CS 33

Virtual Memory

The Address-Space Concept

- Protect processes from one another
- Protect the OS from user processes
- Provide efficient management of available storage

Memory Fence

Base and Bounds Registers

Swapping

Overlays

Memory Maps

Page Tables

Quiz 1

How many 2¹²-byte pages fit in a 32-bit address space?

- a) a bit over a 1000
- b) a bit over a million
- c) a bit over a billion
- d) none of the above

VM is Your Friend ...

- Not everything has to be in memory at once
 - pages brought in (and pushed out) when needed
 - unallocated parts of the address space consume no memory
 - » e.g., hole between stack and dynamic areas
- What's mine is not yours (and vice versa)
 - address spaces are disjoint
- Sharing is ok though ...
 - address spaces don't have to be disjoint
 - » a single page frame may be mapped into multiple processes
- I don't trust you (or me)
 - access to individual pages can be restricted
 - » read, write, execute, or any combination

Page-Table Size

- Consider a full 2³²-byte address space
 - assume 4096-byte (212-byte) pages
 - 4 bytes per page-table entry
 - the page table would consist of $2^{32}/2^{12}$ (= 2^{20}) entries
 - its size would be 2²² bytes (or 4 megabytes)
 - » at \$100/gigabyte
 - around \$0.40
- For a 2⁶⁴-byte address space
 - assume 4096-byte (2¹²-byte) pages
 - 8 bytes per page-table entry
 - the page table would consist of $2^{64}/2^{12}$ (= 2^{52}) entries
 - its size would be 2⁵⁵ bytes (or 32 petabytes)
 - » at \$1/gigabyte
 - over \$33 million

IA32 Paging

Quiz 2

Can a page start at a virtual address that's not divisible by the page size?

- a) yes
- b) no

Linux Intel IA32 VM Layout

x86-64 Virtual Address Format 1

x86-64 Virtual Address Format 2

Why Multiple Page Sizes?

- Fragmentation
 - for region composed of 4KB pages, average internal fragmentation is 2KB
 - for region composed of 1GB pages, average internal fragmentation is 512MB
- Page-table overhead
 - larger page sizes have fewer page tables
 - » less overhead in representing mappings

x86-64 Address Space

Performance

- Page table resides in real memory (DRAM)
- A 32-bit virtual-to-real translation requires two accesses to page tables, plus the access to the ultimate real address
 - three real accesses for each virtual access
 - 3X slowdown!
- A 64-bit virtual-to-real translation requires four accesses to page tables, plus the access to the ultimate real address
 - 5X slowdown!

Translation Lookaside Buffers

Quiz 3

Recall that there is a 5x slowdown on memory references via virtual memory on the x86-64. If all references are translated via the TLB, the slowdown will be

- a) 1x
- b) 2x
- c) 3x
- d) 4x

OS Role in Virtual Memory

- Memory is like a cache
 - quick access if what's wanted is mapped via page table
 - slow if not OS assistance required
- · OS
 - make sure what's needed is mapped in
 - make sure what's no longer needed is not mapped in

Mechanism

- Program references memory
 - if reference is mapped, access is quick
 - » even quicker if translation in TLB and referent in onchip cache
 - if not, page-translation fault occurs and OS is invoked
 - » determines desired page
 - » maps it in, if legal reference

Issues

- Fetch policy
 - when are items put in the cache?
- Placement policy
 - where do they go in the cache?
- Replacement policy
 - what's removed to make room?

Hardware Caches

- Fetch policy
 - when are items put in the cache?
 - » when they're referenced
 - » prefetch might be possible (e.g., for sequential access)
- Placement policy
 - where do they go in the cache?
 - » usually determined by cache architecture
 - » if there's a choice, it's typically a random choice
- Replacement policy
 - what's removed to make room?
 - » usually determined by cache architecture
 - » if there's a choice, it's typically a random choice

Software Caches

Fetch policy

- when are items put in the cache?
 - » when they're referenced
 - » prefetch might be easier than for hardware caches

Placement policy

- where do they go in the cache?
 - » usually doesn't matter (no memory is more equal than others)

Replacement policy

- what's removed to make room?
 - » would like to remove that whose next use is farthest in future
 - » instead, remove that whose last reference was farthest in the past

The "Pageout Daemon"

Managing Page Frames

Clock Algorithm

Why is virtual memory used?

More VM than RM

Isolation

Sharing

File I/O

Buffer
User Process

Multi-Buffered I/O

Traditional I/O

User Process 1

Mapped File I/O

Multi-Process Mapped File I/O

Mapped Files

Traditional File I/O

```
char buf[BigEnough];
fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {
    read(fd, buf, sizeof(buf));
    use(buf);
}</pre>
```

Mapped File I/O

```
record_t *MappedFile;
fd = open(file, O_RDWR);
MappedFile = mmap(..., fd, ...);
for (i=0; i<n_recs; i++)
   use(MappedFile[i]);</pre>
```

Mmap System Call

```
void *mmap(
  void *addr,
    // where to map file (0 if don't care)
  size t len,
    // how much to map
  int prot,
    // memory protection (read, write, exec.)
  int flags,
    // shared vs. private, plus more
  int fd,
    // which file
  off t off
    // starting from where
  );
```

XXVIII–42

The mmap System Call

Share-Mapped Files

Private-Mapped Files

Example

```
int main() {
  int fd;
  dataObject t *dataObjectp;
  fd = open("file", O RDWR);
  if ((int) (dataObjectp = (dataObject_t *)mmap(0,
      sizeof(dataObject t),
      PROT READ | PROT WRITE, MAP SHARED, fd, 0) == -1) {
    perror("mmap");
    exit(1);
  // dataObjectp points to region of (virtual) memory
  // containing the contents of the file
```

fork and mmap

```
int main() {
  int x=1;
  if (fork() == 0) {
    // in child
    x = 2;
    exit(0);
  // in parent
  while (x==1) {
    // will loop forever
  return 0;
```

```
int main() {
  int fd = open( ... );
  int *xp = (int *) mmap(...,
      MAP SHARED, fd, ...);
 xp[0] = 1;
  if (fork() == 0) {
    // in child
    xp[0] = 2;
   exit(0);
 // in parent
 while (xp[0]==1) {
    // will terminate
  return 0;
```