Semantic Proofs

LOGIC I Benjamin Brast-McKie September 19, 2024

From Before...

Semantics: For any interpretation \mathcal{I} of \mathcal{L}^{PL} , the VALUATION function $\mathcal{V}_{\mathcal{I}}$ from the wfs of \mathcal{L}^{PL} to truth-values is defined:

- $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{I}(\varphi)$ if φ is a sentence letter of \mathcal{L}^{PL} .
- $\mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \text{ (i.e., } \mathcal{V}_{\mathcal{I}}(\varphi) \neq 1).$
- $\mathcal{V}_{\mathcal{I}}(\varphi \wedge \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 1 \text{ and } \mathcal{V}_{\mathcal{I}}(\psi) = 1.$
- $\mathcal{V}_{\mathcal{I}}(\varphi \lor \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 1 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$
- $\mathcal{V}_{\mathcal{I}}(\varphi \to \psi) = 1$ iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 0$ or $\mathcal{V}_{\mathcal{I}}(\psi) = 1$ (or both).
- $\mathcal{V}_{\mathcal{I}}(\varphi \leftrightarrow \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\psi).$

Formal Definitions

Interpretation: \mathcal{I} is an *interpretation* of \mathcal{L}^{PL} *iff* $\mathcal{I}(\varphi) \in \{1,0\}$ for every

sentence letter φ of \mathcal{L}^{PL} .

Tautology: φ is a tautology iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ for all \mathcal{I} .

Contradiction: φ is a contradiction iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 0$ for all \mathcal{I} .

Logically Contingent: φ is contingent iff $\mathcal{V}_{\mathcal{I}}(\varphi) \neq \mathcal{V}_{\mathcal{I}}(\varphi)$ for some \mathcal{I} and \mathcal{J} .

Logical Entailment: φ *entails* ψ *iff* $\mathcal{V}_{\mathcal{I}}(\varphi) \leq \mathcal{V}_{\mathcal{I}}(\psi)$ for all \mathcal{I} .

Logical Equivalence: φ is equivalent to ψ iff $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\psi)$ for all \mathcal{I} .

Satisfiable: Γ is satisfiable iff $\mathcal{V}_{\mathcal{I}}(\gamma) = 1$ for all $\gamma \in \Gamma$ for some \mathcal{I} .

Logical Consequence: $\Gamma \vDash \varphi$ *iff* $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ whenever $\mathcal{V}_{\mathcal{I}}(\gamma) = 1$ for all $\gamma \in \Gamma$.

Satisfiability

Which sets of sentences are satisfiable?

Taller

- (1) Liza is taller than Sue.
- (2) Sue is taller than Paul.
- (3) Paul is taller than Liza.

Lost

- (4) Kim is either in Somerville or Cambridge.
- (5) If Kim is in Somerville, then she is not far from home.
- (6) If Kim is not far from home, then she is in Cambridge.
- (7) Kim is not in Cambridge.

Validity

- *Arguments:* Sequences of wfss of \mathcal{L}^{PL} , not sets.
 - *Valid*: For any argument, it is valid *iff* its conclusion is a logical consequence of its set of premises.
 - Many arguments may have the same set of premises.
 - An argument is valid *iff* its conclusion is true in every interpretation \mathcal{I} of \mathcal{L}^{PL} to satisfy the set of premises.
 - *Tautology:* A wfs φ of \mathcal{L}^{PL} is a *tautology* just in case $\vDash \varphi$.
 - Every \mathcal{I} of \mathcal{L}^{PL} satisfies the empty set.
 - Each premise constrains the set of interpretations the conclusion must be true in where the empty set has no constraints.
- *Weakening:* If $\Gamma \vDash \varphi$, then $\Gamma \cup \Sigma \vDash \varphi$.
 - Each wfs of \mathcal{L}^{PL} corresponds to a set of all interpretations which make that sentence true: $|\varphi| := \{\mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi) = 1\}.$
 - Is the interpretation set for the conclusion a subset of the intersection of the premise interpretation sets?

Examples

- 1. Show that $\neg R \rightarrow \neg Q$, $P \land Q \models P \land R$.
- 2. Show that $A \lor B$, $B \to C$, $A \leftrightarrow C \vDash C$.
- 3. Show that $P, P \rightarrow Q, \neg Q \models A$.
- 4. Show that $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$ is a tautology.
- 5. Show that $A \leftrightarrow \neg A$ is a contradiction.
- 6. Show that $\{P, P \rightarrow Q, Q \rightarrow \neg P\}$ is unsatisfiable.
- 7. Show that $\{P \to Q, \neg P \lor \neg Q, Q \to P\}$ is satisfiable.
- **Observe:** There seem to be patterns.
- **Question:** How could we systematize these proofs?

Methods

Truth Tables: Mechanical but tedious.

• Bad if there are lots of sentence letters.

• Good for counterexamples.

$$A \leftrightarrow (B \rightarrow C)$$
, $A \land \neg B$, $D \lor \neg A \models C$.

Semantic Arguments: Good if there are lots of sentence letters.

$$(A \lor B) \to (C \land D), \neg C \land \neg E \vDash \neg A.$$

The Material Conditional

Roses

A1. Sugar is sweet.

A2. The roses are only red if sugar is sweet.

Observe: First paradox of the material conditional.

Vacation

B1. Casey is not on vacation.

B2. If Casey is on vacation, then he is in Paris.

Observe: Second paradox of the material conditional.

Crimson

- C1. Mary doesn't like the ball unless it is crimson.
- C2. Mary likes the ball.
- C3. If the ball is blue, then Mary likes it.

The Biconditional

Rectangle

- D1. The room is a square.
- D2. The room is a rectangle.
- D3. The room is a square if and only if it is a rectangle.

Work

- E1. Kin isn't a professor.
- E2. Sue isn't a chef.
- E3. Kin is a professor just in case Sue is a chef.