A	В
A*-algorithm, 107, 273	Backgammon, 306
Action, 97, 98	Backpropagation, 279, 298, 322
Activation function, 248, 258	learning rule, 270
Actuators, 17	Backtracking, 77, 99
Adaptive Resonance Theory (ART), 286	Backward chaining, 35
Admissible, 107, 109	Batch learning, 217, 266
Agent, 3, 17, 289, 290, 293, 296, 297, 300,	Bayes formula. See Bayes theorem
301, 303, 305	Bayesian network, 6, 10, 72, 77, 127, 158, 160,
autonomous, 10	198
cost-based, 18	learning, 241
distributed, 10	Bayes theorem, 134, 163
goal-based, 17	BDD. See Binary decision diagram
hardware, 17	Bellman
intelligent, 17	equation, 295
learning, 11, 18, 178	principle, 295
reflex, 17	Bias unit, 187
software, 17	Bias variance tradeoff, 214
utility-based, 18	Binary decision diagram, 37
with memory, 17	Boltzmann machine, 256
Agents, distributed, 18	Brain science, 3
Alarm-example, 159	Braitenberg vehicle, 2, 10, 193
Alpha-beta pruning, 115	Branching factor, 91, 95
AlphaGo, 7, 119, 121, 306, 308	average, 92
And branches, 79	effective, 95
And-or tree, 79	Built-in predicate, 84
Appendicitis, 133, 145	
Approximation, 178, 193	C
A priori probability, 131, 135	C4.5, 198, 216
Artificial Intelligence (AI), 1	Calculus, 28
Associative memory, 256	Gentzen, 49
Attribute, 118, 199	natural reasoning, 49
Auto-associative memory, 250, 257, 261	sequent, 49
Autoencoder, 279	Cancer diagnosis, 134
Automation, 12	Car, 14
Automotive industry, 14	CART, 198, 212
Autonomous robots, 11	CASC, 57

Case base, 197	Cut, 79
Case-based reasoning, 197	
CBR. See Case-based reasoning	D
Certainty factors, 126	DAG, 169, 216
Chain rule for Bayesian networks, 132, 168,	Data mining, 179, 180, 197, 198, 211
169	Data scientist, 277
Chatterbots, 5	Decision, 153
Checkers, 114, 120	Decision tree, 198
Chess, 114, 117, 120, 121, 306	induction, 180, 199
Church, Alonso, 7	learning, 309
Classification, 178	Deep belief network, 277, 280
Classifier, 178, 223, 268	Deep learning, 121, 238, 277, 307, 308
Clause, 29	Default logic, 71
definite, 34	Default rule, 71
-head, 34	Delta rule, 266, 268
Closed formula, 41	generalized, 270
CLP. See Constraint logic programming	Demodulation, 56
Cluster, 225	De Morgan, 45
Clustering, 224, 238	Dempster–Schäfer theory, 127
hierarchical, 22	Dependency graph, 151
Cognitive science, 3	Depth limit, 100
Complementary, 31	Derivation, 28
Complete, 28	Deterministic, 97, 114
Computer diagnostic, 158	Diagnosis system, 146
Conclusion, 34	Disjunction, 24, 29
Conditionally independent, 160, 169	Distance metric, 225
Conditional probability, 137	Distributed Artificial Intelligence (DAI), 10
table. See CPT	Distributed learning, 309
Conditioning, 163, 169	Distribution, 130, 148
Confusion matrix, 234	D-separation, 170
Conjunction, 24, 29	Dynamic programming, 296
Conjunctive Normal Form (CNF), 29	
Connectionism, 9	E
Consistent, 31	Eager learning, 196, 237
Constant, 40	Economic growth, 12
Constraint logic programming, 86	Economy, 12
Constraint Satisfaction Problem (CSP), 86	E-learning, 5
Contraction hierarchies, 111	Elementary event, 128
Convolutional Neural Network (CNN), 277,	Eliza, 5
280, 282, 307	EM algorithm, 217, 228, 232
Correlation, 151	Entropy, 202
coefficient, 182	maximum, 127, 136
matrix, 238	Environment, 12, 17, 18
Cost estimate function, 105	continuous, 18
Cost function, 95, 107	deterministic, 18
Cost matrix, 150, 155	discrete, 18
CPT, 160, 170, 216, 218	nondeterministic, 18
Creativity, 282, 283	observable, 18
Credit assignment, 119, 292	partially observable, 18
Cross-validation, 212, 213, 279, 281	Equation, directed, 55
Curse of dimensionality, 309	Equivalence, 24
	=

Evaluation function, 114	Hugin, 164
Event, 128	
Expert system, 145, 158	I
	ID3, 198
F	IDA*-algorithm, 113
Fact, 34	Immediate reward, 292
Factorization, 31, 54	Implication, 24
False negative, 155	Incremental gradient descent, 268
False positive, 155	Incremental learning, 266
Farthest neighbor algorithm, 230	Independent, 131
Feature, 118, 176, 185, 198, 237, 277	conditionally, 160, 169
Feature space, 177	Indifference, 140
Feedforward networks, 285	Indifferent variables, 146
Finite domain constraint solver, 87	Industry 4.0, 11
First-order sentence, 41	Inference machine, 50
First we solidify, 40	Inference mechanism, 19
Forward chaining, 35	Information content, 203
Frame problem, 71	Information gain, 200, 203, 237
Free variables, 41	Input resolution, 55
Function symbol, 40	Internet of Things, 11, 15
Fuzzy logic, 10, 72, 127	Interpretation, 24, 41
1 dzzj 10gie, 10, 72, 127	Iterative deepening, 100, 102
\mathbf{G}	IT security, 15
Gaussian process, 195, 236	11 security, 15
Generalization, 178	J
General Problem Solver (GPS), 6	JavaBayes, 164
	Jobs, 11
Genetic programming, 83	3008, 11
Go, 114, 120, 122, 306, 308 Goal, 36	K
	
stack, 36	Kernel, 195, 277
state, 94	Kernel methods, 277
Gödel	Kernel PCA, 280
incompleteness theorem, 7	K-means, 226
Kurt, 7	k-nearest neighbor method, 192, 194, 213
's completeness theorem, 7	KNIME, 199, 233
's incompleteness theorem, 68	Knowledge, 19
Google DeepMind, 121, 307	base, 160
Gradient descent, 267	consistent, 31
Greedy search, 106, 107, 217, 232	engineer, 11, 19
Ground term, 50	sources, 19
**	•
H	L
Halting problem, 7	Landmark, 109
Hebb rule, 249, 258, 270	heuristic, 110
binary, 259	Laplace assumption, 129
Heuristic, 103	Laplace probabilities, 129
Heuristic evaluation function, 104, 107	Law of economy, 211
Hierarchical learning, 309	Lazy learning, 196
Home automation, 15	Learning, 171, 176, 198
Hopfield network, 250, 251, 260	batch, 266
Horn clause, 34, 80	by demonstration, 309

Learning (cont.)	Momentum, 275
distributed, 309	Monotonic, 69
hierarchical, 309	Monte Carlo Tree Search (MCTS), 7, 119, 122,
incremental, 218, 266	307
machine, 151	Multi-agent systems, 6
multi-agent, 309	MYCIN, 126, 146
one-class, 222	
reinforcement, 97, 175, 307	N
semi-supervised, 236	Naive Bayes, 157, 159, 171, 180, 189, 218,
supervised, 176, 225, 261	220, 242
unsupervised, 278	classification, 190
Learning agent, 178	classifier, 218, 220
Learning phase, 178	method, 189
Learning rate, 249, 267	Naive reverse, 82
Least squares, 157, 264, 265, 269	Navier-Stokes equation, 306
Leave-one-out cross-validation, 214	Nearest neighbor
LEXMED, 127, 136, 145, 207	classification, 190
Limited resources, 104	method, 189
Linear approximation, 268	Nearest neighbor algorithm, 229
Linearly separable, 183, 184	Nearest neighbor method, 223
LIPS, 76	Nearest neighbor data description, 223
LISP, 6, 8	Negation, 24
Literal, 29	Negation as failure, 80
complementary, 31	Neural network, 6, 8, 194, 195, 238, 245
Locally weighted linear regression, 197	recurrent, 255, 257, 282
Logic	Neuroinformatics, 255
fuzzy, 127	Neuroscience, 3
higher-order, 6	Neurotransmitter, 247
probabilistic, 19	Noise, 191
Logically valid, 25	Non-monotonic logic, 144
Logic Theorist, 6, 8	Normal equations, 265
	Normal form
M	conjunctive, 29
Machine learning, 148, 175	prenex, 46
Manhattan distance, 112, 226	Normalization, 223, 280
Marginal distribution, 133	
Marginalization, 133, 137, 169	0
Markov Decision Process (MDP), 17, 293, 305	Object classification, 277, 281
deterministic, 301	Observable, 97, 114
nondeterministic, 305	Occam's razor, 211
partially observable, 293	OMRk algorithm, 232
Material implication, 127, 142	One-class learning, 222, 223
MaxEnt, 127, 140, 143, 145, 150, 164, 170	Ontology, 63
distribution, 140	Or branches, 79
Memorization, 176	Orthonormal, 258
Memory-based learning, 196, 197	Othello, 114
Metaparameter, 281	Outlier detection, 223
MGU, 53	Overfitting, 191, 211, 213–215, 217, 263, 265,
Minimum cash reserve ratio, 13	276
Minimum spanning tree, 229	OWL, 63
Mining, 179	P
Model, 25 Model complexity, 213, 214	Paradox, 68
Modus ponens, 126, 139	Paramodulation, 56
modus policiis, 120, 137	ı aramouulandli, Ju

Partially Observable Markov Decision Process (POMDP), 293	Resolution, 8, 30 calculus, 6, 28
Penguin problem, 85	rule, 30
Perceptron, 192, 196, 249	general, 30, 52
Phase transition, 254	SLD, 35
PIT, 143, 144, 164, 172	Resolvent, 30
PL1, 19, 40	Reward
Planning, 83	discounted, 292
Plans, 85	immediate, 292
Policy, 292	Risk management, 155
gradient method, 305	Road transportation, 14
policy based on its, 292	RoboCup, 7, 306
Postcondition, 62	Robot, 17, 289, 293
Precondition, 61	car, 14, 15
Predicate logic, 7	taxi, 14
first-order, 20, 40	walking, 289
Preference learning, 180	ROC curve, 157, 235
Premise, 34	RProp, 275, 279
Principal Component Analysis (PCA), 277,	Ki Top, 273, 275
280	S
Probabilistic	Sample, 199
logic, 20, 71	Satisfiable, 25
reasoning, 9	Scatterplot diagram, 177
Probability, 126, 128	Science fiction, 11
distribution, 130	Score, 146, 157, 223, 242, 266
rules, 150	Search
Product rule, 132	algorithm, 94
Program verification, 61	complete, 95
PROLOG, 6, 9, 75	optimal, 96
Proof system, 26	bidirectional, 110
Propositional	heuristic, 92
calculus, 20	space, 31, 35
logic, 23	tree, 94
Proposition variables, 23	uninformed, 92
Pruning, 206, 212	Self-driving car, 14
Pure literal rule, 55	Self-organizing maps, 285
Ture merar rule, 33	Semantics
0	declarative (PROLOG), 78
Q O learning 200	
Q-learning, 300	procedural (PROLOG), 78, 82 Semantic trees, 36
convergence, 303	,
Quickprop, 275	Semantic web, 62
D	Semi-decidable, 67
R	Semi-supervised learning, 236
Random variables, 128	Sensitivity, 135, 156, 162
Rapid prototyping, 87	Sensor, 17
RDF, 63	Service robotics, 15
Real-time decision, 104	Set of support strategy, 55
Real-time requirement, 114	Sigmoid function, 249, 264, 269
Receiver operating characteristic, 156	Signature, 23
Reinforcement	Silhouette width criterion, 231
learning, 119, 292	Similarity, 189
negative, 292	Simulated annealing, 256
positive, 292	Situation calculus, 71

Skolemization, 48	Text
SLD resolution, 38	classification, 220
Software reuse, 61	mining, 180
Solution, 95	Theorem, 134, 169
Sound, 28	Theorem prover, 8, 50
Space, 49, 95	Training data, 178, 211
Spam, 220	Transition function, 292, 303
filter, 220	Transportation, 12
Sparse coding, 279	True, 42
Specificity, 135, 156	Truth table, 24
Stacked denoising autoencoder,	method, 27
279, 280	Turing
Starting state, 94	Alan, 7
State, 94, 95	test, 5
space, 95	Tweety example, 144
transition function, 292	•
Statistical induction, 150	\mathbf{U}
Stochastic gradient descent, 308	Unifiable, 53
Subgoal, 36, 77	Unification, 52
Substitution axiom, 45	Unifier, 53
Subsumption, 55	most general, 53
Support vector data description, 223	Uniform cost search, 99
Support vector machine, 195, 276,	Unit
280	clause, 55
Sustainability, 13	resolution, 55
SVM. See Support vector machine	Unsatisfiable, 25
Symbol grounding, 85	
	\mathbf{V}
T	Valid, 25, 43
Target function, 178	Value iteration, 308
Tautology, 26	Variable, 40
TD, 304	Vienna Development Method Specification
-error, 304	Language (VDM-SL), 62
-gammon, 306	Voronoi diagram, 191
-learning, 304	
Teaching-Box, 310	W
Temporal difference	Walking robot, 290
error, 304	Warren Abstract Machine (WAM),
learning, 301	76, 82
Term	Watson, 20
rewriting, 56	WEKA, 199, 233
Test data, 178, 211	Whitening, 280