We can solve prime counting using analytic algorithms in $O(n^{1/2+\epsilon})$ time [1,2,3]. Also, $n! \mod p$ can be computed in $\tilde{O}(\sqrt{n})$ time by FFT, or $O(\sqrt{n}\log n)$ time https://www.cnblogs.com/zzqsblog/p/8408691.html. In total $O(n^{1/2+\epsilon})$ time.

References

- [1] William Floyd Galway. Analytic computation of the prime-counting function. University of Illinois at Urbana-Champaign, 2004.
- [2] JC Lagarias and AM Odlyzko. New algorithms for computing π (x). In *Number theory*, pages 176–193. Springer, 1984.
- [3] Jeffrey C Lagarias and Andrew M. Odlyzko. Computing π (x): An analytic method. *Journal of Algorithms*, 8(2):173–191, 1987.