Математическая индукция

конспект от TheLostDesu

18 сентября 2021 г.

1 Индукция

Рассмотрим множество натуральных чисел. Договоримся, что 0 - также натуральное число. На нем можно использовать мат.индукцию. Пусть $\phi(x)$ - предикат на \mathbb{N} . Тогда $(\phi(0) \wedge \forall n(\phi(n) \to \phi(n+1) \forall n\phi(n)$.

Как интуитивно доказать, например, что мат. индукция работает для натуральных чисел? Рассмотрим, например $\phi(5)$. Для любого $\phi(n) \to \phi(n+1)$. Тогда, так как верно $\phi(0)$, то верно $\phi(1)$. Из верности $\phi(1)$ следует верность $\phi(2)$. И так далее. Тогда, можно заметить, что для любого $n \in \mathbb{N}$ верно $\phi(n)$.

Пример: Пусть все кванторы по натуральным числам. Доказать, что $\forall n (n \geq 3 \rightarrow \exists a_1, a_2...a_n > 0, 1 = \frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n}$ при этом все a_i попарно различны.

Для нуля получается правда (посылка ложна -> вся импликация истинна).

Теперь надо рассмотреть случаи. Если $n=0,\ 1,\$ то для n+1 высказывание верно 1 . Если $n=2,\$ то для n+1 можно подобрать пример, например $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}.$ Пусть верно для n. Докажем для n+1. Рассмотрим сумму для n. Она имеет вид $\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}.$ Рассмотрим сумму $\frac{1}{2a_1}+\frac{1}{2a_2}+...+\frac{1}{2a_n}.$ Она равна $\frac{1}{2}.$ Также стоит отметить, что все числа различны(если $a_1\neq a_2,\$ то и $2a_1\neq 2a_2).$ Алсо, ни одно из чисел не равно /frac12 по построению этих чисел. Просто добавим к нему $\frac{1}{2},\$ сумма станет равна 1. А значит, изначальное высказывание верно.

¹См случай для нуля

2 Принципы

Идея заключается в том, что для вывода $\phi(n+1)$ разрешить использовать верность $\phi(n), \phi(n-1), ..., phi(0)$

 $\forall n (\forall m < n\phi(m) \to \phi(n)) \to \forall n\phi(n). \operatorname{prog}(n)^2$

Принцип наименьшего числа. Если свойству ϕ удвлетворяет какое-то число, значит есть наименьшее число со свойством ϕ .

 $^{^2\}Pi$ рогрессивность n