

# Department of Computer Science and Engineering (CSE) IIT Hyderabad

September 6, 2022

# Conditional Natural Language Generation for Dialogue Systems and Recommendation Engine (Y4J Platform)

**Thesis Stage-1 Presentation** 

Kamal Shrestha, cs21mtech16001

Thesis Supervisor: Dr. Maunendra Sankar Desarkar

### The global chatbot market size of chatbots is projected to expand to 3,411 million dollars by 2030.





| Market                  | Chatbot Market                                                                                                                                                                                                    |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Market Size 2021        | USD 521 Million                                                                                                                                                                                                   |  |  |
| Market Forecast 2030    | USD 3,411 Million                                                                                                                                                                                                 |  |  |
| CAGR During 2022 - 2030 | 23.7%                                                                                                                                                                                                             |  |  |
| Analysis Period         | 2018 - 2030                                                                                                                                                                                                       |  |  |
| Base Year               | 2021                                                                                                                                                                                                              |  |  |
| Forecast Data           | 2022 - 2030                                                                                                                                                                                                       |  |  |
| Segments Covered        | By Type, By Application, By Product Landscape, By End-User, And By Geography                                                                                                                                      |  |  |
| Regional Scope          | North America, Europe, Asia Pacific, Latin America, and Middle East & Africa                                                                                                                                      |  |  |
| Key Companies Profiled  | Facebook, Inc., Pandorabots, Inc., ToyTalk (PullString Inc.), Google, Inc., Yahoo Inc., Haptik, Inc., Helpshift, Kasisto Inc., Slack Technologies, Inc., Astute Solutions, Kiwi, Inc., and Microsoft Corporation. |  |  |
| Report Coverage         | Market Trends, Drivers, Restraints, Competitive Analysis, Player Profiling, Regulation Analysis                                                                                                                   |  |  |
| Customization Scope     | 10 hrs of free customization and expert consultation                                                                                                                                                              |  |  |

## **Conditional Natural Language Generation for Dialogue Systems**

[DEDCON 1:]



Dialogue History

| [PERSON I:]                             | П                                                             |
|-----------------------------------------|---------------------------------------------------------------|
| [PERSON 2:]                             | Hello! How are you today?                                     |
| [PERSON 1:]                             | I am good thank you , how are you.                            |
| [PERSON 2:]                             | Great, thanks! My children and I were just about to watch GOT |
| [PERSON 1:]                             | Nice! How old are your children?                              |
| [PERSON 2:]                             | I have four that range in age from 10 to 21. You?             |
| [PERSON 1:]                             | I do not have children at the moment.                         |
| [PERSON 2:]                             | That just means you get to keep all the popcorn for yourself. |
| [PERSON 1:]                             | And Cheetos at the moment!                                    |
| [PERSON 2:]                             | Good choice. Do you watch Game of Thrones?                    |
| *************************************** |                                                               |

User's Message

Agent's Response

| [PERSON 1:] | No, I do not have much time for TV.                     |   |
|-------------|---------------------------------------------------------|---|
| [PERSON 2:] | I usually spend my time painting: but, I love the show. | 1 |

#### A dialogue system can be seen as a mapping function, $\phi$ , from user's message U, to agent's response, R



#### Dialogue History



**Knowledge Grounded Systems use an external knowledge** such as common-sense knowledge as a significant source of information when organizing an utterance.





$$U = \{u^{(1)}, u^{(2)}, \dots, u^{(i)}\}, K \longrightarrow \mathbb{R} = \varphi(U, K) \longrightarrow \mathbb{R} = \{r^{(1)}, r^{(2)}, \dots, r^{(j)}\}$$

On the basis of **use cases and applications**, dialogue systems are divided into two types: **Task oriented and open domain**.





### Encoder decoder architecture for conditional natural language generation





### Literature Survey and SOTA results, discussions and implementations





#### **In HRED**, the context RNN allows the model to represent a form of common ground between speakers.





<u>Preceding to HRED:</u> Traditional Dialogue system (RNNLM / LSTM based models) used single turn history to generate responses

#### • ENCODER:

The Dialogue Context awareness was generated at two levels: [RNN used in both the levels]

- o each utterance is encoded into a dense vector and then mapped into the dialogue context
- higher-level context RNN keeps track of past utterances by processing iteratively each utterance vector [continuous-valued state of the dialogue system]

#### DECODER:

Greedy Search Decoding [Probability Distribution on |V| and Maximization of Log Likelihood]

• Superiority over standard RNN because the context RNN allows the model to represent a form of common ground between speakers, e.g. to represent topics and concepts shared between the speakers using a distributed vector representation.

# Models HRED and all preceding it suffered from **a deficient generation problem** of generating meaningful dialogue utterances.





Minimization of reconstruction loss and KL divergence

$$loss \ = \ C \ || \ x \ - \ x^2 \ ||^2 \ + \ KL[ \ N(\mu_x \ , \sigma_x) \ , \ N(0, I) \ ] \ = \ C \ || \ x \ - \ f(z) \ ||^2 \ + \ KL[ \ N(g(x) \ , \ h(x)) \ , \ N(0, I) \ ]$$

Maximization of variational lower-bound

$$(f^*, g^*, h^*) = \underset{(f, g, h) \in F \times G \times H}{\arg \max} \left( \mathbb{E}_{z \sim q_x} \left( -\frac{||x - f(z)||^2}{2c} \right) - KL(q_x(z), p(z)) \right)$$
Likelihood Maximization variational inference

## **VHRED[2016]:** models hierarchically-structured sequences **in a two-step generation process**—first sampling the latent variable, and then generating the output sequence





- Preceding to VHRED [in RNNLM and HRED]: <u>The Restricted Shallow Generation Process</u>
- Maximizing a variational lower-bound on the log-likelihood. [Prior Distribution: Concatenated (encoder + context) hidden state at M utterance], [Posterior Distribution: encoder hidden state at M+1 utterance]
- DECODER:
  - Two-step generation process—first sampling the latent variable, and then generating the output sequence
  - Greedy Search Decoding [Probability Distribution on |V| and Maximization of Log Likelihood]
- Randomness injected by the variable **z** corresponds to higher-level decisions, like topic or sentiment of conversation.

#### **CSRR[2019]:** More variations are imported into utterance level to help generate more diverse responses.





- <u>Preceding to CSRR [HRED, VHRED]:</u> Do not model meaning of each utterance explicitly, rather summarize the meaning when needed with no guarantee that inferred meaning is adequate to the original utterance.
- Add more variations of utterance level for more better responses [not just on the decoding level]
  - O [Discourse Level]:
    - Models the background of the conversation. {Zc}
    - o [Pair Level]:
      - Models the **consistent semantics between query and response** [topic of conversation] with a common latent variable shared by the query and response pair. **{Zp}**
    - O [Utterance Level]:
      - Models the specific meaning of the query and the response with a certain latent variable for each of them to capture the content difference.

        Zr
- Significantly improves the quality of responses in terms of fluency, coherence and diversity

### Meanwhile,



- Transformers [2017]
   [Self attention, Multi Headed Attention, Positional Encoding]
- Embeddings from Language Model (ELMo) [2018]
   [Contextualized Word Embeddings]
- BERT [2018]
   [Bidirectional context encoding]
- GPT, GPT-2 [2018] [Generative Task based]



[ReCoSa,2019]: Ideally model should be able to detect these relevant contexts and produce a suitable response accordingly



Preceding to ReCoSa [RNNLM, HRED, VHRED, CSRR]: Processed all contexts in the dialogue history indiscriminately, meaning did not discriminate between the relevant contexts history.

#### **Inspired by Transformer's Self Attention:**

How to effectively extract and use the relevant contexts for better encoding of the contexts.

- Word-level LSTM uses self-attention mechanism to encode each context to content attentive representation [Concatenated with PE]
- 2. Similarly, we get masked response attentive representation
- 3. Calculate the **attention scores** between the context as **Key, Value** and response representations as **Query**.
- 4. Greedy Decoding with log likelihood maximization. [Encoder Decoder Attention for decoding]



#### TransferTransfo, [2019]: An AI with personality





- Preceding to TransferTransfo:
  - a. Wildly inconsistent outputs and the lack of a consistent personality
  - b. Tendency to produce consensual and generic responses (e.g. I don't know) which are vague and not engaging for humans
- Transfer Learning: Fine Tuned on OpenAI GPT2 [concatenation with Special Tokens and Beam Search Decoding Technique]
- Training Objectives: Language Modelling Task [Perplexity], Next Utterance Retrieval Task [Classification], Generation Task [Human Evaluations]
- Dialogue Agent will have a knowledge base to store a few sentences describing its personality traits and a preceding dialogue history

#### TransferTransfo, [2019]: An AI with personality





- Preceding to TransferTransfo:
  - a. Wildly inconsistent outputs and the lack of a consistent personality
  - b. Tendency to produce consensual and generic responses (e.g. I don't know) which are vague and not engaging for humans
- Transfer Learning: Fine Tuned on OpenAI GPT2 [concatenation with Special Tokens and Beam Search Decoding Technique]
- Training Objectives: Language Modelling Task [Perplexity], Next Utterance Retrieval Task [Classification], Generation Task [Human Evaluations]
- Dialogue Agent will have a knowledge base to store a few sentences describing its personality traits and a preceding dialogue history

External knowledge such as common-sense knowledge is **a significant source of information** when organizing an utterance.



#### Dialogue Systems with external knowledge (k)

$$U = \{u^{(1)}, u^{(2)}, \dots, u^{(i)}\}, \ K \longrightarrow R = \varphi(U, K) \longrightarrow R = \{r^{(1)}, r^{(2)}, \dots, r^{(j)}\}$$

| User message (U)                                                            | Agent response (R)                                               | External Knowledge (K) |
|-----------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|
| I need to find a nice restaurant in Madrid that serves expensive Thai food. | There is a restaurant called Bangkok City locating at 9 Red Ave. | restaurant database    |
| I love the grilled fish so much!                                            | Yeah. it's a famous<br>Chinese dish.                             | knowledge graph        |

#### [SKT, 2021]: The diversity of knowledge selection in dialogue [multimodal in nature], is modeled it as latent variables.





- Motivation: More engaging and accurate knowledge-based chit-chat
- Knowledge Selection: A sequential latent variable model for knowledge selection as a sequential decision process [continuous sampling] instead of a single-step decision process
- Training Objective: Maximization of variational lower bound and knowledge loss (cross entropy between true and predicted knowledge **[GRU** sentences) encode history] is used to
- If we can sequentially model the history of knowledge selection in previous turns, we can reduce the scope of probable knowledge candidates at current turn and generate more engaging responses.

## Knowledge Grounded Dialogue Systems



Top-p Nucleus Sampling over



### Datasets used in previous papers.



#### Wizards of Wikipedia

8, 430 training instances

1948 validation instances

1933 testing instances

First 10 sentences of the original Wikipedia page of the topic + top 7 articles from IR system [67.5 sentences on average]

#### Holl-E

7, 228 training instances

930 validation instances

913 testing instances

Single Document Given per dialogue [58-63 sentences on average]

#### A heuristic based filtering approach for job platform **recommender systems**









# Thanks!

# Any questions?

You can find me at:

cs21mtech16001@iith.ac.in

Academic and Professional Updates at:

https://shresthakamal.github.io/home