Подготовка к рубежному контролю №2 по дисциплине «Теория вероятностей и математическая статистика», ИУ1Б, 3-й семестр, 2022г.

Вопросы по теории

- 1. Дать определения случайного испытания, элементарного исхода, пространства элементарных событий, случайного события.
- 2. Дать определения достоверного, невозможного и противоположного событий.
- 3. Операции, определенные над случайными событиями и их свойства. Какие события называются несовместными?
- 4. Дать классическое определение вероятности. Сформулировать основные свойства вероятности.
- 5. Дать геометрическое и статистическое определения вероятности.
- 6. Дать определение сигма-алгебры событий и аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.
- 7. Дать определение условной вероятности. Какие события называются независимыми? Сформулировать теорему умножения вероятностей и критерий независимости случайных событий.
- 8. Дать определение гипотез. Записать формулу полной вероятности и формулу Байеса.
- 9. Дать определение схемы Бернулли. Записать формулу Бернулли и следствия из нее.
- 10. Дать определение функции распределения вероятности случайной величины. Сформулировать ее свойства.
- 11. Дать определение дискретной случайной величины. Записать для нее вид функции распределения.
- 12. Дать определения биномиального закона распределения и закона распределения Пуассона.
- 13. Дать определения непрерывной скалярной случайной величины и ее плотности распределения вероятностей. Сформулировать свойства плотности распределения вероятностей.
- 14. Дать определение равномерного закона распределения непрерывной скалярной случайной величины и записать вид ее функции распределения вероятности.
- 15. Дать определение экспоненциального закона распределения непрерывной скалярной случайной величины и записать вид ее функции распределения вероятности.
- 16. Дать определение нормального (гауссова) закона распределения непрерывной скалярной случайной величины и записать вид ее функции распределения вероятности.

Задачи для подготовки

I. Задача на применение классического определения вероятности и формул комбинаторики.

- 1. Тридцать участников соревнований разбиваются на 3 равные группы. Найти вероятность того, что три сильнейших участника окажутся в разных группах.
- 2. На полке в библиотеке стоят 30 учебников: 20 по теории вероятностей и 10 по математической статистике. Библиотекарь наугад берет 5 учебников. Какова вероятность, что среди них окажутся 3 учебника по теории вероятностей? (задача решена на лекции).

II. Задача на применение формулы полной вероятности и (или) формулы Байеса.

3. В ящике содержится 12 деталей, изготовленных на заводе №1, 20 деталей — на заводе №2 и 18 деталей — на заводе №3. Вероятность того, что деталь, изготовленная на заводе №1, отличного качества, равна 0,9; для деталей, изготовленных на заводах №2 и №3, эти вероятности соответственно равны 0,8

- и 0,95. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества (аналогичная задача решена на лекции).
- 4. В ящике содержится 12 деталей, изготовленных на заводе №1, 20 деталей на заводе №2 и 18 деталей на заводе №3. Вероятность того, что деталь, изготовленная на заводе №1, отличного качества, равна 0,9; для деталей, изготовленных на заводах №2 и №3, эти вероятности соответственно равны 0,8 и 0,95. Наудачу извлеченная деталь оказалась отличного качества. Найти вероятность того, что она изготовлена на заводе №1 (аналогичная задача решена на лекции).
- 5. В ящике лежат 20 теннисных мячей, в том числе 15 новых и 5 играных. Для игры наудачу выбирают 2 мяча и после игры возвращают обратно. Затем для второй игры также наудачу извлекают еще 2 мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами? (задача решена на семинаре).
- 6. Производится наблюдение за объектом с помощью двух наблюдательных станций. Объект может находиться в двух различных состояниях Т1 и Т2, случайно переходя их одного в другое. Долговременной практикой установлено, что 30% времени объект находится в состоянии Т1, а 70% времени − в состоянии Т2. Наблюдательная станция №1 передает ошибочные сведения в 2% всех случаев, а наблюдательная станция №2 − в 8% случаев. В какой-то момент времени наблюдательная станция №1 сообщила: «объект находится в состоянии Т1», а наблюдательная станция №2: «объект находится в состоянии Т2». Какому из сообщений следует верить?

III. Задача на применение формулы Бернулли или следствий из нее.

7. Два равносильных противника играют в шахматы. Что вероятнее: выиграть одну партию из двух или не менее трех партий из пятя? Ничьи во внимение не принимаются (задача решена на семинаре).

IV. Задача по теме «Непрерывные скалярные случайные величины».

8. Случайная величина $\xi(\omega)$ имеет распределение

$$f_{\xi}(x) = A \exp\{-\lambda |x|\}, \lambda > 0.$$

Найти: 1) значение постоянной A; 2) функцию распределения $F_{\xi}(x)$; 3) вероятность попадания случайной величины $\xi(\omega)$ в интервал (-1,2). (задача решена на семинаре).

V. Задача по теме «Функция от одномерной случайной величины».

9. Случайная величина $\xi(\omega)$ имеет равномерное распределение

$$f_{\xi}(x) = \begin{cases} \frac{1}{\pi}, & x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right); \\ 0, & x \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right). \end{cases}$$

Найти плотность распределения вероятностей случайной величины $\eta(\omega) = \sin \xi(\omega)$ (задача решена на лекции).

10. Случайная величина $\xi(\omega)$ имеет нормальное распределение

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\}, x \in \mathbb{R}.$$

Найти плотность распределения вероятностей случайной величины $\eta(\omega) = \xi^2(\omega)$ (задача решена на лекции).