

UNIVERSITÀ DI PISA

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica

Tesi di Laurea

SUBGRAPH SIMILARITY IN COMPLEX NETWORKS

SIMILARITÀ DI SOTTOGRAFI NELLE RETI COMPLESSE

Relatori:	Candidato:
Prof. <i>Roberto Grossi</i> Prof. <i>Andrea Marino</i>	Gaspare Ferraro

ANNO ACCADENICO 0016 0017

ANNO ACCADEMICO 2016-2017

Ai miei genitori per non avermi tagliato i viveri

Contents

1	Intr	oduction 1
	1.1	Basic definitions
	1.2	The problem
	1.3	Pratical applications
2	Bas	ic tools 4
	2.1	Similarity indices
	2.2	Documents similarity
	2.3	Graphs similarity
	2.4	Subgraphs similarity
	2.5	Sketches
		2.5.1 min-wise permutation
		2.5.2 bottom-k sketches
	2.6	Color Coding
3	Con	nputation of subgraph similarity 6
_	3.1	Naive approach
	3.2	Efficient computation
	3.3	Baseline algorithm
4	Pro	ject development 8
_	4.1	Implementation choices
	4.2	Dataset
	4.3	Experimental results
Δ	Cod	le snippets 10
А		Color Coding
		<u> </u>
		Colorful sampling
		Frequency count
	A.4	Frequency sampling
	\rightarrow	AUDURIUM INCUCES 1.3

Introduction

With the spread of Internet and more importantly of the social networks, efficient data analysis becomes increasingly important. Graphs are a powerful data structure that model in a natural way information .

1.1 Basic definitions

Definition 1.1. A graph is a pair of sets G = (V, E), where V is the set of vertices (or nodes) and $E \subset V \times V$ is the set of edges.

If two vertices $u, v \in V$ are connected by an edge they are called extreme of the edge, in this case we denote the edge with the pair $(u, v) \in E$

If $(u, v) \in E \Leftrightarrow (v, u) \in E$ the graph is called undirected, where not specified we will only deal with undirected graphs.

A sequence of nodes v_1, v_2, \ldots, v_k is called path if $(v_i, v_{i+1}) \in E \ \forall i = 1, \ldots, k-1$; a path is called simple if $v_i \neq v_j \ \forall i, j \ 1 \leq i < j \leq k$. A cycle is a path where $(v_k, v_1) \in E$.

We denote by $N(u) = \{v : (u, v) \in E\}$ the set of neighbors of the vertex u, the cardinality of this set is called degree of u (deg u = |N(u)|).

With $N^{< k}(u)$ we indicate the set of vertex connected to u by a simple path of length less than k (note that $N(u) = N^{<2}(u)$).

Definition 1.2. A graph G' = (V', E') is called subgraph of G = (V, E) if $V' \subset V$ and $E' \subset E$. A subgraph is called induced if $E' = (V' \times V') \cap E$.

We use $G' \subset G$ to indicate that the graph G' is a subgraph of G and G' < G to indicate that the graph G' is a induced subgraph of G.

Note that an induced subgraph G' = (V', E') can be uniquely identified by the set of its vertex V'.

2 Introduction

Definition 1.3. A labeled graph is a triple (V, E, L) where (V, E) is a graph and $L: V \to \Sigma$ is a function that assign for every node v a symbol of the alphabet Σ . We call $L(u) \in \Sigma$ label of the node u.

Given a path $\pi = v_1, v_2, \dots, v_k$ we extend the function L and we indicate with $L(\pi) = L(v_1)L(v_2) \dots L(v_k) \in \Sigma^k$ the string obtained by the concatenation of the labels of the nodes in the path.

In this thesis we mainly focus to analyze complex network: special graph with a non-trivial topology like random graph. Complex network occur in graphs modelling real system like social networks or computer networks and are characterized by a specific structural features:

Definition 1.4. We define as power-law degree distribution a networks where the degree of a node u follow, for some γ (usually $2 < \gamma < 3$), the probability:

$$P(deg(u) = k) \sim k^{-\gamma} \tag{1.1}$$

Figure 1.1: Degree distribution of a random network

Figure 1.2: Degree distribution of a scale-free complex network

Figure 1.3: Random network with |N| = 100 and |E| = 1000

Figure 1.4: Complex network with |N| = 100 and |E| = 1000

1.2 The problem

Problem 1.5. Given an undirected labeled graph G = (V, E, L) over an alphabet Σ , an integer q and two set of nodes $V_1, V_2 \subset V$, we want to estimate the similarity between the two induced subgraphs $V_1, V_2 < G$ based on the labels frequency of simple paths with nodes in $V_1 \cup N^{< q}(V_1)$ and $V_2 \cup N^{< q}(V_2)$.

Will discuss about a more formal and rigorous definition of subgraphs similarity in chapter 2.

In the definition we use $V_1 \cup N^{< q}(V_1)$ and $V_2 \cup N^{< q}(V_2)$ instead of simply V_1 and V_2 because in a complex graph we also want to keep in mind of the interaction between the subgraph and the external graph.

The difficulty we must face is that, in a complex network, the labels can exponentially explode for increasing values of q and $|\Sigma|$ to $|\Sigma|^q \gg |V|$ and, even worse, the number of simple paths can exponentially explode to $|V|^q$. For the simple reason that in complex networks the average separation is very low (the famous idea of *six degrees of separation*).

In this thesis we exploit the problem using randomized techniques and parallelization, which makes the problem suitable even for big network.

1.3 Pratical applications

The problem can be applied to a lot of context. That is why it is very important to choose the right domains for the values of the V, E, L, Σ, q :

- \bullet V are
- E represent the set of interactions, two vertices are connected if exists a relation among them.
- L and Σ are the category that partition V, note that if $|\Sigma| = 1$ the labeling is useless.
- q should be low as $N^{< q}(u)$ could be a large portion of G, (e.g. in Facebook for $q \simeq 4$ we have $N^{< q}(u) \simeq G$).

Furthermore, we have to choose G1 and G2, like ego networks or connected components.

Basic tools

In this chapter we first give a definition of subgraphs similarity

2.1 Similarity indices

Definition 2.1. Given two set A and B we define the **Jaccard index** as the ratio between the size of intersection and of the union between the two sets:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \tag{2.1}$$

Definition 2.2. Given two set A and B we define the **Bray-Curtis index** as:

$$BC(A,B) = \frac{2 \times |A \cap B|}{|A| + |B|} \tag{2.2}$$

We can easily extended the two previous definition to multiset:

Definition 2.3. Given two multiset $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ we define the **weighted Frequency Jaccard index** as:

$$FJ(A,B) = \frac{\sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} \max(a_i, b_i)}$$
(2.3)

Definition 2.4. Given two multiset $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ we define the **Bray-Curtis index** on multiset as:

$$BC(A,B) = \frac{2 \times \sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} a_i + b_i}$$
(2.4)

2.2 Documents similarity

- 2.3 Graphs similarity
- 2.4 Subgraphs similarity

...

- 2.5 Sketches
- 2.5.1 min-wise permutation
- 2.5.2 bottom-k sketches
- 2.6 Color Coding

Computation of subgraph similarity

Algorithm 1: Bray-Curtis

Input: W a dictionary of strings

 $f_A[W], f_B[W]$

Output: BC(A, B) Bray-Curtis index

ı return M

3.1 Naive approach

Algorithm 2: preprocess: BRUTE-FORCE

Input: G = (V, E) undirected graph with q random colors.

Output: $(f_A[x], f_B[x])$ dynamic programming table for color coding.

 $_1$ return M

```
Algorithm 3: preprocess: COLOR-CODING

Input: G = (V, E) undirected graph with q random colors.

Output: M = dynamic programming table for color coding.

1 parallel foreach u \in V do M_{1,u} = \langle \chi(u), 1 \rangle

2 for i \in \{2, 3, \dots, q\} do

3 parallel foreach u \in V do

4 foreach v \in N(u) do

5 foreach \langle C, f \rangle \in M_{i-1,v} such that \chi(u) \notin C do

6 f' \leftarrow M_{i,u} (C \cup \{\chi(u)\})

7 M_{i,u} \leftarrow \langle C \cup \{\chi(u)\}, f' + f \rangle

8 return M
```

3.2 Efficient computation

Color coding

Colorful sampling

Frequency count

Frequency sampling

Estimating similarity indices

3.3 Baseline algorithm

Project development

In this chapter we describe

4.1 Implementation choices

4.2 Dataset

For the experiments we use two differents kind of dataset, a small one so we can easily brute-force the real indices and compare the relative error, and a big one in order to

NetInf This graph represents the flow of information on the web among blogs and news websites. The graph was computed by the *NetInf* approach, as part of the SNAP project [?], by tracking cascades of information diffusion to reconstruct "who copies who" relationships. Each node represents a blog or news website, and a website is connected to those who frequently copy their content. The graph contains 854 nodes and 3824 edges. We labelled websites according to their importance, using Amazon's Alexa ranking [?]: the labels correspond to respectively the websites ranked in the top 4%, the following 15%, the following 30%, and the remaining 51% (i.e. $|\Sigma| = 4$).

Considered query: compute the similarity of two websites a and b or two sets of websites.

IMDb In this graph, taken from the *Internet Movie Database* [?], nodes correspond to movies, and there is a link between two movies if their casts share at least one actor. The graph contains $1\,060\,209$ movies (nodes) and $288\,008\,472$ edges. Each movie is labeled with one of $|\Sigma| = 36$ genres.

Considered query: similarity of actors' ego networks. Given two actors a and b, let A and B be their ego-networks, i.e., the sets of nodes corresponding to movies in which respectively a and b starred. Compute the similarity of A and B.

4.3 Experimental results

We describe the experimental evaluation for our approach. Our computing platform is a machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz, 24 virtual cores, 128 Gb RAM, running Ubuntu Linux version 4.4.0-22-generic. Code written in C++ and compiled with g++ version 5.4.1 with OpenMP.

Appendix A

Code snippets

All the code written for this thesis can be found in the personal GitHub page¹

A.1 Color Coding

```
map < COLORSET, long long > M[Q][V];
void ColorCoding() {
  #pragma omp parallel for schedule(static, 1)
  for (int u = 0; u < N; u++)
    M[0][u][setBit(0, color[u])] = 1;
  for (int i = 1; i < q; i++) {
    #pragma omp parallel for schedule(static, 1)
    for (int u = 0; u < V; u++) {</pre>
      for (int v : G[u]) {
        for (auto d : M[i-1][v]) {
          COLORSET s = d.first;
          long long f = d.second;
          if ( !getBit(s, color[u]))
            M[i][u][setBit(s, color[u])] += f;
        }
      }
    }
  }
```

¹https://github.com/GaspareG/ColorCoding

A.2 Colorful sampling

```
vector < int > randomPathTo(int u) {
  list<int> P;
  P.push_front(u);
  COLORSET D = getCompl(setBit(01, color[u]));
  for (int i = q - 1; i > 0; i--) {
    vector<ll> freq;
    for (int v : G[u]) freq.push_back(M[i][v][D]);
    disc_distr<int> dist(freq.begin(), freq.end());
    u = G[u][dist(eng)];
    P.push_front(u);
    D = clearBit(D, color[u]);
  }
// reverse(P.begin(), P.end());
  return vector < int > ( begin(P), end(P));
}
set < string > colorfulSample(vector < int > X, int r) {
  set < string > W;
  set < vector < int >> R;
  vector<ll> freqX;
  for (int x : X) freqX.push_back(M[q][x][getCompl(0)]);
  disc_distr<int> dist(freqX.begin(), freqX.end());
  while (R.size() < (size_t)r) {</pre>
    int u = X[dist(eng)];
    vector < int > P = randomPathTo(u);
    if (R.find(P) == R.end()) R.insert(P);
  }
  for (auto r : R) {
    // reverse(r.begin(), r.end());
    W.insert(L(r));
 return W;
}
```

A.3 Frequency count

```
map<string, ll> frequencyCount(set<string> W, multiset<int> X) {
  set < string > WR;
  for (string w : W) {
    reverse(w.begin(), w.end());
    WR.insert(w);
  }
  vector<tuple<int, string, COLORSET>> old;
  for (int x : X)
    if (isPrefix(WR, string(&label[x], 1)))
      old.push_back(make_tuple(x, string(&label[x], 1), setBit(011,
  for (int i = q - 1; i > 0; i--) {
    vector<tuple<int, string, COLORSET>> current;
    #pragma omp parallel for schedule(static, 1)
    for (int j = 0; j < (int)old.size(); j++) {</pre>
      auto o = old[j];
      int u = get < 0 > (o);
      string LP = get<1>(o);
      COLORSET CP = get <2>(o);
      for (int v : G[u]) {
        if (getBit(CP, color[v])) continue;
        COLORSET CPv = setBit(CP, color[v]);
        string LPv = LP + label[v];
        if (!isPrefix(WR, LPv)) continue;
        #pragma omp critical
        { current.push_back(make_tuple(v, LPv, CPv)); }
    }
    old = current;
  map < string, 11 > frequency;
  for (auto c : old) {
    string s = get < 1 > (c);
    reverse(s.begin(), s.end());
    frequency[s]++;
  }
  return frequency;
```

}

Code snippets

A.4 Frequency sampling

```
map<pair<int, string>, ll> randomColorfulSamplePlus(vector<int> X,
  map<pair<int, string>, ll> W;
  set < vector < int >> R;
  vector<ll> freqX;
  freqX.clear();
  for (int x : X) freqX.push_back(M[q][x][getCompl(011)]);
  discrete_distribution < int > distribution (freq X . begin (), freq X . end (
  while (R.size() < (size_t)r) {</pre>
    int u = X[distribution(eng)];
    vector < int > P = randomPathTo(u);
    if (R.find(P) == R.end()) R.insert(P);
  }
  for (auto r : R) {
    reverse(r.begin(), r.end());
    W[make_pair(*r.begin(), L(r))]++;
  }
  return W;
}
```

A.5 Similarity indices

```
double BCW(set<string> W,
           map<string, 11> freqA,
           map<string, 11> freqB) {
  11 \text{ num} = 011;
  11 \ den = 011;
  for (string x : W) {
    ll fax = freqA[x];
    11 fbx = freqB[x];
    num += 2 * min(fax, fbx);
    den += fax + fbx;
 return (double)num / (double)den;
}
double FJW(set<string> W, map<string, ll> freqA, map<string, ll> freq
           long long R) {
  11 \text{ num} = 011;
  for (string x : W) {
    ll fax = freqA[x];
    11 fbx = freqB[x];
    num += min(fax, fbx);
  return (double)num / (double)R;
}
```