Bayesian Modeling of Conditional Densities

Feng Li

<feng.li@cufe.edu.cn>

School of Statistics and Mathematics Central University of Finance and Economics

Revision: December 11, 2013

Outline

- 1 Conditional density models
- 2 Bayesian approach for modeling conditional density
- 3 Modeling nonlinear mean with splines
- 4 Can we have a model that is big like an elephant?

The trend of statistical modeling

- In the 1950s, linear regression model was considered as very advanced which is now the standard course content for university students.
- The data are much more complicated nowadays we meet.
 - Numerical, categorical, brain image...
 - A few observations to millions by millions.
 - Very high-dimensional data are not rare anymore.

Density estimation

- **Density estimation** is the procedure of estimating an unknown density p(y) from observed data
- Histogram, kernel methods, splines, wavelets are all density estimation methods.
- Mixture models (Jiang & Tanner, 1999) have become a popular alternative approach,

$$p(y|\theta) = \sum_{k=1}^{K} \omega_k p_k(y|\theta_k),$$

where $\sum_{k=1}^K \omega_k = 1$ for non-negative mixture weights ω_k and $p_k(x|\theta_k)$ are the component densities.

- If $K = \infty$, it is called an **infinite mixture** (Escobar, 1994), the **Dirichlet process mixture** being the most prominent example.
- Mixture densities can be used to capture data characteristics such as multi-modality, fat tails.

Figure: Using mixture of normal densities (thin lines) to mimic a flexible density (bold line).

Conditional density estimation

- The conditional density estimation concentrates on modeling the relationship between a response y and set of covariates x through a conditional density function p(y|x)
- Mixtures of conditional densities is the obvious extension of mixture models to the conditional density estimation problem:

$$p(y|x) = \sum_{k=1}^{K} \omega_k p_k(y|x)$$

where $p_i(y|x)$ is the conditional density in i:th mixture component.

• A **smooth mixture** is a finite mixture density with weights that are smooth functions of the covariates

$$\omega_k(x) = \frac{\exp(x'\gamma_k)}{\sum_{i=1}^K \exp(x'\gamma_i)}.$$

Conditional density estimation

- In conditional density estimation, an important focus is modeling the regression mean E(y|x).
- A spline is a popular approach for nonlinear regression that models the mean as a linear combination of a set of nonlinear basis functions of the original regressors (Holmes & Mallick, 2003),

$$y = f(x) + \varepsilon = x'\beta + \sum_{i=1}^{k} x(\xi_i)'\beta_i + \varepsilon$$

Multivariate density estimation with copulas

- The multivariate density estimation and conditional density estimation are analogues of their univariate cases except that the densities p(Y) and p(Y|X) are multivariate.
- In addition to the methods mentioned above, a copula function separates the multivariate dependence from its marginal functions, and it is possible to use both continuous and discrete marginal models.
- Let $F(y_1,...,y_M)$ be a multi-dimensional distribution function with marginal distribution functions $F_1(y_1),\cdots,F_M(y_M)$. Then there exists a copula function C (Sklar, 1959) such that

$$\begin{split} F(y_1,...,y_M) = & C(F_1(y_1),...,F_M(y_M)) \\ = & C\left(\int_{-\infty}^{y_1} f_1(z_1)dz_1,...,\int_{-\infty}^{y_M} f_M(z_M)dz_M\right) = C(u_1,...,u_M) \end{split}$$

Multivariate density estimation with copulas

 The **Kendall's** τ **correlation** between two marginal densities can be measured by Kendall's τ

$$\tau = 4 \int \int F(y_1,y_2) dF(y_1,y_2) - 1 = 4 \int \int C(u_1,u_2) dC(u_1,u_2) - 1.$$

 Tail-dependence measures the extent to which several variables simultaneously take on extreme values

$$\begin{split} \lambda_L &= \lim_{u \to 0^+} \text{Pr}(X_1 < F_1^{-1}(u) | X_2 < F_2^{-1}(u)) = \lim_{u \to 0^+} \frac{C(u,u)}{u}, \\ \lambda_U &= \lim_{u \to 1^-} \text{Pr}(X_1 > F_1^{-1}(u) | X_2 > F_2^{-1}(u)) = \lim_{u \to 1^-} \frac{1 - C(u,u)}{1 - u}. \end{split}$$

 Modeling tail-dependence is an very important topic in econometrics (Joe, 1997) (Patton, 2012).

The Bayesian approach for modeling density features → A feature of a density

- We use the word **feature** to describe a characteristic of a density.
- In GLM or splines, $\mu = \eta(X\beta)$ is the feature that describes the **mean**.
- In mixtures contents, the mean, variance, skewness and kurtosis are features
 of each component density.
- In copula modeling, the tail-dependence and correlation are two features of interest.
- We allow each of the features are connected to covariates as

$$\begin{split} \mu &= \beta_{\mu 0} + x_t' \beta_{\mu} \\ \ln \varphi &= \beta_{\varphi 0} + x_t' \beta_{\varphi} \\ \ln \lambda &= \beta_{\lambda 0} + x_t' \beta_{\lambda} \\ \ln \nu &= \beta_{\nu 0} + x_t' \beta_{\nu} \\ \lambda_L &= \phi_{\lambda}^{-1} (X \beta_{\lambda}) \\ \tau &= \phi_{\tau}^{-1} (X \beta_{\tau}). \end{split}$$

- This approach allows the feature to be dynamic and interpretable friendly.
- We only need to sample the posterior of $p(\beta|Data)$.

The Bayesian approach for modeling density features The general MCMC scheme

- The model settings are very complicated now.
- Sampling the posterior requires an efficient MCMC method.
- We update all the parameters jointly by using Metropolis-Hastings within Gibbs.
- The proposal density for each parameter vector β is a multivariate *t*-density with df > 2,

$$\beta_p | \beta_c \sim MVT \left[\hat{\beta}, - \left(\frac{\partial^2 \ln p(\beta|Y)}{\partial \beta \partial \beta'} \right)^{-1} \bigg|_{\beta = \hat{\beta}}, df \right],$$

where $\hat{\beta}$ is obtained by R steps (R \leqslant 3) Newton's iterations during the proposal with analytical gradients.

- Variable selections are carried out simultaneously.
- The key: The analytical gradients require the derivative for the copula density and marginal densities.

Regularization via Bayesian variable selection

- Variable selection is commonly to select meaningful covariates that contributes to the model, inhibit ill-behaved design matrices, and to prevent model over-fitting.
- \bullet A standard Bayesian variable selection approach (Nott & Kohn, 2005) is to augment the regression model with a variable selection indicator ${\mathfrak I}$ for each covariate

$$\mathfrak{I}_{j} = \begin{cases} 1 & \text{if } \beta_{j} \neq 0 \\ 0 & \text{if } \beta_{j} = 0, \end{cases}$$

where β_i is the jth covariate in the model.

• Variable selection is then obtained by sampling the posterior distribution of all regression coefficient jointly with the variable selection indicators, thereby yielding the marginal posterior probability of variable inclusion $p(\Im|Data)$.

Regularization via shrinkage estimator

- A shrinkage estimator shrinks the regression coefficients towards zero rather than eliminating the covariate completely.
- LASSO can be viewed as regression with a Laplace prior.
- One way to select a proper value of the shrinkage is by cross-validation, which is costly with big data and complicated models.
- In the Bayesian approach, the shrinkage parameter is usually automatically estimated together with other parameters in the posterior inference.
- Shrinkage and variable selection can be used **simultaneously**.

Bayesian predictive inference

• Assuming that the data observations are independent conditional on the model parameters θ , the **predictive density** can be written

$$p(Y_b|Y_{-b}) = \int \prod_{j=1}^n p(Y_{j,b}|\theta)p(\theta|Y_{-b})d\theta$$

For a time series the forecast can instead be based on the decomposition

$$\begin{split} p(y_{T+1},..,y_{T+T*}|y_1,..,y_T) = & p(y_{T+1}|y_1,..,y_T) \times \cdots \\ & \times p(y_{T+T*}|y_1,..,y_{T+T*-1}), \end{split}$$

with each term in the decomposition

$$p(y_t|y_1,..,y_{t-1}) = \int p(y_t|y_1,..,y_{t-1},\theta)p(\theta|y_1,..,y_{t-1})d\theta,$$

• The prediction error at x_0 can be decomposed as three parts

$$\begin{aligned} \mathsf{EPE}(x_0) &= \mathsf{E}((\mathsf{Y} - \hat{\mathsf{f}}(x_0))^2 | \mathsf{X} = x_0) \\ &= \sigma^2 + \mathsf{Bias}^2(\hat{\mathsf{f}}(x_0)) + \mathsf{Var}(\hat{\mathsf{f}}(x_0)) \end{aligned}$$

which is the so-called the bias-variance trade-off.

Bayesian model comparison

- Bayesian model comparison have historically been based on the marginal likelihood (Kass & Raftery, 1995).
- However, that the marginal likelihood is very sensitive to the specification of prior.
- A more prominent tool for model comparisons is based on the log predictive density score (LPDS)

$$\mathsf{LPDS} = \frac{1}{B} \sum\nolimits_{i=1}^{B} \mathsf{log} \, p(Y_{b_i} | Y_{-b_i})$$

- In Bayesian framework, as the whole posterior of parameters can be obtained, model consistency evaluation does not rely one large sample properties.
- There are still consistency studies on issues like variable selections (Casella et al., 2009).

Modeling nonlinear mean with splines to firm leverage data → The data

leverage (Y): total debt/(total debt+book value of equity), 4405 observations;

tang: tangible assets/book value of total assets;
 market2book: (book value of total assets - book value of equity + market value of equity) / book value of total assets;

logSales: logarithm of sales;

profit: (earnings before interest, taxes, depreciation, and amortization) / book value of total assets.

The multivariate surface model

→ The model

- Splines are regression models with flexible **mean functions** by selecting and placing knots to covariates space.
- The multivariate surface spline model (Li & Villani, 2013) consists of three different components, linear, surface and additive as

$$Y = X_o B_o + X_s(\xi_s) B_s + X_\alpha(\xi_\alpha) B_\alpha + E.$$

- We treat the knots ξ_i as unknown parameters and let them move freely.
 - A model with a minimal number of free knots outperforms model with lots of fixed knots.
- For notational convenience, we sometimes write model in compact form

$$Y = XB + E$$
,

where
$$X=[X_o,X_s,X_a]$$
 and $B=[B_o{'},B_s{'},B_a{'}]{'}$ and $E\sim N_\mathfrak{p}(\mathbf{0},\ \Sigma)$

The multivariate surface model

→ The prior

ullet Conditional on the knots, the prior for B and Σ are set as

$$\begin{split} \text{vec} B_{\mathfrak{i}} | \Sigma, \ \lambda_{\mathfrak{i}} \sim N_{\mathfrak{q}} \left[\mu_{\mathfrak{i}}, \ \Lambda_{\mathfrak{i}}^{1/2} \Sigma \Lambda_{\mathfrak{i}}^{1/2} \otimes P_{\mathfrak{i}}^{-1} \right], \ \mathfrak{i} \in \{ \text{o}, \text{s}, \text{a} \}, \\ \Sigma \sim IW \left[n_{0} S_{0}, \ n_{0} \right], \end{split}$$

- Λ_i = diag(λ_i) are called the shrinkage parameters, which is used for overcome overfitting through the prior.
- If $P_i = I$, can prevent singularity problem, like the ridge regression estimate.
- If $P_i = X_i'X_i$: use the covariates information, also a compressed version of least squares estimate when λ_i is large.
- The shrinkage parameters are estimated in MCMC
 - A small λ_i shrinks the variance of the conditional posterior for B_i
 - It is another approach to selection important variables (knots) and components.
- We allow to mixed use the two types priors ($P_i = I$, $P_i = X_i'X_i$) in different components in order to take the both the advantages of them.

The multivariate surface model

→ The Bayesian posterior

• The posterior distribution is conveniently decomposed as

$$p(B,\Sigma,\xi,\lambda|Y,X) = p(B|\Sigma,\xi,\lambda,Y,X) \\ p(\Sigma|\xi,\lambda,Y,X) \\ p(\xi,\lambda|Y,X).$$

- Hence $p(B|\Sigma, \xi, \lambda, Y, X)$ follows the multivariate normal distribution according to the conjugacy;
- When $p=1,\ p(\Sigma|\xi,\lambda,Y,X)$ follows the inverse Wishart distribution

$$\mathbf{IW}\left[n_0+n,\left\{n_0S_0+n\tilde{S}+\sum_{\mathfrak{i}\in\{o,s,\alpha\}}\boldsymbol{\Lambda}_{\mathfrak{i}}^{-1/2}(\tilde{B}_{\mathfrak{i}}-\boldsymbol{M}_{\mathfrak{i}})'P_{\mathfrak{i}}(\tilde{B}_{\mathfrak{i}}-\boldsymbol{M}_{\mathfrak{i}})\boldsymbol{\Lambda}_{\mathfrak{i}}^{-1/2}\right\}\right]$$

• When $p\geqslant 2$, no closed form of $p(\Sigma|\xi,\lambda,Y,X)$, the above result is a very accurate approximation. Then the marginal posterior of Σ , ξ and λ is

$$\begin{split} p\left(\Sigma,\xi,\lambda|Y,X\right) = & c \times p(\xi,\lambda) \times |\Sigma_{\beta}|^{-1/2} |\Sigma|^{-(n+n_0+p+1)/2} |\Sigma_{\tilde{\beta}}|^{-1/2} \\ & \times \text{exp}\left\{-\frac{1}{2}\left[\text{tr}\Sigma^{-1}\left(n_0S_0 + n\tilde{S}\right) + \left(\tilde{\beta} - \mu\right)'\Sigma_{\beta}^{-1}\left(\tilde{\beta} - \mu\right)\right]\right\} \end{split}$$

Models with only surface or additive components

Model with both additive and surface components.

Log predictive density score which is defined as

$$\begin{split} \text{LPDS} &= \frac{1}{D} \sum_{d=1}^{D} \ln p\left(\tilde{Y}_{d} \middle| \tilde{Y}_{-d}, X \right) \\ &= \iiint_{i \in \tau_{d}} p\left(y_{i} \middle| \theta, x_{i} \right) p\left(\theta \middle| \tilde{Y}_{-d} \right) \text{d}\theta, \end{split}$$

and D = 5 in the cross-validation.

Posterior locations of knots

Modeling nonlinear mean with splines to firm leverage data

→ Posterior mean surface(left) and standard deviation(right)

Can we have a model that is big like an elephant?

Knowing the elephant

- Sophisticated models are essential for such situations.
- In principle, the complicated model should be able to capture more complicated data features.
- Estimating such model is not easy.
- There is huge space to explore.
 - The computer is still not fast enough.
 - Techniques like parallel computing should be used to speed up the computation.
 - Statistics with big data is the new challenge.

References

- CASELLA, G., GIRÓN, F. J., MARTÍNEZ, M. L. & MORENO, E. (2009). Consistency of bayesian procedures for variable selection. *The Annals of Statistics*, 1207–1228.
- ESCOBAR, M. D. (1994). Estimating Normal Means with a Dirichlet Process Prior. Journal of the American Statistical Association 89, 268.
- HOLMES, C. C. & MALLICK, B. K. (2003). Generalized Nonlinear Modeling With Multivariate Free-Knot Regression Splines. *Journal of the American Statistical Association* 98, 352–368.
- JIANG, W. & TANNER, M. A. (1999). On the approximation rate of hierarchical mixtures-of-experts for generalized linear models. *Neural computation* 11, 1183–98.
- JOE, H. (1997). Multivariate models and dependence concepts. Chapman & Hall, London.
- KASS, R. & RAFTERY, A. (1995). Bayes factors. Journal of the American Statistical Association 90, 773–795.
- Li, F. & Villani, M. (2013). Efficient Bayesian multivariate surface regression. *Scandinavian Journal of Statistics* in press.
- NOTT, D. & KOHN, R. (2005). Adaptive sampling for Bayesian variable selection. *Biometrika* **92**, 747–763.
- PATTON, A. (2012). A review of copula models for economic time series. *Journal of Multivariate Analysis* 110, 4–18.
- SKLAR, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de Statistique de L'Université de Paris 8, 229–231.

...essentially, all models are wrong, but some are useful

— George E. P. Box

Thank you!