NUMPY VÀ PHÉP TÍNH MA TRẬN

GBAI HOC GIAO THONGL

Nguyễn Mạnh Hùng

ĐẠI HỌC GTVT

03 - 2023

Nội dung

- 🕕 Ma t<mark>r</mark>ận
- Các phép toán trên ma trận
- 3 Hệ phương trình tuyến tính
- Thực hành

Ma trận (matrix)

Ma trận kích thước $m \times n$ là một bảng chữ nhật gồm m.n số được xếp thành m hàng và n cột:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

trong đó a_{ij} là phần tử của ma trận nằm ở hàng thứ i và cột thứ j.

Ma trận có thể sử dụng để mô tả dữ liệu dạng bảng:

• Ảnh xám: là ma trận độ sáng của các điểm ảnh


```
    [255.
    255.
    255.
    255.
    ]

    [255.
    255.
    255.
    255.
    ]

    [255.
    255.
    255.
    255.
    ]

    ...
    255.
    255.
    ]

    [105.333336
    108.333336
    85.333336
    87.333336

    [104.666664
    107.333336
    84.333336
    86.333336

    [101.666664
    103.666664
    81.333336
    81.333336
```

• Lợi nhuận đầu tư: ma trận lợi nhuận của danh mục đầu tư gồm n tài sản trong khoảng thời gian T.

Date	AAPL	GOOG	MMM	AMZN
March 1, 2016	0.00219	0.00006	-0.00113	0.00202
March 2, 2016	0.00744	-0.00894	-0.00019	-0.00468
March 3, 2016	0.01488	-0.00215	0.00433	-0.00407

 Ma trận vuông (square matrix): có số hàng = số cột = n, gọi là ma trận là vuông cấp n. Ví dụ ma trận vuông cấp 3:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 5 \\ -2 & 4 & 4 \end{pmatrix}$$

• Giả sử $A = (a_{ij})_{n \times n}$ là một ma trận vuông cấp n. Dãy số:

$$(a_{11}, a_{22}, \ldots, a_{nn})$$

được gọi là **đường chéo** (diagonal) của ma trận. Tổng tất cả các phần tử thuộc đường chéo được gọi là "**vết**" của ma trận:

$$trace(A) = a_{11} + a_{22} + \cdots + a_{nn}$$

 Ma trận tam giác trên/dưới (upper/lower triangle matrix): là ma trận vuông, có các phần tử nằm phía dưới/trên đường chéo bằng 0:

$$U = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}; \quad L = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

 Ma trận đường chéo (diagonal matrix): là ma trận vuông, có các phần tử nằm ngoài đường chéo bằng 0:

$$L = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

 Ma trận đơn vị (identity matrix): là ma trận vuông, các phần tử nằm trên đường chéo bằng 1, các phần tử còn lại bằng 0. Ví dụ:

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Ma trận không (zero matrix): có các phần tử đều bằng 0. Ví dụ:

$$\theta_{2\times3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 Tạo ma trận bằng mảng ndarray:

```
[1]: import numpy as np
    a=np.array([[1,-2,1],[2,4,-3]])
    b=np.arange(3)
    print("a = ",a)
    print("b = ",b)

a = [[ 1 -2   1]
    [ 2  4 -3]]
    b = [0  1  2]
```

Ghép nối, xóa mảng:

```
In [2]: c=np.vstack([a,b])
        d=np.delete(c,1,axis=0)
        e=np.delete(c,1,axis=1)
        print("Ghép ma trận",c,sep="\n")
        print("Xóa hàng",d,sep="\n")
        print("Xóa cột",e,sep="\n")
       Ghép ma trân
       [[1-21]
        [24-3]
          0 1 2]]
       Xóa hàng
        [[1-21]
          0 1 2]]
       Xóa côt
       [[1 1]
          2 -3]
          0 2]]
```

Tạo ma trận bằng hàm tích hợp sẵn trong NumPy:

• np.empty(shape, dtype, order): trả về một ma trận mà các phần tử chưa được khởi tạo,

```
shape: kích thước của ma trận,
dtype: (optional) kiểu dữ liệu phần tử,
order: (optional) 'C' hoặc 'F'.
```

Giá trị của các phần tử của ma trận là các số sẵn có trong các ô nhớ được cấp phát.

- np.zeros(shape): trả về ma trận không.
- np.ones(shape) : trả về ma trận có phần tử bằng 1.

• **np.eye**(*n*, *M*, *k*, *dtype*): trả về một ma trận mà các phần tử thuộc đường chéo bằng 1, các phần tử còn lại bằng 0,

n: số hàng của ma trận,

M: số cột của ma trận, giá trị mặc định bằng n,

k : chỉ số đường chéo,dtype : kiểu dữ liệu phần tử.

• np.random.rand(shape): trả về ma trận mà giá trị phần tử được sinh ngẫu nhiên trong khoảng [0,1).

• np.identity(n): trả về ma trận đơn vị cấp n.

• **np.diag**(v): trả về một ma trận đường chéo, trong đó v là một danh sách hoặc một kiểu tương đương.

- $\mathbf{np.tril}(A,k)$: tạo ra ma trận tam giác dưới.
- np.triu(A,k): tạo ra ma trận tam giác trên.

```
A: mảng 2 chiều hoặc tương đương,
```

k: (optional) chỉ số đường chéo, mặc định k = 0.

Hai ma trận bằng nhau

$$\begin{pmatrix} 9 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} 9 & 4 \\ 6 & 5 \end{pmatrix} \Leftrightarrow \begin{cases} x = 4 \\ y = 6 \end{cases}$$

Chuyển vị ma trận (transpose)

$$\begin{pmatrix} 1 & 5 \\ 7 & 2 \\ -3 & 1 \end{pmatrix}^T = \begin{pmatrix} 1 & 7 & -3 \\ 5 & 2 & 1 \end{pmatrix}$$

Cộng hai ma trận (addition)

$$\begin{pmatrix} 2 & 1 \\ -3 & 5 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} 7 & -1 \\ 4 & 2 \\ -6 & 1 \end{pmatrix} = \begin{pmatrix} 2+7 & 1+(-1) \\ -3+4 & 5+2 \\ 4+(-6) & 3+1 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 1 & 7 \\ -2 & 4 \end{pmatrix}$$

Nhân một số với ma trận (scalar multiplication)

$$-2\begin{pmatrix}1&6\\2&5\\9&3\end{pmatrix} = \begin{pmatrix}(-2).1&(-2).6\\(-2).2&(-2).5\\(-2).9&(-2).3\end{pmatrix} = \begin{pmatrix}-2&-12\\-4&-10\\-18&-6\end{pmatrix}$$

Nhân ma trận với ma trận (matrix multiplication)

Lũy thừa của ma trận (power of a matrix)

$$A^k = \underbrace{A \cdots A}_{k \text{ lần}}$$

Dinh thức (determinant)

$$\begin{vmatrix} 1 & 4 & -2 \\ 3 & 2 & 1 \\ -6 & 0 & 3 \end{vmatrix} = 1(-1)^{1+1} \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} + 4(-1)^{1+2} \begin{vmatrix} 3 & 1 \\ -6 & 3 \end{vmatrix} + (-2)(-1)^{1+3} \begin{vmatrix} 3 & 2 \\ -6 & 0 \end{vmatrix}$$
$$= 1(6-0) - 4(9+6) - 2(0+12) = -78$$

Hạng (rank)

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 \\ 4 & 7 & -4 & -3 \\ 6 & 9 & -5 & 2 \\ 0 & -9 & 6 & 5 \end{bmatrix} \Rightarrow v_1 = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 5 \\ 7 \\ 9 \\ -9 \end{bmatrix}, v_3 = \begin{bmatrix} -3 \\ -4 \\ -5 \\ 6 \end{bmatrix}, v_4 = \begin{bmatrix} -4 \\ -3 \\ 2 \\ 5 \end{bmatrix}$$

$$\Rightarrow \operatorname{rank}(A) = \dim(\operatorname{span}(v_1, v_2, v_3, v_4))$$

Cộng hai ma trận:

Nhân một số với ma trân:

Nhân ma trận với ma trận: hàm np.matmul()

```
In [8]: a=np.array([[-1,4,2],[3,1,-5]])
        b=np.random.randint(-10,10,(3,2))
        print(b)
        print("ab=",np.matmul(a,b),sep="\n")
        print("ba=",np.matmul(b,a),sep="\n")
        [[-4 4]
         [ 3 6]
         [-1 1]]
        ab=
        [[14 22]
         [-4 13]]
        ba=
           16 -12 -28]
           15 18 -24]
```

Nhân ma trận với ma trận: hàm np.dot()

```
In [9]: a=np.array([[-1,4,2],[3,1,-5]])
    b=np.random.randint(-10,10,(3,2))
    print(b)
    print("ab=",np.dot(a,b),sep="\n")

[[-9 8]
    [-7 -3]
    [ 6 -3]]
    ab=
    [[ -7 -26]
    [-64 36]]
```

Chú ý: Phép toán A*B sẽ được thực hiện bằng cách nhân các phần tử của ma trận A với phần tử của ma trận B ở vị trí tương ứng. Do đó tích A*B không phải là phép nhân ma trận với ma trận như được định nghĩa trong đại số ma trận.

```
In [10]: a=np.array([[3,2],[-4,1]])
b=np.arange(4).reshape(2,2)
print(a,"*",b,"=",a*b,sep="\n")

[[ 3    2]
       [-4   1]]
*

[[0   1]
       [2   3]]
=
       [[ 0    2]
       [-8   3]]
```

Lũy thừa ma trận: hàm np.linalg.matrix_power()

```
In [11]: x=np.arange(9).reshape(3,3)
    print(np.matmul(x,x))
    np.linalg.matrix_power(x,2)

    [[ 15    18    21]
      [ 42   54   66]
      [ 69   90  111]]

Out[11]: array([[ 15,  18,  21],
      [ 42,  54,  66],
      [ 69,  90,  111]])
```

• Chuyển vị ma trận: hàm np.transpose()

Tính "vết" của ma trận vuông: hàm np.trace()

```
In [14]: A=np.random.randint(-5,5,(3,3))
    print(A)
    print("trace(A) =",np.trace(A))

[[ 1  4 -5]
    [ 4 -1 -3]
    [ 2 -5 -1]]
    trace(A) = -1
```

Định thức của ma trận: hàm np.linalg.det()

```
In [15]: a=np.arange(9).reshape(3,3)
    print(a)
    print("det(a)=",np.linalg.det(a))

[[0 1 2]
      [3 4 5]
      [6 7 8]]
    det(a)= 0.0
```

• Hạng của ma trận: hàm np.linalg.matrix rank()

Hệ phương trình tuyến tính

Biểu diễn ma trận

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Kí hiệu các ma trận

 $\mathsf{A} = [a_{ij}]_{m imes n}$: ma trận hệ số của ẩn $\mathsf{x} = [x_j]_{n imes 1}$: ma trận ẩn

 $b = [b_i]_{m \times 1}$: ma trận hệ số tư do

Giải hệ phương trình với NumPy

• $\operatorname{np.linalg.inv}(A)$: $\operatorname{trả}$ về ma trận $\operatorname{nghịch}$ đảo của ma trận vuông A

• np.linalg.solve(A, b): trả về nghiệm của phương trình Ax = b

```
In [2]: import numpy as np
    A=np.array([[1,-2,3],[2,-5,12],[0,2,-10]])
    b=np.array([4,5,6])
    np.linalg.solve(A,b)

Out[2]: array([10., 3., -0.])
```

Hệ phương trình tuyến tính

Nghiệm bình phương tối thiểu (least squares solution)

Trong một số trường hợp, hệ phương trình tuyến tính Ax = b vô nghiệm. Ta muốn tìm một véc tơ x sao cho Ax "gần b nhất" có thể. Véc tơ x được gọi là nghiệm bình phương tối thiểu của hệ phương trình nếu

$$\|Ax - b\|^2 \rightarrow min$$

Nghiệm bình phương tối thiểu thỏa mãn phương trình:

$$(A^TA)x = A^Tb$$

Do đó, nếu (A^TA) khả nghịch thì

$$x = (A^T A)^{-1} A^T b$$

Hệ phương trình tuyến tính

• **np.linalg.lstsq**(A,b): trả về nghiệm bình phương tối thiểu của hệ phương trình Ax = b, hạng và các giá trị kì dị của ma trận A

• Hàm **Istsq**() khi áp dụng để giải hệ phương trình có vô số nghiệm sẽ trả về kết quả là nghiệm bình phương tối thiểu có độ lớn nhỏ nhất.

Bài tập 2.1

Cho ma trân

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 4 & -2 & 1 \\ 3 & 1 & -1 \\ -1 & 5 & 0 \end{bmatrix}$$

- a) Chứng tổ rằng $A^3 = 0$. Tính $(I A)(I + A + A^2)$.
- b) Các ma trận $(A + B)^2$ và $A^2 + 2AB + B^2$ có bằng nhau không?

Bài tập 2.2

Cho hai ma trân A và B như sau:

$$A = \begin{pmatrix} 1 & 4 \\ -3 & 2 \\ -2 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} -4 & 1 & 9 \\ 2 & 0 & -3 \end{pmatrix}$$

- a) Tạo ma trận khối: $C = \begin{bmatrix} I & -B \\ A & H \end{bmatrix}$, trong đó I là ma trận đơn vị và H là ma trận có các phần tử bằng 2.
- b) Tính định thức của ma trận C và so sánh với định thức của ma trận (H+AB).

Bài tập 2.3

Giải hệ phương trình tuyến tính sau đây:

$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 &= 3\\ 2x_1 + 4x_2 - 5x_3 + x_4 &= -1\\ -6x_1 - x_2 + 3x_3 + 4x_4 &= -3\\ 4x_1 + 2x_2 + x_3 - 8x_4 &= 4 \end{cases}$$

Bài tập 2.4 (Nội suy)

Trong mặt phẳng toạ độ (x, y) cho các điểm sau đây:

$$(-2,3), (-1,-5), (2,-5), (3,-17)$$

Cho đa thức dưới dạng: $p=lpha_0+lpha_1p_1+lpha_2p_2+lpha_3p_3$, trong đó

$$\begin{cases}
p_1 = 1 + x \\
p_2 = x(x - 2) \\
p_3 = x^3 - x^2 + 2x
\end{cases}$$

Hãy tìm $(\alpha_0, \alpha_1, \alpha_2, \alpha_3)$ sao cho đa thức p đi qua tất cả các điểm dữ liệu được cho.