SoftDes Project Proposal

THE BIG IDEA

The Big Idea of our project, Bipedal God, is to generate, simulate, visualize, and test physical bipedal systems. Our minimal viable product will create a bare-bone bipedal structure using an evolutionary algorithm, render a simulation of it in a 2D environment, and test the time the generation can remain on its feet. Our stretch goal will generate humanoid bipedal structures, simulate and render them in a 3D environment, and test each generation's ability against a range of obstacles, such as collision with objects and sloped ground.

LEARNING GOALS

Shreya: Better understanding of how to implement graphics in python and understand dynamic calculations to make the algorithms.

Isa: Explore evolutionary algorithms and how to define a physical system for a computer aided simulation

Victor: To understand the basic structure of dynamic simulation and see how math and physics are incorporated within the algorithms.

Subeen: To understand and try the basic implementation of kinematic simulation, from my classical view to computational stuff.

IMPLEMENTATION PLAN

Algorithms: 1) Establish how to define the physical system as input 2) Research evolutionary algos and libraries (DEAP?) 3) Write script for a very simple mechanical system 4) Slowly increase complexity

Simulation & Testing: 1) Choosing a proper library for simulation, 2) Constructing the objects, 3) Applying the algorithms, 4) Evaluating the result

Graphics: 1) Read documentation about creating graphics in python (Turtles seem to be a way to potentially do this) 2) Create a script that creates an environment for the bipedal

PROJECT SCHEDULE.

Week 1 (Oct 30 - Nov 6th)	Nov 1st: Code diagram and function criteria Nov 5th: Doctests for assigned functions + Research on each section
Week 2 (Nov 6th - Nov 13th)	Nov 6th: In-class Architectural Review
Week 3 (Nov 13th - Nov 20th)	Nov 16th: Project Presentation
Week 4 (Nov 20th - Nov 27th)	Thanksgiving Break
Week 5 (Nov 27th - Dec 4)	Nov 27th: Project Website
Week 6 (Dec 4th - Dec 11th)	Dec 4th: Final updates to bring project together

COLLABORATION PLAN

We have decided to each take one of the main parts of the project (Algorithms, Simulation & Testing, and Graphics) and begin implementation. We will split up tasks independently and integrate everything during our meetings. In addition, we will use a Trello board to keep track of tasks to make sure that our progress is running smoothly.

RISKS

It is necessary to construct the heavy calculation to accomplish our final goal. The biggest risk in simulation is to make the straightforward calculation without any obstacle.

ADDITIONAL COURSE CONTENT

3D object generation in Python (vPython)

Implementing graphics in python

Evolutionary algorithms