CCS 400

Service manual System Description

4822 733 24251 860801

Industrial & Electro-acoustic Systems

PHILIPS

CONTENTS:

1.	CCS400 in general. Brief description of system		
2.	Delegate unit		3350/00 3450/00
3.	Chairmans unit		3351/00 3451/00
4.	Central unit	LBB	3300/00
5.	Microphone plug in unit	LBB	3302/00
6.	Interpreter + monitor distribution panel	LBB	3301/00
7.	Monitor distribution board	LBB	3203/00
8.	6ch. interpreter desk	LBB	3221/00
9.	Flush mounting delegate's unit		
10.	Flush mounting chairmans unit		
11.	Central Control desk		3386/40 3386/70
12.	1e line trouble shooting		
13.	2e line trouble shooting		

[©] PHILIPS EXPORT B.V. - EINDHOVEN - THE NETHERLANDS - 1987 PRINTED IN THE NETHERLANDS

CCS 400 Discussion, Conference, and Interpretation system.

CONTENTS:

- 1. INTRODUCTION
- 2. BRIEF DESCRIPTION OF C.S.U. AND PERIPHERALS

Figures.

- 1. Front side of central supply unit (C.S.U.).
- 2. System block diagram C.S.U. and peripherals.
- 3. Detailed block diagram C.S.U. and peripherals.

1. INTRODUCTION

Central Supply Unit/Interface (C.S.U.)

LBB 3300/NN

- 1. The CSU controls the maximum number of simultaneously switched "on" microphones.
- 2. The CSU provides volume control of the whole system
 - the priority attention signal
 - 3 db attenuation of the Audio signal when two or more microphones are switched on.
- 3. The CSU provides the supply voltage for the delegate units and chairman unit.
- 4. Two chains of maximum 35 units can be connected.
- 5. Maximum 18 6ch. interpreters desks can be connected to the system.
- 6. Distribution to channel selectors can be provided, when a Monitor Distribution Board (MDB) is inserted. Simultaneous distribution via a transmitter is possible.
- A telephone coupler-, tape recorder-, and line in/line out connector is available.
- 8. By equipping the central supply unit with a plug-in unit (LBB 3302/00), a hand microphone can be connected.

LBB 3300/..

Central Supply Unit (CSU)

- . Completely pre-wired unit with a basis PCB, a contribution panel, and power transformer.
- . Two internal connectors are available to connect a roving microphone plug-in unit, and an interpreter monitor panel + Monitor Distribution Board.
- . Mains switch on the rear side.
- . Connection for delegate's, Tel. coupler, recorder, line-in/out, and if applicable a hand-microphone, are all to be found on the front side of the unit.
- . When the interpreter/monitor panel is added to the system, connections for distribution, monitoring, transmitter and interpreters units, are also located on the front of the unit.

LBB 3302/00

Handmicrophone plug-in unit + handmicrophone

- . Can be connected internally into the central supply unit via the contribution panel to the basic PCB.
- . Interfaces the handmicrophone to the central supply unit, therefore acting like a normal delegate's unit.

LBB 3301/00

Interpreter + Monitor distribution panel

- . Can be connected internally into the central supply unit via the contribution panel to the basic PCB.
- . Interfaces the 6ch. interpreters desks to the system and if applicable to Monitor Distribution Board.
- . The panel also provides three extra external connectors, for a monitor unit, a transmitter and distribution.

LBB 3203/00

Monitor Distribution Board (MDB)

- . Connected internally to the 3301/00.
- . Provide, ch1/ch6 and floor to be monitored by the program selectors. (distribution)
- . A selected channel is amplified together with the comm. signal and routed via 3301/00 to the monitor connector.

LBB 3350/00

Table Top Delegate Unit

- . Built in loudspeaker and microphone.
- . Microphone on/off button, pilot lamp, microphone "ON" indication lamp and microphone request lamp.
- . The mic. on/off button only becomes a request button, when use is made of a central control desk.
- . Jack for headphone connection.
- . Automatic delayed mic. switching off circuit.

LBB 3450/00

Table Top Delegate Unit

. Identical to 3350/00, but without built in loudspeaker.

LBB 3351/00

Table Top Chairmans Unit

- . Built in loudspeaker and microphone.
- . Microphone on/off button, pilot lamp and microphone "ON" indication lamp.
- . Priority microphone function.
- . Jack for headphone connection.

LBB 3451/00

Table Top Chairmans Unit

Identical to 3351/00, but without built in loudspeaker.

LBB 3305/00

Delegate's extension cable

. Extends the connection between two delegate units, and/or between delegate's unit and chairmans unit.

LBB 3221/00

6ch. interpreters desk

- . Microphone signal amplifier, with AVC.
- . Monitor section for headphone or loudspeaker.
- . Switching circuit to allow the microphone- or floor signal to be switched to one of the chosen channels.
- . Microphone mute switch.

LBB 3186/40 LBB 3186/70 Central control desk

. Central control of 40 respectively 70 delegate units.

2. <u>BRIEF DESCRIPTION OF CSU AND PERIPHERALS</u> (see fig. 2 and 3.)

Discussion

Pressing the microphone button S1 on the delegate unit, the microphone signal is switched via a pre-amplifier to the audio line. The switching function is provided by the switching control circuit (SCC). The loudspeaker is automatically switched "OFF", and the microphone "ON" LED indication plus the pilot LED's are switched "ON". After pressing the microphone button again, the microphone signal will be cut of the audio line. The audio signal on the audio line has now been amplified by its associated audio amplifier, and applied to the loudspeaker. The SCC also switches the microphone LED and the pilot LED "OFF". The disable request line, from the central supply unit ensures that the maximum number of switched "ON" microphones (adjusted via S102 on the CSU) cannot be exceeded.

New delegates cannot switch on their microphones, because the SCC

New delegates cannot switch on their microphones, because the SCC has been reset by the high active disable request line.

The audio level comparator in every delegate unit, compares the superimposed audio signal, with the microphone signal, i.e. when a delegate does not speak into his microphone for approximately 30 seconds, the microphone will automatically be switched "OFF".

Conference

When using the central control desk, the switching control circuit automatically ensures that the microphone button S1, is given the function of the microphone request button. The SCC senses the central control unit, by a D.C. level on the remote control line. When the D.C. level is low, a central control desk is used and the signal from the microphone button is sent via the request line, to the central control desk, i.e. after a microphone has been requested, the request LED on the delegate's unit, and the request lamp on the central control desk are switched "ON". By a high D.C. level on the remote control line to the delegate unit, the microphone will be switched on via the switching control circuit. The microphone "ON" LED and the pilot LED are switched "ON" and the request LED and loudspeaker are switched "OFF".

By switching on via the remote line, the delegate's microphone can only be switched "OFF" by the remote line, or by the delegate himself using his microphone button.

The central control desk operator is also able to switch on a microphone remotely even when a delegate does not request it. After a while the microphone can be switched off by the operator.

Chairman
The chairman's unit has the same function as the delegate unit, switch S1 controls the on/off, and with the addition of a priority button S2, the chairman is able to gain priority with his microphone.

When S2 is pressed; and remains pressed, the switching control circuit switches "ON" the microphone, and simultaneously switches the microphones LED and pilot LED "ON". The loudspeaker will automatically be switched "OFF".

Pressing S2, allows a low D.C. level to be switched, ensuring that every delegate unit; control circuit is reset, causing the delegates units to be automatically switched "OFF" and their loudspeakers switch "ON".

Upon receiving the low DC level on the priority line, the central supply unit sends a priority attention signal to the audio line, causing a signal to be heard on every delegate unit allowing the chairman to gain priority.

Releasing the priority button S2, the chairman's microphone will be switched "OFF" and the loudspeaker switched "ON". The D.C. level on the priority line increases, causing the switching control circuits not to be reset, therefore all delegates can manually switch on their microphones as normal. The chairman's unit is not equipped with an audio level comparator, therefore his microphone is not automatically switched "OFF" when the delay time is exceeded.

Using the central control desk, the microphone request, function can be remotely controlled. The chairman must indicate to the operator of the central control desk, that he requires remote control

The operator at the control desk, switches via the remote control line the chairmans request, for microphone "ON".

The central control desk operator is also able to switch on/off the chairmans microphone even when the chairman does not requests for it. When e.g. the chairman forgets to switch off his microphone the operator is able to carry out this function.

Handmicrophone

The hand-microphone is connected directly to the central supply unit by means of a plug-in unit. The plug-in unit has the same functions as the delegate unit but without a loudspeaker. The microphone signal is switched from the pre-amplifier, via the connection panel to the audio line.

Basic Printed Circuit Board and Connector Panel

When the chairman requests priority, the D.C. level on the priority line is low (e.g. 1.5vdc), causing the oscillator on the basic print circuit board to be reset. The oscillator generates a priority tone via the summing pre-amplifer, and is then switched onto the audio line. In all the delegate loudspeakers, the priority tone will be heard.

Signals via the summing amplifier, line in, tape recorder, and telephone coupler are switched to the audio line. The summing amplifier mixes the applied input signals, and the resultant output signal is connected to the audio line.

The internal audio line is via X2-21, and via the attenuator circuit on the connector panel (S101), routed to the two delegate chains BU101, and BU104, and finally to the hand-microphone plug-in unit.

The audio line is amplified by three seperate amplifiers, A, B, and C. Amplifier A, amplifies the audio signal for the telephone coupler, amplifier B, for the line-out, and amplifier C for the tape recorder and interpreters monitor panel LBB 3301, (Floor Signal). Provision is also provided for superimposing the audio signal onto the D.C. level, for the disable request line. Tape-recorder, line-out, and telephone coupler outputs are provide via the connector panel to BU106, BU102, and BU105. The disable request signal on the connector panel, is distributed into three directions, via BU101 for delegate chain 1, via BU104 for delegate chain 2, and internally to the hand-microphone plug-in unit. The floor signal, is routed via the connector panel to the interpreters monitor panel.

The audio line stabilizer on the basic print circuit board, stabilizes a DC level on the audio line to a constant value. Due to the load on the audio line, the feedback from the stabilizer is adjusted automatically, i.e. an increasing DC level is decreased, and a de-creasing level is increased.

The attenuator control circuit, provides a control signal to the 3db attenuator circuit on the connector panel. When two or more microphones are switched "ON" simultaneously. The input level of a comperator in the control circuit exceeds a certain reference level. The comperator then provides a control signal to the attenuator on the connector panel, which in turn is activated and attenuates the audio signal with 3db.

With S101 connected to the audio line it is possible to adjust the level from the audio for the loudspeakers and the line out signal in steps of 3dB.

The limiter limits the number of microphones which can be switched "ON" simultaneously, by transferring a DC level onto the disable request line, when the maximum number of microphones is reached. New speakers cannot switch "ON" their microphones as long as the number of microphones is at a maximum. The maximum number of microphones can be increased / decreased by adjusting \$102 on the connector panel, located on the front side of the central control desk. \$102 is a three positioned switch, allowing 1, 3, or 6 microphones to be added, provision is also provided for a control signal to switch "OFF" the audio level comparators, in every delegate's unit.

When a telephone coupler is used without a fork circuit, the telephone signal which is sent to the CSU, amplified and returned to the telephone line cannot be suppressed. In general this means that the telephone signal is automatically fed back to the telephone. To avoid this problem the fed back telephone signal can be reduced to almost 0 by placing a jumper in the right position. (side tone reduction).

<u>Interpretation</u>

Six channels, the auto-floor, floor, and communication signal are transferred via BU207, connected between the interpreters desks and the interpreters monitor panel LBB 3301. The audio signal from the connector panel is on the int/mon panel, connected via a seperate transformer to the floor line. On the same panel Ch.1/Ch.6, floor and communication are routed via BU209 to the transmitter.

Internally this signal plus the auto-floor are connected to the Monitor Distribution Board LBB 3203/00.

The amplified floor plus Ch.1/Ch.6 are routed via the int/mon panel and back to BU208.

Via connector BU208, a maximum number of 1000 program selectors can be used, to monitor the channels and the floor.

A channel occupied circuit on the int/mon panel, provides LED information to the transmitters connector BU209 and the remote connector BU210. When a channel is occupied, the DC level on the channel line falls below a certain DC level, causing the output of a comparator in the channel occupied circuit to go high, this condition is used to switch "ON" an LED which corresponds to that channel number. The LED information can be derived from BU209 and BU210 in customer made applications.

Transferring a BCD code onto the address lines, via BU210 to the monitor selector on the Monitor Distribution Board, one of the channels, floor or auto-floor can be selected and amplified with the communication signal in the mixing amplifier. The amplifier output is routed via the int/mon panel to the remote socket BU210, and can be used for monitoring loudspeakers.

LBB 3350/00 Table Top Delegate Unit.

LBB 3450/00 Table Top Delegate Unit.

CONTENTS

- 1. INTRODUCTION DELEGATE UNIT
- 2. CIRCUIT DESCRIPTION DELEGATE UNIT
- 3. SPARE PARTS LIST

Figures.

- Block diagram delegate unit.
 Circuit diagram of delegate unit.
 Circuit diagram and location of components loudspeaker unit.
 Location of components delegate unit.
- 5. Connection

1. INDTRODUCTION DELEGATE UNIT

The delegate unit can be divided into 4 parts (see block diagram fig. 1.)

- Part 1 Microphone Amplifier
 Amplifies the microphone input signal, and switches it to the audio line.
- Part 2 Audio Amplifier
 Amplifies the audio signal, and distributes it to the loudspeaker and headphone jack.
- Part 3

 Auto switch off circuit

 Compares the audio signal, and the microphone signal.

 Automatically switches "off" the microphone, when there is no input from the delegate for approximately 30 to 45 seconds.
- Part 4 Microphone and loudspeaker Switching Circuit
 Switches the microphone and loudspeaker on/off, depending on the status of the control signals. The control signals comprise of the Microphone, remote, priority and disable request signals, plus the output signal from the Auto switch off circuit.

2. CIRCUIT DESCRIPTION DELEGATE UNIT

(see Circuit diagram Fig. 2 and 3)

When the system is switched "on", capacitor C33 charges to the supply voltage 27v. Resistors R48, and R50 cause the voltage on the + input 5 of IC3b to the lower, than on the negative input 6. This state is valid until the power supply voltage reaches 14v. The difference negative voltage, between the negative input and the positive input of IC3, causes the comparator output to be Ov. The Ov is applied to the negative input 2 of IC3a, because the voltage on the positive input 3 is +6v, the comparator output will be high i.e. logic "1". Logic "1" resets the flip flop IC5a. Switching on the system, the supply voltage exceeds 14v, the zener diode D11 will conduct, causing the voltage at input 6, to be left at a constant level of 15v. If the power supply voltage exceeds 20v, the voltage at the input of IC3b pin 5, is higher than the 15v on the input 6 causing a positive difference voltage, ensuring that the comparator no longer clamps the voltage to zero. 15v is applied to the negative input of IC3a, pin 2, which is higher

15v is applied to the negative input of IC3a, pin 2, which is higher than the +6v on the positive input 3, therefore the output from the comparator is 0v, is logic "0". Logic "0" will no longer reset the flip flop IC5, and the delegate unit is now "ready" for use.

Switching Control Circuit General

The switching control circuit IC5a, IC2d, IC3a, and IC4a/b carries out all the switching functions in the delegate unit. Switching is due to the state of the call microphone signal, priority-, disable request, and remote control lines, the microphone signal or the audio signal to the loudspeaker. IC5a is a flip flop, who's output is logic "O"(Ov) or logic "1" (15v) depending on its input signals. When the output is Ov, the microphone signal is switched "off" from the pre-amplifier to the audio line. When the output is 15v, the microphone signal via the pre-amplifier, will be switched to the audio line, and the loudspeaker is switched "off".

The priority and disable request line are via a comparator circuit, connected to the reset and data input. The priority signal, when active, ensures that the flip flop will be reset, and the active disable request signal ensures that the data input becomes "O". The microphone call signal, from the microphone button, is applied to the clock input of IC5, and the microphone remote call signal to the set input. The clock or set pulse can make the flip flop output logic "1" (15v), causing the microphone to be switched "on" and the loudspeaker "off".

The audio comparator output, is connected via a comparator to the reset input of IC5. Therefore after the delay time of approximately 30 to 45 seconds, the flip flop will be reset, and the switched "on" microphone is then switched "off".

Listening

In the listening position, the switching control circuit, switches via the loudspeaker switching circuit, the audio signal, to the audio amplifier and to the loudspeaker. The microphone switching circuit is inactive, because the microphone signal is not connected to the audio line. During listening, the clock input of IC5 is low (logic "O") because the call button has not been pressed. Because their is no priority, the priority line is at 27v. The voltage on the negative input 2 of IC3a, via D9 R31 and R36 is approximately 12v., because the positive input is 6v, the comparator output is Ov, logic "O". Logic "O" is connected to the reset input of IC5. The disable request, connected to pin 13 of IC2d is inactive, therefore the negative input is approximately Ov. The positive input to IC2d pin 12 is positive 10v, therefore the comparator no longer clamps the voltage on the data input to zero. At last their is no remote control, meaning that the remote line which is connected to the set input of IC5 is about Ov. This logic "O" does not set the flip flop.

The output of the flip flop, which is at Ov, is connected via a resistor and capacitor network, to transistor TS5, this circuit forms the microphone switching circuit. Ov on the base of TS5, causes it to not conduct, therefore TS4 which is part of the pre-amplifier is also non-conductive. The microphone signal on the base of TS4 therefore does not reach the audio line, and acts as if it were switched "off".

The loudspeaker switching circuit, consists of TS1, relay K1, and associated components. The Ov from the flip flop output, is applied to the base of TS1, causing it to be non-conductive, therefore no current flow through the relay coil, and the relay is not activated. In this state the contacts are closed, causing the audio signal via the audio amplifier to be applied to the loudspeaker.

Audio Amplifier

The amplifier consists of IC1^b, TS6, TS7, and associated components. The audio signal from the audio line is fed via C9 and R19 to the positive input of IC1^b, the ground reference is fed to the negative input. The operation amplifier, amplifies the microphone signal, the output is a DC level of approximately 14 volts, on which the audio signal is superimposed. The balanced output stage, TS7 and TS6 provide, the current for driving the low impedance loudspeaker.

Loudspeaker unit (only in LBB 3350/00)

In the listening position Ov is applied, via X1-5, to the base of TS1, therefore no current flow through the relay coil and the relay is not activated. In this state the contacts are closed via X1-2. The audio signal is applied to the loudspeaker, X1-1 is connected to ground. Because no current flow through the relay coil, the pilot leds D1 until D4 inclusive are not illuminated. In the call position approximately 15v is applied, via X1-5, to the base of TS1, therefore current flow from +15v at X1-6 via the relay coil to ground (X1-4). In this "active state" the relay contacts are opened. The audio signal at X1-2 cannot reach the loudspeaker. The current through D1 until D4 inclusive cause these pilot leds to illuminate.

TS2 and associated circuitry provide for a fast switch over from listening position to call position. At the moment TS1 becomes inductive the current flowing via the pilot leds through the coil of relay K1 is high enough to open the contacts in a "normal" way. When TS1 is not conductive, C1 is charged. The voltage applied via R2 and R3 to the base of TS2 ensures that this transistor is conductive. But because of the non conductive state of TS1 no current can flow via TS2 through K1 to ground.

At the moment the system switches over from listening position to call position, TS1 becomes conductive and current flows via the pilot leds through the relay coil and TS1 to ground. Extra current also flows via TS2 through the relay coil and TS1 to ground. This "extra" current, which only flows for a short moment, ensures that the magnetic field caused by the relay coil is "extra" strong and therefore opens the relay contacts "extra" fast.

This "extra" current may only flow for a short moment through the relay coil. At the moment TS1 becomes conductive. The charged capacitor C1 is connected to ground, C1 discharges via D12 and R1. The voltage over the capacitor decreases, therefore the voltage over R2 and R3, causing the base voltage of TS2 to increase. TS2 becomes less conductive. The current through the relay coil decreases but remains enough (current via pilot leds) to keep the contacts opened.

Call Position

In the call position, the microphone switching circuit is activated, by the switching control circuit. The microphone signal is fed via the pre-amplifier and switched to the audio line. The loudspeaker is fed via the loudspeaker switching circuit, and switched "off" from the audio amplifier.

During a call, the clock input of IC5 is logic "1" (15v), because the call button is pressed "in". No priority or remote signals are present, therefore the reset input and the set input are at logic "O". Because disable request is inactive, the data input of IC5 stays 15v, (logic "1"). The data input is high, and the output of the flip flop will be logic "1", (15v) on the positive edge of the clockpulse, caused by pressing the "call button". The inverse flip flop output is now "O", this output is fed back to the data input, which also becomes "O". This means that the next clockpulse (S1) will reset the flip flop. The 15v on output 1 is applied to the base of TS5 in the microphone switching circuit. The transistor is conducting, causing TS4 also to conduct, current can now flow, via the emmitter of TS4 to ground. The microphone signal is taken from the collector, the microphone LED illuminates, due to the current through TS4. The 15v on the output of IC5, via the base of TS1 in the loudspeaker switching circuit, ensures that the transistor conducts. The current which now flows through the relay to ground, allows the contacts to open and the loudspeaker is switched "off" from the audio amplifier, also a current is flowing through the pilot LEDs causing it to illuminate.

Pre-Amplifier

The pre-amplifier consists of IC1a, TS4 and associated components. A DC voltage is fed via TS1 and applied to the electret microphone line. The current flowing from TS1 to the electret microphone, ensures that the "FET" inside the microphone is conducting. The analogue microphone signal, is also applied to the microphone line, by the microphone itself, and fed via C1 and C2 to the + and input of the operational amp. IC1a. C1 ensures that the DC voltage for the electret microphone, cannot reach the input of the Op amp. A DC voltage of approximately 4v is fed via R5, and R6 and R8 to the analogue microphone signal on the inputs of IC1a. C2 ensures that this DC voltage is not influenced by TS2 and TS3. The output signal of the Op amp. IC1a if fed back via R11/C48 to the -input and via the resistor between X2-5 and X2-6. The resistance value is dependant, on the sensitivity of the electret microphone. In this way differences in sensitivity of the microphones are compensated. The amplified signal, a DC level of approximately 10v on which the audio signal is superimposed, from the Op amp is applied to the base of TS4.

<u>Limiter</u>

The limiter consists of TS2, TS3, and associated components. When the output signal of the Op amp IC1a reaches a value greater than ± 0.7v, D1 or D2 conduct, and so will TS2 or TS3. When either of these two transistors is conducting, the input signal from the preamplifier decreases. A sample of the current from the analogue microphone signal is then flowing via the conducting transistors to ground. The microphone signal is now limited.

The limiter is divided into two sections, the right section D2 and TS3 is for the positive AC part of the output signal, and the left section D1 and TS2, for the negative AC output signal.

Resetting "Call" Position

If the call button S1 is pressed again, IC5 receives another positive pulse on its clock input. The inverse output pin 2, was "O", and so the data input of IC5. After the clockpluse, the output pin 1, becomes "O", because the data input is "O". Output 2 is the inverse of output 1, is logic "1", therefore the data input is "1" again. The logic "O" at output 1, activates the loudspeaker switching circuit, and cause the microphone switching circuit to become in-active.

The Ov present on the base of TS1, ensures that it is notconducting. The loudspeaker is fed via the relay contacts, connected to the audio amplifier. Transistor TS5 is not conducting, due to the Ov on its base, from the output of IC5. Therefore the microphone signal on the base of TS4, is not switched to the audio line.

Priority

When the chairman wants priority over the delegate microphones, the priority line becomes about 1,5V. Due to R37 and R99 1V is applied to the -input of IC3a then.

Because the 6V on the tinput the comperator output is about 15V which is logic "1". Via the reset input IC5 is now reset. The set input stays "0" and the data input "1". The flip flop output was "1", due to the reset the output becomes "0". The microphone signal is switched off by TS5 which is now nonconductive because of the OV on its base.

The loudspeaker is by TS1 switched to the audio amplifier via the relais contacts.

As long as the priority line is 1,5V the reset input stays "1" and the flip flop resetted, pushing the call button does not influence the switching control circuit. The delegate can not switch on his microphone with his call button.

When the chairman resets his priority, the priority line becomes 27v, 27v is then fed to the -input of the comparator IC3a. Because the +input is 6v, the output is 0v, is logic "0", therefore IC5 is no longer reset. The delegate unit will now be in its normal listening position. Therefore the delegate is able to switch on/off his microphone via the call button.

Disable Request

When the adjusted number of microphones, are switched "on" (1, 3 or 6 via switch S102) simultaneously. The disable request line reaches approximately 27v. This 27v is applied to the -input of IC2d. Because the +input is connected to 10v the output of the comparator becomes Ov. The data input which is at 15v, is then brought down to approximately 1v, due to the forward voltage on the diode D13. This 1v is logic "O" to the flip flop. When the microphone is swiched "on", during the disable request, the data input is already at "O", because the inverse flip flop output is at Ov. During the disable request, the switched "on" microphones can be switched "off" by pressing the call button. The positive pulse on the clock input, clocks the data which is at "O", to the output. During the disable request, a microphone cannot be switched "on", because the data input is set to "O". The call pulses from the call button, only switches a "O" to the flip flop output.

When the number of switched "on" microphones, is less than the maximum number, adjusted by switch S102, the disable request line becomes Ov.

The output from the comparator IC2d is now not longer clamping the data input to zero. The delegate unit is now in the listening position, and the delegate is now able to switch "on" his microphone, by pressing his call button.

Remote Control

When a Central Control Desk is used in the system, the call button can also be used as a microphone request button. This can only be achieved, when the control desk is in the manual mode.

Three situations exist: 1. No Central Control desk connected.

- 2. Central Control desk connected, and positioned in the auto mode.
- Central Control desk in the manual mode.

When a central control desk is connected in the auto mode, the remote line is higher than 2/3v+. When no desk is connected, resistor R38 which is connected to v+ (27v) ensures that the remote line is higher then 2/3 v+.

The remote line is fed via C29, and connected to the set input of the flip flop. C29 ensures that the DC voltage is blocked and the set input is "O". The delegate is able to switch "on" or "off" his microphone via the call button, as normal.

When the central control desk is in the manual mode, the voltage on the remote line is lower than 2/3 v+. The flip flop IC5a, is not set, due to capacitor C29. Because the -input of IC4a is 2/3v+, the output is now

when the delegate presses his call button, the output of IC5a becomes 15v, but is clamped by the comparator IC4a. The voltages on the anode of the "request" LED D10 is approximately 1v, therefore the LED illuminates. The 15v on the output of the flip flop, is also applied to the base of TS9, which causes it to conduct. Current flows now from the request line, this is then a sign for the central control desk that a request is made. The operator of the central control desk, makes the remote line higher then 2/3v+, the output of the comparator IC4a then becomes 15v. The voltage at R59 is no longer decreased, therefore the 13v is applied to the base of TS5. The microphone will be switched "on" and via TS1 the loudspeaker "off".

The operator is also able to switch "on" a delegate microphone, even when the delegate doesn't request it. The voltage on the remote line, is now switched from a value much lower than 2/3v+, to a value greater than 2/3v+ (about v+). Because of the fast rise time, and the high voltage step, this pulse passes the differentiation network C29 and R45 and sets the flip flop IC5 via the set input. The output of the flip flop is now 15v, and the microphone is switched on as long as the remote line remains high.

The operator is able to swith "off" the microphone, by switching the voltage on the remote line from a value greater than 2/3v+ (approx. v+), to a voltage much less than 2/3v+, via C26 the - input of IC3a, which is 27V when there is no priority, is decreased for a short moment, causing the voltage at the input to decrease below 6v, and the comparator output then becomes 15v. This pulse then resets the flip flop, and the microphone is then switched "off" and the delegate is in the normal listening position.

When the central control desk is used, the priority line from the chairmans' unit is not connected to the other delegate units, but to the central control desk. When a chairman presses his "priority button", two situations exist: the central control desk is in manual, or in the auto mode.

In "manual mode", the central control desk generates a DC level, which is higher than 6v, but lower than 2/3v+ (18v), on the priority line. This voltage is then applied to the +input of IC4b, ensuring that the comparators output is 0v. When the microphone is switched "on" the 13v on the anode of D10 and resistor R59 is decreased, and the microphone is switched "off". When the priority button is released by the chairman, the priority line becomes approximately 27v, the output of IC4b 15v, and therefore the voltage on the anode of D10 is no longer decreased and remains at 13v, and the microphone is switched "on" automatically. i.e. when the central control desk is in manual mode, priority from the chairman doesn't switch "off" the microphone, only "mutes" it during the priority call.

In the "auto mode" the microphone is switched "off" whilst the chairman has priority, and remains switched "off" when the priority button is released. In "auto mode", the central control desk, generates a DC level lower than 6v on the priority line, after a priority call. This voltage is then applied to the -input of IC3a, because the +input is at 6v, the comparators output is 15v, flip flop IC5a resets. The microphone is switched "off". When the priority is released, the priority line goes to 27v. The output of IC3a is now at Ov, and the flip flop is no longer reset, the microphone remains switched "off", and the delegate unit is now in the listening position.

Audio Level Comparator

The audio level comparator, ensures that when a delegate does not speak into his microphone for approximately 30 to 45 seconds, the flip flop IC5, fed via comparator IC3a, will be reset.

At input 3 of IC2a, a DC level of approximately 9v is applied. The microphone signal is applied to the -input 2 of IC2a. The Op. amp IC2a, subtracts the microphone signal from the DC level, and amplifies the resulting signal. The output signal is now at a 9v DC level, which is used to superimpose the amplified microphone signal on. This signal is then applied to the -input of IC2b and at input 5, the disable request signal. The disable request signal, plus a DC level from R28 on the disable request signal, together form a 9v DC level on which the audio signal (other delegates + delegate itself) is superimposed. IC2b subtracts the output of IC2a, which is the 9v on which the microphone signal is superimposed, from the 9v on which the audio signal is superimposed. The output 7, of IC2b is at a DC level of 9v, on which the difference between the audioand the microphone signal is superimposed. The difference voltage, can reduce the voltage on x, and the output of IC2a, which is the 9v on which the microphone signal is superimposed, can reduce the voltage on Y. When only the the delegate is using his unit, the audio signal is the same as the microphone signal. The Ac difference voltage at the output of IC2b is Ov, only the 9v DC level is on the output. The voltage on x is now 9v plus the forward voltage of D6, adding up to a total of approximately 10v. When more than one delegate is speaking, the audio signal is higher than the microphone signal. On the output of IC2b, the difference voltage, superimposed on the 9v DC is applied, the negative going voltage of the AC difference signal, ensures that the 10v on x is decreased via D6 and C21.

If the delegate unit is silent, there is no microphone signal, therefore the AC voltage on the 9v DC level at the output of IC2a is at Ov. The voltage at Y is at 9v plus the forward voltage of D7, which in total sums up to approximately 10v. When the delegate microphone is in use, the microphone signal is amplified by IC2a. The negative going voltage of this microphone signal, ensures, that the 10v on Y is decreased, via D7 and C22.

X is applied to the +input of IC2c, and Y to the -input. When X is greater than Y, the output of the Op amp is approximately 15v, and when Y is greater than X the output is Ov. Therefore when the delegate uses his microphone (he has to speak louder when others are using their microphone), the output of IC2c is 15v, C24 is now charged to 15v, because D9 is conducting. When the delegate stops using his microphone the output becomes Ov. Instantly C24 discharges via R35, and the DC level slowly decreases. This decreasing voltage is then fed via R36, and applied to the -input of IC3a. When the voltage becomes lower than approximately 7v, the comparator output which was at Ov, now becomes 15v, and resets the flip flop IC5a, and the microphone will now be switched "off".

The time taken for C24 to discharge, from 15v to approximately 7v is about 30 to 45 seconds. When the microphone is switched "off", the output of IC2c becomes 15v, independant of the number of other switched on microphones. This is because Y is approximately 1v when the delegates unit is not switched "on". The Ov on the output of IC5a, is applied to D8, therefore C22 can only discharge, until the voltage on Y reaches the forward voltage of D8 which is approximately 1v. This forward voltage cannot be exceeded, as long as Ov is applied to the cathode of D8. When the delegate unit is switched "on", by the delegate pressing his call button, then approximately 13v is applied to the cathode of diode D8. C22 can now partly discharge, and the voltage on Y increases to approximately 10v, because of the 9v DC on the cathode of D7, and its forward voltage of approximately 1v.

By placing the jumper S3, in the b-a position, capacitor C24 cannot discharge via R35, therefore the audio level comparator is in-active.

Switching S102, the audio level comparator can be made in-active. In the three position 1, 2, or 6 microphones in non-auto, the switch supplies Ov to the ground reference which is normally 9v DC. This Ov is fed via R30 and C20, to the -input of IC2b and overrules the output signal from IC2a. The output of IC2b is now Ov, therefore X is at 10v. IC2c output, is and remains 15v, therefore the capacitor which is charged, discharges, and the audio level comparator is in-active.

The different switching functions in the delegate unit are listed in the table below.

Function	Set	Data	Clock	Reset	l Q	mic switch.	mic	LS
				Ĺ	İ	signal.		<u> </u>
Listening	1 0	1	0	1 0	0	1 0	off	on
Call	0		<u> </u>	1 0	11	1 1	on	off
Reset call = listening	0	_5_		1 0	0	0	off	on
Priority on	0	1	<u> </u>	11	0	1 0	off	on
Priority off = listening	. 0	1	X	0	0	0	off	on
Call	0	7		0	<u> </u>	1_1	on	off
Reset call = listening	0		_ _	1 0	0	1 0	off	on
Disable request on	0	0	X	0	0	0	off	on
Disable request off	0	1	X	0	0	0 1	off	on
Call Call	0	~ _		0	<u> </u>	1 1	on	off
Reset call = listening	0	7_	_	0	0	1 0	off	on
Call by use of central control desk = request (manual mode)	0	7	5	0	1	0	off	on
Remote control on (after request)	0	1	X	1 0	1	1 1	on	off
Remote control off (= reset call)	0	_5	<u> </u>	<u> </u>	0	0	off	on
Remote control on (no request)	l	la]	X	0	1 1	1 1	on	off
Remote control off	0	<u>.</u>	X		0	0	off	on
Microphone off by Audio level comperator	0	<u>.</u> -	X	교	0	0 	off	on
İ	II				l	Ii		l

3. SPARE PART LIST

Spare parts list of Delegate Unit LBB 3350

Description	Code N	umber
Grommet	5322 4	62 40211
Jack for headphone	5322 2	68 10202
Delegate cable	5322 3	21 21658
Plug X13	5322 2	68 44142
Spring for microphone stem	5322 4	92 63142
Plug X2	5322 2	68 44152
Microphone	5322 2	42 20094
Cap for microphone	5322 4	62 40728
Foam cap for microphone	5322 4	62 40731
Cap.chip 100 PF 5% 50V for microphone	4822 1	22 31765
Socket X13	5322 2	68 24041
s list PCB Delegate		

Spare Parts

	Description	Codenumber
	Knob push button S1	5322 414 10014
	Rubberplate S1	5322 466 91584
C 1	Cap.chip 10NF	4822 122 32442
C 2 C 3	Cap.ceramic 100NF10%X7R 50V	5322 122 32839
C 3	Cap.electrolyt 10UF 20% 25V	4822 124 21732
C 4	Cap.electrolyt 4,7UF 20% 25V	5322 124 21966
C 5	Cap.electrolyt 0,47UF 20% 25V	4822 124 21453
C 6	Cap.electrolyt 4,7UF 20% 25V	5322 124 21966
c 7	Cap.electrolyt 47UF 20% 10V	5322 124 21975
C 8	Cap.electrolyt 4,7UF 20% 25V	5322 124 21966
c 9	Cap.chip 3,3NF 10% 50V	4822 122 31969
C 10	Cap.ceramic 100NF10%X7R 50V	5322 122 32839
C 11	Cap.chip 47PF 5% 50V	4822 122 31772
C 12	Cap.chip 100PF 5% 50V	4822 122 31765
C 13	Cap.chip 100PF 5% 50V	4822 122 31765
C.14	Cap.electrolyt 22UF 20% 25V	4822 122 31969
C 15	Cap.electrolyt 4,7UF 20% 25V	5322 124 21966
C 17	Cap.ceramic 100NF10%X7R 50V	5322 122 32839
C 18	Cap.ceramic 82NF 10% 50V	5322 122 32838
C 20	Cap.electrolyt 10UF 20% 25V	4822 124 21732
C 21	Cap.electrolyt 4,7UF 20% 25V	5322 124 21966
C 22	Cap.electrolyt 4,7UF 20% 25V	5322 124 21966
C 23	Cap.chip 100PF 5% 50V	4822 122 31765
C 24	Cap.electrolyt 100UF 50% 25V	4822 124 20701
C 25	Cap.chip 100PF 5% 50V	4822 122 31765

C 26 C 27 C 28 C 29 C 30	Cap.chip 4,7NF10%X7R Cap.ceramic 100NF10%X7R Cap.chip 10NF Cap.chip 4,7NF10%X7R Cap.chip 100PF 5%	25V 50V 50V 50V	5322 4822 4822	124 21966 122 32839 122 32442 122 31784 122 31765
C 31 C 32 C 33 C 35 C 36	Cap.chip 100PF 5% Cap.electrolyt 47UF 50% Cap.electrolyt 47UF 50% Cap.electrolyt 22UF 20% Cap.electrolyt 47UF 50%	50V 25V 40V 25V 25V	4822 4822 4822	122 31765 124 20699 124 20713 124 20646 124 20699
C 40 C 44 C 45 C 47 C 48	Cap.ceramic 100NF10%X7R Cap.ceramic 100NF10%X7R Cap.ceramic 100NF10%X7R Cap.chip 22NF 10% Cap.chip 470PF 5%	50V 50V 50V 63V 63V	5322 5322 4822	122 32839 122 32839 122 32839 122 31797 122 31727
D 1 D 2 D 3 D 4 D 5	Diode BAV70 Diode BAV70 Diode, Reference BZX84-C Diode CQW54-V1 Diode BAV70	5V1	5322 5322 5322	130 34331 130 34331 130 32835 130 32704 130 34331
D 6 D 7 D 8 D 9 D 10	Diode BAV70 Diode BAV70 Diode BAV70 Diode BAV70 Diode, Reference TIUG164		5322 5322 5322	130 34331 130 34331 130 34331 130 34331 130 32587
D 11 D 12 D 13 D 17 D 19	Diode BZX84-C15 Diode BAV70 Diode BAV70 Diode BAV70 Diode, Reference BZV46-2	vo .	5322 5322 5322	130 33662 130 34331 130 34331 130 34331 130 31248
D 20 IC 1 IC 2 IC 3 IC 4	Diode, Reference BZX79-E Integr.circuit LF353N Integr.circuit LM324D Integr.circuit LM393D Integr.circuit LM393D	30	5322 5322 PHIN 5322	130 34328 209 81395 209 71598 209 71599 209 71599
IC 5 R 1 R 2 R 3 R 4	Integr.circuit HEF4013BT Res.chip 10K 2% 0,125W Res.chip 47K 2% 0,125W Res.chip 390E 2% 0,125W Res.chip 10K 2% 0,125W		4822 4822 5322	209 14477 111 90249 111 90543 111 90138 111 90249
R 5 R 6 R 7 R 8 R 9	Res.chip 47K 2% 0,125W Res.chip 33K 2% 0,125W Res.chip 1K 2% 0,125W Res.chip 220K 2% 0,125W Res.chip 220E 2% 0,125W		5322 5322 4 822	111 90543 111 90267 111 90092 111 90197 111 90178

R 11 R 12 R 13 R 14 R 15		4822 111 90249 4822 111 90214 4822 111 90249 5322 111 90113 4822 111 90214
R 16	Res.chip 1K5 2% 0,125W Res.chip 12K 2% 0,125W	4822 111 90151 4822 111 90253
	Res.chip 1M 5% 0,125W	5322 111 90094
R 19	Res.chip 100K 2% 0,125W	4822 111 90214
R 20	Res.chip 18K 2% 0,125W	4822 111 90238
R 21	Res.chip 100E 2% 0,125W	5322 111 90091 4822 111 90214
R 22	Res.chip 100K 2% 0,125W	4822 111 90251
R 23	Res.chip 22K 2% 0,125W Res.chip 100K 2% 0,125W	4822 111 90214
R 24 R 25	Res.chip 470E 2% 0,125W	5322 111 90109
R 26	Res.chip 18K 2% 0,125W	4822 111 90238
R 27	Res.chip 39K 2% 0,125W Res.chip 100K 2% 0,125W Res.chip 27K 2% 0,125W	5322 111 90108
R 28	Res.chip 100K 2% 0,125W	4822 111 90124
R 29	Res.chip 100K 2% 0,125W Res.chip 27K 2% 0,125W Res.chip 220K 2% 0,125W	4822 111 90542 4822 111 90197
K 30	Res. Chip 220x 2 6 0/ 120 W	
	Res.chip 18K 2% 0,125W	4822 111 90238
	Res.chip 1M 5% 0,125W	5322 111 90094 5322 111 90094
R 33	Res.chip 1M 2% 0,125W	5322 111 90092
R 34	Res.chip 1K 2% 0,125W Res.chip 220K 2% 0,125W	4822 111 90197
R 35		
	Res.chip 100K 2% 0,125W	4822 111 90214
R 37	Res.chip 1M 5% 0,125W	5322 111 90094 5322 111 91141
	Res.chip 10M 5% 0,125W	4822 111 90214
	Res.chip 100K 2% 0,125W	4822 111 90214
R 40	Res.chip 100K 2% 0,125W	
R 41	Res.chip 100K 2% 0,125W	4822 111 90214
R 42	Res.chip 1K 2% 0,125W	5322 111 90092
R 43	Res.chip 100K 2% 0,125W	4822 111 90214 5322 111 90094
R 44	Res.chip 1M 5% 0,125W Res.chip 100K 2% 0,125W	4822 111 90214
R 45		
R 46	Res.chip 47K 2% 0,125W	4822 111 90543
R 47	Res.chip 1K 2% 0,125W	5322 111 90092 4822 111 90214
R 48	Res.chip 100K 2% 0,125W	4822 111 90214
R 49	Res.chip 100K 2% 0,125W	4822 111 90542
R 50	Res.chip 27K 2% 0,125W	
R 51	Res.chip 68K 2% 0,125W	4822 111 90202
R 52	Res.chip 33K 2% 0,125W	5322 111 90267
R 53	Res.chip 100K 2% 0,125W	4822 111 90214 5322 116 44008
R 54	Res.P.T.C.	4822 111 90214
R 55	Res.chip 100K 2% 0,125W	3044 111 30414

R 56	Res.chip 15K 2% 0,125W	4822 111 90196
R 57	Res.chip 15K 2% 0,125W Res.chip 12K 2% 0,125W Res.chip 2K7 2% 0,125W	4822 111 90196
R 58	Res.chip 12K 2% 0,125W	4822 111 90253
R 59	Res.chip 2K7 2% 0,125W	4822 111 90569
R 60	Res.chip 100K 2% 0,125W	4822 111 90214
R 72	Res.chip 10K 2% 0,125W	4822 111 90249
R 82	Res.chip 3K9 2% 0,125W	4822 111 90571
R 83	Res.chip 3K9 2% 0,125W	4822 111 90571
R 86	Res.chip 220K 2% 0,125W	4822 111 90197
R 92	Res.chip 82K 2% 0,125W	4822 111 90575
R 93	Res.chip 68K 2% 0,125W	4822 111 90202
R 94	Res.chip 680K 2% 0,125W	4822 111 90162
R 95	Res.chip 100K 2% 0,125W	4822 111 90214
R 96	Res.chip 5K6 2% 0,125W	4822 111 90572
R 97	Res.chip 100K 2% 0,125W	4822 111 90214
R 98	Res.metal film 390E 5% 2,5W	5322 116 54401
	Res.chip 10K 2% 0,125W	4822 111 90249
R 102	Res.chip 1M 5% 0,125W	5322 130 42755
R 103	Res.chip 100K 2% 0,125W	5322 111 90094
S 3	Pin	5322 535 84341
S 3	Link, jumper 76264 101 Berg	5322 290 60298
SK 1	Switchmechanism S1 mic. button	5322 278 14006
TS 1	Transistor BC847C	PHIN 5322 130 42755
TS 2	Transistor BC857C	PHIN 5322 130 42756
TS 3	Transistor BC847C	PHIN 5322 130 42755
TS 4	Transistor BC847C	PHIN 5322 130 42755
TS 5	Transistor BC847C	PHIN 5322 130 42755
TS 6	Transistor BC817-40	4822 130 42615
TS 7	Transistor BC807-40	PHIN 5322 130 60123
TS 8	Transistor BC817-40	4822 130 42615
TS 9	Transistor BC817-40	4822 130 42615
X 5	Socket, male	5322 265 64078
•	·	

Spare parts list unit cable assy

Description			Code	Number		
Connector	Hirschmann	MAS88S	5322	265	40535	
Plug X3			5322	267	74025	
Socket X3			5322	268	24041	
Bracket for	х3		5322	462	44161	

Spare parts list Loudsp. enclosure CCS400

Description	Code Number
Loudspeaker AD3371/Y150	4822 240 30172
Plastic lens on rear side	5322 381 10785
Plug X1	5322 268 44152
Bracket for X1	5322 462 44161

Spare parts list Printed board assy

	Description	Code Number
C 1 D 10 D 11 D 12 K 1	Cap.electrolyt 470NF 50% 63V Diode BAV70 Diode BAV70 Diode BAV70 Relay	4822 124 20719 5322 130 34331 5322 130 34331 5322 130 34331 5322 280 80524
R 1 R 2 R 3 TS 1 TS 2	Res.chip 22K 2% 0,125W Res.chip 22K 2% 0,125W Res.chip 10K 2% 0,125W Transistor BC847C Transistor BC857C	4822 111 90251 4822 111 90251 4822 111 90249 5322 130 42755 5322 130 42756

Plug X13 can be used also as plug for X5.
Plug X2 can be used also as plug for X4.
The socket X3 can also be used as socket X2, X1 or X4.
The brackets for plug X1 or X3 can also be used in the plugs X2, X4, X5 and X13.

Recommended spare parts list of delegate unit LBB 3350

Description		Number
Grommet	5322	462 40211
Jack for headphone	5322	268 10202
Delegate cable	5322	321 21658
Plug X13	5322	268 44142
Spring for microphone stem	5322	492 63142
Plug X2	5322	268 44152
Microphone	5322	242 20094
Cap for microphone	5322	462 40728
Foam cap for microphone	5322	462 40731
Cap chip 100 PF 5% 50V for microphone	4822	122 31765
Socket X13	5322	268 24041

Spare parts list PCB delegate

	Description		Code	Num	ber
	Knob push button S1		5322	414	10014
	Rubber plate S1		5322	466	91584
D 3	Diode, Reference BZX84-C5V1				32835
D 4	Diode CQW54-V1		5322	130	32704
D 10	Diode, Reference TIUG164		5322	130	32587
D 11	Diode BZX84-C15		5322	130	33662
D 19	Diode, Reference BZV46-2VO		4822	130	31248
D 20	Diode Reference BZX79-B30		4822	130	34328
IC 1	Integr. circuit LF353N				81395
IC 2	Integr. circuit LM324D				71598
IC 3	•				7.1599
IC 4	Integr. circuit LM393D	PHIN	5322	209	71599
IC 5	Integr. circuit HEF4013BT		5322	209	14477
SK1	Switchmechanism S1 mic. button		5322	278	14006
TS 1 TS 2	Transistor BC847C	-	-		42755
TS 2	Transistor BC857C	PHIN	5322	130	42756
TS 3	Transistor BC847C	PHIN	5322	130	42755
					42755
TS 5		PHIN			42755
	Transistor BC817-40				42615
TS 7	Transistor BC807-40	PHIN			60123
TS 8	Transistor BC817-40		4822	130	42615

TS	9	Transistor BC817-40	4822	130	42615
X	5	Socket male	5322	265	64078

Spare parts list unit cable assy

Description	Code Number
Connector Hirschmann MAS88S	5322 265 40535
Plug X3	5322 267 74025
Socket X3	5322 268 24041
Bracket for X3	5322 462 44161

Spare parts list loudsp. enclosure CCS400

Description	Code Number			
Loudspeaker AD3371/Y150	4822 240 30172			
Plastic lens on rear side	5322 381 10785			
Plug X1	5322 268 44152			
Bracket for X1	5322 462 44161			

Spare parts list Printed Board assy

		Description		Number	
K	1	Relay	5322	280 80524	
TS TS				130 42755 139 42756	

Plug X13 can be used also as plug for X5.
Plug X 2 can be used also as plug for X4.
The socket X3 can also be used as socket X2, X1 or X14.
The brackets for plug X1 of X3 can also be used in the plugs X2, X4, X5 and X13.

Spare parts list Delegate Unit LBB 3450

Posnr.	Description		Code 1	Number
	Grommet		5322	462 40211
	Jack for headphone		5322	268 10202
	Delegate cable			321 21658
	Plug X13		5322	268 44142
	Spring for microphone stem	l	5322	492 63142
	Plug X2			268 44152
	Microphone			242 20094
	Cap for microphone		5322	462 40728
	Foam cap for microphone		5322	462 40731
	Cap.chip 100 PF 5% 50V for	microphone	4822	122 31765
	Socket X13		5322	268 24041
Spare parts	list PCB Delegate			
Posnr.	Description		Code I	Number
	Knob push button S1		5322	414 10014
	Rubberplate S1			466 91584
C 1	Cap.chip 10NF			122 32442
	Cap.ceramic 100NF10%X7R	50V		122 32839
C 2 C 3	Cap.electrolyt 10UF 20%	25V		124 21732
C 4	Cap.electrolyt 4,7UF 20%	25V	5322	124 21966
C 5	Cap.electrolyt 0,47UF 20%	25V	5822	124 21453
c 6	Cap.electrolyt 4,7UF 20%	25V		124 21966
C 7	Cap.electrolyt 47UF 20%	10V	5322	124 21975
C 8	Cap.electrolyt 4,7UF 20%	25 V	5322	124 21966
C 9	Cap.chip 3,3 NF 10%	50V	4822	122 31969
C 10	Cap.ceramic 100NF10%X7R	50V	5322	122 32839
C 11	Cap.chip 47PF 5%	50V	4822 '	122 31772
C 12	Cap.chip 100PF 5%	50V	4822	122 31765
C 13	Cap.chip 100PF 5%	50V	4822	122 31765
C 14	Cap.electrolyt 22UF 20%	25V	4822	124 21646
C 15	Cap.electrolyt 4,7UF 20%	25V	5322 1	124 21966
C 17	Cap.ceramic 100NF10%X7R	50 V		122 32839
C 18	Cap.ceramic 82NF 10%	50V	5322 1	122 32838
C 20	Cap.electrolyt 10UF 20%	25V	4822	124 21732
C 21	Cap.electrolyt 4,7UF 20%	25 V		124 21966
C 22	Cap.electrolyt 4,7UF 20%	25 V	5322 1	124 21966
C 23	Cap.chip 100PF 5%	50 v	4822 1	122 31765
C 24	Cap.electrolyt 100UF 50%	25V	4822 1	124 20701
C 25	Cap.chip 100PF 5%	50V	4822 1	122 31765

C 26 C 27	Cap.chip 4,7NF10%X7R Cap.ceramic 100NF10%X7R	50V 50V				3178 4 32839
C 28	Cap.chip 10NF					32442
C 29	Cap.chip 4,7NF10%X7R	50V				31784
C 30	Cap.chip 100PF 5%	50V				31765
C 31	Cap.chip 100PF 5%	50V				31765
C 32	Cap.electrolyt 47UF 50%	25V				20699
C 33	Cap.electrolyt 47UF 50%	40V				20713
C 35	Cap.electrolyt 22UF 20%	25V				21646
C 36	Cap.electrolyt 47UF 50%	25V				20699
C 30	cap.ciccitoryc 1701 501					
C 40	Cap.ceramic 100NF10%X7R	50V		5322	122	32839
C 44	Cap.ceramic 100NF10%X7R	50V		5322	122	32839
C 45	Cap.ceramic 100NF10%X7R	50V		5322	122	32839
C 47	Cap.chip 22NF 10%	63V		4822	122	31797
C 48	Cap.chip 470PF 5%	63V		4822	122	31727
D 4	Diode BAV70			5322	130	34331
D 1 D 2	Diode BAV70					34331
D 3	Diode, reference BZX84-C5V1					32835
	Diode CQW54-V1					32704
D 4 D 5	Diode BAV70					34331
ט ס	Diode Bavio			3322		0.00.
D 6	Diode BAV70			5322	130	34331
D 7	Diode BAV70			5322	130	34331
D 8	Diode BAV70			5322	130	34331
D 9	Diode BAV70			5322	130	34331
D 10	Diode TIUG164			5322	130	32587
D 11	Diode BZX84-C15			5322	130	33662
D 12	Diode BAV70			5322	130	34331
D 13	Diode BAV70			5322	130	34331
D 17	Diode BAV70					34331
D 19	Diode, reference BZV46-2VO			4822	130	31248
D 20	Diode, reference BZX79-B30			4822	130	34328
IC 1	Integr.circuit LF353N					81395
IC 2	Integr.circuit LM324D			5322	209	71598
IC 3	Integr.circuit LM393D		PHIN	5322	209	71599
IC 4	Integr.circuit LM393D		PHIN	5322	209	70225
IC 5	Integr.circuit HEF4013BT			5322	209	14477
R 1	Res.chip 10K 2% 0,125W					90249
R 2	Res.chip 47K 2% 0,125W					90543
R 3	Res.chip 390E 2% 0,125W	, ,				90138
R 4	Res.chip 10K 2% 0,125W					90249
n E	Res.chip 47K 2% 0,125W			4822	111	90543
R 5 R 6	Res.chip 33K 2% 0,125W					90267
R 7	Res.chip 1K 2% 0,125W					90092
R 8	Res.chip 220K 2% 0,125W					90178
R 9	Res.chip 220E 2% 0,125W					90178
K J	Men. CHIP ZZOE ZO OTIZJW					50110

```
4822 111 90249
              Res.chip 10K 2% 0,125W
R 11
                                                         4822 111 90214
              Res.chip 100K 2% 0,125W
R 12
                                                         4822 111 90249
              Res.chip 10K 2% 0,125W
R 13
                                                         5322 111 90113
              Res.chip 560E 2% 0,125W
R 14
                                                         4822 111 90214
              Res.chip 100K 2% 0,125W
R 15
                                                         4822 111 90151
              Res.chip 1K5 2% 0,125W
R 16
                                                         4822 111 90253
              Res.chip 12K 2% 0,125W
R 17
                                                         5322 111 90253
R 18
              Res.chip 1M 5% 0,125W
                                                         4822 111 90214
              Res.chip 100K 2% 0,125W
R 19
                                                         4822 111 90238
               Res.chip 18K 2% 0,125W
R 20
                                                         5322 111 90091
               Res.chip 100E 2% 0,125W
R 21
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 22
                                                         4822 111 90251
               Res.chip 22K 2% 0,125W
R 23
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 24
                                                         5322 111 90109
               Res.chip 470E 2% 0,125W
R 25
                                                         4822 111 90238
               Res.chip 18K 2% 0,125W
R 26
               Res.chip 39K 2% 0,125W
                                                         5322 111 90108
R 27
               Res.chip 100K 2% 0,125W
                                                         4822 111 90214
R 28
                                                         4822 111 90542
R 29
               Res.chip 27K 2% 0,125W
                                                         5322 111 90092
               Res.chip 1K 2% 0,125W
R 30
                                                         4822 111 90238
               Res.chip 18K 2% 0,125W
R 31
                                                         5322 111 90094
R 32
               Res.chip 1M
                             5% 0,125W
                                                         5322 111 90094
R 33
               Res.chip 1M
                             5% 0,125W
                                                         5322 111 90092
R 34
               Res.chip 1K
                             2% 0,125W
               Res.chip 220K 2% 0,125W
                                                          4822 111 90197
R 35
               Res.chip 100K 2% 0,125W
                                                         4822 111 90214
R 36
                                                         5322 111 90094
               Res.chip 1M 5% 0,125W
R 37
               Res.chip 10M 5% 0,125W
                                                         5322 111 91141
R 38
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 39
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 40
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 41
               Res.chip 1K 2% 0,125W
                                                         5322 111 90092
R 42
               Res.chip 100K 2% 0,125W
                                                         4822 111 90214
R 43
               Res.chip 100K 2% 0,125W
                                                         5322 111 90094
R 44
                                                         4822 111 90214
               Res.chip 27K 2% 0,125W
R 45
               Res.chip 47K 2% 0,125W Res.chip 1K 2% 0,125W Res.chip 100K 2% 0,125W
                                                         4822 111 90543
R 46
                                                         5322 111 90092
R 47
                                                         4822 111 90214
R 48
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 49
               Res.chip 27K 2% 0,125W
                                                         4822 111 90542
R 50
                                                         4822 111 90202
               Res.chip 68K 2% 0,125W
R 51
                                                         5322 111 90267
               Res.chip 33K 2% 0,125W
R 52
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 53
                                                         5322 116 44008
R 54
               Res.p.t.c.
                                                         4822 111 90214
               Res.chip 100K 2% 0,125W
R 55
```

R 57 R 58 R 59	Res.chip 15K 2% 0,125W Res.chip 15K 2% 0,125W Res.chip 12K 2% 0,125W Res.chip 2K7 2% 0,125W Res.chip 100K 2% 0,125W	-	4822 4822 4822	111 111 111	90196 90196 90253 90569 90214
R 72 R 82 R 83 R 86 R 92	Res.chip 10K 2% 0,125W Res.chip 3K9 2% 0,125W Res.chip 3K9 2% 0,125W Res.chip 220K 2% 0,125W Res.chip 82K 2% 0,125W		4822 4822 4822	111 111 111	90249 90571 90571 90197 90575
R 93 R 94 R 95 R 96 R 97	Res.chip 68K 2% 0,125W Res.chip 680E 2% 0,125W Res.chip 100K 2% 0,125W Res.chip 100K 2% 0,125W Res.chip 100K 2% 0,125W		4822 4822 4822	111 111 111	90202 90162 90214 90572 90214
R 98 R 99 R 102 R 103 S 3	Res.metal film 390E 5% 2,5W Res.chip 10K 2% 0,125W Res.chip 1M 5% 0,125W Res.chip 1M 5% 0,125W Pin		4822 5322 5322	111 111 111	54401 90249 90094 90094 84341
S 3 SK 1 TS 1 TS 2 TS 3	Link, jumber 76264 101 Berg Switchmechanism S1 Transistor BC847C Transistor BC857C Transistor BC847C	PHIN	5322 5322 5322	278 130 130	60298 14006 42755 42756 42755
TS 6	Transistor BC847C Transistor BC847C Transistor BC817-40 Transistor BC807-40 Transistor BC817-40	PHIN	5322 4822 5322	130 130 130	42755 52755 42615 60123 41615
TS 9 X 5	Transistor BC817-40 Socket,male				42615 64078

Spare parts list unit cable assy

Description	Code Number			
Connector Hirschmann MAS885	5322 265 40535			
Plug X3	5322 267 74025			
Socket X3	5322 268 24041			
Bracket for X3	5322 462 44161			

Recommended spare parts list of delegate unit LBB 3450

	Description		Code	Numb	er
	Grommet		5322	462	40211
	Jack for headphone		5322	268	10202
	Delegate cable		5322	321	21658
	Plug X13		5322	268	44142
•	Spring for microphone stem				53142
	Plug X2				44152
	Microphone				20094
	Cap for microphone		5322	462	40728
	Foam cap for microphone		5322	462	40731
	Cap chip 100 PF 5% 50V for micropho	ne			
	Socket X13		5322	268	24041
Spare parts 1	<u>ist PCB Delegate</u>				
	Description		Code	Numb	er
	Knob push button S1		5322	414	10014
	Rubber plate S1				91584
	-				
D 3	Diode, Reference B2X84-C5V1				32835
D 4	Diode CQW54-V1		5322	130	32704
ם 10	Diode TIUG164		5322	130	32587
D 11	Diode BZX84-C15		5322	130	33662
D 19	Diode, Reference BZV46-2VO		4822	130	31248
D 20	Diode, Reference BZX79-830		4822	130	34328
IC 1	Integr. circuit LF353N				81395
IC 2	Integr. circuit LM324D				71598
IC 3	Integr. circuit LM393D				70225
IC 4	Integr. circuit LM393D	PHIN	5322	209	70225
IC 5	Integr. circuit HEF4013BT		5322	209	14477
SK 2	Switchmechanism S1				14006
TS 1	Transistor BC847C				42755
TS 2	Transistor BC857C	-	2000000		42756
TS 3	Transistor BC847C		5322	130	42755
TS 4	Transistor BC847C	PHIN	5322		42755
TS 5	Transistor BC847C	PHIN			52755
TS 6	Transistor B817-40				42615
TS 7	Transistor BC807-40	PHIN			60123
TS 8	Transistor BC817-40				41615
TS 9	Transistor BC817-40				42615
	Combat mala		にてつつ	265	64078

5322 265 64078

Socket, male

X 5

Spare parts list unit cable assy

Description	Code Number
Connector Hirschmann MAS885	5322 265 40535
Plug X3	5322 267 74025
Socket X3	5322 268 24041
Bracket for X3	5322 462 44161

Spare partlist for extension cable LBB 3305/00

Connector 8P Male Connector 8P Female 5322 265 40535 5322 267 50656

Recommended spare parts list for extension cable LBB 3305/00

Spare partlist for extension cable LBB 3305/00

Connector 8P Male Connector 8P Female 5322 265 40535 5322 267 50656 LBB 3351/00

Table top chairmans unit with loudspeaker.

LBB 3451/00

Table top chairmans unit without loudspeaker.

CONTENTS:

- 1. INTRODUCTION CHAIRMANS UNIT
- 2. CIRCUIT DESCRIPTION CHAIRMANS UNIT
- 3. SPARE PARTS LIST

Figures

- 1. Block diagram. chairmans unit.
- 2. Circuit diagram of chairmans unit.
- 3. Circuit diagram and location of components loudspeaker unit.
- 4. Location of components chairmans unit
- 5. Connection

1. INTRODUCTION CHAIRMANS UNIT

The chairmans unit can be divided into 3 parts: (see block diagram Fig. 1.)

- Part 1 Microphone amplifier
 Amplifies the microphone signal, and switches it to the
 audio line.
- Part 2 Audio Amplifier Amplifies the audio signal, and switches it to the loudspeaker, and headphone jack.
- Part 3

 Microphone / Loudspeaker Switching Circuit

 Switches the microphone/loudspeaker "on" or "off",
 depending on the status of the control signals. Control
 signals are made up of the following:
 - (1) Microphone switch signal
 - (2) Remote call signal
 - (3) priority call signal

2. CIRCUIT DESCRIPTION CHAIRMANS UNIT

(see Circuit diagram Fig. 2 and 3).

Switching "on", as in the delegate unit, flip flop IC5a is reset for a short duration, thereafter the unit is ready for use.

Switching control circuit (general)

The Switching Control Circuit consists of IC5a, IC3a and IC6, and performs the switching functions in the chairmans unit. Switching is due to the state of the call microphone signal, priority signal, remote call signal, or the audio signal to the loudspeaker. IC5a, is a flip flop who's output is logic "O" i.e. Ov or logic "1" i.e. 15V depending on its input signal. When its output is Ov, the signal on the audioline is fed via an amplifier to the loudspeaker, and the microphone signal is switched "off" at the preamplifier to the audioline. When the output of IC5a is 15v (logic "1"), the microphone signal will be switched to the audio line via the pre-amplifier and the loudspeaker will be switched "off".

The microphone call signal, from the microphone button, or from the microphones remote control line via IC6, is fed to the clock input of IC5. The clock input onto IC5, causes the flip flop to produce an output of logic 1 (15v) therefore the microphone will be switched "on". and the loudspeaker "off". The priority signal from the priority call button is fed to TS10 and TS11, which ensures, that when the priority button is pressed, the microphone is switched "on" and or 1.5V DC level is switched via the priority line to the delegate unit (or the central control desk if used).

Listening

In the listening position, the switching control circuit switches via the loudspeaker switching circuit. The audio signal via the audio amplifier to the loudspeaker, and the microphone signal is then disconnected from the audio line. During listening, the clock input to IC5 is "O", because the call button has not been pressed, and no remote call via IC6 has been applied. Because there is no set pulse, on the set input, the output of the flip flop remains at Ov. This output is then connected to the base of TS5, which with associated components, forms the microphone switching circuit. Because there is no priority call signal, from the priority button, transistor TS10 is not conducting, therefore the base of TS5 remains at Ov. TS4, part of the pre-amplifier; also does not conduct, therefore the microphone signal on the base of TS4, will not reach the audio line, and acts as if it were switched "off".

The loudspeaker switching circuit, includes TS1 and relay K1, and associated components. The Ov on the output of the flip flop, is fed to the base of TS1, therefore the transistor is not conducting, no current flows through the relay, and the relay remains de-energised. In this position the relays contacts are closed, and the audio signal via the audio amplifier, is fed to the loudspeaker.

Audio Amplifier

The audio amplifier, identical to the one in the delegates unit, amplifies the audio signal, and feeds it to the loudspeaker.

Call Position

In the call position, the microphone switching circuit is activated by the switching control circuit. The microphone signal is fed via the pre-amplifier, and switched to the audio line. The loudspeaker is switched "off" from the audio amplifier, by the loudspeaker switching circuit. Whilst the call button is pressed in, the clock input of IC5a will be at logic "1". The data input is also logic "1", and because this input is connected to the output pin 2 of IC5a, on the positive edge of the clockpulse, the output of the flip flop is logic 1 (15v). The inverted output on pin 2, is connected to the data input, therefore the input now changes to logic "O". The 15v at IC5a output pin 1 is fed to the base of TS5. Because there is no priority, TS10 and TS11, will not influence the voltage on the base of TS5, therefore TS5 will conduct, allowing the microphone signal on the base of TS4, to be switched to the collector and fed to the audio line. In a similar way as in the delegate unit, the loudspeaker is switched "off" via TS1 and relay K1. The pre-amplifier (IC1a and TS4) and the limiter (TS2 and TS3) are identical to those used in the delegate unit. In the same way as in the delegate unit, if the call button S1 is pressed again, the call position will be reset, via IC5.

Loudspeaker unit (only in LBB 3351/00)

In the listening position OV is applied, via X1-5, to the base of TS1, therefore no current flow through the relay coil, and the relay is not activated. In this state the contacts are closed via X1-2. The audio signal is applied to the loudspeaker, X1-1 is connected to ground. Because no current flow through the relay coil, the pilot leds D1 until D4 inclusive are not illuminated. In the call position approximately 15V is applied, via X1-5, to the base of TS1, therefore current flow from +15V at X1-6 via the relay coil to ground (X1-4). In this "active state" the relay contacts are opened. The audio signal at X1-2 cannot reach the loudspeaker. The current through D1 until D4 inclusive cause these pilot leds to illuminate.

TS2 and associated circuitry provide for a fast switch over from listening position to call position. At the moment TS1 becomes deductive the current flowing via the pilot leds through the coil of relay K1 is high enough to open the contacts in a "normal" way. When TS1 is not conductive, C1 is charged. The voltage applied via R2 and R3 to the base of TS2 ensures that this transistor is conductive. But because of the non conductive state of TS1 no current can be flow via TS2 through K1 to ground.

At the moment the system switches over from listening

At the moment the system switches over from listening position to call position, TS1 becomes conductive and current flows via the pilot leds through the relay coil and TS1 to ground. Extra current also flows via TS2 through the relay coil and TS1 to ground. This "extra" current, which only flows for a short moment, ensures that the magnetic field caused by the relay coil is "extra" strong and therefore opens the relay contacts "extra" fast.

This "extra" current may only flow for a short moment through the relay coil. At the moment TS1 becomes conductive. The charged capacitor C1 is connected to ground, C1 discharges via D12 and R1. The voltage over the capacitor decreases, therefore the voltage over R2 and R3, causing the base voltage of TS2 to increase. TS2 becomes less conductive.

The current through the relay coil decreases, but remains enough (current via pilot leds) to keep the contacts opened.

Priority

When the chairman requires priority over the delegate microphones, he presses button S2 continuously. The circuit description is as follows, TS11 will conduct, together with TS10. The voltage on the collector of TS10, rises to approximately 15v, this voltage is then applied to the base of TS5, which then conducts. The microphone signal is switched to the audio line and the loudspeaker will be switched "off". Due to TS11 conducting, the priority line is connected to ground, via R63, D18, and D14, the voltage on the priority line is now approximately 1.5v. The delegate unit microphones, will be switched "off".

If the chairman's priority button is released, TS10 and TS11 will not conduct, causing the line to the microphone switching circuit to be Ov. TS5 is not conducting, causing the microphone signal via TS4, not to be switched to the audio line. Because TS1 is not now conducting, the loudspeaker will be switched to the audio line. The priority line becomes 27v, and the delegates, can now switch "on" and "off" their microphones as normal.

Disable Request

Because the chairman must always be able to switch "on" his microphone whenever he chooses, his switching control circuit cannot be reset by the disable request line. The disable request line is continued through to the next unit in the chain.

Remote Control

Only when a central control desk is connected to the system, the microphone callfunction can be remotely controlled. The chairman cannot request, for a remote control call by using a request line, but must somehow attract the attention of the control desk operator, either by hand or some other means. When the chairman has given the operator a sign to switch "on" his microphone, the remote line which is at 15v due to resistor R75, is decreased.

This decreased voltage via R70, is then applied to the negative input of IC6. Because the voltage at the positive input of IC6, via resistors R68 and R69 is greater than at the negative input, the output of the comparator will be 12v i.e. logic "1". Logic "1", is fed to the clock input of the flip flop IC5, via D15 and R42. The data input logic 1 is switched to the output, on the edge of the clock signal. Therefore the flip flop output reaches 15v, which is then fed to the base of T59, causing it to conduct, the voltage on the remote line is then kept to a DC level of approximately 6V, due the action of the zener diode D16.

This 6v on the input of IC6, is higher than the voltage on the +input, therefore the output of the comparator is approximately 2v, and the clock input to flip flop is once again Ov.

Therefore, when the remote line is at Ov, a complete clockpulse is automatically generated, and fed to the clock pulse input of the flip flop.

When the operator of the central control desk, releases the remote call button, the voltage at the negative input of IC6, becomes greater than the voltage on the positive input, and because of R75, the clock input to the flip flop is at Ov.

3. SPARE PARTS LIST

Spare parts list Chairmans Unit LBB 3351

	Description			Code	Numb	er
	Grommet			5322	462	40211
	Jack for headph	one			_	10202
	Chairman cable	Oile				21658
	Housing, connect	nlua V13				44142
	Housing, connect	· prug Ais		, , , L	200	
	Spring for micr	ophone stem				63142 44152
•	Plug X2					20094
	Microphone			-,		40728
	Cap for microph	one		5322	402	40720
	Foam cap for mi	crophone				40731
	Cap.chip 100PF	5% 50V for micr	ophone			31765
	Socket X13			5322	268	24041
Spare parts 1	ist of PCB chair	man				
	Description			Code	Numl	ber
	Knob push butto	n S1				10014
	Rubber plate fo			5322	466	91584
	Knob push butto	n S2				10013
C 1	Cap.chip	10NF		4822	122	32442
C 2	Cap.ceramic	100NF10%X7R	50V	5322	122	32839
C 3	Cap.electrolyt	10UF 20%	25V	4822	124	21732
C 4	Cap.electrolyt	4,7UF 20%	25V	5322	124	21966
C 5	Cap.electrolyt		25V	4822	124	21453
C 6	Cap.electrolyt		25V	5322	124	21966
c 7	Cap.electrolyt		10V	5322	124	21975
	- -			5200	404	24066
C 8	Cap.electrolyt		25V			21966
C 9	Cap.chip	3,3NF 10%	50V			31969
C 10	Cap.ceramic	100NF10%X7R	50V			32839
C 11	Cap.chip	47PF 5%	50V			31772
C 12	Cap.chip	100PF 5%	50V	4822	122	31765
C 13	Cap.chip	100PF 5%	50 V	4822	122	31765
C 14	Cap.electrolyt	22UF 20%	25V			21646
C 15	Cap.electrolyt	4,7UF 20%	25V	,		21966
C 25	Cap.chip	100PF 5%	50V			31765
C 28	Cap.chip	10NF				32442
C 20	Cap.Chip					
C 30	Cap.chip	100PF 5%	50V			31765
C 31	Cap.chip	100PF 5%	50V	4822		31765
C 32	Cap.electrolyt	47UF 50%	25V			20699
C 33	Cap.electrolyt	47UF 50%	40V	4822		20713
C 35	Cap.electrolyt	22UF 20%	25V	4822	124	21646
C 36	Cap.electrolyt	47UF 50%	25V	4822	124	20699

C 37 C 38 C 39 C 40	Cap.ceramic Cap.chip Cap.ceramic Cap.ceramic	100NF 10 10NF 100NF 10 100NF 10	%X7R	50V 50V 50V	4822 5322	122 122	32839 32442 32839 32839
C 44 C 46 C 47 C 48 D 1	Cap.ceramic Cap.ceramic Cap.ceramic Cap.chip Diode	100NF10 100NF10 100NF10 470PF BAV70	%X7R	50V 50V 50V 63V	5322 5322 4822	122 122 122	32839 32839 32839 31727 34331
D 2 D 3 D 4 D 5 D 11	Diode Diode, reference Diode Diode Diode	BAV70 BZX84-C CQW54-V BAV70 BZX84-C	1		5322 5322 5322	130 130 130	34331 32835 32704 34331 33662
D 12 D 14 D 15 D 16 D 18	Diode Diode Diode Diode, reference Diode	BAV70 BYW56 BAV70 BZV49-C BAV70	6 V 2	РН	5322 5322 IN 5322	130 130 130	34331 34973 34331 33672 34331
D 19 D 20 IC 1 IC 3 IC 5	Diode, reference Diode, reference Integr.circuit Integr.circuit Integr.circuit	BZV46-2 BZX79-B LF353N LM393D HEF4013	30	рн	4822 5322 IN 5322	130 209 209	31248 34328 81395 71599 14477
IC 6 R 1 R 2 R 3 R 4	Integr.circuit Res.chip Res.chip Res.chip Res.chip	MC1741C 10K 2% 47K 2% 390E 2% 10K 2%	0,125W 0,125W 0,125W		4822 4822 4822	111 111 111	71597 90249 90543 90138 90249
R 5 R 6 R 7 R 8 R 9		47K 2% 33K 2% 1K 2% 22OK 2% 22OE 2%	0,125W 0,125W 0,125W		5322 5322 4822	111 111 111	90543 90267 90092 90197 90178
R 11 R 12 R 13 R 14 R 15	Res.chip Res.chip	10K 2% 100K 2% 10K 2% 560E 2% 100K 2%	0,125W 0,125W 0,125W		4822 4822 5322	111 111 111	90249 90214 90249 90113 90214
R 16 R 17 R 18 R 19 R 20	Res.chip Res.chip Res.chip Res.chip	1K5 2% 12K 2% 1M 5% 10OK 2% 18K 2%	O,125W O,125W O,125W		4822 5322 4822	111 111 111	90151 90253 90094 90214 90238

R 21	Res.chip	100E	2%	0,125W	_	-		90091
R 22	Res.chip	100K	2%	0,125W				90214
R 23	Res.chip	22K	2%	0,125W	4	822 1	111	90251
R 24	Res.chip	100K	2%	0,125W	.4	822	111	90214
R 25	Res.chip	470E	2%	0,125W				90109
R 25	wes.curb	1,00	2.0	0,125	•		• • •	
R 37	Res.chip	1M	5%	0,125W	. 5	322	111	90094
	Res.chip	1K	2%	0,125W				90092
R 42	Res.chip	100K	2%	0,125W				90214
R 43	_	100R	5%	0,125W				90094
R 44	Res.chip							90214
R 45	Res.chip	100K	2%	0,125W	4	022	111	30214
D 46	Res.chip	47K	2%	0,125W	4	822	111	90543
R 46		100K	2%	0,125W				90214
R 48	Res.chip	100K	2%	0,125W				90214
R 49	Res.chip			•				90542
R 50	Res.chip	27K	2%	0,125W				
R 51	Res.chip	68K	2%	O,125W	4	822	111	90202
R 52	Res.chip	33K	2%	0,125W	. 5	322	111	90267
		100K	2%	0,125W				90214
R 53	Res.chip	TOOK	40	0,123#				44008
R 54	Res.P.T.C.	40011	00	0.4055				90214
R 55	Res.chip	100K	2%	0,125W				
R 56	Res.chip	15K	2%	0,125W	4	1822	111	90196
R 57	Res.chip	15K	2%	O,125W	4	1822	111	90196
_	Res.chip	12K	2%	0,125W				90253
R 58	_	2K7	2%	0,125W				90569
R 59	Res.chip							90214
R 60	Res.chip	100K	2%	0,125W				
R 61	Res.chip	100K	2%	0,125W	. 4	1022	111	90214
R 62	Res.chip	100K	2%	O,125W	4	1822	111	90214
R 63	Res.metal fil		5%	1,6 W				54909
	Res.P.T.C.	itt 120	5 6	1,0 "				44008
R 64		477	20	O 125W				90543
R 65	Res.chip	47K	2%	0,125W				90249
R 66	Res.chip	10K	2%	0,125W	•	1022	111	30243
R 67	Res.chip	1 M	5%	O,125W		322	111	90094
R 68	Res.chip	100K	2%	0,125W				90214
		33K	2%	0,125W				90267
R 69	Res.chip			•				90214
R 70	Res.chip	100K	2%	0,125W				44008
R 71	Res.P.T.C.)322	110	44006
R 72	Res.chip	10K	2%	0,125W	4	1822	111	90249
R 75	Res.chip	100K	2%	0,125W				90214
	Res.chip	82K	2%	0,125W				90575
R 92	-		2%					90202
R 93	Res.chip	68K		0,125W				90162
R 94	Res.chip	680E	2%	0,125W	4	1022	111	30102
R 97	Res.chip	100K	2%	0,125W		1822	111	90214
R 98	Res.metal fil		5%	2,5 W	5	322	116	54401
R 102	Res.chip	1M	5%	0,125W				90094
	Res.chip	1M	5%	0,125W				90094
R 103								14006
SK 1	Switchmechani	n ic me	HCI.	Ducton		, , , , ,	£ / U	13000

SK 2 TS 1 TS 2 TS 3 TS 4	Transistor Transistor Transistor Transistor	S2 prio. button BC847C BC857C BC847C BC847C	PHIN PHIN PHIN	5322 5322 5322 5322	130 130 130 130	14006 42755 42756 42755 42755
TS 5	Transistor	BC847C	PHIN			42755 42615
TS 6	Transistor	BC817-40 BC807-40	מדעם			60123
TS 7	Transistor Transistor	BC817-40	EUTH			42615
TS 8	Transistor	BC817-40				42615
TS 9	IIdusiscor	BC017-40		1022	130	12013
TS 10	Transistor	BC857C	PHIN			42756
TS 11	Transistor	BC817-40				42615
X 5	Socket, male			5322	265	64078
Spare parts 1	ist of Unit Cabl	e Assy				
	Description			Code	Numb	er
	Connector	Hirschmann MAS88S		5322	265	40535
	Plug X3			5322	267	74025
	Socket X3			5322	268	24041
	Bracket for X3			5322	462	44161
Spare parts 1		er Enclosure CCS400				
Spare parts l	ist of Loudspeak Description	er Enclosure CCS400		Code	Numb	er
Spare parts 1	Description					
Spare parts 1	Description Loudspeaker	AD3371/Y150		4822	240	30172
Spare parts 1	Description Loudspeaker Plastic lens on	AD3371/Y150		4822 5322	240 381	
Spare parts 1	Description Loudspeaker	AD3371/Y150		4822 5322 5322	240 381 268	30172 10785
	Description Loudspeaker Plastic lens on Plug X1	AD3371/Y150 rear side		4822 5322 5322	240 381 268	30172 10785 44152
	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1	AD3371/Y150 rear side		4822 5322 5322	240 381 268 462	30172 10785 44152 44161
Spare parts l	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description	AD3371/Y150 rear side pard Assy LBB		4822 5322 5322 5322 5322	240 381 268 462 Numb	30172 10785 44152 44161 eer
Spare parts l	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt	AD3371/Y150 rear side pard Assy LBB 470NF 50% 63V		4822 5322 5322 5322 5322 Code	240 381 268 462 Numb	30172 10785 44152 44161 eer 20719
Spare parts 1 C 1 D 10	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Botton Cap.electrolyt Diode	AD3371/Y150 rear side pard Assy LBB 470NF 50% 63V BAV70		4822 5322 5322 5322 Code 4822 5322	240 381 268 462 Numb 124 130	30172 10785 44152 44161 Der 20719 34331
Spare parts 1 C 1 D 10 D 11	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt Diode Diode	AD3371/Y150 rear side card Assy LBB 470NF 50% 63V BAV70 BAV70		4822 5322 5322 5322 Code 4822 5322 5322	240 381 268 462 Numb 124 130 130	30172 10785 44152 44161 eer 20719 34331 34331
Spare parts 1 C 1 D 10	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Botton Cap.electrolyt Diode	AD3371/Y150 rear side pard Assy LBB 470NF 50% 63V BAV70		4822 5322 5322 5322 Code 4822 5322 5322 5322	240 381 268 462 Numb 124 130 130 130	30172 10785 44152 44161 Der 20719 34331
Spare parts 1 C 1 D 10 D 11 D 12 K 1	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt Diode Diode Diode Relay	AD3371/Y150 rear side Dard Assy LBB 470NF 50% 63V BAV70 BAV70 BAV70		4822 5322 5322 5322 Code 4822 5322 5322 5322 5322	240 381 268 462 Numb 124 130 130 280	30172 10785 44152 44161 eer 20719 34331 34331 34331 80524
Spare parts 1 C 1 D 10 D 11 D 12 K 1 R 1	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt Diode Diode Diode Relay Res.chip	AD3371/Y150 rear side Dard Assy LBB 470NF 50% 63V BAV70 BAV70 BAV70 BAV70 22K 2% 0,125W		4822 5322 5322 5322 5322 5322 5322 5322 5	240 381 268 462 Numb 124 130 130 130 280	30172 10785 44152 44161 er 20719 34331 34331 34331 80524 90251
Spare parts 1 C 1 D 10 D 11 D 12 K 1 R 1 R 2	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt Diode Diode Diode Relay Res.chip Res.chip	AD3371/Y150 rear side Dard Assy LBB 470NF 50% 63V BAV70 BAV70 BAV70 22K 2% 0,125W 22K 2% 0,125W		4822 5322 5322 5322 5322 5322 5322 5322 5	240 381 268 462 Numb 124 130 130 130 280	30172 10785 44152 44161 eer 20719 34331 34331 34331 80524 90251
Spare parts 1 C 1 D 10 D 11 D 12 K 1 R 1 R 2 R 3	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt Diode Diode Diode Relay Res.chip Res.chip Res.chip	AD3371/Y150 rear side Dard Assy LBB 470NF 50% 63V BAV70 BAV70 BAV70 22K 2% 0,125W 22K 2% 0,125W 10K 2% 0,125W	PHTN	4822 5322 5322 5322 5322 5322 5322 5322 5	240 381 268 462 Numb 124 130 130 130 280 111 111	30172 10785 44152 44161 er 20719 34331 34331 34331 80524 90251 90251 90249
Spare parts 1 C 1 D 10 D 11 D 12 K 1 R 1 R 2	Description Loudspeaker Plastic lens on Plug X1 Bracket for X1 ist of Printed Be Description Cap.electrolyt Diode Diode Diode Relay Res.chip Res.chip	AD3371/Y150 rear side Dard Assy LBB 470NF 50% 63V BAV70 BAV70 BAV70 22K 2% 0,125W 22K 2% 0,125W		4822 5322 5322 5322 Code 4822 5322 5322 5322 4822 4822 4822 4822 5322	240 381 268 462 Numb 124 130 130 130 280 111 111 111 111	30172 10785 44152 44161 eer 20719 34331 34331 34331 80524 90251

Recommended spare parts list chairmans unit LBB 3351

	Description			Code	Numb	er	
	Grommet Jack for headphone	:		5322	268	40211 10202 21658	
	Chairman cable Housing, connect pl	ug X13				44142	
	Spring for microph	one stem				63142 44152	
	Plug X2 Microphone					20094	
	Cap for microphone	è			2.0	40728	
	Foam cap for micro	ophone				40731 31765	
	Cap.chip 100PF 5% Socket X13	50V for microphone	!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		24041	
Spare parts 1	ist of PCB chairman	<u>1</u>					
i +	Description			Code	Num]	ber	
	Knob push button	21		5322	414	10014	
	Rubber plate for					91584	
	Knob push button					10013	
р 3	Diode, reference	BZX84-C5V1		5322	130	32835	
D 4		CQW54-V1		5322	130	32704	
D 11	Diode	BZX84-C15		5322	130	33662	
D 16	Diode, reference	BZV49-C6V2	PHIN	5322	130	33672	
D 19	Diode, reference	BZV46-2V0				31248	
D 20						34328	
IC 1				5322	209	81395	
IC 3		LM393D	PHIN	5322	209	71599	
IC 6	Integr. circuit	MC1741CD		5322	209	71597	
SK 1	Switchmechanism S	1 mic. button		5322	278	14006	
SK 2	Switchmechanism S					14006	
TS 1	Transistor	BC847C				42755	
TS 2	Transistor	BC857C				42756	
TS 3	Transistor	BC847C				42755	
TS 4	Transistor	BC847C	PHIN	5322	130	42755	
TS 5	Transistor	BC847C	PHIN			42755	
TS 6	Transistor	BC817-40				42615	
TS 7	Transistor	BC807-40	PHIN			60123	
TS 8	Transistor	BC817-40				42615	
TS 9	Transistor	BC817-40		4822	130	42615	
-							

TS	10	Transistor	BC857C	PHIN	5322	130	42756
TS	11	Transistor	BC817-40		4822	130	42615
X	5	Socket, male			5322	265	64078

Spare parts list of Unit Cable Assy

Description		Code Number
Connector Plug X3 Socket X3	Hirschmann MAS88S	5322 265 40535 5322 267 74025 5322 268 24041
Bracket for X3		5322 462 44161

Spare parts list of loudspeaker Enclosure CCS400

Description	Code Number
Loudspeaker AD3371/Y150	4822 240 30172
Plastic lens on rear side	5322 381 10785
Plug X1	5322 268 44152
Bracket for X1	5322 462 44161

Spare parts list of Printed Board Assy LBB

	Description	Description			Code Number		
K 1	Relay			5322	280 8	0524	
TS1	Transistor	BC847C	PHIN	5322	130 4	2755	
TS2	Transistor	BC857C	PHIN	5322	130 4	2756	

Plug X13 can be used also as plug for X5.
Plug X2 can be used also as plug for X4.
The socket X3 can also be used as socket X2, X1 or X4.
The brackets for plug X1 or X3 can also be used in the plugs X2, X4, X5 and X13.

Spare parts list chairmans unit LBB 3451

	Description				Code	Numb	er
	Grommet		* *		5322	462	40211
	Jack for headpho	one			5322	268	10202
	Delegate cable				5322	321	21658
	Plug X13	•			5322	268	44142
	2 2 2 3 3 4 4						
	Spring for micro	ophone :	stem				63142
	Plug X2						44152
	Microphone						20094
	Cap for micropho	one			5322	462	40728
	Foam cap for mic	aronhon	•		5322	462	40731
	Cap. chip 100PF			nhone			31765
		38 300	TOT MICIC	phone			24041
	Socket X13				3322	200	21011
Spare parts 1	ist of PCB chair	man_					
	Description				Cođe	Numl	per
					E222	A 1 A	10014
	Knob push button	n 51					10014 91584
	Rubber plate S1	~~					
	Knob push buttor						10013
C 1	Cap.chip	10NF		-			32442
C 2	Cap.ceramic	100NF1	0%X7R	50V	5322	122	32839
C 3	Cap.electrolyt	10UF	20%	25 V	4822	124	21732
C 4	Cap.electrolyt			25V			21966
C 5	Cap.electrolyt			25V			21453
C 6	Cap.electrolyt	4.7UF	20%	25V			21966
c 7	Cap.electrolyt			107			21975
C /	cap.ciccittijt	1101	200	101	0000	,	
C 8	Cap.electrolyt	4,7UF	20%	25V	5322	124	21966
C 9	Cap.chip	3,3NF		50 V	4822	122	31969
C 10	Cap.ceramic	100NF1		50V	5322	122	32839
C 11	Cap.chip	47PF		50V	4822	122	31772
C 12	Cap.chip	100PF		50V	4822	122	31765
·		40000	-	50**	4000	400	24765
C 13	Cap.chip	100PF		50V			31765
C 14	Cap.electrolyt	22UF		25V			21646
C 15	Cap.electrolyt	4,7UF		25V			21966
C 25	Cap.chip	100PF	5%	50V			31765
C 28	Cap.chip	10NF			4822	122	32442
C 30	Cap.chip	100PF	5%	50V	4822	122	31765
C 31	Cap.chip	100PF	5%	50V	4822	122	31765
C 32	Cap.electrolyt	47UF		25V	4822		20699
C 33	Cap.electrolyt	47UF		40V			20713
C 35	Cap.electrolyt	22UF		25V			21646
C 33	cup.croccecty						

C 36 C 37 C 38 C 39 C 40	Cap.electrolyt Cap.ceramic Cap.chip Cap.ceramic Cap.ceramic	47UF 100NF 10NF 100NF 100NF	10%X 10%X	7R 7R	25V 50V 50V 50V		5322 4822 5322	122 122 122	20699 32839 32442 32839 32839
C 44 C 46 C 47 C 48 D 1	Cap.ceramic Cap.ceramic Cap.ceramic Cap.chip Diode	100NF 100NF 100NF 470PF BAV70	10%X 10%X 5%	7R 7R	50V 50V 50V 63V		5322 5322 4822	122 122 122	32839 32839 32839 31727 34331
D 2 D 3 D 4 D 5 D 11	Diode Diode, reference Diode Diode Diode	BAV70 BZX84 CQW54 BAV70 BZX84	-C5V -V1				5322 5322 5322	130 130 130	34331 32835 32704 34331 33662
D 12 D 14 D 15 D 16 D 18	Diode Diode Diode Diode,reference Diode	BAV70 BYW56 BAV70 BZV49 BAV70	; ;-C61	<i>1</i> 2		PHIN	5322 5322 5322	130 130 130	34331 34973 34331 33672 34331
D 19 D 20 IC 1 IC 3 IC 5	Diode, reference Diode, reference Integr.circuit Integr.circuit Integr.circuit		-B30 IN ID)		PHIN	4822 5322 5322	130 209 209	31248 34328 81395 71599 14477
IC 6 R 1 R 2 R 3 R 4	Integr.circuit Res.chip Res.chip Res.chip Res.chip	MC174 10K 47K 390E 10K	1CD 2% 2% 2% 2% 2%	O,125W O,125W O,125W O,125W	! !		4822 4822 4822	111 111 111	11311 90249 90543 90138 90249
R 5 R 6 R 7 R 8 R 9	-	47K 33K 1K 220K 220E	2% 2% 2% 2% 2%	0,125W 0,125W 0,125W 0,125W 0,125W	! ! !		5322 5322 4822	111 111 111	90543 90267 90092 90197 90178
R 11 R 12 R 13 R 14 R 15	Res.chip Res.chip	10K 100K 10K 560E 100K	2% 2% 2% 2% 2%	0,125W 0,125W 0,125W 0,125W 0,125W	! !		4822 4822 5322	111 111 111	90249 90214 90249 90113 90214
R 16 R 17 R 18 R 19 R 20	Res.chip Res.chip Res.chip Res.chip	1K5 12K 1M 100K 18K	2% 2% 5% 2% 2%	0,125W 0,125W 0,125W 0,125W 0,125W	!		4822 5322 4822	111 111 111	90151 90253 90094 90214 90238
SK 1	Switch mechanism	n S1 n	ic.	button	i		5322	278	14006

SK 2 TS 1 TS 2 TS 3	Switchmechanism Transistor Transistor Transistor Transistor	S2 prio. button BC847C BC857C BC847C BC847C	PHIN PHIN	5322 5322 5322	130 130 130	14006 42755 42756 42755 42755
TS 4	11dh515t01	BC04/C	PUIN	3322	130	42733
TS 5 TS 6 TS 7	Transistor Transistor Transistor	BC847C BC817-40 BC807-40	PHIN PHIN	4822 5322	130 130	42755 42615 60123
TS 8 TS 9	Transistor Transistor	BC817-40 BC817-40				42615 42615
TS 10 TS 11 X 5	Transistor Transistor Socket, male	BC857C BC817-40	PHIN	4822	130	42756 42615 64078
Spare parts 1	<u>ist of Unit Cabl</u>	<u> Assy</u>				
	Description			Code	Numb	er
	Connector Plug X3 Socket X3 Bracket for X3	Hirschmann MAS88S		5322 5322	267 268	40535 74025 24041 44161

Recommended spare parts list Chairmans unit LBB 3451

Description	Code	Numb	per
Grommet	5322	462	40211
Jack for headphone	5322	268	10202
Delegate cable	5322	321	21658
Plug X13	5322	268	44142
Spring for microphone stem	5322	492	63142
Plug X2	5322	268	44152
Microphone	5322	242	20094
Cap for microphone	5322	462	40728
Foam cap for microphone	5322	462	40731
Cap. chip 100PF 5% 50V for microphone	4822	122	31765
Socket X13		268	24041

Spare parts list of PCB chairman

	Description			Code	Numb	er
	Knob push button Rubber plate S1 Knob push button			5322	466	10014 91584 10013
D 3 D 4 D 11	Diode, reference Diode Diode	BZX84-C5V1 CQW54-V1 BZX84-C15		5322	130	32835 32704 33662
D 16	Diode, reference	BZV49-C6V2	PHIN	5322	130	33672
D 19 D 20 IC 1 IC 3 IC 5	Diode, reference Diode, reference Integr. circuit Integr. circuit Integr. circuit	LF353N LM393D	PHIN	4822 5322 5322	130 209 209	31248 34328 81395 71599 14477
IC 6	Integr. circuit	MC1741CD		5322	209	11311
SK 1 SK 2 TS 1 TS 2 TS 3 TS 4	Switch mechanism Switch mechanism Transistor Transistor Transistor Transistor		PHIN PHIN	5322 5322 5322 5322	278 130 130 130	14006 14006 42755 42756 42755 42755
TS 5 TS 6 TS 7 TS 8 TS 9	Transistor Transistor Transistor Transistor Transistor	BC847C BC817-40 BC804-40 BC817-40 BC817-40		4822 5322 4822	130 130 130	42755 42615 60123 42615 42615

TS10 TS11	Transistor Transistor	BC857C BC817-40	PHIN			42756 42615
x 5	Socket, male			5322	265	64078

Spare parts list of Unit Cable Assy

Description	Code	Number		
Connector	Hirschmann MAS88S	5322	265	40535
Plug X3		5322	267	74025
Socket X3		5322	268	24041
Bracket for X3		5322	462	44161

LBB 3300/00

Central Supply Unit (C.S.U.)

CONTENTS

- 1. INTRODUCTION CENTRAL SUPPLY UNIT
- 2. CIRCUIT DIAGRAM CENTRAL SUPPLY UNIT
- 3. SPARE PARTS LIST

Figures:

- 1. Block diagram connector panel
- 2. Block diagram basic P.C.B.
- 3. Circuit diagram. Basic P.C.B. + connector panel
- 4. Location of components connector panel
- 5. Location of components basic P.C.B.
- 6. Leveldiagram

1. INTRODUCTION CENTRAL SUPPLY UNIT

The basic assembly of the Central Supply Unit consists of two P.C.B.'s, a connector panel and a "Basic P.C.B.".

The connector panel; connects the various control and audio lines from the basic P.C.B., to the peripheral equipment and vice versa. The loud-speaker level adjustment circuit, and the limiting switch S102, for limiting the maximum number of switched on microphones, is also mounted on this panel.

(See block diagram Fig. 1)

The basic P.C.B. can be sub-divided into 4 parts. (See block diagram Fig. 2)

Part 1. Power Supply Unit

Provides the power for the C.S.U., and all associated peripheral equipment.

Part 2. Mixing Amplifier

Amplifies the priority "oscillator" signal, "line-in" signal, "tape-in" signal and the "conference" signal from the telephone coupler.

Part 3. Output Amplifier

Consists of three main functions:

- (A) Amplifies the audio signal for the telephone coupler
- (B) Provides the line-out signal
- (C) Provides the floor, tape recorder, and disable request audio signal

Part 4. Audio Control Circuit

Consists of a stabilizer, which stabilizes the D.C. level on the audio line, a comparator circuit which controls the -3 dB circuit on the connector panel, and a comparator which controls the disable request line.

2. <u>CIRCUIT DESCRIPTION CENTRAL SUPPLY UNIT</u> (See circuit diagram Fig. 3)

Switching on S1, on the Central Supply Unit, powers up the whole system. The mains voltage is transformed by transformer T3, rectified by the bridge rectifier D1, C45 and C48, and fed to the tripple power supply.

The triple power supply is split into three sections:

Section a. TS1, TS2, TS3, TS16

Section b. TS4, TS5, TS6

Section c. TS7, TS8, TS9

If the temperature in the Power Suppy Unit overheats, thermal switch TH1 opens, the voltage on the base of TS15 decreases, causing the transistor to conduct. The Power Supply voltage on the emitter of TS15 is now applied to the base of TS2, TS5 and TS8, causing them to be non-conductive, thereby switching the Power Supply to the system "off", until the temperature is low enough to close TH1.

The three Power Supply parts are identical, except that in section a, transistors TS1 and TS16 are connected in parallel to provide more output current.

The output voltage of the mains supply, causes a voltage across R3 and D7. In section a, this voltage provides a stabilized base voltage for transistor TS3 of about 22 Volts.

Because the voltage on the base of TS3 is 22 Volts, the transistor conducts, and collector current flows through R2, D2, D3, adjusting the base voltage for TS2, causing it to conduct together with TS1 and TS16.

If the current output of the Power Supply increases, i.e. due to an overload, the output voltage decreases, if this output voltage, falls below 21.5 Volts, D4 will conduct causing a voltage drop at R4. TS3 then becomes less conductive, the collector current decreases causing TS2 to become less conductive. Because the emitter current of TS2 is lower, TS1 and TS16 become less conductive, therefore the output current will be stabilized.

Sections b and c operating characteristics are identical to section a.

- Section a. Provides power to the interpreters' desks, the interpreters' monitor panel, and the monitor distribution board. The Power Supply, sections b and c are identical except that they provide less current than section a.
- Section b. Provides power for the microphone plug in unit, telephone coupler, and the second delegate chain connected to BU104.
- Section c. Provides power for the delegate chain 1 connected to BU101 and the telephone coupler.

The Power Supply voltage of 27V, is divided and stabilized at 15 Volts, 13.5 Volts, and 3.5 Volts, via the voltage stabilizer IC1, and associated circuitry.

Audio Line Stabilizer

The audio line stabilizer consists of a IC7a, TS11, TS12, TS13 and associated components. The function of the circuit is to stabilize a DC voltage onto the audio line. When the DC voltage on the audio line increases or decreases, and applied to the base of TS13, the transistor conducts in unison. The current flowing via R39, TS12, R31 and R40 to ground is increasing or decreasing, therefore the voltage on the + input of IC7a operational amp, will also increase or decrease depending on the d.c. voltage change on the audio line. When the d.c. voltage on the audio line decreases, the output voltage of IC7a increases, and fed via TS11, the audio line is stabilized, or vice versa. When the d.c. voltage on the audio line increases, the output of IC7a decreases, and the audio line is stabilized.

Attenuator

The attenuator consists of IC5, IC6, (b.c.d.) and associated circuitry. The action of the circuit is to attenuate the audio signal 3 dB, when or more microphones are switched on simultaneously. When a microphone is switched on in one of the delegate units, a current flowing from the power supply, is fed via R34 and TS11 to the delegate unit. When only one microphone is switched "on" the current is so that the voltage drop at R34 is very small. This means that the voltage at the emitter of TS11 is approximately 15 Volts, and applied to the negative input of IC5. The voltage at the positive input is about 14.5 Volts, because of the voltage divider R28 and R29, the output of the comparator is now O Volts, therefore the switch IC6 will not be activated. When 2 or more microphones are switched "on" the current via R34 and TS11 to the audio line increases, causing the voltage drop at R34 to be larger than 0.5 Volts, therefore the voltage at the negative input of IC5 will be less than 14.5 Volts. Because the positive input is at 14.5 Volts, the comparator output is now at 15 Volts. This logic "1" enables IC6 and closes the switches. One of the resistors R106 to R110, is connected in parallel to the already selected resistor by the volume adjustment switch S101. This parallel resistor causes a 3 dB attenuation of the audio signal. When only one switched "on" microphone is left, voltage on the negative input of IC5 is larger than the positive input, therefore the switches of IC6 are opened.

Limiter (disable request circuit)

The limiter circuit consists of IC6a, IC2a and associated components. Its function is to limit the number of delegate microphones; which can be switched "on" simultaneously. The maximum number of switched "on" microphones can be adjusted with switch S102 to either 1, 3 or 6. The voltage drop at R34 is dependant on the number o switched "on" delegate microphones. The voltage via R22 at the input of IC2a decreases when more microphones are switched "on", because the voltage at R34 increases. The voltage corresponding to the selected number of simultaneous switched "on" microphones is applied to the positive input of IC2a. The corresponding voltage for the number of selected microphones is as follows:

6 microphones = 14 Volts 3 microphones = 14.4 Volts 1 microphones = 14.8 Volts

the number of simultaneously switched "on" microphones is lower than the selected number, as selected by \$102, the voltage on the negative input of IC2a is larger than the voltage on the positive input. The output of the comparator will now be 0 Volts. This output via R50 is connected to the disable request line, which is not active now. When the number of simultaneously switched "on" microphones reaches the selected maximum number, the voltage at R34 increases, and therefore the voltage on the negative input of IC2a is lower than the voltage on the positive The comparator output is now at 15 Volts. This 15 Volts on the disable request line causes a disable request in all of the delegate units, which means that no microphones can be switched "on". When one or more microphones are switched "off", the voltage at the negative input, increases to a value higher than at the + input. The comparator output will now be O Volts, and the disable request is no longer applied to the delegate units. The limiter can be switched "off" via a remote control line which is connected to BU101 pin 6. The voltage on the remote control line is connected to input 12 of IC6a and must be switched to approximately 15 Volts. This logic "1" enables the switch, to switch a voltage of 15 Volts at input 10 to the output 11, which is connected to the negative input of IC2a. This 15 Volts is always larger than the voltage on the positive input, independant of the maximum number of microphones selected by switch S102. The comparator output will be 0 Volts, therefore the disable request is in-active and cannot be made active because the comparator output stays at 0 Volts.

Oscillator

The oscillator consists of IC2b, TS10 and TS17, its function is to generate the "attention" signal, when the chairman requires priority over the delegates. When the chairman presses his priority button, the priority line becomes approximately 1.5 Volts, and as a result all switched "on" delegate microphones, switch "off" and their loudspeakers switch "on". The 1.5 Volts via line C in the Central Supply Unit is also applied to the oscillator circuit. Transistor TS10 is conducting and a current flows from the +27 Volts Power Supply (at the emitter) via R23 and also via TS17, C11, R27 and R24 to ground. TS17 becomes conductive and starts the oscillator via the positive input. The oscillator circuit consists of IC2b, R19, C10 and generates a square wave signal of approximately 700 Hz. When TS10 conducts, C11 charges via R27/R24. The charge current ensures that a decreasing voltage across R24 arises. This voltage is shortcircuited to ground in a rythm of 700 Hz by the oscillator and via a low pass filter R70/C12, C13 applied to the pre-amplifier part. A 700 Hz attention signal which decreases slowly to zero, is now heard in the delegate loudspeakers. When the priority button is released, the base of T10 goes to 27 Volts and the transistor becomes nonconductive. C11 discharge via D27, R23 and D24. (discharge time is about 6 times shorter than the charge time) The oscillator circuit is inactive.

Pre-amplifier

between IC4b and IC7b.

The pre-amplifier consists of IC4a and TS14. The mixing amplifier amplifies the "attention" signal, "line-in" signal, and signals from the telephone coupler and tape recorder. The output signal of the operatioamplifier IC4a is fed via the emitter of TS14, and fed back to the negative input via R66 and C30. The "attention" signal, and the signal from the tape recorder are directly applied to the negative input of the pre-amplifier, the "attention" signal is fed via R70 and C12. The "line-in" signal is applied via a separation transformer T1 and resistor R53. Before the "line-in" signal is amplified, its level can be adjusted by connecting a jumper S3 in one of the two positions, a-b, or a-c. In the a-c position, resistor R52 is connected to ground, and together with the resistance of the secondary winding of T1, forms a voltage divider which ensures that only part of "line-in" signal is applied to the negative input of IC4a. telephone coupler signal is fed via R41, R42 and R54, to the negative input of the operation amplifier IC4a. Connecting the jumper S2 in one of the following positions, a-c, a-b, or b-d, the resistance can be respectively to O Ohm, R42 or R42+R41. Adjusting the adjusted, resistance, the level of the telephone coupler signal at the input of IC4a is adjusted (-16 dB,-4 dB respectively +6 dB). The output of IC4a; via D25, is connected to the base of TS14, which applies the amplified signal to the audio line. The signals on the audio line are amplified by three amplifiers A, B and C. Amplifier B, consists of IC3a. The signal on the audio line is fed to the + input of the operational amplifier, the output signal is fed via a separation transformer T2 to the "line-out" socket BU102. The RC network of R62/C28, R63/C24 in the feed back path and R61/C16 ensures that the low and high frequencies superimposed on the signal are filtered out. Amplifier C consists of IC3b, which provides the audio signal for the int/mon panel via connector X103. The signal is applied via the voltage divider R64/R65 to the disable request line and fed via R48/R47 and R74 to the tape recorder output BU106-1/4. Connecting jumper S5 in the a-c or a-b position the output impedance to the recorder can be adjusted. Amplifier A consists of IC4b and IC7b. The audio signal is applied to the negative input of IC4b. The output of the operational amplifier is connected to the negative input of IC7b. By connecting jumper S6, which adjusts the total resistance in the feed back path, the amplification of the operational amplifier IC7b and the level of the output signal can be adjusted. (a-c = -16 dB, a-d = -4 dB and b-c = +6 dB) The output signal of IC7b is applied to the telephone coupler. telephone line is connected to the system, the fork circuit in the telephone coupler ensures that the signal from the telephone to the Central Supply Unit, and the conference signal to the telephone are dealt with separately. In general terms this means that the telephone signal; which is sent to the C.S.U., amplified and returned to the telephone line, can be suppressed or even reduced to zero in the telephone coupler. When a telephone coupler is used without a fork circuit, the signal to and from the telephone cannot be separated from eachother in the coupler. To avoid the telephone signal being fed back which is amplified by part A, the signal is compensated to zero at the junction

This is achieved by placing a jumper S4 in position a-b. The signal from the telephone is applied to the output of IC4b. Because the amplified telephone signal is on the output of IC4b and in antiphase, the result will be zero on the input of IC7b. The telephone signal is not fed back to the telephone coupler. The conference signal (audio from the SCU) is normally amplified by IC7b and applied to the telephone coupler.

3. SPARE PARTS LIST

Spare parts list Interface Supply Unit

	Cap. Knob		5322 414 30075
	Dial knob		5322 414 70002
	Fuse holder		5322 256 34077
	Fuse 2.5A SLOW		4822 253 30026
Spare parts 1	<u>list PCB contribution</u>	<u>1</u>	
BU 101	Din connector 8P		5322 267 50659
BU 101	Din connector 5P		4822 267 40182
BU 102	Din connector 5P		4822 267 40182
BU 103	Din connector 8P		5322 267 50659
BU 105	Din connector 7P		4822 264 50101
DO 103			
BU 106	Din connector 5 p		5322 267 40182
C 101	100UF 50°	ኔ 10V	4822 124 20679
D 101	CQY94BL-4		5322 130 32182
R 101	2K2 2'	% O,125₩	4822 111 90248
R 102	33K 2'		5322 111 90267
		·	
R 103	33K 2°	& O,125W	5322 111 90267
R 104	1MO 20°	LOG O, O5W	5322 101 20924
R 105	2K2 2'	& O,125W	4822 111 90248
R 106	1K5 2°	& O,125W	4822 111 90151
R 107	820E 2	% O,125W	4822 111 90171
R 108	470E 2'		5322 111 90109
R 109	270E 2		4822 111 90154
R 110	120E 2		4822 111 90339
R 111	1K8 2°		5322 111 90101
R 112	820E 2'	% 0,125W	4822 111 90171
	_		F000 444 00470
R 113	390E 2		5322 111 90138
R 114	220E 2		4822 111 90178
R 115	120E 2		4822 111 90339
R 116	2K2 2		4822 111 90248
R 117	22K 2	% 0,125W	4822 111 90251
5 440	4077	. A 125W	4822 111 90249
R 118	10K 2'		5322 111 90091
R 119	100E 2		4822 111 90543
R 120	47K 2	& O,125W	5322 273 80317
S 101	rotary switch		5322 273 80317
s 102	rotary switch		3344 413 0V311

Spare parts list P.C.B. Basic

	Isolating bush between Po	CB and	4822 255	5 40174
	Jumper S2, 5, 4, 3 or 6		5322 290	60298
c 1	3300UF 30%	63V	5322 124	
C 2	470UF 20%	40V	5322 124	4 21729
C 3	470UF 20%	40V	5322 124	1 21729
C 4	470UF 20%	40V	5322 124	
	100NF 10% X7R	50V	5322 122	
C 5		25V	4822 124	
C 6	47UF 50%	, <u>2</u> 5 v	4022 12	4 20033
c 7	10UF 20%	25 V	4822 124	
C 8	100PF 5%	50V	4822 123	
C 9	22UF 50%	25V	4822 124	4 20698
C 10	10NF		4822 123	2 32442
	4,7UF 50%	63V	4822 12	
C 12	10NF		4822 123	2 32442
	4,7NF 10% X7R	50V		2 31784
C 13	·	304		2 32442
C 14	10NF	40**		
C 15	10UF 50%	40V	4822 124	
C 16	33NF 10%	63V	5322 12	2 31848
C 17	33NF 10%	63V	5322 123	
C 18	100PF 5%	50V	4822 123	2 31765
C 19	3,9NF	50V	4822 123	2 32566
C 20	22UF 50%	25V	4822 12	
		25V	4822 12	
C 21	22UF 50%	25 V	4022 12	4 20030
C 22	22UF 50%	25V	4822 12	
C 23	100PF 5%	50V	4822 123	
C 25	100PF 5%	50V	4822 123	2 31765
C 26	100UF 50%	25V	4822 124	4 20701
C 27	220PF 5%	63V	4822 12	
C 28	220PF 5%	63V	4822 123	2 31965
C 29	1UF 50%	63V		4 20722
		50V	4822 123	
C 30				
C 31	22UF 20%	25V	4822 12	
C 32	22UF 20%	25V	4822 12	4 21646
C 33	560PF 5%	50V	4822 12	
C 34	100PF 5%	50V	4822 123	2 31765
C 35	10UF 20%	25V	4822 124	4 21747
C 36	10UF 20%	25V	4822 124	
C 37	47NF 10%	50V	4822 123	
C 38	22UF 50%	25V	4822 124	
C 39	22UF 50%	25 V	4822 124	
C 40	47NF 10%	50V	4822 122	2 32542
C 41	47NF 10%	50V	4822 122	
C 42	47NF 10%	50 V	4822 122	
		J0 ¥	4822 122	
C 43	10NF		4022 124	2 32442

C 44 C 45 C 46 C 47	1500NF 10% 4,7NF 10% X7R 4,7NF 10% X7R 4,7NF 10% X7r	100V 50V 50V 50V	4822 12 4822 12 4822 12 4822 12	2 31784 2 31784
C 48 C 49 C 50 C 51 C 52	4,7NF 10% X7R 22ONF 10% 1000PF 5% 47ONF 10% 100PF 5%	50V 63V 50V 63V 50V	4822 12 4822 12 4822 12 4822 12 4822 12	1 41673 2 31746
C 53 C 54 D 1 D 2 D 3	22UF 20% 47NF 10% BY224-600 BAV70 BAV70	25V 50V	4822 12 5322 13 5322 13	4 21646 2 32542 0 34761 0 34331 0 34331
D 4 D 5 D 6 D 7 D 8	BAV70 BAV70 BZX84-C5V1 BZX84-C22 BAV70		5322 13 5322 13 5322 13	0 34331 0 34331 0 32835 0 33725 0 34331
D 9 D 10 D 11 D 12 D 13	BAV70 BAV70 BAV70 BZX84-C5V1 BZX84-C22		5322 13 5322 13 5322 13	0 34331 0 34331 0 34331 0 32835 0 33725
D 14 D 15 D 16 D 17 D 18 D 19 D 20 D 22 D 23 D 24	BAV70 BAV70 BAV70 BAV70 BZX84-C5V1 BZX84-C22 BYW56 BAV70 BYW56 BAV70		5322 13 5322 13 5322 13 5322 13 5322 13 5322 13 5322 13	30 34331 30 34331 30 34331 30 34331 30 32835 30 33725 30 34973 30 34331 30 34331
D 25 D 26 D 27 IC 1 IC 2	B2X84-C5V1 B2X84-C5V1 BAV7O MC7815CT MC1458N		5322 13 5322 13 4822 20	30 32835 30 32835 30 34331 99 80808 99 81349
IC 3 IC 4 IC 5 IC 6 IC 7	LF353N LF353N TDB0156DP HEF4066BT LF353N		5322 20 5322 20 5322 20	9 81395 9 81395 9 82804 9 14542 9 81395

R 1 3E R 2 2E R 3 8E R 4 470	2 1% 2 2%	1,6 W O,6 W O,125W O,125W	4822 5322	116 111	51865 53025 90118 90109
R 5 22		0,6 W			53286
R 6 3E 7 2F R 8 8F	2 1%	2,0 W 0,6 W 0,125W	4822	116	53281 53025 90118
R 9 470 R 10 22	E 2%	0,125W 0,6 W	5322	111	90109 53286
R 11 31 R 12 22 R 13 81 R 14 470	(2 1% (2 2% (E 2%	2,0 W 0,6 W 0,125W 0,125W	4822 5322 5322	116 111 111	53281 53025 90118 90109 53286
R 15 22 R 16 31 R 17 100	19 5%	0,6 W 1,6 W 0,125W	4822 4822	116 111	51865 90214
R 18 100 R 19 100 R 20 22		0,125W 0,125W 0,125W	4822	111	90214 90214 90251
R 22 10 R 23 10	OK 2% OK 2% OK 2% VK 2%	0,125W 0,125W 0,125W 0,125W	4822 4822 4822	111 111 111	90249 90249 90249 90543
R 25 4'	7K 2%	0,125W			90543
R 27 4 150 R 29 51	76 2%	0,125W 0,125W 0,125W	5322 4822	111 111	90543 90099 90572
R 31 10 R 32 100 R 33 4	X3 2% OK 2% OK 2% VK 2% OR 1%	0,125W 0,125W 0,125W 0,125W 0,6	4822 4822 4822	111 111 111	90157 90249 90214 90543 53597
R 36 19 R 37 100 R 38 33 R 39 10	5K 2% 0K 2% 0K 2% 0K 2%	0,125W 0,125W 0,125W 0,125W	4822 5322 4822	111 111 111	90196 90214 90267 90249
R 40 22	2K 2%	0,125W	4822	111	90251
R 43 910 R 44 330		0,125W 0,6 W 0,125W 0,125W	4822 5322	116 111	90238 52868 90106 90249

R	46 47 48	10K 680E 10K	2% 2% 2%	0,125W 0,125W 0,125W		4822	111	90249 90162 90249
R	49 50	62R 10K	1% 2%	0,6 W 0,125W		5322	116	53598 90249
R	51 52	100K 82E	2% 2%	0,125W 0,125W		4822	111	90214 90124
	53 54	3K9 15K	2% 2%	O,125W O,125W				90571 90196
	55	10K	2%	0,125W				90249
	56	33K	2%	0,125W				90267 90157
	57 58	3K3 220K	2% 2%	O,125W O,125W				90197
	59	33K	2%	0,125W				90267
	60	1K	2%	0,125W		5322	111	90092
	61	100K	2%	0,125W				90214 90267
	62 63	33K 3K9	2% 2%	O,125W O,125W				90571
	64	1K5	2%	0,125W				90151
	65	68E	2%	0,125W		4822	111	90203
R	66	33K	2%	O,125W				90267
	67	100K	2%	O,125W				90214
	68	680E	2%	0,125W				90162 90575
	69 70	82K 220K	2% 2%	O,125W O,125W				90197
R	71	100E	2%	O,125W				90091
	72	33K	2%	0,125W				90267
	73	36K	1%	0,6 W				53596 90197
	74 75	220K 100K	2% 2%	O,125W O,125W	,			90214
	76	100K	2%	0,125W				90214
	77 78	100K 1M	2% 5%	O,125W O,125W				90214 90094
	79	1M	5%					90094
	80	4K7	2%	0,125W				90111
	81			0,125W				90543
	82			0,125W				90249 90249
	83		2%	0,125W jumper S2				84341
	2			jumper S3				84341
	4			jumper S4				84341
	5			jumper S5				84341 84341
	6 1			jumper S6 ransformer				10267
T	2			transformer				60264

TS TS TS TS	2 3 4	BDT96 BC557C BC846B BDT96 BC557C	PHIN	4822 5322 5322	130 130 130	42209 42231 60159 42209 42231
TS TS TS TS	7 8 9	BC846B BDT96 BC557C BC846B BC857C	PHIN PHIN PHIN	5322 4822 5322	130 130 130	60159 42209 42231 60159 42756
TS TS TS TS	13 14 15	BC847C BC847C BC847C BC857C BDT96	PHIN PHIN PHIN PHIN	5322 5322 5322	130 130 130	42755 42755 42755 42756 42209
TS	1.7	BC857C	PHIN	5322	130	42756

Recommended	spare parts list Interface Supply Unit	
	Cap. knob Dial knob	5322 414 30075 5322 414 70002
	Fuse holder	5322 256 34077
	la list DOD santuibution	
Spare par	ts list PCB contribution	
BU 101	Din connector 8P	5322 267 50659
BU 102	Din connector 5P	4822 267 40182
BU 103		4822 267 40182
BU 104	Din connector 8P	5322 267 50659 4822 264 50101
BU 105	Din connector 7P	4022 204 30101
BU 106	Din connector 5P	4822 267 40182
D 101	CQY94BL-4	5322 130 32182
	-	
s 101	Rotary switch	5322 273 80317
s 102	Rotary switch	5322 273 80317
Spare pai	rts list P.C.B. Basic	
•	Isolating bush between PCB and	4822 255 40174
	cooling plate	F000 404 4000F
C 1	3300UF 30% 63V 470UF 20% 40V	5322 124 40805 5322 124 21729
C 2 C 3	470UF 20% 40V 470UF 20% 40V	
C 3 C 4	4700F 20% 40V	
C 4	1,001 200	0020 (21 21 21
D 1	BY224-600	5322 130 34761
		mana 400 0000F
D 6	BZX84-C5V1	5322 130 32835 5322 130 33725
D 7	BZX84-C22	5322 130 33720
D 12	BZX84-C5V1	5322 130 32835
D 13	B2X84-C22	5322 130 33725
D 18	BZX84-C5V1	5322 130 32835
D 19	BZX84-C22	5322 130 33725
D 25	BZX84-C5V1	5322 130 32835
D 26	BZX84-C5V1	5322 130 32835
IC 1	MC7815CT	4822 209 80808
IC 2	MC1458N	4822 209 81349
	T P252N	5322 209 81395
IC 3 IC 4	LF353N LF353N	5322 209 81395
IC 5	TDB0156DP	5322 209 82804
IC 6	HEF40668T	5322 209 14542
IC 7	LF353N	5322 309 81395

T T	1 2	Line in transformer Line out transformer				10267 60264
TS	1.	BDT96				42209
TS	2	BC557C		4822		42231
TS	3	BC846B	PHIN	5322	130	
TS	4	BDT96		5322		42209
TS	5	BC557C		4822	130	42231
		1 ·				
TS	6	BC846B	PHIN	5322	130	60159
TS	7	BDT96	*	5322	130	42209
TS	8	BC557C	· ·	4822	130	42231
TS	9	BC846B	PHIN	5322	130	60159
TS	³10	BC857C	PHIN	5322	130	42756
TS	12	BC847C	PHIN	5322	130	42755
TS	13	BC847C	PHIN	5322	130	42755
TS	14	BC847C	PHIN	5322	130	42755
TS		BC857C	PHIN	5322	130	42756
	16		2.	5322	130	42209
TS	17	BC857C	PHIN	5322	130	42756

LBB 3202/00 Microphone plug in unit

CONTENTS

- INTRODUCTION MICROPHONE PLUG IN UNIT
- BRIEF DESCRIPTION OF MICROPHONE PLUG IN UNIT
- SPARE PARTS LIST

Figures

- Block diagram of microphone plug in unit.
 Circuit diagram of microphone plug in unit.
- 3. Location of components microphone plug in unit.

1. INTRODUCTION MICROPHONE PLUG IN UNIT

The microphone plug in unit can be divided into 3 parts (see block diagram fig. 1).

- Part 1. Microphone Amplifier
 Amplifies the microphone input signal, and switches it to the audio line.
- Part 2. Auto switch off circuit
 Compares the audio signal and the microphone signal.
 Automatically switches "off" the microphone, when there is no input from the delegate for approximately 30 to 45 seconds.
- Part 3. Microphone Switching Circuit
 Switches the microphone on/off, depending on the status of the control signals. The control signals comprise of the Microphone, remote, priority and disable request signals, plus the output signal from the Auto switch off circuit.

2. CIRCUIT DESCRIPTION MICROPHONE PLUG IN UNIT

(see Circuit diagram Fig. 2)

When the system is switched "on", capacitor C33 charges to the supply voltage 27v. Resistors R48, and R50 cause the voltage on the +input 5 of IC3b to the lower, than on the negative input 6. This state is valid until the power supply voltage reaches 14v. The difference negative voltage, between the negative input and the positive input of IC3, causes the comparator output to be Ov. The Ov is applied to the negative input 2 of IC3a, because the voltage on the positive input 3 is +6v, the comparator output will be high i.e. logic "1". Logic "1" resets the flip flop IC5a. Switching on the system, the supply voltage exceeds 14v, the zener diode D11 will conduct, causing the voltage at input 6, to be left at a constant level of 15v. If the power supply voltage exceeds 20v, the voltage at the input of IC3b pin 5, is higher than the 15v on the input 6 causing a positive difference voltage, ensuring that the comparator no longer clamps the voltage to zero. 15v is applied to the negative input of IC3a, pin 2, which is higher than the +6v on the positive input 3, therefore the output from the comparator is Ov, is logic "O". Logic "O" will not reset the flip flop IC5, and the plug in unit is now "ready" for use.

Switching Control Circuit General

The switching control circuit IC5a, IC3a and IC4a/b carries out all the switching functions in the microphone plug in unit. Switching is due to the state of the call microphone signal, priority-, disable request and the microphone signal. IC5a is a flip flop, who's output is logic "O" (Ov) or logic "1" (15v) depending on its input signals. When the output is Ov, the microphone signal is switched "off" from the pre-amplifier to the audio line. When the output is 15v, the microphone signal via the pre-amplifier will be switched to the audio line.

The priority and disable request line are via a comparator circuit, connected to the reset and data input. The priority signal, when active, ensures that the flip flop will be reset, and the active disable request signal ensures that the data input becomes "O". The microphone call signal, from the microphone button, is via inverter circuit around IC7, applied to the clock input of IC5, and the microphone remote call signal to the set input. The clock or set pulse can make the flip flop output logic "1" (15v), causing the microphone to be switched "on".

The audio comparator output, is connected via a comparator to the reset input of IC5. Therefore after the delay time of approximately 30 to 45 seconds, the flip flop will be reset, and the switched "on" microphone is then switched "off".

Call Position

In the call position, the microphone switching circuit is activated, by the switching control circuit. The microphone signal is fed via the pre-amplifier and switched to the audio line.

During a call, the logic "0" from the pressed microphone call button is via IC7 and associated circuitry inverted and applied as a "1" (15v) to the clock input of IC5.

No priority or remote signals are present,

therefore the reset input and the set input are at logic "O".

Because disable request is inactive, the data input of IC5 stays 15v, (logic "1"). The data input is high, and the output of the flip flop will be logic "1", (15v) on the positive edge of the clockpulse, caused by pressing the "call button". The inverse flip flop output is now "0", this output is fed back to the data input, which also becomes "0". This means that the next clockpulse (S1) will reset the flip flop. The 15v on output 1 is applied to the base of TS5 in the microphone switching circuit.

The transistor is conducting, causing TS4 also to conduct, current can now flow, via the emmitter of TS4 to ground. The microphone signal is taken from the collector. Because IC8a and IC8b are closed now, the microphone led illuminates.

Pre-Amplifier

The pre-amplifier consists of IC1a, TS4 and associated components. A DC voltage is fed via TS1 and applied to the electret microphone line. The current flowing from TS1 to the electret microphone, ensures that the "FET" inside the microphone is conducting. The analogue microphone signal, is applied to the microphone line, by the microphone itself, and fed via C1 and C2 to the + and - input of the operational amp. IC1a. C1 ensures that the DC voltage for the electret microphone, cannot reach the input of the Op amp. A DC voltage of approximately 4v is fed via R5, and R6 and R8 to the analogue microphone signal on the inputs of IC1a. C2 ensures that

analogue microphone signal on the inputs of IC1a. C2 ensures that this DC voltage is not influenced by TS2 and TS3. The output signal of the Op amp. IC1a if fed back via R11/C48 to the -input. With potentiometer R10 the amplification of IC1a can be adjusted according to the sensitivity of the used microphone.

In this way differences in sensitivity of the microphones are compensated.

The amplified signal, a DC level of approximately 10v on which the audio signal is superimposed, from the Op amp is applied to the base of TS4.

Limiter

The limiter consists of TS2, TS3, and associated components. When the output signal of the Op amp IC1a reaches a value greater than \pm 0.7v, D1 and D2 conduct, and so will TS2 or TS3. When either of these two transistors is conducting, the input signal from the preamplifier decreases. A sample of the current from the analogue microphone signal is then flowing via the conducting transistors to ground. The microphone signal is now limited.

The limiter is divided into two sections, the right section D2 and TS3 is for the positive AC part of the output signal, and the left section D1 and TS2, for the negative AC output signal.

Resetting "Call" Position

If the call button S1 is pressed again, IC5 receives another positive pulse on its clock input. The inverse output pin 2, was "O", and so the data input of IC5. After the clockpluse, the output pin 1, becomes "O", because the data input is "O". Output 2 is the inverse of output 1, is logic "1", therefore the data input is "1" again. The logic "O" at output 1 causes the microphone switching circuit to become in-active. Transistor TS5 is not conducting, due to the Ov on its base, from the output of IC5. Therefore the microphone signal on the base of TS4, is not switched to the audio line.

Priority

When the chairman wants priority over the delegate microphones the priority line becomes about 1,5V. Due R37 and R99 1V is applied to the -input of IC3a then.

Because the 6V on the +input the comperator output is about 15V which is logic "1". Via the reset input IC5 is now reset. The set input stays "0" and the data input "1". The flip flop output was "1", due to the reset the output becomes "0". The microphone signal is switched off by TS5 which is now nonconductive because of the OV on its base.

As long as the priority line is 1,5V the reset input stays "1" and the flip flop resetted, pushing the call button does not influence the switching control circuit. The delegate can not switch on his microphone with his call button.

When the chairman resets his priority, the priority line becomes 27v, 27v is then fed to the -input of the comparator IC3a. Because the +input is 6v, the output is 0v, is logic "0", therefore the reset input to IC5 is no longer reset. Therefore the microphone can be switched on/of as normal via the call button.

Disable Request

When the adjusted number of microphones, are switched "on" (1, 3 or 6 via switch \$102) simultaneously. The disable request line reaches approximately 27v. This 27v is applied to the -input of IC2d. Because the tinput is connected to 10v the output of the comparator becomes Ov. The data input which is at 15v, is then brought down to approximately 1v, due to the forward voltage on the diode D13. This 1v is logic "O" to the flip flop. When the microphone is swiched "on", during the disable request, the data input is already at "O", because the inverse flip flop output is at Ov. During the disable request, the switched "on" microphones can be switched "off" by pressing the call button. The positive pulse on the clock input, clocks the data which is at "O", to the output.

During the disable request, a microphone cannot be switched "on", because the data input is set to "0". The call pulses from the call button, only switches a "0" to the flip flop output.

When the number of switched "on" microphones, is less than the maximum number, adjusted by switch \$102, the disable request line becomes Ov.

The output from the comparator IC2d is now not longer clamping the date input to zero. The plug in unit is now in the listening position, and the delegate is now able to switch "on" his microphone, by pressing his call button.

Audio Level Comparator

The audio level comparator ensures that when a delegate does not speak into his microphone for approximately 30 to 45 seconds, the flip flop IC5, fed via comparator IC3a, will be reset.

At input 3 of IC2a, a DC level of approximately 9v is applied. microphone signal is applied to the -input 2 of IC2a. The Op. IC2a, subtracts the microphone signal from the DC level, amplifies the resulting signal. The output signal is now at a 9v DC level, which is used to superimpose the amplified microphones signal This signal is then applied to the -input of IC2b and at input 5, the disable request signal. The disable request signal, plus a DC level from R2O on the disable request signal, together form a 9v DC level on which the audio signal (other delegates + delegate itself) is superimposed. IC2b subtracts the output of IC2a, which is the 9v on which the microphone signal is superimposed, from the 9v on which the microphone signal is superimposed. The output 7, of IC2b is at a DC level of 9v, on which the difference between the audio- and the microphone signal is superimposed. The difference voltage, can reduce the voltage on x, and the output of IC2a, which is the 9v on which the microphone signal is superimposed, can reduce the voltage on Y. When only the delegate is using his microphone, the audio signal is the same as the microphone signal. The Ac difference voltage at the output of IC2b is Ov, only the 9v DC level is on the output. The voltage on x is now 9v plus the forward voltage of D6, adding up to a total of approximately 10v.

When more than one delegate is speaking, the audio signal is higher than the microphone signal. On the output of IC2b, the difference voltage, superimposed on the 9v DC is applied, the negative going voltage of the AC difference signal, ensures that the 10v on x is decreased via D6 and C21.

If the delegate is silent, there is no microphone signal, therefore the AC voltage on the 9v DC level at the output of IC2a is at 0v. The voltage at Y is at 9v plus the forward voltage of D7, which in total sums up to approximately 10v. When the microphone is in use, the microphone signal is amplified by IC2a. The negative going voltage of this microphone signal ensures that the 10v on Y is decreased, via D7 and C22.

X is applied to the +input of IC2c, and Y to the -input. When X is greater than Y, the output of the Op amp is approximately 15v, and when Y is greater than X the output is Ov. Therefore when the delegate uses his microphone (he has to speak louder when others are using their microphone), the output of IC2a is 15v, C24 is now charged to 15v, because D9 is conducting. When the delegate stops using his microphone the output becomes Ov. Instantly C24 discharges via R35, and the DC level slowly decreases. This decreasing voltage is then fed via R36, and applied to the -input of IC3a. When the voltage becomes lower than approximately 7v, the comparator output, which was at Ov, now becomes 15v, and resets the flip flop IC5a, and the microphone will now be switched "off".

The time taken for C24 to discharge from 15v to approximately 7v is about 30 to 45 seconds. When the microphone is switched "off" the output of IC2c becomes 15v, independant of the number of other switched on microphones. This is because Y is approximately 1v, when the microphone is not switched "on". The Ov on the output of IC5a, is applied to D8, therefore C22 can only discharge until the voltage on Y reaches the forward voltage of D8, which is approximately 1v. This forward voltage cannot be exceeded, as long as Ov is applied to the cathode of D8. When the microphone is switched "on", by the delegate pressing his call button, then approximately 13v is applied to the cathode of diode D8. C22 can now partly discharge, and the voltage on Y increases to approximately 10v, because of the 9v DC on the cathode of D7 and its forward voltage of approximately 1v.

By placing the jumper S3, in the b-a position, capacitor C24 cannot discharge via R35, therefore the audio level comparator is inactive.

Switching S102, the audio level comparator can be made in-active. In the three position 1, 2 or 6 microphones in non-auto, the switch supplies 0v to the ground reference which is normally 9v DC.

This Ov is fed via R3O and C2O, to the -input of IC2b and overrules the output signal from IC2a. The output of IC2b is now Ov, therefore X is at 10v. IC2c output, is and remains 15v, therefore the capacitor which is charged, discharges and the audio level comparator is in-active.

3. SPARE PARTS LIST

Spare parts list of Microphone plug in Unit LBB 3302/00

	Description	Code	number
C 1 C 2 C 3	10 NF . 100 NF 10% X 7 R 50 V 10 UF 20% 25 V	5322	122 32442 122 32839 124 21747
C 4	4,7 UF 20% 25 V		124 21966
C 5 C 6	0,47 UF 20% 25 V 4,7 UF 20% 25 V	5322	124 21453 124 21966
C 7 C 8	47 UF 20% 10 V 4,7 UF 20% 25 V		124 21975 124 21966
C 12	100 PF 5% 50 V		122 31765
C 17 C 18	100 NF 10% X 7 R 50 V 82 NF 10% 50 V		122 32839 122 32838
C 20	10 UF 20% 25 V	4822	
C 21	4,7 UF 20% 25 V		124 21966
C 22	4,7 UF 20% 25 V	5322	124 21966
C 23	100 PF 5% 50 V		122 31765
	100 UF 50% 25 V		124 20701
C 25 C 26	100 PF 5% 50 V 4,7 NF 10% X 7 R 50 V		122 31765
C 27	4,7 NF 10% X 7 R 50 V 100 NF 10% X 7 R 50 V		122 31784 122 32839
C 28	10 NF		122 32442
C 29	4,7 NF 10% X 7 R 50 V		122 31784
C 30 C 31	100 PF 5% 50 V 100 PF 5% 50 V	4822	122 31765 122 31765
C 32	47 UF 50% 25 V		124 20699
C 33	47 UF 50% 40 V		124 20713
C 35	22 UF 20% 25 V 47 UF 50% 25 V		124 21646 124 20699
C 41	56 NF 10%		122 32183
C 43	22 UF 20% 25 V		124 21646
C 45	100 NF 10% X 7 R 50 V		122 32839 122 31797
C 47 C 48	22 NF 10% 63 V 47 PF 5% 50 V	4822 4822	122 31797
D 1	BAV 70	5322	130 34331
D 2	BAV 70	5322	
D 3	BZX 84-C5V1	5322	130 32835
D 6	BAV 70	5322	
D 7	BAV 70	5322	130 34331
D 8 D 9	BAV 70	5322	130 34331
D 9	BAV 70	5322	130 34331

D 13	BZX 84-C15 BAV 70 BAV 70 BAV 70 BAV 70	,	. '		5322 1 5322 1 5322 1	30 33662 30 34331 30 34331 30 34331 30 34331
D 20 D 21	BZV 46- 2 VO BZX 79- B30 BZX 79- B6V LF 353 N LM 324 D				4822 1 4822 1 5322 2	30 31248 30 34328 30 34167 09 81395 09 83125
IC 3 IC 4 IC 5 IC 7 IC 8	LM 393 D LM 393 D HEF 4013 BT MC 1741 CD HEF 4066 BT		PHIN PHIN		5322 20 5322 20 5322 20	09 71599 09 71599 09 14477 09 71597 09 14542
	5 K 6 47 K 390 E 10 K 47 K	2% 2% 2% 2% 2%	0,125 0,125 0,125 0,125 0,125	W W	4822 1 5322 1 4822 1	11 90572 11 90543 11 90138 11 90249 11 90543
R 8	1 K 220 K 1 K 2	2% 2% 2% 2% 2% 10% LIN	0,125 0,125 0,125		5322 1 4822 1 5311 1	11 90267 11 90092 11 90197 11 90096 01 10691
R 12	68 K 100 K 10 K 100 K 1 K 5	2% 2% 2% 2% 2%	0,125 0,125 0,125 0,125 0,125	W W W	4822 1 4822 1 4822 1	11 90202 11 90214 11 90249 11 90214 11 90151
R 17 R 18 R 21 R 22 R 26	12 K 1 M 100 E JUMPER OE 18 K	2% 5% 2% 2%	0, 125 0, 125 0, 125 0, 125	W W	5322 1 5322 1 4822 1	11 90253 11 90094 11 90091 11 90163 11 90238
R 27 R 28 R 29 R 30 R 31	39 K 100 K 33 K 1 K 18 K	2% 2% 2% 2% 2%	0,125 0,125 0,125 0,125 0,125	W W	4822 1 5322 1 5322 1	11 90108 11 90214 11 90267 11 90092 11 90238
R 32 R 33 R 34 R 35 R 36	1 M 1 M 1 K 4 K 7 100 K	5% 5% 2% 2% 2%	0,125 0,125 0,125 0,125 0,125	W W W	5322 11 5322 11 5322 11	11 90094 11 90094 11 90092 11 90111 11 90214

R 37	1 M	5%	0,125 W	5322 111 90094
R 38	10 M	5%	0,125 W	5322 111 91141
R 39	100 K	2%	0,125 W	4822 111 90214
R 40	100 K	2%	0,125 W	4822 111 90214
R 41	100 K	2%	0,125 W	4822 111 90214
R 44	1 K	2%	0,125 W	5322 111 90092
	100 K	2%	0,125 W	4822 111 90214
	1 M	5%	0,125 W	5322 111 90094
	100 K	2%	0,125 W	4822 111 90214
	47 K	2%	0,125 W	4822 111 90543
R 47	1 K	2%	O,125 W	5322 111 90092
R 48	100 K	2%	O,125 W	4822 111 90214
R 49	100 K	2%	O,125 W	4822 111 90214
R 50	27 K	2%	O,125 W	4822 111 90542
R 51	68 K	2%	O,125 W	4822 111 90202
R 52 R 53 R 54 R 55 R 56	33 K 100 K 100 K 15 K	2% 2% 2% 2%	0,125 W 0,125 W 0,125 W 0,125 W	5322 111 90267 4822 111 90214 5322 116 44008 4822 111 90214 4822 111 90196
R 59	15 K	2%	0,125 W	4822 111 90196
	12 K	2%	0,125 W	4822 111 90253
	2 K 7	2%	0,125 W	4822 111 90569
	100 K	2%	0,125 W	4822 111 90214
	33 K	2%	0,125 W	5322 111 90267
R 74	100 K	2%	0,125 W	4822 111 90214
R 76	100 E	2%	0,125 W	5322 111 90091
R 77	100 E	2%	0,125 W	5322 111 90091
R 78	3 K 9	2%	0,125 W	4822 111 90571
R 79	100 K	2%	0,125 W	4822 111 90214
R 81 R 82 R 83 R 84 R 85	220 K 3 K 9 3 K 9 JUMPER OE JUMPER OE	2% 2% 2%	0,125 W 0,125 W 0,125 W	4822 111 90197 4822 111 90571 4822 111 90571 4822 111 90163 4822 111 90163
R 86	220 K	2%	O,125 W	4822 111 90197
R 88	1 M	2%	O,125 W	5322 111 90094
R 92	82 K	2%	O,125 W	4822 111 90575
R 93	68 K	2%	O,125 W	4822 111 90202
R 94	680 E	2%	O,125 W	4822 111 90162
R 95 R 96 R 97 R 99 R102	100 K 5 K 6 JUMPER OE 10 K 1 M	2% 2% 2% 5%	0,125 W 0,125 W 0,125 W 0,125 W	4822 111 90214 4822 111 90572 4822 111 90163 4822 111 90249 5322 111 90094

	3	1 M 15 K Pins for S3	5% 1%	0,125 0,6	W	4822 5322	116 535	90094 53083 84341
S TS		Jumper S3 BC 847 C		PHIN				60298 42755
TS	2	BC 857 C		PHIN				42756
TS		BC 847 C		PHIN				42755
TS	4	BC 847 C		PHIN				42755
TS	5	BC 847 C		PHIN				42755
TS	8	BC 817-40		•		4822	130	42615
TS	9	BC 817-40				4822	130	42615
X	7	Microphone	connect	or		5322	265	40345
Spa	are parts	Microphone Cap for mic Foam cap fo Mic. cable	rophone r micro	phone		5322 5322 5322	462 462 321	20094 50331 40731 21078
	_	Knob for mi		e pusn 50 V	button			30086 31765
С	4	100 PF microphone	5%	50 V	IOI	4022	122	31703
		Mic. switch	mechan	ism		5322	276	11415
С	1	1,5 UF	20%	35 V	•	5322	124	14078
č		10 UF	50%	40 V	7	4822	124	20708
č	2	10 UF	50%	40 V		4822	124	20708
D	1	CQW 54				4822	130	32069
D	2	TIUG 164				5322	130	32587

Recommended spare parts list Microphone plug in Unit LBB 3302/00

	Description		Code	Numb	per
D 3 .	BZX 84-C5V1		5322	130	32835
D 11	BZX 84-C15		5322	130	33662
D 19	BZV 46-x VO		4822	130	31248
D 20	BZX 79-B30		4822	130	34328
D 21	BZX 79-B6V2		4822	130	34167
IC 1	LF 353 N		5322	209	81395
IC 2	LM 324 D		5322	209	83125
ic 3	LM 393 D	PHIN	5322	209	70225
IC 4	LM 393 D	PHIN	5322	209	70225
IC 5	HEF 4013 BT		5322	209	14477
IC 7	MC 1741 CD		5322	209	11311
IC 8	HEF 4066 BT		5322	209	14542
TS 1	BC 847 C	PHIN	5322	130	42755
TS 2	BC 857 C	PHIN	5322	130	42756
TS 3		PHIN			42755
		PHIN			42755
TS 4	BC 847 C	PHIN			42755
TS 5	BC 817-40	FIIIN			42615
TS 8	BC 617-40		4022	130	12013
TS 9	BC 817-40		4822	130	42615
x 7	Microphone connect	or	5322	265	40345
Spare parts	list for Microphone	Assembly			
	Description		Code	Num	ber
	Migraphore		5222	242	20094
	Microphone				50331
	Cap for microphone	mhana			40731
	Foam cap for micro	phone			21078
	Mic. cable		3322	321	21076
	Knob for microphon	e push button	5322	414	30086
C 4	100 PF 5% for microphone	50 V for	4822	122	31765
	Mic. switch mechan	ism	5322	276	11415
D 1	CQW 54	aa. p. 200			32069
D 2	TIUG 164		5322	130	32587

LBB 3301/00 Inter

Interpreters + monitor Distribution panel

of the

CONTENTS

- INTRODUCTION INT. + MON. DISTRIBUTION PANEL
- CIRCUIT DISTRIBUTION INT. + MON. DISTRIBUTION PANEL

Figures

- Block diagram int. + mon. distribution panel.
 Circuit diagram int. + mon. distribution panel.
 Location of components int. + mon. distribution panel.

1. INTRODUCTION

(see block diagram fig. 1)

The int. + mon. panel is a connection panel for the 6ch interpreters equipment on the one side and to the Monitor Distribution Board on the other hand. It connects the interpreters busbar and the floor signal to the M.D.B.

Channel 1 to 6 inclusive and floor from the M.D.B. are via this panel connected to the program selector output (distribution), and the audio from M.D.B. to the remote socket for monitoring via a loudspeaker. A "channel occupied" circuit provides information at the remote socket and at the transmitter socket. These 6 outputs can be used as an indication which channels are occupied.

2. <u>CIRCUIT DESCRIPTION INT. + MON. PANEL</u> (see circuit diagram fig. 2)

On the panel, the feed from the power supply part a is applied to pin 4 and 5 on connector X203. This supply lines are distributed to the interpreters connector BU 207, to the M.D.B. connector X201 and finally via D201 and R205 to the monitor socket BU 210.

The power supply voltage is via the buffer circuit, which consists of TS201, R201, R202 and R203, applied to the resistor networks R223/R206/R207, etc. These networks provide for a DC level of approximately 18v on the floor, comm., ch1/ch6 and auto floor lines on the interpreters busbar.

The asymetric audio line, coming from the connector panel, is applied to X2O3 pin 1 and 2 and via the seperation transformer T2O1 to the floor line on the panel.

The lines floor, ch1/ch6, comm. and auto floor from the interpreters busbar are applied to BU207 and directly connected with the M.D.B. via connector X201. To avoid that the D.C. levels on these lines via BU209 are applied to the transmitter, capacitors C202 to C217 are used. The amplified signals ch1/ch6 and floor, coming from the M.D.B., are via X201 connected to the distribution connector BU208.

The B.C.D. code for the Monitor part on the M.D.B. and the returning audio line are via X201 connected to the M.D.B. and via BU210 with the monitor equipment.

IC1 and IC2 ensure that 6 "channel occupied" information lines are provided to the transmitter connector BU 209 on the one side and to the monitor connector BU210. When a channel, e.g. ch1, is not occupied the D.C. voltage, provided by the int. mon. panel, is approximately 18v. In this case, the voltage on the -input of IC26 is larger then the voltage on the +input, ensuring that the comperator output is "0" (approx. 2,5v). When a microphone signal is switched to the channel, the D.C. voltage on the channel line becomes approximately 9v. The +input of the comperator IC26 is now larger (15v) then 9v on the -input. The output will be "1" which can be used as an indication that the channel is occupied.

This "1" is approx. 27v. A current of approx. 2.3 m.a. can be used to drive a L.E.D.

LBB 3203/00 Monitor Distribution Board (M.D.B.)

CONTENTS

- 1. INTRODUCTION MONITOR DISTRIBUTION BOARD
- 2. CIRCUIT DESCRIPTION MONITOR DISTRIBUTION BOARD
 - 3. SPARE PARTS LIST

Figures:

- 1. Block diagram Monitor Distribution Board
- 2. Circuit diagram Monitor Distribution Board
- 3. Component location Monitor Distribution Board
- 4. Audio level diagram

1. <u>INTRODUCTION</u> (see fig. 1)

The Monitor Distribution Board has 8 output channels, floor, auto floor, and channels 1 to 6 inclusive, which are amplified by symmetrical amplifiers (3 Watt). Only the floor and channels 1 to 6 are, fed to the programme selector socket BU 208. BCD code information is fed to the monitor selector on the MDB via the remote socket, enabling channels 1 to 6, floor, auto floor to be monitored. The audio line can be connected to a monitor loudspeaker and the communication signal from the interpreters' desk is automatically fed to the monitor loudspeaker, independent of which channel is being monitored.

2. <u>CIRCUIT DESCRIPTION OF MONITOR DISTRIBUTION BOARD</u> (see fig. 2)

The Monitor Distribution Board (MDB) provides the audio signal for the monitor loudspeaker. The desired channel for monitoring, can be selected by injecting its corresponding BCD code at the monitor socket BU 210. The channel selector switch, consisting of IC1 and IC2 is switched to the choosen channel via opto couplers, IC5 to IC8 and the schmitt-

trigger IC4.

The BCD code controls the analoge multiplexers IC1 and IC2, this control line ensures that the selected channel of the interpreters' bus bar is switched to the loudspeaker via the monitor socket. Channels 1 to 6, floor and auto floor are fed to amplifiers IC101 to IC 801, and amplified to the 12 Volts output level. Channels 1 to 6 and floor only, are connected to the distribution socket for the programme selectors. The output of the amplifiers IC101 to IC801 are also fed via a resistor divider network (R18/R2, etc.) to the analoge multiplexers IC1 and IC2, which switch the selected channel, due to the BCD code fed to IC3a and IC3b.

The amplifier stage IC3, TS1 to TS4, applies the selected channel to the connector X201. Because the communication line is automatically injected into the amplifier, the signal will override the selected channel. The microphone signal from an interpreters' desk is switched to the communication channel, when the "COMM" button on the desk is pressed.

3. SPARE PARTS LIST

Spare parts list of Monitor Distribution Board (M.D.B.) LBB 3203/00

	Description	Code number
X 1	P.C. male connector 2 x 32P	5322 265 64104
C 8	470NF 20 % 35 V	5322 124 10319
C 12	100UF 20 % 35 V	5322 124 21389
C 13	100UF 20 % 35 V	5322 124 21389
C 14	6,8UF 20 % 25 V	5322 124 14081
C 15	6,8UF 20 % 25 V	5322 124 14081
C 16	6,8UF 20 % 25 V	5322 124 14081
C 17	6,8UF 20 % 25 V	5322 124 14081
C 109	10OUF 20 % 35 V	5322 124 21389
C 110	10OUF 20 % 35 V	5322 124 21389
C 111	470NF 20 % 35 V	5322 124 10319
C 209	100UF 20 % 35 V	5322 124 21389
C 210	100UF 20 % 35 V	5322 124 21389
C 211	470NF 20 % 35 V	5322 124 10319
C 309	100UF 20 % 35 V	5322 124 21389
C 310	100UF 20 % 35 V	5322 124 21389
C 311	470NF 20 % 35 V	5322 124 10319
C 409	100UF 20 % 35 V	5322 124 21389
C 410	100UF 20 % 35 V	5322 124 21389
C 411	470NF 20 % 35 V	5322 124 10319
C 509	100UF 20 % 35 V	5322 124 21389
C 510	100UF 20 % 35 V	5322 124 21389
C 511	470NF 20 % 35 V	5322 124 10319
C 609	100UF 20 % 35 V	5322 124 21389
C 610	100UF 20 % 35 V	5322 124 21389
C 611	470NF 20 % 35 V	5322 124 10319
C 709	100UF 20 % 35 V	5322 124 21389
C 710	100UF 20 % 35 V	5322 124 21389
C 711	470N 20 % 35 V	5322 124 10319
C 809	100UF 20 % 35 V	5322 124 21389
C 810	100UF 20 % 35 V	5322 124 21389
C 811	470NF 20 % 35 V	5322 124 10319
D 1	BZX79-B16	4822 130 34268
F 1	1 Amp T	4822 253 30021
IC 1	HEF4051BD	4822 209 10262
IC 2	HEF4051BD	4822 209 10262
IC 3	NE5532FE	5322 209 86234
IC 4	HEF40106BD	4822 209 10318
IC 5	CNX36	5322 130 90097
IC 6	CNX36	5322 130 90097

•	Description	Code	Number
IC 7 IC 8 IC 9 IC 101	CNX36 CNX36 NE5534N NE5532FE	5322 5322 5322	130 90097 130 90097 209 86285 209 86234
IC 201	NE5532FE	5322	209 86234
IC 301 IC 401 IC 501 IC 601 IC 701	NE5532FE NE5532FE NE5532FE NE5532FE NE5532FE	5322 5322 5322	209 86234 209 86234 209 86234 209 86234 209 86234
IC 801 R 17 R 18 R 30 R 31	NE5532FE 9 x IK 2 % 0,125 W 9 x IK 2 % 0,125 W PTC 5E6 60 V PTC 5E6 60 V	5322 5322 5322	209 86234 111 90256 111 90256 116 40074 116 40074
R 110 R 111 R 210 R 211 R 310	PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V	5322 5322 5322	116 40074 116 40074 116 40074 116 40074 116 40074
R 311 R 410 R 411 R 510 R 511	PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V	5322 5322 5322	116 40074 116 40074 116 40074 116 40074 116 40074
R 610 R 611 R 710 R 711 R 810	PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V PTC 5E6 60 V	5322 5322 5322 5322	116 40074 116 40074 116 40074 116 40074 116 40074
R 811 TS 1 TS 2 TS 3 TS 4	PTC 5E6 60 V BD237 BD238 BD237 BD238	4822 4822 4822	116 40074 130 44235 130 40917 130 44235 130 40917
TS 5 TS 6 TS 101 TS 102 TS 103	BC547C BC557 BD237 BD238 BD237	4822 4822 4822	130 44503 130 44256 130 44235 130 40917 130 44235
TS 104 TS 201 TS 202 TS 203 TS 204	BD238 BD237 BD238 BD237 BD238	4822 4822 4822	130 40917 130 44235 130 40917 130 44235 130 40917

		Description	Code	Numb	per
	301	BD237			44235
	302	BD238			40917
	303	BD237			44235
	304	BD238			40917
TS	401	BD237	4822	130	44235
Tr C	402	BD238	4822	130	40917
-	403	BD237			44235
	404	BD237 BD238	4		40917
	501	BD237			44235
	502	BD237			40917
15	50Z	DU230	4022	130	40917
TS	503	BD237	4822	130	44235
TS	504	BD238	4822	130	40917
TS	601	BD237	4822	130	44235
TS	602	BD238	4822	130	40917
- '	603	BD237	4822	130	44235
_	604	BD238			40917
	701	BD237		. –	44235
	702	BD238			40917
TS	703	BD237			44235
TS	704	BD238	4822	130	40917
TS	801	BD237	4822	130	44235
_	802	BD238			40917
	803	BD237	4822		
	804	BD237 BD238			40917
13	003	DB 530	1044	150	40517

Rec	comm	<u>ended</u>	spare par	ts li	st Monitor	Distribution	Board M	.D.B.	LBB	3203/00
			Desc	ripti	on			Code	Numb	er
	x	1	P.C.	male	connector	2 x 32p		5322	265	64104
	D	1	BZX7	79-В16				4822	130	34268
	IC	1	HEF4	1051BD				4822	209	10262
	IC	2	HEF4	105 1BD						10262
	IC			32FE						86234
	IC		HEF	40106B	D					10318
	ĪC		CNX	36						90097
	IC		CNX	36				5322	130	90097
	IC	7	CNX	36				5322	130	90097
	IC		CNX							90097
	IC			534N				5322	209	86285
		101		532FE				5322	209	86234
		201		532FE				5322	209	86234
	TC	301	NES	532FE				5322	209	86234
		401		532FE				5322	209	86234
		501		532FE				5322	209	86234
		601		532FE				5322	209	86234
		701		532FE				5322	209	86234
	IC	801	NE5	532FE				5322	209	86234
	R	811	ው ሞር	5 E 6	60 V			5322	116	40074
			BD2		00 1			4822	130	44235
	TS TS		BD					4822	130	40917
		_	BD							44235
	TS TS		BD2					4822	130	40917
	TS	5	BC5	47C				4822	130	44503
			BC5					4822	130	44256
	TS	101	BD							44235
	TS		BD					4822	130	40917
	TS		BD					4822	130	44235
	ΨC	104	BD	238				4822	130	40917
		201	BD					4822	130	44235
		201		238				4822	130	40917
		202	BD							44235
		204	BD					4822	130	40917
	ጥሮ	301	BD	237						44235
		302	BD					4822	130	40917
		303	BD							44235
		304	BD					4822	130	40917
		401		237				4822	130	44235

TS	402	BD	238	4822	130	40917
TS	403	BD	237	4822	130	44235
TS	404	BD	238	4822	130	40917
TS	501	BD	237	4822	130	44235
	502	BD	238	4822	130	40917
TS	503	BD	237	4822	130	44235
TS	504	BD	238	4822	130	40917
TS	601	BD	237	4822	130	44235
TS	602	BD	238	4822	130	40917
TS	603	BD	237	4822	130	44235
				4000	420	40047
	604		238			40917
	701		237			44235
TS	702	BD	238			40917
TS	703	BD	237	4822	130	44235
TS	704	BD	238	4822	130	40917
TS	801	BD	237	4822	130	44235
	802		238			40917
	803		237			44235
			238			40917
T5	804	מם	430	7062	130	70717

LBB 3221/00 6 Channel Interpreter's Desk

CONTENTS:

- 1. INTRODUCTION 6 CHANNEL INTERPRETER'S DESK
- 2. CIRCUIT DESCRIPTION 6 CHANNEL INTERPRETER'S DESK
- 3. SPARE PARTS LIST

Figures:

- 1. Block diagram 6 channel interpreter's desk
- 2a Circuit diagram 6 channel interpreter's desk
- 3. Location of components 6 channel interpreter's desk 4. Level diagram

1. INTRODUCTION

The 6 channel interpreter's desk can be sub-divided into 4 sections: (See Fig. 1)

- Section 1. Microphone signal amplifier section
- Section 2. Monitor section for headphone or loudspeaker
- Section 3. Channel selection section

 The microphone signal or floor signal will be switched by this section to a choosen channel of the interpreter's bus bar. The channel number is selected by means of switches S4 to S10.
- Section 4. Audio sensing section Controls the channel LED's, MIC LED and the AFL LED.

CIRCUIT DESCRIPTION 6 CHANNEL INTERPRETER'S DESK (See block diagram Fig. 1 and circuit diagram Fig. 2a and b)

The block diagram Fig. 1 divides the circuit diagram Fig. 2a and b into 4 sections.

Section 1. Microphone section (IC1, 2, 7a, 12d, 13f, TS1, S2a, S1a and B1)

The microphone delivers a signal via pin 2 of X2 to the preamplifier IC1. The microphone receives a voltage of approximately 2 Volts via pin 1 of connector X2. The circuit TS1, D1, D2, D24, D25 and B1 are an automatic volume control A.V.C.

If the emitter voltage of TS1 falls below the reference voltage on the base of TS1 (via D24 or D25), then C3 is charged. C3 discharges through B1 as a result of which the amplification is restricted. In the case of fast peaks, C4 will discharge via B1. The microphone signal from the preamplifier IC1 is switched to the symmetrical amplifier IC2 by means of the microphone switch S1a or comm. switch S2a. When the microphone is off and none of the other interpreters desks use the choosen channel of this interpreter's desk, then the floor signal (X1/X6 pin 1 and 14) will be connected via IC7a and b to the symmetrical amplifier IC2. IC7a and b are controlled by section 3 via IC12d. Section 3 senses whether the choosen channel of one desk is in use by other interpreters' desks.

Section 2. Monitoring section (IC5, 6, 14, 15, T1, S3, S11 and TS2 to TS5)

The analoge multiplexers IC5 and 6 are controlled by means of switch S11 or S3c and IC16a. By means of the FL/AFL switch S3c, a choice can be made between monitoring the channels by means of S11 or monitoring the AFL channel. If the selection is made for monitoring the channels by means of S11 (S3 is open), then IC16a is disabled and S11 directly controls the multiplexer IC5 and 6. D4, D5 and D6 ensure that in the last three positions of S11 the multiplexer IC5 and 6 switches the floor signal to the monitoring section.

If switch S3 is set at FL/AFL monitoring (S3 is closed), then IC16a is enabled. The autofloor information from IC12d pin 14 of section 4 is now used to control the multiplexer IC5 and 6 via IC16a. If the auto floor (AFL) channel is not used, then pin 14 of IC12d is high and therefore pins 7, 5 and 3 of IC16a are high. The multiplexer, IC5 and 6, is controlled by IC16a and IC6 switches the floor signal to the headphone via T1, TC14 and 15.

When auto floor is used, pin 14 of IC12d is low. The multiplexer IC5 then switches the AFL channel to the headphone via T1, IC14 and 15.

In the case where the interpreter provides auto floor, then pin 14 of IC12d stays high and IC5 switches the floor to the headphone via T1, IC14 and 15. The choosen symmetrical channel goes via T1 to the assymmetrical operational amplifier IC14. Volume control is achieved by R28. The frequency response is

boosted at 4 kHz by C12, R24, R35 and C13. R33 is used to obtain tone control around 4 kHz. A signal is presented to the headphone via operational amplifier IC15 and TS2 to TS5 (X5). The booth loudspeaker can be connected to this signal via X3 pins 1 and 2. Section 3 ensures that the booth loudspeaker can be switched "on" and "off" (X3-5).

Section 3. Channel selection (IC3, 4, 7c, 10, 13a, b, c, e, 16b, S1b, S2b, S4 to S10)

With the interlocking switches S5 to S10a, the channel can be choosen for the microphone signal. Via R49, a logic "1" present on pin 11 of IC13a except when the comm. button S2 is closed. When the comm. button is not used, then pin 8 at IC13b is at a logic "1" and the priority encoder IC10 receives the channel information from S5a to S10a. The code on the control lines pin 6, 7 and 9 from IC10 corresponds to the choosen channel by S5a to S10a. The control lines ensure that the multiplexer IC3 and 4 switches the microphone signal on 13 and 3 to the right channel on the interpreters' bus bar. When the comm. button is pressed, then pin 8 of IC13b is at a logic "O" S5a to S10a have no influence on IC10. All inputs of IC10 pin 1 to 3 and 10 to 13 are low except for pin 4, this is the combination for the comm. code. The control lines pin 6, 7 and 9 ensure that IC3 and 4 switch the microphone signal to the comm. channel. The purpose of R104 and R105 is to ensure that the d.c. signals on both sides of the switches IC3 and 4 are at the same magnitude (suppress transients).

Use of the AFL channel:

If, for example, via switch S4, channel 6 is selected then when the interpreter selects this channel by means of S10a, the microphone signal will be switched to the AFL channel via the analoge switch IC7c. The microphone signal is of course, also switched to channel 6 by IC3 and 4. The control lines of IC7c pins 12 and 6 come from switch S4. The purpose of R118 and R119 is to ensure that the d.c. signals on both sides of the switch IC7c are at the same magnitude. On all channels of the interpreters' bus bar, a d.c. voltage of 2/3 VB 18V6 is present (VB= power supply of 28V) These d.c. voltages come from the Central Supply Unit (int. / mon. panel).

If an activated microphone is switched on a channel, then the d.c. level of this channel becomes 1/3 VB 9V3 via S1b, D19, R100 and R101. For the AFL channel this will happen via S1b, D20, R102 and R103. When the comm. channel is used the d.c. level of 1/3 VB becomes via S2b, D16, D19, R100 and R101. This difference between the d.c. levels is used by section 4 of all interpreters desks which detect these levels and switch on the LED's of the engaged channels.

The difference of d.c. levels is also used for switching the floor signal to the unused channels. IC12a detects the d.c. level of the selected channel of the interpreter's desk. When no other interpreter's desk uses this selected channel then

the d.c. level of this channel is 2/3 VB 18V6. IC12a detects this in pin 2 and pin 1 becomes low. Via the inverter IC13f the analoge switch IC7a and b are enabled. The floor signal goes now via the symmetrical amplifier IC2 to the multiplexer IC3 and 4 which switches it to the selected channel. The booth loudspeaker is switched on and off by the interpreter's desk which is set to "master" by switch S12b. Only when no interpreter's desk in the same booth has a switched on microphone, does the "master" interpreter's desk switch on the booth loudspeaker via X3 and 5. When the microphone switch is in the off position then IC16b is enabled via IC13e and S1b. Pin 13 of IC16b becomes high (21V5) and switches the booth loudspeaker on only when the control line send loudspeaker off. From the slaves via X1 pin 23 are high. The loudspeaker can be switched off via D21 when the comm. button S2b is used. The on/off microphone information from pin 11 of IC16b is used by section 4.

Section 4. Audio sensing section (IC11, 12a, b, c, IC8, IC9, D7 to D15 and TS9)

IC11, IC12a, b and c detect if a channel is used or not. When for example channel 1 is selected on an other interpreter's desk and its microphone is on then the d.c. voltage on the line is 1/3 VB 9V3 (via R100, R101, D19 and S1b/S2b of the other desk). The audio signal will be cancelled by R69 and R70 so on pin 5 of IC11a only the d.c. voltage of 1/3 VB = 9V3 is available. This d.c. voltage is lower than the 12V7 on pin 6 so that pin 7 becomes low and LED D7, will light because the switch IC8a is disabled. In the case where the interpreter's desk provides channel 1, there will be, via S5b, 21V5 present on pin 5 of IC11a. Pin 5 is now higher then pin 6 and therefore pin 7 becomes high so that the analoge switch IC8a is closed and D7 will not be lit. The voltage of 21V5 on S5b comes from section 3 IC16b pin 11 when the interpreter's microphone is switched on.

For the auto floor channel the same principle is used as for channel 1 to 6. IC12d ensures, via the switch IC19d, that the AFL LED lights or not. When one of the other interpreters uses the AFL channel, then a d.c. voltage of 1/3 VB = 9V3 is present on this channel. IC12d detects this and pin 14 becomes low and D14 lights up. In the case where the interpreter provides auto floor, there will be, from S4 of section 3, 21V5 present on pin 12 of IC12d via D23 and R83. Pin 14 of IC12d becomes high and the AFL LED will not light up. Pin 14 of IC12d is also used by IC16a section 2 for monitoring the

floor or auto floor channel via the headphone.

3. SPARE PARTS LIST

Spare parts list of 6 channel interpreter's desk LBB 3221/00

	Description	Code number
	Rubber foot Knob for AFL selector S4 Cable and connector assembly X6	5322 462 40211 5322 414 30084 5322 321 21075
	Cable relief grommet	5322 325 64049
	Flat spring for microphone handle Connector for microphone X2 Microphone capsule	5322 492 63142 5322 268 40278 5322 242 20094
c	100 PF 100 V for capsule Protective cap for microphone	4822 122 31715 5322 462 40728
	Wind up for microphone Cap and microphone handle assembly	5322 462 40731 5322 310 30601
	Microphone assembly	5322 310 30602
	Knob for comm. switch S2 Tumbler knob for mic. switch S1	5322 414 30083 5322 414 30085
	Tumpler knob for mic. Switch 5:	JJ22 414 J000J
	Knob for channel selector switch S11	5322 414 30082
	Reducing bush for knob S11	5322 532 21041 5322 414 70002
	Cap black for knob S11 and R 28	5322 414 70002
	Knob for tone control R33 Cap black for knob R33	5322 414 70001
	Knob for volume control R28	5322 414 30002
X 1	D Connector 25 P	5322 267 60147
X 2	Pin contact	5322 535 84341
S 5 TO S 10		5322 276 60227 5322 277 10797
s 3	Tumbler switch FL/AFL	3322 277 10737
s 1	Tumbler microphone switch	5322 277 10798
S 12	Slide switch L.S.	5322 277 20986
S 2	Push switch	5322 276 20339 5322 273 30314
S 11	Rotary switch 10 positions Rotary switch 7 positions	5322 273 30314
S 4	Rotary switch / positions	3322 273 30313
в 1	2F735	5322 130 34912
C 2	4,7UF 50 % 63 V	4822 124 20726
C 3	1000UF 50 % 10 V	4822 124 20768
C 4	15UF 10 % 16 V	4822 124 20977
C 10	470NF 20 % 35 V	5322 124 10319
c 11	15UF 10 % 16 V	4822 124 20977
C 14	3,3UF 20 % 35 V	5322 124 14067
C 15	100UF 50 % 40 V	4822 124 20715
C 16	100UF 50 % 40 V	4822 124 20715
C 17	100UF 50 % 40 V	4822 124 20715

	Description				Code n	ımber
C 18 C 19 C 20 C 21	6,8UF 20 % 47UF 50 % 33UF 40 % 10UF 50 %	25 V 25 V 10 V 16 V			4822 12 4822 12	24 14081 24 20699 24 20945 24 14066
C 22 C 23 C 24 C 25 C 26	10UF 50 % 10UF 50 % 10UF 50 % 10UF 50 % 15PF 2 %	40 V 40 V 40 V 40 V 500 V			4822 12 4822 12 4822 12	24 20708 24 20708 24 20708 24 20708 24 20708 22 31197
C 27 C 28 C 29 C 30 C 31	15PF 2 % 10UF 50 % 10UF 50 % 10UF 50 % 10UF 50 %	500 V 40 V 40 V 40 V 40 V	, .		4822 12 4822 12 4822 12	22 31197 24 20708 24 20708 24 20708 24 20708
C 38 C 43 D 1 D 2 D 3	10UF 50 % 10UF 50 % BZX79-B8V2 BAW62 BZX79-B12	16 V 16 V			5322 13 4822 13 4822 13	24 14066 24 14066 30 34382 30 30613 30 34197
D 4 D 5 D 6 D 7 D 8	BAW62 BAW62 BAW62 CQW54 CQW54			•	4822 13 4822 13 4822 13	30 30613 30 30613 30 30613 30 32069 30 32069
D 9 D 10 D 11 D 12 D 13	CQW54 CQW54 CQW54 CQW54 CQW54				4822 13 4822 13 4822 13	30 32069 30 32069 30 32069 30 32069 30 32069
D 14 D 15 D 16 D 17 D 19	TIUG164 BZV46-1V5 BAW62 BZX79-B16 BAW62			÷	5322 13 4822 13 4822 13	30 32587 30 34865 30 30613 30 34268 30 30613
D 20 D 21 D 22 D 23 D 24	BAW62 BAW62 BAW62 BAW62 BAW62				4822 13 4822 13 4822 13	30 30613 30 30613 30 30613 30 30613 30 30613
D 25 IC 1 IC 2 IC 3 IC 4	BAW62 TDBO156DP NE5532FE HEF4052BD HEF4052BD				5322 20 5322 20	30 30613 99 82804 99 86234 99 10263 99 10263

	Description		Code	numr	er
IC 5	HEF4052BD		4822	209	10263
IC 6	HEF4052BD		4822	209	10263
IC 7	HEF4066BP		5322	209	14104
IC 8	HEF4066BP		5322	209	14104
IC 9	HEF4066BP		5322	209	14104
10 3					
IC 10	HEF4532BD				10278
IC 11	LM324N				80587
IC 12	LM324N				80587
IC 13	HEF40106BD				10318
IC 14	TDBO156DP		5322	209	82804
		•			
IC 15	NE5532FE				86234
IC 16	HEF40097BD				10317
R 4	Pot.meter 2K2	0,5 W			14008
R 28	Carb. pot. 22K				20799
R 33	Carb. pot 2K2		5322	101	20798
			E222	444	00500
R 52	9 X 100K				90599 40074
R 109	PTC 5E6 60 V				60264
T 1	Transformer				44503
TS 1	BC547C				41053
TS 2	BC639				41078
TS 3	BC640		4022	130	41070
TS 4	BC639		4822	130	41053
TS 5	BC640				41078
TS 6	BC547C				44503
TS 7	BC557B				44568
TS 8	BC557B				44568
13 0	20012				
TS 9	BC547C				44503
TS 10	BC547C				44503
X 4	Micr. jack				30609
X 5	Headphone jack		5322	267	30522

Recommended spare parts list 6 channel interpreter's desk LBB 3221/00

	Description	Code	Numb	er
	Rubber foot Knob for AFL selector S4 Cable and connector assembly X6 Cable relief grommet	5322 5322	414 321	40211 30084 21075 64049
c	Flat spring for microphone handle Connector for microphone X2 Microphone capsule 100 PF 100 V for capsule Protective cap for microphone	5322 5322 4822	268 242 122	63142 40278 20094 31715 40728
40	Wind up for microphone Cap and microphone handle assembly Microphone assembly Knob for comm. switch S2 Tumbler knob for mic. switch S1	5322 5322 5322	310 310 414	40731 30601 30602 30083 30085
	Knob for channel selector switch S11 Reducing bush for kno S11 Cap black for knob S11 and R28 Knob for tone control R33 Cap black for knob R33	5322 5322 5322	532 414 414	30082 21041 70002 30001 70001
X 1 X 2 S 5 to S 10 S 3	Knob for volume control R28 D Connector 25 P Pin contact Push switch Tumbler switch FL/AFL	5322 5322 5322	267 535 276	30002 60147 84341 60227 10797
S 1 S 12 S 2 S 11 S 4	Tumbler microphone switch Slide switch L.S. Push switch Rotary switch 10 positions Rotary switch 7 positions	5322 5322 5322	277 276 273	10798 20986 20339 30314 30313
B 1	2F735	5322	130	34912
C 3	1000UF 50% 10 V	4822	124	20768
D 1 D 3	BZX79-88V2 BZX79-812			34382 34197
D 7 D 8	CQW54 CQW54			32069 32069
D 9 D 10 D 11 D 12 D 13	CQW54 CQW54 CQW54 CQW54 CQW54	4822 4822 4822	130 130 130	32069 32069 32069 32069 32069

D 14	TIUG164	5322 130 32587
D 15	BZV46-1V5	5322 130 34865
D 17	BZX79-B16	4822 130 34268
2		
IC 1	TD80156DP	5322 209 82804
IC 2	NE5532FE	5322 209 86234
IC 3	HEF4052BD	4822 209 10263
IC 4	HEF4052BD	4822 209 10263
IC 4	1121 100000	
IC 5	HEF4052BD	4822 209 10263
IC 6	HEF4052BD	4822 209 10263
IC 7	HEF4066BP	5322 209 14104
IC 8	HEF4066BP	5322 209 14104
IC 9	HEF4066BP	5322 209 14104
10 3	121 4000Dr	
IC10	HEF4532BD	4822 209 10278
IC10	LM324N	4822 209 80587
	LM324N	4822 209 80587
IC12	HEF40106BD	4822 209 10318
IC13	TDBO156DP	5322 209 82804
IC14	108013605	3322 203 02001
IC15	NE5532FE	5322 209 86234
IC15	HEF40097BD	4822 209 10317
R 4	Pot. meter 2K2 0,5W	5322 101 14008
R 28	Carb. pot. 22K	5322 101 20799
R 20 R 33	Carb. pot. 2K2	5322 101 20798
к ээ	Carb. poc. zkz	
т 1	Transformer	5322 140 60264
TS 1	BC547C	4822 130 44503
TS 2	BC639	4822 130 41053
TS 3	BC640	4822 130 41078
15 3	BC040	2020 100 0101
TS 4	BC639	4822 130 41053
TS 5	BC640	4822 130 41078
	BC547C	4822 130 44503
TS 6	BC5578	4822 130 44568
TS 7	BC557B	4822 130 44568
TS 8	BCJJ/B.	
TS 9	BC547C	4822 130 44503
TS 9	BC547C	4822 130 44503
	Micr. jack	5322 267 30609
X 4 X 5	Headphone jack	5322 267 30522
x 5	neauphone jack	YYYE EY! YVV

CONTENTS

1.	CCS400 in general. Brief description of system	
2.	Delegate's unit	LBB 3350/00 LBB 3450/00
3.	Chairmans unit	LBB 3351/00 LBB 3451/00
4.	Central unit	LBB 3300/00
5.	Microphone plug in unit	LBB 3302/00
6.	Interpreter + monitor distribution panel	LBB 3301/00
7.	Monitor distribution board	LBB 3203/00
8.	6ch. interpreter desk	LBB 3221/00
9.	Flush mounting delegate's unit	LBB 3360/20
10.	Flush mounting chairmans unit	LBB 3361/20
11.	Central control desk	LBB 3386/40 LBB 3386/70
12.	1e line trouble shooting	
13.	2e line trouble shooting	

LBB 3360/20 FLUSH MOUNTING DELEGATE'S UNIT

1. INTRODUCTION DELEGATE'S UNIT

The delegate's unit can be divided into 4 parts:

- Part 1 Microphone amplifier
 Amplifies and limits the microphone input signal.
- Part 2 Audio amplifier
 Amplifies the audio signal, and distributes it to the loudspeaker connection.
- Part 3 Audio switch off circuit
 Compares the audio signal, and the microphone signal.
 Automatically switches "off" the microphone, when there is no input from the delegate's unit for approximately 30 to 45 seconds.
- Part 4 Microphone and loudspeaker switching circuit
 Switches the microphone and loudspeaker on or off,
 depending on the status of the control signals. The
 control signals comprise of the microphone, remote,
 priority and disable request signals, plus the output
 signal from the auto switch off circuit.

2. CIRCUIT DESCRIPTION DELEGATE'S UNIT

(see circuit diagram)

When the system is switched "on", capacitor C33 charges to the supply voltage 27V. Resistors R48, and R50 causes the voltage on the + input 5 of IC3b to be lower than on the negative input 6. This state is valid until the power supply voltage reaches 18V. The difference negative voltage, between the negative input and the positive input of IC3, causes the comparator output to be 0V. This OV is fed to the negative input 2 of IC3a, because the voltage on the positive input 3 is +6V, the comparator output will be high i.e. logic "1". Logic "1" resets the flip-flop IC5a. When switching on the system, if the supply voltage exeeds 15V, the zener diode D11 will conduct, causing the voltage at input 6, to remain at a constant level of 15V. If the power supply voltage exeeds 18V, the voltage at the input of IC3b pin 5, is higher than the 15V on input 6 causing a positive difference voltage, ensuring that the comparator no longer clamps the voltage to zero. 15V is applied to the negative input of IC3a, pin2, which is higher than the +6V on the positive input 3, therefore the output from the comparator is 0V (logic "0"). Logic "0" will no longer reset the flip-flop IC5, and the delegate unit is now ready for use.

Switching Control Circuit General

The switching control circuit IC5a, IC2d, IC3a, and IC4a/b carries out all the switching functions in the delegate unit. Switching is due to the state of the call microphone signal, priority, disable request and remote control lines, the microphone signal or the audio signal to the loudspeaker. IC5a is a flip-flop, who's output is logic "0" (0V) or logic "1" (15V) depending on its input signals. When the output is 0V, the microphone is switched "off" from the pre-amplifier to the audio line. When the output is 15V, the microphone signal via the pre-amplifier, will be switched to the audio line and the loudspeaker is switched "off".

The priority and disable request lines are via a comparator circuit connected to the reset and data input. The priority signal, when active, ensures that the flip-flop will be reset and the active disable request signal ensures that the data input becomes "0". The microphone call signal, from the microphone button, is applied to the clock input of IC5, and the remote call signal to the set input. The clock or set pulse can make the flip-flop output logic "1", causing the microphone to be switched "on" and the loudspeaker "off".

The audio comparator output, is connected via a comparator to the reset input of IC5. Therefore after the delay time of approximately 30 to 45 seconds, the flip-flop will be reset, and the switched "on" microphone is switched "off".

Listening

In the listening position, the switching control circuit, switches via the loudspeaker switching circuit the audio signal to the audio amplifier and to the loudspeaker. The microphone signal is disconnected from the line via the microphone switching circuit. During listening the clock input of IC5 is "low" because the call button has not been pressed. Because there is no priority, the priority line is at 27V. The voltage on the negative input 2 of IC3a, via D9, R34 and R36 is approximately 12V. Because the positive input is +6V, the compatator output is OV. This OV is applied to the reset input of IC5. The disable request, connected to pin 13 of IC2d is inactive, therefore the negative input is approximately OV. The positive input to IC2d pin 12 is +10V therefore the comparator does not clamp the data input of IC5 to "low". At last there is no remote control, meaning that the remote line which is connected to the set input of IC5 is OV and does not set the flip-flop.

The output of the flip-flop, which is at OV, is connected via a resistor and capacitor network, to transistor TS5. This circuit forms the microphone switching circuit. OV on the base of TS5 causes it to not conduct, therefore TS4 which is a part of the pre-amplifier is also non-conductive. The microphone signal on the base of TS4 therefore does not reach the audio line, and acts as if it were switched "off"

The loudspeaker switching circuit, consists of an external NPN transistor and a relay. The output of IC5 switches via the transistor the relay which has a break contact in serial with the loudspeaker.

Audio amplifier

The amplifier consists of IC1b, TS6, TS7 and associated components. The audio signal from the audio line is fed via C9 and R19 to the positive input of IC1b, the ground reference is fed to the negative input. The operational amplifier, amplifies the line signal. The output is a DC level of approximately 14 Volts on which the audio signal is superimposed. The balanced output stage TS7 and TS6 provide the current for driving a low impedance speaker.

Call position

In the call position, the microphone switching circuit is activated, by the switching control circuit. The microphone signal is fed via the Pre-amplifier and switched to the audio line. The loudspeaker is fed via the loudspeaker switching circuit, and switched "off" from the audio amplifier.

During a call, the clock input of IC5 is logic "1" because the call button is pressed. No priority or remote signals are present, therefore the reset input and the set input are at logic "0". Because disable request is inactive, the data input of IC5 stays "1". On the positive edge of the clock input, caused by the call button, this "1" will be clocked to the output. The inverse output will now be "0" and is fed back to the data input. This means that when the next clock pulse occurs, the output will go "low" again. The "1" on the output of the flip-flop is fed to the base of TS5 in the microphone switching circuit, causing it to conduct, whereby TS4 also will be conductive. Current can now flow via the emitter of TS4 to earth and LED D4 illuminates. The microphone signal is taken from the collector of TS4 and fed to the line.

Pre-amplifier

TS4 and associated consists of ICla, pre-amplifier components. A DC voltage is fed via TS1 and applied to the electret microphone line. The current flowing from TS1 to electret microphone, ensures that the FET inside the microphone is conducting. The analogue microphone signal is applied by the microphone to the microphone line and fed via C1 and C2 to the + and - inputs of operational amplifier ICla. Cl ensures that the DC voltage for the electret microphone, cannot reach the op-amp. A DC voltage of approximately 4V is fed via R5, R6 and R8 to the microphone signal on the inputs of ICla. C2 ensures that this DC voltage is not influenced by TS2 and TS3. The output of the opamp ICla is fed back via R11/C48 to the - input and via the resistor between X2-5 and X2-6. The resistance value is dependant on the sensitivity of the electret microphone. In this way differences in sensitivity of the microphones are compensated. The amplified signal, a DC level of approximately 10V on which the audio signal is superimposed, is applied to the base of TS4.

Limiter

The limiter consists of TS2, TS3 and associated components. When the AC output signal of the op-amp IC1a reaches a value greater than 1.4V, D1 or D2 will conduct and so will TS2 or TS3. When either one of these transistors is conducting, the input signal to the pre-amplifier decreases. A sample of the current from the microphone flows via the conducting transistor to ground and the signal is limited.

The limiter is divided into two sections, the right section D2 and TS3 for the positive AC and the left section D1 and TS2 for the negative AC of the microphone signal.

Resetting "call" position

If the call button S1 is pressed again, IC5 receives another positive pulse on its clock input. The inverse output pin 2 was "low", and so is the data input of the flip-flop. After the clock-pulse the "0" will appear on the output, therefore the inverse output will go "high" and so will the data input. This "low" output disables the microphone signal and enables the connected speaker.

Priority

When the chairman requires priority over the delegate microphones, the priority line is at about 1.5V. Due to R37 and R99 1V is applied to the - input of IC3a. Because of the 6V on the + input the comparator output is at about 15V, which is logic "1". Via the reset input IC5 is now reset. The set input remains at "0" and the data input becomes "1". The flip-flop output was "1" but will now go "low" and the microphone signal is switched off. As long as the priority line stays on 1.5V the reset input of IC5 stays "high" and clock pulses from the call button will have no influence on the flip-flop and the microphone remains switched off.

Disable request

When the adjusted number of microphones are switched on simultaneously, the disable request line reaches approximately 27V. This 27V is applied to the - input of IC2d. Because the + input is at +10V the output of the comparator becomes 0V. The data input which is on +15V is now clipped to 0.7V, which is logic "0" to the flip-flop. When the microphone is switched "on" this "0" will be clocked to the output, but because the output already was "low" the status of the delegate will not change. During the disable request the microphone can be switched off by pushing the call button.

When the number of switched "on" microphones is less than the maximum number, the disable request line becomes 0V. The output from the comparator IC2d is no longer clamping the data input to zero. The delegate unit is now in the listening mode and the delegate is able to switch "on" his microphone by pressing the call button.

Remote control

When a central control desk is included in the system, the call button can also be used as a microphone request button. This can only be achieved, when the control desk is in manual mode.

Three situations exist: 1 No central control deks connected.

- 2 Central control desk connected, and positioned in the auto mode.
- 3 Central control desk in the manual mode

When a central control desk is connected in the auto mode, remote line is higher than 2/3V+. When no desk is connected resistor R38, which is connected to V+ (27V) ensures that the remote line is higher than 2/3V+. The remote line is fed via C29, and connected to the set input of the flip-flop. C29 ensures that the DC voltage is blocked, and the set input is "0". The delegate is able to switch "on" or "off" his microphone via the call button as usual. When the central control desk is in the manual mode, the voltage on the remote line is lower than 2/3V+. flip-flop IC5a is not set due to capacitor C29. Because the input is 2/3V+, the output is now 0V. When the delegate presses his call button; the output of IC5a becomes 15V, but is clamped behind R59 by IC4a and D10a which will illuminate. The 15V output of the flip-flop is also applied to the base of TS9, which causes it to conduct. Current now flows from the request line, this is a sign for the central control desk that a request has been made. The operator of the central control desk makes the remote line higher than 2/3V+, the output of the comparator IC4a then becomes 15V, and the voltage at R59 is no longer decreased, therefore the 15V is applied to the base of TS5. The microphone will be switched "on" and the loudspeaker "off".

The operator is also able to switch "on" a delegate microphone, even though the delegate has not requested it. The voltage on the remote line is now switched from a value much lower than 2/3V+, to a value greater than 2/3V+ (about V+). Because of the fast rise time and the high voltage step, this pulse passes through the differentiation network C29 and R45 and sets the flip-flop IC5 via the set input. The output of the flip-flop is now "high" and the microphone is switched "on".

The operator is able to switch "off" the microphone, by switching the voltage on the remote line from a value greater than 2/3V+, to a voltage much less than 2/3V+, via C26 to the -input of IC3a, which is 27V when there is no priority and is reduced to below 6V for a short moment during the voltage drop. This results in a reset pulse from IC3a being fed to the reset input of IC5a and the microphone is switched off.

When the central control desk is used, the priority line from the chairmans unit is not connected to the other delegate units, but to the central control desk. When a chairman presses his "priority button", two situations exist: the central control desk is in manual, or in auto mode.

In manual mode, the central control desk generates a DC level, which is greater than the 6V, but lower than the 2/3V+ (18V) on the priority line. This voltage is then fed to the + input of IC4b, ensuring that the comparator output is 0V. When the microphone is switched on, the voltage on the anode of D10 and resistor R59 is decreased and the microphone is switched off.

When the priority button is released by the chairman, the priority line becomes approximately 27V and the output of IC4b goes to 15V, therefore the voltage on the anode of D10 is no longer reduced and the microphone is switched on again. So when the control desk is in manual mode, priority from the chairman doesn't switch off the microphone but only mutes it.

In the "auto mode" the microphone is switched off when the chairman takes priority and remains off when the priority button is released again. In auto mode the central control desk generates a DC level lower than 6V on the priority line after a priority call. This voltage is then fed to the - input of IC3a and because the + input is at +6v, the comparator output is 15V and resets the flip-flop. When the priority is released, the priority line goes to 27V. The output of IC3a is now at 0V, and the flip-flop is no longer reset, the microphone remains switched off and the delegate unit is now in the listening position.

Audio level comparator

The audio level comparator ensures that when a delegate does not speak into his microphone for approximately 30 to 45 seconds, the flip-flop IC5 will be reset via comparator IC3a.

At input 3 of IC2a a DC level of approximately 9V is applied. The microphone signal is fed to the - input of IC2a. The op-amp substracts the microphone signal from the DC level and amplifies the resulting signal. The output signal is now at a 9V DC level on which the amplified microphone signal is superimposed. This signal is then fed to the - input of IC2b; on the + input the audio signal from the disable request line is applied which is superimposed on a 9V DC level from R28. The output of IC2b is the result of the substraction of the microphone signal and the line signal superimposed on a 9V DC level. This output voltage can reduce the voltage on X. The output of IC2a, which is a 9V DC level with the microphone signal superimposed on, can reduce the voltage on Y. When only the delegate is using his unit, the line signal will be the same as the microphone signal and the AC difference voltage at the output of IC2b is 0V, only the 9V DC level is on the output. The voltage on X is now the 9V plus the forward voltage of D6, adding up to a total of 10V. When more than one delegate is speaking, the line signal is greater than the microphone signal.

The difference voltage on the output of IC2b ensures that the 10V on X is reduced.

If the delegate unit is silent, there is no microphone signal, therefore the AC voltage on the 9V DC level at the output of IC2a is 0V. The voltage on Y is at 9V plus the forward voltage of D7 which is 10V. When the delegate microphone is in use, the negative going part of the microphone signal ensures that the 10V on Y is reduced.

X is applied to the + input of IC2c and Y to the - input. When X is greater than Y, the output of the op-amp is at 15V and when Y is greater than X the output is 0V. Therefore when the delegate uses his microphone (he has to speak louder when others are using their microphones) the output of IC2c will be 15V and charges C24. When the delegate stops speaking, the output of IC2c will be 0V and C24 discharges via R35. The voltage on C24 is fed via R36 to the - input of IC3a, when the voltage becomes lower than 7V, the comparator output which was on 0V becomes 15V and resets flip-flop IC5 and the microphone is switched off.

The time taken for C24 to discharge from 15V to 7V is approximately 30 to 45 seconds. When the microphone is switched off, the output of IC2c becomes 15V independant of the number of other switched on microphones. This is because Y is pulled down to 1V by the output of flip-flop IC5a via diode D8.

By placing jumper S3 in the a-b position, C24 cannot discharge and the audio comparator is disabled.

Pos.:	Description:	Code	number:
	PCB CONNECTOR 8 PENS DELEGATE CABLE ASSY	5322	530 84092 321 21658 214 90027
	PCB ASSY KNOB		414 20129
C1-28 C2-10-17-27-	10nF 50V	4822	122 32442
40-44-45	100nF 50V		122 32839
C3-20	10uF 25V	4822	124 21732
C4-6-8-15-			
	4.7uF 25V		124 21966
C5	0.47uF 25V		124 21453
C7	47uF 10V		124 21975
C9	3.3nF 50V		122 31969
C11	47pF 50V	4822	122 31772
C12-13-23-25-	100-7 507	4000	122 31765
	100pF 50V 22uF 25V		124 21646
C14-35 C18	82nF 50V		124 21646
	100uF 25V		124 20701
C24 C26-29	4.7nF 50V		122 31784
C32-36	47uF 25V		124 20699
C32 30	47uF 40V		124 20033
C47	22nF 63V		122 31797
C48	470pF 63V		122 31727
D1-2-5-6-7-		- •	
8-9-12-13-17	DIODE BAV70	5322	130 34331
D3	BZX84-C5V1		130 32835
D11	BZX84-C15		130 33662
D19	BZV46-2V0	4822	130 31248
D20	BZX79-B30		130 34328
D21	BZX84-C6V2		130 33671
D10A	TIUG164		130 32587
D4A	CQW54-V1		130 32704
IC1	LF353N		209 81395
IC2	LM324FP		209 71598
IC3-4	LM393FP		209 71599
	HEF4013BT		209 14477
R1-96	5K6 0.126W		111 90572
	47K 0.125W 390E 0.125W		111 90543
R3 R4-11-13-72-99			111 90138
R6-29-52			111 90249 111 90267
R7-30-34-42-47			111 90267
R7-30-34-42-47	220K 0.125W		111 90092
R9	220E 0.125W		111 90197
R12-15-19-22-	2201 0.1231	1022	111 901/10
24-28-36-39-			
40-41-43-45-			
49-53-55-60-			
95-97	100K 0.125W	4822	111 90214
R14	560E 0.125W		111 90113

R16	1K5 0.125W			90151
R17-58	12K 0.125W	4822	111	90253
R18-32-33-37-				
44-102-103	1M 0.125W			90094
R20-26-31	18K 0.125W			90238
R21	100E 0.125W	5322	111	90091
R23	22K 0.125W	4822	111	90251
R27	39K 0.125W	5322	111	90108
R35	4K7 0.125W	5322	111	90111
R38	10M 0.125W	5322	111	91141
R48	150K 0.125W	5322	111	90099
R50	27K 0.125W	4822	111	90542
R51-93	68K 0.125W	4822	111	90202
R54	PTC	5322	116	44008
R56-57-104	15K 0.125W	4822	111	90196
R59	2K7 0.125W	4822	111	90569
R82-83	3K9 0.125W	4822	111	90571
R92	82K 0.125W	4822	111	90575
R94	680E 0.125W	4822	111	90162
R98	390E 2.5W	5322	116	54401
S 3	LINK, JUMPER	5322	290	60298
S3	JUMPER SOCKET, MALE	5322	265	64028
S1		4822	276	11188
TS1-3-4-5		5322	130	42755
TS2	BC857C	5322	130	42756
TS6-8-9	BC817-40	4822	130	42615
TS7	BC807-40	5322	130	60123
X9	DIN SOCKET	5322	267	54107
	8-P DIN PLUG, MALE	5322	265	40535

2. CIRCUIT DESCRIPTION DELEGATE UNIT

(see circuit diagram)

When the system is switched "on", capacitor C33 charges to the supply voltage 27V. Resistors R48, and R50 cause the voltage on the + input 5 of IC3b to be lower than on the negative input This state is valid until the the power supply voltage reaches The difference negative voltage, between the negative input and the positive input of IC3, causes the comparator output to be The OV is applied to the negative input 2 of IC3a, because the voltage on the positive input 3 is +6V, the comparator output will be high i.e. logic "1". Logic "1" resets the flip-flop IC5a. when switching on the system, if the supply voltage exeeds 15V, the zener diode D11 will conduct, causing the voltage at input 6 to remain at a constant level of 15V. If the power supply voltage exeeds 18V, the voltage at the input of IC3b pin 5, is higher than the 15V on input 6 causing a positive difference voltage, ensuring that the comparator no longer clamps the voltage to zero. 15V is applied to the negative input of IC3a, pin2, which is higher than the +6V on the positive input 3, therefore the output from the comparator is 0V (logic "0"). Logic "0" will no longer reset the flip-flop IC5, and the delegate unit is now ready for use.

Switching Control Circuit General

The switching control circuit IC5a, IC3a and IC6 carries out all the switching functions in the chairmans unit. Switching is due to the state of the call microphone signal, priority, and remote control lines, the microphone signal or the audio signal to the loudspeaker. IC5a is a flip-flop, who's output is logic "0" (0V) or logic "1" (15V) depending on its input signals. When the output is 0V, the microphone is switched "off" from the preamplifier to the audio line. When the output is 15V, the microphone signal via the pre-amplifier, will be switched to the audio line and the loudspeaker is switched "off".

The microphone call signal, from the microphone button, or from the microphones remote control line via IC6, is fed to the clock input of IC5. The clock input to IC5 causes the Q output to go "high", therefore the microphone will be switched on and a connected loudspeaker off. The priority signal from the priority call button is fed to TS10 and TS11, which ensures that when the priority button is pressed, the microphone is switched on and a 1.5V DC level is switched via the priority line to the delegate units or central control desk when used.

Listening

In the listening position, the switching control circuit, switches via the loudspeaker switching circuit the audio signal to the audio amplifier and to the loudspeaker. The microphone signal is disconnected from the line via the microphone switching circuit. During listening the clock input of IC5 is "low" because the call button has not been pressed and no remote call via IC6 has been applied. Because there is no set pulse, the output of the flip-flop remains "low". This output is connected to TS5, which forms the microphone switching circuit. OV on the base of TS5 causes it to not conduct, therefore TS4 which is a part of the pre-amplifier is also non-conductive. The microphone signal on the base of TS4 therefore does not reach the audio line, and acts as if it were switched "off"

The loudspeaker switching circuit, consists of an external NPN transistor and relay. The output of IC5 switches via the transistor the relay which has a break contact in series with the loudspeaker.

Audio amplifier

The amplifier consists of IC1b, TS6, TS7 and associated components. The audio signal from the audio line is fed via C9 and R19 to the positive input of IC1b, the ground reference is fed to the negative input. The operational amplifier, amplifies the line signal, and the output is a DC level of approximately 14 Volt on which the audio signal is superimposed. The balanced output stage TS7 and TS6 provides the current for driving a low impedance speaker.

Call position

In the call position, the microphone switching circuit is activated by the switching control circuit. The microphone signal is fed via the Pre-amplifier and switched to the audio line. The loudspeaker is fed via the loudspeaker switching circuit, and switched "off" from the audio amplifier.

The inverting output of flip-flop IC5, which is "high" in the listening position, is fed back to the data input. On the positive edge on the clock input, caused by the call button, this "1" will be clocked to the output. The inverse output will now be "0" and is fed back to the data input. This means that when the next clock pulse occurs, the output will go "low" again. The "1" on the output of the flip-flop is fed to the base of TS5 in the microphone switching circuit, causing it to conduct, whereby TS4 will also be conductive. Current can now flow via the emitter of TS4 to earth and LED D4 illuminates. The microphone signal is taken from the collector of TS4 and fed to the line.

Pre-amplifier

consists of ICla, associated TS4 and pre-amplifier components. A DC voltage is fed via TS1 and applied to the electret microphone line. The current flowing from TS1 to the electret microphone, ensures that the FET inside the microphone is conducting. The analogue microphone signal is applied by the microphone to the microphone line and fed via C1 and C2 to the + and - inputs of operational amplifier ICla. Cl ensures that the DC voltage for the electret microphone, cannot reach the op-amp. A DC voltage of approximately 4V is fed via R5, R6 and R8 to the microphone signal on the inputs of ICla. C2 ensures that this DC voltage is not influenced by TS2 and TS3. The output of the opamp ICla is fed back via R11/C48 to the - input and via the resistor between X2-5 and X2-6. The resistance value is dependant on the sensitivity of the electret microphone. In this way differences in sensitivity of the microphones are compensated. The amplified signal, a DC level of approximately 10V on which the audio signal is superimposed, is applied to the base of TS4.

Limiter

The limiter consists of TS2, TS3 and associated components. When the AC output signal of the op-amp IC1a reaches a value greater than 1.4V, D1 or D2 will conduct and so will TS2 or TS3. When either one of these transistors is conducting, the input signal to the pre-amplifier decreases. A sample of the current from the microphone then flows via the conducting transistor to ground and the signal is limited.

The limiter is divided into two sections, the right section D2 and TS3 for the positive AC, and the left section D1 and TS2 for the negative AC of the microphone signal.

Resetting "call" position

If the call button S1 is pressed again, IC5 receives another positive pulse on its clock input. The inverse output pin 2 was "low", and so is the data input of the flip-flop. After the clock-pulse the "0" will appear on the output, therefore the inverse output will go "high" and so will the data input. The "low" output disables the microphone signal and enables the connected speaker.

Priority

When the chairman requires priority over the delegate microphones, he presses button S2 continuously. TS11 will conduct, together with TS10. The voltage on the collector of TS10 rises to approximately 15V, thereby switching the microphone signal on the line and a connected loudspeaker off. Due to TS11 conducting, the priority line via D14, D18 and R63 is connected to ground causing it to be at 1.5V. This 1.5V switches the delegate microphones off.

When the priority button is released, TS10 and TS11 will no longer conduct causing the micophone signal to be no longer switched to the line, therefore the priority line will again be on 27V.

Disable request

Because the chairman must always be able to switch on his microphone, the microphone switching circuit is not influenced by the disable request line.

Remote control

Only when a central control desk is connected to the system, the microphone call function can be remotely controlled. The chairman can not request a remote control call by using a request line, but must somehow attract the attention of the control desk operator. The remote line which is at 15V due to resistor R75 is reduced. This voltage is applied to the negative input of IC6. Because the voltage on the positive input is higher, the output will be on 15V and the microphone will be switched on.

Pos.:	Description:	Code	numb	er:
	PCB CONNECTOR 8 PENS			84092
	DELEGATE CABLE ASSY			21658
	PCB ASSY			90028
	KNOB	5322	414	20129
C1-28-37-38	10nF 50V	4822	122	32442
C2-10-39-				
40-44-47	100nF 50V			32839
C3	10uF 25V			21732
C4-6-8-15	4.7uF 25V			21966
C5				21453
C 7				21975
C9				31969
C11	47pF 50V	4822	122	31772
C12-13-25-				
30-31				31765
	22uF 25V	4822	124	21646
C32-36	47uF 25V	4822	124	20699
C33	47uF 40V	4822	124	20713
C48	470pF 63V	4822	122	31727
D1-2-5-	-			
12-15-18	DIODE BAV70	5322	130	34331
D3	BZX84-C5V1	5322	130	32835
D11	BZX84-C15	5322	130	33662
D14	BYW56	5322	130	34973
D16	BZV49-C6V2	5322	130	33672
D19		4822	130	31248
D20	BZX79-B30	4822	130	34328
	BZX84-C6V2	5322	130	33671
	CQW54-V1	5322	130	32704
IC1	LF353N	5322	209	81395
IC3	LM393FP	5322	209	71599
	HEF4013BT	5322	209	14477
	UA741CFP	5322	209	71597
R1	5K6 0.126W	4822	111	90572
	47K 0.125W	4822	111	90543
R3	390E 0.125W			90138
R4-11-13-66-				
72	10K 0.125W	4822	111	90249
R6-29-52-69	33K 0.125W			90267
R7-30-34-42	1K 0.125W			90092
R8	220K 0.125W			90197
R9	220E 0.125W			90178
R12-15-19-22-				
24-28-36-43-				
45-49-53-55-				
60-61-62-68-				
70-75-97	100K 0.125W	4822	111	90214
R14	560E 0.125W			90113
= - 				

R16	1K5 0.125W	4822	111	90151
R17-58		4822	111	90253
R18-32-33-37-				
44-67-102-103	1M 0.125W 18K 0.125W	5322	111	90094
R20-26-31	18K 0.125W	4822	111	90238
R21	100E 0.125W	5322	111	90091
	22K 0.125W	4822	111	90251
R27	39K 0.125W	5322	111	90108
R35	4K7 0.125W	5322	111	90111
R48	150K 0.125W	5322	111	90099
R50	150K 0.125W 27K 0.125W	4822	111	90542
R51-93	39K 0.125W 4K7 0.125W 150K 0.125W 27K 0.125W 68K 0.125W	4822	111	90202
R54-63-71	PTC	5322	116	44008
R56-57	15K 0.125W	4822	111	90196
R59	2K7 0.125W	4822	111	90569
R92	82K 0.125W	4822	111	90575
R94	680E 0.125W	4822	111	90162
R98	2K7 0.125W 82K 0.125W 680E 0.125W 390E 2.5W	5322	116	54401
S1-2	SWITCH, PUSH BUTTON	4822	276	11188
TS1-3-4-5	BC847C	5322	130	42755
TS2-10	BC857C	5322	130	42756
TS6-8-9-11	BC817-40	4822	130	42615
TS7	SWITCH, PUSH BUTTON BC847C BC857C BC817-40 BC807-40 DIN SOCKET	5322	130	60123
х9	DIN SOCKET	5322	267	54107
	8-P DIN PLUG, MALE	5322	265	40535

Distance piece d1 with associated bolts is delivered together with the LBB 3302/00.

Distance piece d2 with associated bolts is delivered together with the LBB 3301/00.

5. RECOMMENDED SPARE PARTS LIST P.C.B.'s

Basic P.C.B., LBB 3300/ Connector panel, LBB 3300/			93789 93791
Microphone plug-in PCB, LBB 3302/00			93792
6ch desk PCB, LBB 3221/00	5322	216	93767
P.C.B., LBB 3350/00	5322	216	93844
P.C.B., LBB 3351/00	5322	216	93845
P.C.B., LBB 3450/00	5322	216	93845
P.C.B., LBB 3451/00	5322	216	93845
P.C.B., Loudspeaker unit	5322	216	93759

The LBB 3203/00, M.D.B., cannot be delivered via Concern Service in Eindhoven under any service codenr., but has to be ordered under typenr. in Breda when needed for service purposes.

CONTENTS

- 1. CCS400 AUDIO PRINCIPLE
- 2. GENERAL SYSTEM TEST
- 3. TESTINSTRUCTIONS CCS400
- 4. MOUNTING AND DISMOUNTING THE C.S.U.
- 5. RECOMMENDED SPARE PARTS LIST P.C.B. 's

Figures:

- 1. CCS400 Audio principle
- 2. System block diagram C.S.U. and peripherals
- 3. Detailed block diagram C.S.U. and peripherals with 1^e line data
- 4. Exploded view C.S.U.

.....]

1. CCS400 AUDIO PRINCIPLE

In the C.S.U. the mixing amplifier IC4a amplifies and mixes the different inputs (chime, telephone coupler, tape recorder and line in) TS14 and associated circuitry act like a current modulator.

I ac1 is a modulated current according to U ac1.

Every delegate unit consists of the same circuitry. IC1a amplifies the microphone signal and TS4 and associated circuitry act like the current modulator. I is a modulated current according to U_{ac2} . I is a modulated current according to U_{ac3} , etc. Iac3 in the C.S.U. is directly proportional with $I_{ac1} + I_{ac2} + I_{ac3} + I_{ac4}$. The very high impedance on the audio line ensures that the resistance value of S101 does not affect I_{act} . $U_{ac} = I_{act} \times R$, I_{act} is independant of R (S101). I_{ac} is directly proportional with R.

By changing R with switch S101, U changes. The AC voltage on the audio line, U which is the "audio signal", can be adjusted via S101, which actually changes the value of R The audio signal level can be changed in steps of 3dB.

At the input of amplifiers A, B and C in the C.S.U., the U is constant and cannot be adjusted by changing the R value via S101.

In the delegate unit (and chairmans unit) the AC voltage on the audio line is amplified by IC1_b when the microphone is switched off.

2. GENERAL SYSTEM TEST

- Check if the voltage selector is in the correct position.
- Check mains fuse (2.5a slow).
- If problems arise in the audio distribution, check if the 6-position system gain rotary switch is in the correct position. If the delegate unit don't switch off automatically after approximately 30 seconds of no speech activity, then check if the rotary switch for selecting the maximum number of microphones is in the "auto position".
- When using the 6 channel interpreters equipment, check if the interpreters desks are adjusting accorded to the instructions in the installation manual.
- If a tape recorder is used in the system, ensure that the input level potentiometer is adjusted correctly (screwdriver adjustment on the front side).
 To match the output to a DIN-type connector, or a Cinch connector, the inpedance must be adjusted by S5 to respectively high ohmic or to low ohmic.
- When using a telephone coupler, ensure if the jumper S4 is in the correct position for enabling or disabling the side tone reduction.
 Check if S2 for telephone input level and S6 for conference output level are adjusted in the right position.
 At last ensure that the telephone coupler itself is adjusted correct for being compatible with CCS400.
- Using the line input, ensure that the jumper S3 is in the correct position for the desired input level.
- Using the line output, check if the system gain rotary switch is in the correct position for the desired output level.

3. TEST INSTRUCTIONS CCS400

- 1. Adjust the voltage adapter at the local mains voltage.
- 2. Load DEL1 (BU101-7, 8) so that the consumed current is 0.55A.

Load DEL2 (BU104-7, 8) so that the consumed current is 0.15A.

Load INT (BU207-24, 12) so that the consumed current is 1A.

Requirement: output voltage: 26,5 v ± 2v.

Load DEL1 so that consumed current is 0.15A. Load DEL2 so that consumed current is 0.55A.

Requirement: output voltage: 26,5 v ± 2v.

- 3. Shortcircuit the power suply output DEL1. (BU101-7), DEL2 (BU104-7) and INT (BU207-24) alternately (the load remains connected). Check the short-circuit current. Requirement: ≤ 150 MA Remove the short circuit. Requirement: power supply voltage: 26,5 v ± 2v.
- 4. Remove the three loads (DEL1, DEL2 and INT). Measure the power supply output voltage: requirement: $26.5 \pm 2v$.

Audio measurements Master Gain switch 5101 at minimum

1. Line input

Source impedance: 1 Kohm
Control the line input BU103-1/BU103-3 with a signal of -4 dB
(Jumper S3 in a-b position).
Measure the signal at BU104-3.
Requirement: amplification -17,5 dB ± 0,5 dB.

Secundary side of T1: approx. -28 dB.

- Input IC4a: approx. -72 dB
Output IC4a: approx. -8,5 dB
BU104-3: 21,5 dB ± 0,5 dB.
Control the line input BU103-1/BU103-3 with a signal of + 6 dB
(jumper S3 in a-c position)
Requirement: amplification -28 dB ± 2 dB.
Secundary side of T1: approx. -29 dB.

- Input IC4a: approx. -68 dB.
Output IC4a: approx. - 9,5 dB.
BU104-3: -22 dB ± 2 dB.

2. <u>Tape play back input</u> Adjust R104 at minimum (left) or at maximum (right).

Control one of the two symetrical tape recorder inputs BU106-3 or BU106-5 with a signal of +20 dB or -8 dB.

Measure the signal at BU104-3.

	R 104 minimum	R 104 maximum
	input +20dB input -8dB	input +20dB input -8dB
-Input IC4a Output IC4a BU104-3	- 59 dB - 86 dB + 4 dB - 24,5 _ 9 dB - 37 dB	- 7 dB - 69 dB + 18 dB - 7 dB + 3 dB - 20 dB
Amplification	- 29 dB - 29 dB	- 17 dB - 12 dB

Requirements: amplification with R104 minimum \leq - 40 dB. amplification with R104 maximum - 12 dB \pm 0,5 dB.

3. a. <u>Tel. coupler input</u> Source impedance < 100 Ohm.

Control the input BU105-5 with a signal of -16 dB, -4 dB or + 6 dB.

Measure the signal at BU104-3

	S2 in pos.a-c S2 in pos.a-b S2 in pos.b-d		
	input -16dB	input -4 dB	linput + 6 dB
+ of C 35	 - 16 dB	 - 16 dB	 - 15,5 dB
-Input IC4a	- 70 dB	- 70 dB	- 69 dB
Output IC4a	- 8,5 dB	- 8,5 dB	- 8 dB
BU104-3	-21,6 dB	- 21,6 dB	- 21 dB
Amplification	-5,25 dB	- 17,25 dB	- 26,75
	$\pm 0.5 dB$	+ 0.5 dB	$\pm 0.5 dB$
	<u> </u>	<u> </u>	<u> </u>

b. <u>Tel. coupler output</u> Load the output BU105-4 with 10 K Ohm. Jumper S4 in AC position.

Control the input BU105-5 with a signal of -16 dB, -4 dB or + 6 dB.

Measure the signal at BU105-4.

•					•		_
<u>put -1</u>	6 dB	linput	-4	dB	linput	+	6 dB
		1			1		
- 16	đΒ	i -	4	đΒ	+	6	đВ
0	ďΒ	i	0	dB	İ	0	đB
	put -1	<u>put -16 dB</u> - 16 dB	put -16 dB input - 16 dB -	put -16 dB input -4 - 16 dB - 4	put -16 dB input -4 dB - 4 dB - 4 dB	put -16 dB input -4 dB input 	- 16 dB - 4 dB + 6

Amplification requirement: $+ 0.5 \text{ dB} \pm 1 \text{ dB}$.

Side tone reduction: put jumper S4 in a-b position.

Control the input BU105-5 with a signal of -16 dB. Measure the signal at BU105-4. Jumper S2 in position a-c. Jumper S6 in position a-c.

+ of C35 - 16 dB - Input IC4a - 70 dB Output IC4a - 8,5 dB - Input IC4b - 80 dB Output IC4b - 16 dB - Input IC7b approx. -80 dB Output IC7b - 47 dB

Amplification: -47 dB - (-16 dB) = -31 dB.

Side tone reduction: 31 dB Required amplification: \leq -20 dB. Required side tone reduction \geq 20 dB.

4. Line output

Control the tape recorder Play back input BU106-3 or BU106-5 with a signal so that at BU104-3 a signal of -21 dB is present. Ensure that the Master Gain switch S101 is positioned at minimum. Load the line output with 10 k Ohm parallel with 1,5 nF. (connect BU102-1 and BU102-3 together).

Measure at the line output.

Requirement: -6,5 dB. Amplification with respect to BU104-3 is + 14,5 dB \pm 0,5 dB.

Tape rec. play back input BU106-3 or BU106-5: + 6 dB

- Input IC4a: - 78 dB
Output IC4a: - 8 dB
+ Input IC3a: - 21,4 dB
Output IC3a: - 1,5 dB
Line output: - 6,5 dB

5. Interpreters floor

Control the tape recorder play back input BU106-3 or BU106-5 with a signal, so that at BU104-3 a signal of -24 dB is present. Ensure that the Master Gain switch S101 is positioned at minimum.

Measure at the floor output BU207-1 or BU207-14.

Requirement: amplification with respect to BU104-3 is + 17 dB \pm 0,5 dB.

Tape rec. play back input BU106-3 or BU106-5: + 3 dB.

- Input IC4a : - 75 dB
Output IC4a : - 11 dB
+ Input IC3b : - 32,5 dB
Output IC3b : - 2 dB
BU207-1 : - 7 dB
Amplification: + 17 dB

6. Tape recorder output

Control the tape recorder play back input BU106-3 or BU106-5 with a signal, so that at BU104-3 a signal of -21 dB is present. Ensure that the Master Gain switch S101 is positioned at minimum.

Jumper S5 in position a-b: output impedance is 220 kOhm (unloaded).

Load the tape recorder output BU106-1 or BU106-4 with 1 k Ohm and measure this output.

Requirement: amplification with respect to BU104-3 is - 49 dB ± 0,5 dB.

Jumper S5 in position a-c: output impedance is approx. 600 Ohm (unloaded)

Load the tape recorder output BU106-1 or BU106-4 with 1 k Ohm and measure this output.

Requirement: amplification with respect to BU104-3 is -6 dB ± 0.5 dB.

7. Disable request output

Control the tape recorder play back input BU106-3 or BU106-5 with a signal, so that at BU104-3 a signal of -21 dB is present.

Measure the signal at the disable request output BU104-2.

Requirement: output at BU104-2 is -26,5 dB \pm 0,5 dB.

8. Gain reduction circuit

Load BU104-3 for DC only. Adjust the load so that the AC-signal at BU104-3 will be attenuated 3 dB \pm 0,5 dB by IC6. (control e.g. the tape recorder play-back input with an AC-signal).

Perform this in every position of Master Gain switch S101.

9. Disable request circuit

Load BU104-3 for DC only.

Adjust the load so that the DC level at BU104-2 changes over.

Ensure that S102 is in one of the positions 1, 3 or 6 microphones and in "auto off".

With a load > 3.9 k Ohm the DC level is approx. 1.6 v. Requirement: < 3v

With a load \langle 3.9 k Ohm the DC level is approx. 24.5 v. Requirement: \rangle V $_{-}$ 3 v $_{-}$ \rangle 24 v

The direct current, through the load when the DC level is high:

2.65 mA \pm 0.8 mA, 16.6 mA \pm 2 mA, 30.5 mA \pm 3.5 mA (dependent of position S 102).

Control the "limiter on/off" input BU101-5 with a DC-voltage. When the DC-level at BU104-3 is high (24v).

Requirements: input BU101-5 is 3v, BU104-3 remains high (24v).
input BU101-5 is 15v, BU104-3 becomes low (3v).
the limiter is now switched "off" the disable
request line is inactive low.

10. Priority signal

Connect a load between BU104-1 and BU104-8 adjust this load so that the current is 0.2 mA. The voltage at the base of TS10 is in this case to low, the priority signal will not be generated.

Adjust the load so that the current is 0,3 mA. The voltage at the base of TS10 now starts the oscillator circuit and the priority tone will be heard when a delegate unit is connected.

11. Monitor circuit

Node BU210-2, -11, -3, -10, -4 and -12 together and connect this point via an ampere meter to BU210-5 (ground). Control successively the points BU207-20, -22, -19, -17, -16 and -10 with a voltage of 17v (with respect to e.g. BU209-12).

Requirement: the current < 0,1 mA which corresponds to "channel not engaged".

Control now successively the same points with a voltage of 15v (with respect to e.g. BU209-12).

Requirement: the current is 2,5 mA \pm 0,5 mA which corresponds to "channel engaged".

Load BU210-13 with a resistor of 330 Ohm (to BU210-5).

Requirement: Voltage at BU210-13 is $5v \pm 0.5v$.

REPLACING ADJUSTMENT RESISTOR

By changing the microphone capsule in a delegate unit, chairmans unit the amplification of the microphone signal in this units must be adjusted again. The amplification of the microphone amplifier IC1 must be adapted to the sensitivity of the microphone capsule. This can be done by placing the correct resistor between X2-5 and X2-6 in the feed back path. of IC1a.

Adjust procedure

Use a reference unit which is already adjusted correctly e.g. one unit of the whole system. Connect this unit to the DEL1 socket of the C.S.U. or connect X10-7 (+) and X10-8 (-) to a 27v power supply. Place at a distance of approximately 30 cm an audio generator (e.g. sinus signal) with a frequency of 1 KHz. Adjust the level of the generator so that at mp7 in the reference unit -7 dB occur. This -7 dB level must be measured with respect to the electrical ground X10-8. This "reference level" at mp7 corresponds to a S.P.L. of 85 dB, which is now generated by the audio generator.

Replace the reference unit by the unit which has to be adjusted. Between X2-5 and X2-6 of the unit a potentiometer or a decade resistor instrument (both 0 to 50 K ohm) must be placed instead of the "old" resistor. Adjust the potentiometer or decade instrument so that at mp7 in the unit a level of -7 dB occurs. Replace the potentiometer or decade instrument by a 1% resistor of the same value. With this "new" resistor between X2-5 and X2-6 the unit is correctly adjusted, the microphone signal amplification is now adapted to the sensitivity of the "new" microphone capsule in the unit.

The minimum resistance between X2-5 and X26 is 3K6. The sensitivity of the microphone capsule is maximum. The maximum resistance is 43K, the microphone capsule sensitivity is minimum.

These maximum and minimum resistance values count for the delegate unit, chairmans unit and for the microphone LBB3175/00 (for FM systems).

For the handmicrophone LBB 3175/50 the following min. and max. resistance values apply minimum resistance value is 2K and maximum 43K.

4. MOUNTING AND DISMOUNTING THE C.S.U.

For system block diagram see fig. 2 and 3. For mounting and dismounting the C.S.U. and the P.C.B.'s in this unit see fig. 4.

LBB 3361/20 FLUSH MOUNTING CHAIRMANS UNIT

1. INTRODUCTION CHAIRMANS UNIT

The chairmans unit can be didided into 3 parts:

- Part 1 Microphone amplifier
 Amplifies and limits the microphone input signal.
- Part 2 Audio amplifier
 Amplifies the audio signal, and distributes it to the loudspeaker connection.
- Part 3 Microphone and loudspeaker switching circuit
 Switches the microphone and loudspeaker on/off,
 depending on the status of the control signals. The
 control signals comprise of the microphone, remote
 and priority signals.

DISMOUNTING P.C.B. 's

Dismounting the various P.C.B.'s from the C.S.U. housing must be carried out in the following sequence:

- 1. Basis P.C.B.
- 2. Microphone plug-in unit LBB 3302/00 (only if added to the C.S.U.)
- 3. Monitor Distribution Board LBB 3203/00 (only if added to the C.S.U.)
- 4. Connector panel and Int. + monitor panel LBB 3301/00 (only if added to the C.S.U.) simultaneously

For mounting the P.C.B.'s into the C.S.U. place them in the inversed sequence.

- 1. Basic P.C.B.
 - Unscrew bolts 1.1, 1.2, 1.3 and 1.4 (1.1 only when a LBB 3302/00 is added to the system).
 - Unscrew next the two bolts 1.5 and 1.6.
 - Finally take out the P.C.B. by pulling X2 out of X102.
- 2. Microphone plug-in unit + distance piece d1 LBB 3302/00.
 - Unscrew bolts 2.2 and 4.4.
 - Take out the P.C.B. by simply pulling X3 out of X101.
- 3. Monitor Distribution Board LBB 3203/00
 - Unscrew bolts 3.1 and 3.2 (distance piece d2 remains fitted in the C.S.U.).
 - Pull the P.C.B. out of connector X201.
- 4/5. Connector panel and Int. + monitor panel LBB 3301/00
 - Unscrew bolts 4.1 until 4.5 inclusive.
 - Remove the two dial knobs on the front side of the C.S.U.
 - Unscrew next the bolts 5.1, 5.2 and 5.3.
 - Remove the connector panel and the LBB 3301/00 simultaneously now and separate them by pulling X103 out of X203.

Adding a P.C.B. LBB 3302/00 to the system

- Unscrew the two bolts 6.1 and 6.2.
- Remove the plate P1.
- Add the LBB 3302/00 to the system by pushing X3 into X101.
- Screw the bolts 2.2 and 4.4.
- Finally screw bolt 1.1 in the distance piece via the basic P.C.B.

Adding a P.C.B. LBB 3301/00 to the system

- Unscrew the two bolts 7.1 and 7.2.
- Remove the plate P2.
- Disconnect the basic P.C.B. as described in 1.
- Disconnect the LBB 3302/00 as described in 2. (only if added to the C.S.U.).
- Disconnect the connectorpanel as described in 5.
- Add the LBB 3301/00 to the system by pushing X203 into X103 (from connectorpanel).
- Place next the connector panel and the LBB 3301/00 simultaneously in the C.S.U. housing.
- Screw bolts 4.1 until 4.5 inclusive and bolts 5.1 until 5.3 inclusive.
- Place the basic P.C.B. back by plugging X2 into X102 (on connector panel).
- Screw bolts 1.2, 1.3, 1.4, 1.5 and 1.6.
- Place back the LBB 3302/00 (only if added to the system) by plugging X3 into X101 (on connectorpanel).
- Screw the bolts 1.1, 2.2 and 4.4.

Adding the LBB 3302/00 to the system

- Plug the LBB 3203/00 into X201.
- Place the distance piece d2 between the LBB 3203/00 and the bracket (in the C.S.U.) by the two bolts 3.2 and 3.3.
- Finally screw bolt 3.1.

CONTENTS

- 1. SOLDERING AND DESOLDERING OF SMD
- 2. TECHNICAL SPECIFICATION CCS400

1. SOLDERING AND DESOLDERING OF SMD'S

Introduction

This description gives you a method for replacing surface mounted devices (SMD's) and incorporates subjects such as:

- required tools and materials
- how to arrange the SMD-workshop
- general hints for SMD-handling
- interchanging SMD's with two or three connections
- interchanging SMD's with four or more connections

Arrangement of working area for SMD exchange

Required tools and materials

The following tools are necessary:

- A hot-air soldering/desoldering station for components with two or three leads: Weller AG 700 pick-a-chip.
- A vacuum, temperature controlled, soldering/desoldering station for components with four or more connections: Weller DS 701 EC.
- Desoldering accessories that can be attached to the Weller DS 701 EC-equipment.
- A working area that has been secured against electro static discharge (ESD).
- A pair of tweezers.

The following material is necessary:

- "Fluittin" solder.
- Solder paste.
- Components; since not all the components are marked, they must be kept in their original packing in order to avoid interchanging them.
- Desoldering braided wire.

General hints for SMD-mounting

- Protection against ESD: since the working area must be suitable for repair of MOS-devices, some precautions must be taken. All repairs must be done earthened which means that the repair surface, the soldering iron and the technician must be connected to the earth potential. This is achieved by using a C-MOS antistatic mat that must be connected to earth. The serive-technician is connected to earth by wearing an antistatic wristband.
- Components: desoldered components cannot be used again since desoldering is done at a temperature of 350 degrees Celcius while they can only withstand 240 degrees Celcius for max. 10 sec. Keep the new components as long as possible in their original packing in order to avoid damage and mixing up new and old SMD's.

For an optimal supply of heat a working area must be used that does not lead away the heat: the antistatic mat meets this requirement.

Interchaning SMD's with two or three connections

IMPORTANT:

Before removing the component, observe very carefully its position in order to avoid that the new component is installed upside-down. This is especially important for capacitors where the metalisation at both ends is longer at the PCB side than at the top side.

Use the equipment Weller AG 700 pick-a-chip and proceed as follows:

- Heat the component up equably with hot air of 350 degrees Celcius.
- Remove the component with a pair of tweezers.
- Clean the PCB tracks, on which the new component has to be soldered, with braided wire or with the use of the vacuum desoldering equipment DS 701 EC.
- Put solder paste on the connections of the new component and position it on the PCB.
- Solder the component on to the PCB with the solder described in the materials list. Soldering temperature must 240 degrees Celcius, soldering time must not exceed 3 sec. per connection. The tip of your soldering iron must not touch the component, but must touch the PCB track close to the component.

Interchanging SMD's with four or more connections

Use the equipment Weller DS 701 EC and attach a suitable desoldering piece. Then proceed as follows:

- Adjust the desoldering temperature to 350 degrees Celcius and place the desoldering piece on the IC that has to be removed.

 Take care that all connections of the IC are equally heated up).
- Switch the vacuum on and lift the component from the PCB.
- Clean the PCB tracks, on which the new component has to be soldered, with braided wire or with the use of the vacuum desoldering equipment DS 701 EC.
- Put solder paste on the connections of the new component and position it on the PCB.
- Position the component by soldering first the outside connections in a crosswise manner. Soldering temperature must be 240 degrees Celcius. Keep soldering time as short as possible.
- Solder not the other connections.
- If necessary you must remove superfluons rests of solder with the use of braided wire.

TECHNICAL SPECIFICATIONS

Power supply general:

Mainswitch (a) Power on LED (n)

Voltage adapter (c,d): 110, 127, 220 and 240 Volt \pm 10%

Fuse (b)

Mains cord: 170 cm

Supply voltage: 26,5 ± 2 Volt

Max. current consumption of discussion distribution and interpreter

systems: < 1,7 Amp.

Delegate connectors (BU101 and BU104)

Two 8-pole female 270° DIN connectors (e,f) to interconnect the delegate units to the system.

Connections:

BU101-1; BU104-1 Priority input

Priority and chime activate: current sink ≥ 0,3 mA

Level manual priority mode: 5,5 to approx. 2/3 Ub Volt

BU102-2; BU104-2 Disable request

Request enabled : ≤ 3 V

disabled : ≥ Ub - 3 V Output impedance: 10 kOhm

On this line a AC voltage is superimposed for the

automatic microphone switch-off circuit.

BU101-3; BU104-3 Floor line (live)

: approx. 10 Volt DC level

Max. line current: 40 mA

Line AC impedance: 168E to 972E + 5% (in 6 steps) This value decreases approx. 30% when two or more

microphones are switched on.

BU104-4; BU104-4 Floor line (ground reference)

This line is the AC ground reference

ADC voltage is superimposed for the micr. auto

switch off circuitry auto off : 0 V : 9 V

auto on

Not connected BU101-6

Power supply for central control desk BU104-5

Disable max. number of switched-on microphones BU101-5

Disable level : > 9 Volt

BU104-6 Not connected

BU101-7; BU104-7 Positive supply voltage

BU101-8; BU104-8 Negative supply voltage

For capacity of the power supply see limits of the

system.

Line output (BU102) _____

5-pole 180° female DIN connector (g)

BU102-4 Not connected Ground reference BU102-2 Not connected BU102-5 Floating output BU102-1, 3

Output impedance : < 200 E Load impedance : ≥ 10 K

Output level (gain switch -12 dB): -4 to +6 dB

Line input (BU103)

5-pole 180⁰ female DIN connector (h)

Not connected BU103-4 BU103-2 Ground reference Not connected BU103-5 Floating input BU103/1, 3

: > 10 K Input impedance

: presettable -4 dB or +6 dB by an Input level

internal jumper

Telephone coupler (BU105)

_____ 7-pole 270⁰ Female DIN connector (i)

Not connected BU105-1,2,3

Output (to coupler) BU105-4

: <u><</u> 50 E Impedance

: -16, -4, +6dB \pm 1 dB presettable Level

Input (from coupler) BU105-5

: 6K, 24K, 71K ± 10% Impedance

: -16, -4, +6dB + 1dB presettable Level

Negative supply voltage BU106-6 Positive supply voltage BU107-7

Tape recorder connector (BU106)

5-pole 180⁰ Female DIN connector (j) Output (to recorder)

BU106-1

: 510 E or 220 K ± 10% presettable Impedance

: -24 dB Level

Ground reference BU106-2

Playback input left (from recorder) BU106-3

Impedance : > 30 K

: -8 dB to +21 dB adjustable with Level

```
Interconnected with BU106-1
BU106-4
                   Playback input right (from recorder)
BU106-5
                   Specifications see BU106-3
Interpreter system connector (BU207)
25-pole female lockable D-connector (r)
(Only when LBB 3301/00 is placed in the central)
BU207-1, 14
                   Floorline
BU207-2, 1.6
                   Channel 2
BU207-3, 15
                   Auto floor channel
BU207-4, 18
                   Channel 1
BU207-5, 17
                   Channel 3
BU207-6, 20
                   Channel 6
Bu207-7, 19
BU207-8, 22
                    Channel 4
                    Channel 5
                    Communications interpreters
BU207-9, 21
                    Protected ground
BU207-10
                    Not connected
BU207-11,23
BU207-12,13
                    Negative supply voltage
                    Positive supply voltage
BU207-24,25
                    See limits of the system
Distribution connector (BU208)
_____
15-pole female lockable D-connector (q)
 (Only when LBB 3301/00 and LBB 3203/00 are placed in the central)
                    Channel 6
BU208-1, 10
                    Channel 5
BU208-2, 9
                    Not connected
BU208-3
BU208-4, 12
                    Channel 4
                    Channel 3
BU208-5, 11
BU208-6, 14
BU208-7, 13
BU208-8, 15
                    Channel 2
                    Channel 1
                    Floor channel
                    Unloaded level : 24 dB
                    Load impedance : > 50 E
 Transmitter connector (BU209)
 25-pole female lockable D-connector (s)
 (Only when LBB 3301 is placed in the central)
                    Floorchannel
 BU209-1, 14
BU209-2, 16
BU209-4, 18
BU209-5, 17
BU209-6, 20
                    Channel 2
                    Channel 1
                    Channel 3
                    Channel 6
 BU209-7, 19
                    Channel 4
                    Channel 5
BU209-8, 22
                    Communication interpreters
BU209-9, 21
        24
                    Not connected
BU209,
```

potmeter (k)

```
Ground reference
BU209-12,13
                  Channel 3
BU209-3
                  Channel 1
                             }
BU209-10
                 Channel 5
                             }
                                 Channel occupied
BU209-11
                                 indicator lines
                  Channel 6 }
BU209-15
                  Channel 2
                            }
BU209-23
                  Channel 4
BU209-25
                             }
Monitor connector (BU210)
15-pole female lockable D-connector (p)
(Only when LBB 3301 and LBB 3203/00 are placed in the central)
                  Loudspeaker output
BU210-1, 9
                  Unloaded level
                                 : +24 dB
                                    : > 50 E
                  Load impedance
                  Not connected
BU210-6
                  Supply voltage 5 Volt
BU210-13
                  Monitor select lines Ao, A1, A2 and A3
BU210-14,7,15,8
                  Channel 6
                            }
BU210-2
                                channel occupied
                  Channel 4
                              }
BU210-3
                  Channel 3
                              }
                                indicator lines
BU210-4
                  Ground ref. }
BU210-5
                  Channel 3
                              }
BU210-10
                  Channel 5
                              1
BU210-11
                  Channel 1
                              1
BU210-12
LBB 3302/00 Roving microphone plug in unit
9-pole female squeeze to release D-connector
6-pole interequipment connector
This unit is a P.C.B. that has to be installed in the LBB 3300/00.
Microphone switch, red micr. on and green micr. request LED are
provided in the handmicrophone.
Electrical specification
Supply voltage : 20 - -28V
                       : typ 9,5 mA
Supply current
Frequency range : 150 Hz = -12,5 KHz
 Additional current consumption micr. on: 6 mA + 1 mA
Microphone channel
 Nominal input level micr. : 85 dB S.P.L. + 1,25 dB
 Overload input level micr.: 110 dB S.P.L. + 1,25 dB
                        : 0,41 mA
 Nominal output current
 Gain reduction at overload input level: 18,5 dB + 1,5 dB
 Distorsion at nominal input level
                                    : < 0,5%
 Distorsion at overload input level
                                     : < 5%
 Frequency response (without micr. gain
                                      : 40 Hz
                                               : -10 <u>+</u> 2 dB
                    rel to 1 KHz)
                                        150 Hz : -1,5 \pm 1 dB
```

12,5 Hz : $-0,5 \pm 1 \text{ dB}$

Equivalent noise input : < 32 dB (A) S.P.L.

External microphone

Nominal input level (without micr.): -39 dB : ± 4 dB Adjustment range

Input impedance at nominal level : 240 K - ± 5%

: 9V <u>+</u> 1V Electret voltage : 5 K6 <u>+</u> 5%

Electret drain resistor

 $: 3.5 \text{ mA} \pm 0.5 \text{ mA}$ Led current

Table top equipment

Delegate unit with loudspeaker LBB 3350/00 Delegate unit without loudspeaker LBB 3450/00 Chairman unit with loudspeaker LBB 3351/00 Chairman unit without loudspeaker LBB 3451/00

Interconnection facilities

1. A cable (1=180 cm) with 8-pole male DIN connector for connection to the preceding delegate unit or to the central equipment e.g. LBB 3300/00.

2. A 8-pole female DIN socket for connection of the next delegate unit (loop-through).

3. A concentric 3,5 mm jack for connection of aux. equipment.

Electrical specification _____

: 20 - 28 V Supply voltage

Supply current (stand by) : del. unit typ 8mA; chairman's unit typ 7mA

Frequency range : 150 Hz - -12,5 KHz

Additional current consumption micr. on: 6mA + 1mA

Microphone channel

Nominal input level micr. : 85 dB S.P.L. ± 1,25 dB Overload input level micr. : 110 dB S.P.L. + 1,25 dB

Nominal output current : 0,41 mA

Gain reduction at overload input level : 18,5 dB \pm 1,5 dB

: < 0,5% Distorsion at nominal input level : < 5% Distorsion at overload input level

Frequency response (without micr. gain

: 40 Hz : $-12 \pm 2 \text{ dB}$ rel 1KHz)

150 Hz : -1.5 ± 1 dB $12,5 \text{ Hz} : -0,5 \pm 1 \text{ dB}$

Equivalent noise input : <32 dB (A) S.P.L.

Loudspeaker amplifier

: > 1M Input impedance

: 20,75 dB + 0,75 dB Gain

Distorsion at Vo +19 dB : < 1,5%

Frequency response rel 1KHz: 150 Hz : -1 \pm 0,75 dB 12,5 Hz : -2 \pm 0,75 dB

Equivalent input noise level: < -89,5 dB

: 150 E Rate load impedance

Loudspeaker sound pressure: 75 ± 2 dB S.P.L. at 0,5 m and -12 dB input (only LBB 3350 and LBB 3351)

Interconnection cables

LBB 3305/00

Extension cable for table top and flush mounting units.

: 8-pole brown standard cable.

: male and female 8-pole DIN, no lock. Connectors

: 5 meters Length

LBB 3203 M.D.B. (Monitor Distribution Board)

1. General _____

The M.D.B. contains nine amplifiers. Eight amplifiers are used to drive 8 lines for wired distribution, one of them is used as a monitor amplifier and this one can select one of the eight channels by a remote controlled electronic switch. The amplifiers are protected against short circuits.

2. Interconnection facilities

A 96-pole male Eurocard connector.

Electrical specifications 3.

<u>General</u>

: $27 V \pm 0.5 V$ Supply voltage

Current consumption : typ 80 mA. max. 160 mA (stand-by) Frequency range : 150 Hz - 12,5 kHz All outputs are protected against short circuits.

2. Channel amplifier

Input impedance (B10-A11) : > 20 K : < 10 E Output impedance : > 50 E Load impedance

: 32 dB ± 0,5 dB Gain 500 Hz

: 150 Hz, -0.5 ± 1 dB Gain freq. response $12,5 \text{ kHz}, -0.5 \pm 1 \text{ dB}$ (rel. 500 Hz)

Eq. noise input voltage : < -114 dB (A)

: < 0,2% Distorsion $V_1 = -9$ dB

V_o max.

(d = 5%, f = 500 Hz) : > +24,5 dB

3. Monitor amplifier Input impedance comm. : > 7 K6input (A31-B31) Input impedance comm. : 200 K ± 5% input (A32-B32) : > 10 K Input imp. (C18-C19) : < 10 E (500 Hz - 12,5 kHz) Output imp. (C16-C17) Gain: - channel output > to : 0 dB ± 1 dB (200 E resistor between mon. output (C16-C17) A 31 and B31) - Comm. input (A32-B32) to $: 3,5 \pm 0,5 dB$ mon. output (C16-C17) - input (C18-C19) to : 32 \pm 0,5 dB (200 E resistor mon. output (C16-C17) between A 31 and B31) - comm. input (A31-B31) to $: 32 \pm 0.5 \text{ dB}$ mon. output (C16-C17) : 150 Hz, -3,5 dB \pm 1 dB Gain freq. response 12,5 Hz, 0 dB \pm 0,5 dB (rel. 500 Hz) Eq. noise input voltage : < -109 dB (A) (C18-C19): < 0,2% Distortion $V_{O} = +22 \text{ dB}$ Vo max. : > +24,5 dB(d = 5%, f = 500 Hz)

LBB 3221/00 - 6-channel interpreter desk

General

This desk provides the speak and listening facilities for interpreters using the CCS400 system. Systems with up to 8 channels (including floor and autofloor channel) can be built with it.

2. Controls and indicators

- 6 locked push buttons
- 1-non-locked push button
- 1 three-position tumbler switch
- 1 two-position tumbler switch
- 1 8-position rotary switch
- 1 volume control
- 1 tone control
- 1 6-position rotary switch (rear side)
- 1 2-position slide switch (rear side)

3. Interconnection facilities

- A cable (1 = 180 cm) with 25-pole male lockable D-connector for connection to the C.S.U. LBB 3300.
- A 25-pole female D-connection to connect to the next LBB 3221.
- A 6,3 mm jack for the connection of a microphone.
- A 6,3 mm jack for the connection of a headphone.

4. Electrical specification

<u>General</u>

Supply voltage : 24 - 27 V

Supply (stand by) current: typ. 42 mA, max. --- mA.

2. Microphone channel

Frequency range : 150 Hz - 12.5 kHzInput level microphone : nom. 85 dB SPL max. 110 dB SPL

Equiv. noise input level : < 35 dB (A) SPL, typ. 32dB(A)

: 1250 E <u>+</u> 15% Output impedance

: 200 E with center tap biased Load impedance

to 13.5 V with 3 K series-

resistor

: nom. -4 dB ± 1 dB Output voltage

max. $-3 dB \pm 1 dB$

3. External microphone input :

: > 90 K Input impedance

Nominal input level : -36.5 ± 4 dB (dependant of the

setting of R4)

Gain frequency response : 40 Hz-14 <u>+</u> 3 dB : 150 Hz-1.5 \pm 1 dB 12,5 Hz-0,75 \pm 1 dB (rel. 500 Hz)

Distortion at input level : < 0,2% (nominal +25 dB).

When the microphone is switched off then the selected channel automatically receives the floor language.

Floor relay amplifier

Input impedance : 24 K ± 5%

(X1-1 --- X1-14)

Gain : -5 <u>+</u> 1 dB

Gain freq. response : 150 Hz -1,5 + 0,5 dB

(rel. 500 Hz)

5. <u>Headphone amplifier</u>

Input impedance : > 5 K
Output impedance : 500 E ± 5%

Gain (volume control max.,

pres. control min.,

unloaded) $: 31,75 \pm 1 dB$

Eq. noise input voltage : $\langle -99 \text{ dB(A)} | (R_g = 200 \text{ E})$

Distortion $V_0 + 10 \text{ dB}$: $\langle 0,5\% \text{ (RL = 150 E)}$

Presence frequency : 4000 Hz ± 400 Hz

Extra gain at pres. freq. : > 8 dB

System electro acoustical characteristics

If no tolerances are stated than the values are indicative.

Automatic microphone switch off circuitry

attack level : 64 dB SPL ± 3 dB

for one additional nominal speaker : < 80 dB(A) SPL

(85 dB SPL)

time delay for each speaker : 40 ± 20 seconds

Automatic gain reduction

for two or more microphones on $: -3 \text{ dB} \pm 1 \text{ dB}$

Power consumption passive delegate

unit T.T. : 8 mA typ.
L.S. active delegate unit T.T. : = 11 mA
Micr. on delegate unit T.T. : = 30 mA

Proporties of transmission links

In- and output levels are indicated in dB S.P.L. or dB rel. 0,775 V (unloaded). Output levels of loudspeakers are indicated at 0,5 m. distance.

Interface data

Interface data					•
		Link			
-	<u>A-C</u>	<u>A-E</u>	<u>A-G</u>	<u>A-D</u>	<u>A-H</u>
			1.1		
Nominal input level		Al1			
Overload input level (500 Hz)	<	All	links 1	10	>
Output impedance		E N.A.			
Permissible load impedance	>10K	N.A.	>10K	=>150E	>1K
Output level	-9+1 +	+75+85	+5+15	+11+20	-4+6
(input level between nom.					
and overload)					
(central gain pot3dB)					
<u>Transfer data</u>					
Gain reduction at					
O.I.L. (A.G.C.)	<	All	links 16	dB <u>+</u> 1	dB>
Gain reduction					
no microphone on	<	0 d	В		>
Gain reduction,					
2 or more microphones on	<2	All links	3 dB <u>+</u>	0,5 dB->	O dB
Range of attenuator for					
del. loudsp./headph. (<u>+</u> 1 dB	<	0, -3,	-6, -12,	-15>	O dB
Distortion at rated imp.	<1%	<3%	<1%	<1%	<1%
Distortion at max. imp.	<5%	<5%	<5%	<5%	<5%
Typical clipping level					
(distortion = 5%)	-	_	-	+11 dB	
Eq. noise input level					
(A-weighted): typical:	₹32	<32	₹32	<32	₹32

Interface data

4	<u>A-I</u>	$\underline{\mathbf{A}}\mathbf{-L}$	<u>A-J</u>
Nominal input level			· · · · · · · · · · · · · · · · · · ·
Overload input level (500Hz)			>
Output impedance	·<50E	510E/220K	<5E
Permissible load impedance	>1K	>OE	<50E
Output level	-16	-6 -24	+25+30
(input level between nom.	- 4	+6	
and overload)	+ 6	+16	
(Central gain pot3dB)			

<u>Link</u>

Transfer data

Gain reduction at O.I.L. (A.G.C.)	>				
Gain reduction					
no microphone on			>		
Gain reduction,					
2 or more microphones on	0 dB	O dB	O dB		
Range of attenuator for					
del. loudsp./headph. (<u>+</u> 1 dB)	O dB	O dB	O dB		
Distortion at rated imp.	<1%	<1%	<15%		
Distortion at max. imp.	<5%	<5 %	<30%		
Typical clipping level					
(distortion = 5%)	_	. -	+24,5		
Eq. noise input level					
(A-weighted): typical:	₹32	₹32	<32		

Interface data

Interrace data		Link		
	С-Н	<u>F-H</u>	<u>I-E</u>	<u>C-E</u>
Nominal input level Overload input level (500 Hz) Input impedance Output impedance Permissible load impedance Output level (input level between nom. and overload) (Central gain pot -3dB)	•	-4 dB and +6dB +6 dB and +16dB >10K <200E >1K -4+6		

Transfer data

Gain reduction						
no microphone on	<>					
Gain reduction,						
2 or more microphones on	<	3 <u>+</u> 1		>		
Range of attenuator for						
del. loudsp./headph.	0,-3,-6	,-9,-12,-15	<3%	<3%		
Distortion at rated imp.	⟨0.5%		<5%	<5%		
Distortion at max. imp.	<2%	<5 %	-	_		
Typical clipping level	+15dB	+9 dB				
(distortion = 5%)						
Eq. noise input level						
(A-weighted, 1 micr. on)	<0.41uA	<-64				

Limits of the system One LBB 3300/00 can feed two loop-through strings of 35 * delegate units with max. 50 meters extension cable each. In case of trunk cabling the maximum length of each string is 100 meters (power core \emptyset 0,75 mm²).

Max. number of 6 channel interpreter desks LBB 3221 is 18 *. Max. number of channel selectors LBB 3178 is 1000.

* Max. total continuous current \leq 1,7 A (two strings and interpreters desks), and \leq 1,55 Amp when LBB 3203 feeds 1000 channel selectors.

LBB 3386/40 CENTRAL CONTROL DESK, 40 DEL

LBB 3386/70 CENTRAL CONTROL DESK, 70 DEL

LBB 3386/01 CENTRAL CONTROL KIT, BASIC PCB ASSEMBLY

LBB 3386/02 CENTRAL CONTROL KIT, EXTENSION PCB ASSEMBLY

CAUTION

FOR PREVENTING DIGITAL CIRCUITRY DAMAGE, USE DURING TESTING ONLY MEASURING EQUIPMENT WHICH IS NOT EARTHED!

CONTENTS	3			PAGE	NC
	_	******	ODZZOWION N	AND THE PROPERTY OF THE PROPER	
CHAPTER	1			ND TYPENUMBERS	
		1.1			
			1.1.2	The Central Control Desk The Central Control Kit	
		1 2			
		1.2	TIPE	NUMBERS	1.2
CUNDED	2	TECH	אדראז. האייא		2 1
CHAPTER	2	$\frac{16011}{2.1}$		RAL TECHNICAL SPECIFICATION	
		2.1	2.1.1	6.3mm Socket For Headphone	
			2.1.2	Monitor Part	
			2.1.3	Rotary Volume Control For	1
			2.1.5	Loudspeaker/Headphone Level	2 1
			2.1.4	Mute Function	
			2.1.5	Battery Back Up	
			2.1.6	Checksum Of EPROM	
			2.1.7	Response Time	
		2.2		RESPONSE TIME	
		4.4	2.2.1		۷.2
			2.2.1	8-poleDIN connector for connection to	<u> </u>
			2 2 2	DEL1 socket on C.S.U.	2.2
			2.2.2	8-pole DIN connector for connection to	
			0.0.0	DEL2 socket on C.S.U	2.2
			2.2.3	8-pole female DIN sockets BU1 & BU2	
			2.2.4	8-pole female DIN socket BU3	
			2.2.5	6-pole female DIN socket BU4	2.4
			2.2.6	15-pole female D-type connector socket	
				<u>BU6</u>	
			2.2.7	25-pole female D-type connector sockets	
		2.3		EM CONDITIONS	
			2.3.1	Working Conditions	
			2.3.2	Storage And Transport	
			2.3.3	Safety Requirements	
			2.3.4	Interference	
			2.3.5	Other Legal Requirements	
		2.4		ITY/RELIABILITY SPECIFICATION	
			2.4.1	Technical Lifetime	
			2.4.2	Reliability	
		2.5		ITY TESTS	
			2.5.1	Temperature	
			2.5.2	Relative Humidity	
			2.5.3	<u>Bump</u>	
			2.5.4	<u>Vibration</u>	2.6
			2.5.5	<u>Transport</u>	
			2.5.6	Susceptibility To HF	2.6
			2.5.7	Conducted And Radiated Interference	2.7
			2.5.8	Spikes On The Mains	2.7
			2.5.9	Safety	2.7
CHAPTER	3	TEST	INSTRUCTION	<u> </u>	3.1
CHAPTER	4	BLOC	K DIAGRAM 1	DESCRIPTION	4.1
~ ±	•	4.1		1 MICROPROCESSOR Z80	
		4.2		2 CLOCK GENERATOR	
		4.3		3 POWER SENSE AND RESET CIRCUIT	

	4.4	PART 4 DATA UPLINK AND DATA DOWNLINK
		CONVERTER
	4.5	PART 5 CONTROL CIRCUITRY 4.1
	4.6	PART 6 MEMORY
	4.7	PART 7 SERIAL INTERFACE 4.2
	4.8	PART 8 DATA DOWNLINK FOR DESK BUTTON LEDS 4.2
	4.9	PART 9 DATA UPLINK FOR DESK BUTTON
		INFORMATION
	4.10	PART 10 DATA UPLINK FOR DELEGATE REQUEST
		INFORMATION
	4.11	PART 11 DATA DOWNLINK FOR DELEGATE MICROPHONES 4.2
	4.12	PART 12 PRIORITY/DISABLE REQUEST CONTROL
		CIRCUIT
	4.13	PART 13 CHANNEL MONITORING 4.2
	4.14	PART 14 VOLTAGE CONVERTER 4.3
	4.15	PART 15 CHANNEL OCCUPIED INDICATION 4.3
CHAPTER 5	CIRC	UIT DESCRIPTION
		AUDIO PART
		5.1.1 <u>Power Supply</u> 5.1
		5.1.2 Monitoring
		5.1.3 Channel Occupied Indication 5.2
		5.1.4 Loudspeaker/Headphone Amplifier 5.2
	5.2	MICROCOMPUTER PART
	٠	5.2.1 Reset Circuitry
		5.2.1.1 Power Sensing
		5.2.1.2 Watchdog timer
*		5.2.2 Microprocessor
		5.2.3 Clock Circuit
		5.2.4 Read/Write, Enabling Circuitry 5.4
		5.2.5 <u>Memory</u>
		5.2.6 Optional Serial RS232 Interface 5.4
		5.2.7 <u>DIL Switch S22</u>
		5.2.8 LOAD/STROBE Circuitry 5.4
	5.3	DATA UPLINK/DOWNLINK PART 5.5
		5.3.1 <u>Data Uplink</u> 5.5
		5.3.2 <u>Data Downlink</u> 5.6
		5.3.3 <u>AUTO/MANUAL Mode</u> 5.6
		5.3.3.1 AUTO mode 5.6
		5.3.3.2 MANUAL mode 5.7
	5.4	PRIORITY/DISABLE REQUEST CIRCUIT 5.7
		5.4.1 <u>Priority</u> 5.7
		5.4.2 <u>Disable Request</u> 5.8
CHAPTER 6	PART	<u>S LIST</u>
	6.1	LBB 3386/40/70 6.1
	6.2	LBB 3386/01
	6.3	LBB 3386/02 6.3
CHAPTER 7	DIAG	RAMS
	Fig.	Block diagram audio part of up/switch board 7.1
	Fig.	
	Fig.	
	Fig.	
		5-1/2 Assembly diagram of uP/switch board 7.5
	Fig.	

Fig.	7-1/4	Circuit diagram of uP- and I/O/switch part of
_		uP/switch board 7.8
Fig.	8-1/2	Assembly diagram of I/O/switch board 7.12
Fig.	9-1/4	Circuit diagram of I/O/switch board 7.14
Fig.	10-1/2	Assembly diagram of LBB 3386/01 7.18
Fig.	11-1/4	Circuit diagram of LBB 3386/01 7.20
Fig.	12-1/2	Assembly diagram of LBB 3386/02 7.24
Fia.	13-1/4	Circuit diagram of LBB 3386/02 7.26

CENTRAL CONTROL DESK

INTRODUCTION AND TYPENUMBERS

1.1 INTRODUCTION

In this document the CCS 400 Central Control equipment is described. The service policy is to maintain and repair this equipment at the customers site (mainly first line). Therefore the complete PCB assemblies, cable assemblies and mechanical assemblies are stocked as spare parts at concern service.

1.1.1 The Central Control Desk

The central control desk provides complete control over the CCS400 conference system. The desk gives the operator the means to control the on/off status of the delegates microphone units and to monitor the systems audio channels. It also provides an over-all view of the system status, including a request-to- speak list, active microphones and microphones to which a special status (AUTO-FREE) has been assigned, plus a facility for monitoring the interpretation channels.

Two desks are available, one for control up to 40 delegates, the LBB 3386/40, and the other for control up to 70 delegates, the LBB 3386/70. The LBB 3386/40 consists of one uP/switch board and one I/O/switch board. The LBB 3386/70 consists of one uP/switch board and two I/O/switch boards.

The desk includes 40 or 70 illuminated microphone control keys, each key corresponding to a single delegates microphone unit. A facility is also provided were up to a maximum of 5 delegates units out of 10 may be assigned with a special status (AUTOFREE). The delegate units assigned with the special status allow their users to switch on or off their microphone units without any intervention by the system operator during conference proceeding.

The control desk provides two operational modes:

- 1) Automatic mode (AUTO)
 Delegates may control the on/off status of their own microphones
- 2) Manual mode (MANUAL)

Delegates initially join a queue of waiting delegates who have requested to speak. Once in the queue the operator has full control over the on/off status of the microphone units.

For further functional description see "Discussion Conference and Interpretation system CCS400 Installation Manual and Operating Instructions for the Conference Application", 3922 988 20211.

-1.1-

CCS400 CENTRAL CONTROL DESK

1.1.2 The Central Control Kit

The central control kit has been designed and assembled for customers wishing to create and design their own custom built control desk. The kit provides complete control of the CCS 400 conference system for up to 10, 40, 70 or 100 delegate units.

The installation kit provides the means to arrange and position the control switches, used to control the delegates microphone units, and their respective led indications to any desired location on the custom built control desk. For example the geographic positions of the delegates microphone units in a conference hall may be represented on the control desk.

The central control kit is made up of two main PCB board assemblies:

- LBB 3386/01 basic PCB assembly
- LBB 3386/02 extension PCB assembly

The basic PCB assembly LBB 3386/01 allows control up to 10 delegates units, together with facilities for system monitoring and microphone management. An extension to the basic PCB assembly is provided by the extension PCB assembly LBB 3386/02 capable of controlling up to a further 30 delegate units.

The following configurations can be made :

configuration 1: 1 x LBB 3386/01 provides central control for up to 10 del. units.

configuration 2: 1 x LBB 3386/01 and 1 x LBB 3386/02 provide central control for up to 40 del. units.

configuration 3: 1 x LBB 3386/01 and 2 x LBB 3386/02 provide central control for up to 70 del. units.

configuration 4: 1 x LBB 3386/01 and 3 x LBB 3386/02 provide central control for up to 100 del. units.

NOTE This is the maximum configuration which is possible with the kit. This "maximum" is mainly determined by the software.

The basic PCB assembly LBB 3386/01 consist amongst others of an assembled microprocessor/switch PCB. This PCB is functionally and electrically similar to the uP/switch board of the LBB 3386/40/70 (description in chapter 4 and 5) with the exception of the leds and pushbuttons. Where on the uP/switch board of the /40/70 the leds and buttons are mounted, connectors are placed on the /01 board to make it possible to connect leds and buttons at remote positions for special applications. The extension PCB assembly LBB 3386/02 consist amongst others of an assembled switch PCB. This PCB is similar to the I/O/switch board of the LBB 3386/40/70

CCS400

CENTRAL CONTROL DESK

(description in chapter 4 and 5), functionally as well electrically. As on the uP/switch board of the /01, the leds and pushbuttons are replaced by connectors.

For description of how to use the installation kit, see installation manual 3922 988 20111.

1.2 TYPENUMBERS

LBB 3386/40 Central Control Desk for up to 40 del. units

LBB 3386/70 Central Control Desk for up to 70 del. units

LBB 3386/01 Basic PCB assembly of central control kit

This assembly consists of the following:

- 1 x assembled microprocessor/switch board
- 2 x cable relief grommet
- 2 x trunk line
- 1 x headphone socket and nut
- 1 x loudspeaker and mounting plate
- 1 x 8-pole rotary switch (monitor)
- 2 x knob + cap
- 1 x potentiometer 47 Kohms
- -12 x cable (4 core) with 4-pole connector for switch (push button) and led
- -19 x cable (2 core) with 2-pole connector for led
- 1 x cable (11 core) with connector for monitoring interpretations
- 1 x cable (2 core) with connector for loudspeaker connection

LBB3386/02 Extension PCB assembly of central control kit.

This assembly consists of the following :

- 1 x assembled switch board
- -30 x cable (4 core) with 4-pole connector for switch (push button) and led

γ

CCS400

CENTRAL CONTROL DESK

2 TECHNICAL DATA

The functional specification/description can be found in the CCS400 Installation manual 3922 988 20211.

NOTE Where "see spec. section13" is mentioned, the electrical specification, which is included in section 13, is meant.

2.1 GENERAL TECHNICAL SPECIFICATION

2.1.1 6.3mm Socket For Headphone

Output level at nominal input level (85 dB S.P.L. at system microphones) : > +22 dB (electrical) (at least 22 dB with rotary volume control

at minimum)

Output impedance: 680 Ohm.

2.1.2 Monitor Part

Monitor amplifier:

frequency response: 150 Hz - 12,5 KHz

Monitor loudspeaker:

Output level at nominal input level (85 dB S.P.L. at system microphones) : > 80 dB S.P.L., at 0,5m !!

Total Harmonic Distorsion : < 2%

2.1.3 Rotary Volume Control For Loudspeaker/Headphone Level

adjustment range: 27 dB (electrical)

2.1.4 Mute Function

attenuation when mute is active : > 20 dB

2.1.5 Battery Back Up

data retention time at least 500 hours. (battery completely charged).

2.1.6 Checksum Of EPROM

The checksum of the EPROM is 3CC5.

2.1.7 Response Time at desk actions in the CCS400 system is < 0,33 sec.

2.2 INTERFACE SPECIFICATION

2.2.1 8-poleDIN connector for connection to DEL1 socket on C.S.U. (in circuit diagram ST1).

contact	function	specification
1,2,3,4,5,6	N.C.	
7	V+ del. units	see spec. section13
8	ground del. units	see spec. section13

2.2.2 8-pole DIN connector for connection to DEL2 socket on C.S.U. (in circuit diagram ST2).

contact	function	specification
1	Priority output	no priority : < 0,1mA priority : > 0,5mA
2	N.C.	
3	Audio (floor)	see spec. section13
4	Audio ground	see spec. section13
	("Auto switch off"	
5	V+ for control desk	see spec. section13
6	n.C.	•
7	V+ del. units	see spec. section13
8	ground del. units	see spec. section13

2.2.3 8-pole female DIN sockets BU1 & BU2 For connection of Del string1 respectively Del string2

contact 1	function Priority output	specification no priority : V > 20V priority (AUTO : 9V < V < 14V and MANUAL)
2	Disable request	Disable : V < 9V
	output	Enable : V > 11V
3	Audio (floor)	see spec. section13
4	Audio ground	see spec. section13
	("Auto switch off"	on/off)
5,6	N.C.	
7	V+ del. units	see spec. section13
8	ground del. units	see spec. section13

2.2.4 8-pole female DIN socket BU3 For connection of chairmans unit

contact 1	function Priority input	<pre>specification priority : V < 3,5V non-priority : floating</pre>
2,5	N.C.	
3	Audio (floor)	see spec. section13
4	Audio ground	see spec. section13
6	Remote control	mic. off : $V= 15V +/- 1V$
**		mic. on : $V = 5,5V +/-1V$

CCS400

CENTRAL CONTROL DESK

7 V+ del. units see spec. section1 8 ground del. units see spec. section13

2.2.5 6-pole female DIN socket BU4

For connection of external power supply unit (if required)

NOTE This "extra" power is only used by the central control desk hardware and not by the connected delegate units.

4,5,6 N.C.

2.2.6 15-pole female D-type connector socket BU6

For connection of the C.S.U.- or transmitter- monitor socket A monitor cable LBB 3024/02 must be used between BU6 and C.S.U. or transmitter.

contact	function	specification
1,9	Monitor signal	see spec. section13
	input	
2	led input ch6	current 2,5 mA +/- 10%
3	led input ch4	и и и и и,
4	led input ch2	11 11 11 11 11 11
10	led input ch3	म् च स स च ा
11	led input ch5	स स स स स
12	led input ch1	प प म प प
5,6	common led input	ground
7	output A1	logical 0 : floating
		logical 1 : 5V
8	output A3	connected to pin 13 (5V)
14	output A0	see 7
15	output A2	see 7
13	common input	+5V

For connection of the delegate units for remote control

remote control input pins : input impedance : > 30K

input floating : no request
input < 5V : request</pre>

remote control output pins : pulse amplitude : 24 V +/- 2V

rise time (del. on): < 0,5 m fall time (del.off): < 0,5 ms maximum load : 12 nF

Input/output pins off connected delegates							IN pin	OUT pin			
1,	11,	21,	31,	41,	51,	61,	71,	81,	91	5	17
2,	12,	22,	32,	42,	52,	62,	72,	82,	92	4	18
3,	13,	23,	33,	43,	53,	63,	73,	83,	93	3	15
4,	14,	24,	34,	44,	54,	64,	74,	84,	94	2	16
5,	15,	25,	35,	45,	55,	65,	75,	85,	95	1	14
6,	16,	26,	36,	46,	56,	66,	76,	86,	96	10	23
7,	17,	27,	37,	47,	57,	67,	77,	87,	97	9	21
8,	18,	28,	38,	48,	58,	68,	78,	88,	98	8	22
9,	19,	29,	39,	49,	59,	69,	79,	89,	99	7	19
10	,20,	30,	40,	50,	60,	70,	80,	90,	100	6	20

2.3 SYSTEM CONDITIONS

2.3.1 Working Conditions

- fixed/stationary/transportable
- indoor use
- operation by experts/laymen
- climate: +5/+40 C

2.3.2 Storage And Transport

- packed according to UND 1400
- transport conditions : -40/+70 C

2.3.3 Safety Requirements

- IEC 65, SEMCO, DEMCO, NEMCO, BS415

2.3.4 <u>Interference</u>

- The radiation according to CISPR catagory II
- The susceptibility for mains interference : the equipment can be used in industrial areas.
- The susceptibility for electromagnetic interference : a field of 1V/m, 30 % modulation (AM), frequency between 0-500 Hz, gives an interference of < 40 dB related to the nominal output level.
- The susceptibility for static discharges on all touchable partson the outside of the equipment does not cause any damage of parts or non-self-resetting disturbing functions.

2.3.5 Other Legal Requirements

- cadmium is not present in components or as metal protection.

CCS400

CENTRAL CONTROL DESK

- 2.4 QUALITY/RELIABILITY SPECIFICATION
- 2.4.1 Technical Lifetime
 - The total lifetime required is > 7 years.
- 2.4.2 Reliability
 - Mean Time Between Failures (M.T.B.F.) : 50.000 Hrs
 - Mean Time To Repair (M.T.T.R.) : 30 min. 1st line 90 min. 2nd line
- 2.5 QUALITY TESTS
- 2.5.1 Temperature
- 2.5.2 Relative Humidity
 - cyclic damp heat test acc. to IEC 68-2-30Db; 21 days in 40 C
- 2.5.3 Bump
 - Test acc. to IEC 68-2-29Eb; 3 directions, 1000 bumps of each 10g (gravity).
- 2.5.4 Vibration
 - tested acc. to IEC 68-2-6Fc, procedure A;
 - 1) vibration between 10 and 60 Hz, vibration amplitude 0,35mm, gravitational force variable.
 - 2) vibration between 60 and 150 Hz, gravitational force 5g, vibration amplitude constant.

tests in 3 directions, 30 min/direction (without resonance test)

- 2.5.5 Transport
 - droptest acc. to UND 1400 with packed product.
- 2.5.6 Susceptibility To HF (see 2.3.4)
 - tested acc. to ELV 14-204

2.5.7 Conducted And Radiated Interference

- acc. to CENELEC/CISPR, catagory II

2.5.8 Spikes On The Mains

- tested with Koepfer generator SG242 400V spikes will give no noticeable disturbance. 800V spikes will not cause defects.

2.5.9 <u>Safety</u>

- safety acc. to IEC 65

3 TEST INSTRUCTIONS

The following test instructions are to test the central control equipment functionally. For composing a CSS 400 conference system (this also includes central control equipment) see installation manual 3922 988 20211. This chapter is referred to in chapter 5 of the above mentioned installation manual.

- 1) Switch on the mains supply on the Central Supply Unit (C.S.U.)
- 2) Check that the "mains on" indicator on the central control desk is illuminated.
- 3) Adjust the monitor gain control on the control desk to the required listening level.
- 4) Put the control desk into the "MANUAL" mode, i.e. press the key marked "AUTO MAN" until it illuminates.
- 5) Press in chronological order the microphone on/off buttons of the delegate units assigned with numbers 1-10. Check that the green LED on the units illuminate.
- 6) At the control desk the illuminated keys corresponding to the first ten delegate units 1-10 should now be illuminated and flashing. The key marked no.1 which corresponds to the delegate unit assigned no.1 should now be flashing at twice the speed of the other keys marked 2-10.
- 7) At the control desk press the corresponding illuminated keys to switch on the microphones of the delegate units 1-10.

NOTE At this stage it is assumed that no "AUTO FREE" status has yet been assigned. Therefore the first seven microphones (the CCS 400 system is limited to 7 active microphones plus the chairmans microphone) should now be activated.

- 8) After pressing the illuminated keys 1-10 on the control desk, check that the delegate unit microphones 1-7 are active and their corresponding red leds on the unit themselves are illuminated and the corresponding keys on the control desk are now permanently illuminated.
 - Check that the loudspeakers of the corresponding units are switched off.
 - If necessary adjust the system gain to the required listening level free from acoustic feedback, by means of the rotary switch on the C.S.U.
- 9) The "MIC. LIMIT" led on the control desk should now be illuminated indicating that the limit of the system has now been reached. In such a case it will be unable to switch on any more microphones.

- 10) Switch off the active delegate microphone units either by pressing again the corre onding keys on the control desk, or by pressing again the microphone on/off button on the microphone units themselves.
- 11) At the control desk the keys marked 8,9 and 10 should still be illuminated and flashing.

 Key eight should be flashing at twice the speed of keys 9 and 10.
- 12) At the control desk press the corresponding illuminated keys to switch on the microphones of the delegate units 8,9 and 10. Check the units for correct operation as above.
- 13) Depending on the number of delegate units installed in the system repeat steps 5 to 12 for delegate units numbered 11-20, 21-30, 31-40, etc to 91-100.
- 14) Check the "CANCEL REQUEST" function on the control desk by first making a number of requests to speak by pressing the microphone on/off buttons on the delegate units.

 The keys corresponding to the delegate units on the control desk which have requested to speak will now be flashing. Press the key marked "CANCEL REQUEST" on the control desk, this should now extinguish all the illuminated flashing keys together with the green leds on the corresponding delegate units
- 15) To check the chairmans unit, press the key marked "CHAIRMAN" on the control desk to switch on the chairmans microphone. The key will illuminate together with the red led on the chairmans unit. To switch off the chairmans unit, press again the key marked "CHAIRMAN". The illuminated key will now extinguish together with the red led on the unit itself.
- 16) To check the chairmans priority function, keep the key marked "PRIORITY" on the chairmans unit pressed. A chime tone should be heard, and the led marked "PRIOR" on the control desk should illuminate and the chairmans microphone should now become active, and all active microphones become temporarily muted.
- 17) When the "PRIORITY" key is released the microphones which were temporarily muted, should now become active again. The red led marked "PRIOR" will extinguish.
- 18) To check the mute function, activate a number of delegate units and press the key marked "MUTE" on the control desk. When pressed the floor distribution should now be muted.
- 19) To check the "AUTO FREE" status assign the delegate units numbered 1-5 with the auto free status. This is achieved by keeping the key marked "SET AUTO FREE 1-10" on the control

desk pressed, while selecting keys 1 to 5. When selected the corresponding green leds will illuminate.

- 20) When selected for "AUTO FREE" status, the assigned units may be switched on or off at any time by pressing the units microphone on/off buttons. However the assigned units may also be switched on or off at the control desk. Check this function.
- 21) Repeat steps 19 and 20 for delegate units 6 to 10.
- 22) To check the system in the "AUTO" mode, press the key marked "AUTO MAN" on the control desk, until the illuminated key extinguishes. In the "AUTO" mode delegates control their own microphones.

However, as previously stated, the CCS 400 system is limited to 7 active microphones plus the chairmans microphone. Press the on/off button of the delegate units numbered 1-7, they should now become active automatically until the MIC. LIMIT led illuminates. Check that after a repeat operation of the units on/off buttons the units are now switched off.

4 BLOCK DIAGRAM DESCRIPTION

The central control desk can be divided into 15 parts (see block diagrams fig. 1,2,3 and 4). These 15 parts are divided over 2 main PCB's, the uP/switch board 3922 156 06560 (in control desk) or /01 (in control kit) and the I/O/switch board 3922 156 06550 (in control desk) or /02 (in control kit).

4.1 PART 1 MICROPROCESSOR Z80

The Z80 uP controls the data uplink and data downlink part. It ensures that the leds of the desk buttons are switched on or off via the data downlink part at the correct time. The processor also provides data to switch on or off the delegate and chairman microphones. Via the uplink part requests from delegates and information from the desk buttons are read in by the processor. Via the address bus the RAM and ROM can be addressed. Via the data bus, data is send to the RAM, the UART or to the data downlink converter. Data can be read in from the RAM, ROM, UART, the address latch and the data uplink converter.

4.2 PART 2 CLOCK GENERATOR

The Clock generator part provides the uP clock and a serial and latch clock to control the data downlink and data uplink part. From the serial clock a CLK1 and CLK2 signal is derived to control the I/O part.

4.3 PART 3 POWER SENSE AND RESET CIRCUIT

This circuit senses the power supply voltage. When the system is switched on, a reset to the uP, RAM and IC18 (latch) will be generated. The circuit also contains a watchdog timer. This timer will reset the processor, RAM and IC18 in case the uP has "hung up" The watchdog reset circuitry can be made inactive by placing jumper S21.

4.4 PART 4 DATA UPLINK AND DATA DOWNLINK CONVERTER

The data downlink converter converts the parallel data from the uP into serial data for the I/O part to be sent to the delegate units to control the microphones, and to the desk button circuitry to control the leds. The data uplink converter converts the serial data, coming from the desk buttons and delegate requests via the I/O part, into parallel data for the uP.

4.5 PART 5 CONTROL CIRCUITRY

This part controls the memory (RAM & ROM), the UART, the reset circuit and finally the data uplink— and data downlink converters. It also provides load and strobe pulses for the I/O part.

4.6 PART 6 MEMORY

The ROM contains the uP program. The RAM contains program variables and is used to store temporary data. The RAM has a battery back-up.

4.7 PART 7 SERIAL INTERFACE

NOTE This is an optional circuit.

This circuit contains an UART for serial communication with e.g. a Personal Computer.

4.8 PART 8 DATA DOWNLINK FOR DESK BUTTON LEDS

In this part serial data from the data downlink converter is converted into data to control the desk button leds. The circuit is controlled by CLK1 and STROBE1.

4.9 PART 9 DATA UPLINK FOR DESK BUTTON INFORMATION

In this part data from the desk buttons is converted into serial data for the data uplink converter. The circuit is controlled by CLK2 and inverted LOAD1.

4.10 PART 10 DATA UPLINK FOR DELEGATE REQUEST INFORMATION

In this part data from the delegate request buttons is conver- ted into serial data for the data uplink converter. The circuit is controlled by CLK2 and inverted LOAD2.

4.11 PART 11 DATA DOWNLINK FOR DELEGATE MICROPHONES

In this part serial data from the data downlink converter is converted into data to control the delegate microphones. The circuit is controlled by CLK1 and STROBE2.

4.12 PART 12 PRIORITY/DISABLE REQUEST CONTROL CIRCUIT

Via this circuit the priority signal from the chairman is connected to the data uplink circuitry in part 10. A priority signal, to activate the chime tone, which is coming from part 11, is distributed to the delegates and the Central Supply Unit. Disable request, activated by part 11, is connected to the delegates.

4.13 PART 13 CHANNEL MONITORING

In this circuit the monitor signal or the floor is selected via a multiplexer. Via this part the channel address selected by the channel selector is routed to the M.D.B. (Monitor Distribution Board) or transmitter via BU6. The selected channel is received as the monitor signal. Volume control is provided by a potentiometer which can be controlled at the front of the desk.

4.14 PART 14 VOLTAGE CONVERTER

In this part several voltages used in the circuitry, are derived from the power supply voltage coming from the Central Supply Unit and/or the external supply unit. A rechargeable battery ensures Vbat. for e.g. the RAM when the system is switched off or in case of a power failure.

4.15 PART 15 CHANNEL OCCUPIED INDICATION

This circuit ensures that a led will illuminate when the corresponding channel is occupied. The channel occupied information, available on BU6, is taken from the Monitor connector at the Central Supply Unit or at the IR transmitter.

CENTRAL CONTROL DESK

5 CIRCUIT DESCRIPTION

5.1 AUDIO PART

This part is located on the uP/switch board 3922 156 06560 (in control desk) or on /01 (control kit)

See circuit diagram fig. 6

5.1.1 Power Supply

Via pin 3 and pin 4 of DELII (ST2) the floor line from the C.S.U. (Central Supply Unit, LBB 3300/--) is connected to the Chairmans connector (BU3-3,4), to delegate string 1 (BU1-3,4) and to delegate string 2 (BU2-3,4). The power supply voltage coming from the C.S.U. via ST2-7,8 and ST1-7,8 is used by the chairman (BU3-7,8) and delegate string 2 (BU2-7,8) respectively by delegate string 1 (BU1-7,8). The voltage y-z is made from the power supply voltage from DELII (ST2) and/or from the voltage coming from an external power supply. Y is 26,5 V and Z is earth (mechanical ground). From this voltage y-z, the voltage Vdd is derived, with Vss as ground reference. Vdd is used for all digital IC's.

NOTE Vdd is 26,5 V in relation to earth (mechanical ground).

Vss is approx. 21 V in relation to earth. This means that Vss is not mechanical ground but a ground reference for the digital circuitry. When using measuring equipment which is earthed, it is possible that 26,5 V will be present at the digital circuitry. Therefore:

CAUTION For preventing digital circuitry damage, use during testing only measuring equipment which is not earthed.

The resistor circuitry R164-R168 divides the power voltage coming from ST2-8 or from the external power supply, into the following voltages, V++, +13V, +5V and +2, 5V. These voltages are used in the monitor part (circuitry around IC31 and IC32).

5.1.2 Monitoring

The circuitry around and including IC31 ensures that the monitored channel (coming from the M.D.B. in the C.S.U., or from an IR transmitter) or the floor is switched to the loudspeaker amplifier. When via the monitor cable a M.D.B. or IR transmitter is connected, 5V is supplied to the select inputs of the mux. IC31. By means of the channel selector any channel including floor and autofloor can be monitored. When no M.D.B. or IR transmitter is used monitoring of the channels is not possible. The select inputs of the mux. are now low and therefore the floor is always switched through independent of the channel selector position.

5.1.3 Channel Occupied Indication

On BU6-2,3,4,10,11 and 12 the channel occupied information for the leds, coming from the int/mon board in the C.S.U. (directly or indirectly via a connected IR transmitter), is available. The channel occupied leds are connected between the info pins on the connector BU6 and the ground reference pin BU6-6. When a channel is occupied the corresponding op-amp on the int/mon board will have an high output of 27V ensuring that current can flow through the led to ground. The led will illuminate.

5.1.4 Loudspeaker/Headphone Amplifier

The op-amp IC32 together with TS11, TS12, TS13 and TS14 and surrounding components form the power amplifier for the loudspeaker and headphone. Volume control is possible with the 47K potmeter connected to X4-2,3. The loudspeaker will be switched off when a headphone is plugged in. IC32 is amplifying the signal and the resistors and capacitors determine the amplification rate and the bandwith. The transistors TS11, TS12, TS13 and TS14 provide enough current to drive the loudspeaker.

Switch button S2 can be used for muting the floor signal.

5.2 MICROCOMPUTER PART

his part is located on the uP/switch board $3922\ 156\ 06560$ (in control desk) or on /01 (control kit).

See circuit diagrams fig. 7-1 through 7-4 and fig. 11-1 through 11-4.

The microcomputer part roughly consist of the Z80 uP, RAM, ROM, control circuitry and an optional serial interface part for e.g. PC connection.

5.2.1 Reset Circuitry

5.2.1.1 Power Sensing

The circuitry consisting of TS1, TS2, TS3 and associated components is sensing the voltage Vdd. As long as the power supply voltage is not in range, less than approx. 6V, the set (4) input of IC15a (emitter of TS3) is active low because Vdd is lower then 6V. The inverted Q output (6) is low and the uP, RAM and IC18 are no current can flow in reset. The Q output (5) is high and through D4 to ground, therefore the "power on" led will not be illuminated. When the power supply voltage is in range, greater 6V, the set input of IC15a becomes high and than approx. therefore inverted Q output is no longer low (uP, RAM and IC18 no longer in reset), but is dependent of the C1 (3) and 1D (2) inputs of IC15a. The Q output is high, current can flow through the "power on" led D4 to ground and the led will illuminate.

5.2.1.2 Watchdog timer.

When the power supply voltage is in range (>6V), the MR input 11 of counter IC14 is low via inverter IC13d. Normally pin3 of IC24a is high (not addressed by uP) and therefore pin6 of IC13C, which is connected with MR, is low. The counter is normally counting. The uP, which is running in normal situation, takes care that at regular intervals pin3 of IC24a is addressed, pin3 then becomes low Via pin6 of IC13c and C7 a positive pulse is generated at the MR input of IC14. The counter will be reset and starts counting the incoming clockpulses at pin10 again. The interval frequency is chosen so that the output 14 of IC14 never reaches the high state. Every time before output 14 of the counter will turn high (after 512 clockcycles), the counter will be resetted by the MR pulse. In this way output 14 will remain low as long as the uP generates via IC24a, pin3 and IC13c/C7 the MR pulse at the proper time. Pin 9 of counter, which is connected with C1 input of IC15a, ensures that the low 1D input (output 14 of IC14) is clocked to the outputs. Q is low, led D4 will illuminate. Inverted Q output is high, the uP, RAM and IC18 are not in reset. When the uP has hung up itself pin3 of IC24a will not be addressed at the proper moment, via IC13c/C7 the MR input remains low. The counter will not be reset at the regular intervals and therefore it continues to count incoming clockpulses. Output 14, 1D input of IC15a, will become high (after 512 clockcycles) and therefore inverted output Q becomes low. The up, RAM and IC18 will be reset now.

5.2.2 Microprocessor

The reset output of the power sense/watchdog circuit is connected to the active low RESET input ensuring that, when the system is switched on, a powerfailure occurs or when the processor has hung up itself, the uP will be reset. AO/A15 of the Z80 form the address bus providing the addresses for the memory and I/O. D0/D7 forms the bidirectional data bus. The in- verted outputs M1, RFSH, HALT and BUSACK are not used. The inverted inputs WAIT and BUSREQ are also not used and therefore connected to Vdd. The inverted INT input is used by a clock signal coming from IC22 ensuring that the uP is interrupted at regular intervals. Every time the inverted INT is low the uP diverts to an interrupt program controlling the delegates and desk buttons/leds via the data uplink and data downlink converter. In the time between these interrupts, the processor is carrying out several other actions e.g. taking decisions wether to switch on or off a delegate microphone or a led, updating memory, etc. The inverted NMI input (Non Maskable Interrupt) is connected to the inverted transmitter/receiver ready/empty control output of the optional UART. The inverted outputs MREQ (memory request), IORQ (I/O request), RD (read) and WR (write) are used via IC16 to read/write the memory and I/O devices.

5.2.3 Clock Circuit

This circuit provides a 5.0688 MHz clock signal. IC22 provides clock signals CLK1/CLK2 (used by the data uplink/downlink parts) and a "divided by 8" clock signal (latch clock) to interrupt the uP via the inverted INT input. This latter clock signal is also used by the data uplink/downlink parts and in the circuitry containing IC18, 19 and 20 to provide the LOAD and STROBE pulses.

5.2.4 Read/Write, Enabling Circuitry

Via the OR-gates in IC16, read/write enable signals are composed from the inverted signals MREQ, IORQ, RD and WR, at output 11 "memory write" to put the RAM IC7 into the write mode (input enable), at output 3 the "memory read" signal for putting the RAM and/or ROM into the read mode (output enable). IC16-6 provides the I/O write signal and IC16-8 the I/O read signal. The I/O write and I/O read are used to enable respectively IC24a and IC24b. IC24a, using A4 and A5, ensures that IC18 or IC25 is clocked or the optional UART is enabled. Pin 7 of IC24a controls the watchdog timer circuitry. IC24b, using A4 and A5, provides the enable signal for IC17, IC26 or for the optional UART. The EPROM IC8 is enabled seperately by A15 which is connected to the Chip Enable input.

5.2.5 Memory

The memory consists of a 32Kbyte EPROM containing the uP program and a 8Kbyte RAM.

5.2.6 Optional Serial RS232 Interface

The PCB is prepared for placing an optional UART (IC27) and a buffer (IC28). With these two IC's a serial RS232 interface for connecting e.g. a PC is created. The EPROM must contain dedicated software, which is not standard available, ensuring that the Z80 uP can communicate with the UART.

5.2.7 DIL Switch S22

When the tranceiver IC26 is addressed the 8 switch positions of S22 can be read in by the microprocessor. In dedicated software this function will be used for special applications. E.g. when software is implemented to communicate with a PC via the UART, the baudrate of the communication can be adjusted by the DIL switch.

5.2.8 LOAD/STROBE Circuitry

From the latch clock made by IC22 and from the 4 data lines D0 through D3 the inverted LOAD and the STROBE pulses for the data uplink/downlink parts are composed. When IC18 is addressed (clocked) by IC24a pin6, the data inputs are switched to the outputs. From the two outputs IC18-3 and 6 the signals LOAD2, LOAD1 (both inverted), STR1 and STR2 are made via IC20 and IC19.

5.3 DATA UPLINK/DOWNLINK PART

This part is located both on the uP/switch board 3922 156 06560 (in control desk) or on /01 (control kit) and on the I/O/switch board 3922 156 06550 (in control desk) or on /02 (control kit).

See circuit diagrams fig. 7-1 through 7-4, fig. 9-1 through 9-4, fig. 11-1 through 11-4 and fig. 13-1 through 13-4.

IC17 is the data uplink converter. It takes care that serial uplink data from the desk buttons ("B" in circuit diagram) or from the delegate request buttons ("C" in circuit diagram) is converted into parallel data for the uP. Serial data is clocked in by the serial clock CLK2, data is strobed into the parallel buffer of IC17 by the latch clock at the C2 input. IC25 is the data downlink converter. This IC ensures that the parallel data from the uP is converted into serial downlink data for desk leds ("A" in circuitdiagram) and for delegate mic. on/off switches ("I" in circuit diagram). Data is transferred from the parallel buffer into the shift register by the latch clock at the C2 input. The serial data is clocked out by the serial clock CLK1.

5.3.1 Data Uplink

The serial uplink data stream which is received by IC17 is composed of data representing the status of the desk buttons (B, DATA2 in circuit diagram) or data representing the status of the delegate mic. request buttons (C, DATA3 in the circuit diagram). When a desk button is pushed in, the voltage divider 10K/100K ensures that a voltage of approximately 4.5V (Vdd-Vss) is supplied as a logic "1" to the corresponding input of the parallel to series converters. When on a delegate unit a microphone request button is pressed current can flow from Vdd via the voltage divider 10K/33K to earth (mechanical ground) in the delegate unit. A voltage of approximately OV (Vss ground reference) is supplied as a logic "0" to the corresponding input of the parallel to serial converters. The parallel status information is converted by IC9, IC10 and IC5 through IC8 (on I/O/switch board) for B, DATA2, and by IC11, IC12 and IC9 through IC12 (on I/O/switch board) for C, DATA3. The microprocessor determines which status data must be converted and finally read in via IC17. When, by dataline D1 via IC18, inverted LOAD1 is activated the status information of the deskbuttons is strobed into the parallel buffers. CLK2 ensures that the data is clocked out serially. When, by dataline DO via IC18, inverted LOAD2 is activated the status information of the delegate mic. request buttons is strobed into the parallel buffers. The data is also clocked out serially by CLK2.

5.3.2 Data Downlink

The serial downlink data stream coming from IC25 is split into data for switching the desk leds on or off and data for switching on or off the delegate microphones. The serial data A, DATA1 is converted by IC1 through IC4 and IC1 through IC4 (on I/O/switch board). When a desk led must be switched on, the open collector output of the converter becomes low (Vss), current can flow from y (Vdd) via the corresponding led and the transistor in the convertor to ground reference (Vss). Serial data I, DATA4 is converted by IC29 ,IC30 and IC13 through IC16 (on the I/O/switch board). When a delegate units microphone must be switched on, the output of the converter becomes low (Vss). The output of the comperator LM324 becomes high (Vdd) with a risetime < 0,5 ms. The corresponding delegate units microphone will be switched on now (remote line becomes active high, Vdd). When a delegate units microphone must be switched off, the output of the converter becomes high (Vdd). The open collector output of the LM 324 becomes 0V (mechanical ground) in a fall off time < 0.5 ms. The switched on delegate microphone will be switched off.

Same as in the uplink part the microprocessor determines which serial data is converted. When, by D0 via IC18, STR1 is activated the serial data stream from IC25 (A,DATA1) will be clocked in serially by CLK1 and strobed into the parallel buffers by STR1. When, by D1 via IC18, STR2 is activated the serial data stream from IC25 (I,DATA4) will be clocked in serially by CLK1 and strobed into the parallel buffers by STR2.

5.3.3 <u>AUTO/MANUAL Mode</u>

5.3.3.1 AUTO mode

In the AUTO mode two situations excist, x + y < or = 7 or x + yexceeds 7. X is the number of switched on microphones not having the AUTO FREE status (see 1.1.1) and Y is the number of delegates having the AUTO FREE status (see 1.1.1). When x + y < or = 7, the microphones of calling delegates (AUTO FREE and non AUTO FREE status) are switched on almost directly after the call. When the remote request line from a calling delegate becomes low it will be recognized by the uP (see data uplink 5.3.1). In the next data uplink/downlink cycle, the uP takes care that the particular delegate units microphone will be switched on via the remote line (see data downlink 5.3.2). When x + y exceeds 7, the incoming microphone calls of delegates, not having the AUTO FREE status, are treated as requests to speak, and placed in a wait queue. The uP takes care that after a request, the remote line remains low. The delegates microphone will not be switched on. Due to the low state of the remote line, the green request led in the delegate unit will illuminate (see description in section 2, delegate unit). The delegates having the AUTO FREE status are still able to switch on/off their microphones. When \mathbf{x} + \mathbf{y} becomes < or equal to 7, automaticly the uP takes care that the first delegate in the wait queue will be switched on (remote line becomes high).

When the operator decides to switch on or off a delegate units microphone (AUTO FREE and non AUTO FREE), he simply controls the particular button on the desk. When x + y exceeds 7, the operator is not able to switch on the delegate microphones, not having the AUTO FREE status, remotely. The AUTO FREE status delegates (Y) can be switched on/off remotely by the operator.

5.3.3.2 MANUAL mode

In the MANUAL mode all the microphone calls of delegates, not having the AUTO FREE status, are treated as requests. After a request, the uP takes care that the remote line to that particular delegate unit remains low. When the operator decides to switch on the microphone of the requesting delegate, he pushes the corresponding (flashing) deskbutton, the remote line will be switched high (see data downlink 5.3.2). The delegates microphone will be switched on, the green request led will be switched off in the delegate unit. All delegates having the AUTO FREE status are able to switch on/off their microphones by themselves.

When the operator decides to switch on or off a delegate units microphone (AUTO FREE and non AUTO FREE), he simply controls the particular button on the desk. When x + y exceeds 7, the operator is not able to switch on the delegate microphones, not having the AUTO FREE status, remotely. The AUTO FREE status delegates (Y) can be switched on/off remotely by the operator.

Via block 11 the chairman is switched on or off by the operator (via the chair desk button), or after a chairmans action (Priority or microphone call).

5.4 PRIORITY/DISABLE REQUEST CIRCUIT

This part is located on the uP/switch board $3922\ 156\ 06560$ (in control desk) or on /01 (control kit).

See circuit diagrams fig. 7-1 through 7-4 and fig. 11-1 through 11-4.

5.4.1 Priority

When the chairman activates his priority it will be recognized by the processor via IC11, pin3. In the next uplink/downlink cycle pin 7 of IC29 is made high (Vdd) by the uP. Via block 12 this priority indication is send (DELII) to the C.S.U. (priority line becomes low, 0V mechanical ground) for activating the priority chime tone on the audio line. Pin 4 of IC29 becomes low (Vss) via the circuitry around and including TS5, the priority line, which is 27V (inactive) and connected via BU1-1 and BU2-1 to the delegate units, is pulled down to approx. 10V (spec. 9V < V < 14V). As described in chapter 2, this 10V (6V < V < 2/3 V+) ensures that the delegate microphones are muted during the priority. When priority is released by the chairman the remote

line becomes 27V again.

5.4.2 Disable Request

Both in AUTO mode as well in MANUAL mode a maximum of 20 microphone requests are registered in chronological order. When this number of requests is reached, the uP takes care that a "disable to request" is generated to all delegate units. Pin 5 of IC29 will be high (Vdd) in this situation, causing TS4 to conduct. The disable to request lines, BU1-2 and BU2-2, will be active high (Vdd). Microphone requests from the delegate will be ignored in the delegate unit as long as the disable request line is active. (see description in section 2, delegate unit).

6 PARTS LIST

6.1 LBB 3386/40/70

POSNR.:	DESCRIPTION:	SERV	ICE	CODE :
	CABLE RELIEF GROMMET (cables del 1,11 to system PSU)	5322	325	50134
	CABLE ASSEMBLY (cables del 1,11 to system PSU)	5322	321	21658
	HEADPHONE JACK SOCKET	5322	267	40568
	RUBBER FOOT (bottom of desk)			
	MONITOR LOUDSPEAKER AD3371/Y150			
	POTENTIOMETER LOG. 47K			20998
	(for volume control)			
	COMPLETE SERVICE ASSEMBLY uP PCB	5322	214	90313
	COMPLETE SERVICE ASSEMBLY I/O PCB			
	DUBOX SERVICE ASSEMBLY KIT			31241
	(25 Crimp-to-wire contacts for			
	use in DUBOX connectors)			
	SWITCH MECHANISM	5322	278	14006
	(for switch on/off del remotely)			
	KNOB WITH LENS	5322	414	10011
	(for switch mechanism)			
	KNOB WITHOUT LENS	5322	414	20059
	(for switch mechanism)			
	SHUNT 2p			80116
	INSULATOR FOR IC5			40792
	BATTERY 3,6V			10046
	CRYSTAL 5,068 MHz			70873
BU1, 2 and 3				50659
BU4	DIN SOCKET 6p			44075
BU5	DIN SOCKET 7p			50101
BU6	D-TYPE SOCKET 15p			50882
2,3 in /70)	D-TYPE SOCKET 25p	5322	267	60211
•		5322	502	64048
	(for connection of d-type socket)			
	CONTACT STRIP, 36 PINS	5322	265	64078
	SOCKET FOR IC 23 OR IC 8	5322	255	40923
	(32 pins contact strip)			
L1, L2	COIL 5,5 uH			10107
	P.T.C. RESISTOR 32 OHM			40149
X4	CONNECTOR 11p			40804
X5,6,7,8	CONTACT STRIP, 64 PINS	5322	267	60251

6.2 LBB 3386/01

POSNR:	DESCRIPTION :	SERV	ICE (CODE :
	CABLE RELIEF GROMMET	5322	325	50134
	(cables del 1,11 to system PSU)			
	CABLE ASSEMBLY	5322	321	21658
	(cables del 1,11 to system PSU)			
	HEADPHONE JACK SOCKET	5322	267	40568
	MONITOR LOUDSPEAKER AD3371/Y150	4822	240	30172
	POTENTIOMETER LOG. 47K	5322	101	20998
	(for volume control)			
	COMPLETE SERVICE ASSEMBLY PCB	5322	214	90311
	DUBOX SERVICE ASSEMBLY KIT	5322	310	31241
	(25 Crimp-to-wire contacts for			
	use in DUBOX connectors)			
	CABLE ASSEMBLY	5322	321	23155
	(for connection of switch/led)			
	CABLE ASSEMBLY	5322	321	23156
	(for connection of led)			
	CABLE ASSEMBLY	5322	321	23157
	(for connection of monitor 1.s.)			
	CABLE ASSEMBLY	5322	321	23158
	(for connection of monitor switch)			
	CABLE ASSEMBLY	5322	321	23159
	(for connection of switch)			
	SHUNT 2p	5322	115	80116
	INSULATOR FOR IC5	5322	255	40792
	BATTERY 3,6V	4822	138	10046
	CRYSTAL 5,068 MHz	5322	242	70873
BU1, 2 and 3	DIN SOCKET 8p	5322	267	50659
BU4	DIN SOCKET 6p	5322	267	44075
BU5	DIN SOCKET 7p	4822	264	50101
BU6	D-TYPE SOCKET 15p			50882
BU7	D-TYPE SOCKET 25p	5322	267	60211
	LOCKING SCREW (2)	5322	502	64048
	(for connection of d-type socket)			
	CONTACT STRIP, 36 PINS	5322	265	64078
	SOCKET FOR IC 23 OR IC 8	5322	255	40923
	(32 pins contact strip)			
L1,L2	COIL 5,5 uH	4822	158	10107
· · · · · · · · · · · · · · · · · · ·	P.T.C. RESISTOR 32 OHM	5322	116	40149
X4	CONNECTOR 11p	5322	265	40804
X5,6,7,8	CONTACT STRIP, 64 PINS	5322	267	60251

CENTRAL CONTROL DESK

CCS400

6.3 LE	B 3386/02
--------	-----------

POSNR :	DESCRIPTION :	SERVICE CODE :
	CABLE ASSEMBLY (for connection of switch/led)	5322 321 23155
	COMPLETE SERVICE ASSEMBLY PCB	5322 214 90312
	DUBOX SERVICE ASSEMBLY KIT	5322 310 31241
	(25 Crimp-to-wire contacts for	
	use in DUBOX connectors)	
BU1, 2 and 3	D-TYPE SOCKET 25p	5322 267 60211
	LOCKING SCREW (2)	5322 502 64048
	(for connection of d-type socket)	
R124	P.T.C. RESISTOR 32 OHM	5322 116 40149
X1,2,3,4,5	CONTACT STRIP, 64 PINS	5322 267 60251

7

DIAGRAMS

Fig.1 Blockdiagram Audio part of uP/Switch board

Fig. 3 Blockdiagram I/O/Switch part of up/Switch board

Fig. 4 Blockdiagram I/O/Switch board

FIG.6 CIRCUITDIAGRAM AUDIO PART OF UP/SWITCH BOARD

FIG. 7-1 CIRCUIT DIAGRAM UP- AND I/O/SWITCH PART OF UP/SWITCH BOARD

FIG. 7-2 CIRCUIT DIAGRAM UP- AND I/O/SWITCH PART OF UP/SWITCH BOARD

CIRCUIT DIAGRAM UP- AND I/O/SWITCH PART OF UP/SWITCH BOARD -7.10-

FIG. 7-4 CIRCUIT DIAGRAM UP- AND I/O/SWITCH PART OF UP/SWITCH BOARD

POWER		CONNECT		S
I.C 1, 2, 3, 4, 5, 6, 7, 8, 9,	10, 11, 12, 13, 14,	15, 16 Pt.8 connec Pt.16	eted to	" (V+) -5V" " V+ "
I.C 18, 19, 20, 21, 22, 23,	24, 25	Pt.4	•	" V+ "
		Pt.11	•	<u>" </u>

POWER SUPPLY CONNECTIONS " V+ " Pt.4 I.C 18, 19, 20, 21, 22, 23, 24, 25

FIG. 9-3 CIRCUIT DIAGRAM OF I/O/SWITCH BOARD

OF I/O/SWITCH BOARD FIG. 9-4 CIRCUIT DIAGRAM

FIG. 11-2 CIRCUIT DIAGRAM OF LBB 3386/01

-7.21-

FIG. 11-3 CIRCUIT DIAGRAM OF LBB 3386/01

FIG. 11-4 CIRCUIT DIAGRAM OF LBB 3386/01

	CONNECTIO	VS +0 * (V+) -5V*
POWER SUPPLY 1.C 1, 2, 3, 4, 5, 5, 7, 8, 9, 10, 11, 12, 13, 14	15, 15 Pt.8 connected Pt.16	" V+ "
T.C 1, 2, 3, 4, 25	•	. 1.
I.C 18, 19, 20, 21, 22, 23, 24, 25	Pt.11	

POWER SUPPLY CONNECTIONS

1.C 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 Pt.8 connected to "(V+)-5V"
Pt. 16 " V+ "

I.C 18, 19, 20, 21, 22, 23, 24, 25 Pt.4 " V+ "
Pt. 11 " L "

Chapter 1 Fig. 1

Chapter 2 Fig. 2

Chapter 2 Fig. 3

Chapter 3 Fig. 3

LOCATION OF COMPONENTS BASIC P.C.B.

9D9080B

3922 151 90800 PRENTPANEEL

TON ENACT TREESE DEE CHEEK THE CY IV

^{*} LBB3302/00 -39dB

SD9082T

PC BOARD PRENTPANEEL 3922 151 90820

MAX. BOUWHOOGTE 14MM

Chapter 8 Fig. 3

PHILIPS

ServiceInformation

Advanced Automation Systems
Audio-communications
Broadcast Equipment
Electronic Security & Recording Systems
Industrial Automation
Scientific & Analytical Equipment
Test and Measurement

Industrial & Electro-acoustic Systems Division

cat. DOCUMENTATION CHANGES	nr . _{DC195}		date 09-02-1988	1
art. gr. CONCRESS SYSTEMS	nr. CSN44	DC195CS044	sheet 1 of 1	

Product

: CENTRAL SUPPLY UNIT LBB 3300/..

Service manual

: 4822 733 24251

Already published:

Reason

: COMPATIBILITY WITH CENTRAL CONTROL DESK LBB 3386

Contents

: When the central supply unit with a serial number up to 1000 is used in combination with the central control desk, a connection has to be made between point 5 of DIN connector BU104 (DEL 2) and point 30 of connector X102.

30 of Connector Xio2.

Ger van Dongen Service Prof Audio.

PHILIPS

ServiceInformation

Advanced Automation Systems
Audio-communications
Broadcast Equipment
Electronic Security & Recording Systems
Industrial Automation
Scientific & Analytical Equipment
Test and Measurement

Industrial & Electro-acoustic Systems Division

cat. DOCUMENTATION CHANGES	nr . _{DC195}		date 09-02-1988
art. gr. CONGRESS SYSTEMS	nr. CSALL	DC195CS044	sheet 1 of 1

Product

: CENTRAL SUPPLY UNIT LBB 3300/..

Service manual

: 4822 733 24251

Already published :

Reason

: COMPATIBILITY WITH CENTRAL CONTROL DESK LBB 3386

Contents

: When the central supply unit with a serial number up to 1000 is used in combination with the central control desk, a connection has to be made between point 5 of DIN connector BU104 (DEL 2) and point

30 of connector X102.

Ger van Dongen Service Prof Audio.