MATH 525 Sections 2.1–2.3: Basics of Linear Codes

September 14, 2020

September 14, 2020 1 / 9

A linear code C of length n is a nonempty subset of $K^n = \{0,1\}^n$ such that $\mathbf{u} + \mathbf{v} \in C$ whenever $\mathbf{u}, \mathbf{v} \in C$. Using linear algebra jargon, C is a subspace of K^n .

Advantages of linear codes:

- Theoretical: In comparison with nonlinear codes:
 - 1 It is easier to determine the minimum distance of linear codes.
 - 2 It is easier to identify error patterns that are detectable/correctable.
 - 1 It is easier to evaluate the performance (reliability of IMLD, etc.) of linear codes.
- Practical: In comparison with nonlinear codes, linear codes use much less hardware and/or memory for encoding and decoding.

Disadvantage of linear codes:

A linear code has more structure than a general block code; as a consequence, they usually achieve lower minimum distances than non-linear codes of the same rate. Therefore, non-linear codes have higher error-correction and detection capabilities.

September 14, 2020 2 / 9

Key concepts from linear algebra we will use throughout the course:

- Vector spaces
- 2 Linear combinations
- Section 2 Linear span of a set of vectors
- 4 Linearly dependent and linearly independent sets
- Basis of a vector space
- O Dimension of a vector space
- Subspaces
- Matrices: Row space, column space, rank, and null space.
- **9** The Rank Theorem: Let A be an $m \times n$ matrix with entries in a field F. Then

$$\operatorname{rank} A + \dim \operatorname{Nul} A = n$$
.

September 14, 2020 3 / 9

Basic definitions:

- $K = \{0,1\}$ is the binary field. For any positive integer n, K^n is the vector space over K consisting of all binary n-tuples.
- A linear code C of length n is a subspace of K^n . Equivalently, a nonempty set $C \subseteq K^n$ is a linear code of length n if $\mathbf{u} + \mathbf{v} \in C$ whenever $\mathbf{u}, \mathbf{v} \in C$. In a linear code, the all-zero vector $\mathbf{0}$ is always a codeword. Note: A subset of K^n containing $\mathbf{0}$ may not be a linear code.
- If C is a linear code, then

$$d(C) = \min\{d(\mathbf{u}, \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in C, \mathbf{u} \neq \mathbf{v}\}$$

$$= \min\{\operatorname{wt}(\mathbf{u} + \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in C, \mathbf{u} \neq \mathbf{v}\}$$

$$= \min\{\operatorname{wt}(\mathbf{w}) \mid \mathbf{w} \in C, \mathbf{w} \neq \mathbf{0}\}$$

• In conclusion, the minimum distance of a linear code is the minimum weight of its nonzero codewords.

• $\mathbf{w} \in K^n$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in K^n$ if there are scalars $a_1, a_2, \ldots, a_k \in K$ such that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_k \mathbf{v}_k.$$

• If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq K^n$, then $\langle S \rangle$ denotes the subspace (or the code) generated by S:

$$\langle S \rangle = \{ a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \}.$$

September 14, 2020 5 / 9

• Let $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ be two elements of K^n . Their dot product (or scalar product) is defined as:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \cdots + u_n v_n$$

where all sums and multiplications take place in K. Note that $\mathbf{u} \cdot \mathbf{v} \in K$. Basic property: $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in K^n$.

- **u** and **v** in K^n are said to be orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$. Notation: $\mathbf{u} \perp \mathbf{v}$.
- ullet $S = \{oldverup_1, \ldots, oldverup_k\} \subseteq K^n$ is said to be linearly dependent (LD) if there are scalars $a_1, a_2, \ldots, a_k \in K$, not all zero, such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_k\mathbf{v}_k = \mathbf{0}.$$

Otherwise, S is said to be linearly independent (LI). As customary, $\mathbf{0}$ denotes the all-zero vector.

- Let $C \neq \{0\}$ be a subspace of the vector space K^n . An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_k\} \subseteq C$ is a basis for C if:
 - $oldsymbol{0}$ is a linearly independent set, and
- From linear algebra, any set of vectors $S \neq \{0\}$ contains a largest linearly independent set. This set is a basis for $\langle S \rangle$. See the next slide for an example.
- If $C = \langle S \rangle$, $S \neq \{\mathbf{0}\}$, then C has a basis, say, $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$. Any codeword $\mathbf{v} \in C$ can be written in a unique way as

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_k \mathbf{v}_k.$$

Hence, $|C| = 2^k$. The parameter k is known as the dimension of code C. Note that the rate of C is $R = \frac{\log_2 2^k}{n} = \frac{k}{n}$.

September 14, 2020 7 / 9

Let $v_1 = 10100$, $v_2 = 10110$, $v_3 = 10101$, $v_4 = 00011$ and $S = \{v_1, v_2, v_3, v_4\} \subseteq K^5$. Write down the elements of $\langle S \rangle$.

а	b	С	d	$a \cdot v_1 + b \cdot v_2 + c \cdot v_3 + d \cdot v_4$
0	0	0	0	00000
0	0	0	1	00011
0	0	1	0	10101
0	0	1	1	10110
0	1	0	0	10110
0	1	0	1	10101
0	1	1	0	00011
0	1	1	1	00000
1	0	0	0	10100
1	0	0	1	10111
1	0	1	0	00001
1	0	1	1	00010
1	1	0	0	00010
1	1	0	1	00001
1	1	1	0	10111
1	1	1	1	10100

- \bullet $\langle S \rangle = \{00000, 00011, 101101, 10110, 10100, 10111, 00001, 00010\}.$
- A basis for (S) is {v₁, v₂, v₃}.

• For any set $S \subseteq K^n$, the orthogonal complement of S is the set

$$S^{\perp} = \{ \mathbf{w} \in K^n \mid \mathbf{u} \cdot \mathbf{w} = 0 \quad \forall \ \mathbf{u} \in S \} \subseteq K^n.$$

Example

Let
$$S = \{1011, 0110\}$$
. Then $S^{\perp} = \{a \cdot (1001) + b \cdot (0111) \mid a, b \in K\}$.

- From linear algebra, S^{\perp} is a subspace of K^n .
- If $C = \langle S \rangle$, then C^{\perp} is called the dual code of C.
- The dual code of a linear code of length n is another linear code of length n.
- Let C be a linear code of length n. We shall prove later on that if the dimension of C is equal to k, then the dimension of C^{\perp} is equal to n-k.

September 14, 2020 9 / 9