

Inhalt

Basics

Automata Turing Machines

First-Order Logic

 $\mathsf{Th}(\mathbb{N},+)$ – A Decidable Theory

 $\mathsf{Th}(\mathbb{N},+,\times)$ – An Undecidable Theory

◆ロ > ◆昼 > ◆ き > ・ き ・ り へ ()

Automata

Turing Machines

First-Order Logic

Th(\mathbb{N} , +) is decidable

Th($\mathbb{N}, +$) is decidable

i.e., there is an algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N},+)$ is true or false.

Th($\mathbb{N}, +, \times$) is undecidable

Th($\mathbb{N}, +, \times$) is undecidable

i.e., there is no algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N},+)$ is true or false.