Data Preprocessing

Excerpt from "Data Mining: Concepts and Techniques", 3rd Ed. Jiawei Han, Micheline Kamber, and Jian Pei Chapter 3

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data,
 e.g., instrument fault, human or computer error, transmission error
 - <u>incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation=" " (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in it automatically with
 - a global constant : e.g., "unknown"
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

- Data discrepancy detection
 - Use metadata (e.g., domain, range, dependency, distribution)
 - Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration

Data integration:

- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill
 Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis

Correlation Analysis (Nominal Data)

■ X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group

Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{AB}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, A and B are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $\mathbf{r}_{A,B} = 0$: independent; $\mathbf{r}_{AB} < 0$: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Covariance (Numeric Data)

Covariance is similar to correlation

$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^{n}(a_i-\bar{A})(b_i-\bar{B})}{n}$$
 Correlation coefficient:
$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A\sigma_B}$$

where n is the number of tuples, \overline{A} and B are the respective mean or **expected values** of A and B, σ_A and σ_B are the respective standard deviation of A and B.

- Positive covariance: If Cov_{A,B} > 0, then A and B both tend to be larger than their expected values.
- Negative covariance: If Cov_{A,B} < 0 then if A is larger than its expected value, B is likely to be smaller than its expected value.</p>
- Independence: Cov_{A.B} = 0 but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions does a covariance of 0 imply independence

17

Covariance: An Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- Suppose two stocks A and B have the following values in one week:
 (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - \bullet E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - \bullet E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6
 - $Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction?
 - A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
 - Also this can be a matter of accuracy!
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Data Reduction 1: Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality reduction techniques

- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)

Data Reduction 1: Dimensionality Reduction (cont'd)

Wavelet Transform

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S[^] = $[2^3/_4, -1^1/_4, 1/_2, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0,-1,-1,0]
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[ilde{2}rac{3}{4}]$	$\left[-1\frac{1}{4}\right]$

Wavelet Transform (cont'd)

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction.

Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find $k \le n$ orthogonal vectors (*principal components*) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., principal components
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the weak components, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
- Works for numeric data only

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

Heuristic Search for Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - E.g., wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter 7)

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (aka. explanatory variables or predictors)
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Regress Analysis Models

- Linear regression: Y = w X + b
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of $Y_1, Y_2, ..., X_1, X_2, ...$

- Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed into the above

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equaldepth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms, to be studied in depth in Chapter
 10

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling

Types of Sampling

Simple random sampling

There is an equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Sampling with replacement

A selected object is not removed from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: With or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Data Cube Aggregation

- The lowest level of a data cube (base cuboid)
 - The aggregated data for an individual entity of interest
 - E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

Data Reduction 3: Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Data Compression

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- Z-score normalization (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute

Data Discretization Methods

- Typical methods: All the methods can be applied recursively
 - Binning, Histogram Analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Classification (e.g., decision-tree) analysis (supervised, top-down split)
 - Correlation (e.g., χ²) analysis (unsupervised, bottom-up merge)

Simple Discretization: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization Without Using Class Labels (Binning vs. Clustering)

Equal frequency (binning)

K-means clustering leads to better results

Discretization by Classification & Correlation Analysis

- Classification (e.g., decision tree analysis)
 - Supervised: Given class labels, e.g., cancerous vs. benign
 - Using entropy to determine split point (discretization point)
 - Top-down, recursive split
 - Details to be covered in Chapter 7
- Correlation analysis (e.g., Chi-merge: χ²-based discretization)
 - Unsupervised
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies
- Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. IEEE Spectrum, Oct 1996
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- J. Devore and R. Peck. Statistics: The Exploration and Analysis of Data. Duxbury Press, 1997.
- H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning:
 Language, model, and algorithms. VLDB'01
- M. Hua and J. Pei. Cleaning disguised missing data: A heuristic approach. KDD'07
- H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- H. Liu and H. Motoda (eds.). Feature Extraction, Construction, and Selection: A Data Mining Perspective. Kluwer Academic, 1998
- J. E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann, 2003
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: The Field Guide. Digital Press (Elsevier), 2001
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.
 Knowledge and Data Engineering, 7:623-640, 1995