Digital System Design

Design of Synchronous Counters

Alfonso Fernandez

Ingeniería en Inteligencia Artificial Academia de Sistemas Digitales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Contents

Introduction

Design of Synchronous Counters

Design of BCD Counters

Design of Binary Counters

Other Counters

Contents

Introduction

Design of Synchronous Counters

Design of BCD Counters

Design of Binary Counters

Other Counters

Flip-flop Sequence Example

State Diagram

State Table

	resei State			Next State	
\overline{A}	B	\overline{C}	A_{+}	B_{+}	C_{+}
0	0	0	1	1	0
0	0	1	Χ	X	Χ
0	1	0	Χ	X	Χ
0	1	1	X	X	Χ
1	0	0	0	0	0
1	0	1	Χ	X	Χ
1	1	0	1	1	1
1	1	1	1	0	0

Karnaugh Maps and State Equations

$$A_{+} = \overline{A} + B$$

$$B_{+} = \overline{A} + B\overline{C}$$

$$C_{+} = B\overline{C}$$

Transition mappings

- $\alpha: 0 \rightarrow 1$
- $\beta: 1 \rightarrow 0$
- $\bullet \quad 1: \ 1 \to 1$
- $\bullet \quad 0: \ 0 \to 0$
- $\bullet \quad X: \ X \to X$

Transition Table

	Present State			Next State		Transition		
\overline{A}	B	\overline{C}	$\overline{A_+}$	B_{+}	C_{+}	$\overline{I_A}$	I_B	I_C
0	0	0	1	1	0	α	α	0
0	0	1	X	X	X	Χ	X	X
0	1	0	X	X	X	Χ	X	X
0	1	1	X	X	X	Χ	X	X
1	0	0	0	0	0	β	0	0
1	0	1	X	X	X	X	X	X
1	1	0	1	1	1	1	1	α
1	1	1	1	0	0	1	β	β

Karnaugh Maps for Transition Table

SR Flip-Flop: Excitation Equations

•
$$\alpha: 0 \to 1$$

$$\begin{array}{cccc}
1 & & & \\
& & S & & Q \\
0 & & & \\
& & & R
\end{array}$$

•
$$\beta: 1 \rightarrow 0$$

$$\bullet \quad 1: \ 1 \to 1$$

$$\bullet \quad 0: \ 0 \to 0$$

$$S = \{\alpha\} + \mathsf{D.C.}\{1,\mathsf{X}\}$$

$$R = \{\beta\} + \mathsf{D.C.}\{0,\mathsf{X}\}$$

D Flip-Flop: Excitation Equations

•
$$\alpha: 0 \rightarrow 1$$

• $\beta: 1 \rightarrow 0$

 $1:\ 1 \to 1$

 $\bullet \quad 0: \ 0 \to 0$

$$D = \{\alpha, 1\} + \mathsf{D.C.}\{\mathsf{X}\}$$

JK Flip-Flop: Excitation Equations

•
$$\alpha: 0 \to 1$$

$$1:\ 1\to 1$$

•
$$\beta: 1 \rightarrow 0$$

$$\bullet \quad 0: \ 0 \to 0$$

$$J = \{\alpha\} + \mathsf{D.C.}\{1,\beta,\mathsf{X}\}$$

$$K = \{\beta\} + \mathsf{D.C.}\{0, \alpha, \mathsf{X}\}$$

T Flip-Flop: Excitation Equations

•
$$\alpha: 0 \to 1$$

• $\beta: 1 \rightarrow 0$

$$1: 1 \rightarrow 1$$

$$\bullet \quad 0: \ 0 \to 0$$

$$T = \{\alpha, \beta\} + \mathsf{D.C.}\{\mathsf{X}\}$$

Design with T Flip-Flops

 $T_A = \overline{B}$

$$T_B = \overline{A} + C$$

$$T_C = B$$

Circuit Diagram

Contents

Introduction

Design of Synchronous Counters

Design of BCD Counters

Design of Binary Counters

Other Counters

Algorithm

- From the State Diagram, obtain the State Table and Transtion Table.
- Construct the Karnaugh maps using the Transition Table.
- Select the flip-flop to be used in the design.
- Using the Karnaugh maps derive the optimum input equations for the selected flip-flops.

Example

State Table and Transition Table

	Present State					ext ate		Transitions			
\overline{A}	B	C	\overline{D}	$\overline{A_+}$	B_{+}	C_{+}	D_{+}	$\overline{I_A}$	I_B	I_C	I_D
0	0	0	0	0	1	0	1	0	α	0	α
0	1	0	0	1	0	1	1	α	β	α	α
0	1	0	1	0	1	0	0	0	1	0	β
0	1	1	1	1	0	0	1	α	β	β	1
1	0	0	1	1	1	1	1	1	α	α	1
1	0	1	1	0	1	1	1	eta	α	1	1
1	1	1	1	0	1	0	1	eta	1	β	1

Design with JK Flip-Flops

$$J_A = C + B\overline{D}$$
$$K_A = C$$

$$J_B = 1$$

$$K_B = \overline{D} + \overline{A}C$$

$$J_C = A + B\overline{D}$$
$$K_C = B$$

$$J_D = 1$$

$$K_D = \overline{A} \, \overline{C}$$

Circuit Diagram

Contents

Introduction

Design of Synchronous Counters

Design of BCD Counters

Design of Binary Counters

Other Counters

State diagram

State Table and Transition Table

	Present State					ext ate	Transitions				
\overline{A}	B	C	\overline{D}	$\overline{A_+}$	B_{+}	C_{+}	D_{+}	$\overline{I_A}$	I_B	I_C	I_D
0	0	0	0	0	0	0	1	0	0	0	α
0	0	0	1	0	0	1	0	0	0	α	β
0	0	1	0	0	0	1	1	0	0	1	α
0	0	1	1	0	1	0	0	0	α	β	β
0	1	0	0	0	1	0	1	0	1	0	α
0	1	0	1	0	1	1	0	0	1	α	β
0	1	1	0	0	1	1	1	0	1	1	α
0	1	1	1	1	0	0	0	α	β	β	β
1	0	0	0	1	0	0	1	1	0	0	α
1	0	0	1	0	0	0	0	β	0	0	β

Design with T Flip-Flops

$$T_A = BCD + AD$$

$$T_B = CD$$

$$T_C = \overline{A}D$$

$$T_D = 1$$

Circuit Diagram

State diagram (Down Counter)

State Table and Transition Table

		sent ate			Next State				Transitions			
\overline{A}	B	C	\overline{D}	$\overline{A_+}$	B_{+}	C_{+}	D_{+}	$\overline{I_A}$	I_B	I_C	I_D	
0	0	0	0	1	0	0	1	α	0	0	α	
0	0	0	1	0	0	0	0	0	0	0	β	
0	0	1	0	0	0	0	1	0	0	β	α	
0	0	1	1	0	0	1	0	0	0	1	β	
0	1	0	0	0	0	1	1	0	β	α	α	
0	1	0	1	0	1	0	0	0	1	0	β	
0	1	1	0	0	1	0	1	0	1	β	α	
0	1	1	1	0	1	1	0	0	1	1	β	
1	0	0	0	0	1	1	1	β	α	α	α	
1	0	0	1	1	0	0	0	1	0	0	β	

Design with T Flip-Flops

$$T_A = \overline{B} \, \overline{C} \, \overline{D}$$

$$T_B = (A+B)\overline{C}\,\overline{D}$$

$$T_B = (A+B)\overline{C}\overline{D}$$
 $T_C = (A+B)\overline{C}\overline{D} + C\overline{D}$

$$T_D = 1$$

Circuit Diagram

Contents

Introduction

Design of Synchronous Counters

Design of BCD Counters

Design of Binary Counters

Other Counters

State diagram

State Table and Transition Table

	rese State			Next State			Transition		
\overline{A}	B	\overline{C}	$\overline{A_+}$	B_{+}	C_{+}	$\overline{I_A}$	I_B	I_C	
0	0	0	0	0	1	0	0	α	
0	0	1	0	1	0	0	α	β	
0	1	0	0	1	1	0	1	α	
0	1	1	1	0	0	α	β	β	
1	0	0	1	0	1	1	0	α	
1	0	1	1	1	0	1	α	β	
1	1	0	1	1	1	1	1	α	
1	1	1	0	0	0	β	β	β	

Design with JK Flip-Flops

$$J_A = BC$$
$$K_A = BC$$

$$J_B = C$$
$$K_B = C$$

$$J_C = 1$$
$$K_C = 1$$

Circuit Diagram

4-Bit Binary Counter, ABCD

$$J_A = BCD$$
 $J_B = CD$ $J_C = D$ $J_D = 1$ $K_A = BCD$ $K_B = CD$ $K_C = D$ $K_D = 1$

Circuit Diagram

State diagram (Down Counter)

State Table and Transition Table

Present State				Next State			Transitions			
\overline{A}	B	\overline{C}	$\overline{A_+}$	B_{+}	C_{+}		I_A	I_B	I_C	
0	0	0	1	1	1		α	α	α	
0	0	1	0	0	0		0	0	β	
0	1	0	0	0	1		0	β	α	
0	1	1	0	1	0		0	1	β	
1	0	0	0	1	1		β	α	α	
1	0	1	1	0	0		1	0	β	
1	1	0	1	0	1		1	β	α	
1	1	1	1	1	0		1	1	β	

Design with JK Flip-Flops

$$J_A = \overline{B} \, \overline{C}$$

$$K_A = \overline{B} \, \overline{C}$$

$$J_B = \overline{C}$$

$$K_B = \overline{C}$$

$$J_C = 1$$
$$K_C = 1$$

Circuit Diagram

4-Bit Binary Down Counter, ABCD

$$J_A = \overline{B} \, \overline{C} \, \overline{D}$$
 $J_B = \overline{C} \, \overline{D}$ $J_C = \overline{D}$ $J_D = 1$ $K_A = \overline{B} \, \overline{C} \, \overline{D}$ $K_B = \overline{C} \, \overline{D}$ $K_C = \overline{D}$ $K_D = 1$

Circuit Diagram

Contents

Introduction

Design of Synchronous Counters

Design of BCD Counters

Design of Binary Counters

Other Counters

Four States Ring Counter

4-Bit Ring Counter

4-Bit Ring Counter: 2-Bit Counter Implementation

Switch-tail Ring Counter

State Diagram

Eight States Ring Counter: Johnson Counter

BCD Counter Using a Binary Counter and CLR Flip-Flop Inputs

BCD Down Counter Using a Binary Counter and CLR Flip-Flop Inputs

