10 jan 2019 0.020/Ax502 70887 MITOMI fitting. 0.5 IV from Evan's email. Fractional Bindi = Bmax [DNAF]+Kd [DNA * Pho4] = BMAXX [DNAf] from my own cale-kd, R O. Read in protein raw F530. median -> protein Q. Read in DNA. bound. raw F685. median >DNA 3. Read in DNA free @ Remove background. @ Remove untros fle correlation beaven protein channel and DNAS. from an unamed books ch 13. P = TF protein. S = DNA Site PS Pts Kd = [PS] $[PS] = \frac{[P][S]}{kd}$ $[S]_t = [S] + [PS] = [S] + \frac{[P][S]}{kd} = \frac{[P][S]}{kd}$ = Kd.[S]+[P].[S] III think we are operating in a situation of the "one-component saturating" specifically, we provide sufficient amount of TF s.t. [P] > Kd. 11 jan 2019 Iteps to perform MITOMI 177 flow into the chip w/ all values open except for outles. Filling, especially the chamber. 2. Chamber values closed (protect DNA), keep flushing. Sandwich valves closed, chamber & button open. this is the reaction vessel! $P + S \rightleftharpoons PS \quad Kd = \frac{[P]_{\bullet}[S_{\bullet}]_{\bullet}}{[PS]}$ // measured as median of pixel intensity in the chamber? unit F685 median Pixel. 4. After 90 min, scan 1. -> total DNA conc. [S]t note: the concept of "concentration" here refers to total fluorescent intensity

\[\subsection \times \(\subsection \) \[\subsection \]
\[\subsection \(\subsection \) \[\subsection \] \[\subsection \]
\[\subsection \(\subsection \) \[\subsection \]
\[\subsection \(\subsection \) \[\subsection \(\subsection \) \[\subsection \) \[\subsection \] \[\subsection \(\subsection \) \] I Cy5/1 pixel area. ~ molecule ~ volume

5. button membrane closed.

MITOMI. 11 jan 2019 Continue (* surface = on button What happened during the incubation period. membrane, Free DNA [Sf] surface in solution met bound. Free protein [Pf] = bound + DNA in complex [\$5] = bound + in solution. Y surface bound a-His ab. 00 🎡 TF protein Ussume [PS] and [Pf] has the same XX DNA - Cys. distribution between surface & solution, then one can use [PS] surface as a proxy for [PS]all = [Pf]surface 5. after membrane is closed. keep open sandwich valve, close chamber valve flush -> surface bound total protein > [PS]surface + [Pf]sorface DNA bound to protein that is bound to surface > [PS] surface in protein units 11. Note that [PS] + [Pf] = [P] total is measured in F530. protein dans " F685 (CgJ) DNA dans 311-621-5729, David Soll. Kd= [Pf][Sf]. allin nM [PS] units What is measured.

[PS] surface $z \rightarrow fractional occupancy | Fo=[PS] = \frac{[PS]}{[Ps]+[PS]} = \frac{[PS]}{[Sf]} + [PS] = \frac{[Sf]}{[Sf]}$ [PS] surface + [Pf] surface During fitting, however, [5]+ is used in place of [S]f. [P] total under button in F\$30 protein channel 7 what's desired? [5] notice that the ratio is not write unitless, due what's used measured? (S)t. Cs. was to the two different fluorofore being used to Can we use [S] t to approximate estimate [PS] and [P]t. (S)f? See Bin He notes on 5th mai 2009 (paper) [P]t · Cp , [8]t · Cs , [PS] · Cs $y = \frac{[PS] \cdot C_s}{[P]t \cdot C_p} = \frac{C_s}{C_p} \frac{[PS]}{[P]t} = \frac{C_s}{C_p} \frac{[S]_f \cdot C_s}{C_p \cdot (c_p \cdot C_s)}$

12 Jan 2019					
* Som Va	rious approximations] organize	reading list	
	my paper notebook on s	5 mai 2009).	for Joheb	reading list Thomas	
1. For str	ong (eg. consensus site)	, we should be	able to re	aeh	
(0.1 m ~	0.01 a um. 100 ~ 10 nm	1.			\
the EDI	for CACQTQ is ~ 10 n VA] in spotting to detec	M, and the sp t, or volume cha	otted DNA i nges).	s? (can't 1	use
	CACATA. Ka ~ 11.1nm				
for co	nsensus site, we will	ll reach the plate	eau, that is		
[S]t w	ill be greater than k	id ([S]t>> Ka)	such that	the protein	
is satu	rated!		[PS]		
[PS]	$\rightarrow 1$ or $\frac{C_{s} \cdot [PS]}{C_{p} \cdot [Pt]}$	→ Cs = Bmax.)
LPJ+	Cp. LBt	P		c7c [5	< 1 <i>c.C</i>
at lower $[S]_t$, $([S]_t < Kd)$, if $[P]_t < Kd$, then $\frac{[PS]_{Cs}}{[P]_t G_b} = B_{max} \frac{[S]_f \cdot C}{KJ + KS]_f \cdot C}$					
$* \approx B_{\text{max}} \frac{[S]_f \cdot C_S}{K_d}$ (linear) in this case,					
Kd [S]t	low	high			
low		01	Plake	9	
consensus)	Fractional Occupancy is low (in linear range) assume [P] << kd (concums)	If we assume the then regardless	of [St])	
,	assume [P] << kd {conums}	[PS] = [Pg]f = Kd+[P]f ==	(P)+ <<1		
di e	$\frac{[PS]}{(S)t} = \frac{[P]_f}{Kd + (P)_f} \approx \frac{[P]_f}{Kd} \ll $			v.	
	[S]f ≈ [S]t.	$\Rightarrow [S]_f \approx [S]_t$			
high				245 9 11 11	
high veak sites)				¹⁰ Mag	
•	, •				

Table, 分情况讨论, Can [S]t ≈ [S]f.

