Capstone Project Predicting Fraudulent Job Postings

Presented by: Khashayar Behyar (Group 9)

Janzen Liu (Group 9) Ikyu Park (Group 9)

Anthony Ransom (Group 9) Date: August 2022

Background & Purpose

The ability for fraudsters, scammers, and hackers to access information through phishing as they please is unprecedented and unsuspecting victims often succumb to methods such as phone calls, emails or even fake job postings that these bad actors use to gain access to private information

In an effort to prevent identity theft, using a sample data set acquired from kaggle, we aim to create a machine learning model that when integrated within job posting systems can predict fraudulent job postings based on several parameters in order to protect unsuspecting job seekers from identity fraud

Process

- 1. Data Analysis/Exploration
- 2. Data preprocessing
- 3. Feature engineering
- 4. Split data into training and testing datasets
- 5. Trained the machine learning model
- 6. Tested machine learning model
- 7. Review the model performance
- 8. Use model to score new data

Data Analysis - Data Overview

- Dataset obtained from Kaggle
- Database Integration with Postgres & AWS RDS
- 17838 data points with 18 features
- Identified target Feature in dataset marked as "Fraudulent"
- Target Feature data is skewed within dataset

Data Analysis/Exploration - Feature to Target Relationship

Data Preprocessing

- Job ID is an identification column and has no relation to the target Feature and was dropped
- Title contained majority unique values with a small word count and was dropped
- Salary_range has majority null values and was dropped - cutoff was 80% null values
- States and cities removed from dataset keeping only Country due to numerous incorrect spelling and entries with multiple cities and missing entries
- Null values changed to "Not Specified" for remaining features due to the already limited number of data points

	Percent Unique	Average Text Length
job_id	100.00	4.4
description	82.75	1209.0
requirements	66.92	585.6
title	62.80	28.5
benefits	34.69	207.1

	Percent Null
salary_range	83.959732
department	64.580537
required_education	45.329978
benefits	40.324385
required_experience	39.429530

Country

0	US; NY; New York
1	NZ; ; Auckland
2	US; IA; Wever
3	US; DC; Washington
4	US; FL; Fort Worth
Nam	e: location, dtype: object

0	US		
1	NZ		
2	US		
3	US		
4	US		
Name:	: Country,	dtype:	object

Feature Engineering -Natural Language Processing

- Natural Language Processing (NLP) used to process features with large amounts of text in each job posting
- Removal of punctuation and stopwords ("the", "a", "an", "so", "what")
- NLP was used to identify the words that are most relevant to determine if a job posting is fraudulent

Non-Fraudulent Top Words

Fraudulent Top Words

Feature Engineering - Ordinal Data Types

- Ordinal Data types is data that has a natural/set order
 - Example: Internship -> entry level -> Associate -> Director -> Executive
- Label Encoder was used to convert these features to numeric form for the machine learning model

other	internship	not specified
		not opedined
full-time	not applicable	not specified
not specified	not specified	not specified
full-time	mid-senior level	bachelor's degree
full-time	mid-senior level	bachelor's degree
	not specified full-time	not specified not specified full-time mid-senior level

empl	oyment_type	required_experience	required_education
0	3	4	6
1	1	6	6
2	2	7	6
3	1	5	1
4	1	5	1

Feature Engineering - Ordinal Data Types

- Nominal data is data grouped into categories with no meaningful order between the categories
 - Example: Computer Software industry vs Hospital & Health Care industry
- Target Encoding was used in order to convert these features to numerical form based on the mean of the target feature (Fraudulent) to the count for each category

	department	industry	function	Country
0	marketing	not specified	marketing	us
1	success	marketing and advertising	customer service	nz
2	not specified	not specified	not specified	us
3	sales	computer software	sales	us
4	not specified	hospital & health care	health care provider	us

	department	industry	function	Country
0	0.004963	0.056088	0.012048	0.068506
1	0.000871	0.054348	0.054516	0.000000
2	0.045986	0.056088	0.052208	0.068506
3	0.029930	0.003634	0.027929	0.068506
4	0.045986	0.102616	0.002959	0.068506

Machine Learning Model

- Goal is to achieve high accuracy from the machine learning model
- Classification type machine learning model
- LightGBM machine learning model was chosen due to it higher performance to accuracy output
- Accuracy value of 98% meaning that 2 of every 100 job postings analysed are labeled incorrectly and 98 is correctly labeled

 Recall value of 72% means that 28 of every 100 fraudulent job postings analysed in reality are missed by the model and 72 are correctly identified as

fraudulent

	precision	recall	f1-score	support
0	0.99	1.00	0.99	1701
1	0.93	0.72	0.81	87
accuracy			0.98	1788
macro avg	0.96	0.86	0.90	1788
weighted avg	0.98	0.98	0.98	1788

Live Tableau Dashboard

FRAUDULENT DATA ANALYSIS & ML MODEL

Word Cloud

FRAUDULENT

NON-FRAUDULENT

Required Educaiton Fraud Rate

none	451
High School or equivalent	170
Bachelor's Degree	100
Unspecified	61
Master's Degree	31
Some High School Course	20
Certification	19
Associate Degree	6
Professional	4
Some College Coursework	3
Doctorate	1
Vocational	0
Vocational - Degree	0

Industry Fraud Rate

Industry	
none	275
Oil & Energy	109
Accounting	57
Hospital & Health Care	51
Marketing and Advertising	45
Financial Services	35
Information Technology a	32
Telecommunications	26
Consumer Services	24
Real Estate	24
Leisure Travel & Tourism	21
Health Wellness and Fitne	15
Hospitality	14
Computer Networking	12

Employment type Fraud Rate

ML MODEL ANALYSIS

CONFUSION MATRIX (LIGHTGBM)

FEATURE IMPORTANCE (LIGHTGBM)

CLASSIFICATION REPORT (LIGHTGBM)

	precision	recall	f1-score	support
0	0.99	1.00	0.99	1701
1	0.93	0.72	0.81	87
accuracy			0.98	1788
macro avg	0.96	0.86	0.90	1788
weighted avg	0.98	0.98	0.98	1788

Conclusion and Improvements

- Fraud through job postings is prevalent which our machine learning model achieved high accuracy in predicting the job postings bad actors are using to gain access to private information.
- This model could be implemented to analyse each new job posting that is created to determine if a job posting would be used for fraudulent purposes and prevent the job postings from going onto the live public job board

 A larger dataset can be used to improve the machine learning model and once the model has been implemented in a live system will improve over time as the model learns

Q&A