Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

"Проектування і аналіз алгоритмів для вирішення NP-складних задач ч.1"

Виконав(ла)	III-15 Шабанов Метін Шаміль огли (шифр, прізвище, ім'я, по батькові)	
Перевірив		

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою.

2 Завдання

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

27	Задача розфарбовування графу (200 вершин, степінь вершини не	
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30	
	із них 2 розвідники).	

3 Виконання

3.1 Програмна реалізація алгоритму

3.1.1 Вихідний код

```
def scout bee work(self):
    if len(self.available vertexes) > 2:
        best nodes = random.sample(self.available vertexes, 2)
        if self.graph.adjacency matrix[best nodes[0]].count(1) >
self.graph.adjacency matrix[best nodes[1]].count(1):
            return best nodes[0]
        else:
           return best nodes[1]
    else:
        return self.available vertexes[0]
def onlooker bee work (self, best node):
    self. color node(best node)
    self. color neighbors(best node)
    self.available vertexes.remove(best node)
def color node(self, best node):
    color iter = 0
    self.graph.colors[best node] = [self.available colors[color iter], 0]
    while self.check same color(self.available colors[color iter], best node):
        color iter += 1
        self.graph.colors[best node] = [self.available colors[color iter], 0]
    if not self.available colors[color iter] in self.used colors:
        self.used colors.append(self.available colors[color iter])
def color neighbors(self, best node):
    \overline{\text{color iter}} = 0
    for i in range(len(self.graph.adjacency_matrix[best_node])):
        if self.graph.adjacency matrix[best node][i] == 1 and
self.graph.colors[i][1] != 0:
            self.graph.colors[i][0] = self.available colors[color iter]
            while self.check same color(self.graph.colors[i][0], i):
                color iter += 1
                self.graph.colors[i][0] = self.available colors[color iter]
            if not self.available colors[color iter] in self.used colors:
                self.used colors.append(self.available colors[color iter])
        color iter = 0
def check same color(self, color, node):
    for i in range(len(self.graph.adjacency matrix[node])):
        if self.graph.adjacency matrix[node][i] == 1 and self.graph.colors[i][0]
== color:
            return True
    return False
```

3.1.2 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

Рисунок 3.1 – Приклад роботи програми

Рисунок 3.2 – Приклад роботи програми

3.2 Тестування алгоритму

3.2.1 Значення цільової функції зі збільшенням кількості ітерацій

У таблиці 3.1 наведено значення цільової функції зі збільшенням кількості ітерацій.

Кількість	Значення
ітерацій	цільової функції
1	10
2	10
3	9
2 3 4 5 6 7	9
5	9
6	9
7	9
8	9
9	9
10	9
11	9
12	9
13	9
14	9
15	9
16	9
17	9
18	8
19	8
20	8
21	8
22	8
23	8
24	8
25	8

Кількість	Значення
ітерацій	цільової функції
26	8
27	8
28	8
28 29	8
30	8
31	8
32	8
33	8
34	8
35	8
36	8
37	8
38	8
39	8
40	8
41	8
42	8
43	8
44	8
45	8
46	8
47	8
48	8
49	8
50	8

Таблиця 3.1 – Значення цільової функції зі збільшенням кількості ітерацій

3.2.2 Графіки залежності розв'язку від числа ітерацій

На рисунку 3.3 наведений графік, який показує якість отриманого розв'язку.

Рисунок 3.3 – Графік залежності розв'язку від числа ітерацій

Висновок

В рамках даної лабораторної роботи вивчено основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою на прикладі бджолиного алгоритму АВС. Розроблено програмну реалізацію даного алгоритму, проаналізовано якість рішення поставлених задач, побудовано відповідні графіки.

Критерії оцінювання

При здачі лабораторної роботи до 27.11.2021 включно максимальний бал дорівнює — 5. Після 27.11.2021 максимальний бал дорівнює — 1.

Критерії оцінювання у відсотках від максимального балу:

- програмна реалізація алгоритму 75%;
- тестування алгоритму– 20%;
- висновок -5%.