ECON 147 Homework 3

Due: 12:30 pm, May 7th (Mon)

Reading and Program Downloads

- Please read the course material in course website.
- The R code (econ147lab3_Hint.r) in the course website will be helpful. Make sure you modify the codes to have the correct answers.

Review Questions

- 1. Let Y_1, Y_2, Y_3 and Y_4 be $iid(\mu, \sigma^2)$. Let $\bar{Y} = \frac{1}{4} \sum_{t=1}^4 Y_t$.
 - What are the expected value and variance of \bar{Y} ?
 - Now, consider a different estimator of μ :

$$W = \frac{1}{8}Y_1 + \frac{1}{8}Y_2 + \frac{1}{4}Y_3 + \frac{1}{2}Y_4,$$

What are the expected value and variance of W?

- Which estimator of μ do you prefer? Fully justify your answer.
- 2. Let $Y_1, Y_2, Y_3, ..., Y_n$ be $iid(\mu, \sigma^2)$ and let $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$
 - Define the class of linear estimator of μ by

$$W_a = \sum_{i=1}^n a_i Y_i$$

where $a_i's$ are constants. What restriction on the $a_i's$ is need for W_a to be an unbiased estimator of μ ?

- Find $Var(W_a)$.
- For any numbers a_i , i = 1, ..., n, the following inequality holds

$$\left(\sum_{i=1}^n a_i\right)^2 \le n \sum_{i=1}^n a_i^2.$$

Use this (and above results) to show \bar{Y} is the best linear unbiased estimator (BLUE).

3. Consider the constant expected return model

$$r_{it} = \mu_i + \epsilon_{it}$$
 $t = 1, \dots, T;$ $i = 1$ (GS), 2 (AIG),
 $\epsilon_{it} \sim \text{iid } N(0, \sigma_i^2), \text{ cov}(\epsilon_{1t}, \epsilon_{2t}) = \sigma_{12}, \text{ cor}(\epsilon_{1t}, \epsilon_{2t}) = \rho_{12}$

for the monthly cc returns on GS (Goldman Sachs) and AIG (American Internation Group). The estimates (rounded for computations) are given (T=100 months):

- For both GS and AIG cc returns, compute (asymptotic) 95% CI for μ_i and σ_i^2 .
- Compute (asymptotic) 95% confidence interval for ρ_{12} (You will use $SE(\hat{\rho}_{12}) = \sqrt{\frac{1-\hat{\rho}_{12}^2}{T}}$).
- Test the hypothesis (significance tests) for i = 1, 2, with 5% confidence level,

$$H_0: \mu_i = 0$$
 v.s. $H_1: \mu_i \neq 0$.

Are expected returns of these assets (statistically) different from zero? Justify your answer.

• Test the hypothesis for i=1,2, with 5% confidence level,

$$H_0: \sigma_i^2 = 0.0225$$
 v.s. $H_1: \sigma_i^2 \neq 0.0225$.

R Exercises

The following questions require R. On our course website there is the R script file 147lab3_Hint.r. The file contains hints for completing this R exercises. Copy and paste all statistical results and graphs into a MS Word document (or your favorite word processor) while you work, and add any comments and answer all questions in this document.

Start MS Word and open a blank document. You will save all of your work in this document.

1. Let X and Y be distributed bivariate normal with

$$\mu_X = 0.01, \ \mu_Y = 0.05, \ \sigma_X = 0.25, \ \sigma_Y = 0.15.$$

- (a) Using R package function rmvnorm(), simulate 100 observations from the bivariate distribution with $\rho_{XY} = 0.99$. Using the plot() function create a scatterplot of the observations and comment on the direction and strength of the linear association. Using the function pmvnorm(), compute the joint probability $P(X \le 0, Y \le 0)$.
- (b) Do the same exercise with $\rho_{XY} = 0.9$.
- (c) Do the same exercise with $\rho_{XY} = 0.5$.
- (d) Do the same exercise with $\rho_{XY} = 0$.
- (e) Do the same exercise with $\rho_{XY} = -0.9$.