ISEL - DEETC - LERCM

Processamento Digital de Sinais

 1° Teste - Semestre Verão 2013/14 - 07/04/2012 - Duração: 1h30m

- 1. Considere os sinais contínuos, $x(t) = 2 + 3\cos(2\pi 10t \frac{\pi}{4})$ e $y(t) = x(t 1/20) 4\sin(2\pi 20t)$.
 - (a) $\{2\mathbf{v}\}\$ Represente graficamente x(t). O que é o período fundamental, T_0 , de um sinal? Qual é o T_0 de x(t) e de y(t)?
 - (b) $\{2.5v\}$ Represente graficamente os espectros de amplitude e de fase dos sinais x(t) e y(t). Utilize as propriedades da série de Fourier.
 - (c) $\{2.5v\}$ Utilizando o teorema de Parseval, calcule as potências de x(t) e de y(t).
- 2. Considere que A_k representa os coeficientes da série de Fourier de a(t), cuja frequência fundamental, f_0 , é 10Hz.

$$A_k = \begin{cases} 0 & , & k \text{ par} \\ 4\frac{2}{i\pi k} & , & k \text{ impar} \end{cases}$$

- (a) {2.5v} Represente graficamente o sinal no domínio do tempo.
- (b) {2.5v} Represente graficamente o sinal no domínio da frequência.
- (c) $\{2v\}$ Considere agora as primeiras três harmónicas do sinal (k < 4). Determine a sua expressão analitica, agregando ao máximo todos os termos nas funções em funções sinusoidais.
- 3. Considere o sinal discreto $z[n] = 1 + \cos\left[\frac{2\pi 10}{100}n\right]$ de período N = 10.
 - (a) {2v} Represente graficamente um período do sinal.
 - (b) {2v} Assuma que este sinal é resultado de um processo de amostragem que cumpre o ritmo de Nyquist. Dê exemplo de um sinal que lhe possa ter dado origem.
 - (c) $\{2v\}$ Admintido que este sinal é digitalizado com um ritmo de 2000 amostras/s, se cada amostra for codificada com n=8bits qual o tamanho do ficheiro com 10 minutos e 30 segundos de sinal?