

MOSFET

650V CoolMOS™ CFD7A SJ Power Device

650V CoolMOS™ CFD7A is Infineon's latest generation of market leading automotive qualified high voltage CoolMOS™ MOSFETs. In addition to the well-known attributes of high quality and reliability required by the automotive industry, the new CoolMOS™ CFD7A series provides for an integrated fast body diode and can be used for PFC and resonant switching topologies like the ZVS phase-shift full-bridge and LLC.

Features

- \bullet Latest 650V automotive qualified technology with integrated fast body diode on the market featuring ultra low Q_{rr}
- Lowest FOM R_{DS(on)}*Q_g and R_{DS(on)}*E_{oss}
- 100% avalanche tested
- Best-in-class R_{DS(on)} in SMD and THD packages

Benefits

- · Lower switching losses enabling higher switching frequencies
- · High quality and reliability
- Advanced controllability due to kelvin source
- · Increased efficiency in light load and full load conditions

Potential applications

Suitable for PFC and DC-DC stages for:

- Unidirectional and bidirectional DC-DC converters,
- · On-Board battery Chargers

Product validation

Qualified according to AEC Q101

Please note: For production part approval process (PPAP) release we propose to share application related information during an early design phase to avoid delays in PPAP release. Please contact Infineon sales office. The source and sense source pins are not exchangeable. Their exchange might lead to malfunction. For paralleling 4pin MOSFET devices the placement of the gate resistor is generally recommended to be on the Driver Source instead of the Gate.

Table : Troj : Gridinanos : aramietore						
Parameter	Value	Unit				
V _{DS}	650	V				
R _{DS(on),max}	17	mΩ				
$Q_{g,typ}$	236	nC				
I _{D,pulse}	524	Α				
E _{oss} @ 400V	35.3	μJ				
Body diode di _F /dt	1300	A/µs				

Type / Ordering Code	Package	Marking	Related Links
IPDQ65R017CFD7A	PG-HDSOP-22	65A017F7	see Appendix A

650V CoolMOS™ CFD7A SJ Power Device IPDQ65R017CFD7A

Rev. 2.1, 2022-12-14

Table of Contents

Description	1
Maximum ratings	3
Thermal characteristics	4
Electrical characteristics	5
Electrical characteristics diagrams	7
Test Circuits	
Package Outlines	2
Appendix A	
Revision History	1
Trademarks14	4
Disclaimer 14	4

650V CoolMOS™ CFD7A SJ Power Device IPDQ65R017CFD7A

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Dawawatan	Cumbal		Value	S	11	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current ¹⁾	I _D	-	-	136 86	А	T _C =25°C T _C =100°C
Pulsed drain current ²⁾	I _{D,pulse}	-	-	524	Α	T _C =25°C
Avalanche energy, single pulse	E AS	-	-	616	mJ	I _D =7.0A; V _{DD} =50V; see table 10
Avalanche current, single pulse	I _{AS}	-	-	7.0	Α	-
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;
Gate source voltage (dynamic)	V _{GS,pulse}	-30	-	30	V	f _{repetition} <=100kHz, t _{pulse} <= 2ns
Power dissipation	P _{tot}	-	-	694	W	T _C =25°C
Storage temperature	$T_{ m stg}$	-55	-	150	°C	-
Operating junction temperature	T _j	-40	-	150	°C	-
Mounting torque	-	-	-	n.a.	Ncm	-
Continuous diode forward current	Is	-	-	136	Α	<i>T</i> _C =25°C
Diode pulse current ²⁾	I _{S,pulse}	-	-	524	Α	<i>T</i> _C =25°C
Reverse diode dv/dt ³⁾	dv/dt	-	-	70	V/ns	V_{DS} =0400V, I_{SD} <=61.6A, T_j =25°C see table 8
Maximum diode commutation speed	di _F /dt	-	-	1300	A/μs	V_{DS} =0400V, I_{SD} <=61.6A, T_{j} =25°C see table 8

 $^{^{1)}}$ Limited by $T_{j\;max}.$ $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ Identical low side and high side switch with identical $R_{\rm G}$

650V CoolMOS™ CFD7A SJ Power Device

IPDQ65R017CFD7A

2 Thermal characteristics

Table 3 Thermal characteristics

Doromotor	Cumbal	Values			l lmit	Note / Tost Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case	R _{thJC}	-	-	0.18	°C/W	-	
Soldering temperature, reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1	

650V CoolMOS™ CFD7A SJ Power Device IPDQ65R017CFD7A

3 Electrical characteristics

at T_i =25°C, unless otherwise specified

Table 4 Static characteristics

For applications with applied blocking voltage > 425 V, it is required that the customer evaluates the impact of cosmic radiation effect in early design phase and contacts the Infineon sales office for the necessary technical support by Infineon.

Danamatan	Cumbal		Values			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	650	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage ¹⁾	$V_{(GS)th}$	3.5	4	4.5	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 3.08 \rm mA$
Zero gate voltage drain current	I _{DSS}	-	- 280	1 -	μΑ	V _{DS} =650V, V _{GS} =0V, T _j =25°C V _{DS} =650V, V _{GS} =0V, T _j =150°C
Gate-source leakage current	I _{GSS}	-	-	0.1	μΑ	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.014 0.031	0.017	Ω	V _{GS} =10V, I _D =61.6A, T _j =25°C V _{GS} =10V, I _D =61.6A, T _j =150°C
Gate resistance	R _G	-	2.7	-	Ω	f=250kHz, open drain

Table 5 Dynamic characteristics

External parasitic elements (PCB layout) influence switching behavior significantly.

Stray inductances and coupling capacitances must be minimized.

For layout recommendations please use provided application notes or contact Infineon sales office.

Demonstra	Values				11		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss	-	12338	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz	
Output capacitance	Coss	-	177	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz	
Effective output capacitance, energy related ²⁾	C _{o(er)}	-	441	-	pF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related ³⁾	C _{o(tr)}	-	4704	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V	
Turn-on delay time	t _{d(on)}	-	50	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =61.6A, $R_{\rm G}$ =1.8Ω; see table 9	
Rise time	t _r	-	35	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =61.6A, $R_{\rm G}$ =1.8 Ω ; see table 9	
Turn-off delay time	$t_{ m d(off)}$	-	180	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =61.6A, $R_{\rm G}$ =1.8 Ω ; see table 9	
Fall time	t_{f}	-	4	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =61.6A, $R_{\rm G}$ =1.8Ω; see table 9	

¹⁾ We do not recommend using the CoolMOS mentioned in this datasheet to operate in "linear mode". For assessment of potential "linear mode", please contact Infineon sales office.

 $^{^{2)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{3)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

650V CoolMOS™ CFD7A SJ Power Device

 Table 6
 Gate charge characteristics

Parameter	Cumbal	Values			Unit	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Offic	Note / Test Condition
Gate to source charge	Q _{gs}	-	71	-	nC	V_{DD} =400V, I_{D} =61.6A, V_{GS} =0 to 10V
Gate to drain charge	Q _{gd}	-	69	-	nC	V_{DD} =400V, I_{D} =61.6A, V_{GS} =0 to 10V
Gate charge total	Qg	-	236	-	nC	V_{DD} =400V, I_{D} =61.6A, V_{GS} =0 to 10V
Gate plateau voltage	V _{plateau}	-	5.8	-	V	$V_{\rm DD}$ =400V, $I_{\rm D}$ =61.6A, $V_{\rm GS}$ =0 to 10V

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			11	Nata / Tast Candition
		Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	1.0	-	V	V _{GS} =0V, I _F =61.6A, T _j =25°C
Reverse recovery time	t _{rr}	-	295	-	ns	V_R =400V, I_F =61.6A, d_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Qrr	-	2.50	-	μC	V_R =400V, I_F =61.6A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	14.2	-	А	V_R =400V, I_F =61.6A, di_F/dt =100A/ μ s; see table 8

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package Outlines

NOTES:

- 1. ALL DIMENSIONS REFER TO JEDEC STANDARD TO-252 AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
- 2. ALL METAL SUFACES ARE TIN PLATED, EXCEPT AREA OF CUT.

DIMENSIONS	MILLIMETERS						
DIMENSIONS	MIN.	MAX.					
Α	2.20	2.35					
A1	0.00	0.15					
A2	0.89	1.10					
b	0.50	0.70					
С	0.46	0.58					
D	15.30	15.50					
D1	10.23	10.43					
E	14.90	15.10					
E1	11.91	12.11					
е	1.14						
N	22						
Н	20.86	21.06					
L	1.20	1.40					

Figure 1 Outline PG-HDSOP-22, dimensions in mm

650V CoolMOS™ CFD7A SJ Power Device IPDQ65R017CFD7A

7 Appendix A

Table 11 Related Links

• IFX CoolMOS CFD7A Webpage: www.infineon.com

• IFX CoolMOS CFD7A application note: www.infineon.com

• IFX CoolMOS CFD7A simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

650V CoolMOS™ CFD7A SJ Power Device

Revision History

IPDQ65R017CFD7A

Revision: 2022-12-14, Rev. 2.1

Previous Revision

	Troviduo Novicion							
Revision	sion Date Subjects (major changes since last revision)							
2.0	2022-08-30	Release of final version						
2.1	2022-12-14	Updated Benefits section, Thermal characteristics parameter						

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2022 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 14 Rev. 2.1, 2022-12-14