```
import numpy as np
   In [1]:
            import pandas as pd
            import matplotlib.pyplot as plt
            from sklearn import preprocessing
            import seaborn as sns
  In [2]: df = pd.read_csv('adult_data.csv'
                               , names=['age',
                                          'workclass',
                                          'fnlwgt',
                                          'education',
                                          'education-num',
                                          'marital-status',
                                          'occupation',
                                          'relationship',
                                          'race',
                                          'sex',
                                          'capital-gain',
                                          'capital-loss',
                                          'hours-per-week'
                                          'native-country',
                                          'income'
                               , header=None)
            df.head()
  Out[2]:
                                                  education-
                                                              marital-
                                fnlwgt education
                                                                       occupation relationship
               age workclass
                                                                                                 race
                                                                status
                                                        num
                                                                Never-
                                                                             Adm-
            0
                39
                     State-gov
                                77516
                                        Bachelors
                                                          13
                                                                                   Not-in-family
                                                                                                White
                                                               married
                                                                            clerical
                                                              Married-
                     Self-emp-
                                                                            Exec-
                50
                                                                                      Husband White
                                 83311
                                                          13
                                        Bachelors
                                                                  civ-
                        not-inc
                                                                        managerial
                                                               spouse
                                                                         Handlers-
                38
                               215646
                                                              Divorced
                                                                                                White
            2
                        Private
                                         HS-grad
                                                                                   Not-in-family
                                                                          cleaners
                                                              Married-
                                                                         Handlers-
                                                           7
            3
                53
                        Private 234721
                                             11th
                                                                  civ-
                                                                                      Husband
                                                                                                Black
                                                                          cleaners
                                                               spouse
                                                              Married-
                                                                             Prof-
                28
                       Private 338409
                                        Bachelors
                                                          13
                                                                                          Wife
                                                                                                Black Fer
                                                                  civ-
                                                                          specialty
                                                               spouse
4
  In [3]:
           df.shape
  Out[3]: (32561, 15)
           df['income'].unique()
  In [4]:
  Out[4]: array([' <=50K', ' >50K'], dtype=object)
            df['income'].value_counts()
   In [5]:
  Out[5]:
             <=50K
                       24720
             >50K
                        7841
            Name: income, dtype: int64
```

```
In [6]: plt.figure(figsize=(3,3))
        plt.hist(df['income'],bins=3, alpha=0.7)
        plt.show()
```



```
In [7]: df.isnull().values.any()
```

Out[7]: False

In [8]: $df['income'] = df['income'] \cdot map({' <=50K' :0, '>50K' :1}) \cdot astype(int) #mapping number 1.$ df.head()

Out[8]:		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
	0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	ı
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	1
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	1
	3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	1
	4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Fer

In [9]: df.describe()

4

Out[

14.27				Classification	i-Kiiii-addit-iiicoii	iie		
[9]:		age	fnlwgt	education- num	capital-gain	capital-loss	hours-per- week	
	count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000	32
	mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456	
	std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429	
	min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000	
	25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000	
	50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000	
	75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000	
	max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000	
								•
10]:	df.isr	null().sum()						

```
In [10
Out[10]: age
                          0
        workclass
                         0
         fnlwgt
         education
         education-num
         marital-status
                         0
         occupation
         relationship
                         0
         race
                          0
                         0
         sex
         capital-gain
         capital-loss
                         0
         hours-per-week
                         0
         native-country
         income
         dtype: int64
```

data description:

age: continuous.

workclass: Private, ?, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

it will be convert to new categories:

```
'Self-emp-not-inc': 'self-employed',
```

fnlwgt (final weight): continuous. not neccesary. it will be droped.

^{&#}x27; Self-emp-inc': 'self-employed',

^{&#}x27;Federal-gov': 'gov', 'Local-gov': 'gov', 'State-gov': 'gov',

^{&#}x27; Without-pay' : 'unemployed', ' Never-worked' : 'unemployed',

^{&#}x27;Private': 'Private',

^{&#}x27;?':'?'.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

first of all it should be sorted: Preschool < 1st-4th < 5th-6th < 7th-8th < 9th < 10th < 11th < 12th < HS-grad < Prof-school < Assoc-acdm < Assoc-voc < Some-college < Bachelors < Masters < Doctorate

now, it will be convert to new categories:

```
' Preschool' :0, '1st-4th' :0, '5th-6th' :0, '7th-8th' :0, '9th' :0, '10th' :0, '11th' :0, '12th' :0,
```

education-num: continuous. not neccesary. it will be droped.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Marriedspouse-absent, Married-AF-spouse.

it will be convert to new categories:

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Profspecialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transportmoving, Priv-house-serv, Protective-serv, Armed-Forces.

it will be convert to new categories:

```
'Adm-clerical': "adim", 'Exec-managerial': "adim",
```

^{&#}x27;HS-grad':1, 'Prof-school':1,

^{&#}x27;Assoc-acdm':2, 'Assoc-voc':2,

^{&#}x27;Some-college':3,

^{&#}x27;Bachelors':4,

^{&#}x27; Masters' :5,

^{&#}x27; Doctorate' :6

^{&#}x27; Married-civ-spouse': "married", ' Married-AF-spouse': "married",

^{&#}x27; Never-married' : "not-married", ' Divorced' : "not-married", ' Separated' : "not-married", ' Married-spouse-absent': "not-married",

^{&#}x27; Widowed' :"Widowed"

^{&#}x27; Prof-specialty' : "Prof-specialty",

^{&#}x27;Other-service': "service", 'Protective-serv': "service", 'Priv-house-serv': "service",

^{&#}x27;Sales': "sales",

^{&#}x27; Craft-repair' :"general", ' Transport-moving' :"general", ' Farming-fishing' :"general",

^{&#}x27; Machine-op-inspct' :"general", ' Tech-support' :"general", ' Farming-fishing' :"general",

'Armed-Forces': "military",

' ?':' ?'

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. not neccesary. it will be droped.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

```
In [11]: df.drop(['fnlwgt'], axis=1, inplace=True)
```

Out[11]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male
1	50	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male
3	53	Private	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male
4	28	Private	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female
32556	27	Private	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife	White	Female
32557	40	Private	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	White	Male
32558	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female
32559	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White	Male
32560	52	Self-emp- inc	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife	White	Female

32561 rows × 14 columns

```
In [12]: df['workclass'].unique()
' Never-worked'], dtype=object)
' Without-pay' : 'unemployed', ' Never-worke
                         ' Private' : ' Private', ' ?' : ' ?'
                         }).astype(str) #mapping numbers
     df.head()
```

```
Out[13]:
                                              education-
                                                           marital-
                                                                                                               cap
                      workclass education
                                                                    occupation relationship
                                                                                                          sex
                                                                                                race
                                                            status
                                                    num
                                                            Never-
                                                                          Adm-
             0
                  39
                                                      13
                                                                                               White
                             gov
                                   Bachelors
                                                                                 Not-in-family
                                                                                                         Male
                                                           married
                                                                         clerical
                                                           Married-
                            self-
                                                                          Exec-
                  50
                                   Bachelors
                                                      13
                                                                                     Husband
                                                                                               White
                                                                                                         Male
                                                               civ-
                       employed
                                                                     managerial
                                                            spouse
                                                                      Handlers-
                  38
                                                          Divorced
             2
                          Private
                                    HS-grad
                                                       9
                                                                                 Not-in-family
                                                                                               White
                                                                                                         Male
                                                                       cleaners
                                                           Married-
                                                                      Handlers-
             3
                  53
                          Private
                                        11th
                                                       7
                                                               civ-
                                                                                     Husband
                                                                                               Black
                                                                                                         Male
                                                                       cleaners
                                                            spouse
                                                           Married-
                                                                           Prof-
                  28
                          Private
                                  Bachelors
                                                      13
                                                                                         Wife
                                                                                               Black Female
                                                               civ-
                                                                       specialty
                                                            spouse
  In [14]: df['education'].unique()
  Out[14]: array([' Bachelors', ' HS-grad', ' 11th', ' Masters', ' 9th',
                      'Some-college', 'Assoc-acdm', 'Assoc-voc', '7th-8th',
                      ' Doctorate', ' Prof-school', ' 5th-6th', ' 10th', ' 1st-4th', ' Preschool', ' 12th'], dtype=object)
  In [15]: df['education'] = df['education'].map({' Preschool' :0, ' 1st-4th' :0, ' 5th-6th'
             df.head()
  Out[15]:
                                              education-
                                                           marital-
                                                                                                               car
                      workclass education
                                                                    occupation relationship
                                                                                                race
                                                                                                          sex
                                                    num
                                                            status
                                                            Never-
                                                                          Adm-
             0
                  39
                             gov
                                           4
                                                      13
                                                                                 Not-in-family
                                                                                               White
                                                                                                         Male
                                                           married
                                                                         clerical
                                                           Married-
                                                                          Exec-
                            self-
             1
                                           4
                                                      13
                                                                                     Husband White
                  50
                                                               civ-
                                                                                                         Male
                                                                     managerial
                       employed
                                                            spouse
                                                                      Handlers-
             2
                  38
                                           1
                                                          Divorced
                                                                                 Not-in-family
                                                                                               White
                                                                                                         Male
                          Private
                                                                       cleaners
                                                           Married-
                                                                      Handlers-
             3
                  53
                          Private
                                           0
                                                       7
                                                               civ-
                                                                                     Husband
                                                                                               Black
                                                                                                         Male
                                                                       cleaners
                                                            spouse
                                                           Married-
                                                                           Prof-
                  28
                          Private
                                                      13
                                                                                         Wife
                                                                                               Black Female
                                                               civ-
                                                                       specialty
                                                            spouse
4
  In [16]: df.drop(['education-num'], axis=1, inplace=True)
             df
```

Out[16]:

	age	workclass	education	marital- status	occupation	relationship	race	sex	capital- gain	С
0	39	gov	4	Never- married	Adm- clerical	Not-in-family	White	Male	2174	
1	50	self- employed	4	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	
2	38	Private	1	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
3	53	Private	0	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
4	28	Private	4	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	
32556	27	Private	2	Married- civ- spouse	Tech- support	Wife	White	Female	0	
32557	40	Private	1	Married- civ- spouse	Machine- op-inspct	Husband	White	Male	0	
32558	58	Private	1	Widowed	Adm- clerical	Unmarried	White	Female	0	
32559	22	Private	1	Never- married	Adm- clerical	Own-child	White	Male	0	
32560	52	self- employed	1	Married- civ- spouse	Exec- managerial	Wife	White	Female	15024	

32561 rows × 13 columns

```
In [17]: df['marital-status'].unique()
Out[17]: array([' Never-married', ' Married-civ-spouse', ' Divorced',
                 ' Married-spouse-absent', ' Separated', ' Married-AF-spouse',
                ' Widowed'], dtype=object)
In [18]: df['marital-status'] = df['marital-status'].map({' Married-civ-spouse' :"married",
         df.head()
```

Out[18]:		age	workclass	education	marital- status	occupation	relationship	race	sex	capital- gain	capital loss
	0	39	gov	4	not- married	Adm- clerical	Not-in-family	White	Male	2174	C
	1	50	self- employed	4	married	Exec- managerial	Husband	White	Male	0	C
	2	38	Private	1	not- married	Handlers- cleaners	Not-in-family	White	Male	0	C
	3	53	Private	0	married	Handlers- cleaners	Husband	Black	Male	0	(
	4	28	Private	4	married	Prof- specialty	Wife	Black	Female	0	C
4											•
In [19]:	df	occ.	cupation']	.unique()							
Out[19]:	arı	ray([' Prof-spo ' Transpo ' Tech-sup	ecialty', rt-moving'	' Other- , ' Farm ?', ' Pr	service', ning-fishin rotective-s	' Handlers-o ' Sales', ' g', ' Machin erv', ' Armo	Craft ne-op-:	-repair' inspct',		
In [20]:	'					' P	rof-special	ty':"	Prof-spe	cialty"	,
[_0],		. head	J()			' O' ' S. ' C ' M ' A ' ?	rof-specialther-service ales': "sale raft-repair achine-op-in rmed-Forces ':' ?' stype(str)	e' :"s es", ' :"ge nspct' ' :"mi	ervice", neral", :"gener litary",	' Proto ' Transpal", '	ective port-mo
Out[20]:			l() workclass	education	marital- status	' O' ' S. ' C ' M ' A ' ? }).a	ther-service ales' :"sale raft-repair achine-op-in rmed-Forces ':' ?'	e' :"s es", ' :"ge nspct' ' :"mi	ervice", neral", :"gener litary",	' Proto ' Transpal", '	ective- port-mc Tech-su
				education 4		' O' ' S. ' C ' M ' A ' ? }).a	ther-service ales' :"sale raft-repair achine-op-in rmed-Forces ':' ?' stype(str)	e' :"s es", ' :"ge nspct' ' :"mi #mappi	ervice", neral", :"gener litary", ng numbe	' Proto ' Trans ral", ' '	ective- port-mc Tech-sc
	df	age	workclass		status not-	' O' ' S. ' C ' M ' A ' ' ? }).a	ther-service ales' :"sale raft-repair achine-op-in rmed-Forces ':' ?' stype(str) #	e':"sies", ':"geinspct' ':"mi #mappi	ervice", neral", :"gener litary", ng numbe	' Proto ' Trans ral", ' '	ective- port-mc Tech-sc capital loss
	df 0	age 39	workclass gov self-	4	not- married	'O'' S. 'C'' M. 'A''? }).a	ther-service ales':"sale raft-repair achine-op-in rmed-Forces ':'?' stype(str) relationship Not-in-family	e':"sies", ':"genspct' ':"mi ':"mi race White	ervice", neral", :"gener litary", ng numbe sex Male	' Proto ' Trans ral", ' '	capital loss
	0 1	age 39 50	workclass gov self- employed	4	not- married married	'O'' S. 'C'' M. 'A''? }).a occupation adim	ther-service ales':"sale raft-repair achine-op-in rmed-Forces ':'?' stype(str) relationship Not-in-family Husband	e':"sies", ':"genspct' ':"mi race White White	ervice", neral", :"gener litary", ng numbe sex Male Male	' Proto ' Trans ral", ' ' ers capital- gain 2174	capital loss
	0 1 2	39 50 38	gov self- employed Private	4 4	not- married married not- married	' O' ' S. ' C ' M ' A ' ? }).a occupation adim adim	ther-service ales':"sale raft-repair achine-op-in rmed-Forces ':'?' stype(str) relationship Not-in-family Husband Not-in-family Husband	e':"se's", ':"ge'nspct'':"mi. #mappi. race White White Black	ervice", neral", :"gener litary", ng numbe sex Male Male Male	' Proto ' Trans ral", ' ' ers capital- gain 2174	capital loss
	0 1 2 3 4	39 50 38 53	workclass gov self- employed Private Private Private	4 4 1 0	not- married married not- married	' Or ' Si ' Ci ' Marin ' Ai ' ? ' ? }).a occupation adim adim nan Prof-	ther-service ales':"sale raft-repair achine-op-in rmed-Forces ':'?' stype(str) relationship Not-in-family Husband Not-in-family Husband	e':"se's", ':"ge'nspct'':"mi. #mappi. race White White Black	ervice", neral", :"gener litary", ng numbe sex Male Male Male Male	' Proto ' Trans ral", ' ' ers capital- gain 2174 0 0	capital loss

perfect! now data cleaning

```
In [22]: df = df.replace(' \?',np.nan, regex=True)
In [23]: df.dropna()
         df.shape
Out[23]: (32561, 13)
In [24]: df['workclass'].unique()
Out[24]: array(['gov', 'self-employed', ' Private', nan, 'unemployed'],
               dtype=object)
In [25]: df.dropna(inplace=True)
         df.shape
Out[25]: (30162, 13)
In [26]: df['workclass'].unique()
Out[26]: array(['gov', 'self-employed', 'Private', 'unemployed'], dtype=object)
```

Data encoding

```
In [27]: le = preprocessing.LabelEncoder()
         df[[ 'sex']] = df[['sex']].apply(le.fit_transform)
```

Out[27]:

		age	workclass	education	marital- status	occupation	relationship	race	sex	capital- gain	capit Ic
	0	39	gov	4	not- married	adim	Not-in-family	White	1	2174	
	1	50	self- employed	4	married	adim	Husband	White	1	0	
	2	38	Private	1	not- married	nan	Not-in-family	White	1	0	
	3	53	Private	0	married	nan	Husband	Black	1	0	
	4	28	Private	4	married	Prof- specialty	Wife	Black	0	0	
;	32556	27	Private	2	married	general	Wife	White	0	0	
;	32557	40	Private	1	married	general	Husband	White	1	0	
;	32558	58	Private	1	Widowed	adim	Unmarried	White	0	0	
;	32559	22	Private	1	not- married	adim	Own-child	White	1	0	
;	32560	52	self- employed	1	married	adim	Wife	White	0	15024	

30162 rows × 13 columns

df

count	age	education	sex	capital gain		hours-per-	
count				capital-gain	capital-loss	week	
	30162.000000	30162.000000	30162.000000	30162.000000	30162.000000	30162.000000	3
mean	38.437902	2.175154	0.675685	1092.007858	88.372489	40.931238	
std	13.134665	1.544169	0.468126	7406.346497	404.298370	11.979984	
min	17.000000	0.000000	0.000000	0.000000	0.000000	1.000000	
25%	28.000000	1.000000	0.000000	0.000000	0.000000	40.000000	
50%	37.000000	2.000000	1.000000	0.000000	0.000000	40.000000	
75%	47.000000	3.000000	1.000000	0.000000	0.000000	45.000000	
max	90.000000	6.000000	1.000000	99999.000000	4356.000000	99.000000	
	std min 25% 50% 75%	std 13.134665 min 17.000000 25% 28.000000 50% 37.000000 75% 47.000000	std 13.134665 1.544169 min 17.000000 0.000000 25% 28.000000 1.000000 50% 37.000000 2.000000 75% 47.000000 3.000000	std 13.134665 1.544169 0.468126 min 17.000000 0.000000 0.000000 25% 28.000000 1.000000 0.000000 50% 37.000000 2.000000 1.000000 75% 47.000000 3.000000 1.000000	std 13.134665 1.544169 0.468126 7406.346497 min 17.000000 0.000000 0.000000 0.000000 25% 28.000000 1.000000 0.000000 0.000000 50% 37.000000 2.000000 1.000000 0.000000 75% 47.000000 3.000000 1.000000 0.000000	std 13.134665 1.544169 0.468126 7406.346497 404.298370 min 17.000000 0.000000 0.000000 0.000000 0.000000 25% 28.000000 1.000000 0.000000 0.000000 0.000000 50% 37.000000 2.000000 1.000000 0.000000 0.000000 75% 47.000000 3.000000 1.000000 0.000000 0.000000	std 13.134665 1.544169 0.468126 7406.346497 404.298370 11.979984 min 17.000000 0.000000 0.000000 0.000000 0.000000 1.000000 25% 28.000000 1.000000 0.000000 0.000000 0.000000 40.000000 50% 37.000000 2.000000 1.000000 0.000000 0.000000 45.000000 75% 47.000000 3.000000 1.000000 0.000000 0.000000 45.000000

Out[29]:

	age	education	sex	capital- gain	capital- loss	hours- per- week	income	workclass_ Private	workclass_gov	worl
0	39	4	1	2174	0	40	0	0	1	
1	50	4	1	0	0	13	0	0	0	
2	38	1	1	0	0	40	0	1	0	
3	53	0	1	0	0	40	0	1	0	
4	28	4	0	0	0	40	0	1	0	
32556	27	2	0	0	0	38	0	1	0	
32557	40	1	1	0	0	40	1	1	0	
32558	58	1	0	0	0	40	0	1	0	
32559	22	1	1	0	0	20	0	1	0	
32560	52	1	0	15024	0	40	1	0	0	

30162 rows × 73 columns

```
In [30]: #plt.close();
         #sns.set_style("whitegrid");
         #sns.pairplot(df, hue="income", height=3);
         #plt.show()
In [31]: df.columns
```

Out[31]: Index(['age', 'education', 'sex', 'capital-gain', 'capital-loss',

```
'hours-per-week', 'income', 'workclass_ Private', 'workclass_gov',
                 'workclass_self-employed', 'workclass_unemployed',
                 'marital-status_Widowed', 'marital-status_married',
                 'marital-status_not-married', 'occupation_Prof-specialty',
                 'occupation_adim', 'occupation_general', 'occupation_military',
                 'occupation_nan', 'occupation_sales', 'occupation_service',
                 'relationship_ Husband', 'relationship_ Not-in-family',
                 'relationship_ Other-relative', 'relationship_ Own-child',
                 'relationship_ Unmarried', 'relationship_ Wife',
                 'race_ Amer-Indian-Eskimo', 'race_ Asian-Pac-Islander', 'race_ Black',
                 'race_ Other', 'race_ White', 'native-country_ Cambodia',
                 'native-country_ Canada', 'native-country_ China',
                 'native-country_ Columbia', 'native-country_ Cuba',
                 'native-country_ Dominican-Republic', 'native-country_ Ecuador',
                 'native-country_ El-Salvador', 'native-country_ England',
                 'native-country_ France', 'native-country_ Germany',
                 'native-country_ Greece', 'native-country_ Guatemala',
                 'native-country_ Haiti', 'native-country_ Holand-Netherlands',
                 'native-country_ Honduras', 'native-country_ Hong',
                 'native-country_ Hungary', 'native-country_ India',
                 'native-country_ Iran', 'native-country_ Ireland',
                 'native-country_ Italy', 'native-country_ Jamaica',
                 'native-country_ Japan', 'native-country_ Laos',
                 'native-country_ Mexico', 'native-country_ Nicaragua',
                 'native-country_ Outlying-US(Guam-USVI-etc)', 'native-country_ Peru',
                 'native-country_ Philippines', 'native-country_ Poland',
                 'native-country_ Portugal', 'native-country_ Puerto-Rico',
                 'native-country_ Scotland', 'native-country_ South',
                 'native-country_ Taiwan', 'native-country_ Thailand',
                 'native-country_ Trinadad&Tobago', 'native-country_ United-States',
                 'native-country_ Vietnam', 'native-country_ Yugoslavia'],
                dtype='object')
In [32]: new_cols = ['age', 'education', 'sex', 'capital-gain', 'capital-loss',
                 'hours-per-week', 'workclass_ Private', 'workclass_gov',
                 'workclass_self-employed', 'workclass_unemployed',
                 'marital-status_Widowed', 'marital-status_married',
                 'marital-status_not-married', 'occupation_Prof-specialty',
                 'occupation_adim', 'occupation_general', 'occupation_military',
                 'occupation_nan', 'occupation_sales', 'occupation_service',
                 'relationship_ Husband', 'relationship_ Not-in-family',
                 'relationship Other-relative', 'relationship Own-child',
                 'relationship_ Unmarried', 'relationship_ Wife',
                 'race_ Amer-Indian-Eskimo', 'race_ Asian-Pac-Islander', 'race_ Black',
                 'race_ Other', 'race_ White', 'native-country_ Cambodia',
                 'native-country_ Canada', 'native-country_ China',
                 'native-country_ Columbia', 'native-country_ Cuba',
                 'native-country_ Dominican-Republic', 'native-country_ Ecuador',
                 'native-country_ El-Salvador', 'native-country_ England',
                 'native-country_ France', 'native-country_ Germany',
                 'native-country_ Greece', 'native-country_ Guatemala', 'native-country_ Haiti', 'native-country_ Holand-Netherlands',
                 'native-country_ Honduras', 'native-country_ Hong',
                 'native-country_ Hungary', 'native-country_ India',
                 'native-country_ Iran', 'native-country_ Ireland',
                 'native-country_ Italy', 'native-country_ Jamaica',
                 'native-country_ Japan', 'native-country_ Laos',
                 'native-country_ Mexico', 'native-country_ Nicaragua',
                 'native-country_ Outlying-US(Guam-USVI-etc)', 'native-country_ Peru',
                 'native-country_ Philippines', 'native-country_ Poland',
```

```
'native-country_ Portugal', 'native-country_ Puerto-Rico',
       'native-country_ Scotland', 'native-country_ South',
       'native-country_ Taiwan', 'native-country_ Thailand',
       'native-country_ Trinadad&Tobago', 'native-country_ United-States',
       'native-country_ Vietnam', 'native-country_ Yugoslavia', 'income']
df=df[new_cols]
```

In [33]: df

Out[33]:

		age	education	sex	capital- gain	capital- loss	hours- per- week	workclass_ Private	workclass_gov	workclass_se employe
	0	39	4	1	2174	0	40	0	1	
	1	50	4	1	0	0	13	0	0	
	2	38	1	1	0	0	40	1	0	
	3	53	0	1	0	0	40	1	0	
	4	28	4	0	0	0	40	1	0	
;	32556	27	2	0	0	0	38	1	0	
;	32557	40	1	1	0	0	40	1	0	
;	32558	58	1	0	0	0	40	1	0	
;	32559	22	1	1	0	0	20	1	0	
;	32560	52	1	0	15024	0	40	0	0	

30162 rows × 73 columns

plot correlation between attributes

```
In [34]: from pylab import rcParams
         def plot_correlation(data):
             plot correlation's matrix to explore dependency between features
             # init figure size
             rcParams['figure.figsize'] = 15, 20
             fig = plt.figure()
             sns.heatmap(data.corr(), annot=True, fmt=".2f")
             plt.show()
             fig.savefig('corr.png')
         # plot correlation & densities
         plot_correlation(df)
```



```
In [35]: #plt.close();
         #sns.set_style("whitegrid");
         #sns.pairplot(df, hue="income", height=3);
         #plt.show()
In [36]:
         df.columns
```

```
Out[36]: Index(['age', 'education', 'sex', 'capital-gain', 'capital-loss',
                 'hours-per-week', 'workclass_ Private', 'workclass_gov',
                 'workclass_self-employed', 'workclass_unemployed',
                 'marital-status_Widowed', 'marital-status_married',
                 'marital-status_not-married', 'occupation_Prof-specialty',
                 'occupation_adim', 'occupation_general', 'occupation_military',
                 'occupation_nan', 'occupation_sales', 'occupation_service',
                 'relationship_ Husband', 'relationship_ Not-in-family',
                'relationship_ Other-relative', 'relationship_ Own-child',
                 'relationship_ Unmarried', 'relationship_ Wife',
                 'race_ Amer-Indian-Eskimo', 'race_ Asian-Pac-Islander', 'race_ Black',
                 'race_ Other', 'race_ White', 'native-country_ Cambodia',
                'native-country_ Canada', 'native-country_ China',
                 'native-country_ Columbia', 'native-country_ Cuba',
                 'native-country_ Dominican-Republic', 'native-country_ Ecuador',
                 'native-country_ El-Salvador', 'native-country_ England',
                'native-country_ France', 'native-country_ Germany',
                 'native-country_ Greece', 'native-country_ Guatemala',
                 'native-country_ Haiti', 'native-country_ Holand-Netherlands',
                'native-country_ Honduras', 'native-country_ Hong',
                 'native-country_ Hungary', 'native-country_ India',
                 'native-country_ Iran', 'native-country_ Ireland',
                 'native-country_ Italy', 'native-country_ Jamaica',
                'native-country_ Japan', 'native-country_ Laos',
                 'native-country_ Mexico', 'native-country_ Nicaragua',
                 'native-country_ Outlying-US(Guam-USVI-etc)', 'native-country_ Peru',
                 'native-country_ Philippines', 'native-country_ Poland',
                'native-country_ Portugal', 'native-country_ Puerto-Rico',
                 'native-country_ Scotland', 'native-country_ South',
                 'native-country_ Taiwan', 'native-country_ Thailand',
                'native-country_ Trinadad&Tobago', 'native-country_ United-States',
                'native-country_ Vietnam', 'native-country_ Yugoslavia', 'income'],
               dtype='object')
In [37]: df.shape
Out[37]: (30162, 73)
In [38]: X = df[['age', 'education', 'sex', 'capital-gain', 'capital-loss',
                 'hours-per-week', 'workclass_ Private', 'workclass_gov',
                 'workclass_self-employed', 'workclass_unemployed',
                 'marital-status_Widowed', 'marital-status_married',
                 'marital-status_not-married', 'occupation_Prof-specialty',
                'occupation_adim', 'occupation_general', 'occupation_military',
                'occupation_nan', 'occupation_sales', 'occupation_service',
                 'relationship_ Husband', 'relationship_ Not-in-family',
                'relationship_ Other-relative', 'relationship_ Own-child',
                'relationship Unmarried', 'relationship Wife',
                 'race_ Amer-Indian-Eskimo', 'race_ Asian-Pac-Islander', 'race_ Black',
                 'race_ Other', 'race_ White', 'native-country_ Cambodia',
                'native-country_ Canada', 'native-country_ China',
                'native-country_ Columbia', 'native-country_ Cuba',
                 'native-country_ Dominican-Republic', 'native-country_ Ecuador',
                 'native-country_ El-Salvador', 'native-country_ England',
                'native-country_ France', 'native-country_ Germany',
                'native-country_ Greece', 'native-country_ Guatemala',
                'native-country_ Haiti', 'native-country_ Holand-Netherlands',
                 'native-country_ Honduras', 'native-country_ Hong',
                'native-country_ Hungary', 'native-country_ India',
                 'native-country_ Iran', 'native-country_ Ireland',
```

```
'native-country_ Italy', 'native-country_ Jamaica',
                 'native-country_ Japan', 'native-country_ Laos',
                 'native-country_ Mexico', 'native-country_ Nicaragua',
                 'native-country_ Outlying-US(Guam-USVI-etc)', 'native-country_ Peru',
                 'native-country_ Philippines', 'native-country_ Poland',
                 'native-country_ Portugal', 'native-country_ Puerto-Rico',
'native-country_ Scotland', 'native-country_ South',
                 'native-country_ Taiwan', 'native-country_ Thailand',
                 'native-country_ Trinadad&Tobago', 'native-country_ United-States',
                 'native-country_ Vietnam', 'native-country_ Yugoslavia']].values
          X[0:5]
                           4,
                                                           0,
                    39,
                                  1, 2174,
                                                    40,
                                                                              0,
                                                                                     0,
Out[38]: array([[
                                                                  1,
                                                                        0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                              0,
                            1,
                                  0,
                                               0,
                                                                                     1,
                     0,
                            0,
                                  0,
                                        0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        1,
                                                                              0,
                                                                                     0,
                     0,
                           0,
                                  0,
                                        0,
                                              0,
                                                     0,
                                                                  0,
                                                                        0,
                                                                                     0,
                                       0,
                     0,
                           0,
                                  0,
                                              0,
                                                     0,
                                                           0,
                                                                              0,
                                                                  0,
                                                                        0,
                                                                                     0,
                     0,
                            0,
                                  0,
                     0,
                                              0,
                           0,
                                  0,
                                        1,
                                                     0],
                    50,
                            4,
                                  1,
                                                    13,
                                                                              0,
                                                                                     0,
                           0,
                                  0,
                                                     0,
                                                                                     0,
                                              0,
                                                           0,
                                                                  0,
                                                                        0,
                     1,
                                        1,
                                                                              1,
                                  0,
                     0,
                            0,
                                        0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        1,
                                                                                     0,
                                              0,
                     0,
                           0,
                                  0,
                                      0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                     0,
                            0,
                                  0,
                                       0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                                     0,
                     0,
                            0,
                                                           0,
                                                                        0,
                                                                                     0,
                                  0,
                                       0,
                                              0,
                                                     0,
                                                                  0,
                                                     0],
                     0,
                            0,
                                  0,
                                        1,
                                              0,
                    38,
                           1,
                                  1,
                                        0,
                                                    40,
                                                           1,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                     0,
                           1,
                                              0,
                                                     0,
                                  0,
                                       0,
                                                           1,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     1,
                     0,
                            0,
                                  0,
                                        0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        1,
                                                                              0,
                                                                                     0,
                                       0,
                     0,
                                              0,
                           0,
                                 0,
                                                     0,
                                                           0,
                                                                              0,
                                                                  0,
                                                                        0,
                                                                                     0,
                     0,
                            0,
                                 0,
                                       0,
                                              0,
                                                     0,
                                       0,
                     0,
                           0,
                                 0,
                                                                                     0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                              0,
                     0,
                            0,
                                  0,
                                              0,
                                                     0],
                                        1,
                                                                              0,
                    53,
                                  1, 0,
                                              0,
                                                    40,
                                                                  0,
                                                                        0,
                                                                                     0,
                           0,
                                                           1,
                     1,
                            0,
                                  0,
                                        0,
                                                     0,
                                                           1,
                                                                  0,
                                                                        0,
                                                                              1,
                                                                                     0,
                     0,
                            0,
                                  0,
                                       0,
                                              0,
                                                           1,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                                                     0,
                     0,
                            0,
                                  0,
                                        0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                     0,
                           0,
                                 0,
                                      0,
                                              0,
                                                     0,
                                                                              0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                                     0,
                                0,
                           0,
                     0,
                                       0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                                     0,
                     0,
                                  0,
                                        1,
                                                     0],
                                                                                     0,
                                                                              0,
                    28,
                                                           1,
                           4,
                                 0,
                                       0,
                                              0,
                                                    40,
                                                                  0,
                                                                        0,
                            0,
                                1,
                                        0,
                                              0,
                                                     0,
                                                           0,
                     1,
                                                                  0,
                                                                        0,
                     0,
                           0,
                                  0,
                                        1,
                                              0,
                                                           1,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                                                     0,
                     0,
                           0,
                                 1,
                                        0,
                                              0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                     0,
                           0,
                                0, 0, 0,
                                                     0,
                                                           0,
                                                                        0,
                                                                              0,
                                                                                     0,
                                                                  0,
                     0,
                           0,
                                0,
                                      0,
                                             0,
                                                     0,
                                                           0,
                                                                  0,
                                                                        0,
                                                                              0,
                                                                                     0,
                                                     0]])
In [39]: Y = df['income'].values
         Y[0:5]
```

Out[39]: array([0, 0, 0, 0, 0])

standardizes features

```
In [40]: sc = preprocessing.StandardScaler().fit(X)
         X = sc.transform(X.astype(float))
         X[0:5]
```

```
Out[40]: array([[ 4.27957113e-02, 1.18178500e+00, 6.92806158e-01,
                  1.46092284e-01, -2.18585975e-01, -7.77341106e-02,
                  -1.68214415e+00, 2.45609619e+00, -3.66577248e-01,
                  -2.15493793e-02, -1.67903484e-01, -9.36062492e-01,
                  9.88921518e-01, -3.93154562e-01, 1.70603067e+00,
                 -6.76457209e-01, -1.72765090e-02, -2.16461260e-01,
                 -3.67217062e-01, -3.90959645e-01, -8.39144849e-01,
                  1.70410113e+00, -1.74267846e-01, -4.16894915e-01,
                 -3.45229885e-01, -2.21120202e-01, -9.78412046e-02,
                  -1.74872860e-01, -3.20962622e-01, -8.78507304e-02,
                  4.03824313e-01, -2.44363205e-02, -5.96669066e-02,
                 -4.75351094e-02, -4.31288109e-02, -5.53129982e-02,
                 -4.71835081e-02, -2.99327270e-02, -5.76754597e-02,
                 -5.34735710e-02, -2.99327270e-02, -6.52827434e-02,
                  -3.10225729e-02, -4.57503311e-02, -3.73419645e-02,
                 -5.75807254e-03, -1.99501867e-02, -2.51063491e-02,
                 -2.07651571e-02, -5.76754597e-02, -3.73419645e-02,
                 -2.82194410e-02, -4.75351094e-02, -5.15693479e-02,
                 -4.42711819e-02, -2.37474410e-02, -1.43671782e-01,
                 -3.30951696e-02, -2.15493793e-02, -3.15534352e-02,
                 -7.91966065e-02, -4.31288109e-02, -3.35934268e-02,
                 -6.02239634e-02, -1.91005328e-02, -4.85747824e-02,
                 -3.73419645e-02, -2.37474410e-02, -2.44363205e-02,
                  3.10870534e-01, -4.61127654e-02, -2.30380196e-02],
                [ 8.80288144e-01, 1.18178500e+00, 6.92806158e-01,
                  -1.47444622e-01, -2.18585975e-01, -2.33153070e+00,
                 -1.68214415e+00, -4.07150178e-01, 2.72793799e+00,
                 -2.15493793e-02, -1.67903484e-01, 1.06830474e+00,
                 -1.01120259e+00, -3.93154562e-01, 1.70603067e+00,
                  -6.76457209e-01, -1.72765090e-02, -2.16461260e-01,
                 -3.67217062e-01, -3.90959645e-01, 1.19168937e+00,
                 -5.86819634e-01, -1.74267846e-01, -4.16894915e-01,
                 -3.45229885e-01, -2.21120202e-01, -9.78412046e-02,
                 -1.74872860e-01, -3.20962622e-01, -8.78507304e-02,
                  4.03824313e-01, -2.44363205e-02, -5.96669066e-02,
                 -4.75351094e-02, -4.31288109e-02, -5.53129982e-02,
                  -4.71835081e-02, -2.99327270e-02, -5.76754597e-02,
                 -5.34735710e-02, -2.99327270e-02, -6.52827434e-02,
                 -3.10225729e-02, -4.57503311e-02, -3.73419645e-02,
                 -5.75807254e-03, -1.99501867e-02, -2.51063491e-02,
                 -2.07651571e-02, -5.76754597e-02, -3.73419645e-02,
                 -2.82194410e-02, -4.75351094e-02, -5.15693479e-02,
                 -4.42711819e-02, -2.37474410e-02, -1.43671782e-01,
                 -3.30951696e-02, -2.15493793e-02, -3.15534352e-02,
                  -7.91966065e-02, -4.31288109e-02, -3.35934268e-02,
                 -6.02239634e-02, -1.91005328e-02, -4.85747824e-02,
                 -3.73419645e-02, -2.37474410e-02, -2.44363205e-02,
                  3.10870534e-01, -4.61127654e-02, -2.30380196e-02],
                [-3.33399643e-02, -7.61039393e-01, 6.92806158e-01,
                 -1.47444622e-01, -2.18585975e-01, -7.77341106e-02,
                  5.94479374e-01, -4.07150178e-01, -3.66577248e-01,
                  -2.15493793e-02, -1.67903484e-01, -9.36062492e-01,
                  9.88921518e-01, -3.93154562e-01, -5.86155934e-01,
                 -6.76457209e-01, -1.72765090e-02, 4.61976430e+00,
                  -3.67217062e-01, -3.90959645e-01, -8.39144849e-01,
                  1.70410113e+00, -1.74267846e-01, -4.16894915e-01,
                 -3.45229885e-01, -2.21120202e-01, -9.78412046e-02,
                 -1.74872860e-01, -3.20962622e-01, -8.78507304e-02,
                  4.03824313e-01, -2.44363205e-02, -5.96669066e-02,
                  -4.75351094e-02, -4.31288109e-02, -5.53129982e-02,
                 -4.71835081e-02, -2.99327270e-02, -5.76754597e-02,
```

```
-5.34735710e-02, -2.99327270e-02, -6.52827434e-02,
-3.10225729e-02, -4.57503311e-02, -3.73419645e-02,
 -5.75807254e-03, -1.99501867e-02, -2.51063491e-02,
 -2.07651571e-02, -5.76754597e-02, -3.73419645e-02,
-2.82194410e-02, -4.75351094e-02, -5.15693479e-02,
 -4.42711819e-02, -2.37474410e-02, -1.43671782e-01,
 -3.30951696e-02, -2.15493793e-02, -3.15534352e-02,
-7.91966065e-02, -4.31288109e-02, -3.35934268e-02,
-6.02239634e-02, -1.91005328e-02, -4.85747824e-02,
-3.73419645e-02, -2.37474410e-02, -2.44363205e-02,
 3.10870534e-01, -4.61127654e-02, -2.30380196e-02],
[ 1.10869517e+00, -1.40864752e+00, 6.92806158e-01,
 -1.47444622e-01, -2.18585975e-01, -7.77341106e-02,
 5.94479374e-01, -4.07150178e-01, -3.66577248e-01,
-2.15493793e-02, -1.67903484e-01, 1.06830474e+00,
-1.01120259e+00, -3.93154562e-01, -5.86155934e-01,
-6.76457209e-01, -1.72765090e-02, 4.61976430e+00,
 -3.67217062e-01, -3.90959645e-01, 1.19168937e+00,
-5.86819634e-01, -1.74267846e-01, -4.16894915e-01,
-3.45229885e-01, -2.21120202e-01, -9.78412046e-02,
-1.74872860e-01, 3.11562759e+00, -8.78507304e-02,
-2.47632440e+00, -2.44363205e-02, -5.96669066e-02,
-4.75351094e-02, -4.31288109e-02, -5.53129982e-02,
-4.71835081e-02, -2.99327270e-02, -5.76754597e-02,
-5.34735710e-02, -2.99327270e-02, -6.52827434e-02,
-3.10225729e-02, -4.57503311e-02, -3.73419645e-02,
-5.75807254e-03, -1.99501867e-02, -2.51063491e-02,
-2.07651571e-02, -5.76754597e-02, -3.73419645e-02,
 -2.82194410e-02, -4.75351094e-02, -5.15693479e-02,
-4.42711819e-02, -2.37474410e-02, -1.43671782e-01,
-3.30951696e-02, -2.15493793e-02, -3.15534352e-02,
-7.91966065e-02, -4.31288109e-02, -3.35934268e-02,
-6.02239634e-02, -1.91005328e-02, -4.85747824e-02,
-3.73419645e-02, -2.37474410e-02, -2.44363205e-02,
 3.10870534e-01, -4.61127654e-02, -2.30380196e-02],
[-7.94696721e-01, 1.18178500e+00, -1.44340518e+00,
 -1.47444622e-01, -2.18585975e-01, -7.77341106e-02,
 5.94479374e-01, -4.07150178e-01, -3.66577248e-01,
-2.15493793e-02, -1.67903484e-01, 1.06830474e+00,
 -1.01120259e+00, 2.54352892e+00, -5.86155934e-01,
-6.76457209e-01, -1.72765090e-02, -2.16461260e-01,
-3.67217062e-01, -3.90959645e-01, -8.39144849e-01,
-5.86819634e-01, -1.74267846e-01, -4.16894915e-01,
-3.45229885e-01, 4.52242712e+00, -9.78412046e-02,
-1.74872860e-01, 3.11562759e+00, -8.78507304e-02,
-2.47632440e+00, -2.44363205e-02, -5.96669066e-02,
-4.75351094e-02, -4.31288109e-02, 1.80789332e+01,
-4.71835081e-02, -2.99327270e-02, -5.76754597e-02,
-5.34735710e-02, -2.99327270e-02, -6.52827434e-02,
-3.10225729e-02, -4.57503311e-02, -3.73419645e-02,
 -5.75807254e-03, -1.99501867e-02, -2.51063491e-02,
-2.07651571e-02, -5.76754597e-02, -3.73419645e-02,
-2.82194410e-02, -4.75351094e-02, -5.15693479e-02,
-4.42711819e-02, -2.37474410e-02, -1.43671782e-01,
-3.30951696e-02, -2.15493793e-02, -3.15534352e-02,
-7.91966065e-02, -4.31288109e-02, -3.35934268e-02,
-6.02239634e-02, -1.91005328e-02, -4.85747824e-02,
 -3.73419645e-02, -2.37474410e-02, -2.44363205e-02,
-3.21677320e+00, -4.61127654e-02, -2.30380196e-02]])
```

splitting data for train and test

```
In [41]: from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_sta
         print('train set : ', x_train.shape, y_train.shape)
         print('test set : ', x_test.shape, y_test.shape)
         train set : (24129, 72) (24129,)
         test set: (6033, 72) (6033,)
In [42]: from sklearn.preprocessing import StandardScaler
In [43]: scaler = StandardScaler().fit(x_train)
         x_train_sc = scaler.transform(x_train)
         x_test_sc = scaler.transform(x_test)
         x_train_sc[0:5]
```

```
Out[43]: array([[ 7.29633899e-01, -1.41112604e+00, 6.92124563e-01,
                  -1.49654480e-01, -2.19627094e-01, 2.54264190e-01,
                  5.94246755e-01, -4.08317376e-01, -3.65096917e-01,
                  -2.13562845e-02, -1.66780219e-01, 1.07120139e+00,
                 -1.01465417e+00, -3.91866439e-01, -5.84863867e-01,
                  1.47573552e+00, -1.70350088e-02, -2.17406589e-01,
                 -3.66626061e-01, -3.92358867e-01, 1.19476558e+00,
                  -5.88693059e-01, -1.75000915e-01, -4.17325513e-01,
                 -3.44211323e-01, -2.21349813e-01, -9.61445151e-02,
                  -1.75000915e-01, -3.22880042e-01, -8.71786495e-02,
                  4.04856915e-01, -2.49408357e-02, -5.94574259e-02,
                 -4.77977239e-02, -4.27418202e-02, -5.62111112e-02,
                 -4.55686097e-02, -2.95140668e-02, -5.83951091e-02,
                 -5.35521281e-02, -2.88021826e-02, -6.61107357e-02,
                  -3.15538279e-02, -4.46460827e-02, -3.81135647e-02,
                 -6.43782753e-03, -1.82115680e-02, -2.03619962e-02,
                 -2.23063741e-02, -5.94574259e-02, -3.86550118e-02,
                 -3.02092370e-02, -4.73602223e-02, -5.15699908e-02,
                 -4.69186781e-02, -2.40946368e-02, -1.46059349e-01,
                 -3.28436279e-02, -2.13562845e-02, -3.34699714e-02,
                 -7.66677179e-02, -4.32256913e-02, -3.52826435e-02,
                 -5.94574259e-02, -1.93166852e-02, -4.95094339e-02,
                 -3.58666114e-02, -1.82115680e-02, -2.40946368e-02,
                  3.12443417e-01, -4.77977239e-02, -2.32176916e-02],
                [ 1.41502796e+00, 2.46631022e+00, 6.92124563e-01,
                  -1.49654480e-01, 4.65776107e+00, -7.80026269e-02,
                  5.94246755e-01, -4.08317376e-01, -3.65096917e-01,
                 -2.13562845e-02, -1.66780219e-01, 1.07120139e+00,
                 -1.01465417e+00, -3.91866439e-01, -5.84863867e-01,
                  1.47573552e+00, -1.70350088e-02, -2.17406589e-01,
                 -3.66626061e-01, -3.92358867e-01, 1.19476558e+00,
                 -5.88693059e-01, -1.75000915e-01, -4.17325513e-01,
                 -3.44211323e-01, -2.21349813e-01, -9.61445151e-02,
                 -1.75000915e-01, -3.22880042e-01, -8.71786495e-02,
                  4.04856915e-01, -2.49408357e-02, -5.94574259e-02,
                 -4.77977239e-02, -4.27418202e-02, -5.62111112e-02,
                  -4.55686097e-02, -2.95140668e-02, -5.83951091e-02,
                 -5.35521281e-02, -2.88021826e-02, 1.51261363e+01,
                 -3.15538279e-02, -4.46460827e-02, -3.81135647e-02,
                 -6.43782753e-03, -1.82115680e-02, -2.03619962e-02,
                 -2.23063741e-02, -5.94574259e-02, -3.86550118e-02,
                 -3.02092370e-02, -4.73602223e-02, -5.15699908e-02,
                 -4.69186781e-02, -2.40946368e-02, -1.46059349e-01,
                 -3.28436279e-02, -2.13562845e-02, -3.34699714e-02,
                 -7.66677179e-02, -4.32256913e-02, -3.52826435e-02,
                 -5.94574259e-02, -1.93166852e-02, -4.95094339e-02,
                 -3.58666114e-02, -1.82115680e-02, -2.40946368e-02,
                  -3.20057951e+00, -4.77977239e-02, -2.32176916e-02],
                 [-5.64999319e-01, -7.64886667e-01, 6.92124563e-01,
                 -1.49654480e-01, -2.19627094e-01, -7.80026269e-02,
                  5.94246755e-01, -4.08317376e-01, -3.65096917e-01,
                  -2.13562845e-02, -1.66780219e-01, 1.07120139e+00,
                 -1.01465417e+00, -3.91866439e-01, -5.84863867e-01,
                  1.47573552e+00, -1.70350088e-02, -2.17406589e-01,
                  -3.66626061e-01, -3.92358867e-01, 1.19476558e+00,
                 -5.88693059e-01, -1.75000915e-01, -4.17325513e-01,
                 -3.44211323e-01, -2.21349813e-01, -9.61445151e-02,
                 -1.75000915e-01, -3.22880042e-01, -8.71786495e-02,
                  4.04856915e-01, -2.49408357e-02, -5.94574259e-02,
                 -4.77977239e-02, -4.27418202e-02, -5.62111112e-02,
                 -4.55686097e-02, -2.95140668e-02, -5.83951091e-02,
```

```
-5.35521281e-02, -2.88021826e-02, -6.61107357e-02,
-3.15538279e-02, -4.46460827e-02, -3.81135647e-02,
 -6.43782753e-03, -1.82115680e-02, -2.03619962e-02,
 -2.23063741e-02, -5.94574259e-02, -3.86550118e-02,
-3.02092370e-02, -4.73602223e-02, -5.15699908e-02,
 -4.69186781e-02, -2.40946368e-02, -1.46059349e-01,
 -3.28436279e-02, -2.13562845e-02, -3.34699714e-02,
-7.66677179e-02, -4.32256913e-02, -3.52826435e-02,
-5.94574259e-02, -1.93166852e-02, -4.95094339e-02,
-3.58666114e-02, -1.82115680e-02, -2.40946368e-02,
 3.12443417e-01, -4.77977239e-02, -2.32176916e-02],
[ 2.72704528e-01, -1.18647289e-01, 6.92124563e-01,
 -1.49654480e-01, -2.19627094e-01, 7.52664415e-01,
-1.68280263e+00, -4.08317376e-01, 2.73899875e+00,
-2.13562845e-02, -1.66780219e-01, 1.07120139e+00,
-1.01465417e+00, -3.91866439e-01, 1.70979959e+00,
-6.77628195e-01, -1.70350088e-02, -2.17406589e-01,
 -3.66626061e-01, -3.92358867e-01, 1.19476558e+00,
-5.88693059e-01, -1.75000915e-01, -4.17325513e-01,
-3.44211323e-01, -2.21349813e-01, -9.61445151e-02,
-1.75000915e-01, -3.22880042e-01, -8.71786495e-02,
 4.04856915e-01, -2.49408357e-02, -5.94574259e-02,
-4.77977239e-02, -4.27418202e-02, -5.62111112e-02,
-4.55686097e-02, -2.95140668e-02, -5.83951091e-02,
-5.35521281e-02, -2.88021826e-02, -6.61107357e-02,
-3.15538279e-02, -4.46460827e-02, -3.81135647e-02,
-6.43782753e-03, -1.82115680e-02, -2.03619962e-02,
-2.23063741e-02, -5.94574259e-02, -3.86550118e-02,
 -3.02092370e-02, -4.73602223e-02, -5.15699908e-02,
-4.69186781e-02, -2.40946368e-02, -1.46059349e-01,
-3.28436279e-02, -2.13562845e-02, -3.34699714e-02,
-7.66677179e-02, -4.32256913e-02, -3.52826435e-02,
-5.94574259e-02, -1.93166852e-02, -4.95094339e-02,
-3.58666114e-02, -1.82115680e-02, -2.40946368e-02,
 3.12443417e-01, -4.77977239e-02, -2.32176916e-02],
[ 5.01169214e-01, 2.46631022e+00, -1.44482663e+00,
 -1.49654480e-01, 4.65776107e+00, -9.08669669e-01,
 5.94246755e-01, -4.08317376e-01, -3.65096917e-01,
-2.13562845e-02, -1.66780219e-01, 1.07120139e+00,
 -1.01465417e+00, 2.55188988e+00, -5.84863867e-01,
-6.77628195e-01, -1.70350088e-02, -2.17406589e-01,
-3.66626061e-01, -3.92358867e-01, -8.36984273e-01,
-5.88693059e-01, -1.75000915e-01, -4.17325513e-01,
-3.44211323e-01, 4.51773593e+00, -9.61445151e-02,
-1.75000915e-01, -3.22880042e-01, -8.71786495e-02,
 4.04856915e-01, -2.49408357e-02, -5.94574259e-02,
 -4.77977239e-02, -4.27418202e-02, -5.62111112e-02,
 -4.55686097e-02, -2.95140668e-02, -5.83951091e-02,
-5.35521281e-02, -2.88021826e-02, -6.61107357e-02,
-3.15538279e-02, -4.46460827e-02, -3.81135647e-02,
 -6.43782753e-03, -1.82115680e-02, -2.03619962e-02,
-2.23063741e-02, -5.94574259e-02, -3.86550118e-02,
-3.02092370e-02, -4.73602223e-02, -5.15699908e-02,
-4.69186781e-02, -2.40946368e-02, -1.46059349e-01,
 -3.28436279e-02, -2.13562845e-02, -3.34699714e-02,
-7.66677179e-02, -4.32256913e-02, -3.52826435e-02,
 -5.94574259e-02, -1.93166852e-02, -4.95094339e-02,
 -3.58666114e-02, -1.82115680e-02, -2.40946368e-02,
 3.12443417e-01, -4.77977239e-02, -2.32176916e-02]])
```

KNN Classifier

```
In [44]: from sklearn.neighbors import KNeighborsClassifier
In [45]: k=4
         neigh = KNeighborsClassifier(n_neighbors=k).fit(x_train_sc, y_train)
Out[45]:
                   KNeighborsClassifier
         KNeighborsClassifier(n neighbors=4)
In [46]: yhat = neigh.predict(x_test_sc)
         yhat[0:5]
Out[46]: array([0, 0, 0, 0, 1])
In [47]: from sklearn import metrics
         checking accuracy
In [48]: score = metrics.accuracy_score(y_test, yhat)
         print('train set accuracy: ', metrics accuracy_score(y_train, neigh predict(x_train)
         print('test set accuracy: ', score)
         train set accuracy: 0.8716896680343156
         test set accuracy: 0.8112050389524283
In [49]: ks=12
         mean_acc = np.zeros(ks-1)
         std_acc = np.zeros(ks-1)
         k_values = np.zeros(ks-1)
         for n in range(1,ks):
             k \text{ values}[n-1] = n
             neigh = KNeighborsClassifier(n_neighbors=n).fit(x_train_sc, y_train)
             yhat = neigh.predict(x_test_sc)
             mean_acc[n-1] = metrics.accuracy_score(y_test, yhat)
             std_acc[n-1] = np.std(yhat==y_test)/np.sqrt(yhat.shape[0])
         mean acc
Out[49]: array([0.78949113, 0.80242002, 0.80623239, 0.81120504, 0.81468589,
                0.81452014, 0.81800099, 0.81518316, 0.81932703, 0.81849826,
                0.82231062])
In [50]: std acc
Out[50]: array([0.00524858, 0.00512632, 0.00508867, 0.00503841, 0.00500245,
                0.00500418, 0.00496758, 0.00499726, 0.00495346, 0.0049623 ,
                0.00492132])
In [51]: plt.plot(k values, mean acc)
         plt.title('accuracy score')
         plt.xlabel('k values')
         plt.ylabel('accuracy score for diffrent k')
         plt.show()
```


confusion_matrix

```
In [52]: from sklearn.metrics import confusion matrix
         from sklearn.metrics import ConfusionMatrixDisplay
In [53]: cm = confusion_matrix(y_test,yhat)
Out[53]: array([[4135, 386],
                [ 686, 826]])
In [54]: cm = confusion_matrix(y_test, yhat, labels=neigh.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm,
```


result is not very good. It seems because of the data is imbalance

resampling

```
In [55]: from imblearn.over_sampling import SMOTE
         smote = SMOTE(sampling_strategy='minority')
         x_sm, y_sm = smote.fit_resample(x_train, y_train)
In [56]: x_sm.shape
Out[56]: (36266, 72)
In [57]: scaler = StandardScaler().fit(x_sm)
         x_train_sm_sc = scaler.transform(x_sm)
         x_train_sm_sc[0:5]
```

```
Out[57]: array([[ 6.32962763e-01, -1.54669339e+00, 6.03427256e-01,
                 -1.94828930e-01, -2.62490510e-01, 1.34468528e-01,
                  6.36885223e-01, -4.25091694e-01, -3.95844713e-01,
                  -1.74185656e-02, -1.49429010e-01, 8.23087087e-01,
                 -7.86293056e-01, -4.54447101e-01, -6.28656754e-01,
                  1.56897912e+00, -1.38944420e-02, -1.87599311e-01,
                 -3.72442550e-01, -3.39987043e-01, 9.47649893e-01,
                  -5.11676525e-01, -1.47709181e-01, -3.35021520e-01,
                 -2.96402116e-01, -2.60043410e-01, -8.83487016e-02,
                  -1.77121319e-01, -2.93361754e-01, -7.72085637e-02,
                  3.75048347e-01, -2.67850573e-02, -6.37956121e-02,
                 -5.33686708e-02, -3.51831915e-02, -5.64012543e-02,
                 -3.78837019e-02, -2.75726930e-02, -5.28465271e-02,
                 -5.88105071e-02, -3.19574920e-02, -7.42799373e-02,
                  -3.23869178e-02, -3.81402855e-02, -3.28024282e-02,
                 -5.25117098e-03, -1.48539881e-02, -1.66077216e-02,
                 -2.12310075e-02, -6.46613346e-02, -4.00231926e-02,
                 -2.64645561e-02, -4.76045691e-02, -4.73127532e-02,
                 -4.78946231e-02, -2.09915851e-02, -1.24846695e-01,
                 -2.78011585e-02, -1.74185656e-02, -2.72956713e-02,
                 -7.81236996e-02, -4.20459050e-02, -3.27324926e-02,
                 -5.41425519e-02, -1.76663161e-02, -4.49106291e-02,
                 -4.07085236e-02, -1.57552508e-02, -2.17664984e-02,
                  2.97160785e-01, -4.18424779e-02, -2.27260742e-02],
                [ 1.36622394e+00, 2.25181325e+00, 6.03427256e-01,
                  -1.94828930e-01, 3.86454760e+00, -2.14813407e-01,
                  6.36885223e-01, -4.25091694e-01, -3.95844713e-01,
                 -1.74185656e-02, -1.49429010e-01, 8.23087087e-01,
                 -7.86293056e-01, -4.54447101e-01, -6.28656754e-01,
                  1.56897912e+00, -1.38944420e-02, -1.87599311e-01,
                 -3.72442550e-01, -3.39987043e-01, 9.47649893e-01,
                 -5.11676525e-01, -1.47709181e-01, -3.35021520e-01,
                 -2.96402116e-01, -2.60043410e-01, -8.83487016e-02,
                 -1.77121319e-01, -2.93361754e-01, -7.72085637e-02,
                  3.75048347e-01, -2.67850573e-02, -6.37956121e-02,
                 -5.33686708e-02, -3.51831915e-02, -5.64012543e-02,
                  -3.78837019e-02, -2.75726930e-02, -5.28465271e-02,
                 -5.88105071e-02, -3.19574920e-02, 1.34625854e+01,
                 -3.23869178e-02, -3.81402855e-02, -3.28024282e-02,
                 -5.25117098e-03, -1.48539881e-02, -1.66077216e-02,
                 -2.12310075e-02, -6.46613346e-02, -4.00231926e-02,
                 -2.64645561e-02, -4.76045691e-02, -4.73127532e-02,
                 -4.78946231e-02, -2.09915851e-02, -1.24846695e-01,
                 -2.78011585e-02, -1.74185656e-02, -2.72956713e-02,
                 -7.81236996e-02, -4.20459050e-02, -3.27324926e-02,
                 -5.41425519e-02, -1.76663161e-02, -4.49106291e-02,
                 -4.07085236e-02, -1.57552508e-02, -2.17664984e-02,
                  -3.37279271e+00, -4.18424779e-02, -2.27260742e-02],
                 [-7.52086136e-01, -9.13608949e-01, 6.03427256e-01,
                 -1.94828930e-01, -2.62490510e-01, -2.14813407e-01,
                  6.36885223e-01, -4.25091694e-01, -3.95844713e-01,
                  -1.74185656e-02, -1.49429010e-01, 8.23087087e-01,
                 -7.86293056e-01, -4.54447101e-01, -6.28656754e-01,
                  1.56897912e+00, -1.38944420e-02, -1.87599311e-01,
                  -3.72442550e-01, -3.39987043e-01, 9.47649893e-01,
                 -5.11676525e-01, -1.47709181e-01, -3.35021520e-01,
                 -2.96402116e-01, -2.60043410e-01, -8.83487016e-02,
                 -1.77121319e-01, -2.93361754e-01, -7.72085637e-02,
                  3.75048347e-01, -2.67850573e-02, -6.37956121e-02,
                  -5.33686708e-02, -3.51831915e-02, -5.64012543e-02,
                 -3.78837019e-02, -2.75726930e-02, -5.28465271e-02,
```

```
-5.88105071e-02, -3.19574920e-02, -7.42799373e-02,
 -3.23869178e-02, -3.81402855e-02, -3.28024282e-02,
 -5.25117098e-03, -1.48539881e-02, -1.66077216e-02,
 -2.12310075e-02, -6.46613346e-02, -4.00231926e-02,
-2.64645561e-02, -4.76045691e-02, -4.73127532e-02,
-4.78946231e-02, -2.09915851e-02, -1.24846695e-01,
 -2.78011585e-02, -1.74185656e-02, -2.72956713e-02,
-7.81236996e-02, -4.20459050e-02, -3.27324926e-02,
-5.41425519e-02, -1.76663161e-02, -4.49106291e-02,
-4.07085236e-02, -1.57552508e-02, -2.17664984e-02,
 2.97160785e-01, -4.18424779e-02, -2.27260742e-02],
[ 1.44121975e-01, -2.80524509e-01, 6.03427256e-01,
 -1.94828930e-01, -2.62490510e-01, 6.58391430e-01,
-1.58421211e+00, -4.25091694e-01, 2.54798027e+00,
-1.74185656e-02, -1.49429010e-01, 8.23087087e-01,
-7.86293056e-01, -4.54447101e-01, 1.60471473e+00,
-6.42491987e-01, -1.38944420e-02, -1.87599311e-01,
 -3.72442550e-01, -3.39987043e-01, 9.47649893e-01,
-5.11676525e-01, -1.47709181e-01, -3.35021520e-01,
-2.96402116e-01, -2.60043410e-01, -8.83487016e-02,
-1.77121319e-01, -2.93361754e-01, -7.72085637e-02,
 3.75048347e-01, -2.67850573e-02, -6.37956121e-02,
-5.33686708e-02, -3.51831915e-02, -5.64012543e-02,
-3.78837019e-02, -2.75726930e-02, -5.28465271e-02,
-5.88105071e-02, -3.19574920e-02, -7.42799373e-02,
-3.23869178e-02, -3.81402855e-02, -3.28024282e-02,
-5.25117098e-03, -1.48539881e-02, -1.66077216e-02,
-2.12310075e-02, -6.46613346e-02, -4.00231926e-02,
 -2.64645561e-02, -4.76045691e-02, -4.73127532e-02,
-4.78946231e-02, -2.09915851e-02, -1.24846695e-01,
-2.78011585e-02, -1.74185656e-02, -2.72956713e-02,
-7.81236996e-02, -4.20459050e-02, -3.27324926e-02,
 -5.41425519e-02, -1.76663161e-02, -4.49106291e-02,
-4.07085236e-02, -1.57552508e-02, -2.17664984e-02,
 2.97160785e-01, -4.18424779e-02, -2.27260742e-02],
[ 3.88542369e-01, 2.25181325e+00, -1.66968713e+00,
 -1.94828930e-01, 3.86454760e+00, -1.08801824e+00,
 6.36885223e-01, -4.25091694e-01, -3.95844713e-01,
-1.74185656e-02, -1.49429010e-01, 8.23087087e-01,
 -7.86293056e-01, 2.22281513e+00, -6.28656754e-01,
-6.42491987e-01, -1.38944420e-02, -1.87599311e-01,
-3.72442550e-01, -3.39987043e-01, -1.05920040e+00,
-5.11676525e-01, -1.47709181e-01, -3.35021520e-01,
-2.96402116e-01, 3.86224303e+00, -8.83487016e-02,
-1.77121319e-01, -2.93361754e-01, -7.72085637e-02,
 3.75048347e-01, -2.67850573e-02, -6.37956121e-02,
 -5.33686708e-02, -3.51831915e-02, -5.64012543e-02,
 -3.78837019e-02, -2.75726930e-02, -5.28465271e-02,
-5.88105071e-02, -3.19574920e-02, -7.42799373e-02,
-3.23869178e-02, -3.81402855e-02, -3.28024282e-02,
 -5.25117098e-03, -1.48539881e-02, -1.66077216e-02,
-2.12310075e-02, -6.46613346e-02, -4.00231926e-02,
-2.64645561e-02, -4.76045691e-02, -4.73127532e-02,
-4.78946231e-02, -2.09915851e-02, -1.24846695e-01,
-2.78011585e-02, -1.74185656e-02, -2.72956713e-02,
-7.81236996e-02, -4.20459050e-02, -3.27324926e-02,
-5.41425519e-02, -1.76663161e-02, -4.49106291e-02,
 -4.07085236e-02, -1.57552508e-02, -2.17664984e-02,
 2.97160785e-01, -4.18424779e-02, -2.27260742e-02]])
```

```
In [58]: #from sklearn.model_selection import train_test_split
         #x_train, x_test, y_train, y_test = train_test_split(x_sm, y_sm, test_size=0.2, rar
         #print('train set : ', x_train.shape, y_train.shape)
         #print('test set : ', x_test.shape, y_test.shape)
In [59]: ks=5
         mean_acc = np.zeros(ks-1)
         std_acc = np.zeros(ks-1)
         k_values = np.zeros(ks-1)
         for n in range(1,ks):
             k_values[n-1] = n
             neigh = KNeighborsClassifier(n_neighbors=n).fit(x_train_sm_sc, y_sm)
             yhat = neigh.predict(x_test_sc)
             mean_acc[n-1] = metrics.accuracy_score(y_test, yhat)
             std_acc[n-1] = np.std(yhat==y_test)/np.sqrt(yhat.shape[0])
         mean_acc
Out[59]: array([0.75849494, 0.77540196, 0.75832919, 0.78087187])
In [60]: std_acc
Out[60]: array([0.00551027, 0.00537279, 0.00551156, 0.00532565])
In [61]: plt.plot(k_values, mean_acc)
         plt.title('accuracy score')
         plt.xlabel('k values')
         plt.ylabel('accuracy score for diffrent k')
         plt.show()
```

accuracy score


```
Out[62]: array([[3679, 842],
In [63]:
         cm = confusion_matrix(y_test, yhat, labels=neigh.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm,
                                       display_labels=neigh.classes_)
         disp.plot()
         plt.show()
```



```
In [64]: from sklearn.decomposition import PCA
In [65]: pca = PCA()
         X = pca.fit_transform(X)
In [66]: explained_variance = pca.explained_variance_ratio_
         explained_variance
```

```
Out[66]: array([5.79571725e-02, 3.52399993e-02, 3.24968329e-02, 2.52870074e-02,
                2.31687439e-02, 2.25710701e-02, 2.11493986e-02, 1.92309565e-02,
                1.79203093e-02, 1.74537062e-02, 1.66380593e-02, 1.61236900e-02,
                1.57505097e-02, 1.52322815e-02, 1.48895960e-02, 1.47365892e-02,
                1.45378297e-02, 1.41957764e-02, 1.41141798e-02, 1.40788879e-02,
                1.39982388e-02, 1.39807920e-02, 1.39499578e-02, 1.39401659e-02,
                1.39338989e-02, 1.39320767e-02, 1.39219802e-02, 1.39193668e-02,
                1.39166098e-02, 1.39136552e-02, 1.39122280e-02, 1.39099308e-02,
                1.39086435e-02, 1.39072973e-02, 1.39049212e-02, 1.39042376e-02,
                1.39025376e-02, 1.39018555e-02, 1.39002515e-02, 1.38974272e-02,
                1.38961068e-02, 1.38921381e-02, 1.38878212e-02, 1.38748057e-02,
                1.38576761e-02, 1.38371452e-02, 1.38155953e-02, 1.37930986e-02,
                1.37463666e-02, 1.37307440e-02, 1.36973168e-02, 1.36259684e-02,
                1.34968324e-02, 1.33274044e-02, 1.28964681e-02, 1.27336244e-02,
                1.23985109e-02, 1.21155495e-02, 1.15019359e-02, 1.05350611e-02,
                1.01595341e-02, 7.77980958e-03, 7.21060589e-03, 5.27889897e-03,
                3.38188297e-03, 3.00430647e-04, 4.03323484e-31, 2.79470471e-31,
                5.14878697e-32, 4.79420908e-32, 4.01140094e-32, 2.01631962e-32])
In [67]: pca = PCA(n_components=7)
         x_train_pca = pca.fit_transform(x_sm)
         x_test_pca = pca.transform(x_test)
         x_train_pca[0:5]
Out[67]: array([[ 1.43169768, -0.59097965, -2.23928972, -0.0139588 , 0.10563559,
                 -0.72490462, 0.08336794],
                [ 2.41599741, 2.49651627, -1.38789926, -1.14411502, 0.15726729,
                  5.33329392, 4.52697525],
                [1.17308963, -0.56946363, -2.17694713, -0.03964841, 0.19770079,
                 -0.40739446, -0.14309468],
                [ 2.23354063, -0.5340131 , 0.68346279, -0.29049687, -0.92466716,
                 -0.73186298, 0.98450889],
                [0.58831779, 0.20894241, 2.89002152, -2.71907578, 3.72990137,
                  2.27709668, -0.72377956]])
In [68]: scaler = StandardScaler().fit(x_train_pca)
         x_train_pca_sc = scaler.transform(x_train_pca)
         x_test_pca_sc = scaler.transform(x_test_pca)
         x_train_pca_sc[0:5]
Out[68]: array([[ 0.71185423, -0.37215492, -1.44428711, -0.00990895, 0.07803398,
                 -0.5625604 , 0.06643613],
                [ 1.20125779, 1.57211981, -0.89516108, -0.81217405, 0.11617479,
                  4.13888926, 3.60755865],
                [0.58327176, -0.35860574, -1.40407766, -0.02814526, 0.14604339,
                 -0.31615744, -0.11403254],
                [ 1.11053848, -0.33628163, 0.44081679, -0.2062153 , -0.6830601 ,
                 -0.56796042, 0.78455776],
                [ 0.29251742, 0.13157635, 1.8639932 , -1.93019298, 2.7553123 ,
                  1.76713512, -0.57678186]])
In [69]: k=4
         neigh_pca = KNeighborsClassifier(n_neighbors=k).fit(x_train_pca_sc, y_sm)
         neigh_pca
Out[69]: 🔻
                  KNeighborsClassifier
         KNeighborsClassifier(n_neighbors=4)
```

```
In [70]: yhat_pca = neigh_pca.predict(x_test_pca_sc)
         yhat_pca[0:5]
Out[70]: array([0, 0, 0, 0, 1])
In [71]: y_test.shape
Out[71]: (6033,)
In [72]: yhat_pca.shape
Out[72]: (6033,)
In [73]: score = metrics.accuracy_score(y_test, yhat_pca)
         print('train set accuracy: ', metrics.accuracy_score(y_sm, neigh_pca.predict(x_train))
         print('test set accuracy: ', score)
         train set accuracy: 0.8973970109744664
         test set accuracy: 0.7961213326703133
In [74]: cm = confusion_matrix(y_test,yhat_pca)
         cm
Out[74]: array([[3811, 710],
                [ 520, 992]])
```