Assignment-4

Distance Detection Using Ultrasonic Sensor

Assignment Date	27 October 2022
Student Name	AISHWARYA.K
Student Roll Number	622119105001
Maximum Marks	2 Marks

Question-1:

Write code and connections in wokwi for ultrasonic sensor. Whenever distance is less than 100 cms send "alert" to IBM cloud and display in device recent events.

WOKWI LINK: https://wokwi.com/projects/346502216516895315

```
#include <WiFi.h>//library for wifi #include
<PubSubClient.h>//library for MQtt
void callback(char* subscribetopic, byte* payload, unsigned intpayloadLength);
//----credentials of IBM Accounts-----
#define ORG "f59trs"//IBM ORGANITION ID
#define DEVICE TYPE "ultrasonicsensor"//Device type mentioned inibm watson IOT
Platform
#define DEVICE_ID "distancedetection"//Device ID mentioned in ibmwatson IOT
#define TOKEN "AlGMGaaF01nawa1QA3"
String data3;
float dist;
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";//Server Name
char publishTopic[] = "iot-2/evt/Data/fmt/json";// topic name andtype of event perform
and format in which data to be send
char subscribetopic[] = "iot-2/cmd/test/fmt/String";//
char authMethod[] = "use-token-auth";// authentication methodchar token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//clientid
WiFiClient wifiClient; // creating the instance for wificlient
```

```
PubSubClient client(server, 1883, callback, wifiClient);
int LED = 4; int
trig = 5; int echo =
18; void setup()
Serial.begin(115200);
pinMode(trig,OUTPUT);
pinMode(echo,INPUT);
pinMode(LED, OUTPUT);
delay(10); wificonnect();
mqttconnect();
void loop()// Recursive Function
 digitalWrite(trig,LOW);
  digitalWrite(trig,HIGH);
  delayMicroseconds(10);
  digitalWrite(trig,LOW);
  float dur = pulseIn(echo,HIGH);float dist
  = (dur * 0.0343)/2; Serial.print
  ("Distancein cm");Serial.println(dist);
  PublishData(dist);
  delay(1000);
  if (!client.loop()) {
     mqttconnect();
void PublishData(float dist) { mqttconnect();//function call for connecting
  String object;
```

```
if (dist <100)
     digitalWrite(LED,HIGH);
     Serial.println("object is near");object =
     "Near";
     digitalWrite(LED,LOW); Serial.println("no
     object found");object = "No";
  String payload = "{\"distance\":";payload +=
  payload += "," "\"object\":\"";payload +=
  object;
  payload += "\"}";
  Serial.print("Sending payload: ");
  Serial.println(payload);
  if (client.publish(publishTopic, (char*) payload.c_str())) {
     Serial.println("Publish ok");// if it successfully upload dataon the cloud then it will
   } else {
     Serial.println("Publish failed");
void mqttconnect() {
  if (!client.connected()) { Serial.print("Reconnecting
     client to ");Serial.println(server);
     while (!!!client.connect(clientId, authMethod, token)) {
        Serial.print(".");
        delay(500);
      initManagedDevice();
      Serial.println();
```

```
void wificonnect() //function defination for wificonnect
   Serial.println(); Serial.print("Connecting
  to");
   WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentialsto establish the
  while (WiFi.status() != WL_CONNECTED) {
     delay(500);
     Serial.print(".");
   Serial.println(""); Serial.println("WiFi
   connected");Serial.println("IP address: ");
   Serial.println(WiFi.localIP());
void initManagedDevice() {
  if (client.subscribe(subscribetopic)) { Serial.println((subscribetopic));
     Serial.println("subscribe to cmd OK");
   } else {
     Serial.println("subscribe to cmd FAILED");
void callback(char* subscribetopic, byte* payload, unsigned intpayloadLength)
   Serial.print("callback invoked for topic: ");
   Serial.println(subscribetopic);
  for (int i = 0; i < payloadLength; i++) {
     //Serial.print((char)payload[i]);data3 +=
     (char)payload[i];
 / digitalWrite(LED,HIGH);
```

```
// digitalWrite(LED,LOW);

// }
data3="";
}
```

OUTPUT:

When object is not near to the ultrasonic sensor

Data sent to the IBM cloud device when the object is far

When object is nearer to the ultrasonic sensor

Data sent to the IBM cloud device when the object is near

