2018

Prova 2 – Turma 94 Matemática Discreta - Professora Karla

- 1. Prove passo a passo, usando as identidades que, A \cap (B \cup C) \cup ([A' \cap (B \cup C)] \cup (B \cup C)') = S.
- 2. Seja n um número positivo. Mostre que em qualquer conjunto de n + 1 números, existem pelo menos dois com o mesmo resto quando dividido por n, justifique a sua resposta
- 3. Enuncie os resultados de Euler sobre grafos planares e suas simplificações e use esse resultado para provar que nem K_5 nem o $K_{3,3}$ são grafos planares.
- 4. Prove por indução simples que todo grafo completo é conexo.

Identidades de Conjuntos Básicas

1a. $A \cup B = B \cup A$ 2a. $(A \cup B) \cup C =$	1b. $A \cap B = B \cap A$ 2b. $(A \cap B) \cap C =$	(propriedades comutativas) (propriedades associativas)
$A \cup (B \cup C)$	$A \cap (B \cap C)$	*****
3a. $A \cup (B \cap C) =$	3b. $A \cap (B \cup C) =$	(propriedades distributivas)
$(A \cup B) \cap (A \cup C)$	$(A \cap B) \cup (A \cap C)$	• •
4a. $A \cup \emptyset = A$	4b. $A \cap S = A$	(propriedades de identidade)
5a. $A \cup A' = S$	5b. $A \cap A' = \emptyset$	(propriedades de complemento)

(Perceba que a propriedade 2a nos permite escrever $A \cup B \cup C$ sem a necessidade do uso de parênteses; 2b nos permite escrever $A \cap B \cap C$.)