Recovery Theory

Fallstudien der mathematischen Modellbildung, Teil 2 20.10.2023 - 21.11.2023,

paul.catala@tum.de

COMPRESSED SENSING

 \blacksquare $y = Ax_0 + e$, $\|e\| \leqslant \delta$, $A \in \mathbb{R}^{m \times n}$ m < n. Assume x_0 is k-sparse, and consider the LASSO

$$x = \operatorname{argmin}_{x} \frac{1}{2} ||y - Ax||^{2} + \lambda ||x||_{1}$$

■ Questions: is $x = x_0$ when $\delta = 0$, $\lambda = 0$? how close is x from x_0 ? \rightarrow depends on properties of A, and on k.

COMPRESSED SENSING

 \blacksquare $y = Ax_0 + e$, $\|e\| \leqslant \delta$, $A \in \mathbb{R}^{m \times n}$ m < n. Assume x_0 is k-sparse, and consider the LASSO

$$\mathbf{X} = \operatorname{argmin}_{\mathbf{X}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda \|\mathbf{x}\|_1$$

- Questions: is $x = x_0$ when $\delta = 0$, $\lambda = 0$? how close is x from x_0 ? \rightarrow depends on properties of A, and on k.
- Noiseless, constrained problem basis pursuit

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = y$$

We will always assume that the problem is feasible, i.e. there exists $x_0 \in \mathbb{R}^n$ such that $Ax_0 = y$

DUAL CERTIFICATE

■ For f_0 is differentiable, consider

$$\min f_0(x)$$
 s.t. $Ax = y$

Is x_0 a minimizer? The (sufficient) KKT conditions for optimality give

$$\begin{cases} \nabla f_0(x) - A^{\top} \nu = 0 \\ Ax - y = 0 \end{cases}$$

Therefore, if there exists ν such that $\nabla f_0(x_0) = A^\top \nu$, then x_0 is a solution. $A^\top \nu$ is called a *dual certificate*. In that case, ν is also a solution of the dual problem. The dual certificate is not necessary unique.

■ For f_0 is differentiable, consider

$$\min f_0(x)$$
 s.t. $Ax = y$

Is x_0 a minimizer? The (sufficient) KKT conditions for optimality give

$$\begin{cases} \nabla f_0(x) - A^{\top} \nu = 0 \\ Ax - y = 0 \end{cases}$$

Therefore, if there exists ν such that $\nabla f_0(x_0) = A^\top \nu$, then x_0 is a solution. $A^\top \nu$ is called a *dual certificate*. In that case, ν is also a solution of the dual problem. The dual certificate is not necessary unique.

■ For basis pursuit, KKT at x_0 gives

$$\begin{cases} A^{\top} \nu \in \partial \|x\|_1 \\ Ax - y = 0 \end{cases}$$

They are also sufficient: if $A^{\top}\nu \in \partial \|x_0\|_1$, then for all x

$$\|x\|_1 \ge \|x_0\|_1 + \langle A^\top \nu, x - x_0 \rangle \iff \|x\|_1 \ge \|x_0\|_1 + \langle \nu, Ax - Ax_0 \rangle$$

which directly shows that $||x||_1 \ge ||x_0||_1$ if x is feasible.

,

Sparse Recovery

■ Let $I = \operatorname{Supp} X_0$, I^c its complement, X_I the restriction of $X \in \mathbb{R}^n$ to I and A_I the column restriction of A to I

SPARSE RECOVERY

■ Let $I = \operatorname{Supp} X_0$, I^c its complement, X_I the restriction of $X \in \mathbb{R}^n$ to I and A_I the column restriction of A to I

- \blacksquare $\eta = A^{\top} \nu \in \partial \|x_0\|_1$ when
 - (i) $\eta_l = \operatorname{sign}(x_0)_l$
 - (ii) $\|\eta_{I^c}\|_{\infty} \leqslant 1$

SPARSE RECOVERY

■ Let $I = \operatorname{Supp} X_0$, I^c its complement, X_I the restriction of $X \in \mathbb{R}^n$ to I and A_I the column restriction of A to I

- \blacksquare $\eta = A^{\top} \nu \in \partial ||x_0||_1$ when
 - (i) $\eta_l = \operatorname{sign}(x_0)_l$
 - (ii) $\|\eta_{l^c}\|_{\infty} \leqslant 1$
- Theorem (Fuchs, 2004). x_0 is the unique minimizer of

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = Ax_0$$

if there exists $\eta \in \operatorname{Ran} A^{\top}$ such that

- (i) $\eta_l = \operatorname{sign}(x_0)_l$
- (ii) $\|\eta_{l^c}\|_{\infty} < 1$ ("non-degeneracy")

and furthermore A is injective on I.

Let $x \in \mathbb{R}^n$ such that $Ax = Ax_0$. We have

$$\begin{split} \|x_0\|_1 &= \langle \eta, x_0 \rangle \\ &= \langle \eta, x \rangle \\ &= \langle \eta_l, x_l \rangle + \langle \eta_{l^c}, x_{l^c} \rangle \\ &\leq \|x_l\|_1 + \|\eta_{l^c}\|_{\infty} \|x_{l^c}\|_1 \end{split}$$

If $x_{I^c} \neq 0$, then $||x_0||_1 < ||x||_1$

If $x_{I^c} = 0$ (i.e. x has the same support as x_0), then $A(x - x_0) = A_I(x_I - (x_0)_I) = 0$, so by injectivity $x_I = (x_0)_I$, and therefore $x = x_0$.

Hence, $||x_0||_1 < ||x||_1$ unless $x = x_0$.

_

How to Build η

■ Classical way: look for minimal norm certificate

$$\min \|\nu\|_2^2$$
 s.t. $(A^{\top}\nu)_i = \operatorname{sign}(x_0)_i$

■ Note that $(A^{\top}\nu)_I = \operatorname{sign}(x_0)_I \iff (A_I)^{\top}\nu = \operatorname{sign}(x_0)_I$: underdetermined system for sufficiently sparse vector

The minimal norm solution is given by the pseudo-inverse, *i.e.*

$$\eta_0 = A^{\top} (A_I^{\top})^{\dagger} \operatorname{sign}(X_0)_I$$

Since A_l is injective, $\eta_l = A_l^{\top} (A_l)^{\dagger} \operatorname{sign}(X_0)_l = \operatorname{sign}(X_0)_l$

■ It remains to show that $\|\eta_{I^c}\|_{\infty} < 1$

EXAMPLE: GAUSSIAN RANDOM MATRIX

■ Assume $A_{ij} \sim \mathcal{N}(0,1)$ i.i.d.. This means in particular

$$\mathbb{P}(|A_{ij}| \ge u) \propto 2 \int_{u}^{\infty} \exp\left(-\frac{t^{2}}{2}\right) dt \le \exp\left(-\frac{u^{2}}{2}\right)$$

$$\int_{u}^{\infty} e^{-t^{2}/2} dt = \int_{0}^{\infty} e^{-(t+u)^{2}/2} dt = e^{-u^{2}/2} \int_{0}^{\infty} e^{-tu} e^{-t^{2}/2} dt$$

$$\begin{cases}
\le e^{-u^{2}/2} \int_{0}^{\infty} e^{-t^{2}/2} dt = \sqrt{\frac{\pi}{2}} e^{-u^{2}/2} \\
\le e^{-u^{2}/2} \int_{0}^{\infty} e^{-tu} dt \le \frac{1}{u} e^{-u^{2}/2}
\end{cases}$$

EXAMPLE: GAUSSIAN RANDOM MATRIX

■ Assume $A_{ij} \sim \mathcal{N}(0,1)$ i.i.d.. This means in particular

$$\mathbb{P}(|A_{ij}|\geqslant u)\propto 2\int_u^\infty \exp\left(-\frac{t^2}{2}\right)\mathrm{d}t\leqslant \exp\left(-\frac{u^2}{2}\right)$$

■ Suppose $A \in \mathbb{R}^{m \times n}$ (m is the number of measurements), $A_l \in \mathbb{R}^{m \times k}$ and $x_0 \in \mathbb{R}^n$ with $\|x_0\|_0 = k$, k < m. The entries of the dual certificate are

$$\eta_i = \sum_{j=1}^m A_{ji} \left[(A_l^\top)^\dagger \operatorname{sign}(x_0)_l \right]_j =: \sum A_{ji} cj$$

The goal is to find conditions on m, n, k such that $|\eta_i| < 1$, $i \notin I$ with high probability.

■ Assume $A_{ij} \sim \mathcal{N}(0,1)$ i.i.d.. This means in particular

$$\mathbb{P}(|A_{ij}| \geqslant u) \propto 2 \int_{u}^{\infty} \exp\left(-\frac{t^2}{2}\right) \mathrm{d}t \leqslant \exp\left(-\frac{u^2}{2}\right)$$

■ Suppose $A \in \mathbb{R}^{m \times n}$ (m is the number of measurements), $A_l \in \mathbb{R}^{m \times k}$ and $x_0 \in \mathbb{R}^n$ with $\|x_0\|_0 = k$, k < m. The entries of the dual certificate are

$$\eta_i = \sum_{i=1}^m A_{ji} \left[(A_i^\top)^\dagger \operatorname{sign}(x_0)_i \right]_j =: \sum A_{ji} c j$$

The goal is to find conditions on m, n, k such that $|\eta_i| < 1$, $i \notin I$ with high probability.

■ Lemma (1). If $X_i \sim \mathcal{N}(0,1)$ i.i.d., then $\mathbb{P}(|\sum c_i X_i| \ge u) \le \exp\left(-\frac{u^2}{2\|c\|_2^2}\right)$ Lemma (2, admitted). If $A_{ij} \sim \mathcal{N}(0,1)$ i.i.d., $i = 1, ..., m, j = 1, ..., k \ k < m$, then

$$\mathbb{P}\left(\sigma_{\max}\left(\frac{A}{\sqrt{m}}\right) \geqslant 1 + \sqrt{\frac{k}{m}} + t\right) \leqslant \exp\left(-\frac{mt^2}{2}\right)$$

$$\mathbb{P}\left(\sigma_{\min}\left(\frac{A}{\sqrt{m}}\right) \leqslant 1 - \sqrt{\frac{k}{m}} + t\right) \leqslant \exp\left(-\frac{mt^2}{2}\right)$$

Estimate $P = \mathbb{P}(\exists i \notin I : |\eta_i| \ge 1)$. Consider the event $E: \|c\|_2 \le \alpha$ for some $\alpha > 0$.

■ Then

$$\begin{split} P &= \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1 | E) \mathbb{P}(E) + \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1 | E^c) \mathbb{P}(E^c) \\ &\leq \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1 | E) + \mathbb{P}(E^c) \end{split}$$

Estimate $P = \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1)$. Consider the event $E: \|c\|_2 \leqslant \alpha$ for some $\alpha > 0$.

■ Then

$$P = \mathbb{P}(\exists i \notin I : |\eta_i| \ge 1 | E) \mathbb{P}(E) + \mathbb{P}(\exists i \notin I : |\eta_i| \ge 1 | E^c) \mathbb{P}(E^c)$$

$$\le \mathbb{P}(\exists i \notin I : |\eta_i| \ge 1 | E) + \mathbb{P}(E^c)$$

■ For a fixed $i \notin I$, using Lemma 1,

$$\mathbb{P}(|\sum A_{ij}c_j|\geqslant 1|E)\leqslant \exp\left(-\frac{1}{2\|c\|_2^2}\right)\leqslant \exp\left(-\frac{1}{2\alpha^2}\right),$$

and since there are (n - k) possible values of $i \notin I$, we obtain

$$\mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1 | E) \leqslant (n - k) \exp\left(-\frac{1}{2\alpha^2}\right)$$

Estimate $P = \mathbb{P}(\exists i \notin I : |\eta_i| \ge 1)$. Consider the event $E: \|c\|_2 \le \alpha$ for some $\alpha > 0$.

■ Then

$$P = \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E)\mathbb{P}(E) + \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E^c)\mathbb{P}(E^c)$$

$$\leq \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E) + \mathbb{P}(E^c)$$

■ For a fixed $i \notin I$, using Lemma 1,

$$\mathbb{P}(|\sum A_{ij}c_j|\geqslant 1|E)\leqslant \exp\left(-\frac{1}{2\|c\|_2^2}\right)\leqslant \exp\left(-\frac{1}{2\alpha^2}\right),$$

and since there are (n - k) possible values of $i \notin I$, we obtain

$$\mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E) \leqslant (n-k) \exp\left(-\frac{1}{2\alpha^2}\right)$$

■ Assume $\|c\|_2 \leqslant B$. Then $\mathbb{P}(E^c) = \mathbb{P}(\|c\|_2 \geqslant \alpha) \leqslant \mathbb{P}(\alpha \leqslant B)$. But

$$\|c\|_2 = \|(A_I)^{\dagger} \operatorname{sign}(x_0)_I\|_2 \leqslant (\sigma_{\min}(A_I))^{-1} \sqrt{R} = \sigma_{\min}^{-1}(A_I/\sqrt{R})$$

Estimate $P = \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1)$. Consider the event $E: \|c\|_2 \leqslant \alpha$ for some $\alpha > 0$.

■ Then

$$P = \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E)\mathbb{P}(E) + \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E^c)\mathbb{P}(E^c)$$

$$\leq \mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1|E) + \mathbb{P}(E^c)$$

■ For a fixed $i \notin I$, using Lemma 1,

$$\mathbb{P}(|\sum A_{ij}c_j|\geqslant 1|E)\leqslant \exp\left(-\frac{1}{2\|c\|_2^2}\right)\leqslant \exp\left(-\frac{1}{2\alpha^2}\right),$$

and since there are (n - k) possible values of $i \notin I$, we obtain

$$\mathbb{P}(\exists i \notin I : |\eta_i| \geqslant 1 | E) \leqslant (n - k) \exp\left(-\frac{1}{2\alpha^2}\right)$$

■ Assume $\|c\|_2 \leqslant B$. Then $\mathbb{P}(E^c) = \mathbb{P}(\|c\|_2 \geqslant \alpha) \leqslant \mathbb{P}(\alpha \leqslant B)$. But

$$\|c\|_2 = \|(A_I)^{\dagger} \operatorname{sign}(x_0)_I\|_2 \leqslant (\sigma_{\min}(A_I))^{-1} \sqrt{k} = \sigma_{\min}^{-1}(A_I/\sqrt{k})$$

and hence

$$\mathbb{P}(E^{c}) \leqslant \mathbb{P}(\sigma_{\min}^{-1}(A_{I}/\sqrt{k}) \geqslant \alpha) = \mathbb{P}\left(\sigma_{\min}(A_{I}/\sqrt{m}) \leqslant \frac{1}{\alpha}\sqrt{\frac{k}{m}}\right)$$
$$\leqslant \exp\left(-\frac{m}{2}\left(1 - (1 + \frac{1}{\alpha})\sqrt{\frac{k}{m}}\right)^{2}\right)$$

Let $\varepsilon >$ 0, we want (a) + (b) $\leqslant \varepsilon$

■ Set

$$\exp\left(-\frac{1}{2\alpha^2}\right) = \frac{\varepsilon}{n}$$

i.e.
$$\alpha^{-2}=2\ln(n/\varepsilon)$$
, then $(a)=(n-k)\varepsilon/n\leqslant \frac{n-1}{n}\varepsilon$

Let $\varepsilon > 0$, we want (a) + (b) $\leqslant \varepsilon$

■ Set

$$\exp\left(-\frac{1}{2\alpha^2}\right) = \frac{\varepsilon}{n}$$

i.e. $\alpha^{-2} = 2 \ln(n/\varepsilon)$, then (a) = $(n-k)\varepsilon/n \leqslant \frac{n-1}{n}\varepsilon$

■ We would like (b) $\leq \varepsilon/n$

$$\iff m \left(1\left(1+\frac{1}{\alpha}\right)\sqrt{\frac{k}{m}}\right)^2 \geqslant 2\ln(\frac{n}{\varepsilon}) = \alpha^{-2}$$

$$\iff \sqrt{m} - \left(1+\frac{1}{\alpha}\right)\sqrt{k} \geqslant \alpha^{-1}$$

$$\iff \sqrt{m} \geqslant \alpha^{-1} + (1+\alpha^{-1})\sqrt{k}$$

$$\iff \sqrt{m} \geqslant 3\alpha^{-1}\sqrt{k}$$

$$\iff m \geqslant 18k\ln(\frac{n}{\varepsilon})$$

$$\iff \# \text{ measurements} \gtrsim \text{sparsity} \times \ln(n)$$

EXACT RECOVERY FOR GAUSSIAN DESIGN

Theorem (Donoho; Candès-Romberg-Tao). Let $x_0 \in \mathbb{R}^n$ be k-sparse, $y = Ax_0$ for $A \in \mathbb{R}^{m \times n}$, $A_{ij} \sim \mathcal{N}(0,1)$ i.i.d. Then

$$\min \|x\|_1$$
 s.t. $Ax = y$

recovers x_0 with probability $\geq 1 - \varepsilon$, provided

$$m \geqslant Ck \ln \left(\frac{n}{\varepsilon}\right)$$

Remark (Tighter analysis). A sharper condition can be derived

$$m \geqslant 2k \ln\left(\frac{en}{k}\right) - \ln \varepsilon$$

in general for sub-gaussian matrices.

■ In practice: noise in measurements, and inexact knowledge of the sparsity

¹A Mathematical Introduction to Compressive Sensing, 1993

- In practice: noise in measurements, and inexact knowledge of the sparsity
- Definition (Best k-term approximation). For p > 0, $x \in \mathbb{R}^n$,

$$\sigma_k(x)_p := \inf \{ \|x - y\|_p ; y \text{ is } k\text{-sparse} \}$$

inf is realised by taking $y = x_l$ where l is the support of the k largest entries of x

- In practice: noise in measurements. and inexact knowledge of the sparsity
- Definition (Best *k*-term approximation). For p > 0, $x \in \mathbb{R}^n$,

$$\sigma_k(x)_p := \inf \{ \|x - y\|_p ; y \text{ is } k\text{-sparse} \}$$

- Setting $y = Ax_0 + w$ with
 - $\|w\|_2 \leqslant \varepsilon$
 - injectivity of A controlled on I with |I| = k

then any recovered x obeys

$$||x-x_0||_2 \lesssim \varepsilon + \sigma_k(x_0)_2$$

¹A Mathematical Introduction to Compressive Sensina, 1993

- In practice: noise in measurements and inexact knowledge of the sparsity
- Definition (Best k-term approximation). For p > 0, $x \in \mathbb{R}^n$,

$$\sigma_k(x)_p := \inf \{ \|x - y\|_p ; y \text{ is } k\text{-sparse} \}$$

- Setting $y = Ax_0 + w$ with
 - $\|\mathbf{w}\|_2 \leq \varepsilon$
 - injectivity of A controlled on I with |I| = k

then any recovered x obeys

$$\|x - x_0\|_2 \lesssim \varepsilon + \sigma_k(x_0)_2$$

■ Let $A = [a_1, \ldots, a_n]$ and

$$X = \operatorname{argmin} \|x\|_1$$
 s.t. $\|Ax - y\| \le \varepsilon$

Proposition (Dual Certification for Inexact Data¹). Let $x_0 \in \mathbb{R}^n$ with k largest components on I. Let $y = Ax_0 + w$ with $\|w\| \le \varepsilon$. Assume $\exists \delta, \beta, \gamma, \theta, \tau$ ($\delta < 1, \theta < 1$) and $\eta = A^{\top} \nu$ such that

- $\|A_1^{\top}A_1 I_n\|_{2,2} \leqslant \delta$ $\|\eta_1 \operatorname{sign}(x_0)_1\|_2 \leqslant \gamma$ $\|\nu\|_2 \leqslant \tau \sqrt{k}$.

- $\max_{i \neq l} \|A_i^{\top} a_i\|_2 \leq \beta$ $\|\eta_{i^c}\|_{\infty} \leq \theta$

If $\theta + \beta \gamma/(1-\delta) < 1$, then

$$\|x - x_0\|_2 \le C_1 \sigma_k(x)_1 + C_2 \sqrt{k\varepsilon}$$

¹A Mathematical Introduction to Compressive Sensing, 1993

UNIFORM RECOVERY: NULLSPACE PROPERTY

■ General conditions on A to ensure that every k-sparse x_0 is the unique minimizer of $\min \|x\|_1$ s.t. $Ax = Ax_0$?

.

UNIFORM RECOVERY: NULLSPACE PROPERTY

lacktriangle General conditions on A to ensure that every k-sparse x_0 is the unique minimizer of

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = Ax_0?$$

 \blacksquare Recoverability of $x_0 \iff$ favorable orientation of Ker A

UNIFORM RECOVERY: NULLSPACE PROPERTY

lacksquare General conditions on A to ensure that every k-sparse x_0 is the unique minimizer of

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = Ax_0?$$

■ Recoverability of $x_0 \iff$ favorable orientation of Ker A

■ **Definition (NSP).** A obeys the nullspace property relative to I if for all $h \in \text{Ker } A \setminus 0$,

$$||h_I||_1 < ||h_{I^c}||_1$$

it obeys the NSP of order k if it satisfies the NSP for every l such that |l| = k.

■ Theorem (Uniform Recovery). Every k-sparse x_0 such that $Ax_0 = y$ is the unique solution of (BASIS PURSUIT) if and only if A obeys NSP(k).

■ *Definition (Robust NSP).* A obeys the robust NSP of order k if $\exists 0 < \rho < 1, \tau > 0$, such that, for all l: |l| = k, for all $h \in \text{Ker } A \setminus 0$

$$||h_I||_1 \leq \rho ||h_{I^c}||_1 + \tau ||Ah||_2$$

■ Theorem (Uniform Robust Recovery). If A obeys the robust NSP(k), then for every k-sparse x_0 such that $Ax_0 = y$, any solution of (Basis Pursuit- ε) satisfies

$$\|x - x_0\|_1 \le 2\frac{1+\rho}{1-\rho}\sigma_k(x_0)_1 + 4\frac{\tau}{1-\rho}\varepsilon$$

BEYOND NSP

■ Limitation of NSP: number of measurements (*m*) required has bad dependency on *k* (*e.g.* $m \sim k^2$ for $A = \begin{bmatrix} I & F \end{bmatrix}$)

BEYOND NSP

- Limitation of NSP: number of measurements (m) required has bad dependency on k (e.g. $m \sim k^2$ for $A = \begin{bmatrix} I & F \end{bmatrix}$)
- Compressed Sensing: stronger conditions on A to ensure uniform recovery with fewer measurements $(m \sim k \log n)$

Definition (Restricted Isometry Property (RIP)). A is said to satisfy the RIP if there exists δ_k , such that for all k-sparse x,

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|^2 \le (1 + \delta_k) \|x\|^2$$

$$\delta_k = \max_{|S|=k} \|A_S^\top A_S - I_k\|_{2,2}$$