Lazy Predict

This library offers you the possibility to evaluate many machine learning models at the same time, using sk-learn and saving a lot of time and coding.

CLASSIFICATION MODELS

```
# Installation
pip install lazypredict

# Imports
from lazypredict.Supervised import LazyClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn import datasets

# Load our toy dataset
df = datasets.load_breast_cancer()
type(df)
[Output]: sklearn.utils.Bunch

# Transform to Pandas dataframe if you want to explore the data
df2 = pd.DataFrame( df.data , columns=df.feature_names)
df2['target'] = df.target
df2.head()
```

perimeter error	area error	smoothness error	compactness error	concavity error	concave points error	symmetry error	fractal dimension error	worst radius				worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension	
8.59	153.40	0.01	0.05	0.05	0.02	0.03	0.01	25.38	17.33	184.60	2019.00	0.16	0.67	0.71	0.27	0.46	0.12	0
3.40	74.08	0.01	0.01	0.02	0.01	0.01	0.00	24.99	23.41	158.80	1956.00	0.12	0.19	0.24	0.19	0.28	0.09	0
4.58	94.03	0.01	0.04	0.04	0.02	0.02	0.00	23.57	25.53	152.50	1709.00	0.14	0.42	0.45	0.24	0.36	0.09	0
3.44	27.23	0.01	0.07	0.06	0.02	0.06	0.01	14.91	26.50	98.87	567.70	0.21	0.87	0.69	0.26	0.66	0.17	0
5.44	94.44	0.01	0.02	0.06	0.02	0.02	0.01	22.54	16.67	152.20	1575.00	0.14	0.20	0.40	0.16	0.24	0.08	0
																		F.

```
# X and Y
X, y = df.data, df.target
```

Here is where the magic happens:

```
# Fit all models
clf = LazyClassifier(predictions=True)
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
models
```

Accuracy Balanced Accuracy ROC AUC F1 Score Time Taken
Model

Model					
LinearSVC	0.97	0.97	0.97	0.97	0.02
LogisticRegression	0.97	0.97	0.97	0.97	0.04
Perceptron	0.97	0.97	0.97	0.97	0.03
SGDClassifier	0.96	0.96	0.96	0.96	0.03
PassiveAggressiveClassifier	0.96	0.96	0.96	0.96	0.02
RidgeClassifierCV	0.96	0.95	0.95	0.96	0.04
RidgeClassifier	0.96	0.95	0.95	0.96	0.02
ExtraTreesClassifier	0.96	0.95	0.95	0.96	0.17
KNeighborsClassifier	0.96	0.95	0.95	0.96	0.03
XGBClassifier	0.95	0.94	0.94	0.95	0.09
QuadraticDiscriminantAnalysis	0.95	0.94	0.94	0.95	0.02
SVC	0.95	0.94	0.94	0.95	0.04
LGBMClassifier	0.95	0.94	0.94	0.95	0.16
LinearDiscriminantAnalysis	0.95	0.94	0.94	0.95	0.03
AdaBoostClassifier	0.94	0.93	0.93	0.94	0.19
NuSVC	0.94	0.93	0.93	0.94	0.05
CalibratedClassifierCV	0.94	0.93	0.93	0.94	0.06
BernoulliNB	0.93	0.93	0.93	0.93	0.02
Label Spreading	0.93	0.92	0.92	0.93	0.04
LabelPropagation	0.93	0.92	0.92	0.93	0.03
RandomForestClassifier	0.93	0.92	0.92	0.93	0.27
NearestCentroid	0.93	0.92	0.92	0.93	0.02
BaggingClassifier	0.92	0.91	0.91	0.92	0.09
GaussianNB	0.92	0.91	0.91	0.92	0.01
ExtraTreeClassifier	0.91	0.91	0.91	0.91	0.02
DecisionTreeClassifier	0.91	0.91	0.91	0.91	0.02
DummyClassifier	0.54	0.52	0.52	0.53	0.02

REGRESSION MODELS

Load toy dataset

boston = datasets.load boston()

from lazypredict.Supervised import LazyRegressor

Fit all regression models
reg = LazyRegressor(predictions=True)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
models

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
ExtraTreesRegressor	0.88	0.90	2.87	0.26
RandomForestRegressor	0.86	0.88	3.19	0.44
XGBRegressor	0.86	0.87	3.20	0.10
LGBMRegressor	0.85	0.87	3.22	0.08
GradientBoostingRegressor	0.84	0.86	3.34	0.22
BaggingRegressor	0.84	0.86	3.38	0.08
Hist Gradient Boosting Regressor	0.83	0.85	3.46	0.32
DecisionTreeRegressor	0.80	0.83	3.74	0.03
AdaBoostRegressor	0.79	0.82	3.83	0.17
PoissonRegressor	0.78	0.81	3.92	0.02
ExtraTreeRegressor	0.78	0.81	3.95	0.02
LassoLarsIC	0.71	0.75	4.52	0.04
BayesianRidge	0.71	0.75	4.53	0.02
ElasticNetCV	0.71	0.75	4.53	0.10
LassoCV	0.71	0.75	4.53	0.13
Ridge	0.71	0.75	4.53	0.02
RidgeCV	0.71	0.75	4.53	0.02
SGDRegressor	0.71	0.75	4.53	0.02
HuberRegressor	0.71	0.75	4.53	0.03
LassoLarsCV	0.71	0.75	4.53	0.05
TransformedTargetRegressor	0.71	0.75	4.53	0.01
LinearRegression	0.71	0.75	4.53	0.03
LarsCV	0.70	0.74	4.62	0.08
Lars	0.70	0.74	4.62	0.02