Homework 1 – Rebah Özkoç - 29207

1- Sketch a composed TM M that performs the computation: $(s, \lozenge \# \omega) - | * M (h, \lozenge \# \omega c)$

	Condition	TM	Comments
M>		R A	
Α	σ = #	L _# h	
	σ≠#and σ≠\$	R A	
	σ = \$	R B	
В	σ = \$	x R B	X ∉ Σ
	σ≠\$	x L _{\$} σ R C	
С	σ = x	\$ R C	
	σ≠x	L# R A	

Verbal description:

Head goes to the first symbol of w and enters state A.

State A: If w is e (empty) or it does not contain any \$ symbol, it goes back until the first blank symbol which is next to the blip, and it holds.

State A: If head sees a \$ symbol while it is going to the left it goes one right and enters to state B.

State B: If the symbol at the right of the symbol \$ is also \$ head writes x which does not belong to the alphabet and it stays at the state B.

State B: While going to the right if head sees a symbol which is not \$ it removes it by putting an x it goes to the left until it sees a \$ and writes what is sees and goes one step to the right and enters state C.

State C: In this state the machine deletes the temporary x symbols which does not belong the current alphabet. If head sees an x it writes \$ instead of it and goes one step to the right and stays at state C.

State C: If the head sees a symbol which is not x it goes to the left until the first blank symbol which is at the left of the w and it goes one step right and enters state A.

4.1.4. Let M be the Turing machine $(K, \Sigma, \delta, s, \{h\})$, where

$$K = \{q_0, q_1, q_2, h\},\$$

$$\Sigma = \{a, \sqcup, \triangleright\},\$$

$$s = q_0,\$$

and δ is given by the following table.

Let $n \geq 0$. Describe carefully what M does when started in the configuration $(q_0, \triangleright \sqcup a^n \underline{a})$.

q,	σ	$\delta(q,\sigma)$
q_0	a	(q_1, \leftarrow)
q_0	\sqcup	(q_0,\sqcup)
q_0	\triangleright	$(q_0, ightarrow)$
q_1	a	(q_2,\sqcup)
$ q_1 $	П	(h,\sqcup)
q_1	\triangleright	$(q_1, ightarrow)$
q_2	\boldsymbol{a}	(q_2,a)
q_2	Ц	(q_0, \leftarrow)
q_2	\triangleright	$(q_2, ightarrow)$

Solution:

If n is even M halts on the blank but if n is odd M loops forever between the blank next to the blip to right and back.

4.1.7. Design and write out in full a Turing machine that scans to the right until it finds two consecutive a's and then halts. The alphabet of the Turing machine should be $\{a, b, \sqcup, \triangleright\}$.

Solution:

This Turing machine semi-decides a language. If there is no two consecutive a's on the tape it goes right and reads the tape indefinitely.

	Condition	TM
>M		R A
Α	σ = a	R B
	σ≠a	R A
В	σ = a	h
	σ≠a	R A

4.1.12. Trace the operation of the Turing machine of Example 4.1.9 on $\triangleright \sqcup aabb \sqcup$.

Example 4.1.9: The right-shifting machine S_{\rightarrow} , transforms $\sqcup w \sqcup$, where w contains no blanks, into $\sqcup \sqcup w \sqcup$. It is illustrated in Figure 4-9. \diamondsuit

Solution:

LU a

(o # a a b b #) | -s >

(o # a a b b #) | -s > (o # a a b # #) | -s > (o # a a b # #) | -s > (o # a a b # b) | -s > (o # a a b b b) | -s > (o # a a b b b) | -s > (o # a a b b b) | -s > (o # a a b b b) | -s > (o # a a b b b) | -s > (o # a a b b b) | -s > (o # a a b b b b) | -s > (o # a a b b b b) | -s > (o # a a b b b b) | -s > (o # a a b b b b) | -s > (o # a a b b b b b) | -s > (o # a a b b b b b) | -s > (o # a a b b b b b) | -s > (o # a a b b b b b a) | -s > (o # a a b b b b a) | -s > (o # a a b b

- **4.2.2.** Present Turing machines that decide the following languages over $\{a, b\}$:
 - (a) Ø
 - (b) {e}
 - (c) {a}
 - (d) $\{a\}^*$

Solution:

a) It will hold with no directly.

	Condition	TM
>M		h _{no}

b)

	Condition	TM
>M		R A
Α	σ = #	h _{yes}
	σ≠#	h _{no}

c)

	Condition	TM
>M		R A
Α	σ = a	R B
	σ≠a	h _{no}
В	σ = #	h _{yes}
	σ≠#	h _{no}

d)

	Condition	TM
>M		R A
Α	σ = #	h _{yes}
	σ = b	h _{no}
	σ = a	R A

4.3.1. Formally define:

- (a) M semidecides L, where M is a two-way infinite tape Turing machine;
- (b) M computes f, where M is a k-tape Turing machine and f is a function from strings to strings.
- a) A two-way infinite tape turing machine is (Q, Σ, t, s, H) where t is the transition function. A configuration $(q, u \underline{a} v)$ belongs to $Q \times ((\Sigma \{\#\}) \Sigma^* \cup \{\#\}) \times (\Sigma^* (\Sigma \{\#\}) \cup \{e\})$

M semidices L means if the input w belongs to L then M will hold. If the w does not belong to L it may continue to work indefinitely.

w belongs to L: $(s, \#, w) \mid - *_{M} (h, x, y)$ for some h belongs to H

b) M a k-tape Turing machine computes f if $\Sigma^*_0 \to \Sigma^*_0$ for all w belongs to Σ^*_0 (q₀, \lozenge # w, \lozenge # , ..., \lozenge #) $|_{-M}^*$ (h, \lozenge # f(w), w₂, ... w_k) where h belongs to H.

4.3.2. Formally define:

- (a) a k-head Turing machine (with a single one-way infinite tape);
- (b) a configuration of such a machine;
- (c) the yields in one step relation between configurations of such a machine. (There is more than one correct set of definitions.)
- a) A k-head Turing machine with a single one-way infinite tape is defined as $M = (Q, \Sigma, t, s, H)$, where Q, Σ, s and H are same with the standard Turing machine and t is the transition function goes from $(Q-H) \times \Sigma^k$ to $Q \times (\Sigma \cup \{<-,->\}^k)$.
- b) The configuration of the machine is an element of Q x $\delta \Sigma^*$ x N^k

 $(q, u^k \underline{a}^k v^k)$ where q is the current state of the machine which belongs to Q.

u^k is the string that is at the left of the kth head (this can be the blip symbol.)

v^k is the string that is at the right of the kth head. (this can be blank or empty.)

a^k is the symbol under the hth head.

4.3.6. Formally define a Turing machine with a 2-dimensional tape, its configurations, and its computation. Define what it means for such a machine to decide a language L. Show that t steps of this machine, starting on an input of length n, can be simulated by a standard Turing machine in time that is polynomial in t and n.

A Turing machine with a 2 dimensional infinite tape is defined as $M = (Q, \Sigma, t, s, H)$, where Q, Σ, s and H are same with the standard Turing machine and t is the transition function goes from $(Q-H) \times \Sigma$ to $Q \times (\Sigma \cup \{<-, ->, up, down\})$.