

Background

- The global real estate market size was valued at USD 3.69 trillion in 2021 and is expected to expand at a compound annual growth rate (CAGR) of 5.2% from 2022 to 2030 – Grand View Research.
- Real Estate players need to be in a position to price their units correctly based on features.
- Real estate players need to know which features to include in the units they build that will generate the best returns in sales.

Problem
How do we price houses correctly? How do we know which features to include in a house to attract the most demand?

Solution

Come up with a regression model that can be used to predict house prices & which shows which house feautures stimulate demand the most.

Specific Objectives

House Prices

To predict house prices for a real estate agency using a regression model

House Features

To determine which features to build into houses to stimulate demand for houses

The Experimental Design

01

Business Understanding 02

Data Understanding 03

Data Preparation

04

Modelling

05

Evaluation

06

Deployment

Partial Linear Regression of All Variables Against Price

	ind_var	r_squared	intercept	slope	p-value	normality (JB)
0	price	1.000000	7.003109e-11	1.000000e+00	0.000000e+00	1.592032e+06
1	bedrooms	0.095073	1.296487e+05	1.217896e+05	0.000000e+00	1.194538e+06
2	bathrooms	0.275766	1.046688e+04	2.504851e+05	0.000000e+00	8.829729e+05
3	sqft_living	0.492865	-4.386760e+04	2.808067e+02	0.000000e+00	5.435339e+05
4	sqft_lot	0.008038	5.281697e+05	7.951601e-01	8.061525e-40	1.147191e+06
5	floors	0.065939	2.791338e+05	1.746950e+05	0.000000e+00	1.255497e+06
6	waterfront	0.070932	5.316534e+05	1.130871e+06	0.000000e+00	9.213256e+05
7	view	0.157884	4.955515e+05	1.904825e+05	0.000000e+00	1.030223e+06
8	condition	0.001324	4.701380e+05	2.054423e+04	8.719407e-08	1.136508e+06
9	grade	0.445507	-1.057041e+06	2.085999e+05	0.000000e+00	2.043215e+06
10	sqft_above	0.366709	5.973768e+04	2.686437e+02	0.000000e+00	7.291583e+05
11	sqft_basement	0.104871	4.618236e+05	2.688033e+02	0.000000e+00	8.892866e+05
12	yr_built	0.002914	-7.905034e+05	6.751304e+02	1.999215e-15	1.142142e+06
13	yr_renovated	0.015988	5.304219e+05	1.156398e+02	9.976356e-78	1.085812e+06
14	sqft_living15	0.342663	-8.310674e+04	3.137541e+02	0.000000e+00	1.911706e+06
15	sqft_lot15	0.006799	5.260169e+05	1.109393e+00	6.321007e-34	1.141778e+06

Square Foot of the Living Area Has The Highest Linear Relationship With Price at 0.49

Multicollinearity Test

1.000000

0.515884

0.576671

bedrooms

bathrooms

eaft living

bedrooms bathrooms sqft_living

0.515884

1.000000

0.754665

0.576671

0.754665

sqft_lot

0.031703

0.087740

1.000000 0.172826 0.353040

Sqit_livilig	0.570071	0.754005	1.000000	0.172020	0.353949	0.103616	0.264011	-0.000703	0.702704	0.670060	0.433043	0.730420	U.
sqft_lot	0.031703	0.087740	0.172826	1.000000	-0.005201	0.021604	0.074710	-0.008958	0.113621	0.183510	0.015286	0.144608	0.
floors	0.175429	0.500653	0.353949	-0.005201	1.000000	0.023698	0.029444	-0.263768	0.458183	0.523889	-0.245705	0.279885	-0.
waterfront	-0.006582	0.063744	0.103818	0.021604	0.023698	1.000000	0.401857	0.016653	0.082775	0.072074	0.080588	0.086463	0.
view	0.079532	0.187737	0.284611	0.074710	0.029444	0.401857	1.000000	0.045990	0.251321	0.167648	0.276947	0.280439	0.
condition	0.028472	-0.124982	-0.058753	-0.008958	-0.263768	0.016653	0.045990	1.000000	-0.144674	-0.158202	0.174105	-0.092824	-0.
grade	0.356967	0.664983	0.762704	0.113621	0.458183	0.082775	0.251321	-0.144674	1.000000	0.755917	0.168392	0.713202	0.
sqft_above	0.477610	0.685326	0.876586	0.183510	0.523889	0.072074	0.167648	-0.158202	0.755917	1.000000	-0.051963	0.731864	0.
sqft_basement	0.303093	0.283770	0.435043	0.015286	-0.245705	0.080588	0.276947	0.174105	0.168392	-0.051963	1.000000	0.200355	0.
sqft_living15	0.391638	0.568634	0.756420	0.144608	0.279885	0.086463	0.280439	-0.092824	0.713202	0.731864	0.200355	1.000000	0.
sqft_lot15	0.029244	0.087175	0.183286	0.718557	-0.011269	0.030703	0.072575	-0.003406	0.119248	0.194047	0.017276	0.183192	1.
Saf	t ahovo	eaft liv	vina ar	ada en	ft living	ı15 and	hathro	ome eh	ow hiał	correla	tion/over 0	75) with	

-0.006582 0.079532

0.063744 0.187737

floors waterfront

0.175429

0.500653

view condition

0.103818 0.284611 -0.058753 0.762704

0.028472

-0.124982

0.356967

0.664983

0.477610

0.685326

0.876586

grade sqft_above sqft_basement sqft_living15 sqf

0.303093

0.283770

0.435043

0.391638

0.568634

0.756420

Sqft_above, sqft_living, grade, sqft_living15 and bathrooms show high correlation(over 0.75) with each other. Some variables will be dropped.

Model 1 OLS Results

OLS Regression Results

Dep. Variable:	price_log	R-squared: 0.6		
Model:	OLS	Adj. R-squared:	0.624	
Method:	Least Squares	F-statistic:	543.4	
Date:	Date: Sun, 26 Mar 2023 Prob (F-statistic): Time: 14:05:38 Log-Likelihood:			
Time:				
No. Observations:	21613	AIC:	4.029e+04	
Df Residuals:	iduals: 21546 BIC:		4.082e+04	
Df Model:	66			
Covariance Type:	nonrobust			
	coef std err	t P> t [0.0	25 0.9751	
_			-	
const	-0.4047 0.615	-0.658 0.511 -1.6	10 0.801	

R Squared of 0.625

Model 2 OLS Results

OLS Regression Results

Dep. Variable:	price_log	R-squared:	0.631		
Model:	OLS	Adj. R-squared:	0.630		
Method:	Least Squares	F-statistic:	550.9		
Date:	Tue, 28 Mar 2023	Prob (F-statistic):	0.00		
Time:	11:58:28	Log-Likelihood:	-19881.		
No. Observations:	21613	AIC:	3.990e+04		
Df Residuals:	21545	BIC:	4.044e+04		
Df Model:	67				
Covariance Type:	nonrobust				
	coef std err	t P> t [0.0	25 0.975]		
const	-0.4487 0.610	-0.736 0.462 -1.6	44 0.746		

R Squared of 0.631

Model 3 OLS Results

OLS Regression Results

Dep. Variable:		price_log R-squared:		red:	0.634				
Model:		OLS	Adj.	j. R-squared:		0.633			
Method:	Leas	t Squares		F-statis	stic:	548.8			
Date:	Tue, 28	Mar 2023	Prob (Prob (F-statistic):		0.00			
Time:		18:24:08	Log-	Log-Likelihood:			-19805.		
No. Observations:		21613	AIC:			3.975e+04			
Df Residuals:		21544		E	BIC:	4.0	030e+04		
Df Model:		68							
Covariance Type:		nonrobust							
	coef	std err	t	P> t	[0.0	25	0.975]		
const	-0.6590	0.608	-1.084	0.278	-1.8	50	0.532		
sqft_living_log	0.4273	0.012	36.703	0.000	0.4	04	0.450		
sqft_lot_log	0.0027	0.011	0.250	0.803	-O ₋ O	19	0.024		
saft living15 log	0.1980	0.007	28.326	0.000	0.1	84	0.212		

R Squared of 0.634

Conclusion

- The final model has an adjusted R-squared value of 0.634.
- With adjustments to the categorical variables and the continuous variables we can more accurately predict our dependent variable 'price'.
- For the continuous variables, we applied log transformations to the continuous data for them to appear more normal.
- Normalization was also applied to reduce the effect of outliers and reduce the values to be between 0-1.
- To handle categorical variables we used one hot encoding.
- The three best predictors for the sale price of a house are square footage of the living area, number of bathrooms/bedrooms and condition of the house

Business Recommendations

- To increase the sale price of a house, we can;
- Increase the amount of bathrooms.
- 2. Increase the number of bedrooms of the property.
- Renovate the property to help improve the condition of the house.
- 4. Increase the square footage of the living area.