

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică, 2008 Proba teoretică

Subject

Pagina 1 din 1

1.

- a) Două lame cu fețele plan-paralele avand grosimile h_1 , respectiv h_2 și indicii de refracție n_1 , respectiv n_2 , dispuse una peste alta, sunt plasate orizontal pe un punct luminos. Calculează distanța h față de prima suprafață la care punctul luminos, aflat pe baza inferioară a ultimei lame, este văzut de un observator aflat deasupra lamelor, pe aceeasi verticala cu punctul luminos. Generalizează rezultatul.
- b) Un microscop este format din două lentile convergente cu distanțele focale $f_1 = 5mm$ și $f_2 = 20mm$. Un obiect este așezat la 5,2mm, față de obiectiv. Imaginea finală se formează la 25cm de ocular. Calculează puterea și grosismentul microscopului.
- c) Corpul de masă m din figura alăturată este ridicat uniform pe planul înclinat de unghi α . Coeficientul de frecare dintre cele două corpuri este μ . Calculează unghiul β dintre fir și planul înclinat pentru care tensiunea în fir e minimă, precum și valoarea acestei tensiuni.

2.

- **A.** O rază de lumină monocromatică traversează secțiunea principală ABC, a unei prisme optice, la deviație minimă. Raza emergentă este reflectată de o oglindă plană așezată paralel cu fața prin care iese raza. Calculează unghiul de deviație datorat ansamblului prismă-oglindă imediat după reflexia pe oglindă. Se cunoaște unghiul A al prismei optice.
- **B.** Într-o oglindă sferică așezată orizontal se toarnă puțină apă $\left(n = \frac{4}{3}\right)$. Pentru un obiect real fix se obțin imagini reale pe un ecran atunci când ecranul se găsește fie la distanța a = 45cm, fie la distanța

b₁. raza de curbură a oglinzii;

b₂. distanța obiect-oglindă.

b = 30cm de oglindă. Calculează:

- 3. O placă orizontală de masă $m_1 = 4$ kg se poate deplasa fără frecare pe un plan orizontal. Pe placă se află un corp de masă $m_2 = 1$ kg asupra căruia acționează o forță orizontală de tipul F = kt, unde k = 0,25 N/s este o constantă, iar t reprezintă intervalul de timp din momentul in care începe acțiunea forței. Coeficientul de frecare dintre cele două corpuri este $\mu = 0,1$. Calculează:
 - a) momentul din care accelerațiile corpurilor devin diferite;
 - **b)** reprezintă, pe aceeași diagramă, funcțiile $a_1 = a_1(t)$ și $a_2 = a_2(t)$;
 - c) vitezele fiecărui corp la momentele $t_1 = 4$ s și $t_2 = 6$ s.

Subiect propus de:

prof.Seryl Talpalaru – Colegiul Național "Emil Racoviță" Iași prof. Stelian Ursu – Colegiul Național "Frații Buzești" Craiova

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b etc.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.