

A catalogue of HMXBs in the Galaxy

X-ray binaries: observational challenges

- 1) discovery in hard X-rays
- 2) better localization in soft X-rays
- 3) precise counterpart in optical/nIR/radio
 - spectral type of the companion star?
 - (super)orbital period?
 - spin period?
 - radial velocity follow-up?
 - variability?

→ Many years & observations are necessary to fully constrain XRBs

Motivations for an updated catalogue of HMXBs

Latest dedicated catalogue of HMXBs: Liu et al. 2006 (n=114, 63 confirmed and 51 candidates)

- Since then, many campaigns for the follow up of INTEGRAL sources (n=939 in Bird+2016)
- +Abundance of soft X-ray observatories: Swift, XMM, Chandra, NuSTAR...
- HMXBs can have bright optical counterparts : Gaia can provide consistent distance estimates !
- → Catalogue : day-to-day work, planing new observations, studies on the scale of population

Building the catalogue

Catalogue = (Liu+2006 \mathbf{x} INTEGRAL sources (2016) \mathbf{x} CDS entries) + manual search

- Retrieve chain of counterparts from hard X-rays to nIR
- Depending on starting positional data, working up or down in the list to recover list of counterparts
- → 111 Gaia counterparts

- manual search in the literature:

Masses, Porb, e, Ppulse, RV

Catalogue	Reference	Radius
HEAO 1	Wood et al. (1984)	20'
Uhuru 4	Forman et al. (1978)	20'
Ariel V 3	Warwick et al. (1981)	20'
INTEGRAL	Bird et al. (2016)	20'
Fermi	Abdollahi et al. (2022)	20'
BeppoSAX	Capitanio et al. (2011)	6'
Einstein 2E	Harris et al. (1990)	4'
ROSAT	White et al. (2000)	35"
Swift 2SXPS	Evans et al. (2020)	8"
4XMM DR11	Webb et al. (2020)	4"
Chandra CSC 2	Chen et al. (2019)	3"
2MASS	Cutri et al. (2003)	120 ma
Gaia DR3	Gaia Collaboration (2022)	20 mas

The new catalogue of HMXBs in the Galaxy

Last catalogue of HMXBs: Liu et al. 2006 [114]

- → many new observations since then
- → INTEGRAL was just beginning!

The new catalogue of HMXBs in the Galaxy

Last catalogue of HMXBs: Liu et al. 2006 [114]

- → many new observations since then
- → INTEGRAL was just beginning!

New catalogue of HMXBs: Fortin et al. 2023 [152]

- → automated search for multi-wavelength counterparts
- → manual search for spectral types, orbital parameters...

The observed HMXB population

If "confirmed" = X-ray + spectral type : N = 126

If "confirmed" += orbital period + spin : N = 134

Peculiar systems:

21 SFXT candidates Up to 7 BH HMXB candidates!

5 sgB[e] HMXBs

! Missing parameters!

26 spectral types 44 distances

41 orbital periods 115 radial velocities

96 eccentricities

HMXB Webcat: an online tool (live demo!)

 \rightarrow GitHub/HMXBwebcat

What's the use?

Contribution to X-ray luminosity

Evolution mechanisms

Population synthesis & compact binaries

Romero-Shaw+2023

Any contribution is welcome!

Visit the GitHub repo or reach me via email.

Modifications will be logged on the website & new version will be available for download.

Thanks!

