Background	Derivatives $\frac{\partial}{\partial x}(b^{\top}x) = \frac{\partial}{\partial x}(x^{\top}b) = b$	Optimization <i>GDM:</i>	MAP: Lasso (L^1 penalty)	Causality
Linear Algebra	$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x}$	$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L} + \mu(\theta^{(t)} - \theta^{(t-1)})$	Penalize full β . Lasso has no closed form.	Regression models capture correlation
$\ \mathbf{x}\ _p = (\sum x_i ^p)^{1/p} \qquad \ \mathbf{x}\ _{\infty} = \max x_i $	$\frac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{\top}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\top} \qquad \frac{\partial}{\partial \mathbf{X}}(\ \mathbf{X}\ _{F}^{2}) = 2\mathbf{X}$	<i>GD</i> : $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L}$	$\beta \sim Lapl(0, \lambda^{-1}) = \frac{\lambda}{2} exp(-\lambda \beta)$	(not causality). ie, non-causal features can mislead models (<i>Spurious Correlations</i>).
$\operatorname{tr}(\mathbf{A}\mathbf{x}\mathbf{x}^T) = \mathbf{x}^T \mathbf{A}\mathbf{x}$		SGD: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)}, x_i, y_i)$	$\mathcal{L} = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \sum_{i=1}^{d} \beta_i $	Iff Train Test Distribution change
$ \mathbf{A}\mathbf{B} = \mathbf{A} \mathbf{B} \qquad \mathbf{A}^m = \mathbf{A} ^m$		<i>NGD</i> : $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta(\nabla_{\theta}^{2} \mathcal{L})^{-1} \nabla_{\theta} \mathcal{L}$	$\mathcal{L} = \mathcal{L}_{i=1}(y_i - x_i p) + \mathcal{L}_{j=1} p_j $	(Domain Shift). Counterfactual
$(A+UCV)^{-}=A^{-}-A^{-}U(C^{-}+VA^{-}U)^{-}VA^{-}$	$\frac{\partial}{\partial \mathbf{x}}(\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2^2) = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$		$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta} _1$	<i>Invariance:</i> A function f is invariant
$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{A}^{-1}$		$\to f(x+t) \approx f(x) + tf'(x) + \frac{1}{2}f''(x)t^2 = 0$	Bayesian view: $Y (X,\beta) \sim \mathcal{N}(x^T\beta,\sigma^2I)$	if $f(X(w)) = f(X(w'))$ for any w, w' ,
$\mathbf{U}(\mathbf{V}\mathbf{U} + \mathbf{I})^{-1} = (\mathbf{U}\mathbf{V} + \mathbf{I})^{-1}\mathbf{U}$	$\frac{\partial}{\partial \mathbf{X}}(\mathbf{X}) = \mathbf{X} \cdot \mathbf{X}^{-1}, \mathbf{X} ^{-1} = \mathbf{X}^{-1} $	Parametric Density Estimation	, ,	reducing bias from spurious correlations. Confounding: A hidden variable
$\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{A})^{-1} = (\mathbf{I} + \mathbf{A})^{-1}$	$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{\top} = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}^{T} \frac{\partial}{\partial \mathbf{X}} \operatorname{tr} f(\mathbf{X}) = \operatorname{tr} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$	Assume prior $\mathbb{P}(\theta)$,	d-Dim Bayesian Linear Regression	influences both W and X , creating a
Probability	$\frac{\partial}{\partial \mathbf{X}} \det f(\mathbf{X}) = \det f(\mathbf{X}) \operatorname{tr}(f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}})$		<i>Prior</i> : $\beta \sim \mathcal{N}(\mu_0, \Lambda^{-1})$	spurious correlation with Y. Selection
Ber $(x \theta) = \theta^x (1-\theta)^{1-x}$ $0 \le \theta \le 1$	$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{-1} = -f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} f(\mathbf{X})^{-1}$	$\theta_{MLE} = \arg\max_{\theta} \mathbb{P}[\mathcal{X} \theta]$	<i>Likelihood:</i> $Y \beta, X, \sigma \sim \mathcal{N}(X\beta, \sigma_n^2 \mathbb{I})$	Bias: A hidden variable S filters the training
$\mathbb{P}[X Y] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]} = \frac{\mathbb{P}[Y X]\mathbb{P}[X]}{\mathbb{P}[Y]}$	071		<i>Posterior:</i> $\beta \mathbf{X}, \mathbf{y} \sim \mathcal{N}(\mu, \Sigma)$	data based on W and X , inducing non-causal associations.
	Quadratic Forms	Solve $\nabla_{\theta} log P(\mathcal{X} \theta) P(\theta) = 0$	$\cdot \Sigma = (\sigma_n^{-2} \mathbf{X}^T \mathbf{X} + \Lambda)^{-1}$	If f is a counterfactually invariant predictor:
$p_Y(y) = p_X(g^{-1}(y)) \left \det \frac{\partial g^{-1}(y)}{\partial y} \right $	$\mathbf{x}^T A \mathbf{x} + 2 \mathbf{b}^T \mathbf{x} + c = (\mathbf{x} + A^{-1} \mathbf{b})^T A$	1-D Gaussian Bayesian learning	$\cdot \mu = \Sigma (\Lambda \mu_0 + \sigma_n^{-2} \mathbf{X}^T \mathbf{y})$	In the anti-causal scenario : $f(X) \perp W Y$.
$\mathbb{E}[X] = \int_{\Omega} x p(x) \mathrm{d}x = \int_{\omega} x \mathbb{P}[X = x] \mathrm{d}x$	$(\mathbf{x} + A^{-1}\mathbf{b}) - \mathbf{b}^T A^{-1}\mathbf{b} + c,$	$X \theta \sim \mathcal{N}(\theta, \sigma^2)$ $\theta \sim \mathcal{N}(m_0, s_0^2)$	Nonlinear Regression	In the causal scenario (no selection but
$\mathbb{E}_{Y X}[Y] = \mathbb{E}_{Y}[Y X] \mathbb{I}\mathbb{E}_{Y}[\mathbb{E}_{X}[X Y]] = \mathbb{E}_{X}[X]$	$ax^{2} + bx + c = (x + \frac{b}{2a})^{2} - (\frac{b}{2a})^{2} + c$	$\theta X \sim \mathcal{N}(\mu_n, \sigma_n^2)$	<i>Idea:</i> Add feature space transformation,	confounded): $f(X) \perp W$. In the causal
$\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \mathbb{E}_{Y X}[f(X,Y) X]$	Information Theory	(μ_n, σ_n)	kernel to compute inner product. Suppose:	scenario (no confounding but selected):
$\mathbb{V}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	$H[p] = \mathbb{E}_{\mathbf{x} \sim p} \left[-\log p(\mathbf{x}) \right]$	$\sigma_n^2 = \frac{\sigma^2 s_0^2}{n s_0^2 + \sigma^2}, \mu_n = \frac{n s_0^2 \bar{x} + m_0 \sigma^2}{n s_0^2 + \sigma^2}$	$\beta \sim \mathcal{N}(0, \Lambda^{-1})$ $\varepsilon \sim \mathcal{N}(0, \sigma_n^2 \mathbb{I}_d)$	$Y \perp X \mid W, X_{\perp W} \text{ and } f(X) \perp W \mid Y.$
$Var(X) = \mathbb{E}[X - \mathbb{E}[X]] = \mathbb{E}[X] - \mathbb{E}[X]$ $Var(X) = \mathbb{E}[Var(X \mid Y)] + Var(\mathbb{E}[X \mid Y])$	$H[p q] = \mathbb{E}_{\mathbf{x} \sim p} \left[-\log q(\mathbf{x}) \right]$	Recursive Bayesian density learning	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \mathbf{X}\boldsymbol{\Lambda}^{-1}\mathbf{X}^T + \sigma_n^2 \mathbf{I}_d)$	A set of variables Z d-separates X and Y in a DAG \mathcal{G} if all paths between X and Y are
V(X+Y) = Var(X+Y) + Var(Y+2Cov(X,Y))			Kernels	blocked by $Z: X \perp Y \mid Z$. A path is blocked
$Cov(\mathbf{X}, \mathbf{Y}) = \mathbb{E}[\mathbf{X}\mathbf{Y}^T] - \mathbb{E}[\mathbf{X}]\mathbb{E}[\mathbf{Y}]^T$		$\mathcal{X}^n = x_{1:n} : p(\theta \mathcal{X}^n) = \frac{p(x_n \theta)p(\theta \mathcal{X}^{n-1})}{\int p(x_n \theta)p(\theta \mathcal{X}^{n-1})d\theta}$	Kernel: $k(x_i, x_j) = \phi(x_i) \Lambda^{-1} \phi(x_j)^T$	if: Collider: $A \rightarrow B \leftarrow C$ and neither B nor
$Cov(\mathbf{A}, \mathbf{Y}) = E[\mathbf{A}] + E[\mathbf{A}]$ $Cov(\mathbf{A}\mathbf{X} + c, \mathbf{B}\mathbf{Y} + d) = ACov(\mathbf{X}, \mathbf{Y})B^{T}$	$q(\theta)$	Frequentist vs Bayesian	Similarity based reasoning.	its descendants are in Z. Chain: $A \rightarrow B \rightarrow C$.
$exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$	$KL[p q] \neq KL[q p] \ge 0$	Bayes: priors, distributions, needs efficient	Gram Matrix: $K = k(\mathbf{x}_i, \mathbf{x}_j), 1 \le i, j \le n$	Fork: $A \leftarrow B \rightarrow C$ where $B \in Z$.
$\mathcal{N}(x \mu,\Sigma) = \frac{exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))}{(2\pi)^{D/2} \Sigma ^{1/2}}$	$H[\mathbf{X}] = \mathbb{E}_{\mathbf{X} \sim p} \left[-\log p(\mathbf{X}) \right]$	integration, adds regularization term.	$k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x}) \cdot k(\mathbf{x}, \mathbf{x}')$ pos.semi-def.	Algos
$X = \Sigma^{1/2} \mathcal{N}(0, 1) + \mu \sim \mathcal{N}(\mu, \Sigma)$	$H[\mathbf{X} \mathbf{Y} = y] = \mathbb{E}_{\mathbf{X} \sim p(\cdot y)} \left[-\log p(\mathbf{X} y) \right]$	Frequentist: no priors, point estimate,	If k_1, k_2 kernels, $c \in \mathbb{R}_{>0}$, \mathbb{A}^{psd} , $p_{\text{pos-coeff}}$:	K-Means $J = \sum_{x \in \mathcal{X}} x - \mu_{c(x)} ^2$
$Y = MX + b \sim \mathcal{N}(M\mu + b, M\Sigma M^T)$	$H[X Y] = \mathbb{E}_y [H[X Y = y]]$	requires only differentiation methods. MLE are consistent, equivariant,	$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$	PCA proj. maximum variance subspace.
$X, Y \stackrel{\text{iid}}{\sim} \mathcal{N}: X+Y \sim \mathcal{N}(\mu+\mu', \Sigma+\Sigma')$	H[X Y] = H[Y X] + H[X] - H[Y]	asymptotically normal, asymptotically	$= k_1(\mathbf{x}, \mathbf{x}') \cdot k_2(\mathbf{x}, \mathbf{x}') = c \cdot k_1(\mathbf{x}, \mathbf{x}')$	top d eigenv. of $S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})(x_i - \overline{X})^T$
Conditional Gaussian	$H[\mathbf{X}, \mathbf{Y}] = \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim p(\cdot, \cdot)} \left[-\log p(\mathbf{X}, \mathbf{Y}) \right]$	efficient (no efficient for finite samples).	$= p(k_1(\mathbf{x}, \mathbf{x}')) = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$	EM fit GMMs $(\sum_{k=1}^{K} \pi_k \mathcal{N}(x \mu_k, \Sigma_k))$ by
	$I[X;Y] = H[X] - H[X Y] \ge 0$	Data Types	I(-,-l) = I(-,T-l)m	max. likelihood. Reaches local optimum.
$P(\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}) = \mathcal{N}(\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}; \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix})$	I[X;Y Z] = I[X;Y,Z] - I[X;Z]	monadic: $X: O \rightarrow \mathbb{R}^d$ dyadic: $X: O_1 \times O_2 \rightarrow$	$k(\mathbf{x}, \mathbf{x}') = \phi(x)^T \phi(x') = (1 + \mathbf{x}^T \mathbf{x}')^m$	Latent variable: $M_{xc} = 1\{c \text{ generated } x\}$
$p(\mathbf{Y} \mathbf{X} = \mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$H(\mathcal{N}(\mu, \Sigma) = \frac{1}{2} \ln(\det(2\pi e \Sigma))$	IDd mainsing V.O. v.O. v.Dd maloudia	$= \tanh(\alpha \mathbf{x}^T \mathbf{x}' + c)$	$P(\mathcal{X}, M \theta) = \prod_{x} \prod_{c=1}^{k} (\pi_c P(x \theta_c))^{M_{xc}}$
$\cdot \mu = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{x} - \mu_{\mathbf{X}})$	$\mathrm{KL}(\mathcal{N}(a,A) \mathcal{N}(b,B)) = \frac{1}{2}(\mathrm{tr}(B^{-1}A) +$	data: $X:O_1\times O_2\times O_3\to \mathbb{R}^d$ nominal =	$= \sigma^2 \exp(-\frac{2\sin(p^{-1}\pi \mathbf{x}-\mathbf{x}' _2^2)}{l^2})$	$\gamma_{xc} = \mathbb{E}[M_{xc} \mathcal{X}, \boldsymbol{\theta}^{(j)}] = \frac{\pi_c \mathcal{N}(\mathbf{x}; \mu_c, \Sigma_c)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}; \mu_j, \Sigma_j)}$
$\cdot \ \Sigma = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$	$(a-b)^T B^{-1}(a-b) - d + \ln(\frac{\det B}{\det A}))$	qualitative (sweet, sour), ordinal =	$= \exp(- \mathbf{x} - \mathbf{x}' _1 l^{-1})$	$\mu_c^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} x}{\sum_{c \in \mathcal{X}} \gamma_{xc}} \qquad \pi_c^{(j+1)} = \frac{1}{ \mathcal{X} } \sum_{c \in \mathcal{X}} \gamma_{xc}$
Inequalities and Estimators	(UctA//	absolute order, quantitative = numbers	$= \exp(- \mathbf{x} - \mathbf{x}' _2^2 (2l^2)^{-1})$	$\mu_c = \sum_{c \in \mathcal{X}} \gamma_{xc} \qquad \kappa_c = \mathcal{X} \ \mathcal{L}_{c} \in \mathcal{X} \ \mathcal{I}_{xc}$
Jensen: $log(\sum_{i} \lambda_{i}^{(\geq 0)} x_{i}) \geq \sum_{i} \lambda_{i} log(x_{i})$	Risks	Regression	RBF : $\phi_j(x) = \exp(-\frac{ x _2^2}{2}) \prod_{i=0}^d x^{j_i} (j_i!)^{-\frac{1}{2}}$	$(\sigma_c^2)^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} (x - \mu_c)^2}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$
		Model of data: $Y = X\beta^* + \varepsilon$	\uparrow Lengthscale, smoother fcts.	Bias-Variance tradeoff
Chebyshev: $\mathbb{P}(\hat{X} - X \ge \varepsilon) \le \frac{MSE[X]}{\varepsilon^2}$	$\mathcal{R}(f) = \sum_{y \le k} P(y) \mathbb{E}_{P(x y)} [1_{f(x) \ne y} Y = y]$	$\mathbf{X} \in \mathbb{R}^{(d+1) \times n}$ $\beta \in \mathbb{R}^{d+1}$ $\varepsilon \sim \mathcal{N}(0, \mathbb{I}\sigma^2)$	Gaussian Process Regression	Bias $(\hat{f}) = \mathbb{E}[\hat{f}] - f$
	Empirical Risk Minimizer (ERM) \hat{f} :	$\mathbf{Y} \mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2 \sim \mathcal{N}(\mathbf{Y}; \mathbf{X}^T \boldsymbol{\beta}, \mathbb{I}_{(d+1)} \boldsymbol{\sigma}^2)$	Applying a kernel, we get:	$\operatorname{Var}(\hat{f}) = \mathbb{E}[\hat{f}] f$ $\operatorname{Var}(\hat{f}) = \mathbb{E}[(\hat{f} - \mathbb{E}[\hat{f}])^2]$
<i>Consistent</i> : $\mathbb{P}(\hat{\theta} - \theta^{\star} < \varepsilon) \to 0$ convP		MLE: Ordinary Least Squares	$\mathbf{Y} = \Phi \boldsymbol{\beta} + \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \Phi \boldsymbol{\Lambda}^{-1} \Phi^T + \boldsymbol{\sigma}_n^2 \mathbb{I}_d) =$	Squared Error Decomposition
Asymp Normal: $(\hat{\theta} - \theta^*)\hat{se}^{-1} \sim \mathcal{N}(0, 1)$			$[\mathbf{K} \perp \sigma^2 \mathbf{I} \mathbf{k}]$	$\mathbb{E}_{-}\mathbb{E}_{-} = [(\hat{f}(Y) V)^2] =$
Rao-Cra.: $\mathbb{E}_{x \theta}[(\theta-\hat{\theta})^2] \ge \frac{(\frac{\partial}{\partial \theta}b_{\hat{\theta}}+1)^2}{\mathbb{E}_{x \theta}[\Lambda^2]} + b_{\hat{\theta}}^2$	$\hat{R}(\hat{f}, \mathcal{D}^{test}) = \frac{1}{m} \sum_{i=n+1}^{n+m} \mathcal{L}(Y_i, \hat{f}(X_i))$	with lowest variance. differentiate wrt β .	$\mathcal{N}(\begin{bmatrix} \mathbf{y} \\ \mathcal{Y}_* \end{bmatrix} 0, \begin{bmatrix} \mathbf{K} + \sigma^2 \mathbb{I} & \mathbf{k} \\ \mathbf{k}^{T} & k(x_*, x_*) + \sigma^2 \end{bmatrix})$	$\mathbb{E}_{D}\mathbb{E}_{X,Y}[(J(X)-I)] = \mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y]-Y)^2] \text{(noise var)}$
** **	Logg Fotos ('(a) =) = au a	$\mathcal{L} = RSS(\beta) = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^2$	Gaussian Process Prediction	$+\mathbb{E}_{X}\mathbb{E}_{D}[(\hat{f}_{D}(X) - \mathbb{E}_{D}[\hat{f}(X)])^{2}]$ (var.)
$b_{\hat{\theta}} = \mathbb{E}_{x \theta}[\hat{\theta}] - \theta$ $\Lambda = \frac{\partial}{\partial \theta} \log p(x \theta)$	$\mathcal{L}^{0/i} = \mathbb{I}[\operatorname{sign}(z) \neq y]$	Estimator: $\hat{\boldsymbol{\beta}}^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$		$+\mathbb{E}_{X}\mathbb{E}_{D}[\langle J_{D}(X) - \mathbb{E}_{D}[J(X)] \rangle] (\text{val.})$ $+\mathbb{E}_{X}[(\mathbb{E}_{D}[\hat{f}_{D}(X)] - \mathbb{E}_{Y X}[Y])^{2}] (\text{bias}^{2})$
$\mathbb{E}_{x \theta}[\Lambda] = 0 \to \mathbb{E}_{x \theta}[\Lambda\hat{\theta}] = \frac{\partial}{\partial\theta}b_{\hat{\theta}} + 1$	$\mathcal{L}^{\text{hinge}} = \max(0, 1 - yz) \text{for SVM's}$	Prediction: $\hat{y} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$	$p(y_* x_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\tilde{\mu}, \tilde{\sigma}^2),$	
$\rightarrow \operatorname{Cov}(\Lambda, \hat{\theta}) \rightarrow \operatorname{Cauchy}$	$\mathcal{L}^{\text{percep}} = \max(0, -yz)$	MAP: Ridge Regression (L^2 penalty)	7	With $\mathbb{E}_{Y X}[Y]$ the expected label and
$\operatorname{Var}[\hat{\theta}] \ge \mathcal{I}_n(\theta)^{-1} = -\mathbb{E}\left[\frac{\partial^2 \log p[\mathcal{X}_n \theta]}{\partial \theta^2}\right]^{-1}$	$\mathcal{L}^{\text{logistic}} = \log(1 + \exp(-yz))$	Penalize energy in β . <i>Prior:</i> $\beta \sim \mathcal{N}(0, \lambda^{-}\mathbb{I})$	$\tilde{\sigma}^2 = k(\mathbf{x}, \mathbf{x}) + \mathbf{K} + \mathbf{K} + \mathbf{G}_n \mathbf{H} + G$	$\mathbb{E}_{D[J]}(\Pi)$ in on posted stabilities.
Efficiency of $\hat{\theta}$: $a(\theta) = \frac{1}{2}$	$\mathcal{L}^{\exp} = \exp(-yz) \text{for AdaBoost}$	Loss: $\mathcal{L} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$	$-\kappa(x_*, x_*) - \kappa (\kappa + 0 \text{ 1}) \kappa$ $-k = k(x, \mathbf{X}) \mathbf{K}_{::} - k(x, x_{:})$	p-value $\inf\{\alpha : T(Y^n) \in \{\alpha T(\alpha) > \alpha\}\}$
Efficiency of $\hat{\theta}$: $e(\theta_n) = \frac{1}{\text{Var}[\hat{\theta}_n]\mathcal{I}_n(\theta)}$	ace file / /s be /s bl	Estimator: $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$	$\tilde{\boldsymbol{\alpha}}^2 = k(\boldsymbol{x}, \boldsymbol{x}) \mathbf{k}_{lj} = k(\lambda_l, \lambda_j)$	p-value= $\inf\{\alpha : T(X^n) \in \{x T(x) \ge c\}\}$ likelihood to accept H_0 . it is the least
$\hat{\theta}_{JS} = \left(1 - \frac{(d-2)\sigma^2}{\ \mathbf{y}\ ^2}\right) \mathbf{y}$	$y' = \frac{1+y}{2}, z' = \frac{1+z}{2}$	Estimator. $p = (\mathbf{A} \ \mathbf{A} + \lambda 1) \ \mathbf{A} \ \mathbf{y}$	$\mathbf{K}_{ij} = \kappa(\lambda_i, \lambda_j) - \mathbf{K}_i \ (\mathbf{K} + \mathbf{O} \ \mathbf{I}) \ \mathbf{K}_j$	probable threshold for rejecting the H_0 .
$ y ^2$	2 2			1

Statistical Learning and Validation	Convex Optimiza		
Find $f: X \to Y$ to minimize expected risk	Given constrained		
by approximation with empirical risk.	$\min_{w \in \mathbb{R}^d} f(w)$:		
K-Fold Cross Validation	it is convex if f, g_1		
K-Fold Cross Validation Partition data Z into K equally sized,	The Lagrangian		
disjoint subsets:			

 $\mathcal{Z} = \mathcal{Z}_1 \bigcup \mathcal{Z}_2 \bigcup \cdots \bigcup \mathcal{Z}_K, \mathcal{Z}_\mu \cap \mathcal{Z}_\nu = \emptyset$ $|\mathcal{Z}_k| \approx n \frac{K-1}{K}$ # of training samples. Learn: $\hat{f}^{-\nu}(x) = \arg\min_{f \in \mathcal{F}} \frac{\sum_{i \notin \mathcal{Z}_{\nu}} \mathcal{L}(y_i, f(x_i))}{|\mathcal{Z} - \mathcal{Z}_{\nu}|}$ $\hat{R}^{cv}(\mathcal{A}) = \frac{1}{n} \sum_{i \le n} \mathcal{L}(y_i, \hat{f}^{-\kappa(i)}(x_i))$

Underfits because smaller dataset. **Leave-one-out:** K = n (unbiased but var can be large from correlated datasets) Bootstrapping Bootstrap samples: $\mathcal{Z}^* = \{\mathcal{Z}_1^*, \dots \mathcal{Z}_B^*\}$, of same size as original, drawn with

replacement. The chance of a sample to have appeared in the bootstrap is: $1-\left(1-\frac{1}{n}\right)\stackrel{n\to\infty}{\to} 1-\frac{1}{n}\approx 0.632$. So if we compute the ERM on \tilde{Z} we could get 63% (shows too small bias)! **Leave-one-out/out** of bucket error: $\sum_{i=1}^{n} \alpha_i (1 - y_i (w^{\top} x_i + w_0)) \quad \alpha_i \ge 0.$ compensates by computing the ERM KKT: $w^* = \sum_{i=1}^n \alpha_i y_i x_i$ $\sum_{i=1}^n \alpha_i y_i = 0$ where no memorization was for specific *Dual*: $\max_{\alpha \ge 0: \sum_{i=1}^{n} \alpha_i y_i = 0} L(\alpha)$ sample. E.g., for classification, like crossvalidation:

 $\hat{\mathcal{R}}(\mathcal{A}) = rac{1}{B} \sum_{b=1}^{B} \sum_{z_i
otin \mathcal{Z}^{*b}} rac{\mathbb{I}_{c(x_i)
otin y_i}}{B - |\mathcal{Z}^{*b}|} \hat{R}_{0.632} =$ $0.368\hat{R}(A(Z)) + 0.632\hat{R}_{hs}$ Wald Test: $W = \frac{\hat{\theta} - \theta_0}{\varepsilon_0(\hat{\theta})}$ Bayesian Neural Networks (BNN) NN: no uncertainty quantification, Optimar Margin. $\mathbf{w} = \sum_{i \in SV} \alpha_i$ overconfident, adversarial examples, Discrim.: $g^*(\mathbf{x}) = \sum_{i \in SV} y_i \alpha_i^* \mathbf{x}_i^T \mathbf{x}_i + w_0^*$

poor generalization for domain shifts. $class = sign(\mathbf{x}^T\mathbf{w}^* + \mathbf{w}_0^*)$ BNN: Using p(w) and p(D|w), approx. poster. by variational infer. (min rev KL). Soft Margin SVM $\sigma \leftarrow \sigma - \alpha_t \left(\varepsilon^{\top} \frac{\partial}{\partial w} F(w, \theta) + \frac{\partial}{\partial \sigma} F(w, \theta) \right)$ Information-based Transductive Lear. $\min_{\xi_i \geq 0, w, w_0 \mid \forall i \leq n: y_i (w^\top x_i + w_0) \geq 1 - \xi_i}$ ITL selects x_n that maximizes mutual

information of $y_x = f_x + \varepsilon_x$ about f: $x_n = \arg\max_{x \in S} I(f_A; y_x | D_{n-1})$ If $f \sim GP(\mu, k)$, then: $I(f_A; y_x | D_{n-1}) = \frac{1}{2} \log \left(\frac{\text{Var}[y_x | D_{n-1}]}{\text{Var}[y_x | f_A, D_{n-1}]} \right)$

Safe Bayesian Optimization

 $x_n = \arg\max_{x \in \hat{S}_n = \{x \mid u_n^g(x) \ge 0\}} u_n^J(x)$ Batch Active Learning | ProbCover $G=(X,E), E=\{(x,x') \mid ||x-x'|| \le \delta\}$ $\forall i = 1, 2, \dots, b$

 $\arg \max_{x \in X} |\{x' \mid (x, x') \in E, x' \in X\}|$

 $L \leftarrow L \cup \{\hat{x}\} \mid E \leftarrow E \setminus (\{\hat{x}\} \times (B_{\delta}(\hat{x}) \cap X))$

 $h_{1:m}$, $h_{1:n}$ are convex and E.g solve the XOR Problem with:

Lagrange Multiclass SVM with $L(\eta, w) = \forall \text{class } y \in \{1, 2, \dots, M\} \text{ we introduce } \mathbf{w}_y$ (λ, α) : $f(w) + \sum_{i \le m} \lambda_i g_i(w) + \sum_{j \le n} \alpha_j h_j(w)$ Any **optimal solution** W satisfies: $\nabla_{w} L(\eta, W) = 0, g_{i}(W) = 0, h_{j}(W) \leq 0, \alpha_{i} \geq 0 \\ \min_{w} \frac{1}{2} w^{T} w = \min_{\{w_{y}\}_{n=1}^{M}} \sum_{y=1}^{M} w_{y}^{T} w_{y}$ the **Dual Problem** is and satisfies $\forall w$: $\max_{\alpha>0,\lambda} |\theta(\eta):=\inf_{w} L(\eta,w)| \leq f(w^*)$ strong duality if $\theta(\eta^*) = f(w^*)$ **Slater's cond.** if $\exists w_0$ feasible: $h_{1:n}(w_0) < 0$ strong duality $\rightarrow w^*$: $f(w^*) = L(\eta^*, w^*)$ and $\alpha_i h_i(w^*) = 0$, $\forall j \leq n$.

label y. Output Space Representation: **Support Vector Machine (SVM)** joint feature map: $\psi(y, \mathbf{x})$ Convex constrained optimization problem Scoring function: $f_{\mathbf{w}}(y, \mathbf{x}) = \mathbf{w}^T \psi(y, \mathbf{x})$ with strong duality (if linearly separable). Classify: $\hat{y} = h(\mathbf{x}) = \arg\max_{y \in \mathbb{K}} f_{\mathbf{w}(y,\mathbf{x})}$ \mathbf{x}_i support vectors, $y_i \in \{-1, +1\}$. SVM objective: $\min_{w,w_0|\forall i \le n: y_i(w^\top x_i + w_0) \ge 1} \frac{1}{2} ||w||^2$ $w^T \psi(y_i, \mathbf{x_i}) - max_{y_i \neq y} w^T \psi(y, \mathbf{x_i}) \geq m$ accuracy by memorization. Over-confident Lagrangian: $\mathcal{L}(w, w_0, \alpha) = \frac{1}{2} ||w||^2 + \frac{1}{2} ||w||^2$ with margin rescaling: $min_{w,\xi>0} \frac{1}{2} w^T w$ $C\sum_{i=1}^{n} \xi_i$ s.t. $w^T \psi(y_i, \mathbf{x_i}) - \Delta(y, y_i)$

> $\cdot L(\alpha) = \sum_{1}^{n} \alpha_{i} - \frac{1}{2} \sum_{1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}$ The optimal hyperplane is given by $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x_i}$ $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x_i}$ $\mathbf{w}_0^* = -\frac{1}{2} (\min_{y_i=1} \mathbf{w}^{*T} \mathbf{x_i} + \max_{y_i=-1} \mathbf{w}^{*T} \mathbf{x_i}) \sum_{i=1}^n \beta_i \xi_i \text{ with } \alpha_{i,j} \ge 0, \beta_i \ge 0$ Only Support Vectors $(\alpha_i^* \neq 0)$ contribute. **Ensemble Methods** Optimal Margin: $\mathbf{w}^T \mathbf{w} = \sum_{i \in SV} \alpha_i^*$

C controls margin maximization vs. uncorrelated

 $\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$ Lagrangian: $L(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \text{with weights } \{\alpha_b\}_{b=1}^B$ $C\sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i}[z_{i}(\mathbf{w}^{T}\mathbf{y}_{i} + w_{0}) - 1 + \xi_{i}]$ Requires diversity of the classifiers.

supplementary constraint: $C \ge \alpha_i \ge 0$ $\xi = 0, \xi_i(\alpha_i - C) = 0$ You should solve α via quadratic $\{ \leq \delta \}$ optimisation. Optimal hyperplane and $\hat{x} \leftarrow$ classification as normal SVM. Optimal slack: $\xi_i^* = \max(0, 1 - y_i(w^{*T}x_i + w_0^*))$ $\xi_i^* = \mathcal{L}^{\text{hinge}}(y_i, w^{*T}x_i + w_0^*)$

Non-Linear SVM ation d optimization problem: Use kernel in discriminant function: $g(\mathbf{x}) = \sum_{i,j=1}^{n} \alpha_i z_i K(\mathbf{x_i}, \mathbf{x})$ $g_{1:m}(w)=0, h_{1:n}(w)\leq 0$

 $K(x,y) = (1 + x_1y_1 + x_2y_2)^2$

s.t. $(\mathbf{w}_{v_i}^T \mathbf{x}_i + w_{v_{i,0}})$ -

Structured SVM

 $w^T \psi(\mathbf{y}, \mathbf{x_i}) > -\xi_i \forall \mathbf{y} \neq \mathbf{y_i} \forall i$

Lagrangian: let $\mathbb{K}_i = \mathbb{K} \setminus y_i$

Combining Regressors

 $\sum_{i=1}^{n} \sum_{v_i \in \mathbb{K}_i} \alpha_{i,j}(w^T \psi(y_i, x_i) -$

Set of estimators: $\hat{f}_1(x), \dots, \hat{f}_B(x)$

 $\frac{1}{2}w^{T}w + C\sum_{i=1}^{n} \xi_{i} -$

and define our problem: (w is v-stacked)

 $\max_{\mathbf{v}\neq\mathbf{v}_i}(\mathbf{w}_{\mathbf{v}}^T\mathbf{x}_i+w_{\mathbf{v},0})\geq 1, \forall \mathbf{x}_i\in\mathcal{X}$

classification: $\hat{y} = argmax_y(w_y^T x + w_{y,0})$

simple average: $\hat{f}(x) = \frac{1}{R} \sum_{i=1}^{B} \hat{f}_i(x) \ \ \mathring{\mathbb{P}}[\mathcal{R}(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) > \varepsilon] < 1 - \delta.$ $\operatorname{Bias}[\hat{f}(x)] = \frac{1}{B} \sum_{i=1}^{B} \operatorname{Bias}[f_i(x)]$ Introduce slack to relax constraints. $\mathbb{V}[\hat{f}(x)] \approx \frac{\sigma^2}{R}$ if the estimators are N = size of hypothesis class, n = num. of**Combining Classifiers** Input: classifiers $c_1(x), \dots, c_R(x)$ Infer $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b c_b(x))$ Bagging Dual Problem same as usual SVM but with Train on bootstrapped subsets. Covariance small, variance similar, bias weakly KTT Conditions: $\alpha_i^*(z_i(w^Ty_i+w_0)-1+$ affected. Random Forest Collection of uncorr. decision trees. Partition data space recursively. Grow the tree sufficiently deep runs in polynom. $1/\varepsilon$ (error param.) and to reduce bias. (random sample cuts to $1/\delta$ (confidence val.). reduce bias). Prediction with voting. **Boosting** (Weak to avoid overfitting)

Coeff. of \hat{c}_{h+1} depend on \hat{c}_h 's results

Init: $\mathcal{X} = \{(x_1, y_1), \cdots, (x_n, y_n)\}, w_i^{(1)} = \frac{1}{n}$ classifiers c and \hat{c} differ for no more than ddata points on a plane, IF found with ERM: Fit $\hat{c}_b(x)$ to \mathcal{X} weighted by $w^{(b)}$ $\varepsilon_b = \sum_{i=1}^n w_i^{(b)} \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}} / \sum_{i=1}^n w_i^{(b)}$ $\alpha_b = \log \frac{1-\varepsilon_b}{\varepsilon_b} > 0$ $w_i^{(b+1)} = w_i^{(b)} \exp(\alpha_b \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}})$ return $\hat{c}_B(x) = \operatorname{sgn}(\sum_{h=1}^B \alpha_h \hat{c}_h(x))$ Best approx. at log-odds ratio. Like stagewise-additive modeling. Difference

AdaBoost (minimizes exp. loss)

(1) Boosting keeps identical training data, bagging potentially varies the training data for each classifier. (2) Boosting weighs the in \mathbb{R}^2 with at most k vertices: 2k + 1Each **x** is assigned to a structured output prediction of each classifier according to its Nonparametric Bayesian methods accuracy, bagging gives same importance to each. Notes AdaBoost gives large weight to samples that are hard to classify: those could be

outliers. For bagging, there is a chance

that imbalanced data-sets lead to bootstrap samples missing a class alltogether. Fix by making the bootstrap size large enough s.t. at least one point is included. **Logistic Regression** $log \frac{P(y=1|x)}{P(y=-1|x)} = \sum_{b=1}^{B} c_b(x) =: F(x)$

 $P(y = 1|x) = \frac{exp(F(x))}{1 + exp(F(x))}$ **PAC learning**

Function of interest

The probability of large excess error: $\mathbb{P}[misclassification|C] < \delta.$ But: could be unlucky with C, c^{Bayes} not in hypoth. class. $\begin{cases} \frac{N_{k,-i}}{\alpha+N-1} p(x_i|x_{-i,k},\mu) \\ \frac{\alpha}{\alpha+N-1} p(x_i|x_{-i,k},\mu) \end{cases}$

Def R.H.S.= δ : $\varepsilon = \sqrt{\frac{\log N - \log(\delta/2)}{2n}}$ samples.expected error of c depends on $1/\sqrt{n}$ and $\log N!$ for any class $C: \mathcal{R}_n(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \leq$

 $2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)|$ for finite class: $\mathbb{P}[2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c) |\mathcal{R}(c)| > \varepsilon| < 2|\mathcal{C}|e^{-\frac{1}{2}n\varepsilon^2}$.

Rectangle learning Pick tight rectangle. Diff. between picked

Rectangles are **efficiently PAC learnable**:

rectangle \hat{R} and true R with few examples.

Hyperplane learning

Combine uncorr. weak learners in sequence. Hypothesis: $\sum_{i=1}^{d} a_i x_i + a_0$ (all possible hyperplanes through d-dim vector) has #-

 $\forall_{c \in \mathcal{C}} \hat{\mathcal{R}}_n(c) \geq \hat{\mathcal{R}}_n(\hat{c}) - \frac{d}{n}$. **VC dimension** If you can find a set of n points, so that it can be shattered by the classifier (i.e. classify

of-possible-classifiers $2\binom{n}{d}$. In class: the

all possible 2^n labelings correctly) and you

cannot find any set of n+1 points that can be shattered then the VC dimension is n. **Examples:** $(-\infty, a] = 1$ all intervals in R: $V_C = 2$ For unions of k intervals, $V_C = 2k$ half planes in R^2 : 3 for unit circles $V_c = 3$

convex polygons in R^2 : ∞ convex polygons Beta(x|a,b) = $B(a,b)^{-1}x^{a-1}(1-x)^{b-1}$: prob. of Bernoulli proc. after observing

a-1 success and b-1 failures. Expended

to multivariate case with Dirichlet distr.

That will give multivar. probs, based

on finite counts! But we don't know

exactly which multivar. distribution works.

With more data, we update the Dirichlet distribution. Is a conjugate prior. Stick-breaking Dirichl. proc. Repeatedly draw from Beta($x|1, \alpha$) with fixed α , but from reducing stick: $\rho_k = \beta_k (1 - \sum_{i=1}^{k-1} \rho_i)$. The prior:

 $\mathbb{P}[z_i = k | z_{-i}, \alpha] = \begin{cases} \frac{N_{k,-i}}{\alpha + N - 1} \\ \frac{\alpha}{\alpha + N - 1} \end{cases}$ existing k otherwise Final Gibbs sampler: $\mathbb{P}[z_i = k | z_{-i}, \alpha, \mu] =$

existing k

otherwise

Gibbs sampling

Init: assign all data to a cluster, with prior π_i , with $\sum_{k=1}^K \pi_i < 1$ (s.t. new clusters possible). E.g. with stick-breaking.

Then remove x from k and compute new θ_k , then compute Gibbs sampler prob. (CRP), and sample the new cluster assignment $z_i \sim p(z_i|x_{-i},\theta_k)$. If cluster is empty, remove it and decrease K.