

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 5

TENSÃO E DEFORMAÇÃO EM SÓLIDOS

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

- Introdução a Deformação
- > Introdução a Propriedades Mecânicas
- Materiais Dúcteis e Frágeis
- Coeficiente de Poisson
- Lei de Hooke

DEFORMAÇÃO

Quando uma força é aplicada a um corpo, tende a mudar a forma e o tamanho dele, tais mudanças são denominadas **deformação** e podem ser perfeitamente visíveis ou praticamente imperceptíveis sem o uso de equipamento para fazer medições precisas.

A borracha quando sofre compressão, diminui em tamanho e expande lateralmente devido a deformação normal

A tensão excessiva em materiais frágeis como este encontro de ponte de concreto pode provocar sua deformação até a ruptura.

DEFORMAÇÃO NORMAL

O alongamento ou a contração de um segmento de reta de comprimento é denominado deformação normal.

$$\epsilon_{\text{méd}} = \frac{\Delta s' - \Delta s}{\Delta s}$$

Onde:

€méd - Deformação (mm/mm; pol/pol)

Δs' - Comprimento final

Δs - Comprimento inicial

DEFORMAÇÃO CISALHANTE

A Mudança de ângulo ocorrida entre dois seguimentos de reta originalmente perpendiculares entre si é denominada deformação por cisalhamento.

A deformação por cisalhamento γ é expressa em radianos (rad): $\gamma=tg~\alpha$

Elemento sem deformação

A chapa é deformada, ficando com o formato tracejado da figura. Se nesse formato deformado as linhas horizontais da chapa permanecerem horizontais e não mudarem seu comprimento, determine: (a) A deformação normal ao longo do lado AB; (b) A deformação por cisalhamento média da chapa em relação aos eixos X e Y.

Comprimento do segmento AB'.

$$AB' = \sqrt{(250-2)^2 + (3)^2} = 248,018 \text{ mm}$$

Deformação normal média.

$$(\epsilon_{AB})_{\text{méd}} = \frac{AB' - AB}{AB} = \frac{248,018 \text{ mm} - 250 \text{ mm}}{250 \text{ mm}}$$

= -7,93(10⁻³) mm/mm

Deformação por cisalhamento.

$$\gamma_{xy} = tg^{-1} \left(\frac{3 \text{ mm}}{250 \text{ mm} - 2 \text{ mm}} \right) = 0.0121 \text{ rad}$$

ENSAIOS E A CURVA TENSÃO-DEFORMAÇÃO **U I P**PR

Os dados do teste de tração ou compressão, podem-se calcular diversos valores de tensão e a deformação correspondente ao corpo de prova.

> Os dados registrados pelos ensaios determinam a tensão nominal ou de engenharia dividindo a carga aplicada P pela área de secção transversal inicial do corpo de prova e a deformação nominal ou de engenharia encontrada diretamente na leitura do extensômetro

$$\sigma = \frac{P}{A_0} \qquad \epsilon = \frac{\delta}{L_0}$$

Diagramas tensão-deformação convencional e real para material dúctil (aço) (sem escala)

ENSAIOS E A CURVA TENSÃO-DEFORMAÇÃO UTPR

Diagramas tensão-deformação convencional e real para material dúctil (aço) (sem escala)

Elástica: O Região comportamento elástico do material ocorre quando as deformações no corpo de prova estão na região sombreada clara. O limite superior desta linha é chamado limite proporcionalidade.

Se a tensão exceder ligeiramente o limite de proporcionalidade, o material continua se deformando até que a tensão alcança o limite de elasticidade.

Ao atingir esse ponto, se a carga for removida, o corpo de prova ainda volta a sua forma original.

ENSAIOS E A CURVA TENSÃO-DEFORMAÇÃO UTEPR

Diagramas tensão-deformação convencional e real para material dúctil (aço) (sem escala)

Escoamento: Um pequeno aumento de tensão acima do limite de elasticidade resulta em colapso do material e faz com que ele se deforme permanentemente.

provoca escoamento tensão que chamada limite de escoamento, e ocorrida deformação é denominada deformação plástica.

Endurecimento por deformação: Quando o escoamento termina, pode-se aplicar uma carga adicional ao corpo de prova, o que resultará em uma curva que cresce, até que a tensão alcance a tensão máxima do material denominada limite de resistência.

ENSAIOS E A CURVA TENSÃO-DEFORMAÇÃO UTPR

Diagramas tensão-deformação convencional e real para material dúctil (aço) (sem escala)

Estricção: Ao atingir 0 limite resistência, a área da seção transversal diminuir em começa a uma região localizada do corpo de prova, em vez de em todo o seu comprimento. fenômeno alongamento gera um excessivo e a área começa a reduzir até que o corpo de prova se quebre com a tensão de ruptura.

MATERIAIS DÚCTEIS

Qualquer material que possa ser submetido a grandes deformação e antes da ruptura é chamado de material dúctil.

Uma maneira de especificar a ductibilidade do material é informar a porcentagem de alongamento no instante da quebra.

Porcentagem de alongamento =
$$\frac{L_{nup} - L_0}{L_0}$$
 (100%)

A porcentagem de redução de área, medida na região de estricção também é usada para medir a ductibilidade.

Porcentagem de redução de área =
$$\frac{A_0 - A_{rup}}{A_0}$$
 (100%)

MATERIAIS FRÁGEIS

Os materiais que apresentam pouco (max. 5% de deformação) ou nenhum escoamento são denominados materiais frágeis.

Exemplo:

- O ferro fundido apresenta uma tensão de ruptura a tração de 22 Ksi (152 MPa).
- O concreto apresenta uma tensão de ruptura a tração de 0,4 Ksi (2,76MPa) e a compressão de 5Ksi (34,5 Mpa)

LEI DE HOOKE

A lei de Hooke define a relação linear entre a tensão e a deformação dentro da região elástica

$$\sigma = E\epsilon$$

 σ = tensão

E = módulo de elasticidade ou módulo de Young ϵ = deformação

Nela a tensão é definida como sendo a constante de proporcionalidade *E*, denominada modulo de elasticidade ou modulo de Young multiplicada pela deformação do material

Material	Modulo de Young [GPa]
Diamante	1 000
Carbeto de silício (SiC)	450
Tungstênio	406
Ferro	196
Aços de baixa liga	200 - 207
Ferros-fundidos	170 - 190
Cobre	124
Titânio	116
Vidro (SiO ₂)	94
Alumínio	69
Vidro ((Na ₂ O - SiO ₂)	69
Nylon	2 - 4

Considere o diagrama tensãodeformação do aço doce. Nele a σ_{lp} = 35 ksi e ϵ_{lp} = 0,0012 pol/pol. Qual o módulo de elasticidade?

$$E = \frac{\sigma_{lp}}{\epsilon_{lp}} = \frac{35 \text{ ksi}}{0,0012 \text{ pol/pol}}$$

$$E = \frac{\sigma_{lp}}{\epsilon_{lp}} = 29(10^3) \text{ ksi}$$

DEFORMAÇÃO PERMANENTE

Se o corpo de prova de material dúctil tal como o aço sofre carregamento na região plástica descarregamento, a deformação elástica recuperada medida que material volta ao seu estado de equilíbrio gerando um retorno **elástico** e uma deformação permanente.

O teste de tração para a liga de aço resulta no diagrama tensão deformação. Calcule o módulo de elasticidade, o limite de escoamento, o limite de resistência e a tensão de ruptura.

Módulo de Elasticidade:

$$E = \frac{50 \text{ ksi}}{0,0016 \text{ pol/pol}} = 31,2(10^3) \text{ ksi}$$

Limite de Escoamento: $\sigma_{LE} = 68 \text{ ksi}$

Limite de Resistência: $\sigma_r = 108 \text{ ksi}$

Tensão de Ruptura: $\sigma_{rup} = 90 \text{ ksi}$

A haste mostrada na figura seção transversal tem circular, e está submetida a uma carga axial de 10 kN. Usando o diagrama tensão-deformação do material, determine alongamento aproximado da haste quando a carga é aplicada. Se a carga for removida, qual será alongamento permanente da haste?

Tensão Normal na Seção:

$$\sigma_{AB} = \frac{P}{A} = \frac{10(10^3) \text{ N}}{\pi (0.01 \text{ m})^2} = 31.83 \text{ MPa}$$

$$\sigma_{BC} = \frac{P}{A} = \frac{10(10^3) \text{ N}}{\pi (0,0075 \text{ m})^2} = 56,59 \text{ MPa}$$

Deformação Elastica:

$$\epsilon_{AB} = \frac{\sigma_{AB}}{E_{al}} = \frac{31,83(10^6) \text{ Pa}}{70(10^9) \text{ Pa}} = 0,0004547 \text{ mm/mm}$$

Deformação Plástica:

$$\epsilon_{BC} \approx 0.045 \text{ mm/mm}$$

Alongamento da Haste:

$$\delta = \Sigma \epsilon L = 0,0004547(600 \text{ mm}) + 0,045(400 \text{ mm})$$

= 18,3 mm

Recuperação Elástica:

$$\epsilon_{\text{rec}} = \frac{\sigma_{BC}}{E_{al}} = \frac{56,59(10^6) \text{ Pa}}{70(10^9) \text{ Pa}} = 0,000808 \text{ mm/mm}$$

Recuperação após Deformação Plástica:

$$\epsilon_{OG} = 0.0450 - 0.000808 = 0.0442 \text{ mm/mm}$$

Comprimento após remoção da carga:

$$\delta' = \epsilon_{OG} L_{BC} = 0.0442(400 \text{ mm}) = 17.7 \text{ mm}$$

COEFICIENTE DE POISSON

Quando uma carga é aplicada á uma barra, muda-se o comprimento da barra na quantidade δ e seu raio na quantidade δ . As deformações na direção longitudinal ou axial e na direção lateral ou radia são:

$$\epsilon_{\text{long}} = \frac{\delta}{L} \quad \text{e} \quad \epsilon_{\text{lat}} = \frac{\delta'}{r}$$

A razão entre a deformação longitudinal e a deformação lateral da peça é uma constante denominada Coeficiente de Poisson.

$$\nu = -\frac{\epsilon_{\text{lat}}}{\epsilon_{\text{long}}}$$

O valor máximo do Coeficiente de Poisson é 0,5. Materiais que não geram deformação quando submetido a tração ou compressão o valor do coeficiente é zero.

MÓDULO DE RIGIDEZ

A razão entre a tensão de cisalhamento aplicada ao corpo e a sua deformação específica é chamada de modulo de elasticidade ao cisalhamento ou modulo de rigidez *G*:

$$\tau = G\gamma$$

Onde:

т – tensão de cisalhamento

G – Modulo de rigidez

γ – deformação elástica de cisalhamento

O modulo de rigidez (G) é dado por: $G = \tau_{lp} / \gamma_{lp}$

Como o modulo de elasticidade e o coeficiente de elasticidade são constantes conhecidas do material. O coeficiente de Poisson pode ser expresso por:

$$G=\frac{E}{2(1+\nu)}$$

O corpo de prova de alumínio mostrado na figura tem diâmetro de 25 mm e comprimento de referência 250 mm, supondo que uma força de 165 kN alongue o comprimento de referência em 1,2 mm, determine: (a) O módulo de elasticidade; (b) A contração do corpo de prova. G_{al} = 26 GPa; σ_{e} = 440 MPa

• Tensão Normal Média:
$$\sigma = \frac{P}{A} = \frac{165(10^3) \,\mathrm{N}}{(\pi/4)(0,025 \,\mathrm{m})^2} = 336,1 \,\mathrm{MPa}$$

• Deformação Normal: $\epsilon = \frac{\delta}{L} = \frac{1,20 \text{ mm}}{250 \text{ mm}} = 0,00480 \text{ mm/mm}$

Coeficiente de Poisson:

$$G = \frac{E}{2(1+\nu)}$$
 \Rightarrow 26 GPa = $\frac{70.0 \text{ GPa}}{2(1+\nu)}$ \Rightarrow $\nu = 0.346$

Deformação Lateral do Corpo de Prova:

$$\nu = -\frac{\epsilon_{\text{lat}}}{\epsilon_{\text{long}}} \Rightarrow 0.346 = -\frac{\epsilon_{\text{lat}}}{0.00480 \text{ mm/mm}}$$
$$\epsilon_{\text{lat}} = -0.00166 \text{ mm/mm}$$

Contração gerada no diâmetro do Corpo de Prova:

$$\delta' = (0,00166)(25 \text{ mm})$$

= 0,0415 mm

TABELAS IMPORTANTES

Materials	Tensão de escoamento de [MPa]	Tensão de ruptura [MPa]
Aço Carbono		
ABNT 1010 - L - T	220 380	320 420
ABNT 1020 - L - T	280 480	360 500
ABNT 1030 - L - T	300 500	480 550
ABNT 1040 - L - T	360 600	600 700
ABNT 1050 - L	400	. 650
Aço Liga		
ABNT 4140 - L - T	650 700	780 1000
ABNT 8620 - L - T	700	700 780
Ferro Fundido		
Cinzento	-	200
Branco Preto F		450 350
P Modular	:	550 670

Materiais não ferrosos		
Alumínio Duralumínio 14 Cobre Telúrio Bronze de níquel Magnésio Titânio Zinco	30 - 120 100 - 420 60 - 320 120 - 650 140 - 200 520	70 - 230 200 - 500 230 - 350 300 - 750 210 - 300 600 290
Materiais não metálicos		
Borracha Concreto	-	20 - 80 0,8 - 7
Madeiras		
Peroba Pinho Eucalipto	:	100 - 200 100 - 120 100 - 150
Plásticos		
Nylon		80
Vidro		
Vidro plano	-	5 - 10
L - laminado T - trefilado	F - Ferrítico P - Perlítico	

TABELAS IMPORTANTES

Material	Módulo de elasticidade E [GPa]	Material	Módulo de elasticidade E [GPa]
Aço	210	Latão	117
Alumínio	70	Ligas de Al	73
Bronze	112	Ligas de chumbo	17
Cobre	112	Ligas de estanho	41
Chumbo	17	Ligas de magnésio	45
Estanho	40	Ligas de titânio	114
Fofo	100	Magnésio	43
Fofo Modular	137	Monel (liga níquel)	179
Ferro	200	Zinco	96

Material	ν	Material	ν
aço	0,25 - 0,33	latão	0,32 - 0,42
alumínio	0,32 - 0,36	madeira compensada	0,07
bronze	0,32 - 0,35	pedra	0,16 - 0,34
cobre	0,31 - 0,34	vidro	0,25
fofo	-0,23 - 0,27	zinco	0,21

Material	Módulo de Elasticidade Transversal G [GPa]
Aço	80
Alumínio	26
Bronze	50
Cobre	45
Duralumínio 14	28
Fofo	88
Magnésio	17
Nylon	10
Titânio	45
Zinco	32

EXERCÍCIOS E ATIVIDADES

Orientação para realização das Atividades:

- ➤ Realize as atividade a mão livre;
- ➤ Realize diagramas e desenhos para compreensão;
- > Realize todas as contas de forma detalhada;
- ➤ Coloque as repostas principais a caneta;
- Entregue as atividades e resolução dos exercícios em forma digital no sala virtual da disciplina.

EXERCÍCIOS PARA ENTREGAR

Realizar os exercícios do livro: Hibbeller – Resistência os Materiais

Capitulo 3

- Item 3.18; R:
- Item 3.21; R:
- Item 3.24; R:

