$$t_{x} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$$

5 sin d fand = 10 tand + 3 sind = 6 = 0

5 tand (sind - 2) . + 3 (sind - 2) = 2

(sind - 2) (5 tand + 3) = 0

sind = 2 # tand =
$$-\frac{3}{5}$$
 Q = Q = 0
 $0 = 2\pi$ Q = 0
 $0 = 5\pi$ Q = 0
 0

1/ Tan x sin x = sin x tan 2 min x - min x = 3

sin x (tan x - 1) = 0 fan x = 1 sin x=0 tan x=±1 $X = 0, \overline{U}, \overline{U}, \frac{35}{4}, \frac{5\overline{U}}{4}$ ()=()² Catend Jest 3 12/ 1- sinx = 1/3 Cisx $\sqrt{3} \cos x + \sin x = \frac{1}{2}$ Cos II Cosx + sin II suix= 1 $\cos\left(x-\frac{\pi}{6}\right)=\frac{1}{2}$ $\frac{77}{3}$, $\frac{37}{3}$ X-11-31 X-11-51 X = 3 + 1/6 X - 50 + 10 = 1111 = 1/2

10/ 2 sin 3x + sin 2x - 2 sin x - 1 = 0 sin x (2 sin x + 1) - (2 sin x + 1) = 0 $(2\sin x + 1)$ $(\sin^2 x - 1) = 0$ $mix=-\frac{1}{2}$ mix=+1 $X = \frac{717}{6}, \frac{1177}{6}, \frac{10}{2}, \frac{300}{2}$ J.5 Inverse Trig fotos $X = \sin y$ $y = \sin x$ $-(\leq x \leq 1)$ $-U \leq y \leq \frac{\pi}{2}$

sin
$$(\sin x) = x$$

arc sin $(\sin y) = y$

Cosine

 $y = \cos x$
 $= \operatorname{arc} \cos x$
 $= \operatorname{arc} \cos x$
 $1 \le x \le 1$
 $0 \le y \le \overline{y}$
 $y = b \cos^{-1} x$
 $x \in \mathbb{R}$
 $x \in \mathbb{R}$

as (2 sin 15) $\alpha = \sin \frac{15}{17}$ $\sin \alpha = \frac{15}{17} \rightarrow \cos \alpha = \frac{8}{17}$ Cos 2x = Cos x - sin x - 225 -12 pec (pin 1/x2-25 a - sin /x2-25 sin x = 1x2-25

8 16 Polar Coordinates. P (12, 0)

distance 3 angle P) 2=x2+32 0=tan 2) X = hwo O y = R sin O $(\Lambda, 0) = (U, \frac{2\pi}{6})$ y= n sind x= hwo = 4 CD 70 = 4 sin 711 = -4 (13) $= 4 \left(-\frac{1}{2}\right)$ = -21 = -2 /3 $(x, y) = (-2\sqrt{3}^{7}, -2)$

 $\frac{39}{12} \left(\frac{2000}{1000} + 4000 + 4000 \right) = 16$ $\frac{1}{1000} \left(\frac{2000}{1000} + 4000 \right) = 16$ $\frac{1}{1000} \left(\frac{2000}{1000} + 4000 \right) = 16$