STAT 6337 Advanced Statistical Methods I (Fall 2022) Project 3

This project	is individual	work. So	do not cor	nsult with	anybody in or
out of class.	You can ask	me or TA	questions	if somethi	ing is not clear.

Sign on	this page	below:	and attach	with y	our pro	ject. Y	You pro	oject v	vill n	ot be
graded	without it	•								

This project is entirely my work. I have not discussed about this project with anybody in or out of class. I understand and have complied with the academic integrity policies written in the *Handbook of Operating Procedures* of UT Dallas https://policy.utdallas.edu/utdsp5003.

YOUR NAME	
DATE	
YOUR SIGNATURE	

`From the scatterplot matrix, X2, X4, X5, X8, X9, X10 are more linearly related to Y compared to the other predictor variables. ALso, both of the categorical variables seem linearly releated as well. So, X2, X4, X5, X6, X7, X8, X9, X10 seems like good predictors of Y.

Scatter plot is in the output section.

Lack of Fit Test:

Lack of fit test cannot be performed because as can see that the degree of SSPE is 0 there are no replications in this data.

Independence of Errors:

We can see outliers in the residual plots where some points are greater than 2 .

Checking for homogeneity of variance:

The P-value > 0.05, indicates that errors follow constant variance assumption and the output of Breush pagan test shows that all variables are > .05.

Brown Forsythe Tests for homogeneity

The homogeneity of residuals hold for all the nine variables as all their p values are greater than 5.

Based on Shapiro wilks and QQ plot we can see that there is violation of normality as Shapiro wilks > .05.

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	W	0.864616	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.104197	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.292998	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	1.867247	Pr > A-Sq	<0.0050			

QQ plot is in the output section.

As we can see that there is violation of normality hence we apply the box cox transformation after finding box cox power.

After applying box cox transformation we can see that the data is normal.

After doing stepwise selection these variables namely risk of infection, daily census, chest xray ratio, age, number of beds, number of nurses and culturing seems to be good predictors of Y.

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits	
Intercept	1	0.97591	1.45210	0.67	0.5030	-1.90333	3.85515	
RISK	1	0.28447	0.11022	2.58	0.0112	0.06592	0.50301	
CENSUS	1	0.02013	0.00363	5.54	<.0001	0.01293	0.02733	
XRAY	1	0.01620	0.00642	2.53	0.0130	0.00348	0.02892	
AGE	1	0.09153	0.02568	3.56	0.0006	0.04061	0.14245	
BEDS	1	-0.00899	0.00301	-2.98	0.0036	-0.01497	-0.00301	
NURSES	1	-0.00546	0.00196	-2.79	0.0063	-0.00935	-0.00158	
CULTURING	1	0.03359	0.01350	2.49	0.0144	0.00683	0.06036	

I have performed box cox transformation on the length of stay . and got length of stay or Y = β 0 + β 1*age + β 2*risk + β 3*culturing + β 4*chestxray + β 5*beds + β 8*census + β 9*nurses Firstly residuals from the OLS model is computed , then I regress the residuals on the independent variables, and find the weight, as per Huber's formula [w=1.345/abs(u) for abs(u) > 1.345 and w=1 elsewhere], with u computed with MAD (Median Absolute Deviation). The details are taken care in code and I have run 3 iterations after regression of residuals on independent variables. Here are the parameter estimates for this question:-

Iteration 1:-

Iteration 2:-

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits		
Intercept	- 1	0.97591	1.45210	0.67	0.5030	-1.90333	3.85515		
RISK	1	0.28447	0.11022	2.58	0.0112	0.06592	0.50301		
CENSUS	1	0.02013	0.00363	5.54	<.0001	0.01293	0.02733		
XRAY	1	0.01620	0.00642	2.53	0.0130	0.00348	0.02892		
AGE	- 1	0.09153	0.02568	3.56	0.0006	0.04061	0.14245		
BEDS	1	-0.00899	0.00301	-2.98	0.0036	-0.01497	-0.00301		
NURSES	1	-0.00546	0.00196	-2.79	0.0063	-0.00935	-0.00158		
CULTURING	1	0.03359	0.01350	2.49	0.0144	0.00683	0.06036		

Iteration 3:-

Iteration 4:-

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits	
Intercept	1	0.98743	1.44557	0.68	0.4961	-1.87887	3.85373	
RISK	1	0.28309	0.10951	2.58	0.0111	0.06594	0.50023	
CENSUS	1	0.02013	0.00361	5.58	<.0001	0.01297	0.02728	
XRAY	1	0.01625	0.00638	2.55	0.0123	0.00361	0.02889	
AGE	1	0.09122	0.02557	3.57	0.0005	0.04052	0.14192	
BEDS	1	-0.00900	0.00299	-3.01	0.0033	-0.01494	-0.00307	
NURSES	1	-0.00544	0.00195	-2.79	0.0063	-0.00930	-0.00157	
CULTURING	1	0.03378	0.01341	2.52	0.0133	0.00719	0.06036	

As we can see, the change in magnitude becomes insignificant after 3rd iteration.

Q 2:-

As per the question I have generated 1000 bootstrap samples using random X sampling. For each bootstrap sample, and then I regress Y on X using OLS method and obtain the residuals. After that I estimated the standard deviation function by regressing the absolute residuals on X and then use the fitted standard deviation function to obtain weights, and finally I use WLS to regress Y and X and obtain the bootstrap estimated regression b * 1. Fitting Standard deviation:-

Results of WLS of b0 and b1

Bootstrap histogram:-

Value of b1*;

I have found out the bootstrap estimated regression, b1*, is approximately 0.58003. Here is the output to justify that :-

Values of s, b0, and b1

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RMSE_	Intercept	Age	Diastolic_BP
1	MODEL1	PARMS	Diastolic_BP	8.14575	56.1569	0.58003	-1

Bootstrap sample

Obs	SampleID	_MODEL_	_TYPE_	_DEPVAR_	_RMSE_	Intercept	age	dbp
1	1	MODEL1	PARMS	dbp	7.50147	49.8348	0.76591	-1
2	2	MODEL1	PARMS	dbp	7.65142	58.5624	0.47349	-1
3	3	MODEL1	PARMS	dbp	7.01931	49.4862	0.73008	-1
4	4	MODEL1	PARMS	dbp	7.36390	55.0548	0.62670	-1
5	5	MODEL1	PARMS	dbp	9.82496	51.3620	0.72519	-1
6	6	MODEL1	PARMS	dbp	7.89100	57.3685	0.54307	-1
7	7	MODEL1	PARMS	dbp	7.18217	59.7710	0.42970	-1
8	8	MODEL1	PARMS	dbp	6.95926	59.5471	0.43689	
9	9	MODEL1	PARMS	dbp	6.98917	52.0152	0.76367	-1
10	10	MODEL1	PARMS	dbp	7.91466	52.6806	0.66404	-1

I tried all the method as mentioned in our class as you can see from my code. Unfortunately I could only get CI estimations from percentile bootsrap and basic bootstrap CI here are the results:-

Basic bootstrap and percentile bootstrap respectively:-

Values of s, b0, and b1

Obs	r2	bias	p_lb	p_ub
1			0.3963	0.4077

Values of s, b0, and b1

CI95_Lower	Cl95_Upper
0.30476	0.87520

Bonus Question:-

Heart dataset contains 15 independent variables; among them the ones significant at α =0.1 level (as per the simple logistic model) are

- 1. male (categorical, denotes the sex. male = 0 for females)
- 2. age
- 3. education (categorical)
- 4. CigsPerDay
- 5. BPMeds (categorical)
- 6. PrevalentStroke (categorical)
- 7. PrevalentHyp (categorical)
- 8. Diabetes (categorical)
- 9. TotChol
- 10. sysBP
- 11. diaBP
- 12. BMI
- 13. glucose

We can conclude that the model with these 13 variables jointly significant and stepwise forward selection is run on this model. The details are in the output section.

Output for Q 1:-

Before transformation QQ plot

Normal Quantiles

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	W	0.864616	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.104197	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.292998	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	1.867247	Pr > A-Sq	<0.0050			

Lack of Fit test

Residual plot:-

Bresusch pagan test:-

Brown Forsythe test:-

BROWN FOR SYTHE TEST (XRAY)

Grown and Forsythe's Test for Homogeneity of R Variance ANOWA of Absolute Deviations from Group Medians						
Source	DF.	Sum of Squares	Mean Square	F Value	Pro-F	
Group1	- 1	0.1191	0.1191	0.19	0.6635	
Error	1111	09.4693	0.6258			

BROWN FOR SYTHE TEST (XRAY)

Level of		R	
Groupt	N	Mean	Std Dev
0	57	0.06546222	0.92248359
1	56	-0.05700994	1,19080150

BROWN FOR SYTHE TEST (BED 8)

Class L	evel infor	mation
Class	Levels	Values
Secure S	-	0.1

BROWN FOR SYTHE TEST (BED 8)

Brown and Forsythe's Text for Homogeneity of R Variance ANDWA of Absolute Deviations from Group Medians						
Source	DF.	Sum of Squares	Mean Square	FVstre.	Pro-F	
Group5	- 1	1,0703	1.0703	1.76	0.1874	
Error	1111	67.5204	0.6063			

BROWN FOR SYTHE TEST (BED 8)

Level of		R	
Group5	N	Mean	Std Dev
0	57	-0.09335289	0.88147519
1	56	0.12499029	1.22212714

BROWN FOR SYTHE TEST (MEDSCHOOL)

Class Level Information					
Class	Levels	Values			
Ground	- 1	0			

BROWN FOR SYTHE TEST (MEDSCHOOL)

The GLM Procedure

	Brown and Forsythe's Test for Homogeneity of R Variance ANOWA of Absolute Deviations from Group Medians					
Source	DF	Sum of Squares	Mean Square	FWtee	ProF	
GroupG	0	0				
Emer	112	69.8053	0.6233			

BROWN FOR SYTHE TEST (MED SCHOOL)

Level of		R	
Groups	N	Mean	Sed Dev
0	113	0.01485655	1.06400767

BROWN FOR SYTHE TEST (REGION)

Class Level Information					
Class	Levels.	Value			
Group7	2	0.1			

BROWN FOR SYTHE TEST (REGION)

	Brown and Forsythe's Test for Homogeneity of R Variance ANOVA of Absolute Deviations from Group Medians					
Source	DF.	Sum of Squares	Mean Square	F Value	Pro-F	
Group7	- 1	0.4757	0.4757	0.76	0.3845	
Emer	1111	69.2637	0.6240			

BROWN FOR SYTHE TEST (REGION)

Level of			8
Group7	N	Mean	Std Dev
0	60	-0.00833518	1.19973009
1	53	0.04111132	0.09067622

The MEANS Procedure

Variable	Median
AGE	53,2000000
RISK	4.40000000
CULTURING	14,10000000
XRAY	62,3000000
BEDS	186,00000000
MEDSCHOOL	2.00000000
REGION	2.00000000
CENSUS	143,00000000
NURSES	132,00000000
FACILITIES	42,9000000

BROWN FOR SYTHE TEST (AGE)

Class Level Information						
Class	Levels	Values				
Group1	2	01				

BROWN FOR SYTHE TEST (AGE)

Brown and Forsythe's Test for Homogeneity of R Variance ANOVA of Absolute Deviations from Group Medians						
Source	DF.	Sum of Squares	Mean Square	F Value	Pro-F	
Group1	- 1	0.4119	0.4119	0.67	0.4150	
Error	1115	68,4605	0.6166			

BROWN FOR SYTHE TEST (AGE)

Levelor		R	
Group1	N	Mean	Sed Dev
0	60	-0.06749266	0.91429467
1	53	0.13072362	1.21169139

BROWN FOR SYTHE TEST (RISK)

Class Level Information					
Class	Lavela	Values			
Group2	2	0.1			

BROWN FOR SYTHE TEST (RISK)

		d Foreythe's Teach			
Source	or.	Sum of Squares	Mean Square	TVstre.	Pro-F
Group2	- 1	0.6257	0.6257	1.00	0.3186
Emer	1115	09.2094	0.6235		

BROWN FOR SYTHE TEST (RISK)

Level of		R		
Group2	N	Mean	Sed Dev	
0	50	0.01374361	0.88572269	
1	55	0.01603019	1.23445512	

BROWN FOR SYTHE TEST (CULTURING)

Class Level Information					
Class	Levels	Values			
Group 3	2	01			

Number of Observations Read 113 Number of Observations Used 113

BROWN FOR SYTHE TEST (CULTURING)

		d Foreythe's Text fo I of Absolute Devia			ica.
Source	or.	Sum of Squares	Mean Square	FValue.	Pro-F
Group3	-1	0.00547	0.00547	0.01	0.9059
Error	1111	69.9117	0.6290		

BROWN FOR SYTHE TEST (CULTURING)

Level of R			
Group3	N	Mean	Std Day
0	57	-0.02193633	0.94224816
1	56	0.05230644	1.10423074

BROWN FOR SYTHE TEST (CENSUS)

Class Level Information				
Class	Levels	Values		
Gnoupil	2	0.1		

Number of Observations Read 113 Number of Observations Used 113

BROWN FOR SYTHE TEST (CENSUS)

		d Forsythe's Test fo A of Absolute Devia			
Source	DE.	Sum of Squares	Mean Square	F Value	Pro-F
Groupă	-1	1,2014	1,2014	1.95	0.1656
Error	215	68.4751	0.0109		

BROWN FOR SYTHE TEST (CENSUS)

Level of		R		
Groups	N	Mean	Sed Dev	
0	57	-0.05007160	0.07167100	
1	56	0.00094412	1.23562340	

(2) BIDn ForsYthe Test (NUR 8E 8)

The GLM Procedure					
Class Level Information					
Class Levels Values					
Groups	2	0.1			

(2) BIDn ForsYthe Test (NUR 8E 8)

The GLM Procedure

Brown and Forsythe's Test for Homogeneity of R Variance ANOVA of Absolute Deviations from Group Medians						
Source	DE	Sum of Squares	Mean Square	F Value	Pro-F	
Groups	1	0.4218	0.4218	0.66	0.4125	
Error	1111	69,1791	0.6232			

(2) BIDn ForsYthe Test (NUR 8E 8)

The GLM Proce

Laurellad			
Groupé	N	Mean	Std Dev
	57	-0.05317100	0.90640006
1	56	0.06409667	1.20955823

BROWN FOR SYTHE TEST (FACILITIES)

The GLM Proceds

Class Level Information					
Class	Levels	Values			
Group10	2	01			

Number of Observations Read 113 Number of Observations Used 113

BROWN FOR SYTHE TEST (FACILITIES)

Brown and Forsythe's Text for Homogeneity of R Variance ANOVA of Absolute Deviations from Group Medians						
Source	DE	Sum of Squares	Mean Square	F Value	ProF	
Group10	- 1	0.6083	0.6063	0.97	0.3266	
Emor	1111	69.5170	0.6265			

BROWN FOR SYTHE TEST (FACILITIES)

Level of		R		
Group10	M	Mean	Sed Dev	
0	57	-0.01332796	0.90455141	
1	56	0.04354434	1.21427192	

	Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum		
STAYLENGTH	113	9.64832	1.91146	1090	6.70000	19.56000		
AGE	113	53.23186	4.46161	6015	38.80000	65.90000		
RISK	113	4.35487	1.34091	492.10000	1.30000	7.80000		
CULTURING	113	15.79292	10.23471	1785	1.60000	60.50000		
XRAY	113	81.62832	19.36383	9224	39.60000	133.50000		
BEDS	113	252.16814	192.84269	28495	29.00000	835.00000		
MEDSCHOOL	113	1.84956	0.35910	209.00000	1.00000	2.00000		
REGION	113	2.36283	1.00944	267.00000	1.00000	4.00000		
CENSUS	113	191.37168	153.75956	21625	20.00000	791.00000		
NURSES	113	173.24779	139.26539	19577	14.00000	656.00000		
FACILITIES	113	43.15929	15.20086	4877	5.70000	80.00000		

Results of Stepwise calculation:-

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits
Intercept	1	0.97591	1.45210	0.67	0.5030	-1.90333	3.85515
RISK	1	0.28447	0.11022	2.58	0.0112	0.06592	0.50301
CENSUS	1	0.02013	0.00363	5.54	<.0001	0.01293	0.02733
XRAY	1	0.01620	0.00642	2.53	0.0130	0.00348	0.02892
AGE	1	0.09153	0.02568	3.56	0.0006	0.04061	0.14245
BEDS	1	-0.00899	0.00301	-2.98	0.0036	-0.01497	-0.00301
NURSES	1	-0.00546	0.00196	-2.79	0.0063	-0.00935	-0.00158
CULTURING	1	0.03359	0.01350	2.49	0.0144	0.00683	0.06036

Medians for IWLS procedures:-

The UNIVARIATE Procedure Variable: residual3 (Residual)

Moments						
N	113	Sum Weights	113			
Mean	0.07238228	Sum Observations	8.17919818			
Std Deviation	1.27799712	Variance	1.63327663			
Skewness	1.54189456	Kurtosis	6.8034814			
Uncorrected SS	183.519012	Corrected SS	182.926983			
Coeff Variation	1765.62141	Std Error Mean	0.12022386			

Basic Statistical Measures					
Location Variability					
Mean	0.07238	Std Deviation	1.27800		
Median -0.06523		Variance	1.63328		
Mode .		Range	9.35588		
		Interquartile Range	1.67119		

Stepwise Selection

The UNIVARIATE Procedure Variable: abs_Res3_median

Moments						
N	113	Sum Weights	113			
Mean	0.94745611	Sum Observations	107.062541			
Std Deviation	0.85620587	Variance	0.73308849			
Skewness	3.56118276	Kurtosis	22.2412887			
Uncorrected SS	183.542969	Corrected SS	82.1059108			
Coeff Variation	90.3689214	Std Error Mean	0.08054507			

Basic Statistical Measures					
Location Variability					
Mean	0.947456	Std Deviation	0.85621		
Median	0.853649	Variance	0.73309		
Mode		Range	7.02541		
		Interquartile Range	0.80589		

The UNIVARIATE Procedure Variable: abs_Res2_median

Moments				
N	113		113	
Mean	0.94586304	Sum Observations	106.882523	
Std Deviation	0.86573804	Variance	0.74950236	
Skewness	3.56142672	Kurtosis	22.1970005	
Uncorrected SS	185.040493	Corrected SS	83.9442644	
Coeff Variation	91.5289011	Std Error Mean	0.08144178	

	Basic Statistical Measures			
Location Variability				
Mean 0.945863 Std Deviation (0.86574		
Median	0.820663	Variance	0.74950	
Mode .		Range	7.09655	
		Interquartile Range	0.76453	

Stepwise Selection

The UNIVARIATE Procedure Variable: abs_Res1_median

Moments				
N	113	Sum Weights	113	
Mean	0.94584309	Sum Observations	106.88027	
Std Deviation	0.86304221	Variance	0.74484186	
Skewness	3.53209255	Kurtosis	21.927057	
Uncorrected SS	184.514253	Corrected SS	83.4222878	
Coeff Variation	91.2458118	Std Error Mean	0.08118818	

	Basic Statistical Measures			
Location Variability				
Mean 0.945843 Std Deviat		Std Deviation	0.86304	
Median 0.839637		Variance	0.74484	
Mode .		Range	7.05974	
		Interquartile Range	0.78435	

The UNIVARIATE Procedure Variable: abs_Res0_median

Moments				
N	113	Sum Weights	113	
Mean	0.94907174	Sum Observations	107.245107	
Std Deviation	0.85034257	Variance	0.72308249	
Skewness	3.21267173	Kurtosis	18.8854307	
Uncorrected SS	182.768539	Corrected SS	80.9852387	
Coeff Variation	89.5972911	Std Error Mean	0.0799935	

Basic Statistical Measures				
Location Variability				
Mean	Mean 0.949072 Std Deviation 0.850			
Median	0.851565	Variance	0.72308	
Mode		Range	6.76150	
		Interquartile Range	0.81256	

Stepwise Selection

The UNIVARIATE Procedure Variable: residual1 (Residual)

Moments				
N	113	Sum Weights	113	
Mean	0.06128768	Sum Observations	6.92550832	
Std Deviation	1.2768921	Variance	1.63045344	
Skewness	1.52021449	Kurtosis	6.68724627	
Uncorrected SS	183.035234	Corrected SS	182.610785	
Coeff Variation	2083.43996	Std Error Mean	0.1201199	

Basic Statistical Measures					
Loc	Location Variability				
Mean	0.06129	06129 Std Deviation 1.27			
Median	-0.06850	Variance	1.63045		
Mode .		Range	9.31355		
		Interquartile Range	1.67929		

The UNIVARIATE Procedure Variable: residual2 (Residual)

Moments				
N	113	Sum Weights	113	
Mean	0.0698938	Sum Observations	7.89799921	
Std Deviation	1.27783508	Variance	1.63286248	
Skewness	1.5389978	Kurtosis	6.78956565	
Uncorrected SS	183.432619	Corrected SS	182.880598	
Coeff Variation	1828.25244	Std Error Mean	0.12020861	

	Basic Statistical Measures			
Location Variability				
Mean 0.06989		Std Deviation	1.27784	
Median	-0.06836	Variance	1.63286	
Mode .		Range	9.34943	
		Interquartile Range	1.67141	

Stepwise Selection

The UNIVARIATE Procedure Variable: residual0 (Residual)

Moments				
N	N 113 Sum Weights			
Mean	0	Sum Observations	0	
Std Deviation	1.27262568	Variance	1.61957611	
Skewness	1.33923159	Kurtosis	5.63163326	
Uncorrected SS	181.392524	Corrected SS	181.392524	
Coeff Variation		Std Error Mean	0.11971855	

	Basic Statistical Measures			
Location Variability				
Mean 0.00000 Std Deviation		1.27263		
Median	-0.11035	Variance	1.61958	
Mode		Range	9.18728	
		Interquartile Range	1.70037	

Tests for Location: Mu0=0								
Test	Statistic p Value							
Student's t	t	0	Pr > t	1.0000				
Sign	М	-6.5	Pr >= M	0.2589				
Signed Rank	S	-215.5	Pr >= S	0.5394				

Parameters during IWLS calculations:-

	Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits					
Intercept	1	0.98673	1.44746	0.68	0.4969	-1.88332	3.85678				
RISK	1	0.28342	0.10972	2.58	0.0112	0.06587	0.50098				
CENSUS	1	0.02013	0.00362	5.57	<.0001	0.01296	0.02730				
XRAY	1	0.01623	0.00639	2.54	0.0125	0.00356	0.02889				
AGE	1	0.09127	0.02560	3.56	0.0005	0.04050	0.14203				
BEDS	1	-0.00900	0.00300	-3.00	0.0034	-0.01495	-0.00305				
NURSES	1	-0.00544	0.00195	-2.79	0.0063	-0.00931	-0.00157				
CULTURING	1	0.03374	0.01343	2.51	0.0135	0.00711	0.06038				

	Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits					
Intercept	1	0.97591	1.45210	0.67	0.5030	-1.90333	3.85515				
RISK	1	0.28447	0.11022	2.58	0.0112	0.06592	0.50301				
CENSUS	1	0.02013	0.00363	5.54	<.0001	0.01293	0.02733				
XRAY	1	0.01620	0.00642	2.53	0.0130	0.00348	0.02892				
AGE	1	0.09153	0.02568	3.56	0.0006	0.04061	0.14245				
BEDS	1	-0.00899	0.00301	-2.98	0.0036	-0.01497	-0.00301				
NURSES	1	-0.00546	0.00196	-2.79	0.0063	-0.00935	-0.00158				
CULTURING	1	0.03359	0.01350	2.49	0.0144	0.00683	0.06036				

-2.84

2.43

0.0054

0.0167

-0.00951

0.00609

-0.00169

0.05986

0.00197

0.01356

AXA190076

STAT 6337

Project 3

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits				
Intercept	1	0.98743	1.44557	0.68	0.4961	-1.87887	3.85373			
RISK	1	0.28309	0.10951	2.58	0.0111	0.06594	0.50023			
CENSUS	1	0.02013	0.00361	5.58	<.0001	0.01297	0.02728			
XRAY	1	0.01625	0.00638	2.55	0.0123	0.00361	0.02889			
AGE	1	0.09122	0.02557	3.57	0.0005	0.04052	0.14192			
BEDS	1	-0.00900	0.00299	-3.01	0.0033	-0.01494	-0.00307			
NURSES	1	-0.00544	0.00195	-2.79	0.0063	-0.00930	-0.00157			
CULTURING	1	0.03378	0.01341	2.52	0.0133	0.00719	0.06036			

Output for Q 3:-

NURSES

CULTURING

1

1

-0.00560

0.03297

Ashish Mani Acharya

Simple logistic regression for 15 variables:-

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Wald Error Chi-Square Pr > ChiSq								
Intercept	1	-5.0792	0.2754	340.1573	<.0001			
sys <mark>BP</mark>	1	0.0246	0.00194	162.0188	<.0001			

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSq								
Intercept	1	-4.4758	0.3187	197.1868	<.0001			
diaBP	1	0.0326	0.00366	79.4236	<.0001			

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Wald Error Chi-Square Pr > ChiSq								
Intercept		1	-1.1819	0.1078	120.3148	<.0001		
Diabetes	0	1	-0 <mark>.578</mark> 4	0.1078	28.8144	<.0001		

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Chi-Square Pr > ChiSq								
Intercept	1	-3.0391	0.2502	147.5679	<.0001			
TotChol	1	0.00550	0.00101	29.8338	<.0001			

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSq								
Intercept		1	-1.6043	0.0469	1170.0348	<.0001		
PrevalentHyp 0 1 -0.5022 0.0469 114.6518 <.0001								

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSq								
Intercept		1	-1.1060	0.2259	23.9777	<.0001		
PrevalentStroke	0	1	-0.6205	0.2259	7.5473	0.0060		

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Chi-Square Pr > ChiSq								
Intercept 1 -1.2270 0.1034 140.7184 <.0001								
BPMeds	0	1	-0 <mark>.533</mark> 9	0.1034	26.6404	<.0001		

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Chi-Square Pr > ChiSq								
Intercept	1	-1.8270	0.0593	948.7787	<.0001			
CigsPerDay	1	0 <mark>.011</mark> 5	0.00367	9.8977	0.0017			

	Analysis of Maximum Likelihood Estimates				
Parameter	eter DF Estimate Standard Wald Chi-Square Pr>				
Intercept	1	-2.0738	0.2927	50.1933	<.0001
Heart Rate	1	0.00471	0.00379	1.5392	0.2147

	Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-2.5700	0.1440	318.6051	<.0001	
glucose	1	0.0102	0.00161	40.1968	<.0001	

	Analysis of Maximum Likelihood Estimates					
		Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept		1	-1.7098	0.0463	1363.2869	<.0001
male	0	1	- <mark>0.255</mark> 2	0.0463	30.3750	<.0001

	Analysis of Maximum Likelihood Estimates					
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-1.8012	0.0545	1091.7449	<.0001
education	1	1	0 <mark>.35</mark> 57	0.0714	24.8376	<.0001
education	2	1	-0.2009	0.0855	5.5239	0.0188
education	3	1	-0.1560	0.1029	2.3014	0.1293

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Wald ate Error Chi-Square Pr > ChiSq			
Intercept		1	-1.7161	0.0460	1389.6044	<.0001	
CurrentSmoker	0	1	-0 <mark>.05</mark> 34	0.0460	1.3436	0.2464	

full model with 13 variables . they look jointly significant.

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	367 _. 9099	15	<.0001		
Score	371.4981	15	<.0001		
Wald	310.1566	15	<.0001		

SAS codes:-

/* Q1*/

filename Senic "/home/u59316208/6337/Senic.dat";

DATA A;

INFILE Senic;

INPUT ID STAYLENGTH AGE RISK CULTURING XRAY BEDS MEDSCHOOL REGION CENSUS NURSES FACILITIES;

RUN;

/* Scatter plots*/

PROC SGSCATTER DATA=A;

```
Ashish Mani Acharya AXA190076 STAT 6337
STAYLENGTH = b0 + b1*AGE + b2*RISK + b3*CULTURING +b4*XRAY +b5*BEDS +b6*MEDSCHOOL +b7*REGION
+b8*CENSUS +b9*NURSES +b10*FACILITIES;
FIT STAYLENGTH /BREUSCH=(AGE RISK CULTURING XRAY BEDS MEDSCHOOL REGION CENSUS NURSES FACILITIES);
FIT STAYLENGTH /BREUSCH=(AGE);
FIT STAYLENGTH /BREUSCH=(RISK);
FIT STAYLENGTH /BREUSCH=(CULTURING);
FIT STAYLENGTH /BREUSCH=(XRAY);
FIT STAYLENGTH /BREUSCH=(BEDS);
FIT STAYLENGTH /BREUSCH=(MEDSCHOOL);
FIT STAYLENGTH /BREUSCH=(REGION);
FIT STAYLENGTH /BREUSCH=(CENSUS);
FIT STAYLENGTH /BREUSCH=(NURSES);
FIT STAYLENGTH /BREUSCH=(FACILITIES);
RUN;
/* Get medians for BROWN FORSYTHE TEST */
PROC MEANS DATA = A MEDIAN;
VAR AGE RISK CULTURING XRAY BEDS MEDSCHOOL REGION CENSUS NURSES FACILITIES;
RUN;
DATA B; SET B;
Group1 = (AGE > 53.2000000);
Group2 = (RISK > 4.4000000);
Group3 = (CULTURING > 14.1000000);
Group4 = (XRAY > 82.3000000);
Group5 = (BEDS > 186.0000000);
Group6 = (MEDSCHOOL > 2.0000000);
```

Group7 = (REGION > 2.0000000);

Group8 = (CENSUS > 143.0000000);

Group9 = (NURSES > 132.0000000);

```
Group10 = (FACILITIES > 42.9000000);
RUN;
/* BROWN FORSYTHE TESTs for homogeneity*/
TITLE "BROWN FORSYTHE TEST (AGE)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group1;
MODEL R = Group1 / NOUNI;
MEANS Group1 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (RISK)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group2;
MODEL R = Group2 / NOUNI;
MEANS Group2 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (CULTURING)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group3;
MODEL R = Group3 / NOUNI;
MEANS Group3 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (XRAY)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group4;
MODEL R = Group4 / NOUNI;
MEANS Group4 / HOVTEST = BF;
RUN;
```

```
TITLE "BROWN FORSYTHE TEST (BEDS)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group5;
MODEL R = Group5 / NOUNI;
MEANS Group5 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (MEDSCHOOL)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group6;
MODEL R = Group6 / NOUNI;
MEANS Group6 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (REGION)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group7;
MODEL R = Group7 / NOUNI;
MEANS Group7 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (CENSUS)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group8;
MODEL R = Group8 / NOUNI;
MEANS Group8 / HOVTEST = BF;
RUN;
TITLE "(2) BIDn ForsYthe Test (NURSES)";
```

```
Ashish Mani Acharya AXA190076 STAT 6337 Project 3
PROC GLM DATA = B PLOTS = NONE;
CLASS Group9;
MODEL R = Group9 / NOUNI;
MEANS Group9 / HOVTEST = BF;
RUN;
TITLE "BROWN FORSYTHE TEST (FACILITIES)";
PROC GLM DATA = B PLOTS = NONE;
CLASS Group10;
MODEL R = Group10 / NOUNI;
MEANS Group10 / HOVTEST = BF;
RUN;
PROC TRANSREG DATA=A; /* Finding Box-Cox transformation power */
MODEL BoxCox(STAYLENGTH)=identity(AGE RISK CULTURING XRAY BEDS MEDSCHOOL REGION CENSUS NURSES
FACILITIES);
RUN;
DATA A; SET A;
YTRANS = (STAYLENGTH**-0.75-1)/-0.75;
RUN;
PROC REG Data = A NOPRINT;
MODEL YTRANS = AGE RISK CULTURING XRAY BEDS MEDSCHOOL REGION CENSUS NURSES FACILITIES;
OUTPUT OUT=F RSTUDENT=R;
RUN;
PROC UNIVARIATE DATA=F NORMAL PLOT;
VAR R;
```

RUN;

```
PROC REG DATA = A;
MODEL YTRANS = AGE RISK CULTURING XRAY BEDS CENSUS NURSES FACILITIES/ selection = stepwise; /* stepwise
selection */
TITLE "Stepwise Selection";
RUN;
PROC REG DATA = A NOPRINT;
MODEL STAYLENGTH = RISK CENSUS XRAY AGE BEDS NURSES CULTURING /R CLB;
output out = iteration0 r = residual0;
RUN; /* fitting the OLS model */
DATA iteration0; SET iteration0;
abs_res0 = abs(residual0);
RUN;
PROC UNIVARIATE DATA = iteration0;
VAR residual0;
RUN; /* median = -0.11035 for MAD computation */
DATA iteration0; SET iteration0;
abs_Res0_median = abs(residual0 + 0.11035);
RUN;
PROC UNIVARIATE DATA = iteration0;
VAR abs_Res0_median;
RUN; /* median = 0.851565, MAD = 0.071617/0.6745 */
DATA iteration0; SET iteration0;
```

```
u = residual0/0.851565*0.6745; w = 1;
IF abs(u) > 1.345 THEN w = 1.345/abs(u); /* Huber wt */
RUN;
PROC REG Data= iteration0; /* IWLS with Iteration0 wt */
MODEL STAYLENGTH = RISK CENSUS XRAY AGE BEDS NURSES CULTURING /R CLB;
WEIGHT w;
output out = iteration1 r = residual1;
RUN; /* IWLS Iteration 1 complete */
DATA iteration1; SET iteration1;
abs res1 = abs(residual1);
RUN;
PROC UNIVARIATE DATA = iteration1;
VAR residual1;
RUN; /* median = -0.06850
                              for MAD computation */
DATA iteration1; SET iteration1;
abs_Res1_median = abs(residual1 + 0.06850
                                             );
RUN;
PROC UNIVARIATE DATA = iteration1;
VAR abs Res1 median;
RUN; /* median = 0.839637
                             , MAD = 0.072674/0.6745 */
DATA iteration1; SET iteration1;
u1 = residual1/0.839637
                              *0.6745; w1 = 1;
IF abs(u1) > 1.345 THEN w1 = 1.345/abs(u1); /* Huber wt */
RUN;
PROC REG Data= iteration1; /* IWLS with Iteration1 wt */
MODEL STAYLENGTH = RISK CENSUS XRAY AGE BEDS NURSES CULTURING/R CLB;
```

```
WEIGHT w1;
output out = iteration2 r = residual2;
RUN; /* IWLS Iteration 2 complete */
DATA iteration2; SET iteration2;
abs_res2 = abs(residual2);
RUN;
PROC UNIVARIATE DATA = iteration2;
VAR residual2;
RUN; /* median = -0.06836
                               for MAD computation */
DATA iteration2; SET iteration2;
abs Res2 median = abs(residual2 + 0.06836
RUN;
PROC UNIVARIATE DATA = iteration2;
VAR abs_Res2_median;
RUN; /* median = 0.820663, MAD = 0.072447/0.6745 */
DATA iteration2; SET iteration2;
u2 = residual2/0.820663*0.6745; w2 = 1;
IF abs(u2) > 1.345 THEN w2 = 1.345/abs(u2); /* Huber wt */
RUN;
PROC REG Data= iteration2; /* IWLS with Iteration2 wt */
MODEL STAYLENGTH = RISK CENSUS XRAY AGE BEDS NURSES CULTURING /R CLB;
WEIGHT w2;
output out = iteration3 r = residual3;
RUN; /* IWLS Iteration 3 complete */
```

```
DATA iteration3; SET iteration3;
abs_res3 = abs(residual3);
RUN;
PROC UNIVARIATE DATA = iteration3;
VAR residual3;
RUN; /* median =
                    -0.06523 for MAD computation */
DATA iteration3; SET iteration3;
abs Res3 median = abs(residual3 +
                                     0.06523);
RUN;
PROC UNIVARIATE DATA = iteration3;
VAR abs_Res3_median;
RUN; /* median = 0.812700, MAD = 0.072404/0.6745 */
DATA iteration3; SET iteration3;
u3 = residual2/0.812700*0.6745; w3 = 1;
IF abs(u3) > 1.345 THEN w3 = 1.345/abs(u3); /* Huber wt */
RUN;
PROC REG Data= iteration3; /* IWLS with Iteration3 wt */
MODEL STAYLENGTH = RISK CENSUS XRAY AGE BEDS NURSES CULTURING /R CLB;
WEIGHT w3;
output out = iteration4 r = residual4;
RUN; /* IWLS Iteration 4 complete *
/*Q2*/
```

```
data BP1;
        infile '/home/u59603516/CH11TA011.dat';
       input Age1 $ Diastolic_BP;
run;
title "Contents of the Data, BP1";
proc contents data = BP1;
data BP;
       set BP1;
       Age = input(Age1, comma9.);
       drop Age1;
run;
title "Contents of the data, senic_original";
proc contents data = BP;
%let N = 1000;
proc surveyselect data = BP noprint
       out = BootFreq(rename = (replicate = SampleID)) noprint
       seed = 67138
       method = urs samprate = 1
       outhits reps = &N;
run;
proc reg data = BootFreq noprint;
by SampleID;
freq NumberHits;
model Diastolic_BP = Age/R clb;
output out = results0 r = residual0;
```

```
run;
```

```
data results0;
set results0;
absresid0 = abs(residual0);
run;
title "Standard Deviation Function";
proc reg data = results0 noprint;
model absresid0 = Age / p; /* option p requests fitted values */
output out = results1 p = yhat;
run;
data results1;
set results1;
wt = 1/(yhat**2);
run;
proc reg data = results1 noprint; /* to obtain the weighted least squares regression */
model Diastolic_BP = Age / R clb;
weight wt;
run;
*/ WLS to regress Y and X and obtain the bootstrap estimayed regression b*1;
title "ANOVA Table and the Values of the parameters beta0 and beta1";
proc reg data = BP outest = est;
model Diastolic_BP = Age;
run;
title "Values of s, b0, and b1";
```

```
proc print data = est;
run;
data est; set est;
s = _rmse_;
b0 = intercept;
b1 = Age;
keep s b0 b1;
run;
*/ To make a histogram of bootstrap distribution of b1;
proc reg data = BootFreq outest = bootstrap noprint;
by SampleID;
freq NumberHits;
model Diastolic_BP = Age/R clb;
run;
proc univariate data = bootstrap;
        var Age;
        histogram;
run;
*/to check for Normality of the Bootstrap Distribution;
proc univariate data = bootstrap normal plot;
/* Check the normality*/
var Age;
run;
*/Calculate the Normal approximation CI;
```

ods output FitStatistics = t0;

```
proc reg data = BP;
        model Diastolic_BP = Age;
run;
quit;
*store the estimated r-square;
data _null_;
        set t0;
        if label2 = "R-square" then
        call symput('r2bar', cvalue2);
run;
%let rep = 500;
proc surveyselect data = BP out=bootsample
        seed = 1347 method = urs
        samprate = 1 outhits rep = &rep;
run;
ods listing close;
* character type to numeric type;
data t1;
        set t0;
        r2 = cvalue2 + 0;
run;
* creating CI, normal distribution theory method;
* Z- distribution;
%let alphalev = .05;
ods listing;
proc sql;
```

```
select r2bar as r2,
                mean(r2) - r2bar as bias,
                std(r2) as std_err,
                r2bar - 1.96*(1-&alphalev/2)*std(r2) as lb,
                r2bar + 1.96*(1-&alphalev/2)*std(r2) as hb
        from t1;
quit;
*/Studentized Bootstrap CI;
* creating CI, normal distribution theory method;
* using the t-distribution;
%let alphalev = .05;
ods listing;
proc sql;
        select r2bar as r2,
                        mean(r2) - r2bar as bias,
                        std(r2) as std_err,
                        r2bar - tinv(1-&alphalev/2, &rep-1)*std(r2) as lb,
                        r2bar - tinv(&alphalev/2, &rep-1)*std(r2) as hb
        from t1;
quit;
*/Calculating the basic bootstrap CI;
%let alphalev = .05;
%let alpha1 = %sysevalf(1 - &alphalev/2);
%put &alpha1;
proc sql;
        select sum(r2<=r2bar)/count(r2) into :z0bar
        from t1;
quit;
```

```
data _null_;
        z0 = probit(&z0bar);
        zalpha = probit(&alpha1);
        p1 = put(probnorm(2*z0 - zalpha)*100, 3.0);
        p2 = put(probnorm(2*z0 + zalpha)*100, 3.0);
        output;
        call symput('a1', p1);
        call symput('a2', p2);
run;
*creating CI, bias-corrected method;
proc univariate data = t1 alpha = .05;
        var r2;
        output out = pmethod mean = r2hat pctlpts = 5 95 pctlpre = p pctlname = _lb _ub ;
run;
data t2;
        set pmethod;
        bias = r2hat - r2bar;
        r2 = r2bar;
run;
ods listing;
proc print data = t2;
        var r2 bias p_lb p_ub;
run;
*/Calculate the percentile Bootstrap CI;
```

```
*/ Using approx sampling distribution to make statistical inferences.;
proc univariate data = bootstrap noprint;
       var Age;
       output out = Pctl pctlpre = CI95_
               pctlpts = 2.597.5
                                      /* 95% bootstrap CI */
               pctIname = Lower Upper;
run;
proc print data = Pctl noobs; run;
/*bonus question */
DATA heart;
INFILE "/home/u59316208/6337/heart (1).csv" DLM=',' MISSOVER DSD FIRSTOBS=1;
INPUT male age education CurrentSmoker CigsPerDay BPMeds PrevalentStroke PrevalentHyp Diabetes
TotChol sysBP diaBP BMI HeartRate glucose TenyearCHD;
RUN;
/* Code for data input ends here */
PROC Logistic Data = heart descending; /* model P(Y=1) */
CLASS male; /* category var */
MODEL TenyearCHD = male;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
MODEL TenyearCHD = age;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
CLASS education; /* category var */
MODEL TenyearCHD = education;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
```

```
CLASS CurrentSmoker; /* category var */
MODEL TenyearCHD = CurrentSmoker;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
MODEL TenyearCHD = CigsPerDay;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
CLASS BPMeds; /* category var */
MODEL TenyearCHD = BPMeds;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
CLASS PrevalentStroke; /* category var */
MODEL TenyearCHD = PrevalentStroke;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
CLASS PrevalentHyp; /* category var */
MODEL TenyearCHD = PrevalentHyp;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
CLASS Diabetes; /* category var */
MODEL TenyearCHD = Diabetes;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
MODEL TenyearCHD = TotChol;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
MODEL TenyearCHD = sysBP;
RUN;
PROC Logistic Data = heart descending; /* model P(Y=1) */
MODEL TenyearCHD = diaBP;
```

Ashish Mani Acharya AXA190076 STAT 6337 RUN; PROC Logistic Data = heart descending; /* model P(Y=1) */ MODEL TenyearCHD = BMI; RUN; PROC Logistic Data = heart descending; /* model P(Y=1) */ MODEL TenyearCHD = HeartRate; RUN; PROC Logistic Data = heart descending; /* model P(Y=1) */ MODEL TenyearCHD = glucose; RUN; PROC Logistic Data = heart descending; /* model P(Y=1) */ CLASS male education BPMeds PrevalentStroke PrevalentHyp Diabetes; /* category var */ MODEL TenyearCHD = male age education CigsPerDay BPMeds PrevalentStroke PrevalentHyp Diabetes TotChol sysBP diaBP BMI glucose; RUN; PROC Logistic Data = heart descending; /* model P(Y=1) */ CLASS male education BPMeds PrevalentStroke PrevalentHyp Diabetes; /* category var */ MODEL TenyearCHD = male age education CigsPerDay BPMeds PrevalentStroke PrevalentHyp Diabetes

TotChol sysBP diaBP BMI glucose / SELECTION = F SLENTRY=0.1 SLSTAY=0.1; /* stepwise forward selection*/

RUN;