11 Veröffentlichungsnummer:

0 253 213

41

Ø

EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 87109502.2

(9) Int. Cl.4: C07C 131/00 , A01N 37/50

- 2 Anmeldetag: 02.07.87
- Priorität: 16.07.86 DE 3623921
- Veröffentlichungstag der Anmeldung: 20.01.88 Patentblatt 88/03
- Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB GR IT LI NL SE

7) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

2 Erfinder: Wenderoth, Bernd, Dr. Schwalbenstrasse 26
D-6840 Lampertheim(DE)
Erfinder: Rentzea, Costin, Dr. Richard-Kuhn-Strasse 1-3
D-6900 Heidelberg(DE)

Erfinder: Ammermann, Eberhard, Dr.

Sachsenstrasse 3

D-6700 Ludwigshafen(DE)

Erfinder: Pommer, Ernst-Heinrich, Dr.

Berliner Platz 7

D-6703 Limburgerhof(DE)

Erfinder: Steglich, Wolfgang, Prof. Dr.

Hobsweg 77

D-5300 Bonn-Roettgen(DE) Erfinder: Anke, Timm, Prof. Dr. Theodor-Heuss-Strasse 17 D-6750 Kaiserslautern(DE)

- Oximether und enthaltende Fungizide.
- Oximether der Formel

3 213 A

in der

R1 und R2 Wasserstoff oder Alkyl,

X (m = 1 bis 5) Halogen, Cyano, Trifluormethyl, Nitro, Alkyl, Alkoxy, gegebenenfalls substituiertes Phenyl,

Phenoxy, Benzyloxy oder Wasserstoff und

Y Methylenoxy, Oxymethylen, Ethylen, Ethenylen, Ethinylen oder Sauerstoff bedeutet, und diese enthaltende Fungizide.

Oximether und diese enthaltende Fungizide

Die vorliegende Erfindung betrifft neue Oximetherderivate, ihre Herstellung und ihre Verwendung als Fungizide.

Es ist bekannt, N-Tridecyl-2,6-dimethylmorpholin oder seine Salze, z.B. das Acetat, als Fungizide zu verwenden (DE-1 164 152, 1 173 722). Ihre Wirkung ist jedoch in manchen Fällen ungenügend. Es ist ferner bekannt, Acrylsäurederivate, z.B. den 2-(4-[p-Chlorstyryl]-phenyl)-3-methoxyacrylsäuremethylester, als Fungizide zu verwenden (EP-178 826). Ihre Wirkung is jedoch unbefriedigend.

Es wurde nun gefunden, daß neue Oximetherderivate der Formel I

$$\begin{array}{c}
X \\
R^{1}O_{2}C
\end{array}$$

$$\begin{array}{c}
N \\
O_{R^{2}}
\end{array}$$

n der

10

15

45

50

R₁ und R² gleich oder verschieden sind und Wasserstoff oder Alkyl mit 1 bis 5 C-Atomen bedeuten,

X (m = 1 bis 5) gleiche oder verschiedene Substituenten Halogen, Cyano, Trifluormethyl, Nitro, Cr-Cr-Alkyl, Cr-Cr-Alkoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Benzyloxy oder Wasserstoff bedeutet und Y Methylenoxy, Oxymethylen, Ethylen, Ethenylen, Ethinylen oder Sauerstoff bedeutet,

neben einer sehr hohen fungitoxischen Wirkung auch eine sehr gute Pflanzenverträglichkeit besitzen.

Die neuen Verbindungen der Formel I fallen bei ihrer Herstellung aufgrund der C=N-Doppelbindung als E/Z-Isomerengemische an, die in üblicher Weise, z.B. durch Kristallisation oder Chromatographie, in die einzelnen Komponenten getrennt werden können. Sowohl die einzelnen isomeren Verbindungen als auch ihre Gemische werden von der Erfindung umfaßt.

R¹ bedeutet bevorzugt Wasserstoff oder C₁-C₃-Alkyl, wie Methyl, Ethyl und Isopropyl, R² steht bevorzugt für Wasserstoff oder C₁-C₅-Alkyl, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, Isobutyl, tert.-Butyl, n-Pentyl und Neopentyl.

X ist bevorzugt Wasserstoff, 2-Fluor-, 3-Fluor-, 4-Fluor-, 2-Chlor-6-fluor-, 2-Chlor-, 3-Chlor-, 4-Chlor-, 2-Brom-, 3-Brom-, 4-Brom-, 2,4-Dichlor-, 2,6-Dichlor-, 3.5-Dichlor-, 2,4,6-Trichlor-, 2-Chlor-4-methyl-, 2-Methyl-4-chlor-, 2-Methyl-, 3-Methyl-, 4-Ethyl-, 4-Isopropyl-, 4-tert.-Butyl-, 2,4-Dimethyl-, 2,6-Dimethyl-, 2,4,6-Trimethyl-, 2-Methoxy-4-methyl-, 4-Methoxy-2-methyl, 2-Methoxy-, 3-Methoxy-, 4-Methoxy-, 4-Ethoxy-, 4-Isopropoxy-, 2-Trifluormethyl-, 3-Trifluormethyl-, 4-Trifluormethyl-, 2-Cyano-, 4-Cyano-, 3-Nitro-, 4-Nitro-, 4-Phenyl, 4-Benzyloxy-, 4-Phenoxy, Halogenphenoxy, 4-(2-Chlor)-phenoxy-, 4-(2,4-Dichlor)-phenoxy-, 3-(2-Methyl)-phenoxy-, 3-Benzyloxy-, Halogen-benzyloxy-, 3-(2-Chlor)-benzyloxy-, 3-(2-Methyl)-benzyloxy-, 3-(2-Fluor)-benzyloxy-, 3-(2-Methyl)-benzyloxy-, 3-(2-Chlor)-phenoxy-, 3-(2-Horn)-phenoxy-, 3-(2-Fluor)-phenoxy-, 3-(2-Gruppe oder steht für O.

Die neuen Verbindungen lassen sich herstellen, indem man einen α-Ketocarbonsäureester der Formel II

in der X_m , Y und R^1 die oben angeführten Bedeutungen haben a) mit O-substituierten Hydroxylaminen der allgemeinen Formel III H_2N -O- R^2 (III)

umsetzt, in der R² die oben genannten Bedeutungen hat, oder

b) mit Hydroxylamin zum entsprechenden Oxim und danach mit einem Halogenderivat der Formel IV R2-X (IV)

umsetzt, in der R² die oben genannten Bedeutungen hat un X ein Halogenatom (F, Cl, Br, J) bedeutet oder mit einem Dialkylsulfat umsetzt.

Die α-Ketocarbonsäureester der Formel II können z.B. durch die Umsetzung der entsprechenden aromatischen Grignard-Verbindungen mit Imidazoliden der Formel V

R10-C-C-N (V)

hergestellt werden (J.S. Nimitz, H.S. Mosher, J. Org. Chem. 1981, 46, 211-213), wobei R¹ die oben angeführten Bedeutungen hat.

Die Herstellung der neuen Verbindungen der Formel I wird durch folgendes Beispiel erläutert:

a) Herstellung von 2-(Benzyloxy)-phenylglyoxylsäuremethylester

0,1 mol einer aus 1-Benzyloxy-2-brombenzol und Magnesiumspänen in Tetrahydrofuran hergestellten Grignard-Verbindung werden unter Stickstoff bei -50°C zu 14,6 g (95 mmol) Methyloxalylimidazol in Tetrahydrofuran langsam zugetropft. Über einen Zeitraum von 4 Stunden läßt man die Mischung langsam auf Raumtermperatur (20°C) kommen. Man gießt sie auf Eiswasser und extrahiert mehrmals mit Ether. Die vereinigten Etherphasen werden neutral gewaschen und getrocknet. Nach dem Abdampfen des Lösungsmittels wird das Produkt mit n-Pentan zur Kristallisation gebracht. Man erhält 16 g (62 %) farblicker Kristalle der oben genannten Verbindung.

¹H-NMR (CDCl₃): δ = 3,35 (S, 3H), 5,07 (S, 2H), 7,05 (m, 2H), 7,40 (m, 5H), 7,55 (m, 1H), 7,90 (m, 1H).

b) Herstellung von (Z)-(2-Benzyloxyphenyl)-glyoxylsäuremethylester-O-methyloxim (Verb.-Nr. 83)

15,5 g (57 mmol) 2-(Benzyloxy)-phenylglyoxylsäuremethylester werden in 160 ml Methanol vorgelegt und mit 11,5 g Natriumcarbonat und 9,45 g (114 mmol) 0-Methylhydroxylaminhydrochlorid versetzt. Es wird 24 Stunden unter Rühren am Rückfluß erhitzt. Nach der Zugabe von 100 ml Wasser wird mit Essigester mehrmals extrahiert, die Essigesterlösung mit Na₂SO₄ getrocknet und anschließend eingeengt.

Man erhält 11 g (65 %) der oben genannten Verbindung als Isomerengemisch. Nach dem Vermischen mit n-Pentan erhält man das reine (Z)-Isomere als weiße Kristalle vom Fp. 129-132°C.

¹³C-NMR (CDCL₃): δ = 51,50, 62,92, 70,93, 112,60 120,49, 121,33, 128,19, 128,52 (2C) 129,04 (3C), 131,70, 135,92, 148,44, 156,50, 163,84.

Unter entsprechender Abwandlung der vorstehenden Angaben können die in der folgenden Tabelle aufgeführten Verbindungen hergestellt werden.

50

45

30

=

10

$$\begin{array}{c}
X \\
R^10_2C
\end{array}$$

$$\begin{array}{c}
N \\
0R^2
\end{array}$$

10	Verb Nr.	X m	Υ	R 1	R 2	Isomeres	Fp(°C)	IR(cm ⁻¹)
	1	Н	-CH ₂ CH ₂	CH3	CH3			
15	2	2-F	-CH ₂ -CH ₂ -	CH3	CH3			
	3	3-F	-CH ₂ -CH ₂ -	СНЗ	CH3			
	4	4-F	-CH2-CH2-	CH3	CH3			
20	5	2-C1, 6-F	-CH ₂ CH ₂	CH3	СНЗ			
20	6	2-C1	-CH2-CH2-	CH3	СНз			
	7	3-01	-CH2-CH2-	CH3	CH3			
	8	4-C1	-CH ₂ -CH ₂ -	CH3	CH3			
25	9	2-8r	-CH ₂ -CH ₂ -	CH3	СНз			
	10	3-Br	-CH ₂ -CH ₂ -	CH3	CH3			
	11	4-Br	-CH ₂ -CH ₂ -	CH3	СНЗ			
30	12	2,4-Cl ₂	-CH ₂ -CH ₂ -	CH3	CH3			
	13	2,6-Cl ₂	-CH ₂ -CH ₂ -	CH3	СН3			
	1 4	3,5-Cl ₂	-CH2-CH2-	CH3	CH3			
35	15	2.4.6-Cl ₃	-CH ₂ -CH ₂ -	CH3	CH3			
	16	2-C1, 4-CH ₃	-CH ₂ -CH ₂ -	CH3	CH3			
	17	2-CH ₃ , 4-Cl	-CH ₂ -CH ₂ -	CH3	CH3			
	18	2-CH ₃	-CH ₂ -CH ₂ -	CH3	CH3		•	
40	19	3-CH ₃	-CH ₂ -CH ₂ -	CH3	CH3			
	20	4-CH3	-CH2-CH2-	CH ₃	CH3			
	21	4-C2H5	-CH2-CH2-	CH3	CH3			
45	22	4-i-C ₃ H ₇	-CH2-CH2-	CH ₃	CH3		•	
	23	4-t-C4H9	-CH ₂ -CH ₂ -	CH3	CH3			
	24	2,4-(CH ₃) ₂	-CH2-CH2-	CH3	CH3			
50	25	2,6-(CH ₃) ₂	-CH2-CH2-	CH3	CH3			
	26	2,4,5-(CH ₃) ₃	-CH ₂ CH ₂	CH3	CH3			
	27	2-0CH ₃ , 4-CH ₃	-CH ₂ -CH ₂ -	CH3	CH3			
55	28	4-0CH ₃ , 2-CH ₃	-CH ₂ -CH ₂ -	CH3	CH3			
JJ	29	2-0CH ₃	-CH ₂ -CH ₂ -	CH3	CH3			

Verb Nr.	X m	Υ	R 1	R ²	Isomeres	Fp(0C)	IR(cm ⁻¹)
30	3-0CH ₃	-CH2-CH2-	CH3	СНЗ			
31	4-0CH ₃	-CH2-CH2-	СНЗ	СН3			
32	4-0C2H5	-CH2-CH2-	СНЗ	CH3			
33	4-0-i-C ₃ H ₇	-CH2-CH2-	СНЗ	CH3			
34	2-CF ₃	-CH2-CH2-	СНЗ	CH3			
35	3-CF ₃	-CH2-CH2-	СНЗ	СНз			
36	4-CF3	-CH2-CH2-	СНЗ	СНЗ			
37	2—CN	-CH ₂ CH ₂	СНЭ	CH ₃			
38	4-CN	-CH ₂ -CH ₂ -	СНЗ	СНЗ			
39	3-N0 ₂	-CH2-CH2-	СНЗ	CH3			
40	4-N0 ₂	-CH ₂ -CH ₂ -	СНЗ	CH3			
4.1	4-C6H5	-CH ₂ -CH ₂ -	СНЗ	CH3			
42	Н	-CH=CH-	СНЗ	CH3	Z	Öl :	2960, 1740,
							1496, 1455, 1227, 1043, 1017, 952,
						•	760, 692
43	2 - F	-CH=CH-	CH3	CH3			
4.4	3-F	-CH=CH-	CH3	CH3			
45	4-F	-CH=CH-	CH3	CH3			
46	2-C1, 6-F	-CH=CH-	CH3	CH3			
47	2-C1	-CH=CH-	CH3	CH3			
48	3-C1	-CH=CH-	CH3	CH3			
49	4-C1	-CH=CH-	CH3	CH3	E/Z		2970, 1740, 1492, 1456,
	•		•			•	1228, 1091, 1044, 1013,
						9	962, 813, 753
50	2-Br	-CH=CH-	СНЭ	CH3			
51	3 -8 r	-сн=сн-	CH3	CH3			
52	4-Br	-CH=CH-	CH3	CH3			
53	2,4-C12	-CH=CH-	CH3	CH3			•
54	2,6-Cl ₂	CH=CH	CH3	CH3			
55	3,5-Cl ₂	-сн=сн-	CH3	CH3			
56	2,4,6-Cl ₃	-сн=сн-	CH3	CH3			
57	2-C1, 4-CH ₃	-CH=CH-	CH3	CH ₃			
58	2-CH ₃ , 4-Cl	-CH=CH-	CH3	СНЗ			
59	2-CH ₃	-CH=CH-	CH3	CH3			
60	3-CH3	-CH=CH-	CH3	СНЗ			

Verb Nr.	X m	Y	R ¹	R2	Isomere	Fp(⁰ C)	IR(cm ⁻¹)
61	4-CH3	-CH=CH-	CH ₃	CH ₃			
62	3-CH3	-CH=CH-	СНЗ	СНз			
63	4-i-C ₃ H ₇	-CH=CH-	СНЗ	CH3			
64	4-t-C4H9	-CH=CH-	СНЗ	CH3			
65	2,4-(CH ₃) ₂	-CH=CH-	СНЗ	CH3			
66	2,6-(CH ₃) ₂	-CH=CH-	СНЗ	CH3			
67	2,4,6-(CH ₃) ₃	-CH=CH-	СНЗ	CH3			
68	2-0CH ₃ , 4-CH ₃	-CH=CH-	СНЗ	CH3			
69	4-0CH ₃ , 2-CH ₃	-CH=CH-	CH3	.CH ₃			
70	2-0CH3	-CH=CH-	СНЗ	CH3			
71	3-0CH3	-CH=CH-	СНЗ	CH3			
72	4-0CH3	-сн=сн-	СНЗ	CH3			
73	4-0C ₂ H ₅	-CH=CH-	CH3	СНЗ			
74	4-0-iC ₃ H ₇	-CH=CH-	СНЗ	СНЗ			
75	2-CF3	-CH=CH-	CH3	CH3			
76	3-CF ₃	-CH=CH-	CH3	CH3			
77	4-CF3	-CH=CH-	СНЭ	CH3			
78	2-CN	−CH=ĆH−	СНЭ	CH3			
79	4-CN	-CH=CH-	СНЗ	CH3			
80	3-NO ₂	-CH=CH-	СНЗ	CH3			
81	4-NO ₂	-CH=CH-	CH3	CH3			
82	4-C6H5	-CH=CH-	CH3	СНЗ			
83	н .	-CH ₂ 0-	CH3	CH3		129-132	2940, 1737 1489, 1455 1343, 1278 1234, 1045 1027, 758
84	2-F	-CH ₂ 0-	CH3	CH3			
85	3 - F	-CH ₂ 0-	CH3	CH3	E/Z	46-48	2970,1734, 1592,1492, 1452,1278, 1231,1028, 755
86	4—F	-CH ₂ 0	CH ₃	СНЭ	E/Z	97-99	2970,1740, 1600,1513, 1487,1276, 1224,1042, 1025, 879, 751
87	2-C1, 6-F	-CH ₂ 0	CH3	СНЗ			
88	2-C1	-CH ₂ 0-	CH3.	СНЗ			

Verb Nr.	X m	Υ	R1	R ²	Isomer	es Fp(°C)	IR(cm ⁻¹)
89	3-C1	-CH ₂ 0-	СНЗ	СНЗ	E/Z	Öl	2970,1742, 1600,1490, 1453,1279, 1228,1044, 1024, 759
90	4-C1	CH ₂ 0	CH3	CH3		106-109	2975,1738, 1598,1489, 1277,1235, 1041,1026, 873, 759
91	2-Br	-CH ₂ 0-	СНЗ	CH3			
92	3-Br	-CH20-	CH3	СНЗ			
93	4-Br	-CH20-	СНЭ	CH3			
94	2,4-Cl ₂	-CH ₂ 0-	СНЗ	CH3			
95	2,6-C1 ₂	-CH ₂ 0-	CH3	CH3			
96	3,5-Cl ₂	-CH ₂ 0-	CH3	CH3			
97	2,4,6-Cl ₃	-CH ₂ 0-	CH3	CH3			
98	2-CH ₃ , 4-Cl	-CH ₂ 0-	CH3	CH3			
99	2-C1, 4-CH ₃	-CH ₂ 0-	CH3	СНЭ			
100	2-CH ₃	-CH ₂ 0-	СН3	CH3	E/Z		2970,1735, 1488,1454, 1278,1231, 1045,1025, 750
101	3—CH ₃	-CH ₂ 0-	СНЗ	CH3	E/Z	47-49	2970,1736, 1600,1490, 1453,1279, 1227,1045, 1026, 755
102	4—CH ₃	-CH ₂ 0-	СНЗ	СНЗ	E/Z	92-94	2970,1736, 1600,1490, 1454,1278, 1232,1043 1027, 761
103	4-C2H5	-CH ₂ 0-	СНЗ	СНЭ			
104		-CH20-	СНЭ	СНЭ			,
105	4-t-C4H9	-CH ₂ 0-	CH3	CH3			
106	2,4-(CH ₃) ₂	•	CH3	CH3			
107	2,6-(CH ₃) ₂		СНЗ	CH3			
108	2,4,6-(CH ₃) ₃		CH3	CH3			
109	2-0CH ₃ , 4-CH ₃		CH3	CH3			
110	4-0CH ₃ , 2-CH ₃	<u>-</u>	CH3	CH3			
111	2-0CH3	-CH ₂ 0-	CH3	CH3			
112	3-0CH3	-CH ₂ 0-	CH3	CH3			
113	4-0CH3	-CH ₂ 0-	CH3	CH3			

Verb	X	Y	R 1	R ²	Isomeres	Fp(°C)	IR(cm ⁻¹)
114	4-0C2H5	-CH20-	CH3	СНз			
115	4-0-i-C ₃ H ₇	-CH ₂ 0-	СНз	СНз			•
116	2-CF3	-CH ₂ 0-	СНз	СНЗ			
117	3-CF3	-CH20-	СНз	СНз			
118	4-CF3	-CH ₂ 0-	СНз	СНз	•		
119	2-CN	-CH ₂ 0-	СНЗ	CH3			
120	4-CN	-CH ₂ 0-	СНЗ	CH3			
121	3-N0 ₂	-CH ₂ 0-	CH3	CH3			
122	4-NO2	-CH ₂ 0-	СНЗ	CH3			
123	4-C6H5	-CH20-	СНЗ	CH3		•	
124	Н	-0CH ₂	СНЗ	СНЗ	E/Z Ö		940. 1742
						1	598, 1496 239, 1227 046, 1019 55
125	2-F	-0CH ₂	СНЗ	СНз			
126	2 - C1	-0CH ₂	СНз	СНз			
127	4-C1	-0CH ₂ -	СНЗ	СНЗ			
128	2,4-Cl ₂	-0CH ₂ -	СНЗ	CH3			
129	2-CH ₃ , 4-Cl	-0CH ₂ -	CH3	CH3			
130	2-CH3	-0CH ₂ -	СНЗ	CH3			
131	4-CH3	-0CH ₂ -	СНЗ	CH3			
132	4-t-C4H9	-0CH ₂	СНЗ	CH3	•		
133	2-0CH3	-0CH ₂ -	CH3	CH3		•	
134	2-CF3	-0СН ₂ -	СНЗ	CH3			
135	4-NO2	-осн ₂ -	СНЗ	CH3			
136	н .	Ethinylen	CH3	CH3			
137	2-F	Ethinylen	СНЗ	CH3			
138	2-C1	Ethinylen	CH3	CH3			
139	2-Br	Ethinylen	CH3	CH3			
140	4-Br	Ethinylen	СНЭ	CH3			
141	2-CH3	Ethinylen	CH3	CH3			
142	4-CH3	Ethinylen	CH3	CH3			
143	2-0CH3	Ethinylen	CH3	СНЗ			
144	4-CF3	Ethinylen	CH3	CH3			
145	2-N0 ₂	Ethinylen	CH3	CH3			
146	н	-CH=CH-	CH3	н			

	Verb	X m	Y	R ¹	R ²	Isomeres	Fp(°C)	IR(cm ⁻¹)
5	147	н .	-CH ₂ -CH ₂ -	CH3	н			
	148	н	-сн=сн-	СНЗ	C ₂ H ₅			
	149	н	-CH2-CH2-	СНз	C ₃ H ₇			
10	150	н	-CH=CH-	СНз	C3H7			
	151	н	-CH2-CH2-	СНз	i-C3H7			
	152	Н	-CH ₂ -CH ₂ -	СНЗ	t-C4Hg			
15	153	Н	-CH2-CH2-	СНЗ	C5H11			
	154	н	-CH=CH-	C ₂ H ₅	СНз			
	155	н	-CH2-CH2-	C ₂ H ₅	СНз			
	156	н	-сн=сн-	i-C ₃ H ₇	CH3			
20	157	H	-CH2-CH2-	i-C ₃ H ₇	CH3			
	158	Н	-CH=CH-	C ₂ H ₅	C ₂ H ₅			
	159	Н	-CH ₂ -CH ₂ -	C ₂ H ₅	C ₂ H ₅			
25	160	Н	0	CH3	CH3			
	161	2 - F	0	CH3	CH3			
	162	2-C1	0	СНЗ	СНЗ			
30	163	2-Br	0	СНЗ	CH3			
	164	4-Br	0	СНЗ	CH3			
	165	4-C1	0	CH3	CH3			
35	166	2-CH3	0	СНЗ	CH3			
	167	4-CH3	0	CH3	СНЗ			
	168	2-0CH3	0	СНЗ	CH3			
	169	4-0CH3	0	CH3	CH3			
40	170	4-C6H5	0	СНЗ	CH3			
	171	Н	-CH=CH-	Н	H			
	172	H	-CH2-CH2-	Н	н			
45	173	4-0CH ₂ -C ₆ H ₅	-CH=CH ₂ -	CH3	CH3			
	174	4-0CH ₂ -C ₆ H ₅	-CH ₂ -CH ₂ -	СНЗ	CH3			
	175	4-0C6H5	-CH=CH-	CH3	CH3			
50	176	4-0C6H5	-CH2-CH2-	CH3	CH3			
	177	4-0-	CH ₂ CH ₂	CH3	CH3			
55	178	4-0-C1	-CH ₂ -CH ₂ -	CH3	СНЗ			

	Verb Nr.	X	Y	R 1	R ²	Isomeres	Fp(OC)	IR(cm ⁻¹)
5	179	40	-СH ₂ СH ₂	СНЗ	CH3			
10	180	3-0CH ₂ -C ₆ H ₅	-CH ₂ -CH ₂ -	СНЗ	CH3			
	181	3-0CH ₂ -C1	-CH ₂ -CH ₂ -	СНЭ	СНЗ			
15	182	3-0CH ₂ -C1	СН2-СН2-	CH3	CH3			
20	183	3-0CH ₂	-CH ₂ -CH ₂ -	CH3	СНЗ			
	184	3-0CH ₂	-CH ₂ CH ₂ -	СНЗ	СНЗ			
25	185	3-0CH ₂ ————————————————————————————————————	-CH ₂ -CH ₂ -	CH3	СНЗ			
30	186	3-0C ₆ H ₅	-CH ₂ -CH ₂ -	CH3	СНЭ			
	187	3-0-C1	CH ₂ CH ₂	СНЗ	CH3			
35	188	3-0-C1	-CH ₂ -CH ₂ -	СНЗ	СНЗ		·	
40	189	3-0	CH ₂ CH ₂	СНЗ	CH3			
	190	3-0	CH ₂ CH ₂	СНЗ	CH3			
45	191	3-0-(CH ₃)	-CH ₂ -CH ₂ -	CH3	. CH3			

Die neuen Verbindungen zeichnen sich, allgemein ausgedrückt, durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können als Blattund Bodenfungizide eingesetzt werden.

Besonders interessant sind die fungiziden Verbindungen für die Bekämpfung einer Vielzahl von verschiedenen Kulturpflanzen oder ihren Samen, insbesondere Weizen, Roggen, Gerste, Hafer, Reis, Mais, Baumwolle, Soja, Kaffee, Zuckerrohr, Obst und Zierpflanzen im Gartenbau, Weinbau sowie Gemüse - wie Gurken, Bohnen und Kürbisgewächse -.

0 253 213

Die neuen Verbindungen sind insbesondere geeignet zur Bekämpfung folgender Pflanzenkrankheiten: Erysiphe graminis (echter Mehltau) in Getreide,

Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,

Podosphaera leucotricha an Äpfeln,

5 Uncinula necator an Reben.

Puccinia-Arten an Getreide.

Rhizoctonia solani an Baumwolle.

Ustilago-Arten an Getreide und Zuckerrohr.

Venturia inaequalis (Schorf) an Äpfeln,

10 Septoria nodorum an Weizen.

Pyrenophora teres an Gerste.

Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,

Cercospora arachidicola an Erdnüssen,

Pseudocercosporella herpotrichoides an Weizen, Gerste,

15 Pyricularia oryzae an Reis,

Phytophthora infestans an Kartoffeln und Tomaten,

Alternaria solani an Kartoffeln, Tomaten,

Plasmopara viticola an Reben sowie Fusarium-und Verticillium-Arten an verschiedenen Pflanzen.

Die Verbindungen werden angewendet, indem man die Pflanzen mit den Wirkstoffen besprüht oder bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt. Die Anwendung erfolgt vor oder nach der Infektion der Pflanzen oder Samen durch die Pilze.

Die neuen Substanzen können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollen in jedem Fall eine feine und gleichmäßige Verteilung wirksamen Substanz gewährleisten. Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermittel und Dispergiermitteln, wobei im Falle der Benutzung von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hifslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Frage: Lösungsmittel wie Aromaten (z.B. Xylol, Toluol), chlorierte Aromaten (a.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle, z.B. Kaoline, Tonerden, Talkum, Kreide und synthetische Gesteinsmehle (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsufonate und Arylsulfonate) und Dispergiermittel, wie Lignin, Sulfitablaugen und Methylcellulose.

Die funglziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.% Wirkstoff. Die Aufwandmengen liegen je nach Art des gewünschten Effektes zwischen 0,05 und 3 kg Wirkstoff oder mehr je ha.

Die neuen Verbindungen können auch im Materialschutz u.a. zur Bekämpfung holzzerstörender Pilze wie Coniophora puteana und Polystictus versicolor eingesetzt werden. Die neuen Wirkstoffe können auch als fungizid wirksame Bestandteile lösemittelhaltiger Holzschutzmittel zum Schutz von Holz gegen holzverfärbende Pilze eingesetzt werden. Die Anwendung erfolgt in der Weise, daß man das Holz mit diesen Mitteln behandelt, beispielsweise tränkt oder anstreicht.

Die Mittel bzw. die daraus hergestellten gebrauchsfertigen Zubereitungen, wie Lösungen, Emulsionen, Suspensionen, Pulver, Stäube, Pasten oder Granulate werden in bekannter Weise angewendet, beispielsweise durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Beizen oder Gießen.

Beispiele für solche Zubereitungen sind:

I. Man vermischt 90 Gew.-Teile der Verbindung Nr. 83 mit 10 Gew.-Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

II. 20 Gew.-Teile der Verbindung Nr. 124 werden in einer Mischung gelöst die aus 80 Gew.-Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gew.-Teilen des Anlagerungsproduktes und 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in Wasser erhält man eine wäßrige Dispersion.

III.20 Gew.-Teile der Verbindung Nr. 83 werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in Wasser erhält man eine wäßrige Dispersion.

- IV. 20 Gew.-Teile der Verbindung Nr. 124 werden in einer Mischung gelöst, die aus 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineral-ölfraktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingeißen und feines Verteilen der Lösung in Wasser erhält man eine wäßrige Dispersion.
- V. 80 Gew.-Teile der Verbindung Nr. 83 werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe.
- VI. 3 Gew.-Teile der Verbindung Nr. 124 werden 97 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VII.30 Gew.-Teile der Verbindung Nr. 83 werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit:

VIII.40 Gew.-Teile der Verbindung Nr. 124 werden mit 10 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Teilen Kieselgel und 48 Teilen Wasser innig vermischt. Man erhält eine stabile wäßrige Dispersion. Durch Verdünnen nit Wasser erhält man eine wäßrige Dispersion.

IX. 20 Teile der Verbindung Nr. 83 werden mit 2 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teilen Fettalkoholpolyglykolether, 2 Teilen Natriumsalz eines Phenolsulfonsäure-harstoff-formalde-hyd-Kondensats und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die erfindungsgemäßen Mittel können in diesen Anwendungsformen auch zusammen mit anderen Wirkstoffen vorliegen, wie z.B. Herbiziden, Insektiziden, Wachstumsregulatoren und Fugiziden, oder auch mit Düngemitteln vermischt und ausgebracht werden. Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, Mit denen die erfindungsgemäßen Verbindungen kombiniert werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken.

Fungizide, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, sind beispielsweise:

so Schwefel,

15

Dithiocarbamate und deren Derivate, wie

Ferridimethyldithiocarbamat,

Zinkdimethldithiocarbamat,

Zinkethylenbisdithiocarbamat,

Manganethylenbisdithiocarbamat,

Magan-Zink-ethylendiamin-bis-dithiocarbamat,

Tetramethylthiuramdisulfide,

Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),

Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat),

Zink-(N,N'-propylen-bis-dithiocarbamat,

N,N'-Propylen-bis-(thiocarbomoyl)-disulfid:

Nitroderivate, wie

Dinitro-(1-methylheptyl)-phenylcrotonat,

2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,

5 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat.

5-Nitro-isophthalsäure-di-isopropylester,

heterocyclische Strukturen, wie

2-Heptadecyl-2-imidazolin-acetat,

2,4-Dichlor-6-(o-chloranilino)-s-triazin,

50 0,0-Diethyl-phtalimidophosphonothioat,

5-Amino-1-(bis-(dimethylamino)-phosphinyl)-3-phenyl-1,2,4-triazol,

2,3-Dicyano-1,4-dithioanthrachinon,

2-Thio-1,3-dithio-(4,5-b)-chinoxalin.

1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,

s 2-Methoxycarboxylamino-benzimidazol

2-(Furyl-(2)-benaimidazol

0 253 213

2-(Thiazolyl-(4)-benzimidazol N-(1,1,2,2-Tetrachlorethylthio)-tetrahydrophthalimid N-Trichlormethylthio-tetrahydrophthalimid N-Trichlormethlthio-phthalimid N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid 5-Ethoxy-3-trichlormethyl-1,2,4-thiadiazol 2-Rhodanmethylthiobenzthiazol 1.4-Dichlor-2,5-dimethoxybenzol 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid. 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin, 2-Methyl-5,6-dihydro-4-H-pyran-3-carbonsäure-anilid 15 2-Methyl-furan-3-carbonsäureanilid 2,5-Dimethyl-furan-3-carbonsäureanilid 2,4,5-Trimethyl-furan-3-carbonsäureanilid 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid 2-Methyl-benzoesäure-anilid 2-Jod-benzoesäure-anilid N-Formyl-N-morpholin-2,2,2-trichlorethylacetal Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin $1\hbox{-}[2\hbox{-}(2,4\hbox{-Dichlorphenyl})\hbox{-}4\hbox{-}ethyl\hbox{-}1,3\hbox{-}dioxolan\hbox{-}2\hbox{-}yl\hbox{-}ethyl]\hbox{-}1H\hbox{-}1,2,4\hbox{-}triazol$ 1[2-(2.4-Dichlorphenyl)-4-n-propyl-1,3-dixolan-2-yl-ethyl]-1-H-1,2,4-triazol N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-hamstoff 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol 1-(4-Phenylphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol α -(2-Chlorpheny 1)- α -(4-chlorphenyl)-5-pyrimidin-methanol 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin Bis-(p-Chlorphenyl)-pyridinmethanol, 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol, 1,2-Bis-(3-methoxycarbonyl)-2-thioureido)-benzol sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 3-(3-(3,5-Dimethyl-2-oxycyclohexyl)-2-hydroxyethyl)-glutarimid, DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat, DL-N-(2,6-Dimethyl-phenyl)-N-2'-methoxyacetyl)-alanin-methylester, N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton. DL-N-(2.6-Dimethylpenyl)-N-(phenylacetyl)-alaninmethylester 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin 3-(3,5-Dichlorphenyl(5-methyl-5-methoxymethyl-1,3-oxazolidin-2,4-dion 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhydantoin N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureamid 2-Cyano-N-(ethylaminocarbonyl)-2-methoximino)-acetamid

1-(2-(2,4-Dichlorphenyl)-pentyl)-1H-1,2,4-triazol

2,4'-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydryfalkohol

1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.

N-(3-Chlor-2,6-dinitro-4-trifluormethylphenyl)-5-trifluormethyl-3-chlor-2-amino-pyridin

Für die folgenden Versuche wurden als Vergleichssubstanzen die bekannten Wirkstoffe N-Tridecyl-2,6-dimethylmorpholin (A). sein Acetat (B) und der 2-(4-[p-Chlorstyryl]-phenyl)-3-methoxy-acrylsäuremethylester (C) verwendet.

A

Anwendungsbeispiel 1

Wirksamkeit gegen Weizenmehltau

Blätter von in Töpfen gewachsenen Weizenkeimlingen der Sorte "Frühgold" wurden mit wäßriger Spritzbrühe, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, besprüht und 24 Stunden nach dem Antrocknen des Spritabelages mit Oidien (Sporen) des Weizenmehltaus (Erysiphe graminis var. tritici) bestäubt. Die Versuchspflanzen wurden anschließend im Gewächshaus bei Temperaturen zwischen 20 und 22°C und 75 bis 80 % relativer Luftfeuchtigkeit aufgestellt. Nach 7 Tagen wurde das Ausmaß der Mehltauentwicklung ermittelt.

Das Ergebnis des Versuches zeigt, daß die Wirkstoffe Nr. 42, 49, 83, 100 und 124 bei der Anwendung als 0,025 und 0,006 %ige (Gew.%) Spritzbrühe eine bessere fungizide Wirkung (90 %) zeigen als die bekannten Wirkstoffe A, B und C (70 %).

20

25

10

Anwendungsbeispiel 2

Wirksamkeit gegen Plasmopara viticola

Blätter von Topfreben der Sorte "Müller-Thurgau" wurden mit wäßriger Spritzbrühe, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielten, besprüht. Um die Wirkungsdauer der Wirkstoffe beurteilen zu können, wurden die Pflanzen nach dem Antrocknen des Spritzbelages 8 Tage im Gewächshaus aufgestellt. Erst dann wurden die Blätter mit einer Zoosporenaufschwemmung von Plasmöpara viticola (Rebenperonospora) infiziert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfgesättigten Kammer bei 24°C und anschließend für 5 Tage in einem Gewächshaus mit Temperaturen zwischen 20 und 30°C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des Sporangienträgerausbruches abermals für 16 Stunden in der feuchten Kammer aufgestellt. Dann erfolgte die Beurteilung des Ausmaßes des Pilzausbruches auf den Blattunterseiten.

Das Ergebnis des Versuches zeigt, daß die Wirkstoffe Nr. 42, 49, 83, 89, 100 und 124 bei der Anwendung als 0,05 %ige Spritzbrühe eine gute fungizide Wirkung (90 %) haben.

Anwendungsbeispiel 3

40 Wirksamkeit gegen Septoria nodorum

Blätter von in Töpfen gewachsenen Weizenkeimlingen der Sorte "Jubilar" wurden mit wäßriger Spritzbrühe, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielten, bis zur Tropfnässe besprüht. Am folgenden Tag wurden die angetrockneten Pflanzen mit einer wäßrigen Sporensuspension von Septoria nodorum infiziert und dann für 7 Tage bei 17-19°C und 95 %iger relativer Luftfeuchtigkeit weiter kultiviert. Das Ausmaß des Pilzbefalles wurde dann visuell ermittelt.

Das Ergebnis des Versuches zeigt, daß die Wirkstoffe Nr. 49, 83 und 124 bei der Anwendung als 0,05 %ige Spritzbrühe eine gute fungizide Wirkung (90 %) haben.

50

Ansprüche

1. Oximether der Formel I

70 R 10 2 C N

in de

5

R¹ und R² gleich oder verschieden sind und Wasserstoff oder Alkyl mit 1 bis 5 C-Atomen bedeuten, X (m = 1 bis 5) gleiche oder verschiedene Substituenten Halogen, Cyano, Trifluormethyly, Nitro, Cr-C₄-Alkyl, C₁-C₄-Alkoxy, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Benzyloxy oder Wasserstoff bedeutet und

(I)

(I)

Y Methylenoxy, Oxymethylen, Ethylen, Ethenylen, Ethinylen oder Sauerstoff bedeutet.

2. Oximether der Formel I gemäß Anspruch 1, in der

X Wasserstoff, 2-Fluor-, 3-Fluor-, 4-Fluor-, 2-Chlor-6-fluor-, 2-Chlor-, 3-Chlor-, 4-Chlor-, 2-Brom-, 3-Brom-, 4-Brom-, 2,4-Dichlor-, 2,6-Dichlor-, 3.5-Dichlor-, 2,4,6-Trichlor-, 2-Chlor-4-methyl-, 2-Methyl-4-chlor-, 2-Methyl-, 3-Methyl-, 4-Methyl-, 4-Ethyl-, 4-Isopropyl-, 4-tert.-Butyl-, 2,4-Dimethyl-, 2,6-Dimethyl-, 2,4,6-Trimethyl-, 2-Methoxy-4-methyl-, 4-Methoxy-2-methyl, 2-Methoxy-, 3-Methoxy-, 4-Methoxy-, 4-Ethoxy-, 4-Isopropoxy-, 2-Trifluormethyl-, 3-Trifluormethyl-, 4-Trifluormethyl-, 2-Cyano-, 4-Cyano-, 3-Nitro-, 4-Nitro-, 4-Phenyl, 4-Benzyloxy-, 4-Phenoxy, Halogenphenoxy, 4-(2-Chlor)-phenoxy-, 4-(2,4-Dichlor)-phenoxy-, Cr-Cr-Alkylphenoxy, 4-(2-Methyl)-phenoxy-, 3-Benzyloxy-, 3-(4-Brom)-benzyloxy-, 3-(2-Chlor)-benzyloxy-, 3-(2-Methyl)-benzyloxy-, 3-(4-Brom)-phenoxy-, 3-(2-Fluor)-phenoxy-, 3-(4-Brom)-phenoxy-, 3-(4-Brom

R1 Wasserstoff, Methyl, Ethyl, Isopropyl,

R² Wasserstoff, Methyl, Ethyl, n-Proply, isopropyl, n-Butyl, sek.-Butyl, isobutyl, tert.-Butyl, n-Pentyl oder Neopentyl und Y eine -CH₂O-, -OCH₂-, -CH₂-CH₂-, CH = CH-, C≡C-Gruppe oder 0 bedeutet.

3. Fungizide Mittel, enthaltend einen Oximether der Formel I

X R 102C N

in de

35

40

R¹ und R² gleich oder verschieden sind und Wasserstoff oder Alkyl mit 1 bis 5 C-Atomen bedeuten, X (m = 1 bis 5) gleiche oder verschiedene Substituenten Halogen, Cyano, Trifluormethyl, Nitro, Cr-Cr-Alkyl, Cr-Cr-Alkoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Benzyloxy oder Wasserstoff bedeutet und

Y Methylenoxy, Oxymethylen, Ethylen, Ethenylen, Ethinylen oder Sauerstoff bedeutet, und inerte Trägerstoffe.

4. Verfahren zur Bekämpfung von Pilzen, dadurch gekennzeichnet, daß man einen Oximether der Formel I

$$\begin{array}{c}
X \\
R^{1}O_{2}C \\
OR^{2}
\end{array}$$

10 in der

25

30

35

40

45

R¹ und R² gleich oder verschieden sind und Wasserstoff oder Alkyl mit 1 bis 5 C-Atomen bedeuten, X (m = 1 bis 5) gleiche oder verschiedene Substituenten Halogen, Cyano, Trifluormethyl, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Benzyloxy oder Wasserstoff bedeutet und

- Y Methylenoxy, Oxymethylen, Ethylen, Ethenylen, Ethinylen oder Sauerstoff bedeutet, auf diese oder auf durch Pilzbefall bedrohte Flächen, Pflanzen, Materialien oder Saatgüter einwirken läßt.
 - 5. Verfahren zur Herstellung eines fungiziden Mittels, dadurch gekennzeichnet, daß man eine oder mehrere Oximether der Formel I gemäß Anspruch 1 mit einem festen oder flüssigen Trägerstoff sowie gegebenenfalls mit einem oder mehreren oberflächenaktiven Mitteln mischt.
 - 6. 2-Benzyloxyphenyl-glyoxylsäuremethylester-0-methyloxim.
 - 7. 2-Phenyloxymethylenphenyl-glyoxylsäuremethylester-0-methyloxim.

55

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 87 10 9502

	EINSCHL	GIGE DOKUMENTE	_	
Kategorie	Kennzeichnung des Dokur der m	nents mit Angabe, soweit erforderlich, aßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
A	DE-A-2 808 317	(CIBA-GEIGY)	1	C 07 C 131/00 A 01 N 37/50
A	DE-A-2 265 234	(GLAXO)	1	·
A	EP-A-0 067 792	(CIBA-GEIGY)	1	
A	EP-A-0 023 890	(CIBA-GEIGY)	1	
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
	·			C 07 C 131/00 A 01 N 37/50
Der v	orliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt.		
	Recherchenort BERLIN	Abschlußdatum der Recherche 19-10-1987	· KAP	Prüter FEYN H G
X : von Y : von and A : tech O : nich	TEGORIE DER GENANNTEN D besonderer Bedeutung allein besonderer Bedeutung in Verl eren Veröffentlichung derselb inologischer Hintergrund inschrittliche Offenbarung schenliteratur	betrachtet nach d bindung mit einer D: in der en Kategorie L: aus an	Anmeldung and dern Gründen i	ent, das jedoch erst am oder tum veröffentlicht worden ist jeführtes Dokument angeführtes Dokument Patentfamilie, überein- nt

EPA Form 1503 03 82