CÁLCULO III – Engenharia de Energia

Lista 6 – M. Gonçalves e D. Flemming, Cálculo B.

alcular, usando a definição, a derivada direcional do eampo escalar f(x, y) no ponto indicado e na direção $\vec{v} = \vec{i} + \vec{j}$.

a)
$$f(x, y) = 2x^2 + 2y^2 \text{ em } P(1, 1)$$
.

b)
$$f(x, y) = 2x + y \text{ em } P(-1, 2)$$
.

c)
$$f(x, y) = e^{x+y} \text{ em } P(0, 1).$$

Nos exercícios 2 a 6, calcular, usando a definição, a derivada direcional no ponto e direção indicados:

2.
$$f(x, y) = x^2 - y^2$$
, $P(1, 2)$, na direção de $\vec{v} = 2\vec{i} + 2\vec{j}$.

3.
$$f(x, y, z) = xy + z$$
, $P(2, 1, 0)$, na direção do eixo positivo dos z .

4.
$$f(x, y) = 2x + 3y$$
, $P(-1, 2)$, na direção da reta $y = 2x$.

5.
$$f(x, y) = 2 - x^2 - y^2$$
, $P(1, 1)$, na direção do vetor tangente unitário à curva $C: \overrightarrow{r}(t) = (t, t^2)$ em $P(1, 1)$.

Nos exercícios 18 a 24, representar geometricamente campo gradiente delimido pela função dada:

18.
$$u(x, y, z) = -\frac{1}{6}(x^2 + y^2 + z^2).$$

19.
$$u(x, y) = 2x + 4y$$
.

20.
$$u(x, y) = \frac{1}{2\sqrt{x^2 + y^2}}$$
.

21.
$$u(x, y) = \frac{1}{2}x^2$$
.

22.
$$u(x, y) = x^2 + y^2$$
.

23.
$$u(x, y) = 2x - y$$
.

24.
$$u(x, y, z) = 2x^2 + 2y^2 + 2z^2$$
.

25. Seja
$$f(x, y) = 2x^2 + 5y^2$$
. Representar geometric mente $\nabla f(x_0, y_0)$, sendo (x_0, y_0) dado por

a)
$$(1, 1)$$

c) $(\frac{1}{2}, \sqrt{3})$.

6.
$$f(x, y, z) = 2x + 3y - z$$
, $P(1, 1, -1)$, na direção do eixo positivo dos y.

Nos exercícios 7 a 17, calcular o gradiente do campo escalar dado.

7.
$$f(x, y, z) = xy + xz + yz$$
.

8.
$$f(x, y, z) = x^2 + 2y^2 + 4z^2$$
.

9.
$$f(x, y) = 3xy^3 - 2y$$
.

10.
$$f(x, y, z) = \sqrt{xyz}$$
.

11.
$$f(x, y, z) = z - \sqrt{x^2 + y^2}$$
.

12.
$$f(x, y) = e^{2x^2+y}$$
.

13.
$$f(x, y) = \text{arc tg } xy$$
.

14.
$$f(x, y) = \frac{2x}{x - y}$$

15.
$$f(x, y, z) = 2xy + yz^2 + \ln z$$
.

$$16. \ f(x,y,z) = \sqrt{\frac{x+y}{z}}.$$

17.
$$f(x, y, z) = ze^{x^2-y}$$
.

26. Dados
$$A\left(1, \frac{3}{2}\right)$$
 e $B\left(\frac{1}{2}, 2\right)$ e a função $f(x, y) = \lim_{x \to \infty} \frac{1}{2} \left(\frac{3}{2}\right)$ determinar o ângulo formado pelos vetores $\nabla f(A)$ e $\nabla f(B)$.

a)
$$2x^2 + 3y^2 = 8$$
; $P(1, \sqrt{2})$

b)
$$y = 2x^2$$
; $P(-1, 2)$

c)
$$x^2 + y^2 = 8$$
; $P(2, 2)$

d)
$$y = 5x - 2$$
; $P(\frac{1}{2}, \frac{1}{2})$

a)
$$2x + 5y + 3z = 10$$
; $P\left(1, 2, \frac{-2}{3}\right)$

b)
$$z = 2x^2 + 4y^2$$
; $P(0, 0, 0)$

c)
$$2z = x^2 + y^2$$
; $P(1, 1, 1)$.

30. Traçar as curvas de nível de
$$f(x, y) = \frac{1}{2}x^2 + \frac{1}{2}$$
 que passem pelos pontos $(1, 1)$, $(1, -2)$ e $(-2, -1)$

- 60. Sponha que T(x, y) = 4 2x² 2y² represente dina distribuição de temperatura no plano xy. Determinar uma parametrização para a trajetória descrita por um ponto P que se desloca, a partir de (1, 2), sempre na direção e sentido de máximo crescimento de temperatura.
- 61. I Figura 6.24 mostra uma plataforma retangular cuja temperatura em cada ponto é dada por T(x, y) = 2x + y. Um indivíduo encontra-se no ponto P_0 dessa plataforma e necessita esquentar-se o mais rápido possível. Determinar a trajetória (obter uma equação) que o indivíduo deve seguir, esboçando-a sobre a plataforma.

Figura 6.24

 Uma plataforma retangular é representada no plano xy por

$$0 \le x \le 15 \quad \text{e} \quad 0 \le y \le 10$$

63. Resolver o Exercício 62 supondo que a temperatura seja dada por

$$T(x, y) = \frac{1}{2}(x^2 + y^2) - 100.$$

64. A densidade de uma distribuição de massa varia em relação a uma origem dada segundo a fórmula

$$\rho = \frac{4}{\sqrt{x^2 + y^2 + 2}}.$$

Encontrar a razão de variação da densidade no porto (1, 2) na direção que forma um ângulo de 45°, no sertido anti-horário, com o eixo positivo dos x. Em que direção a razão de variação é máxima?

- 65. Usando o gradiente, encontrar uma equação para a restangente à curva $x^2 y^2 = 1$, no ponto $(\sqrt{2}, 1)$.
- 66. Encontrar o vetor intensidade elétrica $\vec{E} = -\text{grad} \mathbb{R}$ a partir da função potencial V, no ponto indicado.

a)
$$V = 2x^2 + 2y^2 - z^2$$
; $P(2, 2, 2)$

b)
$$V = e^y \cos x$$
; $P(\frac{\pi}{2}, 0, 0)$

c)
$$V = (x^2 + y^2 + z^2)^{-1/2}$$
, $P(1, 2, -2)$.

- 67. Im potencial elétrico é dado por $V = \frac{10}{x^2 + y^2 + z^2}$ Determinar o campo elétrico, representando-o gracumente.
- os vetores $\nabla f(1,1)$, $\nabla f(1,-2)$ e $\nabla f(1,-2)$.

determinar uma equação para a de a curva dada, nos pontos indicados:

$$x = x^2$$
; $P_0(1,1)$, $P_1(2,4)$.

$$x^2 - y^2 = 1$$
; $P_0(\sqrt{2}, 1)$.

$$x - y^2 = -4$$
; $P_0(-3, 1)$.

$$x + y = 4$$
; $P_0(3, 1)$.

$$x^2 + y^2 = 4$$
; $P_0(2,0)$.

determinar uma equação vetorial normal a superfície dada, nos pontos indicados:

$$z = x^2 + y^2 - 1, P_0(1, 1, 1).$$

$$z^2 + y^2 + z^2 = 4$$
, $P_0(1, 1, \sqrt{2})$, $P_1(1, 1, -\sqrt{2})$.

$$x^2 + y^2 = z^2, P_0(3, 4, 5).$$

$$x + \frac{1}{2}y + \frac{1}{3}z = 1, P_0(1, 2, -3).$$

$$=\frac{z^2}{4}+y^2+\frac{z^2}{9}=1, P_0\left(0,\frac{1}{2},\frac{3\sqrt{3}}{2}\right).$$

Takeular
$$\frac{\partial f}{\partial s}(x_0, y_0)$$
 na direção $\vec{v} = 2\vec{i} - \vec{j}$:

$$f(x, y) = 3x^2 - 2y^2; (x_0, y_0) = (1, 2)$$

$$f(x, y) = e^{xy}; (x_0, y_0) = (-1, 2)$$

46. $f(x, y) = 4 - x^2 - y^2$, na direção de máximo decrescimento de f.

47.
$$f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$$
, na direção do vetor $\vec{a} = \vec{i} + \vec{j} + \vec{k}$.

48. A derivada direcional da função w = f(x, y) em $P_0(1, 1)$ na direção do vetor $\overrightarrow{P_0P_1}$, $P_1(1, 2)$, é 2, e na direção do vetor $\overrightarrow{P_0P_2}$, $P_2(2, 0)$, é 4. Quanto vale $\frac{\partial w}{\partial s}$

em P_0 na direção do vetor P_0 0, onde 0 é a origem?

- Em que direção devemos nos deslocar partindo de Q(1, 1, 0) para obter a taxa de maior decréscimo da função $f(x, y) = (2x + y 2)^2 + (5x 2y)^2$?
- Em que direção a derivada direcional de $f(x, y) = 2xy x^2$ no ponto (1, 1) é nula?
- 51. Em que direção e sentido a função dada cresce mais rapidamente no ponto dado? Em que direção e sentido decresce mais rapidamente?

a)
$$f(x, y) = 2x^2 + xy + 2y^2$$
 em (1, 1)

b)
$$f(x, y) = e^{xy} \text{ em } (2, -1).$$

52. Determinar os dois vetores unitários para os quais a derivada direcional de f no ponto dado é zero.

a)
$$f(x, y) = x^3y^3 - xy$$
, $P(10, 10)$

b)
$$f(x, y) = \frac{x}{x + y}, P(3, 2)$$