CE233(CAD), Lecture 3:

Xilinx FPGAs

Mehdi Modarressi

Department of Electrical and Computer Engineering,

University of Tehran

- Reading:
 - Spartan-3 Generation FPGA User Guide, Xilinx ug331 (v1.8)
 - "FPGA Prototyping By VHDL Examples- Xilinx Spartan-3 Version", Chapter 2
 - "The Design Warrior's Guide to FPGAs", Chapter 4

Xilinx FPGAs

XILINX°

Xilinx FPGA History

Xilinx modern FPGAs

'00 Virtex-II

'99 Virtex-E
'99 Spartan-II
'99 QPro-Virtex
'98 Virtex
'98 SpartanXL
'98 Spartan
'98 XQ4000XL
'98 XQR4000XL
'97 XC4000XV
'97 XC4000XLA
'97 XC4000XL
'97 XQ4000E/EX
'96 XC4000E/EX
'96 XC6200
'95 XC8100
'95 XC5200
'94 XC4000D/L
'93 XC4000H
'93 XC3100A/L
'93 XC3100
'93 XC3000A/L
'93 XC2000L
'92 XC4000A
'91 XC4000
'87 XC3000
'85 XC2000

Example: Xilinx XC4000

- A simple FPGA introduced in the 80's
- Array of Configurable Logic Blocks (CLBs)
- SRAM-based

Lookup table (LUT)

- Each XC4000 CLB implements the logic functions using a lookup table (LUT)
 - An alternative to PAL-based implementation
- An n-input LUT can implement any n-input function

a	b	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F=(a+b)\times c'$$
 $1\times 8 \text{ RAM}$
 a
 b

Address

Decoder

Address lines

LUT vs PAL

$$F=(a+b)\times c'$$

a	b	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

AND gates inputs Producterm

Truth table

Xilinx XC4000 FPGAs- CLB

Xilinx XC4000 FPGAs- CLB

H LUT: 3 input -> 8 bits of RAM

Xilinx XC4000 CLB configuration

• Two 4-input functions, registered output input functions, and one 2-input function with combinational output

Xilinx C4000 CLB configuration

• 5-input function, combinational output

(X+1)-Input functions by x-input LUTs

(X+1)-Input functions by x-input LUTs

- Two n-input LUTs and one 3-input LUT can implement any (n+1)-input function
- Why?
- Prove as an exercise!

Example

• Implement the following functions on a single CLB of the XC4000 FPGA:

$$X = A'B' (C + D)$$

$$Y = AK + BK + C'D'K + AEJL$$

- Use look up table F to implement X
- Use look up table G for AEJL
- Use F, G and H for Y:

$$Y = K(A+B+C'D') + AEJL$$

= $KX' + AEJL = KF'+G$

Programming a CLB

$$X = A'B'(C + D)$$

 $Y = AK + BK + C'D'K + AEJL$

FPGA interconnects

FPGA interconnects- switch box

Fs = 3, the most common switch Low flexibility, good size

- •Switch Blocks connect horizontal and vertical channels
- •A trade-off between flexibility and switch size

 $F_s = n-1=6$: too big but very flexible

XC4000 interconnects

$$Fs=3$$
, why?

Connection box

- How to connect CLB to wires?
- Solution: Connection box
 - Device that allows inputs and outputs of CLB to connect to different wires

Connection box

- Connection box characteristics
 - Topology
 - Defines the specific wires each CLB I/O can connect to
 - Examples: same flexibility, different topology

FPGA interconnects

Connect Logic Blocks using wires and Programmable Switches

FPGA interconnects- wires

- Typically, an FPGA contains a mix of segment lengths:
 - Some wires that span only one logic block
 - Some wires that span more than one logic block
 - Some wires that span the whole chip
- If a segment is too short, must traverse many segments to reach your destination
 - If a segment is too long, waste routing capacity, extra

capacitance: too slow!

FPGA interconnects- wires

- •Short segments are good for local connections
- •Long segments are good for global connections
- •Most FPGA's have a variety of segment lengths

Long wires

Spartan-3 FPGAs

- Spartan: Cost-effective FPGA family of Xilinx
 - Spartan-6 is the last generation of the family
 - Cheaper and smaller than Virtex (the high-performance FPGAs of Xilinx)
- The industry's first 90 nm FPGA
- Different generations: Spartan-3, Spartan-3E, Spartan-3A

Spartan-3

• In the CAD lab, you will work with Spartan-3 XCS400 FPGAs

Device	System Gates	Equivalent Logic Cells	CLB Array (One CLB = Four Slices)				Distributed	Block	Dedicated	DCMs	Maximum	Maximum Differential
			Rows	Columns	Total CLBs	Total Slices	RAM Bits	RAM Bits	Multipliers	DOMS	User I/O	I/O Pairs
XC3S50	50K	1,728	16	12	192	768	12K	72K	4	2	124	56
XC3S200	200K	4,320	24	20	480	1,920	30K	216K	12	4	173	76
XC3S400	400K	8,064	32	28	896	3,584	56K	288K	16	4	264	116
XC3S1000	1000K	17,280	48	40	1,920	7,680	120K	432K	24	4	391	175
XC3S1500	1500K	29,952	64	52	3,328	13,312	208K	576K	32	4	487	221
XC3S2000	2000K	46,080	80	64	5,120	20,480	320K	720K	40	4	565	270
XC3S4000	4000K	62,208	96	72	6,912	27,648	432K	1,728K	96	4	633	300
XC3S5000	5000K	74,880	104	80	8,320	33,280	520K	1,872K	104	4	633	300

Logic cell

- Logic cell: LUT + Flip-flop
- The additional features in a slice, such as the wide multiplexers, carry logic, and arithmetic gates, add to the capacity of a slice
 - Implementing logic that would otherwise require additional LUTs
- Benchmarks show that the overall slice is equivalent to 2.25 simple logic cells

Device	System	Equiv	alent	\	CLB Array (One CLB = Four Slices)				Distributed	Block	Dedicated	DCMs	Maximum	Maximum Differential
	Gates	Logic	Logic Cells		ws	Columns	Total CLBs	Total Slices	RAM Bits	RAM Bits	Multipliers	DOMS	User I/O	I/O Pairs
XC3S50	50K	1,7	28	1	6	12	192	768	12K	72K	4	2	124	56
XC3S200	200K	4,3	20	2	24	20	480	1,920	30K	216K	12	4	173	76
XC3S400	400K	8,0	64	3	32	28	896	3,584	56K	288K	16	4	264	116
XC3S1000	1000K	17,	280	4	18	40	1,920	7,680	120K	432K	24	4	391	175
XC3S1500	1500K	29,9	952	6	54	52	3,328	13,312	208K	576K	32	4	487	221
XC3S2000	2000K	46,0)80	8	80	64	5,120	20,480	320K	720K	40	4	565	270
XC3S4000	4000K	62,	208	9)6	72	6,912	27,648	432K	1,728K	96	4	633	300
XC3S5000	5000K	74,8	380	10	04	80	8,320	33,280	520K	1,872K	104	4	633	300

Spartan-3 architecture

Spartan-3 components

- Configurable Logic Blocks (CLB)
- Flexible Synchronous Memory (BlockRAM)
- Programmable Input Output Blocks (IOB)
- Dedicated multipliers

Configurable Logic Blocks (CLB)

- Main logic resource for implementing synchronous as well as combinatorial circuits
- Arranged in a regular array of rows and columns

CLB and slice

- Each Spartan-3 CLB contains four slices
- Fast interconnects among the slices of a CLB

SLICEM and SLICEL

- Slices are grouped in pairs in two columns
- Left-hand SLICEM (Memory)
 - In addition to logic implementation, LUTs can be configured as memory or 16-bit shift register
- Right-hand SLICEL (Logic)
 - LUTs can be used as logic only

CLB and slice-slice architecture

SLICE structure

- SLICEL: two 4-input look-up tables followed by two D flip-flops plus carry & control logic (for arithmetic operations)
- SLICEM: like SLICEL, but with some extra logic to enable LUT4s to instead be used as RAM or a shift register

SLICE structure

- The details of the slice architecture
- More detailed than the figure in the previous slide!
 - The control and carry logic are shown
- The blue parts are the extra logic of SLICEM

Main logic paths

• Two 4-input functions, combinational or sequential output

Wide multiplexers

- Combine LUTs to build more complex logic operations
- Each slice has two of these multiplexers
 - F5MUX in the bottom
 - FiMUX in the top

Wide multiplexers in a CLB

- F5MUX: multiplexes the
 - two LUTs in a slice
- F_iMUX :
- \bullet i=6,7,8
- multiplexes the F5MUX and FiMUX of the same slice or other slices

Cascading LUTs

- Previous slide used wide multiplexers to implement large functions
- It can implement any function with 4, 5, 6, 7, and 8 inputs
- Some functions can be re-formed and implemented by cascading LUTs, rather than combining with multiplexers
 - May use smaller number of LUTs
 - Not applicable always, depends on the function

Cascading LUTs

- Example: 2 cascaded LUTS for a 7-input function.
- How many LUTs when using wide MUXes?

$$Y = ABCDE$$
 or $ABCDFG$

$$Y = (ABCD)$$
 and $(E \text{ or } FG)$

$$ABCD = X$$

$$Y = X$$
 and E or FG

CLB arithmetic logic

- Adder is the base of many arithmetic operations
- Special logic in CLBs to implement adder
- Adders are traditionally constructed by cascading full adders
- Good modularity but long latency due to the serial operation
 - Carry must be propagated from the first to the last full adder: the nth adder cannot start until the carry of the n-1th full adder is calculated

Ripple carry adder

• Critical path in a k-bit ripple carry adder

CLB arithmetic logic

- We can predict the carry of each full adder (FA) from its inputs
- If a=b=0, no carry will be produced by the FA (regardless of the carry_in)
- If a=b=1, a carry will be produced by the FA (regardless of the carry_in)
- If a≠b, the input carry will be propagated to the output

Α	В	Propagate	Generate
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Carry look-ahead adder

Conventional serial full adder

Full-adder with carry look-ahead Implemented in SPARTAN-3

Carry look-ahead adder in SPARTAN

- Adder data-path in one slice (the upper part of slice is shown)
- Implements an FA to add two 1-bit inputs A and B

Adder by Spartan-3

 8-bit adder using 4 slices of Spartan-3

Source: ECE 645, Lecture 3

Distributed RAM

- A LUT in a SLICEM may be configured for use as a RAM
 - Implement single and dual port
 - Cascade LUTs to increase size
- Synchronous write only
- Reads may be synchronous or asynchronous.

RAM32X1b

Spartan-3 components

- Configurable Logic Blocks (CLB)
- Block RAM
- Programmable Input Output Blocks (IOB)
- Dedicated multipliers

Block RAM

- On-chip memory blocks of Static RAM
- Both single and dual-port memories
- XC3S400 has two columns of RAM
- Each column contains 8 blocks of RAM (the figure shows 6 blocks!)
- Each block is 18-kilobit synchronous
 RAM
 - Each block has 16 kb data, 2kb parity
 - Total RAM=18 kb×16 blocks=288 kb

Block RAM organization

- Can be used as RAM blocks with different lengths and widths
- 2kb of the RAM is devoted to parity bits
- 16Kx1 configuration can be used as a large lookup table

Configuration	Depth	Data bits	Parity bits
16K x 1	16Kb	1	0
8K x 2	8Kb	2	0
4K x 4	4Kb	4	0
2K x 9	2Kb	8	1
1K x 18	1Kb	16	2
512 x 36	512	32	4

Spartan-3 components

- Configurable Logic Blocks (CLB)
- Block RAM
- Dedicated multipliers
- Programmable Input Output Blocks (IOB)

Multiplier

- 18×18 multipliers
- Very fast: single cycle latency
- 16 multipliers in Spartan-3
- Can use registers in input and output of each multiplier
 - For pipelined operation

Spartan-3 components

- Configurable Logic Blocks (CLB)
- Block RAM
- Dedicated multipliers
- Programmable Input Output Blocks (IOB)

I/O resources

- 264 I/O pins in Spartan-3
- Can be configured as both input and output
- I/O pins have different architectural and electrical aspects
 - The most interesting aspect is the double data rate capability

Spartan-3 I/O-DDR

- Double-Data-Rate (DDR) transmission describes the technique of sending data on both the rising and falling edges of the clock
- Doubles the bandwidth

Spartan-3 I/O-DDR

Spartan-3 components

- Configurable Logic Blocks (CLB)
- Block RAM
- Dedicated multipliers
- Programmable Input Output Blocks (IOB)
- Digital Clock Manager (DCM)

Clocking in FPGAs

• Clock skew is an important problem in clock distribution

 The clock skew, S, is the maximum delay from the clock input of one flip-flop to the clock input of

another flip-flop.

Clocking in FPGAs- skew problem

• Clock skew is an important problem

Skew solution

- Don't use gated clocks
- Balance clock paths (tree distribution)
- The most common way: H-tree:
 - All FFs (black squares)
 receive clock at the same time

Realistic H-trees

FPGA clock tree

Spartan-3 clock tree

- Spartan-3 devices have eight Global Clock input pads called GCLK0 through GCLK7
- The eight BUFGMUX components (4 at the top and 4 at the bottom side) can multiplex between clock sources
 - From input pins or from DCMs

GCLK5

Digital Clock Manager (DCM)

- Used to generate clock signal for FPGA out of the external clock signal
- Phase Shift a clock signal
- Multiply or divide an incoming clock frequency or synthesize a completely new frequency by a mixture of clock multiplication and division

Modern Xilinx FPGAs

45nm	28nm	20nm	16nm
SPARTAN.*	VIRTEX. ⁷ KINTEX. ⁷ ARTIX. ⁷	VIRTEX. UltraSCALE KINTEX. UltraSCALE	VIRTEX. UltraSCALE+ KINTEX. UltraSCALE+

- Virtex: high capacity (up to 2M logic cells), highperformance
- Kintex: high performance, but smaller than Virtex
- Artix: mid-range, low-cost and low-power
 - Replacement of Spartan

Modern Xilinx FPGAs

- All 7 series families share the same basic building blocks
- The mixture and number of these resources varies across families

ArtixTM-7 FPGA

KintexTM-7 FPGA

Virtex®-7 FPGA

Artix-7

- Spartan-6 is the last member of the family
- Replaced by the Artix family

CLB in Artix-7

- Each CLB has two slices
- Slices still can be either SliceM and SliceL

Slice structure

• Each slice has four 6-input LUTs

6-Input LUT with Dual Output

- 6-input LUT can be two 5-input LUTs with common inputs
 - Any function of six variables or two independent functions of five variables

Wide Multiplexers

- Each F7MUX combines the outputs of two LUTs together
 - Can implement an arbitrary 7-input function
 - Can implement an 8-1 multiplexer
- The F8MUX combines the outputs of the two F7MUXes
 - Can implement an arbitrary 8-input function

Carry Chain

- Carry chain can implement fast arithmetic addition and subtraction
 - Carry out is propagated vertically through the four LUTs in a slice
 - The carry chain propagates from one slice to the slice in the same column in the CLB above
- Carry look-ahead
 - Combinatorial carry look-ahead over the four LUTs in a slice
 - Implements faster carry cascading from slice to slice

Interconnects

- Connections between CLBs and other resources use the fabric routing resources
- Routes connect resources vertically, horizontally, and diagonally
- Wires have different lengths (why?):
 - Horizontal: Single, Dual, Quad, Long (12)
 - Vertical: Single, Dual, Hex, Long (18)
 - Diagonal: Single, Dual, Hex

Gigabit Transceiver

 Modern FPGAs have dedicated Transceiver blocks for highspeed communication

Why differential signalling?

Generating a Differential Pair

DSP block

• In 7-series, we have Multiply and accumulate (MAC), instead of simple multiplier

I/O pins

- In addition to more CLBs, Artix family has more I/O pins
- Most Spartan 3 FPGAs have QFP package(or some variant of it)
- Modern FPGA have BGA package(or some variant of it)
- What is BGA? QFP?

QFP

- Quad Flat Package
- Pins are on each of the four sides of the chip
- Limited number of pins, but easier to mount on board

BGA

- Ball Grid Array
- Pins are placed on the whole bottom surface of the device, instead of just the perimeter.
- More pins, but hard to solder and mount on board

