

Spectral clustering

· Core idea: Form a graph and snop points using graph structur.

1. Similarity graph

Notation: G(V,E,W), where V: Vertices (Data Points), E: Edge it similarity >0, W: Edge weights (Similarities)

Goal: Given data points X, X2,...,Xn and similarins w(X1,X1), pointifien the data into groups so that points in a group are similar an Points in different groups are dissimilar.

Similarity graph

At Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Similarity graph Construction. : Model local neighborhood relations between data foints

E.g. Gaussian Kernel Similarity function

 $W_{i,j} = e^{\frac{-\left|\left|X_{i}-X_{j}\right|\right|^{2}}{2e^{2}}} C_{\text{ontrols size of neighborhood}}$

Graph Terminologies

· Degree of nodes: di= \ Wis

· Volume of a set: vol(A) = Idi, ASY

· Graph Cut: Cut (A,B) = [Wis

Cut $(A_1B) = \sum_{i \in A_1, i \in B} W_{i,i} = 0.3$

· An intuitive goal is find the partition that minimizes the cut.

· Laplacian of a graph is defined as: L=D-W

Ex)

) z

ı			-		-		_
t	2	٥	/· 6	0	٥	0	0
١	3	0	0	7.6	٥	0	٥
İ	4	0	0	٥	۱.٦	0	•
İ	5	0	0	0	0	1.7	0
1	6	0	٥	0	0	0	1.5
ľ							

0-6 0.6

•

٦.		/	2	3	I) >	L
1	_	1.5	-0.8	0.0-	б	1.0-	0
-	2	-0.6	/. 6	-0.8	0	0	٥
	3	- 0,6	-0.8	/. 6	-0.2	•	0
	4	0	0	4.2	1.1	- O. B	10.1
	5	-0.(0	b	-0.8	1.7	-0.6
				•	-0.1	-0.6	1.5

$$= \sum_{i} d_{i} f_{i}^{i} - \sum_{i,j} f_{i} f_{j} w_{ij}$$

$$=\frac{3}{7}\sum_{i}M_{ii}(f_{i}-f_{i})_{x}^{2}=Cv_{i}(V_{i}B)$$

3) Cut(A,B)= fTLf

argmin filt

• Normalized Cut :
$$N_{\text{Cut}}(A,B) = \frac{\text{Cut}(A,B)}{\text{Vol}(A)} + \frac{\text{Cut}(A,B)}{\text{Vol}(B)}$$

$$= \text{Cut}(A,B) = \frac{V_0 |(A) + V_0 |(B)}{V_0 |(A) + V_0 |(B)}$$

o Normalized Cut and Graph Laplacian: $N_{cut}(A_1B) = \frac{t^T L t}{t^T D t}$ Hence, in spectral clustering, we need to solve the following:

minfTLf s.t fTDf=(

how?: Solve the following eigenvalue publism: $(D^{-1}L)f=\lambda f$, and pick the second

Summony:

O Form a similarity Graph Jex) using Gonssian knowel similarity function

@ Calculate D: Degree matrix, W= Weights matrix, and L: Laplacian matrix where L=D-W

3) Calculate eigen-decomposition of D-12 v = 2 v

(1) Choose the K-eigenvectors associated w/ the smallest eigenvalues (avoid the thinked one)

(5) $X \in \mathbb{R}^{N \times d} \rightarrow V = [V_1, ..., V_K] \in \mathbb{R}^{N \times K}$

6 Perform K-means clustering on V.