```
写一段代码,判断一个包括'{','[','(',')',']','}'的表达式是否合法(注意看样例的合法规则。)
给定一个表达式 A,请返回一个 bool 值,代表它是否合法。
测试样例:
```

```
"[a+b*(5-4)]*{x+b+b*({1+2)}}"
返回: true
测试样例:

"[a+b*(5-4)]*{x+b+b*(({1+2)}}"
返回: false
```

从小明家所在公交站出发有 n 路公交到公司,现给出每路公交的停站数(不包括起点和终点),及每次停的时间(一路车在每个站停的时间相同)和发车的间隔,先假定每辆车同时在相对时间 0 分开始发车,且所有车在相邻两个站之间的耗时相同,都为 5 分钟。给定小明起床的相对时间(相对 0 的分钟数),请计算他最早到达公司的相对时间。

给定每路车的停站数 stops,停站时间 period,发车间隔 interval 及公交路数 n,出发时间 s。请返回最早到达时间。保证公交路数小于等于 500,停站数 小于等于 50。

```
12 }
13 return min+5;
14 }
15 };
```

请你实现一个简单的字符串替换函数。原串中需要替换的占位符为"%s",请按照参数列表的顺序一一替换占位符。若参数列表的字符数大于占位符个数。则将剩下的参数字符添加到字符串的结尾。

给定一个字符串 A,同时给定它的长度 n 及参数字符数组 arg 和它的大小 m,请返回替换后的字符串。保证参数个数大于等于占位符个数。保证原串由大小写英文字母组成,同时长度小于等于 500。

测试样例:

```
"A%sC%sE",7,['B','D','F']
返回: "ABCDEF"
```

第一种方法的思路是 通过字符串的indexOf 方法和replaceFirst 方法 进行替换字符串中的%s,然后进行判断参数 args 里面的参数是否使用完毕,如果没有使用完毕则进行追加到字符最后。 这种方法的缺点是会在内存中生成很多的冗余字符串。优点是 像我这种菜鸟很容易想到,也更与理解。

```
public String formatString(String A, int n, char[] arg, int m) {
    int i = 0;
    while (A.indexOf("%s") >= 0) {
        A = A.replaceFirst("%s", String.valueOf(arg[i]));
        i++;
    }
    while (i < m) {
        A += arg[i];
    }
}</pre>
```

```
11
                 return A;
12
第二种方法的思路通过字符串分割 split 方法,把字符串中不是%s 的分割出来,存储到数组中,然后遍历这个数组,进行追加参数,但是有
的开始字符为%s,这样再数组的第一个位置为空串,进行特殊判断即可。这种方法的有点是有效的利用了内存,减少了很多冗余的字符生成。
    public String formatString(String A, int n, char[] arg, int m) {
               // write code here
                 String[] AArr = A. split("%s");
                 StringBuffer buffer = new StringBuffer();
                  int i = 0;
                 for (String str : AArr) {
                         if (str.length() == 0) {
                               buffer.append(arg[i]);
9
                         } else {
                               buffer.append(str + arg[i]);
10
11
13
14
                  while (i < m) {
15
                         buffer.append(arg[i]);
16
17
18
                  return buffer. toString();
19
```



```
第三种就是通过和正则表达式进行组合,通过 matcher 添加到 buffer 里面,进行替换%s,最后需要注意把最尾部的字符添加到 buffer 里面。
```

```
public String formatString(String A, int n, char[] arg, int
                m) {
                  // write code here
               Pattern pattern = Pattern.compile("%s");
    Matcher matcher = pattern.matcher(A);
    StringBuffer buffer = new StringBuffer();
    int i = 0;
   boolean result = matcher.find();
    while (result)
    { matcher.appendReplacement (buffer,
               String. valueOf(arg[i]));
11
    result=matcher.find();
13 i++;
14
    matcher.appendTail(buffer);
    while (i < m)
16
17 { buffer.append(arg[i]);
18
19
20 return buffer. toString();
```

现在有一个字符串列表,和一个关键词列表,请设计一个高效算法,检测出含关键字列表中关键字(一个或多个)的字符串。

给定字符串数组 A 及它的大小 n 以及关键词数组 key 及它的大小 m,请返回一个排好序的含关键词的字符串序号的列表。保证所有字符串长度小于等于 100,关键词个数小于等于 100,字符串个数小于等于 200。保证所有字符串全部由小写英文字符组成。若不存在含关键字的字符串,请返回一个只含-1 的数组。

测试样例:

```
["nowcoder", "hello", "now"], 3, ["coder", now], 2
返回: [0,2]
```

```
importjava.util.*;
publicclassKeywordDetect {

publicint[] containKeyword(String[] A, intn, String[] keys, intm) {

// write code here

intnum=0;

List<Integer> list=newArrayList<Integer>();

for(inti=0;i<n;i++) {

for(intj=0;j<m;j++) {

if(A[i].contains(keys[j])) { lis}

}</pre>
```

```
num++;
20
26
                       int[] res=newint[num];
30
31
                       if(num==0)
32
33
                                returnnewint[]{-1};
                       for(intj=0; j<1ist. size(); j++) {
                               res[j]=list.get(j);
37
                      returnres;
```

44 45

icebear.me

白熊事务所致力为准备求职的小伙伴提供优质的资料礼包和高效的求职工具。礼包包括**互联网、金融等行业的求职攻略**; **PPT模板**;

PS技巧; 考研资料等。

微信扫码关注: **白熊事务所**,获取更多资料礼包。

登陆官网:www.icebear.me,教你如何一键搞定名企网申。