LOGIC TUTORIAL: WORKSHEET 2

Topics: Theories. Normal forms, CNF and DNF, SAT and 3-SAT. 2-SAT and implication graph, Horn-SAT and unit propagation. Encoding problems in SAT.

Problem 1. Consider the propositional theory $T = \{ \neg q \to (\neg p \lor q), \ \neg p \to q, \ r \to q \}$ over the language $\{p,q,r,s\}$. Which of the following propositions are valid, contradictory, independent, satisfiable, equivalent in T?

- (a) $p, q, r, s, \neg p, \neg s$
- (b) $p \lor q$, $p \lor r$, $p \lor s$, $q \lor s$
- (c) $p \wedge q$, $q \wedge s$, $p \to q$, $s \to q$

Problem 2. Given a formula φ in CNF or DNF, A) count the number of models and B) describe all its models.

- a) $(p_1 \wedge \neg p_2 \wedge p_3 \wedge \neg p_4) \vee (p_2 \wedge p_3 \wedge \neg p_4) \vee (\neg p_3) \vee (p_2 \wedge p_4) \vee (p_1 \wedge p_3 \wedge p_5) \vee (p_3 \wedge \neg p_4 \wedge p_2)$
- b) $(p_1 \lor \neg p_2 \lor p_3 \lor \neg p_4) \land (p_2 \lor p_3 \lor \neg p_4) \land (\neg p_3) \land (p_2 \lor p_4) \land (p_1 \lor p_3 \lor p_5) \land (p_3 \lor \neg p_4 \lor p_2)$

Problem 3. Transform the following propositional formulas into CNF and DNF A) using truth tables (determining models), B) using syntactic rules:

- a) $(\neg p \lor q) \to (\neg q \land r)$,
- b) $(\neg p \to (\neg q \to r)) \to p$,
- c) $((p \rightarrow \neg q) \rightarrow \neg r) \rightarrow \neg p$.

Problem 4. Given a formula φ in CNF, find a 3-CNF formula φ' such that φ' is satisfiable iff φ is satisfiable. Describe an efficient algorithm to construct φ' given φ (a reduction from SAT to 3-SAT).

Problem 5. Find the (shortest possible) CNF and DNF representations of the Boolean majority function maj: $^32 \rightarrow 2$ which outputs the majority vote of the input values.

Problem 6. Can you find CNF and DNF representations of the Boolean n-ary parity function par: ${}^{n}2 \to 2$ defined by $\operatorname{par}(x_{1}, \ldots, x_{n}) = (x_{1} + \cdots + x_{n}) \operatorname{mod} 2$ which outputs the XOR of all input values? Try it for small values of n.

Problem 7. Let \mathbb{P} be a countably infinite set of propostional letters. Show that it is no longer true that every $K \subseteq \mathbb{P}2$ can be modelled by both a CNF and a DNF formula. Find such a set of models K which cannot be modelled by either.

Problem 8. Construct the implication graph of the following 2-CNF formula. Is the formula satisfiable? If it is, find a solution.

- a) $(p_1 \vee \neg p_2) \wedge (p_2 \vee p_3) \wedge (\neg p_3 \vee \neg p_1) \wedge (\neg p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (\neg p_5 \vee \neg p_1)$,
- b) $(p_1 \vee \neg p_2) \wedge (p_2 \vee p_3) \wedge (\neg p_3 \vee p_1) \wedge (\neg p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (\neg p_5 \vee p_1)$,
- c) $(p_0 \lor p_2) \land (p_0 \lor \neg p_3) \land (p_1 \lor \neg p_3) \land (p_1 \lor \neg p_4) \land (p_2 \lor \neg p_4) \land (p_0 \lor \neg p_5) \land (p_1 \lor \neg p_5) \land (p_2 \lor \neg p_5) \land (\neg p_1 \lor \neg p_6) \land (p_4 \lor p_6) \land (p_5 \lor p_6) \land p_1 \land \neg p_7.$

Problem 9. Apply the unit propagation algorithm to determine whether the following Horn formula is satisfiable. It it is, find a satisfying assignment.

$$(\neg p_1 \lor \neg p_3 \lor p_2) \land (\neg p_1 \lor p_2) \land p_1 \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_4 \lor p_1) \land (\neg p_4 \lor \neg p_3 \lor \neg p_2) \land (p_4 \lor \neg p_5 \lor \neg p_6)$$

Problem 10. Can a 4×4 chessboard with two opposite corners removed be perfectly covered by domino tiles? Encode the problem as a SAT formula. Generalize to all even n.

Problem 11. Can you color integers from 1 to n with two colors so that the equation a+b=c has no monochromatic solutions with $1 \le a < b < c \le n$? Construct a CNF formula φ_n which is satisfiable, if and only if such a coloring is possible. Try n=8 first.

Try this at home: Write a script generating φ_n in DIMACS CNF format. Use a SAT solver to find the smallest n for which no such coloring exists (i.e., any 2-coloring has a monochromatic triple a < b < c with a + b = c).

Problem 12. Encode the problem of sorting three integer numbers in SAT.

Problem 13. The famous Four Colour Theorem says that the following map can be colored by 4 colors so that no two adjacent regions share the same colour. Find such a coloring (using a SAT solver).

