Mathe für Informatiker II

Mitschrift der Vorlesung von Christian Bender Sommersemester 17

Lukas Koschorke

21. April 2017

Vorwort

Hallo zusammen, ich versuche mein Skript immer aktuell zu halten und wenn ich es eh schon abtippe, kann ich es auch noch zusätzlich auf StudyDrive hochladen. Ich kann leider keine Garantie geben, dass es immer den kompletten Stoff aller Vorlesungen beinhaltet, auch wenn ich mein Bestes dafür gebe. Wenn euch Fehler auffallen, haut sie einfach in die Kommentare von StudyDrive.

Inhaltsverzeichnis

1	Lineare Gleichungssysteme und der Gaußalgorithmus			
	1.1	Beispiel (PageRank)	1	
	1.2	Definition	4	
	1.3	Algorithmus (Rückwärtseinsetzen)	5	

1 Lineare Gleichungssysteme und der Gaußalgorithmus

1.1 Beispiel (PageRank)

Ein Nutzer surft auf den vorhandenen Seiten des Internets S₁,...,S_N. Er beginnt auf irgendeiner Seite und folgt typischerweise einem der Links. Er kann aber auch auf eine beliebige Seite springen.

Zur Modellierung sei 0 < d < 1 (Damping-Faktor, typischerweise d = 0,85). Auf einer Seite angekommen, folgt der Nutzer mit Wahrscheinlichkeit d einem rein zufällig ausgewähltem Link, mit Wahrscheinlichkeit 1 - d springt er auf eine rein zufällig gewählte Seite. (Konvention: Falls die Seite keinen Outlink hat, so wählt man rein zufällig eine Seite aus)

"Auf lange Sicht" (d.h. wenn die Anzahl der Surfschritte gegen unenlich strebt, ist die Wahrscheinlichkeit p_i , sich auf der Seite S_i zu befinden, beschrieben durch

$$p_i = \frac{1-d}{N} + d\sum_{j=1}^{N} a_{ij} p_j, i = 1, ..., N$$
(1.1)

wobei:

$$a_{ij} = \left\{ egin{array}{l} rac{1}{c_j} & \text{, falls Seite S}_{\mathrm{j}} \ \mathrm{auf Seite S}_{\mathrm{i}} \ \mathrm{verlinkt} \\ \\ rac{1}{N} & \text{, falls S}_{\mathrm{j}} \ \mathrm{keinen \ Outlink \ hat} \\ \\ 0 & \text{, sonst} \end{array}
ight.$$

und c_j die Anzahl an Seiten angibt, auf die S_j verlinkt (siehe dazu das "Das Kapital der Markovketten" in der MFI3).

p_i wird PageRank der Seite S_i genannt.

1.1 ist ein System von N linearen Gleichungen zu N Unbekannten.

In einem Netz mit 3 Seiten sei die Verlinkung schematisch dargestellt durch:

$$S_1 \leftrightarrows S_3, S_2 \to S_1, S_3 \to S_2$$

1 Lineare Gleichungssysteme und der Gaußalgorithmus

Hier ist also $c_3 = 2$, $c_1 = c_2 = 1$, d.h. 1.1 wird im Spezialfall zu:

Indem man (I) durch $(\tilde{I})=(I)+d(II)+\frac{1}{d}(III)$ ersetzt, erhält man die äquivalente Form:

Nun haben wir das System in "Zeilenstufenform" und man kann die Lösung direkt ablesen (0 < d < 1):

$$p_3 = \frac{1-d}{3} \frac{d^2+d+1}{1-\frac{d^3}{2} - \frac{d^2}{2}}$$

$$p_2 = \frac{1-d}{3} + \frac{d}{2}p_3$$

$$p_1 = \frac{1}{d}(p_3 - \frac{1-d}{3})$$

Da $p_3 > \frac{1-d}{3}$ folgt $p_1 > 0$ und $p_2 > 0$.

Da ferner $p_1 + p_2 + p_3 = 1$ (Nachrechnen), kann der PageRank tatsächlich als Wahrscheinlichkeit interpretiert werden.

Für d = 0.85 ist:

 $p_1 \approx 0,397$

 $p_2 \approx 0,215$

 $p_3 \approx 0,388$

Betrachten wir den "Grenzfall" d=1, in dem nur Links zum Surfen verwendet werden, dann:

und wie zuvor:

Hier lösen alle p_1, p_2, p_3 der Form

$$p_1 = p_3, p_2 = \frac{1}{2}p_3, p_3 \in \mathbb{R}$$

das System 1.1. Fordert man zusätzlich die Wahrscheinlichkeitsbedingung $p_1+p_2+p_3=1$, so ist die eindeutige Lösung:

$$p_3 = p_1 = 0, 4, p_2 = 0, 2$$

Zur Bedeutung des Damping-Faktor:

a) Die Wahl $0 \le d < 1$ sichert, das 1.1 genau eine Lösung hat und, dass diese Lösung positive Einträge hat.

Dies werden wir im Zusammenhang mit "Eigenwertproblemen" besser verstehen.

b) Im realistischen Problem ist N sehr groß (N>20Mio). Dann müssen nummerische Verfahren zur Approximation des PageRank herangezogen werden. Wir werden sehen, dass die Wahl von d eine wichtige Rolle bei der Konvergenzgeschwindigkeit derartiger Verfahren spielt.

Problem:

Gegeben sei ein System von $m \in \mathbb{N}$ Gleichungen mit $n \in \mathbb{N}$ Unbekannten:

Hierbei seien die Koeffizienten $a_{ij} \in \mathbb{R}$ (mit doppelter Indexschreibweise) für i = 1, ..., m, j = 1, ..., n, sowie die rechte Seite $b_i \in \mathbb{R}, i = 1, ..., m$, gegeben.

Gesucht sind alle n-Tupel $(x_1, ..., x_n)$ von reellen Zahlen, die das System (L) lösen.

Zur übersichtlichen Notation schreibt man die Koeffizienten als Rechteckschema, das $m \times n$ -Matrix genannt wird

$$A := (a_{ij})_{i=1,\dots,m,j=1,\dots,n} := \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

und die $b'_i s$ und $x'_i s$ als **Spaltenvektor**

$$x := \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right), b := \left(\begin{array}{c} b_1 \\ \vdots \\ b_m \end{array}\right)$$

Definiert man nun ein Produkt zwischen $m \times n$ -Matrix und Spaltenvektor der Höhe n, das einen Spaltenvektor der Höhe m ergibt, durch:

$$Ax := \begin{pmatrix} \sum_{j=1}^{n} a_{1j}x_1 \\ \vdots \\ \sum_{j=1}^{n} a_{mj}x_j \end{pmatrix}$$

dann kann (L) umgeschrieben werden in die Form

$$Ax = b$$
 (L')

als Gleichung von Spaltenvektoren der Höhe m.

Wir bezeichnen die Menge aller Spaltenvektoren der Höhe m
 mit reellen Einträgen als \mathbb{R}^n und die Menge aller $m \times n$ -Matrizen mit reellen Einträgen als $\mathbb{R}^{m \times n}$. Dann ist die Lösungsmenge von (L) gegeben durch:

$$L\ddot{o}s(A,b) := \{x \in \mathbb{R}^n | Ax = b\}$$

1.2 Definition

Wir sagen, eine $m \times n$ -Matrix $A = (a_{ij})_{i=1,\dots,m,j=1,\dots,n}$ hat **Zeilenstufenform**, falls:

1. Es gibt ein $0 \le r \le m$, so dass in den Zeilen mit Index 1 bis r
 nicht alle E Inträge gleich 0 sind und in der Zeile
(r+1) bis m
 alle Einträge gleich 0 sind und

2. es gelte

$$j_1 < ... < j_r$$

wobei für jedes $1 \le i \le r$

$$j_i = min\{j | a_{ij} \neq 0\}$$

der niedrigste Speltenindex angibt, in dem in der i-ten Zeile ein von 0 verschiedener Eintrag steht.

Die Zahl r wird **Zeilenrang** von A genannt.

Die Einträge a_{i,j_i} , i = 1, ..., r, werden **Pivots** genannt.

Offenbar gilt: $r \leq min\{m, n\}$

$$A = \begin{pmatrix} \underbrace{\begin{pmatrix} (*) \\ 0 \end{pmatrix} (*)}_{0 & 0 & \ddots \\ 0 & 0 & 0 & (*) \end{pmatrix}}_{0 & (*)}$$

Matrix in Zeilenstufenform: Die mit (*) gekennzeichneten Einträge sind die von 0 verschiedenen Pivots, die Einträge unterhalb der "Stufenlinie" sind gleich 0, die übrigen Einträge sind beliebig.

Im Beispiel 1.1 hat die Koeffizientenmatrix zum System $(III), (II), (\tilde{I})$ Zeilenstufenform, nämlich:

$$\begin{pmatrix}
-d & 0 & 1 \\
0 & 1 & -\frac{d}{2} \\
0 & 0 & (\frac{1}{2} - \frac{d^2}{2} - \frac{d}{2})
\end{pmatrix}$$

Fall 1: Löse Ax = b, wobei A Zeilenstufenform hat.

a) Durch Umordnung der Spalten und damit Umnummerierung der Unbekannten, kann man stets voraussetzen, dass die Pivots in den ersten r Spalten stehen, d.h $j_i = i$ für $1 \le i \le r$.

Beispiel:

$$\begin{pmatrix}
0 & 2 & 0 & 4 & 0 & 5 \\
0 & 0 & 1 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}

\longrightarrow
\begin{pmatrix}
2 & 0 & 0 & 5 & 0 & 4 \\
0 & 1 & 1 & 0 & 0 & 3 \\
0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

b) Wir betrachten die **erweiterte Koeffizientenmatrix** zu Ax = b (A beliebige $m \times n$ -Matrix).

$$(A,b) = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}$$

, bei der die rechte Seite b als (n+1)-te Spalte an die Koeffizientenmatrix angehängt wird. Ist A in Zeilenstufenform mit Pivots in den ersten r Spalten, so

$$(A,b) = \begin{pmatrix} a_{11} & & b_1 \\ & \ddots & & \vdots \\ & & a_{rr} & b_r \\ & & & b_{r+1} \\ & & & \vdots \\ & & b_m \end{pmatrix}$$

1.3 Algorithmus (Rückwärtseinsetzen)

Inputs

 $m \times n$ -Matrix A in Zeilenstufenform mit Zeilenrang r $(0 \le r \le m)$ und Pivots in den ersten r Spalten, $b \in \mathbb{R}^m$.

Output:

"es existiert keine Lösung" oder eine bijektive Abbildung:

$$\Phi_{A,b}: \mathbb{R}^{n-r} \to \text{L\"os}(A,b)$$

1. Falls $b_i \neq 0$ für ein i = r+1,...,m, so gebe "keine Lösung" als Output aus.

2.1 Andernfalls setze in Abhängigkeit von
$$\lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-r} \end{pmatrix}$$

$$x_{r+1}(\lambda) := \lambda_1, ..., x_n(\lambda) := \lambda_{n-r}$$

und für i = r, ..., 1 rekursiv

$$x_i := \frac{1}{a_{ij}} (b_i - \sum_{j=i+1}^n a_{ij} x_j(\lambda))$$

1 Lineare Gleichungssysteme und der Gaußalgorithmus

2.2 Gebe
$$\Phi_{A,b}: \mathbb{R}^{n-r} \to \text{L\"os}(A,b), \lambda \mapsto x(\lambda) := \begin{pmatrix} x_1(\lambda) \\ \vdots \\ x_n(\lambda) \end{pmatrix}$$
 aus.

Bemerkung:

Ist r=n, so ist $\mathbb{R}^{n-r}=\mathbb{R}^0:=\{0\}$ eineindeutig und das Rückwärtseinsetzen liefert genau eine Lösung für Ax = b

Beweis der Korrektheit des Algorithmus: Ist $b_i \neq 0$ für ein i = r + 1, ..., m, so lautet die i-te Gleichung

$$0 * x_1 + \dots + 0 * x_n = b_i \neq 0$$

und kann also für kein $x \in \mathbb{R}^n$ erfüllt sein. Andernfalls sind die Gleichungen r+1 bis m immer erfüllt (0=0).

Für i = 1, ..., r lautet die i-te Gleichung

$$a_{ii}x_i + a_{i,i+1}x_{i+1} + \dots + a_{in}x_n = b_i$$

und ist wegen $a_{ii} \neq 0$ äquivalent zu:

$$x_i = \frac{1}{a_{ii}}(b_i - \sum_{j=i+1}^{n} a_{ij}x_j)$$

Also: $x(\lambda) \in \text{L\"{o}s}(A, b)$ für alle $\lambda \in \mathbb{R}^{n-r}$ Zur Bijektivität:

Injektiv ist klar, da
$$x(\lambda) = \begin{pmatrix} x_1(\lambda) \\ \vdots \\ x_r(\lambda) \\ \lambda_1 \\ \vdots \\ \lambda_{n-r} \end{pmatrix}$$
 und also $x(\lambda) \neq x(\tilde{\lambda})$ für $\lambda \neq \tilde{\lambda}$.

und also $x(\lambda) \neq x(\tilde{\lambda})$ für $\lambda \neq \tilde{\lambda}$

Surjektiv: Sei
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \text{L\"os}(A, b)$$
. Setze $\lambda = \begin{pmatrix} x_{i+1} \\ \vdots \\ x_n \end{pmatrix}$. Dann:

$$x_{r+i}(\lambda) = \lambda_i = x_{r+i} \forall i = 1, ..., n-r$$

Für i = r, ..., 1 folgt induktiv (Induktionsannahme: $x_i(\lambda) = x_i \forall i \geq i + 1$):

$$x_1(\lambda) = \frac{1}{a_{ii}}(b_i - \sum_{j=i+1}^n a_{ij}x_j(\lambda)) = \frac{1}{a_{ij}}(b_i - \sum_{j=i+1}^n a_{ij}x_j) = x_i \square$$