Tarski-Knaster Theorem, Schroder-Bernstein Theorem, and Mathematical Induction

October 2, 2019

1 Tarski-Knaster Theorem and Schroder-Bernstein Theorem

1.1 Definitions

Let (P_1, \preceq_1) and (P_2, \preceq_2) be partial orders. We say that a function $f: P_1 \to P_2$ is order-preserving if for all $x, y \in P_1$,

if
$$x \leq_1 y$$
, then $f(x) \leq_2 f(y)$

We might write $f:(P_1, \preceq_1)(P_2, \preceq_2)$ when we need to specify which orders we are talking about.

Let A be a set and let $f: A \to A$ be a function. We say that $x \in A$ is a fixed point of f if f(x) = x.

1.2 Tarski-Knaster Theorem

Let (L, \preceq) be a complete lattice. If $f: (L, \preceq) \to (L, \preceq)$ is an order-preserving function, then f has a fixed point. Moreover, the set of fixed points of f on L is a complete lattice.

The proof is quite long. Please be patient.

- 1. $X = \{x \in L | f(x) \leq x\}$ and $a = \bigwedge X$.
- 2. If $x \in X$, then $f(x) \in X$.
- 3. f(a) is a lower bound of X.
- 4. $f(a) \leq a$, which implies $a \in X$. Then, $f(a) \leq a$.
- 5. f(a) = a. Therefore, a is a fixed point of f on L.

Let $S = \{x \in L | f(x) = x\}$. It's easy to a is the least element of S, since $S \subseteq X$. Similarly, we can find the greatest element of S. $(Y = \{y \in L | y \leq f(y)\}, \text{ and } b = \bigvee Y)$.

Let (L, \preceq) be a complete lattice. If $f: (L, \preceq) \to (L, \preceq)$ is an order-preserving function, then f has a greatest fixed point (a) and a least fixed point (b). For all $s \in S = \{x \in L | f(x) = x\}$, $a \preceq s \preceq b$.

Let P be a subset of S, i.e. $P \subseteq S$, and let u be the g.l.b of P in L.(The g.l.b of P in L is different from the g.l.b of P in S!)

- 1. $[a, u] = \{x \in L | a \leq x \leq u\}$ is a complete lattice. (Why $a \leq u$? Why is it a complete lattice?)
- 2. For any $x \in L$, if $x \in [a, u]$, then $f(x) \in [a, u]$. (f(x)) is a lower bound of S.)
- 3. Let $g:[a,u] \to [a,u]$ and g(x)=f(x). (Just consider f restricted to [a,u].) Since g is order-preserving and [a,u] is a complete lattice, then we can find the greatest fixed point of g. Let m be the greatest fixed point of g. Then m is the g.l.b of P in S.
- 4. Similarly we can find the l.u.b of P is S.

1.3 Schroder-Bernstein Theorem

Let A and B be sets. If there exists $f:A\to B$ that is injective and $g:B\to A$ that is injective, then there exists a bijection $h:A\to B$.

I will provide two different methods to prove the Schroder-Bernstein Theorem. The first one is very similar to the proof covered in the lecture, but we do not explicitly apply Tarski-Knaster Theorem. The second one has nothing to do with Tarski-Knaster Theorem or fixed points.

Here, we use f(A) = B to denote $B = \{y | \exists x, y = f(x)\}$, where $A \subseteq \text{dom } f$. We also define $A^* = g(B)$, and $B^* = f(A)$.

Proof I:

Our goal is to find two sets $S \subseteq A$ and $T \subseteq B$, such that f(S) = T, g(B - T) = A - S. Then, we can find a bijection between A and B. (How?)

If $E \subseteq A$, F = f(E), then $F \subseteq B^*$, $F \subseteq B$. Let G = g(B - F), and $\widehat{E} = A - G = A - g(B - f(E))$.

We call a set $E \subseteq A$ a magical set, if $E \subseteq \widehat{E}$. Let $S \subseteq A$ be the union of all magical sets. For any two arbitrary sets E_1 and E_2 , if $E_1 \subseteq E_2$, then $\widehat{E_1} \subseteq \widehat{E_2}$. (Why?)

Therefore, for any element $x \in S$, there exists a magical set E, such that $x \in E$. Since, $E \subseteq S$, then $\widehat{E} \subseteq \widehat{S}$. Also, E is a magical set, which implies that $E \subseteq \widehat{E}$. Then, $E \subseteq \widehat{S}$, and $x \in \widehat{S}$. Therefore, $S \subseteq \widehat{S}$.

The most interesting thing is that $S \subseteq \widehat{S}$ means \widehat{S} is a magical set, and it implies that $\widehat{S} \subseteq S$. Therefore, $S = \widehat{S}$. Nice!

Now, T = f(S), and $g(B - T) = g(B - f(S)) = A - \hat{S} = A - S$.

Proof II:

This proof provides a direct method to find a bijection between A and A^* . Let

$$A_1 = A$$
 $B_1 = B$ $A_2 = A^*$ $B_2 = B^*$ $A_3 = g(B_2)$ \dots \dots \dots $A_{k+1} = g(B_k)$ $B_{k+1} = f(A_k)$

Therefore,

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \cdots$$

 $B_1 \supseteq B_2 \supseteq B_3 \supseteq B_4 \supseteq \cdots$

(Why?) Let

$$D = \bigcap_{k=1}^{\infty} A_k$$

Then $A = D + (A_1 - A_2) + (A_2 - A_3) + (A_3 - A_4) + \cdots$, and $A^* = D + (A_2 - A_3) + (A_3 - A_4) + (A_4 - A_5) + \cdots$.

We can find a bijection $h_A: A \to A^*$, which is made up of three parts: h_D, h_{2k-1} and h_{2k} . All of them are bijections.

 $h_D: D \to D$ is a bijection. (No problem.)

 $h_{2k}:(A_{2k}-A_{2k+1})\to(A_{2k}-A_{2k+1})$ is a bijection. (No problem.)

 $h_{2k-1}: (A_{2k-1}-A_{2k}) \to (A_{2k+1}-A_{2k+2})$ is a bijection. (Hint: $g(f(A_{2k-1}-A_{2k})) = (A_{2k-1}-A_{2k})$

 $g(B_{2k} - B_{2k+1}) = A_{2k+1} - A_{2k+2})$

Now, Let $h = g^{-1} \circ h_A$. $h : A \to B$ is a bijection.

The \leq relation on cardinalities is antisymmetric. I.e. if $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

2 Mathematical Induction

2.1 A flawed definition of $\mathbb N$

I will not talk about it. The only thing you need to know is that Mathematical Induction is valid.

2.2 Induction Arguments

Let be P(n) be a property. We can show that P(n) holds for all $n \in \mathbb{N}$ using the following argument structure:

- 1. Show that P(0) holds
- 2. Show that for arbitrary $n \in \mathbb{N}$, $P(n) \Rightarrow P(n+1)$, i.e. if P(n) holds, then so does P(n+1).

2.3 Strong Induction

An argument by strong induction that shows that a property A(n) holds for all $n \in \mathbb{N}$ with $n \ge n_0$ proceeds as follows:

- (i) Show that $A(n_0)$ holds
- (ii) Show that for all $n \ge n_0$, if for all $n_0 \le k \le n$, A(k) holds, then A(n+1) holds
- (iii) Conclude that for all $n \in \mathbb{N}$ with $n \ge n0$, A(n) holds

2.4 Principle of Structural Induction

Let B be a set and let $C_1, ..., C_n$ be construction rules. Let A be recursively defined to be the \subseteq -least set such that $B \subseteq A$ and A is closed under the rules $C_1, ..., C_n$. Let P(x) be a property. If

- (i) for all $b \in B$, P(b) holds
- (ii) for all $a_1, ..., a_m$ and c and $1 \le i \le n$, if $P(a_1), ..., P(a_m)$ all hold and c is obtained from $a_1, ..., a_m$ by a single application of the rule C_i , then P(c) holds Then P(x) holds for every element of A.

I will just give you a rough idea of Structural Induction.

A is a set that is hard to write in an explicit form like $A = \{x | P(x)\}$. However, we know a set $B \subseteq A$, and all the elements in B are clear. We also know how to find other elements in A by applying some rules C_1, C_2, \dots, C_n to the elements in B. Meanwhile, we know that all the elements in A can be found by applying these rules to the elements in B. So, how to prove that P(x) holds for all $x \in A$. We first have to prove that P(x) holds for all $x \in B$. Next, we have to prove that P(c) holds, where $c \notin B$. c can be obtained from a_1, \dots, a_m by a single application of the rule C_i . Therefore, we have to prove that if $P(a_1), \dots, P(a_m)$ all hold, then P(c) hold. How to prove $P(a_i)$? We just need to repeat what we have done before. We have to find a method to obtain a_i by a single application of the rule C_i to $b_1, b_2, \dots b_k$, and $P(b_1), P(b_1), \dots P(b_k)$ all hold. This process of repetition will finally stop, because all elements in A can be obtained from elements in B.

2.5 Exercise

Show that

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \cdots$$

 $B_1 \supseteq B_2 \supseteq B_3 \supseteq B_4 \supseteq \cdots$

in the proof II of Tarski-Knaster Theorem.

Show that $(a+b)^n \geqslant a^n + na^{n-1}b$. $n \in \mathbb{Z}^+$, $a, b \in \mathbb{R}^+$

Show that

$$\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^n \geqslant a_1 a_2 \dots a_n$$

 $n \in \mathbb{Z}^+, a_1, a_2, \cdots, a_n \in \mathbb{R}^+$ Hint. Let $s = a_1 + a_2 + \cdots + a_k$.

$$\left(\frac{a_1 + \dots + a_k + a_{k+1}}{k+1}\right)^{k+1} = \left(\frac{s}{k} + \frac{ka_{k+1} - s}{k(k+1)}\right)^{k+1} \geqslant \left(\frac{s}{k}\right)^{k+1} + (k+1)\left(\frac{s}{k}\right)^k \left(\frac{ka_{k+1} - s}{k(k+1)}\right)^{k+1} \geqslant \left(\frac{s}{k}\right)^{k+1} + (k+1)\left(\frac{s}{k}\right)^{k+1} + (k+1)\left(\frac{$$

2.6 Prepare For Your Midterm Exam