

Dynamic Frequency Selection (DFS) Test Report

Product Name	Mimosa C5c Mimosa C5c			
Trade Name	mimosa			
Model No	C5c			
FCC ID	2ABZJ-100-00018			

Applicant	Mimosa Networks
Address	469 El Camino Real, Suite 100 Santa Clara,
	CA 95050, USA

Date of Receipt	Jan. 03, 2017
Issued Date	Mar. 30, 2017
Report No.	1710110R-RFUSP58V00-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd...

DFS Test Report

Issued Date: Mar. 30, 2017

Report No.: 1710110R-RFUSP58V00-A

Product Name	Mimosa C5c
Applicant	Mimosa Networks
Address	469 El Camino Real, Suite 100 Santa Clara, CA 95050, USA
Manufacturer	Lite-On Network Communication (Dongguan) Limited
Model No.	C5c
FCC ID.	2ABZJ-100-00018
EUT Voltage	AC 100-240V, 50-60Hz
Testing Voltage	AC 120V/ 60Hz
Trade Name	mimosa
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E 15.407 (h): 2015
	KDB 905462 D02V02, KDB 905462 D04V01, KDB 905462 D06V02
	FCC 16-24
Test Result	Complied

Documented By	:	De-Claudy.
		(Demi Chang / Senior Engineering Adm. Specialist)
Tested By	:	Ricky Lee
		(Ricky Lee / Engineer)
Approved By	:	Roy Wang
		(Roy Wang / Director)

TABLE OF CONTENTS

4	Description Page	
1.	GENERAL INFORMATION	
1.1.	Standard Requirement	
1.2.	EUT Description	
1.3.	UNII Device Description	
1.4.	Test Equipment	
1.5.	Test Setup	
1.6.	DFS Detection Thresholds	
1.7. 1.8.	Radar Test WaveformsRadar Waveform Calibration	
1.0. 1.9.	Radar Waveform Calibration Result	
1.9. 1.10.		
2.	UNII DETECTION BANDWIDTH	
2.1.	Test Procedure	21
2.2.	Test Requirement	
2.3.	Uncertainty	
2.4.	Test Result of UNII Detection Bandwidth	
3.	INITIAL CHANNEL AVAILABILITY CHECK TIME	
3.1.	Test Procedure	27
3.2.	Test Requirement	27
3.3.	Uncertainty	
3.4. 4.	Test Result of Initial Channel Availability Check Time	
4.1.	Test Procedure	
+. 1. 4.2.	Test Requirement	
4.3.	Uncertainty	
4.4.	Test Result of Radar Burst at the Beginning of the Channel Availability Check Time	
5.	RADAR BURST AT THE END OF THE CHANNEL AVAILABILITY CHECK TIME	
5.1.	Test Procedure	
5.2.	Test Requirement	
5.3.	Uncertainty	
5.4.	Test Result of Radar Burst at the End of the Channel Availability Check Time	32
TRA	NSMISSION TIME AND NON-OCCUPANCY PERIOD	33
6.1.	Test Procedure	33
6.2.	Test Requirement	
6.3.	Uncertainty	
6.4.	Test Result of Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period	
7.	STATISTICAL PERFORMANCE CHECK	
7.1.	Test Procedure	39
7.2.	Test Requirement	
7.3.	Uncertainty	
7.4.	Test Result of Statistical Performance Check	41
ATT	ACHMENT 2 : EUT DETAILED PHOTOGRAPHS	66
Atta	chment 1: EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. Standard Requirement

FCC Part 15.407:

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30dBm. A TPC mechanism is not required for systems with an E.I.R.P. of less than 500mW.

U-NII devices operating in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

1.2. EUT Description

Product Name	Mimosa C5c			
Trade Name	mimosa			
FCC ID.	2ABZJ-100-00018			
Model No.	C5c			
DFS Frequency Range	802.11ac-20MHz:5260-5320MHz, 5500-5700MHz			
	802.11ac-40MHz:5270-5310MHz, 5510-5670MHz			
	802.11ac-80MHz:5290MHz, 5530-5690MHz			
Number of DFS Channels	802.11ac-20MHz: 15			
	802.11ac-40MHz: 7			
	802.11ac-80MHz: 4			
Channel Control	Auto			
Channel Bandwidth	20/40/80MHz			
DFS Function	■ Master □ Slave			
TPC Function	■ <500mW not required □ ≥ 500mW employ a TPC*			
Communication Mode	■ IP Based Systems □ Frame Based System □ Other System			
Antenna Gain	Refer to the table "Antenna List"			

Note: The TPC test by U-NII report.

Antenna Information	
Antenna Type	Dish Antenna & Dipole Antenna
Antenna Gain	Dish : 28-30.25dBi
	Dipole : 2.5dBi

Accessories Information	
Dish Antenna	Ubiquiti Networks Inc. / RocketDish
Dipole Antenna	WHA YU INDUSTRIAL CO., LTD. / N100-510037-A

802.11ac20MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 52	5260 MHz	Channel 56	5280 MHz	Channel 60	5300 MHz	Channel 64	5320 MHz
Channel 100	5500 MHz	Channel 104	5520 MHz	Channel 108	5540 MHz	Channel 112	5560 MHz
Channel 116	5580 MHz	Channel 120	5600 MHz	Channel 124	5620 MHz	Channel 128	5640 MHz
Channel 132	5660 MHz	Channel 136	5680 MHz	Channel 140	5700 MHz		

802.11ac40MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 54	5270 MHz	Channel 62	5310 MHz	Channel 102	5510 MHz	Channel 110	5550 MHz
Channel 118	5590 MHz	Channel 126	5630 MHz	Channel 134	5670 MHz		

802.11ac-80MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 58	5290 MHz	Channel 106	5530 MHz	Channel 122	5610 MHz	Channel 138	5690 MHz

Test Mode	Mode 1: Transmit (802.11ac-20BW)
	Mode 2: Transmit (802.11ac-80BW)

1.3. UNII Device Description

- (1) The EUT operates in the following DFS band:
 - 1. 5250-5350 MHz
 - 2. 5470-5725 MHz
- (2)

Below are the available 50 ohm antenna assemblies and their corresponding gains. 0dBi gain was used to set the -63 dBm threshold level (-64dBm +1 dB) during calibration of the test setup.

Part No.	Antenna Type	Peak Gain
Ubiquiti Networks Inc. / RocketDish	Dish	30.25dBi
WHA YU INDUSTRIAL CO., LTD. / N100-510037-A	Dipole	2.5dBi

- (3) WLAN traffic is generated by the test software "Iperf.exe" from the Master device to the Slave device in the transfer data rate >17%.
- (4) For the 5250-5350 MHz and 5470-5725 MHz bands, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.

1.4. Test Equipment

Dynamic Frequency Selection (DFS) / CTR

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2017/08/08
ESG Vector Signal Generator	Agilent	E4438C	MY45095759	2017/04/14
Signal & Spectrum Analyzer	R&S	FSV40	101049	2018/1/22

Instrument	Manufacturer	Type No.	Serial No
Laptop PC	DELL	Vostro A860	CD8BMH1
Laptop PC	ASUS	K45VD	0343G3110M
ATT (Qty: 3)	Mini-Circuits	BW-S3W2 DC-18GHz	0025
RF Cable (Qty: 6)	Schaffner		25494/6

Software	Manufacturer	Function
Agilent DFS_TEST V6.9	Agilent	Radar Signal Generation Software
FW-C5CP2P4	mimosa	

1.5. Test Setup

1.6. DFS Detection Thresholds

(1) Interference Threshold value, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)
≥200 milliwatt	-64dBm
EIRP < 200 milliwatt and	00 dD
power spectral density < 10 dBm/MHz	-62dBm
EIRP < 200 milliwatt that do not meet the	CA-ID
power spectral density requirement	-64dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

(2) DFS Response requirement values

Parameter	Value
Non-Occupancy Period	Minimum 30 Minutes
Channel Availability Check Time	60 Seconds
Channal Maya Time	10 Seconds
Channel Move Time	See Note 1.
	200 milliseconds + approx. 60 milliseconds
Channel Closing Transmission Time	over remaining 10 seconds period
	(See Notes 1 and 2)
LI NIII Detection Dandwidth	Minimum 100% of the 99% power bandwidth
U-NII Detection Bandwidth	See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

1.7. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

(1) Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left[\frac{1}{360} \right]. $ $\left[\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right] $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types	1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

(2) Long Pulse Radar Test Signal

· /							
						Minimum	
Radar		Number	Pulse	Chirp	PRI	Percentage	Minimum
	Bursts	of Pulses	Width	Width		of	
Waveform		Per Burst	(usec)	(MHz)	(usec)	Successful	Trials
						Detection	
5	8-20	1-3	50-100	5-20	1000-2000	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the long pulse radar test signal. If more than 30 waveforms are used for the long pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.
- 3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- 5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst_Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

Graphical Representation of a Long Pulse radar Test Waveform

(3) Frequency Hopping Radar Test Signal

(-/	<u> </u>						
Radar	Pulse	PRI	Hopping	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Sequence	Per Hop	Rate	Percentage	Trials
	$(\mu \sec)$		Length		(kHz)	of	
			(msec)			Successful	
						Detection	
6	1	333	300	9	0.333	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

1.8. Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 50ohm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -63dBm due to the interference threshold level is not required.

Radiated Calibration Setup

1.9. Radar Waveform Calibration Result

Radar Type 0

Radar Type 1

Calibration Plot (5500MHz)

Radar Type 2

Radar Type 3

Calibration Plot (5500MHz)

Radar Type 4

Radar Type 5

Calibration Plot (5500MHz)

Radar Type 6

1.10. Master Data Traffic Plot Result

Plot of WLAN Traffic at 5500MHz-20BW

Channel loading	Requirement loading
27.55%	>17%

Plot of WLAN Traffic at 5530MHz-80BW

Channel loading	Requirement loading
31.44%	>17%

Page: 20 of 72

2. UNII Detection Bandwidth

2.1. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

The generating equipment is configured as shown in the radiated Test Setup above. A single *Burst* of the short pulse radar type 0 is produced at 5300MHz and 5510 at a -63dBm level. The EUT is set up as a standalone device (no associated Client and no traffic).

A single radar Burst is generated for a minimum of 10 trials, and the response of the EUT is noted.

The EUT must detect the Radar Waveform 90% or more of the time. The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as Fh.

The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as FI.

The U-NII Detection Bandwidth is calculated as follows:

U-NII Detection Bandwidth = FH - FL

The U-NII Detection Bandwidth must be at least 100% of the EUT transmitter 99% power, otherwise, the EUT does not comply with DFS requirements.

2.2. Test Requirement

All UNII 20/40MHz and 80MHz channels for this device have identical Channel bandwidths. All UNII 20/40/80MHz channels for this device also have identical Channel bandwidths. Therefore, all DFS testing was done at 5300MHz \cdot 5500MHz \cdot 5290MHz and 5530MHz. The 99% channel bandwidth for 20MHz signals is 18.435 MHz, and the 99% channel bandwidth for 80MHz signals is 75.952MHz.

2.3. Uncertainty

± 1ms.

802.11ac-20 BW

802.11ac80 BW

2.4. Test Result of UNII Detection Bandwidth

Product : Mimosa C5c

Test Item : UNII Detection Bandwidth

Radar Type: Type 0
Test Date: 2017/03/14

Test Mode : Mode 1: Transmit (802.11ac-20BW)

est Channel: 5300MHz (ac-20BW)											
Radar Frequency	DI	FS De	tectio	n Trials	s (1= [Detecti	on, 0=	No De	etectio	n)	Detection Rate
(MHz)	1	2	3	4	5	6	7	8	9	10	(%)
5290 (FL)	1	1	1	1	1	1	1	1	1	1	100
5291	1	1	1	1	1	1	1	1	1	1	100
5292	1	1	1	1	1	1	1	1	1	1	100
5293	1	1	1	1	1	1	1	1	1	1	100
5294	1	1	1	1	1	1	1	1	1	1	100
5295	1	1	1	1	1	1	1	1	1	1	100
5296	1	1	1	1	1	1	1	1	1	1	100
5297	1	1	1	1	1	1	1	1	1	1	100
5298	1	1	1	1	1	1	1	1	1	1	100
5299	1	1	1	1	1	1	1	1	1	1	100
5300	1	1	1	1	1	1	1	1	1	1	100
5301	1	1	1	1	1	1	1	1	1	1	100
5302	1	1	1	1	1	1	1	1	1	1	100
5303	1	1	1	1	1	1	1	1	1	1	100
5304	1	1	1	1	1	1	1	1	1	1	100
5305	1	1	1	1	1	1	1	1	1	1	100
5306	1	1	1	1	1	1	1	1	1	1	100
5307	1	1	1	1	1	1	1	1	1	1	100
5308	1	1	1	1	1	1	1	1	1	1	100
5309	1	1	1	1	1	1	1	1	1	1	100
5310 (FH)	1	1	1	1	1	1	1	1	1	1	100

Detection Bandwidth = FH - FL = 5310MHz - 5290MHz = 20MHz

EUT 99% Bandwidth = 18.435MHz

UNII Detection Bandwidth Min. Limit = 18.435MHz * 100% = 18.435MHz

Product : Mimosa C5c

Test Item : UNII Detection Bandwidth

Radar Type: Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

Radar Frequency	DF	S Det	ection	Trials	(1= D	etecti	on, 0=	No D	etecti	on)	Detection Rate
(MHz)	1	2	3	4	5	6	7	8	9	10	(%)
5250 (FL)	1	1	1	1	1	1	1	1	1	1	100
5251	1	1	1	1	1	1	1	1	1	1	100
5252	1	1	1	1	1	1	1	1	1	1	100
5253	1	1	1	1	1	1	1	1	1	1	100
5254	1	1	1	1	1	1	1	1	1	1	100
5255	1	1	1	1	1	1	1	1	1	1	100
5256	1	1	1	1	1	1	1	1	1	1	100
5257	1	1	1	1	1	1	1	1	1	1	100
5258	1	1	1	1	1	1	1	1	1	1	100
5259	1	1	1	1	1	1	1	1	1	1	100
5260	1	1	1	1	1	1	1	1	1	1	100
5261	1	1	1	1	1	1	1	1	1	1	100
5262	1	1	1	1	1	1	1	1	1	1	100
5263	1	1	1	1	1	1	1	1	1	1	100
5264	1	1	1	1	1	1	1	1	1	1	100
5265	1	1	1	1	1	1	1	1	1	1	100
5266	1	1	1	1	1	1	1	1	1	1	100
5267	1	1	1	1	1	1	1	1	1	1	100
5268	1	1	1	1	1	1	1	1	1	1	100
5269	1	1	1	1	1	1	1	1	1	1	100
5270	1	1	1	1	1	1	1	1	1	1	100
5271	1	1	1	1	1	1	1	1	1	1	100
5272	1	1	1	1	1	1	1	1	1	1	100
5273	1	1	1	1	1	1	1	1	1	1	100
5274	1	1	1	1	1	1	1	1	1	1	100
5275	1	1	1	1	1	1	1	1	1	1	100
5276	1	1	1	1	1	1	1	1	1	1	100

Т					I						
5277	1	1	1	1	1	1	1	1	1	1	100
5278	1	1	1	1	1	1	1	1	1	1	100
5279	1	1	1	1	1	1	1	1	1	1	100
5280	1	1	1	1	1	1	1	1	1	1	100
5281	1	1	1	1	1	1	1	1	1	1	100
5282	1	1	1	1	1	1	1	1	1	1	100
5283	1	1	1	1	1	1	1	1	1	1	100
5284	1	1	1	1	1	1	1	1	1	1	100
5285	1	1	1	1	1	1	1	1	1	1	100
5286	1	1	1	1	1	1	1	1	1	1	100
5287	1	1	1	1	1	1	1	1	1	1	100
5288	1	1	1	1	1	1	1	1	1	1	100
5289	1	1	1	1	1	1	1	1	1	1	100
5290	1	1	1	1	1	1	1	1	1	1	100
5291	1	1	1	1	1	1	1	1	1	1	100
5292	1	1	1	1	1	1	1	1	1	1	100
5293	1	1	1	1	1	1	1	1	1	1	100
5294	1	1	1	1	1	1	1	1	1	1	100
5295	1	1	1	1	1	1	1	1	1	1	100
5296	1	1	1	1	1	1	1	1	1	1	100
5297	1	1	1	1	1	1	1	1	1	1	100
5298	1	1	1	1	1	1	1	1	1	1	100
5299	1	1	1	1	1	1	1	1	1	1	100
5300	1	1	1	1	1	1	1	1	1	1	100
5301	1	1	1	1	1	1	1	1	1	1	100
5302	1	1	1	1	1	1	1	1	1	1	100
5303	1	1	1	1	1	1	1	1	1	1	100
5304	1	1	1	1	1	1	1	1	1	1	100
5305	1	1	1	1	1	1	1	1	1	1	100
5306	1	1	1	1	1	1	1	1	1	1	100
5307	1	1	1	1	1	1	1	1	1	1	100
5308	1	1	1	1	1	1	1	1	1	1	100
5309	1	1	1	1	1	1	1	1	1	1	100
5310	1	1	1	1	1	1	1	1	1	1	100
5311	1	1	1	1	1	1	1	1	1	1	100
5312	1	1	1	1	1	1	1	1	1	1	100
5313	1	1	1	1	1	1	1	1	1	1	100

Page: 25 of 72

1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
1	1	1	1	1	1	1	1	100
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>1 1</th> <th>1 1</th> <th>1 1</th>	1 1	1 1	1 1

Detection Bandwidth = FH - FL = 5330MHz - 5250MHz = 80MHz

EUT 99% Bandwidth = 75.952MHz

UNII Detection Bandwidth Min. Limit = 75.952MHz X 100% =75.952MHz

3. Initial Channel Availability Check Time

3.1. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

The U-NII device is powered on and instructed to operate at 5290 MHz and 5530MHz. At the same time the UUT is powered on, the spectrum analyzer is set to zero span mode with a 3 MHz resolution bandwidth at 5290 MHz and 5530MHz with a 220s sweep time. The analyzer's sweep will be started the same time power is applied to the U-NII device.

The EUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.

3.2. Test Requirement

The EUT shall perform a channel availability check to ensure that there is no radar operation on the channel, after power-up sequence, receiver at least 1 minute on the intended operation frequency.

3.3. Uncertainty

± 1ms.

3.4. Test Result of Initial Channel Availability Check Time

Product : Mimosa C5c

Test Item : Initial Channel Availability Check Time

Radar Type: Type 1

Test Mode : Mode 2: Transmit (802.11ac-80BW)

4. Radar Burst at the Beginning of the Channel Availability Check Time

4.1. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB (-63dBm) occurs at the beginning of the Channel Availability Check Time.

The EUT is powered on at T0. T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds.

A single Burst of short pulse of radar type 1 at -63dBm will commence within a 6 second window starting at T1.

Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5290MHz and 5530MHz will continue for 2.5 minutes after the radar Burst, Verify that during the 2.5 minute measurement window no EUT transmissions occurred at 5290MHz.

4.2. Test Requirement

In beginning of the Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC that channel.

4.3. Uncertainty

± 1ms.

4.4. Test Result of Radar Burst at the Beginning of the Channel Availability Check Time

Product : Mimosa C5c

Test Item : Radar Burst at the Beginning of the Channel Availability Check Time

Radar Type: Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

Radar Burst at the End of the Channel Availability Check Time

4.5. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB (-63dBm) occurs at the end of the Channel Availability Check Time.

The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds. A single Burst of short pulse of radar type 1 at -63 dBm will commence within a 6 second window starting at T1+ 54 seconds.

Visual indication on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5290MHz will continue for 2.5 minutes after the radar Burst has been generated.

Verify that during the 2.5 minute measurement window no UUT transmissions occurred at 5290MHz.

4.6. Test Requirement

In the end of Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC that channel.

4.7. Uncertainty

± 1ms.

4.8. Test Result of Radar Burst at the End of the Channel Availability Check Time

Product : Mimosa C5c

Test Item : Radar Burst at the End of the Channel Availability Check Time

Radar Type: Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

5. In-Service Monitoring for Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period

5.1. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

These tests define how the following DFS parameters are verified during In-Service Monitoring;

Channel Closing Transmission Time, Channel Move Time, and Non-Occupancy Period.. The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB (-63dBm) is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5290MHz 5530MHz.

Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test.

At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at -63dBm.

Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time results to the limits defined in the DFS Response requirement values table.

Measure the UUT for more than 30 minutes following the channel close/move time to verify that the UUT does not resume any transmissions on this Channel.

5.2. Test Requirement

Parameter	Value
Channel Move Time	10 Seconds
Channel Closing	200 milliseconds + approx. 60 milliseconds
Transmission Time	over remaining 10 seconds period
Non-Occupancy Period	Minimum 30 minutes

5.3. Uncertainty

± 1ms.

5.4. Test Result of Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period

Product : Mimosa C5c

Test Item : Channel Move Time

Radar Type: Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

Channel Move Time and Channel Closing Transmission Time for Radar Test Type 0 at 5290MHz

Test Item	Test Result	Limit				
Test item	(Sec)	(Sec)				
Channel Move Time	0.1305 Sec	10 Sec				
Channel Closing	90 milliseconds	200 milliseconds + approx. 60 milliseconds				
Transmission		over remaining 10 seconds period				

The results showed that after radar signal injected the channel move time was less than 10 seconds. The results showed that after radar signal injected the channel transmission closing time less than 200 milliseconds and an aggregate of no more than 60 milliseconds.

Product : Mimosa C5c

Test Item : Channel Closing Transmission Time Test

Radar Type: Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

Channel Move Time and Channel Closing Transmission Time for Radar Test Type 0 at 5530MHz

Test Item	Test Result	Limit
Channel Move Time	0.120 Sec	10 Sec
Channel Closing	40.5 milliseconds	200 milliseconds + approx. 60 milliseconds
Transmission		over remaining 10 seconds period

The results showed that after radar signal injected the channel move time was less than 10 seconds. The results showed that after radar signal injected the channel transmission closing time less than 200 milliseconds and an aggregate of no more than 60 milliseconds.

Test Item : Non-Occupancy Period

Radar Type : Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

Non-Occupancy Period at 5290 MHz

Test Item	Test Result (Minutes)	Limit (Minutes)	
Non-Occupancy Period	>30	>30	

^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.

Test Item : Non-Occupancy Period

Radar Type : Type 0

Test Mode : Mode 2: Transmit (802.11ac-80BW)

Non-Occupancy Period at 5530 MHz

Test Item	Test Result (Minutes)	Limit (Minutes)	
Non-Occupancy Period	>30	>30	

^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.

6. Statistical Performance Check

6.1. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

The steps below define the procedure to determine the minimum percentage of detection when a radar burst with a level equal to the DFS Detection Threshold + 1dB (-63dBm) is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at5300MHz > 5510MHz and 5630MHz...

Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test.

The Radar Waveform generator sends the individual waveform for each of the radar types 1-6 at -63dbm. Statistical data will be gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.

6.2. Test Requirement

The minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Minimum percentage of successful detections

Radar Type	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	60%	30
2	60%	30
3	60%	30
4	60%	30
Aggregate (Radar Types 1-4)	80%	120
5	80%	30
6	70%	30

Page: 39 of 72

The percentage of successful detection is calculated by:

$$\frac{\textit{TotalWaveformDetections}}{\textit{TotalWaveformTrials}} \times 100 \quad \text{=Probability of Detection Radar Waveform}$$

In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows:

$$\frac{P_d \, 1 + P_d \, 2 + P_d \, 3 + P_d \, 4}{4}$$

6.3. Uncertainty

± 1ms.

6.4. Test Result of Statistical Performance Check

Product : Mimosa C5c

Test Item : Statistical Performance Check

Radar Type : Type 1
Test Date : 2017/03/14

Trial #	Frequency (MHz)	Pulse Width (us)	PRI (us)	Pulses/Burs	1= Detection 0= No Detection
1	5300	1	938	57	1
2	5300	1	698	76	1
3	5300	1	618	86	1
4	5300	1	538	99	1
5	5300	1	878	61	1
6	5300	1	3066	18	1
7	5300	1	638	83	1
8	5300	1	918	58	1
9	5300	1	838	63	1
10	5300	1	858	62	1
11	5300	1	798	67	1
12	5300	1	718	74	1
13	5300	1	578	92	1
14	5300	1	598	89	1
15	5300	1	558	95	1
16	5300	1	2536	21	1
17	5300	1	966	55	1
18	5300	1	827	64	1
19	5300	1	2501	22	1
20	5300	1	2595	21	1
21	5300	1	1114	48	1
22	5300	1	1302	41	1
23	5300	1	3045	18	1
24	5300	1	1624	33	1
25	5300	1	2878	19	1
26	5300	1	1027	52	1
27	5300	1	2485	22	1
28	5300	1	1600	33	1
29	5300	1	1172	46	1
30	5300	1	1177	45	1
	100%				

Test Item : Statistical Performance Check

Radar Type : Type 1
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	D 1 /D	1= Detection		
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection		
1	5500	1	838	63	1		
2	5500	1	818	65	1		
3	5500	1	778	68	1		
4	5500	1	518	102	1		
5	5500	1	678	78	1		
6	5500	1	698	76	1		
7	5500	1	898	59	1		
8	5500	1	918	58	1		
9	5500	1	798	67	1		
10	5500	1	3066	18	1		
11	5500	1	718	74	1		
12	5500	1	758	70	1		
13	5500	1	938	57	1		
14	5500	1	578	92	1		
15	5500	1	878	61	1		
16	5500	1	2013	27	1		
17	5500	1	1281	42	1		
18	5500	1	1175	45	1		
19	5500	1	773	69	1		
20	5500	1	890	60	1		
21	5500	1	2740	20	1		
22	5500	1	2644	20	1		
23	5500	1	1364	39	1		
24	5500	1	1514	35	1		
25	5300	1	1106	48	1		
26	5300	1	562	94	1		
27	5300	1	1215	44	1		
28	5300	1	2070	26	1		
29	5300	1	1417	38	1		
30	5300	1	2011	27	1		
	Detection Percentage(%)						

Test Item : Statistical Performance Check

Radar Type : Type 1
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	DI/D	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5290	1	838	63	1
2	5290	1	758	70	1
3	5290	1	518	102	1
4	5290	1	878	61	1
5	5290	1	818	65	1
6	5290	1	858	62	1
7	5290	1	638	83	1
8	5290	1	618	86	1
9	5290	1	918	58	1
10	5290	1	938	57	1
11	5290	1	738	72	1
12	5290	1	718	74	1
13	5290	1	3066	18	1
14	5290	1	538	99	1
15	5290	1	558	95	1
16	5290	1	1211	44	1
17	5290	1	2398	23	1
18	5290	1	790	67	1
19	5290	1	1848	29	1
20	5290	1	679	78	1
21	5290	1	1927	28	1
22	5290	1	1762	30	1
23	5290	1	1756	31	1
24	5290	1	1494	36	1
25	5290	1	2196	25	1
26	5290	1	2341	23	1
27	5290	1	2798	19	1
28	5290	1	2893	19	1
29	5290	1	1410	38	1
30	5290	1 Detection Percer	1297	41	1
	100%				

Test Item : Statistical Performance Check

Radar Type : Type 1 Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	D /D	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5530	1	738	72	1
2	5530	1	878	61	1
3	5530	1	578	92	1
4	5530	1	718	74	1
5	5530	1	518	102	1
6	5530	1	538	99	1
7	5530	1	638	83	1
8	5530	1	698	76	1
9	5530	1	3066	18	1
10	5530	1	918	58	1
11	5530	1	558	95	1
12	5530	1	898	59	1
13	5530	1	778	68	1
14	5530	1	838	63	1
15	5530	1	818	65	1
16	5530	1	688	77	1
17	5530	1	2713	20	1
18	5530	1	1560	34	1
19	5530	1	2247	24	1
20	5530	1	1523	35	1
21	5530	1	1004	53	1
22	5530	1	555	96	1
23	5530	1	2149	25	1
24	5530	1	1234	43	1
25	5530	1	1254	43	1
26	5530	1	1998	27	1
27	5530	1	875	61	1
28	5530	1	2508	22	1
29	5530	1	2308	23	1
30	5530	1 Detection Percer	1115	48	1
	100%				

Test Item : Statistical Performance Check

Radar Type : Type 2
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	2 / 2	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5300	3.2	179	26	1
2	5300	1.1	207	23	1
3	5300	2.1	230	24	1
4	5300	4.8	200	29	1
5	5300	3.9	214	28	1
6	5300	2.9	222	26	1
7	5300	3.2	204	26	1
8	5300	2.5	192	25	1
9	5300	3.1	164	26	1
10	5300	1.2	156	23	1
11	5300	3.9	210	27	1
12	5300	4.6	201	29	1
13	5300	3.2	162	26	1
14	5300	2.2	197	25	1
15	5300	4.5	163	29	1
16	5300	3	203	26	1
17	5300	5	168	29	1
18	5300	2.4	217	25	1
19	5300	2.9	191	26	1
20	5300	2.3	166	25	1
21	5300	3.7	150	27	1
22	5300	2.2	176	25	1
23	5300	4.9	195	29	1
24	5300	2.9	202	26	1
25	5300	2.5	178	25	1
26	5300	1.1	206	23	1
27	5300	3.8	155	27	1
28	5300	4.7	157	29	1
29	5300	2.4	224	25	1
30	5300	4.2	159	28	1
		Detection Percer	ntage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 2
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	D 1 /D	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5500	3.4	204	27	1
2	5500	3.5	220	27	1
3	5500	3.7	184	27	1
4	5500	2.4	163	25	1
5	5500	3.5	207	27	1
6	5500	1.9	225	24	1
7	5500	2.8	155	26	1
8	5500	2.5	213	25	1
9	5500	4.2	156	28	1
10	5500	4.2	176	28	1
11	5500	1.7	194	24	1
12	5500	2.8	175	26	1
13	5500	4.7	210	29	1
14	5500	2.4	180	25	1
15	5500	2.1	191	24	1
16	5500	4	189	28	1
17	5500	4.3	198	28	1
18	5500	3.4	164	27	1
19	5500	3.1	161	26	1
20	5500	1.3	215	23	1
21	5500	4.8	197	29	1
22	5500	4.2	187	28	1
23	5500	2.2	205	25	1
24	5500	1.7	212	24	1
25	5500	3.3	202	27	1
26	5500	2.3	150	25	1
27	5500	2.6	199	25	1
28	5500	1.5	203	24	1
29	5500	4.7	193	29	1
30	5500	2.6	151	25	1
	100%				

Test Item : Statistical Performance Check

Radar Type : Type 2
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	Pulses/Burs	1= Detection
#	(MHz)	(us)	(us)		0= No Detection
1	5290	1.3	200	23	1
2	5290	2.3	173	25	1
3	5290	4.9	158	29	1
4	5290	1.5	190	24	1
5	5290	1.6	219	24	1
6	5290	2.4	183	25	1
7	5290	5	171	29	1
8	5290	4.5	194	29	1
9	5290	3.6	160	27	1
10	5290	2.7	166	26	1
11	5290	2.8	202	26	1
12	5290	3.7	188	27	1
13	5290	1.9	184	24	1
14	5290	4.4	203	28	1
15	5290	3.3	205	26	1
16	5290	1.5	189	23	1
17	5290	2.6	228	25	1
18	5290	4.9	178	29	1
19	5290	3	176	26	1
20	5290	3.8	150	27	1
21	5290	4.3	164	28	1
22	5290	3.2	165	26	1
23	5290	1.5	222	23	1
24	5290	4.3	151	28	1
25	5290	2.9	167	26	1
26	5290	3.7	159	27	1
27	5290	3.2	177	26	1
28	5290	3.1	153	26	1
29	5290	3.6	169	27	1
30	5290	3.4	212	27	1
		Detection Percen	tage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 2
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	D /D	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5530	1.5	225	23	1
2	5530	4.7	186	29	1
3	5530	2.5	210	25	1
4	5530	3.3	217	26	1
5	5530	1.2	212	23	1
6	5530	1.3	203	23	1
7	5530	4.6	215	29	1
8	5530	4.5	152	29	1
9	5530	4.7	169	29	1
10	5530	1.7	162	24	1
11	5530	4.7	172	29	1
12	5530	1.9	221	24	1
13	5530	3.5	171	27	1
14	5530	4.5	190	29	1
15	5530	4.9	224	29	1
16	5530	2.5	150	25	1
17	5530	2	198	24	1
18	5530	1.8	163	24	1
19	5530	3.2	216	26	1
20	5530	2.9	161	26	1
21	5530	1.3	176	23	1
22	5530	1.1	228	23	1
23	5530	2.9	157	26	1
24	5530	3.1	165	26	0
25	5530	3.8	230	27	1
26	5530	4.9	158	29	1
27	5530	2.1	206	24	1
28	5530	4.1	211	28	1
29	5530	1.7	178	24	1
30	5530	1.8	151	24	1
		Detection Percen	tage(%)		96.66%

Test Item : Statistical Performance Check

Radar Type : Type 3
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	D 1 /D	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5300	8.2	355	17	1
2	5300	6.1	487	16	1
3	5300	7.1	344	16	1
4	5300	9.8	288	18	1
5	5300	8.9	230	18	1
6	5300	7.9	432	17	1
7	5300	8.2	207	17	1
8	5300	7.5	443	17	1
9	5300	8.1	439	17	1
10	5300	6.2	223	16	1
11	5300	8.9	208	18	1
12	5300	9.6	463	18	1
13	5300	8.2	441	17	1
14	5300	7.2	323	16	1
15	5300	9.5	297	18	1
16	5300	8	412	17	1
17	5300	10	324	18	1
18	5300	7.4	271	17	1
19	5300	7.9	349	17	1
20	5300	7.3	409	16	1
21	5300	8.7	373	18	1
22	5300	7.2	254	16	1
23	5300	9.9	274	18	0
24	5300	7.9	278	17	1
25	5300	7.5	317	17	1
26	5300	6.1	260	16	0
27	5300	8.8	211	18	1
28	5300	9.7	272	18	1
29	5300	7.4	264	17	1
30	5300	9.2 Detection Percer	284	18	1
	93.3%				

Test Item : Statistical Performance Check

Radar Type : Type 3
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI		1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5500	8.4	392	17	1
2	5500	8.5	201	17	1
3	5500	8.7	241	18	1
4	5500	7.4	331	17	1
5	5500	8.5	385	17	1
6	5500	6.9	322	16	1
7	5500	7.8	372	17	1
8	5500	7.5	488	17	1
9	5500	9.2	285	18	1
10	5500	9.2	359	18	1
11	5500	6.7	340	16	1
12	5500	7.8	323	17	1
13	5500	9.7	244	18	1
14	5500	7.4	412	17	1
15	5500	7.1	321	16	1
16	5500	9	279	18	1
17	5500	9.3	301	18	1
18	5500	8.4	256	17	1
19	5500	8.1	397	17	1
20	5500	6.3	254	16	1
21	5500	9.8	387	18	1
22	5500	9.2	314	18	1
23	5500	7.2	373	16	1
24	5500	6.7	427	16	1
25	5500	8.3	383	17	1
26	5500	7.3	493	16	1
27	5500	7.6	278	17	1
28	5500	6.5	286	16	1
29	5500	9.7	446	18	1
30	5500	7.6	495	17	1
		Detection Percer	ntage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 3
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI		1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5290	6.3	373	16	1
2	5290	7.3	344	16	1
3	5290	9.9	293	18	1
4	5290	6.5	460	16	1
5	5290	6.6	458	16	1
6	5290	7.4	226	17	1
7	5290	10	290	18	1
8	5290	9.5	466	18	1
9	5290	8.6	362	17	1
10	5290	7.7	291	17	1
11	5290	7.8	274	17	1
12	5290	8.7	242	17	1
13	5290	6.9	493	16	1
14	5290	9.4	368	18	1
15	5290	8.3	309	17	1
16	5290	6.5	345	16	1
17	5290	7.6	312	17	1
18	5290	9.9	415	18	1
19	5290	8	332	17	1
20	5290	8.8	229	18	1
21	5290	9.3	284	18	1
22	5290	8.2	323	17	1
23	5290	6.5	333	16	1
24	5290	9.3	372	18	1
25	5290	7.9	473	17	1
26	5290	8.7	352	18	1
27	5290	8.2	426	17	1
28	5290	8.1	214	17	1
29	5290	8.6	484	17	1
30	5290	8.4	392	17	1
		Detection Percen	tage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 3
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	D /D	1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5530	6.5	410	16	1
2	5530	9.7	360	18	1
3	5530	7.5	491	17	1
4	5530	8.3	202	17	1
5	5530	6.2	311	16	1
6	5530	6.3	418	16	1
7	5530	9.6	455	18	1
8	5530	9.5	209	18	1
9	5530	9.7	208	18	1
10	5530	6.7	426	16	1
11	5530	9.7	407	18	1
12	5530	6.9	404	16	1
13	5530	8.5	296	17	1
14	5530	9.5	457	18	1
15	5530	9.9	334	18	1
16	5530	7.5	212	17	1
17	5530	7	289	16	1
18	5530	6.8	399	16	1
19	5530	8.2	421	17	1
20	5530	7.9	479	17	1
21	5530	6.3	242	16	1
22	5530	6.1	343	16	1
23	5530	7.9	423	17	1
24	5530	8.1	442	17	1
25	5530	8.8	482	18	1
26	5530	9.9	294	18	1
27	5530	7.1	332	16	1
28	5530	9.1	433	18	1
29	5530	6.7	447	16	1
30	5530	6.8	376	16	1
		Detection Percen	tage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 4
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI		1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5300	16	355	14	1
2	5300	11.3	487	12	1
3	5300	13.5	344	13	1
4	5300	19.4	288	16	1
5	5300	17.5	230	15	1
6	5300	15.3	432	14	1
7	5300	15.9	207	14	1
8	5300	14.3	443	13	1
9	5300	15.8	439	14	1
10	5300	11.5	223	12	1
11	5300	17.4	208	15	1
12	5300	19	463	16	1
13	5300	16	441	14	1
14	5300	13.8	323	13	1
15	5300	18.9	297	16	1
16	5300	15.5	412	14	1
17	5300	19.9	324	16	1
18	5300	14.1	271	13	1
19	5300	15.2	349	14	1
20	5300	13.8	409	13	1
21	5300	17.1	373	15	1
22	5300	13.8	254	13	1
23	5300	19.8	274	16	1
24	5300	15.3	278	14	1
25	5300	14.5	317	13	1
26	5300	11.3	260	12	1
27	5300	17.3	211	15	1
28	5300	19.2	272	16	1
29	5300	14.2	264	13	1
30	5300	18.2	284	15	1
		Detection Percer	ntage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 4
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI	Pulses/Burs	1= Detection
#	(MHz)	(us)	(us)	Puises/buis	0= No Detection
1	5500	16.4	392	15	1
2	5500	16.6	201	15	1
3	5500	17.1	241	15	1
4	5500	14.2	331	13	1
5	5500	16.6	385	15	1
6	5500	13	322	13	1
7	5500	14.9	372	14	1
8	5500	14.3	488	13	1
9	5500	18.1	285	15	1
10	5500	18.3	359	16	1
11	5500	12.7	340	12	1
12	5500	15	323	14	1
13	5500	19.4	244	16	1
14	5500	14.2	412	13	1
15	5500	13.4	321	13	1
16	5500	17.8	279	15	1
17	5500	18.5	301	16	1
18	5500	16.3	256	14	1
19	5500	15.7	397	14	1
20	5500	11.8	254	12	1
21	5500	19.5	387	16	1
22	5500	18.2	314	16	1
23	5500	13.8	373	13	1
24	5500	12.5	427	12	1
25	5500	16.3	383	14	1
26	5500	13.9	493	13	1
27	5500	14.7	278	14	1
28	5500	12.3	286	12	1
29	5500	19.3	446	16	1
30	5500	14.6	495	14	1
		Detection Percer	ntage(%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 4
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI		1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5290	11.7	373	12	1
2	5290	14	344	13	1
3	5290	19.8	293	16	1
4	5290	12.3	460	12	1
5	5290	12.5	458	12	1
6	5290	14.1	226	13	1
7	5290	20	290	16	1
8	5290	18.9	466	16	1
9	5290	16.9	362	15	1
10	5290	14.9	291	14	1
11	5290	15.1	274	14	1
12	5290	17	242	15	1
13	5290	13.1	493	13	1
14	5290	18.5	368	16	1
15	5290	16.1	309	14	1
16	5290	12.1	345	12	1
17	5290	14.6	312	14	1
18	5290	19.8	415	16	1
19	5290	15.5	332	14	1
20	5290	17.4	229	15	1
21	5290	18.3	284	16	1
22	5290	16	323	14	1
23	5290	12.2	333	12	1
24	5290	18.5	372	16	1
25	5290	15.4	473	14	1
26	5290	17.2	352	15	1
27	5290	16	426	14	1
28	5290	15.7	214	14	1
29	5290	16.7	484	15	1
30	5290	16.4	392	14	1
		Detection Percen	tage (%)		100%

Test Item : Statistical Performance Check

Radar Type : Type 4
Test Date : 2017/03/14

Trial	Frequency	Pulse Width	PRI		1= Detection
#	(MHz)	(us)	(us)	Pulses/Burs	0= No Detection
1	5530	12.1	410	12	1
2	5530	19.3	360	16	1
3	5530	14.3	491	13	1
4	5530	16.1	202	14	1
5	5530	11.6	311	12	1
6	5530	11.8	418	12	1
7	5530	19	455	16	1
8	5530	18.9	209	16	1
9	5530	19.2	208	16	1
10	5530	12.5	426	12	1
11	5530	19.4	407	16	1
12	5530	13	404	13	1
13	5530	16.5	296	15	1
14	5530	18.9	457	16	1
15	5530	19.8	334	16	1
16	5530	14.3	212	13	1
17	5530	13.2	289	13	1
18	5530	12.8	399	13	1
19	5530	16	421	14	1
20	5530	15.3	479	14	1
21	5530	11.6	242	12	1
22	5530	11.4	343	12	1
23	5530	15.3	423	14	1
24	5530	15.7	442	14	1
25	5530	17.2	482	15	1
26	5530	19.8	294	16	1
27	5530	13.4	332	13	1
28	5530	17.9	433	15	1
29	5530	12.7	447	12	1
30	5530	12.8	376	13	1
		Detection Percen	tage (%)		100%

Mode1 -802.11ac20

Total Type 1~4 Radar Statistical Performance								
Dodor Turo	Detection Percentage	Limit	Popult					
Radar Type	(%)	(%)	Result					
1	100	>60%	Pass					
2	100	>60%	Pass					
3	93.3	>60%	Pass					
4	100	>60%	Pass					
Total Type 1~4	98.325	>80%	Pass					

Mode3 -802.11ac80

Total Type 1~4 Radar Statistical Performance								
Radar Type	Detection Percentage	Limit	Result					
71.	(%)	(%)						
1	100	>60%	Pass					
2	96.6	>60%	Pass					
3	100	>60%	Pass					
4	100	>60%	Pass					
Total Type 1~4	99.15	>80%	Pass					

Test Item : Statistical Performance Check

Radar Type : Type 5
Test Date : 2017/03/14

Center Freq: 5300MHz		Hz	Low Edge: 5290MHz	High Edge: 53	310MHz	
Trial #	Chirp	Offset	VSG Frequency (MHz)	*Filenam	е	1= Detection 0= No Detection
1	15	0.8	5.300	Statistical Check RandParm	For Radar Type 5	1
2	8	1.5	5.300	Statistical Check RandParm	For Radar Type 5	1
3	11	1.090909	5.300	Statistical Check RandParm	For Radar Type 5	1
4	20	0.6	5.300	Statistical Check RandParm	For Radar Type 5	1
5	17	0.705882	5.300	Statistical Check RandParm	For Radar Type 5	1
6	14	0.857142	5.300	Statistical Check RandParm	For Radar Type 5	1
7	15	0.8	5.300	Statistical Check RandParm F	or Radar Type 5 7 t	1
8	12	1	5.300	Statistical Check RandParm F	or Radar Type 5 8 t	1
9	14	0.857142	5.300	Statistical Check RandParm F	or Radar Type 5 9 t	1
10	8	1.5	5.300	Statistical Check RandParm F	or Radar Type 5 10	1
11	17	0.705882	5.2964	Statistical Check RandParm F	or Radar Type 5 11	1
12	19	0.631578	5.2976	Statistical Check RandParm F	or Radar Type 5 12	1
13	15	0.8	5.2952	Statistical Check RandParm F	or Radar Type 5 13	1
14	12	1	5.294	Statistical Check RandParm F	or Radar Type 5 14	1
15	19	0.631578	5.2972	Statistical Check RandParm F	or Radar Type 5 15	1
16	14	0.857142	5.2948	Statistical Check RandParm F	or Radar Type 5 16	1
17	20	0.6	5.298	Statistical Check RandParm F	or Radar Type 5 17	1
18	12	1	5.294	Statistical Check RandParm F	or Radar Type 5 18	1
19	14	0.857142	5.2948	Statistical Check RandParm F	or Radar Type 5 19	1
20	12	1	5.294	Statistical Check RandParm F	or Radar Type 5 20	1
21	16	0.75	5.304	Statistical Check RandParm F	or Radar Type 5 21	1
22	12	1	5.3064	Statistical Check RandParm F	or Radar Type 5 22	1
23	20	0.6	5.302	Statistical Check RandParm F	or Radar Type 5 23	1
24	14	0.857142	5.3052	Statistical Check RandParm F	or Radar Type 5 24	1
25	13	0.923076	5.3056	Statistical Check RandParm F	or Radar Type 5 25	1
26	8	1.5	5.308	Statistical Check RandParm F	or Radar Type 5 26	1
27	17	0.705882	5.3036	Statistical Check RandParm F	or Radar Type 5 27	1
28	19	0.631578	5.3024	Statistical Check RandParm F	or Radar Type 5 28	1
29	12	1	5.306	Statistical Check RandParm F	or Radar Type 5 29	1
30	18	0.666666	5.3032	Statistical Check RandParm F	or Radar Type 5 30	1
			Detect	ion Percentage (%)		100
				Limit		≧80

Test Item : Statistical Performance Check

Radar Type : Type 5
Test Date : 2017/03/14

Center Freq: 5500MHz			Hz	Low Edge: 5490MHz	High Edge: 55	510MHz
Trial #	Chirp	Offset	VSG Frequency (MHz)	*Filename	e	1= Detection 0= No Detection
1	15	0.8	5.500	Statistical Check RandParm F	or Radar Type 5 1 t	1
2	16	0.75	5.500	Statistical Check RandParm F	or Radar Type 5 2 t	1
3	16	0.75	5.500	Statistical Check RandParm F	or Radar Type 5 3 t	1
4	12	1	5.500	Statistical Check RandParm F	or Radar Type 5 4 t	1
5	16	0.75	5.500	Statistical Check RandParm F	or Radar Type 5 5 t	1
6	10	1.2	5.500	Statistical Check RandParm F	or Radar Type 5 6 t	1
7	13	0.923076	5.500	Statistical Check RandParm F	or Radar Type 5 7 t	1
8	12	1	5.500	Statistical Check RandParm F	or Radar Type 5 8 t	1
9	18	0.666666	5.500	Statistical Check RandParm F	or Radar Type 5 9 t	1
10	18	0.666666	5.500	Statistical Check RandParm F	or Radar Type 5 10	1
11	10	1.2	5.4932	Statistical Check RandParm F	or Radar Type 5 11	1
12	13	0.923076	5.4948	Statistical Check RandParm F	or Radar Type 5 12	1
13	20	0.6	5.4976	Statistical Check RandParm F	or Radar Type 5 13	1
14	12	1	5.494	Statistical Check RandParm F	or Radar Type 5 14	1
15	11	1.090909	5.4936	Statistical Check RandParm F	or Radar Type 5 15	1
16	17	0.705882	5.4964	Statistical Check RandParm F	or Radar Type 5 16	1
17	18	0.666666	5.4972	Statistical Check RandParm F	or Radar Type 5 17	1
18	15	0.8	5.4956	Statistical Check RandParm F	or Radar Type 5 18	1
19	14	0.857142	5.4952	Statistical Check RandParm F	or Radar Type 5 19	1
20	9	1.333333	5.4924	Statistical Check RandParm F	or Radar Type 5 20	1
21	20	0.6	5.502	Statistical Check RandParm F	or Radar Type 5 21	1
22	18	0.666666	5.5032	Statistical Check RandParm F	or Radar Type 5 22	1
23	12	1	5.5064	Statistical Check RandParm F	or Radar Type 5 23	1
24	10	1.2	5.5072	Statistical Check RandParm F	or Radar Type 5 24	1
25	15	0.8	5.5044	Statistical Check RandParm F	or Radar Type 5 25	1
26	12	1	5.506	Statistical Check RandParm F	or Radar Type 5 26	1
27	13	0.923076	5.5056	Statistical Check RandParm F	or Radar Type 5 27	1
28	9	1.333333	5.5072	Statistical Check RandParm F	or Radar Type 5 28	1
29	19	0.631578	5.5024	Statistical Check RandParm F	or Radar Type 5 29	1
30	13	0.923076	5.5056	Statistical Check RandParm F	or Radar Type 5 30	1
			Detecti	on Percentage (%)		100
				Limit		≧80

Test Item : Statistical Performance Check

Radar Type : Type 5
Test Date : 2017/03/14

Center Freq: 5290MHz			Hz	Low Edge: 5252MHz	High Edge: 53	28MHz
Trial #	Chirp	Offset	VSG Frequency (MHz)	*Filename		1= Detection 0= No Detection
1	9	1.333333	5.290	Statistical Check RandParm For	Radar Type 5 1 tr	1
2	12	1	5.290	Statistical Check RandParm For	Radar Type 5 2 tr	1
3	20	0.6	5.290	Statistical Check RandParm For	Radar Type 5 3 tr	1
4	9	1.333333	5.290	Statistical Check RandParm For	Radar Type 5 4 tr	1
5	10	1.2	5.290	Statistical Check RandParm For	Radar Type 5 5 tr	1
6	12	1	5.290	Statistical Check RandParm For	Radar Type 5 6 tr	1
7	20	0.6	5.290	Statistical Check RandParm For	Radar Type 5 7 tr	1
8	19	0.631578	5.290	Statistical Check RandParm For	Radar Type 5 8 tr	1
9	16	0.75	5.290	Statistical Check RandParm For	Radar Type 5 9 tr	1
10	13	0.923076	5.290	Statistical Check RandParm For	Radar Type 5 10	1
11	13	0.923076	5.2548	Statistical Check RandParm Fo	r Radar Type 5 11	1
12	16	0.75	5.256	Statistical Check RandParm For	Radar Type 5 12	1
13	11	1.090909	5.2532	Statistical Check RandParm For	Radar Type 5 13	1
14	18	0.666666	5.2572	Statistical Check RandParm For	Radar Type 5 14	1
15	15	0.8	5.2556	Statistical Check RandParm For	Radar Type 5 15	0
16	9	1.333333	5.2524	Statistical Check RandParm For	Radar Type 5 16	1
17	13	0.923076	5.2544	Statistical Check RandParm For	Radar Type 5 17	1
18	20	0.6	5.258	Statistical Check RandParm For	Radar Type 5 18	1
19	14	0.857142	5.2548	Statistical Check RandParm For	Radar Type 5 19	1
20	17	0.705882	5.2564	Statistical Check RandParm For	Radar Type 5 20	1
21	18	0.666666	5.3232	Statistical Check RandParm For	Radar Type 5 21	1
22	15	0.8	5.3248	Statistical Check RandParm For	Radar Type 5 22	1
23	9	1.333333	5.3272	Statistical Check RandParm For	Radar Type 5 23	1
24	18	0.666666	5.3228	Statistical Check RandParm For	Radar Type 5 24	1
25	14	0.857142	5.3252	Statistical Check RandParm For	Radar Type 5 25	1
26	16	0.75	5.324	Statistical Check RandParm For	Radar Type 5 26	1
27	15	0.8	5.3248	Statistical Check RandParm For	Radar Type 5 27	1
28	14	0.857142	5.3248	Statistical Check RandParm For	Radar Type 5 28	1
29	16	0.75	5.324	Statistical Check RandParm For	Radar Type 5 29	1
30	15	0.8	5.3244	Statistical Check RandParm For	Radar Type 5 30	1
			Detect	ion Percentage (%)		96.6
				Limit		≥80

Test Item : Statistical Performance Check

Radar Type : Type 5
Test Date : 2017/03/14

Center Freq: 5530MHz			Hz	Low Edge: 5492MHz	High Edge: 5568MHz	
Trial #	Chirp	Offset	VSG Frequency (MHz)	*Filename		1= Detection 0= No Detection
1	9	1.333333	5.530	Statistical Check RandParm Fo	r Radar Type 5 1 tr	1
2	19	0.631578	5.530	Statistical Check RandParm Fo	r Radar Type 5 2 tr	1
3	12	1	5.530	Statistical Check RandParm Fo	r Radar Type 5 3 tr	1
4	15	0.8	5.530	Statistical Check RandParm Fo	r Radar Type 5 4 tr	1
5	8	1.5	5.530	Statistical Check RandParm Fo	r Radar Type 5 5 tr	1
6	9	1.333333	5.530	Statistical Check RandParm Fo	r Radar Type 5 6 tr	1
7	19	0.631578	5.530	Statistical Check RandParm Fo	r Radar Type 5 7 tr	1
8	19	0.631578	5.530	Statistical Check RandParm Fo	r Radar Type 5 8 tr	1
9	19	0.631578	5.530	Statistical Check RandParm Fo	r Radar Type 5 9 tr	1
10	10	1.2	5.530	Statistical Check RandParm Fo	r Radar Type 5 10	1
11	20	0.6	5.4976	Statistical Check RandParm Fo	r Radar Type 5 11	1
12	10	1.2	5.4932	Statistical Check RandParm Fo	r Radar Type 5 12	1
13	15	0.8	5.4956	Statistical Check RandParm Fo	r Radar Type 5 13	1
14	19	0.631578	5.4972	Statistical Check RandParm Fo	r Radar Type 5 14	1
15	20	0.6	5.498	Statistical Check RandParm Fo	r Radar Type 5 15	1
16	12	1	5.494	Statistical Check RandParm Fo	r Radar Type 5 16	1
17	11	1.090909	5.4932	Statistical Check RandParm Fo	r Radar Type 5 17	1
18	10	1.2	5.4932	Statistical Check RandParm Fo	r Radar Type 5 18	1
19	15	0.8	5.4952	Statistical Check RandParm Fo	r Radar Type 5 19	1
20	14	0.857142	5.4948	Statistical Check RandParm Fo	r Radar Type 5 20	1
21	8	1.5	5.5676	Statistical Check RandParm Fo	r Radar Type 5 21	1
22	8	1.5	5.568	Statistical Check RandParm Fo	r Radar Type 5 22	1
23	14	0.857142	5.5652	Statistical Check RandParm Fo	r Radar Type 5 23	1
24	14	0.857142	5.5648	Statistical Check RandParm Fo	r Radar Type 5 24	1
25	16	0.75	5.564	Statistical Check RandParm Fo	r Radar Type 5 25	1
26	20	0.6	5.562	Statistical Check RandParm Fo	r Radar Type 5 26	1
27	11	1.090909	5.5664	Statistical Check RandParm Fo	r Radar Type 5 27	1
28	17	0.705882	5.5632	Statistical Check RandParm Fo	r Radar Type 5 28	1
29	10	1.2	5.5668	Statistical Check RandParm Fo	r Radar Type 5 29	1
30	10	1.2	5.5668	Statistical Check RandParm Fo	r Radar Type 5 30	1
Detection Percentage (%)				100		
Limit				≥80		

Test Item : Statistical Performance Check

Radar Type : Type 6
Test Date : 2017/03/14

Trial Frequency		*=··	1= Detection
#	(MHz)	*Filename	0= No Detection
1	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_1_trail	1
2	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_2_trail	1
3	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_3_trail	1
4	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_4_trail	1
5	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_5_trail	1
6	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_6_trail	1
7	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_7_trail	1
8	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_8_trail	1
9	5300	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_9_trail	1
10	5300	Statistical_Check_Hopping Frequency	1
11	5300	Statistical_Check_Hopping Frequency	1
12	5300	Statistical_Check_Hopping Frequency	1
13	5300	Statistical_Check_Hopping Frequency	1
14	5300	Statistical_Check_Hopping Frequency	1
15	5300	Statistical_Check_Hopping Frequency	1
16	5300	Statistical_Check_Hopping Frequency	1
17	5300	Statistical_Check_Hopping Frequency	1
18	5300	Statistical_Check_Hopping Frequency	1
19	5300	Statistical_Check_Hopping Frequency	1
20	5300	Statistical_Check_Hopping Frequency	1
21	5300	Statistical_Check_Hopping Frequency	1
22	5300	Statistical_Check_Hopping Frequency	1
23	5300	Statistical_Check_Hopping Frequency	1
24	5300	Statistical_Check_Hopping Frequency	1
25	5300	Statistical_Check_Hopping Frequency	1
26	5300	Statistical_Check_Hopping Frequency	1
27	5300	Statistical_Check_Hopping Frequency	1
28	5300	Statistical_Check_Hopping Frequency	1
29	5300	Statistical_Check_Hopping Frequency	1
30	5300	Statistical_Check_Hopping Frequency	1
	100		
		Limit	>70

Test Item : Statistical Performance Check

Radar Type : Type 6
Test Date : 2017/03/14

Trial	Frequency	*-	1= Detection
#	(MHz)	*Filename	0= No Detection
1	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_1_trail	1
2	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_2_trail	1
3	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_3_trail	1
4	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_4_trail	1
5	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_5_trail	1
6	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_6_trail	1
7	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_7_trail	1
8	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_8_trail	1
9	5500	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_9_trail	1
10	5500	Statistical_Check_Hopping Frequency	1
11	5500	Statistical_Check_Hopping Frequency	1
12	5500	Statistical_Check_Hopping Frequency	1
13	5500	Statistical_Check_Hopping Frequency	1
14	5500	Statistical_Check_Hopping Frequency	1
15	5500	Statistical_Check_Hopping Frequency	1
16	5500	Statistical_Check_Hopping Frequency	1
17	5500	Statistical_Check_Hopping Frequency	1
18	5500	Statistical_Check_Hopping Frequency	1
19	5500	Statistical_Check_Hopping Frequency	1
20	5500	Statistical_Check_Hopping Frequency	0
21	5500	Statistical_Check_Hopping Frequency	1
22	5500	Statistical_Check_Hopping Frequency	1
23	5500	Statistical_Check_Hopping Frequency	1
24	5500	Statistical_Check_Hopping Frequency	1
25	5500	Statistical_Check_Hopping Frequency	1
26	5500	Statistical_Check_Hopping Frequency	1
27	5500	Statistical_Check_Hopping Frequency	1
28	5500	Statistical_Check_Hopping Frequency	1
29	5500	Statistical_Check_Hopping Frequency	1
30	5500	Statistical_Check_Hopping Frequency	1
	96.6		
		Limit	>70

Test Item : Statistical Performance Check

Radar Type: Type 6
Test Date: 2017/03/14

Trial	Frequency	* - "	1= Detection
# (MHz)		*Filename	0= No Detection
1	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_1_trail	1
2	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_2_trail	1
3	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_3_trail	1
4	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_4_trail	1
5	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_5_trail	1
6	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_6_trail	1
7	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_7_trail	1
8	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_8_trail	1
9	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_9_trail	1
10	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_10_trail	1
11	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_11_trail	1
12	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_12_trail	1
13	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_13_trail	1
14	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_14_trail	1
15	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_15_trail	1
16	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_16_trail	1
17	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_17_trail	1
18	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_18_trail	1
19	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_19_trail	1
20	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_20_trail	1
21	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_21_trail	1
22	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_22_trail	1
23	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_23_trail	1
24	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_24_trail	1
25	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_25_trail	1
26	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_26_trail	1
27	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_27_trail	1
28	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_28_trail	1
29	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_29_trail	1
30	5290	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_30_trail	1
	100		
		Limit	>70

Test Item : Statistical Performance Check

Radar Type: Type 6
Test Date: 2017/03/14

Trial	Frequency		1= Detection
#	(MHz)	*Filename	0= No Detection
1	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_1_trail	1
2	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_2_trail	1
3	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_3_trail	1
4	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_4_trail	1
5	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_5_trail	1
6	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_6_trail	1
7	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_7_trail	1
8	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_8_trail	1
9	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_9_trail	1
10	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_10_trail	1
11	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_11_trail	1
12	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_12_trail	1
13	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_13_trail	1
14	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_14_trail	1
15	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_15_trail	1
16	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_16_trail	1
17	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_17_trail	1
18	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_18_trail	1
19	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_19_trail	1
20	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_20_trail	1
21	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_21_trail	1
22	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_22_trail	1
23	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_23_trail	1
24	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_24_trail	1
25	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_25_trail	1
26	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_26_trail	1
27	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_27_trail	1
28	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_28_trail	1
29	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_29_trail	1
30	5530	Statistical_Check_Hopping Frequency List_For_Radar_Type_6_30_trail	1
	100		
Limit			>70