Two-stage designs

for experiments with a large number of hypotheses

2022-08-19 lab seminar Hwang Seo-hwa

contents

- Review of two-stage designs
 - Concept of two-stage design
 - Two-stage design with iid assumption
- Research progress
 - Summary of last seminar
 - Ongoing progress
 - Plan

Concept of two-stage design

$$H_0: z_{1i} = z_{10} \text{ or } z_{2i} = z_{20} \text{ vs. } H_1: z_{1i} > z_{10} \& z_{2i} > z_{20}$$

- 1
- 1) H_{01i} : $z_{1i} = z_{10}$ vs. H_{11i} : $z_{1i} > z_{10}$
 - 2) H_{02i} : $z_{2i} = z_{20}$ vs. H_{21i} : $z_{2i} > z_{20}$

What if Statistics for 1) and 2) are Not independent?

Concept of two-stage design

- Assume all statistics are generated by null
- $z_{1i} = z_{2i}$; $cor(z_1, z_2) = 1$
- 1) H_{01i} : $z_{1i} = z_{10}$ vs. H_{11i} : $z_{1i} > z_{10}$

Compute p val & reject hypotheses s.t. p val<0.5

2) H_{02i} : $z_{2i} = z_{20}$ vs. H_{12i} : $z_{2i} > z_{20}$

Compute p val & reject hypotheses s.t. passing H_{01i} & p val<0.05

Prob) cannot control FDR

Make 1) and 2) indep.

Consider cor. Between $z_1 \& z_2$

Two-stage design with i.i.d assumption

Idea) split samples for testing H_{01} and H_{02}

Total sample size = n

- 1) H_{01i} : $z_{1i} = z_{10}$ vs. H_{11i} : $z_{1i} > z_{10}$
 - Compute p val using n₁ samples & reject hypotheses s.t. p val<0.5

- 2) H_{02i} : $z_{2i} = z_{20}$ vs. H_{12i} : $z_{2i} > z_{20}$
 - Redefine p val ~ U(0,1) under H₀
 - Compute p val using n_2 samples & reject hypotheses s.t. passing H_{01i} & p val<0.05

Two-stage design with i.i.d assumption: Notation & setting

Notation

- *n*: total number of samples
 - $n_1: n \times r$
 - $n_2 : n \times (1 r)$
- *m* : # of hypothesis
- z_{1i}, z_{2i} : test statistics
- p_{1i} : p value computed at stage 1, using n_1 samples
- p_i : p value computed at stage 2
- γ_1, γ_2 : pre-defined cutoff value for rejection of H_0, H_1

Setting:

- z_{1i} , $z_{2i} \sim iid\ N(0,1)$; or σ^2 is known
- $n \gg m$: sample size is much larger than # of hypotheses
- One-sided test

Two-stage design with i.i.d assumption: Notation & setting

- ϕ : pdf of N(0,1)
- Φ: cdf of N(0,1)

- $\Phi(z_1)$, $\Phi(z_2) \sim U(0,1)$, under H_0 $\Rightarrow 1 - \Phi(z_1), 1 - \Phi(z_2) \sim U(0,1)$, under H_0
- $(z_1, z_2) \sim N((0,0), \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})$
- φ_{z_1} : pdf of $z_2|z_1$

Two-stage design with i.i.d assumption: Redefine p_i

- p_{1i} : p value computed at stage 1, using n_1 samples
- p_i : p value computed at stage 2
- γ_1, γ_2 : pre-defined cutoff value for rejection of H_0, H_1

•
$$p_{1i} = 1 - \Phi(z_{1i})$$

•
$$p_{2i} = 1 - \Phi(z_{2i})$$

•
$$\gamma = P(p_{1i} \le \gamma_1, p_{2i} \le \gamma_2)$$

•
$$p_i = \begin{cases} p_{1i}, & \text{if } p_{1i} > \gamma_1 \\ \int_{c_{1-\gamma_1}}^{\infty} \int_{c_{p_{2i}}}^{\infty} \varphi_{z_1}(z_2) \phi_1(z_1) dz_2 dz_1 \end{cases}$$

Two-stage design with i.i.d assumption: Redefine p_i

1)
$$P_{H_0}(p_i < \gamma) = \gamma$$
 (i.e. $p_i \sim U(0,1)$ under H_0)

$$P(p_i \le \gamma) = \mathbb{O}P(p_i \le \gamma, p_{1i} > \gamma_1) + \mathbb{O}P(p_i \le \gamma, p_{1i} \le \gamma_1)$$

Case1: $\gamma \leq \gamma_1$

- $\mathbb{O}P(p_i \le \gamma, p_{1i} > \gamma_1) = P(p_{1i} \le \gamma, p_{1i} > \gamma_1) = 0$
- $\mathbb{Q}P(p_i \le \gamma, p_{1i} \le \gamma_1) = P(p_{2i} \le \gamma_2, p_{1i} \le \gamma_1) = \gamma \text{ (by def)}$

$$\therefore \bigcirc \bigcirc + \bigcirc \bigcirc = \gamma$$

Case2: $\gamma > \gamma_1$

- $\mathbb{O}P(p_i \le \gamma, p_{1i} > \gamma_1) = P(\gamma_1 < p_{1i} \le \gamma) = \gamma \gamma_1$
- ② when $p_{1i} \leq \gamma_1 < \gamma$,

•
$$p_{i} = \int_{W_{1-\gamma_{1}}}^{\infty} \left\{ \int_{-\infty}^{\infty} \varphi_{z_{1}}(z_{2}) \left(I_{\left(-\infty, V_{z_{2i}}\right)} + I_{\left(V_{1-\frac{Z_{2i}}{2}}, \infty\right)} \right) \right\} \phi_{1}(z_{1}) dz_{2} dz_{1}$$

$$\leq \int_{W_{1-\gamma_{1}}}^{\infty} \{1\} \phi_{1}(z_{1}) dz_{2} dz_{1} = \gamma_{1} < \gamma \text{ (always true)}$$

$$\therefore @P(p_i \le \gamma, \ p_{1i} \le \gamma_1) = P(p_{1i} \le \gamma_1) = \gamma_1$$

$$\therefore$$
 ① + ② = γ

Two-stage design with i.i.d assumption: Redefine p_i

2) p_i controls FDR

(2)
$$\widehat{\pi_0} = \frac{\#\{p_i > \lambda\}}{m(1-\lambda)}$$

(3)
$$FDP = \frac{\#\{rejected\ null\}}{\#\{rejected\ hypotheses\}}$$

$$= \frac{\widehat{\pi_0} \times m \times \gamma}{\#\{p_i < \gamma\}} \le \alpha$$

 \rightarrow Find largest γ satisfying above inequality

Two-stage design with i.i.d assumption: Simulation

Setting (Optimal setting)

- n = 40,000 / m = 5000
- $\pi_0 = 0.99$, $\alpha = 0.05$, $\lambda = 0.5$, r = 0.625, $\gamma_1 = 0.123$, mean of alternative dist. = 1 sd of null dist.

		γ	FDP	power
а	Known variance	0.00045 (0.000032)	0.0488 (0.033)	0.848 (0.051)
b	Unknown variance	0.00041 (0.000037)	0.0493 (0.034)	0.774 (0.061)
С	Distributed mean	0.00028 (0.000042)	0.0497 (0.042)	0.523 (0.074)
	$\rho = 0.20$	0.00045 (0.000032)	0.0487 (0.033)	0.848 (0.051)
	$\rho = 0.60$	0.00045 (0.000034)	0.0491 (0.036)	0.848 (0.051)
	$\rho = 0.80$	0.00046 (0.000041)	0.0581 (0.050)	0.849 (0.052)
	$\rho = 0.90$	0.00048 (0.000063)	0.0860 (0.086)	0.851 (0.052)
	$\rho = 0.98$	0.00052 (0.00018)	0.0968 (0.154)	0.851 (0.061)

High correlation ->fail to control FDR

contents

- Review of two-stage designs
 - Concept of two-stage design
 - Two-stage design with iid assumption
- Research progress
 - Summary of last seminar
 - Ongoing progress
 - Plan

Review of previous presentation

- Research question
 - which gene is regulated by SET4(gene regulator)?
- Experimental design:
 - Compare the gene expression rate between WT (control group) and KO (case group; SET4 gene is removed)

1)
$$H_{01}: X_1 = \min\left(\frac{\mu_{KO}}{\sigma_{KO}}, \frac{\mu_{WT}}{\sigma_{WT}}\right) \sim f_0$$
 vs. $H_{11}: X_1 \sim f_1$

2)
$$H_{02}: X_2 = log \frac{\mu_{KO}}{\mu_{WT}} \sim g_0$$
 $vs. H_{11}: X_2 \sim g_1$

Review of previous presentation

1)
$$H_{01}: X_1 = \min\left(\frac{\mu_{KO}}{\sigma_{KO}}, \frac{\mu_{WT}}{\sigma_{WT}}\right) \sim f_0 \quad vs. \quad H_{11}: X_1 \sim f_1$$

2)
$$H_{02}: X_2 = log \frac{\mu_{KO}}{\mu_{WT}} \sim g_0$$
 $vs. H_{11}: X_2 \sim g_1$

Plan

Model: $f(X_1) = \pi_0 f_0 + (1 - \pi_0) f_1$

Problem)

In general

In this case,

Cannot apply zero assumption

Sol) add assumption that $f_1 \sim \text{inv.gamma}(\alpha, \beta)$

alpha	beta	1-pi
3.42	49.69	0.73

 $x_i = data \ of \ i^{th} \min(snr_{KO}, snr_{WT})$ $\tau_i = P(ith \ person \in f_0)$

$$\hat{\beta}^{t+1} = \frac{\hat{\alpha}^t \sum_i \tau_i^t}{\sum_{i \neq x_i}}$$

•
$$\hat{\alpha}^{t+1} = \hat{\alpha}^t - \frac{g(\hat{\alpha}^t)}{g'(\hat{\alpha}^t)}$$

• Where
$$g(a) = \psi(a) \sum_i \tau_i^t + \sum_i \tau_i^t \log x_i - \sum_i \tau_i^t * \log \frac{\alpha \sum_i \tau_i^t}{\sum_{i \overline{x_i^t}}}$$

$$\tau^{t+1} = \frac{\sum_i \tau_i^t}{n}$$

$$\tau_i^{t+1} = \frac{\tau^{t+1} f_0(\widehat{\alpha}^{t+1}, \widehat{\beta}^{t+1})}{\tau^{t+1} f_0 + (1 - \tau^{t+1}) f_1(\widehat{\alpha}^{t+1}, \widehat{\beta}^{t+1})}$$

(3) Sample of

(2) Remove data out of the area

(3) Sample data

(2) Remove data out of the area

(3) Sample data

(1) Select area

(2) Remove data out of the area

(3) Sample data

(5) Get the parameters from (4)

Estimate f_0, π_0 Using Gaussian Copula, fit the dist. of (X_1, X_2) under null

Define p_i and reject null

- $p_{1i} = 1 \Phi_1(z_{1i})$
- $p_{2i} = 2\min(\Phi(z_{2i}), 1 \Phi_2(z_{2i}))$
- $\gamma = P(p_{1i} \le \gamma_1, p_{2i} \le \gamma_2)$

$$p_{i} = \begin{cases} & p_{1i}, & \text{if } p_{1i} > \gamma_{1} \\ \int\limits_{W_{1-\gamma_{1}}}^{\infty} \left\{ \int\limits_{-\infty}^{\infty} \varphi_{z_{1}}(z_{2}) \left(I_{\left(-\infty, V_{\frac{p_{2i}}{2}}\right)} + I_{\left(V_{\frac{p_{2i}}{2}}, \infty\right)} \right) \right\} \phi_{1}(z_{1}) dz_{2} dz_{1} \end{cases}$$

- $W_c: \int_{W_c}^{\infty} \phi_1(z) dz = c$
- $V_c : \int_{V_c}^{\infty} \phi_2(z) dz = \int_{-\infty}^{V_c} \phi_2(z) dz = c$

For example) γ_1 =0.8

*0.0034 satisfies FDP<0.05

Research progress

Plan

Compare the result with local fdr

Simulation

Thank you!