# Plan du cours

| I.  | Syr        | nétries, Translations et rotations |  |  |  |
|-----|------------|------------------------------------|--|--|--|
|     | 1.         | La symétrie axiale                 |  |  |  |
|     | 2.         | La symétrie centrale               |  |  |  |
|     | 3.         | La translation                     |  |  |  |
|     | 4.         | La rotation                        |  |  |  |
| II. | Homothétie |                                    |  |  |  |
|     | 1.         | Avec un rapport k positif          |  |  |  |
|     | 2.         | Avec un rapport k négatif          |  |  |  |

# Mes objectifs:

- → Je dois comprendre l'effet d'une translation, d'une symétrie (axiale et centrale), d'une rotation, d'une homothétie sur une figure,
- → Je dois savoir utiliser un logiciel de géométrie dynamique, notamment pour transformer une figure par translation, symétrie, rotation, homothétie.

#### Activité d'introduction

→ Quels types de transformation connaissez-vous? Quelles sont les transformations présentes ci-dessous?





On dit que le dessin en position 2 est **l'image** du dessin en position 1 par **la translation qui transforme A en B** ou, autrement dit, par la translation de vecteur  $\overrightarrow{AB}$ .

On dit que la tortue n°2 est **l'image** de la tortue n°1 par **la symétrie d'axe (d)**.



On dit que la tortue n°2 est **l'image** de la tortue n°1 par **la rotation de centre O et d'angle 60** °.

<u>Figure 4</u>:.....



On dit que le robot n°2 est l'image du robot n°1 par la symétrie de centre O, ou encore par la rotation de centre O et d'angle 180°.

# I. Symétries, Translations et rotations

#### 1. La symétrie axiale

#### <u>Définition</u>:

Deux points E et E' sont symétriques par rapport à une droite (d) si (d) est la médiatrice de [EE'] : c'est à dire si (d) est perpendiculaire à [EE'] en son milieu.

Par symétrie axiale, une figure et son symétrique se superposent par pliage le long de l'axe de symétrie.



# 2. La symétrie centrale

#### <u>Définition</u>:

Une symétrie centrale est une transformation du plan par rapport à un point. L'image d'un point E dans une symétrie de centre O est le point E' tel que O est le milieu du segment [EE'].

On dit que E' est le symétrique de E par rapport à O.

Deux figures symétriques par symétrie centrale se superposent par un demi-tour autour du centre de symétrie.



#### 3. La translation

#### Définition :

L'image d'un point E par la translation qui transforme A en B, autrement dit la translation de vecteur  $\overrightarrow{AB}$ , est le point E' tel que **ABE'E est un parallélogramme**. On dit que E' est le translaté de E.

Par translation, une figure et sa translatée se superposent en glissant le long de la direction.



# 4. La rotation

#### <u>Définition</u>:

L'image d'un point E par la rotation de centre  $\mathbf O$  et d'angle  $\alpha$  est le point E' tel que :

$$-OE' = OE$$
$$-EOE' = \alpha$$

Ci-contre, la figure  $F_1$  et la figure  $F_2$ , que l'on obtient après une rotation de centre O et d'angle 120 ° dans le sens direct, **sont superposables**.



Par convention, le « sens direct » en mathématique signifie « sens inverse des aiguilles d'une montre ». Remarque : Une symétrie centrale est une rotation particulière pour laquelle l'angle est 180 °.

### Propriété

Dans toutes ces transformations l'image d'une figure est superposable à la figure initiale. On sait donc que :

- Les longueurs sont conservées
- Les angles sont conservés
- Les aires sont conservées.

## II. Homothétie



### Définition

Soit un point O.

Transformer une figure par **une homothétie de centre O**, c'est l'agrandir ou la réduire en faisant glisser ses points le long de droites passant par O.

Une homothétie est définie par :

- un centre
- un rapport k avec k un nombre relatif non nul.

#### Propriété

Une figure et son image par une homothétie ont la même forme.

L'homothétie conserve, l'alignement des points, la notion de milieu et la mesure des angles.

#### 1. Avec un rapport k positif

• Image d'un point par une homothétie de rapport positif

## Définition

L'image d'un point M par une homothétie de centre O et de rapport k positif est le point M' tel que :

- M' appartient à la demi-droite [OM);
- $-OM' = k \times OM$

| Exemple : Construire M' l'image du point M par l'homothétie de centre O et de rapport $k = 2,5$ puis M" | l'image de M par |
|---------------------------------------------------------------------------------------------------------|------------------|
| l'homothétie de centre O et de rapport $k = 0,2$ .                                                      |                  |

### • Image d'un segment par une homothétie de rapport positif

<u>Schéma</u>: Construire le segment [A'B'] l'image du segment [AB] par l'homothétie de centre O et de rapport 1,5. Que constate-t-on?

# Propriété

On considère A,B et O trois points du plan et k un nombre positif. Si les points A' et B' sont les images respectives des points A et B par l'homothétie de centre O et de rapport k alors

#### <u>Démonstration</u>:



### • Image d'une figure par une homothétie de rapport positif

# $\underline{\mathsf{Exemple}\; \mathbf{1}}: \mathit{k} > 1$

On veut transformer la figure  $F_1$  par l'homothétie de rapport k=2.



# Exemple 2 : 0 < k < 1

On veut transformer la figure  $J_1$  par l'homothétie de rapport k=0.5.





| P |     |    | 9 | Ζ. |    |
|---|-----|----|---|----|----|
| _ | v n | nv | п | ο. | rο |
|   | v   |    | ш | u  | u  |
|   |     |    |   |    |    |

| On considère la figure $F_2$ qui est l'image de la figure $F_1$ par une homothétie de centre $O$ et de rapport $k$ .                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Si , alors $F_2$ est un agrandissement de $F_1$ par cette homothétie;<br>Si , alors $F_2$ est une réduction de $F_1$ par cette homothétie. |  |

# Propriété

| Dans une homothétie de rapport k positif : |
|--------------------------------------------|
| - les longueurs sont multipliées par       |
| - les aires sont multipliées par           |

| Eva | rcice | d'a | nnlic | ation | 1 |
|-----|-------|-----|-------|-------|---|
| ⊏xe | rcice | u a | DDIIC | ation |   |

| in the displacement of the second of the sec |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEON est un carré de côté 5 cm. Le quadrilatère MARC est l'image de LEON par une homothétie de rapport $k=4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1. Quelle est la nature du quadrilatère MARC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Quel est le périmètre de MARC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Quelle est l'aire de MARC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# 2. Avec un rapport k négatif

On peut aussi effectuer une homothétie avec un rapport k négatif (c'est-à-dire k < 0). L'image de la figure sera alors de l'autre côté du centre de l'homothétie.

### Définition

M' est l'image de M par l'homothétie de centre O et de rapport -k signifie que :

- O, M et M' sont alignés
- M et M' ne sont pas du même côté par rapport à O.
- $OM' = k \times OM$

### Exemple 1: k = -1

On veut transformer la figure  $F_1$  par l'homothétie de rapport k = -1.

#### **Exemple 2** : k < 0

On veut transformer la figure  $J_1$  par l'homothétie de rapport k = -2.



Remarque : Une homothétie de rapport k=-1 correspond à une symétrie centrale.

## Exercice d'application 2

1. Tracer l'image du polygone ci-dessous par l'homothétie de centre O et de rapport k = -1.



#### Exercice d'application 3

1. Tracer l'image d'un rectangle ABCD de longueur 5 cm et de largeur 3 cm par une homothétie de centre E et de rapport k = -2.



## Exercice d'application 4

Tracer l'image de la figure ci-dessous par une homothétie de centre N et de rapport k=-1,5.



### Exercice d'application 5 -

Ci-dessous tu trouves plusieurs figures avec leurs images créées par homothétie. Trouve le rapport de chacune de ces homothéties. Les images sont notées avec  $\ast$ .







