Week5_Assignment

February 20, 2024

```
[1]: import pandas as pd
from pycaret.classification import setup, compare_models, predict_model,
save_model, load_model
import pickle
from IPython.display import Code
```

0.1 Load data

```
[3]: df = pd.read_csv("prepped_churn_data.csv") df
```

[3]:		tenure	MonthlyCharges	TotalCharges	Churn	MonthlyCharges_log	\
	0	1	29.85	29.85	0	3.396185	
	1	34	56.95	1889.50	0	4.042174	
	2	2	53.85	108.15	1	3.986202	
	3	45	42.30	1840.75	0	3.744787	
	4	2	70.70	151.65	1	4.258446	
			•••			•••	
	7027	24	84.80	1990.50	0	4.440296	
	7028	72	103.20	7362.90	0	4.636669	
	7029	11	29.60	346.45	0	3.387774	
	7030	4	74.40	306.60	1	4.309456	
	7031	66	105.65	6844.50	0	4.660132	
		TotalCh	.arges_Tenure_Rat	io MonthlyCha	rges_to	_TotalCharges_Ratio	\
	0		29.85000	00		1.000000	
	1		55.57352	29		0.030140	
	2		54.07500	00		0.497920	
	3		40.9055	56		0.022980	
	4		75.82500	00		0.466205	
	•••		•••			•••	
	7027		82.93750	00		0.042602	
	7028		102.26250	00		0.014016	
	7029		31.4954	55		0.085438	
	7030		76.65000	00		0.242661	
	7031		103.70454	45		0.015436	

Bank transfer (automatic) Credit card (automatic) Electronic check \

0	0	0	0
1	0	0	1
2	0	0	1
3	1	0	1
4	0	0	0
•••	***	***	•
7027	0	0	1
	0	0 1	1 1
7027	0 0 0	0 1 0	1 1 0
7027 7028	0 0 0 0	0 1 0 0	1 1 0 1

	Mailed check	Month-to-month	One year	Two year
0	0	0	0	0
1	1	1	1	0
2	1	0	0	0
3	0	1	1	0
4	0	0	0	0
•••	•••	•••		
7027	1	1	1	0
7028	0	1	1	0
7029	0	0	0	0
7030	1	0	0	0
7031	0	1	0	1

[7032 rows x 14 columns]

0.2 initialize auto ML environment

[4]: automl_setup = setup(df, target='Churn')

<pandas.io.formats.style.Styler at 0x7f263f095710>

The output summarizes the setup information for the PyCaret auto ML environment.

Session id: 7041 - A unique identifier for the PyCaret session.

Target: Churn - The target variable for the classification task is Churn.

Target type: Binary - The target variable is binary, indicating a binary classification task (Churn or no Churn).

Original data shape: (7032, 14) - The original dataset has 7032 rows and 14 columns.

Transformed data shape: (7032, 14) - The transformed dataset after preprocessing remains the same size as the original dataset.

Transformed train set shape: (4922, 14) - The training set after preprocessing contains 4922 samples.

Transformed test set shape: (2110, 14) - The test set after preprocessing contains 2110 samples.

Numeric features: 13 - There are 13 numeric features in the dataset.

Preprocess: True - The data has been preprocessed.

Imputation type: simple - Simple imputation method has been used for handling missing values.

Numeric imputation: mean - Mean imputation has been applied to numeric features.

Categorical imputation: mode - Mode imputation has been applied to categorical features.

Fold Generator: StratifiedKFold - Stratified K-Fold cross-validation is used during model training.

Number: 10 - 10 folds are used in cross-validation.

CPU Jobs: -1 - The number of CPU jobs is set to -1, allowing PyCaret to utilize all available CPUs.

Use GPU: False - GPU acceleration is not utilized for model training.

Log Experiment: False - Logging of the experiment is turned off.

Experiment Name: clf-default-name - The default name for the classification experiment is 'clf-default-name'.

USI: cc2a - A unique identifier for the experiment setup.

```
[5]: automl_type = type(automl_setup)
automl_type
```

[5]: pycaret.classification.oop.ClassificationExperiment

0.3 Compare and select best model

```
[6]: best_model = compare_models()
```

<IPython.core.display.HTML object>

<pandas.io.formats.style.Styler at 0x7f263ea74050>

<IPython.core.display.HTML object>

This output summarizes the performance metrics of various machine learning models trained on the prepped churn dataset, including accuracy, area under the curve (AUC), recall, precision, F1 score, Kappa, Matthews correlation coefficient (MCC), and training time in seconds.

The best performing model based on accuracy:

The Ridge Classifier achieved the highest accuracy of 79.42% followed closely by Logistic Regression accuracy of 79.38%. LDA is another high performer with an accuracy of 79.36%.

Interpreting the results

Accuracy: Indicates the proportion of correctly classified instances out of the total instances.

AUC: Represents the area under the receiver operating characteristic (ROC) curve, which measures the model's ability to distinguish between classes.

Recall: Denotes the proportion of actual positive cases that were correctly identified by the model.

Precision: Indicates the proportion of positive identifications that were actually correct.

F1 Score: Harmonic mean of precision and recall, providing a balance between the two metrics.

Kappa: Measures the agreement between predicted and actual classifications, considering the possibility of the agreement occurring by chance.

MCC (Matthews Correlation Coefficient): Another measure of the quality of binary classifications, considering both false positives and false negatives.

Training Time (TT): Indicates the time taken by each model to train on the dataset.

```
[7]: best_model_info = best_model best_model_info
```

[7]: RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True, fit_intercept=True, max_iter=None, positive=False, random_state=7041, solver='auto', tol=0.0001)

0.4 Select specific rows

```
[8]: selected_rows = df.iloc[400:415]
selected_rows
```

[O] .		M + 1- 1 O1	Т-+-1 О	C 11	M + 1-1 (1 1	,
[8]:	tenure	MonthlyCharges	TotalCharges	Churn	MonthlyCharges_log	\
400	32	19.75	624.15	0	2.983153	
401	. 11	20.05	237.70	0	2.998229	
402	9 69	99.45	7007.60	1	4.599655	
403	68	55.90	3848.80	0	4.023564	
404	20	19.70	419.40	0	2.980619	
405	72	19.80	1468.75	0	2.985682	
406	60	95.40	5812.00	0	4.558079	
407	32	93.95	2861.45	0	4.542763	
408	3 1	19.90	19.90	1	2.990720	
409	1	19.60	19.60	1	2.975530	
410	3	81.35	233.70	1	4.398761	
411	. 46	24.45	1066.15	0	3.196630	
412	29	74.95	2149.05	0	4.316821	
413	51	87.35	4473.00	0	4.469923	
414	48	70.65	3545.05	0	4.257738	
TotalCharges_Tenure_Ratio			io MonthlyCha	rges_to	_TotalCharges_Ratio	\

	TotalCharges_Tenure_Ratio	MonthlyCharges_to_TotalCharges_Ratio	\
400	19.504687	0.031643	
401	21.609091	0.084350	
402	101.559420	0.014192	
403	56.600000	0.014524	
404	20.970000	0.046972	
405	20.399306	0.013481	
406	96.866667	0.016414	
407	89.420312	0.032833	
408	19.900000	1.000000	
409	19.600000	1.000000	

410		77.900000				0.348096		
411		23.177174				0.022933		
412		74.105172				0.034876		
413		87.705882				0.019528		
414		73.855208				0.019929		
	Bank transfer	(automatic)	Credit	card	(automatic)	Electronic cl	heck	\
400		1			C		1	
401		0			1		1	
402		0			1		1	
403		1			C)	1	
404		0			C)	1	
405		0			1		1	
406		1			C)	1	
407		0			C)	1	
408		0			C)	1	
409		0			C)	1	
410		0			C)	0	
411		1			C)	1	
412		0			C)	0	
413		0			C)	0	
414		1			C)	1	
	Mailed check	Month-to-mon	th One	year	Two year			
400	0		1	1	0			
401	0		1	1	0			
402	0		0	0	0			
403	0		1	1	0			
404	1		1	0	1			
405	0		1	0	1			
406	0		1	1	0			
407	1		0	0	0			
408	1		0	0	0			
409	1		0	0	0			
410	0		0	0	0			
411	0		1	1	0			
412	0		0	0	0			
413	0		0	0	0			
414	0		0	0	0			

0.5 Utilize best model to predict churn

[9]: predict_model(best_model, selected_rows)

<pandas.io.formats.style.Styler at 0x7f263e72c250>

[9]:	tenure	MonthlyCharges	TotalCharges	MonthlyCharge	s_log \	
400	32	19.750000	624.150024	2.9	83154	
401	11	20.049999	237.699997	2.9	98229	
402	69	99.449997	7007.600098	4.5	99655	
403	68	55.900002	3848.800049	4.0	23564	
404	20	19.700001	419.399994	2.9	80619	
405	72	19.799999	1468.750000	2.9	85682	
406	60	95.400002	5812.000000	4.5	58079	
407	32	93.949997	2861.449951	4.5	42763	
408	1	19.900000	19.900000	2.9	90720	
409	1	19.600000	19.600000	2.9	75530	
410	3	81.349998	233.699997	4.3	98761	
411	46	24.450001	1066.150024	3.1	96630	
412	29	74.949997	2149.050049		16821	
413	51	87.349998	4473.000000		69923	
414	48	70.650002	3545.050049	4.2	57738	
	TotalCh	arges_Tenure_Rat	io MonthlyCha	arges_to_TotalC	harges Ratio	\
400		19.5046	-		0.031643	
401		21.6090			0.084350	
402		101.5594	18		0.014192	!
403		56.5999	98		0.014524	:
404		20.9699	99		0.046972	
405		20.3993	05		0.013481	
406		96.8666	69		0.016414	:
407		89.4203	11		0.032833	1
408		19.9000	00		1.000000	1
409		19.6000	00		1.000000	i
410		77.9000	02		0.348096	1
411		23.1771	74		0.022933	,
412		74.1051	71		0.034876	•
413		87.7058	79		0.019528	i
414		73.8552	09		0.019929	
	Bank tr	ansfer (automati	c) Credit can	rd (automatic)	Electronic	check \
400			1	0		1
401			0	1		1
402			0	1		1
403			1	0		1
404			0	0		1
405			0	1		1
406			1	0		1
407			0	0		1
408			0	0		1
409			0	0		1
410			0	0		0
411			1	0		1

412 413 414		0 0 1		0 0 0	0 0 1	
	Mailed check	Month-to-month	One year	Two year	Churn	prediction_label
400	0	1	1	0	0	0
401	0	1	1	0	0	0
402	0	0	0	0	1	0
403	0	1	1	0	0	0
404	1	1	0	1	0	0
405	0	1	0	1	0	0
406	0	1	1	0	0	0

Metrics

Model: Ridge Classifier Accuracy: 80% AUC: 62.5% Recall: 25% Precision: 100% F1 Score: 40% Kappa: 32.84% MCC: 44.32%

While the model exhibits high precision, suggesting it correctly identifies churn when it occurs, its recall is quite low, indicating it misses many actual churn instances.

0.6 Incorrect predictions

```
[10]: predicted_rows = predict_model(best_model, selected_rows)
      incorrect_predictions = (predicted_rows['Churn'] !=__
       ⇔predicted_rows['prediction_label']).sum()
      print("Incorrect Predictions:", incorrect_predictions)
```

<pandas.io.formats.style.Styler at 0x7f263fec20d0>

Incorrect Predictions: 3

Out of the total predictions made, the model was incorrect in predicting the churn status of 3 customers.

Save model

```
[11]: save_model(best_model, 'ridge')
```

Transformation Pipeline and Model Successfully Saved

```
[11]: (Pipeline(memory=Memory(location=None),
                steps=[('numerical_imputer',
                        TransformerWrapper(exclude=None,
                                            include=['tenure', 'MonthlyCharges',
                                                     'TotalCharges',
                                                      'MonthlyCharges_log',
                                                      'TotalCharges Tenure Ratio',
      'MonthlyCharges_to_TotalCharges_Ratio',
                                                     'Bank transfer (automatic)',
                                                     'Credit card (automatic)',
                                                      'Electronic check', 'Mailed
      check',
                                                     'Month-to-month', 'One year',
                                                     'Two y...
      strategy='most_frequent',
      verbose='deprecated'))),
                       ('clean_column_names',
                        TransformerWrapper(exclude=None, include=None,
      transformer=CleanColumnNames(match='[\\]\\[\\,\\{\\}\\"\\:]+'))),
                       ('trained model',
                        RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True,
                                         fit intercept=True, max iter=None,
                                         positive=False, random_state=7041,
                                         solver='auto', tol=0.0001))],
                verbose=False),
       'ridge.pkl')
```

0.8 Use pickle to save and load the model (serialization and deserialization)

```
[14]: with open('ridge_model.pk', 'wb') as f:
    pickle.dump(best_model, f)
```

```
[16]: with open('ridge_model.pk', 'rb') as f:
    loaded_model = pickle.load(f)
```

0.9 Create new data

```
[17]: new_data = selected_rows.copy()
   new_data.drop('Churn', axis=1, inplace=True)
   new_data.to_csv('new_churn_data.csv', index=False)
```

0.10 Make predictions for churn on the loaded data

```
[18]: loaded_model.predict(new_data)
```

```
[18]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], dtype=int8)
```

```
[19]: loaded_ridge = load_model('ridge')
predict_model(loaded_ridge, new_data)
```

Transformation Pipeline and Model Successfully Loaded <IPython.core.display.HTML object>

[19]:	tenure	MonthlyCharges	_	MonthlyCharges			
400	32	19.750000	624.150024		33154		
401	11	20.049999	237.699997		98229		
402	69	99.449997	7007.600098		99655		
403	68	55.900002	3848.800049		23564		
404	20	19.700001	419.399994		30619		
405	72	19.799999	1468.750000		35682		
406	60	95.400002	5812.000000		58079		
407	32	93.949997	2861.449951		42763		
408	1	19.900000	19.900000		90720		
409	1	19.600000	19.600000		75530		
410	3	81.349998	233.699997		98761		
411	46	24.450001	1066.150024	3.19	96630		
412	29	74.949997	2149.050049	4.31	16821		
413	51	87.349998	4473.000000	4.46	69923		
414	48	70.650002	3545.050049	4.25	57738		
	TotalCh	arges_Tenure_Rat	•	rges_to_TotalCh	-		
400		19.5046			0.031643		
401		21.6090			0.084350		
402		101.5594			0.014192		
403		56.5999			0.014524		
404		20.9699			0.046972		
405		20.3993			0.01348		
406		96.8666			0.016414		
407		89.4203			0.032833		
408		19.9000			1.000000		
409		19.6000			1.00000		
410		77.9000			0.348096		
411		23.1771			0.022933		
412		74.1051			0.034876		
413		87.7058			0.019528		
414		73.8552	09		0.019929	9	
	Donle +n	ansfer (automati	c) Crodit con	ed (sutomatic)	Floatronia	chock	\
400	חמווע נן	ansiei (automati	1	d (automatic)	Electronic	check 1	\
400			0	1		1	
401			0	1		1	
402			1	0		1	
403			0	0		1	
404						1	
405			0	1		T	

406		1			0	1
407		0			0	1
408		0			0	1
409		0			0	1
410		0			0	0
411		1			0	1
412		0			0	0
413		0			0	0
414		1			0	1
	Mailed check	Month-to-month	One year	Two year	prediction_label	-
400	0	1	1	0	C)
401	0	1	1	0	C)
402	0	0	0	0	C)
403	0	1	1	0	C)
404	1	1	0	1	C)
405	0	1	0	1	C)
406	0	1	1	0	C)
407	1	0	0	0	C)
408	1	0	0	0	C)
409	1	0	0	0	C)
410	0	0	0	0	1	
411	0	1	1	0	C)
412	0	0	0	0	C)
413	0	0	0	0	C)
414	0	0	0	0	C)

0.11 Python Module to predict churn

```
[20]: Code('predict_churn.py')
[20]: import pandas as pd
    from pycaret.classification import predict_model, load_model

def predict_churn():
        df = pd.read_csv('new_churn_data.csv')
        model = load_model('ridge')
        predictions = predict_model(model, df)
        predictions.rename({'prediction_label': 'Churn_prediction'}, axis=1,u
        inplace=True)
        predictions['Churn_prediction'].replace({1: 'Churn', 0: 'No Churn'},u
        inplace=True)
        return predictions['Churn_prediction']

# Call the function and print the predictions
print(predict_churn())
```

[21]: %run predict_churn.py

Transformation Pipeline and Model Successfully Loaded

<IPython.core.display.HTML object>

- 0 No Churn 1 No Churn 2 No Churn 3 No Churn 4 No Churn 5 No Churn 6 No Churn 7 No Churn 8 No Churn
- 9 No Churn
- 10 Churn
- 11 No Churn
- 12 No Churn
- 13 No Churn
- 14 No Churn

Name: Churn_prediction, dtype: object

The output indicates the churn predictions for each customer in the dataset. Each entry in the output corresponds to a customer, and it shows whether the model predicts that the customer will churn or not churn.

Necessary libraries and functions were imported for this process, which involves building a churn prediction model using PyCaret, a Python library for automating machine learning workflows.

We successfully achieved the following,

Loaded and prepared the churn data.

Set up an auto ML environment and compared classification models.

Selected the best-performing model which was Ridge Classifiet

Predicted the churn status for 15 specific rows of data using the selected model.

Saved the best-performing model to a file using PyCaret's save model function.

Serialized and deserialized the model using pickle.

Predicted the churn status for new data using both the loaded model and PyCaret's load_model function