CSL 252- Design and Analysis of Algorithms Indian Institute of Technology Bhilai Tutorial Sheet 1

Asymptotic Notations

- 1. True or false: (a) 2n = O(n), (b) $n^2 = O(n)$, (c) $n^2 = O(n \log^2 n)$, (d) $n \log n = O(n^2)$, (e) $3^n = 2^{O(n)}$, (f) $2^{2^n} = O(2^{2^n})$.
- 2. * True or false: (a) n = o(2n), (b) $2n = o(n^2)$, (c) $2^n = o(3^n)$, (d) 1 = o(n), (e) $n = o(\log n)$, (f) 1 = o(1/n).
- 3. Check for each pair of expressions below, whether f(n) is O(g(n)), $\Omega(g(n))$, $\Theta(g(n))$. Assume $k \ge 1$; $\epsilon > 0$; c > 1 are all constants.
 - (a) $f(n) = \log^k n, g(n) = n^{\epsilon},$
 - (b) $f(n) = n^k$, $g(n) = c^n$,
 - (c) $f(n) = \sqrt{n}, g(n) = n^{\sin n},$
 - (d) $f(n) = 2^n$, $g(n) = 2^{\frac{n}{2}}$,
 - (e) $f(n) = \log(n!), g(n) = \log(n^n).$
- 4. Prove that if f = O(g), then $f + g = \Theta(g)$.
- 5. Let f(n) and g(n) be two asymptotically non-negative functions. Prove that $\max\{f(n),g(n)\}\in\Theta(f(n)+g(n)).$
- 6. * Prove that $o(g(n)) \cap \omega(g(n))$ is an empty set.
- 7. * Prove that $n! \in \omega(2^n)$, and $n! \in o(n^n)$.
- 8. Consider the function $g(n) = f(n) + \frac{a_1}{n} + \frac{a_2}{n^2}$.
 - (a) Prove or disprove, g(n) = O(f(n) + 1).
 - (b) Prove or disprove, g(n) = O(f(n)).
- 9. Let for $n \ge 1$, $H_n = 1 + \frac{1}{2} + \frac{1}{3} \cdots + \frac{1}{n}$. Prove that H_n is in $\Theta(\log n)$.
- 10. Prove that if $f_1(n) = \Omega(g_1(n))$ and $f_2(n) = \Omega(g_2(n))$, then $f_1(n) + f_2(n) = \Omega(\min\{g_1(n), g_2(n)\})$.
- 11. Suppose that $f_1(n) = \Theta(g_1(n))$ and $f_2(n) = \Theta(g_2(n))$. Is it true that $f_1(n) + f_2(n) = \Theta(g_1(n) + g_2(n))$? Is it true that $f_1(n) + f_2(n) = \Theta(\max\{g_1(n), g_2(n)\})$? Is it true that $f_1(n) + f_2(n) = \Theta(\min g_1(n), g_2(n))$? Justify your answer.
- 12. Prove that if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n)f_2(n) = O(g_1(n)g_2(n))$.
- 13. Prove that if $f_1(n) = \Omega(g_1(n))$ and $f_2(n) = \Omega(g_2(n))$, then $f_1(n)f_2(n) = \Omega(g_1(n)g_2(n))$.
- 14. Prove or disprove: For all functions f(n) and g(n), either f(n) = O(g(n)) or g(n) = O(f(n)).
- 15. Prove or disprove: If f(n) > 0 and g(n) > 0 for all n, then O(f(n) + g(n)) = f(n) + O(g(n)).
- 16. Prove or disprove: $O(f(n)^a) = O(f(n))^a$ for all $a \in \mathbb{R}^+$.
- 17. Prove or disprove: $O((x+y)^2) = O(x^2) + O(y^2)$.
- 18. Multiply $\log n + 6 + O(\frac{1}{n})$ by $n + O(\sqrt{n})$ and simplify your answer as much as possible.

19. Show that big-O is transitive. That is, if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

20. Prove that if f(n) = O(g(n)), then $f(n)^k = O(g(n)^k)$.

21. Prove or disprove: If f(n) = O(g(n)), then $2^{f(n)} = O(2^{g(n)})$.

22. Prove or disprove: If f(n) = O(g(n)), then $\log(f(n)) = O(\log g(n))$.

23. Suppose $f(n) = \Theta(g(n))$. Prove that h(n) = O(f(n)) iff h(n) = O(g(n)).

24. Prove or disprove: If f(n) = O(g(n)), then f(n)/h(n) = O(g(n)/h(n)).