Benchmarking Gaussian Processes and Random Forests on the BBOB Noiseless Testbed

Lukáš Bajer^{1,2}, Zbyněk Pitra^{3,4}, Martin Holeňa²

¹Faculty of Mathematics and Physics, Charles University, ²Institute of Computer Science, Czech Academy of Sciences, and ³National Institute of Mental Health ⁴Faculty of Nuclear Sciences and Physical Engineering

Prague, Czech Republic

July 2015

Contents

- Surrogate CMA-ES
- Surrogate models
 - Gaussian Processes
 - Random Forests
- 3 Experimental results

The CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$

Initialize: C = I (and several other parameters)

Set the weights $w_1, \ldots w_{\lambda}$ appropriately

while not terminate

- **1** $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda$ {sampling}
- **3** $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w, \quad \mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \quad \{\text{update mean}\}$
- lacktriangledown update step-size σ
- update C

The Surrogate CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\lambda \in \mathbb{N}$

Initialize: C = I (and several other parameters)

Set the weights $w_1, \ldots w_{\lambda}$ appropriately

while not terminate

- $\mathbf{0} \ \mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \qquad \mathbf{y}_i \sim N(\mathbf{0}, \mathbf{C}), \qquad \text{for } i = 1, \dots, \lambda \qquad \{\text{sampling}\}$
- evaluate \mathbf{x}_i with the original fitness f & build a model $f_{\mathcal{M}}$ / evaluate \mathbf{x}_i with the model $f_{\mathcal{M}}$
- lacktriangledown update step-size σ
- update C

The Surrogate CMA-ES

```
Input: g (generation), f_{\mathcal{M}} (model), \mathcal{A} (archive), n_{\mathsf{BFO}}, \sigma, \lambda, \mathbf{m}, \mathbf{C}
  1: \mathbf{x}_k \sim \mathcal{N}\left(\mathbf{m}, \sigma^2 \mathbf{C}\right)  k = 1, \dots, \lambda {CMA-ES sampling}
  2: if g is original-evaluated then
  3: y_k \leftarrow f(\mathbf{x}_k)  k = 1, \dots, \lambda
                                                                           {fitness evaluation}
 4: \mathcal{A} = \mathcal{A} \cup \{(\mathbf{x}_k, y_k)\}_{k=1}^{\lambda}
  5: if |\mathbf{X}| > n_{\mathsf{RFO}} then
  6: \mathbf{X} \leftarrow \text{TransformToTheEigenvectorBasis}(\mathbf{X}, \sigma, \mathbf{C})
  7:
      f_{\mathcal{M}} \leftarrow \text{trainModel}(\mathbf{X}, \mathbf{y})
  8.
          end if
  9: else
10: \mathbf{X} \leftarrow \text{TransformToTheEigenvectorBasis}(\mathbf{X}, \sigma, \mathbf{C})
11: y_k \leftarrow f_{\mathcal{M}}(\mathbf{x}_k) k = 1, \dots, \lambda {model evaluation}
12: end if
```

Gaussian Process

GP is a stochastic approximation method based on Gaussian distributions

GP can express **uncertainty** of the prediction in a new point **x**: it gives a probability distribution of the output value

Gaussian Process

• given a set of N training points $\mathbf{X}_N = (\mathbf{x}_1 \dots \mathbf{x}_N)^\top$, $\mathbf{x}_i \in \mathbb{R}^d$, and measured values $\mathbf{y}_N = (y_1, \dots, y_N)^\top$ of a function f being approximated

$$\mathbf{y}_i = f(\mathbf{x}_i), \quad i = 1, \dots, N$$

GP considers vector of these function values as a sample from *N*-variate Gaussian distribution

$$\mathbf{y}_N \sim \mathbf{N}(\mathbf{0}, \mathbf{C}_N)$$

Gaussian Process prediction

Making predictions

Let \mathbb{C}_{N+1} be extended covariance matrix – extended by entries belonging to an unseen point $(\mathbf{x}, \mathbf{y}^*)$. Because \mathbf{y}_N is known and

the inverse C_{N+1}^{-1} can be expressed using inverse of the training covariance \mathbb{C}_N^{-1} .

the density in a new point marginalize to 1D Gaussian density

$$p(y^* | \mathbf{X}_{N+1}, \mathbf{y}_N)$$

$$p(y^* | \mathbf{X}_{N+1}, \mathbf{y}_N) \propto \exp\left(-\frac{1}{2} \frac{(y^* - \hat{y}_{N+1})^2}{s_{y_{N+1}}^2}\right)$$

with the mean and variance given by

$$\hat{\mathbf{y}}_{N+1} = \mathbf{k}^{\top} \mathbf{C}_{N}^{-1} \mathbf{y}_{N},
s_{\mathbf{y}_{N+1}}^{2} = \kappa - \mathbf{k}^{\top} \mathbf{C}_{N}^{-1} \mathbf{k}.$$

Decision tree

A **decision tree** is a tree where each split node stores a test function to be applied to the incoming data and each leaf stores a predictor.

Decision tree

Advantages and disadvantages

Advantages:

- Relatively fast
- Easy to interpret
- Adaptive structure and parameters learned from training data

Disadvantages:

- Sharp decision boundaries
- Not the best predictive accuracy

Random forests

- A collection of randomly trained decision trees
- Overall prediction determined by averaging
- All advantages of decision trees

Experimental results on BBOB (5 D)

Experimental results on BBOB (10 D)

Experimental results on BBOB (20 D)

ECDF results on the whole BBOB (5 D)

ECDF results on the whole BBOB (20 D)

Results on separable BBOB functions (1–5)

Results on ill conditional BBOB functions (10–14)

Results on weakly structured multi-modal fcts (20–24)

Conclusions

- S-CMA-ES speeded-up CMA-ES on several BBOB functions
- Gaussian processes usually exhibit better performance than random forests
- Random forests' performance is rather balanced in 20D where Gaussian processes looses because of the high dimensionality
- Further investigation:
 - number of model generations adaptivity
 - reduction of the model training phase by starting from old parameters
 - random forest model precision

Thank you!

bajer at cs dot cas dot cz

pitra dot z at gmail dot com