ЭЛЕКТРОНИКА

Контрольное индивидуальное задание

ЗАДАЧА 3

Третья задача посвящена расчету параметров транзисторных ключей. Она имеет два варианта задания. В зависимости от номера варианта каждый студент рассчитывает параметры ключа, выполненного либо на биполярном, либо на МДП транзисторе.

Задача 3.1

Дано: Схема электронного ключа на биполярном транзисторе приведена на рис. 4,а. Значения элементов схемы и масштабные коэффициенты N и M представлены в таблице исходных данных. Масштабный коэффициент L=1 для всех вариантов. Семейства входных и выходных статических характеристик транзистора приведены на рис. 5 и 6.

Требуется: 1. Построить статическую передаточную характеристику ключа.

- 2. Определить основные параметры ключа: уровни логических нуля U^0 и единицы U^1 , логического перепада U_{Π} , минимальные уровни отпирающей и запирающей помех U^0_{Π} и U^1_{Π} , коэффициент помехоустойчивости K_{Π} .
- 3. Описать принцип работы ключа и указать, в каких базовых логических элементах он используется.

Рис. 4. Схемы транзисторных ключей

Исходные данные к заданию 3

Nº	Элементы схемы				Масштабные коэффициенты		Номера
вар	E_K / E_C B	<i>R</i> Б кОм	<i>R_К</i> кОм	<i>R</i> _С кОм	N	М	решаемых задач
1	5,0	3,9	1,0	-	1	50	3.1
2	9,0	-	-	3,3	2	-	3.2
3	4,5	4,7	1,2	-	1	40	3.1
4	10,0	-	-	2,7	2	-	3.2
5	4,0	5,0	1,2	-	1	50	3.1
6	8,0	-	-	2,2	2	-	3.2
7	5,0	3,3	1,2	-	1	40	3.1
8	7,0	-	-	1,5	2	-	3.2
9	4,5	2,7	1,5	-	1	50	3.1
10	9,0	-	-	1,8	2	-	3.2
11	4,0	2,2	1,0	-	1	40	3.1
12	6,0	-	-	0,82	2	-	3.2
13	5,0	4,7	0,82	-	1	50	3.1
14	5,0	-	-	1,0	2	-	3.2
15	4,5	3,3	1,0	-	1	40	3.1
16	10,0	-	-	1,2	2	-	3.2
17	4,0	2,7	0,82	-	1	50	3.1
18	5,0	-	-	0,68	2	-	3.2
19	5,0	4,7	1,2	-	1	40	3.1
20	6,0	-	-	1,0	2	-	3.2
21	4,5	3,9	1,0	-	1	50	3.1
22	7,0	-	-	1,2	2	-	3.2
23	4,0	2,7	0,82	-	1	40	3.1
24	10,0	-	-	1,5	2	-	3.2
25	5,0	3,9	0,68	-	1	50	3.1

Рис. 5. Входные характеристики биполярного транзистора

Рис. 6. Выходные характеристики биполярного транзистора

Рис. 7. Выходные характеристики n-канального МДП-транзистора

Методические указания

- 1. Изучить различные типы электронных ключей [5, п.7.2], их передаточную характеристику [5, рис. 7.4] и основные параметры, а также использование ключей в схемах базовых логических элементов [5, п.7.3].
 - 2. Нарисовать схему ключа и пояснить назначение ее элементов.
- 3. Перенести на миллиметровку семейства входных и выходных характеристик транзистора, указав масштаб по осям с учетом заданных масштабных коэффициентов.
- На графике выходных характеристик построить нагрузочную линию. Для построения передаточной характеристики ключа определить значения выходного напряжения $U_{BblX} = U_{K3}$, соответствующие точкам пересечения нагрузочной линии с выходными характеристиками, полученными при различных значениях тока базы. Отмечая эти значения тока базы на оси тока семейства входных характеристик, определить соответствующие указанным точкам пересечения напряжения $U_{5:3}$. При этом для точек, соответствующих активному режиму работы транзистора, использовать входную характеристику, полученную для активного режима ($U_{K\Im}$ = 5 B), а для точек, соответствующих режиму насыщения, – характеристику, полученную для режима насыщения ($U_{K3} = 0$). Учитывая падение напряжения на резисторе $R_{\rm D}$, определить значения входного напряжения $U_{\rm BX}$. При этом значения токов базы и соответствующие им значения входного и выходного напряжений следует записывать в таблицу.
- 5. Используя данные таблицы построить на миллиметровке передаточную характеристику транзисторного ключа. На этом же графике построить передаточную характеристику в зеркальном отображении, откладывая значения U_{BblX} по оси U_{BX} , а значения U_{BX} по оси U_{BblX} [5, см. рис. 7.4]). Отметить точки пересечения передаточной характеристики и ее зеркального отображения и определить и указать на графике значения входного и выходного напряжений, соответствующие логическим нулю и единице U^0_{BX} , U^1_{BX} , U^0_{BblX} , U^1_{BblX} , и величину логического перепада U_{Π} . Определить и указать на графике пороговые значения входного напряжения U^0 пор и U^1 пор, соответствующие точкам, в которых dU_{BbX} $|dU_{BX}| = 1$, т.е. угол наклона касательной к характеристике составляет 45 градусов, и минимальные величины отпирающей и запирающей помех $U^0_{arGamma}$ и $U^1_{arGamma}$. Рассчитать коэффициент помехоустойчивости ключа Кл.
- 6. При описании принципа работы ключа следует указать режимы работы транзистора, соответствующие устойчивым состояниям ключа, и рассмотреть физические процессы, протекающие при переключении ключа из одного состояния в другое. Отметить, какую логическую функцию выполняет транзисторный ключ. Указать, в каких базовых логических элементах используется рассмотренный в задаче тип ключа.

Задача 2.2

Дано: Схема электронного ключа на МДП-транзисторе приведена на рис. 4,б. Значения элементов схемы и масштабный коэффициент *N* представлены в таблице исходных данных. Семейство выходных характеристик транзистора приведено на рис. 7.

Требуется: 1. Построить статическую передаточную характеристику ключа.

- 2. Определить основные параметры ключа: уровни логических нуля U^0 и единицы U^1 , логического перепада U_{Π} , минимальные уровни отпирающей и запирающей помех U^0_{Π} и U^1_{Π} , коэффициент помехоустойчивости K_{Π} .
- 3. Описать принцип работы ключа.

Методические указания

- 1. Изучить различные типы электронных ключей [5, п.7.2], их передаточную характеристику [5, рис. 7.4] и основные параметры, а также использование ключей в схемах базовых логических элементов [5, п.7.3].
 - 2. Нарисовать схему ключа и пояснить назначение ее элементов.
- 3. Перенести на миллиметровку семейство выходных характеристик транзистора, указав масштаб по оси тока с учетом заданного масштабного коэффициента *N*.
- 4. На графике выходных характеристик построить нагрузочную линию. Для построения передаточной характеристики ключа определить значения выходного напряжения $U_{Bыx} = U_{Cu}$, соответствующие точкам пересечения нагрузочной линии с выходными характеристиками, полученными при различных значениях входного напряжения $U_{Bx} = U_{3u}$. При этом значения входного и выходного напряжений следует записывать в таблицу.
- 5. Используя данные таблицы построить на миллиметровке передаточную характеристику транзисторного ключа. На этом же графике построить передаточную характеристику в зеркальном отображении, откладывая значения U_{BblX} по оси U_{BklX} по оси
- 6. При описании принципа работы ключа следует указать режимы работы транзистора, соответствующие устойчивым состояниям ключа, и рассмотреть физические процессы, протекающие при переключении ключа из одного состояния в другое. Отметить, какую логическую функцию выполняет транзисторный ключ.

ЛИТЕРАТУРА

- 1. Электронные, квантовые приборы и микроэлектроника: Учебное пособие для вузов / Под ред. Н.Д. Федорова. М.: Радио и связь, 2002.
- 2. Петров К.С. Радиоматериалы, радиокомпоненты и электроника: Учебное пособие. СПб: Питер, 2003.
- 3. Бочаров Е.И., Гогоберидзе Г.Б., Першин Ю.М., Петров К.С., Штагер А.П. Электронные твердотельные приборы и микроэлектроника: Конспект лекций / СПб.: Издательство «Линк», 2010. Ч.1.
- 4. Бочаров Е.И., Гогоберидзе Г.Б., Першин Ю.М., Петров К.С. Электронные твердотельные приборы и микроэлектроника: Конспект лекций / СПб.: Издательство «Линк», 2006. Ч.2 *.
- 5. Бочаров Е.И., Гогоберидзе Г.Б., Першин Ю.М., Петров К.С. Электронные твердотельные приборы и микроэлектроника: Конспект лекций / СПб.: Издательство «Линк», 2004. Ч.3 *.