极坐标和参数方程

目录

1	极坐	标	1
	1.1	极坐标的定义	1
	1.2	极坐标与直角坐标的互化	1
	1.3	常用极坐标方程	2
	1.4	练习	3
2	参数	· ·方程	4
	2.1	参数方程的概念	4
	2.2	常用参数方程	4
	2.3	练习	5

1 极坐标

1.1 极坐标的定义

在平面内取一个定点 O, 叫做极点, 自极点 O 引一条射线 Ox, 叫做极轴; 再选定一个长度单位, 一个角度单位 (通常取弧度) 及其正方向 (通常取逆时针方向), 这样就建立了一个极坐标系. 如下图:

极坐标系四要素:①极点; ②极轴; ③长度单位; ④角度单位和正方向.

点 M 的极坐标:设 M 是平面内一点,极点 O 与点 M 的距离 |OM| 叫做点 M 的极径,记为 ρ ;以极轴为始边,射线 OM 为终边的 M 叫做点 M 的极角,记为 θ . 有序数对 (ρ,θ) 叫做点 M 的极坐标,记为 $M(\rho,\theta)$.

注: ①极坐标 (ρ, θ) 与 $(\rho, \theta + 2k\pi)(k \in \mathbb{Z})$ 表示同一个点。 极点 O 的坐标为 $(0, \theta)(\theta \in \mathbb{R})$; ②一般的,不做特殊说明情况下, $\rho \ge 0$.

1.2 极坐标与直角坐标的互化

互化的前提条件:

- 1) 极坐标系中的极点与直角坐标系中的原点重合;
- 2) 极轴与 *x* 轴的正半轴重合;
- 3) 两种坐标系中取相同的长度单位.

互化公式:

$$\begin{cases} x = \rho \sin \theta \\ x = \rho \cos \theta \end{cases}$$

或者

$$\begin{cases} \rho^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} (x \neq 0) \end{cases}$$

1.3 常用极坐标方程

1) 直线的极坐标方程: 若直线过点 $M(\rho_0, \theta_0)$, 且极轴到此直线的角为 α , 则它的方程为:

$$\rho \sin(\theta - \alpha) = \rho_0 \sin(\theta_0 - \alpha)$$

特别的:

- a) 当直线 l 过极点,即 $\rho_0 = 0$ 时,直线 l 的极坐标方程为 $\theta = \alpha(\rho \in \mathbf{R})$ 或写成: $\theta = \alpha$ 及 $\theta = \alpha + \pi$;
- b) 直线过点 M(a,0) 且垂直于极轴时,直线 l 的极坐标方程为: $\rho\cos\theta=a$;
- c) 直线过 $M(a, \frac{\pi}{2})$ 且平行于极轴时,直线 l 的极坐标方程为: $\rho \sin \theta = b$;
- 2) 圆的极坐标方程: 若圆心为 $M(\rho_0, \theta_0)$, 半径为 r 的圆方程为:

$$\rho^2 - 2\rho_0 \rho \cos(\theta - \theta_0) + \rho_0^2 - r^2 = 0$$

特别的:

- a) 圆心在极轴上点 (a,0)(a>0) 处,且圆过极点 O 的圆的方程: $\rho=2a\cos\theta$;
- b) 圆心在极轴上点 $(a, \frac{\pi}{2})(a > 0)$ 处,且圆过极点 O 的圆的方程: $\rho = 2a\sin\theta$;

注意事项:

- 1) 极坐标与直角坐标可以相互转化,但是不能直接相互调用化简(参数方程可以直接代入到直角坐标方程中);
- 2) 求解极坐标方程有关问题, 主要有两种方法:
 - (1) 直接解极坐标方程, 联立极坐标方程得到 θ 和 ρ , 这种方法在解曲线交点时比较方便;
 - (2) 将极坐标方程转化为直角坐标方程,用直角坐标方程进行求解,这种方法可以避免方程理解错误, 但是有些时候计算不是很方便.

1.4 练习

1. 在极坐标系中,圆 $\rho = -2\sin\theta$ 的圆心的极坐标方程是) (B) $\left(1, -\frac{\pi}{2}\right)$ $(A)\left(1,\frac{\pi}{2}\right)$ (C) (1,0)(D) $(1,\pi)$ 2. 在极坐标系中,曲线 $\rho = 2\cos\theta$ 是 () (A) 过极点的直线 (B) 半径为 2 的圆 (C) 关于极点对称的图形 (D) 关于极轴对称的图形)

3. 极坐标方程 $(\rho - 1)(\theta - \pi) = 0$ $(\rho \ge 0)$ 表示的图形是

(A) 两个圆

(B) 两条直线

(C) 一个圆和一条射线

(D) 一条直线和一条射线

4. 在极坐标系中,曲线 $\rho = 4\sin\left(\theta - \frac{\pi}{3}\right)$ 关于)

(A) 直线 $\theta = \frac{\pi}{3}$ 轴对称

(B) 直线 $\theta = \frac{\pi}{6}$ 轴对

(C) 点 $\left(2, \frac{\pi}{3}\right)$ 对称

(D) 极点中心对称

5. 若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段 $y = 1 - x(0 \le x \le 1)$ 的 极坐标为

(A)
$$\rho = \frac{1}{\cos \theta + \sin \theta}$$
, $0 \le \theta \le \frac{\pi}{2}$

(B)
$$\rho = \frac{1}{\cos \theta + \sin \theta}, 0 \le \theta \le \frac{\pi}{4}$$

(C)
$$\rho = \cos \theta + \sin \theta, 0 \le \theta \le \frac{\pi}{2}$$

(D)
$$\rho = \cos \theta + \sin \theta, 0 \le \theta \le \frac{\pi}{4}$$

6. 在极坐标系中,点 $\left(2, \frac{\pi}{6}\right)$ 到直线 $\rho \sin \theta = 2$ 的距离等于_____.

7. 在极坐标系中,直线 $\rho\cos\theta - \sqrt{3}\rho\sin\theta - 1 = 0$ 与圆 $\rho = 2\cos\theta$ 交于 A, B 两点,则 |AB| = 1.

8. 在极坐标系中,点 $\left(2, \frac{\pi}{3}\right)$ 到直线 $\rho\left(\cos\theta + \sqrt{3}\sin\theta\right) = 6$ 的距离为_____.

9. 在极坐标系中,点 A 在圆 $\rho^2 - 2\rho\cos\theta - 4\rho\sin\theta + 4 = 0$ 上,点 P 的坐标为 (1,0),则 |AP| 的最小值 为____.

10. 在平面直角坐标系 xOy 中,曲线 $C_1: \begin{cases} x=t\cos\alpha \\ (t为参数, t\neq0) \ \text{其中 } 0 \leq \alpha \leq \pi, \ \text{在以 } O \ \text{为极点, } x \ \text{轴} \end{cases}$

正半轴为极轴的极坐标系中,曲线 $C_2: \rho=2\sin\theta, C_3: \rho=2\sqrt{3}\cos\theta$.

(1) 求 C_2 与 C_3 交点的直角坐标;

(2) 若 C_1 与 C_2 相交于点 A, C_1 与 C_3 相交于点 B, 求 |AB| 的最大值.

2 参数方程

2.1 参数方程的概念

在平面直角坐标系中,若曲线 C 上的点 P(x,y) 满足 $\begin{cases} x=f(t), \\ \text{该方程叫曲线 } C \text{ 的参数方程, 变量 } t \text{ 是} \end{cases}$

参变数,简称参数.(在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 $\begin{cases} x = f(t), \\ y = g(t). \end{cases}$

且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.)

2.2 常用参数方程

1. 直线的参数方程:

$$\begin{cases} x = x_0 + t \cos \alpha \\ y = y_0 + t \sin \alpha \end{cases} (t 为 参数)$$

 (x_0,y_0) 为直线上定点 M_0 的坐标,(x,y) 为直线上任意一点 M 的坐标, α 为倾斜角,t 为 $|MM_0|$ 长度,若 M_0 所对应的参数为 t_1 ,M 所对应的参数为 t_2 ,则有 $|MM_0| = |t_2 - t_1|$.

2. 圆的参数方程:

$$\begin{cases} x = x_0 + R\cos\theta \\ y = y_0 + R\sin\theta \end{cases} (\theta为参数)$$

其中 $\theta \in [0, 2\pi)$, 圆心为 $M_0(x_0, y_0)$, 半径为 $R(R \ge 0)$, M(x, u) 为圆上任意一点.

3. 椭圆的参数方程:

$$\begin{cases} x = a\cos\varphi \\ (\varphi 为参数) \\ y = b\sin\varphi \end{cases}$$

其中 $\varphi \in [0,2\pi)$, 注意 φ 不是椭圆上的点和原点连线的夹角, 是椭圆对应的圆的离心角.

4. 双曲线的参数方程:

$$\begin{cases} x = a \sec \theta \\ (\theta 为 参数) \end{cases}$$

$$y = b \tan \theta$$

5. 抛物线 $y^2 = 2px$ 的参数方程可表示为:

$$\begin{cases} x = 2pt^2 \\ y = 2pt \end{cases}$$

2.3 练习

1. 曲线
$$\begin{cases} x = -1 + \cos \theta \\ (\theta 为 参数) \text{ 的对称中心} \end{cases}$$
 ()

(A) 在直线 y = 2x 上

(B) 在直线 y = -2x 上

(C) 在直线 y = x - 1 上

(D) 在直线 y = x + 1 上

2. 圆
$$\begin{cases} x = -1 + \sqrt{2}\cos\theta, \\ y = 1 + \sqrt{2}\sin\theta \end{cases}$$
 (0) 被直线 $y = 0$ 截得的劣弧长为

- (A) $\frac{\sqrt{2}\pi}{2}$

- (D) 4π
- 3. 已知曲线 C: $\begin{cases} x = \frac{\sqrt{2}}{2}t \\ y = a + \frac{\sqrt{2}}{2} \end{cases} (t为参数), A(-1,0), B(1,0). 若曲线 <math>C$ 上存在点 P 满足 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 0$, 则实数

)

- (A) $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$ (B) [-1, 1] (C) $\left[-\sqrt{2}, \sqrt{2} \right]$ (D) [-2, 2]

- 4. 点 P(1,0) 到曲线 $\begin{cases} x = t^2, \\ y = 2t \end{cases}$ (其中参数 $t \in \mathbf{R}$) 上的点的最短距离是)
 - (A) 0

(B) 1

- (D) 2
- 5. 在平面直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x=1+\cos\alpha, \\ y=\sin\alpha \end{cases}$ (α 为参数). 若以射线 Ox 为极轴建立

极坐标系,则曲线C的极坐标方程为

- (A) $\rho = \sin \theta$
- (B) $\rho = 2 \sin \theta$
- (C) $\rho = \cos \theta$ (D) $\rho = 2 \cos \theta$
- 6. 曲线 $\begin{cases} x = \cos \theta \\ (\theta 为 参数) 与 直线 \ x + y 1 = 0 \ 相交于 \ A, B$ 两点,则 |AB| =_____.
- 那么实数 a 的取值范围是
- 8. 直线 $\begin{cases} x = 2t, \\ y = t \end{cases} (t 为 参数) 与 曲线 \begin{cases} x = 2 + \cos \theta, \\ y = \sin \theta \end{cases} (\theta 为 参数) 的公共点个数为_____.$
- 9. 已知动点 P,Q 都在曲线 C: $\begin{cases} x=2\cos t, \\ (t为参数) \perp, \ \text{对应参数分别为 } t=\alpha \ \text{与 } t=2\alpha(0<\alpha<2\pi), \ M \end{cases}$ 为PQ的中点.
 - (1) 求 *M* 的轨迹的参数方程;

(2) 将 M 到坐标原点的距离 d 表示为 α 的函数, 并判断 M 的轨迹是否过坐标原点.

- 10. 已知曲线 C_1 的参数方程是 $\begin{cases} x=2\cos\varphi, \\ (\varphi$ 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐 $y=3\sin\varphi. \end{cases}$ 标系,曲线 C_2 的极坐标方程是 $\rho=2$. 正方形 ABCD 的顶点都在 C_2 上,且 A,B,C,D 以逆时针次序排列,点 A 的极坐标为 $(2,\frac{\pi}{3})$.
 - (1) 求点 A, B, C, D 的直角坐标;
 - (2) 设点 P 为 C_1 上任意一点,求 $|PA|^2 + |PB|^2 + |PC|^2 + |PD|^2$ 的取值范围.

- 11. 已知曲线 $C: \frac{x^2}{4} + \frac{y^2}{9} = 1$,直线 $\begin{cases} x = 2 + t \\ y = 2 2t \end{cases}$ (t为参数).
 - (1) 写出曲线 C 的参数方程,直线 l 的普通方程;
 - (2) 过曲线 C 上任意一点 P 作与直线 l 夹角为 30° 的直线, 交 l 于点 A. 求 |PA| 的最大值与最小值.

- 12. 在直角坐标系中 xOy 中,曲线 C_1 的参数方程为 $\begin{cases} x=2\cos\alpha\\ (\alpha为参数),\ M \not\in C_1 \ \text{上的动点},\ P \ \text{点满} \end{cases}$ 足 $\overrightarrow{OP}=2\overrightarrow{OM},\ P$ 点的轨迹为曲线 C_2 .
 - (1) 求 C₂ 的方程;
 - (2) 在以 O 为极点,x 轴正半轴为极轴的极坐标系中,射线 $\theta=\frac{\pi}{3}$ 与 C_1 的异于极点的交点为 A,与 C_2 的异于极点的交点为 B,求 |AB|.