Package 'mbir'

October 13, 2022

Type Package
Title Magnitude-Based Inferences
Version 1.3.5
Date 2019-01-22
Maintainer Kyle Peterson <pre><pre></pre></pre>
Description Allows practitioners and researchers a wholesale approach for deriving magnitude-based inferences from raw data. A major goal of 'mbir' is to programmatically detect appropriate statistical tests to run in lieu of relying on practitioners to determine correct stepwise procedures independently.
Imports graphics, stats, utils, effsize, psych
<pre>URL http://mbir-project.us/</pre>
License GPL-2
Copyright Segments of the package are based upon Will G. Hopkins' work. See vignette and COPYRIGHT file for details.
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
Suggests knitr, testthat, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Kyle Peterson [aut, cre], Aaron Caldwell [aut]
Repository CRAN
Date/Publication 2019-01-22 17:50:02 UTC
R topics documented:
aipe_smd

2 aipe_smd

Indev		14
	swc ind	12
	ss_smd	11
	ss_odds	11
	ss_corr	
	smd_test	9
	smd	8
	prop	
	odds	7
	es_convert	6
	corr_test	5
	corr_diff	4
	corr	4

aipe_smd

Accuracy in Parameter Estimation: Standardized Mean Difference

Description

Estimates sample size for paired or independent, two-sample study desings via Accuracy in Parameter Estimation. Calculates n so a given study is likely to obtain margin of error no larger than chosen target margin of error.

Usage

```
aipe_smd(moe, paired = c(TRUE, FALSE), conf.int, assur.lvl, r)
```

Arguments

moe	target margin of error in standard deviation units
paired	(character) logical indicator specifying if \boldsymbol{x} and \boldsymbol{y} are paired (TRUE) or independent (FALSE)
conf.int	(optional) confidence level of the interval. Defaults to 0.90
assur.lvl	(optional) desired level of assurance (percent experiments whose MOE is less than target MOE). Defaults to 0.99
r	(required if paired = TRUE) population correlation between the two measures

Details

Refer to vignette for further information.

References

Maxwell SE, Kelley K & Rausch JR. (2008). Sample size planning for statistical power and accuracy in parameter estimation. *Annual Review of Psychology*, 59, 537-563.

Kelley K & Rausch JR. (2006). Sample size planning for the standardized mean difference: Accuracy in parameter estimation via narrow confidence intervals. *Psychological Methods*, 11, 363–385.

boot_test 3

Examples

```
aipe\_smd(moe = 0.55, paired = TRUE, conf.int = .9, assur.lvl = .99, r = 0.75)
```

boot_test

Bootstrap Confidence Intervals via Resampling

Description

Provides nonparametric confidence intervals via percentile-based resampling.

Usage

```
boot_test(x, y, conf.int, resample, med)
```

Arguments

x, y	numeric vectors of data values
conf.int	(optional) confidence level of the interval. Defaults to 0.90
resample	(optional) number of resamples. Defaults to 10,000
med	(optional) number indicating true difference in medians to test against. Defaults to zero.

Details

Refer to vignette for further information.

```
require(graphics)
a <- rnorm(25, 80, 35)
b <- rnorm(25, 100, 50)
boot_test(a, b, 0.95, 10000)</pre>
```

4 corr_diff

_	1	r	r

Correlation Coefficient

Description

Provides magnitude-based inferences upon given *r* value and sample size. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
corr(r, n, conf.int = 0.9, swc = 0.1, plot = FALSE)
```

Arguments

r	correlation	acafficiant
ſ	Correlation	Coefficient

n sample size

conf.int (optional) confidence level of the interval. Defaults to 0.90

swc (optional) number indicating smallest worthwhile change. Defaults to 0.1

plot (optional) logical indicator specifying to print associated plot. Defaults to FALSE

Details

Refer to vignette for further information.

References

Hopkins WG. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a *p* value. *Sportscience* 11, 16-20. sportsci.org/2007/wghinf.htm

Examples

```
corr(.40, 25, 0.95)
```

corr_diff

Test of Two Correlations

Description

Provides statistical inference upon the difference between two independent correlations.

Usage

```
corr_diff(r1, n1, r2, n2, conf.int = 0.9, plot = FALSE)
```

corr_test 5

Arguments

r1	correlation of group 1
n1	sample size of group 1
r2	correlation of group 2
n2	sample size of group 2
conf.int	(optional) confidence level of the interval. Defaults to 0.90
plot	(optional) logical indicator specifying to print associated plot. Defaults to FALSE

Details

Refer to vignette for further information.

References

Zou GY. (2007). Toward using confidence intervals to compare correlations. *Psychological Methods*, 12, 399-413.

Examples

```
corr_diff(r1 = 0.20, n1 = 71, r2 = 0.55, n2 = 46)
```

est Correlation Coefficient Test	corr_test
----------------------------------	-----------

Description

Provides magnitude-based inferences for the association between given data vectors. Evaluates normality assumption, performs either Pearson or Spearman correlation and subsequently estimates magnitude-based inferences.

Usage

```
corr_test(x, y, conf.int = 0.9, auto = TRUE, method = "pearson",
  swc = 0.1, plot = FALSE)
```

Arguments

x, y	numeric vectors of data values
conf.int	(optional) confidence level of the interval. Defaults to 0.90
auto	(character) logical indicator specifying if user wants function to programmatically detect statistical procedures. Defaults to TRUE
method	(character) if auto = F, logical indicator specifying which correlation to execute (pearson, spearman, kendall). Defaults to "pearson".
SWC	(optional) number indicating smallest worthwhile change. Defaults to $\emptyset.1$
plot	(optional) logical indicator specifying to print associated plot. Defaults to FALSE

es_convert

Details

Refer to vignette for further information.

Value

Associated effect size measure, r, and respective confidence intervals.

Examples

```
a <- rnorm(25, 80, 35)
b <- rnorm(25, 100, 35)
corr_test(a, b, 0.95)</pre>
```

es_convert

Effect Size Converter

Description

Converts between equivalent effect size measures: d, r, odds ratio.

Usage

```
es\_convert(x, from = c("d", "or", "r"), to = c("d", "or", "r"))
```

Arguments

x numeric valuefrom (character) current effect size of xto (character) effect size measure to convert to

Details

Refer to vignette for further information.

References

Rosenthal R. (1994). Parametric measures of effect size. In H. Cooper & LV. Hedges (Eds.), *The Handbook of Research Synthesis*. New York, NY: Sage.

Borenstein M, Hedges LV, Higgins JPT & Rothstein HR. (2009). *Introduction to Meta-Analysis*. Chichester, West Sussex, UK: Wiley.

```
# Odds ratio to Cohen's d
es_convert(1.25, from = "or", to = "d")
```

odds 7

odds Odds Ratio

Description

Provides magnitude-based inferences upon given odds ratio and *p*-value. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
odds(or, p, conf.int = 0.9)
```

Arguments

or odds ratio

p associated *p*-value

conf.int (optional) confidence level of the interval. Defaults to 0.90

Details

Refer to vignette for further information.

References

Hopkins WG. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a *p* value. *Sportscience* 11, 16-20. sportsci.org/2007/wghinf.htm

Examples

```
odds(1.25, 0.06, 0.95)
```

prop

Test of Two Proportions

Description

Provides magnitude-based inferences upon given proportions and sample sizes. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
prop(p1, n1, p2, n2, conf.int)
```

8 smd

Arguments

p1	proportion of group 1
n1	sample size of group 1
p2	proportion of group 2
n2	sample size of group 2
conf.int	(optional) confidence level of the interval. Defaults to 0.90

Details

Refer to vignette for further information.

References

Hopkins WG. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a *p* value. *Sportscience* 11, 16-20. sportsci.org/2007/wghinf.htm

Examples

```
prop(p1 = 0.7, n1 = 25, p2 = 0.5, n2 = 20)
```

 smd

Standardized Mean Difference

Description

Provides magnitude-based inferences upon given *d*, *p*-value, and degrees of freedom. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
smd(es, p, df, conf.int = 0.9, swc = 0.5, plot = FALSE)
```

Arguments

es	effect size measure (Cohen's d)
р	associated p-value from t-statistic
df	associated degrees of freedom from t-statistic
conf.int	(optional) confidence level of the interval. Defaults to 0.90
SWC	(optional) number indicating smallest worthwhile change. Defaults to 0.5
plot	(optional) logical indicator specifying to print associated plot. Defaults to FALSE

Details

Refer to vignette for further information.

smd_test 9

References

Hopkins WG. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a *p* value. *Sportscience* 11, 16-20. sportsci.org/2007/wghinf.htm

Examples

```
smd(.75, 0.06, 20, 0.95)
```

smd_test

Standardized Mean Difference Test

Description

Performs two-sample difference of means analysis to produce magnitude-based inferences. Evaluates both normality and homogeneity, performs either t-test or wilcoxon test, computes effect sizes and estimates magnitude-based inferences. Allows both independent and paired designs.

Usage

```
smd_test(x, y, paired = c(TRUE, FALSE), auto = TRUE, var = TRUE,
normal = TRUE, conf.int = 0.9, mu = 0, swc = 0.5, plot = FALSE)
```

Arguments

x, y	numeric vectors of data values
paired	(character) logical indicator specifying if ${\sf x}$ and ${\sf y}$ are paired (TRUE) or independent (FALSE)
auto	(character) logical indicator specifying if user wants function to programmatically detect statistical procedures. Defaults to $TRUE$
var	(optional) if auto = F, logical indicator specifying if homogeneity of variance assumed. Defaults to TRUE
normal	(optional) if $\operatorname{auto} = F$, logical indicator specifying if normality assumed. Defaults to TRUE
conf.int	(optional) confidence level of the interval. Defaults to 0.90
mu	(optional) number indicating true difference in means to test against. Defaults to zero.
SWC	(optional) number indicating smallest worthwhile change. Defaults to 0.5
plot	(optional) logical indicator specifying to print associated plot. Defaults to FALSE

Details

Refer to vignette for further information.

10 ss_corr

Value

Associated effect size measures (d, r, odds ratio) and respective confidence intervals based upon which statistical test(s) performed.

Examples

```
a <- rnorm(25, 80, 35)
b <- rnorm(25, 100, 50)
smd_test(a, b, paired = FALSE, conf.int=0.95)</pre>
```

ss_corr

Sample Size Estimation: Correlation Coefficient

Description

Estimates magnitude-based inferences upon planned sample size and r value. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
ss_corr(n, r)
```

Arguments

n planned sample size

r planned correlation coefficient

Details

Refer to vignette for further information.

References

Hopkins WG. (2006). Estimating sample size for magnitude-based inferences. *Sportscience* 10, 63-70. sportsci.org/2006/wghss.htm

```
ss_corr(n = 20, r = 0.2)
```

ss_odds 11

ss_odds

Sample Size Estimation: Odds Ratio

Description

Estimates magnitude-based inferences upon planned sample size and odds ratio. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
ss_odds(exp, con, or)
```

Arguments

exp planned sample size of experimental group
con planned sample size of control group
or planned odds ratio

Details

Refer to vignette for further information.

References

Hopkins WG. (2006). Estimating sample size for magnitude-based inferences. *Sportscience* 10, 63-70. sportsci.org/2006/wghss.htm

Examples

```
ss_odds(exp = 15, con = 18, or = 3.25)
```

 ss_smd

Sample Size Estimation: Standardized Mean Difference

Description

Estimates magnitude-based inferences upon planned sample size and d value. Based upon WG Hopkins Microsoft Excel spreadsheet.

Usage

```
ss_smd(exp, con, es)
```

swc_ind

Arguments

exp	planned sample size of experimental group
con	planned sample size of control group
es	planned Cohen's d

Details

Refer to vignette for further information.

References

Hopkins WG. (2006). Estimating sample size for magnitude-based inferences. *Sportscience* 10, 63-70. sportsci.org/2006/wghss.htm

Examples

```
ss_smd(exp = 20, con = 15, es = 0.6)
```

swc_ind	
---------	--

Smallest Worthwhile Change: Individual

Description

Provides longitudinal magnitude-based inferences for an individual's change from previous time point and magnitude of deviation from trend line.

Usage

```
swc_ind(x, swc, type = c("previous", "trend"), ts, te, main, xlab, ylab)
```

Arguments

X	numeric vectors of data values
SWC	smallest worthwhile change
type	(character) indicator specifying which type of analysis: "previous" or "trend"
ts	(required if type = "trend") target slope
te	(optional) typical error. Defaults to typical error of the estimate
main	(optional) plot title. Defaults to blank
xlab	(optional) x-axis label. Defaults to "Measurement"
ylab	(optional) y-axis label. Defaults to name of x

Details

Refer to vignette for further information.

swc_ind

References

Hopkins WG. (2017). A spreadsheet for monitoring an individual's changes and trend. *Sportscience* 21, 5-9. sportsci.org/2017/wghtrend.htm

```
df < -c(97.5,99.9,100.2,101,101.2,99.8) swc_ind(x = df, swc = 0.5, te = 1, ts = 0.25, type = "trend")
```

Index

```
aipe_smd, 2
boot_test, 3
corr, 4
corr_diff, 4
corr_test, 5
es_convert, 6
odds, 7
prop, 7
smd, 8
smd_test, 9
ss_corr, 10
ss_odds, 11
ss_smd, 11
swc_ind, 12
```