

高等数学笔记

奇峰

之前

目录

第一章	函数 极限 连续	1
I.	函数的性态	1
	i. 有界性的判定	1
	ii. 导函数、原函数的奇偶性与周期性	1
II.	极限的概念	1
III.	重点 - 函数极限的计算	2
	i. 0/0 形	2
	ii. ∞/∞ \mathbb{R}	3
	iii. $\infty - \infty$ \mathbb{H}	4
	iv. 0^0 与 ∞^0 形	4
	v. 1^{∞} 形	4
IV.	已知极限反求参数	4
V.	无穷小阶的比较	5
VI.	重点 - 数列极限的计算	5
	i. 夹逼定理	5
	ii. 单调有界定理	5
	iii. 定积分	6
VII.	间断点的判定	6
労一辛	一元函数微分学	7
カー早 [.	- プロダルフェー	•
II.	导数与微分的计算	
III.	极重点 - 导数应用求切线和法线	9
III. IV.	最新 - 等数应用求的线种伝线 - · · · · · · · · · · · · · · · · · · ·	9
V.		10
v. VI.		
		10
VII. VIII		11
,		11
IX. X		11 11
Λ.	加风刀 宇宙 促 秤 机 切	1.1

- Tic		177
44		
- 7	'n, "	

第三章	一元函数积分学	13
I.	定积分的概念	13
II.	不定积分的计算	13
III.	定积分的计算	14
IV.	反常积分的计算	15
V.	反常积分敛散性的判断	15
VI.	变限积分函数	16
VII.	定积分应用求面积	16
VIII	. 定积分应用求体积	16
IX.	定积分应用求弧长	17
Χ.	定积分应用求侧面积	17
附录 衤	· · · · · · · · · · · · · · · · · · ·	18

第一章

函数 极限 连续

I. 函数的性态

i. 有界性的判定

- $\ddot{\pi} \lim_{x \to x_0} f(x) = A$, 则存在 $\delta > 0$, $\ddot{\pi} 0 < |x x_0| < \delta$ 时, f(x) 有界;
- 若 f(x) 在 [a,b] 连续,则其在 [a,b] 有界;
- 若 f(x) 在 (a,b) 连续,且 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 均存在,则其在 (a,b) 有界;
- f'(x) 在有限区间 有界 \Rightarrow f(x) 在该区间有界。

ii. 导函数、原函数的奇偶性与周期性

导函数的奇偶性与周期性

- 可导奇函数的导函数为偶函数;
- 可导偶函数的导函数为奇函数;
- 可导周期函数的导函数为周期函数;

原函数的奇偶性与周期性

- 连续奇函数的原函数均为偶函数;
- 连续偶函数的原函数仅有一个为奇函数,即 C=0 时;
- 周期函数的原函数为周期函数 $\Rightarrow \int_0^T f(t) dt = 0.$

II. 极限的概念

讨论数列最值,将其拆分为前 N 个与后无穷个,前者求最值,后者利用极限定义可知其接近极限值。

讨论同时包含 $\sin(x_n),\cos(x_n)$ 的抽象数列时,可以考虑令 $x_n=\begin{cases}\pi/2,&2i+1\\-\pi/2,&2i\end{cases}$,利用 \sin,\cos 奇偶性的不同。

III. 重点 - 函数极限的计算

i. 0/0 形

洛必达法则

若 f(x), g(x)

- $\lim f(x) = \lim g(x) = 0/\infty;$ 可以推广为 $\frac{\blacksquare}{\infty};$
- f(x), g(x) 在 x_0 某去心邻域内可导,且 $g'(x) \neq 0$; 此处注意, $\begin{cases} n \text{阶可导} & \Rightarrow \text{洛}n - 1 \text{次} + \text{导数定义} \\ n \text{阶连续导数} & \Rightarrow \text{洛}n \text{次} \end{cases}$

•
$$\frac{\lim f'(x)}{\lim g'(x)} = A(\vec{\boxtimes}\infty),$$

则
$$\frac{\lim f(x)}{\lim g(x)} = A(或\infty).$$

等价代换

当 $x \to 0$ 时,有

- $\sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x 1 \sim \ln(1+x) \sim x$;
- $e^x 1 x \sim x \ln(1+x) \sim 1 \cos x \sim \frac{x^2}{2}$;
- $(1+x)^{\alpha}-1\sim \alpha x$;
- $x \sin x \sim \arcsin x x \sim \frac{x^3}{6}$;
- $\tan x x \sim x \arctan x \sim \frac{x^3}{3}$;
- $\tan x \sin x \sim \arcsin x \arctan x \sim \frac{x^3}{2}$; 对于以上等价无穷小,有
- i. 可变量代换,如 sin□~□,tan□~□,···
- ii. $x \to 0 \text{ ff}, \ a^x 1 = e^{x \ln a} 1 \sim x \ln a, \ \log_a (1+x) = \frac{\ln(x+1)}{\ln a} \sim \frac{x}{\ln a};$

iii. 若 $x \to a$,可以令 $t = x - a \to 0$.

iv. 不能在复合函数的自变量处做等价代换,如 $x \to 0 \Rightarrow f(x) \sim f(\sin x)$.

泰勒公式

•
$$e^x = \sum_{i=0}^n \frac{x^n}{n!} + o(x^n);$$

•
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$
;

•
$$\sin x = x - \frac{x^3}{6} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$
;

•
$$\arcsin x = x + \frac{x^3}{6} + o(x^3)$$
;

•
$$\tan x = x + \frac{x^3}{3} + o(x^3)$$
;

•
$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$
;

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n);$$

•
$$\ln(1-x) = -(x + \frac{x^2}{2} + \frac{x^3}{3}) + o(x^3);$$

•
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} C_{\alpha}^{k} x^{k} + o(x^{n})$$
, 其中 $C_{\alpha}^{k} = \frac{\prod_{i=0}^{k-1} (\alpha - i)}{k!}$
如, $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + o(x^{2})$;

•
$$\frac{1}{1-x} = \sum_{i=0}^{n} x^i + o(x^n)$$
;

•
$$\frac{1}{1+x} = \sum_{i=0}^{n} (-1)^{i} x^{i} + o(x^{n});$$

泰勒公式求极限时,

- 分子阶数不小于分母阶数;
- 加减不抵消,"齐头并进";
- 可推广为 $\square \rightarrow 0$.

ii. ∞/∞ 形

主要方法有

- 洛必达;
- 抓大头,即每个因式保留高阶无穷大; $x \to 0 \Rightarrow \ln^{\alpha}(x) \ll x^{\beta} \ll a^{x} \ll x^{x}, 其中 \alpha, \beta > 0, a > 1.$

iii. $\infty - \infty$ 形

主要方法有

- 通分(有分式时);
- 有理化(有根号时);
- 倒代换, 即令 $t=\frac{1}{x}$.

iv. 0^0 与 ∞^0 形

若
$$\lim_{x \to x_0} u(x) = 0(\infty)$$
, $\lim_{x \to x_0} v(x) = 0$, 则 $\lim_{x \to x_0} u(x)^{v(x)} = \exp\left(\lim_{x \to x_0} v(x) \ln u(x)\right)$.

\mathbf{v} . 1^{∞} 形

• 若
$$\lim_{x \to x_0} u(x) = 0$$
, $\lim_{x \to x_0} v(x) = \infty$, 则 $\lim_{x \to x_0} [1 + u(x)]^{v(x)} = \exp\left(\lim_{x \to x_0} v(x)u(x)\right)$.

• 若
$$\lim_{x \to x_0} u(x) = 1$$
, $\lim_{x \to x_0} v(x) = \infty$, 则 $\lim_{x \to x_0} u(x)^{v(x)} = \exp\left(\lim_{x \to x_0} v(x)[u(x) - 1]\right)$. 事实上,有

$$\lim_{x \to 0} \left(\frac{\sum_{i=0}^{n} a_i^x}{n} \right)^{\frac{1}{x}} = \sqrt{\prod a_i}$$

IV. 已知极限反求参数

若
$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
 存在且 $g \lim_{x \to x_0} g(x) = 0$, 则 $\lim_{x \to x_0} f(x) = 0$.

若
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = A \neq \mathbf{0}$$
 且 $g \lim_{x \to x_0} f(x) = 0$,则 $\lim_{x \to x_0} g(x) = 0$.

例

$$\lim_{x\to 0} \int_b^x \frac{\ln(1+t^3)}{t} \mathrm{d}t = 0 \Leftrightarrow b = 0.$$

• 证明

b=0 时原式显然成立。

$$\frac{\ln(1+t^3)}{t} > 0 (t \neq 0) \Rightarrow b \neq 0 \ \mathrm{时原式不成立}.$$

因此, b 只能为零。

V. 无穷小阶的比较

例

设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0$, $f'(0) \neq 0$, $f''(0) \neq 0$, 则存在一组唯一的 λ_i , i = 1, 2, 3 使得 $h \to 0$ 时,有 $\sum \lambda_i f(ih) - f(0)$ 是 h^2 的高阶无穷小。

• 一般证明

 $\sum \lambda_i f(ih) - f(0)$ 是 h^2 的高阶无穷小 $\Rightarrow \sum \lambda_i f(ih) - f(0) = 0$;

对上式两边求导,有 $\sum \lambda_i i f'(ih) = 0$;

对上式两边求导,有 $\sum \lambda_i^2 i f''(ih) = 0$;

因此,有
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,由于系数矩阵满秩,其有唯一解,因而得证。

• 泰勒法

将 f(h), f(2h), f(3h) 展开至二阶,代入 $\lim_{h\to 0} \frac{\sum \lambda_i f(ih) - f(0)}{h^2}$, 然后和前述做法一致。

VI. 重点 - 数列极限的计算

i. 夹逼定理

左边缩, 右边放, 两边极限相等。

放缩时, 有不等式

- $0 < x < \pi/2$, 则 $\sin x < x < \tan x$; $\sin x < x < \pi/2 \sin x$; $2/\pi x < \sin x < x$; 利用 $f(x) = \frac{\sin x}{x}$ 的性质证明。
- $x > 0, x > \sin x; x < 0, x < \sin x;$
- $e^x > 1 + x, x \neq 0;$
- $\frac{x}{1+x} < \ln(x+1) < x, x > -1, x \neq 0.$

ii. 单调有界定理

对数列 $x_{n+1} = f(x_n)$ 求极限,方法如下。

- 适当放缩以证明有界性;
- 做差、做商或求导证明单调性;

- 若其单调,由单调有界知 $\lim x_n$ 存在;
- 令 $\lim x_n = a$, 对原式两端取极限, 有 a = f(a), 因此可以解得 a;
- 若其不单调,则设 $\lim x_n = a$,再利用夹逼定理证明前者确实成立。

iii. 定积分

$$\int_{a}^{b} f(x) dx = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i) \frac{b-a}{n}$$

其中,
$$\xi_i \in \left[a + \frac{i-1}{n}(b-a), a + \frac{i}{n}(b-a)\right].$$

VII. 间断点的判定

设 x = a 为 f(x) 的一间断点,

- i. 若 $\lim_{x\to a^+}f(x)$ 与 $\lim_{x\to a^-}f(x)$ 均存在,则称 x=a 为 f(x) 的一个第一类间断点,其还能**且必须要**分为
 - 可去间断点 $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$;
 - 跳跃间断点 $\lim_{x\to a^+} f(x) \neq \lim_{x\to a^-} f(x)$;
- ii. 若 $\lim_{x \to a^+} f(x)$ 与 $\lim_{x \to a^-} f(x)$ 中有至少一个不存在,则称其为第二类间断点。第二类间断点不用强制细分。

第二类间断点可以分为

- 无穷间断点 左右极限至少有一个为无穷;
- 震荡间断点 左右极限至少有一个不存在, 但不是无穷;

可能存在间断点的地方:

- 初等函数的无定义点;
- 分段函数的分段点。

第二章

一元函数微分学

I. 导数与微分的概念

一极限在已知/未知导数存在情况下的区别

己知 $f(0)=0,\lim_{h\to 0}\frac{1}{h}[f(2h)-f(h)]$ 存在不能推出 f(x) 在 x=0 处可导,因为此种推导过程中事实上是在导数存在的假设之下进行的。

但是,若已知 f(x) 在 $x=x_0$ 处可导,则 $\lim_{x\to x_0} \frac{f(x_0-mh)-f(x_0-nh)}{h}=(m-nf'(x_0))$,因为此处可导性已知,故可以利用导数的定义。

f(x) 可导与 |f(x)| 可导之间的关系

假设 $x = x_0$ 处 f(x) 连续。

- 若 $f(x_0) \neq 0$, 则 |f(x)| 在此处可导 $\Rightarrow f(x)$ 在此处可导 (由保序性);
- 若 $f(x_0) = 0$, 则 |f(x)| 在此处可导 $\Rightarrow f'(x_0) \stackrel{\exists}{=} 0$.

左右导数存在性与连续性的关系

$$f'_{+}(x_{0})$$
存在 $\Leftrightarrow f(x)$ 于此处右连续
$$f'_{-}(x_{0})$$
存在 $\Leftrightarrow f(x)$ 于此处左连续
$$decent decent d$$

一个分段函数连续、可导、有连续导数的条件

对于
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}} / x^{\alpha} \cos \frac{1}{x^{\beta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
, $\beta > 0$, 有
$$f(x) \triangle x = x_0 \pounds \begin{cases} \cancel{\text{连续}} \Leftrightarrow \alpha > 0 \\ \cancel{\text{连续}} \Leftrightarrow \alpha > 1 \\ \cancel{\text{连续}} \Leftrightarrow \alpha > 1 + \beta \end{cases}$$

II. 导数与微分的计算

分段函数

分段函数分段求,分断点处用定义。

复合函数

复合函数使用链式法则求解,对嵌套类函数 f(f(x)),可以考虑直接找出其表达式,也可以令 f(x) = u,然后使用链式法则直接求解。

隐函数

- 直接求导 对 F(x,y) = 0 两端对 x 求导,解得 $\frac{\mathrm{d}y}{\mathrm{d}x}$.
- 公式法 使用隐函数求导公式 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'(x,y)}{F_y'(x,y)}$.
- 全微分 F(x,y) = 0 两端求全微分,解得 $\frac{dy}{dx}$

反函数

设 $x = f^{-1}(y)$ 由 y = f(x) 确定,则

- 若 f(x) 可导,且 $f'(x) \neq 0$,则 $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\mathrm{d}y/\mathrm{d}x} = \frac{1}{f'(x)}$.
- 若 f(x) 二阶可导,且 $f'(x) \neq 0$,则 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = -\frac{f''(x)}{[f'(x)]^3}$

参数方程

设
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 确定。此时, $t = t(x), y = y(t(x)).$

对于其导数,有

- 若 x(t), y(t) 均可导,且 $x'(t) \neq 0$,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{y'(t)}{x'(t)}$;
- 若 x(t), y(t) 均二阶可导,且 $x'(t) \neq 0$,则 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{y''(t)x'(t) y'(t)x''(t)}{[x'(t)]^3}$.

高阶导数

- 奇偶性 奇函数偶阶导数或偶函数求奇阶导为奇函数,此时 f(0) = 0.
- 递推公式

$$\circ [(ax+b)^{\alpha}]^{(n)} = \frac{\alpha!}{(\alpha-n)!} (ax+b)^{\alpha-n} a^n = \alpha(\alpha-1)\cdots(a-n+1)(ax+b)^{\alpha-n} a^n,$$
 特別地,
$$\left(\frac{1}{ax+b}\right)^{(n)} = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}};$$

$$\circ (e^{ax+b})^{(n)} = a^n e^{ax+b}, (a^x)^{(n)} = a^x \ln^n a;$$

$$\circ \left[\ln(ax+b)\right]^{(n)} = a\left(\frac{1}{ax+b}\right)^{(n-1)} = \frac{(-1)^{n-1}(n-1)!a^n}{(ax+b)^n};$$

$$\circ \ [\sin(ax+b)]^{(n)} = a^n \sin(ax+b+\frac{n\pi}{2});$$

$$\circ [\cos(ax+b)]^{(n)} = a^n \cos(ax+b+\frac{n\pi}{2}).$$

• 莱布尼茨公式 - 乘积的高阶导数

若 u = u(x), v = v(x) 均 n 阶可导,则有

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}.$$

• 泰勒公式 - 一般而言,应用于 x = 0 处 求 n 阶导时,找到含有 x^n 的项,其求 n 阶导数后正好剩下常数。

III. 极重点 - 导数应用求切线和法线

直角坐标表示的曲线

对直角坐标 y = f(x) 表示的曲线,有

- 切线方程 $y y_0 = f'(x_0)(x x_0)$.
- 法线方程 $y y_0 = \frac{1}{f'(x_0)}(x x_0)$.

参数方程表示的曲线

对参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 表示的曲线, 其切线斜率为

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0} = \frac{y'(t)}{x'(t)}\Big|_{t=t_0}$$

注意 $(x,y) = (x_0,y_0)$ 时 t 的取值。

极坐标表示的曲线

对极坐标 $\rho=\rho(\theta)$ 表示的曲线,可以将其表示为 $\begin{cases} x=r(\theta)\cos\theta\\ y=r(\theta)\sin\theta \end{cases}$ 此时其就转化为参数方程。

IV. 导数应用求渐近线

水平渐近线

若 $\lim_{x\to +\infty} f(x) = b$ 或 $\lim_{x\to -\infty} f(x) = b$, 则称 y=b 是 f(x) 的一条水平渐近线。

垂直渐近线

若 $\lim_{x \to x_0^+} f(x) = \infty$ 或 $\lim_{x \to x_0^-} f(x) = \infty$, 则称 $x = x_0$ 是 f(x) 的一条垂直渐近线,也叫铅直渐近线。垂直渐近线只需要讨论分母为零的点或者函数无定义的端点。

斜渐近线

若
$$\lim_{x\to +\infty}f(x)-(kx+b)=0$$
 $(x\to -\infty)$, 则称 $y=kx+b$ 为斜渐近线。 具体而言,若

- i. $\lim_{x \to +\infty} \frac{f(x)}{x} = k;$
- ii. $\lim_{x \to +\infty} f(x) kx = b$,

则有斜渐近线 y = kx + b 。 $x \to -\infty$ 时同理。

注意,

- 即使 $\lim_{x\to\infty}\frac{y}{x}$ 存在, 斜渐近线也不一定存在;
- 一侧不会同时存在水平渐近线和斜渐近线。

求斜渐近线的简单方法

对 y=f(x), 若能凑形式使得其形如 y=ax+g(x) 使得 $\lim_{x\to\infty}g(x)=b$, 则 y=ax+b 即为对应方向的斜渐近线。

V. 导数应用求曲率

曲率为

$$k = \frac{|f''(x)|}{(1 + (f'(x))^2)^{\frac{3}{2}}}$$

曲率半径 ρ 为 k 的倒数。

若已知曲率圆,则其切点处与原方程同函数值,同导数值。

VI. 导数应用求极值与最值

极值第一充分条件

若 f(x) 在 $x = x_0$ 连续, f'(x) 在 $x = x_0$ 的左右去心邻域内异号,则 $f(x_0)$ 为极值点。

极值第二充分条件

若 f(x) 在 $x = x_0$ 处有 f'(x) = 0, 则若 f''(x) > 0, 则 $f(x_0)$ 为极小值,f''(x) < 0, 则 $f(x_0)$ 为极大值。

极值第三充分条件

若对 f(x) 和任意偶数 n 有 $\forall i < n, f^{(i)}(x) = 0, f^{(n)} \neq 0$, 则若 $f^{(n)}(x) > 0$, 则 $f(x_0)$ 为极小值,若 $f^{(n)}(x) < 0$, 则 $f(x_0)$ 为极大值。

费马引理

可导函数的每一个可导的极值点都是驻点。

VII. 导数应用求凹凸性与拐点

注意, 拐点确实是点。

拐点第一充分条件

若 f(x) 在 $x = x_0$ 连续, f''(x) 在 $x = x_0$ 的左右去心邻域内异号,则 $f(x_0)$ 为拐点。

拐点第二充分条件

若 f(x) 在 $x = x_0$ 处有 f''(x) = 0, 则 $(x_0, f(x_0))$ 为拐点。

拐点第三充分条件

若对 f(x) 和任意奇数 n 有 $\forall i < n, f^{(i)}(x) = 0, f^{(n)} \neq 0$, 则其为拐点。

VIII. 导数应用证明不等式

其主要分为三种方法。

- 单调性
- 凹凸性

设 f(x) 可导,则其为凹函数等价于下面任一情况。

- o f'(x) 单调递增;
- 。 曲线在其切线上方,即 $f(x) > f(x_0) + f'(x_0)(x x_0), x \neq x_0$

o 曲线在其割线下方,即
$$f(x) < f(x_0) - \frac{f(b) - f(a)}{b - a}(x - a), x \in (a, b)$$

IX. 导数应用求方程的根

应用导数求方程的根时,以单调性结合零点定理。

X. 微分中值定理证明

含有一个点 ξ 的等式

- 若待证式中不含导数,则适用零点定理;
- 若待证式中含有导数,则应用零点定理。 构造函数时,可以

- 。 观察待证式, 如 $f'(x_0) + g'(x_0)f(x_0) = 0 \Rightarrow [e^{g(x_0)}f(x_0)]' = 0.$
- 。 强行构造原函数,即
 - * 将待证式中的 ξ 改为 x;
 - * 积分以去导数符号并令 C=0;
 - * 移项至待证式左边并构造辅助函数。

含有 η, ξ 两个点的等式

- 题设 $\xi \neq \eta$ 时,分区间 (a,c),(c,b) 并用两次拉格朗日;对于 c,需要先在题干结论中引入 c 并将其反解。
- 未明示 $\xi \neq \eta$ 时,对待证式,若其两个变量能分离至两边,则将其分离至两边之后,使用拉格朗日或柯西将两边联系至同一个值,以证明其相等。

含有高阶导数 $(n \ge 2)$ 的等式或不等式

当 $n \ge 2$ 时就可以考虑使用泰勒,若 n > 2,必定使用泰勒。

泰勒展开时, x_0 可以取中点和端点,但更常用的还是**极值与最值**等有性质的点。

第三章

一元函数积分学

I. 定积分的概念

判定含有变限积分函数的不等式时,常可以将非变限积分函数放入积分号;此时,可以比较被积函数。

可以使用凹凸性判定含有变限积分函数的不等式。利用曲线割线与凹凸性的关系,可以很容易地比较一函数 f(x) 与 x 之间的几何上的关系,或者说 $\frac{f(x)}{x}$ 与 1 的关系。

II. 不定积分的计算

不定积分常见的计算方式如下。

• 不定积分凑微分

对
$$f(u)$$
 及其原函数 $F(u)$, 若 $u=u(x)$ 可导,则有
$$\int f(u(x))u'(x)\mathrm{d}x = \int f(u(x))\mathrm{d}u(x) = F(u(x)) + C$$

• 分布积分法

设
$$u = u(x), v = v(x)$$
 可导, 则 $\int u dv = uv - \int v du$

• 换元法

设
$$x = \varphi(t)$$
 可导,且 $\varphi'(t) \neq 0$,若 $\int f(\varphi(t))dt = F(t) + C$,则 $\int f(x)dx = \int f(\varphi(t))dt = F(t) + C = F(\varphi^{-1}(x)) + C$

• 三角代换

•
$$\forall \sqrt{a^2 - x^2}, \Leftrightarrow x = a \sin t;$$

•
$$\forall \sqrt{x^2 - a^2}, \ \diamondsuit \ x = a \sec t;$$

$$\circ \quad \forall t \sqrt{a^2 + x^2}, \ \diamondsuit \ x = a \tan t;$$

• 根式代换

$$\circ \quad \diamondsuit \quad \sqrt[n]{ax+b} = t;$$

$$\circ \quad \diamondsuit \quad \sqrt[n]{\frac{ax+b}{cx+d}} = t;$$

。 对同时有 $\sqrt[n]{ax+b}$ 和 $\sqrt[n]{ax+b}$ 的, 令 $\sqrt[l]{ax+b}=t$, 其中 l 为 m,n 的最小公倍数;

• 倒代换

令 $x = \frac{1}{t}$, 仅在系数 ≥ 2 时予以考虑。

• 万能代换 - 三角有理式

$$\Rightarrow t = \tan \frac{x}{2}$$
, $\mathbb{M} \ x = 2 \arctan t$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$;

• 整体代换

令复杂函数整体 = t.

III. 定积分的计算

• 定积分凑微分

对
$$f(u)$$
 及其原函数 $F(u)$,若 $u=u(x)$ 在 $[a,b]$ 可导,则有
$$\int_a^b f(u(x))u'(x)\mathrm{d}x = \int_a^b f(u(x))\mathrm{d}u(x) = F(u(x))\big|_a^b + C$$

• 分布积分法

设
$$u = u(x), v = v(x)$$
 在 $[a,b]$ 可导,则 $\int_a^b u dv = uv - \int_a^b v du$

• 换元法

设 $x = \varphi(t)$ 在 [a, b] 连续, $x = \varphi(t)$ 在 $[\alpha, \beta]$ 上有一阶连续导数,且 $\varphi(\alpha) = a, \varphi(\beta) = b, \varphi$ 的值域 为 [a, b], 则

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

• 奇偶性

若
$$f(x)$$
 在 $[-a,a]$ 连续,则 $\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & f(x)$ 是偶函数 $0, & f(x)$ 是奇函数

• 周期性

对周期为
$$T$$
 的连续函数 $f(x)$, 对任意常数 a , 有 $\int_{0}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$

• Wallis 公式

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \frac{(n-1)!!}{n!!} \left(\frac{\pi}{2}\right)^{(\text{int})!(\text{n\%2})}$$

设
$$f(x)$$
 在 $[0,1]$ 连续,则 $\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx$.

• 区间再现公式

在分子为分母的其中一项时,常用区间再现公式。进退维谷时,也可以考虑应用区间再现公式。 $\int_a^b f(x)\mathrm{d}x \xrightarrow{t=a+b-x} \int_a^b f(a+b-t)\mathrm{d}t = \frac{1}{2} \int_a^b (f(x)+f(a+b-t))\,\mathrm{d}x$

• 平移变换

令 x = t + b. 题目给出(类)周期函数条件,待求式积分上下限是周期整数倍但不重合,可以考虑平移变换。

IV. 反常积分的计算

反常积分实质上是定积分的极限, 其可能不存在。

对于瑕点在上下限区间内的,利用区间可加性拆开。如此做时,必须满足极限的四则运算法则,否则 需要考虑规避未定式的化简方法。

V. 反常积分敛散性的判断

- i. 反常积分定义
- ii. 比较判别法
 - 无穷积分,如 $\int_1^\infty f(x) dx$ 此时比较 p 积分 $\int_1^\infty \frac{1}{x^p} dx \begin{cases} p > 1, 收敛 \\ p \le 1, 发散 \end{cases}$ 对 $\lim_{x \to +\infty} \frac{f(x)}{1/x^p} = \lim_{x \to +\infty} x^p f(x) = l,$
 - 。 $0 < l < +\infty$ 时二者同阶同收敛;
 - l=0 时 p 积分收敛则原积分收敛 (大收则小收)
 - $l = +\infty$ 时 p 积分发散则原积分发散 (小发则大发)
 - 瑕积分,如 $\int_0^1 f(x) dx, x = 0$ 为瑕点

此时比较
$$p$$
 积分
$$\int_0^1 \frac{1}{x^p} dx \begin{cases} (0 <) p < 1, 收敛 \\ p \ge 1, 发散 \end{cases}$$

注意,若题目中明示原积分为瑕积分,则收敛的范围为 $0 , 因为 <math>p \le 0$ 时原积分不是瑕积分;

若题目中未明示原积分为瑕积分,则其范围为p < 1.

• 使用比较判别法时,找比较对象的方法是,被积因式无穷小则等价,无穷大则放缩。

VI. 变限积分函数

变限积分函数的性质

- 若 f(x) 在 [a,b] 可积,则 F(x) 在 [a,b] 连续。注意,变限积分函数不一定可导,如 f(x) 有跳跃间断点时。
- 变限积分函数求导

设

$$F(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(t) dt$$

且 $\varphi_1(x), \varphi_2(x)$ 可导, f(x) 连续, 则有

$$F'(x) = f(\varphi_2(x))\varphi_2'(x) - f(\varphi_1(x))\varphi_1'(x)$$

变限积分求导,被积函数不含 x.

• 若 x_0 为 f(x) 在 [a,b] 上的一个跳跃间断点,则 F(x) 在 x_0 连续,但不可导; 若 x_0 为 f(x) 在 [a,b] 上的一个可去间断点,则 F(x) 在 x_0 处可导,但 F(x) 不是 f(x) 的原函数。

VII. 定积分应用求面积

注意,面积一定是正数,至少不是负数。

• 直角坐标

$$S = \int_{a}^{b} |y| \mathrm{d}x$$

• 极坐标 $\rho = \rho(\theta)$

$$S = \int_{\theta_1}^{\theta_2} \frac{\rho^2}{2} \mathrm{d}\theta$$

• 参数方程 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$

$$S = \int_{0}^{\beta} |y(t)x'(t)| \mathrm{d}t$$

VIII. 定积分应用求体积

绕 x 轴旋转

$$V = \pi \int_0^{2\pi} y^2 \mathrm{d}x$$

绕 y 轴旋转

$$V = 2\pi \int_0^{2\pi} |xy| \mathrm{d}x$$

平移不绕坐标轴旋转 此时可以

- i. 微元法
- ii. 二重积分(冲刺)

求面积、体积时,对单调函数,可以转而利用其反函数。

IX. 定积分应用求弧长

直角坐标

对曲线段 $y=f(x), x\in [a,b]$, 设 f(x) 有连续导数,则给定平面曲线段弧长元素和弧长分别为

$$ds = \sqrt{1 + f'^2(x)} dx; s = \int_a^b \sqrt{1 + f'^2(x)} dx.$$

参数方程

若曲线能表示为 $x=x(t),y=y(t),t\in [\alpha,\beta]$,且其在 (α,β) 内有连续导数,则给定平面曲线段弧长元素和弧长分别为

$$ds = \sqrt{y'^2(t) + x'^2(t)}dt; s = \int_a^b \sqrt{[y^2(t)]^2 + [x'(t)]^2}dt.$$

极坐标

若曲线能表示为 $\rho = \rho(\theta), \theta \in [\theta_1, \theta_2]$, 则给定平面曲线段弧长元素和弧长分别为

$$ds = \sqrt{\rho^2(\theta) + \rho'^2(\theta)} d\theta; s = \int_a^b \sqrt{\rho^2(\theta) + [\rho'(\theta)]^2} d\theta.$$

X. 定积分应用求侧面积

求侧面积的公式为

$$S=2\pi\int_a^b \overbrace{|y(x)|}^{\mathrm{Sampa}} \overbrace{\sqrt{1+(y'(x))^2}}^{\mathrm{d}s} \mathrm{d}x$$
绕 x 轴
$$S=2\pi\int_a^b \overbrace{|x|}^{\mathrm{Sampa}} \overbrace{\sqrt{1+(y'(x))^2}}^{\mathrm{d}s} \mathrm{d}x$$
绕 y 轴

在不同的坐标系下,只需要将离轴距离和 ds 替换为对应的即可。

XI. 定积分的物理应用

i. 做功

变力沿直线,即 $W = FS = \int_a^b f(s) ds$.

ii. 受力

- 液体压力 $F = \rho ghS$
- 万有引力 $F = \frac{GMm}{r^2}$, G 引力常数, M, m 质量, r 距离。

XII. 证明含有积分的等式或不等式

- 单调性;
- 凹凸性;
- 微分中值定理;
- 定积分概念和六大积分法;
- 二重积分(冲刺)。

附录

补充结论

一类无穷阶可导的抽象函数

若 f(x) 满足

- $f(x) = \int_0^x f(x) dx + \Delta;$
- $f'(x) = f(x) + \Delta;$
- $\bullet \ f^{\prime\prime}(x)=f^{\prime}(x)+\Delta,$

其中 Δ 无穷阶可导,则 f(x) 无穷阶可导。

幂与可导函数积的高阶导数

设 $f(x) = (x - x_0)^n g(x)$, 其中 g(x) 在 $x = x_0$ 处 n 阶可导且 $g(x_0) \neq 0$, 则

$$\forall i < n, f^{(i)}(x_0) = 0, f^{(n)} \neq 0$$

变限积分函数的初始条件

对变限积分函数 $g(x) = \int_{t}^{x} f(t) dt$, 注意到 g(b) = 0.

三类根式的积分公式

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \Rightarrow$$
$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + C \Rightarrow$$
$$\int \sqrt{a^2 + x^2} \, \mathrm{d}x = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right| + C \Rightarrow$$
$$\int \sqrt{x^2 - a^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln\left|x + \sqrt{x^2 - a^2}\right| + C$$
注意此处是減不是加。