: در مورد ترانزیستور های BJT روابط زیر همواره صادق است -1

$$I_{E} = I_{B} + I_{C} . V_{CB} + V_{BE} = V_{CE} . I_{E} = h_{fe}I_{B} . h_{ie} = \frac{h_{fe}V_{T}}{I_{C}}$$

$$\begin{cases}
1 : I_{B} + I_{C} - I_{E} = 0 \\
2 : I_{E} - h_{fe}I_{B} + 0I_{C} = 0 \\
3 : \frac{I_{C}h_{ie}}{h_{fe}V_{T}} + 0I_{B} + 0I_{C} = 0
\end{cases} \Rightarrow$$

از روی ماتریس بالا در صورت بدست آوردن مقادیر مناسب مقدار های I بدست خواهند آمد. چهار رابطه ی ذکر شده در بالا بدون توجّه به اینکه ترانزیستور در چه وضعیتی است همواره صادق هستند.

2- پرامتر β به طور دقیق عبارت است از نسبت جریان کلکتور به جریان بیس در حالت اکتیو. در نتیجه ی این $I_C < 1$ ی پارامتر برای تمام وضعیت های چهارگانه ی ترانزیستور کاربرد ندارد؛ برای مثال در وضعیت اشباع همواره βI_B

امّا پارامتر h_{fe} در هر حالتی عبارت است از نسبت جریان کلکتور به جریان موجود در بیس. در نتیجه :

$$eta = rac{I_C}{I_B}$$
 in active mode $h_{fe} = rac{I_C}{I_B}$ always

3- مدار شکل زیر را بستیم، در این مدار به ازای سه ولتاژ مختلف 0 و 5و ولت برای v_{CE} مقدار جریان و ولتاژ BE را خواندیم.

نتایج مطابق جدول زیر بدست آمد:

V_{CE}	I_B	V_{BE}	I_B	V_{BE}
0V	3.27Ma	4V	2.28	3
5V	3.26	4	2.27	3
10V	3.26	4	2.26	3

$$h_{ie} = \frac{4-3}{3.27-2.28} = 1.010 \, K\Omega$$

$$h_{ie}=rac{3-2}{2.26-1.27}=1.010~K\Omega$$
 : و برای نقطه ای دیگر

4- مداری مطابق شکل زیر بستیم و به ازای ولتاژ های تعیین شده برای بیس کلکتور جریان بیس را اندازه گیری کردیم.

جدول زير بدست آمد:

V_{CB}	I_B	V_{EB}	I_B	V_{EB}
0V	1.6mA	3	3.55mA	5
5V	1.59mA	8	3.55mA	10
10V	1.59mA	13	3.54mA	15

در صورتی که به ازای هر دونقطه ی دلخواه رو نمودار I_b بعد از اینکه مقدار جریان کلکتور به مقدار ثابت خود رسید اندازه گیری کنیم بدست خواهیم آورد :

$$h_{ib} = \frac{2}{1.95} = 1.02 \ k\Omega$$

5- مدار را به شکل زیر میبندیم:

و جدول زير بدست ميآيد:

V_{CE}	I_B	V_{CB}	I_B	V_{CB}
0V	44.1 μΑ	5	73.9 μΑ	8
5V	44.5 μΑ	10	74.1 μΑ	13
10V	44.7 μΑ	15	74.1 μΑ	18

$$h_i = rac{3}{29.8} = 0.1 M\Omega$$
 در نتیجه