Hausaufgaben Lineare Algebra 01

Felix Tischler, Martrikelnummer: 191498

November 15, 2020

1.1.a Es sein P und Q Aussagen.

P	Q	$\neg P$	$\neg Q$	$\neg (P \land Q)$	$\neg(P\vee Q)$	$(\neg P) \lor (\neg Q)$	$(\neg P) \wedge (\neg Q)$
F	F	W	W	W	W	W	W
F	W	W	F	W	F	W	F
W	F	F	W	W	F	W	F
W	W	F	F	F	F	F	F

d.h.:

$$\neg (P \land Q) \Leftrightarrow (\neg P) \lor (\neg Q)$$
$$\neg (P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q)$$

1.1.b

P	Q	$\neg P$	$\neg P \wedge Q$	$Q \Rightarrow P$	$(P \land (Q \Rightarrow P))$	$((P \land Q) \lor (\neg P))$
\overline{F}	F	W	F	W	F	\overline{W}
F	W	W	F	F	F	W
W	F	F	F	W	W	F
W	W	F	W	W	W	W

d.h.:

$$(P \land (Q \Rightarrow P) \neq ((P \land Q) \lor (\neg P))$$

[&]quot;Die Aussagen sind nicht gleichbedeutend."

1.2

$$\begin{array}{c|cccc} P \Rightarrow Q & P \vee Q & \neg (P \wedge \neg (Q)) & \neg (\neg (P) \wedge \neg (Q)) \\ \hline W & F & W & F \\ W & W & W & W \\ F & W & F & W \\ W & W & W & W \\ \end{array}$$

d.h. folgende Aussagen sind Gleichbedeutend:

$$\begin{split} P &\Rightarrow Q \Leftrightarrow \neg (P \land \neg (Q)) \\ \\ P \lor Q \Leftrightarrow \neg (\neg (P) \land \neg (Q)) \\ \\ P \dot{\lor} Q \Leftrightarrow \neg (\neg (P \land \neg (Q)) \land \neg (Q \land \neg (P))) \end{split}$$

1.3

Der Operateor "*" ist so zu verstehen:

$$F * F = 1, W * F = 0$$

$$W * W = 0, F * W = 0$$