

Zadanie BinSearch

Wejście stdin Wyjście stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Dobrze wiadomo, że jeśli p jest posortowane to powyższy kod zwraca true wtedy i tylko wtedy, gdy target znajduje się w p. Z drugiej strony, może to nie być prawdą jeżeli p nie jest posortowane.

Dana jest dodatnia liczba całkowita n oraz ciąg $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Gwarantowane jest, że $n = 2^k - 1$ dla pewnej dodatniej liczby całkowitej k. Musisz wygenerować permutację p zbioru $\{1, \ldots, n\}$ spełniającą pewne warunki. Niech S(p) jest liczbą pozycji $i \in \{1, \ldots, n\}$ dla których binary_search(n, p, i) nie zwraca b_i . Twoim zadaniem jest wybrać p tak aby S(p) było małe (jak opisano w sekcji "Ograniczenia").

(Uwaga: permutacja $\{1, \ldots, n\}$ to ciąg n liczb który zawiera każdą liczbę naturalną od 1 do n dokładnie raz.)

Wejście

Na wejściu podane jest wiele przypadków testowych. W pierwszym wierszu wejścia znajduje się liczba T, liczba przypadków testowych. Później następuje opis tych przypadków.

Pierwszy wiersz opisu zawiera liczbę naturalną n. Drugi wiersz opisu zawiera napis długości n składający się jedynie ze znaków 0 oraz 1 bez żadnych odstępów. Jeżeli i-ty znak napisu jest 1 to $b_i = \mathtt{true}$, a jeżeli jest 0 to wtedy $b_i = \mathtt{false}$.

Wyjście

Wyjście powinno zawierać odpowiedzi kolejno dla każdego z T przypadków testowych. Odpowiedź dla każdego testu to permutacja p wygenerowana dla tego przypadku.

Ograniczenia

- Niech $\sum n$ jest sumą wszystkich n (we wszystkich przypadkach testowych) w pojedynczym teście.
- $1 \le \sum n \le 100\,000$.
- $1 \le T \le 7000$.
- $n=2^k-1$ dla jakiegoś $k \in \mathbb{N}, k>0$.
- Jeśli $S(p) \le 1$ dla wszystkich przypadków testowych w podzadaniu to otrzymujesz 100% punktów za to podzadanie.
- W przeciwnym przypadku, jeżeli $0 \le S(p) \le \lceil \log_2 n \rceil$ (czyli $2 < 2^{S(p)} \le n+1$) dla wszystkich przypadków testowych w podzadaniu to otrzymujesz 50% punktów za to podzadanie.

#	Punkty	Ograniczenia
1	3	$b_i = { t true}.$
2	4	$b_i = \mathtt{false}.$
3	16	$1 \leqslant n \leqslant 7.$
4	25	$1 \leqslant n \leqslant 15.$
5	22	$n=2^{16}-1,b_i$ są niezależnie i jednostajnie losowane z $\{\mathtt{true},\mathtt{false}\}$
6	30	Brak dodatkowych ograniczeń.

Przykłady

Wejście	Wyjście
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Wyjaśnienia

Przykład 1. W pierwszych dwóch przypadkach testowych S(p) = 0.

W trzecim przypadku S(p)=1, ponieważ binary_search(n, p, 2) zwraca true, chociaż $b_2=$ false. W czwartym przypadku S(p)=1, ponieważ binary_search(n, p, 4) zwraca true, chociaż $b_4=$ false.

Przykład 2. S(p) = 0 dla obu przypadków.