向量

Didnelpsun

目录

1	向量与向量组			
	1.1	向量的定义与运算	1	
	1.2	向量组的线性概念	1	

线性代数的主要研究对象就是向量,行列式与矩阵都是由向量组成的向量组。 组。

1 向量与向量组

1.1 向量的定义与运算

n 维向量定义: n 个数构成的一个有序数组 $[a_1, a_2, \cdots, a_n]$ 称为一个 n 维向量,记为 $\alpha = [a_1, a_2, \cdots, a_n]$,并称 α 为 n 维行向量, α^T 为 n 维列向量, a_i 为向量 α 的 i 个分量。

若 α 与 β 都是 n 维向量,且对应元素相等,则 $\alpha = \beta$ 。

$$\alpha + \beta = [a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n]$$

$$k\alpha = [ka_1, ka_2, \cdots, ka_3]$$
.

1.2 向量组的线性概念

线性组合 定义: $m \uparrow n$ 维向量 $\alpha_1, \alpha_2, \dots, \alpha_m$ 以及 $m \uparrow m$ 大数 k_1, k_2, \dots, k_m ,则向量 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m$ 就是向量组 a_1, a_2, \dots, a_m 的线性组合。

线性表出 定义: 若向量 β 能表示成向量组 $\alpha_1, \alpha_2, \cdots, a_m$ 的线性组合,则存在 m 个数 k_1, k_2, \cdots, k_m ,使得 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m$,则成向量 β 能被向量组 a_1, a_2, \cdots, a_m 线性表出。否则不能被线性表出。

线性相关 定义: 对 m 个 n 维向量 a_1, a_2, \dots, a_m ,存在一组不全为 0 的数 k_1, k_2, \dots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$,则称 a_1, a_2, \dots, a_m 线性相关。

含有零向量或成比例向量的向量组必然线性相关。

线性无关 定义: 对 m 个 n 维向量 a_1, a_2, \dots, a_m ,不存在一组不全为 0 的数 k_1, k_2, \dots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$,即仅当 $k_1 = k_2 = \dots = k_m = 0$ 才成立,则称 a_1, a_2, \dots, a_m 线性无关。

两个非零向量,不成比例向量的向量必然线性无关。