University of Toronto, Faculty of Arts and Science APRIL/MAY 2013 EXAMINATIONS CSC236H1S

Professor Azadeh Farzan

Duration: 3 hours

Name:			
Student Number:	<u> </u>		

Read the following before you start to work.

- Write your name and student number. Please write down your complete name (first name followed by last name) as it appears on the university records.
- This is a closed book exam. You are allowed a (possibly double-sided) handwritten 8.5 × 11 sheet of paper.
- Reminder: you need to get a mark of 35% or higher in this exam (21 marks in this case) to pass this course, regardless of your marks for the rest of the coursework
- You should have 18 pages including 6 problems. Do all work in the space provided. Ask the proctor if you need more paper.

Problem (1)	/8
Problem (2)	/7
Problem (3)	/9
Problem (4)	/14
Problem (5)	/12
Problem (6)	/10
Total	/60

Problem 1 A full binary tree is a binary tree in which every node has zero or two children (i.e. there is no node with exactly one child). Let L_n represent the number of leaves in a full binary tree with n nodes.

- (a) (2 points) Draw all binary trees with 1, 3, and 5 nodes and determine the values of L_1 , L_3 and L_5 . Why didn't we ask for L_2 and L_4 ?
- (b) (3 points) Write a recursive definition for L_n .
- (c) (3 points) Solve the recursive definition to find a closed form solution for L_n (no proof required, however by "solving", we mean something more than guesswork).

Problem 2

(a) (3 points) Prove, using closure properties of regular languages, that if L is regular, then so is $L' = \{xy | x \in L \land y \notin L\}$. Note that proofs that are not based on closure properties of regular languages will get no credit.

- (b) (4 points) Let $M=(Q,\Sigma,\delta,q_0,F)$ be the DFA that accepts L (i.e. L=L(M)). By defining the components below, define a finite automaton $M'=(Q',\Sigma',\delta',q'_0,F')$ that accepts L'. You are allowed to use ϵ transitions.
 - Q' =
 - $q'_0 =$
 - F' =
 - Finally, to define δ' , you have the option of defining it formally (like the components above) or drawing a diagram that clearly shows what δ' looks like. Briefly explaining your formula or your diagram (whichever you choose).

Problem 3 Consider the language L consisting of the set of all strings over $\{a,b,c\}$ that contain at least two consecutive a 's but do not contain two consecutive b 's.
(a) (4 points) Write a regular expression for L . Explain why your regular expression is correct by explaining what the various parts of it mean.
(b) (2 points) Propose a deterministic finite automaton that accepts L .

(c) (3 points) For each state q in your finite automaton, describe the set of strings $\{x \mid \delta^*(q_0, x) = q\}$ that cause the finite automaton to reach that state starting from the initial state q_0 .

Problem 4 Consider the following algorithm that, given positive integers a and b, computes the quotient q and remainder r of a divided by b (i.e. a = bq + r where $q \ge 0$ and $0 \le r < b$):

```
algorithm DIV(a, b)
    p := 1
2
    s := b
3
    while s \leq a
          s := 2 \times s
4
5
          p:=2	imes p
6
    q := 0
7
    r := a
8
     while s \neq b
9
          s := s \text{ div } 2
10
          p := p \operatorname{div} 2
11
          if r \geq s
12
               r := r - s
13
               q := q + p
```

(a) (2 points) Write pre and post conditions, and a precise statement of what it means for this algorithm to be totally correct.

(b)	(2 points) Write an invariant relating s and p at the entry point of both while loops. Briefly justify why the loop invariants.	ese are
(c)	(7 points) Prove that $a = qb + r$ combined with your answer from part (b) is an inductive loop invariant second while loop.	of the

(d) (3 points) We are interested in a complexity measure for this algorithm, in the form of the number of iterations of the first and the second loops, as a parameter of the input values a and b. Let R be the function that represents the total number of iterations (of both loops). Regardless of what a and b are specifically, the number of iterations of the loops depends on the value a/b. Let $k = \lceil a/b \rceil$. What is R(k) for an arbitrary value k? Justify your answer properly, but you do not need to prove your statement correct.

Problem 5 (12 points) Call a regular expression \emptyset -free if it has no occurrences of \emptyset . Here are recursive definitions for the set of regular expressions \mathcal{R}_{\emptyset} :

$$\mathcal{R}: \left\{ \begin{array}{l} \text{Basis:} & \left\{ \begin{array}{l} \epsilon \\ a \\ \emptyset \end{array} \forall a \in \Sigma \\ \\ \text{Induction Step:} & \left\{ \begin{array}{l} r_1 + r_2 & \forall r_1, r_2 \in \mathcal{R} \\ r_1 r_2 & \forall r_1, r_2 \in \mathcal{R} \\ r_1^* & \forall r_1 \in \mathcal{R} \end{array} \right. \end{array} \right. \right. \\ \left\{ \begin{array}{l} \text{Basis:} & \left\{ \begin{array}{l} \epsilon \\ a \\ \forall a \in \Sigma \end{array} \right. \\ \\ \text{Induction Step:} & \left\{ \begin{array}{l} r_1 + r_2 & \forall r_1, r_2 \in \mathcal{R} \\ r_1 r_2 & \forall r_1, r_2 \in \mathcal{R} \\ r_1^* & \forall r_1 \in \mathcal{R} \end{array} \right. \right. \right.$$

Prove (by induction) that for every regular expression r, if $L(r) \neq \emptyset$, then there exists an equivalent \emptyset -free regular expression r'. Or, more formally:

$$\forall r \in \mathcal{R}, [(L(r) \neq \emptyset) \implies (\exists r' \in \mathcal{R}_{\emptyset}, L(r) = L(r'))]$$

Problem 6 For all strings $u, v \in \Sigma^*$, we say that $v = u^R$ if

$$|u| = |v| \land \forall 0 \le i < |u|, \ u[i] = v[|u| + 1 - i].$$

For example, $abcde = (edcba)^R$. Consider the algorithm below that reverses a string $u \in \Sigma^*$:

```
algorithm REV(u)
1 \quad l := |u|
3 \quad \text{if } l \le 1
4 \quad \text{return } u
6 \quad m := l \text{ div } 2
8 \quad v := \text{REV}(u[1 \dots m])
8 \quad w := \text{REV}(u[m+1 \dots |u|])
8 \quad \text{return } wv
```

where $u[i \dots j]$ is the substring of u from position i to position j (both inclusive). We also assume that strings are indexed from 1 to the length of the string. The goal is to prove that algorithm REV correctly reverses a string.

- (a) (2 points) Write pre and post conditions for REV and state a precise statement for correctness of REV.
- (b) (8 points) Prove (by induction) that REV is correct in accordance with the statement from part (a).