7326527 차량제어전략개발팀 이창준

차량 종방향 제어 개인과제

차량 종방향 동역학 Plant 수식

차량 종방향 동역학 Plant 수식 : $m\dot{v} = F_{input} - F_r$

m : 차량 질량

ν : 차량 종방향 속도

 F_{input} : 차량 종방향 구동력 F_r : 차량 종방향 저항력

정리하면
$$v = \int \frac{F_{input} - F_r}{m} dt$$
 (초기값 = 0)

제어기 Simulink 다이어그램

기본 P 제어기

정상상태 오차 고려 1

플랜트 모델식은 다음과 같으므로 Fr을 고려하여 input값에 넣으면 정상상태 오차를 제거 할 수 있다 $m\dot{v} = F_{input} - F_r$

정상상태 오차 고려 2

다른 방법으로 I 제어기 를 추가하면 정상상태 오차를 줄일 수 있지만 overshoot 이 발생할 수 있다

PD 제어기 1

파란색 값은 정상상태 오차 제거한 P제어기 보라색: 정상상태 오차 제거한 P 제어기 + D 제어기

<mark>타겟 값이 빨리 변하는 sinusoidal input 상황에서</mark>도 대응하기 위한 설계를 위해 타겟 값의 시간에 대한 미분값을 더해준다

PD 제어기 2

보라색 그래프 : 이전 페이지에서 target 값에 대한 D제어기하늘색 : P제어기 + 현재값과 target 값의 오차에 대한 D제어기

미분 branch 위치에 따라 response가 차이남

PD 제어 + 외란 관측기

PD 제어 + 외란 관측기

 $M\dot{V}_{z} = F_{con} - \dot{F}_{R}$ $\hat{F}_{R} = F_{con} - M\dot{V}_{x}$ $f_{con} = 417 = 400 = 22$ 247 = 441

Plant 모델 $(m\dot{v} = F_{input} - F_r)$ 에서 F_r 값은 현실적으로 알기어렵기 때문에 외란 관측기를 추가하여 오차를 줄일 수 있다.

PD 제어 + 외란 관측기

확대해보면 외란 관측기를 넣은 제어기의 성능이 저항값을 상수로 대입한 제어기보다 성능이 우수했다

