Space Agriculture: Role of NASA's Kennedy Space Center

Dr. Gary Stutte¹, LaShelle Spencer¹ and Dr. Raymond Wheeler²

¹ESC/Sustainable Systems Group

² NASA Surface Systems Office

NASA's John F. Kennedy Space Center

Kennedy Space Center, Florida

International Congress on Controlled Environment Agriculture Panama City, Panama 20-22 May, 2015

Biomass Production Chamber

LED Technology

Space Flight Results

Future Developments

Hanger L: Kennedy Space Center, FL

Bioregenerative Life Support

Human Life Support Requirements for Long Duration Space Missions

n	p	U	ts
- 1	/		

	_			
	Daily Rqmt.	(% total mass)		
Oxygen Food	0.83 kg 0.62 kg	2.7% 2.0%		
Water (drink and	3.56 kg	11.4%		
food pre Water (hygiene,	26.0 kg	83.9%		
laundry,	dishes)			
TOTAL 31.0 kg				

Outputs

Daily	(% total mass)			
Carbon 1.00 kg dioxide	3.2%			
Metabolic 0.11 kg solids	0.35%			
Water 29.95 kg (metabolic / urine (hygiene / flush (laundry / dish (latent	96.5% 12.3%) 24.7%) 55.7%) 3.6%)			
TOTAL 31.0 kg				

Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document Food assumed to be dry except for chemically-bound water.

Biomass Production Chamber (BPC) Breadboard Scale Ground Testing

Cylindrical chamber (7.5 M x 3.7 M) with internal volume of ~113 m³.

Four crop growing areas with $\sim 5 \text{ M}^2$ growing area (20 M² total).

Recycling of water between NDS and HCS.

Leakage of ~ 5-10% per day allowed tracking of CO₂, water, and VOC usage/accumulation.

Four Vertically Stacked Shelves

(5 m² each)

View Looking Down (Soybeans)

View Looking Up (Wheat)

Lettuce

(Lactuca sativa) cv. Waldmann's Green

Typical Growth Cycle 28 days

Exceeded all commercial yield models

Tomato

(Lycopersicon esculentum) cv. Riemann Philipp

Typical Growth Cycle
90-100 days
Achieved over 50% harvest index on
dry mass basis

Potato

(Solanum tuberosum) cvs. Norland and Denali

Typical Growing Cycle
90 – 105 days
2X world record field yields in
2/3 the time

Sustainable potato production over 418 days: Gas exchange

Summary of the life support capabilities of potatoes cv. Norland grown in staggered production cycle for 418 days in Biomass Production Chamber at Kennedy Space Center.

	BWP941 Total	Total Normalized	^Z Human Needs	Area for Human
Watery	13,552 L	3.2 L m ⁻² d ⁻¹	19.0 L d ⁻¹	5.9 m ²
CO_2^x	173 kg	41.4 g m ⁻² d ⁻¹	1.0 kg d ⁻¹	24.2 m^2
O_2^{w}	126 kg	32.5 g m ⁻² d ⁻¹	0.83 kg d ⁻¹	24.2 m^2
Food ^v	61 kg	14.5 g m ⁻² d ⁻¹	0.62 kg d ⁻¹	42.8 m^2

^zSource: NASA SPP 30262 Space Station ECLSS Architectural Control.

YWater need excludes laundry/dishwashing requirement.

^xCO₂ value is the amount assimilated by photosynthetic tissues.

^wO₂ value is derived from CO₂ and assumes a 1.00 conversion efficiency.

^v Food values assume that potato tubers are 17% dry matter.

Crop Species Tested:

- Biomass ProductionChamber (BPC)
 - Wheat (*Triticum aestivum*)
 - Soybean (*Glycine max*)
 - Lettuce (*Lactuca sativa*)
 - Potato (*Solanum tuberosum*)
 - Tomato (Lycopersicon esculentum)
 - Radish (*Raphanus sativus*)

- > Small growth chambers:
 - Same as BPC
 - Sweetpotato (*Ipomea batatas*)
 - Peanut (*Arachis hypogaea*)
 - Beet (*Beta vulgaris*)
 - Spinach (*Spinacea oleracea*)
 - Bean (*Phaseolus vulgaris*)
 - Rice (*Oryza sativa*)
 - Strawberry (*Fragaria ananassa*
 - Pepper (*Capsicum annuum*)
 - Green Onion (*Allium fistulosum*)
 - Carrot (Daucus carota)

ISS004E6334

Biomass Production System (BPS) Small Scale Microgravity Testing

Rectangular chamber (16.5 cm x 14.7 cm x 18.8 cm) with internal volume of $\sim .0045 \text{ m}^3$.

Four Plant Growth Chambers (PGC's) with ~0.025 M² growing area (0.1 M² total).

Recycling of water between NDS and HCS.

Leakage of ~ 20% per day allowed tracking of CO₂, water, and VOC usage/accumulation.

Summary of CO₂ Exchange Parameters

Apogee Wheat 20 DAP	Flight (N=4)	Ground (N=4)	Sig.
Anet stand (μmol m ⁻² s ⁻¹) @300 μmol m-2 s-1 PPF	7.8	7.7	n.s
CO ₂ comp (μmol mol ⁻¹) @ 300 μmol m-2 s-1 PPF	112	105	n.s
PPF comp. (μmol m ⁻² s ⁻¹) @ 1200-1600 μmol mol CO ₂ ⁻¹	87	85	n.s
QE (μmol PPF μmol CO ₂ -1) @ 1200-1800 μmol mol CO ₂ -1	14.9	15.3	n.s

Data derived from draw downs conducted at FD 9(PGC2); 17 (PGC1); 48 (PGC3); and 69 (PGC1) for both flight and ground control (n=4). Data from 300(280), 225(215) and 150 (123) umol m⁻² s⁻¹ PPF is shown. Logarithmic curve fit used.

Plant Chambers to Grow Plants in Space

NASA funding supporting LED as lighting source for plant growth

- NASA funded research in LED lighting sources to reduce energy and resupply costs for bioregenerable life support systems for long duration space missions (1986-date).
- NASA funding led to first North American patent for use of LEDs to growth plants (1990).
- NASA incorporated LEDS into flight hardware (1994)
- NASA funding continues supporting LED innovation for plants growth.

LED Studies

Red...photosynthesis
Blue...photomorphogenesis
Green...human vision

Some NASA Related References:

Bula et al. 1991. HortSci 26:203-205.

Barta et al. 1992. Adv. Space Res. 12(5):141-149.

Tennessen et al. 1994. Photosyn. Res. 39:85-92.

Goins et al. 1997. J. Exp. Botany 48:1407-1413.

Kim et al. 2004. Ann. Bot. 94:691-697.

LED's are now being used at commercial level.

Courtesy Caliper Biotherapeutics, Bryan, Texas

Solar Collector / Fiber Optics For Plant Lighting

2 m² of collectors on solar tracking drive (SLSL Bldg, NASA KSC)

Up to 400 W light delivered to chamber (40-50% of incident light)
Takashi Nakamura, Physical Sciences Inc.

Deployable Plant Chambers for Salad Crop Production on ISS: VEGGIE

Rooting "pillow's" developed to support salad crop growth in VEGGIE

VEGGIE Plant Chamber is currently on International Space Station

Astronaut Steve Swanson inspects VEGGIE

Lettuce is harvested from VEGGIE

Astronaut Steve Swanson

Plant-reduced-C is exchanged for bacteria-reduced-N

Symbiotic Nodulation in a Reduced Gravity Environment (SyNRGE)

Payload Specialist Rex Wilheim in Space shuttle middeck with BRIC-SyNRGE canister C and activation tool during RNALater Fixation process.

Symbiotic Nodulation in a Reduced Gravity Environment (SyNRGE)

Samples fixed in RNALater

Thanks to the team at Kennedy Space Center, Florida

Thank you to organizers, sponsors and participants of the International **Congress on Controlled Environment Agriculture**

