Теорія груп і симетрія Представлення груп (продовження). Алгебри Лі. Групи Лі.

Олександр Зенаєв

Еквівалентні представлення групи \mathbb{Z}_4

• \mathbb{Z}_4 : група поворотів на $(0,\pi/2,\pi,3\pi/2)$, або цілих чисел (0,1,2,3) з операцією додавання за модулем 4, що складається з 4 елементів $R_0 \equiv e, R_1, R_2, R_3$ з таблицею множення:

• Наступні еквівалентні представлення $D,\,D',\,D''$ групи \mathbb{Z}_4 пов'язані матрицями $S_1\equiv P_1=\begin{pmatrix} -1&0\\0&1\end{pmatrix}$ та $S_2=\begin{pmatrix} 2&1\\1&1\end{pmatrix}$

• Якщо S це матриця повороту $\begin{pmatrix} cos(\theta) & sin(\theta) \\ -sin(\theta) & cos(\theta) \end{pmatrix}$, або масштабування $c \times \mathbb{I}$, то R_i залишаються такими самими (бо повороти комутують з поворотами та зміною масштабу)

Основні алгебраїчні структури (одна операція) [wikipedia]

Основні алгебраїчні структури (одна чи дві операції) [wikipedia]

Алгебра: означення і терміни ([3] 6.1)

ullet Алгебра над полем F — це векторний простір A з визначеною операцією множення

$$A \times A \rightarrow A$$

- В лінійному просторі вже є операції додавання і множення на число (α)
- ▶ Множення і додавання векторів підкоряються закону дистрибутивності:

$$x \cdot (\alpha y + \beta z) = x \cdot \alpha y + x \cdot \beta z, \quad \forall x, y, z \in A$$

- Простір може бути дійсним або комплексним
- Властивості множення можуть відрізнятися:
 - ightharpoonup комутативна: $x \cdot y = y \cdot x$ або ні
 - ightharpoonup асоціативна: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ або ні
 - ightharpoonup з одиницею (e) чи без: $x \cdot e = e \cdot x = x$, $\forall x \in A$
 - Базис: довільний вектор можна подати як лінійну комбінацію елементів базису.
- Розмірність алгебри = розмірність векторного простору.
- Підалгебра: підпростір B алгебри A, який сам є алгеброю відносно заданої операції множення (добуток елементів із B належить B)
- \bullet Лівий (правий) ідеал: така підалгебра Bалгебри A,що ab (ba)лежить в Bдля всіх $b\in B, a\in A$
 - ▶ одночасно лівий і правий ідеал є двостороннім ідеалом (або просто ідеалом)

Лі алгебра: визначення ([1] 2.4)

- ullet Лі алгебра g це векторний простір з операцією дужки Лі $[\,,\,]:g imes g o g.$
- Це "спеціальне" множення із такими властивостями:
 - ▶ [X, X] = 0 (альтернативність)
 - ▶ [X, Y] = -[Y, X] (антикомутативність)
 - [aX + bY, Z] = a[X, Z] + b[Y, Z] (білінійність)
 - ▶ [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (тотожність Якобі)
- ullet Абелева Лі алгебра: [X,Y]=0 для всіх X,Y.
- ullet Розмірність алгебри $\dim g$ дорівнює розмірності векторного простору
- Приклади Лі алгебр (операція дужки: звичайний комутатор матриць):
 - ▶ $gl(N, \mathbb{R})$: усі $N \times N$ дійсні матриці
 - ▶ $sl(N, \mathbb{R})$: $N \times N$ матриці з trM = 0
 - ▶ so(N): дійсні антисиметричні матриці
 - ▶ u(N): ермітові комплексні матриці
 - ► su(N): ермітові комплексні матриці з нульовим трейсом

Генератори та структурні константи

- ullet Вибираємо базис $\{T^a\}$ у Лі алгебрі $g,\,a=1,\ldots,\dim g$
 - ▶ T^a: генератори алгебри Лі
- Комутатор в базисі:

$$[T^a, T^b] = i \sum_c f^{abc} T^c$$

- Фактор i зручно вводити для ермітовості генераторів у фізичних застосуваннях (або вводять фактор $i\hbar$ із $\hbar=1$)
- f^{abc} структурні константи алгебри, повністю антисиметричні:

$$f^{abc} = -f^{bac} = -f^{acb} = \dots$$

- Прикладиі:
 - ightharpoonup su(2): $T^a=rac{1}{2}\sigma^a$, $f^{abc}=\epsilon^{abc}$ (матриці Паулі)
 - ightharpoonup su(3): $T^a=rac{1}{2}\lambda^a,\, f^{abc}$ задаються через матриці Ґелл-Манна

Приєднане представлення (adjoint representation) та додаткові поняття

 Приєднане представлення задається як дія генераторів Лі-алгебри на саму алгебру через комутатор;

$$\mathrm{adjoint}_{T^a}(T^b) = [T^a, T^b].$$

• Матрині приєднаного представлення:

$$(F^a)_{bc} = -if^{abc}, \quad a = 1, \dots, \dim(g), \ b, c = 1, \dots, \dim(g).$$

- Розмірність приєднаного представлення = кількість генераторів = dim(g).
- Долаткові визначення:
 - ▶ Ізоморфні Лі алгебри: дві алгебри g_1 і g_2 ізоморфні, якщо існує взаємно однозначне лінійне відображення $\phi: g_1 \to g_2$, що зберігає комутатор: $\phi([X,Y]) = [\phi(X),\phi(Y)]$.
 - ▶ Пряма сума алгебр: $g = g_1 \oplus g_2$ означає, що кожен елемент g можна записати як $X_1 + X_2$, $X_i \in g_i$, і комутатор між елементами різних компонентів дорівнює нулю.
 - ▶ Проста алгебра: $g \neq 0$, g не має ненульових ідеалів.
 - ightharpoonup Напівпроста алгебра: g пряма сума простих алгебр.

Лі групи: визначення ([1] 2.5)

- ullet Лі група G група, яка є одночасно гладким (аналітичним) многовидом:
 - lacktriangledown елементи $g\in G$ залежать від параметрів $lpha=(lpha_1,\ldots,lpha_n)$
 - групове множення та взяття оберненого елемента гладкі (аналітичні) функції від параметрів
- Властивості:
 - ightharpoonup Гладке відображення параметрів при множенні: якщо $g(lpha),g(eta)\in {\it G},$ то

$$g(\alpha)g(\beta)=g(\gamma(\alpha,\beta)), \quad \gamma(\alpha,\beta)$$
 гладка функція

Гладке відображення для оберненого елемента:

$$g(\alpha)^{-1} = g(\gamma(\alpha)), \quad \gamma(\alpha)$$
 гладка функція

- Приклади:
 - О(N) ортогональна група
 - ▶ SO(N) спеціальна ортогональна група (детермінант = 1)
 - U(N) унітарна група
 - ▶ SU(N) спеціальна унітарна група (детермінант = 1)

Зв'язок (і різниця) між Лі алгеброю і Лі групою

- ullet Кожній Лі групі G відповідає Лі алгебра g
- ullet Генератори T^a групи утворюють базис алгебри
- Елементи групи поблизу одиниці:

$$g(\alpha) = \exp(i\alpha_a T^a)$$

- ullet Структурні константи f^{abc} не залежать від вибраного представлення
- ullet Лі група G і Лі алгебра g пов'язані з неперервними симетріями
 - Лі група це многовид з груповою структурою та операцією множення; елементами є точки многовиду
 - ▶ Лі алгебра це векторний простір з комутатором [X, Y]; елементами є тангенційні вектори в одиничному елементі групи
 - ★ Лі алгебра описує локальну структуру Лі групи
- Глобальна vs локальна: Лі група описує повні симетрії; Лі алгебра локальні "кроки" трансформації
 - ▶ експонента груповий елемент, показник експоненти локальний крок