582206 Laskennan mallit (syksy 2016)

Harjoitus 1, ratkaisuja

1. Tarkastellaan kokonaislukujen joukon $\mathbb Z$ osajoukkoja $A=\{1,2,3\}$ ja $B=\{2,3,4\}$. Merkinnällä \overline{C} tarkoitetaan joukon C komplementtia:

$$\overline{C} = \mathbb{Z} - C$$

$$= \{ x \in \mathbb{Z} \mid x \notin C \}.$$

Mitä alkioita kuuluu seuraaviin joukkoihin:

(a) $(\overline{A} \cap B) \cup (A \cap \overline{B})$

Ratkaisu: Joukkoa $C = (\overline{A} \cap B) \cup (A \cap \overline{B})$ sanotaan joukkojen A ja B symmetriseksi erotukseksi ja merkitään usein $A \Delta B$ tai $A \oplus B$. Siinä ovat ne alkiot, jotka kuuluvat tasan yhteen joukoista A ja B. Siis tässä $C = \{1, 4\}$.

(b) $\overline{\overline{A}} \cap \overline{\overline{B}}$?

Ratkaisu: De Morganin lain mukaan (katso tehtävää 3)

$$\overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}} = A \cup B.$$

Siis
$$D = \{1, 2, 3, 4\}.$$

- 2. Olkoon $a \neq 0$ jokin kiinteä reaaliluku.
 - (a) Esitä rekursiivinen määritelmä potenssille a^n , missä $n \in \mathbb{N}$.

Ratkaisu:

$$a^0 = 1$$

$$a^{n+1} = a^n \cdot a \qquad \qquad \text{kun } n \in \mathbb{N}.$$

(b) Väite: Kaikilla $n, k \in \mathbb{N}$ pätee $a^n \cdot a^k = a^{n+k}$.

Todistus: Induktio k:n suhteen.

Perustapaus: Olkoon k = 0. Koska $a^0 = 1$ ja n + 0 = n, väite tulee muotoon $a^n \cdot 1 = a^n$, joka selvästi pätee.

 $\it Induktioaskel$: Oletetaan, että väite pätee, kun k=m. Osoitetaan, että väite pätee myös, kun k=m+1. Saamme

$$\begin{array}{l} a^n \cdot a^k = a^n \cdot a^{m+1} \\ = a^n \cdot (a^m \cdot a) & \text{potenssin määritelmä} \\ = (a^n \cdot a^m) \cdot a & \text{induktio-oletus} \\ = a^{n+m} \cdot a & \text{induktio-oletus} \\ = a^{(n+m)+1} & \text{potenssin määritelmä} \\ = a^{n+k} \end{array}$$

eli väite pätee myös, kun k=m+1. \square

```
3. Väite: \overline{A \cap B} = \overline{A} \cup \overline{B}
```

Todistus:

$$x\in \overline{A\cap B} \iff x\not\in A\cap B$$
 $\Leftrightarrow \text{ ei päde, että }x\in A\text{ ja }x\in B$
 $\Leftrightarrow \text{ pätee, että }x\not\in A\text{ tai }x\not\in B$
 $\Leftrightarrow \text{ pätee, että }x\in \overline{A}\text{ tai }x\in \overline{B}$
 $\Leftrightarrow x\in \overline{A}\cup \overline{B}.$

Väite: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Todistus:

$$\begin{array}{ll} x \in \overline{A \cup B} & \Leftrightarrow & x \not \in A \cup B \\ & \Leftrightarrow & \text{ei p\"{a}de, ett\"{a}} \ x \in A \ \text{tai} \ x \in B \\ & \Leftrightarrow & \text{p\"{a}tee, ett\"{a}} \ x \not \in A \ \text{ja} \ x \not \in B \\ & \Leftrightarrow & \text{p\"{a}tee, ett\"{a}} \ x \in \overline{A} \ \text{ja} \ x \in \overline{B} \\ & \Leftrightarrow & x \in \overline{A} \cap \overline{B}. \end{array}$$

4.

leveyssuuntainen

syvyyssuuntainen

5. **Lause** Jos suuntaamattomassa verkossa on ainakin kaksi solmua, niin siinä on ainakin kaksi solmua, joiden aste on sama.

Todistus Olkoon verkossa n solmua, missä $n \geq 2$. Koska solmu ei voi olla oma naapurinsa, suurin mahdollinen naapurien lukumäärä eli aste on n-1. Toisaalta pienin mahdollinen aste on 0. Siis solmujen asteet ovat luonnollisia lukuja joukosta $\{0,1,\ldots,n-1\}$. Näitä mahdollisia asteita on n kappaletta.

Tehdään nyt vastaoletus, että millään kahdella solmulla ei ole sama aste. Koska solmujen lukumäärä n on sama kuin mahdollisten asteiden lukumäärä, tällöin jokainen mahdollinen aste joukosta $\{0,\ldots,n-1\}$ esiintyy tasan yhdellä solmulla.

Erityisesti siis yhden solmun v aste on 0, eli solmu v ei ole minkään solmun naapuri.

Toisaalta yhden solmun w aste on n-1, eli solmu w on kaikkien muiden solmujen naapuri. Koska $n \ge 2$, niin $n-1 \ne 0$, joten v ja w eivät voi olla sama solmu. Siis solmu v on solmun w naapuri. Tämä on ristiriita sen kanssa, että solmu v ei ole minkään solmun naapuri. \square

- 6. Kuvaile sanallisesti seuraavat joukot:
 - (a) $\{2n+1 \mid n \in \mathbb{N}\}$: parittomat luonnolliset luvut
 - (b) $\{ww^{\mathcal{R}} \mid w \in \{0,1\}^*\}$: parillisen mittaiset palindromit aakkostossa $\{0,1\}$
 - (c) $\{a^nb^nc^n \mid n \in \mathbb{N}\}$: aakkoston $\{a,b,c\}$ merkkijonot, joissa a-merkit ovat ennen b-merkkejä ja b-merkit ennen c-merkkejä ja a-, b- ja c-merkkejä on sama määrä
 - (d) $\{u \in \Sigma^* \mid \text{jollakin } v \in \Sigma^* \text{ pätee } uv = \text{abrakadabra }\}, \text{ missä } \Sigma = \{\text{a}, \ldots, \text{z}\}: \text{ merkkijonon abrakadabra alkuosat (eli } \{\varepsilon, \text{a}, \text{ab}, \text{abr}, \ldots, \text{abrakadabra }\}).$
- 7. Esitä tehtävän 1 tyylistä joukkomerkintää käyttäen seuraavat joukot:
 - (a) aakkoston { a, b, c, d } palindromit:

$$\{ w \in \{ a, b, c, d \}^* \mid w^{\mathcal{R}} = w \}$$

(b) kolmella jaolliset luonnolliset luvut:

$$\{3n \mid n \in \mathbb{N}\}\$$

(c) aakkoston { 0, 1 } merkkijonot, joissa kaikki nollat ovat ennen ykkösiä:

$$\{0^n1^m \mid n, m \in \mathbb{N}\}$$

(d) aakkoston { a, b } merkkijonot, jotka sisältävät osamerkkijonon bab:

$$\{ u \operatorname{bab} v \mid u, v \in \{ a, b \}^* \}.$$

Lisäksi (d)-kohdan kielen kymmenen ensimmäistä merkkijonoa leksikografisessa järjestyksessä: bab, abab, baba, baba, baba, abab, ababa, ababb, abbab, abbab,

8. Automaatti tilakaaviona:

Laskenta syötteellä 1010:

$$q_0 \xrightarrow{1} q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2.$$

Tila q_2 ei ole hyväksyvä, joten automaatti hylkää syötteen.

Laskenta syötteellä 000111:

$$q_0 \stackrel{0}{\rightarrow} q_1 \stackrel{0}{\rightarrow} q_2 \stackrel{0}{\rightarrow} q_1 \stackrel{1}{\rightarrow} q_1 \stackrel{1}{\rightarrow} q_1 \stackrel{1}{\rightarrow} q_1.$$

Tila q_1 on hyväksyvä, joten automaatti hyväksyy syötteen.

Seuraamalla siirtymät tilasta q_0 syötteellä 0110 nähdään, että $\delta^*(q_0, 0110) = q_2$.

Automaatin tunnistama kieli koostuu binääriaakkoston merkkijonoista, joissa on pariton määrä nollia.

9. Binääriaakkostossa on korkeintaan 2-merkkisiä merkkijonoja 7 kappaletta: ε , 0, 1, 00, 01, 10, 11. Näistä alkioista voidaan muodostaa $2^7 = 128$ joukkoa. Siis kieliä on kaikkiaan 128.

Yleisemmin, olkoon Σ akkosto, jossa on $k \geq 2$ symbolia. Tasan m-merkkisiä aakkoston Σ merkkijonoja on k^m kappaletta. Siis korkeintaan n-merkkisiä merkkijonoja on $k^0 + k^1 + k^2 + \ldots + k^n = (k^{n+1} - 1)/(k-1)$. Korkeintaan n-merkkisistä merkkijonoista koostuvia kieliä on siis $2^{(k^{n+1}-1)/(k-1)}$.

Erikoistapauksessa $|\Sigma|=1$ korkeintaan n-merkkisiä merkkijonoja on n+1 ja siis kysytynlaisia kieliä 2^{n+1} kappaletta.

10. Kieli A on rajoitettu, jos sen merkkijonojen pituudet ovat ylhäältä rajoitettuja, ts. jollain luonnollisella luvulla $n \in \mathbb{N}$ pätee, että |w| < n kaikilla $w \in A$.

Väite: Jos A ja B ovat rajoitettuja, niin myös $A \cup B$ on.

Todistus: Olkoot A ja B rajoitettuja. Siis jollain $n_A \in \mathbb{N}$ pätee, että $|w| \leq n_A$ kun $w \in A$, ja jollain $n_B \in \mathbb{N}$ pätee, että $|w| \leq n_B$ kun $w \in B$. Valitaan esim. $n = \max \{n_A, n_B\}$. Jos $w \in A \cup B$, niin $w \in A$ tai $w \in B$, joten $|w| \leq n$. Siis $A \cup B$ on rajoitettu. \square

Väite: Jos A ja B ovat rajoitettuja, niin myös $A \cap B$ on.

Todistus: Selvästi rajoitetun joukon osajoukot ovat rajoitettuja. Koska $A \cap B \subseteq A$ ja A on rajoitettu, niin myös $A \cap B$ on rajoitettu. \square

Väite: Kieli on rajoitettu, jos ja vain jos se on äärellinen.

Todistus: Oletetaan ensin, että $A = \{w_1, \dots, w_m\}$ on äärellinen kieli, missä m = |A|. Äärellisellä joukolla luonnollisia lukuja $\{|w_1|, \dots, |w_m|\}$ on suurin alkio; olkoon se n. Selvästi $|w| \le n$ kaikilla $w \in A$, joten A on rajoitettu.

Oletetaan nyt, että A on rajoitettu. Olkoon n sellainen, että $|w| \leq n$ kaikilla $w \in A$. Siis $A \subseteq \Sigma^{\leq n}$, missä on merkitty

$$\Sigma^{\leq n} = \Sigma^0 \cup \Sigma^1 \cup \ldots \cup \Sigma^n.$$

Tehtävän 9 mukaan $|\Sigma^{\leq n}| \leq (k^{n+1}-1)/(k-1)$, missä $k=|\Sigma|$. Koska $|A| \leq |\Sigma^{\leq k}|$, erityisesti A on äärellinen. \square .