

Rozwiązania Kontestu 1 – mini PreOM 2025

Zadanie 1. Czy istnieją takie dodatnie liczby całkowite a, b, c, że każda z liczb ab, bc, ca kończy się cyframi 20?

Źródło: Kwadrat nr. 11, zadanie 5 link

Rozwiązanie 1. Zauważmy, że jeśli liczba kończy się cyframi 20, to dzieli się przez 5, ale nie przez 25 (bo liczby podzielne przez 25 mają dwie ostatnie cyfry 00, 25, 50 lub 75). Przypuśćmy, że istnieją opisane w zadaniu liczby a, b, c. Każda z liczb ab, bc, ca ma wówczas w rozkładzie na czynniki pierwsze dokładnie jedną piątkę. Stąd iloczyn $ab \cdot bc \cdot ca = (abc)^2$ ma w rozkładzie na czynniki pierwsze dokładnie trzy piątki, co jest niemożliwe, ponieważ jest kwadratem liczby całkowitej (wszystkie czynniki pierwsze występują parzystą liczbę razy w jego rozkładzie).

Źródło: Kwadrat nr. 11, zadanie 5 link

Zadanie 2. Dany jest wielokąt wypukły w oraz okrąg o. Wszystkie boki wielokąta w są równej długości, a okrąg o dzieli każdy bok na 3 odcinki. Malujemy wszystkie otrzymane odcinki kolejno na czerwono, zielono i biało, zaczynając od wierzchołka wielokąta i poruszając się po jego obwodzie w ustalonym kierunku.

Wykazać, że suma długości odcinków czerwonych jest równa sumie długości odcinków białych.

Źródło: Zwardoń 2002, zadanie 2 link

Rozwiązanie 2. Niech $A_1A_2...A_n$ będzie danym wielokątem, zaś O środkiem danego okręgu. Niech B_i będzie rzutem prostokątnym punktu O na bok A_iA_{i+1} (przyjmujemy $A_{n+1}=A_1$). Punkty $B_1, B_2, ..., B_n$ są zatem środkami zielonych odcinków. Oznaczmy: $a_i=A_iB_i$ oraz $b_i=B_iA_{i+1}$. Należy wykazać, że:

$$a_1 + a_2 + \ldots + a_n = b_1 + b_2 + \ldots + b_n.$$
 (1)

Na mocy twierdzenia Pitagorasa (rozważając: $\sum_{i=1}^n ((a_i^2+B_iO^2)-(b_i^2+B_iO^2))$) otrzymujemy:

$$\sum_{i=1}^{n} (a_i^2 - b_i^2) = 0,$$

a po uwzględnieniu założenia $a_1 + b_1 = a_2 + b_2 = \ldots = a_n + b_n$ otrzymujemy zależność (1).

Źródło: Zwardoń 2002, zadanie 2 link

Zadanie 3. Punkty D, E, F leżą odpowiednio na bokach BC, CA, AB trójkąta ABC, przy czym

$$\frac{BD}{DC} = \frac{CE}{EA} = \frac{1}{2}$$
 oraz $\frac{AF}{FB} = 4$.

Punkt K leży na odcinku AF. Proste KD i CF przecinają się w punkcie P, a proste BP i CK przecinają się w punkcie Q. Wykazać, że punkty E, F i Q są współliniowe.

Źródło: Egzamin z Geometrii I - MIM UW 2025, zadanie 4

Rozwiązanie 3. Niech E' będzie punktem przeciecia QF z AC, pokażemy, że E'=E.

Z tw. Cevy dla trójkata KBC i prostych KD, BQ, CF mamy:

$$\frac{KF}{BF} \cdot \frac{BD}{DC} \cdot \frac{CQ}{QK} = 1,$$

co daje:

$$\frac{KF}{BF} \cdot \frac{CQ}{OK} = 2.$$

Z tw. Menelaosa dla trójkata AKC i prostej FQE' mamy:

$$\frac{CE'}{E'A} \cdot \frac{AF}{FK} \cdot \frac{KQ}{QC} = 1,$$

z czego wynika:

$$\frac{CE'}{E'A} = \frac{KF}{AF} \cdot \frac{CQ}{QK} = \frac{BF}{AF} \cdot \frac{KF}{BF} \cdot \frac{CQ}{QK} = \frac{BF}{AF} \cdot 2 = \frac{1}{4} \cdot 2 = \frac{1}{2}.$$

Punkt E' dzieli odcinek CA w stosunku 1 : 2, tak jak punkt E, więc E' = E. Zatem punkty E, F i Q są współliniowe.

Źródło rozwiązania: autorskie – Jakub Piotrowicz

Zadanie 4. Na nieskończonej szachownicy znajduje się skończona liczba pionków, przy czym na jednym polu może znajdować się więcej niż jeden pionek.

Możemy wykonywać następujące ruchy (zob. rysunek): jeżeli na polu P szachownicy znajdują się co najmniej 3 pionki oraz na jednym z pól R_i (i=1,2,3,4) znajduje się co najmniej jeden pionek, to 3 pionki z pola P przenosimy na pole Q_i , a jeden pionek z pola R_i przesuwamy na pole S_i .

Dowieść, że można wykonać tylko skończenie wiele ruchów.

Źródło: Zwardoń 2002, zadanie 15 link

R_1		R_2		R_3	
	Q_1	Q_2	Q_3		
	S_4	P	Q_4	R_4	
	S_3	S_2	S_1		

Rozwiązanie 4. Niech N będzie liczbą pionków. Umieśćmy środek układu współrzędnych w pewnym polu szachownicy i każdemu pionkowi P_i , $i=1,2,\ldots,N$, przyporządkujmy jego współrzędne x_i , y_i . Łatwo można sprawdzić, że liczba:

$$\sum_{i=1}^{N} (x_i^2 + y_i^2)$$

nie zmienia się po każdym ruchu. Oznacza to, że istnieje taka liczba rzeczywista M, że dla każdego $i=1,2,\ldots,N$ zachodzą nierówności $|x_i|< M,\,|y_i|< M.$

Rozważmy teraz funkcję:

$$S = \sum_{i=1}^{N} (x_i^3 + 2y_i^3).$$

Łatwo można sprawdzić, że wartości tej funkcji zmniejszają się po każdym ruchu. Ale x_i , y_i są ograniczone z dołu, a zatem funkcja S również. Wobec faktu, że ta funkcja przyjmuje wyłącznie wartości całkowite, otrzymujemy, że liczba ruchów nie może być nieskończona.

Źródło: Zwardoń 2002, zadanie 15 link

