ESTRUCTURAS DEFINIDAS EN R

CURSO DE INTRODUCCIÓN A R STUDIO

ALGUNAS DE LAS ESTRUCTURAS PRINCIPALES

TÍTULO DE LA PRESENTACIÓN

- Valores
- Listas
- Arreglos
- Matrices
- Factores
- Data frames
- Objetos estadísticos o gráficos

Listas

Estructura general en R. Es un objeto con varias entradas que contiene diferente tipo de objetos. Veremos algunos detalles pequeños de su uso

```
# Create a list containing strings, numbers, vectors and a logical
# values.
list_data <- list("Red", "Green", c(21,32,11), TRUE, 51.23, 119.1)
print(list_data)</pre>
```


Vectores

ES un subconjunto de las listas. Generalmente se compone de elementos que tienen la misma clase . Es decir, solo grupos de caracteres o solo objetos numéricos

- Crear
- Acceder a sus entradas
- Reemplazar elementos
- Ordenar
- Operaciones unarias o binarias

Funciones sobre vectores

En R podemos destacar las siguientes funciones básicas sobre vectores numéricos.

- min : para obtener el mínimo de un vector.
- max: para obtener el máximo de un vector.
- length: para determinar la longitud de un vector.
- range : para obtener el rango de valores de un vector, entrega el mínimo y máximo.
- sum: entrega la suma de todos los elementos del vector.
- prod : multiplica todos los elementos del vector.
- which.min: nos entrega la posición en donde está el valor mínimo del vector.
- which.max: nos da la posición del valor máximo del vector.
- rev : invierte un vector.

Construcción de vectores

En R podemos crear secuencias de números de una forma sencilla usando la función seq , la estructura de esta función es:

```
seq(from=1, to=1, by, length.out)
```

Los argumentos de esta función son:

- from: valor de inicio de la secuencia.
- to: valor de fin de la secuencia, no siempre se alcanza.
- by : incremento de la secuencia.
- length.out : longitud deseado de la secuencia.

Construcción de vectores

En R podemos crear repeticiones usando la función rep , la estructura de esta función es:

```
rep(x, times=1, length.out=NA, each=1)
```

Los argumentos de esta función son:

- x : vector con los elementos a repetir.
- times: número de veces que el vector x se debe repetir.
- length.out: longitud deseada para el vector resultante.
- each : número de veces que cada elemento de x se debe repetir.

Matrices

QUE ES?

Una matriz es un objeto bidimensional rectangular que contiene filas y columnas de datos.

Generalmente contienen cantidades numéricas

Es un subconjunto de los arreglos

Veremos unos ejemplos

SINTAXIS GENERAL

matrix(data, nrow, ncol, byrow, dimnames)

Following is the description of the parameters used -

- data is the input vector which becomes the data elements of the matrix.
- nrow is the number of rows to be created.
- ncol is the number of columns to be created.
- byrow is a logical clue. If TRUE then the input vector elements are arranged by row.
- dimname is the names assigned to the rows and columns.

Un poco de álgebra de matrices

Las matrices, vistas como tablas numéricas se puede operar y analizar. Veremos:

- Operaciones unarias y binarias
- Manipulación de las matrices
- Calculo de la inversa, el determinante y otros valores importantes

ESTRUCTURAS LÓGICAS

CÓDIGO BOOLEANO

```
!x # Negación de x
x & y # Conjunción entre x e y
x && y
x | y # Disyunción entre x e y
x || y
xor(x, y)
```

Data Frames

Es un subconjunto de los arreglos. Es una tabla de valores que cumple las siguientes características:

- Las columnas deben tener un nombre especificado
- El nombre de las filas debe ser único
- Los datos incluidos pueden ser valores numéricos, factores o datos cualitativos
- Cada columna debe tener una cantidad de datos equitativa

Data Frames

Los data frames son una estructura mucho más organizada y es usada con mucha frecuencia, en ella podemos:

- Clasificar
- Ordenar
- Hacer resúmenes y cálculos
- Extraer subconjuntos de datos
- Adicionar datos

Instalación de paquetes en R

Paquetes de R: Códigos de programación agrupados, construidos con un propósito determinado.

- De uso libre (la mayoría de ellos)
- R Studio tiene una opción sencilla para su instalación
- Carga al grupo presente de archivos
- Uso

- 1. ¿Qué cantidad de dinero sobra al repartir 10000\$ entre 3 personas?
- 2. ¿Es el número 4560 divisible por 3?
- 3. Construya un vector con los números enteros del 2 al 87. ¿Cuáles de esos números son divisibles por 7?
- 4. Construya dos vectores, el primero con los números enteros desde 7 hasta 3, el segundo vector con los primeros cinco números positivos divisibles por 5. Sea A la condición de ser par en el primer vector. Sea B la condición de ser mayor que 10 en el segundo vector. ¿En cuál de las 5 posiciones se cumple A y B simultáneamente?
- 5. Consulte este enlace en el cual hay una anéctoda de Gauss niño. Use R para obtener el resultado de la suma solicitada por el profesor del niño Gauss.
- Construya un vector con los siguientes elementos: 1, -4, 5, 9, -4. Escriba un procedimiento para extraer las posiciones donde está el valor mínimo en el vector.
- 7. Calcular 8!
- 8. Evaluar la siguiente suma $\sum_{i=3}^{i=7} e^i$
- 9. Evaluar la siguiente productoria $\prod_{i=1}^{i=10} \log \sqrt{i}$
- 10. Construya un vector cualquiera e inviertalo, es decir, que el primer elemento quede de último, el segundo de penúltimo y así sucesivamente. Compare su resultado con el de la función rev.
- 11. Create the vector: $1, 2, 3, \ldots, 19, 20$.
- 12. Create the vector: $20, 19, \ldots, 2, 1$.
- 13. Create the vector: $1, -2, 3, -4, 5, -6, \dots, 19, -20$.
- 14. Create the vector: $0.1^3, 0.2^1, 0.1^6, 0.2^4, \dots, 0.1^{36}, 0.2^{34}$.
- 15. Calculate the following: $\sum_{i=1}^{100} \phi_i \vec{b} = 4 \vec{i} \vec{b}$ Each $\sum_{i=1}^{25} \phi_i \left(\frac{2^i}{i} + \frac{3^i}{i^2}\right)$.