Pravděpodobnost a statistika - zkoušková písemka 4.6.2013

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Sdružené pravděpodobnosti náhodných veličin X a Y jsou dány následující tabulkou:

	X = 0	X = 1	X = 2	X = 3
Y = 0	1/6	0	1/6	0
Y=1	1/3	1/8	1/12	1/8

- a) Určete marginální rozdělení X a Y.
- b) Určete pravděpodobnost P(X je liché|Y < 1).
- c) Spočtěte kovarianci cov(X, Y).
- d) Jaká je souvislost této kovariance s nezávislostí X a Y?
- e) Určete sdružené rozdělení (tj. tabulku sdružených pravděpodobností) náhodného vektoru (U, V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé.

Úloha 2. V pojišťovně vypozorovali, že denně obdrží průměrně 12 hlášení o pojistné události (jednotlivá hlášení chodí zcela nezávisle, pouze v pracovní době od 9:00 do 17:00, žádná doba přitom není preferovaná).

- a) Určete pravděpodobnost, že na příští hlášení bude pojišťovna čekat maximálně 1 hodinu a 20 minut (pracovního času).
- b) Určete čas t takový, že s pravděpodobností 0.95 bude doba čekání na příští hlášení delší než t.
- c) Určete pravděpodobnost, že všechna hlášení v daném dni přijdou po 9:40.
- d) Určete pravděpodobnost, že během odpoledne (tj. od 12:00) přijde přesně 10 hlášení, a to všechna do 16:40.
- e) Je-li průměrně každé páté hlášení škody hlášení o automobilové havárii, jaká je pravděpodobnost, že v daný den bude nejpozději třetí hlášení hlášením o automobilové havárii?

Úloha 3. Počty prodaných zájezdů jistou cestovní kanceláří ve dvou po sobě jdoucích letech byly (dle záznamů z kartotéky):

$rok \setminus čtvrtletí$	1.	2.	3.	4.
1.	120	180	170	130
2.	80	120	110	90

- a) Určete marginální rozdělení náhodného vektoru (X,Y), kde X popisuje rok a Y popisuje čtvrtletí prodeje zájezdu náhodně vybraného z kartotéky.
- b) Určete pravděpodobnost, že zájezd náhodně vybraný z kartotéky je zájezd prodaný ve druhém pololetí prvního roku?
- c) Otestujte na hladině 5%, zda v prvním roce i ve druhém roce bylo množství prodaných zájezdů přibližně stejné.
- c) Otestujte na hladině 1%, zda v prvním roce bylo množství prodaných zájezdů ve všech čtvrtletích přibližně stejné.
- e) Definujte **obecně** nezávislost náhodných veličin X a Y.

Úloha 4. V 16 přibližně stejně velkých lesích byly sledovány počty výskytů medvědů. Tyto počty jsou uvedeny v následující tabulce:

1	2	2	3	3	0	3	2	5	1	3	3	2	2	5	3

- a) Nakreslete histogram a empirickou distribuční funkci těchto dat.
- b) Určete, jaké rozdělení mají tato data, a zdůvodněte.
- c) Metodou maximální věrohodnosti určete parametr(y) rozdělení z otázky b).
- d) Spočtěte výběrový průměr z dat.
- e) Statisticky otestujte, zda střední počet medvědů v lese je možno považovat za roven
 - 3. Použitý test zdůvodněte.