

Description

The VST12N030 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =120V, I_{D} =180A $R_{DS(ON)}$ <3.0m Ω @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST12N030-T3	VST12N030	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	120	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	180	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	128	А
Pulsed Drain Current	I _{DM}	720	А
Maximum Power Dissipation	P _D	300	W
Derating factor		2	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	1800	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	Rejc	0.5	°C/W
--	------	-----	------

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	120		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =120V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	-	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =100A	-	3.0	3.2	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =100A	40	-	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	11500	-	PF
Output Capacitance	C _{oss}	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	2480	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	75	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}	V _{DD} =60V,I _D =100A	-	25	-	nS
Turn-on Rise Time	t _r		-	75	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =1.6 Ω	-	89	-	nS
Turn-Off Fall Time	t _f		-	29	-	nS
Total Gate Charge	Qg	\/_ CO\/ 400A	-	158		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=60V,I_{D}=100A,$	-	52		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	29		nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =180A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	180	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = I _S	-	75		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	185		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance