Towards Improving Rapid Acceleration in Legged Robots

PRESENTED BY: CALLEN FISHER DATE: 18TH OCTOBER 2018

Lecture Contents

- Background to my Research
 - Aims and Objectives of Research
- Optimisation to Inspire Design
- Template Identification
- Controller Design
- Research Vision
- The Bigger Picture

Background to Research

- Animals exhibit superior agility
 - Don't fully understand animal locomotion
 - Robotic platforms cannot compete

- Current robotic focus
 - Short time horizon problems (Steady state/periodic steps)
 - Energy efficient locomotion

Our Research Group

Aims and Objectives of Research

Improve the agility of legged platforms

- Focus on rapid acceleration and deceleration
- Novel mechanical designs inspired by trajectory optimisation
- Development of novel templates and control algorithms
- Requires improving optimisation techniques

How is Optimisation Used to Inspire Design?

- Large scale Monte Carlo Simulations
 - Investigate optimal spine morphology
 - o 100 randomly generated robot parameters
 - Planar robots
 - × Bound gait
 - One rear and one front leg
- Spine morphologies:
 - Rigid Spine
 - Revolute Spine
 - Prismatic Spine
- Hybrid dynamics
 - Prescribed phase order
- Results inspired the design of a novel platform

Spine Morphology	Percentage best	Convergence Rate
Rigid Spine	18.2%	15.4%
Revolute Spine	6.1%	8.4%
Prismatic Spine	75.8%	9.9%

Extension of Research

- Through contact methods [5]
 - Optimiser picks contact order
 - o Slipping is allowed:
 - × Friction cone
- Long time horizon problem
 - Start and end in rest configuration
 - Travel 30 spine lengths
 - Acceleration and Deceleration phase
- Improved optimisation methods
 - o 3 point collocation
- Also looking at leg bend direction (collaboration)

Initial Results

Template Identification

• A/Prof. Hubicki [6]:

- Investigated long time horizon problems
- Using simple monopod
- Sliding mass (viscous friction subject to a time varying force
- Approximation for scheduling velocities for optimal locomotion planning
- Hypothesized it will hold for more complex legged models

Initial Results

Rigid Spine

Prismatic Spine

Revolute Spine

Controller Design

- Trajectory optimisation inspired
 - PFL controller
 - Using sliding mass template for velocity commands
- Test in Simulation
 - o Initial tests done in a physics engine
 - Test on Platform

My Vision

PhD goals:

- Planar Quadruped
- Rigid and Prismatic spine
- Test and compare acceleration

Future goals:

- o 4 legged quadruped
- o 2 DOF spine
- Investigate
 - ▼ Galloping gait
 - Rapid acceleration and deceleration
 - **Turning**

Fit in With Africa: Global Picture

- Developed algorithms and techniques are transferable to other fields
 - Optimisation used in multiple fields
- Large potential for patents:
 - Will result in job creation
 - In the process of patenting with Dr. Patel (NDA)
- New method to understand control
- New technique to inspire robot design
- Most importantly:
 - o Inspire the pursuit of STEM at a school level
 - Demonstrate the robot at schools and UCT open day

How do I align with the EEE Department?

Mechatronics lab

- Investigating animal locomotion
- Trajectory optimisation
 - Lab's focus: bipeds and quadrupeds

EEE Department

- Mechatronics Engineer
- Hands on and practical experience
- Leading the development of the robot

Thank you for listening!!

18

• Any questions?

- Callen Fisher
 - o FSHCALoo1@myuct.ac.za

References

- [1] http://www.sciencemag.org/news/2018/02/cheetahs-ears-are-crucial-catching-dinner
- [2] https://www.youtube.com/watch?v=ohRSzJ37J-s
- [3] https://www.youtube.com/watch?v=NtU9p1VYtcQ
- [4] Turvey, Michael T. and Sérgio Teixeira da Fonseca. "Nature of motor control: perspectives and issues." *Advances in experimental medicine and biology* 629 (2009): 93-123.
- [5] M Posa, C Cantu, R Tedrake, 'A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact' 2013
- [6] C Hubicki, M Jones, M Daley, J Hurst, 'Do Limit cycles matter in the long run? Stable orbits and sliding-mass dynamics emerge in task-optimal locomotion' 2015
- [7] https://www.teachersoncall.ca/what-is-stem-and-how-can-you-engage-your-child/