ASSIGNMENT 6 — ERROR-BASED LEARNING

For all questions below, provide all programming code and plots in the report.

One-State Model (6 Marks)

- 1. Let us assume a participant is performing a visuomotor rotation task. There are 50 baseline trials without rotation, then 50 adaptation trials with a 30° rotation, followed by 50 washout trials with no rotation.
 - a. Assume only an adaptation rate (B = 0.2). Plot the adaptation and error curves. 3 marks.
 - b. Now include a retention rate (A=0.98; B=0.1). Plot the adaptation and error curves. 1 mark.
- 2. A participant performs 25 baseline trials without rotation, then 50 trials with a 30° rotation, 10 trials with a -30° rotation, followed by 40 washout trials with no perturbation. Assume A = 0.98; B = 0.1.
 - a. Plot the adaptation and error curves. 1 mark.
 - b. Assume the following are clamp trials: [27, 36, 45, 53, 62, 71, 80, 89, 98, 111-150]. Plot the adaptation and error curves. 1 mark.

Two-State Model (6 marks)

- 3. A participant performs 25 baseline trials without rotation, then 50 trials with a 30° rotation, 10 trials with a -30° rotation, followed by 40 washout trials with no perturbation. Assume $A_s=0.998,\,B_s=0.049,\,A_f=0.597,\,B_f=0.227.$
 - a. Plot the fast state (X_f) , slow state (X_s) , net adaptation (X_{net}) , and error. 2 marks.
 - b. Assume the following are clamp trials: [27, 36, 45, 53, 62, 71, 80, 89, 98, 111-150]. Plot X_f, X_s, X_{net} . 1 mark.
- 4. Fit the two-state model to X_{net} from **3b** above. Make your initial parameter guesses as follows: $A_s=0.994,\,B_s=0.025,\,A_f=0.521,\,B_f=0.268$ (**Graduate Only**):
 - a. Plot X_f , X_s , X_{net} from the best-fit parameters, and list the best-fit parameters. 3 mark.

