aihw7.md 2025-06-04

人智原hw5

第2题 蒙特卡洛 (Monte Carlo)

(1): 状态价值贝尔曼期望方程及求解

已知:

• 状态: A, B, Terminate

• 转移概率: $P_{AA}=1/4$, $P_{AB}=3/4$, $P_{BA}=1/2$, $P_{BT}=1/2$

• 状态奖励 (离开状态时获得): $r_A = 3$, $r_B = -3$

• 折扣因子: $\gamma = 1$

• 终止状态价值: V(Terminate) = 0

贝尔曼期望方程为: $v(S) = r_S + \gamma \sum_{S'} P(S'|S) v(S')$

可得:

1.
$$v(A) = r_A + \gamma(P_{AA}v(A) + P_{AB}v(B))$$
 $v(A) = 3 + 1 \cdot (\frac{1}{4}v(A) + \frac{3}{4}v(B))$
2. $v(B) = r_B + \gamma(P_{BA}v(A) + P_{BT}v(\text{Terminate}))$ $v(B) = -3 + 1 \cdot (\frac{1}{2}v(A) + \frac{1}{2}\cdot 0)$
 $v(B) = -3 + \frac{1}{2}v(A)$

将 (2) 代入 (1):
$$v(A) = 3 + \frac{1}{4}v(A) + \frac{3}{4}(-3 + \frac{1}{2}v(A))$$
 $v(A) = 3 + \frac{1}{4}v(A) - \frac{9}{4} + \frac{3}{8}v(A)$ $v(A) - \frac{1}{4}v(A) - \frac{3}{8}v(A) = 3 - \frac{9}{4}$ $\frac{8-2-3}{8}v(A) = \frac{12-9}{4}$ $\frac{3}{8}v(A) = \frac{3}{4}$ $v(A) = \frac{3}{4} \cdot \frac{8}{3} = 2$

将
$$v(A)=2$$
 代入 (2): $v(B)=-3+\frac{1}{2}(2)=-3+1=-2$

因此,状态价值为 v(A)=2 , v(B)=-2 。

(2):蒙特卡洛预测

- 序列 1: A $\stackrel{+3}{\longrightarrow}$ A $\stackrel{+2}{\longrightarrow}$ B $\stackrel{-4}{\longrightarrow}$ A $\stackrel{+4}{\longrightarrow}$ B $\stackrel{-3}{\longrightarrow}$ Terminate
 奖励: $R_1=3, R_2=2, R_3=-4, R_4=4, R_5=-3$
- 序列 2: B $\stackrel{-2}{\longrightarrow}$ A $\stackrel{+3}{\longrightarrow}$ B $\stackrel{-3}{\longrightarrow}$ Terminate • 奖励: $R_1=-2, R_2=3, R_3=-3$
- 折扣因子 γ = 1 (无折扣)

首次访问蒙特卡洛 (First-Visit Monte Carlo)

计算每个片段中,每个状态首次被访问后得到的累积回报 G_t 。

- 片段 1: $S_0(A) \xrightarrow{+3} S_1(A) \xrightarrow{+2} S_2(B) \xrightarrow{-4} S_3(A) \xrightarrow{+4} S_4(B) \xrightarrow{-3} S_5$ (Terminate)
 - \circ 状态 A 首次出现在 t=0。回报 $G_0=3+2-4+4-3=2$ 。
 - 。 状态 B 首次出现在 t=2。回报 $G_2=-4+4-3=-3$ 。

• 片段 2: $S_0(B) \stackrel{-2}{\longrightarrow} S_1(A) \stackrel{+3}{\longrightarrow} S_2(B) \stackrel{-3}{\longrightarrow} S_3(\text{Terminate})$

- 状态 B 首次出现在 t=0。回报 $G_0=-2+3-3=-2$ 。
- 状态 A 首次出现在 t=1。回报 $G_1=3-3=0$ 。

汇总回报:

• 状态 A 的回报列表: [2,0] $v(A) = \frac{2+0}{2} = 1$

• 状态 B 的回报列表: [-3,-2] $v(B) = \frac{-3+(-2)}{2} = \frac{-5}{2} = -2.5$

首次访问蒙特卡洛预测结果: v(A)=1, v(B)=-2.5。

每次访问蒙特卡洛 (Every-Visit Monte Carlo)

计算每个片段中,每次访问某状态后得到的累积回报 G_t 。

• 片段 1: $S_0(A) \xrightarrow{+3} S_1(A) \xrightarrow{+2} S_2(B) \xrightarrow{-4} S_3(A) \xrightarrow{+4} S_4(B) \xrightarrow{-3} S_5(\text{Terminate})$

- 访问 A (t=0): $G_0=3+2-4+4-3=2$.
- 访问 A (t=1): $G_1=2-4+4-3=-1$.
- 访问 B (t=2): $G_2=-4+4-3=-3$.
- 访问 A (t=3): $G_3=4-3=1$.
- 访问 B (t=4): $G_4=-3$.
- 片段 2: $S_0(B) \stackrel{-2}{\longrightarrow} S_1(A) \stackrel{+3}{\longrightarrow} S_2(B) \stackrel{-3}{\longrightarrow} S_3(\operatorname{Terminate})$
 - 访问 B (t=0): $G_0=-2+3-3=-2$.
 - 访问 A (t=1): $G_1=3-3=0$.
 - 访问 B (t=2): $G_2=-3$.

汇总回报:

- 状态 A 的回报列表: [2,-1,1,0] $v(A) = \frac{2-1+1+0}{4} = \frac{2}{4} = 0.5$ 状态 B 的回报列表: [-3,-3,-2,-3] $v(B) = \frac{-3-3-2-3}{4} = \frac{-11}{4} = -2.75$

每次访问蒙特卡洛预测结果: v(A) = 0.5, v(B) = -2.75。

第3题 时序差分 (Temporal Difference)

(1): TD(0) V 值更新

- 初始 ∨ 值: 所有非终止状态 V(s) = 0。
- 片段: 4→1→4→7→终止
- 参数: $\alpha = 0.5$, $\gamma = 1$
- TD(0) 更新规则: $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$

逐步更新: 初始 $V(1)=\ldots=V(7)=0$ 。

- 1. **转移** $4 \rightarrow 1$: ($S_t = 4, S_{t+1} = 1, R_{t+1} = -1$) $V(4) \leftarrow V(4) + 0.5[-1 + 1 \cdot V(1) V(4)]$ $V(4) \leftarrow 0 + 0.5[-1 + 1 \cdot 0 - 0] = -0.5$. 当前 V(4) = -0.5.
- 2. **转移** $1 \rightarrow 4$: ($S_t = 1, S_{t+1} = 4, R_{t+1} = -1$) $V(1) \leftarrow V(1) + 0.5[-1 + 1 \cdot V(4) V(1)]$ $V(1) \leftarrow 0 + 0.5[-1 + 1 \cdot (-0.5) - 0] = 0.5 \cdot (-1.5) = -0.75$. 当前

aihw7.md 2025-06-04

$$V(1) = -0.75, V(4) = -0.5$$
.

3. **转移** $4 \rightarrow 7$: $(S_t = 4, S_{t+1} = 7, R_{t+1} = -1)$ $V(4) \leftarrow V(4) + 0.5[-1 + 1 \cdot V(7) - V(4)]$ $V(4) \leftarrow -0.5 + 0.5[-1 + 1 \cdot 0 - (-0.5)] = -0.5 + 0.5[-0.5] = -0.5 - 0.25 = -0.75$. 当前 V(1) = -0.75, V(4) = -0.75 .

4. **转移** $7 \rightarrow$ 终止: $(S_t = 7, S_{t+1} =$ 终止, $R_{t+1} = -1$) $V(7) \leftarrow V(7) + 0.5[-1 + 1 \cdot V($ 终止) -V(7)] $V(7) \leftarrow 0 + 0.5[-1 + 1 \cdot 0 - 0] = -0.5$. 当前 V(1) = -0.75, V(4) = -0.75, V(7) = -0.5 .

该片段结束后的 V 值:

- V(1) = -0.75
- V(2) = 0
- V(3) = 0
- V(4) = -0.75
- V(5) = 0
- V(6) = 0
- V(7) = -0.5

(2): SARSA Q 值更新

- 初始状态: 4
- 参数: $\alpha = 1, \gamma = 1$
- SARSA 更新规则: $Q(S,A)\leftarrow Q(S,A)+\alpha[R+\gamma Q(S',A')-Q(S,A)]$ 因为 $\alpha=1,\gamma=1$,简化为 $Q(S,A)\leftarrow R+Q(S',A')$
- 策略: 确定性贪心策略
- 初始 Q 表 (行为: 上U, 右R, 下D, 左L; 状态: 1-7):

动作	S=1	S=2	S=3	S=4	S=5	S=6	S=7
上(U)	-4	-3	-1	-3	-4	-2	-4
右 (R)	-3	-3	-2	-4	-2	-3	-3
下 (D)	-4	-3	-4	-2	-2	-3	-4
左(L)	-3	-2	-3	-3	-4	-3	-2

逐步更新 (所有转移奖励 R=-1):

1. **当前** S=4 。

- 。 根据 Q 表为 S=4 选择贪心动作 A: Q(4,U)=-3 , Q(4,R)=-4 , Q(4,D)=-2 , Q(4,L)=-3 。 最大值为 Q(4,D)=-2 。 所以 A= 下 (D) 。
- 执行动作 A=下。 $S=4 \rightarrow S'=7$ 。奖励 R=-1。
- 。 根据 Q 表为 S'=7 选择贪心动作 A': Q(7,U)=-4, Q(7,R)=-3 (撞墙), Q(7,D)=-4 (至终止), Q(7,L)=-2。最大值为 Q(7,L)=-2。所以 A'=左 (L)。
- 。 更新 $Q(S,A)=Q(4,ar{ au})$: $Q(4,ar{ au})\leftarrow R+Q(S',A')=-1+Q(7,ar{ au})=-1+(-2)=-3 \ \ \hbox{.} \ \ (Q(4,D)\ \hbox{从 -2 变为 -3})$
- 2. **当前** S = 7, $A = \pm$ (L) (上一步选择的 A')。

aihw7.md 2025-06-04

- 。 执行动作 A= 左。 $S=7 \rightarrow S'=6$ 。奖励 R=-1 。
- 。 根据 Q 表为 S'=6 选择贪心动作 A': Q(6,U)=-2 , Q(6,R)=-3 , Q(6,D)=-3 (撞墙), Q(6,L)=-4 (撞墙)。最大值为 Q(6,U)=-2 。所以 A'= 上 (U) 。
- 。 更新 Q(S,A)=Q(7,左): $Q(7,左) \leftarrow R+Q(S',A')=-1+Q(6,\bot)=-1+(-2)=-3 \ \ . \ \ (Q(7,L)\ \hbox{从 -2 变为 -3})$

3. **当前** S=6, $A=\bot$ (U)。

- 执行动作 A=上。 $S=6 \rightarrow S'=3$ 。奖励 R=-1。
- 。 根据 Q 表为 S'=3 选择贪心动作 A': Q(3,U)=-1 (至终止), Q(3,R)=-2 , Q(3,D)=-4 , Q(3,L)=-3 (撞墙)。最大值为 Q(3,U)=-1 。所以 A'=上 (U) 。
- 。 更新 $Q(S,A)=Q(6,\bot)$: $Q(6,\bot)\leftarrow R+Q(S',A')=-1+Q(3,\bot)=-1+(-1)=-2 \text{ . } (Q(6,U) \text{ 保持 -2, 未变})$

4. **当前** S=3, $A=\bot$ (U)。

- 执行动作 $A = \bot$ 。 $S = 3 \rightarrow S' =$ 终止。奖励 R = -1。
- \circ S' 是终止状态, Q(S',A')=Q(终止,任意动作)=0 。
- 。 更新 $Q(S,A)=Q(3,\bot)$: $Q(3,\bot)\leftarrow R+Q(S',A')=-1+0=-1$ 。 (Q(3,U) 保持 -1, 未变)

片段结束。

一个 episode 结束后更新的 Q 表: $Q(4, \mathbb{T})$ 从 -2 更新为 -3。 $Q(7, \mathbb{E})$ 从 -2 更新为 -3。 其他值不变。

动作	S=1	S=2	S=3	S=4	S=5	S=6	S=7
上(U)	-4	-3	-1	-3	-4	-2	-4
右 (R)	-3	-3	-2	-4	-2	-3	-3
下(D)	-4	-3	-4	-3	-2	-3	-4
左(L)	-3	-2	-3	-3	-4	-3	-3