Databases Uses and Introduction to the Relational Model

22 October 2012 Lecture 1

Topics for Today

- Managing Data
- Why use a database?
- Describing and Storing Data
- Queries
 - Concurrency
- Structure of a DBMS
- Source:
 - Ramakrishnan and Gehrke 1.1-1.9

Managing Data

- Databases are designed to enable easy management of large quantities of related information
- We will talk about in this course:
 - Database Design
 - Database Analysis
 - Using Databases
 - Concurrency and Robustness
 - Efficiency and Scalability

Database: Past and Present

History

1960s

- First DBMS by GE
- IBM: Information Management Systems (IMS) (SABRE)

Edgar Codd: Relational Data Model

- Foundation for most DBMS
- We'll talk about changes to that model next semester

1980s: IBM developed System R
→ SQL

Today

SQL:

- Standard by ANSI and ISO
- Relatively uniform; some features not implemented by various vendors

Applications (1980s-1990s):

- Data Warehouses: Rich data and storage specialization
- Enterprise Resource Planning
- Management Resource Planning
- Web Backend: PHP, Java, Apache, Javascript

Why a DBMS?

- For large amounts of structured data say 500GB
 - Won't fit in memory!
 - To retrieve it you need something just to deal with the data files
 - Manage moving it on and off disk
 - Concurrency?
- Those are the major parts of a DBMS

DBMS Advantages

- Data Independence
 - Don't worry how it's stored, retrieved, updated
 - Reduced application development time
- Efficient Data Access
 - Manage large quantities, distributed

 Data Integrity and Security

- Data Administration
 - Centralized and uniform management

Concurrent Access

- Crash Recovery
 - When media fails, power fails

Don't use a Database when:

- Data is not structured
- Need to do complex manipulations
- Small quantity of data
- Need to manage file or byte level

Structured versus Unstructured

So Far

- Managing Data
- Why use a database?
- Describing and Storing Data
- Queries
 - Concurrency
- Structure of a DBMS

Describing and Storing Data

<u>Data Model</u>: How data is stored

- Relational Data Model
- Others: hierarchical, OO

Semantic Model: What the data means

- How data relates to other data
- Entity-Relationship semantic model

Relation: A set of records

- Unordered
- Some way to identify each record (a key)

Record: A structured *n*-tuple of fields (columns)

Schema: for a relation is the structure of its records

Example Schema

Students (sid:string, name:string, login:string, age:integer, gpa:real)

Sid	Name	Login	Age	Gpa
53	Jones	ajones@cs	18	34.5
54	Jones	bjones@cs	30	91.3
12	Smith	smith@is	23	78.2
53	Cohen	cohen@math	19	80.2

- We can do more:
 - Identify rows by some set of fields (key)
 - Constraints on data ranges, types, integrity
 - Link one relation to another
 - Enforce that changing one automatically changes another
- Define a relation? Data Definition Language (DDL)

Other options?

- We didn't need to use tables
- Object based databases (next semester)
- Hierarchical databases
 - Old, but getting back in vogue with XML
 - That's another course
- No-SQL databases (popular with web sites)

Queries

Power of a database: Answers hard questions

- How much were sales last year?
- How many sales over \$1,000 came during Jan-March from Tiberias?
- Which product produced the most profit in Bet Shean?

Queries: Questions we ask the DBMS:

- Read queries (Query Language)
- Write queries

 (add/delete/modify) (Data
 Manipulation Language)

SQL is both (and a DDL too)

Must understand the semantics (meaning) of queries

- Abstract query languages
- Ex: Relational Algebra underlies SQL

How to Query

- Could log into the DBMS with a command line or GUI interface and ask queries directly.
- Could use a remote DB tool which builds a connection to a DB and has a GUI to receive user queries and display results.
- Could write application code which builds a database connection, sends queries, and does things with the results.
- 4. Could build a web site which has a backend application which runs queries implicitly or explicitly and shows the results on the page.

Concurrency

- All modern databases allow multiple concurrent users
- Management is via transactions:
 - An atomic series of commands from a single connection (user/application)
- Transaction management is done behind the scenes
 - We'll talk about it more next semester
- Purpose: Many users can work on the same data at once without noticing each other.
- Purpose: Enable orderly recovery from crashes or cut off conversations.

Structure of a DBMS

Summary

- Managing Data
- Why use a database?
- Describing and Storing Data
- Queries
 - Concurrency
- Structure of a DBMS

Personal Introduction

Instructor: Michael J. May

Ph.D. in Computer Science University of Pennsylvania, Philadelphia

Courses I teach:

- Information Systems Engineering 1 הנדסת מערכות מידע
- Database Systems מעכרות מסדי נתונים
- Introduction to Computer Networks מבוא לרשתות מחשבים
- E-Commerce and Network Security אבטחת תקשורת ומסחר אלקטרוני
- Database Systems Engineering הנדסת מסדי נתונים

Next year:

- Distributed Information Systems מערכות מידע מבוזרות
- Distributed Algorithms in Network Communication אלגוריתמים מבזורים ברשתות תקשורת

I am also involved in the 4th year projects for Information Systems Engineering students.

About My Courses

My home page: http://www2.kinneret.ac.il/mjmay Every course has a web page and a Telem page

- On the course page:
 - Syllabus, course location and time
 - Lecture schedule
 - Quiz dates
 - Lecture slides (PDF)
 - Targil summaries (if I run them)
 - Reminders about quizzes and assignment due dates (normally)
 - Code, programming data

- On Moodle:
 - Assignment solutions and grades
 - Quiz files and grades
 - Previous tests
 - Other course announcements (changes, extensions, updates, etc).
 - Targil materials (if I don't run them)
 - Lecture slides (PPTX, sometimes and not always complete)

What I expect from you

- Come to class on time (after 10 minutes, the door is locked)
- Don't talk during class or disturb others raise your hand.
- Read what I ask you to
- Perform and submit assignments on time
 - Late policy (same for all courses)
 - Don't ask for personal extensions
 - Miluim, births, etc. as per the college policy
- Come to office hours if you need extra help
- If you have a complaint or request try asking me first
- Don't copy or turn in duplicate assignments
 - Group work policy per course
 - "We worked on it together" is not acceptable
- Correct me (respectfully) if I make mistakes, say something silly, etc.

Course Introduction

Topics: Databases, Database Management Systems, and SQL

Prerequisites:

- 1-02-215: Introduction to Information Systems Engineering (may be taken at the same time)
- 1-02-222: File Organization and Processing
- 1-02-220: Logic

Targilim

- Targil will consist of:
 - Exercising what we learned
 - Asking/Answering questions
 - Trying out queries on MS SQL Server
 - Working on Project
- No grade for anything done during Targil

Optional Assignments

- Four self check assignments over the course of the semester
- Exercise concepts and skills explained in class:
 - ERD
 - Schema development
 - Basic SQL
 - More advanced SQL views, stored procedures
- Will help you in working on your projects

Semester Project

- Design and implement a database and interactive GUI front end using the tools and techniques learned in the classroom
 - Can be done in groups of 2
- Developed in phases over the course of the semester
 - Whole thing graded at the very end
 - Meet with me after each phase submitted
- Final project submission
 - Project Report
 - Project Presentation in last Targil