Computer Communications Networks

TCP Error Control

Review: TCP flow control

- Purpose
 - to avoid overflow
- Mechanism
 - sliding window
 - variable window

TCP packet header

What can go wrong?

- IP packet delivery
 - duplicated
 - deleted by referring to sequence number; done
 - reordered
 - rearranged by referring to sequence number; done
 - corrupted
 - arrived but in "bad shape"
 - lost
 - transmission error or network congestion

Error detection

- Corrupted packets
 - detected by TCP checksum
 - action: drop!
- Lost packets
 - how do you tell if something is already lost?
 - TCP sender
 - timer
 - TCP receiver (cumulative acknowledgment)
 - duplicate acknowledgment

TCP/IP checksum

- Algorithm: 16-bit one complement of one's complement sum with carry
 - 16-bit: padding when necessary
 - cover: TCP header, payload, pseudo header
 - calculate: pad, sum, with carry, complement
 - verify: sum == 0?
- IP pseudo header
 - to detect mis-delivered packets by IP layer
 - include: IP addresses, protocol ID, segment length

TCP/IP checksum (example)

Sender:
0000 0000 0000 0001
1111 0010 0000 0011
1111 0100 1111 0101
+ 1111 0110 1111 0111

- Receiver:
 - 0000 0000 0000 0001
 - 1111 0010 0000 0011
 - 1111 0100 1111 0101
 - 1111 0110 1111 0111
- + 0010 0010 0000 1101

- 10 1101 1101 1111 0000
- \Rightarrow 1101 1101 1111 0010
- ⇒ 0010 0010 0000 1101 (checksum)

- 10 1111 1111 1111 1101
- => 1111 1111 1111 1111
- => 0000 0000 0000 0000

Success!

7

TCP sender timer

TCP sender

- start a timer when sending out a packet
 - in reality: one timer per a window of packets
- on acknowledgment "covering" this packet
 - cancel the timer and setup another one
- if timer timeouts: *indicate* packet may be lost

Timeout value

- too soon: unnecessary transmission
- too late: "slow response"

TCP timeout value

- RTO: based on round-trip time (RTT)
 - RTT: from sending a packet to receiving its ack
 - smoothed RTT (SRTT)
 - exponentially weighted moving average (EWMA)
 - SRTT_{i+1} = SRTT_i + a (RTT-SRTT_i); a = 1/8
 - RTT variance (RTTV)
 - RTTV_{i+1} = RTTV_i+ $b(|RTT-SRTT_i|-RTTV_i)$; b = 1/4
 - -RTO
 - RTO = d (SRTT + c RTTV); c: initially 2 now 4
 - d: backoff factor: normally 1, doubled when timeout

Duplicate acknowledgment

- TCP acknowledgment
 - cumulative acknowledgment
 - example
 - rev: [0, 500),[500, 1000),[1500, 2000),[2000, 2500)
 - ack: 500,1000,1000 (1st dupack),1000 (2nd dupack)
- Enough duplicate acknowledgments
 - indicate packet loss may have occurred
 - ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
 - packet [1000,1500) is considered lost

Error recovery

- End-to-end retransmission
 - go-back-N (GBN)
 - retransmit from ackno and upward
 - selective retransmission
 - only retransmit those "known" to be lost
- TCP's error recovery
 - mostly GBN
 - also regulated by congestion control
 - explore further: TCP selective acknowledgment

Summary

- TCP error control
 - purpose
 - mechanisms
 - detection
 - recovery
- Explore further
 - TCP selective acknowledgment (SACK)
 - http://www.icir.org/floyd/

Next

• TCP congestion control