Traffic Sign Recognition

The goals/ steps of this project are the following:

- Load the data set (see below for links to the project data set)
- Explore, summarize and visualize the data set
- Design, train and test a model architecture
- Use the model to make predictions on new images
- Analyze the softmax probabilities of the new images
- Summarize the results with a written report

Data Set Summary & Exploration

- Provide a basic summary of the data set
 Number of training examples = 34799
 Number of testing examples = 12630
 Image data shape = (34799, 32, 32, 3)
 Number of classes = 43
- 2. Visualization of all types of data set

Design and Test a Model Architecture

1. Describe how you preprocess the image data. convert original images to gray and normalized images

2. Describe what your final model architecture My final model is a night-layer VGG-like CNN:

Layer	Input size	Output size	description
Conv1	32*32*1	30*30*16	strides=[1, 1, 1, 1]
Conv2	30*30*16	28*28*32	strides=[1, 1, 1, 1]
Pooling	28*28*32	14*14*32	strides=[1, 2, 2, 1]
Conv3	14*14*32	12*12*64	strides=[1, 1, 1, 1]
Conv4	12*12*64	10*10*128	strides=[1, 1, 1, 1]
Conv5	10*10*128	8*8*256	strides=[1, 1, 1, 1]
Pooling	8*8*256	4*4*256	strides=[1, 2, 2, 1]
FullConn6	4096	2400	
FullConn7	2400	800	
FullConn8	800	400	
FullConn9	400	43	

3. Describe how you trained your model.

I used the AWS EC2 GPU to train my model.

- learning_rate = 0.001
- batch_size = 128
- training_epochs = 35
- mu = 0
- sigma = 0.1

- 4. Describe the approach taken.
 - My final model results were:
 - Validation set accuracy is 94.6%
 - Test set accuracy is 93%

Test a Model on New Images

1. Choose ten German traffic signs online

2. Discuss the model's predictions on these new data

image	prediction
Yield	Yield
60km/h	60km/h
Roudabout mandatory	Roudabout mandatory
Bumpy road	Bumpy road
General caution	General caution
Keep right	Keep right
Stop	Stop
60km/h	50km/h
Road work	Road work

The model was able to correctly guess 9/10 traffic signs, which gives an accuracy of 90%

The top five soft max probabilities were:

