5CCS2FC2: Foundations of Computing II

Tutorial Sheet 6

Solutions

- 6.1 Use the Master Theorem to identify the growth-rates of the following recurrence relations:
 - (i) $T(n) = 4 T(n/2) + n^2$
 - (ii) T(n) = 16 T(n/4) + n!
 - (iii) $T(n) = 3 T(n/3) + \sqrt{n}$
 - (iv) $T(n) = 7 T(n/3) + n^2$
 - (v) $T(n) = 4 T(n/2) + n/\log_2 n$

SOLUTION:

6.1 We have that $a=4,\ b=2,$ so that $k=\log_2 4=2.$ Furthermore, $f(n)=n^2\in\Theta(n^2),$ so we have that

$$T(n) = \Theta(n^2 \log_2 n)$$
 (Case 2)

6.2 We have that a = 16, b = 4, so that $k = \log_4 16 = 2$. Furthermore, $f(n) = n! \in \Omega(n^3)$, so we have that

$$T(n) = \Theta(n!)$$
 (Case 3)

(Indeed n! eventually overtakes every polynomial function; i.e., $n! \in \Omega(n^{\ell})$ for every $\ell \geq 0$.)

6.3 We have that $a=3,\ b=3,$ so that $k=\log_3 3=1.$ Furthermore, $f(n)=\sqrt{n}\in O(n^{0.5}),$ so we have that

$$T(n) = \Theta(n)$$
 (Case 1)

6.4 We have that a=7, b=3, so that $k=\log_3 7\approx 1.77$. Furthermore, $f(n)=n^2\in\Omega(n^2)$, so we have that

$$T(n) = \Theta(n^2)$$
 (Case 3)

6.5 We have that $a=4,\ b=2,$ so that $k=\log_2 4=2.$ Furthermore, $f(n)=n/\log_2 n\in O(n),$ so we have that

$$T(n) = \Theta(n^2)$$
 (Case 1)

6.2 Consider the following recurrence relation

$$T(1) = 1$$

$$T(n) = T(n-1) + n$$

Prove, by induction on n, that T(n) = n(n+1)/2, for all $n \ge 1$. What is the growth-rate for T(n)?

SOLUTION:

Base Case) For the base case, we have that

$$T(1) = 1 = \frac{1 \cdot (1+1)}{2}$$

Inductive Case) Suppose, for induction, that

$$T(k) = \frac{k(k+1)}{2} \tag{I.H.}$$

for some $k \geq 1$. It then follows that

$$T(k+1) = T(k) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1) \quad \text{by (I.H.)}$$

$$= (k+1) \left(\frac{k}{2} + 1\right)$$

$$= (k+1) \left(\frac{k}{2} + \frac{2}{2}\right)$$

$$= (k+1) \frac{(k+2)}{2} = \frac{(k+1)((k+1)+1)}{2}$$

Conclusion) Therefore, if the formula forms for n = k it also holds for n = (k + 1). Since the base case shows that the formula holds for n = 1, it must hold for all values of $n \ge 1$.

The growth-rate for T(n) is $\Theta(n^2 + n) = \Theta(n^2)$, i.e. quadratic time.

6.3 Consider the following recurrence relation

$$T(1) = 1$$

 $T(n) = 8 T(\lceil n/2 \rceil) + n^3$

Prove, by induction on n, that $T(n) \geq 2n^3$, for all $n \geq 2$, thereby proving that $T(n) = \Omega(n^3)$.

SOLUTION:

Base Case) For the base case, we have that must verify that the formula holds for the minimum value n = 2,

$$T(2) = 8(1) + 2^3 = 16 \ge 2(2^3)$$

Inductive Case) Suppose, for induction, that

$$T(m) \ge 2m^3$$
 (I.H.)

for all $2 \le m \le k$, for some $k \ge 2$. It then follows that

$$T(k+1) = 8 T \left(\left\lceil \frac{k+1}{2} \right\rceil \right) + (k+1)^3$$

$$\geq 8 \cdot 2 \left(\left\lceil \frac{k+1}{2} \right\rceil \right)^3 + (k+1)^3 \quad \text{by (I.H.)}$$

$$\geq 16 \left(\frac{k+1}{2} \right)^3 + (k+1)^3$$

$$\geq 16 \frac{(k+1)^3}{8} + (k+1)^3$$

$$= 3(k+1)^3$$

$$\geq 2(k+1)^3$$

Conclusion) Therefore, $T(n) \geq 2n^3$ for all $n \geq 2$, which is to say that $T(n) = \Omega(n^3)$.

6.4 (Tricky!) Let F(n) denote the nth Fibonacci number, given by the recurrence relation

$$F(0) = 0,$$
 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$

for all $n \geq 2$.

- (i) Calculuate the first 10 Fibonacci numbers.
- (ii) Prove, by induction on n, that the nth Fibonacci number can be calculated directly with the formula

$$F(n) = \frac{1}{\sqrt{5}}(A^n - B^n)$$

for all $n \ge 0$, where A and B are two solutions to the quadratic equation $x^2 = x + 1$. You should:

- Show that the above formula is correct for n = 0 and n = 1.
- Assume the formulas holds for all $m \leq k$ for some $k \geq 1$, and substitute your induction hypothesis to find an expression for F(k+1),
- Simplify your expression to show $F(k+1) = \frac{1}{\sqrt{5}}(A^{k+1} B^{k+1})$.
- (iii) What is the growth-rate of F(n)?

SOLUTION:

(i) The first ten Fibonacci numbers are given in the following table

(ii) Base Case) Since the recurrence relation involve two recursive calls to both F(n-1) and F(n-2), we require two base cases! We must show that our formula give the correct value for F(0) and F(1). The first is straightforward since

$$\frac{1}{\sqrt{5}}(A^0 - B^0) = \frac{1}{\sqrt{5}}(1 - 1) = 0 = F(0)$$

since $A^0 = B^0 = 1$. For the second we have that

$$\frac{1}{\sqrt{5}}(A^{1} - B^{1}) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} \right)$$
$$= \frac{1}{\sqrt{5}} \left(\frac{2\sqrt{5}}{2} \right) = 1 = F(1)$$

Inductive Case) Suppose, for induction, that

$$F(m) = \frac{1}{\sqrt{5}}(A^m - B^m) \tag{I.H.}$$

for all $m \leq k$, for some $k \geq 2$. It then follows that

$$F(k+1) = F(k) + F(k-1)$$

$$= \frac{1}{\sqrt{5}} (A^k - B^k) + \frac{1}{\sqrt{5}} (A^{k-1} - B^{k-1}) \quad \text{by (I.H.)}$$

$$= \frac{1}{\sqrt{5}} \left((A^k + A^{k-1}) - (B^k + B^{k-1}) \right)$$

$$= \frac{1}{\sqrt{5}} \left(A^{k-1} (A+1) - B^{k-1} (B+1) \right)$$

$$= \frac{1}{\sqrt{5}} (A^{k-1} A^2 - B^{k-1} B^2) \quad \text{since } x^2 - x - 1 = 0 \quad \text{for } x = A, B$$

$$= \frac{1}{\sqrt{5}} (A^{k+1} - B^{k+1})$$

Conclusion) Therefore, it follows by induction on n that our formula holds for all $n \geq 0$, as required.

We can verify that our formula holds by comparing the output values with the values will calculated for part (i).

(iii) We can verify B < 1, so for large values of n, B^n will be negligible (it is never greater than 1).

Hence we have that

$$F(n) \approx \frac{1}{\sqrt{5}}A^n$$

Since, we do not care about the constant factor of $1/\sqrt{5}$, we have that $F(n) = \Theta(A^n)$.