$\begin{array}{ccc} EECS~16A & Designing~Information~Devices~and~Systems~I\\ Spring~2020 & Discussion~11B \end{array}$

Reference: Inner products

Let \vec{x} , \vec{y} , and \vec{z} be vectors in real vector space \mathbb{V} . A mapping $\langle \cdot, \cdot \rangle$ is said to be an inner product on \mathbb{V} if it satisfies the following three properties:

- (a) Symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$
- (b) Linearity: $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ and $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$
- (c) Positive-definiteness: $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

We define the norm of \vec{x} as $||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$.

1. Mechanical Inner Products

For the following pairs of vectors, find the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.

(a)

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Answer: Recall that the inner product of two vectors \vec{x} and \vec{y} is $\vec{x}^T \vec{y}$, thus:

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 3 = 4$$

(b)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Answer: When working with real numbers, the inner product is commutative. Thus, using our work from the previous part, the inner product of these two vectors is 4.

(c)

$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

Answer:

$$\begin{bmatrix} 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} = -3 + 3 = 0$$

2. Inner Product Properties

Demonstrate the following properties of inner products for any vectors in \mathbb{R}^2 , assuming we are working with the Euclidean inner product and norm.

(a) Symmetry

Answer: Let $x_i, y_i \in \mathbb{R}$, then

$$\left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle = x_1 \cdot y_1 + x_2 \cdot y_2$$
$$= y_1 \cdot x_1 + y_2 \cdot x_2$$
$$= \left\langle \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\rangle$$

(b) Linearity

Answer: Let $\alpha, \beta, w_i, x_i, z_i \in \mathbb{R}$.

$$\left\langle \alpha \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \beta \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \alpha v_1 + \beta w_1 \\ \alpha v_2 + \beta w_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle$$

$$= (\alpha v_1 + \beta w_1)z_1 + (\alpha v_2 + \beta w_2)z_2$$

$$= \alpha (v_1 z_1 + v_2 z_2) + \beta (w_1 z_1 + w_2 z_2)$$

$$= \alpha v_1 z_1 + \alpha v_2 z_2 + \beta w_1 z_1 + \beta w_2 z_2$$

$$= \alpha \left\langle \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle + \beta \left\langle \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle$$

- **3.** Geometric Interpretation of the Inner Product In this problem, we will explore the geometric interpretation of the Euclidean inner product, restricting ourselves to vectors in \mathbb{R}^2 .
 - (a) For each of the following cases, pick two vectors that satisfy the condition and find the inner product.
 - i. Parallel Vectors

Answer: Let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. $\langle \vec{x}, \vec{x} \rangle = 1 \cdot 1 + 1 \cdot 1 = 2$

ii. Anti-parallel

Answer: Again, let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.
$$\langle \vec{x}, -\vec{x} \rangle = 1 \cdot (-1) + 1 \cdot (-1) = -2 = -\langle \vec{x}, \vec{x} \rangle$$

iii. Perpendicular

Answer: Let
$$\vec{x} = \vec{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\vec{y} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. $\langle \vec{x}, \vec{y} \rangle = 1 \cdot 0 + 0 \cdot 1 = 0$

(b) Now, derive a formula for the inner product of two vectors in terms of their magnitudes and the angle between them.

Answer: From trigonometric calculation, if $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, then we know that $x_1 = \|\vec{x}\| \cdot \cos \alpha$, $x_2 = \|\vec{x}\| \cdot \sin \alpha$, $y_1 = \|\vec{y}\| \cdot \cos \beta$ and $y_2 = \|\vec{y}\| \cdot \sin \beta$ (as in the figure). Then you can directly write

$$\langle \vec{x}, \vec{y} \rangle = x_1 \cdot y_1 + x_2 \cdot y_2 =$$

$$= \underbrace{\|\vec{x}\| \cdot \cos \alpha}_{x_1} \cdot \underbrace{\|\vec{y}\| \cdot \cos \beta}_{y_1} + \underbrace{\|\vec{x}\| \cdot \sin \alpha}_{x_2} \cdot \underbrace{\|\vec{y}\| \cdot \sin \beta}_{y_2}$$

$$= \|\vec{x}\| \|\vec{y}\| (\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta) =$$

$$= \|\vec{x}\| \|\vec{y}\| \cdot \cos (\beta - \alpha)$$

$$= \|\vec{x}\| \|\vec{y}\| \cdot \cos \theta$$

Figure 1: Two general vectors in \mathbb{R}^2

4. Reverse Triangle Inequality

The triangle inequality states that, for vectors $\vec{x}, \vec{y} \in \mathbb{R}^N$:

$$\|\vec{x} + \vec{y}\| < \|\vec{x}\| + \|\vec{y}\|$$

(a) First, prove the following:

$$\|\vec{x} - \vec{y}\| = \|\vec{y} - \vec{x}\|$$

Answer: This can be shown using the scalar-multiplication property of the norm, which states that $\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\|$.

(b) Using the triangle inequality in conjunction with the previous identity, prove the reverse triangle inequality, which states that, for vectors $\vec{x}, \vec{y} \in \mathbb{R}^N$:

$$|||\vec{x}|| - ||\vec{y}||| \le ||\vec{x} - \vec{y}||$$

Answer: Start with the identity proved in the previous part.

$$\|\vec{x} - \vec{y}\| = \|\vec{y} - \vec{x}\|$$

Now, we apply the triangle inequality to show for \vec{x} :

$$\|\vec{x}\| = \|(\vec{x} - \vec{y}) + \vec{y}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y}\|$$
$$\|\vec{x}\| - \|\vec{y}\| \le \|\vec{x} - \vec{y}\|$$

Repeating for \vec{y} :

$$\|\vec{y}\| = \|(\vec{y} - \vec{x}) + \vec{x}\| \le \|\vec{y} - \vec{x}\| + \|\vec{x}\|$$
$$\|\vec{y}\| - \|\vec{x}\| \le \|\vec{y} - \vec{x}\|$$

Combining these two equations, we find that:

$$|||\vec{x}|| - ||\vec{y}||| \le ||\vec{x} - \vec{y}||$$