Predictive Analytics – Session 2

Time Series Prediction – Considerations and Methods

Associate Professor Ole Maneesoonthorn

Associate Professor in Econometrics and Statistics

Melbourne Business School

O.Maneesoonthorn@mbs.edu

What is time series data?

Examples:

Examples:

The main components:

- 1. Trend long term general direction
- 2. Cyclical shorter term movements that last more than one whole season
- 3. Seasonal frequent and repeated patterns at regular frequency
- 4. Error random noise

The time series components:

- Trend and cyclical components are typically not separable
- Seasonal components can be extracted using various methods
- Key question: Are you interested in the general trend only? Or are you interested in the whole time series, seasonal and all?

What components to focus on?

- Interested in the general trend only?
 - → Remove the seasonal component seasonally adjusted data
 - More common when data is used for other purposes, e.g. as a regressor in another model
 - Removing seasonality can reveal a better picture of trend/cyclical components
 - → Decomposition of the time series data

Examples: Seasonal adjustments

Examples: Seasonal adjustments

What components to focus on?

- Interested in the whole time series, seasonal and all?
 - \rightarrow Predict the raw data
 - More common in business context
 - E.g. inventory planning, budgeting, rostering

What else can decomposition tell us?

Are there changes in seasonality?

What else can decomposition tell us?

Are there any trend in seasonal movements?

What prediction scheme is suitable for my context?

• Recall the predictive assessment in time series:

What prediction scheme is suitable for my context?

Are we going to do long-horizon predictions?

Horizon = 1

What prediction scheme is suitable for my context?

Are we going to do long-horizon predictions?

Horizon = 2

What prediction scheme is suitable for my context?

Are we going to do long-horizon predictions?

Horizon = h

What prediction scheme is suitable for my context?

• Or are we going to do real-time predictions?

Horizon = 1

What prediction scheme is suitable for my context?

• Or are we going to do real-time predictions?

Horizon = 1 ALWAYS!

What prediction scheme is suitable for my context?

Should we do fixed window or expanding window updates?

What prediction scheme is suitable for my context?

Fixed window updates

What prediction scheme is suitable for my context?

Expanding window updates

Metrics for time series predictive performance

- RMSE, MAE, MAPE used in the usual way
- MASE benchmark naïve is now different
 - **Time series**: information becomes available as we move on in time
 - Naïve forecast: the most recently observed value
 - Interpretation in the usual way with benchmark MASE value of 1 indicating "as good as" naïve

Metrics for time series predictive performance

- Additional metric: Are the forecast errors truly random?
- That is, if we know what the forecast error is today, does that inform us what the forecast error is likely to be tomorrow?
- Measured by the correlation between the errors observed at two different time points
- Known as the autocorrelation, or ACF for short

$$ACF = Corr(e_t, e_{t-1})$$

ACF should be as close to zero as possible

Metrics for time series predictive performance

- Again, think about what the predictive outcome is being used for
- User-specific loss can also be incorporated into the predictive assessment

Time series regression

- All variables now have time index t to indicate time
- Time series regression account for trend and seasonality by

$$y_t = b_0 + b_1 t + b_2 S_{2t} + \dots + b_m S_{mt} + e_t$$

- The variable t is a count of time periods $\rightarrow b_1$ is average growth per time period
- $S_{2t}, S_{3t}, \dots, S_{mt}$ are dummy variables indicating which season the time period belongs to
- $b_2, b_3, ..., b_m$ are estimates of seasonality relative to the first season
- (Dummy variable: leave one category out)

Time series regression - variants

- Other variants of the time series regression may improve the predictive accuracy
- Nonlinear trends quadratic, polynomial, spline
- Log transform of the variable of interest
 - Particularly useful for business variables with proportion growth context (e.g. sales)
 - Variable must be positive for this transformation
- Inclusion of other explanatory variables

- Best prediction = running average of the past values
- Use **all observations** from the past...
- But give more weight to most recent observations
- Weight function decays exponentially as we move into the historical past
- Based on time series decomposition
 - Trend + Seasonal + Error

Exponential Smoothing

Exponential smoothing moving average – the basic version

$$\hat{y}_t = wy_{t-1} + (1-w)wy_{t-2} + (1-w)^2wy_{t-3} + \cdots$$

Weight function

Recent obs

Older obs

- For time series with trend:
 - Smoothing applies to the trend component as well
 - Option: linear trend (absolute growth) or multiplicative trend (proportional growth)
 - Option to "dampen" trend so that predictions do not get explosive with long horizon
- For time series with seasonality:
 - Algorithm will "detrend" i.e. remove the trend the time series
 - Then apply a smoothing algorithm to predict seasonality component
 - Option: linear (absolute difference) or multiplicative (proportional difference)

- Additional feature in R you can characterise the **error** component
 - Usage: Model selection statistics
 - Usage: Prediction interval can be computed
 - Option: Additive or multiplicative error

- Exponential smoothing in R: use the ets() function
- ETS stands for Error Trend and Seasonality
- E.g. ETS(A,A,A)
 - Additive error
 - Additive trend
 - Additive seasonality
- E.g. ETS(M,Ad,M)
 - Multiplicative error
 - Additive dampened trend
 - Multiplicative seasonality

Autoregressive Integrated Moving Average (ARIMA) Model

- A variation of the regression with some twist!
- Autoregressive (AR) model based on past values:

$$y_t = b_0 + b_1 y_{t-1} + e_t$$

Moving average (MA) model – based on past errors:

$$y_t = b_0 + c_1 e_{t-1} + e_t$$

where e_{t-1} is the prediction error from the previous time point

- > Learning from past information and past mistakes!
- Can go back further than one period...

Autoregressive Integrated Moving Average (ARIMA) Model

- Integrated taking a difference before modelling
 - Only required if the time series has a trend
- ARIMA(p,d,q) a mixture of all three components
 - AR component = p past terms of the actual data
 - Integration order d=0 (model the raw data) or d=1 (model the change over time)
 - MA component = q terms of past prediction errors

Autoregressive Integrated Moving Average (ARIMA) Model

Extension to seasonal ARIMA - specification

- m = seasonal frequency (e.g. monthly data m=12)
- D indicate seasonal differencing.
 - That is, do we model the raw data or model the season-on-season change?
 - If data is seasonal, set D=1
- P = number of seasonal lags of the past data
 - E.g. for P=2, we include y_{t-m} and y_{t-2m}
- Q = number of seasonal lags of the past prediction error
 - E.g. for Q=2, we include e_{t-m} and e_{t-2m}

An example of time series predictive assessment

- Let us focus on the Retail Sales Beer, Wine and Liquor
- What are the characteristics that we see?

Raw data features:

- Strong seasonality
- Changing seasonal pattern
- Strong increasing trend

An example of time series predictive assessment

- Let us focus on the Retail Sales Beer, Wine and Liquor
- What are the characteristics that we see?

Seasonally adjusted data

- Steady trend up to 2020
- Accelerating trend post COVID lockdown

An example of time series predictive assessment

- Data split
 - Training set: January 1992 to December 2010
 - Test set: January 2011 to June 2020
- Long horizon predictive assessment
- Real time predictive assessment

An example of time series predictive assessment

Long horizon predictive assessment – time series regression

Forecasts from Linear regression model

Red line is the test set data.

Blue is the predicted value.

Gray area indicate prediction interval.

An example of time series predictive assessment

Long horizon predictive assessment – time series log-linear regression

An example of time series predictive assessment

Long horizon predictive assessment – exponential smoothing

Forecasts from ETS(M,Ad,M)

An example of time series predictive assessment

Long horizon predictive assessment – ARIMA with seasonal components

An example of time series predictive assessment

- Long horizon predictive assessment
- No use eyeballing the plots, let's check the accuracy measures

	RMSE	MAE	MAPE	MASE	ACF
Regression	541.188	411.912	8.642	2.010	0.509
Log Regression	172.483	106.078	2.345	0.518	0.274
Exp Smoothing	898.006	731.770	15.914	3.570	0.865
ARIMA	442.975	325.746	6.835	1.589	0.617

An example of time series predictive assessment

Real time predictive assessment

An example of time series predictive assessment

Real time predictive assessment – accuracy metrics

	RMSE	MAE	MAPE	MASE	ACF
Regression	363.986	270.177	5.688	1.318	0.282
Log Regression	169.069	103.585	2.289	0.505	0.286
Exp Smoothing	144.030	96.745	2.150	0.472	-0.003
ARIMA	130.377	94.008	2.183	0.459	0.187

An example of time series predictive assessment

- A range of methods available
- Remember the assessment process must match the intended use
 - Long horizon vs real time
 - What may be accurate in long horizon may not be accurate for real time
- As usual, user-specific loss will bring in the business perspective