

SPM@TESTES

Teste de Matemática

2023

10.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos. (cinco páginas)

VERSÃO 1

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

PROIBIDA A REPRODUÇÃO OU DIVULGAÇÃO TOTAL OU PARCIAL POR QUALQUER MEIO. O PRESENTE ENUNCIADO É PROPRIEDADE DA SOCIEDADE PORTUGUESA DE MATEMÁTICA E A SUA DIVULGAÇÃO É SUSCEPTÍVEL DE CAUSAR GRAVES PREJUÍZOS À SPM E ÀS SUAS ESCOLAS ASSOCIADAS. OS RESPONSÁVEIS SERÃO PROCESSADOS CIVIL E CRIMINALMENTE PELOS PREJÍZOS CAUSADOS.

- **1.** Seja f a função definida, em \mathbb{R} , por $f(x) = 3x^2 6x + 4$.
- **1.1.** Represente f(x) na forma $a(x-b)^2 + c$.
- **1.2.** Determine a equação reduzida da reta que interseta o gráfico de f no ponto de abcissa $\sqrt{2}$ e no ponto de abcissa $-\sqrt{2}$.
- **2.** Seja h a função definida, no intervalo [-2,4], por $h(x) = x^2 4x 5$.

Os valores do maximizante e do minimizante de h, correspondentes ao máximo e ao mínimo absolutos são, respetivamente:

(A)
$$x = 4 e x = -2$$

(B)
$$x = 4 e x = 0$$

(C)
$$x = -2 e x = 2$$

(A)
$$x = 4 e \ x = -2$$
 (B) $x = 4 e \ x = 0$ (C) $x = -2 e \ x = 2$ (D) $x = -2 e \ x = 1$

3. Na Figura 1 estão representadas duas circunferências concêntricas, num referencial ortonormado Oxy.

Sabe-se que:

- $(x-1)^2 + (y-2)^2 = 9$ é uma equação da circunferência
- A reta AB é tangente à circunferência menor no ponto que tem a mesma ordenada que o respetivo centro;

Figura 1

- Os pontos A e B pertencem à circunferência maior e $\overline{AB}=8$.
- **3.1.** Determine as abcissas dos pontos da circunferência menor cuja ordenada é $2 + 2\sqrt{2}$.
- **3.2.** Determine uma equação cartesiana da circunferência maior.
- 3.3. Qual das seguintes equações define uma reta que tem pontos em comum com a região sombreada na figura?

(A)
$$x = 1$$

(B)
$$x = -1$$
 (C) $y = -2$ **(D)** $y = 5$

(c)
$$v = -2$$

(D)
$$v = 5$$

4. No referencial ortonormado Oxy da $Figura\ 2$ estão representados os gráficos das funções reais de variável real f, g e h .

Quais as expressões analíticas que podem definir cada uma das funções f, g e h?

Figura 2

(A)
$$f(x) = x^2$$
, $g(x) = x$, $h(x) = x^3$

(B)
$$f(x) = x^2$$
, $g(x) = x^3$, $h(x) = x$

(C)
$$f(x) = x$$
, $g(x) = x^2$, $h(x) = x^3$

(D)
$$f(x) = x$$
, $g(x) = x^3$, $h(x) = x^2$

5. Sejam f e g as funções definidas, em \mathbb{R} , por f(x) = |x| + x e g(x) = |x| - x. Qual dos referenciais 0xy, ortonormados, pode representar os gráficos das funções f e g?

(A)

(B)

(C)

(D)

6. No referencial ortonormado Oxy da Figura 3 está representado parte do gráfico de uma função quadrática que traduz o problema seguinte:

A partir de um determinado ponto A da parede de um lago, situado a 2 metros de altura, pretende-se lançar um jacto de água que descreva um arco de parábola e que atinja uma altura máxima de 3 metros a uma distância de 1 metro da parede $\lceil OA \rceil$.

Figura 3

Para que a água caia dentro do lago construiu-se um muro [CB], com C a uma distância de 2,5 metros do ponto O. Mostre que fazendo $\overline{BC}=1$ metro é possível atingir esse objetivo.

7. Num referencial ortonormado Oxy considere-se a reta s de equação y=3x+2 e a reta t de equação y=2x+1.

Considere ainda os pontos P(0,4) e A(3,11).

- **7.1.** Mostre que o ponto P não pertence a nenhuma das retas, mas o ponto A pertence à reta s.
- **7.2.** Para um determinado ponto B da reta t , $\overrightarrow{PB}=k$ \overrightarrow{PA} , $k\in\mathbb{R}$.

Determine as coordenadas do ponto B e o valor de k.

- **8.** Na *Figura 4*, está representado num referencial *o.n. Oxyz*, um cubo [*ABCDEFGO*]. Sabe-se que:
 - A face [OABE] está contida no plano xOy;
 - As coordenadas dos vértices G e A são (0,0,5) e
 (3,4,0), respetivamente;
 - O ponto B pertence à reta de equação vetorial $(x, y, z) = (1,4,1) + k(2,-3,1), \ k \in \mathbb{R}$

8.1. Qual das equações seguintes define um plano que contém a aresta [DA] ?

- (A) x = 1
- **(B)** x = 2
- (**C**) x = 3
- **(D)** x = 4

8.2. Determine as coordenadas do centro da face [ABCD].

- **9.** Considere o polinómio $P(x) = (x 2)^2(x^2 + 1)$.
- **9.1.** Seja f a função definida, em \mathbb{R} , pelo polinómio dado.

Elabore um quadro de sinais para a função f.

Com base no quadro, poderá concluir que existe pelo menos um extremo para f? Justifique e, caso exista, identifique-o.

9.2. O polinómio P(x) é divisível pelo polinómio:

(A)
$$x^2 - 4x + 4$$
 (B) $x + 2$

(B)
$$x + 2$$

(C)
$$x + 1$$

10. Na *Figura 5*, encontra-se representado, num referencial $o.\,n.\,Oxy$, parte do gráfico da função h definida, em $\mathbb R$, por h(x) = |x + 2| - 2.

- **10.1.** Resolva a equação h(x) = 0.
- **10.2.** Determine a área do triângulo [ABO].

Figura 5

FIM

Questão	1.1	1.2	2.	3.1	3.2	3.3	4.	5.	6.	7.1	7.2	8.1	8.2	9.1	9.2	10.1	10.2	TOTAL
Cotação	14	13	8	14	13	8	8	8	14	14	14	8	14	14	8	14	14	200

SPM@TESTES

Teste de Matemática

2023

10.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos.

(cinco páginas)

VERSÃO 2

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

PROIBIDA A REPRODUÇÃO OU DIVULGAÇÃO TOTAL OU PARCIAL POR QUALQUER MEIO. O PRESENTE ENUNCIADO É PROPRIEDADE DA SOCIEDADE PORTUGUESA DE MATEMÁTICA E A SUA DIVULGAÇÃO É SUSCEPTÍVEL DE CAUSAR GRAVES PREJUÍZOS À SPM E ÀS SUAS ESCOLAS ASSOCIADAS. OS RESPONSÁVEIS SERÃO PROCESSADOS CIVIL E CRIMINALMENTE PELOS PREJÍZOS CAUSADOS.

- **1.** Seja f a função definida, em \mathbb{R} , por $f(x) = 3x^2 6x + 4$.
- **1.1.** Represente f(x) na forma $a(x-b)^2 + c$.
- **1.2.** Determine a equação reduzida da reta que interseta o gráfico de f no ponto de abcissa $\sqrt{2}$ e no ponto de abcissa $-\sqrt{2}$.
- **2.** Seja h a função definida, no intervalo [-2,4], por $h(x) = x^2 4x 5$.

Os valores do maximizante e do minimizante de h, correspondentes ao máximo e ao mínimo absolutos são, respetivamente:

(A).
$$x = 4 e x = -2$$

(B)
$$x = 4 e x = 0$$

(C)
$$x = -2 e x = 1$$

(A)
$$x = 4 e x = -2$$
 (B) $x = 4 e x = 0$ (C) $x = -2 e x = 1$ (D) $x = -2 e x = 2$

3. Na Figura 1 estão representadas duas circunferências concêntricas, num referencial ortonormado Oxy.

Sabe-se que:

- $(x-1)^2 + (y-2)^2 = 9$ é uma equação da circunferência menor;
- ullet A reta AB é tangente à circunferência menor no ponto que tem a mesma ordenada que o respetivo centro;

Figura 1

- Os pontos A e B pertencem à circunferência maior e $\overline{AB} = 8$.
- **3.1.** Determine as abcissas dos pontos da circunferência menor cuja ordenada é $2 + 2\sqrt{2}$.
- **3.2.** Determine uma equação cartesiana da circunferência maior.
- 3.3. Qual das seguintes equações define uma reta que tem pontos em comum com a região sombreada na figura?

(A)
$$x = -1$$
 (B) $x = 1$ (C) $y = -2$

(B)
$$x = 1$$

(C)
$$v = -2$$

(D)
$$y = 5$$

4. No referencial ortonormado Oxy da Figura 2 estão representados os gráficos das funções reais de variável real $f, g \in h$.

Quais as expressões analíticas que podem definir cada uma das funções f, g e h?

Figura 2

(A)
$$f(x) = x^2$$
, $g(x) = x$, $h(x) = x^3$

(B)
$$f(x) = x$$
, $g(x) = x^2$, $h(x) = x^3$

(C)
$$f(x) = x^2$$
, $g(x) = x^3$, $h(x) = x$ (D) $f(x) = x$, $g(x) = x^3$, $h(x) = x^2$

(D)
$$f(x) = x$$
, $g(x) = x^3$, $h(x) = x^2$

5. Sejam $f \in g$ as funções definidas, em \mathbb{R} , por f(x) = |x| + x e g(x) = |x| - x. Qual dos referenciais Oxy, ortonormados, pode representar os gráficos das funções $f \in g$?

(A)

(C)

(D)

6. No referencial ortonormado Oxy da Figura~3 está representado parte do gráfico de uma função quadrática que traduz o problema seguinte:

A partir de um determinado ponto A da parede de um lago, situado a 2 metros de altura, pretende-se lançar um jacto de água que descreva um arco de parábola e que atinja uma altura máxima de 3 metros a uma distância de 1 metro da parede $\lceil OA \rceil$.

Figura 3

Para que a água caia dentro do lago construiu-se um muro [CB], com C a uma distância de 2,5 metros do ponto O. Mostre que fazendo $\overline{BC}=1$ metro é possível atingir esse objetivo.

7. Num referencial ortonormado Oxy considere-se a reta s de equação y=3x+2 e a reta t de equação y=2x+1.

Considere ainda os pontos P(0,4) e A(3,11).

- **7.1.** Mostre que o ponto P não pertence a nenhuma das retas, mas o ponto A pertence à reta s.
- **7.2.** Para um determinado ponto B da reta t , $\overrightarrow{PB}=k$ \overrightarrow{PA} , $k\in\mathbb{R}$.

Determine as coordenadas do ponto B e o valor de k.

- **8.** Na *Figura 4*, está representado num referencial *o.n. Oxyz*, um cubo [*ABCDEFGO*]. Sabe-se que:
 - A face [OABE] está contida no plano xOy;
 - As coordenadas dos vértices G e A são (0,0,5) e
 (3,4,0), respetivamente;
 - O ponto B pertence à reta de equação vetorial $(x,y,z)=(1,4,1)+k(2,-3,1),\ k\in\mathbb{R}$

8.1. Qual das equações seguintes define um plano que contém a aresta [DA] ?

- (A) x = 4
- **(B)** x = 3
- (C) x = 2
- **(D)** x = 1

8.2. Determine as coordenadas do centro da face [ABCD].

- **9.** Considere o polinómio $P(x) = (x 2)^2(x^2 + 1)$.
- **9.1.** Seja f a função definida, em \mathbb{R} , pelo polinómio dado.

Elabore um quadro de sinais para a função f.

Com base no quadro, poderá concluir que existe pelo menos um extremo para f? Justifique e, caso exista, identifique-o.

9.2. O polinómio P(x) é divisível pelo polinómio:

(B)
$$x + 1$$

(C)
$$x + 2$$

(c)
$$x + 2$$
 (D) $x^2 - 4x + 4$

10. Na *Figura 5*, encontra-se representado, num referencial $o.\,n.\,Oxy$, parte do gráfico da função h definida, em $\mathbb R$, por h(x) = |x + 2| - 2.

- **10.1.** Resolva a equação h(x) = 0.
- **10.2.** Determine a área do triângulo [ABO].

Figura 5

FIM

Questão	1.1	1.2	2.	3.1	3.2	3.3	4.	5.	6.	7.1	7.2	8.1	8.2	9.1	9.2	10.1	10.2	TOTAL
Cotação	14	13	8	14	13	8	8	8	14	14	14	8	14	14	8	14	14	200