Representation Learning of Knowledge Graphs with Entity Descriptions

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, Maosong Sun AAAI-16

Knowledge Graph

- Triple facts:
- (head entity, relation, tail entity)
- E.g.
- (Jiang Zemin, changed, China)

- Freebase
- Google Knowledge Graph
- DBPedia

KG Embedding

- As KG size increases, representation learning for KGs has been proposed.
- Entities & relations to low-dimensional vectors
- TransE: relation are translations between head & tail

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{\substack{(h',\ell,t')\in S'\\\text{biling}(h,\ell,t) \text{loggested net}}} \left[\gamma + d(h+\ell,t) - d(h'+\ell,t')\right]_{+}$$

Descriptions

(William Shakespeare, book/author/works_written, Romeo and Juliet)

William Shakespeare was an English poet, playwright, and actor, ...

Romeo and Juliet is a tragedy written by William Shakespeare early in his career ...

KG Embedding

Structure-based

• Capture information in fact triples of KGs

Description-based

• Capture textual information in entity descriptions

Romeo and Juliet is a tragedy written by William Shakespeare early in his career ...

Zero-shot

- When an entity does not occur in training set, how to represent it?
- No structure information could be used
- Existing structure-based methods
- The description of entity should be in consideration

DKRL Model

- Description-Embodied Knowledge Representation Learning
- Take advantages of fact triples and entity description
- Can deal with zero-shot scenario

CBOW

CNN

Pooling

- 1st layer: n-max pooling
- split the output vectors of the convolution layer with size n nonoverlapped windows
- Max pooling for each window
- 2nd layer:
- Mean pooling to avoid to much information loss

- Description-based representation is for entities.
- The representations of relations are learned by structure-based methods like TransE.
- Need to map 2 representations to a same space

Energy Functions

• Energy function:

$$E = E_S + E_D$$

$$E_D = E_{DD} + E_{DS} + E_{SD}$$

$$E_{S} = \|h_{S} + r - t_{S}\|$$

$$E_{DD} = \|h_{d} + r - t_{d}\|$$

$$E_{DS} = \|h_{d} + r - t_{S}\|$$

$$E_{SD} = \|h_{S} + r - t_{d}\|$$

Training

• Loss function:

$$L = \sum_{(h,r,t)\in T} \sum_{(h',r',t')\in T'} \max(\gamma + d(h+r,t)) \qquad E_S = \|h_S + r - t_S\| \\ E_{DD} = \|h_d + r - t_d\| \\ E_{DS} = \|h_d + r - t_S\| \\ E_{SD} = \|h_S + r - t_d\|$$

$$T' = \{(h', r, t) | h' \in E\} \cup \{(h, r, t') | t' \in E\}$$
$$\cup \{(h, r', t) | r' \in R\},\$$

Negative sampling by replace an element of triple

4 Energy functions

$$E_S = ||h_S + r - t_S||$$

 $E_{DD} = ||h_d + r - t_d||$
 $E_{DS} = ||h_d + r - t_s||$
 $E_{SD} = ||h_s + r - t_d||$

Initialization & Optimization

- X: pre-trained by Word2Vec on Wikipedia
- E, R: initialized randomly or trained by TransE
- W1,W2: initialized randomly

• Back-propagation + Stochastic Gradient Descent

Experiments

- Task:
 - Knowledge graph completion
 - Entity Classification
- Dataset: FB15K&FB20K
- FB15K: an extraction of Freebase
- FB20K: a dataset containing out-of-KG entities created by author

Dataset

Table 1: Statistics of data sets

Dataset	#Rel	#Ent	#Train	#Valid	#Test
FB15K	1,341	14,904	472,860	48,991	57,803
Dataset	#Ent	#e - e	#d - e	#e-d	#d-d

Parameters

- entity/relation dimension: {50,80,100}
- learning rate :{0.0005,0.001,0.002}
- margin γ : {0.5,1.0,1.5,2.0}
- CBOW: top-20 keywords
- CNN:
- dimension of word embedding: {50,80,100}
- dimension of feature map: {50,100,150}
- window size $k : \{1,2,3\}$

KG Completion

- Complete a triple (h, r, t) when one of h, r, t is missing
- Score function: ||h + r t||
- Evaluation metrics
- Mean Rank: mean rank of correct entities
- Hits@10(1): proportion of valid entities ranked in top 10. For relation is Hits@1.

KG Completion

Table 2: Evaluation results on entity prediction

Metric	Mean Rank		Hits@10(%)	
Metric	Raw	Filter	Raw	Filter
TransE	210	119	48.5	66.1
DKRL(CBOW)	236	151	38.3	51.8
DKRL(CNN)	200	113	44.3	57.6
DKRL(CNN)+TransE	181	91	49.6	67.4

Table 3: Evaluation results on relation prediction

Metric	Mean Rank		Hits@1(%)	
Menic	Raw	Filter	Raw	Filter
TransE	2.91	2.53	69.5	90.2
DKRL(CBOW)	2.85	2.51	65.3	82.7
DKRL(CNN)	2.91	2.55	69.8	89.0
DKRL(CNN)+TransE	2.41	2.03	69.8	90.8

Entity Classification

- Almost every entity has types in Freebase
- entities in FB15K have 4054 types in Freebase
- select top-50 types with highest frequency: 13445 entities, (12113 for training, 1332 for testing)
- Logistic Regression & one-versus-rest
- Mean Average Precision as evaluation

Entity Classification

Table 4: Evaluation results on entity classification

Metric	FB15K	FB20K
TransE	87.9	-
\mathbf{BOW}	86.3	57.5
DKRL(CBOW)	89.3	52.0
DKRL(CNN)	90.1	61.9

Zero-shot Scenario

- 50 types in FB15K
- 13445 entities in FB15K for training
- 4050 out-of-KG entities for testing

Zero-shot Scenario

Table 5: Evaluation results on entity prediction in zero-shot scenario

Metric	d-e	e-d	d-d	Total
Partial-CBOW	26.5	20.9	67.2	24.6
CBOW	27.1	21.7	66.6	25.3
Partial-CNN	26.8	20.8	69.5	24.8
CNN	31.2	26.1	72.5	29.5

Table 6: Evaluation results on relation prediction in zeroshot scenario

Metric	d-e	e-d	d-d	Total
Partial-CBOW	49.0	42.2	0.0	46.2
CBOW	52.2	47.9	0.0	50.3
Partial-CNN	56.6	52.4	4.0	54.8
CNN	60.4	55.5	7.3	58.2

Zero-shot Scenario

Table 4: Evaluation results on entity classification

Metric	FB15K	FB20K
TransE	87.9	-
\mathbf{BOW}	86.3	57.5
DKRL(CBOW)	89.3	52.0
DKRL(CNN)	90.1	61.9

Conclusion

- Building representations from entity descriptions achieves better performance than baselines
- Additionally it can deal with out-of-KG entities
- More information of entities could be in consideration
- DKRL can be extended to understand KG structure better by involving extension models like TransH, TransR and PTransE.