В начало Курсы ФИиВТ 09.03.04 Программная инженерия(Очная) ПС 11 Разработка программных систем 4 семестр

(09.03.04_11_4 сем_о)Физика Раздел 1 "Основы квантовой механики" Тест к лекции 1 "Дуализм свойств микрочастиц. Уравнение Шредингера"

Тест начат	Воскресенье, 3 Март 2024, 21:19
Состояние	Завершенные
Завершен	Воскресенье, 3 Март 2024, 21:20
Прошло	1 мин. 5 сек.
времени	
Оценка	3,00 из 3,00 (100 %)
Вопрос 1	
Верно	
Баллов: 1,00 из 1,00	

Чему равна неопределенность координаты частицы, если проекция ее импульса на ось ОУ определена точно.

Ответ выразите в м.

Выберите один ответ:

⊚ ∞ ✓

6,6·10⁻²⁶

6,6·10⁻⁶

Ваш ответ верный.

Вопрос **2**

Верно

Баллов: 1,00 из 1,00

Две частицы прошли ускоряющую разность потенциалов 800 В и 200 В. Заряды и массы частиц *одинаковы*.

При этом отношение длин волн де Бройля этих частиц λ_1/λ_2 равно...

Выберите один ответ:

- $\frac{1}{4}$
- $\frac{1}{2\sqrt{2}}$
- \odot $\frac{1}{2}$ \checkmark
- $\frac{1}{\sqrt{2}}$

Ваш ответ верный.

Вопрос 3

Верно

Баллов: 1,00 из 1,00

Сопоставьте формулу и вид уравнения Шредингера:

$$\Delta\Psi + \frac{2m}{\hbar^2}E\Psi = 0$$

Стационарное уравнение для трехмерного ящика с бесконечно высокими стенками

$$\Delta\Psi + \frac{2m}{\hbar^2} \left(E + \frac{ke^2}{r}\right) \Psi = 0$$

Стационарное трехмерное уравнение для электрона в атоме водорода

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} \left(E - \frac{kx^2}{2} \right) \Psi = 0$$

Стационарное уравнение для одномерного гармонического осциллятора

Ваш ответ верный.