Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 15

1. Пусть
$$z=\frac{1}{2}+\frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{\sqrt{3}-i}$ имеет аргумент $\frac{7\pi}{3}$.

2. Решить систему уравнений:

$$\begin{cases} x(-4-13i) + y(5+2i) = 98 - 173i \\ x(-5-i) + y(-4+11i) = -149 - 83i \end{cases}$$

- 3. Найти корни многочлена $-5x^6-55x^5-305x^4-425x^3+3820x^2+19190x+44200$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-2-3i,\,x_2=-3+5i,\,x_3=-5.$
- 4. Даны 3 комплексных числа: -18-24i, -22+17i, -15+4i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=2, z_2=\sqrt{3}+i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3-i| < 2\\ |arg(z+5-i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (5, 5, 1), b = (-7, -6, -3), c = (5, 0, 8). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(1,-3,7) и плоскость P:30x-16y+18z+536=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(7,9,-12), $M_1(-3,19,-2)$, $M_2(6,1,-2)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -x + 10y + 14z - 260 = 0 \\ -17x + 3y - 136 = 0 \end{cases} \qquad L_2: \begin{cases} 16x + 7y + 14z + 3383 = 0 \\ 15x - 12y + 12z + 2172 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .