Surrogate Phenotype Regression Analysis

Zachary R. McCaw

2020-11-28

Contents

- Setting
- Example Data
- Estimation
- Inference

Setting

For each of n independent subjects, suppose two continuous outcomes are potentially observed. Let T_i denote the target outcome, and let S_i denote the surrogate outcome. Group the target and surrogate outcomes into a bivariate outcome vector $Y_i = (T_i, S_i)'$. For each subject, either the target or the surrogate is potentially missing. Suppose the target mean depends on a vector of covariates x_i , and the surrogate mean depends on a vector of covariates z_i :

$$\mu_{T,i} = \mathbb{E}(T_i|x_i) = x_i'\beta\mu_{S,i} = \mathbb{E}(S_i|z_i) = z_i'\alpha$$

Let $\mu_i = (\mu_{T,i}, \mu_{S,i})'$ denote the mean vector. Consider the bivariate normal regression model:

$$\begin{pmatrix} T_i \\ S_i \end{pmatrix} \middle| (x_i, z_i) \sim N \left\{ \begin{pmatrix} x_i'\beta \\ z_i'\alpha \end{pmatrix}, \begin{pmatrix} \Sigma_{TT} & \Sigma_{TS} \\ \Sigma_{ST} & \Sigma_{SS} \end{pmatrix} \right\}$$

This package provides procedures for estimation of the model parameters (β, α, Σ) , and for inference on components of the target regression parameters β . In the case of bilateral (target, surrogate) missingness, estimation is performed via expectation maximization. In the case of unilateral target missingness, estimation is performed via an accelerated, generalized least squares.

Example Data

Below, data are simulated for $n=10^3$ subjects. The target X and surrogate Z design matrices each contain an intercept and three standard normal covariates. The regression coefficient for the target outcome is $\beta=(-1,0.1,-0.1,0)$. The regression coefficient for the surrogate outcome is $\alpha=(1,-0.1,0.1,0)$. The target and surrogate outcome each have unit variance $\Sigma_{TT}=\Sigma_{SS}=1$. The target-surrogate covariance, equivalently the correlation, is $\Sigma_{TS}=\Sigma_{ST}=0.5$. An outcome matrix in which 10% of the target outcomes and 20% of the surrogate outcomes are missing completely at random is simulated using rBNR.

```
library(Spray)
set.seed(100)
# Observations.
n <- 1e3
# Target design.
X \leftarrow cbind(1, matrix(rnorm(3 * n), nrow = n))
# Surrogate design.
Z \leftarrow cbind(1, matrix(rnorm(3 * n), nrow = n))
# Target parameter.
b \leftarrow c(-1, 0.1, -0.1, 0)
# Surrogate parameter.
a \leftarrow c(1, -0.1, 0.1, 0)
# Covariance matrix.
sigma \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow = 2)
# Generate data.
Y \leftarrow rBNR(X, Z, b, a, t_miss = 0.1, s_miss = 0.2, sigma = sigma);
t \leftarrow Y[, 1]
s \leftarrow Y[, 2]
```

Formatting Assumptions

The target and surrogate outcome vectors (t, s) both have length n. The unobserved values of the target or surrogate outcome are set to NA. The target X and surrogate Z model matrices are numeric, with all factors and interactions expanded. The model matrices contain no missing values.

Estimation

Estimation of the bivariate normal regression model is performed using Fit.BNR.

```
# Fit bivariate normal regression model.
fit <- Fit.BNR(
    t = t,
    s = s,
    X = X,
    Z = Z
)
show(fit)

## Objective increment: 1.76
## Objective increment: 0.00795
## Objective increment: 0.000344
## Objective increment: 3.17e-05
## Objective increment: 3.33e-06
## Objective increment: 3.58e-07
## 5 update(s) performed before tolerance limit.</pre>
```

```
##
##
       Outcome Coefficient
                             Point
                                        SE
                                                 L
                                                         IJ
## 1
                        x1 -1.0500 0.0322 -1.1200 -0.9890 2.45e-234
        Target
## 2
        Target
                        x2 0.1190 0.0276 0.0653
                                                    0.1740
## 3
        Target
                        x3 -0.0839 0.0298 -0.1420 -0.0255
                                                            4.87e-03
## 4
        Target
                            0.0160 0.0275 -0.0379
                                                    0.0698
                                                            5.61e-01
## 5 Surrogate
                            0.9610 0.0335 0.8950
                                                    1.0300 6.80e-181
## 6 Surrogate
                        z2 -0.0765 0.0310 -0.1370 -0.0157
                                                             1.37e-02
## 7 Surrogate
                        z3
                            0.1240 0.0308
                                            0.0637
                                                    0.1840
                                                            5.54e-05
## 8 Surrogate
                        z4 -0.0482 0.0300 -0.1070 0.0107
                                                            1.09e-01
##
##
           Covariance Point
                                 SE
## 1
               Target 0.958 0.0450 0.891 1.030
## 2 Target-Surrogate 0.502 0.0377 0.464 0.539
            Surrogate 0.948 0.0471 0.879 1.020
```

The output is an object of class bnr with these slots:

• @Covariance containing the target-surrogate covariance matrix.

```
round(fit@Covariance, digits = 3)
```

```
## Target Surrogate
## Target 0.958 0.502
## Surrogate 0.502 0.948
```

• @Covariance.info containing the information matrix for $(\Sigma_{TT}, \Sigma_{TS}, \Sigma_{SS})$.

```
round(fit@Covariance.info, digits = 3)
```

```
## Target-Target Target-Surrogate Surrogate-Surrogate
## Target-Target 837.789 -771.178 203.979
## Target-Surrogate -771.178 1881.356 -779.437
## Surrogate-Surrogate 203.979 -779.437 800.209
```

• @Covariance.tab containing the estimated covariance parameters in tabular format.

fit@Covariance.tab

```
## Covariance Point SE L U
## 1 Target 0.9582826 0.04500485 0.8908536 1.0308153
## 2 Target-Surrogate 0.5015663 0.03766063 0.4639057 0.5392269
## 3 Surrogate 0.9481284 0.04705099 0.8792191 1.0224384
```

• **@Regression.info** containing the information matrix for (β, α) .

round(fit@Regression.info, digits = 3)

```
##
                      x2
                                xЗ
                                                             z2
                                                                       z3
                                                                                 z4
             x1
                                          x4
                                                   z1
## x1 1218.880
                   6.001
                            -5.489
                                     -8.886 -534.388
                                                        -17.155
                                                                   -1.010
                                                                           -17.337
                            29.125
                                               -5.337
## x2
         6.001 1316.182
                                    -74.870
                                                         17.600
                                                                   19.296
                                                                            -4.338
                  29.125 1141.283 -115.861
                                                1.255
                                                         65.024
## x3
        -5.489
                                                                   12.191
                                                                            43.722
## x4
        -8.886
                 -74.870 -115.861 1341.487
                                                0.442
                                                          6.980
                                                                  -41.193
                                                                            -14.785
## z1 -534.388
                  -5.337
                             1.255
                                      0.442 1126.463
                                                         21.000
                                                                    7.194
                                                                            47.448
       -17.155
                  17.600
                            65.024
                                      6.980
                                               21.000 1047.657
                                                                  -52.538
                                                                            28.147
## z2
## z3
        -1.010
                  19.296
                            12.191
                                   -41.193
                                                7.194
                                                        -52.538 1061.920
                                                                            30.751
                                    -14.785
## z4
       -17.337
                  -4.338
                            43.722
                                               47.448
                                                         28.147
                                                                   30.751 1115.257
```

• @Regression.tab containing the estimated regression parameters in tabular format.

fit@Regression.tab

```
##
       Outcome Coefficient
                                 Point
## 1
       Target
                        x1 -1.05209739 0.03218776 -1.11518425 -0.98901053
## 2
       Target
                            0.11947911 0.02761939 0.06534610
## 3
       Target
                        x3 -0.08392919 0.02981181 -0.14235926 -0.02549912
## 4
        Target
                            0.01597697 0.02748197 -0.03788669
                                                               0.06984064
## 5 Surrogate
                           0.96106173 0.03350996 0.89538342 1.02674004
## 6 Surrogate
                        z2 -0.07646045 0.03101070 -0.13724031 -0.01568059
## 7 Surrogate
                           0.12401459 0.03076198 0.06372222 0.18430697
## 8 Surrogate
                        z4 -0.04817376 0.03001576 -0.10700358 0.01065606
##
## 1 2.449017e-234
## 2
     1.519002e-05
## 3
     4.873169e-03
     5.609965e-01
## 5 6.799248e-181
     1.367784e-02
## 7
     5.543993e-05
## 8 1.085051e-01
```

• @Residuals containing the target and surrogate residuals.

```
round(head(fit@Residuals), digits = 3)
```

```
## Target Surrogate
## 1 0.869 0.889
## 2 -0.793 -0.803
## 3 -0.850 -1.646
## 4 0.103 0.464
## 5 1.868 NA
## 6 -0.151 0.014
```

Inference

Wald and Score tests on β are specified using a logical vector is_zero, with length equal to the number of columns in the target model matrix X, and indicating which regression coefficients are zero under the *null hypothesis*. At least one element of is_zero must be TRUE (i.e. a test must be specified) and at least one element of is_zero must be FALSE (i.e. a null model must be estimable).

Below, various hypothses are tested on the example data. The first is an overall test of $H_0: \beta_1 = \beta_2 = \beta_3 = 0$, which is false. The second assesses $H_0: \beta_1 = \beta_2 = 0$, which is again false, treating β_3 as a nuisance. The final considers $H_0: \beta_3 = 0$, which is true, treating β_1 and β_2 as nuisances. All models include an intercept β_0 under the null.

```
cat("Joint score test of b1 = b2 = b3 = 0","\n")
test_spec <- c(FALSE, TRUE, TRUE, TRUE)
signif(Test.BNR(t, s, X, Z, is_zero = test_spec, report = FALSE, test = "Wald"), digits = 2)
signif(Test.BNR(t, s, X, Z, is_zero = test_spec, report = FALSE, test = "Score"), digits = 2)
cat("\n","Joint score test of b1 = b2 = 0, treating b3 as a nuisance","\n")
test_spec <- c(FALSE, TRUE, TRUE, FALSE)
signif(Test.BNR(t, s, X, Z, is_zero = test_spec, report = FALSE, test = "Wald"), digits = 2)
signif(Test.BNR(t, s, X, Z, is_zero = test_spec, report = FALSE, test = "Score"), digits = 2)</pre>
```

```
cat("\n","Individual score test of b3 = 0, treating b2 and b3 as nuisances","\n")
test_spec <- c(FALSE, FALSE, FALSE, TRUE)</pre>
signif(Test.BNR(t, s, X, Z, is_zero = test_spec, report = FALSE, test = "Wald"), digits = 2)
signif(Test.BNR(t, s, X, Z, is_zero = test_spec, report = FALSE, test = "Score"), digits = 2)
## Joint score test of b1 = b2 = b3 = 0
   Wald
              df
## 2.7e+01 3.0e+00 7.2e-06
   Score
               df
## 2.6e+01 3.0e+00 1.2e-05
##
## Joint score test of b1 = b2 = 0, treating b3 as a nuisance
    Wald
               df
## 2.6e+01 2.0e+00 2.0e-06
## Score
               df
## 2.5e+01 2.0e+00 3.3e-06
## Individual score test of b3 = 0, treating b2 and b3 as nuisances
## Wald df
## 0.34 1.00 0.56
## Score df
## 0.34 1.00 0.56
```