《互换性与测量技术基础》

综合练习题

一、填空题
1. 公差标准是对 几何量误差 的限制性措施,采用相应的技术措施 是贯彻公差与配
合制的技术保证。
2. 轴 Φ 50 js8, 其上偏差为 <u>+0.019</u> mm, 下偏差为 <u>-0.019</u> mm。
3. 由于 <u>径向全跳动误差</u> 包括了圆柱度误差和同轴度误差,当 <u>径向全跳动误差</u> 不大
于给定的圆柱度公差值时,可以肯定圆柱度误差不会超差。
4. 径向圆跳动公差带与圆度公差带在形状方面_相同
<u>固定的</u> 而后者公差带圆心的位置是_ <u>浮动的</u> 。
5. Φ 30 $_{_{0}}^{^{+0.021}}$ mm 的孔与 Φ 30 $_{_{-0.020}}^{-0.007}$ mm 的轴配合,属于 <u>基孔</u> 制 间隙
配合。
6. $Φ$ 50mm 的基孔制孔、轴配合,已知其最小间隙为 0. 05,则轴的上偏差是0.05。
7. 当所有的减环都是最大极限尺寸而所有的减环都是最小极限尺寸时,封闭环必为最大
极限尺寸。
8. 孔、轴的 ES < ei 的配合属于过盈配合,EI > es 的配合属于 <u>间隙</u> 配合。
9. 某轴尺寸为 $\Phi 10^{-0.018}_{-0.028}$ mm,被测要素给定的尺寸公差和形位公差采用最小实体要求,
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 49.972
mm 是,允许的垂直度误差达最大,可达 0.02 mm。
10. 孔、轴配合的最大过盈为-60 μm, 配合公差为 40 μm, 可以判断该配合属于 过渡
配合。
11. 在产品设计中,尺寸链计算是根据机器的精度要求,合理地确定有 <mark>关尺寸的公差和极限</mark>
偏差。
12. 选择基准制时,应优先选用基孔制原因是加工孔比加工轴要困难,所用刀具量
具尺寸规格也多,成本大。
13. 配合公差是指 <u>允许间隙或 过盈的变动量</u> ,它表示 <u>配合精度</u> 的高低。
14. 国家标准中规定表面粗糙度的主要评定参数有 <u>Re</u> 、 <u>Ry</u> 、 <u>Rz</u>
项。
15.
是。
16. Φ $45_0^{+0.005}$ mm 孔的基本偏差数值为 0 , Φ $50_{-0.112}^{-0.050}$ 轴的基本偏差数值为
mm。
后 能 满 足 预 定 的 使 用 性 能 要
N.
<u>水。</u> 。 18

19. φ50H10的孔和φ50js10的轴,已知 IT10=0.100mm,其 ES= <u>+0.100</u> mm,EI= <u>0</u>
$_{\rm mm}$, es= $_{\rm es}$ =
20. 圆柱度和径向全跳动公差带相同点是 <u>公差带形状相同</u> ,不同点是 <u>前者公差带</u>
轴线位置浮动而后者轴线的位置是固定的。
21. 圆度的公差带形状是 <u>半径差为公差值 t 的两个同心圆之间的区域</u> , 圆柱度的
公差带形状是 <u>半径差为公差值 t 的两个同轴圆柱面之间的区域</u> 。
22. 齿轮公法线长度变动 (ΔFw) 是控制 传递 运动 准确性 的指标,公法线平均
长度偏差 (ΔEw) 是控制齿轮副
23. 当所有的减环都是最大极限尺寸而所有的减环都是最小极限尺寸时,封闭环必为_最大
极限尺寸。
24. 孔、轴的 ES <ei 的配合属于<u="">过盈配合,EI>es 的配合属于<u>间隙</u>配合。</ei>
25. 齿轮标记 6DF GB10095-88 的含义是: 6 表示 <u>第 I , II , III 公差组的精度等级</u> ,
D表示 <u>齿厚上偏差</u> ,F表示 <u>齿厚下偏差</u> 。
26. 孔、轴配合的最大过盈为-60 μm,配合公差为 40 μm,可以判断该配合属于 <u>过渡</u> 配合。
27. 在产品设计中,尺寸链计算是根据机器的精度要求,合理地确定有关尺寸的公差和
极限偏差。
28. 选择基准制时,应优先选用基孔制原因是加工孔比加工轴要困难,所用刀具量
具尺寸规格也多,成本大。
29. 尺寸链计算中进行公差校核计算主要是验证_ <u>封闭环基本尺寸,极限偏差和公差是否符</u>
<u>合设计要求</u> 。
10-0.018
30. 某轴尺寸为 $\Phi 10^{-0.018}_{-0.028}$ mm,被测要素给定的尺寸公差和形位公差采用最小实体要求,
20-1.028 mm/ KMXXXXXXXXXXX
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 <u>Ф9.972</u>
6. 3-5
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 Φ 9.972 mm 是,允许的垂直度误差达最大,可达 <u>0.02</u> mm。
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 <u>Ф9.972</u> mm 是,允许的垂直度误差达最大,可达 <u>0.02</u> nm。 31. 实际偏差是指 <u>实际尺寸减去基本尺寸所的的代数差</u> ,极限偏
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 <u>Ф9.972</u> mm 是,允许的垂直度误差达最大,可达 <u>0.02</u> mm。 31. 实际偏差是指 <u>实际尺寸减去基本尺寸所的的代数差</u> ,极限偏差是指 <u>最大或最小极限尺寸减其基本尺寸所得的代数差</u> 。
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 <u>Ф9.972</u> mm是,允许的垂直度误差达最大,可达 <u>0.02</u> mm。 31. 实际偏差是指 <u>实际尺寸减去基本尺寸所的的代数差</u> ,极限偏差是指 <u>最大或最小极限尺寸减其基本尺寸所得的代数差</u> 。 32. 尺寸链计算的目的主要是进行 <u>公差设计</u> 计算和 <u>公差校核</u> 计算。
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 <u>Ф9.972</u> mm 是,允许的垂直度误差达最大,可达 <u>0.02</u> mm。 31. 实际偏差是指 <u>实际尺寸减去基本尺寸所的的代数差</u> ,极限偏差是指 <u>最大或最小极限尺寸减其基本尺寸所得的代数差</u> 。
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 Φ 9.972 mm 是,允许的垂直度误差达最大,可达 0.02 mm。 31. 实际偏差是指 实际尺寸减去基本尺寸所的的代数差 , 极限偏差是指 最大或最小极限尺寸减其基本尺寸所得的代数差 。 32. 尺寸链计算的目的主要是进行 公差设计 计算和 公差校核 计算。 33. Φ 30 $^{+0.012}_{-0.009}$ mm 的孔与 Φ 30 $^{0}_{-0.013}$ mm 的轴配合,属于 基轴 制 过渡
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 $\Phi 9.972$ mm 是,允许的垂直度误差达最大,可达 0.02 mm。 31. 实际偏差是指 实际尺寸减去基本尺寸所的的代数差 ,极限偏差是指 最大或最小极限尺寸减其基本尺寸所得的代数差 。 32. 尺寸链计算的目的主要是进行 公差设计 计算和 公差校核 计算。 33. $\Phi 30^{+0.012}_{-0.009}$ mm 的孔与 $\Phi 30^{-0.013}$ mm 的轴配合,属于 基轴 制 过渡 配合。
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 $\Phi 9.972$ mm 是,允许的垂直度误差达最大,可达 0.02 mm。 31. 实际偏差是指 实际尺寸减去基本尺寸所的的代数差 ,极限偏差是指 最大或最小极限尺寸减其基本尺寸所得的代数差 。 32. 尺寸链计算的目的主要是进行 公差设计 计算和 公差校核 计算。 33. $\Phi 30^{+0.012}_{-0.009}$ mm 的孔与 $\Phi 30^{-0.013}_{-0.013}$ mm 的轴配合,属于 基轴 制 过渡配合。 34. 常用尺寸段的标准公差的大小,随基本尺寸的增大而 增大 ,随公差等级的提高
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 $\Phi 9.972$ mm 是,允许的垂直度误差达最大,可达 0.02 mm。 31. 实际偏差是指 实际尺寸减去基本尺寸所的的代数差 , 极限偏差是指 最大或最小极限尺寸减其基本尺寸所得的代数差 。 32. 尺寸链计算的目的主要是进行 公差设计 计算和 公差校核 计算。 33. $\Phi 30^{+0.012}_{-0.009}$ mm 的孔与 $\Phi 30^{-0.013}$ mm 的轴配合,属于 基轴 制 过渡配合。 34. 常用尺寸段的标准公差的大小,随基本尺寸的增大而 增大 ,随公差等级的提高而 减小 。
则垂直度公差是在被测要素为最小实体状态
则垂直度公差是在被测要素为最小实体状态
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 Φ 9.972 mm 是,允许的垂直度误差达最大,可达 0.02 mm。 31. 实际偏差是指 实际尺寸减去基本尺寸所的的代数差 ,极限偏差是指 最大或最小极限尺寸减其基本尺寸所得的代数差 。 32. 尺寸链计算的目的主要是进行 公差设计 计算和 公差校核 计算。 33. Φ 30 $^{+0.012}_{-0.009}$ mm 的孔与 Φ 30 $^{0}_{-0.013}$ mm 的轴配合,属于 基轴 制 过渡配合。 34. 常用尺寸段的标准公差的大小,随基本尺寸的增大而 增大 ,随公差等级的提高而 减小 。 35. 尺寸链计算中进行公差校核计算主要是验证封闭环基本尺寸,极限偏差和公差是否符合设计要求 。 36. 表面粗糙度是指 表述加工表面上具有较小间距和峰谷所组成的微观几何形状特征的术
则垂直度公差是在被测要素为
则垂直度公差是在被测要素为 最小实体状态 时给定的。当轴实际尺寸为 Φ 9.972 mm 是,允许的垂直度误差达最大,可达 0.02 mm。 31. 实际偏差是指 实际尺寸减去基本尺寸所的的代数差 ,极限偏差是指 最大或最小极限尺寸减其基本尺寸所得的代数差 。 32. 尺寸链计算的目的主要是进行 公差设计 计算和 公差校核 计算。 33. Φ 30 $^{+0.012}_{-0.009}$ mm 的孔与 Φ 30 $^{-0}_{-0.013}$ mm 的轴配合,属于 基轴 制 过渡配合。 34. 常用尺寸段的标准公差的大小,随基本尺寸的增大而 增大 ,随公差等级的提高而 减小 。 35. 尺寸链计算中进行公差校核计算主要是验证封闭环基本尺寸,极限偏差和公差是否符合设计要求 。 36. 表面粗糙度是指 表述加工表面上具有较小间距和峰谷所组成的微观几何形状特征的术语 。
则垂直度公差是在被测要素为
则垂直度公差是在被测要素为
则垂直度公差是在被测要素为
则垂直度公差是在被测要素为最小实体状态
则垂直度公差是在被测要素为最小实体状态
则垂直度公差是在被测要素为最小实体状态

42. 普通螺纹精度标准仅对螺纹的中 径规定了公差,而螺距偏差、半角偏差则由中 径 公 差 控制。
43. 花键联结与单键联结相比,其主要优点是 定心精度高,导向性好,承载
能力强。
44. Φ $45_0^{+0.005}$ mm 孔的基本偏差数值为 $\underline{0}$, Φ $50_{-0.112}^{-0.050}$ 轴的基本偏差数值为
<u>-0.050</u> mm。
45. 某轴尺寸为 Φ $10^{-0.018}_{-0.028}$ mm,被测要素给定的尺寸公差和形位公差采用最小实体要求,
则垂直度公差是在被测要素为 <u>最小实体状态</u> 时给定的。当轴实际尺寸为 <u>Φ9.972</u> mm 是,允许的垂直度误差达最大,可达 <u>0.02</u> mm。 46. 单键分为 <u>平键</u> 、、 半圆键和
不大于给定的圆柱度公差值时,可以肯定圆柱度误差不会超差。
48. 某轴尺寸为 Φ $10^{-0.018}_{-0.028}$ mm,被测要素给定的尺寸公差和形位公差采用最小实体要求,
则垂直度公差是在被测要素为最小实体状态
<u>固定的</u> 而后者公差带圆心的位置是 <u>浮动的</u> 。 52. 公差等级的选择原则是 <u>满足使用要求</u> 的前提下,尽量选用 <u>较低</u> 的公差
等级。
53. 零件尺寸链中的封闭环就根据
54. 孔、轴的 ES < ei 的配合属于 <u>过盈</u> 配合, EI > es 的配合属于 <u>间隙</u> 配合。
55. 当所有的减环都是最大极限尺寸而所有的减环都是最小极限尺寸时,封闭环必为最大极
限尺寸。
56. 孔、轴配合的最大过盈为-60 μ m,配合公差为 40 μ m,可以判断该配合属于过渡 配
合。
57. 在产品设计中,尺寸链计算是根据机器的精度要求,合理地确定 <u>有关尺寸的公差和极限</u>
<u>偏差。</u>
58. 选择基准制时,应优先选用 <u>基孔制</u> 原因是 <u>加工孔比加工轴要困难,所用刀具量</u>
<u>具尺寸规格也多,成本大</u> 。
59. 配合公差是指 <u>允许间隙或过盈的变动量</u> , 它表示 <u>配合精度</u> 的高低。
60. 国家标准中规定表面粗糙度的主要评定参数有 <u>Re</u> 、 <u>Ry</u> 、 <u>Rz</u> 三
项。
二、选择题(请选择一个或多个正确答案)
1. 表面粗糙度代(符)号在图样上应标注在_ABD。
A. 可见轮廓线上。
B. 尺寸界线上。
C. 虚线上。
D. 符号尖端从材料外指向被标注表面。

E. 符号尖端从材料内指向被标注表面。

2.	如图	所示尺寸链, 封闭环 N 合格的尺寸有 AB 。
		6. 10mm 12 0+0.05 N
		5. 90mm
		5. 10mm 8±0. 05
		5. 70mm
		6. 20mm 15±0. 05
	ь.	250.05
3.	齿轮	公差项目中属综合性项目的有 <u>AD</u>
	Α.	一齿切向综合公差;
	В.	一齿径向公差;
	С.	齿圈径向跳动公差;
	D.	齿距累积公差;
	Ε.	齿形公差。
4.	属于	形状公差的有AB。
	Α.	圆柱度。
	В.	平面度。
	С.	同轴度。
	D.	圆跳动。
	Ε.	平行度。
5.	属于	位置公差的有ACD。
	Α.	平行度。
	В.	平面度。
	С.	端面全跳动。
	D.	倾斜度。
	Ε.	圆度。
6.	表面	粗糙度值越小,则零件的AB。
	Α.	耐磨性好。
	В.	配合精度高。
	С.	抗疲劳强度差.
	D.	传动灵敏性差。
	Ε.	加工容易。
7.		齿轮传动平稳性的误差项目有AC
	Α.	一齿切向综合误差;
		齿圈径向跳动;
		基节偏差;
		齿距累积误差。
8.		论述正确的有 <u>BC</u> 。
		孔的最大实体实效尺寸= D _{max} 一 形位公差。
	В.	孔的最大实体实效尺寸= 最大实体尺寸一 形位公差.

C. 轴的最大实体实效尺寸= dmax + 形位公差。
D. 轴的最大实体实效尺寸= 实际尺寸十形位误差.
E. 最大实体实效尺寸= 最大实体尺寸。
9. 形位公差带形状是直径为公差值 t 的圆柱面内区域的有CDE。
A. 径向全跳动。
B. 端面全跳动。
C. 同轴度。
D. 任意方向线位置度。
E. 任意方向线对线的平行度。
10. 属于形状公差的有AB。
A. 圆柱度。
B. 平面度。
C. 同轴度。
D. 圆跳动。
E. 平行度。
11. 对于径向全跳动公差,下列论述正确的有 BCE 。
A. 属于形状公差。
B. 属于位置公差。
C. 属于跳动公差。
D. 与同轴度公差带形状相同。
E. 当径向全跳动误差不超差时,圆柱度误差肯定也不超差。
12. 下列配合代号标注正确的有_ABDE。
A. φ60H7/r6
B. φ60H8 / k7
C. φ60h7 / D8
D. φ60H9 / f9
E. φ60H8 / f7
13. 下列论述中正确的有 <u>ADE</u> 。
A. 因为有了大批量生产,所以才有零件互换性,因为有互换性生产才制定公差制.
B. 具有互换性的零件, 其几何参数应是绝对准确的。
C. 在装配时,只要不需经过挑选就能装配,就称为有互换性。
D. 一个零件经过调整后再进行装配,检验合格,也称为具有互换性的生产。
E. 不完全互换不会降低使用性能,且经济效益较好。
14. 属于形状公差的有。
A. 圆柱度。
B. 平面度。
C. 同轴度。
D. 圆跳动。
E. 平行度。
15. 属于位置公差的有 <u>ACD</u> 。
A. 平行度。
B. 平面度。
C. 端面全跳动。

D. 倾斜度。 E. 圆度。
16. 某轴 Φ 10 ⁰ −0.015 mm 色 则 <u>ADE</u> 。
 A. 被测要素遵守 MMC 边界。 B. 被测要素遵守 MMVC 边界。 C. 当被测要素尺寸为Φ10 mm 时,允许形状误差最大可达 0. 015 mm。 D. 当被测要素尺寸为Φ9. 985mm 时,允许形状误差最大可达 0. 015 mm。 E. 局部实际尺寸应大于等于最小实体尺寸。 17. 以下各组配合中,配合性质相同的有_BCE。 A. Φ30H7 / f6 和Φ30H8 / p7 B. Φ30P8 / h7 和Φ30H8 / p7 C. Φ30M8 / h7 和Φ30H8 / m7 D. Φ30H8 / m7 和Φ30H7 / f6
 E. φ30H7 / f6 和 30F7 / h6。 18. 决定配合公差带大小和位置的有 CD 。 A. 标准公差 B. 基本偏差 C. 配合公差 D. 孔轴公差之和 E. 极限间隙或极限过盈
19. 下述论述中不正确的有
D. 传动灵敏性差。 E. 加工容易。 21. 对于尺寸链封闭环的确定,下列论述正确的有BD。 A. 图样中未注尺寸的那一环。 B. 在装配过程中最后形成的一环。 C. 精度最高的那一环。 D. 在零件加工过程中最后形成的一环。
E. 尺寸链中需要求解的那一环。 22. 平键联接的键宽公差带为 h9,在采用一般联接,用于载荷不大的一般机械传动的固定联接时,其轴槽宽与载槽宽的公差带分别为_B。 A. 轴槽 H9, 载槽 D10;

- B. 轴槽 N9, 毂槽 Js9;
- C. 轴槽 P9, 毂槽 P9;
- D. 轴槽 H7, 毂槽 E9。
- 23. 下列配合零件,应选用过盈配合的有 ABE 。
 - A. 需要传递足够大的转矩。
 - B. 不可拆联接。
 - C. 有轴向运动。
 - D. 要求定心且常拆卸。
 - E. 承受较大的冲击负荷。
- 24. 圆柱度公差可以同时控制 AB 。
 - A. 圆度。
 - B. 素线直线度。
 - C. 径向全跳动。
 - D. 同轴度。
 - E. 轴线对端面的垂直度。
- 25. 下列论述正确的有 BC 。
 - A. 孔的最大实体实效尺寸= Dmax 形位公差。
 - B. 孔的最大实体实效尺寸= 最大实体尺寸一 形位公差.
 - C. 轴的最大实体实效尺寸= dmax + 形位公差。
 - D. 轴的最大实体实效尺寸= 实际尺寸十形位误差.
 - E. 最大实体实效尺寸= 最大实体尺寸。
- 26. 下列有关公差等级的论述中,正确的有_BC__。
 - A. 公差等级高,则公差带宽。
 - B. 在满足使用要求的前提下,应尽量选用低的公差等级。
 - C. 公差等级的高低,影响公差带的大小,决定配合的精度。
 - D. 孔、轴相配合,均为同级配合。
 - E. 标准规定,标准公差分为18级。
- 27. 某轴 Φ 10 ⁰_{-0.015} mm 色则___ADE__。
 - A. 被测要素遵守 MMC 边界。
 - B. 被测要素遵守 MMVC 边界。
 - C. 当被测要素尺寸为Φ10 mm 时,允许形状误差最大可达 0. 015 mm。
 - D. 当被测要素尺寸为Φ9.985mm 时,允许形状误差最大可达 0.015 mm。
 - E. 局部实际尺寸应大于等于最小实体尺寸。
- 28. 决定配合公差带大小和位置的有 CD。
 - A. 标准公差
 - B. 基本偏差
 - C. 配合公差
 - D. 孔轴公差之和
 - E, 极限间隙或极限过盈
- 29. 下述论述中不正确的有 ABC 。
 - A. 无论气温高低,只要零件的实际尺寸都介于最大、最小极限尺寸之间,就能判断其 为合格。
 - B. 一批零件的实际尺寸最大为 20.01mm, 最小为 19.98mm, 则可知该零件的上偏差是

E. 面对面的平行度。

36. 公差与配合标准的应用主要解决 ACD

A. 公差等级。 B. 基本偏差。 C. 配合性质。 D. 配合基准制. E. 加工顺序。 37. 以下各组配合中,配合性质相同的有____BCE___。 A. $\phi 30H7 / f6 和 \phi 30H8 / p7$ B. φ30P8 / h7和φ30H8 / p7 C. φ30M8 / h7和φ30H8 / m7 D. φ30H8/m7和φ30H7/f6 E. Φ30H7/f6 和30F7/h6。 38. 决定配合公差带大小和位置的有 CD 。 A. 标准公差 B. 基本偏差 C. 配合公差 D. 孔轴公差之和 E, 极限间隙或极限过盈 39. 下述论述中不正确的有 ABC 。 A. 无论气温高低,只要零件的实际尺寸都介于最大、最小极限尺寸之间,就能判断其 为合格。 B. 一批零件的实际尺寸最大为 20. 01mm, 最小为 19. 98mm, 则可知该零件的上偏差 是十0.01mm,下偏差是—0.02mm。 C. j~f 的基本偏差为上偏差。 D. 对零部件规定的公差值越小,则其配合公差也必定越小。 E. H7/h6 与 H9/h9 配合的最小间隙相同,最大间隙不同。 40. 某孔 Φ 10 $_0^{+0.015}$ mm 色 则 AC 。 A. 被测要素遵守 MMC 边界。 B. 被测要素遵守 MMVC 边界。 C. 当被测要素尺寸为Φ10 mm 时,允许形状误差最大可达 0. 015mm。 D. 当被测要素尺寸为Φ10. 01 mm 时,允许形状误差可达 0. 01 mm。 E. 局部实际尺寸应大于或等于最小实体尺寸。 三、判断题(正确的用 T 表示,错误的用 F 表示) 1. 基本偏差决定公差带的位置。 (T) 2. 孔的基本偏差即下偏差,轴的基本偏差即上偏差。(F) 3. 对同一要素既有位置公差要求,又有形状公差要求时,形状公差值应大于位置公差值。 (F) 4. 过渡配合可能具有间隙,也可能具有过盈,因此,过渡配合可能是间隙配合,也可能是 过盈配合。(F) 5. 当组成尺寸链的尺寸较多时,一条尺寸链中封闭环可以有两个或两个以上。(F) 6. 尺寸链的特点是它具有封闭性和制约性。(T) 7. 要提高封闭环的精确度,在满足结构功能的前提下,就应尽量简化结构,即应遵循"最 短尺寸链原则"。(T)

8. 配合公差的大小,等于相配合的孔轴公差之和。(T) 9. 基轴制过渡配合的孔, 其下偏差必小干零。(T) 10. 最小间隙为零的配合与最小过盈等于零的配合,二者实质相同。(F) 11. 基本偏差决定公差带的位置。 (T) 12. 图样标注 $\phi 20^{\circ}_{-0.02}$ mm 的轴,加工得愈靠近基本尺寸就愈精确。(F) 13. 图样标注中 Φ 20 $^{+0.021}_{0}$ mm 孔,如果没有标注其圆度公差,那么它的圆度误差值可任意确定。 14. 过渡配合可能具有间隙,也可能具有过盈,因此,过渡配合可能是间隙配合,也可能是 过盈配合。(F) 15. 当组成尺寸链的尺寸较多时,一条尺寸链中封闭环可以有两个或两个以上。(F) 16. 尺寸链是指在机器装配或零件加过程中,由相互连接的尺寸形成封闭的尺寸组。(T) 17. 封闭环常常是结构功能确定的装配精度或技术要求, 如装配间隙、位置精度等。(T) 18. 配合公差的数值愈小,则相互配合的孔、轴的公差等级愈高。(T) 19. 基轴制过渡配合的孔, 其下偏差必小于零。(T) 20. 未注公差尺寸即对该尺寸无公差要求。(F) 21. 单件小批生产的配合零件,可以实行"配作",虽没有互换性,但仍是允许的。(T) 22. 基本偏差 a~h 与基准孔构成间隙配合,其中 h 配合最松。(F) 23. 有相对运动的配合应选用间隙配合,无相对运动的配合均选用过盈配合。(F) 24. 当组成尺寸链的尺寸较多时,一条尺寸链中封闭环可以有两个或两个以上。(F) 25. 零件工艺尺寸链一般选择最重要的环作封闭环。(T) 26. 封闭环的公差值一定大于任何一个组成环的公差值。(27. 圆柱度公差是控制圆柱形零件横截面和轴向截面内形状误差的综合性指标。(T) 28. 端面全跳动公差和平面对轴线垂直度公差两者控制的效果完全相同。(T) 29. 零件的尺寸精度越高,通常表面粗糙度参数值相应取得越小。(T) 30. 未注公差尺寸即对该尺寸无公差要求。(F) 31. 单件小批生产的配合零件,可以实行"配作",虽没有互换性,但仍是允许的。(T) 32. 基本偏差 a~h 与基准孔构成间隙配合,其中 h 配合最松。(T) 33. 有相对运动的配合应选用间隙配合,无相对运动的配合均选用过盈配合。(F) 34. 当组成尺寸链的尺寸较多时,一条尺寸链中封闭环可以有两个或两个以上。(F 35. 零件工艺尺寸链一般选择最重要的环作封闭环。(T) 36. 封闭环的公差值一定大于任何一个组成环的公差值。(F) 37. 圆柱度公差是控制圆柱形零件横截面和轴向截面内形状误差的综合性指标。(T) 38. 端面全跳动公差和平面对轴线垂直度公差两者控制的效果完全相同。(T) 39. 零件的尺寸精度越高,通常表面粗糙度参数值相应取得越小。(T) 40. 未注公差尺寸即对该尺寸无公差要求。(F)

四、计算题

1. 如图所示零件,若加工时以 I 面为基准加工尺寸 A_1 和 A_2 ,则 A_3 的尺寸为多少?

解:根据题意,A3为封闭环,A1为增环,A2为减环。 $A_3=A_1-A_2=(50-20) \text{ mm}=30\text{mm}$ $ES_3=ES_1-ES_2=\{0.1-(-0.15)\}\ mm=+0.25mm$

2. 如图所示零件,按图样注出的尺寸 A_1 和 A_3 加工时不易测量,现改为按尺寸 A_1 和 A_3 加工,为了保证原设计要求,试计算 A_2 的基本尺寸和偏差。

解:据题意,按尺寸 A1、A2 加工,则 A3 必须为封闭环,A2 则为工序尺寸。

 $A_3=A_1-A_2$ $A_2=A_1-A_3=$ (50-10) mm=40mm

ES3=ES1-EI2 EI2=ES1-ES3=0-0=0

 $EI_3=EI_1-ES_2$ $ES_2=EI_1-EI_3=\{-0.06-(-0.36)\}$ mm=+0.3mm

故 A2 尺寸为 40 ^{+0.30} mm。

3. 设某配合的孔径为 Φ **45** $^{+0.142}_{+0.080}$ mm,轴径为 Φ **45** $^{0}_{-0.039}$ mm,试分别计算其极限间隙(或过盈)及配合公差,画出其尺寸公差带及配合公差带图。

解:本配合为间隙配合,Xmax=0.142-(-0.039)=0.181,Xmin=0.080-0=0.080,配合公差Tf=0.181-0.080=0.101.尺寸公差图和配合公差图如图所示:

4. 如图所示曲轴、连杆和衬套等零件装配图,装配的后要求间隙为 N=0.1~0.2 mm,而图样设计时 A_1 = $150_0^{+0.016}$ mm, A_2 = A_3 = $75_{-0.06}^{-0.02}$ mm,试验算设计图样给定零件的极限尺寸是否合理?

解:根据公式校核

 $\begin{array}{c} N=A_1-A_2-A_3=150-75-75=0\\ ES_N=ES_1-EI_2-EI_3=~\{0.~016-2\times~(-0.~06)\}~mm=+0.~136mm\\ EI_N=EI_1-ES_2-ES_3=~\{0-2\times~(-0.~02)\}~mm=+0.~04mm \end{array}$

故 N 范围为 0.04~0.136mm, 在装配精度要求范围 0.1~0.2mm 以内, 故合理。

5. 如图所示为机床部件装配图,求保证间隙 N=0.25mm, 若给定尺寸 A_1 = $25_0^{+0.100}$ mm,

 A_2 = 25 ± 0.100 mm, A_3 = 0 ± 0.005 mm,试校核这几项的偏差能否满足装配要求并分析因及采取的对策。

解

 $T_N = T_1 + T_2 + T_3$

= (0.100+0.200+0.010) = 0.310 mm > 0.25 mm

组成环公差和大于封闭环公差,故公差不能满足装配要求,可适当提高组成环精度,并调整其偏差以满足装配要求。

6. 图所示某齿轮机构,已知 $A_1=30^{\circ}_{-0.06}$ mm, $A_2=5^{\circ}_{-0.06}$ mm, $A_3=38^{+0.16}_{+0.10}$ mm,

 $A_4 = 3^{\circ}_{-0.05}$ mm,试计算齿轮右端面与档圈左端面的向端在面的轴向间隙 A_0 的变动范围。

解:根据公式

A₀=A₃-A₁-A₂-A₄=38-30-5-3=0

 $ES_0=ES_{3-}$ ($EI_1+EI_2+EI_4$) = (0. 16+0. 06+0. 04+0. 05) mm=+0. 31mm $EI_0=EI_{3-}$ ($ES_1+ES_2+ES_4$) = (0. 10-0-0-0) mm=+0. 10mm 故轴向间隙 Ao 的变化范围为 0. $10\sim0$. 31mm。

7. 如图所示花键套筒,其加工工艺过程为: 先粗,精车外圆至尺寸 Φ $2404^{0}_{-0.080}$ mm,再按工序尺寸 A_{2} 铣键槽,热处理,最后粗、精磨外圆至尺寸 Φ $24^{0}_{-0.013}$ mm,后要健槽深度 $21.5^{0}_{-0.100}$ mm,试画出尺寸链简图,并区分封闭环、增环、减环,计算工序尺寸 A_{2} 及其极限偏差。

解:根据题意, 完工后要求的键槽深度尺寸 $21.5^{\circ}_{-0.100}$ mm 为封闭环, 根据加工顺序画尺寸链图。

根据公式计算 A2 尺寸及偏差

A₂= (21.5-12+12.2) mm=21.7mm

 $ES_2 = \{0-0+(-0.025)\}$ mm=-0.025mm

 $EI_2 = [-0.1 - (-0.003/2) + 0] \text{mm} = -0.0935 \text{ mm}$

故工序尺寸 A2 为 21.7 -0.0250 mm

8. 设某配合的孔径为 Φ 45 $^{+0.142}_{+0.080}$ mm,轴径为 Φ 45 $^{0}_{-0.039}$ mm,试分别计算其极限间隙(或过盈)及配合公差,画出其尺寸公差带及配合公差带图。(答案同第三题)9. 在图所示的对开齿轮传动箱中,为了保证轴的顺利转动,要求装配以后的轴向间隙 $X=1\sim1$. 75 mm。若已知 $A_1=101$ mm $A_2=50$ mm, $A_3=A_5=5$ mm, $A_4=140$ mm,试计算 A_1 , A_2 , A_3 ,

A₄和 A₅各尺寸的极限偏差和公差。

解: 画尺寸链图

A1、A2 为增环, A3、A4、A5 为减环, 间隙 A0 在装配后形成为封闭环。 A0=A1+A2-(A3+A4+A5)

$$= \{101+50-(5+140+5)\}$$
 mm=1mm

由题 To= (1.75-1) mm=0.75mm

封闭环公差为各组成环公差之和。求各环公差时,可采用等精度法,先初步估算公差值,然 后根据实际情况合理确定各环公差值。

因为
$$T_0=aav \sum (0.45\sqrt[3]{A_i} + 0.001A_i)$$

式中 AI 为各组成环尺寸, aav 为平均公差等级系数。

$$aav=T_0/\sum (0.45\sqrt[3]{A_i} + 0.001A_i)$$

=750/2. 2+1. 7+0. 77+2. 47+0. 77 =94. 8

根据标准公差计算式, aav=94.8 相当于 IT11 级。

由标准公差表可知: T₁=0.22mm T₂=0.16mm T₃=T₅=0.075mm,

 $\mathbb{I} \mathbb{I} \mathbb{I}_{4} = \mathbb{I}_{0} - (\mathbb{I}_{1} + \mathbb{I}_{2} + \mathbb{I}_{3} + \mathbb{I}_{5}) = 0.75 - 0.53 = 0.22 \text{mm}$

查表知: 可取 T4=0.16mm (IT10)。

10. 如图所示,两个孔均以底面为定位和测量基准,求孔 1 对底面的尺寸 A 应控制在多大范围内才能保证尺寸 60±0.060mm?

解:根据题意,60±0.060尺寸为封闭环.

A = (60+40) mm = 100 mm

 $ESA= \{0.06+ (-0.02)\} \text{ mm}=+0.04\text{mm}$

EIA= (-0.06+0.02) mm=-0.04mm

故 A=100±0.04mm

一、简答题

1、什么叫机械零件的互换性?它在机械制造中有何重要意义?如何来保证机械零件的互换性?

答:同一规格零件按规定的技术要求制造,能够彼此相互替换使用而效果相同的性能。 意义:贯穿在产品设计、制造、使用和维修的全过程:

1)在设计方面:零、部件具有互换性,就可以最大限度地利用标准件、通用件和标推部件,从而简化制图、计算工作,缩短设计周期,并便于采用计算机辅助设计。

2)在制造加工方面:便于组织生产协作,进行专业化生产。采用高效率的生产设备,有利于实现加工过程和装配过程机械化、自动化。从而提高劳动生产率,提高产品质量,降低生产成本。

3)在使用维修方面:零、部件具有互换性可以及时更换已经磨损或损坏了的零、部件,减少机器的维修时间和费用,保证机器连续而持久地运转,从而提高机器的使用价值。

互换性由公差来保证。

- 2、按标准颁发的级别分,我国标准有哪几种?
 - 答: 国家标准、行业标准、地方标准、企业标准
- 3、公差、检测、标准化与互换性有什么关系?

答:公差设计应遵循标准化的原则,即公差设计应选择标准公差与配合。检测则是保证所生产的零件符合公差设计的要求。机械零件的互换性主要靠公差来保证。

4、简述优先数系的概念?并举出优先数 R10 系列的前 5 个优先数。

答: 优先数系 Rr: 公比为 $q=\sqrt[4]{10}$ 的十进等比数列。1.00,1.25,1.60,2.00,2.50

二、尺寸公差部分习题

一、判断题

- 1、一般来说,零件的实际尺寸愈接近基本尺寸愈好。(×)
- 2、公差通常为正,在个别情况下也可以为负或零。(×)
- 3、孔和轴的加工精度愈高,则其配合精度也愈高。(×)
- 4、过渡配合的孔、轴结合,由于有些可能得到间隙,有些可能得到过盈,因此过渡配合可能是间隙配合,也可能是过盈配合。(×)
- 5、若某配合的最大间隙为 15 μ m,配合公差为 41 μ m,则该配合一定是过渡配合。(√) 二、填空题
- 1、国家标准规定的基本偏差孔、轴各有<u>28</u>个,其中 H 为<u>孔</u>的基本偏差代号,其基本偏差为<u>EI</u>,且偏差值为<u>0</u>;h 为<u>轴</u>的基本偏差代号,其基本偏差为<u>es</u>,且偏差值为<u>0</u>。 2、国家标准规定有<u>基孔制</u>和<u>基轴制</u>两种配合制度,一般应优先选用<u>基孔制</u>,以减少<u>量</u> 具的规格和数量 ,降低生产成本。
- 3、国家标准规定的标准公差有<u>20</u>级,其中最高级为<u>IT01</u>,最低级为<u>IT18</u>,而常用的配合公差等级为 IT7, IT8。
- 4、配合种类分为<u>间隙配合</u>、<u>过渡配合</u>和<u>过盈配合</u>三大类,当相配合的孔、轴需有相对运动或需经常拆装时,应选 间隙配合。
- 5、试根据表中的已知数据,填写表中各空格,并按适当比例绘制各孔、轴的公差带图。

-	-

尺寸标注	基本尺寸	极限尺寸		极限化	扁差	公差
八寸柳荘	基	最大	最小	上偏差	下偏差	公左
孔 	<i>φ</i> 12	12.05	12.032	+0.05	+0.032	0.018
轴 夕 60 ^{+0.072} _{+0.053}	<i>φ</i> 60	60.072	60.053	+0.072	+0.053	0.019
孔 ø 30 ^{-0.041}	ø 30	29.959	29.938	-0.041	-0.062	0.021
轴 φ 50 ^{+0.005} _{-0.034}	ø 50	50.005	49.966	+0.005	-0.034	0.039

6、根据表中的已知数据,填写表中各空格。

单位: mm

基本	孔		轴		$X_{ ext{max}}$ 或	$X_{\scriptscriptstyle ext{max}}$ 或	$X_{ ext{max}}$ 或	T_{ϵ}	配合		
尺寸	ES	EI	$T_{\scriptscriptstyle h}$	es	ei	T_{s}	Y min	Y min	Y min	j	各类
ø 50	0.039	0	0.039	-0.025	-0.064	0.039	+0.103	0.025	0.064	0.078	间隙
<i>φ</i> 25	-0.027	-0.048	0.021	0	-0.013	0.013	-0.014	-0.048	-0.031	0.034	过盈
\$\phi 80	0.005	0.041	0.046	0	-0.030	-0.03	+0.035	-0.041	-0.003	0.076	过渡

7、图为钻床夹具简图,试根据表中的已知条件,选择配合种类。

1-钻模板; 2-钻头; 3-定位套; 4-钻套; 5-工件

配合种类	已知条件	配合种类
1)	有定心要求,不可拆卸连接	过盈
2	有定心要求,可拆卸连接(钻套可更换)	过渡
3	有定心要求,孔、轴间需有轴向移动	间隙
4	有导向要求,轴、孔间需有相对的高速运动	间隙

三、形状和位置公差部分习题

一、判断题

- 1、评定形状误差时,一定要用最小区域法。(×)
- 2、位置误差是关联实际要素的位置对实际基准的变动量。(√)
- 3、独立原则、包容要求都既可用于中心要素,也可用于轮廓要素。(X)
- 4、最大实体要求、最小实体要求都只能用于中心要素。(√)
- 5、可逆要求可用于任何公差原则与要求。(×)
- 6、若某平面的平面度误差为f,则该平面对基准平面的平行度误差大于f。(\times)

二、填空题

- 1、形位公差中只能用于中心要素的项目有 同轴度 , 只能用于轮廓要素的项目
- 有<u>平面度、圆度、圆柱度、线轮廓度、面轮廓度、圆跳动、全跳动</u>,既能用于中心要素 又能用于轮廓要素的项目有 平面度、直线度、平行度、垂直度、倾斜度、位置度、对称度。
- 2、直线度公差带的形状有<u>两平行直线之间的区域、两平行平面之间的区域、圆柱面内区域</u>几种形状,具有这几种公差带形状的位置公差项目有<u>平行度、垂直度、倾斜度、位置度、</u>同轴度、对称度。
- 3、最大实体状态是实际尺寸在给定的长度上处处位于<u>最大实体边界</u>之内,并具有<u>零形位公差</u>时的状态。在此状态下的<u>体外作用尺寸</u>称为最大实体尺寸。尺寸为最大实体尺寸的边界称为最大实体边界。
- 4、包容要求主要适用于<u>保证配合的性质和精度</u>的场合;最大实体要求主要适用于<u>保证零</u>件的可装配性 的场合;最小实体要求主要适用于 保证零件的最小壁厚 的场合。
- 5、形位公差特征项目的选择应根据<u>零件的几何特征、使用要求、检测的方便性</u>等方面的因素,经综合分析后确定。

三、单项选择题

- 1、一般来说零件的形状误差<u>B</u>其位置误差,定向误差<u>B</u>其定位误差。
 - A. 大于 B. 小于 C. 等于
- 2、定向公差带的 C 随被测实际要素的位置而定。
 - A. 形状 B. 位置 C. 方向
- 3、某轴线对基准中心平面的对称度公差为 0.1 mm,则允许该轴线对基准中心平面的偏离量为 B。
 - A. 0.1mm B. 0.05 mm C. 0.2 mm
- 4、形位未注公差标准中没有规定<u>A</u>的未注公差,是因为它可以由该要素的尺寸公差来控制。
 - A. 圆度 B. 直线度 C. 对称度
- 5、对于孔,其体外作用尺寸一般 <u>B</u> 其实际尺寸,对于轴,其体外作用尺寸一般 <u>A</u> 其实际尺寸。
 - A. 大于 B. 小于 c. 等于
- 四、解释图中各项形位公差标注的含义,填在表中。

表

序号	公差项目 名称	公差带形状	公差带 大小	解释(被测要素、基准要素及要求)
1)	圆柱度	两平行圆柱面内的 区域	0.01mm	被测圆柱面必须位于半径差值为公差值 0.01 的两同轴圆柱面之间
2	斜向圆跳动	在与基准轴线同轴 的任一测量圆锥面 上,沿其母线方向的 两圆内的区域	0.025mm	被测圆锥面绕基准轴线作无轴向移动的旋转时. 一周内在任一测量圆锥面上的跳动量均不得大于 0.025mm
3	对称度	相对于基准中心平 面对称配置的两平 行平面间的区域	0.025mm	被测中心平面必须位于距离为公差值 0.025mm,且相对于基准中心平面对称配置的 两平行平面之间
4	圆柱度	两平行圆柱面内的 区域	0.006mm	被测圆柱面必须位于半径差值为公差值 0.006 的两同轴圆柱面之间
(5)	径向圆跳 动	圆心在基准轴线上 的两同心圆间的区 域	0.025mm	被测圆柱面绕基准轴线作无轴向移动的旋转时,一周内在任一测量平面内的径向圆跳动均不得大于 0.025 mm
6	平行度	平行于基准轴线的 圆柱面内的区域	0.02mm	被测轴线必须位于直径为公差值 <i>Φ</i> 0.02mm, 且平行于基准轴线的圆柱面内

- 五、将下列各项形位公差要求标注在图中
- (1) $\phi 40^{\circ}_{-0.03}$ mm 圆柱面对 $2 \times \phi 25^{\circ}_{-0.021}$ mm 公共轴线的圆跳动公差为 0.015 mm;
- (2) $2 \times \phi 25^{\circ}_{-0.021}$ mm 轴颈的圆度公差为 0.01 mm;
- (3) $\phi 40^{\circ}_{-0.03}$ mm 左、右端面对 $2 \times \phi 25^{\circ}_{-0.021}$ mm 公共轴线的端面圆跳动公差为 0.02 mm;
- (4)键槽 $10^{\circ}_{-0.036}$ mm 中心平面对 $\phi40^{\circ}_{-0.03}$ mm 轴线的对称度公差为 0.015mm。

六、将下列各项形位公差要求标注在图中

- 1、 $\phi 5_{-0.03}^{+0.05}$ mm 孔的圆度公差为 0.004 mm,圆柱度公差 0.006mm;
- 2、B 面的平面度公差为 0.008 mm,B 面对 $\phi 5_{-0.03}^{+0.05}$ mm 孔轴线的端面圆跳动公差为 0.02 mm,B 面对 C 面的平行度公差为 0.03mm;
- 3、平面 F 对 $\phi 5^{+0.05}_{-0.03}$ mm 孔轴线的端面圆跳动公差为 0.02mm;
- 4、 $\phi 18^{-0.05}_{-0.10}$ mm 的外圆柱面轴线对 $\phi 5^{+0.05}_{-0.03}$ mm 孔轴线的同轴度公差为 0.08mm;
- 5、 $90^{\circ}30''$ 密封锥面 G 的圆度公差为 0.002mm,G 面的轴线对 $\phi 5_{-0.03}^{+0.05}$ mm 孔轴线的同轴度 公差为 0.012mm;
- 6、 ϕ 12 $^{-0.15}_{-0.26}$ mm 外圆柱面轴线对 ϕ 5 $^{+0.05}_{-0.03}$ mm 孔轴线的同轴度公差为 0.08mm。

七、改正图中形位公差标的错误(直接改在图中,不改变形位公差项目)

八、对某零件实际表面均匀分布测量 9 个点,各测量点对测量基准面的坐标值如图所示(单位: μ m)。试求该表面的平面度误差。

答: 27 μm

九、根据图中的公差要求填写表,并绘出动态公差带图。

图序	采用的 公差原 则或公 差要求	理想边界 名称	理想边界尺 寸/mm	MMC 时的形位 公差值/ mm	LMC 时的形位公差值/mm
(a)	独立原则	最大实体 实效边界	20.04	0.01	0.01
(b)	包容要 求	最大实体 边界	19.99	0	0.04
(c)	最大实 体要求	最大实体 实效边界	-19.98	0.02	0.07
(d)	最小实 体要求	最小实体 实效边界	20.07	0.07	0.02
(e)	最大实 体零形 位公差	最大实体 实效边界	40	0	0.025
(f)	最大实 体可逆 要求	最大实体 实效边界	19.98	0.01	0.05