

Digital Fabrication Midterm

- Arman R & Raghav HK - R2-3D

Flexible Cubes

By diatom on thingiverse

Goal of this project is to create a tool for novice users to generate different shapes from a simple cube without a need for any support to print.

General parameters

- Number of layers
- Width and length of base layer
- Printing speed (F)
- The intended shape type.

Standard Cube

- The first part of the g-code defines the default parameters(nozzle size, temperature, metric, etc.)
- Printing the first layer, based on length and width defined by user
- Each layer has 4 corners therefore 5 Positions in the same layer
- Maximum (x-y) movement should be less than 3mm for standard nozzle size (4mm) to eliminate a need for support structure

```
100 G1 X15.0 Y-15.0 Z1.62 F1556.0
101 G1 X15.0 Y15.0 Z1.62 F1556.0
102 G1 X-15.0 Y15.0 Z1.62 F1556.0
103 G1 X-15.0 Y-15.0 Z1.62 F1556.0
104 M102
105 G1 X-15.0 Y-15.0 Z1.97 F1556.0
106 M101
107 G1 X15.0 Y-15.0 Z1.97 F1556.0
108 G1 X15.0 Y15.0 Z1.97 F1556.0
109 G1 X-15.0 Y15.0 Z1.97 F1556.0
110 G1 X-15.0 Y15.0 Z1.97 F1556.0
111 M103
112 G1 X-15.0 Y-15.0 Z2.32 F1556.0
```


Modified Cube designs

- Random
- Truncated Pyramid
- Hourglass
- Twist
- Flask
- Waved Pattern

Random

- Random difference in coordinates of corners should be less than 3 millimeter to be able to hold its weight without support.
- It can be combined with other modifications such as wave or twist to create more complex shapes.

Truncated Pyramid

- Starts as the same width of the base cube
- Each layer adds 0.2 millimeter to x and y
- Height depends on user defined number of layers

Hourglass

- This function can generate both pyramid and hourglass.
- User can define number of layers.
- By decreasing the x-y difference of the layers, steeper slopes can be generated
- Converges to a point, and expands again in simulation.
- Would need supports while printing.

Twist

- User can define it to be clockwise or counterclockwise.
- At each layer, corners move 0.2 millimeter in x and y direction, along the edges, which creates a twisting effect.
- Random combos created with invalid inputs

Flask

- This form is same as the hourglass except when edges reach 1.5 millimeters, it stops shrinking which creates a flask (beaker shape).
- Or an upside down funnel.

Waved Pattern

- The main parameter for the waved pattern is the wave amplitude which user can define it.
- In this example wave amplitude is 0.75 which means that the widest and narrowest part of the shape has a displacement of 1.5mm.
 (0.75 crest + 0.75 trough)

User Interface

- CMD interface, with simple menu and input.
- New g-code automatically saved as .txt for ease.
- Easy to add higher or lower level control in code.
- Simple to automate new designs with Python.

Name	Date modified
make_wave_150layers	10/4/2020 8:30 PM
new_gcode	10/4/2020 5:40 PM
og_code	10/2/2020 1:10 PM
test test	10/4/2020 1:15 PM
twist_300layers	10/4/2020 8:30 PM

Microsoft Windows [Version 10.0.18363.1082]
(c) 2019 Microsoft Corporation. All rights reserved.

D:\Documents\TAMU\Course Work\Fall 2020\CSCE 689 - Digital Fabrication Studio -JKim\midte rmxC:/Users/vsrag/AppData/Local/Programs/Python/Python38/python.exe "d:/Documents/TAMU\Course Work\Fall 2020\CSCE 689 - Digital Fabrication Studio -JKim/midterm/new_gcode.py" Enter choice of g code:

- 1. Random
- 2. Wave
- 3. Hopper
- 4. Flask
- 5. Twist
- 6. Hourglass

Enter choice number: 2

Enter number of layers you would like: 150

G-code created. Check Folder for make_wave_150layers.txt

D:\Documents\TAMU\Course Work\Fall 2020\CSCE 689 - Digital Fabrication Studio -JKim\midte rm>C:/Users/vsrag/AppData/Local/Programs/Python/Python38/python.exe "d:/Documents/TAMU/Co urse Work/Fall 2020/CSCE 689 - Digital Fabrication Studio -JKim/midterm/new_gcode.py" Enter choice of g_code:

- 1. Random
- 2. Wave
- 3. Hopper
- 4. Flask
- 5. Twist
- 6. Hourglass

Enter choice number: 5
Enter direction of twist (1/r): 1

Enter number of layers you would like: 300

G-code created. Check Folder for twist_300layers.txt

Conclusion

- Modifying g-code is a powerful way to teach how 3D printers work.
- The importance of nozzle size and layer continuity is key to print strong and flexible shapes.
- Simulation is a powerful tool to catch the mistakes before printing and wasting materials.
- Helps getting used to TPU printing and the problems it has (vs PLA).
- Code: https://github.com/vsraghavhk/digital-fabrication-studio/tree/main/midterm
- The G-code viewer and simulators used:
 - https://jherrm.com/gcode-viewer
 - https://ncviewer.com

Thank you