```
import pandas as pd
In [1]:
         import numpy as np
         from matplotlib import pyplot as plt
         iris=pd.read_csv("C:\\Users\\USER\\OneDrive\\Desktop\\iris.csv")
In [2]:
         iris
In [3]:
Out[3]:
                Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                                   Species
                1
           0
                              5.1
                                             3.5
                                                            1.4
                                                                           0.2
                                                                                 Iris-setosa
           1
                2
                              4.9
                                             3.0
                                                            1.4
                                                                           0.2
                                                                                 Iris-setosa
           2
                3
                              4.7
                                             3.2
                                                            1.3
                                                                           0.2
                                                                                 Iris-setosa
           3
                                                                           0.2
                4
                              4.6
                                             3.1
                                                            1.5
                                                                                 Iris-setosa
                5
                              5.0
                                                                           0.2
           4
                                             3.6
                                                            1.4
                                                                                 Iris-setosa
         145 146
                              6.7
                                             3.0
                                                            5.2
                                                                           2.3 Iris-virginica
         146 147
                                             2.5
                              6.3
                                                            5.0
                                                                               Iris-virginica
         147 148
                              6.5
                                             3.0
                                                                           2.0 Iris-virginica
                                                            5.2
         148 149
                              6.2
                                             3.4
                                                            5.4
                                                                           2.3 Iris-virginica
                                             3.0
         149 150
                              5.9
                                                            5.1
                                                                           1.8 Iris-virginica
        150 rows × 6 columns
         iris.shape
In [4]:
         (150, 6)
Out[4]:
In [5]:
         iris.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
                               Non-Null Count Dtype
          #
               Column
               -----
                               _____
                                                 ----
                               150 non-null
                                                 int64
          0
               Ιd
          1
               SepalLengthCm 150 non-null
                                                 float64
                                                 float64
          2
               SepalWidthCm
                               150 non-null
          3
               PetalLengthCm 150 non-null
                                                 float64
               PetalWidthCm
                                                 float64
                               150 non-null
          5
               Species
                               150 non-null
                                                 object
         dtypes: float64(4), int64(1), object(1)
         memory usage: 7.2+ KB
         print(iris.isna().sum())
In [6]:
         print(iris.describe())
```

Species

0.2 Iris-setosa

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0

dtype: int64

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [7]: iris.head()

Out[7]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

0.2 Iris-setosa 0 1 5.1 3.5 1.4 2 1 4.9 3.0 1.4 0.2 Iris-setosa 2 3 4.7 3.2 1.3 0.2 Iris-setosa 3 4 4.6 3.1 1.5 0.2 Iris-setosa

1.4

3.6

In [8]: iris.head(150)

4 5

Out[8]: Id SepalLengthCm SepalWidthCm Pe

5.0

:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	•••						
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [9]: iris.tail(100)

, 0.00 1 101					1451(1.1115614551116	ation	
Out[9]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	50	51	7.0	3.2	4.7	1.4	Iris-versicolor
	51	52	6.4	3.2	4.5	1.5	Iris-versicolor
	52	53	6.9	3.1	4.9	1.5	Iris-versicolor
	53	54	5.5	2.3	4.0	1.3	Iris-versicolor
	54	55	6.5	2.8	4.6	1.5	Iris-versicolor
	•••	•••					
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica
	100 r	ows ×	6 columns				
In [10]:			ris[iris['Spec o of Versicolo	_	s-versicolor'] ",a))	
	No o	f Ver	rsicolor in Da	taset: 50			
In [11]:			iris[iris['Spe o of Setosa in		is-setosa'])		
	No o	f Set	tosa in Datase	t: 50			
In [12]:			ris[iris['Spec o of Virginica		s-virginica']) ,c)		
	No o	f Vir	ginica in Dat	aset: 50			
In [13]:			eaborn as sns atplotlib.pypl	ot as plt			
			nings import f rnings(action=	_			
In [14]:	fig	= pli	t.figure()	1 1]\			

```
localhost:8889/nbconvert/html/Task1.irisclassification.ipynb?download=false
```

 $ax = fig.add_axes([0,0,1,1])$

1 = ['Versicolor', 'Setosa', 'Virginica']

ax.pie(s, labels = l,autopct='%1.2f%%')

ax.axis('equal')

s = [50, 50, 50]

plt.show()

7/1/23, 8:03 PM Task1.irisclassification


```
In [15]: #Checking for outliars
   import matplotlib.pyplot as plt
   plt.figure(1)
   plt.boxplot([iris['SepalLengthCm']])
   plt.figure(2)
   plt.boxplot([iris['SepalWidthCm']])
   plt.show()
```



```
iris.plot(kind ='density', subplots = True, layout =(3,3), sharex = False)
In [17]:
          array([[<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
Out[17]:
                  <Axes: ylabel='Density'>],
                 [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                  <Axes: ylabel='Density'>],
                 [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                  <Axes: ylabel='Density'>]], dtype=object)
                                                                               SepalWidthCm
             0.0050
                                        Density
                                                    SepalLengthCree
                                                                     0.5
             0.0025
                                   Ιd
             0.0000
                                       200
                           0
                                                                               2
                                                                                       4
                 0.2
                          PetalLengthCne
              Density
                                           0.2
                 0.1
                                                        PetalWidthCm
                 0.0
                          0
                                  5
                                          10
                                                     0
                                                             2
```

```
In [18]: plt.figure(figsize=(15,10))
   plt.subplot(2,2,1)
   sns.violinplot(x='Species',y='PetalLengthCm',data=iris)
   plt.subplot(2,2,2)
   sns.violinplot(x='Species',y='PetalWidthCm',data=iris)
   plt.subplot(2,2,3)
   sns.violinplot(x='Species',y='SepalLengthCm',data=iris)
   plt.subplot(2,2,4)
   sns.violinplot(x='Species',y='SepalWidthCm',data=iris)
```

Out[18]: <Axes: xlabel='Species', ylabel='SepalWidthCm'>

7/1/23, 8:03 PM Task1.irisclassification

In [19]: sns.pairplot(iris,hue='Species');

In [20]: X = iris['SepalLengthCm'].values.reshape(-1,1)
 print(X)

- [[5.1]
- [4.9]
- [4.7]
- [4.6]
- [5.]
- [5.4]
- [4.6]
- [5.]
- [4.4]
- [4.9]
- [5.4]
- [4.8]
- [4.8]
- [4.3]
- [5.8]
- [5.7]
- [5.4] [5.1]
- [5.7]
- [5.1]
- [5.4]
- [5.1]
- [4.6]
- [5.1]
- [4.8]
- [5.]
- [5.] [5.2]
- [5.2]
- [4.7]
- [4.8]
- [5.4]
- [5.2] [5.5]
- [4.9]
- [5.]
- [5.5]
- [4.9]
- [4.4]
- [5.1]
- [5.]
- [4.5]
- [4.4]
- [5.]
- [5.1]
- [4.8]
- [5.1]
- [4.6]
- [5.3]
- [5.]
- [7.]
- [6.4]
- [6.9]
- [5.5]
- [6.5]
- [5.7]
- [6.3]
- [4.9][6.6]
- [5.2]

- [5.]
- [5.9]
- [6.]
- [6.1]
- [5.6]
- [6.7]
- [5.6]
- [5.8]
- [6.2]
- [5.6]
- [5.9]
- [6.1]
- [6.3]
- [6.1]
- [6.4]
- [6.6]
- [6.8]
- [6.7]
- [6.]
- [5.7]
- [5.5]
- [5.5]
- [5.8]
- [6.]
- [5.4]
- [6.]
- [6.7]
- [6.3]
- [5.6]
- [5.5]
- [5.5]
- [6.1]
- [5.8]
- [5.] [5.6]
- [5.7]
- [5.7]
- [6.2]
- [5.1]
- [5.7]
- [6.3]
- [5.8]
- [7.1]
- [6.3]
- [6.5]
- [7.6]
- [4.9]
- [7.3]
- [6.7]
- [7.2]
- [6.5] [6.4]
- [6.8]
- [5.7]
- [5.8]
- [6.4]
- [6.5]
- [7.7]
- [7.7]
- [6.]

```
[6.9]
[5.6]
[7.7]
[6.3]
[6.7]
[7.2]
[6.2]
[6.1]
[6.4]
[7.2]
[7.4]
[7.9]
[6.4]
[6.3]
[6.1]
[7.7]
[6.3]
[6.4]
[6.]
[6.9]
[6.7]
[6.9]
[5.8]
[6.8]
[6.7]
[6.7]
[6.3]
[6.5]
[6.2]
[5.9]]
```

```
In [21]: Y = iris['SepalWidthCm'].values.reshape(-1,1)
print(Y)
```

- [[3.5]
- [3.]
- [3.2]
- [3.1]
- [3.6]
- [3.9]
- [3.4] [3.4]
- [2.9]
- [3.1]
- [3.7]
- [3.4]
- [3.]
- [3.]
- [4.] [4.4]
- [3.9]
- [3.5]
- [3.8]
- [3.8]
- [3.4]
- [3.7]
- [3.6]
- [3.3]
- [3.4]
- [3.]
- [3.4]
- [3.5]
- [3.4]
- [3.2]
- [3.1]
- [3.4]
- [4.1]
- [4.2]
- [3.1][3.2]
- [3.5]
- [3.1]
- [3.]
- [3.4]
- [3.5]
- [2.3]
- [3.2]
- [3.5]
- [3.8]
- [3.]
- [3.8]
- [3.2]
- [3.7]
- [3.3]
- [3.2]
- [3.2]
- [3.1]
- [2.3]
- [2.8]
- [2.8] [3.3]
- [2.4]
- [2.9]
- [2.7]

- [2.]
- [3.]
- [2.2]
- [2.9]
- [2.9]
- [3.1]
- [3.]
- [2.7]
- [2.2]
- [2.5]
- [3.2]
- [2.8]
- [2.5]
- [2.8]
- [2.9]
- [3.]
- [2.8]
- [3.]
- [2.9]
- [2.6]
- [2.4]
- [2.4]
- [2.7]
- [2.7]
- [3.]
- [3.4]
- [3.1]
- [2.3]
- [3.]
- [2.5]
- [2.6]
- [3.]
- [2.6]
- [2.3]
- [2.7]
- [3.]
- [2.9]
- [2.9]
- [2.5]
- [2.8]
- [3.3]
- [2.7]
- [3.]
- [2.9]
- [3.]
- [3.]
- [2.5] [2.9]
- [2.5]
- [3.6]
- [3.2]
- [2.7]
- [3.]
- [2.5][2.8]
- [3.2]
- [3.]
- [3.8]
- [2.6]
- [2.2]

```
[3.2]
[2.8]
[2.8]
[2.7]
[3.3]
[3.2]
[2.8]
[3.]
[2.8]
[3.]
[2.8]
[3.8]
[2.8]
[2.8]
[2.6]
[3.]
[3.4]
[3.1]
[3.]
[3.1]
[3.1]
[3.1]
[2.7]
[3.2]
[3.3]
[3.]
[2.5]
[3.]
[3.4]
[3.]]
```

```
In [22]: plt.xlabel("Sepal Length")
   plt.ylabel("Sepal Width")
   plt.scatter(X,Y,color='b')
   plt.show()
```

7/1/23, 8:03 PM Task1.irisclassification


```
#Correlation
In [23]:
          corr mat = iris.corr()
          print(corr_mat)
                                   SepalLengthCm
                                                  SepalWidthCm PetalLengthCm \
                               Ιd
         Ιd
                         1.000000
                                        0.716676
                                                      -0.397729
                                                                      0.882747
         SepalLengthCm
                         0.716676
                                        1.000000
                                                      -0.109369
                                                                      0.871754
         SepalWidthCm
                        -0.397729
                                       -0.109369
                                                      1.000000
                                                                     -0.420516
         PetalLengthCm
                         0.882747
                                        0.871754
                                                      -0.420516
                                                                      1.000000
         PetalWidthCm
                         0.899759
                                                                      0.962757
                                        0.817954
                                                      -0.356544
                         PetalWidthCm
         Ιd
                             0.899759
         SepalLengthCm
                             0.817954
         SepalWidthCm
                            -0.356544
         PetalLengthCm
                             0.962757
         PetalWidthCm
                             1.000000
In [24]:
         from sklearn.linear_model import LogisticRegression
          from sklearn.model selection import train test split
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn import svm
          from sklearn import metrics
          from sklearn.tree import DecisionTreeClassifier
         train, test = train_test_split(iris, test_size = 0.25)
In [25]:
          print(train.shape)
          print(test.shape)
          (112, 6)
          (38, 6)
```

```
train_X = train[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm',
In [26]:
                            'PetalWidthCm']]
          train y = train. Species
          test X = test[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm',
                            'PetalWidthCm']]
          test y = test.Species
In [27]:
         train X.head()
               SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[27]:
           27
                         5.2
                                       3.5
                                                      1.5
                                                                   0.2
          122
                         7.7
                                       2.8
                                                      6.7
                                                                   2.0
           98
                         5.1
                                       2.5
                                                     3.0
                                                                   1.1
           46
                         5.1
                                       3.8
                                                      1.6
                                                                   0.2
           83
                         6.0
                                       2.7
                                                     5.1
                                                                   1.6
         test_y.head()
In [28]:
                     Iris-setosa
Out[28]:
         126
                  Iris-virginica
         89
                 Iris-versicolor
         101
                  Iris-virginica
         132
                  Iris-virginica
         Name: Species, dtype: object
         #Using LogisticRegression
In [30]:
          model = LogisticRegression()
          model.fit(train_X, train_y)
          prediction = model.predict(test X)
          print('Accuracy:',metrics.accuracy score(prediction,test y))
         Accuracy: 0.9210526315789473
         #Confusion matrix
In [31]:
          from sklearn.metrics import confusion_matrix,classification_report
          confusion mat = confusion matrix(test y,prediction)
          print("Confusion matrix: \n",confusion_mat)
          print(classification report(test y,prediction))
         Confusion matrix:
           [[ 8 0 0]
           [ 0 10 0]
           [ 0 3 17]]
                           precision
                                         recall f1-score
                                                             support
              Iris-setosa
                                1.00
                                           1.00
                                                     1.00
                                                                   8
         Iris-versicolor
                                 0.77
                                           1.00
                                                     0.87
                                                                  10
           Iris-virginica
                                1.00
                                           0.85
                                                     0.92
                                                                  20
                                                     0.92
                                                                  38
                 accuracy
                                                     0.93
                                0.92
                                           0.95
                                                                  38
                macro avg
                                                                  38
             weighted avg
                                0.94
                                           0.92
                                                     0.92
```

```
#Using Support Vector
In [32]:
         from sklearn.svm import SVC
         model1 = SVC()
         model1.fit(train_X,train_y)
         pred_y = model1.predict(test_X)
         from sklearn.metrics import accuracy score
          print("Acc=",accuracy_score(test_y,pred_y))
         Acc= 0.9210526315789473
         #Using KNN Neighbors
In [33]:
         from sklearn.neighbors import KNeighborsClassifier
         model2 = KNeighborsClassifier(n neighbors=5)
         model2.fit(train X,train y)
         y pred2 = model2.predict(test X)
         from sklearn.metrics import accuracy_score
          print("Accuracy Score:",accuracy score(test y,y pred2))
         Accuracy Score: 0.9736842105263158
         #Using GaussianNB
In [34]:
         from sklearn.naive bayes import GaussianNB
         model3 = GaussianNB()
         model3.fit(train_X,train_y)
         y pred3 = model3.predict(test X)
         from sklearn.metrics import accuracy score
          print("Accuracy Score:",accuracy_score(test_y,y_pred3))
         Accuracy Score: 0.9736842105263158
In [35]:
         #Using Decision Tree
         from sklearn.tree import DecisionTreeClassifier
         model4 = DecisionTreeClassifier(criterion='entropy', random_state=7)
         model4.fit(train X,train y)
         y_pred4 = model4.predict(test_X)
         from sklearn.metrics import accuracy score
          print("Accuracy Score:",accuracy_score(test_y,y_pred4))
         Accuracy Score: 0.8947368421052632
         results = pd.DataFrame({
In [36]:
              'Model': ['Logistic Regression', 'Support Vector Machines', 'Naive Bayes', 'KNN', '[
              'Score': [0.947,0.947,0.947,0.947,0.921]})
          result df = results.sort values(by='Score', ascending=False)
          result_df = result_df.set_index('Score')
          result_df.head(9)
```

Out[36]:		Model
	Score	
	0.947	Logistic Regression
	0.947	Support Vector Machines
	0.947	Naive Bayes
	0.947	KNN
	0.921	Decision Tree
In []:		