Algorithme de Grover

On cherche $x^*|f(x^*) = 1$

$$f(x) = 0 \forall x \neq x^*$$

On utilise 2 transformations

$$U_{\text{sol}} - \mathbb{1} = 2 |x^* \rangle \langle x^*|$$
$$U_i = \mathbb{1} - 2 |0\rangle \langle 0|$$

. . .

2.14 Simulation de système quantique

Solution classique : Utiliser des propriétés spécifiques au système

ex : s'il n'y a pas d'intrication, on a besoin de 2n pramètres pour spécifier un état.

S'il y a un peu d'intrication, on peut utiliser les réseaux de tenseurs (HPS)

La solution pour un ordinateur quantique pour simuler un système quantique est générale

On simule le Hamiltonien en utilisant un opérateur unitaire (Si le Hamiltonien de dépend pas du temps)

On veut alors, évidement, construire U(t) à partir d'un ensemble de portes élémentairesé

Exemple : Modèle de Ising

$$H = \hbar \sum_{j=1}^{n} \lambda \sigma_{x,j} + J \sigma_{x,j} \sigma_{z,j+1}$$

Si J=0

$$U = e^{-iHt} = e^{-i\sum_{n=1}^{N} t_{z,j}} = \prod_{j=1}^{n} \dots = \pi_{j=1}^{n} R_{x,j}(2\lambda t)$$

Si $\lambda = 0$

• •

$$U(t) = \prod_{j=1}^{n} e^{-\frac{1}{2}\theta z_1 z_2} \qquad \theta = 2Jt$$

Cas générale

Dans le cas général on la forme

$$e^{A+B} \neq e^A e^B$$

, On ne peut donc pas exprimer nouvel unitaire directement en fonction des U qu'on a déjà trouvé. Cepedant, si on prend des Δt très petit, on peut l'approximer comme la mutiplication des deux.

2.15 Minimisation (État fondamentale d'un hamiltonien)

On combine U(t) avec QPE pour trouver E_0 et $|E_0\rangle$

C'est un problème dans NP : en générale on peut pas trouver la solution.