Folha 5 - TP

Os inteiros

- 1. Quais são os divisores de 12?
- 2. Sejam n e d inteiros positivos. Quantos inteiros positivos $\leq n$ são divisíveis por d?
- 3. Determine a factorização prima de 10!.
- 4. Determine as factorizações primas de 100, 641, 999, 1024 e 7007.
- 5. Os números 101, 107 e 113 são primos?
- 6. Qual é o quociente e o resto da divisão inteira de:
 - (a) -11 por 3?
 - (b) 101 por 11?
 - (c) 101 por -11?
 - (d) -101 por 11?
 - (e) -101 por -11?
- 7. Calcule $mdc(2^2 \cdot 3^3 \cdot 5^2, 2^5 \cdot 3^3 \cdot 5^2)$ e $mdc(2^2 \cdot 7, 5^3 \cdot 13)$.
- 8. Quais inteiros positivos menores que 12 são primos com 12?
- 9. Determine mdc(414,662) usando o algoritmo de Euclides.
- 10. Quantos zeros existem no final de 100!?
- 11. Calcule 17 mod 5, $-133 \mod 9$ e 2001 mod 101.
- 12. Resolva em \mathbb{Z}_7 as equações $3+_75=x$, $3\times_73=x$, $3+_7x=0$ e $3\times_7x=1$.
- 13. (a) Encripte a mensagem "MATEMATICA" traduzindo as letras em números, aplicando a seguinte função de encriptação e depois traduzindo os números de volta em letras:
 - (i) $f(p) = (p+3) \mod 23$ (cifra de César)
 - (ii) $f(p) = (2p+5) \mod 23$.

- (b) Desencripte as seguintes mensagens:
 - (i) SURMEMGR IZPDU (que foi encriptada usando a cifra de César).
 - (ii) ZIV LFRRFP (que foi encriptada usando a função de (a)(ii)).

[Nota: neste exercício use o alfabeto português com 23 letras.]

- 14. Encripte a mensagem "DESCOBRIMOS O CODIGO" traduzindo as letras em números, aplicando a seguinte função de encriptação e depois traduzindo os números de volta em letras:
 - (a) $f(p) = (p+3) \mod 23$ (cifra de César)
 - (b) $f(p) = (3p+7) \mod 23$.
- 15. Descodifique a mensagem "HLX BEL", que foi encriptada com a função

$$f(p) = (6p+1) \mod 23,$$

identificando as 23 letras do alfabeto pelos inteiros $0, 1, 2, \dots, 22$ (como mostra a figura).

A	В	С	D	Е	F	G	Н	Ι	J	L	M	N	О	Р	Q	R	S	Т	U	V	X	Z
1	\updownarrow	\$																				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

- 16. Resolva as congruências $3x \equiv_7 4$ e $2x \equiv_{17} 7$.
- 17. Mostre que $a \equiv_m b \land c \equiv_m d \Rightarrow a + c \equiv_m b + d$.
- 18. Mostre que
 - (a) $a \mid b$, $a \mid c \Rightarrow a \mid (b+c)$.
 - (b) $a \mid bc \land \operatorname{mdc}(a, b) = 1 \Rightarrow a \mid c$.
 - (c) Se $p \in \text{primo}$, $p \mid ab \Rightarrow (p \mid a) \lor (p \mid b)$.