Korszerű vizsgálati módszerek labor jegyzőkönyv

Reaktorüzemeltetési gyakorlat

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizika BSc III. évfolyam

'C' mérőcsoport

Mérés dátuma: 2018.03.01.

Mérés vezetője: Tormási Attila

1. Bevezetés

A mérés során megismerkedtünk a BME Oktatóreaktorának felépítésével és működésével, lehetőségünk nyílt a reaktor irányítására. Az instruktor által megadott, általunk beállított különböző reaktorteljesítmény értékek esetére megvizsgáltuk a szabályzó rudak kritikus működéshez szükséges helyzetét, majd megmértük a forrás eltávolítása után a reaktor értékességét különböző rúd pozíciók és teljesítményértékek esetére.

2. Rövid elméleti összefoglaló

Atomreaktornak nevezzük azon létesítményeket, melyekben az önfenntartó láncreakció külső forrás nélkül megvalósítható. A BME Oktatóreaktora egy termikus reaktor, mely azt jelenti, hogy benne a maghasadások döntő részét termikus neutronok hozzák létre. A reaktorok legfőbb részei: hasadóanyagot tartalmazó üzemanyag, a neutronok lassítására szolgáló moderátor, a hűtőközeg és a működéshez, valamint a szabályozáshoz szükséges irányító rendszer.

Egy reaktort kritikus állapotúnak nevezünk, ha benne a láncreakció külső neutronforrás nélkül éppen megvalósul. A reaktorokat leíró legfontosabb mennyiség a neutronciklusonként történő neutronszám sokszorozódás értéke, az ún. effektív sokszorozódási tényező:

$$k_{eff} = \epsilon \cdot p \cdot f \cdot \eta \cdot P, \tag{1}$$

melyben az egyes faktorok sorrendben: gyorshasítási tényező, rezonancia tényező, termikus hasznosítási tényező, termikus neutronhozam és a reaktor véges méretét figyelembe vevő kilépési tényező. Az így definiált tényező felhasználásával akkor mondunk kritikusnak egy reaktort, ha $k_{eff}=1$, azaz ha a reaktor teljesítménye időben állandó. Ha a tényező értéke kisebb vagy nagyobb mint 1, akkor ennek megfelelően a reaktor szub- vagy szuperkritikus.

Az effektív neutronsokszorozódási tényező segítségével definiálhatjuk a reaktor reaktivitását, az alábbi módon:

$$\rho = \frac{k_{eff} - 1}{k_{eff}} \tag{2}$$

A fentiek figyelembevételével $\rho=0$ jelenti a reaktor kritikusságát, $\rho<0$ jelenti a szubkritikusságot, $\rho>0$ pedig a szuperkritikusságot. A reaktorokban azonban nem csak közvetlenül a hasadásokból származó neutronok a fontosak, meghatározó szerepük van a hasadványmagok béta bomlásából származó ún. késő neutronoknak is. Ezek megjelenését a hasadványmagok bomlási ideje határozza meg, emiatt a hasadás után akár 1 perccel jelennek csak meg. Ezen neutronok részarányát jelöljük β_{eff} -el. Ha egy reaktor reaktivitása megegyezik ezen részaránnyal, akkor a reaktort promtkritikusnak nevezzük. Amennyiben ennél nagyobb a reaktivitás, az esetben a reaktor önmagát gerjesztheti, ezáltal szabályozhatatlanná válna, ha nem lennének negatív visszacsatolások.

Látható, hogy a reaktorban lejátszódó folyamatot, a $\frac{\rho}{\beta_{eff}}$ értéke határozza meg, ezt a hányadost nevezzük értékességnek. Mértékegysége: \$.

3. Mérés menete

3.1. Kritikusság vizsgálata

A mérés megkezdéséhez először a kezelő elektronika segítségével bejuttattuk a forrást az aktív térbe, majd kiemeltük a biztonsági rudakat, melyek a reaktor gyors leállítására szolgálnak. Ezt követően megemeltük a kézi és az automatikus szabályozó rudak helyzetét, hogy a teljesítmény elkezdjen nőni, egészen egy meghatározott értékig, amelynek elérésekor automatizáltra állítottuk a rendszert, így az magától beállította úgy a két rudat, hogy a reaktor kritikus legyen ilyen teljesítmény mellett. Először 1 W teljesítményre állítottuk a reaktort. Ekkor a két rúd helyzete:

Rúd	Kiemeltség (mm)
Automata	429
Kézi	400

1. táblázat. A rudak helyzete (kiemeltsége) kritikus reaktor esetén (1 W)

Következő lépésként kiemeltük a forrást az aktív térből, ezzel azonban, mivel a reaktor eleve kritikus volt, nem szakítottuk meg a láncreakciót. A forrás kiemelése után leolvastuk a rudak helyzetét:

Rúd	Kiemeltség (mm)
Automata	436
Kézi	400

2. táblázat. A rudak helyzete (kiemeltsége) kritikus reaktor esetén (forrás nélkül)

Az adatokból láthatóan az automatizált rúd helyzete megváltozott: ez annak köszönhető, hogy a korábbi esetben a reaktor kritikusságának fenntartásához nem csak láncreakciót, de a forrást is szabályozni kellett; utóbbi kiemelésével viszont lecsökkent a neutronfluxus, emiatt kicsit jobban ki kellett emelni az automata szabályzó rudat, hogy kritikus legyen a reaktor (máskülönben szubkritikussá vált volna).

3.2. Értékesség mérése

A mérés következő lépése a reaktivitás meghatározása volt különböző szabályzórúd helyzetek esetére. Ezt a gamma kompenzált egyenáramú ionizációs kamra által mért beütésszám változásának sebességével tudtuk számolni: kiválasztottunk egy beütésszám tartományt, majd a reaktor kritikus helyzetből történő kimozdítása (az automata szabályzó rúd elmozdítása) után mértük mennyi idő alatt járjuk be ezt a tartományt. A mérést két különböző szabályzórúd állásból kiindulva végeztük el. A mérés során a reaktor teljesítménye 100 W volt. A mérési eredmények az alábbiak:

-	1. mérés	2. mérés
Kézi sz. rúd helyzete (mm)	460	400
Automata sz. rúd eltolt helyzete (mm)	364	471
Mért idő (s)	53	127
Számolt reaktivitás (cent)	11.95	5.97

3. táblázat. Reaktivitás meghatározása 10 W teljesítményen

A beütésszám növekedése a szabályzó rúd kimozdításával volt kapcsolatban: azzal, hogy kijjebb helyeztük, szuperkritikus állapotba került a reaktor mindkét esetben. Az automata rudat mindig ugyanannyival mozdítottuk ki, a mérések között az egyetlen különbség a különböző kiindulási rúd helyzetek voltak. A reaktivitásokat a mérőhelyen, az ott kapott táblázat segítségévvel határoztuk meg. A tapasztalt reaktivitásbeli különbség a rúd jelleggörbéjével van kapcsolatban: minél messzebb van a szabályzó rúd, annál kevésbé lesz érzékeny rá a reaktorban lejátszódó folyamat, a jelleggörbén az integrált útkülönbség egyre kisebb lesz, azonos magasságkülönbség esetén. Emiatt mértünk jóval kisebb reaktivitást a második mérés során.

3.3. Doppler-visszacsatolás vizsgálata

A laborgyakorlat során sikeresen felleltük a Doppler-visszacsatolás hatását is. Jelenség az üzemanyag hőmérsékletével van szoros kapcsolatban: magasabb hőmérsékleten a ²³⁸U rezonanciacsúcsai kiszélesednek, több neutron képes elnyelődni, ez a neutronfluxus csökkenéséhez vezet. A jelenség vizsgálatához 10 kW teljesítményen is meghatároztuk a kritikussághoz tartozó rúd helyzeteket úgy, hogy a kézi szabályzórúd helyzete megegyezzen azzal, mint amit 10 W esetén állítottunk. A kapott értékek:

Teljesítmény	Automata sz. rúd helyzete (mm)
10 W	436
10 kW	483

4. táblázat. Doppler-visszacsatolás vizsgálata

A kapott értékek alapján valóban kisebb volt a neutronfluxus, emiatt kellett kijjebb helyezni a automata szabályzó rudat. Következésképpen a hőmérséklet növekedése esetén valóban lecsökken a neutronfluxus.

3.4. Ionizációs kamrák vizsgálata

A méréssorozat utolsó lépéseként megvizsgáltuk a hasadási és a gamma kompenzált egyenáramú ionizációs kamrák által mért beütésszámok teljesítményfüggését. A kapott beütésszámok különböző teljesítményekhez tartozó kritikus állapotok esetére (a kamrák típusát kezdetben nem ismertük):

Teljesítmény	1. kamra beütésszám	2. kamra beütésszám
10 W	$1 \cdot 10^4$	$0.22 \cdot 10^5$
100 W	$1.2 \cdot 10^5$	$0.22 \cdot 10^6$
200 W	$2.2 \cdot 10^5$	$0.44 \cdot 10^6$
1 kW	$1.2 \cdot 10^6$	$1.2 \cdot 10^{6}$
2 kW	$2.5 \cdot 10^6$	$1.7 \cdot 10^{6}$

5. táblázat. Beütésszámok teljesítményfüggése

A fenti értékeket ábrázolhatjuk és vizsgálhatjuk a linearitástól vett eltéréseket. Erre azért van szükség, mert ezzel megkülönböztethető a két detektor: míg a beütésszám a teljesítménnyel egyenes arányban növekszik, melyet a gamma kompenzált ionizációs kamra le is tud követni, addig a hasadási kamrákra ez csak kis teljesítmények esetén igaz, nagyobb teljesítmények esetén ezen kamra nemlineáris függést mutat, majd telítésbe megy. A készített ábrák:

1. ábra. A két kamra által mért beütésszámok teljesítményfüggése

Az ábrák alapján biztosan kijelenthető, hogy a 2. kamra volt a hasadási ionizációs kamra, ugyanis a teljesítményfüggés jól láthatóan elveszíti lineáris jellegét a másik kamrával ellentétben.

4. Diszkusszió

A laborgyakorlat során elsajátítottuk a BME Oktatóreaktorának kezelésének alapjait, megvizsgáltuk a kritikussághoz szükséges szabályzó rúd helyzetek neutronfluxusfüggését, meghatároztuk a reaktivitást két különböző állapotból kiindulva, kimutattuk a Dopplet-visszacsatolás jelenségét, valamint ellenőriztük a neutronfluxus mérésére használt ionizációs kamrák beütésszámának teljesítményfüggését.