Пусть функция y = f(x) определена на множестве X и a — предельная точка X.

Определение предела (по Коши). Число A называется пределом функции f(x) в точке а (при $x \to a$), если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента x из проколотой δ - окрестности точки а выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon 0 < |x - a| < \delta \Longrightarrow |f(x) - A| < \varepsilon$$

$$\lim_{x \to a} f(x) = A$$

Замечание 1. Функция может иметь в данной точке не более одного предела.

Замечание 2. Если функция имеет предел в точке а, то она ограничена в некоторой окрестности этой точки.

Утверждение следует непосредственно из определения предела функции:

$$|f(x) - A| < \varepsilon$$
 $A - \varepsilon < f(x) < A + \varepsilon$ при $0 < |x - a| < \delta$

Односторонние пределы

Функция может иметь различные предельные точки слева и справа в некоторой точке.

Например,

$$y = sgn \ x =$$

$$\begin{cases} 1, \text{при } x > 0 \\ 0, \text{при } x = 0 \\ -1, \text{при } x < 0 \end{cases}$$

Рис. 10

Число A называется пределом функции f(x) в точке а справа (слева), если

для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента

 $x \in (a; a + δ)$ (соответственно $x \in (a - δ; a)$) выполняется неравенство |f(x) - A| < ε.

$$\lim_{x \to a+0} f(x) = A$$
 или $f(a+0) = A$
$$\lim_{x \to a-0} f(x) = A$$
 или $f(a-0) = A$

Теорема. Если у функции f(x) существуют в точке а предел слева и предел справа, причем f(a+0) = f(a-0) = A, то в данной точке существует предел этой функции, равный A.

Предел функции при $x \to \infty$

Пусть функция f(x) задана на множестве X и $\forall N \ \exists x \in X: \ x > N$

Число A называется пределом функции f(x) при $x \to +\infty$, если $\forall \varepsilon > 0 \exists N$, такое, что для любого x > N выполнено неравенство $|f(x) - A| < \varepsilon$.

$$\lim_{x\to +\infty} f(x) = A$$

Аналогично определяется $\lim_{x\to -\infty} f(x) = A$

Если
$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$$
то пишут

$$\lim_{x \to \infty} f(x) = A$$

Пример 1. Докажем, что

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

Действительно, $\forall \varepsilon > 0$ возьмем $N = \frac{1}{2}$. Тогда

если
$$x > N = \frac{1}{\varepsilon}$$
, то $\frac{1}{x} < \varepsilon$, т.е. $\left| \frac{1}{x} - 0 \right| < \varepsilon$.

Предел числовой последовательности

Числовая последовательность — это функция, определенная на множестве натуральных чисел: f(n): $n \in \mathbb{N}$ $\{x_n\} = x_1, x_2, x_3, \dots, x_n, \dots$

Число A называется пределом числовой последовательности $\{x_n\}$, если $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$, такой, что $\forall n > N$ выполнено неравенство $|x_n - A| < \varepsilon$ $\lim_{n \to \infty} x_n = A$

Если последовательность имеет предел, то говорят, что она *сходится*, а если не имеет предела, то *расходится*.

Бесконечно малые и бесконечно большие функции

Функция f(x) называется бесконечно малой в точке a (при $x \to a$), если $\lim_{x \to a} f(x) = 0$

иначе,

$$\forall \varepsilon > 0 \ \exists \delta > 0, 0 < |x - a| < \delta$$

 $\Rightarrow |f(x)| < \varepsilon$

Пример 2: Функция $f(x) = \sin x$ является б.м. в точке x = 0: $\lim_{x \to 0} \sin x = 0$

Функция

$$f(x) = \begin{cases} \sin x, \text{ если } x \neq 0 \\ 1, & \text{ если } x = 0 \end{cases}$$

также является б.м. в точке x = 0 Функция

$$sgn x = \begin{cases} 1, \text{при } x > 0 \\ 0, \text{при } x = 0 \\ -1, \text{при } x < 0 \end{cases}$$

не является б. м. в точке x = 0.

Аналогично определяется

б. м. при
$$x \to +\infty (x \to -\infty)$$
 функция, в частности, *бесконечно малая*

последовательность $\{x_n\}$: $\lim_{n\to\infty} x_n = 0$

Пример 3: 1) Функция

$$f(x) = \frac{1}{x}$$
 является б. м. при $x \to +\infty$

2) Последовательность $\{\frac{1}{n}\}$ является б. м.

Функция f(x) называется бесконечно большой в точке а (при $x \to a$), если

$$\forall A > 0 \ \exists \delta > 0, 0 < |x - a| < \delta \Longrightarrow |f(x)| > A$$
$$\lim_{x \to a} f(x) = \infty$$

Пример 3: Функция $f(x) = \frac{1}{x}$ является б. б.

в точке x = 0.

(Для доказательства достаточно $\forall A>0$ взять $\delta=\frac{1}{A}$).

Аналогично определяется б. б. функция при $x \to +\infty$ ($-\infty$), а также при $x \to a + 0$ (-0)

<u>Теорема</u> (о связи бесконечно малой и бесконечно большой функций)

Пусть f(x) определена в некоторой проколотой окрестности точки a, то

- 1) Если f(x) б. б. в точке а функция, то в некоторой проколотой окрестности точки а определена функция $g(x) = \frac{1}{f(x)}$ и она является б. м. в точке а.
- 2) Если f(x) б. м. в точке а функция, то в некоторой проколотой окрестности точки а определена функция $g(x) = \frac{1}{f(x)}$ и она является б. б. в точке а.

Основные свойства бесконечно малых функций

Теорема1. Сумма и разность двух бесконечно малых в точке а функций есть функция бесконечно малая в точке а.

Пусть f(x) и g(x)-6. м. в точке a. Тогда $\forall \varepsilon > 0 \ \exists \delta_1 > 0, 0 < |x-a| < \delta_1 \Longrightarrow |f(x)| < \frac{\varepsilon}{2}$ и, также $\forall \varepsilon > 0 \ \exists \delta_2 > 0, 0 < |x-a| < \delta_2 \Longrightarrow |g(x)| < \frac{\varepsilon}{2}$

Возьмем $\delta = \min(\delta_1, \delta_2)$. Тогда $\forall x$ из окрестности $0 < |x - a| < \delta$ выполнены неравенства

$$|f(x)|<rac{arepsilon}{2}$$
 и $|g(x)|<rac{arepsilon}{2}$ $orall x\in\{0<|x-a|<\delta\}$ выполнено $|f(x)\pm$

Теорема 2. Произведение бесконечно малой в точке а функции на ограниченную в окрестности точки а функцию есть функция бесконечно малая в точке а.

Следствие 1. Произведение конечного числа ограниченных функций, из которых хотя бы одна — б. м. в точке a, есть функция бесконечно малая в точке a.

Следствие 2. Частное от деления бесконечно малой в точке а функции на функцию, имеющую отличный от нуля предел в точке а есть функция бесконечно малая в точке a.

Неопределенности

Пусть
$$f(x)$$
 и $g(x) - 6$. м. в точке a . Тогда
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

называется неопределенностью типа $\frac{0}{0}$ ($\begin{bmatrix} 0 \\ 0 \end{bmatrix}$)

Пример 4.

$$\lim_{x\to 0}\frac{\sin x}{x}$$

является неопределенностью $\left[\frac{0}{0}\right]$.

Пусть
$$f(x)$$
 и $g(x) - 6$. б. в точке a . Тогда
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

называется неопределенностью типа $\frac{\infty}{\infty}$ $\left(\begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix}\right)$.

Существуют другие типы неопределенностей, например,

$$[\infty - \infty], [\infty \cdot 0], [\infty^0], [0^0], [1^\infty]$$

Основные теоремы о пределах

<u>Теорема</u> (о связи между функцией, пределом и бесконечно малой функцией)

- 1) Если $\lim_{x \to a} f(x) = A$, $mo f(x) = A + \alpha(x)$, где $\alpha(x) \delta$. м. в точке α .
 - 2) Если $f(x) = A + \alpha(x)$, где $\alpha(x) \delta$. м. в точке а и A число, то $\lim_{x \to a} f(x) = A$.

■ 1) Согласно определению предела $\forall \varepsilon > 0 \,\exists \delta > 0, 0 < |x - a| < \delta$ $\Rightarrow |f(x) - A| < \varepsilon$.

Это означает, что функция $\alpha(x) = f(x) - A$ — бесконечно малая в точке a.

Представим f(x) в виде $f(x) = A + (f(x) - A) = A + \alpha(x)$.

Алгебраические свойства пределов функций

Теорема. Пусть функции f(x) и g(x) определены в проколотой окрестности точки а u, пусть $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$. Тогда:

$$\lim_{x \to a} [f(x) \pm g(x)] = A \pm B;$$
$$\lim_{x \to a} f(x)g(x) = A \cdot B;$$

Если $B \neq 0$, то в некоторой проколотой окрестности точки а определена функция f(x)/g(x) и $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$.

■ 1) Согласно теореме о связи функции, предела и б. м.

$$f(x) = A + \alpha(x), \qquad g(x) = B + \beta(x)$$
 где $\alpha(x)$ и $\beta(x) - \delta$. м. в точке a .

Поэтому

$$f(x) \pm g(x) = (A \pm B) + (\alpha(x) \pm \beta(x)) =$$

= $(A \pm B) + \gamma(x)$
где $\gamma(x) = \alpha(x) \pm \beta(x)$ - б. м. в точке a .

Следовательно,

$$\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$$

Следствие 1.

$$\lim_{x \to a} c f(x) = c A$$

 $r\partial e \ c = const$

Следствие 2. Пусть $P_n(x)$ и $Q_m(x)$ — многочлены степени n и m. Если $Q_m(a) \neq 0$, то

$$\lim_{x \to a} \frac{P_n(x)}{Q_m(x)} = \frac{P_n(a)}{Q_m(a)}$$

Замечание. Алгебраические свойства предела допускают обобщение на функции, являющиеся б. м. или б. б. в точке *а*, например

$$[\infty \cdot \infty] = \infty$$
, $[c \cdot \infty] = \infty$, $\left[\frac{c}{0}\right] = \infty$, $\left[\frac{c}{\infty}\right] = 0$, $\left[\frac{\infty}{0}\right] = \infty$, $\left[\frac{0}{\infty}\right] = 0$.

Пример 5.

$$\lim_{x \to 2} \frac{x^2 + 2x}{x^2 - 5x + 6} = \left[\frac{8}{0}\right] = \infty$$

Пример 6.

$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 5x + 6} = \left[\frac{0}{0}\right] =$$

$$= \lim_{x \to 2} \frac{x(x-2)}{(x-2)(x-3)} = \lim_{x \to 2} \frac{x}{(x-3)} = \frac{2}{-1} - 2$$

Пример 7.

$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x} = \left[\frac{0}{0}\right] =$$

$$= \lim_{x \to 0} \frac{(\sqrt{x+4}-2)(\sqrt{x+4}+2)}{x(\sqrt{x+4}+2)} =$$

$$= \lim_{x \to 0} \frac{x+4-4}{x(\sqrt{x+4}+2)} = \lim_{x \to 0} \frac{1}{(\sqrt{x+4}+2)} = \frac{1}{4}$$

Пример 8.

$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x + 4}{4x^3 + 3x^2 + 2x - 1} = \left[\frac{0}{0}\right] =$$

$$= \lim_{x \to \infty} \frac{1 + \frac{2}{x} + \frac{1}{x^2} + \frac{4}{x^3}}{4 + \frac{3}{x} + \frac{2}{x^2} - \frac{1}{x^3}} = \frac{1}{4}$$

Порядковые свойства предела

Теорема. Если в некоторой проколотой окрестности точки а выполняется неравенство $f(x) \ge B$ ($f(x) \le B$) и существует $\lim_{x \to a} f(x) = A$

Замечание. Теорема справедлива в отношении предела функции при $x \to +\infty$.

<u>Теорема</u> (о пределе промежуточной функции)

Если в проколотой окрестности точки а выполняются неравенства

$$f(x) \le g(x) \le h(x)$$

и существуют пределы функций f(x) и h(x) в точке a, причем

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$$

то существует

$$\lim_{x \to a} g(x) = A$$

 \blacksquare Зададим произвольное $\varepsilon > 0$.

Согласно определению предела функции найдется проколотая δ — окрестность точки a, в которой $|f(x) - A| < \varepsilon$ и $|h(x) - A| < \varepsilon$, кроме того

$$f(x) - A \le g(x) - A \le h(x) - A$$

Отсюда следует, что $|g(x) - A| < \varepsilon$ при $x \in \{0 < |x - a| < \delta\}$, что и означает, что $\lim_{x \to a} g(x) = A$

Теорема (о пределе монотонной функции)

Если функция f(x) монотонна и ограничена на полупрямой $x \ge a$, то существует $\lim_{x \to +\infty} f(x) = A$

Замечание. Аналогичная теорема имеет место для правого и левого предела функции в точке a: если функция f(x) монотонна и ограничена в правой (левой) полуокрестности точки a, то существует

$$\lim_{x \to a+0} f(x) \left(\lim_{x \to a-0} f(x) \right)$$

Следствие. Монотонная последовательность сходится.

ограниченная

Пример. Рассмотрим последовательность

$$x_n = \left(1 + \frac{1}{n}\right)^n.$$

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e \approx 2,718281828 \dots$$

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Второй замечательный предел

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

ИЛИ

$$\lim_{x \to +\infty} (1+x)^{\frac{1}{x}} = e$$

(этот предел является неопределенностью типа $[1^{\infty}]$)

Пример 9.

$$\lim_{x \to 0} \frac{\sin 3x}{7x} = \lim_{x \to 0} \frac{3 \cdot \sin 3x}{3 \cdot 7x} = \frac{3}{7}$$

Формы первого замечательного предела:

$$\lim_{x\to 0} \frac{tgx}{x} = 1; \lim_{x\to 0} \frac{arcsinx}{x} = 1; \lim_{x\to 0} \frac{arctgx}{x} = 1$$

Пример 10.

$$\lim_{x \to 0} \frac{tgx}{x} = \lim_{x \to 0} \frac{\sin x}{x \cdot \cos x} = 1$$

Пример. 11

$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 4}{x^2 - 3x + 7} \right)^x = [1^{\infty}] =$$

$$\lim_{x \to \infty} \left(1 + \frac{8x - 3}{x^2 - 3x + 7} \right)^x =$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{\frac{x^2 - 3x + 7}{8x - 3}} \right)^{\frac{x^2 - 3x + 7}{8x - 3} \cdot \frac{x^2 - 3x + 7}{x^2 - 3x + 7} \cdot x} =$$

$$\lim_{x \to \infty} e^{\frac{8x^2 - 3x}{x^2 - 3x + 7}} = e^8$$

<u>Сравнение бесконечно малых и бесконечно</u> <u>больших функций</u>

Пусть f(x) и g(x) – б.м. в точке a. Функция f(x) называется бесконечно малой более высокого порядка (имеет более высокий порядок малости), чем g(x) при $x \to a$, если $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$

Обозначение f = o(g) при $x \to a (o - малое om g)$

Пример 7. $x^2 = o(x)$ при $x \to 0$.

Функции f(x) и g(x) называются бесконечно малыми одного порядка (имеют одинаковый порядок малости) при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

Обозначение f = O(g) при $x \to a$ (O - большое от g) Пример 12. $2x^2 + x^3 = O(x^2)$ при $x \to 0$,

так как

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{2x^2 + x^3}{x^2} = 2$$

Функции f(x) и g(x) называются эквивалентными бесконечно малыми при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Обозначение $f \sim g$ при $x \rightarrow a$

Пример 13.
$$x^2 + x^3 \sim x^2$$
 при $x \to 0$.

Замечание. Равенства с символом о — малое, как правило, верны только в одну сторону, слева направо. Например, $x^2 = o(x)$, но $x \neq o(x^2)$ при $x \to 0$.

Пусть f(x) и g(x) – б. б. в точке a.

Функция f(x) имеет более высокий порядок роста, чем g(x) при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$$

Пример 14. Функция $f(x) = \frac{1}{x^2}$ имеет более высокий порядок роста, чем функция $g(x) = \frac{1}{x}$ при $x \to 0$, так как

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{x} = \infty$$

Функции f(x) и g(x) имеют одинаковый порядок роста при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

Пример 15. Функции $f(x) = \frac{1}{x+1}$ и $g(x) = \frac{1}{x}$ имеют одинаковый порядок роста при $x \to 0$.

Основные эквивалентные соотношения $(x \to 0)$

1.	$\sin x \sim x$	6.	$\ln(1+x)\sim x$
2.	$\arcsin x \sim x$	7.	$\log_a x \sim \frac{x}{\ln a}$
3.	$tgx \sim x$	8.	$a^x - 1 \sim x \ln a$
4.	$arctgx \sim x$	9.	$e^x - 1 \sim x$
5.	$1-\cos x \sim \frac{x^2}{2}$	10.	$(1+x)^m-1\sim mx$

Докажем, например, 7):

$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \lim_{x \to 0} \log_a (1+x)^{\frac{1}{x}} = \log_a e = \frac{1}{\ln a}$$

Отсюда

$$\log_a(1+x) \sim \frac{x}{\ln a}$$

Как частный случай получим 7):

$$ln(1+x)\sim x$$

Теорема 1. Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 2. Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Теорема 3. Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

Докажем Теорему 1.

Пусть $f(x) \sim f_1(x)$, $g(x) \sim g_1(x)$ при $x \to a$. Тогда

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \left(\frac{f(x)}{g(x)} \cdot \frac{f_1(x)}{f_1(x)} \cdot \frac{g_1(x)}{g_1(x)} \right) =$$

$$= \lim_{x \to a} \frac{f(x)}{f_1(x)} \cdot \lim_{x \to a} \frac{g_1(x)}{g(x)} \cdot \lim_{x \to a} \frac{f_1(x)}{g_1(x)}$$
$$= 1 \cdot 1 \cdot \lim_{x \to a} \frac{f_1(x)}{g_1(x)}$$

Пример.

$$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0{\sim}a_nx^n$$
 при $x\to\infty$, $a_n\neq 0$

Действительно,

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0}{a_n x^n} = \lim_{x \to \infty} 1 + \frac{a_{n-1}}{a_n} \frac{1}{x} + \frac{a_{n-2}}{a_n} \frac{1}{x^2} + \dots + \frac{a_1}{a_n} \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \frac{1}{x^n} = 1$$

Пример 14.

$$\lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x \to 0} \frac{3x}{7x} = \frac{3}{7}$$

Пример 15.

$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x + 4}{4x^3 + 3x^2 + 2x - 1} = \lim_{x \to \infty} \frac{x^3}{4x^3} = \frac{1}{4}$$