Cálculo Numérico - BCC760

Nome Completo:

Marcus Vinícius Souza Fernandes

2020/2

Avaliação 2 - Turma 6

30/08/2021

Limite de Tempo: 120 minutos

Matrícula:

Marcus Vinícius Souza Fernandes

Marcus Vinícius Souza Fernandes

19.1.4046

Esta prova contém 4 páginas (incluindo esta capa) e 2 questões. Confira se há páginas faltando. Preencha toda a informação no topo desta página e coloque suas iniciais no topo de cada página, caso as páginas se separem.

Você $n\tilde{a}o$ pode utilizar livros ou anotações neste exame.

Você deve demonstrar o seu raciocínio em cada problema deste teste. As seguintes regras se aplicam:

- Retenha os cálculos em 4 casas decimais caso aproximações sejam necessárias.
- Retenha os cálculos em 4 casas decimais caso aproximações sejam necessárias.
- Organize seu arquivo Organize seu arquivo de resposta de maneira razoavelmente clara e coerente. Se sua matrícula é 15.1.1234. O formato entregue deve ser *PrimeiroNome_1511234.pdf*.
- Envie o arquivo pelo formulário do google: https://forms.gle/W96WBd4Rvqg22M6D7
- Respostas misteriosas não receberão crédito total. Uma resposta correta sem cálculos que a suporte, explicação, ou desenvolvimento algébrico não receberão crédito. Uma resposta incorreta apoiada por cálculos substancialmente corretos e explicações pode receber crédito parcial.

Não escreva na tabela à direita.

Problema	Pontos	Nota
1	5	
2	5	
Total:	10	

Suponha como valor M e S o último e penúltimo número do seu número de matrícula. Por exemplo, M=4 e S=3 para número de matrícula 15.1.1234.

1. Sendo

$$I = \int_0^1 \frac{\sqrt{x} + M}{S + 1} dx,$$

estime o valor de I, retendo os cálculos em ${\bf 4}$ casas decimais. Apresente os cálculos, considerando:

(a) 2 pontos Utilizar primeira regra de Simpson com n=6. Print aqui os cálculos para chegar na solução.

x	0,0000	0,1667	0,3334	0,5001	0,6668	0,8335	1,0002	
f(x)	1,2000	1,2817	1,3155	1,3414	1,3633	1,3826	1,4000	
PRS	1	4	2	4	2	4	1	S
r	1,2000	5,1268	2,6310	5,3656	2,7266	5,5304	1,4000	23,9804

h	0,1667
NDC	4
n	6

_	1,3322

Matrícula	19.1.4046
M	6
S	4

(b) 2 pontos Utilizar regra do Trapézio com n=6. Print aqui os cálculos para chegar na solução.

X	0,0000	0,1667	0,3334	0,5001	0,6668	0,8335	1,0002	
f(x)	1,2000	1,2817	1,3155	1,3414	1,3633	1,3826	1,4000	
SRS	1	3	3	2	3	3	1	S
r	1,2000	3,8451	3,9465	2,6828	4,0899	4,1478	1,4000	21,3121

h	0,1667
NDC	4
n	6

I	1,3320

Matrícula	19.1.4046
М	6
S	4

(c) 1 ponto Qual método é mais preciso?. Print aqui os cálculos para chegar na solução.

Calculando a Integral dada sem o uso de métodos que estime o resultado, temos que o valor de I é igual à 1,33333, portanto:

Resultado da Integral: 1,33333

Resultado da Integral pela primeira regra de Simpson: 1,33220 Resultado da Integral pela segunda regra de Simpsom: 1,33200

Comparando o valor de I obtido através do cálculo sem estimo com os resultados obtidos nas tabelas, temos que o método da primeira regra de Simpson foi o mais preciso, uma vez que seu resultado está mais próximo do resultado calculado para a Integral.

Erro do resultado da Integral pela primeira regra de Simpson: 1,33220 - 1,33333 = -0,00113 = -0,0847% Erro do resultado da Integral pela segunda regra de Simpson: 1,33200 - 1,33333 = -0,00133 = -0,0997%

2. Considere a seguinte equação:

$$f(x) = x^4 - 2x^3 + 4x - (1 - (M+S)/100) = 0.$$

(a) ½ ponto Determine o intervalo [a; b] que contém a MAIOR raiz positiva da função. Print aqui os cálculos para chegar na solução.

Utilizando uma tabela no excel para observar o comportamento da função, foi notado que para valores de x muito grandes ou muito pequenos, f(x) tendia ao infinito.

Diminuindo os valores de x, foi perceptível que a maior raiz positiva se encontrava entre os valores 0 e 0,5, devido a f(x) sofrer uma inversão de sinais em seu resultado neste intervalo.

Essa inversão de sinais no resultado implica que o eixo x foi cruzado em algum momento, portanto, há raíz.

Intervalo: [0; 0,5]

X	f(x)
-20	175919,1
-10	11959,1
-5	854,1
-4,5	573,4125
-4	367,1
-3,5	220,9125
-3	122,1
-2,5	59,4125
-2	23,1
-1,5	4,9125
-1	-1,9
-0,5	-2,5875
0	-0,9
0,5	0,9125
1	2,1
1,5	3,4125
2	7,1
2,5	16,9125
3	38,1
3,5	77,4125
4	143,1
4,5	244,9125
5	394,1
10	8039,1
20	144079,1

(b) 2 pontos Estime o valor da MAIOR raiz positiva do item anterior, através do método da Newton-Raphson. Retenha os cálculos em 3 casas decimais. Use como critério de parada precisão $\epsilon=0,0010$ ou no máximo 10 iterações. Print aqui os cálculos para chegar na solução.

Intervalo 0 0,5

М	6
S	4

NC	3			
k	xk	f(xk)	f'(xk)	
0	0,0000	-0,9000	4,0000	
1	0,2250	-0,0200	3,7420	
2	0,2300	-0,0020	3,7310	
3	0,2310	0,0020	3,7290	
4	0,2300	-0,0020	3,7310	
5	0,2310	0,0020	3,7290	
6	0,2300	-0,0020	3,7310	
7	0,2310	0,0020	3,7290	
8	0,2300	-0,0020	3,7310	
9	0,2310	0,0020	3,7290	
10	0,2300	-0,0020	3,7310	

(c) $\boxed{\frac{1}{2} \text{ ponto}}$ Determine o intervalo [a; b] que contém a MENOR raiz negativa da função.

Print aqui os cálculos para chegar na solução.

Semelhante ao passo feito na questão 2) (a), utilizando uma tabela no excel para observar o comportamento da função, foi notado que para valores de x muito grandes ou muito pequenos, f(x) tendia ao infinito.

Diminuindo os valores de x, foi perceptível que a menor raiz negativa se encontrava entre os valores -1,5 e -1, devido a f(x) sofrer uma inversão de sinais em seu resultado neste intervalo.

Essa inversão de sinais no resultado implica que o eixo x foi cruzado em algum momento, portanto, há raíz.

Intervalo: [-1,5; -1]

-20	
20	175919,1
-10	11959,1
-5	854,1
-4,5	573,4125
-4	367,1
-3,5	220,9125
-3	122,1
-2,5	59,4125
-2	23,1
-1,5	4,9125
-1	-1,9
-0,5	-2,5875
0	-0,9
0,5	0,9125
1	2,1
1,5	3,4125
2	7,1
2,5	16,9125
3	38,1
3,5	77,4125
4	143,1
4,5	244,9125
5	394,1
10	8039,1
20	144079,1

(d) 2 pontos Estime o valor da MENOR raiz negativa do item anterior, através do método da Falsa Posição. Retenha os cálculos em 3 casas decimais. Use como critério de parada precisão $\epsilon = 0,0010$ ou no máximo 10 iterações. Print aqui os cálculos para chegar na solução.

Intervalo -1,5 -1

M	6	
S	4	

NC	3					
k	ak	bk	xk	f(a)	f(x)	f(b)
0	-1,5000	-1,0000	-1,1390	4,9130	-0,8180	-1,9000
1	-1,5000	-1,1390	-1,1650	10,4380	-0,5560	-0,8180
2	-1,5000	-1,1650	-1,1820	10,4380	-0,3730	-0,5560
3	-1,5000	-1,1820	-1,1930	10,4380	-0,2500	-0,3730
4	-1,5000	-1,1930	-1,2000	10,4380	-0,1700	-0,2500
5	-1,5000	-1,2000	-1,2050	10,4380	-0,1120	-0,1700
6	-1,5000	-1,2050	-1,2080	10,4380	-0,0770	-0,1120
7	-1,5000	-1,2080	-1,2100	10,4380	-0,0530	-0,0770
8	-1,5000	-1,2100	-1,2110	10,4380	-0,0410	-0,0530
9	-1,5000	-1,2110	-1,2120	10,4380	-0,0290	-0,0410
10	-1,5000	-1,2120	-1,2130	10,4380	-0,0180	-0,0290
		-				