Semaine IMT Grand-Est

Introduction à l'apprentissage automatique, la science de l'intelligence artificielle

Séance 3

Théorie statistique de la décision et applications

Frédéric Sur

https://members.loria.fr/FSur/enseignement/IMT_GE/

1/22

Classification supervisée

Aujourd'hui : classification supervisée **Cadre** : théorie statistique de la décision

Plan

- Classification et décision
 - Éléments de théorie statistique de la décision
 - Le « meilleur » classifieur : classifieur de Bayes
 - Classifieur naïf de Bayes
- 2 Mise en œuvre du classifieur de Bayes
 - Classification aux plus proches voisins
 - Régression logistique
- Conclusion

2/2

Bibliographie

Source principale (& illustrations sauf mention contraire) :

- C. Bishop, Pattern Recognition and Machine Learning, Springer 2006
- ightarrow dans toutes les bonnes médiathèques

Notations

K classes : C_1, C_2, \ldots, C_K

classes = partition de l'ensemble des observations possibles

Exemple : $C_1 = 1$, $C_2 = 2$, ..., $C_{10} = 0$

N observations (base d'apprentissage) : $x_1, \ldots, x_N \in \mathbb{R}^d$

Exemple : $x \in \mathbb{R}^{256}$ = vecteur des niveaux de gris d'une imagette 16×16 on connaît la classe d'appartenance de chaque $x_i : y_i \ (= \mathcal{C}_1, \mathcal{C}_2, \dots)$

Question du jour : prédiction de la classe d'une nouvelle observation *x* ?

Soit f un classifieur : $f(x) = C_1$ ou $f(x) = C_2$, etc.

 \rightarrow une fonction sur l'ensemble des entrées possibles qui prédit la classe d'appartenance

Problème : le classifieur peut faire des erreurs

Exemple : $f(x) = \mathcal{C}_1$ alors que $y = \mathcal{C}_2$

5/22

Erreur de classification

Pour simplifier, K = 2 dans la suite

Le classifieur f définit une partition de l'ensemble des observations possibles en régions \mathcal{R}_i telles que :

$$\mathcal{R}_i = \{x, f(x) = \mathcal{C}_i\}$$

Problème : les partitions (C_i) et (R_i) ne coïncident pas (à cause des erreurs de classification)

Proposition : calcul de la proportion moyenne d'erreur théorique

$$E_{\text{err}} = E_{X,Y} \left(1_{f(x) \neq y} \right) = \iint 1_{f(x) \neq y} p(x,y) dx dy$$

$$= \int 1_{f(x) \neq \mathcal{C}_1} p(x,\mathcal{C}_1) dx + \int 1_{f(x) \neq \mathcal{C}_2} p(x,\mathcal{C}_2) dx$$

$$= \int_{\mathcal{R}_2} p(x,\mathcal{C}_1) dx + \int_{\mathcal{R}_1} p(x,\mathcal{C}_2) dx$$

Question: existe-t-il un classifieur f minimisant E_{err} ?

Formalisation probabiliste

Probabilités :

- $p(C_k)$ probabilité a priori (prior), $\sum_k p(C_k) = 1$ \rightarrow ce qu'on suppose sans connaître d'observations Exemple OCR : p(a) = 0.07, p(b) = 0.01, p(c) = 0.03...
- $p(x|\mathcal{C}_k)$ proba. conditionnelle (en fait, densité vraisemblance) \rightarrow probabilité pour qu'une obs. tirée dans la classe \mathcal{C}_k vaille x Exemple : $p(x|\mathcal{C}_k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)}$
- $p(C_k|x)$ probabilité (vraisemblance) a posteriori \rightarrow probabilité de la classe C_k étant donnée l'observation x

Théorème de Bayes :

$$\forall 1 \leq k \leq K, \ p(\mathcal{C}_k|x) = \frac{p(x|\mathcal{C}_k)p(\mathcal{C}_k)}{p(x)}$$
 et $p(x) = \sum_{k=1}^K p(x,\mathcal{C}_k) = \sum_{k=1}^K p(x|\mathcal{C}_k)p(\mathcal{C}_k)$

6/2

Minimisation de l'erreur moyenne

$$E_{\text{err}} = \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) dx + \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) dx$$

Illustration: $x \in \mathbb{R}$, $\mathcal{R}_1 = \{x \in \mathbb{R}, x < \hat{x}\}$, $\mathcal{R}_2 = \{x \in \mathbb{R}, x > \hat{x}\}$

Question : comment fixer \hat{x} de manière à minimiser E_{err} ?

 $E_{\rm err} = {\rm rouge} + {\rm vert} + {\rm bleu}$

Or vert + bleu = Cste

lorsque \hat{x} varie

 \rightarrow minimum atteint pour $\hat{x} = x_0$.

Classifieur de Bayes

(ce raisonnement se généralise à $x \in \mathbb{R}^d$, et $\mathcal{R}_i \neq \text{intervalles}$)

Conséquence : la règle de classification minimisant l'erreur moyenne est

$$f(x) = \operatorname{argmax}_{\mathcal{C}_k} p(x, \mathcal{C}_k) = \operatorname{argmax}_{\mathcal{C}_k} p(x) p(\mathcal{C}_k | x)$$

Classifieur de Bayes - maximum a posteriori (MAP)

$$f(x) = \operatorname{argmax}_{\mathcal{C}_k} p(\mathcal{C}_k|x) = \operatorname{argmax}_{\mathcal{C}_k} p(\mathcal{C}_k) p(x|\mathcal{C}_k)$$

ou, dans le cas biclasse :

$$f(x) = C_1$$
 ssi $\frac{p(x|C_1)}{p(x|C_2)} > \frac{p(C_2)}{p(C_1)}$

(cf test du rapport des vraisemblances)

9/22

En pratique? (2)

 $p(x|\mathcal{C}_k)$: toute une partie de l'apprentissage non-supervisé concerne l'estimation de densités de probabilité

si $x \in \mathbb{R}^d$ avec $d \ll \text{grand} \gg$: attention, curse of dimensionality!

Expérience :

estimation matrice de covariance

N observations x_n i.i.d. $\mathcal{N}_d(0, \Sigma)$

$$\widehat{\Sigma} = \frac{1}{N-1} \sum_{n=1}^{N} x_n x_n^T$$

$$||\Sigma - \widehat{\Sigma}||^2_{\mathsf{NFn}} = rac{1}{d} \sum_{i=1}^d \lambda_i^2$$

où λ_i v.p. de $\Sigma - \widehat{\Sigma}$

ightarrow en pratique, on a intérêt à réduire la dimension d...

En pratique? (1)

Problème : comment estimer $p(C_k)$ et $p(x|C_k)$ à partir du jeu de données disponible (ensemble d'observations classifiées)?

 $p(C_k)$:

• information connue a priori exemple : OCR

• ou fréquence estimée à partir de la base d'observations exemple : $p(C_k) = \frac{\#\{x_i \in C_k, \ 1 \le i \le N\}}{N}$ où # désigne le cardinal d'un ensemble

• ou, dans le cas où les $p(C_k)$ sont égaux : le classifieur de Bayes se simplifie en $f(x) = \operatorname{argmax}_k p(x|C_k)$ \rightarrow règle du maximum de vraisemblance (ML)

10/22

Classifieur naïf de Bayes

Une manière de battre la malédiction de la dimensionnalité...

Si $x=(x^1,x^2,\ldots,x^d)\in\mathbb{R}^d$, on suppose les composantes (conditionnellement) statistiquement indépendantes

Donc:
$$p(x|C_k) = \prod_{i=1}^d p(x^i|C_k)$$

Gros avantage: plutôt qu'estimer la distribution $p(x|C_k)$ sur \mathbb{R}^d , on estime les d distributions $p(x^i|C_k)$ sur \mathbb{R} .

Classifieur naïf de Bayes

$$f(x) = \operatorname{argmax}_{C_k} p(C_k) \prod_{i=1}^d p(x^i | C_k)$$

Exemple: classifieur naïf Gaussien

- \rightarrow on suppose les distributions $p(x^i|\mathcal{C}_k)$ gaussiennes
- \rightarrow deux paramètres : μ_k, σ_k

Plan

- Classification et décision
 - Éléments de théorie statistique de la décision
 - Le « meilleur » classifieur : classifieur de Bayes
 - Classifieur naïf de Bayes
- 2 Mise en œuvre du classifieur de Bayes
 - Classification aux plus proches voisins
 - Régression logistique
- 3 Conclusion

13/22

Classification aux P plus proches voisins

Base de données : N observations $x_1, ..., x_N$ et classes associées parmi $C_1, ..., C_K$.

 \rightarrow N_1 observations dans C_1, \ldots, N_K dans C_K , t.q. $\sum_k N_k = N$

Problème : étant donnée une nouvelle observation x, comment prédire sa classe?

Parmi les P p.p.v. de $x: P_1$ dans C_1, \ldots, P_K dans C_K $(\sum_k P_k = P)$ Par estimation aux P-p.p.v. $: p(x|C_k) = \frac{P_k}{N_k V_D(x)}$

De plus : $p(C_k) = \frac{N_k}{N}$

Classifieur MAP:

 $\operatorname{argmax}_k p(\mathcal{C}_k) p(x|\mathcal{C}_k) = \operatorname{argmax}_k P_k / (NV_P(x)) = \operatorname{argmax}_k P_k$

Définition: le *classifieur aux P-p.p.v.* affecte une nouvelle observation à la classe majoritaire parmi les P observations les plus proches

→ implémente le classifieur de Bayes sous hypothèses (très) simplificatrices

Estimateur de distribution aux plus proches voisins

On va chercher à estimer $\phi(x_0) = p(x_0|\mathcal{C}_k)...$

Pour estimer $\phi(x_0)$, on considère une boule B_{x_0} centrée en x_0 , contenant P échantillons de \mathcal{C} parmi $M = \#\mathcal{C}$:

•
$$\int_{B} \phi(x) dx \simeq \frac{P}{M}$$
 (par la loi des grands nombres)

• et
$$\int_{B} \phi(x) dx \simeq \phi(x_0) \times Volume(B_{x_0})$$
 (si ϕ constant sur B_{x_0})

Donc:
$$\frac{P}{M} \simeq \int_{B} \phi(x) dx \simeq \phi(x_0) \times Volume(B_{x_0})$$

D'où l'estimateur des P plus proches voisins :

$$\phi(x) = \frac{P}{M \, V_P(x)}$$

où $V_P(x)$: volume d'une boule contenant les P p.p.v.

- \rightarrow hypothèse ϕ constant sur B, donc il faudrait une boule « pas trop grosse » (malédiction dimensionnalité?)
- → en fait, utilisé pour la classification supervisée. . .

14/22

Exemple

By Agor153 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24350617

La régression logistique

Dans le cas bi-classe :

$$p(C_1|x) = \frac{p(C_1)p(x|C_1)}{p(C_1)p(x|C_1) + p(C_2)p(x|C_2)} = \frac{1}{1 + \frac{p(C_2)p(x|C_2)}{p(C_1)p(x|C_1)}}$$

Avec
$$f(x) = \log\left(\frac{p(x|\mathcal{C}_2)}{p(x|\mathcal{C}_1)}\right) + \log\left(\frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}\right) : p(\mathcal{C}_1|x) = \frac{1}{1 + e^{-f(x)}}$$

Définition : fonction logistique (ou sigmoïde) : $\sigma(t) = \frac{1}{1+e^{-t}}$

Hypothèse simplificatrice : $f(x) = \beta_0 + \beta_1 \cdot x$

- → c'est aussi une manière de contrer la malédiction de la dimensionnalité, en réduisant le nombre de paramètres à estimer
- \rightarrow si on sait estimer β_0 et β_1 , le classifieur de Bayes devient : classifieur de la régression logistique :

x dans C_1 ssi $p(C_1|x) > 1/2 \iff f(x) > 0$

(séparation des deux classes par un hyperplan)

17/22

Illustration

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.

Illustration: C. Bishop, Pattern Recognition and Machine Learning, Springer 2006

→ on reviendra sur cette propriété en séance 4

Régression logistique et estimation des paramètres

Hypothèse simplificatrice : $f(x) = \beta_0 + \beta_1 \cdot x$

Remarque: cas de classes gaussiennes de même variance $\frac{1}{2} \left(\frac{1}{2}(x-y_0)^T \sum_{n=1}^{\infty} (x-y_n)^T \sum_{$

si
$$p(x|C_k) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}(x-\mu_k)^T\Sigma^{-1}(x-\mu_k)},$$

$$f(x) = -\frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1) + \frac{1}{2}(x - \mu_2)^T \Sigma^{-1}(x - \mu_2) + \log\left(\frac{\rho(\mathcal{C}_1)}{\rho(\mathcal{C}_2)}\right)$$

 \rightarrow d'où $f(x) = \beta_0 + \beta_1 \cdot x$ avec :

$$\beta_0 = \frac{1}{2} \mu_2^T \Sigma^{-1} \mu_2 - \frac{1}{2} \mu_1^T \Sigma^{-1} \mu_1 + \log \left(\frac{p(C_1)}{p(C_2)} \right)$$

$$\beta_1 = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2)$$

Estimation de (β_0, β_1) :

maximisation de la log-vraisemblance conditionnelle

$$egin{aligned} \ell_{(x_i,y_i)_{1 \leq i \leq N}}(eta_0,eta_1) &= \log \prod_{i=1}^n \Bigl((p(\mathcal{C}_1|x_i))^{y_i} ig(1-p(\mathcal{C}_1|x_i)ig)^{1-y_i} \Bigr) \ &= \sum_{i=1}^n \Bigl(-(1-y_i)(eta_0+eta_1x_i) - \log(1+\exp(eta_0+eta_1x_i)) \Bigr) \end{aligned}$$

avec **ici**: $y_i = 1 \leftrightarrow x_i \in \mathcal{C}_1$, $y_i = 0 \leftrightarrow x_i \in \mathcal{C}_2$, $p(\mathcal{C}_2|x_i) = 1 - p(\mathcal{C}_1|x_i)$

→ fonction **concave**, donc maximum unique

Plan

- Classification et décision
 - Éléments de théorie statistique de la décision
 - Le « meilleur » classifieur : classifieur de Bayes
 - Classifieur naïf de Bayes
- 2 Mise en œuvre du classifieur de Bayes
 - Classification aux plus proches voisins
 - Régression logistique
- 3 Conclusion

Fonction discriminante

Notion de fonction discriminante :

$$f_k$$
 tel que $f(x) = \operatorname{argmax}_k f_k(x)$

• MAP (classifieur de Bayes, théoriquement optimal) :

$$f(x) = \operatorname{argmax}_k p(C_k|x) = \operatorname{argmax}_k p(C_k) p(x|C_k)$$

Problème : on ne connaît pas les distributions de probabilité → on ajoute des hypothèses : classifieur naïf de Bayes, régression logistique, *k*-p.p.v....

 Cours suivants : autres hypothèses, autres fonctions discriminantes

Conclusion - Résumé

Théorie statistique de la décision, et mise en œuvre :

- le classifieur bayésien (MAP) minimise l'erreur moyenne de classification (classifieur **idéal**)
- simplification si *prior* uniformes : classification au maximum de vraisemblance (ML)
- ullet simplification si composantes indépendantes pour $x \in \mathbb{R}^d$: classifieur na if de Bayes
- simplification si $p(\mathcal{C}_1|x) = \sigma(\beta_0 + \beta_1 \cdot x)$: régression logistique
- simplification si $p(x|C_1)$ ne varie pas trop et suffisamment d'observations : classification aux K plus proches voisins

21/22