Using simulated EEGs to train RNN and analyze real data:

the influence of potassium reversal potential on seizure

Team:

Davi Bezerra

Gabriel Marghoti & João Flauzino

João de Santana ¦

Maria Clara Laport

Ahmed Hamdy

The biological problem

Distinguish EEG seizure signal vs. normal EEG signal

The biological problem

How to simulate that?

- the role of K+

TABLE 1 Typical ion concentrations at res	at and during an epileptic seizure.
---	-------------------------------------

ion	Typical rest			Typical peak during seizure			
	[ion] _i	[ion] _e	\boldsymbol{E}_{ion}	[ion] _i	[ion] _e	Eion	Reference
K ⁺	96 mM ¹	4 mM	−85 mV	94 mM	12 mM ²	−55 mV	Jiang and Haddad (1991) and Dreier and Heinemann (1991)
Na ⁺	10 mM ³	145 mM ⁴	+71 mV	55 mM ⁵	139 mM ⁴	+25 mV	Dietzel et al. (1982), Diarra et al. (2001) and Rose and Konnerth (2001)
Ca ²⁺	70 nM	2 mM	+137 mV	700 nM ⁶	$100 \mu M^7$	+66 mV	Pumain et al. (1985) and Pal et al. (1999)
CI-	7 mM	145 mM	−80 mV	26 mM ⁸	152 mM ⁴	−47 mV	Raimondo et al. (2013) and Ellender et al. (2014)
pH/HCO ₃	7.2/15 mM	7.4/24 mM	-13 mV/-13 mV	7.05 ⁹ /10 mM	7.405 ¹⁰ /25 mM	-25 mV/-25 mV	Caspers and Speckmann (1972) and Raimondo et al. (2012a)
Receptor AMPAR GABA _A R	Relative Permeability K+:Na+/1:1 CI-:HCO ₃ -/4:1		E _{receptor} 9.1 mV -70.6 mV			E _{receptor} 0.4 mV -45.8 mV	

[ion]_i and [ion]_e indicate the intracellular and extracellular, free ion concentrations, respectively. E_{low} and $E_{receptor}$ indicate the reversal potentials for ion species and neurotransmitter receptors, respectively. In calculating HCO $_3^-$ concentrations and $E_{HCO}_3^-$ we have assumed that carbon dioxide is equilibrium distributed across the plasma membrane and that the CO $_2$ hydration reaction inside and outside the cell is under equilibrium. Values in gray have been estimated where data is not available.

Adapted from Raimondo et al., 2015

Simulating our EEG data

NetPyNE

Simulated EEGs

Training the RNN

The simulated data was used to train the RNN.

Our Dataset

Electrodes implanted in epileptogenic neural zones

*Andrzejak et al. Physical Review E (2001).

Experimental EEGs*

Seizure

Testing the RNN model in real data

Comparison between the normalized signals

Simulated EEGs

Experimental EEGs*

*Andrzejak et al. Physical Review E (2001).

Thank you all! Obrigado! شکر ًا