

Logarithme népérien

I.La fonction logarithme népérien

Définition:

Soit a un nombre réel strictement positif.La logarithme népérien est l'unique solution de l'équation $e^x = a$,

Le logarithme népérien de a est noté ln(a) ou ln a.

La fonction logarithme népérien, notée ln, est la fonction f est définie par $f(x)=\ln x \sin \left[0\right] + \infty$

<u>Propriétés</u>:

Pour tout réel a>0 et tout nombre réel b, nous avons $lna=b \Leftrightarrow a=eb$. ln1=0 car $e^0=1$

Ine=1 car e1=e

Exemple:

Résoudre l'équation $e^{2x+3}=4$.

$$2x+3=,ln4$$

 $2x=ln4-3$
 $x=\frac{ln4-3}{3}$

Propriétés:

Pour tout x>0, $e^{\ln x}=x$. Pour tout $x\in \mathbb{R}$, $\ln(e^x)=x$.

Exemples:

$$e^{\ln 7}=7$$
 et $\ln e^2=2$.

II.Les courbes des fonctions exp et ln

Propriété:

Dans un repère orthonormé du plan, les courbes de la fonctions exp définie par $f(x)=e^x$ sur \mathbb{R} et de la fonction logarithme népérien ln définie par $g(x)=\ln x$ sur \mathbb{R} et de la fonction logarithme népérien ln définie par $g(x)=\ln x$ sur \mathbb{R} sont symétriques par rapport à la droite d'équation y=x.

Propriété:

On considère un nombre réel x strictement positif. La fonction f définie sur]0;+∞[par f(x)=lnx est telle que :

- f est continue et dérivable sur]0;+∞[;
- f est dérivable sur $]0;+\infty[$ et $f'(x)=\frac{1}{x};$
- f est strictement croissante sur]0;+∞[.
- $\lim_{\bullet \quad x, \to [\{\inf y?]_0 + [} f(x) = -\infty$
- $\lim_{\bullet \quad x, \to , [[\min y?], +\infty,} f(x) = +\infty$
- $\lim_{\bullet \quad z \to +\infty} \frac{lnz}{z} = 0$
- $\lim_{\bullet \quad |x| \to 0} x \ln x = 0$
- $\lim_{h\to 0}\frac{\ln(1+h)}{h}=0$

Propriétés: conséquences.

On considère a et b deux réels strictement positifs. $lna=lnb\Leftrightarrow a=b$;

a<b⇔,lna<lnb

!na>0⇔,a>1

lna<0⇔,0<a<1

III.Carte mentale sur le logarithme népérien

