模论练习题 (2021年4月)

- 1. 设M 是R-模, N_1, N_2 为M的子模, 试证明: $I = \{a \in R: ax \in N_2, \forall x \in N_1\}$ 是R 的理想.
- 2. 一个R-模M称为单模, 如果M只有 $\{0\}$ 和M两个子模. 试证明: 如果 φ 是单模M到单模M'的同态, 那么 $\varphi = 0$ 或者 φ 为一个模同构.
- 3. 设M是R-模, 定义M的零化子 $Ann(M) = \{a \in R: ax = 0, \forall x \in M\}$, 试证明Ann(M)是R的理想, 并求出 \mathbb{Z} -模 $\mathbb{Z}_3 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_8$ 的零化子.
- 4. 设M 是R-模, M_1, M_2, \cdots, M_s 为M的子模, 且 $M = M_1 \bigoplus M_2 \bigoplus \cdots \bigoplus M_s$, 又N是M的子模, 且 $N = N_1 \bigoplus N_2 \bigoplus \cdots \bigoplus N_s$, 其中 $N_i \subset M_i$, $i = 1, 2, \cdots, s$. 试证明: $M/N \simeq M_1/N_1 \bigoplus M_2/N_2 \bigoplus \cdots \bigoplus M_s/N_s$.
- 5. 设M, N 是R-模, $f: M \to N, g: N \to M$ 为模同态, 且满足 $fg(y) = y, \forall y \in N$. 试证明 $M = \ker f \bigoplus \operatorname{im} g$.
- 6. 一个模如果不能分解成两个非零子模的直和,则称为不可分解模. 试证明整数环 \mathbb{Z} 作为 \mathbb{Z} -模是不可分解模, 而 \mathbb{Z}_m -模, m > 1作为作为 \mathbb{Z} -模是不可分解模当且仅当m是某个素数的幂次.
- 7. 设R是整环, 证明R作为R-模是不可分解模.
- 8. 设A为主理想整环D上的n阶方阵, 证明A与 A^T 等价.
- 9. 设R是交换环(含单位元), A是R上的 $m \times n$ 矩阵, 定义 R^n 到 R^m 的 模同态 φ 为(R^n, R^m 中元素写成列向量) $\varphi(\alpha) = A\alpha, \alpha \in R^n$. 试证明 下面的条件互相等价:
 - (1) φ 是满同态;
 - (2) A的所有m阶子式生成的理想等于R;
 - (3) 存在矩阵 $B \in \mathbb{R}^{n \times m}$ 使得 $AB = I_m$.
- 10. 设R是交换环(含单位元), I为R的理想, 证明: 若R/I是自由R模, 则 $I = \{0\}$.
- 11. 设 φ 是自由 \mathbb{Z} -模 \mathbb{Z}^n 到 \mathbb{Z}^m 的同态, A为 φ 在 \mathbb{Z}^n 和 \mathbb{Z}^m 的标准基下的矩阵, 试证明:
 - (1) φ 是单同态当且仅当A的秩为n;
 - (2) φ 是满同态当且仅当A的m阶行列式因子为1.
- 12. 试有理数域◎作为ℤ-模不是有限生成模.
- 13. 已知 \mathbb{Z}^4 的子模N有生成元组 $h_1 = (1, 2, 1, 0), h_2 = (2, 1, -1, 1), h_3 = (0, 0, 1, 1).$ 试求出N的秩,并找出 \mathbb{Z}^4 的一组基 e_1, e_2, e_3, e_4 及N的一组基 f_1, f_2, \cdots, f_r 使得 $f_i = d_i e_i, i = 1, 2, \cdots, r$,且有 $d_i | d_{i+1}, i = 1, 2, \cdots, r-1$.

- 14. 设 $R = \mathbb{Z}[x]$, 试构造一个有限生成的R-模M, 使得M不能写成有限个循环子模的直和.
- 15. 设 $D = \mathbb{Z}[i]$ 为高斯整环, K是由 $f_1 = (1,3,6), f_2 = (2+3i,-3i,12-18i), f_3 = (2-3i,6+9i,-18i)$ 生成的 D^3 的子模, 求出D/K的不变因子和初等因子.
- 16. 设D为主理想整环, M是D上有限生成的挠模, 对 $a \in D$, 令 $M(a) = \{x \in M : ax = 0\}$. 证明:
 - (1) M(a)是M的子模, 且若a可逆, 则 $M(a) = \{0\}$;
 - (2) 若a|b, 则 $M(a) \subset M(b)$;
 - (3) 设 $a,b \in D$, 则 $M(a) \cap M(b) = M((a,b))$, 其中(a,b)为a,b的一个最大公因子;
 - (4) 若a,b互素,则 $M(ab) = M(a) \oplus M(b)$.
- 17. 设p素数, n > 0, G为 p^n 阶交换群, 证明存在G中一组生成元 g_1, g_2, \cdots, g_s 使 得 $ord(g_i) = \max_{g \in G} ord(g)$.