

> To implement OR functionality, the devices are connected in parallel.

NMOS - Inputs are uncomplemented and output is complemented.

PMOS - Inputs are complemented and output is uncomplemented.

The PDN utilizes devices in parallel to form an OR function and devices in series to form an AND function; the same is true for PUN. Here OR and AND notation refer to current flow or conduction of the device.

To implement n-input NAND or NOR gate using either NMOS or PMOS We require n transistors. But to implement the same using cmos logic we need 2n transistors.

Summary of Synthesis Method

- The "PDN" can be most directly synthesized by expressing ACE
 "Y" as a function of the "uncomplemented Variables." It
 complemented variables appears in the expression then additional
 invortes are required
- The "PUN" can be most directly synthesized by expressing "Y" as a function of the "complemented variables." If uncomplemented variables are present then additional inverten are required.
- → The PUN can be obtained from PDN and vice-versa using duality principle.

CMOS Inverter NMOS device for charging and ACE discharging a capacitor (PMOS) PMOS device for charging and discharging a capacitor (PMI points of the charging and discharging a capacitor Voltage - Transfer - Characteristics (VTC) (Y) Noise Margins (PMI DOM Switching Threshold (or) Trip point (NMOS) Propagation delay

Transister sizing Power dissipation

Relation between voltages of NMOS and PMOS devices of the CMOS Inverter,

ACE

	Cut-off	Triode (or) Linear	Saturation
NMOS	Vasn < Vtn	$V_{GSN} > V_{tn}$ $V_i > V_{tn}$	Ysn > Vtn Vi > Vtn
	$V_i < V_{tn}$	$V_{DSN} < V_{GSN} - V_{th}$ $V_0 < V_i - V_{th}$	$V_{DSN} > V_{GSN} - V_{t_N}$ $V_0 > V_i - V_{t_N}$
zom¢	VGSp > Vtp	Vasp < Vtp Vi < Vtp+VDD	ν _{εsp} < ν _{tp} ν _i < ν _{tp} + ν _{DD}
	$V_i > V_{tp} + V_{DD}$	V _{DSp} > V _{GSp} - V _{tp} V _o > V _i - V _{tp}	V _{osp} < V _{esp} −V _{tp} V _o < V _i − V _{tp}

Region	Condition	ZOMVI	PMOS	Output
A	osvi <vtn< td=""><td>Cut-off</td><td>Triode</td><td>V_{DD}</td></vtn<>	Cut-off	Triode	V_{DD}
ß	$V_{t_N} \leq V_i < \frac{V_{DD}}{2}$	Saturation	Triode	$V_0 > \frac{V_{DD}}{2}$
С	$V_{\bar{l}} = \frac{V_{DD}}{2}$	Saturation	Saturation	Vo drops sharply
D	$\frac{V_{DD}}{2} < V_i \le (V_{DD} - V_{\Phi})$	Triode	Saturation	$V_0 < \frac{V_{DD}}{2}$
ാ	Vi >(VDD-Vtp)	Triode	Cut-off	V₀ = 0

Vol - marimum LOW output Voltage

VOH - minimum HIGH output Voltage

VIL - manimum LOW input voltage

VIH - minimum HIGH input voltage

NML - LOW noise margin SNML = VIL-VOL

NMH - High noise margin

 $NM_{H} = V_{OH} - V_{IH}$