4º Caso:

Maximizar 'Z'

Restrições com '='

Maximizar: $Z = 2 X_1 + X_2$

Sujeito a:

$$S = \begin{cases} 3X_1 + 4X_2 \le 12 \\ 4X_1 + 2X_2 \le 10 \\ X_1 + X_2 = 2 \end{cases}$$

1º Passo:

Inserir uma variável de folga em cada inequação.

Obs.: A Equação de '=' não precisa de Variável de Folga.

$$S_{1} \begin{cases} 3X_{1} + 4X_{2} + X_{3} &= 12 \\ 4X_{1} + 2X_{2} &+ X_{4} = 10 \\ X_{1} + X_{2} &= 2 \end{cases}$$

2º Passo:

Inserir uma Variável Artificial (com sinal Positivo) na Equação '=', obtendo assim um novo sistema ' S_1 '.

$$S_1 = \begin{cases} 3X_1 + 4X_2 + X_3 & = 12 \\ 4X_1 + 2X_2 & + X_4 & = 10 \\ X_1 + X_2 & + \textbf{X}_5 & = 2 \end{cases}$$

3º Passo:

Como há uma Variável Artificial, então há uma Função Artificial 'M'. Ela é igual ao valor da variável artificial, mas com o sinal trocado (Negativo).

$$\mathbf{M} = \mathbf{X}_5$$

4º Passo:

Jogar os coeficientes das restrições, da função 'Z' e da função artificial 'M' na tabela.

Obs.: Os coeficientes de 'Z' e de 'M' devem ter o sinal trocado na tabela.

	X_1	X_2	X_3	X_4	X_5	b	Q
	3	4	1	0	0	12	
	4	2	0	1	0	10	
	1	1	0	0	1	2	
Z	-2	- 1	0	0	0	0	
M	0	0	0	0	1	0	

5ºPasso: Encontrar a Matriz Identidade na tabela. Elas são as Variáveis Básicas (VB) e devem ter valor '0' na última linha.

Caso isso não aconteça, deve ser feito UM <u>Ajuste</u>, aplicando operações Elementares de modo que apareçam '0' nas ultimas linhas de VB. O valor de 'M' aparecerá automaticamente com o Ajuste.

			VB	VB	VB			
	X_1	X_2	X_3	X_4	X_5	b	Q	
	3	4	1	0	0	12		
	4	2	0	1	0	10		
	1	1	0	0	1	2		
Z	-2	- 1	0	0	0	0		
M	0	0	0	0	1	0		E ₅₃ (1)
								-
					•			

6ºPasso:

Encontrar os novos valores de 'x' e 'M' (ou 'Z'.

As Variáveis Não Básicas (VNB) possuem valor Zero. E as VB possuem o valor encontrado na coluna 'b'.

			VB	VB	VB		
	X_1	X_2	X_3	X_4	X_5	b	Q
	3	4	1	0	0	-12	
	4	2	0	1	0	- 10	
	1	1	0	0	1	-2	
Z	-2	- 1	0	0	0	0	
	-1	- 1	0	0	0	- 2	

$$(X_1, X_2, X_3, X_4, X_5) = (0, 0, 12, 10, 2)$$

$$M = -X_5 = -2$$

7º Passo: Inicio do Ciclo Simplex:

 $\{ Z = 2 X_1 + X_2 \}$

1º - Encontrar o maior número negativo em módulo na ultima linha, entre as variáveis 'X'.

	X_1	X_2	X_3	X_4	X_5	b	Q
	3	4	1	0	0	12	
	4	2	0	1	0	10	
	1	1	0	0	1	2	
Z	-2	- 1	0	0	0	0	
M	- 1	- 1	0	0	0	- 2	
		\.					

$2^{\rm o}$ - Dividir os valores de 'b' pela coluna selecionada no passo $1^{\rm o}.$ O resultado será a coluna 'Q'

Obs.: A linha que possui a função 'Z' e 'M' não é dividida. E caso tenha números negativos, também Não se faz a divisão.

	X_1	X_2	X_3	X_4	X_5	b	Q
	3	4	1	0	0	12	4
	4	2	0	1	0	10	5/2
	1	1	0	0	1	2	2
Z	-2	- 1	0	0	0	0	
M	- 1	- 1	0	0	0	- 2	

3^{o} – Encontrar o menor numero da coluna 'Q'

	X_1	X_2	X_3	X_4	X_5	b	Q
	3	4	1	0	0	12	4
	4	2	0	1	0	10	5/2
	1	1	0	0	1	2	2
Z	-2	- 1	0	0	0	0	
M	- 1	- 1	0	0	0	- 2	

4º – Encontrar o Pivo na intersecção do passo 1º com o passo 3º.

	X_1	X_2	X ₃	X_4	X_5	b	Q
	3	4	1	0	0	12	4
	4	2	0	1	0	10	5/2
	1	1	0	0	1	2	2
Z	-2	- 1	0	0	0	0	
M	- 1	- 1	0	0	0	- 2	

5º – Aplicar Operações Elementares de modo que o Pivo tenha o valor '1' e os demais itens da coluna tenham valor '0'

	X_1	X_2	X_3	X_4	X_5	b	Q	
	3	4	1	0	0	12	4	E ₁₃ (-3)
	4	2	0	1	0	10	5/2	E ₂₃ (- 4)
	1	1	0	0	1	2	2	
Z	-2	- 1	0	0	0	0		E ₄₃ (2)
M	- 1	- 1	0	0	0	- 2		E ₅₃ (1)

Fim do Ciclo Simplex.

Obtida a nova Tabela, começar tudo de novo desde o '5º Passo'.

Obs.: Quando 'M' tiver valor igual a '0', então elimine a linha dele e a coluna com a Variável Artificial e continue uma nova tabela com a linha de Z. Se não houver mais números negativos na linha de <u>M</u>, mas o valor de <u>M</u> continuar sendo <u>diferente de 0</u>, então é porque não há solução para o problema.

	X_1	X_2	X ₃	X_4	X	5	b	Q
	0	1	1	0	-	3	6	
	0	- 2	0	1		1	2	
	1	1	0	0	1		2	
Z	0	1	0	0	2		4	
M	0	0	0	0	1		Û	
IVI								

$$(X_1, X_2, X_3, X_4, X_5) = (2, 0, 6, 2, 0)$$

$$M = -X_5 = 0$$

Quando não houver mais números negativos na linha de 'Z', é porque a tabela chegou ao fim. E o valor máximo de 'Z' foi encontrado.

Se não houver mais números negativos na linha de \underline{Z} , mas o valor de \underline{Z} continuar sendo Negativo, então é porque não há solução para o problema.