Gravitational Wave Detection

CMPE 257 Project September 9, 2021

Tom Casaletto Anthony Fisher Phil Shirts Joel Wiser

Outline

- Problem Statement
- CWT/CNN Approach
- CQT/CNN Approach
- Transfer Learning
- Next Steps
- Additional Material

Continuous Wavelet Transform

- Transform detector time series into spectrograms (images)
- Train CNN with spectrogram training examples

Normalize signals (z transform)

Perform CWT transform Apply bandpass filter (20-500 Hz)

Convolutional Neural Net

CWT/CNN Results

Model: "sequential 13"

		Param #	
conv2d_16 (Conv2D)	(None, 291,	88, 32) 32	======================================
max_pooling2d_11 (M	MaxPooling (None,	48, 14, 32)	0
conv2d_17 (Conv2D)	(None, 46, 1	12, 64) 184	196
max_pooling2d_12 (M	MaxPooling (None,	23, 6, 64)	0
conv2d_18 (Conv2D)	(None, 21, 4	1, 64) 369	28
flatten_8 (Flatten)	(None, 5376)	0	
dense_16 (Dense)	(None, 64)	344128	3
dense_17 (Dense)	(None, 2)	130	

Total params: 402,914 Trainable params: 402,914 Non-trainable params: 0

Fnoch 1/10 Epoch 2/10 Epoch 3/10 Epoch 4/10 Epoch 5/10 Epoch 6/10 Epoch 7/10 Epoch 8/10 Epoch 9/10 Epoch 10/10

Leaderboard [as of 2021-09-08]

Backup

Continuous Wavelet Transform

- Transform detector time series into spectrograms (images)
- Train CNN with spectrogram training examples

Convolutional Neural Net

model.compile(loss='sparse categorical crossentropy',optimizer='adam',metrics=['accuracy'])

model.add(Dense(100,activation='relu')) model.add(Dense(2,activation='softmax'))

CWT/CNN Results

Model: "sequential"

Layer (type)	Output Shape	Param #	
conv2d (Conv2D)	(None, 19, 2, 3	2) 320	
max_pooling2d (Max	kPooling2D) (None, 9,	1, 32) 0	
flatten (Flatten)	(None, 288)	0	······································
dense (Dense)	(None, 100)	28900	
dense_1 (Dense)	(None, 2)	202	

Total params: 29.422 Trainable params: 29,422 Non-trainable params: 0

Epoch 9/10

Epoch 10/10

Epoch 1/10 Epoch 2/10 Epoch 3/10 250/250 [=============] - 1s 3ms/step - loss: 0.6933 - accuracy: 0.5046 Epoch 4/10 Epoch 5/10 250/250 [==============] - 1s 3ms/step - loss: 0.6931 - accuracy: 0.5001 Epoch 6/10 Epoch 7/10 Epoch 8/10

Creating Spectrogram

