Heaps and Priority Queues

EECS 233

Queue ADT Revisited

- ☐ A queue is a sequence in which:
 - items are added at the rear and removed from the front
 - ☐ first in, first out (FIFO) (vs. a stack, which is last in, first out)
 - we can only access the item that is currently at the front
- Operations:
 - boolean insert(T item); add an item at the rear of the queue
 - T remove(); remove the item at the front of the queue
 - T peek(); get the item at the front of the queue, but don't remove it
 - boolean isEmpty(); test if the queue is empty
 - boolean isFull(); test if the queue is full

Priority Queues

- A priority queue is a collection of items, each of which has an associated *priority* (a number).
 - Applications?
- Operations:
 - insert: add an item to the priority queue (with a priority value)
 - remove: remove a highest-priority item
 - □ an item in the queue with the largest associated priority value
 - **>** ...
- □ How can we efficiently implement a priority queue?
 - Unsorted list, sorted list, sorted array?
 - AVL-tree?
 - (A new type of binary tree known as a heap)

Structure Types of Binary Trees

- Full binary trees
 - Every node has exactly two or zero children
- □ Perfect binary trees
 - Full trees with all leafs at the same depth
- □ Complete binary trees
 - Balanced, and at the same level, filled left to right Complete:

Not complete (= missing node):

A Large Complete Binary Tree

Array Representation of A Complete Binary Tree

- A complete binary tree has a simple array representation.
- ☐ The nodes of the tree are stored in the array in the order in which they would be visited by a level-order traversal (i.e., top to bottom, left to right).

Navigating in A Complete Binary Tree

- □ The root node is in a[0]
- Given the node in a[i]:
 - > its left child is in a[2*i + 1]
 - its right child is in a[2*i + 2]
 - \rightarrow its parent is in a[(i 1)/2], for i!=0

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

- Examples:
 - \rightarrow the left child of the node in a[1] is in a[2*1 + 1] = a[3]
 - \rightarrow the right child of the node in a[3] is in a[2*3 + 2] = a[8]
 - \rightarrow the parent of the node in a[4] is in a[(4-1)/2] = a[1]
 - \rightarrow the parent of the node in a[7] is in a[(7-1)/2] = a[3]

Heaps for Priority Queues

- □ A complete binary tree
 - The only ordering constraint: a node's key >= keys of children (if any)
- ☐ The largest value is always at the root of the tree.
- ☐ The smallest value can be in *any* leaf node there's no guarantee about which one it will be.

- ☐ These are max-at-top heaps.
- One can also define a min-at-top heap, in which every interior node is less than or equal to its children.

Heap ADT - Generics

- We want a heap that can store data items of different types (just like generic lists, stacks, and queues)
 - A "priority" can be a more general concept than a "search key"
 - We would like to derive "priority" from the object rather than have a distinct "key" attribute
- Writing a generic heap (as well as BST and AVL trees) is somewhat tricky: we need to make sure that we can compare the data items.

```
if (item1 < item2)
```

. . .

Problem

In Java, if item1 and item2 refer to objects, the condition above will compare the memory locations of objects, not the actual items of the objects.

Generic Heaps – Comparable Objects in Java

- To compare objects in Java, use compareTo() method.
 - many built-in classes have a version of this method, e.g., String, Integer, Double, etc.
 - we can define a version of this method in our own classes public int compareTo(*Classname* other)
- Then, o1.compareTo(o2) should return:
 - a negative integer, e.g., -1, if o1 is less than o2
 - 0 if o1 equals o2
 - a positive integer, e.g, +1, if o1 is greater than o2
- We also should indicate that our class has this method by adding the following to the class header:

class *Classname* implements Comparable < *Classname* >

Generic Heaps in Java

```
public class Heap<T extends Comparable<T>> {
    private T[] items;
    private int maxItems;
    private int numltems;
    public Heap(int maxSize) {
         items = (T[])new Comparable[maxSize];
         maxItems = maxSize;
         numItems = 0;
                               items
                            maxItems
                                       50
                  20
          16
                           numItems
                                        6
                                  a Heap object
```

Suitable for objects of any type T that has a compareTo() method and contains "implements Comparable<T>" in its class header. The array actually stores the references

Removing An Item (the largest)

- ☐ Remove and return the item in the root node.
 - In addition, we need to move the largest remaining item to the root, while maintaining a complete tree with each node >= children

Removing An Item (the largest)

- Remove and return the item in the root node.
 - In addition, we need to move the largest remaining item to the root, while maintaining a complete tree with each node >= children
- □ Method:
 - make a copy of the largest item
 - move the last item in the heap to the root
 - "sift down" the new root item until it is >= its children (or it's a leaf)
 - return the largest item
- "sift": items are filtered such that small ones will fall

"Heapify" - Sifting Down

- \square To sift down item x (i.e., the item whose key is x):
 - > compare x with the larger of the item's children, y
 - \rightarrow if x < y, swap x and y and repeat

SiftDown Method

```
private void siftDown(int i) { // Input: the node to sift
      T toSift = items[i];
      int parent = i;
      int child = 2 * parent + 1; // Child to compare with; start with left child
      while (child < numltems) {
             // If the right child is bigger than the left one, use the right child instead.
             if (child +1 < numltems && // if the right child exists
                   items[child].compareTo(items[child + 1]) < 0) // ... and is bigger than the left child
                          child = child + 1; // take the right child
             if (toSift.compareTo(items[child]) >= 0)
                   break; // we' re done
             // Sift down one level in the tree.
             items[parent] = items[child];
                                                                 We don't have to put sifted item in place of child.
             items[child] = toSift;
                                                                 We can wait until the end to put the sifted item in
             parent = child;
                                                                 place.
             child = 2 * parent + 1;
      items[parent] = toSift;
```


RemoveMax Method

```
public T removeMax() {
    T toRemove = items[0];
    items[0] = items[numltems-1];
    numltems--;
    siftDown(0);
    return to Remove;
                              20
 28 20
           16
                            20
 numltems: 6
                         numltems: 5
                                                 numltems: 5
 toRemove: 28
                         toRemove: 28
                                                 toRemove: 28
```

Inserting An Item

□ Algorithm:

- put the item in the next available slot (grow array if needed)
- "sift up" the new item until it is <=its parent (or becomes the root)</p>

Insert Method

```
public void insert(T item) {
    if (numltems == maxItems) {
        // code to grow the array goes here...
    Items[numItems] = item;
    numltems++;
    siftUp(numItems-1);
                    12)
                                                         16
                                                                  20
           16)
                                  16
                   8
                                16 12
                                       5
                                                       16 20
      numltems: 5
                             numltems: 5
                                                    numltems: 6
      item: 35
                             item: 35
```

Running Time of Insert / Remove

- □ Insert() / RemoveMax()
- ☐ SiftUp and SiftDown
 - \rightarrow Height h = $\log_2 N$
 - Running time O(log₂N) in the worst case
- ☐ Both insert and remove (max at the root) are fast
- But search is inefficient due to limited ordering information

Building A Heap – A Naïve Algorithm

- ☐ Take *N* items from an array and build a heap.
- Naïve algorithm
 - > For each item, insert it into a heap, which is initially empty

```
public void buildHeap(T[] array, int size )
{
     <initialize the heap here ...>
     for( int i = 0; i < size; i++ )
        insert(array[i]);
}</pre>
```

Running time: O(log(1) + log(2) + ... + log(N)), or O(NlogN)

An Efficient Algorithm: Build the Heap in Place

- 1. Position = (numItems-2)/2; // initial position the parent of the last item
- 2. siftDown item at that position.
- 3. Decrement position by one.

1	8	12	6	15	9	5	13	14	7	10	11	4	2	3
---	---	----	---	----	---	---	----	----	---	----	----	---	---	---

4. Repeat steps 2,3,4 until position is 0.

for(int i = (numltems -2) / 2; i >= 0; i--) siftDown(i);

for(int i = (numltems -2) / 2; i >= 0; i--) siftDown(i);

for(int i = numItems / 2 - 1; i >= 0; i--)
 siftDown(i);

for(int i = numItems / 2 - 1; i >= 0; i--)
 siftDown(i);

