慶應義塾大学試験問題用紙 (日吉)

				試験時間	50 分	分
平成 23 年	1月28日(金)1時限施行	学部	了 学科 年	組	採点欄	*
担当者名	近藤、栄長、磯部、奥田 中田、山田、垣内、犀川	学籍番号				
科目名	化学B	氏 名				

【問題1】次の問いに答えなさい。なお、答案用紙には解答に至るまでの計算式を書きなさい。

- (1) 八面体配位子場に存在する Mn^{2+} に関して、高スピン状態と低スピン状態に対応する基底状態の 3d 軌道の電子配置を示しなさい。また、それぞれの電子配置における配位子場安定化エネルギーを、配位子場分裂パラメーター(エネルギー) Δ_0 を単位として求めなさい。ただし、Mn の原子番号は 25 である。
- (2) H_2O 分子の双極子モーメントは 1.85 D であり、 $\angle HOH = 104.5^\circ$ である。OH の双極子モーメントを求めなさい。
- (3) H₂O, H₂Se, H₂Te を沸点の低い方から順に左から右へ並べなさい。
- (4) Si、Ge、C(ダイヤモンド)をバンドギャップの大きい方から順に左から右へ並べなさい。
- (5) Si のバンドギャップ $E_{\rm g}$ は 117 kJ mol⁻¹ である。(a) Si に $E_{\rm g}$ と同じエネルギーをもつ光を照射すると、光を吸収して価電子帯の電子が伝導帯へ励起されるものとすると、このときの光の波長を nm の単位で求めなさい。(b) Si の $E_{\rm g}$ を eV の単位で示しなさい。ただし、アボガドロ定数 $N_{\rm a}$ は 6.02×10^{23} mol⁻¹、プランク定数 h は 6.63×10^{-34} J s、光の速度 e は 3.00×10^8 m s⁻¹、1 eV = 1.60×10^{-19} J とする。

【問題2】下記の反応について、次の問いに答えなさい。なお、答案用紙には解答に至るまでの計算式を書きなさい。

CaCO₃[s] → CaO[s] + CO₂[g] ただし、[g]は気体、[s]は固体を意味する。

(1) 右表のデータを用いて、上記の反応のエンタルピー変化(ΔH°)とエントロピー変化(ΔS°)を計算しなさい。なお、右表には 25℃における標準生成エンタルピー ΔH° _f および標準エントロピー S° が示されている。

化学式[状態]	ΔH ° _f / kJ mol ⁻¹	S° / J K ⁻¹ mol ⁻¹
$CO_2[g]$	-393.5	213.7
CaO[s]	-635.1	38.2
CaCO ₃ [s]	-1207	88.7

- (2) 25℃での上記の反応は発熱または吸熱のどちらであるかを答えなさい。
- (3) 上記の反応における Gibbs の自由エネルギー変化(ΔG °)が 0 になる温度 ($^{\circ}$ C) を答えなさい。ただし、与えられた熱力学データは温度によらず一定であるものとする。

【問題3】 反応物 A の分解反応が一次反応である時、反応物 A の濃度[A]、反応速度定数 k および時間 t を用いて反応速度式を書きなさい。また、 $k=2.08\times 10^{-3}~{\rm s}^{-1}$ である時、反応物 A が初濃度の半分になるまでの時間は何分か。

【問題 4 】次の反応の主生成物(有機化合物) $\mathbf A$ から $\mathbf G$ の構造式を書きなさい。必要ならば立体化学構造(3 次元構造)も示しなさい。なお、化合物 $\mathbf X$ と化合物 $\mathbf Y$ は光学活性である。

$$H_3C$$
 CH_2CH_3 HBr A CH_3CH_2ONa B H_2 , Pd C CH_2CH_3 HO CH_3 CH_3

【問題5】次の問いに答えなさい。

- (1) 問題4において、A が主生成物として得られる規則を何と言うか。
- (2) 問題 4 の Y を Fischer 投影式で書きなさい。
- (3) 問題4の E は、光学活性であるか、光学不活性であるかを答えなさい。
- (4) 問題 4 において、G が主生成物として得られることを説明するのに最も適している Z の共鳴構造式 (極限構造式) を 1 つ書きなさい。