(mout)

PROPENYLAMINES, PROCESSES FOR THEIR PRODUCTION,

PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THEIR

USE AS PHARMACEUTICALS

This invention relates to propenylamines, processes for their production, pharmaceutical compositions containing them and their use as pharmaceuticals.

The invention provides compounds of formula I,

$$R_2 - C - N - CH - CH = CH - R_6$$
 R_3

TO031+

and R_2 represents hydrogen or lower alkyl, or R_1 and R_2 together represent a group of formula

T0040X

IIh

III '

(S) whereby in the formulae IIa to IIi,

6 R7 and R8 represent, independently, hydrogen, halogen, tri-

5 fluoromethyl, hydroxy, nitro, lower alkyl or lower alkoxy,

R₉ represents hydrogen, halogen, hydroxy, lower alkyl or lower alkoxy,

X represents oxygen, sulphur, imino, lower alkyl imino or a radical of formula - (CH₂)_{r-1}

10() p is 1, 2 or 3,

r is 1, 2 or 3,

s is 3, 4 or 5,

t is 2, 3 or 4, and

v is 3, 4, 5 or 6;

15 L R and R represent, independently, hydrogen or lower alkyl, and

Po R₄ represents C₁₋₆alkyl or C₃₋₈ cycloalkyl-(C₁₋₆)-alkyl; and

ho R_6 represents a group of formula

 $-C \equiv C - R_{11} \quad \text{IIIa} \qquad - C = CH_2 \quad \text{IIIb}$

10050x

wherein R₁₁ represents hydrogen, optionally α-hydroxy

substituted alkyl; alkenyl, alkynyl,

cycloalkyl, cycloalkylalkyl, phenyl,

phenalkyl or thienyl,

5 R₁₂, R₁₃ and R₁₄ represent, independently, hydrogen or lower alkyl, and

optionally containing a double bond; or

 $\binom{O}{O}$ (b) R_1 represents a group of formula IIa to IIg as defined under (a),

 R_2 represents hydrogen or lower alkyl, R_3 and R_4 together form a group $-(CH_2)u_{13}^{-}$, wherein u is an integer of 1 to 8, and R_5 and R_6 have the meanings given under (a).

preferably 1 to 4 carbon atoms, especially 2 or 1 carbon atoms. Unless otherwise stated alkyl moieties preferably have 1 to 12 carbon atoms especially 2 to 8 carbon atoms,

particularly 2 to 6 carbon atoms and most preferably 3 to 5 carbon atoms and if bridging 1 to 4 particularly 1 or 2 carbon atoms. Any alkenyl or alkynyl radical has preferably 3 to 6 carbon atoms, especially 3 or 4 carbon atoms, e.g. allyl, propenyl or propynyl. Such alkyl, alkoxy, alkenyl and alkinyl groups can be straight-chain or branched. A preferred cycloalkylidene radical is cyclohexylidene. The term cycloalkyl is to be understood as including polycyclo groups such as bornyl or adamantyl but is preferably cyclohexyl or cyclopentyl.

Conveniently R₇ and R₈ are identical and are both hydrogen. Conveniently R₉ is hydrogen or halogen. In IIb and IIc the bond to the carbon atom to which R₂ and R₃ are attached is conveniently attached meta to X and para to the ring nitrogen, respectively. X is conveniently sulphur, imino or lower alkylamino. R₁ is preferably a radical of formula IIb, IIc or IId, or especially IIa. R₂ is preferably hydrogen. R₃ is preferably hydrogen and R₄ is conveniently alkyl. R₅ is conveniently hydrogen.

The values of p, r, s, t, u and v are conveniently chosen to produce a seven- preferably a five- or sixmembered ring.

The double bond between R_6 and the nitrogen 25 atom preferably has the trans-configuration.

Halogen stands for fluorine, chlorine or bromine, preferably chlorine or bromine.

The present invention also provides a process

for the production of a compound of formula I, which
comprises

(a) when R₆ represents a group of formula IIIa, as defined above, (compound Ia), reacting a compound of formula IV,

$$R_2 - \frac{R_1}{C} - NH - R_4$$

PS wherein R₁ to R₄ are as defined above, with a compound of formula V,

$$A - CH - CH = CH - R_6^1$$

V

wherein A is a leaving group, R₅ is as defined above, and R's stands for a group of formula IIIa, as defined above, or

P(b) when R₆ represents a group of formula IIIa, wherein R₁₁ represents α-hydroxyalkyl (compounds Ib), reacting a metalated compound of formula Ic,

$$R_{2} - \frac{{}_{0}^{R_{1}} {}_{1}^{R_{4}} {}_{15}^{R_{5}}}{{}_{3}^{R_{3}}}$$

VII

the substitute of the state of

10080X

wherein R₁₅, R₁₆ and R₁₇ represent independently hydrogen or lower alkyl, or

5)(c) when the double bond between R₆ and the nitrogen atom is in trans configuration (compounds Id) reducing a compound of formula VIII,

$$R_{2} - C - N - CH - C \equiv C - R_{6}$$

$$R_{3}$$
VIII

wherein R₁ to R₆ are as defined above, with diisobutylaluminiumhydride, or

10 (d) when R₆ represents a group of IIIb or IIIc as defined above or a group of formula IIId,

$$-c = c - c = c < R_{16}$$
 R_{17}

PS wherein R_{15} , R_{16} and R_{17} are as defined above (compounds Ie) splitting off water from a compound of formula

$$R_2 - C - N - CH - CH = CH - R_6^{"}$$
 If

wherein R_1 to R_5 are as defined above, and R_6 represents a group of formula IIIe, IIIf, R_6 or IIIg,

(0090X

$$-C \equiv C - C - CH R_{16}$$

$$R_{15}$$
R₁₇
R₁₇

PS wherein \log_{11} to R_{17} and Z are as defined above, or \log_{10}^{11} (e) when R_3 represents hydrogen or lower alkyl and R_4 represents C_{1-6} alkyl or C_{3-8} cycloalkyl- (C_{1-6}) -alkyl (compounds Ig), introducing the group R_4 into a compound of formula IX,

11P007

$$R_2 - C - NH - CH - CH = CH - R_6$$
 IX

wherein R_1 , R_2 , R_5 and R_6 are as defined above, $\begin{bmatrix}
R_3^k & \text{represents hydrogen or lower alkyl, and} \\
R_4^k & \text{represents } C_{1-6} \text{alkyl or } C_{3-8} \text{cycloalkyl} = 0
\end{bmatrix}$ (C_{1-6})-alkyl.

Process (a) may be effected in conventional
manner for the production of tertiary amines by condensation from analogous starting materials. The process may

be effected in an inert solvent such as a lower alkanol, e.g. ethanol, optionally in aqueous admixture, an aromatic hydrocarbon solvent, e.g. benzene or toluene, a cyclic ether, e.g. dioxane or a carboxylic acid dialkylamide solvent, e.g. dimethylformamide. The reaction temperature is conveniently from room temperature to the boiling temperature of the reaction mixture, preferably room temperature. The reaction is conveniently effected in the presence of an acid binding agent, such as an alkali metal carbonate, e.g. sodium carbonate. The leaving group A is conveniently iodine or preferably chlorine or bromine, or an organic sulphonyloxy group having 1 to 10 carbon atoms, e.g. alkylsulphonyloxy, preferably having 1 to 4 carbon atoms such as mesyloxy, or alkylphenylsulphonyloxy preferably having 7 to 10 carbon atoms such as tosyloxy.

5

10

15

20

25

Process (b) may be effected in conventional manner, for example by metalating the compound of formula Ic, e.g. with butyllithium in an inert solvent such as an ether e.g. tetrahydrofuran and subsequently reacting the metalated compound of formula Ic, thus obtained, preferably without isolation with a compound of formula VII.

The reduction with diisobutylaluminium hydride (DIBAH) according to process (c) is preferably carried out in an inert solvent e.g. in an aromatic hydrocarbon such as toluene or benzene and at room temperature or raised temperature e.g. 35 to 40°C.

The splitting-off of water according to process d) can be carried out with a suitable agent such as an inorganic acid, e.g. hydrochloric or sulphuric acid, an organic acid, e.g. methanesulphonic acid, benzenesulphonic acid or p-toluenesulphonic acid or an inorganic or organic acid anhydride or -halide e.g. POCl in an inert solvent. An excess of an acid halide if used can act as reaction medium whereby the reaction is carried out in the presence of an acid binding agent such as a tertiary amine, e.g. a trialkylamine or (---10 Reaction temperatures vary according to pyridine. reaction conditions and lie for example between -10 and The splitting-off of water can also be carried out with the help of polyphosphoric acid at temperatures between 80 and 120°C whereby inorganic acids such as 15 phosphoric acid, organic acids such as acetic acid or an excess of polyphosphoric acid can serve as solvent.

Process (e) may be effected in manner conventional for the "alkylation" of secondary amines (the term "alkylation" being used here to denote introduction of any of the hydrocarbyl groups R₄), for example by direct "alkylation" with an "alkylating" agent, for example a halide or sulphate, or by reductive alkylation, in particular by reaction with an appropriate aldehyde and subsequent or simultaneous reduction. Reductive "alkylation"

is suitably effected by reacting a compound of formula IX in an inert organic solvent, such as a lower alkanol, e.g. methanol, and at an elevated temperature, in particular at the boiling temperature of the reaction mixture with the corresponding aldehyde. The subsequent reduction may be effected with, for example, a complex metal hydride reducing agent, e.g. NaBH₄ or NaCNBH₃. The reduction may also be effected simultaneously to the alkylation, for example by use of formic acid which may serve both as reducing agent and as a reaction medium. The reaction is preferably carried out at raised temperature, in particular at the boiling point of the reaction mixture.

5

10

20

Free base forms of the compounds of formula I
may be converted into salt forms and vice versa. Suitable
acid addition salts are e.g. hydrochloride, hydrogen
fumarate or naphthaline-1,5-disulphonate.

The compounds of the formula I and their intermediates can be obtained in the form of isomeric mixtures of the various cis/trans isomers which can be separated according to established methods. Alternatively, isomers of the compounds can be obtained by using the appropriate isomer of the starting material. Unless otherwise stated the compounds are always to be understood as being mixtures of these isomers.

The starting materials of formula IV are in part new and can be prepared by reacting in conventional

manner a compound of formula X,

$$R_2 - C - Hal$$

X

with a compound of formula XI, P5

TI R4 - NH2 TM XI PS

ho S wherein in the formulae X and XI R_1 to R_4 are as defined above and Hal stands for halogen.

The starting materials of formula V are in part new and can be prepared by reacting a compound of formula XII, 15

according to the following scheme

 $R_6^{\bullet} H \longrightarrow R_6^{\bullet} \ominus Me \oplus + R_5^{-CH=CH-CHO}$ XIV

 $\begin{array}{c} R_6' - CH - CH = CH - R_5 \xrightarrow{+ HA} V \\ OH \end{array}$

Whereby R_{640}^{\bullet} , R_{5} (and A are as defined above and Me represents a metal cation.

The starting materials of formula VIII are new and can be prepared (a') by subjecting a compound of formula IV, defined above, and compounds of formulae XVI and

5 to a Mannich reaction or

in the case when R₆ represents a group of formula IIIa as defined above by reacting a compound of formula IV as defined above with a compound of formula XVIII

TO1417

$$HC \equiv C - CH - A$$

XVIII

 ρ 5 to give a compound of formula XIX,

TO1427

$$R_2 - \begin{matrix} R_1 & R_4 & R_5 \\ C - N - CH - C \equiv CH & XIX \end{matrix}$$

reaction with Cytand a compound of formula XX, PS

TI Rightal TM XX PS

or (c') when R₆ represents a group of formula IIIb as defined above splitting off water from a compound of formula XXI,

14

$$R_2 - \begin{bmatrix} R_1 & R_4 & R_5 \\ C - N - CH - C = C - C - CH_3 & XXI \\ R_3 & R_{11} \end{bmatrix}$$

whereby in the formulae XVI to XXI R₁ to R₆, R₁₁, R₁₁, A and Hal are as defined above.

The starting materials of formula IX are new and can be prepared for example by reacting a compound of

5 formula XXII,

TO151X

$$R_2 - C - NH_2 \qquad XXII$$

with a compound of formula XXIII

TO1687

$$O = C - CH = CH - R_6$$

XXIII

to give a compound of formula XXIV

TO1537

$$R_2 - C - N = C - CH = CH - R_6$$
 XXIV

PS and reducing this e.g. with a complex hydride such as NaBH₄, whereby in the formulae XXII to XXIV R_1 , R_2 , R_3^{\prime} , R_5 and R_6 are as defined above.

Compounds of formula XXI can be prepared

(a") by subjecting a compound of formula IV as defined above,
a compound of formula XVII as defined above, and a compound
of formula XXV,

TOILOX

$$HC \equiv C - C \xrightarrow{OH} CH_3$$

XXV

f5 to a Mannich reaction, or

(b") metalating a compound of formula XIX, as defined above, and reacting the metal compound thus obtained with a carbonyl compound of formula XXVI, 65

TI CH3.CO.R₁₁ TM XXVI PS

5 whereby in the formulae XXV and XXVI R₁₁ is as defined above.

The compounds of formulae IVa and IVb

PS can be prepared according to the following scheme

 $r \le$ whereby in the formulae IVa, IVb and XXVII to XXIX R_1 , R_2 and u are as defined above.

The starting materials of formula If wherein

HIMAD REPORT represents a group of formula IIIe or IIIf as defined above are new and can be prepared by reduction with LiAlH4 of a compound of formula XXIA,

$$R_2 - \frac{R_1}{C} = \frac{R_4}{N} + \frac{R_5}{C} = \frac{R_6}{N} + \frac{R_5}{C} = \frac{R_6}{N}$$

group of formula IIIe or IIIf as defined above.

Compounds of formula XX are in part new and can be prepared by reacting a compound of formula XII, as defined above, with butyllithium and a halogen.

- The new compounds of formulae IV, V, VIII, IX

 XX and If also form part of the invention. The remaining intermediate compounds are either known or can be prepared according to known methods or as hereinbefore described.
- they possess chemotherapeutic activity. In particular, they are useful as antimycotic agents, as indicated in vitro in various families and types of mycetes, including Trichophyton spp, Aspergillus spp, Microsporum spp and Sporotrychium schenkii and Candida spp at concentrations of, for example 0.01 to 100 µg/ml, and in vivo in the experimental skin mycosis model in guinea pigs. In this model, guinea pigs are infected by subcutaneous applications of Trichophyton Quinckeanum. The test substance is administered

daily for 7 days beginning 24 hours after the infection either by local application by rubbing the test substance (taken up in polyethylene glycol) on the skin surface, or perorally or sub-cutaneously, the test substance being administered as a suspension. The activity is shown on local application at concentrations of for example 0.01 to 5%. The oral activity is shown in vivo in the guinea pig 7. Trichophytosis model at dosages of, for example 2 to 70 mg/kg.

5

25

10 For the above-mentioned use, the dose administered will of course vary depending on the compound employed, mode of administration and treatment desired. However, in general, satisfactory results are obtained when administered at a daily dosage of from 1 to 100 mg/kg of animal body weight, conveniently given in divided doses two to four 15 times daily, or in sustained release form. For the larger mammals, the corresponding daily dosages are in the range of from 70 to 2000 mg, and dosage forms suitable for oral administration comprise from 17.5 to 1000 mg. The invention therefore also concerns a method of treating diseases or 20 infections caused by mycetes using a compound of formula I.

The compounds may be used in free base form or in the form of chemotherapeutically acceptable acid addition salts. Such salt forms exhibit the same order of activity as the free base forms. Suitable salt forms are e.g. hydrochloride, hydrogen fumarate or naphthaline-1,50 disulphonate.

The compounds may be admixed with conventional chemotherapeutically acceptable diluents and carriers, and, optionally, other excipients and administered in such forms as tablets or capsules. The compounds may alternatively be administered topically in such conventional forms as ointments or creams or parenterally. The concentrations of the active substance will of course vary depending on the compound employed, the treatment desired and the nature of the form etc. In general, however, satisfactory results are obtained e.g. in topical application forms at concentrations of from 0.05 to 5, in particular 0.1 to 1 wt %.

Such compositions also form part of the invention.

Examples of preferred compound groups are

15) (i) compounds of formula I wherein R₆ represents a group of formula IIIa wherein R₁₁ represents alkyl preferably C₂-C₈alkyl, more preferably C₂-C₆alkyl, most preferably C₃-C₅alkyl for example n- or in particular t-butyl;

- f (ii) compounds of formula I wherein R₆ represents a group of formula IIIa wherein R₁₁ represents

 α-hydroxy substituted alkyl: alkenyl, alkynyl,
 - 60 α-hydroxy substituted alkyl; alkenyl, alkynyl,
 cycloalkyl, cycloalkylalkyl, phenyl, phenalkyl
 or thienyl;
- (iii) compounds of formula I wherein R₁₁ represents alkyl, alkenyl, alkynyl, cycloalkylalkyl, phenyl or phenalkyl and all other substituents are as defined under formula I;
- 10 (iv) compounds of formula I wherein

5

- PS(a) oR represents a group of the formula IIa, IIb, IIe,
 - R₂ represents hydrogen,
 - R₃ represents hydrogen,
 - R_4 represents lower alkyl,
- orlog₃ and R₄ together form a group -(CH₂)_u- or

(b) wherein R₁ and R₂ together represent a group of the formula IIh,

R₃ represents hydrogen,

R₄ represents lower alkyl,

R₅ represents lower alkyl and

R₆ is as hereinbefore defined,

formula IIIa as hereinbefore defined or as described under (i) or (ii) above and/or R₁ is preferably a group of formula IIIa.

Preferred meanings of the substituents in the compounds of the formula I are such as set out hereinbefore.

Compounds of formula I are generally preferred 15 wherein the double bond between R_6 and the nitrogen atom is in trans-configuration.

Particularly preferred individual compounds are:

N-methyl-N-(l-naphthylmethyl)-non-2(trans)-en-4-ynyl-l

amine and N-methyl-N-(l-naphthylmethyl)-6,6-dimethyl-hept

20 2(trans)-en-4-ynyl-l-amine, and their hydrochlorides.

The following Examples illustrate the invention whereby all temperatures are in degrees centigrade.

CL

EXAMPLE 1

trans-N-(3-Benzo[b]thiophenemethyl)-N-methyl-non-2-en 4-ynyl-l-amine and cis-N-(3-Benzo[b]thiophenemethyl)-N-methyl-non-2-en-4-ynyl-l-amine p[process a)]q

are added dropwise to a mixture of 10.5 g N-(3-Benzo[b]-thiophenemethyl)-N-methylamine, 8.2 g K₂CO₃ and 100 ml dimethylformamide and stirred overnight. The reaction mixture is riltered and the solvent removed under vacuum.

The residue is partitioned between ether and saturated aqueous NaHCO₃, the organic phase dried, concentrated under vacuum and chromatographed over kieselgel using toluene/ethylacetate 4:1 as eluant. The trans isomer is eluted first followed by the cis isomer. Both are oils.

L 15 EXAMPLE 2

20

trans-N-Methyl-N-(l-naphthylmethyl)-6-hydroxy-6-methyl-hept-2-en-4-ynyl-l-amine [process b)]

10.7 ml of a 15% butyllithium solution in hexane are added dropwise to 3g of trans N-methyl-N-(1© naphthylmethyl)pent-2-en-4-ynyl-1-amine in absolute tetra-hydrofuran and reacted after 30 minutes with a solution of 1.79 g of acetone. The reaction mixture is stirred for 24 hours at room temperature, poured onto ice and extracted

with chloroform. The organic phase is washed, dried and concentrated under vacuum. After chromatography over kieselgel (eluant toluene/ethyl acetate 4:1) the title compound is obtained as an oil.

5 EXAMPLE 3:

(a) trans-N-Methyl-N-(l-naphthylmethyl)-non-2-en-4-ynyl-1

amine [process c)]

72 ml of a 1.2M solution of DIBAH in toluene are added dropwise to a solution of 5g N-methyl-N-(1
10 naphthylmethyl)-2,4-nonadiynyl-1-amine in dry toluene and the resulting mixture stirred under protective gas overnight at 40° and then for 24 hours at room temperature.

The excess reagent is broken down with 2N NaOH under cooling and the reaction mixture extracted with ether.

The organic phase is dried, concentrated under vacuum and chromatographed over kieselgel (eluant - toluene/ethylacetate 95:5). The title substance is isolated as an oil.

(L (b) Hydrochloride salt .

The compound from a) is converted to its hydro
chloride in conventional manner e.g. by treating with

4N ethanolic HCl and melts after recrystallisation at

118-121°C.

/4 26

EXAMPLE 4

N-Methyl-N-(l-naphthylmethyl)-deca-2(trans),6(cis)-dien-4©
ynyl-l-amine

hydroxy-dec-2-en-4-ynyl-1-amine are refluxed under a water separator with 570 mg p-toluenesulphonic acid (monohydrate) in benzene. The mixture is cooled after 2 hours, the organic phase shaken a number of times with saturated aqueous NaHCO₃, dried and concentrated under vacuum. The residue is chromatographed over kieselgel (eluant coluene/ethylacetate 9:1) to give the title product.

EXAMPLE 5

N-Methyl-N-(l-naphthylmethyl)-4-cyclohexyl-2-(trans)-4©

pentadienyl-l-amine (A) and N-Methyl-N-(l-naphthylmethyl)

4-cyclohexylidenyl-2-(trans)-pentenyl-l-amine (B)

cyclohexyl-2-pentenyl-1-amine is refluxed under a water separator with 570 mg p-toluenesulphonic acid (monohydrate) in benzene. The mixture is cooled after 2 hours, the organic phase shaken a number of times with saturated aqueous NaHCO₃, dried and concentrated under vacuum. The residue is chromatographed over kieselgel (eluant coluene/ethyl acetate 9:1) to obtain first title product (A) followed by title product (B) as oils.

.

15

20

10

5

EXAMPLE 6

<u>trans-N-Methyl-N-(l-naphthylmethyl)-4-cyclohexylidenyl</u>

2-buten-yl-amine [process e)]

- 3g (1-Naphthylmethyl)amine and 2.86 g

 4-cyclohexylidenyl-2-butenal are stirred in ether together with a 4 Å molecular sieve. The reaction mixture is filtered and concentrated under vacuum. The residue is taken up in methanol, treated with 800 mg

 NaBH₄ and stirred for 2 hours at room temperature.
- amine thus obtained is taken directly for reductive methylation. 8 ml 37% aqueous formaldehyde solution are added and refluxed for 1 hour. The mixture is then treated under ice-cooling with 3.6g NaBH₄ and stirred for 16 hours at room temperature. The resulting mixture is concentrated under vacuum, the residue partitioned between saturated NaHCO₃ and ethyl acetate and the organic phase dried and concentrated. The title substance is obtained by chromatography over kieselgel (eluant toluene/ethyl acetate 4:1) as an oil.

The following compounds of formula I can be obtained in an analogous manner.

Example	$R_{\underline{1}}$	R ₂	R ₃	R ₄	R ₅	R ₅	Conf.	Physical data	Proc.
7		Н	H	CH ₃	H	-C=C-(CH ₂) ₃ -CH ₃	trans	oil	c, e
8	- H -	H	H	CH ₃	H	. " .	cis	oil [.]	e
9		, H	Н	CH ₃	H	, H ,	cis	oil	a, e
10	H	H	Н	CH ₃	H	_ # _	trans	oil	ı;c,e
11	- " -	H	H	CH ₃	H	, n .	cis	oil	a, e
12		H	H	CH ³	H		trans	oil	1,0,6
13	- " -	H	Ħ	CH ₃	H	H	cis	oil	a, e
14		H	· H	CH ₃	H	- C ≡ CH	trans	mp·(hydrochlorida 150-155°) a,c,e

6

900-9253 CIP

Example	R ₁	R ₂	R ₃	R ₄	-R ₅	R ₆	Conf.	Physical data	Proc	
15		Н	R ₃ +F	14+N N	H	- C = CH	trans	mp (hydrochlor-ide) 150-155°	a,c	
16 .		H	H	CH ₃	H	-CEC-C(CH ₃) ₃	trans	ide) 199-202° (crystal invertic	a,c,e	
17.	- " - ,	H	H	CH ₃	H	, . " .	cis	above 135°) oil	a, e	
18 .	_ " _	H .	H .	CH ₃	H	-C2C-C6H5	trans	oil	a,c,e	1 2
19 ·	- " -	H	H	CH ₃	H	. "	cis	oil	a, e	5 -
20	" n "	- H	H	CH ₃	H	-C≡C-CH CH ₃	trans	m.p. (hydrochlor- ide) 160-162°	a,c,e	
21	. 1	H	H	CH ₃	H		cis	oil	a,e	
.22		Н	H	CH ₃	H	-C=C-CH ₂ -CH ₃	trans	m.p. (hydrochlor- ide) 124-126°	a,c,e	Ĭ
23	• • •	H	. н	CH ₃	H	- H -	cis	oil	a, e	9253
24	. " .	н	H	CH ₃	H	-C=C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	trans	oil	a,c,0	O.I.O

.

Cip

Example	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	Conf.	Physical data	Proc
36		H	H	CH ₃	Н	-C=C-CH=CH-(CH ₂) ₂ -CH	trans	oil	a,c,ė
37		H	H	CH3	H	-C=C-C=CH.CH ₃	trans	oil	n,c,d e
38	1	H	H	CH ₃	H	-C=C-C=CH.CH ₃	trans	oil	a,c,d, e
39	. 11	H	H	CH ₃	H	-C=C-C=CH ₂ C (CH ₃) ₃	trans	oil	a,c,d, e
40		H	H	CH ₃	H	- C = CH ₂ C ₆ H ₅	trans	oil	c,d,
41		H	H	CH ₃	H	- C = CH ₂ CH ₂ . CH CH ₃ CH ₃	trans	oil	c,å, e
42	. " .	H	H .	CH ₃	Н	$- C = CH_2$ $(CH_2)_3 - CH_3$	trans	oil	c,d e
43		H	H	CH ₃	H	- C = CH ₂ C (CH ₃) ₃	trans	oil	c,d,

Sept 1 A the All

900-9253

CIP

Example	R ₁	R ₂	R ₃	R ₄	R ₅	R	Conf.	Physical data	Proc.
44		Н	Н	CH ₃	H	$\left \left(-\frac{C}{C} + \frac{1}{3} \right) \right $	trans	oil	c,e
						$\left \left(- \frac{CH_2}{CH_2} \right) \right $	trans	oil	c,e
45		H	H	CH ₃	H	$- \operatorname{cd} = \left\langle \frac{H}{H} \right\rangle$	trans	oil	c,d
			,					4	
46	- " -	H	H	CH ₃	H	-C≡C-CH ₂ OH	trans	oil	b,c,e
47	. 1 .	H	H	CH ₃	CH ₃	-C≡C-(CH ₂ ') ₃ -CH ₃	trans	oil	a,c,e
48	_ 11 _	H .	H	CH ₃	CH ₃		cis	oil	a,e .
49	. "	H	H	CH ₃	H	CH ₃ -C≡C-C-C _H 1 2 5 . CH ₃	trans	oil	a,c,e
50	. " .	H	H	CH ³	H	- " -	cis	oil	a,e
51		H	Н ,	CH ₃	H	-CECH	trans	oil	a,c,e

900-9253 CIP

900-9253 CIF

	, Example	R	, R ₂	R ₃	R ₄	· R _E	R	Conf.	Physical data	Proc.
	57		H	H	CH3	H	-C=C-C (CH' ₃) 3	cis	oil	a,e
_	58	OCH ₃	R ₂	Ħ	CH ₃	H	-CH=\(\begin{array}{c} \text{H} \\ \end{array}	trans	oil	c,d,e
	59	n *	•	H	CH ₃	H	-C≡C-C(CH ₃) ₃	trans	oil	1,C,e
					.			,		
		·	. '							

- 30 -

900-9253 CIP

In the following table NMR data are given. Data comprises peaks in ppm relative to TMS as standard in CDCL3. Types of peaks are

dt = double triplet

dm = double multiplet

s = singlet

d = doublet

t = triplet

ps.t = pseudo triplet

dd = double doublet

dbr = double broad

br = broad

qua = quartet

mbr = multiple broad

sext = sextuplet

ddd = double double doublet

sbr = single broad

1	T	·
Example	Isomer	Spectrum
1,7	trans	$S = 7.7-8.0$ (m, 2H); $7.15-7.45$ (m, 4H); 6.14 (dt, $J=16$ and 2×6.5 Hz, 1 olef. H); 6.65 (dm, $J=16$ Hz, 1 olef. H); 3.72 (s, 2H); 3.10 (d, $J=6.5$ Hz, 2H); 2.3 (m, 2H); 2.24 (s, 3H); $1.2-1.7$ (m, 4H); 0.9 (ps.t., 3H).
1,8	cis	S = 7.7-8.0 (m, 2H); 7.15-7.45 (m, 4H); 6.0 (dt, J=11 and 2 x 6.5 Hz, 1 olef. H); 5.64 (dm, J=11 Hz, 1 olef. H); 3.66 (s, 2H); 3.35 (d, J=6.5 Hz, 2H); 2.34 (m, 2H); 2.28 (s, 3H); 1.2-1.7 (m, 4H); 0.9 (ps.t., 3H).
9	cis	δ = 8.2-8.4 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.05 (dt, J=10.8 + 2 x 7 Hz, 1 olef. H); 5.65 (dm, J=10.8 Hz, 1 olef. H); 3.92 (s, 2H); 3.38 (dd, J=7 u. 1.5 Hz, 2H); 2.34 (m, 2H); 2.25 (s, 3H); 1.2-1.8 (m, 4H); 0.94 (m, 3H).
10	trans	$\delta = 6.9-7.2$ (m, 3H); 6.12 (dt, J=16 and 2 x 6.5 Hz, 1 olef. H); 5.64 (dm, J=16 Hz, 1 olef. H); 3.4 (s, 2H); 3.05 (d, J=6.5 Hz, 2H); 2.7-2.9 (m, 4H); 2.2-2.4 (m, 2H); 2.18 (s, 3H); 1.65-1.9 (m, 4H); 1.3-1.7 (m, 4H); 0.92 (m, 3H).
11	cis	δ = 6.85-7.2 (m, 3H); 5.97 (dt, J=11 and 6.5 Hz, 1 olef. H); 5.60 (dm, J=11 Hz, 1 olef. H); 3.45 (s, 2H); 3.30 (d, J=6.5 Hz, 2H); 2.7-2.9 (m, 4H); 2.2-2.4 (m, 2H); 2.22 (s, 3H); 1.7-1.9 (m, 4H); 1.3-1.7 (m, 4H); 0.95 (m, 3H).

T0340X

		33 = 300=3233 CIP
Example	Isomer	Spectrum
12	trans	S = 7.1-7.8 (m, 5H); 6.14 (dt, J=16 and
•		2 x 6.5 Hz, 1 olef. H); 5.65 (dm, J= 16 Hz, 1 olef. H); 3.63 (s, 2H); 3.1 (d, J=6.5 Hz, 2H); 2.2-2.4 (m, 2H);
		2.25 (s, 3H); 1.2-1.7 (m, 4H); 0.9 (m, 3H).
13	cis	<pre>f = 7.1-7.8 (m, 5H); 6.0 (dt, J=11 and 2 x 6.5 Hz, 1 olef. H); 5.64 (dm, J= 11 Hz, 1 olef. H); 3.66 (s, 2H); 3.35</pre>
		(d. J=6.5 Hz, 2H); 2.2-2.4 (m, 2H); 2.30 (s, 3H); 1.2-1.7 (m, 4H); 0.9 (m, 3H).
16	trans	δ = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.18 (dt, J=17 and 2x7 Hz); 5.65 (dm, J=17 Hz, 1H); 3.9 (s, 2H); 3.12 (dd, J=7 u. 1 Hz, 2H); 2.22 (s, 3H); 1.25 (s, 9H).
17	cis	f = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.03 (dt, J=11 and 2 x 6.5 Hz, 1H); 5.65 (dbr, J=11 Hz, 1H); 3.92 (s, 2H); 3.38 (d, J=6.5 Hz, 2H); 2.26 (s, 3H); 1.27 (s, 9H).
18	trans	S = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.2-7.6 (m, 9H); 6.36 (dt, J=16 and 2 x 6.5 Hz, 1H); 5.9 (dm, J=16 Hz, 1H); 3.94 (s, 2H); 3.22 (d, J=6.5 Hz, 2H); 2.28 (s, 3H).
19	cis	δ = 8.2-8.4 (m, 1H); 7.7-7.9 (m, 2H); 7.2-7.6 (m, 9H); 6.20 (dt, J=11 and 2 6.5 Hz, 1H); 5.85 (d, J=11 Hz, 1H); 3.98 (s, 2H); 3.50 (d, J=6.5 Hz, 2H); 2.30 (s, 3H).

35

Example	Isomer	Spectrum
20	trans	
	trans	6 = 8.2-8.4 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.20 (dt, J=16 and 2 x 6.5 Hz, 1H); 5.80 (dm, J=16 Hz, 1H); 3.90 (s, 2H); 3.14 (d, J=6.5 Hz, 2H); 2.5 (m, 1H); 2.24 (s, 3H); 1.2-1.7
-		(m, 2H); 1.18 (d, J=7 Hz, 3H); 1.0 (t, J=7 Hz, 3H).
21	cis	\$\int 8.2-8.4 \text{ (m, 1H); 7.7-7.9 \text{ (m, 2H); } \text{ 7.3-7.6 \text{ (m, 4H); 6.05 \text{ (dt, J=11 and 2 x } \text{ 6.5 Hz, 1H); 5.67 \text{ (dm, J=11 Hz, 1H); } \text{ 3.94 \text{ (s, 2H); 3.40 \text{ (d, J=6.5 Hz, 2H); } \text{ 2.55 \text{ (m, 1H); 2.28 \text{ (s, 3H); 1.2-1.8 } \text{ (m, 2H); 1.20 \text{ (d, J=7 Hz, 3H); 1.02}}
22	trans	(t, J=7 Hz, 3H). \$ = 8.2-8.35 (m, 1H); 7.65-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.20 (dt, J=16 and 2 x 6.5 Hz, 1H); 5.68 (dm, J=16 Hz, 1H); 3.88 (s, 2H); 3.13 (d, J=6.5 Hz, 2H); 2.22 (s, 3H); 2.2 (m, 2H); 1.6-2.1 (m, 1H); 1.0 (d, J=7 Hz, 6H).
23	cis	$\mathcal{S} = 8.2-8.4$ (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.04 (dt, J=12 and 2 x 7 Hz, 1H); 5.65 (dbr, J=12 Hz, 1H); 3.90 (s, 2H); 3.38 (d, J=7 Hz, 2H); 2.24 (s, 3H); 2.2 (m, 2H); 1.6-2.0 (m, 1H); 1.0 (d, J=7 Hz, 6H).
24	trans	$\int = 8.2-8.4$ (m, 1H); 7.65-7.9 (m, 2H); 7.3-7.6 (m, 4H); 7.15-7.3 (m, 2H); 6.95 (m, 1H); 6.36 (dt, J=16 u. 2 x 6 Hz, 1H); 5.9 (dbr, J=16 Hz, 1H); 3.92 (s, 2H); 3.20 (d, J=6 Hz, 2H); 2.28 (s, 3H).

36

Example	Isomer	Spectrum
2,25	trans	$\mathcal{S} = 8.15-8.35$ (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.22 (dt, J=16 and 2 x 6.5 Hz, 1H); 5.67 (dt, J=16 and 2 x 1.5 Hz, 1H); 3.88 (s, 2H); 3.13 (dd, J=6.5 u. 1.5 Hz); 2.22 (s, 3H); 2.15 (brOH); 1.5 (s, 6H).
26	trans	identical with Ex. 2,28 except d = 1.8 (br, OH); 1.65 (qua, J=8 Hz, 4H); 1.0 (t, J=8 Hz, 6H).
27	trans	<pre>S= 8.2-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.26 (dt, J=16 and 2 x 6 Hz, 1H); 5.7 (dm, J=16 Hz, 1H); 4.46 (mbr, 1H); 3.90 (s, 2H); 3.15 (d, J=6 Hz, 2H); 2.25 (s, 3H); 2.0 (br, OH); 1.2- 1.8 (m, 6H); 0.9 (m, 3H).</pre>
28	trans	<pre> S = 8.15-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.25 (dt, J=16 and 2 x 6.5 Hz, 1 olef. H); 5.70 (dbr, J=16 Hz, 1H); 3.9 (s, 2H); 3.14 (d, J=6.5 Hz, 2H); 2.24 (s, 3H); 2.1 (br, OH); 1.72 (qua, J=7 Hz, 2H); 1.50 (s, 3H); 1.04 (t, J = 7 Hz, 3H). </pre>
2 9	trans	δ = 8.15-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.22 (dt, J=16 and 2 x 6.5 Hz, 1H); 5.70 (dm, J=16 Hz, 1H); 3.9 (s, 2H); 3.14 (d, J=6.5 Hz, 2H); 2.24 (s, 3H); 1.95 (m, OH); 1.46 (s, 3H); 1.06 (s, 9H).

Example	Isomer	Spectrum
3,30	trans	<pre> S = 8.2-8.35 (1 arom. H); 7.7-7.9 (2 arom. H); 7.3-7.6 (4 arom. H); 6.17 (dt, 1 olef. H, J=16 + 2 x 6.5 Hz); 5.67 (d, 1 olef. H, J=16 Hz); 3.89 (s, 2H); 3.13 (d, 2H, J=6.5Hz); 2.21 (s, 3H); 2.2-2.4 (m, 2H); 1.2-1.8 (4H); 0.8-1.05 (m, 3H).</pre>
31	trans	identical with Ex. 3,30 except: 6 = 2.28 (t, 2H); 1.55 (sext., 2H); 1.0 (t, 3H).
32	trans	identical with Ex. 3,30 except: $\delta = 1.2 - 1.8$ (m, 6H).
33	trans	identical with Ex. 3,30 except: $\delta = 1.2 - 1.8 \; (m, 8H)$.
34	trans	<pre>d = 8.5 (br, 1H); 7.3-7.9 (m, 6H); 6.02 (ddd, J=5, 8 + 16 Hz, 1H); 5.46 (dbr. J=16 Hz, 1H); 3.80 (br, 1H); 3.1-3.35 (m, 2H); 2.52 (dd, 8 + 14 Hz, 1H); 2.0- 2.35 (m, 3H); 1.6-2.0 (m, 6H); 1.54 (sext., J=7 Hz, 2H); 0.97 (t, J=7 Hz, 3H).</pre>
35	trans	identical with Ex. 34 except: $\delta = 1.3-1.7 \; (m, 4H); \; 0.9 \; (ps.t, 3H).$
4,36	trans	$\delta = 8.2-8.35$ (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.26 (dt, J=15.5 + 2x 6.5 Hz, 1H); 5.9 (dt, J=11 + 2x7 Hz); 5.85 (d, J=15.5 Hz, 1H); 5.58 (dbr, J=11 Hz); 3.92 (s, 2H); 3.18 (d, J=6.5 Hz, 2H); 2.35 (t, 2H); 2.26 (s, 3H); 1.2-1.7 (m, 2H); 0.95 (ps.t. 3H).

Example	Isomer	Spectrum
	trans	<pre></pre>
38	trans	<pre>6 = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.30 (dt, J=16 + 2x6 Hz, 1H); 5.86 (d,J=16 Hz, 1H); 5.75 (m, 1H); 3.92 (s, 2H); 3.18 (d, J=6 Hz, 2H); 2.26 (s, 3H); 1.87 (s, 3H); 1.8 u. 1.7 (2 d, 3H).</pre>
39	trans	S = 8.2-8.4 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.28 (dt, J=16 + 2x6.5Hz, 1H); 5.84 (dm, J=16 Hz, 1H); 5.30 (m, =C < H); 3.92 (s, 2H); 3.18 (d, J= 6.5 Hz, 2H); 2.26 (s, 3H); 1.18 (s, 9H).
5,44 A	trans	<pre>S = 8.2-8.35 (1 arom. H); 7.7-7.9 (2 arom. H); 7.3-7.6 (4 arom. H); 6.22 (d, 1 olef.: H, J=16 Hz); 5.93 (dt, 1 olef. H, J=16 + 2 x 6.5 Hz); 4.87 u. 4.83 (=C(H); 3.90 (s, 2H); 3.19 (d, 2H, J=6.5 Hz); 2.25 (s, 3H); 1.0-2.4 (11 H, Cyclohexyl).</pre>
В	trans	<pre> S = 8.2-8.35 (1 arom. H); 7.7-7.9 (2 arom. H); 7.3-7.6 (4 arom. H); 6.79 (d, 1 olef. H, J=16 Hz); 5.80 (dt, 1 olef. H, J=16 + 2 x 6.5 Hz); 3.92 (s, 2H); 3.24 (d, 2H, J=6.5 Hz); 2.2-2.5 (m, 4H); 2.26 (s, 3H); 1.88 (s, 3H), 1.58 (br, 6H). </pre>

Example	Isomer	Spectrum
		Spectrum -
40	trans	S = 8.15-8.30 (m, 1H); 7.7-7.9 (m, 2H);
•		7.3-7.6 (m, 9H); 6.51 (d, J=18 Hz, 1H);
		5.82 (dt, $J=18 + 2 \times 7.5 Hz$, 1H);
	•	[5.26 (sbr, lH) + 5.14 (d, J=2 Hz, lH)
	•	=C < H]; 3.88 (s, 2H); 3.20 (d, J=7.5 Hz,
	•	2H); 2.22 (s, 3H).
. 41	trans	d = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H);
	crans	7.3-7.6 (m, 4H); 6.24 (d, J=16 Hz, 1 olef.
	•	H); 5.85 (dt, J=16 + 2 x 6.5 Hz, 1 olef.
	-	H); 4.95 (dd, J=11 + 2 Hz, 2 olef. H);
	•	3.9 (s, 2H); 3.18 (d, J=6.5 Hz, 2H); 2.24
		(s, 2H); 2.13 (d, J=6.5 Hz, 2H); 1.6-2.1
		(m, 1H); O.9 (d, J=6.5 Hz, 6H).
"42 [°]	trans	
7.6	· crans	$\delta = 8.2-8.35 \text{ (m, 1H); } 7.65-7.9 \text{ (m, 2H);}$
		7.3-7.6 (m, 4H); 6.26 (d, J=16 Hz, 1H);
	-	5.86 (dt, J=16 + 2 x 6.5 Hz, 1H); 4.95 (c. $-C^{H}$); 3.00 (7. 3W); 3.10 (3. 7.6.7)
	**.	$(s, =C < \frac{H}{H}); 3.90 (s, 2H); 3.18 (d, J=6.5 Hz, 2H); 2.24 (s, 3H); 2.15=2.25 (m, 2H);$
	•	2H); 2.24 (s, 3H); 2.15-2.35 (m, 2H); 1.1-1.7 (m, 4H); 0.9 (ps.t, 3H).
		(m, 4m), 0.5 (ps. c, 5h).
43	trans	S= 8 2=8 35 (m) 111: 7 7 7 7 0 ()
		J= 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.30 (d, J=15.5 Hz, 1H);
		6.02 (dt, J=15.5 Hz + 2 x 6.5 Hz, 1H);
		[5.07 (sbr, lH) + 4.80 (d, J=2 Hz, lH),
		$=C < \frac{H}{H}$; 3.9 (s, 2H); 3.16 (d, 2H); 2.25
	•	(s, 3H); 1.1 (s, 9H).
6,45	trans	$\delta = 8.2-8.35$ (1 arom. H); 7.7-7.9 (2 arom.
		H); 7.3-7.6 (4 arom. H); 6.52 (dd, 1 olef.
		H, J=15 u. 10 Hz); 5.86 (d, 1 olef. H,
		J=10 Hz); 5.79 (dt, 1 olef, H, J= 15 +
	-	$2 \times 6.5 \text{ Hz}$); 3.92 (s, 2H); 3.20 (d, J=
		6.5 Hz, 2H); 2.25 (s, 3H); 2.1-2.4 (m, 4H);
· ·	•	1.6 (br, 6H).

Example	Isomer	Spectrum
46	trans	δ= 8.15-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H);
		6.3 (dt, J=16 + 2x6.5 Hz, 1H); 5.7 (dm, J=16 Hz, 1H);
		4.34 (d, J=2 Hz, 2H); 3.9 (s, 2H); 3.16 (d, J=6.5 Hz, 2H);
		2.24 (s, 3H); 2.2 (CH).
47	trans	0= 8 2=8 35 /m 100 - 7 65 7 0 / 200 - 2 = 2
		G= 8.2-8.35 (m, 1H); 7.65-7.9 (m, 2H); 7.3-7.5 (m, 4H); 6.17 (dd, J=16 + 7 Hz, 1H); 5.58 (dm, J= 16 Hz, 1H);
		3.9 (AB-System, 2H); 3.25 (m, 1H); 2.1-2.3 (m, 2H);
		2.14 (s, 3H); 1.3-1.6 (m, 4H); 1.18 (d, J=7 Hz, 3H);
		0.85 (m, 3H).
- 48 .		5
40 .	cis	δ= 8.2-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H);
٠.	·	5.98 (dd, J=11 + 9 Hz, 1H); 5.6 (dm, J=11 Hz, 1H);
		3.96 (AB-System, 2H); 3.8 (m, 1H); 2.1-2.3 (m, 2H); 2.16 (s, 3H); 1.2-1.6 (m, 4H); 1.26 (d, J=7 Hz, 3H);
	•	0,82 (m, 3H).
49 .	trans	δ= 8.15-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H);
	•	6.14 (dt, J=16 + 2x6.5 Hz, 1H); 5.66 (dm, J=16 Hz, 1H);
		3.86 (s, 2H); 3.10 (d, J=6.5 Hz, 2H); 2.2 (s, 3H);
	• • • • • •	1.4 (qua, J=7 Hz, 2H); 1.15 (s, GH); 0.9 (t,J=7 Hz, 3H).
50	cis	δ= 8.2-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H);
	·	6.0 (dt, J=11 + 2x6.5 Hz, 1H); 5.64 (dm, J=11 Hz, 1H);
		3.9 (s, 2H); 3.35 (d, J=6.5 Hz, 2H); 2.22 (s, 3H); 1.45
		(qua, J=7 Hz, 2H); 1.18 (s, 6H); 0.95 (t, J=7 Hz, 3H).
		_
51	trans	δ= 8.15-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H);
		6.16 (dt, J=16 + 2x6.5 Hz, 1H); 5.66 (dm, J=16 Hz, 1H);
		3.86 (s, 2H); 3.10 (d, J=6.5 Hz, 2H); 2.7 (br, 1H);
	•	2.2 (s, 3H); 1.4-2.1 (m, 6H).
J	<u>'</u>	

	1	
Example	Isomer	Spectrum
52	cis	6 = 8.15-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6.0 (dt, J=11 + 2x6.5 Hz, 1H); 5.64 (dm, J=11 Hz, 1H); 3.9 (s, 2H); 3.36 (d, J=6.5 Hz, 2H); 2.75 (br, 1H); 2.22 (s, 3H); 1.4-2.1 (m, 8H).
55	trans	5 = 7.8-8.1 (m, 2H); 7.25-7.5 (m, 3H); 6.50 (dd, J=17 + 12 Hz, 1H); 5.85 (d, J=12 Hz, 1H); 5.74 (dt, J=17 u. 2x7 Hz, 1H); 3.77 (s, 2H); 3.14 (d, J=7 Hz, 2H); 2.0-2.4 (m, 4H); 2.25 (s, 3H); 1.55 (sbr, 6H).
56		5 = 8.2-8.4 (m, 2H); 7.25-7.7 (m, 3H); 6.74 (d, J=8 Hz, 1H); 6.2 (dt, J=18 + 2x7 Hz, 1H); 5.67 (dt, J=18 u. 2x15 Hz, 1H); 4.0 (s, 3H); 3.82 (s, 2H); 3.10 (dd, J=7 u. 1.5 Hz); 2.2 (s, 3H); 1.24 (s, 9H).
57		δ= 8.2-8.4 (m, 2H); 7.25-7.7 (m, 3H); 6.74 (d, J=8 Hz, 1H); 5.05 (dt, J=12 + 2x7.5 Hz, 1H); 5.65 (dt, J=12 u. 2x1.5 Hz, 1H); 4.0 (s, 3H); 3.85 (s, 2H); 3.35 (dd, J=7.5 u. 1.5 Hz, 2H); 2.24 (s, 3H); 1.26 (s, 9H).
	•	
58		δ= 7.2-7.8 (m, 6H); 6.44 (dd, J=17 + 12 Hz, 1H); 5.80 (d, J=12 Hz, 1H); 5.66 (dt, J=17 + 2x7 Hz, 1H); 5.0 (t, J=6 Hz, 1H); 3.33 (d, J=6 Hz, 2H); 3.14 (d, J=7 Hz, 2H); 2.0-2.4 (m, 4H); 2.12 (s, 3H); 1.5 (sbr, 6H).
59	trans	δ= 7.1-7.7 (m,6H); 6.04 (dt,J=16 + 2x6.5 Hz, 1H); 5.6 (dm,J=16 Hz, 1H); 4.9 (t,J=6 Hz, 1H); 3.22 (d,J=6 Hz, 2H); 3.0 (d,J=6.5 Hz, 2H); 2.1 (s, 3H); 1.18 (s, 5H).

Example	Isomer .	Spectrum · · ·
53	trans ⁻	δ= 8.15-8.35 (m, 1H); 7.6-7.9 (m, 2H); 7.3-7.6 (m, 4H); 6,15 (dt,J=16 + 2x6.5 Hz, 1H); 5.65 (dm, J=16 Hz, 1H);
÷.		3.85 (s, 2H); 3.10 (d, J= 6.5 Hz, 2H); 2.2 (s, 3H); 1.8-2.1 (br, 9H); 1.6-1.8 (br, 6H).
-	• .	
	•	

The required starting materials can be obtained e.g. as follows.

OL 1. Compounds of formula IV

- (A) (3-Benzo[b]thiophenemethyl)methylamine (for Ex. 1)
 - 3-Chloromethylbenzo[b]thiophene is dissolved in benzene, added dropwise to a ca. 10-fold excess of methylamine in ethanol at 0-5° and then stirred for 16 hours at room temperature. The crude mixture is concentrated under vacuum, the residue partitioned between
- nethylenechloride and 1N NaOH and the organic phase dried and evaporated under vacuum. The purified product is obtained by vacuum distillation b.p. 90-94°/1,33 Pa.
- (B) (3-Benzo[b] furanmethyl) methylamine (for Ex. 12 and 13)

 Obtained analogously to Example A)
- 15 b.p. 105-110°/5.3 Pa.
- P (C) 2-(1-Naphthyl)piperidine (for Ex. 15, 34 and 35)
 - of 1-bromonaphthalene in absolute ether dropwise to 5.1g of magnesium in 50 ml of absolute ether. The ether is removed from the reaction mixture and replaced by absolute benzene. 8g 6-Methoxy-2,3,4,5-tetrahydropyridine are added to the boiling reaction mixture. After a further 8 hours the mixture is cooled, treated with saturated aqueous ammoniumchloride solution and the reaction product removed from the organic phase by shaking with aqueous HC1-solution.

After neutralisation and working up the 2-(1-naphthyl) 3,4,5,6-tetrahydropyridine is dissolved directly in methanol and reduced with NaBH₄. After normal working up the product is converted with alcoholic HCl solution to its hydrochloride. M.p. 287-289° (after intensive drying under high vacuum 328-329°).

- CL 2. Compounds of formula V
 - (D) <u>1-Bromo-6,6-dimethyl-2-hepten-4-yne</u> (for Ex. 16, 17, 56, 57 and 59)
 - (a) 6,6-Dimethyl-1-hepten-4-yn-3-ole
- abs. tetrahydrofuran and 172 ml of a 20% solution of n-butyl-lithium added dropwise under protective gas at a temperature of -20°. The reaction mixture is then cooled to -75° and 19.3 g acrolein in 20 ml of tetrahydrofuran added dropwise. The mixture is warmed to room temperature, reacted with saturated aqueous NH₄Cl and extracted a number of times with ether. The organic phase is dried, concentrated and the purified product obtained by vacuum distillation, b.p. 70-72°/1600 Pa.
- 20 (b) <u>1-Bromo-6,6-dimethyl-2-hepten-4-yne</u>

50 ml 48% HBr and l0g PBr $_3$ are stirred at 40° 10 until a homogenous mixture is obtained. An alcoholic solution of 13.5g 6,6-dimethyl-l-hepten-4-yn-3-ole are added

dropwise at 10° and stirred for 1½ hours at room 10° temperature. The reaction mixture is poured onto ice and extracted a number of times with hexane. The organic phase is washed a number of times with aqueous NaCl, dried and concentrated. NMR-spectography shows that the oily product comprises a 3:1 mixture of trans- and cis-10 bromo-6,6-dimethyl-2-hepten-4-yne and is taken directly for alkylation.

NMR: $\delta = 5.5 - 6.4$ (m, 2 olef. H), [4.15 67 32 | 4 (d. J = 8Hz) and 3.95 (d, J = 8Hz) in ratio 1:3, 32 ... 32 ... 32 ... 32 ... 32 ... 32 ... 32

Analogously to(D) above the following compounds
of formula V can be obtained.

T0470X

Table II

a) R_5 -CH=CH-CH-C \equiv C-R₁₁

b) A-CH-CH=CH-C = C-R₁₁
R₅

	R ₁₁	R ₅	А	Physical data	for Ex.
E) a b	-CH _{C2} H ₅	н	- Br	b.p.75-80 ⁰ /1460 Pa oil	20,21
F) a b	-CH ₂ .CH ₃	н	- Br	b.p.87-91 ⁰ /1730 Pa oil	22,23
G) a b	CH ₃ -C-C ₂ H ₅	н	- Br	b.p. 90 ⁰ /1460 Pa oil	49,50
H) a b	} -<	н	- Br	b.p.94-96 ⁰ /800 Pa oil	51,52
a b	- (сн ₂) ₃ -сн ₃	СH _. 3	Br.	b.p.92-93 ⁰ /530 Pa oil	47,48

The remaining compounds of formula V can be obtained analogously to (D) above.

- CL 3. Compounds of formula VIII
- (M) N-Methyl-N-(1-naphthylmethyl)octa-2,4-divnyl-1-amine (for Ex. 31)

9g 1,3-Heptadiyne, 16g methyl-(1-naphthylmethyl) amine, 2.8g paraformaldehyde and 1.3g ZnCl₂ (anhydrous) are heated for 3 hours at 100° in absolute dioxane. After cooling the solvent is removed under vacuum, the residue partitioned between chloroform and aqueous NaHCO₃-solution and the organic phase dried and concentrated. The purified product is obtained by chromatography over kieselgel (toluene/ethyl acetate 9:1) as an oil.

- (N) N-Methyl-N-(l-naphthylmethyl)-2,4-nonadiynyl-l-amine (for Ex. 3)
- 15 ture of 16g N-methyl-N-(1-naphthylmethyl)-propargylamine,
 0.5g NH₂OH.HCl, 0.25g CuCl and 20 ml 70% ethylamine. The
 reaction mixture is stirred overnight at room temperature,
 treated with an aqueous solution of 1g KCN and extracted
 a number of times with ether. The organic phase is
 20 washed with saturated aqueous NaCl, dried and evaporated.
 The title substance is obtained as an oil after chromatography over Kieselgel (eluant toluene/ethyl acetate 95:5).

(O) N-Methyl-N-(1-naphthylmethyl)-4-t.butyl-pent-2-yn-46 enyl-1-amine (for Ex. 43)

933 mg N-Methyl-N-(1-naphthylmethyl)-4-hydroxy 4,5,5-trimethyl-2-hexynyl-1-amine are dissolved in abs. pyridine, warmed to 50° and 0.4 ml POCl₃ added. Stirring is carried out for one hour at 90°, the mixture poured onto ice and the reaction product isolated as an oil by extraction with ether and chromatography over kieselgel (eluant toluene/ethyl acetate 9:1).

Analogously to (M), (N) and (O) above, the following compounds of formula VIII may be obtained.

Table III

	R ₃	R ₄	R ₆	Physical data	For Ex.
		·			
P)	Н	CH ³	- CEC - (CH ₂) ₄ - CH ₃	oil	32
Q) R)	H	CH ₃	- C = C - (CH ₂) ₅ - CH ₃	oil	33
	Н	СНЗ	- C≡C - C(CH ₃)3	oil	16
s)	R ₃ + R	4 + N	- C≡C - (CH ₂) ₂ -CH ₃	· òil ·	34
T)		<u></u>	- C≡C - (CH ₂) ₃ -CH ₃	oil	35
<u></u>	L				

The remaining compounds of formula VIII can be prepared analogously to (1), (N) and (O) above.

- CL 4. Compounds of formula If
 - (U) N-Methyl-N-(l-naphthylmethyl)-4-hydroxy-4-cyclohexyle)
 2-pentenyl-l-amine (for Ex. 5)
 - (a) N-Methyl-N-(1-naphthylmethyl)-4-hydroxy-4-cyclohexyl
 pent-2-vnyl-1-amine;
 - added dropwise to 3g N-methyl-N-(l-naphthylmethyl)propargyl amine in absolute tetrahydrofuran and after 30 minutes reacted with a solution of 1.79g cyclohexylmethyl ketone. Stirring is continued for 24 hours at room temperature and the mixture poured onto ice and extracted with ether. The organic phase is washed, dried and concentrated under vacuum. Chromatography over kieselgel (eluant toluene/ethylacetate 4:1) yields the title product as an oil.
 - P (b) N-Methyl-N-(l-naphthylmethyl)-4-hydroxy-4-cyclohexyl2-pentenyl-l-amine

solved in tetrahydrofuran and added dropwise to a sus20 pension of 1.4g LiAlH₄ in abs. tetrahydrofuran and the
mixture refluxed for 3 hours. Excess reagent is destroyed
with ethyl acetate/H₂O. After extraction with ether,
drying and evaporation under vacuum followed by chromatography over kieselgel (eluant CHCl₃/C₂H₅OH 95:5) the title
25 product is obtained as an oil.

Analogously to (U) above the following compounds can be obtained.

Table IV

a) $CH_{2}-N-CH_{2}-C\equiv C-C-R_{x}$ b) $CH_{2}-N-CH_{2}-CH_{2}$

	R _x	physical data [a) and b)]	For Ex.
v,) _{a)}	-CH ₂ -CH ₃	oil	41
w) a) b)	-(CH ₂) ₃ -CH ₃	oil	. 42
x) _{a)}	-c(cH ₃) ₃	oil	43
Y) _{a)} b)	} -c ₆ H ₅	oil	40

Compounds of formula IX can be prepared analogously to Example 6 above and are preferably taken directly without further purification or isolation for the final step.

		·
Example		Spectrum
N)		5 = 8.2-8.35 (1 arom. H); 7.7-7.9 (2 arom. H); 7.3-7.6 (4 arom. H); 3.97 (s, 2H); 3.37 (s, 2H) 2.40 (s, 3H); 2.22.4 (m, 2H); 1.2-1.8 (4H); 0.8-1.05 (m, 3H).
M)		identical with N) except: $\delta = 2.28 \text{ (t, 2H); 1.58 (sext., 2H); 1.0 (t, 3H)}$
P)		identical with N) except: $\delta = 1.2-1.8 \; (m, \; 6H).$
· Q)		identical with N) except: $\delta = 1.2-1.8 \text{ (m, 8H)}$.
R)		6 = 8.1-8.25 (m, 1H); 7.6-7.85 (m, 2H); 7.2-7.5 (m, 4H); 3.92 (s, 2H); 3.33 (s, 2H); 2.35 (s,3H); 1.22 (s, 9H).
s)		<pre> f = 8.5 (br, lh); 7.3-7.9 (m, 6H); 4.05 (br, lh); 3.24 (s, 2H); 3.12 (m, lh); 2.5-2.8 (m, lh); 2.26 (t, J=6.5 Hz, 2H); 1.6-2.0 (m, 6H); 1.56 (sext., J=7 Hz, 2H); 0.99 (t, J=7 Hz, 3H).</pre>
T)	•	identical with S) except: d = 2.28 (ps.t, 2H); 1.3-1.7 (m, 4H); 0.91 (ps.t, 3H).

		1	
	Example		Spectrum
	U)	a)	6 = 8.2-8.35 (1 arom. H); 7.7-7.9 (2 arom. H); 7.3-7.6 (4 arom. H); 4.0 (s, 2H); 3.37 (s, 2H); 2.38 (s, 3H); 1.52 (s, 3H); 1.0-2.2 (11H).
	<u>-</u>	b)	δ = 8.2-8.35 (1 arom. H); 7.7-7.9 (2 arom.H); 7.3-7.6 (4 arom. H); 5.76 (m, 2 olef. H); 3.91 (s, 2H); 3.13 (m, 2H); 2.25 (s, 3H); 1.23 (s, 3H); 0.8-2.0 (11H).
	V)	a)	$\delta = 8.15-8.35$ (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 3.95 (s, 2H); 3,34 (s, 2H); 2.35 (s, 3H); 1.8-2.3 (m, 1H); 2.0 (s, OH); 1.62 (d, J=6.5 Hz, 2H); 1.53 (s, 3H); 1.04 u. 1.02 (2 d, J= 6.5 Hz, Σ 6H).
			δ = 8.2-8.4 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 5.78 (AB-portion of an ABX ₂ -system, 2 olef. H); 3.90 (s, 2H); 3.12 (m, 2H); 2.22 (s, 3H); 1.3-2.0 (m, 1H); 1.5 (s, OH); 1.4 (d, 2H); 1.3 (s, 3H); 0.92 u. 0.90 (2 d, J=7 Hz, £6H).
	W)		5 = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 3.98 (s, 2H); 3.36 (s, 2H); 2.38 (s, 3H); 2.1 (br, OH); 1.2-1.9 (m, 6H); 1.56 (s, 3H); 0.95 (ps.t., 3H).
-		3	6 = 8.2-8.35 (m, 1H); 7.7-7.9 (m, 2H); 7.3-7.6 (m, 4H); 5.85 (AB-portion of an ABX ₂ -system, 2H); 3.90 (s, 2H); 3.12 (m, 2H); 2.25 (s, 3H); 1.2-1.7 (m, 6H + OH); 1.28 (s, 3H); 0.9 (ps.t., 3H).

·	· · ·	•
Example .		Spectrum
(X)	a)	6 = 8.2-8.35 (m, 1H); $7.7-7.9$ (m, 2H); $7.3-7.6$ (m, 4H); 4.0 (s, 2H); 3.38 (s, 2H); 2.4 (s, 3H) 1.96 (br, OH); 1.54 (s, 3H); 1.14 (s, 9H).
	b)	6 = 8.2-8.4 (m, 1H); 7.65-7.9 (m, 2H); 7.3-7.6 (m, 4H); 5.6-6.1 (AB-portion of an ABN ₂ -system, J=15 + 2x5.5 Hz, 2H); 3.92 (s, 2H); 3.16 (d, 2H; J=5.5 Hz); 2.25 (s, 3H); 1.4 (br, OH); 1.26 (s, 3H); 0.96 (s, 9H).
Y)	a)	$\delta = 8.2-8.35$ (m, 1H); $7.6-7.9$ (m, 4H); $7.2-7.6$ (m, 7H); 4.0 (s, 2H); 3.4 (s, 2H); 2.65 (br,OH); 2.4 (s, 3H); 1.85 (s, 3H).
	b)	8.15-8.35 (m, 1H); 7.65-7.9 (m, 2H); 7.2-7.6 (m, 9H); 5.6-6.1 (AB-portion of an ABX ₂ -system, J=15 Hz + 2x5.5 Hz, 2H); 3.88 (s, 2H); 3.13 (d, J=5.5 Hz, 2H); 2.24 (s, 3H); 2.0 (s, OH); 1.65 (s, 3H).
		•
-		
	,	

CM I claim:

Cirins

1. A compound of formula I,

$$R_2 - C - N - CH = CH - R_6$$

wherein a) R represents a group of formula

IIb

and R_2 represents hydrogen or lower alkyl, or R_1 and R_2 together represent a group of formula

(CH₂)_p

III

whereby in the formulae IIa to IIi,

R₇ and R₈ represent, independently, hydrogen, halogen, trifluoromethyl, hydroxy, nitro, lower alkyl or lower alkoxy,
R₉ represents hydrogen, halogen, hydroxy, lower alkyl or
lower alkoxy,

X represents oxygen, sulphur, imino, lower alkyl imino or a radical of formula - (CH₂)_r-,

10 p is 1, 2 or 3,

r is 1, 2 or 3,

s is 3, 4 or 5,

t is 2, 3 or 4, and

v is 3, 4, 5 or 6;

15 R_3 and R_5 represent, independently, hydrogen or lower alkyl, and

R₄ represents C₁₋₆alkyl or C₃₋₈ cycloalkyl-(C₁₋₆)-alkyl; and

R₆ represents a group of formula

 $-C \equiv C - R_{11}$ $-C \equiv C - R_{11}$ $-C = CH_{2}$ $-C = CH_{2}$ $-C = CH_{2}$ $-R_{13}$ $-R_{14}$ $-R_{14}$ $-R_{14}$

wherein R₁₁ represents hydrogen, optionally α-hydroxy substituted alkyl; alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, phenyl, phenalkyl or thienyl,

 R_{12} , R_{13} and R_{14} represent, independently, hydrogen or lower alkyl, and

ec_z represents a C₅₋₈ cycloalkylidene radical optionally containing a double bond; or

b) R₁ represents a group of formula IIa to IIg as defined under a),

R2 represents hydrogen or lower alkyl,

 R_3 and R_4 together form a group $-(CH_2)_{\dot{u}}$, wherein u is an integer of 1 to 8, and R_5 and R_6 have the meanings given under a),

or an acid addition salt thereof.

2. A compound as claimed in Claim 1 wherein