Accelerating Graph Convolutions

A Simple Python Runtime System Built for CS263

Yuke Wang and Sirius Zhang

So Called AI Revolution

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN)
- Profiled performance difference and runtime bottleneck.

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
- Profiled performance difference and runtime bottleneck.

What Data Scientists / ML Researchers Need?

- Fast iteration in algorithm development.
- Matrix, tensor ("matrix" > 2D), and linear algebra are the workhorse of all math-heavy, data-hungry algorithms.
- Fast matrix / tensor calculation, potentially accelerated through parallel computing hardware.

How Runtime System Helped in this Revolution?

- Use High level language such as Python to cover up low-level machine programming details.
- For performance, bringing in CUDA and C/C++, and use them under the hood for performance critical places.

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Overall Goal
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Overall Goal
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

Overall Goal

- Implement a runtime GCN library that looks at input graph's characteristic to make decisions on what specific kernels to call.
- Specifically, switching between S&G kernel and SpMM kernel based on input graph's at runtime.

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Overall Goal
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

2D Convolution Versus Graph Convolution

2D Convolution Versus Graph Convolution

1. Sample neighborhood

2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information

Mathematical Formulation of GCN

• Every neural network layer can then be written as a non-linear function

- SpMM (1)(2)
- SAG (3)

$$H^{(l+1)} = f(H^{(l)}, A),$$

with $H^{(0)} = X$ and $H^{(L)} = Z$ (or z for graph-level outputs), L being the number of layers. The specific models then differ only in how $f(\cdot, \cdot)$ is chosen and parameterized.

As an example, let's consider the following very simple form of a layer-wise propagation rule:

$$f(H^{(l)}, A) = \sigma \left(AH^{(l)}W^{(l)} \right) ,$$

where $W^{(l)}$ is a weight matrix for the l-th neural network layer and $\sigma(\cdot)$ is a non-linear activation function like the ReLU. Despite its simplicity this model is already quite powerful (we'll come to that in a moment).

$$a_v^{k+1} = Aggregate^{k+1}(h_u^{k+1}|u \in Neighbor(v))$$
$$h_v^{k+1} = Update^{k+1}(a_v^{k+1}, h_v^k)$$

https://tkipf.github.io/graph-convolutional-networks/

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Overall goal
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

Scatter & Gather (SAG)

- Originated from graph processing, such as, PageRank, BFS.
- Push (conflicting-write) Vs. Pull (irregular-read)

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

Sparse Matrix-Matrix Multiplication (SpMM)

- Adapted from GraphBLAS-SpMV[1]
- Used for SUM-based Aggregation.

[1] http://graphblas.org/index.php?title=Graph_BLAS_Forum

Kernel Optimization

Group-based Neighbor Partitioning

Kernel Choice

- Block-diagonal graph-- SpMM (top right).
- Random irregular graph -- SAG (bottom right).

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
 - Intro to GCN
 - Implemented two variants of Graph convolutional kernels used a mixed of CUDA/C++/Python code.
 - Scatter & Gather (SAG) kernel
 - Sparse Matrix and Matrix Multiplication (SpMM) kernel
 - Python Wrapper
 - Different Variants
 - Our Choice

Implementation Details, list of wrapper choices

- Numba
- PyCuda
- scikit-CUDA
- SWIG
- Pytorch
- etc.....

Implementation Details, list of wrapper choices

- Numba (runtime compiler specifically optimize for math numpy code)
- PyCuda (Full CUDA API in Python, GC, Try-Catch CUDA errors, etc)
- scikit-CUDA (similar to PyCuda, only PyCuda is backed by Nvidia)

SWIG (Simple Wrapper Interface Generator, statically compiled .o shared

library)

Pytorch (Augo-grad)

• etc.....

Python Wrapper Variant -- PyTorch

Allow easy integrations of mixed CUDA, C++, Python code.

```
std::vector<torch::Tensor> lltm cuda forward(
                                                                                      torch::Tensor input.
  from setuptools import setup, Extension
                                                                                                                                                        template <typename scalar_t>
                                                                                      torch::Tensor weights,
  from torch.utils import cpp extension
                                                                                      torch::Tensor bias,
                                                                                                                                                        global void lltm cuda forward kernel(
                                                                                      torch::Tensor old_h,
                                                                                                                                                            const scalar t* restrict gates.
                                                                                      torch::Tensor old_cell) {
                                                                                                                                                           const scalar t* restrict old cell,
  setup(name='lltm_cpp',
                                                                                     auto X = torch::cat({old_h, input}, /*dim=*/1);
                                                                                    auto gates = torch::addmm(bias, X, weights.transpose(0, 1)):
                                                                                                                                                            scalar t* restrict new h,
        ext_modules=[cpp_extension.CppExtension('lltm_cpp', ['lltm.cpp'])],
                                                                                                                                                            scalar t* restrict new cell,
        cmdclass={'build ext': cpp extension.BuildExtension})
                                                                                     const auto batch size = old cell.size(0):
                                                                                                                                                            scalar_t* __restrict__ input_gate,
                                                                                    const auto state_size = old_cell.size(1);
                                                                                                                                                           scalar_t* __restrict__ output_gate,
                                                                                     auto new_h = torch::zeros_like(old_cell);
                                                                                                                                                           scalar t* restrict candidate cell.
                                                                                    auto new cell = torch::zeros like(old cell);
   PYBIND11 MODULE(TORCH EXTENSION NAME, m) {
                                                                                                                                                            size_t state_size) {
                                                                                     auto input_gate = torch::zeros_like(old_cell);
                                                                                                                                                          const int column = blockIdx.x * blockDim.x + threadIdx.x;
     m.def("forward", &lltm forward, "LLTM forward");
                                                                                     auto output_gate = torch::zeros_like(old_cell);
                                                                                                                                                          const int index = blockIdx.y * state size + column;
                                                                                     auto candidate_cell = torch::zeros_like(old_cell);
     m.def("backward", &lltm backward, "LLTM backward"):
                                                                                                                                                          const int gates row = blockIdx.y * (state size * 3);
                                                                                     const int threads = 1024:
                                                                                                                                                         if (column < state_size) {
                                                                                     const dim3 blocks((state size + threads - 1) / threads, batch size);
                                                                                                                                                           input_gate[index] = sigmoid(gates[gates_row + column]);
                                                                                    AT_DISPATCH_FLOATING_TYPES(gates.type(), "lltm_forward_cuda", ([&] {
                                                                                                                                                            output_gate[index] = sigmoid(gates[gates_row + state_size + column]);
                                                                                      11tm cuda forward kernel<scalar t><<<blocks, threads>>>(
                                                                                                                                                           candidate_cell[index] = elu(gates[gates_row + 2 * state_size + column]);
class LLTMFunction(torch.autograd.Function):
                                                                                          gates.data<scalar_t>(),
                                                                                                                                                            new cell[index] =
    @staticmethod
                                                                                          old_cell.data<scalar_t>(),
                                                                                                                                                                old cell[index] + candidate cell[index] * input gate[index];
                                                                                          new h.data<scalar t>().
    def forward(ctx, input, weights, bias, old_h, old_cell):
                                                                                          new_cell.data<scalar_t>(),
                                                                                                                                                            new h[index] = tanh(new cell[index]) * output gate[index];
        outputs = lltm_cpp.forward(input, weights, bias, old_h, old_cell)
                                                                                          input_gate.data<scalar_t>(),
                                                                                          output_gate.data<scalar_t>(),
        new_h, new_cell = outputs[:2]
                                                                                          candidate_cell.data<scalar_t>(),
        variables = outputs[1:] + [weights]
                                                                                          state size):
        ctx.save for backward(*variables)
                                                                                    3));
                                                                                    return {new h, new cell, input gate, output gate, candidate cell, X, gates};
```

Python layer

return new_h, new_cell

C++ layer

CUDA Layer

Our Project Recap and Our Choice of Wrapper

- Implement a runtime GCN library that looks at input graph's characteristic to make decisions on what specific kernels to call.
- Specifically, switching between S&G kernel and SpMM kernel based on input graph's at runtime.
- PyTorch wrapper.

Overall Architecture

Our Project

- Looked at runtime system's role in this "Al" revolution.
- Implemented a runtime system for Graph Convolutional Networks (GCN).
- Profiled performance difference and runtime bottleneck.

Tools & Datasets

- [Host] Xeon 4110 Silver 8 core, 64GB DDR4 RAM.
- **[GPU]** Nvidia Quadro P6000 (24GB GDDR5X).
- perf_counter() for CPU runtime profiling.
- NVProf for GPU kernel runtime profiling.

	Dataset	Node	Edges	Dim	Classes	Avg Degree
Type I	Citeseer	3,327	9,464	3703	6	2.84
	Cora	2,708	10,858	1433	7	4.01
	Pubmed	19,717	88,676	500	3	4.50
	PPI	56,944	818,716	50	121	14.38
	PROTEINS_full	43,471	162,088	29	2	3.73
	OVCAR-8H	1,890,931	3,946,402	66	2	2.09
	Yeast	1,714,644	3,636,546	74	2	2.12
	DD	334,925	1,686,092	89	2	5.03
	TWITTER-Partial	580,768	1,435,116	1323	2	2.47
Type II	SW-620H	1,889,971	3,944,206	66	2	2.09
	amazon0505	410,236	4,878,875	96	22	11.89
	artist	50,515	1,638,396	100	12	32.43
	com-amazon	334,863	1,851,744	96	22	5.53
	soc-BlogCatalog	88,784	2,093,195	128	39	23.58
Type III	amazon0601	403,394	3,387,388	96	22	8.40

Runtime Decomposition

- Intelligent Kernel Switch+ Graph Preprocessing Cost
- GPU Kernel Cost

Memory

- Allocation
- CPU Host <-> GPU

Case Studies

Conclusion

- Surveyed different runtime systems / python wrappers popularized from the recent "AI" wave.
- Built a GCN runtime on GPUs.
 - Scatter and Gather (SAG) Kernel
 - Sparse matrix multiplication (SpMM) kernel
 - Pytorch mixed CUDA/C++/Python wrapper
 - Runtime decision making on graph characteristics. AUTO and Manual Kernel Selection.
 - Performance tuning options. **Group-size** and **thread-per-block**.
- A complete profiling toolset (Profiler + Report Generator) for CPU host and GPU kernel evaluation.

Thank You

Q&A

Data Science Workhorse -- NumPy

All-in-one solution for data storage, matrix/tensor math.

```
>>> b = np.arange(12).reshape(3,4)
>>> A = np.array( [[1,1],
                                                                   >>> b
                [0,1]])
                                                                   array([[ 0, 1, 2, 3],
>>> B = np.array( [[2,0],
                                                                         [4, 5, 6, 7],
                [3,4]])
                                                                         [ 8, 9, 10, 11]])
                                  # elementwise product
>>> A * B
                                                                   >>>
                                                                   >>> b.sum(axis=0)
                                                                                                            # sum of each column
array([[2, 0],
                                                                   array([12, 15, 18, 21])
       [0, 4]])
                                                                   >>>
>>> A @ B
                                  # matrix product
                                                                                                            # min of each row
                                                                   >>> b.min(axis=1)
array([[5, 4],
                                                                   array([0, 4, 8])
       [3, 411)
                                                                   >>>
                                                                                                            # cumulative sum along each row
                                  # another matrix product
                                                                   >>> b.cumsum(axis=1)
>>> A.dot(B)
                                                                   array([[ 0, 1, 3, 6],
array([[5, 4],
                                                                          [ 4, 9, 15, 22],
       [3, 4]])
                                                                         [ 8, 17, 27, 38]])
```

How Runtime System Helped in this Revolution?

 Adding specific runtime compiling supports for these people. Study their programming habits / code usage pattern, and design specific runtime optimization strategies accordingly. Numba is a good example.

Python Wrapper Variant -- Numba

- A Just in Time compiler that works best on python code that uses NumPy arrays, functions, and loops.
- Use python decorators as hint to Numba compiler.
- Unlike Pytorch, TensorFlow, etc, no support for autograd.

```
from numba import jit
import numpy as np

x = np.arange(100).reshape(10, 10)

@jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit
def go_fast(a): # Function is compiled to machine code when called the first time
    trace = 0.0
    for i in range(a.shape[0]): # Numba likes loops
        trace += np.tanh(a[i, i]) # Numba likes NumPy functions
    return a + trace # Numba likes NumPy broadcasting

print(go_fast(x))
```

Matrix Multiplication Optimization As An Example

Naive iterative matrix multiplication algorithm involves two big for loops.
 Compute for one C_ij at one time step.

$$c_{ij} = \sum_{k=1}^m a_{ik} b_{kj}.$$

- Input: matrices A and B
- Let C be a new matrix of the appropriate size
- For *i* from 1 to *n*:
 - For *j* from 1 to *p*:
 - Let sum = 0
 - For *k* from 1 to *m*:
 - Set sum \leftarrow sum $+ A_{ik} \times B_{kj}$
 - Set $C_{ij} \leftarrow \text{sum}$
- Return C

Matrix Multiplication Optimization As An Example

 Can be accelerated using CUDA. Compute all C_ij at the same time. Put A and B in shared GPU memory. Each thread writes into one C_ij.

Matrix Multiplication Optimization As An Example

Can also introduce parallelism by using block matrix multiplication and

exploiting sparsity of a matrix, etc.

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Mathematical Formulation of GCN

Every neural network layer can then be written as a non-linear function

$$H^{(l+1)} = f(H^{(l)}, A),$$

with $H^{(0)}=X$ and $H^{(L)}=Z$ (or z for graph-level outputs), L being the number of layers. The specific models then differ only in how $f(\cdot,\cdot)$ is chosen and parameterized.

•As an example, let's consider the following very simple form of a layer-wise propagation rule:

$$f(H^{(l)}, A) = \sigma \left(AH^{(l)}W^{(l)}\right) ,$$

where $W^{(l)}$ is a weight matrix for the l-th neural network layer and $\sigma(\cdot)$ is a non-linear activation function like the ReLU. Despite its simplicity this model is already quite powerful (we'll come to that in a moment).

Think of A as an Adjacency Matrix describing your Graph. W is the trainable weight.

Python Wrapper Variant -- PyCuda

- Full NVIDIA CUDA API in Python.
- Work with Numpy
- Garbage collector support. Object cleanup tied to object's lifetime.
- Automatic Error Checking. Python exceptions. More Traceable Errors.

```
import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
global void multiply them(float *dest, float *a, float *b)
  const int i = threadIdx.x:
 dest[i] = a[i] * b[i];
nnny
multiply them = mod.get function("multiply them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros like(a)
multiply them(
        drv.Out(dest), drv.In(a), drv.In(b),
       block=(400,1,1), grid=(1,1))
print dest-a*b
```

Python Wrapper Variant -- scikit-CUDA

- Similar to PyCUDA (backed by Nvidia).
- Less developed.
- With scikit-learn, SciPy open source community.

https://scikit-cuda.readthedocs.io/en/latest/

Python Wrapper Variant -- SWIG

Generic Wrapper. Statically Compiled as a .so library that you can use at runtime.

https://intermediate-and-advanced-software-carpentry.readthedocs.io/en/latest/c++-wrapping.html

Python Wrapper Variant -- PyTorch

- One of the most popular Auto-grad Frameworks among Machine Learning researchers.
- Torch tensor objects wrap around Numpy objects with Auto-grad support.

$$d(x^2)/dx = 2x$$

- Numba (runtime compiler specifically optimize for Numpy math code, GPU)
- PyCuda
- scikit-CUDA
- SWIG
- Pytorch
- etc.....

- Numba (runtime compiler specifically optimize for math numpy code)
- PyCuda (Full CUDA API in Python, GC, Try-Catch CUDA errors, etc)
- scikit-CUDA
- SWIG
- Pytorch
- etc.....

- Numba (runtime compiler specifically optimize for math numpy code)
- PyCuda (Full CUDA API in Python, GC, Try-Catch CUDA errors, etc)
- scikit-CUDA (similar to PyCuda, only PyCuda is backed by Nvidia)
- SWIG
- Pytorch
- etc.....

- Numba (runtime compiler specifically optimize for math numpy code)
- PyCuda (Full CUDA API in Python, GC, Try-Catch CUDA errors, etc)
- scikit-CUDA (similar to PyCuda, only PyCuda is backed by Nvidia)

SWIG (Simple Wrapper Interface Generator, statically compiled .o shared

library)

Pytorch

• etc.....

