Tencent 腾讯 | :DataFun.

因果推断在游戏中的应用

房栋 | 腾讯游戏 专家数据科学家

CONTENTS

01

游戏中的因果推断:挑战与解决方案

03

分布式鲁棒双重稳健估计

02

分布式低复杂度倾向性分数匹配

04

分布式面板双重差分

01

游戏中的因果推断: 挑战与解决方案

游戏中的因果推断:挑战与解决方案

问 题

游戏场景中

- 因为用户体验及隐私个方面的因素,通常是缺乏实验数据
- 而观察数据中的干预不是随机的,带有人工运营或算法的选择偏差
 - 高活跃用户与低活跃用户被过度干预

可行性方案

利用观测数据:

- 可使用ATT(干预组平均处理效应) $ATT = E[Y_1 Y_0|T = 1]$ 来评估对受到干预人群的效应
 - 例如使用倾向性得分匹配(PSM),PSM可以将干预组和对照组进行一对一匹配,并且可以提取匹配后的用户个体
- 可使用**因果推断**计算ATE(平均处理效应) $ATE = E[Y_1 Y_0]$ 来评估整体效应,需要通过加权的方式使得样本分布均衡
- 备选方案有Inverse-Probability-Treatment-Weighting(IPTW) / Double-Machine-Learning(DML) / Double-Robust-Estimator(DRE) / X-Learner
- 例如使用双重稳健估计(DRE),由于在业务中可能无法覆盖全部的混淆因子,DRE在这种场景下更加稳健,并且 DRE可以在倾向性分数预测不准的情况下,通过结果预测来调整

游戏中的因果推断:挑战与解决方案

技术挑战

- 一般因果推断无法解决我们业 务中遇到的数据量巨大的问题
- 常见的因果推断工具集例如微软 econml, dowhy和uber causalml均不 是分布式实现
- 众多业务均需要精细化运营策 略, 多场景的数据量挑战巨大

解决方案

- 面对游戏中的大规模推断场景, 本演讲将涵盖以下三个方面:
- 分布式低复杂度倾向性分数匹配
- 分布式鲁棒双重稳健估计
- 分布式面板双重差分

02

分布式低复杂度倾向性分数匹配

分布式低复杂度倾向性分数匹配(Hist-PSM)

算法 HistPSM **输入** (X, t, y, K) **输出** 匹配人群MatchingDf

步骤1:计算Propensity Score (PS)

步骤2: PS分桶: 将每一个实验组与对照组的个体的连续PS映射到K个PS分桶

步骤3:计算实验组与对照组在每个PS分桶的个体数量

步骤4:计算每个PS分桶的阈值:取每个PS分桶中实验组与对照组中的最小个体数量

步骤5:基于PS分桶阈值过滤实验组数据D1:在实验组的每个PS分桶中,随机提取阈值数量的个体

步骤6:基于PS分桶阈值过滤对照组数据D0:在对照组的每个PS分桶中,随机提取阈值数量的个体

步骤7:合并数据D0与D1,输出MatchingDf

分布式低复杂度倾向性分数匹配(Hist-PSM)

如何将将因果推断做成大数据计算任务?

分布式计算架构 任务划分 结果合并

分布式匹配思想

分布式计算+ matching

分布式低复杂度倾向性分数匹配(Hist-PSM)

如何将将因果推断做成大数据计算任务?

HistPSM的工程实现

HistPSM的工程实现

- 〇 **内存占用更小**: KnnPSM 需要用 32 位的浮点数去存储特征值,并用 32 位的整形去存储索引,而 HistPSM 只需要用 8 位去存储直方图,相当于减少了 1/8
- **计算代价更小**: 计算特征分裂增益时,KnnPSM 需要遍历一次数据找到最佳分裂点,而 HistPSM 只需要遍历一次 k 次

分布式HistPSM for 大规模推断

如何将将因果推断做成大数据计算任务?

Attribute	t值 (匹配前)	p值 (匹配前)	t值 (KNN-PSM)	p值 (KNN-PSM)	t值 (Hist-PSM)	p值 (Hist-PSM)
Age	-6.263	0.000	0.153	0.879	0.441	0.660
SibSp	1.029	0.304	-3.273	0.001	-0.299	0.766
Parch	-0.850	0.396	-0.251	0.802	-0.263	0.793
Fare	-10.263	0.000	0.401	0.689	-0.635	0.527
propensity_score	-30.675	0.000	0.010	0.992	-0.150	0.881

SibSp属性分布

检验结论

- 通过平衡性检验, 判断匹配后的样 本pair是否相似。
- Hist-PSM可以通 过平衡性检验, 挑选出的"对照组" 在各类混淆变量 的分布与干预组 近似。

03

分布式鲁棒双重稳健估计

分布式鲁棒双重稳健估计

如何将将因果推断做成大数据计算任务?

技术挑战:由于双重稳健估计的最初设计是针对连续结果问题(例如学生的分数、工人的收入等),使用倾向值得分的倒数进行加权,权重很大的时候方差也大。对于二元结果场景会存在以下问题:

• 双重稳健估计没有均一化(Uniformization)的过程,对于倾向值得分的倒数较大的场景,**会导致大量小于–1或者大于1的 ATE出现**.

传统双重稳健估计

$$\widehat{Z}_{1} = \frac{\sum \left[\frac{T_{i} \left(Y_{i} - \widehat{\mu}_{1} \left(X_{i} \right) \right)}{\widehat{p}(X_{i})} + \widehat{\mu}_{1} \left(X_{i} \right) \right]}{N}$$

$$\widehat{Z}_{0}$$

$$= \frac{\sum \left[\frac{\left(1 - T_{i} \right) \left(Y_{i} - \widehat{\mu}_{0} \left(X_{i} \right) \right)}{1 - \widehat{p}(X_{i})} + \widehat{\mu}_{0} \left(X_{i} \right) \right]}{N}$$

预估ATE: $\widehat{\Delta_{DR}} = \widehat{Z_1} - \widehat{Z_0}$

Binary双重稳健估计:将二元结果问题转化为连续回归问题,使用线性回归模型的预测值逼近分类任务真实标记的对数几率

$$\widehat{Z_{1B}} = \frac{\sum \left[T_i \left(\log(1 - \frac{1}{\gamma_i}) - \log\left(1 - \frac{1}{\widehat{\mu_1}(Xi)}\right) \right) / \widehat{p}(X_i) + \log\left(1 - \frac{1}{\widehat{\mu_1}(Xi)}\right) \right]}{N}$$

$$\widehat{Z_{0B}}$$

$$= \frac{\sum \left[(1 - T_i) \left(\log(1 - \frac{1}{\gamma_i}) - \log\left(1 - \frac{1}{\widehat{\mu_0}(Xi)}\right) \right) / (1 - \widehat{p(X_i)}) + \log\left(1 - \frac{1}{\widehat{\mu_0}(Xi)}\right) \right]}{N}$$

预估ATE: $\Delta_{DR_{,Binary}} = \frac{1}{1+e^{\overline{Z}_{1B}}} - \frac{1}{1+e^{\overline{Z}_{0B}}}$

分布式鲁棒双重稳健估计

如何将将因果推断做成大数据计算任务?

在具有Hidden-Confounder的二元结果的环境下,我们进行了1万次ATE拟合仿真检验

- 相比UBER表现最好的算法UBER-X-Learner,Binary双重稳健估计将平均偏差降低了42.16%
- 相比传统双重稳健估计,Binary双重稳健估计将平均偏差降低了38.54%

算法	ATE	平均偏差	95% C.I.
DML	0.913	25.7%	(0.907, 0.917)
Naïve-Estimator	0.836	15.1%	(0.824, 0.847)
IPTW	0.835	14.9%	(0, 1.852)
S-Learner(UBER)	0.833	14.7%	(0.821, 0.843)
CEVAE(UBER)	0.823	13.3%	(0.819, 0.831)
PSM	0.819	12.7%	(0.817, 0.819)
T-Learner(UBER)	0.803	10.5%	(0.793, 0.812)
X-Learner(UBER)	0.800	10.2%	(0.791, 0.809)
双重稳健估计	0.796	9.6%	(0.794, 0.797)
Binary双重稳健估计	0.769	5.9%	(0.767, 0.771)
Ground-Truth	0.726	0.0%	(0.724, 0.727)

分布式鲁棒双重稳健估计

如何将将因果推断做成大数据计算任务?

安慰剂(Placebo)检验

安慰剂检验:在对输入干预随机化后,Binary双重稳健估计比PSM 和DRE更加密集地分布在0附近(DML会存在大量ATE>1的点)

缩减样本量(Subset-Data)的仿真验证

缩减样本量仿真检验

- 趋势得分和结果估计都变得更加不准确
- 尤其是DML会严重偏离真实值
- Binary双重稳健依然表现出良好的ATE估计

04 分布式面板双重差分

分布式面板双重差分

痛点

- 玩家参与不同活动的次数、程度不同,受多种活动同时进行,难以对不同活动的效果进行区分
- 到活动的影响也不同

解决方案

• 可通过构造面板二重差分(Panel DID)模型对各个活动的效果进行归 因

分布式面板双重差分

1. 构造面板数据

玩家	时间	指标	活动1	活动2	活动3	用户特征
玩家1	2021–11–04	880	1	0	0	
玩家1	2021–11–05	1220	1	1	0	
玩家1	2021–11–06	0	0	0	0	
玩家2	2021–11–04	2010	0	0	0	
玩家2	2021–11–05	2400	1	1	1	
玩家2	2021–11–06	1540	1	0	1	
玩家3	2021–11–04	0	0	0	0	
玩家3	2021–11–05	540	0	0	0	
玩家3	2021–11–06	460	0	0	0	

2. 构造面板二重差分模型

$$\begin{split} \log(Y_{it}) &= \sum_{k=1}^{K} \theta_{1k} * Post_{itk} * Treatment_{ik} \\ &+ \sum_{k=1}^{K} \theta_{2k} * Post_{it} * Treatment_{i} * Times_{it} + \sum_{j=1}^{J} X_{ijt} + \gamma_{t} + \epsilon_{i,t} \end{split}$$

3. 参数估计,得出结果

活动名称	活动效果 (ATE)
活动1	XX %
活动2	XX %
活动3	XX %

总结与展望

Tencent 腾讯 | ⊗ DataFun.

非常感谢您的观看