DATA VISUALIZATION: INTRODUCTION TO TABLEAU

D-VELOP WORKSHOP SERIES – Summer 2021 Trevor Bonjour

D-VELOP WORKSHOP SERIES - Summer 2021

Jun 9

• Data Visualization: ggplot2

Jun 16

Data Visualization using Python: Matplotlib and Seaborn

Jun 23

Exploratory Data Analysis in R

July 7

Data Visualization using Python: Bokeh (Interactive Plots)

July 14

Exploring and Visualizing Time Series Data

July 21

Data Visualization: Introduction to Tableau

What will we cover today?

- Motivation
- What is Tableau?
- Tableau Workflow
- **Important Components**
- Learn by Doing

Visualization Objectives

- Record information
- Analyze data to support reasoning
- Confirm hypotheses
- Communicate ideas to others

To record information

To point out interesting things

MTHIVLWYADCEQGHKILKMTWYN ARDCAIREQGHLVKMFPSTWYARN GFPSVCEILQGKMFPSNDRCEQDIFP SGHLMFHKMVPSTWYACEQTWRN

To point out interesting things

MTHIVLWYADCEQGHKILKMTWYN ARDCAIREQGHLVKMFPSTWYARN GFPSVCEILQGKMFPSNDRCEQDIFP SGHLMFHKMVPSTWYACEQTWRN

To communicate information

Annual Growth is Declining

ANNUAL GROWTH IN HEALTH CARE SPENDING

To analyze data

To analyze data

2020 US Elections (NYTimes)

Tableau Workflow

Connect

Analyze

Share

Data source

- Visualize data in Workspace
- Dashboard or Story

Connect

Connect

Data Sources Types

Spreadsheets

 Excel or csv file

Relational Databases

 MySQL or Oracle

Cloud Data

 AWS or Microsoft Azure

Other Sources

 Spatial Files or R

A field, also known as a column, is a single piece of information from a record in a data set.

- Qualitative Field (Dimensions)
 - Describes or Categorizes Data
 - What, when or who
 - Slices the quantitative data
- Quantitative Field (Measures)
 - Numerical Data
 - Provides measurement for qualitative category
 - Can be used in calculations

Dimensions

Dimensions

Measures

Dimensions

Measures

- By default, aggregated by SUM
- Can be aggregated as average, median, count, or count distinct.

Dimensions

Break down the aggregated total into smaller totals by category.

Measures

- By default, aggregated by SUM
- Can be aggregated as average, median, count, or count distinct.

Data Types

Text or String Values

Discrete Date/Time

Continuous Numeric Value

Discrete Date

Calculated Field

Geographic field -State or Zip Code

Examples: Stock price change over a five-year period or website page views during a month.

Bar — Compare data across categories.

Examples: Volume of shirts in different sizes, or percent of spending by department.

Heat Map — Show the relationship between two factors.

Examples: Segment analysis of target market, or sales leads by individual rep.

Highlight Table — Shows detailed information on heat maps.

Examples: The percent of a market for different segments, or sales numbers in a region.

Treemap — Show hierarchical data as a proportion of a whole.

Examples: Storage usage across computer machines, comparing fiscal budgets between years.

Gantt — Show duration over time.

Examples: Project timeline, duration of a machine's use, availability of players on a team.

Bullet — Evaluate performance of a metric against a goal.

Examples: Sales quota assessment, performan ce spectrum (great/good/poor).

Scatterplot — Investigate relationships between quantitative values.

Examples: Male versus female likelihood of having lung cancer at different ages

Histogram — Understand the distribution of your data.

Examples: Number of customers by company size, student performance on an exam, frequency of a product defect.

Symbol maps — Use for totals rather than rates. Be careful, as small differences will be hard to see.

Examples: Number of customers in different geographies.

Area maps — Use for rates rather than totals. Use sensible base geography.

Examples: Rates of internet-usage in certain geographies, house prices in different neighborhoods.

Box-and-Whisker — Show the distribution of a set of a data.

Examples: Understand ing your data briefly, seeing how data is skewed towards one end, identifying outliers in your data.

Libraries and School of Information Studies

Dashboard

Share

- Saved File
 - .twb or .twbx
- Publish to Tableau Server (Secure)
- Publish to Tableau Public (Unsecure)

LEARN BY DOING

To access the videos and material from the workshop series please visit: https://guides.lib.purdue.edu/d-velop

