

Segurança da Informação

Criptografia Assimétrica Aritmética Modular

 Problema: Alice deseja enviar uma carta confidencial para Bob, dispondo apenas de um baú com cadeado.

- Resumo do protocolo:
 - Alice deposita a carta na caixa, aplica o seu cadeado e envia a caixa para Bob.
 - Bob aplica o seu cadeado e devolve a caixa (com dois cadeados!) para Alice.
 - Alice remove o seu cadeado e envia a caixa de novo para Bob.
 - Bob remove o seu cadeado e recupera a carta.

 Objetivo geral: transmitir uma mensagem confidencial entre duas entidades que não compartilhem uma informação secreta, dispondo de uma cifra comutativa:

$$E_B(E_A(M)) = E_A(E_B(M)).$$

- Importante: cifras de fluxo não servem.
 (Por quê?)
- Defeito geral do protocolo: entidades não são autenticadas.

Criptografia Assimétrica

- Duas chaves distintas:
 - Chave privada K_R.
 - Chave pública K_u.
- Inviável calcular a chave privada a partir da chave pública.
- Transformações que dependem de uma das chaves do par somente podem ser invertidas usando a *outra* chave.

Criptografia Assimétrica

• Cifração:

Assinatura digital:

Segurança computacional

- Visão clássica: obter informações é matematicamente impossível.
- Visão moderna: obter informações é computacionalmente inviável.
- Algoritmos assimétricos são baseados em problemas computacionais difíceis de resolver, mas fáceis de verificar (às vezes NP-completos).

Problemas Matemáticos

- Logaritmo discreto (Diffie-Hellman, DSA) ⇒ algoritmos análogos em curvas elípticas.
- Fatoração inteira (RSA).
- Reticulados (NTRU, LWE).
- Códigos corretores de erro (McEliece, CFS).
- Contra-exemplo: problema da mochila (Hellman-Merkle, Chor-Rivest).
- Teoria dos Números!

Aritmética Modular

Advertência: Equações!

Aritmética modular

 Operações com inteiros são eficientes e livres de erros de arredondamento.

- Por outro lado, em geral não existe inverso multiplicativo.
- Aritmética modular: operações com inteiros, incluindo inversão.

Aritmética modular

- Restrição: valores limitados ao intervalo finito 0, 1, ..., n-1.
- Idéia fundamental: após cada operação aritmética, tomar o resto da divisão por n.
- O resultado está sempre entre 0 e n-1.
- Valores que diferem por múltiplos de n são equivalentes: $a \equiv b \pmod{n}$ sempre que a-b = kn para algum inteiro k.

Exemplo: n = 11

Adição modular:

$$5 + 4 \equiv 9 \pmod{11}$$
.
 $5 + 8 \equiv 2 \pmod{11}$ $\Rightarrow 13 - 11$

Subtração modular:

$$5-6 \equiv 10 \pmod{11}$$
 $\Rightarrow -1+11$

 Adiciona-se ou subtrai-se livremente qualquer múltiplo de n.

Multiplicação modular

Mesmo processo das demais operações:

```
3 \cdot 5 \equiv 4 \pmod{11} \Rightarrow 15 - 11
3 \cdot 4 \equiv 1 \pmod{11} \Rightarrow 12 - 11
```

4 é o inverso de 3 (mod 11)!

- O inverso de a (mod n) é um inteiro x tal que $ax \equiv 1 \pmod{n}$.
- Escreve-se $x \equiv a^{-1} \pmod{n}$: $4 = 3^{-1} \pmod{11}$.

Calculando Inversos

Inverso de 2 (mod 11):

$$2 \cdot x \equiv 1 \pmod{11} \Rightarrow x = 6$$

Inverso de 4 (mod 11)

$$3 \cdot x \equiv 1 \pmod{11} \Rightarrow x = 4$$

$$4 \cdot x \equiv 1 \pmod{11} \Rightarrow x = 3$$

- Inverso de 11 (mod 11) ?
- Não dividirás por 0...
- ... nem por 11, 22, 33, ...

Inversibilidade Modular

 Se n for primo, todos os inteiros de 1 até n–1 possuem inverso (mod n).

 Se n for composto, os números com algum fator em comum com n não possuem inverso (mod n), exceto a unidade.

Exemplo: n = 10

- $3 \cdot x \equiv 1 \pmod{10} \Rightarrow x = 7$
- $9 \cdot x \equiv 1 \pmod{10} \Rightarrow x = 9$
- $4 \cdot x \equiv 1 \pmod{10} \Rightarrow x = ?$

 4 tem um fator comum com 10 (a saber, 2), e por isso não tem inverso (mod 10).

- Objetivo: calcular $B = A^{-1} \mod M \iff \exists X: BA + XM = 1$).
- Invariantes: F = BA + XM, G = CA + YM para algum $X \in Y$.
- Subtrai-se sucessivamente do maior entre *F* e *G* um múltiplo adequado do menor.
- Invariantes preservados com a operação análoga aplicada a B (ou C) e a X (ou Y): $F = BA + XM \Rightarrow F \alpha G = (B \alpha C)A + (X \alpha Y)M,$


```
// invariantes: F = BA + XM, G = CA + YM
F \leftarrow A, B \leftarrow 1, G \leftarrow M, C \leftarrow 0 // X \leftarrow 0, Y \leftarrow 1
while F > 1 {
      if F < G {
              F \leftrightarrow G. B \leftrightarrow C // X \leftrightarrow Y
      \alpha \leftarrow |F/G|
       F \leftarrow F - \alpha G, B \leftarrow B - \alpha C // X \leftarrow X - \alpha Y
if F = 1 return B else "não inversível"
```


• Exemplo: calcular 4⁻¹ mod 11.

passo	F	В	G	С	α
init	4	1	11	0	
F < G	11	0	4	1	2
	$11-2\cdot 4 = 3$	$0-2\cdot 1 = -2$	4	1	
F < G	4	1	3	-2	1
	$4-1\cdot 3 = 1$	1-1·(-2) =			
		3			
stop	1	<u>3</u>			_

Exemplo: calcular 4⁻¹ mod 10.

passo	F	В	G	C	α
init	4	1	10	0	
F < G	10	O	4	1	2
	$10-2\cdot 4 = 2$	$0-2\cdot 1 = -2$	4	1	
F < G	4	1	2	-2	2
	$4-2\cdot 2 = 0$	1-2· (-2) =	2	-2	
		5			
stop	<u>O</u>		<u> →2</u>		

gcd(4, 10) -

Exponenciação modular

Multiplicação modular repetida.

```
3^2 \equiv 9 \pmod{11}.
3^{10} \equiv 1 \pmod{11}.
3^{843972} \equiv 9 \pmod{11}.
```

• Pequeno Teorema de Fermat:

```
a^{n-1} \equiv 1 \pmod{n},
se n é primo e a não é múltiplo de n.
```


Exponenciação modular

• Teorema de Euler (restrito):

```
a^x \equiv a^{x \mod (n-1)} \pmod{n},
se n é primo e a não é múltiplo de n.
```

Exponenciações com expoentes grandes:

```
3^{843972} \equiv 3^{843972 \mod 10} = 3^2 \equiv 9 \pmod{11}.
```

• Exercício:

$$14643^{93513} \pmod{11} = ?$$

Função tociente (φ) de Euler

• Definição:

 $\varphi(n)$ = número de inteiros positivos menores que n e primos relativos a n.

Exemplos:

 $\phi(11) = 10$, pois todos os inteiros de 1 a 10 são primos relativos a 11.

 $\varphi(10) = 4$, pois apenas 1, 3, 7, e 9 são primos relativos a 10.

Função tociente (φ) de Euler

• Se *n* é primo:

$$\varphi(n) = n - 1.$$

Exemplo: $\varphi(11) = 11 - 1 = 10$.

• Se n = pq onde $p \in q$ são primos:

$$\varphi(n) = (p-1)(q-1).$$

Exemplo: $\varphi(10) = (2-1)(5-1) = 4$.

Exponenciação modular

Teorema de Euler (geral):

```
a^x \equiv a^{x \mod \varphi(n)} \pmod{n},
se gcd(a, n) = 1 (a \in n primos entre si).
```

Exemplo:

```
3^{843972} \equiv 3^{843972 \mod 4} \pmod{10} = 3^0 = 1.
```

 Euler não ajuda a calcular exponenciais modulares quando o módulo é grande.

- Objetivo: calcular a^x mod n.
- Estratégia: aproveitar a representação do expoente numa base *b*.
- Escrito na base b, o expoente é:

onde os x_i são dígitos na base b.

- Exemplo na base b = 10:
 - $x = 8 \times 10^5 + 4 \times 10^4 + 3 \times 10^3 + 9 \times 10^2 + 7 \times 10 + 2$.

A exponencial é:

$$a^{x} = a^{x_{m}b^{m} + x_{m-1}b^{m-1} + \dots + x_{1}b + x_{0}$$

$$= a^{x_{m}b^{m}} \cdot a^{x_{m-1}b^{m-1}} \cdot \dots \cdot a^{x_{1}b} \cdot a^{x_{0}}$$

Exemplo:

■
$$3^{843972} = 3^{8 \times 10^5} \cdot 3^{4 \times 10^4} \cdot 3^{3 \times 10^3} \cdot 3^{9 \times 10^2} \cdot 3^{7 \times 10} \cdot 3^2$$

- Idéia principal:
 - calcular os fatores $a^{x_i b^i}$ e multiplicá-los.
- Observação:

$$a^{x_ib^i} = (a^{x_i})^{b^i} = (...(a^{x_i})^b)^b...)^b.$$

- Calcular a^d para cada dígito d da base b.
- Varrer o expoente da esquerda para a direita.
- Manter o produto dos fatores calculados.
- Acumular cada novo fator: elevar o produto parcial à potência b e multiplicar por a^{x_i} .

- Exemplo:
 - **3**843972
 - $= 3^{8 \times 10^{5}} \cdot 3^{4 \times 10^{4}} \cdot 3^{3 \times 10^{3}} \cdot 3^{9 \times 10^{2}} \cdot 3^{7 \times 10} \cdot 3^{2}$ $= ((((3^{8})^{10} \cdot 3^{4})^{10} \cdot 3^{3})^{10} \cdot 3^{9})^{10} \cdot 3^{7})^{10} \cdot 3^{2}$
- Independe do módulo (basta reduzir mod n em cada passo).
- Especialmente simples em base 2:
 - Dígitos 0 e 1: não é necessário calcular a^d.
 - Cálculo de quadrados.


```
// x = (x_m x_{m-1} ... x_1 x_0)_2, x_m = 1.
V \leftarrow a
for i = m-1, ..., 0 {
     v \leftarrow v^2 \pmod{n}
    if X_i = 1 {
        v \leftarrow v \cdot a \pmod{n}
                         // v = a^x \mod n
return v
```


Inversão com Exponenciação

Teorema de Euler:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

• Dividindo os dois lados por a:

$$a^{\varphi(n)-1} \equiv a^{-1} \pmod{n}$$

• Eficiente quando $\varphi(n)$ –1 tiver uma forma simples (poucos bits iguais a 1).

Teorema Chinês do Resto (TCR)

Conhecendo:

```
q^{-1} \mod p = u,

a \mod p = \alpha,

a \mod q = \beta,
```

é "fácil" calcular a mod pq:

$$a \mod pq = (((\alpha - \beta) \cdot u) \mod p) \cdot q + \beta$$

• Cálculo de a^x mod pq: calcular u, a^x mod p, a^x mod q, e combinar os resultados.