# Laboratorium 11 - Całkowanie Monte Carlo

#### Piotr Karamon

### 11.06.2024r.

## Treści zadań

Tematem zadania będzie obliczanie metodą Monte Carlo całki funkcji:

- 1.  $f(x) = x^2 + x + 1$
- 2.  $g(x) = \sqrt{1 x^2}$
- 3.  $h(x) = \frac{1}{\sqrt{x}}$

w przedziale (0,1). Proszę dla tych funkcji:

- 1. Napisać funkcję liczącą całkę metodą hit-and-miss. Czy będzie ona dobrze działać dla funkcji  $\frac{1}{\sqrt{x}}$ ?
- 2. Policzyć całkę przy użyciu napisanej funkcji. Jak zmienia się błąd wraz ze wzrostem liczby prób?
- 3. Policzyć wartość całki korzystając ze wzoru prostokątów dla dokładności (1e-3, 1e-4, 1e-5 i 1e-6). Porównać czas obliczenia całki metodą Monte Carlo i przy pomocy wzoru prostokątów dla tej samej dokładności, narysować wykres. Zinterpretować wyniki.

# Rozwiązanie

Na początku definiujemy nasze funkcję oraz obliczamy dokładne wartości ich całek na przedziale (0,1) przy użyciu biblioteki sympy.

## Zdefiniowanie potrzebnych funkcji i stałych

```
def f(x):
    return x**2 + x +1

def g(x):
    return np.sqrt(1-x**2)

def h(x):
    return 1/np.sqrt(x)
```

```
x = sp.symbols('x')

f_int = float(sp.integrate(x**2 + x + 1, (x, 0,1)))
g_int = float(sp.integrate(sp.sqrt(1-x**2), (x, 0,1)))
h_int = float(sp.integrate(1/sp.sqrt(x), (x, 0,1)))

for f_name, integral in zip(['f', 'g', 'h'], [f_int, g_int, h_int]):
    print(f'I({f_name}) = {integral}')
```

### Opis metody hit-and-miss

Metoda Monte Carlo hit-and-miss służy do numerycznego obliczania całek. Polega na losowym generowaniu punktów i sprawdzaniu, ile z nich znajduje się pod krzywą funkcji. Oto kroki tej metody:

- 1. Wybór przedziału: Wybieramy przedział całkowania [a,b] oraz wartość maksymalną funkcji f(x) w tym przedziałe, czyli  $y_{\text{max}}$ .
- 2. **Generowanie punktów**: Losujemy N punktów (x, y) w prostokącie ograniczonym przez a, b oraz  $0, y_{\text{max}}$ .

- 3. **Sprawdzanie punktów**: Sprawdzamy, ile z wygenerowanych punktów znajduje się pod wykresem funkcji, tzn. spełnia warunek y < f(x).
- 4. Obliczanie całki: Całkę przybliżamy jako

$$I \approx \hat{I} = \frac{\text{Liczba punktów pod wykresem}}{\text{Całkowita liczba punktów}} \times \text{Pole prostokąta}$$

### Implementacja metody hit-and-miss

Funkcja realizująca metodę hit-and-miss.

```
def hit_and_miss(f, a, b, n):
    np.random.seed(42)
    xs = np.random.uniform(a, b, n)
    y_max = max(f(xs))
    ys = np.random.uniform(0, y_max, n)

hits = ys < f(xs)
    return hits.sum() / n * (b-a) * y_max</pre>
```

# Czy metoda zadziała dla $\frac{1}{\sqrt{x}}$ ?

Metoda Monte Carlo hit-and-miss napotka problemy przy obliczaniu całki z funkcji  $\frac{1}{\sqrt{x}}$  na przedziale (0,1). Główne powody to:

- 1. **Asymptota w punkcie x** = **0**: Funkcja  $\frac{1}{\sqrt{x}}$  dąży do nieskończoności, gdy x zbliża się do 0. To sprawia, że oszacowanie wartości maksymalnej funkcji  $y_{\text{max}}$  staje się niepraktyczne. Ponieważ  $y_{\text{max}}$  jest nieskończona, nie można wygenerować losowych punktów w ograniczonym zakresie y, co jest niezbędne do zastosowania metody hit-and-miss
- 2. **Błędy obliczeniowe wynikające ze wzoru**: By obliczyć wartość  $\frac{1}{\sqrt{x}}$  musimy obliczyć pierwiastek a następnie wykonać dzielenie, te operacje w arytmetyce zmiennoprzecinkowej powodują o wiele większe błędy, niż np. samo dodawanie i mnożenie jak w przypadku wielomianów.

Metoda zwróci wynik sensowny, jednakże obarczony sporym błędem. Metoda bardzo możliwe, że nie będzie zbieżna dla tej funkcji(w raz ze wzrostem N błąd nie będzie maleć).

## Liczenie całek przy użyciu hit-and-miss

Obliczenia wykonujemy dla różnych wartości n i porównujemy wyniki z analitycznie policzonymi wartościami całek.

Dla przypomnienia oznaczenia funkcji:

$$f(x) = x^{2} + x + 1$$
$$g(x) = \sqrt{1 - x^{2}}$$
$$h(x) = \frac{1}{\sqrt{x}}$$

**Tablica 1:** Wyniki obliczeń całek metodą hit-and-miss oraz porównanie z rzeczywistymi wartościami całek

| n        | $\hat{I}(f)$ | $ \hat{I}(f) - I(f) $ | $\hat{I}(g)$ | $ \hat{I}(g) - I(g) $ | $\hat{I}(h)$ | $ \hat{I}(h) - I(h) $ |
|----------|--------------|-----------------------|--------------|-----------------------|--------------|-----------------------|
| 10       | 2.569115     | 0.735781              | 0.698818     | 0.086580              | 2.055964     | 0.055964              |
| 100      | 1.776500     | 0.056834              | 0.799988     | 0.014590              | 1.856292     | 0.143708              |
| 1000     | 1.799492     | 0.033841              | 0.777992     | 0.007407              | 1.957624     | 0.042376              |
| 10000    | 1.809089     | 0.024244              | 0.788900     | 0.003502              | 1.925381     | 0.074619              |
| 100000   | 1.832565     | 0.000768              | 0.784400     | 0.000998              | 1.888359     | 0.111641              |
| 1000000  | 1.837197     | 0.003864              | 0.785466     | 0.000068              | 1.943869     | 0.056131              |
| 10000000 | 1.832615     | 0.000719              | 0.785394     | 0.000004              | 1.935147     | 0.064853              |

Narysujemy teraz wykres dla każdej funkcji zależności pomiędzy błędem a n w skali log-log.



**Rysunek 1:** Wykresy obrazujące zależność błędu od n dla każdej z funkcji.

Widzimy, że metoda jest wolno zbieżna. Metoda najlepiej radzi sobie z funkcją g jednakże błędy rzędu  $10^{-5}$  są nadal znaczące. Metoda hit-and-miss nie jest dobrym wyborem jeżeli zależy nam na szybkości oraz dokładności. Dla funkcji h metoda nie jest zbieżna. Błąd zamiast spadać z większą liczbą iteracji, zachowuje się w sposób mniej lub bardziej losowy. To oznacza, że choć metoda hit-and-miss jest bardzo ogólna nie zawsze jest ona zbieżna, w szczególności w przypadku funkcji z osobliwościami.

## Porównanie z metodą prostokątów

Funkcja realizująca metodę prostokątów.

```
def rectangular_rule(f, a, b, h):
    n = int((b-a)/h)
    xs = np.linspace(a+h/2, b-h/2, n)
    return h * np.sum(f(xs))
```

Tworzymy analogiczną tabelę jak w przypadku metody hit-and-miss.  $\boldsymbol{p}$  to precyzja.

**Tablica 2:** Wyniki obliczeń całek metodą prostokątów oraz porównanie z rzeczywistymi wartościami całek.

| $\frac{1}{p}$ | $\hat{I}(f)$ | $ \hat{I}(f) - I(f) $ | $\hat{I}(g)$ | $ \hat{I}(g) - I(g) $ | $\hat{I}(h)$ | $ \hat{I}(h) - I(h) $ |
|---------------|--------------|-----------------------|--------------|-----------------------|--------------|-----------------------|
| 1000.0        | 1.8333332    | 8.3333333e-08         | 0.78540089   | 2.7228308e-06         | 1.9808714    | 0.019128554           |
| 10000.0       | 1.8333333    | 8.3333318e-10         | 0.78539825   | 8.6108711e-08         | 1.993951     | 0.0060489862          |
| 100000.0      | 1.833315     | 1.8333325e-05         | 0.78539031   | 7.8512871e-06         | 1.9980672    | 0.0019328103          |
| 1000000.0     | 1.8333333    | 8.3266727e-14         | 0.78539816   | 8.6108787e-11         | 1.9993951    | 0.00060489864         |

Jak widzimy metoda prostokątów daje nam mniejsze błędy niż metoda hit-and-miss. Podobnie jak poprzednio rysujemy wykres błędów w tym przypadku od 1/p



# Porównanie czasu obliczenia

Tworzymy tabelę z wynikami pomiaru czasu:

**Tablica 3:** Wyniki pomiaru czasu dla obu metod. HM - hit-and-miss, Rect - metoda prostokątów. Czasy są podane w sekundach.

| p        | Rect I(f) | HM I(f)  | Rect I(g) | HM I(g)  | Rect I(h) | HM I(h)  |
|----------|-----------|----------|-----------|----------|-----------|----------|
| 0.001000 | 0.000843  | 0.002029 | 0.000147  | 0.000226 | 0.000077  | 0.000124 |
| 0.000100 | 0.000330  | 0.001325 | 0.000099  | 0.001022 | 0.000071  | 0.000811 |
| 0.000010 | 0.000862  | 0.010701 | 0.000649  | 0.008110 | 0.000380  | 0.007743 |
| 0.000001 | 0.008065  | 0.125657 | 0.008876  | 0.089052 | 0.004378  | 0.081908 |
| 0.0000=0 | 0.00000   | 0.0-0.0- | 0.0000=0  | 0.000==0 | 0.00000   | 0.000    |

W celu lepszego zobrazowania zależności wykonujemy wykres.



**Rysunek 2:** Wykresy pokazujące zależność czasu od odwrotności precyzji w skali log-log.

Metoda hit-and-miss jest wolniejsza niż metoda prostokatów.

#### Wnioski

### 1. Dokładność metod:

- Metoda hit-and-miss:
  - Jest mało dokładna i wolno zbieżna, szczególnie dla funkcji z asymptotą, jak  $\frac{1}{\sqrt{x}}$ .
  - Dla funkcji  $f(x) = x^2 + x + 1$  oraz  $g(x) = \sqrt{1 x^2}$  metoda daje sensowne wyniki, ale wymaga bardzo dużej liczby prób n, aby osiągnąć niski błąd.
  - Błąd nie zawsze maleje z liczbą prób, może wykazywać oscylacje jak w przypadku funkcji  $\frac{1}{\sqrt{x}}$ .
- Metoda prostokątów: Jest znacznie bardziej dokładna niż metoda hit-and-miss.
  - Dla pierwszych dwóch funkcji metoda prostokątów osiąga niski błąd nawet przy relatywnie małej liczbie podziałów.
  - Dla funkcji  $\frac{1}{\sqrt{x}}$  metoda ma już dużo większe błędy niż w przypadku dwóch pozostałych funkcji, lecz błąd wraz z ilością podziałów maleje, nie wykazuje oscylacji jak w przypadku metody hit-and-miss.
- Czas obliczeń: Metoda prostokątów jest szybsza niż metoda hit-andmiss.

### 3. Wybór metody:

- Metoda hit-and-miss może być użyteczna w sytuacjach, gdzie inne metody numeryczne są trudne do zastosowania lub gdy funkcja jest trudna do zintegrowania analitycznie.
- Metoda prostokątów jest preferowana ze względu na swoją dokładność i efektywność czasową, szczególnie w przypadkach, gdy funkcja jest dobrze zdefiniowana i nie posiada asymptot.

# Bibliografia

• Marian Bubak, Katarzyna Rycerz: Metody Obliczeniowe w Nauce i Technice. Obliczanie całek metodami Monte Carlo