1

EE3900 Gate Assignment - 1

Adhvik Mani Sai Murarisetty - AI20BTECH11015

Download latex-tikz and python codes from

https://github.com/adhvik24/EE3900/blob/main/ Gate A1

1 GATE EC 2018 QN 54

A band limited low-pass signal x(t) of bandwidth 5 kHz is sampled at a sampling rate f_s . The signal x(t) is reconstructed using the reconstruction filter H(f) whose magnitude response is shown below:

The minimum sampling rate f_s (in kHz) for perfect reconstruction of $\mathbf{x}(\mathbf{t})$ is

2 SOLUTION

As x(t) is a band limited low-pass signal of bandwidth 5kHz.

Let our X(f) be look like,

As for sampling a signal we will multiply a unit impulse train sampled at a sampling frequency with the signal. So, fourier transform of sampled signal will be the convolution of input's X(f) and delta function.

After sampling x(t) at a sampling rate of f_s , Then it sampled signal's X(f) is,

Fig. 1: Sampled signal's X(f)

Note: Here for plotting f_s has been taken as 25kHz.

Therefore, The condition for perfect reconstruction of x(t) from s(t) using filter H is,

$$f_m \le f_H \le f_s - f_m$$

Where f_m is the maximum component frequency of x(t), f_H is that of filter and f_s is the sampling frequency.

We know that f_m is 5kHz, f_H is 8kHz and the next sampled part signal starts at f_s -5 kHz.

For perfect reconstruction of x(t) which has been sampled at a rate f_s ,

$$f_s - 5 \ge 8$$

So, The possible values of f_s for which reconstruction of x(t) possible is

$$f_s \ge 13$$

 \therefore The minimum sampling rate f_s for perfect reconstruction of x(t) is 13kHz.

Fig. 2: Applying filter on sampled signal Note: Here for plotting f_s has been taken as 13kHz.

Fig. 4: Applying filter on sampled signal Note: Here for plotting f_s has been taken as 11kHz.

On applying the given reconstruction filter on the sampled signal looks like, (When $f_s = 25\text{kHz}$)

 \therefore We can say that the minimum sampling rate f_s for perfect reconstruction of x(t) is 13kHz.

Fig. 3: Applying filter on sampled signal Note: Here for plotting f_s has been taken as 25kHz.

We are observing a perfect reconstruction of x(t) is possible in the case of f_s =25kHz.

But if we observe when f_s =11kHz, It is not possible to perfect reconstruction of x(t). As it looks like Fig4.