

FIG. 2

FIG. 5

6/55

FIG. 6

START

PRODUCE MATHEMATICAL EXPRESSIONS INDICATING CONDITIONS THAT INTEGRALS OF LIGHT INTENSITY SHOULDSATISFY, FROM PIXEL VALUES Gobs(1, ig, jg), Robs(1, ir, jr), AND Bobs(1, ib, jb) OF PIXELS OF A FIRST IMAGE, FOR ALL VALUES OF (ig, jg), (ir, jr), AND (ib, jb)

PRODUCE MATHEMATICAL EXPRESSIONS INDICATING CONDITIONS THAT INTEGRALS OF LIGHT INTENSITY SHOULD SATISFY, FROM PIXEL VALUES Gobs(2, ig, jg), Robs(2, ir, jr), AND Bobs(2, ib, jb) OF PIXELS OF A SECOND IMAGE, FOR ALL VALUES OF (ig, jg), (ir, jr), AND (ib, jb)

PRODUCE MATHEMATICAL EXPRESSIONS INDICATING CONDITIONS THAT INTEGRALS OF LIGHT INTENSITY SHOULD SATISFY, FROM PIXEL VALUES Gobs(k, iq. jq), Robs(k, ir, jr), AND Bobs(k, ib, jb) OF PIXELS OF A k-TH (k = 3 TO N) IMAGE, FOR ALL VALUES OF (ig, jg), (ir, jr), AND (ib, jb)

CALCULATE TRUE GREEN LIGHT INTENSITY Lg(x, y), TRUE RED LIGHT S14 INTENSITY Lr(x, y), AND TRUE BLUE LIGHT INTENSITY Lb(x, y) THAT SATISFY ALL CONDITIONS SET IN PREVIOUS STEPS

RETURN

S11

S12

S13

FIG. 7

IS39

S04P0831

10/55

FIG. 10

START

PRODUCE MATHEMATICAL EXPRESSIONS INDICATING
CONDITIONS THAT INTEGRALS OF LIGHT INTENSITY
SHOULD SATISFY, FROM PIXEL VALUES Gobs(1, ig, jg),
Robs(1, ir, jr), AND Bobs(1, ib, jb) OF PIXELS OF A
FIRST IMAGE, FOR ALL VALUES OF (ig, jg), (ir, jr), AND (ib, jb)

PRODUCE MATHEMATICAL EXPRESSIONS INDICATING CONDITIONS THAT INTEGRALS OF LIGHT INTENSITY HOULD SATISFY, FROM PIXEL VALUES Gobs(2, ig, jg), Robs(2, ir, jr), AND Bobs(2, ib, jb) OF PIXELS OF A SECOND IMAGE, FOR ALL VALUES OF (ig, jg), (ir, jr), AND (ib, jb)

PRODUCE MATHEMATICAL EXPRESSIONS INDICATING
CONDITIONS THAT INTEGRALS OF LIGHT INTENSITY SHOULD
SATISFY, FROM PIXEL VALUES Gobs(k, ig, jg), Robs(k, ir, jr), AND
Bobs(k, ib, jb) OF PIXELS OF A k-TH (k = 3 TO N) IMAGE, FOR ALL
VALUES OF (ig, jg), (ir, jr), AND (ib, jb)

DETERMINE (k', ig, jg) AND (k", ir, jr) THAT SATISFY THE DISTANCE CONDITION IN THE VICINITY OF POSITION (x, y)

PLOT PIXEL VALUES Gobs(k', ig, jg) AND Robs(k'', ir, jr) IN
THE GR SPACE FOR THE DETERMINED (k', ig, jg) AND
(k'', ir, jr) AND PERFORM PRINCIPAL COMPONENT ANALYSIS

DETERMINE (k', ig, jg) AND (k", ib, jb) THAT SATISFY THE DISTANCE CONDITION IN THE VICINITY OF POSITION (x, y)

PLOT PIXEL VALUES Gobs(k', ig, jg) AND Bobs(k''', ib, jb) IN
THE GB SPACE FOR THE DETERMINED (k', ig, jg) AND
(k", ib, jb) AND PERFORM PRINCIPAL COMPONENT ANALYSIS

COMPLETED FOR ALL POSITIONS (x, y)? NO

CALCULATE TRUE GREEN LIGHT INTENSITY Lg(x, y), TRUE RED LIGHT INTENSITY Lr(x, y), AND TRUE BLUE LIGHT INTENSITY Lb(x, y) THAT SATISFY ALL CONDITIONS SET IN PREVIOUS STEPS

(RETURN)

FIG. 11

FIG. 12

FIG. 19

FIG. 25

110.23	
START	
	1004
SELECT A POSITION (I', J')	S91
FOR COORDINATE TRANSFORMED DOCITION (v. v.)	IS92
FOR COORDINATE-TRANSFORMED POSITION (x, y)	002
CORRESPONDING TO POSITION (I' J'), DETERMINÉ ALL	
(k, ig, jg) SATISFYING I' - 1' \leq x < I' + 1 AND J' - 1' \leq y < J' + 1	
DETERMINE THE MEAN VALUE OF PIXEL VALUES Gobs	IS93
UE LEKIVIINE THE WEAR VALUE OF PIXEL VALUES GODS	
(k, ig, jg) OVER ALL (k, ig, jg) AND SELECT L PIXEL VALUES	
Gobs(k, ig, jg) CLOSEST TO THE MEAN VALUE	
<u></u>	1001
PRODUCE SPRING EQUATION FOR GREEN LIGHT	S94
INTENSITY USING SELECTED L PIXEL VALUES OF (k, ig, jg)	
.l.	
FOR COORDINATE-TRANSFORMED POSITION	IS95
(x, y) CORRESPONDING TO POSITION (I' J'), DETERMINE	
ALL (k, ir, jr) SATISFYING I' - 1' \leq x < I' + 1 AND J' - 1' \leq y < J' + 1	
<u>\</u>	IS96
DETERMINE THE MEAN VALUE OF PIXEL VALUES Robs	390
(k, ir, jr) OVER ALL (k, ir, jr) AND SELECT L PIXEL VALUES	
Robs(k, ir, jr) CLOSEST TO THE MEAN VALUE	
V	
PRODUCE SPRING EQUATION FOR RED LIGHT	S97
INTENSITY USING SELECTED L PIXEL VALUES OF (k, ir, jr)	
	Ņ
FOR COORDINATE-TRANSFORMED POSITION (x, y)	IS98
CORRESPONDING TO POSITION (I' J'), DETERMINE ALL	
(k, ib, jb) SATISFYING I' - 1' \leq x $<$ I' + 1 AND J' - 1' \leq y $<$ J' + 1	
$\frac{(k, 10, 10) \text{ SATISITING } (-1 \le k < 1 + 1 \text{ AND } 0 = 1 \le y < 0 + 1)}{1}$	
<u> </u>	IS99
DETERMINE THE MEAN VALUE OF PIXEL VALUES	099
Bobs(k, ib, jb) OVER ALL (k, ib, jb) AND SELECT L PIXEL	
VALÙES Bobs(k, ib, jb) CLOSEST TO THE MEAN VALUE	
V	,
PRODUCE SPRING EQUATION FOR BLUE LIGHT INTENSITY	S100
USING SELECTED L PIXEL VALUES OF (k, ib, jb)	
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
DETERMINE Lg(I', J'), Lr(I', J'), AND Lb(I', J')	S101
\$102	ı
TYES NO	
PRODUCE A COMPENSATED IMAGE AND SUPPLY IT	S103
TRODUCE A COIVIL ENGATED INVACE AND SOFFET IT	
(RETURN)	
112101114	

26/55

FIG. 26

FIG. 20	
START	
SELECT A POSITION (I', J')	S121
V	
FOR COORDINATE-TRANSFORMED POSITION (x, y) CORRESPONDING TO POSITION (I' J'), DETERMINE ALL (k, ig, jg) SATISFYING I' - 1' \leq x $<$ I' + 1 AND J' - 1' \leq y $<$ J' + 1	S122
DETERMINE THE DISTANCE BETWEEN (x, y) AND (l', J') FOR ALL (k, ig, jg) AND SELECT L VALUES (k, ig, jg) WITH SHORTEST DISTANCE	S123
PRODUCE SPRING EQUATION FOR GREEN LIGHT INTENSITY USING SELECTED L PIXEL VALUES OF (k, ig, jg)	S124
FOR COORDINATE-TRANSFORMED POSITION (x, y) CORRESPONDING TO POSITION (I' J'), DETERMINE ALL (k, ir, jr) SATISFYING I' - 1' \leq x < I' + 1 AND J' - 1' \leq y < J' + 1	S125
DETERMINE THE DISTANCE BETWEEN (x, y) AND (l', J') FOR ALL (k, ir, jr) AND SELECT L VALUES (k, ir, jr) WITH SHORTEST DISTANCE	S126
<u> </u>	10407
PRODUCE SPRING EQUATION FOR RED LIGHT INTENSITY USING SELECTED L PIXEL VALUES OF (k, ir, jr)	S127
FOR COORDINATE-TRANSFORMED POSITION (x, y) CORRESPONDING TO POSITION (I' J'), DETERMINE ALL (k, ib, jb) SATISFYING I' - 1' \leq x $<$ I' + 1 AND J' - 1' \leq y $<$ J' + 1	S128
DETERMINE THE DISTANCE BETWEEN (x, y) AND (I', J') FOR ALL (k, ib, jb) AND SELECT L VALUES (k, ib, jb) WITH SHORTEST DISTANCE	S129
PRODUCE SPRING EQUATION FOR BLUE LIGHT INTENSITY USING SELECTED L PIXEL VALUES OF (k, ib, jb)	S130
DETERMANEL -/B IIV L -/B IIV AND LE /B IIV	S131
DETERMINE Lg(I', J'), Lr(I', J'), AND Lb(I', J')	
COMPLETED FOR ALL (I', J')? NO Y NO	
PRODUCE A COMPENSATED IMAGE AND SUPPLY IT	S133
(RETURN)	•

FIG. 39

FIG. 42

FIG. 50

FIG. 51

FIG. 52

52/55

FIG. 53

