ROB3 S6 - Algorithmique

PROBLÈME DU VOYAGEUR DU COMMERCE

10 mars 2019

Florian CORMÉE Hugo DUARTE

Table des matières

Question 1	2
Question 3	2
Question 5	3
Question 6	4
Question 9	5
Question 11	5
Comparaison d'algorithmes	6

Question 1

L'algorithme de prim consiste à sélectionner l'arête de poid minimum tant qu'il y a des sommets qui ne font pas partie du graphe. En utilisant, une liste de voisin pour représenter le graphe, et un tas pour lister les voisins, à chaque itération, on récupère le tête du tas qui se réalise en $O(\log(n))$, puis on met à jour les poids des voisins du sommet sélectionné qui demande une boucle sur les voisins et le repositionnement du sommet dans le tas cette dernière opération est réalisée en $O(\log(n))$. Donc pour un tour de boucle l'opération est en $O((1 + deg(s)) \times \log(n))$. Il y a n tour de boucle pour que l'arbre soit couvrant. Donc l'algorithme de Prim a une complexité de $O((n+m)\log(n))$ pour un graphe sous forme de liste de voisins et en utilisant un tas.

Question 3

Soient A le 1-arbre optimal et T la tournée optimale.

- Si tous les sommets de A sont de degré 2, alors le 1-arbre est une tournée. Or A est optimale donc $A \equiv T$.
- Sinon il existe des sommets de A de degrés autres que 2, soient les sommets s_1, s_2, \ldots, s_k avec $k \in \mathbb{N}$

 $k \leq n$ tels que $\forall i \leq k, d(s_i) \neq 2$.

- Si $d(s_i) = 1$, alors cette feuille manque d'un voisin pour faire parti d'un tour.
- Si $d(s_i) > 2$, alors ce sommet possêde "trop" de voisins pour faire parti d'un tour.

Or les arêtes d'un 1-arbre optimale, sont toutes optimales au sens de leur poid. Donc l'arête ajoutée aux feuilles de A pour faire de A une tournée ne sont pas de poid optimale. Soit $(a_i)_{i\in\mathbb{N}}$ le poid des arêtes ajoutées. De plus, les arêtes retirées aux noeuds de degrés supérieur à 2 sont optimales. Soit $(r_i)_{i\in\mathbb{N}}$ le poid de chaque arête retirée. Alors on a :

$$d(T) = d(A) + \sum_{i} a_i - \sum_{i} r_i$$

Or les r_i sont de poid optimale contrairement aux a_i . Donc,

$$\sum_{i} r_i \le \sum_{i} a_i$$

Donc,

$$d(T) \ge d(A)$$

Donc un 1-arbre optimale est de poid inférieure ou égale à la tournée optimale. Donc un 1-arbre optimale est une borne inférieur de la longueur d'une tournée optimale.

Question 5

Soit un graphe G = (S, A) à qui on assigne un poid $\pi(s)$ à chacun de ses sommets $s \in S$. On définit la valeur $w_{\pi}(\{s, s'\})$ d'une arête $\{s, s'\}$ par : $w_{\pi}(\{s, s'\}) = d(s, s') + \pi(s) + \pi(s')$, où d(s, s') et la distance Euclidienne entre les deux points correspondants.

Montrons qu'une tournée optimale pour le problème du voyageur de commerce sur le graphe G muni des valeurs d(s, s') le reste sur le graphe G muni des valeurs $w_{\pi}(\{s, s'\})$ et inversement.

Soient T une tournée du graphe G muni des valeurs d(s, s') et v(T) la longueur de cette tournée. De même, soient T' une tournée du graphe G muni des valeurs $w_{\pi}(\{s, s'\})$ et v(T') la longueur de cette tournée

$$v(T') = \sum_{\{s,s'\} \in T'} w_{\pi}(\{s,s'\})$$

$$v(T') = \sum_{\{s,s'\} \in T'} d(s,s') + \pi(s) + \pi(s')$$

$$v(T') = \sum_{\{s,s'\} \in T'} d(s,s') + \sum_{\{s,s'\} \in T} \pi(s) + \pi(s')$$

Sachant que $\sum_{\{s,s'\}\in T} d(s,s') = v(T)$ et que $\sum_{\{s,s'\}\in T} \pi(s) + \pi(s') = 2\sum_{s\in S} \pi(s) = C^{st}$, nous avons donc :

$$v(T') = v(T) + 2\sum_{s \in S} \pi(s)$$

Soit maintenant T'_{opt} une tournée optimale pour le problème du voyageur du commerce sur le graphe G muni des valeurs $w_{\pi}(\{s,s'\})$ et définit comme suit :

$$T'_{opt} = \underset{T'}{\operatorname{argmin}} (v(T'))$$
 $T'_{opt} = \underset{T}{\operatorname{argmin}} \left(v(T) + 2 \sum_{s \in S} \pi(s) \right)$

Comme
$$\sum_{\{s,s'\}\in T} \pi(s) + \pi(s') = 2\sum_{s\in S} \pi(s) = C^{st},$$

$$T'_{opt} = \underset{T}{\operatorname{argmin}} (v(T))$$

$$T'_{opt} = T_{opt}$$

Une tournée optimale pour le problème du voyageur du commerce sur le graphe G muni des valeurs $w_{\pi}(\{s, s'\})$ le reste sur le graphe G muni des valeurs d(s, s'), et inversement.

Question 6

Montrons que

$$\min_{T \text{ un 1-arbre}} \omega_{\pi}(T) - 2 \sum_{s \in S} \pi(s) \le \min_{C \text{ un cycle Hamiltonien}} d(C)$$
 (1)

Où $\pi(s)$ est le poid associé au sommet s, $\omega_{\pi}(T) = \sum_{\{s,s'\}\in T} \omega_{\pi}(\{s,s'\})$ avec $\omega_{\pi}(\{s,s'\}) = d(\{s,s'\}) + \pi(s) + \pi(s')$ où $d(\{s,s'\})$ est la distance euclidienne entre les sommets s et s'. $d(C) = \sum_{\{s,s'\}\in C} d(\{s,s'\})$.

Soient $T = \arg\min_{T \text{ un 1-arbre}} \omega_{\pi}(T) - 2\sum_{s \in S} \pi(s)$ et $C = \arg\min_{C \text{ un cycle Hamiltonien}} d(C)$.

D'après la question 5, une tournée pour le problème du voyageur du commerce muni des distances euclidienne reste optimale si le graphe est muni des valeurs $\omega_{\pi}(\{s, s'\})$. Donc,

$$C = \arg \min_{C \text{ un cycle Hamiltonien}} d(C) = \arg \min_{C \text{ un cycle Hamiltonien}} \omega_{\pi}(C)$$
 (2)

Or, d'après la quesiton 3, la valeur d'un 1-arbre optimal est une borne inférieur de la valeur d'une tournée optimale. Donc,

$$\omega_{\pi}(T) \le \omega_{\pi}(C) \tag{3}$$

$$\omega_{\pi}(T) - 2\sum_{s \in S} \pi(s) \le \omega_{\pi}(C) - 2\sum_{s \in S} \pi(s) \tag{4}$$

Par définition,

$$\omega_{\pi}(C) = \sum_{\{s,s'\} \in C} \omega_{\pi}(\{s,s'\}) \tag{5}$$

$$\omega_{\pi}(C) = \sum_{\{s,s'\} \in C} d(\{s,s'\}) + \pi(s) + \pi(s')$$
(6)

Or C est un cycle Hamiltonien donc $\forall s \in S, \deg(s) = 2$.

$$\omega_{\pi}(C) = \sum_{\{s,s'\} \in C} d(\{s,s'\}) + 2\sum_{s \in S} \pi(s)$$
 (7)

On déduit des équations (??) et (??) la relation suivante.

$$\omega_{\pi}(T) - 2\sum_{s \in S} \pi(s) \le \sum_{\{s, s'\} \in C} d(\{s, s'\}) + 2\sum_{s \in S} \pi(s) - 2\sum_{s \in S} \pi(s)$$
 (8)

$$\omega_{\pi}(T) - 2\sum_{s \in S} \pi(s) \le \sum_{\{s, s'\} \in C} d(\{s, s'\})$$
(9)

$$\omega_{\pi}(T) - 2\sum_{s \in S} \pi(s) \le d(C) \tag{10}$$

Donc pour tout jeu de poids π , T est une borne inférieure de la valeur d'une tournée optimale.

Question 9

La complexité de l'algorithme qui teste si une arête crée un cycle à l'aide de la structure de données union-find(tel qu'il est codé) est en O(1).

Question 11

La complexité d'une itération de l'algorithme 2-opt est de $O(n^2)$. Néanmoins nous ne connaissons pas le nombre d'itération à l'avance qui est au plus de 2^n . La complexité de l'algorithme ne semble donc pas polynomiale.

Comparaison d'algorithmes

Instance	1-arbre	borne inférieure	glouton	2-opt
atx1525	0.028s	192.349s	0.470s	2.337s
berlin52	0s	0.063s	0.002s	0.006s
bier127	0.001s	0.183s	0.014s	0.021s
ch130	0.002s	0.251s	0.020s	0.017s
ch150	0.001s	0.337s	0.022s	0.018s
cr514	0.013s	8.403s	0.052s	0.138s
d198	0.005s	0.702s	0.024s	0.022s
d493	0.007s	8.243s	0.053s	0.134s
eil101	0.002s	0.117s	0.002s	0.005s
eil51	0s	0.029s	0.002s	0.004s
eil76	0.001s	0.054s	0.005s	0.012s
fl417	0.005s	4.969s	0.036s	0.079s
gil262s	0.002s	1.515	0.033s	0.038s
hs887	0.012s	41.975s	0.149s	0.570s
kroA100	0s	0.139s	0.002s	0.006s
kroA200	0.005s	0.706s	0.008s	0.018s
kroB100	0.002s	0.103s	0.008s	0.014s
kroB150	0.001s	0.298s	0.004s	0.010s
kroB200	0.001s	0.733s	0.029s	0.019s
kroC100	0.001s	0.133s	0.009s	0.015s
kroD100	0s	0.113s	0.002s	0.005s
kroE100	0.001s	0.172s	0.002s	0.005s
lin 105	0.002s	0.121s	0.010s	0.023s
lin318	0.006s	2.261s	0.018s	0.057s
pcb442	0.012s	5.939s	0.036s	0.074s
pr124	0s	0.188s	0.003s	0.005s
pr136	0.002s	0.254s	0.003s	0.009s
pr144	0.002s	0.306s	0.018s	0.017s
pr152	0.002s	0.375s	0.020s	0.018s
pr226	0.006s	0.919s	0.009s	0.023s
pr76	0s	0.055s	0.005s	0.019s

rat195	0.005s	0.650 s	0.030s	0.021s
rat99	0.001s	0.153s	0.009s	0.020s
rd400	0.006s	5.039s	0.040s	0.086s
rkt74	0.001s	0.079s	0.004s	0.009s
smy2000	0.045s	479.796s	0.855s	2.680s
st70	0.001s	0.065s	0.001s	0.002s
str90	0s	0.045s	0.002s	0.003s
tr1440	0.034s	176.214s	0.425s	1.989s
ts225	0.001s	0.930s	0.027s	0.020s
tsp225	0.002s	0.890s	0.009s	0.031s
u159	0s	0.350 s	0.005s	0.011s
wm1193	0.022s	102.490s	0.287s	1.809s