Lage-und Formveränderung von Funktionen

October 14, 2019

Aufgabe 1 Ueberprüfen Sie, ob der Punkt P auf dem Graphen G_f der Funktion f liegt!

- (a) $f(x)=x^2+1, P(2|4)$ Lösungsbeispiel: $f(2)=2^2+1=4+1=5\neq 4\Rightarrow P$ liegt nicht auf G_f
- (b) $f(x) = x^2 + 1, P(-2|5)$
- (c) $f(x) = \sin\left(x + \frac{\pi}{2}\right), P\left(\frac{\pi}{2}|-1\right)$
- (d) $f(x) = \sin\left(x + \frac{\pi}{2}\right), P(\pi|1)$
- (e) $f(x) = \sin(x + \frac{\pi}{2}), P(-\frac{\pi}{2}|0)$

Aufgabe 2 Es sei P(2|5) ein Punkt auf dem Graphen G_f der Funktion f (d.h. f(2) = 5).

Gib die Koordinaten des Punktes Q an, der auf dem Graphen G_g der Funktion g liegt, falls

- (a) G_g aus G_f durch Verschiebung um 2 in x-Richtung entsteht. Lösungsbeispiel: Q(2+2|5)
- (b) G_g aus G_f durch Verschiebung um -1 in x-Richtung entsteht.
- (c) G_g aus G_f durch Stauchung um den Faktor $\frac{1}{3}$ in x-Richtung entsteht.
- (d) G_g aus G_f durch Streckung um den Faktor 3 in x-Richtung entsteht.

Aufgabe 3 Gebe den Funktionsterm g(x) zu dem Graphen an, der aus dem Graphen von f durch die folgenden Veränderungen entsteht. Überprüfe dein Ergebnis wie im Lösungsbeispiel.

(a) $f(x) = \sin(x)$, Verschiebung um 3 in x-Richtung

Lösungsbeispiel:

$$g(x) = \sin(x - 3)$$

Probe:

Der Punkt $P(\frac{\pi}{2}| \underbrace{f(\frac{\pi}{2})})$ liegt auf dem Graphen von f.

Der Punkt $Q\left(\frac{\pi}{2}+3|1\right)$ sollte auf dem Graphen von g liegen.

Es sollte also $g\left(\frac{\pi}{2}+3\right)=1$ gelten.

Wir prüfen das nach:

$$g\left(\frac{\pi}{2}+3\right) = \sin\left(\left(\frac{\pi}{2}+3\right)-3\right) = \sin\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) = 1$$

- (b) $f(x) = \sin(x)$, Verschiebung um 2 in x-Richtung
- (c) $f(x) = \cos(x)$, Verschiebung um -1 in x-Richtung
- (d) $f(x) = \sin(x)$, Stauchung um den Faktor $\frac{1}{3}$ in x-Richtung
- (e) $f(x) = \cos(x)$, Streckung um den Faktor 3 in x-Richtung
- (f) $f(x) = 2 \cdot \sin(x) + 3 \cdot \cos(x)$, Verschiebung um 4 in x-Richtung
- (g) $f(x) = \sin(x) + x^2$, Verschiebung um -1 in x-Richtung

Merke:

$$f_c(x) = \sin(x+c), c \in R$$

Der Graph der Funktion f_c entsteht aus der Sinuskurve durch _____ der Sinuskurve um ___ in ___-Richtung.