Задача размещения производства

Дано: $I = \{1, ..., m\}$ — множество районов (городов, областей), где можно открыть производство некоторой продукции;

 $J = \{1, ..., n\}$ — множество потребителей этой продукции (клиентов);

 $f_i \ge 0$ — затраты на организацию производства в пункте i.

 $c_{ij} \ge 0$ — производственно—транспортные расходы на удовлетворение спроса j-го клиента i-м предприятием.

p > 0 — максимально возможное число предприятий.

Найти: подмножество предприятий $S \subset I$, $|S| \leq p$, которое позволяет удовлетворить спрос всех клиентов с минимальными суммарными затратами.

Переменные задачи:

$$x_i = \begin{cases} 1, \text{ если открываем предприятие } i, \\ 0 \text{ в противном случае} \end{cases}$$

$$z_{ij} = \begin{cases} 1, \text{ если предприятие } i \text{ обслуживает клиента } j, \\ 0 \text{ в противном случае} \end{cases}$$

Математическая модель

при ограничениях:

$$\min \left\{ \sum_{i \in I} \sum_{j \in J} c_{ij} z_{ij} + \sum_{i \in I} f_i x_i \right\}$$

$$\sum_{i \in I} z_{ij} = 1, \quad j \in J;$$

$$x_i \ge z_{ij}, \quad i \in I, \quad j \in J;$$

$$\sum_{i \in I} x_i \le p;$$

$$z_{ij}$$
, $x_i \in \{0,1\}$, $i \in I$, $j \in J$.

Упражнение. Замена $z_{ij} \in \{0,1\}$ на $z_{ij} \ge 0$ не меняет минимума суммарных затрат.

Задача размещения с предпочтениями клиентов

Дано: $I = \{1, ..., m\}$ — множество мест, где можно открыть производство некоторой продукции;

 $J = \{1, ..., n\}$ — множество потребителей этой продукции (клиентов);

 $f_i \ge 0$ — затраты на организацию производства в пункте i.

 $c_{ij} \ge 0$ — производственно—транспортные расходы на удовлетворение спроса j-го клиента i-м предприятием. p > 0 — максимально возможное число предприятий.

 $d_{ij} \ge 0$ — предпочтения j-го клиента на множестве предприятий:

 $\min_{i \in I} d_{ij}$ — наиболее желаемый поставщик;

 $\max_{i \in I} d_{ij}$ — наименее желаемый поставщик.

Найти: Подмножество $S \subset I$, $|S| \leq p$, открываемых предприятий, которые позволили бы удовлетворить спрос всех клиентов с минимальными суммарными затратами.

Переменные задачи:

$$x_i = \begin{cases} 1, \text{если открываем предприятие } i, \\ 0 \text{ в противном случае} \end{cases}$$

$$z_{ij} = \begin{cases} 1, \text{если предприятие } i \text{ обслуживает клиента } j, \\ 0 \text{ в противном случае} \end{cases}$$

Математическая модель

$$\min \left\{ \sum_{i \in I} \sum_{j \in J} c_{ij} z_{ij}^* + \sum_{i \in I} f_i x_i \right\}$$

при ограничениях:

$$\sum_{i \in I} x_i \le p;$$

$$x_i \in \{0,1\}, i \in I,$$

где z_{ij}^* — оптимальное решение задачи потребителя:

$$\min \sum_{j \in J} \sum_{i \in I} d_{ij} z_{ij}$$

при ограничениях:

$$\sum_{i \in I} z_{ij} = 1, \quad j \in J;$$

$$x_i \ge z_{ij}, i \in I, j \in J;$$

$$z_{ij} \in \{0,1\}, i \in I, j \in J.$$

Генетический алгоритм для задач размещения

Идея заимствована у живой природы и состоит в организации эволюции, целью которой является получение оптимального решения в сложной комбинаторной задаче:

 $\min\{f(S), S \in Sol\}.$

Начальная популяция $P = \{S_1, S_2, \dots, S_k\}$ — набор допустимых решений исходной задачи.

Шаг эволюции: выбираем из популяции два решения, скрещиваем их, применяем мутацию, локальную перестройку и добавляем в популяцию, затем наихудшее решение удаляем из популяции.

Общая схема алгоритма

- 1. Выбрать начальную популяцию P и запомнить рекорд $F^* = \min_{i=1,...,k} f(S_i)$.
- 2. Пока не выполнен критерий остановки делать следующее:
 - 2.1. Выбрать "родителей" S_{i_1}, S_{i_2} из популяции.
 - 2.2. Применить к S_{i_1}, S_{i_2} оператор скрещивания и получить новое решение S'.
 - 2.3. Применить к S' оператор мутации и получить новое решение S''.
 - 2.4. Применить к S'' оператор локального улучшения и получить новое решение S'''.
 - 2.5. Если $f(S''') < F^*$, то сменить рекорд $F^* := f(S''')$.
 - 2.6. Добавить S''' к популяции и удалить из нее наихудшее решение.

Оператор скрещивания

Пусть S_1, S_2 — два решения, задаваемые векторами $X^1, X^2 \in \{0,1\}^n$.

Одноточечный оператор скрещивания: выбираем случайным образом координату $1 \le l \le n$ и новый вектор X' получает первые l координат от вектора X^1 , а остальные от вектора X^2 .

$$X^{1}$$
: (0 1 0 0 1 . . . 0 1 1)
 X^{2} : (1 1 0 1 0 . . . 1 1 1)
 X' : (0 1 0 0 0 . . . 1 1 1)

Аналогично определяется двухточечный, трехточечный и т.д. операторы.

Равномерный оператор скрещивания: новое решение X' в каждой координате получает с вероятностью 0.5 значение одного из родителей.

Выбор родителей

Турнирная селекция: из популяции P случайным образом выбирается некоторое подмножество $P' \subseteq P$ и родителем назначается наилучшее решение в P':

$$S_i = \min_{S \in P'} f(S).$$

Пропорциональная селекция: из популяции P случайным образом выбираются два родителя. Для решения S_i вероятность быть выбранным обратно пропорциональна значению целевой функции $f(S_i)$.

Варианты: Лучший в популяции + случайно выбранный.

Случайно выбранный + наиболее удаленный от него и др.

Оператор мутации

Вероятностный оператор мутации случайным образом вносит изменения в допустимое решение задачи. Например, с малой вероятностью $q < \frac{1}{n}$ в каждой координате значение $X_i \in \{0,1\}$ заменяется на противоположное $1-X_i$. Если в решении требуется сохранить $\sum_{i \in I} x_i = p$, то случайным образом выбирается

координата i_1 такая, что $X_{i_1}=1$ и координата i_2 такая, что $X_{i_2}=0$ и производится замена $X_{i_1}\coloneqq 0,\ X_{i_2}\coloneqq 1.$

$$X' = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & \dots & 0 & 1 & 1 \end{pmatrix}$$
 $X'' = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \dots & 0 & 1 & 1 \end{pmatrix}$
 $i_1 \qquad i_2$

Локальное улучшение

Для решения S обозначим через N(S) его окрестность, например, множество всех решений S', находящихся от S на расстоянии не более 2(3, 4, 5...)

Алгоритм локального спуска

- 1. Положить S := S'';
- 2. Найти в окрестности решения S наилучшего соседа \overline{S}

$$f(\overline{S}) = \min\{f(\widetilde{S}), \ \widetilde{S} \in N(S)\};$$

3. Если $f(\overline{S}) < f(S)$, то положить $S := \overline{S}$ и вернуться на шаг 2, иначе STOP, получен локальный минимум.

Вопросы

- Оцените трудоемкость шагов 2.1, 2.2, 2.3, 2.4.
- Является ли генетический алгоритм полиномиальным? (Да или Нете?)
- Является ли генетический алгоритм точным? (Да или Нет?)
- Задача поиска наилучшего потомка S'' для выбранных родителей является NP-трудной задачей? (Да или Нете?)
- Можно ли этим алгоритмом решать задачу коммивояжера ? (Да или Hem?)

Задача размещения в условиях конкуренции

```
I = \{1, ..., m\} — множество пунктов размещения; J = \{1, ..., n\} — множество клиентов; c_{ij} — расстояние от пункта i до клиента j; p — число предприятий, открываемых ЛПР_1; r — число предприятий, открываемых ЛПР_2; d_j — доход от обслуживания клиента j;
```

Сначала ЛПР $_1$ принимает решение об открытии своих предприятий. Затем, зная это решение, ЛПР $_2$ открывает свои предприятия так, чтобы получить максимальный доход. Клиент знает оба решения и выбирает ближайшее к себе предприятие. Задача состоит в том, чтобы найти решение для ЛПР $_1$ с максимальных доходом.

Переменные задачи

 $x_i = \left\{ egin{array}{l} 1, \, {
m ec}$ ли ЛПР $_1$ открыл предприятие в пункте i 0 в противном случае

 $y_i = \left\{ egin{array}{l} 1, \ {
m ec}$ ли ЛПР $_2$ открыл предприятие в пункте i 0 в противном случае

 $z_{j} = \begin{cases} 1, \text{ если клиент } j \text{ обслуживается } \Pi\Pi P_{1} \\ 0, \text{ если клиент } j \text{ обслуживается } \Pi\Pi P_{2} \end{cases}$

Для вектора х положим

 $I_{j}(x) = \{i \in I \mid c_{ij} < \min(c_{kj} \mid x_{k} = 1)\}$ — множество пунктов размещения, которые находятся ближе к клиенту j, чем ближайшее открытое предприятие $\Pi\Pi P_{1}$.

Математическая модель двухуровневого программирования

$$\max_{x} \sum_{j \in J} d_j z_j^*(x)$$

при ограничениях

$$\sum_{i \in I} x_i = p, \ x_i \in \{0,1\}, i \in I$$

где z_j^* — оптимальное решение задачи ЛПР₂:

$$\max_{z,y} \sum_{j \in J} d_j (1 - z_j)$$

при ограничениях

$$1 - z_j \le \sum_{i \in I_j(x)} y_i, \quad j \in J$$

$$\sum_{i \in I} y_i = r$$

$$x_i + y_i \le 1, \quad i \in I, \quad y_i, z_j \in \{0,1\}$$

«Безнадежный» пример

 $I = \{1, 2, 3, 4, 5, 6\}$ — места размещения предприятий; $J = \{1, 2, 3\}$ — клиенты.

Клиенты выбирают ближайшее предприятие. 2
4
5
6

При p = r = 1 ЛПР₁ всегда проигрывает!

Если ЛПР $_1$ ставит предприятие в вершине треугольника, то ЛПР $_2$ ставит свое предприятие на противоположной стороне треугольника и захватывает двух клиентов, в то время как ЛПР $_1$ получает только одного.

Если ЛПР $_1$ ставит предприятие на стороне треугольника, то ЛПР $_2$ ставит свое предприятие в соседней вершине треугольника и тоже захватывает двух клиентов, в то время как ЛПР $_1$ получает только одного

Численные методы

При заданном решении x для ЛПР $_1$ задача ЛПР $_2$ является NP-трудной задачей целочисленного линейного программирования.

Зная ее оптимальное решение, можно вычислить доход ЛП P_2 и ЛП P_1 .

- Генетический локальный поиск в пространстве переменных x для ΠP_1 .
- Имитация отжига в пространстве переменных x для ЛПР₁.
- Поиск с чередующимися окрестностями в пространстве переменных x для ЛПР₁.

Euclidean instance, |I| = 100, |J| = 100

The leader ignores the follower

Optimal solution of the follower. Market share of the leader is 41 %

Optimal solution of the leader. Market share of the leader is 50 %

Точный метод

Пусть \mathcal{F} — непустое семейство решений ЛПР₂.

Для $y \in \mathcal{F}$ положим

$$I_{j}(y) = \{i \in I \mid c_{ij} \le \min_{l \in I} c_{lj} \mid y_{l} = 1\}$$

Это множество предприятий, позволяющих ЛПР $_1$ удержать клиента j, если ЛПР $_2$ использует решение y.

Дополнительные переменные:

D — доход ЛПР₁

 $z_{ij} = \left\{ egin{array}{ll} 1, \ {
m e}{
m c}{
m n}{
m u}{
m p}{
m e}{
m g}{
m n}{
m p}{
m u}{
m s}{
m t}{
m u}{
m e}{
m t}{
m i}{
m d}{
m E}{
m n}{
m u}{
m s}{
m m}{
m i}{
m m}{
m e}{
m d}{
m i}{
m e}{
m d}{
m i}{
m e}{
m e}{
m r}{
m i}{
m e}{
m e}{
m e$

Переформулировка задачи:

$$\max D$$
 (1)

при ограничениях

$$\sum_{j \in J} \sum_{i \in I_{j}(y)} d_{j} z_{ij} \ge D, \quad \forall y \in \mathcal{F},$$

$$\tag{2}$$

$$\sum_{i \in I} z_{ij} = 1, \quad j \in J, \tag{3}$$

$$x_i \ge z_{ij}, \quad i \in I, j \in J, \tag{4}$$

$$\sum_{i \in I} x_i = p. \tag{5}$$

Если \mathcal{F} — все решения ЛПР₂, то получаем эквивалентную переформулировку.

Пусть \mathcal{F} — некоторое семейство решений ЛПР₂.

Тогда $D(\mathcal{F})$ — верхняя оценка максимального дохода ЛПР₁.

Пусть $x(\mathcal{F})$ — оптимальное решение для заданного \mathcal{F} и $D'(x(\mathcal{F}))$ — доход ЛПР₁ на решении $x(\mathcal{F})$. $D'(x(\mathcal{F}))$ — нижняя оценка оптимума для ЛПР₁.

Итерационный метод:

- 0. Выбрать начальное семейство ${\mathcal F}$ и положить $D^* := 0$
- 1. Решить задачу (1)–(5), найти $D(\mathcal{F})$ и $x(\mathcal{F})$
- 2. Решить задачу ЛПР₂, вычислить $y(x(\mathcal{F}))$ и $D'(x(\mathcal{F}))$
- 3. Если $D^* < D'(x(\mathcal{F}))$, то $D^* := D'(x(\mathcal{F}))$
- 4. Если $D(\mathcal{F}) = D^*$, то STOP
- 5. Добавить $y(x(\mathcal{F}))$ в семейство \mathcal{F} и вернуться на шаг 1.

Доля рынка ЛПР1

Вопросы

- Задача размещения в условиях конкуренции может быть решена полным перебором вариантов, и их число не превышает $C_n^p C_{n-p}^r$ (Да или Нет?)
- Задано число K и решение x для ЛПР₁. Рассмотрим следующую задачу распознавания: правда ли, что ЛПР₂ может получить долю рынка не менее K? Эта задача распознавания принадлежит классу NP (\mathcal{L} или \mathcal{L} или \mathcal{L} нем?)
- Задано число K. Рассмотрим следующую задачу распознавания: правда ли, что ЛПР₁ может получить долю рынка не менее K? Эта задача распознавания принадлежит классу NP ($\mathcal{L}a\ unu\ Hem$?)

Квадратичная задача о назначениях

Дано: $I = \{1, ..., n\}$ — множество зданий, где могут размещаться цеха;

 $J = \{1, ..., n\}$ — множество производственных цехов;

 a_{kl} — расстояние между зданиями $k, l \in I$;

 b_{ij} — объем продукции, транспортируемый из цеха i

в цех j, где $i, j \in J$.

Найти: Размещение цехов по зданиям, при котором суммарный объем перевозок продукции был бы минимальным.

Переменные задачи:

$$x_{ik} = \begin{cases} 1, \text{ если цех } i \text{ размещается в здании } k, \\ 0 \text{ в противном случае} \end{cases}$$

Математическая модель

$$\min \sum_{i \in J} \sum_{j \in J} \sum_{l \in I} \sum_{k \in I} a_{kl} b_{ij} x_{ik} x_{jl}$$

при ограничениях:

$$\sum_{i \in J} x_{ik} = 1$$
, для всех $k \in I$; $\sum_{i \in J} x_{ik} = 1$, для всех $i \in J$; $k \in I$ $x_{ik} \in \{0,1\}, i \in J, k \in I$.