MTH 102A - Linear Algebra - 2015-16-II Semester

Arbind Kumar Lal *

P. Vector space

- A set \mathbb{V} over a field \mathbb{F} is a vector space if x + y is defined in \mathbb{V} for all $x, y \in \mathbb{V}$ and αx is defined in \mathbb{V} for all $x \in \mathbb{V}$, $\alpha \in \mathbb{F}$ s.t.
- 1) + is commutative, associative.
- 2) Each $x \in \mathbb{V}$ has a inverse w.r.t +.
- 3) Identity element 0 exists in \mathbb{V} for +.
- 4) 1x = x holds $\forall x \in \mathbb{V}$, where 1 is the multiplicative identity of \mathbb{F} .
- 5) $(\alpha\beta)x = \alpha(\beta x), (\alpha + \beta)x = \alpha x + \beta x \text{ hold } \forall \alpha, \beta \in \mathbb{F}, x \in \mathbb{V}.$
- 6) $\alpha(x+y) = \alpha x + \alpha y$ holds $\forall \alpha \in \mathbb{F}, \forall x, y \in \mathbb{V}$.
- \mathbb{R}^3 is a vector space (VS) over \mathbb{R} . Here

$$(x_1, x_2, x_3) + \alpha(y_1, y_2, y_3) := (x_1 + \alpha y_1, x_2 + \alpha y_2, x_3 + \alpha y_3).$$

• $\mathcal{M}_{m,n} := \{A_{m \times n} : a_{ij} \in \mathbb{C}\}$ is a VS over \mathbb{C} . Here

$$[A + \alpha B]_{ij} := a_{ij} + \alpha b_{ij}.$$

• $\mathbb{R}^S := \{ \text{functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}. \text{ Here}$

$$(f + \alpha g)(s) := f(s) + \alpha g(s).$$

- $\mathbb{R}[x] = \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}[x; 5] = \{p(x) \in \mathbb{R}[x] \mid \text{degree of } p(x) \leq 5\} \text{ is a VS over } \mathbb{R}.$
- The set $\{0\}$ is the smallest VS over any field.
- The set of all real sequences (being $\mathbb{R}^{\mathbb{N}}$) is a VS over \mathbb{R} .
- The set of all bounded real sequences is a VS over \mathbb{R} .
- \bullet The set of all convergent real sequences is a VS over $\mathbb R.$
- $\{(a_n) \mid a_n \in \mathbb{R}, a_n \to 0\}$ is a VS over \mathbb{R} . Change 0 to 1??? No.
- $\mathcal{C}((a,b),\mathbb{R}) := \{ f : (a,b) \to \mathbb{R} \mid f \text{ is continuous} \} \text{ is a VS over } \mathbb{R}.$

^{*}Indian Institute of Technology Kanpur

- $\mathcal{C}^2((a,b),\mathbb{R}) := \{f : (a,b) \to \mathbb{R} \mid f'' \text{ is continuous} \} \text{ is a VS over } \mathbb{R}.$
- $\mathcal{C}^{\infty}((a,b),\mathbb{R}) := \{f : (a,b) \to \mathbb{R} \mid f \text{ infinitely differentiable}\}\$ is a VS.
- $\{f:(a,b)\to\mathbb{R}\mid f''+3f'+5f=0\}$ is a VS over \mathbb{R} .
- $\{A_{n\times n} \mid a_{ij} \in \mathbb{R}, a_{11} = 0\}$ is a VS over \mathbb{R} .
- $\{A_{n\times n} \mid a_{ij} \in \mathbb{R}, A \text{ upper triangular}\}$ is a VS over \mathbb{R} .
- $\{A \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid A \text{ is symmetric} \}$ is a VS over \mathbb{R} . What about the skew symmetric ones? How about $A^t = 2A$???
- Let \mathbb{W} and \mathbb{V} be VSs over \mathbb{F} . We call \mathbb{W} a subspace of \mathbb{V} if $\mathbb{W} \subseteq \mathbb{V}$. Notation: $\mathbb{W} \preceq \mathbb{V}$. The Let \mathbb{V} be a VS over \mathbb{F} and $\mathbb{W} \subseteq \mathbb{V}$. Then $\mathbb{W} \preceq \mathbb{V}$ if and only if 'for all $\mathbf{x}, \mathbf{y} \in \mathbb{W}$ we have $\alpha \mathbf{x} + \mathbf{y} \in \mathbb{W}$ for all $\alpha \in \mathbb{F}$ '.!!
- $\{0\}$ and \mathbb{V} are subspaces of any VS \mathbb{V} , called the trivial subspaces.
- The VS \mathbb{R} over \mathbb{R} does not have a nontrivial subspace.

Take a subspace $\mathbb{W} \neq \{0\}$. Then $\exists a \in \mathbb{W} \text{ s.t. } a \neq 0$. So $\alpha a \in \mathbb{W}$ for each $\alpha \in \mathbb{R}$. So $\mathbb{W} = \mathbb{R}$.

• The VS \mathbb{R} over \mathbb{Q} has many nontrivial subspaces. Two of them are $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ and $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}.$

P. Subspaces

- Fix a real $A_{m \times n}$. The set $\{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}$ is a subspace of \mathbb{R}^m , called the range/column space of A. Our notation: COL(A).
- Note that COL(A) is basically the set of all vectors obtained by adding and subtracting real multiples of column vectors of A.
- Fix a real $A_{m \times n}$. The set $\{\mathbf{x}^t A : \mathbf{x} \in \mathbb{R}^m\}$ is a subspace of \mathbb{R}^n , called the row space of A. Our notation: ROW(A).
- Fix a real $A_{m \times n}$. The set $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$ is a subspace of \mathbb{R}^n , called the null space of A. Our notation: NULL(A).
- COL(A), ROW(A), NULL(A), $NULL(A^t)$ are the four fundamental subspaces related to a real/complex matrix A.
- Let $\mathbf{a} \in \mathbb{R}^2$, $\mathbf{a} \neq 0$. Then, $\{\mathbf{x} | a^t \mathbf{x} = 0\}$ is a nontrivial subspace of \mathbb{R}^2 . Geometrically, it represents a straight line passing through the origin. In fact, these are the only nontrivial subspaces of \mathbb{R}^2 .
- $\{\mathbf{x} \in \mathbb{R}^2 \mid x_1 x_2 = 0\}$ is NOT a subspace of \mathbb{R}^2 . IMPORTANT: union of axes; first time union of subspaces is not a subspace.
- Let $\mathbf{x}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $i = 1, \dots, k$. We call $\sum_{i=1}^k \alpha_i \mathbf{x}_i$ a linear combination (lin.comb) of

 $\mathbf{x}_1, \dots, \mathbf{x}_k$. The set $\{\sum_{i=1}^k \alpha_i \mathbf{x}_i \mid \alpha_i \in \mathbb{F}\}$ is a subspace of \mathbb{V} .

• Let $S \subseteq \mathbb{V}$. By span of S we mean $\{\sum_{i=1}^{m} \alpha_i \mathbf{x}_i \mid \alpha_i \in \mathbb{F}, \mathbf{x}_i \in S\}$.

Notation: LS(S). This is a subspace of \mathbb{V} . Convention: $LS(\emptyset) = \{0\}$.

Let $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)^t \in \mathbb{R}^n$ with 1 at the *i*-th coordinate. Then, $\mathbf{L}S(\mathbf{e}, \mathbf{e}_2, \dots, \mathbf{e}_n)$ is \mathbb{R}^n .

P. Linear Span

• Let
$$\mathbf{x}^t = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$
 and $\mathbf{y}^t = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$. Then,

$$ls(\mathbf{x}, \mathbf{y}) = \left\{ a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

$$= \left\{ \begin{bmatrix} a+b \\ 2a-2b \\ a+3b \end{bmatrix} : a, b \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 4x - y - 2z = 0 \right\} \text{ as } 4(a+b) - (2a-2b) - 2(a+3b) = 0.$$

Note that we have obtained conditions on x, y and z such that the system a + b = x, 2a - 2b = y and a + 3b = z has a solution for all choices of a, b and c.

• If \mathbb{U} , \mathbb{W} are subspaces of \mathbb{V} then, $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$ is a subspace of \mathbb{V} , called the sum of \mathbb{U} and \mathbb{W} . When $\mathbb{U} \cap \mathbb{W} = \{0\}$, it is called the internal direct sum of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U} \oplus \mathbb{W}$.

Internal: they are inside \mathbb{V} ; external: will come later; x-axis + y-axis in \mathbb{R}^2 , \mathbb{R}^3 ; x-axis + xy-plane in \mathbb{R}^3 ; xy-plane + xz-plane in \mathbb{R}^3 .

Th Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then, $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .!!

IMPORTANT IS $\mathbb{U} \preceq \mathbb{U} + \mathbb{W}$? IS $\mathbb{W} \preceq \mathbb{U} + \mathbb{W}$? Let $\mathbb{X} \preceq \mathbb{V}$ s.t. $\mathbb{U}, \mathbb{W} \subseteq \mathbb{X}$. Is $\mathbb{U} + \mathbb{W} \subseteq \mathbb{X}$?

- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_t | \mathbb{U}_t \preccurlyeq \mathbb{V}\}$ be a nonempty class. Then $\bigcap_t \mathbb{U}_t$ is a subspace.!!
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ if and only if either $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.!!
- Q If $\mathbb{U} \cup \mathbb{W} \leq \mathbb{V}$, is it necessary that $\mathbb{U} \leq \mathbb{V}$?
- Let \mathbb{V} , \mathbb{W} be VSs over \mathbb{F} . Then $\mathbb{V} \times \mathbb{W}$ is a VS over \mathbb{F} with $(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2)$ and $\alpha(v, w) = (\alpha v, \alpha w)$.

Notation: $\mathbb{V} \oplus \mathbb{W}$. Called external direct sum of \mathbb{V} and \mathbb{W} .

Ex Give a bijection $f: \mathbb{R}^3 \to \mathbb{R}[x; 2]$ s.t. $f(\alpha u + v) = \alpha f(u) + f(v)$ for each $u, v \in \mathbb{R}^3$. Take 3 subspaces of \mathbb{R}^3 . Observe their image in $\mathbb{R}[x; 2]$.

Ex Give vector spaces such that $\mathbb{U}_1 \succ \mathbb{U}_2 \succ \mathbb{U}_3 \succ \cdots$.

Ex Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ (int/ext?) if and only if for each $v \in \mathbb{V}$, \exists unique $u \in \mathbb{U}$ and unique $w \in \mathbb{W}$ s.t. v = u + w.

• Put
$$\mathbb{V} = \mathcal{M}_2(\mathbb{R})$$
, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.

- Are W, U subspaces of V?
- Is $\mathbb{V} = \mathbb{W} + \mathbb{U}$? Yes.
- Is $\mathbb{V} = \mathbb{W} \oplus \mathbb{U}$? No.

• What is the subspace $\mathbb{W} \cap \mathbb{U}$? $\left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$.

Th Let \mathbb{V} be a VS and $S \subseteq \mathbb{V}$. Let $L = \{ \mathbb{U} \mid \mathbb{U} \preccurlyeq \mathbb{V}, S \subseteq \mathbb{U} \}$. Then $LS(S) = \bigcap_{\mathbb{U} \in L} \mathbb{U}$.!!

P. Linear dependency

Ex Let A be row-equivalent to B. Then ROW(A) = ROW(B). Converse?

- Let $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathbb{V}$. If a nonzero lin.comb of \mathbf{x}_i 's becomes $\mathbf{0}$, then we say $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are linearly dependent (lin.dep).
- We say $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly independent, if they are not lin.dep.
- In \mathbb{R}^2 , the vectors $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are lin.dep, as $\mathbf{x} \mathbf{e}_1 2\mathbf{e}_2 = \mathbf{0}$.
- $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ -2 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ are lin.dep in \mathbb{R}^3 , as $2\mathbf{v}_1 + 2\mathbf{v}_2 \mathbf{v}_3 + 0\mathbf{v}_4 = \mathbf{0}$. $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ are lin.ind in \mathbb{R}^3 . How?
- Answering the previous question: the vectors will be linearly dependent (lin.dep) if we can find

Thick
$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \neq \mathbf{0} \text{ s.t. } \alpha \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{0}. \text{ That is, if } \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- Apply GJE, if there are no free variables, then only solution is $\begin{vmatrix} \alpha \\ \beta \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$. In that case we conclude lin.ind.
- If there are free variables, then we have nonzero solutions for $\begin{vmatrix} \alpha \\ \beta \end{vmatrix}$. In this case we conclude lin.dep.
- $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ are lin.dep. Why? As the variable for v_3 will be free. Or $0 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2 + \alpha \mathbf{v}_3 = \mathbf{0}$ for all $\alpha \in \mathbb{R}$.

Th Vectors $\mathbf{v}, \mathbf{w}, \mathbf{z}$ in \mathbb{R}^2 are linearly dependent.

Po. Solving $\alpha \mathbf{v} + \beta \mathbf{w} + \gamma \mathbf{z} = \mathbf{0}$ means solving $\begin{bmatrix} \mathbf{v}_1 & \mathbf{w}_1 & \mathbf{z}_1 \\ \mathbf{v}_2 & \mathbf{w}_2 & \mathbf{z}_2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

That is, we have to find the RREF of $\begin{bmatrix} \mathbf{v}_1 & \mathbf{w}_1 & \mathbf{z}_1 & 0 \\ \mathbf{v}_2 & \mathbf{w}_2 & \mathbf{z}_2 & 0 \end{bmatrix}$.

Applying GJE, as there are only two rows, the number of pivots is at most 2. As the number variables is 3, we will have a free variable. Hence we will have a nonzero solution.

- We call a set $S \subseteq \mathbb{V}$ linearly dependent if contains a finite lin.dep set.
- Thus \emptyset is lin.ind and any set containing $\mathbf{0}$ is lin.dep.
- So $S \subseteq \mathbb{V}$ is lin.ind if and only if each finite subset of S is lin.ind.
- Take $A_{m \times n}$, m > n. Then R = RREF(A) has last row **0**. That is, rows of A are lin.dep. How? GJE: R = FA. Then $\sum_{i=1}^{n} f_{mi}A(i,:) = \mathbf{0}^{t}$.

P. Linear dependency: crucial result

Th Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbb{V}$ and $T = \{\mathbf{w}_1, \dots, \mathbf{w}_m\} \subseteq LS(S)$ s.t. m = |T| > |S|. Then T is linearly dependent.

Po. Write
$$\mathbf{w}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \dots + a_{in}\mathbf{v}_n$$
. So $\mathbf{w}_i = A(i,:)\begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}$ and

$$\begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_m \end{bmatrix} = \begin{bmatrix} a_{11}\mathbf{v}_1 + \dots + a_{1n}\mathbf{v}_n \\ \vdots \\ a_{m1}\mathbf{v}_1 + \dots + a_{mn}\mathbf{v}_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}.$$

As m > n, we see that rows of $A = (a_{ij})$ are lin.dep. That is, there exists α_i , not all zero, s.t. $\sum_{i=1}^{m} \alpha_i A(i,:) = \mathbf{0}^t$. Thus

$$\sum_{i=1}^{m} \alpha_i \mathbf{w}_i = \sum_{i=1}^{m} \alpha_i \left(A(i,:) \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} \right) = \left(\sum_{i=1}^{m} \alpha_i A(i,:) \right) \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} = \mathbf{0}^t \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} = \mathbf{0}.$$

Cor Any n+1 vectors in \mathbb{R}^n is lin.dep.

Po. Follows as $\mathbb{R}^n = \text{linear span}(\mathbf{e}_1, \dots, \mathbf{e}_n)$.

Th $A_{n\times n}$ is invertible if and only if columns of A are linearly independent.

- Po. It is a restatement of 'A is invertible if and only if $A\mathbf{x} = \mathbf{0}$ has a unique solution'. \square
- Th $A_{n\times n}$ is invertible if and only if rows of A are linearly independent.
- Po. Follows as 'A is invertible if and only if A^t is invertible'.
- Let $\mathbf{u}_1, \dots, \mathbf{u}_m \in \mathbb{V}$ be lin.ind. Choose $\alpha_1, \dots, \alpha_m \in \mathbb{F}$. Put $\mathbf{u} = \sum_{i=1}^m \alpha_i \mathbf{u}_i$. Can you find another set of $\beta_i \in \mathbb{F}$ s.t. $\mathbf{u} = \sum_{i=1}^m \beta_i \mathbf{u}_i$?
- No. If so, we have $\sum (\alpha_i \beta_i) \mathbf{u}_i = \mathbf{0}$. Then \mathbf{u}_i 's are lin.dep., A contradiction.
- Ex $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ are lin.ind if and only if $A\mathbf{u}_1, \dots, A\mathbf{u}_k$ are lin.ind for any invertible A_n .
- Ex Let $\mathbf{u}, \mathbf{v} \in \mathbb{V}$. Then \mathbf{u}, \mathbf{v} are lin.ind if and only if $\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}$ are lin.ind.

P. Fundamental results: Linear dependence and linear span

Th Let $S \subseteq \mathbb{V}$ be lin.ind, $\mathbf{x} \in \mathbb{V} \setminus S$. Then $S \cup \{\mathbf{x}\}$ is lin.dep if and only if $\mathbf{x} \in LS(S)$.

Po. Let $S \cup \{\mathbf{x}\}$ be lin.dep. Then some $\sum_{i=1}^{m} \alpha_i \mathbf{s}_i + \alpha_{m+1} \mathbf{x} = \mathbf{0}$, where α (the vector of

 α_i s) is not **0**. Note: α_{m+1} cannot be 0, otherwise S is lin.dep. So $\mathbf{x} = \sum_{i=1}^m (-\frac{\alpha_i}{\alpha_{m+1}}) \mathbf{s}_i$. So $\mathbf{x} \in LS(S)$.

Conversely, let $\mathbf{x} \in LS(S)$. So $\mathbf{x} = \sum_{i=1}^k \alpha_i \mathbf{s}_i$, for some $\alpha_i \in \mathbb{F}, \mathbf{s}_i \in S$, not all zero. So

$$\mathbf{x} - \sum_{i=1}^k \alpha_i \mathbf{s}_i = \mathbf{0}$$
. So $S \cup \{\mathbf{x}\}$ is lin.dep.

Cor Let $S \subseteq \mathbb{V}$ be lin.ind, $\mathbf{x} \in \mathbb{V} \setminus S$. Then $S \cup \{\mathbf{x}\}$ is lin.ind if and only if $\mathbf{x} \notin LS(S)$.!!

Cor Let $S \subseteq \mathbb{V}$ be lin.ind. Then $LS(S) = \mathbb{V}$ if and only if each proper superset of S is lin.dep.!!

Th Let A = ER, where R = RREF A and E is invertible. Then rows of A corresp. to the pivotal rows of R are lin.ind. Also columns of A corresp. to the pivotal columns of R are lin.ind.

Po. Pivotal rows of R are lin.ind due to the pivotal 1s. Let the pivotal rows of R be $R(1,:),\ldots,R(k,:)$ and R_1 be the submatrix formed by these rows. Let A_1 be the submatrix of A which gives R_1 .

So $R_1 = \text{RREF}(A_1)$. That is, $A_1 = E_1 R_1$, for some invertible E_1 .

Suppose there exists $\mathbf{x}_0 \neq \mathbf{0}$ s.t. $\mathbf{x}_0^t A_1 = \mathbf{0}$. So $\mathbf{x}_0^t E_1 R_1 = \mathbf{0}$. Note that $\mathbf{x}_0^t E_1 = \mathbf{y}_0^t \neq \mathbf{0}$. So $\mathbf{y}_0^t R_1 = \mathbf{0}$, a contradiction.

Other part: note that pivotal columns in R are lin.ind, due to the pivotal 1s. Let $R(:,j_1),\ldots,R(:,j_k)$ be the pivotal columns of R. Since E is invertible, $A(:,j_1)=ER(:$ $(i, j_1), \ldots, A(i, j_k) = ER(i, j_k)$ are lin.ind.

Th Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be lin.dep, $\mathbf{x}_1 \neq \mathbf{0}$. Then, there exists k > 1 s.t. \mathbf{x}_k is a lin.comb of $\mathbf{x}_1, \cdots, \mathbf{x}_{k-1}.$

Po. Consider $\{\mathbf{x}_1\}, \{\mathbf{x}_1, \mathbf{x}_2\}, \cdots, \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}$ one by one. Take the smallest k > 1s.t. $S_k = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is lin.dep. So S_{k-1} is lin.ind. In that case $\mathbf{x}_k \in LS(S_{k-1})$.

• Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$ be lin.dep, $\mathbf{v}_1 \neq \mathbf{0}$. One may take help of GJE to find out the first \mathbf{v}_i which is a lin.comb of the earlier ones and to find a lin.ind subset $T \subseteq S$ s.t.

•
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$.
• RREF $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. So $v_3 = 2v_2 - v_1$; $T = \{v_1, v_2, v_4\}$.

• RREF
$$A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. So $v_3 = 2v_2 - v_1$; $T = \{v_1, v_2, v_4\}$.