ПЗ -1 Основные технические показатели РПрУ. Расширенное ТЗ

Методические материалы кафедры (основные)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования Московский технический университет связи и информатики

Кафедра радиооборудования и схемотехники

Логвинов В.В.

Учебно-методическое пособие на курсовой проект

по дисциплине

РАДИОПРИЕМНЫЕ УСТРОЙСТВА СИСТЕМ РАДИОСВЯЗИ И РАДИОДОСТУПА (1.2.16)

Для студентов 3 и 4 курсов заочной формы обучения
Направление подготовки: 11.03.02.52 Инфокоммуникационные
технологии и системы связи
Профиль подготовки: Системы радиосвязи и радиодоступа

Москва 2019

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования Московский технический университет связи и информатики

Кафедра радиооборудования и схемотехники

Логвинов В.В.

Учебно-методическое пособие и задания на курсовой проект по дисциплине

РАДИОПРИЕМНЫЕ УСТРОЙСТВА СИСТЕМ МОБИЛЬНОЙ СВЯЗИ

для студентов – заочников 4 курса (направление 210700 - Инфокоммуникационные технологии и системы связи), 11.03.02 (профиль – Системы мобильной связи)

Москва 2016

Федеральное агентство связи

Ордена трудового красного знамени федеральное государственное бюджетное образовательное учреждение высшего образования МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Кафедра радиооборудования и схемотехники

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «КУРСОВОЕ ПРОЕКТИРОВАНИЕ РАДИОПРИЕМНЫХ УСТРОЙСТВ ДЛЯ ТЕДЕРАДИОВЕЩАНИЯ»

по дисциплине «Радиоприемные устройства для телерадиовещания» для студентов направления 11.03.02 «Инфокоммуникационные технологии и системы связи», профиль «Цифровое телерадиовещание»

Москва 2018

Методические материалы (дополнительные)

МИНИСТЕРСТВО ИНФОРМАТИЗАЦИОННЫХ ТЕХНОЛОГИЙ И СВЯЗИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский технический университет связи и информатики

С.И. Дингес

СХЕМОТЕХНИКА РЧ БЛОКОВ СИСТЕМ СВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ

Учебное пособие

Москва 2005/2014

Федеральное агентство связи

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования «Московский технический университет связи и информатики»

С.И. Дингес

Оборудование систем мобильной связи

Учебное пособие

Москва 2016

Нормативные документы

ссылки

Регламент радиосвязи (РР)

Регламент радиосвязи (договорной статус) объединяет в себе решения Всемирных конференций радиосвязи, в том числе все приложения, резолюции и Рекомендации МСЭ-R, включенные посредством

- » Распределения частотных блоков определенным службам радиосвязи (Статья 5)
- > Обязательные или добровольные регламентарные процедуры (координация, изменение плана, заявление, регистрация), которые адаптированы к структуре таблицы распределения частот

Нормативные документы

Регламент радиосвязи (РР) МСЭ

- Распределение полос частот радиослужбам
- Обязательные технические параметры, которым должны соответствовать радиостанции, особенно передатчики
- Процедуры, которым необходимо следовать для получения прав на использование спектра/орбиты
 - Во избежание вредных помех
- Определение конкретных полос частот для согласованного использования, например для международной подвижной электросвязи (IMT)
 - В целях обеспечения возможности эффекта масштаба, функциональной совместимости и роуминга.

Европейский институт стандартов в связи **ETSI** (<u>www.etsi.org</u>), партнёрство **3GPP** (<u>www.3gpp.org</u>) - всё о стандартах GSM, UMTS, LTE, TETRA

UMTS Форум (<u>www.umts-forum.org</u>) — стандарты 3 и 4 поколений Ассоциация промышленности связи США ТІА (<u>www.tiaonline.org</u>)

Стандарты **IEEE 801**...., **IEEE 802.** - беспроводного доступа IEEE (Institute of Electrical and Electronics Engineers - институт инженеров по электротехнике и радиоэлектронике)

Интернет-сайт Министерства цифрового развития, связи и массовых коммуникаций РФ: http://www.minkomsvjaz.ru. ГОСТы РФ

Информационные ресурсы по элементной базе

Сайты фирм-производителей комплектующих изделий радиотракта радиоприемных устройств

ИМС и электроника

http:www.analog.com/

http://www.mkp.com/

http://www.maxim-ic.com/

http://www.avagotech.com/

http://www.ti.com/

http:www.toko.com/

http:www.rfmd.com/

http:www.skyworksinc.com

http:www.Philips

Пассивные компоненты

http:www.alphaind.com

http://www.ctscorp.com/

http:www.mobilcom.narod.ru

http:www.epcos.com/

http:www.fujitsumicro.com/

http:www.kimicrowave.com/

http:www.macom.com/

http:www.microtech-inc.com/

http:www.mdc-inc.net

http:www.murata.com;

http:www.murata.co.jp

http:www.rfm.com/

Semiconductor.com

http:www.sawtek.com/

http:www.sigtech.com/

http:www.toko.com/

http:www.Spectrum Microwave.com

http:www.TriQuint Semiconductor.com

http:www.butis-m.ru

https://www.mini-circuits.com

ДИОКОМП

Новости

Новые разработки компании «Радиокомп» на форуме по СВЧтехнике и телекоммуникационным технологиям

7 октября 2021. Новые разработки компании «Радиокомп» на форуме по СВЧ-технике и телекоммуникационным технологиям.

Компания «Радиокомп» на международной выставке систем безопасности «Интерполитех – 2021» (стенд 8СЗ-4)

1 октября. Компания «Радиокомп» на международной выставке систем безопасности «Интерполитех – 2021» ,

Квадратурные делители/ сумматоры мощности компании «Радиокомп»

28 сентября 2021. Квадратурные делители/ сумматоры мощности компании «Радиокомп»

УНИКАЛЬНЫЕ РАДИОКОМПОНЕНТЫ елефоны: (495) 957-7745, 361-0904 ВЕДУЩИХ ФИРМ МИРА Электронная почта: sales@radiocomp.ru

О нас

Партнеры

Разработки

Информация

Магазин

Наши разработки

Фильтры ВЧ/СВЧ и устройства на их основе

Фильтры

Диплексеры

Фазовращатели

Направленные ответвители

Отладочные платы

Отладочная плата для микросхемы 1508ПЛ8Т

Отладочная плата для микросхемы 1508ПЛ9Т

Отладочная плата для микросхемы ФАПЧ 1288ПЛ1У

Устройства формирования сигналов

Для разработки РПрУ из нормативных документов определить:

- Принцип дуплексирования (приём/передача)
- Полосу частот принимаемого сигнала
- Полосу частот предаваемого сигнала (своего оборудования)
- Вид (виды модуляции)
- Шаг (дискретность) перестройки по частоте
- Допустимая нестабильность частоты (принимаемого сигнала)
- Предельные показатели качества приёма (BER, Eb/NO)
- Чувствительность
- Максимальный уровень входного сигнала
- Избирательность по соседнему каналу
- Избирательность по побочным каналам приёма
- Динамический диапазон (блокирование)

Пример работы со стандартами

3GPP TS 05.05 V8.20.0 (2005-11)

3rd Generation Partnership Project; Technical Specification Group **GSM/EDGE** Radio Access Network; **Radio transmission and reception**

Диапазоны частот и шаг сетки частот

- 2 Frequency bands and channel arrangement
- i) GSM 450 Band:
- for GSM 450, the system is required to operate in the following band:
- 450,4 MHz to 457,6 MHz; mobile transmit, base receive;
- 460,4 MHz to 467,6 MHz base transmit, mobile receive.

viii) PCS 1 900 Band:

- for PCS 1 900, the system is required to operate in the following band:
- 1 850 MHz to 1 910 MHz: mobile transmit, base receive;
- 1 930 MHz to 1 990 MHz base transmit, mobile receive.

Operators may implement networks that operate on a combination of the frequency bands above to support multi band mobile terminals.

The carrier spacing is 200 kHz.

Полоса частот модулированного сигнала

Annex A (informative):

Spectrum characteristics (spectrum due to the modulation)

Figure A.1a: GSM 400, GSM 900 and GSM 850 MS spectrum due to **GMSK** modulation

Figure A.1b: GSM 400, GSM 900 and GSM 850 MS spectrum due to **8-PSK** modulation

Модуляция

- 4.6 **Modulation accuracy**
- 4.6.1 GMSK modulation

.....

4.6.2 8-PSK modulation

When measuring the error vector a receive filter at baseband shall be used, defined as a raised-cosine filter with roll-off 0,25 and single side-band 6 dB bandwidth 90 kHz.

4.6.2.1 RMS EVM

.....

5 **Receiver characteristics**

Эталонная чувствительность

The reference sensitivity performance as specified in tables 1, 1a, 1b, 1c, 1d and 1e according to the type of channel and the propagation condition.

6.2 Reference sensitivity level

The actual sensitivity level shall be less than a specified limit, called the reference sensitivity level.

Примеры:

GSM 900 MS

-	for GSM 900 small MS	-102 dBm
-	for other GSM 900 MS	-104 dBm

GSM 900 BTS, GSM 850 BTS and MXM 850

-	for normal BTS	-104 dBm
-	for micro BTS M1	-97 dBm
-	for micro BTS M2	-92 dBm
-	for micro BTS M3	-87 dBm
-	for pico BTS P1	-88 dBm

The reference performance shall be: (качество приёма)

- for data channels (E-TCH/F), transparent services (T)

BER ≤ **0**,**1**%

- for data channels (E-TCH/F), non-transparent services (NT))

BLER ≤ 10%

5.1 Blocking characteristics (характеристики блокирования) нужны для определения селективности – выбора фильтров

Пример: область измерений для a useful signal, modulated with the relevant supported modulation (GMSK or 8-PSK), at frequency **fo**, **3 dB above the reference sensitivity level**

Frequency	Frequency range (MHz)							
band	GSM	1 900	E-GSM 900	R-GSM 900				
	MS	BTS	BTS	BTS				
in-band	915 - 980	870 - 925	860 - 925	856 - 921				
out-of-band (a)	0,1 - < 915	0,1 - < 870	0,1 - < 860	0,1 - < 856				
out-of-band (b)	N/A	N/A	N/A	N/A				
out-of band (c)	N/A	N/A	N/A	N/A				
out of band (d)	. 000 10 750	025 12.750	. 025 42 750	. 024 42 750				
out-of band (d)	> <mark>980 - 12,750</mark>	> <mark>925 - 12,750</mark>	> 925 - 12,750	> 921 - 12,750				

Пример: при этих отстройках и уровнях помех (sine wave signal (f)) РПрУ должно обеспечивать чувствительность только на **3 дБ** хуже эталонной. Остаток неподавленной помехи добавляется к **N0 и** уменьшает отношение **Eb/N0**

Frequency	GSM 400, P-, E- and R-GSM 900					DCS 1 800 & PCS 1 900				
band	other MS		small MS		BTS		MS		BTS	
	dΒμV	dBm	dΒμV	dBm	dΒμV	dBm	dΒμV	dBm	dΒμV	dBm
	(emf)		(emf)		(emf)		(emf)		(emf)	
<mark>in-band</mark>										
600 kHz \leq f-fo $<$ 800 kHz	75	-38	70	-43	87	<mark>-26</mark>	70	-43	78	-35
800 kHz \leq f-fo < 1,6 MHz	80	-33	70	-43	97	<mark>-16</mark>	70	-43	88	-25
1,6 MHz \leq f-fo $<$ 3 MHz	90	<mark>-23</mark>	80	-33	97	<mark>-16</mark>	80	-33	88	-25
3 MHz \leq f-fo	90	<mark>-23</mark>	90	-23	100	<mark>-13</mark>	87	-26	88	-25
out-of-band										
(a)	113	O	113	0	121	<mark>8</mark>	113	0	113	0
(b)	-	-	-	-	_	-	101	-12	-	-
(c)	-	-	-	-	-	-	101	-12	-	-
(d)	113	0	113	0	121	<mark>8</mark>	113	0	113	0

F.2.5 Frequency error

The increase in frequency error of a GSM input signal, which meets the frequency accuracy requirements of 3GPP TS 05.10, shall be no greater than 0,05 ppm. To есть - 0,05*10-6 \approx 10*-7

F.3.1 Gain

With a GSM input signal at any level in the range -102 dBm to -20 dBm for a GSM 400 and GSM 900 AFLC and -100 dBm to -20 dBm for a DCS 1 800 AFLC, the gain shall be 0 dB with a tolerance of ±1 dB.

For test purposes, it is sufficient to use a CW signal to test this requirement.

F.3.2 Noise figure

The noise figure shall be less than **7 dB** for a GSM 400 and GSM 900 AFLC and less than **7 dB** for a DCS 1 800 AFLC.

F.3.4 Intermodulation performance

The **output third order intercept point** shall be greater than **-10 dBm**.