San Francisco precipitation

Julien JACQUES

2/19/2020

We extract training and test set

```
data=scan(file="data/sanfran.csv",skip=1)
sanfran<-ts(data,start=c(1932,1),end=c(1966,12),freq=12)
library(forecast)

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
sanfran_train=window(sanfran,start=c(1932,1),end=c(1963,12))
sanfran_test=window(sanfran,start=c(1964,1),end=c(1966,12))</pre>
```

We can plot both

```
plot(sanfran_train,xlim=c(1932,1970),ylim=c(0,120))
lines(sanfran_test,lty=2)
```


Forecasting with exponential smoothing

We see a seasonal pattern, probably additive.

```
library(forecast)
h=hw(sanfran_train,seasonal='additive',damped=FALSE,h=36)
plot(sanfran_train,xlim=c(1932,1970),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(h$mean,col=2)
```



```
print(sqrt(mean((h$mean-sanfran_test)^2)))
```

[1] 15.86614

We can compare with a damped version, the result are slightly better

```
hd=hw(sanfran_train,seasonal='additive',damped=TRUE,h=36)
plot(sanfran_train,xlim=c(1932,1970),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(hd$mean,col=3)
```



```
print(sqrt(mean((hd$mean-sanfran_test)^2)))
```

[1] 15.77082

We can zoom on the prediction

```
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(h$mean,col=2)
lines(hd$mean,col=3)
legend('topleft',col=1:3,lty=1,legend=c('true','forecast with HW','forecast with damped HW'))
```


The difference is almost null between HW and its damped version. Indeed, if we have a look to the ϕ

parameter, it is very close to 1 ($\phi = 0.9725$): the damping effect is almost null.

Forecasting with SARIMA

Simple solution: with auto.arima function:

```
fit=auto.arima(sanfran_train)
summary(fit)
## Series: sanfran_train
## ARIMA(0,0,1)(2,1,0)[12] with drift
##
## Coefficients:
##
                                       drift
             ma1
                     sar1
                              sar2
         -0.0108
                 -0.6204
                           -0.2710
                                    -0.0061
##
          0.0510
                   0.0508
                            0.0521
                                      0.0415
## s.e.
##
## sigma^2 = 327.7: log likelihood = -1605.73
## AIC=3221.46
                 AICc=3221.62
                                BIC=3241.05
##
## Training set error measures:
##
                                RMSE
                                           MAE MPE MAPE
                                                              MASE
                                                                            ACF1
                                                    Inf 0.8385827 0.0009082269
## Training set -0.04091504 17.72204 13.27102 -Inf
prev=forecast(fit,h=36)
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(h$mean,col=2)
lines(hd$mean,col=3)
lines(prev$mean,col=4)
legend('topleft',col=1:4,lty=1,legend=c('true','forecast with HW','forecast with damped HW','SARIMA'))
                   true
                   forecast with HW
     100
                   forecast with damped HW
                   SARIMA
     80
sanfran_test
     9
     4
     0
                     1964.5
                                 1965.0
                                            1965.5
                                                        1966.0
                                                                   1966.5
          1964.0
                                                                               1967.0
```

Time

```
print(sqrt(mean((prev$mean-sanfran_test)^2)))
```

[1] 16.57343

The forecast is not better than with HW.

We can try to choose manually the ordre of the SARIMA model.

Let's start by differeciating the serie.

```
tmp=diff(sanfran_train,lag=12)
autoplot(tmp)
```


ggseasonplot(tmp)

It seems approximatively stationary. Let's look at the ACF and PACF ${\tt ggAcf(tmp)}$

• the significant ACF at lag 12 and the exponential decay of the seasonal lags of the PACF suggest a seasonal MA_1

```
fit=Arima(sanfran_train, order=c(0,0,0), seasonal=c(0,1,1))
fit %>% residuals() %>% ggtsdisplay()
```


• There is still significant ACF and PACF at lag 3. We can add some additional non-seasonal terms, with an $SARIMA_{(0,0,3)(0,1,1)_{12}}$ (or $SARIMA_{(3,0,0)(0,1,1)_{12}}$)

```
fit1=Arima(sanfran_train, order=c(0,0,3), seasonal=c(0,1,1))
fit1 %>% residuals() %>% ggtsdisplay()
```


It seems that we have captured all auto-correlations checkresiduals(fit1)


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,0,3)(0,1,1)[12]
## Q* = 11.139, df = 20, p-value = 0.9425
##
## Model df: 4. Total lags used: 24
```

We have the same result with an $SARIMA_{(3,0,0)(0,1,1)_{12}}$

```
fit2=Arima(sanfran_train, order=c(3,0,0), seasonal=c(0,1,1))
fit2 %>% residuals() %>% ggtsdisplay()
```



```
##
   Ljung-Box test
##
##
## data: Residuals from ARIMA(3,0,0)(0,1,1)[12]
## Q* = 10.834, df = 20, p-value = 0.9504
##
## Model df: 4.
                  Total lags used: 24
Both model are acceptable. We can compare the AICc:
cat('AICc for SARIMA_{(0,0,3)(0,1,1)_{12}} : ',fit1$aicc,'\n')
## AICc for SARIMA_{(0,0,3)(0,1,1)_{12}} : 3171.135
cat('AICc for SARIMA_\{(3,0,0)(0,1,1)_{12}\}: ',fit2\saicc,'\n')
## AICc for SARIMA_{(3,0,0)(0,1,1)_{12}} : 3170.473
The second one is better, we select it for forecasting.
We can forecast the next 30 values and compare the results
prev=forecast(fit2,h=36)
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(h$mean,col=2)
print(sqrt(mean((h$mean-sanfran_test)^2)))
## [1] 15.86614
lines(prev$mean,col=3)
print(sqrt(mean((prev$mean-sanfran_test)^2)))
## [1] 17.49685
prev=forecast(fit,h=36)
lines(prev$mean,col=4)
print(sqrt(mean((prev$mean-sanfran_test)^2)))
## [1] 17.5374
legend('topleft',col=1:4,lty=1,legend=c('true','forecast with HW','manual SARIMA', 'auto SARIMA'))
```


The results are not better with this model than with this one selected by auto.arima

Forecasting with Neural Network

We van automatically select the best $NNAR_{(p,P,k)_T}$:

```
fit=nnetar(sanfran_train)
print(fit)
## Series: sanfran_train
## Model:
           NNAR(4,1,3)[12]
## Call:
           nnetar(y = sanfran_train)
##
## Average of 20 networks, each of which is
## a 5-3-1 network with 22 weights
## options were - linear output units
##
## sigma^2 estimated as 251.3
prevNN=forecast(fit,h=36)
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(h$mean,col=2)
lines(hd$mean,col=3)
lines(prev$mean,col=4)
lines(prevNN$mean,col=5)
legend('topleft',col=1:5,lty=1,legend=c('true','forecast with HW','forecast with damped HW','SARIMA','N
```



```
print(sqrt(mean((prevNN$mean-sanfran_test)^2)))
```

[1] 23.10702

Forecasting are less efficient than with HW or SARIMA models.

We can try to tune these parameter manually, and select interesting order. For instance, we can choose this model \dots by cheating a little ;-) (I use here the test set to select these parameter)

```
fit=nnetar(sanfran_train,p=2,P=3,T=12,size=9)
print(fit)
```

```
## Series: sanfran_train
          NNAR(2,3,9)[12]
## Model:
           nnetar(y = sanfran_train, p = 2, P = 3, size = 9, T = 12)
##
## Average of 20 networks, each of which is
## a 5-9-1 network with 64 weights
## options were - linear output units
## sigma^2 estimated as 118.1
prevNN2=forecast(fit,h=36)
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(h$mean,col=2)
lines(hd$mean,col=3)
lines(prev$mean,col=4)
lines(prevNN2$mean,col=5)
legend('topleft',col=1:5,lty=1,legend=c('true','forecast with HW','forecast with damped HW','SARIMA','N
```



```
print(sqrt(mean((prevNN2$mean-sanfran_test)^2)))
## [1] 18.63158
```

Random Forest

```
data=as.vector(sanfran_train)[1:13]
for (i in 1:(length(as.vector(sanfran_train))-13)){
data=rbind(data,as.vector(sanfran_train)[(i+1):(i+13)])
}
#data=matrix(as.vector(sanfran_train),nrow=29,ncol=13,byrow = TRUE)
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
fitRF=randomForest(x=data[,-13], y=data[,13])
pred=rep(NULL,36)
newdata=tail(sanfran_train,12)
for (t in 1:36){
  pred[t]=predict(fitRF,newdata=newdata)
  newdata=c(newdata[-1],pred[t])
prevRF=ts(pred,start=c(1964,1),end=c(1966,12),frequency = 12)
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(prevRF,col=2)
```



```
print(sqrt(mean((prevRF-sanfran_test)^2)))
```

[1] 17.18772

SVM

```
library(e1071)
fitSVM=svm(x=data[,-13], y=data[,13])
pred=rep(NULL,36)
newdata=tail(sanfran_train,12)
for (t in 1:36){
   pred[t]=predict(fitSVM,newdata=matrix(newdata,1,12))
    newdata=c(newdata[-1],pred[t])
}
prevSVM=ts(pred,start=c(1964,1),end=c(1966,12),frequency = 12)
plot(sanfran_test,xlim=c(1964,1967),ylim=c(0,120))
lines(sanfran_test,lty=2)
lines(prevSVM,col=6)
```


[1] 17.53055