ESTUDO DE CASO:

OPERAÇÃO EM ANEL DOS ALIMENTADORES SMA03 E SMA04 DA SUBESTAÇÃO DE SÃO MATEUS

POR: FELIPE KÜSTER DE FREITAS

PROF.: CLAINER BRAVIN DONADEL

Ponto crítico: 5 alimentadores num raio de 50m

Características dos alimentadores

- Picos de carga sazonais;
- 17 Religadores de linha;
- Predominância de circuitos trifásicos;
- Predominância de circuitos urbanos;
- Corrente de Neutro baixa em SMA04;
- Corrente de Neutro moderada em SMA03;
- Curto circuito elevado na fonte;
- Trechos com dois alimentadores no mesmo poste.

Representação da Barra de São Mateus no SAPRE (Cepel). Foi executado um cálculo de curto-circuito trifásico nas Barras de 13,8kV (5TR1 e 5TR2). Note que essas barras se ligam em paralelo.

RELATÓRIO DE CURTO-CIRCUITO - SAPRE

IDENTIFICAÇÃO			Т	RIFASIC	0	MONOFASICO		
NUM.	NOME	VBAS (kV)	MOD(kA)	ANG(gr)	X/R	MOD(kA)	ANG(gr)	X/R
22361	EQ. SM TR 13.8	13,8	5,14	-73,63	3,4	6,47	-76,26	4,09

IDENTIFICAÇÃO		Z	1	Z0		
NUM.	NOME	MOD(pu)	ANG(gr)	MOD(pu)	ANG(gr)	
22361	EQ. SM TR 13.8	0,8143	73,63	0,3214	89,68	

Ponto	Z_0(mod)	Z_0(ang)	Z_l(mod)	Z_l(ang)	Icc (radi)	Icc3o (radi)
1	5,32	73,72	2,82	71,03	2182	2829
2	11,75	69,82	5,59	63,3	1044	1424
3	21,41	62,13	7,36	61,43	661	1082
4	11,51	69,78	5,52	63,28	1062	1444
5	55,13	65,97	20,57	50,18	251	387
6	21,67	62,25	7,44	61,46	654	1071
7	7,89	73,06	3,59	69,53	1587	2221
8	11,75	69,82	5,59	63,3	1044	1424
9	22,21	62,94	6,58	64,33	676	1211
10	22,59	63,06	6,69	64,32	665	1191
11	21,61	62,22	7,42	61,45	656	1073
12	24,67	63,45	8,34	61,67	578	955
13	29,5	63,81	9,98	59,57	483	798

IDEN	NTIFICAÇÃO	Z	1	Z0		
NUM.	NOME	MOD(pu)	ANG(gr)	MOD(pu)	ANG(gr)	
22361	EQ. SM TR 13.8	0,8143	73,63	0,3214	89,68	

RL 270431A RL 2652A	RL 289345A	RL 289346A 11 RL	270420A
SMA03 LIN16 4	RL 225117	CARGA	12
5 RL 236887A RL 249664A (NA)	6	RL 243237A	RL 270 19A (NA)
SMA04 7 7 RL 274897A	RL 758A 8	RL 243237A	13
RL 269449	RL 289349A	₽	
CARGA =	RL	262976A (NA)	

NUM.	NOME	VBAS (kV)	MOD(kA)	ANG(gr)	X/R	MOD(kA)	ANG(gr)	X/R
22361	EQ. SM TR 13.8	13,8	5,14	-73,63	3,4	6,47	-76,26	4,09

CURTO-CIRCUITO PONTO 2

$$Z_{eq} = Z_f + (Z_1 + Z_2) / / (Z_7 + Z_8 + Z_{6(SMA04)} + Z_{6(SMA03)} + Z_3)$$

Do relatório gerado no SAPRE, a impedância equivalente de todas as fontes é:

$$Z_{1_f} = 0.814 < 73.63^{\circ} pu$$

 $Z_{0f} = 0.3214 < 89.68^{\circ} pu$

Calculando as impedâncias equivalentes de cada trecho:

$$Z_{1p(1)} = Z_{11} - Z_{1f} = 0,667 < 67,86^{\circ} pu$$
 $Z_{0p(1)} = Z_{01} - Z_{0f} = 2,486 < 71,68^{\circ} pu$
 $Z_{1p(2)} = Z_{12} - Z_{1p(1)} = 2,270 < 61,96^{\circ} pu$
 $Z_{0p(2)} = Z_{02} - Z_{0p(1)} = 3,681 < 68,57^{\circ} pu$

$$\begin{split} Z_{1p(3)} &= Z_{13} - Z_{1p(2)} = 1,594 < 60,68^{\circ} \ pu \\ Z_{0p(3)} &= Z_{03} - Z_{0p(2)} = 7,560 < 70,37^{\circ} \ pu \\ Z_{1p(6)_{SMA03}} &= Z_{16_{SMA03}} - Z_{1p(3)} = 2,312 < 62^{\circ} \ pu \\ Z_{0p(6)_{SMA03}} &= Z_{06_{SMA03}} - Z_{0p(3)} = 4,032 < 46,89^{\circ} \ pu \\ Z_{1p(7)} &= Z_{17} - Z_{1f} = 1,074 < 66,43^{\circ} \ pu \\ Z_{0p(7)} &= Z_{07} - Z_{0f} = 3,836 < 71,68^{\circ} \ pu \\ Z_{1p(8)} &= Z_{18} - Z_{1p(7)} = 1,863 < 61,50^{\circ} \ pu \\ Z_{0p(8)} &= Z_{08} - Z_{0p(7)} = 2,339 < 66,77^{\circ} \ pu \end{split}$$

$$Z_{1p(6)_{SMA04}} = Z_{16_{SMA04}} - Z_{1p(8)} = 1,591 < 67,64^{\circ}$$

$$Z_{0p(6)_{SMA04}} = Z_{06_{SMA04}} - Z_{0p(8)} = 9,320 < 61,97^{\circ} pu$$

$$Z_{1eq} = 0,667 < 67,86 + (2,934 < 63,30^{\circ}) // (8,425)$$

 $< 63,27^{\circ}$) = 2,98 $< 66^{\circ} pu$

$$\begin{split} Z_{0eq} &= 0.3214 < 89.68^\circ + (6.164 < 69.82^\circ) \; // \; (26.819 < 63.89^\circ) \; = \; 5.31 < 70^\circ \, pu \end{split}$$

CÁLCULO DE CURTO CIRCUITO POR COMPONENTES SIMÉTRICAS

$$Icc3\emptyset = \frac{V_{base}}{Z_1 + Z_f} * I_{base}$$
$$V_{base} = 1 (pu),$$

 $Z_1 = Imped$ ância seq. pos.,

 $Z_f = Impedância de curto = 0 (curto franco)$

$$Icc\emptyset = \frac{3 * V_{base}}{Z_1 + Z_2 + Z_0 + 3Z_f} * I_{base}$$
$$V_{base} = 1 (pu),$$

 $Z_2 = Impedância seq.neg. = Z_1,$

 $Z_0 = Imped$ ância de seq. zero

$$\left| Icc3 \emptyset_{p(2)} \right| = \frac{4183,698}{2,98} = 1403,92 A$$

$$\left| Icc \emptyset_{p(2)} \right| = \frac{3 * 4183,698}{(2 * 2,98 + 5,31)} = 1113,67 A$$

Ponto	Z_0(mod)	Z_0(ang)	Z_l(mod)	Z_l(ang)	Icc	Icc3o	Z_0pu	Z_lpu
1	5,32	73,72	2,82	71,03	2182	2829	2,793531	1,480781
2	11,75	69,82	5,59	63,3	1114	1403	6,169922	2,935308
3	21,41	62,13	7,36	61,43	661	1082	11,24239	3,864734
4	11,51	69,78	5,52	63,28	1062	1444	6,043898	2,898551
5	55,13	65,97	20,57	50,18	251	387	28,94875	10,8013
6	21,67	62,25	7,44	61,46	654	1071	11,37891	3,906742
7	7,89	73,06	3,59	69,53	1587	2221	4,143037	1,885108
8	11,75	69,82	5,59	63,3	1044	1424	6,169922	2,935308
9	22,21	62,94	6,58	64,33	676	1211	11,66247	3,455156
10	22,59	63,06	6,69	64,32	665	1191	11,862	3,512917
11	21,61	62,22	7,42	61,45	656	1073	11,34741	3,89624
12	24,67	63,45	8,34	61,67	578	955	12,95421	4,379332
13	29,5	63,81	9,98	59,57	483	798	15,49044	5,240496

A tabela acima mostra o processo repetido para o 13 pontos de interesse. Uma vez obtidos os valores de curto circuito, pode-se parametrizar os relés.

PARAMETRIZAÇÃO DOS RELIGADORES

Algumas considerações iniciais:

- O tempo de coordenação nos relés 51 e 51N será 0,3s;
- Cada religador NF deverá realizar, a princípio, 3 religamentos;
- O ajuste de Bay de Subestação será mantido;
- Os religadores NA que fecham o anel operarão em modo AutoReclose (3mins), sem religamentos e com ajustes rápidos. Para qualquer falha direcional, o anel deve abrir e isolar o alimentador defeituoso;
- O direcional dos relés não será habilitado porque não há o mesmo número de religadores em ambos lados do circuito e definiu-se que o anel deve operar em AutoReclose;
- O número máximo de religadores em cadeia é: 6. Não é possível manter o tempo de coordenação para todos. Caso não seja possível, o religador em questão operará com o mesmo ajuste do religador a montante com N-1 religamentos, onde N é o número de religamentos do religador a montante.
- As funções instantâneas estarão desabilitadas para garantir a coordenação no regime transiente do curto-circuito e priorizar a atuação dos elos fusíveis.

Curvas carregadas

RL 270431 Fase - 785/2014 RL 270431 Neutro - 785/2014 RL 2652 Fase - 785/2014 RL 2652 Neutro - 785/2014 RL 289345 Fase - 785/2014 RL 289345 Neutro - 785/2014 RL 289346 Fase - 785/2014 RL 289346 Neutro - 785/2014

Ajuste Calculadora

Ponto 1 (s) ,6204

Ponto 2 (s) ,2862

Diferença (s) ,3342

Atualizar curva Adicionar curva

Excluir curva Excluir todas

Curvas carregadas

RL 225117 Fase - 785/2014
RL 225117 Neutro - 785/2014
RL 289345 Fase - 785/2014
RL 289345 Neutro - 785/2014
RL 758 Fase - 785/2014
RL 758 Neutro - 785/2014

	Fase						
Religador	Pickup	Dial	Curva	Pickup	Dial	Curva	Operações
270431	450	0,2	IEC - VI	85	0,71	IEC - VI	4
2652	440	0,15	IEC - VI	83	0,45	IEC - VI	4
289345	435	0,12	IEC - VI	80	0,3	IEC - VI	4
289346	420	0,1	IEC - VI	75	0,15	IEC - VI	4
270420	420	0,1	IEC - VI	75	0,15	IEC - VI	3
274897	450	0,2	IEC - VI	85	0,71	IEC - VI	4
758	440	0,15	IEC - VI	83	0,45	IEC - VI	4
289349	435	0,12	IEC - VI	80	0,3	IEC - VI	4
243237	435	0,12	IEC - VI	80	0,3	IEC - VI	4
225117	430	0,05	IEC - SI	75	0,1	IEC - EI	Ī

O RL 270419 A não fechará anel e servirá apenas como transferência de carga porque está muito afastado da subestação e possui cabos de baixa corrente máxima.

REFERÊNCIAS

 http://www.engineering.schneiderelectric.dk/Attachments/ed/use_main/advc%20operational%20guide.pdf

