Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

28 Settembre 2020

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	30	
totale	30	

- 1. (a) Si presenti l'algoritmo di minimizzazione di macchine a stati finiti nondeterministiche.
 - (b) Si presenti l'algoritmo di determinizzazione di macchine a stati finiti nondeterministiche.
 - (c) Si presenti un algoritmo per verificare se due macchine a stati finiti nondeterministiche sono equivalenti e se ne giustifichi la correttezza. Traccia di risposta.

Si utilizzano i seguenti teoremi

- Una macchina a stati finiti non-deterministica si puo' trasformare in una macchina a stati finiti equivalente pseudo-nondeterministica con l'algoritmo di determinizzazione.
- Due macchine a stati finiti pseudo-nondeterministiche M_1 e M_2 sono equivalenti se e solo se c'e' una bisimulazione tra M_1 e M_2 .
- L'algoritmo di minimizzazione produce la macchina con il minimo numero di stati bisimile a quella data.
- C'e' una bisimulazione tra due macchine a stati finiti pseudo-nondeterministiche M_1 e M_2 se e solo se c'e' un isomorfismo tra $min(det(M_1))$ e $min(det(M_2))$.

Questo suggerisce l'algoritmo:

- i. Determinizzare M_1 ottenendo $det(M_1)$;
- ii. Determinizzare M_2 ottenendo $det(M_2)$;
- iii. Minimizzare $det(M_1)$ ottenendo $min(det(M_1))$;
- iv. Minimizzare $det(M_2)$ ottenendo $min(det(M_2))$;
- v. Verificare se $min(det(M_1))$ e $min(det(M_2))$ sono identiche a meno di ridenominazione degli stati (versione semplificata dell'isomorfismo tra grafi perche' ci sono stati iniziali e etichette sugli archi che guidano la verifica dell'isomorfismo).
- (d) Si considerino le due macchine a stati finiti seguenti:

Macchina M':

- stati: $s_a', s_b', s_c', s_d', s_e'$ con s_a' stato iniziale;
- transizione da s'_a a s'_b : •/0, transizione da s'_a a s'_c : •/0, transizione da s'_b a s'_d : •/0, transizione da s'_c a s'_e : •/1, transizione da s'_d a s'_d : •/0, transizione da s'_e a s'_e : •/0.

Macchina $M^{''}$:

- stati: $s_x^{"}, s_y^{"}, s_z^{"}, s_u^{"} \operatorname{con} s_x^{"}$ stato iniziale;
- transizione da s_x'' a s_y'' : •/0, transizione da s_y'' a s_z'' : •/0, transizione da s_y'' a s_z'' : •/1, transizione da s_z'' a s_z'' : •/0, transizione da s_z'' a s_z'' : •/0.

Si risponda in ordine alle seguenti domande (si indichi sempre il numerale romano in ogni risposta):

- i. Si disegnino i diagrammi di transizione delle due macchine.
- ii. Si classifichino le macchine rispetto al determinismo. Traccia di risposta.

 $M^{'}$ e' nondeterministica, ma non pseudo-nondeterministica.

M'' e' pseudo-nondeterministica.

iii. Si derivino i comportamenti (successioni d'ingressi/successioni d'uscite) prodotti dalle due macchine e li si confrontino.

Traccia di risposta.

Per descrivere i comportamenti si possono usare le espressioni regolari.

Comportamenti(M') = $(\bullet 0)^* + (\bullet 0)(\bullet 1)(\bullet 0)^*$.

Comportamenti(M'') = $(\bullet 0)((\bullet 0)^* + (\bullet 1)(\bullet 0)^*)$.

Dall'algebra delle espressioni regolari si vede che

Comportamenti(M') = Comportamenti(M'').

iv. Si minimizzi M', ottenendo min(M').

Traccia di soluzione.

Le risposte a questa domanda e alle successive sono riassunte nel foglio allegato contenente i grafi delle transizioni delle MSF richieste.

- v. Si determinizzi min(M'), ottenendo det(min(M')).
- vi. Si minimizzi M'', ottenendo min(M'').
- vii. Si confrontino i comportamenti di det(min(M')) e min(M'').
- viii. Si trovi una bisimulazione tra det(min(M')) e min(M''), se esiste. Si commentino i risultati precedenti.

Traccia di soluzione.

Essendo isomorfi i grafi delle transizioni di $det(min(M^{'}))$ e $min(M^{''})$, la bisimulazione e' quella naturale suggerita dalla corrispondenza degli

stati.

 $M^{'}$ e $M^{''}$ sono esempi di macchine a stati finiti nondeterministiche equivalenti, ma non isomorfe neppure dopo la minimizzazione degki stati. Invece si ritrova l'isomorfismo dopo la determinizzazione di $M^{'}$ (in questo caso di $det(M^{'})$).

Altre considerazioni possono essere suggerite dalla risposta alla domanda (c).