Teoretické základy informatiky 1

Predikátový jazyk (P)

- 1. Symboly pro konstanty
- 2. Symboly relační predikátové =
- 3. Funkční symboly f
- 4. symboly pro proměnné
- 5. symboly pro logické spojky $\neg, \lor, \land, \Longrightarrow, \longleftrightarrow, \longleftrightarrow$
- 6. symboly pro kvantifikátory \forall, \exists
- 7. symboly pomocné (), [], {},;

Slovo

- 1. Každá konstanta
- 2. Každá proměnná je term
- 3. Jsou-li t_1, \ldots, t_n termy P-jazyka, a je-li f funkční symbol P-jazyka $f(t_1, \ldots, t_n)$ je term

Formule P-jazyka budeme nazývat

- 1. Každou atomickou formuly
- 2. Jsou-li ψ, φ formule, pak také $(\psi \land \varphi), (\psi \lor \varphi), (\psi \Longrightarrow \varphi), (\psi \Longleftrightarrow \varphi), \neg \varphi$ jsou formile
- 3. Jetliže x je proměnná a φ je formule, potom také $(\forall x)\varphi$ a $(\exists x)\varphi$ jsou formule
- 4. jiné formule P-jazyk nemá

Syntaktický strom

$$(\forall x)(\forall y)(\forall z)(x < z \implies x + z = y + z)$$
$$(\forall y)(\forall z)(x < z \implies x + z = y + z)$$
$$(\forall z)(x < z \implies x + z = y + z)$$
$$x < z \implies x + z = y + z$$

Výskyt proměnné x ve formuli φ nazýváme vázaným právě tehdy, když na cestě od libovolného listu tohoto syntetického stromu k základní formuli se objevý $(\forall x)$ nebo $(\exists x)$ V opačném případě nazýváme výskyt t podstatné volný

Predikátový počet Te Mno

- 1. Konstanty $0, 1, \emptyset, U$
- 2. Predikáty = (\equiv), \in , \subset

$$\begin{aligned} x &\subseteq y =_{df} (\forall u) (u \in x \implies u \in y) \\ x &\subset y =_{df} x \subseteq y \land \neg (x = y) \end{aligned}$$

Možina je soubor určitých a rozlišitelných objektů. Tyto objekty nezýváme prvky dané množiny. J

$$J \dots p \dots p \in J$$

$$\land$$

$$p \in J \dots p \notin J$$

Binární operace

sjednocení množiny (
$$\cup$$
) průnik množin (\cap) rozdíl množiny ($/$) doplněk (\overline{A})

$$\overline{A} = D_f Z$$

$$Z = \{x; x \notin A\}$$

$$Z = \{x \in U; x \notin A\}$$

Vennovy diagramy