Probability 1

Chapter 05 : Continuous Random Variables - Part 2

Dr. Daniel Flores-Agreda,

(based on the notes of Prof. Davide La Vecchia)

Spring Semester 2021

Objectives

- End exploration of the main properties of the Normal Distribution
- Explore other important Continuous Distributions

Outline

- Gaussian Distribution (continued)
- The Chi-squared distribution
- 3 The Student-t distribution
- The F distribution
- The lognormal distribution
- **6** Exponential distribution

Outline

- Gaussian Distribution (continued)
- 2 The Chi-squared distribution
- The Student-t distribution
- The F distribution
- The lognormal distribution
- Exponential distribution

Previously, on "Probability 1" ...

5 / 48

We explored the Normal PDF

$$\phi_{(\mu,\sigma)}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x-\mu)^2\right\} - \infty < x < \infty$$

And the Normal CDF

$$\Phi_{(\mu,\sigma)}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} \left(t - \mu\right)^2\right\} dt$$

We saw that to evaluate the CDF, we could make use of the **Standard Normal** CDF using integration by substitution $s = \frac{t-\mu}{\sigma}$

$$P(X \le x) = \Phi_{(\mu,\sigma)}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (t - \mu)^2\right\} dt$$
$$= \int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}s^2\right\} ds$$
$$\Phi_{(\mu,\sigma)}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

Last class we said that, the Normal PDF is Symmetric

$$\phi_{(\mu,\sigma)}(-x) = \phi_{(\mu,\sigma)}(x)$$

Density of N(0,2.25)

0.2

0.1

0.0

-x

x

0.0

2.5

5.0

-2.5

-5.0

Of course, the Standard Normal PDF is also Symmetric

$$\phi(-x) = \phi(x)$$

Symmetry of the PDF implies that the CDF can be computed as

$$\Phi(-x) = 1 - \Phi(x)$$

Symmetry of the PDF implies that the CDF can be computed as

$$\Phi(-x) = 1 - \Phi(x)$$

Symmetry of the PDF implies that the CDF can be computed as

$$\Phi(-x) = 1 - \Phi(x)$$

We can **shift and scale** any Normal Random Variable X and reach a **Standard Normal Random Variable** Z

$$X \sim \mathcal{N}\left(\mu, \sigma^2\right) \Longleftrightarrow Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}\left(0, 1\right)$$

We can **shift and scale** any Normal Random Variable X and reach a **Standard Normal Random Variable** Z

$$X \sim \mathcal{N}\left(\mu, \sigma^2\right) \Longleftrightarrow Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}\left(0, 1\right)$$

We can always transform from X to Z

$$Z = \frac{X - \mu}{\sigma}$$
 (for the random variable) and $z = \frac{x - \mu}{\sigma}$ (for its values),

and return back to X by a 're-scaling' and 're-shifting':

$$X = \sigma Z + \mu$$
 (for the random variable) and $x = \sigma z + \mu$ (for its values).

We can **shift and scale** any Normal Random Variable X and reach a **Standard Normal Random Variable** Z

$$X \sim \mathcal{N}\left(\mu, \sigma^2\right) \Longleftrightarrow Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}\left(0, 1\right)$$

• We can always **transform from** X **to** Z

$$Z = \frac{X - \mu}{\sigma}$$
 (for the random variable) and $z = \frac{x - \mu}{\sigma}$ (for its values),

• and return back to X by a 're-scaling' and 're-shifting':

$$X = \sigma Z + \mu$$
 (for the random variable) and $x = \sigma z + \mu$ (for its values).

Remark (Implication)

Statements about a Normal Random Variable can always be translated into equivalent statements about a standard Normal Random Variable, (and vice-versa).

In particular, the CDF of any Normal Random Variable $X \sim \mathcal{N}(\mu, \sigma^2)$, can be computed with a Standard CDF

$$P(\lbrace X \leq x \rbrace) = P\left(\left\{\frac{X - \mu}{\underbrace{\sigma}_{Z}} \leq \underbrace{x - \mu}_{z}\right\}\right)$$
$$= P(\lbrace Z \leq z \rbrace)$$
$$P(\lbrace X \leq x \rbrace) = \Phi(z)$$

Moreover, we can also compute the probabilities of any interval for $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$ with the **Standard CDF**

$$P(\{x_1 < X \le x_2\}) = P\left(\left\{\frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} \le \frac{x_2 - \mu}{\sigma}\right\}\right)$$

$$= P(\{z_1 < Z \le z_2\})$$

$$= P(\{Z \le z_2\}) - P(\{Z \le z_1\})$$

$$P(\{x_1 < X \le x_2\}) = \Phi(z_2) - \Phi(z_1)$$

where $z_1 = (x_1 - \mu)/\sigma$ and $z_2 = (x_2 - \mu)/\sigma$.

$$P(\{z_1 < Z \leq z_2\}) = P(\{Z \leq z_2\}) - P(\{Z \leq z_1\}) = \Phi(z_2) - \Phi(z_1)$$

$$P(\{z_1 < Z \le z_2\}) = P(\{Z \le z_2\}) - P(\{Z \le z_1\}) = \Phi(z_2) - \Phi(z_1)$$

$$P(\{z_1 < Z \le z_2\}) = P(\{Z \le z_2\}) - P(\{Z \le z_1\}) = \Phi(z_2) - \Phi(z_1)$$

$$P(\{z_1 < Z \le z_2\}) = P(\{Z \le z_2\}) - P(\{Z \le z_1\}) = \Phi(z_2) - \Phi(z_1)$$

Remark

The integral that defines the CDF of the standard normal:

$$P({Z \le z}) = \Phi(z) = \int_{-\infty}^{z} \phi(s) ds$$

does not have a closed-form expression.

• It has to be **approximated using a computer**, e.g. with R.

$$pnorm(1.924, mean = 0, sd = 1)$$

• We can read $\Phi(z)$ for $z \ge 0$ from **Standard Normal Tables**

Remark

The integral that defines the CDF of the standard normal:

$$P({Z \le z}) = \Phi(z) = \int_{-\infty}^{z} \phi(s) ds$$

does not have a closed-form expression.

• It has to be **approximated using a computer**, e.g. with R.

$$pnorm(1.924, mean = 0, sd = 1)$$

• We can read $\Phi(z)$ for $z \ge 0$ from **Standard Normal Tables**

Remark

We can obtain $\Phi(z)$ for z < 0 by symmetry of $\phi(z)$ which, again, entails:

$$\Phi(-z) = 1 - \Phi(z)$$

Description of the values contained in the table:

STATISTICAL TABLES

TABLE 1: AREAS UNDER THE STANDARDIZED NORMAL DISTRIBUTION

Contents of the table

One can use these tables to compute integrals/probabilities of the type:

Example (Prob of Z)

$$P(\{Z \le 1\}) \approx 0.8413$$

 $P(\{Z \le 1.96\}) \approx 0.9750$
 $P(\{Z \ge 1.96\}) = 1 - P(\{Z \le 1.96\}) \approx 1 - 0.9750 = 0.0250$
 $P(\{Z \ge -1\}) = P(\{Z \le 1\}) \approx 0.8413$
 $P(\{Z \le -1.5\}) = P(\{Z \ge 1.5\}) = 1 - P(\{Z \le 1.5\}) \approx 1 - 0.9332 = 0.0668$

Example (continued)

$$P(\{0.64 \le Z \le 1.96\}) = P(\{Z \le 1.96\}) - P(\{Z \le 0.64\})$$

$$\approx 0.9750 - 0.7389 = 0.2361$$

$$P(\{-0.64 \le Z \le 1.96\}) = P(\{Z \le 1.96\}) - P(\{Z \le -0.64\})$$

$$= P(\{Z \le 1.96\}) - [1 - P(\{Z \le 0.64\})]$$

$$\approx 0.9750 - (1 - 0.7389) = 0.7139$$

$$P(\{-1.96 \le Z \le -0.64\}) = P(\{0.64 \le Z \le 1.96\})$$

$$\approx 0.2361$$

Example

On the highway A2 (in the Luzern area), the speed is limited to 80 km/h. A radar measures the speeds of all the cars. Assuming that the registered speeds are distributed according to a Normal law with mean 72 km/h and standard error 8 km/h:

What is the proportion of the drivers who will have to pay a penalty for high speed?

21 / 48

Example

On the highway A2 (in the Luzern area), the speed is limited to 80 km/h. A radar measures the speeds of all the cars. Assuming that the registered speeds are distributed according to a Normal law with mean 72 km/h and standard error 8 km/h:

What is the probability that a driver who will roll at a speed > 80

Example

On the highway A2 (in the Luzern area), the speed is limited to 80 km/h. A radar measures the speeds of all the cars. Assuming that the registered speeds are distributed according to a Normal law with mean 72 km/h and standard error 8 km/h:

What is the probability that a driver who will roll at a speed > 80

Let X be the random variable expressing the registered speed: $X \sim \mathcal{N}(72,64)$.

Since a driver has to pay if its speed is above 80 km/h, the proportion of drivers paying a penalty is expressed through P(X > 80):

$$P(X > 80) = P\left(Z > \frac{80 - 72}{8}\right) = 1 - \Phi(1) = 1 - 0.8413 = 0.1587$$

where $Z \sim \mathcal{N}(0,1)$.

Hence, the proportion will be around 16%

In particular, lets consider the probabilty of intervals of the form:

$$P(\{\mu - \mathbf{k}\sigma \le X \le \mu + \mathbf{k}\sigma\})$$

for a factor $k \in$

$$k = 1$$

$$k = 2$$

$$k = 3$$

It can be seen that the shaded areas under the pdfs are (approximately) equivalent to 0.683, 0.954 and 0.997, respectively.

Definition (Rule '68 – 95 – 99.7')

If X is a Normal random variable, $X \sim \mathcal{N}(\mu, \sigma^2)$, its realization has approximately a probability of

- 68 % of being in the interval $[\mu \sigma, \mu + \sigma]$;
- 95 % of being in the interval $[\mu 2\sigma, \mu + 2\sigma]$;
- 99.7% of being in the interval $[\mu 3\sigma, \mu + 3\sigma]$.

Expectation and Variance

For
$$X \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$E\left[X\right] = \mu \text{ and } Var\left(X\right) = \sigma^2.$$

Expectation and Variance

For
$$X \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$E\left[X\right] = \mu \text{ and } Var\left(X\right) = \sigma^2.$$

Linear Transformations

If a is a number, then

$$X + a \sim \mathcal{N}(\mu + a, \sigma^2)$$

 $aX \sim \mathcal{N}(a\mu, a^2\sigma^2).$

Expectation and Variance

For
$$X \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$E\left[X\right] = \mu \text{ and } Var\left(X\right) = \sigma^2.$$

Linear Transformations

If a is a number, then

$$X + a \sim \mathcal{N}(\mu + a, \sigma^2)$$

 $aX \sim \mathcal{N}(a\mu, a^2\sigma^2).$

Sum of two Independent Normal RV's

If $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$ and $Y \sim \mathcal{N}\left(\alpha, \delta^2\right)$, and X and Y are **independent** then

$$X + Y \sim \mathcal{N} \left(\mu + \alpha, \sigma^2 + \delta^2 \right)$$
.

24 / 48

Gaussian Distribution (continued)

Locations of n = 30 sampled values of X, Y, and X + Y shown as tick marks under each respective density.

Gaussian Distribution (continued)

Example

On the highway A2 (in the Luzern area), the speed is limited to 80 km/h. A radar measures the speeds of all the cars. Assuming that the registered speeds are distributed according to a Normal law with mean 72 km/h and standard error 8 km/h:

Knowing that in addition to the penalty, a speed higher than $30 \, km/h$ (over the max allowed speed) implies a withdrawal of the driving license, what is the proportion of the drivers who will lose their driving license among those who will have a to pay a fine?

Gaussian Distribution (continued)

Example

On the highway A2 (in the Luzern area), the speed is limited to 80 km/h. A radar measures the speeds of all the cars. Assuming that the registered speeds are distributed according to a Normal law with mean 72 km/h and standard error 8 km/h:

We are looking for the conditional probability of a recorded speed greater than 110 $\underline{\text{given that}}$ the driver has had already to pay a fine:

$$\begin{split} P(X > 110 | X > 80) &= \frac{P(\{X > 110\} \bigcap \{X > 80\})}{P(X > 80)} \\ &= \frac{P(X > 110)}{P(X > 80)} = \frac{1 - \Phi((110 - 72)/8)}{1 - \Phi(1)} \approx \frac{0}{16\%} \simeq 0. \end{split}$$

26 / 48

Outline

- Gaussian Distribution (continued)
- The Chi-squared distribution
- The Student-t distribution
- The F distribution
- The lognormal distribution
- 6 Exponential distribution

Definition

If Z_1, Z_2, \ldots, Z_n are independent standard Normal random variables, then

$$X = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

has a chi-squared distribution with n degrees of freedom. Write as $X \sim \chi^2(n)$.

28 / 48

Definition

If Z_1, Z_2, \ldots, Z_n are independent standard Normal random variables, then

$$X = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

has a chi-squared distribution with n degrees of freedom. Write as $X \sim \chi^2(n)$.

Remark

 $X \sim \chi^2(n)$ can take only positive values. Moreover, expected value and variance, for $X \sim \chi^2(n)$, are:

$$E[X] = n$$

 $Var(X) = 2n$

Remark

If $X \sim \chi^2(n)$ and $Y \sim \chi^2(m)$ are independent then $X + Y \sim \chi^2(n+m)$.

Quantiles for Chi-squared probabilities may be read from a table.

TABLE 3: CHI-SQUARED DISTRIBUTION: CRITICAL VALUES

For a particular number of degrees of freedom $\, \nu$, each entry represents the

value of χ^2_{ν} corresponding to a specified upper tail area a.

Upper Tail Areas, a													
ν	0.995	0.99	0.975	0.95	0.99	0.1	0.05	0.025	0.01	0.005	ν		
1	0.000039	0.000157	0.000982	0.003932	0.000157	2.70554	3.84146	5.02390	6.63489	7.87940	1		
2	0.010025	0.020100	0.050636	0.102586	0.020100	4.60518	5.99148	7.37778	9.21035	10.59653	2		
3	0.071723	0.114832	0.215795	0.351846	0.114832	6.25139	7.81472	9.34840	11.34488	12.83807	3		
4	0.20698	0.29711	0.48442	0.71072	0.29711	7.77943	9.48773	11.14326	13.27670	14.86017	4		
5	0.41175	0.55430	0.83121	1.14548	0.55430	9.23635	11.07048	12.83249	15.08632	16.74965	5		
6	0.67573	0.87208	1.23734	1.63538	0.87208	10.64464	12.59158	14.44935	16.81187	18.54751	6		
7	0.98925	1.23903	1.68986	2.16735	1.23903	12.01703	14.06713	16.01277	18.47532	20.27774	7		
8	1.34440	1.64651	2.17972	2.73263	1.64651	13.36156	15.50731	17.53454	20.09016	21.95486	8		
9	1.73491	2.08789	2.70039	3.32512	2.08789	14.68366	16.91896	19.02278	21.66605	23.58927	9		
10	2.15585	2.55820	3.24696	3.94030	2.55820	15.98717	18.30703	20.48320	23.20929	25.18805	10		
11	2.60320	3.05350	3.81574	4.57481	3.05350	17.27501	19.67515	21.92002	24.72502	26.75686	11		
12	3.07379	3.57055	4.40378	5.22603	3.57055	18.54934	21.02606	23.33666	26.21696	28.29966	12		
13	3.56504	4.10690	5.00874	5.89186	4.10690	19.81193	22.36203	24.73558	27.68818	29.81932	13		
14	4.07466	4.66042	5.62872	6.57063	4.66042	21.06414	23.68478	26.11893	29.14116	31.31943	14		
15	4.60087	5.22936	6.26212	7.26093	5.22936	22.30712	24.99580	27.48836	30.57795	32.80149	15		
16	5.14216	5.81220	6.90766	7.96164	5.81220	23.54182	26.29622	28.84532	31.99986	34.26705	16		
17	5.69727	6.40774	7.56418	8.67175	6.40774	24.76903	27.58710	30.19098	33.40872	35.71838	17		
18	6.26477	7.01490	8.23074	9.39045	7.01490	25.98942	28.86932	31.52641	34.80524	37.15639	18		
19	6.84392	7.63270	8.90651	10.11701	7.63270	27.20356	30.14351	32.85234	36.19077	38.58212	19		
20	7.43381	8.26037	9.59077	10.85080	8.26037	28.41197	31.41042	34.16958	37.56627	39.99686	20		
21	8.03360	8.89717	10.28291	11.59132	8.89717	29.61509	32.67056	35.47886	38.93223	41.40094	21		
22	8.64268	9.54249	10.98233	12.33801	9.54249	30.81329	33.92446	36.78068	40.28945	42.79566	22		

Example

Let X be a chi-squared random variable with 10 degrees-of-freedom. What is the value of its upper fifth percentile?

By definition, the upper fifth percentile is the chi-squared value x (lower case!!!) such that the probability to the right of x is 0.05 (so the upper tail area is 5%). To find such an x we use the chi-squared table:

- ullet setting ${\cal V}=10$ in the first column on the left and getting the corresponding row
- finding the column headed by $P(X \ge x) = 0.05$.

Now, all we need to do is read the corresponding cell. What do we get? Well, the table tells us that the upper fifth percentile of a chi-squared random variable with 10 degrees of freedom is 18.30703.

31 / 48

Outline

- Gaussian Distribution (continued)
- 2 The Chi-squared distribution
- 3 The Student-t distribution
- The F distribution
- The lognormal distribution
- Exponential distribution

The Student-t distribution

Definition

If $Z \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(v)$ are **independent** then

$$T = \frac{Z}{\sqrt{Y/v}}$$

has a **Student-t** distribution with v degrees of freedom. Write as $T \sim t_v$.

 $T \sim t_{
m v}$ can take any value in \mathbb{R} . Expected value and variance for $T \sim t_{
m v}$ are

$$E[T] = 0$$
, for $v > 1$
 $Var(T) = \frac{v}{v-2}$, for $v > 2$.

33 / 48

The Student-t distribution

Remark

The pdf of $T \sim t_v$ is similar to a Normal (with mean zero) but with fatter tails. When v is large (typically, $v \geq 120$) t_v approaches $\mathcal{N}(0,1)$.

The Student-t distribution

TABLE 2: STUDENT t DISTRIBUTION: CRITICAL VALUES

For a particular number of degrees of freedom ν , each entry represents the value of t corresponding to a specified upper tail area a.

Degrees of	Upper Tail Areas, α													
Freedom v	.25	.10	.05	.025	.01	.005								
1	1.0000	3.0777	6.3137	12.7062	31.8210	63,6559								
2	0.8165	1.8856	2.9200	4.3027	6.9645	9.9250								
3	0.7649	1.6377	2.3534	3.1824	4.5407	5,8408								
4	0.7407	1.5332	2.1318	2,7765	3,7469	4,6041								
5	0.7267	1.4759	2.0150	2,5706	3.3649	4.0321								
6	0.7176	1.4398	1.9432	2.4469	3.1427	3,7074								
7	0.7111	1.4149	1.8946	2.3646	2.9979	3,499								
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554								
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498								
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693								
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.105								
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.054								
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.012								
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.976								
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.946								
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.920								
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.898								
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.878								
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.860								
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.845								
21	0.6964	1 2222	1.7207	2.0706	2.5176	2 021								

Outline

- Gaussian Distribution (continued)
- 2 The Chi-squared distribution
- The Student-t distribution
- The F distribution
- The lognormal distribution
- 6 Exponential distribution

The F distribution

Definition

If $X \sim \chi^2(v_1)$ and $Y \sim \chi^2(v_2)$ are **independent**, then

$$F = \frac{\frac{X}{v_1}}{\frac{Y}{v_2}},$$

has an **F** distribution with v_1 'numerator' and v_2 'denominator' degrees of freedom. Write as $F \sim F_{v_1,v_2}$.

 $F \sim F_{\nu_1,\nu_2}$ can take only **positive** values. Expected value and variance for $F \sim F_{\nu_1,\nu_2}$ (note that the order of the degrees of freedom is important!).

$$E[F] = \frac{v_2}{v_2 - 2}, \text{ for } v_2 > 2$$

$$Var(F) = \frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)}, \text{ for } v_2 > 4.$$

The F distribution

TABLE 4: F_{v_1,v_2} DISTRIBUTION: $\alpha = 0.05$ CRITICAL VALUES

For a particular pair of degrees of freedom, V_1 : numerator

and $\nu_{_2}$: denominator, each entry represents the value of F_{ν_i,ν_i} corresponding to the upper tail area $\,\alpha$.

										V.										
V _j	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	œ	V ₂
1	161.45	199.50	215.71	224.58	230.16	233.99	236,77	238.88	240.54	241.88	243.90	245.95	248.02	249.05	250.10	251.14	252.20	253.25	254.32	1
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50	2
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53	3
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63	4
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37	5
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67	6
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23	7
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93	8
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71	9
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54	10
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40	11
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30	12
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21	13
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13	14
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07	15
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01	16
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96	17
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92	18
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88	19
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84	20
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81	21
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78	22
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76	23
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73	24
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71	25
26 27	4.23	3.37	2.98	2.74	2.59 2.57		2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69	26 27
27	4.21		2.96			2.46		2.31			2.13		1.97	1.93	1.88	1.84	1.79		1.67	
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65	28

Outline

- Gaussian Distribution (continued)
- 2 The Chi-squared distribution
- The Student-t distribution
- The F distribution
- The lognormal distribution
- 6 Exponential distribution

The lognormal distribution

Definition

Y has a lognormal distribution when

$$ln(Y) = X$$

has a Normal distribution. We write $Y \sim lognormal(\mu, \sigma^2)$.

If $Y \sim \textit{lognormal}(\mu, \sigma^2)$ then

$$E[Y] = \exp\left(\mu + \frac{1}{2}\sigma^2\right)$$

 $Var(Y) = \exp\left(2\mu + \sigma^2\right)\left(\exp\left(\sigma^2\right) - 1\right).$

41 / 48

The lognormal distribution

Let us just see some plots... more to come later...

Outline

- Gaussian Distribution (continued)
- 2 The Chi-squared distribution
- The Student-t distribution
- The F distribution
- The lognormal distribution
- 6 Exponential distribution

Definition

Let X be a continuous random variable, having the following characteristics:

- X is defined on the positive real numbers $(0; \infty)$ namely \mathbb{R}^+ ;
- the pdf and CDF are

$$f_X(x) = \lambda \exp\{-\lambda x\}, \lambda > 0; \quad F_X(x) = 1 - \exp(-\lambda x);$$

then we say that X has an exponential distribution. We write $X \sim \text{Exp}(\lambda)$.

44 / 48

Definition

Let X be a continuous random variable, having the following characteristics:

- X is defined on the positive real numbers $(0; \infty)$ namely \mathbb{R}^+ ;
- the pdf and CDF are

$$f_X(x) = \lambda \exp\{-\lambda x\}, \lambda > 0; \quad F_X(x) = 1 - \exp(-\lambda x);$$

then we say that X has an exponential distribution. We write $X \sim \text{Exp}(\lambda)$.

For $X \sim \mathsf{Exp}(\lambda)$ we have that:

$$E[X] = \int_0^\infty x f_X(x) dx = 1/\lambda \quad \text{and} \quad Var(X) = \int_0^\infty x^2 f_X(x) dx - E^2(X) = 1/\lambda^2.$$

Definition

Let X be a continuous random variable, having the following characteristics:

- X is defined on the positive real numbers $(0; \infty)$ namely \mathbb{R}^+ ;
- the pdf and CDF are

$$f_X(x) = \lambda \exp\{-\lambda x\}, \lambda > 0; \quad F_X(x) = 1 - \exp(-\lambda x);$$

then we say that X has an exponential distribution. We write $X \sim \text{Exp}(\lambda)$.

For $X \sim \mathsf{Exp}(\lambda)$ we have that:

$$E[X] = \int_0^\infty x f_X(x) dx = 1/\lambda \quad \text{and} \quad Var(X) = \int_0^\infty x^2 f_X(x) dx - E^2(X) = 1/\lambda^2.$$

Remark

X is typically applied to model the waiting time until an event occurs, when events are always occurring at a random rate $\lambda>0$. Moreover, the sum of independent exponential random variables has a Gamma distribution (see tutorial).

Example

Let $X \sim \text{Exp}(\lambda)$, with $\lambda = 0.5$. Thus

$$f_X(x) = \begin{cases} 0.5 \exp(-0.5x) & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Then, find the CDF.

Example

Let $X \sim \text{Exp}(\lambda)$, with $\lambda = 0.5$. Thus

$$f_X(x) = \begin{cases} 0.5 \exp(-0.5x) & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Then, find the CDF.

For x > 0, we have

$$F_X(x) = \int_0^x f_X(u) du$$

$$= 0.5 \left(-2 \exp(-0.5u) \right) \Big|_{u=0}^{u=x}$$

$$= 0.5 (-2 \exp(-0.5x) + 2 \exp(0))$$

$$= 1 - \exp(-0.5x)$$

Example

Let $X \sim \text{Exp}(\lambda)$, with $\lambda = 0.5$. Thus

$$f_X(x) = \begin{cases} 0.5 \exp(-0.5x) & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Then, find the CDF.

For x > 0, we have

$$F_X(x) = \int_0^x f_X(u) du$$

$$= 0.5 \left(-2 \exp(-0.5u) \right) \Big|_{u=0}^{u=x}$$

$$= 0.5 (-2 \exp(-0.5x) + 2 \exp(0))$$

$$= 1 - \exp(-0.5x)$$

so, finally,

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ 1 - \exp(-0.5x) & x > 0 \end{cases}$$

Wrap-up

- Properties of any Normal-distributed Random Variable can be figured out by studying the Standard Normal.
- The Standard Normal is at the core of many other important distribution (Chi-Square, Student's, Fisher's F, log-normal)
- The Cumulative Probabilities of a standard normal Z for z>0 are in tables, and can help us calculate the probability of any interval for any Normal.
- The other distributions introduce the notion of degrees of freedom and their tables display the quantiles for some upper or lower-tail probabilities for distribution with given degrees of freedom.

Thank You for your Attention!

Thank You for your Attention!

"See you" Next Week