TD n°6: Produits semi-directs 27/10/2023

Nous traiterons dans l'ordre les exercices 1, 3, 8 et 5. Vous pouvez naviguer librement parmi les exercices restants ou parmi ceux de votre polycopié. Les exercices les plus délicats de la feuille sont marqués d'un .

Je reste disponible pour toute question concernant le TD, des maths, ou toute autre chose au bureau T13 (j'y suis à coups sûrs les mardis et vendredis juste avant le TD). Vous pouvez également m'envoyer un mail à nataniel.marquis@dma.ens.fr.

1. Encore du groupe symétrique

Exercice 1. Engendrer \mathfrak{A}_n

- 1. Soit $n \geq 5$ impair. Démontrer que le grand cycle $(1 \ 2 \ \dots \ n)$ et le 3-cycle $(1 \ 2 \ 3)$ engendrent \mathfrak{A}_n .
- 2. Soit $n \geq 6$ pair. Démontrer que le grand cycle $(23 \dots n)$ et le 3-cycle (123) engendrent \mathfrak{A}_n .

Exercice 2. Sous-groupes (n-2)-transitifs

Notre but dans cet exercice est de caractériser les sous-groupes (n-2)-transitifs de \mathfrak{S}_n .

- 1. Soit $k \geq 1$. Soit G un groupe et (X, \bullet) un G-ensemble de cardinal supérieur à k+1. Démontrer que l'action est (k+1)-transitive si et seulement si elle est transitive et que pour tout $x \in X$, l'action de G_x sur $X \setminus \{x\}$ est k-transitive.
- 2. Soit G un groupe fini agissant k-transitivement sur un ensemble fini X. Démontrer que

$$|X|(|X|-1)...(|X|-k+1)$$
 divise $|G|$.

3. En déduire que les seuls sous-groupes (n-2)-transitifs 1 de \mathfrak{S}_n pour son action sur $\{1,\ldots,n\}$ sont \mathfrak{A}_n et \mathfrak{S}_n .

Exercice 3. Sous-groupes d'indice n de \mathfrak{S}_n

Soit $n \geq 3$.

- 1. Rappeler pour quoi les seuls sous-groupes distingués de \mathfrak{S}_n sont {Id}, \mathfrak{A}_n et \mathfrak{S}_n sauf dans le cas n=4 où il faut ajouter K_4 .
- 2. Soit H un sous-groupe d'indice n de \mathfrak{S}_n . Démontrer que l'action de \mathfrak{S}_n sur \mathfrak{S}_n/H par translation est fidèle.
- 3. Démontrer que H est isomorphe à \mathfrak{S}_{n-1} .

^{1.} Au sens où l'action canonique que \mathfrak{S}_n sur $\{1,\ldots,n\}$ se restreint à ce sous-groupe en une action (n-2)-transitive.

2. Produits semi-directs

Exercice 4. Produits semi-directs isomorphes

Soient N et K deux groupes. Soient φ et ψ des morphismes de K dans $\operatorname{Aut}(N)$.

- 1. Supposons qu'il existe $\alpha \in \operatorname{Aut}(K)$ tel que $\psi = \varphi \circ \alpha$. Démontrer que $N \rtimes_{\varphi} K$ et $N \rtimes_{\psi} K$ sont isomorphes.
- 2. Supposons qu'il existe $u \in Aut(N)$ tel que

$$\forall k \in K, \ \psi(k) = u \circ \varphi(k) \circ u^{-1}.$$

Démontrer que $N \rtimes_{\varphi} K$ et $N \rtimes_{\psi} K$ sont isomorphes.

3. En déduire que si K est cyclique et que $\varphi(K) = \psi(K)$, alors $N \rtimes_{\varphi} K$ et $N \rtimes_{\psi} K$ sont isomorphes.

Exercice 5. Centre d'un produit semi-direct

Soit N un groupe abélien et K un groupe muni d'un morphisme $\varphi: K \to \operatorname{Aut}(N)$.

- 1. Démontrer que le centre de $N \rtimes_{\varphi} K$ est égal ensemblistement à $N^{\varphi(K)} \times [\operatorname{Ker}(\varphi) \cap \operatorname{Z}(K)]$ où $N^{\varphi(K)}$ dénote les éléments fixés par tous les automorphismes de $\varphi(K)$. Vérifier que la structure de groupe produit est effectivement la structure de groupe induite par l'inclusion dans $N \rtimes_{\varphi} K$.
- 2. \bullet Décrire à présent le centre ensemblistement en ôtant l'hypothèse d'abélianité sur N.

Exercice 6. Groupe diédral

Soit $n \geq 3$. Nous définissons le groupe diédral D_{2n} comme le sous-groupe de \mathfrak{S}_n engendré par la "rotation" $r = (1 \ 2 \ \ldots \ n)$ et la "symétrie" $s = (1 \ n)(2 \ (n-1)) \ldots (\lfloor n/2 \rfloor \lceil n/2 \rceil)$.

- 1. Démontrer que le sous-groupe engendré par r est distingué dans D_{2n} , puis que D_{2n} est produit semi-direct interne de $\langle r \rangle$ par $\langle s \rangle$.
- 2. Exhiber un isomorphisme entre D_{2n} et un produit semi-direct

$$\mu_n \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$$

pour un morphisme φ que l'on explicitera.

3. Démontrer que D_{2n} s'identifie au groupe des isométries de \mathbb{R}^2 stabilisant un polygone régulier à n côtés.

Exercice 7. Groupe des applications affines

Soit k un corps et V un k-espace vectoriel. Nous notons $\mathrm{Aff}(V)$ le sous-groupe de \mathfrak{S}_V consistué des bijections affines, i.e. vérifiant que

$$\forall x, y \in V, \forall \lambda \in k, f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Nous considérons l'application de translation

$$\tau: V \to \mathrm{Aff}(V), \ v \mapsto [x \mapsto x + v].$$

1. Vérifier que τ est un morphisme injectif de (V, +) vers le groupe $\mathrm{Aff}(V)$. Démontrer que le sous-groupe $\tau(V)$ consistué des translations est un sous-groupe distingué de $\mathrm{Aff}(V)$.

2. Démontrer que $\operatorname{Aff}(V)$ est le produit semi-direct interne de $\tau(V)$ par $\operatorname{GL}(V)$ pour lequel on déterminera le morphisme $\operatorname{GL}(V) \to \operatorname{Aut}(\tau(V))$.

3. Pour V un espace vectoriel de dimension 2 sur $\mathbb{Z}/2\mathbb{Z}$, retrouver un isomorphisme

$$\mathfrak{S}_4 \cong \left(\mathbb{Z}/2\mathbb{Z}\right)^2 \rtimes_{\varphi} \mathfrak{S}_3$$

pour lequel on explicitera φ . Que vaut l'image réciproque de $(\mathbb{Z}/2\mathbb{Z})^2$?

Exercice 8. Groupes d'ordre pq

Soient p > q deux nombres premiers. Nous souhaitons classer puis déplier la structure des groupes d'ordre pq. Soit G un tel groupe.

1. Démontrer qu'il existe un élément g_p d'ordre p dans G puis que $\langle g_p \rangle$ est distingué dans G.

<u>Indication</u>: on pourra considérer l'application

$$\langle g_p \rangle \times g \langle g_p \rangle g^{-1} \to G, \ (h_1, h_2) \mapsto h_1 h_2$$

pour chaque $g \in G$. On pourra également fouiller dans les exercices des TD précédents pour assommer la question.

- 2. Démontrer que G est isomorphe à un produit semi-direct de $\mathbb{Z}/q\mathbb{Z}$ par μ_p .
- 3. On suppose de plus que $q \nmid p-1$. Démontrer que G est cyclique.
- 4. On suppose à présent, que $q \mid p-1$. Démontrer qu'il existe un élément z d'ordre q dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$. On fixe un tel z pour la suite de la question. En déduire que G est cyclique ou isomorphe au produit semi-direct

$$\mu_p \rtimes_{\alpha_z} \mathbb{Z}/q\mathbb{Z}$$
, où $\alpha_z(x) = [\zeta \mapsto \zeta^{(z^x)}]$.

Expliquer pourquoi ces deux groupes ne sont pas isomorphes.

- 5. Dans le cas d'un groupe non cyclique, démontrer qu'il existe un unique p-Sylow et qu'il est caractéristique 2 . Démontrer aussi que le centre est trivial.
- 6. \bullet Toujours dans le cas d'un groupe non abélien, calculer le groupe dérivé. Conclure que tout groupe d'ordre pq est résoluble.

Exercice 9. Groupes d'ordre p^2q

Soient p,q deux nombres premiers. Classer les groupes d'ordre p^2q à isomorphisme près.

Exercice 10. Automorphismes d'un produit semi-direct

Soit N un groupe et K un groupe muni d'un morhisme $\varphi:K\to \operatorname{Aut}(N)$. On suppose que N est caractéristique dans $G:=N\rtimes_{\varphi}K$.

1. Rappeler pour quoi tout automorphisme de G se restreint-corestreint en un automorphisme de N. En déduire une suite exacte

$$1 \to \operatorname{Fix}(N) \to \operatorname{Aut}(G) \to \operatorname{Aut}(N),$$

où Fix(N) est l'ensemble des automorphismes de G qui fixent N.

2. Démontrer que pour tout $\lambda \in \text{Fix}(N)$ et tout $g \in G$, la conjugaison par g et par $\lambda(g)$ coïncident sur N.

 $^{2.\ {\}rm Sans}$ utiliser le théorème de Sylow.

Nous nous plaçons à présent dans le cas où $N=\left(\begin{smallmatrix}1&\mathbb{Z}/p\mathbb{Z}\\0&1\end{smallmatrix}\right)$ et $K=\left(\begin{smallmatrix}(\mathbb{Z}/p\mathbb{Z})^{\times}&0\\0&1\end{smallmatrix}\right)$ agit par conjugaison.

- 1. Démontrer que le produit semi-direct de K par N est isomorphe à $G = \binom{(\mathbb{Z}/p\mathbb{Z})^{\times} \mathbb{Z}/p\mathbb{Z}}{0}$, puis que le centre de G est trivial.
- 2. Démontrer que N est caractéristique dans G. En déduire que $|\operatorname{Aut}(G)| \leq p(p-1)$.
- 3. Conclure que le morphisme Int introduit à l'exercice 1 du TD 3 est un isomorphisme pour G.

FIGURE 1 – Puissance 827^e appliquée aux racines 929-ièmes de l'unité.