Lecture 9 Proposition: For $Q_c(x)=x^2+C$.

- 1. If c>1/4, then all orbits go to infinity
- 2. If c=1/4, it has one fixed point x=1/2, which is neutral.
- 3 If C<1/4, it has two fixed points p& p+.

P+ is repelling and (a) if -3/4 < c < 1/4, then P- is attracting (b) if c = -3/4, then P- is neutral. (c) if c < -3/4, then P- is repelling.

Remarks

- 0 Qc(-x) = Qc(x), Qc is even, so the orbits of $-x_0$ and x_0 under Qc are the same
- 2 The point -P+ is eventually fixed.
- 3) The orbit for $x_0 > P_+$ under Q_c goes to $+\infty$ so the same happens to the orbit of $X < -P_+$ under Q_c .
- => The interesting dynamics will happen for << 1/4 and -14 < Xo < P+.
- · observe that $P_{-}=\frac{1-\sqrt{1-4c}}{2}\in(-P_{+},P_{+})$
- one can derive that for -3/4 < C < 1/4, all orbits for $\% \in (-P_4, P_+)$ under $\% \in (-P_4, P_+)$ under $\% \in (-P_4, P_+)$

Exercise:

Prove that for $0 \le C < 1/4$, and $X_0 \in (P_+, P_+)$, the orbit of X_0 under Q_C tends to P_- .

(a). If $X_0 > P_-$, then X_n is decreasing & $X_n > 0$. So it converges. It can only converge to P_- .

(b). if $x_0 < P_-$, then x_n is increasing & $x_n < P_-$. so it converges. It can only converge to P_- .

(C). if $-P_{+} < x_{0} < 0$, then $0 < x_{1} < P_{+}$

Remark: There are no cycles for C>-3/4, since we decreased all positive orbits

Q: what happens for C<-3/4?

By looking at the orbits, they seem to converge to a 2 cycle. We find the 2 cycles. $(2^2CX)=X \iff (X^2+C)^2+C=X \\ (=>X^4+2X^2C-X+C^2+C=0)$

We know that P_{\pm} are fixed pts, so they also solve $Q_c^*(x) = \chi$ so the polynomial above divide $(x-P_-)(x-P_+) = \chi^2 - \chi + C$ Then $Q_c^2(x) = \chi < = \chi \chi^2 - \chi + C \chi \chi^2 + \chi + C + I) = 0$

So 2-cycles are solutions of $x^2+x+c+1=0 \iff x=-1\pm\sqrt{1-4(C+1)}$ Define $q_-=-1-\sqrt{-3-4c}$, $q_+=-1\pm\sqrt{3-4c}$

which are real numbers for CE-3/4.

So we have a new kind of bifurcation. We say that Q_c has a period -doubling bifurcation at C=-3/4.

Let us study 2-cycle
$$(Q_c^2)'(g_-) = Q_c'(g_-)Q_c'(g_+) = 4g_-g_+ = (-1)^2 - (-3-4c)$$

$$= 1+3+4c$$

$$= 4cc+1$$

$$|Q_c'(g_-)Q_c'(g_+)| = 4|c+1| < 1$$