

Convolutional Networks

http://bit.ly/DLSP20

Yann LeCun

NYU - Courant Institute & Center for Data Science

Facebook AI Research

http://yann.lecun.com

TAs: Alfredo Canziani, Mark Goldstein

Parameter transformations

When the parameter vector is the output of a function

$$u \leftarrow u - \eta \frac{\partial H}{\partial u} \frac{\partial C}{\partial w}$$

$$w \leftarrow w - \eta \frac{\partial H}{\partial u} \frac{\partial H}{\partial u}^T \frac{\partial C}{\partial w}^T$$

$$[N_w \times N_u] [N_u \times N_w] [N_w \times 1]$$

"Hypernetwork"

- When the parameter vector is the output of another network H(x,u)
- The weights of network G(x,w) are dynamically configured by network H(x,u)
- The concept is very powerful
 - ► The idea is very old

Simple parameter transform: weight sharing

- Function H(u) replicates one component of u into multiple components of w
 - $w_1, = w_2 = u_1 \quad w_3 = w_4 = u_2$
- H is like a "Y" branch.
 - Gradients are summed in the backprop

The gradients w.r.t. shared parameters are added.

Shared Weights for Motif Detection

Detecting motifs anywhere on an input

Detecting Motifs in Images

Swipe "templates" over the image to detect motifs

Detecting Motifs in Images

Shift invariance

Discrete Convolution (or cross-correlation)

- Definition
 - convolution

$$y_i = \sum_j w_j x_{i-j}$$

- **▶** In practice
 - Cross-correlation

$$y_i = \sum_j w_j x_{i+j}$$

for certain properties to have consistent form.
Programatically, w and x move on the same direction is more intuitive. DL frameworks choose the programatic way.

equivalent to convolution.

If we read w backwards, cross-correlation ends up to the

Mathmatically, convolution notation is more convenient

► In 2D

$$y_{ij} = \sum_{kl} w_{kl} x_{i+k,j+l}$$

Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

How does the brain interprets images?

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT

Hubel & Wiesel's Model of the Architecture of the Visual Cortex

[Fukushima 1982][LeCun 1989, 1998],[Riesenhuber 1999].....

First ConvNets (U Toronto)[LeCun 88, 89]

4x4

8x8

16x16

10

4x4

8x8x2

16x16

10

Shared weights

4x4x4

8x8x2

16x16

First "Real" ConvNets at Bell Labs [LeCun et al 89]

- Trained with Backprop.
- USPS Zipcode digits: 7300 training, 2000 test
- ► Convolution with stride. No separate pooling. ✓ΟυοΥ

2787E 502 7551L 35460 AUG

1011913485726803226414186 6359720299299722510046701 3084111591010615406103631 1064111030475262009979966 8912056708557131427955460 1018750187112991089970984 0109707597331972015519055 1075318255182814358090943 1787541655460354603546055 18255108503067520439401

Convolutional Network Architecture

Multiple Convolutions

Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/

Convolutional Network (vintage 1990)

III Filters-tanh \rightarrow pooling \rightarrow filters-tanh \rightarrow pooling \rightarrow filters-tanh

Overall Architecture: multiple stages of

Normalization → Filter Bank → Non-Linearity → Pooling

- Normalization: variation on whitening (optional)
 - Subtractive: average removal, high pass filtering
 - Divisive: local contrast normalization, variance normalization
- Filter Bank: dimension expansion, projection on overcomplete basis
- Non-Linearity: sparsification, saturation, lateral inhibition....
 - Rectification (ReLU), Component-wise shrinkage, tanh,...

$$ReLU(x) = max(x, 0)$$

- Pooling: aggregation over space or feature type
 - Max, Lp norm, log prob.

$$MAX: Max_i(X_i); L_p: \sqrt[p]{X_i^p}; PROB: \frac{1}{b} \log \left(\sum_i e^{bX_i}\right)$$

LeNet5

subsampling

10

12

13

class Net(nn.Module):

def init (self):

super(Net, self).__init__()

subsampling

self.conv1 = nn.Conv2d(1, 20, 5, 1)

LeNet5 Simple ConvNet for MNIST [LeCun 1998]

```
VIST
25
26
27
28
29
29
21
```

19

20

21

22

23

24

def init (self):

def forward(self, img):

return output

output = self.convnet(img)

output = self.fc(output)

output = output.view(img.size(0), -1)

super(LeNet5, self).__init__()


```
('relu1', nn.ReLU()),
    ('s2', nn.MaxPool2d(kernel_size=(2, 2), stride=2)),
    ('c3', nn.Conv2d(6, 16, kernel_size=(5, 5))),
    ('relu3', nn.ReLU()),
    ('s4', nn.MaxPool2d(kernel_size=(2, 2), stride=2)),
    ('c5', nn.Conv2d(16, 120, kernel_size=(5, 5))),
    ('relu5', nn.ReLU())
]))
self.fc = nn.Sequential(OrderedDict([
    ('f6', nn.Linear(120, 84)),
    ('relu6', nn.ReLU()),
    ('f7', nn.Linear(84, 10)),
    ('sig7', nn.LogSoftmax(dim=-1))
1))
```

self.convnet = nn.Sequential(OrderedDict([

('c1', nn.Conv2d(1, 6, kernel_size=(5, 5))),

This is much cheaper than fixed size input and compute convolution

again and again. The last layer is 1x1 convolution

Multiple Character Recognition [Matan et al 1992]

Every layer is a convolution

Single Character Recognizer **SDNN**

Sliding Window ConvNet + Weighted Finite-State Machine

Sliding Window ConvNet + Weighted FSM

What are ConvNets Good For

- Signals that comes to you in the form of (multidimensional) arrays.
- Signals that have strong local correlations
- Signals where features can appear anywhere
- Signals in which objects are invariant to translations and distortions.
- 1D ConvNets: sequential signals, text
 - Text, music, audio, speech, time series.
- 2D ConvNets: images, time-frequency representations (speech and audio)
 - Object detection, localization, recognition
- 3D ConvNets: video, volumetric images, tomography images
 - Video recognition / understanding
 - Biomedical image analysis
 - Hyperspectral image analysis