10.10.2.4

Question : Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Solution:

Input parameters	Description	Value
0	Center	0
r	Radius	1
θ_1	Angle	53.6°
θ_2	Angle	126.4°

Table 1: Table of input parameters

Input parameters	Description	Value
u	-	-O
A	Point	$\begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix}$
В	Point	$\begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix}$
m_1	Direction vector of one tangent	$\begin{pmatrix} -\cos\theta_1 \\ -\sin\theta_1 \end{pmatrix}$
m_2	Direction vector of another tangent	$\begin{pmatrix} -\cos\theta_2 \\ -\sin\theta_2 \end{pmatrix}$

Table 2: Table of output parameters

Angle between these two tangents is

$$\cos \theta = \frac{\mathbf{m_1}^\top \mathbf{m_2}}{||\mathbf{m_1}|| ||\mathbf{m_2}||} \tag{1}$$

$$or, \theta = \pi$$
 (2)

Therefore, the two tangents are parallel to each other.

Figure 1: