

Modeling Long-Term Human Dynamics in Response to Natural Hazard Analyzing the Impact of Hurricane Katrina on Louisiana Cities

Yi Qiang*, Nina Lam, Lei Zou, Heng Cai Department of Environmental Sciences Louisiana State University

Hurricane Katrina in 2005

Downtown New Orleans

Radar loop of Hurricane Katrina

- Most destructive and costliest hurricane in the U.S. history (3rd most intensive)
- Passed just east of New Orleans, a metropolitan area with > 1,3m population (40th of the USA)
- Caused ~14 feet storm surge and >80% of New Orleans is in flood
- > 1,800 death; > \$150 billion economic loss

Snapshots of the city before and after the landfall

Impact of Hurricane Katrina on coastal Louisiana

Hurricane Katrina has changed demographic and socio-economic landscape in coastal Louisiana

- Displaced over one million people from the central Gulf coast to elsewhere across the U.S.
- Significant population decline in the metropolitan area of New Orleans,
 - Declined from 1.386 million in 2005 before Katrina to 1.04 million (declined by 25%) in
 2006 after Katrina, and recovered to 1.252 million (declined by 10%) in 2014
- Changed the racial and ethnic make-up
 - Growth of white and Hispanic communities, but contraction of black communities.
- Changed the economic composition
 - Seriously hit the transportation, tourism, and service sectors, but boomed the construction sector

The Study Area

- Including three Metropolitan Statistical Areas in coastal Louisiana (MSA)
- The most populated area in Louisiana (47% LA population in 15% land area)
- Two largest cities in Louisiana, with different environmental and socio-economic conditions
- Different impacts from Hurricane Katrina

Metropolitan Statistical Area	2001 Population	2010 Population	Population change (2001-2010)	Avg. elevation (meter)	
New Orleans-Metairie, LA	1,311,062	1,173,572	-10.5%	3.11	
Baton Rouge, LA	709,897	804,568	13.3%	22.82	
Hammond, LA	101,541	121,460	19.6%	34.89	

Population changes and elevation of the three MSAs in the study area

Urban area and growth

Focal filter is applied to convert scattered urban pixels into continuous urban areas

- Circle moving window with a 33-cell (990m) radius
- If counts of urban pixels >50%, the center pixel is classified as urban
- More intuitive urban extent and expansion
- Eliminate noise and focus on general trend
- Urban growth pattern is compared between pre-Katrina (2001-2006) and post-Katrina period (2006-2010)

Original urban pixels

Continuous urban area

Distance decay of city attractiveness

Urban growth probability decreases with increasing distance (travel time) to the city centers:

Rate of distance decay

$$P(x) = a \cdot x_t^b$$
Central attractiveness

Equations	Time period	а	b
No. Odere	2001-2006	2.946	-1.948
New Orleans	2006-2010	2.024	-1.903
Datan Dauga	2001-2006	0.1466	-0.8735
Baton Rouge	2006-2010	2.554	-1.657

Central attractiveness:

Baton Rouge \uparrow , New Orleans \downarrow

Rate of distance decay:

Baton Rouge ↓, New Orleans ↑

Urban growth probability with traveling time to city center.

Urban Growth Prob. at Different Elevation

Urban growth probability at different elevation can be fit into a Gaussian Function

The height of the peak $P(x_h) = a \cdot exp \left(-\frac{(x_h - b)^2}{c}\right)$

Elevation most probable for urban growth

—The width of the curve

Equations	Time period	а	b	С
	2001-2006	0.008903	10.84	13.22
Elevation	2006-2010	0.01052	11.9	7.681

Equation coefficients

The elevation most probable for urban growth (coefficient *b*) has increased from 10.84 to 11.90 meter after Katrina.

Urban growth is more concentrated around the central lines (i.e. increased coefficient c)

×10 ⁻³			1					1	
12									
12 10 8 6 4									
8 /									
6									
4									
2									
2	•								
0				•	-				-
0 10	20	30	40	50	60	70	80	90	100
×10 ⁻³			Elev	vation (me	ter)				
							- 1		
12									
12									
10									
12									
10									
8 6									
8									
8 6									
10 - 8 - 6 - 4 - 2 -									
10 - 8 - 6 - 4 -	20	30	40	50	60	70	80	90	100

Urban growth probability at different elevations.

Calibration of the Integrated Transition Function

Integrated transition function consists of city attractiveness, elevation and road proximity

$$P(x) = \alpha_1 \cdot ex \, p\left(-\frac{(x_e - \beta_1)^2}{\gamma_1}\right) + \alpha_2 \cdot x_{tb}^{\beta_2} + r \cdot \alpha_2 \cdot x_{tn}^{\beta_2} + \alpha_3 \cdot x_d^{\beta_3}$$

- Calibrating the coefficients using a genetic algorithm
- Two sets of coefficients are calibrated with urban growth before and after Hurricane Katrina, representing pre- and post-Katrina transition rules.
- Implemented in a cellular automata model to simulate the urban expansion
- Validation : correctly captured ~40% of urban growth (0.5% by random model)

	Elevation		City attractiveness I		Dist. to h	Dist. to highway		Accuracy		
Parameters	α_1	β_1	γ ₁	α_2	β_2	α_3	β_3	Total pixels	Error predictions	Error rate
2001 - 2006	1.140464	0.425875	0.042891	2.097344	-1.90265	2.311349	-0.57261	221994	64890	0.292305
2006 - 2010	3.503202	0.425912	0.131243	1.13776	-2.48992	1.719949	-0.44794	182295	47113	0.258444
Parameter changes	\uparrow	\uparrow	↑	\downarrow	\downarrow	\downarrow	↑			

Two sets of parameters representing transition function during the two periods

Comparative simulation using pre- and post-Katrina transition functions

The Impact of Hurricane Katrina to Urban Growth Pattern:

- Less urban growth near New Orleans, which is located in a low elevation region.
- Urban growth in the New Orleans MSA spills over across Lake Pontchartrain to the northern higher-elevation region.

Decentralization of the cities

Both cities show decentralization trend in the long-term simulation

- The trend is more prominent in New Orleans where most urban growth will occur in areas with more than 50 minutes travel time to the city core.
- Implies a decentralized trend of capital, economy, employment, and resources in the urban system.
- The importance of the original city core may gradually decline and new subcores may emerge in high elevation regions.

Distance of new urban areas to city centers

Conclusions

- Demonstrated a methodology of using land cover data to detect, model, and simulate urban growth via a set of quantitative approaches.
- Quantitatively analyzed the impact of Katrina on urban growth trend in coastal Louisiana.
- Uncovered individuals' response and adaptation to natural hazards, which can indicate the resiliency and adaptive capacity of the coastal communities.
- The simulation results can serve as a useful planning tool for sustainable development.
- An integration of multiple data sources leads to more comprehensive understanding of human dynamics

Thanks for your attention!

This research is part of the project "Coupled Natural and Human Dynamics in a Vulnerable Coastal System" supported by the National Science Foundation (Grant 1212112)

For more information and updates:

http://www.rsgis.envs.lsu.edu/cnh