技术平台

RGV动态调度的故障分析方法

宋传承,刘晓宇,林 铠

(南京邮电大学, 江苏 南京 210023)

摘 要: 文章提出一种新的 RGV 动态调度过程中的故障分析方法。根据故障理论, 利用常数变易法推广泊松分布公式, 确定系统故 障发生的时间点、发生故障的CNC等;然后基于自适应动态调度策略进行故障分析,包括单序和分序物料加工两种情况,得出分析 结果: 单序和分序物料加工中3组一个班次加工完成物料总数(个)分别为350、323、353和243、178、233; 加工效率(s/个)分别为 82.93、89.96、81.55和118.20、124.66、119.49。由此得出本方法适用性良好,能够快速地得到在故障扰动下的调度流程和每种情 况的工作效率,方便易用。

关键词: 故障理论; 改进泊松分布; 自适应动态调度策略

0 引言

RGV(Rail Guided Vehicle),即轨道穿梭车, 是适用于加工工厂的调度载体。CNC(Computerized Numerical Control Machine),即计算机数控机床,是一 种通过编程控制的自动化机床。而类似于CNC的机械 在运行中又难免出现故障,这些故障往往会使已经设 定好的动态调度策略紊乱甚至中断,因此动态调度的 故障分析方法在保证生产效率方面尤为重要。

图1 RGV调度系统示意图

1 理论分析

对于一个给定的系统,每台CNC出现故障的随机 事件服从泊松分布[2]。只要系统中的CNC台数是固定 的,故障出现的次数、时间等就可以确定,不同的加工 方式只是决定系统进入稳定周期的快慢不同。

在故障理论的研究中,一般设备的故障率函数近 似于浴盆曲线[3]。由于CNC的在"偶发故障期"内的分 布不是指数分布且故障率函数应当为时变函数,因此 有效寿命周期内随机故障事件应用非齐次泊松过程描 述,常数变易如下:

$$P(H(t) = k) = \frac{\lambda^{k}(t)}{k!} e^{-\lambda(t)}$$

$$\lambda(t) = \beta(t - t_0) / n$$

$$\mu' = \frac{t_z}{t_0}$$
(3)

$$\lambda(t) = \beta(t - t_0) / n \tag{2}$$

$$\mu' = \frac{l_z}{m - m_c} \tag{3}$$

其中: P是事件H(t)发生的概率; H(t)表示事件: (0,t]时间内, CNC发生故障的次数; λ 是故障率, $\lambda(t)$

是故障率函数; t_0 表示进入周期性运动的起始时刻; β 为故障率修正系数,且 $\beta = \lambda/n$;加工m个物料过程中 因为CNC故障导致出现报废物料的总数是 m_f 个,加工 完成m个物料的总时间为 t_z 。

图2 一般设备的故障率函数曲线示意图

2 实现方法

2.1 确定每次出现故障的 CNC 数量

两 台 CNC 同 时 发 生 故 障 的 概 率 为 $p_2=C_3^2$ ×1%×1%=0.28%; 三台CNC同时发生故障的概率为 $p_3 = C_8^3 \times 1\% \times 1\% \times 1\% = 5.6\% \times 10^{-5}$ 。所以可认为事件: 两台及两台以上机器同时发生故障是不可能事件,即 每次只会有一台CNC出现故障。

2.2 确定一个班次内 CNC 出现故障的次数

由RGV响应算法,一个班次(8小时)内每一组能加 工完成的物料个数范围在347~375之间,每台CNC发 生故障的概率约为1%,即一个班次中8台CNC发生故 障的次数为3~4次。若tm为CNC发生故障的概率最大 的时刻,那么 t_m 满足:

$$\max_{s.t.} P \\
P(H(t) = k) = \frac{\lambda^{m}(t)}{k!} e^{-\lambda(t)} \\
\lambda(t) = \beta(t - t_{0}) / n \\
k \in \{1, 2, 3\} \\
t \in [0, 28800]$$
(4)

作者简介:宋传承(1999-),男,汉族,山东邹城人,南京邮电大学本科在读,理工科强化班;刘晓宇(1997-),女,汉族,江苏连云港人,南京邮 电大学本科在读,通信工程专业;林铠(1997-),男,汉族,福建漳州人,南京邮电大学本科在读,地理信息科学专业。

2019年第1期 6

$$\frac{dP(H(t)=k)}{dt}\Big|_{t=t_m} = 0 \tag{5}$$

2.3 确定发生故障的 CNC

通过程序模拟可知,初始化过程结束后RGV调度过程具有周期性,而初始化后各CNC故障率函数的"浴盆曲线"都处于图2所示的"偶发故障期"中,所以8台CNC在某一时刻故障的概率是相同的, t_m 时刻RGV所在的CNC处(或RGV之前响应的CNC处)更容易出现故障。

2.4 确定故障排除的时间

编程取得10~20分钟(600~1200s)中的随机数,更好地模拟现实情况。

综上,确定了故障出现的时间、出现的CNC等,对 RGV响应算法进行增设的流程图如图3所示。

图3 CNC出现故障时RGV响应算法的增设判断流程图

3 实验验证

数据来源: 2018年"高教社杯"全国大学生数学建模比赛B题附件。

表1 单序及分序加工作业有故障时每组求解结果记录表

	周期起始 时刻(s)	故障开始 时刻(s)	故障CNC 编号	故障结束 时刻(s)	故障排除 时长(s)
第1组		6296	5	6996	700
	1108	12801	2	13428	627
		19201	7	19903	702
第2组	1213	6528	2	7656	1128
		12928	1	13843	915
		19306	5	20066	760
第3组	1086	6401	4	7004	603
		12674	2	13705	1031
		19179	1	19996	817
第1组	831	7149	3	8119	970
		13549	6	14561	1012
		18924	1	19942	1018
第2组	3330	8900	4	10059	1159
		15798	2	16470	672
		22198	1	23162	964

续表

	周期起始	故障开始	故障CNC	故障结束	故障排除
	时刻(s)	时刻(s)	编号	时刻(s)	时长(s)
		9107	3	9902	795
第3组	3006	15507	2	16267	760
		18877	1	19951	1074

表2 单序及分序加工作业有故障时的系统作业效率

	第1组	第2组	第3组	第1组	第2组	第3组
加工完成个数(个)	350	323	353	243	178	233
废弃个数(个)	3	3	3	3	3	3
加工完成时间(s)	28722	28726	28729	28311	22129	27784
系统作业效率(4个)	82.93	89.96	81.55	118.20	124.66	119.49

图 4 单序及分序加工有无故障流程对比图

4 结论

本方法在现有周期性的基础上,把不确定性很高、随机性较强的事件一步步规划出故障可能发生的时间和地点,变动为静,从而更加客观地分析出故障对加工作业的影响。MATLAB仿真实验表明,本方法具有良好的适用性,能够快速得到调度流程和每种情况的工作效率,方便易用。

参考文献:

- [1] 闫春, 厉美璇, 周潇.基于改进的遗传算法在函数优化中的应用 [J/OL]. 计算机应用研究, 2019, (10):1-6.
- [2]张勇, 邱静, 刘冠军, 陈循. 基于非齐次泊松过程和统计仿真的故障样本模拟生成[J]. 机械工程学报, 2012, 48(15):75-82.
- [3]马纪明, 万蔚, 曾声奎. 基于浴盆曲线故障率函数的FFOP预计方法[J]. 航空学报, 2012, 33(09):1664-1670.