2010 Further Mathematics Trial Exam 1 Solutions

Free download from www.itute.com © Copyright itute.com 2010

SEC	TIO	NΑ	Co	Core: Data analysis								
1	2	3	4	5	6	7	8	9	10	11	12	13
С	Α	Е	С	D	D	Е	Α	В	Е	Е	D	A

SECTION B

Module 1: Number patterns and applications

1	2	3	4	5	6	7	8	9
Α	A	C	Е	D	A	Е	C	C

Module 5: Networks and decision mathematics

1	2	3	4	5	6	7	8	9
Е	D	С	D	A	A	Е	D	Е

Module 6: Matrices

1	2	3	4	5	6	7	8	9
В	С	D	Е	D	A	С	С	В

SECTION A Core: Data analysis

Q1 From the stemplot the modal class is 35-39 has the highest percentage.

Q2 From the stemplot

(females 80-84) + (males 80-84) + (females
$$85^+$$
) + (males 85^+) $\approx 1.1 + 0.8 + 1.1 + 0.5 = 3.5$

Q3 The stemplot shows the Australian population is aging.

Q4 Find the gradient of the line joining the end points.

$$\frac{2.9-1.9}{20} \times \text{million} = \frac{1}{20} \times \text{million} = 50000$$

Q5 The distribution peaked at the low end.

Q6 The mid points of the intervals are 0, 8, 20, 29.5, 37, 40, 44.5 and 54.5.

Average =
$$\frac{1}{2210556}$$
 (0×82495+8×262884+20×204850
+29.5×214869+37×368918+40×439048+44.5×252283
+54.5×385209) ≈ 34.4

Ε Q7

Q8 Α

Q9 $\log_{10} y$ will straighten the graph.

В

E

Q10 Random pattern.

Q11 Seasonal index =
$$\frac{actual}{adjusted} = \frac{5.4}{5.2} \approx 1.04$$

Q12 D

Nov	Dec		Jan		Feb	Mar
5.6	5.5		5.2		5.3	5.4
		5.4		5.35		
			5.38			

013

SECTION B

Е

D

D

Module 1: Number patterns and applications

Q1
$$1+3+6+10+15=35$$
 A

Q2 Difference between adjacent terms:

$$483 - 240 = 243 = 3^5$$

$$240 - 159 = 81 = 3^4$$

$$159 - 132 = 27 = 3^3$$

$$132 - t_2 = 3^2 = 9$$
, $\therefore t_2 = 123$

$$123 - t_1 = 3^1 = 3$$
, $\therefore t_1 = 120$

Q3 $t_1 + t_2 = t_3 + t_4 = = -1$. There are 189 pairs not counting the last term.

 \mathbf{C} The value of the series = $-1 \times 189 + 379 = 190$

Q4

$$5 + 2(5 \times 0.9) + 2(5 \times 0.9^{2}) + 2(5 \times 0.9^{3}) + 2(5 \times 0.9^{4}) + 2(5 \times 0.9^{5})$$

 ≈ 42

Q5
$$5 + \frac{a}{1-r} = 5 + \frac{9}{1-0.9} = 95$$

Q6
$$t_1 = -2$$
, $t_2 = \frac{1}{2}(10 - 2) = 6$, $t_3 = \frac{1}{2}(10 - 6) = 2$,
 $t_4 = \frac{1}{2}(10 - 2) = 4$, $t_5 = \frac{1}{2}(10 - 4) = 3$

Α

Q8
$$y_1 = 200$$
, $y_2 = 0.95 \times 200 + 50 = 240$
 $y_3 = 0.95 \times 240 + 50 = 278$

Q9
$$t_{n+1} = 0.95t_n + 50$$
, $t_1 = 200$

E Q3 Inverse does not exist when the determinant is zero, i.e.

$$3n + 2m = 0$$
, $\frac{m}{n} = -\frac{3}{2} = -1.5$

Q4 Change the system of equations to

$$1z + 0x + 1y = -2$$

$$3z + 0x - 1y = 0$$

$$0z + 1x - 2y = 3$$
.

D

Α

Module 5: Networks and decision mathematics

Q1
$$v + f = e + 2 = 11 + 2 = 13$$

Q4

Q5 One-step matrix is
$$\begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Two-step matrix is
$$\begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix}.$$

Α

E

В

C

C

C

C
$$\begin{bmatrix} 0.80 & 0.30 \\ 0.20 & 0.70 \end{bmatrix}^n$$
 becomes $\begin{bmatrix} 0.60 & 0.60 \\ 0.40 & 0.40 \end{bmatrix}$ when *n* is large, i.e. in the

D long run the probability of drinking tea is 0.60. Number of cups of tea in a year = $365 \times 0.60 = 219$ C

Q8
$$\begin{bmatrix} 0.90 & 0.10 & 0.05 \\ 0.08 & 0.85 & 0 \\ 0.02 & 0.05 & 0.95 \end{bmatrix}^{2} \begin{bmatrix} 50 \\ 60 \\ 40 \end{bmatrix} = \begin{bmatrix} \dots \\ 50.99 \\ \dots \end{bmatrix}$$

Q9
$$\begin{bmatrix} 0.90 & 0.10 & 0.05 \\ 0.08 & 0.85 & 0 \\ 0.02 & 0.05 & 0.95 \end{bmatrix}^{-2} \begin{bmatrix} 50 \\ 60 \\ 40 \end{bmatrix} = \begin{bmatrix} \dots \\ 74.08 \\ \dots \end{bmatrix}$$

$$O6 16 + 9 + 12 = 37$$

Q7 Maximum flow = minimum cut =
$$21+12=33$$

Q9
$$2+5+10+8=25$$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors

Module 6: Matrices

Q1
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} - 3 \begin{bmatrix} -2 & a \\ b & 1 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ -2 & -3 \end{bmatrix}$$
$$\therefore -1 - 3a = 2, \ a = -1$$

$$Q2 \begin{bmatrix} 1 & b \\ a & -1 \end{bmatrix} \begin{bmatrix} -4 & b \\ b & 2 \end{bmatrix} = \begin{bmatrix} 0 & 3b \\ -2 & -4 \end{bmatrix}$$
$$\begin{bmatrix} -4+b^2 & 3b \\ -4a-b & ab-2 \end{bmatrix} = \begin{bmatrix} 0 & 3b \\ -2 & -4 \end{bmatrix}$$

∴
$$-4 + b^2 = 0$$
, $-4a - b = -2$, $ab - 2 = -4$
∴ $b = -2$