# Network Pricing: How to Induce Optimal Flows Under Strategic Link Operators

Yuya Furusawa

Graduate School of Economics, The University of Tokyo

16th August

## Network pricing game

- a framework for modeling real-world settings with two types of strategic agents: users of the network and owners (operators) of the network
- owners of the network post a price for usage of the links they own, while users select routes based on price and level of use by other users
  - Example: transportation network
- there are two levels of competition
  - among owners to attract users to their link so as to maximize profit
  - among users of the network to select routes that are cheap yet not too congested

#### Equilibrium

- some operators may want to increase their toll in order to make a higher profit
- in this game-theoretic environment
  - an equilibrium may fail to exist
  - it might not be unique
  - the network performance at equilibrium can be inefficient

#### Main Results

- ▶ a simple regulation on the network owners market solves all these issues
- using some vector as toll caps leads to every operator charging precisely the cap (Theorem 4.4)
- moreover, we show this equilibrium is robust to coalitions, a concept known as strong Nash equilibrium

#### Model

- there are nonatomic players, which we call users, selfishly minimize their cost
- each network link is operated by a different selfish agent which maximizes profit by charging tolls
- ightharpoonup let G = (V, E) be a network
  - V be the set of nodes
  - ▶ E be the set of directed edges/links

#### The Network User's Game: Selfish Routing

- $\blacktriangleright$  consider a multi-commodity flow instance, described by origin-destination node pairs  $\{(o^k,d^k)\}_{k\in K}$  for a finite set of commodities K
- for each commodity  $k, \, r^k > 0$  units of demand need to be routed from  $o^k$  to  $d^k$
- for each each link  $e \in E$ , there is a latency function  $l_e : \mathbb{R}_+ \to \mathbb{R}_+$ , that represents the delay experienced by users traveling this link, as a function of the total flow on the link
  - assume this function to be strictly increasing, convex and smooth

#### Paths and Flows

- ▶ for each commodity  $k \in K$ , let  $\mathcal{P}^k$  denote the set of  $o^k d^k$  paths and let  $\mathcal{P} = \bigcup_k \mathcal{P}^k$  be the union of all these paths
- $\blacktriangleright$  a flow for commodity k is a nonnegative vector  $\boldsymbol{x}^k=(x_P^k)_{P\in\mathcal{P}^k}$  such that  $\sum_{P\in\mathcal{P}^k}x_P^k=r^k$
- $\blacktriangleright$  a flow  ${\pmb x}$  is a vector  $({\pmb x}^k)_{k\in K}$  where each  ${\pmb x}^k$  is a flow for commodity k
- ▶ for a flow x and  $e \in E$ , let  $x_e^k = \sum_{P \in \mathcal{P}^k: e \in P} x_P^k$  be the amount of flow that  $x^k$  routes on each link e and let  $x_e = \sum_{k \in K} x_e^k$  be the amount of flow that x routes on e
- ▶ in the case a toll  $t_e \ge 0$  is charged for link usage, the combined cost of traveling e is  $l_e(x_e) + \alpha t_e$ 
  - ightharpoonup lpha represents the trade-off factor between delay and tolls
  - wlog, we can assume  $\alpha = 1$

## Wardrop Equilibrium

- a flow is Wardrop equilibrium if it is supported on paths of minimum cost
  - ▶ x is a Wardrop equilibrium if, for every k, for every path  $P \in \mathcal{P}^k$  with  $x_P^k > 0$ , and every path  $P' \in \mathcal{P}^k$ ,  $\sum_{e \in P} [l_e(x_e) + t_e] \leq \sum_{e \in P'} [l_e(x_e) + t_e]$
- it states that the journey times in all routes actually used are equal and less than those that would be experienced by a single vehicle on any unused route

# **Optimal Flow**

- **>** given flow x, the total delay is  $\sum_{e \in E} x_e l_e(x_e)$ , and it is the standard measure of network performance
- lacktriangle optimal flow  $x^*$  is the flow that minimizes the total delay
- ▶ the vector of marginal tolls  $\hat{\boldsymbol{t}}$ , defined as  $\hat{t}_e = x_e^* l_e'(x_e^*)$  induces the optimal flow, that is  $\boldsymbol{x}(\hat{\boldsymbol{t}}) = \boldsymbol{x}^*$ 
  - any toll vector with this property is called optimal

# The Network Operators' Game: Price Competition on Tolls

- lacktriangle every link  $e \in E$  is operated by a different operator
- lacktriangle each player e is allowed to charge a nonnegative toll  $t_e$  for its usage
- lacktriangle under the resulting toll vector  $m{t}$ , each link gets flow  $x_e(m{t})$
- the profit of player e is given by  $\pi_e(t) \equiv t_e x_e(t)$
- ▶ for each player  $e \in E$ , her strategy is given by toll  $t_e$ , and her profit is given by  $\pi_e(t_e, \boldsymbol{t}_{-e}) = t_e x_e(t_e, \boldsymbol{t}_{-e})$

# Regulated Network Pricing Game and Nash Equilibria

- lacktriangle a central planner may choose a cap vector  $ar{t} \geq 0$  for tolls, and each player wants to maximize her profit under this constraint
- lacktriangle tolls  $m{t}$  are a Nash equilibrium if for every  $e,\,t_e$  is the best response of player e to  $m{t}_{-e}$
- lacktriangleright tolls t are a strong Nash equilibrium if there is no possible coalition that jointly deviates, resulting in an improvement of their individual profits

# Cap equilibrium and great tolls

Given an instance of the profit maximization game, we say that a (nonnegative) vector  $\bar{\pmb{t}}=(\bar{t}_e)_{e\in E}$  is

- ▶ a cap equilibrium if when restricting the strategy space for every player e to tolls  $s_e \in [0, \bar{t}_e]$ , then  $(s_e)_{e \in E} = (\bar{t}_e)_{e \in E}$  is a strong Nash equilibrium
- ▶ a great set of tolls if it is optimal and a cap equilibrium

# Nonexistence of Equilibrium



- ightharpoonup a single o,d commodity with demand r=2
- suppose that  $t_{e_2} = 0$ ,  $t_{e_3} = 3/2$ , and  $t_{e_4} = (2 + \sqrt{6})/2$



- $\blacktriangleright$  the profit function has two maxima, one at  $(2+\sqrt{6})/4$  and one at  $(3+\sqrt{6})/4$
- this implies the best-response correspondence is not convex
- but convexity is necessary for the existence proof for the parallel links with affine latencies

# Unboundedness of Total Delay

- consider the case where r=1 units of flow is routed through a two-link parallel network with  $l_{e_1}=Ax$  and  $l_{e_2}=a$  for 0< a< A
- $lackbox{ optimal flow is } m{x}^* = (rac{a}{2A}, rac{2A-a}{2A})$ , and total delay is  $rac{4aA-a^2}{4A}$
- ▶ on the other hand, the Wardrop flow  $x(t) = (\frac{A+a}{3A}, \frac{2A-a}{3A})$ , and the total delay is  $\frac{A^2+8Aa-2a^2}{9A}$
- ▶ the ratio of the total delay is  $\frac{4(A^2+8Aa-2a^2)}{9(4Aa-a^2)}$ 
  - keeping A>0 fixed and taking  $a\to 0$ , we have the ratio diverges

#### Theorem 4.4

Let  $ar t \leq \hat t$  be an optimal toll vector. For the profit maximization problem with caps ar t, there exists a unique Nash equilibrium, given by ar t, which, moreover, is a strong Nash equilibrium

this theorem cannot be extended to the setting where an operator owns more than one link

#### Proof of Theorem 4.4

▶ in this proof, we use the following lemmas

#### Lemma 4.2

Let  $t,t'\geq 0$  be two toll vectors such that  $t\leq t'$  and  $E^<=\{e\in E: t_e< t'_e\}$  is nonempty. Then, there exist  $e_1,e_2\in E^<$  such that :

1. 
$$x_{e_1}(t') \leq x_{e_1}(t)$$

2. 
$$(x_{e_2}(t') - x_{e_2}(t))(l_{e_2}(x_{e_2}(t')) + t'_{e_2} - l_{e_2}(x_{e_2}(t)) - t_{e_2}) \le 0$$

#### · Lemma 4.3

Let  $t\geq 0$  be a toll vector and a  $e\in E$  with  $t_e>0$ . If  $t_e$  is a local optimum for the profit maximization problem, then  $x_e(t_e)l'_e(x_e(t_e))\leq t_e$ 

- $\blacktriangleright$  first, we prove that  $\bar{t}$  is a strong Nash equilibrium.
- let  $E^<$  be a set of links for which the corresponding players deviate some smaller toll value  $t<\bar{t}$
- lacktriangle in particular,for all  $e\in E^<$ , we have  $t_ex_e(m{t})\geq ar{t}_ex_e(ar{m{t}})>t_ex_e(ar{m{t}})$ 
  - ▶ this implies  $t_e>0$  along with  $x_e(t)>x_e(\bar{t})$  and  $t_e\geq \frac{\bar{t}_ex_e(\bar{t})}{x_e(\bar{t})}$
- by lemma 4.2, there exists  $e \in E^<$  such that  $(x_e(\bar{t}) x_e(t))(l_e(x_e(\bar{t})) + \bar{t}_e l_e(x_e(t)) t_e) \le 0$ , and  $x_e(t) > x_e(\bar{t})$  gives

$$l_e(x_e(\bar{\boldsymbol{t}})) + \bar{t}_e \ge l_e(x_e(\boldsymbol{t})) + t_e \tag{1}$$

- ▶ let  $e \in E^{<}$  be a link satisfing (1)
- we have following inequalities

$$l_e'(x_e(\bar{\boldsymbol{t}}))(x_e(\boldsymbol{t}) - x_e(\bar{\boldsymbol{t}})) \le l_e(x_e(\boldsymbol{t})) - l_e(x_e(\bar{\boldsymbol{t}})) \le \bar{t}_e \left(1 - \frac{x_e(\boldsymbol{t})}{x_e(\boldsymbol{t})}\right)$$
(2)

- ▶ since  $\bar{t}_e \leq \hat{t}_e = l'_e(x_e(\bar{t}))x_e(\bar{t})$ , we obtain from (2) that  $\bar{t}_e \leq \hat{t}_e = l'_e(x_e(\bar{t}))(x_e(t) x_e(\bar{t})) \leq l'_e(x_e(\bar{t}))x_e(\bar{t}) \left(\frac{x_e(t) x_e(\bar{t})}{x_e(t)}\right)$
- ▶ since  $l_e'(x_e(\bar{t})) > 0$  and  $x_e(t) > x_e(\bar{t})$ , we conclude that  $x_e(t) \le x_e(\bar{t})$
- ▶ we get a contradiction

- next, we show there is a unique Nash equilibrium
- > suppose there exists another Nash equilibrium  $t 
  eq ar{t}$  for the game with caps  $ar{t}$
- ▶ we may assume  $t_e>0$  for all e such that  $\bar{t}_e>0$ , and thus, by Lemma 4.3,  $x_e(\boldsymbol{t})l'_e(x_e(\boldsymbol{t}))\leq t_e$  for all  $e\in E^<=\{e\in E: t_e<\bar{t}_e\}$
- ▶ this gives  $x_e(t)l_e'(x_e(t)) \le t_e < \bar{t}_e \le \hat{t}_e = x_e^*l_e'(x_e^*)$  concluding that  $x_e(t) < x_e^* = x_e(\bar{t})$  for all  $e \in E^<$
- but form lemma 4.2, there exists  $e_1 \in E^{<}$  such that  $x_{e_1}(t) \ge x_{e_2}(\bar{t})$ , this is a contradiction

# Minimizing User's Cost

- ▶ theorem 4.4 implies that any opt-inducing toll vector that is not above the marginals is itself a cap equilibrium, and thus is a great set of tolls
- the fact that great tolls need not be unique, motivates the question of whether it is possible to compute the great tolls vector that minimizes the total user's cost
- if all great tolls were not above the marginals, then computing the great tolls vector that minimizing the total users' costs would reduce to solving a linear program
- but some examples suggest there are tolls that are above the marginals

#### Best Great Tolls

$$\begin{aligned} \min \sum_{e \in E} [l_e(x_e^*) + t_e] x_e^* \\ v_u^k - v_v^k + t_e &= -l_e(x_e^*) \ \forall k, e = (u, v) : x_e^{*k} > 0 \\ v_u^k - v_v^k + t_e &\geq -l_e(x_e^*) \ \forall k, e = (u, v) : x_e^{*k} = 0 \\ t \text{ is a cap equilibrium} \\ t &> 0 \end{aligned}$$

we included in the objective the constant term  $\sum_e l_e(x_e^*)x_e^*$ , corresponding to the total delay experienced by users

## Below Marginal Tolls

▶ by Theorem 4.4, optimal tolls upper bounded by the marginal tolls are always a cap equilibrium, thus within this restricted set of tolls we can write the following LP

$$\min \sum_{e \in E} [l_e(x_e^*) + t_e] x_e^*$$

$$v_u^k - v_v^k + t_e = -l_e(x_e^*) \ \forall k, e = (u, v) : x_e^{*k} > 0$$

$$v_u^k - v_v^k + t_e \ge -l_e(x_e^*) \ \forall k, e = (u, v) : x_e^{*k} = 0$$

$$t_e \le \hat{t}_e \ \forall e \in E$$

$$t_e \ge 0 \ \forall e \in E$$

# Minimum Payment Tolls

- ▶ the value of BMT doesn't necessarily coincide with the value of BGT
- ▶ in order to answer how efficient program BMT can be, we can use as benchmark the value of Minimum Payment Tolls

$$\min \sum_{e \in E} [l_e(x_e^*) + t_e] x_e^*$$

$$v_u^k - v_v^k + t_e = -l_e(x_e^*) \ \forall k, e = (u, v) : x_e^{*k} > 0$$

$$v_u^k - v_v^k + t_e \ge -l_e(x_e^*) \ \forall k, e = (u, v) : x_e^{*k} = 0$$

$$t_e \ge 0 \ \forall e \in E$$

#### Theorem 5.2

Suppose all latency functions  $\boldsymbol{l}$  in the profit maximization game satisfy

$$\sup_{x \ge 0} \frac{xl'(x)}{l(x)} \le \gamma$$

then,

value of BMT 
$$\leq (\gamma + 1) \times \text{value of MPT}$$

#### Elastic Demand

- to test the robustness of the results, we consider the setting with elastic traffic demands
- users have a valuation for traveling through the network and may opt out from traveling if the cost exceeds their valuation
- we model elastic demand with a utility function  $u^k:[0,r^k]\to\mathbb{R}_+$  for each  $k\in K$ , where  $u^k(x)$  captures the reservation value for a travel of the demand at level x

#### Theorem 6.1

Let  $ar{t} \leq \hat{t}(u)$  be an optimal toll vector. For the profit maximization problem with caps  $ar{t}$ , there exists a unique Nash equilibrium, given by  $ar{t}$ , which, moreover, is a strong Nash equilibrium.

similar to the fixed demand model