

2.

Atribúty prvkov systému

- Prvky systému majú svoje vlastnosti (atribúty)
 - štandardné

reálne čísla, booleovské hodnoty, texty, ...

referenčné

odkazy na iné prvky, definujú väzby/relácie medzi prvkami

Stav dynamického systému v čase t je určený prvkami, ktoré sú v čase t v systéme prítomné a hodnotami ich atribútov v tomto čase.

Modelovanie a simulácia

Skúmanie systému

AKO?

Modelovanie a simulácia

Experimenty so skúmaným systémom

Pri istých úlohách to je možné

Napríklad:

- Nastavenie priorít pre procesy v počítači
- Organizácia práce pokladní na diaľnici
- Crash testy
- Výhodné ale ťažko použiteľné v praxi

(určite viem, že skúmam správnu vec, no je málo situácií, kedy sa dá experimentovať s reálnym systémom)

Modelovanie a simulácia

Prečo nie so skúmaným systémom?

- Nedostupnosť
- (systém ešte nemusí existovať, predpovede počasia)
- Čas

(napr. príliš dlho/krátko trvajúce procesy)

- Cena
- (príliš veľké náklady)
- Bezpečnosť (napr. jadrová elektráreň, vodné dielo)
- Etika

("pokusy na ľuďoch")

Modelovanie a simulácia © doc. Ing. Norbert Adamko, PhD.

Modelovanie

Ak nie so skúmaným systémom, tak ako?

- 1. Vytvorme si validný **model** skúmaného systému
- 2. Experimentujme s týmto modelom
- 3. Výsledky experimentov s modelom môžeme aplikovať späť na skúmaný systém

Modelovanie je výskumná technika/metóda, podstatou ktorej je náhrada skúmaného systému (originálu) jeho modelujúcim systémom (modelom), za účelom získať pomocou pokusov (experimentov) s modelom informácie o origináli

© doc. Ing. Norbert Adamko, PhD

Model

Analógia medzi dvoma systémami: modelovaným a modelujúcim.

Každému prvku P_O originálu je priradený prvok P_M modelujúceho systému, každému atribútu a_O prvku P_O je priradený atribút a_M prvku P_M , pričom pre hodnoty atribútov a_O a a_M je daná nejaká relácia.

Modelovaný systém ≈ originál Modelujúci systém ≈ model

Modelovanie a simulácia

Modelujúce systémy (Modely)

- Fyzické modely
 - trenažér v autoškole
 - trenažér kontrolnej miestnosti jadrovej elektrárne
 - model vodného diela
 - model auta vo vzduchovom tuneli
- Logické (matematické) modely
 - využitie metód operačnej analýzy (nevhodné pre komplikovanejšie systémy)
 - počítačový simulačný model

Modelovanie a simulácia

3

Simulácia

 Modelovanie pri ktorom je použitý simulačný model systému

Simulácia je výskumná technika/metóda, ktorej podstatou je náhrada skúmaného dynamického systému (originálu) jeho simulátorom, s ktorým sa experimentuje s cieľom získať informácie o pôvodnom skúmanom dynamickom systéme.

Modelovanie a simulácia

Simulačný model

- Modelovaný systém (originál) i jeho modelujúci systém sú dynamické systémy.
- Existuje zobrazenie τ existencie originálu do existencie modelujúceho systému.
 Ak t₁ je časový okamih, v ktorom existuje modelovaný systém O, je mu priradený okamih τ(t₁) = t₂, v ktorom existuje modelujúci systém M. Teda zobrazením τ sa aj stavu OS₁(t₁) systému O

priradí stav ${}^{M}S_{2}(t_{2})$ systému M.

Modelovanie a simulácia

Simulačný model (pokr.)

 Medzi stavmi ^OS₁(t₁) a ^MS₂(t₂) sú splnené požiadavky na vzťahy medzi prvkami a ich atribútmi.

Každému prvku P_O originálu je priradený prvok P_M modelujúceho systému, každému atribútu a_O prvku P_O je priradený atribút a_M prvku P_M , pričom pre hodnoty atribútov a_O a a_M je daná nejaká relácia.

Modelovanie a simulácia © doc. Ing. Norbert Adamko, PhD. Simulačný model (pokr.)

Zobrazenie τ je neklesajúce.

Ak nastane stav ${}^{O}S_{1}$ originálu pred nejakým jeho iným stavom ${}^{O}S_{2}$, tak stav ${}^{M}S_{1}$, ktorý zodpovedá v modelujúcom systéme stavu ${}^{O}S_{1}$ nastane pred stavom ${}^{M}S_{2}$, ktorý zodpovedá stavu ${}^{O}S_{2}$ (alebo môžu nastať súčasne).

[Nutnosť dodržovať v modelujúcom systéme vzťahy kauzality platné v origináli.]

Simulujúci systém ≈ simulačný model = simulátor

Modelovanie a simulácia

Oblasti využitia simulácie

- Doprava
 - Logistické terminály
 - Cestná doprava
 - Simulácia pohybu chodcov (PedSim)
 - Logistika

Modelovanie a simulácia

0

Oblasti využitia simulácie

- Obslužné systémy
- Ekonomika
- Výrobné systémy
- Počítačové a telekomunikačné siete

Modelovanie a simulácia

Oblasti využitia simulácie

- Vojenstvo
- Medicína
- Zdravotníctvo
- Fyzika
- Predpoveď počasia Aladin (SHMÚ)
- Chémia

Modelovanie a simulácia

21

Oblasti využitia simulácie

- Vzdelávanie, školenie
 - Simulátory strojov a zariadení
 - Trenažéry dopravných prostriedkov
 - Tréning krízových situácií
 - Výučbové simulácie

Modelovanie a simulácia

Oblasti využitia simulácie

- Krízový manažment
 - Tréning požiarneho zásahu
 - Simulácia zemetrasenia
 - Simulácia evakuácie cestujúcich

Modelovanie a simulácia

Výhody simulácie

- Vykonávanie kontrolovaných experimentov
- Skúmanie komplexných systémov
- Nízka cena
- Kompresia a expanzia času
- Neovplyvňuje činnosť reálneho systému
- Efektívny tréningový nástroj
- Pomáha porozumeniu fungovania systému

odelovanie a simulácia

...

Nevýhody simulácie

- Nezaručuje získanie optimálnych hodnôt skúmaných parametrov systému (nutnosť iteračného postupu)
- Stochastičnosť vstupov vyžaduje dôsledné štatistické spracovanie výsledkov
- Vytvorenie modelu vyžaduje odborné znalosti
- Vytvorenie komplexného modelu môže byť časovo náročné

Modelovanie a simulácia

__

Spojité a diskrétne modely Spojité modely Zmeny stavu systému nastávajú priebežne v čase • Diskrétne modely Zmeny stavu systému nastávajú len v diskrétnych časových okamihoch

Deterministické a stochastické modely

- Deterministické modely
 - Všetky vstupy sú pevne dané a nenáhodné.
 - V každom okamihu je možné presne určiť nasledujúci stav systému
- Stochastické modely
 - Vstupy sú náhodné premenné

Modelovanie a simulácia

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
 - Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Křivý, I., Kindler, E.: Simulace a modelovaní, skriptá Ostravskej univerzity, 2001
- Kavička, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
- http://www.cs.uml.edu/~giam/Mikkeli/
- http://www.cse.msu.edu/~cse808/note/
 http://www.sce.carleton.ca/courses/94501/s02
- http://crashtestvideos.magnify.net http://www.masagroup.net/
- http://www.shmu.sk/
- http://www.virtway.com/
- http://www.stanford.edu/~boas/science/polymer/
- http://www.cse.ohio-state.edu/~kerwin/
- http://www.aimsun.com/
- http://www.ed.ac.uk/schools-departments/vet/news-events/news/archive/2013/equinemodel-020413
- http://www.inspirationalridingsolutions.com/posts/view/vasa-test-post_1

Modelovanie a simulácia

Statický model

- Abstrahuje od času
- Čas nemá dôležitú úlohu

lodelovanie a simulácia

Buffonova ihla

 Pravdepodobnosť, že ihla pretne čiaru je:

$$p = \frac{2.L}{D.\pi}$$

 Náhodnými pokusmi zistíme hodnotu pravdepodobnosti

$$p = \frac{n_{pretatie}}{n_{všetky}} = \frac{m}{n} \quad \text{, potom}$$

$$\pi = \frac{2.L}{nD}$$

delovanie a simulácia Inc. Norbert Adamic. PND.

Buffonova ihla

Buffonova ihla (pokr.)

■ 1864 – Kapitán O.C. Fox

n	m	L [in]	D [in]	Doska	Odhad
500	236	3	4	statická	3,1780
530	253	3	4	rotovaná	3,1423
590	939	5	2	rotovaná	3,1416

■ 1901 – Mario Lazzarini

3408 (1808 úspešných) pokusov $\Rightarrow \pi$ = 3,1415929

Ihla 2.5 cm, čiary 3 cm (5/6), výsledok 355/113 (Tsu Ch'ung Chi, 500 n.l.) 213=(355)/(5/3), 1808=113*16, 3408=213*16

Modelovanie a simulácia

Buffonova ihla (pokr.)

N. T. Gridgeman
 L = 0,7857, dva pokusy (jeden úspešný)
 π = 3.1428

Modelovanie a simulácia

Buffonova ihla (pokr.)

- Odhad niečoho, čo sa ťažko vypočíta exaktne, pomocou náhodných pokusov
- Odhad nie je presný odchýlka, mali by sme vedieť aká je
- Zvýšenie presnosti
 - Viac pokusov
 - Redukcia rozptylu (odchýlky) úpravou experimentu

Modelovanie a simulácia

Využitie náhodných pokusov

- 1777 G.L. Leclerc de Buffon Buffonova ihla
- 1908 William Sealy Gossett (Student)
 Potvrdenie t rozdelenia
 (Vzorky výšky a dĺžky ukazováka 3000 väzňov)
- Mravce Temnothorax albipennis

odelovanie a simulácia

Metóda Monte Carlo

■ 1946 - Stanislaw Ulam

Myšlienka transformácie nepravdepodobnostných problémov na pravdepodobnostné, ktoré sa dajú riešiť štatistickými metódami s využitím počítačov (náhodné pokusy) (Solitaire, prechod neutrónov štiepnou látkou)

■ 1949 — Ulam, von Neumann, Metropolis Metropolis metódu pomenoval podľa kasín v meste Monte Carlo

Modelovanie a simulácia

Metóda Monte Carlo

- Metóda riešenia problémov, pri ktorých čas nemá dôležitú úlohu, pomocou špeciálne organizovaných štatistických pokusov
- 1. Formulácia novej úlohy (ak je to potrebné), ktorej riešenie je zhodné s riešením pôvodnej úlohy
- 2. Riešenie novej úlohy pomocou štatistických experimentov (s využitím výpočtovej techniky)

Modelovanie a simulácia

Výpočet integrálu

S =
$$\int_{a}^{b} f(x) dx$$

$$\frac{S}{Q} = \frac{Pocet \ pokusov, \ kde \ (x,y) \in S}{Pocet \ vsetkych \ pokusov} = \int_{a}^{b} f(x) dx$$

$$= P\{(x,y) \in S\} = \frac{a}{(b-a)^{2}}, \ kde \ (x,y) \ je \ náhodný \ bod \in Q$$

$$S \approx (b-a)^{2} \frac{\sum_{i=1}^{N} X_{i}}{N}; X_{i} = 1, ak \ (x_{i}, y_{i}) \in S, inak \ X_{i} = 0$$

Modelovanie a simulácia

Presnosť metódy Monte Carlo

Odhad chyby s danou úrovňou spoľahlivosti

$$\Delta = z_{1-\alpha/2} \cdot \sqrt{\frac{\hat{\sigma}_{n}^{2}}{n}} = z_{1-\alpha/2} \cdot \sqrt{\frac{\hat{p}.(1-\hat{p})}{n}} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}$$

 Napr.: Vykonáme 100 hodení mincou (N=100), pri tomto počte pokusov sme sa dopustili chyby približne 10% (s 95% úrovňou spoľahlivosti)

$$\Delta \approx \frac{1.96}{2\sqrt{100}} = \frac{1.96}{20} = 0.098 \approx 0.1$$

Modelovanie a simulácia O ing Norbet Adamko, PtO.

Presnosť metódy Monte Carlo

• Konvergencia metódy Monte Carlo je $O(\sqrt{N})$

Ak chceme zvýšiť presnosť **N** násobne, musíme zvýšiť počet pokusov **N**² násobne.

 Je vhodné využiť niektorú z metód redukcie rozptylu

Mod

Metódy redukcie rozptylu

- Metóda protikladných veličín (Antithetic variates)
 Využitie negatívne korelovaných náhodných veličín (Buffonov kríž)
- Technika riadiacich veličín (Control variates)
 Namiesto odhadu neznámej veličiny odhadujeme rozdiel neznámej veličiny od známej veličiny
- Metóda výberu podľa dôležitosti (Importance sampling)
 Sústredenie na miesta s väčším vplyvom
- Metóda stratifikovaných výberov (Stratified sampling)
 Rozdelenie výberového priestoru do niekoľkých oblastí zaručenie rovnomernejšieho náhodného vstupu

odelovanie a simulácia

Pravdepodobnosť výhry v Lote

- Chceme vedieť, akú máme šancu vyhrať v Lote
- Analytický výpočet (6 zo 49)
- Využitie metódy Monte Carlo
- 1. Zvolíme si naše čísla (tiket)
- 2. Vykonáme sériu (tisíce) náhodných pokusov (1 pokus zodpovedá jednému ťahu Lota)
- 3. Sledujeme, koľkokrát sa nám podarilo vyhrať
- 4. ..

Modelovanie a simulácia © ing. Norbert Adamko, PhD. 45

Pseudonáhodné čísla

- Požadované vlastnosti náhodných čísiel
 - nezávislosť
 - rovnomerné rozdelené, zvyčajne na intervale [0,1)
- "Náhodné čísla" generujeme na počítači
- Produktom aritmetických generátorov nie sú náhodné čísla (sú vypočítané), preto ich označujeme ako pseudonáhodné čísla (čísla, ktoré sa zdajú byť náhodnými)

Modelovanie a simulácia

Lineárny kongruenčný generátor

- Linear congruential generator (LCG)
- Lehmer, 1951

$$X_i = (aX_{i-1} + c) \mod m$$

 $U_i = X_i/m$

- Začíname z hodnoty X₀ násada (seed)
- 0<m, a<m, c<m, X₀<m
- LCG(a, c, m), X₀

Modelovanie a simuláci

Príklad LCG(3, 5, 8)

$$X_0=6$$
, $X_i=(3X_{i-1}+5) \mod 8$, $U_i=X_i/8$

i X, U,

0 6 - $X_1 = (3*6 + 5) \mod 8 = 23 \mod 8 = 7$ 1 7 0,875 $X_2 = 26 \mod 8 = 2$, $U_1 = 7/8 = 0,875$ 2 2 0,250
3 3 0,375
4 6 0,750
5 7 0,875
6 2 0,250

Modelovanie a simulácia

© Ing. Nortert Adamko, PhD.

Quasi Monte Carlo

- Namiesto (pseudo)náhodných čísiel sa využívajú kvázináhodné postupnosti čísiel.
 - Také, ktoré rovnomerne vypĺňajú daný priestor
 - Medzi jednotlivými číslami môže existovať zjavná závislosť
 - Napr.: Interval 1 100
 - Pseudonáhodné čísla: 4, 55, 87, 1, 12, 33, 97
 - Kvázináhodné čísla: 1, 50, 25, 75, 12, 62, 37, 88
- Lepšie štatistické vlastnosti pri istých typoch úloh (napr. výpočet integrálov)

Modelovanie a simulácia

Quasi Monte Carlo

Kvázináhodná sekvencia

■ (Pseudo)náhodná sekvencia :

Modelovanie a simulácia

Využitie metódy Monte Carlo

- Jadrová fyzika (rozptyl častíc)
- Bezpečnosť (ochrana pred radiáciou)
- Chémia (výskum molekúl)
- Matematika (integrály, experimentálne riešenie rovníc)

Modelovanie a simulácia

Využitie metódy Monte Carlo (pokr.)

- Medicína (plánovanie rádioterapie 3D MC)
- Ekonomika (RISK analýza, opt. stavy zásob)
- Informatika (Rendering)

Modelovanie a simulác

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
- Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Křivý, I., Kindler, E.: Simulace a modelovaní, skriptá Ostravskej univerzity, 2001
- Kavička, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
- http://www.cs.uml.edu/~giam/Mikkeli/
- http://www.cse.msu.edu/~cse808/note/
- http://www.sce.carleton.ca/courses/94501/s02/
- http://www.wikipedia.com/
- http://www.ulamspiral.com
- http://www.antweb.org/description.do?genus=temnothorax&name=albipennis&project=belgiumants&rank=spec
- https://en.wikipedia.org/wiki/Enrico Fermi

odelovanie a simulácia

Dynamická simulácia

Prednášky č. 3 a 4

Modelovanie a simulácia

Vstup dielcov Výstup hotových Výstup hotových Lisovaný dielec

Obslužný systém - Lis

Úloha:

- Odhad očakávanej produkcie
- Čas čakania dielca vo fronte
- Dĺžka frontu čakajúcich dielcov
- Vyťaženie lisu

Modelovanie a simulácia

Požadované vlastnosti modelu

- Začína prázdny v čase 0
- Vstupy (predpokladajme, že sú dané), v minútach:

Číslo dielca	Čas vstupu	Čas medzi vstupmi	Doba obsluhy
1	0.00	1.73	2.90
2	1.73	1.35	1.76
3	3.08	0.71	3.39
4	3.79	0.62	4.52
5	4.41	14.28	4.46
6	18.69	0.70	4.36
7	19.39	15.52	2.07
8	34.91	3.15	3.36
9	38.06	1.76	2.37
10	39.82	1.00	5.38
11	40.82		

Koniec po 20 minútach simulačného času

odelovanie a simulácia

Ciele – parametre výkonu systému

- Celková produkcia výliskov za beh (P)
- Priemerný čas čakania dielcov vo fronte

$$\frac{\sum_{i=1}^{N} WQ_i}{N}$$

N = počet dielcov, ktoré ukončili čakanie WQ_i= čakanie i-teho dielca Vieme: WQ₁ = 0 (prečo?) N > 1 (prečo?)

Maximálny čas čakania dielcov vo fronte

$$\max_{i=1..N} WQ_i$$

odelovanie a simulácia Ding Norbet Adenko, PhD.

Ciele – parametre výkonu systému (pokr.)

Priemerný počet dielcov vo fronte

$$\frac{\int_0^{20} Q(t) dt}{20}$$
 Q(t) = počet dielcov vo fronte v čase t

- Maximálny počet dielcov vo fronte
- Priemerný a maximálny čas dielcov v systéme

$$\frac{\sum_{i=1}^{P} TS_{i}}{P}, \quad \max_{i=1..P} TS_{i} \qquad \mathsf{T_{i}} = \mathsf{\check{c}as} \; \mathsf{i-teho} \; \mathsf{dielca} \; \mathsf{v} \; \mathsf{syst\acute{e}me}$$

Modelovanie a simulácia

Ciele – parametre výkonu systému (pokr.)

Využitie lisu

$$\frac{\int_0^{20} B(t) dt}{20}, \quad B(t) = \begin{cases} 1 & \text{ak lis v čase t pracuje} \\ 0 & \text{ak lis v čase t nepracuje} \end{cases}$$

 Iné vyhodnotenia (Pozor na zahltenie informáciami)

Modelovanie a simulácia

Možnosti analýzy

- 1. Podložený odhad
- Priemerný čas medzi vstupmi dielcov = 4.08 min
- Priemerný čas obsluhy = 3.46 min

(Priemerne) sú dielce lisované rýchlejšie ako do systému vstupujú

- System má šancu fungovať stabilne počas dlhej doby
- Ak by boli časy medzi vstupmi a časy obsluhy rovné priemerným hodnotám => nikdy by nevznikol front
- Časy ale majú rôzne hodnoty => front môže vzniknúť

Modelovanie a simulácia

Možnosti analýzy (pokr.)

- 1. Podložený odhad
 - Ak priemerný čas medzi vstupmi < priemerný čas obsluhy

Zahltenie systému

- Skutočnosť je niekde medzi týmito extrémami, ale nevieme odhadnúť kde
- Odhad má limitované možnosti

Modelovanie a simulácia

Možnosti analýzy (pokr.)

- 2. Teória hromadnej obsluhy
 - Vyžaduje dodatočné predpoklady o modeli
 - Napríklad M/M/1
 - Čas medzi vstupmi ~ exponenciálne rozdelenie
 - Čas obsluhy ~ exponenciálne rozdelenie (nezávislé)
 - Musí platiť E(obsluha) < E(medzi príchodmi)
 - Exaktné analytické výsledky; napr. priemerný čas čakania vo fronte je

$$\frac{\mu_S^2}{\mu_A - \mu_S}$$
, $\mu_A = \text{E(cas medzi príchodmi)}$
 $\mu_S = \text{E(doba obluhy)}$

fodelovanie a simulácia

...

Možnosti analýzy (pokr.) 2. Teória hromadnej obsluhy Problémy: validita (je to naozaj exponenciálne?) odhady stredných hodnôt (nepresnosť) nezohľadňuje obmedzený čas (20 min) Vhodná iba ako prvotný odhad

3. Simulácia

Modelovanie a simulác © log. Norbert Adamko, PhD. 11

Ako modelovať dynamické vlastnosti systému?

Spojitá aktivita

- môže meniť stav systému počas celej doby jej trvania
- časová existencia aktivity je charakterizovaná intervalom reálnych čísel <t1,t2>

Pri začatí zvyčajne nevieme určiť čas ukončenia

lodelovanie a simulácia

14

Diskrétna aktivita

- môže zmeniť stav systému iba v okamihu skončenia aktivity (v priebehu trvania aktivity stav systému zmeniť nemôže)
- časová existencia je charakterizovaná jednoprvkovou množinou reálnych čísel {t2}

Pri začatí aktivity zvyčajne vieme určiť jej koniec

Udalosť – ukončenie diskrétnej aktivity a tým vyvolaná zmena stavu systému

Modelovanie a simulácia

Typy simulácie

Spojitá simulácia

Simulujúci systém obsahuje iba spojité aktivity

Diskrétna simulácia

Simulujúci systém obsahuje iba diskrétne aktivity

Kombinovaná (diskrétne-spojitá) simulácia

Simulujúci systém obsahuje spojité aj diskrétne aktivity

lelovanie a simulácia

Vykonávanie simulácie

- Vykonávanie jednotlivých aktivít, tak ako prebiehajú v čase
- Diskrétna aktivita môže meniť stav systému len na svojom konci (pri výskyte udalosti)

simulujeme výskyt udalostí

Udalostne orientovaná simulácia

Modelovanie a simulácia

17

Atribúty udalosti

- čas výskytu
- akcia spojená s výskytom udalosti
 - zmena stavu systému
 - naplánovanie ďalších udalostí

18

Simulačný čas

- čas v simulačnom pokuse
- zodpovedá reálnemu času
- väčšinou ubieha rýchlejšie ako reálny čas
- trvanie simulačných aktivít musí byť proporcionálne trvaniu skutočných činností
- nikdy nemôže klesať (dodržanie kauzality)

Modelovanie a simulácia

19

Metóda plánovania udalostí

- Výskyt udalosti plánujeme dopredu
- Udalosti sú udržiavané v kalendári udalostí (časová os)
- Kalendár udalostí je usporiadaný podľa času výskytu udalostí
- Simulácia spočíva v postupnom spracovávaní naplánovaných udalostí

lodelovanie a simulácia

20

Metóda plánovania udalostí (pokr.)

odelovanie a simulácia

Metóda plánovania udalostí (pokr.)

KROK	Činnosť	Vykonaná za podmienok
0	Inicializácia simulačného času t_s ($t_s = 0$)	
1	Ukončenie behu simulačného programu	Kalendár neobsahuje žiadne udalosti alebo je vyčerpaný čas vymedzený pre beh simulačného programu
2	Odobratie udalosti z "vrcholu" kalendára (s najmenšou hodnotou / t _U / plánovaného času výskytu)	
3	Aktualizácia simulačného času ($t_S = t_U$)	
4	Výkon akcie spojenej s výskytom udalosti (akcia vykonáva stavové zmeny a prípadné plánovanie ďalších udalostí)	
5	Návrat na KROK 1	

Selovanie a simulácia

Udalosť "Vstup dielca"

- "Príchod nového zákazníka"
- Ak je lis voľný
 - obsaď lis
 - naplánuj ukončenie lisovania (udalosť Výstup dielca)
- Ak je lis obsadený
 - zaraď dielec do frontu
- Zmena sledovaných hodnôt
- Naplánovanie vstupu ďalšieho dielca

Modelovanie a simulácia Clog. Norbert Adamko, PhD. 23

Udalosť "Koniec obsluhy – Výstup dielca"

- Koniec obsluhy (lisovania) dielca
- Ak front nie je prázdny
 - vyber prvý dielec z frontu
 - naplánuj ukončenie lisovania vybratého dielca (udalosť Výstup dielca)
- Ak je front prázdny
 - uvoľni lis
- Zmena sledovaných hodnôt

Modelovanie a simulácia

4

Udalosť "Koniec"

- Koniec simulácie
- Aktualizácia sledovaných hodnôt
- Vyhodnotenie výsledkov

delovanie a simulácia

25

Ručná simulácia: Setup

t = 0.00, Inicializácia

0.00	0	0		dielcov vo fronte		0.00,	Vstup]
		U		<pre><pre><pre>azdny></pre></pre></pre>	[-,		Koniec]
Suma čas fronte 0.00	ov čakani	a vo	Q(t)		B(t)		
4 3 2 1							
0		5		10		15	20
1							
0		5		10		15	20
				Čas (minúty)			
1.73, 1.3	5, 0.71, 0.	62, 1	4.28,	0.70, 15.52, 3.15, 1	.76,	1.00,	
2.90, 1.7	6, 3.39, 4.	52, 4	.46, 4	4.36, 2.07, 3.36, 2.3	7, 5.3	38,	
	0.00	0.00	0.00 4 3 2 1 0 0 5 1.73, 1.35, 0.71, 0.62, 1	0.00 0.00 0.00 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

t = 0.00, Vstup Dielca 1

odelovanie a simulácia

Procesovo orientované modelovanie

- Oproti udalostnému pohľadu je prirodzenejšie a prehľadnejšie (najmä pri komplexných modeloch)
- Sleduje cestu obsluhovanej entity systémom
- Sústreďuje sa na procesy, ktorými entita prechádza

Modelovanie a simulácia © Ing. Norbert Adamko, PhD.

Proces je postupnosť prirodzene na seba nadväzujúcich aktivít, ktoré spolu tvoria istý logický celok Po štarte procesu P sa najprv vykoná aktivita a, po jej ukončení aktivita a, a nakoniec aktivita a, ktorej ukončenie sa chápe zároveň ako koniec procesu P

Lisovňa (procesovo orientovane)

- Cesta entity systémom
 - Vytvor sa
 - Zaraď sa na koniec frontu
 - Čakaj pokým sa neuvoľní lis
 - Obsaď lis (a vyraď sa z frontu)
 - Zdrž sa na čas odpovedajúci lisovaniu
 - Uvoľni lis
 - Aktualizuj potrebné štatistiky (priebežne)
 - Odíď zo systému a uvoľni sa

lodelovanie a simulácia

.

AnyLogic

- Grafický návrh modelu
- Podporuje rôzne paradigmy modelovania
 - Procesovo orientované (Discrete Event)
 - Agentovo orientované (Agent Based)
 - Systémová dynamika (System Dynamics)
- Založený na jazyku JAVA
- Podpora 2D a 3D grafických výstupov
- Podpora spracovania výsledkov

Modelovanie a simulácia

44

Lis v AnyLogicu

Modelovanie a simulâcia © Ing. Norbert Adamko, PhD.

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
- Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Kavička, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
- www.anylogic.com

Modelovanie a simulácia

Vstupné dáta

- Spôsoby modelovania vstupnej veličiny:
 - Deterministicky
 - Niektoré veličiny sú deterministické (počet operátorov)
 - Pozor na modelovanie stochastických veličín deterministicky (príchod zákazníkov k stánku PNS)
 - Stochasticky
 - Stochastické veličiny sú veľmi časté (čas obsluhy, príchod zákazníkov, časy medzi poruchami, ...)
 - Náhodná premenná (využitie rozdelenia pravdepodobnosti)

lodelovanie a simulácia

Tvorba modelu vstupných dát

- 1. Získanie dát z modelovaného systému
- Výber vhodného spôsobu modelovania dát
- 3. Vytvorenie modelu dát
- 4. Overenie vytvoreného modelu dát

lodelovanie a simulácia

Zber dát

- Najnáročnejšia časť modelovania vstupných dát
- Ako získať dáta:
 - Zber dát priamo za účelom tvorby simulačného modelu (výhodneišie)
 - Využitie existujúcich (už zozbieraných) dát (lacnejšie)

odelovanie a simulácia

Priamy zber dát

- Plánovanie
- Zozbierajte 100-200 pozorovaní (vzoriek)
- Zachovajte dostatočnú presnosť
- Zozbierajte vzorky z rôznych častí dňa, týždňa, ... (ak je predpoklad ich variability)
- Testujte nezávislosť vzoriek dát (korelácia)
- Spájajte homogénne vzorky dát (vhodné je otestovať – Kruskalov-Wallisov test)

Modelovanie a simulácia © Ing. Norbert Adamko, PhD.

Využitie existujúcich dát

- Dáta nemusia byť usporiadané podľa poradia zberu (dôležité pre testy autokorelácie)
- Dáta môžu byť združené do skupín
- Dáta nemusia mať požadovanú presnosť
- Môžu byť obsiahnuté chybné dáta
- Dáta môžu obsahovať viac združených veličín (doba opravy stroja závisí od druhu práce – oprava, údržba)
- Dáta nemusia byť reprezentatívne pre aktuálnu situáciu

Modelovanie a simulácia

8

Použitie dát

- Priame využitie dát v simulácii
- ** Empirické rozdelenie pravdepodobnosti
- *** Štatistické (teoretické) rozdelenie pravdepodobnosti

Modelovanie a simulácia

.

Priame využitie dát

- Trace-driven simulation
- Dáta reprezentujú minulosť systému, môžu byť odhadom jeho budúcnosti (pri zachovaní rovnakých podmienok)
- ⊗ Vyskytujú sa len namerané hodnoty
- 8 Nedostatok dát na dlhšie (väčší počet) behy
- ⊗ Môže byť pomalé (čítanie dát zo súboru)
- © Vhodné pre validáciu modelu

delovanie a simulácia

10

Empirické rozdelenie prsti

- Diskrétne (len namerané hodnoty)
- Spojité (aproximácia)
- S Vhodné ak nie je možné nájsť teoretické rozdelenie pravdepodobnosti
- Sú ohraničené (len nameraný rozsah hodnôt) (možnosť pripojenia "chvostov")
- 8 Kvalita je úplne závislá od kvality vzoriek
- Nepresné pri malom množstve dát ("zubatost", extrémne hodnoty)

Modelovanie a simulácia

11

Teoretické rozdelenie prsti

- Diskrétne
- Spojité
- © Vyhladenie nameraných vzoriek
- © Poskytne aj hodnoty mimo nameraného rozsahu
- © Možnosť jednoducho meniť parametre (stredná doba medzi príchodmi)
- © Kompaktnejšie ako empirické rozdelenie (nepotrebujeme evidovať tabuľky, ...)
- 8 Nie vždy sa dá nájsť vhodné rozdelenie

lodelovanie a simulácia

.

Teoretické rozdelenie prsti

- 1. Test nezávislosti dát
- 2. Výber vhodného rozdelenia (prípadne skupiny rozdelení) pravdepodobnosti
- 3. Zistenie parametrov vybraného rozdelenia
- 4. Testovanie zvoleného rozdelenia a jeho parametrov štatistickými testmi dobrej zhody χ² test, Kolmogorovov-Smirnovov test)

Test nezávislosti

■ Mnohé štatistické metódy (napr. χ² test) predpokladajú, že dáta sú nezávislé a rovnako rozdelené (pochádzajúce z rovnakého rozdelenia) vzorky z daného rozdelenia

(IID=Independent & Identically Distributed)

Je potrebné testovať

Test nezávislosti

Scatter plot

Výber vhodného rozdelenia

- Vyberáme na základe:
 - Teoretických znalostí (napr.: príchod zákazníkov ~ Poissonov proces)
 - Číselných charakteristík (napr.: koeficient rozptylu, šikmosť, špicatosť, ...)
 - Rozsahu hodnôt (ohraničenie) (napr.: doba lisovania nadobúda kladné hodnoty)
 - Eyeballing ("Od oka") (na základe histogramu)

Histogram

- X-ová os triedy hodnôt veličiny
- Y-ová os početnosť výskytov hodnôt v danej triede

Histogram

- Problém je určiť počet a hranice tried hodnôt
- Heuristika: počet tried by sa mal približne rovnať druhej odmocnine počtu vzoriek
- Zle zvolené triedy môžu mať za následok nevhodne zvolené rozdelenie pravdepodobnosti

Normálne RP

★ Veličiny, ktoré sú súčtom veľkého počtu veličín (CLV)

- Chyby rôzneho druhu (váženie výrobkov)
- Pozor na rozsah!

μ (str.h.), σ

 \Leftrightarrow $(-\infty, \infty)$

 $E[X] = \mu$ $Var(X) = \sigma^2$

Modelovanie a simulácia

Logaritmicko-Normálne RP

★ Veličiny, ktoré sú súčtom veľkého počtu veličín (CLV)

Čas trvania aktivity (má dlhý chvost vpravo)

 ρ μ (rozmer), σ (tvar)

 \Leftrightarrow [0, ∞)

$$f(x) = \begin{cases} \frac{1}{\sigma x \sqrt{2\pi}} e^{-(\ln(x) - \mu)^2 / 2\sigma^2}, & x > 0\\ 0, & inak \end{cases}$$

 $E[X] = e^{\mu + \sigma^2/2}$ $Var(X) = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$

a a simulácia Adamio, PoC.

€ 0,2

■ Máme iba odhad min, max a najpravdepodobnejšej hodnoty

✓ a (min), b (max), m (modus)

⇔[a, b]

E[X] = (a+b+m)/3 $Var(X) = (a^2 + m^2 + b^2 - ma - ab - mb)/18$

Aodelovanie a simulácia

Trojuholníkové RP

* Používa sa v prípade nedostatku dát

22

Beta RP

* Používa sa v prípade nedostatku dát

■ Veľmi flexibilný tvar

 $\nearrow \alpha$, β (tvar)

 \Leftrightarrow [0,1]; dá sa transf. na [a, b]

 $f(x) = \begin{cases} \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}, & 0 < x < 1 \\ 0, & inak \end{cases}$

 $E[X] = \frac{\beta}{\alpha + \beta} \qquad Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)}$

Modelovanie a simulácia O ing Norbet Adamio, PhD. 34

Zistenie parametrov rozdelenia

- Štatistické metódy odhadov parametrov
 - Odhady strednej hodnoty a rozptylu vzorky
 - Metóda momentov
 - Metóda maximálnej vierohodnosti (Maximum-likelihood estimator MLE)

Modelovanie a simu

Testy dobrej zhody

- Test hypotézy, či vybraté rozdelenie dobre modeluje vzorku dát
- Dva najpoužívanejšie testy:
 - χ² test (Carl Pearson)
 - Kolmogorovov-Smirnovov test
- Veľkosť vzorky dát je dôležitá
 - Málo dát testy neodmietnu skoro žiadnu hypoteźu
 - Veľa dát testy odmietnu skoro všetky hypotézy

delovanie a simulácia

.

χ² test

- Testujeme hypotézu, že dve vzorky dát pochádzajú z rovnakého rozdelenia
- Testovacia štatistika:

$$\chi_{k-1}^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

lodnoty rozdelíme do intervalov.

- počet intervalov
- O_i pozorovaná početnosť v intervale i
- E. očakávaná početnosť v intervale i
- Hodnotu test. štatistiky porovnávame s kritickou hodnotou χ² rozdelenia na danej hladine významnosti

Iodelovanie a simulácia O Inc. Norbert Ademio, PNO.

Testy dobrej zhody

- χ² test
 - Potrebuje väčšie množstvo dát
 - Ak má dostatok dát, je presnejší
 - Vyžaduje rozdelenie do intervalov problém
- Kolmogorovov-Smirnovov test
 - Stačí mu menšie množstvo dát
 - Pri väčšom počte dát, je menej presný

delovanie a simulácia

Input Analyzer

- Program na analýzu vstupných dát
- Súčasť balíka Rockwell Arena
- Umožňuje nájsť najvhodnejšie rozdelenie pravdepodobnosti pre reprezentáciu danej vzorky dát
- Používa minimálnu kvadratickú odchýlku, χ² test, Kolmogorovov-Smirnovov test
- Poskytne parametre rozdelenia

odelovanie a simulácia

Nedostatok dát

- Ak dáta nie sú k dispozícii
 - Využitie existujúceho modelu podobného procesu
 - Typ procesu
 - (Príchod ~ Poisson, ...)
 - Názory expertov

 - (min, max ~ Rovnomerné,
 - + najpravdepodobnejšia hodnota (modus) ~ Trojuholníkové,
 - + stredná hodnota ~ Beta)
- Analýza citlivosti

delovanie a simulácia

Multimodálne procesy Telefonické hovory (rôzne povahy volajúcich)

Modelovanie a simulácia

Nestacionárne procesy

- Napr.: počet zákazníkov prichádzajúcich do reštaurácie (za hodinu) sa mení počas dňa (obed)
- Nesmieme zanedbať
- Rozdeliť na intervaly, v ktorých sa dá intenzita príchodu považovať za konštantnú
- Určiť intenzitu pre každý interval

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
- Kelton, W.D., Sadowski, R.P., Sturrock, D.T.; Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Křivý, I., Kindler, E.: Simulace a modelovaní, skriptá Ostravskej univerzity, 2001 Kavička, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
- http://www.cs.uml.edu/~giam/Mikkeli/
- http://www.cse.msu.edu/~cse808/note/
- http://www.sce.carleton.ca/courses/94501/s02/
- http://stat-www.berkeley.edu/~stark/Java/Html/chiHiLite.htm
- $\frac{http://mindyourdecisions.com/blog/2013/06/21/what-do-deaths-from-horse-kicks-have-to-do-withstatistics/\#.VhzO4svovRY}{}$
- www.wikipedia.com

Analýza výsledkov simulačných experimentov

Prednáška č. 6

Modelovanie a simulácia

doc. Ing. Norbert Adamko. PhD

Random In => Random Out

- Náhodné vstupy => náhodné výstupy (RIRO)
- (jeden) Simulačný beh aký má význam?
 - Bola to "typická" situácia?
 - Medzi jednotlivými behmi sú rozdiely
- Potrebné vykonať niekoľko behov replikácií

Replikácia

• Replikácia je spustenie simulačného experimentu s rovnakými parametrami (konfiguráciou, inicializačným stavom) ale s odlišným prúdom (násadou) generátora náhodných čísiel, ktorý generuje vstupné veličiny

(originál)

Trojuholníky (2-nás. intenzita príchodu)

Lisovňa

1. replikácia je červená

Kruhy

AA A

Nezávislosť výstupných hodnôt

- y₁₁, y₁₂, ..., y_{1m} nemusia byť IID
- Nemôžeme použiť niektoré štatistické metódy

 Nezávislé

Napr.: čas čakania vo fronte

Modelovanie a simulácia © log. Norbert Adamko, Prú. 5

Štatistické spracovanie výsledkov

- Jedna konfigurácia
- Porovnanie dvoch alebo viacerých konfigurácií
- Hľadanie optimálnej konfigurácie
- Ignorovanie štatistickej analýzy
 - Nemáme predstavu o presnosti výsledkov

Modelovanie a simuláci

Typy simulácie

- S ukončením
- Bez ukončenia
 - S ustálenými parametrami
 - S cyklickými parametrami
 - S inými parametrami

Modelovanie a simuláci

Simulácia s ukončením

■ Terminating simulation

- Existuje prirodzená udalosť v reálnom systéme, ktorá v simulátore znamená koniec simulácie
- (napr. koniec pracovnej smeny, vyrobenie daného počtu výrobkov, ...)
- Dané počiatočné a koncové podmienky
- Simulačný čas je konečný a dobre definovaný
- Počiatočná situácia má vplyv na výsledky

lodelovanie a simulácia

Simulácia bez ukončenia

- Steady-state simulation
 - Dlhý beh ("nekonečný")
 - Nie sú dané podmienky ukončenia simulácie
 - Počiatočne podmienky nemajú teoreticky vplyv (prakticky ho však majú)
 - Pozor pri spracovaní výsledkov!

Modelovanie a simulácia

Aký typ simulácie?

- Väčšinou je to dané cieľmi štúdie
 - Príklad: Výrobná linka (16 hodín denne, Po-Pi)
 - S ukončením: ako dlho trvá, kým sa výroba naplno "rozbehne"
 - Bez ukončenia: aká bude priepustnosť systému po zapracovaní pracovníkov a zábehu systému
- Použitie simulácie s ukončením je niekedy dané fungovaním systému
- Nie vždy to musí byť jasné

delovanie a simulácia

...

Simulácia s ukončením

O log, Norbert Adamko, PhD.

Zber výstupných dát

- Metóda nezávislých replikácií
 - Vykonávame IID replikácie (minimálne 4-5, radšej 10 alebo viac)
- Výsledky pre jednotlivé replikácie si uložíme

Replication	Daily Profit	Daily Late Wait Job
1	\$ 475.43	0.6500
2	525.17	0.6500
3	513.98	0.5500
4	389.42	0,6000
5	513.96	0.7000
6	401.20	1.0500
7	450.52	0.6500
8	388.71	0.9000
9	574.67	0.4000
10	565.81	0.2500

ie a simulácia

.

Spracovanie výstupných dát

 Výsledky je nutné štatisticky spracovať a určiť intervaly spoľahlivosti pre jednotlivé veličiny

	Daily Profit	Wait Jobs
Sample Mean	\$ 479.89	0.6400
Sample Standard Deviation	70.17	0.0510
95% Confidence Interval Half Width	50.20	0.1616
Minimum Summary Output Value	388.71	0.2500
Maximum Summary Output Value	574.67	1.0500

Modelovanie a simulácia

1

Určenie intervalov spoľahlivosti

- Stredná hodnota
- $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$

Rozptyl

- $s^{2} = \frac{\sum_{i=1}^{n} (X_{i} \overline{X})^{2}}{n-1}$
- Interval spoľahlivosti $\overline{X} \pm t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$

odelovanie a simulácia

.

Intervaly spoľahlivosti

 Hodnota ktorú hľadáme (μ) je vlastne priemerom z nekonečného počtu replikácií

95% IS je taký náhodný (iná sada replikácií poskytne iný interval) interval, ktorý s 95% pravdepodobnosťou obsiahne túto hľadanú hodnotu

(Ak by sme urobili mnoho krát po napr. 50 replikáciách a zakaždým vytvorili IS, približne 95% z týchto intervalov by obsiahlo hľadanú (<u>ale neznámu</u>) hodnotu (μ))

Modelovanie a simulácia

...

Intervaly spoľahlivosti

- 95% IS nie je interval, do ktorého padne 95% nameraných hodnôt veličiny z replikácií!
- Výpočet IS predpokladá IID a normálne rozdelenie dát
 - Dáta väčšinou nie sú normálne rozdelené (lepšie sú na tom priemerné hodnoty, ako extrémy)
 - CLV pri veľkom n je to v poriadku

lelovanie a simulácia

Koľko replikácií

- Vždy minimálne 4 5
- Záleží od toho, akú presnosť chceme dosiahnuť (half width)

 $h = t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}} \Rightarrow n = t_{n-1,1-\alpha/2}^2 \frac{s^2}{h^2}$

1. $n \cong z_{1-\alpha/2}^2 \frac{s^2}{h^2}$ n rastie kvadraticky so znižujúcim sa h!

 $2. \qquad n \cong n_0 \, \frac{h_0^2}{h^2} \qquad \qquad \begin{array}{ll} \text{$n_0 - \text{počet ,"úvodn'ých" replikácií}} \\ \text{$h_0 - \text{half-width z ,"úvodn'ých" replikácií}} \end{array}$

Modelovanie a simulácia O Ing. Norbert Adamko, PhD. 17

Porovnávanie výsledkov dvoch rôznych konfigurácií

- Urobíme behy => výsledky, IS, ..., skontrolujeme, či sa intervaly prekrývajú
 - Napr.:
 - Základná konfigurácia: 492.63 ± 13.81, alebo [478.82, 506.44]
 - Zlepšená konfigurácia: 564.53 ± 22.59, alebo [541.94, 567.12]
- Zdá sa to síce rozumné, ale nie je to celkom správne

Modelovanie a simulácia

10

Porovnávanie výsledkov dvoch rôznych konfigurácií

- Arena Output Analyzer
 - Súčasť balíka Rockwell Arena
 - Aplikácia na štatistickú analýzu výsledkov simulačných behov
 - Vykonáme dvojzložkový t-test
 - Výsledkom je 95% interval spoľahlivosti pre rozdiel porovnávaných hodnôt

Modelovanie a simulácia

. . .

Porovnávanie výsledkov dvoch rôznych konfigurácií

 Ak získaný interval neobsahuje 0, je medzi porovnávanými alternatívami štatisticky významný rozdiel

Modelovanie a simulácia

0

Simulácia bez ukončenia s ustálenými parametrami

Modelovanie a simulácia

Steady-state simulácia

- Spracovanie výsledkov je náročnejšie ako pri simulácii s ukončením
- Naozaj je potrebné vykonávať tento druh simulácie?
- Vykonávame dlhý simulačný beh
- Po fáze zahrievania sa model dostane do ustáleného stavu
- Problém je, že výstupné hodnoty sú autokorelované

delovanie a simulácia

...

Začiatočný stav

- Väčšinou modely začínajú
 - prázdne
 - (v systéme sa nenachádzajú žiadne entity)
 - nečinné (žiadny zdroj obsluhy nepracuje)
- V simulácii s ukončením je to v poriadku (ak to zodpovedá modelovanému systému)
- V simulácii bez ukončenia to však môže ovplyvniť výsledky

(Spôsob ovplyvnenia je závislý od konkrétneho modelu)

Modelovanie a simulácia

23

Začiatočný stav

- Ako zabrániť vplyvu začiatočného stavu na výsledky?
 - Začať s naplneným systémom
 - Problém ako vieme ako má model v danom čase vyzerať?
 - Simulovať tak dlho, že sa vplyv zač. stavu stratí
 - V istých prípadoch môže fungovať
 - Nechať model "zahriať"
 - Výsledky začneme zbierať až po zahriatí, keď sa systém nachádza už v ustálenom stave

Modelovanie a simulácia

24

Zahrievanie (Warm-up, Transient period)

- Ako určiť kedy skončí fáza zahrievania?
 - Priemer (nie je príliš vhodný)
 - Priemer cez replikácie
 - Kĺzavý priemer (Welchova metóda)
 - Eyeballing ("Od oka")
- Rôzne procesy môžu mať rôznu rýchlosť zahrievania
 treba vziať maximálnu hodnotu

delovanie a simulácia

Eyeballing

- Nakresliť si grafy výstupných hodnôt a od oka určiť, kedy sú stabilné
- Pozor na variabilnosť pri replikáciách sledovať viac replikácií
- Sledovať prípadné zahltenie systému

Metódy pre získanie IID dát

Metóda skrátených replikácií

(Truncated replications, Replication-deletion)

Metóda dávok
 (Batch means method)

Regeneratívna metóda

(Regenerative method)

Spektrálna metóda

(Spectral estimation method)

Modelovanie a simulácia

_

Metóda skrátených replikácií

- Identifikujeme dobu zahrievania
- Vykonáme n nezávislých replikácií pričom vždy zbierame dáta až po ustálení systému
- Ďalej pokračujeme ako pri analýze simulácie s ukončením
- Ak vyžadujeme vyššiu presnosť
 - Simulujeme dlhšie pri každej replikácii
 - Urobíme viac replikácií
- Problém ak je fáza zahrievania dlhá replikácie môžu bvť časovo náročné

felovanie a simulácia

Metóda dávok

- Použijeme len jeden veľmi dlhý beh
- Problém máme iba jednu replikáciu (dáta nie sú IID => nesmieme ich použiť!)
- Rozdelenie výsledkov do niekoľkých dávok (Zahrievanie vylúčime)
- Pre každú dávku vypočítame priemer (Batch mean), ktoré môžeme považovať za IID náhodné premenné

Modelovanie a simulácia

en.

Metóda dávok Ako voliť dávky? Dávka musí byť dostatočne veľká, aby nebola korelovaná s nasledujúcimi dávkami Dávka musí obsahovať dostatočné množstvo

Metóda dávok

- Použijeme len jeden **veľmi** dlhý beh
- Problém máme iba jednu replikáciu (dáta nie sú IID => nesmieme ich použiť!)
- Rozdelenie výsledkov do niekoľkých dávok
- Pre každú dávku vypočítame priemer (Batch mean), ktoré môžeme považovať za IID náhodné premenné

Modelovanie a simulácia

Zhrnutie

- Výsledky simulačných experimentov je nutné štatisticky spracovať
- Rozlišujeme simuláciu s ukončením a bez ukončenia – líšia sa metódy spracovania výsledkov
- 1. Ak je to možné, vyhnite sa simulácii bez ukončenia
- 2. Ak nie využite metódu replikácií
- 3. Ak sa nedá použite metódu dávok

falovania a simulácia

..

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
 - Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Křivý, I., Kindler, E.: Simulace a modelovaní, skriptá Ostravskej univerzity, 2001
- Kavička, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
- http://www.cs.uml.edu/~giam/Mikkeli/
- http://www.cse.msu.edu/~cse808/note/
- http://www.sce.carleton.ca/courses/94501/s02/

Modelovanie a simulácia

-

Simulačný projekt

Prednášky č. 7 a 8

Modelovanie a simulácia doc. Ing. Norbert Adamko, PhD.

Úspešný simulačný projekt

Úspech definuje klient

(zvyčajne ten kto platí)

- Simulačný projekt je posudzovaný podľa jeho aplikácie (využitia) u klienta a nie na základe technických parametrov
- Je dôležité vedieť, na základe akých kritérií sa bude projekt posudzovať

Modelovanie a simuláci

Úspešný simulačný projekt (pokr.)

Úspešný projekt poskytuje v **správnom čase** užitočné **informácie**, ktoré podporia zmysluplné **rozhodnutie**

Modelovanie a simulácia © Ing. Norbert Adamko, PhD. Potrebné schopnosti

- Štatistika a základy teórie pravdepodobnosti
- Získanie znalostí o skúmanom systéme
- Programovanie
- Data management
- Grafika

Modelovanie a simulácia

Potrebné schopnosti (pokr.)

- Riadenie projektov
- Time management
- Schopnosť zamerať sa na dôležité veci
- Schopnosť pracovať v tíme
- Prezentovanie
- Komunikatívnosť
- .

lelovanie a simulácia

Fázy simulačného projektu

- Dve základné etapy:
 - Návrh a tvorba simulačného modelu
 - Experimentovanie s modelom
- Každá etapa má niekoľko fáz
- Fázy jednotlivých etáp sa môžu prelínať a vykonávať v rôznom poradí (i opakovane)

1. Formulácia problému a vymedzenie objektu skúmania

- Nemodelujeme preto aby sme modelovali, ale preto, aby sme vyriešili daný problém
- Zákazník zriedkavo formuluje problém jasne
 - Máme veľké náklady na skladovanie výrobkov
 - Veľa zákaziek sa oneskoruje
 - Potrebujeme nasadiť simuláciu

 Potreba preformulovania problémov spolu so zákazníkom

Formulácia problému a vymedzenie objektu skúmania

- Problém musí byť jasne definovaný a odsúhlasený zákazníkom
- Je simulácia vhodným nástrojom na riešenie formulovaného problému?
- Vymedzenie objektu skúmania

Kedy nepoužívať simuláciu?

- Problém sa dá vyriešiť "zdravým sedliackym rozumom"
- Problém sa dá vyriešiť analytickými matematickými metódami
 - Teória hromadnej obsluhy
- Je ľahšie experimentovať s reálnym systémom

Kedy nepoužívať simuláciu?

- Náklady na simulačnú štúdiu presiahnu možné úspory
 - Niekedy je ťažké kvantifikovať úspory
- Na úspešné ukončenie projektu nemáme dostatok zdrojov
 - · Ľudia, počítače, softvér, peniaze

Kedy nepoužívať simuláciu?

- Na projekt nie je dostatok času
 - Sklon zákazníkov využívať simuláciu až na konci
 - Projekt, ktorého výsledky sa nevyužijú môže byť považovaný za neúspešný
- Nie ie dostatok dát
 - Neexistujú ani podložené odhady
- Model nie je možné verifikovať/validovať

Kedy nepoužívať simuláciu?

- Nie je možné splniť očakávané ciele
 - Dôležité je poučiť zadávateľa o možnostiach simulácie - majú príliš veľké očakávania
 - Nepreceniť svoje sily
- Činnosť systému je príliš komplikovaná alebo ju nie je možné definovať
 - Komplexné správanie sa ľudí v krízových situáciách

2. Stanovenie cieľov a plánu

- Ciele určujú otázky, na ktoré má model odpovedať
 - Presné, zdôvodnené, merateľné
 - Stanovenie otázok (rozdelenie podľa dôležitosti)
 - Stanovenie kritérií a jednotiek (KPI - Key Performance Indicators)

2. Stanovenie cieľov a plánu

- Štúdium modelovaného systému
 - Nie je možné modelovať niečo, čomu nerozumieme
 - Najlepšie je ísť na "miesto činu"
 - Komponenty systému
 - Prevádzka systému
 - Rozhovory s pracovníkmi
 - Popis systému (náčrt)

3. Vymedzenie systému

- Vymedzenie systému (abstrakcia)
- Špecifikácia systému a modelu:
 - Ciele projektu
 - Popis modelovaného systému
 - Spôsob modelovania
 - Spôsob animácie
 - Vstupy a výstupy
 - Prínosy modelu

Celkový plán

- Celkový plán projektu:
 - Ciele
 - Špecifikácia
 - Časový plán projektu (míľniky)
 - Potrebné zdroje (ľudské, materiálne)
- Plán projektu musí byť odsúhlasený všetkými partnermi (kredibilita)

Vykročte pravou nohou

- Klienta treba uistiť, že vy ste ten správny tím
- Úvodné stretnutie (kick-off meeting)
 - Účasť manažmentu, zodpovedných pracovníkov, ľudí z prevádzky (len kompetentné osoby)
 - Predstavte tím
 - Informujte o dôvode projektu, cieľoch, pláne, ...
 - Diskutujte (prijímajte návrhy)
- Sledujte správanie ľudí vytipujte si kontaktnú osobu (project champion)
- Získanie podpory a záujmu

Riešte správny problém

- Správne riešenie nesprávneho problému je na nič
- Písomné stanovenie jasných cieľov
- Dôležité je splnenie cieľov, nie ukončenie projektu

Držte očakávania na uzde

- Očakávania klienta sú zvyčajne prehnané
- Očakávania musia byť v súlade s cieľmi projektu
- Dôležité je upozorniť na to, čo model bude vedieť a čo nie
- Očakávania treba kontrolovať neustále

Komunikácia je dôležitá

- Správne riešenie začína správnou otázkou
 - Neklásť otázky, na ktoré sa dá odpovedať áno/nie
 - Prečo ste to urobili takto? <-> Na základe čoho sa rozhodujete. ako to urobíte?
- Buďte dobrý poslucháč
 - Najprv problém pochopte, až potom riešte
 - Treba vnímať potreby zákazníka
- Neustála komunikácia
 - Zákazník musí odsúhlasiť ciele a postup
 - Zákazník musí byť informovaný (road map)

Odhadnite výsledok

- Len ak viete, kde ste začali, môžete povedať ako ďaleko ste zašli
- Požiadajte zákazníka o hrubú analýzu problému
 - Poskytne vám to odhad
 - Nesmie to však ovplyvniť ďalší postup
 - Zákazník si na konci uvedomí prínos projektu

4. Konceptuálny model

- Zvolenie vhodnej koncepcie pre tvorbu modelu
 - udalostná, procesová, agentová
- Vytvorenie konceptuálneho modelu

 - Špecifikuje základné funkčné a riadiace časti
 Úroveň detailov len toľko, koľko je nutné, aby sme splnili ciele projektu
- Obvykle už aj výber jazyka alebo prostredia, v ktorom bude model realizovaný

Úroveň detailov

- Začínať so strednou úrovňou detailov
- Detailnosť ovplyvňujú:
 - Ciele projektu
 - Potreba merateľných veličín
 - Kredibilita modelu
 - Dáta
 - Názory expertov
 - Analýza citlivosti na zmenu parametrov
 - Iné obmedzenia (počítač, čas, peniaze)

5. Zber a analýza dát

- "Garbage in garbage out"
- Zber vstupných dát
 - Rozhodnutie o spôsobe modelovania vstupov (deterministické/stochastické, rozdelenia pst)
 - Získanie dát
 - . "Vždy zaberie viac času, ako sa predpokladalo"
 - Môže zabrať až 30% času projektu!
- Zber dát popisujúcich parametre výkonu systému (pre neskoršiu validáciu)

5. Zber a analýza dát

- Rôzne zdroje vstupných dát
 - Historické záznamy
 - Pozorovanie
 - Podobné systémy
 - Odhady expertov
 - operátori
 - dodávatelia
 - dizajnéri
 - Teoretické odhady

Pochybujte o dátach

- Aj keď zákazník tvrdí, že má všetky dáta, ktoré potrebujete:
 - Sú dáta správne?
 - Ako boli dáta zozbierané?
 - zdroj, čas, spôsob
 - Zodpovedajú požadovanej úrovni detailov?

Odhady môžu pomôcť

- Zber dát je na kritickej ceste projektu
- Ak nie sú dáta k dispozícii nemusí to ale zdržať celý projekt -> odhad (predpoklad)
- Odhady sa môžu neskôr spresniť (ak to bude potrebné)

6. Implementácia modelu

- Tvorba počítačového modelu
- Voľba prostredia (jazyka)
 - Všeobecný jazyk Java, C++, C#, Pascal, ...
 - Simulačný jazyk
 Simula, SIMAN, ...
 - Simulačný balík

všeobecný: AnyLogic, Arena, SimScript, Extend, Simul8, ... špecializovaný: Witness, SimFactory, ProModel, ...

Modelovanie a simulácia © log. Norbert Adamko, Prú. 3

Sústreďte sa na problém

- Dôležité je vyriešiť problém, nie vytvoriť model
- Viac času na experimentovanie, menej na programovanie modelu
- Stanovte si viac čiastkových míľnikov
- Kontrolujte smerovanie projektu počas procesu implementácie

delovanie a simulácia

31

Neprekomplikujte to

- Nezabúdajte, že vytvárate len model
- Detaily pridávajte postupne
- Model nesmie byť "múdrejší" ako reálny systém
- Výsledky modelu musia byť využiteľné v reálnom systéme

(Napr. nepoužívať riadiace postupy v modeli, ktoré sa v realite nedajú použiť)

lelovanie a simulácia

3

7. Verifikácia modelu

- Zodpovedá implementovaný model, konceptuálnemu modelu a špecifikácii alebo
- Je model naprogramovaný správne?
- "Žiadny program nefunguje na prvý raz."
- Treba vykonávať priebežne

odelovanie a simulácia

13

7. Verifikácia modelu

- Techniky verifikácie
 - Debuggovanie
 - Rozdelenie programu do menších blokov
 - Kontrola kódu druhou osobou
 - Trasovanie (step-by-step)
 - Testy vstupných generátorov
 - Testy s kombináciami vstupných parametrov a zjednodušeniami
 - Pozorovanie animačného výstupu

delovanie a simulácia

34

8. Validácia modelu

- Je model správnou reprezentáciou modelovaného systému?
- Môžeme pre experimentovanie nahradiť reálny systém týmto modelom a získať vierohodné výsledky?

Použitie výsledkov zo zlého simulačného modelu je horšie ako nesimulovať vôbec

lodelovanie a simulácia

...

8. Validácia modelu

- Spôsoby validácie modelov:
 - Porovnávanie s realitou Štatistické porovnanie správania simulátora so správaním simulovaného systému
 - Porovnávanie s iným modelom Napr. matematický model alebo iný validný sim. model Ak nie je k dispozícii existujúci systém
 - Empirická validácia

Posúdenie modelu expertom (zákazníkom) - Face validity

8. Validácia modelu

- Neexistuje úplne validný model, iba dostatočne validný model
- Náročnosť validácie závisí od komplexnosti modelu a od existencie modelovaného systému
- Zvyšovanie validity nad istú hranicu môže byť pridrahé
- Model, ktorý je validný pre jeden cieľ, nemusí byť validný pre iný

8. Validácia modelu

- Validácia by mala byť vykonávaná na veličinách, ktoré sa použijú pri rozhodovaní
- Validáciu treba vykonávať priebežne počas celého projektu
- Validácia a verifikácia sa často prelínaiú
- Úspešná validácia nezaručuje, že výsledky modelu budú vvužité

Riad'te zmeny

- Zmenám sa nedá zabrániť
- Súhlaste so zmenami, len ak je to nutné
- Zmeny sa možno dajú odsunúť na neskôr
- Zákazník by sa mal zúčastňovať na procese prijímania zmien
- Všetky požiadavky na zmenu písomne
- Po každej zmene je nutné model opätovne verifikovať a validovať
- Pozor na zmeny v tíme (výmena ľudí)

9. Plán experimentov

- Experimenty plánujeme tak, aby ich postupné výkonávánie viedlo k dosiahnutiú cieľov projektu
- Máme k dispozícii obmedzené prostriedky (čas. ľudia. ...)
- Ťažko zostaviť fixný nemenný plán (niekedy sa nedá zostaviť žiadny)
- Výsledky experimentov ovplyvňujú ďalší postup

10. Vykonanie a analýza experimentov

- Výsledky experimentov je nutné spracovať štatistickými metódami
- Pre každý experiment stanovujeme
 - Dĺžku simulačného behu
 - Počet replikácií
 - Čas zahrievania (Warm-up period)

Analýza experimentov

- Preverujte výsledky (dávajú zmysel, dajú sa vysvetliť)
- Porovnajte výsledky s odhadom zákazníka na začiatku projektu
- Poznajte obmedzenia a hranice modelu
 Model podporuje rozhodovanie, nenahradzuje ho.
- Ukážte radšej niekoľko možností, ako len jeden výsledok
- Prezentujte úspechy okamžite a často

Modelovanie a simulácia

11.Ďalšie experimenty?

Na základe analýzy výsledkov vykonaných experimentov je potrebné rozhodnúť, či bol dosiahnutý cieľ projektu alebo je potrebné vykonať ďalšie experimenty?

Modelovanie a simulácia

43

Treba vedieť kedy prestať

- Vždy sa dá urobiť viac
- Nie vždy je efektívne urobiť viac
- Počas projektu je potrebné dohodnúť so zákazníkom jeho rozsah

odelovanie a simulácia

44

12. Záverečná správa a dokumentácia

- Dokumentácia projektu
 - Dokumentovať! Dokumentovať! Dokumentovať!
 - Potrebné vykonávať priebežne
 - Project log
 - Možné ďalšie využitie modelu
 - Dodržujte štandardy

 (aj pri práci na malých modeloch)

lodelovanie a simulácia

...

12. Záverečná správa a dokumentácia

- Prezentuje výsledky projektu (dosiahnuté ciele) – môže rozhodovať o tom, či sa využijú
- Obsahuje:
 - výsledky
 - dokumentáciu modelu
 - popis programu
 - postup analýzy
 - popis experimentov

Modelovanie a simulácia

Záverečná správa a dokumentácia

- Záverečná správa
 - Vždy priložte Executive summary (~1 strana)
 - Poskytnite prehliadač simulačného modelu
 - Naznačte smery ďalšieho postupu
 - Vyhraďte si dostatok času na jej spracovanie
 - Prezentácia je veľmi dôležitá

falovania a simulácia

13. Aplikovanie výsledkov

Projekt, výsledky ktorého sa nepoužijú je neúspešný

- Simulačný projekt je posudzovaný podľa jeho aplikácie (využitia) u klienta a nie na základe technických parametrov
- Použitie (aplikovanie) výsledkov projektu závisí od kredibility modelu

Modelovanie a simulácia

48

Kredibilita modelu

- Ak je model považovaný klientom za validný a jeho výsledky sú použité pri rozhodovaní, je tento model kredibilný
- Kredibilita je reprezentovaná ochotou ľudí, založiť svoje rozhodnutia na výsledkoch modelu.

delovanie a simulácia ©log Norteri Adambo, PhD. 49

Kredibilita modelu

- Ako ju získať:
 - Klient rozumie a súhlasí so zjednodušeniami v modeli
 - Model bol preukázateľne verifikovaný a validovaný
 - Klient je súčasťou projektu (komunikácia s klientom)
 - Simulačný tím má dobrú povesť (referencie)

Modelovanie a si

51

Kredibilita modelu

- Sl'ubujte len to, čo viete splniť!
- Vždy splňte to, čo ste sľúbili!
- Verte si!
- Správajte sa diplomaticky!
- Zapojte dôležitých ľudí (tí, ktorí budú rozhodovať o použití výsledkov) do projektu!

anie a simulácia

Dôvody neúspechu

- Nedefinovaný jasný a dosiahnuteľný cieľ
- Zlé plánovanie, nesprávny odhad potrebných zdrojov
- Nevhodné zloženie tímu
- Nedostatok dôvery a podpory od manažmentu
- Nedostatočná účasť zákazníka

delovanie a simulácia

Dôvody neúspechu (pokr.)

- Nesprávna úroveň detailov (priveľa)
- Nevhodný simulačný software
- Priskoré programovanie
- Nevhodné modelovanie vstupných dát
- Nesprávne vyhodnotenie výsledkov simulácie
- Zneužívanie animácie

lodelovanie a simulácia

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
- Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Křivý, I., Kindler, E.: Simulace a modelovaní, skriptá Ostravskej univerzity, 2001
- Kavíčka, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
 http://www.cs.uml.edu/~giam/Mikkeli/
- http://www.cse.msu.edu/~cse808/note/
- http://www.sce.carleton.ca/courses/94501/s02/

Modelovanie komplexných systémov

Prednáška č. 9

Modelovanie a simulácia

Modelovanie a simulácia

55

Vlastnosti komplexných systémov

- Emergencia
- Nelineárne vzťahy
- Spätná väzba (Komplexné Adaptívne Systémy)
- Samo-organizovanie
- Hierarchická štruktúra
- Skoro dekomponovateľnosť

Diskrétna simulácia

2

Problémy skúmania komplexných systémov

- Komplexné systémy nie sú intuitívne, ľudia však uvažujú intuitívne
- Problémv:
 - Redukcionistický prístup ("Rozdeľuj a panuj")
 - Lineárne uvažovanie
 - Krátkodobý výhľad
 - Zjednodušovanie príčin, zanedbávanie vzťahov
 - Ovplyvnenie zažitými paradigmami (pohľadom na svet, očakávanými výsledkami)

Modelovanie a simulacia
© doc. Ing. Norbert Adamko, PhD.

3

Simulácia komplexných systémov

- Systémová dynamika (System Dynamics)
 - Vysoká úroveň agregácie prvkov systému (prvky nemajú individualitu, sú reprezentované súhrnne)
 - Holistický prístup
- Agentový prístup (Agent paradigm)
 - Individuálna reprezentácia jednotlivých prvkov systému a ich vzájomných interakcií

Modelovanie a simulácia

SYSTÉMOVÁ DYNAMIKA

System Dynamics

- Jay W. Forrester (50. roky 20. storočia)
- Abstrahuje od jednotlivých entít a udalostí
 systémový pohľad Systems Thinking
- Správanie systému je reprezentované pomocou hladín, tokov a (spätných) väzieb

Modelovanie a simulácia

System Dynamics

- Zvyčajne dlhodobé strategické modely
- Oblasti využitia:
 - Manažment
 - Urbanistika
 - Ekonomika
 - Sociológia
 - Ekológia
 - Biológia
 - ٠...

Modelovanie a simulácia doc. Ing. Norbert Adamko, PhD. 7

Systémové myslenie

- Využívame globálny pohľad, nadhľad so zanedbaním nepodstatných detailov
- Príčiny javov hľadáme v systéme, nie v externých faktoroch
- Sústredenie sa na dynamiku systému, nie iba na udalosti
- Dôraz na vzájomné vzťahy, ktoré nemusia byť lineárne a nezávislé, uvedomenie si spätných väzieb
- Dlhodobé uvažovanie

Modelovanie a simulácia

Vytvorenie modelu v SD

- Identifikácia prvkov systému
- Mentálny model
 - Kauzálne diagramy (Causal loops diagrams)
 - Diagramy hladín a tokov (Stock and flow diagrams)
- Formalizácia modelu
 - Definovanie rovníc
 - Hodnoty konštánt

© doc. Ing. Norbert Adamko, PhD.

Causal loops diagrams

- Definujú vzťahy medzi prvkami modelu
- Uzly sú premenné/veličiny
- Hrany definujú kauzálne vzťahy (pozitívne +/ negatívne -)
- Identifikácia slučiek spätnej väzby (Reinforcing, Balancing)

Modelovanie a simulácia

Modelovanie v SD

Na základe znalosti správania sa systému (porovnaním s typickými správaniami) sa využijú návrhové vzory (špecifická kombinácia väzieb, ktorá produkujé dané správanie), následne sa hľadajú faktory, ktoré dané správanie systému spôsobili

Modelovanie a simulácia doc. ing. Norbert Adamko, PhD.

Módy správania sa systémov

- Lineárny vývoj
 - Bez spätnej väzby
- Exponenciálny rast
 - Pozitívna spätná väzba

icia

Módy správania sa systémov

- Približovanie sa k danej hodnote
 - Negatívna spätná väzba
 - Goal seeking behaviour
- Oscilácia
 - Negatívna spätná väzba s oneskorením

mulácia Ademie (NO) 15

Módy správania sa systémov

- Logistický vývoj
 - Kombinácia pozitívnej a negatívnej spätnej väzby
 - S-shape
- Prestrelenie a kolaps
 - Kombinácia pozitívnej a neg. spätnej väzby
 - Overshoot and colaps

Diskrétna simulácia

. . .

Nástroje pre SD modelovanie

- Stella
- VenSim
- Powersim
- Insight Maker
- AnyLogic

Modelovanie a simulácia

17

Lotka-Volterra model

- Modeluje populácie predátorov a koristi (Predator-Prey)
- Zajac (X)
- Rys (Y)
- dX/dt = a.X b.X.Y ... korisť
- dY/dt = c.X.y e.Y ... Predátori
- http://runthemodel.com/models/194/

Modelovanie a simulácia

18

World model

- Club of Rome
- J. Forrester: World Dynamics (1971)
- D. Meadows et al.: Limits to Growth (1972, The 30-Year Update 2004)
- World3 model sleduje rôzne aspekty vývoja ľudstva
- Potraviny
- Priemysel
- Populácia
- Nerastné suroviny
- Znečistenie životného prostredia
- http://www.world3simulator.org/
- http://insightmaker.com/insight/1954

Modelovanie a simulácia doc. Ing. Norbert Adamko, PhD.

19

AGENTOVO ORIENTOVANÝ PRÍSTUP SKÚMANIA KOMPLEXNÝCH SYSTÉMOV

20

Paradigma agentov

- Paradigma agentov (a z nej vychádzajúce agentovo orientované architektúry) poskytuje možnosti na modelovanie komplexných systémov, ktoré sú prostredníctvom iných modelovacích techník (napr. udalostne orientovaná simulácia) obtiažne zvládnuteľné.
- Pôvod v oblasti umelej inteligencie

Diskrétna simulácia

21

Agent

Zapuzdrený počítačový systém* zasadený do nejakého prostredia, ktorý v ňom pružne a autonómne pôsobí za účelom plnenia daného cieľa

[Wooldridge, Jennings 1995]

* Môže byť SW ale aj HW agent, my sa venujeme výlučne softvérovým agentom

Diskrétna simulácia

Kľúčové vlastnosti agenta

Autonómnosť

t. j. agent je schopný pracovať samostatne bez vonkajších intervencií a úplne riadiť svoje výkony a kontrolovať svoj vnútorný stav

Spoločenské správanie

ktoré sa prejavuje ako interakcia s inými agentmi (resp. s človekom) prostredníctvom istého komunikačného mechanizmu/jazyka

Diskrétna simulácia © Ing. Norbert Adamko, PhD. 24

Kľúčové vlastnosti agenta (pokr.)

Reaktivita

alebo reagovanie na podnety z okolitého prostredia

Iniciatívnosť (Pro-aktívne správanie)

tzn. že agent nereaguje iba na podnety z okolitého prostredia, ale je schopný správať sa cielene vyvíjaním vlastnej iniciatívy (podporovanej schopnosťou učenia sa).

Diskrétna simulácia

25

Klasifikácia agentov

- Pre samotnú technickú realizáciu agenta je možné využiť rôzne koncepčné prístupy
- rôzne potreby daných typov aplikácií, v ktorých majú byť agenti použití
- rôzny dôraz na jednotlivé vlastnosti
- Agentov môžeme členiť podľa rôznych kritérií

(Problematika možných klasifikácií agentov nie je zatiaľ v odbornej komunite uzavretá)

Diskrétna simulácia

.

Klasifikácia agentov

- Podľa mobility
 - Statickí agenti
 - Mobilní agenti
- Podľa miery iniciatívnosti agenta
 - Uvažujúci (deliberatívni) agenti
 - Reaktívni agenti

Diskrétna simulácia

27

Klasifikácia agentov

- Podľa aplikačného poslania
 - Napr.: internetový agent, informačný agent
- Hybridní agenti
- Heterogénne agentové systémy
 - Agenti rôznych typov

Diskrétna simulácia

Klasifikácia agentov

- Zjednodušenie klasifikácie:
 - kooperatívni agenti
 - agenti rozhrania
 - mobilní agenti
 - informační/internetoví agenti,
 - reaktívni agenti,
 - hybridní agenti
 - inteligentní agenti

Diskrétna simulácia

.

Reaktívny agent

- Pri jeho tvorbe sa nevytvára žiaden apriórny plán jeho budúceho správania.
- Pozostáva z kolekcie modulov, ktoré pracujú autonómne a sú zodpovedné za špecifické úlohy (napr. za vykonávanie senzorických aktivít, výpočtových činností a pod.)
- Pôsobenie reaktívnych agentov pripomína skôr činnosť senzorických systémov než činnosť systémov s prvkami umelej inteligencie.

Diskrétna simulácia © Ing. Norbert Adamko. PhD 30

Reaktívni agenti

Inteligentné agentové systémy môžu byť postavené na jednoduchých (reaktívnych) agentoch, pričom inteligencia týchto systémov "sa objaví" až v dôsledku celého súhrnu situačných interakcií rôznych agentov.

Diskrétna simulácia

21

Let vtákov v kŕdli

- Letieť tam kam ostatní Alignment
- Držať spolu Cohesion
- Nechať si odstup na mávanie krídlami Separation

Modelovanie pohybu chodcov

 Zložením jednoduchých sociálnych síl (vektorov) vzniká "rozumné" správanie.

Uvažujúci agenti

- Označovaní aj ako deliberatívni agenti
 - Pri svojej činnosti analyzujú a vyhodnocujú situáciu
 - Rozmýšľajú nad vhodnou akciou, prípadne pracujú podľa stanoveného plánu
- Protiklad reaktívnych agentov
 - Prechod bludiskom
 - DA pomocou mapy a algoritmu pre nájdenie cesty
 - RA náhodná voľba smeru, wall following, ...

Diskrétna simulácia © doc. Ing. Norbert Adamko, PhD.

Multi-agentový systém

- Na riešenie komplexných problémov je potrebné využitie niekoľkých agentov
 - sú organizovaní v definovanej štruktúre (napríklad hierarchickej),
 - navzájom spolupracujú na splnení cieľa (vzájomnou komunikáciou, výmenou informácii, znalostí, zdrojov a pod.).
- Agenti sú schopní vytvárať spoločenstvo
 - vysoký stupeň decentralizácie,
 - vysoká miera životaschopnosti jednotlivých členov spoločenstva (vyplýva z ich autonómnej podstaty).

Diskrétna simulácia

...

Multi-agentový systém

- Systém, zložený z viacerých autonómnych agentov, ktorí navzájom spolupracujú za účelom splnenia cieľa, pričom tento cieľ nie je žiadny z nich schopný splniť samostatne
 - žiadny agent nemá prostriedky a schopnosti na vyriešenie daného problému,
 - neexistuje globálne riadenie systému,
 - dáta sú decentralizované a
 - vykonávanie prebieha asynchrónne.

Agenti a simulácia

 Agentové systémy majú mnohé vlastnosti, ktoré sa dajú výhodne využiť pri modelovaní komplexných systémov

(napr. územne rozľahlé systémy, biologické spoločenstvá, ...)

- Agentovo orientované modely
 - dobre udržiavateľná, zrozumiteľná štruktúra modelu vychádzajúca z prirodzenej štruktúry systému
 - členenie na autonómne jednotky riadenia (komplexné obslužné systémy) alebo autonómnych jedincov (biologické spoločenstvá)

Agentovo orientovaná simulácia

- Modelovanie inteligentných entít
 - Modely pohybu/evakuácie ľudí
 - Modely cestnej premávky
- Modelovanie biologických entít
 - Reakcia buniek organizmu na vírus
- Šírenie chorôb v populácii
- Biosystémy
- Geosimulácie
- Urbanistický rozvoj miest
- Modelovanie komplexných systémov so zložitou štruktúrou

Tvorba agentovo orient. modelov

- Využitie existujúcej podpory pre agentovo orientované modelovanie
 - SeSAm (http://www.simsesam.de/)
 - REPAST (http://repast.sourceforge.net/)
 - SWARM (http://www.swarm.org/)
 - NetLogo (https://ccl.northwestern.edu/netlogo/)
 - AnyLogic (http://www.anylogic.com/)
- Vytvorenie vlastnej podpory
 - akým spôsobom majú byť implementovaní jednotliví agenti,
 - ako má byť zabezpečený mechanizmus ich komunikácie
 - aká koncepcia bude použitá na synchronizáciu simulačného výpočtu.

Architektúra ABAsim

- Vyvíjaná na FRI
- Viacúrovňová agentovo orientovaná architektúra
 - Riadiaci agenti (hierarchická štruktúra)
 - Dynamickí agenti
 - Entity
- Podpora tvorby modelov obslužných systémov

Villon

- http://www.manicore.com/anglais/documentation_a/club_rome_a.html
- http://en.wikipedia.org/wiki/World
- http://www.psychologyinaction.org/2012/10/07/classic-psychologyexperiments-wason-selection-task-part-i/
- Barry Richmond: An Introduction to Systems Thinking, ISBN 0-9704921-1-1
- Radek Pelánek: Modelování a simulace komplexních systémů, Nakladatelství Masarykovy univerzity, 2011, ISBN: 978-80-210-5318-2
- Eva Burianová: Simulace dynamických modelů s využitím metod systémové dynamiky, ISKI 2007 - Využitie operačných systémov a počítačových sietí v podpore výučby informatických predmetov
- http://www.systemdynamics.org/DL-IntroSysDyn/

Modelovanie a simulácia

43

Simulačný software

Prednáška č. 10

Modelovanie a simulácia

Implementácia simulačného modelu

- Voľba spôsobu implementácie (prostredia, programovacieho jazyka)
 - Všeobecný jazyk C++, Pascal, Fortran, C#, ...
 - Simulačný jazyk
 Simula, SIMAN, GPSS/H...
 - Simulačný nástroj

všeobecný: AnyLogic, Arena, Extend, ... špecializovaný: SimFactory, AutoMod, ...

Modelovanie a simulácia

Všeobecný programovací jazyk

- Väčšina programátorov pozná aspoň jeden
- Široká dostupnosť (rôzne platformy)
- Vyššia flexibilita
- Vyššia rýchlosť vykonávania simulácie
- Nižšia cena softwaru (nie simulačnej štúdie)

)

simulácia

Simulačný jazyk

- Poskytujú mnohé konštrukcie a dátové štruktúry uľahčujúce tvorbu simulačných modelov
- Kratší vývojový čas
- Menšie riziko vzniku chýb v programe
- Jednoduchšie udržiavateľný kód (zmeny)

delovanie a simulácia

Simulačný nástroj

- L'ahšia tvorba modelu
- Redukcia písania kódu
- Ľahké úpravy modelu
- Menšie riziko vzniku chýb
- Automatický zber štatistík

Modelovanie a simulácia © Ing. Norbert Adamko, PhD.

Výber simulačného nástroja

- Vstupy
- Simulácia
- Výstupy
- Prostredie
- Výrobca / Dodávateľ
- Cena

Modelovanie a simulácia

Výber simulačného nástroja

- Identifikujte potrebné vlastnosti nástroja (mnohé propagované vlastnosti nikdy nevyužijete)
- Neposudzujte len na základe áno/nie (dôležité je vedieť podrobnejšie údaje o vlastnostiach nástroja)
- Všimnite si aj nežiadúce vlastnosti

Modelovanie a simuláci

Vstupy

- Štandardné užívateľské rozhranie
- Import CAD súborov (.DXF)
- Import/Export dátových súborov (veľké množstvo dát)
- Syntax (grafy, ...)
- Debugger
 - Monitorovanie priebehu simulácie
 - Fokus na časť modelu, napr. entitu
 - Zistenie hodnôt atribútov, ... (Watches)
 - Pozastavenie simulácie s možnosťou vykonania zmien (Pauza, Breakpoints, ...)
- Spolupráca s inými jazykmi (C++, VB, ...)
- Schopnosti analýzy vstupných údajov

todelovanie a simulácia

Simulácia

- Rýchlosť
- Run-Time flexibilita (batching, automatický zber štatistík, generovanie scenárov, ...)
- Generovanie náhodných premenných z rôznych rozdelení
- Reset štatistík (Steady-state simulation)
- Nezávislé replikácie
- Užívateľské globálne premenné a atribúty
- Možnosť programovania dodatočných funkcií
- Prenositeľnosť (rôzne HW platformy)

Modelovanie a simulácia

Výstupy

- Štandardizované reporty (priem. čakanie vo fronte, ...)
- Užívateľsky nastaviteľné reporty
- Podpora grafických výstupov
- Správa databáz
- Zápis výsledkov do súboru

delovanie a simulácia

...

Prostredie

- Jednoduchosť používania
- Jednoduchosť učenia
- Kvalita dokumentácie
- Animačné schopnosti
- Run-only verzia

Modelovanie a simulácia © Ing. Norbert Adamko, PhD.

Výrobca / Dodávateľ

- Stabilita
- Updaty/Upgrady
- Kompatibilita medzi verziami
- Užívateľská podpora

Modelovanie a simulácia

12

Informácie o simulačnom nástroji

- Referencie od používateľov nástroja
- Referencie konzultantov využívajúcich viac nástrojov
- Názory firiem tvoriacich podobné modely
- Stretnutia užívateľov
- Konferencie

Modelovanie a simulácia

- 12

Všeobecné simulačné nástroje

- Arena
- AnyLogic
- Simio
- SimProcess
- ExtendSim
- AweSim
- Simul8
- OMNet++

Modelovanie a simulácia

1

Simulačné nástroje orientované na priemyselné procesy

- AutoMod
- ProModel
- Taylor II
- Witness
- Plant Simulation (eMPlant)
- FlexSim

Modelovanie a simulácia

Iné špecializované nástroje

- <u>PSIM</u> (PowerSim)
- CASPOC (Power Electronics)
- MedModel
- ED simulator
- Project Simulator
- Process Simulator (MS Visio)

Modelovanie a simulácia

Nástroje založené na System Dynamics prístupe

- Stella
- I-think
- Vensim PLE
- InsightMaker (https://insightmaker.com/)

Modelovanie a simulácia © Ing. Norbert Adamko, PhD. . .

Nástroje pre agentovú simuláciu

- SeSAm
- Repast Simphony
- NetLogo
- InsightMaker (https://insightmaker.com/)
- PSI

odelovanie a simulácia

Sim. nástroje orientované na dopravu

- VICOS/VISSIM
- AIMSUN
- SimWalk
- OpenTrack
- RailSys
- Villon
- PedSim

Modelovanie a simulácia

. . .

Podporný software

- Proof Animation
- ExpertFit
- Stat::Fit
- OptQuest

Modelovanie a simulácia

...

Použité zdroje

- Kavička, A., Klima, V., Adamko, N.: Agentovo orientovaná simulácia dopravných uzlov, EDIS, 2005
- Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena, McGraww-Hill, 2004
- Hušek, R., Lauber, J.: Simulační modely, SNTL, 1984
- Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill, 1991
- Banks, J.: Handbook of Simulation, Wiley, 1998
- Seila, A.F., Ceric, V., Tadikamalla, P.: Applied Simulation Modeling, Thomson, 2003
- Křívý, I., Kindler, E.: Simulace a modelovaní, skriptá Ostravskej univerzity, 2001
- Kavička, A.: Sylaby k predmetu Diskrétní simulace, DFJP, Univerzita Pardubice
- http://www.cs.uml.edu/~giam/Mikkeli/
- http://www.cse.msu.edu/~cse808/note/
- http://www.sce.carleton.ca/courses/94501/s02/

Modelovanie a simulá

..

Upozornenie

- Tieto študijné materiály sú určené výhradne pre študentov predmetu Modelovanie a simulácia na Fakulte riadenia a informatiky Žilinskej univerzity v Žiline.
- Reprodukovanie, šírenie (i častí) materiálov bez písomného súhlasu autora nie je dovolené.

doc. Ing. Norbert Adamko, PhD.
Katedra matematických metód a operačnej analýzy
Fakulta riadenia a informatiky
Žilinská univerzita v Žiline
Norbert Adamko@fri.uniza.sk

Modelovanie a simuláci