Computer Vision for HCI

Covariance Tracking

1

Covariance Tracking

Based on: "Covariance tracking using model update based means on Riemannian manifolds", Fatih Porikli, Oncel Tuzel, Peter Meer , CVPR 2006

Motivation

- Capture <u>spatial</u> and <u>statistical</u> properties, and their correlation
- Can fuse different types of features
 - Location
 - Color
 - Edges
 - Motion
- Low dimensional representation (fast)
- Scale invariance

2

Covariance Descriptor

Feature vector (for each pixel) $\mathbf{f}_k = [\mathbf{x} \mathbf{y} \mathbf{R} \mathbf{G} \mathbf{B}]^T$

Covariance Matrix

Person Model

$$C^{Model} = \frac{1}{MN} \sum_{k=1}^{MN} (f_k - \mu) (f_k - \mu)^T$$

dxd

Mean of all f_k

5

Finding the best match

C^{Model}

Candidate matches

- For each possible patch region in the <u>next</u> image, find its covariance matrix
- Compare C^{Model} to the covariance matrices of all possible patch regions in next image
- Find the patch in next image whose distance from C^{Model} is $\underline{\text{minimum}}$

Comparing Covariance Matrices

- Find the distance between 2 covariance matrices
- · Space of covariance matrices is not vector!
 - Simple arithmetic matrix subtraction would <u>not work</u>
- The space of covariance matrices is a Riemannian Manifold
- Distance metric:

$$\rho(C^{Model}, C^{Candidate}) = \sqrt{\sum_{i=1}^{r_r} \left[\ln(\lambda(C^{Mutbel}, C^{Candidate}))\right]^2}$$

 λ_i - Generalized Eigenvalues [In Matlab: $eig(C_1, C_2)$]

 $\sum_{i=1}^{r} \left[\ln(\lambda_{i}(C^{Model}, C^{Candidate})) \right]^{2}$

7

Algorithm

- Compute *C*^{Model} for known target in <u>current</u> image
- Scan all patches in next image
 - For each patch, compute covariance matrix C^{Candidate}
 - Find distance from C^{Model}

$$\rho(C^{Model}, C^{Candidate})$$

• Find patch region with minimum distance

Results

Active Camera tracking
Feature space: [x y R G B]
Target: manually selected on 1st frame

Other

- · Rotation invariance
 - Use <u>radial distance</u> instead of Cartesian position

 $f_k = [\mathbf{r}(\mathbf{x}, \mathbf{y}) \ \mathsf{R} \ \mathsf{G} \ \mathsf{B}]^\mathsf{T}$

- Model Update
 - Calculate an "average"/smoothed covariance matrix by taking the mean of the models from the past few frames, then use that as C^{Model}
 - Must calculate mean on manifold (see paper)

11

Summary

- · Algorithm for non-rigid object tracking
- · Covariance Tracking
 - Covariance of spatial and statistical features
 - Low dimensional representation of object
 - Distances between matrices based on manifold distance