

Atividade: A jogada vencedora

Habilidades

EM12MT09 Reconhecer função quadrática e suas representações algébrica e gráfica, compreendendo o modelo de variação determinando domínio, imagem, máximo e mínimo, e utilizar essas noções e representações para resolver problemas como os de movimento uniformemente variado.

Para o professor

Objetivos específicos

OE1 Relacionar, a partir de dados gráficos, qual a forma da função quadrática que melhor descreve a situação.

OE2 Associar situações concretas à forma da parábola e buscar soluções a partir da aplicação das ferramentas da função quadrática.

OE3 Inferir sobre a utilidade da função quadrática no cotidiano.

OE4 Distinguir em problemas concretos o papel de abscissa e ordenada para a representação gráfica da parábola.

Observações e recomendações

Os jogos eletrônicos constituem ótimos laboratórios de aprendizagem por simular situações que podem ir assumindo toda a complexidade da realidade aos poucos, uma "variável" por vez. De acordo com [WANG], jogos de computador podem criar ambientes e mundos que de outra forma seriam inacessíveis aos estudantes.

Existe disponível na internet diversos projetos que envolvem o uso do jogo Angry Birds para o estudo das parábolas e lançamentos oblíquos. Por exemplo, Transforming Parabolas – The Angry Birds Project e Transforming Parabolas - The Angry Birds Project.

Atividade

Vamos trabalhar aqui com um famoso jogo que simula lançamento de objetos. No caso, são "pássaros" caricaturados em formato de personagens de cinema que tem que impedir o plano dos "porcos verdes" de roubarem seus ovos e trazer destruição ao universo. A "variável" resistência do ar, por exemplo, não está incluída em boa parte das fases deste jogo.

Digamos que o programador de uma das fases decida, dentre todos os possíveis lançamentos, um que forneça a maior quantidade de pontos possível para a fase. Entendendo a tela como um plano cartesiano, o programador deve escolher a parábola que representará a "Jogada Vencedora". A figura a seguir ilustra a situação.

> Realização: OLIMPÍADA BRASILEIRA

Patrocínio:

Figura 1: Imagem de divulgação.

Com a finalidade de inserir na programação a função que descreve a "Jogada Vencedora" o programador usou três coordenadas como referência: o pássaro e os dois "sóis", cujas coordenadas estão destacadas a seguir.

- a) Quais são as coordenadas indicadas no gráfico pelo programador?
- b) Quais os significados dos valores de x e de y neste contexto?
- c) Das formas da função quadrática apresentadas a seguir, qual delas parece mais adequada diante das informações fornecidas?

$$\Box f(x) = ax^2 + bx + c$$

$$\Box f(x) = a(x-p)^2 + q$$

$$\Box f(x) = a(x - x_1)(x - x_2)$$

- d) Substituido a origem na forma escolhida do item anterior, qual a conclusão?
- e) Faça o mesmo para as outras duas coordenadas, mas considere também o que você concluiu no item anterior, e obtenha duas equações diferentes com variáveis a e b.
- f) Nas equações apresentadas no item anterior, uma tem o 49 e a outra tem o 25. Na que tem o 49, multiplique toda ela por 25 e, na outra, a que tem o 25, multiplique toda ela por 49. Feito isso, subtrai, membro a membro, as duas equações resultantes. Qual a conclusão?

Realização:

OUTZ
OLIMPÍADA BRASILEIRA
20 3 DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Patrocínio:

- g) Mais uma vez vamos pegar as equações do item 'e'. Repare que uma tem um coeficiente 7 e a outra tem um coeficiente 5. Multiplique a que tem o 7 por 5 e a que tem o 5, por 7. Depois subtrai, membro a membro, as equações assim obtidas. Qual a conclusão?
- h) Qual a função que o programador vai inserir como a "Jogada Vencedora"?

Solução:

a) $(0,0), (5,3) \in (7,1)$.

b) x será o deslocamento horizontal do pássaro após o lançamento e y será a altura do pássaro em relação ao eixo x durante o arremesso.

c)
$$f(x) = ax^2 + bx + c$$
.

d)
$$f(0) = a \cdot 0^2 + b \cdot 0 + c = 0 \Rightarrow c = 0$$
.

e)

$$f(5) = a \cdot 5^2 + b \cdot 5 + 0 = 3 \Rightarrow 25a + 5b = 3$$

$$f(7) = a \cdot 7^2 + b \cdot 7 + 0 = 1 \Rightarrow 49a + 7b = 1$$

f)

$$49 \cdot 25a + 49 \cdot 5b = 49 \cdot 3 \Rightarrow 1225a + 245b = 147$$

$$25 \cdot 49a + 25 \cdot 7b = 25 \cdot 1 \Rightarrow 1225a + 175b = 25$$

$$(245 - 175) \cdot b = 147 - 25 \Rightarrow b = \frac{122}{70} \Rightarrow b = \frac{61}{35}$$

g)

$$7 \cdot 25a + 7 \cdot 5b = 7 \cdot 3 \Rightarrow 175a + 35b = 21$$

$$5\cdot 49a + 5\cdot 7b = 5\cdot 1 \Rightarrow 245a + 35b = 5$$

$$(245 - 175) \cdot a = 5 - 21 \Rightarrow a = -\frac{16}{70} \Rightarrow a = -\frac{8}{35}$$

h)
$$f(x) = -\frac{8}{35}x^2 + \frac{61}{35}x$$
.

