Conjugate Gradient

Suppose we want to solve the system of linear equations

$$Ax = b$$

for the vector \mathbf{x} , where the known $n \times n$ matrix \mathbf{A} is symmetric (i.e., $\mathbf{A}^T = \mathbf{A}$), positive-definite (i.e. $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^n$), and real, and \mathbf{b} is known as well. We denote the unique solution of this system by \mathbf{x}^* .

Solution of the above system of equations is the same as $\operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x}$.

Definition 1 (A-conjugate directions). Let \mathbf{A} $(n \times n)$ be a symmetric matrix. The vectors $\{\mathbf{d}_1, \dots, \mathbf{d}_n\}$ (all $\in \mathbb{R}^n$) are called conjugate (or orthogonal) with respect to \mathbf{A} if $\mathbf{d}_i^T \mathbf{A} \mathbf{d}_j = 0$ for all $i \neq j$.

<u>Lemma</u> 1 (Linear independence). Let **A** $(n \times n)$ be positive definite. If the vectors $\{\mathbf{d}_1, \ldots, \mathbf{d}_k\}$ (all $\in \mathbb{R}^n$) are conjugate (orthogonal) with respect to **A**, then they are linearly independent.

Proof. Let $\{\mathbf{d}_1, \dots, \mathbf{d}_k\}$ are linearly dependent and let $\mathbf{d}_k = \sum_{j=1}^{k-1} \alpha_j \mathbf{d}_j$.

By definition of conjugacy, we have $\mathbf{d}_k^T \mathbf{A} \mathbf{d}_j = 0$ for all $j \neq k$. Since, \mathbf{A} is pd, we have $\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k > 0$. On the other hand, $\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k = \sum_{j=1}^{k-1} \alpha_j \mathbf{d}_k^T \mathbf{A} \mathbf{d}_j = 0$ (Contradiction!)

If \mathbf{x}^* is a solution of the above system of equation, we can represent it as a linear combination of $\{\mathbf{d}_1, \dots, \mathbf{d}_n\}$, which are conjugate vectors with respect to \mathbf{A} .

Let $\mathbf{x}^* = \sum_{j=1}^n \alpha_j \mathbf{d}_j$. It is easy to check that $\mathbf{d}_j^T \mathbf{A} \mathbf{x}^* = \alpha_j \mathbf{d}_j^T \mathbf{A} \mathbf{d}_j$. Thus $\alpha_j = \frac{\mathbf{d}_j^T \mathbf{A} \mathbf{x}^*}{\mathbf{d}_j^T \mathbf{A} \mathbf{d}_j}$.

But by assumption, $\mathbf{A}\mathbf{x}^* = \mathbf{b}$. Thus $\alpha_j = \frac{\mathbf{d}_j^T \mathbf{b}}{\mathbf{d}_j^T \mathbf{A} \mathbf{d}_j}$. Hence, to know α_j , we do not need to know \mathbf{x}^* .

Hence $\mathbf{x}^* = \sum_{j=1}^n \frac{\mathbf{d}_j^T \mathbf{b}}{\mathbf{d}_i^T \mathbf{A} \mathbf{d}_j} \mathbf{d}_j$, no matrix inversion or nothing.

In practice, we do not know the conjugate vectors. We thus may follow Gram–Schmidt type algorithm.

Algorithm 1: Conjugate gradient

- (i) Start setting $\mathbf{r}_1 = \mathbf{b} \mathbf{A}\mathbf{x}_1$ with some starting value \mathbf{x}_1 .
- (ii) If \mathbf{r}_0 is small enough, return $\mathbf{x} = \mathbf{x}_1$ as solution.
- (iii) Otherwise, set $\mathbf{d}_1 = \mathbf{r}_1$ and k = 1.
- (iv) Start loop

$$\bullet \ \alpha_k = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k}$$

$$\bullet \ \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

•
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{d}_k$$

- If \mathbf{r}_{k+1} is small enough, return $\mathbf{x} = \mathbf{x}_{k+1}$ as solution.
- Otherwise, $\beta_k = \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k}$, $\mathbf{d}_{k+1} = \mathbf{r}_{k+1} + \beta_k \mathbf{d}_k$, move k = k+1 and Repeat

In the above algorithm, how the term 'gradient' fits in? Say $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} - \mathbf{b}^T\mathbf{x}$ and we are trying to solve $\min_{\mathbf{x}} f(\mathbf{x})$. Following the steps in gradient descent, the updates should look like $\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)$. For our function, we have $\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$. Thus, we need to move towards $\mathbf{b} - \mathbf{A}\mathbf{x}$. The other vectors in the basis will be made conjugate to this gradient vector. Thus, the term 'conjugate gradient' comes in.

To see above, note that
$$\beta_k = \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k} = -\frac{\mathbf{r}_{k+1} \mathbf{A} \mathbf{d}_k}{\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k}$$
. Then, $\mathbf{d}_{k+1}^T \mathbf{A} \mathbf{d}_k = 0$

If the condition number of \mathbf{A} is large, the convergence is slow as it leads to slower improvement. Hence, to ensure faster convergence in this case, **Preconditioning conjugate** gradient is used. [Condition number of a matrix \mathbf{A} is $\kappa(\mathbf{A}) = \frac{\sigma_{\max}(\mathbf{A})}{\sigma_{\min}(\mathbf{A})}$, where $\sigma_{\max}(\mathbf{A})$ and $\sigma_{\min}(\mathbf{A})$ are maximal and minimal singular values of \mathbf{A} respectively. In our case, the singular values and eigenvalues are the same as \mathbf{A} is symmetric]

Algorithm 2: Pre-conditioned conjugate gradient

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$$

$$\mathbf{z}_0 = \mathbf{M}^{-1}\mathbf{r}_0$$

$$\mathbf{p}_0 = \mathbf{z}_0$$

$$k = 0$$

repeat

$$\alpha_k = \frac{\mathbf{r}_k^\mathsf{T} \mathbf{z}_k}{\mathbf{p}_k^\mathsf{T} \mathbf{A} \mathbf{p}_k}$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k$$

if r_{k+1} is sufficiently small, then exit loop end if

$$\mathbf{z}_{k+1} = \mathbf{M}^{-1} \mathbf{r}_{k+1}$$
$$\beta_k = \frac{\mathbf{r}_{k+1}^T \mathbf{z}_{k+1}}{\mathbf{r}_k^T \mathbf{z}_k}$$
$$\mathbf{p}_{k+1} = \mathbf{z}_{k+1} + \beta_k \mathbf{p}_k$$
$$k = k+1,$$

end repeat; The result is x_{k+1}

In the above algorithm \mathbf{M} is fixed. We often set \mathbf{M} as $\mathbf{L}\mathbf{L}^T$ where \mathbf{L} is an incomplete Cholesky decomposition of \mathbf{A} or sometimes the diagonal entries in \mathbf{A} (Jacobi preconditioner). Or, we often set \mathbf{M}^{-1} = some approximate inverse of \mathbf{A} . The approximate inverse computation would depend on the shape and structure of \mathbf{A} . For clarity, we are now applying the basic CG steps for solving 1) $\mathbf{L}^{-1}\mathbf{A}(\mathbf{L}^{-1})^T\mathbf{y} = \mathbf{L}^{-1}\mathbf{b}$ and subsequently get the solution as $\mathbf{x} = \mathbf{L}^T\mathbf{y}$ such that the condition number of $\mathbf{L}^{-1}\mathbf{A}(\mathbf{L}^{-1})^T$ is small.