MAT283 Notes

Arjun Vardhan

†

Created: 20th February 2022 Last updated: 23rd February 2022

1 Notes

- A sample space is the set of all possible outcomes of a random experiment.
- If a sample space contains an at most countable number of elements, it is said to be a discrete sample space.
- An **event** is a subset of a sample space.
- A subset E of sample space S is an event if it belongs to a collection \mathbb{F} of subsets of S which satisfies the following:
 - 1. $S \in \mathbb{F}$.
 - 2. If $E \in \mathbb{F}$, then $E^c \in \mathbb{F}$.
 - 3. If $E_j \in \mathbb{F}$ for i = 1, 2, 3..., then $\bigcup_{i=1}^{\infty} E_i \in \mathbb{F}$.

The collection \mathbb{F} is then called an **event space**.

- Let S be the sample space of a random experiment. A **probability measure** $P : \mathbb{F} \to [0, 1]$ is a set function that assigns real values to events in S such that:
 - 1. $P(E) \ge 0$ for all $E \in \mathbb{F}$.
 - 2. P(S) = 1.
 - 3. If $E_1, E_2, ..., E_k, ...$ are mutually disjoint events in S, then $P(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} P(E_j)$.
- $P(\phi) = 0$.
- $P(E^c) = 1 P(E)$.
- $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2).$
- If A is an event in a discrete sample space S, then P(A) is the sum of the probabilities of the individual outcomes comprising A.
- If an experiment can result in any one of n equally likely outcomes, and if m of these outcomes together constitute event A, then $P(A) = \frac{m}{n}$.
- The **conditional probability** of an event A, given that an event B has already occurred, is defined as: $P(A|B) = \frac{P(A \cap B)}{P(B)}$, provided P(B) > 0.
- Two events A and B are called **independent** if and only if $P(A \cap B) = P(A)P(B)$.
- If two events are independent, then the occurrence or non-occurrence of one does not affect the probability of the other.
- If A and B are independent, then A and B^c are also independent.
- Two mutually exclusive (disjoint) events are always dependent.

- Let S be a set and let $\mathbb{P} = \{A_i\}_{i=1}^m$ be a collection of subsets of S. \mathbb{P} is called a partition of S if $S = \bigcup_{i=1}^m A_i$ and if $A_i \cap A_j = \phi$ whenever $i \neq j$.
- Law of Total Probability: If the events $\{B_i\}_{i=1}^m$ constitute a partition of the sample space S and if $P(B_i) \neq 0$ for i = 1, 2, 3..., m, then for any event A, $P(A) = \sum_{i=1}^m P(B_i)P(A|B_i)$.
- Baye's Theorem: If the events $\{B_i\}_{i=1}^m$ constitute a partition of the sample space S and if $P(B_i) \neq 0$ for i = 1, 2, 3, ..., m, then for any event A such that $P(A) \neq 0$, $P(B_k|A) = \frac{P(B_k)P(A|B_k)}{\sum_{i=1}^m P(B_i)P(A|B_i)}$, where k = 1, 2, 3, ..., m.
- Consider a random experiment with sample space S. A **random variable** X is a function from S to \mathbb{R} such that for each interval I in \mathbb{R} , the set $\{s \in S : X(s) \in I\}$ is an event in S.
- The set $R_X = \{x \in \mathbb{R} : x = X(s), s \in S\}$ is called the space of the random variable X.
- If R_X is at most countable, then X is called a discrete random variable.
- Let X be a discrete random variable. The function $f : \mathbb{R} \to \mathbb{R}$ where f(x) = P(X = x) is called the **probability mass function** of X.
- f can serve as the pmf of a discrete random variable X if and only if $f(x) \ge 0$ for all x within its domain, and if $\sum_{x} f(x) = 1$.
- If X is a discrete RV, then the function $F: \mathbb{R} \to \mathbb{R}$ defined by $F(x) = P(X \le x) = \sum_{t \le x} f(t)$ for $-\infty < x < \infty$, where f is the pmf of X, is called the **cumulative distribution function** of X.
- F can serve as the cdf of discrete RV X if and only if $F(-\infty) = 0$, $F(\infty) = 1$, and if a < b, then $F(a) \le F(b)$ for all $a, b \in \mathbb{R}$.
- If R_X consists of the values $x_1, x_2, ..., x_n$, where $x_1 < x_2 < ... < x_n$, then $f(x_1) = F(x_1)$, and $f(x_i) = F(x_i) F(x_{i-1})$ for i = 1, 2, 3, ..., n.
- An RV X is said to be continuous if and only if there exists a function $f_X : \mathbb{R} \to \mathbb{R}$ such that $f_X(x) \geq 0$ and $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and $P(a < x < b) = \int_a^b f_X(x) dx$ for any real a, b where $a \leq b$. $f_X(x)$ is called the **probability density function** of X.
- If X is a continuous RV, then $P(a \le x \le b) = P(a \le x < b) = P(a < x \le b) = P(a < x < b)$.
- If X is a continuous RV, then the function $F : \mathbb{R} \to \mathbb{R}$, defined by $F_X(x) = P(X \le x) = \int_{-\infty}^x f(t)dt$ for $-\infty < x < \infty$, is the cdf of X.
- If F is the cdf and f the pdf of X, then $\frac{d}{dx}F(x) = f(x)$.
- Let X be a random variable with space R_X and pdf/pmf f. The nth **moment** about the origin of X, denoted by $E(X^n)$, is defined as $\sum_{x \in R_X} x^n f(x)$ if X is discrete, and $\int_{-\infty}^{\infty} x^n f(x) dx$ if X is continuous, for n = 1, 2, 3, ..., provided the sum or integral converge absolutely.
- The mean or expected value of X, denoted E(X) or μ_X , is defined as $\sum_{x \in R_X} x f(x)$ if X is discrete, and $\int_{-\infty}^{\infty} x f(x) dx$ if X is continuous, for n = 1, 2, 3, ..., provided the sum or integral converge absolutely. So the expected value is nothing but the first moment about the origin.
- Let X be an RV and let Y = g(X). If X is discrete with pmf f, then $E(Y) = \sum_{x} g(x) f(x)$. If X is continuous with pdf f, then $E(Y) = \int_{-\infty}^{\infty} g(x) f(x) dx$.
- Let X be an RV, and let $a, b \in \mathbb{R}$. Then, E(aX + b) = aE(X) + b.

- Let X be an RV with mean μ_X . Its **variance** is defined as $Var(X) = E((X \mu_X)^2)$. The positive square root of the variance is called the **standard deviation** of X and denoted σ_X .
- $Var(X) = E(X^2) E(X)^2$.
- If Var(X) exists and Y = a + bX, then $Var(Y) = b^2 Var(X)$.
- Chebyshev's Inequality: Let X be an RV with mean μ and standard deviation $\sigma > 0$. Then, $P(|X \sigma| < k\mu) \ge 1 \frac{1}{k^2}$ for any $k \in \mathbb{R}, k > 0$.
- Let X be an RV. A function $M: \mathbb{R} \to \mathbb{R}$ defined by $M(t) = E(e^{tX})$ is called the **moment** generating function of X if this expected value exists for all $t \in (-h, h)$ for some h > 0.
- If X is discrete, then $M(t) = \sum_{x \in R_X} e^{tx} f(x)$. If X is continuous, then $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$.
- A discrete RV X is said to have a **Discrete Uniform distribution** if and only if its pmf is of the form $f(x) = \frac{1}{k}$, where $R_X = \{x_1, x_2, ..., x_k\}$ and $x_i \neq x_j$ for $i \neq j$. This distribution represents a random experiment with a finite number of equally likely outcomes.
- A discrete RV X is said to have a **Bernoulli distribution** with parameter p if and only if its pmf is of the form $f(x) = p^x(1-p)^{1-x}$, where x = 0 or x = 1. If a random experiment has only two possible outcomes, success and failure, with probabilities p and 1-p respectively, then the random variable representing the number of successes has a Bernoulli distribution. Such an experiment is referred to as a Bernoulli trial.
- If X is a Bernoulli RV with parameter p, then E(X) = p, Var(X) = p(1-p) and $M_X(t) = (1-p) + pe^t$. All its moments about the origin are equal to p.
- A discrete RV X is said to have a **Binomial distribution** with parameters p and n if and only if its pmf is of the form $f(x) = \binom{n}{x} p^x (1-p)^{1-x}$, where x = 0, 1, 2, ..., n. In a random experiment consisting of n Bernoulli trials, this RV represents the total number of successes.
- If X is a Binomial RV, then E(X) = np, Var(X) = np(1-p) and $M_X(t) = ((1-p) + pe^t)^n$.
- A discrete RV X is said to have a **Geometric distribution** with parameter p if and only if its pmf is of the form $f(x) = (1-p)^{1-x}p$, where $x \in \mathbb{N}$. In a random experiment consisting of an infinite sequence of Bernoulli trials, this RV represents the number of the trial on which the first success occurs.
- If X is a Geometric RV, then $E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$ and $M_X(t) = \frac{pe^t}{1-(1-p)e^t}$ if $t < \log(1-p)$.
- A discrete RV X is said to have a **Negative Binomial** or **Pascal distribution** with parameters p and r if and only if its pmf is of the form $f(x) = \binom{x-1}{r-1}(1-p)^{x-r}p^r$, where $x \in \mathbb{N}$. In a random experiment consisting of an infinite sequence of Bernoulli trials, this RV represents the number of the trial on which the rth success occurs.
- If X is a Negative Binomial RV, then $E(X) = \frac{pr}{1-p}$, $Var(X) = \frac{pr}{(1-p)^2}$ and $M_X(t) = \left(\frac{1-p}{1-pe^t}\right)^r$ for $t < -\log p$.
- A discrete RV X is said to have a **Poisson distribution** with parameter $\lambda > 0$ if and only if its pmf is of the form $f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$, where $x \in \mathbb{N}$. It can be used to approximate the Binomial RV when n is very large and p is very small.
- If X is a Poisson RV, then $E(X) = \lambda$, $Var(X) = \lambda$, and $M_X(t) = e^{\lambda(e^t 1)}$.
- A continuous RV X is said to have a **Uniform distribution** on the interval [a,b] if and only if its pdf is of the form $f(x) = \frac{1}{b-a}$, where $a \le x \le b$ and $a,b \in \mathbb{R}$.

- If X is a Uniform RV on [a, b], then $E(X) = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$, and $M_X(t) = 1$ if x = 0 and $M_X(t) = \frac{e^{tb} e^{ta}}{t(b-a)}$ if $x \neq 0$.
- A continuous RV X is said to have an **Exponential distribution** with parameter $\theta > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$ if x > 0 and f(x) = 0 if $x \le 0$.
- If X is an Exponential RV, then $E(X) = \frac{1}{\theta}$ and $Var(X) = \frac{1}{\theta^2}$, and $M_X(t) = \frac{\theta}{\theta t}$ for $t < \theta$.
- A continuous RV X is said to have a **Normal** or **Gaussian distribution** with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$, where $-\infty < x < \infty$. Here, $f(\mu x) = f(\mu + x)$. f has a maximum at $x = \mu$.
- If X is a Normal RV, then $E(X) = \mu$, $Var(X) = \sigma^2$ and $M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.
- A Normal RV X is said to be **Standard Normal** RV if $\mu = 0$ and $\sigma = 1$. Its pdf is given by $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, where $-\infty < x < \infty$.
- If X is a Normal RV with parameters μ and σ , then $Z = \frac{X \mu}{\sigma}$ is a Standard Normal RV.
- The gamma function, denoted $\Gamma(z)$, is defined as $\Gamma(z) = \int_{-\infty}^{\infty} x^{z-1} e^{-x} dx$, where $z \in \mathbb{R}$, z > 0.
- $\Gamma(1) = 1$ and $\Gamma(n) = n!$ for all $n \in \mathbb{N}$.
- $\Gamma(z)$ satisfies the functional equation $\Gamma(z) = (z-1)\Gamma(z-1)$ for all $z \in \mathbb{R}, z > 1$.
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and $\Gamma(-\frac{1}{2}) = -2\sqrt{\pi}$.
- A continuous RV X is said to have a **Gamma distribution** with parameters $\alpha > 0$ and $\theta > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\theta}}$.
- If X is a Gamma RV with $\alpha = 1$, then X is an Exponential RV.
- If X is a Gamma RV, then $E(X) = \theta \alpha$, $Var(X) = \theta^2 \alpha$ and $M_X(t) = \left(\frac{1}{1 \theta t}\right)^{\alpha}$, if $t < \frac{1}{\theta}$.
- Let α, β be any two positive real numbers. The **beta function**, denoted $B(\alpha, \beta)$, is defined as $B(\alpha, \beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1}$.
- $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$.
- $B(\alpha, \beta) = B(\beta, \alpha)$.
- A continuous RV X is said to have a **Beta distribution** with parameters $\alpha, \beta > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha 1} (1 x)^{\beta 1}$ if 0 < x < 1 and f(x) = 0 otherwise.
- If X is a Beta RV with $\alpha = \beta = 1$, then X is a Uniform RV.
- If X is a Beta RV, then $E(X) = \frac{\alpha}{\alpha + \beta}$, $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.
- A discrete **bivariate** RV, (X, Y), is an ordered pair of discrete RVs. Its pmf $f : R_X \times R_Y \to \mathbb{R}$, called the **joint pmf** of X and Y, is given by f(x, y) = P(X = x, Y = y).
- Let X,Y be discrete RVs with joint pmf f. The **marginal pmf** of X is defined by $f_X(x) = \sum_{y \in R_Y} f(x,y)$. Similarly, $f_Y(y) = \sum_{x \in R_X} f(x,y)$.

- Let X,Y be discrete RVs with joint pmf f. The joint cdf of X and Y is a function $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $F(x,y) = P(X \le x, Y \le y) = \sum_{s \le x} \sum_{t \le y} f(s,t)$.
- A bivariate RV (X,Y) is said to be continuous if there exists a function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f(x,y) > 0, $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$ and for any subset $A \subseteq \mathbb{R} \times \mathbb{R}$, $P((X,Y) \in A) = \int \int_{A} f(x,y) dx dy$. f is the **joint pdf** of X and Y.
- Let (X,Y) be a continuous bivariate RV, and let f be its joint pdf. The **marginal pdf** of X is $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$ and similarly for Y, $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$.
- Let (X,Y) be a continuous bivariate RV, and let f be its joint pdf. The joint cdf of X and Y is a function $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $F(x,y) = P(X \le x,Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) ds dt$. $f(x,y) = \frac{\partial^2 F}{\partial x \partial y}$, whenever this partial derivative exists.
- Let X and Y be any two RVs with joint pdf/pmf f and marginals f_X and f_Y . The **conditional pdf/pmf** g of X given Y = y, is defined as $g(x|y) = \frac{f(x,y)}{f_Y(y)}$, provided $f_Y(y) > 0$.
- Let X and Y be any two RVs with joint cdf F and marginals F_X and F_Y . X and Y are independent if and only if $F(x,y) = F_X(x)F_Y(y)$ for all $(x,y) \in \mathbb{R}^2$.
- Two discrete RVs X and Y are independent if and only if $P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$ for all $(x_i, y_i) \in R_X \times R_Y$.
- Two continuous RVs X and Y are independent if and only if $f(x,y) = f_X(x)f_Y(y)$, for all $(x,y) \in \mathbb{R}^2$.
- The RVs X and Y are said to be **independent and identically distributed (IID)** if and only if they are independent and have the same distribution.
- Let X and Y be RVs with joint pdf/pmf f. The **product moment** of X and Y about the origin, denoted E(XY), is defined as $\sum_{x \in R_X} \sum_{y \in R_Y} xyf(x,y)$ if X,Y are discrete and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y)dxdy$ if X,Y are continuous and provided $E(XY) < \infty$.
- The **covariance** between X and Y, denoted by Cov(X, Y) or σ_{XY} , is defined as $E((X \mu_X)(Y \mu_Y))$.
- For arbitrary RVs X and Y, the product moment and covariance may or may not exist. The covariance, unlike variance, can also be negative.
- Cov(X,Y) = E(XY) E(X)E(Y). Thus, Cov(X,X) = Var(X).
- Cov(aX + b, cY + d) = acCov(X, Y), where $a, b, c, d \in \mathbb{R}$.
- If X and Y are independent, then E(XY) = E(X)E(Y).
- If X and Y are independent, then Cov(X,Y) = 0.
- $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$, where $a, b \in \mathbb{R}$.
- $\operatorname{Var}(X + Y + Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) + \operatorname{Var}(Z) + 2\operatorname{Cov}(X, Y) + 2\operatorname{Cov}(Y, Z) + 2\operatorname{Cov}(Z, X)$.
- Let X and Y be two RVs with variances σ_X^2 and σ_Y^2 respectively. The **correlation coefficient** between X and Y, denoted ρ , is defined as $\frac{\text{Cov}(X,Y)}{\sigma_X\sigma_Y}$.
- If X and Y are independent, then the correlation coefficient between them is 0. The converse is not true. If $\rho = 0$, then X and Y are said to be **uncorrelated**.
- Let X be an RV. The standardization of X is defined as $X^* = \frac{X \mu_X}{\sigma_X}$.

- If X^* and Y^* are standardizations of the RVs X and Y, then the correlation coefficient between X and Y is equal to the correlation coefficient between X^* and Y^* .
- For any RVs X and Y, $-1 \le \rho \le 1$. If $\rho = \pm 1$, then Y = aX + b where $a, b \in \mathbb{R}$, $a \ne 0$.
- Let X and Y be two RVs. A function $M : \mathbb{R}^2 \to \mathbb{R}$ defined by $M(s,t) = E(e^{sX+tY})$, is called the **joint moment generating function** of X and Y if this expected value exists for all s in some interval (-h, h) and for all t in some interval (-k, k).

•