CA-COVID

April 24, 2021

```
[1]: #!/usr/bin/env python
     111
     This iPython Notebook Visualized COVID-19 data from the data.cdc.gov APIs
     Dataset Name: COVID-19 Case Surveillance Public Use Data with Geography
     Dataser URL: https://data.cdc.gov/Case-Surveillance/
      \hookrightarrow COVID-19-Case-Surveillance-Public-Use-Data-with-Ge/n8mc-b4w4
     111
     # import all the required libraries to use Panda and Plotly for data_
     \hookrightarrow visualization
     import pandas as pd
     import os
     from sodapy import Socrata
     import numpy as np
     import matplotlib
     import cufflinks as cf
     import plotly
     import plotly.offline as py
     import plotly.graph_objs as go
     pd.options.plotting.backend = "plotly"
     cf.go_offline()
     # Unauthenticated client only works with public data sets. Note 'None'
     # in place of application token, and no username or password:
     # client = Socrata# ("data.cdc.gov", None)
     # Example authenticated client (needed for non-public datasets):
     client = Socrata("data.cdc.gov", os.environ["SOCRATA_APP_TOKEN"])
     # Get records where Residential State is California, returned as JSON from API /
     → converted to Python list of
     # dictionaries by sodapy.
     results = client.get("n8mc-b4w4", res_state="CA", limit="1000000")
     # Convert result to pandas DataFrame
     results df=pd.DataFrame.from records(results)
```

Print result dataframe from the obtained data for COVID-19 cases in California results_df

[1]:		case month	res s	state	stat	e fips o	code	res co	ountv	county_fips_cod	e \
	0	2020-12		CA		r	06		NA	N.	
	1	2020-12		CA			06		NA	N.	
	2	2020-12		CA			06		NA	N.	
	3	2020-03		CA			06	F	BUTTE	0600	
	4	2020-03		CA			06		BUTTE	0600	
				OA					00111		!
	999995	2021-01	•••	CA		•••	06		RANGE	 0605	a
		2021-01		CA			06		RANGE	0605	
	999996	2021-01		CA			06		RANGE		
	999997									0605	
	999998	2021-01		CA			06		RANGE	0605	
	999999	2021-01		CA			06	UF	RANGE	0605	j
		age_g	group	S	sex	race	ethr	nicity	case_	onset_interval	\
	0		ssing		NA	NA		NA		0.0	
	1	Mis	ssing		NA	NA		NA		NaN	
	2		NA		NA	NA		NA		0.0	
	3		NA		NA	NA		NA		0.0	
	4		NA		NA	NA		NA		0.0	
	•••		••	•••	•••	•••				•••	
	999995	18 to 49	vears	Fema	ale	Unknown	Ur	nknown		NaN	
	999996	18 to 49	•	Fema		Unknown		ıknown		NaN	
	999997	18 to 49	•	Fema		Unknown		ıknown		NaN	
	999998	18 to 49	•	Fema		Unknown		ıknown		0.0	
	999999	18 to 49	•	Fema		Unknown		ıknown		NaN	
			,								
		process ex	xposur	e_yn			curi	rent_st	tatus	symptom_status	\
	0	Missing	Mis	sing	Lab	oratory-	-conf	firmed	case	Symptomatic	
	1	Missing	Mis	sing	Lab	oratory-	-conf	firmed	case	Unknown	
	2	Missing	Mis	sing	Lab	oratory-	-conf	firmed	case	Symptomatic	
	3	Missing	Mis	sing	Lab	oratory-	-conf	irmed	case	Symptomatic	
	4	Missing	Mis	sing	Lab	oratory-	-conf	irmed	case	Symptomatic	
	•••	•••	•••					•••		•••	
	999995	Missing	Mis	sing	Lab	oratory-	-conf	irmed	case	Unknown	
	999996	Missing	Mis	sing	Lab	oratory-	-conf	irmed	case	Unknown	
	999997	Missing	Mis	sing	Lab	oratory-	-conf	firmed	case	Unknown	
	999998	Missing	Mis	sing	Lab	oratory-	-conf	irmed	case	Symptomatic	
	999999	Missing		sing		oratory				Unknown	
			-	-0		J					
		hosp_yn	icu_y	n dea	ath_y	n case_]	posit	ive_sp	oecime	en \	
	0	Yes 1	Missir	ıg	N	ΙA			Na	a.N	
	1	No 1	Missir	ıg	N	ſΑ			Na	aN	
	2	Yes T	Unknow	m	N	ΙA			Na	aN	
	3	No 1	Missir	ıg	N	Го			Na	aN	

```
999995 Missing Missing
                                     No
                                                            {\tt NaN}
     999996 Missing Missing
                                                            NaN
                                     No
     999997 Missing Missing
                                     No
                                                            NaN
     999998
                  No Missing
                                                            NaN
                                     No
     999999 Missing Missing
                                     No
                                                            NaN
            underlying_conditions_yn
     0
     1
                                  NaN
     2
                                  NaN
     3
                                  NaN
     4
                                  NaN
     999995
                                  NaN
     999996
                                  NaN
     999997
                                  NaN
     999998
                                  NaN
     999999
                                  NaN
     [1000000 rows x 19 columns]
[2]: # select county column from the result dataframe
     cases_by_county = pd.concat([results_df.res_county])
     cases_by_county
[2]: 0
                   NA
     1
                   NA
     2
                   NA
     3
                BUTTE
                BUTTE
               ORANGE
     999995
     999996
               ORANGE
     999997
               ORANGE
     999998
               ORANGE
     999999
               ORANGE
     Name: res_county, Length: 1000000, dtype: object
[3]: # count the number of cases by county
     cases_by_county.value_counts()
[3]: LOS ANGELES
                         477821
     ORANGE
                          72427
     SAN BERNARDINO
                          52974
     RIVERSIDE
                          45910
```

4

Yes

No

No

NaN

SAN DIEGO	38638
SACRAMENTO	26601
KERN	26458
VENTURA	23460
SANTA CLARA	23119
SAN JOAQUIN	21794
FRESNO	21429
ALAMEDA	19781
MONTEREY	13333
CONTRA COSTA	12523
STANISLAUS	11417
MERCED	9079
SAN MATEO	8615
TULARE	7856
PLACER	6859
SONOMA	6454
KINGS	6272
SANTA BARBARA	6174
SAN FRANCISCO	6039
SAN LUIS OBISPO	5939
SOLANO	4956
MADERA	4047
IMPERIAL	4036
YOLO	3570
MARIN	3551
SANTA CRUZ	3487
BUTTE	2747
SHASTA	2462
EL DORADO	2203
SUTTER	1849
NA	1813
SAN BENITO	1649
NAPA	1539
YUBA	1484
LASSEN	1483
TEHAMA	1240
NEVADA	1185
MENDOCINO	841
LAKE	805
TUOLUMNE	682
HUMBOLDT	681
GLENN	665
CALAVERAS	627
COLUSA	510
AMADOR	351
DEL NORTE	318
SISKIYOU	247

Name: res_county, dtype: int64

```
[4]: # graph the number of cases by county
cases_by_county.value_counts().iplot(kind="bar",title="COVID-19 Cases in_

→California by county")
```


[5]: # We would create a Panda DataFrame that would allow us to use the county name

→ as an index.

tmp = pd.DataFrame({'cases_by_county':cases_by_county.value_counts()})

tmp

[5]:		cases_by_county
	LOS ANGELES	477821
	ORANGE	72427
	SAN BERNARDINO	52974
	RIVERSIDE	45910
	SAN DIEGO	38638
	SACRAMENTO	26601
	KERN	26458
	VENTURA	23460
	SANTA CLARA	23119
	SAN JOAQUIN	21794
	FRESNO	21429
	ALAMEDA	19781
	MONTEREY	13333
	CONTRA COSTA	12523
	STANISLAUS	11417
	MERCED	9079
	SAN MATEO	8615
	TULARE	7856
	PLACER	6859
	SONOMA	6454
	KINGS	6272
	SANTA BARBARA	6174
	SAN FRANCISCO	6039
	SAN LUIS OBISPO	5939

```
SOLANO
                              4956
MADERA
                              4047
IMPERIAL
                              4036
YOLO
                              3570
MARIN
                              3551
SANTA CRUZ
                              3487
BUTTE
                              2747
SHASTA
                              2462
EL DORADO
                              2203
SUTTER
                              1849
NA
                              1813
SAN BENITO
                              1649
NAPA
                              1539
YUBA
                              1484
LASSEN
                              1483
TEHAMA
                              1240
NEVADA
                              1185
MENDOCINO
                               841
LAKE
                               805
TUOLUMNE
                               682
HUMBOLDT
                               681
GI.F.NN
                               665
CALAVERAS
                               627
COLUSA
                               510
AMADOR
                               351
DEL NORTE
                               318
SISKIYOU
                               247
```

```
[6]: # Remove the cases where we don't have the county information
# Select data where the index != NA

cases_by_county_df = tmp[tmp.index != "NA"]
# sort the results in acceding order by the number of cases

cases_by_county_df = cases_by_county_df.sort_values(by='cases_by_county',

→ascending=True)

cases_by_county_df
```

```
[6]:
                       cases_by_county
     SISKIYOU
                                    247
     DEL NORTE
                                    318
     AMADOR
                                    351
     COLUSA
                                    510
     CALAVERAS
                                    627
     GLENN
                                    665
     HUMBOLDT
                                    681
     TUOLUMNE
                                    682
                                    805
     LAKE
     MENDOCINO
                                    841
```

```
NEVADA
                              1185
TEHAMA
                              1240
LASSEN
                              1483
YUBA
                              1484
NAPA
                              1539
SAN BENITO
                              1649
SUTTER
                              1849
EL DORADO
                              2203
SHASTA
                              2462
BUTTE
                              2747
SANTA CRUZ
                              3487
MARIN
                              3551
YOLO
                              3570
IMPERIAL
                              4036
MADERA
                              4047
SOLANO
                              4956
SAN LUIS OBISPO
                              5939
SAN FRANCISCO
                              6039
SANTA BARBARA
                              6174
KINGS
                              6272
SONOMA
                              6454
PLACER
                              6859
TULARE
                              7856
SAN MATEO
                              8615
MERCED
                              9079
STANISLAUS
                             11417
CONTRA COSTA
                             12523
MONTEREY
                            13333
ALAMEDA
                            19781
FRESNO
                            21429
SAN JOAQUIN
                            21794
SANTA CLARA
                             23119
VENTURA
                             23460
KERN
                             26458
SACRAMENTO
                             26601
SAN DIEGO
                             38638
RIVERSIDE
                            45910
SAN BERNARDINO
                            52974
ORANGE
                            72427
LOS ANGELES
                           477821
```

```
[7]: # Create a Plotly Graph Object of type Bar and use the index on the Y axis and the value on the x axis

data = [go.Bar(
y = cases_by_county_df.index,
x = cases_by_county_df.cases_by_county,
orientation='h'
```

```
# create the Plotly layout object
layout = go.Layout(
    height = 1000,
    margin=go.layout.Margin(l=300),
    title = "California Cases by County"
)
# create a Plotly figure object
fig = go.Figure(data=data,layout=layout)
# call the Plotly iplot() and pass the Figure object
py.iplot(fig)
```

California Cases by County

[8]: # In the next steps lets find the number of reported cases by county and race

```
[9]:
              county
                          race
      0
                   NA
                            NA
      1
                   NΑ
                            NΑ
      2
                   NA
                            NA
      3
               BUTTE
                            NA
      4
               BUTTE
                             NA
      999995 ORANGE Unknown
      999996 ORANGE Unknown
      999997 ORANGE Unknown
      999998 ORANGE Unknown
      999999 ORANGE Unknown
      [1000000 rows x 2 columns]
[10]: # see all the posible race values
      race_values = list()
      111
      iterate over the series returned by value_counts() and convert the results to a_{\sqcup}
       \hookrightarrow list
      111
      for key,value in pd.concat([df.race]).value counts().items():
          race_values.append(key)
      race_values
[10]: ['NA',
       'Unknown',
       'White',
       'Multiple/Other',
       'Missing',
       'Asian',
       'Black',
       'Native Hawaiian/Other Pacific Islander',
       'American Indian/Alaska Native'
[11]: # collect the cases by race and by county.
      # Lets use the race as the key in a dictionary to store the results
      race_df_dic = dict()
      ignore_values =['NA','Unknown','Missing'] # list of race values to ignore
      race_values.sort()
      for race in race_values:
          if race not in ignore_values:
               ^{\prime\prime\prime} below an example on how to get all the cases where the race was _{\sqcup}
       \hookrightarrow White:
                   df[df["race"] == "White"]
               race_df_dic[race] = df[df['race'] == race]
```

```
# get the number of cases by race by county
race_bycounty_dic = dict()
for race in race_df_dic.keys():
   # count the number of cases for each race and create a dataframe with the \Box
\rightarrow results we can graph
   race_bycounty_dic[race] = pd.DataFrame({'race': pd.
# remove any 'NA' county
   race_bycounty_dic[race] = race_bycounty_dic[race] [race_bycounty_dic[race].
→index != "NA"]
    # sort the results in ascending order by the number of cases
   race_bycounty_dic[race] = race_bycounty_dic[race].
→sort_values(by='race',ascending=True)
    # create the data for the grap
   data = [go.Bar(
               y = race_bycounty_dic[race].index,
               x = race_bycounty_dic[race].race,
               orientation='h'
           )]
    # now create our figure layout
   layout = go.Layout(
           height = 1000,
           margin=go.layout.Margin(1=300),
           title = "%s race reported COVID-19 Cases in California by county" \%
→(race)
   # create a figure object
   fig = go.Figure(data=data,layout=layout)
   py.iplot(fig)
```

American Indian/Alaska Native race reported COVID-19 Cases in California by county

Asian race reported COVID-19 Cases in California by county

Black race reported COVID-19 Cases in California by county

Multiple/Other race reported COVID-19 Cases in California by county

Native Hawaiian/Other Pacific Islander race reported COVID-19 Cases in California by county

White race reported COVID-19 Cases in California by county

