and $u \cdot u = 1$, so we get

$$\nu = -\frac{\sin \lambda \Omega}{\sin \Omega} \cos \theta \sin \theta \cos \varphi \, u + \cos \lambda \Omega \sin \theta \, u + \frac{\sin \lambda \Omega}{\sin \Omega} \cos^2 \theta \sin \varphi \, v + \frac{\sin \lambda \Omega}{\sin \Omega} \sin^2 \theta \sin \varphi \, v - \frac{\sin \lambda \Omega}{\sin \Omega} \sin^2 \theta \sin \varphi \, (u \cdot v) u.$$

Using

$$\sin\theta\sin\varphi(u\cdot v) = \cos\Omega - \cos\theta\cos\varphi,$$

we get

$$\nu = -\frac{\sin \lambda \Omega}{\sin \Omega} \cos \theta \sin \theta \cos \varphi u + \cos \lambda \Omega \sin \theta u + \frac{\sin \lambda \Omega}{\sin \Omega} \sin \varphi v$$

$$-\frac{\sin \lambda \Omega}{\sin \Omega} \sin \theta (\cos \Omega - \cos \theta \cos \varphi) u$$

$$= \cos \lambda \Omega \sin \theta u + \frac{\sin \lambda \Omega}{\sin \Omega} \sin \varphi v - \frac{\sin \lambda \Omega}{\sin \Omega} \sin \theta \cos \Omega u$$

$$= \frac{(\cos \lambda \Omega \sin \Omega - \sin \lambda \Omega \cos \Omega)}{\sin \Omega} \sin \theta u + \frac{\sin \lambda \Omega}{\sin \Omega} \sin \varphi v$$

$$= \frac{\sin(1 - \lambda)\Omega}{\sin \Omega} \sin \theta u + \frac{\sin \lambda \Omega}{\sin \Omega} \sin \varphi v.$$

Putting the scalar part and the vector part together, we obtain

$$q_1(q_1^{-1}q_2)^{\lambda} = \left[\frac{\sin(1-\lambda)\Omega}{\sin\Omega} \cos\theta + \frac{\sin\lambda\Omega}{\sin\Omega} \cos\varphi, \frac{\sin(1-\lambda)\Omega}{\sin\Omega} \sin\theta u + \frac{\sin\lambda\Omega}{\sin\Omega} \sin\varphi v \right],$$

$$= \frac{\sin(1-\lambda)\Omega}{\sin\Omega} [\cos\theta, \sin\theta u] + \frac{\sin\lambda\Omega}{\sin\Omega} [\cos\varphi, \sin\varphi v].$$

This yields the celebrated slerp interpolation formula

$$Z(\lambda) = q_1(q_1^{-1}q_2)^{\lambda} = \frac{\sin(1-\lambda)\Omega}{\sin\Omega}q_1 + \frac{\sin\lambda\Omega}{\sin\Omega}q_2,$$

with

$$\cos \Omega = \cos \theta \cos \varphi + \sin \theta \sin \varphi (u \cdot v).$$

16.7 Nonexistence of a "Nice" Section from SO(3) to SU(2)

We conclude by discussing the problem of a consistent choice of sign for the quaternion q representing a rotation $R = \rho_q \in SO(3)$. We are looking for a "nice" section $s : SO(3) \to SU(2)$, that is, a function s satisfying the condition

$$\rho \circ s = \mathrm{id},$$

where ρ is the surjective homomorphism $\rho \colon \mathbf{SU}(2) \to \mathbf{SO}(3)$.