南京大学 电子科学与工程学院 全日制统招本科生《信号与系统》期末考试试卷 闭卷

考试日期: 2012.1___

考试时长: 120 分钟

考生年级:_	考生专业:	考生学号:	考生姓名:	
--------	-------	-------	-------	--

题号	_	=	三	四	五.	总分
得分						

一. (20分)填空与计算

(1) 已 知 理 想 高 通 滤 波 器 $H(j\omega) = \begin{cases} e^{-j\omega t_0}, |\omega| > \omega_c \\ 0 & |\omega| < \omega_c \end{cases}$, 则 其 冲 激 响 应

$$h(n) =$$

- (2) 已知因果信号 f(t) 的拉氏变换为 $F(s) = \frac{s+3}{2s^2+2s-4}$,则 f(t) 的终值 f(∞) =_____
- (3) 已知因果信号的单边拉氏变换为 $F(s) = \frac{1}{s^2 + s 1}$,求 $y(t) = \int_0^t f(\tau)e^{\tau}d\tau$ 的单边拉氏

变换Y(s)

(4) 已知
$$X(z) = \frac{z^{-2}}{1+z^{-2}} (|z| > 1)$$
,求其逆变换 $x(n)$

二. (15 分) 一个理想低通滤波器的频率响应为 $H(j\omega) = \begin{cases} e^{-j\omega t_0}, |\omega| < \omega_c \\ 0 & |\omega| > \omega_c \end{cases}$, 试证明此滤波

器对于两种不同的输入信号 $\frac{\pi}{\omega_c}\delta(t)$ 和 $\frac{\sin(\omega_c t)}{\omega_c t}$ 的响应是一样的

- 三. (20 分) 已知某离散系统的差分方程为 y(n)+1.5y(n-1)-y(n-2)=x(n-1)
- (1)若该离散系统为因果系统,求系统的单位样值响应 $h_{i}(n)$
- (2)若该系统为稳定系统,求该系统的单位样值响应 $h_2(n)$,并计算输入 $x(n) = (-0.5)^n u(n)$ 时的零状态响应

四. (10 分) 已知离散信号 $x_1(n) = n[u(n) - u(n-6)]$, $x_2(n) = u(n+6) - u(n+1)$, 求卷 $\mathop{\mathbb{R}} s(n) = x_1(n) * x_2(n)$, 并画出 s(n)

五. 已知离散线性因果系统的差分方程:
$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{3}x(n-1)$$

- (1) 求该系统的系统函数和单位样值响应
- (2) 画系统的零, 极点分布图
- (3) 大致画出幅频响应曲线
- (4) 画出实现该系统的结构框图(20分)

六. (15分) 如图所示电路

- (1) 试求系统函数 $H(s) = \frac{U_2(s)}{U_1(s)}$
- (2) 试求幅频特性 $H(j\omega)$,并画出幅频特性曲线
- (3) 当激励信号为 $e(t) = \sqrt{5}\cos(2t + 63.43^{\circ})u(t)$, 求正弦稳态响应

