FILIP WÓJCIK
SENIOR DATA SCIENTIST

FILIP.WOJCIK@OUTLOOK.COM

DATA ANALYSIS IN PYTHON

Filip Wójcik, filip.wojcik@outlook.com

AGENDA

- 1. What is python and why it's so popular in data science?
- 2. Getting started with tools:
 - ANACONDA PACKAGE
 - **▶** JUPYTER NOTEBOOKS
 - PYCHARM
- 3. Python basics
- 4. Intro to PANDAS & data frames basic data structures
 - Reading data from different sources
 - Data filtering and projection
 - Data aggregation
 - Calculated columns and transformations
 - Dealing with missing values
 - Using custom functions
 - Joining data frames
 - Split Apply Combine patterns
 - Pivoting tables

- 5. Intro to data visualizations
 - Different visualization engines in Python
 - Pandas built-in visualization package
 - Matplotlib & friends
 - **▶** Bokeh user–friendly interactive dashboards
- 6. Basic statistical analysis
 - StatModels vs Scipy.stats
 - **▶** Basic mathematical statistics: hypothesis testing
 - ► T-tests, comparing variances
 - Logistic regression
- 7. Kaggle case study: Titanic disaster
 - Predicting, who will survive the disaster
 - Exploratory analysis
 - Dealing with missing observations
 - Hypothesis testing and inference

PART 1

INTRO

Filip Wójcik, filip.wojcik@outlook.com

WHAT IS PYTHON AND WHY IT'S SO POPULAR

- Developed in 1991
- Key principles:
 - object-oriented and functional as well
 - readability
 - clear syntax
 - fast to learn + fast to code
- Open source language
- Very active community
- Universal and powerful:
 - Data science & analysis
 - Web applications
 - Games
 - Enterprise applications
 - Different systems compatibility

Data Science Summer School 2017
Filip Wójcik, filip.wojcik@outlook.com

WHAT IS PYTHON AND WHY IT'S SO POPULAR

Aug 2017	Aug 2016	Change	Programming Language	Ratings	Change
1	1		Java	12.961%	-6.05%
2	2		С	6.477%	-4.83%
3	3		C++	5.550%	-0.25%
4	4		C#	4.195%	-0.71%
5	5		Python	3.692%	-0.71%
6	8	^	Visual Basic .NET	2.569%	+0.05%
7	6	~	PHP	2.293%	-0.88%
8	7	~	JavaScript	2.098%	-0.61%
9	9		Perl	1.995%	-0.52%
10	12	^	Ruby	1.965%	-0.31%
11	14	^	Swift	1.825%	-0.16%
12	11	~	Delphi/Object Pascal	1.825%	-0.45%
13	13		Visual Basic	1.809%	-0.24%
14	10	*	Assembly language	1.805%	-0.56%
15	17	^	R	1.766%	+0.16%
16	20	*	Go	1.645%	+0.37%
17	18	^	MATLAB	1.619%	+0.08%
18	15	•	Objective-C	1.505%	-0.38%
19	22	^	Scratch	1.481%	+0.43%
20	26	*	Dart	1.273%	+0.30%

Source: Tiobe Index, https://www.tiobe.com/tiobe-index/

Filip Wójcik, filip.wojcik@outlook.com

Data Science Summer School 2017

WHAT IS PYTHON AND WHY IT'S SO POPULAR

The Python Programming Language

Some information about Python:

Source: Tiobe Index, https://www.tiobe.com/tiobe-index/

Filip Wójcik, filip.wojcik@outlook.com

KEY PYTHON TOOLS FOR DATA SCIENCE

Pandas

- 1. General data manipulation package
- 2. Data reading & importing

- 1. Scientific package
- 2. Different mathematical functions for specific use cases (statistics, electronics, physics, etc.)
- 3. Wide variety of functions

- 1. Core machine learning library
- 2. A lot of different, useful algorithms
- 3. Clear API and interfaces
- 4. Considered to be state-of-the-art tool

Statsmodels

- 1. More "traditional" statistics-oriented than scikitlearn
- 2. Used mostly for statistical inference
- 3. API close to R a lot of inspiration from statistical

- 1. Core visualization package
- 2. One of the most useful ones in plotting data

- 1. Part of the spicy package
- 2. Core matrix & vectors library
- 3. Numerical optimization engines
- 4. Very efficient and fast

PART 2

GETTING STARTED WITH TOOLS

Filip Wójcik, filip.wojcik@outlook.com

ANACONDA – ULTIMATE SCIENTIFIC PYTHON ECOSYSTEM

- Developed by Continuum Analytics
- Open source, free Python and R distribution
- Multi-platform (Mac OS/Win/Linux)
- Integrated with core analytical tools:
 - Jupyter

- Key libraries (sklearn/scipy/numpy/ pandas/etc.)
- Built-in Spyder IDE & Rstudio

Filip Wójcik, filip.wojcik@outlook.com

JUPYTER NOTEBOOKS - COMPLEX DATA SCIENCE ENVIRONMENT

- Based on older IPython notebooks
- Complex environment for Data Scientists:
 - visualizations
 - combines code + documentation
- Works with Python + R
- Very simple code assist + intellisense
- Available as an online tool e.g.
 <u>kaggle.com</u>, <u>community.databricks.com</u>

Filip Wójcik, filip.wojcik@outlook.com

PYCHARM - COMPLEX PROGRAMMING IDE

- Full programming IDE
- Community (free)/Commercial editions
- Designed to embed different features:
 - for web developers
 - for applications developers
 - for data scientists: notebooks/ visualizations/graphs

Filip Wójcik, filip.wojcik@outlook.com

SETUP TIME =)

<title>code ninja</title>

PART 3

PYTHON BASICS

BASICS - DATA TYPES & DECLARATIONS

Declaring variables

```
1. x = 'text variable'
2.
3. i = 12 #numeric variable
4.
5. j = [1, 2, 3] # array
6.
7. k = ('a', 'b', 'c') # tuple
```

Specyfing type (3.6):

```
1. x1: int = 3
2. txt1: str = "aaa"
3. lst1: list = [ 1, 2, 3 ]
```

DATA TYPE

```
DAIATITE
```

```
numbers
```

string

lists

```
tuples
```

```
dictionaries
```

```
booleans
```

EXAMPLE

	71-	

str1 = "a"

str2 = "aaa"

Str3 =	ada ada			
x1 = 1				
x2 = 10	. 4			
x3 = 12	f			

```
list_of_numbers = [ 1, 2, 3 ]
list_of_strings = [ "a", "b", "c" ]
list_of_mixed_types = [ "A", 1, "B", 2 ]
```

```
tuple = ("a", 1, "b", 3)
```

```
dictionary = {
  "key1": 1,
  "key2": 2,
  "key3": "value3"
```

True

False

BASICS - COLLECTIONS

Operations on lists:

Declaration	my_list = ['a', 'b', 'c', 'd', 'e']	['a', 'b', 'c']
Indexing	<pre>my_list[0] my_list[1] my_list[2]</pre>	a' 'b' 'c'
Appending (inplace)	my_list.append('d')	['a', 'b', 'c', 'd']
Concatenation my_list + ['e']		['a', 'b', 'c', 'd', 'e']
Checking existence 'a' in my_list 'xxx' in my list		True False

BASICS - COLLECTIONS

Operations on dictionaries:

```
my_dict = {
                          'key1': 10,
                          'key2': 20,
   Declaration
                                                                  {'key1': 10, 'key2': 20, 'key3': 30}
                          'key3': 30
                      # unsafe, may throw error
                      my dict['key1']
    Indexing
                                                                                        10
                      # safer option
                      my dict.get('key1', 'no such value!')
                                                                  {'key1': 10, 'key2': 20, 'key3': 30,
                      my_dict['keyX'] = 111
 Adding element
                                                                  'keyX': 111}
                       'key1' in my_dict
                                                                                       True
Checking existence
                                                                                       False
                       'key1' in my_dict
```

BASICS - BASIC OPERATIONS

Operator	Description	Example
+ Addition	Adds values on either side of the operator.	a + b = 31
- Subtraction	Subtracts right hand operand from left hand operand.	a – b = -11
* Multiplication	Multiplies values on either side of the operator	a * b = 210
/ Division	Divides left hand operand by right hand operand	b / a = 2.1
% Modulus	Divides left hand operand by right hand operand and returns remainder	b = 5 a = 2 b % a = 1
** Exponent	Performs exponential (power) calculation on operators	a**b =10 to the power 20

BASICS - CONTROL STRUCTURES

```
CONDITIONALS: if statement
                                         CONDITIONALS: multiple if-else
                                         if condition1:
if some_condition:
                                             # action 1
    # action if true
                                         elif condition2:
else:
                                            # action 2
    # action if false
                                         else:
                                            # default action
x = 10
                                        x = 10
y = 5
                                        y = 5
                                        z = 1
if x < y:
    print("x is lower than y")
                                        if x < y:
else:
                                             print("x is lower than y")
    print("y is bigger")
                                        elif x < z:
                                             print("x is lower then z")
                                        else:
                                           print("x is the biggest one :) ")
```

print("y is bigger")

BASICS - CONTROL STRUCTURES

ITERATION: simple loops

for element in collection:
 # process element

lst = [1, 2, 3]
for elem in lst:
 print(elem)

ITERATION: loop with index

```
for idx, element in enumerate(collection):
    # process idx, process elem
```

```
lst = [ "A" , "B", "C" ]
for idx, elem in enumerate(lst):
    print(idx)
    print(elem)
    print("----")
```

BASICS - CONTROL STRUCTURES

ITERATION: keys in dictionary

```
for key, value in my_dict.items():
    # process key, process value
```

```
my_dict = { 'key1': 1, 'key2': 2, 'key3': 3}
total = 0
for key, value in my_dict.items():
    print("key= ", key)
    total += value
print(total)
```

BASICS - FUNCTIONS

- "First class citizens" behave like objects
- Can be passed around like variables
- Accept arguments and return values
- WATCH OUT: mutable object (lists, instances) are passed to function by reference - are modified inside!

def add_numbers(x, y):
 return x + y

BASICS - DATA TYPES & DECLARATIONS

Organizing programs using indents not braces (Java/C#):

```
1. variable1 = 1
2. def some_function(x):
3.  # inner block - inside function
4.  return x + 3
5. some_function(variable1)
```

By default python files are modules, which can be referenced:

23

Filip Wójcik, filip.wojcik@outlook.com

Data Science Summer School 2017

CODING TIME =)

<title>code ninja</title>

$pands \\ y_i t = \beta' x_{it} + \mu_i + \epsilon_{it}$

PART 4

INTRO TO PANDAS

Data Science Summer School 2017
Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - BASIC DATA STRUCTURE

- Data frame basic data structure for pandas and other analytical libraries
- SQL-like table or Excel Sheet
- Columnary data structure optimized to store data in columns:
 - easier to compute per-column statistics
 - easier to find correlations between different attributes

Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - BASIC DATA STRUCTURE

Filip Wójcik, filip.wojcik@outlook.com

Data Science Summer School 2017

DATA FRAME - CALL BY INDEX NAME

my_data_frame.loc[['a', 'c'], ['Name', 'Surname']]

index\column	Name	Surname	Age	Inserted at
а	Agent	Smith	40	20.10.2016
b	Mr.	Bean	45	02.01.2017
С	James	Bond	NULL	04.06.2011
d	John	Wayne	42	01.01.2010

Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - CALL BY POSITION (ZERO-INDEXED)

my_data_frame.iloc[[0, 2], [0,1]]

index\column	Name	Surname	Age	Inserted at
а	Agent	Smith	40	20.10.2016
b	Mr.	Bean	45	02.01.2017
С	James	Bond	NULL	04.06.2011
d	John	Wayne	42	01.01.2010

Data Science Summer School 2017
Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - CALL BY SLICER

index\colum	n Name	Surname	Age	Inserted at	
а	Agent	Smith	40	20.10.2016	
b	Mr.	Bean	45	02.01.2017	
С	James	Bond	NULL	04.06.2011	
d	John	Wayne	42	01.01.2010	

Data Science Summer School 2017
Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - GET COLUMN SHORTCUT

my_data_frame[["Name", "Age"]]

index\column	Name	Surname	Age	Inserted at
а	Agent	Smith	40	20.10.2016
b	Mr. Bean		45	02.01.2017
С	James	Bond	NULL	04.06.2011
d	John	Wayne	42	01.01.2010

Filip Wójcik, filip.wojcik@outlook.com

Data Science Summer School 2017

DATA FRAME - PER COLUMN OPERATIONS

my_data_frame["Age"] + 10

index\column	Name	Surname	Age	Inserted at
а	Agent	Smith	40 + 10	20.10.2016
b	Mr.	Bean	45 + 10	02.01.2017
С	James	Bond	NULL	04.06.2011
d	John	Wayne	42 + 10	01.01.2010

Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - PER COLUMN OPERATIONS

my_data_frame["Name"] + " " + my_data_frame["Surname"]

index\column	Name	Surname	Age	Inserted at	
а	Agent	Smith	40	20.10.2016	Agent Smith
b	Mr.	Bean	45	02.01.2017	Mr. Bean
С	James	Bond	NULL	04.06.2011	James Bond
d	John	Wayne	42	01.01.2010	John Wayne

Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - PER COLUMN/PER ROW OPERATIONS

Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - PER COLUMN/PER ROW OPERATIONS

Axis 1

а	2522
b	5029
С	9542
d	9035

Filip Wójcik, filip.wojcik@outlook.com

DATA FRAME - PER COLUMN/PER ROW OPERATIONS

Axis 1

		index\column	Name	Surname	
Axis 0		а	Thomas	Anderson	Thomas Anderson
		b	Agent	Smith	Agent Smith
		С	The	Oracle	The Oracle
	,	d	The	Architect	The Architect

my_data_frame.apply(lambda row: row['name'] + ' ' + row['surname'], axis=1)

Filip Wójcik, filip.wojcik@outlook.com

Axis 1

DATA FRAME - PER COLUMN/PER ROW OPERATIONS

Tips & tricks how to use per column/per row operations:

- Use per axis 1 (per row) operations when:
 - you want to calculate MULTIPLE COLUMNS INTERACTION
 - your function depends (needs to "know") values of multiple columns

- Use per axis 2 (per column) operations when:
 - you want to calculate something nonstandard not included in a library
 - you want to drop columns

DATA FRAME - JOINING FRAMES

pandas.merge(df1, df2, how=METHOD, on=KEY)

key	c1
а	1
С	7
d	10

key	c2
а	20
b	30
С	40

LEFT

Keep all rows from "left" data frame

and try to match rows on the right

SPLIT-APPLY-COMBINE PATTERN

Filip Wójcik, filip.wojcik@outlook.com

SPLIT-APPLY-COMBINE PATTERN: COMMON AGGREGATIONS

Filip Wójcik, filip.wojcik@outlook.com

SPLIT-APPLY-COMBINE PATTERN: COMMON AGGREGATIONS

input_df["data"].groupby('key").sum()

Filip Wójcik, filip.wojcik@outlook.com

SPLIT-APPLY-COMBINE PATTERN: CUSTOM AGGREGATIONS

```
my_data_frame[ "VALUE_COLUMN_HERE"]
 .groupby(my_data_frame[ "KEY_COLUMN_HERE"])
 .agg({
                                               SUM()
   "column1": [FUNCITONS],
                                               LEN
   "column2": [FUNCTIONS],
                                               MEAN
   "columnN": [FUNCTIONS]
                                              MEDIAN
 })
```

Filip Wójcik, filip.wojcik@outlook.com

SPLIT-APPLY-COMBINE PATTERN: MULTIPLE AGGREGATIONS

key	c1	c2	c 3
а	1	2	3
b	4	5	6
а	7	8	9
b	10	11	12

key	c1	c2	сЗ
а	1	2	3
а	7	8	9

key	c1	c2	c3
b	4	5	6
b	10	11	12

key	(:1	c2	С	3
OPER	sum	mean	sum	std	sum
а	8	4	10	3	12

C1: [sum, mean]

C2: [sum]

C3: [std, sum]

key	c1		c2	С	3
OPER	sum	mean	sum	std	sum
а	8	4	10	3	12
b	14	7	16	3	18

key	(:1	c2	С	3
OPER	sum	mean	sum	std	sum
b	14	7	16	3	18

Filip Wójcik, filip.wojcik@outlook.com

PIVOTING TABLES

- Pivot tables concept in Pandas is exactly the same as in MS Excel or databases
- Shifting rows/columns and values
- Allows to do multiple drill downs or data projections from different perspectives
- Best explained by example

Filip Wójcik, filip.wojcik@outlook.com

PIVOTING TABLES

Sex	Survived	Passenger Class
male	TRUE	1
male	FALSE	1
female	TRUE	2
female	TRUE	3
male	FALSE	3

Task: count passengers who survived, and group them according to their class and sex

Filip Wójcik, filip.wojcik@outlook.com

CODING TIME =)

<title>code ninja</title>

PART 5

DATA VISUALIZATIONS

Filip Wójcik, filip.wojcik@outlook.com

ENGINES AND APIS

- There are different plotting engines in Python
- Some of them are simple, to be used as "sketches", some are more sophisticated
- You don't have to memorize exact specifications of each engine:
 - each engine capabilities
 - where to find good reference & documentation

Filip Wójcik, filip.wojcik@outlook.com

ENGINES AND APIS

	PANDAS PLOTTNIG API	MATPLOTLIB
Туре	Built-in pandas	External library
Use cases	Data frame visualiztions	General-scientific library
Complexity	Very simple	Complex
Extensibility	Small	Large

Filip Wójcik, filip.wojcik@outlook.com

PANDAS PLOTTING ENGINE

- Based on a data frame columns can plot only numerical values
- Selecting columns to be visualized
- Number of predefined plots and charts
- User can make some simple customizations to the plot

Filip Wójcik, filip.wojcik@outlook.com

Data Science Summer School 2017

PANDAS PLOTTING ENGINE

PANDAS PLOTTING ENGINE

example_df["age"].plot(kind='bar', title='Age by person')

key	age	experience	salary	position
person1	20	2	2500	tester
person2	25	4	5000	tester
person3	35	7	9500	developer
person4	31	4	9000	developer

PANDAS PLOTTING ENGINE

df[['experience', 'salary']].plot(kind="scatter", x='experience', y='salary')

key	age	experience	salary	position
person1	20	2	2500	tester
person2	25	4	5000	tester
person3	35	7	9500	developer
person4	31	4	9000	developer

PANDAS PLOTTING ENGINE

df[['position', 'salary']].boxplot(by='position')

key	age	experience	salary	position
person1	20	2	2500	tester
person2	25	4	5000	tester
person3	35	7	9500	developer
person4	31	4	9000	developer

Boxplot grouped by position

PANDAS PLOTTING ENGINE

df[['experience']].plot(kind='pie')

key	age	experience	salary	position
person1	20	2	2500	tester
person2	25	4	5000	tester
person3	35	7	9500	developer
person4	31	4	9000	developer

PART 6

DATA ANALYSIS

Filip Wójcik, filip.wojcik@outlook.com

LIBRARIES AND APIS

- Statistical problems can be addressed in Python using many different libraries
- Each of this libraries concentrates on different aspects of the analysis
- One should know which tool to use in what kind of situation and use case

Filip Wójcik, filip.wojcik@outlook.com

Data Science Summer School 2017

LIBRARIES AND APIS

	Scipy	Statsmodels	Sklearn
Use cases	General scientifical research (math/stats/physics)	Mathematical statistics	Machine learning
Orientation	Elementary operations/ distributions	Statistical tests	Full machine learning process
Complexity of API	Moderate	Moderate	Simple
Documentation	Well-maintatined and precise	Fragmentary and hard to find	Very clear

T-TEST COMPARING MEANS

key	position	salary
0	developer	8500
1	developer	8000
2	developer	9200
3	developer	7700
4	developer	9900
5	tester	5200
6	tester	3200
7	tester	2000
8	tester	9000
9	tester	7700

GROUP	MEAN	STD
developer	8660	896,1026727
tester	5420	2944,825971

Filip Wójcik, filip.wojcik@outlook.com

T-TEST COMPARING MEANS

key	position	salary
0	developer	8500
1	developer	8000
2	developer	9200
3	developer	7700
4	developer	9900
5	tester	5200
6	tester	3200
7	tester	2000
8	tester	9000
9	tester	7700

Scipy API

```
import scipy.stats as st

st.ttest_ind(
          df2.salary[df2.position == 'developer'],
          df2.salary[df2.position == 'tester'],

          equal_var=True
          )
```

STATISTICAL TEST CONFIGURATION OPTIONS

Statsmodels API

Ttest_indResult(statistic=2.3536419878265598, pvalue=0.046416618432144868)

Filip Wójcik, filip.wojcik@outlook.com

T-TEST COMPARING MEANS

	High School	Bachelors	Masters	Ph.d.	Total
Female	60	54	46	41	201
Male	40	44	53	57	194
Total	100	98	99	98	395

Scipy API

import scipy.stats as st chi2_stat, pval, deg_fr, expected_counts = st.chi2_contingency(df3)

print("Chi2 stat: {0} \nPval: {1}\nDegr.free: {2}".format(

......

Chi2 stat: 8.006066246262538 Pval: 0.045886500891747214

chi2 stat, pval, deg fr))

Degr.free: 3

Statsmodels API

```
chi2 stat, pval = proportions chisquared(df3)
print("Chi2 stat: {0} \nPval: {1}".format(
        chi2 stat, pval))
Chi2 stat: 8.006066246262538
Pval: 0.045886500891747214
Degr.free: 3
```

from statsmodels.stats.proportion import proportions_chisquare

Filip Wójcik, filip.wojcik@outlook.com

LINEAR REGRESSION

- Fitting linear model to match the data Oridany Least Squares analysis
- "Classical" statistical procedure well known, and well described
- It can be approached in two ways:
 - Statsmodels more mathematically oriented. Detailed insights into fitted line properties
 - Sklearn more task/result oriented approach. Easy to train and give results

Filip Wójcik, filip.wojcik@outlook.com

LINEAR REGRESSION

- Linear regression (OLS) in three bullet-points:
 - Take x matrix independent features & y expected values
 - Estimate regression line coefficients, that try to summarize the data
 - Calculate predicted y-values

Filip Wójcik, filip.wojcik@outlook.com

LINEAR REGRESSION

$$y_i = eta_0 \mathbb{1} + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

Assumptions:

LINE

Linear relationship

Independent error terms

Normal distribution of errors

Equal variances of errors

$$\beta_1 = \frac{\sum (x_i - \bar{X})(Y_i - \bar{Y})}{\sum (x_i - \bar{X})^2}$$

$$\beta_0 = \bar{Y} - \beta_1 \, \bar{X}$$

Filip Wójcik, filip.wojcik@outlook.com

LINEAR REGRESSION

$$SSTO = \sum (y_i - \bar{y})$$

$$SSR = \sum (\bar{y}_i - \hat{y}_i)^2$$

$$SSE = \sum (y_{ij} - \hat{y}_{ij})^2$$

$$SSTO = SSR + SSE$$

$$\sum (Y_i - \bar{Y})^2 = \sum (\hat{Y}_i - \bar{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$

$$= \sum [(\hat{Y}_i - \bar{Y}) + (Y_i - \hat{Y}_i)]^2$$

$$= \sum (\hat{Y}_i - \bar{Y})^2 + (Y_i - \hat{Y}_i)^2 + 2(\hat{Y}_i - \bar{Y})(Y_i - \hat{Y}_i)$$

$$= \sum (\hat{Y}_i - \bar{Y})^2 + (Y_i - \hat{Y}_i)^2 + 0$$

= SSR + SSE

Filip Wójcik, filip.wojcik@outlook.com

LINEAR REGRESSION

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$Y = X\beta + \varepsilon$$

X			Y		
Company	Popularity	Core products count	Revenue Q1 2016 [Billion USD]		
Apple	7	12	51		
Alphabet	10	4	20		
Microsoft	6.5	8	21		

LINEAR REGRESSION

Sklearn API

```
CREATING
                                                        PREDICTOR OBJECT
from sklearn.linear_model import LinearRegression
from sklearn.metrics import regression
lr = LinearRegression(normalize=True)
                                                            PREDICTING NEW
                                                            OBSERVATIONS
                                                                              30
fitted = lr.fit(boston_df, y)
predicted = fitted.predict(boston df)
                                                                              20
regression.mean_squared_error(y, predicted)
>> 27.4
regression.r2_score(y, predicted)
>> 0.74
                                                                MANUALLY
                                                             CHEKING PREDICTION
                                                                                       10
                                                                                                 20
                                                                                                           30
plt.plot(x=y, y=predicted)
                                                                 METRICS
```

Filip Wójcik, filip.wojcik@outlook.com

LINEAR REGRESSION

Statsmodels API

```
import statsmodels.api as stm

model = stm.OLS(
    y,
    stm.add_constant(boston_df)
    )

results = model.fit()
print(results.summary())
```

COEFFICIENTS AND THEIR IMPORTANCE

OLS Regression Results

LINEAR FIT QUALITY

=======						=======
Dep. Varia	ble:		y R-squ	ared:		0.741
Model:			OLS Adj.	R-squared:		0.734
Method:		Least Squa	res F-sta	tistic:		108.1
Date:	We	ed, 16 Aug 2	017 Prob	(F-statistic	:):	6.95e-135
Time:		21:01	:31 Log-L	ikelihood:		-1498.8
No. Observ	ations:		506 AIC:			3026.
Df Residua	ls:		492 BIC:			3085.
Df Model:			13	MODEL CON	IPLEXITY	
Covariance	Type:	nonrob	ust			
=======						
	coef	std err	t	<i>P> t </i>	[0.025	0.975]
const	36.4911	5.104	7.149	0.000	26.462	46.520
CRIM	-0.1072	0.033	-3.276	0.001	-0.171	-0.043
ZN	0.0464	0.014	3.380	0.001	0.019	0.073
INDUS	0.0209	0.061	0.339	0.735	-0.100	0.142
CHAS	2.6886	0.862	3.120	0.002	0.996	4.381
NOX	-17.7958	3.821	-4.658	0.000	-25.302	-10.289
RM	3.8048	0.418	9.102	0.000	2.983	4.626
AGE	0.0008	0.013	0.057	0.955	-0.025	0.027
DIS	-1.4758	0.199	-7.398	0.000	-1.868	-1.084
RAD	0.3057	0.066	4.608	0.000	0.175	0.436
TAX	-0.0123	0.004	-3.278	0.001	-0.020	-0.005
PTRATIO	-0.9535	0.131	-7.287	0.000	-1.211	-0.696
В	0.0094	0.003	3.500	0.001	0.004	0.015
LSTAT	-0.5255	0.051	-10.366	0.000	-0.625	-0.426
Omnibus:		178.	029 Durbi	n-Watson:		1.078
Prob(Omnibus): 0.000		000 Jarqu	e-Bera (JB):		782.015	
Skew: 1.521		521 Prob(<i>JB</i>):		1.54e-170	
Kurtosis:		8.	276 Cond.	No.		1.51e+04

PREDICTIVE MODELS BULDING

- Standard steps to build a predictive model with sklean
- Procedure includes:
 - Divide the data into training and testing
 - Train model on training data
 - Check performance on testing data
 - Reiterate if neccessary

PREDICTIVE MODELS BULDING & DATA SCIENCE GENERAL RECAP

