Fundamentals of Optimization

Constraint Programming

Pham Quang Dung

dungpq@soict.hust.edu.vn

Department of Computer Science

Content

Constraint Satisfaction Optimization Problems

Constraint Propagation

Branching and Backtrack Search

Examples

Constraint Satisfaction Problems

Variables

$$X = \{X_0, X_1, X_2, X_3, X_4\}$$

Domain

$$X_0, X_1, X_2, X_3, X_4 \in \{1,2,3,4,5\}$$

Constraints

$$C_1$$
: $X_2 + 3 \neq X_1$

$$C_2: X_3 \le X_4$$

$$C_3$$
: $X_2 + X_3 = X_0 + 1$

$$C_4$$
: $X_4 \le 3$

$$C_5$$
: $X_1 + X_4 = 7$

$$C_6: X_2 = 1 \Rightarrow X_4 \neq 2$$

Constraint Satisfaction Problems

CSP = (X,D,C), in which:

 $X = \{X_1, ..., X_N\}$ – set of variables

 $D = \{D(X_1), \dots, D(X_N)\}$ – domains of variables

 $C = \{C_1,...,C_K\}$ – set of constraints over variables

Denote X(c) – set of variables appearing in the constraint c

Constraint Satisfaction Optimization Problems

```
COP = (X,D,C,f), in which:

X = \{X_1,...,X_N\} – set of variables

D = \{D(X_1),...,D(X_N)\} – domains of variables

C = \{C_1,...,C_K\} – set of constraints over variables

Denote X(c) – set of variables appearing in the constraint c

f: objective function to be optimized
```

Constraint Programming

A computation paradigm for solving CSP, COP combining

Constraint Propagation: narrow the search space by pruning redundant values from the domains of variables Branching (backtracking search): split the problem into equivalent sub-problems by

Instantiating some variables with values of its domain Split the domain of a selected variable into sub-domains

Constraint Programming

Solution

Failure

Domain consistency (DC)

Given a CSP = (X,D,C), a constraint $c \in C$ is called domain consistent if for each variable $X_i \in X(c)$ and each value $v \in D(X_i)$, there exists values for variables of $X(c) \setminus \{X_i\}$ such that c is satisfied

A CSP is called domain consistent if c is domain consistent for all $c \in C$

DC algorithms aim at pruning redundant values from the domains of variables so that the obtained equivalent CSP is domain consistent

Example: CSP = (X,D,C) in which: $X = \{X_1, X_2, X_3, X_4\}$ $D(X_1) = \{1,2,3,4\}, D(X_2) = \{1,2,3,4,5,6,7\}, D(X_3) = \{2,3,4,5\},$ $D(X_4) = \{1,2,3,4,5,6\}$ $C = \{c_1,c_2,c_3\}$ với $c_1 \equiv X_1 + X_2 \ge 5$ $c_2 \equiv X_1 + X_3 \ge X_4$ $c_3 \equiv X_1 + 3 \ge X_3$

□ CSP is domain consistent
When branching, consider $X_1 = 1$, a DC algorithm will transform the given CSP to an equivalent domain consistent CSP¹ having : $D^1(X_1) = \{1\}$, $D^1(X_2) = \{4,5,6,7\}$,

 $D^{1}(X_{3}) = \{2,3,4\}, D^{1}(X_{4}) = \{1,2,3,4,5\}$

A domain consistent CSP does not ensure to have feasible solutions

Example:

$$X = \{X_1, X_2, X_3\}$$

 $D(X_1) = D(X_2) = D(X_3) = \{0, 1\}$
 $c_1 \equiv X_1 \neq X_2, c_2 \equiv X_1 \neq X_3, c_3 \equiv X_2 \neq X_3$

☐ The CSP is domain consistent but does not have any feasible solution

```
Algorithm AC3(X,D,C){
 Q = \{(x,c) \mid c \in C \land x \in X(c)\};
 while(Q not empty){
   select and remove (x,c) from Q;
   if ReviseAC3(x,c) then{
    if D(x) = {} then
       return false;
    else
       Q = Q \cup \{(x',c') \mid c' \in C \setminus \{c\} \land x,x' \in X(c') \land x \neq x'\}
 return true;
```

```
Algorithm ReviseAC3(x,c){
 CHANGE = false:
 for v \in D(x) do{
  if there does not exists other values
   of X(c) \ {x} such that c
      is satisfied then{
     remove v from D(x);
     CHANGE = true;
 return CHANGE;
```

Some constraints, e.g., binary constraints (related 2 variables) □ have efficient DC algorithm

Constraint AllDifferent($X_1, X_2, ..., X_N$), the DC algorithm is efficient based on the matching (Max-Matching) algorithm on bipartite graphs

Nodes on the right-hand side are variables and nodes on the left-hand side are values

For each edge (X_i, v) , $(v \circ i \ v \in D(X_i))$, if there does not exist a matching of size N containing (X_i, v) , then v is removed from $D(X_i)$

$$X = \{X_1, X_2, X_3, X_4\}$$

 $D(X_1) = \{1,2,4\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3,4\}$

$$X = \{X_1, X_2, X_3, X_4\}$$

 $D(X_1) = \{1,2,4\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3,4\}$

No matching of size $3 \square$ remove 1 from $D(X_1)$

$$X = \{X_1, X_2, X_3, X_4\}$$

 $D(X_1) = \{2,4\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3,4\}$

No matching of size 3 \square removed 4 from $D(X_4)$

$$X = \{X_1, X_2, X_3, X_4\}$$

 $D(X_1) = \{2,4\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3\}$

No matching of size $3 \square$ removed 4 from $D(X_1)$

$$X = \{X_1, X_2, X_3, X_4\}$$
 $D(X_1) = \{2\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3\}$

$$\begin{array}{c}
X \\
1
\end{array}$$

$$\begin{array}{c}
X \\
2
\end{array}$$

Constraint propagation is not enough for finding feasible solutions

Combine constraint propagation with branching and backtracking search

Split the original CSP P_0 into sub-problems CSP $P_1,...,P_M$ Set of solutions of P_0 is equivalent to the union of sets of solutions to $P_1,...,P_M$

Domain of each variable in $P_1, ..., P_M$ is not greater than the domain of that variable in P_0

Search Tree

Root is the original CSP P_0

Each node of the tree is a CSP

If $P_1,...,P_M$ are children of P_0 then the set of solutions of P_0 is equivalent to the union of sets of solutions to $P_1,...,P_M$

Leaves

A feasible solution

Failure (a variable has an empty domain)

Search strategies

Variable selection

dom heuristic: select a variable having the smallest domain

deg heuristic: select a variable participating in most of the

constraints

dom+deg heuristic: first apply **dom**, then use **deg** when tie break (when there are more than one variable with the same smallest domain size)

dom/deg: select a variable having the smallest dom/deg

Value selection

Increasing order

Decreasing order

Variables

$$X = \{X_0, X_1, X_2, X_3, X_4\}$$

Domain

$$X_0, X_1, X_2, X_3, X_4 \in \{1,2,3,4,5\}$$

Constraints

$$C_1: X_2 + 3 \neq X_1$$

$$C_2: X_3 \le X_4$$

$$C_3$$
: $X_2 + X_3 = X_0 + 1$

$$C_4: X_4 \le 3$$

$$C_5$$
: $X_1 + X_4 = 7$

$$C_6: X_2 = 1 \Rightarrow X_4 \neq 2$$

```
1 6 6
If-Then-Else expression
if x[2] = 1 then x[4] != 2
. . .
from ortools.sat.python import cp model
class VarArraySolutionPrinter(cp model.CpSolverSolutionCallback):
         #print intermediate solution
         def init (self, variables):
                  cp model.CpSolverSolutionCallback. init (self)
                  self. variables = variables
                  self. solution count = 0
         def on solution callback(self):
                  self. solution count += 1
                  for v in self. variables:
                           print('%s = %i'% (v,self.Value(v)), end = ' ')
                  print()
         def solution count():
                  return self. solution count
```

```
model = cp model.CpModel()
x = \{\}
for i in range(5):
         x[i] = model.NewIntVar(1,5,'x[' + str(i) + ']')
c1 = model.Add(x[2] + 3 != x[1])
c2 = model.Add(x[3] <= x[4])
c3 = model.Add(x[2] + x[3] == x[0] + 1)
c4 = model.Add(x[4] <= 3)
c5 = model.Add(x[1] + x[4] == 7)
b = model.NewBoolVar('b')
#constraints
model.Add(x[2] == 1).OnlyEnforceIf(b)
model.Add(x[2] != 1).OnlyEnforceIf(b.Not())
model.Add(x[4] != 2).OnlyEnforceIf(b)
```

```
solver = cp_model.CpSolver()

#Force the solver to follow the decision strategy exactly
solver.parameters.search_branching = cp_model.FIXED_SEARCH

vars = [x[i] for i in range(5)]

solution_printer = VarArraySolutionPrinter(vars)
solver.SearchForAllSolutions(model,solution_printer)
```