

between word embeddings

Optimal Transport

[Kusner et al. 2015]

$d(\mathbf{x}^{(i)}, \mathbf{y}^{(j)})$ meaningless!

(identical under word embedding objective)

Optimal Transport between word embeddings

Treat embeddings as support points of discrete distribution

- But this assumes the two spaces are registered (~axes are in correspondence)
- Not true in general for word embeddings in different languages!

A general correspondence problem

Data | Two collections of points:
$$X = \{\mathbf{x}^{(i)}\}_{i=1}^n, \mathbf{x}^{(i)} \in \mathcal{X} \subset \mathbb{R}^{d_x}$$

 $Y = \{\mathbf{y}^{(j)}\}_{j=1}^m, \mathbf{y}^{(j)} \in \mathcal{Y} \subset \mathbb{R}^{d_y}$