પ્રશ્ન 1(અ) [3 ગુણ]

યોગ્ય ઉદાહરણનો ઉપયોગ કરીને મશીન લર્નિંગને વ્યાખ્યાયિત કરો

જવાબ:

મશીન લર્નિંગ આર્ટિફિશિયલ ઇન્ટેલિજન્સનો એક ભાગ છે જે કમ્પ્યુટર્સને ડેટામાંથી શીખવા અને દરેક કાર્ય માટે સ્પષ્ટ રીતે પ્રોગ્રામ કર્યા વિના નિર્ણયો લેવા માટે સક્ષમ બનાવે છે.

ટેબલ: મશીન લર્નિંગના મુખ્ય ઘટકો

ยรร	વર્ણન
s̀zı	ટ્રેનિંગ માટે ઉપયોગમાં લેવાતી ઇનપુટ માહિતી
અલ્ગોરિદ્યમ	પેટર્ન શીખતા ગાણિતિક મોડેલ
ટ્રેનિંગ	અલ્ગોરિધમને શીખવવાની પ્રક્રિયા
પ્રિડિક્શન	શીખેલા પેટર્ન આદ્યારિત આઉટપુટ

ઉદાહરણ: ઇમેઇલ સ્પામ ડિટેક્શન સિસ્ટમ હજારો ઇમેઇલોમાંથી "સ્પામ" અથવા "નોટ સ્પામ" તરીકે લેબલ કરેલા ઇમેઇલોમાંથી શીખે છે અને નવા ઇમેઇલોને આપોઆપ વર્ગીકૃત કરે છે.

મેમરી ટ્રીક: "ડેટા ડ્રાઇવ્સ ડિસિઝન્સ" - ડેટા અલ્ગોરિધમને બુદ્ધિશાળી નિર્ણયો લેવા માટે પ્રશિક્ષિત કરે છે

પ્રશ્ન 1(બ) [4 ગુણ]

સ્ક્રેમેટિક રેખાકૃતિના ઉપયોગ કરીને મશીન લર્નિંગની પ્રક્રિયા સમજાવો

જવાબ:

મશીન લર્નિંગ પ્રક્રિયામાં ડેટા સંગ્રહથી લઈને મોડેલ ડિપ્લોયમેન્ટ સુધીના વ્યવસ્થિત પગલાંઓનો સમાવેશ થાય છે.

પ્રક્રિયાના પગલાં:

- ડેટા સંગ્રહ: સંબંધિત ડેટાસેટ એકત્રિત કરવું
- પ્રીપ્રોસેસિંગ: ડેટાને સાફ અને તૈયાર કરવું
- ટ્રેનિંગ: ટ્રેનિંગ ડેટાનો ઉપયોગ કરીને અલ્ગોરિધમને શીખવવું
- વેલિડેશન: મોડેલની કામગીરીને ચકાસવી
- ડિપ્લોયમેન્ટ: વાસ્તવિક પ્રિડિક્શન માટે મોડેલનો ઉપયોગ

મેમરી ટ્રીક: "કમ્પ્યુટર્સ કેન ટૂલી થિંક" - કલેક્ટ, ક્લીન, ટ્રેન, ટેસ્ટ

પ્રશ્ન 1(ક) [7 ગુણ]

યોગ્ય એપ્લિકેશન સાથે વિવિદ્ય પ્રકારના મશીન લર્નિંગ સમજાવો

જવાબ:

મશીન લર્નિંગ અલ્ગોરિધમ્સને લર્નિંગ એપ્રોચ અને ઉપલબ્ધ ડેટાના આધારે વર્ગીકૃત કરવામાં આવે છે.

ટેબલ: મશીન લર્નિંગના પ્રકારો

уѕіг	લર્નિંગ મેથડ	ડેટા આવશ્ચકતા	ઉદાહરણ એપ્લિકેશન
સુપરવાઇઝ્ડ	લેબલ્ક ડેટાનો ઉપયોગ	ઇનપુટ-આઉટપુટ જોડીઓ	ઇમેઇલ ક્લાસિફિકેશન
અનસુપરવાઇઝ્ડ	છુપાયેલા પેટર્ન શોધે	માત્ર ઇનપુટ ડેટા	કસ્ટમર સેગમેન્ટેશન
રિઇનફોર્સમેન્ટ	રિવોર્ડ્સ દ્વારા શીખે	એન્વાયર્નમેન્ટ ફીડબેક	ગેમ પ્લેઇંગ Al

એપ્લિકેશન્સ:

- **સુપરવાઇઝ્ડ લર્નિંગ**: મેડિકલ ડાયગ્નોસિસ, ઇમેજ રેકોગ્નિશન, ફ્રોડ ડિટેક્શન
- અનસુપરવાઇઝ્ડ લર્નિંગ: માર્કેટ રિસર્ચ, એનોમેલી ડિટેક્શન, રેકમેન્ડેશન સિસ્ટમ્સ
- **રિઇનફોર્સમેન્ટ લર્નિંગ**: ઓટોનોમસ વેહિકલ્સ, રોબોટિક્સ, સ્ટ્રેટેજિક ગેમ્સ

ડાયાગ્રામ: લર્નિંગ ટાઇપ્સ

મેમરી ટ્રીક: "સ્ટુડન્ટ્સ યુઝ્યુઅલી રીમેમ્બર" - સુપરવાઇઝ્ડ, અનસુપરવાઇઝ્ડ, રિઇનફોર્સમેન્ટ

પ્રશ્ન 1(ક) OR [7 ગુણ]

મશીન લર્નિંગમાં વિવિદ્ય સમસ્યાઓ શું છે? ત્રણ સમસ્યાઓ કે જે મશીન લર્નિંગનો ઉપયોગ કરીને ઉકેલી શકાતી નથી.

જવાબ:

ટેબલ: મશીન લર્નિંગની સમસ્યાઓ

સમસ્યા કેટેગરી	વર્ણન	અસર
ડેટા ક્વોલિટી	અધૂરો, નોઇઝી, પક્ષપાતી ડેટા	નબળું મોડેલ પરફ્રોર્મન્સ
ઓવરફિટિંગ	મોડેલ ટ્રેનિંગ ડેટાને યાદ રાખે છે	નબળું જનરલાઇઝેશન
કમ્પ્યુટેશનલ	ઉચ્ચ પ્રોસેસિંગ આવશ્યકતાઓ	રિસોર્સ મર્યાદાઓ
ઇન્ટરપ્રિટેબિલિટી	બ્લેક બોક્સ મોડેલ્સ	પારદર્શિતાનો અભાવ

ML માટે અનુપયુક્ત સમસ્યાઓ:

1. **સિમ્પલ રલ-બેસ્ક ટાસ્ક** - મૂળભૂત ગણતરીઓ, સિમ્પલ if-then લોજિક

2. **નૈતિક નિર્ણયો** - માનવીય મૂલ્યોની આવશ્યકતા ધરાવતા નૈતિક जजमेन्ट्स

3. **ક્રિએટિવ એક્સપ્રેશન** - માનવીય લાગણીની આવશ્યકતા ધરાવતી મૂળ કલાત્મક સર્જના

અન્ય સમસ્યાઓ:

• પ્રાઇવસી ચિંતાઓ: સંવેદનશીલ ડેટા હેન્ડલિંગ

• બાયસ પ્રોપેગેશન: અન્યાયકારક અલ્ગોરિધમિક નિર્ણયો

• ફ્રીચર સિલેક્શન: સંબંધિત ઇનપુટ વેરિએબલ્સ પસંદ કરવા

મેમરી ટ્રીક: "ડેટા ડ્રાઇવ્સ ક્વોલિટી" - ડેટા ક્વોલિટી સીધી રીતે મોડેલ ક્વોલિટીને અસર કરે છે

પ્રશ્ન 2(અ) [3 ગુણ]

સામાન્ય મશીન લર્નિંગ સમસ્યામાં વિવિદ્ય પ્રકારના ડેટાનો સારાંશ આપો

જવાબ:

ટેબલ: મશીન લર્નિંગમાં ડેટા પ્રકારો

ડેટા પ્રકાર	વર્ણન	ઉદાહરણ
ન્યુમેરિકલ	માત્રાત્મક મૂલ્યો	ઉમર: 25, ઊંચાઈ: 170cm
કેટેગોરિકલ	અસ્પષ્ટ કેટેગરીઓ	રંગ: લાલ, વાદળી, લીલો
ઓર્ડિનલ	ક્રમબદ્ધ કેટેગરીઓ	રેટિંગ: નબળું, સારું, ઉત્તમ
બાઇનરી	બે શક્ય મૂલ્યો	લિંગ: પુરુષ/સ્ત્રી

લક્ષણો:

• સ્ટ્રક્ચર્ડ: ટેબલોમાં વ્યવસ્થિત (ડેટાબેસેસ, સ્પ્રેડશીટ્સ)

• અનસ્ટ્રક્ચર્ડ: ઇમેજ, ટેક્સ્ટ, ઓડિયો ફાઇલો

• ટાઇમ-સીરીઝ: સમય પર ડેટા પોઇન્ટ્સ

મેમરી ટ્રીક: "નંબર્સ કાઉન્ટ બેટર દેન વર્ડ્સ" - ન્યુમેરિકલ, કેટેગોરિકલ, બાઇનરી, ટેક્સ્ટ

પ્રશ્ન 2(બ) [4 ગુણ]

બંને એટ્રિબ્યુટ માટે વેરિયન્સ ગણતરી કરો. નક્કી કરો કે કઈ એટ્રિબ્યુટ મીનની આસપાસ સ્પ્રેડ આઉટ છે જવાબ:

આપેલ ડેટા:

• એટ્રિબ્યુટ 1: 32, 37, 47, 50, 59

• એટ્રિબ્યુટ 2: 48, 40, 41, 47, 49

ગણતરીઓ:

એટ્રિબ્યુટ 1:

• ਮੀਜ = (32+37+47+50+59)/5 = 225/5 = 45

• વેરિયન્સ = [(32-45)² + (37-45)² + (47-45)² + (50-45)² + (59-45)²]/5

• વેરિયન્સ = [169 + 64 + 4 + 25 + 196]/5 = 458/5 = 91.6

એટ્રિબ્યુટ 2:

• भीन = (48+40+41+47+49)/5 = 225/5 = 45

• વેરિયન્સ = [(48-45)² + (40-45)² + (41-45)² + (47-45)² + (49-45)²]/5

• વેરિયન્સ = [9 + 25 + 16 + 4 + 16]/5 = 70/5 = 14

પરિણામ: એટ્રિબ્યુટ 1 (વેરિયન્સ = 91.6) એટ્રિબ્યુટ 2 (વેરિયન્સ = 14) કરતાં વધુ સ્પ્રેડ આઉટ છે.

મેમરી ટ્રીક: "હાયર વેરિયન્સ શોઝ સ્પ્રેડ" - વધુ વેરિયન્સ વધુ વિખેરાઈને દર્શાવે છે

પ્રશ્ન 2(ક) [7 ગુણ]

ડેટા ગુણવત્તા સમસ્યા તરફ દોરી જતા ફેક્ટર્સની યાદી બનાવો. આઉટલાયર્સ અને મિસિંગ વેલ્યુ કેવી રીતે હેન્ડલ કરવું

જવાબ:

ટેબલ: ડેટા ગુણવત્તા સમસ્થાઓ

ફેક્ટર	કારણ	સોલ્યુશન
અપૂર્ણતા	મિસિંગ ડેટા કલેક્શન	ઇમ્પ્યુટેશન ટેકનિક્સ
અસંગતતા	વિવિધ ડેટા ફોર્મેટ્સ	સ્ટેન્ડર્ડાઇઝેશન
અયોક્કસતા	દ્યુમન/સેન્સર એરર્સ	વેલિડેશન રૂલ્સ
નોઇઝ	રેન્ડમ વેરિએશન્સ	ફિલ્ટરિંગ મેથડ્સ

આઉટલાયર્સ હેન્ડલ કરવું:

• **ડિટેક્શન**: સ્ટેટિસ્ટિકલ મેથડ્સ (Z-score, IQR)

• ટ્રીટમેન્ટ: એક્સ્ટ્રીમ વેલ્યુઝને રીમૂવ, ટ્રાન્સફોર્મ, અથવા કેપ કરવી

• વિઝ્યુઅલાઇઝેશન: બોક્સ પ્લોટ્સ, સ્કેટર પ્લોટ્સ

મિસિંગ વેલ્યુઝ હેન્ડલ કરવું:

• ડિલીશન: અપૂર્ણ રેકોર્ડ્સ રીમૂવ કરવા

• ઇમ્પ્યુટેશન: મીન, મીડિયન, અથવા મોડ સાથે ભરવું

• પ્રિડિક્શન: મિસિંગ વેલ્યુઝની આગાહી કરવા માટે ML નો ઉપયોગ

કોડ ઉદાહરણ:

```
# મિસિંગ વેલ્યુઝ હેન્ડલ કરવું
df.fillna(df.mean()) # મીન ઇમ્પ્યુટેશન
df.dropna() # મિસિંગ રોઝ રીમૂવ કરવા
```

મેમરી ટ્રીક: "ક્લીન ડેટા મેક્સ મોડેલ્સ" - સાફ ડેટા બેહતર મોડેલ્સ બનાવે છે

પ્રશ્ન 2(અ) OR [3 ગુણ]

વિવિદ્ય મશીન લર્નિંગ પ્રવૃત્તિઓ આપો

જવાબ:

ટેબલ: મશીન લર્નિંગ પ્રવૃત્તિઓ

પ્રવૃત્તિ	હેતુ	ઉદાહરણ
ડેટા કલેક્શન	સંબંધિત માહિતી એકત્રિત કરવી	સર્વે, સેન્સર્સ, ડેટાબેસેસ
ડેટા પ્રીપ્રોસેસિંગ	ડેટાને સાફ અને તૈયાર કરવું	નોઇઝ રીમૂવ કરવું, મિસિંગ વેલ્યુઝ હેન્ડલ કરવું
ફીચર એન્જિનિયરિંગ	અર્થપૂર્ણ વેરિએબલ્સ બનાવવા	રો ડેટામાંથી ફીચર્સ એક્સ્ટ્રેક્ટ કરવા
મોડેલ ટ્રેનિંગ	અલ્ગોરિધમને પેટર્ન શીખવવા	ટ્રેનિંગ ડેટાસેટનો ઉપયોગ
મોડેલ ઇવેલ્યુએશન	પરફોર્મન્સ આકારણી	ટેસ્ટ એક્યુરસી, પ્રિસિઝન, રિકોલ
મોડેલ ડિપ્લોયમેન્ટ	મોડેલને પ્રોડક્શનમાં મૂકવું	વેબ સર્વિસેસ, મોબાઇલ એપ્સ

મુખ્ય પ્રવૃત્તિઓ:

• **એક્સ્પ્લોરેટરી ડેટા એનાલિસિસ**: ડેટા પેટર્ન સમજવા

• હાયપરપેરામીટર ટ્યુનિંગ: મોડેલ સેટિંગ્સ ઓપ્ટિમાઇઝ કરવા

• ક્રોસ-વેલિડેશન: મજબૂત પરફોર્મન્સ આકારણી

મેમરી ટ્રીક: "ડેટા મોડેલ્સ પર્ફોર્મ એક્સેલન્ટલી" - ડેટા તૈયારી, મોડેલ બિલ્ડિંગ, પરફોર્મન્સ ઇવેલ્યુએશન, એક્ઝિક્યુશન

પ્રશ્ન 2(બ) OR [4 ગુણ]

નીચેની સંખ્યાઓના મીન અને મીડિયન ની ગણતરી કરો: 12,15,18,20,22,24,28,30

જવાબ:

આપેલ સંખ્યાઓ: 12, 15, 18, 20, 22, 24, 28, 30

મીન ગણતરી:

મીન = (12+15+18+20+22+24+28+30)/8 = 169/8 = 21.125

મીડિયન ગણતરી:

• સંખ્યાઓ પહેલેથી સાર્ટે કરેલી છે: 12, 15, 18, 20, 22, 24, 28, 30

• સમ કાઉન્ટ (8 સંખ્યાઓ)

• મીડિયન = (4મી સંખ્યા + 5મી સંખ્યા)/2 = (20 + 22)/2 = 21

ટેબલ: સ્ટેટિસ્ટિકલ સમરી

ม เนธ์ร	મૂલ્ય	વર્ણન
મીન	21.125	સરેરાશ મૂલ્ય
મીડિયન	21	મધ્યમ મૂલ્ય
કાઉન્ટ	8	કુલ સંખ્યાઓ

મેમરી ટ્રીક: "મિડલ મેક્સ મીડિયન" - મધ્યમ મૂલ્ય મીડિયન આપે છે

પ્રશ્ન 2(ક) OR [7 ગુણ]

ડેટા પ્રીપ્રોસેસિંગના સંદર્ભમાં ડાયમેન્શનાલિટી રિડક્શન અને ફીચર સબસેટ સિલેક્શન પર ટૂંકી નોંધ લખો

જવાબ:

ડાયમેન્શનાલિટી રિડક્શન અપ્રસ્તુત ફીચર્સને દૂર કરે છે અને કોમ્પ્યુટેશનલ જટિલતા ઘટાડે છે જ્યારે મહત્વપૂર્ણ માહિતી જાળવી રાખે છે.

ટેબલ: ડાયમેન્શનાલિટી રિડક્શન ટેકનિક્સ

ટેકનિક	મેથડ	વપરાશ
PCA	પ્રિન્સિપલ કમ્પોનન્ટ એનાલિસિસ	લીનિયર રિડક્શન
LDA	લીનિયર ડિસ્ક્રિમિનન્ટ એનાલિસિસ	ક્લાસિફિકેશન ટાસ્ ક સ
t-SNE	નોન-લીનિયર એમ્બેડિંગ	વિઝ્યુઅલાઇઝેશન
ફીચર સિલેક્શન	મહત્વપૂર્ણ ફીચર્સ પસંદ કરવા	ઓવરફ્રિટિંગ ઘટાડવું

ફીચર સબસેટ સિલેક્શન મેથડ્સ:

• ફિલ્ટર મેથડ્સ: સ્ટેટિસ્ટિકલ ટેસ્ટ્સ, કોરિલેશન એનાલિસિસ

• રેપર મેથડ્સ: ફોરવર્ડ/બેકવર્ડ સિલેક્શન

• **એમ્બેડેડ મેથડ્સ**: LASSO, રિજ રિગ્રેશન

ફાયદાઓ:

• કોમ્પ્યુટેશનલ કાર્યક્ષમતા: ઝડપી ટ્રેનિંગ અને પ્રિડિક્શન

• સ્ટોરેજ રિડક્શન: ઓછી મેમરી આવશ્યકતાઓ

• **નોઇઝ રિડક્શન**: અપ્રસ્તુત ફીચર્સ દૂર કરવા

• **વિઝ્યુઅલાઇઝેશન**: 2D/3D પ્લોટિંગ સક્ષમ કરવું

કોડ ઉદાહરણ:

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
reduced_data = pca.fit_transform(data)
```

મેમરી ટ્રીક: "રિક્યુસ ફીચર્સ, ઇમ્પ્રુવ પર્ફોર્મન્સ" - ઓછા ફીચર્સ ઘણીવાર બેહતર મોડેલ્સ તરફ દોરી જાય છે

પ્રશ્ન 3(અ) [3 ગુણ]

શું બાયસ ML મોડેલના પરફોર્મન્સને અસર કરે છે? ટૂંકમાં સમજાવો

જવાબ:

હા, બાયસ પ્રિડિક્શન્સમાં સિસ્ટેમેટિક એરર્સ બનાવીને ML મોડેલના પરફોર્મન્સને નોંધપાત્ર રીતે અસર કરે છે.

ટેબલ: બાયસના પ્રકારો

બાયસ પ્રકાર	વર્ણન	અસર
સિલેક્શન બાયસ	બિન-પ્રતિનિધિત્વકારી ડેટા	નબળું જનરલાઇઝેશન
કન્ફર્મેશન બાયસ	અપેક્ષિત પરિણામોની તરફેણ	ત્રાંસા નિષ્કર્ષો
અલ્ગોરિદ્યમિક બાયસ	મોડેલ ધારણાઓ	અન્યાયકારક પ્રિડિક્શન્સ

પરકોર્મન્સ પર અસરો:

• અંડરફિટિંગ: ઉચ્ચ બાયસ અતિ સરળ મોડેલ્સ તરફ દોરી જાય છે

• નબળી ચોકસાઈ: સિસ્ટેમેટિક એરર્સ એકંદર પરફોર્મન્સ ઘટાડે છે

• અન્યાયકારક નિર્ણયો: પક્ષપાતી મોડેલ્સ જૂથો સામે ભેદભાવ કરે છે

ઘટાડવાની વ્યૂહરચનાઓ:

• વિવિધ ટ્રેનિંગ ડેટા

• ક્રોસ-વેલિડેશન ટેકનિક્સ

• બાયસ ડિટેક્શન અલ્ગોરિધમ્સ

મેમરી ટ્રીક: "બાયસ બ્રેક્સ બેટર પર્ફોર્મન્સ" - બાયસ મોડેલની અસરકારકતા ઘટાડે છે

પ્રશ્ન 3(બ) [4 ગુણ]

ક્રોસ-વેલિડેશન અને બૂટસ્ટ્રેપ સેમ્પલિંગની સરખામણી કરો

જવાબ:

ટેબલ: ક્રોસ-વેલિડેશન vs બૂટસ્ટ્રેપ સેમ્પલિંગ

પાસું	ક્રોસ-વેલિડેશન	બૂટસ્ટ્રેપ સેમ્પલિંગ
મેથડ	ડેટાને ફોલ્ડ્સમાં વિભાજિત કરવું	રિપ્લેસમેન્ટ સાથે સેમ્પલ કરવું
ડેટા ઉપયોગ	બધો ડેટા વાપરે છે	મલ્ટિપલ સેમ્પલ્સ બનાવે છે
હેતુ	મોડેલ ઇવેલ્યુએશન	અનિશ્ચિતતાનો અંદાજ
ઓવરલેપ	સેટ્સ વચ્ચે કોઈ ઓવરલેપ નથી	ડુપ્લિકેટ સેમ્પલ્સની મંજૂરી

ક્રોસ-વેલિડેશન:

- ડેટાને k સમાન ભાગોમાં વહેંચે છે
- k-1 ભાગોમાં ટ્રેન કરે છે, 1 ભાગમાં ટેસ્ટ કરે છે
- મજબૂત ઇવેલ્યુએશન માટે k વખત પુનરાવર્તન કરે છે

બૂટસ્ટ્રેપ સેમ્પલિંગ:

- રિપ્લેસમેન્ટ સાથે રેન્ડમ સેમ્પલ્સ બનાવે છે
- સમાન સાઇઝના મલ્ટિપલ ડેટાસેટ્સ જનરેટ કરે છે
- કોન્ફિડન્સ ઇન્ટરવલ્સનો અંદાજ કાઢે છે

એપ્લિકેશન્સ:

- ક્રોસ-વેલિડેશન: મોડેલ સિલેક્શન, હાયપરપેરામીટર ટ્યુનિંગ
- બૂટસ્ટ્રેપ: સ્ટેટિસ્ટિકલ ઇન્ફરન્સ, કોન્ફિડન્સ એસ્ટિમેશન

મેમરી ટ્રીક: "ક્રોસ ચેક્સ, બૂટસ્ટ્રેપ બિલ્ડ્સ" - ક્રોસ-વેલિડેશન પરફોર્મન્સ ચેક કરે છે, બૂટસ્ટ્રેપ ક્રોન્ફિડન્સ બિલ્ડ કરે છે

પ્રશ્ન 3(ક) [7 ગુણ]

કન્ફ્યુઝન મેટ્રિક્સ ગણતરી અને મેટ્રિક્સ

જવાબ:

આપેલ માહિતી:

- True Positive (TP): 83 (પ્રિડિક્ટેડ ખરીદશે, વાસ્તવમાં ખરીધું)
- False Positive (FP): 7 (પ્રિડિક્ટેડ ખરીદશે, નથી ખરીધું)
- False Negative (FN): 5 (પ્રિડિક્ટેડ નહીં ખરીદે, વાસ્તવમાં ખરીધું)
- True Negative (TN): 5 (પ્રિડિક્ટેડ નહીં ખરીદે, નથી ખરીધું)

કન્ફ્યુઝન મેટ્રિક્સ:

	પ્રિડિક્ટેડ ખરીદશ <u>ે</u>	પ્રિડિક્ટેડ નહીં ખરીદે
વાસ્તવમાં ખરીદે	83 (TP)	5 (FN)
વાસ્તવમાં નહીં ખરીદે	7 (FP)	5 (TN)

ગણતરીઓ:

અ) એરર રેટ:

એરર રેટ = (FP + FN) / કુલ = (7 + 5) / 100 = 0.12 = 12%

બ) પ્રિસિઝન:

ਮ਼ਿੰਦੇਅਜ = TP / (TP + FP) = 83 / (83 + 7) = 83/90 = 0.922 = 92.2%

ક) રિકોલ:

રિકોલ = TP / (TP + FN) = 83 / (83 + 5) = 83/88 = 0.943 = 94.3%

s) F-મેઝર:

F-મેઝર = 2 × (પ્રિસિઝન × રિકોલ) / (પ્રિસિઝન + રિકોલ)

F-મેઝર = 2 × (0.922 × 0.943) / (0.922 + 0.943) = 0.932 = 93.2%

ટેબલ: પરફોર્મન્સ મેટ્રિક્સ

મેટ્રિક	મૂલ્ય	અર્થઘટન
એસ્ટ રેટ	12%	મોડેલ 12% ખોટી આગાહીઓ કરે છે
પ્રિસિઝન	92.2%	પ્રિડિક્ટેડ ખરીદદારોમાંથી 92.2% ખરેખર ખરીદે છે
રિકોલ	94.3%	મોડેલ 94.3% વાસ્તવિક ખરીદદારોને ઓળખે છે
F-મેઝર	93.2%	સંતુલિત પરફોર્મન્સ માપદંડ

મેમરી ટ્રીક: "પર્ફેક્ટ રિકોલ ફાઇન્ડ્સ એવરીવન" - પ્રિસિઝન ચોકસાઈ માપે છે, રિકોલ બધા પોઝિટિવ શોધે છે

પ્રશ્ન 3(અ) OR [3 ગુણ]

સંક્ષિપ્તમાં વ્યાખ્યાયિત કરો: અ) ટાર્ગેટ ફંક્શન બ) કોસ્ટ ફંક્શન ક) લોસ ફંક્શન

જવાબ:

ટેબલ: ફંક્શન વ્યાખ્યાઓ

ફંક્શન	વ્યાખ્યા	હેતુ
ટાર્ગેટ ફંક્શન	ઇનપુટથી આઉટપુટ સુધીની આદર્શ મેપિંગ	આપણે શું શીખવા માગીએ છીએ
કોસ્ટ ફંક્શન	એકંદર મોડેલ એરરને માપે છે	કુલ પરફોર્મન્સનું મૂલ્યાંકન
લોસ ફંક્શન	એક પ્રિડિક્શન માટે એરર માપે છે	વ્યક્તિગત પ્રિડિક્શન એરર

વિગતવાર સમજૂતી:

- **ટાર્ગેંટ ફંક્શન**: f(x) = y, સાચો સંબંધ જેનો આપણે અંદાજ કાઢવા માગીએ છીએ
- **કોસ્ટ ફંક્શન**: તમામ લોસ ફંક્શન્સની સરેરાશ, J = (1/n)Σloss(yi, ŷi)
- **લોસ ફંક્શન**: એક સેમ્પલ માટે એરર, દા.ત., (yi ŷi)²

સંબંધ: કોસ્ટ ફંક્શન સામાન્ય રીતે તમામ ટ્રેનિંગ ઉદાહરણોમાં લોસ ફંક્શન્સની સરેરાશ હોય છે.

મેમરી ટ્રીક: "ટાર્ગેટ કોસ્ટ્સ લેસ" - ટાર્ગેટ ફંક્શન આદર્શ છે, કોસ્ટ ફંક્શન એકંદર એરર માપે છે, લોસ ફંક્શન વ્યક્તિગત એરર માપે છે

પ્રશ્ન 3(બ) OR [4 ગુણ]

બેલેન્સ્ક ફિટ, અંડરફિટ અને ઓવરફિટ સમજાવો

જવાબ:

ટેબલ: મોડેલ ફિટિંગ પ્રકારો

ફિટ પ્રકાર	ટ્રેનિંગ એરર	વેલિડેશન એરર	લક્ષણો
અંડરફિટ	ઊંચો	ઊંચો	ખૂબ સાદું મોડેલ
બેલેન્સ્ડ ફિટ	નીથો	નીચો	આદર્શ જટિલતા
ઓવરફિટ	ખૂબ નીચો	ઊંચો	ખૂબ જટિલ મોડેલ

વિઝ્યુઅલાઇઝેશન:

લક્ષણો:

- અંડરફિટ: મોડેલ ખૂબ સાદું, પેટર્ન કેપ્ચર કરી શકતું નથી
- બેલેન્સ્ક ફિટ: યોગ્ય જટિલતા, સારું જનરલાઇઝેશન
- ઓવરફિટ: મોડેલ ખૂબ જટિલ, ટ્રેનિંગ ડેટાને યાદ રાખે છે

સોલ્યુશન્સ:

- અંડરફિટ: મોડેલ જટિલતા વધારવી, ફીચર્સ ઉમેરવા
- ઓવરફિટ: રેગ્યુલરાઇઝેશન, ક્રોસ-વેલિડેશન, વધુ ડેટા

મેમરી ટ્રીક: "બેલેન્સ બ્રિંગ્સ બેસ્ટ રિઝલ્ટ્સ" - સંતુલિત મોડેલ્સ નવા ડેટા પર શ્રેષ્ઠ પરફોર્મ કરે છે

પ્રશ્ન 4(અ) [3 ગુણ]

ક્લાસિફિકેશન લર્નિંગ સ્ટેપ્સ આપો

જવાબ:

ટેબલ: ક્લાસિફિકેશન લર્નિંગ સ્ટેપ્સ

સ્ટેપ	นญ์า	હેતુ
ડેટા કલેક્શન	લેબલ્ડ ઉદાહરણો એકત્રિત કરવા	ટ્રેનિંગ મટેરિયલ પ્રદાન કરવું
પ્રીપ્રોસેસિંગ	ડેટાને સાફ અને તૈયાર કરવું	ડેટા ગુણવત્તા સુધારવી
ફીચર સિલેક્શન	સંબંધિત એટ્રિબ્યુટ્સ પસંદ કરવા	જટિલતા ઘટાડવી
મોડેલ ટ્રેનિંગ	ટ્રેનિંગ ડેટામાંથી શીખવું	ક્લાસિફાયર બનાવવું
ઇવેલ્યુએશન	મોડેલ પરફોર્મન્સ ટેસ્ટ કરવું	ચોકસાઈ આકારવી
ડિપ્લોયમેન્ટ	નવી આગાહીઓ માટે ઉપયોગ	પ્રેક્ટિકલ એપ્લિકેશન

વિગતવાર પ્રક્રિયા:

- 1. **ડેટાસેટ તૈયાર કરવું** ઇનપુટ ફીચર્સ અને ક્લાસ લેબલ્સ સાથે
- 2. **ડેટા સ્પ્લિટ કરવું** ટ્રેનિંગ અને ટેસ્ટિંગ સેટ્સમાં
- 3. **ક્લાસિફાયર ટ્રેન કરવું** ટ્રેનિંગ ડેટાનો ઉપયોગ કરીને
- 4. **મોડેલ વેલિડેટ કરવું** ટેસ્ટ ડેટાનો ઉપયોગ કરીને
- 5. **પેરામીટર્સ ફાઇન-ટ્યુન કરવા** આદર્શ પરફોર્મન્સ માટે

મેમરી ટ્રીક: "ડેટા પ્રેપેરેશન ફેસિલિટેટ્સ મોડેલ એક્સેલન્સ" - ડેટા પ્રેપ, ફીચર સિલેક્શન, મોડેલ ટ્રેનિંગ, ઇવેલ્યુએશન

પ્રશ્ન 4(બ) [4 ગુણ]

લીનિયર રિલેશનશિપ ગણતરી

જવાબ:

આપેલ ડેટા:

કલાકો (X)	પરીક્ષા સ્કોર (Y)
2	85
3	80
4	75
5	70
6	60

લીનિયર રિગ્રેશન ગણતરી:

સ્ટેપ 1: મીન્સ કેલ્ક્યુલેટ કરવા

- $\bar{X} = (2+3+4+5+6)/5 = 4$
- $\bar{Y} = (85+80+75+70+60)/5 = 74$

સ્ટેપ 2: સ્લોપ (b) કેલ્ક્યુલેટ કરવું

- -24મેરેટર = $\Sigma(X-\bar{X})(Y-\bar{Y}) = (2-4)(85-74) + (3-4)(80-74) + (4-4)(75-74) + (5-4)(70-74) + (6-4)(60-74)$
- = (-2)(11) + (-1)(6) + (0)(1) + (1)(-4) + (2)(-14) = -22 6 + 0 4 28 = -60
- b = -60/10 = -6

સ્ટેપ 3: ઇન્ટરસેપ્ટ (a) કેલ્ક્યુલેટ કરવું

• $a = \bar{Y} - b \times \bar{X} = 74 - (-6) \times 4 = 74 + 24 = 98$

લીનિયર ઇક્વેશન: Y = 98 - 6X

અર્થઘટન: સ્માર્ટફોન ઉપયોગના દરેક વધારાના કલાક માટે, પરીક્ષા સ્કોર 6 પોઇન્ટ ઘટે છે.

મેમરી ટ્રીક: "મોર ફોન, લેસ સ્કોર" - ફોનના ઉપયોગ અને ગ્રેડ્સ વચ્ચે નેગેટિવ કોરિલેશન

પ્રશ્ન 4(ક) [7 ગુણ]

વર્ગીકરણના પગલાંને વિગતવાર સમજાવો

જવાબ:

ક્લાસિફિકેશન એ સુપરવાઇઝ્ડ લર્નિંગ પ્રક્રિયા છે જે ઇનપુટ ડેટાને પૂર્વનિર્ધારિત કેટેગરીઓ અથવા ક્લાસોમાં સોંપે છે.

વિગતવાર ક્લાસિકિકેશન સ્ટેપ્સ:

1. સમસ્યા વ્યાખ્યા

- ક્લાસો અને ઉદ્દેશ્યો વ્યાખ્યાયિત કરવા
- ઇનપુટ ફીચર્સ અને ટાર્ગેટ વેરિએબલ ઓળખવા
- સફળતાના માપદંડો નક્કી કરવા

2. ડેટા કલેક્શન અને તૈયારી

3. કીચર એન્જિનિયરિંગ

- ફીચર સિલેક્શન: સંબંધિત એટ્રિબ્યુટ્સ પસંદ કરવા
- ફીચર એક્સ્ટ્રેક્શન: નવા અર્થપૂર્ણ ફીચર્સ બનાવવા
- નોર્મલાઇઝેશન: ફીચર્સને સમાન રેન્જમાં સ્કેલ કરવા

4. મોડેલ સિલેક્શન અને ટેનિંગ

ટેબલ: સામાન્ય ક્લાસિફિકેશન અલ્ગોરિધમ્સ

અલ્ગોરિદ્યમ	શ્રેષ્ઠ માટે	ફાયદાઓ
ડિસિઝન ટ્રી	ઇન્ટરપ્રિટેબલ રૂલ્સ	સમજવામાં સરળ
SVM	હાઇ-ડાયમેન્શનલ ડેટા	સારું જનરલાઇઝેશન
ન્યુરલ નેટવર્ક્સ	જટિલ પેટર્ન્સ	ઉચ્ચ યોકસાઈ
નાઇવ બેઝ	ટેક્સ્ટ ક્લાસિફિકેશન	ઝડપી ટ્રેનિંગ

5. મોડેલ ઇવેલ્યુએશન

• કન્ફ્યુઝન મેટ્રિક્સ: વિગતવાર પરફોર્મન્સ એનાલિસિસ

• ક્રોસ-વેલિડેશન: મજબૂત પરફોર્મન્સ અંદાજ

• મેટ્રિક્સ: એક્યુરસી, પ્રિસિઝન, રિકોલ, F1-સ્કોર

6. હાયપરપેરામીટર ટ્યુનિંગ

• આદર્શ પેરામીટર્સ માટે ગ્રિડ સર્ચ

• પેરામીટર સિલેક્શન માટે વેલિડેશન સેટ

7. અંતિમ ઇવેલ્યુએશન અને ડિપ્લોયમેન્ટ

• અદ્રશ્ય ડેટા પર ટેસ્ટ કરવું

• પ્રોડક્શન ઉપયોગ માટે મોડેલ ડિપ્લોય કરવું

• સમય જતાં પરફોર્મન્સ મોનિટર કરવું

મેમરી ટ્રીક: "પ્રોપર ડેટા મોડેલિંગ ઇવેલ્યુએટ્સ પર્ફોર્મન્સ થોરોલી" - પ્રોબ્લેમ ડેફિનિશન, ડેટા પ્રેપ, મોડેલિંગ, ઇવેલ્યુએશન, પર્ફોર્મન્સ ટેસ્ટિંગ, ટ્યુનિંગ

પ્રશ્ન 4(અ) OR [3 ગુણ]

શું k વેલ્યુની પસંદગી KNN અલ્ગોરિધમના પરફોર્મન્સને પ્રભાવિત કરે છે? ટૂંકમાં સમજાવો

જવાલ:

હા, k વેલ્યુ ડિસિઝન બાઉન્ડરી અને મોડેલ જટિલતાને અસર કરીને KNN અલ્ગોરિધમના પરફોર્મન્સને નોંધપાત્ર રીતે પ્રભાવિત કરે છે.

ટેબલ: K વેલ્યુની અસર

K વેલ્યુ	અસર	પરફોર્મન્સ
નાનું K (k=1)	નોઇઝ પ્રત્યે સંવેદનશીલ	હાઇ વેરિયન્સ, લો બાયસ
મધ્યમ K	સંતુલિત નિર્ણયો	આદર્શ પરફોર્મન્સ
મોટું K	સ્મૂથ બાઉન્ડરીઝ	લો વેરિયન્સ, હાઇ બાયસ

અસર એનાલિસિસ:

- k=1: ટ્રેનિંગ ડેટા પર ઓવરફિટ થઈ શકે, આઉટલાયર્સ પ્રત્યે સંવેદનશીલ
- **આદર્શ k**: સામાન્ય રીતે વિષમ સંખ્યા, બાયસ-વેરિયન્સ ટ્રેડઓફને સંતુલિત કરે
- **મોટું k**: અંડરફિટ થઈ શકે, સ્થાનિક પેટર્ન્સ ગુમાવે

સિલેક્શન વ્યૂહરચના:

- આદર્શ k શોધવા માટે ક્રોસ-વેલિડેશનનો ઉપયોગ
- શરૂઆતના બિંદુ તરીકે k = √n ટ્રાય કરો
- કોમ્પ્યુટેશનલ કોસ્ટ vs ચોકસાઈનો વિચાર કરો

મેમરી ટ્રીક: "સ્મોલ K વેરીઝ, લાર્જ K સ્મૂથ્સ" - નાનું k વેરિયન્સ બનાવે, મોટું k સ્મૂથ બાઉન્ડરીઝ બનાવે

પ્રશ્ન 4(બ) OR [4 ગુણ]

SVM મોડેલમાં સપોર્ટ વેક્ટર્સને વ્યાખ્યાયિત કરો

જવાબ:

સપોર્ટ વેક્ટર્સ એ મહત્વપૂર્ણ ડેટા પોઇન્ટ્સ છે જે સપોર્ટ વેક્ટર મશીન અલ્ગોરિધમમાં ડિસિઝન બાઉન્ડરી (હાયપરપ્લેન)ની સૌથી નજીક આવેલા હોય છે.

ટેબલ: સપોર્ટ વેક્ટર લક્ષણો

પાસું	વર્ણન	મહત્વ
સ્થાન	હાયપરપ્લેનની સૌથી નજીકના પોઇન્ટ્સ	ડિસિઝન બાઉન્ડરી વ્યાખ્યાયિત કરે
અંતર	બાઉન્ડરીથી સમાન અંતર	મેક્સિમમ માર્જિન
ભૂમિકા	હાયપરપ્લેનને સપોર્ટ કરે	આદર્શ વિભાજન નક્કી કરે
સંવેદનશીલતા	તેમને રીમૂવ કરવાથી મોડેલ બદલાય	મોડેલ સ્ટ્રક્ચર માટે મહત્વપૂર્ણ

મુખ્ય ગુણદ્યમોં:

- માર્જિન ડેફિનિશન: સપોર્ટ વેક્ટર્સ ક્લાસો વચ્ચે મેક્સિમમ માર્જિન નક્કી કરે છે
- મોડેલ ડિપેન્ડન્સી: માત્ર સપોર્ટ વેક્ટર્સ જ અંતિમ મોડેલને અસર કરે છે
- બાઉન્ડરી કોર્મેશન: આદર્શ વિભાજક હાયપરપ્લેન બનાવે છે

ડાયાગ્રામ:

ક્લાસ A	ક્લાસ B
0	x
0	
0 0	
0	x
0	x
સપોર્ટ વેક્ટર્સ:	
હાયપરપ્લેન: –	

ગાણિતિક મહત્વ: સપોર્ટ વેક્ટર્સ yi(w·xi + b) = 1 કન્સ્ટ્રેઇન્ટને સંતુષ્ટ કરે છે, જ્યાં તેઓ માર્જિન બાઉન્ડરી પર બરાબર સ્થિત હોય છે.

મેમરી ટ્રીક: "સપોર્ટ વેક્ટર્સ સપોર્ટ ડિસિઝન્સ" - આ વેક્ટર્સ ડિસિઝન બાઉન્ડરીને સપોર્ટ કરે છે

પ્રશ્ન 4(ક) OR [7 ગુણ]

લોજિસ્ટિક રિગ્રેશનને વિગતવાર સમજાવો

જવાબ:

લોજિસ્ટિક રિગ્રેશન એ બાઇનરી ક્લાસિફિકેશન માટે વપરાતી સ્ટેટિસ્ટિકલ મેથડ છે જે લોજિસ્ટિક ફંક્શનનો ઉપયોગ કરીને ક્લાસ મેમ્બરશિપની સંભાવનાને મોડેલ કરે છે.

ગાણિતિક આદ્યાર:

સિગ્મોઇડ ફંક્શન:

$$\sigma(z) = 1 / (1 + e^{-(-z)})$$

% $z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$

ટેબલ: લીનિયર vs લોજિસ્ટિક રિગ્રેશન

પાસું	લીનિયર રિગ્રેશન	લોજિસ્ટિક રિગ્રેશન
આઉટપુટ	સતત મૂલ્યો	સંભાવનાઓ (0-1)
ફંક્શન	લીનિયર	સિગ્મોઇડ (S-કર્વ)
હેતુ	આગાહી	ક્લાસિફિકેશન
એરર ફંક્શન	મીન સ્ક્વેર્ડ એરર	લોગ-લાઇકલીહુડ

મુખ્ય ઘટકો:

1. લોજિસ્ટિક ફંક્શન ગુણધર્મો:

• ડ-આકારનો કર્વ: 0 અને 1 વચ્ચે સ્મૂથ ટ્રાન્ઝિશન

• એસિમ્પ્ટોટ્સ: 0 અને 1ની નજીક પહોંચે પણ ક્યારેય પહોંચતું નથી

• મોનોટોનિક: હંમેશા વધતું ફંક્શન

2. મોડેલ ટ્રેનિંગ:

• મેક્સિમમ લાઇકલીહુડ એસ્ટિમેશન: જોચેલા ડેટાની સંભાવના વધારતા પેરામીટર્સ શોધવા

• ગ્રેડિયન્ટ ડિસેન્ટ: પુનરાવર્તક ઓપ્ટિમાઇઝેશન અલ્ગોરિધમ

• કોસ્ટ ફંક્શન: લોગ-લોસ અથવા ક્રોસ-એન્ટ્રોપી

3. નિર્ણય લેવું:

• થ્રેશોલ્ક: બાઇનરી ક્લાસિફિકેશન માટે સામાન્ય રીતે 0.5

• **પ્રોબેબિલિટી આઉટપુટ**: P(y=1|x) ક્લાસ સંભાવના આપે છે

• **ડિસિઝન રલ**: P(y=1|x) > 0.5 હોય તો પોઝિટિવ તરીકે ક્લાસિફાય કરવું

કાયદાઓ:

• પ્રોબેબિલિસ્ટિક આઉટપુટ: આગાહીઓમાં વિશ્વાસ પ્રદાન કરે છે

• કોઈ ધારણાઓ નથી: ઇન્ડિપેન્ડન્ટ વેરિએબલ્સના વિતરણ વિશે

• **ઓછું ઓવરફિટિંગ**: જટિલ મોડેલ્સની તુલનામાં

• ઝડપી ટ્રેનિંગ: કાર્યક્ષમ કોમ્પ્યુટેશન

એપ્લિકેશન્સ:

- મેડિકલ ડાયગ્નોસિસ
- માર્કેટિંગ રિસ્પોન્સ આગાહી
- ક્રેડિટ એપ્રૂવલ નિર્ણયો
- ઇમેઇલ સ્પામ ડિટેક્શન

કોડ ઉદાહરણ:

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
probabilities = model.predict_proba(X_test)
```

મેમરી ટ્રીક: "સિગ્મોઇડ સ્કવેશેસ ઇન્ફિનિટ ઇનપુટ" - સિગ્મોઇડ ફંક્શન કોઈપણ વાસ્તવિક સંખ્યાને સંભાવનામાં કન્વર્ટ કરે છે

પ્રશ્ન 5(અ) [3 ગુણ]

Matplotlib python library પર ટૂંકી નોંધ લખો

જવાબ:

Matplotlib એ ડેટા સાયન્સ અને મશીન લર્નિંગમાં સ્ટેટિક, એનિમેટેડ અને ઇન્ટરેક્ટિવ વિઝ્યુઅલાઇઝેશન બનાવવા માટેની વ્યાપક Python લાઇબ્રેરી છે.

ટેબલ: Matplotlib મુખ્ય ફીચર્સ

ફીચર	હેતુ	ઉદાહરણ
Pyplot	MATLAB-જેવું પ્લોટિંગ ઇન્ટરફેસ	લાઇન પ્લોટ્સ, સ્કેટર પ્લોટ્સ
Object-oriented	એડવાન્સ્ડ કસ્ટમાઇઝેશન	ફિગર અને એક્સેસ ઓબ્જેક્ટ્સ
મલ્ટિપલ ફોર્મેટ્સ	વિવિધ ફોર્મેટમાં સેવ કરવું	PNG, PDF, SVG, EPS
સબપ્લોટ્સ	એક ફિગરમાં મલ્ટિપલ પ્લોટ્સ	ગ્રિડ એરેન્જમેન્ટ્સ

સામાન્ય પ્લોટ પ્રકારો:

• **લાઇન પ્લોટ**: સમય પર વલણો

• સ્કેટર પ્લોટ: વેરિએબલ્સ વચ્ચે સંબંધ

• હિસ્ટોગ્રામ: ડેટા વિતરણ

• બાર ચાર્ટ: કેટેગોરિકલ કમ્પેરિઝન્સ

• બોક્સ પ્લોટ: સ્ટેટિસ્ટિકલ સમરીઝ

મૂળભૂત ઉપયોગ:

```
import matplotlib.pyplot as plt
plt.plot(x, y)
plt.xlabel('X dGGG')
plt.ylabel('Y dGG')
plt.title('VGZ 2182G')
plt.show()
```

એપ્લિકેશન્સ: ડેટા એક્સ્પ્લોરેશન, મોડેલ પરફોર્મન્સ વિઝ્યુઅલાઇઝેશન, પ્રેઝન્ટેશન ગ્રાફિક્સ

મેમરી ટ્રીક: "Matplotlib મેક્સ પ્રિટી પ્લોટ્સ" - ડેટા વિઝ્યુઅલાઇઝેશન માટે આવશ્યક ટૂલ

પ્રશ્ન 5(બ) [4 ગુણ]

દ્ધિ-પરિમાણીય ડેટા માટે K-means ક્લસ્ટરિંગ

જવાબ:

આપેલ પોઇન્ટ્સ:

 $\{(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(25,20),(26,20),(27,20),(28,20),(29,20),(30,20)\}$

K-means અલ્ગોરિદ્યમ સ્ટેપ્સ:

સ્ટેપ 1: સેન્ટ્રોઇડ્સ ઇનિશિયલાઇઝ કરવા

- ક્લસ્ટર 1: (4, 3) ડાબા જૂથમાંથી પસંદ કરેલું
- ક્લસ્ટર 2: (27, 20) જમણા જૂથમાંથી પસંદ કરેલું

સ્ટેપ 2: નજીકના સેન્ટ્રોઇડને પોઇન્ટ્સ સોંપવા

ટેબલ: પોઇન્ટ એસાઇનમેન્ટ્સ

પોઇન્ટ	C1નું અંતર	C2નું અંતર	સોંપેલ ક્લસ્ટર
(2,3)	2.0	25.8	ક્લસ્ટર 1
(3,3)	1.0	24.8	ક્લસ્ટર 1
(4,3)	0.0	23.8	ક્લસ્ટર 1
(5,3)	1.0	22.8	ક્લસ્ટર 1
(6,3)	2.0	21.8	ક્લસ્ટર 1
(7,3)	3.0	20.8	ક્લસ્ટર 1
(8,3)	4.0	19.8	ક્લસ્ટર 1
(25,20)	23.8	2.0	ક્લસ્ટર 2
(26,20)	24.8	1.0	ક્લસ્ટર 2
(27,20)	25.8	0.0	ક્લસ્ટર 2
(28,20)	26.8	1.0	ક્લસ્ટર 2
(29,20)	27.8	2.0	ક્લસ્ટર 2
(30,20)	28.8	3.0	ક્લસ્ટર 2

સ્ટેપ 3: સેન્ટ્રોઇડ્સ અપડેટ કરવા

- $+\dot{q}$ C1 = ((2+3+4+5+6+7+8)/7, (3+3+3+3+3+3+3)/7) = (5, 3)
- +q C2 = ((25+26+27+28+29+30)/6, (20+20+20+20+20+20)/6) = (27.5, 20)

અંતિમ ક્લસ્ટર્સ:

- **SGREE 1**: {(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3)}
- **SGERR 2**: {(25,20),(26,20),(27,20),(28,20),(29,20),(30,20)}

મેમરી ટ્રીક: "સેન્ટ્રોઇડ્સ એટ્રેક્ટ નિયરેસ્ટ નેબર્સ" - પોઇન્ટ્સ નજીકના સેન્ટ્રોઇડમાં જોડાય છે

પ્રશ્ન 5(ક) [7 ગુણ]

Scikit-learn ના ફંક્શન્સ અને તેનો ઉપયોગ આપો: a. ડેટા પ્રીપ્રોસેસિંગ b. મોડેલ સિલેક્શન c. મોડેલ ઇવેલ્યુએશન અને મેટ્રિક્સ જવાબ:

Scikit-learn ડેટા પ્રીપ્રોસેસિંગથી લઈને મોડેલ ઇવેલ્યુએશન સુધીના મશીન લર્નિંગ વર્કફ્લો માટે વ્યાપક સાધનો પ્રદાન કરે છે.

a) ડેટા પ્રીપ્રોસેસિંગ ફંક્શન્સ:

ટેબલ: પ્રીપ્રોસેસિંગ ફંક્શન્સ

ફંક્શન	હેતુ	ઉદાહરણ ઉપયોગ
StandardScaler()	ફીચર્સને નોર્મલાઇઝ કરવા	મીન દૂર કરવું, યુનિટ વેરિયન્સ
MinMaxScaler()	[0,1] રેન્જમાં સ્કેલ કરવું	ફીચર સ્કેલિંગ
LabelEncoder()	કેટેગોરિકલ લેબલ્સ એન્કોડ કરવા	ટેક્સ્ટને નંબરમાં કન્વર્ટ કરવું
OneHotEncoder()	ડમી વેરિએબલ્સ બનાવવા	કેટેગોરિકલ ફીચર્સ હેન્ડલ કરવા
train_test_split()	ડેટાસેટ સ્પ્લિટ કરવું	ટ્રેનિંગ/ટેસ્ટિંગ વિભાજન

ક્રોડ ઉદાહરણ:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

b) મોડેલ સિલેક્શન ફંક્શન્સ:

ટેબલ: મોડેલ સિલેક્શન ટૂલ્સ

ફંક્શન	હેતુ	એપ્લિકેશન
<pre>GridSearchCV()</pre>	હાયપરપેરામીટર ટ્યુનિંગ	આદર્શ પેરામીટર્સ શોધવા
RandomizedSearchCV()	રેન્ડમ પેરામીટર સર્થ	ઝડપી પેરામીટર ઓપ્ટિમાઇઝેશન
cross_val_score()	ક્રોસ-વેલિડેશન	મોડેલ પરફોર્મન્સ ઇવેલ્યુએશન
StratifiedKFold()	સ્ટ્રેટિફાઇડ સેમ્પલિંગ	સંતુલિત ક્રોસ-વેલિડેશન
Pipeline()	પ્રીપ્રોસેસિંગ અને મોડેલિંગ ભેગું કરવું	સ્ટ્રીમલાઇન્ડ વર્કફ્લો

કોડ ઉદાહરણ:

```
from sklearn.model_selection import GridSearchCV
param_grid = {'C': [0.1, 1, 10]}
grid_search = GridSearchCV(SVM(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
```

c) મોડેલ ઇવેલ્યુએશન અને મેટ્રિક્સ ફંક્શન્સ:

ટેબલ: ઇવેલ્યુએશન મેટ્રિક્સ

ફંક્શન	હેતુ	વપરાશ કેસ
accuracy_score()	એકંદર ચોકસાઈ	સામાન્ય ક્લાસિફિકેશન
<pre>precision_score()</pre>	પોઝિટિવ પ્રિડિક્શન યોકસાઈ	ફોલ્સ પોઝિટિવ્સ ઘટાડવા
recall_score()	ટ્રુ પોઝિટિવ રેટ	ફોલ્સ નેગેટિવ્સ ઘટાડવા
f1_score()	પ્રિસિઝન/રિકોલનું હાર્મોનિક મીન	સંતુલિત મેટ્રિક
<pre>confusion_matrix()</pre>	વિગતવાર એરર એનાલિસિસ	ભૂલો સમજવી
<pre>classification_report()</pre>	વ્યાપક મેટ્રિક્સ	સંપૂર્ણ મૂલ્યાંકન
roc_auc_score()	ROC કર્વ હેઠળનો વિસ્તાર	બાઇનરી ક્લાસિફિકેશન

કોડ ઉદાહરણ:

from sklearn.metrics import classification_report
print(classification_report(y_true, y_pred))

વર્કક્લો ઇન્ટિગ્રેશન:

• પ્રીપ્રોસેસિંગ: ડેટાને સાફ અને તૈયાર કરવું

• મોડેલ સિલેક્શન: અલ્ગોરિધમ્સ પસંદ કરવા અને ટ્યુન કરવા

• ઇવેલ્યુએશન: પરફોર્મન્સનું વ્યાપક આકારણી

મેમરી ટ્રીક: "પ્રીપ્રોસેસ, સિલેક્ટ, ઇવેલ્યુએટ" - Scikit-learn માં સંપૂર્ણ ML વર્કફ્લો

પ્રશ્ન 5(અ) OR [3 ગુણ]

NumPy ના મુખ્ય ફીચર્સની યાદી બનાવો

જવાબ:

NumPy (Numerical Python) Python માં વૈજ્ઞાનિક કોમ્પ્યુટિંગ માટેનું મૂળભૂત પેકેજ છે, જે શક્તિશાળી એરે ઓપરેશન્સ અને ગાણિતિક ફંક્શન્સ પ્રદાન કરે છે.

ટેબલ: NumPy ના મુખ્ય ફીચર્સ

ફીચર	વર્ણન	ફાયદો
N-dimensional Arrays	કાર્યક્ષમ એરે ઓબ્જેક્ટ્સ	ઝડપી ગાણિતિક ઓપરેશન્સ
Broadcasting	વિવિદ્ય સાઇઝના એરે પર ઓપરેશન્સ	લવચીક કોમ્પ્યુટેશન્સ
Linear Algebra	મેટ્રિક્સ ઓપરેશન્સ, ડીકમ્પોઝિશન્સ	વૈજ્ઞાનિક કોમ્પ્યુટિંગ
Random Numbers	રેન્ડમ સેમ્પલિંગ અને ડિસ્ટ્રિબ્યુશન્સ	સ્ટેટિસ્ટિકલ સિમ્યુલેશન્સ
Integration	C/C++/Fortran સાથે કામ કરે છે	ઉચ્ચ પરફોર્મન્સ

મુખ્ય ક્ષમતાઓ:

• ગાણિતિક ફંક્શન્સ: ત્રિકોણમિતિ, લોગેરિધમિક, એક્સપોનેન્શિયલ

• એરે મેનિપ્યુલેશન: રિશેપિંગ, સ્પ્લિટિંગ, જોઇનિંગ એરેઝ

• ઇન્ડેક્સિંગ: એડવાન્સ્ડ સ્લાઇસિંગ અને બૂલિયન ઇન્ડેક્સિંગ

• મેમરી કાર્યક્ષમતા: ઓપ્ટિમાઇઝ્ડ ડેટા સ્ટોરેજ

એપ્લિકેશન્સ: ડેટા એનાલિસિસ, મશીન લર્નિંગ, ઇમેજ પ્રોસેસિંગ, વૈજ્ઞાનિક સંશોધન

મેમરી ટ્રીક: "નંબર્સ નીડ NumPy's પાવર" - ન્યુમેરિકલ કોમ્પ્યુટેશન્સ માટે આવશ્યક

પ્રશ્ન 5(બ) OR [4 ગુણ]

એક-પરિમાણીય ડેટા માટે K-means ક્લસ્ટરિંગ

જવાબ:

આપેલ ડેટાસેટ: {1,2,4,5,7,8,10,11,12,14,15,17}

3 ક્લસ્ટર્સ માટે K-means અલ્ગોરિધમ:

સ્ટેપ 1: સેન્ટ્રોઇડ્સ ઇનિશિયલાઇઝ કરવા

• C1 = 3 (પ્રારંભિક મૂલ્યોની આસપાસ)

• C2 = 9 (મધ્યમ મૂલ્યોની આસપાસ)

• C3 = 15 (પછીના મૂલ્યોની આસપાસ)

સ્ટેપ 2: નજીકના સેન્ટ્રોઇડને પોઇન્ટ્સ સોંપવા

ટેબલ: પોઇન્ટ એસાઇનમેન્ટ્સ (ઇટરેશન 1)

પોઇન્ટ	C1નું અંતર	C2નું અંતર	C3નું અંતર	સોંપેલ ક્લસ્ટર
1	2	8	14	કલસ્ટર 1
2	1	7	13	કલસ્ટર 1
4	1	5	11	કલસ્ટર 1
5	2	4	10	ક્લસ્ટર 1
7	4	2	8	ક્લસ્ટર 2
8	5	1	7	ક્લસ્ટર 2
10	7	1	5	ક્લસ્ટર 2
11	8	2	4	કલસ્ટર 2
12	9	3	3	કલસ્ટર 2
14	11	5	1	કલસ્ટર 3
15	12	6	0	કલસ્ટર 3
17	14	8	2	કલસ્ટર 3

સ્ટેપ 3: સેન્ટ્રોઇડ્સ અપડેટ કરવા

- нg C1 = (1+2+4+5)/4 = 3
- нg C2 = (7+8+10+11+12)/5 = 9.6
- нg C3 = (14+15+17)/3 = 15.33

અંતિમ ક્લસ્ટર્સ:

• **SCHERT 1**: {1, 2, 4, 5}

• **sqear 2**: {7, 8, 10, 11, 12}

• **કલસ્ટર 3**: {14, 15, 17}

મેમરી ટ્રીક: "ગ્રુપ્સ ગેદર બાય ડિસ્ટન્સ" - સમાન પોઇન્ટ્સ પ્રાકૃતિક ક્લસ્ટર્સ બનાવે છે

પ્રશ્ન 5(ક) OR [7 ગુણ]

Pandas library ના ફંક્શન્સ અને તેનો ઉપયોગ આપો: a. ડેટા પ્રીપ્રોસેસિંગ b. ડેટા ઇન્સ્પેક્શન c. ડેટા ક્લીનિંગ અને ટ્રાન્સફોર્મેશન જવાબ:

Pandas ડેટા મેનિપ્યુલેશન અને એનાલિસિસ માટેની શક્તિશાળી Python લાઇબ્રેરી છે, જે ઉચ્ચ-સ્તરના ડેટા સ્ટ્રક્ચર્સ અને ઓપરેશન્સ પ્રદાન કરે છે.

a) ડેટા પ્રીપ્રોસેસિંગ ફંક્શન્સ:

ટેબલ: પ્રીપ્રોસેસિંગ ફંક્શન્સ

ફંક્શન	હેતુ	ઉદાહરણ
read_csv()	CSV ફાઇલો લોડ કરવા	pd.read_csv('data.csv')
head()	પ્રથમ n રોઝ જોવા	df.head(10)
tail()	છેલ્લા n રોઝ જોવા	df.tail(5)
sample()	રેન્ડમ સેમ્પલિંગ	df.sample(100)
set_index()	કોલમને ઇન્ડેક્સ તરીકે સેટ કરવું	<pre>df.set_index('id')</pre>

b) ડેટા ઇન્સ્પેક્શન ફંક્શન્સ:

ટેબલ: ઇન્સ્પેક્શન ફંક્શન્સ

ફંક્શન	હેતુ	પ્રદાન કરેલી માહિતી
info()	ડેટાસેટ ઓવરવ્યુ	ડેટા ટાઇપ્સ, મેમરી વપરાશ
describe()	સ્ટેટિસ્ટિકલ સમરી	મીન, std, min, max
shape	ડેટાસેટ ડાયમેન્શન્સ	(રોઝ, કોલમ્સ)
dtypes	ડેટા ટાઇપ્સ	કોલમ ડેટા ટાઇપ્સ
isnull()	મિસિંગ વેલ્યુઝ	નલ્સ માટે બૂલિયન માસ્ક
value_counts()	યુનિક વેલ્યુઝ કાઉન્ટ કરવા	ફ્રીક્વન્સી ડિસ્ટ્રિબ્યુશન
corr()	કોરિલેશન મેટ્રિક્સ	ફીચર રિલેશનશિપ્સ

કોડ ઉદાહરણ:

```
# SZI ઇન્સ્પેક્શન

print(df.info())

print(df.describe())

print(df.isnull().sum())
```

c) ડેટા ક્લીનિંગ અને ટ્રાન્સફોર્મેશન ફંક્શન્સ:

ટેબલ: ક્લીનિંગ ફંક્શન્સ

ફંક્શન	હેતુ	વપરાશ
dropna()	મિસિંગ વેલ્યુઝ રીમૂવ કરવા	df.dropna()
fillna()	મિસિંગ વેલ્યુઝ ભરવા	df.fillna(0)
<pre>drop_duplicates()</pre>	ડુપ્લિકેટ રોઝ રીમૂવ કરવા	<pre>df.drop_duplicates()</pre>
replace()	વેલ્યુઝ રિપ્લેસ કરવા	<pre>df.replace('old', 'new')</pre>
astype()	ડેટા ટાઇપ્સ બદલવા	<pre>df['col'].astype('int')</pre>
apply()	ડેટા પર ફંક્શન એપ્લાય કરવું	<pre>df.apply(lambda x: x*2)</pre>
groupby()	ડેટા ગ્રુપ કરવું	<pre>df.groupby('category')</pre>
merge()	ડેટાસેટ્સ જોઇન કરવા	pd.merge(df1, df2)
pivot()	ડેટા રિશેપ કરવું	<pre>df.pivot(columns='col')</pre>

એડવાન્સ્ડ ઓપરેશન્સ:

- સ્ટ્રિંગ ઓપરેશન્સ: str.contains(), str.replace()
- તારીખ ઓપરેશન્સ: to_datetime(), dt.year
- sòniRsG szl: pd.Categorical()

વર્કફ્લો ઉદાહરણ:

```
# ล่นุย์ มีมิลัลิอา นเฮนตเฮา

df = pd.read_csv('data.csv')

df = df.dropna()

df['category'] = df['category'].astype('category')

df_grouped = df.groupby('type').mean()
```

કાયદાઓ:

- સહજ સિન્ટેક્સ: શીખવા અને વાપરવામાં સરળ
- પરફોર્મન્સ: મોટા ડેટાસેટ્સ માટે ઓપ્ટિમાઇઝ્ડ
- ઇન્ટિગ્રેશન: NumPy, Matplotlib સાથે સારી રીતે કામ કરે છે
- લવચીકતા: વિવિધ ડેટા ફોર્મેટ્સ હેન્ડલ કરે છે

મેમરી ટ્રીક: "Pandas પ્રોસેસેસ ડેટા પર્ફેક્ટલી" - વ્યાપક ડેટા મેનિપ્યુલેશન ટૂલ