Supplementary material

Figure S1. H_2O time-history during the thermal decomposition of H_2O_2 at 1.91 atm, 1398 K. Test mixture: 2540 ppm $H_2O_2/1234$ ppm $H_2O/617$ ppm O_2/Ar . Experimental data (in blue) from Hong et al. [16].

Figure S2. OH time-history during the thermal decomposition of H_2O_2 at conditions of those of Figure S1. Experimental data (in blue) are from Hong et al. [16].

Figure S3. Comparison between experimental dat (in blue) (Slack [82]) and the prediction of the current mechanism in a stoichiometric H_2 /air mixture at 2 atm.

Figure S4. Comparison between experimental data (in blue) (Bhaskaran et al. [83]) and the prediction of the current mechanism in a mixture consisting of 22.59% H_2 , 14.79% O_2 , balance N_2 at 2.5 atm.

Figure S5. Comparison between experimental data (in blue) (Skinner & Ringrose [84]) and the prediction of the current mechanism in a mixture consisting of $8\%~H_2$, $2\%~O_2$, balance Ar at 5 atm.

Figure S6. Comparison between experimental data (in blue) (Schott & Kinsey [85]) and the prediction of the current mechanism in a mixture consisting of $1\%~H_2$, $2\%~O_2$, balance Ar at 1 atm.

Figure S7. Comparison between experimental data (in blue) (Schott & Kinsey [85]) and the prediction of the current mechanism in a mixture consisting of 4% H₂, 2% O₂, balance Ar at 1 atm.

Figure S8. Experimental data (in blue) are from Petersen et al. [86]. Test mixture consisted of 0.1% H_2 , 0.05% O_2 , and balance Ar at 64 atm. Ignition time defined as the point where d(OH)/dt is maximum.

Figure S9. Experimental data (in blue) are from Petersen et al. [86]. Test mixture consisted of $2\% H_2$, $1\% O_2$, and balance Ar at 33 atm. Ignition time defined as the point where d(OH)/dt is maximum.

Figure S10. Experimental data (in blue) are from Wang et al. [87]. Test mixture consisted of 11.25% H_2 , 63.75% air, 25% H_2 O, at 4-5 atm. Ignition time defined as the onset of OH emission.

Figure S11. Experimental data (in blue) are from Wang et al. [87]. Test mixture consisted of 11.25% H_2 , 63.75% air, 25% H_2 O, at 9-10 atm. Ignition time defined as the onset of OH emission.

Figure S12. Experimental data (in blue) are from Wang et al. [87]. Test mixture consisted of 11.25% H_2 , 63.75% air, 25% H_2 O, at 15-17 atm. Ignition time defined as the onset of OH emission.

Figure S13. Species profiles from a flow reactor experiment [2]. Unburnt mixture was at 934 K, 3.02 atm and consisting of 0.95% H₂, 0.49% O₂, and N₂ balance gas. The curves are calculated with the presented mechanism by using adiabatic approximation and are shifted simultaneously by 0.22 s in time. The calculated adiabatic temperature profile is also compared with experimental values.

Figure S14. Species profiles from a flow reactor experiment [2]. Unburnt mixture was at 933 K, 3.4 atm and consisting of 1.01% H_2 , 0.52% O_2 , and N_2 balance gas. The curves are calculated with the presented mechanism by using adiabatic approximation and are shifted simultaneously by 0.35 s in time.

Figure S15. Species profiles from a flow reactor experiment [2]. Unburnt mixture was at 934 K, 6.0 atm and consisting of 1.01% H_2 , 0.52% O_2 , and N_2 balance gas. The curves are calculated with the presented mechanism by using adiabatic approximation and are shifted simultaneously by 0.34 s in time.

Figure S16. Species profiles from a flow reactor experiment [2]. Unburnt mixture was at 880 K, 0.32 atm and consisting of 0.5% H_2 , 0.5% O_2 , and N_2 balance gas. The curves are calculated with the presented mechanism by using adiabatic approximation and are shifted simultaneously by 0.069 s in time. The calculated adiabatic temperature profile is also compared with experimental values.

Figure S17. H_2 mole fraction profiles from a flow reactor experiment [2]. (a): 897 K, 0.60 atm, 0.50% $H_2/0.34\%$ O_2/N_2 , ϕ = 0.75, time shift =75 ms; (b) 896 K, 0.60 atm, 0.50% $H_2/0.76\%$ O_2/N_2 , ϕ = 0.33, time shift = 48 ms.

Figure S18. H_2 mole fraction profile from a flow reactor experiment [2]. Unburnt mixture was at 943 K, 2.5 atm and consisting of 1% H_2 , 1.5% O_2 , and N_2 balance gas. The H_2 time-history was shifted forward by 0.23 s in time.

Figure S19. H_2 mole fraction profiles from a flow reactor experiment [2]. (a): 914 K, 15.7 atm, 1.18% $H_2/0.61\%$ O_2/N_2 , ϕ = 1, time shift = 0.27 s; (b) 914 K, 15.7 atm, 1.18% $H_2/2.21\%$ O_2/N_2 , ϕ = 0.27, time shift = 0.31 s.

Figure S20. The structure of a burner-stabilized flame studied using a mixture of 10% H_2 , 5% O_2 and balance Ar (by mole) at 10 atm and 363 K, mass flow rate: 0.135 [g cm⁻²s⁻¹]. Experimental data are from the study by Paletskii et al. [100]; and the curves are calculated using the current mechanism.