Olimpiada de Fizică Etapa pe județ 2018 **Subjecte**

Pagina 1 din 2

Subiectul 1. Niște ciocniri

A) Un corp de masă M, ce se deplasează cu viteza v_0 , lovește un resort (fără masă, de constantă k, inițial nedeformat), atașat de un corp de masă m aflat în repaus. Corpurile se pot misca fără frecare pe o masă orizontală (vezi Figura 1.1).

a) Care este comprimarea maximă a resortului? Exprimă rezultatul în funcție Figura 1.1 de v_0 , k și $\mu = \frac{Mm}{M+m}$ (masa redusă a sistemului).

b) Dacă, la un interval de timp suficient de mare după ciocnire, corpurile se deplasează pe aceeași direcție, care sunt vitezele finale ale corpurilor M și m? Exprimă rezultatul în funcție de raportul $\gamma = \frac{m}{M}$ al maselor corpurilor.

B) Corpul de masă m este legat de un fir ideal de lungime *l*, fixat în *A* și întins orizontal (vezi Figura 1.2) pe un plan înclinat de unghi α suficient de mare, si apoi e lăsat liber.

1. Dacă mișcarea corpului m se efectuează fără frecare, calculează:

Figura 1.2

- a) $v(\theta)$, dependența vitezei corpului m de unghiul θ ;
- b) unghiul θ pentru care viteza corpului m este maximă și viteza maximă v_{max} ;
- c) dependenta $T(\theta)$ a tensiunii din fir;
- d) unghiul θ pentru care accelerația corpului este maximă și accelerația maximă.
- 2. Între corpul m si planul înclinat există frecare (coeficient de frecare la alunecare μ). În momentul în care corpul ajunge la viteza maximă, el este ciocnit plastic de corpul M care a fost lansat în sus, de-a lungul planului înclinat, pe o direcție paralelă cu BA. Calculează:
 - a) unghiul θ la care viteza corpului este maximă și viteza maximă;
 - b) care trebuie să fie viteza v_1 a corpului M imediat înainte de ciocnire pentru ca, după ciocnirea plastică, corpul format să înceapă să se deplaseze înspre punctul A?

Subiectul 2. Măsurători și calcule

A) Pentru a afla viteza v a unui proiectil de masă m folosim un pendul balistic format dintr-un corp de masă M atârnat ca în Figura 2.1. Considerăm că durata ciocnirii este foarte mică. După ciocnire pendulul (cu proiectilul) urcă până la înălțimea H. Un operator a măsurat de trei ori deplasarea maximă pe verticală a pendulului balistic și a obținut valorile: H_1 = 16,9 cm, $H_2 = 17,2$ cm, $H_3 = 17,0$ cm.

Figura 2.1

Informații suplimentare: Din alte măsurători se cunosc: $m = 2,6\pm0,2g$,

 $M = 613 \pm 0.3\%$ g, $g = 9.81 \pm 0.03$ m/s²; dacă MF este o mărime fizică obținută din calcul folosind relația MF = A + B, atunci eroarea $\Delta MF = \Delta A + \Delta B$;

dacă $MF = \frac{A^{\alpha}B^{\beta}}{C^{\gamma}}$, atunci eroarea relativă poate fi scrisă ca $\frac{\Delta MF}{MF} = \alpha \frac{\Delta A}{A} + \beta \frac{\Delta B}{B} + \gamma \frac{\Delta C}{C}$.

- a) Calculează viteza proiectilului și exprimă rezultatul sub forma $v = valoare \pm eroare$ m/s.
- b) Care din măsurătorile: m, M, H, g, trebuie îmbunătățite în primul rând, pentru a diminua Δv ?
- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subject, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subjectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

MINISTERUL EDUCAȚIEI NAȚIONALE

Olimpiada de Fizică Etapa pe județ 2018 Subiecte

Pagina 2 din 2

B. Un microscop este format din doua lentile convergente cu distanțele focale $f_1 = 5$ mm si $f_2 = 20$ mm. Un object este așezat la 5,2 mm fata de objectiv.

Calculează:

- a) poziția imaginii reale date de obiectiv;
- b) raportul dintre dimensiunile liniare ale imaginii si obiectului;
- c) distanța față de obiectiv la care trebuie așezat ocularul pentru ca imaginea virtuală dată de ocular să se formeze la 25 cm de ochiul care se găsește lângă ocular;
- d) puterea si grosismentul (comercial) al microscopului.

Subiectul 3. Gaz ideal

Un gaz ideal monoatomic se află într-un cilindru vertical. Capătul superior al cilindrului este închis cu un piston de masă M și secțiune transversală S (vezi Figura 3.1).

Sarcina de lucru 1

- a) Pistonul este fixat. Gazul din cilindru urmează procesul din Figura 3.2. Stabiliți dacă masa gazului crește, sacade sau rămâne constantă.
- b) Pistonul rămâne fixat, iar din vas se extrage gaz astfel încât presiunea gazului scade cu $f_1=40\%$, iar temperatura absolută cu $f_2=10\%$. Calculați cu cât la sută scade masa gazului.
- c) În timpul procesului de la *A* la *B* reprezentat în Figura 3.3 masa gazului rămâne constantă. Stabiliți pe ce porțiune a procesului gazul primește căldură și pe ce porțiune cedează căldură. Stabiliți dacă în procesul global de la *A* la *B* gazul primește sau cedează căldură.

Sarcina de lucru 2

Consideră că, atunci când pistonul este blocat, gazul are temperatura T_1 , presiunea p_1 și volumul V_1 . Apoi pistonul este lăsat liber. Neglijează frecările și capacitatea calorică a pistonului și a cilindrului. Gazul este izolat termic față de exterior iar presiunea aerului exterior este p_0 .

- a) Descrie, calitativ, mișcarea pistonului după eliberarea sa.
- b) Evaluează variația energiei sistemului gaz-piston când pistonul s-a deplasat pe distanța y.
- c) Exprimă viteza maximă atinsă de piston, folosind o aproximație rezonabilă.

Sarcina de lucru 3

- a) Stabilește poziția în care pistonul se oprește definitiv.
- b) Exprimă temperatura gazului în această stare.
- c) Dacă se așază pe piston un corp de masă m, cum se va modifica accelerația pistonului, imediat după eliberarea sa?

Subiect propus de:

Conf. univ. dr. Daniel ANDREICA, Facultatea de Fizică, UBB Cluj-Napoca, Prof. Ion TOMA, CN "Mihai Viteazul", București, Prof. dr. Constantin COREGA, CN "Emil Racoviță", Cluj-Napoca.

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subject, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- **5.** Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.