B-spline Lab

An interactive MATLAB tool for B-spline curves 2015, P.J. Barendrecht

1 Introduction

[Todo]

$$C(t) = \sum_{i} P_i B_i(t)$$

Controls (mouse and keyboard) are highlighted in grey, e.g. right click or A.

2 Example

Run BsplineLab.m without providing any arguments. By default, a cubic B-spline curve will be drawn once 5 control points have been positioned (left click).

2.1 Basics

Each control point is assigned a label P_i . Next, the control points are connected by linepieces (edges). The control points and edges constitute what is called the *control polygon*, often referred to as the *control net*. See Figure 2.1.

Before modifying the curve and looking at the other options B-spline Lab has to offer, let us start by taking a closer look at the current curve. The first step is to display the basis functions (B) associated with the default knot-vector³ $\Xi = [0\ 1\ 1\ 2\ 3\ 3\ 3\ 4]$. Each control point P_i is associated with a B-spline basis function $B_i(t)$ which is visualised using colours. See Figure 2.2.

Each B-spline basis function⁴ is piecewise polynomial (concatenated polynomial pieces) joining with – in general – optimal parametric continuity []. The resulting parametric curve inherits these properties.

Each part of the B-spline basis spans the complete space of cubic polynomials⁵. In other words, at each appropriate parameter value 4 B-splines are defined. From Figure 2.2 it follows that the curve consists of two segments. The first segment corresponds to

¹Cubic curves are intuitive to work with for several reasons [].

²This way the curve will consist of two segments, providing us with the possibility to study the continuity of the connection of the two segments.

³In short, a non-decreasing sequence of numbers in parameter space.

 $^{^4}$ "B-spline basis function" is a bit redundant as the B in B-spline stands for basis.

⁵This space can be spanned by different bases, for instance by $\langle 1, x, x^2, x^3 \rangle$.

Figure 2.1: Cubic B-spline curve (orange) and control net (black/grey). Note that the first and last control points $(P_1 \text{ and } P_5)$ are interpolated, whereas the others are only approximated.

Figure 2.2: B-spline functions (B) for d = 3 (cubic) and $\Xi = [0\ 1\ 1\ 1\ 2\ 3\ 3\ 4]$. Each basis function is associated with a control point. For example, the dark-red function is associated with P_1 , the green one with P_4 .

 $t \in [1, 2)$, the second one to $t \in [2, 3)$. It can be useful to plot the endpoints of these (half-open) intervals (J). These points are the images of knots and are sometimes referred to as *joints*. See Figure 2.3.

Close plot of the B-spline basis functions (\mathbb{Q}).

2.2 First derivative, tangent continuity

First derivative (tangent direction and length)

Figure 2.3: Joints (J) of the cubic B-spline curve plotted as solid squares. The control point labels have been disabled (L) several times.

Figure 2.4: Hodograph (H) of the cubic B-spline curve from Figure 2.3. The "+" indicates the origin.

2.3 Adding control points

Information () on the current curve can be displayed (${\tt I}$). Change the knot-vector from [011123334] to [01112345556] (${\tt K}$).

2.4 Evaluating the curve at arbitrary parameter values

Evaluating...

2.5 Moving control points

2.6 Changing knot-spans (local approach)

Change selection mode to edges (E).

2.7 Changing weights

Change selection mode back to vertices ($\tt V$). Reset all weights to unity ($\tt U$).

Figure 2.5: Cubic B-spline, now with two more control points (and hence two more segments).

Figure 2.6: B-splines associated with the new knot-vector. Once again, the colours correspond to the colours of the control points (in Figure 2.5).

Figure 2.7: Evaluation (T) of the B-spline curve at two arbitrary parameter values. The results are indicated with a red "x".

2.8 Changing the knot-vector (global approach)

Define new knot-vector (K), $\Xi = [0112345667]$. :: Deleted 1 control point(s).

Figure 2.8: The second control point (P_2) is selected (right click). This is indicated using a light-grey circle.

Figure 2.9: The selected control point is re-positioned (G and left click), resulting in a modified curve (left). The affected segments of the curve correspond to $t \in [1,3)$ as shown on the right.

2.9 Changing the degree

D

Figure 2.10: An edge of the control net is selected (right click). The edge corresponds to a segment with knot-span 1 as indicated in square brackets.

Figure 2.11: The knot-span is decreased (-), resulting in a modified curve (left). The previous and current curves are compared (right).

Figure 2.12: The third control point (P_3) is selected (right click). The weights are displayed in angle brackets.

Figure 2.13: The weight is increased (scroll up), resulting in a modified curve (left). The old and new curves are compared (left).

Figure 2.14: The cubic B-spline basis corresponding to the current knot-vector and set of weights. As neither the knot-spans nor the weights are uniform anymore we now have a NURBS basis.

Figure 2.15: Cubic B-spline curve after modifying the global knot-vector directly (K). The end-points are no longer interpolated.

Figure 2.16: Basis associated with the previous curve.

Figure 2.17: Hodograph (H).

Figure 2.18: Quadratic B-spine curve.

Figure 2.19: Quadratic B-splines.

Figure 2.20: Schematic overview (F) of the supports of the basis functions and their overlap. It follows that the quadratic curve consists of 5 segments.

3 Extra

3.1 Basis

Plot basis on entire parameter domain (Shift + B)

3.2 Polar forms

Figure 3.1: Blossom labels (L several times).

3.3 Drawing part of a circle

Toggle axis visibility (A)

Snap to grid (#) when re-positioning control points

Restrict movement of control points to X-axis (X) or Y-axis (Y)

Set exact position of selected control point (P)

Set exact weight of selected control point (W)

3.4 Misc

Saving⁶ the curve and/or basis as scalable vector graphic (S) Displaying help (?) [Todo]

⁶Requires external package []