DeepDB Project README

Table of Contents

- 1. Prerequisites
- 2. Installation
- 3. Database Setup
- 4. Schema File Creation
- 5. Commands to Run the Project
 - Generate HDF Files
 - Generate Ensembles
 - Evaluate Results
- 6. Running Queries in PostgreSQL

Prerequisites

- Operating System: Linux/MacOS/Windows (ensure PostgreSQL and Python are supported)
- Python Version: 3.10
- PostgreSQL Version: ≥ 13
- pgAdmin: For database table management

Installation

- 1. **Install Python 3.10:** Refer to the official Python website to download and install Python 3.10: https://www.python.org/downloads/
- 2. Install Required Dependencies:

```
pip install -r requirements.txt
```

Database Setup

- 1. Create a New Database in PostgreSQL: Use pgAdmin or psql to create a database (e.g., flights_db).
- 2. Create the flights Table: Use the following SQL command in pgAdmin to create the table structure for the dataset:

```
CREATE TABLE flights (
year INT,
month INT,
day INT,
day_of_week INT,
airline VARCHAR
```

```
flight_number INT,
tail_number VARCHAR,
origin_airport VARCHAR,
destination_airport VARCHAR,
scheduled_departure INT,
departure_time INT,
departure_delay FLOAT,
taxi_out FLOAT,
wheels_off INT,
scheduled_time INT,
elapsed_time INT,
air_time INT,
distance INT,
wheels_on INT.
taxi_in FLOAT,
scheduled_arrival INT,
arrival_time FLOAT,
arrival_delay FLOAT,
diverted INT,
cancelled INT.
cancellation_reason CHAR,
air_system_delay FLOAT,
security_delay FLOAT,
airline_delay FLOAT,
late_aircraft_delay FLOAT,
weather_delay FLOAT
```

3. Load Dataset into the Table:

• Open pgAdmin.

);

- Right-click the flights table and select Import/Export.
- In the Import dialog:
 - Select **CSV** file as the format.
 - Provide the path to your dataset file (e.g., flights.csv).
 - Map the columns to the dataset structure.
- Click Start to load the data.

Schema File Creation

Create a schema.py file in the appropriate directory, defining the schema based on your PostgreSQL database structure. This is essential for generating HDF files.

Commands to Run the Project

1. Generate HDF Files

Run the following command to create HDF files from the loaded PostgreSQL database:

```
python3 maqp.py \
    —dataset flights \
    —generate_hdf \
    —hdf_path ./mqp-data/flights-benchmark/gen_hdf \
    —csv_path ./mqp-data/flights-benchmark/flights.csv
```

2. Generate Ensembles

Use the command below to generate SPN ensembles:

```
python3 maqp.py \
    —dataset flights \
    —generate_ensemble \
    —ensemble_strategy rdc_based \
    —hdf_path ./mqp_data/flights_benchmark/gen_hdf \
    —ensemble_path ./mqp_data/flights_benchmark/spn_ensembles/ensemble_join_5_budget_1
    —pairwise_rdc_path ./mqp_data/flights_benchmark/spn_ensembles/pairwise_rdc_file.pk
    —post_sampling_factor 1 1 1 1 \
    —ensemble_budget_factor 1 \
    —ensemble_budget_factor 1 \
    —ensemble_max_no_joins 5 \
    —rdc_threshold 0.15 \
    —bloom_filters \
    —samples_rdc_ensemble_tests 10000
```

3. Evaluate Results

Run the following command to evaluate queries:

```
python3 maqp.py —results
```

Running Queries in PostgreSQL

To run a query directly in PostgreSQL:

- 1. Open pgAdmin or connect via psql.
- 2. Run your SQL query. For example:

```
 \begin{array}{l} \textbf{SELECT} \  \, \text{origin\_airport} \,\,, \,\, \textbf{destination\_airport} \,\,, \,\, \textbf{AVG}(\, \text{departure\_delay}) \\ \textbf{FROM} \  \, \text{flights} \\ \textbf{WHERE month} = 1 \,\, \textbf{AND} \,\, \text{distance} > 1000 \\ \textbf{CROUP BY} \,\, \text{origin\_airport} \,\,, \,\, \text{destination\_airport} \\ \textbf{LIMIT} \,\,\, 100; \end{array}
```

This will compute the average departure delay for flights in January with distances greater than 1000 miles.