Graphes sans circuits et applications

Les graphes sans circuits (DAG) sont essentiels en gestion de projets, ordonnancement et compilation.

Propriétés fondamentales

- · Tout graphe fini sans circuits possède au moins un sommet sans prédécesseurs et un sans successeurs
- · Tout sous-graphe partiel d'un graphe sans circuits est sans circuits
- Permettent d'introduire une notion de rang : $\mathrm{rang}(u) < \mathrm{rang}(v)$

Tri topologique (Kahn) - O(n+m)

But : Ordonner les sommets en respectant les relations d'ordre (indispensable pour ordonnancement) Applications: Compilation, gestion projets, détection cycles Principe : Répéter jusqu'à épuisement des sommets

- 1. Identifier un sommet sans prédécesseurs dans le graphe résiduel
- 2. Le numéroter dans l'ordre croissant (rang topologique)
- 3. Le supprimer du graphe avec tous ses arcs sortants

Propriété : Si le graphe contient un cycle, l'algorithme s'arrête avant d'avoir numéroté tous les sommets

Plus court/long chemin - Équation de Bellman

Applications: Ordonnancement projets, optimisation, planification Avantage DAG: Traitement dans l'ordre topologique, pas d'itérations multiples comme Bellman-Ford classique Plus court chemin : λ_i : $\min_{i\in \operatorname{Pred}[j]} (\lambda_i + c_{ij})$ avec $\lambda_s = 0$ Plus long chemin : $\lambda_j = \max_{i \in \text{Pred}[j]} (\lambda_i + c_{ij}) \text{ avec } \lambda_s = 0 \text{ Algorithme}$: Traiter sommets dans ordre topologique, appliquer équation Complexité : O(n+m) (une seule passe suffit grâce au DAG)

Graphes potentiels-tâches

Modélisation de projets

- · Sommets : tâches du projet
- Arcs : contraintes de précédence (i précède j)
- Poids : durée d_i de la tâche i
- Ajouts : sommet début a et fin w (poids 0)

Tâche	Description	Durée (sem.)	Antériorités
D	Choix des stations	2	_
В	Accord administratif	4	D
С	Commande des décodeurs	3	В
Α	Installation des antennes	2	В
E	Installation des décodeurs	10	C,A
F	Modification de la facturation	4	В
0	2 2 4	3	E)10

Méthode du chemin critique

But : Identifier les tâches critiques dont tout retard retarde le projet entier Applications : Gestion de projets, planification industrielle, optimisation

Phase 1 - Calcul dates au plus tôt (forward pass):

- $t_a=0$ (début projet) $t_j=\max_{i\in\operatorname{Pred}[j]}(t_i+d_i)$ pour chaque tâche j Traitement dans l'ordre topologique

Phase 2 - Calcul dates au plus tard (backward pass):

- $T_w = t_w$ (durée minimale projet) $T_i = \min_{j \in \text{Succ}[i]}(T_j) d_i$ pour chaque tâche i
- Traitement dans l'ordre topologique inverse

Résultats :

- Tâche critique : $t_i = T_i$ (marge libre nulle)
- Chemin critique : Succession de tâches critiques de début à fin
- Durée projet : t_w (date plus tôt de fin)
- Marge libre tâche i : $T_i t_i$ (retard possible sans

Composition d'un nœud

Nom/Numéro topologique	Dates début	
Au plus tôt	Au plus tard	

Flots dans un réseau

Concepts fondamentaux

 $\mathbf{R\acute{e}seau}: R = (V, E, c, u)$ avec capacités u_{ij} et coûts c_{ij} Flot compatible : Respecte capacités et conservation Loi de conservation : $\sum_{\text{entrant}} =$ \sum_{sortant} (sauf source/puits)

Réseau d'augmentation

Principe: Construire graphe permettant d'augmenter le

- Arcs directs: (i, j) si x_{ij} < u_{ij}, capacité résiduelle =
- Arcs inverses : (j, i) si $x_{ij} > 0$, capacité = x_{ij} (annuler flot)

Algorithmes de flot maximum

Ford-Fulkerson - O(mf *)

But : Trouver flot de valeur maximale de source s vers puits t Applications : Réseau transport, affectation ressources, couplage Principe général :

- Partir d'un flot initial (souvent flot nul)
- 2. Construire réseau d'augmentation du flot actuel
- Chercher chemin augmentant de s à t (DFS par exemple)
- 4. Si chemin existe : augmenter flot et retour étape 2
- 5. Si aucun chemin : flot actuel est optimal

Terminaison: Algorithme se termine quand aucun chemin augmentant Complexité : O(mf*) où f*=valeur flot maximum (non polynomial)

Edmonds-Karp - $O(m^2n)$

Amélioration de Ford-Fulkerson : Choix du chemin augmentant Stratégie: Choisir plus court chemin (nombre d'arcs) via BFS Avantages :

- Complexité polynomiale garantie
- Évite cas pathologiques de Ford-Fulkerson
- · Plus efficace en pratique sur graphes denses

Coupe et théorème max-flow min-cut

Coupe (S, T): Partition de V avec $s \in S, t \in T$ Capacité coupe : $\sum_{(i,j):i\in S,j\in T}u_{ij}$ Théorème Ford-

Fulkerson: Valeur flot max = capacité coupe min

Flot maximum à coût minimum

Algorithme de Busacker-Gowen

But : Flot de valeur maximale avec coût total minimal **Principe**: À chaque itération, saturer le plus court chemin (coût) dans réseau d'augmentation Problème : Arcs inverses ont coûts négatifs → impossibilité d'utiliser Di jkstra

Fonction de potentiel (Edmonds-Karp)

Solution: Transformer les coûts pour éliminer les valeurs négatives **Potentiel** : λ_i = distance depuis s dans réseau actuel **Coût réduit** : $c'_{ij} = c_{ij} + \lambda_i - \lambda_j$ Condition : Réseau de base sans circuits de coût négatif

Applications des flots

Couplage maximum dans un graphe biparti

Transformation:

1. Orienter arêtes $A \rightarrow B$ (capacité 1)

- 2. Ajouter source s reliée à A (capacité 1)
- 3. Ajouter puits t relié depuis B (capacité 1)
- Flot max = taille couplage max

Problème d'affectation linéaire

 ${f Contexte}$: n personnes, n tâches, coût c_{ij} pour personne i sur tâche j Objectif: Affecter chaque personne à une tâche (coût minimum) Méthode : Couplage parfait de coût minimum → flot max-coût

Problème de transbordement

Modélisation : Réseau R = (V, E, c, u)

- Sources : offre $b_i < 0$
- **Puits**: demande $b_i > 0$

 $\bullet \ \ \mathbf{Transit} : b_i = 0$

Équation conservation : $\sum_{j \in \operatorname{Pred}(i)} x_{ji}$ — $\sum_{j \in \operatorname{Succ}(i)} x_{ij} = b_i$ Condition équilibre : $\sum_{i \in V} b_i =$

Transformation en flot max-coût min :

- 1. Source artificielle s → sources (coût 0, capacité = | offre|)
- Puits → puits artificiel t (coût 0, capacité = demande)

Cas particuliers:

- Transport : graphe biparti complet (sources vers puits)
- Affectation: transport avec offres = demandes = 1

Types de graphes

Graphes complets et complémentaires

Graphe complet K_n : Graphe simple où toute paire sommets distincts reliée

- Nombre arêtes : $\binom{n}{2} = \frac{n(n-1)}{2}$
- Tous sommets ont degré n-1
- Exemple : K_4 a 6 arêtes, K_5 a 10 arêtes

Graphe complémentaire \overline{G} de G=(V,E) :

- Mêmes sommets que G
- Arêtes = toutes arêtes possibles non présentes dans G
- $\overline{E} = \{\{u, v\} \mid \{u, v\} \notin E, u \neq v \text{ et } u, v \in V\}$
- Propriété : G et \overline{G} forment partition complète des

Tournois

Définition : Graphe orienté simple où chaque paire sommets reliée par exactement un arc Construction Orientation complète d'un graphe complet Propriétés fondamentales:

- Graphe sous-jacent = graphe complet K_n
- Nombre total d'arcs = $\binom{n}{2}$
- Au plus 1 sommet sans prédécesseurs (source)
- Au plus 1 sommet sans successeurs (puits)

Caractérisation acvelique : Tournoi sans circuits ⇔ matrice adjacence définit ordre strict total Applications: Modélisation compétitions, classements, votes

Graphes bipartis

Définition : Graphe G = (V, E) avec $V = A \cup B$ (A,B disjoints) tel que toute arête relie sommet de A à sommet de B Notation : G = (A, B, E) ou $G = (A \cup A)$

Théorème caractérisation : Graphe biparti ⇔ ne contient aucun cycle de longueur impaire

Graphes bipartis complets $K_{r,s}$:

- r sommets dans A, s sommets dans B
- Toute paire (a∈A, b∈B) reliée par arête
- Nombre arêtes = $r \times s$
- Applications: modélisation relations complètes entre deux ensembles

Couplages et chaînes augmentantes

Couplage : Ensemble $M \subseteq E$ d'arêtes sans extrémités communes

- Couplage parfait : Sature tous les sommets du graphe
- graphe

 Couplage maximum: Cardinal maximal parmi tous couplages possibles
- · Sommet saturé : Incident à arête du couplage

Chaînes alternées (relativement à couplage M): Chaîne dont arêtes alternent: dans M, hors M, dans M, hors M, ...

Chaînes augmentantes (relativement à M) : Chaîne alternée avec extrémités NON saturées par M Propriété clé : Permet augmenter taille couplage de 1

Théorème de Berge (1957) - Condition optimalité : Couplage M maximum ⇔ graphe ne contient aucune chaîne augmentante relative à M

Applications algorithmes: Base algorithmes hongrois, Blossom

Recouvrements et complexité

Recouvrement: Arêtes couvrant tous les sommets Transversal: Sommets couvrant toutes les arêtes Complexité: Recouvrement min = polynomial, Transversal min = NP-difficile

Graphes planaires

Définitions et formule d'Euler

Planaire : Représentable sur le plan sans croisements d'arêtes **Faces** : Régions délimitées par les arêtes (incluant face extérieure) **Formule d'Euler** : n-m+f=2 (graphe connexe planaire)

Bornes et non-planarité

Inégalité générale (graphes simples connexes, $n \geq 3$) : $m \leq 3n-6$

Démonstration:

- Chaque face bordée par ≥ 3 arêtes $\rightarrow 3f \leq 2m$
- Formule Euler : f = 2 n + m
- Substitution : $3(2-n+m) \le 2m \to m \le 3n-6$

Inégalité bipartie (graphes bipartis simples connexes, $n \geq 4$) : $m \leq 2n-4$

Démonstration :

- Même substitution $\rightarrow m \le 2n-4$

Applications non-planarité :

- \hat{K}_5 : n=5, m=10 mais $10 \neg \leq 3(5) 6 = 9 \rightarrow$ non planaire
- $K_{3,3}$: n=6, m=9 mais $9\neg \leq 2(6)-4=8 \rightarrow$ non planaire

Théorème de Kuratowski (1930) : Subdivision :

Graphe obtenu en insérant sommets au milieu d'arêtes **Théorème** : Graphe planaire \iff ne contient aucune subdivision de K_5 ou $K_{3,3}$