CONNECT FOUR

CMPE 260 - PROJECT PRESENTATION

ABHISHEK BAIS, HALEY FENG, PRINCY JOY, SHANNON PHU GRADUATE STUDENTS SOFTWARE ENGINEERING, SJSU

OUTLINE

- THE GAME
- PROBLEM STATEMENT
- MOTIVATION
- METHODOLOGY
- RESULTS
- DEMO

THE GAME

CONNECT FOUR IS A POPULAR TWO PLAYER GAME

Each player takes turns to drop a selected colored piece in a 6x7 grid

First player to form a 4-in-row connection wins

PROBLEM STATEMENT

CREATE A REAL-LIFE CONNECT FOUR GAMING EXPERIENCE FOR A HUMAN PLAYER AGAINST A COMPUTER AGENT

TRAIN REINFORCEMENT LEARNING (RL) GUIDED COMPUTER AGENTS VIA BATTLES AGAINST A COMPUTER AGENT THAT MAKES RANDOM MOVES AND AGAINST A COMPUTER AGENT THAT USES A NON-REINFORCEMENT LEARNING MINIMAX ALGORITHM TO PICK BEST COMPUTER AGENT IN TERMS OF WIN RATE AND EFFICIENCY

THE FOUR COMPUTER AGENTS CONTRASTED ARE

MINIMAX AGENT

USES A BACKTRACKING, RECURSIVE ALGORITHM USED IN GAME THEORY TO MAKE MOVES THAT RESULT IN MAXIMUM IMMEDIATE GAIN

MONTE CARLO AGENT

USES REINFORCEMENT LEARNING TO LEARN DIRECTLY FROM GAME EXPERIENCES WITHOUT USING ANY PRIOR MARKOV DECISION PROCESS KNOWLEDGE

Q LEARNING AGENT

USES A REINFORCEMENT LEARNING
OFF-POLICY VALUE BASED SCHEME
BASED ON THE BELLMAN'S EQUATION
TO LEARN THE VALUE OF OPTIMAL
POLICY REGARDLESS OF ACTION

SARSA LEARNING AGENT

USES A REINFORCEMENT LEARNING
ON-POLICY VALUE BASED SCHEME TO
LEARN THE VALUE OF THE OPTIMAL
POLICY BASED ON ACTION DERIVED
FROM CURRENT POLICY

MOTIVATION

MODEL AN INTERMEDIATE COMPLEXITY (6X7 BOARD GAME)

MOST EXISTING REINFORCEMENT LEARNING MODELS IN THE GAMING CONTEXT ARE FINE-TUNED TO TIC-TAC-TOE (A SIMPLISTIC 3X3 BOARD GAME WITH A SMALL STATE SPACE) OR ALPHA-GO (A PROGRAM THAT PLAYS GO, A 19X19 BOARD GAME AFTER STORING 30 MILLION POSITIONS)

PROVIDE INSIGHTS INTO HOW REINFORCEMENT LEARNING GUIDED COMPUTER AGENTS PERFORM IN BATTLES AGAINST A COMPUTER AGENT THAT MAKES RANDOM MOVES AND IN BATTLES AGAINST A COMPUTER AGENT THAT USE MINIMAX (A BACKTRACKING, RECURSIVE GAME THEORY ALGORITHM) IN TERMS OF WIN RATE AND EFFICIENCY

METHODOLOGY – GAME SETUP

THE GAME WAS SETUP TO BE PLAYED IN THREE MODES

MODE 1 - Single Player Mode (Human Player vs Reinforcement Learning Guided Computer Agent)

MODE 2 - Two Player Mode (Human Player vs Human Player)

MODE 3 - Training Mode (2 Different Reinforcement Learning Guided Computer Agents battle against each other over N iterations and learn to play the game)

CONNECT 4

2 Player Mode vs Computer Train Computer QUIT

MODE1: Single Player Mode

MODE 2: Two PLAYER Mode

MODE 3: Training Mode

METHODOLOGY - ALGORITHMS

FOUR DIFFERENT ALGORITHMS WERE IMPLEMENTED TO MODEL THE COMPUTER AGENTS

MINIMAX AGENT

USES A BACKTRACKING, RECURSIVE ALGORITHM USED IN GAME THEORY TO MAKE MOVES THAT RESULT IN MAXIMUM IMMEDIATE GAIN

MONTE CARLO AGENT

USES REINFORCEMENT LEARNING TO LEARN DIRECTLY FROM GAME EXPERIENCES WITHOUT USING ANY PRIOR MARKOV DECISION PROCESS KNOWLEDGE

Q LEARNING AGENT

USES A REINFORCEMENT
LEARNING OFF-POLICY VALUE
BASED SCHEME BASED ON THE
BELLMAN'S EQUATION TO
LEARN THE VALUE OF OPTIMAL
POLICY REGARDLESS OF
ACTION

SARSA LEARNING AGENT

USES A REINFORCEMENT LEARNING ON-POLICY VALUE BASED SCHEME TO LEARN THE VALUE OF THE OPTIMAL POLICY BASED ON ACTION DERIVED FROM CURRENT POLICY

DURING TRAINING, THE FOUR AGENTS BATTLED AGAINST A COMPUTER AGENT THAT MADE RANDOM MOVES AND AGAINST EACH OTHER FOR N ITERATIONS, RESULTS ARE EVALUATED FOR WIN-RATE AND EFFICIENCY (AVG PLAY TIME)

METHODOLOGY – HYPER PARAMETER TUNING

ALGORITHM	HYPER PARAMETERS TUNED
Q LEARNING	alpha - [learning rate, tuning exp 0.05, 0.25, 0.3, 0.75, 0.9] gamma - [discount factor, tuning exp 0.25, 0.50, 0.75, 0.9, 0.98]
SARSA LEARNING	alpha - [learning rate, tuning exp 0.05, 0.25, 0.3, 0.75] gamma - [discount factor, tuning exp 0.25, 0.50, 0.75, 0.9, 0.98]
MONTE CARLO	exploration coefficient - [tuning exp 0.8, 1, 1.4, 1.6]
MINIMAX	Depth of recursion - 0.5

QLEARNER, SARSA LEARNER AGENTS – ARE FIRST TUNED FOR "LEARNING RATE" THEN TUNED FOR "DISCOUNT FACTOR" ON TOP

RESULTS – SENSITIVITY ANALYSIS OF QLEARNER AGENT

ALPHA/ LEARNING RATE (Ir) SENSITIVITY ANALYSIS

- o For very lr
- o For moderate Ir
- o For high Ir

- = 0.05 learning happens rapidly initially then becomes more gradual
- = 0.50 learning happens gradually initially, then picks up to beat others [best]
- = 0.75 learning happens rapidly initially then slower than very Ir

GAMMA/ DISCOUNT FACTOR SENSITIVITY ANALYSIS

- o For low, moderate gamma = [0.25, 0.50] learning happens rapidly, highest win-rate
- o For high gamma
- o For very high gamma
- = 0.75 learning happens gradually
- = 0.98 learning happens gradually initially then slows down

[best]

RESULTS – SENSITIVITY ANALYSIS OF SARSA LEARNER AGENT

ALPHA/ LEARNING RATE (Ir) SENSITIVITY ANALYSIS

- o For very Ir
- o For low, moderate Ir
- o For high Ir

- = 0.05 learning happens slowest
- = [0.25, 0.50] learning happens gradually initially, then picks
- = 0.75 learning happens gradually, slower than low, moderate Ir

GAMMA/ DISCOUNT FACTOR SENSITIVITY ANALYSIS

- For low gamma = 0.25 learning happens rapidly, highest win-rate
- o For moderate, very high gamma = [0.50, 0.98] learning happens gradually, slower than low gamma
- For high gamma = 0.75 learning happens the slowest

[best]

[best]

RESULTS – SENSITIVITY ANALYSIS OF MONTE CARLO AGENT

EXPLORATION COEFFICIENT [HOW MUCH MONTE CARLO TREE TO SEARCH] SENSTIVITY ANALYSIS

- o Smaller Exploration Coefficient values lead to greater exploitation i.e., visited nodes are revisited
- o Large Exploration Coefficient values lead to greater exploration i.e., new nodes are visited
- For exploration coefficient = 1.6, learning happens rapidly with high win-rate [best]

MINIMAX has the highest Win Ratio = 80% in 20 battles vs RANDOM MOVE Agent

RESULTS – COMPUTER AGENTS VS RANDOM MOVE COMPUTER AGENT WIN RATE

MINIMAX (Player 1) vs Q LEARNER (Player 2) QLEARNER Win Rate 30%

Player 1 wins

MINIMAX (Player 1) vs SARSA LEARNER (Player 2) SARSA LEARNER Win Rate 75%

MINIMAX (Player 1) vs MONTE CARLO (Player 2) MONTE CARLO Win Rate 60%

SARSA LEARNER has the highest Win Ratio = 75% in 20 battles vs MiniMax Agent

RESULTS – RL GUIDED COMPUTER AGENTS **VS MINIMAX AGENT WIN RATE**

WIN RATE COMPARISON									
BEST OVERALL WORST OVERALL BEST IN COLUMN	VS BASELINE AGENTS		VS RL GUIDED COMPUTER AGENT			Overall Avg			
	Random Move	Minimax (80%-win rate vs Random Move)	Q LEARNER	SARSA LEARNER	MONTE CARLO	Win Rate			
Q LEARNER	0.55	0.30	NA	0.44	0.35	0.41			
SARSA LEARNER	0.61	0.75	0.55	NA	0.75	0.665			
MONTE CARLO	0.65	0.60	0.65	0.25	NA	.5475			

RL GUIDED COMPUTER AGENT VS BASELINE AGENTS

SARSA LEARNER HAS HIGHEST WIN RATE OF 75% VS MINIMAX AGENT

RL GUIDED COMPUTER AGENT VS RL GUIDED COMPUTER AGENTS

SARSA LEARNER HAS THE HIGHEST WIN RATE OF 75% VS MONTE CARLO

RESULTS – WIN RATE COMPARISON

MINIMAX (Player 1) vs SARSA LEARNER (Player 2) SARSA LEARNER Win Rate 75%

MONTE CARLO (Player 1) vs SARSA LEARNER (Player 2) SARSA LEARNER Win Rate 75%

SPEED COMPARISON								
FASTEST SLOWEST	VS BASELII	VS BASELINE AGENTS		VS RL GUIDED COMPUTER AGENT				
	Random Move	Minimax (80%-win rate vs Random Move)	Q LEARNER	SARSA LEARNER	MONTE CARLO			
Q LEARNER	0.2422	7.835	NA	0.0634	24.138			
SARSA LEARNER	0.0681	8.575	0.0634	NA	26.117			
MONTE CARLO	29.055	18.661	24.138	26.117	NA			

RL GUIDED COMPUTER AGENT VS BASELINE AGENTS

SARSA LEARNER IS FASTEST, AVG PLAY TIME OF 0.06s VS RANDOM MOVE AGENT MONTE CARLO IS SLOWEST, AVG PLAY TIME OF 29.06s VS RANDOM MOVE AGENT

RL GUIDED COMPUTER AGENT VS RL GUIDED COMPUTER AGENTS

SARSA LEARNER IS FASTEST, AVG PLAY TIME OF 0.0634s VS Q LEARNER AGENT MONTE CARLO IS SLOWEST, AVG PLAY TIME OF 26.117s VS SARSA LEARNER AGENT

RESULTS – EFFICIENCY COMPARISON

GITHUB REPO