VECTOR CALCULUS, Week 9

10.7 Vector Functions and Space Curves; 10.8 Arc Length and Curvature

10.7 Vector Functions and Space Curves

Def: A parametric vector-valued function is a function of the form

$$\vec{r}:[a,b] \to \mathbf{R}^2$$
 or $\vec{r}:[a,b] \to \mathbf{R}^3$ $\vec{r}(t) = \langle x(t), y(t) \rangle$ parametric plane curve parametric space curve.

We say t is the **parameter**, and we say the **real-valued** functions $x, y, z : [a, b] \to \mathbf{R}$ are the **components** of \vec{r} . We say the set

$$\{\vec{r}(t): t \in [a,b]\} \subset \mathbf{R}^2 \text{ or } \mathbf{R}^3$$

is the **image** of \vec{r} .

Ex: Sketch the image of the following parametric space curves.

- 1. $\vec{r}(t) = \cos t, \sin t, t > \text{for } 0 \le t \le 2\pi \text{ the helix}$
- 2. $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ for $-1 \le t \le 1$ the twisted cubic

Ex: Find a parametric space curve \vec{r} over an interval [a, b] so that the image of \vec{r} is the intersection between the unit cylinder $x^2 + y^2 = 1$ and the plane y + z = 2.

Def: Consider a parametric vector-valued function \vec{r} defined for t near a.

• We say \vec{r} is differentiable at t = a if and only if the component functions of \vec{r} are differentiable at t = a.

This occurs if and only if the following limit exists:

$$\frac{d\vec{r}}{dt}\Big|_{t=a} = \vec{r}'(a) = \lim_{t \to a} \frac{\vec{r}(t) - \vec{r}(a)}{t-a} = \langle x'(a), y'(a), z'(a) \rangle.$$

- We say $\vec{r}'(a)$ is the **tangent vector** of \vec{r} at t = a.
- We say $|\vec{r}'(a)|$ is the **speed** of \vec{r} at t = a.
- If $\vec{r}'(a) \neq \vec{0}$, then we say the **tangent line of** \vec{r} **at** t = a is the line in space through $\vec{r}(a)$ in the direction of $\vec{r}'(a)$.
- If $\vec{r}'(t)$ exists for all t near a and is differentiable at a, then we let $\vec{r}''(a) = \frac{d}{dt}\vec{r}'(t)|_{t=a}$ denote the **second derivative of** \vec{r} **at** t=a.

Ex: Consider the helix $\vec{r}(t) = \cos t$, $\sin t$, $t > \text{for } t \in \mathbf{R}$.

- 1. Compute the tangent vector and speed of \vec{r} at $t = \pi/2$.
- 2. Compute the tangent line of \vec{r} at $t = \pi/2$.

Ex: Consider $\vec{r}(t) = \langle \frac{t^2}{2}, \frac{t^3}{3} \rangle$ for $t \in \mathbf{R}$.

- 1. Compute the tangent vector and speed of \vec{r} at t=1.
- 2. Compute the tangent line of \vec{r} at t=1.

Fact: Suppose \vec{r} is a vector-valued function defined over [a, b], and suppose $f: [\alpha, \beta] \to [a, b]$ is differentiable (and so continuous).

• Suppose f is increasing with

$$f(\alpha) = a$$
 and $f(\beta) = b$,

and define the parametric vector-valued function

$$\vec{r}_f(s) = \vec{r}(f(s)) \text{ for } \alpha \le s \le \beta.$$

Then \vec{r}, \vec{r}_f have the same images. However, \vec{r}_f traces the image of \vec{r} with different speed. In fact,

$$|\vec{r}_f(s)| = |f'(s)\vec{r}'(f(s))| = f'(s)|\vec{r}'(s)|.$$

• Suppose f is decreasing with

$$f(\alpha) = b$$
 and $f(\beta) = a$,

and define the parametric vector-valued function

$$\vec{r}_f(s) = \vec{r}(f(s)) \text{ for } \alpha \le s \le \beta.$$

Then \vec{r}, \vec{r}_f have the same images. However, \vec{r}_f traces the image of \vec{r} in the opposite direction and with different speed. In fact,

$$|\vec{r}_f(s)| = |f'(s)\vec{r}|'(f(s))| = (-f'(s))|\vec{r}|'(s)|.$$

Def: We say $\vec{r_f}$ is a **reparameterization** of \vec{r} .

Ex: Consider the helix

$$\vec{r}(t) = \langle \cos t, \sin t, t \rangle$$
 for $t \in \mathbf{R}$.

Recall that

$$\vec{r}(\pi/2) = <0, 1, \pi/2 >, \vec{r}'(\pi/2) = <-1, 0, 1>, \text{ and } |\vec{r}'(t)| = \sqrt{2}.$$

- 1. Suppose f(s) = 2s, and consider $\vec{r}_f = \vec{r}_f(s)$. Compute $\vec{r}_f(\pi/4)$, and compute the tangent vector and speed of \vec{r}_f at $s = \frac{\pi}{4}$.
- 2. Suppose $f(s) = \pi s$, and consider $\vec{r_f} = \vec{r_f}(s)$. Compute $\vec{r_f}(\pi/2)$, and compute the tangent vector and speed of $\vec{r_f}$ at $s = \frac{\pi}{2}$.

10.8 Arc Length and Curvature

Let
$$\vec{0} = <0, 0 > \text{ or } = <0, 0, 0 >$$
.

Def: Suppose \vec{r} is a parametric vector-valued function defined over [a, b]. We say \vec{r} is **regular/smooth** if the component functions of \vec{r} are continuously differentiable over [a, b] with $\vec{r}'(t) \neq \vec{0}$ for each $t \in [a, b]$.

Ex: $\vec{r}_1(t) = \langle t^3, t^3 \rangle$ is **not** regular at t = 0, while $\vec{r}_2(t) = \langle t, t \rangle$ is regular. The image of both \vec{r}_1, \vec{r}_2 is the line y = x.

Fact: Suppose \vec{r} is a regular parametric vector-valued function defined over [a, b], and suppose $c \in [a, b]$. If $\vec{r}''(c)$ exists with $\vec{r}''(c) \neq \vec{0}$, then there is a unique circle which is tangent to the image of \vec{r} at $\vec{r}(c)$.

Def: We call this circle the **osculating circle of** \vec{r} **at** t = c.

Ex:

- 1. Lines do not have unique tangent circles.
- 2. The osculating circle of a circle is itself.

Def: Suppose \vec{r} is a regular parametric vector-valued function defined over [a,b], and suppose $\vec{r}''(t)$ exists for each $t \in [a,b]$. We define the **curvature** function $\kappa : [a,b] \to [0,\infty)$ to be

$$\kappa(t) = \begin{cases} 0 & \text{if } \vec{r} "(t) = \vec{0} \\ \frac{1}{\text{radius of the osculating circle of } \vec{r} \text{ at } t} & \text{if } \vec{r} "(t) \neq \vec{0} \end{cases}$$

Fact: Suppose \vec{r} is a regular parametric vector-valued function defined over [a, b], and suppose $\vec{r}''(t)$ exists for each $t \in [a, b]$.

If $\kappa(t) > 0$ is large, then the radius of the osculating circle is small.

If $\kappa(t) > 0$ is small, then the radius of the osculating circle is big.

If $\kappa(t) = 0$, the radius of the osculating circle is infinity,

in which case the osculating "circle" is the tangent line.

We do not define

$$\kappa(t)$$
 = radius of the osculating circle of \vec{r} at t

because if $\vec{r}''(t) = \vec{0}$, then the radius of the osculating circle is infinity. The actual definition of κ guarantees that $\kappa(t)$ is always a finite value.

We can compute $\kappa(t)$ as follows.

• If $\vec{r}: [a,b] \to \mathbf{R}^3$, then

$$\kappa(t) = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3} \text{ for } t \in [a, b].$$

• If $\vec{r}:[a,b]\to\mathbf{R}^2$, then **embed** \vec{r} into \mathbf{R}^3 by setting

$$\vec{r}(t) = < x(t), y(t), 0 > \text{ for } a \le t \le b.$$

We can now compute

$$\kappa(t) = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3} = \frac{|x'(t)y''(t) - x''(t)y'(t)|}{((x'(t))^2 + (y'(t))^2)^{3/2}} \text{ for } t \in [a, b].$$

• Suppose $f:[a,b]\to\mathbf{R}$ and suppose

$$\vec{r}(t) = \langle t, f(t) \rangle$$
 for $a \le t \le b$,

then

$$\kappa(t) = \frac{|f''(t)|}{(1 + (f'(t))^2)^{3/2}} \text{ for } t \in [a, b].$$

Ex: Compute the curvature function for each of the following.

1.
$$\vec{r}(t) = <2\cos 3t, 2\sin 3t >$$

2.
$$\vec{r}(t) = <\cos t, \sin t, t>$$

Fact: Suppose \vec{r} is a regular parametric vector-valued function defined over [a, b], and suppose \vec{r} has only **isolated self-intersections**. The arc length L of the image of \vec{r} is given by

$$L = \int_{a}^{b} |\vec{r}'(t)| dt = \begin{cases} \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt \text{ or} \\ \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt \end{cases}$$

Def: Suppose \vec{r} is a regular parametric vector-valued function defined over [a,b] with only isolated self-intersections, and suppose L is the arc length of the image of \vec{r} . We define the **arc length function** $s:[a,b] \to [0,L]$ **of** \vec{r} to be the function

$$s(t) = \int_a^t |\vec{r}'(u)| \ du \text{ for } a \le t \le b.$$

Ex: Compute the arc length L of the image and the arc length function s(t) for each of the following parametric vector-valued functions.

1.
$$\vec{r}(t) = \langle 2\cos 3t, 2\sin 3t \rangle$$
 for $0 \le t \le \frac{2\pi}{3}$

2.
$$\vec{r}(t) = \cos t, \sin t, t > \text{for } 0 \le t \le 2\pi$$

Fact: Suppose \vec{r} is a regular parametric vector-valued function defined over [a,b] with only isolated self-intersections, and suppose $|\vec{r}'(t)| = 1$ for each $t \in [a,b]$.

- The arc length function s of \vec{r} is s(t) = t a, and the arc length of \vec{r} is L = b a.
- If $\vec{r}''(t)$ exists for each $t \in [a, b]$, then $\kappa(t) = |\vec{r}''(t)|$

Def: Suppose \vec{r} is a regular parametric vector-valued function defined over [a, b], and suppose that $|\vec{r}'(t)| = 1$ for each $t \in [a, b]$, then we say \vec{r} is a unit-speed parametric vector-valued function, or \vec{r} is parameterized by arc length.

Ex: Reparameterize the following parametric vector-valued functions so that they are parameterized by arc length. More precisely, find a real-valued function f = f(s) so that $\vec{r_f}$ is a unit-speed parametric vector-valued function, and give $\vec{r_f} = \vec{r_f}(s)$.

1.
$$\vec{r}(t) = <2\cos 3t, 2\sin 3t > \text{ for } 0 \le t \le \frac{2\pi}{3}$$

2.
$$\vec{r}(t) = \cos t, \sin t, t > \text{for } 0 \le t \le 2\pi$$