

Ksenia Komarova

The Fritz Haber Center for Molecular Dynamics he Hebrew University of Jerusalem

Surprisal of a quantum state: Dynamics, compact representation and coherence effects

Why surprisal?

$$\hat{I} = -ln\hat{\rho}$$

- Effective computational method*
- High degree of the data compaction
- Novel insights
- *Extensively applied in different fields:
- -> to analyse the energy disposal in reaction
- dynamics Bernstein and R. D. Levine, "Entropy and Chemical Change.
 I. Characterization of Product (and Reactant) Energy Distributions in Reactive Molecular Collisions: Information and Entropy Deficiency," J. Chem. Phys. **57**, 434-449 (1972)

-> in system biology to characterize

dominantabel passion apasterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition. PNAS, 111:13235–13240 (2014)

Experimental HD state distributions measured for H+D₂ collision

Ultrafast non-radiative relaxation

Dynamics in excited electronic states of pyrazine

*Real-time resolved pump-probe photoelectron spectroscopy experiment: Y.-I. Suzuki et al, *J Chem Phys*, 2010, 132, 174302

Ultrafast non-radiative relaxation

Dynamics in excited electronic states of pyrazine

Coupling mode Q₁*

->Diabatic coupling between S_2 and S_1 : κQ_1

Tuning mode Q₂

-> Nuclear motion towards CI

MCTDH: 24-modes diabatic picture for the

^{*} R. Schneider, W. Domcke, Chem Phys Lett, 1988, 150, 235

^{**} I. Burghardt et al, Phys. Scr. 2006, 73, C42

Non-adiabatic quantum dynamics on multiple electronic states

Challenge

Can we have a **compact** representation for the **quantum treatment** of the dynamics?

▲'Quantum' features

• Branching of the wave packets in configurational space

- Coherence effects on the vibrational and/or electronic dynamics
- Electronic energy redistribution for the coherent dynamics on multiple electronic states

Let us try to address the problem from a fresh perspective!

Algebraic approach in chemical dynamics

The state of the system, the density matrix:

$$\hat{\boldsymbol{\rho}} = \exp\left(-\sum_{k} \lambda_{k} \hat{A}_{k}\right)$$

$$\hat{A}_k: \hat{R}, \hat{P}, \hat{H}, \dots \\ \hat{a}, \hat{a}^{\dagger}, \hat{a}^{\dagger} \hat{a}, \dots$$
 - constraints*

*More examples of the second straints and the second straints and the second straints are second straints.

*More examples of different algebras: Dynamical symmetry, C.E. Wulfman (2010)

Algebraic approach in chemical dynamics

The state of the system, the density matrix:

$$\hat{\boldsymbol{\rho}} = \exp\left(-\sum_{k} \lambda_{k} \hat{A}_{k}\right)$$

$$\hat{A}_k: \hat{R}, \hat{P}, \hat{H}, \dots \\ \hat{a}, \hat{a}^{\dagger}, \hat{a}^{\dagger} \hat{a}, \dots$$
 - constraints*

$$\hat{\rho}(t=0) = \exp\left(-\sum_{k} \lambda_{k}(t=0)\hat{A}_{k}\right) \qquad \hat{U}(t) = \exp\left\{-\frac{i}{\hbar}\hat{H}t\right\}$$

$$\hat{U}(t) = \exp\left\{-\frac{i}{\hbar}\hat{H}t\right\}$$

$$\hat{\boldsymbol{\rho}}(t) = \hat{U}(t)\hat{\boldsymbol{\rho}}(t=0)\hat{U}^{\dagger}(t)$$

$$= \exp\left[-\sum_{k} \lambda_{k}(t=0) \left\{\hat{U}(t)\hat{A}_{k}\hat{U}^{\dagger}(t)\right\}\right]$$

Time evolution of the **density** via the evolution of the constraints

Density and its surprisal

$$\hat{\rho} = \exp\left(-\sum_{k} \lambda_{k} \hat{A}_{k}\right)$$

$$\hat{I} = -\ln \hat{\rho}$$
Surprisal

$$\hat{I} = \sum_{k} \lambda_{k} \hat{A}_{k}$$

$$\hat{I}(t=0) = \sum_{k} \lambda_{k} (t=0) \hat{A}_{k}$$

When time evolution of the constraints is closed:

$$i\hbar \frac{d\hat{I}}{dt} = \left[\hat{H}, \hat{I}\right]$$

$$i\hbar \frac{d\hat{I}}{dt} = \begin{bmatrix} \hat{H}, \hat{I} \end{bmatrix}$$
 $\begin{bmatrix} \hat{H}, \hat{I} \end{bmatrix} = \sum_{k} \lambda_{k} \begin{bmatrix} \hat{H}, \hat{A}_{k} \end{bmatrix}$ $\begin{bmatrix} \hat{H}, \hat{A}_{k} \end{bmatrix} = \sum_{s} g_{ks} \hat{A}_{s}$

$$\left[\hat{H}, \hat{A}_{k}\right] = \sum_{s} g_{ks} \hat{A}_{s}$$

$$\hat{I}(t) = \sum_{k} \lambda_{k}(t) \hat{A}_{k}$$

about the time evolution is compressed to just a **vector**

Surprisal of a quantum state in the general case

In a given finite basis representation:

$$I_{nm}(t=0) = \left\langle \varphi_n \left| \hat{I}(t=0) \right| \varphi_m \right\rangle = \sum_k \lambda_k (t=0) A_{nm}^k$$

Equation of motion for the surprisal:

$$i\hbar \frac{d\mathbf{I}}{dt} = (\mathbf{H} \cdot \mathbf{I} - \mathbf{I} \cdot \mathbf{H})$$

Compact representation

via **dominant**

$$\text{constraints:}_{I(t)} \hat{\boldsymbol{x}} \hat{\boldsymbol{\lambda}}_{k}(t) \hat{\boldsymbol{A}}_{k}$$

Straightforward transformation between them via the spectral decomposition:

$$\hat{I} = -\ln \hat{\rho} = \sum_{s=0}^{N} \mu_{s} |s\rangle \langle s|$$

$$\hat{\rho} = \sum_{s=0}^{N} \exp(-\mu_{s}) |s\rangle \langle s|$$

K. Komarova, F. Remacle, R.D. Levine, *J Chem Phys*, 2020, accepted.

ChemRxiv: https://doi.org/10.26434/chemrxiv.12981857.v1

Dominant constraints in the vibrational basis

$$i\hbar \frac{d\mathbf{I}}{dt} = (\mathbf{H} \cdot \mathbf{I} - \mathbf{I} \cdot \mathbf{H})$$

$$\hat{I}(t) \approx \sum_{k} \lambda_{k}(t) \hat{A}_{k}$$

$$\hat{A}_k: \hat{a}, \hat{a}^{\dagger}, \hat{a}^{\dagger}\hat{a}, \dots$$

Compact representation of the non-adiabatic transfer in pyrazine

$$\{I_N, \hat{a}, \hat{a}^{\dagger}, \hat{a}^{\dagger}\hat{a}\} \otimes \{I_e, \hat{\boldsymbol{\sigma}}_{\chi}, \hat{\boldsymbol{\sigma}}_{y}, \hat{\boldsymbol{\sigma}}_{z}\}$$

Population in S₂

Population in S₁

$$\begin{split} \hat{H} &= \hat{H}_0 + \hat{V} \\ \hat{H}_0 &= \hbar \omega \cdot I_e \otimes \left(\hat{a}^\dagger \hat{a} + \frac{1}{2} \right) + V_0 \cdot \hat{\sigma}_z \otimes I_N \\ \hat{V} &= \hat{\sigma}_x \otimes \kappa \left(\hat{a} + \hat{a}^\dagger \right) \end{split}$$

Dominant constraints

Dominant constraints

Surprisal based quantum dynamics

Acknowledgements

Prof. Raphael Levine Prof. F. Remacle **Hebrew University**

University of Liege

Prof. Y. Alhassid Yale University

Prof. N. Tishby **Hebrew University**

Prof. S. Kais **Purdue University**

Thank you for your attention!

Dominant constraints in the vibrational basis

Set of 16 **time-independent constraints** for the direct product Hilbert space of electronic and nuclear degrees of freedom

	$\hat{\mathbb{I}}_N$	â	\hat{a}^{\dagger}	$\hat{a}^{\dagger}\hat{a}$
$ 1\rangle\langle 1 $	$ 1\rangle \hat{\mathbb{I}}_N \langle 1 $	$ 1\rangle \hat{a}\langle 1 $	$ 1\rangle \hat{a}^{\dagger}\langle 1 $	$ 1\rangle \hat{a}^{\dagger} \hat{a} \langle 1 $
$ 2\rangle\langle 2 $	$ 2 angle \hat{\mathbb{I}}_N \langle 2 $	$ 2\rangle \hat{a}\langle 2 $	$ 2\rangle\hat{a}^{\dagger}\langle2 $	$ 2 angle \hat{a}^{\dagger}\hat{a}\langle 2 $
$ 1\rangle\langle 2 $	$ 1\rangle \hat{\mathbb{I}}_N \langle 2 $	$ 1\rangle \hat{a}\langle 2 $	$ 1\rangle \hat{a}^{\dagger}\langle 2 $	$ 1\rangle \hat{a}^{\dagger}\hat{a}\langle 2 $
$ 2\rangle\langle 1 $	$ 2 angle \hat{\mathbb{I}}_N \left< 1 ight $	$ 2\rangle \hat{a}\langle 1 $	$ 2\rangle\hat{a}^{\dagger}\langle 1 $	$ 2\rangle\hat{a}^{\dagger}\hat{a}\langle 1 $

$$\hat{I}(t) \approx \sum_{k} \lambda_{k}(t) \hat{A}_{k}$$

Surprisal analysis and maximal entropy formalism

1948
Information Theory

1957

Edwin Jaynes

Information Theory and Chemical Change

E.C. Kemble

E.H. Wichman

J.L. Kinsey

And many other..

A. Katz

Richard Bernstein & Raphael Levine

Claude Shannon

Density and its surprisal

$$\hat{\rho} = \exp\left(-\sum_{k} \lambda_{k} \hat{A}_{k}\right)$$

$$\hat{I} = -\ln \hat{\rho}$$
Surprisal

$$\hat{I} = \sum_{k} \lambda_{k} \hat{A}_{k}$$

$$\hat{\boldsymbol{\rho}}(t) = \hat{U}(t)\hat{\boldsymbol{\rho}}(t=0)\hat{U}^{\dagger}(t)$$

$$\hat{\rho}^{2}(t) = \hat{\rho}(t) \cdot \hat{\rho}(t) = \hat{U}(t)\hat{\rho}(t=0)\hat{U}^{\dagger}(t) \cdot \hat{U}(t)\hat{\rho}(t=0)\hat{U}^{\dagger}(t) = \hat{U}(t)\hat{\rho}^{2}(t=0)\hat{U}^{\dagger}(t)$$

Evolution of the surprisa

$$\hat{I}(t) = -\ln \hat{\boldsymbol{\rho}}(t) = \hat{U}(t) \left[-\ln \hat{\boldsymbol{\rho}}(t)(t=0) \right] \hat{U}^{\dagger}(t)$$

$$i\hbar \frac{d\hat{I}(t)}{dt} = \left[\hat{H}, \hat{I}(t)\right]$$