Saudi Arabia 2022 - Math Camp

Level 4

Geometry - Projective Geometry

Instructor: Regis Barbosa

Harmonic Division 2

Theorem 4: Let A, B, C be three points lying on a circle ω . Let the tangents at A and C to ω intersect at a point P and let the line PB intersect ω again at D. Then ABCD is harmonic.

Theorem 5: Let A, B, C, D be four points lying in this order on a line d. If X is a point not lying on this line, then if two of the following three propositions are true, then the third is also true:

- (a) (A, C; B, D) = -1.
- (b) XB is the internal angle bisector of $\angle AXC$.
- (c) $XB \perp XD$.

Theorem 6: Consider a circle ω and a point P outside the circle ω . The points C and D are on ω such that PC and PD are the tangents from P to ω . A line l through P intersects ω at A and B (with A between P and B). The segments AB and CD meet at Q. Then (P, Q; A, B) is harmonic.

Theorem 7: Points A; C; B; D lie on a line in this order, and M is the midpoint of CD. Then (A; B; C; D) is harmonic if, and only if, $AC \cdot AD = AB \cdot AM$.

Example

Butterfly Theorem: For any chord PQ of a circle, let M be the midpoint of PQ. If we draw two other chords, AB and CD, through M, draw the line segments AD and CB, and let X and Y the intersection points of AD and CB with PQ, then M is the midpoint of XY.

Problems

- 5. The tangents to the circumcircle of $\triangle ABC$ at B and C intersect at D. Prove that AD is the symmedian of $\triangle ABC$.
- 6. (China TST/2002) Let E and F be the intersections of opposite sides of a convex quadrilateral ABCD. The two diagonals meet at P. Let O be the foot of the perpendicular from P to EF. Show that $\angle BOC = \angle AOD$.
- 7. (Brazil/2007) Let ABCD be a convex quadrilateral, P the intersection of lines AB and CD, Q the intersection of lines AD and BC and O the intersection of diagonals AC and BD. Show that if $\angle POQ = 90^{\circ}$ then PO is the bisector of $\angle AOD$ and OQ is the bisector of $\angle AOB$.
- 8. (Vietnam/2009) Let A, B be two fixed points and C is a variable point such that $\angle ACB = \alpha$, a constant in the range [0°; 180°]. The incircle of $\triangle ABC$ with incenter I touches sides AB, BC, CA at points D, E, F, respectively. AI, BI intersect EF at M, N respectively. Prove that the length of MN is constant and the circumcircle of $\triangle DMN$ passes through a fixed point.