WHAT IS CLAIMED IS:

1	1. A method for optimizing a supply to meet a demand comprising the steps of:
2	determining a parts demand;
3	determining a machine supply;
4	maintaining a database of machine supply information, the machine supply
5	information including, for each of a plurality of machine types, a number of machines of
6	said machine type in the machine supply, a set of part types in said machine type, a
7	corresponding monetary value for each part type, and a number of each part type in said
8	machine type;
9	configuring an optimal dismantling configuration of the machine supply to meet
10	the parts demand as a function of the machine supply information.

- The method of claim 1 further comprising determining at least a portion of the parts
 demand that cannot be satisfied from the machine supply.
- 1 3. The method of claim 1 wherein the determining a parts demand step further comprises determining an internal demand and an external demand.
- The method of claim 1 further comprising determining at least a portion of the
 machine supply that is not economically justified for dismantling.
- 5. The method of claim 4 wherein the determining at least a portion of the machine supply that is not economically justified for dismantling further comprises determining
- 3 whether parts profit of a particular machine type is a predetermined percentage greater
- 4 than machine profit of a particular machine type.

- 6. The method of claim 5 further comprising determining parts profit by adding an
- 2 average machine net investment book value to a total parts de-manufacturing expense to
- 3 produce a sum, and subtracting the sum from a total valued parts with external demands
- 4 average fair market value.
- 7. The method of claim 5 further comprising determining machine profit by adding the
- 2 average net investment book value of the particular machine type to a total
- 3 re-manufacturing expense for the particular machine type to produce a sum, and
- 4 subtracting the sum from an average fair market value for the particular machine type.
- 8. The method of claim 4 wherein the determining at least a portion of the machine
- 2 supply that is not economically justified for dismantling further comprises determining
- 3 whether parts profit of a particular machine is greater than machine profit of the particular
- 4 machine.
- 9. The method of claim 8 wherein the parts profit is determined by adding a machine
- 2 average net investment book value to a total parts de-manufacturing expense to produce a
- 3 sum, and subtracting the sum from a book value, the book value equal to the total parts
- 4 with internal demands average net investment book value with a cost adjustment to the
- 5 net investment book value.
- 1 10. The method of claim 8 wherein the machine profit is determined by adding the
- 2 particular machine type average net investment book value to a total machine
- re-manufacturing expense to produce a sum, and subtracting the sum from an average fair
- 4 market value of the particular machine type model.
- 1 11. The method of claim 1 further comprising:

2	determining a corresponding parts supply from the machine supply; and,
3	matching the corresponding parts supply to the parts demand.
1	12. The method of claim 11 wherein the determining a corresponding parts supply
2	further comprises the steps of:
3	determining the part types in a particular machine type;
4	determining the number of each of the part types in a particular machine type;
5	and,
6	multiplying the number of each of the part types in a particular machine type by
7	the number of machines for the particular machine type in the machine supply.
1	13. The method of claim 11 further comprising:
2	generating a covered parts list and a not-covered parts list if the part supply is
3	less than the parts demand; and,
4	wherein the configuring step comprises:
5	determining the optimal dismantling configuration of the machines in the
6	covered parts list; and,
7	determining the optimal dismantling configuration of machines to harvest
8	from the not-covered list.
1	14. The method of claim 13 wherein the covered parts list is divided into an internal and
2	an external list.
1	15. The method of claim 1 wherein the optimal dismantling configuration is determined
2	by linear programming.
1	16. The method of claim 1 wherein the optimal dismantling configuration is determined

- by maximizing a summation formula for revenue considering a number of factors for a
- 3 part j and a machine i.
- 1 17. The method of claim 16 wherein the factors are:
- 2 revenue from parts j sales (RV_i);
- 3 net investment cost of machine (TC_i);
- 4 processing cost of de-manufacturing machine i (PC_i);
- 5 total supply of machine $i(S_i)$;
- 6 netted demand of part j (D_i);
- 7 parts not utilized (W_{ii});
- 8 parts fulfillment (X_{ij}) ;
- 9 machines required to fulfill the desired parts (Y_i).
- 1 18. The method of claim 17 wherein the summation formula is:

$$\sum_{i} \sum_{j} (RV_{j} \bullet \{X_{ij}\}) - \sum_{i} (TC_{i} \bullet \{Y_{i}\}) - \sum_{i} (PC_{i} \bullet \{Y_{i}\})$$

- 1 19. The method of claim 1 wherein the machine supply information further comprises
- 2 the number of parts for each of the part types in each of the machine types.
- 1 20. The method of claim 1 wherein the machine supply information further comprises a
- 2 forecast of machines expected to be available at a predetermined time.
- 1 21. The method of claim 1 wherein the machine supply information further comprises an
- estimated number of parts for each of the part types in each of the machine types.
- 1 22. The method of claim 1 wherein the machine supply information further comprises

- 2 fair market value of the part types and fair market value of the machine types.
- 1 23. The method of claim 1 wherein the machine supply information further comprises
- 2 costs of de-manufacturing a specific machine type.
- 1 24. The method of claim 1 wherein the machine supply information further comprises
- data on the quality of parts yielded from de-manufacturing a specific machine type.
- 1 25. The method of claim 1 wherein the machine supply information further comprises
- 2 codes for options on each of the machine types.
- 1 26. The method of claim 1 wherein the machine supply information further comprises
- 2 quality of each of the machine types.
- 1 27. The method of claim 1 wherein the machine supply information further comprises
- times for demanufacturing cycles of a particular machine type.
- 1 28. The method of claim1 wherein the machine supply information further comprises
- times for refurbishing cycles of a particular machine type.
- 1 29. The method of claim 1 wherein the machine supply information further comprises
- 2 repair costs for each of the part types.
- 1 30. An economic supply optimization system comprising:
- 2 a processor;
- 3 a data storage device operably connected to the processor, the data storage device
- 4 providing data storage for the system;

5	a database of machine supply information on the data storage device, the machine
6	supply information including, for each of a plurality of machine types, a number of
7	machines of said machine type in the machine supply, a set of part types in said machine
8	type, a corresponding monetary value for each part type, and a number of each part type
9	in said machine type;
10	a program executable by the processor to
11	determine a parts demand;
12	determine a machine supply; and,
13	configure an optimal dismantling configuration of the machine supply to
14	meet the parts demand as a function of the machine supply information.
1	31. The system of claim 30 wherein the program is further executable to determine at
2	least a portion of the parts demand that cannot be satisfied from the machine supply.
1	32. The system of claim 30 wherein the program is further executable to determine at
2	least a portion of the machine supply that is not economically justified for dismantling.
1	33. The system of claim 32 wherein the economic justification further comprises parts
2	profit of a particular machine type being a predetermined percentage greater than machine
3	profit of a particular machine type.
1	34. The system of claim 33 wherein the parts profit is determined by adding an average
2	machine net investment book value to a total parts de-manufacturing expense to produce
3	a sum, and subtracting the sum from a total valued parts with external demands average
4	fair market value.
1	35. The system of claim 33 wherein the machine profit is determined by adding the

2	average net investment book value of the particular machine type to the total
3	re-manufacturing expense for the particular machine type to produce a sum, and
4	subtracting the sum from an average fair market value for the particular machine type.
1	36. The system of claim 32 wherein the economic justification further comprises parts
2	profit of a particular machine being greater than machine profit of the particular machine.
1	37. The system of claim 36 herein the parts profit is determined by adding a machine
2	average net investment book value to a total parts de-manufacturing expense to produce a
3	sum, and subtracting the sum from a book value, the book value equal to a total parts with
4	internal demands average net investment book value with a cost adjustment to the net
5	investment book value.
•	
1	38. The system of claim 36 wherein the machine profit is determined by adding the
2	particular machine type average net investment book value to a total machine
3	re-manufacturing expense to produce a sum, and subtracting the sum from an average fair
4	market value of the particular machine type model.
1	39. The system of claim 30 wherein the program is further executable to:
2	determine a corresponding parts supply from the machine supply; and,
3	to match the corresponding part supply to the parts demand.
1	40. The system of claim 39 wherein the program is further executable to determine the
2	corresponding parts supply by:
3	determining the part types in a particular machine type;
4	determining the number of each of the part types in a particular machine type;

and,

6	multiplying the number of each of the part types in a particular machine type by
7	the number of machines for the particular machine type in the machine supply.
1	41. The system of claim 39 wherein the program is further executable to:
2	generate a covered parts list and a not-covered parts list if the parts supply is less than the
3	parts demand, and to configure the optimal dismantling configuration by:
4	determining the optimal dismantling configuration of the machines in the covered
5	parts list; and,
6	determining the optimal dismantling configuration of machines to harvest
7	from the not-covered list.
1	42. The system of claim 41 wherein the covered parts list is divided into an internal and
2	an external list.
1	43. The system of claim 30 wherein the optimal dismantling configuration is determined
2	by linear programming.
1	44. The system of claim 30 wherein the optimal dismantling configuration is determined
2	by maximizing a summation formula for revenue considering a number of factors for a
3	part j and a machine i.
1	45. The system of claim 44 wherein the factors are:
2	revenue from parts j sales (RV _j);
3	net investment cost of machine (TC _i);
4	processing cost of de-manufacturing machine i (PC _i);
5	total supply of machine i (S _i);
6	netted demand of part j (D _j);

- 7 parts not utilized (W_{ij}) ;
- 8 parts fulfillment (X_{ij}) ;

- 9 machines required to fulfill the desired parts (Y_i).
- 1 46. The system of claim 45 wherein the summation formula is:

$$\sum_{i} \sum_{j} (RV_{j} \bullet \{X_{ij}\}) - \sum_{i} (TC_{i} \bullet \{Y_{i}\}) - \sum_{i} (PC_{i} \bullet \{Y_{i}\})$$

- 1 47. The system of claim 30 wherein the machine supply information further comprises
- 2 the number of parts for each of the part types in each of the machine types.
- 1 48. The system of claim 30 wherein the machine supply information further comprises a
- 2 forecast of machines expected to be available at a predetermined time.
- 1 49. The system of claim 30 wherein the machine supply information further comprises
- an estimated number of parts for each of the part types in each of the machine types.
- 1 50. The system of claim 30 wherein the machine supply information further comprises
- 2 fair market value of the parts and fair market value of each of the machine types.
- 1 51. The system of claim 30 wherein the machine supply information further comprises
- 2 costs of de-manufacturing a specific machine type.
- 1 52. The system of claim 30 wherein the machine supply information further comprises
- 2 data on the quality of parts yielded from de-manufacturing a specific machine type.
- 1 53. The system of claim 30 wherein the machine supply information further comprises

2	codes for options on each of the machine types.
1	54. The system of claim 30 wherein the machine supply information further comprises
2	quality of each of the machine types.
1	55. The system of claim 30 wherein the machine supply information further comprises
2	times for demanufacturing cycles of a particular machine type.
1	56. The method of claim1 wherein the machine supply information further comprises
2	times for refurbishing cycles of a particular machine type.
1	57. The system of claim 30 wherein the machine supply information further comprises
2	cost repairs for each of the part types.
1	58. Computer executable process steps operative to control a computer, stored on a
2	computer readable medium, for determining an optimal dismantling configuration
3	comprising the steps of:
4	determine a parts demand;
5	determine a machine supply;
6	configure the optimal dismantling configuration to meet the demand with a
7	particular number and a particular type of machine from the machine supply.
1	59. The computer executable process steps of claim 58 further comprising:
2	maintaining a database of machine supply information, the machine supply
3	information including, for each of a plurality of machine types, a number of machines of

said machine type in the machine supply, a set of part types in said machine type, a

corresponding monetary value for each part type, and a number of each part type in said

6	machine	type:
•	HILLOUILLIA	C, DC.

- 7 configuring an optimal dismantling configuration of the machine supply to meet
- 8 the parts demand as a function of the machine supply information.
- 1 60. The computer executable process steps of claim 58 further comprising a step to
- determine at least a portion of the parts demand that cannot be satisfied from the machine
- 3 supply.
- 1 61. The computer executable process steps of claim 58 further comprising a step to
- determine at least a portion of the machine supply that is not economically justified for
- 3 dismantling.
- 1 62. The computer executable process steps of claim 61 wherein the economic
- 2 justification further comprises parts profit of a particular machine type being a
- 3 predetermined percentage greater than machine profit of a particular machine type.
- 1 63. The computer executable process steps of claim 62 wherein the parts profit is
- determined by adding an average machine net investment book value to a total parts
- de-manufacturing expense to produce a sum, and subtracting the sum from a total valued
- 4 parts with external demands average fair market value.
- 1 64. The computer executable process steps of claim 62 wherein the machine profit is
- determined by adding the average net investment book value of the particular machine
- 3 type to the total re-manufacturing expense for the particular machine type to produce a
- 4 sum, and subtracting the sum from an average fair market value for the particular
- 5 machine type.

1	65. The computer executable process steps of claim 61 wherein the economic	
2	justification further comprises parts profit of a particular machine being greater than	
3	machine profit of the particular machine.	
1	66. The computer executable process steps of claim 65 herein the parts profit is	
2	determined by adding a machine average net investment book value to a total parts	
3	de-manufacturing expense to produce a sum, and subtracting the sum from a book va	
4	the book value equal to a total parts with internal demands average net investment bo	
5	value with a cost adjustment to the net investment book value.	
1	67. The computer executable process steps of claim 65 wherein the machine profit is	
2	determined by adding the particular machine type average net investment book value to	
3	total machine re-manufacturing expense to produce a sum, and subtracting the sum fro	
4	an average fair market value of the particular machine type model.	
1	68. The computer executable process steps of claim 58 further comprising steps to:	
2	determine a corresponding parts supply from the machine supply; and,	
3	to match the corresponding part supply to the parts demand.	
1	69. The computer executable process steps of claim 68 further comprising the step to	
2	determine the corresponding parts supply by:	
3	determining the part types in a particular machine type;	
4	determining the number of each of the part types in a particular machine type;	
5	and,	
6	multiplying the number of each of the part types in a particular machine type by	
7	the number of machines for the particular machine type in the machine supply.	

1	70. The computer executable process steps of claim 69 further comprising the steps to:
2	generate a covered parts list and a not-covered parts list if the parts supply is less
3	than the parts demand, and to configure the optimal dismantling configuration by:
4	determining the optimal dismantling configuration of the machines in the
5	covered parts list; and,
6	determining the optimal dismantling configuration of machines to harvest
7	from the not-covered list.
1	71. The computer executable process steps of claim 70 wherein the covered parts list is
2	divided into an internal and an external list.
1	72. The computer executable process steps of claim 58 wherein the optimal dismantling
2	configuration is determined by linear programming.
1	73. The computer executable process steps of claim 58 wherein the optimal dismantling
2	configuration is determined by maximizing a summation formula for revenue considering
	a number of factors for a part j and a machine i.
1	74. The computer executable process steps of claim 73 wherein the factors are:
2.	revenue from parts j sales (RV _j);
3	net investment cost of machine (TC _i);
4	processing cost of de-manufacturing machine i (PC _i);
5	total supply of machine i (S _i);
6	netted demand of part j (D _j);
7	parts not utilized (W _{ij});
8	parts fulfillment (X_{ij}) ;
Q	machines required to fulfill the desired parts (V.)

- The computer executable process steps of claim 74 wherein the summation formula
- 2 is

$$\sum_{i} \sum_{j} (RV_{j} \bullet \{X_{ij}\}) - \sum_{i} (TC_{i} \bullet \{Y_{i}\}) - \sum_{i} (PC_{i} \bullet \{Y_{i}\})$$

- 1 76. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises the number of parts for each of the part types in each of the
- 3 machine types.
- 1 77. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises a forecast of machines expected to be available at a
- 3 predetermined time.
- 1 78. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises an estimated number of parts for each of the part types in
- 3 each of the machine types.
- 1 79. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises fair market value of the part types and fair market value of
- 3 the machine types.
- 1 80. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises costs of de-manufacturing a specific machine type.
- 1 81. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises data on the quality of parts yielded from de-manufacturing

- 3 a specific machine type.
- 1 82. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises codes for options on each of the machine types.
- 1 83. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises quality of each of the machine types.
- 1 84. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises times for demanufacturing cycles of a particular machine
- 3 type.
- 1 85. The method of claim1 wherein the machine supply information further comprises
- times for refurbishing cycles of a particular machine type.
- 1 86. The computer executable process steps of claim 58 wherein the machine supply
- 2 information further comprises cost repairs for each of the part types.