<u>Área personal</u> / Mis cursos / <u>Grado</u> / <u>Ingeniería Mecatrónica</u> / <u>Mecánica Vibratoria-2021</u> / <u>SEGUNDA EVALUACIÓN PARCIAL</u> / <u>PARCIAL 2A</u>

Comenzado el	martes, 8 de junio de 2021, 09:11
Estado	Finalizado
Finalizado en	martes, 8 de junio de 2021, 11:24
Tiempo	2 horas 13 minutos
empleado	
Calificación	90,00 de 100,00

Pregunta 1

Correcta

Puntúa 20,00 sobre 20,00

La carga de la figura se puede expresar como la siguiente serie coseno:

$$F(t)=rac{2Fo}{\pi}-rac{4Fo}{\pi}\sum_{m=2,4,6,8}^{\infty}rac{cos\overline{\omega_m}t}{m^2-1}$$
 , m=2, 4, 6, 8, ...

Considere solo los **primeros 4 armónicos** (términos de la serie) y evalúe a incrementos de tiempo $\Delta t = 0.025s$ para **un periodo completo T**_p= **0.3s**. Admita que el sistema no tiene amortiguamiento y parte del reposo. Los parámetros del sistema son: **M=1 kg**, **K=40** π ² **N/m**, **Fo=40 N**.

Determine el vector

de la carga

aproximada para un periodo

completo (T_p= 0.3s)

con $\Delta t = 0.025s$.

Determine el vector

de la **respuesta**

permanente de un

sistema de un grado de libertad bajo la carga indicada para un periodo

completo $(T_p = 0.3s)$

con $\Delta t = 0.025s$.

 $(2.8294\ 20.5335\ 34.5998\ 39.6927\ 34.5998\ 20.5335\ 2.8294\ 20.5335\ 34.5998\ 39.6927\ 34.5998\ 20.5335\ 2.8294)\ [N]\ \ \ \, \diamondsuit$

(0.0514 0.0586 0.0709 0.0765 0.0709 0.0586 0.0514 0.0586 0.0709 0.0765 0.0709 0.0586 0.0514) [m]

La respuesta correcta es:

Determine el vector de la **carga aproximada** para un periodo completo ($T_p = 0.3s$) con $\Delta t = 0.025s$. \rightarrow (2.8294 20.5335 34.5998 39.6927 34.5998 20.5335 2.8294 20.5335 34.5998 39.6927 34.5998 20.5335 2.8294) [N],

Determine el vector de la **respuesta permanente** de un sistema de un grado de libertad bajo la carga indicada para un periodo completo ($T_p = 0.3s$) con $\Delta t = 0.025s$. \rightarrow (0.0514 0.0586 0.0709 0.0765 0.0709 0.0586 0.0514 0.0586 0.0709 0.0765 0.0709 0.0586 0.0514 (m]

\$

Pregunta **2**Correcta

Puntúa 30,00 sobre 30,00

Derivar la ecuación de movimiento del sistema de la figura eligiendo como coordenadas el desplazamiento $\mathbf{x}_1(\mathbf{t})$, $\mathbf{x}_2(\mathbf{t})$ y la rotación $\mathbf{0}$ (\mathbf{t}). Si $\mathbf{m} = \mathbf{30kg}$, $\mathbf{l}_p = \mathbf{3}$ \mathbf{kgm}^2 , $\mathbf{k} = \mathbf{4e3}$ $\mathbf{N/m}$ y $\mathbf{r} = \mathbf{10cm}$, determinar la respuesta en vibraciones libres del sistema mediante descomposición modal con las siguientes condiciones iniciales: $\mathbf{X}_{(0)} = \begin{bmatrix} 0 & 0 & \mathbf{30}^{\circ} \end{bmatrix}^T$, $\dot{\mathbf{X}}_{(0)} = \begin{bmatrix} 0 & 0 & \mathbf{0} \end{bmatrix}^T$. Normalice los modos de vibración respecto de la matriz de masa. Admita que no hay resbalamiento.

Indique las frecuencias naturales del sistema.

Indique la **matriz modal** del sistema (modos de vibración normalizados respecto de la matriz de masa).

Indique las **condiciones iniciales en coordenadas modales** $y_i(0)$ y $\hat{y_i}(0)$.

Indique la **amplitud positiva** (máx. valor) de movimiento del grado de libertad, $x_1(t)$, dentro del intervalo de tiempo [0.0, 0.5 s] y el **instante de tiempo** en el que ocurre.

La respuesta correcta es:

Indique las **frecuencias naturales** del sistema. → [2.1634 12.9955 24.4902] rad/s,

Indique la **matriz modal** del sistema (modos de vibración normalizados respecto de la matriz de masa). \rightarrow [0.1054 0.1440 -0.0385 ; 0.1035 -0.1047 -0.1079 ; 0.3391 -0.1280 0.4494],

Indique las **condiciones iniciales en coordenadas modales** $y_i(0)$ y $\dot{y}_i(0)$. \rightarrow yi (0) = [0.5326 -0.2010 0.7059]; $\dot{y}_i(0) = [0.0 0.0 0.00]$,

Indique la **amplitud positiva** (máx. valor) de movimiento del grado de libertad, $\mathbf{x_1(t)}$, dentro del intervalo de tiempo [0.0, 0.5 s] y el **instante de tiempo** en el que ocurre. \rightarrow [0.14 s 0.0868 m]

Pregunta **3**Parcialmente correcta

Puntúa 10,00 sobre 20,00

Una embarcación impacta sobre la protección del muelle de un puerto (figura a). Admitiendo que se puede modelar como un sistema de 1 grado de libertad como muestra la figura (b) con las siguientes propiedades:M = 500.000 kg, $E = 2e11 \text{ N/m}^2$, $A = 4e-5 \text{ m}^2 \text{ y L} = 1 \text{ m}$. $F_o = 100.000 \text{ N y t}_o = 0.4 \text{ s}$. Admita que el sistema parte desde el reposo. La forma de la fuerza se muestra en la figura c.

Admitiendo una relación de amortiguamiento $\xi = 0.02$, determine, en el intervalo 0 < t < 3.0s, los dos valores máximos en la fase positiva de la respuesta en términos de desplazamientos de la masa y los instantes de tiempo en los que se producen.

Pico 1 [0.6 s, 0.0092 m], Pico 2 [2.15s, 0.008124 m] \$

Admitiendo amortiguamiento nulo, determine la **respuesta máxima aproximada y el instante en cual se produce**. (Sugerencia: use el concepto de respuesta a una carga de muy corta duración).

La respuesta correcta es:

Admitiendo una relación de amortiguamiento $\xi = 0.02$, determine, en el intervalo 0 < t < 3.0s, los dos valores máximos en la fase positiva de la respuesta en términos de desplazamientos de la masa y los instantes de tiempo en los que se producen. \rightarrow Pico 1 [0.6 s, 0.0092 m], Pico 2 [2.15s, 0.008124 m],

Admitiendo amortiguamiento nulo, determine la **respuesta máxima aproximada y el instante en cual se produce**. (Sugerencia: use el concepto de respuesta a una carga de muy corta duración). \rightarrow [0.8 s, 0.01 m]

Pregunta **4**Correcta

Puntúa 30,00 sobre 30,00

Derivar la ecuación de movimiento del sistema de la figura eligiendo como coordenadas el desplazamiento $\mathbf{x}_{(t)}$ y la rotación $\mathbf{\theta}$ (t), del punto CG (centro de masa). Si, \mathbf{W}_1 = 15569N, \mathbf{k}_1 = 29400 N/m, \mathbf{k}_2 = 35280 N/m; \mathbf{l}_1 = 1.3411m; \mathbf{l}_2 = 1.70m; \mathbf{r} = 1.22m (radio de giro respecto de CG), determinar la respuesta en vibraciones libres del sistema mediante descomposición modal con las siguientes condiciones iniciales:

 $X_{(0)} = \begin{bmatrix} 0.1 & 0 \end{bmatrix}^T \dot{X}(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$. Normalice los modos de vibración respecto de la matriz de masa. Admita $\mathbf{g} = \mathbf{10m/s^2}$. Con $J_{CG} = m r^2$.

Indique las frecuencias naturales del sistema.

Indique la **matriz modal** del sistema (modos de vibración normalizados respecto de la matriz de masa).

Indique las **condiciones iniciales en coordenadas modales** $y_i(0)$ y $y_i(0)$.

Indique la **amplitud positiva** (máx. valor) de movimiento del grado de libertad, $\mathbf{x(t)}$, dentro del intervalo de tiempo [0.05, 1.5 s] y el **instante de tiempo** en el que ocurre.

La respuesta correcta es:

Indique las **frecuencias naturales** del sistema. → [6.1275 8.4152] rad/s,

Indique la **matriz modal** del sistema (modos de vibración normalizados respecto de la matriz de masa). \rightarrow [-0.0238 0.0088 ; 0.0072 0.0195], Indique las **condiciones iniciales en coordenadas modales** $y_i(0)$ y $\dot{y}_i(0)$. \rightarrow yi (0) = [-3.7011 1.3678] ; \dot{y} i (0) = [0.0 0.0],

Indique la **amplitud positiva** (máx. valor) de movimiento del grado de libertad, $\mathbf{x(t)}$, dentro del intervalo de tiempo [0.05, 1.5 s] y el **instante de tiempo** en el que ocurre. \rightarrow [1.0 s 0.08 m]

■ Registro aceleraciones. Caucete 1977. dt=0.02s