El ejercicio que realizo en la práctica es el **Ejercicio 1**, usando el lenguaje R. Se omiten los enunciados de los ejercicios para optimizar el espacio.

1. Apartado 1

El siguiente código obtiene los valores aproximados de $E\{T_1\}$ y $E\{T_2\}$:

```
# Definimos las constantes
# Numero de simulaciones
B <- 10000
# Tamano de las muestras aleatorias simples
n \leftarrow c(10, 100, 1000)
# Valor de theta
theta = 2
# Creamos dos matrices para guardar las diferentes simulaciones que se hagan con

    → las diferentes muestras sobre los estimadores

T1 <- matrix(nrow = B, ncol = length(n))
T2 <- matrix(nrow = B, ncol = length(n))
for (i in 1:B) {
       for (j in 1:length(n)) {
                # Obtenemos una muestra aleatoria simple de n = 10, 100 o 1000,
                    \hookrightarrow dependiendo de la iteracion del segundo bucle
               muestra <- rexp(n[j], theta)</pre>
                # Aplicamos la funcion de T1 sobre la muestra y la quardamos en la
                    \hookrightarrow posicion i = numero de la simulación y j = log10(n) de la
                    \hookrightarrow matriz T1
               T1[i,j] <- 1 / mean(muestra)</pre>
                # Aplicamos la funcion de T2 sobre la muestra y la guardamos en la
                    \hookrightarrow posicion i = numero de la simulacion y j = log10(n) de la
                    \hookrightarrow matriz T2
               T2[i,j] \leftarrow (n[j] - 1) / sum(muestra)
       }
}
# Calculamos el valor aproximado de la esperanza matematica de T1 y T2
ET1 <- apply(T1, 2, mean)
ET2 <- apply(T2, 2, mean)
```

Los vectores ET1 y ET2 tienen los valores de $E\{T_1\}$ y $E\{T_2\}$ para muestras de n=10, n=100 y n=1000. Un ejemplo de ejecución del código daría los siguientes resultados:

n =	10	100	1000
$E\{T_1\}$	2,218567	2,019762	2,002014
$E\{T_2\}$	1,996710	1,999564	2,000012

Podemos ver que los valores aporximados de la esperanza matemática de ambos estimadores se aproximan a θ , más si el tamaño de la muestra crece. Sin embargo, los valores de $E\{T_2\}$ son más cercanos a θ que los de $E\{T_1\}$.

2. Apartado 2

Estadística: Práctica 1, Ejercicio 1

Para la aproximación del sesgo de los estimadores, tras una ejecución del código previo, ejecutamos las siguientes lineas:

```
bT1 = ET1 - theta
bT2 = ET2 - theta
```

Siendo bT1 y bT2, dos vectores que tienen el valor b (aproximación del sesgo), para los dos estimadores en los diferentes espacios muestrales. Partiendo de los resultados previos, obtenemos los siguientes valores:

n =	10	100	1000
b_{T_1}	0,218566725	0,0197619925	$2,014069 \cdot 10^{-3}$
b_{T_2}	-0,003289947	-0,0004356274	$1,205515 \cdot 10^{-5}$

Observamos que el sesgo disminuye en ambos estimadores según crece el espacio muestral. También y como habíamos predicho en el apartado anterior, los valores de $E\{T_2\}$ se aproximan más a θ que los de $E\{T_1\}$, lo que hace que $|b_{T_2}|$ sea menor para cualquiera de los espacios muestrales y el sesgo sea menor y se emplearía el estimador T_2 .