1. semestrální práce z předmětu KIV/ÚPA

Tomáš Maršálek, A10B0632P marsalet@students.zcu.cz

20. prosince 2012

1 Zadání

Zadání semestrální práce - A10B0632P

- Navrhněte automat, který pracuje podle zobrazeného schématu.
- Zvolte kódování stavů a vstupů (černá šipka představuje impuls I1, červená šipka představuje impuls I2). Pokud nepřichází žádný impuls, automat setrvává v aktuálním stavu.
- Zamyslete se, zda použijete synchronní nebo asynchronní klopné obvody, a vhodně zvolte jejich typ (JK nebo D).
- Vytvořte tabulku přechodů a výstupů se zakódovanými stavy, vstupy a výstupy.
- Sestavte Karnaughovy mapy budících a výstupních funkcí a provďte minimalizaci. Tyto funkce zapište výrazem.
- Nakreslete schéma zapojení obvodu.
- Nezapomeňte na nulový vstup. Nulový vstup znamená, že nepřichází do obvodu žádný vstupní signál (tj. na všechny vodiče vstupu přijde 0 nebo 1, pokud si to tak zvolíte). Vzhledem k tomu, že máte ještě navíc další dva druhy vstupních impulsů (I1, I2), nestačí vám jeden vodič pro vstup.

Výstupy obvodu jsou:

\mathbf{A}	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}		
X	У	\mathbf{Z}	\mathbf{Z}	у	X		

2 Kódování

2.1 Stavy

	s_1	s_2	s_3
Α	0	0	0
В	0	0	1
С	0	1	0
D	0	1	1
E	1	0	0
F	1	0	1

2.2 Vstupy

	x_1	x_2
Nic	0	0
Červená	0	1
Černá	1	0

2.3 Výstupy

	y_1	y_2
X	0	0
у	0	1
\mathbf{z}	1	0

x_1	x_2	s_1'	s_2'	s_3'	s_1	s_2	s_3	y_1	y_2	j_1	k_1	j_2	k_2	j_3	k_3
0	0	0	0	0	0	0	0	0	0	0	_	0	-	0	-
0	0	0	0	1	0	0	1	0	1	0	-	0	-	-	0
0	0	0	1	0	0	1	0	1	0	0	-	-	0	0	-
0	0	0	1	1	0	1	1	1	0	0	-	-	0	-	0
0	0	1	0	0	1	0	0	0	1	-	0	0	-	0	-
0	0	1	0	1	1	0	1	0	0	-	0	0	-	_	0
0	0	1	1	0	-	-	-	-	-	-	-	-	-	-	-
0	0	1	1	1	-	-	-	_	-	-	_	-	-	-	-
0	1	0	0	0	0	0	1	0	0	0	_	0	-	1	-
0	1	0	0	1	0	1	0	0	1	0	-	1	-	-	1
0	1	0	1	0	0	0	0	1	0	0	-	-	1	0	-
0	1	0	1	1	1	0	0	1	0	1	-	-	1	-	1
0	1	1	0	0	1	0	1	0	1	-	0	0	-	1	-
0	1	1	0	1	1	0	1	0	0	-	0	0	-	-	0
0	1	1	1	0	-	-	-	-	-	-	-	-	-	-	-
0	1	1	1	1	-	-	-	-	-	-	_	-	-	-	-
1	0	0	0	0	0	0	0	0	0	0	_	0	-	0	-
1	0	0	0	1	1	0	1	0	1	1	-	0	-	-	0
1	0	0	1	0	0	1	0	1	0	0	-	-	0	0	-
1	0	0	1	1	0	1	1	1	0	0	_	-	0	-	0
1	0	1	0	0	0	0	1	0	1	_	1	0	-	1	_
1	0	1	0	1	0	0	0	0	0	-	1	0	-	-	1
1	0	1	1	0	-	-	-	-	-	-	-	-	-	-	-
1	0	1	1	1	-	-	-	-	-	-	-	-	-	-	-
1	1	0	0	0	-	-	-	_	-	-	_	-	-	_	-
1	1	0	0	1	-	-	-	-	-	-	-	-	-	-	-
1	1	0	1	0	-	-	-	-	-	-	-	-	-	-	_
1	1	0	1	1	-	-	-	-	-	-	-	-	-	-	-
1	1	1	0	0	-	-	_	_	-	_	_	-	-	_	_
1	1	1	0	1	-	-	-	-	-	-	-	-	-	-	-
1	1	1	1	0	-	-	-	-	-	-	-	-	-	-	-
1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-

$$j_{1} = x_{1}\bar{s'_{1}}\bar{s'_{2}}s'_{3} + \bar{x_{1}}x_{2}\bar{s'_{1}}s'_{2}s'_{3}$$

$$k_{1} = x_{1}$$

$$j_{2} = \bar{x_{1}}x_{2}\bar{s'_{1}}\bar{s'_{2}}s'_{3}$$

$$k_{2} = \bar{x_{1}}x_{2}$$

$$j_{3} = x_{1}s'_{1} + \bar{x_{1}}x_{2}\bar{s'_{2}}$$

$$k_{3} = x_{1}s'_{1} + \bar{x_{1}}x_{2}\bar{s'_{1}}$$

$$y_{1} = s'_{2}$$

$$y_{2} = s'_{1}\bar{s'_{3}} + \bar{s'_{1}}\bar{s'_{2}}s_{3}$$

Obrázek 9: Schéma sekvenčního obvodu