Optimization Techniques (MAT-2003)

Lecture-22

Dr. Yada Nandukumar

Department of Mathematics
School of Advanced Sciences (SAS)
VIT-AP University

Example:

Find the initial basic feasible solution to the following transportation problem. Given the cost matrix:

$$D_1$$
 D_2 D_3 D_4 Supply S_1 $\begin{bmatrix} 20 & 25 & 28 & 31 \\ 32 & 28 & 32 & 41 \\ S_3 & 18 & 35 & 24 & 32 \end{bmatrix}$ 180 $Demand$: 150 40 180 170 990

Here, total supply = 490And total demand = 540

Total supply \neq Total demand \Rightarrow The transportation problem is not balanced. Moreover, Total supply < Total demand \Rightarrow we have to add a dummy row with a supply $50 \ (= 540 - 490)$.

Vogel's Approximation Method

TOXI	mation ivie	ethod			1	Row
	20	25	28	3)	200	(5)
	32	28	32	41	180	4)
	18	35	24	32	110	(6)
	0	0	0	060	5%	(0)
	150	40	180	170	20	
Y	(18)	(25)	(24)	(31)	mar.	penalty)

	20	25	28	3)	200
	32	28	32	41	180
	18	35	24	32	146
	(10)		11		
40	150	40	180	120	
90	(2)	(3)	(4)	(1)	

Row Penalty
50 (ST) 6) V (max. penalty)

); -	Row Senalty
	2	0	25	28	31	200	(5)
	-5	<u>140</u> 2	28	32	41	106	
					·	186	(4)
	し	900	40	(80	120		
Column		2)	40 (3)	(4)	(10)		
(\ \ \ \	park	. Þena	lty)			

					2000
	25	28	31	16640	enalty (5)
	28	32	41	180	(4)
C-142000	40	180	120))	
Column	(3)	(4)	(10)	maz. ben	alty)

Optimal Assignments are given by

20 40	25	28	31 120	200
32	28	32	41	(80
18	35	24	32	110
O	0	0	0 (50	50
150	40	180	170	

Optimal cost is given by = $20 \times 40 + 28 \times 40 + 31 \times 120 + 28 \times 40 + 32 \times 140 + 18 \times 110 + 0 \times 50 = 13220$.

Example:

A company has three factories located in three cities viz. X, Y, Z. These factories supplies consignments to four dealers viz. A, B, C and D. The dealers are spread all over the country. The production capacity of these factories is 310, 100 and 290 units per month respectively. The net return per unit product is given in the following table:

Dealers	A	В	С	D	Capacity
Factory					
X	6	6	6	4	310
Y	4	2	4	5	100
Z	5	6	7	8	290
Requirement	150	130	120	300	700

Determine a suitable allocation to maximize the total return.

Given the transportation problem is a maximization problem. First we have to convert it into minimization problem.

From the cost matrix the maximum cost is 8. Now, we have to subtract every entry of the cost matrix from the maximum cost.

2	2	2	4	310
4	6	Ч	3	100
3	2	1	0	290
150	130	120	300	750

Now this minimization problem and it is a balanced one. Next we have to find the initial basic feasible solution by using any one of the known method.