

Stuff going wrong

Mark Blyth

Week's work

- Finished draft of conference paper
 - Too long
- Worked on splines in CBC
 - Doesn't work
- Started re-writing conference paper
 - No splines discretisation
 - Struggling to motivate why the work is valuable

Paper

- Abstract focuses on cleaning noise from signals with surrogate modelling
- Paper draft 1 covers surrogate filtering, and splines discretisation

Issues:

- Paper is too long
 - ► 17 pages, instead of 10
 - Could trim it, but can't trim 7 pages out without removing key content
- Splines doesn't work
 - I don't want to publish about splines until I know they do what I claim
- Let Don't have enough time to both trim paper, and fix splines

Proposed plan

- Remove discretisation from paper
 - Make paper all about cleaning signals up with surrogates, as discussed in abstract
 - Most realistic goal for getting paper done by deadline
 - Issue: I'm not convinced surrogates are very useful
- Try to get splines to work
 - Write separate conference paper on splines discretisation?
 - Will have the time to demonstrate the method working

Splines in CBC

- Took working Fourier/Duffing, substituted Fourier for splines
 - Doesn't work
- IO-Map method
 - IO-map maps control-target to system output
 - Fixed-point of IO-map means control target = system output
 - Proportional control means fixed-points are noninvasive
- Continuation procedure solves for input = output

Setup

- $K_p = 1$
 - Worked for Fourier/Duffing
 - Increasing causes CBC to fail faster
- - Most numerically stable; others fail within one or two steps
- Evenly-spaced knots
 - Optimized knots fail even faster
- - No change using more / fewer knots
- Default solver tolerance
 - Lower = faster failure

No idea why things aren't working

Surrogates paper

- Surrogates can be used to filter out noise, for better discretisation
 - No phase shift or signal distortion

Surrogates

Direct Fourier; too few harmonics to fully fit the signal

Surrogates

Direct Fourier; enough harmonics to fit the signal, but also noise

Surrogates

Splines surrogate model; noise is removed, so Fourier can be fitted accurately

Choosing number of harmonics

Idea: quantify model noisiness by a curvature measure

$$c_i = h^{-2}(x_{i-1} - 2x_i + x_{i+1})$$

- Finite differences pointwise-curvature approximation
- Majority of curvatures should be small
 - Median pointwise-curvature is a good statistic for model noisiness
- - ► Low curvature, high MSPE = too few harmonics
 - ► High curvature, low MSPE = too many harmonics
 - Optimal harmonics = low curvature, low MSPE

Finding the sweetspot

Good enough?

Issues

- Surrogates do clean up the signal, but is the improvement really enough to be worthwhile?
 - ► According to MSPE, surrogates and Fourier perform equally well
- Is anyone really going to harmonically force a multiple-timescale system?
 - ► Fourier filters effectively when there's few harmonics, so surrogate filtering becomes unnecessary
 - Surrogate filtering appears to be useful when we have many harmonics, but in these cases we'd use a more efficient discretisation
 - The splines discretisors are noise-robust, so surrogates become unnecessary

Are surrogates worth publishing?

- Fixes a problem that doesn't really exist
 - Not useful for few-harmonics-signals, as Fourier filters noise out
 - Not useful for many-harmonics-signals, as we would do better using a novel discretisation
- Even when surrogates do work, the resulting improvement is minimal
- Hard to write about surrogates being useful when prediction errors are worse than raw Fourier
 - Hard to quantitatively demonstrate that surrogates do anything

Next steps

- Keep (re)writing conference paper?
 - My opinion: cancel it, spend the time on discretisation

- Keep working on splines, once paper is done
 - Try to understand and fix their lack of numerical stability
 - Demonstrate on in silico CBC
 - IO map method and 'other' method