дополнение III

Диаграммы направленности антенн земных станций, которыми надлежит пользоваться, если сведения о них не опубликованы

Когда не имеется ни измеренных характеристик, ни соответствующих Рекомендаций МСЭ-R, принятых заинтересованными администрациями, то им следует пользоваться эталонными диаграммами направленности (в дБ), описанными ниже:

$$a)$$
 для значений $\frac{D}{\lambda} \geq \, 100^{\,4} \, ($ максимальное усиление \geq приблизительно 48 дБ):

$$G(\varphi) = G_{max} - 2,5 \times 10^{-3} \left(\frac{D}{\lambda} \varphi\right)^2$$
 при $0 < \varphi < \varphi_m$ $G(\varphi) = G_1$ при $\varphi_m \le \varphi < \varphi_r$ $G(\varphi) = 32 - 25 \log \varphi$ при $\varphi_r \le \varphi < 48^\circ$ $G(\varphi) = -10$ при $48^\circ \le \varphi \le 180^\circ$,

где:

D : диаметр антенны λ : длина антенны выраженные в одной и той же единице;

 ϕ : угол в градусах, отсчитываемый от оси антенны, равный θ_t или θ_g , в зависимости от обстоятельств;

$$G_1$$
: усиление первого бокового лепестка $2+15 \log \frac{D}{\lambda}$

$$\phi_m = \frac{20\lambda}{D} \sqrt{G_{max} - G_1}$$
 (градусы)

$$\phi_r = 15,85 \left(\frac{D}{\lambda}\right)^{-0.6}$$
 (градусы).

b) для значений $\frac{D}{\lambda} <$ 100 4 (максимальное усиление < приблизительно 48 дБ):

$$G(\phi) = G_{max} - 2,5 \times 10^{-3} \left(\frac{D}{\lambda}\phi\right)^2$$
 при $0 < \phi < \phi_m$

$$G(\phi) = G_1$$
 при $\phi_m \leq \phi < 100 \frac{\lambda}{D}$

⁴ В тех случаях, когда $\frac{D}{\lambda}$ не задано, его можно определить по формуле 20 log $\frac{D}{\lambda} \approx G_{max} - 7,7$, где G_{max} – усиление основного лепестка антенны в дБ.

$$G(\phi) = 52 - 10 \log \frac{D}{\lambda} - 25 \log \phi$$
 при $100 \frac{\lambda}{D} \leq \phi < 48^\circ$ $G(\phi) = 10 - 10 \log \frac{D}{\lambda}$ при $48^\circ \leq \phi \leq 180^\circ$.

Указанные диаграммы направленности могут быть изменены для обеспечения более точного соответствия реальной диаграмме направленности.

ДОПОЛНЕНИЕ IV

Пример применения Приложения 8

1 Общие положения

В данном примере случая I (см. § 2.2.1) предполагается использование двух одинаковых спутниковых сетей, каждая из которых имеет простой ретранслятор с преобразованием частоты и антенной глобального покрытия.

Предполагается, что все топоцентрические углы θ_t равны 5°.

При таком угловом разносе и для антенны земной станции с D/λ больше чем 100, эталонная диаграмма направленности (32 – 25 log θ_t) дает усиление 14,5 дБ в направлении на спутник другой сети.

Исходные данные представлены в § 2, ниже, и выражены в дБ, кроме параметров T и θ_t . Расчеты в § 3 ведутся в дБ.

Следует отметить, что поскольку оба спутника используют глобальные лучи, то практически нет антенной развязки между полезным и мешающим сигналами, которая могла бы иметь место за счет диаграммы направленности антенны на спутнике, и это является худшим случаем.