

ROBT206 - Microcontrollers with Lab

Lecture 14 – Sequential Circuit Analysis

6 March, 2018

Topics

Today's Topics

- Sequential circuit analysis
 - State tables
 - State diagrams
 - Equivalent states
 - Moore and Mealy Models

Sequential Circuit Analysis

- General Model
 - Current State at time (t) is stored in an array of flip-flops.

- Next State at time (t+1) is a Boolean function of state and inputs.
- Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Example 1

Output: y(t)

What is the Output Function?

- What is the
- Next State Function?

Example 1 (continued)

Boolean equations for the functions:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = A(t)x(t)$$

$$y(t) = x(t)(B(t) + A(t))$$

Example 1 (continued)

Where in time are inputs, outputs and states defined?

Functional Simulation - Fig. 4-18 Mano & Kime

State Table Characteristics

- ► State table a multiple variable table with the following four sections:
 - Present State the values of the state variables for each allowed state.
 - ▶ **Input** the input combinations allowed.
 - Next-state the value of the state at time (t+1) based on the present state and the input.
 - Output the value of the output as a function of the present state and (sometimes) the input.
- From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table

The state table can be filled in using the next state and output equations:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = \overline{A}(t)x(t)$$

$$y(t) = \overline{x}(t)(B(t) + A(t))$$

Present State	Input	Next	State	Output
A(t) B(t)	x(t)	A(t+I)	B(t+I)	y(t)
0 0	0	0	0	0
0 0		0		0
0 I	0	0	0	
0 1				0
1 0	0	0	0	
1 0			0	0
	0	0	0	
			0	0

Example 1: Alternate State Table

▶ 2-dimensional table that matches well to a K-map. Present state rows and input columns in Gray code order.

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = \overline{A}(t)x(t)$$

$$y(t) = x(t)(B(t) + A(t))$$

Present		Next State			Output		
State	x (t):	=0	×	f(t) = I		x(t)=0	x(t)=I
A(t) B(t)	A(t+1)B	(t+1)	A(t+I))B(t+	I)	y(t)	y(t)
0 0	0 ()		0 I		0	0
0 1	0)		1 1			0
1 0	0 ()		Ι 0			0
	0 ()		Ι 0			0

State Diagrams

- The sequential circuit function can be represented in graphical form as a <u>state diagram</u> with the following components:
 - A circle with the state name in it for each state
 - A directed arc from the Present State to the Next State for each state transition
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the <u>state transition</u>, and
 - A label:
 - On each circle with the output value produced, or
 - On each <u>directed arc</u> with the <u>output</u> value produced.

State Diagrams

- Label form:
 - On <u>circle</u> with output included:
 - > state/output
 - Moore type output depends only on state
 - On directed arc with the output included:
 - input/output
 - Mealy type output depends on state and input

- Which type?
- Diagram gets confusing for large circuits
- For small circuits, usually easier to understand than the state table

Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called Finite State Machines (FSMs). Two formal models exist:
 - Moore Model
 - Named after E.F. Moore
 - Outputs are a function ONLY of <u>states</u>
 - Usually specified on the states.

- Mealy Model
 - Named after G. Mealy
 - Outputs are a function of inputs AND states
 - Usually specified on the state transition arcs.

Moore and Mealy Example Diagrams

Mealy Model State Diagram maps <u>inputs and state</u> to <u>outputs</u>

Moore Model State Diagram maps <u>states</u> to <u>outputs</u>

Moore and Mealy Example Tables

Moore Model state table maps state to outputs

Present	Next	State	Output
State	x=0	x=	
0	0	I	0
	0	2	0
2	0	2	

Mealy Model state table maps inputs and state to outputs

Present	Next State		Output		
State	×=0	x=	x=0	x=	
0	0		0	0	
	0		0		

Mixed Moore and Mealy Outputs

- In real designs, some outputs may be Moore type and other outputs may be Mealy type.
- Example:
 - State 00: Moore
 - States 01, 10, and 11: Mealy
- Simplifies output specification

Example 2: Sequential Circuit Analysis

Example 2: Flip-Flop Input Equations

- Variables
 - ▶ Inputs: None
 - Outputs: Z
 - State Variables: A, B, C
- Initialization: Reset to (0,0,0)
- Equations

$$A(t+1) =$$

$$B(t+1) =$$

$$C(t+1) =$$

$$Z =$$

Example 2: State Table

X' = X(t+1)

ABC	A'B'C'	Z
0 0 0		
0 0 1		
0 1 0		
0 1 1		
1 0 0		
1 0 1		
1 1 0		
1 1 1		

A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the two following input equations:

$$A(t+1) = \overline{X}A + XY$$

$$B(t+1) = XA + \overline{X}B$$

$$Z = XB$$

- a) Draw the logic diagram of the circuit
- b) Derive the state table
- c) Derive the state diagram

$$A(t+1) = \overline{X}A + \underline{X}Y$$

$$B(t+1) = XA + \overline{X}B$$

$$Z = XB$$

a) The logic diagram of the circuit

$$A(t+1) = \overline{X}A + XY$$

$$B(t+1) = XA + \overline{X}B$$

$$Z = XB$$

b) The state table

Present state		Inputs		Next state		Output
A	В	X	Y	A	В	Z
0	0	0	0	0	0	0
0	0	O	1	0	0	0
0	0	1	0	0	0	0
0	O	1	1	1	0	0
0	1	0	0	O	1	0
0	1	0	1	O	1	0
0	1	1	0	0	0	1
0	1	1	1	1	0	1
1	O	0	0	1	O	0
1	O	O	1	1	0	0
1	0	1	0	O	1	0
1	O	1	1	1	1	0
1	1	O	0	1	1	0
1	1	O	1	1	1	0
1	1	1	0	O	1	1
1	1	I	1	1	1	1

$$A(t+1) = \overline{X}A + \underline{X}Y$$

$$B(t+1) = XA + \overline{X}B$$

$$Z = XB$$

c) The state diagram

Format: XY/Z (X = unspecified)

Any Questions?

