Bases de Données

Amélie Gheerbrant

ARIS DIDEROT

Université Paris Diderot

UFR Informatique

Laboratoire d'Informatique Algorithmique : Fondements et Applications

amelie@liafa.univ-paris-diderot.fr

29 septembre 2014

Rappel : la base de données "Air France"

PILOTE

PLNUM	PLNOM	PLPRENOM	VILLE	SALAIRE
1	MIRANDA	SERGE	PARIS	21000
2	LETHANH	NAHN	TOULOUSE	21000
3	TALADOIRE	GILLES	NICE	18000
4	BONFILS	ELIANE	PARIS	17000
5	LAKHAL	LOTFI	TOULOUSE	19000
6	BONFILS	GERARD	PARIS	18000
7	MARCENAC	PIERRE	NICE	17000
8	LAHIRE	PHILIPPE	LYON	15000
9	CICCHETTI	ROSINE	NICE	18000
10	CAVARERO	ANNIE	PARIS	20000

AVION

AVION						
AVNUM	AVNOM	CAPACITE	LOCALISATION			
1	A300	300	NICE			
2	A310	300	NICE			
3	B707	250	PARIS			
4	A300	280	LYON			
5	CONCORDE	160	NICE			
6	B747	460	PARIS			
7	B707	250	PARIS			
8	A310	300	TOULOUSE			
9	MERCURE	180	LYON			
10	CONCORDE	160	PARIS			

VOL

VOLNUM	PLNUM	AVNUM	VILLEDEP	VILLEARR	HEUREDEP	HEUREARR
100	1	1	NICE	TOULOUSE	11:00:00	12:30:00
101	1	8	PARIS	TOULOUSE	17:00:00	18:30:00
102	2	1	TOULOUSE	LYON	14:00:00	16:00:00
103	5	3	TOULOUSE	LYON	18:00:00	20:00:00
104	9	1	PARIS	NICE	06:45:00	08:15:00
105	10	2	LYON	NICE	11:00:00	12:00:00
106	1	4	PARIS	LYON	08:00:00	09:00:00
107	8	4	NICE	PARIS	07:15:00	08:45:00
108	1	8	NANTES	LYON	09:00:00	15:30:00
109	8	2	NICE	PARIS	12:15:00	13:45:00
110	9	2	PARIS	LYON	15:00:00	16:00:00
111	1	2	LYON	NANTES	16:30:00	20:00:00
112	4	5	NICE	LENS	11:00:00	14:00:00
113	3	5	LENS	PARIS	15:00:00	16:00:00
114	8	9	PARIS	TOULOUSE	17:00:00	18:00:00
115	7	5	PARIS	TOULOUSE	18:00:00	19:00:00

Rappel : base de données

- Une base de données se compose de plusieurs relations.
- L'information qui concerne une application est divisée en parties (tables), chaque relation stockant une partie de l'information
 - pilote : stocke l'information sur les pilotes
 - avion : stocke l'information sur les avions
 - vol : stocke l'information sur les vols (dont le pilote et l'avion du vol)
- ➤ Stocker toute l'information dans une seule relation comme airfrance(plénum, plnom, plprenom, ville, salaire, avnum, avnom, capacité, localisation, volnum, villedep, villearr, heuredep, heurearr)

```
est possible mais pas souhaitable : entraîne répétition de l'information et valeurs de données nulles
```

Rappel: la table "Avion"

Rappel : Le modèle relationnel

- une base de données se compose de tables (relations)
- les colonnes de chaque table sont nommées par des attributs
- chaque attribut est associé à un domaine (ensemble de valeurs admissibles)
- les données dans chaque table sont constituées par l'ensemble des rangées (tuples) fournissant des valeurs pour les attributs
- pas d'ordre sur les tuples (relations = ensembles non ordonnés)
- ▶ (en général) ordre sur les valeurs des attributs dans un tuple

Clefs primaires

- ► La clé primaire d'une relation R est l'attribut ou l'ensemble d'attributs (avec le moins d'attributs possible) qui identifie de manière unique chaque tuple de la relation.
- Exemple : PLNUM est la clé primaire de PILOTE car (on suppose que) chaque pilote possède un numéro unique.
- La clé primaire est soulignée.
- ▶ Il n'y a qu'une seule clé primaire par relation.
- La valeur des attributs clefs primaires ne peut jamais être nulle dans aucun tuple de la relation.

Clefs étrangères

VOL.AVNUM une clef étrangère de la table VOL, car :

- toutes les valeurs de VOL.AVNUM sont également des valeurs de AVION.AVNUM
- AVION.AVNUM est la clef primaire de la table AVION

Rappel

La conception de bases de données relationnelles

- 1. Point de départ : description informelle d'une application potentiellement très compliquée
- Abstraction et optimisation du cahier des charges (modélisation) sous une forme graphique et compacte
- Création d'entités comprises par le système (extraction des relations de la base de données)
- 4. Optimisation des relations (normalisation)
- 5. Manipulation de la base avec SQL.

Introduction

- Réfléchir avant de créer une base de données :
 - ► Faire un diagramme du schéma de la base
 - Transformer le diagramme en un schéma relationnel
- Intérêt :
 - Représentation graphique et intuitive :
 - Comprendre facilement
 - Visualiser rapidement les erreurs
 - Effectuer des corrections rapides
 - Permet de discuter avec des non-informaticiens
 - Constitue le début de la documentation de la BD

Introduction

- Plusieurs formalismes de diagrammes existent :
 - les schémas entités-associations E-A
 - les diagrammes de classes UML
 - des méthodes (Merise, ...)

tous basés sur les diagrammes E-A (E-R en anglais : Entity-Relationship)

- Démarche :
 - Faire le diagramme EA MCD : Modèle Conceptuel de Données
 - En déduire le schéma relationnel MLD : Modèle Logique de Données
 - 3. Construire la BD sur machine grâce à un SGBD
 - 4. Manipuler la BD grâce à SQL

Les concepts

- Entité : un objet qui existe dans le monde réel et possède une identité Exemples :
 - le pilote Annie Cavarero, matricule 10, basé à Paris, dont le salaire est 20000
- Association : une « relation » entre deux ou plusieurs entités Exemples :
 - ▶ le pilote 10 pilote le vol 105
 - ▶ le vol 105 est assuré par l'avion 2
- Attribut : propriété d'une entité ou d'une association qui prend ses valeurs dans un domaine (string, [1..10], etc.) Exemples :
 - ► le N° du pilote Cavarero est 10
 - la ville de Cavarero est Paris

Classes d'entités et d'associations

- Une classe d'entités est un ensemble d'entités similaires, ayant les mêmes attributs.
- ► Une classe d'associations est un ensemble d'associations entres les entités d'une ou de plusieurs classes.

Par abus de langage, on utilise souvent entité (association) à la place de classe d'entité (d'association).

Les entités

- Définition : Une classe d'entités est un ensemble d'éléments appartenant à une même classe et partageant des propriétés communes.
- Exemple : la classe d'entités Aéroport

Aéroport Nom Localisation

- ► Aéroport = nom de la classe d'entités
- ► Nom, Localisation = attributs de Aéroport
- ▶ Nom = identificateur de Aéroport
- l'aéroport d'Orly appartient à la class d'entité Aéroport
- Chaque classe d'entités est traduite par une table pour obtenir le schéma relationnel : Aeroport(Nom, Localisation)

Les attributs et les clefs

- Attribut = sorte de "sous entité" décrivant plus finement l'entité
- Chaque entité a un identifiant :
 - un (ou plusieurs) attribut(s) qui permettent d'identifier de manière unique toutes ses instances
 - appelé clef primaire (CP)
 - souligné dans l'entité
 - Exemple : le nom d'un aéroport suffit à l'identifier

▶ L'identifiant d'une entité est traduit comme la CP de la table correspondante : Aeroport(Nom, Localisation)

Clefs primaires: exemples

Appartement N°Bâtiment N°Appartement Taille Etage

Personne N°SécuritéSoc Nom Prénom DateNaissance LieuNaissance

- ▶ Pour pouvoir identifier de manière unique chaque appartement, il faut à la fois les n° du bâtiment et de l'appartement.
 - \Rightarrow Schéma relationnel : Appartement(N° Bâtiment, N° Appartement, Taille, Etage))
- Parfois on ajoute un attribut fictif (souvent un numéro) uniquement pour servir de clé à l'entité considérée. Ici : le numéro de sécurité sociale.
 - ⇒ Schéma relationnel : Personne(<u>N°SécuritéSoc</u>, Nom, Prénom, DateNaissance, LieuNaissance))

Identificateurs

Identificateur d'entité

- un ou plusieurs attributs permettant d'identifier une entité dans une classe d'entités
- ► Exemple : <u>PLNUM</u> pour PILOTE

Atttention : l'identificateur doit être minimal (on ne doit pas pouvoir lui enlever un attribut sans qu'il cesse d'être un identificateur)

Identificateur d'association

- un identificateur composé de tous les identificateurs d'entités reliées par l'association
- exemple : PLNUM, VOLNUM pour Effectue

Les concepts

- Entité : un objet qui existe dans le monde réel et possède une identité Exemples :
 - le pilote Annie Cavarero, matricule 10, basé à Paris, dont le salaire est 20000
- Association : une « relation » entre deux ou plusieurs entités Exemples :
 - ▶ le pilote 10 pilote le vol 105
 - ▶ le vol 105 est assuré par l'avion 2
- Attribut : propriété d'une entité ou d'une association qui prend ses valeurs dans un domaine (string, [1..10], etc.) Exemples :
 - ▶ le N° du pilote Cavarero est 10
 - la ville de Cavarero est Paris

Classes d'entités et d'associations

- Une classe d'entités est un ensemble d'entités similaires, ayant les mêmes attributs.
- ► Une classe d'associations est un ensemble d'associations entres les entités d'une ou de plusieurs classes.

Par abus de langage, on utilise souvent entité (association) à la place de classe d'entité (d'association).

"Crowfoot": cardinalités d'une classe d'associations

Un intervalle [min,max] indique pour une classe d'entités C et une classe d'associations A, le nombre d'associations de type A qu'une entité de C peut avoir avec d'autres entités.

Exemple

Schéma E-A:

Schéma relationnel:

- ▶ PILOTE (<u>PLNUM</u>, PLNOM, PLPRENOM, VILLE, SALAIRE)
- AVION (<u>AVNUM</u>, AVNOM, CAPACITE, LOCALISATION)
- ► VOL (<u>VOLNUM</u>, PLNUM, AVNUM, VILLEDEP, VILLEARR, HEUREDEP, HEUREARR)

Exemple (plus d'exemples au tableau)

Schéma E-A:

Lecture des cardinalités du schéma E-A (notation crowfoot) :

- A un pilote correspond 0 ou plusieurs vols.
- ▶ À un vol correspond 1 et un 1 seul pilote.
- À un vol correspond 1 et 1 seul avion.
- À un avion correspond 0 ou plusieurs vols.

Schémas E-A et relationnels

- Principe intuitif du passage EA à relationnel :
 - les entités deviennent des tables

et en fonction des cardinalités :

- certaines associations sont représentées par des entités
- certaines associations sont représentées comme clés étrangères (en italique ci-dessous) de tables dans d'autres tables

Passage aux tables

- Entité : chaque classe d'entités devient une table
- ▶ Relation n-n (cardinalité max = n des 2 côtés de la relation) : la relation devient une table dont la clef primaire est la combinaison des clefs des entités participantes
- Relation 1-n (cardinalité max = 1 d'un côté, n de l'autre) : la clef primaire de la relation du côté 1 est reportée comme clef étrangère de la relation du côté n
- Relation 1-1 (cardinalité max = 1 des deux côtés) : la clef primaire de l'une des relations est reportée comme clef étrangère de l'autre (de 1-1 vers 0-1 si les cardinalités sont différentes, on choisit un côté sinon)
- Règle générale : l'identificateur de l'entité (ou de la relation) devient la clef primaire de la table associée

Les entités fortes / faibles

- ▶ Une entité forte n'a pas besoin d'une autre entité pour exister. Exemples : PILOTE, AVION, VOL
- Une entité faible :
 - a besoin d'une autre entité pour exister,
 - ▶ a une CP composée avec celle de l'autre entité.

Exemple: ROMAN et ESSAI par rapport à LIVRE (avec CP ISBN)

- Une exemple d'entité faible : l'héritage
 - ▶ La CP de l'entité faible est la même que celle de l'autre entité.
 - L'ensemble des valeurs de la CP de l'entité faible est un sous ensemble de l'ensemble des valeurs de la CP de l'autre entité.
 - se dessine avec un double rectangle.

Entités faibles : héritage

- ▶ Notation : avec une flèche de l'entité faible à l'autre entité.
- Traduction en relationnel :
 - ▶ B(B1, B2, B3)
 - ► A(<u>B1</u>, A1, A2, A3, A4)
 - où B1 est clé étrangère de A
- ▶ La CP de l'entité faible est celle de l'autre entité.
- ► Si A est l'entité faible et B l'autre entité, alors on dit que :
 - ▶ il existe une association d'héritage entre A et B
 - ▶ toute instance de A est "est une instance de" B
 - tout objet A "est un" B

Héritage : exemple

Elève = entité faible

(ensemble des N° de s.s. des élèves contenu dans celui des personnes)

- ► Attributs de Elève : N°SécuritéSoc (CP), NumEtudiant, Filière, Année, Groupe
- Attributs de Personne : N°SécuritéSoc (CP), Nom, Prénom, DateNaissance, LieuNaissance
- Schéma relationnel :
 - PERSONNE(N°SécuritéSoc, Nom, Prénom,DateNaissance, LieuNaissance)
 - ► ELEVE(N°SécuritéSoc, NumEtudiant, Filière, Année, Groupe)

Types d'associations

- Association binaire classique
- Association d'héritage

Il y a aussi des associations réflexives et des associations ternaires.

Associations n-aires

- ▶ À 1 livre et 1 langue correspond 0 ou 1 traducteur.
- ▶ À 1 langue et 1 traducteur correspond 0 ou plusieurs livres.
- ▶ À 1 livre et 1 traducteur correspond 0 ou plusieurs langues.

Associations n-aires : passage aux tables

- ► Chaque entité devient une table : Livre(id_livre), Langue(id langue), Traducteur(id trad).
- ► La relation devient une table : Traduction(id_livre,id_langue, id_trad) ⇒ minimalité de la clef!

Associations n-aires : passage aux tables

Un livre peut être traduit par plusieurs traducteurs dans une même langue : Traduction(id_livre,id_langue,id_trad))

⇒ minimalité de la clef!

Associations réflexives

Relation 1-1 réciproque

Associations réflexives

Relation 1-1 réciproque avec annotation des rôles

Associations réflexives : passage aux tables

Renommage des attributs :

- ▶ conjoint $1 \subseteq id$ personne et conjoint $2 \subseteq id$ personne
- ▶ Personne(id_personne), Mariage(conjoint_1,conjoint_2)

Associations réflexives : passage aux tables

Renommage des attributs :

- ▶ femme \subseteq id personne et mari \subseteq id personne
- Personne(id_personne), Mariage(femme,mari) [ou Mariage(femme,mari)]

Associations réflexives : passage aux tables

Polyandrie

Renommage des attributs :

- ▶ femme \subseteq id personne et mari \subseteq id personne
- Personne(id personne), Mariage(femme, mari)

Construire un schéma E-A : la démarche

- 1. Déterminer la liste des entités.
- 2. Pour chaque entité :
 - 2.1 établir la liste de ses attributs,
 - 2.2 parmi ceux-ci, déterminer un identifiant,
- 3. Déterminer les relations entre les entités
- 4. Pour chaque relation:
 - 4.1 dresser la liste des attributs propres à la relation
 - 4.2 vérifier la dimension (binaire, ternaire?)
 - 4.3 définir les cardinalités
- 5. Vérifier le schéma obtenu, notamment :
 - 5.1 supprimer les transitivités
 - 5.2 s'assurer que le schéma répond au cahier des charges

Surestimer la dimension d'une relation

Surestimer la dimension d'une relation

Une relation binaire suffit si on suppose qu'un traducteur ne peut traduire qu'en une seule langue.

Attribuer à une relation les attributs des entités participantes, et vice versa

Exprimer des relations redondantes, i.e., déductibles par transitivité

Exprimer des relations redondantes, i.e., déductibles par transitivité

Se tromper de niveau de discours

Les entités doivent représenter des ensembles d'objets ou de concepts pertinents.

- ⇒ Gestion d'un ensemble de magasins : magasin = entité
- \Rightarrow Gestion d'un seul magasin : magasin \neq entité

Introduire des attributs calculables

Ne pas inclure d'attributs dont la valeur est calculable à partir d'autres attributs ou en comptant les occurrences d'une entité.

- ⇒ Montant total d'une commande
- ⇒ Âge si date de naissance
- ⇒ Nombre d'étudiants inscrits

Entité ou attribut?

- ▶ Attribut : concept décrit par une seule valeur + attribuable à un autre concept (entité ou relation) du schéma
 - ▶ <u>ex</u> : Pays comme attribut d'Adresse
- Entité : concept décrit par plusieurs attributs
 - ex : Pays comme classe d'entités possédant un code, un nombre d'habitants, un PIB, etc.

Entité ou relation?

Inscription comme relation avec attribut année : un étudiant ne peut prendre 2 ans de suite le même cours, car chaque couple (étudiant,cours) ne peut figurer qu'une seule fois dans la relation (relation = sous ensemble du produit cartésien des entités).

Héritage ou attribut?

- ▶ 1ère solution s'il y a des propriétés spécifiques au sexe (e.g. situation militaire),
- 2ème solution sinon.