

VL Deep Learning for Natural Language Processing

17. Machine Translation

Prof. Dr. Ralf Krestel AG Information Profiling and Retrieval

Seq2Seq

A new task: machine translation

the main application area for

• A new network architecture: sequence-to-sequence

gets improved by

• A new deep learning technique: attention

Learning Goals for this Chapter

- Know the (short) history of machine translation
- Know the task and challenges of translation
- Understand seq2seq neural network architectures
- Explain the attention mechanism

- Relevant chapters:
 - S7 (2021): https://www.youtube.com/watch?v=wzfWHP6SXxY

Topics Today

- 1. Machine Translation
- 2. Sequence-to-Sequence Models
- 3. Code Example
- 4. Seq2Seq with Attention

Leibniz Gemeinschaft

SS 2022

Translation

The task of machine translation is to translate a sentence x in one language (source) into a sentencey in another language (target).

x: Ein Männlein steht im Walde ganz still und stumm.

y: A little man stands quite still and silent in the forest.

1950s: First Approaches

- Motivated by the cold war
 - Mainly Russian → English
- Rule-based systems
 - Bilingual dictionaries to map Russian word
- Results were quite modest
 - Less money for research

Rene Descartes proposes in 1629 the idea of a universal language, where each symbol of each language is mapped to a universal symbol.

1990–2010: Statistical Machine Translation

- SMT Idea: Learn a probabilistic model from data
- E.g. we want to find the best German sentences y, given the English sentence x

$$\underset{y}{arg \max} P(y|x)$$

Using Bayes rule:

$$= \underset{y}{argmax} P(x|y)P(y)$$

Translation model:

- Describes how to translate words and phrases
- Learnt using parallel corpora

Language model:

- Describes how good German looks like
- Learnt using a monolingual corpus

Statistical Machine Translation (SMT) I

- How to learn the translation model P(x|y)?
 - With a large amount of parallel data!
- More specific, we do not want to learn P(x|y), but P(x, a|y), where a is an alignment.
- **Alignment** is the assignment of English words to German words within our sentences x and y.

22.01.2020

- Probabilities of certain alignments
 - Depends on position in sentence as well
- Probabilities of fertility of certain words

Alignments

- 1. Besides 1-to-1 alignments there are other possibilities:
- 2. 1-to-0 or 0-to-1
 - Some words do not have counterparts in other languages
- 3. 1-to-many
 - These are fertile words
- Many-to-1
- Many-to_many
 - Phrases

Japan

'spurious' word

one-to-many

implemented

$$\underset{y}{arg \max} P(x, a|y)P(y)$$

- Methods to compute argmax:
 - Iterate through all possible y to compute the probabilities
 - o Way too expensive!
 - Waaaaaaay too expensive!!!!!!!!!!
 - Heuristic search algorithm that slowly, step-by-step builds up a translation and ignores unlikely translation paths

Heuristic Search

SMT III

- SMT is was a huge research field
 - Own, specialized conferences, challenges, ...
- Best SMT-systems are very complex
 - Easy to fill a whole semester!
 - Typically many independent components
 - A lot of feature engineering
 - Depending on involved languages
 - Additional resources needed
 - Equivalent phrases, dictionaries, synonyms, ...
 - Need to be created and maintained
 - A lot of manual effort
 - Development and maintainance of whole system
 - For each pair of languages seperately!

Success Story of Neural Machine Translation

- Within 2 years from first experiments to leading state-of-the-art
 - 2014: First paper to Seq2Seq published
 - 2016: Google Translate switches from SMT to NMT

- SMT-Systems have been developed by hundreds of people for multiple decades.
- A handful of researchers only needed a couple of months to evaporate previous results with NMT!

Evaluation

- BLEU (BiLingual Evaluation Understudy)
 - Computes a similarity score between a machine-generated sentence and one or multiple manual generated translations
 - Ngram-Accuracyt (3-4-grams)
 - Penalty for translations that are too short
 - Useful metric but not perfect
 - Many tranlations are correct; there is not the one correct translation.
 - A really good translation could receive a low BLEU-score if the n-gram overlap with a human reference translation is low.

Development over Time: PBSMT, SBSMT, NMT

http://www.meta-net.eu/events/meta-forum-2016/slides/09 sennrich.pd

Comparison: NMT vs. SMT

Advantage

- Better results
 - Text more fluent
 - More context-aware
 - Better word and phrase similarity
 - Distributed representations share strength
- Only one single neural network
 - End-to-end optimization
 - No subcomponents, which need to be optimized individually
- A lot less manual effort
 - No feature-engineering
 - One method for all language pairs

Disadvantage

- Less easy to interpret
 - Hard to debug
- Hard to control
 - No way to encode rules
 - Security issues
- No explicit use of syntactic, semantic, discourse, anaphora, ... structure

Is Machine Translation Solved?

No!

- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between training and test data
 - Keep context accross long documents
 - Language pairs with few training examples
 - Common Sense
 - Bias in training data
 - Surprising outputs

How could a neural network architecture look like for machine translation?

Topics Today

- 1. Machine Translation
- 2. Sequence-to-Sequence Models
- 3. Code Example
- 4. Seq2Seq with Attention

Leibniz Leibniz Gemeinschaft

1990–2010: Statistical Machine Translation

SMT Idea: Learn a probabilistic model from data

$$\underset{v}{arg\max} P(y|x) = \underset{v}{arg\max} P(x|y)P(y)$$

Basic Idea

SMT idea: learn a probabilistic model from data

$$\underset{y}{arg\max} P(y|x) = \underset{y}{arg\max} P(x|y)P(y)$$

- NMT idea: translate using a neural network.
- Network type is called sequence-to-sequence (Seq2Seq) and consists of two RNNs.

- Models P(y|x) directly
 - Conditional Language Model
 - Models a word in the target sentences given the previous word of the target sentence and the source sentence
 - $P(y|x) = P(y_1|x)P(y_2|y_1,x)P(y_3|y_1,y_2,x) \dots P(y_T|y_1,\dots,y_{T-1},x)$

Train using big parallel corpus

No "detour" via P(source|target)P(target)

Encoder

• Encoder: Represents the source target

Decoder

Decoder: Generates the target sentence

Embeddings

- Source and target embeddings
 - Need to be trained once per language

Initial States

- Initial states
 - Often set to 0

Training

Two layers × two parts

Multi-layer RNNs in Practice

- Multi-layer or stacked RNNs allow the network to compute more complex representations
- The lower RNNs should compute lower-level features and the higher RNNs should compute higher-level features.
- High-performing RNNs are usually multi-layer (but aren't as deep as convolutional or feed-forward networks)
- For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation,
 2 to 4 layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
- Often 2 layers is a lot better than 1, and 3 might be a little better than 2
- Usually, skip-connections/dense-connections are needed to train deeper RNNs (e.g., 8 layers)
- Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
 - they have a lot of skipping-like connections

Leibniz Leibniz Gemeinschaft

From Vectors to Words

Hidden State → Scores → Probabilitis

Loss Function

- Find the maximum of *P*(*target*|*source*)
- Sum-up the individual losses
- Backpropagation through time

Testing

- During training we know the correct translation from a parallel corpus.
- During testing we only have the source sentences.
 - Take the word with the highest probability (greedy)

Can we do Better than Greedy?

 Greedy: decoder takes at every step the word with the highest probability (argmax) to generate the target sentence.

- Greedy decoding cannot take back decisions once made.
 - Les pauvres sont démunis (the poor don't have any money)
 - o **The**...
 - o The poor...
 - The poor are...

Better method: beam search

Beam Search

Idealy we want to maximize

$$P(y|x) = P(y_1|x)P(y_2|y_1,x)P(y_3|y_1,y_2,x) ... P(y_T|y_1,...,y_{T-1},x)$$

- We could iterate through all words
 - Complexity $O(V^T)$ with V being the vocabulary size and T the length of the target sentence
 - Way too expensive!!!!!
- Beam search: At each step store the k most probable partial translations

22.01.2020

- -k is the beam size (~5-10)
- Finds not necessarily the optimal solution
- But very efficient

Beam Search: Example

• Beam size = 2

Seq2Seq Applications

- Not only machine translation
- Many text mining problems can be phrased as sequence-to-sequence problem
 - Summarization
 - Long text → short text
 - Dialog systems
 - Previous utterance → next utterance
 - Parsing
 - Input text → parse tree as sequence
 - Code generation
 - Natural language → Python code
 - Text simplification
 - Normal (complicated) text → easy-to-read text

	Encoder	Decoder
Sutskever et al. 2014	Deep LSTM	Deep LSTM
Cho et al., 2014 Bahdanau et al., 2015 Jean et al., 2015	(Bidirectional) GRU	GRU
Kalchbrenner & Blunsom, 2013	CNN	(Inverse CNN) RNN

Topics Today

- 1. Machine Translation
- 2. Sequence-to-Sequence Models
- 3. Code Example
- 4. Seq2Seq with Attention

Leibniz Leibniz Gemeinschaft

Preprocessing I


```
from keras.models import Model
                                                                        https://github.com/kmsravindra/ML-Al-
from keras.layers import Input, LSTM, Dense
                                                                        experiments/raw/master/Al/Neural%20
                                                                           Machine%20Translation/fra.txt
import numpy as np
lines = open('fra.txt', encoding='utf-8').read().split('\n')
eng sent = []
fra sent = []
eng chars = set()
fra chars = set()
nb samples = 10000
                                                  It to mark sentence start and end
for line in range (nb samples):
         eng line = str(lines[line]).split('\t')[0]
         fra line = '\t' + str(lines[line]).split('\t')[1] + '\n,
         eng sent.append(eng line)
         fra sent.append(fra line)
for ch in eng line:
        if (ch not in eng chars):
             eng chars.add(ch)
for ch in fra line:
        if (ch not in fra chars):
             fra chars.add(ch)
```


Preprocessing II


```
fra chars = sorted(list(fra chars))
eng chars = sorted(list(eng chars))
eng index to char dict = {}
eng char to index dict = {}
for k, v in enumerate(eng chars):
    eng index to char dict[k] = v
    eng char to index dict[v] = k
fra index to char dict = {}
fra char to index dict = {}
for k, v in enumerate(fra chars):
    fra index to char dict[k] = v
    fra char to index dict[v] = k
max len eng sent = max([len(line) for line in eng sentences])
max len fra sent = max([len(line) for line in fra sentences])
>16
>59
```


Preprocessing III


```
tokenized eng sentences = np.zeros(shape =
(nb samples,max len eng sent,len(eng chars)), dtype='float32')
tokenized fra sentences = np.zeros(shape =
(nb samples,max len fra sent,len(fra chars)), dtype='float32')
target data = np.zeros((nb samples, max len fra sent,
len(fra chars)),dtype='float32')
for i in range(nb samples):
    for k,ch in enumerate(eng sent[i]):
        tokenized_eng_sentences[i,k,eng_char_to_index dict[ch]] = 1
    for k,ch in enumerate(fra sent[i]):
        tokenized fra sentences[i,k,fra char to index dict[ch]] = 1
        if k > 0:
            target data[i,k-1,fra char to index dict[ch]] = 1
```


Seq2Seq Model Architecture


```
#Encoder
encoder input = Input(shape=(None,len(eng chars)))
encoder LSTM = LSTM(256,return state = True)
encoder outputs, encoder h, encoder c = encoder LSTM (encoder input)
encoder states = [encoder h, encoder c]
# Decoder
decoder input = Input(shape=(None,len(fra chars)))
decoder LSTM = LSTM(256, return sequences=True, return state = True)
decoder out, , = decoder LSTM(decoder input, initial state=encoder states)
decoder dense = Dense(len(fra chars),activation='softmax')
decoder out = decoder dense (decoder out)
model = Model(inputs=[encoder input, decoder input],outputs=[decoder out])
# Trainieren
model.compile(optimizer='rmsprop', loss='categorical crossentropy')
model.fit(x=[tokenized eng sentences, tokenized fra sentences],
          v=target data,
          batch size=64,
          epochs=50,
          validation split=0.2)
```


Model for Testing


```
# Inference models for testing
encoder model inf = Model(encoder input, encoder states)
decoder state input h = Input(shape=(256,))
decoder state input c = Input(shape=(256,))
decoder input states = [decoder state input h, decoder state input c]
decoder out, decoder h, decoder c = decoder LSTM(decoder input,
                                           initial state = decoder input states)
decoder states = [decoder h , decoder c]
decoder out = decoder dense(decoder out)
decoder model inf = Model(inputs=[decoder input] + decoder_input_states,
                          outputs=[decoder out] + decoder states )
```


Sentence Translation


```
def decode seq(inp seq):
    states val = encoder model inf.predict(inp seq)
    target seq = np.zeros((1, 1, len(fra chars)))
    target seq[0, 0, fra char to index dict['\t']] = 1
    translated sent = ''
    stop condition = False
    while not stop condition:
        decoder out, decoder h, decoder c = decoder model inf.predict(
                                                     x=[target seq] + states val)
        \max \text{ val index} = \text{np.argmax}(\text{decoder out}[0,-1,:])
        sampled fra char = fra index to char dict[max val index]
        translated sent += sampled fra char
        if ( (sampled fra char == '\n') or (len(translated sent) >
max len fra sent)) :
            stop condition = True
        target seq = np.zeros((1, 1, len(fra chars)))
        target seq[0, 0, max val index] = 1
        states val = [decoder h, decoder c]
    return translated sent
```


Example Translation


```
for seq_index in range(10):
    inp_seq = tokenized_eng_sentences[seq_index:seq_index+1]
    translated_sent = decode_seq(inp_seq)
    print('-')
    print('Input sentence:', eng_sent[seq_index])
    print('Decoded sentence:', translated sent)
```


Hyperparameters

- Choice greatly affects the quality of your model.
- In short, take parameters from papers/tutorials, and perform grid search around them (try many combinations of parameters).
 - RNN variants: LSTMs have a different (much better) recurrent equation.
 - Hidden state sizes: larger: more memory! Requires more data.
 - Embedding sizes: more representation power! Requires more data.
 - Learning rate: the step size you take in learning your parameters! Start this "large", and cut it in half when your training stops improving development set Performance.
 - Regularization: "dropout" prevents overfitting by making each node in your hidden state unavailable for an observation with a given probability. Try some values around .2 to .3.
 - **Batch size**: the number of observations to group together before performing a parameter update step. Larger batches: less fine-grained training, many more observations per minute, especially on GPU.

Topics Today

- 1. Machine Translation
- 2. Sequence-to-Sequence Models
- 3. Code Example
- 4. Seq2Seq with Attention

Leibniz Gemeinschaft

Information Bottlenecks

- The complete source sentence is stored in two vectors.
 - Bottleneck problem
- In particular longer source sentences are then hard to translate

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Attention Mechanism I

Basic idea

- At each step of the decoding process, the focus of the network is only on a particular part of the input sequence.
- Learn translation and alignment at the same time!

Attention Mechanism II

Attention Mechanism III

Attention Mechanism IV

Seq2Seq Equations

- Hidden States of the encoders: $\boldsymbol{h}^{(1)}$, ..., $\boldsymbol{h}^{(N)} \in R^h$
- At time t the hidden state of the decoders is $s^{(t)} \in \mathbb{R}^h$
- Attention score at time t:

$$\mathbf{e}^{(t)} = \left[\left(\mathbf{s}^{(t)} \right)^{\mathrm{T}} \mathbf{h}^{(t)}, \dots, \left(\mathbf{s}^{(t)} \right)^{\mathrm{T}} \mathbf{h}^{(\mathrm{N})} \right] \in R^{N}$$

To get the attention distribution $\alpha^{(t)}$ for step t we take the softamx:

$$\alpha^{(t)} = sofmax(\mathbf{e}^{(t)}) \in \mathbb{R}^N$$

From this we compute the attention output $a^{(t)}$ as weighted sum:

$$\boldsymbol{a}^{(t)} = \sum_{i=1}^{N} \alpha_i^{(t)} \boldsymbol{h}^{(i)} \in R^h$$

At last we concatenate the attention output $a^{(t)}$ with the hidden state of the decoders:

$$\left[\boldsymbol{a}^{(t)}\boldsymbol{s}^{(t)}\right] \in R^{2h}$$

The remaining part is identical to sequence-to-sequence models without attention

Why is Attention so Successful?

- Attention results in significant performance improvement for NMT
 - It is very useful for the decoder to focus on certain parts of the input.
- Attention solves the bottleneck problem
 - The bottleneck is avoided since the decoder can directly inspect the hidden states of the encoders.
- Attention also helps with the vanishing gradient problem
 - There exists a shortcut to states that are far away.
- Attention enables the interpretation/explanation of results (a little)
 - We can see the focus of the decoders by looking at the attention distribution.
 - We get the alignment for free
 - Although we never trained alignment explicitly
 - The network has learnt alignment on its own

Example Translation

Source Sentence

Orlando Bloom and Miranda Kerr still love each other

Example Translation

Source Sentence	Orlando Bloom and Miranda Kerr still love each other
Manual Translation	Orlando Bloom und Miranda Kerr lieben sich noch immer
Seq2seq with Attention	Orlando Bloom und Miranda Kerr lieben einander noch immer
Seq2seq without Attention	Orlando Bloom und Lucas Miranda lieben einander noch immer
Source Sentence	We're pleased the FAA recognizes that an enjoyable passenger experience is <i>not incompatible</i> with safety and security, said Roger Dow, CEO of the U.S. Travel Association
Manuel Translation	Wir freuen uns , dass die FAA erkennt , dass ein angenehmes Passagiererlebnis nicht im Widerspruch zur Sicherheit steht , sagte Roger Dow , CEO der U.S. Travel Association
Seq2seq with Attention	Wir freuen uns , dass die FAA anerkennt , dass ein angenehmes ist nicht mit Sicherheit und Sicherheit unvereinbar ist , sagte Roger Dow , CEO der US - die
Seq2seq without Attention	Wir freuen uns über die <unk> , dass ein <unk> <unk> mit Sicherheit nicht vereinbar ist mit Sicherheit und Sicherheit , sagte Roger Cameron , CEO der US - <unk></unk></unk></unk></unk>

Learning Goals for this Chapter

- Know the (short) history of machine translation
- Know the task and challenges of translation
- Understand seq2seq neural network architectures
- Explain the attention mechanism

- Relevant chapters:
 - S7 (2021): https://www.youtube.com/watch?v=wzfWHP6SXxY

Literature

- Sequence-to-sequence Models by John Hewitt & Reno Kriz
 - https://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf
- Machine Translation and Sequence-to-sequence Models: A Tutorial by Graham Neubig
 - https://arxiv.org/pdf/1703.01619.pdf
- On the Properties of Neural Machine Translation: Encoder—Decoder
 Approaches by Cho et al. In Eighth Workshop on Syntax, Semantics and
 Structure in Statistical Translation (SSST-8). 2014.
 - https://arxiv.org/pdf/1409.1259.pdf
- Luong, M. T., Pham, H., & Manning, C. D. (2015, September). Effective Approaches to Attention-based Neural Machine Translation. In *Proceedings of* the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1412-1421).
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, *27*.

