2021 年 12 月 25 日

近世代数

吴天阳 2204210460

习题 3.1

1. 证明: $\mathbb{Z}[x]$ 是一个整环, 并且 $x^2 + 5$ 是 $\mathbb{Z}[x]$ 的一个素元。

证明. 由于 $\mathbb{Z}[x]$ 为 $\mathbb{Q}[x]$ 的一个子环,则 $\mathbb{Z}[x]$ 对 + 和·满足封闭性,分配律和交换律,0 为 $\mathbb{Z}[x]$ 的零元,且 $1 \in \mathbb{Z}[x]$,则 $\mathbb{Z}[x]$ 有幺元,由于 $\mathbb{Q}[x]$ 没有非零的零因子,所以 $\mathbb{Z}[x]$ 中也没有非零的零因子,综上 $\mathbb{Z}[x]$ 是一个整环。

由于 $x^2 + 5$ 中 (1,5) = 1,所以 $x^2 + 5$ 是本原多项式,又由于方程 $x^2 + 5 = 0$ 的根为 $x = \pm \sqrt{5} \notin \mathbb{Z}$,所以 $x^2 + 5$ 是不可约多项式,对于不可约的本原多项式,任意的 $f(x), g(x) \in \mathbb{Z}(x)$,有

$$(x^2 + 5)|f(x) \cdot g(x) \Rightarrow (x^2 + 5)|f(x)|(x^2 + 5)|g(x)|$$

所以, $x^2 + 5$ 是 $\mathbb{Z}[x]$ 的一个素元。

8. 证明: $\mathbb{Z}[x]/(x^2+5) \cong \mathbb{Z}[\sqrt{5}i]$.

证明. 证明该命题需要先证明如下的一个引理(整多项式环上首一多项式的带余除法):

引理. 设 $f(x), m(x) \in \mathbb{Z}[x]$,其中 m(x) 为首项系数为 1 的多项式且 $\deg m(x) \geqslant 1$,则存在唯一的一对 $h(x), r(x) \in \mathbb{Z}[x]$,使得

$$f(x) = h(x)m(x) + r(x) \quad \deg r(x) < \deg m(x)$$

下面对 f(x) 的阶用归纳法证明该引理:

当 $\deg f(x)=0$ 时,由于 $\deg m(x)\geqslant 1$,则存在唯一的 h(x)=0, r(x)=f(x),满足命题。

假设命题在 $\deg f(x) = n - 1$ 时成立,则当 $\deg f(x) = n$ 时,令

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

若 $\deg m(x) > \deg f(x)$,则存在唯一的 h(x) = 0, r(x) = f(x),满足命题。

若 $\deg m(x) \leq \deg f(x)$, 记 $\deg m(x) = t$, 则

$$\deg\left(f(x) - a_n x^t m(x)\right) \leqslant n - 1$$

由归纳假设知,存在唯一的一对 h(x), r(x), 使得

$$f(x) - a_n x^t m(x) = h(x)m(x) + r(x) \qquad \deg r(x) < t$$
$$f(x) = (a_n x^t + h(x))m(x) + r(x)$$

满足命题。综上,该引理得证。

构造 $\mathbb{Z}[x]$ 到 C 上的一个同态 σ :

$$\sigma: \mathbb{Z}[x] \to \mathbb{C}$$

$$f(x) = \sum_{k=0}^{n} a_k x^k \mapsto \sum_{k=0}^{n} a_k (\sqrt{5}i)^k =: f(\sqrt{5}i)$$

 σ 对 + 和·保持运算,且 $\sigma(1)=1$,所以 σ 为一个环同态。 由于

$$\mathbb{Z}[\sqrt{5}i] = \left\{ \sum_{k=0}^{n} a_k (\sqrt{5}i)^k : a_k \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

所以 Im $\sigma = \mathbb{Z}[\sqrt{5}i]$,又由于

Ker
$$\sigma = \{f(x) \in \mathbb{Z}[x] : f(\sqrt{5}i) = 0\}$$
$$= \{f(x) \in \mathbb{Z}[x] : \sqrt{5}i \not \to f(x)$$
的一个复根}

下证 $\operatorname{Ker} \sigma = (x^2 + 5)$,假设存在 $f(x) \in \operatorname{Ker} \sigma$ 使得 $(x^2 + 5) \nmid f(x)$,有**引理**知,存在唯一的一对 $h(x), r(x) \in \mathbb{Z}[x]$,使得

$$f(x) = (x^2 + 5)h(x) + r(x)$$
 deg $r(x) < 2$

因为 $\deg r(x) < 2$ 且 $r(x) \neq 0$, $\diamondsuit r(x) = ax + b$, $a, b \in \mathbb{Z}$,由于

$$r(x) = f(x) - (x^2 + 5)h(x)$$

则 $r(\sqrt{5}i) = 0 \Rightarrow a\sqrt{5}i + b = 0 \Rightarrow i = -\frac{b}{a\sqrt{5}} \in \mathbb{R} \ \exists \ i = \sqrt{-1} \notin \mathbb{R} \$ 矛盾。

于是 $\forall f(x) \in \text{Ker } \sigma$, 都有 $(x^2 + 5)|f(x)$, 则 $\text{Ker } \sigma \subset (x^2 + 5)$, 又因为 $\sqrt{5}i$ 为 $x^2 + 5 = 0$ 的根,所以 $x^2 + 5 \in \text{Ker } \sigma \Rightarrow (x^2 + 5) \subset \text{Ker } \sigma$, 故 $\text{Ker } \sigma = (x^2 + \sqrt{5})$.

由环同态基本定理,知

$$\mathbb{Z}[x]/\mathrm{Ker}\ \sigma \cong \mathrm{Im}\ \sigma$$

 $\Rightarrow \mathbb{Z}[x]/(x^2+5) \cong \mathbb{Z}[\sqrt{5}i]$

习题 3.2

3. 证明: $\mathbb{Z}[x]$ 不是主理想整环。

证明. 反设 $\mathbb{Z}[x]$ 为主理想整环,则

$$a$$
为不可约元 \iff (a) 为极大理想 \iff $\mathbb{Z}[x]/(a)$ 为域

由于 $x \in \mathbb{Z}[x]$,且 x 为不可约本原多项式,所以 x 为 $\mathbb{Z}[x]$ 中的不可约元,则 $\mathbb{Z}[x]/(x)$ 为域,但

$$Z[x]/(x) = \{f(x) + (x) : f(x) \in \mathbb{Z}[x]\} = \{a + (x) : a \in \mathbb{Z}\} \cong \mathbb{Z}$$

则 $\mathbb{Z}[x]/(x)$ 同构于整环 \mathbb{Z} , 与 $\mathbb{Z}[x]/(x)$ 为域矛盾, 故 $\mathbb{Z}[x]$ 不是主理想整环。

7. 设 m 是一个不含平方因子的整数,且 $m \neq 0, 1$ 。证明: $\mathbb{Q}[\sqrt{m}]$ 是一个域,它的元素形如 $a + b\sqrt{m}, a, b \in \mathbb{Q}$ 。把 $Q[\sqrt{m}]$,称它为 Q 上的一个二次数域。

证明. 由于 m 不含平方因子,设它的标准分解式为

$$m=p_1p_2\cdots p_s$$

其中 p_i $(i=1,2,\cdots,s)$ 均为素数,由 Eisenstein 判别法知,素数 p_1 使得多项式 x^2-m 在 $\mathbb{Q}[x]$ 中不可约,且 \sqrt{m} 为该多项式的一个根,所以 x^2-m 为 \sqrt{m} 的极小多项式,则 $\mathbb{Q}[x]/(x^2-m)\cong\mathbb{Q}[\sqrt{m}]$ 是一个域,且

 $\mathbb{Q}[\sqrt{m}] \cong \mathbb{Q}[x]/(x^2-m) = \{a+bu: a,b \in \mathbb{Q}, u=x+(x^2-m)\} \cong \{a+b\sqrt{m}: a,b \in \mathbb{Q}\}$