Deterministic Optimization

Unconstrained

Optimization: Derivative

Based Shabbir Ahmed

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

Gradient Descent

Gradient Descent

Learning objective:

 Examine the gradient descent method

Unconstrained Optimization: Derivative Based

```
(P): \min f(x) s.t. x \in \mathbb{R}^n
```

where $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and twice differentiable.

- Lesson 1: Optimality Conditions
- Lesson 2: Gradient Descent
- Lesson 3: Newton's Method

Descent Methods

$$(P)$$
: $\min f(x)$ s.t. $x \in \mathbb{R}^n$.

Basic paradigm of descent methods:

- Choose an initial solution x^0 .
- Choose a descent direction d^0 .
- Choose a step size α_0 .
- Update the solution $x^1 = x^0 + \alpha_0 d^0$.
- If some stopping criteria is met, STOP; else repeat with current solution.

Gradient Descent

- Let x^k be the current iterate, and we want to chose a "downhill direction" d^k and a step size α such that $f(x^k + \alpha d^k) < f(x^k)$.
- By Taylor's expansion:

$$f(x^k + \alpha d^k) \approx f(x^k) + \alpha \nabla f(x^k)^{\top} d_k$$
.

So we want $\nabla f(x^k)^{\top} d^k < 0$. The steepest descent direction is $d^k = -\nabla f(x^k)$.

Gradient Descent

- Step size
 - Line search: Define $g(\alpha) := f(x^k + \alpha d^k)$. Choose α to minimize g.
 - Fixed step size: Fix α a priori (may not converge if α is too big)
- Update the iterate as $x^{k+1} \leftarrow x^k \alpha \nabla f(x_k)$.
- Stop if $||\nabla f(x_k)|| \leq \epsilon$.

Example: Gradient Descent Iteration

$$\min f(x) = (x_1 + 1)^4 + x_1 x_2 + (x_2 + 1)^4$$

- Let $x^0 = [0, 1]^{\top}$, and $f(x^0) = 17.0$.
- The gradient $\nabla f(x) = [4(x_1+1)^3 + x_2, x_1 + 4(x_2+1)^3]$. At x^0 , $\nabla f(x^0) = [5,32]^\top$.
- The next iterate $x^1 = x^0 \alpha \nabla f(x^0) = [-5\alpha, 1 32\alpha]^\top$.

Example: Gradient Descent Iteration

- Then $g(\alpha) = f(x^1) = (-5\alpha + 1)^4 5\alpha(1 32\alpha) + (1 32\alpha + 1)^4$.
- Minimizing $g(\alpha)$, we get $\alpha = 0.0527$.
- Therefore $x^1 = [-0.2635, -0.6864]^{\top}$ and $f(x^1) = 0.4848$.

Behavior of Gradient Descent

- At any point x^k with $\nabla f(x^k) \neq 0$, the gradient descent produces the most rapid convergence (locally).
- Initial progress is good, but near a stationary point, the convergence behavior is bad.

Behavior of Gradient Descent

• "Zig-zags," i.e., each successive direction (of move) is perpendicular to the previous direction.

Let d^k be the gradient descent direction and α_k be the optimum step length at step k, i.e. $0 = \frac{dg(\alpha)}{d\alpha}|_{\alpha=\alpha_k} = \nabla f(x^k + \alpha_k d^k)^\top d^k = \nabla f(x^{k+1})^\top d^k$.

Since $d^{k+1} = -\nabla f(x^{k+1})$, we have that $d^{k+1} d^k = 0$, i.e. two successive directions are perpendicular.

Very small step sizes near stationary point.

Summary

 The gradient descent method moves from on iteration to the next by moving along the negative of the gradient direction in order to minimize the function