DNA 元基索引 ETL 中文脚本编译机 V0.0.2

罗瑶光
430181198505250014
313699483@qq.com
浏阳德塔软件开发有限公司

1 介绍

DNA 元基索引 ETL 中文脚本编译机 前身是《Deta Socket 流 PLSQL 数据库》的 Query 指令集编译机。在养疗经的内存计算中,作者开始逐步的将编译机的命令中文化和 参与 ETL, TCP,内存 和 中药表格筛选 搜索计算,于是开始命令扩充和整体逻辑优化。将 shell 命令进行 元基分类标识 和 索引管理,于是这个项目发展起来。项目时间 2021 年 9 月 22 日~ 2021 年 10 月 17 日

2 动机

- 2.1 作者思考命令行编程 (Programmable Language SQL) PLSQL 进行数据库操作,同理可以进行其他类的数据操作如内存数据。需要进行论证。
- 2.2 作者的父亲经常对作者说 养疗经的操作选项组件太多, 界面繁琐会让人眼花。作者思考需要一种便携统一的方式来简化使用逻辑。
- 2.3 作者使用 ETL Unicron 总是不经意的思考每个节点就要设计一个节点界面,消耗大量前端人力和时间, 作者思考需要一种便携统一的方式来简化使用逻辑。
- 2.4 作者在 WCC 2021 长沙开幕式 听了周向宇先生一堂课 说 古人的古书语文作品中蕴含数学逻辑, 如愚公移山的故事蕴藏 数列的极限和迭代逻辑等 F(n) = f(n+1)。。。 作者思考把 《Deta Socket 流 PLSQL 数据库》的 PLSQL 指令翻译成 中文试试, 以后能使用命令的就不再只有程序员的群体了 比如父亲。
- 2.5 作者在《DNA 元基催化与肽计算 第三修订版》的元基卷积 ETL 两章有描述元基矩阵记忆流 和 元基 DNN 计算流 两种节点模式,于是思考如何开始论证 思考 计算流和记忆流 的表达模式。
- 2.6 作者的 DNA 元基 TVM 虚拟机需要一个切入点, ETL 中文脚本编译机 恰好充当一个基础原型机。

于是这个项目开始了。

3 适用

- 3.1 该项目适用于所有并发的决策流内存计算场景。
- 3.2 该项目适用于编码能力薄弱的客户群体,非程序员群体。
- 3.3 该项目适用于各种复杂的工业基础体系,如大数据计算类,内存计算类,工业调度类,等。。

4 逻辑

- 4.1 PLSEARCH 包含可编程搜索命令 概念作者首发 将 德塔 PLSQL 中非 join table 的命令拿出来 优化成适用于 内存计算的命令。
- 4.2 PLETL 包含可编程节点流操作 概念作者首发 将 ETL 的节点流配置执行界面设计成

命令如下

PLETL:中节点|进行表格相交|主码为|ID|模式为|新增列;

PLETL:中节点|进行表格相交|主码为|ID|模式为|叠加列;

PLETL:中节点|进行表格相交|主码为|ID|模式为|有交集叠加列:

PLETL:中节点|进行表格相交|主码为|ID|模式为|有交集新增列;

PLETL:中节点|进行表格相交|主码为|ID|模式为|无交集新增列;

PLETL:中节点|进行表格剔除|主码为|ID|模式为|相交部分剔除;

PLETL:中节点|进行表格合并|主码为|ID|模式为|新增列;

PLETL:中节点|进行表格合并|主码为|ID|模式为|叠加列;

PLETL:中节点|进行表格合并|主码为|ID|模式为|有交集叠加列;

PLETL:中节点|进行表格合并|主码为|ID|模式为|有交集新增列;

PLETL:中节点|进行表格合并|主码为|ID|模式为|无交集新增列;

- 4.3 PLTCP 包含可编程网络请求 概念作者首发
- 4.4 PLSQL 可编程数据库操作 概念美国甲骨文公司首发
- 4.5 Tin Map ETL 节点 与 Tin Shell 编译机指令执行 的逻辑原理图

5 使用方法

5.1 指令集 已有中文命令分类 如下

操作

条件为

获取表名

获取表列名

进行分词

词性标注

词性显色

DNN

颜色标记为

红色

蓝色

黄色

绿色

进行字符排序进行数字排序

从小到大 从大到小

行至

PLETL

中节点 进行表格相交 进行表格合并 进行表格剔除 主码为

ID

模式为 相交部分剔除 新增列 叠加列 有交集新增列 有交集新增列

其他非中文命令见 德塔 PLSQL 文档

PLTCP 进行 WEB 请求 接口为 端口为 操作为

语法为

- ;一个 shell 句型分隔 :一个 shell 函数分隔 |一个 shell 对象分隔
- 5.2 组合方式示例 5.2.1 完整句型 获取表名:中药同源:进行选择; 条件为:和:功效|精度搜索|风热咳嗽|0;

条件为:和:中药名称|字符串长度大于|3;

条件为:或:功效|包含|清热解毒:功效|包含|利尿;

条件为:和:性味|不包含|温:脉络|包含|肺;

条件为:和:风险规避|过滤掉|毒:风险规避|过滤掉|孕;

获取表列名:功效:风险规避|改名为|风险:脉络:性味:中药名称|改名为|药名;

操作:0|行至|20;

操作:风险|颜色标记为|黄色;操作:药名|颜色标记为|红色;

操作:功效|进行分词|DNN;

5.2.2 流句型 完整测试指令如下:

节点1

获取表名:中医诊断:进行选择;

条件为:和:笔记|包含|发热:笔记|包含|身重;

获取表列名 ID 病症;

操作:0|行至|30;

节点 1->2

操作:病症|进行分词|词性显色;

节点 1->3

操作:病症|进行分词|DNN;

节点((1->2)+(1->3))->4

PLETL:中节点|进行表格合并|主码为|ID|模式为|新增列;

操作:ID|进行数字排序|从小到大;

操作:ID|颜色标记为|红色;

5.2.3 流并发句型

节点((1->2)+(1->3))->4

PLETL:中节点|进行表格合并|主码为|ID|模式为|新增列;

操作:ID|进行数字排序|从小到大;

操作:ID|颜色标记为|红色;

6 展示

6.1 单一TinShell 执行PLSearch

6.2 多节点 Tinshell 执行并发 PLETL

, culumnName=药名}}}]/r/n1/r/nsuccess/r/n0/r/n1

6.3 节点 Tinshell 执行 PLTCP HTTP 接口 请求

6.4 节点 Tinshell 流并发多功能执行业务逻辑。

7 源码 见源码文档

7.1 文件名目录

```
public class XA ShellQ JoinRows E {
public class XA ShellTable{
public class XA ShellTables{
public class ShellJPanel extends JPanel implements MouseListener, KeyListener,
ActionListener{
public class OSGI chansfer {
public class OSI OSU ASQ OCQ OSI PCI PCU MCI MCU MSI register{
public class I TinShellRun extends OSU AVQ ASQ OPE OPC ECI{
public class TinMap extends ConcurrentHashMap<String, Object> implements Cloneable {
public class App CM extends ScrollPane implements MouseListener, KeyListener,
ActionListener {
public class LYG10DWCMSSort15D XCDX C U A extends
LYG10DWCMSSort13D XCDX C A implements
LYG10DWCMSSort13D XCDX C U A C {
7.2 文件内容 DNA 元基编码索引
SEARCH= XA
CONDITION= CO
AGGREGATION= AO_
E PLSearch E= E PL XA E
P AggregationPLETL= P AO PLETL
P AggregationPLSearch= P AO PL XA
P AggregationPLTCP= P AO PLTCP
P ConditionPLSearch XCDX Cache= P CO_PL_XA_XCDX_Cache
P ConditionPLSearch XCDX Kernel = P CO PL XA XCDX Kernel
P ConditionPLSearch XCDX Map= P CO PL XA XCDX Map
P ConditionPLSearch XCDX=P CO PL XA XCDX
P GetCulumnsPLSearch= P I CulumnsPL XA
P RelationPLSearch= P RelationPL XA
PLSearchCommand E= PL XA Command E
SortStringDemo=SortStringDemo
PL XA C=PL XA C
PL XA E = PL XA E
SearchShellQ JoinRows E= XA ShellQ JoinRows E
SearchShellTable= XA ShellTable
SearchShellTables= XA ShellTables
ShellJPanel= ShellJPanel
OSGI chansfer=OSGI chansfer
OSI OSU ASQ OCQ OSI PCI PCU MCI MCU MSI register=
OSI OSU ASQ OCQ OSI PCI PCU MCI MCU MSI register
AddTinShellRun= I TinShellRun
TinMap=TinMap
AppConfig=App CM
```

LYG10DWCMSSort15D_XCDX_C_U_A= LYG10DWCMSSort15D_XCDX_C_U_A LYG10DWCMSSort13D_XCDX_C_U_A C= LYG10DWCMSSort13D_XCDX_C_U_A_C

8 引用

- 8.1, 罗瑶光, 中华人民共和国国家版权局, 德塔语言图灵工程 API_10_6_1, 软著登字 3951366.
- 8.2, 罗瑶光, 中华人民共和国国家版权局, 数据分析算法引擎系统 1.0.2, 软著登字 4584594.
- 8.3、罗瑶光, 中华人民共和国国家版权局, 德塔 Socket 流可编程数据库语言引擎系统 APII. 0. 0, 软著登字 4317518.
- 8.4, 罗瑶光, 中华人民共和国国家版权局, 德塔 ETL 可视化数据分析引擎系统 API1.0.2, 软著登字 4240558.
- 8.5, 罗瑶光, DNA 微分催化计算体系, GITHUB, https://github.com/yaoguangluo
- 8.6, 罗瑶光, 德塔开源体系, GITEE, https://gitee.com/detachina
- 8.7, 罗瑶光, 罗荣武, 中华人民共和国国家版权局, 类人 DNA 与 神经元基于催化算子映射编码方式,CN2020Z11L0333706, 国作登字-2021-A-00097017.
- 8.8 罗瑶光,中华人民共和国国家版权局, DNA 元基催化与肽计算 第三修订版 V039 010912, CN2021Z11L1267991
- 8.9 东尼·霍尔, 快速排序第四代, 第七章, PARTII, 算法导论, ISBN 9787111187776

9 注意

- 9.1 (Programmable Language SQL) PLSQL 第一次提出这个关键词概念 为美国甲骨文公司。
- 9.2 作者的快速排序 4 代源码不是算法导论直接获得的,是在很久以前在百度文库上 下载的专一一章,所以仅仅

Refer 东尼·霍尔, 因 快速排序思想被 算法导论 收录, 所以仅 Refer 算法导论一书。 关于算法导论的编辑作者 托马斯·科尔曼、查尔斯·雷瑟尔森、罗纳德·李维斯特、克利福德·斯坦,不在本文的 Refer 列,在此申明下。

10 开发工具

杀毒: 内含 Avira, Windows 安全中心, 腾讯电脑管家实时防护(360 杀毒最近 10 天莫名自动关闭了)

系统: Windows10, 联想 Y7000 2020,

文档设计: WPS, DOCX

源码保存: Github, Gitee, Bitbucket, Codingnet

源码编辑: Eclipse

其他 WEB 日记媒体 感谢, 略。

11 二次开发使用方法

该源码的引擎比较稳定,新增命令可直接在 E_pl_XA_E 文件中添加指令,然后逐级断点调试 Pl_XA_Command_E,添加相关的文件中即可。

罗瑶光,

浏阳