Introduction to Machine Learning

CART Splitting Criteria for Regression

Learning goals

- Understand how to define split criteria via ERM
- Understand how to find splits in regression with L₂ loss

SPLITTING CRITERIA

How to find good splitting rules? \implies Empirical Risk Minimization

OPTIMAL CONSTANTS IN LEAVES

Idea: A split is good if each child's point predictor reflects its data well.

For each child \mathcal{N} , predict with optimal constant, e.g., the mean $c_{\mathcal{N}} = \frac{1}{|\mathcal{N}|} \sum_{(\mathbf{x}, y) \in \mathcal{N}} y$ for the L_2 loss, i.e., $\mathcal{R}(\mathcal{N}) = \sum_{(\mathbf{x}, y) \in \mathcal{N}} (y - c_{\mathcal{N}})^2$.

Root node:

OPTIMAL CONSTANTS IN LEAVES

Which of these two splits is better?

RISK OF A SPLIT

$$\mathcal{R}(\mathcal{N}_1) = 23.4, \, \mathcal{R}(\mathcal{N}_2) = 72.4$$
 $\mathcal{R}(\mathcal{N}_1) = 78.1, \, \mathcal{R}(\mathcal{N}_2) = 46.1$

$$\mathcal{R}(\mathcal{N}_1)=$$
 78.1, $\mathcal{R}(\mathcal{N}_2)=$ 46.1

The total risk is the sum of the individual losses:

$$23.4 + 72.4 = 95.8$$

$$78.0 + 46.1 = 124.1$$

Based on the SSE, we prefer the first split.

SEARCHING THE BEST SPLIT

Let's find the best split for this feature by tabulating results.

SEARCHING THE BEST SPLIT

Let's iterate – quantile-wise or over all points.

We have reduced the problem to a simple loop.

FORMALIZATION

- $\mathcal{N} \subseteq \mathcal{D}$ is the data contained in this node
- ullet Let $c_{\mathcal{N}}$ be the predicted constant for ${\mathcal{N}}$
- The risk $\mathcal{R}(\mathcal{N})$ for a node is:

$$\mathcal{R}(\mathcal{N}) = \sum_{(\mathbf{x}, y) \in \mathcal{N}} \mathcal{L}(y, c_{\mathcal{N}})$$

- ullet The optimal constant is $c_{\mathcal{N}} = rg \min_{c} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{N}} L(\mathbf{y}, c)$
- We often know what that is from theoretical considerations or we can perform a simple univariate optimization

