

Today's agenda

Section 4.1: polynomial interpolation

Newton form

Section 4.2: error analysis

Recall the example

•
$$p_0(x) = -5$$

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

•
$$p_1(x) = -5 + 2x$$

•
$$p_2(x) = -5 + 2x - 4x(x - 1)$$

•
$$p_3(x) = -5 + 2x - 4x(x-1) + 8x(x-1)(x+1)$$

Nested form

$$p_4(x) = -5 + x(2 + (x - 1)(-4 + (x + 1)(8 + (x - 2)3)))$$

Summary

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Concise notation

$$p_n(x) = \sum_{i=0}^n a_i \prod_{j=0}^{i-1} (x - x_j)$$
 with $\prod_{j=0}^{-1} (x - x_j) = 1$

Nested form

$$p(x) = a_0 + (x - x_0)(a_1 + (x - x_1)(a_2 + \cdots + (x - x_{n-1})a_n))\cdots)$$

Finding coefficients $\{a_j\}_{j=0}^n$

- The nodes are assumed to be distinct, but no assumption is made about their position on the real line.
- Newton form

$$p_n(x) = p_{n-1}(x) + a_n(x - x_0) \cdots (x - x_{n-1})$$

• p_n is obtained by p_{n-1} by adding one more term.

$$\begin{cases} f(x_0) = a_0 \\ f(x_1) = a_0 + a_1(x_1 - x_0) \\ f(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) \\ \text{etc.} \end{cases}$$

Divided difference

- a_0 depends on $f(x_0)$
- a_1 depends on $f(x_0)$, $f(x_1)$, ...
- In general, a_k uniquely depends on the value of f at nodes x_0, x_1, \cdots, x_k
- Notation: $a_k = f[x_0, x_1, \dots, x_k]$.
- The quantity $f[x_0, x_1, \cdots, x_k]$ is called divided difference of order k for f.
- Newton form of the interpolating polynomial

$$p_n(x) = \sum_{i=0}^n \left\{ f[x_0, x_1, \dots, x_i] \prod_{j=0}^{i-1} (x - x_j) \right\}$$

Divided difference (cont'd)

$$f(x_0) = a_0$$

$$f(x_1) = a_0 + a_1(x_1 - x_0)$$

$$f(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$a_0 = f(x_0)$$

$$a_1 = \frac{f(x_1) - a_0}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$a_2 = \frac{f(x_2) - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

Recursive property

The divided differences obey the formula

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$$

The divided difference $f[x_0, x_1, ..., x_k]$ is invariant under all permutations of the arguments $x_0, x_1, ..., x_k$.

X	f[]	f[,]	f[,,]	f[,,,]
x_0	$f[x_0]$	£[1]		
x_1	$f[x_1]$	$f[x_0, x_1]$	$f[x_0, x_1, x_2]$	
x_2	$f[x_2]$	$f[x_1, x_2]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$
x_3	$f[x_3]$	$f[x_2, x_3]$		

7

Example

Let
$$f(x) = x^3 + 2x^2 + x + 1$$
.

- a) Find the polynomial of degree 4 that interpolates the values of f at ± 2 , ± 1 , 0.
- b) Find the polynomial of degree 2 that interpolates the values of f at ± 1 , 0.

$$p_4(x) = -1 + 2(x+2) - (x+2)(x+1) + (x+2)(x+1)x$$
$$p_2(x) = 1 + 2(x+1)x$$

Theorems on Interpolation Errors

First Interpolation Error Theorem

Access the interpolation errors by means of a formula that involves higher-order derivative.

First Interpolation Error Theorem

If p is the polynomial of degree at most n that interpolates f at the n + 1 distinct nodes x_0, x_1, \ldots, x_n belonging to an interval [a, b] and if $f^{(n+1)}$ is continuous, then for each x in [a, b], there is a ξ in (a, b) for which

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$
 (2)

The maximum error of a linear interpolation is bounded by $\frac{1}{8}h^2M$, where $h=x_1-x_0$, $M=\max_{x_0\leq x\leq x_1}|f''(x)|$