Al4 – Machine Learning

Linear Regression

Goals:

- You know the difference between classification and regression.
- You are able to apply (linear) regression on a dataset.

Types of Numerical Data

Discrete

- Countable set of values (zip-codes, # good, # red, etc.)
- Commonly represented by integer variables

Continuous

- Ratios (% interest)
- Physical distances (for example how tall a building is)
- Temperature
- Floating point variabel (or is it?)

Are Continuous Variables Really Continuous? 3

We often think of things like **temperature**, **speed**, **and voltage** as continuous. But in reality:

- Computers store numbers with limited precision (floating-point numbers have a fixed number of bits).
- Measurements always have limits (a thermometer can't measure temperature to infinite decimal places).
- Most of the time, this doesn't matter.
- But in some cases (like scientific computing or machine learning), rounding errors can cause problems!

It is **Context Dependent**.

Know it and use it

Problem	Algorithm	
Is this A or B?	Classification Algorithms	
Is this weird?	Anomaly Detection Algorithms	
How much? How many?	Regression Algorithms	
How is this organized? Clustering Algorithms		
What should I do now?	Reinforcement Learning Algorithms	

Music & Recommendation Algorithms
 "Spotify or Netflix predicts what you'll like based on past choices."

Sports & Performance

"A coach predicts a player's future performance based on past training hours and fitness levels."

Commuting Time Prediction

"Your brain does regression daily: estimating the time it takes to get home based on past trips."

Social Interactions

"When texting a friend, you predict how long they'll take to reply based on past behavior."

Your Turn

What was the last time you predicted something?

Did you ever made a critical prediction?

Example of Time Series Prediction

But how to make predictions?

- Find informative data
- Find a realistic model

 In this course we focus on one of the simplest models: The LINEAR model

Let us measure the air pressure as we change our altitude

Now we want to predict what the pressure is at a point we did not measure

We model our data (here as a linear relationship)

We use the model to make a prediction

Predicting the air pressure

Outliers can be particularly harmful

Outliers can be harmful: Linear regression is not

Regression ≈ Continuous Labelling

- Create a (linear) relationship between 2 or more variables
- This enables you to predict something.
- Regression usually deals with continuous variables.
- Target: $y = f(x_1, x_2, ...)$
- Linear function is special case:
 y = a x + b

What is the difference with a scatter plot?

example: is data on a straight line? (y = a x + b)

x (axis): independent variable (feature)

y (axis): dependent variable (target)

We want the best estimate for a and b in

$$y = a x + b$$

Different Forms of Regression

• Linear regression:

$$y = b_0 + b_1 x$$

Multiple regression (multiple predictors):

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots$$

Polynomial regression (non-linear in x but linear in coefficients b₀,
 b₁, ...):

$$y = b_0 + b_1 x^1 + b_2 x^2 + b_3 x^3 + \dots$$

Find and Evaluate Regression

- What is the best regression?
 - Find the curve
 (= parameter values for a, b, ...)
 for which the
 Sum of Squared Errors (SSE)
 is minimal
 - This is a math problem

- How good is a regression?
 - SSE? *
 - R² value (between 0 and 1)

* SSE is not very reliable, it depends on the number of data points

But what does "best" mean?

Least squares criterion

The line of best fit minimises the total sum of squares of the vertical deviations for each case. b = slopeof the line of best fit **a = point** at which line of best fit crosses the Y-axis. х

The regression algorithm (e.g. the sklearn regressor) (calculates) the line with minimal sum of squared errors.

In other words: it minimizes the cost function that calculates the sum of squared errors for any pair of a (intercept) and b (slope).

R-squared

<u>R-squared</u> is a statistical measure (evaluation metric) of how close the data are to the fitted regression line. It solves some of the shortcomings of the sum-of-squares metric such as the dependence of number of training points.

R-squared is always between 0 and 100%:

- 0% indicates that the model explains none of the variability of the response data around its mean.
- 100% indicates that the model explains all the variability of the response data around its mean.

In general, the higher the R-squared, the better the model fits your data.

... but there is a lot of nuance to this!

Coding Linear Regression

```
    from sklearn.linear_model
import LinearRegression
```

include Linear Regression code

```
reg = LinearRegression()
```

Create regression object

```
reg.fit(X_train, y_train)
```

Fit regression line on train data

```
• pred = reg.predict(X_test)
```

Predict Y values of testset

```
r_square = reg.score(X_test, y_test) # Evaluate goodness-of-fit
```


Comparing Classification & Regression

Property	Supervised Classification	Regression
Output type (y)	Discrete (class labels)	Continuous (real number)
What are we trying to find?	Decision boundary	Best fit (curve)
Evaluation	Accuracy	r ²

Ridge

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with I2 regularization.

Lasso

The Lasso is a linear model that estimates sparse coefficients with I1 regularization.

ElasticNet

Elastic-Net is a linear regression model trained with both I1 and I2 -norm regularization of the coefficients.

They all fit a line, but **how** to fit it?

<u>LinearRegression — scikit-learn 1.6</u>
documentation

Ridge regression forces the model to **keep things smaller and neater**, so it doesn't overreact to small data changes.

See also

Ridge

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with I2 regularization.

Lasso

The Lasso is a linear model that estimates sparse coefficients with I1 regularization.

ElasticNet

Elastic-Net is a linear regression model trained with both I1 and I2 -norm regularization of the coefficients.

They all fit a line, but **how** to fit it?

<u>LinearRegression — scikit-learn 1.6</u>
<u>documentation</u>

Lasso goes even further: it can remove useless features by forcing some coefficients to exactly zero.

Ridge

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with I2 regularization.

Lasso

The Lasso is a linear model that estimates sparse coefficients with 11 regularization.

ElasticNet

Elastic-Net is a linear regression model trained with both I1 and I2 -norm regularization of the coefficients.

They all fit a line, but **how** to fit it?

<u>LinearRegression — scikit-learn 1.6</u>
<u>documentation</u>

Ridge

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with I2 regularization.

Lasso

The Lasso is a linear model that estimates sparse coefficients with I1 regularization.

ElasticNet

Elastic-Net is a linear regression model trained with both I1 and I2 -norm regularization of the coefficients.

Elastic Net – The Best of Both Worlds.
Elastic Net is like a mix of Ridge and
Lasso

They all fit a line, but how to fit it?

<u>LinearRegression — scikit-learn 1.6</u>
documentation

Polynomial Fitting [Optional, Self-learning]

Thes examples show different aspects of modeling data, the effect of noise, data-size, model-complexity in a hands-on way. You do not have to write code, but to change parameters in the code and make conclusions.

<u>learning_linear_models.ipynb - Colab</u>

<u>polynomial_model.ipynb - Colab</u>

