Sound

Background Information - Compression Waves

- Sound energy from a source to an observer of the sound
- In sinusoidal form
- Peak where air is compressed in the wave
- Trough where is air is decompressed
- Waves are parallel to direction of travel

Background Information - Generation of Sound

- Hearing a sound consists of:
 - Auditory nerves being stimulated to pass signals to the auditory centers of the brain
 - Stimulation occurs via vibrations transmitted over some medium
 - Medium is usually air
 - Vibrations is a compression wave
- If a tree falls in a forest and no one is there to hear it fall does it make a sound?
 - Yes ... and no!

Characteristics of Sound - Frequency/Period

- Frequency
 - Unit of measure is a hertz (Hz)
 - Number of occurrences of a repeating event per unit of time
 - Hertz is repetitions per second
- Period
 - Inverse of frequency
 - 1/Hertz
 - Length of time of 1 iteration of an event

Characteristics of Sound - Amplitude

- The size of the wave
 - o i.e. its magnitude
- The maximum extend of a vibration for oscillation
 - Measured from the position of equilibrium to either peak or trough
 - Measure by taking distance from peak to trough and divide by 2

Characteristics of Sound - Phase

- The shift of the starting position of the vibration (compression wave)
- Not (normally) an audible characteristic of sound
- Important in the interactions between different waves
- Example:
 - sinΘ and cosΘ have the same wave form
 - o cosΘ phase is +1 to sinΘ since it has the value 0 at 90°
- https://cmtext.indiana.edu/acoustics/chapter1_phase.php

Characteristics of Sound - Speed

- Not relevant for use in the course but ...
- Sound takes time to travel
 - Example: thunder heard after lightning
- Calculated using Newton-Laplace equation

$$^{\circ}~~c=\sqrt{K/
ho}$$

- Speed is different in different mediums
 - Sound travels faster in water than air

Analog Audio Signals and Transducers

- Transducer converts energy from one form to another
 - Speakers converts voltage to sound waves
 - Microphone converts sound wave to voltage

Tone & Music

- Tone is:
 - A particular frequency that can be heard
 - A named frequency
- Music is:
 - A combination of tones
 - Each tone is *played* for a set duration
 - Duration for each tone can vary

Sound and Computers

- Computers must store and process audio signals digitally.
- Pulse-code modulation (PCM) is a digital representation of an analog signal
 - Achieved by repeatedly "sampling" and "quantizing" the input signal
- A way of representing an analog signal as a set of distinct digital values (states)
 - Done via repeated sampling.

PCM

- The amplitude of the analog signal is sampled at uniform intervals
 - Each sample is quantized to the nearest value within a range of digital steps
- Example:
 - Consider a perfect 1 Hz sine wave signal. The following diagram shows the analog signal superimposed on the corresponding digital signal, assuming a sample rate of 32 Hz and a quantization bit depth (# of data bits) of 4 (the quantization function is the ceiling function):

PCM

souce: Wikipedia

- Vertical axis is signal value
- Horizontal axis is time
- Digital signal is a stream of values between 0 and 15
 - Signal can be represented in a 4-bit (nibble) value
- Signal is: 1001, 1011, 1100, ...

PCM - Headroom

- Headroom is the difference between the top of the wave and the top increment
- In example the headroom is zero
 - Maximum value is equal to the top increment
- What if the headroom was not zero? (i.e. sine wave ends at 12)
 - This is a loss of fidelity, since not all bits are used
 - Fidelity is the degree of exactness in the sound reproduction

PCM

- Is the PCM signal a faithful reproduction of the analog signal?
 - o NO
- How can we increase the fidelity?
 - Increase the sample rate
 - Increase the quantization bit depth

PCM

- Note:
 - Quantization error (a form of distortion, similar to analog noise)
 - The difference between the analog signal and the closest available digital value at each sampling instant.
 - Frequencies above ½ the sample rate will be distorted or lost
 - In this case at 32Hz any sound above 16Hz is lost

PCM - Encoding Examples

- CDs encode sound as PCM data. CD-quality audio is 16-bit @ 44.1 kHz per channel
 - There are two channels (stereo)
 - The noise-to-signal ratio from quantization error is (supposedly)
 below the threshold of human hearing (signal / noise = dB)
 - Most humans cannot (supposedly) hear frequencies above 22 kHz

PCM - Encoding Examples

- DVD quality audio is much higher (up to 24-bit @ 192 kHz), but the raw data is not stored in PCM format
 - It is compressed
 - There can also be more than two channels
 - Example: 5.1 Surround

PCM

- An analog-to-digital converter (ADC) is a circuit that converts an input analog signal to an output PCM signal
- A digital-to-analog converter (DAC) performs the reverse
- PCM is a standard audio format for computers and digital communication
 - The data may actually stored in a compressed format
- E.g. WAV files, although multi-format, usually contain uncompressed PCM data (plus header metadata)
- There are various compression technologies, some of which are "lossy" (e.g. MP3)

Sound Cards

- A sound "card" may or may not be an actual card. It may be:
 - an expansion card, such as a PCI card
 - built in to the motherboard
 - an outboard USB device
 - o etc.

Sound Cards

- A sound card includes at least one sound chip, which includes a DAC
 - and maybe an ADC
- At the very least, the card produces an analog audio signal from digital data such as PCM data
 - The audio signal is output on a connector such as a headphone jack.

Sound Cards - Ports/Connectors

- Typical ports/connectors include:
 - line out ← standard 1/8" connector, maybe to headphones or amp
 - (active monitors have a built-in amp)
 - line in ← if input supported
 - o mic in ← similar to line in, but for lower level signals needing amplification

Sound Cards - Ports/Connectors

- Typical ports/connectors include:
 - S/PDIF port ← for connecting digital components digitally (Sony/Philips Digital Interconnect Format)
 - MIDI port ← musical instrument digital interface a protocol for communicating musical note/event data between electronic instruments (but not audio data)
- The number of input/output channels varies. On consumer cards, 0-1 input channels and 1-2 output channels (mono/stereo) is common. In professional settings the numbers are higher

Sound Cards - Typical Functions

- Typical functions include:
 - playback and recording of PCM data (and other formats)
 - sound synthesis
 - mixing of multiple audio "voices"
 - effects (e.g. filtering, reverb, ...)
 - recording of MIDI events; control of MIDI devices

Sound Cards - Playing Sound

- The outbound data must often be double buffered
 - The sound card is playing data in a current buffer
 - The next buffer of data is being prepared (uncompressed)
 - The next buffer must be fully ready before the current buffer is exhausted; otherwise, a drop out may be noticeable
- Increasing buffer size:
 - Decreases the chance of a drop out
 - Increases latency (time delay for conversion)

- A **P**rogrammable **S**ound **G**enerator (PSG) is a sound chip which produces analog audio signals
- The Atari ST's PSG, the YM2149, is typical of 1980's PSGs found in home computers and arcade games
- In short, this chip produces square wave audio signals by dividing the frequency of a clock signal
 - The wave's frequency and amplitude can be varied by altering the contents of onboard registers

- The chip doesn't play PCM data (well, actually ...)
- The YM2149 has 16 CPU-accessible 8-bit registers.
- It has three separate channels: A, B and C. Each has:
 - 12-bit tuning (spread across a fine and coarse tune register)
 - A volume register
- Each of channels A, B, and C can be enabled/disabled independently
- There is also a 'Noise' channel
 - 5-bit tuning on a single register

- The YM2149 has three separate output pins for A, B and C
 - It doesn't mix them itself
 - On the Atari ST, additional hardware mixes them together and outputs a mono signal on the video port's "audio out" pin (the speaker was housed in the monitor)
- The chip also features a noise generator (also square wave, but frequency modulated) and an envelope generator
 - These can be used for sound effects (e.g. an explosion)

- All 16 registers are mapped through two addresses!
 - One address gives access to the "register select" register.
 - The PSG makes the selected register available at the second address
 - This saves register select pins.
- Strangely, the YM2149 also supports two 8-bit parallel ports

Atari PSG Register Breakdown

The contents of the register array are shown in Table 3.

Register Bit		B 7	B6	B 5	B4	В3	B2	Bı	B 0
Ro		8 bit fine tone adjustment							
Rı	Frequency of channel A	4 bit rough tone adjustment							
R2	F	8 bit fine tone adjustment							
R3	Frequency of channel B	4 bit rough tone adjustment							
R4	E	8 bit fine tone adjustment							
R5	Frequency of channel C	4 bit rough tone adjustment							
R6	Frequency of noise		5 bit noise frequency						
R7	I/O port and mixer Settings	I/O		Noise			Tone		
		IOB	IOA	С	В	A	С	В	A
R8	Level of channel A				М	L3	L2	Lı	Lo
R9	Level of channel B				М	L3	L2	Lı	Lo
RA	Level of channel C				М	L3	L2	Lı	Lo
Rв	D 6 1	8 bit fine adjustment							
RC	Frequency of envelope	8 bit rough adjustment							
RD	Shape of envelope	CONT ATT ALT HOLI						HOLD	
RE	Data of I/O port A	8 bit data							
RF	Data of I/O port B	8 bit data							

(Register numbers are indicated in hexadecimal notation)
Table 3 Register Array

