## Kernel Independant Fast Multipole Method

Camilo Valenzuela Carrasco

Universidad Técnica Federico Santa Maria

31 de julio de 2017

### N-Body Problem

Dado N densidades  $\phi_i$  en los puntos  $y_i$ , se desea calcular el potencial  $q_i$  en un punto target  $x_i$  inducido por una funcion de Kernel G

$$q_i = q(x_i) = \sum_{j=1}^{N} G(x_i, y_j) \phi(y_j), \quad i = 1..N$$
 (1)

La implementación directa de esta suma tiene complejidad  $O(N^2)$ 

## Fast Multipole Method

Fast Multipole Method (FMM) es un algoritmo que busca reducir la complejidad del cálculo de  $O(N^2)$  a O(N). Este algoritmo se puede dividir en los siguientes pasos:

- Construcción de un árbol que particiona el dominio.
- Calculo de los Monopolos (P2M)
- Recursivamente avanzar sobre el árbol (M2M)
- Realizar la expansión local (M2L)
- Bajar el árbol (L2L)
- Evaluar el Far-Field (L2P) y el Near-Field de forma directa.



#### Problema con FMM

Requiere un trabajo analítico para crear las expansiones de los sources y targets, además de las transformaciones de M2M, M2L, L2L.

## Kernel Independant FMM (KIFMM)

- Dado una funcion de Kernel G(x, y)
- Se asume que puede ser transformada en un algoritmo FMM. Pero no se conocen sus expansiones ni transformaciones de forma analítica.
- Se construye un algoritmo similar a FMM, buscando una complejidad O(N)

# KIFMM (Ying et al.)

- Algoritmo basado en el Adaptive FMM donde la construcción del árbol es similar a Treecode.
- Reemplaza las expansiones y transformaciones del FMM por equivalent density representation.

### Equivalent Density - Multipolo

• Dado un conjunto de sources  $y_i$  dentro de la caja B queremos calcular

$$\sum_{i\in I_s^B} G(x,y_i)\phi_i = q^{B,u}$$

- Calculamos esto en un conjunto de puntos en una superficie que encierra B (*check surface*). Por lo que la suma anterior se tiene que cumplir para todo  $x \in x^{B,u}$ .
- Elegimos ahora una superficie entre la caja y nuestra *check surface* que llamaremos *equivalent surface*.
- Estas superficies son elegidas tal que cumplan

$$\int_{y^{B,u}} G(x,y_i) \phi^{B,u}(y) dy = \sum_{i \in I^B} G(x,y_i) \phi_i = q^{B,u} \ \ \text{para cualquier} \ x \in x^{B,u}$$

◆ロト 4周ト 4 重ト 4 重ト 重 9000

### **Equivalent Density - Local**

Similar al Monopolo elegimos una check surface y una equivalent surface la diferencia es que la check surface queda entre la caja y la equivalent surface.

Al igual que el caso anterior se tiene que cumplir que

$$\int_{y^{B,d}} G(x,y_i) \phi^{B,d} dy = \sum_{i \in I_s^B} G(x,y_i) \phi_i = q^{B,d}$$



#### **Transformaciones**

 M2M: El potencial de la caja padre tiene que ser igual al potencial equivalente del hijo

$$\int_{y^{B,u}} G(x,y)\phi^{B,u}(y)dy = \int_{y^{A,u}} G(x,y)\phi^{A,u}(y)dy$$

 M2L: El potencial de la caja source tiene que ser igual al potencial de la caja target.

$$\int_{y^{B,u}} G(x,y)\phi^{B,u}(y)dy = \int_{y^{A,d}} G(x,y)\phi^{A,d}(y)dy$$

L2L: Igual que en M2M pero en caso local

$$\int_{y^{B,d}} G(x,y)\phi^{B,d}(y)dy = \int_{y^{A,d}} G(x,y)\phi^{A,d}(y)dy$$





#### Resolviendo las ecuaciones

Luego de discretizar las ecuaciones se pueden representar de forma matricial de la forma

$$K\phi = q$$

Para resolverlas de forma estable se ocupa

$$\phi = (\alpha I + K^*K)^{-1} K^*q$$

## Algoritmo

- Crear árbol del dominio
- Por cada hoja B calculamos
  - evalaur  $q^{B,u}$  en los puntox  $x^{B,u}$  usando  $\{\phi_i, i \in I_s^B\}$
  - ullet resolver la ecuación integral para obtener  $\phi^{B,u}$  para que sea igual a  $q^{B,u}$
- Se realiza M2M
  - calcular  $q^{B,u}$  utilizando los  $\phi^{C,u}$  de los hijos C de la caja B.
  - resolver la eucación para obtener  $\phi^{B,u}$
- Se realiza M2L
- 5 Se baja por el árbol con L2L.
- Evaluamos el farfield con L2P y el nearfield con evaluación directa.
- Llevar las densidades equivalentes a los targets (M2L).

#### **Conclusiones**

- Utilizar FMM con un nuevo kernel necesita un gran trabajo analítico.
- Existen algunos FMM independientes del Kernel.
- Los KIFMM no siempre obtienen la misma complejidad o precisión que FMM.