Using LLMs for Cancer Diagnosis from Clinical Notes

ISAAC HANDS, University of Kentucky, USA

1 BACKGROUND AND INTRODUCTION

Cancer is a devastating illness, the second leading cause of death in the U.S [1]. One of the best ways to improve survival of this disease is to diagnose it as early as possible[3]. The way cancer is diagnosed in 90% of cancer cases[2] is through a biopsy of tissue, which is then observed under a microscope by a pathologist, leading to a narrative description of the cancer cells in a pathology report. These reports consist of clinical narrative text dictated by a pathologist, stored in a patient's electronic medical record. The characterization of a cancer diagnosis occurs when a physician interprets a pathology report for communication to the patient and determines a treatment plan, along with data abstraction of the codes associated with the cancer diagnosis by specialized medical coders. This entire process of determining whether a patient has cancer and what type of cancer it is, relies on interpretation of narrative text. In fact, narrative unstructured text makes up about 80% of all healthcare data[8], making it difficult to analyze systematically.

Processing, analyzing, and interpreting unstructured text can be time consuming and cause delays in life-saving treatment for cancer patients, but may be an area where machine learning classifiers could provide efficiencies. In order to build classifiers, however, labeled training data needs to be readily available. When the data required is clinical text containing patient identifiers, it is often very difficult to access due to privacy concerns and lack of access to medical record systems. Moreover, clinical text uses a specialized vocabulary, which may prove problematic for natural language processing methods that have been developed around standard English vocabulary. In this report, we attempt to overcome these difficulties by utilizing a large language model (LLM) pre-trained on biomedical text, fine-tuned with clinical text documents that have a cancer diagnosis label. We will investigate both BERT[4] and GPT[11]-based transformer[12] models, which have been shown to perform well on machine learning tasks in the biomedical realm[13][9].

2 MATERIALS AND METHODS

We identified a dataset of clinical notes labeled with cancer diagnoses, along with BERT and GPT-type LLM models that could be fine tuned on standard hardware. The dataset we utilized, MIMIC-IV[6], required a request for credentialed access for academic use from the authors, which was granted within one day. Even though the data was narrative text from actual hospital patients in a US, it was de-identified through an automated NER task[7] before being made available, so privacy and security was not a concern. We also identified four transformer models, two BERT and two GPT, from the HuggingFace open source library, that were well characterized and able to be trained on a M1 Macbook Pro. Our programming for dataset preparation and model fine-tuning was done in Python 3.9 utilizing the PyTorch library[10]. The source code used to process data and fine-tune the models is published in GitHub[5].

2 Isaac Hands

- 2.1 Data Processing
- 2.2 Models Utilized
- 3 RESULTS

4 DISCUSSION

REFERENCES

- [1] CDC1 2023. An Update on Cancer Deaths in the United States. Retrieved April 29, 2023 from https://www.cdc.gov/cancer/dcpc/research/update-on-cancer-deaths/index.htm
- [2] CDC2 2023. How CDC Speeds Up Cancer Data Reporting. Retrieved April 29, 2023 from https://www.cdc.gov/cancer/dcpc/research/articles/cdc-cancer-reporting.htm
- [3] CRUK 2023. Why is early cancer diagnosis important? Retrieved April 29, 2023 from https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important
- [4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
- [5] Isaac Hands. 2023. CS685 Final Project. https://github.com/isaackcr/CS685FinalProject
- [6] AEW Johnson et al. 2022. MIMIC-IV-Note: Deidentified free-text clinical notes (latest version). PhysioNet https://doi. org/10.13026/1cjn-2370 (2022).
- [7] Alistair EW Johnson, Lucas Bulgarelli, and Tom J Pollard. 2020. Deidentification of free-text medical records using pre-trained bidirectional transformers. In *Proceedings of the ACM Conference on Health, Inference, and Learning*. 214–221.
- [8] Hyoun-Joong Kong. 2019. Managing Unstructured Big Data in Healthcare System. Healthc Inform Res 25, 1 (Jan 2019), 1–2. https://doi.org/10.4258/ hir.2019.25.1.1
- [9] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. 2022. BioGPT: generative pre-trained transformer for biomedical text generation and mining. Briefings in Bioinformatics 23, 6 (09 2022). https://doi.org/10.1093/bib/bbac409 arXiv:https://academic.oup.com/bib/article-pdf/23/6/bbac409/47144271/bbac409.pdf bbac409.
- [10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019).
- [11] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by generative pre-training. (2018).
- [12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
- [13] Shoya Wada, Toshihiro Takeda, Shiro Manabe, Shozo Konishi, Jun Kamohara, and Yasushi Matsumura. 2020. Pre-training technique to localize medical bert and enhance biomedical bert. arXiv preprint arXiv:2005.07202 (2020).