Min00-2

1 The gain in weight of 2 random samples of patients fed on 2 different diets. A and B ase given below. Examine whether the difference in mean increase in weight is significant?

Diet-A 13 14 10 11 2 16 10 8
Diet-B
$$\pm$$
 10 12 8 10 11 9 10 11

X Y \pm 2.5 \pm 6.25 \pm 2.78 \pm 4.7284

14 10 3.5 12.25 0.22 0.0089

$$10 \quad 1^2 \quad -0.5 \quad 0.25 \quad 2.22 \quad 11.9284$$
 $11 \quad 8 \quad 0.5 \quad 0.25 \quad -1.78 \quad 3.1634$
 $10 \quad -8.5 \quad 72.25 \quad 0.22 \quad 0.0084$
 $16 \quad 11 \quad 5.5 \quad 30.25 \quad 1.22 \quad 1.4884$
 $10 \quad 9 \quad -0.5 \quad 0.25 \quad -0.78 \quad 0.6084$
 $10 \quad -2.25 \quad 5.0625 \quad 0.22 \quad 0.0084$

$$\bar{x} = \frac{\xi x_i}{n_i} = \frac{84}{8} = 10.5, \ \bar{y} = \frac{\xi y_i}{n_2} = \frac{88}{9} = 9.48$$

TO PETERS PETERSON

HI: MICHZ (one tail) Steri Ho: MI=M2

stero tevel of significance L=5%

step & Charles Examples when the difference of the

Step@ degree of freedom 8=ni+n2-2=15 13 cota = 1.753 ach ed

steps train Ltu

Hence; Accept Ho, Reject H,

2) To Determine where there really is a relationship blu an employee's performance in company 4 training program and his or her withmake success in the job, the company takes a sample of 400 cases from its very extensive files and obtained the results shown in the following table.

Performace in Training program

	Pelon		Accorde	Abour
Girmse in	1000	23	5 60	29
Sucress in Job	Avesage	28	20 79	60
Employers Rating	resy 600	9	9 49	63

		besteam	and in too	ainin) Page	
succession	P000	Beloway	ang.	about	Row
50 b	19	23	60	29	112
employed	Arresage	28	79	60	167
outer 3)	nestood	og	49	63	121
July 3	Columntote	1 60	(188)	(52)	400
	0-10	0	. 1 00	26	
The	e expected	sequen	li as ea		
	Powt	otal xcdu	imn total	612 (1)	
	$E_i = \frac{\text{Rowth}}{6}$	and Total	al	90	
	do	100 100			
(F)	= 119/60 =	16.8	· Pro al	71 P	
(52)	400	02 3		1.03 61	
(E60).	-112X188-5	52-6		du linga	
	100115				
(E291)	= 112×152	50 42.5			
					1906
E(28) =	167×60 =	25.0			
				9 gill on	19/1
	164×188==	10.0			
	167 X15-2	2. U		-60 cra	
-	1100	, ,	12-14	20.0.0	ceal
E(60) =	400				
	x60 = 18.15		×	ama d	
E(a) = 121	x60 = 18.15	51 (6)			
E(a) = 121		51 (6)		DIEGO G	

Died Charles	$(0:-F)^2$	(01-E1)2
0, Ei 0,-Ei.		model; or
23 16.8 6.2	38.44	2.28
60 52.6 7.4	54.46	1.02
29 142.5 -13.5	(82.25	4.32
28 25.0 3	1079 1000	0.34
79 78.4 0.6	× 0.30	0.003
60 63.4 -3.4/0	11.56	0.18
9 18.15 -9.15	83.12	u.61
u9 56.8 -4.8	60.8u	1.08
63 45.9 17.1	292.41	6.30
	Jan 2	= 20137
ep1	0.28 .00	X + 61 - 1/0 - 1
to: no sig diff	11 2 - 381.	Har s (or)
11: 519 diff	00	
ep2 10.5 d=stu.	A=9 00	A Con
) The fall $x^2 \leq Q$	0; -E)2 = 2	20.133
Degsel of focedom = (1	n-D(n-1)=1	(3-1)(3-1)
control value (x2) at	51.LOS	2 x ? = u
: x2=9.48		
$\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & & $	31 HO	
Accep	AM.	

3) (al	culate (roselation	Coeff		xand	9.
	VI	3 4 5	T 8	10		
	7/2	6 8 10	14 16	20		
· X	100 y	k2 42	xy	XI		*
1	2	1 1	2			
3	6 9	36	18		801	
Ч	8 4	64	32			Ta
5	10 25	100	50			Pe
7	14. 40	296	98		7=7	
8	16 61	1 256	128		1361	
_10	20 10	0 400	200	- E	211	
38	264 7	6 1056	528			
0 -	A COMPANY	(xx) -				
Vr	EX12-(2)	(i)2 In Ey;	2-(Eyi)2		
z	7(328)	-38(76)	(1.04)	1	3696-	-2888
VE	(264)- ruc	14 /4 (105	6)-57=	16	20.09	19 X 040.19
~=	1.00004	9877	(0)			4 9
hi) Gian	following	Aptitude	and I	r. Q.	Scores of	be a
group of	estuder of blu	ts Compu	£ +60	sent	00000	*
Aphand	le scose	154 58	59	59 6	30 61	60 64
J.Q.	900l	95 108	95	106 13	20 126	106 110

59 seperated 2 times m1=2 60 also sepeated 2 times m2=2 X Y Rx Ry d=Rx-Ry d²

P ban I will the mortoton skelestes

$$9=1-\left[\frac{6[2d^{2}+\frac{1}{2}m_{1}(m_{1}^{2}-1)+\frac{1}{2}m_{2}(m_{2}^{2}-1)}{n(n^{2}-1)}\right]$$

$$9 = 1 - \left[\frac{150}{500}\right] = \left[9 = 0.702\right]$$

5) for the following bluariate dates obtain the two Mines of segression. Determine of value of y auken X=3,5. 1 2 3 4 5 6. 14 33 40 63 76 85 14 33 9 1089 1600 120 40 3 16 3969 252 63 76 25 5776 380 85 36 7225 510 6 19855 1342 311 Regression of 4 on X y-y=byx (x-x) byx = $\frac{n \leq xy - (\leq x)(\leq y)}{n \leq x^2 - (\leq x^2)} = \frac{6(13u^2) - (21)(311)}{6(91) - uu_1}$ $= \frac{8052 - 653}{546 - 441} = \frac{152}{105}$ byd=14.486 81500-pf000 Z= EX = 2 = 3.5 y= = 311 = 51. 893 4-51.83= 14.486 (x-3.5) y=14.486x +51.833-56.70) 4=14.486x+1.132

Dec the telloging blurages dodg plans the to 3 y=14.486(2.5) +1.132 y = 50.701+1.182 y=51.833 / 38 21 60 ON 8 11 19

Regsession of X on y

(x-x)=bxy(y-y)

bey= (Exy)- (Ex)(Ey)

n 2y2 (Ey)2

=6(1342)-(21)(311) 8052-653)6 (19855) - 96721 119130 - 96721

bocy = 0.068

Z=3.5, Y=51-833

(x-3.5)=0.067 (y-51.83)

x = 0.06+y+3.5-3.2472

x = 0.067y-0.027393

if x=3.5 4=?

4=14.485x +1.133

9=14,485(3,5)+1.133=> 4=50,6975+1.133

y= 51.830

6) gerand degace posabola 4=a+bx+cx2 for the following double and use to determine value of 4 coosesponding to value of x = 6.2 and realize of x when Y=14.5

X 1 2 3 4 5 6 7 8 9 Y 9 8 10 12 11 13 14 18 15

Y=atbx+cx2=) EY=natbEx+CEx2 5x4=a5x+b5x2+c5x3 $\leq x^2 y = a \leq x^2 + b \leq x^3 + c \leq x^4$

3 10 9 24 81 30 96
 4
 12
 16
 \$\overline{3564}\$ 256
 \$\overline{3564}\$ 256
 \$\overline{192}\$

 5
 11
 25
 125
 625
 55
 275

 6
 13
 36
 216
 1296
 78
 \$\overline{48}\$

 7
 14
 49
 343
 2401
 98
 686
 8 16 64 512 4096 128 1024 9 15 81 429 6561 135 1215 45 108 285 2025 15333 594 3991

108=9a+b(us)+((285) 594 = a(us) +6(285)+c(2025) 3991= a(285) +b(2025)+((15333)

Markey Policy of States Property a=307 = 7.309, b=0.917, C=3.246

4-4.309+0.914x+3.246x2

value of 4. whe X=6.2 Y= 7.309+0.917 (6.2)+3.246(8.2)2 V= 184.77 / 100 - M

value of x when 4=14.5

14.5 = 7.309 + 0.917 x + 3.246(x)2

en les hagain grach

3.246x2+0.917x=4.191

X1=1.353

X2= -1.636 PO D

3FS 23 ES 381 38

13 26 Elle 1216 (8 UE)

OFF TONS SPE TH NI

1101 611 JPON 813 113 31 8

1002 the 5 21 2508 245 3dl 26

(2008,)) + (02.80) + (20) 10 = FITO

(28821)15 1 (2001) d 15 (383) 10 (31198

(122) HOW HERE 801

8. Consider a simple server queuing system with Poisson input, exponential service times. Suppose the mean arrival rate is 3 calling units per hour, the expected service time is 0.25 hour and the maximum permissible calling units in the system in two. Derive the stedy-state probability distibution of the of no of ralling units in the system, and then calculating the expected number in the system. n'= associal state = 3 units for Expected service time is 0.23 for service time. U=4 units/ hr Traffic intentity $s = \frac{1}{u} = \frac{3}{11}$ no of units allowed in the system x1-2 det In be the poods for n units to be inthe sys $P_0 = \frac{1-9}{10-9} = \frac{1-9}{1-(\frac{3}{4})^3} = \frac{(1/4)}{(64)} = \frac{1}{14} \times \frac{64}{34} = \frac{16}{34}$ Pn=pnp PI= S. Po = 3 x 37 = 12 P2=92. Po = 9/37 = 9/37 5. Po +P++P2=1

100 pridops divest alline is appiant) The expected no. in the system The same $= 1P_1 + 2P_2 = \frac{12}{37} + \frac{9}{24}(2)$ -: 30 units on and in the eys 1944 of sudmun habogra 1024 of about 8 - Stat Islands of THE SCORE Some States to popular rd Jefau 11-12 smil somon Facific intentity 2= 1 1 selve another with a bound when I area 21/2 often adat 25/41 (1 20% कर 7 20% अप मेर 12% 19009 F . 6. x 8 x 81.2 - A 12/P - 21 - 31 - 31 P = 31 I STATE STATE

1) infinite del 1=10/hr M=12/hr 9= d = 10 = 5 $(i)_{p-1-\frac{5}{6}} = \frac{1}{6}$ (ii) Ang no. Of customers in the que $19 = \frac{d^2}{u(u+d)} = \frac{(10)^2}{12(12-10)} = \frac{100}{12(12-10)}$ = 4.166.