Name: _ Richard

1. Suppose $a, b, c \in \mathbb{Z}$. Use direct proof to prove: If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof. Suppose all and blc. Because alb, we know b = ad for some d ∈ Z. Because ble, we know C = be for some e E Z. From the above, c = be = ade = a(de), Sp c = a(de), where de & I. Therefore alc, by definition of divides.

Quiz 19 🌲 MATH 211 Name: _ Richard April 20, 2023

1. Suppose $a, b \in \mathbb{Z}$. Use direct proof to prove: If $a \mid b$, then $a^2 \mid b^2$.

Proof. Suppose a/b. By definition od divides, b = ac for some c = I. Consequently $b^2 = (ac)^2 = a^2c^2$ or $b^2 = a^2c^2$ So $b^2 = a^2 \cdot d$, where $d = c^2 \in \mathbb{Z}$. Therefore a2/d2, by definition of divides.