Professor: Alexander Schmidt Tutor: Arne Kuhrs

Aufgabe 1

• $\sqrt[5]{3}$. $f := X^5 - 3$ ist irreduzibel über \mathbb{Q} nach Eisenstein. Es gilt $f(\sqrt[5]{3}) = (\sqrt[5]{3})^5 - 3 = 0$. Also ist f das Minimalpolynom zu $\sqrt[3]{5}$.

• $\sqrt{2}+\sqrt{3}$. Es gilt $f:=X^4-10X^2+1$ ist primitiv. In $\mathbb{Z}/3\mathbb{Z}$ gilt $0^4-0^2+1=1\neq 0, 1^4-1+1=1\neq 0$ und $2^4-2^2+1=16-4+1=13=1\neq 0$. Somit ist X^4-X^2+1 irreduzibel in $\mathbb{Z}/3\mathbb{Z}$. Nach dem Reduktionskriterium für p=3 ist X^4-10X^2+1 daher irreduzibel über \mathbb{Q} . Wegen

$$(\sqrt{2} + \sqrt{3})^4 - 10(\sqrt{2} + \sqrt{3})^2 + 1 = (4 + 4 \cdot 2 \cdot \sqrt{6} + 6 \cdot 2 \cdot 3 + 4 \cdot 3 \cdot \sqrt{6} + 9) - 10(2 + 2\sqrt{6} + 3) + 1$$
$$= 49 + 20\sqrt{6} - 50 - 20\sqrt{6} + 1$$
$$= 0$$

ist $f(\sqrt{2} + \sqrt{3}) = 0$. Also ist f das Minimalpolynom zu $\sqrt{2} + \sqrt{3}$.

• $\sin(2\pi/5) = \sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}$. Das Polynom $f := 16X^4 - 20X^2 + 5$ ist primitiv. In $\mathbb{Z}/2\mathbb{Z}$ erhalten wir f = 1. Nach dem Reduktionskriterium für p = 2 folgt also, dass f irreduzibel ist. Es gilt außerdem

$$f\left(\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}\right) = 16\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}^4 - 20\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}^2 + 5$$

$$= 16\left(\frac{5}{8} + \frac{\sqrt{5}}{8}\right)^2 - 20\left(\frac{5}{8} + \frac{\sqrt{5}}{8}\right) + 5$$

$$= 16\left(\frac{25}{64} + \frac{10\sqrt{5}}{64} + \frac{5}{64}\right) - \frac{50}{4} - \frac{10\sqrt{5}}{4} + \frac{20}{4}$$

$$= \frac{30}{4} + \frac{10\sqrt{5}}{4} - \frac{50}{4} - \frac{10\sqrt{5}}{4} + \frac{20}{4}$$

$$= 0$$

Also ist f das Minimalpolynom von $\sin(2\pi/5)$ über \mathbb{Q} .

• $e^{i\pi/6} - \sqrt{3}$. $f := X^4 - X^2 + 1$ ist irreduzibel über $\mathbb{Z}/2\mathbb{Z}$, da $0^4 - 0^2 + 1 \neq 0$ und $1^4 - 1^2 + 1 \neq 0$ gilt. Nach dem Reduktionskriterium für p = 2 folgt, dass f irreduzibel über \mathbb{Q} ist. Es gilt $e^{i\pi/6} - \sqrt{3} = \frac{\sqrt{3}}{2} + \frac{i}{2} - \sqrt{3} = \frac{1}{2}(i - \sqrt{3})$. Daher erhalten wir

$$\begin{split} (e^{i\pi/6} - \sqrt{3})^4 - (e^{i\pi/6} - \sqrt{3})^2 + 1 &= \frac{1}{16}(i - \sqrt{3})^4 - \frac{1}{4}(i - \sqrt{3})^2 + 1 \\ &= \frac{1}{16}(-1 - 2i\sqrt{3} + 3)^2 - \frac{1}{4}(-1 - 2i\sqrt{3} + 3) + 1 \\ &= \frac{1}{4}(1 - i\sqrt{3})^2 - \frac{1}{2}(1 - i\sqrt{3}) + 1 \\ &= \frac{1}{4}(1 - 2i\sqrt{3} - 3) - \frac{1}{2}(1 - i\sqrt{3}) + 1 \\ &= -\frac{1}{2} - \frac{i}{2}\sqrt{3} - \frac{1}{2} + \frac{i}{2}\sqrt{3} + 1 \\ &= 0 \end{split}$$

Algebra 1, Blatt 4 Josua Kugler

Also ist f das Minimalpolynom von $e^{i\pi/6} - \sqrt{3}$ über \mathbb{Q} .

Aufgabe 2

- (a) Sei $f = X^4 2$. Dann gilt $f(\sqrt[4]{2}) = 0$. Außerdem ist f nach Eisenstein irreduzibel über \mathbb{Q} und damit Minimalpolynom von $\sqrt[4]{2}$. Es gilt daher $[K:\mathbb{Q}] = \deg f = 4$.
- (b) Sei $f = X^2 + 1$. Dann gilt f(i) = 0. In L gilt f = (X i)(X + i). Wäre f reduzibel über K, so gäbe es in K eine Darstellung $f = a \cdot b$ mit deg $a = \deg b = 1$. Wegen $K \subset L$ wäre dies auch eine Darstellung in L. Aufgrund der Eindeutigkeit der Primfaktorzerlegung müsste dann aber o.B.d.A. a = X i sein. Wegen $i \notin K$ ist dies ein Widerspruch. Also ist f das Minimalpolynom von i über K und $[L:K] = \deg f = 2$. Nach dem Gradsatz gilt außerdem $[L:\mathbb{Q}] = [L:K] \cdot [K:\mathbb{Q}] = 2 \cdot 4 = 8$.
- (c) Es gilt $\sqrt{2} = (\sqrt[4]{2})^2 \in L$. Sei $f = X^2 2$. Dann gilt $f(\sqrt{2}) = 0$. Nach Eisenstein ist f aber bereits irreduzibel über \mathbb{Q} , also ist f das Minimalpolynom von $\sqrt{2}$ über \mathbb{Q} und es gilt $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = \deg f = 2$. Nun ist $X^2 + 1$ aus völlig analogen Gründen wie in Teilaufgabe b das Minimalpolynom von i über $\mathbb{Q}(\sqrt{2})$ und es gilt $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})] = \deg X^2 + 1 = 2$. Insgesamt ergibt sich $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4$.
- (d) Sei $f = X^2 2\sqrt{2}X + 3 \in \mathbb{Q}(\sqrt{2})$. Dann gilt $f(\sqrt{2}+i) = 1 + 2\sqrt{2}i 4 2\sqrt{2}i + 3 = 0$. Wäre f reduzibel, so gäbe es eine Zerlegung in zwei Linearfaktoren über $\mathbb{Q}(\sqrt{2})$. Dann müsste mindestens einer der beiden Linearfaktoren $X (\sqrt{2}+i)$ sein. Dann wäre aber $\sqrt{2}+i \in \mathbb{Q}(\sqrt{2})$. Das ist aber nicht der Fall, also muss f irreduzibel und damit das Minimalpolynom von $\sqrt{2}+i$ sein. Daher ist aber $[\mathbb{Q}(\sqrt{2},\sqrt{2}+i):\mathbb{Q}(\sqrt{2})]=2$ und nach dem Gradsatz $\mathbb{Q}(\sqrt{2},\sqrt{2}+i):\mathbb{Q}]=4$. Wegen $\sqrt{2}=\frac{1}{6}(5(\sqrt{2}+i)-(\sqrt{2}+i)^3)$ ist aber $\sqrt{2}\in\mathbb{Q}(\sqrt{2}+i)$ bereits enthalten. Also ist $\mathbb{Q}(\sqrt{2}+i,\sqrt{2})=\mathbb{Q}(\sqrt{2}+i)$. Offensichtlich ist $\sqrt{2}+i\in\mathbb{Q}(\sqrt{2},i)$ und damit $\mathbb{Q}(\sqrt{2}+i)\subset\mathbb{Q}(\sqrt{2},i)$. Wegen $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2}+i)=\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2}+i,\sqrt{2})=4=\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2},i)$ folgern wir mit LA1, dass dann $\mathbb{Q}(\sqrt{2}+i)=\mathbb{Q}(\sqrt{2},i)$ gelten muss.

Aufgabe 3

- (a) Angenommen, es gäbe kein solches α . Da L/K endlich ist, wäre dann $L = K(\alpha_1, \ldots, \alpha_n)$. Insbesondere gäbe es einen Körper $K \subsetneq K(\alpha_1) \subsetneq L$. Da [L:K] eine Primzahl ist, kann es nach Korollar 3.14 eine solche Inklusionskette von Körpern nicht geben.
- (b) Wir nehmen an, dass f keine Nullstelle in K besitzt. Dann ist f über K irreduzibel. Ist nun $\alpha \in L$ eine Nullstelle von f, so ist f das Minimalpolynom von α in K. Somit erhalten wir

$$2^k = [L: K] = [L: K(\alpha)] \cdot [K(\alpha): K] = [L: K(\alpha)] \cdot 3,$$

das kann aber für $k \in \mathbb{N}$ nicht sein. Also muss f eine Nullstelle in K besitzen.

(c) Sei $f \in K[X]$ das Minimalpolynom von α . Dann gilt deg f = 2n + 1. Jedes Polynom lässt sich in der Form $f(X) = X \cdot g(X^2) + h(X^2)$ schreiben. Wegen deg f = 2n + 1, muss $g \neq 0$ sein, sonst wäre $f(X) = h(X^2)$ und der Grad von f wäre gerade. Insbesondere erhalten wir also

$$0 = f(\alpha) = \alpha \cdot g(\alpha^2) + h(\alpha^2) \implies \alpha = -\frac{h(\alpha^2)}{g(\alpha^2)}.$$

Algebra 1, Blatt 4 Josua Kugler

Daher gilt $\alpha \in K(\alpha^2)$ und damit $K(\alpha) \subset K(\alpha^2)$. Die Inklusion $K(\alpha^2) \subset K(\alpha)$ ist trivial. Daher gilt $K(\alpha) = K(\alpha^2)$.

Aufgabe 4

- (a) Sei $N := |\overline{K}|$. Da \overline{K} ein algebraischer Abschluss ist, besitzt jedes $f \in \overline{K}[X]$ eine Nullstelle in \overline{K} . Wir betrachten die normierten Polynome vom Grad 2. Die Anzahl dieser Polynome ist gerade N^2 , da es sowohl für den ersten als auch für den zweiten N mögliche Wahlen gibt. Da f in Linearfaktoren zerfällt, besitzt jedes f auch eine Darstellung der Form f(x) = (x-a)(x-b). Da die Reihenfolge der beiden Faktoren egal ist, gibt es nur $N^2/2$ Möglichkeiten für eine Darstellung in Produktform. Zu jedem $f = x^2 + ax + b$ gibt es aber eine eindeutige Darstellung in Produktform. Das ist ein Widerspruch. Also muss $|\overline{K}|$ unendlich sein.
- (b) Wir gehen an der Konstruktion im Skript entlang. Ist K abzählbar, so ist auch K[X] abzählbar. Damit ist auch $I = \{f \in K[x], \deg f \geq 1\}$ und $\mathbb{N}_0^{(I)}$ abzählbar. Dann muss aber $K[\mathfrak{X}]$ und somit auch L_1 abzählbar sein. Führt man diese Konstruktion fort, so ist L_i abzählbar $\forall i \in \mathbb{N}$. Dann ist aber auch die abzählbare Vereinigung $\bigcup_{i=1}^{\infty} L_i$ abzählbar.
- (c) Da \overline{Q} abzählbar ist, ist auch $\overline{Q}[X]$ und daher $\overline{Q}[\pi] \cong \overline{Q}(\pi)$ abzählbar. Dann ist auch $\overline{\overline{Q}(\pi)}$ abzählbar. Gäbe es keine transzendenten Zahlen über $\overline{Q}(\pi)$, so wäre $\mathbb{C} \subset \overline{Q}(\pi)$ und daher insbesondere abzählbar. \mathbb{C} ist aber nicht abzählbar. Also muss es komplexe Zahlen geben, die transzendent über $\overline{Q}(\pi)$ sind.
- (d) **fehlt**

Aufgabe 5

- (a) $(K^{\times})^2$ ist eine Untergruppe von K^{\times} . Es gilt nämlich $1=1^2\in (K^{\times})^2,\ a^2,b^2\in (K^{\times})^2\Longrightarrow a^2b^2=(ab)^2\in (K^{\times})^2$ und $a^2\in (K^{\times})^2\Longrightarrow (a^{-1})^2\in (K^{\times})^2$ mit $a^2\cdot (a^{-1})^2=1$. Es gilt $\overline{1}=\{a^2\colon a\in K^{\times}\}$. Es gilt $\ker\varphi=\{a\in K^{\times}\colon a^2=1\}$. Wegen $(p-1)^2=p^2-2p+1=1\mod p$ ist $(p-1)\in \ker\varphi$. Da K ein Körper ist, hat das Polynom x^2-a höchstens zwei Nullstellen. Daher ist $\ker\varphi=\{1,p-1\}$. Also liefert uns der Homomorphiesatz $K^{\times}/\ker\varphi\cong \operatorname{im}\varphi=(K^{\times})^2$. Eine Äquivalenzklasse in $K^{\times}/\ker\varphi$ hat dabei stets die Form $\{a,-a\}$ für ein $a\in K^{\times}$ und damit genau 2 Elemente. Da K^x in die disjunkte Vereinigung der Äquivalenzklassen zerfällt gilt $|K^{\times}|=|K^{\times}/\{-1,1\}|\cdot|\{1,-1\}|=|(K^{\times})^2|\cdot 2$, also hat $(K^{\times})^2$ den Index 2.
- (b) Angenommen, keine der drei Zahlen ist ein Quadrat. Dann liegen alle drei in $K^{\times} \setminus (K^{\times})^2$. Da es sich hierbei um eine Äquivalenzklasse in $K^{\times}/(K^{\times})^2$ handelt, muss $-2 = 2 \cdot -1 = 2 \cdot (-1)^{-1} \in (K^{\times})^2$ gelten. Damit haben wir bereits einen Widerspruch konstruiert.
- (c) Ist $-1 = a^2$ für ein $a \in K^{\times}$, so schreiben wir $X^4 + 1 = X^4 (-1) = (X^2 a)(X^2 + a)$. Ist $2 = a^2$ für ein $a \in K^{\times}$, so schreiben wir $X^4 + 1 = (X^2 + 1)^2 2X^2 = (X^2 + 1 + aX)(X^2 + 1 aX)$. Ist $-2 = a^2$ für ein $a \in K^{\times}$, so schreiben wir $X^4 + 1 = (X^2 1)^2 (-2)X^2 = (X^2 1 + aX)(X^2 1 aX)$.
- (d) Angenommen, X^4+1 ist reduzibel. Dann existiert eine Zerlegung in Polynome vom Grad ≥ 1 mit Koeffizienten in \mathbb{Q} . Per Inklusion können wir diese Faktoren als Polynome in \mathbb{C} auffassen. Wegen $(\frac{\sqrt{2}}{2}+i\cdot\frac{\sqrt{2}}{2})^4+1=0$, muss aufgrund der Eindeutigkeit der Primfaktorzerlegung einer

Algebra 1, Blatt 4 Josua Kugler

der Faktoren aus $\mathbb{Q}[X]$ assoziert sein zu $(X-(\frac{\sqrt{2}}{2}+i\cdot\frac{\sqrt{2}}{2}))$. Da aber $i\notin\mathbb{Q}$, erhalten wir sofort einen Widerspruch. Also muss X^4+1 irreduzibel sein.