Pronalaženje sustavnih pogrešaka označavanja u podatcima za učenje

Luka Družijanić

Pri učenju dubokih modela...

- Preuzimamo skup podataka s interneta
- Preuzimamo predtrenirani model
- Učenje obavljamo na tuđem serveru

- Skupovi podataka sadrže tisuće primjera
- Modeli sadrže milijune parametara
- Ne možemo biti sigurni što je unutra

Pregled prezentacije

- Napadi
 - BadNets
 - WaNet
 - SIG
- Obrane
 - Neural Cleanse
 - Activation Clustering
 - Čišćenje skupa podataka samonadziranim učenjem

Napadi

 Na neke primjere postavljamo uzorak (okidač) te im mijenjamo oznaku u ciljni razred

 Model bi trebao naučiti da u prisutnosti okidača na izlazu treba vratiti ciljni razred – stražnja vrata (engl. backdoor)

Za skup podataka kažemo da je otrovan

Jednostavan uzorak

- Dovoljan uzorak od par piksela
- Dovoljno otrovati 1% skupa podataka

WaNet

• Nevidljive deformacije umjesto okidača

WaNet

- Potrebno oko 10% otrovanih primjera
- Puno teže za detektirati (bilo okom, bilo računalno)

- Osim trovanja pojedinačnih slika, WaNet uvodi i noise mode
 - Na određeni udio (npr. 20%) slika se primijenjuje nasumična deformacija (svaki puta drukčija) bez mijenjanja oznake

SIG

- Tijekom učenja, postavljamo okidač samo na primjere ciljnog razreda ne mijenjamo oznake!
- Međutim, okidač sada mora biti puno jači

Obrane

Neural Cleanse

- Ideja: nakon što smo naučili model na (potencijalno) otrovanom skupu podataka, pokušati rekonstruirati okidače za svaki razred
- Okidač za jedan razred je minimalna potrebna izmjena da se ulaz bilo kojeg razreda krivo klasificira u odabrani
- Backpropom za svaki razred tražimo:

$$o_c = rgmin_o \left[\sum_{x_i} \ell(c, f(x_i + o)) + \lambda \cdot \|o\|_1)
ight]$$

Neural Cleanse

• Pronašli smo potencijalne okidače za svaki razred, npr:

- Ako je jedan od okidača znatno manji od ostalih, on je backdoor
- Na kraju, pokušati "odučiti" okidač dodatno učimo model na skupu koji sadrži okidače, no bez promjene ciljne oznake

Activation Clustering

• promatrati aktivacije posljedneg skrivenog sloja modela

Activation Clustering

• promatrati aktivacije posljedneg skrivenog sloja modela

Activation Clustering

- grupirati aktivacije posljedneg skrivenog sloja modela
- naučiti novi model na filtriranim podacima

Čišćenje skupa podataka samonadziranim učenjem

- Naučili smo model bez oznaka
 - okidači su se mogli pojaviti na slici, no model neće naučiti da su oni bitni
- Model svakom primjeru daje reprezentaciju duljine 512
 - primjeri istog razreda bi trebali imati slične reprezentacije

• Nakon smanjenja dimenzionalnosti (**UMAP**):

Za BadNets i WaNet:

- Otrovani primjeri okruženi su primjerima svojeg originalnog razreda, a ne ciljnog
- Možemo svakom primjeru pridijeliti novu oznaku na temelju njegovih k najbližih susjeda (kNN)
- Ako se nova i stara oznaka ne poklapaju, primjer je otrovan, te ga izbacujemo iz skupa podataka

kNN - kako odrediti k?

Koliko zadržimo čistih primjera?

kNN - kako odrediti k?

Koliko ostane otrovanih primjera?

Međutim, za SIG...

- SIG napad se u prostoru SimCLR reprezentacija ponaša potpuno drugačije
- Trebamo novu metodu

• Svi otrovani primjeri se nalaze u vlastitoj grupi, udaljeni od ostatka

Možemo li jednostavno odbaciti najudaljenije?

• Ne.

Prokletstvo dimenzionalnosti

Ali...

 Nakon smanjenja dimenzionalnosti (UMAP), grupa otrovanih se čini najudaljenijom?

 I dalje ne znamo kako točno odrediti granicu, stoga koristimo algoritam k-sredina kako bismo prvo grupirali primjere, te odbacujemo najudaljeniju grupu

Grupiranje – k-sredina

- Svaku grupu predstavlja jedan centroid
- Primjer pripada onoj grupi čijem centroidu je najbliži
- Centroide inicijaliziramo nasumičnim odabirom
 - no s većom vjerojatnošću biramo one koji su udaljeniji (*k-means++*)
- Iterativno, do konvergencije:
 - Odredi koji primjeri pripadaju kojem centroidu
 - Izračunaj nove centroide na temelju njihovih primjera
- Konačno, odbaci najudaljeniju grupu

Naša metoda:

2. Nalaze se u najudaljenijoj grupi k-sredina

Eksperimenti – naša metoda

- CIFAR-10
 - BadNets 1%
 - BadNets 10%
 - WaNet 10%
 - SIG 1%
- SimCLR
 - ResNet-18 okosnica, 250 epoha

Eksperimenti – naša metoda

	Udio otrovanih / %	Udio zadržanih čistih / %	Udio zadržanih otrovanih / %		
Čisti-train	-	73.67	-		
Čisti-test	-	73.92	-		
BadNets1-train	0.01	74.34	1.00		
BadNets1-test	0.03	73.46	2.00		
BadNets10-train	0.42	73.48	2.85		
BadNets10-test	0.91	74.25	6.27		
WaNet-train	0.62	73.84	4.12		
WaNet-test	1.29	74.80	8.83		
SIG-train	0.00	82.51	0.00		
SIG-test	0.00	83.02	0.00		

Eksperimenti – usporedba s drugima

- Učimo PreAct-ResNet18
 - 35 epoha, CIFAR-10 sa napadima
- Promatramo sljedeće:
 - C-Acc (clean accuracy) točnost predikcije čistih primjera u originalne, ispravne razrede
 - ASR (attack success rate) točnost predikcije otrovanih primjera u ciljni razred

Eksperimenti – usporedba s drugima

	BadNets1		BadNets10		WaNet		SIG	
	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR
Bez obrane	91.03	95.28	90.48	99.97	88.22	93.44	91.23	99.87
Naše	79.33	2.24	76.94	2.6	80.89	10.31	83.38	0.21
NC	86.49	11.22	86.26	20.03	-	-	-	-
AC	85.36	96.78	84.68	98.38	85.11	98.84	84.37	94.41

Eksperimenti – usporedba s drugima

Na čistom skupu podataka:

	C-Acc / %
Bez obrane	91.07
Naše	77.61
NC	-
AC	89.94

Zaključak

- Obrane AC i NC ne rade protiv ozbiljnijih napada
- Samonadzirano učenje kao obrana je radilo dobro za BadNets i WaNet, no za napade poput SIGa nije
- Pokazali smo kako unaprijediti postojeću metodu
 - Smanjenje dimenzionalnosti + k-sredina

Zaključak

- Iako u potpunosti uklonimo sve napade, u procesu izgubimo oko 25% čistih primjera, što nam narušava točnost modela
- Za budući rad poboljšati naučene reprezentacije?
 - Drukčiji samonadzirani modeli
 - Dublja okosnica
 - Više epoha
- Umjesto odbacivanja najmanje grupe, promatrati SIG napad kao problem stršećih vrijednosti
 - Iskoristit neki postojeći algoritam poput RANSAC-a

Hvala!