Velocity Addition

Alice's Frame

Bob's Frame

The clocks are not synchronized according to Bob!

Bob sees the clock at the back actually reading $\frac{Lv}{c^2}$ seconds the instant the front clock starts

Bob's Frame

Bob sees Alice's clock run slow by a factor: $\sqrt{1-\frac{v^2}{c^2}}$

Time of Alice's Walk in Bob's Frame

- Two effects to consider:
 - Lack of synchronicity
 - Time Dilation
- Bob sees Alice arrive at front when the front clock reads L/u
- But back clock reads

$$L/u + Lv/c^2$$

Time of Alice's Walk in Bob's Frame

We also need to account for time dilation

$$\sqrt{1 - \frac{v^2}{c^2}}$$

Bob measures:

$$t_{walk} = \frac{L/u + Lv/c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Distance Walked by Alice in Bob's Frame

- According to Bob, Alice walks the length of the train plus the distance the train has moved in the time it takes her to complete the walk.
- To Bob, the train is length contracted so the length of the train is:

• To Bob, the distance travelled by Alice is:

$$d = \frac{\frac{Lv}{u} + \frac{Lv^2}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}} + L\sqrt{1 - \frac{v^2}{c^2}} \longrightarrow d = \frac{L(1 + v/u)}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Alice's Speed Relative to Bob

 Will be the distance she travels as measured by Bob, divided by the time as measured by Bob

$$v_{AB} = \frac{d}{t} = \frac{u+v}{1+\frac{uv}{c^2}}$$

Comparisons

- When speeds are much less than c the results are the same.
- After the second rocket fires her speed is 0.8c. After the third rocket fires her speed is 0.93c. Her speed approaches c, but never reaches.

Doppler Shift

 Sound, light, water waves emitted at some frequency by a moving object are perceived at a different frequency by a stationary observer

$$f' = f \cdot \frac{1}{1 \pm \frac{v}{c}} \qquad \lambda' = \lambda \cdot (1 \pm \frac{v}{c})$$

-ve if approaching+ve if receeding

Relativistic Doppler Shift

Alien emits pulses of light at intervals of time $\Delta \tau_{e}$

If the light pulse emitted at time 0 arrives at Earth at time t=D/c, how much later does the next pulse arrive?

Interval Between Receiving Pulses

- Moving clocks run slow
- Next pulse is emitted at: $\Delta t_e = \gamma \Delta au_e$
- However, the alien has moved away by:

$$\Delta x = v \Delta t_e \cos \theta$$

• The flash takes an additional time: $\frac{\Delta x}{c}$

Interval Between Receiving Pulses

The time interval between receiving pulses is:

$$\Delta t_r = \Delta t_e + \frac{v}{c} \Delta t_e \cos \theta = (1 + \beta \cos \theta) \gamma \Delta \tau_e$$

$$\beta = \frac{v}{c}$$

Crests of a Light Wave

 Instead of flashes consider successive crests of an EM wave.

$$\Delta t_r = (1 + \beta \cos \theta) \gamma \Delta \tau_e$$

 If the observed period is longer than the rest frame period, the observed frequency is lower and the light is shifted to the red.

Redshift

$$(1+z) \equiv \frac{\Delta t_r}{\Delta \tau_e} = \gamma (1 + \beta \cos \theta)$$

$$\theta = 0$$

$$(1+z) = \gamma(1+\beta) = \sqrt{\frac{1+\beta}{1-\beta}}$$

$$\theta = \pi$$

$$(1+z) = \gamma(1-\beta) = \sqrt{\frac{1-\beta}{1+\beta}}$$

Blueshifted

Redshift

$$(1+z) \equiv \frac{\Delta t_r}{\Delta \tau_e} = \gamma (1+\beta \cos \theta)$$
$$\theta = \frac{\pi}{2}$$

We still get a γ-factor! This is different from ordinary redshift and is known as **second order redshift**. It has been observed with pulsars.

Changing Coordinate Systems

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

So the coordinates (x',y') of the point (x,y)

$$x' = x \cos \theta - y \sin \theta,$$

$$y' = x \sin \theta + y \cos \theta.$$

Can we develop a coordinate transformation that would take us from one frame to another?

Can we find a coordinate transformation to take us from the frame at rest to the frame in motion?

$$t' = t$$

$$x' = x - vt$$

Length
Time
Simultaneity
Synchronicity

Einstein - x

$$x = x'/\gamma + vt$$

Einstein

$$t' = t$$

$$x' = x - vt$$

$$x' = \gamma(x - vt)$$

Einstein - t

The clocks are not synchronized so we need to specify where the clocks are!

Time Dilation

$$t_{origin} = \gamma t'_{origin}$$

Lack of Synchronicity

$$t'_{x'} = t'_{origin} - \frac{vx'}{c^2}$$

Einstein - t

$$t'_{x'} = t'_{origin} - \frac{vx'}{c^2} \longrightarrow t_{origin} = \gamma t'_{origin}$$

$$t_{origin} = \gamma(t' + \frac{vx'}{c^2})$$

$$t' = \gamma (t - \frac{vx}{c^2})$$

t' = t

$$x' = x - vt$$

Einstein

$$t' = \gamma(t - \frac{vx}{c^2})$$

$$x' = \gamma(x - vt)$$

We found the relation.... But what does it look like?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

So the coordinates (x',y') of the point (x,y)

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

t'axis

$$c = 1$$

x'axis

$$c = 1$$

Shear

Hypersurfaces of Simultaneity

Galileo & Newton

no privileged family of straights

Figure "stolen" from J. Bain

Minkowski

no privileged family of straights

Can we agree on anything?

- Length X
- TimeX
- Simultaneity X
- Synchronicity X

Is there anything that is frame-independent?

Euclidean Space - Invariant

$$(\Delta r)^2 = (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2$$

$$(\Delta r)^2 = (\Delta x')^2 + (\Delta y')^2 + (\Delta z')^2$$

In Euclidean space, everyone agrees on the distance between two points!

Invariant

$$(\Delta s)^2 \equiv (c\Delta t)^2 - (\Delta r)^2$$

Alice & Bob

0.5 m

Alice

$$(\Delta s)^2 \equiv (c\Delta t)^2 - (\Delta r)^2$$

$$(c\Delta t) = 1$$

$$(\Delta x) = 0$$

$$(\Delta s)^2 = 1$$

Bob

$$(\Delta s)^2 = \gamma^2 (1 - \frac{v^2}{c^2})(1) = 1$$

Invariant

- Euclidean versus Minkowski
- Proper time
- Proper length
- "light-like"

Proper Time

 The time experienced by an observer in whose frame the events take place at the same place.

For Alice, "send" and "receive" take place at the same place.

Proper Time

- The time experienced by an observer in whose frame the events take place at the same place.
- If the invariant is positive:
 - $-(\Delta S)^2 > 0$
 - There is <u>always frame</u> where the events take place at the same place.
- If the invariant is negative:
 - $(\Delta S)^2 < 0$
 - It is still invariant, but there is <u>no frame</u> where the events take place at the same place.

Proper Length

• The distance between two events in a frame where they occur at the same time!

Proper Length

 The distance between two events in a frame where they occur at the same time!

This interval must be negative!

Euclidean Geometry

Minkowski Geometry

Minkowski Geometry

What happens when the invariant =0?

•
$$(\Delta S)^2 = 0$$

LIGHTLIKE

$$(\Delta S)^2 = 0$$

TIMELIKE

$$(\Delta S)^2 > 0$$

SPACELIKE

$$(\Delta S)^2 < 0$$

straightest line is the shortest length

straightest line is the *longest* proper time

Alice & Bob - Twin Paradox

Fraternal Twins

- Bob stays on Earth and Alice travels to a distant exoplanet 5.2 light years away at speed $\sqrt{0.75}c$
- As soon as she arrives she heads back home

 We ignore acceleration and deceleration and assume she attains the speed instantaneously.

Twin Paradox

- Since Alice is moving and moving clocks run slow she should age less than Bob (by how much?)
- But in Alice's frame, Bob is moving away from her, so shouldn't he age less?

They both see each other age less! How????

Bob's Frame

How long does it take Alice to go out and back?

$$TotTime_{Bob} = \frac{5.2 \times 2}{\sqrt{0.75}} = 12$$

What does Bob say Alice measures?

What time interval does Alice measure?

 Alice is moving so the time interval will be smaller, because her clocks run slow.

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 2 \qquad TotTime_{Alice} = \frac{TotTime_{Bob}}{\gamma} = 6$$

Distance to Planet Measured by Bob

$$x_{Bob,turn} = v \cdot TurnTime_{Bob} = \sqrt{0.75}c \cdot 6 = 5.2$$

Distance to Planet Measured by Alice

Alice measures a different distance due to length contraction

$$x_{Alice,turn} = \frac{x_{Bob,turn}}{\gamma} = 2.6$$

Bob's Rest Frame Spacetime Diagram

Lines of Simultaneity for Bob

Lines of Simultaneity for Bob

Lines of Simultaneity for Alice

Alice's Lines of Simultaneity 1.5 years 1.5 years

Draw the trip in terms of Alice's (traveling twin) rest frame for the first part of the journey.

Alice's Outward Journey Frame

Alice's Outward Journey Frame

Birthday Messages

Each twin decides to send a message (radio) at their birthday.

Draw the messages sent by Bob (stay-at-home twin)

How many messages does Alice receive on the outward journey? How many on the inward?

Birthday Messages Sent by Bob

Birthday Messages

Draw the messages sent by Alice (traveling twin).

How many messages does Bob receive during Alice's outward journey? How many on the inward?

Birthday Messages Sent by Alice

Ratio of Signals Sent and Received

- Bob sends Alice 11 signals on her return journey
- Bob receives 3 signals from Alice on her return journey

•
$$\frac{signals\ sent}{signals\ received} = \frac{11}{3} = 3.7$$

Relativistic Doppler Effect

Calculate the ratio of frequencies based on the relative velocities using the relativistic Doppler shift.

Remember: Alice travels at 0.866c

$$\frac{f_s}{f_r} = \sqrt{\frac{1 + v/c}{1 - v/c}}$$

Nothing Paradoxical

- The traveling twin had a crooked worldline and the stay-at-home twin did not.
- There is not a perfect symmetry between the two, so why expect symmetrical effects?
- The effect of the change in motion is to completely alter the traveler's judgement of simultaneity
- The traveler judges the stay at home twin's clock to have jumped suddenly.

straightest line is the shortest length

straightest line is the *longest* proper time

Can Special Relativity "handle" acceleration?

Newtonian Uniform Acceleration

$$a = \frac{\Delta v}{\Delta t}$$

$$v = v_o + at$$

$$x = x_o + v_o t + \frac{at^2}{2}$$

Our guess for acceleration in SR

Similar trajectory, but slope should never reach the speed of light

Hyperbola!

Bob's Frame

Regardless of how fast the rocket is moving in Alice's frame, it is hardly moving in Bob's!

$$t_B = 0$$

 Δv_B

$$t_B = \Delta t_B$$

$$a = \frac{\Delta v_B}{\Delta t_B}$$

Setup many Bobs all along the path...

$$v_A + \Delta v_A \equiv$$

Velocity of rocket relative Alice (after time Δt_B has elapsed for Bob)

$$\frac{u+v}{1+\frac{uv}{c^2}}$$

$$= \frac{v_A + \Delta v_B}{1 + \frac{v_A \Delta v_B}{c^2}}$$

$$\approx (v_A + \Delta v_B)(1 - \frac{v_A \Delta v_B}{c^2})$$

$$\approx v_A + (1 - \frac{v_A^2}{c^2})\Delta v_B$$

$$\Delta v_A = (1 - \frac{v_A^2}{c^2}) \Delta v_B$$

$$\Delta v_A = (1 - \frac{v_A^2}{c^2}) \Delta v_B$$

$$a_A = \frac{\Delta v_A}{\Delta t_A}$$

$$\Delta v_A = (1 - \frac{v_A^2}{c^2}) \Delta v_B$$

$$a_A = (1 - \frac{v_A^2}{c^2}) \frac{\Delta t_B}{\Delta t_A} a$$
 Time elapsed for Bob for rocket to reach speed $\Delta v_{\rm B}$

$$\Delta t_B = \sqrt{1 - \frac{v_A^2}{c^2}} \Delta t_A$$

$$a_A \equiv \frac{dv_A}{dt_A} = (1 - \frac{v_A^2}{c^2})^{3/2} a$$
 Not Constant Constant

 a_{Δ} decreases, as v_{Δ} increases

Hyperbola

Newton

Light Pulse in an Accelerated Rocket

Doppler Shift

- When the light is turned on, both Alice & Bob are moving at the same velocity
- By the time the light reaches Alice, she is effectively moving toward the source with a relative velocity Δv (due to the acceleration)

$$\frac{f_A}{f_B} = \sqrt{\frac{1 + \frac{\Delta v}{c}}{1 - \frac{\Delta v}{c}}} \approx \sqrt{(1 + \frac{\Delta v}{c})(1 + \frac{\Delta v}{c})} = 1 + \frac{\Delta v}{c} = 1 + \frac{ah}{c^2}$$

Acceleration Affects Time

Observers at the front have clocks that tick faster!

$$\Delta t_{back} = (1 - \frac{ah}{c^2}) \Delta t_{front}$$

Kinematics & Dynamics

- Kinematics: study of motion in space and time
 - WHEN is a moving body WHERE
- Dynamics: study of what causes motion
 - Force
 - Energy
 - Momentum

Momentum: Measure of the quantity of motion

Force: Rate of transfer of momentum

- If we apply a constant force we gain momentum and energy
- $\Delta p = F \Delta t$
- $\Delta E = F \Delta d$

Conservation Laws

- For a closed system:
 - Energy conservation $E_{final} = E_{initial}$
 - Momentum Conservation $p_{final} = p_{initial}$

Consider the collision of two Super Balls

Each has speed **v** going in and out of collision.

How do their masses compare?

Momentum Conservation

$$m_1 v - m_2 v = m_2 v - m_1 v$$
 $m_1 - m_2 = m_2 - m_1$
 $m_1 = m_2$

Consider the collision of two Super Balls

One has speed **v** going in and out, the other has a greater speed **V** going in and out of the collision.

How do their masses compare?

Momentum Conservation

$$m_1 v - m_2 V = m_2 V - m_1 v$$

$$2m_2V = 2m_1v$$

$$\frac{m_2}{m_1} = \frac{v}{V}$$

The one with the higher velocity has the lower mass.

Now consider a glancing collision...

Running parallel to Bob...

Effective Inertia

$$M = \gamma m$$

Can the mass of a box suddenly change?

Open the box to find two heavy spheres and a very special spring...

Vibrates at high speed...

What happens to Kinetic Energy has Inertia

When the spring is fully stretched...

What happens to botential Energy has Inertia

Shine light on a brick.

What happens to the mass of the regy Light Energy has Inertia

ENERGY has INERTIA

Matter and antimatter annihilate...

What happens to the mass of the box?

Mass is a form of energy...

$$E = mc^2$$

This equation is a special case of a more general expression...

Energy-Momentum Equivalence

$$E^2 = m^2 c^4 + p^2 c^2$$

where
$$p = \gamma m v$$

For objects that are "at rest", p=0 and

$$E = mc^2$$

For massless objects, m=0 and

$$E = pc$$

NB: Momentum of light is a classical result from Maxwell's equations...

Relativistic Energy & Momentum

We have seen that

$$m(v) = m_o \gamma = \frac{m_o}{(1 - \frac{v^2}{c^2})^{1/2}}$$

Try expanding γ via the Taylor Expansion

Taylor Expansion of Gamma:

When v/c is small:

$$\gamma = 1 + \frac{1}{2} \frac{v^2}{c^2}$$

$$\gamma - 1 = \frac{1}{2} \frac{v^2}{c^2}$$

This covers all velocities ever encountered in 1905

$$m(v) = m_o \gamma = \frac{m_o}{(1 - \frac{v^2}{c^2})^{1/2}}$$

$$m = m_o(1 + \frac{1}{2}\frac{v^2}{c^2})$$

$$\Delta m = m - m_o = \frac{1}{2} \frac{v^2}{c^2} m_o$$

$$\Delta mc^2 = \frac{1}{2}v^2 m_o$$

Einstein's hypothesis:

mc²= m₀c² + kinetic energy holds for all velocities (not only for v<0.1c)

Kinetic energy=
$$(m-m_0)c^2 = \frac{1}{2}m_0v^2 + \frac{\text{"other}}{\text{stuff"}}$$

Since this is only significant for huge speeds, Newton, etc had no way of knowing about it

Mass-Energy Equivalence

This must be the total energy!

Momentum $p=mv=m_o\gamma v$

$$E^{2} - p^{2}c^{2} = m_{o}^{2}\gamma^{2}c^{4} - m_{o}^{2}\gamma^{2}v^{2}c^{2}$$
$$= m_{o}^{2}\gamma^{2}c^{4}(1 - \frac{v^{2}}{c^{2}})$$

$$E^2 - p^2 c^2 = m_o^2 c^2$$

ENERGY-MOMENTUM INVARIANT

