

Moltkestraße 30, 76133 KARLSRUHE

Tel: 0721/925-2630 - Fax: 0721/925-2000

Seite:	1/5
Blatt:	1

Projekt: Modell: Beispiel Modalanalyse Datum: 04.03.2020

STATISCHE BERECHNUNG

BAUVORHABEN BAUHERR ERSTELLER Arne Rick

Moltkestraße 30, 76133 KARLSRUHE

Tel: 0721/925-2630 - Fax: 0721/925-2000

 Seite:
 2/5

 Blatt:
 1

 MODELL

Datum: 04.03.2020

Projekt: Modell: Beispiel Modalanalyse

■ INHALT

	Modell-Basisangaben	2
1	Modell	
1.1	Knoten	2
1.7	Stäbe	2
1.7.4	Stäbe - Steifigkeit	2
1.8	Knotenlager	3
2	Lastfälle und Kombinationen	
2.1	Lastfälle	3
2.1.1	Lastfälle - Berechnungsparameter	3
2.1.4	- Lastfälle - Parameter für CQC-Regel	3
2.5	Lastkombinationen	3
2.5.2	Lastkombinationen - Berechnungsparameter	4
2.6	Ergebniskombinationen	4
3	Lasten	

■ MODELL-BASISANGABEN

Allgemein	Modellname	: Beispiel Modalanalyse
	Modelltyp	: 2D-XZ (ux/uz/φy)
	Positive Richtung der globalen Z-Achse	: Nach unten
	Klassifizierung der Lastfälle und	: Nach Norm: EN 1990
	Kombinationen	Nationaler Anhang: DIN - Deutschland
	Kombinationen automatisch erzeugen	: Lastkombinationen
Optionen	CQC-Regel anwenden	
	CAD/BIM-Modell ermöglichen	
	Fulls a ablassa insuran	
	Erdbeschleunigung	40.00 4.0
	g	: 10.00 m/s ²

■ 1.1 KNOTEN

Knoten	Bezugs-	Koordinaten-	Knotenkoordinaten		
Nr.	Knoten	System	X [m]	Z [m]	Kommentar
1	-	Kartesisch	0.000	0.000	
2	-	Kartesisch	0.000	-3.300	
3	-	Kartesisch	0.000	-6.600	
4	-	Kartesisch	0.000	-9.900	
5	-	Kartesisch	0.000	-13.200	
6	-	Kartesisch	0.000	-16.400	

■ 1.7 STÄBE

Stab		Kno	oten	Drehu	ıng	Quers	chnitt	Geler	ık Nr.	Exz.	Teilung	Länge		ı
Nr.	Stabtyp	Anfang	Ende	Тур	β [°]	Anfang _i	Ende	Anfang	Ende	Nr.	Nr.	L [m]		ı
1	Steifigkeiten	1	2	Winkel	0.00	0	0	-	-	-	- 1	3.300	Z	Ì
2	Steifigkeiten	2	3	Winkel	0.00	0	0	-	-	-	-	3.300	Z	
3	Steifigkeiten	4	3	Winkel	0.00	0	0	-	-	-	-	3.300	Z	
4	Steifigkeiten	4	5	Winkel	0.00	0	0	-	-	-	-	3.300	Z	
5	Steifigkeiten	5	6	Winkel	0.00	0	0	-	-	-	-	3.200	Z	

174 STÄBF - STEIFIGKEIT

A	Forsions- und Biegesteifigkeiten: Axiale Steifigkeit und Schubsteifigkeit:	Parameter Torsionsteifigkeit Biegesteifigkeit Biegesteifigkeit	Gl _t = El _y =	0.000 39638104.0	kNm² kNm²
A	ů ů	Biegesteifigkeit Biegesteifigkeit	El _y =	39638104.0	
	Axiale Steifigkeit und Schubsteifigkeit:	Biegesteifigkeit	,		kNlm2
	Axiale Steifigkeit und Schubsteifigkeit:			00	KINIII
	Axiale Steifigkeit und Schubsteifigkeit:		$EI_z =$	0.000	kNm ²
		Axiale Stefigkeit	EA =	0.000	kN
		Schubsteifigkeit	$GA_v =$	0.000	kN
1 -		Schubsteifigkeit	$GA_z^{'} =$	0.000	kN
P	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m ³
	• •	Querschnittsfläche	Á =	0.00	cm ²
l v	Värmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm
2 T	Forsions- und Biegesteifigkeiten:	Torsionsteifigkeit	Gl _t =	0.000	kNm ²
		Biegesteifigkeit	El _y =	39638104.0 00	kNm ²
		Biegesteifigkeit	El ₂ =	0.000	kNm ²
A	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit	EA =	0.000	kN
		Schubsteifigkeit	$GA_v =$	0.000	kN
		Schubsteifigkeit	$GA_{7}^{'} =$	0.000	kN
P	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m³
		Querschnittsfläche	Á =	0.00	cm ²
V	Värmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm
3 T	orsions- und Biegesteifigkeiten:	Torsionsteifigkeit	Gl _t =	0.000	kNm ²
		Biegesteifigkeit	El _y =	39638104.0 00	kNm ²
		Biegesteifigkeit	El ₂ =	0.000	kNm ²
A	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit	EA =	0.000	kN
1	state storington and sortasstonighten.	Schubsteifigkeit	GA _v =	0.000	kN
		Schubsteifigkeit	GA _z =	0.000	kN
Р	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m³

Moltkestraße 30, 76133 KARLSRUHE

Tel: 0721/925-2630 - Fax: 0721/925-2000

 Seite:
 3/5

 Blatt:
 1

Projekt: Modell: Beispiel Modalanalyse

Datum: 04.03.2020

■ 1.7.4 STÄBE - STEIFIGKEIT

Stab					
Nr.		Parameter			
		Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm
4	Torsions- und Biegesteifigkeiten:	Torsionsteifigkeit	Gl _t =	0.000	kNm ²
		Biegesteifigkeit	El _y =	39638104.0	kNm ²
				00	
		Biegesteifigkeit	El _z =	0.000	kNm ²
	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit	EA =	0.000	kN
		Schubsteifigkeit	$GA_y =$	0.000	kN
		Schubsteifigkeit	$GA_z =$	0.000	kN
	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m ³
		Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm
5	Torsions- und Biegesteifigkeiten:	Torsionsteifigkeit	$Gl_t =$	0.000	kNm ²
		Biegesteifigkeit	El _y =	39638104.0 00	kNm²
		Biegesteifigkeit	El _z =	0.000	kNm ²
	Aviala Staifielait und Sahuhataifielait		EA =	0.000	kN
	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit Schubsteifigkeit	GA _v =	0.000	kN
					kN
	Dto-fo-Fii-bt	Schubsteifigkeit	$GA_z =$	0.000	
	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m³
		Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm

■ 2.1 LASTFÄLLE

Last-	LF-Bezeichnung	EN 1990 DIN		Eigengewicht -	Faktor in Richt	ung
fall		Einwirkungskategorie	Aktiv	, X	Υ Υ	Z
LF1	Massen	Ständig				
LF2	DLF 1, Eigenform 1, Richtung - X	Erdbeben				
LF3	DLF 1, Eigenform 2, Richtung - X	Erdbeben				
LF4	DLF 2, Eigenform 1, Richtung - X	Erdbeben				
LF5	DLF 2, Eigenform 2, Richtung - X	Erdbeben				

■ 2.1.1 LASTFÄLLE - BERECHNUNGSPARAMETER

Last-	LF-Bezeichnung		
fall			Berechnungsparameter
LF1	Massen	Berechnungstheorie	: Theorie I. Ordnung (linear)
		Steifigkeitsbeiwerte aktivieren für:	: Querschnitte (Faktor für J, I _v , I _z , A, A _v , A _z)
			: Stäbe (Faktor für GJ, El _y , El _z , EA, GA _y , GA _z)
LF2	DLF 1, Eigenform 1, Richtung -	Berechnungstheorie	: Theorie I. Ordnung (linear)
LF3	DLF 1, Eigenform 2, Richtung -	Berechnungstheorie	: Theorie I. Ordnung (linear)
LF4	DLF 2, Eigenform 1, Richtung - X	Berechnungstheorie	: Theorie I. Ordnung (linear)
LF5	DLF 2, Eigenform 2, Richtung - X	Berechnungstheorie	: Theorie I. Ordnung (linear)

• 2.1.4 - LASTFÄLLE - PARAMETER FÜR CQC-REGEL

Last-	LF-Bezeichnung		
fall		Kreisfrequenz [rad/s]	Lehrsche Dämpfung [-]
LF2	DLF 1, Eigenform 1, Richtung - X	5.62	0.049
LF3	DLF 1, Eigenform 2, Richtung - X	35.72	0.051
LF4	DLF 2, Eigenform 1, Richtung - X	5.62	0.049
LF5	DLF 2, Eigenform 2, Richtung - X	35.72	0.051
1			

■ 2.5 LASTKOMBINATIONEN

_						
Last-		Lastkombination				
kombin.	BS	Bezeichnung	Nr.	Faktor	ı	Lastfall
LK1	GZT	1.35*LF1	1	1.35	LF1	Massen
LK2	G Ch	LF1	1	1.00	LF1	Massen
LK3	G Hä	LF1	1	1.00	LF1	Massen
LK4	G Qs	LF1	1	1.00	LF1	Massen

Moltkestraße 30, 76133 KARLSRUHE

Tel: 0721/925-2630 - Fax: 0721/925-2000

Seite: 4/5 Blatt: 1 **LASTEN**

Projekt: Modell: Beispiel Modalanalyse

Datum: 04.03.2020

■ 2.5.2 LASTKOMBINATIONEN - BERECHNUNGSPARAMETER

Last- ombin.	Bezeichnung		Berechnungsparameter
LK1		Para ahmun watha awia	
LK1	1.35*LF1	Berechnungstheorie Optionen	II. Ordnung (P-Delta) Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für: Normalkräfte N Querkräfte V _y und V _z Momente M _y , M _z und M _T
		Steifigkeitsbeiwerte aktivieren für:	 : ■ Materialien (Teilsicherheitsbeiwert₇M) : ■ Querschnitte (Faktor für J, I_y, I_z, A, A_y, A_z) : ■ Stäbe (Faktor für GJ, EI_y, EI_z, EA, GA_y, GA_z)
LK2	LF1	Berechnungstheorie Optionen	∷
		Steifigkeitsbeiwerte aktivieren für:	 : ■ Materialien (Teilsicherheitsbeiwert₇M) : ■ Querschnitte (Faktor für J, I_y, I_z, A, A_y, A_z) : ■ Stäbe (Faktor für GJ, EI_y, EI_z, EA, GA_y, GA_z)
LK3	LF1	Berechnungstheorie Optionen	II. Ordnung (P-Delta) Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für: Normalkräfte N Querkräfte V _v und V _z Momente M _v , M _z und M _T
		Steifigkeitsbeiwerte aktivieren für:	 Materialien (TeilsicherheitsbeiwertyM) Querschnitte (Faktor für J, I_y, I_z, A, A_y, A_z) Stäbe (Faktor für GJ, EI_y, EI_z, EA, GA_y, GA_z)
LK4	LF1	Berechnungstheorie Optionen	II. Ordnung (P-Delta) Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für: Normalkräfte N Querkräfte V _y und V _z Momente M _y , M _z und M _T
		Steifigkeitsbeiwerte aktivieren für:	 : Materialien (Teilsicherheitsbeiwert₁M) : Querschnitte (Faktor für J, l₂, A, A₂, A₂) : Stäbe (Faktor für GJ, El₂, EA, GA₂, GA₂)

■ 2.6 ERGEBNISKOMBINATIONEN

Ergebn		
kombin.	Bezeichnung	Belastung
EK1	GZT (STR/GEO) - Ständig /	LK1/s
	vorübergehend - Gl. 6.10	
EK2	GZG - Charakteristisch	LK2/s
EK3	GZG - Häufig	LK3/s
EK4	GZG - Quasi-ständig	LK4/s

3.1 KNOTENLASTEN - KOMPONENTENWEISE

- KOORDINATENSYSTEM

LF1: Massen

	An Knoten	Koordinaten-	Kraft [kN]		Moment
Nr.	Nr.	system	P _X / P _U	P_Z/P_W	M _Y / M _V [kNm]
1	2	0 Globales XYZ	0.000	5052.000	0.000
2	6	0 Globales XYZ	0.000	4660.000	0.000
3	5	0 Globales XYZ	0.000	5052.000	0.000
4	4	0 Globales XYZ	0.000	5052.000	0.000
5	3	0 Globales XYZ	0.000	5052.000	0.000

■ 3.1 KNOTENLASTEN

- KOMPONENTENWEISE KOORDINATENSYSTEM

LF2: DLF 1, Eigenform 1, Richtung - X

	An Knoten	Koordinaten-	Kraft [kN]		Moment
Nr.	Nr.	system	P _X / P _U	Pz/Pw	M _Y / M _V [kNm]
1	1	0 Globales XYZ	0.000	0.000	0.000
2	2	0 Globales XYZ	272.157	0.000	0.000
3	3	0 Globales XYZ	986.816	0.000	0.000
4	4	0 Globales XYZ	1998.160	0.000	0.000
5	5	0 Globales XYZ	3175.360	0.000	0.000
6	6	0 Globales XYZ	4039.210	0.000	0.000

LF2 DLF 1, Eigenform 1, Richtung - X

LF1 Massen

Moltkestraße 30, 76133 KARLSRUHE

Tel: 0721/925-2630 - Fax: 0721/925-2000

	ACTEN	
Blatt:		1
Seite:		5/5

Projekt:

Modell: Beispiel Modalanalyse

LF3: DLF 1, Eigenform 2, Richtung - X

Datum: 04.03.2020

■ 3.1 KNOTENLASTEN

- KOMPONENTENWEISE KOORDINATENSYSTEM

LF3 DLF 1, Eigenform 2, Richtung - X

	An Knoten	Koordinaten-	Kraft [kN]		Moment
Nr.	Nr.	system	P _X / P _U	P_z/P_W	M _Y / M _V [kNm]
1	1	0 Globales XYZ	0.000	0.000	0.000
2	2	0 Globales XYZ	672.689	0.000	0.000
3	3	0 Globales XYZ	1623.580	0.000	0.000
4	4	0 Globales XYZ	1647.340	0.000	0.000
5	5	0 Globales XYZ	397.231	0.000	0.000
6	6	0 Globales XYZ	-1447.420	0.000	0.000

■ 3.1 KNOTENLASTEN

- KOMPONENTENWEISE KOORDINATENSYSTEM

DLF 2, Eigenform 1, Richtung - X

KOORDINATENSYSTEM LF4: DLF 2, Eigenform 1, Richt					ichtung - X
	An Knoten	Koordinaten- Kraft [kN]		Moment	
Nr.	Nr.	system	P _X / P _U	P_Z/P_W	M _Y / M _V [kNm]
1	1	0 Globales XYZ	0.000	0.000	0.000
2	2	0 Globales XYZ	202.610	0.000	0.000
3	3	0 Globales XYZ	734.646	0.000	0.000
4	4	0 Globales XYZ	1487.560	0.000	0.000
5	5	0 Globales XYZ	2363.930	0.000	0.000
6	6	0 Globales XYZ	3007.040	0.000	0.000

♦ 3.1 KNOTENLASTEN

- KOMPONENTENWEISE KOORDINATENSYSTEM

LF5
DLF 2, Eigenform 2, Richtung - X

KOC	RDINATENSYSTEM	DLF 2, Eige	nform 2, R	ichtung - X	
	An Knoten	Koordinaten-	Kraft [kN]		Moment
Nr.	Nr.	system	P _X / P _U	P _Z /P _W	M _Y / M _V [kNm]
1	1	0 Globales XYZ	0.000	0.000	0.000
2	2	0 Globales XYZ	607.835	0.000	0.000
3	3	0 Globales XYZ	1467.050	0.000	0.000
4	4	0 Globales XYZ	1488.520	0.000	0.000
5	5	0 Globales XYZ	358.934	0.000	0.000
6	6	0 Globales XYZ	-1307.880	0.000	0.000