

Conclusions & Perspectives

Costas Pantelides – Managing Director

Environment

HPPO process – plant-wide optimisation 49 continuous & discrete decision variables

v1.0 based on gPROMS Platform v4.1

True equation-oriented power

- Steady state & dynamics
- Speed of solution
 - sensitivity analysis
- Convergence of tightly integrated flowsheets
 - multiple recycles, thermal couplings etc.
- Non-standard specifications
- Optimisation
 - continuous & discrete decisions
- Deployment of proprietary libraries & models
- Custom modelling
- Export model to web/runtime deployment

...with usability

- Drag-and-drop flowsheeting
- Robust solution

Separations – Fluid-Fluid	Steady- state	Dynamic
Component splitter		
Flash drum	\square	\square
Decanter		Ø
3-phase separator		Ø
Distillation column (tray, equilibrium)	\square	Ø
Distillation column (packed-bed, HETP)		Ø
Distillation column (packed-bed, 1D rate-based)	\square	☑
Distillation column (packed-bed, 2D rate-based)		
Distillation column (reactive)	Ø	\square

Separations – Adsorption	Steady- state	Dynamic
Adsorption bed		
Schedule for periodic processes (PSA, TSA)		

Separations – Membranes	Steady- state	Dynamic
Membrane module		\square

Separatio	ons – Fluid-Fluid	Steady- state	Dynam	ic
Compon	Reaction		Steady- state	Dynamic
Flash dru	Conversion reactor		$\overline{\checkmark}$	
Decante	Gibbs reactor		$\overline{\checkmark}$	\square
3-phase	CSTR (kinetic & equilibrium reactions)		$\overline{\square}$	\square
Distillati	PFR (kinetic & equilibrium reactions)			
Distillati	Fixed-bed catalytic reactor (1D)		\square	\square
Distillati	Fixed-bed catalytic reactor (2D)			\square
Distillati	Fixed-bed catalytic reactor (2D + intra-pa	rticle)	$\overline{\square}$	\square
Distillati				
Separat	Reaction mechanisms: Arrhenius Langmuir-Hinshelwood		☑	Ø
Adsorpt	Michaelis-MentenUser specified			
Schedul	User specified			

Separations – Membranes	Steady- state	Dynamic
Membrane module		\square

Separation	oarations – Fluid-Fluid Stead			Dynan	nic	_
Compon	Reaction			Steady- state	Dynamic	
Flash dr	Conversion rea	actor		$\overline{\checkmark}$		
Decante	Gibbs reactor	Heat exchange			Steady-	Dynamic
3-phase	CSTR (kinetic				state	_
Distillati	PFR (kinetic &	Heater			I	 ✓
Distillati	Fixed-bed cata	Cooler				\square
Distillati		Two-stream heat exchang	ger		\square	\square
Distillati	Fixed-bed cata	Multi-stream heat exchar	_			\square
Distillati	Fixed-bed cata	alytic reactor (2D + intra-pa	irticle)	V	Y	
Distillati						
Separat	Reaction mech Arrhenius Langmuir			\square	☑	
Adsorpt	Michaelis					
Schedul	User spec	cified				

Separations – Membranes	Steady- state	Dynamic
Membrane module	$\overline{\checkmark}$	

Separation	ons – Fluid-Flui	d		Steady- state	Dynar	nic				
Compon	Reaction				Steady- state	Dynai	mic			
Flash dr	Conversion rea	actor								
Decante	Gibbs reactor	Heat excl	hange			Steady		Dynan	nic	
3-phase	CSTR (kinetic					state				
Distillati	PFR (kinetic &	Heater						V		
Distillati	Fixed-bed cata	Cooler	Flow transport	tation				eady-	Dy	namic
Distillati	Fixed-bed cata	Two-stre					S	tate		_
Distillati		Multi-str						\square		$\overline{\square}$
Distillati	Fixed-bed cata	ilytic react	Pump					\square		\square
Distillati			Valve					\square		$\overline{\square}$
Separat	Reaction mech Arrhenius Langmuir	;	,		Ø	Ø				
Adsorpt Schedul			Compression					eady- tate	Dy	namic
Scriedui			Compressor							$\overline{\checkmark}$
Senaratio	ons – Membran	nes .	Expander							$\overline{\checkmark}$
Separatio	ons – Wembran			state						
Membra	ne module			\square	$\overline{\mathbf{V}}$					

Content

Separati	ons – Fluid-Flui	d			Steady- state	Dynar	nic					
Compon	Reaction					Steady- state	Dyna	amic				
Flash dr	Conversion rea	actor				☑						
Decante	Gibbs reactor	Heat excl	nange				Stead	-	Dynan	nic		
3-phase	CSTR (kinetic						stat	е	_			
Distillati	PFR (kinetic &	Heater							$\overline{\mathcal{A}}$			
Distillati	Fixed-bed cata	Cooler	Flow tran	nsport	ation				eady- state	Dynam	ic	
Distillati	Fixed-bed cata	Two-stre	Dina						otate ✓	$\overline{\checkmark}$		
Distillati	Fixed-bed cata	Multi-str	Pipe	Instr	umentation	and contro]			Steady-	D	yna
Distillati		.,	Pump							state		
Separat	Reaction mech Arrhenius		Valve		r ollers Gain, PID, d	elays				Ø		✓
Adsorpt	 Langmuir- 	-Hinshelw	Compres	Logic	Switches					\square		
Schedul	User spec	ified	Compres		i r systems Transfer fur	nction, state-	space m	odel				✓
Separati	ons – Membran	ies	Expande	Disci		hysteresis, s	aturation	١		Ø		✓
Membra	ne module				nematics Functions, k	oasic operati	ons			Ø		
				Signa	l Sources					\square		√

Constant, ramp, step signal, function

gPROMS ProcessBuilder v1.0 Content

UNIT OPERATION MODELS

Separations – Fluid-Fluid	Steady- state	Dynamic
Separations – Adsorption	Steady- state	Dynamic
Separations – Membranes	Steady- state	Dynamic
Reaction	Steady- state	Dynamic
Heat exchange	Steady- state	Dynamic
Flow transportation	Steady- state	Dynamic
Compression	Steady- state	Dynamic
Instrumentation and control	Steady- state	Dynamic
Controllers Gain, PID, delays		Dynamic ☑
Controllers	state	

"Basic" models

- "Advanced" models
 - 1d/2d rate-based distillation
 - 2d/3d fixed-bed reactors
 - adsorption
- Focus on
 - engineering content
 - model robustness
 - Model InitialisationProcedures
 - minimal mathematical formulation based on user specifications

gPROMS ProcessBuilder v1.0 Content

UNIT OPERATION MODELS

Separations – Fluid-Fluid	Steady- state	Dynamic
Separations – Adsorption	Steady- state	Dynamic
Separations – Membranes	Steady- state	Dynamic
Reaction	Steady- state	Dynamic
Heat exchange	Steady- state	Dynamic
Flow transportation	Steady- state	Dynamic
Compression	Steady- state	Dynamic
Instrumentation and control	Steady- state	Dynamic
Controllers ■ Gain, PID, delays		Ø
Logic ■ Switches	\square	
Linear systems		$\overline{\mathbf{v}}$

MATERIAL MODELS

Multiflash

+ DIPPR databank

+ SAFT-VR SW / SAFT-γ Mie databanks

Product configuration options

UNIT OPE

Separations - Fluid-Fluid

Separations – Adsorption

Separations – Membranes

Reaction

Heat exchange

Flow transportation

Compression

Instrumentation and control

Controllers

Gain, PID, delays

Logic

Switches

gPROMS environment (inc. Case file viewer)	1	
Flowsheet construction & specification	✓	
Custom modelling		✓
Simulation (steady-state & dynamic)	✓	
Optimisation (steady-state & dynamic)	✓	
Parameter estimation		✓
Experiment design		✓
Export to gPROMS Objects		✓
Custom model library management licence		✓
Hybrid Multizonal CFD Inteface		✓
Libraries: ProcessBuilder		
gML:Basics, Connectivity, Signal, Flow Transportation, Heat		
Exchange	✓	
gML:Compression		✓
gML:Reaction		✓
gML:Separations - Fluid-Fluid		✓
gML:Multipack (Compression, Reaction, Separations - Fluid- Fluid)		1
gML:Separations - Adsorption		
gML:Separations - Membranes		
AML:Gas-Liquid Contactors		- /
AML:Fixed-Bed Catalytic Reactors		- /
AML:FIXed-Bed Catalytic Reactors AML:FBCR - FLUENT interface		- /
AML:FBCR - FLOENT Interface AML:FBCR - STAR-CD interface		- /
		•
Physical properties		,
gSAFT	,	✓
gPROMS Properties (MS Windows only)	· /	
gPROMS Properties - DIPPR	✓	

 \square

KIAL MODELS

ıltiflash

PPR databank

A*FT-VR SW /* AFT-γMie latabanks

gPROMS ModelBuilder v1.0

Current status

- Unit operation models
 - steady-state elements mostly completed
 - addition of dynamic elements under way
- Application/testing on key processes
 - Olefins
 - Gas processing (NG/LNG)
 - Industrial gases
 - Syngas / hydrogen
 - Batch/reactive distillation
- Ongoing evaluations by selected users
 - migration paths from gPROMS ModelBuilder

In conclusion...

Advanced Process Modelling

Getting the most out of past investment

Targeting future investment

Managing innovation

Managing risk in an uncertain world

Major step towards organisation-wide deployment of APM

gPROMS ModelBuilder v4.0

Product configuration options

Platform		
gPROMS environment (inc. Case file viewer)	✓	
Flowsheet construction & specification	✓	
Custom modelling	✓	
Simulation (steady-state & dynamic)	✓	
Optimisation (steady-state & dynamic)	✓	
Parameter estimation	✓	
Experiment design		✓
Export to gPROMS Objects	✓	
Custom model library management licence		✓
Hybrid Multizonal CFD Inteface		✓
Physical properties		
gSAFT		✓
gPROMS Properties (MS Windows only)		✓
gPROMS Properties - DIPPR		✓

Concepts Sectors Products Services

> gPROMS > enterprise solutions

gE:Web - Enterprise Web Publishing Solution

Publish and deploy gPROMS models via the web or intranet

The gPROMS Enterprise Web Publishing Solution makes the power of gPROMS models developed in the gPROMS ModelBuilder and the other members of the gPROMS product family accessible across the enterprise.

It supports all types of gPROMS-based calculations, including steady-state and dynamic simulation and optimisation, and parameter estimation.

Why use gE:Web?

The gE:Web solution provides a powerful and convenient way to, for example, allow central R&D or engineering personnel to develop and 'publish' model-based tools for use in supporting day-to-day decisions by operations or purchasing personnel.

Typical use is in applications such as:

- day-to-day plant optimisation of plant operations
- processing of plant data for example, for data reconciliation and yield accounting
- look-ahead dynamic simulation or optimisation for operating decision support
- support of feedstock purchasing decisions
- catalyst activity monitoring.

Benefits of gE:Web

Adding value via gE:Web

- easy re-use of valuable modelling investment
- · easy transfer of powerful models between modelling experts and other users
- brings gPROMS model-based decision support to operations or purchasing
- · deployment of models across the enterprise

Typical applications

gPROMS product family - 2014

The gPROMS ProcessBuilder v1.0

General mathematical modelling

Advanced process modelling environment

Sector-focused modelling tools

CCS

Oil & Gas

Flare networks & depressurisation

Wastewater Treatment

Wastewater systems optimisation

The gPROMS platform

Equation-oriented modelling & solution engine

Model deployment tools

