Remark 0.1. On a vector space V there can be many inner products.

Example 0.2 • if $\langle \cdot, \cdot \rangle$ is an inner product, then so is $c \langle \cdot, \cdot \rangle$ for c > 0 in \mathbb{R}

- if $\phi: V \to V$ is an isomorphism, then also $\langle x, y \rangle' = \langle \phi(x), \phi y \rangle$
- if V = C[a, b] is a vector space of continuous products (a < b), where $\mathbb{F} = \mathbb{R}$). Then $\langle f(x), f(y) \rangle = \int_a^b f(t)g(t) dt$ is an inner product.
- if V = C[a, b] is a vector space of continuous products (a < b), where $\mathbb{F} = \mathbb{C}$). Then $\langle f(x), f(y) \rangle = \int_a^b f(t) \overline{g(t)} dt$ is an inner product.

Here, if $f(x) \in C[a, b]$, write $f(x) = f_1(x) + if_2(x)$, where $f_1, f_2 \in \mathbb{R}$. Define $\int_a^b f(t) dt = \int_a^b f_1 dt i \int_a^b f_2 dt$. Then $\int f(t) dt = \int f(t) dt$ and $\int (f(t) + cg(t)) dt = \int f(t) dt + c \int g(t) dt$.

Definition 0.3. H is the inner product space $C[0,2\pi]$, $\mathbb{F} = \mathbb{C}$, with $\langle f,g,=\rangle \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t) dt$.

Theorem 0.4

Let V be an inner product space with the inner product $\langle \cdot, \cdot \rangle$.

- a) $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- b) If for all $x \in V (\langle x, y \rangle = \langle x, z \rangle$, then y = z

Proof. a) If x = 0, then $\langle x, x \rangle = 0$. Otherwise, $\langle x, x \rangle > 0$

b) If $\langle x,y\rangle=\langle x,z\rangle$ for all $x\in V$, then $\langle x,y-z\rangle=0$. Therefore, taking x=y-z, we obtain y-z=0.

Definition 0.5. The norm or length of $x \in V$ is $\| \|$