$\begin{array}{c} {\rm The\ Comprehensive\ List\ of}\\ {\bf References\ in\ Geometry} \end{array}$

AN ILLUSTRATED MANUAL

Mathematics Society

DECEMBER 2020

Lines		1
	Adj. ∠s on st. line	1
	Vert. oppo. ∠s	1
	∠s at a pt	1
Triang	les	2
	∠ sum of △s	2
	Ext. \angle of \triangle s	2
	Prop. of equil. $\triangle s$	2
	Base \angle s, isos. \triangle	3
	SIDES OPPO. EQ. \(\sigma \)S	3
	Prop. of isos. $\triangle s$	3
	Pyth. thrm	4
	CONV. OF PYTH. THRM	4
\mathbf{Sim}	ilar Triangles	4
	Corr. $\angle s \mid \sim \triangle s$	4
	Corr. sides $ \sim \triangle s$	5
	AAA	5
	Ratio of two sides, incl. ∠	6
	THREE SIDES PROPORTIONAL	6
Con	gruent Triangles	6
	Corr. $\angle s \mid \cong \triangle s$	7
	Corr. sides $ \cong \triangle s \dots \dots \dots \dots$	7
	AAS	8
	ASA	8
	SAS	9
	SSS	9
	RHS	10

Polygo	ns 10
	∠ SUM OF POLYGONS
	Ext. ∠s of polygons
Paralle	l Lines 11
1 drune	Corr. \angle s $AB \parallel CD$
	ALT. $\angle S \mid AB \parallel CD$
	Int. $\angle s \mid AB \parallel CD$
	INT. $\angle S = AB / AB / AB $
	ALT. ∠S EQ
	Int. ∠s eq
	1N1. 25 Eq
Paralle	lograms 13
	OPPO. SIDES OF //-GRAM
	Oppo. ∠s of //-gram
	DIAGS. OF //-GRAM
	OPPO. SIDES EQ
	Oppo. ∠s eq
	DIAGS. BISECT EACH OTHER
	Two sides eq. and //
Other	Quadrilaterals 16
	Prop. of rhombuses
	Prop. of rectangles
	Prop. of squares
	MID-PT. THRM
	INTERCEPT THRM
Circles	19
	Line from cen. \perp chord bisects chord 19
	Line joining cen. to mid-pt. of chord \perp chord 19
	Eq. chords equidis. from cen 20
	CHORDS EQUIDIS. FROM CEN. ARE EQ 20
	\angle AT CEN. TWICE \angle AT \odot ^{CE}
	∠ IN SEMI-CIRC

	Converse of ∠ in semi-circ	21
	∠S IN THE SAME SEGMENT	22
	Eq. ∠s, eq. arcs	22
	Eq. ∠s, eq. chords	22
	Eq. arcs, eq. ∠s	23
	Eq. chords, eq. ∠s	23
	Eq. arcs, eq. chords	23
	EQ. CHORDS, EQ. ARCS	24
	ARCS PROP. TO ∠S AT CEN	24
	Arcs prop. to \angle s at \odot ^{ce}	24
\mathbf{Cyc}	lic Quadrilaterals	25
-	OPPO. ∠s, cyclic quad	25
	Ext. ∠s, cyclic quad	25
	Oppo. ∠s supp	26
	Ext. $\angle = INT. OPPO. \angle \dots \dots$	26
	Converse of ∠s in the same segment	27
Tan	gents	27
	TAN. A RADIUS	27
	Converse of tan. ⊥ radius	27
	TAN. PROP	28
	∠ IN ALT. SEGMENT	28
	Converse of ∠ in alt. segment	28
ppen		
Area	a and Perimeters of Common Plane Figures	29
	CIRCLES	29
	Sectors	29
	Triangles	29
	SQUARES	29
	RECTANGLES	29
	Trapeziums	30
	RHOMBUSES	30

Δ

Appendix	В
----------	---

Special Points and Lines in $\triangle s$						
Median	30					
Angle Bisector	30					
Perpendicular Bisector	31					
Altitude	31					
In-centre	31					
Angle Bisector	31					
Centroid	32					
Orthocentre	32					

Lines

Adj.
$$\angle s$$
 on st. line

$$\angle AOC + \angle COB = 180^{\circ}.$$

 $Vert. \ oppo. \ \angle s$

$$\angle AOC = DOB$$
,
 $\angle AOD = COB$.

 $\angle s$ at a pt.

$$\angle A_1 O A_2 + \angle A_2 O A_3$$

+ \cdots + \angle A_{n-1} O A_n = 360°.

Triangles

$$\angle$$
 sum of $\triangle s$

$$\angle CAB + \angle ABC \\ + \angle BCA = 180^{\circ}.$$

Ext.
$$\angle$$
 of $\triangle s$

$$\angle CAB + \angle BCA = \angle B'BA$$
.

Equilateral Triangles

Prop. of equil.
$$\triangle s$$

$$AB = BC = CA$$
,

$$\angle CAB = \angle ABC$$

= $\angle BCA = 60^{\circ}$.

Isosceles Triangles

$$AB = AC$$

$$\downarrow \downarrow$$

$$\angle ABC = \angle ACB.$$

Sides oppo. eq. $\angle s$

Prop. of isos. $\triangle s$

$$\angle ABC = \angle ACB$$

$$\updownarrow$$

$$AB = AC$$

$$\updownarrow$$

$$AD \perp BC.$$

Pythagoras's Theorem

Similar Triangles

$$oxed{Corr. oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol{ol{ol}}}}}}}}}} oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}$$

$$\triangle A_1 B_1 C_1 \sim \triangle A_2 B_2 C_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$\angle C_1 A_1 B_1 = \angle C_2 A_2 B_2,$$

$$\angle A_1 B_1 C_1 = \angle A_2 B_2 C_2,$$

$$\angle B_1 C_1 A_1 = \angle B_2 C_2 A_2.$$

Corr. sides
$$|\sim \triangle s|$$

$$\triangle A_1 B_1 C_1 \sim \triangle A_2 B_2 C_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{\mathbf{a_1}}{b_1} = \frac{\mathbf{a_2}}{b_2},$$

$$\frac{b_1}{c_1} = \frac{b_2}{c_2},$$

$$\frac{a_1}{b_1} = \frac{a_2}{b_2}.$$

Conditions for Proving Similar Triangles

AAA

Any two
 of the three
 is sufficient.

 $\begin{array}{c} \textit{Ratio of two sides},\\ \textit{incl.} \ \angle \end{array}$

$$\frac{a_1}{c_1} = \frac{a_2}{c_2},$$

$$\angle B_1 C_1 A_1 = \angle B_2 C_2 A_2$$

$$\downarrow \downarrow$$

$$\underline{\triangle A_1 B_1 C_1 \sim \triangle A_2 B_2 C_2}.$$

Three sides proportional

$$\frac{\frac{a_1}{b_1} = \frac{a_2}{b_2}}{\frac{b_1}{c_1}} = \frac{b_2}{c_2},$$

$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underline{\triangle A_1 B_1 C_1 \sim \triangle A_2 B_2 C_2}.$$

Congruent Triangles

$$\triangle A_1 B_1 C_1 \cong \triangle A_2 B_2 C_2$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\angle C_1 A_1 B_1 = \angle C_2 A_2 B_2,$$

$$\angle A_1 B_1 C_1 = \angle A_2 B_2 C_2,$$

$$\angle B_1 C_1 A_1 = \angle B_2 C_2 A_2.$$

Corr. $sides \mid \cong \triangle s$

$$\triangle A_1 B_1 C_1 \cong \triangle A_2 B_2 C_2$$

$$\downarrow \downarrow$$

$$a_1 = a_2,$$

$$b_1 = a_2,$$

$$c_1 = a_2.$$

Conditions for Proving Congruent Triangles

ASA

$$\angle A_1 B_1 C_1 = \angle C_2 A_2 B_2,$$

$$a_1 = a_2,$$

$$\angle B_1 C_1 A_1 = \angle B_2 C_2 A_2,$$

$$\downarrow \downarrow$$

$$\triangle A_1 B_1 C_1 \cong \triangle A_2 B_2 C_2.$$

SSS

$$a_1 = a_2,$$

$$b_1 = a_2,$$

$$c_1 = a_2$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\underline{\triangle A_1 B_1 C_1 \cong \triangle A_2 B_2 C_2}.$$

◆ One of the sides must be the hypotenuse.

Polygons

 \angle sum of polygons

$$\angle A_n A_1 A_2 + \angle A_1 A_2 A_3 + \cdots + \angle A_{n-1} A_n A_1 = (n-2) \cdot 180^{\circ}.$$

Ext. $\angle s$ of polygons

$$\theta_1 + \theta_2 + \dots + \theta_n = 360^\circ.$$

Parallel Lines

Conditions for Proving Parallelism

${\bf Paralle lograms}$

$$oxed{Oppo. sides of \#-gram}$$

$$AB = CD$$
,
 $AC = BD$.

 $Oppo. \ \angle s \ of \textit{\#-gram}$

$$\angle BAC = \angle BDC$$
,
 $\angle ACD = \angle ABD$.

 $Diags. \ of \textit{\#-gram}$

$$OA = OD$$
,
 $OB = OC$.

Conditions for Identifying Parallelograms

Oppo. sides eq.

$$AB = CD,$$

$$AC = BD$$

$$\parallel$$

Other Quadrilaterals

Rhombus - a quadrilateral with four equal sides

Prop. of rhombuses

$$AB \parallel CD$$
 $AD \parallel BC$,
 $OA = OC$ $OB = OD$,
 $AB = BC = CD = DA$,
 $AC \perp BD$,
 $\angle OAD = \angle OAB$
 $= \angle OCD = \angle OCB$,
 $\angle ODA = \angle ODC$
 $= \angle OBA = \angle OBC$.

Rectangle - a quadrilateral with four equal interior angles $\,$

Prop. of rectangles

$$AB \parallel CD$$
 $AD \parallel BC$,
 $AB = CD$ $AD = BC$,
 $\angle BAD = \angle BCD$,
 $\angle ABC = \angle ADC$,
 $OA = OB = OC = OD$.

Square - a quadrilateral with four equal sides and interior angles

$AB \parallel CD$ $AD \parallel BC$, AB = BC = CD = DA, OA = OB = OC = OD, $AC \perp BD$,

Prop. of squares

$$\angle OAD = \angle OAB = 90^{\circ}$$

= $\angle OCD = \angle OCB$,
 $\angle ODA = \angle ODC = 90^{\circ}$
= $\angle OBA = \angle OBC$.

Miscellaneous Results

$${\it Mid-pt.\ thrm.}$$

$$MA = MA$$
 $NA = NC$

$$2l_1 = l_2,$$

$$MN /\!\!/ BC.$$

Intercept thrm.

variant i

$$MA = MA \quad MN \ /\!\!/ \ BC$$

$$NA = NC$$
.

Intercept thrm.

variant ii

$$A_1B_1 \# A_2B_2 \# \cdots \# A_nB_n$$

$$l_1 = l_2 = \dots = l_n$$

$$l_1'=l_2'=\cdots=l_n'.$$

Circles

 $\begin{array}{c} \textit{Line from cen.} \perp \\ \textit{chord bisects chord} \end{array}$

$$ON \perp AB$$

$$\downarrow \downarrow$$
 $NA = NB.$

 $egin{aligned} \textit{Line joining cen.} \ \textit{to mid-pt. of} \ \textit{chord} \perp \textit{chord} \end{aligned}$

$$NA = NB$$

$$\downarrow \downarrow$$

$$ON \perp AB.$$

 $Eq.\ chords \\ equidis.\ from\ cen.$

$$ON \perp AB \quad OM \perp CD,$$
 $AB = CD$
$$\qquad \qquad \bigcup ON = OM.$$

Chords equidis. from cen. are eq.

$$ON \perp AB \quad OM \perp CD,$$

$$ON = OM$$

$$\downarrow \downarrow$$

$$AB = CD.$$

 \angle at cen. twice \angle at \odot^{ce}

$$2\theta_1 = \theta_2$$
.

∠ in semi-circ.

 ${\cal AB}$ is a diameter

Converse of \angle in semi-circ.

$$\angle APB = 90^{\circ}$$

 $\angle s$ in the same segment

$$\angle APB = \angle AQB$$
.

Eq. $\angle s$, eq. arcs

$$\angle AOB = \angle COD$$

$$\downarrow \downarrow$$

$$\widehat{AB} = \widehat{CD}.$$

 $Eq. \ \angle s, \ eq. \ chords$

$$\angle AOB = \angle COD$$

$$\downarrow \downarrow$$

$$AB = CD.$$

Eq. arcs, eq. $\angle s$

$$\widehat{AB} = \widehat{CD}$$

$$\downarrow \hspace{1cm} \downarrow$$

$$\angle AOB = \angle COD.$$

Eq. chords, eq. $\angle s$

$$AB = CD$$

$$\downarrow \downarrow$$

$$\angle AOB = \angle COD.$$

Eq. arcs, eq. chords

$$\widehat{AB} = \widehat{CD}$$

$$\downarrow \downarrow$$

$$AB = CD.$$

Eq. chords, eq. arcs

$$AB = CD$$

$$\downarrow \downarrow$$

$$\widehat{AB} = \widehat{CD}.$$

Arcs prop. to $\angle s$ at cen.

$$\frac{\widehat{AB}}{\widehat{CD}} = \frac{\theta_1}{\theta_2}.$$

Arcs prop. to $\angle s$ at \odot^{ce}

$$\frac{\widehat{AB}}{\widehat{CD}} = \frac{\theta_1}{\theta_2}$$

Cyclic Quadrilaterals

Oppo. $\angle s$, cyclic quad.

$$\begin{aligned} & \theta_1 + \theta_2 = 180^{\circ}, \\ & \varphi_1 + \varphi_2 = 180^{\circ}. \end{aligned}$$

Ext. $\angle s$, cyclic quad.

$$\theta_1 = \theta_2$$
.

Conditions for Identifying Cyclic Quadrilaterals

$$\theta_1 + \theta_2 = 180^\circ,$$

$$\varphi_1 + \varphi_2 = 180^\circ$$

A,B,C and D are concylic.

Ext.
$$\angle = int. oppo. \angle$$

$$\theta_1 = \theta_2$$

A, B, C and D are concylic.

Converse of $\angle s$ in the same segment

$$\theta_1 = \theta_2$$

A,B,C and ${\cal D}$ are concylic.

Tangents

 $Tan. \perp radius$

 $OT \perp PQ$.

 $\begin{array}{c} Converse \ of \\ tan. \ \bot \ radius \end{array}$

 $OT \perp PQ$.

PQ is tangent

to the circle at T.

Tan. prop.

 $\triangle OPT \cong \triangle OQT$.

 \angle in alt. segment

 $\theta_1 = \theta_2$.

$$\theta_1 = \theta_2$$

 ${\color{red}PQ}$ is tangent

to the circle at T.

Appendix A: Area and Perimeters of Common Plane Figures

FIGURE	Area	PERIMETER	
O	πr^2	$2\pi r$	◄ Circles
e or	$\frac{\pi\theta r^2}{360^\circ}$	$\frac{2\pi\theta r}{360^{\circ}} + 2r$	◆ Sectors
l_1 b l_2	$\frac{hb}{2}$	$b+l_1+l_2$	◀ Triangles
$\boxed{}$	a^2	4 <u>a</u>	■ Squares
$\begin{bmatrix} b \\ a \end{bmatrix}$	ab	$2\left(a+b\right)$	◀ RECTANGLES

Appendix B: Special Points and Lines in $\triangle s$

 PD_3 is a perpendicular bisector of BC

 AD_2 is the altitude of BC

 O_1 is the *in-centre* of $\triangle ABC$

The *in-centre* is the point of intersection of the three angle bisectors (of a triangle). It is the center of the triangle's inscribed circle.

 O_2 is the circumcentre of $\angle BAC$

B A C

 \blacktriangleleft May not necessarily lie in \triangle .

The *circumcentre* is the point of intersection of the three perpendicular bisectors.

It is the center of the triangle's circumcircle.

O_1 is the *centroid* of $\triangle ABC$

The *centroid* is the point of intersection of the three medians (of a triangle).

It divides each median in the ratio of 2:1, i.e.,

$$\frac{O_3 A}{O_3 D} = \frac{O_3 B}{O_3 E} = \frac{O_3 C}{O_3 F} = 2.$$

 O_4 is the orthocentre of $\triangle ABC$ ■ May not necessarily lie in \triangle .

The *orthocentre* is the point of intersection of the three altitudes.

These four points are generally distinct from one another.