Boosting Algorithms

- 1) AdaBoost
- i) Gradiant Boostingi) XG Boostingii) LG Boosting

1) AdaBoost(Adaptive Boost)

Working Method:

- Adaboost Algorithm works same like boosting algorithm (ie. It do feature sampling in sequentially)
- } It transforms weak learners to strong learners.
- AdaBoost is a Boosting algorithm, which means that the ensemble model is built sequentially and each new model builds on the results of the previous one, trying to improve its errors.
- The weights are determined in such a way that the wrongly predicted samples get higher weights than the correctly predicted samples.

Transformation of Weak learner into Strong learner:

AdaBoost algorithm

Before applying

After applying

```
from sklearn.preprocessing import StandardScaler
                                                                     81]: from sklearn.ensemble import AdaBoostRegressor
      sc=StandardScaler()
                                                                           regressor = AdaBoostRegressor(random_state=0, n_estimators=100)
      X train = sc.fit transform(X train)
                                                                          regressor.fit(X train, Y train)
      X test = sc.transform(X test)
                                                                          C:\Users\Hxtreme\anaconda3\Lib\site-packages\sklearn\utils\validation
     from sklearn.svm import SVR
                                                                          pected. Please change the shape of y to (n_samples, ), for example us
      regressor=SVR(kernel="sigmoid",C=10,coef0=1,epsilon=1)
                                                                            y = column or 1d(y, warn=True)
      regressor.fit(X_train,Y_train)
                                                                     81]:
      C:\Users\Hxtreme\anaconda3\Lib\site-packages\sklearn\utils\
                                                                                           AdaBoostRegressor
      pected. Please change the shape of y to (n_samples, ), for
        y = column or 1d(y, warn=True)
                                                                          AdaBoostRegressor(n estimators=100, random state=0)
41]:
                             SVR
     SVR(C=10, coef0=1, epsilon=1, kernel='sigmoid')
                                                                     82]: Y_pred = regressor.predict(X_test)
     Y pred = regressor.predict(X test)
                                                                     83]: from sklearn.metrics import r2_score
      from sklearn.metrics import r2 score
                                                                           r score = r2 score(Y test, Y pred)
      r_score = r2_score(Y_test,Y_pred)
      r score
                                                                           r score
431: -0.05571437556341796
                                                                          0.9268799485154495
```

2)Gradiant Boost

Flow Diagram for Gradiant Boost:

About Gradiant Boosting:

- Gradient boosting is a machine learning technique that combines multiple weak prediction models into a single ensemble.
- The model improves sequentially but not incremental weight.
- These weak models are typically decision trees, which are trained sequentially to minimize errors and improve accuracy.
- By combining multiple decision tree regressors or decision tree classifiers, gradient boosting can effectively capture complex relationships between features.

Gradiant Boosting Regressor

Before Boosting Algorithm

```
from sklearn.preprocessing import StandardScaler
                                                                 from sklearn.ensemble import GradientBoostingRegressor
     sc=StandardScaler()
                                                                 regressor = GradientBoostingRegressor(random state=0)
     X_train = sc.fit_transform(X_train)
     X_test = sc.transform(X_test)
                                                                 regressor.fit(X_train, Y_train)
                                                                 C:\Users\Hxtreme\anaconda3\Lib\site-packages\sklearn\ensemble
    from sklearn.svm import SVR
                                                                 d. Please change the shape of y to (n samples, ), for example
     regressor=SVR(kernel="sigmoid", C=10, coef0=1, epsilon=1)
                                                                   y = column_or_1d(y, warn=True) # TODO: Is this still requ:
     regressor.fit(X_train,Y_train)
     C:\Users\Hxtreme\anaconda3\Lib\site-packages\sklearn\utils\5]
                                                                         GradientBoostingRegressor
     pected. Please change the shape of y to (n_samples, ), for
       y = column_or_1d(y, warn=True)
                                                                 GradientBoostingRegressor(random state=0)
41]:
                          SVR
     SVR(C=10, coef0=1, epsilon=1, kernel='sigmoid')
                                                                 Y pred = regressor.predict(X test)
     Y pred = regressor.predict(X test)
                                                                 from sklearn.metrics import r2 score
     from sklearn.metrics import r2_score
                                                                 r score = r2 score(Y test, Y pred)
     r score = r2 score(Y test, Y pred)
                                                                 r score
     r score
                                                                 0.9226242574216024
431: -0.05571437556341796
```

After Boosting Algorithm

Comparison between two ensembling

i) XG Boost

XG Boost(Extreme Gradiant) working:

- It is an implementation of gradient boosting to provide better speed and performance. It is decision tree based ensemble machine learning algorithm.
- It works same like gradiant boosting but it has additional functionality.
- XGBoost predicts with greater accuracy and with less time complexity as compared to other machine learning algorithms.
- } It is a distributed Machine Learning Process.
- } It can handle large datasets.

Flow Architecture:

Advantages of XG Boosting:

ii) LG Boost Algorithm

Flow Architecture for LG Boosting:

LG Boost(Light Gradiant Boosting)

- LightGBM is an open-source high-performance framework developed by Microsoft.
- It is an ensemble learning framework that uses gradient boosting method which constructs a strong learner by sequentially adding weak learners in a gradient descent manner.
- } It uses histogram method for selecting the best fit.
- It can handle huge amount of data and poor to handle small dataset.

LG Boosting uses histogram based method for continuous split into bins or buckets

LG Boost Vs XG Boost

Difference between XG and LGBM

Aspect	XG Boost	Light GBM
Tree Growth	Level-wise	Leaf wise
Training Speed	Slower	Faster
Risk of Over fitting	Lower	Higher
CPU Performance	Strong	Moderate
Categorical Support Feature	Limited	Native

LG Boost algorithm Before applying

After applying

```
from sklearn.preprocessing import StandardScaler
      sc=StandardScaler()
     X_train = sc.fit_transform(X_train)
      X_test = sc.transform(X_test)
     from sklearn.svm import SVR
      regressor=SVR(kernel="sigmoid", C=10, coef0=1, epsilon=1)
      regressor.fit(X_train,Y_train)
      C:\Users\Hxtreme\anaconda3\Lib\site-packages\sklearn\utils\
      pected. Please change the shape of y to (n_samples, ), for
       y = column_or_1d(y, warn=True)
41]:
                            SVR
     SVR(C=10, coef0=1, epsilon=1, kernel='sigmoid')
     Y pred = regressor.predict(X test)
     from sklearn.metrics import r2_score
      r score = r2 score(Y test, Y pred)
      r score
431: -0.05571437556341796
```

```
[106]:
       from sklearn import LGBMRegressor
       regressor = LGBMRegressor(random state=42)
       regressor.fit(X train, Y train)
       ImportError
                                                 Traceback (mos
       Cell In[106], line 1
       ----> 1 from sklearn import LGBMRegressor
             2 regressor = LGBMRegressor(random state=42)
             3 regressor.fit(X train, Y train)
       ImportError: cannot import name 'LGBMRegressor' from 'sk
[107]: Y pred = regressor.predict(X test)
       from sklearn.metrics import r2 score
1081:
       r_score = r2_score(Y_test,Y_pred)
       r score
[108]: 0.9268799485154495
```