1. Zadání

1.1. Úkol měření

- **a)** Proměřte voltampérovou charakteristiku PEM elektrolyzéru, sestrojte graf a extrapolací určete rozkladné napětí elektrolyzéru.
- **b)** Proměřte zatěžovací voltampérovou charakteristiku PEM palivového článku, sestrojte graf a odhadněte maximální výkon, který lze z článku odebírat.

1.2. Postup měření

Nejprve jsme vše zapojili podle schéma uvedeném v návodu. Poté jsme ověřili, zda není palivový článek zkratován a odpojili jsme všechny zatěžovací rezistory, tak aby pracoval naprázdno. Nastavili jsme nulové hodnoty na regulovatelném zdroji a zapnuli ho. Napětí jsme nastavili na 5 V a proud na 2 A. Zkontrolovali jsme škrtítka na vstupu a výstupu palivového článku a uzavřeli je. Počkali jsme jednu minutu a poté jsme začali měřit voltampérovou charakteristiku elektrolyzéru. Vždy jsme snížili proud o přibližně 0,2 A a čekali jednu minutu, aby se napětí ustálilo a poté hodnoty zaznamenali. Tento způsob jsme opakovali do té doby, než jsme se dostali na nulový proud.

Znovu jsme na zdroji nastavili napětí 5 V a proud 2 A a zkontrolovali, zda jsou škrtítka otevřená. Zatížili jsme palivová článek rezistorem s odporem 2 Ω a počkali 5 minut, aby se ustálil. Odpojili jsme zatěžovací rezistor a změřili napětí naprázdno. Poté jsme měnili zapojení rezistorů s různými odpory a zapisovali proud a napětí. Nakonec jsme nastavili na zdroji nulové hodnoty, vypli jsme ho a odpojili jsme zatěžovací rezistory.

2. Pomůcky, přístroje k měření

- Regulovatelný zdroj
- Palivový článek
- Elektrolyzér
- 4x digitální multimetr MY-65
 - Pro stejnosměrný proud (rozsah 10 A, rozlišení 1 mA, přesnost +-2% z údaje, +-10 digitů)
 - Pro stejnosměrné napětí (rozsah 20 V, rozlišení 1 mV, přesnost +- 0.1% z údaje, +-3 digity)
- Rezistory 1Ω , 2Ω , 5Ω , 10Ω

3. Naměřené hodnoty

Nejdříve jsme měřili voltampérovou charakteristiku elektrolyzéru. Naměřili jsme 11 hodnot.

Napětí (Volt)	2.89	2.71	2.59	2.51	2.43	2.28	2.15	1.92	1.74	1.62	1.43
Proud	1.96	1.81	1.58	1.39	1.22	1.01	0.81	0.60	0.42	0.24	0.00
(Ampér)											

Poté jsme měřili voltampérovou charakteristiku palivového článku.

Odpor (Ohm)	0	1/4	5/6	1	10/7	5/3	2	5/2	5	10
Napětí (Volt)	4.21	1.64	0.72	0.62	0.46	0.41	0.35	0.27	0.15	0.08
Proud (Ampér)	0.21	0.49	0.64	0.66	0.68	0.69	0.71	0.72	0.76	0.79

4. Výpočet

4.1. Výpočet maximálního výkonu

Výkon je u stejnosměrného proudu definován jako **P=U*I [W]**, tudíž z našeho předchozího měření vyplývá, že největší výkon má palivový článek při nulovém odporu. Výkon je udáván ve Wattech.

P=U*I [W]

P=4.21*0.21 = 0.88 [W] =880 [mW]

4.2 Výpočet rozkladného napětí

S využitím skriptu na serveru http://herodes.feld.cvut.cz/mereni/ jsme zjistili, že přímka proložená voltampérovou charakteristikou elektrolyzéru má tyto hodnoty:

$$U = a_0 + a_1 * I [V]$$

Kde $a_0=1.48$ a $a_1=0.73$

Proložením přimkou grafem získáme nejistotu typu b: u_b=+-0.058[V].

Rozkladné napětí zjistíme tím, že najdeme bod ve kterém tato přímka protíná osu y, tudíž musí platit **I=0**, poté:

U=1.48-0.73*0 = 1.48 [V]

5. Nejistoty

5.1. Nejistota typu B pro výkon

Multimetr
$$u_{B}(V) = \frac{p\% \text{ z } naměřené hodnoty+n \ digitů}{\sqrt{3}} = \frac{0.001*4.21+0.003}{\sqrt{3}} = +-0,0042V$$

Multimetr $u_{B}(A) = \frac{p\% \text{ z } naměřené hodnoty+n \ digitů}{\sqrt{3}} = \frac{0.02*0.21+0.01}{\sqrt{3}} = +-0,0082A$

5.2. Nejistota typu C pro výkon

Pro nejistotu typu C jsme použili tento vzorec:

$$Z = X*Y \rightarrow u^2(Z) = y^2*u^2(X) + x^2*u^2(Y) = (0.21*0.0042)^2 + (4.21*0.0082)^2 = +-0.00065274$$

 $u_c(Z) = \sqrt{0.00065274} = +-0.025W$

6. Výsledky

Odhadovaný maximální výkon: P = (0.880+-0.025) [W] Rozkladné napětí elektrolyzéru: U= (1.480+-0.058) [V]

7. Závěr

Měřením voltampérové charakteristiky elektrolyzéru jsme zjistili rozkladné napětí pomocí metody proložení grafu přímkou. Toto napětí je (1.48+-0.058) [V]. Dále jsme zkoumali maximální výkon palivového článku. Maximální výkon vydává palivový článek při nulovém odporu a to (0.88+-0.025) [W]. Nepřesnosti byly způsobeny primárně z odchylek multimetrů. Kdybychom čekali déle při měření, dostali bychom pravděpodobně přesnější hodnoty. Pokud bychom měli výkonnější elektrolyzér, mohli bychom zvýšit přívod vodíku do palivového článku a tím zvýšit jeho výkon. Vyšší přesnosti měření bychom také docílili zdrojem s vyšší citlivostí, jelikož při měření bylo zdlouhavé a náročné nastavit přesnou hodnotu proudu.

8. Zdroje

- [1] Milan Červenka: Zpracování fyzikálních měření, na webu http://herodes.feld.cvut.cz
- [2] Měření charakteristik palivového článku, na webu:

http://herodes.feld.cvut.cz/mereni/downloads/navody/pemchar.pdf