Human Brain VS Computer

Motivation

- Human mind Computer
- Good at image recognition, pattern recognition etc
- Good at arithmetic calculations

 $2574304 \times e^{354} \div \tan 5.1\pi$

Handwriting recognition

Making precise rules is difficult

```
222422222222222222
444444444444
6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
```

Neural Networks

Neural Networks creates own complex pattern recognition rules

Pattern recognition

Training data

Future Prediction

Dataset

Fashion MNIST

We will classify images into 10 fashion items

Sandal (Sandal)

Pullover (Pullover)

Sandal (Sandal)

Sneaker (Sneaker) Ankle boot (Ankle boot) Trouser (Trouser)

Course Flow

Artificial Neuron

Biological Neuron

Artificial Neuron

Artificial Neuron

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Color	Sleeves	Fabric	Calculated Sum	Threshold	Buy / Not Buy
Blue	Half	Non Cotton	7*1 + 4*0 + 2*0 = 7	8	Not buy
Blue	Full	Non Cotton	11	8	Buy
Not Blue	Full	Cotton	6	8	Not Buy

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Removing Binary Restriction

Standard **Equation**

$$Output = \begin{cases} 0, & \sum_{j} w_{j} x_{j} + b < 0 \\ 1, & \sum_{j} w_{j} x_{j} + b \ge 0 \end{cases}$$

b is called Bias

Graphical Representation

Step Activation function

Sigmoid Activation

Output
$$Output = \begin{cases} 0, & \sum_{j} w_{j} x_{j} + b < 0 \\ 1, & \sum_{j} w_{j} x_{j} + b \geq 0 \end{cases}$$

Sigmoid Activation function

Sigmoid Activation

Sigmoid Activation function

- Sigmoid is better because it is less sensitive to individual observation
- Artificial neuron with sigmoid activation is called sigmoid or logistic neuron

$$\sigma(z) \equiv rac{1}{1+e^{-z}} \qquad \qquad extit{Output} = rac{1}{1+\exp(-\sum_j w_j x_j - b)}.$$

Two types of Stacking

Parallel

Sequential

Parallel Stacking

With parallel stacking we can get multiple outputs with the same input

Sequential Stacking

Why not use a single neuron

Sequential Stacking

Single neuron can handle such linear classification problem

Sequential Stacking

Each neuron can focus on the particular features of the object instead of the final outcome

Nomenclature

Nomenclature

Feed Forward Network — One directional processing

Fully connected network — Output from a neuron goes to all neurons of next layer

Deep Learning

Such artificial neural networks primarily constitutes deep learning

Deep Learning

More number of layers => Deeper network => More complex relationships