SLS Booster Radiation Environment

Anthony M. DeStefano NASA, MSFC, EV44

April 14, 2021

Contents

1	Executive Summary	1
2	Reproducing DSNE 200 km Tables using CREME96 2.1 Linear Energy Transfer (LET)	2
3	Updated 50 km Environment 3.1 Assumptions	2
4	Comparison of 50 km and 200 km Environments	2
5	Results	2
Re	eferences	3

List of Figures

List of Tables

1 Executive Summary

2 Reproducing DSNE 200 km Tables using CREME96

The 200 km LET (Linear Energy Transfer) and particle flux environments SLS-SPEC-159 Cross-Program Design Specification for Natural Environments (DSNE) were obtained using the Cosmic Ray Effects on Microelectrons 96 (CREME96¹). In this section, DSNE Tables 3.2.13-1 – 3 are reproduced using the technical notes provided in the DSNE.

For the LET and flux, the GTRN routine is ran using the following options:

- 200 km circular orbit
- 51.6 degrees orbit inclination
- Effective L-shell range: $2.4 \leqslant L \leqslant 2.55$
- · Stormy magnetic weather conditions
- 2.1 Linear Energy Transfer (LET)
- 2.2 Differential Flux
- 2.3 Integral Flux
- 3 Updated 50 km Environment
- 3.1 Assumptions
- 3.2 Linear Energy Transfer (LET)
- 3.3 Differential Flux
- 3.4 Integral Flux
- 4 Comparison of 50 km and 200 km Environments
- 5 Results

¹https://creme.isde.vanderbilt.edu/

References