Lab 8

Quadrature formulas (2)

The rectangle (midpoint) quadrature formula is

$$\int_{a}^{b} f(x)dx = (b-a)f\left(\frac{a+b}{2}\right) + R_1(f).$$

The repeated rectangle (midpoint) quadrature formula is

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=1}^{n} f(x_i) + R_n(f),$$

with $x_1 = a + \frac{b-a}{2n}$, $x_i = x_1 + (i-1)\frac{b-a}{n}$, i = 2, ..., n.

Problems:

1. a) Use the rectangle formula to evaluate the integral

$$\int_{1}^{1.5} e^{-x^2} dx.$$

b) Use the repeated rectangle formula, for n=150 and 500, to evaluate the integral

$$\int_{1}^{1.5} e^{-x^2} dx$$
.

(Result: 0.1094)

2. Use Romberg's algorithm for trapezium and Simpson's formulas to approximate the integral

$$\int_0^1 \frac{2}{1+x^2} dx,$$

with precision $\varepsilon = 10^{-5}$.

3. Plot the graph of $f:[1,3]\to\mathbb{R},\ f(x)=\frac{100}{x^2}\sin\frac{10}{x}$. Use an adaptive quadrature algorithm for Simpson's formula to approximate the integral

$$\int_{1}^{3} f(x)dx,$$

with precision $\varepsilon = 10^{-4}$. Compare the obtained result with the one obtained applying repeated Simpson formula for n = 50 and 100. (The exact value is -1.4260247818.)

Facultative problem

Quadrature formula of Gauss type for double integral

Consider the integral $I = \int_a^b \int_c^d f(x,y) dy dx$. We change the variable y from [c,d], in variable t from [-1,1]. The linear transformation gives:

$$f(x,y) = f\left(\frac{(d-c)t+d+c}{2}\right)$$
 $dy = \frac{d-c}{2}dt.$

$$\int_c^d f(x,y)dy = \int_{-1}^1 f\left(x,\frac{(d-c)t+d+c}{2}\right)dt.$$

We obtain

$$\int_a^b \int_c^d f(x,y) dx \approx \int_a^b \frac{d-c}{2} \sum_{i=1}^n c_{n,j} f\left(x, \frac{(d-c)r_{n,j}+d+c}{2}\right) dt,$$

with $c_{n,j}$ and $r_{n,j}$ given in tables. Then, it is changed the interval [a,b] in the interval [-1,1] and it is repeated the same procedure.

Algorithm:

INPUT: a,b,c,d,m,n

the coefficients $c_{i,j}$ and nodes r_{ij} for $i = \max\{m, n\}$ and $1 \le j \le i$ OUTPUT: the approximant J of the integral I

$$h_1 = (b - a)/2;$$

$$h_2 = (b+a)/2;$$

$$J=0.$$

For i = 1, 2, ..., m do

$$JX = 0$$

$$x = h_1 r_{m,i} + h_2;$$

 $k_1 = (d - c)/2;$

$$k_2 = (d+c)/2.$$

$$\kappa_2 = (a + c)/2.$$

$$y=k_1r_{n,j}+k_2;$$

$$Q=f(x,y);$$

$$JX=JX+c_{n,j}Q.$$

$$end\{for\}$$

$$Let \ J=J+c_{m,i}\cdot k_1\cdot JX.$$

$$end\{for\}$$

$$J=h_1J$$

1. The volume of a solid is given by $\int_{0.1}^{0.5} \int_{0.01}^{0.25} e^{\frac{y}{x}} dy dx$. Approximate the volume applying the algorithm for Gauss type quadratures for double integrals for m=n=5. Compare the result with the one obtained applying Simpson's algorithm for double integrals for m=n=10. (Result: 0.178571)

We know the following data:	Nodes $r_{5,i}$	Coefficients $c_{5,i}$
	0.9062	0.2369
	0.5385	0.4786
	0	0.5689
	-0.5385	0.4786
	-0.9062	0.2369