Useful Inequality

Exercise

Prove that

$$(1+x)^{\frac{p}{q}} \le 1 + \frac{p}{q}x,$$

where p and q be positive integer integers such that $p \le q$.

Proof:

Let p and q be positive integer integers such that $p \le q$.

The geometric mean of q numbers

1, 1, ..., 1,
$$\underbrace{(1+x), (1+x), ..., (1+x)}_{p \text{ times}}$$

is $(1+x)^{\frac{p}{q}}$. While their arithmetic mean is $1+\frac{p}{q}x$. As geometric mean is always less that the arithmetic mean, we get

$$(1+x)^{\frac{p}{q}} \le 1 + \frac{p}{q}x$$

Hence proved.

A more general result is known as Bernoulli inequality. It is read as

$$(1 + x)^s \le 1 + sx$$
 for $x > -1$ and $0 \le s \le 1$.

For s > 1, the inequality reverses.

Hint: Use the above inequality to prove

$$\ln(1+x) \le \frac{x}{\sqrt{(1+x)}}, \text{ for } x > 0$$