FUNCTII INTEGRABILE RIEMANN

A) NOTIUNI GENERALE

Definitia 1. Se numeste diviziune a intervalului [a, b] cu $a < b \in \mathbb{R}$ o multime finita de elemente $\Delta = \{x_0, x_1, ..., x_n\}$ astfel incat $x_0 < x_1 < < x_n = b$.

Notatie. $\Delta : a = x_0 < x_1 < < x_n = b$

 $D([a,b]) = \{ \Delta | \Delta \ diviziune \ a \ intervalului \ [a,b] \}$

Definitia 2. Fie $\Delta \in D([a, b]), \Delta : a = x_0 < x_1 < < x_n = b$.

- a) Numarul real $\|\Delta\| = \max\{|x_{i+1} x_i| | 0 \le i \le n-1\}$ se numeste norma diviziunii Δ .
- b) O multime finita $t_{\Delta} = \{t_1, t_2, ..., t_n\}$ cu $t_i \in [x_{i-1}, x_i] \ \forall 1 \leq i \leq n$ se numeste sistem de puncte internediare asociat diviziunii Δ .

Definitia 3. Se considera o functie $f:[a,b]\to\mathbb{R},\ \Delta\in D([a,b]),\ \Delta:a=$ $x_0 < x_1 < \dots < x_n = b$ si $t_{\Delta} = \{t_1, t_2, \dots, t_n\}$ un sistem de puncte intermediare asociat diviziunii Δ . Numarul real $\sum_{i=1}^{n} f(t_i) (x_i - x_{i-1})$ se numeste suma Riemann asociata functiei f, diviziunii Δ si sistemului de puncte intermediare

 t_{Δ} .

Notatie. $\sigma_{\Delta}(f; t_{\Delta}) \stackrel{not}{=} \sum_{i=1}^{n} f(t_{i}) (x_{i} - x_{i-1})$ Definitia 4. Fie $f: [a, b] \to \mathbb{R}$ o functie marginita, $\Delta \in D([a, b]), \Delta: a = x_{0} < x_{1} < \dots < x_{n} = b, M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x) \text{ si } m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x) \forall 1 \leq i \leq n.$

- a) Numarul real $\sum_{i=1}^{n} M_i(x_i x_{i-1})$ se numeste suma Darboux superioara asociata functiei f si diviziunii Δ .
- b) Numarul real $\sum_{i=1}^{n} m_i(x_i x_{i-1})$ se numeste suma Darboux inferioara asociata functiei f si diviziunii Δ .

Notatie. $S_{\Delta}(f) \stackrel{not}{=} \sum_{i=1}^{n} M_i(x_i - x_{i-1})$

$$s_{\Delta}(f) \stackrel{not}{=} \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

Definitia 5. O functie $f:[a,b] \to \mathbb{R}$ se numeste integrabila Riemann pe [a,b]daca $\exists I \in \mathbb{R}$ cu proprietatea ca $\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0$ astfel incat $|\sigma_{\Delta}(f; t_{\Delta}) - I| < \varepsilon \forall \Delta \in I$ $D\left([a,b]\right)$ cu $\|\Delta\|<\delta_{\varepsilon}$ si $\forall t_{\Delta}$ sistem de puncte intermediare asociat diviziunii Δ .

Notatie. a) $I \stackrel{not}{=} \int_a^b f(x) dx \in \mathbb{R}$ -integrala Riemann a functiei f pe [a,b]

b) $\Re([a,b]) \stackrel{not}{=} \{f: [a,b] \to \mathbb{R} | f \text{ functive integrabila Riemann pe } [a,b] \}$ Teorema 1. Fie $f \in \Re([a,b])$. Pentru orice sir de diviziuni $(\Delta_n)_{n \in \mathbb{N}}$ cu $\lim_{n\to\infty} \|\Delta_n\| = 0$ si pentru orice t_{Δ_n} sistem de puncte intermediare asociat diviz-

iunii Δ_n exista $\lim_{n\to\infty} \sigma_{\Delta_n}(f;t_{\Delta_n}) = \int_{-\pi}^{\pi} f(x)dx$.

Criteriul de integrabilitate al lui Darboux. Fie $f:[a,b] \to \mathbb{R}$ o functie marginita. Urmatoarele afirmatii sunt echivalente:

a) $f \in \Re([a, b])$

b) $\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0$ astfel incat $S_{\Delta}(f) - s_{\Delta}(f) < \varepsilon \ \forall \Delta \in D([a, b])$ cu $\|\Delta\| < \delta_{\varepsilon}$. Definitia 6. O multime $A \subseteq \mathbb{R}$ se numeste neglijabila Lebesgue daca $\forall \varepsilon > 0\varepsilon \ \exists ((a_n, b_n))_{n \in \mathbb{N}}$ sir de intervale deschise astfel incat $A \subseteq \bigcup_{n \in \mathbb{N}} (a_n, b_n)$ si $\sum_{n=0}^{\infty} (b_n - a_n) < \varepsilon$.

Teorema 2 (Proprietatile multimilor neglijabile Lebesgue). Sunt adevarate urmatoarele afirmatii:

- a) Daca $A \subseteq \mathbb{R}$ este multime neglijabila Lebesgue si $B \subseteq A$, atunci B este multime neglijabila Lebesgue.
- b) Daca $A \subseteq \mathbb{R}$ este multime finita sau multime numarabila, atunci A este neglijabila Lebesgue.
- c) Daca $(A_n)_{n\in\mathbb{N}}$ este un sir de multimi neglijabile Lebesgue, atunci $\bigcup_{n\in\mathbb{N}} A_n$ este multime neglijabila Lebesgue.
 - d) Multimea vida Ø este neglijabila Lebesgue.

Criteriul de integrabilitate al lui Lebesgue. O functie $f:[a,b] \to \mathbb{R}$ este integrabila Riemann pe [a,b] daca si numai daca f este functie marginita si $D_f = \{x \in [a,b] | f \text{ nu este continua in } x\}$ este multime neglijabila Lebesgue.

Observatie. 1) Daca $f, g \in \Re([a, b])$, atunci $\alpha f + \beta g \in \Re([a, b]) \ \forall \alpha, \beta \in \mathbb{R}$ si $\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$.

2) Daca $f, g \in \Re([a, b])$, atunci $f \cdot g \in \Re([a, b])$.

Teorema 3. a) Orice functie continua $f:[a,b]\to\mathbb{R}$ este integrabila Riemann pe [a,b].

b) Orice functie monotona $f:[a,b] \to \mathbb{R}$ este integrabila Riemann pe [a,b]. Demonstratie. a) In demonstratie folosim criteriul de integrabilitate al lui Lebesgue.

[a,b] multime compacta in \mathbb{R}

f functie continua pe $[a, b] \Rightarrow f$ functie marginita pe [a, b] (1)

 $D_f = \varnothing \Rightarrow D_f$ multime neglijabila Lebesgue (2)

Din relatiile (1) si (2), folosind criteriul de integrabilitate al lui Lebesgue, rezulta ca $f \in \Re([a,b])$.

b) Vom utiliza criteriul de integrabilitate al lui Darboux.

Presupunem, fara a restrange generalitatea, ca f este functie crescatoare.

Fie $\Delta \in D([a,b]), \Delta : a = x_0 < x_1 < \dots < x_n = b$. Vom evalua $S_{\Delta}(f) - s_{\Delta}(f)$.

$$S_{\Delta}(f) = \sum_{i=1}^{n} M_{i}(x_{i} - x_{i-1}) = \sum_{i=1}^{n} f(x_{i})(x_{i} - x_{i-1})$$

$$s_{\Delta}(f) = \sum_{i=1}^{n} (x_{i} - x_{i-1}) = \sum_{i=1}^{n} f(x_{i-1})(x_{i} - x_{i-1})$$

$$S_{\Delta}(f) - s_{\Delta}(f) = \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1}))(x_{i} - x_{i-1}) \le ||\Delta|| \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1})) = ||\Delta|| (f(b) - f(a))$$

$$\text{Fie } \varepsilon > 0.$$

Alegem
$$\delta_{\varepsilon} = \frac{\varepsilon}{f(b) - f(a) + 1}$$

 $\forall \Delta \in D([a,b]) \text{ cu } ||\Delta|| < \delta_{\varepsilon} \text{ avem ca } S_{\Delta}(f) - s_{\Delta}(f) \le ||\Delta|| (f(b) - f(a)) \le \delta_{\varepsilon}(f(b) - f(a)) < \varepsilon.$

Aplicand criteriul de integrabilitate al lui Darboux, deducam ca $f \in \Re([a,b])$.

Teorema 4. Fie $f,g:[a,b]\to\mathbb{R}$ doua functii astfel ca $f\in\Re\left([a,b]\right)$ si $A=\{x\in[a,b]|\ f(x)\neq g(x)\}$ este multime finita. Atunci $g\in\Re\left([a,b]\right)$ si $\int\limits_a^b f(x)dx=\int\limits_a^b g(x)dx.$

Exemplu. Sa se arate ca functia $f:[0,1]\to\mathbb{R}$ data de $f(x)=\left\{\begin{array}{c} x^2,x\in(0,1]\\ 2,x=0\end{array}\right.$ este

integrabila Riemann pe [0,1] si sa se calculeze $\int_{0}^{1} f(x)dx$.

Se observa ca f este continua pe multimea (0,1] si ca f nu este continua in punctul $x_0=0$.

 $D_f = \{0\}$ multime finita $\Rightarrow D_f$ multime neglijabila Lebesgue

 $0 \le f(x) \le 2 \ \forall x \in [0,1] \Rightarrow f$ functie marginita

Aplicand criteriul de integrabilitate al lui Lebesgue, avem ca f este integrabila Riemann pe [0,1].

Alegem $g: [0,1] \to \mathbb{R}, g(x) = x^2 \ \forall x \in [0,1].$

g functie continua pe $[0,1] \Rightarrow g$ functie integrabila Riemann pe [0,1].

 $A = \{x \in [0,1] | f(x) \neq g(x)\} = \{0\}$ multime finita.

Din teorema 4 avem ca

 $\int_{0}^{1} f(x)dx = \int_{0}^{1} g(x)dx = \int_{0}^{1} x^{2}dx = \frac{x^{3}}{3} \mid_{0}^{1} = \frac{1}{3}.$

B) PROPRIETATILE FUNCTIILOR INTEGRA-BILE RIEMANN

Definitia 7. Fie $I \subseteq \mathbb{R}$ un interval nedegenerat si $f, F : I \to \mathbb{R}$ doua functii. Spunem ca F este o primitiva a functiei f daca F este functie derivabila pe I si $F'(x) = f(x) \ \forall x \in I$.

Teorema 5. Fie $f \in \Re([a,b])$ si functia $F:[a,b] \to \mathbb{R}$ definita prin F(x) = x

 $\int f(t)dt \ \forall x \in [a,b]$. Atunci F este functie continua pe [a,b]. Daca, in plus, f este

continua in punctul $x_0 \in [a, b]$, atunci F este derivabila in x_0 si $F'(x_0) = f(x_0)$.

Corolar. Fie $I \subseteq \mathbb{R}$ un interval nedegenerat. Orice functie continua $f: I \to \mathbb{R}$ admite primitive pe I.

Teorema 6. Fie $I, J \subseteq \mathbb{R}$ doua intervale nedegenerate, $f: I \to \mathbb{R}$ o functie continua pe I si $g, h: J \to I$ doua functii derivabile pe J. Atunci functia

 $F:J\to\mathbb{R}$ definita prin $F(x)=\int\limits_{g(x)}^{h(x)}f(t)dt$ este derivabila pe J si $F'(x)=\int\limits_{g(x)}^{h(x)}f(t)dt$

 $f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x) \ \forall x \in J.$

Formula Leibniz-Newton. Fie $f:[a,b]\to\mathbb{R}$ o functie integrabila Riemann care admite primitive, $F:[a,b]\to\mathbb{R}$ fiind una dintre primitivele functiei f.

Atunci $\int_{a}^{b} f(x)dx = F(b) - F(a)$.

Formula de integrare prin parti pentru integrala Riemann. Fie $f, g : [a, b] \rightarrow$ \mathbb{R} doua functii derivabile astfel ca $f', g' \in \Re([a, b])$. Atunci

$$\int_{a}^{b} f'(x)g(x)dx = f(b) \cdot g(b) - f(a) \cdot g(a) - \int_{a}^{b} f(x)g'(x)dx.$$

Teorema 7. Se considera $f,g:[a,b]\to\mathbb{R}$ doua functii integrabile Riemann.

- a) Daca $f(x) \ge 0 \ \forall x \in [a, b]$, atunci $\int_a^b f(x) dx \ge 0$.
- b) Daca $f(x) \leq g(x) \ \forall x \in [a,b],$ atunci $\int\limits_a^b f(x) dx \leq \int\limits_a^b g(x) dx.$
- c) Daca $m = \inf_{x \in [a,b]} f(x)$ si $M = \sup_{x \in [a,b]} f(x)$, atunci $m(b-a) \le \int_a^b f(x) dx \le \int_a^b f(x) dx$ M(b-a).
- d) Daca $f(x) \ge 0 \ \forall x \in [a,b]$, $\int_a^b f(x) dx = 0$ si $\exists x_0 \in [a,b]$ astfel incat f este continua in x_0 , atunci $f(x_0) = 0$.
 - e) Avem ca $|f| \in \Re([a,b])$ si ca

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

Teorema de medie pentru functii integrabile Riemann. Se considera $f, g \in$ $\Re([a,b])$ cu urmatoarele proprietati:

- a) f are proprietatea lui Darboux
- b) $g(x) \ge 0 \ \forall x \in [a, b]$.

Atunci $\exists c \in (a, b)$ astfel incat $\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx$.

Corolar. Fie $f:[a,b]\to\mathbb{R}$ o functie continua. Atunci $\exists c\in(a,b)$ astfel incat $\bar{\int} f(x)dx = f(c)(b-a).$

Teorema convergentei uniforme pentru integrala Riemann. Fie $(f_n)_{n\in\mathbb{N}}$ un sir din $\Re([a,b])$ si $f:[a,b]\to\mathbb{R}$ o functie astfel ca $f_n\stackrel{u}{\to} f$. Atunci $f\in\Re([a,b])$ si $\int_a^b f(x)dx=\lim_{n\to\infty}\int_a^b f_n(x)dx$.

Teorema convergentei marginite pentru integrala Riemann. Fie $(f_n)_{n\in\mathbb{N}}$ un sir din $\Re([a,b])$ si $f \in \Re([a,b])$ astfel ca:

- a) $f_n \stackrel{s}{\rightarrow} f$

b) $\exists M > 0$ astfel incat $|f_n(x)| \le M \forall x \in [a, b], \forall n \in \mathbb{N}.$ Atunci $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx.$

Teorema convergentei monotone pentru integrala Riemann. Fie $(f_n)_{n\in\mathbb{N}}$ un sir din $\Re([a,b])$ si $f \in \Re([a,b])$ astfel ca:

a) $f_n \stackrel{s}{>} f$ b) $f_n \leq f_{n+1} \ \forall n \in \mathbb{N} \ \text{sau} \ f_n \geq f_{n+1} \ \forall n \in \mathbb{N}.$ Atunci $\int\limits_a^b f(x) dx = \lim\limits_{n \to \infty} \int\limits_a^b f_n(x) dx.$

Exemplu. Sa se calculeze $\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}\sin^n x dx$. Se alege sirul de functii $f_n:\left[0,\frac{\pi}{2}\right]\to\mathbb{R}, f_n\left(x\right)=\sin^n x\ \forall x\in\left[0,\frac{\pi}{2}\right], \forall n\in\mathbb{R}$

 f_n functie continua pe $\left[0,\frac{\pi}{2}\right]\,\forall n\in\mathbb{N}^*\Rightarrow f_n$ integrabila Riemann pe $\left[0,\frac{\pi}{2}\right]\,\forall n\in\mathbb{N}^*$

Fie
$$x \in [0, \frac{\pi}{2}]$$

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0, x \in [0, \frac{\pi}{2}) \\ 1, x = \frac{\pi}{2} \end{cases}$$
Fie $f : [0, 1] \to \mathbb{R}, f(x) = \begin{cases} 0, x \in [0, \frac{\pi}{2}) \\ 1, x = \frac{\pi}{2} \end{cases}$

Este clar ca $f_n \stackrel{s}{\to} f$.

feste functie marginita pe[0,1] si $D_f = \left\{\frac{\pi}{2}\right\}$ este multime neglijabila Lebesgue $\Rightarrow f$ este integtabila Riemann pe $\left[0,\frac{\pi}{2}\right]$

$$|f_n(x)| = |\sin^n x| \le 1 \ \forall x \in \left[0, \frac{\pi}{2}\right], \forall n \in \mathbb{N}^*$$

 $|f_n(x)| = |\sin^n x| \le 1 \ \forall x \in \left[0, \frac{\pi}{2}\right], \forall n \in \mathbb{N}^*$ Se verifica ipotezele teoremei convergentei marginite pentru integrala Rie-

mann. Asadar,
$$\int_{0}^{\frac{\pi}{2}} f(x)dx = \lim_{n \to \infty} \int_{0}^{\frac{\pi}{2}} f_n(x)dx$$

mann. Asadar,
$$\int_{0}^{\frac{\pi}{2}} f(x)dx = \lim_{n \to \infty} \int_{0}^{\frac{\pi}{2}} f_n(x)dx$$
$$\lim_{n \to \infty} \int_{0}^{\frac{\pi}{2}} f_n(x)dx = \lim_{n \to \infty} \int_{0}^{\frac{\pi}{2}} \sin^n x dx = \int_{0}^{\frac{\pi}{2}} f(x)dx = \int_{0}^{\frac{\pi}{2}} 0 dx = 0.$$