Towards a Notion of Defeasibility in Formal Concept Analysis

Lucas Carr

06.06.24

1 Introduction

2 The Initial Case

2.1 A Defeasible Formal Context

We define a defeasible formal context a $\mathbb{K} := (G, M, I, <)$ where G is a set of objects, M a set of attributes, I an incidence relation on $G \times M$ expressed as gIm for $g \in G, m \in M$ (exactly as we see with typical formal contexts); and, < a strict partial order over G.

2.2 The Derivation Operators

Over the defeasible formal context $\widetilde{\mathbb{K}} = (G, M, I, <)$ we introduce two operators; (\underline{X}°) and $(\underline{X}^{\circ})^{\circ}$, $X \subseteq M$. Before we define these operators, we introduce a definition of minimality over objects in G.

$$Min(A) := \{ g \in A | \nexists h \in A, h < g \} \tag{1}$$

We can now define the respective operators, $A \subseteq G, B \subseteq M$.

$$\underline{A}^{\circ} := \{ m \in M | \forall g \in Min(A), gIm \}$$
 (2)

$$\underline{B}^{\circ} := \{ g \in G | \forall m \in B, \nexists h \in Gh < g, gIm \}$$

$$\tag{3}$$

(1) Describes the minimally ranked objects in G. From here, (2) describes an operation from a set of objects $A \subseteq G$ to the attributes shared by the minimal elements in A. (3) Is an operation from a set of attributes $B \subseteq M$ which results in the *minimal* set of objects which have all the attributes in B.

We can apply these operators twice, $(\underline{B}^{\circ})^{\circ}$ where $A \subseteq M$; this procedure would give the set of attributes shared by the minimal objects which satisfy the properties B. Conversely, $(\underline{A}^{\circ})^{\circ}$ where $A \subseteq G$ describes the minimal set of objects whichs satisfy the properties satisfied by all the objects in A.

For an example, consider the defeasible context $\widetilde{\mathbb{K}} = \{G, M, I, <\}$, with $o_i < o_j$ if i < j for all objects.

Figure 1: Defeasible Formal Context

Given $A = \{m_2, m_3\}$, we have that $\underline{A}^{\circ} = \{o_1\}$, and $(\underline{A}^{\circ})^{\circ} = \{m_1, m_2, m_4\}$. Conversely, given $B = \{o_3, o_4\}$, $\underline{B}^{\circ} = \{m_2, m_3, m_4\}$, $(\underline{B}^{\circ})^{\circ} = \{o_3\}$.

 $^{^{1}}$ I acknowledge that this second example could just be replaced with Min(B), I will think more about this.

2.2.1 Properties of $(\underline{\cdot}^{\circ})^{\circ}$

nonmonotonic: $A \subseteq B \not\Rightarrow (\underline{A}^{\circ})^{\circ} \subseteq (\underline{B}^{\circ})^{\circ}$

Assume $(\underline{\cdot}^{\circ})^{\circ}$ were monotonic; then $A \subseteq B \Rightarrow (\underline{A}^{\circ})^{\circ} \subseteq (\underline{B}^{\circ})^{\circ}$.

From Figure 1, if we take the oo-operation on $A_1 = \{m_1, m_2\}$, we get $(\underline{A_2}^{\circ})^{\circ} = \{o_1\}^{\circ} = \{m_1, m_2, m_4\}$. Then, on $A_2 = \{m_1, m_2, m_3\}$, we have $(\underline{A_2}^{\circ})^{\circ} = \{o_2\}^{\circ} = \{m_1, m_2, m_3\}$. Obviously, we have $A_1 \subseteq A_2$ but $(\underline{A_1}^{\circ})^{\circ} \not\subset (\underline{A_2}^{\circ})^{\circ}$. Thus, the oo-operator is nonmonotonic.

extensive: $X \subseteq (\underline{X}^{\circ})^{\circ}$

Assume that $(\underline{\cdot}^{\circ})^{\circ}$ is not extensive, so for some $X \subseteq M, X \not\subseteq (\underline{X}^{\circ})^{\circ}$. This means that there is some minimal set of objects, \underline{X}° , such that $\{m \in M | \forall g \in \underline{X}^{\circ}, gIm\}$. Thus, we would have $X \not\subseteq (\underline{X}^{\circ})^{\circ}$. However, we know from construction that $\forall g \in \underline{X}^{\circ}$,

idempotent: $(\underline{A}^{\circ})^{\circ} = ((\underline{A}^{\circ})^{\circ})^{\circ}$