

Data Collection and Preprocessing Phase

Date	21 June 2024
Team ID	739998
Project Title	Eudaimonia Engine: Machine Learning Delving into Happiness Classification
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description							
	Dimension: 143 rows × 7 columns Descriptive statistics:							
Data Overview		infoavail		schoolquality	•	• •	ëvents	happy
	count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000
	mean	4.325175	2.513986	3.265734	3.699301	3.615385	4.216783	0.538462
	std	0.765126	1.068011	0.992586	0.888383	1.131639	0.848693	0.500271
	min	2.500000	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000
	25%	4.000000	2.000000	3.000000	3.000000	3.000000	4.000000	0.000000
	50%	5.000000	3.000000	3.000000	4.000000	4.000000	4.000000	1.000000
	75%	5.000000	3.000000	4.000000	4.000000	4.000000	5.000000	1.000000
	max	5.000000	4.500000	5.000000	5.000000	5.000000	5.000000	1.000000
Univariate Analysis								

Outliers and Anomalies #HANDLING OUTLIERS plt.figure(figsize=[1,1]) for i in df: plt.boxplot(df[i]) plt.title(i) plt.show() IQt = [] IQt.append(df["infoavail"].quantile(0.75) - df["infoavail"].quantile(0.25)) IQt upper = [] IQt.append(df["infoavai1"].quantile(0.75) + 1.5 * IQt[0]) IQt [1.0, 6.5, 2.5] df["infoavail"] = np.where(df["infoavail"] == 6.5, 6.5, np.where(df["infoavail"] == 2.5, 2.5, df["infoavail"])) : Iqt = [] IQt.append(df["housecost"].quantile(0.75) - df["housecost"].quantile(0.25)) IQt upper = [] IQt.append(df["housecost"].quantile(0.75) + 1.5 * IQt[0]) IQt [1.0, 4.5] lower=[] IQt.append(df["housecost"].quantile(0.25) - 1.5 * IQt[0]) IQt [1.0, 4.5, 0.5] infoavail 2.5 **Data Preprocessing Code Screenshots** [] #READ THE DATASET ${\tt df=pd.read_csv("} \underline{/content/happydata.csv}")$ Loading Data infoavail housecost schoolquality policetrust streetquality ëvents happy 0 3 3 3 4 2 4

5

3

4 3

3

3

5 0

Handling Missing Data	#DATA PREPARATION #HANDLING MISSING VALUES df.isnull().any() infoavail False housecost False schoolquality False policetrust False streetquality False events False happy False happy False dtype: bool #HANDLING DUPLICATES VALUES df.duplicated().sum() ##ANDLING DUPLICATES VALUES ##ANDLING DUPLICATES VALUES df.duplicated().sum() ##ANDLING DUPLICATES VALUES							
	[] df.isnull().sum()							
Data Transformation	<pre>[] # Separate the independent variables x = df.drop(columns='happy',axis=1) # Separate the target variable y = df['happy'] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=0)</pre>							
Feature Engineering	Attached are the codes in the final submission.							
Save Processed Data	-							