Backpropagation

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

Neural networks

Drawing computation graphs

what **expression** does this compute? equivalently, what **program** does this correspond to?

$$||(x_1\theta_1 + x_2\theta_2) - y||^2$$

this is a MSE loss with a linear regression model

neural networks are computation graphs

if we design **generic tools** for computation graphs, we can train **many kinds** of neural networks

Drawing computation graphs

a simpler way to draw the same thing:

I'll drop the decorator from now on...

what **expression** does this compute? equivalently, what **program** does this correspond to?

$$||(x_1\theta_1 + x_2\theta_2) - y||^2$$

this is a MSE loss with a linear regression model

neural networks are computation graphs

if we design **generic tools** for computation graphs, we can train **many kinds** of neural networks

Logistic regression

let's draw the computation graph for **logistic regression** with the negative log-likelihood loss

$$p_{\theta}(y|x) = \frac{\exp(x^T \theta_y)}{\sum_{y'} \exp(x^T \theta_{y'})}$$
$$-\log p_{\theta}(y|x) = -x^T \theta_y + \log \sum_{y'} \exp(x^T \theta_{y'})$$

Logistic regression

$$p_{\theta}(y|x) = \frac{\exp(x^T \theta_y)}{\sum_{y'} \exp(x^T \theta_{y'})}$$

a simpler way to draw the same thing:

$$-\log p_{\theta}(y|x) = -x^T \theta_y + \log \sum_{y'} \exp(x^T \theta_{y'})$$

$$f_{\theta}(x) = \begin{bmatrix} x^T \theta_{y_1} \\ x^T \theta_{y_2} \\ \vdots \\ x^T \theta_{y_m} \end{bmatrix} \qquad f_{\theta}(x) = \theta x$$
matrix

$$\theta$$
 \times
 \log

$$p_{\theta}(y=i|x) = \operatorname{softmax}(f_{\theta}(x))[i] = \frac{\exp(f_{\theta,i}(x))}{\sum_{j=1}^{m} \exp(f_{\theta,j}(x))}$$

Drawing it even more concisely

Notice that we have **two types** of variables:

data (e.g., x, y), which serves as input or target output

parameters (e.g., θ)

the parameters usually affect one specific operation

(though there is often parameter sharing, e.g., conv nets – more on this later)

Neural network diagrams

(simplified) computation graph diagram

neural network diagram

simplified drawing:

Logistic regression with features

pop quiz: what is the dimensionality of θ ?

 $\operatorname{softmax}(x^T \theta)$

$$\phi(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1 x_2 \end{pmatrix}$$
softmax $(\phi(x)^T \theta)$

Learning the features

Problem: how do we represent the learned features?

Idea: what if each feature is a (binary) logistic regression output?

$$\phi_1(x) = \operatorname{softmax}(x^T w_1^{(1)}) = \frac{1}{1 + \exp(-x^T w_1^{(1)})}$$

$$\phi(x) = \begin{pmatrix} \operatorname{softmax}(x^T w_1^{(1)}) \\ \operatorname{softmax}(x^T w_2^{(1)}) \\ \operatorname{softmax}(x^T w_3^{(1)}) \end{pmatrix} = \sigma(W^{(1)} x)$$

per-element sigmoid
not the same as softmax
each feature is independent

which layer $w_1^{(1)}$ which feature = rows of weight **matrix**

aside: I'll switch to use w or W instead of θ here $\theta - all$ parameters of the model $w_1^{(1)}$ – weights (a.k.a. parameters) of feature 1 at layer 1

Let's draw this!

$$\phi(x) = \begin{pmatrix} \operatorname{softmax}(x^T w_1^{(1)}) \\ \operatorname{softmax}(x^T w_2^{(1)}) \\ \operatorname{softmax}(x^T w_3^{(1)}) \end{pmatrix} = \sigma(W^{(1)} x) \qquad p(y|x) = \operatorname{softmax}(\phi(x)^T \theta)$$

Simpler drawing

simpler way to draw the same thing:

even simpler:

Doing it multiple times

Activation functions

$$\phi_1(x) = \operatorname{softmax}(x^T w_1^{(1)}) = \frac{1}{1 + \exp(-x^T w_1^{(1)})}$$

we don't have to use a sigmoid!

a wide range of non-linear functions will work these are called **activation functions**

we'll discuss specific choices later why non-linear?

$$a^{(2)} = \sigma(W^{(2)}\sigma(W^{(1)}x))$$

if
$$\sigma(z) = z$$
, then...
 $a^{(2)} = W^{(2)}W^{(1)}x = Mx$

multiple linear layers = one linear layer

enough layers = we can represent anything (so long as they're nonlinear)

Demo time!

Source: https://playground.tensorflow.org/

Aside: what's so neural about it?

dendrites receive signals from other neurons

neuron "decides" whether to fire based on incoming signals

axon transmits signal to downstream neurons

Training neural networks

What do we need?

1. Define your model class

2. Define your **loss function**

negative log-likelihood, just like before

3. Pick your optimizer

stochastic gradient descent what do we need?

$$abla_{ heta}\mathcal{L}(heta) = \left[egin{array}{c} rac{d\mathcal{L}(heta)}{d heta_2} \ rac{d\mathcal{L}(heta)}{d heta_m} \end{array}
ight]$$

4. Run it on a big GPU

Aside: chain rule

Chain rule:

$$x \xrightarrow{g} y \xrightarrow{f} z$$

$$\frac{d}{dx}f(g(x)) = \frac{dz}{dx} = \frac{dy}{dx} \frac{dz}{dy}$$

$$x \in \mathbb{R}^n \ y \in \mathbb{R}^m$$
Jacobian of g Jacobian of f

Row or column?

In this lecture:

In some textbooks:

$$y \in R^m \quad \frac{dz}{dy} \in R^m \quad \frac{dy}{dx} \in R^{n \times m} \qquad y \in R^m \qquad \frac{dz}{dy} \in R^m$$

$$\left(\frac{dy}{dx}\right)_{i,i} = \frac{dy_j}{dx_i}$$

$$\frac{dz}{du} \in R^m$$

Just two different conventions!

High-dimensional chain rule

sum over all dimensions of y

$$\frac{d}{dx}f(g(x)) = \frac{dy}{dx}\frac{dz}{dy}$$

$$\max_{x \in \mathbb{N}} f(g(x)) = \frac{dy}{dx}\frac{dz}{dy}$$

Chain rule for neural networks

A neural network is just a composition of functions

So we can use chain rule to compute gradients!

$$\frac{d\mathcal{L}}{dW^{(1)}} = \frac{dz^{(1)}}{dW^{(1)}} \frac{da^{(1)}}{dz^{(1)}} \frac{dz^{(2)}}{da^{(1)}} \frac{d\mathcal{L}}{dz^{(2)}} \qquad \frac{d\mathcal{L}}{dW^{(2)}} = \frac{dz^{(2)}}{dW^{(2)}} \frac{d\mathcal{L}}{dz^{(2)}}$$

Does it work?

$$\frac{d\mathcal{L}}{dW^{(1)}} = \frac{dz^{(1)}}{dW^{(1)}} \frac{da^{(1)}}{dz^{(1)}} \frac{dz^{(2)}}{da^{(1)}} \frac{d\mathcal{L}}{dz^{(2)}}$$

We can calculate each of these Jacobians!

Example:

$$z^{(2)} = W^{(2)}a^{(1)}$$

$$\frac{dz^{(2)}}{da^{(1)}} = W^{(2)}^T$$

Why might this be a **bad** idea?

if each $z^{(i)}$ or $a^{(i)}$ has about n dims... each Jacobian is about $n \times n$ dimensions matrix multiplication is $O(n^3)$

do we care?

AlexNet has layers with 4096 units...

Doing it more efficiently

this product is cheap: $O(n^2)$

this is **always** true because the loss is scalar-valued!

Idea: start on the right

compute
$$\frac{dz^{(2)}}{da^{(1)}} \frac{d\mathcal{L}}{dz^{(2)}} = \delta$$
 first

$$\frac{d\mathcal{L}}{dW^{(1)}} = \frac{dz^{(1)}}{dW^{(1)}} \frac{da^{(1)}}{dz^{(1)}} \delta$$

this product is cheap: $O(n^2)$

compute
$$\frac{da^{(1)}}{dz^{(1)}}\delta = \gamma$$

$$\frac{d\mathcal{L}}{dW^{(1)}} = \frac{dz^{(1)}}{dW^{(1)}}\gamma$$

this product is cheap: $O(n^2)$

The backpropagation algorithm

"Classic" version

forward pass: calculate each $a^{(i)}$ and $z^{(i)}$ $a^{(n-1)} \longrightarrow f \longrightarrow z^{(n-1)}$

backward pass:

initialize
$$\delta = \frac{d\mathcal{L}}{dz^{(n)}}$$

for each f with input x_f & params θ_f from end to start:

$$\frac{d\mathcal{L}}{d\theta_f} \leftarrow \frac{df}{d\theta_f} \delta$$

$$\delta \leftarrow \frac{df}{dx_f} \delta$$

Let's walk through it...

forward pass: calculate each $a^{(i)}$ and $z^{(i)}$

backward pass:

for each f with input x_f & params θ_f from end to start:

$$\frac{d\mathcal{L}}{d\theta_f} \leftarrow \frac{df}{d\theta_f} \delta$$

$$\delta \leftarrow \frac{df}{dx_f} \delta$$

Practical implementation

Neural network architecture details

Some things we should figure out:

How many layers?

How big are the layers?

What type of activation function?

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$ReLU(x) = max(0, x)$$

Bias terms

Linear layer:

$$z^{(i+1)} = W^{(i)}a^{(i)}$$

problem: if $a^{(i)} = \vec{0}$, we always get 0...

Solution: add a "bias":

has nothing to do with bias/variance bias

$$z^{(i+1)} = W^{(i)}a^{(i)} + b^{(i)}$$

additional parameters in each linear layer

What else do we need for backprop?

forward pass: calculate each $a^{(i)}$ and $z^{(i)}$

for each function, we need to compute:

backward pass:

initialize
$$\delta = \frac{d\mathcal{L}}{dz^{(n)}}$$

for each f with input x_f & params θ_f from end to start:

$$\frac{d\mathcal{L}}{d\theta_f} \leftarrow \frac{df}{d\theta_f} \delta$$
$$\delta \leftarrow \frac{df}{d\theta_f} \delta$$

$$\frac{dg}{d\theta_f}\delta$$
 $\frac{dg}{dx}$

for each function, we need to compute: $\frac{df}{d\theta_f}\delta \frac{df}{dx_f}\delta \frac{x_f}{x_f}$

$$\frac{dz}{dW}\delta = \sum_{i} \frac{dz_i}{dW}\delta_i = \delta a^T$$

$$\frac{dz}{dW}\delta = \sum_{i} \frac{dz_{i}}{dW}\delta_{i} = \delta a^{T}$$

$$\theta_{f} \text{ with } \phi$$

$$z_{i} = \sum_{k} W_{ik}a_{k} + b_{i} \quad \frac{dz_{i}}{dW_{jk}} = \begin{cases} 0 \text{ if } j \neq i \\ a_{k} \text{ otherwise} \end{cases}$$

$$\frac{dz}{dW}\delta = \sum_{i} \frac{dz_{i}}{dW}\delta_{i} = \delta a^{T}$$

$$\frac{dz_{i}}{dW}\delta_{i} = \delta a^{T}$$

for each function, we need to compute: $\frac{df}{d\theta_f}\delta$ $\frac{df}{dx_f}\delta$

$$\frac{dz}{db}\delta = \delta$$

$$z_i = \sum_k W_{ik} a_k + b_i \quad \frac{dz_i}{db_j} = \operatorname{Ind}(i = j) \quad \frac{dz}{db} = \mathbf{I}$$

for each function, we need to compute: $\frac{df}{d\theta_f}\delta$ $\frac{df}{dx_f}\delta$

$$\frac{dz}{da}\delta = W^T \delta$$

$$z_i = \sum_k W_{ik} a_k + b_i \quad \frac{dz_i}{da_k} = W_{ik} \quad \frac{dz}{da} = W^T \left\{ \left(\frac{dy}{dx} \right)_{ij} = \frac{dy_j}{dx_i} \right\}$$

for each function, we need to compute: $\frac{df}{d\theta_f}\delta$ $\frac{df}{dx_f}\delta$

$$\frac{dz}{da}\delta = W^T \delta \qquad \frac{dz}{dW}\delta = \delta a^T \qquad \frac{dz}{db}\delta = \delta$$

$$\frac{df}{dx_f}\delta \qquad \qquad \frac{df}{d\theta_f}\delta$$

Backpropagation recipes: sigmoid

for each function, we need to compute:
$$\frac{df}{d\theta_f}\delta$$
 $\frac{df}{dx_f}\delta$

$$\sigma(z_i) = \frac{1}{1 + \exp(-z_i)}$$

$$\sigma(z_i) = \frac{1}{1 + \exp(-z_i)} \qquad \frac{df_i}{dz_i} = \frac{\exp(-z_i)}{1 + \exp(-z_i)} \frac{1}{1 + \exp(-z_i)} = (1 - \sigma(z_i))\sigma(z_i)$$

$$\left(\frac{df}{dz}\delta\right)_i = (1 - \sigma(z_i))\sigma(z_i)\delta_i$$

$$\left(\frac{df}{dz}\delta\right)_{i} = (1 - \sigma(z_{i}))\sigma(z_{i})\delta_{i} \qquad \frac{1 + \exp(-z_{i})}{1 + \exp(-z_{i})} - \frac{1}{1 + \exp(-z_{i})}$$

$$1 - \sigma(z_{i})$$

Backpropagation recipes: ReLU

for each function, we need to compute: $\frac{df}{d\theta_f}\delta$ $\frac{df}{dx_f}\delta$

$$f_i(z_i) = \max(0, z_i)$$

$$\frac{df_i}{dz_i} = \operatorname{Ind}(z_i \ge 0)$$

$$\left(\frac{df}{dz}\delta\right)_i = \operatorname{Ind}(z_i \ge 0)\delta_i$$

Summary

forward pass: calculate each $a^{(i)}$ and $z^{(i)}$

for each function, we need to compute:

backward pass:

initialize
$$\delta = \frac{d\mathcal{L}}{dz^{(n)}}$$

for each f with input x_f & params θ_f from end to start:

$$\frac{d\mathcal{L}}{d\theta_f} \leftarrow \frac{df}{d\theta_f} \delta$$
$$\delta \leftarrow \frac{df}{dx_f} \delta$$