

Machine Learning and Material Science 2. Artificial Neural Network

Steffen Brinckmann, Claas Hüter IEK-2, Forschungszentrum Jülich GmbH

Artificial Neural Network (ANN)

Biologically inspired: represents information processing in brain

dendrites nucleus cell axon body axon terminals

Dendrite: taking input (electrical impulse) from other neurons

Cell body: generating inferences from those inputs and produce output

Axon->Dendrite: Sending signals out to other neurons

Input layer: some features

Output layer: target / response / prediction

Hidden layer(s): intermediate layers to learn complicated relationships

Single artificial neuron

input

Simple ON-OFF activation function:
$$f(x) = \begin{cases} 1, & \text{if } \sum_{i=1}^{m} (w_i x_i) + bias \geq 0 \\ 0, & \text{if } \sum_{i=1}^{m} (w_i x_i) + bias < 0 \end{cases}$$

Activation functions

Linear function: DO NOT USE

Sigmoid function: $A = \frac{1}{1 + e^{-x}}$

Tanh function: $A = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$

ReLu function

Leaky ReLu function

Bias nodes in hidden and input layers

A single bias node per layer

Not connected to the previous layer

It can be arbitrary value, usually it is set to be 1

Why we need bias? Increase flexibility of model

Example: activation function ReLu $y = max(0, w^Tx + b)$

Neuron will activate, if

- $w^T x + b > 0$ $w^T x > -b$

Bias term is an activation threshold

Artificial Neural Network (ANN):

Input layer: some features

Output layer: target / response / prediction

Hidden layer(s): intermediate layers to learn complicated relationships

Forward propagation

Forward propagation: calculate outputs

$$H_1$$
: $Input = I_1 w_1 + 1b_1 = 0.6$

$$Output = \frac{1}{1 + e^{-0.6}} = 0.65$$

$$O_1$$
: $Input = H_1w_3 + H_2w_5 + 1b_2 = 0.95$
 $Output = 0.72$

$$o_2$$
: $Input = H_1w_4 + H_2w_6 + 1b_2 = 1.08$ $output = 0.74$

*H*₂:
$$Input = I_1 w_2 + 1b_1 = 0.65$$

$$Output = \frac{1}{1 + e^{-0.65}} = 0.66$$

Error evaluation

	predicted	target		
O_1	0.72	0.5		
O_2	0.75	1		

Mean Squared Error:

$$E = \frac{1}{2} \sum (target - predicted)^2$$

=> Optimize red numbers

Learning by Back Propagation of error

Back propagate error into the network and update weights

Gradient descent
$$w_i' = w_i - \alpha \frac{\partial Error}{\partial w_i}$$
 (same as in regression)

How much does change of w_3 affect the error? $\frac{\partial E_{tot}}{\partial w_3}$

Out
$$H_1$$
 Out O_1 $E = \frac{1}{2} \sum (target - predicted)^2$

Apply chain rule
$$\frac{\partial E_{total}}{\partial w_3} = \frac{\partial E_{total}}{\partial Out O_1} \frac{\partial Out O_1}{\partial In O_1} \frac{\partial In O_1}{\partial w_3}$$

Derivatives of activation functions are programmed

Backward propagation

How much does change of w_3 affect the error?

$$\frac{\partial E_{total}}{\partial w_3}$$

Apply chain rule:
$$\frac{\partial E_{total}}{\partial w_3} = \frac{\partial E_{total}}{\partial Out \ O_1} \frac{\partial Out \ O_1}{\partial In \ O_1} \frac{\partial In \ O_1}{\partial w_3}$$

$$\frac{\partial E_{total}}{\partial Out \ O_1} = \frac{1}{2} 2 (target \ O_1 - Out \ O_1) (-1) = 0.22$$
 predicted target $O_1 = 0.72 = 0.5 = 0.75 = 0.$

$$\frac{\partial Out \ O_1}{\partial In \ O_1} = \frac{e^{-InO_1}}{(1 + e^{-In \ O_1})^2} = Out \ O_1(1 - Out \ O_1) = 0.20 \qquad \text{Activation function: } \frac{1}{1 + e^{-In \ O_1}}$$

$$\frac{\partial In \ O_1}{\partial w_3} = Out \ H_1 = 0.65$$

$$In O_1 = Out H_1 w_3 + Out H_2 w_5 + b_2$$

$$\frac{\partial E_{total}}{\partial w_3} = 0.029 \qquad \Longrightarrow \qquad w'_3 = w_3 - \alpha \frac{\partial E_{total}}{\partial w_3} \qquad \alpha: \text{ learning rate } \alpha = 0.3$$

$$w'_3 = 0.4 - 0.3 * 0.029 = 0.39$$

Backward propagation in branches

How much a change in w_1 affect total error?

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial Out \ H_1} \frac{\partial Out \ H_1}{\partial In \ H_1} \frac{\partial In \ H_1}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial Out \ H_1} = \frac{\partial Error \ O_1}{\partial Out \ H_1} + \frac{\partial Error \ O_2}{\partial Out \ H_1}$$

Sum of derivatives

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial Error \ O_1}{\partial Out \ O_1} \ \frac{\partial Out \ O_1}{\partial In \ O_1} \ \frac{\partial In \ O_1}{\partial Out \ H_1} + \frac{\partial Error \ O_2}{\partial Out \ O_2} \ \frac{\partial Out \ O_2}{\partial In \ O_2} \ \frac{\partial In \ O_2}{\partial Out \ H_1}$$

Simple Artificial Neural Network

Initial

1st prediction

 $w'_1 = 0.200209266$ $w'_2 = 0.300228378$ $b'_1 = 0.500875290$ $w'_3 = 0.391376778$ $w'_4 = 0.509260876$ $w'_5 = 0.591225134$ $w'_6 = 0.709423733$ $b'_2 = 0.300987606$

	1 st prediction	2 nd prediction	target
O_1	0.721611403	0.719572715	0.5
O_2	0.747011298	0.749541084	1
Error	0.056557449	0.055470923	

updating weights => decreases error
many iterations ("epochs") => error below threshold

Learning rate

determines how fast weights / model change

may be different for different layers

high learning rate, then training may not converge

Start: large learning rate because random weights are non-optimal

Then: learning rate should decrease for find-grained update of weights

Vanishing gradients during backpropagation

Sigmoid function:
$$A = \frac{1}{1 + e^{-x}}$$

$$\frac{dy}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} \quad x \to \pm \infty, \quad \frac{dy}{dx} \to 0$$

$$\frac{\partial E_{total}}{\partial w_3} = \frac{\partial E_{total}}{\partial Out \ O_1} \underbrace{\frac{\partial Out \ O_1}{\partial In \ O_1}}_{\approx \ 0} \underbrace{\frac{\partial In \ O_1}{\partial w_3}}_{\approx \ 0}$$

Activation functions (sigmoid, tanh):

- if gradients are almost 0
- weights of neurons change very slowly
- weights of up-stream neurons also very slowly change
- called "saturated neurons"

Training

1 epoch: one forward pass and backward pass of ALL samples

Batch size: number of samples in one forward/backward pass.

Example

800 training samples
16 batches & batch size 50

computing $\frac{\partial Error}{\partial w_i}$ of 50 samples calculate average and update weights

do that for 16 batches incl. updating the weights

finished 1 epoch and start next

Example: Lattice constant of GdFeO₃-type perovskite

Linear Regression 4 features: $X = (r_A, r_B, t, r_A/t)$

Artificial Neural Network 5 features: $X = (r_A, r_B, x_A, x_B, z_A)$

main advantage of Artificial Neural Networks many variables complex relationships

Example: Lattice constant of GdFeO₃-type perovskite

3 Artificial Neural Networks

Activation function in output layer pure linear

Activation function in hidden layer Hyperbolic tangent sigmoid

161 GdFeO₃-type compounds Training data: random 90% Testing data: remainder

JULICH

perovskite

Comparison plots

Percentage of Absolute Difference

$$PAD(\%) = \frac{|experimental - predicted|}{experimental} \times 100$$

	ANN and Linear Regression			
PAD (%)	а	b	С	
Average 0.35 and 0.93		0.44 and 0.82	0.34 and 0.77	

Other examples of Artificial Neural Network in material science

Melting point of AB-type intermetallic compounds

C. H. Li et al., J. Phys. Chem. Solid **57**[12]:1797-1802, 1996

Young's modules and yield stress of steel

K. K. Tho et al., Modelling Simul. Mater. Sci. Eng. 12:1055-1062, 2004

Flow stress of 42CrMo high strength steel at different strain rate and temperature

G. Z. Quan et al., Materials Research 17[5]:1102-1114, 2014

Convolutional Neural Networks

Image is matrix of pixel values

Black/white image: a single 2d matrix

35x35

Image is matrix of pixel values

What we see

23	34	101	189	78	251	190
135	147	98	11	103	60	67
9	69	103	15	157	64	74
175	163	93	35	91	88	36
12	224	64	67	27	89	49
81	8	12	94	32	22	60
36	26	17	119	54	10	11
68	11	22	115	90	134	52
2	20	9	46	89	122	97

What computers see

Values from 0 to 255= 28 in matrix

One matrix/layer for red, green, blue

Standard image (i,j,3)

Convolutional Neural Network

Features extraction

Classification

- Convolution layer
- Pooling layer

Convolution layer

Convolves data (matrix) with linear filter

$$(h_k)_{ij} = (W_k * x)_{ij} + b_k$$

k: *k*-th feature map in convolution layer (feature: horizontal line) (*i*, *j*) are location

x: input data (matrix of pixel)

 W_k , b_k : trainable parameters (weights of linear filters and bias) for k-th feature map

 $(h_k)_{ij}$: output of neuron; k-th feature map with position (i,j)

'*': 2D convolution operation of input and feature map

Convolution layer

Matrix of pixel values

Filter or feature detector

1,	1,	1,	0	0	
0,,0	1,	1,0	1	0	4
0,1	0,	1,	1	1	
0	0	1	1	0	
0	1	1	0	0	
	Image				Convolved Feature

convolved feature or feature map

Different filters: detect different patterns Number of filters = number of feature map

Convolution Neural Network is Artificial Neural network

Filter or feature detector

Convolution Neural Network has activation functions

- replace negative values by zero
- ignore features
- Linear → Nonlinear
- convolutions are linear
- same problem as in artificial neural networks (if linear, Neural Network is one layer deep)

Pooling

Reduce size of feature maps

Retain most important information

Types: Max, Average, Sum...

Summary

Input Image (pixel matrix)

Convolutional & Pooling layers

Fully connected layer

Training task: It is a boat

Input: boat image

Target output: [0, 0, 1, 0]

- 1. Initialization filter values and weights
- 2. Forward propagation & predicted value
- 3. Error(t, 0)
- 4. Back propagation: $\frac{\partial Error}{\partial weights}$ and $\frac{\partial Error}{\partial filter values}$
- 5. Updating continue to minimizing error

Probability that image includes object

Softmax function

$$F(x_i) = \frac{e^{z_i}}{\sum e^{z_i}}$$

probability prediction

Probability: O_i

Examples

2012: Alexnet

Image size: 224x224x3

8 layers with 60 million parameters

5 convolutional layers, 3 max-pooling, 3 fully-connected layers

Activation function ReLU for all

Output: 1000-classes softmax layer

2014: VGGNet

19 layers with 138 million parameters

13 convolutional layers, 5 max-pooling, 3 fully-connected layers

3x3 convolutional filter

VGGnet: Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-scale Image Recognition. In International Conference on Learning Representations (ICLR) (2015).

Alexnet: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Example: Steel microstructure classification (Martensite, Bainite or Pearlite?)

VGG16Net: 13 convolutional layers, 5 pooling layers and 3 fully connected layers 138 million parameters

Dropout layer

(b) After applying dropout.

Dropout layer has probability **p** temporarily removing it along with connections

Prevent overfitting

N. Srivastava et al., Dropout: A simple Way to prevent neural network from overfitting, Journal of Machine Learning Research 15: 1929-1958, 2014.

Convolutional Neural Networks

- Convolution & ReLu layers (stacked to recognize complex features)
- Pooling layers (size reduction, contrasting=max pooling)
- Softmax layer: categorization

Pros & Cons:

- No or Low-level preconditioning required
- Reach potentially high accuracies >99.9%
- Extremely memory and time consuming: e.g. 10⁸ parameters

Our exercise: Solid oxide fuel cell (SOFC) JÜLICH and their stacks

Clean "green" energy:

produce energy from

hydrogen or methanol

Use stacks of SOFC increase voltage use steel to connect

Our exercise: Solid oxide fuel cell (SOFC) JÜLICH

During operation:

- Cr₂O₃ containing oxide scale forms on steel
 evaporation of gaseous Cr (CrO₃ or CrO₂(OH)₂)
- Sr is reactive element in the cathode

Sr→SrO which segregates out of cathode

Reaction of SrO & Cr species

secondary phases that block oxygen reduction /

functionality

$$SrO + CrO_3 \leftrightharpoons SrCrO_4$$

 $SrO + CrO_3 \leftrightharpoons SrCrO_3 + \frac{1}{2}O_2$
 $SrO + \frac{2}{3}CrO_3 \leftrightharpoons \frac{1}{3}Sr_3Cr_2O_8 + \frac{1}{6}O_2$
 $SrO + \frac{1}{2}CrO_3 \leftrightharpoons \frac{1}{2}Sr_2CrO_4 + \frac{1}{4}O_2$

Our exercise: Solid oxide fuel cell (SOFC) JÜLICH

CSV file with data

Response/Target: chemical component last column

Parameters first columns:

- Partial pressure of CrO₃ (pCrO₃)
- local oxygen partial pressure (pO₂)