单摆的周期问题

BORIS JOBS

RéSUMÉ. 目标: 求单摆周期. 总体思路: 1. 从能量的角度来得到每时每刻的速度值大小, 通过速度值和每一时刻的时间与角度的微分关系得到微分方程式, 进行积分, 得到周期的公式; 2. 从动力学角度来分析, 通过微分方程解得角速度和时间的关系, 进行积分, 得到周期公式; 3. 里面涉及的泰勒展开关系和级数一致收敛与可积性会进行深入讨论.

Table des matières

partie 1. 能量定律角度	2
1. 动能定理	2
2. 第一类完全椭圆积分	2
$3. (1+x)^{\alpha}$ 的 Taylor 展开	3
4. 幂级数的一致收敛性质	3
partie 2. 牛顿第二定律角度	4
5. 动力学分析	4
partie 3. 近似公式与有问题的近似	5
6. 从椭圆积分上近似	5
7. 从动力学分析上近似	5
partie 4. 问题的关键	5

Key words and phrases. Pendulum, Series.

2 BORIS JOBS

FIGURE 1. 单摆问题的物理模型,以轻绳的最顶端为原点,水平向右为 x 轴正方向建立坐标系,其中角度 θ 的取值范围定为 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$,而绳长设为 l.

Première partie 1. 能量定律角度

1. 动能定理

如图1,是单摆的物理模型:假设小球初始位置绳与竖直方向夹角为 θ_0 $(0 < \theta_0 \leq \frac{\pi}{2})$,初速度为零无外力作用释放小球,末时刻轻绳与竖直方向夹角为 θ ,从动能定理可以得到小球位于每个位置时的速率大小:

(1.1)
$$mgl(\cos\theta - \cos\theta_0) = \frac{1}{2}mv^2$$

解得:

$$(1.2) v = \sqrt{2gl(\cos\theta - \cos\theta_0)}$$

对于给定时刻 t 的微小时刻 dt 内,满足关系式:

$$(1.3) dt = -\frac{ld\theta}{v}$$

将速度 v 代入式(1.3) 得到:

(1.4)
$$dt = -\sqrt{\frac{l}{2g}} \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_0}}$$

2. 第一类完全椭圆积分

我们从小球在初始位置到小球到绳子底部进行积分:

(2.1)
$$\begin{aligned} \frac{T}{4} &= -\sqrt{\frac{l}{2g}} \int_{\theta_0}^0 \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_0}} \\ &= \frac{1}{2} \sqrt{\frac{l}{g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\sin^2\frac{\theta_0}{2} - \sin^2\frac{\theta}{2}}} \end{aligned}$$

做变换, 凑第一类完全椭圆积分:

(2.2)
$$\frac{T}{4} = \frac{1}{2} \sqrt{\frac{l}{g}} \int_0^{\theta_0} \frac{d\theta}{\sin\frac{\theta_0}{2} \sqrt{1 - \frac{\sin^2\frac{\theta}{2}}{\sin^2\frac{\theta_0}{2}}}}$$

单摆的周期问题 :

此处令: $\sin \alpha = \frac{\sin \frac{\theta}{2}}{\sin \frac{\theta_0}{2}}$, 那么:

(2.3)
$$\theta = 2\arcsin(\sin\alpha\sin\frac{\theta_0}{2})$$

微分:

(2.4)
$$d\theta = \frac{2\sin\frac{\theta_0}{2}\cos\alpha \,d\alpha}{\sqrt{1-\sin^2\alpha\sin^2\frac{\theta_0}{2}}}$$

代入上述推导中:

$$\frac{T}{4} = \sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\alpha}{\sqrt{1 - k^2 \sin^2 \alpha}}$$
3. $(1+x)^{\alpha}$ 的 Taylor 展升

其中: $k^2 = \sin^2 \frac{\theta_0}{2}$, 式(2.5) 中的积分即为第一类完全椭圆积分. 将被积函数进行 Taylor 展开:

$$\frac{1}{\sqrt{1-k^2\sin^2\alpha}} = 1 + \frac{1}{2}k^2\sin^2\alpha + \frac{1\cdot 3}{2\cdot 4}k^4\sin^4\alpha + \dots + \frac{(2n-1)!!}{(2n)!!}k^{2n}\sin^{2n}\alpha + \dots \\
= \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}}(-1)^n k^{2n}\sin^{2n}\alpha \\
= \sum_{n=0}^{\infty} \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots 2n}k^{2n}\sin^{2n}\alpha \\
= \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!}k^{2n}\sin^{2n}\alpha$$

将展开式代入积分之中, 得到:

(3.2)
$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \left(\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n} \alpha \right) d\alpha$$

4. 幂级数的一致收敛性质

令级数为:

(4.1)
$$\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n} \alpha = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^{2n}$$

其中 $x = k \sin \alpha = \sin \frac{\theta}{2}$, 故 $|x| \le \frac{\sqrt{2}}{2}$, 对于等式右边的级数:

(4.2)
$$\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^{2n} = \sum_{n=0}^{\infty} a_n x^{2n}$$

由 d' Alembert 判别法:

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

故收敛半径 R=1. 当 x=1 时, 由 Raabe 判别法:

(4.4)
$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \frac{1}{2} < 1$$

BORIS JOBS

可知 $x = \pm 1$ 时幂级数发散,即其收敛域为 (-1,1). 而:

(4.5)
$$\frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n} \le \frac{(2n-1)!!}{(2n)!!} \frac{\sqrt{2}}{2}$$

当 $|x|=\frac{\sqrt{2}}{2}$ 时, $\sum_{n=0}^{\infty}a_nx^{2n}$ 收敛,故由 Weierstrass 判别法,级数 $\sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}k^{2n}\sin^{2n}\alpha$ 关于 α 在 $[-\theta_0,\theta_0]$ 一致收敛,由幂级数的逐项可积性可知级数的积分求和符号次序可交换:

$$(4.6) T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \left(\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n} \alpha \right) d\alpha$$

$$= 4\sqrt{\frac{l}{g}} \sum_{n=0}^{\infty} \left(\int_0^{\frac{\pi}{2}} \frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n} \alpha \ d\alpha \right)$$

$$= 4\sqrt{\frac{l}{g}} \sum_{n=0}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} k^{2n} \int_0^{\frac{\pi}{2}} \sin^{2n} \alpha \ d\alpha \right)$$

由 Wallis 公式:

(4.7)
$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \frac{2n-1}{2n} \int_0^{\frac{\pi}{2}} \sin^{2n-2} x dx = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$

代入 T 的表达式中:

(4.8)
$$T = 2\pi \sqrt{\frac{l}{g}} \left(\sum_{n=0}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2 \sin^{2n} \frac{\theta_0}{2} \right)$$

即:

(4.9)
$$T = 2\pi \sqrt{\frac{l}{g}} \left[1 + \left(\frac{1}{2}\right)^2 \sin^2\left(\frac{\theta_0}{2}\right) + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \sin^4\left(\frac{\theta_0}{2}\right) + \cdots \right]$$

Deuxième partie 2. 牛顿第二定律角度

5. 动力学分析

由牛顿第二定律:

$$(5.1) mg\sin\theta = -ml\frac{d^2\theta}{dt^2}$$

令 $\omega = -\frac{d\theta}{dt}$, 化简上式得:

$$\frac{d\omega}{dt} = \frac{g}{l}\sin\theta$$

将 dt 与 $d\theta$ 得关系代入:

(5.3)
$$d\omega = \frac{g}{l}\sin\theta \left(-\frac{d\theta}{\omega}\right)$$

即:

(5.4)
$$\omega d\omega = -\frac{g}{I}\sin\theta d\theta$$

进行积分:

$$\frac{\omega^2}{2} = \frac{g}{l}\cos\theta + C$$

单摆的周期问题 5

而在初始时刻 $\omega = 0$, $\theta = \theta_0$, 故得 $C = -\frac{g}{1}\cos\theta_0$, 即:

(5.6)
$$\frac{\omega^2}{2} = \frac{g}{l}(\cos\theta - \cos\theta_0)$$

得到:

(5.7)
$$\frac{1}{\omega} = \sqrt{\frac{l}{2g}} \frac{1}{\sqrt{\cos \theta - \cos \theta_0}}$$

由 $dt = -\frac{d\theta}{\omega}$ 得:

(5.8)
$$dt = -\sqrt{\frac{l}{2g}} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

此时讨论可以回到式(1.4) 进行讨论.

Troisième partie 3. 近似公式与有问题的近似

6. 从椭圆积分上近似

由式(2.5) 可知:

(6.1)
$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\alpha}{\sqrt{1 - \sin^2\frac{\theta_0}{2}\sin^2\alpha}}$$

当单摆初始角度很小时,可以有近似 $\theta_0 \to 0$,此时 $\sqrt{1-\sin^2\frac{\theta_0}{2}\sin^2\alpha} \to 0$,所以得到:

$$(6.2) T \approx 2\pi \sqrt{\frac{l}{g}}$$

7. 从动力学分析上近似

在单摆初始角度很小的过程中, $\sin \theta \sim \theta$, 故式(5.1) 可以简化为:

$$mg\theta = -ml\frac{d^2\theta}{dt^2}$$

即:

(7.2)
$$\ddot{\theta} + \frac{g}{l}\theta = 0$$

其通解为:

(7.3)
$$\theta(t) = C_1 \cos \sqrt{\frac{g}{l}} t + C_2 \sin \sqrt{\frac{g}{l}} t$$
$$= \sqrt{C_1^2 + C_2^2} \cos(\sqrt{\frac{g}{l}} t - \arctan \frac{C_2}{C_1})$$

其周期为:

$$(7.4) T = 2\pi \sqrt{\frac{l}{g}}$$

Quatrième partie 4. 问题的关键

问题的关键在于用无论动能定理或是牛顿第二定律推导出 dt 和 $d\theta$ 之间的关系, 然后代入 t 和 θ 的初值进行积分, 从而得到 $T=f(\theta_0)$ 的完整表达式, 即式(4.9).

 $Email\ address: {\tt 1322553126@qq.com}$