Assignment 5 (Week 5)

Due on 2016-03-01, 19:29 IST

Submitted assignment

- 1) The exponent of multivariate normal density function is-
 - The exponent of multivariate normal density function

$$(-)0.5\{(X-\mu)^T | \sum_{i=1}^{n-1} (X-\mu)\}$$

$$(-)0.5\{(X-\mu)\sum^{-1}(X-\mu)^T\}$$

$$(-)0.5\{(X-\mu)\sum^{-1}|(X-\mu)^{-T}\}$$

$$(-)0.5\{(X-\mu)^1 | \sum | (X-\mu)^T |$$

2) The exponent of multivariate normal density function follows-

1 point

1 point

- F-distribution
- t- distribution
- Chi-square distribution
- None of these
- 3) A process is $X \sim N2 = (\mu, \Sigma)$ is designed to produce laminar aluminium sheet of length x1 and breadth x2 with the following popular parameters. Obtain its bivariate normal distribution function based on given data.
- 3 points

$$\mu = \begin{pmatrix} \mu 1 \\ \mu 2 \end{pmatrix} = \begin{pmatrix} 90 \\ 40 \end{pmatrix} and$$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix}$$

 $0.0265e^{[} - 0.0139(4(x1 - 90)^2 + 9(x2 - 40)^2]$

 $10.0265e^{[} - 0.0139(4(x1 - 90)^{2}) + 9(x2 - 40)^{2})]$

 $9.0265e^{[}-0.0139(4(x1-90)^2)+9(x2-40)^2)]$

None of these

4) The following ten bivariate random observations were collected from a population.

Find out \bar{X}_1 and \bar{X}_2

- [52, 29]
- [50, 29]
- [55, 25]
- None of these
- 5) Based on the data set given on Q. 4, calculate inverse of S (where S is a sample covariance matrix)

 $\begin{bmatrix} 0.0378 & 0.0170 \\ 0.0170 & 0.0839 \end{bmatrix}$

 $\left[\begin{array}{ccc}
10.1378 & 0.0170 \\
0.0170 & 0.1839
\end{array} \right]$

1 point

2 points

	$ \begin{bmatrix} 1.0378 & 0.9170 \\ 0.9170 & 1.0839 \end{bmatrix} $	
	$\begin{bmatrix} 0.0378 & 10.0170 \\ 10.0170 & 0.0839 \end{bmatrix}$	
6)	Is the population bivariate normal, based on the data given in Question no. 4 No	2 points
	O Yes	
	Cannot be answered based on the data set given	
7)	Which of the following methods we used to test the bivariate normality of a given data set. Q-Q plot	1 point
	Residual versus predicted values	
	Probability plot	
	Both (i) and (iii)	
	Both (i) and (ii)	
8)	Choose the correct method to detect multivariate outliers. Modified Leven test	2 points
	Chi-square Q-Q test	
	O Bonferroni test	
	All of these	
	O None of these	
9)	Choose the correct value of index parameter, λ , which is used for transforming data into normal shape.	1 point
	O 1	

