```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
plt.style.use('ggplot')
```

Uniform pdf:

```
In [ ]:
         # Definitions
         N = 1 000; c = 5; n points = 100 000; sum X vals = []
          for n in range(n points):
              X = np.random.uniform(-c, c, N)
              sum X vals.append(sum(X))
In [ ]:
         # Creating histogram
          n bins = 100
          hist, bins, _ = plt.hist(sum_X_vals, density = True, bins = n_bins, label = 'Histogram (Sum of Uniform pdfs)',
                                   facecolor = '#2ab0ff', edgecolor='#169acf', linewidth=0.5) # dimgray/maroon?
          # Analytic parameters (computed by hand)
          mu = 0
          sigma = np.sqrt(N*c**2/3)
         x = np.linspace(bins.min(), bins.max(), 1 000)
          plt.title(r'\frac{r'}\sum \frac{h^{-1}}{h^{-1}} $\bf{Uniform}\$ $\bf{pdfs}\$ - ' + f'N = {N}, n bins = {n bins}, n points = {n points}')
          plt.plot(x, stats.norm.pdf(x, mu, sigma), label = 'Gaussian pdf', color = 'C5')
          plt.xlabel(r'$X = x$')
          plt.ylabel(r'$p(X = x)$')
          plt.legend()
          plt.show()
```


Gaussian pdf:

```
In []:  # Definitions
N = 1_000; n_points = 100_000; sum_X_vals = []

# Initial Gaussian's parameters
mu = 0
sigma = 10
```

```
for n in range(n_points):
    X = np.random.normal(mu, sigma, N)
    sum_X_vals.append(sum(X))
```


Lorentzian (Cauchy) pdf:

• Here, the CLT is NOT valid!

```
In []:  # Definitions
N = 1_000; n_points = 100_000; sum_X_vals = []
# Standard Cauchy distribution's parameters. Not used in the code. Just here for reference/completeness.
```

```
x0 = 0
gamma = 1

for n in range(n_points):
    X = np.random.standard_cauchy(N)
    X = X[(X>-25) & (X<25)] # Truncate distribution so it plots well
    sum_X_vals.append(sum(X))</pre>
```


Poisson distribution:

```
In []:
    # Definitions
    N = 10_000; n_points = 100_000; sum_X_vals = []

# Poisson's Lambda parameter
lambda_par = 1

for n in range(n_points):
```

```
X = np.random.poisson(lambda_par, N)
sum_X_vals.append(sum(X))
```


As can be seen from the plots, the Central Limit Theorem (CLT) is verified, except for the Cauchy distribution. In fact, this distribution's mean and variance are not defined. As such, we cannot expect the CLT to hold.