Математическое моделирование динамических процессов I

Дисциплина для студентов специальности «Компьютерная математика и системный анализ»

доц. Лаврова О.А.

механико-математический факультет, БГУ, Минск

2024

Тема 3. Математические модели распространения инфекционных заболеваний

Содержание Темы 3

- 1. Концептуальная постановка задачи
- 2. SIR-модель
- 3. Качественный анализ SIR-модели: базовое репродуктивное число, пороговый эффект, апостериорная оценка базового репродуктивного числа
- 4. Модификации и расширения SIR-модели: **SIS-модель**, **SEIR-модель** и др.

Концептуальная постановка задачи І

Допущение 1: особь некоторой популяции может находиться в одном из трех состояний S, I, R:

Состояние S (Susceptible) — это здоровая, восприимчивая к инфекции особь без иммунитета к исследуемому инфекционному заболеванию

Состояние I (Infective) — это инфицированная и заразная особь

Состояние R (Removed) — это выздоровевшая особь с иммунитетом и не заразная или изолированная до выздоровления особь или умершая особь

Обозначим через $S(t) \ge 0$, $I(t) \ge 0$, $R(t) \ge 0$ количество особей в каждом из состояний в момент времени t.

Концептуальная постановка задачи II

Допущение 2: изменение состояния особи во времени происходит по схеме

$$S \rightarrow I \rightarrow R$$

Указанный процесс изменения состояния основан на предположениях:

- инкубационный период для инфицированных особей отсутствует
- после выздоровления иммунитет к заболеванию постоянный

Схема $S \to I \to R$ может быть использована для моделирования таких инфекционных заболеваний, как корь, краснуха, грипп, ветряная оспа

Концептуальная постановка задачи III

Допущение 3: популяция изолирована и имеет большую постоянную численность N = const $S(t) + I(t) + R(t) \equiv N$

Это означает, что рождаемость и смертность особей не будет учитываться в модели. Как следствие, время моделирования короткое и моделироваться будет только единовременная вспышка эпидемии.

Допущение 4: контакты всех особей случайны и равновозможны, т.е. популяция однородно распределена в каждый момент времени.

Концептуальная постановка задачи IV

Инфекция распространяется через контакты здоровых особей S с инфицированными особями I.

Допущение 5: скорость изменения численности здоровых особей S пропорциональна произведению здоровых особей S и инфицированных особей I

$$S'(t) = -rS(t)I(t)$$

где r = const > 0 – коэффициент инфицирования.

Допущение 5 основано на законе действующих масс в химической кинетике: скорость протекания реакции пропорциональна произведению концентрации веществ. Это очень идеализированное представление о количестве контактов, которое было предложено в первых исследованиях и до сих пор используется как первое приближение к описанию реальной ситуации.

Концептуальная постановка задачи V

$$S'(t) = -rS(t)I(t)$$

где r = const > 0 – коэффициент инфицирования.

Коэффициент инфицирования r равен отношению числа контактов в единицу времени к размеру популяции и к периоду продолжительности болезни (*используется в Лб4*).

Период продолжительности болезни полагается равным периоду, когда инфицированный является заразным, то есть особь находится в состоянии I.

Концептуальная постановка задачи VI

Допущение 6: скорость перехода из состояния инфицированных в выздоровевшие пропорциональна количеству инфицированных особей

$$R'(t) = \alpha I(t)$$

где $\alpha = const > 0$ – коэффициент выздоровления.

Коэффициент выздоровления α (размерность 1/день) равен обратной величине к периоду продолжительности болезни (*используется в Лб4*).

В силу условия $S(t)+I(t)+R(t)\equiv N$ имеем, что

$$I'(t) = rS(t)I(t) - \alpha I(t)$$

Концептуальная постановка задачи VII

Процесс распространения заболевания в популяции начинается с появления небольшого количества инфицированных особей $I_0 \ll N$ в полностью здоровой популяции:

$$I(0) = I_0$$
, $S(0) = N - I_0$, $R(0) = 0$.

Содержание Темы 3

1. Концептуальная постановка задачи

2. SIR-модель

- Качественный анализ SIR-модели: базовое репродуктивное число, пороговый эффект, апостериорная оценка базового репродуктивного числа
- 4. Модификации и расширения SIR-модели: **SIS-модель**, **SEIR-модель** и др.

SIR-модель I

Пусть в некоторый момент времени t=0 в здоровой популяции появляются инфицированные особи $I(0)=I_0$. Тогда

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \\ S(0) = S_0 = N - I_0 \\ I(0) = I_0 \\ R(0) = 0 \end{cases}$$
 (*)

Требуется определить количество здоровых S, инфицированных I и выздоровевших особей R, как функции времени.

SIR-модель II

Система трех согласованных уравнений

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \end{cases}$$

называется **системой Кермака-Маккендрика** или **SIR-моделью**. Модель является детерминированной.

Kermack, W., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc R Soc Lond A 115(772), 700–721 (1927)

Кермак и Маккендрик – шотландские эпидемиологи, основатели математической эпидемиологии.

Данная система согласуется с системой взаимодействия «хищник-жертва», где хищниками являются инфицированные особи I, а жертвами — здоровые особи S при условии $S(t)+I(t)+R(t)\equiv N$ поддержания постоянного количества особей в популяции.

SIR-модель III

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \\ S(0) = S_0 \\ I(0) = I_0 \\ R(0) = 0 \end{cases}$$

SIR-модель является примером компартментной математической модели, когда в моделируемой системе осуществляется перенос вещества или энергии между частями (compartment) системы. При этом в пределах одной части системы различия между веществом или энергией нет.

Основные вопросы моделирования

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \\ S(0) = S_0 \\ I(0) = I_0 \\ R(0) = 0 \end{cases}$$

Вопрос 1: Возникнет ли эпидемия, если известны/не известны значения коэффициента инфицирования r, коэффициента выздоровления α и количества инфицированных в начальный момент времени I_0 ?, Другими словами, $\exists t^*$ такое, что $I(t^*) > I_0$?

Вопрос 2: Можно ли оценить максимальное количество инфицированных при возникновении эпидемии?

Вопрос 3: Как распространение инфекции развивается во времени при отсутствии/возникновении эпидемии?

Вопрос 4: Как можно предотвратить эпидемию?

Содержание Темы 3

- 1. Концептуальная постановка задачи
- 2. SIR-модель
- 3. Качественный анализ SIR-модели: базовое репродуктивное число, пороговый эффект, апостериорная оценка базового репродуктивного числа
- 4. Модификации и расширения SIR-модели: **SIS-модель**, **SEIR-модель** и др.

Вопрос 1: условие возникновения эпидемии І

Так как r = const > 0, S > 0, I > 0, из первого уравнения имеем, что S'(t) < 0, следовательно S(t) -- монотонно убывающая функция, т.е. $S(t) \leq S_0$ для любого $t \geq 0$.

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \\ S(0) = S_0 \\ I(0) = I_0 \\ R(0) = 0 \end{cases}$$

$$I'(0)=rS(0)I(0)-\alpha I(0)=rI_0S_0(1-1/R_0)$$
, где $R_0:=rac{rS_0}{lpha}$. Имеем, что $I'(0)>0$, когда $1-rac{1}{R_0}>0$ или $R_0>1$, $I'(0)<0$, когда $R_0<1$.

Вопрос 1: условие возникновения эпидемии II

$$I'(0)=rS(0)I(0)-\alpha I(0)=rI_0S_0(1-1/R_0)$$
, где $R_0:=\frac{rS_0}{\alpha}$. Имеем, что $I'(0)>0$, когда $1-\frac{1}{R_0}>0$ или $R_0>1$, $I'(0)<0$, когда $R_0<1$.
$$I'(0)<0$$
, когда $R_0<1$.
$$I'(0)<0$$
, когда $R_0<1$.
$$I'(t)=rS(t)I(t)$$
 $I'(t)=rS(t)I(t)-\alpha I(t)$ $I'(t)=\alpha I(t)$

Если $R_0 < 1$, тогда $S_0 < \alpha/r$, следовательно $S(t) \le S_0 < \frac{\alpha}{r}$. Оценивая правую часть второго уравнения $I'(t) = rI(S-\alpha)$, имеем, что $I'(t) \le 0$, т.е. количество инфицированных особей уменьшается во времени и **эпидемия не возникает**.

 R_0 называется базовым репродуктивным числом инфекции (basic reproduction number). R_0 характеризует заразность инфекционного заболевания. Этот параметр занимает центральное место в математической эпидемиологии.

Биологический смысл R_0 -- это среднее число зараженных одним заболевшим, помещенным в здоровую популяцию при отсутствии эпидемиологических мер.

Пороговый эффект

Пороговый эффект: Вспышка эпидемии в популяции происходит тогда и только тогда, когда $R_0 > 1$. В противном случае распространение инфекции не приводит к эпидемии и инфекция исчезает в популяции.

Пороговый эффект является одним из важных результатов в математической эпидемиологии.

Coronavirus - known officially as Sars-CoV-2 - would have **a reproduction number of about three** if no action was taken to stop it spreading.

BBC News, 28.02.2021

Априорная оценка численных значений R_0 по формуле $R_0 = \frac{rS_0}{\alpha}$ является сложной задачей на практике.

Фазовая SI-плоскость

Так как первые два уравнения SIR-модели не зависят от R(t), то исследования модели можно осуществить на основе динамической системы 2-го порядка относительно S и I:

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \end{cases}$$

$$\begin{cases} S' = -r S I \\ I' = r S I - \alpha I \end{cases}$$

Так как $S \ge 0$, $I \ge 0$ и $S + I \le N$, то фазовый портрет строится и исследуется

только в треугольной области

$$R_0 = \frac{rS_0}{\alpha} > 1, S_0 > \rho \coloneqq \alpha/r$$

Вопрос 2: максимальное количество инфицированных

$$\begin{cases} S' = -r S I \\ I' = r S I - \alpha I \end{cases}$$

Построим ДУ фазовых траекторий

$$\frac{dI}{dS} = -1 + \frac{\rho}{S}$$
, где $\rho = \alpha/r$.

При условии, что $I \neq 0$, имеем

$$\int_{I_0}^I d ilde{I} = \int_{S_0}^S \left(-1 + rac{
ho}{ ilde{S}}
ight) d ilde{S} \;\; \Rightarrow \;\; I - I_0 = -S + S_0 +
ho(\ln(S) - \ln(S_0))$$
 или

$$I + S - \rho \ln(S) = const.$$

Если
$$S(t^*)=\rho$$
, тогда $\frac{dI}{dS}(t^*)=-1+\frac{\rho}{S}=0$ и $I_{max}=I(t^*)=N-\rho+\rho(\ln(\rho)-\ln(S_0))=N-\rho-\rho\ln(R_0)$ при $S_0>\rho.$

Вопрос 3: распространение инфекции во

времени I

$$\begin{cases} S' = -r S I \\ I' = r S I - \alpha I \end{cases}$$

Построим ДУ фазовых траекторий

$$\frac{dI}{dS} = -1 + \frac{\rho}{S}$$
, где $\rho = \alpha/r$.

При условии, что $I \neq 0$, имеем

$$\int_{I_0}^I d ilde{I} = \int_{S_0}^S \left(-1 + rac{
ho}{ ilde{s}}
ight) d ilde{S} \;\; \Rightarrow \;\; I - I_0 = -S + S_0 +
ho(\ln(S) - \ln(S_0))$$
 или

$$I + S - \rho \ln(S) = const.$$

Если
$$S(t^*)=\rho$$
, тогда $\frac{dI}{dS}(t^*)=-1+\frac{\rho}{S}=0$ и $I_{max}=I(t^*)=N-\rho+\rho(\ln(\rho)-\ln(S_0))=N-\rho-\rho\ln(R_0)$ при $S_0>\rho.$

Вопрос 3: распространение инфекции во

времени II

$$\begin{cases} S' = -r S I \\ I' = r S I - \alpha I \end{cases}$$

Положения равновесия соответствуют условию $I^*=0$, следовательно бесконечное множество точек вида $\{(S^*,0)\colon 0\leq S^*\leq N\}$ являются положениями равновесия.

По фазовому портрету видно, что при $S^* \leq \rho$ положение равновесия устойчивое, а при $S^* > \rho$ — неустойчивое.

 $I(t) \to 0$ при $t \to \infty$, $S(t) \to S(\infty)$ при $t \to \infty$, где $S(\infty)$ — число здоровых особей, которые избежали заражения в процессе эпидемии

Оценка $R_{\mathbf{0}}$ I

Рассмотрим первое и третье уравнения SIR-модели

$$\begin{cases} S' = -r S I \\ R' = \alpha I \end{cases}$$

$$\begin{cases} S'(t) = -rS(t)I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \end{cases}$$

Сформулируем фазовое уравнение, разделив первое уравнение на второе уравнение

$$\frac{dS}{dR} = -\frac{S}{\rho}$$

где $\rho=\alpha/r$. Решение фазового уравнения $S=S_0e^{-\frac{R}{\rho}}$.

При $t \to \infty$ имеем, что $S(\infty) = S_0 e^{-\frac{R(\infty)}{\rho}} = S_0 e^{-\frac{N-S(\infty)}{\rho}}$, так как $I(t) \to 0$ при $t \to \infty$ (нужно доказать).

В уравнении $S(\infty) = S_0 e^{-\frac{N-S(\infty)}{\rho}}$ полагаем $S_0 = N$ и вводим замену переменных $z = S(\infty)/N$. Результирующее уравнение: $z = e^{R_0(z-1)}$.

Оценка $R_{\mathbf{0}}$ II

$$z = e^{R_0(z-1)} (**)$$

где $z = S(\infty)/N$, $S(\infty)$ — число здоровых особей, которые избежали заражения в процессе эпидемии.

Уравнение (**) является **уравнением для финального размера эпидемии**, которое оказывается справедливым не только для SIR-модели.

Уравнение (**) имеет решение z = 1 ($S(\infty) = N$, эпидемии нет), а также решение $z^* \in (0,1)$.

Оценка $R_{\mathbf{0}}$ III

$$z = e^{R_0(z-1)} (**)$$

Из уравнения (**) можно оценить значение R_0 для различных инфекций, если известна часть популяции $z^* = S(\infty)/N$, которая осталась здоровой после вспышки эпидемии.

$$R_0 = \frac{\ln(z^*)}{z^* - 1}$$

Приведенная формула представляет **апостериорную оценку** значения R_0 .

Например, известно, что без учета вакцинации $R_0 \approx 0.9-2.1$ для гриппа, $R_0 \approx 10-12$ для ветряной оспы, $R_0 \approx 12-18$ для кори, $R_0 \approx 1.4-5.7$ для COVID-19.

Апостериорная оценка $R_{f 0}$

Table 1 Estimated Mean Values of R₀ from Data.

Disease outbreak and location	\mathcal{R}_0	Reference
Smallpox in Indian subcont, (1968-73)	4,5	Anderson and May (1991)
Poliomyelitis in Europe (1955–60)	6	Anderson and May (1991)
Measles in Ghana (1960-68)	14.5	Anderson and May (1991)
SARS epidemic in (2002–03)	3,5	Gumel et al. (2004)
1918 Spanish influenza in Geneva		
Spring wave	1.5	Chowell, Ammon, Hengartner, and Hyman (2006)
Fall wave	3.8	Chowell et al. (2006)
H2N2 influenza pandemic in US (1957)	1.68	Longini, Halloran, Nizam, and Yang (2004)
H1N1 influenza in South Africa (2009)	1,33	White, Archer, and Pagano (2013)
Ebola in Guinea (2014)	1.51	Althaus (2014)
Zika in South America (2015-16)	2.06	Gao et al. (2016)

Driessche, "Reproduction numbers of infectious disease models", Infectious Disease Modelling (2017)

Вопрос 4: вакцинация против эпидемии

Если известна оценка базового репродуктивного числа R_0 , то при вакцинации нет необходимости делать прививки всем особям популяции, чтобы избежать возможной эпидемии. Необходимо привить иммунитет такой части популяции, чтобы R_0 стало меньше 1. Обозначим через p часть популяции, которую нужно вакцинировать.

$$R_0 < 1 \implies \frac{rS_0}{\alpha} = \frac{r(1-p)N}{\alpha} < 1 \implies p > 1 - \frac{\alpha}{rN} > 1 - \frac{\alpha}{rS_0} > 1 - \frac{1}{R_0}$$

Для исключения возможности эпидемии или создания коллективного иммунитета надо вакцинировать только часть популяции $p>1-\frac{1}{R_0}$.

Например, для коронавируса при $R_0=3$ имеем, что $p\approx 2/3$.

Содержание Темы 3

- 1. Концептуальная постановка задачи
- 2. SIR-модель
- Качественный анализ SIR-модели: базовое репродуктивное число, пороговый эффект, апостериорная оценка базового репродуктивного числа
- 4. Модификации и расширения SIR-модели: SIS-модель, SEIR-модель и др.

Модификации и расширения SIR-модели

Существуют различные модификации и расширения SIR-модели:

- модели с учетом вакцинации (Задания 1.2 и 1.3 в Лб4)
- модели с учетом рождаемости и смертности (Задание 2 в Лб4)
- модель с учетом инкубационного периода: **SEIR-модель** (Задание З в Лб4)
- модели при отсутствии иммунитета: SIS-модель, SIRS-модель
- модели с учетом карантина

• пространственное распространение заболеваний

Модель с учетом рождаемости и смертности

Для моделирования процессов распространения инфекционных заболеваний в более длительные периоды времени необходимо учитывать процессы рождаемости и смертности.

Пусть a=const>0 и b=const>0 коэффициенты рождаемости и смертности популяции. SIR-модель в предположении, что все рожденные являются здоровыми особями, имеет вид

$$\begin{cases} S'(t) = -rS(t)I(t) + aN(t) - bS(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) - bI(t) \\ R'(t) = \alpha I(t) - bR(t) \end{cases}$$

где S(t) + I(t) + R(t) = N(t).

Суммируя уравнения, мы получаем уравнение Мальтуса для численности популяции N'(t) = (a-b)N(t).

Анализируя поведение I'(0), можно определить базовое репродуктивное число. Для отсутствия эпидемии необходимо, чтобы $r S_0 - \alpha - b < 0$ или $r S_0/(\alpha + b) < 1$. Следовательно имеем базовое репродуктивное число для расширенной модели $R_0 = r S_0/(\alpha + b)$.

Обратите внимание, что коэффициент рождаемости a не влияет на пороговый эффект.

Расширенная SIR-модель с учетом рождаемости и смертности может иметь *решение с колебаниям*.

Модель с учетом инкубационного периода

Рассмотрим **SEIR-модель**, когда заразившиеся особи становятся распространителями инфекции только через некоторый промежуток времени.

Введем новое состояние особи E. Это заразившаяся особь, но не заразная. Количество особей в состоянии E обозначим через $E(t) \geq 0$. Введём новый параметр b>0, который характеризует скорость перехода из состояния E в I, где 1/b является инкубационным периодом. **SEIR-модель:**

$$\begin{cases} S'(t) = -rS(t)I(t) \\ E'(t) = rS(t)I(t) - bE(t) \\ I'(t) = bE(t) - \alpha I(t) \\ R'(t) = \alpha I(t) \end{cases}$$

Положение равновесия системы соответствуют условию $I^* = 0$, $E^* = 0$. Базовое репродуктивное число для **SEIR-модели** совпадает с SIR-моделью: $R_0 = r S_0/\alpha$.

Модель при отсутствии иммунитета

Рассмотрим **SIS-модель**

$$\begin{cases} S'(t) = -rS(t)I(t) + \alpha I(t) \\ I'(t) = rS(t)I(t) - \alpha I(t) \\ S(0) = S_0 \\ I(0) = I_0 \end{cases}$$

Учитывая, что S=N-I, можем построить ДУ для I(t)

$$I' = r(N-I)I - \alpha I = (rN - \alpha)I\left(1 - \frac{r}{rN - \alpha}I\right).$$

Это логистическое уравнение. В рамках SIS-модели эпидемия не возникнет, если $rN-\alpha<0$ или $rN/\alpha<1$, следовательно имеем базовое репродуктивное число для SIS-модели $R_0=rN/\alpha$. Предельное число инфицированных в случае эпидемии равно $I^*=\frac{rN-\alpha}{r}$.