Assignment 1

Due: Thursday, October 5 at 4:00pm

- 1. This problem is not intended to reveal anything profound—it is just meant to give you some practice in working with vectors, operators, and such.
 - (a) Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces and let $A \in L(\mathcal{Y}, \mathcal{X})$ be any nonzero operator. Prove that there exists a complex Euclidean space \mathcal{Z} along with vectors $u \in \mathcal{X} \otimes \mathcal{Z}$ and $v \in \mathcal{Z} \otimes \mathcal{Y}$ such that

$$A = (\mathbb{1}_{\mathcal{X}} \otimes v^*)(u \otimes \mathbb{1}_{\mathcal{Y}}).$$

What is the minimum possible dimension of \mathcal{Z} that is required to write a given A in this way? (Unless stated otherwise, your answers should always be supported by a proof or argument of some form—so in this case you should not only give an expression for the minimum dimension of \mathcal{Z} , but also a proof showing that your expression is indeed the minimum possible dimension.)

(b) Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces and let $\Phi \in \operatorname{CP}(\mathcal{X}, \mathcal{Y})$ be a completely positive map. Prove that there exists an operator $B \in \operatorname{L}(\mathcal{X} \otimes \mathcal{Z}, \mathcal{Y})$, for some choice of a complex Euclidean space \mathcal{Z} , such that

$$\Phi(X) = B(X \otimes \mathbb{1}_{\mathcal{Z}})B^*$$

for all $X \in L(\mathcal{X})$. Identify a condition on the operator B that is equivalent to Φ preserving trace.

- 2. Let Σ be an alphabet, let \mathcal{X} be a complex Euclidean space, and let ϕ : Herm $(\mathcal{X}) \to \mathbb{R}^{\Sigma}$ be a linear function. Prove that these two statements are equivalent:
 - *Statement 1.* It holds that $\phi(\rho) \in \mathcal{P}(\Sigma)$ for every density operator $\rho \in D(\mathcal{X})$.

Statement 2. There exists a measurement $\mu : \Sigma \to Pos(\mathcal{X})$ such that

$$(\phi(H))(a) = \langle \mu(a), H \rangle$$

for every $H \in \text{Herm}(\mathcal{X})$ and $a \in \Sigma$.

A correct solution to this problem implies that the definition of how measurements work is simply a mathematical way of representing what measurements obviously need to be: linear functions that map quantum states to probability distributions of measurement outcomes.

3. Interesting structural properties of channels are sometimes reflected in a simple way by their Choi representations. This problem is concerned with one example along these lines.

Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be complex Euclidean spaces, let $\Phi \in C(\mathcal{X}, \mathcal{Y} \otimes \mathcal{Z})$ be a channel, and consider the following two statements.

Statement 1. There exists a density operator $\rho \in D(\mathcal{Y})$ such that

$$\operatorname{Tr}_{\mathcal{Z}}(J(\Phi)) = \rho \otimes \mathbb{1}_{\mathcal{X}}.$$

Statement 2. There exists a complex Euclidean space W, a density operator $\sigma \in D(\mathcal{Y} \otimes \mathcal{W})$, and a channel $\Psi \in C(\mathcal{W} \otimes \mathcal{X}, \mathcal{Z})$ so that

$$\Phi(X) = (\mathbb{1}_{L(\mathcal{Y})} \otimes \Psi)(\sigma \otimes X)$$

for all $X \in L(\mathcal{X})$.

It may be helpful to think about a channel Φ satisfying statement 2 as being one that can be implemented as the following figure suggests:

Prove that statements 1 and 2 are equivalent.

4. Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces, let Σ be an alphabet, and let $\eta: \Sigma \to \operatorname{Pos}(\mathcal{X})$ be an ensemble of states. Suppose further that $u \in \mathcal{X} \otimes \mathcal{Y}$ is a vector such that

$$\operatorname{Tr}_{\mathcal{Y}}(uu^*) = \sum_{a \in \Sigma} \eta(a).$$

Prove that there exists a measurement $\mu: \Sigma \to \operatorname{Pos}(\mathcal{Y})$ for which it holds that

$$\eta(a) = \operatorname{Tr}_{\mathcal{Y}} ((\mathbb{1}_{\mathcal{X}} \otimes \mu(a)) u u^*)$$

for all $a \in \Sigma$.

One interpretation of this problem is as follows. Suppose Alice holds a register X and Bob holds Y, and that the state of the pair (X,Y) is pure. If Bob performs a measurement on Y and sends the outcome to Alice, the state of X (together with Bob's measurement outcome) will be described by some ensemble η . The fact you are asked to prove implies that if Bob selects his measurement appropriately, he can cause the state of X to be described by *any ensemble he chooses*, so long as the original state purifies the average state of that ensemble.