Trabajo Práctico N°3 Perceptrón Simple y Multicapa

Grupo 5

Gonzalo Baliarda Franco Nicolás Estevez Ezequiel Agustin Perez Leandro Ezequiel Rodriguez Lucas Agustín Vittor

Ejercicio 1

Perceptrón Simple Escalón

Perceptrón Escalón

Permite resolver problemas de clasificación binaria, en los que los grupos sean linealmente separables.

AND y XOR: arquitectura

$$E(O) = \sum_{\mu=0}^{p-1} |\zeta^{\mu} - O^{\mu}|$$

 $convergencia \iff E = 0$

$$y=-rac{w_1x+w_0}{w_2}$$
 $optimization=false$ $\eta=0.01$

AND y XOR: resultado esperado

AND

XOR

$$W^{2k} = [0,0,0]$$

$$W^{2k+1} = \left[-0.04, 0, 0
ight]$$

$$orall k: E(O)=4$$

Ejercicio 2

Perceptrón Simple Lineal y No-Lineal

Perceptrón Lineal

Permite resolver problemas de regresión, en los que haya una **relación cuasi lineal entre inputs y outputs**.

$$O\in\mathbb{R}$$

$$E(O) = MSE = rac{1}{p} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})^2$$

Perceptrón No Lineal

Permite resolver problemas de regresión, en los que haya una **relación no lineal entre inputs y outputs**.

$$E(O) = MSE$$

Los outputs esperados se escalan según:

$$\zeta' = rac{\zeta - Z_{min}}{Z_{max} - Z_{min}} (heta_{max} - heta_{min}) + heta_{min}$$

Problema de Regresión

1.200	-0.800	-0.800	ζ 21.755 7.176 43.045 2.875	$egin{array}{cccccccccccccccccccccccccccccccccccc$
000000000000000000000000000000000000000	1.200		(2005)	

$$convergencia \iff MSE \leq rac{q}{100}(Z_{max} - Z_{min})$$

Regresión: perceptrón no lineal

$$convergencia \iff MSE \leq rac{0.05}{100}(Z'_{max}-Z'_{min})$$

$$heta(v) = tanh(v)$$

Regresión: perceptrón no lineal

Regresión: perceptrón lineal

Como es esperable, no logra aproximar bien todos los puntos, a diferencia del no lineal que sí.

Método Cross-Validation

Regresión: capacidad de generalización

Perceptrón no lineal

- MSE Training = 0.0011
- MSE Testing = 0.3532

Predicciones para training set

Ejercicio 3

Perceptrón Multicapa

Perceptrón Multicapa

Permite resolver problemas de **clasificación en muchos grupos**.

Input Layer Hidden Layer Output Layer

$$heta(v) = rac{1}{1+e^{-v}} \hspace{1cm} E = MSE$$

$$convergencia \iff E \leq rac{q}{100}(heta_{max} - heta_{min})$$

XOR: arquitectura

 $convergencia \iff E \leq 0.05$

X	у
(1, -1)	1
(-1, 1)	1
(1, 1)	-1
(-1, -1)	-1

$$\eta = 0.1$$

XOR: resultados

Dígitos como inputs

Dígito par: arquitectura

		Λ	1
П	=	U	. J

X	у
arr[35]_0	1
arr[35]_1	-1
arr[35]_8	1
arr[35]_9	-1

 $convergencia \iff E \leq 0.005$

Dígito par: resultados

Predecir dígito: arquitectura

 $\eta = 0.1$

Х	у	
arr[35]_0	[1, 0,, 0, 0]	
arr[35]_1	[0, 1,, 0, 0]	
arr[35]_8	[0, 0,, 1, 0]	
arr[35]_9	[0, 0,, 0, 1]	

 $convergencia \iff E \leq 0.004$

Predecir dígito: resultados

Predecir dígito: capacidad de generalización

Predicción para el 8, entrenando con todos los dígitos excepto el 8.

Predecir dígito: ruido

Ruido con distribución normal μ = 0, σ = 0.3

Predecir dígito: ruido

Conclusiones

Conclusiones generales

- Gradiente descendente con momentum mejora notablemente las épocas de convergencia, a cerca de la mitad con respecto a la variante sin momentum.
- El valor óptimo de la tasa de aprendizaje varía según cada problema.

Gracias