Lecture 13 Constructing groups External direct product Let G, and Gz be two groups.

We define a binary operation on $G_1 \times G_2$ by setting $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1, a_2b_2)$ where $a_1, b_1 \in G_1$ and $a_2, b_2 \in G_2$

Gix Giz is a group under this binary operation.

The identity element is $(|a_{i}, a_{j})$.

The inverse of (x, y) is (x^{-1}, y^{-1}) .

This group is denoted by $G_1 \times G_2$ or $G_1 \oplus G_2$.

Example

$$\mathbb{Z}_{2\mathbb{Z}} \oplus \mathbb{Z}_{3\mathbb{Z}} = \{ (\sigma, \sigma), (\tau, \bar{\sigma}), (\bar{\sigma}, \bar{\tau}), (\bar{\tau}, \bar{\tau}), (\bar{\sigma}, \bar{\tau}), (\bar{\tau}, \bar{\tau}) \}$$

Exercise: Check that ord (T,T)=6.

Thus, this is a cyclic group of order 6.

Thus $\mathbb{Z}_{22} \oplus \mathbb{Z}_{322} \simeq \mathbb{Z}_{622}$

Example

Exercise: 7/27/4 7/27/2 is a group of order 4. Check that it has no element of order

4. So, this group is not cyclic.

Group homomorphisms Let G and H be groups.

A group homomorphism from

G to H is a function φ: G→ H such that

 $\varphi(g_1g_2) = \varphi(g_1) \cdot \varphi(g_2)$ for $g_1, g_2 \in G$.

Example

1) Any group isomorphism is a

group homomorphism.

2) Let m be a positive

defined by f(n) = n + mZ

is a group homomorphism.

integer. The function f: Z-> Z/mz

3) Gi = IRX (group of non-zero real numbers under multiplication)

H = (IR>0, x)

(group of positive real numbers

Let $f: G \longrightarrow H$ be given by f(x) = |x|. This is a homomorphism

under multiplication)

 $50 \ \varphi(1_6) = 1_{H}$

Let $\phi:G→ H$ be a group

homomorphism.

$$\Phi(1,) = 1$$

homomorphism.

(1)
$$\varphi(1_G) = 1_H$$
.

Proof: $\varphi(\zeta) = \varphi(1_{G} \cdot 1_{G}) = \varphi(1_{G}) \cdot \varphi(\zeta)$

$$(2) \varphi(x^{-1}) = \varphi(x)^{-1}$$

$$\underline{Proof}: \varphi(x^{-1}) \cdot \varphi(x) = \varphi(x \cdot x^{-1})$$

So $\varphi(x^{-1}) = \varphi(x)^{-1}$

 $= \varphi(I_G) = I_H$

Kernel and image Definition: Let $\varphi: G \rightarrow H$ be a group homomorphism. The kernel of q, denoted by ker(φ) is defined as $ker(\phi) = \{g \mid g \in G, \phi(g) = 1, \}$

The image of φ , denoted by im(φ) is im(φ) = $\{h \mid h \in H, h = \varphi(g) \}$ for

im(q) = {h| h ∈ H, h = p(g) for Some g ∈ G } Easy exercise: Ker(p) is a subgroup

of G. Im(q) is a subgroup of H.

Let $\phi: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, given

by $\varphi(n) = n + m \mathbb{Z}$.

Then, $ker(\varphi) = m\mathbb{Z}$. Example $\varphi: \mathbb{R}^{\times} \longrightarrow \mathbb{R}^{\times}$ $\varphi(x) = x^2$. Then, φ is a homomorphism. $ker(\varphi) = \{1, -1\}$. $Im(\varphi) = (IR_{>0}, \times).$

A generalization We have seen that the set of cosets of m7/2 in 7/2 forms a group. Can this work for any group G and subgroup 4=69

Let G be a group and H = G a subgroup. We want to define a binary operation on G/H by mapping (gH, gH) to gigzH. Does this work?

Obstacle: Suppose g' and g'

 $g_2H = g_2H$

that $g_1H = g_1'H$ and

By our proposed definition

giH. giH should be gig H.

are Such

So, we must have $g_1g_2H = g_1'g_2'H$ whenever $g_1H = g_1'H$ and $g_2H = g_2'H$.

Recall: When is xH = yH?

Recall: When is xH = yH?

This happens if and only if $y \in xH$, i.e. y = xh for some $h \in H$.

So, if $g'_1 = g_1h_1$ and $g'_2 = g_2h_2$ for some hi, hz GH, we would like to have ghigzhz = gigzh for some hEH.

This happens if and only if (q,h,q,h2) 9,92 E H

This element is in H \Leftrightarrow $g_2h_1 g_2^{-1} \in H$. We need this to happen for any choice of g,, g, e G and h, hz & H.

 $(g_1h_1g_2h_2)^{-1}g_1g_2 = (h_2^{-1}g_2^{-1}h_1^{-1}g_1^{-1})g_1g_2$

 $=h_2^{-1}(g_2^{-1}h_1^{-1}g_2)$

Normal subgroups

Let G be a group and let H be a subgroup of G. We say that H is a normal subgroup if gHg' = H for all ge G.

Example

Consider the subgroup H of

D3 defined by H= {1, P, P}

H is a normal subgroup.

If geH, clearly gHg = H.

If g # H, g is a reflection.

For any i, gpigil is a rotation.
(Do you see why?)

Example

Let G be an abelian group.

Then, any subgroup H of G is a normal subgroup.

Non-example

The subgroup {1, T} of Da is

not normal as $PTP^{-1} = P^{2}\tau \notin \{1, \tau\}$

Center of a group

Example For any group G, the set $Z(G) = \begin{cases} z \mid z \in G, zg = gz \text{ for all } g \in G. \end{cases}$ Z(G) is a subgroup of G.

If $z \in Z(G)$ and $g \in G$, we have $gzg^{-1} = zgg^{-1} = z \in Z(G)$.

Thus, Z(G) is a normal subgroup.

Basic properties Proposition1 Let G be a group and let H be a normal subgroup of G. Then, for any g ∈ G, we have gHg'' = H.

 $g^{-1}H(g^{-1})^{-1}\subseteq H.$

So ging = H.

So g(g'Hg)g'=gHg!

So H = g Hg⁻¹. But we also

have gHgT=H. So H=gHgT

for any g GG,

Proposition 2 Let G be a group and H=G be a normal subgroup. Then, for any g ∈ H, we have gH = Hg.Thus G/H =

(right cosets)

(left cosets)

Proof Any element of gH is of the form gh for some h-H. Then, $gh = gh(g^{-1}g) = (ghg^{-1}) \cdot g$.

But ghgi - H as H is normal.

So, (ghg⁻¹)g ∈ Hg.

Thus gH = Hg.

On the other hand, any element of Hg is of the form hg for some heH. But, hg = g(g'hg). As $g'hg \in H$, $hg = g(g'hg) \in gH$

So Hg = gH.
Thus gH = Hg.

Quotient group (factor group)

Let G be a group and let

H = G be a normal subgr

H = G be a normal subgroup. We define a binary operation

We define a binary operation $G/H \times G/H \longrightarrow G/H$

by mapping (g,H,g2H) to gg2H

This definition does not depend on the choice of q, and q2 as representatives of the casets git and gzH. Indeed, if g!H=gH and g2H=g2H, $g_1' = g_1h_1$ and $g_2' = g_2h_2$ where h, h, E G.

$$g_1h_1g_2h_2 = g_1(g_2g_2^{-1})h_1g_2h_2$$

= $g_1g_2(g_2^{-1}h_1g_2)h_2$
As $g_1h_1g_2 \in H$ (Since H is

As ghaze H (since H is

So g'g' & gg_H So $g_1'g_2'H = g_1g_2H$.

normal), gihigzhz E gigzH.

Claim With this operation, G/H is a group. Proof: Identity: H is the identity. Indeed, H.gH = (1H).(gH) $=(1\cdot g)H=gH$ Similarly, gH·H = gH.

So gill is the inverse of gH. Associativity $(g_1H \cdot g_2H) g_3H = ((g_1g_2) \cdot H) \cdot g_3H$ $=(g_1g_2)\cdot g_3H=g_1(g_2g_3)H$ = $g_1H \cdot g_2g_3H = g_1H (g_2H \cdot g_3H)$.

Inverses gH · g'H = gg'H = H.

Similarly, gH-gH=ggH=H.

The set G/H with this binary operation is called the factor group or quotient group of G by H.

Theorem: Let $\varphi: G \to H$ be a group homomorphism. Then ker(φ) is a <u>normal</u> subgroup Proof: Let ze ker (p) and

 $g \in G$. Then $\varphi(g \times g^{-1}) = \varphi(g) \cdot \varphi(x) \cdot \varphi(g^{-1})$

$$= \varphi(g) \cdot 1_{H} \cdot \varphi(g^{-1})$$

$$= 1_{H}$$
So $gxg^{-1} \in ker(\varphi)$ for all $x \in ker(\varphi)$.
Thus, $ker(\varphi)$ is a normal

Thus, ker(q) is a normal subgroup of G.