Проверка корреляционным методом наличия единичного корня у процесса авторегрессии

Буйнова Светлана Николаевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Т.М.Товстик Рецензент: к.ф.-м.н., доц. А.Ф.Сизова

Санкт-Петербург 2010.

Основные определения

Процесс авторегрессии p-го порядка (AR(p)) задается отношением:

$$Y_t = a_1 Y_{t-1} + \ldots + a_p Y_{t-p} + \varepsilon_t, \ t = 1, 2, \ldots,$$

Процесс авторегрессии p-го порядка с линейным трендом задается отношением:

$$X_t = \alpha + \beta t + a_1 X_{t-1} + \ldots + a_p X_{t-p} + \varepsilon_t, \ t = 1, 2, \ldots,$$

где ε_t - процесс белого шума с $D(\varepsilon_t) = \sigma_\varepsilon^2$, $a_p \neq 0$.

Теорема

Процесс Y_t стационарен, если все корни характеристического многочлена

$$Q(y) = 1 - a_1 y - \dots - a_p y^p = -a_p (y - y_1) \dots (y - y_p)$$

по модулю больше 1.

Если характеристический многочлен имеет корень, который по модулю меньше единицы, то процесс имеет "взрывной" характер.

Основные определения

Определение

Временной ряд X_t называется **стационарным относительно детерминированного тренда** f(t), если $X_t - f(t)$ стационарный.

Если ряд X_t стационарен относительно некоторого детерминированного тренда, то говорят, что этот ряд принадлежит классу рядов, стационарных относительно детерминированного тренда, или что он является TS рядом (TS-time stationary). В класс TS рядов включаются также стационарные ряды, не имеющие детерминированного тренда.

Основные определения

Под дифференцированием ряда будем понимать:

$$\Delta^k X_t = \underbrace{\Delta(\Delta(\dots(\Delta X_t)))}_{k}; \ \Delta X_t = X_t - X_{t-1}.$$

Определение

Временной ряд X_t называется **интегрированным порядка** k (k = 1, 2, ...) или I(k), если:

- ullet ряд X_t не является TS рядом,
- ряд $\Delta^k X_t$, полученный в результате k-кратного дифференцирования является стационарным рядом,
- ряд $\Delta^{k-1}X_t$, полученный в результате (k-1)-кратного дифференцирования не является TS рядом.

Совокупность интегрированных рядов различных порядков $k=1,2,\ldots$ образуют класс разностно стационарных (DS- difference stationary) рядов.

Постановка задачи

Дано: выборка, состоящая из реальных данных. **Задачи**:

- подобрать адекватную авторегрессионную модель, описывающую поведение наблюдаемого ряда,
- выявить наличие единичного корня в модели корреляционным методом и с помощью критерия Дики-Фуллера,
- сравнить результаты, полученные двумя методами.

Структура алгоритма определения наличия единичного корня:

- оценка порядка авторегрессии, коэффициентов модели с помощью МНК.
- 2 выделение тренда у ряда.
- проверка гипотезы о наличии единичного корня по критерию Дики-Фуллера, корреляционным методом.

Процесс авторегрессии первого порядка

Рассматриваемые модели:

• процесс

$$X_t^1 = \alpha + \beta t + a_1 X_{t-1}^1 + \varepsilon_t, \ |a_1| < 1$$
 (1)

принадлежит классу TS рядов, стационарный относительно детерминированного тренда

$$\mu + \gamma t = \frac{\alpha - a_1(\alpha + \beta)}{(1 - a_1)^2} + \frac{\beta}{1 - a_1}t.$$

• процесс

$$X_t^2 = \beta + X_{t-1}^2 + \varepsilon_t \tag{2}$$

принадлежит классу DS рядов.

Проверка наличия единичного корня для авторегрессии первого порядка

Критерий Дики-Фуллера.

$$H_0: a_1 = 1$$
, $H_A: a_1 < 1$; $t_{stat} = \frac{\hat{a_1} - 1}{s(\hat{a_1})}$.

- $t_{stat} < t_{crit} \Rightarrow$ гипотеза о наличии единичного корня отвергается,
- ullet $t_{stat} > t_{crit} \Rightarrow$ гипотеза о наличии единичного корня не отвергается.

Корреляционный метод.

Корреляции процесса $Y_t^1 = X_t^1 - \mu - \gamma t = a_1 Y_{t-1}^1 + \varepsilon_t, \ |a_1| < 1$:

$$Corr(k) = a_1^k$$
.

Корреляции процесса $Y_t^2 = X_t^2 - \beta t = Y_{t-1}^2 + \varepsilon_t$:

$$Corr(t,k) = \sqrt{\frac{t}{t+k}}.$$

Процесс авторегрессии второго порядка

Рассматриваемые модели:

• процесс

$$X_t^1 = \alpha + \beta t + a_1 X_{t-1}^1 + a_2 X_{t-2}^1 + \varepsilon_t, |x_i| > 1, i = 1, 2,$$
 (3)

(где x_i — корни характеристического многочлена $Q(x)=1-a_1x-a_2x^2$) принадлежит классу TS рядов, стационарный относительно детерминированного тренда

$$\mu + \gamma t = \frac{\alpha - a_1(\alpha + \beta) - a_2(\alpha + 2\beta)}{(1 - a_1 - a_2)^2} + \frac{\beta}{1 - a_1 - a_2} t.$$

• процесс

$$X_t^2 = \beta + a_1 X_{t-1}^2 + a_2 X_{t-2}^2 + \varepsilon_t, |x_1| = 1, |x_2| > 1,$$
 (4)

(где x_i — корни характеристического многочлена $Q(x) = 1 - a_1 x - a_2 x^2$) принадлежит классу DS рядов.

Проверка наличия единичного корня для авторегрессии второго порядка

Расширенный критерий Дики-Фуллера.

(3)
$$\Leftrightarrow X_t^1 = \alpha + \beta t + cX_{t-1}^1 + d\Delta X_{t-1}^1 + \varepsilon_t, \ c = a_1 + a_2, \ d = -a_2.$$
 (5)
$$H_0: c = 1, H_A: c < 1; \ t_{stat} = \frac{\hat{c} - 1}{s(\hat{c})}.$$

- $t_{stat} < t_{crit} \Rightarrow$ гипотеза о наличии единичного корня отвергается,
- ullet $t_{stat} > t_{crit} \Rightarrow$ гипотеза о наличии единичного корня не отвергается.

Корреляционный метод.

Корреляции процесса $Y_t^1=X_t^1-\mu-\gamma t=a_1Y_{t-1}^1+a_2Y_{t-1}^1+arepsilon_t$ представляют либо экспоненту, либо затухающую синусоиду.

Корреляции процесса
$$Y_t^2 = X_t^2 - \beta t = Y_{t-1}^2 + d\Delta Y_{t-2}^2 + \varepsilon_t$$
:
$$Corr(t,k) = \frac{\left(t + \frac{2d^{t+1} - 2d^2 - d^k + d + d^{t+k+1} - d^{t+2}}{(d-1)^2} + \frac{d^{t+1} - d^k - 2d(t-1)}{d-1}\right)}{\sqrt{t + 2\left(\frac{d^2(d^{t-1} - 1)}{(d-1)^2} - \frac{(t-1)d}{d-1}\right)}\sqrt{t + k + 2\left(\frac{d^2(d^{t+k-1} - 1)}{(d-1)^2} - \frac{(t+k-1)d}{d-1}\right)}}$$

Процесс авторегрессии второго порядка класса TS

Puc.:
$$X_t = 0.2 + 0.04t + 1.16X_{t-1} - 0.33X_{t-s} + \varepsilon_t$$
, $\varepsilon_t \sim N(0, 1)$.

Моделировался ряд: $X_t=0.2+0.04t+1.16X_{t-1}-0.33X_{t-s}+\varepsilon_t,\, \varepsilon_t\sim N(0,1).$ Подобрана модель: $X_t=0.14+0.038t+1.08X_{t-1}-0.27X_{t-s}+\varepsilon_t,\, \varepsilon_t\sim N(0,0.95).$ Корни характеристического уранения: $x_1=1.45,\, x_2=2.54.$ Суранения: $x_1=1.45,\, x_2=2.54.$ Оцененные корреляции ряда без тренда убывают как корреляции стационарного процесса.

Процесс авторегрессии второго порядка класса DS

Рис.:
$$X_t = 0.2 + 1.5 X_{t-1} - 0.5 X_{t-s} + \varepsilon_t$$
, $\varepsilon_t \sim N(0, 9)$.

Моделировался ряд:

$$X_t = 0.2 + 1.5X_{t-1} - 0.5X_{t-s} + \varepsilon_t, \ \varepsilon_t \sim N(0, 9).$$

Подобрана модель:
$$X_t = 0.27 + 1.454X_{t-1} - 0.472X_{t-s} + \varepsilon_t, \ \varepsilon_t \sim N(0, 8.31).$$

Корни характеристического уранения: $x_1 = 1.04, \ x_2 = 2.04.$

 $t_{stat} = -0.13 > -3.45 = t_{crit} \Rightarrow$ по критерию Дики-Фуллера гипотеза о наличии единичного корня не отвергается.

Оцененные корреляции ряда без тренда убывают очень медленно, из чего можно сделать вывод, что уравнение имеет единичный корень.

Результаты

- моделировались процессы авторегрессии X_t первого и второго порядка с линейным трендом при различных значениях N и σ_{ε}^2
- ullet считалась t_{stat} и делался вывод о наличии единичного корня по критерию Дики-Фуллера.
- корреляционным методом проводился анализ и делался вывод о существовании единичного корня в модели.

В таблицах ниже представлено количество правильно сделанных выводов (из 100) для AR(1) и AR(2):

N = 100	$\sigma_{\varepsilon}^2 = 1$		$\sigma_{\varepsilon}^2 = 4$	
a_1	Корр.	ДФ.	Корр.	ДФ.
0.5	100	70	100	9
0.6	100	40	100	6
0.7	100	21	100	5
0.8	100	15	100	2
0.85	98	10	94	1
0.9	86	4	84	1
0.92	65	3	78	1
0.95	18	1	24	1
1	75	100	77	100
N = 500	$\sigma_{\varepsilon}^2 = 1$		$\sigma_{\varepsilon}^2 = 4$	
a_1	Корр.	ДФ.	Корр.	ДФ.
0.85	100	100	100	97
0.9	100	95	87	66
0.92	86	62	61	38
1	100	100	100	100

Таблица: AR(1).

N	Kopp.	Д.–Ф.
100	100	0
250	100	0
300	100	5
350	100	8
400	100	22
450	100	46

Таблица: AR(2),
$$a_1=1.16,\ a_2=-0.33,\ \sigma_{\varepsilon_t}^2=1.$$

N	Kopp.	ДФ.
100	78	100
250	97	100
300	98	100
350	100	100

Таблица: AR(2),
$$a_1=1.5$$
, $a_2=-0.5$, $\sigma_{\varepsilon_t}^2=1$.

Реальные данные

Рис.: Данные по объему услуг связи в России с октября 2001 по март 2010 в млрд. руб.

Приведены реальные данные. Подобрана модель:

$$X_t = 1.55 + 0.21t + 0.82X_{t-1} + \varepsilon_t$$
, $\varepsilon_t \sim N(0, 15.43)$.

Корень характеристического уранения: $x_1 = 1.21.$

 $t_{stat}=-2.38>-3.45=t_{crit}\Rightarrow$ по критерию Дики-Фуллера гипотеза о наличии единичного кория не отвергается. Оцененные корреляции ряда без тренда убывают как корреляции стационарного процесса, значит

уравнение не имеет единичного корня.

Заключение

Результаты работы:

- Показано, что наряду с проверками гипотез о наличии единичного корня у характеристического уравнения процесса авторегрессии можно использовать корреляционный метод для принятия решения, к какому классу рядов (TS) или (TS)0 отнести исследуемый ряд.
- Исходя из всего сказанного выше, при довольно большой дисперсии ошибки и маленьком количестве наблюдений целесообразнее использовать корреляционный метод.