INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPT./ CENTRE: Electronics and Computer Engineering						
1. Subject Code: EC – 652N	Course Ti	tle: Paralle	l and Distri	ibuted Alg	jorithms	
2. Contact Hours:	L: 3	T: 0	P: 0			
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0		
4. Relative Weight: CWS 1	15 PRS 00	MTE 3	5 ETE	50 PRE	00	
5. Credits: 0 3 6. Se	emester Aut	tumn S _l	√ oring	Both		

7. Pre-requisite: **EC - 351**

8. Subject Area: **DEC**

9. Objective: To provide an in-depth understanding of the fundamentals of parallel and distributed algorithms.

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to data and control parallelism.	2
2.	PRAM model and its variants, EREW, ERCW, CRCW, PRAM	8
	algorithms, cost optimality criterion, Brent's theorem and its importance.	
3.	Processor organizations such as mesh and hypercube, embedding of problem graphs into processor graphs.	4
4.	Parallel algorithms for matrix multiplication, merging and sorting for different processor organizations such as mesh and hypercube.	8
5.	Introduction to distributed systems, synchronous / asynchronous network models, leader election problem in ring and general networks; Type of faults, fail safe systems, Byzantine faults, distributed consensus with link and process failures.	8
6.	Algorithms for BFS, DFS, shortest paths and spanning trees in distributed systems.	6
7.	Asynchronous networks: Broadcast and multicast, logical time, global snapshot and stable properties; Network resource allocation.	6
	Total	42

11. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Quinn, M. J., "Parallel Computing Theory & Practice",	1994
	McGraw-Hill	
2.	Horowitz, E., Sahni, S. and Rajasekaran, S., "Computer	2002
	Algorithms: C++", Galgotia Publications	
3.	Lynch, N. A., "Distributed Algorithms", Morgan Kaufmann.	2003
4.	Miller, R. and Boxer, L., "Algorithms Sequential & Parallel: A	2005
	Unified Approach", 2 nd Ed., Charles River Media.	