

Figure 1

C

Figure 1 continued

Figure 2

Α

Figure 3

Figure 4

Figure 5

Figure 7

Identification of INS regions within the env mRNA using the p19 vector.

Figure 10

Identification of INS regions within the env mRNA using the p37M1-10D vector.

(fig 5 env, formerly fig D)

Figure 11

Elimination of negative effects of

Figure 12

POINT MUTATIONS ELIMINATING THE NEGATIVE EFFECTS OF CRS IN THE pol REGION (nucleotides 3700-4194) (SEQ ID NO:127)

Gatatatacargcagaagttattccagcagaaacagggcaggaaacagcatatttcttttaaaattagcaggaaga<u>tgg</u>

CCAGTAAAAACAATACATACTGACAATGGCAGCAATTTCACCGGTGCTACGGTTAGGGCCGCCTGTTGGTGGCCGGGAAT

CAAGCAGGAATTTGG

Figure 13

COMPLETE NUCLEOTIDE SEQUENCE OF p37M-1-10D AND AMINO ACID SEQUENCE OF p37^{gag} PROTEIN (SEQ ID NO:129)

Figure 14

1	TGGAAGGGCT AATTTGGTCC CAAAAAGAC AAGAGATCCT TGATCTGTGG ATCTACCACA CACAAGGC	T
71	CTTCCCTGAT TGGCAGAACT ACACACCAGG GCCAGGGATC AGATATCCAC TGACCTTTGG ATGGTGCT	70
141	AAGTTAGTAC CAGTTGAACC AGAGCAAGTA GAAGAGGCCA AATAAGGAGA GAAGAACAGC TTGTTACA	C
211	CTATGAGCCA GCATGGGATG GAGGACCCGG AGGGAGAAGT ATTAGTGTGG AAGTTTGACA GCCTCCTA	G
281	ATTTCGTCAC ATGGCCCGAG AGCTGCATCC GGAGTACTAC AAAGACTGCT GACATCGAGC TTTCTACA	A(
351	GGACTITCCG CTGGGGACTT TCCAGGGAGG TGTGGCCTGG GCGGGACTGG GGAGTGGCGA GCCCTCAG	A.
421	GCTACATATA AGCAGCTGCT TTTTGCCTGT ACTGGGTCTC TCTGGTTAGA CCAGATCTGA GCCTGGGA	G
491	TCTCTGGCTA ACTAGGGAAC CCACTGCTTA AGCCTCAATA AAGCTTGCCT TGAGTGCTCA AAGTAGTG	T
561	TECCCETCTE TTGTGTGACT CTGGTAACTA GAGATCCCTC AGACCCTTTT AGTCAGTGTG GAAAATCT	CI
631	AGCAGTGGCG CCCGAACAGG GACTTGAAAG CGAAAGTAAA GCCAGAGGAG ATCTCTCGAC GCAGGACT	_ CG
701	BssHil (711) GCTTGCTGAAGCGCGCGCGACACACACACACGCGCGACAATTAGATCGATC	rp GG
777 17)	GAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAGAAGTACAAGCTAAAGCACATCGTATGGGCAAGCAGGGAGCTI GIuLysiieArgLeuArgProGlyGlyLysLysLysTyrLysLeuLysHisiieVaiTrpAiaSerArgGiuLeu	AG J C
853 42	AACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCAT I uArgPheAl aValAsnProGlyLeuLeuGluThr Ser GluGlyCysArgGlnlleLeuGlyGlnLeuGlnProS	~ Se
929 67 ≯	CCTTCAGACAGGATCAGAGGAGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTGTGTGCACCAGCGGAT r LeuGinThr GiySer GiuGiuLeuArgSer LeuTyrAsnThr ValAlaThr LeuTyrCysValHisGinArgll	10
1005 93Þ	GAGATCAAGGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAGTCCAAGAAGGAAG	iG 1A
1081	CAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCCAGGGGCAAATGG	T
	I aAl aAspThr GiyHis SerAsnGinVal Ser GinAsnTphProlleVal GinAsnIleGinGiyGinMetV	_
1157	ACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGT I Hi s Gl nAl a l I e Ser P ro Arg Thr Leu AsnAl a T rp Va I Ly s Va I Gl u Gl u Ly s Al a Phe Ser P ro Gl u Va	G
1233 37Þ	ATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACAGGACCTGAACACGATGTTGAACACCGTGGGGGGGA I I eP roMe t Phe Ser Al a Leu Ser Gi uGi yA I a Thr P ro Gi nAspLeu AsnThr Me t Leu AsnThr Va I Gi yGi y	CH
1309 62Þ	ATCAAGCAGCCATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGC is GinalaalaMet GinMetLeuLys GiuThriieAsnGluGluAlaalaGluTrpAspArgValHis ProValH	A li
1385 87▶	TGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCA sAlaGlyProlleAlaProGlyGlnMetArgGluProArgGlySerAsplieAlaGlyThrThr SerThr LeuGl	G
1461 113	GAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAGATCTACAAGAGGTGGATAATCCTGGGA GIUGInilegiyTrpMetThrAsnAsnProProIleProValGlyGiulleTyrLysArgTrpIleIleLeuGlyI	T
1537 138Þ	TGAACAAGATCGTGAGGATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGAACCAAAGGAACCCTTTAGAG UUAsnLysiieVaiA rgMetTyrSer ProThr SeriieLeuAspiieArgGinGlyProLysGluProPheArgA	A S

Figure 14 continued

1613 CTATGTAGACCGGTTCTATAAAACTCTAAGAGCTGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACC 163 PTyrValAspArgPheTyrLysThr LeuArgAlaGluGlnAlaSer GlnGluValLysAsnTrpMetThr GluThr 1689 ITGTTGGTCCAAAATGCGAACCCAGATTGTAAGACCATCCTGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAA 189 LeuLeuVal GlinAsnAl aAsnProAspCysLysThr HeLeuLys Al aLeuGi yProAl aAl aThr LeuGi uGliuM stop (1818) -Xbal (1838) 1765 TGATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAGGCAAGAGTTTTGTAGGGATCCACTAGTTCTAGACT 214 etMetThrAlaCysGlnGlyValGlyGlyProGlyHisLysAlaArgValLeu Apal (1848) 1841 CGAGGGGGG CCCGGTACCT TTAAGACCAA TGACTTACAA GGCAGCTGTA GATCTTAGCC ACTTTTTAAA 1911 AGAAAAGGGG GGACTGGAAG GGCTAATTCA CTCCCAAAGA AGACAAGATA TCCTTGATCT GTGGATCTAC 1981 CACACACAG GCTACTTCCC TGATTGGCAG AACTACACAC CAGGGCCAGG GGTCAGATAT CCACTGACCT 2051 ITGGATGGTG CTACAAGCTA GTACCAGTTG AGCCAGATAA GGTAGAAGAG GCCAATAAAG GAGAGAACAC 2121 CAGCTTGTTA CACCCTGTGA GCCTGCATGG AATGGATGAC CCTGAGAGAG AAGTGTTAGA GTGGAGGTTT GACAGCCGCC TAGCATTCA TCACGTGGCC CGAGAGCTGC ATCCGGAGTA CITCAAGAAC TGCTGACATC GAGCTTGCTA CAAGGGACTT TCCGCTGGGG ACTTTCCAGG GAGGCGTGGC CTGGGCGGGA CTGGGGAGTG GCGAGCCCTC AGATGCTGCA TATAAGCAGC TGCTTTTTGC CTGTACTGGG TCTCTCTGGT TAGACCAGAT CTGAGCCTGG GAGCTCTCTG GCTAACTAGG GAACCCACTG CTTAAGCCTC AATAAAGCTT GCCTTGAGTG 2471 CTTCAAGTAG TGTGTGCCCG TCTGTTGTGT GACTCTGGTA ACTAGAGATC CCTCAGACCC TTTTAGTCAG 2541 TGTGGAAAAT CTCTAGCACC CCCCAGGAGG TAGAGGTTGC AGTGAGCCAA GATCGCGCCA CTGCATTCCA 2611 GCCTGGGCAA GAAAACAAGA CTGTCTAAAA TAATAATAAT AAGTTAAGGG TATTAAATAT ATTTATACAT 2681 GGAGGTCATA AAAATATATA TATTTGGGCT GGGCGCAGTG GCTCACACCT GCGCCCGGCC CTTTGGGAGG CCGAGGCAGG TGGATCACCT GAGTTTGGGA GTTCCAGACC AGCCTGACCA ACATGGAGAA ACCCCTTCTC 2821 TGTGTATTIT TAGTAGATTT TATTTTATGT GTATTTTATT CACAGGTATT TCTGGAAAAC TGAAACTGTT 2891 TITCCTCTAC TCTGATACCA CAAGAATCAT CAGCACAGAG GAAGACTTCT GTGATCAAAT GTGGTGGGAG 2961 AGGGAGGTTT TCACCAGCAC ATGAGCAGTC AGTTCTGCCG CAGACTCGGC GGGTGTCCTT CGGTTCAGTT CCAACACCGC CTGCCTGGAG AGAGGTCAGA CCACAGGGTG AGGGCTCAGT CCCCAAGACA TAAACACCCA 3101 AGACATARAC ACCCARCAGG TCCACCCCGC CTGCTGCCCA GGCAGAGCCG ATTCACCARG ACGGGAATTA 3171 GGATAGAGAA AGAGTAAGTC ACACAGAGCC GGCTGTGCGG GAGAACGGAG TTCTATTATG ACTCAAATCA 3241 GTCTCCCCAA GCATTCGGGG ATCAGAGTTT TTAAGGATAA CTTAGTGTGT AGGGGGCCAG TGAGTTGGAG 3311 ATGAAAGCGT AGGGAGTCGA AGGTGTCCTT TTGCGCCGAG TCAGTTCCTG GGTGGGGGCC ACAAGATCGG 3381 ATGAGCCAGT TTATCAATCC GGGGTGCCA GCTGATCCAT GGAGTGCAGG GTCTGCAAAA TATCTCAAGC 3451 ACTGATTGAT CTTAGGTTTT ACAATAGTGA TGTTACCCCA GGAACAATTT GGGGAAGGTC AGAATCTTGT 3521 AGCCTGTAGC TGCATGACTC CTAAACCATA ATTTCTTTTT TGTTTTTTTT TTTTTATTTT TGAGACAGGG Pati (3639) 3591 TOTCACTOTG TCACCTAGGC TGGAGTGCAG TGGTGCAATC ACAGCTCACT GCAGCCCCTA GAGCGGCCGC 3661 CACCGCGGTG GAGCTCCAAT TCGCCCTATA GTGAGTCGTA TTACAATTCA CTGGCCGTCG TTTTACAACG 3731 TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC CTTGCAGCAC ATCCCCCTTT CGCCAGCTGG 3801 CGTAATAGCG AAGAGGCCCG CACCGATCGC CCTTCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGCGCG 3871 AAATTGTAAA CGTTAATATT TTGTTAAAAT TCGCGTTAAA TTTTTGTTAA ATCAGCTCAT TTTTTAACCA 3941 ATAGGCCGAA ATCGGCAAAA TCCCTTATAA ATCAAAAGAA TAGACCGAGA TAGGGTTGAG TGTTGTTCCA 4011 GTTTGGAACA AGAGTCCACT ATTAAAGAAC GTGGACTCCA ACGTCAAAGG GCGAAAAACC GTCTATCAGG 4081 GCGATGGCCC ACTACGTGAA CCATCACCCT AATCAAGTTT TTTGGGGTCG AGGTGCCGTA AAGCACTAAA 4151 TCGGAACCCT AAAGGGAGCC CCCGATTTAG AGCTTGACGG GGAAAGCCGG CGAACGTGGC GAGAAAGGAA 4221 GGGAAGAAAG CGAAAGGAGC GGGCGCTAGG GCGCTGGCAA GTGTAGCGGT CACGCTGCGC GTAACCACCA 4291 CACCCGCCGC GCTTAATGCG CCGCTACAGG GCGCGTCCCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA 4361 ACCCCTATTT GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA

Figure 14 continued

4431	TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA	TGAGTATTCA	ACATTTCCGT	GTCGCCCTTA	TTCCCTTTTT
4501	TGCGGCATTI	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	CTGGTGAAAG	TAAAAGATGC	TGAAGATCAG
4571	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	GATCTCAACA	GCGGTAAGAT	CCTTGAGAGT	TTTCGCCCCG
4641	AAGAACGTTI	TCCAATGATG	AGCACTTTTA	AAGTTCTGCT	ATGTGGCGCG	GTATTATCCC	GTATTGACGC
4711	CGGGCAAGAG	CAACTCGGTC	GCCGCATACA	CTATTCTCAG	AATGACTTGG	TTGAGTACTC	ACCAGTCACA
4781	GAAAAGCATC	TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	AGTGATAACA
4851		CTTACTTCTG					
4921	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	AATGAAGCCA	TACCAAACGA	CGAGCGTGAC
4991		CTGTAGCAAT					
5061		ATTAATAGAC					
5131		TITATIGCIG					
5201		GTAAGCCCTC					
5271		GATCGCTGAG					
5341		TAGATTGATT					
5411	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	TTTTCGTTCC	ACTGAGCGTC	AGACCCCGTA	GAAAAGATCA
5481		TTGAGATCCT					
5551	AGCGGTGGTT	TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG
5621	CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	GTAGCACCGC
5691	CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	GATAAGTCGT	GTCTTACCGG
5761		AGACGATAGT					
5831	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	CTGAGATACC	TACAGCGTGA	GCTATGAGAA	AGCGCCACGC
5901		GAGAAAGGCG					
5971		GGAAACGCCT					
6041		GCTCGTCAGG					
6111	TGGCCTTTTG	CTGGCCTTTT	GCTCACATGT	TCTTTCCTGC	GITATCCCCT	GATTCTGTGG	ATAACCGTAT
6181		GAGTGAGCTG					
6251		AGCGCCCAAT					
6321		TCCCGACTGG					
6391		GCTTTACACT					
6461	_	ACAGCTATGA	CCATGATTAC	GCCAAGCTCG	GAATTAACCC	TCACTAAAGG	GAACAAAAGC
	Pstl (6533						
6531	TGCTGCAGGG	TCCCTAACTG	CCAAGCCCCA	CAGTGTGCCC	TGAGGCTGCC	CCTTCCTTCT	AGCGGCTGCC
6601		TTTGCTTTCC					
6671	GAGCGGTAAG	ACTGCGAGAG	AAAGAGACCA	GCTTTACAGG	GGGTTTATCA	CAGTGCACCC	TGACAGTCGT
6741		GGGGGTTTAT					
6811	ACCCTTACAA	TCATTCCATT	TGATTCACAA	TTTTTTTAGT	CTCTACTGTG	CCTAACTTGT	AAGITAAATT
6881	TGATCAGAGG	TGTGTTCCCA	GAGGGGAAAA	CAGTATATAC	AGGGTTCAGT	ACTATCGCAT	TTCAGGCCTC
6951	CACCTGGGTC	TTGGAATGTG	TCCCCCGAGG	GGTGATGACT	ACCTCAGITG	GATCTCCACA	GGTCACAGTG
7021	ACACAAGATA	ACCAAGACAC	CTCCCAAGGC	TACCACAATG	GCCCCCCTC	CACGTGCACA	TGGCCGGAGG
7091	AACTGCCATG	TCGGAGGTGC	AAGCACACCT	GCGCATCAGA	GTCCTTGGTG	TGGAGGGAGG	GACCAGCGCA
7161	GCTTCCAGCC	ATCCACCTGA	TGAACAGAAC	CTAGGGAAAG	CCCCAGTTCT	ACTTACACCA	GGAAAGGC

Figure 14 continued