

ENGINEERING GRADUATE SALARY

Group 12 | Bhavan's Vivekananda College

Y. Shan Koushik | Y. Sruthi | A.Rahul | V. Akash

ABSTRACT

- This study aims to classify engineering graduates based on potential salary brackets using key demographic, academic, and experience-related features.
- Engineering graduates' salaries vary widely depending on factors like field, GPA, internship experience, and technical skills. Accurate salary classification can assist graduates in aligning their job expectations and aid recruiters in candidate selection.

OBJECTIVE

- Develop a machine learning model to classify graduates into salary brackets (e.g., low, medium, high) based on specific input features.
- A reliable model that classifies graduates into salary categories with high accuracy, providing valuable insights for educational institutions, students, and employers.

CONTENT

Introduction

Literature Review

Data Preprocessing

Exploratory Data Analysis

Data Modeling & Evaluation

Summary

Appendix

INTRODUCTION

• Context and Background:
Engineering graduates' salaries
often depend on diverse factors,
including GPA, skill set, internship
experience, and chosen
specialization.

• Dataset Details:

Utilizes a dataset with features such as GPA, work experience, field of engineering, and specific technical skills. The target variable is the salary category, divided into classes (low, medium, high).

LITERATURE REVIEW

LITERATURE REVIEW

Engineering Graduate Salary Prediction: A Data-Driven Approach Using Linear Regression

- 1. Ajay Talele,
- 2. Shripad Wattamwar,
- 3. Ranjeet Thopte,
- 4. Onkar Waghmode,
- 5. Vasu Mahajan

- Accuracy of Predictions: The Engineering Graduate Salary Prediction System employs linear regression to provide reasonably accurate salary forecasts, as evidenced by the close alignment of predicted and actual salaries. Limitations include outliers and reliance on historical data (2007-2017), affecting real-time relevance.
- Future Improvements: Enhancing model precision could involve incorporating factors like industry trends and economic indicators or adopting advanced techniques such as deep learning and natural language processing.

https://www.kuey.net/index.php/kuey/article/view/5125/3539

DATA PREPROCESSING

DATA

Dataset: Our Dataset Consists Of 32 Variables And 3000 Records

 $Source: \verb|https://drive.google.com/file/d/1CZBa0RBm88cfdQzSyLVkn6n9Peuo3fsm/view?usp=drivesdk| | the continuous continu$

	ID	Gender	DOB	10percentage	10board	12graduation	12percentage	12board	CollegeID	CollegeTier	 MechanicalEngg	ElectricalEngg	TelecomEngg	CivilEngg	conscientiousness	agreeable
0	604399	f	1990- 10-22	87.80	cbse	2009	84.00	cbse	6920	1	 -1	-1	-1	-1	-0.1590	0.
1	988334	m	1990- 05-15	57.00	cbse	2010	64.50	cbse	6624	2	 -1	-1	-1	-1	1.1336	0.
2	301647	m	1989- 08-21	77.33	maharashtra state board,pune	2007	85.17	amravati divisional board	9084	2	 -1	-1	260	-1	0.5100	-0.
3	582313	m	1991- 05-04	84.30	cbse	2009	86.00	cbse	8195	1	 -1	-1	-1	-1	-0.4463	0.
4	339001	f	1990- 10-30	82.00	cbse	2008	75.00	cbse	4889	2	 -1	-1	-1	-1	-1.4992	-0.
2993	103174	f	1989- 04-17	75.00	0	2005	73.00	0	1263	2	 -1	-1	-1	-1	-1.1901	0.
2994	352811	f	1991- 07-22	84.00	state board	2008	77.00	state board	9481	2	 -1	-1	-1	-1	-0.1082	0.
2995	287070	m	1988- 11-24	91.40	bsemp	2006	65.56	bsemp	547	2	 -1	-1	-1	-1	-0.8810	0.
2996	317336	m	1988- 08-25	88.64	karnataka education board	2006	65.16	karnataka education board	1629	2	 -1	-1	-1	-1	1.4374	1.
2997	993701	m	1992- 05-27	77.00	state board	2009	75.50	state board	1111	2	 -1	-1	-1	-1	-0.5899	-1.

DATA CLEANING

- Checked for null /NaN values: We replaced the Nan values with mean and mode of the column based on the attribute type.
- Garbage values: We replaced the garbage values of the column based on the domain knowledge of the dataset.
- Dummification: enabled and dummified the categorical variables

CATEGORICAL VARIABLES	CONTINUOUS VARIABLES
GENDER	10 PERCENTAGE
SPECIALIZATIO N	12 PERCENTAGE
SALARY	COLLEGE CGPA

Multi-level Donut Chart

Pie Chart

Proportional Area Chart (Circle)

JUNE 1

Boxplot

Three-dimensional Stream Graph

Semi Circle Donut Chart

Topographic Map

Radar Diagram

CORRELATION MATRIX

• The Most Positively
Correlated Variables Are
Domain-college
Cgpa,10percentageelectronics & Computer
Science-extraversion

The Next Most Positively
 Correlated Variables Are
 Domain-10percentage

GENDER COUNT & PROPORTION

The Male Count Is More Than The Female Count

HISTOGRAM

- The majority of salaries are concentrated at the lower end (below 500,000), as shown by the tall bars on the left.
- There are very few high salaries (over 1,000,000), as indicated by the much shorter bars or absence of bars on the right side.
- This distribution appears to be right-skewed or positively skewed, meaning most salaries are on the lower end with a few high outliers.

BOX PLOT

- Most salaries are tightly clustered in the lower range (left side), with a median well below 500,000
- There are numerous outliers on the right side (high salaries), extending up to about 4,000,000
- This distribution is highly **right-skewed**, as shown by the concentration of data at lower values and the long tail of outliers extending to higher values

SCATTER PLOT

- There appears to be a slight positive trend, where higher percentages in 10th grade tend to correlate with slightly higher salaries, though this trend is not strong.
- Both genders are fairly spread across the range of 10th grade percentages
- Many data points are clustered in the lower salary range (below 500,000), regardless of the 10th grade percentage

SCATTER PLOT

- There appears to be a slight positive trend, where higher percentages in 12th grade tend to correlate with slightly higher salaries, though this trend is not strong.
- Both genders are fairly spread across the range of 12th grade percentages
- Many data points are clustered in the lower salary range (below 500,000), regardless of the 12th grade percentage

MULTICOLLINEARITY CHECK

Firstly The Variables With Infinity VIF Were Removed ,Then The Variables With (VIF>3) Were Removed

MACHNE LEARNING ALGORITHMS

60:40 TRAIN TEST SPLIT

ALGORITHMS	MODEL 1	MODEL 2
LOGISTIC REGRESSION	0.916	0.625
KNN	0.999	0.570
SVM	1	0.617
DECISION TREE	1	0.651
RANDOM FOREST	1	0.589
XG BOOST	1	0.610
ADA BOOST	1	0.597

70:30 TRAIN TEST SPLIT

ALGORITHMS	MODEL 1	MODEL 2
LOGISTIC REGRESSION	0.914	0.637
KNN	0.998	0.561
SVM	1	0.610
DECISION TREE	1	0.674
RANDOM FOREST	1	0.573
XG BOOST	1	0.610
ADA BOOST	1	0.601

75:25 TRAIN TEST SPLIT

ALGORITHMS	MODEL 1	MODEL 2
LOGISTIC REGRESSION	0.920	0.629
KNN	0.998	0.577
SVM	1	0.596
DECISION TREE	1	0.668
RANDOM FOREST	1	0.579
XG BOOST	1	0.590
ADA BOOS	1	0.581

80:20 TRAIN TEST SPLIT

ALGORITHMS	MODEL 1	MODEL 2
LOGISTIC REGRESSION	0.922	0.618
KNN	0.998	0.598
SVM	1	0.597
DECISION TREE	1	0.667
RANDOM FOREST	1	0.602
XG BOOST	1	0.596
ADA BOOST	1	0.598

LGORITHMS COMP*RISION

ALGORITHMS	MODEL 1	MODEL 2
LOGISTIC REGRESSION	0.922	0.618
KNN	0.998	0.598
SVM	1	0.597
DECISION TREE	1	0.667
RANDOM FOREST	1	0.602
XG BOOST	1	0.596
ADA BOOST	1	0.598

CONFUSION MATRIX

1.Logistic regression before VIF for 80:20 2.Decision tree after VIF for 80:20 sp:split

NEURAL NETWORK

Train test	Architecture	Optimizer	Epochs	Accuracy
60-40	30-20-10-1	Adam	100	0.7739
60-40	30-20-10-1	Adam	100	0.5804
70-30	30-20-10-1	Adam	100	0.5112
70-30	30-20-10-1	Adam	100	0.5597
75-25	30-20-10-1	Adam	100	0.6935
75-25	30-20-10-1	Adam	100	0.5547
80-20	30-20-10-1	Adam	100	0.9085
80-20	30-20-10-1	Adam	100	0.5620

NEURAL NETWORK PLOT

Train Test Split	80-20
Architecture	30-20-10-1
Optimizer	Adam
Epochs	100

- The main aim of this research is to predict the salary of the engineering graduate's based on the performance of their education.
- After prediction we conclude that logistic regression is the best algorithm for model 1 i.e BEFORE VIF.
- The best split is 80:20

WORK DISTRIBUTION

TEAM MEMBER	WORK DONE
A RAHUL	COLLECTED REQUIRED INFORMATION AND DATA
AKASH	DATA PRE PROCESSING
Y SRUTHI	EXPLORATORY DATA ANALYSIS
SHAN KOUSHIK	IMPLMENTATION OF ML ALGORITHMS

Colab Notebook Link

SHAN KOUSHIK
A RAHUL
Y SRUTHI
V AKASH

APPENDIX.

LOADING THE DATASET

77.00

state board

2009

75.50

board

[] data= pd.read_csv('Engineering_graduate_salary.csv')
 data

2997 993701

,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
(→)		ID	Gender	DOB	10percentage	10board	12graduation	12percentage	12board	CollegeID	CollegeTier	 MechanicalEngg	ElectricalEngg	TelecomEngg	CivilEngg	conscientiousness	agreeable
	0	604399	f	1990- 10-22	87.80	cbse	2009	84.00	cbse	6920	1	 -1	-1	-1	-1	-0.1590	0.0
	1	988334	m	1990- 05-15	57.00	cbse	2010	64.50	cbse	6624	2	 -1	-1	-1	-1	1.1336	0.0
	2	301647	m	1989- 08-21	77.33	maharashtra state board,pune	2007	85.17	amravati divisional board	9084	2	 -1	-1	260	-1	0.5100	-0.'
	3	582313	m	1991- 05-04	84.30	cbse	2009	86.00	cbse	8195	1	 -1	-1	-1	-1	-0.4463	0.1
	4	339001	f	1990- 10-30	82.00	cbse	2008	75.00	cbse	4889	2	 -1	-1	-1	-1	-1.4992	-0.7
	2993	103174	f	1989- 04-17	75.00	0	2005	73.00	0	1263	2	 -1	-1	-1	-1	-1.1901	9.0
	2994	352811	f	1991- 07-22	84.00	state board	2008	77.00	state board	9481	2	 -1	-1	-1	-1	-0.1082	0.0
	2995	287070	m	1988- 11-24	91.40	bsemp	2006	65.56	bsemp	547	2	 -1	-1	-1	-1	-0.8810	0.4
	2996	317336	m	1988- 08-25	88.64	karnataka education board	2006	65.16	karnataka education board	1629	2	 -1	-1	-1	-1	1.4374	1.1

1111

-1

-0.5899

NULL VALUES

CHECKING FOR DATA TYPES

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2998 entries, 0 to 2997
Data columns (total 23 columns):
                             Non-Null Count Dtype
     Column
     Gender
                             2998 non-null
                                             object
     10percentage
                             2998 non-null
                                             float64
                             2998 non-null
                                            float64
     12percentage
                                             object
     Degree
                             2998 non-null
     Specialization
                             2998 non-null
                                             object
     collegeGPA
                             2998 non-null
                                            float64
     English
                                             int64
                             2998 non-null
     Logical
                             2998 non-null
                                             int64
     Quant
                             2998 non-null
                                             int64
     Domain
                             2998 non-null
                                            float64
     ComputerProgramming
                            2998 non-null
                                             int64
     ElectronicsAndSemicon
                            2998 non-null
                                             int64
     ComputerScience
                             2998 non-null
                                             int64
 13 MechanicalEngg
                             2998 non-null
                                             int64
 14 ElectricalEngg
                            2998 non-null
                                             int64
```

2998 non-null

2998 non-null

2998 non-null

int64

int64

float64

agreeableness 2998 non-null float64 19 extraversion float64 2998 non-null nueroticism 2998 non-null float64 21 openess_to_experience 2998 non-null float64 22 Salary 2998 non-null int64

dtypes: float64(9), int64(11), object(3)

memory usage: 538.8+ KB

conscientiousness

15 TelecomEngg

16 CivilEngg

ENLABLING THE VARIABLES

[] df= data.replace(to_replace='m', value='1')
 df= df.replace(to_replace='f', value='0')
 df

	Gender	10percentage	12percentage	Degree	Specialization	collegeGPA	English	Logical	Quant	Domai
0	0	87.80	84.00	B.Tech/B.E.	instrumentation and control engineering	73.82	650	665	810	0.69447
1	1	57.00	64.50	B.Tech/B.E.	computer science & engineering	65.00	440	435	210	0.34231
2	1	77.33	85.17	B.Tech/B.E.	electronics & telecommunications	61.94	485	475	505	0.82466
3	1	84.30	86.00	B.Tech/B.E.	computer science & engineering	80.40	675	620	635	0.99000
4	0	82.00	75.00	B.Tech/B.E.	biotechnology	64.30	575	495	365	0.27845
***	255	***	***	***	***	***	1.00	1510	***	8
2993	0	75.00	73.00	B.Tech/B.E.	electronics and communication engineering	70.00	505	485	445	0.53838
2994	0	84.00	77.00	B.Tech/B.E.	information technology	75.20	345	585	395	0.19015
2995	5 1	91.40	65.56	B.Tech/B.E.	information technology	73.19	385	425	485	0.60005
2996	1	88.64	65.16	B.Tech/B.E.	computer engineering	74.81	465	645	505	0.90149
2997	1	77.00	75.50	B.Tech/B.E.	information technology	69.30	370	390	285	0.48674

2009 rowe v 25 columns

DIVIDING THE DATA SET

```
for i in range(data.shape[1]):
      print(data.iloc[:,i].unique())
      print(data.iloc[:,i].value_counts())
['f' 'm']
    Gender
         2282
          716
    Name: count, dtype: int64
                77.33 84.3
    [87.8 57.
                            82.
                                  83.16 72.5
                                              77.
                                                    76.8
     86.4 84.13 81.7 86.
                            66.15 79.29 60.
                                              58.4
                                                   61.
                                                          50.
                                                               67.06 67.
     73.
           86.17 78.
                      71.8
                            66.66 83.6
                                       61.69 80.13 82.5
                                                         63.5
                70.16 74.6
                            66.5 78.4
                                        62.
                                              52.93 70.2
     91.
           65.
                                                         93.
                                                               53.4
                                                                    84.2
          81.5
                63.
                       74.
                            91.6
                                 87.5
                                        78.5
                                              79.5
                                                          66.
                            88.67 58.33 85.92 88.8
     76.5
           70.
                 89.5
                      56.4
                                                   73.8
                                                         81.4
                                                               88.1 82.3
                 58.56 58.
                                        92.2
                                              84.5
                                                    89.4 76.2
                            75.6
                                 75.
     86.5 75.83 69.4
                      85.6
                            80.6
                                  69.
                                        89.56 83.2
                                                   51.
                                                          60.7
                                                               90.6 75.4
          75.85 89.2
                            76.66 90.4
                      93.8
                                        90.8 82.67 94.16 61.73 87.7
          77.6 87.
                      89.8
                            80.
                                  84.
                                        89.6
                                             59.57 83.
                                                         67.8
          89.
                 87.4 93.33 71.3
                                  81.
                                        55.
                                              83.4 64.8 83.5
     91.4 87.33 73.94 79.8
                            92.
                                  78.93 52.7
                                              69.5
                                                   67.25 88.2
          83.68 84.4
                            83.04 79.2 77.86 81.66 82.6 91.2 62.4 72.4
                      85.8
                            85.83 69.66 79.78 91.86 79.66 84.67 64.4 71.66
     78.33 68.
                 86.6
                      61.6
     82.2 76.6
               85.3
                      68.6
                            79.4 72.3 75.38 87.2 57.67 80.33 55.6 89.33
     86.3 73.2 70.3
                      65.2 72.17 84.6 80.07 92.47 66.33 88.64 75.86 88.66
                 72.2
                      59.
                            92.48 89.17 69.53 58.5 81.16 53.8
     83.8 71.33 93.2
                      90.06 89.42 77.57 92.5 78.15 63.6 81.33 69.8
     91.8 64.2 87.63 80.16 92.6 80.3 76.48 93.6
                                                   79.6 86.83 89.76 73.4
          88.6 53.06 85.72 78.88 84.8
                                        91.21 86.7
                                                    78.3
                                                         54.83 55.3 61.2
     67.36 61.75 55.33 91.1 75.52 85.5 86.08 87.6
                                                   80.2 65.26 70.1 85.2
           77.8 74.3 68.2 87.62 93.4 82.28 64.56 69.33 91.04 75.12 64.5
     78.8 66.6 74.5 71.6 74.4 86.15 73.37 70.25 77.4 86.1 72.6 90.5
     89.12 81.86 62.15 67.12 91.84 70.6 56.16 66.85 56.78 68.33 78.2 78.61
     94.4 67.6 58.6 83.89 78.67 67.3 73.6 91.5 68.3 85.4 90.83 86.09
     84.83 83.66 72.8 82.25 61.57 86.14 74.88 88.3 68.14 67.72 87.58 88.5
     87.52 62.5 81.03 88.4 88.76 54.4 63.33 70.33 92.8 90.01 50.6 81.6
```

DROPPING COLUMNS

[] data.columns

88.64

77.00

ata.drop(['ID','008','19board','12graduation','12board','CollegeTier','CollegeCityTD','CollegeCityTier','CollegeState','GraduationYear'), axis=1, inplace=True) print(data) Gender 10percentage 12percentage 87.80 84.00 B.Tech/B.E. 57.00 64.50 B.Tech/B.E. 77.33 85.17 B.Tech/B.E. 84.30 86,00 B.Tech/B.E. 82.00 75.00 8.Tech/8.E. 2993 75.00 73.00 8.Tech/8.E. 2994 84.00 77,00 0.Tech/8.E. 91.40 65.56 8.Tech/8.E.

	Specialization	n collegeGPA	English	Logical	
0	instrumentation and control engineering	2 73.82	650	665	
1	computer science & engineering	65.00	440	435	
2	electronics & telecommunication	61.94	485	475	
3	computer science & engineering	80.40	675	620	
4	biotechnology	y 64.30	575	495	
	++-	+ +++			
2993	electronics and communication engineering	g 70.00	505	485	
2994	information technology	75.20	345	585	
2995	information technology	73.19	385	425	
2996	computer engineering	74.81	465	645	
2997	information technolog	y 69.38	370	390	
	Quant Domain MechanicalEngs Ele	ectricalEnge	TelecomEn		
_	Quant Domain MechanicalEngg Ele	reruteures.	Letecomen!	88)	

65.16 B.Tech/B.E.

75.50 8.Tech/B.E.

	Quant	Domain	***	MechanicalEngg	ElectricalEngg	TelecomEngg	1
0	810	0.694479	+ + +	-1	-1	-1	
1	230	0.342315		-1	-1	-1	
2	505	0.824666		-1	-1	268	
3	635	0.990009		-1	-1	-1	
4	365	0.278457	2.52	-1	-1	-1	
		20.00		± × (+)			
2993	445	0.538387		-1	-1	-1	
2994	395	0.190153		-1	-1	-1	
2995	485	0.600057	0.4.4	-1	-1	-1	
2996	585	0.901490	444	-1	-1	+1	
2997	285	0.486747		-1	-1	-1	

Civilings conscientiousness agreeableness extraversion nueroticism \
-1 -0.1590 0.3789 1.2396 0.14590

BAR & PIE PLOTS

Proportion of gender

LOGISTIC REGRESSION BEFORE VIF

```
[ ] from sklearn.model selection import train test split
    X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size=0.40, random_state=42)
    X train2, X test2, y train2, y test2 = train test split(X, y, test size=0.30, random state=42)
    X_train3, X_test3, y_train3, y_test3 = train_test_split(X, y, test_size=0.25, random_state=42)
    X_train4 ,X_test4, y_train4, y_test4 = train_test_split(X, y, test_size=0.20, random_state=42)
[ ] from sklearn.linear model import LogisticRegression
     logreg = LogisticRegression(C=1e9)
60-40
[ ] logreg.fit(X train1, y train1)
     predictions = logreg.predict(X test1)
     print(predictions)
   [1 1 1 ... 1 0 0]
    /usr/local/lib/python3.10/dist-packages/sklearn/linear model/ logistic.py:469: ConvergenceWarning: lbfgs failed t
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
[ ] from sklearn.metrics import accuracy_score
     from sklearn.metrics import confusion matrix
     z=confusion matrix(y test1, predictions)
     print(z)
     accuracy score(y test1, predictions)
    [[605 30]
     [ 71 494]]
    0.9158333333333334
```

KNN BEFORE VIF

60-40

[] from sklearn.neighbors import KNeighborsClassifier

model=KNeighborsClassifier(n_neighbors=25)

[] model.fit(X_train1, y_train1)

[] y_pred1 = model.predict(X_test1)
 y_pred1

 \rightarrow array([1, 1, 1, ..., 1, 0, 0])

[] knn = pd.DataFrame({'Predicted':y_pred1,'Actual':y_test1})
knn

₹		Predicted	Actual
	1376	1	1
	932	1	1
	144	1	1
	1752	0	0
	51	0	0
	308	1	1

→ SVM BEFORE VIF

60-40 [] from sklearn.svm import SVC [] model1 = SVC(kernel='linear') model1.fit(X_train1, y_train1) $\overline{\Sigma}$ SVC SVC(kernel='linear') [] y_pred1 = model1.predict(X_test1) [] y_pred1 → array([1, 1, 1, ..., 1, 0, 0]) [] svm = pd.DataFrame({'Predicted':y_pred1,'Actual':y_test1}) svm $\widehat{\to^*}$ Predicted Actual 1376 932 144 1752 0 51 308

DECISION TREE'S BEFORE VIF

60-40 [] from sklearn.tree import DecisionTreeClassifier from sklearn import metrics clf = DecisionTreeClassifier() clf = clf.fit(X_train1,y_train1) y_pred1 = clf.predict(X_test1) [] print("Accuracy:",metrics.accuracy_score(y_test1, y_pred1)) → Accuracy: 1.0 [] clf = DecisionTreeClassifier(criterion="entropy", max_depth=3) clf = clf.fit(X_train1,y_train1) y_pred1 = clf.predict(X_test1) print("Accuracy:",metrics.accuracy_score(y_test1, y_pred1)) → Accuracy: 1.0 [] clf = DecisionTreeClassifier(criterion="gini", max_depth=2) clf = clf.fit(X_train1,y_train1) y_pred1 = clf.predict(X_test1) print("Accuracy:",metrics.accuracy_score(y_test1, y_pred1)) → Accuracy: 1.0 [] clf = DecisionTreeClassifier(criterion="gini", max_depth=3) clf = clf.fit(X_train1,y_train1)

RANDOM FOREST BEFORE VIF

```
60-40
[ ] from sklearn.ensemble import RandomForestClassifier
    from sklearn.tree import plot_tree
    rf = RandomForestClassifier()
    rf.fit(X_train1,y_train1)
\overline{z}
         RandomForestClassifier
     RandomForestClassifier()
[ ] y_pred1=rf.predict(X_test1)
    print("Accuracy:",accuracy_score(y_test1,y_pred1))
→ Accuracy: 1.0
[ ] print(classification_report(y_test1, y_pred1))
    print(confusion_matrix(y_test1, y_pred1))
\overline{z}
                  precision
                                recall f1-score support
                                  1.00
                                            1.00
                                                       635
                0
                        1.00
               1
                        1.00
                                 1.00
                                            1.00
                                                       565
```

1.00

1.00

1.00

1200

1200

1200

[[635 0]

accuracy

macro avg weighted avg 1.00

1.00

1.00

1.00

```
    ADABOOST BEFORE VIF

   Collapse 15 child cells under ADABOOST BEFORE VIF (Press <Shift> to also collapse sibling sections)
[ ] from sklearn.ensemble import AdaBoostClassifier
     from sklearn.ensemble import AdaBoostClassifier
     from sklearn.tree import DecisionTreeClassifier
[ ] # Replace 'base_estimator' with 'estimator'
     base_estimator = DecisionTreeClassifier(max_depth=3, random_state=0)
     adaboost = AdaBoostClassifier(estimator=base_estimator, # Changed argument name here
                                   n_estimators=3,random_state=0)
60-40
     adaboost.fit(X train1, y train1)
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_weight_boosting.py:527: FutureWarning: The S
       warnings.warn(
              AdaBoostClassifier
       ▶ estimator: DecisionTreeClassifier
          ▶ DecisionTreeClassifier
[ ] y_pred1 = adaboost.predict(X_test1)
     print("Accuracy:",accuracy_score(y_test1,y_pred1))
     print(classification_report(y_test1, y_pred1))
     print(confusion_matrix(y_test1, y_pred1))
```

- Assumasivi 1 0

XGBOOST BEFORE VIF

```
[ ] import xgboost as xgb

[ ] model1 = xgb.XGBClassifier()
    model2 = xgb.XGBClassifier(n_estimators=100, max_depth=8, learning_rate=0.1, sub_sample=0.5)

② y_train1 = y_train1.astype('int')
    y_train2 = y_train2.astype('int')
    y_train3 = y_train3.astype('int')
    y_train4 = y_train4.astype('int')
    y_test1 = y_test1.astype('int')
    y_test2 = y_test2.astype('int')
    y_test3 = y_test3.astype('int')
    y_test4 = y_test4.astype('int')
```

```
[ ] model1.fit(X_train1, y_train1)
  model2.fit(X_train1,y_train1)
```

```
XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.1, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=8, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, random_state=None, ...)
```

```
[ ] pred1 = model1.predict(X_test1)
    pred2 = model2.predict(X_test1)

print('Model 1 XGboost Report %r' % (classification_report(y_test1, pred1)))
    print('Model 2 XGboost Report %r' % (classification_report(y_test1, pred2)))
```

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

def calc_vif(X):

    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = X.columns
    vif["VIF"] = [variance_inflation_factor(X.values, i).round(1) for i in range(X.shape[1])]
    return(vif)

calc_vif(X)
```

/usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:197: RuntimeWarning: divide by zero encountered in scalar divide vif = 1. / (1. - r_squared_i)

	variables	VIF
0	10percentage	2.0
1	12percentage	1.9
2	collegeGPA	1.3
3	English	1.4
4	Logical	1.6
63	Specialization_other	4.5
64	Specialization_telecommunication engineering	2.4
65	$Specialization_Category_Electronics~\&~Communic$	inf
66	Specialization_Category_Mechanical & Production	inf
67	Specialization_Category_Other	402.7

68 rows × 2 columns

```
[ ] calc_vif(X.drop('Specialization_Category_Mechanical & Production', axis=1))
```

[/]usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:197: RuntimeWarning: divide by zero encountered in scalar divide vif = 1. / (1. - r_squared_i)

LOGISTIC REGRESSION AFTER VIF

60-40

```
from sklearn.linear_model import LogisticRegression
    logreg = LogisticRegression(C=1e9)
    logreg.fit(X train1 nomulti, y train1 nomulti)
    predictions1 = logreg.predict(X_test1_nomulti)
    print(predictions1)
    [0 0 1 ... 0 0 0]
    /usr/local/lib/python3.10/dist-packages/sklearn/linear model/ logistic.py:469: ConvergenceWarning: lbfgs failed to cc
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
[ ] z=confusion_matrix(y_test1_nomulti, predictions1)
     Ζ
    array([[446, 189],
            [261, 304]])
    accuracy_score(y_test1_nomulti,predictions1)
\rightarrow
    0.625
[ ] print(classification_report(y_test1_nomulti,predictions1))
\overline{\Rightarrow}
                   precision
                                recall f1-score support
                0
                        0.63
                                  0.70
                                             0.66
                                                        635
                        0.62
                                  0.54
                                            0.57
                                                        565
         accuracy
                                            0.62
                                                       1200
```

KNN AFTER VIF

60-40

↑ ♥ □ □ / 및 □

		Predicted	Actual	
	1376	0	1	
	932	0	1	
	144	1	1	
	1752	1	0	
	51	0	0	
	308	0	1	
	2318	1	1	
	749	0	1	
	1431	0	0	
	1236	0	0	
1200 rows × 2 columns				

1200 rows × 2 columns

```
↑ ↓ ⊖ 🗏 🖊 🗓
SVM AFTER VIF
60-40
                                                       + Code
                                                                  + Text
[ ] model1 = SVC(kernel='linear')
[ ] model1.fit(X_train1_nomulti, y_train1_nomulti)
\overline{\Sigma}
             SVC
     SVC(kernel='linear')
[ ] y_pred1_nomulti = model1.predict(X_test1_nomulti)
[ ] y_pred1_nomulti
\rightarrow array([0, 0, 1, ..., 0, 0, 0])
[ ] svm = pd.DataFrame({'Predicted':y_pred1_nomulti,'Actual':y_test1_nomulti})
     svm
\overrightarrow{\exists^*}
            Predicted Actual
      1376
                    0
      932
                    0
      144
      1752
                            0
       51
      308
                    0
      2318
      749
                    0
```

clf = clf.fit(X train1 nomulti,y train1 nomulti)

```
60-40
                                                                 + Text
                                                      + Code
[ ] from sklearn.tree import DecisionTreeClassifier
    from sklearn import metrics
[ ] clf = DecisionTreeClassifier()
    clf = clf.fit(X_train1_nomulti,y_train1_nomulti)
[ ] y_pred1_nomulti = clf.predict(X_test1_nomulti)
[ ] print("Accuracy:",metrics.accuracy_score(y_test1_nomulti, y_pred1_nomulti))
Accuracy: 0.541666666666666
[ ] # Create Decision Tree classifer object
    clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)
    # Train Decision Tree Classifer
    clf = clf.fit(X train1 nomulti,y train1 nomulti)
    #Predict the response for test dataset
    y_pred1_nomulti = clf.predict(X_test1_nomulti)
    # Model Accuracy, how often is the classifier correct?
    print("Accuracy:",metrics.accuracy_score(y_test1_nomulti, y_pred1_nomulti))
    Accuracy: 0.5983333333333334
    clf = DecisionTreeClassifier(criterion="gini", max_depth=2)
    # Train Decision Tree Classifer
```

RANDOM FOREST AFTER VIF

60-40

```
rf.fit(X_train1_nomulti,y_train1_nomulti)
```

RandomForestClassifier © © RandomForestClassifier()

```
[ ] y_pred_train1_nomulti=rf.predict(X_test1_nomulti)
    print("Accuracy:",accuracy_score(y_test1_nomulti,y_pred1_nomulti))
    print(classification_report(y_test1_nomulti, y_pred1_nomulti))
    print(confusion_matrix(y_test1_nomulti, y_pred1_nomulti))
```

```
Accuracy: 0.59083333333333333
              precision
                          recall f1-score support
                   0.63
                            0.54
                                      0.58
                                                 635
           0
           1
                   0.56
                            0.64
                                      0.60
                                                 565
                                      0.59
                                                1200
    accuracy
                  0.59
                            0.59
                                      0.59
                                                1200
   macro avg
                                      0.59
weighted avg
                   0.60
                            0.59
                                                1200
[[346 289]
```

70-30

[202 363]]

[] rf.fit(X_train2_nomulti,y_train2_nomulti)

RandomForestClassifier © © RandomForestClassifier()

```
[ ] y_pred_train2_nomulti=rf.predict(X_test2_nomulti)
    print("Accuracy:",accuracy_score(y_test2_nomulti,y_pred2_nomulti))
    print(classification_report(y_test2_nomulti, y_pred2_nomulti))
    print(confusion_matrix(y_test2_nomulti, y_pred2_nomulti))
```

60-40

adaboost.fit(X_train1_nomulti, y_train1_nomulti)

/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_weight_boosting.py:527: FutureWarning: The SAMME.R algorithm warnings.warn(

[] y_pred1_nomulti = adaboost.predict(X_test1_nomulti)
 print("Accuracy:",accuracy_score(y_test1_nomulti,y_pred1_nomulti))
 print(classification_report(y_test1_nomulti, y_pred1_nomulti))
 print(confusion_matrix(y_test1_nomulti, y_pred1_nomulti))

→ Accuracy: 0.5975

	precision	recall	f1-score	support
0	0.62 0.57	0.60	0.61	635 565
1	0.57	0.59	0.58	505
accuracy			0.60	1200
macro avg	0.60	0.60	0.60	1200
weighted avg	0.60	0.60	0.60	1200

[[382 253] [230 335]]

70-30

[] adaboost.fit(X_train2_nomulti, y_train2_nomulti)

/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_weight_boosting.py:527: FutureWarning: The SAMME.R algorithm warnings.warn(

AdaBoostClassifier

XGBOOST AFTER VIF

```
↑ ↓ © ■ / L
```

```
[ ] y_train1_nomulti = y_train1_nomulti.astype('int')
    y_train2_nomulti = y_train2_nomulti.astype('int')
    y_train3_nomulti = y_train3_nomulti.astype('int')
    y_train4_nomulti = y_train4_nomulti.astype('int')
    y_test1_nomulti = y_test1_nomulti.astype('int')
    y_test2_nomulti = y_test2_nomulti.astype('int')
    y_test3_nomulti = y_test3_nomulti.astype('int')
    y_test4_nomulti = y_test4_nomulti.astype('int')
```

60-40

model1.fit(X_train1_nomulti, y_train1_nomulti)
model2.fit(X_train1_nomulti,y_train1_nomulti)

```
XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.1, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=8, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, random_state=None, ...)
```

```
[ ] pred1 nomulti = model1.predict(X test1 nomulti)
    pred2 nomulti = model2.predict(X test1 nomulti)
    print('Model 1 XGboost Report %r' % (classification report(y test1 nomulti, pred1 nomulti)))
    print('Model 2 XGboost Report %r' % (classification report(y test1 nomulti, pred2 nomulti)))
    Model 1 XGboost Report '
                                          precision
                                                       recall f1-score
                                                                          support\n\n
                                                                                                0
                                                                                                        0.62
                                                                                                                  0.72
    Model 2 XGboost Report '
                                          precision
                                                       recall f1-score support\n\n
                                                                                                0
                                                                                                        0.62
                                                                                                                  0.63
```