Numerical Analysis

Lusine Poghosyan

AUA

December 9, 2018

Assume we are calculating the value of

$$f(x) = \sqrt{x} - \frac{1}{x^2 + 1}$$

at the point a = 0.43156722, i.e., we are calculating f(a). Instead of this, we approximate a by a^* s.t. $abserr(a, a^*) \le 0.01$ and calculate $f(a^*)$, that is, we use the approximation

$$f(a) \approx f(a^*)$$
.

Estimate the absolute and relative errors of this approximation. i.e., abserr $(f(a), f(a^*))$ and relerr $(f(a), f(a^*))$.

Our aim is to find the zeros of the following function:

$$f(x) = x^3 - 12x - 20.$$

- **a.** Show that f(x) has exactly one root x^* and isolate it i.e. find an interval [a, b] such that $x^* \in [a, b]$.
- **b.** Assume the Bisection Method is applied on interval [a, b]. Find the second approximation of the root.
- c. How many iterations are needed to calculate the root with an error at most 10⁻³ by using the Bisection Method?
- **d.** Replace f(x) = 0 with an equivalent equation of the form x = g(x) in such a way that $g : [2,5] \rightarrow [2,5]$ and g(x) is a contraction mapping on [2,5].
- **e.** Take $x_0 = 1$ as an initial approximation, and calculate x_2 using the Fixed Point Iteration Method.

Let $g(x) = \frac{1}{2} \frac{x+6}{x+2}$. Prove that

- **a.** g maps the interval $\left[\frac{1}{2},2\right]$ into itself, i.e., $g:\left[\frac{1}{2},2\right] \to \left[\frac{1}{2},2\right]$;
- **b.** g(x) is a contraction mapping on $\left[\frac{1}{2}, 2\right]$;
- **c.** Prove that g(x) has a unique fixed point x^* in $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$;
- **e.** Assume $x_0 = 1$, and let x_n be the sequence constructed by the Fixed Point Iteration Method applied to g(x), starting from x_0 . Show that x_n is a convergent sequence and estimate the absolute error

$$|x_{10}-x^*|$$
.

- **a.** Construct the Interpolating Polynomial $P_2(x)$ for the function $f(x) = x(x-3) + \sin(\pi x)$ at the nodes $x_0 = 0$, $x_1 = 2$, $x_2 = 4$.
- **b.** Estimate the local error of approximation at the points x = 2 and x = 3.
- c. Estimate the global error

$$\max_{x \in [-1,5]} |f(x) - P_2(x)|.$$

- a. Calculate the 4-th order Chebyshev nodes.
- **b.** Calculate $\max_{x \in [-1,1]} |T_4(x)|$, where $T_4(x)$ is the 4-th order Chebyshev Polynomial.

We want to interpolate the function $f(x) = \frac{x}{1+x}$ on [2, 5] using first degree splines.

- **a.** Assume we divide our interval into 3 equal-length parts. Construct the interpolating spline of degree 1 for *f* at the obtained nodes.
- **b.** In how many equal-length subintervals we need to divide our interval in order to have that the global error of approximation of *f* in [2,5] by the first degree interpolating spline at the obtained nodes is less than 0.001?

Assume we have the following data

$$x_0 = -2$$
 $x_1 = 0$ $x_2 = 2$
 $y_0 = 12$ $y_1 = 2$ $y_2 = 24$

Our aim is to construct the polynomial of degree at most 2 that fits the data in the least square sense, i.e., find coefficients a_0^* , a_1^* and a_2^* that minimize the error function

$$\phi(a_0, a_1, a_2) = \sum_{i=0}^{2} \left(a_0 + a_1 x_i + a_2 x_i^2 - y_i\right)^2.$$

Show that found (a_0^*, a_1^*, a_2^*) is the global minimizer of $\phi(a_0, a_1, a_2)$.

Is the quadrature rule

$$\int_0^4 f(x)dx \approx 2 \cdot f(1) + 2 \cdot f(3)$$

Gaussian? Prove your statement.

Assume the Quadrature Rule

$$\int_{-3}^2 f(x) dx \approx A \cdot f(x_0) + B \cdot f(x_1)$$

 $(x_0, x_1 \in [-3, 2])$ is Gaussian, i.e., it has the precision degree 3.

- **a.** Show that $\int_{-3}^{2} (x x_0)(x x_1) dx = \int_{-3}^{2} (x x_0)^2 (x x_1) dx = 0$;
- **b.** Calculate A + B, $A \cdot x_0 + B \cdot x_1$ and $A \cdot x_0^2 + B \cdot x_1^2$;
- **c.** Show that A > 0 and B > 0.

Let $f(x) = e^{(x-2)^2} + 4x$. Our aim is to find the global minimizer x^* of f over [0,8].

- **a.** Show that f(x) is a unimodal function in [0,8].
- **b.** Calculate x_2 approximation of the minimum point using the Golden Section (Ratio) Search Method with $\gamma = \frac{3-\sqrt{5}}{2}$.
- **c.** Calculate x_2 approximation of the minimum point using the Bisection Method.

Assume we want to use the Steepest Descent Method to minimize

$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + x_3^2 - 2x_2x_3.$$

We start with $x^{(0)} = (1, 1, 0)^T$. Calculate $x^{(1)}$ by using the Steepest Descent Method.

Assume we are solving the minimization problem

minimize
$$f(x_1, x_2) = \ln(x_1^2 + 1) + x_2^2$$

subject to $x \in \mathbb{R}^2$,

by using line search methods. We start from the initial approximation $x^{(0)} = (1/2, 1)^T$. Calculate $x^{(1)}$ by using the Newton's Method.

Assume we want to solve the following constrained minimization problem

minimize
$$f(x_1, x_2) = 4x_1^2 + x_2^2$$

subject to $x_2 = x_1^2 + 1$.

- a. Find all possible minimizers of this problem by using the Lagrange Multipliers Method;
- **b.** Now let's use the Penalty Method and consider the following function for large $\gamma > 0$,

$$g(x_1, x_2) = f(x_1, x_2) + \gamma \cdot (x_2 - x_1^2 - 1)^2.$$

Assuming γ is fixed, find the minimum point $x^{(\gamma)}$ of g;

c. Prove that $x^{(\gamma)}$ tends to the minimum point, as $\gamma \to +\infty$.

Numerical Solution of Systems of Linear Equations:

Example

Solve the following system of linear equations

$$\begin{cases} 3x_1 + 3x_2 + 3x_3 = 6 \\ 2x_1 + 4x_2 + 4x_3 = 8 \\ x_1 + 2x_2 + 3x_3 = 5 \end{cases}$$

using LU Factorization Methods.

Assume

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 4 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1.999 \\ -0.9 \end{bmatrix}$$

- **a.** Calculate the norm $||A||_1$;
- **b.** Calculate the condition number $cn_1(A)$;
- **c.** Now assume we are solving the system $A\mathbf{x} = b$. During the calculations we replace b by $\tilde{b}=\begin{bmatrix}2\\-1\end{bmatrix}$, and we solve $A\tilde{\mathbf{x}}=\tilde{b}$

instead. Estimate the relative error of the approximate solution

$$rac{\|\mathbf{x} - ilde{\mathbf{x}}\|_1}{\|\mathbf{x}\|_1}$$