Описания к транслятору-интерпретатору:

Список лексем с номерами:

- 1) 'int'
- 2) 'float'
- 3) 'Int1'
- 4) 'If'
- 5) 'while'
- 6) ':'
- 7) '.'
- 8) ';'
- 9) ','
- 10)'+'
- 11) '-'
- 12)'/'
- 13)'*'
- 14) '('
- 15) ')'
- 16) '['
- 17) ']'
- 18) '{'
- 19) '}'
- 20) 'print'
- 21) 'scan'
- 22) '>='
- 23) '<='
- 24) '=='
- 25) '<'
- 26) '>'
- 27) '='

- 1) *типы данных:* int, int1, float
- 2) операторы: = + / * () [] {};
- 3) условные операторы и циклы с условиями, включая операции сравнения:

while усл: If усл: else <, >, <=, >=, !=, ==

4) операторы ввода и вывода: scan(), print()

Таблица переходов автомата:

<б> - буквы а, .., z, A, .., Z

<ц> - цифры 0..9

<с> - отдельные символы языка (+, -, (,), [,], {, }, ;)

<д> - другие символы (не символы языка)

ВХОДНО Й	<6>	<ц>	«.»	«»	!	>,<	=	/	*	\n	<c></c>	<д>
СИМВОЛ /												
СОСТОЯ НИЕ												
S O	I	C		S	T	A	A	K	Z	S	Z	
I 1	Ι	I	Z*	Z	Z*	Z*	Z*	Z*	Z*	Z*	Z*	
C 2		С	D	Z	Z*	Z*	Z*	Z*	Z*	Z*	Z*	

D 3		E										
T 4							Z					
E 5		E	Z*	Z	Z*							
A 6	Z*	Z*	Z*	Z	Z*	Z*	Z	Z*	Z*	Z*	Z*	
K 7	Z*	<i>Z</i> *	Z*	Z	Z*	Z*	Z*	Z*	L	Z*	Z*	
L 8	L	L	L	L	L	L	L	L	M	L	L	L
M 9	L	L	L	L	L	L	L	S	M	L	L	L

Семантические программы:

цч - целое число

вч - вещественное число

ВХОДНОЙ СИМВОЛ / СОСТОЯ НИЕ	<6>	<ц>	«.»	«»	!	>,<	II	/	*	\n	<c></c>	<д>
S 0	I/I	C/2		S/8	T/1	A/I	A/1	K/1	знак */12	S/8	знак/12	

I 1	I/3	I/3	имя/ 9	имя/7	имя/9	имя/9	имя/9	имя/9	имя/9	имя/7	имя/9	
C 2		C/4	D/5	<i>цч/8</i>	цч/10	цч/10	ųч/10	ųч/10	ųч/10	ųч/10	ųч/10	
D 3		E/6										
T 4							Знак !=/11					
E 5		E/6	вч/10	вч/8	вч/10	вч/10	вч/10	вч/10	вч/10	вч/10	вч/10	
A 6	знак/9	знак/ 9	знак/ 9	знак/9	знак/9	знак/9	знак/9	знак/9	знак/9	знак/9	знак/9	
K 7	знак /9	знак /9	знак /9	знак /7	знак /9	знак /9	знак /9	знак /9	L/8	знак /9	знак /9	
L 8	L/8	L/8	L/8	L/8	L/8	L/8	L/8	L/8	M/8	L/8	L/8	L/8
M 9	L/8	L/8	L/8	L/8	L/8	L/8	L/8	S/8	M/8	L/8	L/8	L/8

C[i] – текущий входной символ;

name – символьная строка;

n – целочисленная переменная;

х, d – вещественные переменные.

1. name := C[i];

2. n := ord(C[i]) - ord('0');

```
3. name := name + C[i];
4. n := n * 10 + ord(C[i]) – ord('0');
5. d := 1; x := n;
6. d := d * 0.1; x := x + (ord(C[i]) – ord('0')) * d;
7. Сравнение идентификатора с таблицей зарезервированных слов, для нахождения ключевых слов.
8. Name := null;
9. j:=j-1; 7();
10. j--;
11. name=ord(C[i]); 7()
```

Грамматика:

```
A \rightarrow aH = SZ

C \rightarrow S<SZ | S>SZ | S<=SZ | S>=SZ | S!=SZ | S==SZ | S and SZ | S or SZ

S \rightarrow S + T | S - T | T

T \rightarrow T * F | T / F | F

F \rightarrow (S) | +G | -GZ | aH | k

G \rightarrow (S) | aH | k

H \rightarrow [S] | \lambda

Z \rightarrow \lambda
```

После устранения левой рекурсии, преобразования к нестрогой нормальной форме Грейбах и факторизации:

```
P \rightarrow \text{int} R P | \text{int1} B P | \text{float} R P | \text{AQ}

R \rightarrow a M

M \rightarrow , a M | ;

B \rightarrow a[k] W

W \rightarrow , a[k] W | ;
```

 $A \rightarrow aH = SQ \mid scan(aH)Q \mid print(S)Q \mid if C: JEQ \mid AQ \mid while C: JZQ$

 $E \rightarrow else \ J \mid \lambda$

 $J \rightarrow aH = SZ \mid scan(aH) \mid print(S) \mid \{AQ\} \mid if C: JE \mid while C: JZ$

 $Q \rightarrow ;AQ \mid \lambda$

 $C \rightarrow (S)VUD \mid aHVUD \mid kVUD \mid +GVUD \mid -GVUD$

 $D \rightarrow \mbox{\ensuremath{\mathsf{SZ}}} \ | \mbox{\ensuremath{\mathsf{and}}} \ \mbox{\ensuremath{\mathsf{and}}} \ | \mbox{\ensuremath{\mathsf{and}}} \ \mbox{\ensuremath{\mathsf{and}}} \ | \mbox{\ensuremath{}} \$

 $S \rightarrow (S)VU \mid aHVU \mid kVU \mid +GVU \mid -GVU$

 $U \rightarrow$ + $TU \mid$ – $TU \mid$ λ

 $T \rightarrow (S)V \mid aHV \mid kV \mid +GV \mid -GV$

 $V \rightarrow * FV \mid / FV \mid \lambda$

 $F \rightarrow (S) \mid aH \mid k \mid +G \mid -GZ$

 $G \rightarrow (S) \mid aH \mid k$

 $H \rightarrow [S] \mid \lambda$

 $Z \rightarrow \lambda$

	+	-	*	/	()	а	k	[]	=	Τ
A							$aH=SQ$ $a\Box\Box\Box=$					
S	+ <i>GVU</i>	<i>-GVU</i> □□–'□			(S)VU		aHVU a□□□	kVU $k\Box\Box$				
U	+TU	<i>−TU</i>	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ

T	+ <i>GV</i>	<i>-GV</i> □□–'			(S)V		<i>aHV</i> <i>a</i> □□	$kV \ k\Box$				
V	λ	λ	* FV	/ FV □□/	λ	λ	λ	λ	λ	λ	λ	λ
F	+ <i>G</i>	-GZ □□-'			(S)		aH a□	k k				
G					(S)		aH a□	k k				
Н	λ	λ	λ	λ	λ	λ	λ	λ	[S]	λ	λ	
Z	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ

Грамматика со сравнениями:

Порождающие правила для сравнения двух выражений:

 $\text{C} \rightarrow \text{S} < \text{SZ} \mid \text{S} > \text{SZ} \mid \text{S} = \text{SZ} \mid \text{S} = \text{SZ} \mid \text{S} = \text{SZ} \mid \text{S} \text{ and SZ} \mid \text{S} \text{ or SZ}$

После преобразования к нормальной форме Грейбах и факторизации: $C \to (S)VUD \mid aHVUD \mid kVUD \mid +GVUD \mid -GVUD$

$$D \rightarrow \langle SZ \mid \rangle SZ \mid \langle =SZ \mid \rangle =SZ \mid !=SZ \mid ==SZ \mid and SZ \mid or SZ$$

Семантические действия генератора ОПС для нетерминала С:

Для нетерминала D соответственно:

Грамматика с условными операторами:

Порождающие правила, задающие условные операторы в полной и сокращенной форме (служебные слова if, then, :- терминалы):

$$A \rightarrow if C: AEZ$$

 $E \rightarrow else A \mid \lambda$

Семантические действия генератора ОПС при порождении условных операторов нетерминалом А:

Семантические действия для нетерминала Е:

2□

Грамматика с циклами:

Порождающее правило для задания оператора цикла

(служебные слова while, : - терминалы):

 $A \rightarrow$ while C: AZ

Семантические действия генератора ОПС при порождении цикла:

4□1□5

Числа 1, 2, 3, 4, 5 в семантических действиях обозначают выполнение семантических программ, генерирующих в ОПС операнды-метки (номера элементов ОПС) и операции условного и безусловного перехода на эти метки.

Семантические программы используют счетчик k – номер очередного генерируемого элемента ОПС , а также еще один магазин – магазин меток.

Программа 1.

- 1. В магазин меток записывается k.
- 2. В ОПС записывается пустой элемент место для будущей метки.
- 3. В ОПС записывается операция јf переход при условии false.

Программа 2.

- 1. Через верхний элемент магазина меток, как ссылку на ранее заготовленное место для метки, записывается k +
- 2. В магазин меток записывается k.
- 3. В ОПС записывается пустой элемент место для будущей метки.
- 4. В ОПС записывается операция ј безусловный переход.

Программа 3.

1. Через верхний элемент магазина меток, как ссылку на ранее заготовленное место для метки, записывается к.

Программа 4.

1. В магазин меток записывается k.

Программа 5.

- 1. Через верхний элемент магазина меток, как ссылку на ранее заготовленное место для метки, записывается k + 2.
- 2. В ОПС записывается метка, значение для которой читается из магазина меток.
- 3. В ОПС записывается операция ј безусловный переход.

Грамматика с составными операторами:

Порождающие правила для задания составного оператора, т.е. последовательности других операторов (;, {, } - терминалы):

$$A \rightarrow \{AQ\}$$

 $Q \rightarrow ;AQ \mid \lambda$

При этом семантические действия генератора ОПС для нетерминала А:

Для нетерминала Q:

Грамматика с операторами ввода и вывода:

Порождающие правила для задания стандартных операторов ввода и вывода (служебные слова scan, print – терминалы):

$$A \rightarrow scan (aH) \mid print (S)$$

Семантические действия генератора ОПС соответственно:

- s операция чтения со стандартного устройства ввода в переменную, операнд должен быть ссылкой на переменную
- р вывод значения арифметического выражения в стандартное устройство вывода, операнд числовое значение.

Грамматика с описаниями переменных:

Начальный нетерминал Р определяет программу в целом:

$$P \rightarrow int \ R \ P \ | \ int1 \ R \ P \ | \ float \ R \ P \ | \ \{A \ Q\}$$

 $R \rightarrow a M$

$$M \rightarrow$$
 , a $M \mid$;

Служебные слова int, int1, float задают описания:

int - целых переменных, int1 - одномерных массивов целых, float - вещественных переменных Семантические действия генератора ОПС соответственно для нетерминала Р:

для нетерминала R:

16□

для нетерминала R:

□16□ | □

Числа 11, 12, 13, 14, 15 задают семантические программы.

Семантические программы

Программа 11.

Переключение на заполнение таблицы переменных типа int (целочисленных), в таблице будут записываться имена переменных.

Программа 12.

Переключение на заполнение таблицы переменных типа одномерный массив int1 (целочисленных), в таблице будут записываться имена массивов.

Программа 13.

Переключение на заполнение таблицы переменных типа float (с плавающей точкой), в таблице будут записываться имена переменных.

Программа 14.

- 1. Завершение формирования таблиц переменных.
- 2. Генерация в ОПС операций выделения памяти блоками для каждого из типов переменных:
- для типа int и float в виде массива целых, каждая переменная в нем занимает отдельный элемент и ей приписан номер;

- для типа int1 в виде массива паспортов массивов, в них записывается размерность, а также ссылка на начало размещения массива в памяти.
- 3. Генерация в ОПС операций обнуления паспортов массивов для переменных типа int1.

Программа 15.

Генерация в ОПС операций освобождения всех выделенных в процессе выполнения программы блоков памяти.

Программа 16.

- 1. Проверка имени переменной, поступающей из входной цепочки, на совпадение с именами, ранее занесенными в таблицы. Если есть совпадение, то сигнализация об ошибке «повторное описание переменной».
- 2. Если ошибки нет, то добавление имени переменной в одну из таблиц переменных (на которую ранее было переключение).