dojit k zadírání jezdce na vodicí tyčce, protože tažná síla nepůsobí v ose vodicí tyčky. Po ztuhnutí Dentacrylu stáhneme jezdec s vodicí tyčky (můžeme si pomoci jemným poklepem, popř. upnutím tyčky do svěráku) a jehlovým pilnič-kem uvolníme uložení tak; aby se jezdec po vodicí tyčce pohyboval volně (třecí plochy můžeme mírně namazat vhodným olejem). Pak vyvrtáme do jezdce otvor pro šroubek s maticí. Matice má dvě funkce; jednak spojuje hliníkový plech s Dentacrylem (pro lepší spojení s Dentacrylem můžeme před litím vyrazit do plechu důlky směrem dovnitř), jednak na šroubek připevníme lanko převodu.

Aktivní délka přímočarého pohybu jezdce je přímo úměrná průměru převodního kola potenciometru podle přibližného vzorce $D=2,35\ d,$ kde D je aktivní délka pohybu jezdce a d průměr převodového kola potenciometru.

Jako převodní kolo potenciometru jsem použil středicí kroužek ke gramofonu, který má průměr 38 mm. Ten se po vybroušení drážky na obvodě zmenší asi na 36 mm, takže aktivní délka bude asi 95 mm. Protože má středicí kroužek vnitřní průměr asi 7 mm, je třeba ovinout hřídel potenciometru papírovou páskou, abychom získali příslušný průměr. Jako převodní lanko použijeme ocelové lanko na ladicí převody (lze je pájet) a jako pružinu buď pružinku z propisovací tužky nebo pružinu pro ladicí převody.

Potenciométr připevníme na panel buď přímo s použitím distanční podložky (poz. 8a, b) nebo (při větším počtu potenciometrů) použijeme společnou montážní přičku; pak nepotřebujeme podložky a v panelu je pouze otvor (pro jezdce), jenž musí být asi o 8 mm delší, než je aktivní dráha potenciometru. Pro ovládání potenciometru je výhodné použít "tahový" knoflík pro TVP (Castelo apod.).

Takto vyrobený tahový potenciometr je velmi levný a svým vzhledem je k nerozeznání od továrního výrobku. S jeho vlastnostmi jsem velmi spokojen.

Rudolf Jalovecký

Tab. 1. Součástky tahového potenciometru

Vodicí tyč 1	l ks	leštěný ocelový hranol 6×6 mm
Držák kladky 2	1 ks	hliníkový plech o tl. 1,6 mm
Jezdec 3	l ks	hliníkový plech o tl. 1,6 mm, dentakryl
Držák potenciometru 4	l ks	hliníkový plech o tl. 1,6 mm
Převodové kolo o Ø 38 mm 5	l ks	gramofonový středicí kroužek z plastické hmoty
Převodové kolo o ø 20 mm 6	l ks	kolo z dětského autička, z plastické hmoty
Horni deska 7	. 1 ks	hliníkový plech o tl. 1,6 mm
Distanční desky 8a, b	2 ks	libovolný materiál o tl. 4 mm
Lanko a pružina 9	1 ks	ocelové lanko a pružina – viz text

Rozhodl jsem se po-stavit si kondenzáto-rové zapalování po-dle AR 6/1975. Mán dle AR 6/1975. Mám však velké potíže s obstaráváním vhodných transformátorových plechů. Byl bych proto rád, kdybyste mi mohli sdělit, zda mohu použít např. feritové jádro EE odpovídajícího strava).

průřezu. (D. Prokel, Ostrava).

Teoreticky by jistě bylo možno postavit zapalování i s transformátorem na jádru EE z feritu, bylo by však nutné upravit počet závitů. My jsme v redakci vyzkoušeli zapalování (jak bylo uvedeno v článku) s plechy C, M a EI, zapalování s feritovým jádrem transformátoru jsme nezkoušeli.

Rádi bychom upozornili čtenáře na chyby, které se vyskytly v minulých číslech AR: v AR 12/1974 v článku Jakostní přijímač pro SV je chyba na desce s plošnými spoji (štr. 465) – u trimru C_3 chybi tangýra na zemním spoji, dále je třeba přerušit spoj mezi kolektorem T_1 a C_3 , C_{10} , C_3 a L_1 a přerušený spoj překlenout odporem R_3 . V článku Přimoukazujíci měřič kmitočtu (AR 5/75, str. 183) v obr. 1 a v obr. 5 má být místo diod KA201 všude KA501. Konečně několik chyb je i v článku Nř generátor pro Hi-Fi (AR 12/72) a AR 1/73. Chyby jsme sice již opravovali v této rubrice, avšak v následujícím textu jsou uvedeny souhrnně i s několika zkušenostmi ze stavby tohoto přístroje, jak nám je zaslal náš čtenář Jan Hájek.

Ve stavebním návodu "Ní generátor pro Hi-Fi" v AR 12/72 a 1/73 je několik chyb. Ve schématu (obr. 7, str. 16) nejsou nakresleny propojky běžců potenciometrů P1 a P2 na odpor R3, popř. R4. Tatáž propojka chybi u P2 i na zapojovacím plánku plošného spoje (obr. 10, str. 17). Kondenzátor C4 nemá být svým pravým polepem připojen na společný vodič kondenzátorů C1 až C4, nýbrž na zemní plochu. Zapojovací plánek neznázorňuje plošný spoj ze strany součástek, jak bývá zvykem, ale ze strany spojů. Deska s plošnými spoji, koupená v Budečské ulici je zrcadlově obrácená (pozná se to podle pořadí vývodů tranzistorů a podle toho, že je obrácená regulace výstupního napětí – krajní vývody potenciometru P2, nutno zaměnit). Na plošném spoji navic chybi označení otvorů pro uzemněné konce R11 a C4. Misto pro C1 a C4 pod přepinačem je příliš malé, zatímco pro C1 a C4 zbytečně velké. Osvědčilo se zaměnit místa těchto kondenzátorů a plošný spoj příslušně upravit. Přeplnač Př11, je proti schématu zapojen obrácené, na funkci generátoru to však nemá vliv. Podstatně horší jsou chyby v rozpisce na str. 23: odpor R1, a být lk5, odpor R1, 330 (při výpočtu v textu uvedeny správné hodnoty). Odpory R14 a R18 mají hodnotu nikoli 68, ale 68k (správné hodnoty výstupního děliče viz např. v Radiovém konstruktéru 1969, č. 2, str. 46, obr. 69).

Na plošném spoji charakterografu pro osciloskop v AR 3/74, str. 94, obr. 4, jsou chyby, které zne-možňují správnou funkci:

možňují správnou funkci:
dolní polep kondenzátoru C_1 nemá být spojen
s vývodem I integrovaného obvodu 3, nybrž
s vývodem 6. Spoj na desce je nutno přerušit
a propojit na správný vývod.
Vývody 2 a 3 operačního zesilovače IO_3 jsou
vzájemně zaměněny. Opravu lze nejjednodušeji
provést překřížením vývodů operačního zesilovače,
neboť jsou dostatečně dlouhé.

Závěrem ještě několik poznámek autora článku Elektronický ionizátor, ing. L. Klabocha z Radio-klubu ÚDPMJF. Článek byl uveřejněn v AR 10/1974, str. 371. Ve filtru vysokého napěti jsou použity dva kondenzátory 500 pF/10 kV. Protože kondenzátory nejsou běžně na trhu, zaslal nám autor návod k jejich zhotovení.

Oba kondenzátory lze zhotovití jako desková.

autor návod k jejich zhotoveni.

Oba kondenzátory Ize zhotovit jako deskové v jednom bloku. Na obr. Ia je jejich mechanická sestava, na obr. Ib schéma zapojeni. Jako dielektrikum je použito organické sklo tl. 1 mm (poz. 4), polepy kondenzátorů jsou z tenkého mědeného plechu s vystřiženými vývody. Polepy jsou překryty přečnívajícími deskami organického skla tl. 3 mm a přečnívající okraje desek jsou na všech stranách zality Dentacrylem do roviny. Rozměry polepů 1, 2, 3 jsou 8 ×10 cm, rozměry dielektrika 4 jsou 9×11 cm a krycích desek 5 10×12 cm. Mezi vývody desek připájíme filtrační odpor R₃. Tak vznikne kompaktní a provozně spolehlivá jednotka pro filtraci vn; podobným způsobem lze samozřeimě pro filtraci vn; podobným způsobem lze samozřejmě konstruovat vn kondenzátory i pro jiné účely.

334 Amatérské! 11 11 9 75

Obr. 1. Vn kondenzátory jako filtrační blok pro ionizátor z AR 10/1974

LVR - nový systém záznamu obrazu

Firma BASF ohlásila vlastní systém záznamu obrazu (Longitudinal Video-Recorder) a předvedla na tomto principu pracující kazetový videomagnetofon, jehož vlastnosti v některých ohledení v nakterých oh dech výrazně převyšují obdobná zaří-zení na světovém trhu.

Zařízení pracuje s velmi malou kazetou, v níž je pásek šířky použe 6,28 mm. Pásek je speciální konstrukce na chromdioxidové bázi a je upraven pro záznam velmi malých vlnových délek. Záznam i přehrávka se uskutečňují pomocí pevné vícestopé hlavy. Speciální pohonný systém umožňuje provoz s velmi tenkým páskem. Diky tomu a díky malé rychlosti posuvu (asi 3 m/s) je doba přehrávky kazety delší než u všech dosud známých kazetových systémů. Pohonné ústrojí pracuje pouze s jedním motorem.

Barevný, popř. černobílý záznam i přehrávka využívají 28 stop, přepínaných v intervalu 80 ms. Je možno zpracovat větší počet zvukových kanálů. Spotřeba pásku vůči jiným kazetovým

systémům je malá, což znamená značné zlevnění praktického provozu – jedna hodina se odhaduje asi na 60 DM. Cena videomagnetofonu má být nižši než asi 3 000 DM.

Systém LVR umožňuje snadno a jakostně pořizovat kopie záznamu ve velkém počtu a krátkém čase – z matečního pásku je snadný přepis všech stop v poměru l: l, tedy bez obvyklých

zkreslení, běžných u jiných systémů. V referátu se naznačují i reálné předpoklady miniaturizace, elektronic-ké integrace a mobilnosti celého systému s odkazy na perspektivní pohonný systém, možnost náhrady vidikonové snímací kamery polovodičovou (CCD)

Předběžné technické údaje

Pohon: jedním motorem.

Počet hlav: jedna pevná pro zá-

znam i snímání.

Počet stop:

Vedení pásku: vzduchovou vrstvou.

1/4", CrO2.1 Typ pásku: Šířka pásma: 3 MHz.

Poměr signál/šum: > 40 dB.

90 min. s páskem tlouštky 9 μm, Doba přehrávky kazety: 120 min. s páskem

tloušťky 6 µm. $118 \times 110 \times 16$ mm, Rozměry kazety: hmotnost 140, g.

Lze předpokládat, že systém LVR bude významným přínosem v oblasti audiovizuálního záznamu a zdá se, že má všechny předpoklady k masovému rozšíření. Vedle technických předností systému bude hrát jistě důležitou roli i pozice fy BASF jako významného výrobce nosičů magnetického záznamu.

Zpracováno podle Elektronik č. 10/1974 -Kyrš Fr.-

Kazetové magnetofony

Adrien Hofhans

Když se asi před deseti lety objevily na světových trzích první kazetové magnetofony ve formě malých přenosných přístrojů, byly v podstatě považovány jen za hračky – mnozí (i technici) se netajili pochybnostmi, zda se tyto přístroje vůbec kdy uplatní pro přijatelně jakostní záznam hudebních pořadů. Vyskytly se i hlasy, že jedinou sférou jejich použití bude záznam takových signálů, u nichž nezáleží příliš ani na kmitočtové charakteristice, ani na kolísání rychlosti po-

Vývoj kazetových magnetofonů

První kazetové magnetofony neměly skutečně příliš jakostní parametry. Jejich kmitočtový rozsah (podle DIN) byl v rozmezí asi 100 až 6 000 Hz, kolísání bylo většinou větší než ±0,3 %. Poměrně dobrý byl však odstup (vzhledem k napájení z baterií a použitým polovodičovým prvkům), který byl obvykle lepší než —40 dB.

Začátek tohoto období vývoje kazetových magnetofonů byl poznamenán vzájemným "bojem" dvou prvních výrobců o typ kazety pro magnetofony. Firma Philips zaváděla kazety typu CC (Compact-Cassette) a přístroje s rychlostí posuvu 4,75 cm/s; firma Telefunken prosazovala rozměrově poněkud větší kazety s označením DC (Doppel-Cassette) a přístroje s rychlosti posuvu 2", tj. 5,08 cm/s. Tuto soutěž zakrátko zcela jednoznačně vyhrála firma Philips a je třeba poznamenat, že ne ani tak zásluhou technických předností kazety CC, ale spíše obchodní zdatností svých zástupců na evropských i zámořských trzích.

Avšak ani ti největší optimisté v té době pravděpodobně neočekávali ne-uvěřitelně prudký vývoj kazetových magnetofonů a obrovský zájem o ně u spotřebitelů. Podle stavu v posledních pěti letech lze bez nadsázky říci, že kazetové magnetofony zvolna, ale jistě vy-

tlačují cívkové přístroje ze světových trhů. Poměr mezi kazetovými a cívkovými přístroji, vyráběnými světovými výrobči se jednoznačně mění ve prospěch kazetových přístrojů. Řada výrobců pak přestala magnetofony vůbec vyrábět a prestala magnetotony vubec vyrabet a dodává pouze přístroje kazetové. Tyto firmy, k nimž patří např. také Blaupunkt, Nordmende, Elac a další, vyřešily celý problém zcela jednoduše kazetové přístroje nakupují přímo u japonských výrobců a prodávají je jako svůj výrobek, pod svojí značkou a typem. (Některé z těchto přístrojů se v současné době prodávají i u nás, proto pozor, většinou se jedná o výrobky, které nepřesahují slabý průměr co do jakosti i provedení.) Naproti tomu přední výrobci jako Uher, Grundig, Philips a další vyrábějí většinou velmi jakostní přístroje i ve sterofonní verzi, které (jde o kazetové přístroje!) dosahují parametrů Hi-Fi. Tyto přístroje, obvykle stolního provedení a bez koncových stupňů, mohou plně nahradit jakýkoli cívkový přístroj pro běžnou amatérskou potřebu. Podmínkou ovšem je používat bezvadné a moderní záznamové materiály (pásky).

Záznamové materiály

V kazetách typu CC se používají tři základní druhy pásků o šířce 3,81 mm – v kazetách C 60 pásek tloušťky 18 µm, v kazetách C 90 pásek tloušťky 13 µm, v kazetách C 120 tloušťky 9 µm. Z uvedeného je zřejmé, že v kazetách C 60 je pásek stejné tloušíky, jako nejtenčí pá-sek u cívkových přístrojů, tj. pásek s trojnásobnou hrací dobou (tripleband). V kazetách C 90 a 120 se používají speciální pásky, vyvinuté pouze pro kazetové přístroje. V kazetách C 60 byly původně používány stejné pásky, jako u přístrojů cívkových. Zlepšit para-metry kazetových magnetofonů však není bez současného zlepšení záznamových materiálů možné - proto byly postupem doby vyvinuty nové feromagnetické materiály s lepšími vlastnostmi (např. u pásků typu Low-Noise je aktivní feromagnetická vrstva na nosiči jemnější oproti dříve používaným vrstvám). Vývoj pásků na bázi kysličníku železa pokračuje stále (viz AR 8/75). Kromě těchto klasických materiálů se nedávno začal pro aktivní vrstvu pásku po-užívat i chromdioxid, což přineslo další zlepšení vlastností záznamu, především pokud jde o vybuditelnost a citlivost v oblasti vysokých kmitočtů. Pásky s chromdioxidovou vrstvou však mají bohužel určitou nevýhodu - chceme-li je používat, je třeba upravit příslušné obvody magnetofonu. Přitom dodnes není zcela jednoznačně určeno, jak má tato úprava "vypadat", takže nelze např. zaručit dobrou jakost reprodukce tehdy, je-li tento pásek nahrán na výrobku jednoho výrobce a reprodukován na výrobku jiného výrobce. Naštěstí není tento problém v praxi tak kritický, jak by se na první pohled mohlo zdát, neboť i když používáme standardní ma-teriály (Fe₂O₃) různých druhů a vý-robních dat, můžeme dostat (a také do-staneme značně rozdílné výsledky (ně) staneme) značně rozdílné výsledky (při nezměněném nastavení magnetofonu) jak v přenosové charakteristice, tak i ve výstupním napětí. Máme-li tedy vysoké nároky na jakost záznamu, je nezbytné seřídit magnetofon pro jeden druh zá-znamového materiálu a ten pak používat stále.

Chromdioxidové pásky mají určité výhody ve větší vybuditelnosti v oblasti vysokých kmitočtů i v poněkud širším kmitočtovém rozsahu ve výškách (samozřejmě pouze u jakostního magnetofonu), avšak vzhledem k tomu, že jsou proti běžným páskům až o 100 % dražší, nabízí se otázka, zda jejich přinos odpovídá ceně. A odpověď na tuto otázku: pro spotřebitele s běžnými nároky je používání těchto pásků nevýhodné, jinak řečeno, nevyplatí se používat tyto drahé pásky, máme-li na jakost záznamu pouze průměrné nároky.

Na konec kapitoly o záznamových materiálech ještě několik slov o tloušíce pásku pro kazetové magnetofony.

Z hlediska bezvadného kontaktu pásku s hlavou by byl bezesporu nejvýhodnější pásek nejtenčí, tj. kazeta C 120. Jeho výhodou je i relativně dlouhá doba záznamu (2krát 60 min.), což je k některým účelům nezbytné. Neuvažujeme-li některé méně podstatné nevýhody, je hlavním nedostatkem tak tenkého materiálu jeho nedostatečná tuhost ve svislé rovině (kolmé na směr posuvu), což má za následek, že tento pásek má vždy snahu "popojíždět" v páskové dráze nahoru a dolů. Důsledkem je měnící se úhel roviny pásku vůči hlavě a tím i úbytek vysokých kmitočtů. To je jeden z hlavních důvodů, proč i výrobci často doporučují pro své přístroje kazety C 60 nebo C 90.

Problémy kazetových magnetofonů

Řekli jsme, že kazetové magnetofony začaly v poměrně krátké době zatlačovat do pozadí přístroje cívkové. Nespornými důvody byly snadnost obsluhy, přehlednost obsahu kazet, jejich snadná skladovatelnost apod. Kazetové magnetofony mají však své závažné problémy, o nichž obvykle výrobci z pochopitel-ných důvodů "skromně" mlčí. Přede-vším jde o dlouhodobou stálost kolmosti hlavy k rovině dráhy pásku. Je známo, že nesouhlas polohy hlavy při reprodukci vzhledem k poloze hlavy při záznamu a dále pak nesouhlas kolmosti vůči rovině dráhy pásku – přehrává-me-li cizí kazety – způsobuje zhoršení reprodukce vysokých kmitočtů. Tento problém je u kazétových přístrojů téměř neřešitelný, neboť všechny hlavy jsou umístěny na pohyblivé liště a rázy, vznikající při ovládání magnetofonu, způsobují změny v nastavení hlav. I vedení záznamového materiálu, které je dáno konstrukcí kazety, nedovoluje nastavit všechny prvky tak přesně, jako u cívko-vých přístrojů. Dále hrají roli i extrémně tenké záznamové materiály, které nemají potřebnou tuhost ve směru kolmém na posuv pásku – pásky občas "ujíždějí" do strany a tím se mění úhel směru jejich posúvu k rovině hlavy. Nemožnost dokonalého vedení stopy a jeho stranové "pojíždění" se často projevuje pouze v určitých intervalech, což působí zvláště

Všechno, co bylo uvedeno, je ještě násobeno nevhodným poměrem posuvné rychlosti k šířce stopy. Čím je totiž poměr posuvné rychlosti k šířce nahrané stopy větší, tím méně je ztráta vysokých kmitočtů závislá na přesném nastavení kolmosti štěrbiny. U monofonního kazetového magnetofonu je tento poměr 4,75: 1,5 = 3,2. Vezmeme-li pro srovnání běžný čtvrtstopý přístroj s rychlosti posuvu 9,5 cm/s, je uvedený, poměr 9,5: 1 = 9,5. Z toho je vidět, že nastavení kolmosti štěrbiny je u monofonního kazetového magnetofonu třikrát "choulostivější", než u běžného čtvrtstopého přístroje při rychlosti 9,5 cm/s. A je při-

bližně stejně náročné, jako nastavení kolmosti u celostopého magnetofonu při rychlosti 19 cm/s (19:6,25 = 3,04). Kdo takový přístroj v praxi seřizoval, ví, že jde o mimořádně náročnou práci; přitom je přesnost vedení pásku i stabilita hlavy u cívkových přístrojů mnohem lepší, než u kazetových.

Když jsme se již dotkli tohoto celosvětového problému (byť skromně zamlčovaného), musíme též dodat, že je stále aktuální a že doposud nebyl nikým beze zbytku vyřešen. Tato skutečnost může být i jedním z důvodů, proč se nyní všeobecně prosazuje stereofonní provedení kazetových magnetofonů – domů, do auta, do přírody a všude, kam je jen možné. U stereofonních kazetových magnetofonů je problém kolmosti mnohem méně závažný, neboť poměr rychlosti k šířce štěrbiny je 4,75: : 0,6 = 7,9, což se blíží čtvrtstopým přístrojům s rychlostí posuvu 9,5 cm/s. Zde je ovšem třeba upozornit na další – opět málo publikovanou a známou – skutečnost, že totiž přehrávka ze stereofonního kazetového magnetofonu na jiný monofonní přístroj (obě stopy paralelně) přináší zcela shodné problémy s kolmostí štěrbiny jako u monofonních magnetofonů.

Dalším problémem kazetových magnetofonů je kvalita nahrávky jako taková. Každý, kdo se jen trochu dostal do styku s profesionální technikou ví, jak čistě – a to především ve výškách – znějí profesionální záznamy. Při velkých rychlostech posuvů jsou i vlnové délky nejvyšších zaznamenávaných kmitočtů relativně velké, není třeba tyto oblasti kmitočtů příliš zdůrazňovat – nemusíme se proto obávat přebuzení a jím vyvolaného zkreslení. Velmi jakostní záznam zajišťuje i rychlost posuvu 19 cm/s, používáme-li jakostní záznamové materiály. Pokud jde o kazetové přístroje s rychlostí posuvu 4,75 cm/s, je třeba otevřeně říci, že s běžnými materiály pro cívkové přístroje bychom požadavky na jakostní záznam splnit nemohli.

(Pokračování)

Firma I.L.P. (Elektronics) Ltd. uviedla na trh nf zosilňovač HY200. Obvod má udávaný výkon 100 W (sinus), popř. 200 W (hud.), Obvod obsahuje 27 aktívnych prvkov. Pri vstupnej impedancii $10~\mathrm{k}\Omega$, výstupnej 4 až $16~\Omega$ je zosilnenie 75 dB. Harmonické skreslenie je 0,1 %, typicky 0,05 %. Kmitočtová charakteristika je $10~\mathrm{Hz}$ až $50~\mathrm{kHz}$ $\pm 1~\mathrm{d}s$. Napájanie je samozrejme súmerné, $\pm 45~\mathrm{V}$.

* * *

Tento obvod, ktorý sa pohodlne zmestí do dlane (v podstate je to rebrovaný profil) však nie je ani v Angličku nijak lacný – stojí takmer 15 libier. Úplne o ňom však platí reklamný slogan: mechanically elektrically robust.

Podľa Wireless World, jún 1973

Igor Novák

MULTIMETR

Miloš Stilz

. Při návrhu univerzálního měřicího přístroje si amatér obyčejně klade otázku "Jaké zapojení zvolit, abych mohl měřit všechno a za málo peněz?" Přitom chce citlivý přístroj s velkým vstupzouti, alyst. mota mota voscitnosta penez i ratio penez i ratio potez i materiál a součástky, nezávislý na ním odporem, nenáročný na zdroje, váhu a rozměry, použitý materiál a součástky, nezávislý na kolísání napájecího napětí. Dále dostatečně přesný, pokud možno s lineární stupnici, jednoduše novisdatelný, přetřžitelný apod.

Těmto zdánlivě protichůdným požadavkům vyhovuje zapojení podle [1]. Aplikací na čs. sou-

částky vznikl dále popsaný přístroj, který je navíc proti původnímu zapojení citlivější.

Technické údaje

Stejnosměrné napětí a střídavá napětí v rozsahu 10 Hz až 100 kHz:

Stejnosměrné a střídavé proudy:

rozsahy/vnitřní odpor: 10 μA/5 kΩ, 50 μA/ /1 k Ω , 100 μ A/500 Ω , 500 μ A/100 Ω , 1 μ A/50 Ω , 10 μ A/50 Ω , 10 μ A/50 Ω , 2 μ A/50 Ω , 10 μ A/50 Ω , 100 μ A/6,5 Ω , I A/0,05 Ω .

Odpory:

ohmmetr – odpor v polovině stupnice 150 Ω – možnost čtení od 1 Ω ;

kiloohmmetr – odpor v polovině stupnice 15 k Ω – možnost čtení 1 k Ω až 500 k Ω .

Popis zapojení

Základní princip byl popsán v [1]. Ve zkratce: jde o zesilovač s velkou kladnou zpětnou vazbou (ve smyčce kladné vazby je vlastní měřidlo) na vstupní svorku měřeného signálu. Zapojení se však liší od doporučeného v provedení Darlingtonova zesilovače. Původní návrh předpokládá použít dva (spíše tři) tranzistory KF517 nebo sdružený tranzistor KFZ68. Pro požadované zesílení by pak byla nutná velká spotřeba proudu z baterií a zapojení by ztratilo na

Požadovaného zesílení měřicího zesilovače se zachováním malé spotřeby přístroje, fázových poměrů a dostateč-ného výkonového zesílení lze však dosáhnout kombinací napěťového a proudového zesilovače. Jako napěťový zesilovač vyhoví (i výprodejní) lineární integrovaný obvod MAA125 a jako proudový zesílovač tranzistor KF517. Výkonové zesílení je dostatečné díky přímému spojení kolektoru MAA125 s tranzistorem KF517 jako zatěžovacím odporem.

Takto upravené zapojení (obr. 1) má dvojnásobnou citlivost vůči půdvojnásobnou citlivost vůči původnímu a velmi dobrou stabilitu nuly měřidla (tím i zisku zesilovače) při změnách napětí zdroje a teploty okolí.

Pro názornější výklad je měřidlo kresleno v můstkovém zapojení (tlustěji na obr. 1). Bez signálu na vstupních svorkách je můstek vyvážen odporem R4 a celkovým zesílením operačního zesilo-

Obr. 1. Měření stejnosměrného proudu a napětí (čárkovaně měření odporů)

vače. Prochází-li vstupními svorkami přes R_1 proud, vyvolává změnu proudu báze T_1 a tím i proudu kolektoru T_1 a napětí na R_3 . Nepatrné změny napětí na R_3 působí jako vstupní napětí $U_{\rm BE}$ pro IO (MAA125). Jako pracovní odpor IO slouží odpor přechodu báze – emitor T_3 . Tranzistor T₃ je zapojen jako emitorový sledovač, který nezesiluje napětově, proudové zesílení je však značné. Výkonové zesílení je asi 25 dB.

Na obr. 1 je uveden princip měření stejnosměrných proudů a napětí (čárkovaně měření odporů). Odpor R_1 představuje celkový odpor vstupního děliče – určuje proud báze T_1 , R_2 vyvažuje nulu měřidla, R3 určuje zesílení (nejlépe je použít teplotně nezávislý odpor), R4 vyvažuje můstek, R5 jako předřadný odpor měřidla určuje jeho citlivost.

Na obr. 2 je princip měření střídavých proudů a napětí. Odpory R_1 až R_5 mají stejnou funkci, přičemž R2 se již 'jako regulátor nuly měřidla neuplatňuje; R_0 určuje proud báže T_2 ; (báze T_2 je nyní galvanicky oddělena od středu baterií), D_1 je předpěřová dioda, usnadňující otevírání D_3 a D_2 . Kondenzátory C_1 a C_2 se ežidová nabíjejí podla polarity C₂ se střídavě nabíjejí podle polarity

Obr. 2. Měření střídavého proudu a napětí

signálu na můstku a v sérii se vybíjejí přes měřidlo, C3 uzavírá cestu střídavého signálu, C4 kompenzuje nulu měřidla. Celkové schéma přístroje je na obr. 3.

Přepínač funkcí a rozsahů

Třetí segment přepínače (obr. 4) spíná střed baterií ke svorce 0, k zemí přístroje (předpětí pro T_1). Druhý segment odpojuje svorku 0 od země při měření odporu. První segment slouží k volbě rozsahů. Mezi rozsahy 10 až 1000 V je vždy vynechána jedna poloha řadiče vzhledem k blízkosti sousedících kontaktů, upevněných na základní destičce. Destička je pertinaxová, proto kdyby byly připojeny předřadné odpory řádu 1000 MΩ k sousedním kontaktům řadiče, byl by odpor mezi kontakty nevyhovující a měření by bylo nepřesné.

Za přepínače Př₂ stejnosměrného a střídavého měření byly zvoleny dva spřažené dvoupólové kolébkové přepínače z důvodu uvedeného v úvodu článku jednoduché ovladatelnosti celého přístroje při vlastním měření (k jakým svorkám je kolébka přepínače překlopena –

Obr. 3. Schéma měřicího přístroje

Odpory děliče jsou voleny tak (s ohledem na základní citlivost přístroje), aby byla splněna další podmínka – jediná lineární stupnice při snadném čtení. (Zakoupí-li si třeba i zkušenější amatér nové měřidlo, nerad je hned rozebírá, a nerad obvykle kreslí přídavné stupnice).

Komplikace nastávají při měření odporů (nelineární stupnice). Pro přesné měření odporů je však nutné použít můstek, a tak jsem se spokojil s původní stupnicí s přesným čtením pouze v polovině stupnice. Pro určení ostatních měřených odporů jsem si zhotovil korekční tabulku.

Uvádění do chodu

Před cejchováním je nutné "dopravit" ručku přístroje na nulu změnou odporu R_2 . Z celkového počtu tří zakoupených KF517 vybereme za T_1 a T_2 dva s přibližně stejnými parametry. Odpor R_2 se bude v jednotlivých případěch značně lišit (pravděpodobné nepřekročí 25 k Ω). Podle zjištěné velikosti R_2 rozdělíme odpor na dva (jemné a hrubé nastavení nuly měřidla).

Cejchování

Odporový dělič osadíme co nejpřesnějšími odpory. Odpory 0,45 Ω a 0,05 Ω zhotovíme až při vlastním cejchování. Cejchování začínáme tím, že kontakt "100 mA" zkratujeme se zdířkou 0. Podle Avometu (ss proud 50 μ A) nastavíme trimrem 680 Ω základní citlivost zesilovače na ss rozsahu 50 μ A (měřidlo na max. výchylku). Přepneme na ss rozsah 100 mA, odpojime zkrat mezi kontaktem 100 mA a nulou přístroje, na místo zkratu připájíme televizní dvoulinku 300 Ω (asi 1 m), kterou na konci zkratujeme. Proud procházející Avometem nastavíme na 1 A. Při občasné kontrole nuly měřidla (odpojením přívodů od vstupních svorek) zjistíme potřebnou délku dvoulinky (kdy má ručka měřidla max. výchylku) zhruba pomocí dvou špendlíků jako posuvného zkratu. Po zkrácení na patřičnou délku dvoulinky stočíme na těleso měřidla a připájíme mezi kontakty 1 A a 0.

Odpor 0,45 Ω zhotovíme stejným způsobem z telefonní dvoulinky (používané též pro rozvod rozhlasu po drátě). Přepínač rozsahů je opět v poloze 100 mA a dvoulinku připájíme mezi kontakty 100 mÅ a 1 Å.

Přesnost čtení na dalších nižších rozsazích závisí na přesnosti použitých odporů, které by měly mít toleranci 0,5 %.

Obr. 6. Vnější uspořádání přístroje

Obr. 7. Vnitřní uspořádání přístroje

Nemáme-li je k dispozici, zvolíme pracnější metodu nastavení konečné výchylky měřidla na jednotlivých proudových rozsazích – paralelním připojováním opravných odporů nebo trimrů k odpo-rům děliče. Postupujeme od rozsahu

rům delice. rostupujeme od rostania 10 mA k rozsahu 10 μA. Konečnou výchylku měřidla na roz-sahu "kΩ" a "Ω" nastavíme při zkratu vstupních svorek odporovými trimry 68 Ω a 5,1 kΩ. Max. výchylku měřidla při měření střídavého proudu a napětí. nastavíme odporovými trimry 680 Ω ve střídavé větvi zesilovače opět podle Avometu (např. na rozsahu 50 μA).

Konstrukce přístroje

S popisovaným přístrojem lze měřit i síťové napětí, neboť kryt přístroje je navenek nevodivý (zpravidla mají nf mVmetry zem spojenu s kovovým krytem přístroje, při záměně fáze hrozí pak nebezpečí úrazu).

Celá skříňka je zhotovena z cuprextitu a v rozích spájena. Tím je zabezpečeno dokonalé stínění proti vnějším rušivým polím.

Přístroj je na desce s plošnými spoji podle obr. 5.

Vstupní svorka 0 je po zapnutí pří-

stroje uzemněna.

Hřídel přepínače rozsahů je maximál-ně zkrácen. Kolébkové přepínače jsou navzájem slepeny Epoxy 1200 a jejich společné ovládání je zhotoveno ze dvou cuprextitových destiček, které jsou pocicuprextitových desticek, ktere jsou poci-novány. Přepínače jsou spojeny s destič-kou drátem o Ø 0,6 mm. Konektorová zásuvka je přichycena k základní desce dvěma pásky z delších pájecích oček; stejně je připojen potenciometr 1 kΩ (obr. 6, 7). Tranzistory jsou zasunuty do čtyřkolíkových objímek s výliskem na okraji (snadná orientace tranzistorů při výměně). Mezi baterie je vložena pružina, jejíž držák slouží k vyvedení středu baterií.

Možnosti dalšího zlepšení

Citlivost (a tím i vstupní odpor) zvětšíme použitím dvou KF517B (popř. KFY18) na místě T_1 a T_2 .

Závěr

Základní zapojení tohoto zesilovače lze jistě využít i v jiných případech, kdy je kladen důraz na velké zesílení při malých napájecích napětích. Lepší stabilitu nuly měřidla nelze zajistit jinak, než použitím tranzistorů diferenciálního zesilovače ve společném pouzdru.

[1] Zajímavé amatérské multimetry Sdělovací technika č. 5/1973.

Presné měžení střídavých veličin

Protože se v posledních letech pronikavě zlepšila přesnost digitálních voltmetrů, stal se akutním i problém přesnosti měření střídavých napětí těmito přístroji. Střídavá napětí libovolného tvaru nelze totiž měřit zdaleka tak přesně, jako napětí stejnosměrná. Jedním z hlavních problémů je otázka usměrnění střídavého signálu pro měřicí přístroj. Tento příspěvek se zabývá způsoby měření ve vztahu k tvaru měřeného střídavého signálu.

Vliv tvaru křivky na přesnost měření

Střídavé napětí mění svou polaritu v závislosti na čase. Tato změna je většinou periodická, přičemž nejjednodušší tvar střídavého signálu je reprezentován "čistou" sinusovkou. Ostatní složitější tvary střídavého napětí je možno Fourierovou analýzou rozložit na základní kmitočet a řadu vyšších harmonických kmitočtů. U symetrického pravoúhlého průběhu např. dostáváme po rozložení kromě základního kmitočtu pouze liché harmonické, jejichž amplituda se zmenšuje s kmitočtem podle vztahu

$$f(t) = \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \dots$$

Krátké impulsy s nízkým opakovacím kmitočtem obsahují mnoho sudých i lichých harmonických kmitočtů ve velmi širokém pásmu. Takový signál je v podstatě možno považovat za extrémně zkreslený sinusový signál. V praxi činí velké potíže definovat velikost takového signálu s přesností lepší než 0,1 %, zatímco stejnosměrná napětí měříme bez problémů s přesností nejméně o jeden až dva řády větší. Další chyby vznikají přeměnou střídavého signálu na stejnosměrné napětí – tedy usměrněním. Kromě toho nelze přehlédnout i další činitele jako kmitočet, fázové posuvy, omezování, indukčnosti a kapacity měricího zařízení, které v praxi nelze často přesně definovat. I při provozních mě-řeních je proto důležité, přizpůsobit metodu měření měřenému signálu; to sice často neodstraní vlastní chybu měření, umožní to však alespoň odhadnout velikost této chyby.

Parametry střídavých signálů

V zásadě jsou nejdůležitější parametry tři, a to:

- 1. Vrcholová hodnota Uv (špičková hodnota). Je to maximální amplituda střídavého signálu nad anebo pod jeho nu- o lovou osou. Při symetrickém signálu jsou obě tyto amplitudy (záporná i kladná) stejné. Součtem obou obdržíme mezivrcholovou hodnotu U_{mv} (hodnotu "špička-špička"), která bývá často používána v osciloskopické technice.
- 2. Střední hodnota (usměrněná hodnota). Střední hodnota periodického signálu, měříme-li signál po dobu jednoho kmitu, je nulová. Protože toto vyjádření se pouze ke střídavému průběhu, uva-žujeme při měření střední velikost usměrněného signálu, což je vlastně součet středních hodnot obou půlvln. Při symetrických signálech je to střední Při symetrických signálech je to střední vélikost jedné půlvlny po dobu jedné poloviny kmitu (půlperiody).

Při nesymetrických signálech (obr. 1) jsou střední hodnoty obou půlvln odlišné. Měřicí přístroje s usměrňovači,

Obr. 1. Typický průběh impulsu, kdy plocha A je rovna ploše B. Součet obou ploch je střední hodnotou půlvlny; tato střední hodnota se běžně měří

které indikují "usměrněnou hodnotu", jsou v technické praxi označovány jako měřiče střední hodnoty.

3. Efektivní hodnota (kvadratická střední hodnota, RMS). Tuto hodnotu vyjadřuje tepelný výkon střídavého signálu. Znamená to (populárně řečeno), že střídavý signál o efektivní hodnotě 1 V ohřeje ideální zatěžovací odpor na stejnou teplotu, jako stejnosměrné napětí 1 V. Při výpočtu je třeba střídavé napětí nejdřive umocnit (kladné i záporné půlvlny se tím stanou "kladnými"), pak se vyjadří střední velikost a výsledek se odmocní.

Činitel tvaru a tzv. špičkový (vrcholový) činitel

Oba tyto důležité parametry jsou vyjádřeny takto:

činitel tvaru = efektivní hodnota , střední hodnota , vrcholová hodnota

špičkový činitel = vrcholová hodnota efektivní hodnota

Špičkový činitel se u impulsních průběhů vyjadřuje s oblibou dobou kmitu a dobou trvání impulsu:

špičkový činitel =
$$\sqrt{\frac{T}{t}-1}$$
 ,

kde T je doba kmitu (perioda) a t doba trvání impulsu.

V tab. 1 je porovnání všech hodnot pro nejdůležitější tvary křivky.

Charakteristiky měřicích metod střídavého napětí

Většina přístrojů k měření střídavého napětí mění nejprve signál na stejnosměrné napětí, které je úměrné buď špičkové, střední nebo efektivní hodnotě původního střídavého signálu. Tento údaj je pak indikován buď analogovým přístrojem anebo v digitální formě.

Velká většina přístrojů k měření střídavých napětí měří sice špičkovou nebo střední hodnotu napětí, jsou však cejchovány v efektivních hodnotách. Měření jsou pak správná pouze tehdy, měříme-li čistě sinusový průběh. Na obr. 2 je názorně vidět chybu těchto přístrojů při měření pravoúhlých průběhů s různou střídou za předpokladu, že měřené

Obr. 2. Chyba měření u přístrojů cejchovaných v efektivních hodnotách při měření impulsních průběhů s různou střídou

signály mají efektivní hodnotu konstantní. Z obrázku je patrné, že přístroj, který usměrňuje signál na špičkovou hodnotu, ukazuje především při měření úzkých impulsů mnohem větší údaj. Je ovšem pravda, že takové přístroje bývají určeny pouze k měření impulsních průběhů a jejich stupnice je obvykle cejchována ve špičkových hodnotách.

Jinak je tomu u přístrojů, které jsou cejchovány v efektivních hodnotách, avšak měří střední hodnotu. Při měření podobných impulsů ukazují tyto přístroje menší údaj, než jaký by odpovídal skutečné efektivní hodnotě měřeného signálu. Kromě toho může při velké střídě dojít k další chybě omezením signálu. Naneštěstí jsou podobné přístroje používány k měření efektivních hodnot zkreslených sinusových průběhů. Činitel tvaru 1,11 je sice v kalibraci přístroje zahrnut, ale to platí, jak jsme si již řekli, pouze pro čistě sinusový průběh. Ani tehdy, známe-li druh a velikost zkreslení měřeného signálu, nebývá možné určit směr ani velikost chyby.

Při měření moduláčních úrovní a při měřeních hluku je rozhodující špičková hodnota. Efektivní hodnota nás zajímá pouze tehdy, má-li být určen skutečný tepelný výkon signálu. Máme přitom na mysli i kupř. velmi rozšířené tyristorové regulátory, jimiž se řídí výkon, tedy efektivní hodnota, pro jejíž měření nemohou přístroje měřící střední hodnotu vyhovět. Týká se to kupř. ovládání motorků, půlvlnného žhavení u televizních přijímačů, svářecích zařízení s tyristory apod.

Tab. 1. Porovnání nejdůležitějších vlastností různých průběhů

Tvar	Vrcholová hodnota	Střední hodnota	Efekt. hodnota	Cinite	1
u	U _₹ ,	$\frac{1}{T}\int_{0}^{T}u_{x}\mathrm{d}t$	$\boxed{\sqrt{\frac{1}{T}\int\limits_0^T u_x^2 dt}}$	tvaru	špičk.
7 sinus	$U_{\mathbf{v}}^{+} = U_{\mathbf{v}}^{-}$	$\frac{2}{\pi}U_{\rm v} \doteq 0,637U_{\rm v}$	$\frac{1}{\sqrt{2}}U_{\mathbf{v}} \doteq 0,707 U_{\mathbf{v}}$	1,11	1,414
$ \begin{array}{c} $	$U_{\mathbf{v}}^{+} = U_{\mathbf{v}}^{-}$ $2U_{\mathbf{v}} = U_{\mathbf{m}\mathbf{v}}$	$U_{ m v}$	$U_{f v}$	1	1
	$U_{\mathbf{v}}^{+} + U_{\mathbf{v}}^{-} = U_{\mathbf{m}\mathbf{v}}$	2K(1—K)U _{mv}	<i>√K</i> (1— <i>K</i>) <i>U</i> _{mv}	$\frac{1}{2}\sqrt{\frac{1}{K(1-K)}}$	$\sqrt{\frac{1-K}{K}}$
trojúhel.	$U_{\mathbf{v}}^{+} = U_{\mathbf{v}}^{-}$ $2U_{\mathbf{v}} = U_{\mathbf{m}\mathbf{v}}$	0,5 <i>U</i> _♥	$\frac{1}{\sqrt{3}}U_{\rm v}=0,577U_{\rm v}$: 1,155	1,733

Vliv tvaru křivky na přesnost měření

I v tom případě, že pro dané měření zvolíme nejvhodnější typ přístroje, nevyhneme se chybám způsobeným tvarem křivky. Znalost alespoň řádové velikosti možné chyby je velmi důležitá pro stanovení výsledné přesnosti měření.

Chyby přistrojů měřicích střední hodnotu, cejchovaných v efektivní hodnotě

Jak z předchozích úvah vyplývá, je možné matematicky korigovat údaje u nesinusových průběhů, jejichž tvarový činitel je znám. Kupř. při měření signálu pravoúhlého průběhu je údaj měřicího přístroje o 10 % větší. U signálu trojúhelníkovitého průběhu je údaj o 4 % menší. V praxi se ukazuje, že měření velmi zkreslených průběhů základního sinusového tvaru nezpůsobuje větší chybu než ± 10 %, velmi často dokonce menší. Podle fázových posuvů je tato chyba buď kladná, nebo záporná. Následující tabulka a obr. 3 ukazuje maximálně možnou chybu.

Podíl 2. harmonické [%]	Možná chyba [%]	Podíl 3. harmonické [%]	Možná chyba [%]
2	0,02	0,5	0,17
4	0,08	1	0,35
. 6	0,18	5	1,7
. 8	0,32	10	3,5
10	0,5	20	8
20	2	,	
50	12	50	22

Obr. 3. Vliv činitele zkreslení na údaj přístroje měřícího střední hodnotu a cejchovaného v efektivních hodnotách

Z údajů je zřejmé, že liché harmonické kmitočty způsobují větší chybu, ovšem za předpokladu, že je měřicí přístroj vzhledem ke svému kmitočtovému rozsahu registruje.

Jako pravidlo platí přibližně, že velikost chyby je asi 1/n, tzn., že 10 % páté harmonické způsobí chybu asi 2 %.

Chyby měřicích přístrojů měřících špičkovou hodnotu, cejchovaných v efektivní hodnotě

U těchto přístrojů mohou zcela náhodné a ojedinělé krátkodobé impulsy velmi podstatným způsobem ovlivnit údaj měřidla. Mohou způsobit řádovou (i větší) chybu. Nelze proto doporučit jejich používání pro všeobecná měření; nalézají uplatnění pouze v oblasti vf měřicí techniky ze zcela odlišných důvodů. Pokud by jich bylo použito při měření signálů impulsového charakteru, vedlo by to k značně velkým chybám.

Chyby přístroju měřících efektivní hodnotu a cejchovaných v téže hodnotě

Jsou to většinou tepelné přístroje. Jejich údaj je velmi přesný i při měření složitějších průběhů, musíme však v praxi vždy brát ohled na jejich vlastnosti i technické možnosti, dané jejich principem. Jedním z nejdůležitějších kritérií těchto přístrojů je špičkový činitel, tedy poměr špičkové hodnoty signálu k hodnotě efektivní. Jestliže se totiž měřený signál skládá z úzkých impulsů většího napětí, pak i údaj měřidla zůstává malý. Zvýšení citlivosti přepnutím rozsahu může za jistých okolností vést k omezení impulsů a tudíž k chybnému údaji.

Obr. 4 ukazuje závislost údaje ve vztahu k špičkovému činiteli měřeného signálu (popř. k jeho střídě) pro dva přístroje s odlišným maximálně přípustným špičkovým činitelem 3:1 a 8:1. Vidíme, že údaj přístroje s větším přípustným špičkovým činitelem je zatížen menší chybou. Jestliže, maximálně přípustný špičkový činitel měřicího přístroje není znám, je důležité použít k měření ten rozsah, při němž přístroj ukazuje největší údaj (nikoli výchylku!). Jen tak máme jistotu, že měřený signál není podstatněji omezen.

Druhým kritériem je kmitočtový rozsah tepelného přístroje. Při měření signálu s průběhem blízkým sinusovému nejsou potíže za předpokladu, že kmitočet měřeného signálu je menší, než mezní kmitočet použitého přístroje.

v praxi alespoň o řád, aby 5. až 7. harmonický kmitočet byl ještě zahrnut do měření. Daleko přisnější požadavky však vyžaduje měření impulsních průběhů. Obzvláště úzké a strmé impulsy mají výrazný energetický podíl právě v oblasti nejvyšších harmonických kmitočtů. Mezní kmitočet použitého měřicího přístroje musí být proto nejméně 100krát vyšší, než je základní opakovací kmitočet měřených impulsů, vyžadujeme-li zachování přesnosti měření.

Obr. 5. Vliv opakovacího kmitočtu impulsu a "špičkového" činitele na velikost chyby

Obr. 5 ukazuje relativní závislost mezi opakovacím kmitočtem impulsů a chybou.

U střídavě vázaných přístrojů pro přímé měření efektivní hodnoty (a toto provedení je nejběžnější) je měřený signál zbaven stejnosměrné složky a tím symetrizován. V tomto případě je ovšem měřena pouze efektivní hodnota střídavé složky původního signálu.

Literatura

[1] Huntingford, J. R.: Measurement of alternating voltages: Solartron DVM Monograph č. 4/1972.

Kapesní kalkulátory ZST

Jako příspěvek navazující na články o kapesních kalkulátorech v AR č. 2, 5 a 6 jsme dostali od našeho čtenáře z Opavy tabulku s údaji kalkulátorů, vyráběných v zemích socialistického tábora. Z tabulky, kterou uveřejňujeme, se můžete informovat nejen o základních technických parametrech těchto přístrojů, ale i o jejich ceně (SVC), popř. zda jsou nebo budou (podle soužasné situace) dostupné v ČSSR. Tabulku sestavil autor na základě materiálů, získaných od výrobců, popř. z návodů dovážených kapesních kalkulátorů, cenové údaje byly zjištěny prostřednictvím n. p. Kancelářské stroje. Zkratky použité v tabulce: B je baterie, A akumulátor, LED luminiscenční dioda, LC tekutý krystal. Na obrázku je kalkulátor TK 835 (MLR) a ELKA 101(BLR).

Тур	101	ELKA 130		Elektronika	Minirex 74	K 831	K 106P	TK 835	Hunor 84	Hunor 201	1 •	TRON db 802
Výrobce		BLR		SSSR	NDR			MLR		-	Jugos	slávie
Displej: typ		LED) .	LC \	LED			LED	•		L	ED ,
· počet míst		8		8	' 8	. 8	. 10	10 + 2	8	8	8	8
Deset. čárka: pohyblivá	+	+	+	+	+	+	• +	+	+	.+	+	,+
pevná	_	+	- ·		. +	-	-	. —	_	_	. +	+
Paměť	Ή	+	+			- I		+				_
Následné výpočty	+	+. ,	+ .	+	+	+	+	+	+.	+	+	+
Vestavěné funkce:	*											
% .	+ .	.+ .	_	_ ·	_	+	+	– ·	+	<u> </u>		_
1/x.	_	+	+			· ·		+	, ` +	+	-	_
V x .	- .	.+ .	+	_		· ·	. —	+	+ .	+ `		+
x ²	-	.,+ `			<u> </u>	· —	' — ·	. +	+		-	+
ln x	-		+		l – ,		-	+	 ·	+	-	_
log x	-	_	+ ,	-		. —	÷	+	_	+	 	
.ex			+ .	_	<u> </u>	7	-	+		+	-	-
10x, xy		_	+			·	-	+		+ .		
sin, cos, tg	_	·	+	_		-	_	+	_	+ .	-	`
arcsin, arccos, arctg	-	<u>, —</u>	+	_	–		_	+	_	+	_	_
vědecká notace $(x . 10^y)$	-		- .	_	· - /	-	_	+	-	· —	 -	. —
závorky	<u> </u>		-:	-	<u> </u>	-		+	<u>'</u>	_	_	_
Napájení	B6V\	B6V	B6V	B 1,5V	A	A	· A	A	. A	'A	A	A
·Siťový zdroj	-	+	+		+	+	· +	+ .	+ :.	+	+	+
Hmotnost [g]	200	200	200	•	350	260	400	260	140	140	250	250
Dostupnost v ČSSR	+	1975	1976		+	+	+ ·	+	1976	1976		
Cena [Kčs]	2 070				4 050	4 100	5 000	11 025	5			

Dekadický čítač s obvody MH7400

Michael Misar

Častým obvodem v číslicové technice je dekadický čítač. Používá se například ve spojení s dekodérem a digitronem k indikaci v různých měřicích přístrojích (voltmetry, hodiny apod.). S rozvojem IO ustupují obvody s diskrétními součástkami poněkud do pozadí. Pro amatérské přístroje jsou IO výhodné proto, že je s nimi možno zacházet jako se stavebnicí. Stačí podle daného schématu propojit vývody jejich pouzder a zařízení pracuje obvykle na první zapojení. Velkou nevýhodou zůstává a zatím zřejmě dlouho zůstane jejich nedostupnost a především cena. Nedávno sice přišly do obchodů MH7490, ovšem za cenu asi 240 Kčs, což je pro amatéra více než neúnosné. Následující článek má ukázat možnost realizace dekadického čítače podstatně levněji a to pomocí obvodů MH7400.

Základním stavebním kamenem čítače je bistabilní klopný obvod typu T. Jeho funkce byla již mnohokrát popsána, omezím se proto na konstatování, že jde o děličku dvěma (obr. l). Přivedemeli na vstup T signál s úrovní log. l, překlopí se obvod ze stavu $Q_n = 0$ do stavu $Q_{n+1} = 1$. Přivedemeli signál log. 0, nastane se nic a obvod zůstane ve stavu, v jakém byl předtím.

Jedno pouzdro IO MH7400 obsahuje čtyři dvouvstupová hradla. Ze dvou hradel lze sestavit klopný obvod typu R-S (obr. 2), jehož funkce je následující: přivedeme-li signál log. 1 na vstup R (RESET – "nulování"), přejde obvod do stavu $Q_{n+1} = 0$. Přivedeme-li signál log. 1 na vstup S (SET – "nahození"), přejde obvod do stavu $Q_{n+1} = 1$. Přivedeme-li signál log. 1 na vstupy R i S současně, dojde k tzv. nedefinovanému stavu, čili nelze říci, co bude na výstupu Q.

Při realizaci děličky dvěma z diskrétních součástek se uvedený stav obchází použitím diodových hradel, která vstupní impuls přivedou vždy do "správného" vstupu tak, aby obvod změnil svůj stav s příchodem vstupního impulsu. Protože MH7400 již hradla v sobě má, konstrukce se omezí na dva odpory a dva kondenzátory, zapojené podle obr. 3. Obvod se chová následovně: předpoklá-

Obr. 1. Bistabilní klopný obvod typu T

Obr. 2. Klopný obvod R-S

Obr. 3. Zapojení děličky s hradly

dejme, že v počátečním stavu je Q = 0 a $\overline{Q} = 1$. Přivedeme-li impuls na vstup T, dostane se přes C_1 na vstuphradla A (je to prakticky vstup R). Ten je však přes odpor R_1 spojen s výstupem

impulsem změní obvod svůj stav. Nyní se funkce obou hradel obrátí a celý postup se opakuje. Na výstupu Q dostaneme impulsy s polovičním opakovacím kmitočtem, než jaký mají impulsy na vstupu T.

Spojíme-li čtyři takové obvody do série (obr. 4a), dostaneme asynchronní čítač se 16 stavy. Jak je vidět z pravdivostni tabulky, celý čítač se šestnáctým impulsem vynuluje a přejde do počátečního stavu. My však potřebujeme, aby se čítač nuloval již desátým impulsem. Toho lze dosáhnout zapojením podle obr. 4b, jehož podrobný popis nalezne zájemce v [1]. Součinové hradlo mezi obvody A a B lze realizovat 1/2 MH7400. Jde o prostý součin, nikoli negovaný, proto se používají dvě hradla. Čelkové zapojení čítače je na obr. 5.

Obvod z obr. 3 má ještě jednu zajímavou vlastnost: překlopí se též záporným impulsem, přivedeným na výstup Q, je-li na tomto výstupu úroveň log. 1. Toho lze velmi dobře využít k nulování

	٠,			^ .					_	
		t	Α	В	С	D	Ã	Ē	Ĉ	Đ
		0	0	0	0	0	1	1	1	1
	·	1	1	0	0	0	0	1	1	1
		2	0	1	0	0	1	0	1	1
	dekadický čítač	.3	1	1	0	0	0	0	1	1.
	豪	4	0	0	1	0	1	1	0.	. 1
	aaii	5	1	0	1	0	0	1	0	1
šestnáctkový čítač	aek	6	0	1	1	0	1	0	0	1
- <u>2</u> -		7	1	1	1	0	0	0	0	1
tko Sko		8	0	0	0	1	1	1	1	0
tua	[9	1	0	0	1	0	1	1	0
Ses	`									-
		.10	0	1	0	1	1	0	1	0
		11	1	1	0	1	0	,O	1	0

Q, který má nulovou úroveň, vliv impulsu se tedy neprojeví. Tentýž impuls se přes C_2 dostane i na hradlo B (vstup S). Výstup \overline{Q} je na úrovni log. I a tímto

1. 1 0 0

1 0 1 1 0

0 1.

13

Obr. 4. Asynchronní čítač se 16 stavy (a) a stejný čítač, nulující se desátým impulsem (b)

celého čítace. Přivedeme-li na oddělovací diody záporný impuls, celý čítač se vynuluje.

Závěr

Zapojení z obr. 5 plní funkci dekadického čítače stejně dobře, jako MH7490. Bylo úspěšně realizováno v číslicovém voltmetru, kde pracuje s opakovacím kmitočtem 100 kHz. Bylo by zajímavé zjistit, jaký mezní kmitočet zapojení má, sám jsem to neměl možnost změřit. Jeho nespornou předností je především nízká cena. S IO druhé jakosti (kus 23 Kčs), styroflexovými kondenzátory a miniaturními odpory vychází cena čítače asi na 60 Kčs. Pro amatéry je to jistě vítaná náhrada cenově nedostupného MH7490.

[1] Uhlíř J.; Slípka, P. Polovodičové impulsové a spínací obvody. SNTL. Praha 1972.

1 0 0

Obr. 5. Dekadický čítač z hradel MH7400

Feritová O hrnicková jádna O

Ing. Jan Petrek

(Pokračování)

Při určování činitele indukčnosti a při jeho používání je nutno mít na zřeteli, že platí pouze pro plně navinuté cívkové tělísko. Není-li prostor pro cívku zcela vyplněn, musíme počítat s rozdílnou hodnotou. Na obr. 2 až 8 jsou uvedeny

závislosti činitele indukčnosti na plnění, přičemž h znamená tloušťku vinutí vzhledem k celkové možné tloušťce cívky, tj. k tloušťce vinutí při úplném zaplnění kostry (tělíska) cívky.

Obr. 4.

Obr. 2 až 8. Závislost činitele indukčnosti na plnění u vyráběných velikostí feritových hrníčkových jader; h je poměr tloušíky vinutí k celkové možné tloušíce vinutí (plnění)

Feritový hrníček: Ø 14×8

Obr. 9.

Materiál:

Činitel AL: 63 nH/z²

Typové číslo: 20

205 511 0 05 202

Křivka	Počet závitů	Vodič [mm]
1	50	20 × 0,05 CuLH
2	60	20×0,05 CuLH
3	100 '	20 × 0,05 CuLH >

Měrný ztrálový činitel tg δ/μ_1 (pro daný kmitočet)

Tento údaj potřebujeme při výpočtu činitele jakosti Q. Je velmi závislý na kmitočtu, podobně jako činitel jakosti Q, který navíc závisí na vinutí, na použitém vodiči atd. Typické hodnoty činitele jakosti pro různá vinutí jsou uvedeny na obr. 9 až 24. Pomocí ztrátového činitele lze vypočítat činitel jakosti tak, že se hodnota $\frac{\operatorname{tg} \delta}{\mu_1}$ násobí efektivní permeabilitou pro dané jádro:

$$\frac{\operatorname{tg}\delta}{\mu_{\mathbf{i}}}\,\mu_{\mathbf{e}}=\operatorname{tg}\delta=\frac{1}{Q}.$$

342 (Amatérske! 1 1 H) 975

[kHz] Obr. 10.

Feritový hrníček: Ø 14×8 Materiál: H12

Činitel AL: 160 nH/z² Typové číslo: 205 513 0 05 204

Křivka	Počet závitů	Vodič [mm]
1	750	0,08 CuL
2	280	0,15 CuL
3	226	6×0,05 CuLH
4.	70~	20×0,05 CuLH
5 -	120	10×0,05 CuLH
	1	1

Tak lze určit maximální hodnotu Q např. u jádra bez vzduchové mezery. Cím je vzduchová mezera větší, je με a tedy i tg δ menší a lze tedy dosáhnout větší hodnoty činitele jakosti, než u jádra bez vzduchové mezery.

Měrný hysterezní činitel

Je-li indukčnost taková, že se začnou uplatňovat hysterezní ztráty, je ztrátový činitel $\frac{\operatorname{tg}\delta}{u}$ závislý na intenzitě magnetického pole, která je opět závislá na

Feritový hrníček: Ø 18×11

Materiál: Činitel $A_{\rm L}$:

100 nH/z¹ Typové číslo: 205 511 0 05 253

Křivka	Počet závitů	Vodič [mm]
1	420	0,18 CuL .
2 ,	130	0,3 CuL
3	90	30 × 0,05 CuLH
4	45	60 × 0,05 CuLH
5 .	90	90×0,05 CuLH
6	30 '	20×0,1 CuLH

Feritový hrníček: Ø 18 x 11

'Materiál:

Obr. 11.

Činitel AL:

160 nH/z² Typové číslo: 205 513 0 05 254

' H12

Křivka	Počet závitů	Vodič [mm]
1	1 400	0,08 CuL
J 2	450	0,15 CuL
3	. 400	6×0,05 CuLH
4 '	320	6×0,05 CuLH
, 5	200	10×0,05 CuLH
6	150	10×0,05 CuLH
7	130	20×0,05 CuLH
		'

	600 -											
ı	000	<u> </u>	_	L	H	<u> </u>	↓	_	Ц	_		\square
		-	,	-	H	 	+-	H	Н	\mathcal{L}	-	
!		\vdash	-	\vdash	Н	-	-	-	d	⇈	1	
O	400 -							1	Z	1	7	
		_	<u></u>		Ц	_	_	1	Ц	1	Y_	
			-	-	Н	-	 //	-	V	₩_	5	
1	200-	\vdash	\vdash	1	H	2	木	1	М	1	-	Ш
1				忊		1	1	7	1	╁╌		
1			_	E				1		3		Ш
l		<u> </u>			Ш	ļ	L.,	L.	Ц	┼-	<u> </u>	لللا
l	:	1			1	0			1	00	,	1000
						`			_	f	[kH	z] .

Feritový hrníček: Ø 8×11

Obr. 13.

Materiál: Činitel A_L :

Obr. 12.

100 nH/z²

Typové číslo: 205 517 0 05 253

H22

Křivka	Počet závitů	Vodič [mm]
1	1 400	0,08 CuL
2	450	0,15 CuL
3	. 400	6 × 0,05 CuLH
4	320	6 × 0,05 CuLH
5	150	10 × 0,05 CuLH
6	130	10 × 0,05 CuLH
- 7	85	30 × 0,05 CuLH
		f

Feritový hrníček: Ø 22 x 13 Materiál: H6 Činitel AL: 63 nH/z² Typové číslo: 205 511 0 05 301

Křivka	Počet závitů	Vodič [mm]
1	140	60×0,05 CuLH
2 .	60	90 × 0,05 CuLH
3	30	185 × 0,05 CuLH

Feritový hrníček: Ø 22 x 13

Materiál: Činitel AL: H12 100 nH/z² Obr. 15.

Typové číslo: 205 513 0 05 302

_,,		
Křivka	Počet závitů	Vodič [mm]
1	170	0,335 CuL
2	· 360	0,25 CuL
3	250	10×0,071 CuLH
4	40	135 × 0,05 CuLH
5	100	60×0,05 CuLH
6	~ 24	135 × 0,05 CuLH

Feritový hrniček: \emptyset 22 × 13 Materiál; H22 Činitel AL: 250 nH/z²

Typové číslo: 205 517 0 05 304

Křivka•	Počet závitů	Vodič [mm]
1.	300	0,25 CuL
2	170	0,335 CuL
3	260	10 × 0,071 CuLH
4	120	60×0,05 CuLH
5	44	135 × 0,05 CuLH
, 6	24	135 × 0,05 · CuLH

Obr. 16.

600 -		TIT		
G 400				
200 -		- - 	2 / 5	
			3 6	7
O,	01	0,1	i	10
			<u></u> f [kH	z]

Feritový hrníček: Ø 26×16

H6

Materiál: 100 nH/z² Činitel A_L : Typové číslo: 205 511 0 05 351

Křivka	Počet závitů	Vodič [mm]
1	84	20 × 0,05 CuLH
2	50	20 × 0,05 CuLH
3	31	20 × 0,05 CuLH
4 .	20	20×0,05 CuLH
5	15	20 × 0,05 CuLH
6	12	20 × 0,05 CuLH
7	10	20 × 0,05 CuLH
8	31	0,4 CuL
'		ı

								Λ					
600 7				7			M	\Box	V	$\overline{}$	\Box	7	
			Н	+	\vdash		H	1	А	+	\dashv	+	
400				1		//		7		\Box		1	
œ	· .		\vdash	1	19	X-	H	4	14	5.		+	ļ
Å I		-		H	γZ	/	1	H	3_	-	`6	+	
200				4		1	2	П			П	4]
			ŕ	+	-	1	H	+		-	Н	+	1
- 1													1
			L	Ц	-	<u> </u>		LL	<u> </u>	l	L	Ļ	ļ
. 1	1			1	0				00			oò	0
`								-	f	[kHz]		

Feritový hrníček: Ø 26 × 16

Materiál:

Obr. 17.

Činitel AL: 400 nH/z[‡]

Typové číslo: , 205 513 0 05 354

H12

Křivka	Počet závitů	Vodič [mm]
1	600	0,2 CuL
2	400	0,25 CuL
3	300	20×0,05 CuLH
4	210	30 × 0,05 CuLH
5	70	2×45×0,05CuLH
6	40	2 × 45 × 0,05 CuLH

Feritový hrníček: Ø 26 x 16 Materiál:

Obr. 18.

H22

630 nH/z² Činitel AL: Typové číslo: 205 517 0 05 355

Křivka Počet závitů Vodič [mm] 0,2 CuL 1 600 2 10 × 0,05 CuLH 400 3 300 20 × 0,05 CuLH 30×0,05 CuLH 200 120 2 × 20 × 0,05 CuLH 5 80 $3 \times 20 \times 0.05$ CuLH 6 . 3 × 20 × 0,05 CuLH

Obr. 19.

Feritový hrniček: Ø 30×19

Materiál: Činitel As.:

250 nH/z²

· H12

Typové číslo:

205 513 0 05 401

Obr. 20.

Křivka	Počet závitů	Vodič [mm]
` 1	370	0,335 CuL
2 .	200	0,5 CuL .
3	280	60 × 0,05 CuLH
4	140	45 × 0,071 CuLH
5	80	60 × 0,071 CuLH
	1	1

Feritový hrníček: Ø 30×19

Materiál:

H22

400 nH/z² Činitel AL:

Typové číslo: 205 517 0 05 402

	Křivka	Počet závitů	Vodič [mm]
•	i	370	0,335 CuL
	2	200	0,5 CuL
	3	280	60 x 0,05 CuL
	4	140	45 × 0,071 CuL
	5	80	60 × 0,071 CuL
		J.	I .

Feritový hrníček: Ø 36 × 22

Obr. 22.

Materiál: Činitel AL H12 250 nH/z²

Typové číslo:

205 513 0 05 452

	Křivka	Počet závitů	Vodič [mm]		
•	1	550	0,3 CuL		
	2 .	350	30 ×,0,05 CuLH		
	3	160	45 × 0,071 CuLH		
	4	130	90×0,05 CuLH		
	5	- 74	90×0,05 CuLH		
	6	, 20	135 × 0,1 CuLH		
		j .	1		

rozměrech magnetického obvodu, na indukčnosti L, a na efektivní hodnotě proudu I. Označíme-li odpor, předsta-vující hysterezní ztráty, Rz a jeho zvět-šení (při f = 800 Hz) při přírůstku proudu o l mA jako hysterezní činitel q2, pak platí:

$$\frac{\varDelta R_{\rm z}}{2\pi f L} = \frac{q_2}{2\pi .800} \, \varDelta I \, \sqrt[3]{L}$$
 a tedy

$$q_2 = \frac{800 \, \Delta R_z}{\Delta I f L \, \sqrt[3]{L}}$$

kde

 $\Delta R_{\mathbf{z}}\left[\Omega\right]$ je rozdíl ztrátového odporu vlivem hysterezních ztrát,

 $egin{aligned} \Delta I & [\mathrm{A}] \ L & [\mathrm{H}] \ f & [\mathrm{Hz}] \end{aligned}$ rozdíl proudu, indukčnost a kmitočet.

V materiálových tabulkách se uvádí údaj hysterezního činitele pro jádro o objemu 24 cm³ a pro efektivní permeabilitu 100 jako $q_{2(24-100)}$. Pro libovolné jádro lze pak q_2 určit ze vztahu:

$$q_2 = q_{2(24-100)} \sqrt{\left(\frac{\mu_{\rm e}}{100}\right)^3} \sqrt{\frac{24}{V}},$$

V je objem jádra [cm³]. Někdy se také používá měrný hysterezní či-

nitel $\frac{h}{\mu_i^2}$. Vztah mezi nim a $q_{2(24-100)}$ je:

$$q_{2(24-100)} = 1,455 \frac{h}{\mu_i^2}$$

Údaje měrného ztrátového činitele se uvádějí pro intenzitu pole $H_1 = 5 \text{ mA/}$ $/\text{cm a H}_2 = 20 \text{ mA/cm}.$

Měrný teplotní činitel TKu1

je určen vztahem

$$TK\mu_1 = \frac{\Delta\mu_1}{\Delta T} \frac{1}{\mu_i^2},$$

kde

 $\Delta \mu_1$ je změna počáteční permeability mezi teplotami T_1 a T_2 a ΔT rozdíl teplot T_1 a T_2 (obvykle se udává $T_1 = 20$ °C, $T_2 = 60$ °C).

Feritový hrníček: Ø 36 × 22

Obr. 23.

Materiál: 1

Činitel A_L : 400 nH/z^2

Typové označení: 205 517 0 05 453

Křivka	Počet závitů	Vodič [mm]
1	1 400	0,15 CuL
2	900	0,2 CuL
3 .	450	0,3 CuL
4	200	2×30×0,05 CuLH
5	120	45 × 0,05 CuLH
6	80 .	3×45×0,05 CuLH ·
7	40 .	3×45×0,05 CuLH
	I	l

Feritový hrníček: Ø 42×29 Materiál:

H22

Obr. 24.

205 517 0 05 503 Typové číslo: Činitel A_L : 630 nH/z²

Křivka	Počet závitů	Vodič [mm]		
1	200	0,05 CuL		
· 2	400	0,45 CuL		
3	800	0,335 CuL		
14	25 i	3×90×0,05 CuLH		
5 ,	100	3×90×0,05 CuLH		
6	50	3×90×0,05 CuLH		
	1	(Pokračování)		

Jazýčkový modulátor

Při konstrukci měřicích přístrojů (stejnosměrných signálů) s velkým vstupním odporem a zesí-lením se k zajištění malého driftu používají modulátory. Jejich funkce spočívá v přeměně stejnosměrného signálu na signál zvlněného průběhu tak, aby bylo možno použít kapacitní, popř. indukční vazby mezi jednotlivými stupni zesilovače, a aby se tak vyloučily pomalé změny jednotlivých prvků zesilovače.

Ideální modulátor by měl mít následující vlastnosti:

- a) signál by měl být od ovládacího zdroje dokonale galvanicky oddělen
- b) přenosové vlastnosti by měly být časově stálé;
- signál po průchodu modulátorem by měl mít co nejmenší útlum;
- d) přenos by měl být lineární.

Pro amatérskou konstrukci k tomu přistupuje nezbytná podmínka snadné zhotovitelnosti.

Dále popsaný modulátor při své jed-noduchosti splňuje velmi dobře podmínky a), c) a d) a při použití stabilizace střídavého napájecího proudu i pod-

Za základní konstrukční prvek jsem zvolil kontakty jazýčkového relé. Kompletní jazýčkové relé včetně ovládací cívky a krytu, upravené pro plošné spoje tak, jak je v prodeji, nelze pro citlivější zařízení použít. Proudy naindukované ovládací cívkou zcela překrývají signál. Proto byla nutná konstrukční úprava, která tento nedostatek prakticky vylou-

Popis a výpočet elektrických obvodů

Schéma zapojení je na obr. č. 1, kde U je napětí signálu, R₁, R volitelné odpory, R_g mřížkový odpor elektronky, popř. vstupní odpor zesilovače, C kapacita vazebního kondenzátoru a C1 kapacita vyhlazovacího kondenzátoru.

Popis funkce

Ovládací cívka jazýčkového relé je zapojena do pomocného obvodu, napájeného střídavým (tepavým) proudem a periodicky tak spíná, popř. rozpíná kontakty relé. Signál o napětí U je přiveden na kondenzátor C1, který má za účel zabránit proudovým nárazům do měřené-

ho obvodu při sepnutí kontaktu relé. V okamžiku, kdy relé sepne, začne se nabíjet kondenzátor C. Po přerušení kontaktu se naopak kondenzátor C začne přes odpory R a R_g (zapojené v sérii) vybíjet až do okamžiku, kdy relé opět sepne a celý děj se začne periodicky opakovat. S hlediska většího vstupního odporu

Obr. 1. Základní schéma zapojení

(Amatérské! VAI) (1) 345

Obr. 2. Obvod pro sepnuté kontakty relé

Obr. 3. Obvod pro rozpojené kontakty relé.

by bylo lepší nahradit odpor R dalším kontaktem relé s opačným časovým průběhem, neboť takto při sepnutém relé protéká odporem R neúčinně proud signálu a zmenšuje tak vstupní odpor.

Pro početní sledování popsaného děje je na obr. 2 obvod pro sepnuté relé a na obr. 3 pro rozpojené relé. Jsou-li kontakty sepnuty po dobu t_1 a rozpojeny po dobu t_2 , je perioda sledovaného děje

$$T=t_1+t_2.$$

Pro obvod na obr. 2 lze napsat tyto rovnice:

$$(R_1 + R)i + R_1i_1 = U (1)$$

$$\frac{Q}{C} + R_g i_1 = Ri \qquad (2),$$

l.d.

$$i_1 = \frac{dQ}{dt}.$$

Po vyloučení proudu i z rovnice (1) a (2) obdržíme diferenciální rovnici

$$\frac{dQ}{dt} + \frac{R_1 + R}{(R_1 R_g + R_1 R + R_g R) C} Q = \frac{R}{R_1 R_g + R_1 R + R_g R} U \quad (1)$$

dále integrací

$$Q = \frac{RC}{R_1 + R} \stackrel{'}{U} + A \exp(-\alpha t) \quad (4),$$

kde

$$\alpha = \frac{R_1 + R}{(R_1 R_g + R_1 R + R_g R) C}.$$

Označíme li $R_{
m v}=rac{R_1R}{R_1+R}$, lze psát kratčeji $lpha=rac{1}{(R_{
m g}+R_{
m v})\;C}$.

Podobným způsobem vyšetříme obvod, znázorněný na obr. 3 a obdržíme

$$Q = B \exp \left(--\beta t\right) \tag{5},$$

$$\left[\frac{RC}{R_1+R}U+A\exp\left(-\alpha t\right)\right]_0^{t_1}+\left[B\exp\left(-\beta t\right)\right]_0^{t_2}=0$$

$$\frac{RC}{R_1+R}U+A\exp\left(-\alpha t_1\right)=B.$$

Řešením předešlých dvou rovnic obdržíme A a B:

$$A = -U \frac{RC}{R_1 + R} \frac{1 - \exp(-\beta t_2)}{1 - [\exp(-\alpha t_1 + \beta t_2)]},$$

$$B = U \frac{RC}{R_1 + R} \frac{1 - \exp(-\alpha t_1)}{1 - [\exp(-(\alpha t_1 + \beta t_2)]}.$$

Dosazením integrační konstanty A do (4) vypočteme

$$Q = U \frac{RC}{R_1 + R} - U \frac{RC}{R_1 + R} \frac{1 - \exp(-\beta t_2)}{1 - [\exp(-\alpha t_1 + \beta t_2)]} \exp(-\alpha t)$$
 (6).

Dosazením B do (5) obdržíme podobně

$$Q = U \frac{RC}{R_1 + R} \frac{1 - \exp(-\alpha t_1)}{1 - [\exp(-\alpha t_1 + \beta t_2)]} \exp(-\beta t)$$
 (7).

Rovnici (6), platnou pro obr. 2 a rovnici (7), platnou pro obr. 3 je časový průběh náboje Q pro ustálený stav po celou periodu úplně určen.

Derivací rovnic (6) a (7) podle času vypočítáme proud i_1 jako funkci času. Vyjde:

$$i_1 = U \frac{\alpha RC}{R_1 + R} \frac{1 - \exp(-\beta t_2)}{1 - [\exp(-\alpha t_1 + \beta t_2)]} \exp(-\alpha t)$$
 (8),

$$i_1 = -U \frac{\beta RC}{R_1 + R} \frac{1 - \exp(-\alpha t_1)}{1 - [\exp(-\alpha t_1 + \beta t_2)]} \exp(-\beta t)$$
 (9).

Výstupní napětí u modulátoru je rovno R_gi_1 .

Z těchto rovnic po úpravě obdržíme:

$$u = U \frac{R_g R}{R_1 R + R_1 R_g + R_g R} \frac{1 - \exp(-\beta t_2)}{1 - \exp(-\alpha t_1 + \beta t_2)} \exp(-\alpha t) \quad (10),$$

$$u = -U \frac{R_g R}{(R_1 + R)(R_g + R)} \frac{1 - \exp(-\alpha t_1)}{1 - \exp(-\alpha t_1 + \beta t_2)}$$
(11).

Nyní zbývá vypočítat vstupní odpor modulátoru. Vstupní odpor určíme z náboje, který proteče odporem R_1 za čas t_1 . Tento náboj je však totožný s nábojem, který proteče zdrojem U za dobu periody T. Označíme-li tento náboj Q_0 , určíme jej z rovnice

$$Q_0 = \int_0^{t_1} (i_1 + i) \, \mathrm{d}t.$$

Součet $i_1 + i$ vypočítáme z rovnic (1) a (2). Vstupní odpor je pak dán vztahem:

$$R_{\rm vst} = \frac{UT}{Q_0}$$
.

Provedením naznačených operací vyjde:

$$R_{\text{vst}} = T \frac{(R_1 + R)^2 [1 - \exp{-(\alpha t_1 + \beta t_2)}]}{(R_1 + R) \{1 - [\exp{-(\alpha t_1 + \beta t_2)}]t_1\} + R^2 C [1 - \exp{(-\alpha t_1)}][1 - \exp{(-\beta t_2)}]}$$

kde

$$\beta = \frac{1}{(R_{\sigma} + R) C}.$$

A z rovnice (4) a B rovnice z (5) jsou integrační konstaty, které určíme z následujících dvou podmínek:

1. Změna náboje kondenzátoru C za čas $T = t_1 + t_2$ je rovna nule.

2. Náboj Q kondenzátoru C pro $t=t_1$ z rovnice (4) je rovný náboji Q kondenzátoru pro t=0 z rovnice (5).

Tyto dvě podmínky jsou vyjádřením ustáleného stavu.

Zápis těchto dvou podmínek je následující: Jsou-li exponenty rovnic (10), (11) a (12) čísla od nuly málo se lišící, lze přibližně psát:

$$u = U \frac{R_{g}Rt_{2}}{(R_{1} + R)(R_{g} + R)t_{1} + (R_{1}R + R_{1}R_{g} + R_{g}R)t_{2}} \left(1 - \frac{1}{(R_{g} + R_{v})C}t\right)$$
(10)

$$u = U - \frac{R_{g}Rt_{1}}{(R_{1} + R)(R_{g} + R)t_{1} + (R_{1}R + R_{1}R_{g} + R_{g}R)t_{2}} \left(1 - \frac{1}{(R_{g} + R)C}t\right)$$
(11'),

$$R_{\text{vst}} = \frac{I}{t_1} \frac{(R_1 + R)^2 \left[(R_g + R)t_1 + (R_g + R_v)t_2 \right]}{(R_1 + R) \left[(R_g + R)t_1 + (R_g + R_v)t_2 \right] + R^2 t_2}$$
(12').

A konečně, je-li $R_1 = 0$, platí pro vstupní odpor z (12'):

Obr. 4. Časový průběh výstupního napětí

Obr. 5. Zapojení modulátoru do pomocného

$$R_{\text{vst}} = R \left(1 + \frac{R_{\text{g}}}{R_{\text{g}} + R} \frac{t_2}{t_1} \right).$$

Časový průběh výstupního napětí podle (10') a (11') je na obr. 4.

Nemá-li jedna ze svorek zdroje signálu stejný potenciál jako výstup modulátoru, použijeme úpravu zapojení, znázorněnou v pravé části obr. 1. Platí zde jednoduchý vztah

$$C = \frac{C_2 C_3}{C_2 + C_3}$$

Přirozeně volíme $C_2 = C_3 \Rightarrow C = \frac{1}{9} C_1$.

V případě, že jedna vstupní a výstupní svorka modulátoru je společná, nabízí se možnost vypustit odpor R a kondenzátor C. Tuto úpravu však není možno připustit ani tehdy, je-li prvním zesilo-vacím stupněm elektronka. Mřížkový proud, i když je velmi malý, vytváří na svodovém odporu R_g spád napětí, který by při zkratování obvodu mřížka – zem působil stejně, jako signál úrovně desítek milivoltů.

V předešlých rovnicích jsou časy t_1 a t2 závislé na způsobu napájení ovládací cívky, způsobu vinutí, použitém materiálu jádra atd. Všechny tyto vlivy nelze početně vystihnout a proto nezbývá, než u hotového a nastaveného modulátoru (srovnej s konstrukčním popisem) tyto časy změřit. Nejsnáze tak lze učinit osciloskopem, dostatečně přesný výsledek však získáme i zapojením modulátoru do pomocného obvodu podle obr. 5. Na vstup modulátoru zapojíme baterii 9 V a odpory R_1 a R volíme vzhledem ke kapacitě kondenzátoru G tak, aby výstupní napětí bylo jen nepatrně zvlněno. Kondenzátor C má mít pokud možno velkou kapacitu a nesmí být elektrolytický. Po změření napětí u vypočítáme čas t₁ ze

$$t_1 = \frac{u}{U - u} \frac{R_1}{R} T, \quad t_2 = T - t_1 \quad (13).$$

Měříme-li napětí u Avometem, je nutné připočítat k odporu R vstupní odpor Avometu podle pravidla paralelního řazení odporů.

· Jako příklad odvozených vztahů byl vypočítán návrh modulátoru pro stupeň s elektronkou (EF86):

Volim:
$$R_1 = 0$$
, $R = 4 \cdot 10^6 \Omega$, $R_g = 8 \cdot 10^6 \Omega$, $C = 10^{-8} \text{ F}$.

Čas t_1 byl pomocí (13) určen jako $\frac{1}{200}$ s.

Do obvodu ovládací cívky byla do série zařazena dioda GA201.

Z (10') je
$$u = U \frac{R_{g}t_{2}}{(R_{g} + R)t_{1} + R_{g}t_{2}} \left(1 - \frac{1}{R_{g}C}t\right) = \frac{2}{3}U(1 - 12.5t);$$
 z (11') je
$$u = -U \frac{R_{g}t_{1}}{\sqrt{R_{g} + R)t_{1} + R_{g}t_{2}}} \left(1 - \frac{1}{(R_{g} + R)C}t\right) = -\frac{2}{9}U(1 - 8.33t);$$

z (12') je

$$R_{\text{vst}} = R \left(1 + \frac{R_g}{R_\sigma + R} \frac{t_2}{t_1} \right) = 12 \text{ M}\Omega.$$

Čas t_1 byl změřen u obvodu následujících parametrů:

$$U = 9.6 \text{ V}, \quad R_1 = 47 \text{ k}\Omega \pm 2 \%,$$

 $R = 0.1 \text{ M}\Omega \pm 2 \%,$

měřeno Avometem na rozsahu 6 V ⇒ $R_1 = 0.3$ MΩ, napětí u = 2.7 V; $R = \frac{300 \cdot 100}{400} = 75$ kΩ,

$$t_1 = \frac{2,7}{6,9} \cdot \frac{47}{75} \cdot \frac{1}{50} = 4,9 \text{ ms } = \frac{1}{200} \text{ s}.$$

Použit byl kondenzátor typu MP, 8 μF.

Konstrukční provedení

Sestava samotného modulátoru bez elektrických obvodů je na obr. 6. Do základní desky poz. I jsou vypilovány dva obdélníkové otvory, jimiž je provlečeno jádro cívky 5. Jádro je na základní desku upevněno úhelníkem 4. Vlostať trahižíka vlostalty i sprážkového. Vlastní třubička s kontakty jazýčkového relé 10 je provlečena otvory v jádru, v nichž jsou zasazeny pryžové průchod-ky. Prostory cívky i jazýčkových kontak-tů jsou zakryty víky 2 a 3. Jádro cívky tvoří profil U, zhotovený z měkké oceli o tloušíce asi 2 mm. Základní deska a víka jsou zhotoveny z hliníkového ple-chu tloušťky nejméně 1 mm. V místě vinutí je jádro obtočeno Isolepou. Cívku vineme na ruční vrtačce pomocí pří-pravku, znázorněného na obr. 12. Postupujeme tak, že ocelový drát o ø asi 6 mm spilujeme v délce asi 3 mm do osy a lehce připájíme na jádro. Celkek upneme do vrtačky a navineme asi 6 000 závitů drátu CuL o Ø 0,08 mm. Je výhod-

Obr. 6. Sestava modulátoru bez elektrických obvodů

né před vinutím přilepit na čela jádra umakartové destičky 13, které provle-čeme před ohýbáním. Vinutí tak zajis-tíme proti sesmeknutí. Po navíjení přípravek odlomíme a začistíme jádro. Rozvinuté tvary detailů 1, 2, 3, 4 a 5 jsou na obr. 7 až 11.

2 díry \$32 vrtat v seslavě; díru pro průchodku vrtat podle dispozice; mat. plech AL - tl.1 mm

2 díry ø 3:2 vrtat v sestavě díru pro průchodku vrtat podle dispozice mal. plech Al -tl,1 mm

Obr. 8.

9 Amatérské! All 1 347

Obr. 12.

Protože magnetický tok se uzavírá přes kontakty relé, je nutné, aby skleněný zátav procházel průchodkami co nejtěsněji. Po provlečení zátavu připájíme na svorky relé vodiče. Použijeme měděný drát o Ø alespoň 0,3 mm, protože se vzhledem k materiálu, z něhož jsou kontakty, neobejdeme bez pájecí pasty. Po pájení přívodů spoj dokonale očistíme benzinem nebo tetrachlorem a přetřeme nitrolakem.

K napájení cívky zvolíme efektivní napětí alespoň 10 V, které podle potřeby zmenšíme proměnným odporem asi 680 Ω; popř. lze zařadit do série s cívkou diodu. Zvuk, který vydává relé, nám bude vodítkem při nastavení odporu. Odpor v žádném připadě nesmí být tak velký, aby řelé přestávalo pracovat. Po seřízení změříme v případě potřeby čas t₁ metodou, která byla již popsána [viz text u (13)].

Protože zpračovávané proudy budou nejčastěji řádu desetin µA, bude mít relé prakticky neomezenou trvanlivost. V prodeji v Bazarech bývají často samotné zátavy, přibližně za 3 Kčs, jinak je nutno koupit úplné relé v ceně 6 až 10 Kčs a trubičku vyjmout opatrným přeštípnutím kontaktů ostrými štípačkami. S hlediska vyloučení rušivých poli je výhodné do krytu jazýčkového relé umístit i příslušné obvody.

Cena takto zhotoveného modulátoru, jehož vlastnosti jsou s komerčním výrobkem nesrovnatelné, nepřesahuje 10 Kčs, včetně příslušné diody.

Seznam součástek

Pozice	Počet kusů	Název	Materiál
1	1	základní deska	hlinik
2	1	viko	hliník
3	1	viko	hliník
4	1	úhelník	hliník
, 5	1	jádro ''	měkká ocel
´6	6	šroub M3×5	
7	4	matice M3	1
8	2	pryžová průchodka	
9	2	nýt 2×5	hliník
10	1	zátav jaz. relé -	
11	· 2	pryžová průchodka	
13	2	čelo	umakart

Dodatek

K ověření funkce popsaného modu-látoru jsem zhotovil elektronkový zesilovač s osazením 1 × 6CC41 a 2 × \times ECC83. Vstup zesilovače byl zvolen jako katodový sledovač, měřidlo s citlivostí 100 μA bylo zapojeno do katodového sledovače, osazeného elektronkou ECC83. Signál se demoduloval v mřížkovém obvodu koncového stupně (dvě diody OA9). Žhavicí obvod byl vzhledem k provizornosti konstrukce napájen střídavým proudem, takže ručku měřidla v můstku bylo nutno vynulovat asi o 25 dílků stupnice. Modulátor byl napájen tepavým proudem přes diodu GA201. Po připojení modulátoru nevznikla navíc pozorovatelná výchylka v nastavení ručky. Tím bylo ověřeno splnění první podmínky z úvodu člán-ku. Vzhledem k poměrně značné citlivosti zesilovače (asi 2 mV na plnou výchylku) a vzhledem k havarijnímu stavu sítě v mém bytě (3×120 V, kde lze proti čemukoli naměřit cokoli) se ukázalo, že vstupní svorky i při zesilovači v krytu působí jako antény. Tato závada byla odstraněna zapojením. kondenzátoru 0,1 μF přímo na vstupní svorky zesilovače. Pak bylo vše v pořádku a výsledky, včetně použitého zapojení, byly zakresleny do grafu (obr. 14).

Obr. 14. Závislost výchylky ručky měřidla na vstupním napětí

Na ose souřadnic je měřené napětí v mV, na ose pořadnic výchylka ručky měřidla v dílkách stupnice.

Z výsledků měření (jednotlivé body měření jsou značeny křížky) vyplývá, že stupnice je lineární asi od 30 mV, nelinearita na počátku je dána dynamickým odporem demodulačních diod. Vstupní odpor je přibližně 3 $G\Omega/V$, průměrný proud protékající modulátorem při plné výchylce měřidla je 340 pA a při nejmenší výchylce ručky (28 mV) 60 pA.

Z uvedeného diagramu je zřejmá velmi dobrá funkce popsaného modulátoru, který je schopen po zapojení do vhodného zesilovače zpracovávat velmi malé proudy i napětí.

Kajímavá zapojení ze zahraničí <<

Kombinovaný měřič teploty

V měřiči teploty, popsaném v jednom zahraničním časopisu, slouží jako snímač teploty (čidlo) křemíková dioda, jež má velmi malé rozměry. Přístrojem podle obr. 1 lze pak měřit teplotu od –68 do +175 °C. Horní měřicí mez je dána pouze odolností diody proti zničení při vysokých teplotách.

Měřič teploty je na obr. I. Skládá se ze zdroje konstantního napětí, jímž se napájí dioda čidla (D_1) a vstupy operačního zesilovače μ A741. Zdroj konstantníhô napětí je tvořen polovinou integrovaného obvodu μ A723; druhá polovina obvodu slouží jako zesilovač. Diodové čidlo je zapojeno do smyčky zpětné vazby operačního zesilovače.

Potenciometrem P_1 se nastavuje napětí na neinvertujícím vstupu operačního zesilovače tak, aby měřidlo na výstupu ukazovalo nulu při nulové teplotě okolí (v němž je diodové čidlo umístěno). Na invertujícím vstupu by tedy mělo být napětí asi 600 mV, stejně jako na neinvertujícím (600 mV je průměrný úbytek napětí na přechodu křemíkové diody při teplotě 0 °C).

Citlivost použité diody je asi

Citivost použité diody je asi -2 mV/°C, na výstupu operačního zesilovače bude tedy při 100 °C asi 400 mV (600 mV - 200 mV = 400 mV).

Zesilovač (1/2 µA723) pracuje v invertujícím režimu. Potenciometrem P2 se nastavuje proud, tekoucí měřidlem při jednotkové změně teploty (tj. při

Obr. 1. Zapojení elektronického teploměru pro velmi široký rozsah měřených teplot

změně teploty o 1 °C). Použijeme-li měřidlo 100 μA a měří-li se teplota 0 až 100 °C, bude odpor potenciometru asi 2 $k\Omega$ (potenciometr je zapojen jako proměnný odpor).

Tento základní obvod lze doplnit o přepínač rozsahů měřidla apod., potřebné údaje najde zájemce v původním pramenu.

Místo obvodu μA723 lze použít tuzemský výrobek MAA723, místo μA741 tuzemský operační zesilovač MAA501, 502 apod. (s příslušnými kompenzačními prvky), diodu bude třeba vybrat tak, aby měla co největší změnu úbytku napčtí při co nejmenší změně teploty.

Practical Electronics, prosinec 1974 -Mi-

Dva zdroje k blesku, napájené ze sítě, s regulací napětí pro výbojku

Síťové napájení blesku je u fotoamatérů stále v oblibě, neboť se mnoho snímků pořizuje v místnostech, kde je síťové napětí k dispozici. Většina vý-

Obr. 1. Zdvojovač s vypínačem nabíjení

Obr. 2. Zdvojovač s tyristorem

Jednoduché řešení zdvojovače napětí je na obr. 1. Pokud je spínač S_1 spojen, nabíjí se kondenzátor G_2 na dvojnásobek špičkového napětí sítě. Náboj G_2 se dopňuje během každé periody nábojem z kondenzátoru G_1 . Doba nabíjení závisí na kapacitách kondenzátorů a je tím delší, čím větší je poměr $\frac{G_2}{G_1}$.

Po rozpojení spínače S_1 se napětí na obou kondenzátorech ustálí a C_2 se přestane dále nabíjet. Místo spínače S_1 lze použít tyristor, jehož činnost lze elektronicky ovládat. Paralelně ke kondenzátoru C_2 připojíme dělič napětí, jehož součástí je potenciometr P, kterým nastavíme napětí, potřebné k ovládání spínače (obr. 2). Přidáním diody D_3 a odporu R_1 zajistíme, že na tyristoru bude maximálně

$$\sqrt{2}$$
. 220 V $=$ 311 V.

napětí sítě, tedy

Vystačíme tedy s tyristorem, jehož závěrné napětí je 400 V. Kdybychom chtěli nahradit diodu D_1 z obr. l přímo tyristorem, musel by mít tyristor závěrné napětí 700 V. Zapojení s diodou a odporem je levnější. Skutečná dvě řešení zdrojů pracujících na uvedeném principu jsou na obr. 3 a 4.

První způsob (obr. 3) využívá síťového transformátoru Tr. Činnost prvků

První způsob (obr. 3) využívá sítového transformátoru Tr. Činnost prvků C_{12} , D_{13} , Ty_{11} , R_{14} a C_{13} byla již vysvětlena. Odpor R_{11} omezuje nárazový proud do kondenzátorů po zapnuť přístroje a chrání tak diody proti proudovému přetížení. Transformátor s diodou D_{11} a kondenzátorem C_{11} tvoří napájecí zdroj o napětí asi 10 V pro tranzistory T_{11} a T_{12} . Tyto tranzistory isou v Darlingtonově zapojení a tvoří emitorový sledovač k napájení řídicí elektrody tyristoru Ty_{11} . Po zapnutí přístroje teče přes odpor R_{13} do báze T_{12} proud a oba tranzistory jsou otevřeny. Zároveň je otevřen tyristor Ty_{11} a kondenzátor C_{13} se nabíjí.

Obr. 5. Obvod zapalovací výbojky

takže spínání tyristoru "se posune" směrem k průchodu síťového napětí nulou a omezí se tak šíření rušivých signálů do obvodu sítě. Kondenzátor C_{23} se nabíjí přes diodu D_{25} a napětí z tohoto kondenzátoru otevírá přes odpor R_{26} tranzistor T_{23} . Tímto tranzistorem je zkratován proud tekoucí odporem R_{25} a tranzistory T_{21} a T_{22} jsou zavřeny. Proud protékající obvodem R_{21} , G_{21} , R_{22} , D_{21} a řídicí elektrodou tyristoru T_{v21} při kladné půlvlně na hořejší svorce síťového napětí otevírá tyristor T_{y21} a kondenzátor C_{24} se nabíjí výše popsaným způsobem.

Zapálí-li doutnavka, tranzistor T_{23} se uzavře opačným proudem před diodu D_{26} , tranzistory T_{21} a T_{22} se otevřou a zkratují v kladné půlvlně napětí na diodě D_{21} . Proud do řídicí elektrody tyristoru přestane téci a tyristor se uzavře. Činnost ostatních prvků byla vysvětlena již dříve. Náhrada polovodičových prvků výrobky TESLA: $D_{21} - 1NZ70; D_{22}, D_{26} - KA501; D_{23}, D_{24} - KY705; D_{25} - KY703; <math>T_{21}$, $T_{23} - KC508$; $T_{22} - KF517B$; $T_{21} - KT505$.

Zapalovací obvody pro výbojku jsou známy z obvyklých zapojení. Pro informaci uvádím příklad zapojení na obr. 5.

Funktechnik č. 2/1972, str. 59

−Ru−

Obr. 3. Zdroj pro blesk s transformátorem

Obr. 4. Zdroj pro blesk bez transformátoru

bojek však vyžaduje k spolehlivému zapálení a dosažení potřebného výkonu větší napětí, než jaké lze získat pouhým usměrněním 220 V. Proto se používají buď transformátory, nebo obvykleji zdvojovače napětí. Maximální dosažitelná velikost napětí při použití zdvojovače je (teoreticky)

$$2\sqrt{2}$$
. 220 V \doteq 622 V.

Potřebné napětí pro zapálení většiny výbojek je v rozmezí 350 až 500 V. Na tato napětí jsou též konstruovány kondenzátory, určené pro fotoblesky. Z hlediska reprodukovatelnosti energie záblesků a ochrany kondenzátorů před předpětím je vhodné po dosažení potřebného napětí přerušit další nabíjení kondenzátoru.

Dosáhne-li napětí na potenciometru P_{11} zápalného napětí doutnavky E_1 , začne protékat obvodem doutnavky a diodou D_{12} proud opačného směru než je proud odporem R_{13} a tranzistor T_{12} se zavře. Kondenzátor C_{13} se přestane nabíjet a napětí na něm se ustálí na velikosti nastavené potenciometrem.

Polovodiče lze nahradit výrobky TESLA takto: D_{11} , D_{12} – KY701; D_{13} , D_{14} – KY705; T_{11} , T_{12} – KC508; $T_{y_{11}}$ – KT505.

Zapojení, u něhož není třeba používat transformátor, je na obr. 4. Spínací proud pro tyristor se získává přímo ze sítě přes členy R_{22} a G_{21} . Kondenzátor G_{21} plní dvě funkce, jednak svou impedancí omezuje proud do spínacího obvodu a jednak posouvá výhodně fázi,

Generátor impulsů s integrovanýmí obvody

V běžné radioamatérské praxi se často vyskytuje potřeba vlastnit generátor impulsů. Je pochopitelné, že pro většinu měření by mohl vyhovět nf generátor s výstupným signálem sinusového a pravoúhlého tvaru, tento zdroj signálu však není ideálním zdrojem impulsů pro potřeby číslicové techniky.

Popsaný generátor je kompaktním zdrojem signálu právě pro číslicovou techniku – jeho výstup lze přepínat na dvě úrovně, odpovídající úrovním log. I

Obr. 1. Běžný spínač (a) s kontakty nemá definován přesně okamžik sepnutí, "kmitá" (b); kmitání spínače lze odstranit elektronickým spínačem (c)

a log. 0, popř. lze měnit kmitočet výstupního signálu plynule od 10 MHz až do stavu, kdy na výstupu bude vždy za několik sekund jednotlivý impuls. Monostabilní multivibrátor v přístroji je schopen navíc dodávat jednotlivé impulsy o době trvání od μs do s. Přístroj má i indikaci (žárovkami) úrovně výstupního signálu.

Při návrhu přístroje autor vycházel především z potřeby definovat a volit logické úrovně výstupního signálu, přičemž logické nule musí odpovídat úroveň typicky 0,2 V (maximálně 0,4 V) a log. l úroveň 3 V (typicky; minimálně 2,4 V). Změna mezi jednotlivými úrovněmi musí být velmi rychlá, autor si dal požadavek, že musí být menší než asi l µs (tzv. doba náběhu, neboli doba čela a doba týlu impulsu). Ke zkoušení logických obvodů je třeba, aby bylo možno výstupní úroveň měnit podle přání právě na log. l a log. 0 (obr. 1a). Vzhledem ke kmitání mechanických kontaktů přepínače (obr. 1b) je třeba k přepínání výstupního signálu použít zapojení podle obr. 2, v němž se k přepínání používají dvě dvouvstupová hradla NAND (1/2 obvodu MH7400). Je-li přepínač Př₁ v poloze I, je jeden ze vstupů horního hradla na úrovni log. 0, je-li v poloze 2, je jeden ze vstupů spodního hradla na úrovni log. 0. V prvním případě je na výstupů dolního hradla log. 1. V druhém případě je úroveň obou výstupů opačná.

Jako generátor impulsů proměnné rychlosti je použit obvod na obr. 3. Symetrii výstupního signálu určují odpory R_1

různé kmitočty signálu volně kmitajícího multivibrátoru na obr. 3 jsou v tabulce odpovídající kondenzátory C_1 .

(C_1		Perioda		Kmitočet	
i _		60	ns	16,7	MHz	
47	pF	120	ns	8,33	MHz	
100	рF	170	ns	5,88	MHz	
220	рF	280	ns	3,57	MHz	
470	рF	515	ns	1,94	MHz	
1	nF	1	(LS	1	MHz	
2,2	nF	2,1	lμs	476	kHz	
4,7		4,3	βμs	233	kHz	
10	nF	8,1	lμs	123	kHz	
22	nF	19	μs	53	kHz	
47	nF	37	μs	27	kHz	
0,1	μF	70	įτε	14	kHz	
0,2	$2 \mu F$	190	μs	5,3	kHz	
0,4	7 μF	430	μs	2,3	kHz	
1	μ F	909	μs	1,1	kHz	
100	μF	91	ms	11	Hz	

Třetí součástí přístroje je zdroj jednotlivých impulsů s nastavitelnou délkou. Jde o monostabilní multivibrátor opět s hradly NAND. Šířka výstupních impulsů je závislá na kapacitě kondenzátoru C_3 (obr. 4); přibližná závislost šířky impulsu na kapacitě C_3 je v tabulce.

Kapacita kondenzátoru C3	Šířka impulsu		
	180 ns		
47 pF	230 ns		
100 pF	300 ns		
➤ 220 pF	430 ns		
470 pF	900 ns		
1 nF	1,5 μs		
2,2 nF	3 μs		
4,7 nF	5,8 μs		
10 nF	12 μs		
22 nF	25 μs		
47 nF	50 μs		
$0.1 \mu F$. 110 µs		
$0,22~\mu F$	260 μs		
$0.47~\mu\mathrm{F}$	680 μs		
$1 \mu F$	1,3 ms		
10 μF	2,3 ms		

Obr. 2. Volně kmitající multivibrátor s výstupním kmitočtem v závislosti na kapacitě kondenzátoru C₁

a R_2 . Jsou-li oba odpory stejné, je poměr šířka impulsu: mezera mezi impulsy = 1:1.

Výstupní signál se odebírá ze zdířek Zd_5 a Zd_6 . Hradlo, jehož výstup je připojen ke Zd_6 , pracuje jako invertor obrací polaritu výstupních impulsů. Pro

Tvary výstupních impulsů obvodu na obr. 3a jsou na obr. 3b. Protože obvody TTL vyžadují ke své činnosti impulsy se strmými hranami, je k úpravě impulsů v přístroji použit Schmittův klopný obvod podle obr. 4. Schmittův klopný obvod upraví na vhodný tvar i impulsy sinusového průběhu. Zenerova dioda na obr. 4 chrání obvod před přepětím, odpor R_4 chrání diodu D_2 před zničením velkou ztrátou. Je-li

Obr. 3. Monostabilní multivibrátor k "výrobě" jednotlivých impulsů volitelné šířky (závisí na kapacitě kondenzátoru C₃) (a) a tvar výstupních impulsů (b) v různých místech obvodu na obr. 3a

Obr. 4. Schmittův klopný obvod

 $R_4=330~\Omega$, lze na vstup klopného obvodu přivést vstupní signál až 20 V (efektivní napětí); výstupní napětí je pak 2,8 V (efektivní velikost). Je-li $R_4=100~\Omega$, maximální vstupní napětí může být 6 V a výstupní napětí bude asi 2 V (všechno efektivní napětí).

Na obr. 5 je pak obvod, indikující logickou úroveň výstupního signálu. Je-li na vstup obvodu (Zd16) přiveden signál o úrovni log. 0, tranzistor je uzavřen, žárovka (dioda LED) nesvítí. Úroveň log. 1 otevře tranzistor a žárovka se pak rozsvítí.

V celém přístroji se používají hradla NAND se dvěma vstupy, čtyři taková hradla jsou v každém pouzdru IO MH7400. Zenerova dioda na obr. 4 má Zenerovo napětí 4,7 V, tranzistor na obr. 5 lze nahradit libovolným křemíkovým tranzistorem n-p-n o kolektorové ztrátě podle zvolené žárovky; diody, použité v přístroji, lze nahradit našimi spínacími diodami libovolného typu (křemíkovými). Použité kondenzátory jsou polystyrénové.

Practical Electronics, prosinec 1974 -Mi-

Obr. 5. Obvod, indikující úroveň výstupního signálu žárovkou (a) nebo diodou LED (b)

Kommikaení příjihae pro amatérská pásma

Jiří Kos, OK1KO

Současný vývoj obvodové techniky sdělovacích přijímačů jde kupředu takovým tempem, že zařízení, které bylo svým způsobem moderní například v roce 1972, se o dva roky později jeví již jako zastaralé. Příčina tkví ve vývoji moderních lineárních a digitálních integrovaných obvodů, které dovolují konstruovat zařízení malých rozměrů s vlastnostmi, jakých při použití elektronek nelze dosáhnout vůbec a při použití diskrétních polovdičových součástek jen s obtížemi. Následující článek přináší popis a konstrukci přijímače, kde bylo v maximální míře použití

moderních součástek, dostupných převážně i na čs. trhu. Stavba tohoto a podobných zařízení samozřejmě není levnou záležitostí a je určena těm amatérům, kteří mají určité zkušenosti v oboru polovodičové techniky a nebojí se obtíží, spojených s podobnými konstrukcemi.

¿ Začátkem roku 1973 jsem uvažoval o stavbě nového přijímače pro amatérská pásma, protože zařízení, které jsem vlastnil (přestavěný K.W.E.a s konvertorem), se pro provoz SSB na značně přeplněných DX pásmech ukázalo jako nevyhovující. Volba padla samozřejmě na přijímač plně tranzistorovaný. Po mnoha diskusích na pásmu a později na doporučení OKIYI byla zvolena

zesilovače, který má zesílení asi 60 dB a umožňuje řízení zisku jak ručně, tak pomocí AVC. K získání řídicího napětí pro AVC slouží zvláštní zesilovač a detektor. Za tímto detektorem je také připojen S-metr. Z mezifrekvenčního zesilovače je signál veden do produkt-detektoru (dále PD), kde je směšován mf kmitočet s kmitočtem nosných (BFO). Oscilátor BFO tvoří samostatnou jednotku, odtud je odebíráno napětí pro PD a dále přes dvoustupňový zesi-

synchronizace (AFS). Zapojení této části přijímače je nutno věnovat více pozornosti.

Přijímač se ladí stabilním oscilátorem (LMO), ladčným kapacitou v rozsahu 2,5 až 3 MHz. Výstupní napětí tohoto oscilátoru se v dalším stupní tvaruje na pravoúhlý průběh a dělí v poměru 10 : 1. Výstup z děliče (250 až 300 kHz) se přivádí na jeden vstup fázového detektoru (dále FD).

Abychom na všech pásmech a v kterémkoli bodě naladění získali kmitočet, odvozený od kmitočtu VCO a shodný s kmitočtem LMO pro porovnání ve FD, je třeba kmitočet VCO (vždy o mf výše nad kmitočtem přijímaným) pře-vést směšováním s vhodným krystalo-

koncepce přijímače, inspirovaná člán-kem v [1]. Blokové zapojení dále popisovaného zařízení je na obr. 1.

Signál z antény na nízké impedanci (75 Ω) přichází přes jednoduchý atenuátor na kaskódový zesilovač se dvěma polem řízenými tranzistory. Za tímto stupněm následuje směšovač s polem řízeným tranzistorem se dvěma bázemi. Zde je směšován přijímaný kmitočet s kmitočtem oscilátoru, kmitajícím o mezifrekvenci výše. Činnost oscilátoru bude popsána později.

Za směšovačem následují dva krystalové filtry typu McCoy, jeden pro příjem SSB, druhý pro CW. Signál se dále vede do třístupňového mezifrekvenčního

račními zesilovači, který při příjmu telegrafie zúží přijímané pásmo až na 110 Hz, při středním kmitočtu 750 Hz. Následuje koncový nf stupeň o výkonu asi 4 W na zátěži 4 Ω.

Vratme se však k oscilátoru přijímače, který je zapojen trochu nezvyklým způsobem. V přijímači se používá pouze jedno směšování, a to vždy tak, že kmitočet oscilátoru leží o mezifrektoru dominica používá používání procesování. venci nad kmitočtem přijímaným. Totéž platí i o pomocném krystalovém oscilátoru, jehož kmitočty jsou rovněž vždy nad přijímaným kmitočtem. Kmitočet pro směšování je získáván v napětím řízeném oscilátoru (dále VCO), který je na zvolený kmitočet přesně doladován pomocí smyčky automatické fázové

2,5 až 3 MHz. K tomu slouží krystalový oscilátor a směšovač pomocné mezifrekvence 2,5 až 3 MHz.

Signál VCO je přiveden přes oddělovací stupeň na směšovač s integrovaným obvodem MA3005, kde je směšován s kmitočty krystalového oscilátoru (pro každé pásmo samostatný krystal). Za tímto směšovačem získaný rozdílový kmitočet v rozsahu 2,5 až 3 MHz prochází přes pásmovou propust na neladěný zesilovač. Zesílený signál je potom rovněž tvarován na pravoúhlý průběh, dělen 10 : 1 a přiveden na druhý vstup fázového detektoru. Výstupní napětí FD (0,75 až 5 V) je úměrné fázové, a tedy i kmitočtové odchylce VCO

9 (Amatérské! 4 1) (1) 351

a dolaďuje pomocí varikapu přímo, bez dalšího zesílení, kmitočet VČO.

Směšování na pomocný mezifrekvenční kmitočet tedy probíhá podle těchto zásad:

2×KA501

$$f_{\text{vco}} = f_{\text{P}} + f_{\text{M}},$$

$$f_{\text{X}} = f_{\text{N}} + f_{\text{M}} = 2,5 \text{ MHz},$$

kde $f_P =$ přijímaný kmitočet, $f_N =$ nejnižší kmitočet přijímaného pásma, $f_X =$ kmitočet krystalu, $f_M =$ kmitočet mezifrekvence.

Příklad: přijímaný kmitočet 3 550 kHz, LMO naladěn na 2 550 kHz, mezifrekvenční kmitočet 5 680 kHz.

V tomto případě platí: 3550 + 5680 - 6680 = 2550 kHz. Jestliže např. mezifickvenční kmitočet bude 9 MHz, potom:

 $3\,550+9\,000-10\,000=2\,550$ kHz. V prvním případě bude tedy kmitočet krystalového oscilátoru 6 680 kHz, v druhém případě to bude 10 MHz.

Během funkčních zkoušek celého přijímače bylo později zjištěno, že oba děliće kmitočtu 10: 1 lze vypustit a na fázový detektor přivádět přímo kmitočty v rozsahu 2,5 až 3 MHz. V dalším budou podrobně popsány jednotlivé funkční celky přijímače.

Vstupní zeslabovač (obr. 2)

K tomuto obvodu není třeba nic podotýkat. Jeho použití je nezbytné zejména ve večerních hodinách v pásmu 80 a 40 m, kde pracuje příliš mnoho silných, profesionálních stanic. Prakticky je nutno signál z antény zeslabovat o 20, výjimečně až o 30 dB. Zapojení bylo převzato z [2].

Vysokofrekvenční kaskódový zesilovač (obr. 2)

Signál z antény přichází přes zeslabovač na anténní vinutí L_1 , k němuž jsou antiparalelně zapojcny dvě diody KA501, chránící vstupní tranzistor před příliš velkým napětím. Laděný obvod tvoří cívka L_2 spolu s C_2 v sérii s C_3 s varikapy D_4 , D_5 . Přes konděnzátor C_5 přichází signál na bázi tranzistoru T_1 . Obdobně je pro-

veden výstupní obvod tranzistoru T_2 , tvořený cívkou L_3 , kondenzátorem C_{11} a paralelním spojením varikapů D_6 , D_7 . V bázi tranzistoru T_2 je zapojen atenuátor, kterým lze podle potřeby zmenšit zesílení kaskódy o 20 dB. Je tvořen dvojitým lineárním potenciometrem $2 \times 100 \ \mathrm{k}\Omega$, odpory R_{10} , R_{11} , R_{12} , R_{13} a diodou KZ722, která omezuje maximální napětí, přivedené na bázi tranzistoru T_2 vzhledem k napájecímu napětí atenuátoru —12 V. Kontaktem K_1 se při vysílání odpojuje odpor R_{10} , který tvoří větev děliče, od země, čímž se na bázi tranzistoru dostane plné záporné napětí (asi —9 V), které přispívá ke zmenšení zesílení přijímače během vysílání; tak je umožněno pohodlné monitorování vlastního signálu.

2×KA204

Za povšimnutí stojí způsob napájení varikapů. Jestliže bychom jednu elektrodu varikapu přímo uzemnili, mohlo by se stát, že silný signál z antény bude usměrněn a bude rozladovat vstupní

obvod. Proto jsou katody varikapů připojeny na napětí +12 V a anody na proměnné napětí +6 až +12 V. Na anodě varikapu se tedy mění napětí od 0 do -6 V. Ladí se logaritmickým potenciometrem P2. Odpory R17, R18 linearizují průběh ladění. V současné době, kdy jsou na trhu varikapy KB105, by bylo možno na místě dvojice KA204 použít jeden varikap tohoto typu. V zařízení jsem použíl japonské tranzistory 3SK22, které jsem měl k dispozicí, lze však bez obav použít naše KF521 podle zásad uvedených v [3]. Data cívek neuvádím, protože podobné konstrukce se mohou značně lišít. Jejich provedení a nastavení je dosti zdlouhavé, neboť je potřeba pro každé pásmo experimentálně zjistit pevnou kapacitu rezonančních obvodů, tak, aby změna kapacity varikapu postačila k proladění celého pásma s menší rezervou na obou stranách. Zdá se, že varikapy není třeba párovat, pokud se jejich průběhy nebudou příliš výrazně lišit.

Směšovač

Na tomto stupni je použit dvouhradlový tranzistor MOSFET 40673. Podobné

Obr. 3. Rozmístění součástek vstupní části přijímače na desce s plošnými spoji 744

tranzistory na domácím trhu nejsou k dostání. Bez obav lze použít směšovač integrovaným obvodem MA3005 ve stejném zapojení, jako je směšovač smyčky AFS s IO₈ (nebude mít horší vlastnosti). Ani cenově se oba prvky nebudou příliš lišit. V původním nebudou příliš lišit. V původním pramenu [1] byl pro směšování použit dvojitý balanční směšovač se Schottkyho diodami, který vyžaduje napájení z tvrdého zdroje, tedy ze dvou emitorových sledovačů, což znamená přidání dvou aktivních prvků. Signál ze směšovače je odebírán vazebním vinutím L_5 a veden na jeden z přepínaných krystalových filtrů CW nebo SSB. Filtr, který není v činnosti, je zkratován k zemi. Vazební vinutí má asi 1/5 závitů cívky L_4 . Oba krystalové filtry jsou typu McCoy na kmitočtu 5 680 kHz a mají na vstupu i na výstupu odpor 390 Ω.

Mezifrekvenční zesilovač (obr. 4)

Výstup krystalového filtru je souosým kabelem připojen k třístupňovému mezifrekvenčnímu zesilovači s integrovanými obvody MA3005, které jsou zde zapojeny jako diferenční zesilovače. Jeho zapojení je poměrně jednoduché vzhledem k symetrickému napájení ±6 V. Cívky L₆ a L₇ jsou zatlumeny odpory 39 kΩ pro zvětšení šířky propouštěného pásma. Cívka L9 toto tlumení již nepotřebuje. Vazební vinutí L_{6A} a L₈ mají ¹/₃ závitů laděných cívek. Cívka L_{10} má jednu pětinu závitů ladicího vinutí. Z vinutí L_8 se odebírá napětí pro zesilovač AVC. První dva stupně mezifrekvenčního zesilovače jsou řízené, třetí stupeň pracuje s plným zesílením. Zisk celého zesilovače je nejméně 60 dB a změnou záporného napětí na vývodu 12 prvních dvou stupňů (od —3,8 do —6 V) lze zesílení poĥodlně měniť od nuly do maxima.

Na stejné destičce s plošnými spoji (obr. 5) je umístěn i produkt-detektor s integrovaným obvodem MBA145, který na tomto místě plně vyhovuje a je podstatně levnější než MA3005. Podrobnější rozbor vlastností PD s těmito obvody je v [4].

Všechny odpory jsou nejmenšího typu, kondenzátory v laděných obvodech jsou slídové, blokovací keramické, polštářkové. Tlumivky Tl_2 a Tl_3 jsou navinuty na feritové tyčince o \varnothing 2 mm. Tlumivka Tl_1 je navinuta křížově na tělísku z odporu 0,5 W ve třech sekcích.

Zesilovač AVC a S-metr (obr. 6)

Z druhého stupně mf zesilovače se odebírá přes kondenzátor C_{48} napětí pro zesilovač AVC, na jehož prvním stupni je IO_7 , MAA325. Kritická je

zde hodnota odporu R_{63} , který je třeba experimentálně nastavit pomocí osciloskopu na maximální zesílení. vzorku vyšel odpor 7,1 kΩ. Zesílení tohoto stupně bez zatížení je 35 dB, což by v podstatě postačilo, kdyby výstup nebyl zatížen malým vstupním odporem diodového zdvojovače. Proto byl zařazen další zesilovač s tranzistory T₆ a T₇ v zapojení SE-SK se zesílením asi 10 dB a malým výstupním odporem, vhodným pro detektor, tvořený diodami D_{10} a D_{11} . Pracovní bod tohoto zesilovače se nastavuje trimrem R₆₉. Za detektorem, na odporu R72, je již k dispozici záporné napětí, úměrné velikosti přijímaného signálu. Je přes funkční přepínač Př5A vedeno na bázi emitorového sledovače s tranzistorem T₈, kterým je řízeno zesílení mezifrekvenčních stupňů, a na bázi tranzistoru T₉, v jehož kolektorovém obvodu je zapojen S-metr.

Všimneme si nyní podrobněji přídavných obvodů tranzistorů T_8 a T_9 . Polem řízené tranzistory jsou zde použity pro jejich velký vstupní odpor (takže i pro dlouhé časové konstanty AVC můžeme použít relativně malé kapacity kondenzátorů) a pro jejich výhodnou převodní charakteristiku. V poloze AVC-S, nebo AVC-F je mezifrekvenční zesilovač řízen automaticky a časovou konstantu je možno volit buď asi 5 s (poloha AVC-S), nebo 0,5 s (poloha AVC-F), kdy do série s kondenzátorem C_{56} je zařazen další kondenzátor C_{57} (není na desce s ploš-

chu vlastního vysílání. Dioda D20 omezuje velikost blokovacího napětí na maximální úroveň asi -- 7 V a diody D_{18} , D_{19} oddělují oba funkční celky tak, aby se navzájem neovlivňovaly. Odporovým trimrem R₇₈ se nastaví práh působení AVC. Úroveň šumu celého přijímače je velmi nízká a zesílení je postačující za všech okolností se značnou rezervou. Mezi kolektorem tranzistoru To a zemí je zapojeno měřidlo 100 μA, ocejchované v jednotkách S. Měřidlo bude ukazovat S 9, jestliže na vstupu přijímače bude právě 100 μV. Diody D_{12} až D_{16} zlepšují linearitu stupnice. Trimrem R_{77} nastavujeme nulu S-metru při AVC a zkratovaných anténních svorkách, trimrem R_M nastavíme vhodný rozsah při ručním řízení, kdy měřidlo ukazuje pouze informativně sílu přijímaného signálu v závislosti na nastaveném zesílení. Celý zesilovač AVC včetně obvodů S-metru je umístěn na společné destičce s plošnými spoji (obr. 7). Funkce tohoto celku je vynikající a lze jej doporučit i pro jiná použití ve spojení s popisovaným mezifrekvenčním zesilovačem. Všechny odpory jsou opět nejmenší typy, např. TR151, kondenzátory C_{56} a C_{57} na napětí 6 V. Pokud bude použito měřidlo DHR5 100 µA, lze použít stupnici podle obr. 8.

Oscilátor nosných USB, LSB, CW (obr. 9)

Tranzistor T₁₂ pracuje jako oscilátor nosných kmitočtů. Abychom se vyhnuli

nými spoji). V poloze MAN se na bázi tranzistoru přivádí záporné napětí z potenciometru P_4 , kterým ručně řídíme zesílení mezifrekvenčníchs tupňů. Při vysílání se přepne kontakt K_2 a potenciometrem P_5 řídíme úroveň příposle-

9 Amatérske! (AIIII) 353

Obr. 5. Rozmístění součástek mf zesilovače a detektoru na desce s plošnými spoji J45

Obr. 7. Rozmístění součástek zesilovače AVC a S-metru na desce s plošnými spoji J46; vývody na pravé straně desky vedou k (od shora): P_5 , -12V, Tl_7 , R_{77} , R_{78}), μA , P_{75} n

Obr. 8. Stupnice S-metru

nutnosti tento celek (obr. 10) montovat na přední panel přijímače, nebo nějakým způsobem vyvádět osu přepínače, je zde použito elektronické přepínání krystalů. Jestliže např. zvolíme krystal pro USB, teče proud z uzlu –6 V přes odpor R_{85} , tlumivku Tl_8 , diodu D_{21} , tlumivku Tl_3 a přepínač k zemi. Tím je X_1 připojen k bázi tranzistoru T_{12} . Trimry 30 pF je možné kmitočty jednotlivých krystalů jemně doladit. V kolektoru T_{12} je rezonanční obvod, na-

Obr. 10. Rozmístění součástek oscilátoru nosných kmitočtů na desce s plošnými spoji J47

laděný na střední kmitočet nosných. Jeho nastavení je dosti kritické a je nutno vyzkoušet hladké nasazování všech krystalů při přepínání. Z emitoru T_{12} je odebíráno přes kondenzátor G_{61} vf napětí pro PD a dále pro zesilovač s tranzistory T_{10} , T_{11} , který je shodný se zesilovačem ve stupni pro získání řídicího napětí pro AVC. Pracovní bod nastavíme trimrem R₈₁, nejlépe podle osciloskopu. Z emitoru T10 odebíráme vf napětí pro SSB budič, použijeme-li přijímač jako transceiver. Toto napětí (asi 3 V) je vyvedeno na konektor, umístěný na zadní stěně přijímače.

(Pokračování)

Ohebné plošné spoje řeší elegantně a spolehlivě všechny problémy elektric-kého propojování různých součástek v mechanicky namáhaných přístrojích, kde se dosud musely používat kabelové formy. Ohebné spoje AEG-Telefunken jsou vytvořeny měděnými spoji tloušťky 35 μm, nanesenými obvyklou technologii na 0,14 mm tlustou tkaninu ze skelných vláken, tvrzenou epoxidovou pryskyřicí typu HGW 2372. Spolehlivost těchto spojů se zaručuje na příklad i při použití v automobilové technice, kde je lze používat k velmi namáhaným spojům za palubní deskou. Další ze zajímavých použití je skládání několika

vrstev těchto spojů k dosažení vícevrstvových plošných spojů.

Podle AEG-Telefunken pri HM 73

· Náhrada varikapu

Zapojení s tranzistorem podle obr. 1 může v mnoha případech nahradit kapacitní diodu varikap. Potenciometrem M25 se mění proud báze tranzistoru T_1 a tím i jeho vodivost mezi kolektorem a emitorem. Tím se více či méně uplatňuje kapacita kondenzátoru C_1 vůči C_2 . C_2 určuje počáteční kapacitu obvodu, součet C_1 a C_2 konečnou kapacitu obvodu. Výhodná je možnost veľkého poměru koncčné kapacity k počáteční. Vyhoví libovolný křemíkový tranzistor n-p-n. Lze samozřejmě použít i jiné napájecí napětí než uvedených 12 V. –ra

QST 9/72

Obr. 1. Náhrada varikapu

Recitové toroidní cívky

Ing. V. Dušánek

V AR 12/1974 byl zveřejněn článek, který poskytuje nejzákladnější technické informace o různých typech čsl. toroidních jader. Byl také uveden stručný přehled naměřených hodnot činitelů jakosti na některých druzích toroidů. Uvedený článek bych chtěl doplnit údaji, jenž jsem měl možnost měřit na toroidních jádrech \varnothing $10/6 \times 4$ mm a které by mohly poskytnout podklady konstruktérům.

Měření činitele jakosti bylo uskutečněno na přistrojích BM211 (ladicí kapacita 50 až 500 pF), BM409 (ladicí kapacita 8 až 110 pF)a impedančním mostě BM431 (oddělené měření paralelních složek ztrátového odporu a susceptance).

A. Civky na toroidech NI

Na toroidním jádru N1 bylo navinute 26 závitů vodičem CuL o Ø 0,25 mm. Přehled naměřených hodnot včetně vypočtené konstanty $A_{\rm L}$ je v tabulce 1. Z tab. 1 je zřejmé, že čs. ferity zaručují dosažení poměrně vysokých hodnot činitelů jakosti, přičemž rozptyl hodnot je malý. Rozptyl naměřených indukčnosti je poměrně značný; pro střední hodnotu $L=26,47~\mu\mathrm{H}$ leží pásmo jednotlivých indukčností v rozmezí od -13 % do +5.5 %. To je třeba mít na zřeteli při náročnějších aplikacích.

Cívky 1 až 5 byly dále měřeny na im-pedančním mostu BM431, který měří složky C_p a R_p vyšetřovaného dvoupólu viz náhradní zapojení na obr. 1. Most BM431 je ocejchován v hodnotách C_p od -170 pF do +30 pF. Jestliže měřená impedance má složku C_p zápornou, má induktivní charakter. Potom se indukčnost stanoví ze vztahu

$$L_{\rm p} = \frac{1}{\omega^2 C_{\rm p}} \tag{1}$$

kde $\omega = 2\pi f$ je kruhový kmitočet. Příslušné náhradní zapojení je na obr. 1b. Mostem BM431 byly cívky měřeny

proto, aby se zjistil činitel jakosti, resp. ztrátový odpor R_p na vyšších kmitočtech, než umožňují ladicí kapacity příslušných Q-metrů, a dále proto, aby bylo možno naměřené hodnoty konfrontovat. Z naměřených hodnot lze vypočítat činitele jakosti pomocí vztahu

$$Q = \frac{R_{\rm p}}{\omega L_{\rm p}} \tag{2}$$

Výsledky měření jsou v tab. 2. V tab. 2 jsou indukčnosti L_p vypočteny ze vzorce (2). Tyto hodnoty však neodpovídají skutečnosti; jsou zatíženy značnou chybou, kterou působí vlastní kapacita vinutí. Přesto o vlastnostech cívky podává obraz hodnota R_p .

B. Civky na toroidech NO5

Bylo měřeno opět 10 cívek. Každá měla navinuto 20 závitů vodičem CuL ø 0,25 mm. Měřeno bylo na kmitočtu 7 MHz (Q-metr BM211) a 16 MHz (Q-metr BM409). Cívky č. 16 až 20 byly měřeny mostem BM431. Výsledky měření jsou v tab. 3 a tab. 4.

Vypočtené indukčnosti v tab. 4 jsou již zatíženy chybou, kterou působí vlast-ní kapacita vinutí (zde asi +15 %). Paralelní ztrátový odpor R_p je podstatné větší než u jader z hmoty N1. Cívky na toroidech z N05 se vyznačují rovněž menšími rozptyly indukčnosti. Na kmitočtu 7 MHz je průměrná indukčnost 7,32 μ H, přičemž největší rozptyl je -3.4% +3.7%.

C. Měření na toroidech N02

Bylo měřeno 5 cívek – každá 7 závitů vodičem CuL o Ø 0,35 mm na Q-metru BM409 a impedančním můstku BM431. Výsledky jsou zachyceny v tab. 5 a

Činitelé jakosti cívek na toroidech N02 se liší poměrně málo. Údaje, na-NUZ se iisi pomerné málo. Udaje, naměřené Q-metrem B409 jsou v dobré shodě s výsledky, získanými na BM431. Na můstku BM431 se měřilo při vf napětí asi 100 mV. Střední indukčnost je 0,688 μH a směrodatná odchylka asi ±5 %.

Závěr

Provedená řada měření na toroidních cívkách s jádry čs. výroby dokazuje, že lze vyrobit indukčnosti malých rozměrů s činiteli jakosti přes 200. To bylo potvrzeno také měřením na dvou různých typech Q-metrů a impedančním můstku (nerezonanční metoda).

Při konstrukci cívek je třeba počítat s větším rozptylem hodnot, zejména u jader z feritů Nl. Měření také potvrdila, že rozptyl Q je menší než je tomu u indukčností.

Z hlediska použití feritových toroidních cívek v amatérské praxi lze materiál NI doporučit na indukčnosti pro laděné obvody do 4 MHz. Obdobně feritové toroidy z hmoty N05 jsou vhodné pro velmi jakostní indukčnosti ladě-ných obvodů do 9 MHz, z N02 do 30 MHz.

Často se používá při řazení indukčností v laděných obvodech zapojení podle obr. 2 (např. vstupní obvody přijímačů apod.). Při tomto systému je v laděném obvodu trvale zapojena cívka L_{11} , která s cívkou L_1 tvoří transformátor. Ladění na vyšší kmitočty zajišťují cívky L_{12} až L_{15} . Blíže si všimneme situace, která může vzniknout na kmitočtu 28 MHz.

Jak ukázala měření na impedančním můstku BM431, je ztrátový odpor R_p cívky, vinuté na toroidu z N1, asi 14 k Ω (viz tab. 2). Zařadí-li se tento ztrátový odpor např. paralelně k cívce, vinuté na N02, která má $R_p = 24 \text{ k}\Omega$ (viz tab. 6), dojde k podstatnému snížení výsledného činitele jakosti. V tomto případě bude výsledný odpor $R_p = 9.5$ k Ω , a tudíž Q = 80!! Z provedených měření je zřejmé pro způsob přepínání rozsahů podle obr. 2, že by částečně vyhověly toroidní cívky, navinuté na jádrech z hmoty N05; byl naměřen ztrátový

9 Amatérske VAII 11 355

Tab. 1. f = 3.5 MHz Q-metr BM211

Číslo cívky	C _L [pF]	L[μH]	Q	A _L [μΗ z ⁻²]
1	79	26,17	255	0,0387
2	90	22,97	250	0,0340
3	78	26,51	250	0,0392
4	78	26,51	250	0,0392
5	78	26,51	240	0,0392
6	74	27,94	232	0,0413
7	75	27,57	240	0,0408
8	78	26,51	242	. 0,0392
9	76	27,21	255	0,0402
10	77	26,85	245	0,0397

Tab. 2. Měření na toroidech N1 – Můstek BM431 f = 28 MHz

Cívka číslo	C _p [pF]	$R_{\rm p}$ [k Ω]	L _p [μΗ]
1	0,80	14,5	40,38
2	0,88	12,0	36,72
3	0,75	14,0	43,08
4	-0,80	14,0	40,38
5	0,76	14,0	42,51

Tab. 4. Měření na toroidech N05 – můstek BM431 f = 28 MHz

Civka čislo	Cp [pF]	<i>R</i> _p [kΩ]	<i>L</i> p [μΗ]	Q	A _L [μΗ z ⁻²]
16	-3,45	52	9,36	31,5	0,0234
17	-3,70	50	8,73	32,5	0,0218
18	3,55	58	9,10	36,2	0,0228
19	-3,65	45	8,85	28.9	0,0221
20	—3,55	46	9,10	28,7	0,0228

Tab. 5. Měření na toroidech N02, Q-metr BM409 f = 28 MHz

Civka číslo	Cp [pF]	<i>L</i> [μH]	Ω	A _L [μHz ⁻²]
21	46,2	0,70	230	0,0143
22	49,8	0,65	238	0,0132
23	44,4	Ò,73	234	0,0148
24	46,1	0,70	231	0,0143
25	49,18	0,66	243	0,0134
	1			l

Tab. 6. Měření na toroidech N02 most BM431 f = 28 MHz

Civka čislo	C _p [pF]	$R_{\mathbf{p}}[\mathbf{k}\Omega]$	$L_p[\mu H]$	Q	$A_{ m L}$ [$\mu m Hz^{-2}$]
21	-45,80	23	0,70	185	0,0143
22	-49,3 0	24	0,65	193	0,0132
23	-43,40	23	0,74	191	0,0152
24	-45,65	25	0,71	201	0,0144
25	-48,55	24	0,65	208	0,0134

356 Amatérské! 1 1 1 1 9 75

Tab. 3. Měření na toroidech N05

f = 7 MHz - BM211

f = 16 MHz - BM413

Cívka číslo	C _L [pF]	L[μ H]	Q	A _L [μΗ z ⁻²]	C _L [pF]	L [μH]	Q	A _L [μΗ z ⁻¹]
11	70,5	7,33	250	0,0183	12,46	7,94 [108	0,0198
12	71	7,28	215	0,0182	12,50	7,91	168	0,0198
13	71 ,	7,28	250	0,0182	12,65	7,82	150	0,0195
14	71	7,28	250	0,0182	12,66	7,82	135	0,0195
15	71	7,28	240	0,0182	12,38	7,99	140	0,0199
16	68	7,60	238	0,0190	11,86	8,34	148	0,0208
17	73	7,08	220	0,0177	12,35	8,01	135	0,0200
18	70	7,38	250	0,0185	12,96	7,63	170	0,0191
19	71	7,28	245	0,0182	12,38	7,99	140	0,0199
20	70	7,38	240	0,0185	12,30	8,04	164	0,0201

Údaje, které naměřil na toroidech Jiří Beck, OKIVHK

Měření vlastností toroidních jader N02, N05 (měřeno na Q-metru BM311E)							
Materiál, velikost, tl. drátu, počet závitů	kmitočet [MHz]	ladicí kapacita [pF]	činitel jakosti Q				
N05, modrý, Ø 10 mm	9,0	40	160				
ø 0,6 mm, 20,5 záv.	12,3	20	158				
·	3,5	283	157				
	2,4	600	142				
N05, modrý, Ø 10 mm	3,8	600	138				
ø 0,6 mm, 12,5 záv.	9,0	107	152				
	19,8	20	125				
N05, modrý, Ø 10 mm	7,4	20	150				
Ø 0,3 mm, 35,5 záv.	3,5	100	150				
	1,43	600	123				
N02, zelený, ø 7 mm	26,0	20	160				
ø 0,35 mm, 17,5 záv.	9,0	205	. 150 .				
	5,1	600	. 122				
N02, zelený, Ø 7 mm	41,5	20	150				
Ø 0,6 mm, 10,5 záv.	28,0	48	160				
·	10,0	338	140				

Výsledky soutěže k 30. výročí osvobození ČSSR

Ve dnech 1. ledna až 9. května proběhla mezi-národní soutěž na počest 30. výročí osvobození Československa sovětskou armádou Do soutěže o poháry nahlásily své výsledky 423 československé stanice, které navázaly 328 tisíc

československé stanice, které navázaly 328 tisíc spojeni.
Svá hlášení zaslalo 1046 zahraničních stanic. Podle jejich výsledků se dá usuzovat, že této soutěže se zúčastnilo vice než 1200 naších stanic a jejich celkový počet spojení je možno odhadnout na vice než 600 tisíc, což zdaleka převyšuje předpoklady. Na základě nahlášených výsledků stanici OK30CRA dne 8. května byla provedena kontrola staničních deniků stanic OK3KAG, OK3KFF, OK2QX a OK2PEQ.

Vitězi v ČSSR se stali:

A. v kategorii jednotlivců:

Ing. Jiří Peček, OK2QX - 6114 spojení,

B. v kategorii kolektivních stanic:

Radioklub VŠT Košice, OK3KAG - 17160

V jednotlivých kontinentech navázali nejvíce spojení s různými našími stanicemi a podle pro-pozic soutěže se stali držiteli pohárů:

Evropa:
HA9KPU, Student's Radio Club,
- 850 stanic

Asie:

UA9CM, Alexej Riabchikov, Niż-nij Tagil – 536 stanic

Afrika:

CR7IZ, Rutilio F. Graca, Porto Amelia, Mozambik - 118 stanic

Severní Amerika:

W8RSW, F. Koval, Cincinati Ohio, U.S.A.

- 152 stanic

Jižni Amerika:

PJ2VD, Joeke Van der Velde, Curacao, Neth. Antilles - 102 stanic

Oceanie:

VK5RX, G. W. Luxon, Torrens Park, South Australia - 12 stanic

Jako nejlepší stanice SSSR lze hodnotit:

Jednotlivci:

UA3CA, Vladimir Belousov, Moskva \
- 718 stanic

Kolektivní stanice:

UK4AAI, Volgograd - 347 stanic

Soutěž byla hodnocena velmi kladně, o čemž se ve svých denicich zmiňuje řada zahraničních stanic. Bez vysoké aktivitý československých stanic by nebylo možno zajistit takový její úspěch (PAODIN – Holandsko).

OK1MP

11.	subregion	rální	AKA	zá	vod	1975
145	MHz – stálé	QTH:				body
2. 0 3. 0	OK30BFI OK30MG OK30ATQ OK30KVI	IJ57c HK7 HK5c	la 6 Oh 5	31 QSC 50 58 54	1.	3 837 3 255 3 034 1 929
5. 6. 6. 7. 6	OK30SRA OK30BPB OK30BEJ	JJ24i JJ12e HJ48	1 .7 d 6	3 1 8	4	8 632 6 712 5 107
9. 0 10. 0	OK30CFN OK30BCN OK30AB	II40a HI10 IJ69j	а 2	17 19 11		5 091 4 883 4 740
	noceno 35 stai					
	MHz – płecho	_		- -		body
2. 0 3. 0 4. 0	OK30KTL OK30KPL OK30KBM OK30AGE	GK4 GJ67 II19a HK2	g 1 1 9b 1	22 QS 78 49 20	21 21 21	2 014 3 930 3 769 8 368
6.0 7.0 8.0	OK30VHK OK30BDS OK30KCU OK30KCM	GK59 HJ67 GK29 JI45e	ь 1 Эј 1	32 19 19 99	20 2: 2:	5 427 5 212 3 458 2 581
10. (OK30KAG OK30KYJ noceno 28 sta	KI18: IJ28g nic.		80 80		0 891 4 961
432	MHz – stálě (2TH:				body
2. O 3. O	K30OFG K30KVF	HK71 HK74 HK71	ih I	3 QSO 0 0	;	1 164 676 647
Hod	noceno 6 stan	ic.	-			
1. O. 2. O	K30AIB	GK45 HK29	id Db	36 QS0 13	o :	body 5 150 2 214
	K30AIY noceno 6 stani	HK28	3c	8		975
					,	body
1. 0	6 <i>MHz – stálé</i> K30KVF K30IJ	HK71 HK74	a	3 QSO 2		243 132
1 29	8 MHz – před	hodné (body
2. 0	K30KTL K30AIY K30AIB	GK45 HK28 HK29	ic .	4 QSO 3 1		564 404 201
0.11			141	. 1677.		

Stižnosti pro ruleni v pásmu 145 MHz na stanice: OK30BFI - 1×, OK30BDX - 1×, OK30KRY -

Vyhodnotil RK Banská Bystrica

Zájemci o zkoušky RO - OL

z celé Prahy se mohou přihlásit do kursu, který pořádá na podzim radioklub Strašnice v Praze 10. Kurs bude zahájen v polovině října a lze se do ného přihlásit osobně ve dnech 1. a 8. října v mistnostech radioklubu (OKIKNH) v Praze 10, Solidarita, blok AIV – sledujte, kam vedou antényl Vhodná doba k návštěvě je mezi 17 a 19.00. Vitání budou všíchní zájemci, ale kurs bude náročný a jeho cílem bude získat co nejlepší operatéry. Nashledanou v RK Strašnice! OKIDAY

Podmínky závodů na KV

Jako volné pokračování Všeobecných podmínek pro účast v závodech od roku 1976, které jsme otiskli v minulém čísle, budeme postupně uveřejňovat stručné podmínky jednotlivých naších i děležitých celosvětových závodů. V rubrice Nezapomeňte, že budou potom vždy odkazy na to čislo AR, kde byly podmínky zveřejněny.

Závod třídy C

Závod se pořádá každoročně třetí neděli v lednu ve dvou etapách – od 06.00 SEČ do 06.59 SEČ a od 07.00 do 07.59 SEČ včetně. Závodí se v pásmu 1,8 MHz a v pásmu 3,5 MHz v kmitočtovém roz-mezi 3 540 až 3 600 kHz. Stanice budou vyhodnoceny v kategoriich:

- a) stanice s max. příkonem 1 W, b) jednotlivci OL,
- stanice s příkonem povoleným pro třídu C,

V kategorii c) závodí výhradně operatéři třídy C (jednotlivci i kolektivní stanice), ostatní stanice mohou závodít v kategorii a).
V žádném případě se závodu nesmí zúčastnit amatéři s přikonem větším než 25 W (10 W na 1,8 MHz). Závodí se pouze telegrafním provozem, vyměňuje se kôd složený z RST a pořadového čísla spojení. Bodování viz všeobecné podmínky, násobičem je každá nová značka bez ohledu na etapy nebo pásma. Konečný výsledek získáme vynásobením počtu bodů počtem násobičů. Na základě rozhodnutí KV komise budou vítězné stanice v kategorii c) přeřazeny do třídy "B" QX

TEST 160

Závod v pásmu 160 metrů se potádá vždy prvé poudělí a třetí pátek v měsíci, má dvé etapy – od 20.00 do 20.29 SEČ a od 20.30 do 20.59 SEČ. Závodí se v kmitočtovém rozmezí 1850 sž 2 avodí se v kilitoveni roznica 1 630 az 1 900 kHz pouze telegraficky a předává se kód slo-žený z RST, značky stanice, se kterou bylo navá-záno předchozí spojení a čtverce QTH. V tomto závodě nejsou násobiče a bodování je následující: závodě nejsou násobiče a bodování je následujíci: za prvé spojení s novým prefixem mimo vlastního 5 bodů, za každé jiné spojení 1 bod a to bez ohledu na etapy. Konečný výsledek dává součet takto získaných bodů za spojení. (Při prvním spojení v závodě se předává pouze RST a QTH čtverec!) Deníky z těchto závodů je třeba odeslat nejpozději třetí den po závodě (z pondělního ve čtvrtek, z pátečního v pondělí) na adresu ÚRK.

YL - OM závod

Závod se pořádá každoročně první neděli v březnu, v době od 07.00 do 09.00 SEČ, telegrafním provozem v kmitočtovém rozmezí 3540 až 3 600 kHz. Účastníci závodí ve dvou kategoriích: a) stanice YL, b) stanice OM. Stanice YL volají výzvu CQ TEST, stanice OM CQ YL. Stanice YL předávají kód složený z RST a zkratky YL, stanice OM z RST a pořadového čísla spojení. Bodování podle všeobecných podminek. YL stanice mají za násobiče počet spojení se stanicemi OM během prvé půlhodiny závodu, stanice OM počet spojení se stanicemi YL během prvé půlhodiny závodů. Stanice YL navazují spojení se věmi účastníky závodu, stanice OM pouze se stanicemi YL. Konečný výsledek získáme, když počet bodů za spojení vynásobíme počtem násobičů.

Rubriku vede ing. V. Srdinko, OKISV, Havličkova 5, 539 01 Hlinsko v Čechách

Expedice na ostrov Fernando de Noronhs, kterou podnikli PYTYS a PY4AKI., se vydařilal Pracovali tam od 10. 7. 1975 celý týden pod značkou PU0YS a PV0AKI. hlavně SSB a bylí výborně slyšet, takže si přišly na své i naše stanice. Jak jsme se dozvěděli přímo na pásmu, měli se objevit koncem měsíce července z Rockalu, a na St. Peter and Rock Isl. měli být kolem 15. září 1975. V obou případech Jsou značky stejné – PYTYS/0. Rockal není samostatnou zemí DXCC. QSL se zasilají na jejich domovské značky.

Z ostrova Glorioso pracuje v současné době stanice FR7ZQ/G okolo kmitočtu 14 128 kHz SSB v odpoledních hodinách. Rovněž pracují stanice

v odpoledních hodinách. Rovněž pracují stanice FR7ZL/T z Tromelinu, a FR7ZU/J z ostrova Juan de Novo, vesměs ve francouzské části pásma 14 MHz SSB.

Ze Želvích ostrovů je aktivní HC8RG. Operatérem je DK6EB a oznamuje, že se tam zdrží několik roků.
Lord Howe je reprezentován stále stanicí VK2BKE, která bývá obvykle kolem knitočtu 14 265 kHz již od 06.00 GMT.

Z Nigerie se v poslední době objevuje na SSB stanice 5N2NAS, obvykle odpoledne na 14 266 kHz. QSL žádá na adresu: Signal Radio Club Apapa, Nigeria.
Z italských ostrovů se objevily v poslední době zajimavější prefixy jako IBOJN, IF9JLG a IF9KZV. Další zajimavý prefix pracuje z Maroka – CN9MBF a požaduje QSL na P.O. Box 120, Nampula.

UKIPAA ze Země Františka Josefa se ob-jevuje občas telegraficky v pásmu 7 MHz na kmitočtu 7 025 kHz kolem půlnoci. U příležitosti 75. výročí radioklubu v Guatemale vysílala ve dnech 13. až 15. 9. 1975 tamní klubovní stanice jako T75AA z QTH Tical.

Podle informaci došlých od LU3AFH vypadá situace s plánovanou expedicí na Jižní Sandwich nadějně, ale závazně informace obdržíme až za 3 měsíce. Termín je plánovan prosinec 1975 nebo leden 1976.
Stanice SJ9WL pracuje z Morokulien, obvykle SSB na kmitočtu kolem 14 202 kHz a požaduje opět za každý QSL 3 IRC.
Poměrně vyčené Podle informací došlých od LU3AFH

Poměrně vzácná země, TN8BK, pracuje občas SSB na kmitočtech kolem 14 110 kHz nebo 21 290 kHz hlavně v dopoledních hodinách. QSL požaduje přes JA4BLY.

Další stanicí z Falklandů je VP8OP, který bývá někdy navečer SSB na kmitočtu 14 295 kHz.
QSL žádá pouze přes RSGB.

Pod značkou YN9JMP pracuje misionář páter William. Patří k OT, je mu již 77 roků a do roku 1924 pracoval z Činy jako XU2JM. Od roku 1952 žije v Bonaku v YN a nyní po 36ti letech získal opět koncesi a objevuje se telegraficky na pásmech. Sbírá vášnivě poštovní známky

JY1, král Hussein, opět se objevuje na pásmu, byl slyšen na 14 205 kHz kolem 17.00 GMT.

Olympijský diplom Zimních Olympijských her v Insbruku, které budou v roce 1976, vydává Rakousko. je zapotřebí zaslat QSL za spojení nejméně se třemi stanicemi v OE, pro I. třídu s pěti stanicemi v OE, mezi nimiž musí být jedno spojení s OE7. Spojení plátí od 1. 7. 1975 do 31. 12. 1976. Diplom stojí 14 IRC, jeho manažérem je OE7JNI.

od 1. 7. 1975 do 31. 12. 1976. Diplom stoji 14 IRC, jeho manažérem je OETJNI.

Několik QSL informaci z posledních dnů: CTZAK přes W3HNK, CV8B přes W6TCQ, FK8BB přes DJ9ZB, FY7AK přes K3BSY, HD1QRC přes WARTDY, HR6SWA přes W8CNL, IX2HK přes LA3IQ, P29UC přes WA7ILC, VP2A přes W5NOP, VP2DM přes WA1ABV, VP2LBH přes K21GW, XQ9BIJ přes CE2AA, ZFIAU přes WA4BTC, A9XT na M. J. O. Dearden, P.O. Box 812, Manama, C31IL přes WA9INK, CR8AG přes CT1SH, EA9FC na P.O. Box 360, Melilla, FG7AN přes WA3BDS, IBOJN na P.O. Box 336, Naples, IY9CR na Br. Embassy, Aman, M1D na Central Post Office, Rep. of San Marino, VP1MT přes G4RS, 9Q5DM na P.O. Box 279, Somerset West, 7130, Rep. of S. Africa, F0BAL/FC přes DK6ZQ, IM0BVS, přes I2BVS, IM0DMK přes DJ6TK, ZB2DF přes G3JZV, 5V7WT přes F9GL, 9M8HG přes GW3OJB, 5V7AR přes F6ACB, 5L2FW na P.O. Box 98, Monrovia, A6XN přes DJ9ZB, A9XBA na P.O. Box 144, Bahrain, 9H3U přes DK2BQ, C31GN přes DK3SF, HK0BKX přes WA6AHF, FPOXX přes K1DRN, YS1GMW, přes V3HNK, C6ABC přes W4ZMQ, M1C přes I4EAT.

Do dnešní rubriky přispěli: OK1FF, OK1ADM, OE1FF, OK3MM, OK2BRR, OK2QX, OK1DVK, z posluchačů tentokrát vůbec nikdo! Je to škoda – stále potřebujeme další dopisovatele.

Rubriku vede A. Glanc, OKIGW, Purkyňova 13, .
411 17 Libochovica

Vstupujeme do nové sezóny SSTV a první nedělní kroužek na osmdesátce je za námi. Tato kolektivní činnost nachází stále více příznivců a umožňuje rychlou výměnů provozních a technických informací. Změna kmitočtu pro kroužek SSTV do doporučeného pásma 3 730 až 3 740 kHz SSTV do doporučeného pásma 3 730 až 3 740 kHz přináší více možností pro navazování spojení se zahraničnímí stanicemí. Vzhledem k tomu, že pracujeme s obrazovým materiálem, nejsou v nevýhodě tí, kteří mají mezery v jazykových znalostech. Navíc spojení se zahraničím na osmdesátec jsou dobrou přípravou na DX provoz na vyšších pásmech, kde se spojení SSTV dělají mnohdy snadněji. Osmdesátka je rovněž velmi dobrým pásmem pro posouzení kvality monitoru. Monitor, který dokáže na tomto pásmu zpracovávat signály S3, splňuje požadavky pro DX provoz. Musíme připustit, že charakter signálu na vyšších pásmech se liší některými zvláštnostmi, o kterých jsme vedli diskusi při návrzích oddělovaču synchronizačních impulsů a různých druhů propustí.

Ti, kteří experimentují s přímou a nepřímou

impulsů a různých druhů propusti.

Ti, kteří experimentují s přímou a nepřímou synchronizací (a není jich málo) jistě potvrdl, že při sledování provozu na různých pásmech se setkali se signály, které nebylo možno přímou synchronizací zpracovávat, přičemž nepřímá synchronizace pracovala ještě spolehlivě. Naopak, při jiných signálech, obsahujících odrazy, pracovala lépe přímá synchronizace a při použití nepřímé docházelo k zvlnění obrazu.

Timze neblýmen se podrobnějí vahoval Paval

cházelo k zvinění obrazu.

Timto problémem se podrobněji zabýval Pavel Gallo, jehož zapojení, která postupně zveřejňujeme, se stávají velmi populární a to nejen u nás. Zapojení, které přinášíme dnes, splňuje výhody monitorů s přímou i nepřímou synchronizaci řádků. Uvedený obvod používá Pavel Gallo ve svém monitoru a jeho srovnávací experimenty potvrzují, že splňuje požadávky které si při návrhu dal. Hlavní výhodou je, že navržený obvod umožňuje přepnutím dvojepólového přepinače volit bud přímou nebo nepřímou synchronizaci řádků.

Popis zapojení (obr. 1)

Kladné synchronizační impulsy jsou zesilované tranzistorem T_1 . Záporné impulsy vznikající na jeho kolektoru jsou vedeny přes přepinač P_1^* , v poloze I na obvody nepřímé synchronizace a v poloze 2 synchronizují generátor s T_4 a T_4 .

V poloze z synchronizační impulsy vedeny na invertor s T₁. Zde vznikají impulsy dvou polarit, které jsou vedeny na symetrický diódový fázový detektor. Tam jsou porovnávány s pilovitými impulsy, které přicházejí přes emitorový sledovač s T₂. Pilovité napětí je snímáno z katodového odporu elektronkového vychylovacího obvodu pro

Na říjen se předpovídá vždycky dobře, protože struktura ionosféry každoročně právě v tomto měsíci způsobuje optimální DX podmínky. Je to tím, že rozdíl mezi poledním podminky. Je to tím, že rozdíl mezi poledním maximem a nočním minimem elektronové koncentrace vrstvy F2 je v tento měsíc největší a navíc polední maxima obvykle postačí k dobrým odrazům vln o kmitočtech 21 až 25 MHz. Odtud je jen "skok" do desetimetrového pásma, které tedy nebude otevřeno denně, ale přece jen občas, zejména v období které krátce předchází ionosférickou poruchu. DX podmínky na deseti metrech sice budou pouhým odleskem toho, co známe z období,

okolo maxima sluneční aktivity, ale o to lepší poměry budou odpoledne a v časný podvečer v pásmu 21 MHz, které bude mít téměř všechny vlastnosti desetimetrového pásma z let slunečního maxima. Pásmo 21 MHz bude pro DX spojení během dne nejvhodnější a večer se sice brzy a rychle uzavře, takže mnohé naše spojení zůstane nedokončeno, ale podmínky přejdou na pásmo dvacetimetrové a na něm se ještě nějakou dobu udrží. Často však budeme pozorovat, že v noční době se i dvacetimetrové pásmo bude stále častěji uzavírat a DX podmínky přejdou na pásmo čtyřicetimetrové, kde se udrží až do

rána. V tomto pásmu se budou týkat zejména směrů, do nichž se vlny šíří nad Sluncem neosvětlenými oblastmi. Později večer a během noci to však již bude

Později věčer a během noci to však již bude stát za to i v pásmu osmdesátimetrovém. Teoreticky vždy po půlnoci by měly být dosažitelné alespoň některé oblasti severo-amerického i jihoamerického světadílu, i když ne tak pravidelně jako na vyšších pásmech. Ani stošedesátimetrové pásmo již nebude v noci bez vyhlídek. Hladina QRN bude dosti nízká a tak lze uzavřít zjištěním, že DX podmínky v říjnu budou asi za celý letošni rok nejlepší, třebaže zase ne tak dobré jako v letech slunečního maxima.

Obr. 1. Zapojení pro přímou i nepřímou synchronizaci řádků

elektrostatické vychylování $R_{\rm k1+k1}=12~{\rm k}\Omega$. Emitorový sledovač (T_s) superponuje k výslednému řídicímu napěti stejnosměrnou složku. Takto získané napěti je vedeno na korekční člen $0,33~{\rm \mu} F$ a $10~{\rm k}\Omega+50~{\rm \mu} F$. Ten vyfiltruje zbytky řádkového kmitočtu a zabraňuje rozkmitání zpětnovazební smyčky. Vyfiltrované stejnosměrné řídicí napětí ovládá kmitočet budiče přes přepinač P_t , v poloze L. V poloze L pracuje budič s pevným stejnosměrným napětím přes odpor $1,2~{\rm M}\Omega$.

Pro úplnost je v obr. 1 uvedeno navázání obvodu vertikálního rozkladu s T_{θ} , T_{τ} , T_{τ} a T_{τ} . Tyto obvody byly již v rubrice popisovány.

Uvedené zapojení se bude hodit do většiny monitorů, které jsou u nás v provozu. Při použit v monitoru W4TB odpadá zesilovač s T_{τ} a invertor T_{τ} . Diodový fázový detektor je možno navázat na Schmittův klopný obvod, ale je nutno oba kolektorové odpory změnit na $1,5~\text{k}\Omega$.

Pozn. red.: V rubrice SSTV bylo již uveřejněno velké množství zajímavých a vyzkoušených zapojení a tato rubríka byla zavedena jako první v evropských radioamatérských časopisech. Přesto jsme dosud neměli v AR kompletní konstrukční návod na stavbu monitoru SSTV, obsahující výkresy plošných spojů, konstrukčního uspořádání, s podrobným popisem uvádění do chodu. Rádi bychom tuto mezeru zaplnili a proto se obracime na vás všechny – nenašel by se někdo, kdo by svůj monitor rozumně popsal, přiložii schémata a výkresy plošných spojů a zaslal k uveřejnění do našeho Amatérského radia?

Novák, K.: AMATÉRSKÁ OPRAVA TRAN-ZISTOROVÉHO PŘIJÍMAČE. SNTL: Praha 1975. Polytechnická knižnice sv. 59. 184 stran, 124 obr., 2 tabulky. Druhé, přepracované vydání. Čena brož. Kčs. 12,—.

vydání. Čena brož. Kčs. 12,—.

Tuto knižku, vycházející po deviti letech znovu v druhém vydání, můžeme považóvat za základní "kuchařku" amatérů, kteří se chtějí začít vážnějí zabývat tranzistorovými přijímači. Obsahuje všechny informace, kteře potřebuje zejména začinající amatér. V první kapitole, týkající se vybavení dlny, najde zájemce popis vhodného uspořádání pracovišté, seznam potřebného mechanického nářadí i měřicích přístrojů a pomůcek, doporučený sortiment i množství součástek a materiálu a konečné i zmínku o odborné literatuře, vhodné pro daný účel. Ve druhé kapitole jsou popsány základní vlastnosti přijímačů se zřetelem na opravářskou činnost (cidlivost, selektivnost apod.). Další kapitola je vénována měření (od základních elektrických veličín až po měření parametrů přijímačů). Čtvrtá, nejobsáhlejší část je včnována diagnostice

v říjnu 1975

se konají tyto soutěže a závody (čas v GMT):

Datum, čas	Závod	
4. a 5. 10.		
10.00-10.00	VK/ZL Oceánia DX Contest, část fone	
6. 10.	,	
19.00 - 20.00	TEST 160	
11. a 12. 10.	_	
10.00-10.00	VK ZL Oceánia DX Contest, část CW	
17. 10.	,	
19.00 - 20.00	TEST 160	
18. a 19. 10.	W 472 4 6	罗莱
15.00— 15.00	WADM Contest	- 1
18. a 19. 10.	2002 2 100 200	•
18.00 — 18.00	RSGB 7 MHz DX Contest, část CW	
25. a 26. 10.		
00.00 - 24.00	GQ WW DX Contest, část fone	

závad v přijímačích; kromě popisu základního postupu při hledání chyb je v ni obsažena řada praktických rad, nahrazujících nedostatek zkušenosti, které začátečník získává zpravidla při negativních "výsledcích" své přáce. V další kapitole se autor zmiňuje o dalších možnostech postupu při hledání závad (např. s pomoci zdroje souvislého spektra kmitočtů, sledovače signálu, postup při oživování amatérsky vyrobeného přijímače apod.). V osmé kapitole je popsán postup při sladování přijímaču (s přímým zesílením i superhetů), v závěru jsou krátce uvedeny zásady pro konečnou kontrolu opraveného přijímače. Knižka je psána velmi srozumitelně a jistě bude všem zájemcům o amatérskou opravářskou činnost dobrou pomůckou. K obsahu pouze jednu připomínku, týkající se rozsahu VKV. V knize je pouze zmínka o jeho existenci u "středních standardních a luxusních" přijímačů. V dněsní době se ovšem setkáváme mnohem častěji s přijímačí, které maji tento rozsah (a třeba jen rozsahy SV a VKV), než např. s přijímači s přimým zesilením. Obvody přijímačů s rozsahem VKV) sou sice pončkud složitější, ale v dnešní době se patrné bez jejich znalosti těžko může obejit i amatérský opravář (škodolibou shodou okolností se i na obálku knižky dostal přijímač s rozsahem VKV). V tomto směru mohl autor druhé vydání knihy doplnit, zvláště proto, že prostým porovnáním obou vydání těměř nic. A za všechny amatéry si nemohu odpustit malou výtku na adresu autora určení knihy, uvedeného v tiráží; vhodnější by bylo uvěst, že kniha "... je určena začímajícím amatérum..."

Rozhodně je však možno druhé vydání knihy uvitat, protože právě těm, kteří se teprve pro radioamatérskou prácí rozhodují, může umožní dobrý start do jejich činnosti.

Aksenov, A. I. Gluškova, D. N., Ivanov, V. I.: CHLAZENÍ POLOVODIČOVÝCH SOUČÁSTEK. Přeloženo z ruského originálu Otvod těpla v polupravodnych priborach. SNTL: Praha 1975. Knižnice Polovodičová technika, sv. 23. 160 stran, 101 obr., 13 tabulek. Cena váz. Kčs 23,—, brož. Kčs 16,—.

váz. Kčs 23,—, brož. Kčs 16,—.

Autoří knihy se podrobně zabývají poměrně úzkým tematickým okruhem radiotechniky (elektrotechniky). Vycházejice z fyzikální podstaty činnosti polovodičových součástek, jejich provozních režimů v různých zařízeních a z tepelných parametrů těchto součástek, popisují základní metody a prostředky chlazení, výpočet chladičů a konstrukci obvodů s polovodičovými prvky. V závřecňe kapitole jsou uvedeny údaje různých typů chladičů, vyráběných v SSSR i v zahraničí.

V publikaci je velké množství teoretických i experimentálně stanovených údajů, grafů a tabulek, text je doplněn četnými fotografiemi a obrázky. Příklady konkrétních výpočtů, kterých je v knize celá řáda, vycházejí z praktických požadavků a mohou být dobrým voditkem pro pracovníky, kteří jsou postavení před problém řešit tepelné režimy polovodičových součástek v různých zařízeních. V závěru publikace je poměrně obsáhlý seznam doporučené literatury převážně ze sovětských pramenů.

větských pramenů.
Překlad knihy je dobrým přinosem k literatute
z tohoto oboru, ve kterém nebylo u nás přiliš
mnoho publikováno, i když originál je pochopitelně

psán se zaměřením především na typy polovodi-čových součástek, vyráběných v SSSR. Ba

Haňka, L.: TEORIE ELEKTROMAGNETIC-KÉHO POLE. SNTL: Praha, ALFA: Bratisla-va 1975. Teoretická knižnice inženýra. 580 stran, 402 obr. Cena váz. Kčs 35,—.

va 1975. Teoretická knižnice inženýra. 580 stran, 402 obr. Cena váz. Kčs 35,—

V této knize, vydané jako vysokoškolská učebnice pro studenty elektrotechnických fakult, je zpracována základní teorie elektromagnetického pole. Se zřetelem na optimální pedagogický postup (od jednoduššího k složitějšímu, od známého k neznámému) je uspořádán sled jednotlivých kapitol. V úvodní části jsou v podstatě shrnuty základní poznatky, jejichž znalost lze u studentů předpokládat z předchoziho studia. Další kapitoly jsou věnovány nejprve stacionárním polím (elektrickému a magnetickému), dále jsou vyšetřovány jevy v polich nestacionárních (spolu s kvazistacionárními jevy). V závěru fyzikální části knihy se probírají základy relativistické teorie jevů v pohybujících se soustavách a prostředích. V matematickém dodatku (kap. I) knihy je přehled početních vztahů, zejména z oblasti vektorového počtu. Výklad fyzikálních jevů všák znalost příslušného matematického aparátu předpokládá. V knize se důsledně používá měrová soustava SI.

Výklad, jak sám autor uvádí, není zaměřen speciálně na slaboproudou nebo silnoproudou elektrotechniku; kniha je základní učebnící, ze které mohou čerpat zájemcí o obě tyto oblastí.

Text je doplněn mnoha vysvětlujícími obrázky a v závěru každé kapitoly jsou otázky, které slouží ke kontrole správného pochopení probranel látky; řešení všech úloh je uvedeno v závěrecné části knihy.

Publikace je, jak již bylo uvedeno, učena pře-

knihy.

Publikace je, jak již bylo uvedeno, určena především studentům, a je třeba říci, že forma této učebnice je skutečně reprezentativní ve srovnání s učebními texty, které měli k dispozici posluchací ČVUT v minulých letech. Kromě vysokoškolských studentů mohou využít těto publikace zvláště pracovnící v teoretické oblasti elektrotechniky.

Radio, televizija, elektronika (BLR), č. 3/1975

Casová synchronizace různých vysílacích systémů – Kontrola parametrů televizního signálu – Anténni zesilovač pro jeden kanál TV – Multivibrátor s tunelovou diodou – Zkoušeč obvodů TTL – Obvod pro generaci pravothlých průběhů ze sinusového signálu – Integrované obvody – Optotriody – Profesionální směšovací pult – Kazetový magnetofon Montana – TVP Horizont 107 a 108 – Akusticky ovládaný spinač – Ní zesilovač, "Farfiza 40" – Zajímavá zapojení – Technické rady–Odpovědi na dotazy – Údaje reproduktorů VV102 (104), VP8249A, VEE33 (34).

Funkamateur (NDR), č. 6/1975

Z výstavy výrobků spotřební elektroniky NDR – Přenosný rozhlasový a televizní příjimač "combivision 310" – Využití povrchových akustických kmitů – Širokopásmová televizní anténa – Zapojení senzorů s obvody TTL – Obvody pro řízení osvětlení fotoodporů – Rozmitaný generátor pro kmitočty 0,1 až 14 MHz – Stereofonní zesilovač "Ziphona HSV 920 HiFi" – Jednoduchý usměrňovač s fázovou závislostí – Obvod pro přizpůsobení antény pro pásma 80, 40 a 20 m – Spojení v pásmu 2 m pomocí rozptylu na meteorických drahách – Moderní fázovací metoda – K příjmu signálů FM – Vyhodnocování soutěží UKV pomocí počítače Robotron 300 – Filtr pro potlačení křižové modulace – Použití přijímače "VEF 206' pro amatérská pásma – Rubriky. Z výstavy výrobků spotřební elektroniky NDR

Radioamator i krótkofalowiec (PLR), č.6/1975

Z výstavy hongkongských elektronických výrobků ve Varšavě – Výstava nových měřicích přistrojů – Navigační systém Omega pro letadla – Přenosný rozhlasový přijímač LIDIA 2 – Úvod do kvadrofonie (6) – Z historie polské vojenské spojovací techniky – Elektroluminiscenční diody (2) – Časový spinač a měřič osvědení pro fotoamatéry – Pro začátečníky: elektronické stabilizátory napřtí – Náhrada usměrňovačů v univerzálních přistrojích – Zkoušeč číslicových obvodů – Regulator šířky základny při stereofonním poslechu – Rubríky. chu - Rubriky.

Rádiótechnika (MLR), č. 7/1975

Integrovaná elektronika (31) – Zajímavá zapojení – Vlastnosti tranzistorů UJT (7) – IO v přijímačích s přímým zesílením – Sitové usměrňovače a filtry – Amatérská zapojení – Televízní přijímač TC 1610, Třůnde" – Dálkové ovládání TVP – TV servis – Digitální hodiny (3) – Japonský magnetofon Hi-Fi AKAI 1721 W/L (2) – Analogový měřič kmitočtu – Zesilovače (2) – 25 let podníku EMG – Měřić LC.

Radio, Fernsehen, Elektronik (NDR), č. 9/1975

Ilegální přijímače v terezínském ghettu - Berlínský rozhlas, první vysílání – Před třiceti lety: zřízení rozhlasu NDR – První sériová výroba televizorů v Německu – Krátké informace o in-tegrovaných obvodech D126C a D172C – Pro servis – Pokus k určení hustot a teplot elektronů pomocí družice – Blok elektroníky rentgenového polarimetru družice Interkosmos 11 – Výběr čtužica a dvojica z hěžných canovátek otveříc a dvojic z běžných součástek pomoci po-čítače – Numerická analýza provozu s velkými signály u bipolárních tranzistorů.

Radio, Fernsehen, Elektronik (NDR), č. 10/1975

15 let ústřední laboratoře techniky příjmu roz-15 let ústřední laboratoře techniky příjmu rozhlasu a televize v Drážďanech – Kazetová technika a systém Dolby – Kazetový magnetofon pro auta AK 75 – Informace o polovodičích (106) – Pro servis – Technika gramofonů Hi-Fi s automatickým měničem desek – Spinaci automatika řízená úrovní pro přístroje napájené z baterií – Teplotné stabilmi impedanění měniče s velkým vstupním odporem – Pamětový prvek, tristabilní multivibrátor – Mnohonásobný spinač pro zobrazení impulsů v čislicových systémech. v čislicových systémech.

Funktechnik (NSR), č. 9/1975

Vady konvergence u obrazovek – Komunikační přijímač E 410 pro pásmo 70 kHz až 30 MHz – Polovodiče na 18. výstavě součástek v Paříži – Zajímavá zapojení – Videotechnické přistroje pro školy – Domáci a studiová nf zařízení – Nový diagnostický systém pro přijímače barevně TV – Učast firmy SEL na kosmickém programu – Obrazové zpravodajství – Zprávy z průmyslu.

Funktechnik (NSR), č. 10/1975

Zajímavá zapojení – Problémy tolerancí parametrů u zařízení Hi-Fi – Limitery pro mikrovlnné pásmo – Základní koncepce zapojení monolitických lineárních IO – Digitální generátor kmitočtů pro elektronické varhany s 11 oktávamí s použitim 12 integrovaných obvodů – Podminky činnosti "zesilovačů jisker" pro automobily – Koncepce umělé družice AEROS – Odrušování elektrických zařízení – Spotřební elektronika na výstavě v Basileji v dubnu 1975 – Přehled současných tendencí na trhu spotřební elektroniky. na trhu spotřební elektroniky.

INZERCE

První tučný řádek 20,40 Kčs, další 10,20 Kčs, Příslušnou částku poukažte na účet č. 300/036 SBCS Praha, správa 611 pro Vydavatelství MAGNET, inzerce AR, 113 66 Praha 1, Vladislavova 26. Uzávěrka 6 týdnú před uveřejněním, tj. 13. v měsici. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme.

Upozorňujeme všechny zájemce o inzerci, aby nezapomněli v objednávkách inzerce uvést poštovní směrovací číslo.

PRODET

Melodic. kláviset, 3 okt. (700), konc. st. ústř. 50 W bez elektr. (150), kompl. skřiň Orava 126 (150), RP Kankán VKV až DV (400), různé zahraniční inaše LP desky a odb. lit. podle sezn. F. Trost, C. Újezd 8, 400 10 Ústí n. L.

2N3055 (85) též pár, BFW92 (50), F45 = SF245 plast n-p-n (40), tantal kapka 10M/35 V (25). J. Hájek, Černá 7, 110 00 Praha 1.

BFX89/VKV - UKV ant. předz. fr - 1 200 MHz (à 110), p-n-p - BC177 (à 25), Murata SFE10,7 (à 90), SN7472 (à 40), SN7474 (à 50), SN7400 60 (à 20), SN7490 (à 90), KF504 (à 15), TAA661 (à 80), Koupim osciloskop do 1 MHz i amat., jen dopisem. E. Berger, Bčlehradská 96, 120 00 Praha 2.2 Praha 2.0

Si - p-n-p tranz. 300 mW (8-12), AF239S, 279 (90, 110), BFX89 (75), BF245, 256 (45, 75), TIP2935/3055 (240), A709, 710, 723, 741 (45, 110, 75, 65), MC1310 P (290), TBA120, 310 (75, 160), SN7474/75, 90, 93 (45, 65, 75, 75), SN 7447, 74141 (125, 95), Triac 400 V/3A; 6 A/95; 125); LED diody (25-30), 7- segm displej (110), 6-timismy (590). A. Kraus, p. s. 105, 160 00 Praha 6.

misus (1907, A. Atsus, p. 8, 102, 100 to 1 misus Ant. zesilovač KVC – CCIR pro dálkový příjem sterea osaz. 2× AF239 zes. 14 dB (270), dále ker. filtr Muntus SFE 10,7 MA (65), AF239, AF2398 (66, 90) soki DIL 14-ti p. NSR (12) LED diody červ. 3/5 mm (35,40) MCl310P (390). Jan Budina, Hradebni 186, 288 00 Nymburk.

Zesilovače 2×20 W (2 000), 2 reprobedny 40 l (1 000), SN7473 (à 50), 2N3055 (à 100), 2N456

(à 80), 2N2713 (à 20), 2N1893 (à 30). Petr Krásný, Mrštíkova 13/146, 100 00 Praha - Strašnice.

Tranziwatt. 508, 50 W/4 a 8Ω, 2 ks (à 800), KF508 (13), KC508 (9), KU602, 605, 607, (20, 45, 60), KY704, 705 (4, 7), KSY 34 (30). KT 502 (20). Ivan Havlík, Zlatnická 4, 110 00 Praha 1, tel. 679929.

Grundig SSB doplněk 2000. Bezvadný úplně nový doplněk pro majitele Grundigu. Evžen Šácha, Vykanšká 18, 100 00 Praha 10 – Strašnice, tel. 77 14 80

Mikrofony RFT - DM 30, AKG - D24B, D 1000 C, D 2000 C (1 100, 1 350, 1 800, 2 650). J. Král, V Olšinách 34, Praha 10.

2N3055 RCA (à 100), TIP2955, TIP5530 (à 150). Komplementárni páry 40 W (à 250), oper. zesilovače µA709 (à 80). Ing. Myšička, Fučíkova 1194, 266 01 Beroun IL

100 % mer. p-n-p nf. 2N3702TI (30), 2N3904/ /3906 (20/30), KFY34, 46/18 (20/30), ZENER. 6-10 V, 1N914-6, BZV88 (à 10), tuncl. 1N3716, Lancy, Kvapilova 6, 150 00 Praha 5 (tcl. 5238131). BFR38 (50), BFR90, 91 (100, 120), (19). J. Hájek, Černá 7, 110 00 Praha 1. 120), SN7460

Integr. obvody (log., lin.), Si tranzistory - vf + nf, tyristory, triaky za 70 % MC. Vše novė, nepoužitė, dam zaruku. Přip. vyměním za PU 120 - v bezvadném stavu nebo tranzistorový osciloskop, přenosný, s obrazovkou o Ø min. 10 cm, s možností provozu na bat. Jaromír Smehyl, Kobylá nad Vidnávkou 132, okr. Šumperk, PSC 790 56.

AF279S 6 kusů - (à 100), MAA502 (50), 1 ks, MAA325 - (30) - 1 ks, KSY62B (15) - 5 kusů. Fr. Strnadel, 698 01 Veseli n/M., Hutník 1420, okr. Hodonin.

Bohatá amat, směs - demontované rádio součástsonata amat. směs – demontovane radio součastky, různě kond. a odpory – potenc. – cívky – patice – knofliky, malé trafo na jádra – pájeci lišty – různé sa relé telef. – šroubky atd. cca 300 kusů rádio součástek. Vše za 75 Kčs. Karel Novotný, Soukupová 2241, 272 00 Kladno, Ostrovec.

Zesil. TW30G, osaz. 70% Si (1 200), VKV konvertor CCIR - OIRT HaZ 3,4/70 (140), V. Král, 735 51 Bohumin 5, Polni 297.

Přijímač Lambda IV, velmi dobrý stav (1 000), Ing. Václav Vachovec, Blatenská 11, 307 02 Plzeň, tel. 44543.

Hi-Fi zosilovač Philips RH590 2× 15 W, (3 300), repro skrine 2 ka 852/20 W (à 500), Tuner

Tesla ST100 (2 600), mgf B46 stereo (1 500). Všetko bezvadné. Josef Žucha, Duklianská 9,

Všetko bezvadné. Josef Zucha, Doradania Bratislava.
Nový mgf B400 (1 200), mike AMD202 (100).
L. Fejfar, 289 01 Dymokury 281.
Orig. chładiče: mix RK 1/73 (40), regulátor RK 3/72 (20), 50 W zosil. RK5/72 (40). Ing. Suchoň, Podiavorinskej 15, 917 00 Trnava.
Zes. ZC20 2× 15 W (2 600), mgf B100 (3 500).
T. Černohorský, A. Zápotockého 2, 789 01 Zábřeh na Mor.

Svázané AR roč. 57, 62, 63, 64, (à 30), tel. tuner Grundig 7652 - 018, I.-V. tel. pásmo (650), stabil. 11 - 14TA31 (à 15), obrazovku D71M8S + vn tra-fo (600). Jaromír Mašek, Na dráčkách 37, 160 00 Praha 6, Střešovice.

2 ks reproskříní 100 l Tesla ARS850 téměř nové, ořech, cena 6 500 Kčs. Miloň Machytka, Nerudova 908/7, 500 02 Hradec Králové.

908/7, 500 02 Hradec Králové.

Stereo T632A (3 500), Hi-Fi gramo SG-40 upravené s přenoskou WM2101 (2 000). J. Kopřiva Lhota Rapotina 35, 679 01 Skalice n/Svit.

SCHOTTKY SN74S20 (98), SN74S74 (185), dvojitý JK obvod 125 MHz SN74S112 (185), zesilovač 0 až 100 MHz µA733 (190), funkční generátor NE566, viz AR 4/75 (295), Phase Lock Loop NE561 a 562, viz ST 1/75 (315), Timer NE555 (130), Zener. 3,3 V + 5% (28), op. zes. µA748 (85), MOS LSI IO CT7001-digit, hodiny s kalendářem, "budíkem" a dalšímí obvody, včetné 6-ti ks LED 7-segm. displejů a dokumentace (2 580), LED displ. rudý včetné dekodéru SN7447 (335). V. Janda, Trenčinská 16, 140 00 Praha 4.

RC souprava Futába 4 servová. V. Mejsnar

RC souprava Futába 4 servová. V. Mejsnar Řepín 200, okr. Mělnik.

KOUPĚ

RX 150 kHz až 30 MHz nebo Lambdu 5 (4). Kos Ludvík, 664 24 Drásov 304. Klavírové klávesy na elektr. hud. nástroj. 5 oktáv. Len nové. P. Radvanský, 080 01 Prešov, Alešova 20. 3 ks panel deprézský př. 1 až 15 mA (výchylku stupnice nejr. 60—80 d). Ing. Tomíček, Slavíčkova 4.630 08 Proc. stupnice nejr. 60-va 4, 638 00 Brno.

VÝMĚNA

Digitrony za novou vložku Shure nebo za Praktiku LA – doplatím. J. Smerdul, Sušilova 6

TECHNICKOU dokumentaci

k některým výrobkům spotřební elektroniky

koupíte ve značkových prodejnách TESLA v Praze 1, Dlouhá 15 a v Pardubicích, Palackého 580. Při vaší osobní návštěvě vám ochotně poradí technici-specialisté.

Na základě vaší přesné písemné objednávky vám dokumentaci zašle na dobírku až do bytu výhradně jen pardubická prodejna TESLA.

PIŠTE NA ADRESU:

Značková prodejna TESLA Palackého 580 53000 PARDUBICE