A BIOLOGICAL ASSESSMENT OF TWO SITES ON BEAVER CREEK: GALLATIN COUNTY, MONTANA Project TMDL- M06

August 2002

A report to

The Montana Department of Environmental Quality Helena, Montana

by

Wease Bollman Rhithron Associates, Inc. Missoula, Montana

May 2003

INTRODUCTION

Aquatic invertebrates are aptly applied to bioassessment since they are known to be important indicators of stream ecosystem health (Hynes 1970). Long lives, complex life cycles and limited mobility mean that there is ample time for the benthic community to respond to cumulative effects of environmental perturbations.

This report summarizes data collected in August 2002 from two sites on Beaver Creek in Gallatin County, Montana. Both study sites lie within the Middle Rockies ecoregion (Woods et al. 1999).

A multimetric approach to bioassessment such as the one applied in this study uses attributes of the assemblage in an integrated way to measure biotic health. A stream with good biotic health is "...a balanced, integrated, adaptive system having the full range of elements and processes that are expected in the region's natural environment..." (Karr and Chu 1999). The approach designed by Plafkin et al. (1989) and adapted for use in the State of Montana has been defined as "... an array of measures or metrics that individually provide information on diverse biological attributes, and when integrated, provide an overall indication of biological condition." (Barbour et al. 1995). Community attributes that can contribute meaningfully to interpretation of benthic data include assemblage structure, sensitivity of community members to stress or pollution, and functional traits. Each metric component contributes an independent measure of the biotic integrity of a stream site; combining the components into a total score reduces variance and increases precision of the assessment (Fore et al. 1996). Effectiveness of the integrated metrics depends on the applicability of the underlying model, which rests on a foundation of three essential elements (Bollman 1998a). The first of these is an appropriate stratification or classification of stream sites, typically, by ecoregion. Second, metrics must be selected based upon their ability to accurately express biological condition. Third, an adequate assessment of habitat conditions at each site to be studied enhances the interpretation of metric outcomes.

Implicit in the multimetric method and its associated habitat assessment is an assumption of correlative relationships between habitat measures and the biotic metrics, in the absence of water quality impairment. These relationships may vary regionally, requiring an examination of habitat assessment elements and biotic metrics and a test of the presumed relationship between them. Bollman (1998a) has recently studied the assemblages of the Montana Valleys and Foothill Prairies ecoregion, and has recommended a battery of metrics applicable to the montane ecoregions of western Montana. This metric battery has been shown to be sensitive to impairment, related to measures of habitat integrity, and consistent over replicated samples.

METHODS

Samples were collected in August 2002 by Montana DEQ personnel. Sample designations and site locations are indicated in Table 1a. The site selection and sampling method employed were those recommended in the Montana Department of Environmental Quality (DEQ) Standard Operating Procedures for Aquatic Macroinvertebrate Sampling (Bukantis 1998). The "traveling kick" collection procedure was employed for both samples; duration and length are indicated in Table 1b. Aquatic invertebrate samples were delivered to Rhithron Associates, Inc., Missoula, Montana, for laboratory and data analyses.

In the laboratory, the Montana DEQ-recommended sorting method was used to obtain subsamples of at least 300 organisms from each sample, when possible. Organisms were identified to the lowest possible taxonomic levels consistent with Montana DEQ protocols.

Table 1a. Sample designations and locations. Sites are listed by drainage in upstream-to-downstream order. Beaver Creek, August 2002.

Site	Station ID	Activity ID	Location Description	Latitude/ Longitude
1	M06BEAVC01	02-U325-M	Beaver Creek below Hilgard Creek	45°54'51"/111°21'40"
2	M06BEAVC02	02-U326-M	Beaver Creek close to br. on Hwy 287	44°51'45"/111°22'16"

Table 1b. Sample collection procedure, duration, and length. Beaver Creek, August 2002.

Site	Sampling Date	Collection Procedure	Duration	Length
1	8-20-02	KICK	1 MINUTE	20 FEET
2	8-21-02	KICK	1 MINUTE	20 FEET

To assess aquatic invertebrate communities in this study, a multimetric index developed in previous work for streams of western Montana ecoregions (Bollman 1998a) was used. Multimetric indices result in a single numeric score, which integrates the values of several individual indicators of biologic health. Each metric used in this index was tested for its response or sensitivity to varying degrees of human influence. Correlations have been demonstrated between the metrics and various symptoms of human-caused impairment as expressed in water quality parameters or instream, streambank and stream reach morphologic features. Metrics were screened to minimize variability over natural environmental gradients. such as site elevation or sampling season, which might confound interpretation of results (Bollman 1998a). The multimetric index used in this report incorporates multiple attributes of the sampled assemblage into an integrated score that accurately describes the benthic community of each site in terms of its biologic integrity. In addition to the metrics comprising the index, other metrics shown to be applicable to biomonitoring in other regions (Kleindl 1995, Patterson 1996, Rossano 1995) were used for descriptive interpretation of results. These metrics include the number of "clinger" taxa, long-lived taxa richness, the percent of predatory organisms, and others. They are not included in the integrated bioassessment score, however, since their performance in western Montana ecoregions is unknown. However, the relationship of these metrics to habitat conditions is intuitive and reasonable.

The six metrics comprising the bioassessment index used in this study were selected because, both individually and as an integrated metric battery, they are robust at distinguishing impaired sites from relatively unimpaired sites (Bollman 1998a). In addition, they are relevant to the kinds of impacts that are present in the Beaver Creek watershed. They have been demonstrated to be more variable with anthropogenic disturbance than with natural environmental gradients (Bollman 1998a). Each of the six metrics developed and tested for western Montana ecoregions is described below.

1. Ephemeroptera (mayfly) taxa richness. The number of mayfly taxa declines as water quality diminishes. Impairments to water quality which have been demonstrated to adversely affect the ability of mayflies to flourish include elevated water temperatures, heavy metal contamination, increased turbidity, low or high pH, elevated specific

conductance and toxic chemicals. Few mayfly species are able to tolerate certain disturbances to instream habitat, such as excessive sediment deposition.

- 2. Plecoptera (stonefly) taxa richness. Stoneflies are particularly susceptible to impairments that affect a stream on a reach-level scale, such as loss of riparian canopy, streambank instability, channelization, and alteration of morphological features such as pool frequency and function, riffle development and sinuosity. Just as all benthic organisms, they are also susceptible to smaller scale habitat loss, such as by sediment deposition, loss of interstitial spaces between substrate particles, or unstable substrate.
- 3. Trichoptera (caddisfly) taxa richness. Caddisfly taxa richness has been shown to decline when sediment deposition affects their habitat. In addition, the presence of certain case-building caddisflies can indicate good retention of woody debris and lack of scouring flow conditions.
- **4. Number of sensitive taxa.** Sensitive taxa are generally the first to disappear as anthropogenic disturbances increase. The list of sensitive taxa used here includes organisms sensitive to a wide range of disturbances, including warmer water temperatures, organic or nutrient pollution, toxic pollution, sediment deposition, substrate instability and others. Unimpaired streams of western Montana typically support at least four sensitive taxa (Bollman 1998a).
- **5. Percent filter feeders.** Filter-feeding organisms are a diverse group; they capture small particles of organic matter, or organically enriched sediment material, from the water column by means of a variety of adaptations, such as silken nets or hairy appendages. In forested montane streams, filterers are expected to occur in insignificant numbers. Their abundance increases when canopy cover is lost and when water temperatures increase and the accompanying growth of filamentous algae occurs. Some filtering organisms, specifically the Arctopsychid caddisflies (*Arctopsyche* spp. and *Parapsyche* spp.) build silken nets with large mesh sizes that capture small organisms such as chironomids and early-instar mayflies. Here they are considered predators, and, in this study, their abundance does not contribute to the percent filter feeders metric.
- **6. Percent tolerant taxa.** Tolerant taxa are ubiquitous in stream sites, but when disturbance increases, their abundance increases proportionately. The list of taxa used here includes organisms tolerant of a wide range of disturbances, including warmer water temperatures, organic or nutrient pollution, toxic pollution, sediment deposition, substrate instability and others.

Scoring criteria for each of the six metrics are presented in Table 2. Metrics differ in their possible value ranges as well as in the direction the values move as biological conditions change. For example, Ephemeroptera richness values may range from zero to ten taxa or higher. Larger values generally indicate favorable biotic conditions. On the other hand, the percent filterers metric may range from 0% to 100%; in this case, larger values are negative indicators of biotic health. To facilitate scoring, therefore, metric values were transformed into a single scale. The range of each metric has been divided into four parts and assigned a point score between zero and three. A score of three indicates a metric value similar to one characteristic of a non-impaired condition. A score of zero indicates strong deviation from non-impaired condition and suggests severe degradation of biotic health. Scores for each metric were summed to give an overall score, the total bioassessment score, for each site in each sampling event. These scores were expressed as the percent of the maximum possible score, which is 18 for this metric battery.

The total bioassessment score for each site was expressed in terms of use-support. Criteria for use-support designations were developed by Montana DEQ and are presented in Table 3a. Scores were also translated into impairment classifications according to criteria outlined in Table 3b.

Table 2. Metrics and scoring criteria for bioassessment of streams of western Montana ecoregions (Bollman 1998a).

	Score			
Metric	3	2	1	0
Ephemeroptera taxa richness	> 5	5 - 4	3 – 2	< 2
Plecoptera taxa richness	> 3	3 - 2	1	O
Trichoptera taxa richness	> 4	4 - 3	2	< 2
Sensitive taxa richness	> 3	3 - 2	1	0
Percent filterers	0 - 5	5.01 - 10	10.01 - 25	> 25
Percent tolerant taxa	0 – 5	5.01 - 10	10.01 - 35	> 35

Table 3a. Criteria for the assignment of use-support classifications / standards violation thresholds (Bukantis 1998).

% Comparability to reference	Use support
>75	Full supportstandards not violated
25-75	Partial supportmoderate impairment standards violated
<25	Non-supportsevere impairmentstandards violated

Table 3b. Criteria for the assignment of impairment classifications (Plaskin et al. 1989).

% Comparability to reference	Classification
> 83	nonimpaired
54-79	slightly impaired
21-50	moderately impaired
<17	severely impaired

In this report, certain other metrics were used as descriptors of the benthic community response to habitat or water quality but were not incorporated into the bioassessment metric battery, either because they have not yet been tested for reliability in streams of western Montana, or because results of such testing did not show them to be robust at distinguishing impairment, or because they did not meet other requirements for inclusion in the metric battery. These metrics and their use in predicting the causes of impairment or in describing its effects on the biotic community are described below.

• The modified biotic index. This metric is an adaptation of the Hilsenhoff Biotic Index (HBI, Hilsenhoff 1987), which was originally designed to indicate organic enrichment of waters. Values of this metric are lowest in least impacted conditions. Taxa tolerant to saprobic conditions are also generally tolerant of warm water, fine sediment and heavy filamentous algae growth (Bollman 1998b). Loss of canopy cover is often a contributor to higher biotic index values. The taxa values used in this report are modified to reflect

habitat and water quality conditions in Montana (Bukantis 1998). Ordination studies of the benthic fauna of Montana's foothill prairie streams showed that there is a correlation between modified biotic index values and water temperature, substrate embeddedness, and fine sediment (Bollman 1998a). In a study of reference streams, the average value of the modified biotic index in least-impaired streams of western Montana was 2.5 (Wisseman 1992).

- Taxa richness. This metric is a simple count of the number of unique taxa present in a sample. Average taxa richness in samples from reference streams in western Montana was 28 (Wisseman 1992). Taxa richness is an expression of biodiversity, and generally decreases with degraded habitat or diminished water quality. However, taxa richness may show a paradoxical increase when mild nutrient enrichment occurs in previously oligotrophic waters, so this metric must be interpreted with caution.
- Percent predators. Aquatic invertebrate predators depend on a reliable source of
 invertebrate prey, and their abundance provides a measure of the trophic complexity
 supported by a site. Less disturbed sites have more plentiful habitat niches to support
 diverse prey species, which in turn support abundant predator species.
- Number of "clinger" taxa. So-called "clinger" taxa have physical adaptations that allow them to cling to smooth substrates in rapidly flowing water. Aquatic invertebrate "clingers" are sensitive to fine sediments that fill interstices between substrate particles and eliminate habitat complexity. Animals that occupy the hyporheic zones are included in this group of taxa. Expected "clinger" taxa richness in unimpaired streams of western Montana is at least 14 (Bollman 1998b).
- Number of long-lived taxa. Long-lived or semivoltine taxa require more than a year to completely develop, and their numbers decline when habitat and/or water quality conditions are unstable. They may completely disappear if channels are dewatered or if there are periodic water temperature elevations or other interruptions to their life cycles. Western Montana streams with stable habitat conditions are expected to support six or more long-lived taxa (Bollman 1998b).

RESULTS

Habitat Assessment

Table 4 shows the habitat parameters evaluated, parameter scores and overall habitat evaluations for Site 2. (Habitat scores for Site 1 were not provided).

At the lower site, overall habitat condition was rated optimal. Field personnel detected some embeddedness of substrate and sediment deposition. Benthic substrate was perceived to be somewhat less diverse than expected. Streambanks were judged stable, although some limitation to vegetative cover was noted. The riparian zone was reported to be somewhat abbreviated.

Bioassessment

Table 5 itemizes each contributing metric and shows individual metric scores for each site. Tables 3a and 3b above show criteria for use-support categories and impairment classifications (Plafkin et al. 1989) recommended by Montana DEQ.

When this bioassessment method is applied to these data, resulting scores suggest that both sites on Beaver Creek fully support designated uses and are biologically unimpaired.

Table 4. Stream and riparian habitat assessment. Site 2 was assessed based upon criteria developed by Montana DEQ for streams with riffle/run prevalence. Site location is given in Table 1a. Beaver Creek, August 2002.

Max. possible score	Parameter	Site 2
10	Riffle development	10
10	Benthic substrate	8
20	Embeddedness	15
20	Channel alteration	20
20	Sediment deposition	15
20	Channel flow status	20
20	Bank stability	9/9
-	Bank vegetation	Not Recorded
-	Vegetated zone	Not Recorded
120	Total	106
	Percent of maximum CONDITION*	88% OPTIMAL

Condition categories: Optimal > 80% of maximum score; Sub-optimal 75 - 56%; Marginal 49 - 29%; Poor <23%. (Plafkin et al. 1989).

Table 5. Metric values, scores, and bioassessments for 2 sites on Beaver Creek, August 2002. Site locations are given in Table 1a.

	SITES	
	1	2
METRICS	METRIC VALUES	
Ephemeroptera richness	8	9
Plecoptera richness	4	4
Trichoptera richness	5	5
Number of sensitive taxa	7	2
Percent filterers	О	3.67
Percent tolerant taxa	28.95	7.33
	METRIC SCORES	
Ephemeroptera richness	3 3	
Plecoptera richness	3	3
Trichoptera richness	3	3
Number of sensitive taxa	3	2
Percent filterers	3	3
Percent tolerant taxa	1	2
TOTAL SCORE (max.=18)	16	16
PERCENT OF MAX.	89%	89%
Impairment classification*	NON	NON
USE SUPPORT †	FULL	FULL

^{*} Classifications: (NON) non-impaired, (SLI) slightly impaired, (MOD) moderately impaired, (SEV) severely impaired. See Table 3b.

[†] Use support designations: See Table 3a.

Aquatic invertebrate communities

Interpretations of biotic integrity in this report are made without reference to results of habitat assessments, or any other information about the sites or watersheds that may have accompanied the invertebrate samples. Interpretations are based entirely on: the taxonomic and functional composition of the sampled invertebrate assemblages; the sensitivities, tolerances, physiology, and habitus information for individual taxa gleaned from the writer's research; the published literature, and other expert sources; and on the performance of bioassessment metrics, described earlier in the report, which have been demonstrated to be useful tools for interpreting potential implications of benthic invertebrate assemblage composition.

A rich mayfly fauna (8 taxa) and low biotic index value (2.53) suggest that water quality at the upper site on Beaver Creek (Site 1) was good. Six cold-stenotherm taxa were among the animals collected at the site; these included the sensitive mayfly *Drunella doddsi* and caddisflies in the Rhyacophila Iranda Group. At least seven intolerant taxa were supported at the site. These findings strongly imply that cold clean water provided the matrix for the

invertebrate assemblage.

Fifteen "clinger" taxa and 5 caddisfly taxa were collected, indicating the likelihood that fine sediment deposition did not excessively limit benthic habitats. Stonefly richness (4 taxa) was within expectations; reach-scale habitat features, such as riparian zone integrity, streambank stability, and channel morphology were probably intact. No long-lived taxa were present in the sample, suggesting that surface flow may not persist throughout the year at this site. Intermittent flow may also explain low taxa richness (23) at the site. Fewer taxa than expected may also be a consequence of low diversity of instream habitats, but very small montane streams often exhibit low taxa richness. All expected functional components were present in appropriate proportions.

At the lower site (Site 2), water quality indicators suggested cold, clean water. The biotic index value (2.37) was low, mayfly taxa richness (9) was high, and cold-stenotherms were abundantly present, making up 42% of the sampled assemblage. Although only 2 sensitive taxa were collected (*Drunella doddsi* and the caddisfly *Apatania* sp.), they were both quite

abundant, representing 34% of animals in the sample.

"Clingers" (15 taxa) and caddisflies (5 taxa) were prominent among the taxa collected, providing evidence for ample hard substrate habitats free of fine sediment deposits. Overall taxa richness (32) was within expected limits, suggesting that instream habitats in general were abundant and available. Stonefly richness (4 taxa) suggested that reach-scale habitat features were minimally disturbed. A single specimen of a long-lived taxon (*Heterlimnius* sp.) was collected. As at the upper site, intermittent seasonal surface flow may explain the dearth of semivoltine taxa here. All expected functional components of a montane stream were present in the sample, but shredders were not as abundant as expected. Three taxa made up the group, but each taxon was represented by only 1 or 2 individuals. This suggests that riparian inputs of large organic debris were limited, or that hydrologic conditions did not favor retention of such material.

CONCLUSION

 Both sites on Beaver Creek supported sensitive benthic assemblages characteristic of montane streams with minimal human-caused impairment. Absence of long-lived taxa at both sites suggests seasonal intermittent surface flow in these reaches of the stream.

LITERATURE CITED

Barbour, M.T., J.B. Stribling and J.R. Karr. 1995. Multimetric approach for establishing biocriteria and measuring biological condition. Pages 63-79 in W.S. Davis and T.P. Simon (editors) *Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making.* Lewis Publishers, Boca Raton.

Bollman, W. 1998a. Improving Stream Bioassessment Methods for the Montana Vaileys and Foothill Prairies Ecoregion. Master's Thesis (MS). University of Montana. Missoula, Montana.

Bollman, W. 1998b. Unpublished data generated by state-wide sampling and data analysis; 1993-1998

Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft, April 22, 1997. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Fore, L.S., J.R. Karr and R.W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. *Journal of the North American Benthological Society* 15(2): 212-231.

Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. *Great Lakes Entomologist*. 20: 31-39.

Hynes, H.B.N. 1970. The Ecology of Running Waters. The University of Toronto Press. Toronto.

Karr, J.R. and E.W. Chu. 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, D.C.

Kleindl, W.J. 1995. A benthic index of biotic integrity for Puget Sound Lowland Streams, Washington, USA. Unpublished Master's Thesis. University of Washington, Seattle, Washington.

Patterson, A.J. 1996. The effect of recreation on biotic integrity of small streams in Grand Teton National Park. Master's Thesis. University of Washington, Seattle, Washington.

Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M.Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. Benthic Macroinvertebrates and Fish. EPA 440-4-89-001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Rossano, E.M. 1995. Development of an index of biological integrity for Japanese streams (IBI-J). Master's Thesis. University of Washington, Seattle, Washington.

Wisseman, R.W. 1992. Montana rapid bioassessment protocols. Benthic invertebrate studies, 1990. Montana Reference Streams study. Report to the Montana Department of Environmental Quality. Water Quality Bureau. Helena, Montana.

Woods, A.J., Omernik, J. M. Nesser, J.A., Shelden, J., and Azevedo, S. H. 1999. Ecoregions of Montana. (Color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia. US Geological Survey.

