Линейная регрессия

Метод наименьших квадратов как решение матричного уравнения. Часть 2

Для решения задачи столбцы матрицы X должны быть линейно независимы.

Если признаки модели связаны строгой функциональной зависимостью, то определитель матрицы X^TX будет равен нулю.

Пусть матрица X =

1	2	1
2	4	1
3	6	1

Тогда $X^T =$

1	2	3
2	4	6
1	1	1

$$X^TX =$$

6	11	16
11	21	31
16	31	46

V определитель $|X^TX| = 0$

Так как определитель матрицы равен 0, то мы не сможем найти обратную матрицу $(X^TX)^{-1}$. И тогда невозможно будет найти вектор w.

Мультиколлинеарность

Мультиколлинеарность — тесная корреляционная взаимосвязь между выбираемыми для анализа признаками.

Абсолютную — когда определитель матрицы ХТХ равен нулю.

Частичную — определитель матрицы XTX в точности не равен 0, но мало от него отличается.

Подходы, чтобы устранить эффекты мультиколлинеарности

- Произвести отбор признаков
- Преобразовать сами признаки
- Получение смещённых оценок

Получения смещённых оценок

Было
$$W = (X^T X)^{-1} X^T y$$

Стало

$$W = (X^TX + \alpha I)^{-1}X^Ty,$$

где I — единичная матрица, а коэффициент α, как правило, от 0,1 до 0,4

Пусть у нас имеется выборка из 5 объектов, описанных двумя признаками. То есть n = 5, k = 2. И есть значения целевой функции:

X_1	X_2	Υ
1	2	6
2	4	11
3	6	16
4	8	21
5	10	26

Искомая функция выглядит следующим образом:

$$\hat{y} = w_0 + w_1 \times x_1 + w_2 \times x_2$$

Ваша задача — определить значения вектора весов: w_0 и w_1 и w_2

Дополним фиктивную переменную х₀

X_0	X_1	X_2
1	1	2
1	2	4
1	3	6
1	4	8
1	5	10

Это и есть матрица Х.

Тогда транспонированная матрица Х^Т

1	1	1	1	1
1	2	3	4	5
2	4	6	8	10

Тогда матрица Х^ТХ

5	15	30
15	55	110
30	110	220

Но определитель этой матрицы равен 0.

Дополним матрицу $X^{T}X + \alpha I$, пусть $\alpha = 0,1$

Тогда матрица Х^ТХ

5	15	30
15	55	110
30	110	220

Матрица I

1	0	0
0	1	0
0	0	1

Матрица αΙ

0,1	0	0
0	0,1	0
0	0	0,1

Тогда матрица $X^TX + αI$

5,1	15	30
15	55,1	110
30	110	220,1

Определитель этой матрицы равен 27,8.

Матрица, обратная к $X^TX + \alpha I$

0,98953275	-0,0539549	-0,1079098
-0,0539549	8,00366893	-3,9926621
-0,1079098	-3,9926621	2,01467573

Значение Х^Ту

80	
290	
580	

И тогда $w = (X^TX + \alpha I)^{-1}X^Ty$

0,92802417
1,00356102
2,00712205

Таким образом уравнение регрессии имеет вид

$$\hat{y} = 0.9 \times 1 + 1 \times x_1 + 2 \times x_2 = 0.9 + x_1 + 2 \times x_2$$

Однако заметив, что $x_2 = 2 \times x_{1,}$ можете сделать следующее преобразование

$$\hat{y} = 0.9 \times x_1 + 2 \times x_2 = 0.9 + x_1 + 2 \times 2 \times x_1 = 0.9 + 5 x_1$$