Uncertainty quantification of vaccination policies:

a model for stock management with random fluctuations.

YHG, SDIV, AMS

March 29, 2022

UNACH, CONACYT-Universidad de Sonora, Universidad de Sonora

Introduction

Motivation

Problem

CALENDARIO DE ENTREGAS (miles de personas inmunizadas):

Laboratorio	2021												
	DIC-20	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC
1. Pfizer	125	969	969	969	969	1,875	1,875	1,875	1,875	1,425	1,425	1,425	1,425
2. CanSino	2,500	2,500	2,500	2,500	2,667	2,667	2,667	5,667	5,667	5,667			
3. COVAX(*)				2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579
4. AstraZeneca				5,000	7,870	7,870	6,270	6,450	5,240				
TOTAL	2,625	3,469	3,469	11,048	14,085	14,991	13,391	16,571	15,361	9,671	4,004	4,004	4,004

Los contratos establecidos hasta hoy permitirían la inmunización de hasta 116.69 millones de personas al término de 2021.

Argument

We argue that sufficiently large random fluctuations in deliveries—due to lags or the number of vaccine doses—convey significant effects on the mitigation of symptomatic cases.

Aims

We pursue quantifying the uncertainty due to time lags or amount delivery, and evaluates its implications.

Introduction

Methodology

Given a shipment of vaccines calendar describe the stock management with backup protocol and quantify random fluctuations due to schedule or quantity. Then plug this dynamic with a ODE systeme to describe a disease and evalute its response accordingly.

Vaccine Shipment Program

CALENDARIO DE ENTREGAS (miles de personas inmunizadas):

Laboratorio	2021												
	DIC-20	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC
1. Pfizer	125	969	969	969	969	1,875	1,875	1,875	1,875	1,425	1,425	1,425	1,425
2. CanSino	2,500	2,500	2,500	2,500	2,667	2,667	2,667	5,667	5,667	5,667			
3. COVAX(*)				2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579
4. AstraZeneca				5,000	7,870	7,870	6,270	6,450	5,240				
TOTAL	2,625	3,469	3,469	11,048	14,085	14,991	13,391	16,571	15,361	9,671	4,004	4,004	4,004

Los contratos establecidos hasta hoy permitirían la inmunización de hasta 116.69 millones de personas al término de 2021.

Motivation

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

To fix ideas:

Vaccination

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"

To fix ideas:

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"
Vaccination

With vaccination

$$S'(t) = -\beta IS - \lambda_{V}(t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic"

Vaccination

$$S'(t) = -\beta IS - \lambda_V(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_V(x,t)$$

To fix ideas:

Gumel.

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"
Vaccination

$$S'(t) = -\beta IS - \frac{\lambda_V(x, t)}{\lambda_V(t)}$$
$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_V(x, t)$$

To fix ideas:

Gumel.

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"
Vaccination

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

To fix ideas:

$$S'(t) = -\beta IS$$

 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$

$$S(t) + I(t) + R(t) = 1$$

"Classic"

Vaccination

Gumel,

$$\lambda_V := \underbrace{\xi}_{cte.} \cdot S(t)$$

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$
$$I'(t) = \beta IS - \gamma I$$
$$R'(t) = \gamma I$$

$$V'(t) = \lambda_V(x,t)$$

Alexander, M. E., Bowman, C., Moghadas, S. M., Summers, R., Gumel, A. B., and Sahai,

B. M. (2004).

A vaccination model for transmission dynamics of influenza.

SIAM Journal on Applied Dynamical Systems, 3(4):503–524.

Iboi, E. A., Ngonghala, C. N., and Gumel, A. B. (2020).

To fix ideas:

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$

$$S(t) + I(t) + R(t) = 1$$

"Classic"

Vaccination

Gumel.

$$\lambda_V := \underbrace{\xi}_{\textit{cte.}} \cdot S(t)$$

Optimal Controlled:

$$S'(t) = -\beta IS - \lambda_V(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_V(x,t)$$

Hethcote, H. W. and Waltman, P. (1973). Optimal vaccination schedules in a deterministic epidemic model.

Mathematical Biosciences, 18(3-4):365-381.

Wickwire, K. (1977).

Mathematical models for the control of pests and infectious diseases: A survey.

Theoretical Population Biology, 11(2):182–238.

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{cov} , T

$$\lambda_V = -rac{1}{T}\ln(1-X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

 $\overline{X_{COV}}$: 70%, T: one year

$$\lambda_{\text{V}}\approx 0.00329$$

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

X_{COV} : 70%, T: one year

$$\lambda_V \approx 0.00329$$

If S(0)N corresponds to HMS (812 229 inhabitants) ≈ 2668 jabs/day.

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, *T*: **one** year

$$\lambda_V\approx 0.003\,29$$

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage **Common Objectives**

0

0

Given X_{cov} , T

$$\lambda_V = -rac{1}{T}\ln(1-X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_V\approx 0.003\,29$

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage **Common Objectives**

Who to vaccine first? (Allocation)

•

Given X_{cov} , T

$$\lambda_V = -rac{1}{T}\ln(1-X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_V\approx 0.00329$

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage **Common Objectives**

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Given X_{cov} , T

$$\lambda_V = -rac{1}{T}\ln(1-X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

$$\lambda_{\text{V}}\approx 0.00329$$

Common Objectives

Who to vaccine first? (Allocation)

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Cost

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Cost

$$J(u) := \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \text{ a.e. } t \in [0, T].$$

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$
$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T].$$

Bubar, K. M., Reinholt, K., Kissler, S. M., Lipsitch, M., Cobey, S., Grad, Y. H., and Larremore, D. B. (2021).

Model-informed covid-19 vaccine prioritization strategies by age and serostatus.

Science, 371(6532):916-921.

Matrajt, L., Eaton, J., Leung, T., and Brown, E. R. (2020). **Vaccine optimization for covid-19: Who to vaccinate first?** *Science Advances*, 7(6).

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \text{ a.e. } t \in [0, T].$$

Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., and Olmos-Liceaga, D. (2021).

Covid-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses. *Mathematical Biosciences*, 337:108614.

Salcedo-Varela, G. A., Peñuñuri, F., González-Sánchez, D., and Díaz-Infante, S. (2021).

Optimal piecewise constant vaccination and lockdown policies for covid-19.

Common Objectives

- Who to vaccine first? (Allocation)
- How and when?(Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$
$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T].$$

Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., and Olmos-Liceaga, D. (2021).

Covid-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses. *Mathematical Biosciences*, 337:108614.

Salcedo-Varela, G. A., Peñuñuri, F., González-Sánchez, D., and Díaz-Infante, S. (2021).

Optimal piecewise constant vaccination and lockdown policies for covid-19.

Vaccine

$$\lambda_f := \frac{\beta_A I_A + \beta_S I_S}{N^*}$$

$$N^* := N - D$$

$$\longrightarrow \text{natality}$$

natural death

0000000

Vaccine Hypotheses

- · Imperfect preventive
- · One dose
- Symptomatic exception
- Action over susceptible

 λ_{V} : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

Vaccine Hypotheses

- · Imperfect preventive
- · One dose
- Symptomatic exception
- Action over susceptible

Notation

- ε vaccine efficacy
- p Generation of symptoms probability

λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

Vaccine Hypotheses

- · Imperfect preventive
- One dose
- Symptomatic exception
- Action over susceptible

Notation

- ε vaccine efficacy
- p Generation of symptoms probability

λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

SAGE objectives

- Vaccine profile (Efficacy, immunity)
- Coverage
- · Time Horizon

Notation

- ε vaccine efficacy
- p Generation of symptoms probability

λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

SAGE objectives

- Vaccine profile (Efficacy, immunity)
- Coverage
- Time Horizon

Immunity:

- natural (reinfection)
- vaccine-induced

$$\frac{dS}{dt} = \mu \widehat{N} - (\lambda_f + \mu + \psi_V)S + \omega_V V + \delta_R R$$

$$\frac{dE}{dt} = \lambda_f S + (1 - \varepsilon)V - (\mu + \delta_E)E$$

$$\frac{dI_S}{dt} = \rho \delta_E E - (\mu + \alpha_S)I_S$$

$$\frac{dI_A}{dt} = (1 - \rho)\delta_E E - (\mu + \alpha_A)I_A$$

$$\frac{dR}{dt} = (1 - \theta)\alpha_S I_S + \alpha_A I_A - (\mu + \delta_R)R$$

$$\frac{dD}{dt} = \theta \alpha_S I_S$$

$$\frac{dV}{dt} = \psi_V S - [(1 - \varepsilon)\lambda_f + \mu + \omega_V]V$$

$$X'_{vac} = \psi_V (S + E + I_A + R)$$

$$\widehat{N} = S + E + I_A + I_S + R, \quad \widehat{N} + D = 1$$

$$\lambda_f := \frac{\beta_S I_S + \beta_A I_A}{\widehat{N}}$$

Non standar discrete approximation

Motivation

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

Nonstandard Finite Differences: Dynamic consistency

We study the evolution of SEIR - mitigation model between deliveries.

Consider for each time sub-interval k a grid time N_k partition of sub interval $[t_*^{(k)}, t^{*(k)}]$.

$$h_k := \frac{t^{*(k)} - t_*^{(k)}}{N_k}.$$

If $t_n^{(k)}$ denotes the time of the n step SEIR model for the k sub-interval, then

$$t_n^{(k)} = nh_k \in [t_*^{(k)}, t^{*(k)}], \qquad k = 1, \dots, K.$$

Also, we use an adaptive functional discretization

$$\varphi(h) := h + \mathcal{O}(h^2)$$
$$\varphi(h) = \frac{1 - \exp(-h)}{h}$$

000000

Discrete Model

$$S^{n+1} = \frac{(1 - \varphi(h)\mu)S^n + \varphi(h)\mu\widehat{N}^n + \varphi(h)[\omega_V V^n + \delta_R R^n]}{(1 + \varphi(h))(\lambda_f + \Psi_V^{(k)})}$$

$$E^{n+1} = \frac{(1 - \mu\varphi(h))E^n + \varphi(h)\lambda_f[S^{n+1} + (1 - \varepsilon)V^n]}{(1 + \varphi(h)\delta_E)}$$

$$I_S^{n+1} = \frac{(1 - \varphi(h)\mu)I_S^n + \varphi(h)\rho\delta_E E^{n+1}}{1 + \varphi(h)\alpha_S}$$

$$\vdots$$

$$V^{n+1} = V^n(1 - \varphi(h)[(1 - \varepsilon)\lambda_f + \mu + \omega_V]) + \varphi(h)(\psi_V^{(k)})S^{n+1}$$

$$X_{vac}^{n+1} = \varphi(h)\psi_V^{(k)}(S^n + E^n + I_A^n + R^n) + X_{vac}^n$$

$$K^{n+1} = \max\{0, K^n - (X_{vac}^{n+1} - X_k^0 - L)\}$$

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

- N(c, s, a, t): is the number of deaths due to the cause c
- L(s,a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

- I(c, s, a, t): number of incident cases for cause c
- DW(c, s, a): disability weight for cause c
- L(c, s, a, t): average duration of the case

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

- N(c, s, a, t): is the number of deaths due to the cause c
- L(s,a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

- I(c, s, a, t): number of incident cases for cause c
- DW(c, s, a): disability weight for cause c
- L(c, s, a, t): average duration of the case

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

- N(c, s, a, t): is the number of deaths due to the cause c
- L(s,a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

- I(c, s, a, t): number of incident cases for cause c
- DW(c, s, a): disability weight for cause c
- L(c, s, a, t): average duration of the case

$$\min_{a_V \in \mathscr{U}[0,T]} J(a_t) := a_t := p_k \Psi^k, \ s.t. \{ Stock constrains \}$$

00000

$$\min_{a_V \in \mathscr{U}[0,T]} J(a_t) := a_t := p_k \Psi^k, \ s.t. \{ Stock constrains \}$$

00000

$$\min_{a_V \in \mathscr{U}[0,T]} J(a_t) := \underbrace{a_D(D(T) - D(0))}_{:= YLL} + \underbrace{a_S(Y_{I_S}(T) - Y_{I_S}(0))}_{:= YLD}$$

 $a_t := p_k \Psi^k$,

s.t.{Stock constrains}

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

Results

Results

Git Hub

Outline

Motivation

Methodology

1. Model Formulation on continuous time

2. Non standar discrete approximation

3. Numeric Results