

TD 2 – Calcul différentiel

\triangleright Exercice 1.

1.1. Soit

$$\begin{array}{cccc} f \colon & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ & (x,y,z) & \longmapsto & f(x,y,z) = \begin{bmatrix} y\cos x - z\sin x \\ & x\,y\,z \end{bmatrix}. \end{array}$$

Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^3 , et donner l'expression de f'.

⊳ Exercice 2.

- **2.1.** Soit L une application linéaire continue d'un espace vectoriel normé E à valeurs dans un espace vectoriel normée F. Exprimer L'(x) en fonction de L.
- **2.2.** Soit $B: E \times F \to G$ (evn), bilinéaire continue. On rappelle que B est continue si et seulement si il existe K tel que pour tout $(x,y) \in E \times F$, $||B(x,y)||_G \le K||x||_E||y||_F$. Supposon que la norme $||(x,y)||_{E\times F} = \sqrt{||x||_E^2 + ||y||_F^2}$. Pour $\forall ((x,y),(u,v)) \in (E\times F)^2$, donner l'expression de B'(x,y).(u,v) en fonction de B.
- 2.3. Calculer

$$\frac{\partial B}{\partial x}(x,y)$$
 et $\frac{\partial B}{\partial y}(x,y)$.

2.4. Vérifier que

$$B'(x,y)(u,v) = \frac{\partial B}{\partial x}(x,y)u + \frac{\partial B}{\partial y}(x,y)v.$$

\triangleright Exercice 3.

3.1. Soit

$$f \colon \ \mathbb{R}^n \ \longrightarrow \ \mathbb{R}$$
$$x \ \longmapsto \ f(x) = \cos\left(\frac{1}{2}||x||^2\right).$$

Montrer que f est deux fois dérivable sur \mathbb{R}^n , et calculer $\nabla f(x)$ ainsi que la matrice hessienne $\nabla^2 f(x)$ en tout point $x \in \mathbb{R}^n$.

ightharpoonup Exercice 4. Soient $A \in \operatorname{Sym}(n,\mathbb{R}), b \in \mathbb{R}^n$, et soit l'application $x \colon \mathbb{R} \to \mathbb{R}^n$ deux fois dérivable. On considère l'application f définie par :

$$f \colon \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto f(t) = \frac{1}{2} \langle A x(t) | x(t) \rangle - \langle b | x(t) \rangle.$$

4.1. Montrer que f est deux fois dérivable sur \mathbb{R} .

- **4.2.** Exprimer f'(t) et f''(t).
- ightharpoonup Exercice 5. Soit $f \colon \mathbb{R}^n \to \mathbb{R}, \ f(x) = \|x\|$.
 - **5.1.** Montrer que f est dérivable sur l'ouvert $\mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ et que $\nabla f(x) = \frac{x}{\|x\|}$.
 - **5.2.** Montrer que f n'est pas dérivable en $0_{\mathbb{R}^n}$.
 - **5.3.** Montrer que f est deux fois dérivable sur $\mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ et donner $\nabla^2 f$.