The Remainder Term and Error Estimation

If the Taylor series for a function f(x) is truncated at the nth term, what is the difference between f(x) and the value given by the nth Taylor polynomial? That is, what is the error involved in using the Taylor polynomial to approximate the function?

Suppose you expand f around c, and that f is (n + 1) -times continuously differentiable on an open interval containing c. Taylor's Theorem with the Remainder Term says that if x is another point in this interval, then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \frac{f^{(n+1)}(z)}{(n+1)!} (x - c)^{n+1},$$

where z is a number in the open interval between x and c.

 $p_n(x;c) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ is the $n^{\rm th}$ degree Taylor polynomial at c. The other term on the right is called the **Lagrange remainder term**:

$$R_n(x;c) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-c)^{n+1}.$$

The appearance of z, a point between x and c, and the fact that it's being plugged into a derivative suggest that there is a connection between this result and the Mean Value Theorem. In fact, for n = 0 the result says

$$f(x) = f(c) + f'(z) \cdot (x - c),$$

where z is between x and c. This is the Mean Value Theorem.

On the one hand, this reflects the fact that Taylor's theorem is proved using a generalization of the Mean Value Theorem. On the other hand, this shows that you can regard a Taylor expansion as an *extension* of the Mean Value Theorem.

There is also an expression for the error which involves an integral. I won't discuss it here.

Example. Compute the Remainder Term $R_3(x;1)$ for $f(x) = \sin 2x$.

For the *third* remainder term, I need the *fourth* derivative:

$$f'(x) = 2\cos 2x$$
, $f''(x) = -4\sin 2x$, $f'''(x) = -8\cos 2x$, $f^{(4)}(x) = 16\sin 2x$.

The Remainder Term is

$$R_3(x;1) = \frac{16\sin 2z}{4!}(x-1)^4,$$

where z is a number between x and $1. \square$

Example. Compute the Remainder Term $R_n(x;3)$ for $f(x)=e^{4x}$.

Since I want the $n^{\rm th}$ Remainder Term, I need to find an expression for the $(n+1)^{\rm st}$ derivative. I'll compute derivative until I see a pattern:

$$f'(x) = 4e^{4x}$$
, $f''(x) = 4^2e^{4x}$, $f'''(x) = 4^3e^{4x}$.

Notice that it's easier to see the pattern if you don't multiply out the power of 4.

Thus,

$$f^{(n)}(x) = 4^n e^{4x}$$
, so $f^{(n+1)}(x) = 4^{n+1} e^{4x}$.

The Remainder Term is

$$R_n(x;3) = \frac{4^{n+1}e^{4z}}{(n+1)!}(x-3)^{n+1},$$

where z is a number between x and 3. \square

There are several things you might do with the Remainder Term:

- 1. Estimate the error in using $p_n(x;c)$ to estimate f(x) on a given interval (c-r,c+r). (The interval and the degree n are fixed; you want to find the error.)
- 2. Find the smallest value of n for which $p_n(x;c)$ approximates f(x) to within a given error ("tolerance") on a given interval (c-r,c+r). (The interval and the error are fixed; you want to find the degree.)
- 3. Find the largest interval (c-r,c+r) on which $p_n(x;c)$ approximates f(x) to within a given error ("tolerance"). (The degree and the error are fixed; you want to find the interval.)

Example. The Maclaurin series for ln(1+x) is

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

What is the largest error which might result from using the first three terms of the series to approximate $\ln(1+x)$, if 0 < x < 1?

The remainder term is

$$R_n(x;0) = \frac{f^{(n+1)}(z)}{(n+1)!} x^{n+1},$$

where 0 < z < x. I want to estimate the maximum size of $|R_3(x;0)|$. I take absolute values, because I don't care whether the error is positive or negative, only how large it is.

 $f(x)=\ln(1+x)$, and you can check by taking derivatives that $f^{(4)}(x)=rac{-6}{(1+x)^4}$. Thus, $f^{(4)}(z)=rac{-6}{(1+z)^4}$. So

$$|R_3(x;0)| = \left| \frac{\frac{-6}{(1+z)^4}}{4!} (x-0)^4 \right| = \frac{1}{4} \frac{1}{(1+z)^4} |x|^4.$$

Since I want the largest possible error, I want to see how large the terms $\frac{1}{(1+z)^4}$ and $|x|^4$ could be.

Remember that z is between 0 and x, and $0 \le x \le 1$. So

$$0 < z < x \le 1$$
.

First, $0 \le x \le 1$ means that

$$|x|^4 \le 1^4 = 1.$$

How large can $\frac{1}{(1+z)^4}$ be, given that 0 < z < 1? As z goes from 0 to 1, $\overline{(1+z)^4}$ decreases, so it is largest if z=0. This means that

$$\frac{1}{(1+z)^4} \le 1.$$

In general, to estimate the z-term you'd have to find the absolute max on the interval for z. If you know that the z-term is either increasing or decreasing, you can check its value at the interval endpoints, and take the largest.

Using the estimates for $\frac{1}{(1+z)^4}$ and $|x|^4$, I have

$$|R_3(x;0)| \le \frac{1}{4} \cdot 1 \cdot 1 = \frac{1}{4}.$$

The error is no greater than $\frac{1}{4}$.

I can check this by plotting the difference between the $3^{\rm rd}$ degree Taylor polynomial and $\ln(1+x)$.

From the picture, it looks as though the maximum error is around 0.15 (in absolute value). The estimated error was pretty conservative. \Box

Example. (a) Compute $R_3(x;0)$ for $f(x) = \frac{1}{2+x}$, and express f(x) using $p_3(x)$ and the remainder term.

Since I want $R_3(x;0)$, I need the fourth derivative:

$$f'(x) = \frac{-1}{(2+x)^2}, \quad f''(x) = \frac{2}{(2+x)^3}, \quad f'''(x) = \frac{-6}{(x+x)^4}, \quad f^{(4)}(x) = \frac{24}{(2+x)^5}.$$

Thus,

$$R_3(x;0) = \frac{24}{(2+z)^5} \cdot \frac{1}{4!} x^4 = \frac{x^4}{(2+z)^5}.$$

Now

$$\frac{1}{2+x} = \frac{1}{2} \cdot \frac{1}{1 - \left(-\frac{x}{2}\right)} = \frac{1}{2} \cdot \left(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{8} + \cdots\right).$$

Therefore,

$$\frac{1}{2+x} = \frac{1}{2} \cdot \left(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{8}\right) + \frac{x^4}{(2+z)^5},$$

where z is between 0 and x. \square

(b) Use $R_3(x;0)$ to approximate the largest error that occurs in using $p_3(x)$ to approximate $\frac{1}{2+x}$ for

0 < x < 1.

I have

$$|R_3(x;0)| = \frac{1}{(2+z)^5} \cdot |x|^4.$$

I'll estimate the z and x-terms one at a time.

Since 0 < x < 1, I have

$$|x|^4 \le 1^4 = 1.$$

Since $0 \le x \le 1$ and z is between 0 and x, it follows that $0 \le z \le 1$. On this interval, $\overline{(2+z)^5}$ decreases, so it attains its largest value at z=0. Therefore,

$$\frac{1}{(2+z)^5} \le \frac{1}{(2+0)^5} = \frac{1}{32}.$$

Thus,

$$|R_3(x;0)| \le \frac{1}{32} \cdot 1 = \frac{1}{32}.$$

The error is no greater than $\frac{1}{32}$. \Box

Example. Find the smallest value of n for which the n^{th} degree Taylor series for $f(x)=e^{2x}$ at c=0 approximates e^{2x} on the interval $0 \le x \le 1$ with an error no greater than 10^{-6} .

Notice that

$$f'(x) = 2e^{2x}, \quad f''(x) = 2^2e^{2x}, \quad f^{(3)}(x) = 2^3e^{2x}, \quad \dots, \quad f^{(n)}(x) = 2^ne^{2x}.$$

So

$$|R_n(x;0)| = \left| \frac{2^{n+1}e^{2z}}{(n+1)!}x^{n+1} \right| = \frac{2^{n+1}e^{2z}}{(n+1)!}|x|^{n+1} \text{ for } 0 \le z \le x \le 1.$$

First, I'll estimate how large the z and x-terms can be. Since $0 \le z \le 1$ and since e^{2z} is an increasing function, I have

$$e^{2z} \le e^2$$
.

Since $0 \le x \le 1$ and x^n is an increasing function, I have

$$|x|^{n+1} \le 1^{n+1} = 1.$$

Thus,

$$|R_n(x;0)| \le \frac{2^{n+1}e^2}{(n+1)!}.$$

Therefore, I want the smallest n for which

$$\frac{2^{n+1}}{(n+1)!} < 10^{-6}.$$

I can't solve this inequality algebraically, so I'll have to use trial-and-error:

n	$2^{n+1}e^2$
	(n+1)!
1	14.7781121978613
2	9.852074798574201
3	4.9260373992871
4	1.97041495971484
5	0.65680498657161
6	0.18765856759189
7	0.046914641897972
8	0.010425475977327
9	0.0020850951954654
10	$3.7910821735735262 \cdot 10^{-4}$
11	$6.3184702892892108 \cdot 10^{-5}$
12	$9.7207235219833994 \cdot 10^{-6}$
13	$1.3886747888547714 \cdot 10^{-6}$
14	$1.8515663851396951 \cdot 10^{-7}$

The smallest value of n is n=14. \square

You can also use the Remainder Term to estimate the error in using a Taylor polynomial to approximate an integral.

Example. Calvin wants to impress Phoebe Small by using the MacLaurin series for e^{2x} to approximate

 $\int_0^{0.5} xe^{2x} dx$ to within 0.0001. How many terms of the series should he use?

The Maclaurin series for e^{2x} is

$$e^{2x} = \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}.$$

(Substitute u = 2x in the standard series for e^u .) I want to know how many terms of the series to use to approximate the integral.

Since $f(x) = e^{2x}$, $f'(x) = 2e^{2x}$, $f''(x) = 2^2e^{2x}$, and in general, $f^n(x) = 2^ne^{2x}$. Therefore,

$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(z)(x-c)^{n+1} = \frac{1}{(n+1)!} \cdot 2^n \cdot e^{2z} \cdot x^{n+1}.$$

In the integral, x goes from 0 to 0.5, and z is a number between 0 (the expansion point) and x. Therefore, I know that z is a number between 0 and 0.5. Taking the worst possible case, the largest e^{2c} could be is $e^{2\cdot0.5}=e$. Replace e^{2z} with e to obtain

$$R_n(x) \le \frac{1}{(n+1)!} \cdot 2^n \cdot e \cdot x^{n+1}.$$

Insert this into the integral (remembering to multiply by x):

error
$$\leq \int_0^{0.5} \frac{1}{(n+1)!} \cdot 2^n \cdot e \cdot x^{n+2} dx = \frac{1}{(n+1)!} 2^{n+1} \cdot e \cdot \frac{1}{n+3} \cdot (0.5)^{n+3}.$$

I want the smallest value of n for which this ugly mess is less than 0.0001. The easiest way to do this is by trial: Plug in successive values of n until you discover that n = 6 is the smallest value that works. \square

Send comments about this page to: Bruce.Ikenaga@millersville.edu.

Bruce Ikenaga's Home Page

Copyright 2013 by Bruce Ikenaga