Privacy

1 Laplace Mechanism

Definition 1.1. For a function f(x) which returns a number, the following definition of F(x) satisfies ε -differential privacy

$$F(x) = f(x) + \operatorname{Lap}\left(\frac{s}{\varepsilon}\right) \tag{1.1}$$

where the s denotes the sensitivity of the query.

Remark. Laplace Mechanism Output의 값이 sensitivity 만큼 차이 날 확률의 ratio는 e^{ε} 에 의해 bound된다.

2 Privacy Loss

Definition 2.1. Let Y and Z be two random variables. The privacy loss random variables $\mathcal{L}_{Y||Z}$ is distributed by drawing t ∼ Law(Y), and outputting log $\left(\frac{\mathbb{P}[Y=t]}{\mathbb{P}[Z=t]}\right)$. If the support of Y and Z are not equal, then the privacy loss random variable is undefined.

3
$$\varepsilon - \delta$$
 DP

3.1 4 ways to see δ

Proposition 3.1. Let P and Q be two probability distributions on \mathcal{Y} such that the privacy loss distribution PrivLoss(P||Q) is well-defined. Fix $\varepsilon \geq 0$ and define

$$\delta := \sup_{S \subset \mathcal{Y}} P(S) - e^{\varepsilon} Q(S). \tag{3.1}$$

Then

$$\begin{split} \delta &= \underset{Z \sim \operatorname{PrivLoss}(P||Q)}{\mathbb{P}} [Z > \varepsilon] - e^{\varepsilon} \cdot \underset{Z' \sim \operatorname{PrivLoss}(Q||P)}{\mathbb{P}} [-Z' > \varepsilon] \\ &= \underset{Z \sim \operatorname{PrivLoss}(P||Q)}{\mathbb{E}} [\max \left\{ 0, 1 - \exp(\varepsilon - Z \right\}] \\ &= \int_{\varepsilon}^{\infty} e^{\varepsilon - z} \underset{Z \sim \operatorname{PrivLoss}(P||Q)}{\mathbb{P}} [Z > z] \, \mathrm{d}z \\ &\leq \underset{Z \sim \operatorname{PrivLoss}(P||Q)}{\mathbb{P}} [Z > \varepsilon]. \end{split}$$

3.2 Moment difference bound

Let X and Y be a random variable supported on $[-\Delta, \Delta]$ satisfying $\mathbb{P}[X \in S] \leq e^{\varepsilon} \mathbb{P}[Y \in S] + \delta$ for all measurable S and vice versa. Then

$$\mathbb{E}[X] - \mathbb{E}[Y] \le (e^{\varepsilon} - 1) \,\mathbb{E}[|Y|] + 2\delta\Delta \tag{3.2}$$

4 zCDP

Definition 4.1. A randomised mechanism $M: \mathcal{X}^n \to \mathcal{Y}$ is (ξ, ρ) -zero-concentrated differentially private if, for all $x, x' \in \mathcal{X}^n$ differing on a single entry and all $\alpha \in (1, \infty)$,

$$\mathbb{E}[e^{(\alpha-1)Z}] \le e^{(\alpha-1)(\xi+\rho\alpha)},\tag{4.1}$$

where Z = PrivLoss(M(x)||M(x')) is the privacy loss random variable.

4.1 Key properties

- 1. Pure ε -DP imples $\frac{1}{2}\varepsilon^2$ -zCDP
- 2. The composition of k independent $\frac{1}{2}\varepsilon^2$ -zCDP algorithms satisfies $\frac{1}{2}\varepsilon^2$ k-zCDP.
- 3. $\frac{1}{2}\varepsilon^2 k$ -zCDP implies approximate (ε', δ) -DP with $\delta \in (0, 1)$ arbitrary and $\varepsilon' = \varepsilon \cdot \sqrt{2k \log(1/\delta)} + \frac{1}{2}\varepsilon^2 k$.

5 Approximate Rényi Differential Privacy

Rényi differential privacy was introduced by Minorov and was motivated by analyzing privacy amplification by subsampling interleaved with composition, which arises in differentially private deep learning

- Thomas Steinke

Defintion (RDP). An algorithm M is said to be (λ, ε) -RDP with $\lambda \geq 1$ and $\varepsilon \geq 0$, if for any adjacent inputs x, x'

$$D_{\lambda}(M(x)||M(x')) := \frac{1}{\lambda - 1} \log \mathbb{E}_{Y \leftarrow M(x)} \left[\left(\frac{\mathbb{P}[M(x) = Y]}{\mathbb{P}[M(x') = Y]} \right)^{\lambda - 1} \right] \le \varepsilon$$
 (5.1)

Tip: The ε should be thought of as a function $\varepsilon(\lambda)$, rather than a single number.

Properties

Let P, Q be probability distributions over \mathcal{Y} with a common sigma-algebra such that P is absolutely continuous with respect to Q.

1. Postprocessing (a.k.a. data processing inequality) & non-negativity: Let $f: \mathcal{Y} \to \mathcal{Z}$ be a measurable function. Let f(P) denote the distribution on \mathcal{Z} obtained by applying f to a sample from P; define f(Q) similarly. Then

$$0 \le D_{\alpha}(f(P)||f(Q)) \le D_{\alpha}(P||Q)$$
 for all $\alpha \in [1, \infty]$.

2. Composition: If $P = P' \times P''$ and $Q = Q' \times Q''$ are product distributions, then

$$D_{\alpha}(P||Q) = D_{\alpha}(P'||Q') + D_{\alpha}(P''||Q'') \quad \text{for all } \alpha \in [1, \infty].$$

More generally, suppose P and Q are distributions on $\mathcal{Y} = \mathcal{Y}' \times \mathcal{Y}''$. Let P' and Q' be the marginal distributions on \mathcal{Y}' induced by P and Q respectively. For $y' \in \mathcal{Y}'$, let $P''_{y'}$ and $Q''_{y'}$ be the conditional distributions on \mathcal{Y}'' induced by P and Q respectively. That is, we can generate a sample $Y = (Y', Y'') \leftarrow P$ by first sampling $Y' \leftarrow P'$ and then sampling $Y'' \leftarrow P''_{Y'}$, and similarly for Q. Then

$$D_{\alpha}(P||Q) \le D_{\alpha}(P'||Q') + \sup_{y' \in \mathcal{Y}'} D_{\alpha}(P''_{y'}||Q''_{y'}) \quad \text{for all } \alpha \in [1, \infty].$$

3. Monotonicity: For all $1 \le \alpha \le \alpha' \le \infty$,

$$D_{\alpha}(P||Q) \le D_{\alpha'}(P||Q).$$

4. Gaussian divergence: For all $\mu, \mu' \in \mathbb{R}$ with $\sigma > 0$ and all $\alpha \in [1, \infty)$,

$$D_{\alpha}(\mathcal{N}(\mu, \sigma^2) || \mathcal{N}(\mu', \sigma^2)) = \alpha \cdot \frac{(\mu - \mu')^2}{2\sigma^2}.$$

5. Pure DP to Concentrated DP: For all $\alpha \in [1, \infty)$,

$$D_{\alpha}(P||Q) \le \frac{\alpha}{8} \cdot \left(D_{\infty}(P||Q) + D_{\infty}(Q||P)\right)^{2}.$$

6. Quasi-convexity: Let P' and Q' be probability distributions over \mathcal{Y} such that P' is absolutely continuous with respect to Q'. For $s \in [0,1]$, let $(1-s) \cdot P + s \cdot P'$ denote the convex combination of the distributions P and P' with weighting s. For all $\alpha \in (1,\infty)$ and all $s \in [0,1]$,

$$D_{\alpha} ((1-s) \cdot P + s \cdot P' \parallel (1-s) \cdot Q + s \cdot Q')$$

$$\leq \frac{1}{\alpha - 1} \log ((1-s) \cdot \exp ((\alpha - 1)D_{\alpha}(P \parallel Q)) + s \cdot \exp ((\alpha - 1)D_{\alpha}(P' \parallel Q')))$$

$$\leq \max \{ D_{\alpha}(P \parallel Q), D_{\alpha}(P' \parallel Q') \},$$

and

$$D_1((1-s) \cdot P + s \cdot P' \parallel (1-s) \cdot Q + s \cdot Q') \le (1-s) \cdot D_1(P \parallel Q) + s \cdot D_1(P' \parallel Q').$$

7. Triangle-like inequality (a.k.a. group privacy): Let R be a distribution on \mathcal{Y} and assume that Q is absolutely continuous with respect to R. For all $1 < \alpha < \alpha' < \infty$,

$$D_{\alpha}(P||R) \leq \frac{\alpha'}{\alpha' - 1} \cdot D_{\alpha' \cdot \frac{\alpha' - 1}{\alpha' - \alpha}}(P||Q) + D_{\alpha'}(Q||R).$$

In particular, if $D_{\alpha}(P||Q) \leq \rho_1 \cdot \alpha$ and $D_{\alpha}(Q||R) \leq \rho_2 \cdot \alpha$ for all $\alpha \in (1, \infty)$, then

$$D_{\alpha}(P||R) \le (\sqrt{\rho_1} + \sqrt{\rho_2})^2 \cdot \alpha$$
 for all $\alpha \in (1, \infty)$.

8. Conversion to approximate **DP**: For all measurable $S \subset \mathcal{Y}$, all $\alpha \in (1, \infty)$, and all $\tilde{\epsilon} \geq D_{\alpha}(P||Q)$,

$$\begin{split} P(S) &\leq e^{\tilde{\varepsilon}} \cdot Q(S) + e^{-(\alpha - 1)(\tilde{\varepsilon} - D_{\alpha}(P \| Q))} \cdot \frac{1}{\alpha} \left(1 - \frac{1}{\alpha} \right)^{\alpha - 1} \\ &\leq e^{\tilde{\varepsilon}} \cdot Q(S) + e^{-(\alpha - 1)(\tilde{\varepsilon} - D_{\alpha}(P \| Q))}. \end{split}$$

Definition 5.1 (Approximate RDP). A randomized algorithm $M: \mathcal{X}^n \to \mathcal{Y}$ is δ -approximately (λ, ε) -Rényi differentially private if, for all neighboring pairs of inputs $x, x' \in \mathcal{X}^n$,

$$D_{\lambda}^{\delta}(M(x)||M(x')) \le \varepsilon.$$

- 5.1 Properties
 - 1. (ε, δ) -DP is equivalent to δ -approximate (∞, δ) -RDP.
 - 2. (ε, δ) -DP implies δ -approximate $(\lambda, \frac{1}{2}\varepsilon^2\delta)$ -RDP for all $\lambda \in (1, \infty)$.
 - 3. δ -approximate (λ, ε) -RDP implies $(\hat{\varepsilon}, \hat{\delta})$ -DP for

$$\hat{\delta} = \delta + \frac{\exp((\lambda - 1)(\hat{\varepsilon} - \varepsilon))}{\lambda} \cdot \left(1 - \frac{1}{\lambda}\right)^{\lambda - 1}.$$
 (5.2)

4. δ -approximate (λ, ε) -RDP is closed under postprocessing.

5. If M_1 is δ_1 -approximately (λ, ε_1) -RDP and M_2 is δ_2 -approximately (λ, ε_2) -RDP, then their composition is $(\delta_1 + \delta_2)$ -approximately $(\lambda, \varepsilon_1 + \varepsilon_2)$ -RDP.

6 Composition

6.1 Advanced composition (ε, δ)

Theorem 6.1. If each mechanism m_i is in a k-fold adaptive composition m_1, \ldots, m_k satisfies ε -differential privacy, then for any $\delta' \geq 0$, the entire k-fold adaptive composition satisfies (ε', δ') -differential privacy, where

$$\varepsilon' = \varepsilon \sqrt{2k \log(1/\delta')} + k\varepsilon(e^{\varepsilon} - 1) \tag{6.1}$$

Theorem 6.2. For $j \in [k]$, let $M_j \in \mathcal{X}^n \times \mathcal{Y}_{i-1} \to \mathcal{Y}_i$ be randomized algorithms. Suppose M_j is $(\varepsilon_j, \delta_j)$ -DP for each $j \in [k]$. For $j \in [k]$, inductively define $M_{1...j} : \mathcal{X}^n \to \mathcal{Y}_j$ by $M_{1...j}(x) = M_j(x, M_{1...(j-1)}(x))$, where each algorithm is run independently and $M_{1...0} = y$ for some fixed $y_0 \in \mathcal{Y}_0$. Then $M_{1...k}$ is (ε, δ) -DP for any $\delta > \sum_{j=1}^k \delta_j$ with

$$\varepsilon = \min \left\{ \sum_{j=1}^{k} \varepsilon_j, \frac{1}{2} \sum_{j=1}^{k} \varepsilon_j^2 + \sqrt{2 \log(1/\delta') \sum_{k=1}^{k} \varepsilon_j^2} \right\}$$
 (6.2)

7 Joint Differential Privacy

Definition 7.1. For $\varepsilon, \delta \geq 0$, a randomized algorithm $\mathcal{M} : \mathbb{N}^{\mathcal{X}} \to \mathcal{Y}^N$ is (ε, δ) -joint differentially private if for every possible pair of $z, z' \in \mathcal{X}$, for every $i \in [N]$, and for every subset of possible outputs $E \subset \mathcal{Y}^{N-1}$, we have

$$\mathbb{P}_{\mathcal{M}}[\mathcal{M}(z \cup D_{-z})_{-i} \in E] \le e^{\varepsilon} \mathbb{P}_{\mathcal{M}}[\mathcal{M}(z' \cup D_{-z})_{-i} \in E] + \delta \tag{7.1}$$

where \mathcal{M}_{-i} denotes the output of \mathcal{M} that excludes the *i*th dimension.

8 Lower Bound Tools

8.1 Query moment w.r.t binary data

Theorem 8.1 (Correlation–Variance Dichotomy). Let $f : \{0,1\}^d \to [0,1]$ be an arbitrary function. Let $P \in [0,1]$ be uniformly random and, conditioned on P, let $X_1, X_2, \ldots X_n$ be independent with $\mathbb{E}[X_i] = P$ for each $i \in [n]$. Then

$$\underbrace{\mathbb{E}_{X,P}\left[\left(f(X) - P\right) \cdot \sum_{i=1}^{n} (X_i - P)\right]}_{\text{obs}} + \underbrace{\mathbb{E}\left[\mathbb{E}\left[f(X) - \overline{X}\right]^2\right]}_{P} \ge \frac{1}{12}$$
(8.1)

9 Decomposition

9.1 Basic decomposition

Let P and Q be probability distributions over \mathcal{Y} . Fix $\varepsilon, \delta \geq 0$. Suppose that, for all measurable $S \subset \mathcal{Y}$, we have $P(S) \leq e^{\varepsilon}Q(S) + \delta$ and vice versa.

Then there exist $\delta' \in [0, \delta]$ and distributions P', Q', P'' and Q'' over \mathcal{Y} such that the following three properties are all satisfied.

1. We can express P and Q as convex combinations:

$$P = (1 - \delta')P' + \delta'P''$$
$$Q = (1 - \delta')Q' + \delta'Q''$$

- 2. Second, for all measurable $S \subset \mathcal{Y}$, we have $e^{-\varepsilon}P'(S) \leq Q'(S) \leq e^{\varepsilon}P'(S)$
- 3. There exists measurable $S,T\subset\mathcal{Y}$ such that $P''(S)=1,Q''(T)=1,\forall S'\subset S$ $P(S')\geq Q(S'),$ and $\forall T'\subset T$ $Q(T')\geq P(T')$

Corollary 9.1. Let P and Q be probability distribution over \mathcal{Y} . Fix ε , δ . Suppose that for all measurable $S \subset \mathcal{Y}$, we have $P(S) \leq e^{\varepsilon}Q(S) + \delta$ and $Q(S) \leq e^{\varepsilon}P(S) + \delta$. Then there exist distributions A, B, P'', and Q'' over \mathcal{Y} such that

$$P = (1 - \delta) \frac{e^{\varepsilon}}{e^{\varepsilon} + 1} A + (1 - \delta) \frac{1}{e^{\varepsilon} + 1} B + \delta P'',$$

$$Q = (1 - \delta) \frac{e^{\varepsilon}}{e^{\varepsilon} + 1} B + (1 - \delta) \frac{1}{e^{\varepsilon} + 1} A + \delta Q''$$

Interpretation: All (ε, δ) DP distributions can be represented as a postprocessing of the (ε, δ) randomized response with the postprocessing F such that $F(0, \bot) = A, F(1, \bot) = B, F(0, \top) = P''$ and $F(1, \top) = Q''$ subsubsectionBayesian version

Figure 1: Visualization of the Bayesian version decomposition

Question

Suppose we observe a sample from either P or Q and we have a prior on these two possibilities, what is the posterior distribution of possibilities? We need to account for the event with δ where things "fail" arbitrarily.

Let P and Q be probability distributions over \mathcal{Y} . Fix $\varepsilon, \delta \geq 0$. Suppose that, for all measurable $S \subset \mathcal{Y}$, we have $P(S) \leq e^{\varepsilon}Q(S) + \delta$ and vice versa.

Then there exists a randomized function $E_{P,Q}: \mathcal{Y} \to \{0,1\}$ with the following properties:

1. Fix $p \in [0,1]$ and suppose $X \sim \text{Bernoulli}(p)$. If X=1, sample $Y \sim P$ else $Y \sim Q$. Then for all $Y \in \mathcal{Y}$, we have

$$\mathbb{P}_{\substack{X \sim \text{Bernoulli(p)} \\ Y \sim XP + (1-X)Q}} [X = 1 \land E_{P,Q}(Y) = 1 | Y = y] \le \frac{p}{p + (1-p)e^{-\varepsilon}}$$

2. Under each hypothesis $Y \sim P$ and $Y \sim Q$, the expected value $E_{P,Q}(Y)$ is equal or greater than $1 - \delta$.