

智能嵌入式系统综合应用开发平台

目 录

1.	移动终端与嵌入式智能车开发单元(A/B)控制指令数据结构	1 -
2.	嵌入式智能车开发单元(B)控制指令数据结构!	5 –
3.	智能道闸标志物控制指令数据结构	7 –
4.	智能显示标志物控制指令数据结构	9 –
5.	智能立体车库标志物 (A/B) 控制指令数据结构 10	0 -
6.	智能公交站标志物控制指令数据结构 12	2 -
7.	智能报警台标志物控制指令数据结构 16	6 -
8.	多功能信息显示标志物 (A/B/C) 控制指令数据结构 18	8 –
9.	智能路灯标志物控制指令数据结构 20	0 -
10.	智能无线充电标志物控制指令数据结构22	1 -
11.	. 智能 ETC 系统标志物控制指令数据结构22	2 -
12.	. 智能交通信号灯标志物(A/B/C/D)控制指令数据结构23	3 –
13.	. 特殊地形标志物控制指令数据结构 25	5 -
14.	智能立体显示标志物控制指令数据结构20	6 -
15.	自动评分系统与嵌入式智能车开发单元(A/B)控制指令数据结构 29	9 –
16.	. 标志物 ZigBee 终端节点编号对照表 30	0 -
附長	录 I 修订记录 3	1 –

1. 移动终端与嵌入式智能车开发单元(A/B)控制指令数据结构

1.1 移动终端向嵌入式智能车开发单元(A/B)发送控制指令数据结构

帧头		主指令		副指令		校验和	帧尾
0x55	OxAA	OxXX	OVV	OVV	OVV	OVV	O DD
	0x02	UXAA	OxXX	OxXX	OxXX	OxXX	0xBB

移动终端向嵌入式智能车开发单元(A/B)发送控制指令由八字节组成,前两个字节为数据帧头,帧头第一位固定不变,帧头第二位为 0xAA 表示移动终端向嵌入式智能车开发单元(A)发送控制指令,帧头第二位为 0x02 表示移动终端向嵌入式智能车开发单元(B)发送控制指令;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和,校验和为主指令和三位副指令数据求和后对 256 取余得到的校验值(以下校验和无特殊说明均以此公式计算);第八个字节为数据帧尾固定不变。

通信方式: WiFi 无线通信 (Socket 通信) 或串口通信。

本协议中数据格式若无特殊说明,数据示例均为十六进制格式。

1.1.1 主指令数据说明

主指令	指令说明
0x01	嵌入式智能车开发单元 (A/B) 停止
0x02	嵌入式智能车开发单元 (A/B) 前进
0x03	嵌入式智能车开发单元(A/B)后退
0x04	嵌入式智能车开发单元(A/B)左转
0x05	嵌入式智能车开发单元 (A/B) 右转
0x06	嵌入式智能车开发单元(A/B)自动循迹
0x07	嵌入式智能车开发单元(A/B)码盘数据清零
0x08	智能 ETC 系统闸门初始角度调节
0x09	智能道闸闸门初始角度调节
0x10	移动终端向嵌入式智能车开发单元 (A/B) 发送 前三字节红外数据

0x11	移动终端向嵌入式智能车开发单元 (A/B) 发送 后三字节红外数据
0x12	嵌入式智能车开发单元(A/B)发送六字节红外 数据
0x20	嵌入式智能车开发单元(A/B)左右转向灯控制
0x30	嵌入式智能车开发单元(A/B)蜂鸣器控制
0x61	嵌入式智能车开发单元 (A/B) 控制智能路灯光 源档位加一指令
0x62	嵌入式智能车开发单元(A/B)控制智能路灯光 源档位加二指令
0x63	嵌入式智能车开发单元 (A/B) 控制智能路灯光 源档位加三指令
0x80	嵌入式智能车开发单元(A)上传嵌入式智能车 开发单元(B)数据控制

1.1.2 主指令与副指令数据说明

主指令		副指令	
0x01	0x00	0x00	0x00
0x02	速度值	码盘值低八位	码盘值高八位
0x03	速度值	码盘值低八位	码盘值高八位
0x04	速度值	0x00	0x00
0x05	速度值	0x00	0x00
0x06	速度值	0x00	0x00
0x07	0x00	0x00	0x00
0.00	0x01 (左侧闸门上升)	0x01 (右侧闸门上升)	0.00
0x08	0x02 (左侧闸门下降)	0x02 (右侧闸门下降)	0x00
000	0x01 (闸门上升)	0x00	000
0x09	0x02 (闸门下降)	0x00	0x00
0x10	红外数据[1]	红外数据[2]	红外数据[3]
0x11	红外数据[4]	红外数据[5]	红外数据[6]
0x12	0x12 0x00		0x00

0x20	0x00 (左灯关闭)	0x00(右灯关闭)	0x00
0x20	0x01(左灯开启)	0x01(右灯开启)	OXOO
0x30	0x00(蜂鸣器关闭)	0x00	0x00
0x30	0x01(蜂鸣器开启)	0x00	0x00
0x60	0x00	0x00	0x00
0x61	0x00	0x00	0x00
0x62	0x00	0x00	0x00
0x63	0x00	0x00	0x00
0x80	0x00 (关闭上传)	0x00	0x00
0800	0x01 (开启上传)	0.00	0x00

嵌入式智能车开发单元(A/B)速度值取值范围为0~100,码盘值取值范围为0~65535。 ETC 系统闸门初始角度调节目的是控制 ETC 系统处于关闭状态时,左右两侧闸门处于水平状态,初始角度调节完成后数据不丢失。

移动终端开启接收嵌入式智能车开发单元(B)数据需发送两条控制指令,第一条控制嵌入式智能车开发单元(A)开启上传嵌入式智能车开发单元(B)数据;第二条开启嵌入式智能车开发单元(B)上传数据。

1.2 嵌入式智能车开发单元(A/B)向移动终端回传数据指令结构

ф	贞头	运行 状态	光敏 状态	超声波 低八位	超声波 高八位	光照度 低八位	光照度 高八位	码盘值 低八位	码盘值 高八位	救援 坐标
0x55	OxAA	OxXX	OxXX	OxXX	OxXX	OxXX	OxXX	OxXX	OxXX	OxXX
	0x02	UXAA	UXAA	υχλλ	UXAA	UXAA	UXAA	UXAA	υχλλ	UXAA

嵌入式智能车开发单元 (A/B) 向移动终端回传数据指令由是十一个字节组成,前两个字节为数据帧头,帧头第一位固定不变,帧头第二位 0xAA 表示嵌入式智能车开发单元 (A) 向移动终端回传自身状态数据,帧头第二位 0x02 表示嵌入式智能车开发单元 (A) 向移动终端回传嵌入式智能车开发单元 (B) 状态数据;第三个字节为嵌入式智能车开发单元 (A/B) 运行状态;第四个字节为嵌入式智能车开发单元 (A/B) 光敏数据;第五个与第六个字节为嵌入式智能车开发单元 (A/B) 超声波数据;第七个与第八个字节为嵌入式智能车开发单元 (A/B) 光照强度数据;第九个与第十个字节为嵌入式智能

车开发单元(A/B)码盘值,第十一个字节是随机救援坐标值。 通信方式: WiFi 无线通信(Socket 通信)或串口通信。

1.2.1 嵌入式智能车开发单元(A/B)运行状态数据说明

运行状态数据	运行状态说明
0x00	嵌入式智能车开发单元(A/B)正在行进
0x01	嵌入式智能车开发单元(A/B)循迹完成
0x02	嵌入式智能车开发单元 (A/B) 转弯完成
0x03	嵌入式智能车开发单元(A/B)前进或后退完成
0x04	嵌入式智能车开发单元(A/B)出循迹线
0x05	道闸处于开启状态
0x06	ETC 系统处于开启状态
0x07	智能交通灯进入识别模式成功
0x08	智能交通灯进入识别模式失败
0x09	立体车库到达第一层
OxOA	立体车库到达第二层
0x0B	立体车库到达第三层
0x0C	立体车库到达第四层
0x11	立体车库前侧与后侧红外均被触发
0x12	立体车库前侧红外被触发、后侧红外未被触发
0x21	立体车库前侧红外未被触发、后侧红外被触发
0x22	立体车库前侧与后侧红外均未被触发
0x31	嵌入式智能车开发单元 (A/B) 顺利通过特殊地形 (A → B)
0x32	嵌入式智能车开发单元 (A/B) 顺利通过特殊地形 (B → A)
0x33	嵌入式智能车开发单元 (A/B) 未顺利通过特殊地形
0x4E	语音播报正在合成语音
0x4F	语音播报处于空闲状态

2. 嵌入式智能车开发单元(B)控制指令数据结构

2.1 嵌入式智能车开发单元 (B) 智能视觉摄像头模组控制指令数据结构

ľ	贞头	主指令	副指令		校验和	帧尾	
0x55	0x02	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

嵌入式智能车开发单元(B)智能视觉摄像头模组控制指令由八字节组成,前两个字节为数据帧头固定不变;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: FSMC 总线通信和串口通信。

2.1.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
	0x01 开始巡线	0x00	0x00	
	0x02 停止巡线	0x00	0x00	
0x91	り 0x03	0x2D 舵机下降	0x00	智能视觉摄像头模 组视频循迹
		0x2B 舵机上升	0x00	
		0x2C 舵机复位	0x00	
0x92	0x01 (开启识别)	0x00	0x00	智能视觉摄像头模
UXJZ	0x02 (美闭识别)	0.00	组识别二维码控制	

2.2 嵌入式智能车开发单元 (B) 智能视觉摄像头回传数据指令结构

帧头		数据类型	识别状态	数据区 长度	数据区		帧尾
			0x01 识别成功	OxXX			
0x55	0x02	0x92	0x02 识别失败	0x02	0x00	0x00	0xBB
			0x03 正在识别	0x02	0x00	0x00	

帧头		数据类型	底部中心 状态	十字路口 状态	偏离值符 号	偏离值	帧尾	
0x55	0.55	0x91	0x00	0x00 否	0x2B 车身偏右	0-255 0	0.055 0.DD	0xBB
0x55	0x02	0x91	0x01	0x01 是	0x2D 车身偏左	0-255	UXDD	

通信方式: FSMC 总线通信和串口通信。

3. 智能道闸标志物控制指令数据结构

3.1 智能道闸标志物控制指令数据结构

帧	头	主指令		副指令		校验和	帧尾
0x55	0x03	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能道闸标志物控制指令由八字节组成,前两个字节为数据帧头固定不变;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

3.1.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x01	0x01 (开启)	0x00	0x00	诺偏偏门烧割
OXO1	0x02 (关闭)	UXUU	UXUU	海風風175四
0x09	0x01 (闸门上升)	0x00	0x00	送问问门初 协免度调要
0x09	0x02 (闸门下降)	OXOO	UXUU	道闸闸门控制 道闸闸门初始角度调节 车牌前三位数据(ASCII) 车牌后三位数据(ASCII)
0x10	OxXX	OxXX	OxXX	车牌前三位数据(ASCII)
0x11	OxXX	OxXX	OxXX	车牌后三位数据(ASCII)
0x20	0x01	0x00	0x00	请求回传道闸状态

智能道闸标志物闸门初始角度调节目的是控制道闸处于关闭状态时,闸门处于水平状态。该功能为辅助功能,设备固件更新后仅需要设置一次,掉电不丢失。

智能道闸标志物支持固定开启指令与任意六位车牌指令两种方式控制闸门开启,道闸状态返回需发送请求指令。

3.2 智能道闸标志物状态回传指令数据结构

帧	头	主指令	副指令			校验和	帧尾
0x55	0x03	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能道闸标志物状态回传指令数据结构与控制指令数据结构一致,通信方式相同。

3.2.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x01	0x00	0x05	0x00	道闸处于开启状态

智能道闸标志物处于关闭状态时请求回传状态,不会回传任何指令。

4. 智能显示标志物控制指令数据结构

4.1 智能显示标志物控制指令数据结构

ф	贞头	主指令	副指令		校验和	帧尾	
0x55	0x04	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能显示标志物控制指令由八字节组成,前两个字节为数据帧头固定不变;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

4.1.1 主指令数据说明

主指令	指令说明
0x01	第一排数码管显示指定数据
0x02	第二排数码管显示指定数据
0x03	第一排数码管显示计时模式
0x04	第二排数码管显示距离模式

4.1.2 主指令对应副指令说明

主指令	副指令						
0x01	数据[1]、数据[2]	数据[3]、数据[4]	数据[5]、数据[6]				
0x02	数据[1]、数据[2]	数据[3]、数据[4]	数据[5]、数据[6]				
	0x00 (计时关闭)						
0x03	0x01 (计时开启)	0x00	0x00				
	0x02 (计时清零)						
0x04	0x00	OxOX	OxXX				

智能显示标志物第二排数码管显示距离模式,第二位和第三位副指令中"X"为要显示的距离值,单位为毫米,显示格式为十进制。

5. 智能立体车库标志物 (A/B) 控制指令数据结构

5.1 智能立体车库标志物 (A/B) 控制指令数据结构

帧	头	主指令	副指令		校验和	帧尾	
0 5 5	0x0D (A)	OVV	OVV	OVV	OVV	OVV	ODD
0x55	0x05 (B)	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能立体车库标志物(A/B)控制指令由八字节组成,前两个字节为数据帧头,帧 头第一位固定不变,帧头第二位 0x05 表示智能立体车库标志物(B)控制指令,帧头第 二位 0x0D 表示智能立体车库标志物(A)控制指令;第三个字节为主指令;第四个字节 至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

5.1.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
	0x01		立体车库复位(到达第·	
0x01	0x02	0x00	0x00	立体车库到达第二层
UXUI	0x03	UXUU	UXUU	立体车库到达第三层
	0x04			立体车库到达第四层
	0x01			请求返回立体车库当前层数
0x02	0x02	0x00	0x00	请求返回立体车库前/后侧 红外状态

5.2 智能立体车库标志物 (A/B) 状态回传指令数据结构

帧	·头	主指令	副指令			校验和	帧尾
0x55	OxOD(A)	0x03	OxXX	OxXX	OxXX	OxXX	0xBB
OXSS	0x05(B)	UXUS	UXAA	UXAA	UXAA	UXAA	UXDD

智能立体车库标志物(A/B)状态回传指令数据结构与控制指令数据结构一致,通信方式相同。

5.2.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
		0x01		返回车库位于第一层
	0x01	0x02	0x00	返回车库位于第二层
	UXU1	0x03	UXUU	返回车库位于第三层
0x03		0x04		返回车库位于第四层
	0x02	0x01 (前侧被触发) 0x02 (前侧未触发)	0x01 (后侧被触发) 0x02 (后侧未触发)	返回前/后侧红外状态

智能立体车库标志物 (A/B) 状态回传指令数据中,副指令 1为 0x02 表示返回智能立体车库标志物 (A/B) 前/后侧红外状态,副指令 2表示前侧红外状态,副指令 3表示后侧红外状态。

6. 智能公交站标志物(新)控制指令数据结构

6.1 智能公交站标志物基本控制指令数据结构(不包含语音控制指令)

帧	头	主指令		副指令		校验和	帧尾
0x55	0x06	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能公交站标志物基本控制指令由八字节组成,前两个字节为数据帧头固定不变;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

6.1.1 主指令数据说明

主指令	指令说明
0x10	播报指定语音命令
0x20	播报随机语音命令
0x30	设置 RTC(实时时钟)起始日期
0x31	查询 RTC 当前日期
0x40	设置 RTC 起始时间
0x41	查询 RTC 当前时间
0x42	设置天气数据与温度数据
0x43	请求回传天气数据与温度数据

6.1.2 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明			
	0x01		0x00 0x00 -	播报"富强路站"(编号: 01)			
	0x02			播报"民主路站"(编号: 02)			
0x03	0x03	0x00		播报"文明路站"(编号: 03)			
UXIU	0x10 $0x04$ $0x05$ $0x00$ 0	0x00	播报"和谐路站"(编号: 04)				
			播报"爱国路站"(编号: 05)				
	0x06			播报"敬业路站"(编号: 06)			

	0x07			播报"友善路站"(编号: 07)
0x20	0x01	0x00	0x00	随机播报语音编号 01 [~] 07
0x30	0xXX(年)	0xXX(月)	0xXX(日)	设置 RTC 起始日期
0x31	0x01	0x00	0x00	查询 RTC 当前日期
0x40	OxXX (时)	0xXX(分)	0xXX(秒)	设置 RTC 起始时间
0x41	0x01	0x00	0x00	查询 RTC 当前时间
0x42	0xXX(天气)	0xXX(温度)	0x00	设置天气数据与温度数据 (16 进制,单位℃)
0x43	0x00	0x00	0x00	请求回传天气数据与温度数据 (16 进制,单位℃)

例:将智能公交站标志物 RTC 日期设置为 2021 年 5 月 20 日,ZigBee 控制指令为: "0x55,0x06,0x30,0x21,0x05,0x20,0x76,0xBB"。

天气数据格式见下表:

天气数据说明	编号
大风	0x00
多云	0x01
晴	0x02
小雪	0x03
小雨	0x04
阴天	0x05

例: 将天气设置为大风天气, 温度 25 ℃, ZigBee 控制指令为 "0x55,0x06,0x42,0x00,0x19,0x00,0x5B,0xBB"。

6.2 智能公交站标志物语音合成控制指令数据结构

帧头	数据区	区长度	数据区
	高字节	低字节	数据区
0xFD	OxXX	OxXX	•••••

智能公交站标志物语音合成控制指令由帧头、数据区长度和数据区三个部分组成。 通信方式: ZigBee 无线通信。

6.2.1 语音合成指令数据说明

帧头	数据区	区长度	数据区		
	高字节	低字节	命令字	文本编码格式	待合成文本
0xFD	OxXX OxXX		0x01	OxXX	•••••

当智能公交站标志物处于语音合成状态时,若再次接收到有效语音合成指令,智能 公交站标志物将立刻停止合成当前语音指令,开始合成新的语音指令。

6.2.2 文本编码格式说明

文本编码格式	说明
0x00	GB2312 编码
0x01	GBK 编码
0x02	BIG5 编码
0x03	Unicode 编码

6.2.3 语音合成控制指令数据说明

売まる	数据▷	区长度	数据区	7.14 ロロ
帧头 	高字节	低字节	命令字	说明
			0x02	停止合成语音
0xFD	0x00	0x01	0x03	暂停合成语音
			0x04	恢复合成语音

6.3 智能公交站标志物状态回传指令数据结构

帧	头	主指令	副指令			校验和	帧尾
0x55	0x06	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能公交站标志物状态回传指令数据结构与基本控制指令数据结构一致,通信方式相同。

6.3.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
001	0x4E			语音忙碌,正在合成语音
UXUI	$0x01 \qquad 0x4F \qquad 0x00$		0x00	语音空闲
0x02	2 OxXX(年) OxXX(月)		0xXX(日)	返回 RTC 日期
0x03	0xXX (时)	0xXX (分)	0xXX(秒)	返回 RTC 时间
0x04	0xXX(天气) 0xXX(温度)		0x00	返回天气数据与温度数据 (16 进制,单位℃)

7. 智能报警台标志物控制指令数据结构

7.1 智能报警台标志物红外控制指令数据结构

数据1	数据 2	数据 3	数据 4	数据 5	数据 6
0xXX	OxXX	OxXX	OxXX	OxXX	OxXX

智能报警台标志物控制指令由六字节组成。

通信方式: 红外无线通信。

默认开启码: "0x03, 0x05, 0x14, 0x45, 0xDE, 0x92"。

7.2 智能报警台标志物 ZigBee 控制指令数据结构

帧	头	主指令	副指令			校验和	帧尾
0x55	0x07	0xXX	0xXX	OxXX	OxXX	0xXX	0xBB

智能报警台标志物修改开启码指令由八字节组成,前两个字节为数据帧头固定不变; 第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

7.2.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x09	0x00	0x00	0x00	请求回传随机救援位置坐标点
0x10	OxXX	OxXX	OxXX	发送前三位开启码数据
0x11	OxXX	OxXX	OxXX	发送后三位开启码数据

智能报警台标志物六字节开启码数据接收成功后,标志物将自动开启一次报警表示 开启码数据修改成功。

智能报警台标志物开启码修改完成后掉电不丢失。

标志物通用控制板"按键 S4"可将智能报警台标志物开启码恢复为默认开启码。

7.3 智能报警台标志物数据回传指令数据结构

	帧头	主指令	副指令		校验和	帧尾	
0x55	0x07	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能报警台标志物状态回传指令数据结构与基本控制指令数据结构一致。

7.3.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x01	0xXX (坐标点)	0x00	0x00	回传随机救援位置坐标点

8. 多功能信息显示标志物 (A/B/C) 控制指令数据结构

8.1 多功能信息显示 (A/B/C) 控制指令数据结构

帧头 主指令 副指令			校验和	帧尾			
	0x0B (A)						
0x55	0x08 (B)	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB
	0x12 (C)						

多功能信息显示 (A/B/C) 控制指令由八字节组成,前两个字节为数据帧头,帧头第一位固定不变,帧头第二位为 0x0B 表示多功能信息显示 (A) 控制指令,帧头第二位为 0x08 表示多功能信息显示 (B) 控制指令,帧头第二位为 0x12 表示多功能信息显示 (C) 控制指令;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

8.1.1 主指令数据说明

主指令	指令说明			
0x10	图片显示模式			
0x20	车牌显示模式前三位数据			
0x21	车牌显示模式后三位数据			
0x30	计时显示模式			
0x40	HEX 显示模式			
0x50	距离显示模式			
0x60	交通标志显示模式			

8.1.2 主指令对应副指令说明

主指令	副指令1	副指令2 副指令3		说明
010	0x00	0x01~0x20	0x00	显示指定图片
0x10	0x01	0x00	0x00	图片显示模式向上翻页

	0x02			图片显示模式向下翻页
	0x03			图片自动翻页模式(10秒间隔)
0x20	OxXX	OxXX	OxXX	车牌前三位数据显示(ASCII 格式)
0x21	OxXX	OxXX	OxXX	车牌后三位数据显示(ASCII 格式)
	0x00			计时显示关闭
0x30	0x01	0x00	0x00	计时显示打开
	0x02			计时显示清零
0x40	OxXX	OxXX	OxXX	六位 HEX 格式数据显示
0x50	0x00	0x0X	OxXX	距离显示 (十进制格式)
	0x01			显示交通标志"直行"
	0x02			显示交通标志"左转"
0x60	0x03	0x00	0x00	显示交通标志"右转"
UXOU	0x04	UXUU	UXUU	显示交通标志"掉头"
	0x05			显示交通标志"禁止直行"
	0x06			显示交通标志"禁止通行"

多功能信息显示 (A/B/C) 距离显示模式下,第二位和第三位副指令中"X"代表要显示的距离值,距离显示格式为十进制格式。

9. 智能路灯标志物控制指令数据结构

9.1 智能路灯标志物控制指令数据结构

帧头		数据	数据反码	数据说明
			0xF3	光源挡位加一档
0x00	0xFF	0x18	0xE7	光源挡位加二档
		0x5E	0xA1	光源挡位加三档

智能路灯标志物控制指令由四字节组成,前两个字节为数据帧头固定不变;第三个字节为控制指令,第四个字节为控制指令反码。

通信方式: 红外无线通信。

10. 智能无线充电标志物控制指令数据结构

10.1 智能无线充电标志物控制指令数据结构

帧	头	主指令	副指令		校验和	帧尾	
0x55	OxOA	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能无线充电标志物控制指令由八字节组成,前两个字节为数据帧头固定不变;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

10.1.1 主指令对应副指令说明

主指令	副指令1	副指令2	副指令3	说明
001	0x01	0x00	0x00	开启智能无线充电功能
0x01	0x02	0x00	0x00	关闭智能无线充电功能
0x02	OxXX	OxXX OxXX 智能无线充序		智能无线充电开启码开启
0x03	OxXX OxXX OxXX 修改智能无线方		修改智能无线充电开启码	

智能无线充电标志物 3 字节开启码数据接收成功后, 智能无线充电标志物将自动开启一次,表示开启码数据正确。智能无线充电默认开启码为: 0xA1,0x23,0xB4。

智能无线充电标志物开启后持续 10 秒,期间可使用关闭指令控制标志物关闭无线充电,若 10 秒内未收到关闭指令,则无线充电自动关闭。

智能无线充电标志物开启码修改完成后掉电不丢失。

智能无线充电标志物长按开启按键(1 秒以上),可将智能无线充电标志物开启码恢 复为默认开启码。

11. 智能 ETC 系统标志物控制指令数据结构

11.1 智能 ETC 系统标志物控制指令数据结构

帧	头	主指令	副指令		校验和	帧尾	
0x55	0x0C	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能 ETC 系统标志物控制指令由八字节组成,前两个字节为数据帧头固定不变;第 三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个 字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

11.1.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x08	0x01 (左侧闸门上升) 0x02 (左侧闸门下降)	0x01 (右侧闸门上升) 0x02 (右侧闸门下降)	0x00	ETC 系统闸门初始 角度调节

ETC 系统闸门初始角度调节目的是控制 ETC 系统处于关闭状态时,左右两侧闸门处于水平状态。该指令为辅助功能,设备固件更新后仅需要设置一次,掉电不丢失。

11.2 智能 ETC 系统标志物状态回传指令数据结构

帧	<u></u> 头	主指令	副指令		校验和	帧尾	
0x55	0x0C	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

智能 ETC 系统标志物状态回传指令数据结构与控制指令数据结构一致,通信方式相同。

11.2.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x01	0x01	0x06	0x00	闸门开启状态

智能 ETC 系统标志物接收天线在有效区域内感应到 900M RFID 磁条,闸门自动开启,同时自动回传闸门开启状态指令。闸门开启 10 秒后自动关闭。

12. 智能交通信号灯标志物 (A/B/C/D) 控制指令数据结构

12.1 智能交通信号灯标志物 (A/B/C/D) 控制指令数据结构说明

帧	头	主指令	副指令			校验和	帧尾
	0x0E (A)						
055	0x0F (B)	OVV	OVV	OVV	OVV	OVV	ODD
0x55	0x13 (C)	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB
	0x14 (D)						

智能交通信号灯标志物(A/B/C/D)控制指令由八字节组成,前两个字节为数据帧头,帧头第一位固定不变,帧头第二位 0x0E 表示智能交通信号灯标志物(A)控制指令,帧头第二位 0x0F 表示智能交通信号灯标志物(B)控制指令,帧头第二位 0x13 表示智能交通信号灯标志物(C)控制指令,帧头第二位 0x14表示智能交通信号灯标志物(D)控制指令;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

12.1.1 主指令数据说明

主指令	指令说明
0x01	进入识别模式
0x02	请求确认识别结果

12.1.2 主指令对应副指令说明

主指令	副指令1	副指令2	副指令3	说明		
0x01	0x00	0x00	0x00	请求进入识别模式		
	0x01	01		"红色"识别结果请求确认		
0x02	0x02	0x00	0x00	"绿色"识别结果请求确认		
	0x03			"黄色"识别结果请求确认		

12.2 智能交通信号灯标志物 (A/B/C/D) 状态回传指令数据结构

帧	头	主指令	副指令			校验和	帧尾
	0x0E (A)						
055	0x0F (B)	OVV	OVV	OVV	OVV	OVV	ODD
0x55	0x13 (C)	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB
	0x14 (D)						

智能交通信号灯标志物(A/B/C/D)状态回传指令数据结构与控制指令数据结构一致,通信方式相同。

12.2.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
001	001	0x07		进入识别模式成功
0x01	0x01	0x08	0x00	进入识别模式失败

13. 特殊地形标志物控制指令数据结构

13.1 特殊地形标志物控制指令数据结构

帧	帧头 主指令 副指令		校验和	帧尾			
0x55	0x10	OxXX	OxXX	OxXX	OxXX	0xXX	0xBB

特殊地形标志物控制指令由八字节组成,前两个字节为数据帧头固定不变;第三个字节为主指令;第四个字节至第六个字节为副指令;第七个字节为校验和;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

13.1.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
0x10	0x01	0x00	0x00	查询车辆通行状态

13.2 特殊地形标志物状态回传指令数据结构

帧	头	主指令	副指令			校验和	帧尾
0x55	0x10	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

特殊地形标志物状态回传指令数据结构与特殊地形标志物控制指令数据结构一致,通信方式相同。

13.2.1 主指令与副指令数据说明

主指令	副指令1	副指令2	副指令3	说明
		0x31		车辆顺利通过,通行方向(A → B)
0x10	0x01	0x32	0x00	车辆顺利通过,通行方向(B → A)
		0x33		车辆未顺利通过

特殊地形标志物不主动回传通行状态,需通过指令请求回传。

14. 智能立体显示标志物控制指令数据结构

14.1 智能立体显示标志物控制指令数据结构(通信方式: 红外)

帧头	主指令	数据 1	数据 2	数据 3	数据 4
0xFF	OxXX	OxXX	OxXX	OxXX	OxXX

智能立体显示标志物控制指令由六字节组成,第一个字节为数据帧头固定不变;第二个字节为主指令;第三个字节至第六个字节为指令数据。

通信方式: 红外无线通信。

14.1.1 主指令数据说明

主指令	指令说明
0x20	前四位车牌信息显示模式
0x10	后两位车牌及坐标信息显示模式
0x11	距离信息显示模式
0x12	图形信息显示模式
0x13	颜色信息显示模式
0x14	交通警示牌信息显示模式
0x15	交通标志信息显示模式
0x16	显示默认信息
0x17	设置文字显示颜色
0x31	自定义文本累加显示

14.1.2 主指令与副指令数据说明

主指令	数据1	数据 2	数据3	数据 4	说明
0x20	车牌[1]	车牌[2]	车牌[3]	车牌[4]	显示车牌及坐标
0x10	车牌[5]	车牌[6]	横坐标	纵坐标	业小丰牌及坐你
0x11	距离十位	距离个位	0x00	0x00	显示距离
010	0x01	000	000	000	矩形
0x12	0x02	0x00	0x00	0x00	圆形

	0x03				三角形
	0x04				菱形
	0x05				五角星
	0x01				红色(255,0,0)
	0x02				绿色(0,255,0)
	0x03				蓝色(0,0,255)
0x13	0x04	0x00	0x00	0x00	黄色(255, 255, 0)
UXIS	0x05	UXUU	UXUU	UXUU	品色(255,0,255)
	0x06				青色(0,255,255)
	0x07				黑色(0,0,0)
	0x08				白色(255, 255, 255)
	0x01		0x00	0x00	前方学校 减速慢行
	0x02				前方施工 禁止通行
0x14	0x03	0x00			塌方路段 注意安全
0.814	0x04	UXUU			追尾危险 保持车距
	0x05				严禁 酒后驾车!
	0x06				严禁 乱扔垃圾!
	0x01				直行
	0x02		0.00	0.00	左转
0x15	0x03	0x00			右转
UXIO	0x04	UXUU	0x00	0x00	掉头
	0x05				禁止直行
	0x06				禁止通行
0x16	0x01	0x00	0x00	0x00	显示默认信息
0x17	0x01	OxXX (R)	OxXX (G)	OxXX (B)	设置文字颜色(RGB 格式)
0x31	0xXX 文本信息	0xXX 文本信息	0x55 文字结束	0x00	自定义文本显示

14.2 智能立体显示标志物控制指令数据结构(通信方式: ZigBee)

帧	头	主指令	副指令		校验和	帧尾	
0x55	0x11	OxXX	OxXX	OxXX	OxXX	OxXX	0xBB

14.2.1 主指令与副指令数据说明

主	指令	副指令1	副指令2	副指令3	说明
0	x31	0xXX 文本信息	0xXX 文本信息	0x55	自定义文本累加显示

智能立体显示标志物默认显示信息:"百科荣创(北京)科技发展有限公司 百科荣创(山东)科技发展有限公司 百科荣创(深圳)科技发展有限公司"

例:将智能立体显示标志物文字显示颜色设置红色(255,0,0),红外控制指令: "0xFF,0x17,0x01,0xFF,0x00,0x00"。

自定义文本显示模式,如需发送一串文字,需要分开发送,且每次只发送一个汉字的 GBK 码,最后一个汉字需要携带发送文字结束协议,标识一串文字发送结束。发送的文字会以此累加在文字的后方显示,如果显示内容超过了 8 个汉字后会自动旋转显示。

15. 自动评分系统与嵌入式智能车开发单元(A/B)控制指令数据结构

15.1 嵌入式智能车开发单元(A/B)向自动评分系统上传语音编号控制指令数据结构

帧	头	编号	副指令		固定码	帧尾	
OxAF	0x06	OxXX	0x02	0x00	0x00	0x01	0xBB

嵌入式智能车开发单元(A/B)向自动评分系统上传语音编号控制指令由八字节组成,前两个字节为数据帧头;第三个字节为语音编号;第四个字节至第六个字节为副指令固定不变;第七个字节为固定码;第八个字节为数据帧尾固定不变。

通信方式: ZigBee 无线通信。

15.1.1 语音编号数据说明

语音编号	编号说明
0x01	富强路站
0x02	民主路站
0x03	文明路站
0x04	和谐路站
0x05	爱国路站
0x06	敬业路站
0x07	友善路站

16. 标志物 ZigBee 终端节点编号对照表

ZigBee 终端节点编号	标志物名称
01 (0x01)	嵌入式智能车开发单元(A)
02 (0x02)	嵌入式智能车开发单元(B)
03 (0x03)	智能道闸标志物
04 (0x04)	智能显示标志物
05 (0x05)	智能立体车库标志物 (B)
06 (0x06)	智能公交站标志物
07 (0x07)	智能报警台标志物
08 (0x08)	多功能信息显示标志物 (B)
09 (0x09)	智能路灯标志物
10 (0x0A)	智能无线充电标志物
11 (0x0B)	多功能信息显示标志物 (A)
12 (0x0C)	智能 ETC 系统标志物
13 (0x0D)	智能立体车库标志物(A)
14 (0x0E)	智能交通信号灯标志物(A)
15 (0x0F)	智能交通信号灯标志物(B)
16 (0x10)	特殊地形标志物
17 (0x11)	智能立体显示标志物
18 (0x12)	多功能信息显示标志物 (C)
19 (0x13)	智能交通信号灯标志物(C)
20 (0x14)	智能交通信号灯标志物 (D)

附录I修订记录

修订版本	修订时间	修订内容
		1. 在 2016 年通信协议的基础上修订此版本
		2. 增加语音控制标志物控制指令
v1. 0	2017. 03. 10	3. 增加磁悬浮无线充电标志物控制指令
V1. U	2017.03.10	4. 增加语音识别控制指令
		5. 增加智能 TFT 显示标志物控制指令
		6. 增加 ETC 系统开启回传标志位
		1. 在 2017 年通信协议的基础上修订此版本
		2. 增加道闸标志物返回数据协议
v2.0	2018. 04. 03	3. 增加 ETC 系统标志物返回数据协议
		4. 竞赛平台(主)增加角度回传功能
		5. 竞赛平台(主)增加指定角度转弯功能
		1. 增加机器视觉模组相关协议
v3. 0	2018. 04. 20	2. 增加立体车库标志物相关协议
		3. 增加智能交通灯标志物相关协议
4 0	2018. 05. 10	1. 增加道闸发送指定车牌开启协议,同时兼容发送指定命令开启协议
v4. 0		2. 道闸标志物状态回传修改为指令请求返回,不支持自动返回
v4. 1	2018. 05. 10	1. 增加竞赛平台向自动化评分系统返回语音识别结果数据结构
		2. 修改语音播报指定指令播报内容
		1. 开发竞赛平台(从)权限,使竞赛平台(从)可控制标志物和接收标志物回传数据
v4. 2	2019. 05. 11	2. 增加智能 TFT 显示标志物 (B)、立体车库标志物 (B) 和智能交通灯标志物相关协议
		3. 增加机器视觉模组相关协议
		4. 修改道闸标志物开启方式,接收到任意完整车牌信息即开启道闸
		5. 增加救援警报标志物修改六字节开启码数据协议

v4. 3	2019. 10. 10	1. 修改校验和描述方式,其余保持不变	
		1. 在 2019 年通信协议基础上修订此版本	
		2. 更新本协议格式	
		3. 删除竞赛平台(主/从)向移动终端回传角度数据	
		4. 增加道闸标志物闸门初始角度调节指令	
		5. 增加新版语音控制标志物控制指令数据结构	
v5.0	2021. 05. 20	6. 增加智能 TFT 显示标志物(A/B)交通标志显示模式	
		7. 增加新版 ETC 系统标志物控制指令数据结构	
		8. 增加新版特殊地形标志物控制指令数据结构	
		9. 增加新版立体显示标志物控制指令数据结构	
		10. 修改竞赛平台(主/从)向自动评分系统上传语音编 号指令信息	
V5. 1	2022. 06. 07	1. 增加语音控制标志物天气数据与温度数据设置与读取功能	
	2023. 05. 21	1. 更新标志物名称	
V5. 2		2. 新增交通信号灯标志物 C 和 D	
		3. 新增多功能信息显示标志物 C	
		4. 修改智能无线充电标志物开启码开启以及修改开启码功能	