To find the following Machine Learning regression method using in r2 value

Decision Tree

Criterion	Splitter	R_Score	
squared error	best	0.9180481998501903	
squared error	random	0.8037496657163345	
friedman_mse	best	0.9164966036339289	
friedman_mse	random	0.8931001967434119	
absolute_error	best	0.9479169238469476	
absolute_error	random	0.9034388777224392	
Poisson	best	0.9148629699539843	
Poisson	random	0.832076102144886	

Support Vector Machine

SNo	Hyper Parameter	Linear r-value	RBF (Non Linear) r-value	POLY r-value	SIGMOID r-value
1	C10	-0.0396	-0.0568	-0.0536	-0.0547
2	C100	0.106	-0.050	-0.0198	-0.0304
3	C500	0.592	-0.0243	0.114	0.0705
4	C1000	0.780	0.006	0.266	0.185
5	C2000	0.876	0.067	0.481	0.397
6	C3000	0.895	0.123	0.637	0.591

Multiple Linear Regression: R2-Value: 0.9358680970046243