Table 1: Numerical results of the example **??** with $\omega=1|1$, and $\omega=1$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,I}(O_\infty)$	
\mathbb{P}_3	20 40 80 160	2.60E-04 3.35E-05 4.14E-06 4.90E-07	2.95 3.02 3.08	
\mathbb{P}_5	20 40 80 160	1.78E-07 5.36E-09 1.46E-10 4.38E-11	5.05 5.05 5.20 1.74	
\mathbb{P}_7	20 40 80 160	6.72E-10 5.13E-12 1.02E-12 8.97E-11	 7.03 2.33 ↑	

Table 2: Numerical results of the example **??** with $\omega=1$ and $\omega=1$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,I}(O_\infty)$	
	20	2.07E-04	_	
TTD	40	2.65E-05	2.96	
\mathbb{P}_3	80	3.27E-06	3.02	
	160	3.82E-07	3.10	
	20	1.48E-07		
TTD	40	4.46E-09	5.06	
\mathbb{P}_5	80	1.47E-10	4.92	
	160	7.72E-11	0.93	
\mathbb{P}_7	20	5.09E-10		
	40	3.35E-12	7.24	
	80	8.09E-12	†	
	160	2.34E-10	\uparrow	

Table 3: Numerical results of the example **??** with $\omega=1$ and $\omega=3$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,I}(O_\infty)$	
	20	2.07E-04	_	
πъ	40	2.65E-05	2.96	
\mathbb{P}_3	80	3.27E-06	3.02	
	160	3.82E-07	3.10	
	20	1.48E-07		
ΠD	40	4.46E-09	5.06	
\mathbb{P}_5	80	1.49E - 10	4.91	
	160	7.18E-11	1.05	
	20	5.09E-10		
ш	40	4.12E-12	6.95	
\mathbb{P}_7	80	1.70E - 11	\uparrow	
	160	2.84E-10		

Table 4: Numerical results of the example **??** with $\omega=1$ and $\omega=10$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,I}(O_\infty)$	
	20	2.06E-04	_	
TTD	40	2.65E-05	2.96	
\mathbb{P}_3	80	3.27E-06	3.02	
	160	3.82E-07	3.10	
	20	1.48E-07	_	
\mathbb{P}_5	40	4.46E-09	5.06	
	80	1.36E - 10	5.03	
	160	1.17E-10	0.23	
\mathbb{P}_7	20	5.09E-10		
	40	5.57E-12	6.51	
	80	3.19E-12	0.80	
	160	6.48E-11	\uparrow	

Table 5: Numerical results of the example **??** with $\omega=1|1$, and $\omega=1$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,I}(O_\infty)$	
	20	1.68E-03	_	
ΠD	40	4.13E-04	2.03	
\mathbb{P}_3	80	1.01E-04	2.03	
	160	2.50E-05	2.02	
	20	3.14E-06	_	
πъ	40	2.40E-07	3.71	
\mathbb{P}_5	80	1.29E-08	4.21	
	160	7.85E-10	4.04	
	20	1.47E-08	_	
πъ	40	6.82E-10	4.43	
\mathbb{P}_7	80	2.80E-10	1.29	
	160	1.01E-09		

Table 6: Numerical results of the example **??** with $\omega=1$ and $\omega=1$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,l}(O_\infty)$	
	20	1.40E-03	_	
TD	40	3.47E-04	2.02	
\mathbb{P}_3	80	8.61E-05	2.01	
	160	2.14E-05	2.01	
	20	2.79E-06	_	
\mathbb{P}_5	40	1.79E-07	3.96	
	80	1.13E-08	3.98	
	160	3.32E-10	5.10	
\mathbb{P}_7	20	1.36E-08	_	
	40	2.21E-10	5.94	
	80	1.13E-10	0.97	
	160	1.71E-09	\uparrow	

Table 7: Numerical results of the example **??** with $\omega=1$ and $\omega=3$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,l}(O_\infty)$	
	20	1.40E-03		
\mathbb{P}_3	40	3.47E-04	2.02	
п 3	80	8.61E-05	2.01	
	160	2.14E-05	2.01	
	20	2.79E-06	_	
\mathbb{P}_5	40	1.79E - 07	3.96	
Г 5	80	1.13E-08	3.98	
	160	6.68E-10	4.08	
\mathbb{P}_7	20	1.36E-08	_	
	40	2.35E-10	5.86	
	80	1.93E-11	3.61	
	160	2.59E-09		

Table 8: Numerical results of the example **??** with $\omega=1$ |3, and $\omega=10$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,I}(O_\infty)$	
	20	1.40E-03	_	
πъ	40	3.47E-04	2.02	
\mathbb{P}_3	80	8.61E-05	2.01	
	160	2.14E-05	2.01	
	20	2.79E-06	_	
\mathbb{P}_5	40	1.79E-07	3.96	
Г 5	80	1.14E-08	3.97	
	160	3.01E-10	5.24	
\mathbb{P}_7	20	1.36E-08	_	
	40	2.23E-10	5.94	
	80	7.70E - 11	1.53	
	160	1.45E-09	†	

Table 9: Numerical results of the example **??** with $\omega=1|1$, and $\omega=1$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,l}(O_\infty)$	
	20	7.69E-03	_	
\mathbb{P}_3	40	2.06E-03	1.90	
п. З	80	5.28E-04	1.96	
	160	1.33E-04	1.98	
	20	1.79E-05	_	
\mathbb{P}_5	40	1.22E-06	3.88	
Г 5	80	8.98E-08	3.76	
	160	1.18E-09	6.26	
\mathbb{P}_7	20	1.16E-07		
	40	2.01E-09	5.85	
	80	1.12E-10	4.17	
	160	2.14E-08		

Table 10: Numerical results of the example **??** with $\omega=1$ 3, and $\omega=1$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,l}(O_\infty)$	
	20	6.96E-03	_	
TTD	40	1.85E-03	1.92	
\mathbb{P}_3	80	4.75E-04	1.96	
	160	1.20E-04	1.98	
	20	1.42E-05	_	
\mathbb{P}_5	40	9.97E - 07	3.84	
	80	6.53E-08	3.93	
	160	3.13E-09	4.38	
\mathbb{P}_7	20	6.42E-08		
	40	1.18E-09	5.76	
	80	5.74E - 10	1.04	
	160	1.35E-08	↑	

Table 11: Numerical results of the example **??** with $\omega=1$ and $\omega=3$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,l}(O_\infty)$	
	20	6.96E-03	_	
ΠD	40	1.85E - 03	1.92	
\mathbb{P}_3	80	4.75E-04	1.96	
	160	1.20E-04	1.98	
	20	1.42E-05		
πъ	40	9.97E-07	3.84	
\mathbb{P}_5	80	6.53E-08	3.93	
	160	4.59E-09	3.83	
\mathbb{P}_7	20	6.42E-08		
	40	1.17E-09	5.77	
	80	1.02E-09	0.21	
	160	1.22E-08		

Table 12: Numerical results of the example **??** with $\omega = 1|3$, and $\omega = 10$.

		PRO1		
	1	$E_{0,l}(E_\infty)$	$E_{0,l}(O_\infty)$	
	20	6.96E-03	_	
TTD	40	1.85E-03	1.92	
\mathbb{P}_3	80	4.75E-04	1.96	
	160	1.20E-04	1.98	
	20	1.42E-05	_	
\mathbb{P}_5	40	9.97E-07	3.84	
	80	6.60E-08	3.92	
	160	8.58E-09	2.94	
\mathbb{P}_7	20	6.43E-08		
	40	1.16E-09	5.79	
	80	1.15E-09	0.01	
	160	3.63E-09	↑	