Trường THPT Lê Quý Đôn

KIÊM TRA TRẮC NGHIỆM Môn Giải tích 12 – Chương 4

Thời gian: 45 phút

Điểm

Câu 1: Cho số phức z thỏa điều kiện $z + (2+i)\overline{z} - 3 - 5i = 0$. Phần thực và phần ảo của z là:

Câu 2: Cho số phức z = 20 + 17i. Phần thực và phần ảo của z lần lượt là:

Câu 3: Số phức z thỏa $(2+3i)z+(3-i)^3=5+2i$. Tổng phần thực và phần ảo của z bằng:

A.
$$\frac{153}{13}$$

D.
$$\frac{139}{13}$$

Câu 4: Cho hai số phức z = 3 - 4i, z' = -1 - i. Khi đó môđun của số phức z - z' bằng:

C.
$$\sqrt{41}$$

D.
$$\sqrt{5}$$

Câu 5: Tìm số phức z, biết |z| + z = 8 - 4i

A.
$$z = 3 - 7i$$
 B. $z = 4 - 3i$

B.
$$z = 4 - 3i$$

C.
$$z = 5 - 2i$$
 D. $z = 3 - 4i$

D.
$$z = 3 - 4i$$

Câu 6: Cho số phức z = a + bi; $a, b \in R$ thỏa điều kiện $(1+i)z + 2\overline{z} = 3 - i$. Tính P = a + b

A.
$$P = 5$$

B.
$$P = -1$$

C.
$$P = -5$$

D.
$$P = 15$$

Câu 7: Cho số phức z có phần thực là số nguyên và thỏa điều kiện $|z| - 3\overline{z} = -11 - 6i + z$. Tính $m\hat{o}dun w = z + 1 + z^2$

A.
$$|w| = 3\sqrt{97}$$

A.
$$|\mathbf{w}| = 3\sqrt{97}$$
 B. $|\mathbf{w}| = \sqrt{445}$ **C.** $|\mathbf{w}| = 3\sqrt{65}$ **D.** $|\mathbf{w}| = \sqrt{97}$

C.
$$|w| = 3\sqrt{65}$$

D.
$$|w| = \sqrt{97}$$

Câu 8: Gọi z_1, z_2 là hai nghiệm thuần ảo của phương trình $z^4 + 3z^2 - 28 = 0$. Khi đó $|z_1 - z_2|$ bằng:

A.
$$2\sqrt{7}i$$

B.
$$2\sqrt{7}$$

Câu 9: Gọi z là nghiệm phức có phần ảo âm của phương trình $z^2 - 2z + 4 = 0$. Tìm môđun của số phức $w = 2z - (\overline{z})^2$

B. 4

C. 8

D. 5

Câu 10: Tìm khẳng định sai trong các khẳng định sau :

A. Số phức
$$z = a + bi$$
 có môđun bằng $\sqrt{a^2 + (bi)^2}$

B. Số phức
$$z = a + bi$$
 có điểm biểu diễn là $M(a;b)$

C. Số phức
$$z = a + bi$$
 có số phức liên hợp là $\overline{z} = a - bi$

D. Số phức
$$z = a + bi$$
 có phần thực là a và phần ảo là b

Câu 11: Cho số phức z thỏa điều kiện $2z + (1-2i)\overline{z} = -9 + 2i$. Môđun z bằng:

B.
$$\sqrt{13}$$

D.
$$\sqrt{85}$$

Câu 12: Gọi A, B, C lần lượt là các điểm biểu diễn số phức $z_1 = -1 + 2i$; $z_2 = -4 - i$; $z_3 = 4 - 3i$. Chọn khẳng định đúng.

A. $\triangle ABC$ vuông tại A

B. $\triangle ABC$ vuông tại B

C. $\triangle ABC$ vuông tại C

D. ΔABC cân tại A

Câu 13: Cho số phức z thỏa $\overline{z} - (1-3i)(-2+i) = 2i$. Môđun của z là:

Câu 14: Gọi z_1, z_2, z_3, z_4 là các nghiệm của phương trình $z^4 - 6z^2 - 27 = 0$. Khi đó $P = |z_1 + z_2 + z_3 + z_4|$

- **A.** $3\sqrt{10}$
- **B.** 12

- C. $6 + 2\sqrt{3}$
- **D**. 0

Câu 15: Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức $z = x + yi; x, y \in R$ thỏa điều kiện |z-i|=4 là:

- **A.** Đường tròn (C): $x^2 + (y-1)^2 = 16$ **B.** Đường tròn (C): $(x-1)^2 + y^2 = 16$
- C. Đường tròn (C): $x^2 + (y-1)^2 = 4$
- **D.** Đường tròn tâm I(0;-1), bán kính r=4

Câu 16: Cho số phức z = 11 + 4i. Số phức liên hợp của z có điểm biểu diễn là:

- **B.** (11;-4)
- $\mathbf{C.} (-11;4)$

Câu 17: Với giá trị nào của x, y thì x + y - yi = 3 - (2x + 6)i

- **A.** x = -1, y = -4 **B.** x = 1, y = -4 **C.** x = 1, y = 4

Câu 18: Cho số phức z thỏa (2-3i)z-2i=4. Khi đó số phức liên hợp của z là:

- **A.** $-\frac{2}{13} \frac{16}{13}i$ **B.** 2+5i
- C. $\frac{14}{13} \frac{8}{13}i$ D. $\frac{2}{13} \frac{16}{13}i$

Câu 19: Cho số phức $z = \frac{1}{2} - \frac{\sqrt{3}}{2}i$. Tính số phức $w = 2 - z + z^2$

- **A.** $w = 2 \sqrt{3}i$
- **B.** w = $1 \sqrt{3}i$
- **C.** w = 1
- **D.** w = 1 i

Câu 20: Gọi z_1 và z_2 là các nghiệm của phương trình $-z^2+2z-5=0$. Tính $P=z_1^3+z_2^3$ bằng:

- **A.** -22-4i
- \mathbf{B} . -4i

Câu 21: Trong mặt phẳng Oxy, cho điểm M(1,-2) biểu diễn cho số phức z, tìm tọa độ điểm N biểu diễn cho số phức w = iz

- **A.** N(2;1)
- **B.** N(-2;1)
- C. N(1;-1) D. N(-2;-1)

Câu 22: Biết A(2;-3), B(1;4) lần lượt là hai điểm biểu diễn số phức z_1, z_2 trên mặt phẳng tọa độ Oxy, môđun của số phức $z_1 + 3z_2$ là:

- **A.** $\sqrt{26}$
- **B.** $\sqrt{106}$
- $C_{1}\sqrt{108}$
- **D.** $\sqrt{10}$

Câu 23: Cho số phức z thỏa điều kiện $(2+i)z + \frac{2(1+2i)}{1+i} = 7+8i$. Tính môđun w = z+1+i

- **A.** $|w| = \sqrt{5}$
- **B.** |w| = 25
- **C.** |w| = 5
- **D.** $|w| = \sqrt{19}$

Câu 24: Tìm số phức z, biết $\bar{z} = \frac{1-2i}{3+i} - \frac{4-i}{3-i}$

- **A.** $-1 \frac{7}{5}i$ **B.** $-\frac{6}{5} + \frac{3}{5}i$ **C.** -1

D. $-\frac{6}{5} + \frac{4}{5}i$

Câu 25: Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức $z = x + yi; x, y \in R$ thỏa điều kiện |z-i| = |z+3| là:

- A. Đường thẳng
- **B.** Doan thăng
- C. Đường tròn
- **D.** Parabol