

STUDENTIDIO											

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

BEC2054 – ECONOMETRICS 2

(All sections / Groups)

16 MARCH 2018 9.00 a.m. - 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of SIX (6) pages excluding cover page with FOUR (4) questions, formula and statistical tables.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Write all your answers in the answer booklet provided.
- 4. Formulas and statistical tables are attached.

QUESTION 1

- (a) What do you understand by the term "identification"? Describe the order condition of identification in a model of M simultaneous equations. (7 marks)
- (b) Consider the following demand-and-supply model for money:

Demand for money: $M_t^d = \beta_0 + \beta_1 Y_t + \beta_2 R_t + \beta_3 P_t + \beta_4 Y_{t-1} + \mu_{1t}$

Supply of money: $M_t^s = \alpha_0 + \alpha_1 Y_t + \mu_{2t}$

where

M = money

Y = income

R = interest rate

P = price

Assume that R, P and Y_{t-1} are predetermined and, M and Y are endogenous.

- (i) By the order condition, is the demand function identified? (3 marks)
- (ii) By the order condition, is the supply function identified? (3 marks)
- (iii) Which method would you use to estimate the parameters of the identified equation(s)? Explain. (4 marks)
- (iv) Suppose you modify the supply function by adding the explanatory variable M_{t-1} . What happens to the identification problem for the demand and supply functions? Would you still use the method you used in (iii)? Explain. (8 marks)

Continued...

QUESTION 2

(a) Distinguish between dynamic model and distributed-lag model. (6 marks)

(b) The Eviews output below exhibits the Koyck model, examining relationship between consumption expenditure (CONS) and disposable income (DI) for Country XYZ for the period 1969 – 2016.

Dependent Variable: CONS Method: Least Squares Date: 12/12/17 Time: 01:23 Sample (adjusted): 2 48

Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C DI CONS (-1)	-92.1841 0.213890 0.667240	57.3517 0.070617 0.061362	-1.607348 3.028892 10.87389	0.1151 0.0041 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.988216 0.988134 220.8604 218.4539 -319.6656 12306.99 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		16691.28 5205.873 13.73045 13.84854 13.77489 0.961921	

(i) What is the short-run marginal propensity to consume (MPC)? Interpret it. (4 marks)

(ii) What is the long-run MPC? Interpret it.

(6 marks)

(iii) Write down the short-run consumption function.

(3 marks)

(iv) Write down the long-run consumption function.

(6 marks)

[Total: 25 marks]

QUESTION 3

(a) Distinguish between:

(i) White noise and random walk.

(5 marks)

(ii) Cointegration and spurious regression.

(5 marks)

Continued...

GHH

(b) Given a total of 72 quarterly observations, which covers the period from 1999 Q1 to 2016 Q4, on M2 money supply and GNP, consider the following simple model:

$$LM2_{t} = -10.3571 + 2.5975LGNP_{t}$$

$$t = (-10.9422) (28.8865)$$
(1)

R-squared = 0.9253

Durbin-Watson d = 0.2155

Where LM2 = M2 money supply (in logarithmic form) LGNP = gross national product (in logarithmic form)

(i) Evaluate the regression (1).

(3 marks)

(ii) The Augmented Dickey-Fuller tests with a constant and a trend are shown below:

$$\Delta L \dot{M} 2_{t} = -0.079 L M 2_{t-1} + 0.0084 + 0.052 t + 0.7430 \Delta L M 2_{t-1}$$

$$\tau = (-1.893) \qquad (3.945) (3.744) (10.326)$$

$$\Delta L \hat{G} N P_{t} = -0.175 L G N P_{t-1} + 0.0363 + 0.002 t + 0.2851 \Delta L G N P_{t-1}$$

$$\tau = (-1.220) \qquad (5.516) \quad (2.275) \quad (2.980)$$

At $\alpha = 5\%$, test the hypotheses whether there are unit roots in these two time series above? (8 marks)

(iii) Based on the Engle-Granger procedure, when we performed a unit root test on the residuals obtained from the regression (1), we attained the following result:

$$\Delta \hat{u}_t = -0.181 \hat{u}_{t-1}$$
 $\tau = (-2.333)$

Are the variables of LM2 and LGNP cointegrated or spuriously related at $\alpha = 5\%$? Explain. (4 marks)

[Total: 25 marks]

Continued...

3/6

QUESTION 4

- (a) Suppose that given the data on log CPI (Consumer Price Index), you want to fit a suitable ARIMA model for a short-term forecast on these data. Outline the **FOUR**(4) steps involved in carrying out this task. (12 marks)
- (b) Interpret the meaning of ARIMA (3, 1, 2). (3 marks)
- (c) The following ARCH models are based on the CPI (Consumer Price Index) data for Country XYZ from January 1961 to February 2014, for a total of 649 monthly observations.

ARCH (1) Model:
$$\hat{u}_{t}^{2} = 0.000088 + 0.3839 \hat{u}_{t-1}^{2}$$

 $t = (7.684) \quad (12.235)$
 $R^{2} = 0.1397 \quad d = 1.969$

ARCH (2) Model:
$$\hat{u}_{t}^{2} = 0.000038 + 0.1412\hat{u}_{t-1}^{2} + 0.0971\hat{u}_{t-2}^{2}$$

 $t = (6.42)$ (3.37) (3.01)
 $R^{2} = 0.2153$ $d = 2.0114$

How would you choose between the two models at $\alpha = 5\%$? Show the necessary calculations by using F test. (10 marks)

[Total: 25 marks]

End of Questions

GHH 4/6

Formula

$$F = \frac{(R_{UR}^2 - R_R^2)/m}{(1 - R_{UR}^2)/(n - k)};$$

 $n = number\ of\ observations;\ m = number\ of\ linear\ restrictions;\ k = number\ of\ parameters\ in\ the\ unrestricted\ (UR)\ regression$

Statistical Tables

Appendix A: t-Table

	0.1	0.05	0.02	0.01
One tail 0.1	0.05	0.025	0.01	0.005
df				
10 1.37	1.81	2.23	2.76	3.17
20 1.33	1.72	2.09	2.53	2.84
30 1.31	1.70	2.04	2.46	2.75
40 1.30	1.68	2.02	2.42	2.70
50 1.30	1.68	2.01	2.40	2.68
60 1.30	1.67	2.00	2.39	2.66
75 1.29	1.67	1.99	2.38	2.64
100 1.29	1.66	1.98	2.36	2.63
120 1.29	1.66	1.98	2.36	2.62

Appendix B: F-table (α =0.05)

df2\df1	1	2	3	4	5	6	7	8
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06
100	3.94	3.09	2.7	2.46	2.31	2.19	2.10	2.03
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98
500	3.86	3.01	2.62	2.39	2.23	2.12	2.03	1.96
1000	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95

GHH 5/6

Appendix C TABLE D.7 1% and 5% Critical Dickey-Fuller (= r) and F Values for Unit Root Tests

	t _{nc} *		t	t_{ϵ}		t _{ct}		F †			
Sample Size	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%	
25	-2.66	-1.95	-3.75	-3.00	-4.38	-3.60	10.61	7.24	8.21	5.68	
50	-2.62	-1.95	-3.58	-2.93	-4.15	-3.50	9.31	6.73	7.02	5.13	
100	-2.60	-1.95	-3.51	-2.89	-4.04	-3.45	8.73	6.49	6.50	4.88	
250	-2.58	-1.95	-3.46	-2.88	-3.99	-3.43	8.43	6.34	6.22	4.75	
500	2.58	-1.95	3.44	2.87	-3.98	-3.42	8.34	6.30	6.15	4.71	
±00 ≪	-2.58	-1.95	-3.43	-2.86	-3.96	-3.41	8.27	6.25	6.09	4.68	

^{*}Subscripts no. c, and ct denote, respectively, that there is no constant, a constant, and a constant and frend term in the regression Eq. (21,9.5).

End of Paper

6/6 GHH

The critical F values are for the joint hypothesis that the constant and δ terms in Eq. (21.9.5) are simultaneously equal to zero.

Filthe critical F values are for the joint hypothesis that the constant, trend, and δ terms in Eq. (21.9.5) are simultaneously equal to zero.

Source: Adapted from W. A. Fuller, Introduction to Natistical Time Series, John Wiley & Sons, New York, 1976, p. 373 (for the T-test), and D. A. Dickey and W. A. Fuller, "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, vol. 49, 1981, p. 1063.