Information measurement and entropy

Hung-Hsuan Chen

Claude E. Shannon

- 1916 2001
- Master's thesis: a symbolic analysis of relay and switching circuits (1937)
- PhD thesis: an algebra for theoretical genetics

The foundation of practical digital circuit design

Howard Gardner called Shannon's thesis
 "possibly the most important, and also the most noted, master's thesis of the (20th) century."

"A Mathematical Theory of Communication" (1948) -- Shannon developed information entropy as a measure for the uncertainty in a message

This essentially invents the field of information theory

How to measure "information"?

If we observe the occurrence of an event E
with probability p, how much information we
get?

- -I(p) = ?
- Note that measure we use p (not E) as the input parameter
- Essentially, given two events E_1 and E_2 , if their occurrence chance are both p, observing E_1 and observing E_2 reveal the same amount of information

The desired properties of the information measure

- We want the information measure I(p) to have the following properties
 - 1. $I(p) \ge 0$
 - 2. If p=1, we get no information from the occurrence of the event \rightarrow I(p)=0
 - 3. If two **independent** events E (with probability p) and F (with probability q) occur, the information we get from observing both events is the sum of the two information $\Rightarrow I(p * q) = I(p) + I(q)$
 - 4. The information measure should be a continuous and monotonic function of the probability
 - Observing a more likely events gives us fewer information
 - Shannon discovered a proper function to meet the above properties:
 - \triangleright $I(p) = \log(1/p) = -\log(p)$

Logarithm with different bases

- log₂: binary information unit → bit
- log₃: **tr**inary **i**nformation uni**t** → trit
- log_e: natural information unit → nat

- Unless otherwise mentioned, we often use base 2
 - If you see $\log(p)$, typically we mean $\log_2(p)$

Examples

 If you draw a card at random from a standard N=52-card deck and get a spade-A, how much information you get?

$$p = 1/52$$
, $I(p) = \log_2(52/1) = 5.7$

 If the card is a heart, how much information you get?

$$p = 1/4$$
, $I(p) = \log_2(4/1) = 2$

Entropy as the expected amount of information

• Suppose the probability of the events $(a_1, a_2, ..., a_n)$ are $(p_1, p_2, ..., p_n)$ respectively

$$p_1 + p_2 + ... + p_n = 1$$

- If we observe a_i , we get information $log_2(1/p_i)$ The probability of observing a_i is p_i
- What is the **expected** amount of information we will get?

$$\sum_{i=1}^{n} p_i \log_2(\frac{1}{p_i}) = \sum_{i=1}^{n} (-p_i \log_2(p_i))$$

$$\sum_{i=1}^{n} p_i \log_2(\frac{1}{p_i}) = \sum_{i=1}^{n} (-p_i \log_2(p_i))$$

Entropy as a measurement of uncertainty

- Example
 - Predicting the tossing result of a fair coin is harder (uncertainty is high)
 - Predicting the tossing result of an unfair coin is easier (uncertainty is low)
- Uniform distribution → every outcome is equally likely → hard to predict → high uncertainty → high entropy
- Gaussian distribution with small variance → certain outcomes are more likely → easier to predict → low uncertainty → low entropy

The range of entropy - in Pily i = - [.ly] mes - o.ly

- Max: $\log_2(n)$
 - -n: the number of possible outcomes
 - If n=2, the max entropy is 1
 - Max occurs when all the probabilities are the ex: -o.slyrs-oxlyrs same

•
$$p_1 = p_2 = p_3 = ... = p_n = 1/n$$

- Min: 0
 - Min occurs when one of the probabilities is 1 and the rests are 0's
 - p_i =1; for all $j \neq i$, p_i =0

Shannon game

- Guess a short paragraph "character by character"
 - The expected value of the log of the number of guesses is the entropy of the paragraph
- The following examples are listed in the book "The most human human" by Brian Christian (Chinese translation: 人性較量)

```
TH THE BLUE
# of times
to
correctly
guess the
character
```

- Information entropy is highly imbalanced
 - Some are easy to guess (low entropy)
 - Some requires much effort (high entropy)

EVEN THOUGH YOU DONT _ KNOW HOW TO FLY YOU MIGHT BE ABLE TO LIFT YOUR SHOE LONG ENOUGH FOR THE CAT TO MOVE OUT FROM UNDER YOUR FOOT

- Brian reported "Y", "C", and "M" are the ones with highest entropy (most guesses)
- It seems that "you", "cat", and "move" are the essence of the paragraph

Search function and Shannon game

- When using search engines, we tend to pick the less common words (high entropy)
 - Because we know that common words lead you to less relevant pages
- When search for a certain paragraph in a large document, we tend to search for the "special words"
 - Because we know the common words may appear in many paragraphs

Summary

- Information entropy provides a possible way to measure the "information" based on uncertainty
 - A highly certain event provides little information
- We may use information entropy to help build a decision tree classifier
 - We want after a split, each child node is "pure" (less uncertain)
 - i.e., the information entropy is low

Quiz

- Calculate the entropy of the following cases
 - 1. (O,O,X,X)
 - 2. (0,0,0,0)
 - > 0
 - 3. (O,O,X,X,A,A,B,B)
 - \rightarrow Max entropy \rightarrow log₂(4) = 2
 - ightharpoonup Or, based on the definition: $lap{1}{4} \log_2(4) +
 lap{1}{4} \log_2(4) +
 lap{1}{4} \log_2(4) = 2$