Эффективные системы машинного обучения

Лекция 11

Stable diffusion. Диффузия для решения задач

Преподаватель

Оганов Александр

6 декабря 2024

ВМК МГУ

Напоминание

Что мы знаем:

- Как задавать диффузионные модели в дискретном и непрерывном времени
- Как задать единое СДУ и обратное к нему
- Как перевести модель из одного СДУ в другое
- Как задать условную генерацию (classifier-free guidence)
- Как измерить качество (FID)
- Как решать ОДУ/СДУ и быстро генерировать (в 10-50 шагов)

Напоминание

Что мы знаем:

- Как задавать диффузионные модели в дискретном и непрерывном времени
- Как задать единое СДУ и обратное к нему
- Как перевести модель из одного СДУ в другое
- Как задать условную генерацию (classifier-free guidence)
- Как измерить качество (FID)
- Как решать ОДУ/СДУ и быстро генерировать (в 10-50 шагов)

Что мы не знаем:

- Зачем это может потребоваться?

О чем поговорим?

- Как обучали большие диффузионные модели, в частности, Stable diffusion 1 (SD1)? Мы не будем рассматривать SD2, SD3, SDXL, SVD и другие крутые open-source модели
- Как мы можем контролировать генерацию: задать форму, глубину, контуры, референсы?
- Как можно использовать диффузионные модели в качестве функции потерь и какие новые задачи благодаря этому решаются

Stable diffusion

Задача генерации изображения по тексту называется text-to-image. Одной из самых первых и главных моделей можно назвать Stable diffusion (SD) из статьи High-Resolution Image Synthesis with Latent Diffusion Models (https://arxiv.org/abs/2112.10752)

Figure 13. Combining classifier free diffusion guidance with the convolutional sampling strategy from Sec. 4.3.2, our 1.45B parameter text-to-image model can be used for rendering images larger than the native 256² resolution the model was trained on.

CFG (напоминание)

Будем учить нейросеть, подавая метки класса для объекта который пытаемся зашумить (если зашумили 1 из MNIST, то подаем 1). Для обучения безусловной score функции создадим dummy переменную и будем использовать любые объекты.

$$\nabla_x \log p(x \mid y) + \gamma(\nabla_x \log p(x \mid y) - \nabla_x \log p(x)) =$$

$$= \nabla_x \log p(x \mid y) + \gamma(\nabla_x \log p(x \mid y) - \nabla_x \log p(x \mid \emptyset))$$

Именно CFG используют сейчас везде, особенно для text2img генерации, у – текстовый промт, а dummy класс – пустая строка

Что есть лучше?

Прошло уже 2 года с появления SD1 и мы уже умеем генерировать изображения лучше и быстрее. Например, одни из лучших моделей представлены стартапом Black Forest Labs

(https://blackforestlabs.ai/announcing-black-forest-labs/) И ДОСТУПНЫ В <u>ОТКРЫТОМ</u> ДОСТУПЕ

Проблемы высокого разрешения

Если наша цель сгенерировать изображение с разрешением в 1024 пикселя, то возникают проблемы. Как минимум, мы знаем, что трансформеры плохо масштабируются. По итогу, обучение диффузионной модели становится крайне дорогой и долгой задаче, но основная проблема во времени генерации.

Проблемы высокого разрешения

Если разрешение изображения слишком большое, то стоило бы его уменьшить, например с помощью VAE с маленьким штрафом KL

(зачем?)

Figure 3. We condition LDMs either via concatenation or by a more general cross-attention mechanism. See Sec. 3.3

Как учить?

Если у нас есть обученный энкодер, то идейно обучение не поменяется

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2 \right]$$

Стандартный лосс

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \Big[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \Big]$$

Лосс в латетном представлении

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \Big[\|\epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y))\|_2^2 \Big]$$

Каким должен быть VAE

Figure 6. Analyzing the training of class-conditional *LDMs* with different downsampling factors f over 2M train steps on the ImageNet dataset. Pixel-based *LDM-1* requires substantially larger train times compared to models with larger downsampling factors ($LDM-\{4-16\}$). Too much perceptual compression as in LDM-32 limits the overall sample quality. All models are trained on a single NVIDIA A100 with the same computational budget. Results obtained with 100 DDIM steps [84] and $\kappa = 0$.

LSUN-Churches 256×256				LSUN-Bedrooms 256×256			
Method	FID↓	Prec. ↑	Recall ↑	Method	FID↓	Prec. ↑	Recall ↑
DDPM [30]	7.89	-	-	ImageBART [21]	5.51	-	-
ImageBART [21]	7.32	-	- DDPM [30]		4.9	_	E i
PGGAN [39]	6.42	-	-	UDM [43]	4.57	-	=
StyleGAN [41]	4.21	-	-	StyleGAN [41]	2.35	0.59	0.48
StyleGAN2 [42]	3.86	-	-	ADM [15]	1.90	0.66	0.51
ProjectedGAN [76]	1.59	0.61	0.44	ProjectedGAN [76]	1.52	0.61	0.34
<i>LDM-8</i> * (ours, 200-s)	4.02	0.64	0.52	<i>LDM-4</i> (ours, 200-s)	2.95	0.66	0.48

Table 1. Evaluation metrics for unconditional image synthesis. CelebA-HQ results reproduced from [43, 63, 100], FFHQ from [42, 43]. † : N-s refers to N sampling steps with the DDIM [84] sampler. * : trained in KL-regularized latent space. Additional results can be found in the supplementary.

Результаты (conditional)

Text-Conditional Image Synthesis									
Method	FID↓	IS↑	Nparams						
CogView [†] [17]	27.10	18.20	4B	self-ranking, rejection rate 0.017					
LAFITE [†] [109]	26.94	26.02	75M						
GLIDE* [59]	12.24	_	6B	277 DDIM steps, c.f.g. [32] $s = 3$					
Make-A-Scene* [26]	11.84	-	4B	c.f.g for AR models [98] $s=5$					
LDM-KL-8	23.31	20.03±0.33	1.45B	250 DDIM steps					
LDM- KL - 8 - G *	12.63	30.29 ± 0.42	1.45B	250 DDIM steps, c.f.g. [32] $s = 1.5$					

Table 2. Evaluation of text-conditional image synthesis on the 256×256 -sized MS-COCO [51] dataset: with 250 DDIM [84] steps our model is on par with the most recent diffusion [59] and autoregressive [26] methods despite using significantly less parameters. †/*:Numbers from [109]/ [26]

Не повторять в домашних условиях

Figure 17. For completeness we also report the training progress of class-conditional *LDMs* on the ImageNet dataset for a fixed number of 35 V100 days. Results obtained with 100 DDIM steps [84] and $\kappa = 0$. FIDs computed on 5000 samples for efficiency reasons.

Оганов Александр 6 декабря 2024

Что умеем еще?

ControlNet

Если мы уже умеем пользоваться условной генерацией, то почему бы не расширить эти знания?

Для контролирования генерации есть архитектура ControlNet (https://arxiv.org/abs/2302.05543)

Input human pose

Default

Default

ControlNet (базовый блок)

Основная идея: будем учить смещение к уже обученным весам нейронной сети. Тем самым мы, скорее всего, не сильно испортим уже обученную диффузионную модель

Figure 2: A neural block takes a feature map x as input and outputs another feature map y, as shown in (a). To add a ControlNet to such a block we lock the original block and create a trainable copy and connect them together using zero convolution layers, i.e., 1×1 convolution with both weight and bias initialized to zero. Here c is a conditioning vector that we wish to add to the network, as shown in (b).

ControlNet (SD)

Для примера "SD Encoder Block A" содержит 4 resnet блока и 2 ViT блока, а "×3" показывает, что блоки повторяются 3 раза

ControlNet (обучение)

$$\mathcal{L} = \mathbb{E}_{oldsymbol{z}_0, oldsymbol{t}, oldsymbol{c}_t, oldsymbol$$

step 6100

Figure 4: The sudden convergence phenomenon. Due to the zero convolutions, ControlNet always predicts high-quality images during the entire training. At a certain step in the training process (*e.g.*, the 6133 steps marked in bold), the model suddenly learns to follow the input condition.

step 8000

step 12000

step 6133

ControlNet (итоги)

Важно, что архитектуру и топологию нейронной сети меняют крайне редко, поэтому ControlNet обученный на SD1 часто применим к другим чекпоинтам и моделям. Со временем возможности контролируемой генерации увеличиваются (https://github.com/lllyasviel/ControlNet-v1-1-nightly)

Sketch Normal map Depth map Canny[11] edge M-LSD[24] line HED[91] edge ADE20k[96] seg. Human pose

Допустим, мы умеем решать text-to-image, что еще можно решить с помощью диффузионок?

Dream fusion

Допустим, мы умеем решать text-to-image, что еще можно решить с помощью диффузионок?

B paботе DreamFusion: Text-to-3D using 2D Diffusion (https://arxiv.org/abs/2209.14988) предлагают решать задачу text-to-3D

Допустим, мы умеем дифференцировано рендерить изображения с разных углов (например с помощью NERF)

$$\theta$$
 – параметры сцены

$$z$$
 — угол

$$x = g(\theta, z)$$

$$\mathcal{L}_{\text{Diff}}(\phi, \mathbf{x}) = \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[w(t) \| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon; t) - \epsilon \|_2^2 \right]$$

Все готово! Фиксируем диффузию и учим параметры сцены, правда же?....

Score Distillation Sampling

К сожалению, когда вы работаете с зашумлением и генерацией все не может быть стабильно и хорошо... Для начала посмотрим на градиент функции потерь:

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, \mathbf{x} = g(\theta)) = \mathbb{E}_{t, \epsilon} \left[w(t) \underbrace{(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t)}{\mathbf{z}_{t}}}_{\text{U-Net Jacobian}} \underbrace{\frac{\partial \mathbf{x}}{\partial \theta}}_{\text{Generator Jacobian}} \right]$$

На практике такой лосс не работает (обучение слишком шумное), поэтому появился Score Distillation Sampling лосс:

$$\nabla_{\theta} \mathcal{L}_{SDS}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$

Единственное отличие – мы убрали якобиан U-Net по зашумленному изображению. Почему такая замена имеет смысл и вообще работает?

Ответ (практический): так эффективней учится и так проще Ответ (теоретический): надо рассмотреть градиент и понять для какой функции это верно (подробнее можно прочитать на курсе <u>3D Computer Vision</u>)

$$\mathcal{L}_{Diff} \approx -\log p_0(x_0)$$

$$\mathcal{L}_{SDS} \approx -\mathbb{E}_t w(t) \mathbb{E}_{p_t(x_t|x_0)} \log p_t(x_t)$$

С помощью обученной диффузионной модели и правильного лосса, можно научиться решать задачи 3D генерации, то есть генерировать изображения одной сцены с разных ракурсов

На практике все еще необходимо добавить немного эвристик и магии, но это вопросы для совсем другого курса)

Что если мы хотим ускорить диффузию, например, сделать ее одношаговой?

Допустим, у нас уже есть обученная диффузионная модель и наша цель обучить генератор (одношаговую модель) с помощью дистилляции (перенести знания из диффузионки в генератор). Для этой цели есть много разных подходов, например, на основе Consistency Models (https://arxiv.org/abs/2303.01469)

Мы же посмотрим на статью One-step Diffusion with Distribution Matching Distillation

Формально нашу цель можно записать как минимизацию KLдивергенции между реальным распределением (генерация из диффузионки) и фейковым распределением (генерация из генератора):

$$D_{KL} (p_{\text{fake}} \parallel p_{\text{real}}) = \underset{x \sim p_{\text{fake}}}{\mathbb{E}} \left(\log \left(\frac{p_{\text{fake}}(x)}{p_{\text{real}}(x)} \right) \right)$$
$$= \underset{z \sim \mathcal{N}(0; \mathbf{I})}{\mathbb{E}} - \left(\log p_{\text{real}}(x) - \log p_{\text{fake}}(x) \right)$$
$$= \underset{x = G_{\theta}(z)}{\mathbb{E}}$$

Вопрос: Почему не начать просто оптимизировать? В чем проблема посчитать скор функцию?

$$D_{KL} (p_{\text{fake}} \parallel p_{\text{real}}) = \underset{x \sim p_{\text{fake}}}{\mathbb{E}} \left(\log \left(\frac{p_{\text{fake}}(x)}{p_{\text{real}}(x)} \right) \right)$$

$$= \underset{z \sim \mathcal{N}(0; \mathbf{I})}{\mathbb{E}} - \left(\log p_{\text{real}}(x) - \log p_{\text{fake}}(x) \right)$$

$$\nabla_{\theta} D_{KL} = \underset{z \sim \mathcal{N}(0; \mathbf{I})}{\mathbb{E}} \left[- \left(s_{\text{real}}(x) - s_{\text{fake}}(x) \right) \frac{dG}{d\theta} \right]$$

декабря 2024

Вопрос: Почему не начать просто оптимизировать? В чем проблема посчитать скор функцию?

$$\nabla_{\theta} D_{KL} = \underset{\substack{z \sim \mathcal{N}(0; \mathbf{I}) \\ x = G_{\theta}(z)}}{\mathbb{E}} \left[-\left(s_{\text{real}}(x) - s_{\text{fake}}(x)\right) \frac{dG}{d\theta} \right]$$

Вопрос: Почему не начать просто оптимизировать? В чем проблема посчитать скор функцию?

Ответ:

- 1) Мы не умеем считать скор функцию для чистых данных
- 2) Даже если бы и умели, то у фейковых изображений была бы низкая вероятность с точки зрения настоящего распределения

$$\nabla_{\theta} D_{KL} = \underset{\substack{z \sim \mathcal{N}(0; \mathbf{I}) \\ x = G_{\theta}(z)}}{\mathbb{E}} \left[-\left(s_{\text{real}}(x) - s_{\text{fake}}(x)\right) \frac{dG}{d\theta} \right]$$

DMD (решение)

Будем считать скор не для "чистых изображений" а для "зашумленных", что уже является стандартной задачей. По сути мы размываем распределения, что позволяет легче учить и считать градиенты

(a) for unperturbed distributions, both scores may not be defined simulateneously everywhere

(b) after diffusion, the distributions overlap, making our objective well-defined

Со всеми хитростями мы получим лосс:

$$\nabla_{\theta} D_{KL} \simeq \underset{z,t,x,x_t}{\mathbb{E}} \left[w_t \alpha_t \left(s_{\text{fake}}(x_t, t) - s_{\text{real}}(x_t, t) \right) \frac{dG}{d\theta} \right]$$

Всегда нужны какие-то эвристики...

декабря 2024

DMD

Со всеми хитростями мы получим лосс:

$$\nabla_{\theta} D_{KL} \simeq \underset{z,t,x,x_t}{\mathbb{E}} \left[w_t \alpha_t \left(s_{\text{fake}}(x_t, t) - s_{\text{real}}(x_t, t) \right) \frac{dG}{d\theta} \right]$$

Всегда нужны какие-то эвристики...

$$w_t = \frac{\sigma_t^2}{\alpha_t} \frac{CS}{||\mu_{\text{base}}(x_t, t) - x||_1}$$

Предложенный лосс будет хорошо работать при t >> 0 (именно об этом говорит интуиция с размытием распределений), но как он будет работать при t около O? На практике это решается добавлением регрессионного лосса:

$$\mathcal{L}_{\text{reg}} = \underset{(z,y) \sim \mathcal{D}}{\mathbb{E}} \ell(G_{\theta}(z), y)$$

DMD (итог)

Мы очень кратко посмотрели на статью, немного коснулись обучения и как переносятся знания от учителя к ученику. Более подробно и с деталями можно почитать в оригинальной статье (https://arxiv.org/abs/2311.18828).

Мы получили метод матчинга двух распределений с помощью диффузионных моделей! (а они учатся куда лучше, чем GAN)

Method	# Fwd Pass (↓)	FID (\dagger)
BigGAN-deep [4]	1	4.06
ADM [9]	250	2.07
Progressive Distillation [65]	1	15.39
DFNO [92]	1	7.83
BOOT [16]	1	16.30
TRACT [3]	1	7.43
Meng et al. [51]	1	7.54
Diff-Instruct [50]	1	5.57
Consistency Model [75]	1	6.20
DMD (Ours)	1	2.62
EDM [†] (Teacher) [31]	512	2.32

Итоги

Мы очень кратко затронули новые области применения диффузии:

- Stable diffusion и подобное, как генерация изображений по тексту
- ControlNet для контролируемой генерации
- DreamFusion для обобщения диффузии на 3D
- SDS лосс для обучения с учетом правдоподобия объекта на всех уровнях шума
- DMD как один из способов дистилляции знаний из диффузии, но еще и способ матчинга распределений с помощью обучения диффузии

При обучении диффузии мы извлекаем достаточно знаний, чтобы строить новые модели используя скор функции и знания из обученных диффузионных моделей!