

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07D 413/04, 417/04 A01N 43/88

A1

(11) International Publication Number:

WO 93/22311

(43) International Publication Date:

11 November 1993 (11.11.93)

(21) International Application Number:

PCT/US93/03583

(22) International Filing Date:

22 April 1993 (22.04.93)

(30) Priority data:

07/874,483

27 April 1992 (27.04.92)

US

(60) Parent Application or Grant

(63) Related by Continuation US Filed on

07/874,483 (CIP) 27 April 1992 (27.04.92)

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

(75) Inventors; and
(75) Inventors/Applicants (for US only): FRASIER, Deborah,
Ann [US/US]; 15 Lafayette Place, Newark, DE
19702-6117 (US). KOETHER, Gerard, Michael [US/ US]; 2304 Porter Road, Bear, DE 19701 (US). CHANG, Zen-Yu [-/US]; 23 Staten Drive, Hockessin, DE 19707

(74) Agents: MAYER, Nancy, S. et al.; E.I. du Pont de Nemours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, KZ, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: FUNGICIDAL 1,3,4-OXADIAZINES AND 1,3,4-THIADIAZINES

(I)

(57) Abstract

Fungicidal 1,3,4-oxadiazines and 1,3,4-thiadiazines of general formula (I) are disclosed, wherein G1 is -CR1R7-, -(CHR¹CHR²)-, -(CHR¹CHR²CHR³)-, or -(CHR¹CHR²CHR³CHR⁴)-; G² is -O-, -S-, -S(O)-, -S(O)₂-, or -NR²⁷-; G³ is -CR⁴R⁸-, -(CHR⁵CHR⁶)-, or -(CHR³CHR⁵CHR⁶)- or a direct bond; X is N or CR¹³; Y is N or CR¹³; and E, R⁹, and R¹⁰ are various groups.

BEST AVAILABLE (

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania ·
ΑU	Australia ·	GÁ	Gabon	MW	Malowi .
BB	Barbados	GB	United Kingdom	NL.	Netherlands
BE	Belgium	GN-	Guinca	NO:	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria -	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	, PT	Portugal
BR	Brazil	rt	lialy	RO	Romania
CA	Canada	JР	Japan	. RU	Russian Federation
CF	Central African Republic	KP	Démocratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	1.1	Liechtenstein	SU	Soviet Union
CS	Czechoslovakia -	LK .	Sri Lanka	TD `	Chad
CZ	Czech Republic	I.U	*Luxembourg	TG	Tugo
DE	Germany	MC	Monaco	UA.	Ukraine
DK	Denmark	MG	Madaguscar	US	United States of America
ES	Spain	ML	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

ĩ

TITLE

FUNGICIDAL 1,3,4-OXADIAZINES AND 1,3,4-THIADIAZINES

This invention relates to heterocyclic thiadiazines
and related heterocycles useful as agricultural
fungicides and compositions containing them.

BACKGROUND OF THE INVENTION

U.S.S.R. patent 461,929 generically discloses oxadiazines of Formula i and ii

10

15

20

wherein:

R¹, R³, R⁴, R⁵, and R⁶ are hydrogen, alkyls, carboxyalkyls, aminoalkyls, phenyl, substituted phenyls, pyridyls, quinolyls, furyls, or thienyls, and

 \mathbb{R}^2 is alkyl, substituted alkyl, phenyl, substituted phenyl, or heteroaryl.

U.S.S.R. 461,929 does not specifically name any of the compounds of the instant invention, nor is any utility for the compounds disclosed, in this patent.

SUMMARY OF THE INVENTION

This invention pertains to compounds of Formulae I,

II, III and IV including all geometric and stereoisomers, agriculturally-suitable salts thereof,
agriculturally-suitable metal complexes thereof,
compositions containing them and their use as
fungicides.

WO 93/22311 PCT/US93/03583

5 wherein:

 $-G^1-G^2-G^3$ taken together with the attached atoms form a 5-8 membered ring, wherein $-G^{1}$ is $-CR^{1}R^{7}$ -; $-(CHR^{1}CHR^{2})$ -; $-(CHR^{1}CHR^{2}CHR^{3})$ -; or -(CHR1CHR2CHR3CHR4)-; $-G^2$ - is -O-; -S-; -S(O)-; -S(O)₂- or $-NR^{27}$ -; 10 $-G^{3}$ - is $-CR^{4}R^{8}$; - - (CHR⁵CHR⁶) -; - (CHR³CHR⁵CHR⁶) - or a direct bond; . For example, $-G^1-G^2-G^3-$ can be $-CHR^{1}CHR^{2}-S-CR^{4}R^{8}-$, wherein $-G^{1}-$ is -(CHR¹CHR²)-, -G²- is -S-, and -G³- is -CR⁴R⁸-. 15 The directionality of the $-G^1-G^2-G^3$ - linkage is defined as $-G^1-G^2-G^3$ in compounds of Formulae I and III and $-G^3-G^2-G^1-$ in compounds of Formulae II and IV. Therefore, for example, when $-G^{1}$ is $-(CHR^{1}CHR^{2})$ in a compound of 20 Formula I or III, then the carbon of the CHR2

unit of $-G^{1}$ - is bonded to $-G^{2}$. In a compound

•	of Formula II or IV, when $-G^{1}$ is $-(CHR^{1}CHR^{2})$,
	the carbon of the CHR^1 unit is bonded to $-G^2$.
	· X is N or CR ¹³ ;
	Y is N or CR ¹⁴ ;
5	E is H; C_1-C_6 alkyl; C_3-C_7 cycloalkyl optionally
	substituted with 1-2 methyl; C_1-C_6 haloalkyl;
	C_1-C_6 alkylthio; C_1-C_6 alkoxy; C_1-C_6 haloalkoxy
	or phenyl, phenoxy, phenylthio, phenylamino,
	phenylmethyl, indanyl, tetrahydronaphthalenyl,
10	1-naphthalenyl, 2-naphthalenyl, thienyl,
	furanyl or pyridyl each optionally substituted with R^{11} , R^{12} and R^{28} ;
	R^{1} , R^{2} , R^{3} , R^{4} , R^{5} , R^{6} , R^{7} and R^{8} are each
	independently H; C1-C4 alkyl; C1-C4 haloalkyl,
15	halogen, CO ₂ CH ₃ , CO ₂ CH ₂ CH ₃ , cyano or phenyl
	optionally substituted with R25;
	provided that
	(i) when $-G^{1} = -CR^{1}R^{7} - \text{ and } -G^{3} - = -CR^{4}R^{8} -$,
	then at least one of R^1 , R^4 , R^7 and R^8 is
20	hydrogen; in other words the maximum
	number of carbon atoms in $-G^1-G^2-G^3-$ with
	geminal disubstitution is one;
	(ii) the maximum number of optionally
	substituted phenyl substituents on
25	$-G^{1}-G^{2}-G^{3}$ is one;
	(iii) $-G^3$ is other than a direct bond in
	compounds of Formulae III and IV; and
	(iv) $-G^2-G^3$ is other than $-NR^{27}$ in compounds
ė	of Formulae I and II;
30	R^9 , R^{10} and R^{13} are each independently H; halogen;
	cyano; hydroxy; C ₁ -C ₆ alkyl; C ₁ -C ₄ haloalkyl;
	C_1-C_4 alkylthio; C_1-C_4 alkylsulfinyl; C_1-C_4
•	alkylsulfonyl; C3-C6 cycloalkyl optionally
	substituted with 1-2 methyl groups; C_1-C_4
35	alkoxy; C_1-C_4 haloalkoxy; C_2-C_4 alkoxyalkyl;
	C ₂ -C ₄ alkenyl; C ₂ -C ₄ haloalkenyl; C ₂ -C ₄

	alkenyloxy; C_2-C_4 alkynyl; C_2-C_4 alkynyloxy;
•	NR ²⁹ R ³⁰ ; or phenyl or phenoxy optionally
	substituted with R ³¹ ; or
	R^9 and R^{13} , or R^{10} and R^{13} , or R^9 and R^{14} can be
5	taken together to form $-(CH_2)_3-$, $-(CH_2)_4-$ or a
·	fused benzene ring optionally substituted with \mathbb{R}^{31} ;
	R^{11} , R^{12} , R^{21} , R^{24} , R^{26} and R^{31} are each
	independently halogen; C1-C4 alkyl; C1-C4
10	haloalkyl; C_1-C_4 alkoxy; or C_1-C_4 haloalkoxy;
•	R^{14} is H; halogen; C_1-C_2 alkyl; or C_1-C_2 alkoxy;
	R^{15} , R^{16} , R^{17} , R^{18} , R^{29} and R^{30} are each
	independently H or C ₁ -C ₂ alkyl; or
	\mathbb{R}^{15} and \mathbb{R}^{16} , or \mathbb{R}^{17} and \mathbb{R}^{18} , or \mathbb{R}^{29} and \mathbb{R}^{30} can be
15	taken together along with the nitrogen atom to
	which they are attached to form a
. •	4-morpholinyl, pyrrolidinyl or piperidinyl
•	ring;
	R^{20} and R^{27} are each independently H; C_1 - C_4 alkyl;
20	C ₁ -C ₄ haloalkyl; C ₂ -C ₅ alkylcarbonyl; phenyl-
•	carbonyl optionally substituted with R^{21} ; C_3 - C_4
	alkenyl; C3-C4 alkynyl; phenylmethyl optionally
	substituted with R^{21} on the phenyl ring; C_1-C_4
	alkylsulfinyl; C_1-C_4 alkylsulfonyl; phenyl-
25	sulfinyl, phenylsulfonyl or phenoxycarbonyl
	each optionally substituted with R^{21} ; C_2 - C_4
	alkoxycarbonyl; $C(=0) NR^{22}R^{23}$; $C(=S) NHR^{23}$;
	$P(=S) (C_1-C_4 \text{ alkoxy})_2; P(=0) (C_1-C_4 \text{ alkoxy})_2; \text{ or}$
	$S(=0)_2NR^{22}R^{23};$
30	R^{22} is H or C_1-C_3 alkyl;
•	R ²³ is C ₁ -C ₄ alkyl; or phenyl optionally
,	substituted with R ²⁴ ; or
•	\mathbb{R}^{22} and \mathbb{R}^{23} can be taken together along with the
	nitrogen atom to which they are attached to
35	form a 4-morpholinyl, pyrrolidinyl, piperidinyl

or imidazolyl ring;

 R^{25} is 1-2 halogen; C_1 - C_4 alkyl; C_1 - C_4 haloalkyl; C_1 - C_4 alkoxy; C_1 - C_4 haloalkoxy; nitro; cyano or C_1 - C_4 alkylthio;

hydroxycarbonyl; C₁-C₆ alkyl; C₃-C₆ cycloalkyl;

C₁-C₆ haloalkyl; C₁-C₄ alkylthio; C₁-C₄ alkyl
sulfinyl; C₁-C₄ alkylsulfonyl; (C₁-C₄ alkyl)3
silyl; C₂-C₅ alkylcarbonyl; C₂-C₄ alkenyl; C₃-C₄

alkenyloxy; C₂-C₄ alkynyl; C₃-C₄ alkynyloxy;

C₁-C₄ alkoxy; C₁-C₄ haloalkoxy; C₂-C₄ alkoxy
alkyl; C₂-C₅ alkoxycarbonyl; C₂-C₄ alkoxy
alkoxy; NR¹⁵R¹⁶; C(=0)NR¹⁷R¹⁸; or phenyl,

phenoxy or phenylthio each optionally

substituted with R²⁶;

15 provided that

when E is, C_1 - C_6 alkylthio, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, phenoxy, phenylthio or phenylamino, then E may only substitute compounds of Formula I.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" denotes straight-chain or branched alkyl; e.g., methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers.

"Alkenyl" denotes straight-chain or branched
alkenes; e.g., 1-propenyl, 2-propenyl, 3-propenyl and
the different butenyl, pentenyl and hexenyl isomers.
"Alkenyl" also denotes polyenes such as 1,3-hexadiene
and 2,4,6-heptatriene.

"Alkenyloxy" denotes straight-chain or branched alkenyloxy moieties. Examples of alkenyloxy include H₂C=CHCH₂O, (CH₃)₂C=CHCH₂O, (CH₃) CH=CHCH₂O, (CH₃) CH=C(CH₃) CH₂O and CH₂=CHCH₂CH₂O.

"Alkynyl" denotes straight-chain or branched

35 alkynes; e.g., ethynyl, 1-propynyl, 3-propynyl and the
different butynyl, pentynyl and hexynyl isomers.

"Alkynyl" can also denote moieties comprised of multiple triple bonds; e.g., 2,7-octadiyne and 2,5,8-decatriyne.

"Alkynyloxy" denotes straight-chain or branched alkynyloxy moieties. Examples include HC=CCH₂O, CH₃C=CCH₂O and CH₃C=CCH₂CH₂O.

5

10

20

25

30

35

"Alkylthio" denotes branched or straight-chain alkylthio moieties; e.g. methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers.

Examples of "alkylsulfonyl" include CH₃SO₂, CH₃CH₂SO₂, CH₃CH₂SO₂, (CH₃)₂CHSO₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers.

"Alkylsulfinyl" denotes both enantiomers of an alkylsulfinyl group. For example, CH₃SO, CH₃CH₂SO, CH₃CH₂SO, CH₃CH₂SO, CH₃CH₂SO, and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers.

"Alkoxy" denotes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers.

"Cycloalkyl" denotes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", denotes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CF₂. Examples of "haloalkyl" include (Cl)₂C=CHCH₂ and CF₃CH₂CH=CHCH₂. Examples of "haloalkynyl" include HC=CCHCl, CF₃C=C, CCl₃C=C and FCH₂C=CCH₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, CF₂HCH₂CH₂O and CF₃CH₂O.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j

20

25

30

35

are numbers from 1 to 8. For example, C₁-C₃ alkyl-sulfonyl designates methylsulfonyl through propyl-sulfonyl; C₂ alkoxyalkoxy designates CH₃OCH₂O; C₃ alkoxyalkoxy designates, for example, CH₃OCH₂CH₂O or CH₃CH₂OCH₂O; and C₄ alkoxyalkoxy designates the various isomers of an alkoxy group substituted with a second alkoxy group containing a total of 4 carbon atoms, examples including CH₃CH₂CH₂OCH₂O, and CH₃CH₂OCH₂CH₂O. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂O. CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH

Preferred for reasons of greatest fungicidal activity and/or ease of synthesis are

1. Compounds of Formula I wherein:

Y is N;

- E is phenyl, indanyl, tetrahydronaphthalenyl, 1-naphthalenyl, thienyl, or pyridyl each optionally substituted with R^{11} , R^{12} and R^{28} :
- R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are each independently H or methyl;
- R¹¹ and R¹² are each independently F, Cl, methyl, trifluoromethyl, methoxy or trifluoromethoxy;

 R^{13} is H;

- R^9 and R^{10} are each independently halogen; C_1-C_4 alkyl; cyclopropyl; C_1-C_4 haloalkyl; allyl; or C_2-C_3 alkynyl; or
- ${\bf R^9}$ and ${\bf R^{13}}$ can be taken together to form a fused benzene ring optionally substituted with ${\bf R^{31}}$:
- R^{28} is halogen; cyano; C_1-C_4 alkyl; C_1-C_4 haloalkyl; allyl; propargyl; C_1-C_4 alkoxy; C_1-C_4 haloalkoxy; or phenyl or

phenoxy each optionally substituted with \mathbb{R}^{26} ;

R³¹ is halogen; C₁-C₄ alkyl or C₁-C₄ haloalkyl;

and agriculturally-suitable metal complexes thereof.

2. Compounds of Formula III wherein:

Y is N

E is phenyl, indanyl, tetrahydronaphthalenyl, 1-naphthalenyl, thienyl, or pyridyl each optionally substituted with R^{11} , R^{12} and R^{28} .

 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are each independently H or methyl;

 R^9 and R^{10} are each independently halogen; C_1-C_4 alkyl; cyclopropyl; C_1-C_4 haloalkyl; allyl; or C_2-C_3 alkynyl; or

 ${\bf R^9}$ and ${\bf R^{13}}$ can be taken together to form a fused benzene ring optionally substituted with ${\bf R^{31}}$;

R¹¹ and R¹² are each independently F, Cl, methyl, trifluoromethyl, methoxy or trifluoromethoxy;

R¹³ is H;

 R^{20} is H;

 R^{27} is H; C_1-C_4 alkyl; C_2-C_5 alkoxycarbonyl; C_3-C_4 alkenyl or C_3-C_4 alkynyl;

R²⁸ is halogen; cyano; C₁-C₄ alkyl; C₁-C₄ haloalkyl; allyl; propargyl; C₁-C₄ alkoxy; C₁-C₄ haloalkoxy; or phenyl or phenoxy each optionally substituted with R²⁶;

 R^{31} is halogen; C_1-C_4 alkyl or C_1-C_4 haloalkyl;

and agriculturally-suitable metal complexes thereof.

10

15

20

25

30

35

10

15

25

30

35

9

3. Compounds of Preferred 1 wherein:
G² is O; S or NR²⁷;
E is phenyl optionally substituted with R¹¹,
R¹² and R²⁸; indanyl or tetrahydronaphthalenyl; and agriculturally-suitable metal complexes thereof.

4. Compounds of Preferred 3 wherein:

 G^2 is O; S; NH or N(C₁-C₄ alkyl);

E is phenyl optionally substituted with R¹¹, R¹² and R²⁸; and agriculturally-suitable metal complexes thereof.

Specifically preferred for greatest fungicidal activity and/or ease of synthesis are:

3-(4,6-dimethyl-2-pyrimidinyl)-3,6-dihydro-5-phenyl-2H-1,3,4-oxadiazine

3-(4,6-dimethyl-2-pyrimidinyl)-5-(4-ethylphenyl)-3,6-dihydro-2H-1,3,4-oxadiazine

20 2-(2-chlorophenyl)-4-(4,6-dimethyl-2-pyrimidinyl)-5,6-dihydro-4H-1,3,4-thiadiazine

4-(4,6-dimethyl-2-pyrimidinyl)-2-(4-ethylphenyl)-5,6-dihydro-4H-1,3,4-thiadiazine

DETAILED DESCRIPTION OF THE INVENTION

Compounds of Formula I wherein E is as described in the Summary of the Invention except that E is not phenoxy, phenylthio, phenylamino, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio and C_1 - C_6 haloalkoxy can be prepared by one or more of the methods described in Equations 1-6 and 13.

Compounds of Formula 2 in Equation 1 can be prepared by reacting hydrazine 1 with an acid chloride and a base such as pyridine or triethylamine at 0°C in a solvent such as dichloromethane, THF, or pyridine (Equation 1). The hydrazines 1 are known in the

literature (*J. Pest. Sci.*, 1990, 15, 13) and can be prepared by one skilled in the art as taught in EP 293,743-A and by Naito et al. in *Chem. Pharm. Bull.*, 1969, 17, 1467.

5 Equation 1

Compounds of Formula 4 can be prepared by treatment

of hydrazides of Formula 2 with P₂S₅ in pyridine at
reflux for 1-2 h to form thiohydrazides of Formula 3,
followed by reaction with an appropriate alkylating
agent, wherein L can be Cl, Br, I or tosylate, in the
presence of two equivalents of base, such as triethylamine (Equation 2). In some cases, additional base
such as sodium hydride is necessary to induce
cyclization. The cyclization reaction is typically
performed at 25° to 100°C in an inert aprotic solvent
such as THF or acetonitrile.

20 Equation 2

Compounds of Formula 5 can be prepared similarly by treatment of hydrazides of Formula 2 with an alkylating

agent and two equivalents of base using the cyclization procedure previously described for the preparation of compounds of Formula 4 (Equation 3).

Equation 3

5

Compounds of Formula 7 can be prepared by the reaction of hydrazines of Formula 1 with ketones of

Formula 6 in a solvent such as acetonitrile, dichloromethane or acetic acid. The desired heterocycles of Formula 8 can be formed by treatment of the resulting product with a ketone or aldehyde in the presence of a catalytic amount of acid such as butanesulfonic acid (Equation 4). This reaction is typically conducted at 25° to 100°C in an anhydrous organic solvent such as THF or acetonitrile for 12 to 24 h.

. 10

15

Equation 4

Compounds of Formula 6 wherein m=1 and Q=0 can be prepared by α -hydroxylation of a methyl ketone with iodosobenzene as described by Moriarty et al. in Tetrahedron Lett., 1981, 22, 1283.

Thiols of Formula 7b and amines of Formula 7c can be prepared as outlined in Equation 5. Alcohols of Formula 7a (Q=0) can be converted to the corresponding mesylate by methods known in the art. The mesylates can be treated with sodium sulfide to form the thiols 7b, or they can be reacted with potassium phthalimide and then hydrazine to form amines of Formula 7c.

10

Equation 5

Formation of heterocycles of Formula 9 can be accomplished by treatment of hydrazones of Formula 7 with the appropriate alkylating agent as previously described for the preparation of heterocycles of Formula 4 (Equation 6).

. 5

Equation 6

Compounds of Formula I wherein E is phenoxy, phenylthio, phenylamino, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio or C_1 - C_6 haloalkoxy can be prepared by one or more of the methods described in Equations 7-13.

Heterocycles of Formula 11 can be prepared by

treating methylthio-substituted compounds of Formula 10

with various nucleophiles in the presence of a base.

Suitable nucleophiles can be optionally substituted phenols, thiophenols, or anilines, C₁-C₆ alkylthiols,

C₁-C₆ alcohols and C₁-C₆ halo-substituted alcohols

(Equation 7).

Equation 7

10

11

Nu = optionally substituted phenol, thiophenol, or aniline; C_1 - C_6 alkylthiol; C_1 - C_6 alcohol, C_1 - C_6 halo-substituted alcohol

n = 0, 1, 2, 3

vol. 7, p 835).

 $Q = O, S, N-R^{27}$

 $R, R^a, R^b = R^1, R^2, R^3, R^4, R^7$

10

15

20

5

The methythio-substituted heterocycles of Formula 10 can be synthesized by reaction of carbazates of Formula 12 with an alkylating agent in the presence of two equivalents of base, such as triethylamine (Equation 8). This type of cyclization was described previously for the preparation of compounds of Formula 4 (Equation 2). Compounds of Formula 12 are known in the literature and can be prepared by one skilled in the art (e.g., see G. W. Stacy, "Heterocyclic Compounds," R. C. Elderfield, ed., Wiley, NY, 1961,

Ξ

Equation 8

Alternatively, compounds of Formula 10a can be prepared by sequential treatment of carbazates of Formula 13 with P₂S₅ and iodomethane in pyridine (Equation 9). Carbazates of Formula 13 are known in the literature (e.g., see Dox, J. Am. Chem. Soc., 1926, 48, 1951).

Equation 9

Methylthio-substituted heterocycles of Formula 15 can be prepared by treating hydrazides of Formula 14 with P_2S_5 in pyridine at reflux and then alkylating the resulting thio derivative with iodomethane in the presence of a base such as triethylamine (Equation 10).

Reaction of compounds of Formula 15 with nucleophiles and base, as previously described for the preparation of compounds of Formula 11 in Equation 7, yields products of Formula 16. The seven-membered ring analogs, compounds of Formula 17, can be prepared from hydrazides of Formula 14a by the same procedure (Equation 10).

Equation 10

 $m = 1,2,3; Q = 0,S,N-R^{27}; R^{C},R^{d} = R^{3},R^{4},R^{5},R^{6},R^{8}$

 $Q=0, s, NR^{27}$

Treatment of hydrazides of Formula 19 with an aldehyde or ketone in the presence of a catalytic amount of acid, such as butanesulfonic acid, yields heterocycles of Formula 14 (Equation 11). The cyclization is typically performed at 25° to 100°C in

15

an anhydrous organic solvent such as THF or acetonitrile.

Equation 11

Compounds of Formula 19a (Q=O) can be synthesized by condensing hydrazine 1 with hydroxyacids of Formula 18 in the presence of a dehydrating agent such as 10 dicyclohexylcarbodiimide in an inert aprotic solvent such as THF or dichloromethane. Hydroxyacids of Formula 18 are well-known to one skilled in the art. Thiols of Formula 19b (Q=S) and amines of Formula 19c (Q=NR²⁷) can be prepared by forming the mesylate of alcohols of Formula 19a followed by displacement with nucleophiles in a manner similar to that previously described for the preparation of compounds of Formulae 7b and 7c (Equation 5).

Compounds of 14a can be prepared by treatment of hydrazides of Formula 19d (m=1) with the appropriate 20 alkylating agent, as illustrated in Equation 12, according to procedures described above (see Equations 2 and 3).

Equation 12

Compounds of Formula Ib wherein G^2 is S(0) or $S(0)_2$ can be prepared from the corresponding thio analogue Ia by well-known methods for oxidation of sulfur (Equation 13). Typical reagents for this type of oxidation include m-chloroperoxybenzoic acid, hydrogen peroxide, sodium metaperiodate, and OXONE® (potassium peroxymono-. 10 sulfate).

Equation 13

15

Compounds of Formula II can be prepared by one or more of the following methods described in Equations 14-19.

Hydrazides of Formula 22 can be synthesized by the 20 reaction of hydrazine 21 with an acid chloride of

Formula 20 in the presence of a base such as triethylamine or pyridine (Equation 14). Typical solvents for this reaction are dichloromethane and THF.

Equation 14

5

The acid chloride of Formula 20 can be prepared by treatment of the corresponding carboxylic acid with thionyl chloride. Methods for preparing acid chlorides from carboxylic acids are well-known in the literature.

Procedures for preparing pyrimidine carboxylic acids are described by Sakamoto, T., and Yamanaka, H. in Heterocycles, 1981, 15, 583.

Heterocycles of Formula 24 can be prepared by treating hydrazides of Formula 22 with P₂S₅ in pyridine at reflux to form the thiohydrazides of Formula 23, followed by reaction of 23 with an alkylating agent in the presence of two equivalents of base such as triethylamine (Equation 15). Typically, these reactions are conducted at 25° to 100°C in an inert aprotic solvent such as THF or acetonitrile.

Equation 15

22
$$P_2S_5$$
 R^9
 R^{10}
 R^{1

- Compounds of Formula 25 can be prepared similarly by treatment of hydrazides of Formula 22 with an alkylating agent and two equivalents of base according to the previously described cyclization procedure (Equation 16).
- 10 Equation 16

Compounds of Formula 28 can be synthesized by the reaction of hydrazines of Formula 21 with ketones of Formula 26 in a solvent such as dichloromethane or acetonitrile to form hydrazones of Formula 27 (Equation 17). The hydrazone can then be treated with a ketone

or aldehyde in the presence of a catalytic amount of acid, such as butanesulfonic acid, to form cycloadducts of Formula 28. This reaction is typically carried out at 25° to 100°C in an anhydrous organic solvent such as THF or acetonitrile.

Equation 17

Hydroxyketones of Formula 26a (Q=0, m=1) can be prepared by α-hydroxylation of the corresponding methyl ketone 29 with iodosobenzene as described by Moriarty et al. in Tetrahedron Lett., 1981, 22, 1283, and illustrated in Equation 18. Methods to prepare heteroaryl ketones of Formula 29 are well-known in the art. The corresponding thiols of Formula 26b (Q=S) and amines of Formula 26c (Q=NR²⁷) can be prepared by methods previously described for thiols and amines of Formulae 7b and 7c, respectively (Equation 5).

Equation 18

5 Compounds of Formula IIb can be synthesized from the corresponding thio analogue of Formula IIa by oxidation (Equation 19). Typical reagents for this type of oxidation include m-chloroperoxy benzoic acid, hydrogen peroxide, sodium metaperiodate, and OXONE® (potassium peroxymonosulfate).

Equation 19

15 Compounds of Formulae IIIa and IVa can be prepared by reduction of compounds of Formulae I and II, respectively, with sodium borohydride/titanium (IV) chloride according to the procedure taught by Kano et al. in Synthesis, 1980, 695, and set forth in Equation 20. In cases where substituents in compounds of Formulae I and II are not compatible with the reduction conditions, protection and deprotection techniques, which are well-known in the art may be employed.

Equation 20

Compounds of Formulae IIIa and IVa can be capped on nitrogen with various substituents (R²⁰) by treating with the appropriate alkylating, acylating, sulfonylating or phosphonylating agent of Formula 30 as shown in Equation 21. The leaving group (Lg) in compounds of Formula 30 may be Cl, Br, I, acetate or other moeity known to act as a leaving group.

Typically, these reactions are run in inert solvents such as THF, benzene or dichloromethane in the presence of a tertiary amine base, such as triethylamine, at a temperature ranging from 0° to 100°C.

Equation 21

Compounds of Formula IIIb and IVb wherein R²⁰ is $C(=0)NR^{22}R^{23}$ or $C(=S)NHR^{23}$ can be prepared by treating compounds of Formulae IIIa or IVa with an isocyanate or isothiocyanate by methods well-known in the art (Equation 22). Typical solvents for this type of reaction are THF, acetonitrile and dichloromethane.

Equation 22

IIIa + W=C=N-R²²

$$R^{20} = H W = O, S$$
 $G^{1} = M M = O, S$

IIIb

 $R^{9} = M M = O, S$
 $G^{1} = M M = O, S$
 $R^{10} = M M = O, S$

Compounds of Formula 3, as illustrated in Equation 2, can also be prepared by reacting hydrazine 1 with the appropriate carboxymethyl dithioate 31 in aqueous sodium hydroxide at 25°C (Equation 23). Carboxymethyl dithioates are known in the literature and can be prepared by one skilled in the art (see Jensen, K. A. and Pedersen, C., Acta Chemica Scandinavica, 1961, 15, 1087).

15 Equation 23

5

10

Likewise, thiohydrazides of Formula 23, as 20 illustrated in Equation 15, can be synthesized by reaction of a hydrazine of Formula 21 with a carboxy-methyl dithioate of Formula 32 in aqueous sodium hydroxide (Equation 24).

Equation 24

5

Compounds of Formula 11, wherein E is phenoxy or phenylthio, can also be synthesized by treating a

10 hydrazine of Formula 1 with phenyl-chlorothionoformate or phenyl-chlorodithioformate of Formula 33 to form a thiocarbazate hydrochloride of Formula 34 (Equation 25). This type of reaction is typically run in a solvent such a methylene chloride from about -10°C to

15 0°C. The cyclization is performed by treating 39 with the appropriate alkylating agent in a solvent mixture of aqueous sodium hydroxide and THF at 25°C.

Equation 25

1 +
$$R^9$$
 R^{10} R^{10}

n=0,1,2,3 R,R^a,R^b=R¹,R²,R³,R⁴,R⁷ L=C1,Br,I,OTs

5

10

15

The metal complexes of compounds of Formulae I-IV of the instant invention include complexes with copper, zinc, iron, magnesium, or manganese. These complexes can be formed by combining the compound of Formulae I-IV with the metal salt in either aprotic solvents, such as ether or THF, or protic solvents, such as methanol. EP-A-459,662 discloses metal complexes of other nitrogen containing compounds as agricultural fungicides.

EXAMPLE 1

Preparation of 1-(4-ethylphenyl)-2-hydroxyethanone(4.6-dimethyl-2-pyrimidinyl)hydrazone

To a solution of 3.57 g (21.7 mmol) of p-ethyl-2-20 hydroxyacetophenone in 100 mL of acetonitrile was added 3.00 g (21.7 mmol) of 4,6-dimethyl-2-hydrazinopyrimi-

15

20

25

35

dine, 3A molecular sieves, and a catalytic amount of butanesulfonic acid. The reaction mixture was stirred overnight at room temperature and then diluted with dichloromethane and chloroform. The organic phase was 5 washed successively with saturated sodium bicarbonate and brine, dried over sodium sulfate, filtered and concentrated. The crude product was passed through a plug of silica gel and triturated with hexanes to yield 3.45 g of product. ¹H NMR (CDCl₃) δ 10.65 (bs, 1H), 7.61 (d, 2H), 7.15 (d, 2H), 6.47 (s, 1H), 6.10 (bs, 1H), 4.86 (s, 2H), 2.64 (q, 2H), 2.38 (s, 6H), 1.22 (t, 3H).

EXAMPLE 2

Preparation of 3-(4.6-dimethyl-2-pyrimidinyl)-5-(4ethylphenyl)-3,6-dihydro-2H-1,3,4-oxadiazine

A solution of 1.00 g (3.52 mmol) of 1-(4-ethylphenyl) -2-hydroxyethanone(4,6-dimethyl-2-pyrimidinyl) hydrazone, 0.21 g (7.04 mmol) of paraformaldehyde, and a catalytic amount of butanesulfonic acid was heated at reflux for 3 h in 20 mL of acetonitrile. After cooling, the reaction mixture was diluted with dichloromethane and chloroform. The organic phase was washed successively with saturated sodium bicarbonate and brine, dried over sodium sulfate, filtered and concentrated. Chromatography on silica gel gave 70 mg of desired product as a gum. ¹H NMR (CDCl₃) δ 7.66 (d, 2H), 7.21 (d, 2H), 6.56 (s, 1H), 5.54 (s, 2H), 4.81 (s, 2H), 2.67 (q, 2H), 2.42 (s, 6H), 1.24 (t, 3H).

EXAMPLE 3

30 Preparation of 4-ethylbenzoic acid 2-(4,6-dimethyl-2pyrimidinyl) hydrazide

4,6-Dimethyl-2-hydrazinopyrimidine (3.72 g, 26.95 mmol) was suspended in 80 mL of pyridine and the reaction mixture was cooled to 10°C. After slowly adding p-ethylbenzoyl chloride (5.00 g, 29.66 mmol), the reaction mixture was allowed to warm to room

15

20

25

30

35

temperature over 1 h. Addition of ice and water precipitated the product which was filtered and washed with hexanes to yield 6.85 g of a white solid. mp 118-119°C. 1 H NMR (CDCl₃) δ 9.15 (bs, 1H), 7.8 (d, 2H), 7.35 (bs, 1H), 7.2 (d, 2H), 6.52 (s, 1H), 2.7 (q, 2H), 2.33 (s, 6H), 1.23 (t, 3H).

EXAMPLE 4

Preparation of 4-(4,6-dimethyl-2-pyrimidinyl)-2-(4-ethylphenyl)-5,6-dihydro-4H-1,3,4-thiadiazine

A solution of 5.30 g (18.52 mmol) of 4-ethylbenzoic acid 2-(4,6-dimethyl-2-pyrimidinyl)hydrazide and 6.18 g (13.89 mmol) of P₂S₅ in 60 mL of pyridine was heated at reflux for 1.5 h. After cooling, water was added and the reaction mixture was heated briefly at reflux to quench the reaction. The mixture was then cooled with an ice bath to precipitate the product. The solid was filtered and washed with water to give 6.57 g (21.73 mmol) of thiohydrazide which was then dissolved in 100 mL of THF with 7.5 mL (54.33 mmol) of triethylamine and 2.1 mL (23.91 mmol) of 1,2-dibromoethane. The reaction mixture was heated at reflux overnight. After cooling, water and ether were added and the organic phase was separated and washed with brine. The organic extracts were dried over magnesium sulfate, filtered and concentrated. The crude product was passed through a plug of silica gel to give 200 mg of product as an oil. ^{1}H NMR (CDCl₃), 7.8 (d, 2H), 7.2 (d, 2H), 6.53 (s, 1H), 4.45 (m, 2H), 3.35 (m, 2H), 2.67 (q, 2H), 2.41 (s, 6H), 1.22 (t, 3H).

EXAMPLE 5

Preparation of 4-(4.6-dimethyl-2-pyrimidinyl)-5.6-dihvdro-2-(3-methylphenyl)-4H-1.3.4-oxadiazine

A solution of 1.00 g (3.89 mmol) of 3-methylbenzoic acid 2-(4,6-dimethyl-2-pyrimidinyl)hydrazide, 0.37 mL (4.28 mmol) of 1,2-dibromoethane, and 1.33 mL (8.95 mmol) of DBU in 20 mL of dry THF was heated at

15

20

25

30

reflux overnight. After cooling, 2.3 equivalents (8.95 mmol) of sodium hydride and 0.37 mL (4.28 mmol) of 1,2-dibromoethane were added, and the reaction mixture was heated at reflux overnight. The mixture was allowed to cool to room temperature and saturated aqueous ammonium chloride was added. The product was extracted with dichloromethane and chloroform and the organic phase was washed with brine. The organic extracts were dried over sodium sulfate, filtered, concentrated, and passed through a plug of silica gel to give 100 mg of desired product as a gum. ¹H NMR (CDCl₃) & 7.82 (m, 1H), 7.75 (m, 1H), 7.25 (m, 1H), 7.19 (m, 1H), 6.49 (s, 1H), 4.54 (m, 2H), 4.28 (m, 2H), 2.42 (s, 6H), 2.38 (s, 3H).

. EXAMPLE 6

Preparation of 4-methoxybenzenecarbothioic acid O-[2-(4,6-dimethyl-2-pyrimidinyl)hydrazide

4,6-Dimethyl-2-hydrazinopyrimidine (p-methoxy-thiobenzoylthio)acetic acid (2.00 g), 14.49 mmol) and p-methoxyphenylcarboxymethyldithioate (3.48 g, 14.4 mmol) were dissolved in 20 mL of 1N aqueous sodium hydroxide and 10 mL of water. The reaction mixture was stirred at 25°C for 16 h and then acidified with 1N HCl. The resultant precipitate was filtered, washed with water, and dried under vacuum to give 3.22 g (11.2 mmol, 78%) of the title hydrazide as a white solid, m.p. 212-215°C ¹H NMR (CDCl₃) & 9.5 (bs, 1H), 7.85 (d, 2H), 6.95 (d, 2H), 6.57 (s, 1H), 3.87 (s, 3H), 2.39 (s, 6H).

EXAMPLE 7

Preparation of 4-(4,6-dimethyl-2-pyrimidinyl)-5,6-dihydro-2-phenyl-4H-1,3,4-thiadiazine

Benzenecarbothioic acid O-[2-(4,6-dimethyl-2-pyrimidinyl)] hydrazide (0.500 g, 1.94 mmol),

triethylamine (4.85 mmol, 0.67 mL) and 1,2-dibromoethane (0.44 g, 2.33 mmol) were dissolved in

15

20

30

10 mL of THF and heated at reflux for 5 h. After cooling, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The product was purified by flash chromatography on silica gel to yield 0.490 g (1.73 mmol) of a solid in 89% yield, m.p. 138-142°C. ¹H NMR (CDCl₃) δ 7.88 (m, 2H), 7.37 (m, 3H), 6.55 (s, 1H), 4.47 (m, 2H), 3.36 (m, 2H), 2.42 (s, 6H).

EXAMPLE 8

Preparation of 4-(4,6-dimethyl-2-pyrimidinyl)-2-(4ethylphenyl)-5,6-dihydro-4H-1,3,4-thiadiazine 1-oxide

4-(4,6-Dimethyl-2-pyrimidinyl)-2-(4-ethylphenyl)-5,6-dihydro-4H-1,3,4-thiadiazine (0.800 g, 2.56 mmol) was dissolved in 10 mL of methanol and 2.5 mL of water. Sodium metaperiodate (0.600 g, 2.82 mmol) was added and the reaction mixture was heated at reflux for 1 h. Ethanol (2.5 mL) was added and heating was continued for 1 h more. The reaction mixture was then stirred at 25°C for 16 h. An additional 200 mg of sodium metaperiodate was added and the mixture was heated at reflux for 1 h. The reaction mixture was washed with water and extracted with methylene chloride. organic layers were washed with brine, dried over 25 sodium sulfate, and concentrated. The crude product was passed through a plug of silica gel to give 760 mg (91% yield) of a white solid, m.p. 149-164°C. ¹H NMR $(CDCl_3)$ δ 7.95 (d, 2H), 7.28 (d, 2H), 6.7 (s, 1H), 5.45 (m, 1H), 3.9 (m, 1H), 3.4 (m, 1H), 2.85 (m, 1H), 2.7 (q, 2H), 2.49 (s, 6H), 1.26 (t, 3H).

EXAMPLE 9

Preparation of 4-(4.6-dimethyl-2-pyrimidinyl)-2-(4-ethylphenyl)-5,6-dihydro-4H-1,3,4-thiadiazine 1.1-dioxide

4-(4,6-Dimethyl-2-pyrimidinyl)-2-(4-ethylphenyl)-5,6-dihydro-4H-1,3,4-thiadiazine 1-oxide (0.350 g,

25

30

1.06 mmol) was dissolved in 5 mL of methanol and 2.5 mL of water. The mixture was cooled to 0°C and Oxone® (potassium peroxymonosulfate) (0.490 g, 0.80 mmol) was added. The reaction was warmed to room temperature, stirred for 1 h, then heated at reflux for 10 min. After stirring at 25°C for 16 h, water was added and the reaction mixture was extracted twice with methylene chloride. The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated.

The crude product was passed through a plug of silica gel to yield 350 mg (96%) of a white solid, m.p. 139-141°C. 1 H NMR (CDCl₃) δ 7.90 (d, 2H), 7.27 (d, 2H), 6.72 (s, 1H), 5.05 (m, 2H), 3.55 (m, 2H), 2.67 (q, 2H), 2.47 (s, 6H), 1.24 (t, 3H).

15 EXAMPLE 10

Preparation of 4-(4.6-dimethyl-2-pyrimidinyl)-5.6-dihydro-2-phenoxy-4H-1.3.4-thiadiazine

O-Phenyl 2-(4,6-dimethyl-2-pyrimidinyl) hydrazine-carbothioate hydrochloride (4.00 g, 12.74 mmol) was dissolved in 38.5 mL of 1N aqueous sodium hydroxide, 40 mL of THF, and 1.31 mL (15.29 mmol) of 1,2-dibromoethane. The reaction mixture was stirred at 25°C for 4 days. Methylene chloride was added and the reaction was washed successively with water and brine. After drying over sodium sulfate and concentrating, the crude product was passed through a plug of silica gel to give 2.48 g (8.27 mmol, 65%) of a solid, m.p. 75-85°C. ¹H NMR (CDCl₃) δ 7.31 (m, 4H), 7.18 (m, 1H), 6.47 (s, 1H), 4.39 (m, 2H), 3.29 (m, 2H), 2.36 (s, 6H).

The compounds illustrated below are referred to in the tables which follow. G^1 , G^2 , G^3 , X, Y, E and R^1-R^{28} are as defined for compounds of Formulae I-IV in the Summary of the Invention. In addition:

35 n = 0-2, as in the disclosure (e.g., Equation 2); $n^1 = 1-3$;

$$n^2 = 0-1;$$

 ${
m MCl}_{
m x}=$ the metal chloride salts of copper, zinc, iron, magnesium, or manganese; and

$$x = 1-2$$
.

İİ.

IJ

$$CH_3$$
 N
 N
 N
 R^1
 R^7
 G^2
 R^6
 CH_3
 CH_3

Ik

IIIc

IId

IIf

CH₃ CH₃
R⁶
N
R⁵
R⁷
CH₃
CH₃

. IIj

The following abbreviations are used in the tables which follow. All alkyl groups are the normal isomers unless indicated otherwise.

t - is tertiary t-Bu - is tertiary-butyl s - is secondary c-Pr - is cyclopropyl n - is normal c-Hex - is cyclohexyl i - is iso s-Bu - is secondary-butyl c - is cyclo OMe - is methoxy Me - is methyl i-PrO - is isopropoxy Et - is ethyl SEt - is ethylthio Pr - is normal-propyl CN - is cyano Bu - is normal-butyl TBS - is t-butyldimethylsilyl Hex - is normal-hexyl Ac - is acetyl Ph - is phenyl S(O)Me - is methylsulfinyl Bzl - is benzyl S(O)₂Me - is methylsulfonyl

i-Pr - is isopropyl

	Compounds of Formula Id	
$G^2=S$, $R^9=Me$, Y=N,	OCH ₂ CH=CH ₂	1-Pr
Х=СН	CH ₂ CH ₂ OMe	c-Pr
R ¹⁰	OCHF ₂	c-Hex
н	C≡CH	2-Me- <i>c</i> -Pr
c ₁	C≡CCH ₂ CH ₃	CF ₃
Br	och ₂ c≖ch	(CH ₂) 3CF3
F	NH ₂	SMe
CN	NMe ₂	SBu
OH	NHEt	S (0) Me
Me .	4-morpholinyl	S (0) Bu
Hex	pyrrolidinyl	S (0) ₂ Me
Et	piperidinyl	S (0) 2Bu
i-Pr	Ph	OMe
c-Pr	PhO	ÒВп
c-Hex	4-Me-Ph	OCH ₂ CF ₃
2-Me-c-Pr	3-CF ₃ -Ph	O(CH ₂)3CF3
CF ₃	4-i-Pr-PhO	CH ₂ OMe
(CH ₂) 3 ^{CF} 3	4-F ₂ HCO-Ph	(CH ₂) ₃ OMe
SMe-	3-Et-PhO	CH=CHMe
SBu	4-MeO-PhO	CH=CHCH2CH3
S(O)Me	4-MeO-Ph	CH=CHCH ₂ CF ₃
S (O) Bu	· .	CH=CCl ₂
S (O) 2 ^{Me}	G ² =O, R ⁹ =Me, Y=N,	OCH2CH=CH2
S (O) 2Bu	X=CH	CH ₂ CH ₂ OMe
OMe	R ¹⁰	OCHF ₂
OBu	H	C=CH
OCH2CF3	CI	C≡CCH ₂ CH ₃
O(CH ₂) ₃ CF ₃	Br	OCH ₂ C≡CH
CH ₂ OMe	F	NH ₂
(CH ₂) 30Me	CN	NMe ₂
CH=CHMe	OH	NHEt
CH=CHCH2CH3	Me	4-morpholinyl
CH=CHCH ₂ CF ₃	Hex	pyrrolidinyl
CH=CCl ₂	Et	piperidinyl

	1	,
Ph	OBu	C1
PhO	OCH ₂ CF ₃	Br
4-Me-Ph	O(CH ₂)3CF3	F
3-CF ₃ -Ph	CH ₂ OMe	CN
4-i-Pr-PhO	(CH ₂) ₃ OMe	ОН
4-F ₂ HCO-Ph	CH=CHMe	Me
3-Et-PhO	сн=снсн ₂ сн ₃	Hex
4-MeO-PhO	CH=CHCH ₂ CF ₃	Et
4-MeO-Ph	CH=CC12	i-Pr
	OCH ₂ CH=CH ₂	c-Pr
$G^2=S$, Y=N, X=CH,	CH ₂ CH ₂ OMe	c-Hex
$R^{10}=H$	OCHF ₂	2-Me-c-Pr
R ⁹	C≡CH	CF ₃
H	C≡CCH ₂ CH ₃	(CH ₂) 3CF3
CJ	OCH ₂ C≡CH	SMe
Br	NH ₂	SBu
F	NMe ₂	S (0) Me
CN	NHEt	S (0) Bu
OH.	4-morpholinyl	S (0) ₂ Me
Me	pyrrolidinyl	S (O) ₂ Bu
Hex	piperidinyl	OMe
Et	Ph	OBu
i-Pr	PhO	OCH ₂ CF ₃
c-Pr	4-Me-Ph	O(CH ₂)3CF3
c-Hex	3-CF ₃ -Ph	CH ₂ OMe
2-Me- <i>c</i> -Pr	4-i-Pr-PhO	(CH ₂) ₃ OMe
CF ₃	4-F ₂ HCO-Ph	Сн-Снме
(CH ₂) ₃ CF ₃	3-Et-PhO	сн=снсн ₂ сн ₃
SMe	4-MeO-PhO	сн=снсн ₂ сг ₃
SBu	4-MeO-Ph	CH=CCl ₂
S (0) Me		OCH ₂ CH=CH ₂
S (O) Bu	$G^2=S$, $R^9=R^{10}=Me$,	CH ₂ CH ₂ OMe
S (0) 2Me	$X=CR^{13}, Y=N$	OCHF ₂
S (0) ₂ Bu	R ¹³	C≡CH
OMe	Н	с=ссн ₂ сн ₃
	•	

•	· ·	
OCH ₂ C≡CH	F .	NMe ₂
NH ₂	CIN	NHEt
NMe ₂	ОН	4-morpholinyl
NHEt	Me	pyrrolidinyl
4-morpholinyl	Hex	piperidinyl
pyrrolidinyl	Et	Ph
piperidinyl	i-Pr	PhO
Ph	c-Pr	4-Me-Ph
PhO	c-Hex	3-CF ₃ -Ph
4-Me-Ph	2-Me- <i>c</i> -Pr	4-i-Pr-PhO
3-CF ₃ -Ph	CF ₃	4-F ₂ HCO-Ph
4-i-Pr-PhO	(CH ₂) ₃ CF ₃	3-Et-PhO
4-F ₂ HCO-Ph	SMe	4-MeO-PhO
3-Et-PhO	SBu	4-MeO-Ph
4-MeO-PhO	S (O) Me	
4-MeO-Ph	S (O) Bu	$G^{2}=0$, $R^{9}=R^{10}=Me$,
	S (O) 2Me	$X=CR^{13}, Y=N$
$G^2=S$, $R^9=R^{10}=Me$,	S (O) 2Bu	R ¹³
X=CH, Y=CR ¹⁴	OMe	H
R ¹⁴	OBu	CI
Cī	OCH ₂ CF ₃	Br
Br	O(CH ₂) ₃ CF ₃	F
F ·	CH ₂ OMe	CIN .
Me	(CH ₂) ₃ OMe	OH.
Et	СН=СНМе	Me ·
OMe	сн=снсн ₂ сн ₃	Hex
OEt	CH=CHCH ₂ CF ₃	Et.
H	CH=CCl ₂	i-Pr
	OCH ₂ CH=CH ₂	c-Pr
$G^2=0$, Y=N, X=CH,	CH ₂ CH ₂ OMe	c-Hex
R ¹⁰ ≟H	OCHF ₂	2-Me-c-Pr
<u>R</u> ⁹	C≡CH_	CF ₃
н	с=ссн ₂ сн ₃	(CH ₂) ₃ CF ₃
Cl	och ₂ c≡ch	SMe
Br	NH ₂	SBu

1		
S (O)Me		Ph
S (O) Bu	$G^{2}=0$, $R^{9}=R^{10}=Me$,	PhO
S (0) 2Me	X=CH, Y=CR ¹⁴	4-Me-Ph
S (O) 2Bu	R ¹⁴	4-MeO-Ph
OMe	Cl	н
OBu	Br	
och ₂ cf ₃	F	$G^2=S$, $R^9=Me$, Y=CH,
O(CH ₂) ₃ CF ₃	Me	X=N
CH ₂ OMe	Et ·	R ¹⁰
(CH ₂) ₃ OMe	ОМе	Cl
CH=CHMe	OEt	Br
CH=CHCH ₂ CH ₃	Н	F
CH=CHCH2CF3		CN
CH=CCl ₂	G ² =S, R ⁹ =Me, X=Y=N	ОН
OCH ₂ CH=CH ₂	R ¹⁰ .	Me
CH ₂ CH ₂ OMe	C1	Et
ochf ₂	Br	i-Pr
C=CH	F	c-Pr
с=ссн ₂ сн ₃	CN	CF ₃
OCH ₂ C≡CH	ОН	SMe
NH ₂	Me	S (0) Me
NMe ₂	Et	S (O) ₂ Me
NHEt	i-Pr	OMe
4-morpholinyl	c-Pr	OEt
pyrrolidinyl	CF ₃	OCH ₂ OMe
piperidinyl	SMe .	OCH ₂ CF ₃
Ph	S (0) Me	C=CHMe
PhO	S (0) 2 ^{Me}	C≡CMe
4-Me-Ph	OMe	NMe ₂
3-CF ₃ -Ph	OEt	Ph
4-i-Pr-PhO	OCH ₂ OMe	PhO
4-F ₂ HCO-Ph	OCH ₂ CF ₃	4-Me-Ph
3-Et-PhO	C=CHMe	4-MeO-Ph
4-MeO-PhO	C≡CMe	н
4-MeO-Ph	NMe ₂	

	Me, X=Y=N	С=СНМе		i-Pr	
R ¹⁰	•	C≡CMe	,	c-Pr	
Cī		NMe ₂		CF ₃	
Br		Ph		SMe	
F		PhO		S (0) Me	
CN .		4-Me-Ph		S (O) ₂ Me	
OH		4-MeO-Ph		OMe	
Me		н		OEt	
Et	• .			OCH ₂ OMe	
i-Pr	· .	G ² =0, R ⁹ =1	de, Y=CH,	OCH ₂ CF ₃	
c-Pr		X=N		C=CHMe	
CF ₃		R ¹⁰		C=CMe	
SMe	·	Cī		NMe ₂	
S (0) Me		Br	•	Ph	
S (0) ₂ Me	•	F		PhO	
OMe		CN	į.	4-Me-Ph	
OEt		ОН		4-MeO-Ph	
OCH ₂ OMe	4	Me		H	
OCH2CF3	:	Et			
		•	:	_	
G ² ≕S					
X	Y	R ¹⁴	R ⁹	R ¹³	R10
N	CR14	- (CH ₂) 3-	- ;	· ·	Me
CH	CR ¹⁴	-(CH ₂) ₃ -	-		Me
N	CR ¹⁴	-(CH ₂) ₄ -	<u>.</u>		Me
CH	CR14	-(CH ₂) ₄ -	-		Me
CR ¹³	N	- .=	-(CH ₂) ₃ -		Me
CR ¹³	CH		-(CH ₂) ₃ -		Me
CR ¹³	N	· 	-(CH ₂) ₄ -		· Me
CR ¹³	CH		-(CH ₂) ₄ -		Me
CR ¹³	CH		Me	-(CH ₂) ₃ -	÷
CR ¹³	СН		Me	-(CH ₂) ₄ -	

G ² =0					
x	¥	R14	R ⁹	B ¹³	B ¹⁰
N	CR ¹⁴	-(CH ₂) ₃ -			Me
СН	CR ¹⁴	-(CH ₂) ₃ -			Me
N	CR ¹⁴	-(CH ₂) ₄ -			Me
CH	CR ¹⁴	-(CH ₂) ₄ -			Me
CR ¹³	N		-(CH ₂) ₃ -		Me
CR ¹³	CH		-(CH ₂) ₃ -		Me
CR ¹³	N		- (CH ₂ ·) 4-		Me
CR ¹³	CH		-(CH ₂) ₄ -		Me
CR ¹³	CH		Ме	-(CH ₂) ₃ -	
CR ¹³	CH		Me	- (CH ₂) ₄ -	

TABLE 2

Compounds of Formula Ie

G ² =S,	X=Y=N,	R11_R12_	R28⊷H				
B ¹⁰			c-Pr			С=СНМе	
Cl			CF3			C ≡ CMe	
Br		1	SMe		1	NMe ₂	
F			S (0) Me	•		Ph	•
CIN			S (0) 2M	le		PhO	
OH			OMe	•		4-Me-P	h
Me			OEt		4-MeO-Ph		
Et			OCH ₂ OMe		ł	н	
i-Pr			och ₂ cf ₃				
		1					
G ² ≂S							
X	¥	B ¹⁰	R ¹¹	R12	B ²⁸		R ³¹
CH	N	Me	H	H	H		н
и .	СН	Me	Н	H	н		н
N	N	Me	H	3-Me	4-Me	•	H
N	N	Me	H	3-Me	4-Me	•	6-Me
N	N	Me	Me	Н	H		7-Me

N	N -	Me	H .	Н	4-i-Pr	6-OMe
N	N	Me	н	3-Me	H	7-CF3
N	N	Me	H	н .	4-Et	7-Et.
N	N	Me	Ħ	H	4-i-Pr	6-OCHF ₂
N	N	Me	H	H	H	8-Bu
N	N	Me	H	H	4-c-Pr	6-OEt
	-					

$G^2=0$, $X=Y=N$, $R^{11}=R^{12}$	=R ²⁸ =H	•
R ¹⁰	c-Pr	C=CHMe
C1	CF3	C≡CMe
Br	SMe	NMe ₂
F	S(O)Me	Ph
CN	S (O) 2Me	PhO
OH -	OMe	4-Me-Ph
Ме	OEt	4-MeO-Ph
Et	OCH ₂ OMe	н .
i-Pr	OCH ₂ CF ₃	1
		ŀ

G ² =O				****		_
X	¥	R ¹⁰	R ¹¹	R12	R ²⁸	R ³¹
CH	N	Me	H	H	H	H
N	Сн	Me	H	Н	H	H
N	, N	Me	H	3-Me	4-Me	H
N	N	Me	Н	3-Me	4-Me	6-Me
N .	N	Me	Me	н .	H	7-Me
N	N	Me	H	H	4-1-Pr	6-OMe
N	N	Me	H	3-Me	H	7-CF3
N	N	Me	Н	H	4-Et	7-Et
N	N	Me	H	Н	4-i-Pr	6-OCHF ₂
и.	N	Me	H	н	н	8-Bu
и .	N	Me	H	H	4-c-Pr	6-OEt

	Compounds of Formula If	-		
$G^{2}=S$, $R^{12}=H$, $R^{28}=H$	$G^{2}=S$, $R^{11}=R^{12}=H$	4-0=0	СН	
R ¹¹	R ²⁸	4-C≡0	:-Et	
Н	4-Me	4-0CI	i ₂ C≡CH	
Ме	4-CN	4-NM	² 2	
Et	4-NO ₂	4-C (=	-0) NMe ₂	
i-Pr	4-OH	4-Ph		
<i>s</i> -Bu	4-CO ₂ H	4-0P1	ì	
F	4-CO ₂ Et	4-SP1	ı	
Cl .	4-Et	4- (3-	Me-Ph)	
Br	4-i-Pr			
CF ₃	4- <i>n</i> -Hex	G ² =S		
OMe	4-c-Pr	R ¹¹	R ¹²	R ²⁸
OEt	4-CF ₃	Cl	н	6-Cl
OCHF ₂	4-SMe	Ħ	3-Me	4-Me
OBu	4-SBu	н	3-Me	4-Et
O(CH ₂) ₃ CF ₃	4-c-Hex	н	3-OMe	4-OMe
(CH ₂) ₃ CF ₃	4-C1	Me	н	5-Me
$G^{2}=S$, $R^{11}=H$, $R^{28}=H$	4-Br	Me	н	4-Me
R ¹²	4-F	Me	4-Me	5-Me
3-Me	4-(CH ₂) ₃ CF ₃	н	3-C1	5-C1
3-Et	4-S (0) Me	Cl	Н	4-C1
3-1-Pr	4-S (O) Bu			
3- <i>s</i> -Bu	4-S (O) 2Me	G ² =0,	R ¹² =H,	$R^{28}=H$
3-F	4-S (O) ₂ Bu	R ¹¹		
3-C1	4-OMe	H		
3-Br	4-OBu	Me		
3-CF ₃	4-OCH ₂ CF ₃	Et		
3-0Me	4-OCH ₂ OMe	i-Pr		
3-0Et	4-CH ₂ OMe	s-Bu		•
3-0CHF ₂	4-CH=CH-Me	F		
3-0Bu	4-CH=CHCH ₂ Me	Cl		
3-0(CH ₂) ₃ CF ₃	4-TBS	Br		
3-(CH ₂) ₃ CF ₃	4-SiMe ₃	CF ₃		

OMe .·	4-c-Pr	H 3-Me 4-Me		
OEt	4-CF3.	H 3-Me 4-Et		
OCHF ₂	4-SMe	H 3-OMe 4-OMe		
OBu .	4-SBu	Me H 5-Me		
O(CH ₂) ₃ CF ₃	4- <i>c</i> -Hex	Me H 4-Me		
(CH ₂) ₃ CF ₃	4-C1.	Me 4-Me 5-Me		
	4-Br	H 3-C1 5-C1		
$G^2=0$, $R^{11}=H$, $R^{28}=H$	4-F	C1 H 4-C1		
R ¹²	4-(CH ₂) ₃ CF ₃			
3-Me	4-S (0) Me	$G^2=S(0)$, $R^{12}=H$,		
3-Et	4-S (O) Bu	R ²⁸ =H		
3-1-Pr	4-S (O) 2Me	R ¹¹		
3- <i>s</i> -Bu	4-S (O) 2Bu	H		
3 -F	4-OMe	Me		
3-C1	4-OBu	Et		
3-Br	4-OCH ₂ CF ₃	1-Pr		
3-CF ₃	4-OCH ₂ OMe	s-Bu		
3-OMe	4-CH ₂ OMe	F		
3-0Et	4-CH=CH-Me	Cī		
3-OCHF ₂	4-CH=CHCH ₂ Me	Br		
3-OBu	4-TBS	CF3		
3-0 (CH ₂) ₃ CF ₃	4-SiMe ₃	OMe		
3-(CH ₂) ₃ CF ₃	4-C≡CH	OEt		
	4-C≡C-Et	OCHF ₂		
$G^{2}=0$, $R^{11}=R^{12}=H$	4-OCH ₂ C≡CH	OBu		
B ²⁸	4-NMe ₂	O(CH ₂) ₃ CF ₃		
4-Me	4-C(=0) NMe ₂	(CH ₂) ₃ CF ₃		
4-CN	4-Ph			
4-NO ₂	4-OPh	$G^2=S(0), R^{11}=H,$		
4-OH	4-SPh	R ²⁸ =H		
4-CO ₂ H	4-(3-Me-Ph)	R ¹²		
4-CO ₂ Et	2	3-Me		
4-Et	G ² =0	3-Et		
4-i-Pr	R ¹¹ R ¹² R ²⁸	3-i-Pr		
4-n-Hex	CI H 6-C1	3- <i>s</i> -Bu		

1				ł
3-F	4-0M	e		Me
3-C1	4-0B	u		Et
3-Br	4-oc	H ₂ CF ₃		i-Pr
3-CF ₃	4-OC	H ₂ OMe		s-Bu
3-ОМе	4-CH	₂ OMe		F
3-OEt	4-CH	=СН-Ме		Cl
3-OCHF ₂	4-CH	=CHCH ₂ M€	•	Br
3-OBu	4-TB	s		CF ₃
3-0 (CH ₂) ₃ CF ₃	4-Si	Me ₃	•	OMe
3-(CH ₂) ₃ CF ₃	4-C=	СН		OEt
	4-C=	C-Et		ochf ₂
$G^2=S(0), R^{11}=R^{12}=H$	4-0C	H ₂ C≡CH	•	OBu .
R ²⁸ ·	4-NM	e ₂		O(CH ₂) ₃ CF ₃
4-Me .	4-C (=0) NMe ₂		(CH ₂) ₃ CF ₃
4-CN	4-Ph			
4-NO ₂	4-OP	h		$G^2=S(0)_2, R^{11}=H,$
4-ОН	4-SP	h		R ²⁸ =H
4-co ₂ H	4-(3	-Me-Ph)		R ¹²
4-CO ₂ Et				3-Me
4-Et	G ² ≖S	(0)		3-Et .
4-1-Pr	R^{11}	R ¹²	R ²⁸	3-1-Pr
4-n-Hex	Cl	H	6-C1	3- <i>s</i> -Bu
4-c-Pr	H	3-Me	4-Me	3 - F
4-CF ₃	H	3-Me	4-Et	3-C1
4-SMe	H	3-OMe	4-OMe	3-Br
4-SBu	Me	н	5-Me	3-CF ₃
4- <i>c</i> -Hex	Me	H	4-Me	3-OMe
4-C1	Me	4-Me	5-Me	3-0Et
4-Br	Н	3-C1	5-C1	3-0CHF ₂
4-F	Cl	H	4-C1	3-0Bu
4-(CH ₂) ₃ CF ₃				3-0 (CH ₂) 3CF ₃
4-S:(0) Me		$(0)_2, R^1$.2 _{=H} ,	3-(CH ₂) ₃ CF ₃
4-S (O) Bu	R ²⁸ =	H		
4-S (0) 2 ^{Me}	R ¹¹			•
4-S (0) 2Bu	Н			

4-CH=CH-Me

 $G^2=S(0)_2,$ $_{R}^{11}=_{R}^{12}=_{H}$ _E28 4-Me 4-CN 4-NO2 4-OH 4-CO2H 4-CO₂Et 4-Et 4-1-Pr 4-n-Hex 4-c-Pr . 4-CF3 4-SMe 4-SBu 4-c-Hex 4-C1 4-Br 4-F 4-(CH₂)₃CF₃ 4-S (0) Me 4-S (O) Bu 4-S (O) 2Me 4-S (0) 2Bu 4-OMe 4-OBu 4-OCH2CF3 4-OCH2OMe 4-CH₂OMe

4-CH=CHCH₂Me 4-TBS 4-SiMe₃ 4-C≡CH 4-C=C-Et 4-0CH₂C≡CH 4-NMe₂ 4-C (=0) NMe₂ 4-Ph 4-0Ph 4-SPh 4-(3-Me-Ph) G2=S (O) 2 R^{11} R^{12} R²⁸ C1 H 6-C1 H 3-ме 4-Me 3-Me 4-Et H н 3-0Me 4-OMe H 5-Me Me 4-Me Me H Me 4-Me 5-Me H 3-C1 5-C1 CI H 4-C1

	Compounds	of Formula Ig
$n^{1}=1$	•	Et
R ²⁷		Bu
Н		i-Pr
Et		CHF ₂
Bu		(CH ₂) ₃ CF ₃
i-Pr		CO ₂ Et
CHF ₂		C (=0) Me
(CH ₂) ₃ CF ₃		C (=0) (CH ₂) 3Me
CO ₂ Et		C (=0) Ph
C (=0) Me		(3-Me-Ph)C(=0)
C(=0)(CH ₂) ₃ Me		(4-OMe-Ph)C(=0)
C (=0) Ph		сн ₂ с-сн ₂
(3-Me-Ph) C (=O)		Сн ₂ С≡Сн
(4-OMe-Ph) C (=O)		PhCH ₂
CH ₂ C=CH ₂		4-Me-PhCH ₂
CH ₂ C≡CH		S (0) 2Me
PhCH ₂		C (=0) NMe ₂
4-Me-PhCH ₂		C (=S) NHMe
S (=0) 2Me		S (0) Me
C (=0) NMe ₂		S (0) 2Ph
C (=S) NHMe		(4-Me-Ph)S(0) ₂
S (0) Me		C (=0) NHPh
S(O) ₂ Ph		C (=S) NHPh
$(4-Me-Ph)S(0)_2$		P (=S) (OEt) 2
C (=0) NHPh		P (=0) (OEt) ₂
C (=S) NHPh		S(O) ₂ N(Et) ₂
P (=S) (OEt) 2		
P (=0) (OEt) ₂		n ¹ =3
S (0) 2N (Et) 2		R ²⁷
n ¹ =2		н
		Et
R ²⁷		Bu
Н		i-Pr

WO 93/22311 PCT/US93/03583

_	_
-	n
J	v

		٠ . ا					
CHF ₂		·	1	1	•	S (O)	
(CH ₂) ₃ CF ₃	3		1	2		S (O)	
CO ₂ Et			2	1		S (O)	
C (=0) Me			0	3		S (O)	
C (=0) (CH2	2) 3 ^{Me}	٠.	1	1		s (0) ₂	;
C (=0) Ph			1	2		s (0) 2	!
(3-Me-Ph)	C(=0)		2.	1		s (0) 2	:
(4-OMe-P)	n) C (=0)		0	3		s (0) 2	:
сн₂с=сн₂			• • •	. 1		N-Me	
CH ₂ C≡CH			1	. 2		N-Me	
PhCH ₂			2	1		N-Me	•
4-Me-PhCl	H ₂ :			•			
S (0) 2Me				TAF	LE 6		
C (=0) NMe			. 6	compounds of	For	mula I	i
C (=S) NHM	9 ·		G ² =S	•	•		
S (0) Me			n ²	E ¹ .	£ ⁷	R4	\mathbb{R}^8
S (0) 2Ph		•	1	Me	H	H	H
(4-Me-Ph) S (O) 2		1	Bu .	Ħ	H	H.
C (=0) NHP	h		1	Me	Me	· H	н
C (=S) NHP	h ·		1	Ħ.	H	Me	H
P (=S) (OE	t) ₂		1	H	H	Bu	H
P (=0) (OE	t) ₂		1.	Ph	н	H	H
S (O) 2N (E	t) ₂		1 .	4-Me-Ph	H	H	H
			1	4-OMe-Ph	н.	H	H
	TABLE 5		Ó	Me	H		
Compo	ounds of For	mula Ih	0	Bu	H		
n.	n^{1}	⊊ ²	0	Me	Me		
1	1	s ·	0	Ph	H		
1	2	s ·	0	4-Me-Ph	H		
2	1	s					
0 [3	. s	G ² =0	·			
1 .	1	0	n^2	R ¹	B7	R4	<u>R</u> 8
1 :	2 .	0	1	Me	н	H	H
2	1	0	1	Bu	H	H	H
0	3	0	1	Me	Me	H	H,
		-					

					1			
1	Н	H	Me	H	1	4-Me-Ph	H	H
1	Н	H	Bu	H	1	Н	Ph	H
1	Ph	H	H	H	1	Н	4-Me-Ph	Н
1	4-Me-Ph	H	H	H	1	н	H	Ph
1	4-OMe-P	h H	H	H	1	H	H	4-Me-Ph
0	Me	H						
0	Bu	н			G ² .	= O		
0	Me	Ме			n ²	R^1	R ²	R ³
0	Ph	H			0	Me ·	Н	
0	4-Me-Ph	H			0	Bu	Н	
					0	н	Me	
	;	TABLE 7			0	Н	Bu	***
	Compounds	of For	mula 1	[j	0	Ph	н	
	=S				0	4-Me-Ph	H	
n ²	R ¹	R ²	F	3	0	H	4-OMe-Ph	 .
0	Me	H	-	-	1	Me .	Н	H
0	Bu	H	-	-	1	Bu	H	H
.0	H	Me	-	-	n ²	R ¹	\mathbb{R}^2	R ³
0	H	Bu	-	· -	1	н	Me	Н
0	Ph	H	-	-	1	H	, Bu	Н
0	4-Me-Ph	H	-	· - .	1	H	H	Me
0	Н	4-OMe-	Ph -	· -	1	н	H	Bu
1	Me	H	H	I	1	Ph	Н	Н
1	Bu	H	H	1	n ²	R ¹	\mathbb{R}^2	R ³
1	Н	Me	, н	l	1	4-Me-Ph	H	н .
. 1	Н	Bu	Н	I	1	Н	Ph	н
1	Н	Н	М	le	1	H	4-Me-Ph	H
1	Н	H	В	u	1	H	н	Ph
1	Ph	H	Н	Į.	1	H	Н	4-Me-Ph

Compounds of Formula Ik

G ² =S				н	н	Ph	H
R ¹	<u>R</u> 7	R ⁵	R ^{6.}	н	Н	Н	Me
Н	H	Me	H	н	н	H	Ph

			1				
Me	H	H	н	Ph	H	Н	. Н
Me	Me	H	н	Н _	Ph	H .	H
Ph	H	н	H	H	H	Bu	H
H	Ph	Н	н	H	н .	4-Me-Ph	Н
н .	H	Bu	н	H	H	H	Bu
н	H	4-Me-Ph	н	Н	H	H	4-OMe-Ph
Н	H	H	Bu	Bu	H	Н	Н
H	Ħ	н .	4-OMe-Ph	3-Me-Ph	н	H	н
Bu	H	н	н	4-OMe-Ph	H	. н	Н
3-Me-Ph	H	H	н				
4-OMe-Ph	Ħ	H	н				
G ² =0							
R ¹	<u>r</u> 7	R ⁵	R ⁶				•
H	н .	Me	H ·				
H .	н	Ph	н	•		٠.	
H	н	H	Me			•	
H	н	H	Ph				_
. Me	н	Н	н				·
Me	Me	H .	н				
		•					

TABLE 9

Compounds of Formula Il

G ² =S	3-thienyl
E	2,5-diMe-3-furanyl
H	2,5-diMe-3-thienyl
Ме	4-Me-PhO
n-Hex	2-C1-PhO
c-Hex	2,6-diMe-PhO
PhCH ₂	4-Me-PhNH
CH2CH2CF3	3-Me-PhS
OBů	s-BuS
O (CH ₂) 5Cl	1-indanyl
1-naphthalenyl	5-Me-2-thienyl
2-naphthalenyl	5-Me-2-pyridyl
2-furanyl	4-Me-3-furanyl

2-Me-3-pyridy1 c-Hex PhCH₂ $G^2 = 0$ CH2CH2CF3 E OBu H O(CH2)5C1 Me 1-naphthalenyl n-Hex 2-naphthalenyl c-Hex 2-furanyl PhCH₂ 3-thienyl CH2CH2CF3 2,5-diMe-3-furanyl OBu 2,5-diMe-3-thienyl O(CH2)5C1 4-Me-PhO 1-naphthalenyl 2-C1-Ph0 2-naphthalenyl 2,6-diMe-PhO 2-furanyl 4-Me-PhNH 3-thienyl 3-Me-PhS 2,5-diMe-3-furanyl s-BuS 2,5-diMe-3-thienyl 1-indanyl 4-Me-PhO 5-Me-2-thienyl 2-C1-PhO 5-Me-2-pyridyl 2,6-diMe-PhO 4-Me-3-furanyl 4-Me-PhNH 2-Me-3-pyridyl 3-Me-PhS G²=S (O) 2 s-BuS 1-indanyl E 5-Me-2-thienyl Н 5-Me-2-pyridyl Me 4-Me-3-furanyl n-Hex 2-Me-3-pyridy1 c-Hex PhCH₂ $G^2=S(0)$ CH2CH2CF3 E. OBu O(CH2)5C1 Me 1-naphthalenyl n-Hex 2-naphthalenyl

2-furanyl	3-Me-PhS
3-thienyl	s-BuS
2,5-diMe-3-furanyl	1-indanyl
2,5-diMe-3-thienyl	5-Me-2-thienyl
4-Me-PhO	5-Me-2-pyrldyl
2-C1-PhO	4-Me-3-furanyl
2,6-diMe-PhO	2-Me-3-pyridyl
4-Me-PhNH	,

			Compounds of	Formula	IIIc	
\mathbf{G}^2	n	n1		S (O)	1	1
s ·	0	1		S (O)	1	2
s	0	2.		S (O)	2	1
S	0	3	•	s (0) 2	0	1
s	1	1		s(0) ₂	0 .	· 2
S	1	2		s(0) ₂	0	3
S	. 2	1		s(0) ₂	1	1
0	.0	1		s(0)2	1	2
0	0	2	-	s(0) ₂	2:	1
·	0	.3		NMe	0 .	1
0	1	1		NMe	0	2
0.	1	2	•	NMe	0	3
0	2	1		NMe	1	1
S (O)	0	1		NMe	1	2
S (O)	0	2		NMe	2	1
S (O)	0	3			•	

	Compounds of Formula IIc	
$G^2=S$, $R^9=Me$, Y=N,	Br	Hex
X=CH	F	Et
R ¹⁰	CN	i-Pr
H	ОН	c-Pr
Cl	Me	c-Hex

2-Me-c-Pr	4-i-Pr-PhO	(CH ₂) ₃ OMe
CF₃	4-F ₂ HCO-Ph	CH=CHMe
(CH ₂) ₃ CF ₃	3-Et-PhO	CH=CHCH2CH3
SMe	4-MeO-PhO	CH=CHCH ₂ CF ₃
SBu	4-MeO-Ph	CH=CC1 ₂
S (0) Me		OCH2CH=CH2
S (0) Bu	G ² =O, R ⁹ =Me, Y=N,	CH ₂ CH ₂ OMe
S (0) 2 ^{Me}	X=CH	OCHF ₂
S (O) 2Bu	B ¹⁰	C≡CH
OMe	H	С≡ССН2СН3
OBu	CI	och ₂ c≡ch
OCH ₂ CF ₃	Br .	NH ₂
O(CH ₂) ₃ CF ₃	F	NMe ₂
CH ₂ OMe	CN	NHEt
(CH ₂) ₃ OMe	ОН	4-morpholiny1
СН=СНМе	Me	pyrrolidinyl
сн=снсн ₂ сн ₃	Hex	piperidinyl
CH=CHCH ₂ CF ₃	Et	Ph
CH=CCl ₂	i-Pr	PhO
осн ₂ сн=сн ₂	c-Pr	4-Me-Ph
CH ₂ CH ₂ OMe	c-Hex	3-CF3-Ph
OCHF ₂	2-Me-c-Pr	4-i-Pr-PhO
C=CH	CF ₃	4-F ₂ HCO-Ph
C≡CCH ₂ CH ₃	(CH ₂) ₃ CF ₃	3-Et-PhO
OCH ₂ C≡CH	SMe ·	4-MeO-PhO
NH ₂	SBu	4-MeO-Ph
NMe ₂	S (O) Me	
NHEt	S (O) Bu	$G^2=S$, Y=N, X=CH,
4-morpholinyl	S (0) ₂ Me	$R^{10}=H$
pyrrolidinyl	S (O) ₂ Bu	R 9
piperidinyl.	OMe	н
Ph .	OBu	Cl
PhO	och ₂ cr ₃	Br
4-Me-Ph	O(CH ₂) ₃ CF ₃	F
3-CF ₃ -Ph	CH ₂ OMe	CN
•		

OH	4-morpholinyl	S (0) ₂ Me
Me	pyrrolidinyl	S (O) ₂ Bu
Hex	piperidinyl	OMe
Et	Ph	OBu
i-Pr	PhO	OCH ₂ CF ₃
c-Pr	4-Me-Ph	O(CH ₂)3CF3
c-Hex	3-CF ₃ -Ph	CH ₂ OMe
2-Me-c-Pr	4-i-Pr-PhO	(CH ₂) ₃ OMe
CF ₃	4-F ₂ HCO-Ph	СН=СНМе
(CH ₂) ₃ CF ₃	3-Et-PhO	сн=снсн ₂ сн ₃
SMe	4-MeO-PhO	CH=CHCH2CF3
SBu	4-MeO-Ph	CH=CCl ₂
S (0) Me		och ₂ ch=ch ₂
S (O) Bu	$G^2=S$, $R^9=R^{10}=Me$,	CH ₂ CH ₂ OMe
S (0) 2Me	X=CR ¹³ , Y=N	ochf ₂
S (0) 2Bu	R ¹³	C=CH
QMe	H	C≡CCH ₂ CH ₃
OBu	C1	och ₂ c≡ch
OCH ₂ CF ₃	Br	NH ₂
O(CH ₂) ₃ CF ₃	F	NMe ₂ .
CH ₂ OMe	CN	NHEt
(CH ₂) ₃ OMe	OH	4-morpholinyl
CH=CHMe ·	Me	pyrrolidinyl
CH=CHCH ₂ CH ₃	Hex	piperidinyl
CH=CHCH ₂ CF ₃	Ét	Ph
CH=CC1 ₂	i-Pr	PhO
OCH ₂ CH=CH ₂	c-Pr	4-Me-Ph
CH ₂ CH ₂ OMe	c-Hex	3-CF ₃ -Ph
OCHF ₂	2-Me- <i>c</i> -Pr	4-1-Pr-PhO
C=CH	CF ₃	4-F ₂ HCO-Ph
C≡CCH ₂ CH ₃	(CH ₂) ₃ CF ₃	3-Et-PhO
OCH ₂ C≡CH	SMe	4-MeO-PhO
NH ₂	SBu	4-MeO-Ph
NMe ₂	S (O) Me	·

S (0) Bu

NHEt

$G^2=S$, $R^9=R^{10}=Me$,	S (O) ₂ Bu	R13
x=CH, Y=CR ¹⁴	OMe	н
R ¹⁴	OBu	Cl
Cl	och ₂ cf ₃	Br
Br	O(CH ₂) ₃ CF ₃	F
F	CH ₂ OMe	CN
Me	(CH ₂) ₃ OMe	ОН
Et	CH=CHMe	Me
OMe	CH=CHCH ₂ CH ₃	Неж
OEt	CH=CHCH ₂ CF ₃	Et
н	CH=CCl ₂	i-Pr
	OCH2CH=CH2 .	c-Pr
G ² =0, Y=N, X=CH,	CH2CH2OMe	c-Hex
R ¹⁰ =H .	OCHF ₂	2-Me-c-Pr
R ⁹	C≔CH	CF ₃
н	C≡CCH ₂ CH ₃	(CH ₂) 3CF3
CI .	och ₂ c≡ch	SMe
Br	NH ₂	SBu
r ·	NMe ₂	S (0) Me
CN	NHEt	S (O) Bu
ОН	4-morpholinyl	S (O) ₂ Me
Me	pyrrolidinyl	S (0) ₂ Bu
Hex	piperidinyl	OMe
Et	Ph	OBu
i-Pr	PhO	OCH ₂ CF ₃
c-Pr	4-Me-Ph	O(CH ₂) ₃ CF ₃
c-Hex	3-CF ₃ -Ph	CH ₂ OMe
2-Me- <i>c</i> -Pr	4-i-Pr-PhO	(CH ₂) 30Me
CF3	4-F ₂ HCO-Ph	СН=СНМе
(CH ₂) ₃ CF ₃	3-Et-PhO	сн=снсн ₂ сн ₃
SMe	4-MeO-PhO	CH=CHCH ₂ CF ₃
SBu	4-MeO-Ph	CH=CCl ₂
S (O) Me		och ₂ ch=ch ₂
S (O) Bu	G ² =0, R ⁹ =R ¹⁰ =Me,	CH ₂ CH ₂ OMe
S (O) 2Me	X=CR ¹³ , Y=N	OCHF ₂

	ı							
OCH ₂ OMe		C.	1	•		OEt	:	
OCH ₂ CF ₃		B	•			OCE	I ₂ OMe	
C=CHMe		F				OCI	I ₂ CF ₃	
C≡CMe		C	1			C=-(HMe	
NMe ₂		OI	Ŧ		1	C=C	Me	
Ph		Me	•			NM∈	2	
PhO		Et	2			,Ph	_	
4-Me-Ph		į.	-Pr			PhC)	
4-MeO-Ph		c	-Pr			4-M	le-Ph	
H		CI	Гз			4-M	leO-Ph	
		SI	1e			н		
$G^2=0$, $R^9=Me$, Y=CH,	S	(O) Me		1			
X=N		S	(O) ₂ Me					
R ¹⁰		Oł						
	·				•			
G ² =S								
x	¥	R ¹	.4	R)	R ¹³		R ¹⁰
N	CR ¹⁴		- (CH ₂) ₃ -					Me
СН	CR ¹⁴		-(CH ₂) ₃ -					Me
N	CR ¹⁴		-(CH ₂) ₄ -					Me
СН	CR14		-(CH ₂) ₄ -				•	Me
CR ¹³	N		•		-(CH ₂) ₃ -			Me
CR ¹³	CH		•		-(CH ₂) ₃ -			Me
CR ¹³	N .				-(CH ₂) ₄ -			Me
CR ¹³	CH				-(CH ₂) ₄ -			Me
CR ¹³	СН			Me	•		- (CH ₂) 3-	
CR ¹³	CH			Me	1		- (CH ₂) ₄ -	
							•	
G ² =0								
X	¥	R ¹	4	R9		R^{13}		R^{10}
N .	CR ¹⁴		-(CH ₂) ₃ -		•			Me
CH ·	CR ¹⁴		-(CH ₂) ₃ -		•		٠	Me
N	CR ¹⁴		- (CH ₂) ₄ -					Me
СН	CR ¹⁴		-(CH ₂) ₄ -				•	Me
CR13	N				-(CH ₂) ₃ -			Me

CR ¹³	CH	. 	- (CH ₂) 3-	Me
CR ¹³	N		-(CH ₂) ₄ -	Me
CR13	CH		-(CH ₂) ₄ -	Me
CR ¹³	CH		Me - (C	H ₂) ₃ -
CR ¹³	CH		Me - (C	H ₂) ₄ -

TABLE 12

Compounds of Formula IId

G ² =S, X=Y=N, R ¹¹ =R ¹²	_{=R} 28 _{=H}	
R ¹⁰	c-Pr	C=CHMe
CI	CF3	C≡CMe
Br	SMe	NMe ₂
F	S (0) Me	Ph
CN	S (O) ₂ Me	PhO
ОН	OMe	4-Me-Ph
Me .	OEt	4-MeO-Ph
Et	OCH ₂ OMe	H
1-Pr	OCH ₂ CF ₃	

G ² =S, 1	R ^{⊥∪} =Me	•			
x .	¥	R ¹¹	R ¹²	R ²⁸	R ³¹
CH	N	H	H	H	H
N	CH	H	H	н	H
N	N.	H	3-Me	4-Me	H
N	N	H	3-Me	4-Me	6-Me
N	N	Me	H	H	7-Me
N	N	H	H	4-1-Pr	6-OMe
N	N	H	3-Me	н	7-CF3
N	N	H	H .	4-Et	7-Et
N.	N -	H.	H	4-1-Pr	6-OCHF ₂
и .	N	н .	H	Н	8-Bu
N	N	H	H .	4-c-Pr	6-OEt

$G^{2}=0$, $X=Y=N$, $R^{11}=R^{12}=R^{28}=H$							
B ¹⁰		6	-Pr		- 1	OCH ₂ CF ₃	
CI		0	F ₃		-	С=СНМе	
Br		s	Me			C≡CMe	
F		s	(0)1	Me		NMe ₂	
CN		s	(0)	₂ Me		Ph	
ОН		0	Me			PhO	
Me		0	Et			4-Me-Ph	
Et		0	CH ₂	OMe		4-MeO-Ph	
i-Pr		ŀ				н	
G ² =O, R ¹⁰) _{=Me}						
x	¥	R ¹¹		R ¹²	R ²	8	R ³¹
СН	N	H		H	H		н
N	СН	H		H	H		H
N	N	H		3-Me	4-	Me	н .
N	N	H		3-Me	4-	Me ·	6-Me
N	N	Me		H	H		7-Me
N	N	H		H	4-	i-Pr	6-OMe
N	N ·	H		3-Me	H		7-CF3
N	N	H		H	4-	Et .	7-Et
N	N-	H		H	4-	i-Pr	6-OCHF ₂
N	N	H		H	H	•	8-Bu
N	N	H		H	4-	c-Pr	6-OEt

TABLE 13

	Compounds of Formula IIe	
$G^2=S$, $R^{12}=H$, $R^{28}=H$	Br	$G^2=S$, $R^{11}=H$, $R^{28}=H$
R ¹¹	CF ₃	R ¹²
н	OMe	3-Me
Me	OEt	3-Et
Et'	ochf ₂	3-1-Pr
i-Pr	OBu	3- <i>s</i> -Bu
<u>s</u> -Bu	O(CH ₂) ₃ CF ₃	3-F
F	(CH ₂) ₃ CF ₃	3-C1
cı ·		3-Br
	•	

·	,	
3-CF ₃	4-0CH ₂ OMe	F
3-0Me	4-CH ₂ OMe	Cl
3-0Et	4-CH=CH-Me	Br .
3-0CHF ₂	4-CH=CHCH ₂ Me	CF ₃
3-0Bu	4-TBS	OMe
3-0 (CH ₂) 3CF3	4-SiMe3	OEt
3-(CH ₂) ₃ CF ₃	4-C≡CH	OCHF ₂
	4-C≡C-Et	OBu
G ² =S, R ¹¹ =R ¹² =H	4-0CH ₂ C≡CH	O(CH2)3CF3
<u>R</u> 28	4-NMe ₂	(CH ₂) ₃ CF ₃
4-Me	4-C (=0) NMe ₂	
4-CN	4-Ph	$G^2=0$, $R^{11}=H$, $R^{28}=H$
4-NO ₂	4-OPh	R ¹²
4-OH	4-SPh	3-Me
4-co ₂ H	4-(3-Me-Ph)	3-Et .
4-CO ₂ Et		3-1-Pr
4-Et	G ² =S	3- <i>s</i> -Bu
4-i-Pr	R ¹¹ R ¹² R ²⁸	3 -F
4-n-Hex	C1 H 6-C1	3-C1
4-c-Pr	н 3-ме 4-ме	3-Br
4-CF ₃	H 3-Me 4-Et	3-CF3
4-SMe	H 3-0Me 4-0Me	3-0Me
4-SBu	Me H 5-Me	3-0Et
4- <i>c</i> -Hex	Me H 4-Me	3-OCHF ₂
4-C1	Me 4-Me 5-Me	3-0Bu
4-Br	H 3-C1 5-C1	3-0 (CH ₂) 3CF3
4-F	C1 H 4-C1	3-(CH ₂) ₃ CF ₃
4-(CH ₂) ₃ CF ₃		4-Me
4-S (0) Me	$G^2=0$, $R^{12}=H$, $R^{28}=H$	
4-S (O) Bu	R ¹¹	$G^2=0$, $R^{11}=R^{12}=H$
4-S (O) ₂ Me	H	R ²⁸
4-S (O) ₂ Bu	Me	4-CN
4-OMe	Et	4-NO ₂
4-OBu	i-Pr	4-OH
4-OCH ₂ CF ₃	s-Bu	4-CO ₂ H

				l a
4-CO ₂ Et				$G^2=S(O), R^{11}=H,$
4-Et	G ² =0			R ²⁸ =H
4-1-Pr	R ¹¹	R ¹²	R ²⁸	R ¹²
4-n-Hex	Cl	H	6-C1	3-Me
4-c-Pr	H	3-Me	4-Me	3-Et
4-CF ₃	. н	3-Me	4-Et	3-i-Pr
4-SMe	H	3-0Me	4-OMe	3- <i>s</i> -Bu
4-SBu	Me	н	5-Me	3-F
4- <i>c</i> -Hex	Me	н	4-Me ·	3-C1
4-C1	Me	4-Me	5-Me	3-Br
4-Br	H	3-C1	5-C1	3-CF ₃
4-F	Cl	н	4-C1	3-ОМе
4-(CH ₂) ₃ CF ₃				3-0Et
4-S (O) Me	G ² =S	(0), R ¹²	=H,	3-OCHF ₂
4-S (O) Bu	R28=J	H .		3-0Bu
4-S (O) 2Me	R^{11}			3-0 (CH ₂) 3CF ₃
4-S (O) ₂ Bu	H			3-(CH ₂) ₃ CF ₃
4-OMe	Me			
4-OBu	Et			$G^2=S(0), R^{11}=R^{12}=H$
4-OCH ₂ CF ₃	i-Pr			R ²⁸
4-OCH ₂ OMe	s-Bu			4-Me
4-CH ₂ OMe	F			4-CN
4-CH=CH-Me	Cl			4-NO ₂
4-CH=CHCH ₂ Me	Br			4-OH
4-TBS	CF ₃			4-CO ₂ H
4-SiMe ₃	OMe			4-002Et
4-C⊯CH	OEt			4-Et
4-C≡C-Et	OCHF ₂	2		4-i-Pr
4-OCH ₂ C≡CH	OBu			4- <i>n</i> -Hex
4-NMe ₂	O (CH ₂) 3CF3		4-c-Pr
4-C (=0) NMe ₂	(CH ₂)			4-CF ₃
4-Ph		-	.	4-SMe
4-OPh				4-SBu
4-SPh				4- <i>c</i> -Hex
4-(3-Me-Ph)				4-C1
			-	

	•	•
4-Br	H 3-C1 5-C1	3-OCHF ₂
4-F	Cl H 4-Cl	3-OBu
4-(CH ₂) ₃ CF ₃		3-0 (CH ₂) ₃ CF ₃
4-S (0) Me	$G^2=S(0)_2, R^{12}=H,$	3-(CH ₂) ₃ CF ₃
4-S (O) Bu	_R 28 _{=H}	
4-S (0) 2Me	R ¹¹	G ² =S (O) ₂ ,
4-S (O) 2Bu	Н	R11=R12=H
4-OMe	Me	R ²⁸
4-OBu	Et ·	4-Me
4-och ₂ cf ₃	i-Pr	4-CN
4-OCH ₂ OMe	s-Bu	4-NO ₂
4-CH ₂ OMe	F	4-OH
4-CH=CH-Me	Cl	4-∞ ₂ H
4-CH=CHCH2Me	Br	4-00 ₂ Et
4-TBS	CF ₃	4-Et
4-SiMe ₃	OMe	4-i-Pr
4-C=CH	OEt	4- <i>n</i> -Hex
4-C=C-Et	OCHF ₂	4-c-Pr
4-OCH ₂ C=CH	OBu	4-CF3
4-NMe ₂	O (CH ₂) 3CF3	4-SMe
4-C (=0) NMe ₂	(CH ₂) ₃ CF ₃	4-SBu
4-Ph		4-c-Hex
4-OPh	$G^2=S(0)_2$, $R^{11}=H$,	4-C1
4-SPh	R ²⁸ =H	4-Br
4-(3-Me-Ph)	R ¹²	4-F
•	3-Me	4-(CH ₂) ₃ CF ₃
G ² =S (O)	3-Et	4-S (O) Me
R^{11} R^{12} R^{28}	3- <i>i</i> -Pr	4-S (O) Bu
CI H 6-C1	3- <i>s</i> -Bu	4-S (O) ₂ Me
H 3-Me 4-Me	3-F	4-S (O) 2Bu
H 3-Me 4-Et	3-C1	4-OMe
H 3-OMe 4-OMe	3-Br	4-OBu
Me H 5-Me	3-CF3	4-OCH ₂ CF ₃
Me H 4-Me	3-0Me	4-OCH ₂ OMe
Me 4-Me 5-Me	3-0Et	4-CH ₂ OMe
	•	

		1	i		
4-СН=СН-Ме			CHF ₂	C (=0) Ph	
4-CH	=СНСН ₂ Ме		(CH ₂) ₃ CF ₃	(3-Me-Ph) C (=0)	
4-TB	3 .		∞ ₂ Et	(4-OMe-Ph) C (=O)	
4-Si	1e ₃		C (=0) Me	СH ₂ С=СH ₂	
4-C≡0	CH		C (=0) (CH ₂) ₃ Me	CH ₂ C≡CH	
4-C≡0	C-Et		C (=0) Ph	PhCH ₂	
4-oci	i ₂ C≡CH		(3-Me-Ph) C (=0)	4-Me-PhCH ₂	
4-NM	≥2		(4-0Me-Ph)C(=0)	S (O) ₂ Me	
4-C (=	=0) NMe ₂		CH ₂ C=CH ₂	C (=0) NMe ₂	
4-Ph			CH ₂ C≡CH	C (=S) NHMe	
4-0P1	ı		PhCH ₂	S (0) Me	
4-SPI	ı		4-Me-PhCH ₂	S (0) 2Ph	
4-(3-	-Me-Ph)		S (O) ₂ Me	(4-Me-Ph) S (0) 2	
			C (=0) NMe ₂	C (=0) NHPh	
G ² =S	(O) ₂		C (=S) NHMe	C (=S) NHPh	
R ¹¹	R ¹²	R ²⁸	S (O) Me	P (=S) (OEt) 2	
Cl	н	6-C1	S (O) 2Ph	P(=0)(OEt) ₂	
H	3-Me	4-Me	(4-Me-Ph) S (0) 2	S (O) 2N (Et) 2	
н	3-Me	4-Et	C (=O) NHPh		
н	3-OMe	4-OMe	C (=S) NHPh	n ¹ =3	
Me	H	5-Me	P (=S) (OEt) 2	R ²⁷	
Me	H	4-Me	P (=0) (OEt) 2	н	
Me	4-Me	5-Me	S (O) 2N (Et) 2	Et	
H	3-C1	5-C1		Bu	
ci	H	4-C1	n ¹ =2	1-Pr	
	•		R ²⁷	CHF ₂	
	TABLE 1	14	н	(CH ₂) ₃ CF ₃	
С	ompound	of	Et	CO ₂ Et	
F	ormula	IIf	Bu	C (=0) Me	
$n^1=1$			i-Pr	C (=0) (CH ₂) 3Me	
R ²⁷			CHF ₂	C (=0) Ph	
н.			(CH ₂) ₃ CF ₃	(3-Me-Ph) C (=0)	
Et			CO ₂ Et	(3-Me-Ph) C (=0)	
Bu			C (=0) Me	CH ₂ C=CH ₂	
i-Pr			C (=0) (CH ₂) ₃ Me	CH ₂ C≡CH	
		•			

PhCH ₂							1	; 1		S (O)
4-Me-PhC	H ₂			TABL	E 15		.1	2		S (O)
S (O) 2Me		nds o	£	2	1		S (O)			
C (=0) NMe	2	•	•	Formula IIg				. 3		S (O)
C (=S) NHM	ie		n	n ¹	⊊ ²	:	1	1		s(0) ₂
S (0) Me			1	. 1	S		1	2		S(0)2
S (0) 2Ph			1	2 .	S		2	1		s(0) ₂
(4-Me-Ph) S (O) ₂	• .	2	1	S		0	: 3		s (0) 2
C (=0) NHP	h		0	3	. \$	•	1	1		N-Me
C (=S) NHP	h		1	1	0	•	1	2	•	N-Me
P (=S) (OE	t) ₂		1	2	0		2	. 1		N-Me
P (=O) (OE	t) ₂		2	1	Ō			•	. :	
S (O) 2N (E	t)2		0	3	. 0					
	TABL	16			1	Me	•	Me	H	H
Compo	unds of	Formu	la II	h.	1	Н		H	Me	H
G ² =S					1	H	· : •	H	Bu	H
n^2 R^1		R ⁷	R4	R ⁸	1	Ph	•	H	H	H .
1 Me	•	H	H	H	1	4-Me	e−Ph	H	H	H
1 Bu	l	H	Н	H	1	4-01	le−Ph	. н	H	H
1 Me	• .	Me	Н	H	0	Me	£	Н		
1 H		H	Me .	н	0	Bu		H		
1 H		H	Bu	н	0	Me	•	Me		
1 Ph		Н .	H	н	0	Ph	· •	H		
1 4-	Me-Ph	H	н	H	0	4-Me	e-Ph	. н .		
1 4-	OMe-Ph	H	H	- Н			•			
0 Me	:	H				- •	TAI	BLE 17	L	
0 Bu	l.	H				Compou	nds o	f For	nula	IIi.
0 Me		Ме			G ² =					
0 Ph		H			n ²	B ¹		3 ²	•	R ³
0 4-	Me-Ph	н			. 0	Me		1		
					0	Bu	. 1	i.		
G ² =0					0	H	1	ie		
n^2 R^1	•	. R ⁷	R4	R ⁸	0	H	. ,	3u		
1 Me		H	н .	H	0	Ph	1			
1 Bu		H	Н	H	0	4-Me-P	h I	H .		

					•	•	
0	Н	4-OMe-Ph		0	н	Me	
n	R ¹	R ²	R 3	0	н	Bu	
1	Me	н	н	0	Ph	H	
1	Bu	Н	н	0	4-Me-Ph	H	
1	Н	Me	H [.]	0	н .	4-OMe-Ph	
1	Н	Bu	н	1	Me	н	н
1	H	Н	Me	1	Bu	н	н
1	Н	H	Bu	1	H.	Me	H.
1	Ph	H	н	1	H ·	Bu	н
1	4-Me-Ph	H	н	1	н	H	Me
1	H	Ph	н	1	н	н	Bu
1	H	4-Me-Ph	н	1	Ph	н	н .
1	H	Н	Ph	1	4-Me-Ph	н	н
1	H	Н	4-Me-Ph	1	H	Ph	н
				1	Н	4-Me-Ph	Н
G ² =			-	1	н .	Н	Ph
n ²	R ¹	R ²	B ³	1	Н	H	4-Me-Ph
0	Me	H					
0	Bu	H					

TABLE 18

Compounds of Formula IIj

						J		
G ² =S					Н	H	н	4-OMe-Ph
R ¹	R7	R ⁵	R ⁶		Bu	н	н	н
H	H	Me	н		3-Me-Ph	н	н	н
Н	H	Ph	н		4-OMe-Ph	H	H	н
H	H	Н	Me		G ² =○			
н	H	н	Ph		R ¹	B ⁷	R ⁵	R ⁶
Me	H	H	н		н	H	Me	н
Me	Me	Н	н	i	H	H	Ph	н
Ph	H	Н	н		Н	н	н	Me .
н .	Ph	н	н		н	H	н	Ph
H	H	Bu	н		Me	H	н	H
Н	H	4-Me-Ph	н		Me	Ме	Н	н
Н	н	Н	Bu		Ph	Н	н	Н

			· .			
H	Ph	н	H.	H	i-Pr	H
н	H	Bu	н .	2-C1	H	H
H	H	4-Me-Ph	H	3-C1	н	H
H	H	H	Bu	H	Cl	H
H	Ħ	H	4-OMe-Ph	3-Me	Me	H
Bu	H	H	н	2-Me	н	5-Me
3-Me-Ph	H	· H	H	2-C1	н	6-C1
4-OMe-Ph	H	H	н			
		-		G ₂ =0, MCl _x	=ZnCl ₂	•••
•	2	ABLE 19		B ¹¹	R ¹²	R ²⁸
Compounds	of	Formula	IVe	н	Me	H
G ²		· n	n ¹	н .	Et	H
S		ı	1	H	OMe .	H
s	-	1	2	H	i-Pr	H
S		2	. 1	2-C1	н .	H
o ·		1	. 1	3-C1	H	H
0		1	2 .	H	Cl	H
0		2	. 1	3-Me	Me	H
S (O)		1	. 1	2-Me	н	5-Me
S (O)		1	2	2-C1	H	6-Cl
S (O)		2	1		•	
s(0) ₂		1	1	$G_2=S$, $MCl_{x'}$	=FeCl ₃	
S(0) ₂		1	2	R ¹¹	R ¹²	R ²⁸
s (0) 2		2.	1	H	Me	H.
NMe		1	1	Ή	Et	H
NMe		1	2	H	OMe.	H
N Me		2	1	H	1-Pr	H
		٠	•	2-C1	H .	H
•		TABLE 20		3-C1	H	H
Compound	s of	Formula	Im	. н	CI	H
G2=S, MC	1 _x =2	inCl ₂		3-Me	Mę	H
B ¹¹		R ¹²	R ²⁸	2-Me	Н	5-Me
Н		Me	. н.	2-C1	H	6-C1
H		Et	H		• • • • • • • • • • • • • • • • • • • •	
н		OMe	н			

		ŀ			
$G_2=0$, $MCl_x=$	=		3-Me	Me	H
R ¹¹	R ¹²	R ²⁸	2-Me	H	5-Me
H.	Me	н	2-C1	H	6-C1
H .	Et	н			
H	OMe	н	G2=S, MClx=	MnCl ₂	
H	i-Pr	Н	R ¹¹	R ¹²	E ²⁸
2-C1	H	н	н	_. Me	H
3-C1	н .	н	н	Et	H
H	Cl	н	н .	OMe	H
3-Me	Me	н	H	i-Pr	H
2-Me	H	5-Me	2-C1	н	H
2-C1	H	6-CI	3-C1	н	Н
			н	Cl	H
G ₂ =S, MCl _x =	CuCl ₂		3-Me	Me	H
R ¹¹	R ¹²	R ²⁸ .	2-Me	н	5-Me
H	Me	н	2-C1	,H	6-C1
H	Et	н			
H	OMe	н	$G_2=0$, $MCl_x=$	-	
н	i-Pr	н	R ¹¹	R ¹²	R ²⁸
2-C1	H	н	Н	Me	H
3-C1	H-	н	Н	Et	H
н	Cl	н	н	OMe	H
3-Me	Me	н	H	1-Pr	H
2-Me	H	5-Me	2-C1	н	H
2-C1	H	6-CJ	3-C1	н	H
			Н	CI	H
G2=0, MC1x=	CuCl ₂		3-Me	Me	H
R ¹¹	R ¹²	R ²⁸	2-Me	н	5-Me
Н	Me	Н	2-C1	н	6-C1
Н	Et	H			
н .	OMe	H	G ₂ =S, MCl _x =	MgCl ₂	
н .	1-Pr	н .	R ¹¹	R ¹²	R ²⁸
2-C1	н	н	H	Me	н
3-C1	н	н	H	Et	Н
н	C1	н	H	OMe	Н

WO 93/22311 PCT/US93/03583

			•		
н	i-Pr	н	H	Et	H
2-C1	H	н	Н	OMe	H
3-C1	н	н	Н	i-Pr	H
H	Cl	н	2-C1	,H	H
3-Me	Me	H	3-C1	H	H
2-Me	н	5-Me	H	Cl	H
2-C1	H	6-C1	3-Me	Me	H.
			2-Me	Н	5-Me
G ₂ =0, MCl _x =	-MgCl ₂	}	2-C1 ·	H	6-C1
R ¹¹	R ¹²	R ²⁸		•	
н	Me	н	•		

70

Formulation/Utility

Compounds of this invention will generally be used in formulation with an agriculturally suitable composition. The fungicidal compositions of the present invention comprise an effective amount of at least one compound of Formula I as defined above and at least one of (a) a surfactant, (b) an organic solvent, and (c) at least one solid or liquid diluent. Useful formulations can be prepared in conventional ways. 10 They include dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like. Sprayable formulations can be extended in suitable media and used 15 at spray volumes from about one to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations will typically contain effective amounts of active ingredient, diluent and 20 surfactant within the following approximate ranges which add up 100 weight percent.

	Weight Percent			
	Active Ingredient	Diluent	Surfactant	
Wettable Powders	25-90	0-74	1-10	
Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates)	5-50	40-95	0-15	
Dusts	1-25	70-99	0-5	
Granules, Baits and Pellets	0.01-99	5-99.99	0-15	
High Strength Compositions	90-99	0-10	0-2	

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents and solvents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth, etc.

Methods for formulating such compositions are well
known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer mill or fluid energy mill. Water-dispersible granules can be produced be agglomerating a fine powder composition;
see for example, Cross et al., Pesticide Formulations, Washington, D.C., 1988, pp 251-259. Suspensions are prepared by wet-milling; see, for example, U.S.
3,060,084. Granules and pellets can be made by

spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-148, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in DE 3,246,493.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132,

15 138-140, 162-164, 166, 167 and 169-182; U.S.
2,891,855, Col. 3, line 66 through Col. 5, line 17 and
Examples 1-4; Klingman, Weed Control as a Science, John
Wiley and Sons, Inc., New York, 1961, pp 81-96; and
Hance et al., Weed Control Handbook, 8th Ed., Blackwell
20 Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are worked up in conventional ways. Compound numbers refer to Index Table A hereinafter.

25 Example A

Wettable Powder

	Compound 11	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
30	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.

Example B

Granule

Compound 11 10.0%

35 attapulgite granules (low volative

	matter, 0.71/0.30 mm; U.S.S. No.	
	25-50 sieves)	90.0%.
	Example C	
	Extruded Pellet	
5	Compound 11	25.0%
	anhydrous sodium sulfate	10.0%
•	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.
10	Example D	
	Emulsifiable Concentrate	
	Compound 11	20.0%
	blend of oil soluble sulfonates	
	and polyoxyethylene ethers	10.0%
15	isophorone	70.0%.
	The compounds of this invention are useful	ul as plant
•	disease control agents. The present invention	on
	therefore further comprises a method for con-	trolling
	plant diseases caused by fungal plant pathogo	ens
20	comprising applying to the plant or portion	thereof to
	be protected, or to the plant seed or seedling	ng to be
	protected, an effective amount of a compound	of Formula
	I or a fungicidal composition containing said	d compound.
	The compounds and compositions of this invent	
25	provide control of diseases caused by a broad	d spectrum
	of fungal plant pathogens in the Basidiomyce	te,
	Ascomycete, Oomycete and Deuteromycete classe	-
	are effective in controlling a broad spectrum	-
	diseases, particularly foliar pathogens of or	
30	vegetable, field, cereal, and fruit crops.	
	pathogens include Plasmopara viticola, Phytop	
	infestans, Peronospora tabacina, Pseudoperono	-
•	cubensis, Pythium aphanidermatum, Alternaria	·
	Septoria nodorum, Cercosporidium personatum,	_
35	arachidicola, Pseudocercosporella herpotricho	oides,

Cercospora beticola, Botrytis cinerea, Monilinia fructicola, Pyricularia oryzae, Podosphaera leucotricha, Venturia inaequalis, Erysiphe graminis, Uncinula necatur, Puccinia recondita, Puccinia graminis, Hemileia vastatrix, Puccinia striiformis, Puccinia arachidis, Rhizoctonia solani, Sphaerotheca fuliginea, Fusarium oxysporum, Verticillium dahliae, Pythium aphanidermatum, Phytophthora megasperma and other generea and species closely related to these 10 pathogens.

Compounds of this invention can also be mixed with one or more other insecticides, fungicides, nematocides, bactericides, acaricides, semiochemicals, repellants, attractants, pheromones, feeding stimulants or other biologically active compounds to form a multi-15 component pesticide giving an even broader spectrum of agricultural protection. Examples of other agricultural protectants with which compounds of this invention can be formulated are: insecticides such as monocrotophos, carbofuran, tetrachlorvinphos, malathion, parathion-methyl, methomyl, chlordimeform, diazinon, deltamethrin, oxamyl, fenvalerate, esfenvalerate, permethrin, profenofos, sulprofos, triflumuron, diflubenzuron, methoprene, buprofezin, thiodicarb, acephate, azinphosmethyl, chlorpyrifos, 25 dimethoate, fipronil, flufenprox, fonophos, isofenphos, methidathion, methamidophos, phosmet, phosphamidon, phosalone, pirimicarb, phorate, terbufos, trichlorfon, methoxychlor, bifenthrin, biphenate, cyfluthrin, 30 fenpropathrin, fluvalinate, flucythrinate, tralomethrin, metaldehyde and rotenone; fungicides such as carbendazim, thiuram, dodine, maneb, chloroneb, benomyl, cymoxanil, fenpropidine, fenpropimorph, triadimefon, captan, thiophanate-methyl, thiabendazole, phosethyl-Al, chlorothalonil, dichloran, metalaxyl,

20

35

30

35

captafol, iprodione, oxadixyl, vinclozolin, kasugamycin, myclobutanil, tebuconazole, difenoconazole, diniconazole, fluquinconazole, ipconazole, metconazole, penconazole, propiconazole, uniconzole, flutriafol, prochloraz, pyrifenox, fenarimol, triadimenol, diclobutrazol, copper oxychloride, furalaxyl, folpet, flusilazol, blasticidin S, diclomezine, edifenphos, isoprothiolane, iprobenfos, mepronil, neo-asozin, pencycuron, 10 probenazole, pyroquilon, tricyclazole, validamycin, and flutolanil; nematocides such as aldoxycarb, fenamiphos and fosthietan; bactericides such as oxytetracyline, streptomycin and tribasic copper sulfate; acaricides such as binapacryl, oxythioquinox, chlorobenzilate, 15 dicofol, dienochlor, cyhexatin, hexythiazox, amitraz,

baculovirus and avermectin B.

In certain instances, combinations with other

fungicides having a similiar spectrum of control but a
different mode of action will be particularly
advantageous for resistance management.

propargite, tebufenpyrad and fenbutatin oxide; and biological agents such as Bacillus thuringiensis,

Plant disease control is ordinarily accomplished by applying an effective amount of a compound of this invention either pre— or post—infection, to the portion of the plant to be protected such as the roots, stems, foliage, fruit, seeds, tubers or bulbs, or to the media (soil or sand) in which the plants to be protected are growing. The compounds can also be applied to the seed to protect the seed and seedling.

Rates of application for these compounds can be influenced by many factors of the environment and should be determined under actual use conditions. Foliage can normally be protected when treated at a rate of from less than 1 g/ha to 5,000 g/ha of active

10

15

20

25

30

35

ingredient. Seed and seedlings can normally be protected when seed is treated at a rate of from 0.1 to 10 g per kilogram of seed.

The following Tests demonstrate the control efficacy of compounds of this invention on specific pathogens. The pathogen control protection afforded by the compounds is not limited, however, to these species. See Index Table A for compound descriptions.

Test compounds were first dissolved in acetone in an amount equal to 3% of the final volume and then suspended at a concentration of 200 ppm in purified water containing 250 ppm of the surfactant Trem® 014 (polyhydric alcohol esters). The resulting test suspensions were then used in the following tests.

TEST A

The test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore dust of Erysiphe graminis f. sp. tritici, (the causal agent of wheat powdery mildew) and incubated in a growth chamber at 20°C for 7 days, after which disease ratings were made.

TEST B

The test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore suspension of *Puccinia recondita* (the causal agent of wheat leaf rust) and incubated in a saturated atmosphere at 20°C for 24 h, and then moved to a growth chamber at 20°C for 6 days, after which disease ratings were made.

TEST C

The test suspension was sprayed to the point of run-off on rice seedlings. The following day the seedlings were inoculated with a spore suspension of *Pyricularia oryzae* (the causal agent of rice blast) and incubated in a saturated atmosphere at 27°C for 24 h,

and then moved to a growth chamber at 30°C for 5 days, after which disease ratings were made.

TEST D

The test suspension was sprayed to the point of run-off on tomato seedlings. The following day the seedlings were inoculated with a spore suspension of *Phytophthora infestans* (the causal agent of potato and tomato late blight) and incubated in a saturated atmosphere at 20°C for 24 h, and then moved to a growth chamber at 20°C for 5 days, after which disease ratings were made.

10

15

20

25

30

TEST E

The test suspension was sprayed to the point of run-off on grape seedlings. The following day the seedlings were inoculated with a spore suspension of *Plasmopara viticola* (the causal agent of grape downy mildew) and incubated in a saturated atmosphere at 20°C for 24 h, moved to a growth chamber at 20°C for 6 days, and then incubated in a saturated atmosphere at 20°C for 24 h, after which disease ratings were made.

TEST F

The test suspension was sprayed to the point of run-off on cucumber seedlings. The following day the seedlings were inoculated with a spore suspension of Botrytis cinerea (the causal agent of gray mold on many crops) and incubated in a saturated atmosphere at 20°C for 48 h, and moved to a growth chamber at 20°C for 5 days, after which disease ratings were made.

<u>Index Table 1</u> Compounds of Formula **I**

$R^9 = R^{10} = Me;$	X=CH; Y=N		
Cmpd. No.	G1-G2-G3	E	mp (°C)
1	CH ₂ OCH ₂	Ph	a
2	CH2CH2S	4-Cl-Ph	a

3	CH ₂ OCH ₂	4-Et-Ph	a
4 .	CH ₂ CH ₂ O	3-Me-Ph	a
5	СH ₂ CH ₂ S	3-Me-Ph	a ·· ·
6	CH ₂ CH ₂ O	2,6-diC1-Ph	a
7	CH ₂ CH ₂ S	4-Me-Ph	a
8	CH ₂ CH ₂ S	2-C1-Ph	146-148
9	CH ₂ CH ₂ S	3-C1-Ph	·a
10:	CH ₂ CH ₂ O	4-Et-Ph	99-106
11	CH ₂ CH ₂ S	4-Et-Ph	84-87
12	CH ₂ CH ₂ SO	2-Cl-Ph	168-170
13	CH ₂ CH ₂ S	Ph	142-145
14	СH ₂ CH ₂ S	3-CF ₃ -Ph	105-110
15	СH ₂ CH ₂ S	4-OMe-Ph	111-115
16	CH ₂ CH ₂ SO	4-Et-Ph	149-164
17	CH2CH2SO2	4-Et-Ph	139-141
18	CH ₂ CH ₂ S	4-t-Bu	114-121
19	CH2CH2CH2S	4-OMe-Ph	119-123
20	CH ₂ CH ₂ S	OPh	75-85
21	CH2CH2CH2S	4-Et-Ph	97-100
22	CH (CH ₃) CH ₂ S	4-Et-Ph	. a .
23	CH ₂ CH ₂ S	2-Me-Ph	86-91
24	CH ₂ CH ₂ S	OBzl	81-93
25	CH ₂ CH ₂ S	SPh	a
26	CH ₂ CH ₂ S	Bzl	a.
27	CH2CH2CH2S	Ph	158-160
28	CH (CH ₃) CH ₂ S	Ph	a
29	CH ₂ C (CH ₃) ₂ CH ₂ S	Ph.	116-121
30	CH ₂ CH (Ph) S	Ph	196-208
31	CH ₂ CH ₂ S	Et	a
32	CH ₂ CH (CO ₂ Et) S	Ph	124-133
33	CH ₂ CH (Ph) SO ₂	Ph	201-206
34-	CH (CF ₃) CH ₂ S	Ph	174-181
35	$\mathrm{CH}\left(\mathrm{CH}_{2}\mathrm{CH}_{3}\right)\mathrm{CH}_{2}\mathrm{S}$	Ph	a
36	CH ₂ CH (CN) S	Ph	208-212
37	CH (CN) CH ₂ S	Ph	168-174
	•		

38	CH ₂ CH ₂ S	3,4-diCl-Ph	149-152	
39	CH ₂ CH ₂ S	4-Ph-Ph	151-155	
40	CH2CH2S	3,4-diOMe-Ph	172-174	

a Oil or gum; ¹H NMR data in Index Table 2.

X=CR 13 ; R 9 and R 13 are taken together to form a fused benzene ring; Y=N; R 10 =Me

Cmpd. No.	G1-G2-G3	E	mp (°C)
38	CH ₂ CH ₂ s	Ph ·	102-108

5

$R^9=R^{10}=ethyl; X=CH; Y=N$					
Cmpd. No.	G1-G2-G3	E	mp (°C)		
39	CH ₂ CH ₂ S	Ph	oil; ¹ H NMR data in Index		

Index Table 2

	:
Cmpd. No.	¹ H NMR Data ^a
1	7.75 (m, 2H), 7.37 (m, 3H), 6.57 (s, 1H),
	5.54 (s, 2H), 4.83 (s, 2H), 2.42 (s, 6H).
2	7.83 (d, 2H), 7.35 (d, 2H), 6.56 (s, 1H),
	4.47 (t, 2H), 3.36 (t, 2H), 2.43 (s, 6H).
3	7.66 (d, 2H), 7.21 (d, 2H), 6.56 (s, 1H),
	5.54 (s, 2H), 4.81 (s, 2H), 2.67 (q, 2H),
	2.42 (s, 6H), 1.24 (t, 3H).
4	7.82 (m, 1H), 7.75 (m, 1H), 7.25 (m, 1H),
	7.19 (m, 1H), 6.49 (s, 1H), 4.54 (m, 2H),
	4.28 (m, 2H), 2.42 (s, 6H), 2.38 (s, 3H).
5	7.7 (m, 2H), 7.2 (m, 2H), 6.54 (s, 1H),
	4.45 (m, 2H), 3.35 (m, 2H), 2.42 (s, 6H),
•	2.39 (s, 3H).
· 6	7.31 (m, 2H), 7.25 (m, 1H), 6.5 (s, 1H),
	4.55 (m, 2H), 4.35 (m, 2H), 2.38 (s, 6H).

```
7
        7.77 (d, 2H), 7.18 (d, 2H), 6.53 (s, 1H),
        4.46 (m, 2H), 3.35 (m, 2H), 2.42 (s, 6H),
        2.37 (s, 3H).
9
        7.90 (m, 1H), 7.75 (m, 1H), 7.3 (m, 2H),
        6.57 (s, 1H), 4.47 (m, 2H), 3.36 (m, 2H),
        2.43 (s, 6H).
22
        7.82 (d, 2H), 7.22 (d, 2H), 6.52 (s, 1H),
        5.7 (m, 1H), 3.45 (d, 1H), 3.00 (d, 1H),
        2.7 (q, 2H), 2.42 (s, 6H), 1.38 (d, 3H),
        1.24 (t, 3H).
        7.65 \, (m, 2H), 7.34 \, (m, 3H), 6.55 \, (s, 1H),
25
        4.40 (m, 2H), 3.25 (m, 2H), 2.41 (s, 6H).
26
        7.37 (d, 2H), 7.32 (t, 2H), 7.25 (d, 1H),
        6.51 (s, 1H), 4.32 (m, 2H), 3.89 (s, 2H),
        3.19 (m, 2H), 2.41 (s, 6H).
28
        7.93 (d, 2H), 7.37 (m, 3H), 6.54 (s, 1H),
        5.7 (m, 1H), 3.45 (d, 1H), 3.02 (m, 1H),
        2.42 (s, 6H), 1.40 (d, 3H).
31
        6.48 (s, 1H), 4.33 (t, 2H), 3.25 (t, 2H),
        2.58 (q, 2H), 2.39 (s, 6H), 1.26 (t, 3H).
35
        7.85 (d, 2H), 7.37 (m, 3H), 6.52 (s, 1H),
        5.50 (m, 1H), 3.38 (d, 1H), 3.20 (d, 1H),
        2.41 (s, 6H), 1.80 (m, 2H), 0.99 (t, 3H).
39
        7.85 (d, 2H), 7.37 (m, 3H), 6.56 (s, 1H),
        4.45 (m, 2H), 3.35 (m, 2H), 2.72 (q, 4H),
        1.31 (t, 6H).
```

a 1H NMR data are in ppm downfield from tetramethylsilane. Coupling are designated (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet. Samples were dissolved in CDCl₃.

Results for Tests A-F are given in Table A. In the table, a rating of 100 indicates 100% disease control and a rating of 0 indicates no disease control (relative to the controls). NT = Not Tested.

81

Table A

						` .
Cmpd No.	Test A	Test B	Test C	Test	Test E	Test F
1	98	100	65	23	75	65
2	76	93	99	11	91	2
3	86*	84*	72*	59*	44	77
4	73*	64*	73*	36*	0*	32*
5	24*	64*	73*	10*	0*	32*
6	0*	0*	29*	0 * .	86*	46*
8	0	80	85	3	100	98
9	98	100	99	82	92	98
10	94	100	99	52 ˙	85	82
11	99	100	97	52	92	98
12	56	0	0	60	92	0
13	98	96	91	91	100	77
14	98	82	100	73	100	47
15	96	98	97	0	100	98
16	82	0	0	0	13	0
17	61	14	0	NT	14	0
18	82	. 0	86	0	73	83
19	29	21	57	18	96	99
20	90	98	99	85	99	99
21	98	98	94	0	100	69
22	0	55	91	58	100	0
23	74	100	94	73	100	80
24	83 -	91	32	63	84	0
25	90	100	91	63	100	70
26	92	98	85	70	100	46
27	55	23	91	14	74	98
28	56*	96	91	0	100	94
29-	52	80	74	22*	92	94
30	0	55	0	22	99	66
31	89	55	0	44	0	66
32	0	0	0	0	99	82
33	0*	54*	0*	0*	9*	34*
34	0*	54*	0*	0*	0*	0*

WO 93/22311 PCT/US93/03583

82

				• • • • • • • • • • • • • • • • • • • •			
39	98	83	91	0	100	90	
38	29	93	97	23	96	Ü	

^{*=}Applications of the compound was made at a rate of 40 ppm.

. 5

What is claimed is:

1. The compounds of Formulae I, II, III and IV,

wherein:

 $-G^1-G^2-G^3-$ taken together with the attached atoms 10 form a 5-8 membered ring, wherein $-G^{1}-$ is $-CR^{1}R^{7}-$; $-(CHR^{1}CHR^{2})-$; $-(CHR^{1}CHR^{2}CHR^{3})-$; or - (CHR1CHR2CHR3CHR4) -; $-G^2$ -is -O-; -S-; -S(O)-; -S(O)₂- or -NR²⁷-; $-G^{3}$ -is $-CR^{4}R^{8}$ -; $-(CHR^{5}CHR^{6})$ -; $-(CHR^{3}CHR^{5}CHR^{6})$ - or a 15 direct bond; X is N or CR13; Y is N or CR14; E is H; C_1-C_6 alkyl; C_3-C_7 cycloalkyl optionally substituted with 1-2 methyl; C₁-C₆ haloalkyl; 20 C_1-C_6 alkylthio; C_1-C_6 alkoxy; C_1-C_6 haloalkoxy; or phenyl, phenoxy, phenylthio, phenylamino,

15

phenylmethyl, indanyl,	tetrahydronaphthalenyl,
1-naphthalenyl, 2-naph	thalenyl, thienyl,
furanyl or pyridyl each	h optionally substituted
with R11, R12 and R28;	

R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are each independently H; C₁-C₄ alkyl; C₁-C₄ haloalkyl, halogen, CO₂CH₃, CO₂CH₂CH₃, cyano or phenyl optionally substituted with R²⁵;

provided that

- 10 (i) the maximum number of carbon atoms in $-G^{1}-G^{2}-G^{3}-\text{ with geminal disubstitution}$ is one;
 - (ii) the maximum number of optionally substituted phenyl substituents on $-G^1-G^2-G^3$ is one;
 - (iii) -G³- is other than a direct bond in compounds of Formulae III and IV; and
 - (iv) $-G^2-G^3-$ is other than $-NR^{27}-$ in compounds of Formulae I and II;
- 20 R⁹, R¹⁰ and R¹³ are each independently H; halogen; cyano; hydroxy; C₁-C₆ alkyl; C₁-C₄ haloalkyl; C₁-C₄ alkylthio; C₁-C₄ alkylsulfinyl; C₁-C₄ alkylsulfonyl; C₃-C₆ cycloalkyl optionally substituted with 1-2 methyl groups; C₁-C₄ alkoxy; C₁-C₄ haloalkoxy; C₂-C₄ alkoxyalkyl; C₂-C₄ alkenyl; C₂-C₄ haloalkenyl; C₂-C₄ alkynyloxy; NR²⁹R³⁰; or phenyl or phenoxy optionally substituted with R³¹; or
- 30 R^9 and R^{13} , or R^{10} and R^{13} , or R^9 and R^{14} can be taken together to form $-(CH_2)_3$ -, $-(CH_2)_4$ or a fused benzene ring optionally substituted with R^{31} ;

	R ¹¹	, R^{12} , R^{21} , R^{24} , R^{26} and R^{31} are each
		independently halogen; C1-C4 alkyl; C1-C4
		haloalkyl; C ₁ -C ₄ alkoxy; or C ₁ -C ₄ haloalkoxy;
	R14	is H; halogen; C ₁ -C ₂ alkyl; or C ₁ -C ₂ alkoxy;
5	R ¹⁵	, ${ m R^{16}}$, ${ m R^{17}}$, ${ m R^{18}}$, ${ m R^{29}}$ and ${ m R^{30}}$ are each
		independently H or C ₁ -C ₂ alkyl; or
	R ¹⁵	and \mathbb{R}^{16} , or \mathbb{R}^{17} and \mathbb{R}^{18} , or \mathbb{R}^{29} and \mathbb{R}^{30} can be
		taken together along with the nitrogen atom to
		which they are attached to form a
10		4-morpholinyl, pyrrolidinyl or piperidinyl
		ring;
	R ²⁰	and R^{27} are each independently H; C_1-C_4 alkyl;
	•	C ₁ -C ₄ haloalkyl; C ₂ -C ₅ alkylcarbonyl; phenyl-
		carbonyl optionally substituted with R21; C3-C4
15		alkenyl; C ₃ -C ₄ alkynyl; phenylmethyl optionally
		substituted with R^{21} on the phenyl ring; C_1-C_4
		alkylsulfinyl; C ₁ -C ₄ alkylsulfonyl; phenyl-
		sulfinyl, phenylsulfonyl or phenoxycarbonyl
		each optionally substituted with R21; C2-C4
20		alkoxycarbonyl; $C(=0)NR^{22}R^{23}$; $C(=S)NHR^{23}$;
		$P(=S) (C_1-C_4 \text{ alkoxy})_2; P(=O) (C_1-C_4 \text{ alkoxy})_2; \text{ or}$
		$S (=0)_2 NR^{22}R^{23};$
		is H or C ₁ -C ₃ alkyl;
-	R ²³	is C ₁ -C ₄ alkyl; or phenyl optionally
25		substituted with R ²⁴ ; or
	R ²²	and R ²³ can be taken together along with the
		nitrogen atom to which they are attached to
		form a 4-morpholinyl, pyrrolidinyl, piperidinyl
: .		or imidazolyl ring;
30	R ²⁵	is 1-2 halogen; C ₁ -C ₄ alkyl; C ₁ -C ₄ haloalkyl;
•		C ₁ -C ₄ alkoxy; C ₁ -C ₄ haloalkoxy; nitro; cyano or
		C ₁ -C ₄ alkylthio; and
•	R ²⁸	is halogen; cyano; nitro; hydroxy; hydroxy-
		carbonyl; C ₁ -C ₆ alkyl; C ₃ -C ₆ cycloalkyl; C ₁ -C ₆
35		haloalkyl; C ₁ -C ₄ alkylthio; C ₁ -C ₄ alkyl-

20

25

30

sulfinyl; C₁-C₄ alkylsulfonyl; (C₁-C₄ alkyl)₃silyl; C₂-C₅ alkylcarbonyl; C₂-C₄ alkenyl; C₃-C₄ alkenyloxy; C₂-C₄ alkynyl; C₃-C₄ alkynyloxy; C₁-C₄ alkoxy; C₁-C₄ haloalkoxy; C₂-C₄ alkoxyalkyl; C₂-C₅ alkoxycarbonyl; C₂-C₄ alkoxyalkoxy; NR¹⁵R¹⁶; C(=0)NR¹⁷R¹⁸; or phenyl, phenoxy or phenylthio each optionally substituted with R²⁶;

provided that

when E is, C₁-C₆ alkylthio, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, phenoxy, phenylthio or phenylamino, then E may only substitute compounds of Formula

and agriculturally suitable salts and metal complexes thereof.

- 2. The compounds of Claim 1, Formula I, wherein: Y is N;
 - E is phenyl, indanyl, tetrahydronaphthalenyl, 1-naphthalenyl, thienyl, or pyridyl each optionally substituted with R¹¹, R¹² and R²⁸;
 - R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are each independently H or methyl;
 - R¹¹ and R¹² are each independently F, Cl, methyl, trifluoromethyl, methoxy or trifluoromethoxy;
 - R¹³ is H;
 - R^9 and R^{10} are each independently halogen; C_1-C_4 alkyl; cyclopropyl; C_1-C_4 haloalkyl; allyl; or C_2-C_3 alkynyl; or
- ${
 m R}^9$ and ${
 m R}^{13}$ can be taken together to form a fused benzene ring optionally substituted with ${
 m R}^{31}$;
 - R²⁸ is halogen; cyano; C₁-C₄ alkyl; C₁-C₄ haloalkyl; allyl; propargyl; C₁-C₄ alkoxy;

 C_1-C_4 haloalkoxy; or phenyl or phenoxy each optionally substituted with R^{26} ; and R^{31} is halogen; C_1-C_4 alkyl or C_1-C_4 haloalkyl.

- 3. The compounds of Claim 2, wherein:

 G² is O; S or NR²⁷; and

 E is phenyl optionally substituted with R¹¹, R¹²

 and R²⁸; indanyl or tetrahydronaphthalenyl.
- 4. The compounds of Claim 3, wherein:

 G² is O; S; NH or N(C₁-C₄ alkyl); and

 E is phenyl optionally substituted with R¹¹, R¹²

 and R²⁸.
 - 5. The compound of Claim 1, which is 3-(4,6-dimethyl-2-pyrimidinyl)-3,6-dihydro-5-phenyl-2H-1,3,4-oxadiazine.
- 6. The compound of Claim 1, which is 3-(4,6-dimethyl-2-pyrimidinyl)-5-(4-ethyl-phenyl)-3,6-dihydro-2H-1,3,4-oxadiazine.
 - 7. The compound of Claim 1, which is 2-(2-chlorophenyl)-4-(4,6-dimethyl-2-pyrimidinyl)-5,6-dihydro-4H-1,3,4-thiadiazine.
 - 8. The compound of Claim 1, which is 4-(4,6-dimethyl-2-pyrimidinyl)-2-(4-ethyl-phenyl)-5,6-dihydro-4H-1,3,4-thiadiazine.
- 9. A method of controlling fungus disease in plants
 which comprises treating the locus to be protected with
 an effective amount of at least one of the compounds of
 Formulae I, II, III or IV, agriculturally suitable
 salts thereof, agriculturally suitable metal complexes
 thereof, or agricultural compositions containing them;

20

5

5 wherein:

-G¹-G²-G³- taken together with the attached atoms form a 5-8 membered ring, wherein -G¹-is -CR¹R⁷-; -(CHR¹CHR²)-; -(CHR¹CHR²CHR³)-; or -(CHR¹CHR²CHR³CHR⁴)-;

10 $-G^2$ - is -O-; -S-; -S(O)-; -S(O)₂- or -NR²⁷-; -G³- is -CR⁴R⁸; - -(CHR⁵CHR⁶)-; -(CHR³CHR⁵CHR⁶)- or a direct bond;

X is N or CR¹³;

Y is N or CR14;

E is H; C₁-C₆ alkyl; C₃-C₇ cycloalkyl optionally substituted with 1-2 methyl; C₁-C₆ haloalkyl; C₁-C₆ alkylthio; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; or phenyl, phenoxy, phenylthio, phenylamino, phenylmethyl, indanyl, tetrahydronaphthalenyl, 1-naphthalenyl, 2-naphthalenyl, thienyl, furanyl or pyridyl each optionally substituted with R¹¹, R¹² and R²⁸;

	\cdot R ¹ , R ² , R ³ , R ⁴ , R ³ , R ⁶ , R ⁷ and R ⁸ are each
	independently H; C_1-C_4 alkyl; C_1-C_4 haloalkyl,
	halogen, CO ₂ CH ₃ , CO ₂ CH ₂ CH ₃ , cyano, or phenyl
	optionally substituted with R ²⁵ ;
5	provided that
	(i) the maximum number of carbon atoms in
	$-G^1-G^2-G^3-$ with geminal disubstitution
	is one;
	(ii) the maximum number of optionally
10	substituted phenyl substituents on
	$-G^{1}-G^{2}-G^{3}-$ is one;
	(iii) $-G^3$ is other than a direct bond in
-	compounds of Formulae III and IV; and
	(iv) $-G^2-G^3$ is other than $-NR^{27}$ in compound
15	of Formulae I and II;
	R^9 , R^{10} and R^{13} are each independently H; halogen;
	cyano; hydroxy; C ₁ -C ₆ alkyl; C ₁ -C ₄ haloalkyl;
	C_1-C_4 alkylthio; C_1-C_4 alkylsulfinyl; C_1-C_4
	alkylsulfonyl; C3-C6 cycloalkyl optionally
20	substituted with 1-2 methyl groups; C_1-C_4
	alkoxy; C_1-C_4 haloalkoxy; C_2-C_4 alkoxyalkyl;
	C_2-C_4 alkenyl; C_2-C_4 haloalkenyl; C_2-C_4
	alkenyloxy; C_2-C_4 alkynyl; C_2-C_4 alkynyloxy;
	NR ²⁹ R ³⁰ ; or phenyl or phenoxy optionally
25	substituted with R31; or
	\mathbb{R}^9 and \mathbb{R}^{13} , or \mathbb{R}^{10} and \mathbb{R}^{13} , or \mathbb{R}^9 and \mathbb{R}^{14} can be
	taken together to form $-(CH_2)_3-$, $-(CH_2)_4-$ or a
	fused benzene ring optionally substituted with
	R ³¹ ;
30	R^{11} , R^{12} , R^{21} , R^{24} , R^{26} and R^{31} are each
	independently halogen; C ₁ -C ₄ alkyl; C ₁ -C ₄
	haloalkyl; C_1-C_4 alkoxy; or C_1-C_4 haloalkoxy;
	R^{14} is H; halogen; C_1-C_2 alkyl; or C_1-C_2 alkoxy;
	R^{15} , R^{16} , R^{17} , R^{18} , R^{29} and R^{30} are each

independently H or C_1-C_2 alkyl; or

10

15

20

25

30

R¹⁵ and R¹⁶, or R¹⁷ and R¹⁸, or R²⁹ and R³⁰ can be taken together along with the nitrogen atom to which they are attached to form a 4-morpholinyl, pyrrolidinyl or piperidinyl ring;

R²⁰ and R²⁷ are each independently H; C₁-C₄ alkyl; C₁-C₄ haloalkyl; C₂-C₅ alkylcarbonyl; phenylcarbonyl optionally substituted with R²¹; C₃-C₄ alkenyl; C₃-C₄ alkynyl; phenylmethyl optionally substituted with R²¹ on the phenyl ring; C₁-C₄ alkylsulfinyl; C₁-C₄ alkylsulfonyl; phenylsulfinyl or phenoxycarbonyl each optionally substituted with R²¹; C₂-C₄ alkoxycarbonyl; C(=0)NR²²R²³; C(=S)NHR²³; P(=S)(C₁-C₄ alkoxy)₂; P(=O)(C₁-C₄ alkoxy)₂; or S(=O)₂NR²²R²³;

 R^{22} is H or C_1-C_3 alkyl;

 R^{23} is C_1-C_4 alkyl; or phenyl optionally substituted with R^{24} ; or

R²² and R²³ can be taken together along with the nitrogen atom to which they are attached to form a 4-morpholinyl, pyrrolidinyl, piperidinyl or imidazolyl ring;

 R^{25} is 1-2 halogen; C_1-C_4 alkyl; C_1-C_4 haloalkyl; C_1-C_4 alkoxy; C_1-C_4 haloalkoxy; nitro; cyano or C_1-C_4 alkylthio; and

R²⁸ is halogen; cyano; nitro; hydroxy; hydroxy-carbonyl; C₁-C₆ alkyl; C₃-C₆ cycloalkyl; C₁-C₆ haloalkyl; C₁-C₄ alkylthio; C₁-C₄ alkyl-sulfinyl; C₁-C₄ alkylsulfonyl; (C₁-C₄ alkyl)₃silyl; C₂-C₅ alkylcarbonyl; C₂-C₄ alkenyl; C₃-C₄ alkenyloxy; C₂-C₄ alkynyl; C₃-C₄ alkynyloxy; C₁-C₄ alkoxy; C₁-C₄ haloalkoxy; C₂-C₄ alkoxyalkyl; C₂-C₅ alkoxycarbonyl; C₂-C₄ alkoxyalkoxy; NR¹⁵R¹⁶; C(=0)NR¹⁷R¹⁸; or phenyl,

phenoxy or phenylthio each optionally substituted with \mathbb{R}^{26} .

provided that

when E is, C_1 - C_6 alkylthio, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, phenoxy, phenylthio or phenylamino, then E may only substitute compounds of Formula I.

10. A fungicidal composition comprising a fungicidally effective amount of a compound of 10 Formula I, II, III or IV

15

20

wherein:

-G¹-G²-G³- taken together with the attached atoms form a 5-8 membered ring, wherein
-G¹- is -CR¹R⁷-; -(CHR¹CHR²)-; -(CHR¹CHR²CHR³)-; or -CHR¹CHR²CHR³CHR⁴)-;
-G²-is -O-; -S-; -S(O)-; -S(O)₂- or -NR²⁷-;

WO 93/22311 PCT/US93/03583

92

	$-G^3$ -is $-CR^4R^8$ -; $-(CHR^5CHR^6)$ -; $-(CHR^3CHR^5CHR^6)$ - or a
	direct bond;
	X is N or CR ¹³ ;
	Y is N or CR ¹⁴ ;
5	E is H; C ₁ -C ₆ alkyl; C ₃ -C ₇ cycloalkyl optionally
•	substituted with 1-2 methyl; C ₁ -C ₆ haloalkyl;
	C_1-C_6 alkylthio; C_1-C_6 alkoxy; C_1-C_6 haloalkoxy;
	or phenyl, phenoxy, phenylthio, phenylamino,
	phenylmethyl, indanyl, tetrahydronaphthalenyl,
10	1-naphthalenyl, 2-naphthalenyl, thienyl,
	furanyl or pyridyl each optionally substituted
	with R^{11} , R^{12} and R^{28} ;
	R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are each
	independently H; C_1-C_4 alkyl; C_1-C_4 haloalkyl,
15	halogen, CO ₂ CH ₃ , CO ₂ CH ₂ CH ₃ , cyano or phenyl
	optionally substituted with R ²⁵ ;
	provided that
•	(i) the maximum number of carbon atoms in
	$-G^{1}-G^{2}-G^{3}-$ with geminal disubstitution
20	is one;
·	(ii) the maximum number of optionally
	substituted phenyl substituents on
	$-G^{1}-G^{2}-G^{3}-$ is one;
	(iii) $-G^3$ — is other than a direct bond in
25	compounds of Formulae III and IV; and
	(iv) $-G^2-G^3$ is other than $-NR^{27}$ in
	compounds of Formulae I and II;
	R^9 , R^{10} and R^{13} are each independently H; halogen;
	cyano; hydroxy; C ₁ -C ₆ alkyl; C ₁ -C ₄ haloalkyl;
30	C ₁ -C ₄ alkylthio; C ₁ -C ₄ alkylsulfinyl; C ₁ -C ₄
-	alkylsulfonyl; C3-C6 cycloalkyl optionally
	substituted with 1-2 methyl groups; C ₁ -C ₄
	alkoxy; C ₁ -C ₄ haloalkoxy; C ₂ -C ₄ alkoxyalkyl;
	C ₂ -C ₄ alkenyl; C ₂ -C ₄ haloalkenyl; C ₂ -C ₄
35	alkenyloxy; C ₂ -C ₄ alkynyl; C ₂ -C ₄ alkynyloxy;

	NR ²⁹ R ³⁰ ; or phenyl or phenoxy optionally
	substituted with R31; or
	${ m R}^{9}$ and ${ m R}^{13}$, or ${ m R}^{10}$ and ${ m R}^{13}$, or ${ m R}^{9}$ and ${ m R}^{14}$ can be
	taken together to form $-(CH_2)_3-$, $-(CH_2)_4-$ or a
5	fused benzene ring optionally substituted with
	R ³¹ ;
	R^{11} , R^{12} , R^{21} , R^{24} , R^{26} and R^{31} are each
	independently halogen; C1-C4 alkyl; C1-C4
	haloalkyl; C_1-C_4 alkoxy; or C_1-C_4 haloalkoxy;
10	R^{14} is H; halogen; C_1-C_2 alkyl; or C_1-C_2 alkoxy;
	R^{15} , R^{16} , R^{17} , R^{18} , R^{29} and R^{30} are each
•	independently H or C ₁ -C ₂ alkyl; or
	R^{15} and R^{16} , or R^{17} and R^{18} , or R^{29} and R^{30} can be
	taken together along with the nitrogen atom to
15	which they are attached to form a
	4-morpholinyl, pyrrolidinyl or piperidinyl
	ring;
	R^{20} and R^{27} are each independently H; C_1 - C_4 alkyl;
	C ₁ -C ₄ haloalkyl; C ₂ -C ₅ alkylcarbonyl; phenyl-
20	carbonyl optionally substituted with R^{21} ; C_3-C_4
	alkenyl; C_3-C_4 alkynyl; phenylmethyl optionally
	substituted with ${\tt R}^{21}$ on the phenyl ring; ${\tt C_1-C_4}$
	alkylsulfinyl; C ₁ -C ₄ alkylsulfonyl; phenyl-
	sulfinyl, phenylsulfonyl or phenoxycarbonyl
25	each optionally substituted with R21; C2-C4
•	alkoxycarbonyl; C(=O)NR ²² R ²³ ; C(=S)NHR ²³ ;
	$P(=S) (C_1-C_4 \text{ alkoxy})_2; P(=O) (C_1-C_4 \text{ alkoxy})_2; or$
	$S(=0)_2NR^{22}R^{23};$
	R^{22} is H or C_1-C_3 alkyl;
30	R^{23} is C_1-C_4 alkyl; or phenyl optionally
	substituted with R ²⁴ ; or
	\cdot R ²² and R ²³ can be taken together along with the
	nitrogen atom to which they are attached to
	form a 4-morpholinyl, pyrrolidinyl, piperidinyl
35	or imidazolyl ring;

 R^{25} is 1-2 halogen; C_1-C_4 alkyl; C_1-C_4 haloalkyl; C_1-C_4 alkoxy; C_1-C_4 haloalkoxy; nitro; cyano or C_1-C_4 alkylthio; and

R²⁸ is halogen; cyano; nitro; hydroxy; hydroxycarbonyl; C₁-C₆ alkyl; C₃-C₆ cycloalkyl; C₁-C₆
haloalkyl; C₁-C₄ alkylthio; C₁-C₄ alkylsulfinyl; C₁-C₄ alkylsulfonyl; (C₁-C₄
alkyl)₃silyl; C₂-C₅ alkylcarbonyl; C₂-C₄
alkenyl; C₃-C₄ alkenyloxy; C₂-C₄ alkynyl; C₃-C₄
alkynyloxy; C₁-C₄ alkoxy; C₁-C₄ haloalkoxy;
C₂-C₄ alkoxyalkyl; C₂-C₅ alkoxycarbonyl; C₂-C₄
alkoxyalkoxy; NR¹⁵R¹⁶; C(=0)NR¹⁷R¹⁸; or phenyl,
phenoxy or phenylthic each optionally
substituted with R²⁶;

15 provided that

when E is, C_1 - C_6 alkylthio, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, phenoxy, phenylthio or phenylamino, then E may only substitute compounds of Formula I;

and agriculturally suitable salts and metal complexes thereof and at least one of (a) a surfactant, (b) an organic solvent and (c) at least one solid or liquid diluent.

			International Application No	
L CLASSII	FICATION OF SUBJ	ECT MATTER (if several classification	symbols apply, indicate all) ⁶	
		t Classification (IPC) or to both National (
Int.Cl	. 5 CO7D413/	04; CO7D417/04;	- A01N43/88	
II. FIELDS	SEARCHED			
		Minimum Docum	entation Searched?	
Ciassificat	tion System		Classification Symbols	
Int.C1	. 5	C07D		
		Documentation Searched other	than Minimum Documentation	
		to the Extent that such Documents	are Included in the Fields Searched	
			,	
		•		
III. DOCU	MENTS CONSIDERE	D TO BE RELEVANT		
Category °	Citation of D	ocument, 11 with indication, where appropr	late, of the relevant passages 12	Relevant to Claim No.13
			<u> Santanan Santan Santanan San</u>	
P,A	WO,A,9	211 249 (DU PONT DE NE	MOURS)	1-10
	9 July	1992		
	* claim	s *	·	
A	CHEMICAL	L ABSTRACTS, vol. 83,	•	1-10
^		olumbus, Ohio, US;		* **
		t no. 10171,		
	POTEKHI	N, A. A., NÍKOLAEVA, N.	. M.	
		hydro-4H-1,3,4-oxadiazi	ines.'	
	see absi			
	& SU, A,	uary 1975		
		n the application		
	•		-/	
	*			
			•	
° Specia	l categories of cited do	cuments : ¹⁰	"T" later document published after the interns	
		neral state of the art which is not	or priority date and not in conflict with the cited to understand the principle or theory	
	nsidered to be of partical lier document but publi	ished on or after the international	invention "X" document of particular relevance; the clai	med invention
	ng date	- doubte on arionity disimfel or	cannot be considered novel or cannot be	
whi		w doubts on priority claim(s) or the publication date of another	involve an inventive step "Y" document of particular relevance; the clai	med invention
"O" doc	cument referring to an	ason (as specimen) oral disclosure, use, exhibition or	cannot be considered to involve an invent document is combined with one or more of	ther such docu-
oth	er means	•	ments, such combination being obvious to in the art.	a person skilled
"P" document published prior to the international filing date but in the art. later than the priority date claimed "&" document member of the same patent family				
IV. CERTE	FICATION			
		he International Search	Date of Mailing of this International Sear	ch Report
	· •	JLY 1993		-
			2 6. 07. 93	
Internations	l Searching Authority	•	Signature of Authorized Officer	
•	EUROPE	AN PATENT OFFICE	Bernd Kissler	
		-		

- 4	
- {	1
No.	

Category o		
Category	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	CHEMICAL ABSTRACTS, vol. 90, 1979, Columbus, Ohio, US; abstract no. 152131, DOVLATYAN V V; GEVORKYAN R A 'Synthesis of pesticides. Reactions of halonitriles with esters of s-triazinyldithiocarbazic acid.'	1-10
	see abstract & ARM. KHIM. ZH. (AYKZAN,05159628); 78; VOL.31 (11); PP.851-6	1-10
	CHEMICAL ABSTRACTS, vol. 87, 1977, Columbus, Ohio, US; abstract no. 102359, DOVLATYAN V V; GEVORKYAN R A 'Synthesis of pesticides. II. Study of the reaction of potassium hydrazino-s-triazine with chloroacetonitrile and .alpha., betadichloropropionitrile and its urotropine salt' see abstract & ARM. KHIM. ZH. (AYKZAN, 05159628); 77; VOL.30 (10); PP.851-4	
Å.	CHEMICAL ABSTRACTS, vol. 89, 1978, Columbus, Ohio, US; abstract no. 43349, DOVLATYAN V V; GEVORKYAN R A 'Oxadiazinyl-s-triazine derivatives' see abstract & SU,A,556 143 (ARMENIAN AGRICULTURAL	1-10
	INSTITUTE; USSR) 30 April 1977	
	INSTITUTE; USSR)	
	INSTITUTE; USSR)	
	INSTITUTE; USSR)	
•	INSTITUTE; USSR)	
	INSTITUTE; USSR)	
•	INSTITUTE; USSR)	
	INSTITUTE; USSR)	

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	-
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

International Application No. PCT/US93/03583

FURTHER INFORMATION CONTINUED FROM **PCT/ISA**

The definition of the following substituent(s) is too general and/or encompasses too broad a range of totally different chemical groups, only partly supported by examples given in the descriptive part of the application:

X, Y, G1, G2, G3, E

The number of theoretically conceivable compounds resulting from the combination of all claimed substituents of above list precludes a comprehensive search. Guided by the spirit of the application and the inventive concept as disclosed in the descriptive part of the present application the search has been limited to the following case(s):

- 4-(2-Pyridyl or 2-Pyrimidyl or 2-Triazinyl)-1,3,4-0xa/thiadiazines
 4-(2-Pyridyl or 2-Pyrimidyl or 2-Triazinyl)-1,3,4-0xa/thiadiazepines 3. 4-(2-Pyridyl or 2-Pyrimidyl or 2-Triazinyl)-1,3,4-0xa/thiadiazocines

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9303583 SA 73324

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13/0

13/07/93

Patent document cited in search report	Publication date 09-07-92	Patent family member(s)		Publication date	
WO-A-9211249		AU-A- 9127091 CN-A- 1062726		22-07-92 15-07-92	
	•				
			•		
	•				
			•		
	•				
•	•				
•					
•					
	•				

PORM POCT

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.