Gaseous and Chemical Suppression Systems

- Determine when gaseous and chemical suppression agents are appropriate
- Describe how gaseous and chemical systems suppress fires
- Select appropriate safety precautions and maintenance for gaseous and chemical suppression systems

Wet Chemical Systems

 NFPA 17A, Standard for Wet Chemical Extinguishing Systems

https://www.youtube.com/watch?v=fYIQDAyR-ME

- Fine spray
- Commercial cooking
 - Deep-fat fryers, griddles, range tops, broilers, ducts, plenums
- Also works on ordinary combustibles
- Engineered or pre-engineered systems

Wet Chemical Agents

- Stable, nontoxic, and noncarcinogenic
- Salts in water
 - Potassium carbonate or potassium acetate
- Incompatible with:
 - Reactive metals
 - Electrically energized equipment
 - Any other material that is reactive with the water
- Saponification

Chemical reacts with cooking oils to form foam that coats oil surface

- Smothering
- Cooling

Wet Chemical Components

- Storage tank for expellant gas and agent
- Piping to carry the gas and agent
- Nozzles to disperse the agent
- Actuating mechanism

What are these?

Fusible links

https://www.youtube.com/watch?v= ubrjSMzevBk

Inspection and Testing

- Monthly
 - Change in hazard
 - Mechanical damage
 - Aim of nozzles
 - Manual actuators for obstructions
 - Tamper indicators and seals
 - Pressure on stored-pressure containers
 - Blow-off caps in place

Inspection and Testing

- Semiannual
 - Examine all components thoroughly
 - Verify that the piping is not obstructed
 - Examine system for evidence of corrosion, structural damage, or repairs
 - Check liquid levels of non-pressurized containers

Clean Agents

- Primary distinction between clean agent and carbon dioxide is toxicity
 - CO₂ is used far in excess of fatal limits
 - Clean agents in occupied areas are used below toxic thresholds
- Advantages
 - NFPA Handbook p 17-95

Halogenated Hydrocarbon

- Early halons
 - Carbon tetrachloride
 - Bormochloro-methane
 - Both toxic to humans
- 1940s
 - Halon 1301 developed by the U.S. Army
 - Inside aircraft engines and tanks. Not toxic to humans
- Very effective
 - Interrupts chemical chain reaction
- Noncorrosive
- Halon 1301- NFPA 12A, personnel expected
- Halon 1211- NFPA 12B, local application, extinguishers

Naming Halogenated Agents

- #C, #F, #Cl, #Br
- Bromo=Bromine
- Chloro=Chlorine
- Fluoro=Fluorine
- Methane=Carbon
- Di=2
- Tri=3
- Tetra=4

- Halon 1211:
 - CF₂ClBr
 - Bromochlorodifluoromethane
- Halon 2402:
 - $C_2F_4Br_2$
 - Dibromotetrafluoroethane
- Halon 1011:
 - Bromochloromethane
- Halon 1202:
 - Dibromodifloromethane
- Halon 1301:
 - Bromotrifluoromethane

Halon 1301

- Safety Features
 - Continuous alarm before/during discharge
 - Time delay
 - More exits
 - Regular training
 - SCBA

- Storage and delivery
 - Compressed liquid
 - 360 psi or 600 psi by N₂
 - Between -20°F to 130°F
 - Two-phase flow
 - Gas at discharge
 - Total flooding

Halon 1301 Design Concentration

- Inerting Prevent explosion
- Extinguishment Stops flame
- Account for leakageextended discharge
- 10 s to discharge
- 10 min containment (minimum)

Fuel	Inerting Concentration (% Vol)	Extinguishment Concentration (% Vol)
Acetone	7.6	5.0
Benzene	5.0	5.0
Ethanol	11.1	5.0
Ethylene	13.2	8.2
Hydrogen	31.4	-
Methane	7.7	5.0
Heptane	6.9	5.0
Propane	6.7	5.2

Downfall of Halon

- Ozone depleting
 - Halons are said to be the worst of all ozone depleting substances
- 1987 Montreal Protocol
 - International agreement
 - Over 140 countries
 - Control production and trading of ozone depleting substances
- Production ceased on 1/1/1994
 - Recycled material now serves as halon source for existing systems

Halon Alternatives

- Two types
 - Halocarbon compounds
 - Inert gasses or mixtures
- NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems

Halocarbon Compounds

- Primary components one or more of fluorine, chlorine, bromine, or iodine
 - Examples
 - Hydrofluorocarbons (HFCs)
 - Hydrochlorofluorocarbons (HCFCs)
 - Perfluorocarbons (PFCs or FCs)
 - Fluoroiodocarbons (FICs)

- Halon 1301
 - 80% interruption chain reaction bromine
 - 20% cooling
- Halocarbon Alternatives
 - 20% interruption chain reaction
 - 80% cooling by extracting heat from the flame as the fire decomposes the media
 - Examples
 - FM-200
 - FE-227
 - CEA-410
 - FE-13

Inert Gases

- Primary components one or more of helium, neon, argon or nitrogen
- CO₂ as secondary component

- Reduces oxygen from 21% to below 15%
 - 12 % 5 min evacuation
- 10% 3 min evacuation
- 8% 30 s evacuation (normally unoccupied)
- Examples
 - Inergen
 - Argotech
 - Argonite
 - Nitrogen

Advantages and Disadvantages

NFPA Handbook 17-109

Novec

- Liquid storage, gaseous when applied
- Safe for electronics
- Safe for occupied areas
 - 4.5 % concentration
 - 10 % NOAEL

- Data centers and telecommunication
- Marine
- Aerospace
- Transportation
- Museums and libraries

System Components

- Suppression
 - Cylinders
 - Piping
 - Discharge nozzle
- Fire alarm panel
- Consider
 - Fire department emergency purge
 - Pressure venting
 - Location of cylinders
 - Operating pressures
 - Safety

- Cylinders near hazard
- Nozzles to evenly distribute gas

Systems

- Automatic detection
- 24 hr standby power
- Audible and visual predischarge alarms
 - Time delay
- Abort switches in areas
- Warning signs at entrance and throughout

- Shut down ventilation systems
 - Or extended discharge
- Provide venting
- Discharge time
 - Halocarbon systems 95% design within 10 seconds maximum
 - NFPA HB p 17-114
 - Inert gasses 95% design within 60 seconds maximum

Inspections and Maintenance

- Complete test required annually
 - Discharge test is not required
- Semiannually agent quantity and/or pressure test
 - Refill or replace agent that varies by 5% of weight or pressure
 - Containers shall not be refilled if > 5 years since last hydrostatic test
- Annual review of enclosure integrity