

Increase in Internal Energy

KE+PE of System

- · DKE of a system increases if temp increases and rise versa
- · DPE of a system increases if the gos is real and valume increases, and in ideal gases DPE is a

* A sudden expansion or compression is called a diabatic process, there is no transfer of thermal en engly (a) The first law of thermodynamics may be expressed in the form

$$\Delta U = q + w.$$

- (i) State, for a system, what is meant by:

Thermal energy added to the system

where some against the system

[2]

State what is represented by a negative value of AU.

internal one	my of the	system	ecreasina
	7		
			[1]

(b) An ideal gas, sealed in a container, undergoes the cycle of changes shown in Fig. 2.1.

At point A, the gas has volume 2.4 × 10⁻³ m³, pressure 1.6 × 10⁵ Pa and temperature 300 K.

The gas is compressed suddenly so that no thermal energy enters or leaves the gas during the compression. The amount of work done is 480 J so that, at point B, the gas has volume $8.7 \times 10^{-4} \, \text{m}^3$, pressure $6.6 \times 10^5 \, \text{Pa}$ and temperature 450 K.

The gas is now cooled at constant volume so that, between points B and C, 1100 J of thermal energy is transferred. At point C, the gas has pressure 1.6 × 10⁵ Pa and temperature 110 K.

Finally, the gas is returned to point A.

9

 State and explain the total change in internal energy of the gas for one complete cycle ABCA.

O because comes book to some temp: to is constant and pe is constant because volu stays the some

(ii) Calculate the external work done on the gas during the expansion from point C to point A.

$$W = PAV$$
= 1.6 × 105((2.4×10⁻³)-(8.7×10⁻⁴))
= 2.4 + 8 × 10²
244.8

- (III) Complete Fig. 2.2 for the changes from:
 - 1. point A to point B
 - 2. point B to point C
 - 3. point C to point A.

change	+q/J	+w/J	ΔU/J
A → B	0	_ 48 0	4480
в→с	~(l 0 0	0	7100
$C \rightarrow A$	860	-240	620

Fig. 2.2

480+(-1100)+x=0 x=620 [4]

[Total: 11]

An ideal gas initially has pressure $1.0 \times 10^5 \, \text{Pa}$, volume $4.0 \times 10^{-4} \, \text{m}^3$ and temperature 300 K, as illustrated in Fig. 2.1.

Fig. 2.1

A change in energy of the gas of 240 J results in an increase of pressure to a final value of 5.0×10^5 Pa at constant volume.

The thermodynamic temperature becomes T.

- (a) Calculate
 - (i) the temperature T,

$$\frac{1 \times 10^{5}}{300} = \frac{5 \times 10^{5}}{1}$$

$$1 = 1.5 \times 10^{3}$$

(ii) the amount of gas.

ount of gas.

$$N = \frac{PV}{RT} = \frac{1 \times 10^{5} \times 10^{-7}}{8.31 \times 300}$$

$$= 0.0160779$$

$$amount = \frac{0.016}{mol} mol [2]$$

7

(b) The increase in internal energy ΔU of a system may be represented by the expression

$$\Delta U = q + w$$
.

- (i) State what is meant by the symbol
 - increase in themal orengy
 - 2. +w. work done against the system

(ii)	State, for the gas in (a), the value of		
	1. Δ <i>U</i> ,	Δυ = 240	
	2 . +q,		J
	3. +w.	+q =240	J
		+w =O	J [3] [Total: 9]

(a)		q of a system	ion to represe m, the work v	v done on		and the	increase	∆U in the	ie .
(b)	Explain v	what change,	eal gas is dec if any, occurs anytant Dec	reased at a in the inte	constant ten rnal energy Euk Allis 0	nperature of the ga	s. mud	there	e.
(a)	Ctata who	at is meant by	the internal e		ovetem			[3	2]
(b)	systems: (i) a lum	explain qual	itatively the ch C melts to form constant	ange, if an n liquid wa	y, in the inte	ornal energy	gy of the fo	illowing	FC Exami Us
			cule is	well	Re i	P.E J	wedlb,	thus.	
		min Da	osia					[3]	
		from 25 °C to							
	/	Temp u	wereast :	. DPE	increa		and Nol	سند.	
	/	constant	increase	Come	ant	unter	nal Ine	rgy	
		Willow 400							
	222222							[3]	

(a)	State an expression, in terms of work done and heating, that is used to calculate the increase in internal energy of a system.
	[2]
(b)	State and explain, in terms of your expression in (a), the change, if any, in the internal energy
	(i) of the water in an ice cube when the ice melts, at atmospheric pressure, to form a liquid without any change of temperature,
	heat is being sufflied to the cystem to break
	the lattic streetime of the ide and DW is
	decreasing by a neglegible amount: All uncircus
	[3]
	(ii) of the gas in a tyre when the tyre bursts so that the gas suddenly increases in volume. Assume that the gas is ideal.
	work is done by the ops secause its organising
	and there is no time for heat to be supplied
	or removed from the system : DU Lecreases
	[3]