1 Fragen zu Definitionen

1.) Definition topologischer Raum

Definition 1

Ein **topologischer Raum** ist ein Paar (X, \mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von \mathfrak{T} heißen **offene Teilmengen** von X.

 $A \subseteq X$ heißt **abgeschlossen**, wenn $X \setminus A$ offen ist.

Ich glaube es ist unnötig in (i) zu fordern, dass $\emptyset \in \mathfrak{T}$ gilt, da man das mit (iii) bereits abdeckt:

Sei in (iii) die Indexmenge $I = \emptyset$. Dann muss gelten:

$$\bigcup_{i\in\emptyset}U_i=\emptyset\in\mathfrak{T}$$

4.) Knotendiagramm:

Definition 2

Ein **Knotendiagramm** eines Knotens γ ist eine Projektion $\pi: \mathbb{R}^3 \to E$ auf eine Ebene E, sodass $|\pi^{-1}(x) \cap C| \leq 2$ für jedes $x \in D$, wobei $C = \gamma(S^1)$.

Ist $(\pi|C)^{-1}(x) = \{y_1, y_2\}$, so **liegt** y_1 **über** y_2 , wenn $(y_1 - x) = \lambda(y_2 - x)$ für ein $\lambda > 1$ ist.

Sollte das jeweils $\pi|_C$ (sprich: π eingeschränkt auf C") sein?

5.) Isotopie/Knoten

Definition 3

Zwei Knoten $\gamma_1,\gamma_2:S^1\to\mathbb{R}^3$ heißen **äquivalent**, wenn es eine stetige Abbildung

$$H: S^1 \times [0,1] \to \mathbb{R}^3$$

gibt mit

$$H(z,0) = \gamma_1(z) \quad \forall z \in S^1$$

 $H(z,1) = \gamma_2(z) \quad \forall z \in S^1$

und für jedes feste $t \in [0, 1]$ ist

$$H_z: S^1 \to \mathbb{R}^2, z \mapsto H(z,t)$$

ein Knoten. Die Abbildung H heißt **Isotopie** zwischen γ_1 und γ_2 .

Fehlt hier nicht etwas wie " $\forall z \in S^{1}$ " (nun rot ergänzt).

6.) Basisbeispiele

- Kennst du ein Beispiel für eine Subbasis in einem Topologischen Raum, die zugleich eine Basis ist?
- Kennst du ein Beispiel für eine Subbasis in einem Topologischen Raum, die keine Basis ist?
- Kennst du ein Beispiel für eine Basis in einem Topologischen Raum, die keine Subbasis ist?

9.) Mannigfaltigkeit mit Rand

Definition 4

Sei X ein topologischer Raum und $n \in \mathbb{N}$.

- a) Eine n-dimensionale **Karte** auf X ist ein Paar (U, φ) , wobei $U \subseteq X$ offen und $\varphi: U \to V$ Homöomorphismus von U auf eine offene Teilmenge $V \subseteq \mathbb{R}^n$.
- b) Ein *n*-dimensionaler **Atlas** \mathcal{A} auf X ist eine Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf X, sodass $\bigcup_{i \in I} U_i = X$.

c) X heißt (topologische) n-dimensionale **Mannigfaltigkeit**, wenn X hausdorffsch ist, eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Definition 5

Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt ndimensionale **Mannigfaltigkeit mit Rand**, wenn es einen Atlas (U_i, φ_i) gibt, wobei $U_i \subseteq X_i$ offen und φ_i ein Homöomorphismus auf eine offene
Teilmenge von

$$R_{+,0}^n := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_m \ge 0 \}$$

ist.

Wieso wird bei der Mannigfaltigkeit mit Rand nicht gefordert, dass sie eine abzählbare Basis haben soll? Sollte man nicht vielleicht hinzufügen, dass der Atlas *n*-dimensional sein soll?

11.) Produkttopologie

Definition 6

Seien X_1, X_2 topologische Räume.

 $U\subseteq X_1\times X_2$ sei offen, wenn es zu jedem $x=(x_1,x_2)\in U$ Umgebungen U_i um x_i mit i=1,2 gibt, sodass $U_1\times U_2\subseteq U$ gilt.

 $\mathfrak{T} = \{ U \subseteq X_1 \times X_2 \mid U \text{ offen } \}$ ist eine Topologie auf $X_1 \times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B} = \{ U_1 \times U_2 \mid U_i \text{ offen in } X_i, i = 1, 2 \}$ ist eine Basis von \mathfrak{T} .

Gibt es ein Beispiel, das zegit, dass nicht $\mathfrak{B} = \mathfrak{T}$ gilt?