

July 2009
SupreMOSTM

FCP22N60N / FCPF22N60NT

N-Channel MOSFET 600V, 22A, 0.165Ω

Features

- $R_{DS(on)} = 0.140\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 11A$
- $BV_{DSS}>650V @ T_J = 150^{\circ}C$
- Ultra Low Gate Charge (Typ. Qg = 45nC)
- Low Effective Output Capacitance
- 100% Avalanche Tested
- · RoHS Compliant

Description

The SupreMOS MOSFET, Fairchild's next generation of high voltage super-junction MOSFETs, employs a deep trench filling process that differentiates it from preceding multi-epi based technologies. By utilizing this advanced technology and precise process control, SupreMOS provides world class Rsp, superior switching performance and ruggedness.

This SupreMOS MOSFET fits the industry's AC-DC SMPS requirements for PFC, server/telecom power, FPD TV power, ATX power, and industrial power applications.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

Symbol		Parameter		FCP22N60N	FCPF22N60NT	Units
V _{DSS}	Drain to Source Voltage			600		V
V _{GSS}	Gate to Source Voltage		=	±30	V	
	Drain Current	Continuous (T _C = 25°C)		22	22*	Α
ID	Drain Current	Continuous (T _C = 100°C)		13.8	13.8*	А
I _{DM}	Drain Current	Pulsed	(Note 1)	66	66*	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		2) 672		mJ	
I _{AR}	Avalanche Current		7.3		Α	
E _{AR}	Repetitive Avalanche Energy			2.75		mJ
dv./dt	Peak Diode Recovery dv/	dt	(Note 3)	3) 20		1//22
dv/dt	MOSFET dv/dt			100		V/ns
D	Dawas Dissipation	$(T_C = 25^{\circ}C)$		205	39	W
P_{D}	Power Dissipation	Derate above 25°C		1.64	0.31	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 t	o +150	οС	
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			°С		

*Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	FCP22N60N	FCPF22N60NT	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.61	3.2	
$R_{\theta JS}$	Thermal Resistance, Case to Heat Sink (Typical)	0.5	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	62.5	62.5	

Package Marking and Ordering Information T_C = 25°C unless otherwise noted

Parameter

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCP22N60N	FCP22N60N	TO-220	-	-	50
FCPF22N60NT	FCPF22N60NT	TO-220F	-	-	50

Test Conditions

Min.

Тур.

Max.

Units

Electrical Characteristics

Off Characteristics						
D\/	Drain to Source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0 \text{V}, T_J = 25 ^{\circ} \text{C}$	600	-	-	V
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0 \text{V}, T_J = 150 ^{\circ} \text{C}$	650	-	-	, v
ΔBV _{DS} S ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 1mA, Referenced to 25°C	-	0.68	-	V/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 480V, V_{GS} = 0V$	-	-	10	μА
DSS	Zero Gate Voltage Drain Gurrent	$V_{DS} = 480V, T_{J} = 125^{\circ}C$	-	-	100	μΛ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 50V, V_{DS} = 0V$	-	-	±100	nA

On Characteristics

Symbol

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	3	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10V, I_D = 11A$	-	0.140	0.165	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 20V, I _D = 11A	-	22	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	1001/1/	=	1950	-	pF
C _{oss}	Output Capacitance	$V_{DS} = 100V, V_{GS} = 0V$ f = 1MHz	-	75.9	-	pF
C _{rss}	Reverse Transfer Capacitance	I = 11VIDZ		3	-	pF
C _{oss}	Output Capacitance	V _{DS} = 380V, V _{GS} = 0V, f = 1MHz		43.2	-	pF
C _{oss} eff.	Effective Output Capacitance	$V_{DS} = 0V \text{ to } 480V, V_{GS} = 0V$		196.4	-	pF
Q _{g(tot)}	Total Gate Charge at 10V		-	45	-	nC
Q_{gs}	Gate to Source Gate Charge	$V_{DS} = 380V, I_D = 11A,$	-	8.7	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	$V_{GS} = 10V$ (Note 4)	-	14.5	-	nC
ESR	Equivalent Series Resistance (G-S)	Drain Open, f=1MHz	-	1	-	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	16.9	-	ns
t _r	Turn-On Rise Time	$V_{DD} = 380V, I_{D} = 11A$	-	16.7	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 4.7\Omega$	-	49	-	ns
t _f	Turn-Off Fall Time	(Note 4)	-	4	-	ns

Drain-Source Diode Characteristics

IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	22	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	66	Α
V_{SD}	Drain to Source Diode Forward Voltage V _{GS} = 0V, I _{SD} = 11A		-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _{SD} = 11A	-	350	-	ns
Q _{rr}	Reverse Recovery Charge $dI_F/dt = 100A/\mu s$		-	6	-	μС

- **Notes:**1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} = 7.3A, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 3. I_{SD} \leq 22A, di/dt \leq 200A/µs, V_{DD} \leq 380V, Starting T_J = 25°C
- 4. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

100

*Notes:
1. 250µs Pulse Test
2. T_C = 25°C

V_{GS} = 15.0 V
10.0 V
8.0 V
7.0 V
6.0 V
5.0 V
4.0 V

0.1 ___

Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

V_{DS},Drain-Source Voltage[V]

10

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area - FCP22N60N

Figure 8. On-Resistance Variation vs. Temperature

Figure 10. Maximum Safe Operating Area - FCPF22N60NT

Figure 11. Maximum Drain Current vs.Case Temperature

Typical Performance Characteristics

Figure 12. Transient Thermal Response Curve - FCP22N60N

Figure 13. Transient Thermal Response Curve - FCPF22N60NT

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

TO-220

Mechanical Dimensions

TO-220F

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLTTN CTI ™ Current Transfer Logic™

EcoSPARK[©] EfficentMax™ EZSWITCH™ *

airchild[®]

Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FETBench™ FlashWriter® * FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™

F-PFS™

GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET[™] MicroPak™

MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET® QSTM Quiet Series** RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™

SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM ® GENERAL

The Power Franchise® puwer*

TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO** TinvPower™ TinyPWM™ TinyWire™

TriFault Detect™ TRUECURRENT^{TM*} uSerDes™

 μ UHC® Ultra FRFET™ UniFFT™ VCXTM VisualMax™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. I40