Table of Contents Übungsblätt	er:
- Blatt 1:	
- A1 = Beweis: $\iota:M o \mathcal{P}(M)$	- A3 = Matrizenrechnung
- A2 = Beweis: $f(A \cup B) = f(A) \cup f(B)$	- A4 = Beweis: $(AC)^{\top} = C^{\top}A^{\top}$
- Blatt 2:	
- A1 = Beweis: Lineare Abbildung	- A3 = Beweis: Symmetrische Matrizen
- A2 = Nullteiler im Matrizenring	- A4 = Beweis: Untervektorräume von ℝ¹
- Blatt 3:	
- A1 = Beweis: Basisergänzungssatz	- A3 = Basis des Kerns
- A2 = Beweis: Basis von UVR	- A4 = Beweis: Linear unabh. in UVR
- Blatt 4:	
- A1 = Lösen eines LGS	- A3 = Basisergänzung
- A2 = Basis des Kerns der Matrix	- A4 = Beweis: Kern einer Matrix
- Blatt 5:	
- A1 = Beweis: Gruppen	- A3 = Beweis: Ringe
- A2 = Beweis: Ringhomomorphismen	- A4 = Beweis: Körper
- Blatt 6:	
	A.2. Davisia: Daatklassanavithmatik
- A1 = Matrizenrang	- A3 = Beweis: Restklassenarithmetik
- A2 = Beweis: Äquivalenzrelationen	- A4 = Vektorraumaxiome
- Blatt 7:	
- A1 = ISBN Nummern	- A3 = Körpererweiterungen als Vektorr.
- A2 = Basis des Kerns einer lin. Abbild.	- A4 = Vektorräume und lin. Abbildunge

- Blatt 8:	
- A1 = Inverse von Matrizen	- A3 = Darstellungsmatrizen
- A2 = Selbstinverse	- A4 = Basiswechselmatrizen
- Blatt 9:	
- A1 = Summe von Vektorräume	- A3 = Direkte Summen & lin. unabhängig
- A2 = Smith-Normalform & Basen	- A4 = Isomorphiesatz für Vektorräume
- Blatt 10:	
- A1 = R als Q-Vektorraum	- A3 = Dimension und Linearformen
- A2 = Dualbasen	- A4 = Beweis: Bilinearformen
- Blatt 11:	
- A1 = Determinante bestimmen	- A3 = UVR, Direkte Summe, Dimension
- A2 = Basen und Determinanten	- A4 = Dimension und Untervektorraum
Dlott 12.	
- Blatt 12:	
- A1 = Polynome, Eigenwerte, Ähnlich	- A3 = Char. Polynom und Eigenräume
- A2 = Spur	- A4 = Boolesche Algebren
DIa++ 12.	
- Blatt 13:	A2 Cincultone Die nemelieienbenkeit
- A1 = Polynome, Eigenwerte & -vektoren	
- A2 = Diagonalisieren einer Matrix	- A4 = Blockmatrizen & Determinanten

Basics

Aussagenlogik:

$$-A \le B = ((A => B) \& (B => A))$$

- Elementare logische Umformungen

- (i) $(\neg(\neg \mathcal{A})) \iff \mathcal{A}$. (doppelte Negation)
- (ii) $\mathcal{A} \vee (\neg \mathcal{A})$. (Tertium non datur.)
- (iii) $\neg (\mathscr{A} \Longrightarrow \mathscr{B}) \Longleftrightarrow (\mathscr{A} \land \neg \mathscr{B})$ (Negation einer Implikation)
- (iv) $(\mathscr{A} \Longrightarrow \mathscr{B}) \Longleftrightarrow ((\neg \mathscr{B}) \Longrightarrow (\neg \mathscr{A}))$. (Kontrapositionsprinzip)
- $(v) ((\mathscr{A} \Longrightarrow \mathscr{B}) \land (\mathscr{B} \Longrightarrow \mathscr{C})) \Longrightarrow (\mathscr{A} \Longrightarrow \mathscr{C}).$ (Transitivität der Implikation)
- $\begin{array}{ccc} (vi) & ((\mathscr{A} \wedge \mathscr{B}) \wedge \mathscr{C}) & \Longleftrightarrow (\mathscr{A} \wedge (\mathscr{B} \wedge \mathscr{C})) \\ & & & & & & & & & \\ ((\mathscr{A} \vee \mathscr{B}) \vee \mathscr{C}) & \Longleftrightarrow (\mathscr{A} \vee (\mathscr{B} \vee \mathscr{C})). \text{ (Assoziativität von } \wedge \text{ und } \vee) \end{array}$
- $(vii) \ (\mathcal{A} \land \mathcal{B}) \Longleftrightarrow (\mathcal{B} \land \mathcal{A})$ $(\mathcal{A} \lor \mathcal{B}) \Longleftrightarrow (\mathcal{B} \lor \mathcal{A}). \ (\text{Kommutativität von } \land \text{ und } \lor)$
- $\begin{array}{ccc} (viii) & \mathcal{A} \wedge (\mathcal{B} \vee \mathcal{C}) & \Longleftrightarrow & (\mathcal{A} \wedge \mathcal{B}) \vee (\mathcal{A} \wedge \mathcal{C}) \\ & \mathcal{A} \vee (\mathcal{B} \wedge \mathcal{C}) & \Longleftrightarrow & (\mathcal{A} \vee \mathcal{B}) \wedge (\mathcal{A} \vee \mathcal{C}). \end{array}$ (Distributivität)
- $\begin{array}{ccc} (ix) & (\neg(\mathscr{A} \land \mathscr{B})) & \Longleftrightarrow & ((\neg\mathscr{A}) \lor (\neg\mathscr{B})) \\ & & (\neg(\mathscr{A} \lor \mathscr{B})) & \Longleftrightarrow & ((\neg\mathscr{A}) \land (\neg\mathscr{B})). \ (\text{de Morgansche}^{\mathsf{T}} \text{Regeln} \) \end{array}$

- De Morgansche Regeln für Quantoren:

$$\neg(\forall x : \mathscr{A}(x)) \iff (\exists x : \neg \mathscr{A}(x)),$$

$$\neg(\exists x : \mathcal{A}(x)) \iff (\forall x : \neg \mathcal{A}(x)).$$

Mengenlehre:

- M ist Teilmenge von N, wenn $\forall x : (x \in M \implies x \in N)$
- $-(M=N) \iff ((M\subseteq N) \land (N\subseteq M))$
- (i) $M \cap N := \{x \mid (x \in M) \land (x \in N)\}$
 - (ii) $M \cup N := \{x \mid (x \in M) \lor (x \in N)\}$
 - (iii) $M \setminus N := \{x \mid (x \in M) \land (x \notin N)\}$
- Symmetrische Differenz: $A \triangle B := (A \setminus B) \cup (B \setminus A) (= XOR)$
- Kartesisches Produkt: $M \times N := \{(x, y) \mid x \in M, y \in N\}$
- Anzahl der Elemente: $|M \times N| = |M| \cdot |N|$ und $|M \cup N| = |M| + |N| |M \cap N|$

	- Rechenregeln für Mengen
	(i) $X \setminus (X \setminus A) = A$. (doppelte Negation)
	(ii) $A \cup (X \setminus A) = X$. (Tertium non datur)
	(iii) $\neg (A \subseteq B) \iff (\exists x : x \in A \land x \notin B)$. (Negation der Teilmengenrelation)
	$(iv) \ (A \subseteq B) \iff (X \setminus B \subseteq X \setminus A). \ (Kontrapositionsprinzip)$
	$(v) \ ((A \subseteq B) \land (B \subseteq C)) \Longrightarrow (A \subseteq C).$ (Transitivität der Teilmengenrelation)
	$(vi) \ (A \cap B) \cap C = A \cap (B \cap C),$ $(A \cup B) \cup C = A \cup (B \cup C). \ (Assoziativität \ von \cap und \cup)$
	(vii) $A \cap B = B \cap A$, $A \cup B = B \cup A$. (Kommutativität von \cap und \cup)
	(viii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (Distributivität)
	$(ix) \ X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B),$ $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B). \text{ (de Morgansche Regeln)}$
	- Potenzmenge: Die Menge $\mathscr{P}(M) := \{N \mid N \subseteq M\}$ aller Teilmengen
	- Mengensystem: $\mathscr{A} \subseteq \mathscr{P}(M)$
	- Schnitt (bzw. Vereinigung) über A:
	$\bigcap \mathscr{A} := \bigcap_{A \in \mathscr{A}} A := \{x \in M \mid \forall A \in \mathscr{A} : x \in A\} \text{und} \bigcup \mathscr{A} := \bigcup_{A \in \mathscr{A}} A := \{x \in M \mid \exists A \in \mathscr{A} : x \in A\}$
	Funktionen und Abbildungen:
	Tripel (M,N,f):
	M = Definitionsbereich N = Zielbereich
	f = Zuordnungsvorschrift
	- Bildet ein m aus M EINDEUTIG auf ein f(m) aus N
	- Gleichheit von Funktionen: $M = M'$, $N = N'$ und $\forall m \in M : f(m) = f'(m)$
	$-N^M=$ Alle Funktionen von M nach N und $ N^M = N ^{ M }$
$A \subseteq M$	- Bild einer Funktion (Bild(M,N,f)):
	$f(A) = \{n \in N \mid \exists a \in A : f(a) = n\} = \{f(a) a \in A\}$
$B \subseteq N$	- Urbild einer Funktion: $f^{-1}(B) := \{m \in M \mid f(m) \in B\}$

$A \subseteq M$	- Einschränkung: $f _A:A o N, a\mapsto f(a)$
$B \subseteq N$	- Koeinschränkung: $f ^B: M \to B, m \mapsto f(m)$
	- Komposition (Verkettung) von Funktionen ("g nach f"):
	$f: M \to N \text{ und } g: N \to O$ $M \xrightarrow{f} N$
	- Komposition (Verkettung) von Funktionen ("g nach f"): $f: M \to N \text{ und } g: N \to O \qquad \stackrel{M \longrightarrow f}{\longrightarrow} N \\ g \circ f: M \to O, m \mapsto g(f(m)) \qquad \stackrel{g \circ f}{\longrightarrow} O. \qquad \stackrel{M \longrightarrow f}{\longrightarrow} N \\ - \text{Assoziativität der Verkettung: } (h \circ g) \circ f = h \circ (g \circ f) \qquad O \longrightarrow P$
	- Assoziativität der Verkettung: $(h \circ g) \circ f = h \circ (g \circ f)$
	- Injektivität: $(f(m_1) = f(m_2)) \Longrightarrow (m_1 = m_2)$
	Für alle n aus N gilt: es gibt höchstens ein m mit f(m) = n
	- Surjektivität: $Bild(f) = f(M) = N$
	Für alle n aus N gilt: es gibt mindestens ein m mit f(m) = n
	- Bijektivität: Injektiv & Surjektiv
	Für alle n aus N gilt: es gibt genau ein m mit f(m) = n
	- Umkehrfunktion: $f^{-1} \circ f = \mathrm{id}_M$ und $f \circ f^{-1} = \mathrm{id}_N$
	- Existiert gdw. f bijektiv ist
	- Falls existiert, dann ist eindeutig
	(a) Wenn f und g beide injektiv sind, dann ist auch $g \circ f$ injektiv.
	(b) Wenn f und g beide surjektiv sind, dann ist auch $g \circ f$ surjektiv.
	(c) Wenn g o f injektiv ist, dann ist f injektiv.
	(d) Wenn $g \circ f$ surjektiv ist, dann ist g surjektiv.

MATRIZEN

Lineares Gleichungssystem (LGS) (Def 2.1.3) $a_{1,1}x_1+\dots+a_{1,n}x_n=b_1\\ a_{2,1}x_1+\dots+a_{2,n}x_n=b_2\\ \vdots\\ a_{m,1}x_1+\dots+a_{m,n}x_n=b_m.$ Lösungsmenge eines Gleichungssystem $\{x\in\mathbb{R}^n|Ax=b\}\subseteq\mathbb{R}^n$ Struktur der Lösungsmenge eines LGS Falls das LGS mind. eine Lösung x0 hat, gilt: $\{x\in\mathbb{R}^n\mid Ax=b\}=x_0+\ker A$ - Die Lösungsmenge ist ein affiner Unterraum von \mathbb{R}^n

Transponierte Matrix (Def 2.2.2)

 $-A^T$ = A mit Spalten und Zeilen getauscht

Matrix Addition und Skalierung (Def 2.2.3)

- Addition: die entsprechende Elemente addieren
- Skalierung: jedes Element mit dem Skalar multiplizieren

Rechenregeln für Addition und Skalierung von Matrizen (i) $(A+B)+C=A+(B+C)$
(ii) $A + 0_{m \times n} = 0_{m \times n} + A = A$
(iii) $A + (-1)A = (-1)A + A = 0_{m \times n}$
(iv) $A+B=B+A$
(v) $\lambda(A+B) = \lambda A + \lambda B$
$(vi) \ (\lambda + \mu)A = \lambda A + \mu A$
(vii) $(\lambda \cdot \mu)A = \lambda(\mu A)$
(viii) $1A = A$.

Rechenregeln für Matrixprodukte

- $(i) \quad \forall A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times r}: \quad (AB)C = A(BC). \tag{Assoziativit"}$
- (ii) $\forall A \in \mathbb{R}^{m \times n} : \quad \mathbb{1}_m A = A \mathbb{1}_n = A. \qquad (Neutral element)$
- (iii) $\forall A_1, A_2 \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p} : (A_1 + A_2)B = A_1B + A_2B. \quad (Distributive setz I)$
- $(iv) \qquad \forall A \in \mathbb{R}^{m \times n}, B_1, B_2 \in \mathbb{R}^{n \times p}: \quad A(B_1 + B_2) = AB_1 + AB_2. \quad (Distributive gesetz \ II)$
 - (v) $\forall A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, \lambda \in \mathbb{R} : \quad (\lambda A)B = A(\lambda B) = \lambda (AB). \quad (Bilinearit"at)$

Rechenregeln für die transponierte Matrix

- (i) $\forall A, B \in \mathbb{R}^{m \times n} : (A + B)^{\top} = A^{\top} + B^{\top}.$ (Transponieren und Summieren)
- (ii) $\forall A \in \mathbb{R}^{m \times n}, \lambda \in \mathbb{R} : (\lambda A)^{\top} = \lambda A^{\top}.$ (Transponieren und Skalieren)
- $(iii) \quad \forall A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p} : \quad (AB)^{\top} = B^{\top} A^{\top}. \qquad (Transponieren \ und \ Produkte)$
- $(iv) (\mathbf{0}_{m \times n})^{\top} = \mathbf{0}_{n \times m}. (Transponierte der Nullmatrix)$
- (iv) $(\mathbb{1}_n)^\top = \mathbb{1}_n.$ (Transponierte der Kuntmatrix)
- (v) $\forall A \in \mathbb{R}^{m \times n} : (A^{\top})^{\top} = A.$ (Transponierte der Transponierten)

Matrix Multiplikation (Def 2.2.9)

- Jedes Element = Summe von Zeile * Spalte

 $-A^{MxN}.B^{NxP}$

Einheitsmatrix (Def 2.2.11)

$$\mathbb{1}_n := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Multiplikation mit der Nullmatrix

$$(A = \mathbf{0}_{m \times n} \text{ oder } B = \mathbf{0}_{n \times p}) \Longrightarrow (AB = \mathbf{0}_{m \times p})$$

l <u></u> .					
Rild	ainar	Matrix	(Dof	7/11	١١
DIIU	CILICI	Maria	(Dell	Z.4.1	L /

$$Bild(A) = \{Ax \mid x \in \mathbb{R}^n\} = \{b \in \mathbb{R}^m \mid \exists x \in \mathbb{R}^n : Ax = b\}$$

- Ein LGS Ax = b hat genaut dann eine Lösung, wenn b in Bild(A) liegt

Bild(A) = LH(Spaltenvektoren von A) (Lemma 2.4.12)

- Bild(A) ist immer UVR von \mathbb{R}^n

Basis des Bildes:

- Transponieren -> Gauß (Zeilenstufenform) -> Transponieren -> Spalten != 0
- Spalten-Gauß (Untere Dreiecksmatrix) -> Spalten != 0

Rang einer Matrix (Def. 2.4.13)

rg(A) := dim(Bild(A))

- Auch die Dimension des Unterraums der von Spalten aus A aufgespannt wird
- Auch die maximale Anzahl linear unabhängiger Spalten von A

Bemerkung 2.4.14

$$\mathbb{R}^n \to \mathbb{R}^m, \quad x \mapsto Ax$$

- Für rg(A) = m ist die Abbildung surjektiv => das LGS Ax = b ist für alle b aus dem Zielbereich lösbar

$A \in \mathbb{R}^{m \times n}$

- $rg(A) \le min\{m,n\}$
- $rg(A) = rg(A^T)$: Spaltenrang = Zeilenrang (maximale Anzahl lin. unabh. Spalten/Zeilen)

$A \in \mathbb{R}^{m \times n} \ und \ B \in \mathbb{R}^{n \times p}$

- $rg(AB) \le rg(A) \text{ und } rg(AB) \le rg(B)$
- $rg(A) + dim(ker(A)) = Anzahl Zeilen <=> dim(bild(A)) + dim(ker(A)) = dim(<math>R^{n}$

	Invertierbare Matrizen
$AB = \mathbb{1}_n = BA$	- Quadratische Matrix im Ring ($\mathbb{K}^{n \times n}$, +, ·) bzgl. Matrixmultiplikation invertierbar
	- Allgemeine lineare Gruppe (GL(n,K) = alle invertierbare Matrizen): $GL(n,\mathbb{R})$
	- Das Neutralelement jedes Monoids ist invertierbar
	- Eine Matrix mit Nullzeile ist NICHT invertierbar
	Erste Charakterisierung der Invertierbarkeit von Matrizen (i) A ist invertierbar.
	(i) A^{T} ist invertierbar.
	(iii) $\exists B \in \mathbb{K}^{n \times n} : BA = \mathbb{1}_n$.
	(iv) $\exists B \in \mathbb{K}^{n \times n} : AB = \mathbb{1}_n$.
	$(v) \ker A = \{0\}.$
	(vi) $rgA = n$.
	(vii) $\varphi_A : \mathbb{K}^n \to \mathbb{K}^n$, $x \mapsto Ax$ ist injektiv.
	(viii) $\varphi_A : \mathbb{K}^n \to \mathbb{K}^n$, $x \mapsto Ax$ ist surjektiv.
	(ix) $\varphi_A : \mathbb{K}^n \to \mathbb{K}^n$, $x \mapsto Ax$ ist bijektiv.
	Wie berechnet man die Inverse einer Matrix?
	- Wir fangen an mit A links und die Einheitsmatrix rechts
	- Zeilenumformungen anwenden, bis Links in erw. Zeilenstufenform (Einheitsmatrix)
	- Falls irgendwann eine Nullzeile vorkommt - A ist NICHT invertierbar
	- Die Matrix rechts ist die Inverse von A

Dreiecksmatrizen

- Obere Dreiecksmatrix: $\forall i > j : a_{i,j} = 0$
- Untere Dreiecksmatrix: $\forall i < j : a_{i,j} = 0$
- Diagonalmatrix: $\forall i \neq j$: $a_{i,j}$ = 0

Gauß-Algorithmus

Algorithmus:

Schritt 1:

- Bringe die Matrix in Zeilenstufenform (ggf. in erw. ...) durch Zeilenumformungen Wende die Zeilenumformungen auch auf b, damit die Lösungsmenge gleich bleibt!
- rg(A) = r (Anzahl von Pivotelemente)
- Die Pivot-Spalten sind eine Basis für Bild(A)

Schritt 2:

- Falls für alle j > r: bj = 0 => das LGS hat eine Lösung (also gegen jede Nullzeile steht wieder eine 0)
- Falls es existiert ein j > r mit bj != 0 => das LGS hat KEINE Lösung Abbrechen!

Schritt 3:

- Pivot-Elemente kriegen Variablen und Nicht-Pivot Konstanten
- Löse jede Gleichung von unten nach oben (x1 = 1 + t)

 $\frac{\text{Hierbei ist} \begin{pmatrix} \frac{1}{3} \\ 1 \\ \frac{1}{3} \\ 0 \end{pmatrix}}{\text{eine spezielle L\"osung und der Kern von } A \text{ ist gegeben durch LH}} \left\{ \begin{pmatrix} \left\{ \frac{1}{3} \\ 1 \\ \frac{1}{3} \\ 1 \end{pmatrix} \right\} \right\}$

Die Lösungsmenge ist $x_0 + LH(v_1, ..., v_{n-r})$ <- affiner Unterraum

- Die Vektoren sind lin. unabhängig
- $dim(L\ddot{o}sungsmenge) = n r = Anzahl Spalten rg(A)$
- Für b = 0 ist das ein Untervektorraum = kern von A
- Für n = r ist dim = 0 (Es gibt mind. eine Lösung)

$$=>$$
 $\mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto Ax$ ist Injektiv

Elementare Zeilenumformungen (Def. 2.5.3)
(G1) Das Addieren des μ -fachen einer Zeile auf eine andere Zeile.
(G2) Das Vertauschen zweier Zeilen.
(G3) Das Multiplizieren einer Zeile mit einem Skalar $\lambda \neq 0$.
- Jede davon lässt sich auch durch Linksmultiplikation mit einer Matrix erreichen
- Sie ändern den Rang einer Matrix NICHT
Zeilenstufenform (Def. 2.5.1)
- Pivot-Eintrag = der erste nicht-0 Eintrag einer Zeile $\begin{pmatrix} 0 & 2 & 5 & 7 \end{pmatrix}$
- Zeilenstufenform =
i) Nach einer Nullzeile kommen nur weitere Nullzeilen ii) Der Pivotelement von i2 steht rechts von dem von i1 0 0 0 0
- Erweiterte Zeilenstufenform = Zeilenstufenform + $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
i) Alle Pivotelemente sind 1 ii) Über die Pivotelemente stehen nur 0
- Ax = b ist in (erw.) Zeilenstufenform, wenn A in (erw.) Zeilenstufenform ist

Linearer Unterraum

$U \subseteq \mathbb{R}^n$	Untervektorraum	(Def 2.3.1)	
	$0 \in U$	(U enthällt	den Nullvektor)
		_	schlossen unter Addition)
	$\forall v \in U, \lambda \in \mathbb{R}: \lambda v \in U$	(U ist abge	schlossen unter Multiplikation mit Skalaren)
	Kern einer Matrix:		
	$\ker A := \{x \in \mathbb{R}^n \big Ax = 0\} \subseteq \mathbb{R}$	ⁿ Nulls	tellenmenge von: $\varphi: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax$
	- Der Kern ist immer ein	UVR (Lemma	2.3.2)
	- Der Kern ist niemals lee	er (0-Vektor ist	eine Lösung)
	Linearkombination		
	$-\sum_{j=1}^{r} \lambda_j v_j = \lambda_1 v_1 + \dots + \lambda_r v_r$	$v_1,\dots,v_r\in$	$\mathbb{R}^n \text{ mit } r \in \mathbb{N}_0$
	j=1		
$M \subseteq \mathbb{R}^n$	Lineare Hülle		
	$\mathrm{LH}_{\mathbb{R}}(M) := \mathrm{LH}(M) := \left\{ \sum_{j=1}^{r} \lambda_{j} v_{j} \right\}$	$r \in \mathbb{N}_0: \forall i \leq r: v: i$	$\{M: \lambda_i \in \mathbb{R}\} \subseteq \mathbb{R}^n$
	$\left \sum_{j=1}^{\infty} ij^{j}j\right $		
	$\mathrm{LH}(v_1, v_2 \ldots, v_r) := \mathrm{LH}(\{v_1, v_2 \ldots, v_r\})$	$(v_2,\ldots,v_r) = \{\lambda_1 v_1,\ldots,v_r\}$	$v_1 + \dots + \lambda_r v_r \lambda_j \in \mathbb{R} $
	- Die Menge aller Lineark	combinationer	von Elementen aus M
	- Der von M erzeugten U	ntervektorrau	m
	- LH(\emptyset) = {0}, weil leere Su	umme = 0	
Lemma	$^{-} \operatorname{LH}(M) \subseteq \mathbb{R}^n \ UVR \qquad M$	$M \subseteq \mathrm{LH}(M)$	Jede Menge LH(M) ist UVR von ℝ ⁿ
2.3.4	$- LH(M) \in U \subseteq \mathbb{R}^n UVR m$	nit $M \subseteq U$	Jeder andere UVR, mit M⊆U enthält LH(M)

- LH(M) ist der kleinste UVR von \mathbb{R}^n der M enthält

$M \subseteq U$	Erzeugendensystem (Def. 2.3.5)
	LH(M) = U
	- Jedes Element in U lässt sich als Linearkombination
	von Elementen aus M schreiben.
	- $M_1\subseteq M_2\subseteq U$ und M1 ist ein Erzeugendensystem => M2 ist auch eins
	- U ist immer ein Erzeugendensystem
	Satz 2.3.7
	$A \in \mathbb{R}^{m imes n}$, m < n
	$\ker A \neq \{0\}$
	- Es gibt mind. eine Lösung des LGS Ax = 0
3.5 = n	
$M\subseteq\mathbb{R}^n$	Lineare Unabhängigkeit (Def. 2.3.9)
	- Nullvektor als Linearkombination aus M = alle Skalare null
	M ist linear unabhängig : $\iff \left(\forall \lambda_1, \dots, \lambda_r \in \mathbb{R} : \left(\sum_{j=1}^r \lambda_j v_j = 0 \implies (\forall j : \lambda_j = 0) \right) \right)$
	M ist linear abhängig : $\iff \left(\exists \lambda_1, \dots, \lambda_r \in \mathbb{R} : \left(\sum_{j=1}^r \lambda_j v_j = 0 \text{ und } (\exists j : \lambda_j \neq 0)\right)\right)$
	- Die leere Menge ist linear unabhängig
	- Eine einelementige Menge ist linear unabhängig
	$\{v,w\}$ ist linear abhängig \iff $((v=0) \text{ oder } (w=0) \text{ oder } (\exists \lambda \in \mathbb{R} \setminus \{0\} : v=\lambda w))$

	Lemma 2.3.11
	endliche Teilmenge $M \subseteq \mathbb{R}^n$
	(i) M ist linear unabhängig
	(ii) Jeder Vektor v in LH(M) hat eindeutige Darstellung als Linearkombination aus Vektoren in M.
	(iii) Für v aus M gilt: v nicht in LH(M \ {v})
$M_1 \subseteq M_2$	Bemerkung 2.3.12
	- M2 ist linear unabhängig => M1 auch
	Satz 2.3.13
	Menge linear unabhängiger Vektoren $M \subseteq \mathbb{R}^n$. Dann ist $ M \le n$.
	Basis eines Untervektorraums von \mathbb{R}^n (Def. 2.3.14)
	- Endliche Teilmenge B von U
	- B heißt Basis, wenn:
	(i) Die Menge B ist ein Erzeugendensystem für U , d.h. $LH(B) = U$.
	(ii) Die Menge B ist linear unabhängig.
	Lemma 2.3.15
	(i) B ist eine Basis von U
	(ii) Jeder Vektor in U besitzt eine eindeutige Darstellung Aquivalent als Linearkombination aus Elementen aus B.
	als Linearkombination aus Elementen aus B.

Standardbasis (Def. 2.3.17)

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right.$$

- Standardbasisvektoren

$$e_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \quad e_n := \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Basisauswahl- und ergänzungssatz (Satz. 2.3.18)

- ein Untervektorraum $U \subseteq \mathbb{R}^n$,
- ein Erzeugendensystem M von U,
- eine linear unabhängige Teilmenge $L \subseteq M$.

Dann gibt es eine Basis B von U mit: $L \subseteq B \subseteq M$

Korollar 2.3.19

Jeder Untervektorraum U von \mathbb{R}^n besitzt eine Basis

Steinitzscher Austauschsatz

Sei U ein UVR von \mathbb{R}^n

$$B = \{b1,...,br\}$$
 - Basis von U

$$v = Vektor in U: v = \sum_{j=1}^{r} \lambda_j b_j$$

Wenn $k \in \{1, ..., r\}$ so gewählt ist, dass $\lambda_k \neq 0$, dann ist auch $B' := (B \setminus \{b_k\}) \cup \{v\}$

=
$$\{b_1, \ldots, b_{k-1}, v, b_{k+1}, \ldots, b_r\}$$
 eine Basis von U .

Satz 2.3.22
Alle Basen eines UVRs haben gleich viele Elemente.
Dimension eines UVRs (Def. 2.3.23)
$\dim U := B \in \mathbb{N}_0$ für eine Basis B von U .
- Die Standardbasis von \mathbb{R}^n hat n Elemente.
- $U:=\{\lambda v\mid \lambda\in\mathbb{R}\}$ ist eine Gerade durch die 0. $\{v\}$ ist eine Basis $=>$ dim $U=1$
- $U := \mathrm{LH}(v,w) = \{\lambda v + \mu w \mid \lambda, \mu \in \mathbb{R}\}$ st eine Ebene durch 0 mit dim U = 2
Monotonie der Dimension (Lemma 2.3.26)
$Untervektorr\"{a}ume\ W\subseteq U\subseteq \mathbb{R}^n$
(a) $\dim W \leq \dim U$.
(b) $(W \subsetneq U) \Longrightarrow (\dim W < \dim U)$.

Affiner Unterraum

Verschobene Menge M (um Vektor p)

$$p + M := M + p := \{p + x \mid x \in M\} \subseteq \mathbb{R}^n$$

Affiner Unterraum (Def. 2.4.2)

$$R \subseteq \mathbb{R}^n$$
, $U \subseteq \mathbb{R}^n \cup VR$

$$R = p + U$$

- p = Fußpunkt
- Affiner Unterraum = verschobener Unvervektorraum
- Jeder Untervektorraum ist auch affiner Unterraum (p=0)
- p ist nicht eindeutig, U aber doch ($U = \{x y, x, y \text{ in } R\}$)

Dimension eines affinen Unterraums (Def. 2.4.4)

 $\dim R := \dim U$

- Jede einelementige Menge ist ein affiner Unterraum

Affinkombinationen (Def. 2.4.7)

Linearkombination der Form: $\sum_{j=1}^{r} \lambda_j v_j = \lambda_1 v_1 + \dots + \lambda_r v_r$

wobei: $\sum_{j=1}^{r} \lambda_j = 1$

Charakterisierung affiner Unterräume (Satz 2.4.8)

- (i) R ist ein affiner Unterraum von \mathbb{R}^n
- (ii) $R \neq \emptyset$ und $\forall x, y, z \in R, \lambda \in \mathbb{R} : x + \lambda(y z) \in R$.
- (iii) $R \neq \emptyset$ und jede Affinkombination von endlich vielen Vektoren in R ist in R

Algebraische Strukturen

	Halbgruppe:
	- Paar (S,*):
	S = Menge * = assoziative binäre Verknüpfung $\forall x, y, z \in S : (x * y) * z = x * (y * z)$
	- Kommutative Halbgruppe: Halbgruppe + $\forall x, y \in S : x * y = y * x$
	- Neutralelement (eindeutig): $\forall x \in S : x * e = x = e * x$
	Monoid:
	- Halbgruppe mit Neutralelement
Monoid $(S,*)$	- Invertierbar: $x * y = e = y * x$
	- Inverses von x (eindeutig): x^{-1}
	- $(S,*)^{ imes}=$ Menge aller invertierbaren Elemente
	- Invertierbarkeit des Produkts: $(x * y)^{-1} = y^{-1} * x^{-1}$
	- Potenzen: $x^n := \underbrace{x * \cdots * x}_{0} \& x^0 := e$
	- Potenzen: $x^{n} := \underbrace{x * \cdots * x}_{n} \underbrace{\& x^{0} := e}_{n}$ $x^{-n} := (x^{-1})^{n} = \underbrace{x^{-1} * \cdots * x^{-1}}_{n} \underbrace{\& x^{k+l} = x^{k} * x^{l} \text{und} (x^{k})^{l} = x^{kl}}_{n}$
	'n
	Gruppe:
	- Monoid, in dem jedes Element invertierbar ist
	ullet *: G imes G o G
	• $\forall x, y, z \in G : (x * y) * z = x * (y * z)$
	• $\exists e \in G : x * e = x = e * x$ • $\forall x \in G : \exists y \in G : x * y = e = y * x$
Monoid $(S,*)$	- Einheitsgruppe: $S^{ imes}:=(S,*)^{ imes}$
	$\forall x, y, a \in G : (a * x = a * y \Longrightarrow x = y) \& \forall x, y, z \in G : (x * a = y * a \Longrightarrow x = y)$

$H \subseteq G$	Untergruppe:
	(i) $e_G \in H$
	(ii) $\forall a, b \in H : a * b \in H$
	(iii) $\forall a \in H : a^{-1} \in H$.
	- H ist mit die (ko)eingeschränkte Operation wieder eine Gruppe
	- Jeder Untervektorraum U von \mathbb{R}^n ist eine Untergruppe von $(\mathbb{R}^n,+)$.
	Gruppenhomomorphismus:
	$\forall x, y \in G : \varphi(x *_G y) = \varphi(x) *_H \varphi(y)$
	$=> \varphi(e_G) = e_H \& \forall x \in G : \varphi(x^{-1}) = (\varphi(x))^{-1}$
	- Injektiv, wenn: $\ker \varphi = \{e_G\}$
	- Isomorphismus wenn phi bijektiv Die Umkehrfunktion ist auch ein Isomorphismus Zwei Gruppen sind isomorph, falls es ein Isomorphismus existiert
	- Endomorphismus wenn Zielbereich=Def.bereich
	Falls auch Isomorphismus => Automorphismus
	Ring:
	(i) $(R,+)$ ist eine kommutative Gruppe.
	(ii) (R,\cdot) ist ein Monoid.
	(iii) $\forall x, y, z \in R : x \cdot (y+z) = x \cdot y + x \cdot z \text{und} \forall x, y, z \in R : (y+z) \cdot x = y \cdot x + z \cdot x$
	- Kommutativ, falls die Multiplikation kommutativ ist
	- Ein Element ist invertierbar, falls es bezüglich die Multiplikation inv.bar ist
	- Rechenregeln:
	(a) $\forall x \in R : 0_R \cdot x = 0_R = x \cdot 0_R$.
	(b) $\forall x \in R : -x = (-1_R) \cdot x = x \cdot (-1_R)$.
	$na := \underbrace{a + \cdots + a}_{n}$ und $a^{n} := \underbrace{a \cdot \cdots \cdot a}_{n}$
	$a^{m+n} = a^m \cdot a^n$ und $(m+n)a = ma + na$

Unterring: (i) T ist eine Untergruppe von (R, +)(ii) $1_R \in T$ (iii) $\forall a, b \in T : a \cdot b \in T$. Ringhomomorphismus: $\forall x, y \in R : \varphi(x + y) = \varphi(x) + \varphi(y)$ $\forall x, y \in R : \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$ $\varphi(1_R) = 1_T.$ - Genauso für Iso-/Endo- und Automorphismen

Körper:

- (i) Die Einheitengruppe ist gegeben durch: $K^{\times} = K \setminus \{0_K\}$.
- (ii) Die Multiplikation ist kommutativ.
- Nur 0 ist also nicht invertierbar

$$(a+b)^2 = a^2 + 2ab + b^2$$
 und $(a+b)(a-b) = a^2 - b^2$.

- Körper sind immer nullteilerfrei: $a \cdot b = 0_K$ folgt immer $a = 0_K$ oder $b = 0_K$

 $(\mathbb{F}_2 \text{ und } \mathbb{F}_4)$

			\boldsymbol{A}			•	0	1	\boldsymbol{A}	B	
0	0	1	\boldsymbol{A}	B	und				0		
1	1	0	B	\boldsymbol{A}	und	1	0	1	\boldsymbol{A}	B	
\boldsymbol{A}	A	B	0	1		\boldsymbol{A}	0	\boldsymbol{A}	B	1	
B	B	\boldsymbol{A}	1	0		B	0	B	1	\boldsymbol{A}	

Ring(Z,+,*) & Quotientenringe

Division mit Rest

 $a \in \mathbb{Z}$, $m \in \mathbb{N}$, $k, r \in \mathbb{Z}$

a = mk + r $und \ 0 \le r < m$ (r = Rest)

Teilbarkeitsrelation

- m teilt a (a ist durch m teilbar)

m|a <=> a = mk

- (a) $\forall a \in \mathbb{Z} : 1 | a$.
- (b) $\forall a \in \mathbb{Z} : (0|a \iff a = 0)$.
- (c) $\forall a \in \mathbb{Z} : a | a$.
- (d) $\forall a, b, c \in \mathbb{Z} : (a|b \ und \ b|c) \Longrightarrow a|c.$
- (e) $\forall a, b \in \mathbb{Z} : (a|b \ und \ b|a) \iff |a| = |b|$.

Kongruent modulo m

$$m|(a-b)$$
 $a \equiv_m b$ oder $a \equiv b \pmod{m}$

- m = 0 => a = b
- m = 1 => gilt für alle a,b aus Z
- a und b haben den gleichen Rest modulo m

Relation

Teilmenge $\sim \subseteq X \times X$

- man schreibt auch $x \sim y$ anstelle $(x, y) \in \sim$

reflexiv, falls $\forall x \in X : x \sim x$

 $symmetrisch, \, \text{falls} \,\, \forall x,y \in X : x \sim y \implies y \sim x$

transitiv, falls $\forall x, y, z \in X : (x \sim y \text{ und } y \sim z) \Longrightarrow x \sim z$

- Äquivalenzklasse: $[x]_{\sim} := \{y \in X \mid x \sim y\}$

Äquivalenzrelation

	- Für m aus Z ist Kongruenz modulo m immer eine Äquivalenzrelation
$q: X \to Q$	- Äquivalenzrelation auf X: $(x \sim_q y)$: $\iff q(x) = q(y)$
q.11 · q	q(x) = q(y)
	Quotientenmengen und -abbildungen
	- Quotientenmenge (Faktorenmenge): X/~
	- Quotientenabbildung: $q:X \to X/\sim$
	$\forall x, y \in X : x \sim y \iff q(x) = q(y)$
	- Menge aller Äquivalenzklassen modulo m: $\mathbb{Z}/m\mathbb{Z} := \mathbb{Z}/\equiv_m$
	Menge and Aquivalenzkiassen modalo in. 2m2:-2i-m
$m \in \mathbb{N}_0$	Ringstruktur über Quotientenmengen
	- Quotientenmenge die ein Ringhomomorphismus: $q: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}, x \mapsto [x]_m$
	Für $[x]_m, [y]_m \in \mathbb{Z}/m\mathbb{Z}$ gilt dann $[x]_m + [y]_m = [x+y]_m$ und $[x]_m \cdot [y]_m = [x\cdot y]_m$. Das Einselement ist $[1]_m$, das Nullelement ist $[0]_m$.
	- Für m = 0 ist das ein Ringisomorphismus: $\mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$
	- Else - Bijektion: $b:\{0,\ldots,m-1\}\to\mathbb{Z}/m\mathbb{Z}, r\mapsto q(x)=[r]_m \big(\mid \mathbb{Z}/m\mathbb{Z}\mid =m\big)$
	Für jedes $m \in \mathbb{N}$ ist $\mathbb{Z}/m\mathbb{Z}$ ein endlicher kommutativer Ring
	Lemma 3.4.15
	- R ein endlicher kommutativer Ring mit 0 != 1, dann Äquivalent:
	(i) R ist ein Körper.
	(ii) R ist nullteilerfrei, d.h. $\forall a,b \in R : (ab = 0_R) \Longrightarrow (a = 0_R \ oder \ b = 0_R)$
	- Nicht äquivalent für unendliche Ringe

Primzahl:
$p > 1$ und $\forall m \in \mathbb{N} : (m p \implies (m = 1 \text{ oder } m = p))$
(i) m ist eine Primzahl.
(ii) Der Ring ℤ/mℤ ist ein Körper.
Lemma von Euklid
$p (ab) \Longrightarrow (p a \ oder \ p b)$
- Für jede Primzahl gibt es einen Körper mit p Elementen ($\mathbb{Z}/p\mathbb{Z}$)

Komplexe Zahlen

Definition:

- \mathbb{C} = Körpererweiterung von R ($i^2 = -1$)
- Jedes Element z = a + ib ist eindeutig

$$(a+ib=0) \iff (a=0 \ und \ b=0)$$

(a)
$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$$
.

(b)
$$(a_1+ib_1)-(a_2+ib_2)=(a_1-a_2)+i(b_1-b_2)$$
.

$$(c) \ (a_1+\mathrm{i} b_1)\cdot (a_2+\mathrm{i} b_2)=(a_1a_2-b_1b_2)+\mathrm{i} (a_1b_2+a_2b_1).$$

(d) Für
$$a + ib \neq 0$$
 gilt: $\frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2+b^2} = \frac{a}{a^2+b^2} + i \cdot \frac{-b}{a^2+b^2}$

Komplexkonjugiertes: $\overline{z} := a - ib$

$$z\overline{z} = (a+ib)(a-ib) = a^2 - i^2b^2 = a^2 + b^2$$

- Betrag: $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$
- Re : C -> R und Im : C -> R sind Gruppenhomomorphismen ((C,+) & (R,+))
- iR ist Untergruppe von (C,+)
- Konjunktion ist ein Körperautomorphismus

Komplexe Exponentialfunktion: $\exp : \mathbb{C} \to \mathbb{C}^{\times}, z \mapsto e^{z} := \sum_{k=0}^{\infty} \frac{z^{k}}{k!}$

- Ist surjektiver Gruppenhomo. von $(\mathbb{C},+)$ in $(\mathbb{C}^{\times},\cdot)$

Fundamentalsatz der Algebra:

- Jedes Polynom mit komplexe Koeffizienten hat eine Lösung für p(z) = 0
- In Linearfaktoren zerlegbar: $p(X) = a_k(X z_1)(X z_2) \cdots (X z_k)$
- Körper ist algebraisch abgeschlossen, falls jedes nichtkonstante Polynom eine Nullstelle hat

Vektorräume

Vektorraum über K:

 $\begin{array}{lll} \text{(iii)} & \forall \lambda, \mu \in \mathbb{K}, v \in V: & (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v. & \text{(Skalares Distributivgesetz II)} \\ \text{(iv)} & \forall \lambda, \mu \in \mathbb{K}, v \in V: & (\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v). & \text{(Skalares Assoziativgesetz)} \\ \text{(v)} & \forall v \in V: & 1_{\mathbb{K}} \cdot v = v. & \text{(Wirkung des Einselementes)} \end{array}$

Lemma 4.1.5

(i)
$$\lambda v = 0_V \iff (\lambda = 0_{\mathbb{K}}) \ oder \ (v = 0_V)$$
).

(ii)
$$(-1_{\mathbb{K}})v = -v$$
.

Untervektorraum (siehe oben)

- ker A ist UVR von \mathbb{K}^n .
- Die Menge aller symmetrischen Matrizen ($A^{\top}=A$) ist UVR von $\mathbb{K}^{n\times n}$

Affiner Unterraum (siehe oben)

Lineare Abbildungen

$\varphi: V \to W$	Homomorphismus von K-Vektroräumen:
	$\forall x, y \in V : \varphi(x+y) = \varphi(x) + \varphi(y)$ $\varphi(0) = 0$
	$\forall x \in V, \lambda \in \mathbb{K} : \varphi(\lambda x) = \lambda \varphi(x)$ $\int \varphi(0_V) = 0_W$
	- Isomorphismus, falls bijektiv
	- Die Umkehrfunktion ist auch lineare Abbildung
	- Endomorphismus, falls Def.bereich = Zielbereich
	- Automorphismus, falls beide
	- U UVR von V => phi(U) UVR von W Bild(phi) = phi(V) UVR von W
	- U UVR von W => phi-1(U) UVR von V ker(phi) = phi-1({0}) UVR von V
	- injektiv, falls ker phi = {0}
	- Beispiele:
	$\Phi_A: \mathbb{K}^n \to \mathbb{K}^m, x \mapsto Ax$
	$\mathbb{K}^{n \times p} \to \mathbb{K}^{m \times p}, X \mapsto AX \qquad \mathbb{K}^{m \times n} \to \mathbb{K}^{m \times p}, X \mapsto XB$
	$\operatorname{Re}:\mathbb{C}\to\mathbb{R},\ \operatorname{Im}:\mathbb{C}\to\mathbb{R}\ \operatorname{und}\ \mathbb{C}\to\mathbb{C},\ z\mapsto\overline{z}$ (R-Linear, aber nicht C-linear)
	Menge aller linearen Abbildungen (Hom _K (V,W).)
	- UVR des Raumes $oldsymbol{W}^{oldsymbol{V}}$ (alle Abbildungen von V nach W)

Lineare Hülle, Basis, Dimension

Isomorphismen und Basen:

 $\varphi: V \to W$ sei eine lineare Abbildung.

- $-M\subseteq V$ Erzeugendensystem von V und $arphi_{:}$ urjektiv =>arphi(M)Erzeugendensystem für W
- $L \subseteq V$ linear unabhängig und φ njektiv => $\varphi(L)$ linear unabhängig
- $-B \subseteq V$ Basis von V und φ bijektiv => $\varphi(B)$ Basis von W

$$-\psi: \mathbb{K}^n \to V, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{j=1}^n x_j v_j$$

- (a) Die Abbildung $\psi : \mathbb{K}^n \to V$ ist \mathbb{K} -linear, also ein Homomorphismus von \mathbb{K} -Vektorräumen.
- (b) Die Abbildung $\psi : \mathbb{K}^n \to V$ genau dann injektiv, wenn $\{v_1, \dots, v_n\}$ linear unabhängig ist.
- (c) Die Abbildung $\psi : \mathbb{K}^n \to V$ genau dann surjektiv, wenn $\{v_1, \dots, v_n\}$ ein Erzeugendensystem ist.
- (d) Die Abbildung $\psi : \mathbb{K}^n \to V$ genau dann ein Isomorphismus von \mathbb{K} -Vektorräumen, wenn $\{v_1, \ldots, v_n\}$ eine Basis von V ist.

Endlich dimensionale Vektorräume

- (i) Es gibt eine endliche Menge $M \subseteq V$, die V erzeugt.
- (ii) Es gibt eine Zahl $n \in \mathbb{N}_0$, sodass jede Menge mit mehr als n Elementen linear abhängig ist.
- (iii) Es gibt eine endliche Basis $B \subseteq V$.
- (iv) Es gibt eine Zahl $n \in \mathbb{N}_0$, sodass $V \cong_{\mathbb{K}} \mathbb{K}^n$.
- Jede Basis von V hat gleich viele Elemente
- Dimension = Anzahl der Elemente in einer Basis $(\dim_{\mathbb{K}}(V) = \dim(V) \in \mathbb{N})$
- auch min. Größe eines Erzeugendensystems
- auch max. Größe eines lin.unabh. Tilmenge
- auch = n mit $V \cong \mathbb{K}^n$

$W \subseteq V$ Monotonie der Dimension

- Verallgemeinerung von der Definition oben
- + W unendl. dimensional => V unendlich dimensional

Geordnete Basis:

- Tupel aus die Vektoren einer Basis (Reihenfolge ist wichtig) $\mathbb{K}^n \to V, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{k=1}^n x_k b_k$
- Vektorraum-Isomorphismus:

$$\to V, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{k=1}^n x_k b_k$$

Koordinatenvektor:

$$(\cdot)_{\mathsf{B}}: V \to \mathbb{K}^n, \quad v = \sum_{k=1}^n x_k b_k \mapsto (v)_{\mathsf{B}} := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- Darstellung bezüglich einer Basis:
- Wir stellen einen Vektor als Linearkombination aus Basisvektoren dar. Koordinatenvektor = Vektor aus die Skalaren

Koordinatenvektor bestimmen:

$$x_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + x_2 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + x_3 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + x_4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
Resis

=> Gauß:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} a/2 - d/2 \\ b \\ c \\ a/2 - b - c + d/2 \end{pmatrix}$$

Lineare Abbildungen zwischen Vektorräume & Darstellungsmatrizen

Rang einer linearen Abbildung

 $\operatorname{rg}\varphi := \dim_{\mathbb{K}}(\operatorname{Bild}(\varphi)) = \dim_{\mathbb{K}}(\varphi(V)) \in \mathbb{N}_0 \cup \{\infty\}$

Fortsetzungssatz

- Eine lin. Abbildung ist eindeutig, wenn man sie über ein Erzeugendensystem kennt
- Eine lin. Abbildung ist $^+$ + Isomorphismus $Hom_{\mathbb{K}}(V,W) \to W^B$, $\varphi \mapsto \varphi|_{\overline{B}}$ für eine Basis B

Darstellungsmatrix einer Abbildung

- Für jede Matrix A ist $\varphi_A : \mathbb{K}^n \to \mathbb{K}^m$, $x \mapsto Ax$ linear $(\varphi_A \in \text{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^n))$
- In den Spalten der Matrix stehen die Bilder der Standardbasisvektoren
- Zu jeder linearen Abbildung gibt es eine Darstellungsmatrix: $\mathbf{M}_{\mathsf{E},\mathsf{E}}(\varphi)$
- Matrixmultiplikation entspricht Verketten von Abbildungen:

$$\varphi_A \circ \varphi_B = \varphi_{AB}$$
 & $\mathbf{M}_{\mathsf{E},\mathsf{E}}(\varphi) \mathbf{M}_{\mathsf{E},\mathsf{E}}(\psi) = \mathbf{M}_{\mathsf{E},\mathsf{E}}(\varphi \circ \psi)$

- Einheitsmatrix = Identitätsabbildung: $\varphi_{\mathbb{1}_n} = \mathrm{id}_{\mathbb{K}^n}$ und $\mathrm{M}_{\mathsf{E},\mathsf{E}}(\mathrm{id}_{\mathbb{K}^n}) = \mathbb{1}_n$
- Isomorphismus zwischen Matrix und Abbildung:

$$\mathbb{K}^{m \times n} \to \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^{n}, \mathbb{K}^{m}), \quad A \mapsto \varphi_{A} \qquad \& \qquad \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^{n}, \mathbb{K}^{m}) \to \mathbb{K}^{m \times n}, \quad \varphi \mapsto \operatorname{M}_{\mathsf{E}, \mathsf{E}}(\varphi)$$

- $\varphi = \varphi_A : \mathbb{K}^n \to \mathbb{K}^m$ ist bijektiv, wenn m=n und A (quadratisch) multiplikativ invertierbar ist $\varphi_{A^{-1}} = (\varphi_A)^{-1} \quad und \quad (M_{E,E}(\varphi))^{-1} = M_{E,E}(\varphi^{-1})$

$A \in \mathbb{K}^{m \times n}$ Darstellungsmatrix einer linearen Abbildung

$$\varphi_A:\mathbb{K}^n\to\mathbb{K}^m, \quad x\mapsto Ax$$

- Lineare Abbildung: $\varphi: V \to W$, $v \mapsto ((\cdot)_{B_W})^{-1}(A(v)_{B_V}) = ((\cdot)_{B_W})^{-1} \circ \varphi_A \circ ((\cdot)_{B_V})(v)$
- In den Spalten von A stehen die Bilder der Basisvektoren aus Bv, dargestellt bzgl. Bw
- Für jede lineare Abbildung existiert A: $\forall v \in V : (\varphi(v))_{B_W} = A(v)_{B_V}$
- A = Darstellungsmatrix von phi bzgl. Bv und Bw: $\forall v \in V$: $(\varphi(v))_{B_W} = M_{B_W,B_V}(\varphi)(v)_{B_V}$
- Multiplizieren von Matrizen enspricht dem Verketten von Abbildungen:

$$\mathbf{M}_{\mathsf{B}_{W},\mathsf{B}_{V}}\left(\varphi\right)\mathbf{M}_{\mathsf{B}_{V},\mathsf{B}_{U}}\left(\psi\right)=\mathbf{M}_{\mathsf{B}_{W},\mathsf{B}_{U}}\left(\varphi\circ\psi\right)$$

- Einheitsmatrix = Identitätsabbildung: $M_{B_V,B_V}(id_V) = \mathbb{1}_n$
- Isomorphismus (Abbildung -> Darstellungsmatrix): $\operatorname{Hom}_{\mathbb{K}}(V,W) \to \mathbb{K}^{m \times n}, \quad \varphi \mapsto \operatorname{M}_{\mathsf{B}_W,\mathsf{B}_V}(\varphi)$
- Bijektiv, falls Darstellungsmatrix invertierbar ist (insbesondere: m = n)
 - Falls bijektiv: $(M_{B_W,B_V}(\varphi))^{-1} = M_{B_V,B_W}(\varphi^{-1})$

Basiswechselmatrix:

- Darstellungsmatrix von id, bzgl. 2 Basen: $M_{C,B}(id_V) \in \mathbb{K}^{n \times n}$

$$(v)_{\mathsf{C}} = \mathbf{M}_{\mathsf{C},\mathsf{B}}(\mathrm{id})(v)_{\mathsf{B}}$$

- Basiswechselmatrix in andere Richtung = Inverse: $M_{B,C}(id_V) = (M_{C,B}(id_V))^{-1} = M_{B,C}(id_V^{-1})$
- Basiswechselmatrix bzgl. andere Basen:

$$\mathbf{M}_{\mathsf{C}_{W},\mathsf{C}_{V}}(\varphi) = \mathbf{M}_{\mathsf{C}_{W},\mathsf{C}_{V}}(\mathrm{id}_{W} \circ \varphi \circ \mathrm{id}_{V}) = \mathbf{M}_{\mathsf{C}_{W},\mathsf{B}_{W}}(\mathrm{id}_{W})\mathbf{M}_{\mathsf{B}_{W},\mathsf{B}_{V}}(\varphi)\mathbf{M}_{\mathsf{B}_{V},\mathsf{C}_{V}}(\mathrm{id}_{V})$$

- Die eine Richtung ist immer einfacher zu bestimmen!
- Siehe Beispiel 4.3.14

lede invertierbare Matrix ist eine Basiswechselmatrix

- Für jede $S \in GL(n, \mathbb{K})$ gibt es geordnete Basen C und B mit: $S = M_{B,C}(id_V)$

Smithsche Normalform:

- Zu jeder lin. Abbildung existieren Bw und Bv mit:

$$\mathbf{M}_{\mathsf{B}_{\mathsf{W}},\mathsf{B}_{\mathsf{V}}}\left(\varphi\right) = \begin{pmatrix} 1 & & 0 & 0 & \cdots & 0 \\ & \ddots & & \vdots & & \vdots \\ 0 & & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Eine Matrix in Smith-Normalform bringen:

- Gauß-Algorithmus um die Matrix in erw. Zeilenstufenform zu bringen
- Danach Spaltenumformungen um die Matrix in Smith-Normalform zu bringen
- Zeilenumformungen = Linksmultiplikation = Basiswechsel im Definitionsbereich
- Spaltenumformungen = Rechtsmultiplikation = Basiswechsel im Zielbereich

Äquivalenz von Matrizen

- Äquivalenz = beschreiben die selbe lin. Abbildung, nur bzgl. andere Basen
- Falls existieren invertierbare Matrizen S, T mit: SAT = B
- Jede Matrix ist äquivalent zu einer Matrix in Smith-Normalform
- Zwei Matrizen sind äquivalent, falls die den gleichen Rang haben

Direkte Summen & Komplemente

Direktes Produkt von Vektorräumen

$$(V_1 \times \cdots \times V_r, +, \cdot)$$

- Operationen:

$$(v_1,\ldots,v_r)+(w_1,\ldots,w_r):=(v_1+w_1,\ldots,v_r+w_r)$$

$$\lambda \cdot (v_1, \dots, v_r) := (\lambda v_1, \dots, \lambda v_r)$$

Basis des direkten Produkts:

- $-V_1,V_2$ Vektorräume B eine Basis von V1 und C eine Basis von V2
- Basis von V1xV2: $\{(b,0) | b \in B\} \cup \{(0,c) | c \in C\}$

$$\dim_{\mathbb{K}}(V_1 \times V_2) = \dim_{\mathbb{K}}(V_1) + \dim_{\mathbb{K}}(V_2)$$

- Der Durchschnitt von Untervektorräumen ist wieder ein UVR:

$$U := \bigcap_{j \in J} U_j = \big\{ v \in V \bigm| \forall j \in J : v \in U_j \big\}$$

- Die Summe von Untervektorräumen ist wieder ein UVR:

$$U_1 + \dots + U_r := \{u_1 + \dots + u_r \mid \forall j \le r : u_j \in U_j\} = \mathrm{LH}_{\mathbb{K}} (U_1 \cup \dots \cup U_r)$$

Lineare Abbildungen und kartesische Produkte

- Addition ist K-linear: $v \times v \times v \to v$, $v \times v \to v$, $v \times v \to v$
- $\operatorname{Bild}(U_1 \times \cdots \times U_r \to V, \quad (u_1, \dots, u_r) \mapsto u_1 + \cdots + u_r = U_1 + \cdots + U_r$
- $\ker(\varphi: U_1 \times U_2 \to V, (u_1, u_2) \mapsto u_1 + u_2 = \{(x, -x) \mid x \in U_1 \cap U_2\} \cong U_1 \cap U_2$

Direkte Summe von Vektorräume:
$V = \bigoplus_{j=1}^{r} U_j = U_1 \oplus \cdots \oplus U_r, \text{ falls } U_1 \times \cdots \times U_r \to V, (u_1, \dots, u_r) \mapsto u_1 + \cdots + u_r \text{bijektiv}$
- Jedes v aus V lässt sich eindeutig schreiben als Summe von Elementen aus die UVR
- Für 2 UVR gilt: $V = U \oplus W \iff (U + W = V \text{ und } U \cap W = \{0\})$
W = Vektorraumkomplement von U jedes v aus V lässt sich eindeutig schreiben als v = u + w dim(W) = dim(V) - dim(U)
- Wie findet man ein Vektorraumkomplement? (Beispiel 4.4.12)

Quotientenektorräume

U UVR von V	Äquivalenzrelation auf Vektorraum									
	$v \equiv_U w : \iff v - w \in U$									
	K-lineare surjektive Quotientenabbildung:									
	$q:V \to V/U, v \mapsto [v]_U := [v]_{\equiv_U}$									
	- Quotientenmenge $V/U:=V/\equiv_U=$ Quotientenvektorraum (Faktorraum) von V modulo U									
	$[v]_U + [w]_U = [v + w]_U$ $\lambda \cdot [v]_U = [\lambda \cdot v]_U$ Nullvektor = $[0]_U$									
	- ker(q) = U									
	- Die Elemente in V/U sind affine Unterräume parallel zu U mit unterschiedlichen									
	Aufpunkten: $[p]_U = \{x \in V \mid x-p \in U\} = p+U$ Nichteindeutigkeit von p <=> Nichtinjektivität von q									
	- Jeder Untervektorraum ist der kern einer linearen Abbildung									
	Faktorisieren von linearen Abbildungen									
	- Lineare Abbildungen $q:V\to Q$ und $\varphi:V\to W$, q sei surjektiv $V \xrightarrow{\varphi} W$									
	$(i) \ker(q) \subseteq \ker(\varphi)$ Äquivalent									
	(ii) Es gibt eine Abbildung $\widetilde{\varphi}: Q \to W$ mit $\varphi = \widetilde{\varphi} \circ q$.									
	- "phi faktorisiert durch q"									
	- $\widetilde{\varphi}$ ist eindeutig (falls existiert), linear und $\operatorname{Bild}(\widetilde{\varphi}) = \operatorname{Bild}(\varphi)$									
	Homomorphiesatz									
	- Isomorphismus von K-Vektorräume: $\overline{\varphi}: V/\ker(\varphi) \to \operatorname{Bild}(\varphi), [v]_{\ker(\varphi)} \mapsto \varphi(v)$									
	also für jedes phi: $\varphi = \iota \circ \overline{\varphi} \circ q$									
	$-q:V \to V/\ker(\varphi) = \text{die (surjektive) Quotientenabbildung} \qquad V \xrightarrow{\varphi} W$									
	$-\overline{\varphi}:V/\ker(\varphi)\to \operatorname{Bild}(\varphi)=$ (bijektiver) Vektorraumisomorphismus q									
	$-\iota: \operatorname{Bild}(\varphi) \to W = \operatorname{die} (\operatorname{injektive}) \operatorname{Inklusionsabbildung} V/\ker(\varphi) \xrightarrow{\overline{\varphi}} \operatorname{Bild}(\varphi)$									

$V = U \oplus W$	Quotienten und Komplemente:
	- Isomorphismus von K-Vektorräume: $q _W:W\to V/U, x\mapsto q(x)=[x]_U$
	- Falls V endlich dimensional: $\dim_{\mathbb{K}}(V/U) = \dim_{\mathbb{K}}(V) - \dim_{\mathbb{K}}(U)$
	- Wie findet man eine Basis eines Quotientenraums? (Siehe Beispiel 4.5.9)
	Dimensionsformel für lineare Abbildungen:
	$\operatorname{rg}(\varphi) + \dim_{\mathbb{K}} \ker(\varphi) = \dim_{\mathbb{K}}(V)$ $\operatorname{rg}(\varphi) = \dim_{\mathbb{K}}(\operatorname{Bild}(\varphi))$
	Dimensionsformel für Summe und Schnitt
	$\dim_{\mathbb{K}}(U+W) = \dim_{\mathbb{K}}(U) + \dim_{\mathbb{K}}(W) - \dim_{\mathbb{K}}(U \cap W)$

Der Dualraum

	Dualraum:
	- Vektorraum aller Linearformen auf V: $V^* := \operatorname{Hom}_{\mathbb{K}}(V,\mathbb{K})$
	Linearform:
	- Element in $\operatorname{Hom}_{\mathbb K}(V,\mathbb K)$ also eine lineare Abbildung $\sigma\colon\! V\to\mathbb K$
$\varphi:V\to W$	Dualisierung von linearen Abbildungen
	- Lineare Abbildung, die eine Linearform auf W zu eine Linearform auf V macht:
	$\varphi^*:W^*\to V^*, \sigma\mapsto\sigma\circ\varphi,\qquad \text{(sigma: W -> K (also teil von W*))}$
	- Falls $arphi$ surjektiv> $arphi^*$ ist injektiv
	- Falls $arphi$ bijektiv> $arphi^*$ ist bijektiv
	$-\left(\mathrm{id}_{V}\right)^{*}=\mathrm{id}_{V^{*}}$
	$-\left(\varphi\circ\psi\right)^{*}=\psi^{*}\circ\varphi^{*}$
	Untervoktorraum vom Dualraum:
	- Menge aller Linearformen auf V, die auf U verschwinden: $\{\sigma \in V^* \mid \sigma _U = 0\} \subseteq V^*$
	- Isomorph zum Dualraum des Faktorraums (V/U)*:
	$(V/U)^* \rightarrow \{\rho \in V^* \mid \rho _U = 0\}, \sigma \mapsto q^*(\sigma) = \sigma \circ q \qquad (q = Quotientenabbildung)$
	Auswertungsabbildung:
	- Linearform auf dem Dualraum: $\eta_V(v):V^* \to \mathbb{K}, \sigma \mapsto \sigma(v)$

Bidual:

$$(\varphi^*)^* \circ \eta_V = \eta_W \circ \varphi.$$

$$V \xrightarrow{\varphi} W \qquad \qquad \downarrow \eta_{W} \qquad \qquad \downarrow \eta$$

- Lineare Abbildung, die jeden Vektor auf die dazugehörige Auswertungsabbildung:

$$\eta_V: V \to (V^*)^*, \quad v \mapsto \eta_V(v),$$

- Koordinatenabbildung (lineare Abbildung, die jeden Vektor auf der j-te Koordinate): $b_j^*: V \to \mathbb{K}, \quad \sum_{i \in I} \lambda_i b_i \mapsto \lambda_j.$

- Lineare unabhängige Teilmenge von V*: $\{b_i^* | i \in I\}$
- Der Dualraum ist isomorph zu $\ \mathbb{K}^{B_{j}}$ und $\ \mathbb{K}^{I_{j}}$
- $\eta_V: V \to (V^*)^*$, $v \mapsto \sigma \mapsto \sigma(v)$ ist injektiv

Geordnete Basis des Dualraums (duale Basis):

- B = geordnete Basis des Vektorraums V
- Koordinatenabbildungen = geordnete Basis: $B^* := (b_1^*, ..., b_n^*)$

$$\dim_{\mathbb{K}}(V^*) = \dim_{\mathbb{K}}(V) \ und \ V^* \cong_{\mathbb{K}} V$$

-
$$(\sigma)_{B^*} = (M_{E,B}(\sigma))^{\top}$$
 (sigma = Linearform)

Transponieren entspricht Dualisieren:

- Das Dualisieren einer Abbildung enspricht dem Transponieren der Matrix:

$$\mathbf{M}_{\mathsf{B}^*,\mathsf{C}^*}(\varphi^*) = (\mathbf{M}_{\mathsf{C},\mathsf{B}}(\varphi))^{\top}$$

Der Bidual ist endlich dimensional:

- Der Bidualraum eines Vektorraums ist natürlich isomorph dazu:

$$\eta_V : V \to (V^*)^*, \quad v \mapsto \eta(v) : \sigma \mapsto \sigma(v)$$

- Für Beispiel siehe 4.6.12

Permutationen

- Eindeutige Anordnung einer Menge

Symmetrische Gruppe:

- Menge aller Permutationen auf einer Menge: $\mathcal{S}(n) := \{\sigma : \{1, ..., n\} \rightarrow \{1, ..., n\} \mid \sigma \text{ ist bijektiv}\}$
- Verkettung von Abbildungen
- Größe: $|\mathcal{S}(n)| = n!$

Transposition:

Transposition:

- Permutation, die genau 2 Elemente vertauscht: $\tau:\{1,...,n\} \to \{1,...,n\}, \quad j \mapsto \begin{cases} l & \text{falls } j=k,\\ k & \text{falls } j=l,\\ j & \text{sonst.} \end{cases}$

Permutation = Produkt von Transpositionen:

- Die Gruppe $\mathcal{S}(n)$ wird von den Transpositionen erzeugt

$$\sigma = \tau_r \circ \cdots \circ \tau_1$$
 (für r = 0 ist das gleich id)

Signum einer Permutation

$$\operatorname{sgn}(\sigma) = \prod_{\substack{\{i,j\} \subseteq \{1,\dots,n\}\\ i \neq j}} \frac{\sigma(i) - \sigma(j)}{i - j} \operatorname{sgn}(\sigma) \in \{-1,1\}$$

- Signum einer Transposition = -1
- Signum ist ein Gruppenhomomorphismus:

$$\forall \sigma, \tau \in \mathscr{S}(n) : \operatorname{sgn}(\sigma \circ \tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau) \qquad \operatorname{sgn} : (\mathscr{S}(n), \circ) \to \mathbb{Z}^{\times} = (\{-1, 1\}, \cdot)$$

$$sgn(\sigma) = (-1)^r$$
 (r = Anzahl von Transpositionen in der Permutation)

Alternierende Gruppe:
- Untergruppe der geraden Permutationen: $\mathcal{A}(n) := \ker(\operatorname{sgn}) = \{\sigma \in \mathcal{S}(n) \mid \operatorname{sgn}(\sigma) = 1\}$
Ungerade Permutationen:
$\{\sigma \in \mathcal{S}(n) \mid \operatorname{sgn}(\sigma) = -1\} = \{\rho \circ \tau \mid \rho \in \mathcal{A}(n)\}$
- Es gibt genauso viele gerade wie ungerade Permutationen: $ \mathscr{A}(n) = \frac{n!}{2}$

Alternierende Abbildungen

|- N-fache kartesische Produkt: $V^n := V \times \cdots \times V = \{(v_1, \dots, v_n) \mid \forall j \in \{1, \dots, n\} : v_j \in V\}$

Linear in der j-ten Komponente:

$$\omega(v_1, \dots, v_{j-1}, v + v', v_{j+1}, \dots, v_n) = \omega(v_1, \dots, v_{j-1}, v, v_{j+1}, \dots, v_n) + \omega(v_1, \dots, v_{j-1}, v', v_{j+1}, \dots, v_n)$$

$$\omega(v_1,\ldots,v_{j-1},\lambda v,v_{j+1},\ldots,v_n)=\lambda\omega(v_1,\ldots,v_{j-1},v,v_{j+1},\ldots,v_n)$$

- Bilinear, falls n = 2
- Multilinear, falls linear in jeder Komponente

Alternierende Abbildung:

- Falls multilinear & sobald mind. 2 Komponente gleich sind, liefert 0:

$$(\exists i, j \in \{1, \dots, n\} : (v_i = v_j \text{ und } i \neq j)) \implies \omega(v_1, \dots, v_n) = 0$$

Rechenregeln für alternierende Abbildungen:

- μ -fache der i-ten Komponente auf die j-te addieren:

$$\omega(v_1,...,v_{j-1},v_j+\mu v_i,v_{j+1},...,v_n)=\omega(v_1,...,v_{j-1},v_j,v_{j+1},...,v_n)$$

- i-ten und j-ten Eintrag vertauschen:

$$\omega(v_1,\ldots,v_{i-1},v_j,v_{i+1},\ldots,v_{j-1},v_i,v_{j+1},\ldots,v_n) = (-1) \cdot \omega(v_1,\ldots,v_{i-1},v_i,v_{i+1},\ldots,v_{j-1},v_j,v_{j+1},\ldots,v_n)$$

- Koeffizient aus beliebiger Komponente herausziehen:

$$\omega(v_1,\ldots,v_{j-1},\lambda v,v_{j+1},\ldots,v_n)=\lambda\omega(v_1,\ldots,v_{j-1},v,v_{j+1},\ldots,v_n)$$

Alternierende Abbildung und Permutationen:

$$\omega(v_{\sigma(1)}, \dots, v_{\sigma(n)}) = \operatorname{sgn}(\sigma) \cdot \omega(v_1, \dots, v_n)$$

Transformationsformel für alt. Abbild	lungen:	
		$v_1,\ldots,v_n\in \mathrm{LH}_\mathbb{K}(u_1,\ldots,u_n)$
- Δ berechnen: v als Linearkombination schreiben: $v_j = \sum_{i=1}^n \alpha_{i,j} u_i - m$	$ait \ \alpha_{i,j} \in \mathbb{K}$	
$\Delta = \sum_{\sigma \in \mathscr{S}(n)} \operatorname{sgn}(\sigma) \cdot \alpha_{\sigma(1),1} \cdots \alpha_{\sigma(n),n}$	-10	
- Für linear abhängige Vektoren gilt: $\omega(v_1,,v_n)=0$ <=> falls $\omega(v_1,,v_n)\neq 0$, dann sind die Vektoren p	0. aarweise	verschieden und lin. unabh.

Determinanten

$A \in \mathbb{K}^{n \times n}$ Determinante einer quadratischen Matrix:

$$\det(A) := \sum_{\sigma \in \mathscr{S}(n)} \operatorname{sgn}(\sigma) \cdot a_{\sigma(1),1} \cdots a_{\sigma(n),n}$$

- Leibniz-Formel = das Δ von der Transformationsformel
- Für n = 1: det(a) = a
- $F\ddot{\mathsf{ur}} \, \mathsf{n} = 2 \colon \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc$
- Für n = 3 (Regel von Sarrus): $\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh gec hfa idb$
- Die Determinante ändert sich NICHT beim Transponieren: $\det(A^{\top}) = \det(A)$

Determinante einer Obere/Untere Dreiecks-/Diagonalmatrix:

$$\det A = a_{1,1} \cdots a_{n,n}.$$

- det(Einheitsmatrix) = 1

Eigenschaften der Determinante:

- Ist alternierend in den Spalten, also ist alternierend und multilinear $(\mathbb{K}^n)^n \to \mathbb{K}, \quad (v_1, \dots, v_n) \mapsto \det \left(\left| v_1 \right| \dots \left| v_m \right| \right)$
- Ist alternierend in den Zeilen, also ist $(\mathbb{K}^{1 \times n})^n \to \mathbb{K}, (z_1, \dots, z_n) \mapsto \det \left(\begin{array}{c} \hline z_1 \\ \hline \vdots \\ \hline z_n \end{array} \right)$ alternierend und multilinear
- Ist NICHT linear
- Ist multiplikativ: $\forall A, B \in \mathbb{K}^{n \times n} : \det(AB) = \det(A)\det(B)$

Determinanten und Invertierbarkeit

 $\forall A \in \mathbb{K}^{n \times n} : (A \ ist \ invertierbar) \iff (\det(A) \neq 0)$

- Für invertierbare A: $\det(A^{-1}) = \frac{1}{\det(A)}$.
- Gruppe der invertierbaren Matrizen: $GL(n, \mathbb{K}) = \{A \in \mathbb{K}^{n \times n} \mid det(A) \neq 0\}$

Spezielle lineare Gruppe (SL(n,K)) - Gruppenhomomorphismus: $(GL(n, \mathbb{K}), \cdot) \to (\mathbb{K}^{\times} = \mathbb{K} \setminus \{0\}, \cdot), A \mapsto det(A)$ - Die Spezielle lineare Gruppe = kern (Untergruppe) von $GL(n, \mathbb{K})$; $\mathrm{SL}(n,\mathbb{K}) = \left\{ A \in \mathbb{K}^{n \times n} \;\middle|\; \det(A) = 1 \right\}$ Signum = Spezialfall der Determinante: $\sigma \in \mathcal{S}(n)$ - Permutationsmatrix von σ : $\operatorname{sgn}(\sigma) = \det(A_{\sigma})$ $A_{\sigma} := \left(\left| e_{\sigma(1)} \right| \cdots \left| e_{\sigma(n)} \right| \right) \in \mathbb{R}^{n \times n}$ $sgn(\sigma) = det(A_{\sigma})$ - In der j-te Spalte von A steht der j-te Standardbasisvektor nach der Permutation Streichungsmatrix: - Die Matrix, die durch das Streichen der k-ten Zeile und der l-ten Spalte entsteht: $-b_{i,j} = \begin{cases} a_{i,j} & \text{f\"ur} i < k \text{ und } j < l \\ a_{i+1,j} & \text{f\"ur} i \ge k \text{ und } j < l \\ a_{i,j+1} & \text{f\"ur} i < k \text{ und } j \ge l \end{cases}$ $\operatorname{St}_{(k,l)}(A) := (b_{i,j})_{i,j \in \{1,\dots,n-1\}} \in \mathbb{K}^{n-1 \times n-1}$ Entwicklungssatz von Laplace: - Entwickeln nach der I-ten Spalte: $\frac{\det(A) = \sum_{k=1}^{n} (-1)^{k+l} a_{k,l} \det\left(\operatorname{St}_{(k,l)}(A)\right)}{\det(A) = \sum_{l=1}^{n} (-1)^{k+l} a_{k,l} \det\left(\operatorname{St}_{(k,l)}(A)\right)}$ - Entwickeln nach der k-ten Zeile: $\frac{\det(A) = \sum_{l=1}^{n} (-1)^{k+l} a_{k,l} \det\left(\operatorname{St}_{(k,l)}(A)\right)}{\det(A) = \sum_{l=1}^{n} (-1)^{k+l} a_{k,l} \det\left(\operatorname{St}_{(k,l)}(A)\right)}$ - Am besten Spalten/Zeilen wählen, wo viele Nullen sind! - Um die Berechnung zu erleichtern - benutze elementare Spalten-/Zeilenumformungen: - G1 (Addieren des m-fachn einer Zeile/Spalte): Determinante ändert sich NICHT G2 (Vertauschen zweier Zeilen/Spalten): (-1) * det - G3 (Statt durch Skalar teilen: Skalar nach vorne ziehen): det * skalar

$$A^{\sharp} := (\alpha_{i,j})_{i,j \in \{1,...,n\}} \in \mathbb{K}^{n \times n}$$
 $\alpha_{i,j} := (-1)^{i+j} \det(\operatorname{St}_{(j,i)}(A)).$

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det(A)} \cdot A^{\sharp} \qquad \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{K}^{2 \times 2} \qquad \qquad A^{\sharp} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Cramersche Regel:

$$A \cdot A^{\sharp} = \det(A) \cdot \mathbb{1}_n$$
 $A^{-1} = \frac{1}{\det(A)} \cdot A^{\sharp}$

Polynome

	$+:\mathbb{R}^\mathbb{R} \times \mathbb{R}^\mathbb{R} \to \mathbb{R}^\mathbb{R} = \text{punktweise Summe von Functionen:} f+g:\mathbb{R} \to \mathbb{R}$
	$ullet: \mathbb{R}^{\mathbb{R}} imes \mathbb{R}^{\mathbb{R}} o \mathbb{R}^{\mathbb{R}} = \text{punktweises Produkt von Functionen: } fg: \mathbb{R} o \mathbb{R}$
	$\cdot: \mathbb{R} \times \mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$ = skalieren von Funktionen: $\lambda f: \mathbb{R} \to \mathbb{R}$
	Algebren:
	- Tupel (A ,+,•,·)
	(i) $(\mathbf{A}, +, \bullet)$ ein Ring ist,
	(ii) $(\mathbf{A},+,\cdot)$ ein Vektorraum über $\mathbb K$ ist und
	(iii) die beiden Multiplikationen auf folgende Weise verträglich sind:
	$\forall a, b \in \mathbf{A}, \forall \lambda \in \mathbb{K} : (\lambda \cdot a) \bullet b = a \bullet (\lambda \cdot b) = \lambda \cdot (a \bullet b).$
	- Kommutativ, falls der Ring (A, +, •) kommutativ ist
	- Endlich dimensional, falls der Vektorraum (${f A},+,\cdot$) endlich dimensional ist
	- dim(Algebra) = dim(Vektorraum)
	Unteralgebren:
	- B = Unterring von (A ,+,•)und Unteralgebra von (A ,+,·)
	K-Algebra-Homomorphismus:
	- φ = Ring-Homomorphismus zwischen (A ,+,•)und (B ,+,•)&
	Vektorraum-Homomorphismus (lin.Abb.) zwischen (A,+,·)und (B,+,·)
$A = \mathbb{K}[X]$	Polynom-Algebra:
	- Polynomalgebra in der formalen Variable X:
	die Potenzen $X^0, X^1, X^2,$ sind paarweise verschieden
$p \in \mathbb{K}[X]$	- Elemente = formale Polynome: $p = \sum_{k=0}^{n} a_k X^k$ $\min a_0, a_1,, a_n \in \mathbb{K}$ = Koeffizienten
	- Grad eines Polynoms = erste Potenz mit Koeffizient != 0: $deg(p) = max\{k \in \mathbb{N}_0 \mid a_k \neq 0\} \in \mathbb{N}_0$
	- Nullpolynom = $0 (deg(0) := -\infty)$

	Existenz und Eindeutigkeit der Polynomalgebra:
	- Für ein Körper existiert eine Polynomalgebra: $\mathbf{A} = \mathbb{K}[X]$
	- Es existiert ein eindeutiger Algebra-Isomorphismus: $\varphi: \mathbb{K}[X] \to \mathbb{K}[Y], \varphi(X) = Y$
	=> im Wesentlichen gibt es nur eine solche Polynomalgebra
$p,q \in \mathbb{K}[X]$	Grad eines Polynoms:
	(a) Es gilt: $deg(p+q) \le max\{deg(p), deg(q)\}.$
	(b) Falls $p, q \neq 0$, dann gilt $\deg(pq) = \deg(p) + \deg(q)$
	Auswertungshomomorphismus:
	- Homomorphismus, der X auf a abbildet: $\mathbb{K}[X] \to \mathbf{A}, p \mapsto p(a)$
	(wir setzen a in p)
	Nullstellen von Polynomen:
	(6) - (1) = 0
	$(ii) \ \exists q \in \mathbb{K}[X]: p = (X - \lambda)q$ Äquivalent
	- Ein Polynom hat höchstens deg(p) verschiedene Nullstellen
	Zin retynom nac neenstens deg(p) versemedene vanstenen
	Polynom und Polynomfunktion:
	- Algebra-Homomorphismus, der jedes Polynom auf eine Polynomfunktion abbildet:
	$\Phi: \mathbb{K}[X] \to \mathbb{K}^{\mathbb{K}}, p \mapsto (\mathbb{K} \to \mathbb{K}, t \mapsto p(t))$ (Bild(Φ) = $\mathbf{P}_{\mathbb{K}}$ = Menge aller Polynomfunktionen)
	- Injektiv, falls K unendlich: $\mathbb{K}[X]$ isomorph zu $\mathbf{P}_{\mathbb{K}}$
	Funktionen der Form $(\mathbb{K} \to \mathbb{K}, t \mapsto t^n), n \in \mathbb{N}_0$ sind paarweise verschieden und lin.unabh.
	- Surjektiv, falls K endlich: P _K = K ^K
	Funktionen der Form $f: \mathbb{K} \to \mathbb{K}$ sind Polynomfunktionen

Endomorphismen & Ähnlichkeit

Beispiele:

$$A := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \varphi(v_0) = \begin{pmatrix} \beta \\ \gamma \\ 0 \end{pmatrix}, \quad \varphi(\varphi(v_0)) = \begin{pmatrix} \gamma \\ 0 \\ 0 \end{pmatrix} - \varphi(\varphi(\varphi(v_0))) \longrightarrow \text{Nullvektor}$$

$$A := \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \longmapsto \begin{pmatrix} -\beta \\ \alpha \\ \gamma \end{pmatrix} \longmapsto \begin{pmatrix} -\alpha \\ -\beta \\ \gamma \end{pmatrix} \longmapsto \begin{pmatrix} \beta \\ -\alpha \\ \gamma \end{pmatrix} \longmapsto \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

$$A := \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \longmapsto \cdots$$

$S \in GL(n, \mathbb{K})$ Ähnlichkeit von Matrizen:

- A und B sind ähnlich <=> sie entstehen durch Basiswechsel auseinander
- A und B sind ähnlich, falls invertierbare Matrix S mit: $SAS^{-1} = B$
- Ähnlichkeitsvarianten:
- (a) $\operatorname{rg}(A) = \operatorname{rg}(B)$.
- (b) $\det(A) = \det(B)$.
- (c) $\operatorname{tr}(A) = \operatorname{tr}(B)$.

Spur einer Matrix:

- Summe der Diagonaleinträge: $\operatorname{tr}(A) := \sum_{j=1}^{n} a_{j,j} = a_{1,1} + \dots + a_{n,n} \in \mathbb{K}$
- Die Spur-Abbildung $\operatorname{tr}: \mathbb{K}^{n \times n} \to \mathbb{K}$ ist linear
- Spur und Multiplikation: tr(AB) = tr(BA).
- Im Allgemeinen gilt NICHT: tr(AB) = tr(A)tr(B)

Determinante und Spur eines Endomorphismus:

- B = geordnete Basis

 $\det(\varphi) := \det(\mathbf{M}_{\mathsf{B},\mathsf{B}}\left(\varphi\right)) \in \mathbb{K}. \qquad \qquad \operatorname{tr}(\varphi) := \operatorname{tr}\left(\mathbf{M}_{\mathsf{B},\mathsf{B}}\left(\varphi\right)\right) \in \mathbb{K}$

Eigenwerte & Eigenvektoren

$\varphi\in \mathrm{End}_{\mathbb{K}}(V)$	Eigenvektor:
	- Ein Vektor, der auf ein Vielfaches von sich selbst abgebildet wird: $\exists \lambda \in \mathbb{K} : \varphi(v) = \lambda v$
	- Zu jedem Eigenvektor gibt es genau einen Eigenwert: $\varphi(v) = \lambda v$
	- Eigenvektoren zu paarweise verschiedenen Eigenwerte sind linear unabhängig
	Eigenwert:
	- Der Skalar, der zu einem Eigenvektor gehört: $\exists v \in V \setminus \{0\} : \varphi(v) = \lambda v$
	- Sind Ähnlichkeitsvarianten (2 ähnliche Matrizen haben die gleiche Eigenwerte):
	$\{\lambda \in \mathbb{K} \mid \lambda \text{ ist Eigenwert von } A\} = \{\lambda \in \mathbb{K} \mid \lambda \text{ ist Eigenwert von } B\}$
$\varphi \in \operatorname{End}_{\mathbb{K}}(V)$	Eigenvektoren/-werte und Endomorphismen:
	- Geordnete Basis: $B = (v_1,, v_n)$ - Die Darstellungsmatrix ist in Diagonalform: $M_{B,B}(\varphi) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ Ähnlich
	- Die Darstellungsmatrix ist in Diagonalform: λ_n Ähnlich
	- Die Basis besteht aus Eigenvektoren: $\forall j \in \{1,,n\}: \varphi(v_j) = \lambda_j v_j$
	- Die Diagonaleinträge sind die Eigenwerte zu den Eigenvektoren. (Reihenfolge)
	- $arphi$ ist diagonalisierbar, falls eine solche Basis B existiert
	Eigenräume:
	- Menge aller Eigenvektoren zu einem Eigenwert:
	$\{v \in V \mid v \text{ ist ein Eigenvektor zu } \lambda\} \cup \{0\} = \left\{v \in V \mid \varphi(v) = \lambda v\right\} = \ker(\lambda \mathrm{id}_V - \varphi) = \ker(\varphi - \lambda \mathrm{id}) \subseteq V$
	- Eigenräume sind Unvervektorräume: $E_{\lambda}(\varphi) := \ker(\varphi - \lambda \mathrm{id}) \subseteq V$
	- Geometrische Vielfachheit eines Eigenwerts: $\dim_{\mathbb{K}} E_{\lambda}(arphi)$
	- Wie findet man einen Eigenwert (gegeben einen Eigenvektor): $\varphi(v) = \lambda(v)$
	- Wie findet man allen Eigenvektoren (gegeben einen Eigenwert): $\ker(\lambda id_V - \varphi) = \ker(\varphi - \lambda id)$

Charakteristisches Polynom einer Matrix: $\begin{bmatrix} X - a_{1,1} & -a_{1,2} & \cdots & -a_{1,n} \\ -a_{2,1} & X - a_{2,2} & -a_{2,n} \\ \vdots & \ddots & \vdots \\ -a_{n,1} & -a_{n,2} & \cdots & X - a_{n,n} \end{bmatrix} \in (\mathbb{K}[X])^{n \times n}$ $p_A := p_A(X) := \det(X \mathbb{1}_n - A) \in \mathbb{K}[X]$ - Zwei ähnliche Matrizen haben das gleiche char. Polynom: $p_A = p_B \in \mathbb{K}[X]$ - Falls A quadratisch: Polynom hat Grad n & höchste Potenz X^n hat Koeffizient 1 $\varphi \in \text{End}_{\mathbb{K}}(V)$ | Charakteristisches Polynom eines Endomorphismus: $p_{\varphi} := p_A \in \mathbb{K}[X], \quad \text{ wobei } A = \mathrm{M}_{\mathsf{B},\mathsf{B}}\left(\varphi\right) \in \mathbb{K}^{n \times n}$ - Nullstellen des Polynoms = Eigenwerte von φ : $\{\lambda \in \mathbb{K} \mid \lambda \text{ ist ein Eigenwert von } \varphi\} = \{\lambda \in \mathbb{K} \mid p_{\varphi}(\lambda) = 0\}$ - Ein Endomorphismus hat höchstens n verschiedene Eigenwerte (n = dim(V)) Eigenwerte und Endomorphismen: $\lambda_1, \ldots, \lambda_k$ sind paarweise verschiedene Eigenwerte - Direkte Summe: $W := E_{\lambda_1}(\varphi) + \cdots + E_{\lambda_k}(\varphi)$ Bijektive Abbildung: $E_{\lambda_1}(\varphi) \times \cdots \times E_{\lambda_k}(\varphi) \to W$, $(v_1, \dots, v_k) \mapsto v_1 + \cdots + v_k$ - Falls $oldsymbol{arphi}$ genau n verschiedene Eigenwerte besitzt, ist es diagonalisierbar - Beispiel zu diagonalisierbarkeit (Siehe Beispiel 5.6.17) Diagonalisierbarkeit und geometrische Vielfachheit: (i) φ ist diagonalisierbar. (ii) Der Vektorraum V ist die Summe der Eigenräume von φ , d.h. jedes $v \in V$ lässt sich als endliche Summe von Eigenvektoren schreiben. (iii) Der Vektorraum V ist die direkte Summe der Eigenräume: Äquivalent $V = \bigoplus_{\lambda} E_{\lambda} \left(\varphi \right)$

(iv) Die Summe der geometrischen Vielfachheiten ist gleich der Dimension von V:

 $\sum_{\lambda} \dim(E_{\lambda}(\varphi)) = n.$

	Endomorphismus ohne Eigenwerte (Beispiel 5.6.19)
	Zerlägung von Polynome in Linearfaktoren:
	- p!= 0 lässt sich schreiben als Produkt von Grad 1 Polynome:
	$p = a(X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k} \text{mit } a \in \mathbb{K}^{\times}; k \in \mathbb{N}_0; \lambda_j \in \mathbb{K}; r_j \in \mathbb{N}.$
	- Polynome über algebraisch abgeschlossene Körper zerfallen immer in Linearfaktoren
	Diagonalisierbarkeit und Linearfaktoren:
	- Diagonalisierbare Matrix => ähnlich zu einer Matrix in Diagonalform
	- Diagonalisierbares Endomorphismus => char. Polynom zerfällt in Linearfaktoren
	Nullstellen und Linearfaktoren von Polynome: • K ist algebraisch abgeschlosser d.h.
	$\forall p \in \mathbb{K}[X]: \deg(p) \geq 1 \implies \exists \lambda \in \mathbb{K}: p(\lambda) = 0.$
	• Jedes Polynom $p \in \mathbb{K}[X]$ mit $p \neq 0$ zerfällt in Linearfaktoren in $\mathbb{K}[X]$.
	Algebraische Vielfachheit eines Eigenwerts:
$q \in \mathbb{K}[X]$	- r, wenn es ein q existiert mit: $p = (X - \lambda)^r q$ mit $q(\lambda) \neq 0$
	- r existiert immer und ist eindeutig
	- Geometrische Vielfachheit <= Algebraische Vielfachheit
	Diagonalisierbarkeit und Algebraische Vielfachheit:
	- Für diagonalisierbare Endomorphismen gilt:
	char. Polynom zefällt in Linearfaktoren algebraische Vielfachheit = geometrische Vielfachheit für alle Eigenwerte