ACT1 Trouver son chemin

1 Le réseau TAN

Voici le plan du réseau de transport de la TAN (hors bus)

Depuis « Rd Pt de Paris » (ligne C1), comment rejoindre « Pompidou » (ligne C5) ?

- 1) Lister quelques itinéraires.
- 2) Quel est l'itinéraire le plus court en temps ? En distance ?
- 3) Quels sont les paramètres qui influents ?

On considère l'itinéraire suivant :

« Rd Pt de Paris » → « Foch Cathédrale » → « Ile de Nantes » → « Pompidou »

- 4) Quelle est la destination du voyageur?
- 5) Arrivé à l'arrêt « Foch Cathédrale », selon la carte ci-dessus, combien de choix s'offrent au voyageur ?
- 6) Pour faire le choix le plus adapté, on donne des informations sous forme d'un tableau (cidessous). Compléter ce tableau.

FOCH CATHEDRALE				
Destination	Ligne	Nombre d'arrêts		
« Pompidou »	C4 Porte de vertou	3		
« Pompidou »				
« Pompidou »				

7) A priori, quel est le meilleur chemin?

En partant du même point de départ, cette fois la destination est « Trocardière ».

- 8) En suivant la même logique, quelle(s) information(s) devrait-on rajouter au tableau de l'arrêt « Foch Cathédrale » ?
- 9) Proposer une méthode pour simplifier l'affichage et compléter le tableau pour les destinations : « *Pompidou », « Trocardière », « Poincaré »* et « *Haluchères »*

2 Application aux réseaux informatiques

Voici un exemple de réseau :

- 1) Combien y a-t-il de sous-réseaux et quels sont leurs adresses IP ?
- 2) Que signifient les adresses **192.168.0.1** et **192.168.1.1** autour du **Routeur_1**?

On transmet un fichier depuis la machine 192.168.0.102 à la machine 192.168.1.102. La trame

du paquet envoyé est schématisée de la façon suivante :

										(1)	
MAC	MAC	Autres								(2)	
destination	source	infos	IP	lp	Autres					(3)	
destillation	Source	111103	source	destination	infos	protocole	Autres			(4)	
							infos	Port	port	Autres infos	fichier
								source	destination		

- 3) Rappeler à quelles couches du modèles TCP/IP correspondent les numéros de (1) à (4).
- 4) Pourquoi parle-t-on d'encapsulation?

Afin de diriger correctement le paquet, le **Routeur_1** dispose d'une *table de routage*.

5) Parmi les 3 propositions ci-dessous quelle serait la bonne :

Proposition 1			
Destination	Source	Nbre de sauts	
192.168.1.102	192.168.0.102	1	
192.168.0.102	192.168.1.102	1	

Proposition 2		
Destination	Gateway	Nbre de sauts
192.168.1.0	192.168.1.1	1
192.168.0.0	192.168.0.1	1

Proposition 3		
Destination	Gateway	Nbre de sauts
192.168.1.0	192.168.1.1	1
192.168.0.0	192.168.0.1	1

6) Parmi les 3 propositions ci-dessous quelle serait la bonne ?

On se propose de d'ouvrir le fichier reseau.fls avec le logiciel FILIUS.

- 7) En mode « Simulation », à l'aide de la commande traceroute, déterminer le nombre de sauts nécessaire pour faire transiter un paquet :
 - de la machine **192.168.0.102** à la machine **192.168.1.102**
 - de la machine 192.168.0.102 à la machine 100.10.42.100
 - de la machine **192.168.0.102** à Internet
- 8) En mode « Conception », afficher les tables de routage des Routeur_1 et Routeur_2. Décocher le « Routage Automatique ». Retrouve-t-on la structure précédente ?
- 9) A partir d'une recherche Web, expliquer ce qu'est le routage statique et le routage dynamique : différences, intérêts et conditions d'utilisation.

Compétences évaluées :				
APP	Identifier les connaissances associées à une problématique. Mobiliser les concepts et les technologies adaptés au problème.			
ANA	Décrire et spécifier les caractéristiques d'un processus, d'une représentation spécifique (tables de routage).			