Лабораторна робота №7. Функції

Автор: Барчан Іван **Група:** КН-922Б

Завдання:

- **1.**Переробити програми, що були розроблені під час виконання лабораторних робіт з тем "Масиви" та "Цикли" таким чином, щоб використовувалися функції для обчислення результату.
- **2.** Функції повинні задовольняти основну їх причетність уникати дублювання коду.

Тому, для демонстрації роботи, ваша програма (функція main()) повинна мати можливість викликати розроблену функцію з різними вхідними даними.

- **3.**Слід звернути увагу: параметри одного з викликів функції повинні бути згенеровані за допомогою генератора псевдовипадкових чисел random().
- **4.**Слід звернути увагу (#2): продемонструвати встановлення вхідних даних через аргументи додатка (параметри командної строки).

Обробити випадок, коли дані не передались - у цьому випадку вони матимуть значення за умовчуванням, обраними розробником.

Опис програми

Функціональне призначення

Ця програма виконує 1 з 2 функцій яку обирає користувач.

- З'ясовує чи є правильною цифра
- Множить матрицю саму на себе

Опис логічної структури

(Рис. 1) Графічна структура програми

Файл "таіп.с"

Головний файл

Це файл, який містить точку входу, виклики функцій primenumber, matrix та значення для аргументів цих функцій.

main()

Головна функція

Послідовність дій

Спочатку введіть номер операції яку ви хочете виконати, для цього :

Впишемо значення аргументу х.

х - аргумент типу int необхідний для того щоб виконати одну з наступних дій :

- Якщо користувач ввів 1 виконується знаходження простої цифри
- Якщо користувач ввів 2 виконується знажодження результату від множення матриці саму на себе
- Якщо користувач ввів будь яку іншу цифру програма зупиняється.

Якщо виконується знаходження простої цифри то користувач повинен ввести цифру яка його цікавить. Для цього потрібно ввести аргумент n.

n - аргумент типу int, який ϵ цифрою яку користувач хоче перевірити на простоту.

- Якщо цифра яку ввів користувач не ϵ нулем то може виконуватись функція primenumber.
- Якщо цифра введена цифра нуль то генерується випадкова цифра та може виконуватись функція primenumber.

Якщо виконується знаходження результату від множення матриці саму на себе, користувач повинен ввести спочатку кількість рядків, а потім кількість стовпців.

Для цього потрібно ввести аргументи b та c, а потім, якщо виконується умова, ввести саму матрицю, множення якої цікавить користувача.

b - аргумент типу int, який означає кількість рядків.

с - аргумент типу int, який означає кількість стовпців.

і та ј-кількість стовпців і рядків матариці, які порівнюються між заданими в та с, та якщо виконується умова вони збільшуються.

а[10][10]-квадратна матриця, що містить межу 10 рядків і стовпців, але користувач може задати будь-яку квадратну матрицю в цьому діапазоні.

- Якщо кількість рядків та стовпців співпадає програма виконується, якщо ні, то не виконується.
- Якщо кількість рядків та стовпців дорівнюють нулям, то матриця задається розробником, це квадратна матриця в якої всі цифри двійки.
- Якщо кількість рядків та стовпців не дорівнюють нулям, то матрицю заповнює користувач.

Після того як користувач все ввів може виконуватись функція matrix.

```
int main()
  int x, n, b, c, i, j, a[10][10];
  scanf("%d",&x);
     if (x == 1)
       scanf("%d",&n);
       if (n > 0)
       else
          srand((unsigned int)time(NULL));
         n = (rand() \% 49);
     else if (x == 2)
       scanf("%d", &b);
         scanf("%d", &c);
         if (b == c)
            if (b == 0 \&\& c == 0)
```

```
b=2;
              c=2;
               for (i = 0; i < b; i++)
                {
                        for (j = 0; j < c; j++)
                                a[i][j] = 2;
                        }
                 }
            }
            else
            {
                 for (i = 0; i < b; i++)
                        for (j = 0; j < c; j++)
                                scanf("%d", &a[i][j]);
                 }
           }
         else
                 return 0;
    else
      return 0;
}
```


(Рис. 2) Схема алгоритму функції таіп

int primenumber(int n)

Ця функція з'ясовує чи ϵ цифра простою

Послідовність дій

Додаємо змінну result.

Змінна result означає:

- Якщо result = 2 цифра ні проста, ні не проста.
- Якщо result = 1 цифра проста.
- Якщо result = 0 цифра не проста.

```
Якщо n = 1, то result = 2.
Якщо n = 2, то result = 1.
```

Якщо п дорівнює будь якій цифрі крім 1 та 2, то запускається цикл який ділить дану цифру п на всі цифри починаючи з 2 і до n-1:

- Якщо хоч одна цифра ділиться націло, записуємо що result = 0 (цифра не проста).
- Якщо жодна цифра не ділиться націло записуємо що result = 1 (цифра проста).

Повертаємо змінну result.

```
int primenumber(int n)
     int result;
     if (n == 1)
      result = 2;
     else if (n == 2)
      result = 1;
     else
       for (int i = 2; i < n; i++)
          if (n % i == 0)
            result = 0;
            return 0;
       result = 1;
  return result;
```


(Puc. 3) Схема алгоритму функції primenumber

int matrix(int b, int c, int i, int j, int a[10][10])

Ця функція множить матрицю сама на себе

Послідовність дій

Додаємо матрицю MAT[10][10] та змінну f.

МАТ[10][10]-квадратна матриця, що містить розрахунок матриці а*а.

f - це змінна типу int, що допомагає нам помножити саме рядок матриці на стовпчик

Перебираємо значення записані записані користувачем та множимо рядки матриці на стовпчики

Результат записуємо в MAT[i][j], та виводимо його.

```
int matrix(int b, int c, int i, int j, int a[10][10])  \{ \\ & \text{int MAT[10][10], f;} \\ & \text{for } (i=0; i < b; i++) \\ & \{ \\ & \text{for } (j=0; j < c; j++) \\ & \{ \\ & \text{MAT[i][j]} = 0; \\ & \text{for } (f=0; f < c; f++) \\ & \{ \\ & \text{MAT[i][j]} += a[i][f] * a[f][j]; \\ & \} \\ & \text{printf } (\text{"}\%d \text{$\backslash$n", MAT[i][j]);} \\ & \} \\ \} \\ \} \\ \}
```


(Puc. 4) Схема алгоритму функції matrix

Структура проекту лабораторної роботи:

├── lab07 ├── Makefile ├── README.md └── src └── main.c

Варіанти використання

Користуватися цією програмою не складно. Для того щоб з'ясувати проста цифра чи ні вам потрібно :

- Ввести номер операції (Щоб дізнатись чи проста цифра введіть 1)
- Ввести цифру яка вас цікавить.

```
one4k@one4k-VirtualBox:~/programing-barchan/lab07/src$ ./a.out

1
41
```

(Рис. 5) Як правильно користуватися програмою!

Щоб побачити результати роботи програми, вам потрібно завантажити її в LLDB, ввести що сказано вище та на рядку 66 написати р primenumber(n) (Вивести функцію яка з'ясовує чи проста цифра чи ні).

```
(lldb) n
Process 3192 stopped
 thread #1, name = 'a.out', stop reason = step over
    frame #0: 0x000055555555555360 a.out main at main.c:66:1
   63
   64
                    return 0:
   65
                }
  66
        1
   67
   68
            int primenumber(int n) //Функція знаходження простої цифри
(lldb) p primenumber(n)
(int) \$0 = 1
```

(Рис. 6) Як дізнатися чи проста цифра чи ні!

Для того щоб знайти результат множення матриці саму на себе вам потрібно :

- Ввести номер операції (Щоб знайти результат множення матриці введіть 2)
- Ввести кількість рядків та стовпців (Кількість рядків та стовпців повинна співпадати, інакше програма не буде виконуватись)
- Ввести саму матрицю

```
one4k@one4k-VirtualBox:~/programing-barchan/lab07/src$ ./a.out
2
2
1
2
3
4
```

(Рис. 7) Як правильно користуватися програмою!

Щоб побачити результати роботи програми, вам потрібно завантажити її в LLDB, ввести що сказано вище та на рядку 61 написати р matrix(b, c, i, j, a) (Вивести функцію яка знаходить результат множення матриці саму на себе).

```
(lldb) n
Process 3421 stopped
  thread #1, name = 'a.out', stop reason = step over
frame #0: 0x000055555555534a a.out`main at main.c:61:9
    58
    59
                                      return 0:
    60
    61
 на із програм
    63
    64
                           return 0;
(lldb) p matrix(b,c,i,j,a)
10
15
22
```

(Рис. 8) Як дізнатися результат множення матриці саму на себе!

Висновки: У цій роботі було перетворено лабораторні проекти №5 та №6 для використання функцій. Було набуто навичок роботи з функціями, їх декларація, реалізація та виклик. Під час тестування програми були отримали результати роботи функції matrix — це множення матриці саму на себе, і результати роботи функції primenumber - це перевірка цифри на те проста вона чи ні.