Generalidades Principio de funcionamiento Dimensionamiento Tipos de variadores Instalación del variador Programación de parámetros Práctica de Programación

Variadores de Frecuencia

Ing. Jeffry Mendoza

Universidad Técnica Nacional CR

Automatización II

18 de setembro de 2023

Generalidades

Introducción

Introducción

$$n_s = 60 * f/60$$

donde: N = velocidad de giro del motor F = frecuencia P = número de pares de polos r/min = revoluciones por minuto Ejemplo: Un generador asíncrono de 4 polos genera a la salida 360 V, a una frecuencia superior 60 Hz, unos 200Hz, ¿A qué velocidad girará?

$$n_s = ?$$

- Modificando el número de polos del motor.
- Modificando la frecuencia.

Generalidades

Principio de funcionamiento Dimensionamiento Tipos de variadore Instalación del variador Programación de parámetro Práctica de Programación

Introducción

Definición

Un convertidor de frecuencia es un aparato destinado a modificar la frecuencia, la velocidad, de un motor trifásico.

Sistema de control

- Variacion de la frecuencia. Regulación de la tensión o corriente
- Conmutación de la corriente en los devanados del motor.
- Protección del convertidor, limita la corriente que pasa por los semiconductores.
- Protección de los devanados del motor en función de la corriente admisible por el motor.

Principio de funcionamiento

Funcionamiento

- Considere un diagrama de bloques que relaciona: La Red eléctrica, rectificador, filtro, inversor, Motor.
- Tarea 1. Realice un esquema completo del principio de un convertidor de frecuenca a) controlado por transistores PWM. b) controlado por tiristores. Contiene: portada, circuito y discusión de funcionamiento de cada circuito.

Sobre datasheets

- Investigar hoja de datos del variador Simatics V20, SoMove Scheneider, Delta, Yaskawa J1000.
- ¿Qué tienen en común los variadores investigados?
- Realice la conexión de la etapa de control y de potencia del variador usando el simulador CadeSimu 4.0.

<mark>Variador Sinamics V20</mark> Variador Yaskawa J1000

Figura 1: Variador Sinamics V20

Figura 2: Variador Yaskawa J1000

Protecciones

- Protecciones. Los variadores de frecuencia disponen de protección magnética (Cortocircuitos) y térmica (sobreconsumos)
 - Contactor aguas arriba. Con un contactar entre el disyuntor y el variador. utilizaremos el relé interno del variador R1C-R1A y lo programaremos para que abrá al detectar fallos en el variador o en el motor.
 - Contactor aguas abajo. En este segundo caso instalamos el contactor a la salida del variador cortando la alimentación al motor en caso de fallo. Igualmente programaremos el relé R1 de la misma forma al caso anterior.
 - Sin contactor. En el caso en el que instalemos el variador sin contactor.

Terminales

- Control remoto. a través de las entradas lógicas de 1 a 6.
 Estas entradas según programación nos servirán para activar marcha, paro, inversión de sentido de giro, selección de velocidades, etc.
- Relés internos del variador. Disponemos de dos relés R1 con contacto abierto (R1C-R1A) y contacto cerrado (R1C-R1B), y relé R2 únicamente con contacto normalmente abierto. Por ejemplo se activarán con la marcha del variador, al alcanzar la velocidad programada, o al detectar fallo en el variador, etc.

Instalación Protecciones Instalación Terminales Instalación puertos entrada / salida

Terminales

- Potenciómetro . Tensión variable entre 0 y 10 voltios
- Tarea 2. Investigar: Entrada analógica de tensión, entrada analógica de intensidad, Salida analógica, Safe Torque OFF, Fuente de alimentación interna, Fuente de alimentación externa.

Teclas más utilizadas

- Enter: valida los datos o valores seleccionados. Equivalente a la tecla Introo Return.
- Run: Pone en marcha el motor cuando está habilitado para maniobrar con consola.
- Stop: para el motor cuando está habilitado para maniobrar con consola.
- Reset: Se utiliza para volver a reponer el convertir a su estado origital al producirse cualquier error.
- Ejemplo: El display de un convertidor visualiza 25 Hz, el motor es de 4 polos, 1500 rpm. ¿A qué velocidad gira el motor? Resp: 25x30 = 750 rpm

Teclas más utilizadas

- Enter: valida los datos o valores seleccionados. Equivalente a la tecla Introo Return.
- Run: Pone en marcha el motor cuando está habilitado para maniobrar con consola.
- Stop: para el motor cuando está habilitado para maniobrar con consola.
- Reset: Se utiliza para volver a reponer el convertir a su estado origital al producirse cualquier error.
- Ejemplo: El display de un convertidor visualiza 25 Hz, el motor es de 4 polos, 1500 rpm. ¿A qué velocidad gira el motor? Resp: 25x30 = 750 rpm

Parámetros de ajustables

- Frecuencia mínima. Configurar a 10Hz. También colocar una resistencia en serie al potenciometro de control.
- Frecuencia máxima 60Hz.
- Tiempo de aceleración y desaceleración 6 s.
- Resistencia de frenado: parada libre por inercia, el problema inyecta corriente a la salida del convertidor.
 - frenado dinámico: I se disipa en una resistencia.
 - frenado regenerativo: la corriente se devueve a la red, vía convertidor.
 - Opcional conectar resistencia de frenado en los Bornes B1 y B2. I se disipa en forma de calor.

Parámetros de ajustables

- Valores nominales del motor: Corriente, potencia, voltaje, entre otros.
- Funcionamiento: digital o análogico.
- Realice la configuración de los parámetros de un variador Yaskawa J1000. Complete la tabla.

Aplicación Control PID

- Control de velocidad, e presión, de caudal, de temperatura.
- El sensor utilizado en la realimentación suele ser un encoder.

Ajustar los parámetros del motor

 Ajustar los parámetros del motor. Formatee el variador y retorno a parámetros de fábrica y luego realice la configuración de los parámetros del motor en el variador. Usar SoMove 2.9 o simulador Yaskawa J1000.

Figura 3: Placa caracterítica del motor

Cambio de giro desde el PLC

- Realice el control del cambio de giro dde un motor desde el PLC. Varíe la velocidad usando un potenciómetro.
- Realice una tabla. Varie la frecuencia cada 5 Hz de 15 a 60Hz, anote F, V, I, P, gráfique y obtenga la ecuación lineal de cada gráfica.
- Análisis de resultados y conclusiones(1 página arial 12, espacio 1.5).

Control variador de frecuencia desde PLC.

- Plantee una solución a los problemas planteados.
- Línea de envasado.
- Máquina de corte.

990

Ing. Jeffry Mendoza Variadores de Frecuencia 16 / 1