

HDMI Transmitter Over Lvds

上海安路信息科技股份有限公司

APUG058 (v1.0) 2022 年 8 月

Confidential

目 录

E	录	I
1	概述	2
2	功能描述	2
	2.1 设计框架	2
	2.2 HDMI Transmitter 时钟架构	3
	2.3 接口说明	4
	2.3.1 HDMI Transmitter 参数说明	4
	2.3.2 HDMI Transmitter 接口信号说明	10
	2.3.3 EDID 读数据接口时序	11
	2.3.4 视频接口时序	12
	2.3.5 音频接口时序	14
3	资源消耗	14
4	工程文件信息	14
5	参考文档	15
6	版本信息	16
免	.责声明	16

1 概述

HDMI (High Definition Multimedia Interface) 是一种全数字化影像和声音发送接口,可以发送未压缩的音频及视频信号。HDMI 可用于机顶盒、DVD 播放机、个人电脑、投影仪与电视等设备,HDMI 发送音频和视频信号采用同一条线材,大大简化系统线路的安装难度。

本文档描述了安路科技基于 LVDS 的 HDMI Transmitter 设计,实现音频和视频数据传输。安路科技 为旗下 EG4 系列和 PH1 系列 FPGA 器件提供 HDMI Transmitter 源码。

本 HDMI Transmitter 设计支持的功能如下:

- ▶ 最高支持 1080p60 显示分辨率。
- > 支持两路音频输入。
- ▶ 支持 RGB444 和 YUV444。
- ▶ 支持内部视频测试源。
- ▶ 支持 EDID 读取。

2 功能描述

2.1 设计框架

HDMI Transmitter 设计框架如图 2-1 所示。

图 2-1 HDMI Transmitter 设计框架

HDMI Transmitter 设计包含以下三部分:

HDMI_TX_controller: HDMI 的协议层,用于将音频数据、视频数据以及配置数据打包编码,输出TMDS 编码数据。

HDMI_TX_PHY: HDMI 的物理层,用于将协议层传输的 TMDS 编码数据转换为串行数据并发送出去。
EDID Receiver: 读取 HDMI 接收端的 EDID 数据。

2.2 HDMI Transmitter 时钟架构

在使用 HDMI Transmitter 时,时钟的配置至关重要,用户逻辑和 HDMI Transmitter 的结构如图 2-2 所示。

图 2-2 HDMI Transmitter 时钟架构

HDMI Transmitter 工作需要两个时钟,像素时钟 pixel_clk 和串行发送时钟 serial_clk。两个时钟都是通过 PLL 生成,其中 serial_clk 的频率是 pixel_clk 频率的五倍。HDMI Transmitter 的三个接口 EDID_Read_interface、Video_interface 和 Audio_interface 都是工作在 pixel_clk 时钟域下,因此用户逻辑需要使用 pixel clk 来生成音视频数据。

HDMI Transmitter 的 pixel_clk 频率和 serial_clk 频率需要根据显示分辨率进行计算。以 1080p60 的分辨率为例,有效分辨率为 1920x1080,在计算频率的时候需要加上消隐区,图像总的长宽为 2200x1125,每秒 60 帧,因此像素时钟的频率为:

$$F_{nixel} = Htotal \times Vtotal \times FrameRate$$

$$F_{nixel} = 2200 \times 1125 \times 60 = 148500000Hz = 148.5MHz$$

串行发送时钟 serial_clk 频率为像素时钟频率的五倍,因此串行发送时钟频率为:

$$F_{serial} = 5 \times F_{pixel} = 5 \times 148.5MHz = 742.5MHz$$

2.3 接口说明

2.3.1 HDMI Transmitter 参数说明

HDMI Transmitter 的参数说明如表 2-1 所示。

表 2-1 HDMI Transmitter 参数

参数	可选值	默认值	说明
HTOTAL	_	2200	一行总长度,包括行消隐和行有效,单位为时钟个
			数
HSA	_	44	行同步脉冲宽度, 单位为时钟个数
HFP	_	88	行显示前沿, 单位为时钟个数
HBP	_	148	行显示后沿,单位为时钟个数
HACTIVE	_	1920	一行有效显示长度,单位为时钟个数
VTOTAL	_	1125	总列数,包括场消隐和场有效部分,单位为图像行
			数
VSA	_	5	场同步脉冲宽度,单位为图像行数
VFP	_	4	场显示前沿,单位为图像行数
VBP	_	36	场显示后沿,单位为图像行数
VACTIVE	_	1080	有效列数,单位为图像行数
VIDEO_VIC	_	16	视频识别码
VIDEO_TPG	"Enable"	"Enable"	测试视频源使能:
	"Disable"		"Enable":使能测试视频源,外部视频输入无效
			"Disable":禁用测试视频源
VIDEO_FORMAT	"RGB444"	"RGB444"	视频格式:
	"YUV444"		"RGB444":外部输入视频格式为 RGB
			"YUV444":外部输入视频格式为 YUV
AUDIO_CTS	_	148500	音频时钟参数 "CTS"
AUDIO_N	_	6144	音频时钟参数 "N"
AUDIO_SAMPLE_RATE	"32K"	"48K"	音频采样率
	"44. 1K"		
	"48K"		
	"88. 2K"		
	"96K"		
	"176. 4K"		
	"192K"		
IIC_SCL_DIV	1-65535	125	EDID IIC 时钟分频系数

视频分辨率参数

HTOTAL、HSA、HFP、HBP、HACTIVE、VTOTAL、VSA、VFP、VBP、VACTIVE 用于配置 HDMI 显示的分辨率,视频时序如图 2-3 所示。

图 2-3 视频输出时序

VIDEO_VIC 参数

VIDEO_VIC 参数用于设定 HDMI 辅助视频信息包中的 VIC 参数, VIC 是视频的识别码, 不同的视频格式具有唯一的识别码, 视频格式对应的 VIC 如表 2-2 所示。

表 2-2 视频识别码 VIC

VIC	视频格式	帧率
1	640x480p	59. 94Hz/60Hz
2	720x480p	59. 94Hz/60Hz
3	720x480p	59. 94Hz/60Hz
4	1280x720p	59. 94Hz/60Hz
5	1920x1080 i	59. 94Hz/60Hz
6	720 (1440) x480 i	59. 94Hz/60Hz
7	720 (1440) x480 i	59. 94Hz/60Hz
8	720 (1440) x240p	59. 94Hz/60Hz
9	720 (1440) x240p	59. 94Hz/60Hz
10	2880x480 i	59. 94Hz/60Hz
11	2880x480 i	59. 94Hz/60Hz
12	2880x240p	59. 94Hz/60Hz
13	2880x240p	59. 94Hz/60Hz
14	1440x480p	59. 94Hz/60Hz

VIC	视频格式	帧率
15	1440x480p	59. 94Hz/60Hz
16	1920x1080p	59. 94Hz/60Hz
17	720x576p	50Hz
18	720x576p	50Hz
19	1280x720p	50Hz
20	1920x1080 i	50Hz
21	720 (1440) x576 i	50Hz
22	720 (1440) x576 i	50Hz
23	720 (1440) x288p	50Hz
24	720 (1440) x288p	50Hz
25	2880x576i	50Hz
26	2880x576i	50Hz
27	2880x288p	50Hz
28	2880x288p	50Hz

VIC	视频格式	帧率	VIC	视频格式	www.
29	1440x576p	50Hz	70	1280x720p	100Hz
30	1440x576p	50Hz	71	1280x720p	119. 88/120Hz
31	1920x1080p	50Hz	72	1920x1080p	23. 98Hz/24Hz
32	1920x1080p	23. 98Hz/24Hz	73	1920x1080p	25Hz
33	1920x1080p	25Hz	74	1920x1080p	29. 97Hz/30Hz
34	1920x1080p	29. 97Hz/30Hz	75	1920x1080p	50Hz
35	2880x480p	59. 94Hz/60Hz	76	1920x1080p	59. 94Hz/60Hz
36	2880x480p	59. 94Hz/60Hz	77	1920x1080p	100Hz
37	2880x576p	50Hz	78	1920x1080p	119. 88/120Hz
38	2880x576p	50Hz	79	1680x720p	23. 98Hz/24Hz
39	1920×1080 i (1250	50Hz	80	1680x720p	25Hz
39	total)	JUHZ	81	1680x720p	29. 97Hz/30Hz
40	1920×1080 i	100Hz	82	· ·	50Hz
41	1920x10801 1280x720p	100Hz	82	1680x720p	
41	•	100Hz	83	1680x720p	59. 94Hz/60Hz
	720x576p	100Hz		1680x720p	100Hz
43	720x576p		85	1680x720p	119. 88/120Hz
44	720 (1440) x576 i	100Hz	86	2560x1080p	23. 98Hz/24Hz
45	720 (1440) x576 i	100Hz	87	2560x1080p	25Hz
46	1920x1080 i	119.88/120Hz	88	2560x1080p	29. 97Hz/30Hz
47	1280x720p	119.88/120Hz	89	2560x1080p	50Hz
48	720x480p	119.88/120Hz	90	2560x1080p	59. 94Hz/60Hz
49	720x480p	119.88/120Hz	91	2560x1080p	100Hz
50	720 (1440) x480 i	119.88/120Hz	92	2560x1080p	119.88/120Hz
51	720 (1440) x480 i	119.88/120Hz	93	3840x2160p	23. 98Hz/24Hz
52	720x576p	200Hz	94	3840x2160p	25Hz
53	720x576p	200Hz	95	3840x2160p	29. 97Hz/30Hz
54	720 (1440) x576 i	200Hz	96	3840x2160p	50Hz
55	720 (1440) x576 i	200Hz	97	3840x2160p	59. 94Hz/60Hz
56	720x480p	239. 76/240Hz	98	4096x2160p	23. 98Hz/24Hz
57	720x480p	239. 76/240Hz	99	4096x2160p	25Hz
58	720 (1440) x480 i	239. 76/240Hz	100	4096x2160p	29.97Hz/30Hz
59	720 (1440) x480 i	239. 76/240Hz	101	4096x2160p	50Hz
60	1280x720p	23. 98Hz/24Hz	102	4096x2160p	59. 94Hz/60Hz
61	1280x720p	25Hz	103	3840x2160p	23. 98Hz/24Hz
62	1280x720p	29. 97Hz/30Hz	104	3840x2160p	25Hz
63	1920x1080p	119.88/120Hz	105	3840x2160p	29. 97Hz/30Hz
64	1920x1080p	100Hz	106	3840x2160p	50Hz
65	1280x720p	23. 98Hz/24Hz	107	3840x2160p	59. 94Hz/60Hz
66	1280x720p	25Hz	108	1280x720p	47. 95Hz/48Hz
67	1280x720p	29. 97Hz/30Hz	109	1280x720p	47. 95Hz/48Hz
68	1280x720p	50Hz	110	1680x720p	47. 95Hz/48Hz
69	1280x720p	59. 94Hz/60Hz	111	1920x1080p	47. 95Hz/48Hz

VIC	视频格式	帧率
112	1920x1080p	47. 95Hz/48Hz
113	2560x1080p	47. 95Hz/48Hz
114	3840x2160p	47. 95Hz/48Hz
115	4096x2160p	47. 95Hz/48Hz
116	3840x2160p	47. 95Hz/48Hz
117	3840x2160p	100Hz
118	3840x2160p	119.88/120Hz
119	3840x2160p	100Hz
120	3840x2160p	119.88/120Hz

VIC	视频格式	帧率
121	5120x2160p	23. 98Hz/24Hz
122	5120x2160p	25Hz
123	5120x2160p	29. 97Hz/30Hz
124	5120x2160p	47. 95Hz/48Hz
125	5120x2160p	50Hz
126	5120x2160p	59. 94Hz/60Hz
127	5120x2160p	100Hz
0	无效VIC	_

VIDEO_TPG 参数

HDMI Transmitter 内置了测试视频源,当 VIDEO_TPG 参数设定为" Enable"时,内置的测试视频源会按照图 2-4 所示的显示顺序播放测试画面,此时外部输入的视频源无效。当 VIDEO_TPG 参数设定为" Disable"时,关闭测试视频源,外部输入视频有效。

需要注意的是内部测试视频源只支持 RGB444,为了显示正常,VIDEO_TPG 参数设定为"Enable"时,VIDEO_FORMAT 参数需要设为"RGB444"才能显示正常,否则显示的颜色会有异常。

图 2-4 测试视频画面

VIDEO_FORMAT 参数

VIDEO_FORMAT 用来告知 HDMI 接收端图像数据的颜色空间,当外部输入的视频颜色空间为 RGB 时,VIDEO_FORMAT 需要设定为"RGB444",当外部输入的视频颜色空间为 YUV 时,VIDEO_FORMAT 需要设定为"YUV444",目前 RGB444 和 YUV444 仅支持 8Bit。

AUDIO_CTS、AUDIO_N参数

AUDIO_CTS 和 AUDIO_N 参数用于设定音频时钟生成包中的 CTS 和 N 的值,音频时钟生成和恢复如图 2-5 所示。

图 2-5 音频时钟生成和恢复

CTS 和 N 的关系如下,其中 f_s 是音频采样率, f_{TMDS_clk} 是 HDMI 的时钟线的频率,也是像素时钟频率,确定了像素时钟频率和采样率之后就可以根据下面的公式计算 CTS 和 N 的值。

$$128f_s = f_{TMDS_clk} \cdot N/CTS$$

对于不同像素时钟频率和音频采样率,推荐的 CST 和 N 的值见表 2-3 所示。

表 2-3 CTS 和 N 推荐值

音频采样率	像素时钟频率(MHz)	N	CTS
32K	25. 2	4096	25200
	27	4096	27000
	54	4096	54000
	74. 25	4096	74250
	148. 5	4096	148500
	297	3072	222750
	Other	4096	根据N计算得到
44. 1K	25. 2	6272	28000
	27	6272	30000
	54	6272	60000
	74. 25	6272	82500
	148. 5	6272	165000
	297	4704	247500
	Other	6272	根据N计算得到
48K	25. 2	6144	25200
	27	6144	27000
	54	6144	54000
	74. 25	6144	74250
	148. 5	6144	148500
	297	5120	24750
	Other	6144	根据N计算得到

音频采样率	像素时钟频率(MHz)	N	CTS
88. 2K	25. 2	12544	28000
	27	12544	30000
	54	12544	60000
	74. 25	12544	82500
	148. 5	12544	165000
	297	9408	247500
	Other	12544	根据N计算得到
96K	25. 2	12288	25200
	27	12288	27000
	54	12288	54000
	74. 25	12288	74250
	148. 5	12288	148500
	297	10240	247500
	Other	12288	根据N计算得到
176. 4K	25. 2	25088	28000
	27	25088	30000
	54	25088	60000
	74. 25	25088	82500
	148. 5	25088	165000
	297	18816	247500
	Other	4096	根据N计算得到
192K	25. 2	24576	25200
	27	24576	27000
	54	24576	54000
	74. 25	24576	74250
	148. 5	24576	148500
	297	20480	247500
	Other	24576	根据N计算得到

AUDIO_SAMPLE_RATE 参数

AUDIO_SAMPLE_RATE 参数用来设定音频的采样率,可选项有"32K"、"44.1K"、"48K"、"88.1K"、"96K"、"176.4K"、"192K",需要根据实际的音频采样率来设定。

IIC_SCL_DIV 参数

IIC_SCL_DIV 参数用来设定 EDID IIC 时钟的分频系数,EDID IIC 的时钟频率计算如下公式所示,其中 f_{pixe_clk} 为 HDMI 像素时钟频率, f_{lic_scl} 为 EDID IIC 时钟频率。如果 pixel_clk 频率为 150M,IIC_SCL_DIV 为 125,那么 IIC 时钟频率为 150M/(2*125)=600kHz。

$$f_{iic\ scl} = f_{pixe\ clk}/(2 * IIC_SCL_DIV)$$

2.3.2 HDMI Transmitter 接口信号说明

HDMI Transmitter 模块引脚如图 2-6 所示。

图 2- 6 HDMI Transmitter 模块引脚图

HDMI Transmitter 的接口信号说明如表 2-4 所示。

表 2-4 HDMI Transmitter 接口信号

接口名称	信号名称	方向	时钟域	描述
	l_pixel_clk	in	NA	像素时钟
clock and reset	l_serial_clk	in	NA	串行发送时钟
Crock and reset	I_rst	in	NA	异步复位信号, 高电平
				有效
EDID Read	l_edid_read_trig	in	l_pixel_clk	EDID 读触发信号
interface	O_edid_read_valid	out	l_pixel_clk	EDID 读有效信号
Interrace	O_edid_read_data[7:0]	out	l_pixel_clk	EDID 读数据
	l_video_in_user	in	l_pixel_clk	视频输入帧起始信号
	l_video_in_valid	in	l_pixel_clk	视频输入有效信号
Video interface	I_video_in_data[23:0]	in	l_pixel_clk	视频输入数据
	l_video_in_last	in	l_pixel_clk	视频输入行结束信号
	O_video_in_ready	out	l_pixel_clk	视频输入 ready 信号
	l_audio_valid	in	l_pixel_clk	音频输入有效信号
Audio interface	l_audio_left_data[23:0]	in	l_pixel_clk	音频左声道数据
	I_audio_right_data[23:0]	in	l_pixel_clk	音频右声道数据
DDC interface	O_edid_iic_scl	out	l_pixel_clk	EDID IIC 时钟信号

接口名称	信号名称	方向	时钟域	描述
	IO_edid_iic_sda	inout	l_pixel_clk	EDID IIC 数据信号
	0_tmds_ch0_p	out	NA	HDMI 数据通道 0
TMDC :tf	0_tmds_ch1_p	out	NA	HDMI 数据通道 1
TMDS interface	O_tmds_ch2_p	out	NA	HDMI 数据通道 2
	O_tmds_clk_p	out	NA	HDMI 时钟通道

2.3.3 EDID 读数据接口时序

EDID 读数据接口时序如图 2-7 所示, I_edid_read_trig 信号是一个单时钟周期的脉冲信号,当 I_edid_read_trig 信号为高时会触发一次 EDID 读操作,输出 128 字节的 EDID 数据,EDID 数据在 0_edid_read_valid 信号为高期间有效。

图 2-7 EDID 读数据接口时序

EDID的数据结构如图 2-8 所示。

Address	Bytes	Description	Format
00h	8	Header: = (00 FF FF FF FF FF FF 00)h	
08h	10	Vendor & Product Identification:	
08h	2	ID Manufacturer Name	ISA 3-character ID Code
0Ah	2	ID Product Code	Vendor assigned code
0Ch	4	ID Serial Number	32-bit serial number
10h	1	Week of Manufacture	Week number or Model Year Flag
11h	1	Year of Manufacture or Model Year	Manufacture Year or Model Year
12h	2	EDID Structure Version & Revision:	
12h	1	Version Number: = 01h	Binary
13h	1	Revision Number: = 04h	Binary
14h	5	Basic Display Parameters & Features:	
14h	1	Video Input Definition	
15h	1	Horizontal Screen Size or Aspect Ratio	Listed in cm. → Aspect Ratio Landscape
16h	1	Vertical Screen Size or Aspect Ratio	Listed in cm. → Aspect Ratio Portrait
17h	1	Display Transfer Characteristic (Gamma)	Binary Factory Default Value
18h	1	Feature Support	
19h	10	Color Characteristics:	
19h	1	Red/Green: Low Order Bits	Rx1 Rx0 Ry1 Ry0 Gx1 Gx0 Gy1Gy0
1Ah	1	Blue/White: Low Order Bits	Bx1 Bx0 By1 By0 Wx1 Wx0 Wy1 Wy0
1Bh	1	Red-x: High Order Bits	Red-x Bits 9 → 2
1Ch	1	Red-y: High Order Bits	Red-y Bits 9 → 2
1Dh	1	Green-x: High Order Bits	Green-x Bits 9 → 2
1Eh	1	Green-y: High Order Bits	Green-y Bits 9 → 2
1Fh	1	Blue-x: High Order Bits	Blue-x Bits 9 → 2
20h	1	Blue-y: High Order Bits	Blue-y Bits 9 → 2
21h	1	White-x: High Order Bits	White-x Bits $9 \rightarrow 2$
22h	1	White-y: High Order Bits	White-y Bits $9 \rightarrow 2$
23h	3	Established Timings	
23h	1	Established Timings I	
24h	1	Established Timings II	
25h	1	Manufacturer's Reserved Timings	
26h	16	Standard Timings: Identification 1 → 8	
36h	72	18 Byte Data Blocks	
36h	18	Preferred Timing Mode	
48h	18	Detailed Timing # 2 or Display Descriptor	
5Ah	18	Detailed Timing # 3 or Display Descriptor	
6Ch	18	Detailed Timing # 4 or Display Descriptor	
		Extension Block Count N	Number of (optional) 128-byte EDID
		If Block Maps are used then	EXTENSION blocks to follow - if Block
7Eh	1	00h ≤ N ≤ FEh and FFh is invalid.	Maps are used then 254 is the maximum
		If Block Maps are not used then	value of 'N'. If Block Maps are not used
		00h ≤ N ≤ FFh.	then 255 is the maximum value of 'N'.
7Fh		Checksum C	The 1-byte sum of all 128 bytes in this
/Fn	1	00h ≤ C ≤ FFh	EDID block shall equal zero

图 2-8 EDID 数据结构

2.3.4 视频接口时序

视频接口时序图如图 2-9 所示。

图 2-9 视频接口时序

I_video_in_user 信号是帧起始信号,为一个单时钟周期信号,在第一行第一个有效数据拉高。
I_video_in_valid 是数据有效信号,I_video_in_last 是行结束信号,在一行数据的结尾拉高。
0_video_in_ready 是接收端准备信号,为高表示可以写入数据,在 I_video_in_last 为高之后会拉低。

在 HDMI 协议中,视频和辅助数据在发送时需严格遵循时序要求,为了保证发送视频时序的稳定,HDMI Transmitter 内置了 video_source,生成不同分辨率的视频控制信号,控制视频数据和辅助数据 先后映射到数据传输路径上,结构如图 2-10 所示。

图 2- 10 HDMI TX Controller 架构

由于视频数据的数据量大,无法将一帧数据全部缓存,因此在外部视频数据映射到 HDMI 数据路径

时需要考虑相位问题,这个相位问题是 HDMI TX Controller 内部 video_source 生成的视频数据和外部输入视频数据之间的延时产生的。例如外部输入的视频数据超前或者滞后内部 video_source 生成的视频数据,那么在进行数据映射的时候就会造成数据错位。

为了解决相位问题,HDMI TX Controller 内部设计了一个相位匹配机制,HDMI TX Controller 开始工作时,video_source 生成帧起始信号时会暂停,一直等到外部视频输入的帧起始信号到来的时候继续工作,这样就可以对两路视频数据进行对准。

为了保证外部视频输入数据能够正确被映射到 HDMI 传输路径上,需要注意行长度 line_length、 行间距 line_space 以及帧间距 frame_space 这三个参数,如图 2-11 所示,这三个参数和图像分辨率有 关。

图 2-11 外部视频输入时序

图像一行总长度为 htotal,一行实际长度为 hactive,总的行数为 vtotal,实际行数为 vactive,那么行长度 line_length=hactive,行间距 line_space=htotal,帧间距 frame_space=vtotal。

24Bit 视频数据中像素分布如图 2-12 所示。

APUG058_1. 0

图 2- 12 像素分布

2.3.5 音频接口时序

音频接口时序如图 2-13 所示。

图 2-13 音频接口时序

音频输入数据的速率需要等于音频采样率,例如音频采样率 sample_rate 为 48K,那么输入音频数据的速率为 48KHz,间隔时间为 1/sample_rate=20.83us。

3 资源消耗

HDMI Transmitter Over Lvds 资源消耗如表 3-1 所示。

表 3-1 HDMI Transmitter 资源消耗

器件	LUT6	REG	ERAM	GCLK
PH1A	723	1492	8	2
EG4	1414	1513	14	2

4 工程文件信息

本设计涉及的示例工程提供如下文件。

表 4-1 文件信息

参数	说明
Reference Design	Yes
RTL Language	Verilog
Test bench	N/A
Test bench Format	N/A
Simulation	N/A
C	N/A
IP Model	N/A
Project Platform	Yes
TD Soft Version	TD5. 6. 56362

5 参考文档

- [1] High-Definition Multimedia Interface Specification Version 1.4b
- [2] VESA Enhanced Extended Display Identification Data Standard 1.4
- [3] ANSI/CTA-861-H

6 版本信息

日期	版本	修订记录
2022/8/03	1.0	首次发布中文版

版权所有©2022 上海安路信息科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除安路科技在其产品的销售条款和条件中声明的责任之外,安路科技概不承担任何法律或非法律责任。安路科技对安路科技产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。安路科技对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,安路科技保留修改文档中任何内容的权利,恕不另行通知。安路科技不承诺对这些文档进行适时的更新。

APUG058_1. 0

www.anlogic.com