

TÓPICOS

- 1. Definições
- 2. Paradigmas de AM
- 3. Projetando um sistema de AM
- 4. Aplicações

TEMAS RELACIONADOS

- Inteligência Artificial
- Mineração de Dados
- Estatística
- Otimização
- Neurociências
- Visão Computacional

DEFINIÇÃO DE APRENDIZADO

Sócrates: Aprender é recordar (Diálogos de Platão)

"Um programa de computador é dito **aprender** a partir de uma experiência **E** com respeito a alguma classe de tarefas **T** e medida de desempenho **P**, se seu desempenho em tarefas de **T**, medido por **P**, melhora com a experiência **E**."

Tom Mitchell (1997)

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado

GUIADO POR "PROFESSOR" EXTERNO

- Professor possui conhecimento sobre a tarefa
- Representado por conjuntos de pares (x, d)
- Algoritmo de AM gera modelo que busca reproduzir comportamento do professor
- Parâmetros do modelo são ajustados por apresentações sucessivas dos pares (x, d): fase de treinamento
- Após o treinamento, o desempenho do sistema deve ser testado com dados não-vistos: fase de teste

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado

CLASSIFICAÇÃO DE PADRÕES

≻Classificar objetos

REGRESSÃO

➢Previsão de valores contínuos

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado

GUIADO POR "CRÍTICO" EXTERNO

- Processo de tentativa e erro
- Procura maximizar sinal de reforço
- Se a ação tomada por sistema é seguida por estado satisfatório, o sistema é fortalecido. Caso contrário, o sistema é enfraquecido (Lei de Thorndike)
- Tipos de reforço

Positivo = recompensa

Negativo = punição

Nulo

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado

ManiPlatichKMeans AffinityPropagation Meanshift SpectralClustering Word DBSCAN 0.015 0.01

NÃO HÁ "CRÍTICO" OU "PROFESSOR" EXTERNO

- Clustering: descobre categorias automaticamente
- Associação: descobre relacionamentos entre variáveis
- Quantização: sumariza dados em grãos automaticamente
- Redução de dimensionalidade

- Supervisionado
- Por reforço
- Não-supervisionado
- Semissupervisionado

HÁ "PROFESSOR" EXTERNO APENAS PARA PARTE DOS DADOS

 Web mining: usuários podem rotular páginas como pertencentes a determinadas categorias, mas apenas uma parcela ínfima de web pages teria essa informação associada

DEVEM SER ESPECIFICADOS:

- Tipo exato de conhecimento a ser aprendido
 - > Função Alvo
- Uma representação para o conhecimento adquirido
 - Modelo de representação do conhecimento
- Um mecanismo de aprendizado
 - > Técnica de aprendizado

- Estabelece qual conhecimento será aprendido
 - Função discriminante entre categorias (classes)
 - Função de similaridade intra-grupos

EXEMPLO:

- Aprender a diagnosticar paciente de diabetes
 - Função = mapeamento das características dos pacientes para os valores (classes) "diabético" e "não diabético"
- Como aprender a função?
 - Ajustá-la aos dados disponíveis
- Como determinar o desempenho da função aprendida?
 - Verificar quantos pacientes ela diagnostica corretamente

Modelos Matemáticos

Regressão Linear/Logística, Redes Neurais Artificiais, Máquinas de Vetores de Suporte

Modelos simbólicos

Árvores de Decisão, Regras de decisão, Redes Semânticas

Modelos "Lazy"

K-NN, Raciocínio Baseado em Casos (CRB)

Modelos Probabilísticos

Naïve Bayes, Redes Bayesianas, Misturas Gaussianas, Modelos de Markov

UMA REPRESENTAÇÃO PARA O CONHECIMENTO ADQUIRIDO

 Modelo de representação do conhecimento

UMA REPRESENTAÇÃO PARA O CONHECIMENTO ADQUIRIDO

Modelo de representação do conhecimento

UMA REPRESENTAÇÃO PARA O CONHECIMENTO ADQUIRIDO

Modelo de representação do conhecimento

Algoritmos Baseados em Gradiente

• Regressão linear/logística, redes neurais...

Algoritmos baseados em Programação Dinâmica

• HMMs...

Algoritmos baseados em Divisão e Conquista

• Indução de árvores e regras de decisão

Algoritmos baseados em Probabilidades

Naïve Bayes, Redes Bayesianas...

Algoritmos baseados em Computação Evolutiva

Aplicável a vários modelos

Um mecanismo de aprendizado

 Técnica de aprendizado

APLICAÇÕES

APLICAÇÕES

	Árvores de Decisão	Redes Neurais	Naïve Bayes	kNN	SVM	Regras
Acurácia (em geral)	**	***	*	**	****	**
Velocidade de treino (# atributos e # exemplos)	***	***	***	*	***	****
Velocidade de Classificação	***	****	***	*	***	****
Tolerância a valores ausentes	***	*	**	**	***	**
Tolerância a atributos irrelevantes	***	*	**	**	***	**
Tolerância a variáveis altamente independentes (ex: paridade)	**	***	*	*	***	**
Lida com atributos discretos/binários/contínuos	***	*** (não discreto)	*** (não contínuo)	*** (não diretamente discreto)	** (não discreto)	*** (não diretamente contínuo)
Lida com ruído	**	**	***	*	**	*
Lida com overfitting	**	*	***	***	**	**
Interprebatilidade	****	*	***	**	*	****
Manipulação de parâmetros	***	*	****	***	*	***

QUESTÕES IMPORTANTES

- Pré-processamento?
 - Limpeza e transformação dos dados
- Representação do conhecimento
- Qual algoritmo de ML utilizar?
- Pré-processamento?
 - Adequação ao algoritmo selecionado
- (Hiper) parâmetros?
- Otimização de parâmetros
 - Modelo / Algoritmo específicos

O QUE VIMOS?

- Definições
- Paradigmas de AM
- Projetando um sistema de AM
- Aplicações

PRÓXIMA VIDEOAULA

Classificação

