Example: Kernel Functions and Kernel K-Means Clustering

- □ Gaussian radial basis function (RBF) kernel: $K(X_i, X_i) = e^{-||X_i X_j||^2/2\sigma^2}$
- □ Suppose there are 5 original 2-dimensional points:
- \square If we set σ to 4, we will have the following points in the kernel space

□ E.g.,
$$||x_1 - x_2||^2 = (0 - 4)^2 + (0 - 4)^2 = 32$$
, therefore, $K(x_1, x_2) = e^{-\frac{32}{2 \cdot 4^2}} = e^{-1}$

Original Space

	X	у
<i>X</i> ₁	0	0
<i>X</i> ₂	4	4
<i>X</i> ₃	-4	4
<i>X</i> ₄	-4	-4
X ₅	4	-4

RBF Kernel Space ($\sigma = 4$)

$K(x_i, x_1)$	$K(x_i, x_2)$	$K(x_i, x_3)$	$K(x_i, x_4)$	$K(x_i, x_5)$
0	$e^{-\frac{4^2+4^2}{2\cdot 4^2}} = e^{-1}$	e^{-1}	e^{-1}	e^{-1}
e^{-1}	0	e^{-2}	e^{-4}	e^{-2}
e^{-1}	e^{-2}	0	e^{-2}	e^{-4}
e^{-1}	e^{-4}	e^{-2}	0	e^{-2}
e^{-1}	e^{-2}	e^{-4}	e^{-2}	0