Data Splits and Neural Network Performance Evaluation

Course 3, Module 3, Lesson 4

Learning Objectives

- Learn how to split a dataset for an unbiased estimate of performance
- Learn how to improve the performance of neural network by observing the difference in performance on the various data splits.

Data Splits

Data

~10000

Training Validation Testing

Data Splits

- Training Split: used to minimize the Loss Function
- Validation Split: used to choose best hyperparameters, such as the learning rate, number of layers, etc.
 Test Split: the neural network never observes this set.
- The developer **never** uses this set in the design process

Data Splits

Behavior of Split Specific Loss Functions

loss function					
6000		2000	2000		
Training		Validation	Testing	~10000	
	$J(\theta)_{tra}$	in	$J(\theta)_{val}$	$J(\theta)_{test}$	$J(\theta)_{Minimum}$
Good Estimator	0.21		0.25	0.30	0.18
Underfitting	1.9		1.9	2.1	
Overfitting	0.21	←	2. 05	2.1	
Overfitting 0.21 Seneralization gap					
Underfitting	0.21		0.25 1.9	0.30 2.1	1

Reducing the Effect of Underfitting/Overfitting

- Underfitting: (Training loss is high)
 - Train longer
 - More layers or more parameters per layer
 - Change architecture
- Overfitting: (Generalization gap is large)
 - More training data
 - Regularization
 - Change architecture

Summary

- A dataset should be split to a training, a validation and a test split
- Observing the performance on each of these splits helps in determining why a neural network is not performing well in the real world
- Underfitting: Train longer or use a larger neural network
- Overfitting: Regularization