Solution of the equation $z_1 z_1 z_1 c_1 c_1 c_1 =_F 1$ in a Free Group

M-K Solver † Bilal Khan *

Contents

1	Cancellation scheme	#1	3
2	Cancellation scheme	#2	7
3	Cancellation scheme	#3	11
4	Cancellation scheme	#4	15
5	Cancellation scheme	#5	21
6	Cancellation scheme	#6	2 5
7	Cancellation scheme	#7	32
8	Cancellation scheme	#8	36
9	Cancellation scheme	#9	40
10	Cancellation scheme	#10	44
11	Cancellation scheme	#11	50
12	Cancellation scheme	#12	5 3
13	Cancellation scheme	#13	56
14	Cancellation scheme	#14	62

 $^{{}^*\}text{Department of Mathematics and Computer Science, John Jay College of Criminal Justice,}$

City University of New York (CUNY). † This report was generated automatically by software developed with support from the National Security Agency Grant H98230-06-1-0042.

15 Cancellation scheme #15	68
16 Cancellation scheme #16	80
17 Cancellation scheme #17	95
18 Cancellation scheme #18	104
19 Cancellation scheme #19	107
20 Cancellation scheme #20	110
21 Cancellation scheme #21	113
22 Cancellation scheme #22	116
23 Cancellation scheme #23	119
24 Cancellation scheme #24	122
25 Cancellation scheme #25	125
26 Cancellation scheme #26	128
27 Cancellation scheme #27	131
28 Cancellation scheme #28	134
29 Cancellation scheme #29	137
30 Cancellation scheme #30	140
31 Cancellation scheme #31	143
32 Cancellation scheme #32	146
33 Cancellation scheme #33	149
34 Cancellation scheme #34	152
35 Cancellation scheme #35	155
36 Cancellation scheme #36	158
37 Cancellation scheme #37	161
38 Cancellation scheme #38	164
39 Cancellation scheme #39	167

$z_1 z_1 z_1 c_1 c_1 c_1 =_F 1$

40 Cancellation scheme #40	170
41 Cancellation scheme #41	173
42 Cancellation scheme #42	177
43 Cancellation scheme #43	192
44 Cancellation scheme #44	207
45 Cancellation scheme #45	227
46 Cancellation scheme #46	231
47 Cancellation scheme #47	235
48 Cancellation scheme #48	247
49 Cancellation scheme #49	258
50 Cancellation scheme #50	262
51 Cancellation scheme #51	279
52 Cancellation scheme #52	296
53 Cancellation scheme #53	319
54 Cancellation scheme #54	342
55 Cancellation scheme #55	363
56 Cancellation scheme #56	380
57 Cancellation scheme #57	388
58 Acknowledgements	393

Generalized Equation root-1

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-1.1

We begin from the GE root-1 (see pp. 3). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-1.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-2:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-1.1, as derived from the application of a print to root-1.

Generalized Equation root-1.1.1

We begin from the GE root-1.1 (see pp. 4). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 2: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 2.

 $\overline{\text{Step 3}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 1 - 2.

 $\overline{\text{Step 4}}$: Collapsed (new) base [1-2:z2+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-1.1.1—is illustrated below:

GE Information: Carrier: [0-1:z100+.]; Carrier Dual: [3-4:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-1:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the

GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-1.1.1, as derived from the application of a print to root-1.1. $\,$

Generalized Equation root-2

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-2.1

We begin from the GE root-2 (see pp. 7). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-2.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-2:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-2.1, as derived from the application of a print to root-2.

Generalized Equation root-2.1.1

We begin from the GE root-2.1 (see pp. 8). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 2: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 2.

 $\overline{\text{Step 3}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 1 - 2.

 $\overline{\text{Step 4}}$: Collapsed (new) base [1-2:z2+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-2.1.1—is illustrated below:

GE Information: Carrier: [0-1:z100+.]; Carrier Dual: [1-2:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-1:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the

GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-2.1.1, as derived from the application of a print to root-2.1.

Generalized Equation root-3

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-4:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<3=4*
```

We proceed.

Generalized Equation root-3.1

We begin from the GE root-3 (see pp. 11). We consider its print

```
Print 1: =0=3*<1<2<3=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [0-1:z100+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 6.

Step 8: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-3.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-3.1, as derived from the application of a print to root-3.

Generalized Equation root-3.1.1

We begin from the GE root-3.1 (see pp. 12). We consider its print

Print 1: =0=3*<1<2<3=4*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-1:z100+.] to (new) boundaries 3 - 4.

Step $\overline{5}$: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [0-3:z102+.] to (new) boundaries 3 - 6.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 6.

Step 8: Collapsed (new) base [3-6:z2+.] to the empty base (6,6).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-3.1.1—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [0-3:z102+.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-3.1.1, as derived from the application of a print to root-3.1.

Generalized Equation root-4

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-4.1

We begin from the GE root-4 (see pp. 15). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-4.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 3 valid prints (descendents).

It has 3 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1=3*<2=4*
Print 2: =0=2*<1<3*<2=4*
Print 3: =0=2*<3*<1<2=4*
```

This completes the consideration of root-4.1, as derived from the application of a print to root-4.

Generalized Equation root-4.1.1

We begin from the GE root-4.1 (see pp. 16). We consider its print

```
Print 1: =0=2*<1=3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 2: Moved (old) base [0-2:z101+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 4.

Step 4: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 5: Collapsed (new) base [2-4:z2+.] to the empty base (4,4).

Step 6: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-4.1.1—is illustrated below:

GE Information: Carrier: [0-2:z101+.]; Carrier Dual: [0-1:z101-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-2:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-4.1.1, as derived from the application of a print to root-4.1.

Generalized Equation root-4.1.2

We begin from the GE root-4.1 (see pp. 16). We consider its print

Print 2: =0=2*<1<3*<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z101+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z2+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-4.1.2—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [0-2:z101-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-4.1.2, as derived from the application of a print to root-4.1.

Generalized Equation root-4.1.3

We begin from the GE root-4.1 (see pp. 16). We consider its print

Print 3: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z101+.] to (new) boundaries 2 - 5.

 $\overline{\text{Step 4}}$: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z2+.] to the empty base (5,5).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-4.1.3—is illustrated below:

GE Information: Carrier: [0-3:z101+.] ; Carrier Dual: [0-1:z101-.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-4.1.3, as derived from the application of a print to root-4.1.

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 1 \\ z_2 & 3 \leftarrow 4 \leftarrow 1 \leftarrow 2 \\ c_1 & 4 \leftarrow 3 \\ c_1 & 1 \leftarrow 4 \\ c_1 & 0 \leftarrow 1 \end{vmatrix}$$

Generalized Equation root-5

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-5.1

We begin from the GE root-5 (see pp. 21). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-5.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-4:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-5.1, as derived from the application of a print to root-5.

Generalized Equation root-5.1.1

We begin from the GE root-5.1 (see pp. 22). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step $\overline{2}$: Moved (old) base [0-1:z100+.] to (new) boundaries 1-4.

Step 3: Moved (old) base [0-1:z103+.] to (new) boundaries 1 - 4.

 $\overline{\text{Step 4}}$: Collapsed (new) base [1-4:z2+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-5.1.1—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [5-6:z100-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the

GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-5.1.1, as derived from the application of a print to root-5.1.

Generalized Equation root-6

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-6.1

We begin from the GE root-6 (see pp. 25). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-6.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-2:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-6.1, as derived from the application of a print to root-6.

Generalized Equation root-6.1.1

We begin from the GE root-6.1 (see pp. 26). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 2: Moved (old) base [0-1:z101+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1-2.

Step 4: Collapsed (new) base [1-2:z2+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-6.1.1—is illustrated below:

GE Information: Carrier: [0-1:z100+.] ; Carrier Dual: [1-2:z100-.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

Print 1: =0=2*<1=1*

This completes the consideration of root-6.1.1, as derived from the application of a print to root-6.1.

Generalized Equation root-6.1.1.1

We begin from the GE root-6.1.1 (see pp. 27). We consider its print

Print 1: =0=2*<1=1*

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z100+.] to (new) boundaries 2-1.

 $\overline{\text{Step 2}}$: Moved (old) base [0-0:z1+.] to (new) boundaries 2 - 2.

 $\overline{\text{Step 3}}$: Moved (old) base [0-0:z1+.] to (new) boundaries 2 - 2.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 2 - 1.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 1.

Step 6: Collapsed (new) base [1-2:z100-.] to the empty base (2,2).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-6.1.1.1—is illustrated below:

GE Information: Carrier: [0-1:z101-.] ; Carrier Dual: [1-2:z101-.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

Print 1: =0=1*<1=2*

This completes the consideration of root-6.1.1.1, as derived from the application of a print to root-6.1.1.

Generalized Equation root-6.1.1.1.1

We begin from the GE root-6.1.1.1 (see pp. 28). We consider its print

Print 1: =0=1*<1=2*

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z101-.] to (new) boundaries 1-2.

 $\overline{\text{Step 2}}$: Moved (old) base [0-0:z2+.] to (new) boundaries 1 - 1.

Step 3: Moved (old) base [0-0:z2+.] to (new) boundaries 1 - 1.

 $\overline{\text{Step 4}}$: Moved (old) base [0-1:c1+.] to (new) boundaries 1 - 2.

Step 5: Moved (old) base [0-1:z102-.] to (new) boundaries 1-2.

Step 6: Collapsed (new) base [1-2:z101-.] to the empty base (2,2).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-6.1.1.1.1—is illustrated below:

GE Information: Carrier: [0-1:z102-.] ; Carrier Dual: [1-2:z102-.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

Print 1: =0=1*<1=2*

This completes the consideration of root-6.1.1.1.1, as derived from the application of a print to root-6.1.1.1.

Generalized Equation root-6.1.1.1.1.1

We begin from the GE root-6.1.1.1.1 (see pp. 29). We consider its print

Print 1: =0=1*<1=2*

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z102-.] to (new) boundaries 1 - 2.

 $\overline{\text{Step 2}}$: Moved (old) base [0-0:z1+.] to (new) boundaries 1 - 1.

Step 3: Moved (old) base [0-0:z1+.] to (new) boundaries 1 - 1.

Step 4: Moved (old) base [0-0:z2+.] to (new) boundaries 1 - 1.

Step 5: Moved (old) base [0-0:z2+.] to (new) boundaries 1 - 1.

 $\overline{\text{Step 6}}$: Moved (old) base [0-1:c1+.] to (new) boundaries 1 - 2.

Step 7: Moved (old) base [0-1:c1+.] to (new) boundaries 1 - 2.

Step 8: Moved (old) base [0-0:z100-.] to (new) boundaries 1 - 1.

 $\overline{\text{Step 9}}$: Moved (old) base [0-0:z100-.] to (new) boundaries 1 - 1.

Step $\overline{10}$: Collapsed (new) base [1-2:z102-.] to the empty base (2,2).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-6.1.1.1.1.— is illustrated below:

GE Information: Carrier: [0-0:z1+.] ; Carrier Dual: [0-0:z1+.] ; Critical Boundary: 0; The GE above is non-degenerate. This GE is a leaf in the GE tree. We have effectively found a solution!

variable	value
z_{101}^{-1}	$c_1 =_F 1$
z_{102}	$c_1^{-1} =_F 1$
z_{100}^{-1}	$c_1 =_F 1$
z_{100}	$c_1^{-1} =_F 1$
z_1	$c_1^{-1} =_F 1$
z_{102}^{-1}	$c_1 =_F 1$
z_{101}	$c_1^{-1} =_F 1$
z_2^{-1}	$c_1 =_F 1$
z_2	$c_1^{-1} =_F 1$
z_1^{-1}	$c_1 =_F 1$

The above table shows the values of the solution, as obtained by tracing upwards from this trivially true GE, to the root of the Makanin-Razborov tree.

This completes the consideration of root-6.1.1.1.1.1, as derived from the application of a print to root-6.1.1.1.1.

Generalized Equation root-7

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-7.1

We begin from the GE root-7 (see pp. 32). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-7.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-4:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-7.1, as derived from the application of a print to root-7.

Generalized Equation root-7.1.1

We begin from the GE root-7.1 (see pp. 33). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step $\overline{2}$: Moved (old) base [0-1:z100+.] to (new) boundaries 1-4.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 4.

 $\overline{\text{Step 4}}$: Collapsed (new) base [1-4:z2+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-7.1.1—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [0-1:z100-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102+.] and its dual

are of opposite polarity, yet intersect. The base [1-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-7.1.1, as derived from the application of a print to root-7.1.

8 Cancellation scheme #8

Generalized Equation root-8

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-8.1

We begin from the GE root-8 (see pp. 36). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-8.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-4:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-8.1, as derived from the application of a print to root-8.

Generalized Equation root-8.1.1

We begin from the GE root-8.1 (see pp. 37). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step 2: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 4.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 4.

 $\overline{\text{Step 4}}$: Collapsed (new) base [1-4:z2+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-8.1.1—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [0-1:z100-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102+.] and its dual

are of opposite polarity, yet intersect. The base [1-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-8.1.1, as derived from the application of a print to root-8.1.

9 Cancellation scheme #9

z_1	$1 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$3 \leftarrow 4 \leftarrow 5 \leftarrow 0 \leftarrow 1 \leftarrow 2$
c_1	$1 \leftarrow 0$ $2 \leftarrow 1$ $3 \leftarrow 4 \leftarrow 5 \leftarrow 0 \leftarrow 1 \leftarrow 2$ $4 \leftarrow 3$ $5 \leftarrow 4$ $0 \leftarrow 5$
c_1	$5 \leftarrow 4$
c_1	$0 \leftarrow 5$

Generalized Equation root-9

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-9.1

We begin from the GE root-9 (see pp. 40). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z103+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-9.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-6:z2+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE

tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-9.1, as derived from the application of a print to root-9.

Generalized Equation root-9.1.1

We begin from the GE root-9.1 (see pp. 41). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 6.

Step $\overline{2}$: Moved (old) base [0-1:z103+.] to (new) boundaries 1-6.

Step 3: Moved (old) base [0-1:z104+.] to (new) boundaries 1 - 6.

 $\overline{\text{Step 4}}$: Collapsed (new) base [1-6:z2+.] to the empty base (6,6).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-9.1.1—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [1-2:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z103-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z104+.] and its dual

are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-9.1.1, as derived from the application of a print to root-9.1.

10 Cancellation scheme #10

Generalized Equation root-10

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 3 valid prints (descendents).

It has 3 legal carrier-to-dual prints, as follows:

Print 1: =0=2*<1=3*<2=4* Print 2: =0=2*<1<3*<2=4* Print 3: =0=2*<3*<1<2=4*

We proceed.

Generalized Equation root-10.1

We begin from the GE root-10 (see pp. 44). We consider its print

```
Print 1: =0=2*<1=3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 4.

Step 4: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 5: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-10.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-3:z2+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-10.1, as derived from the application of a print to root-10.

Generalized Equation root-10.2

We begin from the GE root-10 (see pp. 44). We consider its print

Print 2: =0=2*<1<3*<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 3.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-10.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [4-5:z101-.] has constraints with its dual that stretch the constant segment 4 - 5 to length different from 1. The base [5-6:z100-.] has constraints with its dual that stretch the constant segment 5 - 6 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-10.2, as derived from the application of a print to root-10.

Generalized Equation root-10.3

We begin from the GE root-10 (see pp. 44). We consider its print

Print 3: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-10.3—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-10.3, as derived from the application of a print to root-10.

Generalized Equation root-10.1.1

We begin from the GE root-10.1 (see pp. 45). We consider its print

Print 1: =0=2*<1<2=3*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 4.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 2 - 3.

Step 5: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 7: Collapsed (new) base [2-4:z2+.] to the empty base (4,4).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-10.1.1—is illustrated below:

GE Information: Carrier: [0-2:z102-.]; Carrier Dual: [1-2:z102+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [1-2:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-10.1.1, as derived from the application of a print to root-10.1.

11 Cancellation scheme #11

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 3 \leftarrow 4 \leftarrow 1 \\ z_2 & 3 \leftarrow 2 \\ c_1 & 4 \leftarrow 3 \\ c_1 & 1 \leftarrow 4 \\ c_1 & 0 \leftarrow 1 \end{vmatrix}$$

Generalized Equation root-11

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-4:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-11.1

We begin from the GE root-11 (see pp. 50). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-4.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 4.

Step 4: Collapsed (new) base [1-4:z1+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-11.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [6-7:z100-.]

has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-11.1, as derived from the application of a print to root-11.

12 Cancellation scheme #12

Generalized Equation root-12

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-3:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-12.1

We begin from the GE root-12 (see pp. 53). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 3.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 3.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 3.

Step 4: Collapsed (new) base [1-3:z1+.] to the empty base (3,3).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-12.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [6-7:z100-.]

has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-12.1, as derived from the application of a print to root-12.

13 Cancellation scheme #13

Generalized Equation root-13

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-13.1

We begin from the GE root-13 (see pp. 56). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-13.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 3 valid prints (descendents).

It has 3 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1=3*<2=4*
Print 2: =0=2*<1<3*<2=4*
Print 3: =0=2*<3*<1<2=4*
```

This completes the consideration of root-13.1, as derived from the application of a print to root-13.

Generalized Equation root-13.1.1

We begin from the GE root-13.1 (see pp. 57). We consider its print

```
Print 1: =0=2*<1=3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 2: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 4.

Step 3: Moved (old) base [0-2:z101+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 5: Collapsed (new) base [2-4:z2+.] to the empty base (4,4).

Step 6: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-13.1.1—is illustrated below:

GE Information: Carrier: [0-2:z101+.]; Carrier Dual: [0-1:z101-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [1-2:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-13.1.1, as derived from the application of a print to root-13.1.

Generalized Equation root-13.1.2

We begin from the GE root-13.1 (see pp. 57). We consider its print

Print 2: =0=2*<1<3*<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 4}}$: Moved (old) base [0-2:z101+.] to (new) boundaries 2 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z2+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-13.1.2—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [0-2:z101-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-13.1.2, as derived from the application of a print to root-13.1.

Generalized Equation root-13.1.3

We begin from the GE root-13.1 (see pp. 57). We consider its print

Print 3: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 4: Moved (old) base [0-2:z101+.] to (new) boundaries 2 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z2+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-13.1.3—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [0-1:z101-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [2-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-13.1.3, as derived from the application of a print to root-13.1.

14 Cancellation scheme #14

z_1	$1 \leftarrow 3 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$3 \leftarrow 1 \leftarrow 2$
c_1	$4 \leftarrow 3$
c_1	$3 \leftarrow 4$
c_1	$0 \leftarrow 3$

Generalized Equation root-14

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-14.1

We begin from the GE root-14 (see pp. 62). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-14.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 3 valid prints (descendents).

It has 3 legal carrier-to-dual prints, as follows:

Print 1: =0=2*<1=3*<2=4* Print 2: =0=2*<1<3*<2=4* Print 3: =0=2*<3*<1<2=4*

This completes the consideration of root-14.1, as derived from the application of a print to root-14.

Generalized Equation root-14.1.1

We begin from the GE root-14.1 (see pp. 63). We consider its print

```
Print 1: =0=2*<1=3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 2: Moved (old) base [0-2:z100+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 4.

Step 4: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 5: Collapsed (new) base [2-4:z2+.] to the empty base (4,4).

Step 6: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-14.1.1—is illustrated below:

GE Information: Carrier: [0-2:z100+.]; Carrier Dual: [0-1:z100-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-2:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-2:z102+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-14.1.1, as derived from the application of a print to root-14.1.

Generalized Equation root-14.1.2

We begin from the GE root-14.1 (see pp. 63). We consider its print

Print 2: =0=2*<1<3*<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 2 - 5.

 $\overline{\text{Step 4}}$: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z2+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-14.1.2—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [0-2:z100-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-14.1.2, as derived from the application of a print to root-14.1.

Generalized Equation root-14.1.3

We begin from the GE root-14.1 (see pp. 63). We consider its print

Print 3: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z2+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-14.1.3—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [0-1:z100-.]; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. The base [2-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-14.1.3, as derived from the application of a print to root-14.1.

15 Cancellation scheme #15

z_1	$1 \leftarrow 3 \leftarrow 4 \leftarrow 5 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$3 \leftarrow 1 \leftarrow 2$
c_1	$4 \leftarrow 3$
	$5 \leftarrow 4$
_	$0 \leftarrow 5$

Generalized Equation root-15

GE Information: Carrier: [0-4:z1+.] ; Carrier Dual: [4-5:z1+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<4=5*
```

We proceed.

Generalized Equation root-15.1

We begin from the GE root-15 (see pp. 68). We consider its print

```
Print 1: =0=4*<1<2<3<4=5*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 7.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 8.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 6: Moved (old) base [3-4:z100+.] to (new) boundaries 7 - 8.

 $\overline{\text{Step 7}}$: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 8: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 9}}$: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 10}}$: Collapsed (new) base [4-8:z1+.] to the empty base (8,8).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 7 valid prints (descendents).

It has 7 legal carrier-to-dual prints, as follows:

Print 1: =0=4*<1<2<3=5*<4=6*
Print 2: =0=4*<1<2<3<5*<4=6*
Print 3: =0=4*<1<2=5*<3<4=6*
Print 4: =0=4*<1<2<5*<3<4=6*
Print 5: =0=4*<1=5*<2<3<4=6*
Print 6: =0=4*<1<5*<2<3<4=6*
Print 7: =0=4*<5*<1<2<3<4=6*

This completes the consideration of root-15.1, as derived from the application of a print to root-15.

Generalized Equation root-15.1.1

We begin from the GE root-15.1 (see pp. 69). We consider its print

Print 1: =0=4*<1<2<3=5*<4=6*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [3-4:z100+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-4:z103+.] to (new) boundaries 4 - 8.

Step 8: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

Step 9: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.1—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [0-3:z103-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [3-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [3-4:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.1, as derived from the application of a print to root-15.1.

Generalized Equation root-15.1.2

We begin from the GE root-15.1 (see pp. 69). We consider its print

Print 2: =0=4*<1<2<3<5*<4=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 7.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [3-4:z100+.] to (new) boundaries 7 - 9.

Step 6: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step $\overline{7}$: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

Step 8: Moved (old) base [0-4:z103+.] to (new) boundaries 4 - 9.

Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 4-5.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.2—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [0-4:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [3-5:z100+.]

and its dual are of opposite polarity, yet intersect. The base [4-5:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.2, as derived from the application of a print to root-15.1.

Generalized Equation root-15.1.3

We begin from the GE root-15.1 (see pp. 69). We consider its print

```
Print 3: =0=4*<1<2=5*<3<4=6*
```

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [3-4:z100+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-4:z103+.] to (new) boundaries 4 - 8.

Step 8: Moved (old) base [0-1:z104+.] to (new) boundaries 4-5.

Step 9: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.3—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [0-2:z103-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [3-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.3, as derived from the application of a print to root-15.1.

Generalized Equation root-15.1.4

We begin from the GE root-15.1 (see pp. 69). We consider its print

Print 4: =0=4*<1<2<5*<3<4=6*

Sequence of actions in performing the Print 4:

- Step 1: Added (new) boundary 5.
- Step 2: Added (new) boundary 6.
- Step 3: Added (new) boundary 8.
- $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 9.
- Step 5: Moved (old) base [3-4:z100+.] to (new) boundaries 8 9.
- Step 6: Moved (old) base [2-3:z101+.] to (new) boundaries 6 8.
- $\overline{\text{Step 7}}$: Moved (old) base [1-2:z102+.] to (new) boundaries 5 6.
- Step 8: Moved (old) base [0-4:z103+.] to (new) boundaries 4 9.
- Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 4 5.

Step 10: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.4—is illustrated below:

GE Information: Carrier: [0-5:z103+.] ; Carrier Dual: [0-3:z103-.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [4-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [3-5:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.4, as derived from the application of a print to root-15.1.

Generalized Equation root-15.1.5

We begin from the GE root-15.1 (see pp. 69). We consider its print

Print 5: =0=4*<1=5*<2<3<4=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [3-4:z100+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-4:z103+.] to (new) boundaries 4 - 8.

Step 8: Moved (old) base [0-1:z104+.] to (new) boundaries 4-5.

Step 9: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 13</u>: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.5—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [0-1:z103-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [3-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is

degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.5, as derived from the application of a print to root-15.1.

Generalized Equation root-15.1.6

We begin from the GE root-15.1 (see pp. 69). We consider its print

Print 6: =0=4*<1<5*<2<3<4=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [3-4:z100+.] to (new) boundaries 8 - 9.

Step 6: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 7.

Step 8: Moved (old) base [0-4:z103+.] to (new) boundaries 4 - 9.

Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.6—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [0-2:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [4-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-5:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.6, as derived from the application of a print to root-15.1.

Generalized Equation root-15.1.7

We begin from the GE root-15.1 (see pp. 69). We consider its print

Print 7: =0=4*<5*<1<2<3<4=6*

Sequence of actions in performing the Print 7:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 7.
- Step 3: Added (new) boundary 8.
- $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 9.
- Step 5: Moved (old) base [3-4:z100+.] to (new) boundaries 8 9.
- Step 6: Moved (old) base [2-3:z101+.] to (new) boundaries 7 8.
- Step 7: Moved (old) base [1-2:z102+.] to (new) boundaries 6 7.
- Step 8: Moved (old) base [0-4:z103+.] to (new) boundaries 4 9.
- Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 4 6.

Step 10: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-15.1.7—is illustrated below:

GE Information: Carrier: [0-5:z103+.] ; Carrier Dual: [0-1:z103-.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [4-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-15.1.7, as derived from the application of a print to root-15.1.

16 Cancellation scheme #16

z_1	$1 \leftarrow 3 \leftarrow 5 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$4 \leftarrow 3 \leftarrow 1 \leftarrow 2$
c_1	$3 \leftarrow 4$
c_1	$5 \leftarrow 3$
c_1	$0 \leftarrow 5$

Generalized Equation root-16

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-4:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<3=4*
```

We proceed.

Generalized Equation root-16.1

We begin from the GE root-16 (see pp. 80). We consider its print

```
Print 1: =0=3*<1<2<3=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 10 valid prints (descendents).

It has 10 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2=4*<5*<3=6*
Print 2: =0=3*<1<2<4*<5*<3=6*
Print 3: =0=3*<1=4*<2<5*<3=6*
Print 4: =0=3*<1=4*<5*<2<3=6*
Print 5: =0=3*<1<4*<2<5*<3=6*
Print 6: =0=3*<1<4*<5<2<3=6*
Print 7: =0=3*<1<4*<5<3=6*
Print 7: =0=3*<4*<1<2<5*<3=6*
Print 8: =0=3*<4*<1=5*<2<3=6*
Print 9: =0=3*<4*<1<5*<2<3=6*
Print 10: =0=3*<4*<5*<1<2<3=6*
```

This completes the consideration of root-16.1, as derived from the application of a print to root-16.

Generalized Equation root-16.1.1

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 1: =0=3*<1<2=4*<5*<3=6*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

```
Step 3: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.
```

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.1—is illustrated below:

GE Information: Carrier: [0-4:z104+.]; Carrier Dual: [0-2:z104-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z103-.] and its dual are of opposite polarity, yet intersect. The base [0-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.1, as derived from the application of a print to root-16.1.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 7.

Step 6: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 7.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

Generalized Equation root-16.1.2

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 2: =0=3*<1<2<4*<5*<3=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 8.

Step 7: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.2—is illustrated below:

GE Information: Carrier: [0-5:z104+.]; Carrier Dual: [0-3:z104-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [2-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [3-4:z103-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is

degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.2, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.3

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 3: =0=3*<1=4*<2<5*<3=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 4}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 7.

 $\frac{1}{\text{Step }6}$: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 7}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.3—is illustrated below:

GE Information: Carrier: [0-4:z104+.]; Carrier Dual: [0-1:z104-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z103-.] and its dual are of opposite polarity, yet intersect. The base [0-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.3, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.4

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 4: =0=3*<1=4*<5*<2<3=6*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 6.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 3-4.

 $\overline{\text{Step 5}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 7.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.4—is illustrated below:

GE Information: Carrier: [0-4:z104+.]; Carrier Dual: [0-1:z104-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [0-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.4, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.5

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 5: =0=3*<1<4*<2<5*<3=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 6.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6-8.

Step 7: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 8.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.5—is illustrated below:

GE Information: Carrier: [0-5:z104+.]; Carrier Dual: [0-2:z104-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [3-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z103-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.5, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.6

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 6: =0=3*<1<4*<5*<2<3=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 7.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.6—is illustrated below:

GE Information: Carrier: [0-5:z104+.] ; Carrier Dual: [0-2:z104-.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.6, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.7

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 7: =0=3*<4*<1<2<5*<3=6*

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 6.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 8.

Step 7: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.7—is illustrated below:

GE Information: Carrier: [0-5:z104+.]; Carrier Dual: [0-1:z104-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [3-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z103-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.7, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.8

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 8: =0=3*<4*<1=5*<2<3=6*

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 3}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 6.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 6}}$: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 7.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.8—is illustrated below:

GE Information: Carrier: [0-4:z104+.] ; Carrier Dual: [0-1:z104-.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [0-4:z104+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.8, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.9

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 9: =0=3*<4*<1<5*<2<3=6*

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [0-3:z104+.] to (new) boundaries 3 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.9—is illustrated below:

GE Information: Carrier: [0-5:z104+.]; Carrier Dual: [0-1:z104-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.9, as derived from the application of a print to root-16.1.

Generalized Equation root-16.1.10

We begin from the GE root-16.1 (see pp. 81). We consider its print

Print 10: =0=3*<4*<5*<1<2<3=6*

Sequence of actions in performing the Print 10:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 7.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 8.
- Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 6 7.
- Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 3 6.
- Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 7 8.
- $\overline{\text{Step 7}}$: Moved (old) base [0-3:z104+.] to (new) boundaries 3 8.
- Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).
- <u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 10: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-16.1.10—is illustrated below:

GE Information: Carrier: [0-5:z104+.]; Carrier Dual: [0-1:z104-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-16.1.10, as derived from the application of a print to root-16.1.

17 Cancellation scheme #17

	$1 \leftarrow 3 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$4 \leftarrow 5 \leftarrow 3 \leftarrow 1 \leftarrow 2$
c_1	$5 \leftarrow 4$
c_1	$3 \leftarrow 5$
	$0 \leftarrow 3$

Generalized Equation root-17

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

Print 1: =0=2*<1<2=3*

We proceed.

Generalized Equation root-17.1

We begin from the GE root-17 (see pp. 95). We consider its print

Print 1: =0=2*<1<2=3*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-6:z2+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 6 valid prints (descendents).

It has 6 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1=3*<4*<5*<2=6*
Print 2: =0=2*<1<3*<4*<5*<2=6*
Print 3: =0=2*<3*<1<4*<5*<2=6*
Print 4: =0=2*<3*<4*<1=5*<2=6*
Print 5: =0=2*<3*<4*<1<5*<2=6*
Print 6: =0=2*<3*<4*<1<5*<2=6*
```

This completes the consideration of root-17.1, as derived from the application of a print to root-17.

Generalized Equation root-17.1.1

We begin from the GE root-17.1 (see pp. 96). We consider its print

```
Print 1: =0=2*<1=3*<4*<5*<2=6*
```

Sequence of actions in performing the Print 1:

```
Step 1: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.
```

Step 2: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 3.

Step 4: Moved (old) base [0-2:z103+.] to (new) boundaries 2 - 6.

Step 5: Collapsed (new) base [2-6:z2+.] to the empty base (6,6).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 7</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1.1—is illustrated below:

GE Information: Carrier: [0-4:z103+.] ; Carrier Dual: [0-1:z103-.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [1-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-17.1.1, as derived from the application of a print to root-17.1.

Generalized Equation root-17.1.2

We begin from the GE root-17.1 (see pp. 96). We consider its print

Print 2: =0=2*<1<3*<4*<5*<2=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 4}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 3.

Step 5: Moved (old) base [0-2:z103+.] to (new) boundaries 2 - 7.

Step 6: Collapsed (new) base [2-7:z2+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1.2—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [0-2:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [1-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-17.1.2, as derived from the application of a print to root-17.1.

Generalized Equation root-17.1.3

We begin from the GE root-17.1 (see pp. 96). We consider its print

Print 3: =0=2*<3*<1<4*<5*<2=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 7.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 4.

Step 5: Moved (old) base [0-2:z103+.] to (new) boundaries 2 - 7.

Step 6: Collapsed (new) base [2-7:z2+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1.3—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [0-1:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [2-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-17.1.3, as derived from the application of a print to root-17.1.

Generalized Equation root-17.1.4

We begin from the GE root-17.1 (see pp. 96). We consider its print

Print 4: =0=2*<3*<4*<1=5*<2=6*

Sequence of actions in performing the Print 4:

Step 1: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.

Step 2: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-2:z103+.] to (new) boundaries 2 - 6.

 $\overline{\text{Step 5}}$: Collapsed (new) base [2-6:z2+.] to the empty base (6,6).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 7</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1.4—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [0-1:z103-.]; Critical Boundary: 4; Observe the following facts about this GE: The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-17.1.4, as derived from the application of a print to root-17.1.

Generalized Equation root-17.1.5

We begin from the GE root-17.1 (see pp. 96). We consider its print

Print 5: =0=2*<3*<4*<1<5*<2=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 7.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 5.

Step 5: Moved (old) base [0-2:z103+.] to (new) boundaries 2 - 7.

Step 6: Collapsed (new) base [2-7:z2+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1.5—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [0-1:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-17.1.5, as derived from the application of a print to root-17.1.

Generalized Equation root-17.1.6

We begin from the GE root-17.1 (see pp. 96). We consider its print

Print 6: =0=2*<3*<4*<5*<1<2=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 6.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 6 - 7.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 6.

Step $\overline{5}$: Moved (old) base [0-2:z103+.] to (new) boundaries 2-7.

Step 6: Collapsed (new) base [2-7:z2+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-17.1.6—is illustrated below:

GE Information: Carrier: [0-5:z103+.]; Carrier Dual: [0-1:z103-.]; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-17.1.6, as derived from the application of a print to root-17.1.

18 Cancellation scheme #18

Generalized Equation root-18

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-18.1

We begin from the GE root-18 (see pp. 104). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-18.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-2:z2+.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [0-1:z102+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-18.1, as derived from the application of a print to root-18.

19 Cancellation scheme #19

Generalized Equation root-19

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-19.1

We begin from the GE root-19 (see pp. 107). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-19.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-2:z2+.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [0-1:z100+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-19.1, as derived from the application of a print to root-19.

20 Cancellation scheme #20

Generalized Equation root-20

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-2:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-20.1

We begin from the GE root-20 (see pp. 110). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-2.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 2.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 2.

Step 4: Collapsed (new) base [1-2:z1+.] to the empty base (2,2).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-20.1—is illustrated below:

GE Information: Carrier: [0-1:z2+.] ; Carrier Dual: [1-4:z2+.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [0-1:z102+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-20.1, as derived from the application of a print to root-20.

21 Cancellation scheme #21

Generalized Equation root-21

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-3:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-21.1

We begin from the GE root-21 (see pp. 113). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 3.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 3.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 3.

Step 4: Collapsed (new) base [1-3:z1+.] to the empty base (3,3).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-21.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [0-2:z102+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-21.1, as derived from the application of a print to root-21.

22 Cancellation scheme #22

Generalized Equation root-22

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-3:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-22.1

We begin from the GE root-22 (see pp. 116). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 3.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 3.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 3.

Step 4: Collapsed (new) base [1-3:z1+.] to the empty base (3,3).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-22.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [0-2:z102+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-22.1, as derived from the application of a print to root-22.

23 Cancellation scheme #23

Generalized Equation root-23

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-3:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-23.1

We begin from the GE root-23 (see pp. 119). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 3.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 3.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 3.

Step 4: Collapsed (new) base [1-3:z1+.] to the empty base (3,3).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-23.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-6:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [0-2:z100+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-23.1, as derived from the application of a print to root-23.

24 Cancellation scheme #24

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 4 \leftarrow 0 \leftarrow 1 \\ z_2 & 3 \leftarrow 2 \\ c_1 & 2 \leftarrow 3 \\ c_1 & 4 \leftarrow 2 \\ c_1 & 0 \leftarrow 4 \end{vmatrix}$$

Generalized Equation root-24

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-4:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-24.1

We begin from the GE root-24 (see pp. 122). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-4.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 1 - 4.

Step 4: Collapsed (new) base [1-4:z1+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-24.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z100+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-24.1, as derived from the application of a print to root-24.

25 Cancellation scheme #25

Generalized Equation root-25

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-3:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-25.1

We begin from the GE root-25 (see pp. 125). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 3.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 3.

Step 3: Moved (old) base [0-1:z102+.] to (new) boundaries 1 - 3.

Step 4: Collapsed (new) base [1-3:z1+.] to the empty base (3,3).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-25.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [0-2:z102+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-25.1, as derived from the application of a print to root-25.

26 Cancellation scheme #26

Generalized Equation root-26

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-4:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-26.1

We begin from the GE root-26 (see pp. 128). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step 3: Moved (old) base [0-1:z103+.] to (new) boundaries 1 - 4.

Step 4: Collapsed (new) base [1-4:z1+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-26.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z103+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-26.1, as derived from the application of a print to root-26.

27 Cancellation scheme #27

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 3 \leftarrow 0 \leftarrow 1 \\ z_2 & 3 \leftarrow 2 \\ c_1 & 0 \leftarrow 3 \\ c_1 & 4 \leftarrow 0 \\ c_1 & 0 \leftarrow 4 \end{vmatrix}$$

Generalized Equation root-27

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-4:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-27.1

We begin from the GE root-27 (see pp. 131). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-4.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step 3: Moved (old) base [0-1:z101+.] to (new) boundaries 1 - 4.

Step 4: Collapsed (new) base [1-4:z1+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-27.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z101+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-27.1, as derived from the application of a print to root-27.

28 Cancellation scheme #28

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 3 \leftarrow 4 \leftarrow 5 \leftarrow 0 \leftarrow 1 \\ z_2 & 3 \leftarrow 2 \\ c_1 & 4 \leftarrow 3 \\ c_1 & 5 \leftarrow 4 \\ c_1 & 0 \leftarrow 5 \end{vmatrix}$$

Generalized Equation root-28

GE Information: Carrier: [0-1:z1+.]; Carrier Dual: [1-6:z1+.]; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-28.1

We begin from the GE root-28 (see pp. 134). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 6.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 6.

Step 3: Moved (old) base [0-1:z101+.] to (new) boundaries 1 - 6.

Step 4: Collapsed (new) base [1-6:z1+.] to the empty base (6,6).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-28.1—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [0-5:z101+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-28.1, as derived from the application of a print to root-28.

29 Cancellation scheme #29

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 3 \leftarrow 5 \leftarrow 0 \leftarrow 1 \\ z_2 & 4 \leftarrow 3 \leftarrow 2 \\ c_1 & 3 \leftarrow 4 \\ c_1 & 5 \leftarrow 3 \\ c_1 & 0 \leftarrow 5 \end{vmatrix}$$

Generalized Equation root-29

GE Information: Carrier: [0-1:z1+.]; Carrier Dual: [1-5:z1+.]; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-29.1

We begin from the GE root-29 (see pp. 137). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1 - 5.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 5.

Step 3: Moved (old) base [0-1:z103+.] to (new) boundaries 1 - 5.

Step 4: Collapsed (new) base [1-5:z1+.] to the empty base (5,5).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-29.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [0-4:z103+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-29.1, as derived from the application of a print to root-29.

30 Cancellation scheme #30

$$\begin{vmatrix} z_1 & 1 \leftarrow 0 \\ z_1 & 2 \leftarrow 3 \leftarrow 0 \leftarrow 1 \\ z_2 & 4 \leftarrow 5 \leftarrow 3 \leftarrow 2 \\ c_1 & 5 \leftarrow 4 \\ c_1 & 3 \leftarrow 5 \\ c_1 & 0 \leftarrow 3 \end{vmatrix}$$

Generalized Equation root-30

GE Information: Carrier: [0-1:z1+.] ; Carrier Dual: [1-4:z1+.] ; Critical Boundary: 1; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-30.1

We begin from the GE root-30 (see pp. 140). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1+.] to (new) boundaries 1-4.

Step 2: Moved (old) base [0-1:z2+.] to (new) boundaries 1 - 4.

Step 3: Moved (old) base [0-1:z103+.] to (new) boundaries 1 - 4.

Step 4: Collapsed (new) base [1-4:z1+.] to the empty base (4,4).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-30.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [0-3:z103+.]

and its dual are of opposite polarity, yet intersect. The base [0-1:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-30.1, as derived from the application of a print to root-30.

31 Cancellation scheme #31

Generalized Equation root-31

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-31.1

We begin from the GE root-31 (see pp. 143). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-31.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [1-2:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-31.1, as derived from the application of a print to root-31.

Generalized Equation root-32

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-32.1

We begin from the GE root-32 (see pp. 146). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-32.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [1-2:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-32.1, as derived from the application of a print to root-32.

Generalized Equation root-33

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

Print 1: =0=2*<1<2=3*

We proceed.

Generalized Equation root-33.1

We begin from the GE root-33 (see pp. 149). We consider its print

Print 1: =0=2*<1<2=3*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z103+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z104+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-33.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-6:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [1-2:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-33.1, as derived from the application of a print to root-33.

Generalized Equation root-34

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-4:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<3=4*
```

We proceed.

Generalized Equation root-34.1

We begin from the GE root-34 (see pp. 152). We consider its print

```
Print 1: =0=3*<1<2<3=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 6}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-34.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [2-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-34.1, as derived from the application of a print to root-34.

$c_1 \quad 2 \leftarrow 4$ $c_1 \quad 0 \leftarrow 2$

Generalized Equation root-35

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

We proceed.

Generalized Equation root-35.1

We begin from the GE root-35 (see pp. 155). We consider its print

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 4.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 4.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-4:z1+.] to the empty base (4,4).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-35.1—is illustrated below:

GE Information: Carrier: [0-2:z2+.] ; Carrier Dual: [2-4:z2+.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [1-2:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-35.1, as derived from the application of a print to root-35.

z_1	$1 \leftarrow 2 \leftarrow 3 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$3 \leftarrow 2$
c_1	$4 \leftarrow 3$
c_1	$3 \leftarrow 4$
c_1	$0 \leftarrow 3$

Generalized Equation root-36

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-4:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<3=4*
```

We proceed.

Generalized Equation root-36.1

We begin from the GE root-36 (see pp. 158). We consider its print

```
Print 1: =0=3*<1<2<3=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [0-1:z102+.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-36.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [2-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-36.1, as derived from the application of a print to root-36.

z_1	$1 \leftarrow 2 \leftarrow 3 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$3 \leftarrow 2$
c_1	$0 \leftarrow 3$
c_1	$4 \leftarrow 0$
c_1	$0 \leftarrow 4$

Generalized Equation root-37

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-4:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<3=4*
```

We proceed.

Generalized Equation root-37.1

We begin from the GE root-37 (see pp. 161). We consider its print

```
Print 1: =0=3*<1<2<3=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [2-3:z102+.] to (new) boundaries 5 - 6.

Step $\overline{7}$: Moved (old) base [0-1:z103+.] to (new) boundaries 3-4.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

 $\overline{\text{Step 9}}$: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-37.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [2-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-37.1, as derived from the application of a print to root-37.

z_1	$1 \leftarrow 2 \leftarrow 3 \leftarrow 4 \leftarrow 5 \leftarrow 0$
z_1	$2 \leftarrow 1$
z_2	$3 \leftarrow 2$
c_1	$4 \leftarrow 3$
c_1	$5 \leftarrow 4$
c_1	$2 \leftarrow 1$ $3 \leftarrow 2$ $4 \leftarrow 3$ $5 \leftarrow 4$ $0 \leftarrow 5$

Generalized Equation root-38

GE Information: Carrier: [0-5:z1+.] ; Carrier Dual: [5-6:z1+.] ; Critical Boundary: 5; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=5*<1<2<3<4<5=6*
```

We proceed.

Generalized Equation root-38.1

We begin from the GE root-38 (see pp. 164). We consider its print

```
Print 1: =0=5*<1<2<3<4<5=6*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Added (new) boundary 9.

 $\overline{\text{Step 5}}$: Moved (old) base [0-5:z1+.] to (new) boundaries 5 - 10.

Step 6: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 10.

Step 7: Moved (old) base [4-5:z100+.] to (new) boundaries 9 - 10.

Step 8: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 9}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 10}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 9.

 $\overline{\text{Step 11}}$: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 12: Collapsed (new) base [5-10:z1+.] to the empty base (10,10).

<u>Step 13</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-38.1—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [4-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-5:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-38.1, as derived from the application of a print to root-38.

$$\begin{array}{|c|c|c|c|}\hline z_1 & 1 \leftarrow 2 \leftarrow 3 \leftarrow 5 \leftarrow 0\\ \hline z_1 & 2 \leftarrow 1\\ \hline z_2 & 4 \leftarrow 3 \leftarrow 2\\ \hline c_1 & 3 \leftarrow 4\\ \hline c_1 & 5 \leftarrow 3\\ \hline c_1 & 0 \leftarrow 5\\ \hline \end{array}$$

Generalized Equation root-39

GE Information: Carrier: [0-4:z1+.] ; Carrier Dual: [4-5:z1+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<4=5*
```

We proceed.

Generalized Equation root-39.1

We begin from the GE root-39 (see pp. 167). We consider its print

```
Print 1: =0=4*<1<2<3<4=5*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 7.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 8.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 6: Moved (old) base [3-4:z101+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 8}}$: Moved (old) base [1-2:z103+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 9}}$: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 10}}$: Collapsed (new) base [4-8:z1+.] to the empty base (8,8).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-39.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [3-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-39.1, as derived from the application of a print to root-39.

Generalized Equation root-40

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-4:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<3=4*
```

We proceed.

Generalized Equation root-40.1

We begin from the GE root-40 (see pp. 170). We consider its print

```
Print 1: =0=3*<1<2<3=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [0-1:z100+.] to (new) boundaries 3 - 4.

 $\overline{\text{Step 6}}$: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 6.

Step 8: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-40.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [2-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-40.1, as derived from the application of a print to root-40.

Generalized Equation root-41

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-41.1

We begin from the GE root-41 (see pp. 173). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-41.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-41.1, as derived from the application of a print to root-41.

Generalized Equation root-41.2

We begin from the GE root-41 (see pp. 173). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-41.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [5-6:z100-.] has constraints with its dual that stretch the constant segment 5 - 6 to length different from 1. The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-41.2, as derived from the application of a print to root-41.

Generalized Equation root-42

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-42.1

We begin from the GE root-42 (see pp. 177). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.1, as derived from the application of a print to root-42.

Generalized Equation root-42.2

We begin from the GE root-42 (see pp. 177). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.]; Carrier Dual: [3-6:z2+.]; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 9 valid prints (descendents).

It has 9 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<5*<3=6*
Print 2: =0=3*<1<4*<2=5*<3=6*
Print 3: =0=3*<1<4*<2<5*<3=6*
Print 4: =0=3*<1<4*<5*<2<3=6*
Print 5: =0=3*<4*<1<2=5*<3=6*
Print 6: =0=3*<4*<1<2<5*<3=6*
Print 7: =0=3*<4*<1=5*<2<3=6*
Print 9: =0=3*<4*<1<5*<2<3=6*
```

This completes the consideration of root-42.2, as derived from the application of a print to root-42.

Generalized Equation root-42.2.1

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 1: =0=3*<1<2<4*<5*<3=6*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 5 - 8.

Step 5: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-3:z102+.] to (new) boundaries 4 - 8.

Step 7: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.1—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [1-5:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-5:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.1, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.2

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 2: =0=3*<1<4*<2=5*<3=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 3}}$: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 4: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [1-3:z102+.] to (new) boundaries 4 - 7.

Step 6: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 6.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

Step 8: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 9</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 10</u>: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.2—is illustrated below:

GE Information: Carrier: [0-3:z103+.] ; Carrier Dual: [2-3:z103-.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led

us to a dead end.

This completes the consideration of root-42.2.2, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.3

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 3: =0=3*<1<4*<2<5*<3=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-3:z102+.] to (new) boundaries 4 - 8.

Step 7: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 6.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.3—is illustrated below:

GE Information: Carrier: [0-3:z103+.]; Carrier Dual: [2-4:z103-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-5:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.3, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.4

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 4: =0=3*<1<4*<5*<2<3=6*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-3:z102+.] to (new) boundaries 4 - 8.

Step 7: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.4—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [2-3:z103-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-5:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.4, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.5

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 5: =0=3*<4*<1<2=5*<3=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 4: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [1-3:z102+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 6}}$: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 6.

 $\overline{\text{Step 7}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.5—is illustrated below:

GE Information: Carrier: [0-3:z103+.]; Carrier Dual: [1-3:z103-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.5, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.6

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 6: =0=3*<4*<1<2<5*<3=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 8.

Step 5: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [1-3:z102+.] to (new) boundaries 5 - 8.

Step 7: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 6.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.6—is illustrated below:

GE Information: Carrier: [0-3:z103+.]; Carrier Dual: [1-4:z103-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.6, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.7

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 7: =0=3*<4*<1=5*<2<3=6*

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 3}}$: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 4}}$: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [1-3:z102+.] to (new) boundaries 5 - 7.

Step 6: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 6.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.7—is illustrated below:

GE Information: Carrier: [0-3:z103+.] ; Carrier Dual: [1-2:z103-.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.7, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.8

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 8: =0=3*<4*<1<5*<2<3=6*

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [1-3:z102+.] to (new) boundaries 5 - 8.

Step 7: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 7.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 10</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.8—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [1-3:z103-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.8, as derived from the application of a print to root-42.2.

Generalized Equation root-42.2.9

We begin from the GE root-42.2 (see pp. 179). We consider its print

Print 9: =0=3*<4*<5*<1<2<3=6*

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 6.

Step 6: Moved (old) base [1-3:z102+.] to (new) boundaries 6 - 8.

 $\overline{\text{Step 7}}$: Moved (old) base [0-2:z103+.] to (new) boundaries 3 - 7.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 8: Collapsed (new) base [3-8:22+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-42.2.9—is illustrated below:

GE Information: Carrier: [0-4:z103+.]; Carrier Dual: [1-2:z103-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-42.2.9, as derived from the application of a print to root-42.2.

43 Cancellation scheme #43

$$\begin{vmatrix} z_1 & 1 \leftarrow 2 \leftarrow 0 \\ z_1 & 3 \leftarrow 2 \leftarrow 1 \\ z_2 & 4 \leftarrow 0 \leftarrow 2 \leftarrow 3 \\ c_1 & 5 \leftarrow 4 \\ c_1 & 4 \leftarrow 5 \\ c_1 & 0 \leftarrow 4 \end{vmatrix}$$

Generalized Equation root-43

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-43.1

We begin from the GE root-43 (see pp. 192). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.1, as derived from the application of a print to root-43.

Generalized Equation root-43.2

We begin from the GE root-43 (see pp. 192). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 9 valid prints (descendents).

It has 9 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<5*<3=6*
Print 2: =0=3*<1<4*<2=5*<3=6*
Print 3: =0=3*<1<4*<2<5*<3=6*
Print 4: =0=3*<1<4*<5*<2<3=6*
Print 5: =0=3*<4*<1<2=5*<3=6*
Print 6: =0=3*<4*<1<2<5*<3=6*
Print 7: =0=3*<4*<1=5*<2<3=6*
Print 9: =0=3*<4*<1<5*<2<3=6*
```

This completes the consideration of root-43.2, as derived from the application of a print to root-43.

Generalized Equation root-43.2.1

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 1: =0=3*<1<2<4*<5*<3=6*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 8.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 4.

 $\overline{\text{Step 6}}$: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 5.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 4 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.1—is illustrated below:

GE Information: Carrier: [0-3:z104-.]; Carrier Dual: [1-5:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.1, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.2

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 2: =0=3*<1<4*<2=5*<3=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 3}}$: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 7.

Step 4: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 6.

Step 6: Moved (old) base [1-3:z104+.] to (new) boundaries 4 - 7.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 9</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.2—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [2-3:z101-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z101-.] and its dual are of opposite polarity, yet intersect. The base [1-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led

us to a dead end.

This completes the consideration of root-43.2.2, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.3

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 3: =0=3*<1<4*<2<5*<3=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 6.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 4 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.3—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [2-4:z101-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z101-.] and its dual are of opposite polarity, yet intersect. The base [1-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.3, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.4

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 4: =0=3*<1<4*<5*<2<3=6*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 7.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 4 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.4—is illustrated below:

GE Information: Carrier: [0-4:z101+.]; Carrier Dual: [2-3:z101-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z101-.] and its dual are of opposite polarity, yet intersect. The base [1-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.4, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.5

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 5: =0=3*<4*<1<2=5*<3=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 7.

Step 4: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 6.

 $\overline{\text{Step 6}}$: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 7}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.5—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [1-3:z101-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.5, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.6

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 6: =0=3*<4*<1<2<5*<3=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 8.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 6.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.6—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [1-4:z101-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.6, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.7

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 7: =0=3*<4*<1=5*<2<3=6*

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 3}}$: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 7.

Step 4: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 5.

Step $\overline{5}$: Moved (old) base [0-2:z101+.] to (new) boundaries 3-6.

Step 6: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 7.

Step 7: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.7—is illustrated below:

GE Information: Carrier: [0-3:z101+.]; Carrier Dual: [1-2:z101-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.7, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.8

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 8: =0=3*<4*<1<5*<2<3=6*

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [0-2:z101+.] to (new) boundaries 3 - 7.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.8—is illustrated below:

GE Information: Carrier: [0-4:z101+.]; Carrier Dual: [1-3:z101-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.8, as derived from the application of a print to root-43.2.

Generalized Equation root-43.2.9

We begin from the GE root-43.2 (see pp. 194). We consider its print

Print 9: =0=3*<4*<5*<1<2<3=6*

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 7 - 8.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 6.

Step 6: Moved (old) base [0-2:z101+.] to (new) boundaries 3-7.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 6 - 8.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-43.2.9—is illustrated below:

GE Information: Carrier: [0-4:z101+.]; Carrier Dual: [1-2:z101-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-43.2.9, as derived from the application of a print to root-43.2.

44 Cancellation scheme #44

Generalized Equation root-44

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-44.1

We begin from the GE root-44 (see pp. 207). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-1:z100+.] to (new) boundaries 2 - 3.

 $\overline{\text{Step 5}}$: Moved (old) base [1-2:z102+.] to (new) boundaries 3 - 5.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-8:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.1, as derived from the application of a print to root-44.

Generalized Equation root-44.2

We begin from the GE root-44 (see pp. 207). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-1:z100+.] to (new) boundaries 2 - 4.

Step 5: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.]; Carrier Dual: [3-8:z2+.]; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 33 valid prints (descendents).

It has 33 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<5*<6*<7*<3=8*
Print 2: =0=3*<1<4*<2=5*<6*<7*<3=8*
Print 3: =0=3*<1<4*<2<5*<6*<7*<3=8*
Print 4: =0=3*<1<4*<5*<2=6*<7*<3=8*
Print 5: =0=3*<1<4*<5*<2<6*<7*<3=8*
Print 6: =0=3*<1<4*<5*<6*<2=7*<3=8*
Print 7: =0=3*<1<4*<5*<6*<2<7*<3=8*
Print 8: =0=3*<1<4*<5*<6*<7*<2<3=8*
Print 9: =0=3*<4*<1<2=5*<6*<7*<3=8*
Print 10: =0=3*<4*<1<2<5*<6*<7*<3=8*
Print 11: =0=3*<4*<1=5*<2=6*<7*<3=8*
Print 12: =0=3*<4*<1=5*<2<6*<7*<3=8*
Print 13: =0=3*<4*<1=5*<6*<2=7*<3=8*
Print 14: =0=3*<4*<1=5*<6*<2<7*<3=8*
Print 15: =0=3*<4*<1=5*<6*<7*<2<3=8*
Print 16: =0=3*<4*<1<5*<2=6*<7*<3=8*
Print 17: =0=3*<4*<1<5*<2<6*<7*<3=8*
Print 18: =0=3*<4*<1<5*<6*<2=7*<3=8*
Print 19: =0=3*<4*<1<5*<6*<2<7*<3=8*
Print 20: =0=3*<4*<1<5*<6*<7*<2<3=8*
Print 21: =0=3*<4*<5*<1<2=6*<7*<3=8*
```

```
Print 22: =0=3*<4*<5*<1<2<6*<7*<3=8*
Print 23: =0=3*<4*<5*<1=6*<2=7*<3=8*
Print 24: =0=3*<4*<5*<1=6*<2<7*<3=8*
Print 25: =0=3*<4*<5*<1=6*<7*<2<3=8*
Print 26: =0=3*<4*<5*<1<6*<2=7*<3=8*
Print 27: =0=3*<4*<5*<1<6*<2=7*<3=8*
Print 28: =0=3*<4*<5*<1<6*<2<7*<3=8*
Print 29: =0=3*<4*<5*<1<6*<7*<2<3=8*
Print 30: =0=3*<4*<5*<6*<1<2=7*<3=8*
Print 30: =0=3*<4*<5*<6*<1<2=7*<3=8*
Print 31: =0=3*<4*<5*<6*<1<2<7*<3=8*
Print 32: =0=3*<4*<5*<6*<1<2<7*<3=8*
Print 33: =0=3*<4*<5*<6*<1<7*<2<3=8*
Print 33: =0=3*<4*<5*<6*<1<7*<2<3=8*
Print 33: =0=3*<4*<5*<6*<1<7*<2<3=8*
```

This completes the consideration of root-44.2, as derived from the application of a print to root-44.

Generalized Equation root-44.2.1

We begin from the GE root-44.2 (see pp. 209). We consider its print

```
Print 1: =0=3*<1<2<4*<5*<6*<7*<3=8*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 4.
```

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 10.

Step 4: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 5.

Step $\overline{5}$: Moved (old) base [2-3:z102+.] to (new) boundaries 5 - 10.

Step 6: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [1-3:z103+.] to (new) boundaries 4-10.

Step 8: Collapsed (new) base [3-10:z2+.] to the empty base (10,10).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.1—is illustrated below:

GE Information: Carrier: [0-3:z103-.]; Carrier Dual: [1-7:z103+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-7:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.1, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.2

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 2: =0=3*<1<4*<2=5*<6*<7*<3=8*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 9.

Step $\overline{5}$: Moved (old) base [0-1:z102-.] to (new) boundaries 3-4.

Step 6: Moved (old) base [1-3:z103+.] to (new) boundaries 4-9.

Step 7: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.2—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [2-3:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-6:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.2, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.3

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 3: =0=3*<1<4*<2<5*<6*<7*<3=8*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 10.

Step 4: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [2-3:z102+.] to (new) boundaries 6-10.

Step 6: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [1-3:z103+.] to (new) boundaries 4 - 10.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-10:z2+.] to the empty base (10,10).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.3—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [2-4:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-7:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.3, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.4

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 4: =0=3*<1<4*<5*<2=6*<7*<3=8*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z102+.] to (new) boundaries 7 - 9.

Step 5: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-3:z103+.] to (new) boundaries 4 - 9.

Step 7: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.4—is illustrated below:

GE Information: Carrier: [0-4:z100+.]; Carrier Dual: [2-3:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-6:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.4, as derived from the application

of a print to root-44.2.

Generalized Equation root-44.2.5

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 5: =0=3*<1<4*<5*<2<6*<7*<3=8*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 10.

 $\overline{\text{Step 4}}$: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [2-3:z102+.] to (new) boundaries 7 - 10.

Step 6: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [1-3:z103+.] to (new) boundaries 4-10.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-10:z2+.] to the empty base (10,10).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.5—is illustrated below:

GE Information: Carrier: [0-4:z100+.]; Carrier Dual: [2-3:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-4:z100+.]

and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-7:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.5, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.6

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 6: =0=3*<1<4*<5*<6*<2=7*<3=8*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [2-3:z102+.] to (new) boundaries 8 - 9.

Step 5: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-3:z103+.] to (new) boundaries 4 - 9.

Step 7: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.6—is illustrated below:

GE Information: Carrier: [0-5:z100+.]; Carrier Dual: [2-3:z100-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [0-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-6:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.6, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.7

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 7: =0=3*<1<4*<5*<6*<2<7*<3=8*

Sequence of actions in performing the Print 7:

- Step 1: Added (new) boundary 4.
- Step 2: Added (new) boundary 8.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 10.
- $\overline{\text{Step 4}}$: Moved (old) base [0-2:z100+.] to (new) boundaries 3 8.
- $\overline{\text{Step 5}}$: Moved (old) base [2-3:z102+.] to (new) boundaries 8 10.
- Step 6: Moved (old) base [0-1:z102-.] to (new) boundaries 3 4.
- $\overline{\text{Step 7}}$: Moved (old) base [1-3:z103+.] to (new) boundaries 4 10.
- Step 8: Collapsed (new) base [3-10:z2+.] to the empty base (10,10).
- Step 9: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.7—is illustrated below:

GE Information: Carrier: [0-5:z100+.] ; Carrier Dual: [2-3:z100-.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [0-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-7:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.7, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.8

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 8: =0=3*<1<4*<5*<6*<7*<2<3=8*

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 9.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 10.

Step 4: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 9.

 $\overline{\text{Step 5}}$: Moved (old) base [2-3:z102+.] to (new) boundaries 9 - 10.

Step 6: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [1-3:z103+.] to (new) boundaries 4 - 10.

Step 8: Collapsed (new) base [3-10:z2+.] to the empty base (10,10).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.8—is illustrated below:

GE Information: Carrier: [0-6:z100+.] ; Carrier Dual: [2-3:z100-.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [0-6:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-7:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.8, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.9

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 9: =0=3*<4*<1<2=5*<6*<7*<3=8*

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 6.

Step $\overline{4}$: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 9.

Step 5: Moved (old) base [0-1:z102-.] to (new) boundaries 3-5.

Step 6: Moved (old) base [1-3:z103+.] to (new) boundaries 5 - 9.

Step 7: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.9—is illustrated below:

GE Information: Carrier: [0-3:z100+.] ; Carrier Dual: [1-3:z100-.] ; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.9, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.10

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 10: =0=3*<4*<1<2<5*<6*<7*<3=8*

Sequence of actions in performing the Print 10:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 10.

 $\overline{\text{Step 4}}$: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 6.

Step 5: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 10.

Step 6: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 5.

Step 7: Moved (old) base [1-3:z103+.] to (new) boundaries 5 - 10.

Step 8: Collapsed (new) base [3-10:z2+.] to the empty base (10,10).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.10—is illustrated below:

GE Information: Carrier: [0-3:z100+.] ; Carrier Dual: [1-4:z100-.] ; Critical Boundary: 1; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.10, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.11

We begin from the GE root-44.2 (see pp. 209). We consider its print

Sequence of actions in performing the Print 11:

Step 1: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 2: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 8.

Step 4: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [1-3:z103+.] to (new) boundaries 5 - 8.

Step 6: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.11—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [1-2:z100-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.11, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.12

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 12: =0=3*<4*<1=5*<2<6*<7*<3=8*

Sequence of actions in performing the Print 12:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 3: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 9.

Step $\overline{5}$: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [1-3:z103+.] to (new) boundaries 5 - 9.

Step 7: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.12—is illustrated below:

GE Information: Carrier: [0-3:z100+.]; Carrier Dual: [1-2:z100-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.12, as derived from the application of a print to root-44.2.

Generalized Equation root-44.2.13

We begin from the GE root-44.2 (see pp. 209). We consider its print

Print 13: =0=3*<4*<1=5*<6*<2=7*<3=8*

Sequence of actions in performing the Print 13:

Step 1: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 2: Moved (old) base [0-2:z100+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [2-3:z102+.] to (new) boundaries 7 - 8.

Step 4: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [1-3:z103+.] to (new) boundaries 5 - 8.

Step 6: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-44.2.13—is illustrated below:

GE Information: Carrier: [0-4:z100+.]; Carrier Dual: [1-2:z100-.]; Critical Boundary: 2; Observe the following facts about this GE: The base [0-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-2:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-44.2.13, as derived from the application of a print to root-44.2.

45 Cancellation scheme #45

Generalized Equation root-45

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-45.1

We begin from the GE root-45 (see pp. 227). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 2 - 3.

 $\overline{\text{Step 5}}$: Moved (old) base [1-2:z103+.] to (new) boundaries 3 - 5.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-45.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-45.1, as derived from the application of a print to root-45.

Generalized Equation root-45.2

We begin from the GE root-45 (see pp. 227). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 2 - 4.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 5.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-45.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [4-5:z101-.] has constraints with its dual that stretch the constant segment 4 - 5 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-45.2, as derived from the application of a print to root-45.

46 Cancellation scheme #46

Generalized Equation root-46

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-46.1

We begin from the GE root-46 (see pp. 231). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 3.

 $\overline{\text{Step 5}}$: Moved (old) base [1-2:z103+.] to (new) boundaries 3 - 5.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-46.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-46.1, as derived from the application of a print to root-46.

Generalized Equation root-46.2

We begin from the GE root-46 (see pp. 231). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 4.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 5.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-46.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-4:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [6-7:z102-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-46.2, as derived from the application of a print to root-46.

47 Cancellation scheme #47

Generalized Equation root-47

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-4:z1+.] ; Carrier Dual: [4-6:z1+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is not a leaf in the GE tree. It has 6 valid prints (descendents).

It has 6 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<5*<4=6*
Print 2: =0=4*<1<2=5*<3<4=6*
Print 3: =0=4*<1<2<5*<3<4=6*
Print 4: =0=4*<1=5*<2<3<4=6*
Print 5: =0=4*<1<5*<2<3<4=6*
Print 6: =0=4*<5*<1<2<3<4=6*
```

We proceed.

Generalized Equation root-47.1

We begin from the GE root-47 (see pp. 235). We consider its print

```
Print 1: =0=4*<1<2<3<5*<4=6*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 5.
Step 2: Added (new) boundary 6.
Step 3: Added (new) boundary 7.
\overline{\text{Step 4}}: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 9.
Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.
Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.
\overline{\text{Step 7}}: Moved (old) base [0-1:z102+.] to (new) boundaries 4 - 5.
Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.
Step 9: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 9.
Step \overline{10}: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).
```

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.1—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [3-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-47.1, as derived from the application of a print to root-47.

Generalized Equation root-47.2

We begin from the GE root-47 (see pp. 235). We consider its print

Print 2: =0=4*<1<2=5*<3<4=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z102+.] to (new) boundaries 4-5.

 $\overline{\text{Step 7}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 8: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 8.

Step 9: Collapsed (new) base [4-8:z1+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.2—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-47.2, as derived from the application of a print to root-47.

Generalized Equation root-47.3

We begin from the GE root-47 (see pp. 235). We consider its print

Print 3: =0=4*<1<2<5*<3<4=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-1:z102+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 8}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 8.

Step 9: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

Step $\overline{10}$: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.3—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-47.3, as derived from the application of a print to root-47.

Generalized Equation root-47.4

We begin from the GE root-47 (see pp. 235). We consider its print

Print 4: =0=4*<1=5*<2<3<4=6*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

 $\overline{\text{Step 3}}$: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 8.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z102+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

 $\frac{2}{\text{Step 8}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 8.

Step 9: Collapsed (new) base [4-8:z1+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<4=5*
```

This completes the consideration of root-47.4, as derived from the application of a print to root-47.

Generalized Equation root-47.5

We begin from the GE root-47 (see pp. 235). We consider its print

```
Print 5: =0=4*<1<5*<2<3<4=6*
```

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.

Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 7.

Step 7: Moved (old) base [0-1:z102+.] to (new) boundaries 4-5.

 $\overline{\text{Step 8}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

Step 9: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

Step 10: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.5—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [7-8:z100-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-47.5, as derived from the application of a print to root-47.

Generalized Equation root-47.6

We begin from the GE root-47 (see pp. 235). We consider its print

Print 6: =0=4*<5*<1<2<3<4=6*

Sequence of actions in performing the Print 6:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 7.
- Step 3: Added (new) boundary 8.
- Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 9.
- Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4 9.
- Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 6 7.
- $\overline{\text{Step 7}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 4 6.
- Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 7 8.
- Step 9: Moved (old) base [3-4:z104+.] to (new) boundaries 8 9.
- $\overline{\text{Step 10}}$: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).
- Step 11: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.6—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [8-9:z102-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-47.6, as derived from the application of a print to root-47.

Generalized Equation root-47.2.1

We begin from the GE root-47.2 (see pp. 237). We consider its print

Print 1: =0=4*<1<2<3<4=5*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 5.

```
Step 2: Added (new) boundary 6.
```

- Step 3: Added (new) boundary 7.
- Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 8.
- Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 6.
- Step 6: Moved (old) base [2-4:z101+.] to (new) boundaries 6 8.
- $\overline{\text{Step 7}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 4 5.
- Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 6 7.
- Step 9: Moved (old) base [3-4:z104+.] to (new) boundaries 7 8.
- Step $\overline{10}$: Moved (old) base [0-2:z104-.] to (new) boundaries 4-6.
- Step 11: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).
- Step 12: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.2.1—is illustrated below:

GE Information: Carrier: [0-4:z101-.]; Carrier Dual: [2-4:z101+.]; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-47.2.1, as derived from the application

of a print to root-47.2.

Generalized Equation root-47.4.1

We begin from the GE root-47.4 (see pp. 240). We consider its print

```
Print 1: =0=4*<1<2<3<4=5*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 5.
```

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 7.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [1-4:z101+.] to (new) boundaries 5 - 8.

Step 7: Moved (old) base [0-1:z102+.] to (new) boundaries 4 - 5.

Step 8: Moved (old) base [2-3:z102+.] to (new) boundaries 4 - 3.

 $\frac{2 \times 9}{\text{Step 9}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 8.

Step 10: Moved (old) base [0 - 1:z104 + .] to (new) boundaries 4 - 5.

Step 11: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 12</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-47.4.1—is illustrated below:

GE Information: Carrier: [0-4:z101-.]; Carrier Dual: [1-4:z101+.]; Critical Boundary: 4; Observe the following facts about this GE: The base [1-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-47.4.1, as derived from the application of a print to root-47.4.

48 Cancellation scheme #48

z_1	$1 \leftarrow 2 \leftarrow 5 \leftarrow 0$
z_1	$3 \leftarrow 2 \leftarrow 1$
z_2	$4 \leftarrow 2 \leftarrow 3$
c_1	$2 \leftarrow 4$
c_1	$5 \leftarrow 2$
c_1	$0 \leftarrow 5$

Generalized Equation root-48

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-5:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 4 valid prints (descendents).

It has 4 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<3=5*
Print 2: =0=3*<1=4*<2<3=5*
Print 3: =0=3*<1<4*<2<3=5*
Print 4: =0=3*<4*<1<2<3=5*
```

We proceed.

Generalized Equation root-48.1

We begin from the GE root-48 (see pp. 247). We consider its print

```
Print 1: =0=3*<1<2<4*<3=5*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 4.
```

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 6}}$: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z103+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.1, as derived from the application of a print to root-48.

Generalized Equation root-48.2

We begin from the GE root-48 (see pp. 247). We consider its print

Print 2: =0=3*<1=4*<2<3=5*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 6.

Step 5: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [0-1:z103+.] to (new) boundaries 3 - 4.

Step 7: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-5:z2+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 4 valid prints (descendents).

It has 4 legal carrier-to-dual prints, as follows:

Print 1: =0=3*<1<2=4*<3=5* Print 2: =0=3*<1<2<4*<3=5* Print 3: =0=3*<1<4*<2<3=5* Print 4: =0=3*<4*<1<2<3=5*

This completes the consideration of root-48.2, as derived from the application of a print to root-48.

Generalized Equation root-48.3

We begin from the GE root-48 (see pp. 247). We consider its print

Print 3: =0=3*<1<4*<2<3=5*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 6.

Step 7: Moved (old) base [0-1:z103+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.3—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [7-8:z102-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.3, as derived from the application of a print to root-48.

Generalized Equation root-48.4

We begin from the GE root-48 (see pp. 247). We consider its print

Print 4: =0=3*<4*<1<2<3=5*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-1:z103+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [8-9:z103-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.4, as derived from the application of a print to root-48.

Generalized Equation root-48.2.1

We begin from the GE root-48.2 (see pp. 249). We consider its print

Print 1: =0=3*<1<2=4*<3=5*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 6.

Step 4: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [0.1:z103+.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [1-3:z104+.] to (new) boundaries 4 - 6.

Step 8: Collapsed (new) base [3-6:z2+.] to the empty base (6,6).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.2.1—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [1-3:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-3:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its

dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.2.1, as derived from the application of a print to root-48.2.

Generalized Equation root-48.2.2

We begin from the GE root-48.2 (see pp. 249). We consider its print

Print 2: =0=3*<1<2<4*<3=5*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [0-1:z103+.] to (new) boundaries 3 - 4.

Step 8: Moved (old) base [1-3:z104+.] to (new) boundaries 4 - 7.

Step 9: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.2.2—is illustrated below:

GE Information: Carrier: [0-3:z104-.]; Carrier Dual: [1-4:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.2.2, as derived from the application of a print to root-48.2.

Generalized Equation root-48.2.3

We begin from the GE root-48.2 (see pp. 249). We consider its print

Print 3: =0=3*<1<4*<2<3=5*

Sequence of actions in performing the Print 3:

- Step 1: Added (new) boundary 4.
- Step 2: Added (new) boundary 6.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 7.
- Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 6 7.
- Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 4.
- Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 4 6.
- $\overline{\text{Step 7}}$: Moved (old) base [0-1:z103+.] to (new) boundaries 3 4.
- Step 8: Moved (old) base [1-3:z104+.] to (new) boundaries 4 7.
- $\overline{\text{Step 9}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.2.3—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [1-4:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.2.3, as derived from the application of a print to root-48.2.

Generalized Equation root-48.2.4

We begin from the GE root-48.2 (see pp. 249). We consider its print

Print 4: =0=3*<4*<1<2<3=5*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 6 - 7.

Step 5: Moved (old) base [0-1:z100-.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-1:z103+.] to (new) boundaries 3 - 5.

Step 8: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 7.

Step 9: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-48.2.4—is illustrated below:

GE Information: Carrier: [0-2:z100-.]; Carrier Dual: [3-4:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [4-5:z101-.] has constraints with its dual that stretch the constant segment 4 - 5 to length different from 1. The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-48.2.4, as derived from the application of a print to root-48.2.

49 Cancellation scheme #49

Generalized Equation root-49

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-4:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 2 valid prints (descendents).

It has 2 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<2=4*
Print 2: =0=2*<3*<1<2=4*
```

We proceed.

Generalized Equation root-49.1

We begin from the GE root-49 (see pp. 258). We consider its print

```
Print 1: =0=2*<1<3*<2=4*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 3 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-49.1—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [1-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-49.1, as derived from the application of a print to root-49.

Generalized Equation root-49.2

We begin from the GE root-49 (see pp. 258). We consider its print

Print 2: =0=2*<3*<1<2=4*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z103+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-49.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-6:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [8-9:z103-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-49.2, as derived from the application of a print to root-49.

50 Cancellation scheme #50

Generalized Equation root-50

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-5:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 4 valid prints (descendents).

It has 4 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<3=5*
Print 2: =0=3*<1=4*<2<3=5*
Print 3: =0=3*<1<4*<2<3=5*
Print 4: =0=3*<4*<1<2<3=5*
```

We proceed.

Generalized Equation root-50.1

We begin from the GE root-50 (see pp. 262). We consider its print

```
Print 1: =0=3*<1<2<4*<3=5*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 4.
```

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 7}}$: Moved (old) base [1-2:z104+.] to (new) boundaries 4 - 5.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.1, as derived from the application of a print to root-50.

Generalized Equation root-50.2

We begin from the GE root-50 (see pp. 262). We consider its print

Print 2: =0=3*<1=4*<2<3=5*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [1-2:z104+.] to (new) boundaries 4-5.

Step 7: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

 $\overline{\text{Step 8}}$: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.]; Carrier Dual: [3-5:z2+.]; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 3 valid prints (descendents).

It has 3 legal carrier-to-dual prints, as follows:

Print 1: =0=3*<1<2<4*<3=5*
Print 2: =0=3*<1<4*<2<3=5*
Print 3: =0=3*<4*<1<2<3=5*

This completes the consideration of root-50.2, as derived from the application of a print to root-50.

Generalized Equation root-50.3

We begin from the GE root-50 (see pp. 262). We consider its print

Print 3: =0=3*<1<4*<2<3=5*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 3 - 4.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [1-2:z104+.] to (new) boundaries 4 - 6.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.3—is illustrated below:

GE Information: Carrier: [0-4:z2+.]; Carrier Dual: [4-6:z2+.]; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 5 valid prints (descendents).

It has 5 legal carrier-to-dual prints, as follows:

Print 1: =0=4*<1<2<3<5*<4=6*
Print 2: =0=4*<1<2<5*<3<4=6*
Print 3: =0=4*<1=5*<2<3<4=6*
Print 4: =0=4*<1<5*<2<3<4=6*
Print 5: =0=4*<5*<1<2<3<4=6*

This completes the consideration of root-50.3, as derived from the application of a print to root-50.

Generalized Equation root-50.4

We begin from the GE root-50 (see pp. 262). We consider its print

Print 4: =0=3*<4*<1<2<3=5*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 3 - 5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [1-2:z104+.] to (new) boundaries 5 - 6.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [8-9:z101-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.4, as derived from the application of a print to root-50.

Generalized Equation root-50.2.1

We begin from the GE root-50.2 (see pp. 264). We consider its print

Print 1: =0=3*<1<2<4*<3=5*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [1-3:z102+.] to (new) boundaries 4 - 7.

 $\overline{\text{Step 6}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z103-.] to (new) boundaries 3 - 4.

 $\frac{2 \times 5 \times 1}{\text{Step 8}}$: Moved (old) base [1-2:z104+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 9}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.2.1—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [1-4:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.2.1, as derived from the application of a print to root-50.2.

Generalized Equation root-50.2.2

We begin from the GE root-50.2 (see pp. 264). We consider its print

```
Print 2: =0=3*<1<4*<2<3=5*
```

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 3 - 4.

Step 5: Moved (old) base [1-3:z102+.] to (new) boundaries 4 - 7.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z103-.] to (new) boundaries 3 - 4.

Step 8: Moved (old) base [1-2:z104+.] to (new) boundaries 4 - 6.

Step 9: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

Step 10: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.2.2—is illustrated below:

GE Information: Carrier: [0-2:z102-.]; Carrier Dual: [1-4:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z102-.] and its dual are of opposite polarity, yet intersect. The base [1-3:z104+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.2.2, as derived from the application of a print to root-50.2.

Generalized Equation root-50.2.3

We begin from the GE root-50.2 (see pp. 264). We consider its print

Print 3: =0=3*<4*<1<2<3=5*

Sequence of actions in performing the Print 3:

- Step 1: Added (new) boundary 5.
- Step 2: Added (new) boundary 6.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 7.
- Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 3 5.
- Step 5: Moved (old) base [1-3:z102+.] to (new) boundaries 5 7.
- Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 7.
- Step 7: Moved (old) base [0-1:z103-.] to (new) boundaries 3 5.
- Step 8: Moved (old) base [1-2:z104+.] to (new) boundaries 5 6.
- $\overline{\text{Step 9}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

Step 10: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.2.3—is illustrated below:

GE Information: Carrier: [0-2:z101+.]; Carrier Dual: [6-7:z101-.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-3:z104+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.2.3, as derived from the application of a print to root-50.2.

Generalized Equation root-50.3.1

We begin from the GE root-50.3 (see pp. 265). We consider its print

Print 1: =0=4*<1<2<3<5*<4=6*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 7.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [2-4:z102+.] to (new) boundaries 6 - 9.

Step 7: Moved (old) base [3-4:z103+.] to (new) boundaries 7 - 9.

 $\overline{\text{Step 8}}$: Moved (old) base [0-2:z103-.] to (new) boundaries 4 - 6.

 $\overline{\text{Step 9}}$: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 7.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.3.1—is illustrated below:

GE Information: Carrier: [0-4:z102-.]; Carrier Dual: [2-5:z102+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [2-5:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.3.1, as derived from the application of a print to root-50.3.

Generalized Equation root-50.3.2

We begin from the GE root-50.3 (see pp. 265). We consider its print

Print 2: =0=4*<1<2<5*<3<4=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 8.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [2-4:z102+.] to (new) boundaries 6 - 9.

Step 7: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 9.

Step 8: Moved (old) base [0-2:z103-.] to (new) boundaries 4 - 6.

Step 9: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 8.

Step 10: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.3.2—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [2-5:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-5:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. The base [1-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [3-5:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.3.2, as derived from the application of a print to root-50.3.

Generalized Equation root-50.3.3

We begin from the GE root-50.3 (see pp. 265). We consider its print

Print 3: =0=4*<1=5*<2<3<4=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [2-4:z102+.] to (new) boundaries 6 - 8.

Step 6: Moved (old) base [3-4:z103+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [0-2:z103-.] to (new) boundaries 4 - 6.

Step 8: Moved (old) base [1-3:z104+.] to (new) boundaries 5 - 7.

Step 9: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.3.3—is illustrated below:

GE Information: Carrier: [0-2:z103-.]; Carrier Dual: [3-4:z103+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-3:z104+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.3.3, as derived from the application of a print to root-50.3.

Generalized Equation root-50.3.4

We begin from the GE root-50.3 (see pp. 265). We consider its print

Print 4: =0=4*<1<5*<2<3<4=6*

Sequence of actions in performing the Print 4:

- Step 1: Added (new) boundary 5.
- Step 2: Added (new) boundary 7.
- Step 3: Added (new) boundary 8.
- $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.
- Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 4 5.
- Step 6: Moved (old) base [2-4:z102+.] to (new) boundaries 7 9.
- Step 7: Moved (old) base [3-4:z103+.] to (new) boundaries 8 9.
- $\overline{\text{Step 8}}$: Moved (old) base [0-2:z103-.] to (new) boundaries 4 7.
- Step 9: Moved (old) base [1-3:z104+.] to (new) boundaries 5 8.
- Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).
- Step 11: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.3.4—is illustrated below:

GE Information: Carrier: [0-3:z103-.]; Carrier Dual: [4-5:z103+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [2-5:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.3.4, as derived from the application of a print to root-50.3.

Generalized Equation root-50.3.5

We begin from the GE root-50.3 (see pp. 265). We consider its print

Print 5: =0=4*<5*<1<2<3<4=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 6.

Step 6: Moved (old) base [2-4:z102+.] to (new) boundaries 7 - 9.

 $\overline{\text{Step 7}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 9.

Step 8: Moved (old) base [0-2:z103-.] to (new) boundaries 4 - 7.

Step 9: Moved (old) base [1-3:z104+.] to (new) boundaries 6 - 8.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-50.3.5—is illustrated below:

GE Information: Carrier: [0-3:z103-.]; Carrier Dual: [4-5:z103+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [1-5:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-50.3.5, as derived from the application of a print to root-50.3.

51 Cancellation scheme #51

$$\begin{vmatrix} z_1 & 1 \leftarrow 2 \leftarrow 4 \leftarrow 0 \\ z_1 & 3 \leftarrow 2 \leftarrow 1 \\ z_2 & 4 \leftarrow 2 \leftarrow 3 \\ c_1 & 0 \leftarrow 4 \\ c_1 & 5 \leftarrow 0 \\ c_1 & 0 \leftarrow 5 \end{vmatrix}$$

Generalized Equation root-51

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-5:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 4 valid prints (descendents).

It has 4 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<3=5*
Print 2: =0=3*<1=4*<2<3=5*
Print 3: =0=3*<1<4*<2<3=5*
Print 4: =0=3*<4*<1<2<3=5*
```

We proceed.

Generalized Equation root-51.1

We begin from the GE root-51 (see pp. 279). We consider its print

```
Print 1: =0=3*<1<2<4*<3=5*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 4.
```

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 6}}$: Moved (old) base [2-3:z102+.] to (new) boundaries 5 - 7.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.1, as derived from the application of a print to root-51.

Generalized Equation root-51.2

We begin from the GE root-51 (see pp. 279). We consider its print

Print 2: =0=3*<1=4*<2<3=5*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [2-3:z102+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 7: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-5:z2+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 3 valid prints (descendents).

It has 3 legal carrier-to-dual prints, as follows:

Print 1: =0=3*<1<2<4*<3=5* Print 2: =0=3*<1<4*<2<3=5* Print 3: =0=3*<4*<1<2<3=5*

This completes the consideration of root-51.2, as derived from the application of a print to root-51.

Generalized Equation root-51.3

We begin from the GE root-51 (see pp. 279). We consider its print

Print 3: =0=3*<1<4*<2<3=5*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 6.

Step 6: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.3—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 5 valid prints (descendents).

It has 5 legal carrier-to-dual prints, as follows:

Print 1: =0=4*<1<2<3<5*<4=6*
Print 2: =0=4*<1<2<5*<3<4=6*
Print 3: =0=4*<1=5*<2<3<4=6*
Print 4: =0=4*<1<5*<2<3<4=6*
Print 5: =0=4*<5*<1<2<3<4=6*

This completes the consideration of root-51.3, as derived from the application of a print to root-51.

Generalized Equation root-51.4

We begin from the GE root-51 (see pp. 279). We consider its print

Print 4: =0=3*<4*<1<2<3=5*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 5}}$: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [6-7:z104-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.4, as derived from the application of a print to root-51.

Generalized Equation root-51.2.1

We begin from the GE root-51.2 (see pp. 281). We consider its print

Print 1: =0=3*<1<2<4*<3=5*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [1-3:z101+.] to (new) boundaries 4 - 7.

Step 6: Moved (old) base [2-3:z102+.] to (new) boundaries 5 - 7.

Step 7: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

 $\overline{\text{Step 8}}$: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

 $\overline{\text{Step 9}}$: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.2.1—is illustrated below:

GE Information: Carrier: [0-3:z101-.]; Carrier Dual: [1-4:z101+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.2.1, as derived from the application of a print to root-51.2.

Generalized Equation root-51.2.2

We begin from the GE root-51.2 (see pp. 281). We consider its print

```
Print 2: =0=3*<1<4*<2<3=5*
```

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 6.

Step 5: Moved (old) base [1-3:z101+.] to (new) boundaries 4 - 7.

Step 6: Moved (old) base [2-3:z102+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [0-1:z102-.] to (new) boundaries 3 - 4.

Step 8: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 9: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.2.2—is illustrated below:

GE Information: Carrier: [0-2:z101-.]; Carrier Dual: [1-4:z101+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.2.2, as derived from the application of a print to root-51.2.

Generalized Equation root-51.2.3

We begin from the GE root-51.2 (see pp. 281). We consider its print

Print 3: =0=3*<4*<1<2<3=5*

Sequence of actions in performing the Print 3:

- Step 1: Added (new) boundary 5.
- Step 2: Added (new) boundary 6.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 7.
- Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 6.
- Step 5: Moved (old) base [1-3:z101+.] to (new) boundaries 5 7.
- Step 6: Moved (old) base [2-3:z102+.] to (new) boundaries 6 7.
- Step 7: Moved (old) base [0-1:z102-.] to (new) boundaries 3 5.
- Step 8: Moved (old) base [0-1:z104+.] to (new) boundaries 3 5.
- Step 9: Collapsed (new) base [3-7:z2+.] to the empty base (7,7).

Step 10: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.2.3—is illustrated below:

GE Information: Carrier: [0-2:z102-.]; Carrier Dual: [3-4:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.2.3, as derived from the application of a print to root-51.2.

Generalized Equation root-51.3.1

We begin from the GE root-51.3 (see pp. 282). We consider its print

Print 1: =0=4*<1<2<3<5*<4=6*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 7.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 6}}$: Moved (old) base [2-4:z101+.] to (new) boundaries 6 - 9.

Step 7: Moved (old) base [3-4:z102+.] to (new) boundaries 7 - 9.

Step 8: Moved (old) base [0-2:z102-.] to (new) boundaries 4 - 6.

 $\overline{\text{Step 9}}$: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.3.1—is illustrated below:

GE Information: Carrier: [0-4:z101-.]; Carrier Dual: [2-5:z101+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [2-5:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.3.1, as derived from the application of a print to root-51.3.

Generalized Equation root-51.3.2

We begin from the GE root-51.3 (see pp. 282). We consider its print

Print 2: =0=4*<1<2<5*<3<4=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 8.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

 $\overline{\text{Step 5}}$: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 8.

Step 6: Moved (old) base [2-4:z101+.] to (new) boundaries 6 - 9.

Step 7: Moved (old) base [3-4:z102+.] to (new) boundaries 8 - 9.

Step 8: Moved (old) base [0-2:z102-] to (new) boundaries 4-6.

Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

Step 10: Collapsed (new) base [4-9:22+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.3.2—is illustrated below:

GE Information: Carrier: [0-3:z101-.]; Carrier Dual: [2-5:z101+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [3-5:z100-.] and its dual are of opposite polarity, yet intersect. The base [2-5:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.3.2, as derived from the application of a print to root-51.3.

Generalized Equation root-51.3.3

We begin from the GE root-51.3 (see pp. 282). We consider its print

Print 3: =0=4*<1=5*<2<3<4=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [2-4:z101+.] to (new) boundaries 6 - 8.

Step 6: Moved (old) base [3-4:z102+.] to (new) boundaries 7 - 8.

 $\underline{\overline{Step 7}}: Moved (old) base [0-2:z102-.] to (new) boundaries 4-6.$

Step 8: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 5.

Step 9: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.3.3—is illustrated below:

GE Information: Carrier: [0-2:z102-.]; Carrier Dual: [3-4:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-3:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.3.3, as derived from the application of a print to root-51.3.

Generalized Equation root-51.3.4

We begin from the GE root-51.3 (see pp. 282). We consider its print

Print 4: =0=4*<1<5*<2<3<4=6*

Sequence of actions in performing the Print 4:

- Step 1: Added (new) boundary 5.
- Step 2: Added (new) boundary 7.
- Step 3: Added (new) boundary 8.
- Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.
- Step 5: Moved (old) base [1-3:z100+.] to (new) boundaries 5 8.
- Step 6: Moved (old) base [2-4:z101+.] to (new) boundaries 7 9.
- Step 7: Moved (old) base [3-4:z102+.] to (new) boundaries 8 9.
- $\overline{\text{Step 8}}$: Moved (old) base [0-2:z102-.] to (new) boundaries 4 7.
- $\overline{\text{Step 9}}$: Moved (old) base [0-1:z104+.] to (new) boundaries 4 5.
- Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).
- Step 11: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.3.4—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [4-5:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [2-5:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.3.4, as derived from the application of a print to root-51.3.

Generalized Equation root-51.3.5

We begin from the GE root-51.3 (see pp. 282). We consider its print

Print 5: =0=4*<5*<1<2<3<4=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 6.

```
Step 2: Added (new) boundary 7.
```

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [1-3:z100+.] to (new) boundaries 6 - 8.

Step 6: Moved (old) base [2-4:z101+.] to (new) boundaries 7 - 9.

 $\overline{\text{Step 7}}$: Moved (old) base [3-4:z102+.] to (new) boundaries 8 - 9.

Step 8: Moved (old) base [0-2:z102-.] to (new) boundaries 4 - 7.

Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 4 - 6.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-51.3.5—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [4-5:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-4:z100+.] and its dual are of opposite polarity, yet intersect. The base [1-5:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-51.3.5, as derived from the application of a print to root-51.3.

52 Cancellation scheme #52

Generalized Equation root-52

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-5:z1+.] ; Carrier Dual: [5-7:z1+.] ; Critical Boundary: 5; The GE above is non-degenerate. This GE is not a leaf in the GE tree. It has 8 valid prints (descendents).

It has 8 legal carrier-to-dual prints, as follows:

```
Print 1: =0=5*<1<2<3<4<6*<5=7*
Print 2: =0=5*<1<2<3=6*<4<5=7*
Print 3: =0=5*<1<2<3<6*<4<5=7*
Print 4: =0=5*<1<2=6*<3<4<5=7*
Print 5: =0=5*<1<2<6*<3<4<5=7*
Print 6: =0=5*<1=6*<2<3<4<5=7*
Print 7: =0=5*<1<6*<2<3<4<5=7*
Print 8: =0=5*<6*<1<2<3<4<5=7*
```

We proceed.

Generalized Equation root-52.1

We begin from the GE root-52 (see pp. 296). We consider its print

```
Print 1: =0=5*<1<2<3<4<6*<5=7*
```

```
Sequence of actions in performing the Print 1:
Step 1: Added (new) boundary 6.
Step 2: Added (new) boundary 7.
Step 3: Added (new) boundary 8.
Step 4: Added (new) boundary 9.
Step 5: Moved (old) base [0-5:z1+.] to (new) boundaries 5 - 11.
Step 6: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.
Step 7: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.
Step 8: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.
Step 9: Moved (old) base [4-5:z102+.] to (new) boundaries 9 - 11.
Step 10: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 9.
Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.
Step 12: Collapsed (new) base [5-11:z1+.] to the empty base (11,11).
Step 13: Deleted (new) boundary 0 because it is not used inside any base. This
will cause renumbering of higher numbered boundaries.
```

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries. Step 15: Deleted (new) boundary 2 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.1—is illustrated below:

GE Information: Carrier: [0-6:z2+.] ; Carrier Dual: [6-8:z2+.] ; Critical Boundary: 6; Observe the following facts about this GE: The base [4-6:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-5:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.1, as derived from the application of a print to root-52.

Generalized Equation root-52.2

We begin from the GE root-52 (see pp. 296). We consider its print

Print 2: =0=5*<1<2<3=6*<4<5=7*

Sequence of actions in performing the Print 2:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 7.
- Step 3: Added (new) boundary 9.
- $\overline{\text{Step 4}}$: Moved (old) base [0-5:z1+.] to (new) boundaries 5 10.
- Step 5: Moved (old) base [0-5:z2+.] to (new) boundaries 5 10.
- Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 6.
- Step 7: Moved (old) base [1-2:z101+.] to (new) boundaries 6 7.
- Step 8: Moved (old) base [4-5:z102+.] to (new) boundaries 9 10.
- Step 9: Moved (old) base [3-4:z103+.] to (new) boundaries 8 9.

Step 10: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step $\overline{11}$: Collapsed (new) base [5-10:z1+.] to the empty base (10,10).

Step 12: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-7:z2+.] ; Critical Boundary: 5; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 7 valid prints (descendents).

It has 7 legal carrier-to-dual prints, as follows:

Print 1: =0=5*<1<2<3<4<6*<5=7*
Print 2: =0=5*<1<2<3<6*<4<5=7*
Print 3: =0=5*<1<2=6*<3<4<5=7*
Print 4: =0=5*<1<2<6*<3<4<5=7*
Print 5: =0=5*<1=6*<2<3<4<5=7*
Print 6: =0=5*<1<6*<2<3<4<5=7*
Print 7: =0=5*<6*<1<2<3<4<5=7*

This completes the consideration of root-52.2, as derived from the application of a print to root-52.

Generalized Equation root-52.3

We begin from the GE root-52 (see pp. 296). We consider its print

```
Print 3: =0=5*<1<2<3<6*<4<5=7*
```

Sequence of actions in performing the Print 3:

```
Step 1: Added (new) boundary 6.
```

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Added (new) boundary 10.

 $\overline{\text{Step 5}}$: Moved (old) base [0-5:z1+.] to (new) boundaries 5 - 11.

Step 6: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.

Step 7: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.

Step 8: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.

Step 9: Moved (old) base [4-5:z102+.] to (new) boundaries 10 - 11.

Step 10: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 10.

Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 12: Collapsed (new) base [5-11:z1+.] to the empty base (11,11).

Step 13: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.3—is illustrated below:

GE Information: Carrier: [0-6:z2+.] ; Carrier Dual: [6-8:z2+.] ; Critical Boundary: 6; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 9 valid prints (descendents).

It has 9 legal carrier-to-dual prints, as follows:

```
Print 1: =0=6*<1<2<3<4<5<7*<6=8*
Print 2: =0=6*<1<2<3<4<7*<5<6=8*
Print 3: =0=6*<1<2<3=7*<4<5<6=8*
Print 4: =0=6*<1<2<3<7*<4<5<6=8*
Print 5: =0=6*<1<2<3<7*<4<5<6=8*
Print 6: =0=6*<1<2=7*<3<4<5<6=8*
Print 7: =0=6*<1<2<7*<3<4<5<6=8*
Print 7: =0=6*<1<2<7*<3<4<5<6=8*
Print 7: =0=6*<1<2<7*<3<4<5<6=8*
Print 9: =0=6*<1<7*<2<3<4<5<6=8*
```

This completes the consideration of root-52.3, as derived from the application of a print to root-52.

Generalized Equation root-52.4

We begin from the GE root-52 (see pp. 296). We consider its print

Print 4: =0=5*<1<2=6*<3<4<5=7*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 6. Step 2: Added (new) boundary 8.

Step 3: Added (new) boundary 9.

Step 4: Moved (old) base [0-5:z1+.] to (new) boundaries 5 - 10.

Step 5: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 10.

Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 7}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.

Step 8: Moved (old) base [4-5:z102+.] to (new) boundaries 9 - 10.

Step 9: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 9.

Step 10: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 11: Collapsed (new) base [5-10:z1+.] to the empty base (10,10).

<u>Step 12</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.4—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-7:z2+.] ; Critical Boundary: 5; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 7 valid prints (descendents).

It has 7 legal carrier-to-dual prints, as follows:

Print 1: =0=5*<1<2<3<4<6*<5=7*
Print 2: =0=5*<1<2<3=6*<4<5=7*

```
Print 3: =0=5*<1<2<3<6*<4<5=7*
Print 4: =0=5*<1<2<6*<3<4<5=7*
Print 5: =0=5*<1=6*<2<3<4<5=7*
Print 6: =0=5*<1<6*<2<3<4<5=7*
Print 7: =0=5*<6*<1<2<3<4<5=7*
```

This completes the consideration of root-52.4, as derived from the application of a print to root-52.

Generalized Equation root-52.5

We begin from the GE root-52 (see pp. 296). We consider its print

```
Print 5: =0=5*<1<2<6*<3<4<5=7*
```

Sequence of actions in performing the Print 5:

```
Step 1: Added (new) boundary 6.
```

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 9.

Step 4: Added (new) boundary 10.

Step 5: Moved (old) base [0-5:z1+.] to (new) boundaries 5 - 11.

Step 6: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.

Step 7: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.

Step 8: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 9}}$: Moved (old) base [4-5:z102+.] to (new) boundaries 10 - 11.

Step $\overline{10}$: Moved (old) base [3-4:z103+.] to (new) boundaries 9-10.

Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 9.

Step 12: Collapsed (new) base [5-11:z1+.] to the empty base (11,11).

<u>Step 13</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.5—is illustrated below:

GE Information: Carrier: [0-6:z2+.]; Carrier Dual: [6-8:z2+.]; Critical Boundary: 6; Observe the following facts about this GE: The base [8-9:z104-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.5, as derived from the application of a print to root-52.

Generalized Equation root-52.6

We begin from the GE root-52 (see pp. 296). We consider its print

Print 6: =0=5*<1=6*<2<3<4<5=7*

Sequence of actions in performing the Print 6:

- Step 1: Added (new) boundary 7.
- Step 2: Added (new) boundary 8.
- Step 3: Added (new) boundary 9.
- Step 4: Moved (old) base [0-5:z1+.] to (new) boundaries 5 10.
- Step 5: Moved (old) base [0-5:z2+.] to (new) boundaries 5 10.
- Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 6.
- Step 7: Moved (old) base [1-2:z101+.] to (new) boundaries 6 7.
- $\overline{\text{Step 8}}$: Moved (old) base [4-5:z102+.] to (new) boundaries 9 10. Step 9: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 9.
- $\overline{\text{Step }10}$: Moved (old) base [2-3:z104+.] to (new) boundaries 7 8.
- Step 11: Collapsed (new) base [5-10:z1+.] to the empty base (10,10).

Step 12: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.6—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-7:z2+.] ; Critical Boundary: 5; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 7 valid prints (descendents).

It has 7 legal carrier-to-dual prints, as follows:

Print 1: =0=5*<1<2<3<4<6*<5=7*
Print 2: =0=5*<1<2<3=6*<4<5=7*
Print 3: =0=5*<1<2<3<6*<4<5=7*
Print 4: =0=5*<1<2=6*<3<4<5=7*
Print 5: =0=5*<1<2<6*<3<4<5=7*
Print 6: =0=5*<1<2<6*<3<4<5=7*
Print 7: =0=5*<1<6*<2<3<4<5=7*

This completes the consideration of root-52.6, as derived from the application of a print to root-52.

Generalized Equation root-52.7

We begin from the GE root-52 (see pp. 296). We consider its print

Print 7: =0=5*<1<6*<2<3<4<5=7*

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 8.

Step 3: Added (new) boundary 9.

Step 4: Added (new) boundary 10.

Step 5: Moved (old) base [0-5:z1+.] to (new) boundaries 5 - 11.

Step 6: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.

Step 7: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.

Step 8: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 8.

Step 9: Moved (old) base [4-5:z102+.] to (new) boundaries 10 - 11.

Step 10: Moved (old) base [3-4:z103+.] to (new) boundaries 9 - 10.

Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 8 - 9.

 $\overline{\text{Step }12}$: Collapsed (new) base [5-11:z1+.] to the empty base (11,11).

Step 13: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.7—is illustrated below:

GE Information: Carrier: [0-6:z2+.] ; Carrier Dual: [6-8:z2+.] ; Critical Boundary: 6; Observe the following facts about this GE: The base [9-10:z101-.] has constraints with its dual that stretch the constant segment 9 - 10 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.7, as derived from the application of a print to root-52.

Generalized Equation root-52.8

We begin from the GE root-52 (see pp. 296). We consider its print

Print 8: =0=5*<6*<1<2<3<4<5=7*

Sequence of actions in performing the Print 8:

- Step 1: Added (new) boundary 7.
- Step 2: Added (new) boundary 8.
- Step 3: Added (new) boundary 9.
- Step 4: Added (new) boundary 10.
- Step 5: Moved (old) base [0-5:z1+.] to (new) boundaries 5 11.
- Step 6: Moved (old) base [0-5:z2+.] to (new) boundaries 5 11.
- Step 7: Moved (old) base [0-1:z100+.] to (new) boundaries 5 7.
- Step 8: Moved (old) base [1-2:z101+.] to (new) boundaries 7 8.
- Step 9: Moved (old) base [4-5:z102+.] to (new) boundaries 10 11.
- $\overline{\text{Step }10}$: Moved (old) base [3-4:z103+.] to (new) boundaries 9 10.
- Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 8 9.

Step 12: Collapsed (new) base [5-11:z1+.] to the empty base (11,11).

<u>Step 13</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.8—is illustrated below:

GE Information: Carrier: [0-6:z2+.] ; Carrier Dual: [6-8:z2+.] ; Critical Boundary: 6; Observe the following facts about this GE: The base [10-11:z100-.] has constraints with its dual that stretch the constant segment 10 - 11 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.8, as derived from the application of a print to root-52.

Generalized Equation root-52.2.1

We begin from the GE root-52.2 (see pp. 298). We consider its print

Print 1: =0=5*<1<2<3<4<6*<5=7*

Sequence of actions in performing the Print 1:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 7.
- Step 3: Added (new) boundary 8.
- Step 4: Added (new) boundary 9.
- $\overline{\text{Step 5}}$: Moved (old) base [0-5:z2+.] to (new) boundaries 5 11.
- Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 6.
- Step 7: Moved (old) base [1-2:z101+.] to (new) boundaries 6 7.
- Step 8: Moved (old) base [4-5:z102+.] to (new) boundaries 9 11.
- Step 9: Moved (old) base [0-3:z102-.] to (new) boundaries 5 8.
- $\overline{\text{Step 10}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 8 9.
- Step $\overline{11}$: Moved (old) base [2-3:z104+.] to (new) boundaries 7 8.
- Step 12: Moved (old) base [3-5:z105+.] to (new) boundaries 8 11.
- Step 13: Collapsed (new) base [5-11:z2+.] to the empty base (11,11).
- <u>Step 14</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 15: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 16: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 17: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 18: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.1—is illustrated below:

GE Information: Carrier: [0-5:z105-.]; Carrier Dual: [3-6:z105+.]; Critical Boundary: 3; Observe the following facts about this GE: The base [3-6:z105+.] and its dual are of opposite polarity, yet intersect. The base [0-5:z105-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.1, as derived from the application of a print to root-52.2.

Generalized Equation root-52.2.2

We begin from the GE root-52.2 (see pp. 298). We consider its print

```
Print 2: =0=5*<1<2<3<6*<4<5=7*
```

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Added (new) boundary 10.

 $\overline{\text{Step 5}}$: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.

Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.

Step 8: Moved (old) base [4-5:z102+.] to (new) boundaries 10 - 11.

Step 9: Moved (old) base [0-3:z102-.] to (new) boundaries 5 - 8.

 $\overline{\text{Step 10}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 8 - 10.

Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 12: Moved (old) base [3-5:z105+.] to (new) boundaries 8-11.

Step 13: Collapsed (new) base [5-11:z2+.] to the empty base (11,11).

<u>Step 14</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 15</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 18: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.2—is illustrated below:

GE Information: Carrier: [0-4:z105-.]; Carrier Dual: [3-6:z105+.]; Critical Boundary: 3; Observe the following facts about this GE: The base [3-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [4-6:z103-.] and its dual are of opposite polarity, yet intersect. The base [3-6:z105+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z105-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.2, as derived from the application of a print to root-52.2.

Generalized Equation root-52.2.3

We begin from the GE root-52.2 (see pp. 298). We consider its print

Print 3: =0=5*<1<2=6*<3<4<5=7*

Sequence of actions in performing the Print 3:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 8.
- Step 3: Added (new) boundary 9.
- Step 4: Moved (old) base [0-5:z2+.] to (new) boundaries 5 10.
- Step 5: Moved (old) base [0-1:z100+.] to (new) boundaries 5 6.
- Step 6: Moved (old) base [1-2:z101+.] to (new) boundaries 6 7.
- $\overline{\text{Step 7}}$: Moved (old) base [4-5:z102+.] to (new) boundaries 9 10.
- Step 8: Moved (old) base [0-3:z102-.] to (new) boundaries 5 8.
- Step 9: Moved (old) base [3-4:z103+.] to (new) boundaries 8 9.

Step 10: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 11: Moved (old) base [3-5:z105+.] to (new) boundaries 8 - 10.

Step 12: Collapsed (new) base [5-10:z2+.] to the empty base (10,10).

<u>Step 13</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.3—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [4-5:z102+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [3-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-5:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.3, as derived from the application of a print to root-52.2.

Generalized Equation root-52.2.4

We begin from the GE root-52.2 (see pp. 298). We consider its print

Print 4: =0=5*<1<2<6*<3<4<5=7*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 9.

Step 4: Added (new) boundary 10.

 $\overline{\text{Step 5}}$: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.

Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [1-2:z101+.] to (new) boundaries 6 - 7.

Step 8: Moved (old) base [4-5:z102+.] to (new) boundaries 10 - 11.

Step 9: Moved (old) base [0-3:z102-.] to (new) boundaries 5 - 9.

 $\overline{\text{Step 10}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 9 - 10.

Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 9.

 $\overline{\text{Step }12}$: Moved (old) base [3-5:z105+.] to (new) boundaries 9 - 11.

Step 13: Collapsed (new) base [5-11:z2+.] to the empty base (11,11).

Step 14: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 18: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.4—is illustrated below:

GE Information: Carrier: [0-4:z102-.]; Carrier Dual: [5-6:z102+.]; Critical Boundary: 3; Observe the following facts about this GE: The base [4-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [3-6:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.4, as derived from the application of a print to root-52.2.

Generalized Equation root-52.2.5

We begin from the GE root-52.2 (see pp. 298). We consider its print

Print 5: =0=5*<1=6*<2<3<4<5=7*

Sequence of actions in performing the Print 5:

- Step 1: Added (new) boundary 7.
- Step 2: Added (new) boundary 8.
- Step 3: Added (new) boundary 9.
- Step 4: Moved (old) base [0-5:z2+.] to (new) boundaries 5 10.
- Step 5: Moved (old) base [0-1:z100+.] to (new) boundaries 5 6.
- Step 6: Moved (old) base [1-2:z101+.] to (new) boundaries 6 7.
- $\overline{\text{Step 7}}$: Moved (old) base [4-5:z102+.] to (new) boundaries 9 10.
- Step 8: Moved (old) base [0-3:z102-.] to (new) boundaries 5 8.
- $\overline{\text{Step 9}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 8 9.
- Step $\overline{10}$: Moved (old) base [2-3:z104+.] to (new) boundaries 7-8.
- Step $\overline{11}$: Moved (old) base [3-5:z105+.] to (new) boundaries 8-10.

Step 12: Collapsed (new) base [5-10:z2+.] to the empty base (10,10).

<u>Step 13</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.5—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [4-5:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [3-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-5:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.5, as derived from the application of a print to root-52.2.

Generalized Equation root-52.2.6

We begin from the GE root-52.2 (see pp. 298). We consider its print

Print 6: =0=5*<1<6*<2<3<4<5=7*

Sequence of actions in performing the Print 6:

- Step 1: Added (new) boundary 6.
- Step 2: Added (new) boundary 8.
- Step 3: Added (new) boundary 9.
- Step 4: Added (new) boundary 10.
- Step 5: Moved (old) base [0-5:z2+.] to (new) boundaries 5 11.
- Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 6.
- $\overline{\text{Step 7}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 6 8.
- $\overline{\text{Step 8}}$: Moved (old) base [4-5:z102+.] to (new) boundaries 10 11.
- Step 9: Moved (old) base [0-3:z102-.] to (new) boundaries 5 9.
- Step 10: Moved (old) base [3-4:z103+.] to (new) boundaries 9-10.
- $\underline{\text{Step 11}}\text{: Moved (old) base [2-3:z104+.] to (new) boundaries 8-9.}$
- Step 12: Moved (old) base [3-5:z105+.] to (new) boundaries 9 11.
- Step 13: Collapsed (new) base [5-11:z2+.] to the empty base (11,11).
- <u>Step 14</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 15: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 16: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 17: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.
- Step 18: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.6—is illustrated below:

GE Information: Carrier: [0-4:z102-.]; Carrier Dual: [5-6:z102+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [4-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-6:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.6, as derived from the application of a print to root-52.2.

Generalized Equation root-52.2.7

We begin from the GE root-52.2 (see pp. 298). We consider its print

```
Print 7: =0=5*<6*<1<2<3<4<5=7*
```

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 7.

Step 2: Added (new) boundary 8.

Step 3: Added (new) boundary 9.

Step 4: Added (new) boundary 10.

Step 5: Moved (old) base [0-5:z2+.] to (new) boundaries 5 - 11.

Step 6: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 7.

Step 7: Moved (old) base [1-2:z101+.] to (new) boundaries 7 - 8.

 $\overline{\text{Step 8}}$: Moved (old) base [4-5:z102+.] to (new) boundaries 10 - 11.

Step 9: Moved (old) base [0-3:z102-.] to (new) boundaries 5 - 9.

 $\overline{\text{Step 10}}$: Moved (old) base [3-4:z103+.] to (new) boundaries 9 - 10.

Step 11: Moved (old) base [2-3:z104+.] to (new) boundaries 8 - 9.

Step 12: Moved (old) base [3-5:z105+.] to (new) boundaries 9-11.

Step 13: Collapsed (new) base [5-11:z2+.] to the empty base (11,11).

<u>Step 14</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 16: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 17: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 18: Deleted (new) boundary 4 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-52.2.7—is illustrated below:

GE Information: Carrier: [0-4:z102-.]; Carrier Dual: [5-6:z102+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [4-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-6:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-52.2.7, as derived from the application of a print to root-52.2.

53 Cancellation scheme #53

 $\begin{vmatrix} z_1 & 1 \leftarrow 2 \leftarrow 4 \leftarrow 6 \leftarrow 0 \\ z_1 & 3 \leftarrow 2 \leftarrow 1 \\ z_2 & 5 \leftarrow 4 \leftarrow 2 \leftarrow 3 \\ c_1 & 4 \leftarrow 5 \\ c_1 & 6 \leftarrow 4 \\ c_1 & 0 \leftarrow 6 \end{vmatrix}$

Generalized Equation root-53

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-4:z1+.] ; Carrier Dual: [4-6:z1+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 6 valid prints (descendents).

It has 6 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<5*<4=6*
Print 2: =0=4*<1<2=5*<3<4=6*
Print 3: =0=4*<1<2<5*<3<4=6*
Print 4: =0=4*<1=5*<2<3<4=6*
Print 5: =0=4*<1<5*<2<3<4=6*
Print 6: =0=4*<5*<1<2<3<4=6*
```

We proceed.

Generalized Equation root-53.1

We begin from the GE root-53 (see pp. 319). We consider its print

```
Print 1: =0=4*<1<2<3<5*<4=6*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 5.
Step 2: Added (new) boundary 6.
Step 3: Added (new) boundary 7.
Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 9.
```

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.

Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6. Step 7: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 4 - 3.

 $\overline{\text{Step 9}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 9.

Step $\overline{10}$: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.1—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-8:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [3-5:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.1, as derived from the application of a print to root-53.

Generalized Equation root-53.2

We begin from the GE root-53 (see pp. 319). We consider its print

Print 2: =0=4*<1<2=5*<3<4=6*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z101+.] to (new) boundaries 4-5.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 8: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 8.

Step 9: Collapsed (new) base [4-8:z1+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-7:z2+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 18 valid prints (descendents).

It has 18 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<5*<6*<4=7*
Print 2: =0=4*<1<2<5*<3=6*<4=7*
Print 3: =0=4*<1<2<5*<3<6*<4=7*
Print 4: =0=4*<1<2<5*<6*<3<4=7*
Print 5: =0=4*<1=5*<2<3=6*<4=7*
Print 6: =0=4*<1=5*<2<3<6*<4=7*
Print 7: =0=4*<1=5*<2<3<6*<4=7*
Print 8: =0=4*<1=5*<2<3<6*<4=7*
Print 9: =0=4*<1=5*<6*<2<3<4=7*
Print 10: =0=4*<1<5*<2<3=6*<4=7*
Print 10: =0=4*<1<5*<2<3<6*<4=7*
Print 11: =0=4*<1<5*<2<3<6*<4=7*
Print 12: =0=4*<1<5*<2<3<6*<4=7*
Print 14: =0=4*<1<5*<2<3<6*<4=7*
```

```
Print 15: =0=4*<5*<1<2<6*<3<4=7*
Print 16: =0=4*<5*<1=6*<2<3<4=7*
Print 17: =0=4*<5*<1<6*<2<3<4=7*
Print 18: =0=4*<5*<6*<1<2<3<4=7*
```

This completes the consideration of root-53.2, as derived from the application of a print to root-53.

Generalized Equation root-53.3

We begin from the GE root-53 (see pp. 319). We consider its print

```
Print 3: =0=4*<1<2<5*<3<4=6*
```

Sequence of actions in performing the Print 3:

```
Step 1: Added (new) boundary 5.
```

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

 $\overline{\text{Step 6}}$: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 8.

Step 9: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

Step 10: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.3—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-8:z2+.] ; Critical Boundary: 5; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 34 valid prints (descendents).

It has 34 legal carrier-to-dual prints, as follows:

```
Print 1: =0=5*<1<2<3<4<6*<7*<5=8*
Print 2: =0=5*<1<2<3<6*<4=7*<5=8*
Print 3: =0=5*<1<2<3<6*<4<7*<5=8*
Print 4: =0=5*<1<2<3<6*<7*<4<5=8*
Print 5: =0=5*<1<2=6*<3<4=7*<5=8*
Print 6: =0=5*<1<2=6*<3<4<7*<5=8*
Print 7: =0=5*<1<2=6*<3=7*<4<5=8*
Print 8: =0=5*<1<2=6*<3<7*<4<5=8*
Print 9: =0=5*<1<2=6*<7*<3<4<5=8*
Print 10: =0=5*<1<2<6*<3<4=7*<5=8*
Print 11: =0=5*<1<2<6*<3<4<7*<5=8*
Print 12: =0=5*<1<2<6*<3=7*<4<5=8*
Print 13: =0=5*<1<2<6*<3<7*<4<5=8*
Print 14: =0=5*<1<2<6*<7*<3<4<5=8*
Print 15: =0=5*<1=6*<2<3<4=7*<5=8*
Print 16: =0=5*<1=6*<2<3<4<7*<5=8*
Print 17: =0=5*<1=6*<2<3=7*<4<5=8*
Print 18: =0=5*<1=6*<2<3<7*<4<5=8*
Print 19: =0=5*<1=6*<2<7*<3<4<5=8*
Print 20: =0=5*<1=6*<7*<2<3<4<5=8*
Print 21: =0=5*<1<6*<2<3<4=7*<5=8*
Print 22: =0=5*<1<6*<2<3<4<7*<5=8*
Print 23: =0=5*<1<6*<2<3=7*<4<5=8*
```

```
Print 24: =0=5*<1<6*<2<3<7*<4<5=8*
Print 25: =0=5*<1<6*<2<7*<3<4<5=8*
Print 26: =0=5*<1<6*<7*<2<3<4<5=8*
Print 27: =0=5*<6*<1<2<3<4=7*<5=8*
Print 28: =0=5*<6*<1<2<3<4<7*<5=8*
Print 29: =0=5*<6*<1<2<3<4<7*<5=8*
Print 30: =0=5*<6*<1<2<3=7*<4<5=8*
Print 31: =0=5*<6*<1<2<3<7*<4<5=8*
Print 31: =0=5*<6*<1<2<7*<3<4<5=8*
Print 32: =0=5*<6*<1<2<7*<3<4<5=8*
Print 32: =0=5*<6*<1=7*<2<3<4<5=8*
Print 33: =0=5*<6*<1<7*<2<3<4<5=8*
Print 34: =0=5*<6*<1<7*<2<3<4<5=8*
```

This completes the consideration of root-53.3, as derived from the application of a print to root-53.

Generalized Equation root-53.4

We begin from the GE root-53 (see pp. 319). We consider its print

```
Print 4: =0=4*<1=5*<2<3<4=6*
```

Sequence of actions in performing the Print 4:

```
Step 1: Added (new) boundary 6.
```

 $\overline{\text{Step 2}}$: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 8.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 8}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 8.

Step 9: Collapsed (new) base [4-8:z1+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-7:z2+.] ; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 17 valid prints (descendents).

It has 17 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<5*<6*<4=7*
Print 2: =0=4*<1<2=5*<3=6*<4=7*
Print 3: =0=4*<1<2=5*<3<6*<4=7*
Print 4: =0=4*<1<2=5*<6*<3<4=7*
Print 5: =0=4*<1<2<5*<3=6*<4=7*
Print 6: =0=4*<1<2<5*<3<6*<4=7*
Print 7: =0=4*<1<2<5*<6*<3<4=7*
Print 8: =0=4*<1<5*<2<3=6*<4=7*
Print 9: =0=4*<1<5*<2<3<6*<4=7*
Print 10: =0=4*<1<5*<2<6*<3<4=7*
Print 11: =0=4*<1<5*<6*<2<3<4=7*
Print 12: =0=4*<5*<1<2<3=6*<4=7*
Print 13: =0=4*<5*<1<2<3<6*<4=7*
Print 14: =0=4*<5*<1<2<6*<3<4=7*
Print 15: =0=4*<5*<1=6*<2<3<4=7*
Print 16: =0=4*<5*<1<6*<2<3<4=7*
Print 17: =0=4*<5*<6*<1<2<3<4=7*
```

This completes the consideration of root-53.4, as derived from the application of a print to root-53.

Generalized Equation root-53.5

We begin from the GE root-53 (see pp. 319). We consider its print

Print 5: =0=4*<1<5*<2<3<4=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.

Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

 $\overline{\text{Step 9}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

Step 10: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.5—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-8:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [9-10:z100-.]

has constraints with its dual that stretch the constant segment 9 - 10 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.5, as derived from the application of a print to root-53.

Generalized Equation root-53.6

We begin from the GE root-53 (see pp. 319). We consider its print

```
Print 6: =0=4*<5*<1<2<3<4=6*
```

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 6.

Ste \overline{p} 2: Added (new) boundary 7.

Step 3: Added (new) boundary 8.

Step 4: Moved (old) base [0-4:z1+.] to (new) boundaries 4-9.

Step 5: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 6: Moved (old) base [1-2:z100+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 6.

Step 8: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

 $\overline{\text{Step 9}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

 $\overline{\text{Step 10}}$: Collapsed (new) base [4-9:z1+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.6—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-8:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [10-11:z101-.] has constraints with its dual that stretch the constant segment 10 - 11 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.6, as derived from the application of a print to root-53.

Generalized Equation root-53.2.1

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 1: =0=4*<1<2<3<5*<6*<4=7*

Sequence of actions in performing the Print 1:

- Step 1: Added (new) boundary 5.
- Step 2: Added (new) boundary 6.
- Step 3: Added (new) boundary 7.
- $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 10.
- Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 6.
- Step 6: Moved (old) base [0-1:z101+.] to (new) boundaries 4 5.
- $\overline{\text{Step 7}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 7.
- Step 8: Moved (old) base [3-4:z104+.] to (new) boundaries 7 10.
- Step 9: Moved (old) base [0-2:z104-.] to (new) boundaries 4 6.
- $\overline{\text{Step }10}$: Moved (old) base [2-4:z105+.] to (new) boundaries 6 10.
- Step 11: Collapsed (new) base [4-10:z2+.] to the empty base (10,10).

Step 12: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.1—is illustrated below:

GE Information: Carrier: [0-4:z105-.]; Carrier Dual: [2-6:z105+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [2-6:z105+.] and its dual are of opposite polarity, yet intersect. The base [0-4:z105-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.1, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.2

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 2: =0=4*<1<2<5*<3=6*<4=7*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step $\overline{5}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4-5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 8.

 $\overline{\text{Step 7}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

Step 8: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 6.

Step 9: Moved (old) base [2-4:z105+.] to (new) boundaries 6 - 9.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.2—is illustrated below:

GE Information: Carrier: [0-3:z105-.]; Carrier Dual: [2-5:z105+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [2-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [3-4:z103-.] and its dual are of opposite polarity, yet intersect. The base [2-5:z105+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z105-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.2, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.3

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 3: =0=4*<1<2<5*<3<6*<4=7*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 8.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 10.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 7}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 8.

Step 8: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 10.

Step 9: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 6.

 $\overline{\text{Step 10}}$: Moved (old) base [2-4:z105+.] to (new) boundaries 6 - 10.

Step 11: Collapsed (new) base [4-10:z2+.] to the empty base (10,10).

<u>Step 12</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.3—is illustrated below:

GE Information: Carrier: [0-3:z105-.]; Carrier Dual: [2-6:z105+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [2-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [3-5:z103-.] and its dual are of opposite polarity, yet intersect. The base [2-6:z105+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z105-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.3, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.4

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 4: =0=4*<1<2<5*<6*<3<4=7*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Added (new) boundary 9.

 $\overline{\text{Step 4}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 10.

Step 5: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 6}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 7}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 9.

 $\overline{\text{Step 8}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 9 - 10.

Step 9: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 6.

Step 10: Moved (old) base [2-4:z105+.] to (new) boundaries 6 - 10.

 $\overline{\text{Step 11}}$: Collapsed (new) base [4-10:z2+.] to the empty base (10,10).

Step 12: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 15: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.4—is illustrated below:

GE Information: Carrier: [0-3:z105-.]; Carrier Dual: [2-6:z105+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [2-5:z103+.] and its dual are of opposite polarity, yet intersect. The base [3-4:z103-.] and its dual are of opposite polarity, yet intersect. The base [2-6:z105+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z105-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.4, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.5

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 5: =0=4*<1=5*<2<3=6*<4=7*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 8.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 4: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 6: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 6.

Step 8: Moved (old) base [2-4:z105+.] to (new) boundaries 6 - 8.

Step 9: Collapsed (new) base [4-8:z2+.] to the empty base (8,8).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.5—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [3-4:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.5, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.6

We begin from the GE root-53.2 (see pp. 321). We consider its print

```
Print 6: =0=4*<1=5*<2<3<6*<4=7*
```

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

 $\overline{\text{Step 3}}$: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 6}}$: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [3-4:z104+.] to (new) boundaries 0 - 7. Step 7: Moved (old) base [3-4:z104+.] to (new) boundaries 7 - 9.

 $\frac{\text{Step } 7. \text{ Moved (old) base } [0.4.2104] \cdot [0.0000] \text{ for (new) boundaries } 7.2.5}{\text{Charge St. Moved (old) base } [0.00000] \cdot [0.00000] \text{ for (new) boundaries } 7.2.5}$

Step 8: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 6.

Step 9: Moved (old) base [2-4:z105+.] to (new) boundaries 6-9.

<u>Step 10</u>: Collapsed (new) base [4-9:z2+.] to the empty base (9,9). <u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This

<u>step 11:</u> Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.6—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [3-5:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-3:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.6, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.7

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 7: =0=4*<1=5*<2<6*<3<4=7*

Sequence of actions in performing the Print 7:

```
Step 1: Added (new) boundary 6.
```

Step 2: Added (new) boundary 8.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 6 - 8.

Step 7: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

 $\overline{\text{Step 8}}$: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 6.

 $\overline{\text{Step 9}}$: Moved (old) base [2-4:z105+.] to (new) boundaries 6 - 9.

 $\overline{\text{Step 10}}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

Step 11: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.7—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [4-5:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.7, as derived from the application of a print to root-53.2.

Generalized Equation root-53.2.8

We begin from the GE root-53.2 (see pp. 321). We consider its print

Print 8: =0=4*<1=5*<6*<2<3<4=7*

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 7.

Step 2: Added (new) boundary 8.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4 - 9.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

 $\overline{\text{Step 7}}$: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

Step 8: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 7.

Step 9: Moved (old) base [2-4:z105+.] to (new) boundaries 7 - 9.

Step $\overline{10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.8—is illustrated below:

GE Information: Carrier: [0-3:z104-.]; Carrier Dual: [4-5:z104+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [5-6:z102-.] has constraints with its dual that stretch the constant segment 5 - 6 to length different from 1. The base [6-7:z100-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.8, as derived from the application

of a print to root-53.2.

Generalized Equation root-53.2.9

We begin from the GE root-53.2 (see pp. 321). We consider its print

```
Print 9: =0=4*<1<5*<2<3=6*<4=7*
```

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-4:z2+.] to (new) boundaries 4-9.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 7.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [2-3:z103+.] to (new) boundaries 7 - 8.

Step 7: Moved (old) base [3-4:z104+.] to (new) boundaries 8 - 9.

 $\overline{\text{Step 8}}$: Moved (old) base [0-2:z104-.] to (new) boundaries 4 - 7.

Step 9: Moved (old) base [2-4:z105+.] to (new) boundaries 7 - 9.

 $\overline{\text{Step }10}$: Collapsed (new) base [4-9:z2+.] to the empty base (9,9).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 14: Deleted (new) boundary 3 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-53.2.9—is illustrated below:

GE Information: Carrier: [0-3:z104-.]; Carrier Dual: [4-5:z104+.]; Critical Boundary: 2; Observe the following facts about this GE: The base [3-4:z103+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z103-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-53.2.9, as derived from the application of a print to root-53.2.

54 Cancellation scheme #54

$$\begin{vmatrix} z_1 & 1 \leftarrow 2 \leftarrow 4 \leftarrow 0 \\ z_1 & 3 \leftarrow 2 \leftarrow 1 \\ z_2 & 5 \leftarrow 6 \leftarrow 4 \leftarrow 2 \leftarrow 3 \\ c_1 & 6 \leftarrow 5 \\ c_1 & 4 \leftarrow 6 \\ c_1 & 0 \leftarrow 4 \end{vmatrix}$$

Generalized Equation root-54

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-5:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 4 valid prints (descendents).

It has 4 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<3=5*
Print 2: =0=3*<1=4*<2<3=5*
Print 3: =0=3*<1<4*<2<3=5*
Print 4: =0=3*<4*<1<2<3=5*
```

We proceed.

Generalized Equation root-54.1

We begin from the GE root-54 (see pp. 342). We consider its print

```
Print 1: =0=3*<1<2<4*<3=5*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 4.
```

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4-5.

 $\frac{1}{\text{Step 6}}$: Moved (old) base [2-3:z104+.] to (new) boundaries 5 - 7.

Step 7: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-8:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [2-4:z104+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z104-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.1, as derived from the application of a print to root-54.

Generalized Equation root-54.2

We begin from the GE root-54 (see pp. 342). We consider its print

Print 2: =0=3*<1=4*<2<3=5*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [2-3:z104+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 4.

Step 7: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-7:z2+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 16 valid prints (descendents).

It has 16 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<5*<6*<3=7*
Print 2: =0=3*<1<4*<2=5*<6*<3=7*
Print 3: =0=3*<1<4*<2<5*<6*<3=7*
Print 4: =0=3*<1<4*<5*<2=6*<3=7*
Print 5: =0=3*<1<4*<5*<2<6*<3=7*
Print 6: =0=3*<1<4*<5*<6*<2<3=7*
Print 7: =0=3*<4*<1<2=5*<6*<3=7*
Print 8: =0=3*<4*<1<2<5*<6*<3=7*
Print 9: =0=3*<4*<1<5*<2=6*<3=7*
Print 10: =0=3*<4*<1<5*<2<6*<3=7*
Print 11: =0=3*<4*<1<5*<6*<2<3=7*
Print 12: =0=3*<4*<5*<1<2=6*<3=7*
Print 13: =0=3*<4*<5*<1<2<6*<3=7*
Print 14: =0=3*<4*<5*<1=6*<2<3=7*
Print 15: =0=3*<4*<5*<1<6*<2<3=7*
Print 16: =0=3*<4*<5*<6*<1<2<3=7*
```

This completes the consideration of root-54.2, as derived from the application of a print to root-54.

Generalized Equation root-54.3

We begin from the GE root-54 (see pp. 342). We consider its print

Print 3: =0=3*<1<4*<2<3=5*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 6.

Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 4.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.3—is illustrated below:

GE Information: Carrier: [0-4:z2+.]; Carrier Dual: [4-8:z2+.]; Critical Boundary: 4; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 52 valid prints (descendents).

It has 52 legal carrier-to-dual prints, as follows:

```
Print 1: =0=4*<1<2<3<5*<6*<7*<4=8*
Print 2: =0=4*<1<2<5*<3=6*<7*<4=8*
Print 3: =0=4*<1<2<5*<3<6*<7*<4=8*
Print 4: =0=4*<1<2<5*<6*<3=7*<4=8*
Print 5: =0=4*<1<2<5*<6*<3<7*<4=8*
Print 6: =0=4*<1<2<5*<6*<7*<3<4=8*
Print 7: =0=4*<1=5*<2<3=6*<7*<4=8*
Print 8: =0=4*<1=5*<2<3<6*<7*<4=8*
Print 9: =0=4*<1=5*<2=6*<3=7*<4=8*
Print 10: =0=4*<1=5*<2=6*<3<7*<4=8*
Print 11: =0=4*<1=5*<2=6*<7*<3<4=8*
Print 12: =0=4*<1=5*<2<6*<3=7*<4=8*
Print 13: =0=4*<1=5*<2<6*<3<7*<4=8*
Print 14: =0=4*<1=5*<2<6*<7*<3<4=8*
Print 15: =0=4*<1=5*<6*<2<3=7*<4=8*
Print 16: =0=4*<1=5*<6*<2<3<7*<4=8*
Print 17: =0=4*<1=5*<6*<2=7*<3<4=8*
Print 18: =0=4*<1=5*<6*<2<7*<3<4=8*
Print 19: =0=4*<1=5*<6*<7*<2<3<4=8*
Print 20: =0=4*<1<5*<2<3=6*<7*<4=8*
Print 21: =0=4*<1<5*<2<3<6*<7*<4=8*
Print 22: =0=4*<1<5*<2=6*<3=7*<4=8*
Print 23: =0=4*<1<5*<2=6*<3<7*<4=8*
Print 24: =0=4*<1<5*<2=6*<7*<3<4=8*
Print 25: =0=4*<1<5*<2<6*<3=7*<4=8*
Print 26: =0=4*<1<5*<2<6*<3<7*<4=8*
Print 27: =0=4*<1<5*<2<6*<7*<3<4=8*
Print 28: =0=4*<1<5*<6*<2<3=7*<4=8*
Print 29: =0=4*<1<5*<6*<2<3<7*<4=8*
Print 30: =0=4*<1<5*<6*<2=7*<3<4=8*
Print 31: =0=4*<1<5*<6*<2<7*<3<4=8*
Print 32: =0=4*<1<5*<6*<7*<2<3<4=8*
Print 33: =0=4*<5*<1<2<3=6*<7*<4=8*
Print 34: =0=4*<5*<1<2<3<6*<7*<4=8*
Print 35: =0=4*<5*<1<2=6*<3=7*<4=8*
Print 36: =0=4*<5*<1<2=6*<3<7*<4=8*
Print 37: =0=4*<5*<1<2=6*<7*<3<4=8*
Print 38: =0=4*<5*<1<2<6*<3=7*<4=8*
Print 39: =0=4*<5*<1<2<6*<3<7*<4=8*
Print 40: =0=4*<5*<1<2<6*<7*<3<4=8*
Print 41: =0=4*<5*<1<6*<2<3=7*<4=8*
Print 42: =0=4*<5*<1<6*<2<3<7*<4=8*
Print 43: =0=4*<5*<1<6*<2=7*<3<4=8*
Print 44: =0=4*<5*<1<6*<2<7*<3<4=8*
```

```
Print 45: =0=4*<5*<1<6*<7*<2<3<4=8*
Print 46: =0=4*<5*<6*<1<2<3=7*<4=8*
Print 47: =0=4*<5*<6*<1<2<3<7*<4=8*
Print 48: =0=4*<5*<6*<1<2=7*<3<4=8*
Print 49: =0=4*<5*<6*<1<2<7*<3<4=8*
Print 50: =0=4*<5*<6*<1=7*<2<3<4=8*
Print 51: =0=4*<5*<6*<1=7*<2<3<4=8*
Print 52: =0=4*<5*<6*<1<7*<2<3<4=8*
Print 52: =0=4*<5*<6*<7*<1<2<3<4=8*
```

This completes the consideration of root-54.3, as derived from the application of a print to root-54.

Generalized Equation root-54.4

We begin from the GE root-54 (see pp. 342). We consider its print

```
Print 4: =0=3*<4*<1<2<3=5*
```

Sequence of actions in performing the Print 4:

```
Step 1: Added (new) boundary 5.
```

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 6 - 7.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-8:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [10-11:z105-.] has constraints with its dual that stretch the constant segment 10 - 11 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.4, as derived from the application of a print to root-54.

Generalized Equation root-54.2.1

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 1: =0=3*<1<2<4*<5*<6*<3=7*

Sequence of actions in performing the Print 1:

- Step 1: Added (new) boundary 4.
- Step 2: Added (new) boundary 5.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 9.
- Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 4 9.
- Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4-5.
- Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 5 9.
- Step 7: Moved (old) base [0-1:z104-.] to (new) boundaries 3 4.
- Step 8: Moved (old) base [0-1:z105+.] to (new) boundaries 3 4.
- $\overline{\text{Step 9}}$: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).
- <u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.1—is illustrated below:

GE Information: Carrier: [0-3:z100-.]; Carrier Dual: [1-6:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-6:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.1, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.2

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 2: =0=3*<1<4*<2=5*<6*<3=7*

Sequence of actions in performing the Print 2:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 3: Moved (old) base [1-3:z100+.] to (new) boundaries 4 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 6.

Step 5: Moved (old) base [2-3:z104+.] to (new) boundaries 6 - 8.

 $\overline{\text{Step 6}}$: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.2—is illustrated below:

GE Information: Carrier: [0-2:z100-.]; Carrier Dual: [1-5:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.2, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.3

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 3: =0=3*<1<4*<2<5*<6*<3=7*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 6.

 $\overline{\text{Step 6}}$: Moved (old) base [2-3:z104+.] to (new) boundaries 6 - 9.

Step 7: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 4.

Step 8: Moved (old) base [0-1:z105+.] to (new) boundaries 3-4.

Step 9: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.3—is illustrated below:

GE Information: Carrier: [0-2:z100-.]; Carrier Dual: [1-6:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-6:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.3, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.4

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 4: =0=3*<1<4*<5*<2=6*<3=7*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 3: Moved (old) base [1-3:z100+.] to (new) boundaries 4 - 8.

 $\overline{\text{Step 4}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 7.

Step 5: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 6: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.4—is illustrated below:

GE Information: Carrier: [0-2:z100-.]; Carrier Dual: [1-5:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.4, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.5

We begin from the GE root-54.2 (see pp. 344). We consider its print

```
Print 5: =0=3*<1<4*<5*<2<6*<3=7*
```

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 4 - 9.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 7.

Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 9.

Step 7: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 4.

Step 8: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 4.

Step 9: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.5—is illustrated below:

GE Information: Carrier: [0-2:z100-.]; Carrier Dual: [1-6:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-6:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.5, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.6

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 6: =0=3*<1<4*<5*<6*<2<3=7*

Sequence of actions in performing the Print 6:

- Step 1: Added (new) boundary 4.
- Step 2: Added (new) boundary 8.
- Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 9.
- Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 4 9.
- Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4-8.
- $\overline{\text{Step 6}}$: Moved (old) base [2-3:z104+.] to (new) boundaries 8 9.
- Step 7: Moved (old) base [0-1:z104-.] to (new) boundaries 3 4.
- Step 8: Moved (old) base [0-1:z105+.] to (new) boundaries 3 4.
- Step 9: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

Step 10: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.6—is illustrated below:

GE Information: Carrier: [0-2:z100-.]; Carrier Dual: [1-6:z100+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [1-6:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. The base [1-5:z101+.] and its dual are of opposite polarity, yet intersect. The base [2-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.6, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.7

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 7: =0=3*<4*<1<2=5*<6*<3=7*

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 3: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 6.

Step 5: Moved (old) base [2-3:z104+.] to (new) boundaries 6 - 8.

 $\overline{\text{Step 6}}$: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 5.

Step 7: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.7—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [3-5:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.7, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.8

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 8: =0=3*<4*<1<2<5*<6*<3=7*

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 9.

 $\overline{\text{Step 5}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 6 - 9.

 $\overline{\text{Step 7}}$: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 5.

Step 8: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 5.

Step 9: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.8—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [3-6:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-3:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-4:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the

tree has led us to a dead end.

This completes the consideration of root-54.2.8, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.9

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 9: =0=3*<4*<1<5*<2=6*<3=7*

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 3: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 8.

Step 4: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 8.

Step 6: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 5.

Step 7: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-8:z2+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.9—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [4-5:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.9, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.10

We begin from the GE root-54.2 (see pp. 344). We consider its print

```
Print 10: =0=3*<4*<1<5*<2<6*<3=7*
```

Sequence of actions in performing the Print 10:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 9.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 7.

Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 7 - 9.

Step 7: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 5.

Step 8: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 5.

Step 9: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.10—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [4-6:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.10, as derived from the application of a print to root-54.2.

Generalized Equation root-54.2.11

We begin from the GE root-54.2 (see pp. 344). We consider its print

Print 11: =0=3*<4*<1<5*<6*<2<3=7*

Sequence of actions in performing the Print 11:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 8.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 9.

Step 4: Moved (old) base [1-3:z100+.] to (new) boundaries 5 - 9.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 8.

Step 6: Moved (old) base [2-3:z104+.] to (new) boundaries 8 - 9.

Step 7: Moved (old) base [0-1:z104-.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 8}}$: Moved (old) base [0-1:z105+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 9}}$: Collapsed (new) base [3-9:z2+.] to the empty base (9,9).

<u>Step 10</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-54.2.11—is illustrated below:

GE Information: Carrier: [0-2:z104-.]; Carrier Dual: [5-6:z104+.]; Critical Boundary: 1; Observe the following facts about this GE: The base [2-5:z101+.] and its dual are of opposite polarity, yet intersect. The base [1-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-54.2.11, as derived from the application of a print to root-54.2.

55 Cancellation scheme #55

$$\begin{array}{|c|c|c|} \hline z_1 & 1 \leftarrow 2 \leftarrow 5 \leftarrow 0 \\ z_1 & 3 \leftarrow 4 \leftarrow 2 \leftarrow 1 \\ z_2 & 4 \leftarrow 3 \\ c_1 & 2 \leftarrow 4 \\ c_1 & 5 \leftarrow 2 \\ c_1 & 0 \leftarrow 5 \\ \hline \end{array}$$

Generalized Equation root-55

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-3:z1+.] ; Carrier Dual: [3-6:z1+.] ; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 12 valid prints (descendents).

It has 12 legal carrier-to-dual prints, as follows:

```
Print 1: =0=3*<1<2<4*<5*<3=6*
Print 2: =0=3*<1=4*<2=5*<3=6*
Print 3: =0=3*<1=4*<2<5*<3=6*
Print 4: =0=3*<1=4*<5*<2<3=6*
Print 5: =0=3*<1<4*<2=5*<3=6*
Print 6: =0=3*<1<4*<2=5*<3=6*
Print 7: =0=3*<1<4*<2<5*<3=6*
Print 8: =0=3*<1<4*<5=<2<3=6*
Print 9: =0=3*<4*<1<2=5*<3=6*
Print 10: =0=3*<4*<1=5*<2<3=6*
Print 11: =0=3*<4*<1<5*<2<3=6*
Print 12: =0=3*<4*<1<5*<2<3=6*
```

We proceed.

Generalized Equation root-55.1

We begin from the GE root-55 (see pp. 363). We consider its print

```
Print 1: =0=3*<1<2<4*<5*<3=6*
```

Sequence of actions in performing the Print 1:

```
Step 1: Added (new) boundary 4.
```

Step 2: Added (new) boundary 5.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 5: Moved (old) base [2-3:z101+.] to (new) boundaries 5 - 8.

Step 6: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 5.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-8:z1+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.1—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [2-5:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.1, as derived from the application of a print to root-55.

Generalized Equation root-55.2

We begin from the GE root-55 (see pp. 363). We consider its print

Print 2: =0=3*<1=4*<2=5*<3=6*

Sequence of actions in performing the Print 2:

Step 1: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 6.

Step 2: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 3: Moved (old) base [2-3:z101+.] to (new) boundaries 5 - 6.

Step 4: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 6: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 2 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.]; Carrier Dual: [3-4:z2+.]; Critical Boundary: 3; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 1 valid prints (descendents).

It has 1 legal carrier-to-dual prints, as follows:

This completes the consideration of root-55.2, as derived from the application of a print to root-55.

Generalized Equation root-55.3

We begin from the GE root-55 (see pp. 363). We consider its print

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 5.

Step 6: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 7: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

Step 8: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.3—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [5-6:z100-.] has constraints with its dual that stretch the constant segment 5 - 6 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.3, as derived from the application of a print to root-55.

Generalized Equation root-55.4

We begin from the GE root-55 (see pp. 363). We consider its print

Print 4: =0=3*<1=4*<5*<2<3=6*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 6.

Step 6: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 7: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.4, as derived from the application of a print to root-55.

Generalized Equation root-55.5

We begin from the GE root-55 (see pp. 363). We consider its print

Print 5: =0=3*<1<4*<2=5*<3=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 6.

Step 6: Moved (old) base [0-1:z104+.] to (new) boundaries 3-4.

Step 7: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

Step 8: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.5—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.5, as derived from the application of a print to root-55.

Generalized Equation root-55.6

We begin from the GE root-55 (see pp. 363). We consider its print

Print 6: =0=3*<1<4*<2<5*<3=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 6.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 8.

Step 6: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 6.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-8:z1+.] to the empty base (8,8).

Step 9: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.6—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [6-7:z100-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. The base [7-8:z103-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch

of the tree has led us to a dead end.

This completes the consideration of root-55.6, as derived from the application of a print to root-55.

Generalized Equation root-55.7

We begin from the GE root-55 (see pp. 363). We consider its print

Print 7: =0=3*<1<4*<5*<2<3=6*

Sequence of actions in performing the Print 7:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step 5: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

Step 6: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 7.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 8: Collapsed (new) base [3-8:z1+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.7—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [7-8:z103-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.7, as derived from the application of a print to root-55.

Generalized Equation root-55.8

We begin from the GE root-55 (see pp. 363). We consider its print

```
Print 8: =0=3*<4*<1<2=5*<3=6*
```

Sequence of actions in performing the Print 8:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 5 - 6.

 $\overline{\text{Step 6}}$: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 7}}$: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.8—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [5-6:z100-.] has constraints with its dual that stretch the constant segment 5 - 6 to length different from 1. The base [7-8:z104-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.8, as derived from the application of a print to root-55.

Generalized Equation root-55.9

We begin from the GE root-55 (see pp. 363). We consider its print

Print 9: =0=3*<4*<1<2<5*<3=6*

Sequence of actions in performing the Print 9:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

Step $\overline{5}$: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 8.

Step 6: Moved (old) base [1-2:z103+.] to (new) boundaries 5 - 6.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 5.

Step 8: Collapsed (new) base [3-8:z1+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.9—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [6-7:z100-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. The base [8-9:z104-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.9, as derived from the application of a print to root-55.

Generalized Equation root-55.10

We begin from the GE root-55 (see pp. 363). We consider its print

Print 10: =0=3*<4*<1=5*<2<3=6*

Sequence of actions in performing the Print 10:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 7.

Step 3: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 7.

Step 4: Moved (old) base [2-3:z101+.] to (new) boundaries 6 - 7.

Step 5: Moved (old) base [1-2:z103+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 7}}$: Collapsed (new) base [3-7:z1+.] to the empty base (7,7).

Step 8: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.10—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [7-8:z104-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.10, as derived from the application of a print to root-55.

Generalized Equation root-55.11

We begin from the GE root-55 (see pp. 363). We consider its print

Print 11: =0=3*<4*<1<5*<2<3=6*

Sequence of actions in performing the Print 11:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

Step 6: Moved (old) base [1-2:z103+.] to (new) boundaries 5 - 7.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 5.

 $\overline{\text{Step 8}}$: Collapsed (new) base [3-8:z1+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.11—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [6-7:z100-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. The base [7-8:z103-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. The base [8-9:z104-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.11, as derived from the application of a print to root-55.

Generalized Equation root-55.12

We begin from the GE root-55 (see pp. 363). We consider its print

Print 12: =0=3*<4*<5*<1<2<3=6*

Sequence of actions in performing the Print 12:

Step 1: Added (new) boundary 6.

Step 2: Added (new) boundary 7.

Step 3: Moved (old) base [0-3:z1+.] to (new) boundaries 3 - 8.

Step 4: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 8.

 $\overline{\text{Step 5}}$: Moved (old) base [2-3:z101+.] to (new) boundaries 7 - 8.

Step 6: Moved (old) base [1-2:z103+.] to (new) boundaries 6 - 7.

Step 7: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 6.

Step 8: Collapsed (new) base [3-8:z1+.] to the empty base (8,8).

<u>Step 9</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 11: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.12—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [8-9:z104-.] has constraints with its dual that stretch the constant segment 8 - 9 to length

different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.12, as derived from the application of a print to root-55.

Generalized Equation root-55.2.1

We begin from the GE root-55.2 (see pp. 365). We consider its print

Print 1: =0=3*<1<2<3=4*

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 4.

Step 2: Added (new) boundary 5.

 $\overline{\text{Step 3}}$: Moved (old) base [0-3:z2+.] to (new) boundaries 3 - 6.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 5.

Step 5: Moved (old) base [2-3:z101+.] to (new) boundaries 5 - 6.

Step 6: Moved (old) base [0-1:z101-.] to (new) boundaries 3 - 4.

Step 7: Moved (old) base [2-3:z102+.] to (new) boundaries 5 - 6.

Step 8: Moved (old) base [1-2:z103+.] to (new) boundaries 4 - 5.

Step 9: Moved (old) base [0-1:z104+.] to (new) boundaries 3 - 4.

Step 10: Collapsed (new) base [3-6:z2+.] to the empty base (6,6).

<u>Step 11</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 12: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 13: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-55.2.1—is illustrated below:

GE Information: Carrier: [0-3:z102-.]; Carrier Dual: [2-3:z102+.]; Critical Boundary: 3; Observe the following facts about this GE: The base [2-3:z102+.] and its dual are of opposite polarity, yet intersect. The base [0-3:z102-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-55.2.1, as derived from the application of a print to root-55.2.

56 Cancellation scheme #56

Generalized Equation root-56

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-6:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 6 valid prints (descendents).

It has 6 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<4*<5*<2=6*
Print 2: =0=2*<3*<1=4*<5*<2=6*
Print 3: =0=2*<3*<1<4*<5*<2=6*
Print 4: =0=2*<3*<4*<1=5*<2=6*
Print 5: =0=2*<3*<4*<1<5*<2=6*
Print 6: =0=2*<3*<4*<1<5*<2=6*
```

We proceed.

Generalized Equation root-56.1

We begin from the GE root-56 (see pp. 380). We consider its print

```
Print 1: =0=2*<1<3*<4*<5*<2=6*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 7.

 $\overline{\text{Step 3}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 3 - 7.

 $\overline{\text{Step 5}}$: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 3.

Step 6: Collapsed (new) base [2-7:z1+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-56.1—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [1-5:z100+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z100-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-56.1, as derived from the application of a print to root-56.

Generalized Equation root-56.2

We begin from the GE root-56 (see pp. 380). We consider its print

Print 2: =0=2*<3*<1=4*<5*<2=6*

Sequence of actions in performing the Print 2:

Step 1: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 6.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 6.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 4.

Step 5: Collapsed (new) base [2-6:z1+.] to the empty base (6,6).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

 $\underline{\text{Step 7}}$: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-56.2—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [7-8:z102-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-56.2, as derived from the application of a print to root-56.

Generalized Equation root-56.3

We begin from the GE root-56 (see pp. 380). We consider its print

Print 3: =0=2*<3*<1<4*<5*<2=6*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 4 - 7.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 4.

Step 6: Collapsed (new) base [2-7:z1+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-56.3—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [7-8:z101-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. The base [8-9:z102-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-56.3, as derived from the application of a print to root-56.

Generalized Equation root-56.4

We begin from the GE root-56 (see pp. 380). We consider its print

Print 4: =0=2*<3*<4*<1=5*<2=6*

Sequence of actions in performing the Print 4:

Step 1: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 6.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.

Step 3: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 6.

Step 4: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 5.

Step 5: Collapsed (new) base [2-6:z1+.] to the empty base (6,6).

Step 6: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-56.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-5:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [7-8:z102-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-56.4, as derived from the application of a print to root-56.

Generalized Equation root-56.5

We begin from the GE root-56 (see pp. 380). We consider its print

Print 5: =0=2*<3*<4*<1<5*<2=6*

Sequence of actions in performing the Print 5:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 5 - 7.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 5.

Step 6: Collapsed (new) base [2-7:z1+.] to the empty base (7,7).

Step 7: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-56.5—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [6-7:z103-.] has constraints with its dual that stretch the constant segment 6 - 7 to length different from 1. The base [8-9:z102-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-56.5, as derived from the application of a print to root-56.

Generalized Equation root-56.6

We begin from the GE root-56 (see pp. 380). We consider its print

Print 6: =0=2*<3*<4*<5*<1<2=6*

Sequence of actions in performing the Print 6:

Step 1: Added (new) boundary 6.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 7.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 7.

Step 4: Moved (old) base [1-2:z100+.] to (new) boundaries 6 - 7.

Step 5: Moved (old) base [0-1:z102+.] to (new) boundaries 2 - 6.

Step 6: Collapsed (new) base [2-7:z1+.] to the empty base (7,7).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 8</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-56.6—is illustrated below:

GE Information: Carrier: [0-5:z2+.] ; Carrier Dual: [5-6:z2+.] ; Critical Boundary: 5; Observe the following facts about this GE: The base [8-9:z102-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-56.6, as derived from the application of a print to root-56.

57 Cancellation scheme #57

Generalized Equation root-57

Below is the root GE obtained from the cancellation diagram above.

GE Information: Carrier: [0-2:z1+.] ; Carrier Dual: [2-5:z1+.] ; Critical Boundary: 2; The GE above is non-degenerate. This GE is *not* a leaf in the GE tree. It has 4 valid prints (descendents).

It has 4 legal carrier-to-dual prints, as follows:

```
Print 1: =0=2*<1<3*<4*<2=5*
Print 2: =0=2*<3*<1=4*<2=5*
Print 3: =0=2*<3*<1<4*<2=5*
Print 4: =0=2*<3*<4*<1<2=5*
```

We proceed.

Generalized Equation root-57.1

We begin from the GE root-57 (see pp. 388). We consider its print

```
Print 1: =0=2*<1<3*<4*<2=5*
```

Sequence of actions in performing the Print 1:

Step 1: Added (new) boundary 3.

Step 2: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 6.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.

Step 4: Moved (old) base [0-1:z100+.] to (new) boundaries 2 - 3.

Step $\overline{5}$: Moved (old) base [1-2:z101+.] to (new) boundaries 3 - 6.

Step 6: Collapsed (new) base [2-6:z1+.] to the empty base (6,6).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-57.1—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [1-4:z101+.] and its dual are of opposite polarity, yet intersect. The base [0-2:z101-.] and its dual are of opposite polarity, yet intersect. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-57.1, as derived from the application of a print to root-57.

Generalized Equation root-57.2

We begin from the GE root-57 (see pp. 388). We consider its print

Print 2: =0=2*<3*<1=4*<2=5*

Sequence of actions in performing the Print 2:

Step 1: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 5.

Step 2: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 5.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 2 - 4.

 $\overline{\text{Step 4}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 5.

 $\overline{\text{Step 5}}$: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-57.2—is illustrated below:

GE Information: Carrier: [0-3:z2+.] ; Carrier Dual: [3-5:z2+.] ; Critical Boundary: 3; Observe the following facts about this GE: The base [7-8:z100-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-57.2, as derived from the application of a print to root-57.

Generalized Equation root-57.3

We begin from the GE root-57 (see pp. 388). We consider its print

Print 3: =0=2*<3*<1<4*<2=5*

Sequence of actions in performing the Print 3:

Step 1: Added (new) boundary 4.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 6.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.

Step 4: Moved (old) base [0-1:z100+.] to (new) boundaries 2 - 4.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 6.

Step 6: Collapsed (new) base [2-6:z1+.] to the empty base (6,6).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-57.3—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [7-8:z104-.] has constraints with its dual that stretch the constant segment 7 - 8 to length different from 1. The base [8-9:z100-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-57.3, as derived from the application of a print to root-57.

Generalized Equation root-57.4

We begin from the GE root-57 (see pp. 388). We consider its print

Print 4: =0=2*<3*<4*<1<2=5*

Sequence of actions in performing the Print 4:

Step 1: Added (new) boundary 5.

 $\overline{\text{Step 2}}$: Moved (old) base [0-2:z1+.] to (new) boundaries 2 - 6.

Step 3: Moved (old) base [0-2:z2+.] to (new) boundaries 2 - 6.

 $\overline{\text{Step 4}}$: Moved (old) base [0-1:z100+.] to (new) boundaries 2 - 5.

Step 5: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 6.

Step 6: Collapsed (new) base [2-6:z1+.] to the empty base (6,6).

<u>Step 7</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 8: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Upon applying the print, the GE we obtain—which we refer to as root-57.4—is illustrated below:

GE Information: Carrier: [0-4:z2+.] ; Carrier Dual: [4-6:z2+.] ; Critical Boundary: 4; Observe the following facts about this GE: The base [8-9:z100-.] has constraints with its dual that stretch the constant segment 8 - 9 to length different from 1. These observations show that the GE above is degenerate. This GE is a leaf in the GE tree. This branch of the tree has led us to a dead end.

This completes the consideration of root-57.4, as derived from the application of a print to root-57.

58 Acknowledgements

The authors acknowledge that this report was generated by software developed as part of a funded project supported by a research grant (H98230-06-1-0042) from the National Security Agency. We also give special thanks to Alexei Miasnikov and Olga Kharlampovich for many helpful discussions along the way.