R - Datavisualisatie

J.J. van Nijnatten

Contents

2
2
2
2
2
2
2
2
2
2
•
•
4
7
8
Ć
1(
1:
12

 $contact: \ J.J. van Nijnatten @uva.nl$

 $broncode:\ https://github.com/jonasvannijnatten/R_Data_Visualization$

Het doel van datavisualisatie

Wat wil je weergeven?

Hoe kies je de juiste manier van weergeven? (exp. design)

Essentiele onderdelen van datavisualisatie

gemiddelde

spreiding

legenda

titel

Introductie GGplot2 package

Installatie

Het package downloaden & installeren:

```
install.packages(pkgs="ggplot2", repos = "https://www.freestatistics.org/cran/")
install.packages(pkgs="Hmisc", repos = "https://www.freestatistics.org/cran/")
```

Het package library activeren:

```
library(package="Hmisc")
library(package="ggplot2")
```

Opbouw van figuren		
Voorbeelden		
Data-inspectie		
-		

Normaliteit			

```
T-test
# generate data
group1 = rnorm(n = 40, mean = 25, sd = 6.5)
group2 = rnorm(n = 40, mean = 35, sd = 6.5)
data.wide = data.frame(group1, group2)
# reshape data
data.long = reshape(data = data.wide,
                    direction = "long"
                    , varying = c("group1", "group2")
                    , v.names = "score"
                     times
                             = c('pre', 'post')
# plot means and standard deviations
ggplot(data.long, aes(x=time, y=score, fill=time) ) +
              ( stat = "summary", fun.y
                                          = "mean" ) +
  geom_errorbar( stat = "summary", fun.data = "mean_sdl", fun.args = 1, width = 0.3 ) +
             ( position=position_jitter(width=.1) )
   60 -
```


To plot standard errors instead of standard deviations replace "mean_sdl" with "mean_se", and it is common use to plot 2 (or 1.96) times the standard error to get an 95% confidence interval, so replace "fun.arg = 1" with "fun.arg = 2".

```
ggplot(data.long, aes(x=time, y=score, fill=time) ) +
              ( stat = "summary", fun.y
                                         = "mean" ) +
 geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3 ) +
```

geom_jitter (width = .05)

Correlatie			

Regressie			

One-way independent samples ANOVA

```
set.seed(05)
               # set seed
nrofconds = 3  # set number of conditions
nrofsubs = 20 # set number of subjects
subj = as.factor(1:(nrofsubs*nrofconds))
                                             # create array with subject IDs
cond = as.factor(rep(LETTERS[1:nrofconds],each=nrofsubs)) # create array with condition values
score = as.vector( replicate(
         nrofconds, rnorm(n = nrofsubs, mean = sample(8,1)+10, sd = sample(5,1))
                                               # create array with measurement values
data.long = data.frame(subj, cond, score);
                                               # combine arrays into a data.frame
rm(list=setdiff(ls(), c("data.long", "nrofsubs", "nrofconds"))) # delete arrays
ggplot(data.long, aes(x=cond, y=score, fill=cond) ) +
               ( stat = "summary", fun.y
                                         = "mean" ) +
  geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3 ) +
             ( position=position_jitter(width = .1) )
```


Factorial independent samples ANOVA

```
set.seed(01)
                                        # set seed
nrofcondsf1 = 3  # set number of conditions for factor 1
nrofcondsf2 = 2 # set number of conditions for factor 2
                              = nrofcondsf1*nrofcondsf2*10 # set number of subjects per condition
subj = as.factor(1:(nrofsubs))
                                                                                          # create array with subject IDs
treatment = as.factor(rep(LETTERS[1:nrofcondsf1],each=nrofsubs/nrofcondsf1)) # create array witht tre
control = as.factor(rep(c("control", "experimental"), times=nrofsubs/nrofcondsf2)) # create array wit
score = as.vector( replicate(nrofcondsf1, replicate (
                          nrofcondsf2, rnorm(n = (nrofsubs/(nrofcondsf1*nrofcondsf2)), mean = sample(14,1)+10, sd = sample(14,1)+10 = sample(1
                     ) ) )
                                                                                                                                    # create array with measurement values
data.long = data.frame(subj, score, treatment, control);
                                                                                                                                                                      # combine arrays into a data.frame
rm(list=setdiff(ls(), c("data.long", "nrofsubs", "nrofconds"))) # delete arrays
ggplot(data.long, aes(x=treatment, y=score, fill=control) ) +
                                        ( stat = "summary", fun.y = "mean", position = "dodge") +
     geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3,
                                             position = position_dodge(width=.9) ) +
     geom_point ( position = position_jitterdodge(jitter.width = .1) )
```


One-way repeated measures ANOVA

Generate dataset

```
set.seed(01) # set seed
nrofsubs = 20 # set number of subjects
nrofconds = 3 # set number of conditions
subj = as.factor(rep(1:nrofsubs,nrofconds)) # create array with subject IDs
cond = as.factor(rep(LETTERS[1:nrofconds],each=nrofsubs)) # create array with condition values
score = as.vector( replicate(
         nrofconds, rnorm(n = nrofsubs, mean = sample(8,1)+10, sd = sample(5,1))
                                               # create array with measurement values
data.long = data.frame(subj, cond, score);  # combine arrays into a data.frame
rm(list=setdiff(ls(), c("data.long", "nrofsubs", "nrofconds"))) # delete arrays
ggplot(data.long, aes(x=cond, y=score, group=1, colour=subj)) +
             (aes (group = subj )) +
 geom_point
              ( linetype= "dashed", aes(group=subj) ) +
 geom line
              ( stat = "summary", fun.y = "mean", colour = "black", linetype= "solid", size=2 ) +
 geom_line
              ( stat = "summary", fun.y = "mean", colour = "black", size=2 ) +
 geom_point
 geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3, size=1 )
                                                                                    3
   20 -
                                                                                    10
                                                                                    11
                                                                                    12
                                                                                    13
   12 -
                                                                                    14
                                                                                    15
                                                                                    16
                                                                                    17
                                                                                    18
                                         B
                                                                                    19
                                       cond
                                                                                   20
```

Factorial repeated measures ANOVA

```
set.seed(02) # set seed
nrofcondsf1 = 3  # set number of conditions for factor 1
nrofcondsf2 = 2 # set number of conditions for factor 2
         = 10 # set number of subjects
subj = as.factor(rep(1:(nrofsubs),times=nrofcondsf1*nrofcondsf2))
                                                                  # create array with subject IDs
treatment = as.factor(rep(LETTERS[1:nrofcondsf1],each=nrofsubs*nrofcondsf2)) # create array witht tre
control = as.factor(rep(rep(c("control", "experimental"), each=nrofsubs), times=nrofcondsf1)) # create
score = as.vector( replicate(nrofcondsf1, replicate(nrofcondsf2,  # create array with measurement val
                            rnorm(n = (nrofsubs), mean = sample(14,1)+10, sd = sample(5,1)
                                  )))))
data.long = data.frame(subj, score, treatment, control);
                                                            # combine arrays into a data.frame
rm(list=setdiff(ls(), c("data.long", "nrofsubs", "nrofconds"))) # delete arrays
ggplot(data.long, aes(x=treatment, y=score, group=interaction(control, treatment), colour=control)) +
  geom_point
             (size=1) +
               (linetype="dashed" ,aes(group=interaction(subj,control), alpha=.5)) +
  geom_line
  geom_line
               ( stat = "summary", fun.y = "mean", size=1.5 , aes(group=control)) +
  geom_point ( stat = "summary", fun.y = "mean", size=2 , aes(group=control)) +
  geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3, size=1 , aes(group=
   30 -
                                                                         control
                                                                           control
   20 -
                                                                             experimental
                                                                         alpha
                                                                         - - 0.5
   10-
                                                         ċ
                                     B
                                 treatment
```