COMP S265F Design and Analysis of Algorithms Lab 8: Depth-First Search and Topological Sort – Suggested Solution

Question 1.

(a) The required information of each vertex is shown below:

visited order	1	2	3	4	5	6	7
vertex v	G	A	F	В	С	Е	D
dist[v]	0	1	1	2	2	2	3
parent in BF tree	_	G	G	Α	A	F	В

(b) Below is the breadth-first tree obtained:

Question 2.

(a) The required information of each vertex is shown below:

discovered order	1	2	3	4	5	6	7
vertex v	G	A	В	С	E	D	F
d[v]	1	2	3	4	5	6	9
f[v]	14	13	12	11	8	7	10
$\pi[v]$	_	G	A	В	С	Е	С

(b) Below is the depth-first tree obtained:

(c) Classification of edges:

edge	(G, A)	(A, B)	(B, C)	(C, E)	(E, D)	(C, F)	(F, E)	(B, D)	(A, C)	(G, F)
type	tree	tree	tree	tree	tree	${\it tree}$	cross	forward	forward	forward

Question 3.

- (a) 1st DFS: source = A, Vertices in finishing order = (D, E, F, C, B, A)
 - 2nd DFS: source = G, Vertices in finishing order = (G)
- (b) The ordering of the vertices obtained by the topological sort is (G, A, B, C, F, E, D).

Question 4.

(a) As shown in Unit 4 Slides 73 and 74, a directed graph G is acyclic if and only if a DFS on G yields no back edges. Each vertex has three states: 0 (not discovered)/ 1 (discovered but not finished)/ 2 (finished). Then, we can check whether G contains cycle, as follows:

```
1: procedure HASCYCLE(G)
2:
       Mark all vertices u in state 0
       for each vertex u that is in state 0 do
3:
          if DFS(u) then
 4:
 5:
              return true
          end if
 6:
 7:
       end for
       return false
8:
9: end procedure
10:
11: procedure DFS(x)
       if vertex x is in state 2 then
12:
          return false
13:
       end if
14:
15:
       if vertex x is in state 1 then
          return true
16:
       end if
17:
       Mark x to be in state 1
18:
19:
       for each neighbor y of x do
20:
          if DFS(y) then
             return true
21:
          end if
22:
       end for
23:
24:
       Mark x to be in state 2
       return false
25:
26: end procedure
```

(b) Below is the depth-first tree obtained by DFS(A) on the directed graph G:

In the recursive call DFS(B), when traversing the edge (B, A), vertex A is found to be in state 1, i.e., (B, A) is a back edge. Thus, HASCYCLE(G) will return true.

Therefore, the directed graph has a cycle, which is ((A, C), (C, D), (D, E), (E, B), (B, A)).