

COURSE NAME: MME - 102 GROUP NO.: A1

EXPERIMENT NO.: 01

NAME OF THE EXPERIMENT:

1(c). Identification of polymers using chemical methods

1(d): Quantitative Gross Density Measurements of Polymers

DATE OF PERFORMANCE:

09. 09. 2024

DATE OF SUBMISSION:

20. 09. 2024

SUBMITTED TO:

Md. Nazmul Ahsan Dipon Lecturer, Dept of MME, BUET

SUBMITTED BY:

Praggo Pabon Roll: 2311002 Section: A- 1 Dept of MME, BUET

Table 01: Experimental outputs of the laboratory tests for the Identification of polymers using chemical methods

Polymer Identific ation Sample No.	Name of the Laboratory Tests									
	Approximate Density in Various Medium				Flame Test					
	Water	Vegetable Oil	Acetone	Isopropyl Alcohol	Color	Elasticity	Residue			
01	Sink	Sink	Sink	Sink	Yellow	Elastic (Paste)	Black			
02	Float	Submerge	Sink	Sink	Blue + Yellow	Elastic (Paste)	Transpa rent			
03	Sink	Sink	Sink (Reactive	Sink	Yellow No Flammabilit y	Non- elastic Powder	Black			
04	Float	Submerge	Sink	Sink	Blue + Yellow	Elastic	Transpa rent			
05	Float	Float	Sink	Sink	Blue + Yellow	Elastic (Low)	Black			
06	Sink	Sink	Sink (Reactive	Sink	Yellow	Elastic (Low)	Black			

Table 02: Identified Polymers

Sample 01	Sample 02	Sample 03	Sample 04	Sample 05	Sample 06
PETE: Polyethylene Terephthalate	HDPE: High Density Polyethylene	PVC: Polyvinyl Chloride	LDPE: Low Density Polyethylene	PP: Polypropylene	PS: Polystyrene

${\it Example photographs of the polymer samples used in the experiment:}$

Sample 01: PETE

Sample 02: HDPE

Sample 03: PVC

Sample 04: LDPE

Sample 05: PP

Sample 06: PS

Calculation:

Weight of the empty pycnometer, $W_p = 28.82 g$

Weight of the pycnometer with almost half-filled sample, W_p+W_s= 34.3 g

Weight of the pycnometer with sample and filled reference liquid, $W_p+W_s+W_{pw}=80.5g$

Weight of the reference liquid, W_{pw} = 80.5g - 34.3g = 46.2g

Weight of the solid, $W_s = 34.3g - 28.82g = 5.48g$

Weight of the reference liquid filled in pycnometer, $W_{fw} = 78.8g - 28.82g = 49.98g$

Density of liquid, $\rho_w = W_{fw} / V_p = 49.98g / 50 \text{mL} = 0.9996 \text{ g/mL}$

Volume of the liquid used to immerse the solid sample, V_{pw} = W_{pw} / ρ_w = (46.2/0.9996)~mL = 46.218~mL

Volume of the solid sample, $V_s = V_p - V_{pw} = 50 \text{mL} - 46.218 \text{mL} = 3.782 \text{mL}$

Therefore, density of the solid sample, ρ_s = W_s / V_s = 1.44896 g/mL

Discussion:

- 1. We were given the sample no. 01 during the experiment for the density calculation.
- 2. From the laboratory experiments followed by sinking tests in various liquids (water, oil, alcohol & acetone) and the flame tests to understand the sample's flammability, elasticity and residue properties— we were able to determine that out polymer sample was PETE (Polyethylene Terephthalate).
- 3. By following the calculation steps, we were able to determine the density of the solid polymer sample (PETE) which we found $\rho_s = 1.44896$ g/mL.
- 4. If we compare the determined density of PETE and the actual density of PETE, we will find a slight change in density. Which we took as an experimental error.
 - a. Error analysis:

Highest possible density of PETE, ρ = 1.39 g/mL

Density of the solid sample, ρ_s = 1.44896 g/mL

Error = $(\rho_s - \rho) / \rho = (1.44896 - 1.39) / 1.39 = 4.24\%$

- 5. Scientific reasoning of the error: As we got 4.24% error in the density calculation of the given solid polymer. We were able to predict the causes of this error:
 - a. Human Error: We were supposed to follow certain instructions such as i. Filling the pycnometer almost half with the sample polymer ii. Fully fill the pycnometer with the reference liquid (water). We anticipate that, while conducting the experiment, mistakes were made
 - b. Mechanical error: We also cannot deny the probability of mechanical errors built with the weight machine.