REGISTERS AND COUNTERS

Applications of Flip-flops:

- (i) It can be used as a memory element
- is it can be used to eliminate key debounce
- (iii) It is used as a basic building block in sequental circuits such as counters and Registers.
- (iv) It can be used as a delay element

(18)

REGISTERS :-

- (i) Register is a group of flip-flops.
- (ii) n-bit Register consists of in number of flip-flops and it stores in bit binary information.

Types of shift Registers:

1. Serial In serial our shift registor (2220):

Fig: Data flow in SISO shift right register

Eigh Data flow in 2250 shift left registor.

Eig: 4-bit SISO shift left register

"(P to reg 1011.

Fig: 4-bit SISO shift right register

2. Serial IN Payallel out shift Register (SIPO):

parallel data olp.

Fig: data flow in SIPO shift right register.

In this case, data bits enters into register in serial, but olp is taken in parallel.

the loading

SIPO Shift right register Fig: 4-bit

Din -> Serial data ilp 9A 98 9c 9D -> 4-bit parallel data ofp.

Register with parallel load: new Information into a register is * The transfer of as loading Register. all the bits of Register are loaded simultane referred to with a common clock pulse, we say that -ously is done in parallel

3. Parallel IN parallel OUT shift register (PIPO):-

payallel data ilp's 1111 parallel data olp's

PIPO shift register. Fig: data flow in

entered into teg in parallel. Data bits are result 29 in parallel. and ofe

Eig: 4-bit PIRO shift register XAXBICXD -> corallel data ilis parallel data olp. 9R 9c9D-> 4-bit

4. Parallel In serial out shift Register (PISO): Pavallel data ilp's Serial data Olp

Fig. Dataflow in 1250 shift right register

IP data entered into register parallely but of is taken Serially.

Fig: 4-6it PISO shift right register. XAXBXcXD -> Parallel data i/p's

If shift/load = 0 then parallel data loads into reg. when shift Load = 1, reg shifts the stored data to right

Asynchronous (or) direct ile's of the thops:

(1) Set (or) Pre-Set:

If see i'll is high then flip flop of is it for any data itp) is respective of data its xclx its

flip-flop will see set is high is 1 Set is low is 0 \$ flip flop will set

(ii) clear (a) lesset:

If resert is is high then flip top of

* Universal shift legister:

If the register has both, (left 4 Right) and

Parallel load capabilities, it is referred to as Universal shift register.

→ acts like piso, pipo, siso, sipo

-> acts like shift (right 4 left)

-> (i.e) performs all operations.

 $S_b,S_s \rightarrow ave$ common Selection ilp's, but not alp's of previous more. For simplicity we have drawn in the above way.

Fig: 4-bit universal shift register

Function table:

Mode 8,	CONTROL	Reg, operation
0	0	No change
0	1	shift right
1	0	shift left
1	1	parallel (and).

 $2312130 \Rightarrow \text{ Foxallel illinia}$ $A_3A_2A_1A_0 \Rightarrow \text{ Foxallel oldi}.$

for oo' we observe all 'o' connections in Mux, gives of to D_1 , D_2 , D_3 , D_4 .

Similarly, ther it we observe all 's' connections in Mux, gives are to R_0 , D_1 , D_2 , D_3 .

* Sevial Adder:

It performs serial addition.

Block diagram:

Fig: Serial Adder

B reg. content is 1001.

let us consider two, numbers \rightarrow 1011 \rightarrow Intermediate considers \rightarrow 4 B axe 4 bit registers \rightarrow 1001 \rightarrow 1000 \rightarrow 1000

Serial adder performs operation.

[A — AtB] Arrow indicates dataflow direction

when cik is applied Reg's performs shift right
operation.

During shift right, LSB comes out 4 godes to full
Adder.

and FF adds A.B., cin bits and transfors

sum to A reg. 4 Cout to D-FF.

After performing serial addition contents of reg A \rightarrow 0100 (sum)
B \rightarrow 0000
FF D \rightarrow 1 (end carry)

Serial Transfer:

so -> serial out; si -> serial in.

the above cut performs operation

 $B \leftarrow A$ (er) $A \rightarrow B$ Arrow fudicates direction of dataflow.

After performing register transfer operation A=B

Fig (a) Performs shift operation only when shift control only when shift contr

serial transfer

Timing pulse	shift reg. A.	shift reg. B				
Initial value of reg.	1011	0000				
After TI	1101	1001				
72	1110	1100				
T3	0111	0110				
Ty	(1011	((1101				

After Ty, both A 4 B reg. 2 Content 2 Same.

COUNTERS :

a counter is a register arriving at it clock Clock Pulses namper 90 number of clock pulses represents the input . Count arrived.

(01)

is an essentially a register that counter sequence of binary predetermined goes through states.

- * counters ave avallable Ni two categories.
- Asynchronous counters
- synchronous counters

	As	synchro	phone	cour	uters	
١.	IN	29Nt	type	00	coun	ter
	flip-	flops	are	CON	nected	9
	ni,	Such	a 1	way	that	9)0
	of	ist F	F dv	ives -	the c	K
	for	the	NEXT	FF.		
2.	Αll	the	FF	are	NOF	
	cloc	cked	Simul	taneou	rely.	
3	. 10	gic c	circust	29	NELA	
	920			On V N	9701	

even for more stats. OF drawback of these is their low speed as the cik is Propagated through no. of FF before it reaches last FF

synchronous counters

- In this type, there is connection plu of of 1st FF and clk ilp of Next
- All the FF are clocked simultaneously.
 - 3. Design involves complex logic circuits es no. of states increases.
- 4. As the clk is simulta-- neously given to all FF there is no problem of propagation delay. Hence they are high speed commas

Asynchronous (or) Ripple (or) serial counters (or) Non-synchronous counter:

Asynchronous up counter :-1. 3-bit

counter which counts 29 a An upcounter (i.e) 0,1,2,3, upward direction.

state diagram:

Fig :-3 - bit ripple UP counter edge triggered JK FF's.

commen o/b 98 PA 9c MSB

of waveforms

* The number of state through which the country state is called the south of guiltrate of guiltrate of guiltrate of guiltrate of submon ant

The mod number of a counter is the total no. of states it sequences through in each complete cycle * Since a 3-64 counter has 8 states it is called a mod-8 (o1) modulus-8 counter (o1) modulus-8 counter

3-bit ripple up counter using T-FF's:

Fig. 3-bit Asynchronous up counter curing -ve' edge triggered 7-FF's.

counter of \rightarrow 9c PB PA

MSB LEB

Note: For designing ripple up counter using +ve edge triggered FF's connect & ofp's to alk ilp's of next flip-tlops.

Fig. 3-bit ripple up counter using the edge thiggered 7-FF's.

Counter of $p \rightarrow q_c q_g q_A$

2. 3-bit Asynchronous down counter:

Down counter counts in downward direction. (i.e) n, n-1, n-2,, 2,1,0.

state diagram:

12

Fig. 3-bit ripple down counter using -ve edge triggered T-FF's.

COUNTER OIP -> 9, 9B PA

counter of -> 90 00 98 9A

ioio, ole of And gate 2° 910 retimos * When since of And gate is connected 279ths returnos, 2'77 90 z'qli rosls (ros tezer ot after 1010 state. state oooo otvis

Truth table:

CIK	90	Qc.	QB	QA
0	0	0	0	0
t	0	0	0	1
2	0	0	1	0
3	0	. 0	1	1
4	D	1	C	0
5	0	J	1)
6	0		1	0

clk	00	Qc	QB	9A
7	0	1	1	1
8	1	0	0	0
9	1	0	D	1
10	a	0	0	D
11	0	0	.0	1
12	0	0	1	0
13	0	0	- 1	1
14	0	- 1	0	0

CIK	0	Qc	QE.	PA
0	0	0	0	0
: 1	0	0	0	1
2	0	0	1	0
3	0	0	t	1
4	0	. 1	0	0
5	0	1	0	1
6	0	1	ţ	0.
7	0	l	1	1
0	1	0	0	0

clk	90	Q _c	de	PA.
9	1	0		1
10	1	0	ţ	0
1.1	1	0	1	1
12	0	0	0	0
13	0	0	0	1
14	b	0	1	0
21	0	0	(1
16	0	10	0	0
17	0	1 1	0 1	1

9

FE IPS $J_A = K_A = 1$ $J_C = K_C = \overline{Q}_A$ $J_C = K_C = \overline{Q}_A \overline{Q}_C$ $J_D = K_D = \overline{Q}_A \overline{Q}_C \overline{Q}_C$ $Counter olp <math>\rightarrow Q_D Q_C Q_C Q_A$ $MEE \qquad LEG$

Truth table (or) Function table:

CIK	a.	COU	OB MEN	OPA
0	0	0	0	0
1	1	1	1	1
2	1	1	1	0
3	1	1	0	1
4	t	1	0	0
2	t	0	1	1
6	1	0	- 1	0
7	1	0	0	1
8	1	0	0	0
9	0	1	t	1

	counter of							
CIK	90	Qc	20	QA				
10	0	1	1	0				
11	0	1	0	1				
12	0	P	0	0				
13	O	0	1	1				
14	0	0	1	0				
21	0	0	0	1				
16	0	0	0	0				
17	1	1	1	1				
18	1	1	t	0				
19	1	1	0	1				

* Design of Synchrous counters:

9. Design synchrous MOD-s counter using IK Flip-flops.

gol: Note: If country type is not mentioned than

Step!:- Determine number of flip-flops.

The no. of FF's required to design MoD-5

Synchronous up counter can be determine by the equation, $2^n \ge N$ where $N \to N$ 0. of FF's

The Possible value of 'n' which satisities the above equation is 3.

Thus MOD-S counter uses 3 FF's.

Step 2: Flip-flop type - JK FF.

Step 3:- State diagram

Step 4:- Excitation table

Prese	resent stage wext stage				E	1 3	291		-		
Qc.	QB	9A	Qc+1	QB41	SAti	3	c Kc	10	3 KB	JA	K
0	0	0	0	0	1	0	x	0		1	X
0	0	1	0	t	0	0	X	71	X	x	1
0	1	٥	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
t	0	0	0	0	0	X	1	0	X	0	X
ł	0	1	X	X	×	×	X	×	×	X	X
t	1	0	X	X	X	×	X	×	x	x	X
. 1	1	1	×	×	X	×	×	×	x	×	X

SK FF DETROLLE ON SMILL T K

Steps: K-Map simplification

FOY JB

COL TA

60 KC

-for k_B

for KA

.: Kc = 1

TA QA THE CONTRACTOR OF THE CO

Steps: logic diagram

