Study Scheme & Syllabus of

Bachelor of Technology Computer Science & Engineering

B. Tech (CSE)

Batch 2018 onwards

By Department of Academics

IK Gujral Punjab Technical University

Fourth Semester

Course Code	Course Type	Course Title	Load Allocations			Marks Distribution		Total Marks	Credits
			L	T	P	Internal	External		
BTCS 401-18	Professional Core Courses	Discrete Mathematics	3	ı	0	40	60	100	4
BTES 401-18	Engineering Science Course	Computer Organization & Architecture	3	1	0	40	60	100	3
BTCS 402-18	Professional Core Courses	Operating Systems	3	ŧ	0	40	60	100	3
BTCS 403-18	Professional Core Courses	Design & Analysis of Algorithms	3	1	0	40	60	100	3
HSMC 122-18	Humanities & Social Sciences including Management Courses	Universal Human Values- II	2	1	0	40	60	100	3
EVS101- 18	Mandatory Courses	Environmental Sciences	1	-		12.00	-		0
BTES 402-18	Engineering Science Course	Computer Organization & Architecture Lab	0	0	2	30	20	50	1
BTCS 404-18	Professional Core Courses	Operating Systems Lab	0	0	4	30	20	50	2
BTCS 405-18	Professional Core Courses	Design & Analysis of Algorithms Lab	0	0	4	30	20	50	2
Total			15	5	10	290	360	650	21

Fourth Semester

Course Code: BTES401-18 | Course Title: Computer Organization & Architecture | 3L:0T:0P | 3Credits

Pre-requisites: Digital Electronics

Detailed Contents:

Module 1: Functional blocks of a computer

CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU – registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Case study – instruction set of 8085 processor.

Data representation: signed number representation, fixed and floating point representations, character representation. Computer arithmetic – integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc. multiplication – shift-and add, Booth multiplier, carry save multiplier, etc. Division restoring and non-restoring techniques, floating point arithmetic.

[10 hrs] (CO1, CO2)

Module 2: Introduction to x86 architecture.

CPU control unit design: Hardwired and micro-programmed design approaches, Case study – design of a simple hypothetical CPU.

Memory system design: semiconductor memory technologies, memory organization. Peripheral devices and their characteristics: Input-output subsystems, I/O device interface, I/O transfers – program controlled, interrupt driven and DMA, privileged and non-privileged instructions, software interrupts and exceptions. Programs and processes –role of interrupts in process state transitions, I/O device interfaces – SCII, USB.

[12 hrs] (CO2, CO4)

Module 3: Pipelining

Basic concepts of pipelining, throughput and speedup, pipeline hazards.

Parallel Processors: Introduction to parallel processors, Concurrent access to memory and cache coherency.

[10 hrs] (CO5)

Module 4: Memory Organization

Memory interleaving, concept of hierarchical memory organization, cache memory, cache size vs. block size, mapping functions, replacement algorithms, write policies.

[10 hrs] (CO3)

Course Outcomes:

The student will be able to:

- 1. Understand functional block diagram of microprocessor;
- Apply instruction set for Writing assembly language programs;
- Design a memory module and analyze its operation by interfacing with the CPU;
- Classify hardwired and microprogrammed control units; &
- Understand the concept of pipelining and its performance metrics.

Suggested Books:

- "Computer Organization and Architecture", Moris Mano,
- "Computer Organization and Design: The Hardware/Software Interface", 5th Edition by David A. Patterson and John L. Hennessy, Elsevier.

"Computer Organization and Embedded Systems", 6th Edition by Carl Hamacher, McGraw Hill Higher Education.

Reference Books:

- "Computer Architecture and Organization", 3rd Edition by John P. Hayes, WCB/McGraw-Hill
- "Computer Organization and Architecture: Designing for Performance", 10th Edition by William Stallings, Pearson Education.
- "Computer System Design and Architecture", 2nd Edition by Vincent P. Heuring and Harry F. Jordan, Pearson Education.

Course Code: BTCS402-18 | Course Title: Operating Systems | 3L:0T:0P | 3Credits

Detailed Contents:

Module 1: Introduction

Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.

[6 hrs] (CO1)

Module 2: Processes

Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non-pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

[10 hrs] (CO2, CO3)

Module 3: Inter-process Communication

Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer\Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc.

[8 hrs] (CO2)

Module 4: Deadlocks

Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

[8 hrs] (CO3)

Module 5: Memory Management

Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation –Fixed and variable partition–Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation–Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

[10 hrs] (CO4)

Module 6: I/O Hardware

I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free Space Management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks.

[8 hrs] (CO5, CO6)

Course Outcomes:

The student will be able to:

- Explain basic operating system concepts such as overall architecture, system calls, user mode and kernel mode;
- Distinguish concepts related to processes, threads, process scheduling, race conditions and critical sections;
- Analyze and apply CPU scheduling algorithms, deadlock detection and prevention algorithms;
- Examine and categorize various memory management techniques like caching, paging, segmentation, virtual memory, and thrashing;
- Design and implement file management system: &
- Appraise high-level operating systems concepts such as file systems, disk-scheduling algorithms and various file systems.

Suggested Books:

- Operating System Concepts Essentials, 9th Edition by Avi Silberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.

Reference Books:

 Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing

Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India

Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

37 | Page

I.K. Gujral Punjab Technical University, Kapurthala Bachelor of Technology in Computer Science & Engineering

Course Code: BTCS403-18 | Course Title: Design and Analysis of Algorithms | 3L:0T:0P | 3Credits

Pre-requisites: Data Structures

Detailed Contents:

Module 1: Introduction

Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method. Recursion tree method and Masters' theorem.

[8 hrs] (CO1)

Course Code: BTCS403-18 Course Title: Design and Analysis of Algorithms | 3L:0T:0P | 3Credits

Pre-requisites: Data Structures

Detailed Contents:

Module 1: Introduction

Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem.

[8 hrs] (CO1)

Module 2: Fundamental Algorithmic Strategies

Brute-Force, Greedy, Dynamic Programming, Branch- and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving: Bin Packing, Knap Sack, TSP.

[10 hrs] (CO1, CO2)

Module 3: Graph and Tree Algorithms

Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.

[10 hrs] (CO3)

Module 4: Tractable and Intractable Problems

Computability of Algorithms, Computability classes – P. NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.

[8 hrs] (CO5)

Module 5: Advanced Topics

Approximation algorithms, Randomized algorithms, Heuristics and their characteristics.

[6 hrs] (CO1, CO4, CO5)

Course Outcomes:

The student will be able to:

- For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms;
- Explain when an algorithmic design situation calls for which design paradigm (greedy/ divide and conquer/backtrack etc.);
- Explain model for a given engineering problem, using tree or graph, and writethe corresponding algorithm to solve the problems;
- Demonstrate the ways to analyze approximation/randomized algorithms (expected running time, probability of error); &
- Examine the necessity for NP class based problems and explain the use of heuristic techniques.

Suggested Books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald

- L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- Data Structures and Algorithms in C++, Weiss, 4th edition, Pearson.
- Fundamentals of Computer Algorithms E. Horowitz, Sartaj Saini, Galgota Publications.

Reference Books

- Algorithm Design, 1stEdition, Jon Kleinberg and ÉvaTardos, Pearson.
- 2 Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- Algorithms -- A Creative Approach, 3RD Edition, Udi Manber, Addison-Wesley, Reading, MA.

Course Code: BTES402-18 Course Title: Computer Organization & Architecture Lab | 0L:0T:2P | 1Credits

List of Experiment:

- Task 1: Computer Anatomy- Memory, Ports, Motherboard and add-on cards.
- Task 2: Dismantling and assembling PC.
- Task 3: Introduction to 8085 kit.
- Task 4: 2. Addition of two 8 bit numbers, sum 8 bit.
- Task 5: Subtraction of two 8 bit numbers.
- Task 6: Find 1's complement of 8-bit number.
- Task 7: Find 2's complement of 8-bit number.
- Task 8: Shift an 8-bit no. by one bit.
- Task 9: Find Largest of two 8 bit numbers.
- Task 10: Find Largest among an array of ten numbers (8 bit).
- Task 11: Sum of series of 8 bit numbers.
- Task 12: Introduction to 8086 kit.
- Task 13: Addition and subtraction of two 16 bit numbers, sum 16 bit.
- Task 14: Implement of Booth's algorithm for arithmetic operations.
- Task 15: Find I's and 2's complement of 16-bit number.
- Task 16: Implement simple programs using I/O based interface.

Lab Outcomes:

The student will be able to:

- Assemble personal computer;
- Implement the various assembly language programs for basic arithmetic and logical operations; &
- Demonstrate the functioning of microprocessor/microcontroller based systems with I/O interface.

Reference Books:

 Fundamentals of Microprocessors and Microcontrollers by B. Ram, Dhanpat Rai Publications.

Course Code: BTCS404-18 Course Title: Operating Systems Lab | 0L:0T:4P | 2Credits

List of Experiment:

- Task 1: Installation Process of various operating systems.
- Task 2: Implementation of CPU scheduling algorithms to find turnaround time and waiting time, a) PCFS b) SJF c) Round Robin (pre-emptive) d) Priority.
- Task 3: Virtualization, Installation of Virtual Machine Software and installation of Operating System on Virtual Machine.
- Task 4: Commands for files & directories: cd, ls, cp, md, rm, mkdir, rmdir. Creating and viewing files using cat. File comparisons. Disk related commands: checking disk free spaces. Processes in linux, connecting processes with pipes, background processing, managing multiple processes. Background process: changing process priority, scheduling of processes at command, batch commands, kill, ps, who, sleep. Printing commands, grep, fgrep, find, sort, cal, banner, touch, file. File related commands ws, sat, cut, grep.
- Task 5: Shell Programming: Basic of shell programming, various types of shell, Shell Programming in bash, conditional & looping statement, case statements, parameter passing and arguments, shell variables, shell keywords, creating shell programs for automate system tasks, report printing.
- Task 6: Implementation of Bankers algorithm for the purpose of deadlock avoidance.

Lab Outcomes:

The student will be able to:

- Understand and implement basic services and functionalities of the operating system;
- Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority;
- 3. Implement commands for files and directories;
- Understand and implement the concepts of shell programming;
- 5. Simulate file allocation and organization techniques: &
- Understand the concepts of deadlock in operating systems and implement them in multiprogramming system.

Reference Books:

 Operating Systems: Design and Implementation, Albert S. Woodhull and Andrew S. Tanenbaum, Pearson Education.

Course Code: BTCS405-18 Course Title: Design and Analysis of Algorithms Lab | 0L:0T:4P | 2Credit

List of Experiment:

- Task 1: Code and analyze solutions to following problem with given strategies:
 - i. Knap Sack using greedy approach
 - ii. Knap Sack using dynamic approach
- Task 2: Code and analyze to find an optimal solution to matrix chain multiplication using dynamic programming.
- Task 3: Code and analyze to find an optimal solution to TSP using dynamic programming.
- Task 4: Implementing an application of DFS such as:
 - i. to find the topological sort of a directed acyclic graph
 - ii. to find a path from source to goal in a maze.
- Task 5: Implement an application of BFS such as:
 - i. to find connected components of an undirected graph
 - to check whether a given graph is bipartite.
- Task 6: Code and analyze to find shortest paths in a graph with positive edge weights using Dijkstra's algorithm.
- Task 7: Code and analyze to find shortest paths in a graph with arbitrary edge weights using Bellman-Ford algorithm.
- Task 8: Code and analyze to find shortest paths in a graph with arbitrary edge weights using Flyods' algorithm.
- Task 9: Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Prims' algorithm
- Task 10: Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Kruskals' algorithm.
- Task 11: Coding any real world problem or TSP algorithm using any heuristic technique.

Lab Outcomes:

The student will be able to:

- Improve practical skills in designing and implementing complex problems with different techniques;
- Understand comparative performance of strategies and hence choose appropriate, to apply to specific problem definition;
- Implement Various tree and graph based algorithms and become familiar with their design methods; &
- Design and Implement heuristics for real world problems.

Reference Books

- 1. Data Structures and Algorithms in C++, Weiss, 4th edition, Pearson
- Data Structures and Algorithms using Python and C++, David M. Reed and John Zelle, 2009 edition (available as e book), Franklin Beedle & Associates.

UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY Course code: HSMC122-18

Credits: 3

COURSE TOPICS:

The course has 28 lectures and 14 practice sessions in 5 modules:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- Purpose and motivation for the course, recapitulation from Universal Human Values-I
- Self-Exploration-what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for selfexploration.
- 3. Continuous Happiness and Prosperity-A look at basic Human Aspirations
- Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario.
- Method to fulfil the above human aspirations: understanding and living inharmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
 - Understanding the needs of Self ('I') and 'Body' happiness and physical facility
 - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
 - Understanding the characteristics and activities of 'I' and harmony in 'I'
 - Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
 - Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

Understanding values in human-human relationship; meaning of Justice

- (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship.
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals.
- Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of nature - recyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in all- pervasive space
- Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco -friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems.
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations.
- 28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial)

Sessions eg. to discuss the conduct as an engineer or scientist etc.

3. READINGS:

- 3.1 Text Book
- Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010.

3.2 Reference Books

- Jeevan Vidya: Ek Parichaya, A. Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- The Story of Stuff (Book).
- The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- Small is Beautiful E. F Schumacher.
- Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence JC Kumarappa
- Bharat Mein Angreji Raj –Pandit Sunderlal
- Rediscovering India by Dharampal
- Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

OUTCOME OF THE COURSE:

By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

This is only an introductory foundational input. It would be desirable to follow it up by

- a) Faculty -student or mentor-mentee programs throughout their time with the institution.
- b) Higher level courses on human values in every aspect of living. E.g. as a professional.

Course Code: EVS101-18 Course Title: Environmental Studies- L:2; T:0; P:0 OCredits

Detailed Contents:

Module 1: Natural Resources: Renewable and non-renewable resources

Natural resources and associated problems.

- Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.
- Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
 - Role of an individual in conservation of natural resources.
 - Equitable use of resources for sustainable lifestyles.

Module 2: Ecosystems

Concept of an ecosystem. Structure and function of an ecosystem. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of following ecosystems:

- a) Forest ecosystem
- Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Module 3: Biodiversity and its conservation

- a) Introduction Definition: genetic, species and ecosystem diversity.
- Biodiversity at global, National and local levels.
- India as a mega-diversity nation
- d) Hot-sports of biodiversity.
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- f) Endangered and endemic species of India

Module 4: Social Issues and the Environment

- a) From Unsustainable to Sustainable development
- b) Resettlement and rehabilitation of people; its problems and concerns.
- Environmental ethics: Issues and possible solutions.
- d) Climate change, global warming, acid rain, ozone layer depletion, Nuclear accidents and holocaust. Case Studies.
- e) Public awareness.

*ACTIVITIES

Nature club (bird watching, recognizing plants at institute/at home, recognizing local animals, appreciating biodiversity

Impart knowledge and inculcate the habit of taking interest and understanding biodiversity in and around the college campus. The students should be encouraged to take interest in bird watching, recognizing local plants, herbs and local animals. The students should be encouraged to appreciate the difference in the local biodiversity in their hometown, in the place of their study and other places they visit for vacation/breaks etc.

Following activities must be included.

Identify a tree fruit flower peculiar to a place or having origin from the place.

Making high resolution big photographs of small creatures (bees, spiders, ants.

mosquitos etc.) especially part of body so that people can recognize (games on recognizing animals/plants).

Videography/ photography/ information collections on specialties/unique features of different types of common creatures.

Search and explore patents and rights related to animals, trees etc. Studying miracles of mechanisms of different body systems.

1(A) Awareness Activities:

- a) Small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste
- b) Slogan making event
- c) Poster making event
- d) Cycle rally
- e) Lectures from experts
- f) Plantation
- g) Gifting a tree to see its full growth
- h) Cleanliness drive
- i) Drive for segregation of waste
- To live with some eminent environmentalist for a week or so to understand his work
- i) To work in kitchen garden for mess
- k) To know about the different varieties of plants
- 1) Shutting down the fans and ACs of the campus for an hour or so
- wisit to a local area to document environmental assets
 river/forest/grassland/hill/mountain/lake/Estuary/Wet lands
- n) Visit to a local polluted site-

Urban/Rural/Industrial/Agricultural n) Visit to a Wildlife sanctuary, National Park or Biosphere Reserve

Suggested Readings

- Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad – 380 013, India, Email:mapin@icenet.net (R)
- 3. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)
- Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- Heywood, V.H &Waston, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press 1140p.
- 8. Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)
- 9. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p.
- Townsend C., Harper J, and Michael Begon, Essentials of Ecology, Blackwell Science (TB)
- Trivedi R.K., Handbook of Environmental Laws, Rules Guidelines, Compliances and Stadards, Vol I and II, Enviro Media (R)
- Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno-Science Publication (TB)
- 14. Wanger K.D., 1998 Environmental Management, W.B. Saunders Co. Philadelphia.

USA 499p

Course Code: HSMC101-18 Course Title: Development of Societies 3L:0T:0P 3Credits

Detailed Contents:

Unit I: Social Development

(5 hours)

- 1. Concepts behind the origin of Family, Clan and Society
- 2. Different Social Systems
- 3. Relation between Human being and Society
- 4. Comparative studies on different models of Social Structures and their evolution

Unit II: Political Development

(3 hours)

- 1. Ideas of Political Systems as learnt from History
- 2. Different models of Governing system and their comparative study

Unit III: Economic Development

(18 hours)

- 1. Birth of Capitalism, Socialism, Marxism
- 2. Concept of development in pre-British, British and post British period- Barter, Jajmani
- 3. Idea of development in current context.
- E. F. Schumacher's idea of development, Buddhist economics.
- comonnes.

Gandhian idea of development. Swaraj and

Decentralization.

PROJECT: Possible projects in this course could be

- a) Interact with local communities and understand their issues.
- Study local cottage industry and agricultural practices. Role of engineering and specialized knowledge.
- Evaluation of technology in the context of its application. Social impact of technology. Environmental impact of technology. Evaluation from a holistic perspective.

Course Code: HSMC102-18 Course Title: PHILOSOPHY 3L:0T:0P 3Credits

Detailed Contents:

Unit 1:

The difference between knowledge (Vidya) and Ignorance (Avidya):

- a. Upanishads;
- b. Six systems orthodox and Heterodox Schools of Indian Philosophy.
- c. Greek Philosophy:

Unit 2:

Origin of the Universe:

- Nasidiya Sukta: "Who really knows?"
- Brhadaranyaka Upanishad; Chandogya Upanishad: Non-self, Self, real and unreal.

- Taittiriya Upanishad: SikshaValli.
- Plato's Symposium: Lack as the source of desire and knowledge.
- Socratic's method of knowledge as discovery.
- Language: Word as root of knowledge (Bhartrahari's Vakyapadiyam)
- Fourteen Knowledge basis as a sources of Vidya: Four Vedas; Six auxiliary sciences (Vedangas); Purana, Nyaya, Mimamsa and Dharma Sastras.

Unit 3:

Knowledge as Power: Francis Bacon. Knowledge as both power and self-realization in Bagavad Gita.

Unit 4:

Knowledge as oppression: M. Foucault. Discrimination between Rtam and Satyam in Indian Philosophy.

Unit 5:

Knowledge as invention: Modern definition of creativity; scientific activity in the claim that science invents new things at least through technology.

Unit 6:

Knowledge about the self, transcendental self; knowledge about society, polity and nature.

Unit 7:

Knowledge about moral and ethics codes.

Unit 8:

Tools of acquiring knowledge: Tantrayuktis, a system of inquiry (Caraka, Sushruta, Kautilya, Vyasa)

READINGS

- Copleston, Frederick, History of Philosophy, Vol. 1. Great Britain: Continuum.
- 2 Hiriyanna, M. Outlines of Indian Philosophy, MotilalBanarsidass Publishers; Fifth Reprint edition (2009)
- 3 Sathaye, Avinash, Translation of NasadiyaSukta
- Ralph T. H. Griffith. The Hymns of the Rgveda. MotilalBanarsidass: Delhi: 1973.
- Raju, P. T. Structural Depths of Indian Thought, Albany: State University of New York Press.
- 6. Plato, Symposium, Hamilton Press.
- 7. Kautilya Artha Sastra. Penguin Books, New Delhi.
- 8. Bacon, Nova Orgum
- 9. Arnold, Edwin. The Song Celestial.
- 10. Foucault, Knowledge/Power.
- 11. Wildon, Anthony, System of Structure.
- 12. Lele, W.K. The Doctrine of Tantrayukti. Varanasi: Chowkamba Series.
- 13. Dasgupta, S. N. History of Indian Philosophy, MotilalBanasidas, Delhi.
- 14. Passmore, John, Hundred Years of Philosophy, Penguin.

ASSESSMENT (indicative only):

Ask students to do term papers, for example, writing biographical details of founders,

sustainers, transmitters, modifiers, rewriters; translating monographs of less known philosophers such as K. C. Bhattacharys, Daya Krishna, Gopinath Bhattacharya; comparative study of philosophical system such as MadhyasthaDarshan.

OUTCOME OF THE COURSE:

Students will develop strong natural familiarity with humanities along with right understanding enabling them to eliminate conflict and strife in the individual and society. Students shall be able to relate philosophy to literature, culture, society and livedexperience can be considered.

Course Code:BTCS401-18 Course Title: Discrete Mathematics 3L:1T:0P 4 Credits

Detailed contents:

Module 1:

Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem.

Principles of Mathematical Induction: The Well-Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.

CO1,

Module 2:

Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination.

Module 3:

Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.

CO3,

Module 4:

Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form

Module 5:

Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Biconnected component and Articulation Points, Shortest distances. CO5

Suggested books:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill
- Susanna S. Epp, Discrete Mathematics with Applications, 4th edition, Wadsworth Publishing Co. Inc.
- C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Oriented Approach, 3rd Edition by, Tata McGraw – Hill.

Suggested reference books:

- J.P. Tremblay and R. Manohar, Discrete Mathematical Structure and Its Application to Computer Science", TMG Edition, Tata Mcgraw-Hill
- Norman L. Biggs, Discrete Mathematics, 2nd Edition, Oxford University Press. Schaum's Outlines Series, Seymour Lipschutz, Marc Lipson,
 - 3. Discrete Mathematics, Tata McGraw Hill

Course Outcomes

- To be able to express logical sentence in terms of predicates, quantifiers, and logical connectives
- To derive the solution for a given problem using deductive logic and prove the solution based on logical inference
- 3. For a given a mathematical problem, classify its algebraic structure
- 4. To evaluate Boolean functions and simplify expressions using the properties of Boolean algebra
- 5. To develop the given problem as graph networks and solve with techniques of graph theory.