

PROJEKT INŻYNIERSKI

Edytor graficzny systemów rozmytych dla języka Python

ID projektu - 46300

Opiekun projektu - dr inż. Jerzy Dembski

Dokument nr 3: Scrum: Backlog sprintu

Streszczenie projektu:

Celem projektu jest tworzenie edytora graficznego systemu rozmytego z wykorzystaniem dowolnej biblioteki Pythona (np. pygame, opency, opengl) pozwalającego na tworzenie i kształtowanie zbiorów rozmytych, definiowanie reguł rozmytych, wizualizację działania systemu dla zadanych wartości wejściowych oraz uczenie systemu na podstawie danych uczących metodą ANFIS wraz z przedstawieniem systemu w postaci wielowarstwowego modelu neuronowego do dalszego uczenia. System powinien pozwalać też na zapis i odczyt systemu rozmytego z pliku tekstowego, jak również przedstawienia go jako funkcji przetwarzającej dane wejściowe.

Streszczenie dokumentu:

Celem zadania jest opracowanie backlogu wybranego sprintu tak, jakby się to robiło podczas scrumowego spotkania planowania sprintu.

Wersja:	1.2
Data wydania:	12.04.2025
Redaktor:	Adam Zarzycki
Współautorzy:	Filip Wesołowski, Julian Kulikowski
Etap/zadanie:	3
Nazwa pliku:	ScrumBS_v1.1.docx
Liczba stron:	23

Historia zmian

Wersja Data		Opis zmiany				
1.0	12.04.2025	Dodanie punktów 1., 2. i 3.				
1.1	13.04.2025	Dodanie punktów 4. i 5.				
1.2	15.04.2025	Dodanie punktów 6., 7. i 8.				

Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki

SPIS TREŚCI

1.	O projekcie i produkcie	4
2.	Oszacowanie rozmiaru Backlogu Produktu	5
	2.1. Zastosowana metoda	5
	2.2. Sposób przydziału punktów	5
	2.3. Przebieg spotkania	5
	2.3.1. Przygotowanie	5
	2.3.2. Założenia	5
	2.3.3. Głosowania	5
	2.4. Udokumentowanie przebiegu spotkania	6
	2.5. Stan Backlogu Projektu po spotkaniu	11
3.	Przygotowanie Backlogu Sprintu	12
	3.1. Założenia	12
	3.1.1. Sprint	12
	3.1.2. Pojemność zespołu	12
	3.2. Dobór zakresu sprintu	13
	3.2.1. Sposób wyboru elementów do sprintu	13
	3.2.2. Wybrane elementy Backlogu Produktu	13
	3.2.3. Uzasadnienie wyboru elementów	13
	3.2.4. Oszacowanie godzinowe wybranych elementów	13
	3.2.5. Uzasadnienie oszacowania godzinowego wybranych elementów	14
	3.3. Podsumowanie	14
4.	Cel sprintu	15
5.	Backlog sprintu	15
6.	Kryteria akceptacji	16
	6.1. Tworzenie nowego projektu	16
	6.2. Wnioskowanie Mamdaniego i Sugeno po kroku	17
	6.3. Definiowanie zmiennych i reguł rozmytych	18
	6.4. Wybór spośród 4 typów wykresów: dzwonowego, gaussowskiego, trójkątnego,	
	trapezowego	19
	6.5. Rozszerzanie/zwężanie okienek	20
	6.6. Kreator nowych projektów	21
	6.7. Szybki zapis do pliku	22
	Definicja ukończenia (DoD)	23
8.	Bibliografia	23

1. O projekcie i produkcie

Celem końcowym projektu jest utworzenie aplikacji umożliwiającej wizualizację zbiorów rozmytych za pomocą interfejsu graficznego w języku Python. Ważnym aspektem produktu jest udostępnienie darmowej alternatywy dla programu Fuzzy Logic Designer operującego w płatnym środowisku MATLAB.

Najważniejszym zadaniem produktu jest stworzenie prostego, przystępnego interfejsu graficznego, umożliwiającego użycie aktualnych implementacji logiki rozmytej. Użytkownik powinien być w stanie określać oraz edytować reguły rozmyte, a następnie obserwować ich efekt oraz podejmowanie decyzji w czasie rzeczywistym. W przeciwieństwie do aktualnych rozwiązań korzystających z wiersza poleceń, naszym priorytetem jest obserwowalność wyników, kontrolowalność kolejnych kroków oraz przystępność dla niedoświadczonych użytkowników. Powinien ich naprowadzać oraz uczyć w naturalny sposób, nawet jeżeli nigdy wcześniej nie pracowali z podobnymi programami.

Innym ważnym aspektem produktu jest możliwość zapisu i odczytu aktualnego projektu do pliku oraz integracja z aktualnie popularną biblioteką uczenia maszynowego PyTorch.

2. Oszacowanie rozmiaru Backlogu Produktu

2.1. Zastosowana metoda

Do oszacowania rozmiaru elementów Backlogu Produktu (dalej: elementów BP) zastosowano metodę Story Points (dalej: SP). Jako wartości przydzielanych SP wybrano te wg skali M. Cohna:

{1, 2, 3, 5, 8, 13, 20, 40, 100}

2.2. Sposób przydziału punktów

Punkty SP przydzielane były zgodnie techniką Planning Poker. W tym celu grupa projektowa spotkała się w pełnym składzie na spotkaniu, podczas którego przeprowadzone zostało głosowanie nad złożonością każdego z elementów Backlogu Produktu.

2.3. Przebieg spotkania

2.3.1. Przygotowanie

Przed rozpoczęciem spotkania, do wykorzystywanej aplikacji (link w Bibliografii) dodany został zbiór kart zgodny ze skalą M. Cohna. Następnie utworzona została nowa gra, do której przepisane zostały elementy Backlogu Produktu (zgodnie ze stanem na dzień 09.04.2025), z dokładnością do nazwy elementu BP.

2.3.2. Założenia

Julian Kulikowski został wybrany na prowadzącego spotkanie; jego zadania sprowadzały się do wyboru kolejnego elementu głosowania i oznajmiania tego reszcie obecnych.

Elementy BP poddawane były głosowaniu w kolejności losowej, by zapobiec stronniczości wywołanej posiadaniu przez elementy BP wstępnego przypisania złożoności w SP (wykonanego w ramach etapu 2. projektu).

2.3.3. Głosowania

Głosowania przeprowadzane były według następującego schematu:

- prowadzący spotkanie wybierał kolejny element BP pod głosowanie i oznajmiał to wszystkim obecnym,
- głosujący wybierali kartę z preferowanym oszacowaniem,
- po oddaniu głosów przez wszystkich obecnych, system pokazywał wartości wybranych kart reszcie głosujących:
 - w przypadku jednomyślności głosujących, elementowi BP nadawana była wybrana wartość SP,

Wydział Elektroniki, Telekomunikacji i Informatyki

- w przeciwnym przypadku, głosujący mogli wyrazić swoją opinię na temat złożoności kontrowersyjnego elementu BP innym głosującym,
- o następnie przeprowadzane było ponowne głosowanie:
 - jeżeli tym razem decyzja była jednomyślna, element BP otrzymywał takie dopasowanie,
 - w przeciwnym wypadku, element BP otrzymywał dopasowanie zgodne z opinią większości głosujących,
 - w sytuacji wystąpienia trzech różnych głosów, decyzję podejmował prowadzący spotkanie,
- prowadzący spotkanie oznajmiał wszystkim obecnym ostateczny przydział SP do elementu BP,
- nowa wartość SP wprowadzana była do Backlogu Produktu.

Proces ten powtórzony został dla wszystkich elementów BP.

2.4. Udokumentowanie przebiegu spotkania

Fig 1. Głosowanie nad złożonością Celu Produktu - pełna zgoda

Fig 2. Głosowanie nad elementem BP - 3 różne opinie

Fig 3. Ponowne głosowanie nad elementem BP z Fig 2. - pełna zgoda

Fig 4. Głosowanie nad elementem Bp - pełna zgoda

Fig 5. Głosowanie nad elementem BP - 3 różne opinie

Fig 6. Ponowne głosowanie nad elementem BP z Fig. 5 - znowu 3 różne opinie, wybrana została opinia prowadzącego spotkanie (Juliana Kulikowskiego)

Fig 7. Ponowne Głosowanie nad pewnym elementem Bp - sytuacja 2:1, zwyciężyła opinia większości

Fig 8. Głosowanie nad elementem BP - pełna zgoda

Fig 9. Głosowanie nad elementem BP - pełna zgoda

2.5. Stan Backlogu Projektu po spotkaniu

Cel Produktu - Stworzenie edytora graficznego systemów rozmytych dla języka Python, ofer #5	100	1:MUST
2 • Eksport systemu rozmytego do pliku #4		1:MUST
3 ⊙ Import systemu rozmytego z pliku, w tym z pliku .zip #6		1:MUST
4 • Animacja wykonywania reguł wnioskowania krok po kroku #10		1:MUST
5 O Edycja wykresów poprzez przeciąganie na ekranie #9		1:MUST
6 O Modyfikacja wartości zmiennych w trakcie wykonywania wnioskowania #11		1:MUST
7 • Jakość podobna do wersji MATLABowej #26		1:MUST
8 ① Wnioskowanie Mamdaniego i Sugeno #20		1:MUST
9 • Definiowanie zmiennych i reguł rozmytych #22		1:MUST
10 • Obsługa projektów tworzonych w MATLABie #29		1:MUST
11		1:MUST
12		1:MUST
13 · O Wyświetlanie wykresów #18		1:MUST
14 🕟 Wybór spośród 4 typów wykresów: dzwonowego, gaussowskiego, trójkątnego, trapezowego #19		1:MUST
15		2:SHOULD
16 Wysoka wydajność importu projektu #30		2:SHOULD
17		2:SHOULD
18		2:SHOULD
19		2:SHOULD
20 • Możliwość ustawiania/przesuwania okien na ekranie #8		2:SHOULD
21		2:SHOULD
22 • Rozszerzanie/zwężanie okienek #33		2:SHOULD
23 · Tryb jasny/ciemny #7		2:SHOULD
24 • Dodanie skrótów klawiszowych #12		2:SHOULD
25		2:SHOULD
26		3:COULD
27		3:COULD
28 ① Import systemu rozmytego z sieci neuronowej #14		3:COULD
29 🕟 Integracja z biblioteką PyTorch #35		3:COULD
30 • Zamykanie programu skrótem klawiszowym #31		3:COULD
31		3:COULD
32 • Stonowana szata graficzna #24		3:COULD
33 O Dostosowywanie kolorów interfejsu #32		3:COULD
34 • Automatyczna generacja reguł rozmytych #34	20	4:WONT

3. Przygotowanie Backlogu Sprintu

3.1. Założenia

3.1.1. Sprint

- start sprintu 16.04.2025,
- koniec sprintu 30.04.2025,
- czas na projekt = 14 tygodni (6 tygodni 6. semestru + 8 tygodniu 7. semestru (2 ostatnie tygodnie przeznaczone są na zatwierdzenie pracy przez recenzenta),
- długość sprintu = 2 tygodnie,
- liczba sprintów = czas na projekt/długość sprintu = 7,
- suma SP = 287 (bez Celu Produktu),
- średnia liczba SP na sprint = suma SP/liczba sprintów = 41 [SP/sprint],
- zakładana średnia prędkość sprintu = zaokr_w_górę(średnia liczba SP na sprint)
 = 41,
- zakres na pierwszy sprint = zakładana średnia prędkość = 41.

3.1.2. Pojemność zespołu

	Czas całkowity	Czas wyłączony ze sprintu			Czas wyłączony ze sprintu				
	Typowy czas pracy [h]	Dzień ustawowo wolny [h]	Wyjazdy [h]	Spotkania [h]	"Szum" [%]				
Adam Zarzycki	80	24	8	2	20				
Julian Kulikowski	80	24	0	10	20				

Edytor graficzny systemów rozmytych dla języka Python

Wydział Elektroniki, Telekomunikacji i Informatyki

Filip Wesołowski	80	24	3	5	20	
RAZEM	240	72	11	17	20	<u>112</u>

3.2. Dobór zakresu sprintu

3.2.1. Sposób wyboru elementów do sprintu

Planowany w tym dokumencie sprint jest pierwszym w tym projekcie, w związku z czym elementy wybierano głównie z myślą o ich podstawowym znaczeniu dla całego projektu.

Zespół projektowy uzgodnił zakres sprintu po konsultacji z Właścicielem Produktu (w ramach tego projektu funkcję tę pełni Adam Zarzycki).

3.2.2. Wybrane elementy Backlogu Produktu

- #12 Tworzenie nowego projektu, 3 SP,
- #20 Wnioskowanie Mamdaniego i Sugeno, 8 SP,
- #22 Definiowanie zmiennych i reguł rozmytych, 8 SP,
- #19 Wybór spośród 4 typów wykresów: dzwonowego, gaussowskiego, trójkątnego, trapezowego, 2 SP,
- #33 Rozszerzanie/zwężanie okienek, 2 SP,
- #21 Kreator nowych projektów, 13 SP,
- #17 Szybki zapis do pliku, 5 SP.

RAZEM - 41 SP.

3.2.3. Uzasadnienie wyboru elementów

Podane wyżej elementy wybrane zostały ze względu na ich podstawowe znaczenie dla dalszego rozwoju programu. Większość reszty wymaganych funkcjonalności albo wymaga tychże elementów do poprawnego funkcjonowania, albo we fragmencie lub w całości od nich zależy. Ponadto, elementy te pozwalają wytworzyć szkielet programu do pokazania interesariuszom projektu.

3.2.4. Oszacowanie godzinowe wybranych elementów

- #12 Tworzenie nowego projektu, 17 h,
- #20 Wnioskowanie Mamdaniego i Sugeno, 27 h,
- #22 Definiowanie zmiennych i reguł rozmytych, 6 h,

Wydział Elektroniki, Telekomunikacji i Informatyki

- #19 Wybór spośród 4 typów wykresów: dzwonowego, gaussowskiego, trójkątnego, trapezowego, 9 h,
- #33 Rozszerzanie/zwężanie okienek, 0,5 h,
- #21 Kreator nowych projektów, 19,5 h,
- #17 Szybki zapis do pliku, 30 h.

RAZEM - 109h.

3.2.5. Uzasadnienie oszacowania godzinowego wybranych elementów

Najbardziej czasochłonnymi elementami tego sprintu będą "Wnioskowanie Mamdaniego i Sugeno" (ze względu na potrzebę dogłębnego zapoznania się z dostępną literaturą naukową i szczegółowego zrozumienia tematu) i "Szybki zapis do pliku" (ze względu na potrzebę opracowania odpowiedniej formy i protokołu zapisu, jak również osiągnięcia wymaganych poziomów wydajnościowych). "Kreator nowych projektów" wymaga odpowiedniego zaprojektowania i implementacji potoku komunikacji z użytkownikiem i pobierania od niego niezbędnych informacji, jak również poprawnej i przemyślanej implementacji "Tworzenia nowego projektu". Pozostałe elementy mogą być wspierane za pomocą istniejących już pod postacią bibliotek rozwiązań, co znacząco zmniejsza ich czasochłonność.

3.3. Podsumowanie

- zakładana średnia predkość sprintu = 41 SP.
- pojemność zespołu = 112 h
- oszacowanie godzinowe elementów Backlogu Sprintu = 109 h < pojemność zespołu,
- szacowana prędkość = zakładana średnia prędkość sprintu/oszacowanie godzinowe elementów Backlogu Sprintu = ok. 0,38 SP/h.

4. Cel sprintu

Umożliwienie użytkownikowi zwizualizowania nowego projektu opartego na wnioskowaniu Mamdaniego oraz Sugeno w podstawowych kształtach.

5. Backlog sprintu

Sprint Numer 1								
ID Elementu	Podsumowanie	Story Points	Priorytet	Osoby Przydzielone	Szacunkowa Ilość Godzin	Status	Pozostała ilość godzin	
	Tworzenie nowego projektu			Adam	17h	Przed Rozpoczęciem	17h	
	-Możliwość w interfejsie graficznym na wejściu programu opcji nowego projektu	3		Adam	2h			
#12	-Stworzenie przykładowego pustego projektu w systemie		MUST	Adam	6h			
	-Możliwość w interfejsie graficznym istniejęcego projektu na utworzenie nowego			Adam	2h			
	-Zastąpienie aktualnego projektu pustym projektem			Adam	7h			
	Wnioskowanie Mamdaniego i Sugeno			Filip i Julian	27h	Przed Rozpoczęciem	27h	
	-Możliwość wyboru wnioskowania podczas wejścia programu	8	MUST	Filip	1 h			
#20	-Obsługiwanie wnioskowania Mamdaniego			Filip	11h			
	-Obsługiwanie wnioskowania Sugeno			Julian	11h			
	-Możliwość przekonwertowania istniejącego projektu z jednego wnioskowania na drugie			Julian	4h			
	Definiowanie zmiennych i reguł rozmytych			Filip	6h	Przed Rozpoczęciem	6h	
#22	-Definiowanie zmiennych	8	MUST	Filip	2h			
	-Definiowanie reguł rozmytych			Filip	4h			
	Wybór spośród 4 typów wykresów: dzwonowego, gaussowskiego, trójkątnego, trapezowego			Filip, Adam i Julian	9h	Przed Rozpoczęciem	9h	
	-Możliwość w interfejsie graficznym na wejściu programu wyboru między typami wykresów			Filip	0.5h			
	-Wykres dzwonowy			Filip	2h			
#19	-Wykres gaussowski	2	MUST	Julian	2h			
	-Wykres trapezowy			Adam	2h			
	-Wykres trójkątny			Julian	2h			
	-Możliwośc zmiany typu wykresu w aktualnym projekcie			Filip	0.5h			
#33	Rozszerzanie/zwężanie okienek	2	SHOULD	Adam	0.5h	Przed Rozpoczęciem	0.5h	
	-Możliwośc zmiany wielkości okna przez złapanie za jego krawędź			Adam	0.5h			
	Kreator nowych projektów			Julian i Adam	19.5h	Przed Rozpoczęciem	19.5h	
	-Możliwość w interfejsie graficznym na wejściu programu wejścia w kreator projektu		MUST	Adam	2.5h			
	-Definiowanie zmiennych wejściowych			Julian	4h			
#21	-Definiowanie wejściowych reguł rozmytych	13		Julian	4h			
	-Opcjonalna możliwość zdefiniowania dodatkowych zmiennych oraz reguł			Julian	5h			
	-Wybór pomiędzy wnioskowaniem Mamdaniego oraz Sugeno			Adam	2h			
	-Wybór typu wykresu			Adam	2h			
	Szybki zapis do pliku	l	SHOULD	Filip, Adam i Julian	30h	Przed Rozpoczęciem	30h	
	-Możliwość szybkiego zapisu poprzez ikonę interfejsu graficznego			Adam	1.5h			
	-Możliwość szybkiego zapisu za pomocą skrótu klawiszowego			Adam	0.5h			
	-Wybór domyślnej lokalizacji zapisu			Filip	1h			
#17	-Wybór pomiędzy .txt, .csv oraz .bin jako domyślnego formatu szybkiego zapisu	5		Filip	1h			
	-Konwersja danych programu do formatu .txt			Julian	8h			
	-Konwersja danych programu do formatu .bin			Julian	8h			
	-Konwersja danych programu do formatu .csv			Filip	8h			
	-Przeprowadzenie zapisu do pliku o domyślnym roszerzeniu, w domyślnej lokalizacji			Adam	2h			

6. Kryteria akceptacji

6.1. Tworzenie nowego projektu

6.2. Wnioskowanie Mamdaniego i Sugeno po kroku

6.3. Definiowanie zmiennych i reguł rozmytych

6.4. Wybór spośród 4 typów wykresów: dzwonowego, gaussowskiego, trójkątnego, trapezowego

6.5. Rozszerzanie/zwężanie okienek

6.6. Kreator nowych projektów

6.7. Szybki zapis do pliku

7. Definicja ukończenia (DoD)

- Wszystkie testy jednostkowe i integracyjne zakończyły się sukcesem,
- Funkcjonalność została zaprezentowana i zaakceptowana przez interesariuszy,
- System działa zgodnie z wymaganiami i nie zawiera błędów krytycznych,
- Dokumentacja została zaktualizowana zgodnie z nową funkcjonalnością,
- Wymagania niefunkcjonalne zostały przetestowane,
- Nowa funkcjonalność nie powoduje regresji,
- W przypadku funkcji związanych z uczeniem (ANFIS, PyTorch), działanie zostało sprawdzone na co najmniej jednym kompletnym przepływie danych (end-to-end).

8. Bibliografia

- platforma do przeprowadzenia spotkania Planning Poker: https://planningpokeronline.com/,
- materiały wykładowe dr inż. Jakuba Milera.