Линейная классификация - 2

Елена Кантонистова

ПЛАН ЛЕКЦИИ

- 1) Метрики качества классификации
- 2) Логистическая регрессия (вероятностное обоснование)

ВСПОМИНАЕМ БАЗОВЫЕ МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

- Какие метрики помните?
- Какие у них есть особенности?

ИНТЕГРАЛЬНЫЕ МЕТРИКИ КЛАССИФИКАЦИИ

ИНТЕГРАЛЬНАЯ МЕТРИКА: ROC-AUC

Хотим измерить качество всего семейства классификаторов независимо от выбранного порога.

Для этого будем использовать метрику AUC

AUC – Area Under ROC Curve (площадь под ROC-кривой)

ROC-AUC: ИНТУИЦИЯ

• Пример:

р	класс		р	класс
0.5	0		0.6	1
0.1	0		0.5	0
0.25	0	7	0.3	1
0.6	1	-	0.25	0
0.2	1		0.2	1
0.3	1		0.1	0
0.0	0		0.0	0

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу 0 в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу 0 в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

р	класс	
0.6	1	
0.5	0	
0.3	1	
0.25	0	
0.2	1	
0.1	0	
0.0	0	

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу 0 в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

р	класс	
0.6	1	
0.5	0	
0.3	1	
0.25	0	5
0.2	1	/
0.1	0	
0.0	0	

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу О в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

р	класс	
0.6	1	_
0.5	0	
0.3	1	
0.25	0	5
0.2	1	/
0.1	0	
0.0	0	

- Пойдем по отсортированной таблице по столбцу класс сверху вниз
- Будем стартовать из точки (0,0) на квадрате. И если мы встречаем 1, сдвигаемся на одну клеточку вверх, а если 0
 то вправо
- В итоге мы придём в точку (1,1).

р	класс	
0.6	1	
0.5	0	
0.3	1	
0.25	0	
0.2	1	
0.1	0	
0.0	0	

Полученная кривая называется ROC-кривой, а метрика, равная площади под ней - AUC-ROC.

ROC-AUC: ПРИМЕРЫ

ROC-КРИВАЯ (ФОРМАЛЬНО)

Для каждого значения порога t вычислим:

• False Positive Rate (доля неверно принятых объектов отрицательного класса):

$$FPR = \frac{FP}{FP + TN} = \frac{\sum_{i} [y_i = -1][a(x_i) = +1]}{\sum_{i} [y_i = -1]}$$

• True Positive Rate (доля верно принятых объектов положительного класса):

Actual Values

$$TPR = \frac{TP}{TP + FN} =$$

$$\frac{\sum_{i}[y_{i}=+1][a(x_{i})=+1]}{\sum_{i}[y_{i}=+1]}.$$

		Positive (1)	Negative (0)
Predicted Values	Positive (1)	TP	FP
Predicte	Negative (0)	FN	TN

ROC-КРИВАЯ

Кривая, состоящая из точек с координатами (FPR,TPR) для всех возможных порогов — это и есть ROC-кривая.

ROC-КРИВАЯ. AUC.

AUC (Area Under Curve) — площадь под ROC-кривой. $AUC \in [0; 1].$

- Чему равен AUC при идеальной классификации?
- Чему равен AUC при случайной классификации?

ROC-КРИВАЯ. AUC.

AUC (Area Under Curve) — площадь под ROC-кривой. $AUC \in [0;1].$

• AUC = 1 -

идеальная классификация

• AUC = 0.5 -

случайная классификация

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

ПРИМЕР ПОСТРОЕНИЯ ROC-КРИВОЙ

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний: (0.7,0.4,0.2,0.1,0.05)

1 шаг:
$$t = 0.7$$
, то есть

$$a(x) = [b(x) > 0.7]$$

$$TPR = \frac{TP}{TP+FN}$$

$$FPR = \frac{FP}{FP+TN}$$

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний: (0.7,0.4,0.2,0.1,0.05)

1 шаг:
$$t = 0.7$$
, то есть

$$a(x) = [b(x) > 0.7]$$

$$TPR = \frac{0}{0+3} = 0$$
, $FPR = \frac{0}{0+2} = 0$.

$$TPR = \frac{TP}{TP+FN}$$

$$FPR = \frac{FP}{FP+TN}$$

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний:

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

2 шаг: t = 0.4, то есть

$$a(x) = [b(x) > 0.4]$$

$$TPR = \frac{1}{1+2} = \frac{1}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

ПРИМЕР ПОСТРОЕНИЯ ROC-КРИВОЙ

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

3 шаг: t = 0.2, то есть

$$a(x) = [b(x) > 0.2]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

ПРИМЕР ПОСТРОЕНИЯ ROC-КРИВОЙ

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
y	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

4 шаг: t = 0.1, то есть

$$a(x) = [b(x) > 0.1]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$
.

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0.05, то есть

$$a(x) = [b(x) > 0.05]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{2}{2+0} = 1.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0, то есть

$$a(x) = [b(x) > 0]$$

$$TPR = \frac{3}{3+0} = 1$$
,

$$FPR = \frac{2}{2+0} = 1.$$

ПРИМЕР ПОСТРОЕНИЯ ROC-КРИВОЙ

$$AUC = 2/3$$

ИНДЕКС ДЖИНИ

Индекс Джини:

$$Gini = 2 \cdot AUC - 1$$

• Индекс Джини — это удвоенная площадь между главной диагональю и ROC-кривой.

PRECISION-RECALL КРИВАЯ

• В случае малой доли объектов положительного класса AUC-ROC может давать неадекватно хороший результат Precision-Recall кривая:

AUC-PR

AUC-PR — площадь под PR-кривой

Precision-Recall example: AUC=0.79

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Хотим предсказывать не классы, а вероятности классов.

- Линейная регрессия: $a(x, w) = (x, w) = w^T x \in \mathbb{R}$
- ullet Логистическая регрессия: $a(x,w) = \sigma(w^Tx)$,

где $\sigma(z) = \frac{1}{1+e^{-z}}$ - сигмоида (логистическая функция),

 $\sigma(z) \in (0;1)$.

Логистическая регрессия: $a(x, w) = \frac{1}{1 + e^{-w^T x}}$

ВЕРОЯТНОСТНЫЙ СМЫСЛ

Утверждение. a(x, w) – вероятность того, что y = +1 на объекте x, т.е.

$$a(x, w) = P(y = +1|x; w)$$

Доказательство. Дальше в лекции.

ФУНКЦИЯ ПОТЕРЬ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

Возьмем логистическую функцию потерь (log-loss):

$$Q(w) = -\sum_{i=1}^{l} ([y_i = +1] \cdot \log(a(x_i, w)) + [y_i = -1] \cdot \log(1 - a(x_i, w)))$$

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ: ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

Цель: построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

Цель: построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

Комментарий: пока что мы будем решать задачу в общем виде, то есть у нас нет ограничений на вид алгоритма b(x) и на вид функции потерь L(y,b).

• Пусть объект x встречается в выборке n раз с ответами $\{y_1, \dots, y_n\}$. Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

• Пусть объект x встречается в выборке n раз с ответами $\{y_1, \dots, y_n\}$. Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По закону больших чисел при $n o \infty$ получаем

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b) | x]$$

• Пусть объект x встречается в выборке n раз с ответами $\{y_1, \dots, y_n\}$. Хотим, чтобы алгоритм выдавал вероятность положительного класса:

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По закону больших чисел при $n o \infty$ получаем

$$b_*(x) = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b) | x]$$

Отсюда получаем условие на функцию потерь:

$$\operatorname{argmin} E[L(y,b)|x] = p(y = +1|x)$$

ФУНКЦИИ ПОТЕРЬ

Подходят:

• Квадратичная

$$L(y,z) = (y-z)^2$$

• Логистическая (log-loss)

$$L(y,z) = [y = +1] \cdot \log(b(x,w)) + [y = -1] \cdot \log(1 - b(x,w))$$

Не подходят:

• Модуль

$$L(y,z) = |y - z|$$

ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

Правдоподобие выборки:

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]}$$

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_{b}$$

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

$$-\sum_{i=1}^{l} ([y_i = +1] \log b(x_i) + [y_i = -1] \log(1 - b(x_i))) \to \min_{b}$$

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

Это log-loss!

$$-\sum_{i=1}^{t} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

 Для нахождения оптимальных параметров алгоритма можно воспользоваться методом максимума правдоподобия (ММП):

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Прологарифмируем правдоподобие и поставим перед ним минус, получим следующую эквивалентную задачу:

$$-\sum_{i=1}^{l} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

Вывод: логистическая функция потерь корректно предсказывает вероятности.

ВЫБОР АЛГОРИТМА b(x)

• Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].

ВЫБОР АЛГОРИТМА b(x)

- Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].

ВЫБОР АЛГОРИТМА b(x)

- Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].
- Возьмем *сигмоиду*: $\sigma(z) = \frac{1}{1 + e^{-z}}$

СМЫСЛ (w, x) В ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

- Логистическая регрессия в каждой точке x предсказывает вероятность того, что x принадлежит положительному классу p(y=+1|x).
- То есть $p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$. Отсюда можно выразить $(w, x) = w^T x$:

$$(w,x) = w^T x = \log \frac{p(y=+1|x)}{p(y=-1|x)}$$

СМЫСЛ (w, x) В ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

- Логистическая регрессия в каждой точке x предсказывает вероятность того, что x принадлежит положительному классу p(y=+1|x).
- То есть $p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$. Отсюда можно выразить $(w, x) = w^T x$:

$$(w, x) = w^T x = \log \frac{p(y = +1|x)}{p(y = -1|x)}$$

• Величина $\log \frac{p(y=+1|x)}{p(y=-1|x)}$ называется **логарифм отношения шансов (log odds)**. Из формулы видно, что величина может принимать любое значение.

ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ ПОТЕРЬ

Утверждение. Логарифмическая функция потерь может быть записана в виде

$$L(b,X) = \sum_{i=1}^{l} \log(1 + e^{-y_i(w,x)})$$

Идея доказательства:

Подставляем явный вид сигмоиды в логарифмическую функцию потерь:

$$-\sum_{i=1}^{l} ([y_i = +1] \log \sigma(w^T x_i) + [y_i = -1] \log (1 - \sigma(w^T x_i))) \to \min_{w}$$