Antenna and Radio Propagation Theory Class Instructor: Prof. Qingsha S. Cheng

Theory Class Instructor: Prof. Qingsha S. Cheng Lab Instructor: Dr. Rusan Kumar Barik Office: 1110, A7, Nanshan *i*Park

Experiment: 7 Design & Analysis of a Horn Antenna

Southern University of Science and Technology, Shenzhen, P.R. China

1 (a) Design & Analysis of a Horn Antenna

This guide leads you step-by-step through creating, solving, and analysing the results of a horn antenna

By following the steps in this guide, you will learn how to perform the following tasks in HFSS:

- Draw a geometric model.
- Modify a model's design parameters.
- ❖ Assign variables to a model's design parameters.
- Specify solution settings for a design.
- Validate a design's setup.
- * Run an HFSS simulation.
- ❖ Create a 2D x-y plot of S-parameter results.
- ❖ Create a 2D x-y plot of gain, efficiency results.
- ❖ Create a 2D Polar/Rectangular plot of radiation pattern.
- Create a 3D plot of radiation pattern.
- Create a field overlay plot of results.

1 (b) Project overview

2 Create the Model (All parameters are in 'inch')

Part-1

1. Create a Rectangular Box1. Centre (-11/2,-w1/2,0in), X size = 11, Y size= w1, Z size = h1 Where; 11 = 1.59 in, w1 = 0.795 in, h1 = 1 in

Part-2

2. Create Rectangular Box2. Centre (-12/2, -w2/2, h3), X size = 12, Y size= w2, Z size = h2. Where, 12 = 7.95 in, w2 = 3.975 in, h2 = 5.2 in, h3 = 5 in.

Part-3 Use the following parameters

Name	Value	Unit	Evaluated Value	Type
1	1.59	in	1.59in	Design
w1	0.795	in	0.795in	Design
h1	1	in	1in	Design
12	7.95	in	7.95in	Design
w2	3.975	in	3.975in	Design
h3	5	in	5in	Design
h2	5.2	in	5.2in	Design
14	8.8	in	8.8in	Design
w4	4.4	in	4.4in	Design
h4	15	in	15in	Design

3. Create Polylines

Line 1

Name	Value	Unit	Evaluated Value	Description
Segment Type	Line			
Point 1	12/2 ,w2/2 ,h3		3.975in , 1.987	
Point2	l1/2 ,w1/2 ,h1		0.795in , 0.397	

Line 2

Name	Value	Unit	Evaluated Value	Description
Segment Type	Line			
Point1	l1/2 ,w1/2 ,h1		0.795in , 0.397	
Point2	-11/2 ,w1/2 ,h1		-0.795in , 0.397	

Line 3

Name	Value	Unit	Evaluated Value	Description	
Segment Type	Line				П
Point1	-11/2 ,w1/2 ,h1		-0.795in , 0.397		
Point2	-12/2 ,w2/2 ,h3		-3.975in , 1.987		

Line 4

0	
Segment Type Line	
Point 1 42/2 ,w2/2 ,h3 -3.97	in , 1.987
Point2 12/2 ,w2/2 ,h3 3.975	n , 1.987

For any doubt please check this video: [Link: $\underline{https://www.youtube.com/watch?v=pUYQRftD-AU$] Go to time: 3.24 min.

4. Select the top surface of Part-1_Rectangular Box > Modeler > Surface > Uncover faces

5. Select the bottom surface of Part-1_Rectangular Box > Modeler > Surface > Uncover faces

6. Select the top surface of Part-2_Rectangular Box > Modeler > Surface > Uncover faces

7. Select (all polylines + Part 1 rectangular box + Part 2 rectangular box) > Right click > Assign boundary > Perfect E

Excitation

8. Select the bottom surface of Part-2_ > Assign Excitation > Wave Port

9. Now create Rectanagular Box 3. Centre (- $\frac{14}{2}$, - $\frac{w4}{2}$, 0 in), X size = $\frac{14}{4}$, Y size = $\frac{4}{4}$, Z size = $\frac{14}{4}$. Where, $\frac{14}{4}$ = 8.8 in, $\frac{14}{4}$ = 4.4 in, $\frac{14}{4}$ = 15 in.

- 10. Assign material 'Air' to the radiation box.
- 11. Assign radiation only boundary to the radiation box. Right click > Assign boundary > Radiation
- 12. Right Click on analysis > Add solution setup \rightarrow add 6 GHz > Ok

13. Click '+' of the analysis → Right click on setup → Add frequency sweep → Edit frequency sweep (Sweep type Fast, Frequency range 4 GHz to 8 GHz, Step size 0.1 GHz) → Ok

14. Right click on results > Do as follows...for $|S_{11}|$

15. Right click on Radiation > Do as follows...for radiation pattern

16. Then Right click on Results > Do as follows...for radiation pattern at all resonating frequencies. For Example: at 5.5 GHz

Select Solution type: Sweep

Then go to Families and do as follows for Phi = 0 Degree

Then go to Families and do as follows for Phi = 90 Degree

17. Draw 3D polar plot. Follow the below procedure:

