

Procrustes analysis for high dimensional data: alignProMises

Daniela Corbetta, Angela Andreella, Livio Finos, Davide Risso

daniela.corbetta@studenti.unipd.it

Introduction

- Spatial transcriptomics data provide both genomic and spatial information
- The structure of the brains differs between subjects \rightarrow Brains of different subjects cannot be compared since they are not aligned

Aim of the analysis: rotate brains of different subjects to absorb the unwanted variability caused by the misalignment

Alignment methods based on Procrustes theory: a statistical shape analysis that aligns matrices using similarity transformations

- 2 matrices \rightarrow explicit solution: $\hat{X}_1 = X_1 \hat{R}$, where $\hat{R} = UV^{\top}$ and U and V derive from the SVD of $(X_1^{\top} X_2)$
- More than two matrices \rightarrow iterative algorithms: Andreella and Finos (2022) proposed the **ProMises model** and the **Efficient ProMises model**

Data

Let $X_i \in \mathbb{R}^{n \times m}$, where i = 1, ..., N represents the sample, m is the total number of spots and n is the total number of genes (Maynard $et\ al.,\ 2021$):

- 3 subjects, 4 samples per subject: 12 samples (i = 1, ..., 12)
- 4000 spots per image (m=4000)
- 1000 genes (n=1000)

Genomic counts						
	Spot 1	Spot 2	• • •	Spot m		
Gene 1 Gene 2	$y_{11}\\y_{12}$	$y_{21}\\y_{22}$	• • •	$y_{m1} \ y_{m2}$		
\vdots Gene n	$\vdots \ y_{1n}$	$\vdots \ y_{2n}$	•	$\vdots \ y_{mn}$		

Coordinates data						
	Spot 1	Spot 2	• • •	Spot m		
coord x	x_1	x_2		x_m		
$\frac{\text{coord } y}{}$	y_1	y_2	• • •	y_m		

ProMises model

Every X_i is the rotation of a common reference matrix plus an error term:

$$X_i = (M + E_i)R_i^{\top}$$
 subject to $R_iR_i^{\top} = R_i^{\top}R_i = I_v$.

- $E_i \sim \mathcal{MN}_{n,m}(0, \sigma^2 I_n, I_m)$.
- M is the **common mean** matrix with dimension $n \times m$.
- R_i is the orthogonal rotation parameter. It has von Mises-Fisher prior distribution with location parameter Q and concentration parameter $k \to \text{coniugate prior}$ for the matrix Normal distribution.

The MAP estimate for R_i is $\hat{R}_i = U_i V_i^{\top}$, where U_i and V_i derive from the SVD of $X_i^{\top} M + kQ$.

Limitation: high computational load

Efficient ProMises model: same logic as ProMises model but with a preliminary dimension reduction step: $X_i \to X_i^* \in \mathbb{R}^{n \times n} \to \text{suitable}$ for matrices with different dimensions.

Package overview

4 main functions:

- GPASub: performs functional alignment of a matrix by the ProMises model with known reference matrix M;
- **ProMises Model**: performs the functional alignment using the ProMises model with unknown reference matrix M. If there are only two matrices, one is rotated with the explicit solution;
- EfficientProMises: performs the functional alignment using the Efficient ProMises model decomposing the mean matrix to obtain the light matrices X_i^* : $X_i^* = X_i T^{\top}$ where T^{\top} derives from the light-SVD of $\hat{M} = \sum_{i=1}^{N} X_i/N$;
- EfficientProMisesSubj: performs the functional alignment using the Efficient ProMises model decomposing the single X_i to obtain the light matrices X_i^* : $X_i^* = X_i T_i^{\top}$ where T_i^{\top} derives from the light-SVD of X_i .

1: Two matrices

Explicit solution → ProMisesModel function
>out = alignProMises::ProMisesModel(data)

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

X₂: reference image X₁ before align

 X_1 before alignment X_1 after alignment

3: Eight matrices with different dimensions

Efficient ProMises model → EfficientProMisesSubj function
>out <- alignProMises::EfficientProMisesSubj(data, t = 1, maxIt = 100, Q=Q, k=1, scaling = T, centered = F)

Two sources of variability:

- biological variance: true differences among subjects
- **technical variance** due to the lack of alignment

All subjects in our dataset are **healthy** \rightarrow differences are mostly **false positives** generated by the technical variability \rightarrow the Efficient ProMises model absorbs this variability

Number of different expressed genes among two subjects in each layer

among two subjects in each layer					
Layer	Raw images	Aligned images			
Layer 1 Layer 2	953 15	1 3			
Layer 3 Layer 4	747 413	313 128			
Layer 5 Layer 6 White Matter	60 531 879	119 561 834			

2: Three matrices with same dimensions

Efficient ProMises model → EfficientProMises function
>out <- alignProMises::EfficientProMises(data, t =</pre>

1, maxIt = 100, Q=Q, k=1, scaling = T, centered = F)

References

- [1] Andreella, A., Finos, L. (2022) "Procrustes analysis for high-dimensional data." Psychometrika, 1-17.;
- [2] Maynard, K. R. et al. (2021). "Transcriptome- scale spatial gene expression in the human dorsolateral prefrontal cortex". Nature neuroscience 24(3), 425–436.