F-2002 EXP.

XXXVI Всероссийская олимпиада школьников по физике

Заключительный этап



ВОЛГОГРАД 2002

# XXXVI Всероссийская олимпиада школьников по физике

#### Заключительный этап

# Экспериментальный тур

#### Задачи составили

| 9 класс<br>ВГПУ<br>1. Сыродоев Г.<br>2. Попов К. | 10 класс<br>ВГТУ<br>1. Порхун В.<br>2. Должиков Ю.<br>Порхун В. | 11 класс<br>ВОЛГУ<br>1. Коваленко И.,<br>Храмов В.<br>2. Яцышен В.,<br>Коваленко И. |
|--------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|
|--------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|

Условия 9 класс

Задача 1. «Черный» сосуд

В «черный» сосуд с водой на нити опущено тело. Найти плотность тела, высоту тела, уровень воды в сосуде с погруженным телом, уровень воды в сосуде, когда тело находится вне жидкости. Оборудование: «Черный» сосуд, динамометр, миллиметровая

бумага, линейка. Плотность воды  $\rho = 1000$  кг/м3. Глубина сосуда H = 32 cm.

Задача 2. Трение

Определить коэффициент трения скольжения деревянной и пластмассовой линеек о поверхность стола.

Оборудование: штатив с лапкой, отвес, деревянная линейка, пластмассовая линейка, стол.

> 10 класс Задача 1. Сферическая колба

Определить показатель преломления неизвестной жидкости внутри сферической колбы, положение фокуса относительно поверхности колбы, радиус кривизны колбы. Оборудование: Сферическая колба с жидкостью, миллиметровая бумага, штатив.

# Задача 2. Вес груза

Определить вес груза.

Примечание: Во время проведения работы запрещается передвигать динамометр.

Оборудование: Динамометр с заклеенной верхней частью шкалы, груз.

## 11 класс Задача 1. CD-ROM

Определить линейные размеры участка поверхности компактдиска, приходящиеся на 1 бит информации.

Оборудование. Матрица CD-R, полупроводниковый (лазерная указка), штатив, экран, линейка, карандаш.

Информация для организаторов. Дифракционная наблюдается равным образом и на матрице CD-R и на CD-ROM с записанной информацией. По данным пробных измерений d ~ 1.6 MKM,  $x \sim 2$  MKM.

# Задача 2. Показатель преломления

Определить показатель преломления п жидкости. Оборудование. Цилиндрический прозрачный сосуд с небольшим отверстием в боковой стенке, причем сверху сосуд открыт, а стенки сосуда заклеены темной бумагой, кроме вертикальной щели, расположенной диаметрально к отверстию, непрозрачная кювета с неизвестной жидкостью, полупроводниковый лазер (лазерная указка), штатив, линейка, миллиметровка, липкая лента, карандаш, прищепка.

#### Возможные решения

#### 9 класс

#### Задача 1. «Черный» сосуд

Прикрепим верхний конец нити к динамометру и медленно поднимаем тело из воды (высота тела  $\sim 10$  см). Построим график зависимости силы, измеренной динамометром, от координаты z верхнего конца нити. Координату z отсчитываем от крышки «черного» сосуда. При z=z1 произойдет отрыв тела от дна сосуда, от z1 до z2 тело поднимается в воде и сила F1 не меняется. Затем тело выходит из воды (при этом уровень воды в сосуде понижается). От z3 до z4 (поднимаем тело до верхней крышки сосуда), тело поднимается в воздухе и сила F2 не изменяется



$$F_1 = \rho_\tau g V - \rho g V \; , \\ F_2 = \rho_\tau g V \Rightarrow \; \rho_\tau = \rho \; \frac{F_2}{F_2 - F_1}. \label{eq:F1}$$



 $h_0 = z_3 - z_1$  -уровень воды в сосуде, когда тело поднято из жидкости

 $h_1 = z_2 - z_1, l = H - (z_4 - z_1),$ 

 $h = l + h_1$  - уровень воды в сосуде с погруженным телом.

# Задача 2. Трение

Закрепляем в лапке штатива деревянную линейку, пластмассовую линейку кладем на деревянную. Изменяя угол наклона добиваемся

скольжения пластмассовой линейки по деревянной. Опустим лапку штатива с линейкой до касания нижнего конца линейки со столом  $\mu=tg\alpha=\frac{h}{l}$ ,  $\mu$  - коэффициент трения скольжения между деревом и пластмассой. Закрепляем в лапке деревянную линейку и с помощью отвеса добиваемся, чтобы она была расположена вертикально. Приставляем к ней пластмассовую линейку и изменяя угол наклона пластмассовой линейки добиваемся ее скольжения по столу.  $F_{tp1}=\mu_1\,N_1$ ,  $F_{tp2}=\mu N_2$ .



Момент сил относительно точки О2:

$$mg\frac{l_1}{2} + \mu_1 N_1 h_1 - N_1 l_1 = 0$$
 (1)

Момент сил относительно точки О1:

$$-mg\frac{l_1}{2} + \mu N_2 l_1 + N_2 h_1 = 0$$
 (2)

$$\mu_1 N_1 = N_2 \qquad (3)$$

Решая систему (1), (2), (3) находим  $\mu_1 = \frac{l_1}{2h_1 + \mu l_1} - коэффициент трения$ 

скольжения пластмассовой линейки о поверхность стола. Меняя местами линейки рассчитаем коэффициент трения скольжения деревянной линейки о поверхность стола.

FTp1 01

Возможные решения.

#### 10 класс

## Задача 1. Сферическая колба

Луч лазера направляется вдоль диаметра параллельно горизонтальной плоскости. Миллиметровую бумагу располагаем перпендикулярно лучу и перемещаем лазер вверх на высоту Н. По другую сторону линзы измеряем высоту по отношению к оси симметрии выходящего луча h.



Для параксиальных лучей 
$$\sin \alpha = \alpha = \frac{H}{R}$$
,  $\sin \phi = \frac{h}{R} = \phi$  
$$\phi = \pi - (\alpha + \delta) = 2\beta - \alpha$$
 
$$\beta = \frac{H + h}{2R}$$
;  $n_2 = \frac{\alpha}{\beta} = \frac{H}{R} \frac{2R}{H + h} = \frac{2H}{H + h}$ . Для воды  $\frac{H}{h} \approx 2$ ;  $n_2 \approx 1.33$ .

Для нахождения F расположим бумагу по оптической оси со стороны выхода луча из сосуда. Отмечаем точку F. Для нахождения кривизны:

$$\begin{split} & \text{tg}_{\varsigma} = \frac{h}{F}; \, F = \frac{h}{\varsigma} = \frac{h}{\gamma - \phi} = \frac{h}{n\beta - 2\beta + \alpha} = \frac{h}{2\beta(n-1)} = \frac{hR}{(H+h)(n-1)}; \\ & R = \frac{F(H+h)(n-1)}{h} = F\bigg(\frac{H}{h} + 1\bigg)(n-1). \end{split}$$
 Для воды: 
$$& \frac{H}{h} \approx 2 \, ; \, R = 3 \, F(n-1) \, . \end{split}$$

# Задача 2. Вес груза

Оттянем груз вниз до положения 1, затем отпустим. Замеряем положения 2 и 3, соответственно, за период и два периода.  $A_0$  — искомая величина. Тогда, переходя к амплитудам, имеем:

$$A_2-A_0=(A_1-A_0)e^{-\beta T}\;;$$
 
$$A_3-A_0=(A_2-A_0)e^{-\beta T}\;.$$
 Отсюда: 
$$\frac{A_2-A_0}{A_3-A_0}=\frac{A_1-A_0}{A_2-A_0}\;.$$
 Решаем относительно  $A_0$ : 
$$A_0=\frac{A_1A_3-A_2^2}{A_1+A_3-2A_2}\;.$$



#### Возможные решения

#### 11 класс

#### Задача 1. CD-ROM

Информация на CD-R записывается путем нанесения микроскопических углублений, т.н. ``питов", вдоль длинной спиральной дорожки ширины d и считывается лазерным лучом. Величину d можно найти, рассматривая CD-дорожку в качестве дифракционной решетки.

Закрепите в штативе лазерную указку и CD рабочей стороной к лазеру так, чтобы отраженный луч, соответствующий нулевому (главному) максимуму, попадал обратно в выходное окно лазера. Перпендикулярно лучу закрепите на штативе экран. Включив лазер, определите положение светового пятна — первого максимума дифракционной картины на экране. Измерив расстояние от CD-R до экрана h и вдоль экрана от главного до первого максимума l, найдите угол  $\phi$  из формулы  $\sin(\phi) = l/\sqrt{l^2 + h^2}$ . Длина волны излучения лазера указана на его маркировке:  $\lambda$ =0.65 мкм.

По формуле  $d \cdot \sin(\varphi) = \lambda$  найдите постоянную решетки d.

С помощью линейки измерьте внутренний  $R_1$  и внешний  $R_2$  радиусы рабочего поля компакт-диска и найдите площадь рабочего поля. Допустимый максимальный объем информации на CD-R указан на его лицевой стороне. Типичные значения равны 650 или 700 MB. Поделив S на d и на  $8*650*1024^2$  (или, соответственно, на  $8*700*1024^2$ , найдите длину участка дорожки х, приходящуюся на 1 бит.

### Задача 2. Показатель преломления

Примечание для организаторов. В качестве сосуда удобно использовать пустую двухлитровую бутылку из-под Кока-колы с вырезанным горлышком, в которой на некоторой высоте  $h_0$  над уровнем дна проделано шилом отверстие диаметром 6-7 мм. Стенки бутылки заклеиваются непроницаемой бумагой для того, чтобы исключить возможность определения показателя преломления через систему параксиальных лучей. Чашка должна быть по тем же причинам непрозрачной и достаточно глубокой, ее объем — не менее 2 л. Объем жидкости должен составлять  $\approx 1-1.5$  л. В качестве жидкости желательно использовать вязкую жидкость с большим коэффициентом поверхностного натяжения.

Метод определения показателя преломления жидкости основан на использовании эффекта полного внутреннего отражения света.

На высоте  $h_0$  на штативе закрепляется лазер таким образом, чтобы его луч, проходя через стенки и содержимое сосуда, мог проникать изнутри в отверстие и захватываться вытекающей из сосуда струей как световодом (см.рис.). Когда угол падения луча света на изогнутую поверхность  $\phi$ , т.е. угол между лучом и нормалью к поверхности, станет меньше  $\phi_C = \arcsin(1/n)$ , луч выйдет из плена.

Из рисунка следует, что  $sin(\varphi_{\rm C})={\rm v_X}/\sqrt{{\rm v_X^2+v_Y^2}}$ , где  ${\rm v_X}$  и  ${\rm v_Y}$  – соответственно горизонтальная и вертикальная составляющие скорости струи в точке падения луча. Подстановка  ${\rm v_Y}=\sqrt{2{\rm gr}}$ , где  ${\rm g}$  – ускорение свободного падения, r – радиус струи примерно равный радиусу отверстия, и  ${\rm v_X}=\sqrt{{\rm gl^2/(2h)}}$ , где  ${\rm l}$  – длина, а  ${\rm h}$  – высота участка вытекающей из отверстия струи, дает окончательно



$$n = 1/\sin(\varphi_C) = \sqrt{1 + 4\frac{rh}{I^2}}.$$

Неизвестные величины r, h, l определяются следующим образом.

- 1. С помощью линейки измеряется диаметр отверстия D=2r.
- 2. Вертикально рядом с отверстием к стенке сосуда с помощью пипкой ленты приклеивается миллиметровка.
- 3. В сосуд наливается из кюветы жидкость, отверстие при этом должно быть закрыто, например, с помощью липкой ленты. С помощью прищепки лазер фиксируется во включенном состоянии. Отверстие открывается, и жидкость вытекает в предварительно подставленную под отверстие кювету (характерное полное время истечения жидкости составляет от десятка секунд до одной минуты). Линейка приставляется горизонтально к стенке сосуда ниже отверстия на расстоянии *h* от него так, чтобы струя кидкости почти касалась края линейки,и с помощью линейки этслеживается точка пересечения струи с плоскостью линейки. В сот момент, когда свет начинает покидать световод, на линейке гоявляется яркий ореол, отвечающая этому моменту времени длина *l* измеряется.