

SAIRAM DIGITAL RESOURCES

EC8394

ANALOG AND DIGITAL COMMUNICATION

UNIT NO 4

SOURCE AND ERROR CONTROL CODING

Measure of information
Entropy
Source coding theorem

ELECTRONICS & COMMUNICATION ENGINEERING

ELECTRONICS & COMMUNICATION ENGINEERING

ANALOG AND DIGITAL COMMUNICATION

Information Theory

- Information theory is concerned with the fundamental limits of communication.
- Source coding converts source output to bits. Source output can be voice, video, text, sensor output, etc.,
- Channel coding adds extra bits to data transmitted over the channel. This redundancy helps combat the errors introduced in transmitted bits due to channel noise.
- Sources can generate "information" in several formats like sequence of symbols such as letters from the English alphabet or binary symbols from a computer file or analog waveforms such as voice and video signals.

ANALOG AND DIGITAL COMMUNICATION

Communication System

ELECTRONICS & COMMUNICATION ENGINEERING

ANALOG AND DIGITAL COMMUNICATION

Discrete Memoryless Source

- •A source from which the data is being emitted at successive intervals, which is independent of previous values, can be termed as discrete memoryless source.
- •This source is discrete as it is not considered for a continuous time interval, but at discrete time intervals.
- •This source is memoryless as it is fresh at each instant of time, without considering the previous values.

Entropy

- Entropy is the measure of the average information content per symbol.
- Consider a Discrete Memoryless Source.
- •The symbols emitted by the source is defined by the set

$$S = \{s_0, s_1, s_2, \dots s_{K-1}\}$$

•Probability of the source emitting a symbol s_k is defined by p_k and hence the information contained by symbol s_k can be expressed as

$$I(s_k) = \log\left(\frac{1}{p_k}\right)$$

•Certain & Uncertain events – Example?

Properties of Entropy

Property 1:

$$H(S) = 0$$
 if and only if $p_k = 1$

for any value of k and all other symbols have zero probability i.e., no uncertainity

Property 2:

$$H(S) = log_2 K$$
 if and only if $p_k = 1/K$

for all the symbols (equiprobable) in the set i.e., *maximum* uncertainity

ANALOG AND DIGITAL COMMUNICATION

Source Coding Theorem

Requirements:

- Binary codeword
- Uniquely decodable
- ❖ If l_k is the length of codeword corresponding to symbol s_k, then average codeword length is given by

$$\bar{L} = \sum_{k=0}^{K-1} p_k l_k$$

Theorem:

Given a discrete memoryless source of entropy H(S), the average codeword length L for any distortionless source coding is bounded as

$$\bar{L} \geq H(S)$$

Coding Efficiency = $H(S) / \hat{L}$

ANALOG AND DIGITAL COMMUNICATION

Conditional Entropy

The amount of uncertainty remaining about the channel input after observing the channel output, is called as Conditional Entropy. It is denoted by H(x|y).

This parameter is essential to understand Mutual Information.

For $Y = y_k$, the conditional entropy is given by

$$H\left(x\mid y_{k}
ight) = \sum_{j=0}^{j-1} p\left(x_{j}\mid y_{k}
ight) \log_{2} \left[rac{1}{p\left(x_{j}\mid y_{k}
ight)}
ight]$$

