控工實驗 LAB4 結報

Matlab 教學 part2

Group 2

林珮玉 E24084096 林玠志 E24083074 林哲緯 E24086129 薛博文 F14071148 蔡孟宗 F44071055

Control Engineering Laboratory - Lab4 Report

Group 2 - 林珮玉 林哲緯 林玠志 薛博文 蔡孟宗

I. Objectives

- 1. 學習使用 Bode plot
- 2. 學習使用 Nyquist plot
- 3. 學習使用 Root Locus
- 4. 使用以上的 plot 幫助穩定度(迴路)分析

II. Exploration

1. 實驗練習 3-1

$$G(s) = \frac{a}{s(s+b)}$$

- 設計一個PD controller且要求閉迴路系統阻尼值為0.707、頻率 為20,繪出對應的步階響應及波德圖,其中 $a=25\pm7$, $b=3.6\pm1.2$
- <hint>因PD controller形式爲kp+kd*s,所以closed-loop transfer-function:

$$G_{closed-loop} = \frac{aK_d s + aKp}{s^2 + (b + aK_d)s + aKp}$$

可求Kp,Kd

Code

```
a_list = [32,18];% 25 +/- 7
b_list = [4.8,2.4];% 3.6 +/- 1.2
loop_count = 1;
figure(1);
character = ['r','g','b','m'];
for i=1:2
    for j=1:2
    % parameter definition
```

```
a = a_list(i);
b = b_{list(j)};
damping_ratio = 0.707;
frequency = 20;
% Controller parameter calculation
Kp = 20*20/a;
Kd = (2*damping_ratio*frequency - b)/a;
% Close loop system definition
num_c = [a*Kd a*Kp];
den_c = [1 (b+a*Kd) a*Kp];
sys_c = tf(num_c,den_c);
% Open loop system definition
num_o = a;
den_o = [1 b 0];
% Display a,b,Kp,Kd value on the command window
Str = ['A: ',num2str(a),' B: ',num2str(b)];
Str2 = ['Kp: ',num2str(Kp),' Kd: ',num2str(Kd)];
disp(Str)
disp(Str2)
% Print system information on the command window
damp(sys_c)
% Draw step response
subplot(311)
t = (0:.01:1);
y = step(num_c,den_c,t);
plot(t,y,character(loop_count));
title('Close loop system step response')
hold on;
% Draw bode plot
w = logspace(-1, 2, 10000);
[mag, phase] = bode(num_o,den_o,w);
```

```
subplot(312)
semilogx(w,20*log10(mag),character(loop_count));
title('Open loop system Bode plot --magnitude')
hold on;

subplot(313)
semilogx(w,phase,character(loop_count));
title('Open loop system Bode plot --phase')
hold on;

loop_count = loop_count + 1;
end
end
```

Simulation Result

首先我們使用了兩組 a,b 的值,分別是 a=[32,18] , b=[4.8,2.4] ,題目給定的 阻尼值 0.707 、頻率 20 ,所以我們可以得到對應的

$$Kp = 20*20 / a$$

$$2*damping_ratio*freq_b / a$$

 $Kd = (2*damping_ratio*freq. - b) / a$

依照這些值做出對應的 transfer function, 然後印出 close loop 的 step response 以及 open loop 的 Bode plot,即可看到以上的圖。

2. 實驗練習 3-2

- (1) 一系統open loop 轉移函數為 $\frac{40}{s(s+2)}$,試畫出其開迴路及閉迴路波德圖、根軌跡圖、Nyquist diagram、步階響應圖 (M-file)。
- (2)承(1)以相位領先補償器補償改進GM和PM。
 (M-file)作業請附上code

Code

```
% Open loop system definition
num = 40;
den = [1 2 0];
open_sys = tf(num,den);
% Close loop system definition
close_sys = feedback(open_sys, 1,-1);
[num_c,den_c] = tfdata(close_sys,'v');
% Phase lead
lead_num = [1 2];
lead_den = [1 6];
lead_sys = tf(lead_num, lead_den);
% Compensated system
compensated_sys = series(open_sys,lead_sys);
final_sys = feedback(compensated_sys,1,-1);
figure(1)
bode(final_sys)
margin(final_sys)
```

```
figure(2)
% Draw Bode plot
subplot(421);
bode(open_sys)
title('Bode plot diagram(open loop system)')
xlabel('Frequency (rad/s)')
ylabel('Magnitude (dB)')
subplot(422);
bode(close_sys)
title('Bode plot diagram(close loop system)')
xlabel('Frequency (rad/s)')
ylabel('Magnitude (dB)')
% Draw R locus
subplot(423);
rlocus(num, den)
title('Root Locus(open loop system)')
xlabel('Real Axes')
ylabel('Imaginary Axes')
subplot(424);
rlocus(num_c,den_c)
title('Root Locus(close loop system)')
xlabel('Real Axes')
ylabel('Imaginary Axes')
% Draw Nyquist disgram
subplot(4,2,5)
nyquist(open_sys)
title('Nyquist(open loop system)')
xlabel('Real Axes')
ylabel('Imaginary Axes')
subplot(4,2,6)
nyquist(close_sys)
title('Nyquist(close loop system)')
xlabel('Real Axes')
```

```
ylabel('Imaginary Axes')
% Draw step response
subplot(427)
t = (0:.01:6);
step_o = step(num,den,t);
plot(t,step_o)
title('Step response (Open loop)')
xlabel('time(sec)')
ylabel('Amplitude')
subplot(428)
t = (0:.01:6);
step_c = step(num_c,den_c,t);
plot(t,step_c)
title('Step response (Close loop)')
xlabel('time(sec)')
ylabel('Amplitude')
```

Simulation Result

首先依照題目需求創出 open-loop 的 transfer function,利用 feedback 接成 close-loop,另外創一個相位領先的補償器,使用 series 將相位領先補償器接上 open-loop 的系統,最後再依序繪出 Bode plot, Root Locus, Nyquist plot 等,如上。

III. Conclusion

1. 林珮玉

這次實驗一次學了三種常見畫圖方法,包含 Bode plot、Nyquist

Diagram 以及 Root Locus Diagram,見證了 Matlab 的強大。只是
我們有一點忘記 PD controller 是什麼了,所以在第一題卡的有點

久,這也提醒我下次要好好預習,希望可以漸入佳境,越來越上手!

2. 林哲緯

本次為第二次的 matlab 課程,我們學習了如何利用這套強大的數學工具,並學習了 simulink,並且用這些工具去產生各種響應圖,我也見識到了 matlab 的厲害之處!

3. 林玠志

這次的實驗主要是設計一個 PD controller 並且輸出對應的步階響應與波德圖,做完之後我對於控工的理解又更深了,也謝謝助教的幫忙讓我們可以儘早完成實驗。

4. 薛博文

這次的實驗是上次的延伸,再加上 Bode plot, Nyquist plot, Root Locus 等幫助我們理解 open-loop 及 close-loop 的響應,感覺目前對 transfer function 相關的 matlab 函數操作還不是很熟悉,要再花時間自己試試

5. 蔡孟宗

這週實驗和上週一樣都是學習如何使用 matlab 實現各種描述系統的 transfer funct,不過本週著重在繪製各類判斷系統穩定度的圖形,如 根軌跡圖、波德圖、奈奎斯圖等等,並學習用二階系統計算補償器所需 的零點和極點位置,算是滿有收穫的一週。