

Module 1: Foundations Mathematical Foundations

Fundamentals of Chemistry Open Course

Learning Objectives | Module 1

- 1. Extract useful quantitative information from problems; generate a list of known and unknown quantities from the text of a problem.
- 2. Solve equations for a single unknown variable using standard algebraic operations.
- 3. Draw and interpret graphs relating physical variables with relevance to chemistry.
- 4. Recognize the essential components of a measurement.
- 5. Apply dimensional analysis with knowns and unknowns to solve equations involving measured quantities.
- 6. Calculate measures of accuracy and precision to assess the quality of a set of measurements.
- 7. Express quantities calculated from measurements at the appropriate level of precision by applying the rules for significant digits.
- 8. Recognize and distinguish between physical and chemical properties.
- Classify different types of matter as pure substances or mixtures; compare and contrast homogeneous and heterogeneous mixtures.
- 10. Describe and apply the scientific method.

Extracting the Knowns and Unknowns

- Quantitative problems in chemistry contain embedded variables.
 - Known variables are associated with specified values, usually in the form of measurements.
 - **Unknown variables** are assigned letters; solving for one or more unknowns is the goal of the problem.
- Reading through the problem text and extracting the known and unknown variables is a key first step when solving problems in chemistry. Doing this will often point us toward a relation between the variables!

Example. List the known and unknown variables in the problem text below.

How many moles of gaseous boron trifluoride (BF₃) are contained in a 4.3410-L bulb at 788.0 K if the pressure is 1.220 atm?

Algebra Review

- Once an appropriate equation relating the known and unknown variables is found, solving for the unknown variable is usually just a matter of algebra.
- Rearrange linear equations (with the unknown variable to the first power) using standard arithmetic operations:
 - Add a quantity to both sides
 - Subtract a quantity from both sides
 - Multiply both sides by a quantity
 - Divide both sides by a quantity
- For equations with the unknown to the n^{th} power, raise both sides to the $1/n^{th}$ power or "take the n^{th} root of both sides."
- Solve quadratic equations using the quadratic formula. Two solutions will result; usually, only one makes physical sense!

$$ax^2 + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Algebra Review

• Equations containing the exponential function e^x can be solved by taking the natural logarithm of both sides. Related equations containing n^x , where n is an arbitrary number, can be solved the same way.

$$e^x = K$$
 $\ln(e^x) = \ln K$ $x = \ln K$
$$n^x = K$$
 $\ln(n^x) = \ln K$ $x \ln n = \ln K$ $x = \frac{\ln K}{\ln n}$

• Looking for additional information and practice? Check out the <u>GT Open College Algebra</u> site.

Drawing and Interpreting Graphs

- **Graphs** depicting relations between two or more variables will appear regularly throughout your study of chemistry.
- A scatter plot depicts two-dimensional data as a set of points on a plane.
 - The horizontal axis (*x*-axis) is typically used for the **independent variable**, which was varied freely when the data was collected.
 - The vertical axis (**y-axis**) is typically used the **dependent variable**, which was measured in response to a change in the independent variable.
- Each axis is associated with a scale that includes specified units.
- We will most often draw graphs using spreadsheet software such as Microsoft Excel.

Amount (mol)	Pressure (atm)
0.142	0.3266
0.388	0.8924
0.412	0.9476
0.876	2.0148
0.992	2.2816

Drawing and Interpreting Graphs

- We will encounter several different types of mathematical relations between variables...
 - **Linear:** y = mx + b. The variable y increases at a constant rate with respect to the variable x and vice versa.

• Quadratic: $y = ax^2 + bx + c$. A parabolic relation. The rate of change of y with respect to x varies linearly with x.

Drawing and Interpreting Graphs

- We will encounter several different types of mathematical relations between variables...
 - **Exponential:** $y = ae^x$. The variable y increases extremely rapidly with respect to x.

Logarithmic: y = a ln x. The inverse of an exponential relation;
 y increases very slowly with respect to x.

Fitting Data to a Mathematical Model

- Frequently, especially in a laboratory context, we will have an idea of a mathematical model that measured data should follow. Fitting the data to the model provides empirical support for the validity of the model.
- Fitting is a matter of minimizing the deviation of the modeling line or curve from the data points. Finding the optimal line through a set of points related linearly is called **linear regression**.
- Spreadsheet software will carry out linear regression for us; however we will sometimes need to transform a
 nonlinear relation into a linear one first (linearization; see the next slide).

Fitting Data to a Mathematical Model

- A nonlinear graph can be converted into a linear one by plotting appropriate functions of the variables x and y.
 This process is called linearization.
- Consider two sets of data $\{x_i\}$ and $\{y_i\}$ related theoretically by the general equation...

$$g(y_i) = M \times f(x_i) + B$$

• A plot with g(y) on the vertical axis and f(x) on the horizontal axis will then be linear with slope M and intercept B. Linear regression can then be applied to the transformed set of data $\{f(x_i), g(y_i)\}$ to determine the best-fitting M and B.

Fitting Data to a Mathematical Model

Example. The rate constant k of a chemical reaction generally increases with absolute temperature T according to the general equation below (A and B are constants). Linearize the equation and show how a plot of the appropriate functions of K and K appears linear. Determine K and K based on the given set of data.

$$k = Ae^{-B/T}$$

Temperature (K)	Rate constant (s ⁻¹
293	0.0011
303	0.0035
317	0.0080
323	0.0113