- 1. Our 32-bit uniprocessor machine has 1 GiB of RAM with 1 KiB pages, a fully-associative TLB that holds 8 entries and uses LRU.
- a) What is the maximum number of valid entries in the page table for a single process? Answer in IEC.

Page table valid entries set by size of PM. 1 GiB / 1 KiB = 1 Mi-entries.

- +0.5 points for 1MiB, +0.5 points for 2^{20}
- b) What is the TLB Reach of our system?

8 TLB entries that refer to a 1 KiB page each. TLB Reach = 8*1KiB. No partial credit – full credit given for 2¹³ B._1 Mi-entries_ 8 KiB

2. The system in question has 1MiB of physical memory, 32-bit virtual addresses, and 256 physical

pages. The memory management system uses a fully associative TLB with 128 entries and an LRU

replacement scheme.

a. What is the size of the physical pages in bytes?

物理页数256=2^8,内存1MB=2^20,2^20/2^7=2^12(页大小)

2^12 bytes

b. What is the size of the virtual pages in bytes?

2¹² bytes

- c. What is the maximum number of virtual pages a process can use?
- 32位处理器,虚拟地址32位,2^32/2^12=2^20 pages
- d. What is the minimum number of bits required for the page table base address register? 页表基址寄存器存储页表首地址,页表放在内存,内存地址一共20位,故需 20 bits

Everybody Got Choices

- e. Answer "Yup!" (True) or "Nope!" (False) to the following questions
- i. The page table is stored in main memory Yup!
- ii. Every virtual page is mapped to a physical page Nope!
- iii. The TLB is checked before the page table Yup!
- iv. The penalty for a page fault is about the same as the penalty for a cache miss Nope!
- v. A linear page table takes up more memory as the process uses more memory Nope!
- 3. For the following questions, assume the following:
 - 16-bit virtual addresses
 - 1 KiB pages
 - 512 KiB of physical memory with LRU page replacement policy
 - Fully associative TLB with 16 entries and an LRU replacement policy
- a) How many virtual pages are there per process?

64

- b) How many bits wide is the page table base register?
- 4.某计算机系统有一个TLB和一个L1 Data Cache。该系统按字节编址,虚拟地址16位,物理地址14位,页大小为128B,TLB采用四路组相联方式,共16个页表项, L1 Data Cache 采用直接映射方式,块大小为4B,共16行。系统运行到某一时刻时,TLB、页表和L1 Data Cache中部分内容如图示。请问:
- (1)虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
- (2)物理地址中哪几位表示物理页号?哪几位表示页内偏移?
- (3)主存物理地址如何划分标记字段、行索引字段和块地址字段?
- (4)CPU从地址06FAH中取出的值是多少?说明CPU读取地址06FAH中内容的过程。

TLB														页表
4 −	7		- j e	7	<u> </u>	-	T	<u> </u>	-	1		<i>±</i>		虚页
行号	标 记	页 框	有效	标 记	页 框	有效	标 记	页框	有效	标 记	页框	有 效		00
		号	位		号	位		号	位		号	位		01
0	03		0	09	0D	1	00		0	07	02	1		02
1	03	2D	1	02		0	04		0	0A		0		03
2	02		0	08		0	06		0	03		0		04
3	07		0	63	0D	1	0A	34	1	72		0		05
数据缓存 CACHE C									06					
行類	│ 行索引│ 标记│ 有效십 字节;字节													
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												07	

行索引	标记	有效位	字节:	字节:	字节1	字节 0
00	19	0	12	56	C9	AC
01	15	1				
02	1B	0	03	45	12	CD
03	36	0				
04	32	1	23	34	C2	2A
05	0D	1	46	67	23	3D
06		0				
07	16	1	12	54	65	DC
08	24	1	23	62	12	3A
09	2D	0				
0A	2D	1	43	62	23	С3
OB		0				
0C	12	1	76	83	21	35
0D	16	1	А3	F4	23	11
0E	5B	1	3D	5A	45	55
0F	14	0				

虚页号	页框号	有效位
00	08	1
01	03	1
02	14	1
03	02	1
04		0
05	16	1
06		0
07	07	1
08	13	1
09	17	1
0A	09	1
ОВ		0
0C	19	1
0D	2D	1
OE	11	1
OF	0D	1

解: (1)由已知虚拟地址16位,页大小为128B,有虚拟地址中第15~7位表示虚拟页号,第6~0位表示页内偏移。

由于TLB采用四路组相联方式,共16个页表项,4组 所以虚拟页号中第15~9位表示TLB标记,第8~7位表示TLB索引。

- (2)由已知物理地址14位,页大小为128B,有物理地址中第13~7位表示物理页号,第6~0位表示页内偏移。
- (3)由于Cache采用直接映射方式,块大小为4B,共16行 所以主存物理地址第 11~6 位为标记字段、第 5~2 位为行索引字段和第 1~0 位为块地址字段。

虚拟地址06FAH

=0000011 01 1111010B

a)查TLB: 1行,标记3,TLB Hit;查实页号2D

物理地址 0101101 1111010 16FA

00101101 1 1110 10在缓存的E行,标记5B

查到数据 3D5A4555