习题一 随机事件及其概率和性质

(1)设A、B为任意两个事件,则下列关系式成立的是()。

1.1 选择题

(A) $(A \cup B) - B = A$; (B) $(A \cup B)$	$(A \cap B) - B \supset A$; (C) $(A \cap B) - B \subset A$; (D) $(A - B) \cup B = A$.
(2) 以 A 表示"甲种产品畅销,乙种	中产品滞销",则对立事件 \overline{A} 为()。
 (A) 甲种产品滞销, 乙种产品畅销 (C) 甲种产品滞销 1.2 指出下列关系中那些是正确的, (1) (A∪B) - C = A ∪ (B-C); 	(D)甲产品滞销或乙产品畅销 那些是错误的, 并说明理由 。
$(3) \ (\overline{A \cup B}) C = \overline{A} B \cup \overline{B} C;$	$(4) \ \overline{A}B \cup A\overline{B} \cup \overline{A}\overline{B} = \overline{AB} ;$
$(5) (AB)(A\overline{B}) = \emptyset;$	(6) 若 $B \subset A$,则 $A \cup B = A$ 。
1.3 试把 $A \cup B \cup C$ 表示成三个两两	万 互不相容事件的和。
1.4 $\ \ \ \ \ \ \ \ \ \ \ \Omega = \{x \mid 0 \le x \le 2\}, \ \ A = \{x \mid 0 \le x \le 2$	$\{ 0.5 < x \le 1 \}$, $B = \{ x \mid 0.25 \le x < 1.5 \}$, 请具体写出下列各事件:
$(1) \ \overline{A}B; \qquad (2) \ \overline{A} \cup B; \qquad (3)$	$\overline{A}\overline{B}$; (4) \overline{AB} .
1.5 一个工人生产了四件产品,以 A_i	表示他生产的第 i 件产品是正品($i=1,2,3,4$),试用 $A_i(i=1,2,3,4)$
表示下列事件:(1)没有一件产品是;至少有两件产品不是次品。	次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)

1.6 设 A、B、C 是三个事件,且 $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AC) = \frac{1}{8}$, P(AB) = P(BC) = 0,求 A、B、C 中至少有一个发生的概率。

1.7 设 $A \setminus B$ 是两事件,且 P(A) = 0.6,P(B) = 0.7。问(1)在什么条件下 P(AB)取到最大值,最大值是多少? (2)在什么条件下 P(AB)取到最小值,最小值是多少?

1.8 袋中有白球5只,黑球6只,依次从袋中不放回取出三只,求顺序为黑白黑的概率。

1.9 (1) 用 " \leq " 按由小到大的顺序排列 P(A), $P(A \cup B)$, P(AB), P(A) + P(B)四个数。

(2) 已知 $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, $P(AB) = \frac{1}{6}$, 求 $P(A \cup B)$, $P(\overline{A} \cap \overline{B})$, $P(A\overline{B})$, $P(A\overline{B} \cup \overline{A}B)$.

1.10 设 $A \setminus B$ 为随机事件, P(A) = 0.5 , P(A - B) = 0.2 , 求 $P(\overline{AB})$ 。

习题二 古典概型、条件概率及事件的独立性

- 2.1 在 1500 个产品中有 400 个次品, 1100 个正品, 任取 200 个。(1) 求确有 90 个次品的概率; (2) 求至少有 2 个次品的概率。
- 2.2 盒子中有10只球,其中4只红球,6只黑球,今从盒中取三次球,一次取一只,不放回。(1)求第三次取球取到黑球的概率;(2)求第三次取球才取到黑球的概率。

- 2.3 从 a, b, c, ..., h 这 8 个字母中任意选出三个不同的字母,试求下列事件的概率: $A = \{ = \uparrow \}$ 中不含 $a = b \}$; $B = \{ = \uparrow \}$ 母中不含 $a = b \}$; $C = \{ = \uparrow \}$ 母中不含 $a = b \}$ 。
- 2.4 从6双不同的手套中任取4只,问其中至少有一双配对的概率是多少?
- 2.5 袋中有 10 只球, 9 只白球, 1 只红球, 10 个人依次从袋中各取一球, 每人取球后不再放回袋中, 问第一人、第二人、…、最后一人取得红球的概率各是多少?
- 2.6 (1) 已知 $P(\overline{A}) = 0.3$, P(B) = 0.4, $P(A\overline{B}) = 0.4$ 。求 $P(B|A \cup \overline{B})$;
 - (2) $\exists \exists P(A) = \frac{1}{4}, \ P(B|A) = \frac{1}{3}, \ P(A|B) = \frac{1}{2}, \ \Re P(A \cup B).$

2.7 有两箱同种类的零件,第一箱装 50 只,其中 10 只一等品;第二箱装 30 只,其中 18 只一等品。今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。试求:(1)第一次取到的零件是一等品的概率;(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。

2.8 甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别是 0.4, 0.5, 0.7, 飞机被一人击中而被击落的概率为 0.2, 被两人击中而被击落的概率为 0.6, 若三人都击中,飞机必定被击落。求飞机被击落的概率。

2.9 设玻璃杯整箱出售,每箱 20 只,各箱含 0,1,2 只残次品的概率分别为 0.8,0.1,0.1。一顾客欲购买一箱玻璃杯,由售货员任取一箱,顾客从中随机察看 4 只,若无残次品,则买下该箱玻璃杯,否则不买。求: (1)顾客买下该箱玻璃杯的概率; (2)在顾客买下该箱玻璃杯中,确实没有残次品的概率。

2.10 有朋友自远方来访,他乘火车、轮船、汽车、飞机来的概率分别是 0.3, 0.2, 0.1, 0.4。如果他乘火车、轮船、汽车来的话,迟到的概率分别是 $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{12}$,而乘飞机则不会迟到。结果他迟到了,试问他是乘火车来的概率是多少?

- 2.11 (1) 设四事件 A、B、C、D 相互独立,且 P(A) = 0.1,P(B) = 0.2,P(C) = 0.3,则"这三个事件恰好发生两个"的概率为______;
 - (2) 若事件 A 与 B______, 则 $P(A \cup B) = P(A) + P(B)$;
 - (3) 若事件 A 与 B_____, 则 P (AB) =P (A) P (B);
 - (4) 若事件 A 与 B______, 则 P(A) = 1 P(B) 。

习题三 离散型随机变量及其分布

学号	班级	姓名	

- 3.1 填空题
- (1) 进行重复独立试验,设每次试验成功的概率为p,失败的概率为q=1-p(0< p<1)。
- a. 将试验进行到出现一次成功为止,以 X 表示所需的试验次数,则 X 的分布律为 $P\{X=k\}=$ _____;
- b. 将试验进行到出现 r 次成功为止,以 Y 表示所需的试验次数,则 Y 的分布律为 $P\{Y=k\}=$ ______
- (2)某人射击命中率为0.7,现独立射击10次,以X表示命中次数,则X的分布律为 $P\{X=k\}=$ ______
- 3.2 试判断下面给出的是否为某个随机变量的分布律?

- 3.3 计算下列各题
- (1) 已知随机变量 X 的分布律为 $P\{X=k\}=a\frac{\lambda^k}{k!}$, $\lambda>0$ 为常数, $k=0,1,2,\cdots$,求 a 。
- (2) 已知随机变量 X 的分布律为 $P\{X=k\}=a(\frac{2}{3})^k$, k=1,2,3 , 求 a .
- (3) 设随机变量 X 服从泊松分布,且 $P\{X=1\}=P\{X=2\}$,求 $P\{X=4\}$ 。

- 3.4 有甲、乙两种味道和颜色都极为相似的名酒各 4 杯。如果任选 4 杯,从中能将甲种酒全部辨别出来,算是试验成功一次。
 - (1) 某人随机地去猜,问他试验一次成功的概率是多少?
- (2)某人声称他通过品尝能区分两种酒。他连续试验 10 次,成功 3 次。试推断他是猜对的,还是确有区分的能力(设各次试验是相互独立的)。

- 3.5 有一大批产品,其验收方案如下。先作第一次检验:从中任取 10 件,经检验无次品接受这批产品,次品数大于 2 拒收;否则作第二次检验,其做法是从中再任取 5 件,仅当 5 件中无次品时接受这批产品。若产品的次品率为 10%,求
 - (1) 这批产品经第一次检验就被接受的概率。
 - (2) 这批产品需要做第二次检验的概率。
 - (3) 这批产品按第二次检验的标准被接受的概率。
 - (4) 这批产品在第一次检验时未能作出决定且第二次检验时被接受的概率。

3.6 某产品的次品率为0.1,检验员每天检验4次,每次随机地任取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备。以X表示一天中调整设备的次数,求X的分布律。

3.8 以X记某医院一天出生的婴儿人数,Y记其中男婴的人数,设X和Y的联合分布律为:

$$P\{X=n, Y=m\} = \frac{e^{-14}(7.14)^m (6.86)^{n-m}}{m!(n-m)!}, m=0,1,2,\dots,n; n=0,1,2,\dots$$

求(1)边缘分布律;(2)条件分布律。

- 3.9 设某班车起点站时车上乘客人数 X 服从参数为 λ (λ >0) 的泊松分布,每位乘客在中途下车的概率为 p (0<p<1),且各乘客中途下车与否相互独立。以 Y表示在中途下车的乘客人数。求:
 - (1) 在发车时有n 位乘客的条件下,中途有m 人下车的概率;
 - (2) 二维随机向量 (X, Y) 的概率分布。

习题四 离散型 r.v.的独立性及其函数的分布

班级_____姓名____

- 4.1 填空题
- (1) 设 (X,Y) 的联合分布律为 (表 1), 若 X 与 Y 相互独立,则 α = _______, β = ________。

Y	1	2	3
1	$\frac{1}{6}$	1 9	1 18
2	$\frac{1}{3}$	α	β
	表	1	

- (2) 设随机变量 X 的分布律为 (表 2),则 $Y = X^2$ 的分布律为 X = 0 1 X = 0 0.5 0.5 , (3) 设相互独立的随机变量 X、Y 有相同的分布律,X 的分布律为 P

4.2 设随机变量 X_1 , X_2 , X_3 , X_4 独立同分布,且 $P\{X_i=1\}=0.6$, $P\{X_i=0\}=0.4$,(i=1,2,3,4)。试求行列式 $\begin{vmatrix} X_1 & X_2 \\ X_3 & X_4 \end{vmatrix}$ 的分布律。

 $\frac{X \left| -\frac{\pi}{2} - \frac{\pi}{4} \right| 0 \left| \frac{\pi}{4} \right| \frac{\pi}{2}}{P \left| \frac{1}{2} \right| \frac{1}{4} \left| \frac{1}{8} \right| \frac{1}{16} \left| \frac{1}{16} \right|}, \quad 求 \quad (1) \sin(X) \text{ 的分布律; } \quad (2) \frac{X^2}{\pi^2} \text{ 的分}$ 布律; $(3)\cos(X)$ 的分布律。

4.4 设 $X \sim B(n_1, p)$, $Y \sim B(n_2, p)$ 且相互独立, 求Z = X + Y的分布律, 并问Z服从什么分布.

4.5 设随机变量 $X \sim B(3, \frac{1}{2})$, 求 X 的分布函数 F(x)。

4.6 在区间[0,2]上任意投掷一个质点,以X表示这个质点的坐标,设这个质点落在[0,2]中任意小区间内的概率与这个小区间的长度成正比,试求X的分布函数。

4.7 确定下列函数中常数 A,使之成为密度函数。(1) $f(x) = Ae^{-|x|}$; (2) $f(x) = \begin{cases} \frac{Ax}{(1+x)^4}, & x > 0 \\ 0, & x \le 0 \end{cases}$

4.8 设随机变量 X的密度函数为 $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2-x, & 1 < x \le 2 \end{cases}$,求(1)X的分布函数 F(x);(2)概率 $P\{X < 0.5\}$, $P\{X > 1.3\}$, $P\{0.2 < X < 1.2\}$ 。

4.9 设连续型随机变量 X的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ Ax^2, & 0 \le x < 1 \text{。试求(1)系数 } A; (2) X$ 落在区间(0.3,0.7) 1, $x \ge 1$ 内的概率;(3) X的密度函数。

"随机事件和概率"测验题

一、填空题

- 1. 设 $A \setminus B \setminus C$ 为三个事件,且 $P(\overline{A} \cup \overline{B}) = 0.9, P(\overline{A} \cup \overline{B} \cup \overline{C}) = 0.97, 则 P(AB C) =$ 2. 设 10 件产品中有 4 件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也 是不合格品的概率为 _____。 3. 设随机事件 $A \setminus B$ 及其和事件 $A \cup B$ 的概率分别是 0.4, 0.3, 0.6。若 \overline{B} 表示 B 的对立事件,则概率 $P(A\overline{B})$ = 4. 某市有 50%住户订日报,有 65%住户订晚报,有 85%住户至少订这两种报纸中的一种,则同时订这两 种报纸的住户的百分比是 ____。 5. 三台机器相互独立运转,设第一、第二、第三台机器不发生故障的概率依次为0.9、0.8、0.7,则这三台 机器中至少有一台发生故障的概率为 ____ 6. 设 A, B, C 两两独立的事件,且 $ABC = \Phi$ 。 若 P(A) = P(B) = P(C) < 1/2,且 $P(A \cup B \cup C) = 9/16$,则 P(A)=7. 在区间(0,1)中随机地取两个数,则两数之和小于6/5的概率=。 8. 三人独立破译一密码,他们能单独译出的概率分别为 $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{4}$, 则此密码被译出的概率_____。 二、选择题 1. 设 $A \times B \times C$ 是三个事件,与事件A互斥的事件是((A) $\overline{AB} \cup A\overline{C}$ (B) $\overline{A(B \cup C)}$ (C) \overline{ABC} (D) $\overline{A \cup B \cup C}$ 2. 设 *A*、*B* 是任意二个事件,则()。 (A) $P(A \cup B)P(AB) \ge P(A)P(B)$ (B) $P(A \cup B)P(AB) \le P(A)P(B)$ (D) $P(A-B)P(B-A) \ge \frac{1}{4}$ (C) $P(A-B)P(B-A) \le P(A)P(B) - P(AB)$ 3. 事件 A 与 B 相互独立的充要条件为((A) $A \cup B = \Omega$ (B) P(AB) = P(A)P(B)(C) $AB = \phi$ (D) $P(A \cup B) = P(A) + P(B)$ 4. 设 $A \setminus B$ 为二个事件,且 P(AB) = 0,则()。 (A) A、B 互斥 (B) *AB* 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0 或 P(B) = 05. 设 $A \setminus B$ 为任意二个事件,且 $A \subset B$,P(B) > 0,则下列选项必然成立的是((A) P(A) < P(A|B) (B) $P(A) \le P(A|B)$ (C) P(A) > P(A|B) (C) $P(A) \ge P(A|B)$ 三、计算题 1. 某厂生产的产品次品率为 0.05, 每 100 个产品为一批,抽查产品质量时,在每批中任取一半来检查, 如果发现次品不多于1个,则这批产品可以认为合格的,求一批产品被认为是合格的概率。
- 2. 书架上按任意次序摆着 15 本教科书,其中有 5 本是数学书,从中随机地抽取 3 本,至少有一本是数学书的概率。
- 3. 某种产品的商标为 "MAXAM", 其中有 2 个字母脱落, 有人捡起随意放回, 求放回后仍为 "MAXAM" 的概率。
- 4. 设甲、乙两袋,甲袋中有n个白球,m个红球,乙袋中有N个白球,M个红球,今从甲袋中任取一只放入乙袋,再从乙袋中任取一球,问取到白球的概率。

"离散型随机变量及其分布"测验题

一、填空题

- 1. 设随机变量 $X \sim B(2, p)$, $Y \sim B(3, p)$, 若 $P\{X \ge 1\} = \frac{5}{9}$, 则 $P\{Y \ge 1\} = \underline{\hspace{1cm}}$ 。
- 2. 已知随机变量 X 只能取-1,0,1,2 四个数值,其相应的概率依次为 $\frac{1}{2c},\frac{3}{4c},\frac{5}{8c},\frac{2}{16c}$,则 c=__。
- 3. 设在 15 只同类型的零件中有 2 只是次品,在其中取 3 次,每次仟取 1 只,作不放回抽样,以 X 表示取 出的次品数,则 X 的分布律为
- 4. 已知 $P\{X=k\} = \frac{a}{k}$, $P\{Y=-k\} = \frac{b}{k^2}$ (k=1,2,3), X 与 Y 独立,则 $a = ____$, $b = ____$ 。

二、选择题

1. $P\{X=k\}=c\frac{\lambda^k e^{-\lambda}}{k!}$ $(k=0,2,4,\cdots)$ 是随机变量 X 的概率分布,则 λ 、c 一定满足() .

- (B) c > 0
- (C) $c \lambda > 0$
- (D) $c > 0 \perp \lambda > 0$

2. 设每次试验成功的概率为p(0 ,则在三次独立重复试验中至少成功一次的概率为()。

(A)
$$p^3$$

- (A) p^3 (B) $1-p^3$ (C) $(1-p)^3$ (D) $1-(1-p)^3$

三、计算题

- 1. 设一批产品中有 10 件正品, 3 件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正 品为止所需次数 X 的分布律。
- (1)每次取出的产品不放回;(2)每次取出的产品经检验后放回,再抽取;(3)每次取出一件产品后总 以一件正品放回,再抽取。
- 2. 设 X、Y 的联合分布律为

Y	-2	-1	0
-1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{3}{12}$
1/2	$\frac{2}{12}$	$\frac{1}{12}$	0
3	$\frac{2}{12}$	0	$\frac{2}{12}$

求 (1) Z = X + Y 的分布律; (2) W = X - Y 的分布律; (3) $U = X^2 + Y - 2$ 的分布律。

- 3. 已知 X 服从参数 p = 0.6 的 (0-1) 分布,在 X = 0、X = 1 下,关于 Y的条件分布分别如表 1、表 2 所 示。

表 1				表 2
Y	1	2	3	Y
$P\{Y X=0\}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$P\{Y X=1\}$

求(X,Y)的联合概率分布,以及在 $Y \neq 1$ 时,关于X的条件分布。

习题五 一维连续型随机变量及其分布

 $f_X(x) = \begin{cases} \frac{1}{5}e^{-\frac{x}{5}}, & x > 0, \\ 0, & x \le 0 \end{cases}$,某顾客在窗口等待服务,若超过 10 分钟,他就离开。他一个月要到银行 5 次,

以 Y表示一个月内他未等到服务而离开窗口的次数,写出 Y的分布律,并求 $P\{Y \ge 1\}$ 。

5.2 设随机变量 X 的密度函数为 $f(x) = \begin{cases} 4x^3, & 0 < x < 1 \\ 0, & 其它 \end{cases}$ 。求常数 a,使 $P\{X > a\} = P\{X < a\}$ 成立。

5.3 在 $\triangle ABC$ 内取一点 P, P 到 AB 的距离为 X, 求 X 的分布函数。

- 5.4 假设随机变量 X 的绝对值不大于 1, $P\{X=-1\}=\frac{1}{8}$, $P\{X=1\}=\frac{1}{4}$, 在事件 $\{-1 < X < 1\}$ 出现的条 件下,X在(-1, 1)内的任一子区间上取值的条件概率与该子区间的长度成正比。试求:
 - (1) X的分布函数 $F(x) = P\{X \le x\}$; (2) X取负值的概率 P。

- 5.5 某公共汽车站从上午 7 时起每 15 分钟发一班车,即在 $7:00,7:15,7:30,\cdots$ 有汽车发出。如果乘客 到达此汽车站的时间 X 服从 $7:00\sim7:30$ 上的均匀分布,试求乘客在车站等待:
- (1) 不到 5 分钟的概率; (2) 超过 10 分钟的概率。

- 5.6 设 $X \sim N(108, 9)$ 。(1) 求 $P\{101.1 < X < 117.6\}$; (2) 求常数a,使 $P\{X < a\} = 0.90$;
- (3) 求常数a, 使 $P\{|X-a|>a\}=0.01$ 。

5.7 从南郊某地到北区火车站有两条路可走,第一条路线穿过市区,路程短,但交通拥挤,所需时间(以分计)服从正态分布N(50,100);第二条路线沿环城公路走,路线较长,但阻塞少,所需时间服从正态分布N(60,16)。(1)假如有 70 分钟可用,问应走哪一条路线? (2)若只有 65 分钟可用,又应走哪一条路线?

- 5.8 电源电压在不超过 200 伏、200~240 伏和超过 240 伏这三种情况下, 元件损坏的概率分别为 0.1, 0.001,

习题六 二维连续型 r.v.的联合与边缘分布及独立性

6.1 设平面区域 D 由曲线 $y = \frac{1}{x}$ 及直线 y = 0, x = 1, $x = e^2$ 所围成,二维随机向量 (X,Y) 在区域 D 上服

从均匀分布,则(X,Y)关于X的边缘密度在x=2处的值为_____。

6.2 设(X,Y)的分布函数为 $F(x,y)=A\cdot\left(B+\arctan\frac{x}{2}\right)\cdot\left(C+\arctan\frac{y}{2}\right)$, $-\infty < x < +\infty$, $-\infty < y < +\infty$ 。(1)

求系数 A、B、C; (2) 求(X,Y)的密度函数; (3) 求关于 X和 Y的边缘分布函数和边缘密度函数。

6.3 设(X,Y)的密度函数为 $f(x,y) = \begin{cases} \frac{1}{2}, & 0 \le x \le 1, 0 \le y \le 2 \\ 0, & 其它 \end{cases}$,求X与Y中至少有一个小于 $\frac{1}{2}$ 的概率。

- 6.4 设(X,Y)具有下列密度函数,分别求边缘密度函数。
 - (1) $f(x,y) = \begin{cases} 4.8y(2-x), & 0 \le x \le 1, 0 \le y \le x \\ 0, & \cancel{\exists} \stackrel{\sim}{\succeq} \end{cases}$; (2) $f(x,y) = \begin{cases} e^{-y}, & 0 < x < y \\ 0, & \cancel{\exists} \stackrel{\sim}{\succeq} \end{cases}$

- 6.5 设(X,Y)的密度函数为 $f(x,y) = \begin{cases} k(6-x-y), & 0 < x < 2, 2 < y < 4 \\ 0, & 其它 \end{cases}$ 。(1) 求常数 k;
- (2) $\Re P\{X < 1, Y < 3\}$; (3) $\Re P\{X < 1.5\}$; (4) $\Re P\{X + Y \le 4\}$.

6.6 设 X 和 Y 是两个相互独立的随机变量,X 在 (0, 0.2) 上服从均匀分布,Y 的密度函数为 $f_Y(y) = \begin{cases} 5e^{-5y}, & y > 0, \\ 0, & y \le 0, \end{cases}$ 。(1) 求 X和 Y的联合密度函数;(2) 求 $P\{Y \le X\}$ 。

6.7 已知随机变量 X 和 Y 的联合概率密度函数为 $f(x,y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, 0 \le y \le 2 \\ 0, & \text{其它} \end{cases}$,证明: X 和 Y 的不相互独立。

6.8 某电子仪器由两个部件构成, 其寿命(单位: 千小时) X 与 Y 的联合分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-0.5x} - e^{-0.5y} + e^{-0.5(x+y)}, & x \ge 0, y \ge 0 \\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

问:(1) X与 Y是否独立?(2) 两部件的寿命都超过 100 小时的概率。

习题七 连续型 r.v.函数的分布、r.v.的数学期望(I)

7.1 随机变量 X 服从 (1, 2) 上的均匀分布,求 $Y = e^{2X}$ 的概率密度函数。

7.2 设 X、Y 是相互独立的随机变量,密度函数分别为 $f_X(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{其它} \end{cases}$, $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & y \le 0 \end{cases}$ 。 求 Z = X + Y 的密度函数。

7.3 设(X,Y)的密度函数为 $f(x,y) = \begin{cases} 2, & 0 \le x \le 1, x \le y \le 1 \\ 0, & 其它 \end{cases}$ 。求Z = X + Y的密度函数。

7.4 填空题

- (1) 设 X 表示 10 次独立重复射击命中目标的次数,每次命中目标的概率为 0.4,则 $E(X) = ______, D(X) = ______,$
- (2) 已知随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x}{4}, & 0 < x \le 4, & \text{则 } E(X) = \underline{\hspace{1cm}}, & E(3X^2 2X) = \underline{\hspace{1cm}} \\ 1, & x > 4 \end{cases}$
- (3) 设随机变量 X 的分布律为

(4) 某新产品在未来市场上的占有率 X 是仅在区间 (0,1) 上取值的随机变量,它的密度函数为

$$f(x) = \begin{cases} 4(1-x)^3, & 0 < x < 1 \\ 0, & 其它 \end{cases}$$
, 则平均市场占有率为______。

7.5 有同类型备件 10 个,其中 7 个正品,3 个次品。修理机器时,从中无放回一件接一件地取,直到取得正品为止。以 X 表示停止抽取时已取的备件的个数,求 E(X), $E(X^2)$, $E\left\{[X-E(X)\right]^2$ }。

7.6 随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} a + bx^2, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$, 且已知 $E(X) = \frac{3}{5}$, 求 a , b .

7.7 设 (X, Y) 的分布律为

X Y	-1	0	1
1	0.2	0.1	0.1
2	0.1	0	0.1
3	0	0.3	0.1

求(1)E(X),E(Y);(2) $E[(X-Y)^2]$;(3)E(XY)。

7.8 假设某路公共汽车起点站于每时的 10 分、30 分、50 分发车,乘客不知发车的时间,在每小时内任一时刻到达车站是随机的。求乘客到车站等车时间的数学期望。

"连续型随机变量及其分布"测验题

一、填空题

1. 随机地向半圆 $0 < v < \sqrt{2x - x^2}$ 内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点 和该点的连线与x轴的夹角小于 $\pi/4$ 的概率为。

- 2. 设 k 在(0, 5)上服从均匀分布,则 $4x^2 + 4kx + k + 2 = 0$ 有实根的概率为。
- 3. 己知 (X, Y) 联合密度为 $f(x, y) = \begin{cases} c \sin(x + y), & 0 \le x \le \frac{\pi}{4}, 0 \le y \le \frac{\pi}{4}, & \text{则 } c = \underline{}, & \text{y} \in \mathbb{Z} \end{cases}$,则 $c = \underline{}, & \text{y} \in \mathbb{Z}$,则

4. 随机变量 X 分布密度为 $f(x) = \begin{cases} \frac{2}{\pi} \sqrt{1-x^2}, & |x| < 1 \\ 0, & \text{其它} \end{cases}$,则 X 的分布函数 $F(x) = \underline{\qquad}$

二、选择题

(A)
$$F(x) = \begin{cases} 0, & x < -2 \\ \frac{1}{2}, & -2 \le x < 0 \\ 2, & x \ge 0 \end{cases}$$
 (B) $F(x) = \begin{cases} 0, & x < 0 \\ \sin x, & 0 \le x < \pi \\ 1, & x \ge \pi \end{cases}$

(B)
$$F(x) = \begin{cases} 0, & x < 0 \\ \sin x, & 0 \le x < \pi \\ 1, & x \ge \pi \end{cases}$$

(C)
$$F(x) = \begin{cases} 0, & x < 0 \\ \sin x, & 0 \le x < \pi/2 \\ 1, & x \ge \pi/2 \end{cases}$$
 (D) $F(x) = \begin{cases} 0, & x < 0 \\ x + \frac{1}{3}, & 0 \le x < \frac{1}{2} \\ 1, & x \ge \frac{1}{3} \end{cases}$

(D)
$$F(x) = \begin{cases} 0, & x < 0 \\ x + \frac{1}{3}, & 0 \le x < \frac{1}{2} \\ 1, & x \ge \frac{1}{2} \end{cases}$$

- 2. $X \sim N(1,1)$,概率密度为 f(x),则()。
- (A) $P\{X \le 0\} = P\{X \ge 0\} = 0.5$ (B) $f(x) = f(-x), x \in (-\infty, +\infty)$
- (C) $P\{X \le 1\} = P\{X \ge 1\} = 0.5$ (D) $F(x) = 1 F(-x), x \in (-\infty, +\infty)$
- 3. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布,则服从区间或区域上的均匀分布的随机变量是
- (A) (X, Y)

- (B) X+Y (C) X^2 (D) X-Y

4. 设函数
$$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x}{2}, & 0 < x \le 1, & 则() \\ 1, & x > 1 \end{cases}$$

- (A) F(x) 是随机变量 X 的分布函数
- (B) 不是分布函数
- (C) 离散型分布函数

- (D) 连续型分布函数
- 5. 设 X, Y 是相互独立的两个随机变量,它们的分布函数为 $F_{Y}(x)$, $F_{Y}(y)$, 则 $Z = \max(X, Y)$ 的分布函数是
- (A) $F_Z(z) = \max\{F_X(z), F_Y(z)\}$ (B) $F_Z(z) = \max\{|F_X(z)|, |F_Y(z)|\}$ (C) $F_Z(z) = F_X(z)F_Y(z)$ (D) 都不是

- 6. 设 X, Y 是相互独立的两个随机变量,其分布函数分别为 $F_X(X)$, $F_Y(Y)$, 则 $Z = \min(X, Y)$ 的分布函数是 ()。

- $\begin{array}{lll} \text{(A)} & F_Z(z) = & F_X(z) \\ \text{(C)} & F_Z(z) = \min\{F_X(z), F_Y(z)\} \end{array} \\ & \text{(D)} & F_Z(z) = 1 [1 F_X(z)][1 F_Y(z)] \end{array}$
- 7. 设 *X* 的密度函数为 f(x) , 而 $f(x) = \frac{1}{\pi(1+x^2)}$, 则 Y = 2X 的概率密度是(
- (A) $\frac{1}{\pi(1+4y^2)}$ (B) $\frac{2}{\pi(4+y^2)}$ (C) $\frac{1}{\pi(1+y^2)}$ (D) $\frac{1}{\pi} \arctan y$

- 8. 设随机变量(*X*, *Y*)的联合分布函数为 $f(x, y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其它} \end{cases}$,则 $Z = \frac{X+Y}{2}$ 的分布密度是()。
- (A) $f_Z(z) = \begin{cases} \frac{1}{2} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{#$\dot{\Xi}$} \end{cases}$ (B) $f_Z(z) = \begin{cases} e^{-\frac{x+y}{2}}, & x > 0, y > 0 \\ 0, & \text{#$\dot{\Xi}$} \end{cases}$
- (C) $f_Z(z) = \begin{cases} 4ze^{-2z}, & z > 0 \\ 0, & z \le 0 \end{cases}$ (D) $f_Z(z) = \begin{cases} \frac{1}{2}e^{-z}, & z > 0 \\ 0, & z \le 0 \end{cases}$
- 9. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N(0, 1)和 N(1, 1),则下列结论正确的是
- (A) $P\{X+Y\leq 0\} = 1/2$ (B) $P\{X+Y\leq 1\} = 1/2$ (C) $P\{X-Y\leq 0\} = 1/2$ (D) $P\{X-Y\leq 1\} = 1/2$ 三、计算题
- 1. 随机变量 X 的密度为 $f(x) = \begin{cases} \frac{c}{\sqrt{1-x^2}}, & |x| < 1 \\ 0, & |x| < 1 \end{cases}$,求(1)常数 c;(2) X 落在 $(-\frac{1}{2}, \frac{1}{2})$ 内的概率。
- 2. 设测量从某地到某一目标的距离时带有的随机误差 X 具有分布密度函数

$$f(x) = \frac{1}{40\sqrt{2\pi}} \exp\left(-\frac{(x-20)^2}{3200}\right), \quad -\infty < x < +\infty$$

- 试求: (1) 测量误差的绝对值不超过 30 的概率;
 - (2) 接连独立测量三次,至少有一次误差的绝对值不超过30的概率。
- 3. 设电子元件的寿命 X 具有密度为 $f(x) = \begin{cases} \frac{100}{x^2}, & 100 < x \\ 0, & 其它 \end{cases}$ 。问在 150 小时内,(1)三只元件中没有一只损

坏的概率是多少? (2) 三只电子元件全损坏的概率是多少? (3) 只有一个电子元件损坏的概率是多少?

- 4. 对圆片直径进行测量,其值在[5,6]上服从均匀分布,求圆片面积的概率密度函数。
- 5. 设(*X*, *Y*)的密度为 $f(x,y) = \begin{cases} 24y(1-x-y), & x > 0, y > 0, x+y < 1 \\ 0, & 其它 \end{cases}$ 。求:(1) $f_X(x)$;(2) f(y|x);(3)

$$f(y | x = \frac{1}{2})$$

习题八 r.v.的数学期望(II)、方差、协方差与相关系数

学号	
----	--

- 8.1 设随机变量 X 服从参数为 2 的泊松分布,且 Z=3X-2,则 E(Z)=_____。
- 8.2 某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X(单位:吨)服从(300,500)上的均匀分布。每售出 1 吨该原料,公司可获利 1.5(千元);若积压 1 吨,公司损失 0.5(千元)。问公司应该组织多少货源,可以使平均收益最大?

8.3 将n 只球($1\sim n$ 号)随机地放进n 只盒子($1\sim n$ 号)中去,一只盒子装一只球。若一只球装入与球同号的盒子中,称为一个配对。记X 为总的配对数,求E(X)。

8.4 设随机变量 X的概率密度函数为 $f(x) = \frac{1}{2}e^{-|x-\mu|}$, $(-\infty < x < +\infty)$, 求 E(X), D(X)。

8.5 在长为 d 的线段上任选两点, 求两点间距离的数学期望与方差。

8.6 己知 E(X) = 0, $P\{|X| < 2\} = \frac{1}{2}$, 且 D(X)存在,证明 $D(X) \ge 2$ 。

8.7 填空题

- (2) 已知 D(X)=0.54, D(Y)=0.25, cov(X, Y)=-0.03,则 D(X+Y)=____。
- (3) 随机变量 X与 Y相互独立的充分必要条件为_______; 随机变量 X与 Y不相关的充分必要条件为______; 事件 A与 B 互不相容的充分必要条件为______; 事件 A与 B 互为对立事件的充分必要条件为_____;

事件 A 与 B 相互独立的充分必要条件为______

8.8 设
$$(X, Y)$$
 的密度函数为 $f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & 其它 \end{cases}$

cov(X, Y), ρ_{XY} , D(X+Y).

8.9 已知三个随机变量 X、Y、Z 中,E(X) = E(Y) = 1,E(Z) = -1,D(X) = D(Y) = D(Z) = 1,

$$\rho_{XY} = 0$$
, $\rho_{XZ} = \frac{1}{2}$, $\rho_{YZ} = -\frac{1}{2}$ $\otimes RE(X + Y + Z)$, $D(X + Y + Z)$ \otimes

8.10 假设二维随机变量 (X, Y) 在矩形 $G = \{(x, y) \mid 0 \le x \le 2, \ 0 \le y \le 1 \}$ 上服从均匀分布,记 $U = \begin{cases} 0 \ , & X \le Y \\ 1 \ , & X > Y \end{cases}, \quad V = \begin{cases} 0 \ , & X \le 2Y \\ 1 \ , & X > 2Y \end{cases}$ 。 (1) 求 U和 V的联合分布; (2) 求 U和 V的相关系数 ρ 。

"随机变量的数字特征"测验题

一、填空题

- 1. 设随机变量 X 与 Y 相互独立,D(X) = 2,D(Y) = 4,D(2X Y) = 。
- 2. 已知随机变量 $X \sim N(-3, 1)$, $Y \sim N(2, 1)$, 且 X = Y相互独立, Z = X 2Y + 7, 则 $Z \sim$
- 3. 设离散型随机变量 X 的取值是在两次独立试验中事件 A 发生的次数,如果在这些试验中事件发生的概 率相同,并且已知 E(X) = 0.9,则 D(X) = 。
- 4. 设随机变量 X在区间[-1, 2]上服从均匀分布,随机变量 $Y = \begin{cases} 1, & X > 0 \\ 0, & X = 0, \text{ 则 } D(Y) = __. \\ -1, & X < 0 \end{cases}$
- 5. 若随机变量 X_1, X_2, X_3 相互独立,且服从相同的两点分布 $\begin{pmatrix} 0 & 1 \\ 0.8 & 0.2 \end{pmatrix}$,则 $X = \sum_{i=1}^{3} X_i$ 服从_____分布,

E(X) = , D(X) =

- 6. 设 X 和 Y 是两个相互独立的随机变量,且 $X \sim N(0, 1)$, Y 在[-1, 1]上服从均匀分布,则 cov(X, Y) =
- 7. 设 X 和 Y 是两个相互独立的随机变量, 其概率密度分别为:

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$$
, $f(y) = \begin{cases} e^{-(y-5)}, & y > 5 \\ 0, & 其它 \end{cases}$

则 E(XY) =

- 8. 若随机变量 X_1, X_2, X_3 相互独立,其中 X_1 在[0, 6]服从均匀分布, X_2 服从正态分布 $N(0, 2^2)$, X_3 服从参数 $\lambda = 3$ 的泊松分布,记 $Y = X_1 - 2X_2 + 3X_3$,则 D(Y) =
- 二、选择题
- 1. 设随机变量 X和 Y独立同分布,记 U=X-Y, V=X+Y,则 U和 V 必然
- (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零
- 2. 设离散型随机变量 X可能取值为: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, 且 E(X) = 2.3, $E(X^2) = 5.9$, 则 x_1 , x_2 , x_3 所对应 的概率为(
- (A) $p_1 = 0.1, p_2 = 0.2, p_3 = 0.7$ (B) $p_1 = 0.2, p_2 = 0.3, p_3 = 0.5$
- (C) $p_1 = 0.3, p_2 = 0.5, p_3 = 0.2$ (D) $p_1 = 0.2, p_2 = 0.5, p_3 = 0.3$
- 3. 已知 *X*和 *Y*的联合分布如下表所示,则有(

Y	0	1	2	
X				
0	0.1	0.05	0.25	
1	0	0.1	0.2	
2	0.2	0.1	0	

- (A) *X* 与 *Y* 不独立 (B) *X* 与 *Y* 独立
- (C) X与 Y不相关 (D) X与 Y彼此独立且相关
- 4. 现有 10 张奖券, 其中 8 张为 2 元, 2 张为 5 元, 今每人从中随机地无放回地抽取 3 张, 则此人抽得奖 券的金额的数学期望()。
 - (A) 6
- (B) 12
 - (C) 7.8 (D) 9
- 5. 设随机变量 X 和 Y 服从正态分布, $X \sim N(\mu, 4^2)$, $Y \sim N(\mu, 5^2)$,记 $P_1 = P\{X \le \mu 4\}$, $P_2 = P\{Y \ge \mu + 5\}$,

则()。

- (A) 对任何 μ , 都有 $P_1 = P_2$ (B) 对任何实数 μ , 都有 $P_1 < P_2$
- (C) 只有 μ 的个别值,才有 $P_1 = P_2$ (D)对任何实数 μ ,都有 $P_1 > P_2$
- 6. 随机变量 $\xi = X + Y = \eta = X Y$ 不相关的充分必要条件为(
- (A) E(X) = E(Y) (B) $E(X^2) E^2(X) = E(Y^2) E^2(Y)$
- (C) $E(X^2) = E(Y^2)$
- (D) $E(X^2) + E^2(X) = E(Y^2) + E^2(Y)$

三、计算题

- 1. 设 X 的分布律为 $P\{X = k\} = \frac{a^k}{(1+a)^{k+1}}$, $k = 0, 1, 2, \dots, a > 0$, 试求 E(X), D(X).
- 2. 设随机变量 X 具有概率密度为 $f(x) = \begin{cases} \frac{2}{\pi} \cos^2 x, & |x| \leq \frac{\pi}{2}, \quad \forall E(X), D(X). \end{cases}$
- 3. 设随机变量 X 和 Y 的联合概率分布为

(X, Y)	(0, 0)	(0, 1)	(1, 0)	(1, 1)	(2, 0)	(2, 1)
$P\{X=x, Y=y\}$	0.10	0.15	0.25	0.20	0.15	0.15

$$\Re E \left[\sin \frac{\pi (X+Y)}{2} \right].$$

4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口,每个信号灯为红或绿与其它信号灯为红或绿 相互独立,且红绿两种信号显示的时间相等,以 X 表示该汽车首次遇到红灯前已通过的路口的个数。求(1)

$$X$$
的概率分布; (2) $E\left(\frac{1}{1+X}\right)$ 。

5. 设 (X, Y) 的分布密度

$$f(x, y) = \begin{cases} 4xye^{-(x^2+y^2)}, & x > 0, y > 0 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

求
$$E(\sqrt{X^2+Y^2})$$
。

- 7. 设 (X, Y) 的联合密度为 $f(x, y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & x \in (X), D(Y), \rho_{xy} \end{cases}$
- 8. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作。若一周5个工作日里无 故障,可获利润 10 万元,发生一次故障仍可获利润 5 万元;发生二次故障所获利润 0 元;发生三次或三 次以上故障就要亏损2万元。求一周内期望利润是多少?

习题九 大数定律及中心极限定理

学号	班级	姓名

- 9.1 填空题
- (1) 设 Y_n 是 n 次伯努利试验中事件 A 出现的次数,p 为 A 在每次试验中出现的概率,则对任意 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\left(\left|\frac{Y_n}{n}-p\right|\geq\varepsilon\right) = \underline{\qquad}$$

- (2) 设随机变量 X和 Y的数学期望是 2, 方差分别为 1 和 4, 而相关系数为 0.5, 则根据切比雪夫不等式 $P\{|X-Y| \ge 6\} \le$ 。
- 9.2 一部件包括 10 部分,每部分的长度是一个随机变量,他们相互独立,且服从同一分布,其数学期望为 2mm,均方差为 0.05mm。规定总长度为(10±0.1) mm 时产品合格,试求产品合格的概率。

9.3 计算器在进行加法时,将每个加数舍入最靠近他的整数。设所有舍入误差是独立的且在(-0.5, 0.5) 上服从均匀分布。(1) 若将 1500 个数相加,问误差总和的绝对值超过 15 的概率是多少?(2) 最多可有几个数相加使得误差总和的绝对值小于 10 的概率不小于 0.9?

9.4 设某车间有 200 台车床相互独立地工作着,若因换料、检修等原因,每台车床的开工率各为 0.6,开工时耗电各为 1 千瓦,问供电所至少要供给这个车间多少瓦电,才能以 99.9%的概率保证这个车间不会因供电不足而影响生产?

9.6 某单位有 200 台电话分机,每台分机有 5%的时间要使用外线通话。假定每台分机是否使用外线是相互独立的,问该单位总机要安装多少条外线,才能以 90%以上的概率保证分机用外线时不等待?

- 9.7 在掷硬币实验中,至少掷多少次,才能使正面出现的频率落在(0.4, 0.6)内的概率不小于0.9?
- 9.8 某厂有400台同型机器,各台机器发生故障的概率均为0,02,假如各台机器相互独立工作,试求机器出现故障的台数不少于2台的概率。

样本及抽样分布 习题十

- \overline{X} ,样本二阶中心矩 B_2 及样本方差 S^2 的观测值。
- 10.2 设 X_1, \dots, X_5 是 $X \sim N(12, 4)$ 的一个样本,求(1) $P\{|\overline{X} E(X)| > 1\}$;(2) $P\{\min(X_1, \dots, X_5) < 10\}$ 。

- 10.3 设总体 $X \sim N(0, 0.3^2)$ 。(1)若 X_1, \dots, X_{10} 为其一个样本,试求 $P\{\sum_{i=1}^{10} X_i^2 > 1.44\}$;
 - (2) 若 X_1, \dots, X_{10} 与 Y_1, \dots, Y_{15} 为其两个相互独立的样本,试求 $P\{|\overline{X} \overline{Y}| > 0.1\}$ 。

10.4 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的简单随机样本, $Z = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$,求常 数 a、b, 使 Z 服从 χ^2 分布, 并求其自由度。

- 10.5 填空题
- (2) 设 X_1, \dots, X_9 ; Y_1, \dots, Y_9 分别是来自正态分布 $N(0, 5^2)$ 的两个相互独立的样本,则统计量

$$\frac{X_1 + \dots + X_9}{\sqrt{Y_1^2 + \dots + Y_9^2}} \sim \underline{\hspace{1cm}}$$
, 参数为____; $\frac{X_1^2 + \dots + X_9^2}{Y_1^2 + \dots + Y_9^2} \sim \underline{\hspace{1cm}}$, 参数为____。

10.6 设在 $N(\mu, \sigma^2)$ 中抽取容量为 16 的样本, S^2 为其样本方差。(1)求 $P\{\frac{S^2}{\sigma^2} \le 2.04\}$;(2)求 $D(S^2)$ 。

10.7 已知 $X \sim t(n)$, 求证 $X^2 \sim F(1, n)$ 。

10.8 设 X_1, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本, μ 、 σ^2 已知。(1)求统计量 $Z = \sum_{i=1}^n a_i X_i$ 的分布,其中 a_1, \dots, a_n 为常数;(2)求统计量 $T = \frac{\overline{X} - \mu}{\sqrt{B_2/(n-1)}}$ 的分布,其中 $B_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ 。

- 10.10 设总体 $X \sim N(0, 1)$, X_1, X_2 是来自 X 的容量为 2 的样本。
 - (1) 证明: $X_1 + X_2 与 X_1 X_2$ 相互独立; (2) 试求常数 C, 使 $P\{(\frac{X_1 + X_2}{X_1 X_2})^2 > C\} = 0.1$ 。

习题十一 参数估计

w ⊢		1.1 h	
学号	班级	姓名	

- 11.1(1)设 X_1, \dots, X_n 是 $N(\mu, \sigma^2)$ 的样本, μ, σ^2 均未知,则 μ 的矩估计量为_____, σ^2 的矩估计量为_____;
- (2) 设 X_1, \dots, X_n 是几何分布总体 X 的一个样本,即 $X \sim P\{X = x\} = (1-p)^{x-1}p$, $x = 1, 2, \dots$, 0 , <math>p 未知,则 p 的矩估计量为_____。
- 11.2 设总体 X 服从二项分布 B(m,p) ,其分布律为 $P\{X=k\}=C_m^kp^k(1-p)^{m-k}$, $k=0,1,2,\cdots,m$,其中 p 为未知参数,0< p<1, X_1,\cdots,X_n 为 X 的简单随机样本,求 p 的矩估计量。

- 11.4 (1)设 X_1, \dots, X_n 是 $N(\mu, \sigma^2)$ 的样本, μ, σ^2 均未知,则 μ 的极大似然估计量为____, σ^2 的极大似然估计量为____;
- (2) 设 X_1, \dots, X_n 是几何分布总体X的一个样本,即 $X \sim P\{X = x\} = (1-p)^{x-1}p$, $x = 1, 2, \dots, 0 未知,则<math>p$ 的极大似然估计量为____。
- 11.5 已知总体 X 服从 $P(\theta)$,其分布律为 $P\{X = k\} = \frac{\theta^k}{k!} e^{-\theta}$, $\theta > 0$, $k = 0, 1, 2, \dots, X_1, \dots, X_n$ 是 X 的样本. (1) 求 θ 的矩估计量; (2)求 θ 的极大似然估计量; (3)求 $p = P\{X = 0\}$ 的极大似然估计量.

11.7 总体 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}}, & x \geq \mu, \text{其中}\theta > 0, \theta, \mu 均未知, X_1, \dots, X_n 为 <math>X$ 的简单随机样 0, $x < \mu$,

本。分别求heta、 μ 的矩估计量 $\hat{ heta}_M$ 、 $\hat{\mu}_M$ 和极大似然估计量 $\hat{ heta}_L$ 、 $\hat{\mu}_L$ 。

11.8 设总体 X 的分布函数为 $F(x) = \begin{cases} 1-\frac{1}{x^{\beta}}, & x>1, \\ 0, & x\leq 1, \end{cases}$ 未知参数 $\beta>1$, X_1,\cdots,X_n 为 X 的简单随机样本。分别求 β 的矩估计量和极大似然估计量。

11.9 设总体 X 的对数函数 $\ln X$ 服从正态分布 $N(\mu, \sigma^2)$, X_1, \dots, X_n 是来自该总体的一个简单随机样本,求 μ, σ^2 及 E(X) 的极大似然估计量。

习题十二 估计量的评选标准

E(X)的无偏估计量。

12.2 设 X_1, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个简单随机样本,试确定常数C使 $C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ^2 的无偏估计量。

12.3 设简单随机样本 X_1, \dots, X_n 来自正态总体 $N(\mu, \sigma^2)$, 试求常数 k 使 $\hat{\sigma} = \frac{1}{k} \sum_{i=1}^n |X_i - \overline{X}|$ 为 σ 的无偏 估计量。

12.4 从总体X中抽取样本 X_1, X_2, X_3 ,构造三个统计量如下:

$$\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3; \quad \hat{\mu}_2 = \frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3; \quad \hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$

(1) 证明 $\hat{\mu}_1$ 、 $\hat{\mu}_2$ 、 $\hat{\mu}_3$ 都是总体均值 $E(X)=\mu$ 的无偏估计量; (2) 判断 $\hat{\mu}_1$ 、 $\hat{\mu}_2$ 、 $\hat{\mu}_3$ 哪个更有效?

12.5 设 X_1 ,…, X_n 是来自正态总体 $N(\mu,\sigma^2)$ 的一个简单随机样本,其中 μ 已知,试证明 $S_\mu^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \, \mathbb{E} \, \sigma^2 \, \text{的无偏估计}.$

12.6 设有两总体 $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, 分别从两总体中抽取容量为 n_1 , n_2 的两个独立的样本,样本方差分别为 S_1^2 和 S_2^2 。试证:对任意常数 a、b,如果 a+b=1,则 $Z=aS_1^2+bS_2^2$ 都是 σ^2 的无偏估计量,并确定使 D(Z)达到最小的 a、b。

12.7* 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, X_1, \dots, X_{2n} 是其容量为 2n 的简单随机样本 $(n \ge 2)$,其样本均值 $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i \text{ , } 已知 \hat{\sigma^2} = C \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2 \text{ , } 试确定常数 C 使其成为 σ^2 的无偏估计量。$

习题十三 参数区间估计

13.1 设 X_1, \cdots, X_n 是总体X的一个样本,X的概率函数为 $f(x;\theta)$, θ 为未知参数,已知存在统计量

 $\theta_1=\theta_1(X_1,\cdots,X_n), \quad \theta_2=\theta_2(X_1,\cdots,X_n)$ 和正数 $\alpha:0<\alpha<1$,使得 $P\{\theta_1<\theta<\theta_2\}=1-\alpha$,则称区间

(θ_1,θ_2) 是 θ 的
越好。
13.2 设某种清漆的 9 个样品,其干燥时间(小时)分别为
6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 5.6, 6.1, 5.0
设干燥时间总体服从正态分布 $N(\mu,\sigma^2)$,在下列条件下分别求出 μ 的置信度为 95% 的置信区间:
(1) σ =0.6 (小时); (2) 若 σ 未知。
-2
13.3 已知一批产品的长度指标 $X\sim N(\mu,0.5^2)$,要使样本均值 \overline{X} 与总体均值 μ 的误差在置信度为 0.95
的情况下小于 0.1,问至少应抽取多大容量的样本?
13.4 随机地选取某种炮弹 9 发做试验,测得炮口速度的样本标准差 $s=11$ (m/s),设炮口速度服从正态分布,
分别求炮口速度的方差 σ^2 和标准差 σ 的置信度为 95% 的置信区间。

13.5	就 13.2 题中的两种情况分别求出 μ 的置信度为 95% 的单侧置信上限和单侧置信下限。
------	---

13.6 现有两批导线,随机地从 A 批导线中选取 4 根,从 B 批导线中选取 5 根,测得电阻值(欧)分别为 A 批: 0.143,0.142,0.143,0.137; B 批: 0.140,0.142,0.136,0.138,0.140 设两组导线的电阻分别服从正态分布 $N(\mu_1,\sigma^2)$, $N(\mu_2,\sigma^2)$,方差相等,两样本相互独立, μ_1,μ_2,σ^2 均为未知,试求 $\mu_1-\mu_2$ 的置信度为 95%的置信区间。

13.7 两化验员 A、B 各自独立地用相同的方法对某种聚合物的含氯量各做 10 次测量,分别求得测定值的样本方差为 $S_A^2=0.5419$, $S_B^2=0.6965$ 。设测定值总体分别服从正态分布 $N(\mu_A,\sigma_A^2)$, $N(\mu_B,\sigma_B^2)$,试求方差比 σ_A^2/σ_B^2 的置信度为 95%的置信区间。

13.8 假设 0.50, 1.25, 0.80, 2.00 是来自总体 X 的简单随机样本,已知 $Y = \ln X$ 服从正态分布 $N(\mu, 1)$ 。(1) 试求 X 的数学期望 E(X) (记 E(X) = b);(2)试求 μ 的置信水平为 0.95 的置信区间;(3)利用上述结果求 b 的置信水平 0.95 的置信区间。

习题十四 单正态总体参数的假设检验

		学号_		_班级_		姓名	<u> </u>		
14.1	(1) 假	设检验的理	论依据是			o			
(2)	对正态总	体的数学期	望 μ 进行假设检	<u>金</u> 验,如	果在显著性水	⟨平 0.05]	下接受假设 /	$H_0: \mu = \mu_0$,那么在
显著	性水平 0.0	1下,下列:	结论中正确的是	()。				
(A)业	eta 接受 H_0	(B)可能接	受,也可能拒绝	H_0 (C))必拒绝 $H_{\scriptscriptstyle 0}$	(D)不接受	受,也不拒约	色 H_0	
(3)	在假设检	验中,记 H	7 ₁ 为备择假设,	则称()为犯	児第Ⅰ类错	误。		
(A)) <i>H</i> ₁ 为真接	接受 H ₁ (B) H ₁ 不真接受 I	H_1 (C) I	H_1 为真拒绝 H_2	H_1 (D) I	H_1 不真拒绝	H_1	
14.2	设某产品	的某项指标	服从正态分布,	已知它的	力标准差 σ =1	50. 现从-	一批产品中区	随机抽取 26	个, 测得
该项	指标的平均	匀值为 1637.	问能否认为这:	批产品的	するでははは	为 1600(α	= 0.05)?		
14.3	某测距仪	ረ在 500 米范	围内,测距精度	σ =10 $\#$	长。今对距离 5	00米的目	标测量9次	,得到平均距	횘 x =510
米。	设测量的距	巨离服从正流	忘分布,问该测]	距仪是否	存在系统误差		05)?		
144	甘苏厂件	: 本一新异常	i 妻 卫知左正位	台 比	冲下	请表的甘	而华标职 从	均值为 22 0 1	幼正太公
14.4			ī素,已知在正常 以 5 瓶,测得数						
	= 0.05)		く シーガル ・ 次件 寸 多	X 1/11 >H 1	. 44.3, 41.3	, 22.0, 21	1.0, 21.70	内区日工厂人	5 11 11 市

14.5	某厂生产	下的某种型号的电池,	其寿命(以小时计)长期以来服从方差 σ^2 =5000 的正态分布。现有一
批该型	型号电池,	从它的生产情况看,	寿命的波动性有所改变。现随机抽取 26 只电池,测得其寿命的样本
方差 5	$S^2 = 9200$	问根据这一数据能否	F推断这批电池寿命的波动性较以往有显著的变化(取α=0.05)?

14.6 已知维尼纶纤度在正常条件下服从正态分布 $N(1.405, 0.048^2)$,某日抽取 5 根纤维,测得其纤度为 1.32, 1.55, 1.36, 1.40, 1.44。问这一天纤度的总体标准差是否正常($\alpha = 0.05$)?

14.7 某厂生产的固体燃料推进器的燃烧率服从正态分布 $N(\mu, \sigma^2)$, μ =40cm/s, σ =2cm/s。现用新方法生产了一批推进器,从中随机抽取 25 只,测得燃烧率的样本均值为 \bar{x} = 41.25 cm/s 。设在新方法下总体标准差仍为 2 cm/s ,问这批推进器是否较以往生产的推进器的燃烧率有显著提高?(α =0.05)

14.8* 某车间有一台包装机包装葡萄糖。包得的袋装糖重是一个随机变量,它服从正态分布。当机器工作正常时,其均值为 0.5 公斤,标准差为 0.015 公斤。某日开工后为检查包装机是否正常,随机抽取它所包装的糖 9 袋,称得净重为(公斤): 0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.520, 0.515, 0.512。问这天该机器工作是否正常($\alpha=0.05$)?

习题十五 双正态总体参数的假设检验与 χ^2 -检验

	学号			
15.1	对两种羊毛织品的强度	进行试验所得结果如下(磅	6 / 平方英寸):	
	第一种: 1	38, 127, 134, 125; 第二种:	134, 137, 135, 140, 130, 134;	
设两	种羊毛织品的强度服从方	差相同的正态分布。问是否	可得结论:一种羊毛较另一种羊毛好($\alpha = 0.05$)?
15.2	有两箱灯泡,从第一箱中	中取9只测试,算得其平均	寿命为 1532 小时,标准差为 423 小时	l; 从第二箱
			为380小时。设两箱灯泡寿命都服从正	E态分布,且
方差	相等。试判断是否可以认	为这两箱灯泡是同一批生产	空的? (α = 0.05)	
15.3	两台机床加工同一种零	件,分别取其 6 个和 9 个,	量其长度计算得 $s_1^2 = 0.345$, $s_2^2 = 0$.357。假定
			工的零件长度的方差无显著差异 (α =	
			E加工的产品中抽取若干产品,测得直	
mm)				
		0.1.20.0.19.0.19.9: 机床乙:	19.7, 20.8,20.5,19.8,19.4,20.6,19.2	
			Γ 的精度有无显著差异($\alpha=0.05$)	?

15.5 设总体 $X \sim N(\mu_1, \sigma^2)$, X_1, \dots, X_{n_1} 为来自总体 X 的一个样本,总体 $Y \sim N(\mu_2, \sigma^2)$, Y_1, \dots, Y_{n_2} 为来自总体 Y 的一个样本,两样本相互独立,参数均未知。试构造出原假设 $H_0: \mu_1 = C\mu_2$ 的一个水平为 α 的检验,这里 C 为不为零的已知常数。

15.6 从甲、乙两校的高考英语试卷中各抽 27 份和 26 份,其英语平均成绩分别为甲校 67 分,乙校 71 分,样本标准差分别为甲校 8 分,乙校 6 分。假定学生的英语成绩均服从正态分布,试问两校英语成绩有无显著差异($\alpha=0.05$)?

15.7* 对某汽车零件制造厂所生产的汽缸螺栓口径进行 100 次抽样检查,得 100 个数据,分组列表如下:

组限	频 数	组 限	频 数
10.93~10.95	5	11.01~11.03	17
10.95~10.97	8	11.03~11.05	6
10.97~10.99	20	11.05~11.07	6
10.99~11.01	34	11.07~11.09	4

试检验螺栓口径是否服从正态分布($\alpha = 0.05$)。

"数理统计"测验题

一、1. 设总体 $X \sim N(0, \sigma^2)$, X_1, X_2, X_3, X_4 为来自 X 的样本,则统计量 $\frac{(X_1 + X_2)^2}{(X_2 - X_3)^2}$ 的分布为_____。

2. 若总体 X 的一个样本值为 0,0,1,1,0,1,则总体均值的矩估计值为 ___ ,总体方差的矩估计值为 ___ 。

3. 对正态总体若方差 σ^2 未知, $H_0: \mu = \mu_0$,应选取统计量_____,在_____条件下,统计 量服从自由度为 ____ 的 ____ 分布。

二、选择题

1. 设总体 $X \sim N(0,1)$, $X_1, X_2, \cdots, X_n (n > 1)$ 为来自该总体的一个简单随机样本, \overline{X} 、 S^2 分别是样本均值 和样本方差,则有()。

(A) $\overline{X} \sim N(0,1)$ (B) $n\overline{X} \sim N(0,1)$ (C) $\sum_{i=1}^{n} X_{i}^{2} \sim \chi^{2}(n)$ (D) $\overline{X}/S \sim t(n-1)$

2. θ 为总体 X 的未知参数, θ 的估计量为 $\hat{\theta}$,则有(

(A) $\hat{\theta}$ 是一个数,近似等于 θ (B) $\hat{\theta}$ 是一个随机变量

(C) $\hat{\theta}$ 是一个统计量,且 $E(\hat{\theta}) = \theta$ (D) 当 n 越大, $\hat{\theta}$ 的值可任意靠近 θ

3. 对正态总体 $N(\mu,\sigma^2)$ (σ^2 未知)的假设检验问题: $H_0:\mu\leq 1$, $H_1:\mu>1$, 若取显著性水平 $\alpha=0.05$,

 $(A) | \overline{X} - 1 | > z_{0.05} \quad (B) | \overline{X} > 1 + t_{0.05}(n-1) \cdot \frac{S}{\sqrt{n}} \quad (C) | \overline{X} - 1 | > t_{0.05}(n-1) \cdot \frac{S}{\sqrt{n}} \quad (D) | \overline{X} < 1 - t_{0.05}(n-1) \cdot \frac{S}{\sqrt{n}}$

三、1. 在测量反应时间中,一名心理学家估计的标准差为 0.05s,为了以 95%的置信水平使他对平均反应 时间的估计误差不超过 0.01s, 应取多大的样本容量?

2. 设 θ 为总体 X 的未知参数,其密度函数为 $f(x;\theta) = \begin{cases} \frac{6x}{\theta^3}(\theta-x), & 0 < x < \theta \\ 0, &$ 其它

体 X 的样本, 试求: (1) θ 的矩估计量 $\hat{\theta}$; (2) $\hat{\theta}$ 的方差 $D(\hat{\theta})$ 。

3. 从自动机床加工的同类零件中抽取 16 个, 测得长度值为(单位: mm): 12.15, 12.12, 12.01, 12.28, 12.09, 12.16, 12.03, 12.06, 12.01, 12.13, 12.07, 12.11, 12.08, 12.03, 12.01, 12.13, 若可认为这是来自正态总体的样本 观测值。求总体标准差 σ 的置信水平位0.99的置信区间。

4. 某纯净水生产厂用自动灌装纯净水,该自动灌装机正常灌装量 $X \sim N(18, 0.4^2)$,现测量某厂 9 个灌 装样品的灌装量(单位: L)为: 18.0, 17.6, 17.3, 18.2, 18.1, 18.5, 17.9, 18.1, 18.3。在显著性水平 0.05 下, 试问该天灌装是否合格?

5. 某项考试要求成绩的标准差为 12 分, 现从考试成绩单中任取 15 份, 计算样本标准差为 16 分。设成绩 服从正态分布,问此次考试的标准差是否不合要求($\alpha = 0.05$)?

6. 设总体 X 的数学期望为 μ ,方差为 σ^2 , (X_1, X_2, \dots, X_n) 和 (Y_1, Y_2, \dots, Y_m) 分别是来自 X 的两个独立样本。

证明 $S^2 = \frac{1}{m+n-2} \left[\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{i=1}^m (Y_i - \overline{Y})^2 \right]$ 是 σ^2 的无偏估计。