Лекции по предмету Линейная алгебра и геометрия

2017 год

Содержание

Лекция 19	2
Двойственное (сопряжённое) векторное пространство	2
Билинейные функции (формы) на векторном пространстве	3
Лекция 21	6
Метод Якоби	6
Нормальный вид квадратичной формы над \mathbb{R}	8
Закон инерции	8
Лекция 23	10
Явная формула для ортогональной проекции вектора на подпространство	10
Ортогональные и ортонормированные системы векторов	10
Как строить ортогональный базис?	12
Лекция 25	14
Ориентированный объём	14
Трёхмерное евклидово пространство	15
Двойное векторное произведение	16
Лекция 27	18
Взаимное расположение двух плоскостей в \mathbb{R}^3	18
Взаимное расположение двух прямых в \mathbb{R}^3	18
Взаимное расположение прямой и плоскости в \mathbb{R}^3	18
Метрические задачи в \mathbb{R}^3	18
Линейные операторы	19
Лекция 29	21
Алгебраическая и геометрическая кратности	21
Критерий диагонализуемости линейного оператора	22

Двойственное (сопряжённое) векторное пространство

V — векторное пространство. Линейная функция на V — это линейное отображение $\alpha:V\to\mathbb{F}$.

Определение. Hom (V, \mathbb{F}) — двойственное (сопряженное) к V пространство.

Обозначение. $\operatorname{Hom}(V,\mathbb{F}) = V^* -$ множество всех линейных функций.

Из общей теории линейных отображений

- 1. $V^* = \operatorname{Hom}(V, \mathbb{F}) \Rightarrow V^* \operatorname{векторное}$ пространство;
- 2. Если $e = (e_1, \dots, e_n)$ базис V, то имеется изоморфизм $V^* \xrightarrow{\sim} \mathrm{Mat}_{1 \times n}(\mathbb{F})$. Умножение строки на столбец реализация вычисления функции на векторе.

 $\alpha \in V^*, \alpha \mapsto (\alpha_1, \dots, \alpha_n)$, где $\alpha_i = \alpha(e_i)$ — коэффициенты линейной функции α в базисе \mathfrak{e} .

Следствие (В конечномерном случае). $\dim V^* = n = \dim V \Rightarrow V \simeq V^*$.

При $i=1,\ldots,n$ рассмотрим функцию $\varepsilon_i\in V^*$ соответствующую строке $(0,\ldots,0,1,0,\ldots,0)\in \mathrm{Mat}_{1\times n}.$ Тогда:

$$\varepsilon_i = \begin{cases} 1, i = j \\ 0, \text{ иначе} \end{cases} = \delta_{ij}$$

 $\varepsilon_1,\ldots,\varepsilon_n$ — базис в V^* .

Определение. Базис $\varepsilon_1, ..., \varepsilon_n$ называется базисом двойственным к базису ε . Он однозначно определяется условием (*).

$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = E$$

Предложение. Всякий базис $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ пространства V^* двойственен к некоторому базису пространства V.

Доказательство. Возьмём произвольный базис \mathfrak{C}' пространства V. Пусть $\varepsilon' = (\varepsilon'_1, \dots, \varepsilon'_n)$ — двойственный к \mathfrak{C}' базис в V^* . Тогда:

$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} = C \begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix}$$

для некоторой невырожденной матрицы $C \in M_n$ (координаты в матрице записаны по строкам). Положим $\mathfrak{e} = (e'_1, \dots, e'_n)C^{-1}$ — некий базис в V. Имеем:

$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = C \begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix} (e_1', \dots, e_n') C^{-1} = CEC^{-1} = E$$

Утверждение. $V = \mathbb{F}^n$. Множество решений некоторой ОСЛУ является подрпространством в \mathbb{F}^n .

Теорема. Всякое подпространство в \mathbb{F}^n есть множество решений некоторой ОСЛУ.

Доказательство. Пусть дано подпространство U в \mathbb{F}^n . Выберем в нём базис (v_1, \dots, v_k) . Рассмотрим в $(\mathbb{F}^n)^*$ подмножество $S := \{\alpha \in (\mathbb{F}^n)^* \mid \alpha(v_1) = 0, \dots, \alpha(v_k) = 0\}$. S — подпространство в $(\mathbb{F}^n)^*$, S — множество решений ОСЛУ:

$$\begin{cases} \alpha(v_1) = 0 \\ \vdots \\ \alpha(v_k) = 0 \end{cases}$$

на коэффициенты α .

Так как v_1, \ldots, v_k линейно независимы, то ранг матрицы коэффициентов равен $k \Rightarrow \dim S = n - k$. Выберем в S базис $\alpha_1, \ldots, \alpha_{n-k}$ и рассмотрим ОСЛУ:

$$\begin{cases} \alpha_1(x) = 0 \\ \vdots \\ \alpha_{n-k}(x) = 0 \end{cases}$$

относительно неизвестного вектора $x \in \mathbb{F}^n$.

Пусть $U' \subseteq F^n$ — подпространство решений этой ОСЛУ. Ранг матрицы коэффициентов равен $n-k \Rightarrow \dim U' = n-n+k = k$, но $U \subseteq U'$ по построению. Так как $\dim U = \dim U' = k$, то U = U'.

Билинейные функции (формы) на векторном пространстве

Определение. Билинейная форма (функция) на V- это отображение $\beta:V\times V\to \mathbb{F},$ линейное по каждому аргументу.

1.
$$\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y)$$

2.
$$\beta(\alpha x, y) = \alpha \beta(x, y)$$

3.
$$\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2)$$

4.
$$\beta(x, \alpha y) = \alpha \beta(x, y)$$

Пример.

1.
$$V = \mathbb{R}^n, \ \beta(x,y) = \langle x,y \rangle$$
 — скалярное произведение.

2.
$$V = \mathbb{R}^2, \ \beta(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$
.

3.
$$V = C[a, b], \ \beta(f, g) = \int_a^b f(x)g(x)dx.$$

Определение. Матрицей билинейной функции в базисе $\mathfrak e$ называется матрица $B=(b_{ij}),$ где $b_{ij}=\beta(e_i,e_j).$ Обозначение: $B(\beta,\mathfrak e).$

Пусть $x = x_1 e_1 + \ldots + x_n e_n \in V$ и $y = y_1 e_1 + \ldots + y_n e_n \in V$. Тогда:

$$\beta(x,y) = \beta\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i=1}^{n} x_i \beta\left(e_i, \sum_{j=1}^{n} y_j e_j\right) =$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j \beta(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i b_{ij} y_j =$$

$$= (x_1, \dots, x_n) B\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad (*)$$

Предложение.

- 1. Всякая билинейная функция однозначно определяется своей матрицей в базисе e (u, следовательно, в любом другом базисе).
- 2. Для любой матрицы $B \in M_n(F)$ существует единственная билинейная функция β такая, что $B = B(\beta, e)$.

Доказательство.

- 1. Уже доказано, это следует из формулы (*).
- 2. Определим β по формуле (*). Тогда β это билинейная функция на V и ее матрица есть в точности B. Единственность следует из все той же формулы.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два базиса V, β — билинейная функция на V. Пусть также e' = eC, где C — матрица перехода, также $B(\beta, e) = B$ и $B(\beta, e') = B'$.

Предложение. $B' = C^T B C$.

Доказательство. Рассмотрим представление вектора $x \in V$ в обоих базисах.

$$x = x_1 e_1 + \dots + x_n e_n = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$
$$x = x'_1 e'_1 + \dots + x'_n e'_n = (e'_1, \dots, e'_n) \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

Аналогично для $y \in V$:

$$y = (e_1, \dots, e_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

$$y = (e'_1, \dots, e'_n) \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Тогда, если мы транспонируем формулу для x, получаем:

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x'_1, \dots, x'_n) C^T B C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Одновременно с этим:

$$\beta(x,y) = (x'_1, \dots, x'_n)B'\begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Сравнивая эти две формулы, получаем, что $B' = C^T B C$.

V – векторное пространство над \mathbb{F} (в котором $1+1 \neq 0$) $e = (e_1, \ldots, e_n)$ – базис $Q:V \to \mathbb{F}$ – квадратичная форма

Определение. Q имеет в базисе с канонический вид, если в этом базисе

$$Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2, \ b_i \in \mathbb{F}$$

 $(то \ есть \ матрица \ квадратичной формы <math>Q \ в \ этом \ базисе \ диагональна)$

Метод Якоби

 $e = (e_1, \dots, e_n)$ Рассмотрим набор векторов $e' = (e'_1, \dots, e'_n)$ такой что

$$e'_{1} = e_{1}$$

$$e'_{2} \in e_{2} + \langle e_{1} \rangle$$

$$e'_{3} \in e_{3} + \langle e_{1}, e_{2} \rangle$$

$$\vdots$$

$$e'_{n} \in e_{n} + \langle e_{1}, \dots, e_{n-1} \rangle$$

$$(\star)$$

Для любого $k \in (1, \ldots, n)$ имеем $(e'_1, \ldots, e'_k) = (e_1, \ldots, e_k) \cdot C_k$, где

$$C_k = \begin{pmatrix} 1 & \star & \star & \star & \cdots & \star \\ 0 & 1 & \star & \star & \cdots & \star \\ 0 & 0 & 1 & \star & \cdots & \star \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_k(\mathbb{F})$$

 $\det C_k = 1 \neq 0 \Rightarrow (e'_1, \dots, e'_k)$ линейно независимы $\Rightarrow \langle e_1, \dots, e_k \rangle = \langle e'_1, \dots, e'_k \rangle$. В частности \mathfrak{C}' – базис пространства V.

Пусть Q – квадратичная форма

$$B = B(Q, e)$$

 $B_k = B(Q, e)$ – левый верхний $k \times k$ блок в B

 $\sigma_k = \sigma_k(Q, \mathbf{e}) = \det B_k - k$ -ый угловой минор матрицы B.

Пусть \mathfrak{e}' – базис V удовлетворяющий условию (\star)

$$B' = B(Q, e')$$

$$B'_k = B_k(Q, \mathbf{e}')$$

$$\sigma'_k = \sigma_k(Q, \mathbf{e}')$$

$$\sigma'_{l} = \sigma_{l}(Q, e')$$

Лемма. Для любого $k \in (1, ..., n), \ \sigma_k = \sigma'_k$

 \mathcal{A} оказательство. При любом k имеем $B_k' = C_k^T \cdot B_k \cdot C_k \Rightarrow$ определитель $\sigma_k' = \det C_k^T \cdot B \cdot C_k =$ $\det B_k = \sigma_k$ и

Теорема. (Метод Якоби приведения квадратичной формы к каноническому виду) Предположим, что $\sigma_k \neq 0 \forall k$, тогда существует единственный базис $\mathfrak{E}' = (e'_1, \dots, e'_n)$ в V, такой что

- 1. е' имеет вид (**⋆**)
- 2. в этом базисе Q имеет канонический вид

$$Q(x) = \sigma_k x_1^{\prime 2} + \frac{\sigma_2}{\sigma_1} x_2^{\prime 2} + \ldots + \frac{\sigma_n}{\sigma_{n-1}} x_n^{\prime 2}$$

то есть
$$B(Q, e') = \operatorname{diag}(\sigma_1, \frac{\sigma_2}{\sigma_1}, \dots, \frac{\sigma_n}{\sigma_{n-1}})$$

Доказательство. Индукция по n:

n = 1 – верно

Пусть доказано для n-1 докажем для n

Пусть векторы e_1',\ldots,e_{n-1}' уже построены

$$B(Q, (e'_1 \dots, e'_{n-1}, e_n)) = \begin{pmatrix} \sigma_1 & 0 & \cdots & \cdots & 0 & \star \\ 0 & \frac{\sigma_2}{\sigma_1} & \cdots & \cdots & 0 & \vdots \\ 0 & 0 & \ddots & \cdots & 0 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \frac{\sigma_{n-1}}{\sigma_{n-2}} & \star \\ \star & \star & \star & \cdots & \star & \star \end{pmatrix}$$

Ищем e'_n в виде $e_n + \langle e_1, \dots, e_{n-1} \rangle = e_n + \langle e'_1, \dots, e'_{n-1} \rangle$ то есть в виде $e'_n = e_n + \lambda_1 e'_1 + \dots + \lambda_{n-1} e'_{n-1}$. Пусть $\beta : V \times V \to \mathbb{F}$ – симметрическая билинейная форма, соответствующая Q.

$$\beta(e'_k, e'_n) = \beta(e'_k, e_n) + \lambda_1 \beta(e'_k, e'_1) + \dots + \lambda_{k-1} \beta(e'_k, e'_{k-1})$$

так как $\beta(e_i',e_j')=0$ при $1\leqslant i,j\leqslant n-1,i\neq j$

$$\beta(e_k', e_n') = \beta(e_k', e_n) + \lambda_k(e_k', e_k')$$

Тогда $\beta(e_k',e_n')=0\ \forall k=1,\ldots,n-1$ тогда и только тогда, когда $\lambda_k=-\frac{\beta(e_k',e_n)}{\beta(e_k',e_k')}=-\beta(e_k',e_n)\cdot\frac{\sigma_{k-1}}{\sigma_k}.$

В итоге построен базис $\mathfrak{e}'=(e'_1,\ldots,e'_n)$ такой что

$$B(Q, e') = \begin{pmatrix} \sigma_1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & \frac{\sigma_2}{\sigma_1} & \cdots & \cdots & 0 & \vdots \\ 0 & 0 & \ddots & \cdots & 0 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \frac{\sigma_{n-1}}{\sigma_{n-2}} & 0 \\ 0 & 0 & 0 & \cdots & 0 & ? \end{pmatrix}$$

В силу леммы
$$\sigma_n = \sigma'_n = \sigma_1 \cdot \frac{\sigma_2}{\sigma_1} \cdot \ldots \cdot \frac{\sigma_{n-1}}{\sigma_{n-2}} \cdot ? = \sigma_{n-1} \cdot ? \Rightarrow ? = \frac{\sigma_n}{\sigma_{n-1}}.$$

Замечание. Единственность следует из явных формул на каждом шаге.

Нормальный вид квадратичной формы над полем $\mathbb R$

Определение. Квадратичная форма Q имеет в базисе e нормальный вид, если в этом базисе $Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2$, где $b_i \in \{-1, 0, 1\}$.

Предложение. Для любой квадратичной формы Q над полем \mathbb{R} существует базис, в котором Q принимает нормальный вид.

$$Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2$$

Делаем невырожденную замену

$$x_i = \begin{cases} \frac{x_i'}{\sqrt{|b_i|}}, & b_i \neq 0\\ x_i', & b_i = 0 \end{cases}$$

Тогда в новых координатах Q имеет вид $Q(x) = \varepsilon_1 x_1^2 + \ldots + \varepsilon_n x_n^2$, где $\varepsilon_i = \operatorname{sgn}(b_i)$.

Замечание. Если $F = \mathbb{C}$, то такое же рассуждение позволяет привести любую квадратичную форму над полем \mathbb{C} к виду $x_1^2 + \ldots + x_k^2$, где $k = \operatorname{rk} Q$

Закон инерции

Пусть Q – квадратичная форма над \mathbb{R} . Нормальный вид: $Q(x) = x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2$. s – число «+» в нормальном виде, t – число «-» в нормальном виде.

Определение. Число $i_{+} = s$ – положительный индекс инерции квадратичной формы Q.

Определение. Число $i_{-} = t$ – отрицательный индекс инерции квадратичной формы Q.

Теорема. Числа i_+ и i_- не зависят от базиса в котором Q принимает нормальный вид.

Доказательство. Имеем $i_+ + i_- = \operatorname{rk} Q$ – инвариантная величина \Rightarrow достаточно доказать инвариантность числа i_+ .

Пусть базис є таков, что в нем $Q(x)=x_1+\ldots+x_s^2-x_{s+1}^2-\ldots-x_{s+t}^2$ и пусть є' – другой базис такой что в нем $Q(x)=x_1^2+\ldots+x_{s'}^2-x_{s'+1}^2-\ldots-x_{s'+t'}^2$.

Предположим, что $s \neq s'$, тогда без ограничения общности s > s'. Рассмотрим в V подпространства $L = \langle e_1, \dots, e_s \rangle$ и $L' = \langle e'_{s'+1}, \dots, e'_n \rangle$. dim L = s и dim L' = n - s'. L + L' – подпространство в $V \Rightarrow \dim(L + L') \leqslant \dim V = n$. Тогда $\dim(L \cap L') = \dim L + \dim L' - \dim(L + L') \geqslant s + n - s' - n = s - s' > 0$. Тогда существует $v \in L \cap L', v \neq 0$. Так как $v \in L$, то Q(v) > 0, но так как $v \in L'$, то $Q(v) \leqslant 0$ – противоречие.

Определение. Kвадратичная функция Q над полем $\mathbb R$ называется

Термин	Обозначение	Условие
положительно определенной	Q > 0	$Q(x) > 0 \ \forall x \neq 0$
отрицательно определенной	Q < 0	$Q(x) < 0 \ \forall x \neq 0$
неотрицательно определенной	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$
неположительно определенной	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$
неопределенной	_	$\exists x, y \colon Q(x) > 0, \ Q(y) < 0$

Термин	Нормальный вид	Индексы инерции
положительно определенной	$x_1^2 + \ldots + x_n^2$	$i_{+} = n, i_{-} = 0$
отрицательно определенной	$-x_1^2-\ldots-x_n^2$	$i_{+} = 0, i_{-} = n$
неотрицательно определенной	$x_1^2 + \ldots + x_k^2, \ k \leqslant n$	$i_+ = k, i = 0$
неположительно определенной	$-x_1^2 - \ldots - x_k^2, \ k \leqslant n$	$i_+ = 0, i = k$
неопределенной	$x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2, \ s, t \ge 1$	$i_+ = s, \ i = t$

Пример. $V = \mathbb{R}^2$.

- 1. $Q(x,y) = x^2 + y^2$, Q > 0;
- 2. $Q(x,y) = -x^2 y^2$, Q < 0;
- 3. $Q(x,y) = x^2 y^2;$
- 4. $Q(x,y) = x^2, Q \ge 0;$
- 5. $Q(x,y) = -x^2, Q \leq 0.$

Явная формула для ортогональной проекции вектора на подпространство

 \mathbb{E} – Евклидово пространство, $S \subseteq \mathbb{E}$ – подпространство, $S^{\perp} = \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}.$

Замечание.

1.
$$v \in S \iff \operatorname{pr}_{S} v = v \iff \operatorname{ort}_{s} v = 0$$

2.
$$v \in S^{\perp} \iff \operatorname{ort}_s v = v \iff \operatorname{pr}_s v = 0$$

Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением, $S \in \mathbb{R}^n$ – подпространство, (a_1, \ldots, a_k) – базис в S. Образуем матрицу $A \in \operatorname{Mat}_{n \times k}(\mathbb{R})$, где $A^{(i)} = a_i$.

Предложение. Для всякого $v \in \mathbb{E} \operatorname{pr}_S v = A(A^T A)^{-1} A^T v$.

Доказательство. Корректность A^TA , заметим, что $A^TA = ((a_i, a_j)) = G(a_1, \dots, a_k)$ – невырожденная, так как (a_1, \dots, a_k) линейно независимы. $v \in \mathbb{E}$,

$$x = \operatorname{pr}_{S} v \Rightarrow x \in S \Rightarrow x = \lambda_{1} a_{1} + \ldots + \lambda_{k} a_{k} = A \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix}$$

 $y=\mathrm{ort}_S v\Rightarrow A^Ty=0$ так как $y\in S^\perp$ и все скалярные произведения =0

$$A(A^{T}A)^{-1}A^{T}v = A(A^{T}A)^{-1}A^{T}(x+y) = A(A^{T}A)^{-1}A^{T}A\begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix} + A(A^{T}A)^{-1}A^{T}y = A\begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix} = x$$

Ортогональные и ортонормированные системы векторов

Е – евклидово пространство

Определение. Система ненулевых векторов $v_1, \ldots, v_n \in \mathbb{E}$ называется ортогональной, если $(v_i, v_j) = 0 \forall i \neq j \ (\iff G(v_1, \ldots, v_n) \ \partial u$ агональна + невырождена).

Определение. Система ненулевых векторов $v_1, \ldots, v_n \in \mathbb{E}$ называется ортонормированной, если $(v_i, v_j) = 0 \forall i \neq j$ и $(v_i, v_i) = |v_i|^2 = 1 \forall i \ (\iff G(v_1, \ldots, v_n) = E)$.

Замечание. Всякая ортогональная (в частности ортонормированная) система векторов линейно независима.

Определение. Базис (e_1, \ldots, e_n) в \mathbb{E} называется ортогональным (ортонормированным), если e_1, \ldots, e_n ортогональная (ортонормированная) система.

Пример. $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением $(x, y) = x_1 y_1 + \ldots + x_n y_n$. Стандартный базис:

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

является ортонормированным.

Теорема. Во всяком конечномерном евклидовом пространстве существует ортогональный (ортонормированный базис).

Доказательство. Уже знаем, что так как квадратичная форма (v,v) положительно определена, то существует базис, в котором она принимает нормальный вид. Этот базис и есть ортонормированный.

Следствие. Всякую ортогональную (ортонормированную) систему векторов можно дополнить до ортогонального (ортонормированного) базиса.

Доказательство. Если (e_1, \ldots, e_k) такая система, то искомым дополнением будет ортогональный (соответственно ортонормированный) базис $\{e_1, \ldots, e_k\}^{\perp}$.

Замечание. Если (e_1,\ldots,e_n) — ортогональный базис, то $\left(\frac{e_1}{|e_1|},\ldots,\frac{e_n}{|e_n|}\right)$ — ортонормированный базис.

 $\mathfrak{E}'=(e_1',\dots,e_n')=(e_1,\dots,e_n)C$ — какой-то другой базис.

Предложение. (e'_1, \ldots, e'_n) ортонормирован $\iff C^T \cdot C = E$.

Доказательство. \mathfrak{E}' ортонормирован \iff $G(e_1',\ldots,e_n')=E$, с другой стороны $G(\mathfrak{E}')=C^TG(\mathfrak{E})C=C^TEC=E$, а значит $C^TC=E$.

Определение. Матрица $C \in M_n(\mathbb{R})$ называется ортогональной, если $C^TC = E$.

Замечание. $C^TC = E \iff C^{-1} = C^T \iff CC^T = E$.

Свойства.

- 1. Столбцы образуют ортонормированную систему $(C^{(i)}, C^{(j)}) = \delta_{ij}$.
- 2. Строки образуют ортонормированную систему $(C_{(i)}, C_{(j)}) = \delta_{ij}$. В частности $|c_{ij}| \leq 1 \forall i, j$.
- 3. $\det C = \pm 1$

Пример. n=2

$$\det C = 1, C = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

$$\det C = -1, C = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$$

 $S\subseteq \mathbb{E}$ — подпространство и (e_1,\ldots,e_k) — ортогональный базис в S.

Предложение. $\forall v \in \mathbb{E}, \operatorname{pr}_S v = \sum_{i=1}^k \frac{(v,e_i)}{(e_i,e_i)} \cdot e_i$. В частности если (e_1,\ldots,e_k) ортонормирован, то $\operatorname{pr}_S v = \sum_{i=1}^k (v,e_i) \cdot e_i$

Доказательство. $\operatorname{pr}_S v = \sum\limits_{i=1}^k \lambda_i e_i$ применим (\cdot,e_j) :

$$(\operatorname{pr}_{S} v, e_{j}) = (v, e_{j}) = \sum_{i=1}^{k} \lambda_{i} \delta_{ij} = \lambda_{j} (e_{j}, e_{j})$$

Первое равенство верно потому что $v = \operatorname{pr}_S v + \operatorname{ort}_S v, (v, e_j) = (\operatorname{pr}_S v, e_j) + (\operatorname{ort}_S v, e_j) = (\operatorname{pr}_S v, e_j).$

Как строить ортогональный базис?

 (e_1, \dots, e_k) — линейно независимая система векторов.

Метод Якоби

 $\det G(e_1,\ldots,e_k)>0.$ i-ый угловой минор — это определитель $\det G(e_1,\ldots,e_i)>0.$ Следовательно метод Якоби применим, результат — ортогональный базис (f_1,\ldots,f_k) .

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$f_3 \in e_3 + \langle e_1, e_2 \rangle$$

$$\vdots$$

$$f_n \in e_n + \langle e_1, \dots, e_{n-1} \rangle$$

$$(\star)$$

Предложение. $\forall i = 1, \ldots, k$

1. $f_i = \operatorname{ort}_{\langle e_1, \dots, e_{i-1} \rangle} e_i;$

2.
$$f_i = e_i - \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} \cdot f_j \ (\star \star);$$

3. $\det G(f_1, \dots, f_i) = \det G(e_1, \dots, e_i)$.

Доказательство. Помним, что при (\star) $\langle e_1, \ldots, e_i \rangle = \langle f_1, \ldots, f_i \rangle \forall i$.

- 1. Имеем $f_i \in e_i + \langle e_1, \dots, e_{i-1} \rangle = e_i + \langle f_1, \dots, f_{i-1} \rangle$, тогда $f_i = e_i + h_i$, где $h_i \in \langle f_1, \dots, f_{i-1} \rangle \Rightarrow e_i = f_i h_i$, так как $f_i \in \langle f_1, \dots, f_{i-1} \rangle^{\perp}$, то $f_i = \operatorname{ort}_{\langle f_1, \dots, f_{i-1} \rangle} e_i = \operatorname{ort}_{\langle e_1, \dots, e_{i-1} \rangle} e_i$
- 2. $f_i = \operatorname{ort}_{\langle f_1, \dots, f_{i-1} \rangle} e_i = e_i \operatorname{pr}_{\langle f_1, \dots, f_{i-1} \rangle} e_i$, что по пред. предложению равно $e_i \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} f_j$
- 3. Следует из того, что $G(f_1,\ldots,f_i)=C^TG(e_1,\ldots,e_i)C$, где C верхнетреугольная с единицами на диагонали $\Rightarrow \det C = \det C^T = 1$.

Построение ортогонального базиса f_1, \dots, f_k по формулам (**) называется методом (процессом) ортогонализации Грамма-Шмидта.

Предложение (Теорема Пифагора). $x,y\in \mathbb{E}, x\perp y \ (x,y)=0, \ mor\partial a \ |x+y|^2=|x|^2+|y|^2.$

Доказательство.
$$|x+y|^2 = (x+y,x+y) = (x,x) + (x,y) + (x,y) + (y,y) = |x|^2 + |y|^2$$
.

 \mathbb{E} — евклидово пространство. $\mathfrak{e}, \mathfrak{e}'$ — два базиса. $\mathfrak{e}' = \mathfrak{e}C, \mathfrak{e}$ и \mathfrak{e}' одинаково ориентированы, если $\det C > 0$. Одинаковая ориентированность — отношение эквивалентности на множестве всех базисов в \mathbb{E} .

Фиксируем е:

- \bullet все e' для которых $\det C > 0$ один класс
- ullet все e' для которых $\det C < 0$ второй класс

Значит всего два класса эквивалентности.

Определение. Говорят, что в \mathbb{E} зафиксирована ориентация, если все базисы одного класса объявлены положительно ориентированными, а все базисы второго класса трицательно ориентированными.

Пример. $B \mathbb{R}^3$ есть стандартный выбор ориентации:

- положительная ориентация «правые» базисы
- отрицательная ориентация «левые» базисы

Ориентированный объём

Фиксруем ориентацию в \mathbb{E} , dim $\mathbb{E} = n$

$$a_1,\dots,a_n\in\mathbb{E}$$
 — набор векторов Vol $\mathrm{P}(a_1,\dots,a_n)$ — объём (e_1,\dots,e_n) — положительно ориентированный ортонормированный базис $(a_1,\dots,a_n)=(e_1,\dots,e_n)A$ Vol $\mathrm{P}(a_1,\dots,a_n)=|\det A|$

Определение. Ориентированным объёмом параллелипипеда $P(a_1, \ldots, a_n)$ называется величина $Vol(a_1, \ldots, a_n) = \det A$.

Свойства.

- 1. $|Vol(a_1, ..., a_n)| = Vol P(a_1, ..., a_n)$
- 2. $Vol(a_1,\ldots,a_n)>0\iff (a_1,\ldots,a_n)$ положительно ориентированный базис
- 3. Линейность по каждому аргументу
- 4. Кососимметричность меняет знак при перестановке любых двух аргументов

Трёхмерное евклидово пространство

 $\mathbb{E} = \mathbb{R}^3$ — евклидово пространство со стандартным скалярным произведением. Фиксируем ориентацию (как в примере положительная ориентация \sim «правые базисы»), $a,b,c\in\mathbb{R}^3$.

Определение. Смешанным произведением векторов a, b, c называется величина (a, b, c) := Vol(a, b, c).

Свойства.

- 1. Линейна по каждому аргументу
- 2. Кососимметрична

Если (e_1, e_2, e_3) – правый ортонормированный базис и:

$$a = a_1e_1 + a_2e_2 + a_3e_3$$

$$b = b_1e_1 + b_2e_2 + b_3e_3$$

$$c = c_1e_1 + c_2e_2 + c_3e_3$$

То

$$(a,b,c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Критерий комплонарности (линейной зависимости трёх векторов): $(a,b,c)=0 \iff a,b,c$ комплонарны.

Определение. Векторным произведением векторов $a,b \in \mathbb{E}$ называется вектор c, такой что

- 1. $c \perp \langle a, b \rangle$
- 2. |c| = Vol P(a, b)
- 3. $(a, b, c) \ge 0$

Обозначение. [a,b] или $a \times b$.

Замечание. Векторное произведение условиями 1) - 3) определено однозначно

- 1. a,b линейно зависимы. Тогда из 2) получаем, что $|c|=0 \Rightarrow c=0$, при этом 1) и 3) выполнены.
- 2. a, b линейно независимы. B данном случае $(a, b, c) > 0 \iff m$ ройка a, b, c является правой (+ нужна картинка)

Критерий коллинеарности (линейной зависимости двух векторов): $[a, b] = 0 \iff a, b$ коллинеарны.

Пример. (e_1, e_2, e_3) – правый ортонормированный базис

$[e_i, e_j]$	e_1	e_2	e_3
e_1	0	e_3	$-e_2$
e_2	$-e_3$	0	e_1
e_3	e_2	$-e_1$	0

Теорема. $\forall a, b, c \in \mathbb{R}^3 (a, [b, c]) = (a, b, c).$

Доказательство.

- 1. Пусть b, c пропорциональны, тогда $[b, c] = 0 \Rightarrow (a, [b, c]) = 0$), но (a, b, c) тоже равна нулю
- 2. b, c не пропорциональны, тогда положим d = [b, c]. $(a, [b, c]) = (a, d) = (\operatorname{pr}_{\langle d \rangle} a, d) =$ $(\operatorname{ort}_{\langle b, c \rangle} a, d) = \begin{cases} |\operatorname{ort}_{\langle b, c \rangle} a| \cdot |d|, & \operatorname{если}(a, b, c) > 0 \\ -|\operatorname{ort}_{\langle b, c \rangle} a| \cdot |d|, & \operatorname{если}(a, b, c) < 0 \end{cases} = \operatorname{Vol}(a, b, c) = (a, b, c).$

Предложение.

- 1. $[a,b] = -[b,a] \ \forall \ a,b.$
- 2. $[\cdot,\cdot]$ линейно по каждому аргументу.

Доказательство.

- 1. Ясно из определения
- 2. Для каждого x: $(x, [\lambda_1 a_1 + \lambda_2 a_2, b] = (x, \lambda_1 a_1 + \lambda_2 a_2, b) = \lambda_1(x, a_1, b) + \lambda_2(x, a_2, b) = \lambda_1(x, [a_1, b]) + \lambda_2(x, [a_2, b]) = (x, \lambda_1 [a_1, b] + \lambda_2 [a_2, b])$. Так всякий вектор $y = (e_1, y)e_1 + (e_2, y)e_2 + (e_3, y)e_3$, для (e_1, e_2, e_3) ортонормированного базиса, то $[\lambda_1 a_1 + \lambda_2 a_2, b] = \lambda_1 [a_1, b] + \lambda_2 [a_2, b]$. Линейность по второму аргументу аналогично.

Двойное векторное произведение

Предложение. $[a, [b, c]] = (a, c)b - (a, b)c \ (= b(a, c) - c(a, b) \ «БАЦ - ЦАБ»)$

Доказательство.

- 1. b, c пропорциональны, тогда $c = \lambda b, [a, [b, c]] = 0$, а правая часть равна $(a, \lambda b)b (a, b)\lambda b = 0$
- 2. b, c не пропорциональны. Выберем правый ортонормированный базис e_1, e_2, e_3 так, чтобы:
 - (a) b был пропорционален e_1
 - (b) $\langle b, c \rangle = \langle e_1, e_2 \rangle$

Тогда $b = \beta e_1$, $c = \gamma_1 e_1 + \gamma_2 e_2$, $a = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$. $[b, c] = [\beta e_1, \gamma_1 e_1 + \gamma_2 e_2] = \beta \gamma_2 e_3$. Тогда $[a, [b, c]] = [\alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3, \beta \gamma_2 e_3] = -\alpha_1 \beta \gamma_2 e_2 + \alpha_2 \beta \gamma_2 e_1$. Правая часть равна $(\alpha \gamma_2 + \alpha_2 \gamma_2)\beta e_1 - \alpha_1 \beta (\gamma_1 e_1 + \gamma_2 e_2) = -\alpha_1 \beta \gamma_2 e_2 + \alpha_2 \beta \gamma_2 e_1 =$ левая часть.

Следствие. (Тождество Якоби) $[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0 \ \forall \ a,b,c \in \mathbb{R}^3.$

Пусть (e_1, e_2, e_3) — правый ортонормированный базис.

$$a = a_1e_1 + a_2e_2 + a_3e_3$$
$$b = b_1e_1 + b_2e_2 + b_3e_3$$

Предложение. Векторное произведение можно найти следующим образом:

$$[a,b] = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)e_1 + (a_3b_1 - a_1b_3)e_2 + (a_1b_2 - a_2b_1)e_3$$

Доказывается прямой проверкой с использованием билинейности и значений $[e_i,e_j]$.

Взаимное расположение двух плоскостей в \mathbb{R}^3

- 1. Совпадают
- 2. Параллельны
- 3. Пересекаются по прямой $[n_1, n_2] = 0$

Взаимное расположение двух прямых в \mathbb{R}^3

- 1. Совпадают
- 2. Параллельны
- 3. Пересекаются
- 4. Скрещиваются (не лежат в одной плоскости)

Взаимное расположение прямой и плоскости в \mathbb{R}^3

- 1. $l \subseteq P$
- 2. |l||P
- 3. l и P пересекаются в точке

Взаимное расположение трёх различных плоскостей

- 1. Среди P_1, P_2, P_3 есть две параллельных
 - (a) $P_1 \parallel P_2 \parallel P_3$
 - (b) Две параллельны, третья их
- 2. Никакие две не параллельны
 - (а) Все три пересекаются по одной прямой
 - (b) Прямые пересечения параллельны
 - (c) P_1, P_2, P_3 пересекаются в одной точке

Метрические задачи в \mathbb{R}^3

Расстояние от точки до прямой

$$\rho(v,l) = |\operatorname{ort}_{\langle a \rangle}(v - v_0)| = \frac{|[v - v_0, a]|}{|a|}$$

Расстояние от точки до плоскости

 $S = \langle n \rangle^{\perp}$ – направляющее подпространство.

$$\rho(v, P) = |\operatorname{ort}_S(v - v_0)| = |\operatorname{pr}_{\langle n \rangle}(v - v_0)| = \frac{|(v - v_0, n)|}{(n, n)} \cdot n$$

Расстояние между скрещивающимися прямыми

$$P_1 = v_1 + \langle a_1, a_2 \rangle \supseteq l_1, P_2 = v_2 + \langle a_1, a_2 \rangle \supseteq l_2$$

$$\rho(l_1, l_2) = \rho(P_1, P_2) = \frac{|(a_1, a_2, v_2 - v_1)|}{|[a_1, a_2]|}$$

Угол между двумя прямыми

$$\angle(l_1, l_2) = \min(\angle(a_1, a_2), \angle(a_1, -a_2))$$

Угол между плоскостью и прямой

$$\angle(l,P) = \frac{\pi}{2} - \angle(\langle a \rangle, \langle n \rangle)$$

Угол между двумя плоскостями

$$\angle(P_1, P_2) = \angle(\langle n_1 \rangle, \langle n_2 \rangle)$$

Линейные операторы

Пусть V — конечномерное векторное пространство.

Определение. Линейным оператором (или линейным преобразованием) называется всякое линейное отображение $\varphi \colon V \to V$, то есть из V в себя. Обозначение: $L(V) = \operatorname{Hom}(V,V)$, $A(\varphi,\mathfrak{e})$ – матрица линейного оператора φ в базисе \mathfrak{e} .

Пусть $e = (e_1, \dots, e_n)$ — базис в V и $\varphi \in L(V)$. Тогда:

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A,$$

где A — матрица линейного оператора в базисе $\mathfrak e$. В столбце $A^{(j)}$ стоят координаты $\varphi(e_j)$ в базисе $\mathfrak e$. Матрица A — квадратная.

Пример.

- 1. Скалярный оператор $\lambda \mathrm{id}(v) = \lambda V$ матрица λE в любом базисе.
- 2. $\forall v \in V : \varphi(v) = 0$ нулевая матрица.
- 3. Тождественный оператор: $\forall v \in V : id(v) = v e \partial u + u + u + a s$ матрица.
- 4. $V=\mathbb{R}^2$, φ поворот на угол α
- 5. $V = \mathbb{R}[x]_{\leq n}, \ \varphi : f \mapsto f'$

Следствие (Следствия из общих фактов о линейных отображениях).

- 1. Всякий линейный оператор однозначно определяется своей матрицей в любом фиксированном базисе.
- 2. Для всякого базиса e и всякой квадратной матрицы A существует, причем единственный, линейный оператор φ такой, что матрица φ в базисе e есть A.
- 3. Пусть $\varphi \in L(V)$, A матрица φ в базисе \mathfrak{e} . Тогда:

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\varphi(v) = y_1 e_1 + \dots + y_n e_n$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

4. Пусть $e' = (e'_1, \dots, e'_n)$ — другой базис, $e' = e \cdot C$, $A' = A(\varphi, e')$, тогда $A' = C^{-1}AC$ Следствие.

- 1. Величина $\det A$ не зависит от выбора базиса. Обозначение: $\det \varphi$.
- 2. Величина $\operatorname{tr} A$ не зависит от выбора базиса

Доказательство. Пусть A' — матрица φ в другом базисе. Тогда получается, что:

1.

$$\det A' = \det \left(C^{-1}AC\right) = \det C^{-1} \det A \det C = \det A \det C \frac{1}{\det C} = \det A.$$

2.

$$\operatorname{tr} A' = \operatorname{tr} (C^{-1}AC) = \operatorname{tr} (ACC^{-1}) = \operatorname{tr} A$$

Определение. Две матрицы $A', A \in M_n(F)$ называются подобными, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

Замечание. Отношение подобия на M_n является отношением эквивалентности.

Предложение. Пусть $\varphi \in L(V)$. Тогда эти условия эквивалентны:

- 1. Ker $\varphi = \{0\}$;
- 2. Im $\varphi = V$;
- 3. φ обратим (то есть это биекция, изоморфизм);
- 4. $\det \varphi \neq 0$.

Доказательство.

- 1. \Leftrightarrow 2 следует из формулы $\dim V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.
- $2. \Leftrightarrow 3$ уже было.
- 3. $2 \Leftrightarrow 4 \operatorname{Im} \varphi = V \iff \operatorname{rk} \varphi = \dim V \iff \det \varphi \neq 0$.

Определение. Линейный оператор φ называется вырожденным, если $\det \varphi = 0$, и невырожденным, если $\det \varphi \neq 0$.

20

V – векторное пространство над \mathbb{F} $n=\dim V$. Пусть $\lambda\in\operatorname{Spec}\varphi,\ m_{\lambda}$ — кратность λ как корня характеристического многочлена: $\chi_{\varphi}(t)$: $(t-\lambda)^{m_{\lambda}}$, но $\chi_{\varphi}(t)$ \not ($t-\lambda$) $(t-\lambda)^{m_{\lambda}+1}$.

Алгебраическая и геометрическая кратности

Определение. Число m_{λ} называется алгебраической кратностью собственного значения λ .

 $\lambda \in \operatorname{Spec}\varphi, V_{\lambda}(\varphi) \subseteq V$ — собственное подпространство.

Определение. Число $\dim V_{\lambda}(\varphi)$ называется геометрической кратностью собственного значения λ .

Предложение. Геометрическая кратность не больше алгебраической кратности.

Доказательство. Зафиксируем базис u_1, \ldots, u_p в пространстве V_{λ} , где $p = \dim V_{\lambda}$. Дополним базис u_1, \ldots, u_p до базиса $u_1, \ldots, u_p, u_{p+1}, \ldots, u_n$ пространства V. Тогда матрица линейного оператора φ в этом базисе будет выглядеть следующим образом:

$$A_{\varphi} = \begin{pmatrix} \lambda E & A \\ \hline 0 & B \end{pmatrix}, \quad \lambda E \in M_p, A \in M_{n-p}$$

Тогда характеристический многочлен будет следующим:

$$\chi_{\varphi}(t) = (-1)^n \det(A_{\varphi} - tE) = \begin{vmatrix} \lambda - t & 0 \\ & \ddots & A \\ 0 & \lambda - t \end{vmatrix} = (-1)^n (\lambda - t)^p \det(B - tE)$$

Как видим, $\chi_{\varphi}(t)$ имеет корень кратности хотя бы p, следовательно, геометрическая кратность, которая равна p по условию, точно не превосходит алгебраическую.

Пусть $\{\lambda_1, \ldots, \lambda_s\} \subseteq \operatorname{Spec}\varphi, \lambda_i \neq \lambda_j$ при $i \neq j$.

Предложение. Подпространства $V_{\lambda_1}(\varphi),\ldots,V_{\lambda_s}(\varphi)$ линейно независимы.

Доказательство. Индукция по s. Для s=1 очевидно. Пусть доказано для меньших s, докажем для s. Пусть $v_1 \in V_{\lambda_1}, \dots, v_s \in V_{\lambda_s}$ и

$$v_1 + \ldots + v_s = 0 \tag{(\star)}$$

Тогда применив линейный оператор к обоим частям равенства получим

$$\varphi(v_1) + \ldots + \varphi(v_s) = 0 \Rightarrow \lambda_1 v_1 + \ldots + \lambda_s v_s = 0$$

Вычтем отсюда (\star) умноженное на λ_s :

$$(\lambda_1 - \lambda_s)v_1 + \ldots + (\lambda_{s-1} - \lambda_s)v_{s-1} = 0$$

Так как $\lambda_i \neq \lambda_s$ при $i \neq s$, то по предположению индукции получаем $v_1 = \ldots = v_{s-1} = 0$. Тогда (*) влечёт $v_s = 0$.

Следствие. Если характеристический многочлен имеет ровно n попарно различных корней, $r\partial e \ n = \dim V$, то φ диагонализируем.

Доказательство. Пусть $\{\lambda_1, \dots, \lambda_s\} = \operatorname{Spec}\varphi, \lambda_i \neq \lambda_j$ при $i \neq j$. В каждом $V_{\lambda_i}(\varphi)$ возьмём ненулевой вектор v_i . Тогда по предыдущему предложению, векторы v_1, \dots, v_n линейно независимы $\Rightarrow (v_1, \dots, v_n)$ — базис из собственных векторов $\Rightarrow \varphi$ диагонализуем.

Критерий диагонализуемости линейного оператора

Теорема (Критерий диагонализируемости - 2). Линейный оператор φ диагонализируем тогда и только тогда, когда

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители;
- 2. Для любого собственного значения $\lambda \in \operatorname{Spec}(\varphi)$ равны его геометрическая и алгебраическая кратности.

Доказательство.

 \Rightarrow Так как φ — диагонализируем, то существует базис $\mathbf{e}=(e_1,\ldots,e_n)$ такой, что:

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & \mu_n \end{pmatrix} = \operatorname{diag}(\mu_1, \dots, \mu_n).$$

Тогда:

$$\chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 - t & 0 \\ & \ddots & \\ 0 & \mu_n - t \end{vmatrix} = (-1)^n (\mu_1 - t) \dots (\mu_n - t) = (t - \mu_1) \dots (t - \mu_n).$$

Итого, первое условие выполняется.

Теперь перепишем характеристический многочлен в виде $\chi_{\varphi}(t)=(t-\lambda_1)^{k_1}\dots(t-\lambda_s)^{k_s}$, где $\lambda_i\neq\lambda_j$ при $i\neq j$ и $\{\lambda_1,\dots,\lambda_s\}=\{\mu_1,\dots,\mu_n\}$. Тогда $V_{\lambda_i}\supseteq\langle e_j\mid \mu_j=\lambda_i\rangle$, следовательно, $\dim V_{\lambda_i}(\varphi)\geqslant k_i$. Но мы знаем, что $\dim V_{\lambda_i}\leqslant k_i$! Значит, $\dim V_{\lambda_i}(\varphi)=k_i$.

 \Leftarrow Так как $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)$ — прямая, то $\dim(V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = n$. Пусть e_i — базис в V_{λ_i} . Тогда $e_1 \cup \ldots \cup e_s$ — базис в V. То есть мы нашли базис из собственных векторов, следовательно, φ диагонализируем.

Замечание. Если выполнено только первое условие, то линейный оператор φ можно привести к Жордановой нормальной форме. Существует базис \mathfrak{e} , такой что

$$A(\varphi, e) = \begin{pmatrix} J_{\lambda_1}^{n_1} & 0 & \dots & 0 \\ 0 & J_{\lambda_2}^{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\lambda_s}^{n_s} \end{pmatrix}$$

 $\Gamma \partial e \ J_{\lambda_i}^{n_i} - Жорданова клетка$

$$J_{\lambda_i}^{n_i} = \begin{pmatrix} \lambda_i & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_i & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda_i & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_i & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_i \end{pmatrix} \in M_n(F).$$

B частности всякий линейный оператор над $\mathbb C$ можно привести к Жордановой нормальной форме.

Пример.

1. $\varphi = \lambda Id$

$$\chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \lambda - 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & \lambda - 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \lambda - 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda - 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda - 1 \end{vmatrix}$$

 $\operatorname{Spec}\varphi = \{\lambda\},\ a$ лгебраическая и геометрическая кратности равны n.

2. $V = \mathbb{R}^2, \varphi$ — ортогональная проекция на прямую $l.\ e_1 \in l, e_2 \in l^{\perp}\ \{0\}$, тогда (e_1, e_2) — базис из собственных векторов.

$$A(arphi,\mathbf{e}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \chi_{arphi}(t) = (t-1)t$$

 $Spec \ \varphi = \{0,1\} \Rightarrow \begin{cases} ecnu \ 0, mo \ anrefpauчeckas \ \kappa pamhocmb = reomempuчeckas \ \kappa pamhocmb = 1 \\ ecnu \ 1, mo \ anrefpauчeckas \ \kappa pamhocmb = reomempuчeckas \ \kappa pamhocmb = 1 \end{cases}$

3. $V = \mathbb{R}^2, \varphi$ — поворот на угол $\alpha \neq \pi k$. Если (e_1, e_2) — правый ортонормированный базис, то

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
$$\chi_{\varphi}(t) = (-1)^2 \begin{vmatrix} \cos \alpha - t & -\sin \alpha \\ \sin \alpha & \cos \alpha - t \end{vmatrix} = t^2 - 2\cos \alpha t + 1$$

В данном случае D < 0, значит над \mathbb{R} нет корней \Rightarrow оператор не диагонализуем над \mathbb{R} . Над \mathbb{C} $\chi_{\varphi}(t)$ имеет два различных корня, следовательно оператор диагонализуем над \mathbb{C} .

4. $V=\mathbb{R}[x]_{\leqslant n}, \varphi - \partial u \phi \phi$ еринцирование. $\mathbf{e}=(1,\frac{x}{1!},\frac{x^2}{2!},\dots,\frac{x^n}{n!})$ — базис в V.

$$A(\varphi, e) = J_0^{n+1} \Rightarrow \chi_{\varphi}(t) = t^{n+1}$$

Собственное значение $\lambda = 0$, геометрическая кратность = 1, алгебраическая кратность = n + 1.

Теорема. Если $F = \mathbb{R}$, то для всякого линейного оператора $\varphi \in L(V)$ существует либо одномерное, либо двумерное φ -инвариантное подпространство.

Доказательство. $\chi_{\varphi}(t)$ имеет действительные корни \Rightarrow есть собственный вектор \Rightarrow есть одномерное φ -инварантное подпространство. Если $\chi_{\varphi}(t)$ не имеет действительных корней, пусть $\lambda + i\mu$ — комплексный корень, $\lambda, \mu \in \mathbb{R}, \mu \neq 0$. Выберем базис в $\mathfrak{E} = (e_1, \dots, e_n)$ в V, пусть $A = A(\varphi, \mathfrak{E})$. Над \mathbb{C} у φ есть собственный вектор, следовательно $\exists u \in \mathbb{R}^n$ и $v \in \mathbb{R}^n$, такие что $A(u+iv) = (\lambda + i\mu)(u+iv) = (\lambda u - \mu v) + i(\mu u + \lambda v) = Au + iAv$. Отделяя действительную и мнимую части получаем

$$\begin{cases} Au = \lambda u - \mu v \\ Av = \mu u + \lambda v \end{cases}$$

Пусть $x \in V$ – вектор с координатами $u, y \in V$ – вектор с координатами v, тогда

$$\begin{cases} \varphi(x) = \lambda x - \mu y \\ \varphi(y) = \mu x + \lambda y \end{cases} \Rightarrow U = \langle x,y \rangle - \varphi$$
-инвариантное подпространство

 $\dim U \leqslant 2.$