Homework 1 - Data Preparation Phase

Name/Znumber: Jordan Small / Z23465928 Professor: Juan Yepes Date: 31 JAN, 2024

Dataset: STUDENT PERFORMANCE DATASET

Description: This data is related to student achievement of a Portuguese school, obtained from using school reports and questionnaires. The classification goal is to predict student performance, particularly in a post-secondary math course.

https://archive.ics.uci.edu/dataset/320/student+performance

```
import pandas as pd #Import the pandas module
```

1. Load/read the csv file and display its shape

```
math = pd.read_csv('student-mat.csv', sep=';')
#Check the shape of the object/dataframe
math.shape
(395, 33)
```

2. Print the header and the last few rows

```
#Print the header
math.head(n=5)
  school sex age address famsize Pstatus
                                                                   Mjob
                                                 Medu
Fjob
            F
                 18
                                  GT3
      GP
                                                               at home
teacher
      GP
                 17
                                  GT3
                                                     1
                                                               at home
1
other
       GP
            F
                 15
                                  LE3
                                                               at home
other
            F
                 15
                                  GT3
                                                            2
       GP
                                                                health
services
       GP
                 16
                                  GT3
                                                                 other
other
  famrel freetime
                             Dalc
                                    Walc health absences
                      goout
                                                              G1
                                                                   G2
                                                                       G3
0
        4
                  3
                          4
                                 1
                                        1
                                                3
                                                          6
                                                               5
                                                                    6
                                                                        6
        5
                  3
                          3
                                        1
                                                3
                                                          4
                                                               5
                                                                    5
1
                                 1
                                                                        6
2
                  3
                          2
                                                3
                                                               7
        4
                                 2
                                        3
                                                          10
                                                                    8
                                                                       10
                  2
                                                5
3
        3
                          2
                                 1
                                        1
                                                              15
                                                                   14
                                                                       15
                                                          2
4
                          2
                                                5
                  3
        4
                                 1
                                                               6
                                                                   10
                                                                       10
```

[5 rows x 33 columns] #Print the last few rows math.tail(n=5) school sex age address famsize Pstatus Medu Fedu Mjob Fjob \ U LE3 390 MS 20 2 2 services services LE3 391 17 3 services 392 MS 21 R GT3 1 other Μ 1 other 393 18 R LE3 services MS other 19 LE3 394 MS at_home ... famrel freetime goout Dalc Walc health absences G1 G2 G3 9 390 ... 5 11 391 2 5 3 4 14 16 16 392 5 3 3 3 10 8 7 393 3 11 12 10 394 3 3 [5 rows x 33 columns]

3. Print a summary of the dataset's statistical details

math.de	escribe()				
	age	Medu	Fedu	traveltime	studytime
failure	es \				
count	395.000000	395.000000	395.000000	395.000000	395.000000
395.000	0000				
mean	16.696203	2.749367	2.521519	1.448101	2.035443
0.33417	77				
std	1.276043	1.094735	1.088201	0.697505	0.839240
0.74365	51				
min	15.000000	0.000000	0.000000	1.000000	1.000000
0.00000	00				
25%	16.000000	2.000000	2.000000	1.000000	1.000000

0.00000	-				
50% 0.00000	17.000000	3.000000	2.000000	1.000000	2.000000
75%	18.000000	4.000000	3.000000	2.000000	2.000000
0.00000 max 3.00000	22.000000	4.000000	4.000000	4.000000	4.000000
	famrel	freetime	goout	Dalc	Walc
health count 395.000	\ 395.000000 000	395.000000	395.000000	395.000000	395.000000
mean 3.55443	3.944304	3.235443	3.108861	1.481013	2.291139
std	0.896659	0.998862	1.113278	0.890741	1.287897
1.39030 min 1.00000	1.000000	1.000000	1.000000	1.000000	1.000000
25% 3.00000	4.000000	3.000000	2.000000	1.000000	1.000000
50%	4.000000	3.000000	3.000000	1.000000	2.000000
4.00000 75% 5.00000	5.000000	4.000000	4.000000	2.000000	3.000000
max 5.00000	5.000000	5.000000	5.000000	5.000000	5.000000
		0.1	60	60	
count mean std min 25% 50% 75%	absences 395.000000 5.708861 8.003096 0.000000 4.000000 8.000000	G1 395.000000 10.908861 3.319195 3.000000 8.000000 11.000000 13.000000	G2 395.000000 10.713924 3.761505 0.000000 9.000000 11.000000 13.000000	G3 395.000000 10.415190 4.581443 0.000000 8.000000 11.000000 14.000000	
max	75.000000	19.000000	19.000000	20.000000	

4. Display a concise summary of the dataframe

```
math.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 395 entries, 0 to 394
Data columns (total 33 columns):
                Non-Null Count Dtype
    Column
    school
                                object
 0
                395 non-null
 1
    sex
age
               395 non-null
                                object
              395 non-null
395 non-null
 2
                                int64
 3
     address
                                object
```

```
4
     famsize
                 395 non-null
                                 object
 5
     Pstatus
                 395 non-null
                                 object
 6
     Medu
                 395 non-null
                                 int64
 7
     Fedu
                 395 non-null
                                 int64
 8
     Mjob
                 395 non-null
                                 object
 9
     Fjob
                 395 non-null
                                 object
 10
                 395 non-null
    reason
                                 object
 11
                 395 non-null
     guardian
                                 object
 12 traveltime 395 non-null
                                 int64
 13 studytime
                 395 non-null
                                 int64
 14
    failures
                 395 non-null
                                 int64
 15
    schoolsup
                 395 non-null
                                 object
                 395 non-null
 16
    famsup
                                 object
 17
     paid
                 395 non-null
                                 object
 18
    activities 395 non-null
                                 object
 19
                 395 non-null
    nursery
                                 object
 20 higher
                 395 non-null
                                 object
                 395 non-null
 21
    internet
                                 object
 22
                 395 non-null
    romantic
                                 object
 23
                 395 non-null
    famrel
                                 int64
 24
    freetime
                 395 non-null
                                 int64
 25
    goout
                 395 non-null
                                 int64
 26
    Dalc
                 395 non-null
                                 int64
 27
    Walc
                 395 non-null
                                 int64
 28
                 395 non-null
    health
                                 int64
 29
                 395 non-null
                                 int64
    absences
 30
    G1
                 395 non-null
                                 int64
 31
    G2
                 395 non-null
                                 int64
32
     G3
                 395 non-null
                                 int64
dtypes: int64(16), object(17)
memory usage: 102.0+ KB
```

5. Add an index column and display its new shape

```
math['index'] = pd.Series(range(0,395))
math.shape
(395, 34)
```

6. Choose a numerical field and display its unique values

7. Replace an extreme set of values in the dataset with zero, -1, or np.NaN

8. Plot a histogram of a numerical value

```
math['age'].plot(kind = 'hist', title = 'Histogram of Student Ages')

<Axes: title={'center': 'Histogram of Student Ages'},
ylabel='Frequency'>
```


9. Choose a categorical field and represent it as a numerical field (create a new column)

```
math["Pstatus numeric"] = math['Pstatus'] #Replicate the Pstatus
variable
print(math['Pstatus'].unique()) #Print/inspect unique values for
Pstatus
['A' 'T']
#Create a dictionary with the numeric value equivalencies
dict_Pstatus = {"Pstatus_numeric": {'A':0,'T':1}}}
dict Pstatus
{'Pstatus_numeric': {'A': 0, 'T': 1}}
#Make the replacement and display the last few rows
math.replace(dict_Pstatus, inplace=True)
math.tail(n=5)
    school sex age address famsize Pstatus Medu
                                                             Mjob
                                                   Fedu
Fjob \
```

```
390
        MS
              М
                  20
                            U
                                   LE3
                                                    2
                                                          2 services
services
391
        MS
              М
                  17
                            U
                                   LE3
                                             Т
                                                    3
                                                           1
                                                              services
services
392
        MS
              М
                  21
                            R
                                  GT3
                                             Т
                                                    1
                                                                 other
other
        MS
                  18
                            R
                                   LE3
                                                           2
393
              М
                                             Т
                                                    3
                                                              services
other
394
        MS
              М
                  19
                            U
                                   LE3
                                             Т
                                                    1
                                                          1
                                                                 other
at home
     ... Dalc Walc health absences G1
                                                  G3 index Pstatus numeric
                                             G2
390 ...
                                              9
                           4
                                     11
                                        9
                                                       390
                                                                           0
                           2
                                      3
                                                                           1
391 ...
            3
                  4
                                         14
                                             16
                                                  16
                                                       391
392
            3
                  3
                           3
                                         10
                                              8
                                                       392
                                                                           1
                                      3
                                                   7
393
     . . .
                           5
                                         11
                                             12
                                                  10
                                                       393
                                                                           1
394
            3
                  3
                           5
                                      5
                                        8
                                              9
                                                   9
                                                       394
                                                                           1
        age_z
390
     2.592380
391
     0.238380
     3.377047
392
     1.023046
393
394
     1.807713
[5 rows x 36 columns]
```

10. Use the zscore function to standardize a numerical field (create a new column)

 $z = \text{Value} = \frac{x}{s} = \frac{x}{s} = \frac{x}{s} = \frac{x}{s} = \frac{x}{s}$

```
-1.330954
3
     -1.330954
4
     -0.546287
5
     -0.546287
6
     -0.546287
7
     0.238380
8
     -1.330954
9
     -1.330954
10
     -1.330954
11
     -1.330954
12
     -1.330954
13
     -1.330954
14
     -1.330954
15
     -0.546287
16
     -0.546287
17
    -0.546287
18
    0.238380
19
     -0.546287
Name: age_z, dtype: float64
#Age Histogram (not normalized)
math['age'].plot(kind = 'hist', title = 'Histogram of Age')
<Axes: title={'center': 'Histogram of Age'}, ylabel='Frequency'>
```



```
#Age Histogram (Normalized)
math['age_z'].plot(kind = 'hist', title = 'Histogram of Age
Normalized')
<Axes: title={'center': 'Histogram of Age Normalized'},
ylabel='Frequency'>
```


11. Identify a field and use a criterion of your choosing to filter for outliers. Create a new dataset with the outliers

```
math.query('age_z > 3 | age_z < -3') #List the outliers</pre>
    school sex age address famsize Pstatus Medu
                                                                Mjob
Fjob \
        GP
247
                  22
                                 GT3
                                                            services
services
392
        MS
                  21
                           R
                                 GT3
             М
                                                  1
other
     ... Dalc Walc health absences G1 G2 G3 index Pstatus numeric
age z
247 ...
                  5
                                    16
                                         6
                                                   247
4.161713
392
                                                   392
                                                                      1
                                        10
3.377047
[2 rows x 36 columns]
#Create a new dataset with the outlier values
math_outliers = math.query('age_z > 3 | age_z < -3')</pre>
```

```
#Display the first few rows of outliers
math outliers.head()
    school sex age address famsize Pstatus Medu
                                                  Fedu
                                                            Mjob
Fjob \
247
                22
                               GT3
       GP
services
392
       MS
                21
                         R
                               GT3
                                               1
                                                           other
other
     ... Dalc Walc health absences G1 G2 G3 index Pstatus numeric
age z
247 ...
           5 5
                        1
                                 16 6
                                        8 8
                                                247
4.161713
392
                        3
                3
                                  3 10 8 7
                                                392
                                                                  1
3.377047
[2 rows x 36 columns]
```

12. Sort the dataset and display 15 interesting fields

```
#Sort the dataset
math_sort = math.sort_values(['age_z'], ascending = False)
#Display 15 interesting fields
print(math sort[['age', 'failures']].head(n=15))
          failures
     age
247
      22
                  3
                  3
392
      21
                  2
390
      20
      20
                  0
306
376
      20
                  2
                  0
394
      19
310
      19
                  1
340
      19
                  1
                  1
336
      19
                  1
315
      19
314
      19
                  2
                  1
313
      19
      19
                  3
127
311
      19
                  0
307
      19
                  1
```