KeTCindy/KeTCindyJS A Bridge between Teachers and Students

Setsuo Takato, Toho Japan José A Vallejo, UALP Mexico Alexander N.Prokopenya, SGGW Poland

2019.09.26 CASTR

This work was supported by JSPS KAKENHI Grant Number 18K02948,18K02872.

What is KeTCindy?

KeTCindy = KeTpic + Cinderella2

- Teachers who use TeX desire to produce figures inserted to their teaching materials interactively and easily.
- KeTCindy is a collaboration of KeTpic developed mainly by Takato and Cinderella2 (Cindy), a DGS, to help them.
- KeTCindy uses KeTpic as TeX code generator and Cindy as GUI.

Cindyscripts and KeTCindy

- Cindy has programming language CindyScript.
- CindyScripts is a general language so easy to use.
- Moreover, it can handle other than geometric objects, which distingushes it from other DGS.
- KeTCindy is a macro package of CindyScript.

How KETCindy works

- KeTCindy works as a kind of preprocessor of TeX graphical code systems(Tpic, pict2e,TikZ).
- It generates graphical data as follows:
 - (1) Write scripts of KETCindy in CindyScripts.
 - (2) Cindy changes the scripts to scripts of R.
 - (3) R generates graphical data(.tex) of TeX.
- Insert it with TeX command "\input".

How KeTCindy works (Example)

• Scripts of KeTCindy

```
Ketinit();Plotdata("1", "sin(x)", "x");Windispg();
```

• Generated graphical data of pict2e for example

```
{\unitlength=1cm%
\begin{picture}(12,4)(-6,-2)%
\linethickness{0.008in}%%
\polyline(-6.00000,0.27942)(-5.76000,0.49964)(-5.52000,0.69123)...
\polyline(-6.00000,0.00000)(6.00000,0.00000)%
...
\put(-0.0500000,-0.0500000){\hspace*{\Width}\raisebox{\Height}{0}}%
\end{picture}}%

Demo
```

Website of KeTCindy

- We have launched a website for KeTCindy. https://s-takato.github.io/ketcindy
- Search the site with keywords ketcindy samples.
- You can find many samples of KETCindy there.
- References of KeTCindy are also downloadable.

• CTAN(Comprehensive TeX Archive Network) has uploaded KeTCindy to the site in 2018.

- CTAN(Comprehensive TeX Archive Network) has uploaded KeTCindy to the site in 2018.
- Search KeTCindy with keywords ctan ketcindy.

- CTAN(Comprehensive TeX Archive Network) has uploaded KeTCindy to the site in 2018.
- Search KeTCindy with keywords ctan ketcindy.

ctan ketcindy

- CTAN(Comprehensive TeX Archive Network) has uploaded KeTCindy to the site in 2018.
- Search KeTCindy with keywords ctan ketcindy.

ctan ketcindy

• Then you can download the package of KeTCindy directly from ctan ketcindy.

Repository page

- You can download the latest version of KeTCindy from Repository
- Follow 'readme' in the folder 'ketcindy(-master)'.

 ReadmeWin
 - ReadmeMac

Necessary softwares for KeTCindy

- Cinderella2
- R
- Maxima
- A TeX system

 TeXLive may be easy to install KeTCindy.
- PDF viewer

 For windows, Sumatra is recommended.

Examples of KeTCindy

- s01 01figure, 06bowhatch
- s02 01figure, 06bowhatch, 10diffeq2
- s04 01basic, 02ospline
- s05 02spacecurve, 07polyhedron
- s09 03saddle, 08wiredata
- s10 02tangentialline

KeTCindyJS

CindyJS

• A group of Technical University of Munich has been developing CindyJShttps://cindyjs.org.

CindyJS is a framework to create interactive (mathematical) content for the web. It aims to be compatible with Cinderella, providing an interpreter for the scripting language CindyScript as well as a set of geometric operations which can be used to describe constructions.

• CindyJS itself doesn't support KeTCindy, so it is not enough to produce many kind of teaching materials.

Development of KeTCindyJS

- Cinderella2 can export codes in CindyScripts and components in CindyScreen to a HTML file.
- We have developed KeTCindyJS which make it possible to use many functions of KeTCindy in the HTML file.
- You can find lots of samples at page samples of ketcindy.
- Here, some simple examples will be demonstrated.

How KeTCindyJS produces HTML

s02graphs

Samples of KeTCindyJS

Simple examples

- Tangent of Sine
- Implicit Function
- 2nd-order Deq
- Rotate Triangle

Animations

- Deqplot
- General Angle
- Hypotrochoid

Inputbox

- Trignometric
- Napier's Constant
- Calc of sin,cos,tan

Advanced Samples

- Rotataion of Cube
- Graph of sin(x)

Using Maxima

Elliptical Billiard

Elliptical Billiard

Hugo Steinhaus

MATHEMATICAL SNAPSHOTS

Originally copyrighted by Oxford University Press, Inc.

This book is published in Japan by arrangement with Oxford University Press, Inc.

s0612

Fourier Series

- Vallejo-san has developed a package to find Fourier coefficients of piece-wise functions.
- s1010

Brachistchrone Curve

$$ullet rac{du}{dt} = \sqrt{rac{-2gy}{\dot{x}^2 + \dot{y}^2}}, \,\, u(0) = 0$$

$$ullet T = \int_0^U \sqrt{rac{\dot{x}^2 + \dot{y}^2}{-2gy}} du$$

• s1611

t = 8.07

Swinging Atwood's Machine

• Prokopenya-san has been analyzing various Atwood's machines.

• He obtained the Lagrangean:

$$egin{aligned} \mathcal{L} &= rac{1}{2} m_1 (L_0 + R(m{\Phi} - m{\Psi}))^2 \dot{m{\Phi}}^2 \ &+ rac{1}{2} (I_0 + (m_1 + m_2) R^2) \dot{m{\Psi}}^2 \ &- m_1 g (R \sin m{\Phi} - (L_0 + R(m{\Phi} - m{\Psi})) \cos m{\Phi}) \ &+ m_2 g R m{\Psi} \end{aligned}$$

$$\begin{array}{ll} \bullet \;\; \textbf{From this,} \;\; \ddot{\varPsi} = \frac{R \left(g \, (m_2 - \cos \varPhi \, m_1) - \dot{\varPhi}^2 \, ((\varPhi - \varPsi) \, R + L_\theta) \, m_1\right)}{R^2 \, (m_2 + m_1) + I_\theta} \\ \\ \ddot{\varPhi} = \frac{-\sin \varPhi \, g + 2 \, \dot{\varPhi} \, \dot{\varPsi} \, R - \dot{\varPhi}^2 \, R}{(\varPhi - \varPsi) \, R + L_\theta} \end{array}$$

Conclusions

KeTCindyJS for education

- KeTCindyJS has great potential to produce more interactive materials.
- As a result, it will accelerate communication between teacher(s) and students in the classes.
- For now, KeTCindyJS can not call a CAS, which is a future work for us.