Shipment Pricing Prediction

PARVEJ ALAM ANSARI
IBM Advanced Data Science Capstone

Use Case

- The market for supply chain analytics is expected to develop at a CAGR of 17.3 percent from 2019 to 2024, more than doubling in size.
- This data demonstrates how supply chain organizations are understanding the advantages of being able to predict what will happen in the future with a decent degree of certainty.
- Supply chain leaders may use this data to address supply chain difficulties, cut costs, and enhance service levels all at the same time.

Dataset

- The dataset was obtained from USA Government Website (https://data.usaid.gov/HIV-AIDS/Supply-Chain-Shipment-Pricing-Data/a3rc-nmf6)
- Dataset consists of 10324 samples and 33 features of which 26 are categorical and 7 are numerical.

```
In [6]:
         1 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10324 entries, 0 to 10323
        Data columns (total 33 columns):
             Column
                                            Non-Null Count
             ID
                                            10324 non-null
                                                             int64
             Project Code
                                            10324 non-null
                                                             object
             PQ #
                                            10324 non-null
             P0 / S0 #
                                            10324 non-null
                                                             object
             ASN/DN #
                                            10324 non-null
                                                             object
             Country
                                            10324 non-null
                                                             object
             Managed By
                                            10324 non-null
                                                             object
             Fulfill Via
                                            10324 non-null
                                                             object
             Vendor INCO Term
                                            10324 non-null
                                                             object
             Shipment Mode
                                            9964 non-null
                                                             object
             PO First Sent to Client Date 10324 non-null
                                                             object
             PO Sent to Vendor Date
                                            10324 non-null
                                                             object
             Scheduled Delivery Date
                                            10324 non-null
                                                             object
             Delivered to Client Date
                                            10324 non-null
                                                             object
             Delivery Recorded Date
                                            10324 non-null
                                                             object
             Product Group
                                            10324 non-null
                                                             object
             Sub Classification
                                            10324 non-null
                                                             object
             Vendor
                                            10324 non-null
                                                             object
             Item Description
                                            10324 non-null
                                                             object
             Molecule/Test Type
                                            10324 non-null
                                                             object
         20
             Brand
                                            10324 non-null
                                                             object
             Dosage
                                            8588 non-null
                                                             object
             Dosage Form
                                            10324 non-null
                                                             object
             Unit of Measure (Per Pack)
                                            10324 non-null
                                                             int64
             Line Item Ouantity
                                            10324 non-null
                                                             int64
             Line Item Value
                                            10324 non-null
                                                             float64
         26 Pack Price
                                            10324 non-null
                                                            float64
             Unit Price
                                                             float64
             Manufacturing Site
                                            10324 non-null
                                                             object
             First Line Designation
                                            10324 non-null
                                                             object
             Weight (Kilograms)
                                            10324 non-null
                                                             object
             Freight Cost (USD)
                                            10324 non-null
             Line Item Insurance (USD)
                                            10037 non-null
```

Data Quality Assessment

- In Dataset, outof 33 features, 3 features contain missing values.
- Some duration values were negative suggesting outliers or missing values
- The numerical features are highly skewed and categorical features needs to be properly handled.
- There were no Duplicates in the dataset.

Exploration and Visualization

South Africa and Nigeria are most preferred Destination country for shipments.

Exploration and Visualization

Feature Engineering

- · Missing values were properly handled as pre the need.
- Each numerical values was clipped to remove outliers.
- Categorical variables were converted to Numerical one for processing.
- Feature Scaling was performed using MinMax scaler.
- Numerical features and Categorical features were preprocessed for better performance of the ML Algorithms.

Model Selection

- Two models were uses:-
 - 1. Gradient boosted tree implemented with LightGBM
 - 2. Deep Neural Network implemented with Keras
- Hyper-parameters For each models were optimized using Bayesian optimization
- The models were evaluated on all 3 three feature sets.

Results

Out[224]:		Train RMSE	Test RMSE	Training Score	Test Score
	Linear Regression	30305.201637	30193.461306	0.952646	0.950245
	Decision Tree Regressor	13334.788570	22436.725747	0.990832	0.972526
	Random Forest Regressor	16430.245975	18590.446875	0.986081	0.981138
	ANN Regressor	20613.034324	19750.531817	0.978092	0.978711

out[437]:		Train RMSE	Test RMSE	Training Score	Test Score
	Gradient Boosting Regressor	17121.363784	18772.611970	0.984885	0.980767
	LGBMRegressor	8838.888201	13918.219741	0.995972	0.989428
	XGBRFRegressor	19531.705268	22176.163321	0.980330	0.973160

Out[438]:		Train RMSE	Test RMSE	Training Score	Test Score
	LGBMRegressor	6378.165889	12630.794511	0.997902	0.991293

Results

Results

TOP 12 most important features

Model Performance Indicator

```
In [490]:
            I from sklearn.metrics import r2 score, mean squared error
            2 y train pred =lgbm tuned3.predict(x train)
           3 y test pred = lgbm_tuned3.predict(x_test)
            5 print ("R-squared Training", r2 score(y train, y train pred))
            6 print ("R-squared Testing", r2 score(y test, y test pred))
          R-squared Training 0.9980930298933035
          R-squared Testing 0.9920797654261521
In [500]:
           1 #display adjusted R-squared train
            2 1 - (1-0.998093)*(len(y test)-1)/(len(y test)-x test.shape[1]-1)
Out[500]: 0.9980835265772479
In [501]:
           1 #display adjusted R-squared test
           2 | 1 - (1-0.99208)*(len(y test)-1)/(len(y test)-x test.shape[1]-1)
Out[501]: 0.9920406557377048
```

Conclusion

- Dataset was cleaned, explored and visualized
- Top 12 correlating features were isolated
- Multiple Classical Machine Learning Algorithms and One Deep Learning based Neural Network was implemented against the data set to check the best performant algorithm.
- LightGBM ML Algorithm was selected for model traning and testing.
- Testing Accuracy is more than 99 precent.

THANK YOU