Overall Input

Q: causal query

 D_O : observational and/or,

 D_I : interventional data

G: prior Knowledge on network

M: estimation method

Overall Output

 \widehat{Q} : estimated and verified value of the query

Causal workflow

Step 1 input

 D_O and/or D_I , G

Step 1 output

G': repaired network

Step 1: Repair the network structure

Add a bi-directed edge between variables when conditional independencies implied by the prior network contradicts with the ones indicated by data.

Step 2 input

G', D_o , D_I , Q

Step 2 output

True or False

Step 2: Check query identifiability

If query is identifiable proceed to the following steps.

Step 3 input

G', Q

Step 3 output

G'': simplified network

Step 3 (optional): Simplify the network

Mark all the nuisance variables that cannot be part of the query estimation (e.g., descendants of the outcome) as latent. Apply simplification rules.

Step 4 input

G' or G'', Q, D_o , D_I , M

Step 4 output

 \widehat{Q} : estimated query

Step 4: Estimate the query

Generate the estimand and proceed to estimate the query using the selected estimation method.

Step 5 input

G' or G'', Q

Step 5 output

G''': simplified network

Step 5 (optional): Further simplify the network

Mark rest of the nuisance variables that are not part of the estimand as latent.

Apply simplification rules.

Step 6 input

G', \hat{Q} , D_o , D_I

Step 6 output verified \hat{Q}

Step: Verify the correctness of the result with respect to external evidence