

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

Academic Year: 2021-2022 (EVEN)-Answer Key

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Mode of Exam **OFFLINE** SET-B

Date: 25.05.2022

Course Code & Title: 18ECE206J Advanced Digital System Design

Duration: 1 Hour 40 Minutes Year & Sem: II & IV

Max. Marks: 50

Course Articulation Matrix:

Test: CLAT-2

	18ECE206J / Advanced Digital System Design			Program Outcomes (POs) Graduate Attributes								gram Sp comes (
S.No.	Course Outcomes (CO):	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Apply advanced theorems to simplify the design aspects of various practical circuits and design Mealy and Moore models of sequential circuit.	2	-	2	-	1	-	1	1	1	1	-	-	-	-	-
2	Implement synchronous sequential circuits and write VHDL Code	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-
3	Analyze asynchronous sequential circuits and write code using VHDL.	-	2	2	-	1	-	1	1	1	1	-	1			-
4	Implement Hazard free circuits and various digital circuits using Programmable Logic Devices.	-	2	2	1	1	-	1	1	1	1	-	1		,	-
5	Demonstrate FPGAs and Construct digital circuits using VHDL.	-	3	3	-	-	-	-	1	-	-	-	-	-	-	2
6	Design and verify the experiments in the laboratory with hardware and software.		-	-	-	3	-	-	1	2	-	-	3	3	-	2

	Part - A								
	(10 x 1 = 10 Marks) Instructions: Answer all Questions								
Q. No	Question Question	Marks	BL	СО	PO	PI Code			
1	A signal cannot be declared inside a (a) Process (b) Sequential (c) Concurrent (d) Wait	1	1	2	2	2.3.1			
2	State reduction in the sequential circuit represents the reduction of (a) Number of flip flops (b) Number of OR gates (c) Number of AND gates (d) Number of Counters	1	1	2	2	2.3.1			
3	Which of the following is not a Data type? (a) std_logic_vector (b) bit vector (c) std_bit_logic	1	1	2	2	2.3.1			

	(d) bit					
4	The result of the shift operation: 1001010 srl3 is					
_	(a) 0001001					
	(b) 0010010	1	1	2	2	2.3.1
	(c) 1001011	1	1		_	2.5.1
	(d) 1111000					
5	what is wrong in the following VHDL code					
3	entity 2 and is					
	port (A, B: in BIT;					
	Y: out BIT);					
	end 2and;					
	(a) port list	1	1	2	3	3.1.1
	(b) entity name					
	(c) end					
	(d)entity					
6	flow table has only one stable state in each row.					
	(a) Primitive					
	(b) Non-primitive	1	1	3	2	2.1.1
	(c) transition					
	(d) FSM					
7	The logic circuit causes the output to go to 0, When it should					
	remain at 1, which produce					
	(a) Static 0 hazard	1	1	3	2	2.1.1
	(b) Static 1 hazard	•	•		~	4.1.1
	(c) Dynamic hazard					
	(d) Essential hazard		-			
8	The compatible pairs of the merger diagram are					
	/ /					
	e					
		1	2	3	3	3.2.1
	c					
	(a) $(a,b)(b,c)(c,e)(c,d)(d,e)$					
	(b) $(a,b)(b,c)(a,d)(c,e)(c,d)$					
	(c) (a,b)(b,c)(d,e) (d) (a,b)(b,c)(a,d)(c,e)(c,d)(d,e)					
	(a) (a,b) (b,c)(a,u)(c,e)(c,a)(u,e)					
9	The total stable states in the given flow table are		 			
	x					
	0 1					
	$y_1 y_2$					
	00 00 01					
	01 11 (01)					
	11 11 10	1	2	3	3	3.2.1
		_	_			
	10 00 (10)					
	10 00 10					
	(a) 001,110,101,111					
	(a) 001,110,101,111 (b) 000, 011,110,101					
	(c) 000,111,001,101					
	(d) 001,010,111,100					
	(/					
10	Next state equation of the given transition table is	1	2	3	3	3.2.1
	i U					

	$y_{1} y_{2} \\ 00$ 01 11 10 (a) xy_{2} (b) $x'y$ (c) $x'y_{2}$ (d) $x'y$	0 1 1 0 + xy' ₁	1 1 0 0	Section- B1 10 Marks = 20 Marks)				
		-							
11	(i)Reduce the follo			: Answer Any Two Quation chart (8)	uestions				
	Mergen graph be reduced State and a definition of the componer unique co	Maximum (a, b) tebe Maximum (a, b) Maximu	Reduced S Reduced S	pes. (2) cuit with physical gn states.	10 (8+2)	2	2	3	3.1.1
	State Bir	nary	Gray Code	One-Hot					
	<i>b</i> 0	000 01	000 001	00001 00010					
)10)11	011 010	00100 01000					
	<u>e</u> 1	.00	110	10000					
12	Draw the ASM fo	r the given	state diagr	ram	5	3	2	3	3.1.1

	(ii) Explain Scalar data type in VHDL with example (5)					
	Integer Minimum range for any implementation as defined by standard: -2,147,483,647 to	5	2	2	3	3.1.1
	2,147,483,647 • Integer assignment example ARCHITECTURE test_int OF test IS BEGIN PROCESS (X) VARIABLE a: INTEGER; BEGIN a:=1; OK a:=-1; OK a:=-1; OK a:=-1; OK END PROCESS; END TEST;					
	• Real					
	• Minimum range for any implementation as defined by standard: -1.0E38 to 1.0E38 • Real assignment example ARCHITECTURE test_real OF test IS BEGIN PROCESS (X) VARIABLE a: REAL; BEGIN a := 1.3; OK a := -7.5; OK a := 1; bad a := 1.7E13; OK a := 5.3 ns; bad END PROCESS; END TEST;					
	Enumerated					
	User defined rangeEnumerated example					
	TYPE binary IS (ON, OFF); some statements ARCHITECTURE test_enum OF test IS BEGIN PROCESS (X) VARIABLE a: binary; BEGIN a := ON; OK more statements a := off; OK more statements					
	END PROCESS; END TEST;					
	Physical Can be user defined range					
	Can be user defined rangePhysical type example					
	TYPE resistance IS RANGE 0 to 1000000 UNITS ohm; ohm Kohm = 1000 ohm; 1 KΩ Mohm = 1000 kohm; 1 MΩ END UNITS;					
13	(i) Explain the VHDL operators with example?	5	2	2	2	2.3.1
	Logical Operators: and, or, not, nand, nor, xor, xnor Relational Operators: =, /=, <, <=, >, >= Shift Operators: sll, srl, sla, sra, rol,ror		_	_	_	2.0.1

	Adding Operators: +, -, &					
	Multiplying Operators: *, /, mod, rem					
	<pre>Multiplying Operators: ", /, mod, rem (ii) Write a VHDL program for 4 X1 MUX using 'Case' statement 1 library ieee; 2 use ieee.std_logic_1164.all; 3 entity mux_case is 4 port(I:in std_logic_vector(0 to 3); 5 s:in std_logic_vector(1 downto 0); 6 y:out std_logic); 7 end mux_case; 8 architecture muxx of mux_case is 9 begin 10 process(I) 11 variable x:std_logic; 12 begin 13 case s is 14 when "00"=>x:=I(0); 15 when "01"=>x:=I(1); 16 when "10"=>x:=I(2); 17 when others=>x:=I(3); 18when others=> y<=""; 19 end case; 20 y<=x; 21 end process; 22 end muxx;</pre>	5	3	2	2	2.3.1
	Section- B2 (2 X 10 Marks = 20 Marks Instructions: Answer Any Two Q					
14	a) Draw the state diagram (5)					
	a) Draw the state diagram (5) Answer Any Two Q a) Draw the state diagram (5) Answer Any Two Q (5)	10 (5+3+ 2)	4	3	3	3.2.1

(3) (2)

b) Construct the primitive flow tablec) Derive the reduced flow table


```
Library ieee;
Use ieee.std_l ogic_1164.all;
Entity ripple_str is
  port(A:in std logic vector(3 downto 0);
        B:in std logic vector(3 downto 0);
        Cin:in std_logic;
        sum:out std logic vector(3 downto 0);
       Cout:out std_logic);
End ripple_str;
Architecture ripple str fa of ripple str is
        Signal Cint:std_logic_vector(1 to 3);
Component fa
    port(x,y,z:in std_logic; s,c:out std_logic);
End component;
Begin
    rip1:fa port map(A(0),B(0),Cin,sum(0),Cint(1));
   rip2:fa port map(A(1),B(1),Cint(1),sum(1),Cint(2));
   rip1:fa port map(A(2),B(2),Cint(2),sum(2),Cint(2));
   rip1:fa port map(A(3),B(3),Cint(3),sum(3),Cout);
End ripple str fa;
```

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student:

Register No:

	Part- A (10x 1= 10 Marks)								
Q. No	CO	PO	Marks Obtained	Total					
1	2	2							
2	2	2							
3	2	2							
4	2	2							
5	2	3							
6	3	2							
7	3	2							
8	3	3							
9	3	3							
10	3	3							
			Part -B						
		Se	ection -B1 (2 x 10= 20 Marks)						
11	2	3							
12(i)	2	3							
12(ii)	2	3							
13(i)	2	2							

13(ii)	2	2						
Section -B2 (2 x 10= 20 Marks)								
14	3	3						
15	3	3						
16	3	3						

Consolidated Marks:

	Marks Scored
CO2	
CO3	
PO2	
PO3	
Total	

Signature of the Course Teacher