Support Vector Machines (SVM)

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"The key to artificial intelligence has always been the representation"

-Jeff Hawkins

What are Support Vector Machines?

*This lesson refers to chapter 9 of the GIDS book

Content of this lesson

Support Vector Machines (more generally – Kernel Machines)

- Motivation
- Linear Classifiers
 - Rosenblatt Learning Rule
- Kernel Methods and Support Vector Machines
 - Dual Representation
 - Maximal Margins
 - Kernels
- Margin of Error and Variations
 - Soft and Hard Margin Classifiers
 - Multi-Class SVM
 - Support Vector Regression

Datasets

- Datasets used : iris dataset
- Example Workflows:
 - "SVM on iris dataset " https://kni.me/w/DTfbNITUngKQVF8v
 - Normalization
 - SVM

Motivation

Motivation

- Main idea of Kernel Methods
 - Embed data into suitable vector space
 - Find linear classifier (or other linear pattern of interest) in new space
- Needed: a Mapping

$$\Phi$$
: $x \in X \to \Phi(x) \in F$

- Key Assumptions:
 - Information about relative position is often all that is needed by learning methods
 - The inner products between points in the projected space can be computed in the original space using special functions (kernels).

Linear Classifiers

Linear Discriminant

Simple linear, binary classifier:

$$f(x) = w^{T}x + b = \sum_{i=1}^{n} x_{i}w_{i} + b = b + ||w|| ||x|| \cos(\angle(w, x))$$

- Class A if f(x) positive
- Class B if f(x) negative
- e.g. h(x) = sgn(f(x)) is the decision function

Linear Discriminant Function

$$f(x) = w^T x + b = b + ||w|| ||x|| \cos(\angle(w, x))$$

Linear discriminants represent hyperplanes in feature space

Training a "Perceptron"

- Classification using a Perceptron
 - Represents a (hyper-) plane: $\sum_{i=1}^{n} w_i \cdot x_i = \theta$
 - Left of hyperplane: class 0
 - Right of hyperplane: class 1
- Training a Perceptron
 - Learn the "correct" weights to distinguish the two classes
 - Iterative adaption of weights w_i
 - Rotation of the hyperplane defined by w and θ in small direction of x if x is not yet on the correct side of the hyperplane.

Primal Perceptron

- Rosenblatt (1959) introduced a simple learning algorithm for linear discriminants ("perceptrons"):
- Given a linearly separable training set S

```
w_0 \leftarrow \mathbf{0}; b_0 \leftarrow \mathbf{0}; k \leftarrow \mathbf{0}
R \leftarrow \max_{1 \le j \le m} ||x_j||
repeat
         for i = 1 to m
                  if y_i \cdot (\mathbf{w}_k^T x_i + b) \le 0 then
                            \mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + y_i \mathbf{x}_i
                           b_{k+1} \leftarrow b_k + y_i R^2
                            k \leftarrow k + 1
                   end if
         end for
until no mistakes made within the for loop
return (w_k, b_k)
```

Rosenblatt Algorithm

- Algorithm is
 - On-line (pattern by pattern approach)
 - Mistake driven (updates only in case of wrong classification)
- Algorithm converges guaranteed if a hyperplane exists which classifies all training data correctly (data is linearly separable)
- Learning rule:

$$IF y_i \cdot (w^T x_j + b) < 0 \quad THEN \begin{cases} w(t+1) = w(t) + y_i \cdot x_j \\ b(t+1) = b(t) + y_j \cdot R^2 \end{cases}$$

- One observation:
 - Weight vector (if initialized properly) is simply a weighted sum of input vectors (b is even more trivial).

Dual Representation (of discriminant function)

Weight vector w is a weighted sum of input x_j

$$\mathbf{w} = \sum_{j=1}^{n} \alpha_j \cdot y_j \cdot \mathbf{x}_j$$

Where α_i represents how much x_i contributes to w

- Large α_i : x_i is difficult to classify higher information content
- Small or zero α_i : x_i easy to classify smaller information content
- \rightarrow This representation with α_j 's known as **dual representation**
- We can now represent the discriminant function as

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \left(\sum_{j=1}^n \alpha_j \cdot y_j \cdot \mathbf{x}_j^T \mathbf{x}\right) + b$$

Dual Representation

- Dual Representation of Learning Algorithm:
- Given a training set S

```
\begin{array}{l} \pmb{\alpha} \leftarrow \mathbf{0}; b \leftarrow \mathbf{0} \\ \mathbf{R} \leftarrow \max_{1 \leq i \leq m} \| \pmb{x}_i \| \\ \mathbf{repeat} \\ \qquad \qquad \mathbf{if} \quad y_j \cdot \left( \sum_{j=1}^m \alpha_j y_j \pmb{x}_j^T \pmb{x}_i + b \right) \leq 0 \ \mathbf{then} \\ \qquad \qquad \alpha_i \leftarrow \alpha_i + 1 \\ \qquad \qquad b \leftarrow b + y_i R^2 \\ \qquad \qquad \mathbf{end} \ \mathbf{if} \\ \qquad \qquad \mathbf{end} \ \mathbf{for} \\ \mathbf{until} \ \mathbf{no} \ \mathbf{mistakes} \ \mathbf{made} \ \mathbf{within} \ \mathbf{the} \ \mathbf{\textit{for}} \ \mathbf{loop} \\ \mathbf{return} \ (\pmb{\alpha}, b) \end{array}
```

Dual Representation

- Both α_i and b can be updated iteratively
- Learning Rule at iteration t:

$$IF \quad y_j \cdot \left(\sum_{j=1}^n \alpha_j y_j \boldsymbol{x}_i^T \boldsymbol{x}_j + b \right) < 0 \quad THEN \begin{cases} \alpha_i(t+1) = \alpha_i + 1 \\ b(t+1) = b(t) + y_i \cdot R^2 \end{cases}$$
 where $R = \max_i \|\boldsymbol{x}_j\|$

- Harder to learn examples having larger alpha
- The information about training examples enters algorithm only through the inner products (which we could pre-compute)

Projection to Other Spaces

- So far, we have seen training via computation of inner products
- \rightarrow Indicating which side of the linear decision boundary x falls into
- Say, it is hard to find a linear boundary in the original space

 Solution: project to another space, find the linear boundary in the projected space, classify in the projected space

Kernel Methods and Support Vector Machines

Kernel Functions

- A **kernel function** is a function K, such that for all $(x, y) \in X$

$$K(\boldsymbol{x}_1, \boldsymbol{x}_2) = \Phi(\boldsymbol{x}_1)^T \Phi(\boldsymbol{x}_2)$$

where Φ is a mapping from X to an (inner product) feature space F.

- It is not necessary to transform the original data into the projected space before learning linear SVM
- The kernel K allows us to compute the inner product of two points x and
 y in the projected space without even entering that space

...in Kernel Land...

The discriminant function in the projected space

$$f(\mathbf{x}) = \left(\sum_{j=1}^{n} \alpha_j \cdot y_j \cdot \Phi(\mathbf{x})^T \Phi(\mathbf{x}_j)\right) + b$$

- Or with the kernel function K

$$f(\mathbf{x}) = \left(\sum_{j=1}^{n} \alpha_j \cdot y_j \cdot K(\mathbf{x}, \mathbf{x}_j)\right) + b$$

Gram Matrix

All data necessary for

- the decision function h(x)
- the training of the coefficients
 can be pre-computed using a Gram matrix K

$$K = \begin{pmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_m) \\ K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_m) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_m, x_1) & K(x_m, x_2) & \cdots & K(x_m, x_m) \end{pmatrix}$$

Rules for a Gramm Matrix

- Let X be a non empty set. A function is a valid kernel in X if for all n and all $x_1, ..., x_n \in X$ it produces a Gram matrix K, which is:

Symmetric

$$K = K^T$$

Positive semi-definite

$$\forall \alpha : \alpha^T K \alpha \geq 0$$

Eigenvectors of the matrix correspond to the input vectors

Moreover,

Every positive definite & symmetric matrix is a Gram matrix

A simple kernel is

$$K(x,y) = (x_1y_1 + x_2y_2)^2$$

And the corresponding projected space:

$$(x_1, x_2) \mapsto \Phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

Since

$$\langle x, y \rangle^2 = \langle (x_1, x_2), (y_1, y_2) \rangle^2$$

$$= \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (y_1^2, y_2^2, \sqrt{2}y_1y_2) \rangle$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= (x_1 y_1 + x_2 y_2)^2$$

Kernels

A few less simple kernels are

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y})^d$$

And the corresponding projected spaces are of dimension

$$\binom{n+d-1}{d}$$

 But computing the inner products in the projected space can quickly become expensive Polynomial kernel of degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + c)^d$$

More Kernels

Gaussian kernel

$$K(\mathbf{x}, \mathbf{y}) = e^{-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}}$$

Also known as radial basis function (RBF) kernel

Kernels

- Note that we do not need to know the projection Φ .
- It is sufficient to prove that $K(\cdot)$ is a Kernel.

A few notes:

- Kernels are modular and closed: we can compose new Kernels based on existing ones
- Kernels can be defined over non numerical objects:
 - Text: e.g. string matching kernel
 - Images, trees, graphs...
- A good kernel is crucial
 - Gram Matrix diagonal: classification easy and useless

Finding Linear Discriminants

- Finding the hyperplane (in any space) still leaves lots of room for variations
- We can define "margins" of individual training examples:

$$\gamma_i = y_i(\mathbf{w}^T \mathbf{x} + b)$$

appropriately normalized this is a "geometrical" margin

- The margin of a hyperplane (with respect to a training set): $\min_{i=1...n} \gamma_i$
- And a maximal margin of all training examples indicates the maximum margin over all hyperplanes

(maximum) Margin of a Hyperplane

Finding Linear Discriminants

The original objective function

$$y_i \cdot (\mathbf{w}^T \mathbf{x} + b) \ge 0$$

— Is reformulated slightly:

$$y_i \cdot (\mathbf{w}^T \mathbf{x} + b) \ge 1$$

The decision line is still defined by

$$\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$$

And in addition the upper and lower margins are defined by

$$\mathbf{w}^T \mathbf{x} + \mathbf{b} = \pm 1$$

- The distance between those two hyperplanes is $\frac{2}{\|w\|}$

Finding Linear Discriminants

- Finding the maximum margin now turns into a minimization problem:
 - Minimize (in w, b) ||w||
 - subject to (for any j = 1, ..., n)

$$y_i(\mathbf{w}^T\mathbf{x} - b) \ge 1$$

Solution sketch:

- Solutions depend on ||w||, the norm of w which involves a square root
- Convert into a quadratic form by substituting $\|w\|$ with $\frac{1}{2}\|w\|^2$ without changing the solution
- Using Lagrange multipliers this turns into a standard quadratic programming problem

Margin of Error and Variations

Soft and Hard Margin Classifiers

- What can we do if no linear separating hyperplane exists?
- Solution: allow minor violations also known as soft margins
 - → In contrast, avoiding any misclassifications ≡ *hard margins*

Soft and Hard Margin Classifiers

- How do we implement soft margins? → via slack variables ε_i
- Introducing the slack variables to the minimization constraint

$$\forall j = 1, ..., n: \quad y_j \cdot (\mathbf{w}^T \mathbf{x}_j + b) \ge 1 - \varepsilon_j$$

- Misclassifications are allowed if slack $\varepsilon_i > 1$ is allowed
- The minimization problem is solved using Lagrange multipliers

$$\arg\min\frac{1}{2}\|\boldsymbol{w}\|^2 + C\sum_{j}\varepsilon_{j}$$

- Subject to: $y_j \cdot (\mathbf{w}^T \mathbf{x}_j + b) \ge 1 \varepsilon_j$
- − The regularization parameter C > 0 controls the "hardness" of the margins (large $C \rightarrow$ hard margins, small $C \rightarrow$ soft margins)

Multi-Class SVM

How do we separate more than two classes?

- Transform the problem into a set of binary classification problems
 - One class vs. all other classes.
 - One class vs. another class, for all possible class pairs
- The class with the farthest distance from the hyperplane wins

Support Vector Regression

The key idea: change the optimization

$$\arg\min\frac{1}{2}\|w\|^2$$

Subject to:

$$y_j - (\mathbf{w}^T \mathbf{x}_j + b) \le \varepsilon$$
 for $1 \le j \le n$

- This require the prediction error to be within a margin ε
- We can introduce slack variables to tolerate larger errors

Support Vector Machines

Support Vector Machine

- Classifier as weighted sum over inner products of training pattern (or only support vectors) and the new pattern.
- Training analog

Kernel-Induced feature space

- Transformation into higher-dimensional space (where we will hopefully be able to find a linear separation plane).
- Representation of solution through few support vectors ($\alpha > 0$).

Maximum Margin Classifier

- Reduction of Capacity (Bias) via maximization of margin (and not via reduction of degrees of freedom).
- Efficient parameter estimation.

Relaxations

Soft Margin for non separable problems.

Practical Examples with KNIME Analytics Platform

Workflow training an SVM model to classify the iris data set

SVM on the Iris Data

- The configuration window of the SVM Learner node
- Allows a selection of a kernel and the associated parameters
- Overlapping penalty controls the margin hardness

Thank you

For any questions please contact: education@knime.com