

Data Mining - Graph Mining

Andreas Karwath Jörg Wicker

Johannes Gutenberg University Mainz

March 21, 2017

Outline

Graph Mining

- Examples
- Introduction
- Graph and Network Definitions
- Graph Representations
- **Graph Clustering**

Acknowledgments

- Slides partially from
 - Stefan Kramer
 - Cecilia Mascolo (Univ. Cambridge)

Section 1

Graph Mining

Andreas Karwath

March 21, 2017

DM - Graph Mining

Examples - Social Network

DM - Graph Mining

Examples - Biological Pathways

DM - Graph Mining

Examples - Internet Network

Examples - Chemical Compounds

What is Graph Mining?

- Graph: A collection of vertices (nodes) and edges.
 - Vertices can be labelled or unlabelled
 - Edges can be labelled or unlabelled
 - Edges can be directed or undirected
 - Vertices and edges can contain attributes
- Typical settings
 - Finding similarities between (small) graphs in a collection of graphs. Similarities are commonly expressed as so-called sub-graphs. However, other approaches exist.
 - Finding intersting sub-structures (sub-graphs) in one large network or detect missing edges (links) or vertices (nodes).
 - Comparison of a small number of networks.

Graph Definitions

- A graph G is a tuple (V, E) of a set of vertices V and edges E. An edge in E connects two vertices in V.
- A **neighbour set** N(v) is the set of vertices adjacent to v:

$$N(v) = \{u \in V | u \neq v, (v, u) \in E\}$$

■ The **degree** of a node is the number of neighbours of a node.

Directed and Undirected Graphs

Examples of ...

- ... undirected Graphs: Facebook, Co-presence, WhatsApp. etc.
- ... directed: Twitter, Email, Phone Calls, etc.

Paths and Cycles

- A path is a sequence of nodes in which each pair of consecutive nodes is connected by an edge.
 - If a graph is directed the edge needs to be in the right direction.
 - e.g. A-E-D is a path in both previous graphs

- A **cycle** is a path where the start node is also the end node.
 - e.g. E-A-B-C is a cycle in the undirected graph

Connectivity

- A graph is **connected** if there is a path between each pair of nodes.
- Example of a **disconnected** graph:

Components

- A **connected component** of a graph is the subset of nodes for which each of them has a path to all others (and the subset is not part of a larger subset with this property).
 - Connected components: A-B-C and E-D in the example before

- A **giant component** is a connected component containing a significant fraction of nodes in the network.
 - Real networks often have one unique giant component.

Path Length/Distance

- The **distance** (d) between two nodes in a graph is the length of the shortest path linking the two graphs.
- The **diameter** of the graph is the maximum distance between any pair of its nodes.

Small-world Phenomenon Milgrams Experiment

- Two random people are connected through only a few (6) intermediate acquaintances.
- Milgrams experiment (1967) shows the known "six degrees of separation":
 - Choose 300 people at random Ask them to send a letter through friends to a stockbroker near Boston.
 - 64 successful chains.

Milgram's Findings

- Use of "weak ties" and professional relationships
- Median of 5-7 steps
- "Network structure alone is not everything"
- Some different incentives had a high impact on completion rate of chains
 - If the target was in a prominent place (e.g. a professor)

- Has been repeated using Facebook
 - Backstrom et al. (2012):"Four Degrees of Separation", WebSci 2012, pp. 33-42, ACM

Erdős number

■ Erdős Number: distance from the mathematician (most people are 4-5 hops away) based on collaboration.

Adjacency Lists

■ Each vertex has an associated list of its adjacent vertices

■ Example:

A: B, E

B: A,C

C: B, E

D: E

E: A,C, D

Adjacency Matrices

■ The adjacency matrix of a graph G = (V, E) is an $n \times n$ matrix A, such that:

$$a_{ij} = egin{cases} 1 & \textit{if}(i,j) \in E \ 0 & \textit{otherwise} \end{cases}$$

Example:

	Α	В	C	D	Ε
Α	0	1	0	0	1
В	1	0	1	0	0
C	0	1	0	0	1
D	0	0	0	0	1
F	1	0	1	1	0

Incidence Matrices

- Similar to adjacency matrices, but the incidence matrix (symbolized here using *C*) represents vertices and edges.
- Example:

	A-B	A-E	B-C	E-C	E-D
Α	1	1	0	0	0
В	1	0	1	0	0
C	0	0	1	1	0
D	0	0	0	0	1
E	0	1	0	1	1

 \blacksquare Relationship between an adjacency A and incidence matrix C:

$$A = C^T C - 2I$$

Graph Clustering

thedatamine.files.wordpress.com | tweeters-till-sat-am-graph-org2-1680x1187.jpg

23

Graph Clustering - Spectral Partitioning

- Spectral partitioning (roughly):
 - Given an adjacency matrix A of a graph and the degree matrix D (a diagonal matrix containing at d_{ii} the degree of node i)
 - Calculate the Laplacien matrix L = D A
 - Calculate the Eigenvalues and Eigenvectors of L
 - The eigenvalue λ_0 tells one whether the graph is connected or not.
 - The eigenvector v_1 of the second lowest Eigenvalue λ_1 (a.k.a the Fiedler vector) provides an assignment to each vertex in the graph. This assignment can be used to partition (cluster) the graph.
 - If a graph has k connected components, then eigenvalue (λ_0) has multiplicity k (i.e. k distinct non-trivial eigenvectors).

Graph Clustering - Spectral Partitioning - Example

■ Toy example:

- Assume λ_0 has multiplicity 2 and the 2 distinct eigenvectors look like:
 - \blacksquare $\langle 1, 1, 1, 0, 0, 0 \rangle$ and $\langle 0, 0, 0, 1, 1, 1 \rangle$
- Consider a matrix with these eigenvectors as its columns: $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$ Each column corresponds to

Graph Clustering - Non-negative Matrix Factorization (NMF)

- Given a matrix $A = [a_1, a_2, ..., a_n] \in \mathbb{R}^{m \times n}$
- \blacksquare NMF aims to find two non-negative matrices U and V with:
 - $U = [u_{ii}] \in \mathbb{R}^{m \times k}$ and $V = [v_{ij}] \in \mathbb{R}^{k \times n}$ whose product can well approximate the original matrix A:
 - \blacksquare $A \approx UV$
- Graphically:

Andreas Karwath

March 21, 2017

BMAD - A Boolean Matrix Decomposition Framework

- Java library for Boolean matrix decomposition
- Modular steps can be freely combined into a decomposition algorithm
 - Candidate generation
 - Basis selection
 - Boolean combination
- Capable of handling missing values
- Can read and write WEKA instances
- Freely available, licensed under GPLv3

 Applications in (multi-label) classification, clustering, pattern mining, . . .

Assignment: Clustering using NMF

- Given a datasets with different networks:
 - Construct adjacency matrix *A*
 - Use a NMF approach (BMAD) to find k clusters (U)
 - Evaluate different ks with regards to the reconstruction error for the best clustering.
 - Visualize the results