

Module 1 | Introduction to Algorithm Analysis

Time Complexity

Big O Notation

Big O in graph

Asymptotic notations

- 1. Big oh Notation (O)
- 2. Little oh Notation (o)
- 3. Big omega notation (Ω)
- 4. Big theta notation (θ)

Order of Runtimes

Space complexity

Auxiliary Space

For CP

Online resources

Time Complexity

Time complexity is the study of efficiency of algorithms.

Big O Notation

Let the time complexity of an algorithm be $k_1 n^2 + k_2 n + 36$ then its complexity in terms of 'O' will be the highest order term. i.e ${\sf O}(n^2)$

For constants the time complexity is O(1)

Big O in graph

Asymptotic notations

- 1. Big oh notation (O)
- 2. Little oh notation (o)
- 3. Big omega notation (Ω)
- 4. Big theta notation (θ)

1. Big oh Notation (O)

Big oh is used to describe asymptotic upper bound.

Mathematically, if f(x) describe running time of an algorithm; f(x) is O(g(x)) iff there exist positive constants c and n_0 such that $O \le f(x) \le cg(x)$ for all $n \ge n_0$

2. Little oh Notation (o)

Little oh means loose upper-bound of f(x). Little oh is a rough estimate of the maximum order of growth whereas Big oh maybe the actual order of growth Mathematically, f(x)=o(g(x)) means $lim(n \to \infty)f(n)/g(n)=0$

3. Big omega notation (Ω)

Just like O provides an asymptotic upper bound, Ω provides asymptotic lower bound .

Mathematically, if f(x) describe running time of an algorithm; f(x) is said to be Ω (g(x)) if there exists positive constants C and n_0 such that $0 \le cg(x) \leftarrow f(x)$ for all $n \ge n_0$

4. Big theta notation (θ)

Let f(x) define the running time of an algorithm, f(x) is said to be $\theta(g(x))$ iff f(x) is O(g(x)) and f(x) is $\Omega(g(x))$

Mathematically,

 $0 \le f(x) \le c_1 g(x)$ for all $n \ge n_0$ - (1)

 $0 \le c_2 g(x) \le f(x)$ for all $n \ge n_0$ - (2)

(1)+(2)

 $0 \le c_2 g(x) \le f(x) \le c_2 g(x)$ for all $n \ge n_0$

It means there exist positive constants c_1 and c_2 such that f(x) is sandwiched between c_2 g(x) and c_1 g(x)

Order of Runtimes

 $\mathsf{Better} \! \to \! \mathbf{1} \! < \! logn \! < \! n \! < \! nlogn \! < \! n^2 \! < \! n^3 \! < \! 2^n \! < \! n^n \! \leftarrow \! \mathsf{Worse}$

Space complexity

Space complexity is a function describing the amount of memory (space) an algorithm takes in terms of the amount of input to the algorithm.

Ex: Getting an array of size n has space complexity of O(n)

Auxiliary Space

Auxiliary Space is the extra space or temporary space used by an algorithm.

For CP

Acceptance Complexity by Inputs:-

Length of Input (N)	Worst Accepted Algorithm
≤ [1011]	O(N!), O(N ⁶)
≤ [1518]	O(2 ^N * N ²)
≤ [1822]	O(2 ^N * N)
≤ 100	O(N ⁴)
≤ 400	O(N ³)
≤ 2K	O(N ² * logN)
≤ 10K	O(N ²)
≤ 1M	O(N * logN)
≤ 100M	O(N), O(logN), O(1)

For Competitive Programming

Online resources

- Code Chef | DSA Complexity Analysis & Basics Warmup
- Practice MCQs