ĆWICZENIA III

(rachunek predykatów)

Zadania

- 1. Podaj, jeśli jest to możliwe, wartości logiczne poniższych wyrażeń.
 - (a) $\forall x(\sqrt{x^2} = x)$ jeśli dziedziną jest zbiór \mathbb{Z}
 - **(b)** $\forall m \exists n (2m = n)$ jeśli dziedziną jest zbiór N
 - (c) $\exists (x \in \mathbb{N})(x + y = 5)$
 - (d) $\forall n \exists k (2^n = k)$ jeśli dziedziną jest zbiór \mathbb{N}
 - (e) $\forall n \exists k ((n \in \mathbb{N} \land k \in \mathbb{N}) \rightarrow (n = 2^k))$ jeśli dziedziną jest zbiór \mathbb{N}
 - (f) $\forall x \exists y ((x \in \mathbb{R} \land y \in \mathbb{R}) \rightarrow (x > y))$
 - (g) $\exists y \forall x (x < y)$ jeśli dziedziną jest zbiór \mathbb{R}
 - **(h)** $\exists (r \in \mathbb{R}) \forall (n \in \mathbb{N}) (r < n)$
 - (i) $\exists (k \in \mathbb{Z}) \exists (s \in \mathbb{R}) ((k+2s=-1) \land (2k-s=-14))$
- 2. Zapisz następujące zdania za pomocą symboliki logicznej.
 - (a) Jeśli długość słowa w jest równa 2, to $w \in \Sigma$.
 - (b) Nie istnieje liczba, której kwadrat był by mniejszy od 0.
 - (c) Istnieje liczba naturalna n, taka że kn = k dla wszystkich liczb całkowitych k.
 - (d) Jeśli suma dwóch liczb pierwszych jest parzysta, to żadna z tych liczb nie jest równa 2.
 - (e) Liczby całkowite x i y mają takie same dzielniki.
 - (f) x jest największym wspólnym dzielnikiem liczb y i z.
- 3. Określ, które zmienne w następujących wyrażeniach są wolne, a które związane.
 - (a) $\forall x \exists y ((xy = xz) \rightarrow (y = z))$
 - **(b)** $\forall x (x < 0 \rightarrow (xy > 0 \lor (\exists z (x + z = y))))$
 - (c) $\forall x(x \in \mathbb{R} \to (x = 2^y)) \land (xy > 0 \lor \forall z(z \in \mathbb{R} \to (xyz < 0)))$
- 4. Sprawdź, czy zdanie $\forall x \exists y ((x^2 + 1)y = 1)$ jest prawdziwe jeśli dziedziną jest zbiór: (a) \mathbb{N} , (b) \mathbb{Q} , (c) \mathbb{R} .
- 5. Napisz zaprzeczenie wyrażenia $\forall x \forall y ((x^2 = y) \rightarrow \exists z (x \leq z \leq y))$ nie używając spójnika negacji.
- 6. Udowodnić, że poniższe wyrażenia są tautologiami rachunku kwantyfikatorów.
 - (a) $\neg \exists x (p(x)) \leftrightarrow \forall x (\neg p(x))$ prawo de Morgana
 - **(b)** $\exists x \forall y (p(x,y)) \rightarrow \forall y \exists x (p(x,y))$
 - (c) $\exists x(p(x) \land q(x)) \rightarrow \exists x(p(x)) \land \exists x(q(x))$
- 7. Sprawdź, czy poniższe wyrażenia są tautologiami rachunku kwantyfikatorów.
 - (a) $\exists x(p(x)) \land \exists x(q(x)) \rightarrow \exists x(p(x) \land q(x))$
 - **(b)** $\exists x \exists y (p(x,y)) \rightarrow \exists x (p(x,x))$
 - (c) $\forall x(p(x) \rightarrow q(x)) \leftrightarrow (\forall x(p(x)) \rightarrow \forall x(q(x)))$