一、填空题

1. 函数 $f(x, y) = x^2 - xy + y^2$ 在点 $p_0(1,1)$ 处的最大方向导数为【 $\sqrt{2}$ 】.

2. 使函数 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 取极大值的点的坐标为【(-3,2)】.

3. $\int_0^2 dx \int_x^2 e^{-y^2} dy = \left[\frac{1}{2} (1 - e^{-4}) \right]$

4. 设Σ为 $z = \sqrt{a^2 - x^2 - y^2}$,则 $\int_{\Sigma} (x^2 + y^2 + z^2) dS = [2\pi a^4]$.

5. $\vec{A} = 3x^2y\vec{i} + e^yz\vec{j} + 2x^3z\vec{k}$, $\iint \text{div } \vec{A}\Big|_{(1,0,2)} = \mathbb{I} 4 \mathbb{I}$.

6. 己知闭曲线 C 的方程为|x|+|y|=2,则 $\oint_{C} (|x|+|y|)ds = 16\sqrt{2}$].

7. 幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n5^n}$ 的收敛域为【[-5,5)】.

二、 选择题

1. $\exists \exists f \left(\frac{1}{x}, \frac{1}{y}\right) = xy$, $\exists \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = (B)$

- (A) $-\frac{1}{x^2 v^2}$, (B) $-\frac{x+y}{x^2 v^2}$, (C) $\frac{x-y}{x^2 v^2}$, (D) $\frac{y-x}{x^2 v^2}$.

2. 设区域D是圆环域 $a^2 \le x^2 + y^2 \le b^2$,则 $\iint (x^2 + y^2) d\sigma = (D)$

- (A) $\frac{\pi}{2}b^4$ (B) $\frac{2\pi}{3}b^3$ (C) $\frac{2\pi}{3}(b^3-a^3)$ (D) $\frac{\pi}{2}(b^4-a^4)$

3. 已知(x+ay)dx+(x+y)dy为某函数的全微分,则a=(C)

- (B) ()
- (C) 1

4. 设 L 为圆周 $x^2 + y^2 = 2$ 的逆时针方向,则 $\oint \frac{xdy - ydx}{x^2 + y^2} = (A)$

- (A) 2π
- (B) π (C) $\frac{\pi}{2}$
- (D) 0

5. 下列级数收敛的是(D)

(A)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$$
 (B) $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$ (C) $\sum_{n=1}^{\infty} (-1)^{n-1}$ (D) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$

(B)
$$\sum_{n=1}^{\infty} \frac{3^n}{2^n}$$

(C)
$$\sum_{n=1}^{\infty} (-1)^{n-1}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

6. 函数 $f(x) = \frac{1}{1+2x}$ 在点 x = 0 处的幂级数展开式为(C)

(A)
$$\sum_{n=0}^{\infty} 2^n x^n$$
, $|x| < 2$

(B)
$$\sum_{n=0}^{\infty} (-1)^n 2^{n+1} x^n$$
, $|x| < \frac{1}{2}$

(C)
$$\sum_{n=0}^{\infty} (-1)^n 2^n x^n$$
, $|x| < \frac{1}{2}$ (D) $\sum_{n=0}^{\infty} 2^{n+1} x^n$, $|x| < 2$

(D)
$$\sum_{n=0}^{\infty} 2^{n+1} x^n$$
, $|x| < 2$

大 若 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -1 收敛,则此级数在 x = 2 处(B)

- (A) 条件收敛
- (B) 绝对收敛
- (C) 发散 (D) 收敛性不能确定

三、求级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{3}{n(n+1)} \right)$$
 的和.

解: 根据等比级数的结论,知 $\sum_{i=1}^{\infty} \frac{1}{2^n} = \frac{1/2}{1-1/2} = 1.$

$$X_n = \sum_{k=1}^n \frac{1}{k(k+1)} = (1-\frac{1}{2}) + (\frac{1}{2}-\frac{1}{3}) + \dots + (\frac{1}{n}-\frac{1}{n+1}) = 1 - \frac{1}{n+1},$$

所以
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1-\frac{1}{n+1}) = 1$$
, 则 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$,

故
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{3}{n(n+1)} \right) = \sum_{n=1}^{\infty} \frac{1}{2^n} + 3\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 4.$$

四、判别下列级数的敛散性,

1. 判别
$$\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 3^n}$$
 的敛散性.

解:
$$\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1) \cdot 3^{n+1}} \frac{n \cdot 3^n}{2^n} = \lim_{n \to \infty} \frac{2n}{3(n+1)} = \frac{2}{3} < 1$$

由比值法知,原级数收敛.

2. 判别
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(1+n)}$$
 的敛散性,若收敛,是条件收敛还是绝对收敛?

解: 令
$$a_n = \frac{1}{\ln(1+n)}$$
,则 $\lim_{n\to\infty} \frac{1}{\ln(1+n)} = 0$, 且 $a_n = \frac{1}{\ln(1+n)} > \frac{1}{\ln(n+2)} = a_{n+1}$,

即
$$\left\{\frac{1}{\ln(1+n)}\right\}$$
单调递减,由莱布尼兹定理,级数 $\sum_{n=1}^{\infty}(-1)^n\frac{1}{\ln(n+1)}$ 收敛.

又
$$n > \ln(n+1)$$
 , 所以 $a_n = \frac{1}{\ln(1+n)} > \frac{1}{n}$, 而 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 由比较法可知:

$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$$
 发散, 从而原级数条件收敛.

五、求球面 $x^2 + y^2 + z^2 = 14$ 在点(1,2,3)处的切平面及法线方程.

解:
$$F(x, y, z) = x^2 + y^2 + z^2 - 14$$
, 则 $\vec{n} = (F_x, F_y, F_z) = (2x, 2y, 2z)$,
$$\vec{n}|_{(1,2,3)} = (2,4,6) || (1,2,3), 则点 (1,2,3) 处的切平面为 x + 2y + 3z - 14 = 0$$
,

法线方程为
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
.

六、求上半球面 $x^2 + y^2 + z^2 = 4a^2$ 含在柱面 $x^2 + y^2 = 2ax(a > 0)$ 内部的那部分面积.

解: 设Σ:
$$z = \sqrt{4a^2 - x^2 - y^2}$$
, 在 xOy 面上的投影为 D: $x^2 + y^2 \le 2ax$,

$$dS = \sqrt{1 + z_x^2 + z_y^2} dxdy = \frac{2a}{\sqrt{4a^2 - x^2 - y^2}} dxdy.$$

由D: $x^2 + y^2 \le 2ax$, 且D 关于 y 轴对称, 故

$$S = \iint_{\Sigma} dS = \iint_{D} \frac{2a}{\sqrt{4a^2 - x^2 - y^2}} dx d = 2 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2a + c + \theta s} \frac{2a}{\sqrt{4a^2 - \rho^2}} \rho d\rho$$
$$= 4a \int_{0}^{\frac{\pi}{2}} 2a(1 - \sin\theta) d\theta = 4a^2 (\pi - 2).$$

七、已知起点O(0,0)及终点A(1,1),且曲线积分

$$I = \int_{\Omega} \left(ax \cos y - y^2 \sin x \right) dx + \left(by \cos x - x^2 \sin y \right) dy$$

与路径无关,试确定常数a,b,并求I.

解:
$$\Leftrightarrow P = ax \cos y - y^2 \sin x$$
, $Q = by \cos x - x^2 \sin y$,

$$\mathbb{I} \frac{\partial P}{\partial y} = -ax\sin y - 2y\sin x , \quad \frac{\partial Q}{\partial x} = -by\sin x - 2x\sin y ,$$

由题意
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, 解得 $a = b = 2$.

$$I = \int_{(0,0)}^{(1,1)} P dx + Q dy = \int_0^1 P(x,0) dx + \int_0^1 Q(1,y) dy$$
$$= \int_0^1 2x dx + \int_0^1 (2y \cos 1 - \sin y) dy = 2\cos 1.$$

【或
$$I = \int_{(0,0)}^{(1,1)} P dx + Q dy = \int_{0}^{1} Q(0,y) dy + \int_{0}^{1} P(x,1) dx$$

$$= \int_{0}^{1} 2y dy + \int_{0}^{1} (2x \cos 1 - \sin x) dx = 2 \cos 1.$$
 】

八、设
$$\Sigma$$
为上半球面 $z = \sqrt{a^2 - x^2 - y^2}$ 的下侧,求曲面积分
$$\iint_{\Sigma} (x^3 + az^2) dy dz + (y^3 + ax^2) dz dx + (z^3 + ay^2) dx dy.$$

解:记 Σ_1 :z=0,取上侧, Ω 是 Σ , Σ_1 所围成的空间区域,则

$$\iint_{\Sigma + \Sigma_{1}} = -\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = -3 \iiint_{\Omega} \left(x^{2} + y^{2} + z^{2} \right) dx dy dz$$

$$= -3 \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} \sin \varphi d\varphi \int_{0}^{a} r^{2} \cdot r^{2} dr = -\frac{6}{5} \pi a^{5}.$$

$$\overline{m} \iint_{\Sigma_1} = \iint_{x^2 + y^2 \le a^2} ay^2 dx dy = \int_0^{2\pi} d\theta \int_0^a a\rho^2 \sin^2 \theta \cdot \rho d\rho = \frac{\pi a^5}{4},$$

【或
$$\iint_{\Sigma_1} = \iint_{x^2 + y^2 \le a^2} ay^2 dx dy = \frac{a}{2} \iint_{x^2 + y^2 \le a^2} (x^2 + y^2) dx dy = \frac{a}{2} \int_0^{2\pi} d\theta \int_0^a \rho^3 d\rho = \frac{\pi a^5}{4}$$
】

故原式=
$$-\frac{6}{5}\pi a^5 - \frac{1}{4}\pi a^5 = -\frac{29}{20}\pi a^5$$
.

九、求幂级数 $\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n$ 的收敛半径、收敛域及和函数.

故收敛半径 $R = +\infty$, 收敛域为 $(+\infty, -\infty)$.

$$\int_0^x g(x)dx = \sum_{n=1}^\infty \frac{x^n}{(n-1)!} = x \sum_{n=1}^\infty \frac{x^{n-1}}{(n-1)!} = xe^x, \text{ fill } g(x) = (xe^x)' = (x+1)e^x,$$

故
$$S(x) = x(x+1)e^x$$
, $x \in (+\infty, -\infty)$.

解法二:
$$s(x) = x \sum_{n=1}^{\infty} \frac{n}{(n-1)!} x^{n-1} = x \left[x \sum_{n=2}^{\infty} \frac{1}{(n-2)!} x^{n-2} + \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n-1} \right]$$
$$= x^2 e^x + x e^x = x(x+1)e^x, \quad x \in (+\infty, -\infty).$$