10/21

Nathan Keough Acknowledgements:

1. Prove if $y_n \to L$ and $x_n = my_n + b$, then $x_n \to mL + b$.

Proof.
Let $y_n \to L$ and $x_n = my_n + b$.
Then $\exists N \in \mathbb{N} \ni n \ge N \implies |y_n - L| < \frac{\epsilon}{|m|} < \epsilon$ So $n \ge N \implies |x_n - (mL + b)|$ $= |(my_n + b) - (mL + b)|$ $= |my_n + b - mL - b|$ $= |my_n - mL|$ $= |m(y_n - L)|$ $= |m||y_n - L|$ $< |m| \frac{\epsilon}{m} = \epsilon.$

 \therefore if $y_n \to L$ and $x_n = my_n + b$, then $x_n \to mL + b$

2. Prove if $x_n = 1 - 1/n$, then x_n converges to 1 using definitions and the Archimedian Principle.

Proof.

Let $\epsilon > 0$. By the AP, select $N \in \mathbb{N} \ni N > \frac{1}{\epsilon}$. $n \geq N \implies |x_n - 1|$

$$= |1 - \frac{1}{n} - 1|$$

$$= |-\frac{1}{n}| = |\frac{1}{n}|$$

$$\leq |\frac{1}{N}|$$

$$\leq \epsilon$$

 $\forall n \geq N.$

Thus if $x_n = 1 - 1/n$, then x_n converges to 1.