Math 243 Analysis Assignment 5

Jonathan Pearce, 260672004

February 14, 2017

Problem 1a. Suppose $x_1 \in [0,1]$ such that $x_1 \in (\frac{1}{n+1},\frac{1}{n}]$, therefore $f(x_1) = \frac{1}{n}$. Take $x_2 \in [0,1]$ such that $x_2 > x_1$. There are two cases. The first being that $x_2 \in (\frac{1}{n+1},\frac{1}{n}]$ and therefore $f(x_2) = \frac{1}{n} = f(x_1)$. The second case is that $x_2 \in (\frac{1}{n},\frac{1}{n-1}]$ and therefore $f(x_2) = \frac{1}{n-1} > f(x_1)$. This proves that $f(x_2) \geq f(x_1)$ and thus f is increasing on [0,1]. Therefore f is Riemann Integrable on [0,1].

Problem 1b. Let $\epsilon > 0$.

$$(f-g)(x) = \begin{cases} \frac{1}{n}, & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0, & \text{elsewhere} \end{cases}$$

Define α and ω on the interval [0,1] as follows,

$$\alpha(x) = 0$$

$$\omega(x) = \begin{cases} 1, & \text{if } x \in [0, \epsilon] \\ (f - g)(x), & \text{if } x \in (\epsilon, 1] \end{cases}$$

Note that $\alpha \leq f \leq \omega \ \forall x \in [0,1]$ and α is a step function and therefore Riemann Integrable.

$$\int_0^1 \alpha = 0 * 1 = 0$$

 ω is a function of two parts, the first being when $\omega=1$ for $x\in[0,\epsilon]$, therefore the first section of ω is Riemann Integrable. The second part is when $\omega=f-g$ for $x\in(\epsilon,1]$. By the Archimedean Property there is $N\in\mathbb{N}$ such that $\frac{1}{N}<e$. Therefore there are a finite number of points where $x=\frac{1}{n}$ and $1\leq n\leq N$. In other words the second part of ω is constant at 0 except for finitely many points where $x=\frac{1}{n}$, therefore this section of the function is Riemann Integrable and its integral is equal to that of a function that is constantly equal to 0. By the additivity property of Riemann Integrals ω is Riemann Integrable on [0,1] and,

$$\int_0^1 \omega = \int_0^{\epsilon} \omega + \int_{\epsilon}^1 \omega = 1 * \epsilon + 0 * (1 - \epsilon) = \epsilon$$

Therefore,

$$\int_0^1 \omega - \alpha = \int_0^1 \omega - \int_0^1 \alpha = \epsilon - 0 = \epsilon$$

We conclude that f - g is Riemann Integrable on [0,1]. Next for all $\epsilon > 0$,

$$0 \le \int_0^1 f - g \le \epsilon$$

$$\implies \int_0^1 f - g = \int_0^1 f - \int_0^1 g = 0$$

$$\implies \int_0^1 f = \int_0^1 g$$

We conclude that g is Riemann Integrable.

Problem 2a. There are 5 cases to consider:

Case a < 0, b < 0: g is constant at -1 on [a, b]. Therefore g is Riemann Integrable.

Case a < 0, b = 0: g is constant at -1 on [a, b] except for finitely many points. Therefore g is Riemann Integrable.

Case a > 0, b > 0: g is constant at 1 on [a, b]. Therefore g is Riemann Integrable.

Case a = 0, b > 0: g is constant at 1 on [a, b] except for finitely many points. Therefore g is Riemann Integrable.

Case a < 0, b > 0: Divide the interval [a, b] into two subintervals $I_1 = [a, 0]$ and $I_2 = (0, b)$. Consider g on I_1 , this is simply case 2. Similarly consider g on I_2 , this is a situation that is equivalent to case 3. By the additivity theorem, g is Riemann Integrable on $I_1 \cup I_2 = [a, b]$. Therefore g is Riemann integrable on any interval [a, b] with a < b.

Problem 2b. Let \mathcal{P} be any partition of [0,1] and let $\epsilon = \frac{1}{2}$

Consider the tagged partition $\dot{\mathcal{P}}_1 = \{t_1, t_2, ..., t_n\}$ such that $t_i \in \mathbb{R} \setminus \mathbb{Q} \ \forall 1 \leq i \leq n$ and $||\dot{\mathcal{P}}_1|| < \delta$. Then since t_i is irrational.

$$S(g \circ f; \dot{\mathcal{P}}_1) = \sum_{i=1}^n g(f(t_i))(x_i - x_{i-1}) = \sum_{i=1}^n g(0)(x_i - x_{i-1}) = \sum_{i=1}^n 0 \cdot (x_i - x_{i-1})$$

$$\implies S(g \circ f; \dot{\mathcal{P}}_1) = 0$$

Now consider the tagged partition $\dot{\mathcal{P}}_2 = \{s_1, s_2, ..., s_n\}$ such that $s_i \in \mathbb{Q} \ \forall 1 \leq i \leq n$ and $||\dot{\mathcal{P}}_2|| < \delta$. Then since s_i is rational $\exists q \in \mathbb{N}$ such that,

$$S(g \circ f; \dot{\mathcal{P}}_2) = \sum_{i=1}^n g(f(s_i))(x_i - x_{i-1}) = \sum_{i=1}^n g(\frac{1}{q})(x_i - x_{i-1}) = \sum_{i=1}^n 1 \cdot (x_i - x_{i-1}) = x_n - x_0$$

$$\implies S(g \circ f; \dot{\mathcal{P}}_2) = 1$$

$$|S(g \circ f; \dot{\mathcal{P}}_1) - S(g \circ f; \dot{\mathcal{P}}_2)| = 1 > \epsilon$$

Therefore by the Cauchy Criterion $q \circ f$ is not Riemann Integrable.