Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 5 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	ρ	matricol	ล:
Cognonic,	1101110	\mathbf{c}	manico	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Quali dei seguenti insiemi sono infiniti e numerabili?

2 punti

- $\Box \{s \in \{0, 1/2\}^{<\mathbb{N}} \mid \text{lh}(s) = 2 \land s(1) = 1/2\} (7, 1/2)$
- $\square \{s \in \mathbb{Q}^{\mathbb{N}} \mid s(1) = 1/2\} \quad \bullet$
- $\square \{s \in \mathbb{R}^{<\mathbb{N}} \mid s(1) = 1/2\}$
- (b) Sia $f: A \to B$ iniettiva.

2 punti

Quali delle seguenti affermazioni sono corrette?

- (15 F) \square Se $g: B \to A$ è iniettiva, allora f è biettiva.
- \square Per ogni $b \in B$ l'insieme $f^{-1}(b)$ è non vuoto.
- $\square |B| < |A|$.
- (c) Quali delle seguenti affermazioni sono corrette?

2 punti

- $\exists x \forall y R(x,y) \models \forall y \exists x R(x,y).$
- \square La formula $\exists x \forall y R(x,y) \rightarrow \forall y \exists x R(x,y)$ è soddisfacibile, ma non valida.
- La formula $\forall y \exists x R(x,y) \rightarrow \exists x \forall y R(x,y)$ è soddisfacibile, ma non valida.
- \Box La formula $\forall y \exists x R(x,y) \land \neg \exists x \forall y R(x,y)$ è insoddisfacibile.
- (d) Siano P, Q, R formule proposizionali. Quali delle seguenti affermazioni sono 2 punti certamente vere?
 - $\Box P \to Q \to R \models P \to R$
 - Se $P \models Q$ e $Q \models R$ allora $P \models R$.
 - **4** Se P è una contraddizione allora P, Q \models R.
 - \triangle Se P è una tautologia e P $\models \neg Q$ allora Q è una contraddizione.

Punteggio totale primo esercizio: 8 punti

Esercizio 2

6 punti

Siano

 $\begin{array}{ll} P_1: & C \vee \neg A \\ P_2: & A \to B \end{array}$

 $P_3: \neg C \rightarrow \neg B.$

Determinare, giustificando la risposta, quali delle seguenti affermazioni sono vere:

Esercizio 3 6 punti

- 1. Formalizzare in \mathbb{N} la frase
 - xè un numero primo

utilizzando il linguaggio formato dai simboli \cdot e 1 interpretati nella maniera usuale.

2. Utilizzando il linguaggio formato dai simboli <, +, · e 1 interpretati nella maniera usuale, formalizzare in $\mathbb N$ la frase

Per ogni n > 1 c'è almeno un primo compreso tra $n \in 2n$.

Esercizio 4

6 punti

Sia $L = \{P\}$ con P simbolo di relazione binaria. Sia φ l'enunciato

$$\exists x \exists y (\neg(x=y) \land \forall z \neg P(z,x) \land \forall z \neg P(z,y)).$$

Determinare in quali delle seguenti strutture φ è vera:

- 1. $\mathcal{A} = \langle \mathbb{N}, P^{\mathcal{A}} \rangle$, dove $P^{\mathcal{A}}$ è la relazione <.
- 2. $\mathcal{B} = \langle \mathbb{N} \setminus \{1\}, P^{\mathcal{B}} \rangle$, dove $P^{\mathcal{B}} = \{(n, m) \mid n \text{ divide } m \in n \neq m\}$.
- 3. $C = \langle \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}, P^{\mathcal{C}} \rangle$, dove $P^{\mathcal{C}}$ è la relazione \subset .

o do 1 (In quinto non in universo) =) esistano 2 numer distinti (wind in N\{1} => e vera 3. $\exists_{\times} \exists_{y} (x \neq y \land \forall \neq (z \neq x \land \neq y))$

Dimostrare per induzione che per ogni $n \ge 1$:

$$\sum_{k=1}^{n} 4k + 1 = n(2n+3).$$

P) S_{10} b) S_{20} $\sum_{k=1}^{1} 6k + 1 = 6.1 + 1 = 5 = 1(2.1 + 3) = 6(2h + 3)$ CVd

$$\frac{Possound.}{h!} \frac{1}{k!} \frac{$$

$$h(2n+3)+4h+5$$
= $h(2h+3)+2h+3+2h+2$
= $(h+1)(2h+3)+2(h+1)$
= $(h+1)(2h+2+3)$
= $(h+1)(2(h+1)+3)$ (Vd.