Variable Compleja I

Tema 9: Ceros de las funciones holomorfas

① Desigualdades de Cauchy y CONSECUENCIAS

2 Principio de Identidad

Desigualdades de Cauchy y CONSECUENCIAS

Desigualdades de Cauchy

$$\Omega = \Omega^{\circ} \subset \mathbb{C} \,, \quad f \in \mathcal{H}(\Omega) \,, \quad a \in \Omega \,, \quad r \in \mathbb{R}^+ \,, \quad \overline{D}(a,r) \subset \Omega$$

$$M(f,a,r) = \max \{ |f(z)| : z \in C(a,r)^* \}$$

Entonces se tiene:
$$\frac{|f^{(n)}(a)|}{n!} \leqslant \frac{M(f,a,r)}{r^n} \qquad \forall n \in \mathbb{N} \cup \{0\}$$

Teorema de Liouville

Toda función entera y acotada es constante

De hecho, si $f \in \mathcal{H}(\mathbb{C})$ no es constante, entonces: $\overline{f(\mathbb{C})} = \mathbb{C}$

Teorema Fundamental del Álgebra

El cuerpo de los números complejos es algebraicamente cerrado:

$$P \in \mathcal{P}(\mathbb{C})$$
, P no constante $\implies \exists z_0 \in \mathbb{C} : P(z_0) = 0$

Motivación: ceros de polinomios

Ceros de un polinomio y orden de un cero

$$P \in \mathcal{P}(\mathbb{C})$$
, P no constante: $Z(P) = \{a \in \mathbb{C} : P(a) = 0\}$

- $\bullet \ Z(P)$ es un conjunto no vacío y finito
- Para cada $a \in Z(P)$ existe un único $m \in \mathbb{N}$ tal que:

$$P(z) = (z-a)^m \, Q(z) \ \ \, \forall z \in \mathbb{C} \, , \quad \text{donde} \ \, Q \in \mathcal{P}(\mathbb{C}) \quad \text{y} \quad Q(a) \neq 0$$

Decimos que P tiene en a un cero de orden m

• El orden se caracteriza por: $m = \min\{n \in \mathbb{N} : P^{(n)}(a) \neq 0\}$, es decir,

$$P(a) = P'(a) = \dots = P^{(m-1)}(a) = 0$$
 y $P^{(m)}(a) \neq 0$

Ceros de funciones holomorfas

Ceros de una función holomorfa y orden de un cero

$$\Omega$$
dominio, $f\in\mathcal{H}(\Omega)$ no idénticamente nula
$$Z(f)=\{z\in\Omega:\, f(z)=0\}$$

- Orden de un cero: Para cada $a \in Z(f)$ existe $n \in \mathbb{N}$ tal que $f^{(n)}(a) \neq 0$. El orden del cero de f en a es: $m = \min\{n \in \mathbb{N} : f^{(n)}(a) \neq 0\}$
- Caracterización: $a \in \Omega$ es un cero de orden $m \in \mathbb{N}$ si, y sólo si,

$$\exists g \in \mathcal{H}(\Omega) : g(a) \neq 0$$
 y $f(z) = (z-a)^m g(z)$ $\forall z \in \Omega$

• Principio de los ceros aislados: En un entorno de cero, fi no se

$$\forall a \in Z(f) \ \exists \delta > 0 : D(a,\delta) \subset \Omega \quad \text{y} \quad f(z) \neq 0 \ \forall z \in D(a,\delta) \setminus \{a\}$$

Equivalentemente, Z(f) no tiene puntos de acumulación en Ω :

$$Z(f)' \cap \Omega = \emptyset$$

Se considera $A = \{ \xi \in \Omega : \S^{n}(\xi) = 0 \ \forall n \in |n \cup \{0\}\} = \bigcap_{n=0}^{\infty} \{ \xi \in \Omega : \S^{n}(\xi) = 0 \}$

- 1) Como & no es cte cero = A + D
- 2) $f \in H(\Omega) = g^n e_2 \text{ cent.} = g^n \in \mathcal{S}^{(2)} = 0$ es cerrado relativo a Ω =D A también es cerrado relativo a Ω.
- 3) A es abierto:

Figures a \in ACD =D $\exists r>0$ $D(a,r) \in \Omega$ =D $\vartheta(\epsilon) = \sum_{n=0}^{\infty} \frac{\vartheta^n(a)}{n!} (\epsilon-a)^n \forall \epsilon \in D(a,r)$

$$= 2 \begin{cases} A_{\mu}(\xi) = 0 & \forall \xi \in O(\alpha, \tau) = 0 \\ \forall \xi \in O(\alpha, \tau) = 0 \end{cases} O(\alpha, \tau) \subset A$$
 and a solution of the solution of

$$\begin{array}{cccc}
\Omega & \text{conexo} \\
A & \text{conexo}
\end{array}$$

$$\begin{array}{ccccc}
\Omega & \text{conexo} \\
A & \text{conexo}
\end{array}$$

ii) Sea un cero de orden un (a):

Sea 1>0 to D(a,r) c Ω = D $B(E) = \sum_{\infty} \frac{8^{(n)}(a)}{8^{(n)}} (E-a)^n \forall E \in D(a,r)$

$$=\sum_{\infty}^{N=m}\frac{N!}{8^{\nu_j}(\sigma)}(\xi-\sigma)_{\nu}=(\xi-\sigma)_{m}\sum_{\infty}^{N=m}\frac{N!}{8^{\nu_j}(\sigma)}(\xi-\sigma)_{\nu-m}$$

Definium g: D -> C por

$$\delta(\xi) = \frac{(\xi - \sigma)_{w}}{\xi(\xi)} \quad \text{of } \xi \neq \sigma \quad \text{if } \delta(\sigma) = \frac{w_{i}}{\xi_{w_{i}}(\sigma)} \neq 0$$

geH(2/203)

$$g \in H(Tr(101))$$

$$g \in H(Tr(101))$$

$$g \in H(Tr(101))$$

$$g \in H(Tr(101))$$

(Si E = a por (*) y deg de g)

=0 g es derivable en a porque coincide con la suma de una serie de potencias centrada en a en un disco centrado en a.

Juponewas ahara que f(E) = (E-a)mg(E) YEE I

con geH(12) y g(a) = 0 con mell

$$\Rightarrow \xi(a) = \xi'(a) = \dots = \xi^{m-4}(a) \qquad \xi^{m}(a) = \xi(a) \cdot (a) = 0 \Rightarrow \xi \text{ tiene un}$$

iii) Sea $a \in \mathcal{E}(g)$ por ii) existe $g \in \mathcal{H}(\Omega)$ con $g(a) \neq 0$ $g(\mathcal{E}) = (\mathcal{E} - a)^m g(\mathcal{E})$

$$g(a) \pm 0$$
 } $3\delta_{>0}$ tal que $g(\epsilon) \pm 0$ $\forall \epsilon \in O(a, \delta) = 0$ $g(\epsilon) \pm 0$ $\forall \epsilon \in O(a, \delta)$

Consecuencia

Algunas cuestiones topológicas

• En cualquier espacio métrico X, la distancia a un conjunto no vacío $E\subset X$ es una función no expansiva:

$$d(x,E) = \inf\{d(x,y) : y \in E\} \quad \forall x \in X.$$
 Se tiene:
 $|d(x_1,E) - d(x_2,E)| \le d(x_1,x_2) \quad \forall x_1,x_2 \in X$

 \bullet Todo abierto Ω de $\mathbb C$ es unión numerable de compactos:

$$\mathbb{C} = \bigcup_{n=1}^{\infty} \overline{D}(0,n); \quad \Omega \neq \mathbb{C} \implies \Omega = \bigcup_{n=1}^{\infty} \left\{ z \in \mathbb{C} \,:\, |z| \leqslant n, \quad d(z,\mathbb{C} \setminus \Omega) \geqslant 1/n \right\}$$

- Todo subconjunto infinito de un espacio métrico compacto tiene al menos un punto de acumulación.

 Todo subconjunto infinito de un espacio métrico compacto tiene al menos un punto de acumulación.

 A carta a todas esos tempactos
- $\emptyset \neq A \subset \Omega = \Omega^{\circ} \subset \mathbb{C}, A' \cap \Omega = \emptyset \implies A$ numerable

Corolario

Si Ω es un dominio y $f \in \mathcal{H}(\Omega)$ no es idénticamente nula, entonces $Z(f) = \{z \in \Omega : f(z) = 0\}$ es numerable

Principio de identidad

Teorema

$$\Omega$$
 dominio, $f,g \in \mathcal{H}(\Omega)$

$$A \subset \Omega$$
, $f(z) = g(z) \ \forall z \in A$

$$A' \cap \Omega \neq \emptyset \implies f(z) = g(z) \quad \forall z \in \Omega$$

En particular, A no numerable \implies $f(z) = g(z) \quad \forall z \in \Omega$

Es decir, si 18 g coinciden en una suc de puntos convergente a un punto en D, coinciden

Ejemplo

$$f,g\in\mathcal{H}(\mathbb{C})\,,\quad f(1/n)=g(1/n)\quad\forall\,n\in\mathbb{N}\quad\Longrightarrow\quad f(z)=g(z)\quad\forall\,z\in\mathbb{C}$$

La exponencial compleja es la única extensión entera de la real