

Master 1 Informatique – ENSICAEN 2A Module « Apprentissage »

TD numéro 3

Apprentissage supervisé - SVM

1 Support Vector Machine linéaire sans marges floues

On dispose d'un ensemble de points 2D labelisés $\mathcal{X}=\{(x_1,y_1),\cdots,(x_5,y_5)\}$ définis par $x_1=(1,0),\,x_2=(0,1)\,x_3=(0.8,1),\,x_4=(1.5,1.25),\,x_5=(0.4,0.2)$ et $y_1=-1,\,y_2=-1,\,y_3=1,\,y_4=1,\,y_5=-1.$ On souhaite classer ces données avec un SVM en utilisant un noyau linéaire $K(x,x')=x^Tx'$ sans marge floue.

- 1. Sur une figure, disposez les données \mathcal{X} , l'hyperplan de séparation des deux classes, les marges géométriques maximales et encerclez les vecteurs de support.
- 2. Donnez les valeurs des poids \mathbf{w} et du biais b correspondant à l'hyperplan de séparation.
- 3. Calculez les valeurs des multiplicateurs de Lagrange α_i correspondant à l'hyper-plan de séparation. On rappelle que les $\alpha_i \geq 0$ et $\sum\limits_{i=1}^N \alpha_i y_i = 0$.

2 Support Vector Machine linéaire avec marges floues

On dispose d'un ensemble de points 2D labelisés \mathcal{X} et on utilise un SVM à marges floues pour les classifier. Après résolution du problème dual, on obtient les multiplicateurs de Lagrange. Ils sont donnés dans le tableau suivant.

2		
x_i^2	y_i	α_i
4.0	+1	2.0
7.0	+1	0.0
6.0	+1	0.0
6.0	+1	1.5
3.0	+1	2.0
5.0	-1	2.0
2.0	-1	1.1
1.0	-1	0.0
1.0	-1	0.0
3.0	-1	0.4
4.5	-1	2.0
	7.0 6.0 6.0 3.0 5.0 2.0 1.0 3.0	4.0 +1 7.0 +1 6.0 +1 6.0 +1 3.0 +1 5.0 -1 2.0 -1 1.0 -1 3.0 -1

x_i^1	x_i^2	y_i
2.3	3.4	+1
4.4	3.4	-1
5.1	8.1	+1
3.3	3.8	-1
1.7	4.8	-1

Table 1: Gauche : données d'apprentissage labelisées $((x_i^1, x_i^2), y_i)$ et leur multiplicateur de Lagrange α_i . Droite: données de test labelisées $((x_i^1, x_i^2), y_i)$.

1. Quels sont les vecteurs de support?

- 2. Le biais est b = -1.8. Calculez le vecteur **w**.
- 3. À quel point l'hyperplan de séparation coupe l'axe des ordonnées $(x_i^1=0)$.
- 4. On considère les points (1,4), (4.5,3), (2,2) et (3,1) (lignes 1, 5, 7 et 8 des données d'apprentissage de la table 1.) Calculez les variables de relâche (slack variables à ξ_i pour ces points et classez ces points parmi (1) bien classé, hors de la marge, (2) bien classé, sur l'hyperplan, (3) bien classé, dans la marge, (4) mal classé.
- 5. Classez le point (4, 4) en utilisant le SVM.
- 6. On dispose de données de test. Quelle est le taux de classification correcte?

3 Noyaux

On considère le noyau polynomial suivant:

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^2$$

Trouvez l'espace de projection $\Phi: \mathcal{X} \to \mathbb{R}^d$ tel que $K(\mathbf{x}, \mathbf{x}') = <\Phi(\mathbf{x}), \Phi(\mathbf{x}')>$. Quelle est la dimension de cet espace ?

4 Support Vector Regression

On dispose d'un ensemble de points labelisés $\mathcal{X} = \{(\mathbf{x}_i, y_i)\}_{i=1,\cdots,N}$ avec $\mathbf{x}_i \in \mathbb{R}^d$ et $y_i \in \mathbb{R}$. On suppose que y_i peut être approchée par régression ε près par un SVM $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$: $f(\mathbf{x}_i) - \varepsilon \leq y_i \leq f(\mathbf{x}_i) + \varepsilon$. Ce principe se nomme SVR (Support Vector Regression). On peut trouver \mathbf{w} et b en résolvant $\arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2$ sous les contraintes $\mathbf{w}^T \mathbf{x} + b - y_i \leq \varepsilon$ et $-(\mathbf{w}^T \mathbf{x} + b) + y_i \leq \varepsilon$.

- 1. Donnez la forme duale de ce problème d'optimisation
- 2. Ecrivez f en fonction des variables duales
- 3. Pour quels points les multiplicateurs de Lagrange sont-ils nuls?
- 4. Peut-on appliquer l'astuce du noyau au SVR?