Branch: CSE & IT

Batch: Hinglish

DBMS

FD's & Normalization

DPP 01

[MSQ]

- **1.** According to RDBMS rules, choose the correct statement from the following.
 - (a) A relation in RDBMS can have multiple attributes
 - (b) A relation in RDBMS is a set of rows and columns
 - (c) A tuple in a relation can have multiple values for an attribute.
 - (d) All of the above

[NAT]

2. Consider the student relation shown below with schema stud (Sname, S age, S mail, S marks),

Stud

Didd			
Sname	Sage	Smail	Smarks
Rohit	28	R@pw.live	68
Kanika	25	K@pw.live	75
Pankaj	25	K@pw.live	75
Rohit	28	R@pw.live	88
Anjali	26	A@pw.live	75

For the above given instance how many 2-set of attributes can determine a row uniquely?

[MSQ]

3. Consider a relation schema R(A, B, C, D, E, F, H) with the given Functional dependency set:

$$\{A \rightarrow BC, C \rightarrow AD, DE \rightarrow F, C \rightarrow F\}$$

The attribute closure that contains all the attributes of the relation R is?

- (a) AE^+
- (b) CE⁺
- (c) AEH+
- (d) All of the above

[NAT]

4. Consider the below relation schema Stud (Rid, name, course, mail, phone) with FD set as:

$$Rid \rightarrow \{Rid\}$$

 $Rid \rightarrow \{name, mail\}$

 $course \rightarrow \{course, phone\}$

- phone \rightarrow {phone}
- $mail \rightarrow \{Rid, course\}$
- name \rightarrow {phone, mail, course}

The number of non-trivial FD's in the given FD set is/are?

[MCQ]

5. Consider the following set of FD's:

$$\{V \rightarrow W, \ W \rightarrow XZ, \ X \rightarrow YZ\}$$
 for relation $R(V, W, X, Y, Z)$

Then the attribute closure of YZ⁺ contains how many elements?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

[MCQ]

- **6.** For the given FD set: $\{P \rightarrow QT, Q \rightarrow SU, V \rightarrow U\}$ of a relation R (P, Q, T, S, U, V). Find the set of attributes that is Super key but not a Candidate key?
 - (a) PTQ
- (b) PV
- (c) PQV
- (d) QV

[MCQ]

7. In a schema with attribute X, Y, Z, W, V, the following set of functional dependencies are given:

$$\{Y \rightarrow X, \, Y \rightarrow Z, \, ZW \rightarrow V, \, X \rightarrow W, \, V \rightarrow X\}.$$

Which of the following FD is not implied by the above set?

- (a) $YX \rightarrow ZW$
- (b) $XV \rightarrow YZ$
- (c) $ZW \rightarrow V$
- (d) $XV \rightarrow XW$

[MSQ]

- **8.** Choose the correct statement from the following.
 - (a) The cardinality is defined as the number of attributes in a relation.
 - (b) Degree of the relation is the number of tuples in the relation.

- (c) Relation instance is the set of tuples of a relation at a particular instance of time.
- (d) All of the above

Answer Key

1. (a, b)

2. (1)

3. (c)

4. (3)

5. (c)

6. (c)

7. **(b)**

8. (c)

Hints & Solutions

1. (a, b)

A relation in RDBMS can have multiple attributes/fields/Columns but every tuple should be unique. Thus, according to RDBMS guidelines, A tuple in a relation cannot have multiple values for an attribute.

A relation is a table and a table is a set of rows and columns.

2. (1)

We can clearly observe that none of the attribute can determine a tuple uniquely (Single attribute), if we check for 2-attribute set then only (Sname, Smarks) can determine a row uniquely for the instance. So the answer is 1.

3. (c)

The attribute closure $AE^+ = \{A, B, C, D, E, F\}$. The attribute closure $CE^+ = \{C, E, A, B, D, F\}$. But the attribute H is missing from the closure. The attribute closure $AEH^+ = \{A, B, C, D, E, F, H\}$. Therefore, C is the correct answer.

4. (3)

Trivial FD's: 2 ie Rid \rightarrow Rid and phone \rightarrow phone. **Non-trivial FD's:** 3 i.e. Rid \rightarrow {name, mail}, mail \rightarrow {Rid, course) and name \rightarrow {phone, mail, course}.

Semi-non trivial FD's: 1 i.e. course \rightarrow {course, phone}.

5. (c)

The attribute closure of $YZ^+ = \{Y, Z\}$ no other attribute can be determined by YZ^+ . Therefore only 2 elements that is Y and Z are in the YZ^+ closure.

6. (c)

The key for the given FD set. $\{P \rightarrow QT, \, Q \rightarrow SU, \, V \rightarrow U\}$ $PV^+ = \{P, \, Q, \, T, \, V, \, U, \, S\}$ $PVQ^+ = \{P, \, Q, \, T, \, V, \, U, \, S\}$ $PTQ^+ = \{P, \, T, \, Q, \, S, \, U\}$ $QV^+ = \{Q, \, V, \, S, \, U\}$

we have PV^+ as the candidate key and also it is the super key. PVQ^+ is the super key but it is not a Candidate Key (not minimal set)

NOTE: A candidate key is minimal set of attributes that determine relational table uniquely. Also, every candidate key is a Super key but every Super key need not be Candidate.

7. (b)

$$YX^{+} = \{Y, X, Z, W, V\}$$

 $XV^{+} = \{X, V, W\}$
 $ZW^{+} = \{Z, W, V, X\}$
 $XV^{+} = \{X, V, W\}$

8. (c)

- Cardinality is defined as the number of tuples in a relation.
- Degree is defined as the number of attributes in a relation.
- Relation instance is the set of tuples of a relation at a particular instance of time.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

