Day 1, Practical 2

Helene Charlotte Wiese Rytgaard

May 15, 2023

In this practical we will continue to work with the simulated data from Practical 1. The point of this part is to explore validity of TMLE (and likewise EE) inference. Note that efficient influence curve equation based (debiased) estimation gives:

- Protection against misspecification in form of double robustness in consistency.
- If the propensity score model π is correctly specified, then the double robust estimator will have smaller variance than the IP-weighted estimator.
- If the outcome regression model f is correctly specified, then the TMLE may have larger empirical variance than the regression estimator, BUT it has the double robust protection property that the regression estimator does not have.

On the other hand, the inference based on standard errors obtained with the estimate of the efficient influence function is only valid when both the propensity score π and the outcome regression f are correctly specified.

NB: The theoretical large-sample properties of the TMLE estimator and the estimating equation (EE) estimator are the same. We review the estimating equation (EE) estimator in Section 1 below; tasks for this exercise can next be found from Section 2 and forward.

1 Reviewing inference for the estimating equation (EE) estimator

Recall that the estimating equation (ee) estimator is defined by the following procedure:

- 1. Estimate nuisance parameters $f(a, x) = \mathbb{E}[Y \mid A = a, X = x], \pi(a \mid x) = \mathbb{E}[A \mid X = x]$ and the average over the distribution P of O.
- 2. Plug in to estimate the ATE:

$$\hat{\psi}_{n}^{\text{ee}} = \tilde{\Psi}_{\text{ee}}(\hat{f}_{n}, \hat{\pi}_{n}, \hat{P}_{n})
= \frac{1}{n} \left\{ \left(\frac{A_{i}}{\hat{\pi}_{n}(1 \mid X_{i})} - \frac{1 - A_{i}}{\hat{\pi}_{n}(0 \mid X_{i})} \right) \left(Y_{i} - \hat{f}_{n}(A_{i}, X_{i}) \right) + \hat{f}_{n}(1, X_{i}) - \hat{f}_{n}(0, X_{i}) \right\}.$$
(1)

As we have seen, this estimator uses the representation for the target parameter:

$$\tilde{\Psi}_{ee}(f,\pi,p) = \mathbb{E}_P \left[\left(\frac{A}{\pi(A \mid X)} - \frac{1-A}{\pi(A \mid X)} \right) (Y - f(A,X)) + f(1,X) - f(0,X) \right],$$

involving really an average over all but the last terms of the efficient influence curve:

$$\phi^*(P)(O) = \tilde{\phi}^*(f,\pi)(O) = \left(\frac{A}{\pi(A\mid X)} - \frac{1-A}{\pi(A\mid X)}\right) (Y - f(A,X)) + f(1,X) - f(0,X) - \Psi(P).$$

Particularly, $\hat{\psi}_n^{\text{ee}}$ solves by construction the efficient influence equation:

$$\mathbb{P}_{n}\tilde{\phi}^{*}(\hat{f}_{n},\hat{\pi}_{n}) = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}^{*}(\hat{f}_{n},\hat{\pi}_{n})
= \frac{1}{n} \left\{ \left(\frac{A_{i}}{\hat{\pi}_{n}(1 \mid X_{i})} - \frac{1 - A_{i}}{\hat{\pi}_{n}(0 \mid X_{i})} \right) \left(Y_{i} - \hat{f}_{n}(A_{i}, X_{i}) \right) + \hat{f}_{n}(1, X_{i}) - \hat{f}_{n}(0, X_{i}) \right\} - \hat{\psi}_{n}^{\text{ee}}
= 0.$$

A TMLE estimator also solves the efficient influence curve equation, just in a different way. Particularly, the two estimators have the exact same asymptotic properties (but may, however, still differ in finite samples). Recall the following decomposition in analyzing the large-sample properties of an estimator:

$$\hat{\psi}_n^{\text{ee}} - \Psi(P_0) = \mathbb{P}_n \phi^*(P_0) + o_P(n^{-1/2}) + R(\hat{P}_n, P_0) - \underbrace{\mathbb{P}_n \phi^*(\hat{P}_n)}_{=0};$$

when $R(\hat{P}_n, P_0) = o_P(n^{-1/2})$, then $\Psi(\hat{P}_n) \stackrel{as}{\sim} N(\Psi(P_0), P_0\phi^*(P_0)^2/n)$, and the variance of the estimator can be estimated by

$$\hat{\sigma}_n^2 = \mathbb{P}_n\{\tilde{\phi}^*(\hat{f}_n, \hat{\pi}_n)\}^2 / n = \frac{1}{n^2} \sum_{i=1}^n \{\tilde{\phi}^*(\hat{f}_n, \hat{\pi}_n)(O)\}^2$$
 (2)

Whether $R(\hat{P}_n, P_0) = o_P(n^{-1/2})$ depends on the performance of estimation of $f(a, x) = \mathbb{E}[Y \mid A = a, X = x]$ and $\pi(a \mid x) = P(A = a \mid X = x)$. When this hold, coverage of confidence intervals computed as $\hat{\psi}_n^{\text{ee}} \pm 1.96 \, \text{SE}(\hat{\psi}_n^{\text{ee}})$ (and likewise for TMLE estimation).

2 Simulate data

We will work with the simulation function defined in the first practical.

Task 1: Use the simulation function from the first practicals from day 1 (Task 1) to draw a random dataset with sample size n = 1000.

3 Implement the estimating equation estimator and its variance

Task 2: Implement the estimating equation estimator, as outlined below:

- 1. Fit the models below for the outcome regression f and the propensity score π .
- 2. Use fit.f to predict the conditional expectations $\mathbb{E}_P[Y \mid A, X]$ and $\mathbb{E}_P[Y \mid A = a, X]$. Add these as columns to the dataset.
- 3. Use fit.pi to estimate the propensity score $\pi(a \mid X) = P(A = a \mid X)$. Add this as a column to the simulated dataset.
- 4. Implement $\hat{\psi}_n^{\text{ee}}$ based on Equation (1).
- 5. Implement the variance estimator based on Equation (2).

4 Compare with the TMLE estimator

Task 3. Load the tmle package and use the tmle() function to get the TMLE estimate and variance using the same models as in Task 2 using the code below. Check that you get about the same, and comment.

5 Look at results of simulation studies

Task 4. You can access simulation results from **Task 10** (Practical 1) as follows by downloading the file:

data/sim-data-output/save-est-sim-setting-1.rds

from github. Load it to R as below (changing the path):

Task 5. The code below shows how vectors of estimates and estimated variances saved across the simulation repetitions are extracted from the object above. These results are for correctly specified models. Compute the bias, variance, mean squared error and coverage for the TMLE estimator and the estimating equation (EE) estimators. Comment on the results.

```
fit.tmle <- unlist(estimator.list$fit.tmle2)
fit.ee <- unlist(estimator.list$fit.ee2)
var.tmle <- unlist(estimator.list$fit.tmle2.var)
var.ee <- unlist(estimator.list$fit.ee2.var)</pre>
```

Task 6. The code below shows how vectors of estimates and estimated variances saved across the simulation repetitions are extracted from the object above, for the situation when misspecified models were used. Compute the bias, variance, mean squared error and coverage for the TMLE estimator and the estimating equation (EE) estimators. Comment on the results.

```
fit.miss.tmle <- unlist(estimator.list$fit.tmle)
fit.miss.ee <- unlist(estimator.list$fit.ee)
var.miss.tmle <- unlist(estimator.list$fit.tmle.var)
var.miss.ee <- unlist(estimator.list$fit.ee.var)</pre>
```

Task 7. You can access simulation results from a simulation study with positivity issues as in Task 9 of Practical 1 by downloading the file:

data/sim-data-output/save-est-sim-setting-2.rds

from github. Load it to R as below (changing the path), and then repeat **Task 5** and **Task 6** above. Comment on the results.

NB: Note that for the data setting analyzed in **Task 7**, TMLE results are produced both with and without weight truncation. Those *with* weight truncation are accessed as follows:

```
#-- correctly specified:
fit.wt.tmle <- unlist(estimator.list$fit.wt.tmle2)
var.wt.tmle <- unlist(estimator.list$fit.wt.tmle2.var)
#-- misspecified:
fit.wt.miss.tmle <- unlist(estimator.list$fit.wt.tmle)
var.wt.miss.tmle <- unlist(estimator.list$fit.wt.tmle.var)</pre>
```