Priedicate Logic

Bredicate Logic: The peroposition Logic is not sufficient to expression the meaning of statements in mathematics and in natural Language. Peredicate Logic is mosie powerful as compasse to propositional Logic & it can be used to express the meaning of wide mange of starts in mathematicx and computer Science.

Paredicate:

" X " greater than 5"

This start is consist of two past one is variable & which is subject of the start and another one is " is greater than 5" which specifies the property of variable of This statement can be denoted as P(x).

An predicate logic the domain must be specified.

(x): "x = x+1"

find the value of universal Quantifier and Existential Quantifier for this start.

Let x = 1 , 1 + 1+1 Axp(x) - false Bx P(x) - Jalse.

Q⇒ ρ(x): "x < x+1" Domain: all Net of seal numbers.

Ax b(x) - Donne = Jar P(X) - Jours.

P(x,y): "x = x + 1" find, P(3,2) - your P(4,5) - False Qualifiens:

when vaniables in a fun one assigned values then seculting stant becomes peroposition with centain touth value. The Quantification is a way to execute proposition from a given function. It expresses the extent to which a given paredicate it true over a stange of elements.

Orantifiens one of two types:

1) Universal Quantifier: (+) { for all?

The Universal Quantifier May that Jose given basegicate it is the for event element under consi-

2) Existential Quantifier: (=) (Home exist)

Existential Quantifier says that there exist at least one element under consideration for which given predicate is true and area of logic that deals Quanti-liens and predicate is called predicate Colombia.

Quantifier is true box there does Universal Quantifier is the box there does not exist single care for which

its value can be falsed and existential Quantifier have falle touth value book there does not exist lingle

case for which its value can be true *

 $\forall x P(x) = P(x_1) \wedge P(x_2) \wedge P(x_3) \dots \wedge P(x_n)$

when all cases are true

False when single case is false.

 $\exists x P(x) = P(x_1) \vee P(x_2) \vee P(x_3) \dots \vee P(x_n)$

False when all carer one false when lingle care is thre

- Day Find the counter example if possible to following universally quantified statement where domain for all vouiables is consist of all Antegen.
 - domain: all Integer $a) \forall x (x_5 \gg x)$ It is the, no counter example is there.
 - P) Ax (x>0 / x <0) 91 is false, counter example x=0
 - It is false, counter example x=0,2,3,... G $A \times (X = T)$
 - 9) Ax (x2 + 3) 9+ is true, No counter example
 - 4+ ix false, counter example, x = 0,1 e) $\forall x (x^2 \neq x)$
 - f) Ax (1x1>0) It is false, counter example, &=0

Medatina donutifiens:

1) Nedortou of Nuinenrol Onoutilien:

Stmt : " All Indians are honest"

P(x): "x "x honest"

domain : Indians

Yx P(x) - All Indians are honest

negation of Axp(x) = I Axp(x)

All Andians are not honest Dome Indiani one not honest

7P(x): "x "x not honest"

Some Andians are not honest EX TP(X)

that means:

 $7 \forall x P(x) = \exists x 7 P(x)$

a) Megation of Existential Quantifien:

Stort: Nome Indianx are honest"

P(x): "x "x honest"

domain : Indians.

Ix P(x): some Indiana are honest

regation of 3xP(x) is - 7[3xP(x)]

Some Indiani are not honest

All Indians are not honest.

16(x) - "Se ix not powert"

YX7P(X)

that means:

- Da ling ont vedation of following ytatements:
 - i) All boliticary are powert
 - ii) Nome Americans eat cheese Bunger
 - !!!) Ax (x+1 >x)
 - in) Ax (x < 5)
 - i) All politicians are honest b(x): "x ix powert" domain : Politicians

Psiedicate form :- Ax P(x)

Megation :- 7 Ax P(x)

and $\exists \forall x P(x) = \exists x \exists r P(x)$

Some politicians are not honest.

ii) Dome Americans eat cheese Burgers.

P(x): "x eat cheese Bunder"

domain: Americans

Paredicate form : 3xP(x)

: J 3x b(x) Megation

and we know, 73x p(x) = 4x 7p(x)

All Americans does not eat cheese Bunger.

!!!) Ax (x+1 >x)

 $\Delta Ax(x+1 > x) = \exists x \Delta b(x)$ $= \exists x \ 7(x+1) x)$ = 3x (x+1 <x) Any

(v) Yx (x < 2)

= 3x 7(x(2) = 3x (x>2) Ans

Representation of sentences into Puedicate

symbolic form:

Des Convert there statement into Lugical form:

i) Every student of this class has studied Data structure.

P(x): "x has studied Data structure"

domain: student of class

YX P(X) Ans

ii) some student of this class has visited Dipu chawhan P(x): "x has visited dipu chauhan" domain: Atudent of class

iii) Each student of this class has visited either Kanpur Coutre or Bor 440b.

" x how vixted either Kanpur Centre or Bur Stop" 44 % compound Stm+ - Convert into simple stant.

P(x): x has vivited Kanpur Centre

Q(x): x has visited Bus stop.

domain : student of class

4x (P(x) V Q(x)) Ans

Examples:
$$P(x,y) = |x+y| = 5$$
"
$$P(x,y,z) = |x+y| = z$$

D=1 convert there years into redical years where domain ix all animals.

- 1) All lione are cat. 2) Some Lions do not drink coffee.
- 3) Some cats do not drink coffee.

3) some
$$doin \Rightarrow P(x) : "x ix lion"$$

$$Q(x) : "x ix cat"$$

$$R(x) : "x doink coffee".$$

- 1) Ax (b(x) -> 0(x))
- 8) 3x (P(x) ~ 7 R(x))
- 3) 3x(Q(x)) ~ 7 R(x))

- U= Convert there starts into Logical starts. Domain: All Cheatures. 1) " All humming birds one sichly coloused" 2) "No londe ping line ou pouch. 3) " Birds that do not live on honey are dull in Colows". Dalus Bregicates one: P(x): " x ix humming Bird" Q(x): "x ix sichly 'coloured" R(X): "X 1/2 lange". S(x): " x live on honey" 1) Yodical YAM+: Ax (b(x) ->d(x)) 2) Logical strat: Yx7[R(x) \s(x) TEX (RIX) NS(X)) (x) Logical stmt: Fx (7s(x) ->70(x)) A) Logical strat: 3x (P(x) x 7R(x)) D) Q(x): " word x contoin letter 'a'" find the touth value of Q(x). i) Q(x): "class" True (box word'class' contain ii) Q(x): "Red". False (box word 'Red' not contain Da Suppose Q(x, y) denotes.
 - De Suppose Q(x,y) denotes.

 Q(x,y): x is capital of y

 and then find out the truth values of

 i) Q (Lucknow, UP) Towns

 ii) Q (Punjab, Andia) False.

U= Let Predicate P(x) denotes.

P(x): "X spends mose than 5 hours every week day in dar.".

where domain of P(x) is all students Nom extress the tollowind lodical VALUTY in farm of

- a) =x P(x) b) Ax P(x) c) =x J P(x) d) Ax J P(x)
- Dome students spends mose than 5 hours every a) $\exists x P(x)$ week day in class.
- All students spend more than 5 hours every week P) Ax b(x) day in class.
- Dome student do not spends more than 5 hours c) 3x7P(x) every well day in lass.

No students spend mose than 5 hours every week day in class. - 7 4x P(x)

d) 4x7P(x)

All student do not spend more than 5 hours every week day in class.

Some student do not spend more than 5 hours every week day in class - 73xP(x)

Des convert the following Logical Atmt in Atatements: C(x): "x ix Comedian"

fix): "x bx fround"

a) $\forall x (c(x) \rightarrow P(x))$

P) AX (C(X) V E(X)) $(x) \exists x (c(x) \rightarrow F(x))$ d) 3x (c(x) v F(x)) a) $A \times (C(x) \rightarrow F(x))$ " All comedians are funny " " All people are comedian as well as Junny" P) Ax (C(x) v E(x)) c) $\exists x (c(x) \rightarrow F(x))$ " Dome Comedians aux funny" "Nome people who are comedian are funny." " Dome people aux comedian as well as funny". d) =x (c(x) v =(x)) De P(x): "x can speak Russian" where domain for x consist of all students. Convert the following expression into logical strat. 1) " There is a student in your class who can speak Russian 2) " There is a student in class who can speak Russian but 3) " Every student in your class either speak Rusian or 4) "No student at your school can speak Russian or knowns 3) Ax (b(x) Ad(x)) C++.") =x (P(x) ~Q(x)) 4) AXJ(b(x) NQ(x)) (x) DV (x) 4) XEL (D) 2) =x (P(x) 17Q(x))

Rules of Anjenence for Predicate Logic: Rules of Anjenence for Predicate Logic: Anjenences - 9 Rules (in Proposition)
There are 13 stules of Information - 9 Rules (in Proposition)
1) Moiversal Specification (US).
· P(a) in domain
(116) •
a) Universal Generalization (OG). P(a) where a ix an ambitany variable in domain (ES):
3) Existential Specification (ES): Where 'a' is a specified variable
100 100
4) Existential Generalization (EG): P(a) where 'a' is a specified P(a) where 'a' is a specified
raniable &
(:] x P(x) ::] x P(x) ::] x P(x) ::] x P(x) ::] x P(x) Hypotherial (:) ((x x x x x x x x
Da Parove that with the Hell by Hypotheria
AX (*1500)
$\frac{\exists x H(x)}{\vdots \exists x M(x)} \longrightarrow \text{Conclusion}.$
- Hupothesis
1) $\exists x H(x) \longrightarrow M(x) \longrightarrow Hypothesis$ 2) $\forall x (H(x) \longrightarrow M(x)) \longrightarrow Hypothesis$ 5 = in (1)
3) : H(Y) US in (2) 4) H(Y) -> M(Y) apply Moder ponent in 3) & 4)
- M(x)
5) : M(Y) Eq in (5)

3x (P(x) ^ Q(x)) _ Hypothesis .: Bx P(x) A Bx Q(x) - Conducion Leone: - Hypothesis 1) =x(P(x) \ Q(x)) ES in 1 a) :. P(a) ~ Q(a) By simplification in (3) By Simplification in 3 5) .. P(a) 4) ... Q(a) EG in 3 5) 3xP(x) By Conjunction in 546 Eq in 4 6) =x Q(x) :. 3x P(x) N 3x Q(x) De show that the Hypotherix " A student in this class has not stead the book." " Everyone in this class pass the exam". Conclusion: " domeone who pass the Exam has not seed the book. Convert the Start in Psiedicate Lugic: P(x): " x ix in thix class" Q(x): "x has stead the book" R(x): "x has passed the exam" domain . Student Logical Fosim: (a) $A \times (b(x) \rightarrow b(x))$ Halbothering 3 =x(R(x) NTQ(x)) - conclusion Inference form: =x(P(x) N7Q(xl) $\frac{\forall x (\varrho(x) \rightarrow R(x))}{\exists x (R(x)) \land \neg Q(x))}$

Parove with the help of Inference Rule: -> Hypothesis $\mathbb{O} \exists x (P(x) \land \neg P(x))$ Es in 1 : P(Y) N7Q(X) By Simplification in (2) By Simplification in (2) 3 .: P(Y) (y) .. 7 B(Y) (5) $\forall x (P(x) \rightarrow R(x)) \longrightarrow Hypothesis$ P(Y) -> R(Y) -> Us in (5) Modus bonent in 3 and 6 By Conjunction in (7) and (4) : R(Y) R(Y) ~ 7 Q(Y) . : 3x (R(x) ~ 7Q(x)) EG in ® Hence, Conclusion is 3x (R(x) > 7Q(x)) proved " Every one in discrete class has taken a course in) Show that the Hypothesis Computer Science." " Ram ix a student in this class." Conclusion: " Ram has taken a course in computer science Dolna Paredicate statements are: P(x): "x is in discuete class" Q(x): " x has taken a course in CS". P(Pm) >Q(X)) } Hypothesix Logical form: Q(Ram) - conducion Inference four: $A \times (b(x) \rightarrow b(x))$ P(Ram)

Perove: (2) : P(a) -> Q(a) By Us in (1) Let a = Ram (2) .. P(Ram) -> Q(Ram) By US in (1) - Hypothesis P(Ram) .. Q(Ram) ___ By Modul ponens. Hence, conclusion is Q(Ram) proved * when we me more than one Nested Quantifien: quantifier in a single predicate statement then it is known D AXAL b(x,1) as Nested Quantifier. (D Ax 31 b(x,1) 3 BXAN b(xun) (Prx)9 YE KE (D Example: Ax YY P(x,y) P(x,y): "x+Y=5" Domain: all Integent 4=3 Heu L=1 then Y=1 then Y=1 then Y=1 Y=3 $\chi = 3$ D= P(x,y): "x+y=5" Find the truth value food the following: (B-= L' L= X) + (h= L' (1= X) } smott (L' X) JAE XA (B 1) AXAYP(X,Y) Falve 3) 3x dy P(x,y) Falie {(H=Y, 1=X)} sure {(x,x)9 YE XE (H

```
Note:
  Osidesi matteus fosi two different Quantifiers
       AXAL b(x, d) = ALAX b(x d) }
        (y,x)^q x \in y = (y,x)^q y \in x \in
         AX = A b(xx) + = x A A b(xx) }
   but,
        JXYYP(X,Y) = YXJYP(X,Y)
 Q= Joianslate the statement into sentence and find the
    AxAd (((x>0)V(A<0)) -> (xA<0))
     tente value of ytotement.
   For all se and fost all y if x ix positive and y is negative
Boln: Statement:
    then their multiplication is negative
  Annet raine of Ax Al(((x>0) v(A<0)) -> (xA<0)) ix
   There product of negative for all value of or and y.
                                             False
   Mable
                                        There is a for which
                         Jours
   Statement
                    b(x) is the for
                                         P(x) is balie for all x
1) Axb(x)
                      all x
                    There is x for
                    which P(x1) is Three
(x) 9 x E (B
       7 \exists x P(x) = \forall x \exists P(x)
                                          There is & for which
                    for each x, P(x) is
                                           P(x) is the
                        false
3) 77XP(X)
                                           P(x) is true for
       7 \forall x P(x) = \exists x T P(x)
                   There is x, for which
                                               all L.
 1) TYXP(X)
                                        Scanned with CamScanner
```

AL AX b(x,1) 111 2) AX AL b(x,1)	when P(x,y) is true for each pain of(x,y)
(hor)d LAXE (9	Append it x for mych
AX BY B(xol)	for each &, there is y for which P(x,y)
(Yok) 9 XEYE (Yok) 9 XEYE	There is a pair of (x,y) for which P(x,y) is true
	Nested Quantifier
MEdation of -	V
0	- 7×7P(x)
7 Ax P(x) = Ax 7P(x)
7 Ax P(x) = Ax 7P(x)
D=) Nedate the to	Promised Natement; $(x) = Ax Lb(x)$
Day Negate the formy Ax Ax b(x)) $Ax = \lambda$ Plomind Statement; $Ax = \lambda$ $Ax = \lambda$ $Ax = \lambda$
1) AXAX b(x, AX b(x, A	$(\lambda \lambda)) = \lambda x \perp \lambda$ $(\lambda \lambda) = \lambda x \perp \lambda$
JX J(AN b J (AX AN b(s) J AX AN b(x) Medate the formal J Ax Elox	$(x^{3}A)$) $(x^{3}A)$
= X=X=L(s = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s)	$(x, \lambda) = X \times (x, \lambda)$ (x, λ)
Day JAX AL CXON, AX ALCXON, AX A	$ \begin{array}{ll} $
3) = X = X = X = X = X = X = X = X = X =	Ax $Ax = Ax =$
= X=X=L(s = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s) = X=X=L(s)	Ax Ax Ax Ax Ax Ax Ax Ax

There is a pair (x,y) for which P(x, y) ix falle. for each 2, P(x,y) ix false, for all FOH each Y, there ix x which in false for b(x,y) FOH each pair of (x, y), P(x, y) ix false. grantifier:

3) Ax = Y P(x, Y) - (Ax = Y P(x, Y)) ((Y,x)9 YE) [XE EX YY TP(X,Y) Ans

4) BX AL b(xol) 7 (3x 4Y P(X,Y)) Ax J (AX b(xxx)) YX =Y TP(X,Y) Ang B= Ax =1 A= P(x,1,2) 7 (AX BY AX P(X, Y, Z)) BX J (BY AZ P(X,Y,Z)) 3x AL 1 (AS b(x"1") JX YY JZ 7P(X,Y,Z) AN

C(X): "X has computer".

F(X,Y): " x and y one friends". domain for X, X is all students

Stmt: All student have computer at school or in school Either student has computer or they have friend who

By Expert given 4+mt using quantifier then form negation of 14mt and express the negation in simple English

- a) Dome old dogs can learn new tricks
- b) No Rabbit Known Calculus.
- c) Every Bird can fly
- d) No one can Keep secut. e) There is no dog that can talk
- f) There is no one in this class who knows French
- D=) THanklate the following into Logical 14mt: " If a person is female and is parent then this person ix someone's mother."