Name (netid): Eric Liu (zl36)

CS 445 - Project 5: Image Based Lighting

Complete the claimed points and sections below.

Total Points Claimed		[]/250
Co	ore	
1.	Stitch two key frames	[20]/20
2.	Panorama using five key frames	[15] / 15
3.	Map the video to the reference plane	[15] / 15
4.	Create background panorama	[15] / 15
5.	Create background movie	[10] / 10
6.	Create foreground movie	[15] / 15
7.	Quality of results and report	[10]/10
В8	kW	
8.	Insert unexpected object	[]/15
9.	Process your own video	[]/20
10	. Smooth blending	[]/30
11.	. Improved fg/bg videos	[]/40
12	. Generate a wide video	[]/10
13	. Remove camera shake	[]/20
14	. Make streets more crowded	[]/15

1. Stitch two key frames

Include

• Display of image frames 270 and 450 with the red plot lines showing corresponding regions

•

Printout of 3x3 homography matrix normalized so that the largest value is 1

2. Panorama using five key frames

Include your panoramic image

3. Map the video to the reference plane

Include:

- Link to your video
- https://mediaspace.illinois.edu/media/t/1_r6tfxy33
- Display frame 200 of your video

- Briefly explain how you solved for the transformation between each frame and the reference frame
 - For each frame, find its homography to a specified (also closest) key frame; then
 dot product with the homography from key frame to the target frame (which is
 previously computed) to get a new homography matrix. Use this to solve the
 transformation.

4. Create the background panorama

Include:

Picture of the background panorama

- Explain your method of computing the background color of a pixel
 - First, filter out all black pixels; then compute the median value of each pixel at each channel to exclude moving objects because moving objects cannot occupy 50% or more of pixels in the same location. Therefore this is a picture of median values.

5. Create the background movie

Include:

- Link to your video
- https://mediaspace.illinois.edu/media/t/1_3jmv8yby
- Display frame 200 of your video

6. Create the foreground movie

Include:

- Link to your video
- https://mediaspace.illinois.edu/media/t/1_0x6ux8uu
- Display frame 200 of your video

7. Quality of results / report

Nothing extra to include (scoring: 0=poor 5=average 10=great).

8. Insert unexpected object

Include link to your video.

9. Process your own video

Include:

- Background image
- Link to background video
- Link to foreground video

10. Smooth blending

Include panoramic image from part 2 with better blending

11. Smooth blending

Include panoramic image from part 2 with better blending

12. Generate a wide video

Include link to your video

13. Remove camera shake

Include link to your stabilized video

14. Make street more crowded

Include link to your video

Acknowledgments / Attribution

List any sources for code or images from outside sources