Name: V. Sajeevan.

Index Number: 160544C

Practical Date: 14.09.2017

Submission Date: 21.09.2017

REPORT ON LAB 4 COMBINATIONAL CIRCUITS

Lab Task:

- ❖ Building a 2-to-4 decoder, simulating it and creating a symbol for it.
- ❖ Building a 3-to-8 decoder using two 2-to-4 decoders and other gates, simulating it and creating a symbol for it.
- ❖ Designing an 8-to-1 multiplexer using a 3-to-8 decoder and several other gates.
- Building it and simulating using several inputs.
- ❖ Test it using BASYS 2 board.

2 to 4 Decoder

Truth table:

I1	10	EN	Y3	Y2	Y1	Y0
0	0	1	0	0	0	1
0	1	1	0	0	1	0
1	0	1	0	1	0	0
1	1	1	1	0	0	0
X	X	0	0	0	0	0

Schematic Circuit:

Symbol:

Test bench code:

```
-- *** Test Bench - User Defined Section ***
   tb : PROCESS
   BEGIN
            --Set the initial values
            IO <= '0';
            I1 <= '0';
            EN <= '1';
            I0I1 Loop: LOOP
                WAIT FOR 1 ns;
                IO <= NOT IO;
                WAIT FOR 1 ns;
                IO <= NOT IO;
                I1 <= NOT I1;
            END LOOP IOI1 Loop;
      WAIT; -- will wait forever
   END PROCESS;
  *** End Test Bench - User Defined Section ***
END;
```

Timing diagram:

	0 ps	500 ps	1,000 ps	1,500 ps	12.000	2,500 ps	3,000 ps	3,500 ps
	U ps	500 ps	1,000 ps	1,500 ps	2,000 ps	2,500 ps	3,000 ps	3,500 ps
lೄ en								
ll₀ io								
U ii								
20								
U y0								
l₀ y1								
1 ⅓ y2							1	
l ₀ y3								
1.00 7.5								

3 to 8 Decoder

Truth Table:

Inputs were selected by considering the index number. $160544_{10} = 0b\ 100\ 111\ 001\ 100\ 100\ 000_2$ 000, 100 and 001 were the inputs that I had selected

I2	I1	10	EN	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
X	X	X	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	1	0	0	0	0

Symbol:

Schematic Circuit:

Test bench code:

```
-- *** Test Bench - User Defined Section ***
  tb : PROCESS
   BEGIN
             EN <= '1';
             -- Index no. 160544 = 0b 100 111 001 100 100 000
             IO <= '0';
             I1 <= '0';
             I2 <= '0';
             WAIT FOR 1 ns;
             IO <= '0';
             I1 <= '0';</pre>
             I2 <= '1';
             WAIT FOR 1 ns;
             IO <= '1';
             I1 <= '0';</pre>
             I2 <= '0';
       WAIT; -- will wait forever
   END PROCESS;
-- *** End Test Bench - User Defined Section ***
END;
```

Timing diagram:

8-to-1 Multiplexer:

Schematic Circuit:

Timing diagram:

Test bench code:

```
-- *** Test Bench - User Defined Section ***
  tb : PROCESS
    BEGIN
             --Set the initial values
             en <= '1';
             D0 <= '0';
             D1 <= '0';
             D2 <= '0':
             D3 <= '0';
             D4 <= '0';
             D5 <= '0';
             D6 <= '0';
             D7 <= '0';
             S0 <= '0';
             S1 <= '0';
             S2 <= '0';
白
             -- Index no. 160544 = 0b 100 111 001 100 100 000
             D0 <= '1';
             WAIT FOR 1 ns;
             -- 100
             D0 <= '0';
             D4 <= '1';
             S2 <= '1';
             WAIT FOR 1 ns;
             -- 001
             D4 <= '0';
             D1 <= '1';
             S2 <= '0';
             S0 <= '1';
             WAIT FOR 1 ns;
             -- 111
             D1 <= '0';
             D7 <= '1';
             S1 <= '1';
             S2 <= '1';
       WAIT; -- will wait forever
    END PROCESS;
 -- *** End Test Bench - User Defined Section ***
 END;
```

In the above simulation, for every combination of switches the corresponding data input was changed to test whether the output reflects the specific input.

Conclusion:

At the end of the lab, I could,

- Design and develop 2-to-4 decoder, 3-to-8 decoder and 8-to-1 multiplexer using schematics design
- Verify their functionality via simulation.
- Test them using the BASYS 2 development board.