1. Idea for prototype selection

We can first do some preprocessing on the dataset. Next, extract some important data points from the whole dataset.

Idea:

- (1) Conduct PCA on the dataset to reduce the dimensionality.
- (2) Separate training data into 10 different clusters according to their labels
- (3) For each cluster, conduct K-means and extract all clusters' centers as representatives
- (4) Combine all centers and form a group of condensed training data.

2. Pseudocode

Algorithm of creating subset of training data

Input: training dataset and labels, number M

Output: subset of size M as condensed training dataset

procedure buildSubset(traingData, M)

initialize 10 buckets to store data with 10 different labels

for each *d* **in** *trainingData*:

append this training sample d to corresponding bucket

for each bucket:

conduct k-means on samples in this bucket

cluster them into M/10 clusters

 $trainingSubset \leftarrow cluster centers$

return trainingSubset

3. Experimental results

Implementation details are as follows:

- (1) When conducting PCA, we need to **import PCA** from *sklearn.decomposition*. Here we condense the dimension from 784 to 100.
- (2) We need to **import KMeans** from *sklearn.cluster* so as to create subset of training dataset. We can set *init* = 'random' such that the initialization would be random.

Numerical results are shown below:

Table 1: The correctness rate of uniform-random selection and prototype

M	1000	5000	10000
Uniform-random	89.02%	93.82%	94.97%
Prototype	95.6%	96.76%	97.12%

Table 2: Error bars for uniform-random selection (20 trials)

- 0.00 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -					
M	1000	5000	10000		
Mean	89.32%	93.93%	95.14%		
Standard Deviation	0.33%	0.21%	0.19%		
Error Bars	88.99% to 89.65%	93.72% to 94.14%	94.93% to 95.33%		
Confidence interval (0.95)	88.67% to 89.97%	93.51% to 94.35%	94.74% to 95.52%		

Where

Mean =
$$\bar{x} = \frac{\sum x_i}{n}$$
, standard deviation $\sigma = \sqrt{\frac{1}{n}\sum (x_i - \bar{x})^2}$

Error bars = $\bar{x} \pm \sigma$

For the confidence interval when confidence ratio is 0.95: $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$

Table 3: Error bars for Prototype selection

		, <u>, , , , , , , , , , , , , , , , , , </u>	
M	1000	5000	10000
# of trials	20	10	5
Mean	95.83%	96.82%	96.99%
Standard Deviation	1.03%	0.07%	0.08%
Error Bars	95.72% to 95.93%	96.75% to 96.89%	96.90% to 97.07%
Confidence Interval (0.95)	95.63% to 96.03%	96.67% to 96.97%	96.81% to 97.15%

4. Critical evaluation

From the table above, we can see that this prototype improves the performance in terms of correctness rate compared to uniform-random selection significantly when M is relatively small (M = 1000).

To better improve this, we can do the following:

- (1) utilize k-NN instead of 1-NN
- (2) Consider another innovative method: Stochastic Neighbor Compression
- (3) implement another model instead of NN, for instance, auto encoder