University of Cyprus MAI613 - Research Methodologies and Professional

Practices in AI

Lecturer: Stelios Timotheou

Exercises on Linear Algebra

Exercises

Solve Exercises 2.1, 2.3, 2.7, 2.9, 2.10, 2.14, 2.20 from the book:

• M.P. Deisenroth, A. A. Faisal, and C. S. Ong, "Mathematics for Machine Learning," Cambridge University Press, 2020. https://mml-book.github.io/book/mml-book.pdf

Note: These exercises are intended for self-assessment purposes.

Solutions:

2.1 We consider $(\mathbb{R}\setminus\{-1\},\star)$, where

$$a \star b := ab + a + b, \qquad a, b \in \mathbb{R} \setminus \{-1\}$$
 (2.1)

- a. Show that $(\mathbb{R}\setminus\{-1\},\star)$ is an Abelian group.
- b. Solve

$$3 \star x \star x = 15$$

in the Abelian group $(\mathbb{R}\setminus\{-1\},\star)$, where \star is defined in (2.1).

a. First, we show that $\mathbb{R}\setminus\{-1\}$ is closed under \star : For all $a,b\in\mathbb{R}\setminus\{-1\}$:

$$a \star b = ab + a + b + 1 - 1 = \underbrace{(a+1)}_{\neq 0} \underbrace{(b+1)}_{\neq 0} - 1 \neq -1$$

$$\Rightarrow a \star b \in \mathbb{R} \setminus \{-1\}$$

Next, we show the group axioms

• Associativity: For all $a, b, c \in \mathbb{R} \setminus \{-1\}$:

$$(a \star b) \star c = (ab + a + b) \star c$$

$$= (ab + a + b)c + (ab + a + b) + c$$

$$= abc + ac + bc + ab + a + b + c$$

$$= a(bc + b + c) + a + (bc + b + c)$$

$$= a \star (bc + b + c)$$

$$= a \star (b \star c)$$

Commutativity:

$$\forall a, b \in \mathbb{R} \setminus \{-1\} : a \star b = ab + a + b = ba + b + a = b \star a$$

• **Neutral Element:** n = 0 is the neutral element since

$$\forall a \in \mathbb{R} \backslash \{-1\} : a \star 0 = a = 0 \star a$$

■ **Inverse Element:** We need to find \bar{a} , such that $a \star \bar{a} = 0 = \bar{a} \star a$.

$$\begin{split} \bar{a} \star a &= 0 \iff \bar{a}a + a + \bar{a} = 0 \\ &\iff \bar{a}(a+1) = -a \\ &\iff \bar{a} = -\frac{a}{a+1} = -1 + \frac{1}{a+1} \neq -1 \in \mathbb{R} \backslash \{-1\} \end{split}$$

468

This material will be published by Cambridge University Press as *Mathematics for Machine Learning* by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©by M. P. Deisenroth, A. A. Faisal, and C. S. Ong, 2020. https://mml-book.com.

b.

$$3 \star x \star x = 15 \iff 3 \star (x^2 + x + x) = 15$$

$$\iff 3x^2 + 6x + 3 + x^2 + 2x = 15$$

$$\iff 4x^2 + 8x - 12 = 0$$

$$\iff (x - 1)(x + 3) = 0$$

$$\iff x \in \{-3, 1\}$$

2.3 Consider the set \mathcal{G} of 3×3 matrices defined as follows:

$$\mathcal{G} = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3} \middle| x, y, z \in \mathbb{R} \right\}$$

We define \cdot as the standard matrix multiplication.

Is (\mathcal{G}, \cdot) a group? If yes, is it Abelian? Justify your answer.

• Closure: Let a, b, c, x, y and z be in \mathbb{R} and let us define A and B in \mathcal{G} as

$$m{A} = egin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \;, \qquad m{B} = egin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \;.$$

Then,

$$m{A} \cdot m{B} = egin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & a+x & c+xb+z \\ 0 & 1 & b+y \\ 0 & 0 & 1 \end{bmatrix} \,.$$

Since a+x, b+y and c+xb+z are in $\mathbb R$ we have $A\cdot B\in \mathcal G$. Thus, $\mathcal G$ is closed under matrix multiplication.

• Associativity: Let α, β and γ be in $\mathbb R$ and let C in $\mathcal G$ be defined as

$$oldsymbol{C} = egin{bmatrix} 1 & lpha & \gamma \ 0 & 1 & eta \ 0 & 0 & 1 \end{bmatrix} \,.$$

It holds that

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \begin{bmatrix} 1 & a+x & c+xb+z \\ 0 & 1 & b+y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \alpha+a+x & \gamma+\alpha\beta+x\beta+c+xb+z \\ 0 & 1 & \beta+b+y \\ 0 & 0 & 1 \end{bmatrix} .$$

©2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

472

Similarly,

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & \alpha + a & \gamma + \alpha \beta + c \\ 0 & 1 & \beta + b \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \alpha + a + x & \gamma + \alpha \beta + x \beta + c + x b + z \\ 0 & 1 & \beta + b + y \\ 0 & 0 & 1 \end{bmatrix} = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}.$$

Therefore, \cdot is associative.

- Neutral element: For all A in \mathcal{G} , we have: $I_3 \cdot A = A = A \cdot I_3$ and thus I_3 is the neutral element.
- Non-commutativity: We show that \cdot is not commutative. Consider the matrices $X, Y \in \mathcal{G}$, where

$$\boldsymbol{X} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{Y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}. \tag{2.5}$$

Then.

$$m{X} \cdot m{Y} = egin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \ m{Y} \cdot m{X} = egin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
eq m{X} \cdot m{Y}.$$

Therefore, \cdot is not commutative.

■ Inverse element: Let us look for a right inverse A_r^{-1} of A. Such a matrix should satisfy $AA_r^{-1} = I_3$. We thus solve the linear system $[A|I_3]$ that we transform into $[I_3|A_r^{-1}]$:

$$\begin{bmatrix} & 1 & & x & & z & & & 1 & & 0 & & 0 \\ & 0 & & 1 & & y & & 0 & & 1 & & 0 \\ & 0 & & 0 & & 1 & & 0 & & & 1 & & 0 \\ & 0 & & 0 & & 1 & & 0 & & & 0 & & 1 \end{bmatrix} -zR_3$$

$$\leadsto \begin{bmatrix} & 1 & & x & & 0 & & & 1 & & 0 & & -z \\ & 0 & & 1 & & 0 & & & 0 & & 1 & & -y \\ & 0 & & 0 & & 1 & & & 0 & & & 1 \end{bmatrix} -xR_2$$

$$\leadsto \begin{bmatrix} & 1 & & 0 & & & 0 & & & 1 & & -x & xy-z \\ & 0 & & 1 & & 0 & & & 0 & & & 1 \end{bmatrix}.$$

Therefore, we obtain the right inverse

$$A_r^{-1} = \begin{bmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{bmatrix} \in \mathcal{G}$$

Because of the uniqueness of the inverse element, if a left inverse A_l^{-1} exists, then it is equal to the right inverse. But as \cdot is not commutative,

Exercises

we need to check manually that we also have $\boldsymbol{A}\boldsymbol{A}_r^{-1}=\boldsymbol{I}_3$, which we do next:

473

$$\mathbf{A}_r^{-1}\mathbf{A} = \begin{bmatrix} 1 & -x & -z + xy \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \\
= \begin{bmatrix} 1 & x - x & z - xy - z + xy \\ 0 & 1 & y + y \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_3.$$

Thus, every element of $\mathcal G$ has an inverse. Overall, $(\mathcal G,\cdot)$ is a non-Abelian group.

2.7 Find all solutions in $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$ of the equation system Ax = 12x,

Draft (2020-02-23) of "Mathematics for Machine Learning". Feedback: https://mml-book.com.

where

$$\mathbf{A} = \begin{bmatrix} 6 & 4 & 3 \\ 6 & 0 & 9 \\ 0 & 8 & 0 \end{bmatrix}$$

and
$$\sum_{i=1}^{3} x_i = 1$$
.

We start by rephrasing the problem into solving a homogeneous system of linear equations. Let x be in \mathbb{R}^3 . We notice that Ax = 12x is equivalent to (A - 12I)x = 0, which can be rewritten as the homogeneous system $\tilde{A}x = 0$, where we define

$$\tilde{\mathbf{A}} = \begin{bmatrix} -6 & 4 & 3 \\ 6 & -12 & 9 \\ 0 & 8 & -12 \end{bmatrix} .$$

The constraint $\sum_{i=1}^{3} x_i = 1$ can be transcribed as a fourth equation, which leads us to consider the following linear system, which we bring to reduced row echelon form:

$$\begin{bmatrix} -6 & 4 & 3 & 0 \\ 6 & -12 & 9 & 0 \\ 0 & 8 & -12 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} + R_2$$

$$\begin{bmatrix} 0 & -8 & 12 & 0 \\ 2 & -4 & 3 & 0 \\ 0 & 2 & -3 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} + 4R_3$$

$$+2R_3$$

$$\Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 2 & 0 & -3 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \cdot \frac{1}{2}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -\frac{3}{2} & 0 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} - R_1 - R_2$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -\frac{3}{2} & 0 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 4 & 1 \end{bmatrix} \cdot \frac{1}{4} \cdot \frac{3}{8} R_3 \Rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{3}{8} \\ 0 & 1 & 0 & \frac{3}{8} \\ 0 & 0 & 1 & \frac{1}{4} \end{bmatrix}$$

Therefore, we obtain the unique solution

$$m{x} = egin{bmatrix} rac{3}{8} \\ rac{3}{8} \\ rac{1}{4} \end{bmatrix} = rac{1}{8} egin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \,.$$

Which of the following sets are subspaces of \mathbb{R}^3 ?

a.
$$A = \{(\lambda, \lambda + \mu^3, \lambda - \mu^3) \mid \lambda, \mu \in \mathbb{R}\}$$

b.
$$B = \{(\lambda^2, -\lambda^2, 0) \mid \lambda \in \mathbb{R}\}$$

c. Let
$$\gamma$$
 be in \mathbb{R} .

c. Let γ be in \mathbb{R} .

$$C = \{ (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \mid \xi_1 - 2\xi_2 + 3\xi_3 = \gamma \}$$

d. $D = \{ (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \mid \xi_2 \in \mathbb{Z} \}$

As a reminder: Let
$$V$$
 be a vector space. $U \subseteq V$ is a subspace if

1.
$$U \neq \emptyset$$
. In particular, $\mathbf{0} \in U$.

2.
$$\forall a, b \in U : a + b \in U$$
 Closure with respect to the inner operation

3. $\forall a \in U, \lambda \in \mathbb{R} : \lambda a \in U$ Closure with respect to the outer operation

inherited from the vector space ($\mathbb{R}^3, +, \cdot$).

Let us now have a look at the sets
$$A, B, C, D$$
.

a. 1. We have that
$$(0,0,0) \in A$$
 for $\lambda = 0 = \mu$.

2. Let $a = (\lambda_1, \lambda_1 + \mu_1^3, \lambda_1 - \mu_1^3)$ and $b = (\lambda_2, \lambda_2 + \mu_2^3, \lambda_2 - \mu_2^3)$ be two

2. Let
$$a=(\lambda_1,\lambda_1+\mu_1^3,\lambda_1-\mu_1^3)$$
 and $b=(\lambda_2,\lambda_2+\mu_2^3,\lambda_2-\mu_2^3)$ be two elements of A , where $\lambda_1,\mu_1,\lambda_2,\mu_2\in\mathbb{R}$. Then,

$$a + b = (\lambda_1, \lambda_1 + \mu_1^3, \lambda_1 - \mu_1^3) + (\lambda_2, \lambda_2 + \mu_2^3, \lambda_2 - \mu_2^3)$$

$$= (\lambda_1 + \lambda_2, \lambda_1 + \mu_1^3 + \lambda_2 + \mu_2^3, \lambda_1 - \mu_1^3 + \lambda_2 - \mu_2^3)$$

$$= (\lambda_1 + \lambda_2, (\lambda_1 + \lambda_2) + (\mu_1^3 + \mu_2^3), (\lambda_1 + \lambda_2) - (\mu_1^3 + \mu_2^3)),$$

which belongs to
$$A$$
.

3. Let
$$\alpha$$
 be in \mathbb{R} . Then,

$$\alpha(\lambda, \lambda + \mu^3, \lambda - \mu^3) = (\alpha\lambda, \alpha\lambda + \alpha\mu^3, \alpha\lambda - \alpha\mu^3) \in A.$$

Therefore,
$$A$$
 is a subspace of \mathbb{R}^3 .

© 2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

- b. The vector (1, -1, 0) belongs to B, but $(-1) \cdot (1, -1, 0) = (-1, 1, 0)$ does not. Thus, B is not closed under scalar multiplication and is not a subspace of \mathbb{R}^3 .
- c. Let $A \in \mathbb{R}^{1 \times 3}$ be defined as A = [1, -2, 3]. The set C can be written as:

$$C = \{ \boldsymbol{x} \in \mathbb{R}^3 \mid \boldsymbol{A}\boldsymbol{x} = \gamma \}.$$

We can first notice that $\mathbf{0}$ belongs to B only if $\gamma=0$ since A=0. Let thus consider $\gamma=0$ and ask whether C is a subspace of \mathbb{R}^3 . Let \boldsymbol{x} and \boldsymbol{y} be in C. We know that $A\boldsymbol{x}=\mathbf{0}$ and $A\boldsymbol{y}=\mathbf{0}$, so that

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$
.

Therefore, x + y belongs to C. Let λ be in \mathbb{R} . Similarly,

$$A(\lambda x) = \lambda (Ax) = \lambda 0 = 0$$

Therefore, C is closed under scalar multiplication, and thus is a subspace of \mathbb{R}^3 if (and only if) $\gamma=0$.

- d. The vector (0,1,0) belongs to D but $\pi(0,1,0)$ does not and thus D is not a subspace of \mathbb{R}^3 .
- 2.10 Are the following sets of vectors linearly independent?

a.

$$m{x}_1 = egin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \quad m{x}_2 = egin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad m{x}_3 = egin{bmatrix} 3 \\ -3 \\ 8 \end{bmatrix}$$

To determine whether these vectors are linearly independent, we check if the 0-vector can be non-trivially represented as a linear combination of x_1,\ldots,x_3 . Therefore, we try to solve the homogeneous linear equation system $\sum_{i=1}^3 \lambda_i x_i = \mathbf{0}$ for $\lambda_i \in \mathbb{R}$. We use Gaussian elimination to solve $Ax = \mathbf{0}$ with

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -3 \\ 3 & -2 & 8 \end{bmatrix} ,$$

which leads to the reduced row echelon form

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

This means that A is rank deficient/singular and, therefore, the three vectors are linearly dependent. For example, with $\lambda_1=2, \lambda_2=-1, \lambda_3=-1$ we have a non-trivial linear combination $\sum_{i=1}^3 \lambda_i \boldsymbol{x}_i = \boldsymbol{0}$.

Ъ.

$$m{x}_1 = egin{bmatrix} 1 \ 2 \ 1 \ 0 \ 0 \end{bmatrix}, \quad m{x}_2 = egin{bmatrix} 1 \ 1 \ 0 \ 1 \ 1 \end{bmatrix}, \quad m{x}_3 = egin{bmatrix} 1 \ 0 \ 0 \ 1 \ 1 \end{bmatrix}$$

Here, we are looking at the distribution of 0s in the vectors. x_1 is the only vector whose third component is non-zero. Therefore, λ_1 must be 0. Similarly, λ_2 must be 0 because of the second component (already conditioning on $\lambda_1 = 0$). And finally, $\lambda_3 = 0$ as well. Therefore, the three vectors are linearly independent. An alternative solution, using Gaussian elimination, is possible and would lead to the same conclusion.

2.14 Consider two subspaces U_1 and U_2 , where U_1 is spanned by the columns of A_1 and U_2 is spanned by the columns of A_2 with

$$m{A}_1 = egin{bmatrix} 1 & 0 & 1 \ 1 & -2 & -1 \ 2 & 1 & 3 \ 1 & 0 & 1 \end{bmatrix}, \quad m{A}_2 = egin{bmatrix} 3 & -3 & 0 \ 1 & 2 & 3 \ 7 & -5 & 2 \ 3 & -1 & 2 \end{bmatrix}.$$

a. Determine the dimension of U_1, U_2

We start by noting that $U_1, U_2 \subseteq \mathbb{R}^4$ since we are interested in the space spanned by the columns of the corresponding matrices. Looking at A_1 , we see that $-d_1 + d_3 = d_2$, where d_i are the columns of A_1 . This means that the second column can be expressed as a linear combination of d_1

and d_3 . d_1 and d_3 are linearly independent, i.e., $\dim(U_1) = 2$. Similarly, for A_2 , we see that the third column is the sum of the first two columns, and again we arrive at $\dim(U_2) = 2$.

Alternatively, we can use Gaussian elimination to determine a set of linearly independent columns in both matrices.

b. Determine bases of U_1 and U_2

A basis B of U_1 is given by the first two columns of A_1 (any pair of columns would be fine), which are independent. A basis C of U_2 is given by the second and third columns of A_2 (again, any pair of columns would be a basis), such that

$$B = \left\{ \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} -3\\2\\-5\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\2\\2 \end{bmatrix} \right\}$$

©2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

c. Determine a basis of $U_1 \cap U_2$

Let us call b_1, b_2, c_1 and c_2 the vectors of the bases B and C such that $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$. Let x be in \mathbb{R}^4 . Then,

$$\mathbf{x} \in U_1 \cap U_2 \iff \exists \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} \colon (\mathbf{x} = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2) \wedge (\mathbf{x} = \lambda_3 \mathbf{c}_1 + \lambda_4 \mathbf{c}_2)$$

$$\iff \exists \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} \colon (\mathbf{x} = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2)$$

$$\wedge (\lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 = \lambda_3 \mathbf{c}_1 + \lambda_4 \mathbf{c}_2)$$

$$\iff \exists \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} \colon (\mathbf{x} = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2)$$

$$\wedge (\lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 - \lambda_3 \mathbf{c}_1 - \lambda_4 \mathbf{c}_2 = \mathbf{0})$$

Let $\lambda := [\lambda_1, \lambda_2, \lambda_3, \lambda_4]^{\top}$. The last equation of the system can be written as the linear system $A\lambda = 0$, where we define the matrix A as the concatenation of the column vectors $b_1, b_2, -c_1$ and $-c_2$.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 1 & -2 & -2 & -3 \\ 2 & 1 & 5 & -2 \\ 1 & 0 & 1 & -2 \end{bmatrix}.$$

We solve this homogeneous linear system using Gaussian elimination.

From the reduced row echelon form we find that the set

$$S := \operatorname{span}\begin{bmatrix} -3\\-1\\1\\-1 \end{bmatrix}$$

describes the solution space of the system of equations in λ .

We can now resume our equivalence derivation and replace the homogeneous system with its solution space. It holds

$$\boldsymbol{x} \in U_1 \cap U_2 \iff \exists \lambda_1, \lambda_2, \lambda_3, \lambda_4, \alpha \in \mathbb{R} \colon (\boldsymbol{x} = \lambda_1 \boldsymbol{b}_1 + \lambda_2 \boldsymbol{b}_2)$$

$$\wedge ([\lambda_1, \lambda_2, \lambda_3, \lambda_4]^\top = \alpha[-3, -1, 1, -1]^\top)$$

$$\iff \exists \alpha \in \mathbb{R} \colon \boldsymbol{x} = -3\alpha \boldsymbol{b}_1 - \alpha \boldsymbol{b}_2$$

$$\iff \exists \alpha \in \mathbb{R} \colon \boldsymbol{x} = \alpha[-3, -1, -7, -3]^\top$$

Exercises

Finally,

$$U_1 \cap U_2 = \operatorname{span}\begin{bmatrix} -3 \\ -1 \\ -7 \\ -3 \end{bmatrix}].$$

487

Alternatively, we could have expressed the solutions of \boldsymbol{x} in terms of \boldsymbol{b}_1 and \boldsymbol{c}_2 with the condition on $\boldsymbol{\lambda}$ being $\exists \alpha \in \mathbb{R} \colon (\lambda_3 = \alpha) \wedge (\lambda_4 = -\alpha)$ to obtain $[3, 1, 7, 3]^\top$.

2.20 Let us consider $b_1, b_2, b'_1, b'_2, 4$ vectors of \mathbb{R}^2 expressed in the standard basis of \mathbb{R}^2 as

of
$$\mathbb{R}^2$$
 as $m{b}_1=egin{bmatrix}2\\1\end{bmatrix},\quad m{b}_2=egin{bmatrix}-1\\-1\end{bmatrix},\quad m{b}_1'=egin{bmatrix}2\\-2\end{bmatrix},\quad m{b}_2'=egin{bmatrix}1\\1\end{bmatrix}$

and let us define two ordered bases $B = (b_1, b_2)$ and $B' = (b'_1, b'_2)$ of \mathbb{R}^2 .

a. Show that B and B' are two bases of \mathbb{R}^2 and draw those basis vectors. The vectors b_1 and b_2 are clearly linearly independent and so are b'_1 and b_2' .

b. Compute the matrix P_1 that performs a basis change from B' to B. We need to express the vector b'_1 (and b'_2) in terms of the vectors b_1

and b_2 . In other words, we want to find the real coefficients λ_1 and λ_2 such that $b_1' = \lambda_1 b_1 + \lambda_2 b_2$. In order to do that, we will solve the linear equation system

$$\left[\begin{array}{c|c} \boldsymbol{b}_1 & \boldsymbol{b}_2 & \boldsymbol{b}_1' \end{array}\right]$$
 i.e.,

$$\left[\begin{array}{c|cc}2 & -1 & 2\\1 & -1 & -2\end{array}\right]$$

Draft (2020-02-23) of "Mathematics for Machine Learning". Feedback: https://mml-book.com.

and which results in the reduced row echelon form

$$\left[\begin{array}{cc|c} 1 & 0 & 4 \\ 0 & 1 & 6 \end{array}\right].$$

This gives us $b'_1 = 4b_1 + 6b_2$.

Similarly for b'_2 , Gaussian elimination gives us $b'_2 = -1b_2$.

Thus, the matrix that performs a basis change from B' to B is given as

$$\boldsymbol{P}_1 = \begin{bmatrix} 4 & 0 \\ 6 & -1 \end{bmatrix} .$$

c. We consider c_1, c_2, c_3 , three vectors of \mathbb{R}^3 defined in the standard basis of \mathbb{R} as

$$oldsymbol{c}_1 = egin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}, \quad oldsymbol{c}_2 = egin{bmatrix} 0 \ -1 \ 2 \end{bmatrix}, \quad oldsymbol{c}_3 = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

and we define $C = (c_1, c_2, c_3)$.

(i) Show that C is a basis of \mathbb{R}^3 , e.g., by using determinants (see Section 4.1).

We have:

$$\det(\boldsymbol{c}_1, \boldsymbol{c}_2, \boldsymbol{c}_3) = \begin{vmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 2 & -1 \end{vmatrix} = 4 \neq 0$$

Therefore, C is regular, and the columns of C are linearly independent, i.e., they form a basis of \mathbb{R}^3 .

(ii) Let us call $C'=(c_1',c_2',c_3')$ the standard basis of \mathbb{R}^3 . Determine the matrix P_2 that performs the basis change from C to C'.

In order to write the matrix that performs a basis change from C to C', we need to express the vectors of C in terms of those of C'. But as C' is the standard basis, it is straightforward that $c_1 = 1c'_1 + 2c'_2 - 1c'_3$ for example. Therefore,

$$m{P}_2 := egin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 2 & -1 \end{bmatrix}$$
 .

simply contains the column vectors of C (this would not be the case if C' was not the standard basis).

d. We consider a homomorphism $\Phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, such that

$$\Phi(\mathbf{b}_1 + \mathbf{b}_2) = \mathbf{c}_2 + \mathbf{c}_3
\Phi(\mathbf{b}_1 - \mathbf{b}_2) = 2\mathbf{c}_1 - \mathbf{c}_2 + 3\mathbf{c}_3$$

where $B = (\mathbf{b}_1, \mathbf{b}_2)$ and $C = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$ are ordered bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Determine the transformation matrix ${\bf A}_\Phi$ of Φ with respect to the ordered bases ${\cal B}$ and ${\cal C}.$

Adding and subtracting both equations gives us

$$\begin{cases}
\Phi(b_1 + b_2) + \Phi(b_1 - b_2) &= 2c_1 + 4c_3 \\
\Phi(b_1 + b_2) - \Phi(b_1 - b_2) &= -2c_1 + 2c_2 - 2c_3
\end{cases}$$

As Φ is linear, we obtain

$$\begin{cases} \Phi(2\mathbf{b}_1) &= 2\mathbf{c}_1 + 4\mathbf{c}_3 \\ \Phi(2\mathbf{b}_2) &= -2\mathbf{c}_1 + 2\mathbf{c}_2 - 2\mathbf{c}_3 \end{cases}$$

And by linearity of Φ again, the system of equations gives us

$$\left\{ \begin{array}{lcl} \Phi(\boldsymbol{b}_1) & = & \boldsymbol{c}_1 + 2\boldsymbol{c}_3 \\ \Phi(\boldsymbol{b}_2) & = & -\boldsymbol{c}_1 + \boldsymbol{c}_2 - \boldsymbol{c}_3 \end{array} \right..$$

Therefore, the transformation matrix of ${\bf A}_\Phi$ with respect to the bases B and C is

$$\boldsymbol{A}_{\Phi} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & -1 \end{bmatrix}.$$

e. Determine A', the transformation matrix of Φ with respect to the bases B' and C'.

We have:

$$\mathbf{A}' = \mathbf{P}_2 \mathbf{A} \mathbf{P}_1 = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 6 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -10 & 3 \\ 12 & -4 \end{bmatrix}.$$

- f. Let us consider the vector $x \in \mathbb{R}^2$ whose coordinates in B' are $[2,3]^{\top}$. In other words, $x = 2b'_1 + 3b'_2$.
 - (i) Calculate the coordinates of x in B.By definition of P₁, x can be written in B as

$$\mathbf{P}_1 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$$

(ii) Based on that, compute the coordinates of $\Phi(x)$ expressed in C. Using the transformation matrix A of Φ with respect to the bases B and C, we get the coordinates of $\Phi(x)$ in C with

$$\boldsymbol{A} \begin{bmatrix} 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 8 \\ 9 \end{bmatrix} = \begin{bmatrix} -1 \\ 9 \\ 7 \end{bmatrix}$$

(iii) Then, write $\Phi(x)$ in terms of c_1', c_2', c_3' . Going back to the basis C' thanks to the matrix P_2 gives us the expression of $\Phi(x)$ in C'

$$\boldsymbol{P}_{2} \begin{bmatrix} -1\\9\\7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1\\2 & -1 & 0\\-1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -1\\9\\7 \end{bmatrix} = \begin{bmatrix} 6\\-11\\12 \end{bmatrix}$$

In other words, $\Phi(x)=6c_1'-11c_2'+12c_3'$. (iv) Use the representation of x in B' and the matrix A' to find this result directly.

We can calculate $\Phi(x)$ in C directly:

$$\mathbf{A'} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -10 & 3 \\ 12 & -4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ -11 \\ 12 \end{bmatrix}$$