Teoretyczne Podstawy Informatyki Zadanie Domowe

Jakub Musiał 268442

Maj 2024

Lista 7 - Zadanie 42

Opis zadania

Pokazać, że najmniejszy zbiór funkcji zawierających $I_{n,k}$ oraz zamknięty na operację złożenia, minimum i rekursji prostej (R_s) jest równoważny modelowi funkcji rekurencyjnych (R_μ) .

Definiujemy schemat rekursji prostej tworzącej funkcję $f: \mathbb{N}^{m+1} \to \mathbb{N}$ za pomocą funkcji $g: \mathbb{N}^m \to \mathbb{N}$ i $h: \mathbb{N}^{m+2} \to \mathbb{N}$ w następujący sposób:

$$f(0,\overline{x}) = g(\overline{x}) \wedge f(n+1,\overline{x}) = h(n,f(n,\overline{x}),\overline{x})$$

lub

$$f(0) = c \wedge f(n+1) = h(nf(n))$$

Gdzie $\overline{x} = (x_1, ..., x_n) \in \mathbb{N}^n$.

Definiujemy klasę funkcji μ -rekurencyjnych (R_{μ}) jako najmniejszą w sensie zawierania klasę funkcji częściowych o dziedzinach zawartych w iloczynie kartezjańskim zbioru liczb naturalnych i wartościach naturalnych, zawierającą:

- Wszystkie funkcjie $I_{n,k}$
- Funkcję charakterystyczną relacji mniejszości $\chi_<:\mathbb{N}^2\to\{0,1\}$
- \bullet Dodawanie (+ : $\mathbb{N}^2 \to \mathbb{N})$ oraz mnożenie (× : $\mathbb{N}^2 \to \mathbb{N})$

oraz zamkniętą na operację złożenia i minimum.

Rozwiązanie

Z definicji R_s oraz R_μ wiemy, że obie klasy zaweierają funkcje rzutowania $(I_{n,k})$ oraz są zamknięte na operację złożenia i minimum, zatem pomijając te elementy wspólne pokażemy, że $R_s \equiv R_\mu$.

Pokażmy, że $R_{\mu} \subseteq R_s$, budując funkcje +, × oraz $\chi_{<}$ za pomocą rekursji prostej:

- Dodawanie: $+(m,0) = I_{1,1}(m) \wedge +(m,n+1) = S(+(m,n))$
- Mnożenie: $\times (m, 0) = 0 \wedge \times (m, n + 1) = +((m, n), m)$
- Relacja mniejszości: $\chi_{<}(m,n) = 1 \div (n \div m)$

Gdzie jako funkcje pomocnicze definiujemy:

- Odejmowanie: $\dot{-}(m,0) = m \wedge \dot{-}(m,n+1) = P(\dot{-}(m,n))$
- Poprzednik: $P(0) = 0 \land P(n+1) = I_{2,2}(P(n), n)$

Pokażmy, że $R_s \subseteq R_\mu$, budując schemat rekursji prostej za pomocą "narzędzi" dostępnych w modelu R_μ :

$$f(m,\overline{x}) = min_a(lh(a) = m + 1 \land (a)_0 = g(\overline{x}) \land (\forall i < m)((a)_{i+1} = h(i,(a)_i,\overline{x})))$$

Zatem skoro $R_{\mu} \subseteq R_s$ oraz $R_s \subseteq R_{\mu}$, to możemy stwierdzić, że $R_s \equiv R_{\mu}$. \square