Section 1.9

The Matrix of a Linear Transformation

Definition

The unit coordinate vectors in \mathbb{R}^n are

$$e_1 = egin{pmatrix} 1 \ 0 \ \vdots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ \vdots \ 0 \ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ \vdots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ \vdots \ 0 \ 1 \end{pmatrix}.$$

Definition

The unit coordinate vectors in \mathbb{R}^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$egin{pmatrix} egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, \quad \ldots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ dots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 1 \end{pmatrix}.$$

Definition

The unit coordinate vectors in \mathbb{R}^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Definition

The unit coordinate vectors in \mathbb{R}^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$egin{pmatrix} egin{pmatrix} egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, & e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, & \ldots, & e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ dots \ 1 \ 0 \end{pmatrix}, & e_n = egin{pmatrix} 0 \ 0 \ dots \ 0 \ dots \ 0 \ 1 \end{pmatrix}. \end{pmatrix}$$

Definition

The unit coordinate vectors in \mathbb{R}^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$egin{pmatrix} egin{pmatrix} 1 \ 0 \ dots \ 0 \ 0 \end{pmatrix}, \quad e_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = egin{pmatrix} 0 \ 0 \ dots \ dots \ 1 \ 0 \end{pmatrix}, \quad e_n = egin{pmatrix} 0 \ 0 \ dots \ dots \ 0 \ dots \ 0 \end{pmatrix}.$$

Note: if A is an $m \times n$ matrix with columns v_1, v_2, \ldots, v_n , then $Ae_i = v_i$ for $i = 1, 2, \ldots, n$:

Definition

The unit coordinate vectors in \mathbb{R}^n are

This is what e_1, e_2, \ldots mean, for the rest of the class.

$$\begin{bmatrix} \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Note: if A is an $m \times n$ matrix with columns v_1, v_2, \ldots, v_n , then $Ae_i = v_i$ for $i = 1, 2, \ldots, n$: multiplying a matrix by e_i gives you the *i*th column.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(egin{array}{cccc} | & | & | & | \ T(e_1) & T(e_2) & \cdots & T(e_n) \ | & | & | \end{array}
ight).$$

This is an ____ matrix,

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Take-Away

Linear transformations are the same as matrix transformations.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(egin{array}{cccc} |&&|&&|\ T(e_1)&T(e_2)&\cdots&T(e_n)\ |&&|&&| \end{array}
ight).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Take-Away

Linear transformations are the same as matrix transformations.

Dictionary

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the **standard matrix** for T.

Take-Away

Linear transformations are the same as matrix transformations.

Recall: A matrix A defines a linear transformation T by T(x) = Ax.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \left(\begin{array}{cccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array}\right).$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax.

The matrix A is called the **standard matrix** for T.

Dictionary

Linear transformation
$$T: \mathbf{R}^n \to \mathbf{R}^m$$
 $m \times n \text{ matrix } A = \begin{pmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \\ T(x) & Ax & \cdots & m \times n \text{ matrix } A \end{pmatrix}$

$$T: \mathbf{R}^n \to \mathbf{R}^m$$

Why is a linear transformation a matrix transformation?

Why is a linear transformation a matrix transformation?

Suppose for simplicity that $\mathcal{T}\colon \mathbf{R}^3 \to \mathbf{R}^2.$

Before, we defined a **dilation** transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. What is its standard matrix?

Before, we defined a **dilation** transformation $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

Before, we defined a **dilation** transformation $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} =$$

Before, we defined a **dilation** transformation $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ by T(x) = 1.5x. What is its standard matrix?

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}.$$

Question

What is the matrix for the linear transformation $\mathcal{T}\colon \mathbf{R}^2 \to \mathbf{R}^2$ defined by

$$T(x) = x$$
 rotated counterclockwise by an angle θ ?

Question

What is the matrix for the linear transformation $\mathcal{T}\colon \mathbf{R}^2 \to \mathbf{R}^2$ defined by

$$T(x) = x$$
 rotated counterclockwise by an angle θ ?

(Check linearity...)

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T\colon \mathbf{R}^3\to\mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that reflects through the *xy*-plane and then projects onto the *yz*-plane?

Question

What is the matrix for the linear transformation $T\colon \mathbf{R}^3\to\mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T\colon \mathbf{R}^3\to\mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Example, continued

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T\colon \mathbf{R}^3\to\mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T\colon \mathbf{R}^3\to\mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Example, continued

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

$$T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 $T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
 $\Rightarrow A =$
 $T(e_1) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

$$T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 $T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
 $\Rightarrow A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$
 $T(e_1) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$

Other Geometric Transformations

There is a long list of geometric transformations of ${\bf R}^2$ in $\S 1.9$ of Lay. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, \ldots) Please look them over.

Definition

A transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain).

Definition

A transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain). In other words, each b in \mathbf{R}^m is the image of at least one x in \mathbf{R}^n :

Definition

A transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain). In other words, each b in \mathbf{R}^m is the image of at least one x in \mathbf{R}^n : every possible output has an input.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain). In other words, each b in \mathbf{R}^m is the image of at least one x in \mathbf{R}^n : every possible output has an input. Note that not onto means

Definition

A transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain). In other words, each b in \mathbf{R}^m is the image of at least one x in \mathbf{R}^n : every possible output has an input. Note that not onto means there is some b in \mathbf{R}^m which is not the image of any x in \mathbf{R}^n .

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain). In other words, each b in \mathbf{R}^m is the image of at least one x in \mathbf{R}^n : every possible output has an input. Note that not onto means there is some b in \mathbf{R}^m which is not the image of any x in \mathbf{R}^n .

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbf{R}^m (its codomain). In other words, each b in \mathbf{R}^m is the image of at least one x in \mathbf{R}^n : every possible output has an input. Note that not onto means there is some b in \mathbf{R}^m which is not the image of any x in \mathbf{R}^n .

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

► *T* is onto

Theorem

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbf{R}^m

Theorem

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbf{R}^m
- Ax = b is consistent for every b in \mathbf{R}^m

Theorem

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbb{R}^m
- Ax = b is consistent for every b in \mathbf{R}^m
- ▶ The columns of A span \mathbf{R}^m

Theorem

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbf{R}^m
- ▶ Ax = b is consistent for every b in \mathbf{R}^m
- ▶ The columns of A span \mathbf{R}^m
- ► A has a pivot in every ____

Theorem

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbb{R}^m
- ▶ Ax = b is consistent for every b in \mathbf{R}^m
- ▶ The columns of A span \mathbf{R}^m
- ► A has a pivot in every row

Theorem

Let $T \colon \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- ▶ T(x) = b has a solution for every b in \mathbb{R}^m
- ▶ Ax = b is consistent for every b in \mathbf{R}^m
- ightharpoonup The columns of A span \mathbf{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbf{R}^n \to \mathbf{R}^m$ is onto, what can we say about the relative sizes of n and m?

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbb{R}^m
- ▶ Ax = b is consistent for every b in \mathbf{R}^m
- ▶ The columns of A span \mathbf{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an matrix A.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- ▶ T(x) = b has a solution for every b in \mathbb{R}^m
- ▶ Ax = b is consistent for every b in \mathbf{R}^m
- ightharpoonup The columns of A span \mathbf{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an $m \times n$ matrix A.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- \blacktriangleright Ax = b is consistent for every b in \mathbf{R}^m
- ightharpoonup The columns of A span \mathbf{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbf{R}^n \to \mathbf{R}^m$ is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: m < n.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- T(x) = b has a solution for every b in \mathbb{R}^m
- Ax = b is consistent for every b in \mathbf{R}^m
- ▶ The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbf{R}^n \to \mathbf{R}^m$ is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

$$\begin{pmatrix} 1 & 0 & * & 0 & * \\ 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 1 & * \end{pmatrix}$$

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- ▶ T(x) = b has a solution for every b in \mathbb{R}^m
- Ax = b is consistent for every b in \mathbf{R}^m
- ▶ The columns of A span \mathbb{R}^m
- ► A has a pivot in every row

Question

If $T: \mathbf{R}^n \to \mathbf{R}^m$ is onto, what can we say about the relative sizes of n and m? Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

$$\begin{pmatrix}
1 & 0 & * & 0 & * \\
0 & 1 & * & 0 & * \\
0 & 0 & 0 & 1 & *
\end{pmatrix}$$

For instance, \mathbf{R}^2 is "too small" to map *onto* \mathbf{R}^3 .

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m .

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m . In other words, each b in \mathbf{R}^m is the image of at most one x in \mathbf{R}^n :

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m . In other words, each b in \mathbf{R}^m is the image of *at most one* x in \mathbf{R}^n : different inputs have different outputs.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m . In other words, each b in \mathbf{R}^m is the image of *at most one* x in \mathbf{R}^n : different inputs have different outputs. Note that *not* one-to-one means

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m . In other words, each b in \mathbf{R}^m is the image of *at most one* x in \mathbf{R}^n : different inputs have different outputs. Note that *not* one-to-one means different vectors in \mathbf{R}^n have the same image.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m . In other words, each b in \mathbf{R}^m is the image of at most one x in \mathbf{R}^n : different inputs have different outputs. Note that not one-to-one means different vectors in \mathbf{R}^n have the same image.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^m$ is **one-to-one** (or **into**, or **injective**) if different vectors in \mathbf{R}^n map to different vectors in \mathbf{R}^m . In other words, each b in \mathbf{R}^m is the image of at most one x in \mathbf{R}^n : different inputs have different outputs. Note that not one-to-one means different vectors in \mathbf{R}^n have the same image.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

▶ *T* is one-to-one

Theorem

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m

Theorem

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m

Theorem

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- Ax = 0 has a unique solution

Theorem

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- \rightarrow Ax = 0 has a unique solution
- ▶ The columns of *A* are linearly independent

Theorem

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every _____.

Theorem

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- \rightarrow Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- A has a pivot in every column.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- \rightarrow Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Theorem

Let $T \colon \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A.

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ▶ T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbb{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- \rightarrow Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every column.

Question

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \le m$.

Theorem

Let $T \colon \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- \rightarrow Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every column.

Question

If $T: \mathbf{R}^n \to \mathbf{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \le m$.

$$\begin{pmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 \end{pmatrix}$$

Theorem

Let $T \colon \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ▶ *T* is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- ightharpoonup Ax = b has a unique solution or is inconsistent for every b in \mathbf{R}^m
- \rightarrow Ax = 0 has a unique solution
- ▶ The columns of A are linearly independent
- ► A has a pivot in every column.

Question

If $T: \mathbf{R}^n \to \mathbf{R}^m$ is one-to-one, what can we say about the relative sizes of n and m?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \le m$.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

For instance, \mathbf{R}^3 is "too big" to map into \mathbf{R}^2 .