Going Deeper with (Convolutional) Neural Networks

M.Sc. Oskar Maier

Institut für Medizinische Informatik
Universität zu Lübeck

Deep Neural Networks

Theory

Two layers are sufficient to model any functions

But

These networks do not learn well in practice

Alternative: Going deeper with Deep Neural Networks (DNN)

- Multiple layers allow for the modelling of the most complex function with (comparably) less parameters
- Small concepts are joined gradually into larger ones

Problems with deep networks

- 1. Amount of parameters
- Overfitting
- 3. Gradient vanishing/explosion
- 4. Input vanishing/explosion

Some of them application dependent

depth, width and paths

global layout

Leverage points: Gradient descent optimization

Leverage points: Regularizer

GPU

- Very fast execution of simple calculations in parallel
- Solutions for feed forward and back propagation exist
- By some considered the driving force behind the late advances in deep neural network training
- Example
 - 28x28, 500 mini-batch size, 2 conv layers
 - CPU i7 3.40GHz: 380.28m
 - GeForce GTX 480: 32.52m
- Memory is bottleneck (few GB)
- For the future, expect faster GPUs with more memory

Big Data

Big Data

Problem

- Up to million of parameters
- Repeated passes of the training data
- Tendency to overfit

Solution

- Recent developments increase the amount of available data manifold => from 100 to 1.000.000 images
- More data allows for more parameters with less danger of overfitting => larger networks

Dangers of Big Data

We invent Problems for which we have the data

Big Data

How good is your selfie?

http://karpathy.github.io/2015/10/25/selfie/

CNN

- Suitable for areas where distributed presentations can be found
- More heavily regularized than fully connected (FC) networks
- Less parameters
- => They lessen some of the Deep Learning problems

- Less flexible than FC networks
- Some authors announce the end of CNN in some areas
- FC limited by current processing power

Weight share in CNNs

- Removes the locality constraint from the receptive field
- Allows to detect features regardless of their position in the image
- Acts as a regularizer
- Greatly reduces the complexity

Not always sensible

• E.g. face detection where some feature appear spatial restricted

Pooling-Layer

- Special purpose layer to reduce complexity
- Results in faster network convergence
- Enforce generalization through the removal of spatial information (regularizer)

Different types

- Averaging
- L2 norm (square root of summes squares)
- Max-pooling

Max-Pooling

- "The winner takes it all" => Only the strongest response to a feature passes the layer
- In practice mostly only 2x2 version used
- Lately used less and less (strides have similar effect)^[1]

A typical CNN network

How to train your network II

Gradient descent tactics

$$w_i' \leftarrow w_i - \eta \frac{\partial E}{\partial w_i}$$

1. Batch

- gradient of whole training dataset at once
- huge memory requirements
- only off-line training
- guaranteed to converge to global/local minimum

2. Stochastic

- sample-wise update
- faster than batch and on-line training
- frequent updates with high variance
- overshoots sometimes, therefore usually coupled with steadily decreasing learning rates

3. Mini-batch

- reduces the variance
- can use very fast optimized matrix computation
- batch size often determined by memory (and for GPU power 2)

$$w_i' \leftarrow w_i - \eta \frac{\partial E}{\partial w_i}$$

- 1. Momentum^[1]
 - i.e. speed gain to escape oscillation in ravines
- 2. Nesterov accelerated gradient^[2]
 - Looking ahead slows down approaching the bottom of a valley
- 3. Adagrad^[3]
 - Gives more important to rare features by recording occurrences, monotonically decreasing learning rate, removes the need to set the learning rate
- 4. Adadelta^[4] & RMSprop^[5]
 - Like Adagrad, but with short-term memory
- 5. Adam^[6]
 - Like Adadelta/RMSprop but with momentum and bias correction

SGD optimization on loss surface contours

SGD optimization on saddle point

- Adadelta, RMSprop or Adam
 - faster
 - converge more reliable
 - have less trouble with complicated structures
 - Do not require the setting of the learning rate
- Adam maybe slightly better due to bias correction and momentum properties^[1]

- Some implementation for distributed and parallel SGD exist
- Further information:
 - http://sebastianruder.com/optimizing-gradient-descent
 - http://www.deeplearningbook.org/contents/optimization.html

Error and output functions

Sum of square differences

$$E = \frac{1}{2} \sum_{k} (t_k - y_k)^2$$

$$\frac{\partial E}{\partial w} = (y - t)g'(h)x$$

$$h = wx + b$$

Error and output functions

Cross-entropy

$$E = -\frac{1}{N} \sum_{x} [t \ln y + (1 - t) \ln(1 - y)]$$

$$\frac{\partial E}{\partial w} = \frac{1}{n} \sum_{x} x_j (g(h) - t)$$

$$h = wx + b$$

$$g(h) = \frac{1}{1 + e^{-h}}$$

Error and output functions

Log-likelihood

$$E = -\sum_{k}^{K} t_k \ln y_k$$

$$\frac{\partial E}{\partial w_{ik}} = a_j (y_k - t_k)$$

Softmax

$$g(h_k) = \frac{e^{h_k}}{\sum_{l}^{K} e^{h_l}}$$

L2 regularization or weight decay

$$E = E_o + \frac{\lambda}{2N} \sum_{w} w^2$$

$$w_i' \leftarrow \left(1 - \frac{\eta \lambda}{N}\right) w_i - \eta \frac{\partial E_0}{\partial w_i}$$

L1 regularization

$$E = E_o + \frac{\lambda}{N} \sum_{w} |w|$$

$$w_i' \leftarrow w_i - \frac{\eta \lambda}{N} sgn(w_i) - \eta \frac{\partial E_0}{\partial w_i}$$

Regularization: Interlude

- Constraints the model's parameters
- And therefore it's complexity / ability to adapt to the data
- In practice, this leads to simpler models
- And often better generalization
- But they do not have to be right or even better
- They are heuristics tricks and usually poorly understood systematically
- Why does it work? No one really knows.
- Training a DNN is like fitting a 1 Million parameter polynomial to 100.000 samples!
- The greater question behind is: How do we generalize?

Averaging / Ensemble

- Assumption: Every network overfits in a different way
- Idea: Letting them vote on the solution (averaging)
- Problem: DNN is expensive

Dropout^[1] [hot]

Very successful method against overfitting

- Presumed effect
 - Sub-networks are trained
 - Indirect acts like ensemble methods (many small networks)
 - Approximates the geometric mean of sub-nets (in the case of softmax layer)
 - Second effect is a bagging-like sub-network training
 - Reduces complex co-adaptation of neurons and hence only robust features are used

Recently considered overcome^[1]

Data augmentation

- Big Data better than small data
- But often only limit amounts available

- Idea: Same samples, but with slight plausible variations
- For images these can be:
 - Illumination
 - Slight distortions
 - Rotation & Translation
 - Noise
- More training data, more variations, better generalization

Batch normalization [hot]

- Observation: Network trains faster if input is whitened
- Problem: Distribution of layer inputs change after each learning step -> requires adaptation, hence low training, saturations
- **Idea**: Batch normalization $a_{i+1} = g(BN(Wa_i))$
 - Fix means and variances of layer inputs
 - Once for each mini-batch the means and variance is guessed
 - Then $y^k = \gamma^k \hat{x}^k + \beta^k$, where γ , β are learned and k denotes feature
 - Implemented as special purpose layer (trainable, build into network)

Effects

- Larger learning rate
- Less initialization dependence
- Regularizing (sometimes no Dropout required)
- Faster training (up to 14x)
 [1] Sergey loffe, Christian Szegedy (2015), "Batch Normalization: Accelerating Deep Network Training, by Reducing Internal Covariate Shift", http://arxiv.org/abs/1502.03167

Batch normalization [hot]

[1] Sergey Ioffe, Christian Szegedy (2015), "Batch Normalization: Accelerating Deep Network Training, by Reducing Internal Covariate Shift", http://arxiv.org/abs/1502.03167

Other regularizers

- Add random noise to the network
- Many regularizer terms for the error function
- Multi-task learning

More

http://www.deeplearningbook.org/contents/regularization.html

Weight initialization

Classical approach: $W \sim N(0,1)$

Initialization determines:

- Start point of gradient descent
- Local minima we reach
- How fast the network converges

Problem: Neuron saturation might occur in the hidden layers

Weight initialization

Weighted Gaussian solution: $W_j \sim N(0, 1/N_j)$

• Where N_i is the number of input to neuron j

Pre-training^[1]

- Unsupervised training of reduced representations (greedy i.e. layer-wise)
- Then few iterations of supervised
- Concentration on "what's important"
- Acts similar to de-noising

- Only works with deep believe networks (RBMs) and stacked auto-encoders
- Slow and only FC

MNIST pre-training example

Activation functions

Sigmoid

$$g(x) = \frac{1}{1 + e^{-x}}$$

Tanh

$$g(x) = \tanh x = \frac{e^x - e^{-x}}{e^x + \hat{e}^{-x}}$$

Activation functions [hot]

Rectified Linear Units (ReLUs)^{[1][2]}

$$g(x) = \max(0, x)$$

Image source: https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29
[1] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines."
Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010
[2] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep sparse rectifier neural networks."

Antoine Bordes, and Yoshua Bengio. "Deep sparse rectifier neural networks."

Activation functions [hot]

Maxout^[1]

$$g(x) = \max_{K} z_{k}$$

With $z_k = x^T W_k + b_k$ and K is the number of linear models

FC <-> CNN [hot]

224x224

224x224 reduced to 7x7xD i.e. by 32

256x256 four applications with stride 32 four answers

FC <-> CNN

224x224 reduced to 7x7xD i.e. by 32 256x256

[1,4,2,5]

256x256 one application four dimensional answer

Dilated convolution^[1]

Idea

- Use sparse kernels
- Always together with dense kernels
- Increases the receptive field of the first layers

Effect

- aggressive merging of spatial information
- faster convergence

Source: Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus (2013), "Intriguing properties of neural networks"

auto

ostrich

Source: Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus (2013), "Intriguing properties of neural networks"

auto ostrich

Source: Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus (2013), "Intriguing properties of neural networks"

Source: Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus (2013), "Intriguing properties of neural networks"

Old assumption

New assumption

Adversarial samples

- Constructed by selecting the input sample x' nearest to x, for which a neurons activation pattern changes significantly
- Adversary images pose also difficulties for DNNs trained on different training sets, albeit less
 - > There is a pattern behind it
- Adversarial samples dense but narrow (will seldom occur in nature)
- To avoid them nevertheless, adversarial training has been proposed to remove the pockets explicitly^[1]

Multi-resolution networks [hot]

U-Nets [hot]

[1] Olaf Ronneberger, Philipp Fischer, Thomas Brox, (2015) "U-Net: Convolutional Networks for Biomedical Image Segmentation", http://arxiv.org/abs/1505.04597

Residual Nets [hot]

- From layer l to l + a, we want to learn mapping $x_{l+a+1} = H(x_l)$
- Instead, we learn $F(x_1) = H(x_1) x_1$
- Assumption is that the residual function $F(x_1)$ is easier to learn

Figure 2. Residual learning: a building block.

Residual Nets

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, (Dec. 2015) "Deep Residual Learning for Image Recognition", http://arxiv.org/abs/1512.03385

Residual Nets

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (Dec. 2015), "Deep Residual Learning for Image 62 Recognition", http://arxiv.org/abs/1512.03385

Other networks

Recurrent NNs

- Notion of dynamic change over time
- Speech and natural language processing
- Video processing
- Near to our universal understanding of algorithms: Can be Turing machines interpreting code!
- (Google Android voice recognition uses RNNs)
- Most techniques from FF-ANNs can be employed for RNNs, too
 - BP, Gradient Descent, Regularizers, etc.

Long short-term memory units

- Gradient instability affects RNN even worse (the longer they train)
- Learns conditional gate deciding whether a values should pass, be remembered and/or be forgotten

Deep belief networks

- Generative model
- Can do un- and semi-supervised learning
- Compositions of restricted Boltzman machines or auto-encoders

Problems with deep networks

- 1. Amount of parameters
- Overfitting
- 3. Gradient vanishing/explosion
- 4. Input vanishing/explosion

Some of them application dependent

Why can we train deep networks?

- 1. ConvLayers reduce complexity
- 2. Regularization techniques avoid overfitting
- 3. ReLUs or Max-Out allow for faster training (up to 3-5)
- 4. Using GPUs and being patient
- 5. Careful architectural choices
- 6. Suitable weight initialization
- 7. Expanding training set
- 8. Larger training set
- 9. Identity connections
- → Simple set of ideas, powerful if used in concert

Is all that necessary?

- Pure FC network: $2.5k \rightarrow 2k \rightarrow 1.5k \rightarrow 1k \rightarrow 0.5k \rightarrow 10$
- 12.1 million parameters

- Only data augmentation, otherwise no gimmicks
- Simply processing power and slowly decreasing learning rate
- 0.35% Error on MNIST-10k (Current best 0.21%)

→ Big Data and great processing power

Is all that worth it?

Accuracy	Method	
98.04	FC shallow small + regularizer	
99.37	FC shallow wide (100 neurons) + regularizer	
97.80	Simple CNN (1 ConvLayer+maxpool, 3 maps, sigmoid, no regularizer)	
98.78	More feature maps (now 20)	
99.06	Second ConvLayer+maxpool	
99.23	ReLUs	
99.37	Augmenting training data (shifts only)	
99.46	Wider FC Layer (Extra FC layer leads to 99.43)	
99.60	Dropout (in FC)	
99.67	Ensemble (5 networks)	
99.65	Pure FC from before	

Deep learning: The solution to all problems?

- 1. Incredibly successful!
- Potential!
- 3. Overcame the standstill in ANN development!

- Segmentation, Translation, Prediction, Dreaming...
- And all of this with self-learning, out-of-the-box tools!
- Too good to be true? Possibly.

Tuning is the key and the curse

Discussion: Current state, future and impact

Keywords

- Where's the money?
- Half-life period of new methods
- Theoretical bedrock

- For which applications does it actually excel?
- How much better is DNN than other approaches?
- How well is deep learning understood?

Medical image processing idiosyncrasies

Background readings

Lectures by Nando de Freitag @ Oxford

- http://www.cs.ox.ac.uk/teaching/courses/2014-2015/ml/
- https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu

Lectures of CS231 @ Stanford

- http://cs231n.github.io
- https://www.youtube.com/playlist?list=PLrZmhn8sSgye6ijhLzllXiU9GNalwbF8B

Michael Nielsen: Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com (Very good!)

Goodfellow, Bengio and Courville: Deep Learning

http://www.deeplearningbook.org (Very scientific!)

Andrew Ng: UFLDL Tutorial @ Stanford

http://ufldl.stanford.edu/tutorial/

Further readings

- Matthew D Zeiler, Rob Fergus (2013), "Visualizing and Understanding Convolutional Networks", https://arxiv.org/abs/1311.2901
- A webpage on visualizing the lower layer activation by creating artificial images that would lead to a maximum neuron activation: http://yosinski.com/deepvis

DNN libraries

- Torch: http://torch.ch
- Caffe: http://caffe.berkeleyvision.org
- Theano: http://deeplearning.net/software/theano
- Tensor Flow: https://www.tensorflow.org
- Keras: http://keras.io

- List of results over the years on popular CV datasets:
 http://rodrigob.github.io/are we there yet/build/classification d
 atasets results.html
- Benchmark of networks and architectures: https://github.com/soumith/convnet-benchmarks

Online playthings

- Draw a number and see the CNN recognize it: http://scs.ryerson.ca/~aharley/vis/conv/flat.html
- Observe a network classifying image live in your browser: http://cs231n.stanford.edu/
- Train a DNN live in your browser with JavaScript: http://cs.stanford.edu/people/karpathy/convnetjs/

Fun facts

DNN plays Atari games

http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html

Input: monitor pixels

Output: actions

Learning: re-enforced

- Learned to play 5 older games
- In three of them "better" than humans
- No knowledge about the game rules used, all just infered

Inception

DeepDream

Hyperparameter Tips for CNNs

- CNNs generally difficult to train, since many architectural decisions have to be made and many hyper parameters have to be set
- *Input images*: Dimensions that are multiples of 2 (32, 64, 128, etc.)
- Kernel size: 3x3, more seldom 5x5; stride of 1, zero-padding
 - Exception: On insufficient GPU RAM one can choose 7x7 as first layer
- Amount of feature maps / filters per layer: The smaller the image, the more feature maps can be computed at the same costs; often sensible to keep costs constant
- Pooling: None or max-pooling with 2x2

Visualization of ConvNets

How to visualize what has been learned?

- 1. Filters directly
- 2. Guided backpropagation
- 3. Feature Maps
- 4. Image creating the maximum activation at a neuron
- 5. Convoluted images
- 6. Low dimensional, pre-last layer distance representation
- 7. Occlusion window

Visualization of ConvNets: Filters directly

Visualization of ConvNets: Filters backprojected

Visualization of ConvNets: Feature maps

Visualization of ConvNets: Max activations

Visualization of ConvNets: Distance

Visualization of ConvNets: Occlusion window

