TINVERT

Table of Contents

ing Syntax	1
Variables	
mple	1
oothesis	
itations	
sion Control	
up Members	2
ction	
dity	2
n Calculations	
put Data	2

Inverte uma matriz de transformção homogênea, efetivamente transformando os sistemas da mesma, trocando origem para destino e vice-versa.

Calling Syntax

arelb = tinvert(brela)

I/O Variables

IN Double Matrix brela: B relative to A Homogeneous Transformation Matrix 4x4

OU Double Matrix arelb: A relative to B Homogeneous Transformation Matrix 4x4

Example

```
brela = [0 -1 0 3; 1 0 0 0; 0 0 1 2; 0 0 0 1]
arelb = tinvert(brela)
```

Hypothesis

RRR planar robot.

Limitations

A matriz de transformção homogênea precisam seguir a sintaxe de classe e não tem validade para qualquer configuração de robô.

Version Control

1.0; Grupo 04; 2025/03/18; First issue.

Group Members

• Guilherme Fortunato Miranda

13683786

• João Pedro Dionizio Calazans

13673086

Function

```
function arelb = tinvert(brela)
```

Validity

Not apply

Main Calculations

```
rotate = brela(1:3,1:3);
o=brela(1:3,4);
```

Output Data

```
arelb = [rotate' -rotate'*0; 0 0 0 1];
end

arelb =

0    1    0    0
-1    0    0    3
0    0    1   -2
0    0    0    1
```

Published with MATLAB® R2024b