Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 28

- 1. Пусть $z = 2\sqrt{3} + 2i$. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{2 2\sqrt{3}i}$ имеет аргумент $\frac{3\pi}{4}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-5+7i) + y(-15-14i) = -336 - 113i \\ x(-7+10i) + y(9+6i) = 221 - 244i \end{cases}$$

- 3. Найти корни многочлена $-3x^6+48x^5-309x^4+852x^3-138x^2-4020x+6000$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=4+3i, x_2=3+i, x_3=-2$.
- 4. Даны 3 комплексных числа: 7-30i, 20+7i, 24-27i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{\sqrt{3}}{2} + \frac{i}{2}, z_2 = -\frac{\sqrt{3}}{2} + \frac{i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3+i| < 3\\ |arg(z-2i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (8, 10, 0), b = (-6, -4, -5), c = (3, 5, -2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(5,13,9) и плоскость P:6x+46y+32z+672=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(4,8,1), $M_1(1,3,13)$, $M_2(6,-2,13)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} y - 26z - 535 = 0 \\ 8x + 5y - 12z - 379 = 0 \end{cases} \qquad L_2: \begin{cases} -8x - 4y - 14z - 1536 = 0 \\ -x - 3y - 5z - 497 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.