Deep Generative Models: Discrete Latent Variables

Wilker Aziz

VI Tutorial @ DTU-DIKU 2019 Summer School vitutorial.github.io/tour/dtudiku2019

- First Attempt: Wake-Sleep
- Neural Variational Inference
- Score function estimator
- Variance reduction

Generative Models

Joint distribution over observed data x and latent variables z.

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

The likelihood and prior are often standard distributions (Gaussian, Bernoulli) with simple dependence on conditioning information.

Deep generative models

Joint distribution with deep observation model

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

mapping from z to $p(x|z, \theta)$ is a NN with parameters θ

Deep generative models

Joint distribution with deep observation model

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

mapping from z to $p(x|z, \theta)$ is a NN with parameters θ

Marginal likelihood

$$p(x|\theta) = \int p(x, z|\theta) dz = \int p(z)p(x|z, \theta) dz$$

intractable in general

We want

• richer probabilistic models

We want

- richer probabilistic models
- complex observation models parameterised by NNs

We want

- richer probabilistic models
- complex observation models parameterised by NNs

but we can't perform gradient-based MLE

We want

- richer probabilistic models
- complex observation models parameterised by NNs

but we can't perform gradient-based MLE

We need approximate inference techniques!

$$\log p(x) = \log \int p(z, x) dz$$

$$\log p(x) = \log \int p(z, x) dz = \log \int q(z|x) \frac{p(z, x)}{q(z|x)} dz$$

$$\log p(x) = \log \int p(z, x) dz = \log \int q(z|x) \frac{p(z, x)}{q(z|x)} dz$$

$$\stackrel{\text{JI}}{\geq} \underbrace{\mathbb{E}_{q(z|x)} \left[\log \frac{p(z, x)}{q(z|x)} \right]}_{\text{ELBO}}$$

$$\log p(x) = \log \int p(z, x) dz = \log \int q(z|x) \frac{p(z, x)}{q(z|x)} dz$$

$$\stackrel{\text{JI}}{\geq} \underbrace{\mathbb{E}_{q(z|x)} \left[\log \frac{p(z, x)}{q(z|x)} \right]}_{\text{ELBO}}$$

$$\text{ELBO} = \underbrace{\mathbb{E}_{q(z|x)} \left[\log \frac{p(z|x)p(x)}{q(z|x)} \right]}_{\text{gap}} + \log p(x)$$

- First Attempt: Wake-Sleep
- Neural Variational Inference
- Score function estimator
- Variance reduction

Wake-sleep Algorithm

- Generalise latent variables to Neural Networks
- Train generative neural model
- Use variational inference! (kind of)

2 Neural Networks:

• A generation network to model the data (the one we want to optimise) – parameters: θ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units
- Training is performed in a "hard EM" fashion

Generator

Inference Network

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- Update generation parameters θ to maximize joint log-liklelihood of data and latents $p(x, z|\theta)$

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- Update generation parameters θ to maximize joint log-liklelihood of data and latents $p(x, z|\theta)$

Sleep Phase

- ullet Produce dream sample $ilde{x}$ from random hidden unit z
- Update inference parameters λ to maximize probability of latent state $q(z|\tilde{x}, \lambda)$

Objective

$$\begin{split} & \operatorname*{arg\;max}_{\theta} \; \mathbb{E}_{p(x)} \left[\mathsf{ELBO}(\theta, \lambda | x) \right] \\ & = \operatorname*{arg\;max}_{\theta} \; \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \end{split}$$

Objective

$$\begin{split} & \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{E}_{p(x)} \left[\operatorname{ELBO}(\theta, \lambda | x) \right] \\ & = \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \end{split}$$

Gradient wrt θ for $x \sim p(x)$

$$\nabla_{\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \nabla_{\theta} \mathbb{H}[q(z|x,\lambda)]$$

Objective

$$\begin{split} & \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{E}_{p(x)} \left[\operatorname{ELBO}(\theta, \lambda | x) \right] \\ & = \underset{\theta}{\operatorname{arg \, max}} \ \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \end{split}$$

Gradient wrt θ for $x \sim p(x)$

$$egin{aligned} oldsymbol{
abla}_{ heta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta)
ight] + oldsymbol{
abla}_{ heta} \mathbb{H}[q(z|x,\lambda)] \ = \mathbb{E}_{q(z|x,\lambda)} \left[oldsymbol{
abla}_{ heta} \log p(z,x| heta)
ight] \end{aligned}$$

Objective

$$\begin{split} & \operatorname*{arg\,max}_{\theta} \ \mathbb{E}_{p(x)} \left[\mathsf{ELBO}(\theta, \lambda | x) \right] \\ & = \operatorname*{arg\,max}_{\theta} \ \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \end{split}$$

Gradient wrt θ for $x \sim p(x)$

$$egin{aligned} oldsymbol{
abla}_{ heta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta)
ight] + oldsymbol{
abla}_{ heta} \mathbb{H}[q(z|x,\lambda)] \ &= \mathbb{E}_{q(z|x,\lambda)} \left[oldsymbol{
abla}_{ heta} \log p(z,x| heta)
ight] \ &\stackrel{\mathsf{MC}}{pprox} oldsymbol{
abla}_{ heta} \log p(z,x| heta) \quad \text{where } z \sim q(z|x,\lambda) \end{aligned}$$

Assumes z to be fixed random draw from $q(z|x, \lambda)$ and maximises $\log p(z, x|\theta)$.

This is simply supervised learning with imputed latent data!

Sampling $z \sim q(z|x,\lambda)$

 $\left(z_1\right)$

 $\left(z_{2}\right)$

 x_1

*X*₂

X3

Sampling $z \sim q(z|x,\lambda)$

 $\left(z_1\right)$

*x*₁

*X*₂

*X*3

Sampling $z \sim q(z|x,\lambda)$

Sampling $z \sim q(z|x,\lambda)$

Wake Phase Update

Compute $\log p(x, z|\theta)$ and update θ

Sleep Phase Objective

Objective

$$rg \max_{\lambda} \; \mathbb{E}_{p(x)} \left[\mathsf{ELBO}(\theta, \lambda | x) \right] \ = rg \max_{\lambda} \; \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \$$

Sleep Phase Objective

Objective

$$\begin{split} & \operatorname*{arg\;max}_{\lambda} \; \mathbb{E}_{p(x)} \left[\mathsf{ELBO}(\theta, \lambda | x) \right] \\ & = \operatorname*{arg\;max}_{\lambda} \; \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \end{split}$$

Gradient wrt
$$\lambda$$
 for $x \sim p(x)$

$$\nabla_{\lambda}\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x| heta)\right] + \nabla_{\lambda}\mathbb{H}[q(z|x,\lambda)]$$

Sleep Phase Objective

Objective

$$\begin{split} & \operatorname*{arg\;max}_{\lambda} \; \mathbb{E}_{p(x)} \left[\mathsf{ELBO}(\theta, \lambda | x) \right] \\ & = \operatorname*{arg\;max}_{\lambda} \; \mathbb{E}_{p(x)} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x|\theta) \right] + \mathbb{H}[q(z|x,\lambda)] \right] \end{split}$$

Gradient wrt
$$\lambda$$
 for $x \sim p(x)$

$$\nabla_{\lambda}\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \nabla_{\lambda}\mathbb{H}[q(z|x,\lambda)]$$

Let's change the objective!

$$\underset{\lambda}{\operatorname{arg\,min}} \mathbb{E}_{p(x)} \left[\operatorname{KL} \left(\frac{p(z|x,\theta)}{p(z|x,\lambda)} \right) || \ q(z|x,\lambda) \right) \right]$$

$$\operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x,\theta) \mid\mid q(z|x,\lambda) \right) \right] \\ = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \mathbb{E}_{p(z|x,\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right]$$

$$\begin{split} & \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(\frac{p(z|x,\theta)}{p(z|x,\theta)} \mid\mid q(z|x,\lambda) \right) \right] \\ & = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \mathbb{E}_{p(z|x,\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \operatorname*{arg\,max}_{\lambda} \mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right] - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\text{constant}} \end{split}$$

$$\begin{aligned} & \underset{\lambda}{\arg\min} \, \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(\frac{p(z|x,\theta)}{p(z|x,\theta)} \mid\mid q(z|x,\lambda) \right) \right] \\ & = \underset{\lambda}{\arg\min} \, \mathbb{E}_{p(x)} \mathbb{E}_{p(z|x,\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \underset{\lambda}{\arg\max} \, \mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right] - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\text{constant}} \end{aligned}$$

Gradient wrt
$$\lambda$$

$$\nabla_{\lambda}\mathbb{E}_{p(x,z|\theta)}\left[\log q(z|x,\lambda)\right]$$

Flip the direction of the KL

$$\begin{split} & \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(\frac{p(z|x,\theta)}{p(z|x,\theta)} \mid\mid q(z|x,\lambda) \right) \right] \\ & = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \mathbb{E}_{p(z|x,\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \operatorname*{arg\,max}_{\lambda} \mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right] - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\text{constant}} \end{split}$$

Gradient wrt λ

$$egin{aligned} oldsymbol{
abla}_{\lambda} \mathbb{E}_{p(x,z| heta)} \left[\log q(z|x,\lambda)
ight] \ &= \mathbb{E}_{p(x,z| heta)} \left[oldsymbol{
abla}_{\lambda} \log q(z|x,\lambda)
ight] \end{aligned}$$

Flip the direction of the KL

$$\begin{split} & \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x,\theta) \mid\mid q(z|x,\lambda) \right) \right] \\ & = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \mathbb{E}_{p(z|x,\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \operatorname*{arg\,max}_{\lambda} \mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right] - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\text{constant}} \end{split}$$

Gradient wrt λ

$$egin{aligned} oldsymbol{
abla}_{\lambda} \mathbb{E}_{p(x,z| heta)} \left[\log q(z|x,\lambda)
ight] \ &= \mathbb{E}_{p(x,z| heta)} \left[oldsymbol{
abla}_{\lambda} \log q(z|x,\lambda)
ight] \ &\stackrel{\mathsf{MC}}{pprox} oldsymbol{
abla}_{\lambda} \log q(z| ilde{x},\lambda) \quad ext{where } z \sim p(z| heta) \end{aligned}$$

 $\tilde{x} \sim p(x|z,\theta)$

Assumes fake data \tilde{x} and latent variables z to be fixed random draws from $p(x, z|\theta)$ via

$$z \sim p(z|\theta)$$

 $\tilde{x} \sim p(x|z,\theta)$

and maximises $\log q(z|\tilde{x}, \lambda)$.

Sleep Phase Sampling

Sampling $(z, \tilde{x}) \sim p(x, z|\theta)$

Sleep Phase Sampling

Sampling $(z, \tilde{x}) \sim p(x, z|\theta)$

Sleep Phase Sampling

Sampling $(z, \tilde{x}) \sim p(x, z|\theta)$

Sleep Phase Update

Compute $\log q(z|\tilde{x},\lambda)$ and update λ

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- ullet Amortised inference: all latent variables are inferred from the same weights λ

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- ullet Amortised inference: all latent variables are inferred from the same weights λ

Drawbacks

- Inference and generative networks are trained on different objectives
- ullet Inference weights λ are updated on fake data $ilde{x}$
- Generative weights are bad initially, giving wrong signal to the updates of λ

- First Attempt: Wake-Sleep
- Neural Variational Inference
- Score function estimator
- Variance reduction

Generative model with NN likelihood

Generative model with NN likelihood

Let us consider a latent factor model for topic modelling:

Generative model with NN likelihood

Let us consider a latent factor model for topic modelling:

• a document $x = (x_1, ..., x_N)$ consists of n i.i.d. categorical draws from that model

Generative model with NN likelihood

Let us consider a latent factor model for topic modelling:

- a document $x = (x_1, ..., x_N)$ consists of n i.i.d. categorical draws from that model
- the categorical distribution in turn depends on binary latent factors $z = (z_1, \ldots, z_K)$ which are also i.i.d.

Latent factor model

$$Z_j \sim \mathsf{Bernoulli}\left(lpha
ight) \qquad (1 \leq k \leq K) \ X_i | z \sim \mathsf{Categorical}\left(f(z; heta)
ight) \quad (1 \leq i \leq N)$$

Here $0 < \alpha < 1$ specifies a Bernoulli prior and $f(\cdot; \theta)$ is a function computed by a neural network with softmax output, e.g.

$$f(z; \theta) = \operatorname{softmax}(Wz + b)$$

 $\theta = \{W, b\}$

Example Model

Joint distribution: independent latent variables

Example Model

Posterior: latent variables are marginally dependent.

For our variational distribution we are going to assume that they are not (recall: mean field assumption).

Mean Field Inference

The inference network needs to predict K Bernoulli parameters b_1^K . Any neural network with sigmoid output will do that job.

Inference Network

$$q(z|x,\lambda) = \prod_{k=1}^K \mathsf{Bern}(z_k|b_k)$$
 where $b_1^K = g(x;\lambda)$

Example architecture

$$h = \frac{1}{N} \sum_{i=1}^{N} E_{x_i}$$
 $b_1^K = sigmoid(Mh + c)$

$$\lambda = \{E, M, c\}$$

Objective

$$\mathsf{ELBO} = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z| heta) \right] + \mathbb{H} \left(q(z|x,\lambda)
ight)$$

Objective

$$\mathsf{ELBO} = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z| heta) \right] + \mathbb{H} \left(q(z|x,\lambda) \right) \ = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z, heta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)$$

Objective

$$egin{aligned} \mathsf{ELBO} &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z| heta)
ight] + \mathbb{H} \left(q(z|x,\lambda)
ight) \ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z, heta)
ight] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)
ight) \end{aligned}$$

Parameter estimation

$$rg \max_{ heta, \lambda} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z, heta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)$$

KL

KL between K independent Bernoulli distributions is tractable

$$\mathsf{KL}\left(q(z|x,\lambda)\mid\mid p(z|\alpha)\right) = \sum_{k=1}^{K} \mathsf{KL}\left(q(z_k|x,\lambda)\mid\mid p(z_k|\alpha)\right)$$

KL

KL between K independent Bernoulli distributions is tractable

$$\begin{aligned} &\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|\alpha)\right) = \sum_{k=1}^K \mathsf{KL}\left(q(z_k|x,\lambda) \mid\mid p(z_k|\alpha)\right) \\ &= \sum_{k=1}^K \mathsf{KL}\left(\mathsf{Bernoulli}\left(b_k\right)\right) \mid\mid \mathsf{Bernoulli}\left(\alpha\right)\right) \end{aligned}$$

KL

 KL between K independent Bernoulli distributions is tractable

$$\begin{aligned} &\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|\alpha)\right) = \sum_{k=1}^K \mathsf{KL}\left(q(z_k|x,\lambda) \mid\mid p(z_k|\alpha)\right) \\ &= \sum_{k=1}^K \mathsf{KL}\left(\mathsf{Bernoulli}\left(b_k\right)\right) \mid\mid \mathsf{Bernoulli}\left(\alpha\right)\right) \\ &= \sum_{k=1}^K b_k \log \frac{b_k}{\alpha} + (1-b_k) \log \frac{1-b_k}{1-\alpha} \end{aligned}$$

Generative Network Gradient

$$\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right)$$

Generative Network Gradient

$$\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right)$$

$$= \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right]}_{\mathsf{expected gradient } :)}$$

Generative Network Gradient

$$\begin{split} &\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{expected gradient } :)}{\underset{\approx}{\mathsf{E}} \frac{1}{S} \sum_{s=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z^{(s)},\theta)} \quad \mathsf{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

Inference Network Gradient

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{\mathsf{analytical}} \right)$$

Inference Network Gradient

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{\mathsf{analytical}} \right)$$

$$= \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}_{\mathsf{analytical computation}}$$

Inference Network Gradient

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{\mathsf{analytical}} \right)$$

$$= \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}_{\mathsf{analytical computation}}$$

The first term again requires approximation by sampling, but there is a problem

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right]$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\
= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta) \\ &= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta) \\ & \text{not an expectation} \end{split}$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)$$
not an expectation

MC estimator is non-differentiable

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta) \\ &= \underbrace{\sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)}_{\text{not an expectation}} \end{split}$$

- MC estimator is non-differentiable
- Differentiating the expression does not yield an expectation: cannot approximate via MC

Score function estimator

We can again use the log identity for derivatives

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)$$

Score function estimator

We can again use the log identity for derivatives

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta) \\ &= \sum_{z} q(z|x,\lambda) \frac{\partial}{\partial \lambda} (\log q(z|x,\lambda)) \log p(x|z,\theta) \end{split}$$

Score function estimator

We can again use the log identity for derivatives

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)$$

$$= \sum_{z} q(z|x,\lambda) \frac{\partial}{\partial \lambda} (\log q(z|x,\lambda)) \log p(x|z,\theta)$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]$$
expected gradient:)

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \end{split}$$

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{s=1}^{S} \log p(x|z^{(s)},\theta) \frac{\partial}{\partial \lambda} \log q(z^{(s)}|x,\lambda) \\ & \text{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ & \stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{s=1}^{S} \log p(x|z^{(s)},\theta) \frac{\partial}{\partial \lambda} \log q(z^{(s)}|x,\lambda) \\ & \text{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

• magnitude of log $p(x|z, \theta)$ varies widely

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{s=1}^{S} \log p(x|z^{(s)},\theta) \frac{\partial}{\partial \lambda} \log q(z^{(s)}|x,\lambda) \\ & \text{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

- magnitude of $\log p(x|z,\theta)$ varies widely
- model likelihood does not contribute to direction of gradient

inference model

inference model

inference model

generation model

inference model

generation model

inference model

generation model

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions
- Cons
 - High Variance!

- First Attempt: Wake-Sleep
- Neural Variational Inference
- Score function estimator
- Variance reduction

When variance is high we can

When variance is high we can

• sample more

When variance is high we can

- sample more
- use variance reduction techniques (e.g. baselines and control variates)

Control variates

Intuition

To estimate $\mathbb{E}[f(z)]$ via Monte Carlo we compute the empirical average of $\hat{f}(z)$ where $\hat{f}(z)$ is chosen so that $\mathbb{E}[\hat{f}(z)] = \mathbb{E}[f(z)]$ and $Var(f) > Var(\hat{f})$.

Let $\bar{f} = \mathbb{E}[f(z)]$ be an expectation of interest

• say we know $\bar{c} = \mathbb{E}[c(z)]$

- say we know $\bar{c} = \mathbb{E}[c(z)]$
- then for $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$

- say we know $\bar{c} = \mathbb{E}[c(z)]$
- then for $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$ it holds that $\mathbb{E}[\hat{f}(z)] = \mathbb{E}[f(z)]$

- say we know $\bar{c} = \mathbb{E}[c(z)]$
- then for $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$ it holds that $\mathbb{E}[\hat{f}(z)] = \mathbb{E}[f(z)]$
- and $Var(\hat{f}) = Var(f) 2b Cov(f, c) + b^2 Var(c)$

- $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$

How do we choose b and c(z)?

- $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$

How do we choose b and c(z)?

• If f(z) and c(z) are positively correlated, then we may reduce variance

- $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$

How do we choose b and c(z)?

- If f(z) and c(z) are positively correlated, then we may reduce variance
- solving $\frac{\partial}{\partial b} \operatorname{Var}(\hat{f}) = 0$

- $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$

How do we choose b and c(z)?

- If f(z) and c(z) are positively correlated, then we may reduce variance
- solving $\frac{\partial}{\partial b} \operatorname{Var}(\hat{f}) = 0$ yields $b^* = \frac{\operatorname{Cov}(f, c)}{\operatorname{Var}(c)}$

- $\hat{f}(z) \triangleq f(z) b(c(z) \mathbb{E}[c(z)])$

How do we choose b and c(z)?

- If f(z) and c(z) are positively correlated, then we may reduce variance
- solving $\frac{\partial}{\partial b} \operatorname{Var}(\hat{f}) = 0$ yields $b^* = \frac{\operatorname{Cov}(f,c)}{\operatorname{Var}(c)}$

Of course, $\mathbb{E}[c(z)]$ must be known!

MC

We then use the estimate

$$ar{f} \stackrel{\mathsf{MC}}{pprox} rac{1}{S} \left(\sum_{s=1}^S f(z^{(s)}) - bc(z^{(s)})
ight) + bar{c}$$

MC

We then use the estimate

$$ar{f} \stackrel{\mathsf{MC}}{pprox} rac{1}{S} \left(\sum_{s=1}^{S} f(z^{(s)}) - bc(z^{(s)})
ight) + bar{c}$$

And recall that for us

$$f(z) = \log p(x|z, \theta) \frac{\partial}{\partial \lambda} \log q(z|x, \lambda)$$

and $z^{(s)} \sim q(z|x,\lambda)$

$$\mathbb{E}_{q(z|x,\lambda)}\left[rac{\partial}{\partial \lambda}\log q(z|x,\lambda)
ight]$$

$$\mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \ = \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \mathrm{d}z$$

$$\mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]$$

$$= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) dz$$

$$= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) dz$$

$$\mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]$$

$$= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) dz$$

$$= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) dz$$

$$\mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]$$

$$= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) dz$$

$$= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) dz$$

$$= \frac{\partial}{\partial \lambda} 1 = 0$$

Baselines

With

$$f(z) = \log p(x|z, \theta) \frac{\partial}{\partial \lambda} \log q(z|x, \lambda)$$

and

$$c(z) = \frac{\partial}{\partial \lambda} \log q(z|x,\lambda)$$

we have

$$\hat{f}(z) =$$

Baselines

With

$$f(z) = \log p(x|z, \theta) \frac{\partial}{\partial \lambda} \log q(z|x, \lambda)$$

and

$$c(z) = \frac{\partial}{\partial \lambda} \log q(z|x,\lambda)$$

we have

$$\hat{f}(z) = (\log p(x|z, \theta) - b) \frac{\partial}{\partial \lambda} \log q(z|x, \lambda)$$

Baselines

With

$$f(z) = \log p(x|z, \theta) \frac{\partial}{\partial \lambda} \log q(z|x, \lambda)$$

and

$$c(z) = \frac{\partial}{\partial \lambda} \log q(z|x,\lambda)$$

we have

$$\hat{f}(z) = (\log p(x|z, \theta) - b) \frac{\partial}{\partial \lambda} \log q(z|x, \lambda)$$

b is known as baseline in RL literature.

• Moving average of $\log p(x|z, \theta)$ based on previous batches

- Moving average of $\log p(x|z, \theta)$ based on previous batches
- A trainable constant b

- Moving average of $\log p(x|z, \theta)$ based on previous batches
- A trainable constant b
- A neural network prediction based on x e.g. $b(x; \omega)$

- Moving average of $\log p(x|z, \theta)$ based on previous batches
- A trainable constant b
- A neural network prediction based on x e.g. $b(x; \omega)$
- The likelihood assessed at a deterministic point, e.g. $b(x) = \log p(x|z^*, \theta)$ where $z^* = \arg \max_z q(z|x, \lambda)$

Trainable baselines

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L_2 -loss.

$$\min_{\omega} (b(x; \omega) - \log p(x|z, \theta))^2$$

 Wake-Sleep: train inference and generation networks with separate objectives

- Wake-Sleep: train inference and generation networks with separate objectives
- NVIL: a single objective (ELBO) for both models

- Wake-Sleep: train inference and generation networks with separate objectives
- NVIL: a single objective (ELBO) for both models
- Use score function estimator

- Wake-Sleep: train inference and generation networks with separate objectives
- NVIL: a single objective (ELBO) for both models
- Use score function estimator
- Always use baselines for variance reduction!

Implementation

Check one of our notebooks, e.g.

 inducing rationales for sentiment classification github.com/vitutorial/exercises/tree/ master/SST

Literature I

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised neural networks. *Science*, 268:1158–1161, 1995. URL http://www.gatsby.ucl.ac.uk/~dayan/papers/hdfn95.pdf.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML'14, pages II–1791–II–1799.

JMLR.org, 2014. URL http://dl.acm.org/citation.cfm?id=3044805.3045092.

Literature II

```
Variational bayesian inference with stochastic search. In ICML, 2012. URL <a href="http://icml.cc/2012/papers/687.pdf">http://icml.cc/2012/papers/687.pdf</a>. Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. In Samuel Kaski and Jukka Corander, editors, AISTATS, pages 814–822, 2014. URL <a href="http://proceedings.mlr.press/v33/ranganath14.pdf">http://proceedings.mlr.press/v33/ranganath14.pdf</a>.
```

John W. Paisley, David M. Blei, and Michael I. Jordan.

Literature III

- Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4):229–256, 1992. URL https://doi.org/10.1007/BF00992696.
- Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient estimates in reinforcement learning. *Journal of Machine Learning Research*, 5(Nov):1471–1530, 2004.
- Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropagation for stochastic neural networks. In *ICLR*, 2016.

Literature IV

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models. In *Advances in Neural Information Processing Systems*, pages 2627–2636, 2017.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropagation through the void: Optimizing control variates for black-box gradient estimation. In *ICLR*, 2018.