Problème de soutien Enoncé

LES MATRICES DE RANG 1

Dans tout le problème, \mathbb{R} désigne le corps des réels et n un entier naturel supérieur ou égal à 2. Si $p \in \mathbb{N}^*$, on note $M_{n,p}(\mathbb{R})$ l'espace vectoriel des matrices à coefficients réels, à n lignes et p colonnes ; pour toute matrice A de $M_{n,p}(\mathbb{R})$, tA désigne la matrice transposée de A.

Si p = n, $M_{n,p}(\mathbb{R})$ est noté simplement $M_n(\mathbb{R})$, c'est l'algèbre des matrices carrées d'ordre n à coefficients réels ; la matrice identité de $M_n(\mathbb{R})$ est notée I_n .

Si $A \in M_n(\mathbb{R})$, on note $C_1(A), \ldots, C_n(A)$ les colonnes de A, ce sont des éléments de $M_{n,1}(\mathbb{R})$; par définition, le rang de la matrice A est la dimension du sous-espace vectoriel de $M_{n,1}(\mathbb{R})$ engendré par les vecteurs $C_1(A), \ldots, C_n(A)$. Le rang de A se note $\mathbf{rg}A$, on note aussi $\mathrm{Sp}_{\mathbb{R}}(A)$ l'ensemble des valeurs propres de A appartenant à \mathbb{R} et $\mathrm{Tr}(A)$ sa trace.

Partie I

- 1. Calculer le rang de la matrice $\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.
- 2. Soit $A \in M_n(\mathbb{R})$; on désigne par f_A l'endomorphisme de $M_{n,1}(\mathbb{R})$ canoniquement associé à A. Montrer que

$$\mathbf{rg}A = \dim\left(\mathrm{Im}f_A\right).$$

- 3. Soient U et V deux éléments non nuls de $M_{n,1}(\mathbb{R})$; on note u_1, \ldots, u_n les composantes de U et v_1, \ldots, v_n celles de V. On pose $A = U^t V$.
 - (a) Pour tout couple (i, j) d'éléments de $\{1, \ldots, n\}$, exprimer le coefficient $a_{i,j}$ de la matrice A à l'aide des u_k et des v_k .
 - (b) Que vaut la trace de A?
 - (c) Exprimer les colonnes $C_1(A), \ldots, C_n(A)$, de A, à l'aide de v_1, \ldots, v_n et U.
 - (d) On suppose que $U \neq 0$ et $V \neq 0$; montrer que le rang de A est égal à 1.
- 4. On considère ici une matrice $A \in M_n(\mathbb{R})$ de rang 1.
 - (a) Montrer qu'il existe $i_0 \in \{1, ..., n\}$ tel que $C_{i_0}(A) \neq 0$.
 - (b) Justifier que pour tout $j \in \{1, ..., n\}$, il existe un réel λ_j tel que $C_j(A) = \lambda_j C_{i_0}(A)$.
 - (c) En déduire que $A = X^t Y$ où $X = C_{i_0}(A)$ et Y est un élément non nuls de $M_{n,1}(\mathbb{R})$ à préciser.
 - (d) On suppose que $A = X_0^{t} Y_0$; Trouver tous les couples (X_1, Y_1) d'éléments de $M_{n,1}(\mathbb{R})$ tels que $A = X_1^{t} Y_1$.
- 5. Expliciter les éléments U et V de $M_{4,1}(\mathbb{R})$ tels que $A = U^tV$ où A désigne la matrice carrée d'ordre 4 dont tous les coefficients sont égaux à 1.

Partie II

Soit $A = U^tV$ une matrice de rang 1, où U et V sont deux éléments non nuls de $M_{n,1}(\mathbb{R})$. On pose $\alpha = {}^tVU$ et $W = ({}^tVV)U$.

- 1. Calculer A^2 en fonction du réel α et de A.
- 2. Soit $k \in \mathbb{N}^*$; calculer A^k en fonction du réel α et de A.
- 3. À quelle condition nécessaire et suffisante sur α la matrice A est-elle nilpotente?
- 4. On suppose que A n'est pas nilpotente ; montrer qu'il existe λ , réel non nul, tel que la matrice λA soit celle d'une projection c'est à dire $(\lambda A)^2 = \lambda A$.
- 5. (a) Justifier que 0 est valeur propre de A et montrer que le sous-espace propre associé n'est rien d'autre que $\{Y \in M_{n,1}(\mathbb{R}), \ ^tVY = 0\}$. Quelle est sa dimension?
 - (b) On suppose que $\alpha \neq 0$; calculer le produit AU et en déduire que α est une autre valeur propre de A. Déterminer le sous-espace propre associé et donner sa dimension.

elamdaoui@gmail.com 1 www.elamdaoui.com

Problème de soutien Enoncé

LES MATRICES DE RANG 1

- (c) Préciser selon les valeurs de α le nombre de valeurs propres de A.
- 6. Montrer que si $\alpha \neq 0$, alors la matrice A est diagonalisable dans $M_n(\mathbb{R})$.

 Justifier alors, dans ce cas, que A est semblable dans $M_n(\mathbb{R})$ à la matrice diagonale dont les coefficients diagonaux sont $0, \ldots, 0, \alpha$ pris dans cet ordre.
- 7. On suppose que $\alpha=0$ et on désigne par f l'endomorphisme de $M_{n,1}\left(\mathbb{R}\right)$ canoniquement associé à A.
 - (a) A est-elle diagonalisable dans $M_n(\mathbb{R})$?
 - (b) Montrer que $U \in \text{Ker } f$ et justifier l'existence d'une base de Ker f de la forme (E_1, \dots, E_{n-2}, W) .
 - (c) Montrer que $(E_1, \ldots, E_{n-2}, W, V)$ est une base de $M_{n,1}(\mathbb{R})$ et écrire la matrice de f dans cette base.
 - (d) En déduire que deux matrices de rang 1 et de trace nulle sont semblables dans $M_n(\mathbb{R})$.

Problème de soutien Correction

LES MATRICES DE RANG 1

Partie I

- 1. $A = \begin{pmatrix} 3 & 2 \\ 1 & 6 \end{pmatrix}$. Les deux colonnes de A ne sont pas proportionnelles, donc $\mathbf{rg}A = 2$.
- 2. Notons par $\mathcal{B}=(e_1,\cdots,e_n)$ la base canonique de $M_{n,1}\left(\mathbb{R}\right)$, on sait que $(f_A(e_1)=C_1,\cdots,f_A(e_n)=C_n)$ est une famille géneratrice de $\mathrm{Im} f_A$, d'où dim $\mathrm{Im} f_A=\dim \mathbf{Vect}(C_1,\cdots,C_n)=\mathbf{rg} A$.
- 3. (a) $A = U^t V = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} u_1 v_1 & \cdots & u_1 v_n \\ \vdots & & \vdots \\ u_n v_1 & \cdots & u_n v_n \end{pmatrix}$, donc $a_{i,j} = u_i v_j$
 - (b) $\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} u_i v_i$.
 - (c) Les colonnes de A sont $C_1 = v_1 U, \dots, C_n = v_n U$.
 - (d) les colonnes de A ne sont pas toutes nulles donc, $rgA \ge 1$, d'autre part elles sont toutes proportionnelles à U donc $\mathbf{rg}A = 1$.
- 4. (a) $\mathbf{rg}A \neq 0$, donc au moins une colonnes $C_{i_0} \neq 0$.
 - (b) dim $\mathbf{Vect}(C_1, \dots, C_n) = \mathbf{rg}A = 1$, donc toutes les colonnes sont proportionnelles.
 - (c) Posons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, on a: $a_{i,j}$ est le i éme coéfficient de $C_j = \lambda_j X$, donc $a_{i,j} = \lambda_j x_i$, d'où $A = X^t Y$ avec $Y = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ non nul.
 - (d) $A = X_0^t Y_0 = X_1^t Y_1 \Longrightarrow X_0^t Y_0 Y_0 = X_1^t Y_1 Y_0 \Longrightarrow \alpha X_0 = \beta X_1$ où $\alpha = t Y_0 Y_0$ et $\beta = t Y_1 Y_1$ des réels non nuls, donc $X_1 = \lambda X_0$ et $Y_1 = \lambda Y_0$.
- 5. $\mathbf{rg}A=r\Longrightarrow A$ est semblable à la matrice $J_r=\begin{pmatrix}1&&&&\\&\ddots&&&\\&&1&&\\&&&0&\\&&&&\ddots&\\&&&&0\end{pmatrix},$ donc $\exists P,Q$ inversible telles que

$$A = PJ_rQ$$
, or $J_r = \sum_{i=1}^r E_{i,i}$, avec $\mathbf{rg}E_{i,i} = 1$, donc $A = \sum_{i=1}^r PE_{i,i}Q$ avec $\mathbf{rg}PE_{i,i}Q = 1$.

Partie II

- 1. $A^2 = U^t V U^t V = U \alpha^t V = \alpha U^t V = \alpha A$.
- 2. $A^k = \alpha^{k-1}A$, par récurrence simple.
- 3. A nilpotente si, et seulement si, $\exists p \in \mathbb{N}^* \mid A^p = 0$, or $A^p = \alpha^{p-1}A$ (récurrence simple), la condition necessaire et suffisante pour A soit nilpotente est donc $\alpha = 0$.
- 4. A n'est pas nilpotente donc $\alpha \neq 0$, d'où $(\lambda A)^2 = \lambda^2 A^2 = \lambda^2 \alpha A$. Pour que λA soit un projecteur il faut et il suffit que $(\lambda A)^2 = \lambda A$, donc $\lambda = \frac{1}{\alpha}$.
- 5. (a) $\mathbf{rg}A = 1 \neq n$, donc $A = A 0.I_n$ n'est pas inversible, d'où 0 est une valeur propre dont le sous-espace propore est KerA, avec $Y \in \text{Ker}Asi$, etseulementsi, AY = U $\underbrace{tVY}_{\text{scalaire}} = (^tVY)U = 0si$, etseulementsi, $^tVY = 0$. D'après la formule du rang on a dim KerA = n 1.

elamdaoui@gmail.com 3 www.elamdaoui.com

Problème de soutien Correction

LES MATRICES DE RANG 1

- (b) $AU = U\underbrace{tVU}_{\text{scalaire}} = (^tVU)U = \alpha U$, donc α est une autre valeur propre de A, dont U est un vecteur propre associé. Le sous espace propre associé est $\text{Ker}(A \alpha I_n)$ qui forme avec l'autre sous-espace propre à savoir KerA une somme directe dans $M_{n,1}(\mathbb{R})$, or $\dim \text{Ker}A = n-1$, $\dim M_{n,1}(\mathbb{R}) = n$, donc $\text{Ker}(A \alpha I_n)$ est de dimension 1, engendré par U.
- (c) Les seules valeurs propres de A sont $0,\alpha$. Il y'en a deux si $\alpha \neq 0$ et une seule quand $\alpha = 0$.
- 6. Si $\alpha \neq 0$ les sous-espaces propres de A sont supplementaires dans $M_{n,1}(\mathbb{R})$, donc A est diagonalisable et donc semblable à la matrice $diag(0, \dots, 0, \alpha)$ car dim $\operatorname{Ker} A = n 1$ et dim $\operatorname{Ker} (A \alpha I_n) = 1$.
- 7. (a) A n'est pas diagonalisable, car elle est non nulle et admet 0 comme unique valeur propre.
 - (b) on a d'aprés Partie II, 4,b) $AU = \alpha U = 0$, donc $U \in \text{Ker} f$, donc $W = \lambda U \in \text{Ker} f$, qu'on complète par (E_1, \dots, E_{n-2}) pour avoir (E_1, \dots, E_{n-2}, W) base de Ker f.
 - (c) $\operatorname{Card}\mathcal{B}$ où $\mathcal{B}=\{E_1,\cdots,E_{n-2},U,V\}=n=\dim M_{n,1}\left(\mathbb{R}\right),$ il suffit donc de montrer qu'elle est libre, en effet supposons que $\lambda_1E_1+\cdots+\lambda_{n-2}E_{n-2}+\lambda_{n-1}W+\lambda_nV=0$, on multiplie par A à gauche vu $E_1,\cdots,E_{n-2},W\in\operatorname{Ker} f=\operatorname{Ker} A,$ donc $0=\lambda_nAV=\lambda U$ scalaire non nul

 $\lambda_1 E_1 + \dots + \lambda_{n-2} E_{n-2} + \lambda_{n-1} W = 0$, or la famille (E_1, \dots, E_{n-2}, W) est libre car base de Kerf, donc $\lambda_1 = \dots = \lambda_n = 0$.

on a $f(E_1) = \cdots = f(E_{n-1}) = f(W) = 0$ car (E_1, \dots, E_{n-2}, W) base de Kerf, d'autre part f(V) = AV = t $VVU = W, \text{ donc Mat } (f) = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 1 \\ 0 & & 0 \end{pmatrix} = J \text{ qui est semblable à } A = \text{Mat } (f), \text{ où } \mathcal{B}_0 \text{ la base canonique}$

 $de\ M_{n,1}\left(\mathbb{R}\right)$

(d) D'aprés la question précédente toute matrice de rang 1 est de trace nulle est semblable à J, dont toutes ces matrices sont semblables entre elles.

 $elamdaoui@gmail.com \\ 4 \\ www.elamdaoui.com$