Introduction to Computer Networks

Differentiated Services (§5.4.6)

Topic

- Treating different traffic flows differently in the network
 - Coarse QOS (grades of service)
 - Gradually being deployed

Motivation

- User runs Skype and BitTorrent
 - Or remote desktop, gaming, web, etc.
 - How can we give preference to flows?

Differentiated Services

Idea is to treat different kinds of traffic differently in the network

- Have a few kinds of network service (GOLD, SILVER, BRONZE)
- Different kinds get better or worse treatment in the network
- Map apps to the right kind of service

Differentiated Services (2)

Architecture:

- User marks packet with desired service (e.g., Skype=GOLD)
 - Network polices traffic levels at boundary (token bucket)
- 3. Network provides different forwarding (WFQ at routers)

1. Marking Packets

- Use bits in IPv4/IPv6 header to mark the kind of service
 - 6-bit DSCP (Differentiated Services Code Point)

IPv4 Header

Version	IHL	Differentiated Services		Total length	
dentification			D M F F	Fragment offset	
Time to live		Protocol		Header checksum	
Source address					
Destination address					

Marking Packets (2)

• Many possible DSCP markings for different service/apps

Supported services depend on configuration of network

	Service Name / Meaning	DSCP Value	Traffic Need (App example)
5	Default forwarding / Best effort	0	Elastic (BitTorrent)
#	Assured forwarding / Enhanced effort	10-38	Average rate (streaming video)
	Expedited forwarding / Real-time	46	Low loss/delay (VoIP, gaming)
>	Precedence / e.g., Network control	48	High priority (Routing protocol)

Marking Packets (3)

- Traffic is marked by user
 - Depends on local policies, e.g., gaming = expedited?
- May be done as part of host
 - Let OS or app classify their traffic
- May be done inside the network
 - Using heuristics, such as ports

2. Policing Packets

- Network (ISP) checks incoming traffic meets service contract
 - Not more expedited traffic than agreed (and paid for!)
 - Only allowed markings, e.g., no network control from users

Policing Packets (2)

Policing is done with token bucket

Can demote "out of profile" traffic by re-marking (e.g., to default / best effort) or prioritizing for loss

3. Forwarding Packets

- Network (ISP) routers use WFQ (and more) instead of FIFO
- The different kinds of service are the different flows/queues
- DSCP values are used to map packet to the right flow/queue

Forwarding Packets (2)

- Services are defined as "per hop behaviors"
 - No guarantee for end-to-end service through a network
 - Need small amounts of high priority traffic for good service

Deployment

- QOS provides value when it is deployed across the network
 - Not much use if only your ISP!
- QOS is tightly tied to pricing
 - "All my packets are high priority"
- Makes deployment slow/difficult ...

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey