# Содержание

| Ι | $\Phi_{y}$                                     | ункции, заданные неявно                                             | 4  |  |
|---|------------------------------------------------|---------------------------------------------------------------------|----|--|
| 1 | Фу                                             | нкции, заданные неявно                                              | 4  |  |
|   | 1.1                                            | Основные понятия                                                    | 4  |  |
|   |                                                | 1.1.1 Примеры                                                       | 4  |  |
|   | 1.2                                            | Теорема о неявно заданной функции                                   | 4  |  |
|   | 1.3                                            | Неявные функции, определяемые системой уравнений                    | 5  |  |
| 2 | Локальные экстремумы функций многих переменных |                                                                     |    |  |
|   | 2.1                                            | Определение и необходимые условия существования экстремумов         | 6  |  |
|   | 2.2                                            | Достаточное условие существования локального экстремума             | 7  |  |
| 3 | Понятие условного экстремума                   |                                                                     |    |  |
|   | 3.1                                            | Общая постановка задачи                                             | 9  |  |
|   | 3.2                                            | Необходимые условия существования лок. экстремума                   | 9  |  |
|   | 3.3                                            | Метод Лагранжа                                                      | 10 |  |
|   | 3.4                                            | Достаточные условия существования локального экстремума             | 11 |  |
| 4 | Кратные интегралы                              |                                                                     |    |  |
|   | 4.1                                            | Определения и свойства                                              | 12 |  |
|   | 4.2                                            | Интегральные суммы. Кратный интеграл Римана.                        |    |  |
|   |                                                | Необходимое усл. существования кр. интеграла Римана                 | 12 |  |
|   | 4.3                                            | Суммы Дарбу. критерий интегрируемости. Интеграл непрерывных функций | 19 |  |
|   |                                                | интеграл непрерывных функции                                        | 13 |  |
| 5 | Сво                                            | ойства кратных интегралов                                           | 13 |  |
| 6 | Сведение кратного интеграла к повторному       |                                                                     |    |  |
|   | 6.1                                            | Двойные интегралы                                                   | 14 |  |
|   | 6.2                                            | m-кратные интегралы                                                 | 16 |  |
| 7 | Формула Грина.                                 |                                                                     |    |  |
|   | 7.1                                            | Вывод формулы                                                       | 16 |  |

III

Теория поля

|    | 7.2                  | Некоторые приложения формулы Грина                                                  | 17 |
|----|----------------------|-------------------------------------------------------------------------------------|----|
| 8  | Зам                  | ена переменных в кратном интеграле.                                                 | 19 |
|    | 8.1                  | Преобразование плоских областей                                                     | 19 |
|    | 8.2                  | Выражение площади в криволинейных координатах                                       | 20 |
|    | 8.3                  | Геометрический смысл модуля якобиана                                                | 21 |
|    | 8.4                  | Замена переменных в двойном интеграле                                               | 21 |
| II | П                    | оверхностные интегралы.                                                             | 22 |
| 9  | Понятие поверхности. |                                                                                     |    |
|    | 9.1                  | Простейшие примеры задания поверхности                                              | 22 |
|    | 9.2                  | Параметрическое задание поверхности                                                 | 22 |
|    | 9.3                  | Допустимые замены переменных                                                        | 24 |
|    | 9.4                  | Касательная плоскость и нормаль к поверхности                                       | 24 |
|    | 9.5                  | Двусторонние и односторонние поверхности. Ориентация поверхности                    | 25 |
|    | 9.6                  | Допустимые замены переменных                                                        | 26 |
|    | 9.7                  | Касательная плоскость и нормаль к поверхности                                       | 27 |
|    | 9.8                  | Двусторонние и односторонние поверхности. Ориентация поверхности                    | 28 |
|    | 9.9                  | Кусочно гладкие поверхности                                                         | 28 |
| 10 | Пло                  | ощадь поверхности                                                                   | 29 |
|    | 10.1                 | Пример Шварца (сапог Шварца)                                                        | 29 |
|    | 10.2                 | Другое выражение для площади поверхности                                            | 29 |
| 11 | Пов                  | ерхностные интегралы                                                                | 30 |
|    | 11.1                 | Поверхностный интеграл первого рода                                                 | 30 |
|    | 11.2                 | Сведение поверхностного интеграла первого роад к двойному интегралу                 | 30 |
|    | 11.3                 | Определение поверхностного интеграла второго рода                                   | 31 |
|    | 11.4                 | Общий вид поверхностного интеграла 2-го рода                                        | 31 |
|    | 11.5                 | Сведение поверхностных интегралов 2-го рода к поверхностному интегралу первого рода | 32 |
|    |                      |                                                                                     |    |

**32** 

| <b>12</b> | З Элементы векторного анализа                 | 32   |
|-----------|-----------------------------------------------|------|
|           | 12.1 Скалярные и векторные поля               | . 32 |
|           | 12.2 Вектор Гамильтона                        | . 32 |
| 13        | 3 Формула Остроградского – Гаусса             | 34   |
|           | 13.1 Доказательство формулы                   | . 34 |
|           | 13.2 Приложения формулы Остроградского-Гаусса | . 35 |
|           | 13.3 Соленоидальные векторные поля            | . 35 |
| 14        | Формула Стокса.                               | 36   |
|           | 14.1 Простая гладкая поверхность              | . 36 |
|           | 14.2 Кусочно гладкая поверхность              | . 37 |
|           | 14.3 Инвариантность $rot\overline{a}$         | . 37 |
|           | 14.4 Потенциальные векторные поля             | . 37 |

# Часть І

# Функции, заданные неявно

# 1. Функции, заданные неявно

#### 1.1. Основные понятия

$$f(x,y) = 0; (1)$$

 $D_f = \{(x,y) \in \mathbf{E}^2 : f(x,y) = 0\}$  - график уравнения 1.  $D_f \leftrightarrow Ox$ 

#### 1.1.1. Примеры

1. 
$$x^2 + y^2 - 1 = 0$$
  
 $f_x = 2x$ ;  $f_y = 2y$   
Точку  $(0,1)$ , например, нельзя рассматривать как  $y=f(x)$ , но можно как  $x=f(y)$ 



# 2. (x-y)(x+y-1)=0 $f_x=(x+y-1)+(x-y); \ f_y=-(x+y-1)+(x-y).$ $(\frac{1}{2};\frac{1}{2})$ - особая точка, где обе 0. Ни по Ох, ни по Оу нет биекции.

# 1.2. Теорема о неявно заданной функции

Достаточное условие, при котором уравнение 1 локально определеяет у как f(x) и у обладает некоторыми дифф. свойствами.

#### Теорема 1. Если

1. 
$$f(x_0,y_0)=0$$

2. в некоторой  $u(x_0,y_0)$  функция f обладает непрерывной частной производной

3. 
$$f_y(x_0, y_0) \neq 0$$
,

То  $\exists \Pi = \{(x,y) : |x-x_0| \le r_1, |y-y_0| \le r_2\} \in U(x_0,y_0)$  в пределах которого уравнение 1 определяет у как функцию переменной x (y=f(x)), которая непрерывно дифференцируема на  $(x_0-r_1,x_0+r_1)$  и  $y'=-\frac{f_x(x,y)}{f_y(x,y)}\big|_{y=f(x)}$ 

Доказательство. І. Существование неявно заданной функции

$$3\Rightarrow \Pi$$
усть  $f_y(x_0,y_0)>0$   $\to_{(2)}\exists \Pi_1=\{(x,y):|x-x_0|\leq r,|y-y_0|\leq r_2\}\in U(x_0,y_0)$  такой, что  $\forall (x,y)\in \Pi_1\Rightarrow f_y(x,y)>0$   $\psi(y)=f(x_0,y),\;\psi(y_0)=0,\;\psi$ - возрастает на  $[y_0-r_2,y_0+r_2]$ 

$$\psi'(y) = f_y(x_0, y) > 0, \ \forall y \in [y_0 - r_2, y_0 + r_2] \Rightarrow \psi(y_0 - r_2) < 0, \ \psi(y_0 + r_2) > 0$$

$$f(x_0, y_0 - r_2) < 0, \ f(x_0, y_0 + r_2) > 0$$

$$\exists r_1 \in (0, r) : \ f(x, y_0 - r_2) < 0, \ f(x, y_0 + r_2) > 0, \ \forall x \in [x_0 - r, x_0 + r]$$

$$\Pi = \{(x, y) : |x - x_0| \le r_1, |y - y_0| \le r_2\} \in U(x_0, y_0)$$

Покажем, что в  $\Pi 1$  определяет y как функцию от x

$$\overline{x} \in [x_0 - r_1, x_0 + r_1]$$

$$\phi(y) = f(\overline{x}, y), \ \phi(y_0 - r_2) < 0, \ \phi(y_0 + r_2) > 0$$

 $\phi(y)$  непрерывна на  $[y_0-r_2;y_0+r_2]\Rightarrow$  по теореме о промежуточном значении  $\exists \overline{y}\in (y_0-r_2;y_0+r_2):\phi(\overline{y})=0$  и эта точна единственная.

$$\phi'(y) = f_y(\overline{x}, y) > 0 \text{ B } \Pi_1 \subset \Pi$$

$$f(\overline{x},\overline{y}) = 0 \ y = f(x)$$

#### II.

$$\begin{split} &\Pi_1 = \{(x,y): |x-x_0| \leq r_1, |y-y_0| \leq r_2\} \\ &(x_0,y_0) \in \Pi, \ f(x_0,y_0) = 0, \ (x_0 + \Delta x, y_0 + \Delta y) \in \Pi \ \text{if} \ f(x_0 + \Delta x, y_0 + \Delta y) = 0; \\ &\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = 0; \\ &\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) + f(x_0, y_0 + \Delta y) - f(x_0, y_0) = 0; \\ &\exists \Theta_1, \Theta_2: 0 < \Theta_I < 1: \Delta f = f_x(x_0 + \Theta_1 \Delta x, y_0 + \Delta y) \Delta x + f_y(x_0 + \Delta x, y_0 + \Theta_2 \Delta y) \Delta y = 0; \end{split}$$

$$\Delta y = -\frac{f_x(x_0 + \Theta_1 \Delta x, y_0 + \Delta y)}{f_y(x_0 + \Delta x, y_0 + \Theta_2 \Delta y)} \Delta x \Rightarrow |\Delta y| \le \frac{M}{m} |\Delta x|$$

 $\Rightarrow$  при  $\Delta x \to 0, \Delta y \to 0$   $f_y$  непрерывно в  $\Pi$  - компакт  $\Rightarrow \exists m>0: f_y(x,y) \geq m; \ \exists M>0: |f_y(x,y)| \leq M$  на  $\Pi$ 

$$\frac{\Delta y}{\Delta x} = -\frac{f_x(x_0 + \Theta_1 \Delta x, y_0 + \Delta y)}{f_y(x_0, y_0 + \Theta_2 \Delta y)}; \quad f'(x_0) = -\frac{f_x(x_0, f(x_0))}{f_y(x_0, f(x_0))}; \quad y_0 = -f(x_0);$$

В силу произвольности  $(x_0,y_0)$  производная существует на всем  $(x_0-r_1,x_0+r_1)$ 

#### Замечание

Теорема остается справедливой, если в f(x,y) = 0,  $x = (x_1, x_2, \dots, x_m)$  $\Pi = \{(x_1, x_2, \dots, x_m, y) : |x_i - x_i^0|_{i=\overline{1,m}} \le r_i, |y - y_0| \le \rho\}$ 

#### 1.3. Неявные функции, определяемые системой уравнений

$$\begin{cases} f_1(x_1, \dots, x_n, y_1, \dots y_n) = 0 \\ f_2(x_1, \dots, x_n, y_1, \dots y_n) = 0 \\ & \dots \\ f_n(x_1, \dots, x_n, y_1, \dots y_n) = 0 \end{cases}$$

$$x^{0} \in \mathbb{E}^{m}, y^{0} \in \mathbb{E}^{n}; \ \Pi(x^{0}) = \{x \in \mathbb{E}^{m} : |x_{i} - x_{i}^{0}| \leq r_{i}, i = \overline{1,m}\}$$

$$\Pi(y^{0}) = \{y \in \mathbb{E}^{n} : |y_{i} - y_{i}^{0}| \leq \rho_{i}, i = \overline{1,n}\}$$

$$\Pi = \Pi(x^{0}) \times \Pi(y_{0}) = \{(x,y) \in \mathbb{E}^{n} + m : x \in \Pi(x^{0}), y \in \Pi(y^{0})\}$$

Система определяет в  $\Pi y_1, \dots, y_n$  как неявные функции переменных  $x_1, \dots x_m$ , если  $\forall x \in \Pi(x^0)$  ставится в соответствие такое  $y \in \Pi(x^0)$ , что  $f_i(x,y) = 0$ ,  $i \in \overline{1,n}$ 

#### **Теорема 2.** $\Pi ycmb$

- 1.  $f_i(x^0, y^0) = 0, i \in \overline{1, n}$
- 2. Функции  $f_i, i \in \overline{1,n}$  обладают в некоторой окрестности  $U(x^0, y^0)$  непрерывностью частных производных по переменным  $x_i, j \in \overline{1,m}$  и  $y_i, i \in \overline{1,n}$

3. 
$$\begin{vmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_n} \\ & \cdots & \\ \frac{\partial f_n}{\partial y_1} & \cdots & \frac{\partial f_n}{\partial y_n} \end{vmatrix} (x^0, y^0) \neq 0$$

Тогда  $\exists \Pi = \Pi(x^0) \times | pi(y^0) \in U$ , в пределах которого система определяет переменные  $y_1, \ldots, y_n$  как неявно заданные функции переменных  $x_1, \ldots, x_m$  и эти функции  $y_i = f_i(x)$  обладают непрерывными частными производными в  $\Pi(x^0)$  и  $y_i^0 = f'^i(x^0), \overline{1,n}$ 

# 2. Локальные экстремумы функций многих переменных

# 2.1. Определение и необходимые условия существования экстремумов

$$\omega = f(x), \ x \in \mathbb{E}^m, \ x = (x_1, x_2, \dots, x_m), x^0 = (x_1^0, \dots, x_m^0)$$

**Определение.** Точка  $x^0$  называется точкой локального минимума [максимума] функции  $\omega = f(x)$ , если  $\exists B_\delta(x^0) : \forall x \in B_\delta(x^0)$  выполнено  $f(x^0) < f(x)$   $[f(x^0) > f(x)]$ 

**Теорема 1** (Необходимое условие существования локального экстремума). Если функция  $\omega = f(x)$  дифференцируема в точке  $x^0$  и имеет в этой точке локальный экстремум, и все ее частные производные в этой точке =0 т.е.

$$\frac{\partial f}{\partial x_1}(x_0) = \frac{\partial f}{\partial x_2}(x_0) = \dots = \frac{\partial f}{\partial x_m}(x_0) = 0$$

Доказательство. Фиксируем  $x_2^0,\dots,x_m^0;\ f(x_1,x_2^0,\dots,x_m^0)=f(x_1);\ f'(x_1^0)=\frac{\partial f}{\partial x_1}(x^0).$  f диф. в точке  $x_1^0$  и имеет в ней локальный экстремум. Тогда по теореме Ферма  $f'(x_1^0)=0=\frac{\partial f}{\partial x_1}(x^0).$  Равенство 0 остальных ч.п. доказывает аналогично.

**Предложение.** 1 - необходимое, но не достаточное условие существования локального экстремума. например:

$$\omega = xy; \ (0,0): \frac{\partial \omega}{\partial x}(0,0) = \frac{\partial \omega}{y}(0,0) = 0, \ \text{но} \ \nexists B_{\delta}(0,0): \forall (x,y) \in B_{\delta} \to \omega(x,y) > \omega(0,0) = 0 \ \text{или}$$
  $\omega(x,y) < \omega(0,0) = 0. \ \text{Точка} \ x^0: \frac{\partial f}{\partial x_1}(x^0) = \dots = \frac{\partial f}{\partial x_m}(x^0) = 0 \ \text{- стационарная точка}$ 

**Теорема** (1'). Если  $\omega = f(x)$  дифференцируема в точке  $x^0$  и имеет в этой точке лок. экстремум, то дифференциал  $df(x^0) \equiv 0$  относ дифф. независ. перем.  $dx_1, \ldots dx_m$ 

Доказательство. 
$$df(x^0) = \frac{\partial f}{\partial x_1}(x^0)dx_1 + \dots + \frac{\partial f}{\partial x_m}(x^0)dx_m;$$
 из т.1  $\Rightarrow$   $df(x^0) = 0$ 

## 2.2. Достаточное условие существования локального экстремума

 $\omega = f(x), \ x^0: \frac{\partial f}{\partial x_1}(x_1^0) + \dots + \frac{\partial f}{\partial x_m}(x_m^0) = 0; \ f$  -дважды непрерывно дифференцируема в точке  $x^0$  т.е.  $d^2 f(x^0) = \sum_{i=1}^m \sum_{j=1}^m a_{ij} dx_i dx_j; \ a_{ij} = a_{ji};$ 

Это квадратичная форма относительно  $dx_i, i = \overline{1,m}; \ k = k(x) = \sum_{i=1}^m \sum_{j=1}^m a_{ij} x_i x_j; \ a_{ij} = a_{ji}$ 

- 1. k(x) положительно определенная кв. форма:  $\forall x \neq 0 \to k(x) > 0$
- 2. k(x) отрицательно определенная кв. форма:  $\forall x \neq 0 \rightarrow k(x) < 0$
- 3. k(x) положительно полуопредел. кв. форма:  $\forall x \to k(x) \ge 0 \ \& \ \exists x \ne 0 : k(x) = 0$
- 4. k(x) отрицательно полуопредел. кв. форма:  $\forall x \to k(x) \leq 0 \ \& \ \exists x \neq 0 : k(x) = 0$
- 5. k(x) неопределенная кв. форма:  $\exists x', x'' : k(x') > 0 \& k(x'') < 0$

**Теорема 2.** Пусть  $\omega = f(x)$  дважеды непрерывно дифференцируема в некоторой окрестности стационарной точки  $x^0$ .

- 1. Если  $d^2f(x^0)$  положительно определенная кв. форма, то т $x^0$  точка лок. тіп
- $2.~Ecлu~d^2f(x^0)~ompuцательно~onpeделенная~кв.~форма,~mo~m~x^0$  moчка~лок.~max
- 3. Если  $d^2f(x^0)$  неопределенная кв. форма, то т  $x^0$  не является точкой лок. экстремума функции

Доказательство. 1.  $f(x)-f(x^0)=df(x^0)+\frac{1}{2}d^2f(x^0)+o(\rho^2), \rho\to 0;\ df(x^0)=0$  по т. 7.1.  $dx_1=x_1-x_1^0\ \dots dx_m=x_m-x_m^0;\ \rho=\sqrt{(x_1-x_1^0)^2+\dots+(x_m-x_m^0)^2}$   $o(\rho^2)\stackrel{\rho\to 0}{=}\alpha(\rho)\rho^2,\ \alpha(\rho)\stackrel{rho\to 0}{\longrightarrow}0,$  Обозначим  $h_i=\frac{x_i-x_i^0}{\rho};i=\overline{1,m};\ |h_i|\le 1;\ h_i^2+\dots h_m^2=1;\ h=(h1,\dots,h_m).$  Тогда:

$$f(x) - f(x^0) = \rho^2 \left[ \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m a_{ij} h_i h_j + \alpha(\rho) \right]$$

Функция  $k(h) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} h_i h_j$  - непрерывна на компакте  $S = \{h : h_1^2 + \dots h_m^2 = 1\}$  Тогда по 2 теореме Вейерштрасса:

$$\exists h' \in S : h' \neq 0, k(h') = \mu > 0, \exists \rho' > 0 : \forall \rho < \rho' \to |\alpha(\rho)| < \frac{\mu}{2} \Rightarrow \forall \rho < \rho' \to f(x) - f(x^0) > 0. \sum_{i=1}^{m} (x_i - x_i^0)^2 < \rho^2$$

- 2. Аналогично 1 пункту
- 3. Как и в первом пункте  $f(x)-f(x^0)=df(x^0)+\frac{1}{2}d^2f(x^0)+o(\rho^2), \rho\to 0;\ df(x^0)=0$  по т. 7.1.  $dx_1=x_1-x_1^0\ldots dx_m=x_m-x_m^0;\ \rho=\sqrt{(x_1-x_1^0)^2+\cdots+(x_m-x_m^0)^2}$   $o(\rho^2)\stackrel{\rho\to 0}{=}\alpha(\rho)\rho^2,\ \alpha(\rho)\stackrel{\rho\to 0}{\longrightarrow}0,$   $h_i=\frac{x_i-x_i^0}{\rho};\ i=\overline{1,m};\ |h_i|\le 1;\ h_i^2+\ldots h_m^2=1;$  Тогда  $h_i'=\frac{x_i'-x^0}{\rho},\ h_i''=\frac{x_i''-x_0}{\rho};\ i=\overline{1,m};$   $\exists h'=(h'_1,\ldots,h'_m), h''=(h''_1,\ldots,h''_m):\ k(h')>0,\ k(h'')<0$

$$f(x') - f(x^0) = \rho^2 \left[ \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m a_{i,j} h'_i h'_j + \alpha(\rho) \right] \Rightarrow \exists \rho' : \forall \rho < \rho' \ f(x') - f(x^0) > 0$$
$$f(x'') - f(x^0) = \rho^2 \left[ \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m a_{i,j} h''_i h''_j + \alpha(\rho) \right] \Rightarrow \exists \rho'' : \forall \rho < \rho'' \ f(x'') - f(x^0) < 0$$

Предложение. 1. Если  $x^0$  - стационарная точка,  $\omega = f(x)$  и  $d^2f(x^0)$  - положительно [отрицательно] полуопределенная кв. форма, то о существовании локального экстремума нельзя ничего сказать.  $\omega = f_1(x,y) = (x-y)^4$ ,  $\omega = f_2(x,y) = x^4 + y^4$ ;  $(x^0,y^0) = (0,0)$  - стационарная точка  $f_1$  и  $f_2$ . Тогда:  $df_1 = 4(x-y)^3(dx-dy)$ ;  $d^2f_1 = 12(x-y)^2(dx-dy)^2$ ;  $d^2f_1(x,x) = 0$  - полуопределенная кв. форма.  $df_2 = 4x^3dx + 4y^3dy$ ;  $d^2f_2 = 12x^2dx^2 + 12y^2dy^2 > 0$  везде кроме (0,0) - точки локального минимума функции  $f_2$ ;  $f_2(0,0) = 0$ 

2. Условие  $d^2f(x^0) \ge 0$   $[d^2f(x^0) \le 0]$  - необходимое условие локального экстремума.

#### Примеры

(a) 
$$\omega=x^4+y^4-2x^2;\ d\omega=(4x^3-4x)dx+4y^3dy;\ d^2\omega=(12x^2-4)dx^2+12y^2dy^2$$
  $M_1(0,0),M_2(1,0),M_3(-1,0)$   $d^2\omega(M_1)=-4dx^2<0;\ \forall dx\neq 0\Rightarrow M_1-$  локальный тах  $d^2\omega(M_2)=8dx^2>0;\ \forall dx\neq 0\Rightarrow M_2-$  локальный тіп  $d^2\omega(M_3)=8dx^2>0;\ \forall dx\neq 0\Rightarrow M_3-$  локальный тіп

(b) 
$$\omega = \lambda x_1^2 + x_2^2 + \dots + 2x_2 + \dots + 2x_m, \lambda \in \mathbb{R}, \lambda \neq 0$$

$$\frac{\partial \omega}{\partial x_1} = 2\lambda x_1, \frac{\partial \omega}{\partial x_2} = 2x_2 + 2, \dots, \frac{\partial \omega}{\partial x_m} = 2x_m + 2;$$
Стащионарная точка  $M(0, -1, \dots, -1)$ 

$$d^2\omega = 2\lambda dx_1^2 + 2dx_2^2 + \dots 2dx_m^2; \text{ Тогда есть два случая:}$$

$$i. \ \lambda > 0 \ \Rightarrow \ d^2\omega^{(M)} > 0 \ \forall (dx_1, \dots, dx_m) \neq (0, \dots, 0) \ M \text{ - точка лок. min}$$

$$ii. \ \lambda < 0 \ (dx_1, \dots, dx_m) = (1, 0, \dots, 0) \ d^2\omega < 0$$

$$(dx_1, \dots, dx_m) = (0, 1, 0, \dots, 0) \ d^2\omega > 0 \ \text{локальный экстремум}$$

# 3. Понятие условного экстремума

Пример  $\omega=x^2+y^2$ , при условии x+y-1=0.  $y=1-x, \omega=x^2+(1-x)^2=2x^2-2x+1$   $\omega'=2(2x+1)=0\Rightarrow x_0=-\frac{1}{2}\;\omega''=x>0\to x_0$  - локальный минимум  $\omega=\omega(x)$   $M_0(\frac{1}{2};\frac{1}{2})$  - т. условного минимума  $\omega=x^2+y^2$  при  $x+y-1=0; \omega=\frac{1}{2}$ . Абсолютный экстремум  $\omega=0$  в (0;0)

#### 3.1. Общая постановка задачи

$$\omega = f(x,y), \ x \in \mathbb{E}^m, \ y \in \mathbb{E}^n; \ x = (x_1, x_2, \dots, x_m), \ y = (y_1, \dots, y_n);$$

$$\Phi_1(x,y) = 0, \ \Phi_2(x,y) = 0, \dots \Phi_n(x,y) = 0; \ \text{- условия связи}$$

$$\tag{2}$$

Условия связи 2 в пространстве  $\mathbb{E}^{m+n}$  определяют множество  $\mathbb{X}$  :

$$\mathbb{X} = \{(x,y) : \Phi_1(x,y) = 0, \ \Phi_2(x,y) = 0, \dots \Phi_n(x,y) = 0\}; \ dim \mathbb{X} = m$$

Определение (Точка условного минимума). точка  $M_0(x^0, y^0) : \Phi_i(x^0, y^0) = 0, \forall i = \overline{1,n},$  называется точкой лок. min [max] функции  $\omega = f(x,y)$ , при условиях связи 2, если

$$\exists B_{\varepsilon}(M_0): \ \forall (x,y) \in B_{\varepsilon}(M_0) \cap \mathbb{X} \Rightarrow f(x^0, y^0) < f(x,y) \ [f(x^0, y^0) > f(x,y)]$$

#### 3.2. Необходимые условия существования лок. экстремума

 $M_0(x^0,y^0):\Phi_i(x^0,y^0)=0, i=\overline{1,n}; \ f,\Phi_1,\dots,\Phi_n$  - непр дифф в некоторой окр  $U(M_0)$ 

$$\frac{D(\Phi_1, \dots, \Phi_n)}{D(y_1, \dots, y_n)} = \Delta_{\Phi, y} = \begin{vmatrix} \frac{\partial \Phi_1}{\partial y_1} & \dots & \frac{\partial \Phi_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial \Phi_n}{\partial y_1} & \dots & \frac{\partial \Phi_n}{\partial y_n} \end{vmatrix} (M_0) \neq 0$$

$$\exists \Pi = \Pi(x^0) \times \Pi(y^0) \subset U(M_0): y_1 = \varphi_1(x1, \dots, x_m) \dots y_n = \varphi_n(x1, \dots, x_m)$$
  $\omega) = f(x) = f(x_1, \dots, x_m, y_1, \dots, y_n) = f(x, \varphi_1(x), \dots \varphi_n(x))$  Если  $x^0$ - точка лок. экстремума  $f, \Rightarrow df(x^0) \equiv 0 \ \forall dx_1, \dots, dx_m \Rightarrow df(x^0, y^0) \equiv 0 = \sum_{k=1}^m \frac{\partial f}{\partial x_k}(M_0) dx_k + \sum_{j=1}^n \frac{\partial f}{\partial y_j}(M_0) dy_j$  где  $dy_j(M_0) = \sum_{i=1}^m \frac{\partial \varphi_j}{\partial x_i}(x_0) dx_i, j = \overline{1,n}$ 

Необх. условие существования лок. условного экстремума:  $A_1 = \cdots = A_m = 0$ . Замечания:

- 1. Теорема о функциях, заданных неявно системой уравнений, говорит только о существовании функций  $\varphi_1 \dots \varphi_n$ , но не дает метода их нахождения
- 2. В приведенных рассуждениях  $x_1, \dots x_m$  независимые переменные, а  $y_1, \dots y_n$  зависимые

Если  $\varphi_1 \dots \varphi_n$  - неизвестны, то  $dy_j(M_0)$  можно найти как:

 $A_1 dx_1 + \dots + A_m dx_m \equiv 0 \ \forall dx_1, \dots, dx_m \Rightarrow$ 

$$\frac{\partial \Phi_1}{\partial x_1}(M_0)dx_1 + \dots + \frac{\partial \Phi_1}{\partial x_m}(M_0)dx_m + \frac{\partial \Phi_1}{\partial y_1}(M_0)dy_1 + \dots + \frac{\partial \Phi_1}{\partial y_n}(M_0)dy_n = 0$$
 (3)

$$\vdots$$
 (4)

$$\underbrace{\frac{\partial \Phi_1}{\partial x_1}(M_0)dx_1 + \dots + \frac{\partial \Phi_1}{\partial x_m}(M_0)dx_m}_{D + \mathbb{T} dy = 0} + \underbrace{\frac{\partial \Phi_1}{\partial y_1}(M_0)dy_1 + \dots \frac{\partial \Phi_1}{\partial y_n}(M_0)dy_n = 0$$
 (5)

#### 3.3. Метод Лагранжа

Выполненные условия связи 2

$$\begin{cases}
\frac{\partial f}{\partial x_1}(M_0)dx_1 + \dots + \frac{\partial f}{\partial x_m}(M_0)dx_m + \frac{\partial f}{\partial y_1}(M_0)dy_1 + \dots + \frac{\partial f}{\partial y_n}(M_0)dy_n = 0 \\
D + \mathbb{J}dy = 0 \mid \times \lambda = \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_n \end{pmatrix} \mid + \\
+ \sum_{k=1}^m \left[ \frac{\partial f}{\partial x_k}(M_0) + \lambda_1 \frac{\partial \Phi_1}{\partial x_k}(M_0) + \dots + \lambda_n \frac{\partial \Phi_n}{\partial x_k}(M_0) \right] dx_k + \\
+ \sum_{j=1}^n \left[ \frac{\partial f}{\partial y_j}(M_0) + \lambda_1 \frac{\partial \Phi_1}{\partial y_j}(M_0) + \dots + \lambda_n \frac{\partial \Phi_n}{\partial y_j}(M_0) \right] dy_j = 0
\end{cases}$$

 $\lambda_1, \ldots, \lambda_n$  выбираются таким образом, чтобы

$$\begin{cases}
\frac{\partial f}{\partial y_1}(M_0) + \lambda_1 \frac{\partial \Phi_1}{\partial y_1}(M_0) + \dots + \lambda_n \frac{\partial \Phi_n}{\partial y_1}(M_0) \\
\dots \\
\frac{\partial f}{\partial y_n}(M_0) + \lambda_1 \frac{\partial \Phi_1}{\partial y_n}(M_0) + \dots + \lambda_n \frac{\partial \Phi_n}{\partial y_n}(M_0)
\end{cases} (6)$$

$$\left[\frac{\partial \Lambda}{\partial x_k}(M_0) = 0, \ k = \overline{1,m}\right] \tag{7}$$

 $\exists !\ \lambda^0=(\lambda^0_1,\dots,\lambda^0_n);$  Подставляем  $\lambda_0: \sum_{k=1}^m \left[ \frac{\partial f}{\partial x_k}(M_0) + \lambda^0_1 \frac{\partial \Phi_1}{\partial x_k}(M_0) + \dots + \lambda^0_n \frac{\partial \Phi_n}{\partial x_k}(M_0) \right] dx_k=0$ 

$$\begin{cases}
\frac{\partial f}{\partial x_1}(M_0) + \lambda_1^0 \frac{\partial \Phi_1}{\partial x_1}(M_0) + \dots + \lambda_n^0 \frac{\partial \Phi_n}{\partial x_1}(M_0) \\
\dots \\
\frac{\partial f}{\partial x_m}(M_0) + \lambda_1^0 \frac{\partial \Phi_1}{\partial x_m}(M_0) + \dots + \lambda_n \frac{\partial \Phi_n}{\partial x_m}(M_0)
\end{cases} (8)$$

$$\left[\frac{\partial \Lambda}{\partial y_j}(M_0) = 0, \ j = \overline{1,n}\right] \tag{9}$$

В итоге из этого всего имеем  $2\mathrm{n}+\mathrm{m}$  уравнений для нахождения  $(x_1,\ldots,x_m,y_1,\ldots,y_n,\lambda_1,\ldots,\lambda_n)$ 

Теорема 3 (необходимое условие существования локального экстремума). Пусть функ $uuu\ f, \Phi_1, \ldots, \Phi_n$  непрерывно дифф. в  $U(M_0), \Delta_{\Phi,y} \neq 0, u\ M_0(x_0, y_0)$  - m. локального условного экстремума функции  $\omega = f(x,y)$  при условиях связи  $\Phi_1(x,y) = 0, \dots, \Phi_n(x,y) = 0$ Tогда найдутся числа  $(\lambda_1^0,\ldots,\lambda_n^0)=\lambda^0$  такие, что в точке  $M_0$  выполнены 8 и 6  $\Lambda(x,y,\lambda)=f(x,y)+\lambda_1\Phi_1(x,y)+\cdots+\lambda_n\Phi_n(x,y)$  - функция Лагранжа

#### Следствие:

Пусть выволнены условия теоремы 3. Если т  $M_0$  является точкой локального условного экстремума функции  $\omega = f(x,y)$  при условии связи  $\Phi_1(x,y) = 0, \ldots \Phi_n(x,y) = 0;$  то в ней выполнены равенства 9 и 7, т.е.  $M_0$  - стационарная точка функции Лагранжа.

### 3.4. Достаточные условия существования локального экстремума

$$\Lambda(x,y,\lambda) = f(x,y) + \lambda_1 \Phi(x,y) + \dots + \lambda_n \Phi_n(x,y); 
\lambda^0 = (\lambda_1^0, \dots, \lambda_1^0); \quad x^0 = (x_1^0, \dots, x_m^0); \quad y^0 = (y_1^0, \dots, y_n^0) 
\begin{cases}
\frac{\partial \Lambda}{x_k} = 0 & k = \overline{1,m} \\
\frac{\partial \Lambda}{y_j} = 0 & j = \overline{1,n} \\
Q\Phi_i = 0; \quad i = \overline{1,n}
\end{cases}$$
(10)

 $f, \Phi_1, \dots, \Phi_n$  дважды непрерывно дифференцируемы в  $U(M_0), \ \Delta_{\Phi,y}(M_0) \neq 0; \ M_0(x^0, y^0) \in X, \ M(x^0 + \Delta x, y^0 + \Delta y) \in X$ 

$$\Delta f(M_0, (\Delta x, \Delta y)) = f(M) - f(M_0) = \Lambda(M, \lambda^0) - \Lambda(M_0, \lambda^0) = \Delta \Lambda(M_0, \lambda^0, \Delta x, \Delta y)$$

$$\begin{split} &\Delta\Lambda\left(M_{0},(\Delta x,\Delta y)\right) = \\ &= \frac{1}{2} \left[ \sum_{k,j=1}^{m} \frac{\partial^{2}\Lambda(M_{0})}{\partial x_{k}\partial x_{j}} \Delta x_{k} \Delta x_{j} + \sum_{k=1}^{m} \sum_{j=1}^{n} \frac{\partial^{2}\Lambda(M_{0})}{\partial x_{k}\partial y_{j}} \Delta x_{k} \Delta y_{j} + \sum_{k,j=1}^{n} \frac{\partial^{2}\Lambda(M_{0})}{\partial y_{k}\partial y_{j}} \Delta y_{k} \Delta y_{j} \right] + \\ &\quad + \sum_{k,j=1}^{m} \alpha_{kj}^{1} \Delta x_{k} \Delta x_{j} + \sum_{k=1}^{m} \sum_{j=1}^{n} \alpha_{kj}^{2} \Delta x_{k} \Delta y_{j} + \sum_{k,j=1}^{n} \alpha_{kj}^{3} \Delta y_{k} \Delta y_{j} = \\ &= \left\langle \begin{array}{c} \alpha_{kj}^{i} \to 0 & \text{при } \Delta x \to 0; \quad \alpha_{kj}^{2}, \alpha_{kj}^{3} \text{ зависят от } \Delta x, \Delta y \\ \Delta y_{j} \to 0 & \text{при } \Delta x \to 0; \quad j = \overline{1,n} \end{array} \right. \right/ = \\ &= \left\langle \begin{array}{c} \Delta x_{j} = dx_{j}; \quad \Delta y_{j} = \alpha y_{j} + \gamma_{j}, \gamma \to 0 & \text{при } \Delta x \to 0; \quad j = \overline{1,n} \end{array} \right. \right/ = \\ &= \frac{1}{2} \left[ \sum_{k,j=1}^{m} \frac{\partial^{2}\Lambda}{\partial x_{k}\partial x_{j}} dx_{k} dx_{j} + \sum_{k=1}^{m} \sum_{j=1}^{n} \frac{\partial^{2}\Lambda}{\partial x_{k}\partial y_{j}} dx_{k} dy_{j} + \sum_{k,j=1}^{n} \frac{\partial^{2}\Lambda}{\partial y_{k}\partial y_{j}} dy_{k} dy_{j} \right] + \\ &\quad + \sum_{k,j=1}^{m} \widetilde{\alpha_{kj}^{1}} dx_{k} dx_{j} + \sum_{k=1}^{m} \sum_{j=1}^{n} \widetilde{\alpha_{kj}^{2}} dx_{k} dy_{j} + \sum_{k,j=1}^{n} \widetilde{\alpha_{kj}^{2}} dx_{k} dx_{j} + \sum_{k,j=1}^{n} \widetilde{\alpha_{kj}^{2}}$$

$$dy_j(M_0) = \sum_{k=1}^m C_k dx_k; \ d^2 \widetilde{\Lambda}(M_0, (\Delta x, \Delta y)) = \sum_{k,j=1}^m A_{kj} dx_k dx_j; \ A_{kj} = A_{jk}$$
  $\Delta = \Lambda(M_0, (\Delta x, \Delta y)) = d^2 \widehat{\Lambda}(M_0) + \beta(\Delta x), \ \beta(\Delta x) \to 0$  при  $\Delta x \to 0$   $d^2 \widehat{\Lambda}(M_0) = d^2 \Lambda(M_0)$  т.к. первые производные функции Лагранжа в стационарной точке  $M_0; = 0 \Rightarrow d^2 y$  равны  $0$ 

**Теорема 4.** Пусть f и  $\Phi_j$ ,  $j=\overline{1,n}$  дважеды дифф функции в  $U(M_0)$  ( $M_0$  - стационарная точка функции Лагранжа) и  $\Delta_{\Phi,y}(M_0) \neq 0$  тогда

- 1. Если  $d^2\hat{\Lambda}(M_0)$  положительно определенная квадратичная форма, то  $M_0$  точка условного минимума функции f при условии связи
- 2. Если  $d^2\hat{\Lambda}(M_0)$  отрицательно определенная квадратичная форма, то  $M_0$  точка условного максимума функции f при условии связи
- 3. Есои  $d^2\hat{\Lambda}(M_0)$  неопределенная квадратичная форма, то экстремума нет

**Замечание:** если  $d^2 \hat{\Lambda}(M_0)$  полуопределенная кв. форма, то нужно проводить дополнительные исследования

# 4. Кратные интегралы

#### 4.1. Определения и свойства

**Определение.** Совокупность измеримых открытых множеств  $T = \{\Omega_k\}_{k=1}^n$  называется разбиением множества  $\Omega$ , если:

- 1.  $\Omega_k \subset \Omega$ ,  $k = \overline{1,n}$
- 2.  $\Omega_k \cap \Omega_j = \emptyset$ , если  $k \neq j$
- 3.  $\bigcup_{k=1}^n \overline{\Omega}_k = \overline{\Omega}$

Определение.  $\Delta(\Omega) = \sup_{x,y \in \Omega} \rho(x,y)$  - диаметр множества. ( $\Omega$  - огранич. мн-во)

Определение. Число  $\Delta_T = \max_{1 \le k \le n} \Delta(\Omega_k)$  - называется мелкостью разбиения  $T = \{\Omega_k\}_{k=1}^n$  Определение. Разбиение  $T' = \{\Omega'_j\}$  - называется измельчением разбиения  $T = \{\Omega_k\}$  если  $\forall \Omega'_j \subset T \ \exists \Omega_k \subset T : \Omega'_j \subset \Omega_k$ 

#### Свойства измельчения:

- 1. Если T' измельчение T, а T'' измельчение T' то T' измельчение T''
- 2. Для двух разбиений  $T'=\{\Omega_k'\}$  и  $T''=\{\Omega_j''\}$  множества  $\Omega$   $\exists$  разбиение T множества  $\Omega$  , что T будет измельчением разбиений T' и T''

Замечание: Если  $G = \bigcup_{j=1}^p Q_j$  клеточное множество и  $\Omega \subset G$  то в качестве разбиения множества  $\Omega$  можно взять  $T = \{\Omega_k\}$ , где  $\Omega_k = \Omega \cap int(Q_k), \ k = \overline{1,p}$ 

# 4.2. Интегральные суммы. Кратный интеграл Римана. Необходимое усл. существования кр. интеграла Римана

$$T = \{\Omega_k\}_{k=1}^n, \omega = f(x), x \in \mathbb{E}, \text{ опред. на } \overline{\Omega}; \quad \xi = \{\xi_1, \dots, \xi_n\} : \xi \in \overline{\Omega_k}$$

Определение.  $I\{T,\xi\} = \sum\limits_{k=1}^n f(\xi_k) m(\Omega_k)$ — интегральная сумма функции f

Определение.  $m(\Omega_k)$  - мера множества  $\Omega_k$ 

**Определение.** Число I называется пределом интегральных сумм  $I\{T,\xi\}$ , при мелкости разбиения стремящейся к 0, если:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0: \ \forall T: \Delta_T < \delta \& \ \forall \varepsilon \Rightarrow |I\{T,\xi\} - T| < \varepsilon$$

**Определение** (Кратный интеграл Римана). Число I, являющееся пределом интегральных сумм при  $\Delta_t \to 0$  называется кратным интегралом Римана функции f по множеству  $\Omega$  [ $\overline{\Omega}$ ]. А функция f называется интегрируемой по риману по множеству  $\Omega$  [ $\overline{\Omega}$ ].

Обозначение: 
$$\int_{\Omega} f(x)d\omega = \int ... \int_{\Omega} f(x_1, ..., x_m)dx_1 ... dx_m = \int ... \int_{\Omega} fdx_1 ... dx_m$$

**Теорема 1.** Пусть  $\Omega \subset \mathbb{E}^m f$  - измеримая область, а  $\omega = f(x)$  опред. и инт. на  $\overline{\Omega}$  тогда эта функция ограничена на  $\overline{\Omega}$ 

Пример:  $\omega = f(x) \equiv c$ ;  $\forall x \in \overline{\Omega}$ ,  $\Omega$  - измеримое множество.

$$\forall T = \{\Omega_k\}_{k=1}^n \ \forall \xi \ I = \{T, \xi\} = \sum_{k=1}^n C \cdot m(\Omega_k) = C \cdot m(\Omega_k)$$

 $orall T=\{\Omega_k\}_{k=1}^n\ orall \xi\ I=\{T,\xi\}=\sum_{k=1}^n C\cdot m(\Omega_k)=C\cdot m(\Omega)$  Теорема 2. Пусть  $\Omega\subset\mathbb{E}^m$  - измеримая область,  $\omega=f(x)$  опр. и огр на  $\overline{\Omega}$ .  $f(x)\equiv 0$  на  $\overline{\Omega} \backslash \Gamma, \ m(\Gamma) = 0, \ mor \partial a \ f \ uнтегрируема на <math>\Omega \ u \ \int f d\omega = 0$ 

Доказательство.  $\exists c > 0 : \forall x \in \overline{\Omega} \to |f(x)| \le c$ 

$$\forall \varepsilon > 0 \exists G_{\varepsilon} = \bigcup_{j=1}^{p} Q_{j} : \Gamma \subset G_{\varepsilon}$$
 и  $0 \leq m\Gamma \leq m(G_{\varepsilon}) < \frac{\varepsilon}{c}$ 

$$T = \{\Omega_k\}_{k=1}^n, \widetilde{T} = T' \cup T'' = \{\Omega_k'\} \cup \{\Omega_j''\}; \text{ где } \Omega_k' = \Omega_k \backslash \overline{G_\varepsilon} \text{ и } \Omega_j'' = \Omega_j \cap (int(Q_i)), i = \overline{1,p}, j = \overline{$$

 $\overline{1,n}$ . И т.к. на  $\Omega_k'$  функция  $f(x)\equiv 0,$  а  $\Omega_j''$  содержит точки из  $\Gamma$  получим:

$$\forall \xi \to |I\{\widetilde{T}, \xi\}| = |\sum_{j} f(\xi_i) m(\Omega_j'')| \le c \cdot m(G_{\varepsilon}) < c \cdot \frac{\varepsilon}{c} = \varepsilon$$

#### 4.3. Суммы Дарбу. критерий интегрируемости.

#### Интеграл непрерывных функций

 $\Omega \subset \mathbb{E}^m$  измеримая область.  $\omega = f(x)$  определена и ограниченна на  $\overline{\Omega}$ .  $T = {\Omega_k}_{k=1}^n$  разбиение  $\Omega$ .  $m_k = \inf_{x \in \overline{\Omega}_k} f(x), M_k = \sup_{x \in \overline{\Omega}_k} f(x)$ 

$$S_*(T) = \sum_{k=1}^n m_k m(\Omega_k); \ S^*(T) = \sum_{k=1}^n M_k m(\Omega_k);$$
 - нижняя и верхняя суммы Дарбу

**Теорема 3** (Критерий интегрируемости). Пусть  $\omega \subset \mathbb{E}$  - измеримая область, а функция  $\omega=f(x)$  onp. u orp. на  $\overline{\Omega}$ . Для того, чтобы f была интегрируема на  $\Omega$  необходимо uдостаточно чтобы  $\forall \varepsilon > 0 \; \exists T : |S^*(T) - S_*(T)| < S|$ 

**Teopema 4** (Интегрируемость функции, непрерывной на замкнутом измеримом мн-ве).  $\Phi$ ункция  $\omega = f(x)$  непр. на замыкании измеримой области  $\Omega$  интегрируема на ней.

#### 5. Свойства кратных интегралов

**Теорема 5.** Если  $\Omega \subset \mathbb{E}^m$  - измеримая область, то  $\int_{\Omega} = m(\Omega)$  $f(x) \equiv 1$  на  $\overline{\Omega}. \forall x \in \overline{\Omega}, \Omega$  - измеримое множество.

**Теорема 6** (интегрируемость подмнож.). Пусть  $\Omega \subset \mathbb{E}^m$  и  $\Omega' \subset \Omega$  измеримые области и функция  $\omega = f(x)$  интегрируема на  $\Omega$  , тогда f интегрируема на множестве  $\Omega'$ 

Доказательство.  $\Omega' \neq \Omega; \ f$  интегрируема на  $\Omega.\ T = \{\Omega_k\}, T' = \{\Omega_k'\},$  где  $\Omega_k' = \Omega_k \cap \Omega'$ тогда  $\forall \varepsilon > 0 \; \exists T : S^*(T) - S_*(T) < \varepsilon;$ 

$$M'_k = \sup_{\overline{\Omega}'_k} f \le \sup_{\overline{\Omega}_k} f = M_k; m'_k = \inf_{\overline{\Omega}'_k} f \ge \inf_{\overline{\Omega}_k} f = m_k \Rightarrow$$

$$S^*(T') - S_*(T') \le S^*(T) - S_*(T) < \varepsilon \tag{11}$$

**Теорема 7** (аддитивность интеграла). Пусть  $\Omega$  и  $\Omega'$  измеримые области в  $\mathbb{E}^m$ ,  $\Omega' \subset \Omega$  и  $\Omega'' = \Omega \setminus \overline{\Omega}'$ . Если функция  $\omega = f(x)$  интегрируема на  $\Omega$ , то f интегрируема на  $\Omega'$  и  $\Omega''$  и  $\int_{\Omega} f d\omega = \int \Omega' f d\omega + \int \Omega'' f d\omega$ 

Доказательство. Из теоремы  $6 \Rightarrow f$  интегрируема на  $\Omega'$  и  $\Omega''$  и существует интеграл в 11. T' - разбиение  $\Omega'$ . T'' - разбиение  $\Omega''$ . Тогда  $T = T' \cup T''$  -разбиение множества  $\Omega$ .  $\Delta_t = \max\{\Delta_{T'}, \Delta_{T''}\}. \ \forall \xi', \xi'' : \xi = \xi' \cup \xi'' \to I\{T, \xi\} = I\{T', \xi'\} + I\{T'', \xi''\} \ \Delta_T \to 0 \Rightarrow 11$ 

**Теорема 8** (линейность интеграла). Пусть  $\Omega \subset \mathbb{E}^m$  измеримая область.  $\omega = f(x)$  и  $\omega = g(x)$  интегрируемые на  $\Omega$  функции. Тогда  $\forall \alpha, \beta \in \mathbb{R}$  функция  $\omega = \alpha f(x) + \beta g(x)$ интегрируема на  $\Omega$ :

$$\int\limits_{\Omega} \big[\alpha f + \beta g\big] d\omega = \alpha \int\limits_{\Omega} f d\omega + \beta \int\limits_{\Omega} g d\omega$$
 Кроме того функция  $\omega = f \cdot g$  так же интегрируема на  $\Omega$ 

**Теорема 9** (Инт. от положительной функции). Пусть  $\Omega \subset \mathbb{E}^m$  измеримая область. Функция  $\omega=f(x)$  определена на  $\overline{\Omega},\ f(x)\geq 0 \forall x\in\Omega$  и f интегр на  $\Omega.$  Тогда:  $\int fd\omega\geq 0$ 

**Теорема 10.** Если f и g интегрируема на измеримой области  $\Omega \subset \mathbb{E}^m$  и  $\forall x \in \overline{\Omega} \to$  $f(x) \ge g(x), \ mo \int_{\Omega} f d\omega \ge \int_{\Omega} g d\omega$ 

**Теорема 11.** Если f интегрируемость на измеримой области  $\Omega \subset \mathbb{E}$ , то функция |f|интегрируема на  $\Omega$  и выполнено:  $|\int\limits_{\Omega} f d\omega| \leq \int\limits_{\Omega} |f| d\omega \leq cm(\Omega)$ , где  $c: \forall x \in \overline{\Omega} \to |f(x)| \leq c$ 

Замечание: В обратную сторону не верно. Контрпример - функция Дирихле.

**Теорема 12.** Если  $\Omega \subset \mathbb{E}$  и  $\Omega' \subset \mathbb{E}$  :  $\Omega' \subset \Omega$ ,  $\omega = f(x)$  интегрируема на  $\Omega$  и  $f(x) \geq 0 \ \forall x \in \mathbb{E}$  $\Omega, \ mor\partial a \int_{\Omega'} f d\omega \le \int_{\Omega} f d\omega$ 

**Теорема 13.** Пусть функции  $\omega = f(x)$  и  $\omega = g(x)$  интегрируемы на измеримой области  $\Omega\subset\mathbb{E}.\ g$  не меняет знак на  $\overline{\Omega},\,m\leq f(x)\leq M\ \forall x\in\overline{\Omega},\,$  тогда  $\exists \mu:m\leq\mu\leq M:\int\limits_{\Omega}fgd\omega=0$  $\mu \int_{\Omega} g d\omega$ . Если же f непрерывна на  $\overline{\Omega}$ , то  $\exists x^0 \in \overline{\Omega} : \int_{\Omega} f g d\omega = f(x^0) \int_{\Omega} g d\omega$ 

**Теорема 14.** Пусть  $\Omega \subset \mathbb{E}^m$  - измеримая область  $\Omega_1 \subset \Omega_2 \subset \Omega_3 \cdots \subset \Omega$ 

Доказательство.  $\forall x \in \overline{\Omega} \to |f(x)| \le C, \widetilde{\Omega}_k = \Omega \backslash \overline{\Omega}_k$  - измеримое множество и  $m(\widetilde{\Omega}_k) =$  $m(\Omega)\backslash m(\overline{\Omega})\backslash m(\overline{\Omega}) \xrightarrow{k\to\infty} 0 \Leftrightarrow \forall \varepsilon > 0 \; \exists k_0 : m(\widetilde{\Omega}_{k_0}) < \frac{\varepsilon}{4c}$  $\Omega_{k_0}, f$  интегрируема на  $\Omega_{k_0} \Rightarrow \exists T^{k_0}$  область  $\Omega_{k_0}: S^*(T^{k_0}) - S_*(T^{k_0}) < \frac{\varepsilon}{2}$  $\exists T=T^{k_0}\cup\widetilde{T}^{k_0},$  где  $\widetilde{T}^{k_0}$  разбиение множества  $\Omega\backslash\overline{\Omega}_{k_0}=\widetilde{\Omega}_{k_0}$  $S^*(T) - S_*(T) = S^*(T^{k_0}) - S^*(T^{k_0}) + S^*(\widetilde{\Omega}^{k_0}) - S_*(\widetilde{\Omega}^{k_0}) < \frac{\varepsilon}{2} + 2c\frac{\varepsilon}{4c} = \varepsilon$  $\left| \int_{\Omega} f d\omega - \int_{\Omega_k} f d\omega \right| = \left| \int_{\widetilde{\Omega}} f d\omega \right| < cm(\widetilde{\Omega}) \xrightarrow{k \to \infty} 0$ 

#### 6. Сведение кратного интеграла к повторному

#### 6.1.Двойные интегралы

 $\mathbb{E}^2$ , Oxy,  $\Pi = \{(x,y) : a < x < b, c < y < d\}$ 

**Теорема 1.** Пусть функция  $\omega = f(x,y)$  определена на  $\overline{\Pi}$  и интегрируема на  $\Pi$  и выполнено:  $\forall x \in [a,b] \; \exists \; \mathbb{J}(x) = \int\limits_{c}^{d} F(x,y) dy \; mor \partial a \; \phi y$ нкция  $\mathbb{J}(x) \; u$ нтегрируема на [a,b] и существует повторный интеграл:

$$\int_{a}^{b} \mathbb{J}(x)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy \ u \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy = \iint_{\Pi} d(x,y)dxdy$$

Доказательство.  $a = x_0 < x_1 < \dots < x_k = b, \ c = y_0 < y_1 < \dots < y_n = d$   $\Pi_{ij} = (x_{i-1}, x_i) \times (y_{j-1}, y_j), i = \overline{1,k}, j = \overline{1,n}$   $\{\Pi_{ij}\} \text{ - разбиение } \Pi; \ \Delta_x^i = x_i - x_{i-1}, i = \overline{1,k}; \Delta_y^j = y_j - y_{j-1}, j = \overline{1,n}$   $\xi_i \in [x_{i-1}, x_i] \text{ в } \overline{\Pi}_{ij} \text{ выполнено } (inf) \ m_{ij} \le f(\xi_i, y) \le M_{ij} \ (sup)$   $\sum_{j=1}^n m_{ij} \Delta_y^j \le \mathbb{J}(\xi_i) \le \sum_{j=1}^n M_{ij} \Delta_y^j \Rightarrow$   $\sum_{i=1}^k \sum_{j=1}^n m_{ij} \Delta_y^j \Delta_x^i \le \sum_{i=1}^k \mathbb{J}(\xi_i) \Delta_x^i \le \sum_{j=1}^k \sum_{j=1}^n M_{ij} \Delta_y^j \Delta_x^i; \ \Delta_T \to 0$ 

Определение. Область  $\Omega \subset \mathbb{E}^2$  называется элементарной относительно Оу, если ее граница состоит из графиков двух функций:  $y = \phi(x)$ ;  $y = \psi(x)$  и, быть может, отрезков прямых x = a; x = b, при этом  $\forall x \in [a,b] \to \psi(x) \le \phi(x)$ .

**Теорема 2.** Пусть  $\omega = f(x,y)$  непрерывна на  $\overline{\Omega}$  и область  $\Omega$  элементарна относительно оси Oy, ее граница состоит из двух графиков непрерывных функций  $y = \phi(x); \ y = \psi(x)$  и, быть может, отрезков прямых  $x = a; \ x = b, \ npuчем \ \forall x \in [a,b] \to \psi(x) \le \phi(x)$ . Тогда существует повторный интеграл  $\int\limits_a^b dx \int\limits_{\psi(x)}^{\phi(x)} f(x,y) dy = \iint\limits_{\Omega} f(x,y) dx dy$ 

Доказательство. Замечание: из условия теоремы следует, что:

- 1.  $\Omega$  измеримая область
- 2. f интегрируема на  $\Omega$
- 3. При фикс x функция f неперерывна по переменной y. И f интегрируема на  $[\phi(x), \psi(x)]$

Пусть  $\Pi$  такой прямоугольник, что  $\overline{\Omega}\subseteq\overline{\Pi}$  Тогда:  $f(x,y)=\begin{cases} f(x,y) &, (x,y)\in\overline{\Omega}\\ 0 &, (x,y)\in\overline{\Pi}\backslash\overline{\Omega} \end{cases}$ 



#### 6.2. т-кратные интегралы

 $\Omega\subset\mathbb{E}^m,\ Ox_1\dots x_m;\ \ arepsilon_m\{(x_1,\dots,x_m):x_m=0\}$  где  $\Omega_m$  - проекция области  $\Omega$  на мн-во  $arepsilon_m$ 

Определение. Область  $\Omega \subset \mathbb{E}^m$  называется элементарной относительно  $Ox_m$ , если ее проекция на  $\Omega_m$  на множество  $\varepsilon_m$  является областью, а граница  $\Omega$  (т.е. $\delta\Omega$ ) состоит из графиков двух функций:  $x_m = \phi_1(x_1, \dots, x_{m-1}); \ x_m = \psi_1(x_1, \dots, x_{m-1})$  и, быть может, боковой поверхности цилиндра, основанием которого является  $\delta\Omega_m$  причем  $\forall (x_1, \dots, x_{m-1}) \in \overline{\Omega}_m \to \psi(x_1, \dots, x_{m-1}) \leq \phi(x_1, \dots, x_{m-1})$ .

Теорема 3. Пусть  $\omega=f(x)$  непрерывна на  $\overline{\Omega}$  и область  $\Omega$  элементарна относительно оси  $Ox_m$ , ее граница состоит из двух графиков непрерывных функций  $y=\phi_1(x_1,\ldots,x_{m-1});$   $y=\psi_1(x_1,\ldots,x_{m-1})$  и, быть может, боковой поверхности цилиндра оси  $Ox_m$ , причем  $\forall (x_1,\ldots,x_{m-1})\in \overline{\Omega}_m \to \psi_1(x_1,\ldots,x_{m-1}) \leq \phi_1(x_1,\ldots,x_{m-1}).$  Тогда существует повторный интеграл  $\underbrace{\int \cdots \int}_{\Omega_m} dx_1 \ldots dx_{m-1} \int_{\psi_1(x_1,\ldots,x_{m-1})}^{\phi_1(x_1,\ldots,x_{m-1})} f(x) dx_m = \underbrace{\int \cdots \int}_{\Omega_m} f(x_1,\ldots,x_m) dx_1 \ldots dx_m$   $\begin{cases} x=x(u,v) \\ y=y(u,v) \end{cases} (x,y) \in \Omega; (u,v) \in \Omega^*; \ \mathbb{J}=\begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}; \ \iint_{\Omega} f(x,y) dx dy = \iint_{\Omega^*} f(x,y) |\mathbb{J}(u,v)| du dv$ 

# 7. Формула Грина.

### 7.1. Вывод формулы.

I случай. 
$$\Omega \subset \mathscr{E}$$
 элементарная область относительно  $Oy$ ,  $y = \varphi(x), y = \psi(x), \psi(x) \leqslant \varphi(x) \, \forall x \in [a,b]$   $\omega = P(x,y), \omega = \frac{\partial P}{\partial y}(x,y)$  непрерывна в  $\overline{\Omega}$   $\psi, \varphi$  — непрерывны на  $[a,b]$  
$$\iint_{\Omega} \frac{\partial P}{\partial y}(x,y) dx dy = \int_{a}^{b} dx \int_{\psi}^{\varphi} \frac{\partial P}{\partial y}(x,y) dy = \int_{a}^{b} P(x,\varphi(x)) dx - \int_{a}^{b} P(x,\psi(x)) dx = \int_{BC}^{b} P(x,y) dx - \int_{AB}^{\phi} P(x,y) dx = -\int_{CB}^{\phi} P(x,y) dx = \int_{ADCBA}^{\phi} P(x,y) dx = -\int_{d\Omega}^{\phi} P(x,y) dx$$
 
$$\iint_{BA} P(x,y) dx = \int_{DC}^{\phi} P(x,y) dx = 0 \Rightarrow \iint_{\Omega} \frac{\partial P}{\partial y}(x,y) dx dy = -\int_{d\Omega}^{\phi} P(x,y) dx$$

II случай.  $\Omega \subset \mathscr{E}$  элементарная область относительно Ox,

$$x = \varphi(y), x = \psi(y), \psi(y) \leqslant \varphi(y) \forall y \in [c,d]$$

$$\omega = Q(x,y), \omega = \frac{\partial Q}{\partial x}(x,y) \text{ непрерывна в } \overline{\Omega}$$

$$\psi, \varphi - \text{ непрерывны на } [c,d]$$

$$\iint_{\Omega} \frac{\partial Q}{\partial x}(x,y) dx dy = \int_{c}^{d} dy \int_{\psi(y)}^{\varphi(y)} \frac{\partial Q}{\partial x}(x,y) dx = \int_{c}^{d} Q(\varphi(y),y) dy - \int_{c}^{d} Q(\psi(y),y) dy = \int_{DC} Q(x,y) dy + \int_{BA} Q(x,y) dy = \int_{ADCBA} Q(x,y) dy$$

Выше мы воспользовались тем, что 
$$\int\limits_{AD}Q(x,y)dy=\int\limits_{CB}Q(x,y)dy=0$$

**Теорема 1.** Пусть область  $\Omega$  представляет собой объединение конечного числа измеримых областей элементарных относительно Oy.  $\overline{\Omega} = \bigcup_{j=1}^k \overline{\Omega_i'}, \overline{\Omega_i''}, i = \overline{1,k}, j = \overline{1,k}$ .

Функции  $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$  непрерывны в  $\overline{\Omega}$ , тогда справедлива формула  $\Gamma$ рина:

$$\iint\limits_{\Omega} \left[ \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dx dy = \int\limits_{\partial \Omega} P(x,y) dx + Q(x,y) dy$$

**Теорема** (1'). Если граница  $\partial\Omega$  ограниченной области  $\Omega \subset \mathcal{E}^2$  состоит из конечного числа кусочно гладких контуров и эти функции непрерывны, то имеет место формула Грина:

$$\iint\limits_{\Omega} \left[ \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dxdy = \int\limits_{\partial \Omega} P(x,y) dx + Q(x,y) dy$$

# 7.2. Некоторые приложения формулы Грина.

#### А. Вычисление плоских измеримых областей.

**Предложение.** Если граница  $\partial\Omega$  ограниченной области  $\Omega \subset \mathscr{E}^2$  состоит из конечного числа кусочно гладких контуров, то ее  $m(\Omega)$  определяется из формулы:

$$m(\Omega) = 1/2 \int_{\partial \Omega} [xdy - ydx]$$

Доказательство. По формуле Грина  $\int\limits_{\partial\Omega}\left[xdy-ydx\right]=2\iint\limits_{\Omega}dxdy=2m(\Omega)$ 

В. Условия, при которых дифференциальное выражение(дифф. форма) Pdx + Qdy является дифференциалом некоторой функции f = f(x,y)

**Теорема 2.** Пусть область  $\Omega \subset \mathcal{E}^2$  — произвольная область и функции P и Q непрерывны на  $\overline{\Omega}$ , тогда следующие условия эквивалентны:

- 1.  $\oint_{\Gamma} P(x,y) dx + Q(x,y) dy = 0$ , где  $\Gamma$  произвольная замкнутая кусочно гладкая кривая, причем  $\Gamma \subset \Omega$
- 2. z'=(x',y'), z''=(x'',y'')-m. области  $\Omega, \Gamma \subset \Omega$  кусочно гладкая кривая, соединяющая точки z' и z'', то  $\int\limits_{\Gamma} Pdx+Qdy$  не зависит от кривой  $\Gamma$ , а только от m. z' и z''
- 3. Существует функция w = f(x,y) такая, что df = Pdx + Qdy, при этом если  $z', z'' \in \Omega$  и  $\Gamma \subset \Omega$  кусочно гладкая кривая, соединяющая точки z' и z'', то

$$\int_{\Gamma} Pdx + Qdy = f(z'') - f(z') \tag{12}$$

Доказательство. Схема доказательства:  $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$ 

 $1 \Rightarrow 2$   $z', z'' \in \Omega, \Gamma', \Gamma''$  — кусочно гладкие кривые соединяющие точки z' и z''  $\Gamma = \Gamma' \cup (\Gamma'')^-$  — замкнутуая кусочно гладкая кривая  $0 \stackrel{1}{=} \int\limits_{\Gamma} P dx + Q dy = \int\limits_{\Gamma'} P dx + Q dy = \int\limits_{\Gamma''} P dx + Q dy \Rightarrow \int\limits_{\Gamma'} P dx + Q dy = \int\limits_{\Gamma''} P dx + Q dy$ 

 $2 \Rightarrow 3$   $z^0 = (x_0, y_0) \in \Omega; \ \Gamma_z \subset \Omega$  — кусочно гладкая кривая, соединяющая т.  $z_0$  и z = (x, y)

$$f(z) = f(x,y) = \int_{\Gamma_z} Pdx + Qdy.$$

 $z=(x,y),z'=(x+\Delta x,y),z'\in\Omega$  и  $[z,z']\subset\Omega$ 

$$\Delta f(z, \Delta x) = f(x + \Delta x, y) - f(x, y) = \int_{\Gamma\{z, z'\}} Pdx + Qdy = \int_{x}^{x + \Delta x} P(t, y)dt =$$
$$= P(x + \theta \Delta x, y) \Delta x, 0 < \theta < 1$$

$$\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=P(x+\theta\Delta x,y)\Rightarrow \frac{\partial f}{\partial x}(x,y)=P(x,y) \text{ аналогично } \frac{\partial f}{\partial y}(x,y)=Q(x,y)$$
 
$$\Gamma=\{(x,y),x=\varphi(t),y=\psi(t),\alpha\leqslant t\leqslant\beta\},\ z'=(\varphi(\alpha),\psi(\alpha)),\ z''=(\varphi(\beta),\psi(\beta))$$
 
$$\int\limits_{\Gamma}Pdx+Qdy=\int\limits_{\alpha}^{\beta}[P(\varphi(t),\psi(t))\cdot\varphi'(t)+Q(\varphi(t),\psi(t))\cdot\psi'(t)]dt=\int\limits_{\alpha}^{\beta}\left[\frac{\partial f}{\partial x}x'+\frac{\partial f}{\partial y}y'\right]dt=$$
 
$$=\int\limits_{\alpha}^{\beta}\frac{d}{dt}[f(\phi(t),\psi(t))]dt=f(\varphi(\beta),\psi(\beta))-f(\varphi(\alpha),\psi(\alpha))=f(z'')-f(z')$$

$$\boxed{3\Rightarrow 1}$$
  $\Gamma\subset\Omega-$  кусочно гладкая замкнутая кривая, т.е.  $z'$  и  $z''\Rightarrow(12)\Rightarrow\int\limits_{\Gamma}Pdx+Qdy=0$ 

**Теорема 3.** Если в условии теоремы  $2\ \Omega \subset \mathcal{E}^2$  — односвязная область и функция  $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$  непрерывны в  $\overline{\Omega}$ , то по условиям 1–3 теорема 2 эквивалентна следующему условию:

4. 
$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y) \ \forall (x,y) \subset \Omega$$

Доказательство. 
$$\boxed{3\Rightarrow 4}$$
  $\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial Q}{\partial x}$   $\boxed{4\Rightarrow 1}$   $\Gamma\subset\Omega$  простая кусочно гладкая замкнутая кривая  $\Gamma=\partial\Omega^*,\Omega^*\subset\Omega$ .  $\int_{\Gamma}Pdx+Qdy=\iint_{\Omega^*}\left[\frac{\partial Q}{\partial y}-\frac{\partial P}{\partial x}\right]dxdy=0$ 

Легко доказать, если  $\Gamma$  имеет конечное число точек самопересечения. Для произвольной кусочно гладкой замкнутой кривой все остальное справедливо.

**Пример.**  $w=P(x,y)=\frac{y}{x^2+y^2},\,w=Q(x,y)=\frac{x}{x^2+y^2},\,\mathbb{E}^2/\{(0,0)\}$  — не является односвязной областью

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y); \Gamma = \{(x,y) : x = \cos t, y = \sin t, 0 \leqslant t \leqslant 2\pi\}$$

$$\oint_{\Gamma} Pdx + Qdy = \oint_{\Gamma} \frac{-ydx + xdy}{x^2 + y^2} = \int_{0}^{2\pi} dt = 2\pi \neq 0$$

# 8. Замена переменных в кратном интеграле.

#### 8.1. Преобразование плоских областей

$$\Omega^* \subset \mathbb{E}^2_{(uv)}, \, \Omega \subset \mathbb{E}^2_{(x,y)};$$

$$F: \overline{\Omega^*} \to \overline{\Omega}; \ F: x = f^1(u, v), \ y = f^2(y, v)$$
 (13)

- 1. F взаимно однородное отображение
- 2. F дважды непрерывна дифференцируема

3. 
$$\mathcal{J}_F = \frac{D(x,y)}{D(u,v)} \neq 0$$
 в  $\overline{\Omega^*}$ 

$$G=F^{-1};\ G:\overline{\Omega}\to\overline{\Omega^*} \quad \ G:u=g^1(x,\!y),\,V=g^2(x,\!y)$$

**Свойство А.** При отображении F внутренние точки множества  $\overline{\Omega}^*$  переходят во внутренние точки  $\overline{\Omega}$ .

**Свойство Б.** При отображении F гладкая кривая переходит в гладкую кривую.

Доказательство. Свойства  $A\colon w_0=(u_0,v_0)\in\Omega^*\to z_0=(x_0,y_0)\in?$  Из (13) определены u и v как функции переменных x и y в некоторой окрестности т.  $z_0,$   $z_0\in\Omega$ 

Доказательство. Свойства B:  $\Gamma^*=\{(u,v): u=\varphi(t), v=\psi(t), \alpha\leqslant t\leqslant \beta\}, \Gamma^*\subset\Omega^*, \Gamma^*-$  гладкая кривая,  $\varphi,\psi$  — непрерывно дифференцируемы на  $[\alpha,\beta]$  функции и  $\forall\ t\in[\alpha,\beta]\to$   $\to [\varphi'(t)]^2+[\psi'(t)]^2\neq 0$ 

 $\Gamma = \{(x,y): x = f_1(\varphi(t),\psi(t)), y = f^2(\varphi(t),\psi(t)), \alpha \leqslant t \leqslant \beta\}, \Gamma \subset \Omega$   $x'(t) = \frac{\partial f^1}{\partial u} \varphi'(t) + \frac{\partial f^1}{\partial v} \psi'(t); \quad y'(t) = \frac{\partial f^2}{\partial u} \varphi'(t) + \frac{\partial f^2}{\partial v} \psi'(t).$  Учтем что  $\mathcal{J} \neq 0$ , предположим что  $\exists t_0: x'(t_0) = y'(t_0 = 0$  из неравенства якобиана нулю следует  $\varphi'(t) = \psi'(t_0) = 0$  противоречие

$$\begin{cases} x &= f^{1}(u_{0}, v), y = f^{2}(u_{0}, v), v \in \mathbb{R} \\ u^{0} &= g^{1}(x, y) \end{cases}$$
$$\begin{cases} x &= f^{1}(u, v_{0}), y = f^{2}(u, v_{0}), u \in \mathbb{R} \\ v^{0} &= g^{2}(x, y) \end{cases}$$

Кривые каждого из семейств не пересекаются в силу взаимо однозначности F, но через каждую точку проходит 2 кривые по одной из каждого семейства.

Пример. 
$$x = \rho \cos \varphi, y = \rho \sin \varphi,$$
  $(\rho_0, \varphi_0) \quad (\rho_0, \varphi_0 + 2\pi k), k \in \mathbb{Z}; \ 0 \leqslant \varphi \leqslant 2\pi$   $\prod = \{(\rho, \varphi) : 0 < \rho < R, \ 0 < \varphi < 2\pi\}; \ F : \prod \longleftrightarrow K/K_1,$   $K = \{(x,y) : x^2 + y^2 < R^2\}, \ K_1 = \{(x,y) : y = 0, \ 0 \leqslant x < R\}$   $m(K_1) = 0. \ \mathcal{J}_F = \rho > 0$  в  $\prod$ 

Пример 2. 
$$F: x = \rho\cos\varphi\cos\psi, y = \rho\sin\varphi\sin\psi$$
 
$$\prod = \{(\rho, \varphi, \psi): 0 < \rho < R, \ 0 < \varphi < 2\pi, \ -\pi/2 < \varphi < \pi/2\}$$
  $K/K_1, \ K = \{(x,y,z): x^2 + y^2 + z^2 < R^2\}$   $K_1 = \{(x,y,z): 0 \leqslant x^2 + z^2 < R^2, \ y = 0\}\}, \ m(K_1) = 0; \ \mathcal{J}_F = \rho^2\cos\psi > 0$  в  $\prod$ 

Пример 3. 
$$F: x = \rho \cos \varphi, y = \rho \sin \varphi, z = z$$
  $\prod = \{(\rho, \varphi, z) \ 0 < \rho < R, \ 0 < \varphi < 2\pi, \ 0 < z < H\}$   $K \backslash K_1: K = \{(x, y, z): x^2 + y2 < R, \ 0 < z < H\}$   $K_1 = \{(x, y, z): \ o < x < R, \ y = 0, \ 0 < z < H\}, \ m(K_1) = 0; \ \mathcal{J} = \rho > 0 \ \mathrm{B} \ \prod$ 

# 8.2. Выражение площади в криволинейных координатах.

$$\begin{split} \partial\Omega^* &= \{(u,v): \ u = \varphi(t), v = \psi(t), \alpha \leqslant t \leqslant \beta\} \\ \partial\Omega &= \{(x,y): \ x = f^1(\varphi(t),\psi(t)), y = f^2(\varphi(t),\psi(t)), \alpha \leqslant t \leqslant \beta\} \\ \alpha \text{ и } \beta \text{ выбраны таким образом, что } \partial\Omega \text{ обходится в положительном направлении.} \\ m(\Omega) &= \int\limits_{\partial\Omega} x dy = \int\limits_{\alpha}^{\beta} f^1(\varphi(t),\psi(t)) \left[\frac{\partial f^2}{\partial u}\varphi'(t) + \frac{\partial f^2}{\partial v}\psi'(t)\right] dt = \pm \int\limits_{\partial\Omega^*} f^1\frac{\partial f^2}{\partial u} du + f^1\frac{\partial f^2}{\partial v} dv \\ P(u,v) &= f^1\frac{\partial f^2}{\partial u}, \ Q(u,v) = f^1\frac{\partial f^2}{\partial v} \\ \frac{\partial P}{\partial v} &= \frac{\partial f^1}{\partial v}\frac{\partial f^2}{\partial u} + f^1\frac{\partial^2 f^2}{\partial v\partial u}, \ \frac{\partial Q}{\partial u} = \frac{\partial f^1}{\partial u}\frac{\partial f^2}{\partial v} + f^1\frac{\partial^2 f^2}{\partial u\partial v} \\ \frac{\partial Q}{\partial u} &- \frac{\partial P}{\partial v} = \frac{\partial f_1}{\partial u}\frac{\partial f^2}{\partial v} - \frac{\partial f^1}{\partial v}\frac{\partial f^2}{\partial u} = \mathcal{J}_F(u,v) \end{split}$$

$$m(\Omega) = \iint_{\Omega^*} |(J)_F(u,v)| \, du \, dv$$

**Предложение.** Если  $\mathcal{J}_F(u,v)>0$ , то положительному обходу  $\partial\Omega^*$  соответствует положительному обходу  $\partial\Omega$ . Если  $\mathcal{J}_F(u,v)<0$ , то положительный обход  $\partial\Omega^*$  соответствует отрицательный обход  $\partial\Omega$ 

#### 8.3. Геометрический смысл модуля якобиана.

$$[\alpha,\beta]\subset [\alpha_2,\beta_2]\subset\ldots\subset [\alpha_k,\beta_k]\subset\ldots;\ \delta_k=\beta_k-\alpha_k\to 0$$
 при  $k\to\infty$ 

т. Кантора  $\exists ! x_0 : x_0 \in [\alpha_k, \beta_k] \forall k$ 

y = f(x) — строго монотонна на  $[\alpha, \beta]$ , непрерывна на  $[\alpha, \beta]$  и дифференцируема на  $(\alpha, \beta)$ ,

$$\forall k \exists x_k \in (\alpha_k, \beta_k) : f(\beta_k) - f(\alpha_k) = f'(x_k) \cdot \delta_k; \ B_k = f(\beta_k), A_k = f(\alpha_k), \ \Delta k$$
 для отрезка  $[A_k, B_k]$  или  $[B_k, A_k]$ 

$$|f'(x_k)| = \frac{\Delta k}{\delta k}, k \to \infty, x_k \to x_0; |f'(x_0)| = \lim_{k \to \infty} \frac{\Delta K}{\delta K}$$

$$|f'(x_k)| = \frac{\Delta k}{\delta k}, k \to \infty, x_k \to x_0; \ |f'(x_0)| = \lim_{k \to \infty} \frac{\Delta K}{\delta K}$$
 
$$\overline{Q_k^*} \subset \Omega^*; \ \overline{Q_1^*} \subset \overline{Q_2^*} \subset \ldots \subset \overline{Q_k^*} \subset \ldots$$
 причем  $m(\overline{Q_k^*}) \to 0 (k \to \infty) \Rightarrow \exists$  единственная точка 
$$\omega_0 = (u_0, v_0) : \omega_0 \in \overline{Q_k^*} \ \forall k$$

$$\exists \omega_k \in \overline{\Omega_k^*} : m(\overline{Q_k^*}) = |\mathcal{J}_F(\omega_k)| \, m(\overline{Q_k^*}), \, \overline{Q_k^*} = F(\overline{Q_k^*}), \, \omega_k \to \omega_0 \,$$
 при  $k \to \infty$  значит:

 $|\mathcal{J}(\omega_0)| = \lim_{k \to \infty} \frac{m(\overline{\Omega})}{m(\overline{\Omega_k^*})}$  — коэффициент растяжения точки  $\omega_0$  плоскости переменных u,v при заданном отображении F в x,y.

#### 8.4. Замена переменных в двойном интеграле.

Напомним начальные условия:

$$F = \overline{\Omega^*} \to \overline{\Omega}$$

I Взаимно однозначное

II Дважды непрырвна дифференцируема

III 
$$\mathcal{J}_k(u^*,v^*) \neq 0$$
;  $(u^*,v^*) \in \overline{\Omega^*}$ 

Нас теперь будет интересовать  $\iint\limits_{\Omega}g(x,y)dxdy$  причем w=g(x,y) непрерывна в  $\overline{\Omega}$ 

**Теорема 4.** Пусть отображение F удовлетворяет свойствам I–II, функция w = g(x,y)непрерывна в  $\overline{\Omega}$  и F преобразование ограниченной замкнутой области с кусочно гладкой границей  $\overline{\Omega^*}$  в ограниченной замкнутой области с кусочно гладкой границей  $\overline{\Omega}$ . Тогда справедлива формула

$$\iint_{\Omega} g(x,y)dxdy = \iint_{\Omega^*} g(f^1(u,v), f^2(u,v)) |\mathcal{J}_F(u,v)| dudv$$
(14)

 Доказательство.  $T^*$  — разбиение области  $\Omega^*,\, T^*=\{\Omega_i^*\}_{i=1}^n$  при F  $T=\{\Omega_i\}_{i=1}^n$  — разбиение ние  $\Omega$ .  $I = \sum_{i=1}^{n} g(z^{i}) m(\Omega_{i})$ 

 $z^i=(x^i,y^i)\in\overline{\Omega_i},\ \forall i\ \exists w^i=(u^i,v^i)\in\overline{\Omega^*}:\ m(\Omega_i)=|\mathcal{J}_F(w^i)|\ m(\Omega_i^*)$  тогда, учитывая что  $z^i=(f^1(w^i),f^2(w^i)))$ 

$$I = \sum_{i=1}^{n} g(z^{i}) m(\Omega_{i}) = \sum_{i=1}^{n} g(z^{i}) \left| \mathcal{J}_{F}(w^{i}) \right| m(\Omega_{i}^{*}) = \sum_{i=1}^{n} g(f^{1}(w^{i}), f^{2}(w^{i})) \left| \mathcal{J}_{F}(w^{i}) \right| m(\Omega_{i}^{*})$$
(15)

Заметим, что первая часть (15) стремится к первой части (14) и аналогично ведут себя вторые части.

**Замечание.** Эта же формула справедлива в случае *m*-кратного интеграла.

# Часть II

# Поверхностные интегралы.

# 9. Понятие поверхности.

#### 9.1. Простейшие примеры задания поверхности.

Вся эта тема рассматривается на  $\mathbb{E}^3$ , Oxyz. Перечислим способы задания поверхности:

- 1° График функции простейший пример задания поверхности  $z = f(x,y), (x,y) \in \overline{\Omega}, f(x,y) \geqslant 0$
- $2^{\circ}$  F(x,y,z)=0, предполагаем, что в окрестности точки  $(x_0,y_0,z_0)$  F непрерывно дифференцируема и  $F_z(x_0,y_0,z_0)\neq 0$ . Это уравнение задает функцию z как не явную функцию от x и y:z=f(x,y) в окрестности некоторой точки  $(x_0,y_0,z_0)$ .
- $3^{\circ}\ F(x,y) = 0$  случай задания цилиндрической поверхности.

# 9.2. Параметрическое задание поверхности.

$$F: \overline{\Omega} \subset \mathbb{E}^2_{(u,v)} \to \mathbb{E}^3_{(x,y,z)}$$

I 
$$x = \varphi(u,v), y = \psi(u,v), z = \chi(u,v), (u,v) \in \overline{\Omega}$$

II  $\overline{r} = \overline{r}(u,v), (u,v) \in \overline{\Omega}, F$  непрерывно дифференцируема

$$\begin{pmatrix} \varphi_u \ \psi_u \ \chi_u \\ \varphi_v \ \psi_v \ \chi_v \end{pmatrix} \qquad A = \Delta_{\psi\chi} = \begin{vmatrix} \psi_u \ \chi_u \\ \psi_v \ \chi_v \end{vmatrix} \quad B = \Delta_{\chi\varphi} = \begin{vmatrix} \chi_u \ \varphi_u \\ \chi_v \ \varphi_v \end{vmatrix} \quad C = \Delta_{\varphi\psi} = \begin{vmatrix} \varphi_u \ \psi_u \\ \varphi_v \ \psi_v \end{vmatrix}$$

Предположим, что хотя бы 1 из определителей  $\neq 0$  :  $\Delta_{\varphi\psi} \neq 0$ ,  $U(u_0,v_0,x_0,y_0)$   $\begin{cases} x-\varphi(u,v)=0\\ y-\psi(u,v)=0 \end{cases}$   $u=h(x,y), \ v=g(x,y)$  в  $\widetilde{u}(x_0,y_0), \ z=\chi(h(x,y),g(x,y)) \Rightarrow z=f(x,y)$   $(u_0,v_0)$  — особая точка:  $\Delta_{\psi\chi}=\Delta_{\chi\varphi}=\Delta_{\varphi\psi}=0$   $(u_0,v_0)$  — не является особой:  $[\overline{r_u}(u_0,v_0),\overline{r_v}(u_0,v_0)] \neq \overline{0} \Rightarrow \overline{r_u}(u_0,v_0) \neq \overline{0}$ ,  $\overline{r_v}(u_0,v_0) \neq \overline{0}$ 

**Определение.** Множество точек  $S \subset \mathbb{E}^3_{(x,y,z)}$  являющихся образом ограниченной замкнутой плоской области  $\overline{\Omega} \subset \mathbb{E}^2_{(u,v)}$  при непрерывном отображении F вида I называется параметрически заданной поверхностью, а отображение I называется ее координатным представлением

$$S = \{ x = \varphi(u, v), y = \psi(u, v), z = \chi(u, v), (u, v) \subset \overline{\Omega} \}$$

$$(16)$$

**Определение.** Множество точек  $S \subset \mathbb{E}^3_{(x,y,z)}$  являющихся образом ограниченной замкнутой плоской области  $\overline{\Omega} \subset \mathbb{E}^2_{(u,v)}$  при непрерывном отображении F вида II называется параметрически заданной поверхностью, а отображение II называется ее векторным представлением

$$S = \{ \overline{r} = \overline{r}(u, v), u, v \in \overline{\Omega} \}$$
(17)

**Определение.** Непрерывно дифференцируемое отображение F вида I или II называется гладким, если  $[\overline{r_u},\overline{r_v}] \neq 0$  в  $\overline{\Omega}$ 

**Определение.** Поверхность S вида (16) или (17) называется npocmoй cnadkoй noверхно-стью, если отображение F вида I или II соответственно взаимно однозначно или гладкое.

**Пример.**  $z=f(x,y),\,(x,y)\in\overline{\Omega}\subset\mathbb{E}^2_{(x,y)},\,f$  — непрерывно дифференцируемая функция.

$$\overline{r} = (x, y, f(x, y)), \ \overline{r_x} = (1, 0, f_x). \ \overline{r_y} = (0, 1, f_y)$$
$$[\overline{r_x}, \overline{r_v}] = \begin{vmatrix} i \ j \ k \\ 1 \ 0 \ f_x \\ 0 \ 1 \ f_y \end{vmatrix} = -f_x i - f_y j + k \neq \overline{0} \quad |[\overline{r_x}, \overline{r_v}]| = \sqrt{1 + f_x^2 + f_y^2}$$

**Определение.** Для простой гладкой поверхности  $S \subset \mathbb{E}^3$ , заданной отображением F вида I или II образ  $\partial\Omega$  при F названной краем поверхности S обозначается  $\delta S$ . Нужно помнить, что грань и граница не совпадают  $\partial S = S$ , но  $\delta S \neq \partial S$ 

$$S = \{\overline{r} = \overline{r}(u,v), (u,v) \in \Omega\} \quad S = \{x = \varphi(u,v), y = \psi(u,v), z = \chi(u,v), (u,v) \subset \overline{\Omega}\}$$

$$u = u_0 \quad F_{u_0} \subset \mathbb{E}^3 : F_{u_0} = \{\overline{r} = \overline{r}(u_0,v), (u_0,v) \subset \overline{\Omega}\}$$

$$v = v_0 \quad F_{v_0} \subset \mathbb{E}^3 : F_{v_0} = \{\overline{r} = \overline{r}(u,v_0), (u,v_0) \subset \overline{\Omega}\}$$

Пример. Рассмотрим в  $\mathbb{E}^3$  сферу  $S = \{x = \cos \varphi \cos \psi, y = \sin \varphi \cos \psi, z = \sin \psi, 0 \leqslant \varphi \leqslant 2\pi, -\pi/2 \leqslant \psi \leqslant \pi/2\}$ . Тогда формула  $x^2 + y^2 + z^2 = 1$ 

Пример. Зададим параметрически кривую:

$$y = 0 : x = \Phi(u), z = \Psi(u), \alpha \leqslant u \leqslant \beta, \ \Phi(u) \geqslant 0$$

$$S = \{x = \Phi(u)\cos v, y = \Phi(u)\sin v, z = \Psi(u), \alpha \leqslant u \leqslant \beta, 0 \leqslant v \leqslant 2\pi\}$$

$$S = \{x = (a + a/2\cos u)\cos v, y = (a + a/2\cos u)\sin v, z = a/2\sin u\} \ 0 \leqslant u \leqslant 2\pi, 0 \leqslant v \leqslant 2\pi$$

**Определение.** Точка  $M \subset S : \overline{OM} = \overline{r}(u_1, v_1) = \overline{r}(u_2, v_2)$  для различных точек  $(u_1, v_2)$  и  $(u_2, v_2)$  множества  $\overline{\Omega}$ , называются кратными точками поверхности S.

**Определение.** Поверхность S, имеющая кратные точки, называется поверхностью с самопересечениями.

**Определение.** Если поверхность S ограничивает некоторое тело  $G \subset \mathbb{E}^3$ , т.е.  $\partial G = S$ , по поверхности S называется замкнутой

#### 9.3. Допустимые замены переменных.

 $F:\Omega\to\mathbb{E}^3,\,\overline{r}=\overline{r}(u,\!v)$  — взаимооднозначное, непрерывно дифференцируемое, без особых точек

$$G: \overline{\Omega^*} \to \mathbb{E}^3 \overline{\rho} = \overline{\rho}(u^*, v^*)$$

Эти отображения называются эквивалентными или задающими одну и ту же поверхность, если  $\exists H: \overline{\Omega^*} \to \overline{\Omega}: u = h^1(u^*, v^*), \ v = h^2(u^*, v^*)$  и оно обладает следующими свойствами.

- 1) Взаимооднозначность
- 2) Непрерывная дифференцируемость

3) 
$$\mathcal{J}_{(u,v)} = \frac{D(u,v)}{D(u^*,v^*)} \neq 0 \text{ B } \overline{\Omega^*}$$

4) 
$$\overline{\rho}(u^*, v^*) = \overline{r}(h^1(u^*, v^*), h^2(u^*, v^*))$$

Преобразование параметров осуществляющего переход от одного преобразования поверхности S к другому ему эквивалентному, называется допустимой заменой параметра.

Предложение. Если  $S = \{\overline{r} = \overline{r}(u,v), (u,v) \in \overline{\Omega}\}$  является простой гладкой поверхностью, то при допустимой замене параметра поверхность  $S = \{\overline{\rho} = \overline{\rho}(u^*,v^*), (u^*,v^*) \in \overline{\Omega}^*\}$  остается простой гладкой поверхностью.

$$\begin{split} & [\overline{\rho_{u^*}}, \, \overline{\rho_{v^*}}] \neq 0 \\ & \overline{\rho_{u^*}} = h_{u^*}^1 \overline{r_u} + h_{u^*}^2 \overline{r_v}, \, \overline{\rho_{v^*}} = h_{v^*}^1 \overline{r_u} + h_{v^*}^2 \overline{r_v} \\ & [\overline{\rho_{u^*}}, \overline{\rho_{v^*}}] = (h_{u^*}^1 h_{v^*}^2 - h_{u^*}^1 h_{u^*}^2) [\overline{r_u}, \overline{r_v}] \neq 0 \end{split}$$

# 9.4. Касательная плоскость и нормаль к поверхности.

Рассмотрим 
$$\overline{r_0} = \overline{r}(u_0, v_0)$$
  
 $\Gamma = \{\overline{r} = \overline{r}(u(t), v(t)), \alpha \leqslant t \leqslant \beta\} \subset S; \quad \overline{r_0} \in \Gamma$   
 $d\overline{r} = \overline{r_u}du + \overline{r_v}dv \quad du = u'(t)dt, dv = v'(t)dt$ 

**Определение.** Плоскость, проходящая через точку  $r_0 \in S$ , в которой лежат все касательные к кривым  $\Gamma \subset S$ , в точке  $\overline{r_0}$ , называется касательной плоскостью, а т  $\overline{r_0}$  называется точкой касания. В Каждой точке  $\overline{r_0}$ , которая не является особой существует и единственная касательная плоскость.

$$\overline{r} = (x, y, z), \, \overline{r_0} = (x_0, y_0, z_0), \, x_0 = \varphi(u_0, v_0), \, y_0 = \psi(u_0, v_0), \, _0 = \chi(u_0, v_0)$$

$$\overline{r_u} = (x_u, y_u, z_u)(u_0, v_0), \ \overline{r_v} = (x_v, y_v, z_v)(u_0, v_0)$$

$$((\overline{r} - \overline{r_0}), \overline{r_u}, \overline{r_v}) \Leftrightarrow \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix} = 0 \quad z = f(x, y), (x, y) \in \overline{\Omega}$$

Пример.

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{vmatrix} = 0 \quad f_x(x - x_0) + f_y(y - y_0) - (z - z_0) = 0$$

**Определение.** Прямая, проходящая через точку  $\overline{r_0} \in S$  (простой гладкой поверхности), перпендикулярно касательной плоскости в этой точке называется нормальной прямой.

$$\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C} \quad A = \begin{vmatrix} \psi_u & \chi_u \\ \psi_v & \chi_v \end{vmatrix}, B = \begin{vmatrix} \chi_u & \varphi_u \\ \chi_v & \varphi_v \end{vmatrix}, C = \begin{vmatrix} \varphi_u & \psi_u \\ \varphi_v & \psi_v \end{vmatrix}$$

$$\frac{x - x_0}{f_x} = \frac{y - y_0}{f_y} = \frac{z - z_0}{-1}$$

**Определение.** Ненулевой вектор, параллельный нормальной прямой, проходящий через точку  $\overline{r_0} \in S$  касательной плоскости, называется вектором нормали к поверхности S в т.  $\overline{r_0}$ 

$$\overline{n} = \pm \frac{[\overline{r_u}, \overline{r_v}]}{|[\overline{r_u}, \overline{r_v}]|}$$

Фиксируя + или - задается непрерывная векторная функция.

# 9.5. Двусторонние и односторонние поверхности. Ориентация поверхности.

Рассмотрим поверхность S, выберем точку на этой поверхности  $A_0 \in S$ , выпустим из нее контур  $\Gamma_0 \in S$ .

Рассматриваемые случаи:

I Как ушел так и пришел (прим. лента Мебиуса)

II Ушел и пришел с обратным направлением

**Определение.** Если для любой точки  $A_0 \in S$  при обходе любого контура  $\Gamma_0 \subset S$ ,  $\Gamma_0 \cap \delta S = \emptyset$  с началом и концом в точке  $A_0$  имеем место случай II, то поверхность S называется односторонней поверхностью. Такие поверхности рассматривать не будем.

**Определение.** Если для любой точки  $A_0 \in S$  при обходе любого контура  $\Gamma_0 \subset S$  с началом и концом в точке  $A_0$  имеем место случай I, то поверхность S называется двусторонней поверхностью.

**Предложение.** Для двусторонней гладкой поверхности S с кусочно гладким краем  $\delta S$  задание направления нормали в одой точке определяет задание направления нормали во всех точках поверхности.

$$\mathcal{A}$$
оказательство.  $\overline{n}=\pm \frac{[\overline{r_u},\overline{r_v}]}{|[\overline{r_u},\overline{r_v}]|}$ , выберем две точки и нормаль в однйо из них:  $A_0,\,A_1,\,\overline{n_0},\,$   $\mathrm{ne}\Gamma_{01}^1\to\overline{n_1},\,\Gamma_{01}^2\to\overline{n_1},\,\Gamma=\Gamma_{01}^1\cup(\Gamma_{01}^2)^-$  противоречие

**Определение.** Гладкая поверхность S называется ориентированной, если единичный вектор нормали  $\overline{n}$  задан на ней как непрерывная векторная функция.

$$\cos \alpha = \frac{A}{\pm \sqrt{\Delta}}, \ \cos \beta = \frac{B}{\pm \sqrt{\Delta}}, \ \cos \gamma = \frac{C}{\pm \sqrt{\Delta}}, \ \Delta = A^2 + B^2 + C^2$$

$$z = f(x,y), \cos \alpha = \frac{-f_x}{\pm \sqrt{\Delta}}, \cos \beta = \frac{-f_y}{\pm \sqrt{\Delta}}, \cos \gamma = \frac{1}{\pm \sqrt{\Delta}}, \Delta = 1 + f_x^2 = f_y^2$$

$$S = \{ \overline{r} = \overline{r}(u,v), (u,v) \in \Omega \} \quad S = \{ x = \varphi(u,v), y = \psi(u,v), z = \chi(u,v), (u,v) \subset \overline{\Omega} \}$$

$$u = u_0$$
  $F_{u_0} \subset \mathbb{E}^3 : F_{u_0} = \{ \overline{r} = \overline{r}(u_0, v), (u_0, v) \subset \overline{\Omega} \}$ 

$$v = v_0$$
  $F_{v_0} \subset \mathbb{E}^3 : F_{v_0} = \{\overline{r} = \overline{r}(u, v_0), (u, v_0) \subset \overline{\Omega}\}$ 

Пример. Рассмотрим в  $\mathbb{E}^3$  сферу  $S=\{x=\cos\varphi\cos\psi,\,y=\sin\varphi\cos\psi,\,z=\sin\psi,\,0\leqslant\varphi\leqslant2\pi,\,-\pi/2\leqslant\psi\leqslant\pi/2\}.$  Тогда формула  $x^2+y^2+z^2=1$ 

Пример. Зададим параметрически кривую:

$$y = 0 : x = \Phi(u), z = \Psi(u), \alpha \leqslant u \leqslant \beta, \ \Phi(u) \geqslant 0$$

$$S = \{x = \Phi(u)\cos v, y = \Phi(u)\sin v, z = \Psi(u), \alpha \leqslant u \leqslant \beta, 0 \leqslant v \leqslant 2\pi\}$$

$$S = \{x = (a + a/2\cos u)\cos v, y = (a + a/2\cos u)\sin v, z = a/2\sin u\} \ 0 \leqslant u \leqslant 2\pi, 0 \leqslant v \leqslant 2\pi$$

**Определение.** Точка  $M \subset S : \overline{OM} = \overline{r}(u_1,v_1) = \overline{r}(u_2,v_2)$  для различных точек  $(u_1,v_2)$  и  $(u_2,v_2)$  множества  $\overline{\Omega}$ , называются кратными точками поверхности S.

**Определение.** Поверхность S, имеющая кратные точки, называется поверхностью с самопересечениями.

**Определение.** Если поверхность S ограничивает некоторое тело  $G \subset \mathbb{E}^3$ , т.е.  $\partial G = S$ , по поверхности S называется замкнутой

# 9.6. Допустимые замены переменных.

 $F:\Omega\to\mathbb{E}^3,\,\overline{r}=\overline{r}(u,\!v)$  — взаимооднозначное, непрерывно дифференцируемое, без особых точек

$$G: \overline{\Omega^*} \to \mathbb{E}^3 \overline{\rho} = \overline{\rho}(u^*, v^*)$$

Эти отображения называются эквивалентными или задающими одну и ту же поверхность, если  $\exists H: \overline{\Omega^*} \to \overline{\Omega}: u = h^1(u^*, v^*), v = h^2(u^*, v^*)$  и оно обладает следующими свойствами.

#### 1) Взаимооднозначность

2) Непрерывная дифференцируемость

3) 
$$\mathcal{J}_{(u,v)} = \frac{D(u,v)}{D(u^*,v^*)} \neq 0$$
 в  $\overline{\Omega^*}$ 

4) 
$$\overline{\rho}(u^*, v^*) = \overline{r}(h^1(u^*, v^*), h^2(u^*, v^*))$$

Преобразование параметров осуществляющего переход от одного преобразования поверхности S к другому ему эквивалентному, называется допустимой заменой параметра.

Предложение.  $Ecnu\ S=\{\overline{r}=\overline{r}(u,v),\ (u,v)\in\overline{\Omega}\}$  является простой гладкой поверхностью, то при допустимой замене параметра поверхность  $S = \{\overline{\rho} = \overline{\rho}(u^*,v^*), (u^*,v^*) \in$  $\in \overline{\Omega^*}$ } остается простой гладкой поверхностью.

$$\begin{aligned} & [\overline{\rho_{u^*}}, \, \overline{\rho_{v^*}}] \neq 0 \\ & \overline{\rho_{u^*}} = h_{u^*}^1 \overline{r_u} + h_{u^*}^2 \overline{r_v}, \, \overline{\rho_{v^*}} = h_{v^*}^1 \overline{r_u} + h_{v^*}^2 \overline{r_v} \\ & [\overline{\rho_{u^*}}, \overline{\rho_{v^*}}] = (h_{u^*}^1 h_{u^*}^2 - h_{u^*}^1 h_{u^*}^2) [\overline{r_u}, \overline{r_v}] \neq 0 \end{aligned}$$

#### 9.7.Касательная плоскость и нормаль к поверхности.

Рассмотрим 
$$\overline{r_0} = \overline{r}(u_0, v_0)$$
  
 $\Gamma = \{\overline{r} = \overline{r}(u(t), v(t)), \alpha \leqslant t \leqslant \beta\} \subset S; \quad \overline{r_0} \in \Gamma$   
 $d\overline{r} = \overline{r_u}du + \overline{r_v}dv \quad du = u'(t)dt, dv = v'(t)dt$ 

**Определение.** Плоскость, проходящая через точку  $r_0 \in S$ , в которой лежат все касательные к кривым  $\Gamma \subset S$ , в точке  $\overline{r_0}$ , называется касательной плоскостью, а т  $\overline{r_0}$  называется точкой касания. В Каждой точке  $\overline{r_0}$ , которая не является особой существует и единственная касательная плоскость.

$$\overline{r} = (x, y, z), \overline{r_0} = (x_0, y_0, z_0), x_0 = \varphi(u_0, v_0), y_0 = \psi(u_0, v_0), 0 = \chi(u_0, v_0)$$

$$\overline{r_u} = (x_u, y_u, z_u)(u_0, v_0), \overline{r_v} = (x_v, y_v, z_v)(u_0, v_0)$$

$$((\overline{r} - \overline{r_0}), \overline{r_u}, \overline{r_v}) \Leftrightarrow \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix} = 0 \quad z = f(x, y), (x, y) \in \overline{\Omega}$$

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{vmatrix} = 0 \quad f_x(x - x_0) + f_y(y - y_0) - (z - z_0) = 0$$

**Определение.** Прямая, проходящая через точку  $\overline{r_0} \in S$  (простой гладкой поверхности), перпендикулярно касательной плоскости в этой точке называется нормальной прямой.

$$\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C} \quad A = \begin{vmatrix} \psi_u & \chi_u \\ \psi_v & \chi_v \end{vmatrix}, B = \begin{vmatrix} \chi_u & \varphi_u \\ \chi_v & \varphi_v \end{vmatrix}, C = \begin{vmatrix} \varphi_u & \psi_u \\ \varphi_v & \psi_v \end{vmatrix}$$

$$\frac{x - x_0}{f_x} = \frac{y - y_0}{f_y} = \frac{z - z_0}{-1}$$

**Определение.** Ненулевой вектор, параллельный нормальной прямой, проходящий через точку  $\overline{r_0} \in S$  касательной плоскости, называется вектором нормали к поверхности S в т.  $\overline{r_0}$ 

$$\overline{n} = \pm \frac{[\overline{r_u}, \overline{r_v}]}{|[\overline{r_u}, \overline{r_v}]|}$$

Фиксируя + или – задается непрерывная векторная функция.

# 9.8. Двусторонние и односторонние поверхности. Ориентация поверхности.

Рассмотрим поверхность S, выберем точку на этой поверхности  $A_0 \in S$ , выпустим из нее контур  $\Gamma_0 \in S$ .

Рассматриваемые случаи:

I Как ушел так и пришел (прим. лента Мебиуса)

II Ушел и пришел с обратным направлением

**Определение.** Если для любой точки  $A_0 \in S$  при обходе любого контура  $\Gamma_0 \subset S$ ,  $\Gamma_0 \cap \delta S = \emptyset$  с началом и концом в точке  $A_0$  имеем место случай II, то поверхность S называется односторонней поверхностью. Такие поверхности рассматривать не будем.

**Определение.** Если для любой точки  $A_0 \in S$  при обходе любого контура  $\Gamma_0 \subset S$  с началом и концом в точке  $A_0$  имеем место случай I, то поверхность S называется двусторонней поверхностью.

**Предложение.** Для двусторонней гладкой поверхности S с кусочно гладким краем  $\delta S$  задание направления нормали в одой точке определяет задание направления нормали во всех точках поверхности.

$$\mathcal{A}$$
оказательство.  $\overline{n}=\pm \frac{[\overline{r_u},\overline{r_v}]}{|[\overline{r_u},\overline{r_v}]|}$ , выберем две точки и нормаль в однйо из них:  $A_0,\,A_1,\,\overline{n_0},\,$  пе $\Gamma^1_{01}\to\overline{n_1},\,\Gamma^2_{01}\to\overline{n_1},\,\Gamma=\Gamma^1_{01}\cup(\Gamma^2_{01})^-$  противоречие

**Определение.** Гладкая поверхность S называется ориентированной, если единичный вектор нормали  $\overline{n}$  задан на ней как непрерывная векторная функция.

$$\cos \alpha = \frac{A}{\pm \sqrt{\Delta}}, \ \cos \beta = \frac{B}{\pm \sqrt{\Delta}}, \ \cos \gamma = \frac{C}{\pm \sqrt{\Delta}}, \ \Delta = A^2 + B^2 + C^2$$
$$z = f(x,y), \ \cos \alpha = \frac{-f_x}{\pm \sqrt{\Delta}}, \ \cos \beta = \frac{-f_y}{\pm \sqrt{\Delta}}, \ \cos \gamma = \frac{1}{\pm \sqrt{\Delta}}, \ \Delta = 1 + f_x^2 = f_y^2$$

# 9.9. Кусочно гладкие поверхности

S — простая гладкая поверхность с кусочно гладким краем  $\delta S$ .

**Определение.** Ориентация края  $\delta S$  поверхности S согласовывается с ориентацией поверхности S, если глядя конца вектора нормали на край он обходится против часовой стрелки.

**Определение.** Поверхность S называется кусочно гладкой поверхностью, если ее можно представить в виде конечного объединения простых гладких поверхностей, которые пересекаются разве что только по общим краям

$$S = \bigcup_{k=1}^{m} S_k, S_k$$
 — простая гладкая поверхность

Пример. 
$$S=\{\overline{r}=\overline{r}(\varphi,\psi),\, 0\leqslant \varphi\leqslant 2\pi,\, -\pi/2\leqslant \psi\leqslant \pi/2\}$$
 — сферические координаты.

$$S: x^{2} + y^{2} + z = 1$$

$$S_{1} = \{z = \sqrt{1 - x^{2} - y^{2}}, x^{2} + y^{2} = 1/2\};$$

$$S_{2} = \{z = -\sqrt{1 - x^{2} - y^{2}}, x^{2} + y^{2} = 1/2\}$$

$$S_{3} = \{\overline{r} = \overline{r}(\varphi, \psi), |\psi| \leq \pi/4, 0 \leq \varphi \leq \pi\};$$

$$S_{4} = \{\overline{r} = \overline{r}(\varphi, \psi), |\psi| \leq \pi/4, \pi \leq \varphi \leq 2\pi\}$$



Рис. 1:  $\overline{n} = \{\overline{n_1}, \dots, \overline{n_m}\}$ 

# 10. Площадь поверхности

### 10.1. Пример Шварца (сапог Шварца)

Рассмотрим прямой круговой цилиндр  $\prod$ , радиуса R и высотой H

$$S_{\triangle} = R \sin \pi / n \sqrt{(H/m)^2 + R^2 (1 - \cos \pi / n)^2}$$

$$S_{\Pi} = 2mn S_{\triangle} = 2\pi R \frac{\sin \pi / n}{\pi / n} \sqrt{\frac{R^2 \pi^4}{4} (m/n^2)^2 \left(\frac{\sin \frac{\pi}{2n}}{\pi / 2n}\right)^4 + H^2}$$

$$m \to \infty, \ n \to \infty : m/n^2 \to q \ge 0 \Rightarrow S = 2\pi R \sqrt{\frac{R^2 \pi^4}{4} q^2 + H^2}; \ S = 2\pi R H \Leftrightarrow q = 0$$

**Предложение.** Площадь простой гладкой поверхности S не зависит от ее векторного представления.

Доказательство. Воспользуемся допустимой заменой координат:

$$H: \quad u = h^{1}(u^{*}, v^{*}), \, v = h^{2}(u^{*}, v^{*}), \, (u^{*}, v^{*}) \in \overline{\Omega^{*}}$$

$$m(S) = \iint_{\Omega} |[\overline{r_{u}}, \overline{r_{v}}]| \, du dv = \iint_{\Omega^{*}} ||[\overline{r_{u}}(h^{1}, h^{2}), \, \overline{r_{v}}(h^{1}, h^{2})]| \, |\mathcal{J}_{H}(u^{*}, v^{*})| du^{*} dv^{*} = \iint_{\Omega^{*}} |\overline{\rho_{u^{*}}}, \, \overline{\rho_{v^{*}}}| \, du^{*}, dv^{*}$$

# 10.2. Другое выражение для площади поверхности

$$\begin{split} &\left|\left[\overline{r_u},\overline{r_v}\right]\right|^2 + (\overline{r_u},\overline{r_v})^2 = \left|\overline{r_u}\right|^2 \left|\overline{r_v}\right|^2 \\ &\left|\left[\overline{r_u},\overline{r_v}\right]\right| = \sqrt{EG-F^2},\, E = \left|r_u\right|^2,\, G = \left|r_v\right|^2,\, F = (\overline{r_u},\overline{r_v}) \\ &m(s) = \oint\limits_{\Omega} \sqrt{EG-F^2} du dv - \text{первый дифференциал поверхности.} \end{split}$$

Пример. 
$$z=f(x,y),\,(x,y)\in\overline{\Omega}$$
 
$$m(S)=\oint\limits_{\Omega}\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}dxdy=\oint\limits_{\Omega}\frac{dxdy}{\left|\cos\gamma\right|}$$

# 11. Поверхностные интегралы

#### 11.1. Поверхностный интеграл первого рода

g = g(x,y,z) непрерывна на простой гладкой поверхности  $S,\ S = \{\overline{r} = \overline{r}(u,v),\ (u,v) \in \overline{\Omega}\}$   $S = \bigcup_{j=1}^k S_j,\ \xi_j \in S_j,\ T = \{S_j\}_{j=1}^k;\ \xi = \{\xi_j\}_{j=1}^k;\ \sigma\{T,\xi\} = \sum_{j=1}^k g(\xi_j)m(S_j)$ 

**Определение.** Число I называется пределом интегральной суммы  $\sigma\{T,\xi\}$  при  $\Delta_T \to 0$ , если  $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta_T < \delta \& \forall \xi \Rightarrow |\sigma\{T,\xi\} - I| < \varepsilon$ 

**Определение** Если существует предел  $\sigma\{T,\xi\}$  при  $\Delta_T \to 0$ , то он называется поверхностным интегралом первого рода от функции g по поверхности S

Обозначение. 
$$\iint\limits_S g(x,y,z)dS = \iint\limits_S gdS$$

# 11.2. Сведение поверхностного интеграла первого роад к двойному интегралу

**Теорема 1.** Если S простая гладкая поверхность c кусочно гладким краем  $\delta S$ , а g(x,y,z) непрерывна на S, то справедлива формула:

$$\iint_{S} g(x,y,z)dS = \iint_{S} g(\overline{r}(u,v) | [\overline{r_{u}}, \overline{r_{v}}]|)$$

Доказательство. 
$$T=\{S_i\}, T_i=\{\Omega_i\}, \Delta_T\to 0\Leftrightarrow \Delta_{T'}\to 0$$

$$F(\Omega_i)=S_i, \xi_i\in S_i, \overline{O\xi}=\overline{r}(\eta_i), \xi=\{\xi_i\}, \eta=\{\eta_i\}$$

$$\sigma^S\{T,\xi\}=\sim_i g(\xi_i)m(S_i)=\sum_i g(\xi_i)\iint\limits_{\Omega_i}|[\overline{r_u},\overline{r_v}]|dudv$$

$$\exists \eta_i^*\in \overline{\Omega_i}: \sum_i g(r(\eta_i))|[\overline{r_u}(\eta_i^*),\overline{r_v}(\eta_i^*)]|m(\Omega_i)$$

$$\sigma\{T',\eta\}=\sum_i g(r(\eta_i))|[\overline{r_u}(\eta_i),\overline{r_v}(\eta_i)]|m(\Omega_i)$$

$$w=|[\overline{r_u}(\eta),\overline{r_v}(\eta)]|-\text{ непрерывна на }\overline{\Omega}\overset{\text{т. Kантора}}{\Longrightarrow}\text{ равномерно непрерывна на }\overline{\Omega}$$

$$\forall \varepsilon>0\exists \delta=\delta(\varepsilon): \forall \eta,\eta'\in \overline{\Omega}: \rho(\eta>\eta')<\delta\to ||[\overline{r_u}(\eta),\overline{r_v}(\eta)]|-|[\overline{r_u}(\eta'),\overline{r_v}(\eta')]||<\frac{\varepsilon}{Mm(\Omega)}$$

$$|\sigma^S\{T,\xi\}-\sigma\{T',\eta\}\leqslant M\sum_i ||[\overline{r_u}(\eta),\overline{r_v}(\eta)]|-|[\overline{r_u}(\eta'),\overline{r_v}(\eta')]||m(\Omega_i)\leqslant M\frac{\varepsilon}{Mm(\Omega)}m(\Omega)=\varepsilon$$

$$\Delta_T\to 0\Rightarrow \sigma^S\{T,\xi\}\to I\leftarrow\sigma\{T',\eta\}$$

### 11.3. Определение поверхностного интеграла второго рода

 $S=\{\overline{r}=\overline{r}(u,v),(u,v)\in\overline{\Omega}\}$  ориентированная гладкая поверхность с кусочно гладким краем  $\delta S,\,\overline{n}=\pm\frac{[\overline{r_u},\overline{r_v}]}{|[\overline{r_u},\overline{r_v}]|},\,R=R(x,y,z)$  определена на S  $T=\{S_i\},\,X_i$  — проекция  $S_i$  на плоскость xOy Из T отбрасываем те  $S_i$ , которые

- 1. не взаимно однозначное отображение на плоскость xOy
- 2. часть  $S_i$  лежит сверху и снизу от поверхности  $S_i$  (согнутый листик)

 $T' = \{S_i\}; \ X_i = \pm m(X_i), \ \Delta_T <$ наибольший диаметр множеств  $S_i \in T'$  Ориентация:  $\delta S_i, \ S_i \in T'$ , согласована с ориентацией поверхности  $S, \ \partial X_i$  обходится таким образом, что  $X_i$  остается слева.

Правило выбора знака:  $X_i = \pm m(X_i)$   $'+' \to \delta S_i, \partial X_i$  — ориентированы одинаково  $'-' \to \delta S_i.\partial X_i$  — противоположно ориентированы  $\overline{\xi_i} \in S_i, S_i \in T', \xi = \{\xi_i\} \to \sigma\{T',\xi,+\} = \sum_i R(\xi_i)x_i; \quad \sigma\{T',\xi,-\} = -\sigma\{T,\xi,+\}$ 

**Определение.** Число I называется пределом суммы  $\sigma\{T,\xi,+\}$  при  $\Delta_T \to 0$ , если  $\forall \varepsilon > 0$   $\exists \delta = \delta(\varepsilon) > 0: \forall T': \Delta_{T'} < \delta \& \forall \xi \to |\sigma\{T',\xi,+\} - I| < \varepsilon$  Если предел I существует, то о называется поверхностным интегралом второго рода и обозначается:  $I = \iint_S R(x,y,z) dx dy = \iint_S R dx dy$ 

**Пример.**  $S = \{z = g(x,y), x,y \in \overline{\Omega}\}$ , ориентирована таким образом, что  $\overline{n}$  образует острый угол с Oz,  $T = \{S_i\}$ ; T = T', R = R(x,y,z),  $\xi_i \in S_i$ ,  $\xi_i(x_i,y_i,g(x_i,y_i))$   $\sigma\{T,\xi,+\} = \sum_i R(\xi_i) m(X_i) = \sum_i R(x_i,y_i,g(x_i,y_i)) m(X_i)$   $\Delta_T \to 0 \Rightarrow \iint_{\Omega} R(x,y,g(x,y,)) dx dy = \iint_{S} R(x,y,z) dx dy$ 

# 11.4. Общий вид поверхностного интеграла 2-го рода.

 $S=\{\overline{r}=\overline{r}(u,v),(u,v)\in\overline{\Omega}\}$  — ориентированная гладкая поверхность с кусочно гладким краем  $\delta S$   $\overline{n}=\frac{\pm[\overline{r_u},\overline{r_v}]}{|[\overline{r_u},\overline{r_v}]|},Q,P$  на S  $T=\{S_i\},Y_i$  — проекция  $S_i$  на плоскость yOz из T отбрасываем те  $S_i$ , которые

- 1. не биективное отображение на плоскость yOz
- 2. Часть  $S_i$  лежит сверху и снизу от поверхности

$$T'=\{S_i\},\,Y_i=\pm m(Y_i),\,\Delta_{T'}$$
 — диаметр (наиб) множеств  $S_i'\in T'$  
$$\iint_S P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy$$

# 11.5. Сведение поверхностных интегралов 2-го рода к поверхностному интегралу первого рода.

**Теорема 2.** Пусть S — ориентированная гладкая поверхность с кусочно гладким краем P, Q, R непрерывна на S, тогда справедлива формула

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = \iint\limits_{S} [P \cos(\overline{n}, i) + Q \cos(\overline{n}, j) + R \cos(\overline{n}, k)] dS$$

Доказательство. 1) 
$$S=\{x,y,z:z=g(X,y),(x,y)\in\overline{\Omega}\}$$
 Выбрана верхняя сторона поверхности  $S,\,X_i-$  полож.,  $T=T'$   $m(S_i)=\iint_{\Omega_i}\frac{dxdy}{\cos\gamma_i}=\cos\gamma_i^*m(X_i); \quad X+i=m(X_i)=\cos\gamma_i^*\cdot m(S_i)$   $\xi_i\in S_i,\,\xi=\{\xi_i\}:\sigma\{T,\xi,+\}=\sum_iR(\xi_i)X_i=\sum_iR(\xi_i)\cos\gamma_i^*m(S_i)$   $\sigma'\{T,\xi\}=\sum_iR(\xi_i)\cos\gamma_im(S_i),\,\gamma_i^*=\gamma(\xi_i^*),\,\xi_i^*\in S_i,\,\gamma_i=\gamma(\xi_i)$   $\cos\gamma-$  функция неперывна на  $S$   $\forall \varepsilon>0\;\exists \delta=\delta(\varepsilon)>0:\forall \xi\&\xi'\;\rho(\xi,\xi')<\delta\to|\cos\gamma(\xi)-\cos\gamma(\xi')|<\frac{\varepsilon}{Mm(\xi)}$   $|\sigma\{\xi,T,+\}-\sigma'\{T,\xi\}|\leqslant M\frac{\varepsilon}{Mm(\xi)}\sum_im(S_i)=\varepsilon$   $T:\Delta_T<\delta$  
$$\iint\limits_S Rdxdy=\iint\limits_S R\cos(\overline{n},k)dS$$
 2) Общий случай  $T=T'\cup T$ "  $\sigma\{T',\xi,+\}\xrightarrow{\Delta_{T'\to 0}}\iint\limits_S R\cos(\overline{n},k)$ 

# Часть III

# Теория поля

# 12. Элементы векторного анализа

# 12.1. Скалярные и векторные поля

Если в области  $\mathcal{D} \subset \mathbb{E}^3$  задана функция u = u(x,y,z), то будем говорить, что в  $\mathcal{D}$  задано скалярное поле  $\forall (x,y,z) \in \mathcal{D}, (x,y,z) \to u$ 

Если в области  $\mathcal{D} \subset \mathbb{E}^3$  задана векторная функция  $\overline{a} = (P,Q,R), P = P(x,y,z), Q = Q(x,y,z), R = R(x,y,z)$ , то будем говорить, что в области  $\mathcal{D}$  задано векторное поле  $\forall (x,y,z) \in \mathbb{D}(x,y,z) \to \overline{a}(P,Q,R)$ 

# 12.2. Вектор Гамильтона

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

- 1. Если функция u или вектор  $\overline{a}$  стоят справа от  $\nabla$ , то он действует на них как дифференциальные оператор
- 2. Если функция u или вектора  $\overline{a}$  стоят слева от  $\nabla$ , то получаем новый дифференциальный оператор

#### Пример 1

$$\operatorname{grad} u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) = \nabla u$$

#### Пример 2

graduv = ugradv + vgradu

#### Пример 3

$$\overline{r} = (x, y, z), \, \rho = |\overline{r}| = \sqrt{x^2 + y^2 + z^2}$$

$$\nabla u(\rho) = \left(\frac{\partial u}{\partial x}(\rho), \frac{\partial u}{\partial y}(\rho), \frac{\partial u}{\partial z}(\rho)\right) = u'(\rho) \cdot \left(\frac{x}{\rho}, \frac{y}{\rho}, \frac{z}{\rho}\right) = \frac{u'(\rho)}{\rho}\overline{r}$$

Пример 4  $(\nabla, \overline{a}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \text{div}\overline{a}$ 

Эта функция называется дивергенцией векторного поля  $\bar{a}$ 

#### Пример 5

$$[\nabla, \overline{a}] = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)i + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)j + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)k = \operatorname{rot}\overline{a}$$

#### Пример 6

$$\operatorname{div}(u\overline{a}) = (\nabla, u\overline{a}) = (\operatorname{grad} u, \overline{a}) + u(\nabla, \overline{a}) = (\operatorname{grad} u, \overline{a}) + u\operatorname{div} \overline{a}$$

#### Пример 7

$$\operatorname{div}[\overline{a},\overline{b}] = (\nabla, [\overline{a},\overline{b}]) = (\nabla, \overline{a},\overline{b}) = (\overline{b},\nabla,\overline{a}) - (\overline{a},\nabla,\overline{b}) = (\overline{b},\operatorname{rot}\overline{a}) - (\overline{a},\operatorname{rot}\overline{b})$$

#### Пример 8

$$rot(u,\overline{a}) = [\nabla, u\overline{a}] = [\nabla u,\overline{a}] + u[\nabla,\overline{a}] = [grad u,\overline{a}] + urot\overline{a}$$

#### Пример 9

$$\mathrm{rot}[\overline{a},\overline{b}] = [\nabla, [\overline{a},\overline{b}]] = \overline{a}(\nabla,\overline{b}) - \overline{b}(\nabla,\overline{a}) = \overline{a}\mathrm{div}b - \overline{b}\mathrm{div}a + (\overline{b},\nabla)\overline{a} - (\overline{a},\nabla)\overline{b}$$

#### Пример 10

$$[\overline{b}, \mathrm{rot} \overline{a}] = \left[\overline{b}, [\nabla, \overline{a}]\right] = \nabla(\overline{b}, \overline{a}) - (\overline{b}, \nabla)\overline{a}$$

#### Пример 11

$$(\overline{c}, \overline{b}, \operatorname{rot}\overline{a}) = (\overline{c}, [\overline{b}, \operatorname{rot}\overline{a}]) = (\overline{c}, \nabla(\overline{b}, \overline{a})) - (\overline{c}, (\overline{b}\nabla)\overline{a}) = (\overline{b}, (\overline{c}\nabla), a) - (\overline{c}, (\overline{b}\nabla), \overline{a})$$

Пример 12

$$\operatorname{divrot} \overline{a} = (\nabla, \operatorname{rot} \overline{a}) = (\nabla, [\nabla, \overline{a}]) = (\nabla, \nabla, \overline{a}) = 0$$

Пример 13

$$\operatorname{rotgrad} u = [\nabla, \nabla u] = u[\nabla, \nabla] = 0$$

# 13. Формула Остроградского – Гаусса

### 13.1. Доказательство формулы

Определение. Область  $D \subset \mathbb{E}^3$  называется элементарной относительно оси Oz если ее проекция  $\Omega$  на гиперплоскость  $\mathcal{E}_z = \{(x,y,z): z=0\}$  является областю и  $\partial D$  состоит из графиков функция  $z=\psi(x,y), z=\varphi(x,y)$  причем  $\psi(x,y)\leqslant \varphi(x,y)\, \forall (x,y)\in \overline{\Omega}$  и, быть может, цилиндрическая поверхность, образующая которой параллельна Oz и направляющей ее является  $\partial\Omega$ 

$$D = \{(x,y,z) \in \mathbb{E}^3 : \psi(x,y) \leqslant z \leqslant \varphi(x,y), (x,y) \in \overline{\Omega}\}\$$

**Замечание.** Элементарная относительно Oz область  $\mathcal{D}$  измерима, если  $\Omega$  — измерима, и  $\varphi, \psi$  непрывны на  $\overline{\Omega}$ .

**Теорема 1.** Если измеримая область  $\mathcal{D} \subset \mathbb{E}^3$  элементарна относительно трех координатных осей одновременно,  $\partial \mathcal{D}$  ориентирована внешней нормалью  $\overline{n}$ , векторное поле  $\overline{a} = (P,Q,R)$  непрерывно дифференцируема в  $\overline{\mathcal{D}}$ , то справедлива формула Остроградского-Гаусса:

$$\iint\limits_{\partial \mathcal{D}} P dy dz + Q dz dx + R dx dy = \iiint\limits_{\mathcal{D}} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

Доказательство.  $\iint\limits_{\mathcal{D}} \frac{\partial R}{\partial z} dx dy dz =$  этот интеграл существует в силу наложенных ограниче-

$$S_1 = \{(x,y,z) : z = \varphi(x,y), (x,y) \in \overline{\Omega}\},\$$

$$S_2 = \{(x,y,z) : z = \psi(x,y), (x,y) \in \overline{\Omega}\};$$

$$S = \{(x,y,z) : (x,y) \in X \subset \partial\Omega\} \ n \perp Oz \to \iint_{S} R(x,y,z) dxdy = 0$$

Тогда наш интеграл равен  $\iint\limits_{S_1} R(x,y,z) dx dy + \iint\limits_{S_2} R(x,y,z) dx dy + \iint\limits_{S} R(x,yz) dx dy = \iint\limits_{\partial D} R(x,y,z) dx dy$ 

- 34 -

 $\iint\limits_S P dy dz + Q dz dx + R dx dy = \iint\limits_S (P\cos\alpha + Q\cos\beta + R\cos\gamma) dS = \iint\limits_S (\overline{a},\overline{n}) dS$  — этот интеграл будем называть потоком векторного поля a через поверхность S в направлении вектора нормали.

$$\iint\limits_{\partial\mathcal{D}}(\overline{a},\overline{n})dS=\iiint\limits_{\mathcal{D}}div\overline{a}d\mathcal{D}$$
— формула Остроградского–Гаусса

#### 13.2. Приложения формулы Остроградского-Гаусса

1. 
$$m(\mathcal{D}) = 1/3 \iint_{\partial \mathcal{D}} x dy dz + y dz dx + z dx dy$$

2. Инвариантность div  $\overline{a}$ 

**Теорема 2.** Пусть  $\overline{a}$  — непрерывно дифференцируемое в  $\overline{\mathcal{D}}$  векторное поле.  $S_{\varepsilon}(M_0)$  — шар с центром в  $M_0$  и радиусом  $\varepsilon$ , причем  $\overline{S_{\varepsilon}(M_0)} \subset \mathcal{D}$ , тогда div  $\overline{a} = \lim_{\varepsilon \to 0} \frac{\int\limits_{\partial S_{\varepsilon}(M_0)} (\overline{a},\overline{n})dS}{m(S_{\varepsilon}(M_0))}$ 

Доказательство. 
$$\iint_{S_{\varepsilon}(M_0)} \operatorname{div} \overline{a} d\mathcal{D} = \iint_{\partial S_{\varepsilon}(M_0)} (\overline{a}, \overline{n}) dS$$
$$\exists M^* \in S_{\varepsilon}(M_0) : \operatorname{div} \overline{a}(M^*) \cdot m(S_{\varepsilon}(M_0)) = \iint_{\partial S_{\varepsilon}(M_0)} (\overline{a}, \overline{n}) dS$$

$$\operatorname{div}\overline{a}(M^*) = \frac{\iint\limits_{\partial S_{\varepsilon}(M_0)} (\overline{a},\overline{n})dS}{m(S_{\varepsilon}(M_0))} \quad \varepsilon \to 0 : M^* \to M_0$$

# 13.3. Соленоидальные векторные поля.

**Определение.** Область  $\mathcal{D} \in \mathbb{E}^3$  называется объемно-односвязной областью, если любая замкнутая поверхность  $S \subset \mathcal{D}$  является границей области  $\mathcal{D}' \subset \mathcal{D}$ 

**Замечание.** Из определения следует, что  $\partial \mathcal{D}$  объемно-односвязной области является связным множеством.

**Определение.** Непрерывное векторное поле  $\overline{a}$  заданное в области  $\mathcal{D}$  называется соленоидальным, если поток векторного поля через любую замкнутую кусочно гладкую поверхность  $S \subset \mathcal{D}$  равен нулю:  $\iint_S (\overline{a}, \overline{n}) dS = 0$ 

**Теорема 3.** Для того, чтобы непрерывно дифференцируемое векторное поле  $\bar{a}$  было соленоидальным в области  $\mathcal{D}$  необходимо, а в случае объемной односвязной области и достаточно, чтобы  $\operatorname{div} \bar{a} = 0$  в  $\mathcal{D}$ 

Доказательство. **Необходимость**  $\overline{a}$  — соленоидальна в  $\mathcal{D}$ 

$$\forall M_0 \in \mathcal{D} \ S_{\varepsilon}(M_0) \subset \mathcal{D} \quad \operatorname{div}\overline{a}(M_0) = \lim_{\varepsilon \to 0} \frac{\iint\limits_{\partial S_{\varepsilon}(M_0)} (\overline{a},\overline{n})}{m(S_{\varepsilon}(M_0))} = 0$$

Достаточность.  $\forall S \subset \mathcal{D} \ \iint\limits_{S} (\overline{a},\overline{n}) dS = \iint\limits_{\mathcal{D}'} \operatorname{div} \overline{a} dD \Rightarrow \overline{a} - \operatorname{coлehouganha}.$ 

Пример. 
$$\overline{r}=(x,y,z).$$
  $\rho=|\overline{r}|=\sqrt{x^2+y^2+z^2}$   $\overline{a}=\nabla \frac{1}{\rho}=-\frac{\overline{r}}{\rho^3}$   $\operatorname{div}\overline{a}=(\nabla,-\frac{\overline{r}}{\rho^3})=-(\nabla \frac{1}{\rho^3},\overline{r})-\frac{1}{\rho^3}(\nabla,\overline{r})=\frac{3}{\rho^5}(\overline{r},\overline{r})-\frac{3}{\rho^3}=\frac{3}{\rho^3}-\frac{3}{\rho^3}=0$   $\iint_S (\overline{a},\overline{n})dS=\iint_S (-\frac{\overline{r}}{R^3},\frac{\overline{r}}{R})dS=-\frac{1}{R^2}\iint_S dS=-4\pi\neq 0$   $S:x^2+y^2+z^2=R^2$ 

# 14. Формула Стокса.

### 14.1. Простая гладкая поверхность.

$$S = \{ \overline{r} = \overline{r}(u,v), (u,v) \in \overline{\Omega} \}$$

- 1.~r дважды непрерывно дифференцируема в  $\overline{\Omega}$ 
  - 2.  $\partial\Omega$  кусочно гладкая поверхность, следовательно  $\partial S$  кусочно гладкая
  - 3. Ориентация края  $\delta S$  согласованно с ориентацией нормали поверхности S
  - 4. В  $\mathcal{D}$  задано непрерывно дифференцируемое векторное поле  $\overline{a} = (P,Q,R)$

$$\int_{\delta S} P dx + Q dy + R dz = \int_{\delta S} (\overline{a}, d\overline{r})$$

**Теорема 1.** При заданных условиях 1-4 циркуляция векторного поля  $\overline{a}$  вдоль кривой  $\delta S$  равна потоку вихря векторного поля  $\overline{a}$  через ту сторону поверхности S, с которой обход  $\delta S$  виден по ходу часовой стрелки.

$$\int_{\delta S} (\overline{a}, d\overline{r}) = \iint_{S} (\operatorname{rot}\overline{a}, \overline{n}) dS$$

Доказательство.  $\overline{c}, \overline{b}, \mathrm{rot}\overline{a} = (\overline{b}, (\overline{c}, \nabla)\overline{a}) - (\overline{c}, (\overline{b}, \nabla)a)$ 

$$S = \{ \overline{r} = \overline{r}(u,v), (u,v) \in \overline{\Omega} \}$$

$$\partial \Omega = \{ u = \varphi(t), v = \psi(t), \alpha \leqslant t \leqslant \beta \}$$

$$\delta S = \{ \overline{r} = \overline{r}(\varphi(t)), \psi(t)), \alpha \leqslant t \leqslant \beta \}$$

$$\int_{\delta S} (\overline{a}, dr) = \int_{\alpha}^{\beta} (\overline{a}(\varphi(t), \psi(t)), \overline{r_u}(\varphi(t), \psi(t))\varphi'(t) + \overline{r_v}(\varphi(t), \psi(t))\psi'(t))dt = \int_{\partial \Omega} (\overline{a}, \overline{r_u})du + (\overline{a}, \overline{r_v})dv = \\
= \iint_{\Omega} \left[ \frac{\partial}{\partial u} (\overline{a}, \overline{r_v}) - \frac{\partial}{\partial u} (\overline{a}, \overline{r_u}) \right] du dv = \iint_{\Omega} \left[ (\frac{\partial \overline{a}}{\partial x} x_u + \frac{\partial \overline{a}}{\partial y} y_u + \frac{\partial \overline{a}}{\partial z} z_u, \overline{r_v}) - (\frac{\partial \overline{a}}{\partial x} x_v + \frac{\partial \overline{a}}{\partial y} y_v + \frac{\partial \overline{a}}{\partial z} z_v, \overline{r_u}) \right] = \\
= \iint_{\Omega} \left[ ((r_u \nabla) \overline{a}, \overline{r_v}) - ((\overline{r_v} \nabla) \overline{a}, \overline{r_u}) \right] du dv = \iint_{\Omega} (\overline{r_u}, \overline{r_v}, \operatorname{rot} \overline{a}) du dv = \iint_{\Omega} \left( \operatorname{rot} \overline{a}, \frac{[\overline{r_u}, \overline{r_v}]}{|[\overline{r_u}, \overline{r_v}]|} \right) |[\overline{r_u}, \overline{r_v}]| du dv = \\
= \iint_{S} (\operatorname{rot} \overline{a}, \overline{n}) dS$$

### 14.2. Кусочно гладкая поверхность.

$$S = \bigcup_{i=1}^k S_i, \delta S_i$$
 
$$\sum_{i=1}^k \oint_{\partial S_i} (\overline{a}, d\overline{r}) = \sum_{i=1}^n \iint_{S_i} (\mathrm{rot}\overline{a}, \overline{n}) dS$$
 
$$\oint_{\partial S} (\overline{a}, d\overline{r}) = \iint_{S} (\mathrm{rot}\overline{a}, \overline{n}) dS$$
 На каждой  $S_i$  свой  $\overline{n} \Rightarrow$  формула Стокса остается справедливой

#### 14.3. Инвариантность $rot \overline{a}$

$$\mathcal{D}\subset\mathbb{E}^3$$
, непрерывно дифференцируемое векторное поле  $\overline{a}$   $M_0(\overline{r_0})=M_0\subset\mathcal{D},\overline{n},\ \prod:(\overline{r}-\overline{r_0},\overline{n})=0$   $S_{\varepsilon}(M_0)\subset\prod,\partial S_{\varepsilon}(M_0)$  — ориентирована положительно, обход согласован с  $\overline{n}$   $\oint\limits_{\partial S_{\varepsilon}(M_0)}(\overline{a},d\overline{r})=\iint\limits_{\partial S_{\varepsilon}(M_0)}(\cot\overline{a},\overline{n})dS$   $(\cot\overline{a},\overline{n})(M^*)m(S_{\varepsilon}(M_0))=\oint\limits_{\partial S_{\varepsilon}(M_0)}(\overline{a},d\overline{r})$   $(\cot\overline{a},\overline{n})(M_0)=\lim\limits_{\varepsilon\to 0}\frac{\partial S_{\varepsilon}(M_0)}{m(S_{\varepsilon}(M_0))}$ 

**Теорема 2.** Если в области  $\mathcal{D}$  задано непрерывное дифференцируемое векторное поле  $\overline{a}$  и в нем выбрана точка  $M_0$  в которой задан вектор нормали  $\overline{n}$  и построена плоскость проходящая через эту точку и в ней выбран круг, ориентированный положительно, то выполнена формула

$$(\operatorname{rot}\overline{a}, \overline{n})(M_0) = \lim_{\varepsilon \to 0} \frac{\oint_{S_{\varepsilon}(M_0)} (\overline{a}, d\overline{r})}{m(S_{\varepsilon}(M_0))}$$

# 14.4. Потенциальные векторные поля.

В  $\mathcal{D} \subset \mathbb{E}^3$  задано непрерывное векторное поле  $\overline{a}$ 

**Определение.** Непрерывное векторное поле  $\overline{a}$  называют потенциальным, если существует такая функция u, что  $\overline{a} = \operatorname{grad} u$ 

**Теорема 3.** Пусть в области  $\mathcal{D} \subset \mathbb{E}^3$  задано непрерывное дифференцируемое поле  $\overline{a}$ , тогда следующие условия эквивалентны:

- 1.  $\oint_{\Gamma}(\overline{a},d\overline{r})=0$ , для любой кусочно гладкая замкнутой кривой  $\Gamma\subset\mathcal{D}$
- 2.  $\int_{\Gamma} (\overline{a}, d\overline{r}), \ \Gamma \kappa y$ сочно гладкая кривая, соединяющая точки  $A, \ B, \ \Gamma \subset \mathcal{D}$  не зависит от кривой  $\Gamma$  (для любых точек  $A, B \in \mathcal{D}$ )
- 3. Поле  $\overline{a}$  потенциальное.

\* — доказательство аналогично плоскому случаю

**Определение.** Область  $\mathcal{D} \subset \mathbb{E}^3$  называется поверхностно односвязной, если на любой кусочно гладкий контур  $\gamma \subset \mathcal{D}$  можно натянуть поверхность S, лежащую в области  $\mathcal{D}$ 

**Замечание.** Шар с выколотой точкой не является объемно-односвязной областью, но этот шар является поверхностно односвязной областью. Тор является объемно-односвязной областью, но не является поверхностно-односвязной областью.

**Теорема 4.** Для потенциальности непрерывно дифференцируемого векторного поля  $\overline{a}$ , определенного в области  $\mathcal{D} \subset \mathbb{E}^3$ , необходимо, а в случае поверхностно односвязанности достаточно, чтобы векторное поле  $\overline{a}$  было безвехревым, т.е.  $\operatorname{rot} \overline{a} = \overline{0}$ 

 $\mathcal{A}$ оказательство. **Необходимость.**  $\exists u: \quad \overline{a} = \operatorname{grad} u \text{ в } \mathcal{D} \subset \mathbb{E}^3 \ \overline{a} = \nabla u \text{ rot} \overline{a} = [\nabla, \nabla u] = \overline{0}$   $\mathcal{A}$ остаточность.  $\operatorname{rot} \overline{a} = \overline{0}$ 

$$\forall \gamma \subset \mathcal{D}$$
, кусочно гладкий контур  $\gamma = \delta S, S \subset \mathcal{D}$   $\oint_{\gamma} (\overline{a}, d\overline{r}) = \iint_{S} (\mathrm{rot}\overline{a}, \overline{n}) dS = 0$ , тогда  $1 \Leftrightarrow 3$ 

**Замечание.** В случае отсутствия поверхностной односвязанности  $\mathcal{D}$  из  $\mathrm{rot}\overline{a}=0$  тотенциальность

тенциальность 
$$\overline{a} = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, z\right)$$
 определяет  $\mathbb{E}^3 \setminus \{Oz\}$ ,  $\cot \overline{a} = \overline{0}$   $\gamma: \{x^2+y^2=1, z=0\}$ ,  $\oint_{\gamma} (\overline{a}, d\overline{r}) = \oint_{\gamma} -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy + z dz = 2\pi \neq 0 \Rightarrow$  нет потенциальности поля.