Optimization Lecture 5

Qingfu Zhang

Dept of CS , CityU

2024

Outline

Convex optimization problems

Some standard convex problems

Transforming problems

Convex optimization problems

Optimization problem in standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

- $\mathbf{x} \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- ▶ $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, ..., m$, are the inequality constraint functions
- $ightharpoonup h_i: \mathbf{R}^n o \mathbf{R}$ are the equality constraint functions

why don't consider " < " and " > "?

Feasible and optimal points

- $\mathbf{x} \in \mathbf{R}^n$ is feasible if $x \in \text{dom } f_0$ and it satisfies the constraints
- ▶ optimal value is $p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, ..., m, h_k(x) = 0, k = 1, ..., p \}$
- ▶ $p^* = \infty$ if problem is infeasible
- $ightharpoonup p^* = -\infty$ if problem is unbounded below
- ▶ a feasible x is optimal if $f_0(x) = p^*$
- \triangleright $X_{\rm opt}$: the set of optimal points

Locally optimal points

x is **locally optimal** if there is an R > 0 such that x is optimal for

minimize(over z)
$$f_0(z)$$

subject to $f_i(z) \leq 0, \quad i=1,\ldots,m,$
 $h_i(z)=0, \quad i=1,\ldots,p$
 $\|z-x\|_2 \leq R$

Examples

examples with n = 1, m = p = 0

- $f_0(x) = 1/x$, dom $f_0 = \mathbf{R}_{++} : p^* = 0$, no optimal point
- $f_0(x) = -\log x$, dom $f_0 = \mathbf{R}_{++} : p^* = -\infty$
- ▶ $f_0(x) = x \log x$, dom $f_0 = \mathbf{R}_{++} : p^* = -1/e, x = 1/e$ is optimal
- $f_0(x) = x^3 3x : p^* = -\infty, x = 1$ is locally optimal

$$f_0(x) = 1/x$$
 $f_0(x) = -\log x$ $f_0(x) = x \log x$ $f_0(x) = x^3 - 3x$

Implicit and explicit constraints

standard form optimization problem has implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$$

- ightharpoonup we call ${\cal D}$ the domain of the problem
- ▶ the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are the explicit constraints
- ▶ a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log \left(b_i - a_i^T x\right)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$.

Feasibility problem

find
$$x$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

 $h_i(x) = 0, \quad i = 1, \dots, p$

- $ightharpoonup p^* = 0$ if constraints are feasible; any feasible x is optimal.
- $p^* = \infty$ if constraints are infeasible.

Standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- \triangleright objective and inequality constraints f_0, f_1, \dots, f_m are convex
- ightharpoonup equality constraints are affine, often written as Ax = b
- feasible and optimal sets of a convex optimization problem are convex
- ▶ problem is quasiconvex if f_0 is quasiconvex, f_1, \ldots, f_m are convex, h_1, \ldots, h_p are affine

Example

standard form problem

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1 / (1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- ▶ f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (by our definition) since f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

Any locally optimal point of a convex problem is (globally) optimal

- ▶ suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$
- ightharpoonup x locally optimal means there is an R > 0 such that

$$z$$
 feasible, $||z-x||_2 \le R \implies f_0(z) \ge f_0(x)$

- consider $z = \theta y + (1 \theta)x$ with $\theta = R/(2||y x||_2)$
- $\|y x\|_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- ▶ $||z x||_2 = R/2$ and $f_0(z) \le \theta f_0(y) + (1 \theta)f_0(x) < f_0(x)$, which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal for a convex problem if and only if it is feasible and

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all feasible y

How to prove it?

▶ if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x.

Examples:

- unconstrained problem (no implicit nor explicit): x minimizes $f_0(x)$ if and only if $\nabla f_0(x) = 0$
- \triangleright equality constrained problem: x minimizes $f_0(x)$ subject to Ax = b if and only if there exists a v such that

$$Ax = b$$
, $\nabla f_0(x) + A^T v = 0$

ightharpoonup minimization over nonnegative orthant: x minimizes $f_0(x)$ over \mathbf{R}_{+}^{n} if and only if

$$x \ge 0,$$

$$\begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Some standard convex problems

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- ▶ feasible set is a polyhedron

Example: Diet problem

- \triangleright Choose nonnegative quantities x_1, \ldots, x_n of n foods
- \triangleright one unit of food j costs c_i and contains amount A_{ii} of nutrient i
- healthy diet requires nutrient i in quantity at least bi
- to find cheapest healthy diet, solve:

minimize
$$c^T x$$

subject to $Ax \ge b$, $x \ge 0$.

express in standard LP form as

minimize
$$c^T x$$

subject to $\begin{bmatrix} -A \\ -I \end{bmatrix} x \le \begin{bmatrix} -b \\ 0 \end{bmatrix}$

Example: Piecewise-linear minimization

- ▶ minimize convex piecewise-linear function $f_0(x) = \max_{i=1,...,m} (a_i^T x + b_i), x \in \mathbb{R}^n$
- equivalent to LP

minimize
$$t$$
 subject to $a_i^T x + b_i \le t$, $i = 1, ..., m$

with variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$

Example: Chebyshev center of a polyhedron

Chebyshev center of $\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$ is center of largest inscribed ball $\mathcal{B} = \{x_c + u \mid ||u||_2 \leq r\}$

 $ightharpoonup a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup \left\{ a_i^T (x_c + u) \mid ||u||_2 \le r \right\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

lacksquare x_c, r can be determined by solving LP with variables x_c, r maximize r subject to $a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i = 1, \ldots, m$

Quadratic program (QP)

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \le h$
 $Ax = b$

- ▶ $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Example: Least squares

- least squares problem: minimize $||Ax b||_2^2$
- ▶ analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g.,
- \triangleright $x \ge 0$ (nonnegative least squares)
- ▶ $x_1 \le x_2 \le \cdots \le x_n$ (isotonic regression)

Example: Linear program with random cost

- ▶ LP with random cost c, with mean \bar{c} and covariance Σ
- ▶ hence, LP objective $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- risk-averse problem:

minimize
$$\mathbf{E}c^Tx + \gamma \operatorname{var}\left(c^Tx\right)$$

subject to $Gx \leq h$, $Ax = b$

- $ightharpoonup \gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)
- express as QP

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \le h$, $Ax = b$

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x + q_0^Tx + r_0$$

subject to $(1/2)x^TP_ix + q_i^Tx + r_i \le 0, \quad i = 1, ..., m$
 $Ax = b$

- ▶ $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- ▶ if $P_1, ..., P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i$, $i = 1, ..., m$
 $Fx = g$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

inequalities are called second-order cone (SOC) constraints:

$$\left(A_i x + b_i, c_i^{\mathsf{T}} x + d_i\right) \in \text{ second-order cone in } \mathbf{R}^{n_i + 1}$$

- ▶ for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Example: Robust linear programming

suppose constraint vectors a; are uncertain in the LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$

two common approaches to handling uncertainty

 \blacktriangleright deterministic worst-case: constraints must hold for all $a_i \in \mathcal{E}_i$ (uncertainty ellipsoids)

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, ..., m$

stochastic: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to prob $(a_i^T x \le b_i) \ge \eta$, $i = 1, ..., m$

Deterministic worst-case approach

- ▶ uncertainty ellipsoids are $\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \leq 1\}, (\bar{a}_i \in \mathbf{R}^n, P_i \in \mathbf{R}^{n \times n})$
- ▶ center of \mathcal{E}_i is \bar{a}_i ; semi-axes determined by singular values/vectors of P_i
- robust LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

equivalent to SOCP

minimize
$$c^T x$$
 subject to $\bar{a}_i^T x + \left\| P_i^T x \right\|_2 \le b_i$, $i = 1, \dots, m$ (follows from $\sup_{\|u\|_2 \le 1} \left(\bar{a}_i + P_i u \right)^T x = \bar{a}_i^T x + \left\| P_i^T x \right\|_2$)

Stochastic approach

- ightharpoonup assume $a_i \sim \mathcal{N}\left(\bar{a}_i, \Sigma_i\right)$
- $ightharpoonup a_i^T x \sim \mathcal{N}\left(\bar{a}_i^T x, x^T \Sigma_i x\right)$, so

$$\operatorname{prob}\left(a_{i}^{T}x \leq b_{i}\right) = \Phi\left(\frac{b_{i} - \overline{a}_{i}^{T}x}{\left\|\Sigma_{i}^{1/2}x\right\|_{2}}\right)$$

where $\Phi(u)=(1/\sqrt{2\pi})\int_{-\infty}^u e^{-t^2/2}dt$ is $\mathcal{N}(0,1)$ CDF

- ▶ **prob** $(a_i^T x \le b_i) \ge \eta$ can be expressed as $\bar{a}_i^T x + \Phi^{-1}(\eta) \left\| \Sigma_i^{1/2} x \right\|_2 \le b_i$
- for $\eta \ge 1/2$, robust LP equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \left\| \Sigma_i^{1/2} x \right\|_2 \le b_i, \quad i = 1, \dots, m$

Conic form problem

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

- ▶ constraint $Fx + g \leq_K 0$ involves a generalized inequality with respect to a proper cone K
- linear programming is a conic form problem with $K = \mathbf{R}_+^m$
- as with standard convex problem
- feasible and optimal sets are convex
- ► any local optimum is global

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \cdots + x_n F_n + G \le 0$
 $Ax = b$

with $F_i, G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- ▶ includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \quad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single ${
m LMI}$

$$x_1 \left[\begin{array}{cc} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{array} \right] + x_2 \left[\begin{array}{cc} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{array} \right] + \dots + x_n \left[\begin{array}{cc} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{array} \right] + \left[\begin{array}{cc} \hat{G} & 0 \\ 0 & \tilde{G} \end{array} \right] \leq 0$$

Example: Matrix norm minimization

minimize
$$||A(x)||_2 = \left(\lambda_{\text{max}}\left(A(x)^T A(x)\right)\right)^{1/2}$$

where $A(x)=A_0+x_1A_1+\cdots+x_nA_n$ (with given $A_i\in\mathbf{R}^{p\times q}$) equivalent SDP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} t\mathcal{I} & A(x) \\ A(x)^T & t\mathcal{I} \end{array} \right] \geq 0 \end{array}$$

variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$ constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 \mathcal{I}, \quad t \ge 0$$
$$\iff \begin{bmatrix} t\mathcal{I} & A \\ A^T & t\mathcal{I} \end{bmatrix} \ge 0$$

Transforming problems

Change of variables

- $lackbox{}\phi: \mathbf{R}^n
 ightarrow \mathbf{R}^n$ is one-to-one with $\phi(\mathbf{dom}\phi) \supseteq \mathcal{D}$
- consider (possibly non-convex) problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- change variables to z with $x = \phi(z)$
- can solve equivalent problem

$$\begin{array}{ll} \text{minimize} & \tilde{f}_0(z) \\ \text{subject to} & \tilde{f}_i(z) \leq 0, \quad i=1,\ldots,m \\ & \tilde{h}_i(z) = 0, \quad i=1,\ldots,p \end{array}$$

where
$$\tilde{f}_i(z) = f_i(\phi(z))$$
 and $\tilde{h}_i(z) = h_i(\phi(z))$

recover original optimal point as $x^* = \phi(z^*)$

Example

non-convex problem

minimize
$$x_1/x_2 + x_3/x_1$$

subject to $x_2/x_3 + x_1 \le 1$
 $x > 0$

• change variables using $x = \phi(z) = \exp z$ to get

minimize
$$\exp(z_1 - z_2) + \exp(z_3 - z_1)$$

subject to $\exp(z_2 - z_3) + \exp(z_1) \le 1$

which is convex.

Transformation of objective and constraint functions

suppose

- \blacktriangleright ϕ_0 is monotone increasing
- $\psi_i(u) \leq 0$ if and only if $u \leq 0, i = 1, ..., m$
- $ightharpoonup \varphi_i(u) = 0$ if and only if $u = 0, i = 1, \dots, p$

standard form optimization problem is equivalent to

minimize
$$\phi_0\left(f_0(x)\right)$$

subject to $\psi_i\left(f_i(x)\right) \leq 0, \quad i=1,\ldots,m$
 $\varphi_i\left(h_i(x)\right) = 0, \quad i=1,\ldots,p$

example: minimizing $\|Ax - b\|$ is equivalent to minimizing $\|Ax - b\|^2$

Converting maximization to minimization

- suppose ϕ_0 is monotone decreasing
- the maximization problem

maximize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

is equivalent to the minimization problem

minimize
$$\phi_0\left(f_0(x)\right)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

examples:

- $\phi_0(u) = -u$ transforms maximizing a concave function to minimizing a convex function
- $\phi_0(u) = 1/u$ transforms maximizing a concave positive function to minimizing a convex function

Eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize(over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some z

Introducing equality constraints

```
minimize f_0\left(A_0x+b_0\right)

subject to f_i\left(A_ix+b_i\right)\leq 0, \quad i=1,\ldots,m

is equivalent to

minimize ( over x,y_i) f_0\left(y_0\right)

subject to f_i\left(y_i\right)\leq 0, \quad i=1,\ldots,m

y_i=A_ix+b_i, \quad i=0,1,\ldots,m
```

Introducing slack variables for linear inequalities

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$$
 is equivalent to

minimize(over
$$x, s$$
) $f_0(x)$
subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$
 $s_i \ge 0, \quad i = 1, \dots m$

Epigraph form

standard form convex problem is equivalent to

minimize(over
$$x,t$$
) t subject to $f_0(x)-t \leq 0$ $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

Minimizing over some variables

$$\begin{array}{ll} & \text{minimize} & f_0\left(x_1,x_2\right) \\ & \text{subject to} & f_i\left(x_1\right) \leq 0, \quad i=1,\ldots,m \end{array}$$
 is equivalent to
$$\begin{array}{ll} & \text{minimize} & \tilde{f}_0\left(x_1\right) \\ & \text{subject to} & f_i\left(x_1\right) \leq 0, \quad i=1,\ldots,m \end{array}$$
 where $\tilde{f}_0\left(x_1\right) = \inf_{x_2} f_0\left(x_1,x_2\right)$