

## Bayes' Theorem

### **Example: Telecom Customers**

- A telecom firm has many customers. Each customer either talks for the duration of more than 100 minutes or less than 100 minutes. The firm has launched a plan for the customers who talk more specially to optimize the amount spent by them on bills.
- Call Centre staff had been instructed to call some customers. In that operation, some customers bought the new plan and others didn't.
- In this case each customer is a record, and the response of interest, Y = {Bought, Not Bought}, has two classes: C1 = Bought and C2 = Not Bought.



#### **Conditional Probabilities**

- A conditional probability of event A given event B [denoted by P(A|B)] represents the chances of event A occurring only under the scenario that event B occurs.
- In the response example, we may be interested in P(bought| Talk Time >=100, gender=Male), also P(bought| Talk Time >=100, gender=Female), as we have gender as additional feature of the customers



#### BAYES FORMULA

 The Bayes theorem gives us the following formula to compute the probability that the record belongs to class Ci:

$$P(C_i|X_1,\ldots,X_p) = \frac{P(X_1,\ldots,X_p|C_i)P(C_i)}{P(X_1,\ldots,X_p|C_1)P(C_1) + \cdots + P(X_1,\ldots,X_p|C_m)P(C_m)}.$$

Where

Ci : classes of interest

X<sub>1</sub>,X<sub>2</sub>,...X<sub>p</sub>: Variables which co-exist with Classes of interest



## Example

| Talks for more than  |        |            |
|----------------------|--------|------------|
| 100 min? (TT >= 100) | Gender | Response   |
| у                    | male   | not bought |
| n                    | male   | not bought |
| n                    | female | not bought |
| n                    | female | not bought |
| n                    | male   | not bought |
| n                    | male   | not bought |
| у                    | male   | bought     |
| У                    | female | bought     |
| n                    | female | bought     |
| У                    | female | bought     |



# Bayes' Formula Calculations

 $P(Buy|Male,TT \ge 100)$ 

$$= \frac{P(Male,TT \ge 100 \mid Buy) P(Buy)}{P(Male,TT \ge 100 \mid Buy) P(Buy) + P(Male,TT \ge 100 \mid Not Buy) P(Not Buy)}$$

$$= \frac{P(Male|Buy)P(TT \ge 100|Buy)P(Buy)}{P(Male|Buy)P(TT \ge 100|Buy)P(Buy) + P(Male|Not Buy)P(TT \ge 100|Not Buy)P(Not Buy)}$$

$$= \frac{\frac{1}{4} \times \frac{3}{4} \times \frac{4}{10}}{\frac{1}{4} \times \frac{3}{4} \times \frac{4}{10} + \frac{4}{6} \times \frac{1}{6} \times \frac{6}{10}}$$

= 0.529

| (TT >= 100) | Gender | Response   |  |  |
|-------------|--------|------------|--|--|
| У           | male   | not bought |  |  |
| n           | male   | not bought |  |  |
| n           | female | not bought |  |  |
| n           | female | not bought |  |  |
| n           | male   | not bought |  |  |
| n           | male   | not bought |  |  |
| У           | male   | bought     |  |  |
| У           | female | bought     |  |  |
| n           | female | bought     |  |  |
| У           | female | bought     |  |  |



### **Bayes Probabilities**

- For the conditional probability of bought behaviors given (TT >= 100) = y, gender = male, the numerator is a multiplication of the proportion of (TT >= 100) = y instances among the bought customers, times the proportion of gender = male instances among the bought customers, times the proportion of bought customers: (3/4)(1/4)(4/10) = 0.075.
- To get the actual probabilities, we must also compute the numerator for the conditional probability of not bought given (TT  $\geq$  100) = y, gender = male : (1/6)(4/6)(6/10) = 0.067.
- The denominator is then the sum of these two conditional probabilities (0.075 + 0.067 = 0.14).



## **Bayes Probabilities**

- The conditional probability of bought behaviors given (TT >= 100) = y, gender = male is therefore 0.075/0.14 = 0.53.
- Similarly,
  - P(bought | (TT >= 100) = y, gender = female) = 0.87,
  - P(bought | (TT >= 100) = n, gender = male) = 0.07,
  - P(bought | (TT >= 100) = n, gender = female) = 0.31.





## Naïve Bayes Algorithm

### Naïve Bayes

- Naïve Bayes is a classification algorithm
- There are two types of Naïve Bayes Algorithms:
  - Discrete Naïve Bayes: For categorical predictors
  - Kernel Naïve Bayes: For numerical predictors



### Discrete Naive Bayes

- In this algorithm, the probability of a record belonging to a certain class is evaluated on the basis of conditional probability calculated using Bayes theorem
- Discrete Naive Bayes works only with predictors that are categorical.
- Numerical predictors must be binned and converted to categorical variables before the application Naive Bayes algorithm
- In Python, package sklearn.naive\_bayes supports Descrete Naïve Bayes (MultinomialNB)



## Kernel Naïve Bayes

- Kernel Naïve Bayes works with numeric predictors assuming some distribution of the predictors
- It can assume Normal Distribution (Gaussian Naïve Bayes ) or any other distribution
- On assuming the distribution, the prior probabilities are calculated
- In Python, package sklearn.naive\_bayes supports Gaussian (GaussianNB) Naïve Bayes (assumes Normality of predictors)



### Example 1: Telecom Customers (Discrete NB)

- A telecom firm has many customers. Each customer either talks for the duration of more than 100 minutes or less than 100 minutes. The firm has launched a plan for the customers who talk more specially to optimize the amount spent by them on bills. In this case each customer is a record, and the response of interest, Y = {Bought, Not Bought}, has two classes that a company can be classified into: C1 = Bought and C2 = Not Bought.
- Apart from talk time we also have information about the gender of the customer



#### **Data**

- 150 Observations , 3 variables
- First 8 observations:





#### Naïve Bayes Classifier





### Program and Output

```
In [1]: import pandas as pd
   ...: telecom = pd.read csv("G:/Statistics (Python)/Cases/Telecom/Telecom.csv")
       dum telecom = pd.get dummies(telecom, drop first=True)
   ...: from sklearn.model selection import train test split
   ...: from sklearn.metrics import confusion matrix
   ...: from sklearn.metrics import classification report, accuracy score
      : from sklearn.naive bayes import Multinomia NB
   ...: X = dum telecom.iloc[:,0:2]
   ...: y = dum telecom.iloc[:,2]
   ...: # Create training and test sets
   ...: X train, X test, y train, y test = train test split(X, y,test size = 0.3,
                                                             random state=42,
                                                            stratifv=v)
   ...: multinomial = MultinomialNB()
       multinomial.fit(X_train, y_train) # Model Building
   ...: y probs = multinomial.predict proba(X test)
   ...: y pred = multinomial.predict(X test) # Applying built on test data
   ...: print(confusion matrix(y test, y pred))
[[18 4]
[ 2 21]]
```



#### **Evaluation**

```
support
             0.90
                    0.82
                           0.86
                                    22
             0.84
                    0.91
                           0.87
                                    23
                           0.87
                                    45
   accuracy
                           0.87
             0.87
                    0.87
  macro avg
weighted avg
             0.87
                    0.87
                           0.87
```

```
In [3]: print(accuracy_score(y_test, y_pred))
0.8666666666666667
```

```
In [5]: roc_auc_score(y_test, y_pred_prob)
Out[5]: 0.9377470355731224
```





#### Example 2: Predicting Defaulters (Gaussian NB)

- Data Set Details:
  - ➤ default : A categorical variable with levels No and Yes indicating whether the customer defaulted on their debt
  - >student : A categorical variable with levels No and Yes indicating whether the customer is a student
  - ➤ balance: The average balance that the customer has remaining on their credit card after making their monthly payment (Numeric Variable)
  - **➢income**: Income of customer (Numeric Variable)
- Source: <a href="http://www-bcf.usc.edu/~gareth/ISL/">http://www-bcf.usc.edu/~gareth/ISL/</a>



#### Data

• 4 variables and 10,000 observations

| Index | default | student | balance | income  |  |
|-------|---------|---------|---------|---------|--|
| 0     | No      | No      | 729.526 | 44361.6 |  |
| 1     | No      | Yes     | 817.18  | 12106.1 |  |
| 2     | No      | No      | 1073.55 | 31767.1 |  |
| 3     | No      | No      | 529.251 | 35704.5 |  |
| 4     | No      | No      | 785.656 | 38463.5 |  |
| 5     | No      | Yes     | 919.589 | 7491.56 |  |
| 6     | No      | No      | 825.513 | 24905.2 |  |
| 7     | No      | Yes     | 808.668 | 17600.5 |  |
| 8     | No      | No      | 1161.06 | 37468.5 |  |
| 9     | No      | No      | 0       | 29275.3 |  |
| 10    | No      | Yes     | 0       | 21871.1 |  |
| 11    | No      | Yes     | 1220.58 | 13268.6 |  |
| 12    | No      | No      | 237.045 | 28251.7 |  |
| 13    | No      | No      | 606.742 | 44994.6 |  |



#### **Program and Output**

```
In [10]: import pandas as pd
    ...: Default = pd.read csv("F:/Python Material/ML with Python/Datasets/Default.csv")
    ...: dum Default = pd.get dummies(Default, drop first=True)
        from sklearn.model selection import train test split
    ...: from sklearn.metrics import confusion_matrix, classification report
        from sklearn.naive bayes import GaussianNB
    ...: X = dum Default.iloc[:,[0,1,3]]
    ...: y = dum Default.iloc[:,2]
In [11]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4, random_state=42)
    . . . :
        gaussian = GaussianNB()
    ...: y pred = gaussian.fit(X train, y train).predict(X test)
    ...: print(confusion matrix(y test, y pred))
    ...: print(classification_report(y_test, y_pred))
[[3840
         25]
 102
         33]]
             precision
                          recall f1-score
                                             support
                  0.97
                            0.99
                                      0.98
                                                3865
                  0.57
                            0.24
                                      0.34
                                                 135
avg / total
                  0.96
                            0.97
                                      0.96
                                                4000
```





## Questions?