ps1_question3 Cali Li 9/20/2019

input data

Using code as below:

```
train = read.table('C:/Users/wenji/Downloads/train_trajectories.csv',sep = ',',header = TRUE)
```

input training data set and compute it.

```
## tot_dist max_abs avg_abs_dev AUC
## (1,2) 1063.002 85.08215 6.032171 46527.00
## (1,3) 1032.680 65.41896 14.552720 16242.50
## (1,4) 1153.464 99.18373 18.172340 54516.01
## (1,5) 1049.805 64.34041 20.684094 32053.50
## (1,6) 1961.695 623.55022 92.456128 228192.85
```

From the result above, we can find that the computation is great expect the area estimation. We still can use the first three line getting an accurate result.

compute test data set

Input test data set and compute it.

```
test = read.table('C:/Users/wenji/Downloads/test_trajectories.csv',sep = ',',header = TRUE)
#split data into different tables
t1=subset(test,test$subject_nr==6 & test$count_trial==1,select=1:5)
t2=subset(test,test$subject nr==7 & test$count trial==1,select=1:5)
t3=subset(test,test\subject_nr==8 & test\scount_trial==1,select=1:5)
t4=subset(test,test$subject nr==9 & test$count trial==1,select=1:5)
t5=subset(test,test$subject_nr==10 & test$count_trial==1,select=1:5)
#transform data
my_tra1 = as.matrix(t1[,3:5])
my_tra2 = as.matrix(t2[,3:5])
my_tra3 = as.matrix(t3[,3:5])
my_tra4 = as.matrix(t4[,3:5])
my_tra5 = as.matrix(t5[,3:5])
#compute data
t_result = matrix(nrow = 5,ncol = 4)
t_result[1,] = my_curv(my_tra1)
t_result[2,] = my_curv(my_tra2)
t_result[3,] = my_curv(my_tra3)
t_result[4,] = my_curv(my_tra4)
t_result[5,] = my_curv(my_tra5)
colnames(t_result) = c('tot_dist', 'max_abs', 'avg_abs_dev', 'AUC')
rownames(t_result) = c('(6,1)','(7,1)','(8,1)','(9,1)','(10,1)')
t result
```

```
## tot_dist max_abs avg_abs_dev AUC
## (6,1) 1650.769 464.89910 90.387825 275254.35
## (7,1) 1252.550 35.46823 4.723562 19981.20
## (8,1) 1069.158 18.41130 1.757015 10133.99
## (9,1) 1092.076 74.20550 7.302945 36134.40
## (10,1) 1086.835 85.33933 12.487715 51446.32
```