Вопрос 27. Экстремум функции для двух переменных

Рассмотрим случай функции от 2-х переменных z=z(x,y) $d^2z(x_0)=\frac{\partial^2z}{\partial x^2_{M_0}}(dx)^2+2\frac{\partial^2z}{\partial x\partial y_{M_0}}dxdy+\frac{\partial^2z}{\partial y^2_{M_0}}(dy)^2$

$$A=rac{\partial^2 z}{\partial x_{M_0}^2}(dx)^2;\, B=2rac{\partial^2 z}{\partial x\partial y_{M_0}}dxdy\;;\, C=rac{\partial^2 z}{\partial y_{M_0}^2}(dy)^2,$$
 тогда

 $d^2z(x_0,y_0)=A(dx)^2+2Bdxdy+C(dy)^2=(dx)^2*(A+2B\frac{dy}{dx}+C(\frac{dy}{dx})^2)$ Обозначим за D - дискриминант $D=B^2-AC$, тогда:

если D>0, то $dz^2(x_0, y_0)$ - разных знаков

если D<0, то $dz^2(x_0,y_0)$ - одного знака, причём при A>0: $d^2z>0$. При A<0: $d^2z<0$.

Теорема:

Пусть функция z=z(x,y) имеет непрерывные частные производные 2-го порядка, точка M_0 - критическая. Обозначим: $A=\frac{\partial^2 z}{\partial x^2_{M_0}};\ B=\frac{\partial^2 z}{\partial x\partial y_{M_0}};\ C=\frac{\partial^2 z}{\partial y^2_{M_0}};\ D=B^2-AC,$ тогда:

- 1) Если D>0, то M_0 не является точкой экстремума.
- 2) Если D < 0, то точка M_0 точка экстремума:
 - а) Если A>0, то M_0 точка минимума.
 - б) Если A < 0, то M_0 точка максимума.
- 3) Если D=0, то неясно.