- · You have 90 minutes to answer the questions.
- Please write your name and roll number at appropriate places.
- Write the key steps of your solution of the problems in the space provided.
- You can solve the problems in the supplementary sheets provided but it will not be graded.

N	ame: Sampl	e Sal	utron	Roll number: _		TA	Full	Full Marks: 30	
	Question	1	2	3	4	5	6	Total	
	Marks					-92		4	

1. For the circuit shown in Figure 1, find the Thevenin voltage (V_{th}) and the Thevenin impedance (R_{th}) as seen from the terminals a and b.

4 marks

Figure 1: Circuit for Problem 1

 with KVZ in loop-De; one can
check that Vce ≈ 5 V i.e indeed
BJT is operating in linear region.

(b) To determine Rth; lets find the
isc short-circuit current across ab
terminals.

(KVZ in loop @ (Voe = 07V)

10.7 - ib lok -0.7=0

...[ib=1mA]
...[ic=100 mA] & ie=101 mA

Nok: isc=ie when a-b are
shorted.

Rfn=Uh = 90.09 S2.

Also for cosc(b) one can verify.

Vce=14 V. BJT is Btill in
active region.

Scanned by CamScanner

2. For the circuit shown in Figure 2, the logic gates have a transport delay of 10 ns i.e. given an input, it takes 10 ns for the output to appear. For the input X whose waveform is as shown in Figure 2, draw the waveforms of A and Y and label appropriately. 5 marks

Figure 2: Circuit for Problem 2

- 3. For the circuit shown in Figure 3, the circuit parameters are $R_1=10~{\rm k}\Omega,~R_2=5~{\rm k}\Omega$ and $C=2~\mu{\rm F}.$ Obtain the
 - transfer function between the input (v_i) and the output (v_o) ,
 - low frequency gain and high frequency gain of this block.

3+2=5 marks

Figure 3: Circuit for Problem 3

Sel?: Taking phasor equivalent:-

$$V_0 = \frac{R_2}{R_1 + \frac{1}{Jwl}}$$

Sal?: Taking phasor equivalent:-

 $V_0 = \frac{-j\omega R_2 C}{R_1 + \frac{1}{Jwl}}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$

Figure 3: Circuit for Problem 3

 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega R_2 C}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega 0.01}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega 0.01}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$
 $V_0 = \frac{-j\omega 0.01}{(1 + j\omega CR)} = \frac{-j\omega 0.01}{(1 + j\omega CR)}$

Scanned by CamScanner

(Note: this behaves as high pars filter)

- 4. For the circuit shown in Figure 4, the voltage source $v_s(t)$ is a small amplitude sinusoidal signal of frequency 20 kHz. If the coupling capacitor (C_c) is 0.8 μ F, find
 - quiescent value of collector to emitter voltage (V_{CE}) and base current (I_B) ,
 - small signal voltage gain $\left(A_v = \frac{|v_o|}{|v_s|}\right)$.

Figure 4: Circuit for Problem 4

Sol: (a) To determine Vce & ZB using DC analysis.

=) Equiralent circuit-13: (Assume Use=0-74)

[. KVL in outer loop!-13.7- 12k(IB+Ie)-100kIB-0.7=0

13 = (1212k + 100k) To

: Z = 100 x ZB = 0.9909 mA

Also: Vce = 13.7 - 12k. Zc = 1.81 U-0.1189 1-69 U

where $r_{\pi} = \frac{26mV}{Z_B} = \frac{2-624 \text{ kJ}}{}$. (=) Coupling capacitor can be assumed if to offer regligible reactaine: ignoved. 10k 100 k(1-ib) a

> RVL M () Vi = lok i, + 2.624 ib

Assume
BJT is openhy ci-ib = (Vo + ib B)

2-624k ib - 100k (i,-ib)= Vo -3

From eq 10 & eq 13 ox gut

20 = - 91.26 k i, ? using (D, 3, 6) 20 = 9-777 K. i, }

 $I_B = \frac{13}{1312 \, k} = \frac{9 \cdot 9085 \, \mu A}{1312 \, k} = \frac{9 \cdot 9085 \, \mu A}{|V_i|} = \frac{|V_0|}{|V_i|} = \frac{9 \cdot 926}{|V_i|} = \frac{\text{Cont.}}{|V_i|}$

5. The circuit shown in Figure 5a is an oscillator whose output waveform is shown in Figure 5b. Determine the period of oscillation (T). 4 marks

(a) Circuit for Problem 5

Figure 5: Figures for Problem 5

 $\Rightarrow V_p \text{ is } \frac{2k}{2k+2k} \times V_0 = \frac{1}{2} V_0$ Vn= Vc (value), Assuming opamp to be ideal.

(No: A (Np-Vn) -A >00 -1

Some + Vec = + 10 l is given; Saturation hits the Vo to be bound

between ± wel. > When Vo = 10 V, Vc is changing Analysis 6. Obtain the

(b) Waveform for Problem 5 - when We exceeds or Up (negligibly aswell) O/p saturates to -10 l. due to eq" ()

-> .: Ve changes to - starts changing towards of -ve voltage. Waveforms can be as

=> In general & steady-state. Vc = Vfmol + (Vinited - Vfmol) e FX when $V_c = -10 + (5 - (10))e^{-10}$

to= R, C ln(3). .. True period

(a) binary and decimal representation of $(FAB)_H$,

T= RIC lu(9)

(b) decimal and hexadecimal representation of (10101001)₂,

(c) binary and hexadecimal representation of (110)₁₀.

(a) $(FAB)_{H} = (1111 \ 1010 \ 1011)_{2} = (4011)_{10}^{2+2+2=6 \text{ marks}}$

(c)
$$(110)_{10} = (6E)_{H} = (0110 | 1110)_{2}$$