《物理实验》注意事项

- ■上课期间,不得使用手机(ipad、笔记本电脑等)以及任何自带资料,违者 第一次扣10分,第二次本次实验计0分。
- ■不得伪造数据或抄袭,违者本次实验计0分(教室均装有摄像头)
- ■手机静音或关机后放在书包里,书包和水杯按要求统一放置在指定位置。
- ■每次课3小时,不得迟到,不得早退。
- ■按要求独立完成实验内容,规范记录实验数据。
- ■实验结束,整理仪器及配件,保持整洁。
- ■实验完成后1周内提交报告。

桌上仅放:

预习报告

空白数据记录纸

必要文具或计算器

注意:实验桌上打印的讲义和ppt,均不得带走。

如不小心带走,请返还 (讲义有编号)

物理实验教学中心

预备工作

- 1、借助气泡仪,通过调节变温粘滞系数实验仪的底座螺钉,使样品管铅直
- 2、检查PID仪器后面的水管是否与变温粘滞系数实验仪接通、是否连接正确。

注意: 样品管上端 (即"出水孔") 接 PID的"进水孔", 下端 (即"进水孔") 接PID的"出水孔", 不得反接。

- 3、检查PID仪器前面的水位,如低于 最低水位,利用漏斗将水箱水加到适 当值,不得高于最高水位。
- 4、检查样品管中蓖麻油,如其液位线 读数>5cm,报告老师添加。

落球法测量液体粘滞系数

Measuring Liquid Viscosity Coefficient with Falling Balls

华中科技大学物理实验中心

2025年秋

一、粘滞系数η

史上耗时时间最长的实验-沥青滴落实验

粘度又称粘滞系数η:流体对流动所 表现的阻力,是流体反抗形变的能力

$$\eta = \frac{F/S}{dv/dx}$$
 Pa·s

应用:润滑油的选择、管道流量的控制机械设备的润滑系统设计、桥梁的抗震血液及体液的生理和病理过程等

不同粘度机油

*液体的粘度随着温度升高而减小, 气体粘度则随温度升高而增大

二、实验目的

1、用<mark>落球法</mark>测量不同温度下蓖麻油粘滞系数; (*d*~1mm的1[#]样品)

要求: 室温~60°C, 共六组, 温度间隔 △ *T*=5°C

- 2、掌握用显微镜测量小球直径的方法
- 3、(拓展)研究小球直径对实验结果的影响

要求: d~1.5-2.5 mm规格中至少选2个

目标温度 *T*≤45℃

4、认真观察、分析实验现象,加深对物理规律的认识。

三、实验原理

无限广域的牛顿流体 层流

粘滞

重力 阻力浮力

$$ma = mg - F - f$$

斯托克斯定律 $F = 3\pi \eta vd$

运动方程

$$\frac{1}{6}\pi d^{3}\rho \frac{dv}{dt} = \frac{1}{6}\pi d^{3}(\rho - \rho_{0})g - 3\pi \eta dv$$

初始条件 (t=0, v=0)
$$v = \frac{d^2g}{18\eta}(\rho - \rho_0) \cdot (1 - e^{-\frac{18\eta}{d^2\rho}t})$$

平衡速度 (收尾速度)

$$v_0 = \frac{d^2g}{18\eta}(\rho - \rho_0)$$

粘滞系数

$$\eta = \frac{(\rho - \rho_0)gd^2}{18v_0}$$

 ρ :小球密度

 ρ_{θ} :液体密度

d:小球直径

三、实验原理

修正一: 小球在直径为D的玻璃管中下落

$$\eta = \frac{(\rho - \rho_0)gd^2}{18v_0(1 + 2.4 d / D)}$$

修正二:流体状态雷诺数修正

雷诺数
$$\operatorname{Re} = v_0 d \rho_0 / \eta$$

$$\eta_2 = \eta \left(1 + \frac{3}{16} \text{Re} - \frac{19}{1080} \text{Re}^2 + \cdots \right)^{1}$$

$$F = 3\pi \eta v_0 d(1 + \frac{3}{16} \text{Re} - \frac{19}{1080} \text{Re}^2 + \cdots)$$

n的国际单位: Pa·s (帕斯卡·秒)

$$\eta = \frac{(\rho - \rho_0)gd^2}{18v_0}$$

 ρ :小球密度 ρ_{θ} :液体密度 d:小球直径

四、实验仪器及步骤

小球收纳盒 (不可拆卸)

注意: $d=|d_1,d_2|$, 5个不同方位进行测量,每个方位的 d_1 、 d_2 测量时测微鼓轮只能朝一个 方向旋转,避免空程差

读数盘

毫米为单位, 小数点后有几位有效数字?

五、数据记录

参考表1 不同小球直径d的测量

样	次数									平均值	
样品	1	1	2	2		3		4		5	平均值 <i>d</i> mm
小球	d	d	d_1	4	d	4	4	d	d	d	
	d_1	d_2	u_1	d_2	d_1	d_2	d_1	d_2	u_1	d_2	
1#											
2#											
3#											
•••											

注意: 避免小球掉落, 测量时可在桌面摊开一张白纸接住

规划时间:升温阶段测量直径

要求:

- 1、1#样品必须为d~1 mm
- 2、至少选3个不同规格的样品

五、数据记录

参考表2 1#样品在不同温度下速度的测定

 $\rho = 7.81 \times 10^3 \text{kg/m}^3$ $\rho_{\theta} = 0.95 \times 10^3 \text{kg/m}^3$ D = 2.0 cm $g = 9.794 \text{m/s}^2$ L = cm (L不低于20cm)

温			_	时间] <i>t</i> /s		平均值	平均速度	
T/°C	,	1	2	3	4	5	/s	平均速度 	
1									5
2									
3									
4									
5									
6									

注意: T在室温 ~ 60 °C之间,温度间隔 $\Delta T = 5$ °C; 小球沿中轴线从最上端的液面由静止释放;

眼睛平视刻度线读数(厘米为单位,小数点后有几位有效数字?); 温控仪出现"请开始实验",稳定1~2分钟后开始实验; 实验期间要处于保温状态,切勿再按"启控/停止"键。 12

五、数据记录(拓展实验)

选择表2中某一温度 *T* (≤45°C) 下,对不同规格的小球做对比实验(要求见参考表2)

建议: 先做对比实验再升温 (无法人工降温)

参考表3 不同小球速度的测定

L= cm (L不低于20cm), T= °C

样品			平均	平均速度			
小球	1	2	3	4	5	值t/s	平均速度 \overline{v}_0 /cm.s ⁻¹
1							
2							
3							
•••							

(1#样品数据已测,不重复测)

六、数据处理 (要求有计算过程)
1、利用
$$\eta = \frac{(\rho - \rho_0)gd^2}{18\nu_0(1 + 2.4 d / D)}$$
及Re = $\nu_0 d\rho_0 / \eta$, 分别计算不同

温度下粘滞系数平均值 $\bar{\eta}$ 及雷诺数Re

2、根据Re的大小,计算修正的 $\bar{\eta}$,将最后结果记入下表中,并计 算相对误差(如有标准值)及绝对误差,给出最后结果;画出 $\eta \sim T$

曲线,并分析结果 $\eta = \frac{(\rho - \rho_0)gd^2}{18v_0(1 + 2.4 d / D)}$ Re<0.1 如Re>1为高级修正 $\eta_1 = \eta - \frac{3}{16}v_0 d\rho_0$ 0.1<Re<1

温度 <i>T</i> /°C	10		
$\overline{\eta}_{\text{/Pa·s}}$			
Re			
修正后的 $\overline{\eta}_{/\mathrm{Pa}\cdot\mathrm{s}}$			
相对误差			
E_r %			

六、数据处理 (要求有计算过程)

3、(拓展实验) 计算不同小球的 $\overline{\eta}$ 及雷诺数Re, 验证Re与小球直径的关系, 给出结论; 根据Re的大小计算修正的 $\overline{\eta}$, 将最后结果记入下表中; 计算相对误差 (如有标准值) 及绝对误差, 给出最后结果

样品小球	1	2	3	•••	
$\overline{\eta}$ /Pa·s					
Re					
修正后的					
<i>η</i> ∕Pa·s					
相对误差					
E_r %					

$$E_r = \left| \frac{\overline{\eta} - \eta^*}{\eta^*} \right| \times 100\% \qquad \Delta \eta = \left| \overline{\eta} - \eta^* \right| \qquad \eta = \overline{\eta} \pm \Delta \eta$$

七、思考题

(选两道题, 4必做)

- 1、如何判定小球已进入匀速运动状态?
- 2、小球可否从样品管顶端释放?为什么?
- 3、若小球偏离样品管中线释放,会产生何种影响?
- 4、实验总结(主要误差来源分析、操作技巧、经验分享、

体会、感想、建议等……)

八、注意事项

- 1、 通电前,应保证水位指示在水位上限;若水位指示低于水位 下限,严禁开启电源,必须先用漏斗加水;
- 2、实验过程中,不得用手触摸样品管及软管,不得直接拨软管, 避免高温烫伤;
- 3、 实验过程中, 注意用电及用水安全;
- 4、 实验全部完成后,用磁铁将小球吸引至样品管口,用挖油勺挖出,放入样品盒,以备下次实验使用;

5、实验结束后,全部零部件复原,关闭电源、盖上 样品管盖子及清理桌面。

附1:

作图要素:

图名、坐标轴、刻度线、物理量、物理量单位、 数据点、光滑曲线

附2: 一球体在静止的粘滞流体中运动时(初速度为0)

$$\frac{1}{6}\pi d^{3}\rho \frac{dv}{dt} = \frac{1}{6}\pi d^{3}(\rho - \rho_{0})g - 3\pi \eta dv$$

$$\frac{dv}{dt} + \frac{18\eta}{d^{2}\rho}v = (1 - \frac{\rho_{0}}{\rho})g$$

$$v = (1 - \frac{\rho_{0}}{\rho})g \cdot \frac{d^{2}\rho}{18\eta} + Ce^{-\frac{18\eta}{d^{2}\rho}t}$$

收尾速度: $v_0 = \frac{d^2g}{18\eta}(\rho - \rho_0)$

设从速度为0到速度达到平衡速度的99.9%这段时间为平衡时间 t_{θ} ,即令: $-\frac{18\eta}{d^2\rho}t_0$ = 0.001

已知小球直径,密度 ρ ,蓖麻油的密度 ρ_{θ} 及蓖麻油的粘滞系数 η ,可由此计算出平衡速度 ν_{θ} 及所需时间(平衡时间) t_{θ} ,可估算平衡距离 $L < \nu_{\theta} \cdot t_{\theta}$

温度 (℃)	粘滯系数η (Pa.s)	温度 (℃)	粘滯系数η (Pa.s)
4.5	4.00	20.5	0.94
5.0	3.76	21	0.90
6.0	3.46	21.5	0.86
7.5	3.03	22	0.83
9.5	2.53	22.5	0.79
10.0	2.42	23	0.75
10.5	2.32	23.5	0.71
11.0	2.23	24	0.69
11.5	2.14	24.5	0.64
12.0	2.05	25	0.62
12.5	1.97	25.5	0.58
13	1.87	26	0.57
13.5	1.79	27	0.53
14	1.71	28	0.49
14.5	1.63	29	0.47
15	1.52	30	0.45
15.5	1.49	31	0.42
16	1.4	32	0.40
16.5	1.34	33.5	0.35
17	1.27	35	0.31
17.5	1.23	35.5	0.30
18	1.17	39	0.25
18.5	1.13	40	0.23
19	1.08	42	0.20
19.5	1.04	45	0.15
20	0.95	48	0.10
		50	0.06