PRÁCTICA DE NEBULOSAS IONIZADAS

Curso 2019/20

ESTUDIO DE LA POBLACIÓN RELATIVA DE LOS NIVELES DE NII

Estudiar la población relativa de los niveles del ión NII (N+) en una nebulosa ionizada para distintos valores de las condiciones físicas.

- a) Calcular las densidades críticas de los distintos niveles suponiendo una temperatura electrónica de 10000K.
- b) Representar gráficamente la población relativa de los cinco niveles del NII para valores de densidad electrónica variando entre 1 y 10⁹ cm⁻³ y suponiendo una temperatura electrónica de 10000K.
- c) Representar gráficamente la población relativa de los cinco niveles del NII para valores de temperatura electrónica variando entre 5000 y 15000K y suponiendo una densidad electrónica de 100 cm⁻³.
- d) Representar gráficamente el cociente:

$$\frac{j([NII]6548) + j([NII]6583)}{j([NII]5755)}$$

respecto a la temperatura electrónica suponiendo una densidad de 100, 10^5 y 10^9 cm⁻³.

Hacer un breve informe en formato PDF presentando las gráficas, discutiendo los resultados a la luz de lo explicado en clase e incluyendo el listado del programa o programas desarrollados para realizar la práctica así como la bibliografía utilizada.

Datos atómicos para el ión NII. Longitud de onda de las transiciones (λ), probabilidades de transición (A) y fuerzas de colisión (Ω).

			Ω(Τ)			
Transición	λ(Å)	A(s ⁻¹)	5000K	10000K	15000K	20000K
$^{3}P_{1}-^{3}P_{0}$	2052800	2.083×10 ⁻⁶	0.3591	0.38	0.3888	0.3950
$^{3}P_{2}-^{3}P_{0}$	764300	1.12×10 ⁻¹²	0.1435	0.188	0.2219	0.2460
$^{3}P_{2}-^{3}P_{1}$	1217700	7.42×10 ⁻⁶	1.3731	1.45	1.4734	1.4900
$^{1}D_{2}$ - $^{3}P_{0}$	6527.2	5.253×10 ⁻⁷	0.2788	0.286	0.2889	0.2910
$^{1}D_{2}$ - $^{3}P_{1}$	6548.1	9.851×10 ⁻⁴	0.7517	0.76	0.7711	0.7790
$^{1}D_{2}$ - $^{3}P_{2}$	6583.5	2.914×10 ⁻³	1.4455	1.46	1.4834	1.5000
${}^{1}S_{0}$ - ${}^{3}P_{0}$	3058.3	0.000	0.0335	0.0333	0.0339	0.0343
${}^{1}S_{0}$ - ${}^{3}P_{1}$	3062.8	3.185×10 ⁻²	0.0936	0.0996	0.1028	0.1050
${}^{1}S_{0}$ - ${}^{3}P_{2}$	3070.6	1.547×10 ⁻⁴	0.1632	0.172	0.1773	0.1810
${}^{1}S_{0}$ - ${}^{1}D_{2}$	5754.6	1.136	0.3894	0.522	0.5729	0.6090

Fuentes de los datos:

- Longitudes de onda y probabilidades de transición: Froese Fischer, C. & Tachiev, G. (2004) *Atomic Data and Nuclear Data Tables*, 87, 1.
- Fuerzas de colisión:
 Tayal, S. S. (2011) Astrophysical Journal Supplement Series, 185, 12.