Digital Systems Design and Laboratory [5. Karnaugh Maps]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Outline

- **☐** Minimum Forms of Switching Functions
- ☐ Two- and Three-Variable Karnaugh Maps
- ☐ Four-Variable Karnaugh Maps
- Determination of Minimum Expressions Using Essential Prime Implicants
- ☐ Five-Variable Karnaugh Maps
- Other Forms of Karnaugh Maps

Recap: Logic Design

オ sequential civint = combinational lygic circuit + 記しはこれま value 68 次年 ☐ Design a combinational logic circuit starting with a word description of the desired circuit behavior) 設計 ambindional circuit Steps

In 有一般教徒指述

「A 教教徒指述

「Translate the word description into a switching function (Unit 4) ☐ Steps Truth table < Boolean expression ← - SOP/POS derived from minterm or maxterm expansion (Unit 4) > Simplify the function • Boolean algebra (Units 2 and 3) * Karnaugh map (Unit 5) simplification • Quine-McCluskey (Unit 6) (left method) (not systematic Other methods ヲ試値) > Realize it using available logic gates 前发车 — 本等: systemetiv 为三名 > K-map

(极 Boolean function & simplification)

Difficulties in Algebraic Simplification

Problems

- ➤ Difficult to apply in a systematic way
- > Difficult to tell when you have arrived at a minimum solution
 - Minimum SOP/POS
 - Minimum # of terms (i.e., # of gates)
 - Minimum # of literals (i.e., # of gate inputs)

■ Solutions: systematic methods

- ➤ Karnaugh map (K-map) (Unit 5)
 - Especially useful for 3 or 4 variables γ
- Quine-McCluskey (Unit 6)
- > Other methods

- minimum number of gates

literals

Outline

- ☐ Minimum Forms of Switching Functions
- ☐ <u>Two- and Three-Variable Karnaugh Maps</u>
- ☐ Four-Variable Karnaugh Maps
- Determination of Minimum Expressions Using Essential Prime Implicants
- ☐ Five-Variable Karnaugh Maps
- Other Forms of Karnaugh Maps

Two-Variable Karnaugh Maps (1/2)

- ☐ Truth table = minterm expansion = Karnaugh map
 - ➤ Each square of the K-map corresponds to a combination of values of inputs
 - > Each square = a minterm = a row in truth table

Two-Variable Karnaugh Maps (2/2)

Example

201 圓起末春望圓巡大迎め フス解再圖火後、再末研究圖代表的意思、

Three-Variable Karnaugh Maps (1/2)

4 2=8 4 E cases + 8112 square

- Minterms in adjacent squares of K-map differ in only ONE bit
 - \triangleright Combine them: XY'+XY = X(Y'+Y) = X

大相解的场面的1月1月11日的一个同时不同

Three-Variable Karnaugh Maps (2/2)

 $\setminus A$

Example

			В	c\\	0	1	_
m_{i}	АВС	F		00	0	0	
0	000	0					-
1	001	1		01	1	1	
2	010	0		OI	1		
3	011	1		,	0 (1		1
4	100	0		11	1	0	
5	101	1					
6	110	0		4.0			
7	111	0		10	0	0	
F = A'B'C + A'BC + AB'C				F = A'C+ B' C			
				2 1	_ 4		. 7 .

A3気の、B3気の/1、C3気1 パサをお事本: A=0,C=1 → A'C A'B'U + A'BC = か(B'C+BC) = A'(B'+B) C = A'C

Product Terms in Karnaugh Maps

Examples

6113

ン、外分長が後(ですれかで発長が移ると一種)

5.相写跨过过名

Another Example

Consensus Theorem in Karnaugh Maps

Overlapped circles imply redundant terms

All Solutions in Karnaugh Maps

- ☐ All possible minimum SOPs can be determined from K-map
 - > # of terms and # of literals
- \square Example: $F = \sum m(0, 1, 2, 5, 6, 7)$
 - ➤ Make each circle as large as possible
 - > Select as few circles as possible to cover all minterms

Summary

- ☐ Truth table = minterm expansion = Karnaugh map
- ☐ Simplification in Karnaugh maps
 - Minimum SOP = (min # of terms, min # of literals)
 - > Steps (make adjacent squares different in only one bit)
 - Mark 1's
 - Make circles
 - Make each circle as large as possible (# of literals)
 - Select as few circles as possible to cover all 1's (# of terms)
- Algebraic simplification also holds in Karnaugh maps
 - Combining terms: XY + XY' = X
 - Eliminating terms: X + XY = X; XY + X'Z + YZ = XY + X'Z
 - ➢ Eliminating literals: X + X'Y = X + Y
 ➢ Adding redundant terms:

Outline

- ☐ Minimum Forms of Switching Functions
- ☐ Two- and Three-Variable Karnaugh Maps
- **☐** Four-Variable Karnaugh Maps
- Determination of Minimum Expressions Using Essential Prime Implicants
- ☐ Five-Variable Karnaugh Maps
- Other Forms of Karnaugh Maps

Four-Variable Karnaugh Maps

☐ Minterms in adjacent squares of K-map differ in only ONE bit

Two More Examples

Karnaugh Maps with Don't Cares

- ☐ Don't cares can be assigned with 0's or 1's
 - > After assignment, the function becomes completely specified
- \square F = \sum m(1, 3, 5, 7, 9) + \sum d(6, 12, 13)

Minimum POS

- ☐ Minimum SOP = circle 1's of F
- タロル用の1級50P 2、駅Umplement
- ☐ Minimum POS = circle 0's of F
 - > Find minimum SOP of F' and then complement it
 - 1. 图 6, 得到例 minimum Jup 在 F1 2 处 F1 取 Amplement ➤ Example: F = X'Z' + WYZ + W'Y'Z' + X'Y YZ WX 00 10 01 11 F' = Y'Z + W'XY + WXZ'00 1 1 1 0 By DeMorgan's law: F = (Y + Z')(W + X' + Y')(W' + X' + Z)MIMMUM ("F=(F')'= (Y'Z +WXY+WXZ')" 01 0 0 0 0 Pos $= (\gamma' \xi)^{1} (\omega' \chi \gamma)' (\omega \chi \xi')'$ = (Y+Z')(W+X'+Y')(W'+X'+Z)11 1 1 0 1 1 Y'Z 1 10 1 0 0

Outline

- ☐ Minimum Forms of Switching Functions
- ☐ Two- and Three-Variable Karnaugh Maps
- ☐ Four-Variable Karnaugh Maps
- Determination of Minimum Expressions Using Essential Prime Implicants
- ☐ Five-Variable Karnaugh Maps
- Other Forms of Karnaugh Maps

Prime Implicants (1/2)

- ☐ Implicant: a product term
 - ➤ Any single 1 or any group of 1's in the K-map
- Prime implicant (PI): an implicant that cannot be covered by other implicants タ 追加 implicant 不能被集 implicant 包住 = 不能再起入的 implicant (年年)

Ы

Not PI

- > A circle that cannot be enlarged any more
 - A single 1 is a Pl if not adjacent to any other 1's
 - Two adjacent 1's is a PI
 if not contained in a group of 4 1's

Prime Implicants (2/2)

人 天有4月 prime implicants

- Cover: a set of prime implicants which covers all 1's
- ☐ A minimum SOP contains only prime implicants (why?)
 - ➤ Minimum cover = (min # of PIs, min # of literals)
- ☐ Don't cares are treated just like 1's here

少洋非PL

了"有了我追问。spential 12包到 :在假s中的水包管包

Essential Prime Implicants

- **Essential prime implicant**: if a minterm is covered by only one
 - PI, the PI is essential 分學相如minterm, 我跟印記到文列《中華 Essential PI (1) 在 PI (1) 是 Essential PI (1) 是 Essential PI must be included in minimum SOP

 - 6 M Wential PI Find essential PI's = find the 1's circled only once
- Example: F = CD + BD + B'C + AC = BD + B'C + ACg

Another Example

☐ Find minimum cover

- Find all PI's
- Find essential PI's

Summary

- Minimum SOP = minimum cover = a minimum set of PI's which cover all 1's
 - Minimum cover = (min # of PIs, min # of literals)
- Steps
 - > Find all PI's
 - Find essential PI's 着邓兰儿的被侧口包到 剩下的,有类利下的归文
 - > Find a minimum set of PI's to cover the remaining 1's
- ☐ Recap: steps of simplification in Karnaugh maps
 - Mark 1's
 - ➤ Make circles
 - Make each circle as large as possible <u>= find PI</u>
 - Select as few circles as possible to cover all 1's = find minimum cover

Flowchart

Outline

- ☐ Minimum Forms of Switching Functions
- ☐ Two- and Three-Variable Karnaugh Maps
- ☐ Four-Variable Karnaugh Maps
- Determination of Minimum Expressions Using Essential Prime Implicants
- ☐ Five-Variable Karnaugh Maps
- Other Forms of Karnaugh Maps

Five-Variable Karnaugh Maps (1/2)

■ Example

> F = BD' + CDE + AB'DE' + AB'CD'E' + A'B'C'D'E'

Five-Variable Karnaugh Maps (2/2)

Example

> F = A'B' CD' + A'B'CE + A'B'D'E + A'CD'E + B'CD'E

Outline

- ☐ Minimum Forms of Switching Functions
- ☐ Two- and Three-Variable Karnaugh Maps
- ☐ Four-Variable Karnaugh Maps
- Determination of Minimum Expressions Using Essential Prime Implicants
- ☐ Five-Variable Karnaugh Maps
- **☐** Other Forms of Karnaugh Maps

Other Forms of Karnaugh Maps

- ☐ Side-by-side maps
- ☐ Mirror image maps

Q&A