Datenstrukturen und effiziente Algorithmen Blatt 4

Markus Vieth, David Klopp, Christian Stricker 18. November 2015

Nr.1

Psoidocode:

Eingabe: Integer k für Anzahl an Farben, Integer l für Anzahl an Muster. Ein 2x2n Array. In der ersten Zeile stehen die Farben in Integer codiert, in der zweiten Zeile analog für die Muster(bei 5 verschiedenen Muster/Farben gibt es die Integer 0-4).

Man iterriert über das Eingabearray und speichert die Anzahl der jeweiligen Farben in ein Array. Dann wird nochmal über das Array iterriert, wenn an der i-ten Stelle, die Socke mit falsche Farbe n steht, wird diese mit einer anderen Socke im n Bereich vertauscht.

Danach wird für jeden Farbbereich analog zum Farbensortieren nach Muster sortiert (Anzahl der Muster bestimmen, an die richtige Stelle tauschen).

Damit kommt eine Laufzeit von O(n+l+k)= O(n) zustande.

O(4*n), da man 2 mal über das ganze Array iteririert, um die Anzahl (an Farben/Muster) zu bestimmen

O(8*n), da höchstens n-mal vertauscht wird, 2n Zugriffe zum Zwischenspeichern, 4n Zugriffe zum Überschreiben und 2n Zugriffe für die Zwischenspeicherungen wieder zu speichern. Analog beim Mustertauschen.

Nr.2

a)

Überlegung analog zur Vorlesung:

m=3
$$\exists \frac{2n}{6} \text{ Elemente } \leq p \Rightarrow \text{Es existieren maximal } \frac{4n}{6} \text{ Elemente } \geq p$$

$$\exists \frac{2n}{6} \text{ Elemente } \geq p \Rightarrow \text{Es existieren maximal } \frac{4n}{6} \text{ Elemente } \leq p$$

$$\mathbf{m=7}$$

$$\exists \frac{4n}{14} \text{ Elemente } \leq p \Rightarrow \text{Es existieren maximal } \frac{10n}{14} \text{ Elemente } \geq p$$

$$\exists \frac{4n}{14} \text{ Elemente } \geq p \Rightarrow \text{Es existieren maximal } \frac{10n}{14} \text{ Elemente } \leq p$$

b)

Überlegung analog zur Vorlesung:

m=3
$$T(n)=T\left(\frac{n}{3}\right)+n+T\left(\frac{2n}{3}\right)$$
 Akra-Bazzi:
$$g(n)=n,\ a_1=a_2=1,\ b_1=3\ b_2=\frac{3}{2}$$

$$1 = \left(\frac{1}{3}\right)^{\alpha} + \left(\frac{2}{3}\right)^{\alpha}$$

$$\Leftrightarrow \alpha = 1$$

$$T(n) = n\left(1 + \int_{1}^{n} \frac{x}{x^{2}} dx\right) = n\left(1 + \int_{1}^{n} \frac{1}{x} dx\right) = n\left(1 + [\ln(x)]_{1}^{n}\right) = n + n\ln(n) \in O(n\log(n)) \neq O(n)$$

Somit ist die Laufzeit für m=3 nicht linear.

m=7

$$T(n) = T\left(\frac{n}{7}\right) + n + T\left(\frac{5n}{7}\right)$$

Zu zeigen:

$$\exists \ c > 0 : T(n) < c \cdot n$$

Beweis:

$$T(n) \le c \cdot \frac{n}{7} + n + c \cdot \frac{5n}{7} \le c \cdot n$$

$$c = 7 \Leftrightarrow n + n + 5n \leq 7n \Rightarrow \exists \ c > 0 : T(n) \leq c \cdot n \Rightarrow T(n) \in O(n)$$

Somit ist die Laufzeit für m=7 linear.

Nr.3

a)

\boldsymbol{x}	Ergebnisse:
0	18
1	15
2	14
3	13
4	14
5	15
6	16
7	17
8	18
9	19
10	20
11	21
12	22
13	23

Für $x=x_2=3$, also dem Median der Menge $\{x_1,x_2,x_3\}$, wird die Summe minimal.

b)

Beh:

 $\sum_{i=1}^n |x_i-x|$ wird minimal für $x=x_{k+1},$ d.
h $\mathbf{x}:=$ Median $\{x_1,...,x_n\}$

Bew:

Sei die Menge aller x_i sortiert. Teile die Summe in zwei gleich große Teilsummen, wobei Summe 1 kleiner als x_{k+1} und Summe 2 größer als x_{k+1} ist:

$$\sum_{i=1}^{2k+1} |x_i - x|$$

$$= \sum_{i=1}^k |x_i - x| + \sum_{i=k+2}^{2k+1} |x_i - x| + |x_{k+1} - x|$$

$$= kx - \sum_{i=1}^k x_i - kx + \sum_{i=k+2}^{2k+1} x_i + |x_{k+1} - x|$$

$$= \sum_{i=k+2}^{2k+1} x_i - \sum_{i=1}^k x_i + |x_{k+1} - x|$$

Für $x = x_{k+1}$:

$$= \sum_{i=k+2}^{2k+1} x_i - \sum_{i=1}^k x_i$$

Für $x \neq x_{k+1}$:

Der Term $|x_{k+1} - x|$ wird immer > 0 und somit größer als der Fall $x = x_k$, d.h $\sum_{i=1}^n |x_i - x|$ ist genau dann minimal, wenn $x = x_{k+1}$ ist.

c)

Beh:

 $\sum_{i=1}^{n} (x_i - x)^2$ wird minimal für $x = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$, d.h x := arithmetisches Mittel von $\{x_1, ..., x_n\}$

Bew:

$$f(x) = \sum_{i=1}^{n} (x_i - x)^2$$
$$f'(x) = -\sum_{i=1}^{n} 2(x_i - x)$$
$$f''(x) = \sum_{i=1}^{n} 2$$

 $\underline{f'(x) = 0:}$

$$-\sum_{i=1}^{n} 2(x_i - x) = 0$$

$$\Leftrightarrow -2nx + \sum_{i=1}^{n} 2x_i = 0$$

$$\Leftrightarrow 2\sum_{i=1}^{n} x_i = 2nx$$

$$\Leftrightarrow \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = x$$

Da f''(x) immer größer als Null ist, handelt es sich bei $x = \frac{1}{n} \cdot \sum_{i=1}^n x_i$ um ein Minimum. q.e.d