opamp_monostable_1.sqproj

Description

The purpose of a monostable circuit is to produce an output pulse when a transition is applied at the input. In the above circuit, a negative-going (i.e., high to low) transition works as a trigger, producing a negative pulse at the output, as shown in the figure. The operation of the circuit can be understood as follows [1]:

- (a) In the stable state, the output is high, i.e., $+V_{\rm sat}$, D1 is conducting, thus clamping V_{-} of the Op Amp at about 0.7 V. The resistance R_4 is chosen to be large enough to ensure that it draws a small current, and the voltage at node 3 (i.e., V_{+} of the Op Amp) is determined approximately by the R_1 - R_2 divider. This voltage is larger than V_{-} , and therefore V_o stays at $+V_{\rm sat}$.
- (b) When a negative-going transition appears at the input, a negative pulse is produced by the R_4C_2 differentiator. Node 3 is pulled low, i.e., lower than $V_- \approx 0.7 V$, and the output changes to $-V_{\rm sat}$. The diode D_2 is now reverse biased and isolates the Op Amp circuit from the differentiator circuit. V_+ is given by voltage division as $-\beta V_{\rm sat}$, where $\beta = R_1/(R_1 + R_2)$.

 C_1 now starts discharging toward $-V_{\text{sat}}$ through R_3 . When it crosses $-\beta V_{\text{sat}}$ (i.e., V_+), the output changes back to $+V_{\text{sat}}$.

Exercise Set

1. Show that the output pulse width is given by,

$$T = R_3 C_1 \ln \left(\frac{1}{1 - \beta} \right) . \tag{1}$$

- 2. Simulate the circuit with the component values given and verify that the output pulse width matches with the above expression.
- 3. What would you do to increase the pulse width by 50%? Verify by simulation.
- 4. How would you choose the component values for the differentiator circuit (i.e., R_4 and C_2)?

References:

1. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, *Microelectronic Circuits: Theory and Applications*, Fifth edition, Oxford University Press, 2009.