Keep Learning

grade 80%

1/1 point

Practical aspects of deep learning

LATEST SUBMISSION GRADE 80%	
1. If you have 10,000,000 examples, how would you split the train/dev/test set? (a) 60% train . 20% dev . 20% test (b) 33% train . 33% dev . 33% test (c) 98% train . 1% dev . 1% test	
2. The dev and test set should: 1/1 point	
Come from the same distribution Come from different distributions Be identical to each other (same (x,y) pairs) Have the same number of examples	
✓ Correct	
 If your Neural Network model seems to have high variance, what of the following would be promising things to try? Get more test data Add regularization 	
✓ Correct	
☐ Increase the number of units in each hidden layer ☐ Make the Neural Network deeper ☑ Get more training data ✓ Correct	
4. You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a deviset error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.) Increase the regularization parameter lambda	
Correct Decrease the regularization parameter lambda Get more training data	
✓ Correct Use a bigger neural network	
The process of gradually decreasing the learning rate during training. A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.	
✓ Correct	

6. What happens when you increase the regularization hyperparameter lambda?

Weights are pushed toward becoming smaller (closer to 0)

	Weights are pushed toward becoming bigger (further from 0) Doubling lambda should roughly result in doubling the weights	
	Gradient descent taking bigger steps with each iteration (proportional to lambda)	
	✓ Correct	
7.	With the inverted dropout technique, at test time:	0 / 1 point
	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training	
	You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training	
	You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.	
	You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.	
	Incorrect	
8.	Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)	1 / 1 point
	☐ Increasing the regularization effect	
	Reducing the regularization effect	
	✓ Correct	
	Causing the neural network to end up with a higher training set error	
	Causing the neural network to end up with a lower training set error	
	✓ Correct	
	Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)	1/1 point
	✓ L2 regularization	
	Correct	
	Exploding gradient	
	□ Vanishing gradient ☑ Dropout	
	Dispose.	
	✓ Correct	
	Gradient Checking	
	☑ Data augmentation	
	✓ Correct	
	☐ Xavier initialization	
10.	Why do we normalize the inputs x? It makes the cost function faster to optimize	0 / 1 point
	It makes it easier to visualize the data	
	Normalization is another word for regularizationIt helps to reduce variance	
	It makes the parameter initialization faster	
	Incorrect	