Série 2013

Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Nom, prénom	N° de candidat	Date

Temps: 90 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche

(sans base de données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses vous êtes tenus de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 51,0

48,5 - 51,0	Points = Note	6,0
43,5 - 48,0	Points = Note	5,5
38,5 - 43,0	Points = Note	5,0
33,5 - 38,0	Points = Note	4,5
28,5 - 33,0	Points = Note	4,0
23,0 - 28,0	Points = Note	3,5
18,0 - 22,5	Points = Note	3,0
13,0 - 17,5	Points = Note	2,5
8,0 - 12,5	Points = Note	2,0
3,0 - 7,5	Points = Note	1,5
0,0 - 2,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des	Points	Note
expertes / experts:	obtenus	

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le **1**^{er} **septembre 2014**.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Planificatrice-électricienne CFC / Planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre d maximal	le points obtenus
1.	Pour quelle raison, avec le système TN-S, une bonne mise à la terre et une pose parfaite de la protection équipotentielle sont extrêmement importantes ? Nommez une raison.	1	
2.	En laboratoire, on détermine les pertes d'un transformateur. On mesure 380 W de pertes fer et 120 W de pertes cuivre. Le rendement du transformateur est spécifié à 87 %. Calculez la puissance nominale débitée par le transformateur avec une charge ohmique.	3	
3.	Une installation industrielle consomme un courant pouvant atteindre un maximum de 200 A, sous 3 X 400 V/230 V. Nommez quatre appareils différents, installés dans le tableau de distribution, nécessaires à la mesure de l'énergie.	2	

Exer	cices	Nombre d maximal	e points obtenus
4.	Champ électrique et champ magnétique. Quel champ apparaît dans la zone du cordon de raccordement d'une lampe de chevet, lorsque la lampe a) est allumée ? b) est éteinte ?	1	Siterials
5.	Nommez quatre informations que vous pouvez trouver sur cette étiquette énergie. © Electrolux EK 228 A++++	2	
6.	Une bobine a une résistance de 300 Ω . Elle est parcourue par un courant de 0,75 A, alors que la tension inductive U_L est de 150 V. Calculez l'impédance de la bobine.	2	

Exer	cices			Nombre d maximal	e points obtenus
7.	ou déclenchée a sont répertoriée Afin de ne pas o	avec commutateur sché es dans le tableau ci-des dépasser la tension de f	batterie 9V. La LED peut être enclenchée ema 0. Les données techniques de la LED ssous. onctionnement U _F et le courant de cance doit être montée selon le schéma.	2	
	Туре	LED-5-RAINBOW	_		
	Couleur	RGB	S_1		
	Exécution	Claire			
	Boitier	5 mm			
	I _F	20 mA			
	Conformité RoHS	Oui	1 T 5 Y		
	Longueurs d'onde	620 nm / 520 nm / 465 nm	1		
	Intensité lum. I _V	Max. 1800 mcd			
	U _F	2,0 V			
	Angle	(2 theta 1/2) 15 °			
	Température de	-25 - +85 °C			
8.		appelle le moteur par ce schéma ?	L1 N O	2	
	b) Citez deux a	ppareils utilisant ce type	e de moteur.		

Exer	cices	Nombre de maximal	e points obtenus
9.	Répondez aux questions suivantes sur les accumulateurs:	2	
	a) Nommez le type d'accumulateur utilisé pour le démarrage des voitures.		
	b) Nommez le type d'accumulateur utilisé pour un Smartphone ayant une tension (FEM) par cellule de 3,6 V.		
	c) Nommez un type d'accumulateur contenant un métal lourd dans sa composition.		
	d) Nommez un type d'accumulateur ayant une tension (FEM) par cellule de 1,2 V.		
10.	Pour chaque composant de technique du bâtiment, choisissez une fonction.	3	
	- Sonde de température		
į	- Ventilateur de moteur		
ı	- Détecteur de pression		
	- Détecteur de CO ₂		

Exer	cices	Nombre d maximal	e points obtenus
11.	Circuit à basse tension.	3	
	S1		
	S2 E		
	K1 P1 K1 P1		
	Circuit de Circuit de Circuit de commande puissance commande puissance		
	Circuit 1 Circuit 2		
	a) Quelle est la différence principale dans la fonction entre les circuits 1 et 2 ?		
	b) Pour quelle application convient le circuit 1 ? Nommez un exemple.		
	c) Pour quelle application convient le circuit 2 ? Nommez un exemple.		

Exer	cices	Nombre d maximal	e points obtenus
12.	Les données suivantes sont données pour un moteur à courant alternatif monophasé: $U = 230 \text{ V}; I = 6,1 \text{ A}; P_{abs} = 1'200 \text{ W}, Q_L = 726,9 \text{ var}.$	5	
	a) Calculez le facteur de puissance du moteur non compensé.		
	b) Calculez l'inductance de la bobine du moteur.		
	c) Calculez le facteur de puissance lorsque le moteur est compensé avec un condensateur d'une puissance réactive $Q_{\rm C}$ = 500 var.		

Exer	cices	Nombre d maximal	e points obtenus
13.	3 corps de chauffe ayant des résistances de 30 $\Omega,$ 40 Ω et 50 Ω sont couplés en étoile sur le réseau 3 x 400 V / 230 V.	3	
	a) Calculez la puissance totale des trois résistances ensemble.		
	b) Quelle est la puissance totale si les mêmes résistances sont connectées en triangle ?		

Exer	cices	Nombre d maximal	e points obtenus
14.	On doit déterminer l'impédance et ensuite la résistance d'une bobine.	3	
	Pour la mesure, on dispose d'un voltmètre (V) , d'un ampèremètre (A) , d'une source de tension continue et d'une source de tension alternative.		
	a) Quelle source de tension utilisez-vous pour la mesure d'impédance ?		
	b) Quelle source de tension utilisez-vous pour la mesure de résistance ?		
	c) Complétez le schéma avec les appareils de mesure et une des deux sources de tension.		
	V A		
	AC DC +		

Sur le schéma de câblage d'un chauffe-eau figurent les informations suivantes : Schéma de câblage 1 P = 6,6 kW U = 3 x 400 V Quelle est la puissance du même chauffe-eau s'il est connecté en 230V (selon le schéma de câblage 2) ?	3	
Schéma de câblage 1 P = 6,6 kW U = 3 x 400 V Quelle est la puissance du même chauffe-eau s'il est connecté en 230V (selon le		
Quelle est la puissance du même chauffe-eau s'il est connecté en 230V (selon le schéma de câblage 2) ?		
Schéma de câblage 2 P = ? W U = 1 x 230 V		

Exercices		Nombre d maximal	e points obtenus
19.	Un grand bureau doit être équipé avec des luminaires 1 x 49 W.	3	
	Dimension du local: Longueur 12 m, largeur 8 m, hauteur 3 m;		
	Facteur de réflexion du local: $\eta_R = 0.89$		
	Facteur de vieillissement: $\eta_v = 0.8$		
	Eclairage encastré: Longueur 1,47 m		
	Type: Tulux Nr. 149XR38ME 1 x 49 W (4300 lm)		
	Rendement optique du luminaire: $\eta_L = 63 \%$		
	Ballast EVG: H.F. TL5; Puissance 6 W		
	Lampe fluorescente: 1 x 49 W Philips 830 flux lumineux 4300 lm		
	a) Calculez le nombre de luminaires pour obtenir un éclairement moyen de $E_m = 400 \text{ lx}$.		
	b) Quelle est la puissance consommée par m² pour un éclairement de 400 lx ?		

Exercices	Nombre of maximal	de points obtenus
Exercices 20. Schéma de principe Schéma de principe Schéma de principe Résumé des puissances Moteur 3 x 400 V, I = 18 A, cosφ = 0,82 Chauffage 3 x 400 V, 5 kW Compensation 3 x 400 V, 3,6 kvar, Δ	maximal 4	de points obtenus
Total	51	