#### **PCT**

# WORLD INTELLECTUAL PR PERTY ORGANIZATION International Bureau



| (51) International Patent Classification 4:                                                                                               |                   | 1) International Publication Number:                                                                    | WO 89/06700                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| C12Q 1/68                                                                                                                                 | A1                | 3) International Publication Date:                                                                      | 27 July 1989 (27.07.89)                                                  |
| (21) International Application Number: PCT/US (22) International Filing Date: 12 January 1989 (                                           | •                 | ropean patent), CH (European patent), DK, FR (European patent), IT (European pean patent), NL (European | ean patent), DE (Euro<br>pean patent), GB (Euro<br>patent), JP, LU (Euro |
| (31) Priority Application Number: (32) Priority Date: 21 January 1988 (                                                                   |                   |                                                                                                         |                                                                          |
| (32) Priority Date: 21 January 1988 (<br>(33) Priority Constry:                                                                           |                   | Published With international search report. With amended claims and states                              | iei                                                                      |
| (71) Applicant: GENENTECH, INC. [US/US]; 4<br>San Bruno Boulevard, South San Franci<br>94080 (US).                                        | 60 Po<br>sco, (   | Date of publication of the amended c                                                                    | laims and statement:<br>4 August 1989 (24.08.89)                         |
| (72) Inventors: MILLER, Harvey, I.; 225 Linda Lar<br>ant Hill, CA 94523 (US). JOHNSTON, Sea<br>Emmerson Street, Palo Alto, CA 94306 (US). | un ; 30           |                                                                                                         |                                                                          |
| (74) Agents: HENSLEY, Max, D. et al.; Genente<br>Legal Department, 460 Point San Bruno Bo<br>South San Francisco, CA 94080 (US).          | ech, Ir<br>ouleva |                                                                                                         |                                                                          |
|                                                                                                                                           |                   |                                                                                                         | •                                                                        |

#### (54) Title: AMPLIFICATION AND DETECTION OF NUCL

#### (57) Abstract

The present invention is directed to improved methods for assaying specific nucleic acid sequences in a test sample and the reagents for carrying out the methods. In the general, the methods of the invention involve the synthesis of a double-stranded nucleic acid containing the nucleic acid sequence to be detected and a promoter, the synthesis of a multiplicity of RNA transcripts under the control of the promoter, and the detection of the specific RNA transcripts produced.



# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT AU BEE BY BUT OF CHILD IN | Anstria Anstralia Barbados Belgium Bulgaria Benin Benzil Central Affican Republic Congo Switzerland Cameroon Germany, Federal Republic of Denmark Finland | ER GA GB HU IF JP EP LU | Franca Gabon United Kingdom Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Licehtenstein Sri Lanka Luxembourg Monaco Madagascar | MIL<br>MR<br>MW<br>NL<br>NO<br>80<br>80<br>81<br>81<br>10<br>10<br>10<br>US | Mali Mauritania Malawi Netherlands Norway Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|

10

15

20

25

# AMENDED CLAIMS [received by the International Bureau on 28 July 1989 (28.07.89); original claims 1-30 and 36 cancelled; new claims 37-48 added (7 pages)]

- 31. A method for the detection f a specific nucleic acid sequence in a test sample containing single-stranded DNA which comprises:
  - (a) contacting the test sample with an oligonucleotide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, under conditions that permit hybridization of the promoter-primer to the nucleic acid sequence to be detected;
  - (b) contacting the test sample with a DNA polymerase, such that a double-stranded nucleic acid is synthesized, comprising the nucleic acid sequence to be detected and the promoter f the promoter-primer;
  - (c) contacting the product of step (b) with a dedicated RNA polymerase capable of recognizing the promoter of the oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequence to be detected are synthesized by the RNA polymerase under the control of said promoter;
- (d) determining the presence of RNA transcripts synthesized in step (c); and
  - (e) correlating the presence of the RNA transcripts with the presence of the nucleic acid sequence to be detected.
- 30 32. A method for the detection of a specific nucleic acid sequence in a test sample containing RNA or single-stranded DNA which comprises:

(a) c ntacting th test sample with an oligonucle tide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, under conditions that permit hybridization of the promoter-primer to the specific nucleic acid sequence to be detected;

(b) contacting the test sample with reverse transcriptase such that a promoter-primer DNA extension product is synthesized, wherein the template for synthesis of the promoter-primer DNA extension product is the test sample RNA or single-stranded DNA to which the promoter-primer has hybridized in step (a);

10

(c) treating the product of step (b) under denaturing conditions to separate the promoter-primer DNA extension product from its template;

15

20

(d) contacting the single-stranded nucleic acid produced in step (c) with an oligonucleotide secondary primer, wherein said secondary primer is selected to be homologous to all or part of the nucleic acid sequence to be detected and not complementary to the promoter-primer used in step (a), under conditions that permit hybridization of the secondary primer to the promoter-primer DNA extension product;

25

(e) contacting the product of step (d) with a DNA polymerase or reverse transcriptase, such that a secondary primer DNA extension product is synthesized, wherein the template for synthesis of the secondary promoter DNA extension product is the promoter-primer DNA extension product;

30

(f) contacting the product of step (e) with a dedicat d RNA polymerase capable of recognizing the promoter of the oligonucleotide promoter-primer, whereby a multiplicity of RNA

10

15

20

25

30

transcripts of the nucleic acid sequence t be detected are synthesized under the c ntrol of said promoter; and

- (g) correlating the presence of the RNA transcripts with the presence of the nucleic acid sequence to be detected.
  - 33. A method for the detection of a specific nucleic acid sequence in a test sample containing RNA or single-stranded DNA which comprises:
    - (a) contacting the test sample with an oligonucleotide secondary primer, under conditions that permit hybridization of the secondary primer to the specific nucleic acid sequence to be detected;
    - (b) contacting the test sample with reverse transcriptase such that a secondary primer DNA extension product is synthesized, wherein the template for synthesis f the secondary primer DNA extension product is the test sampl RNA or single-stranded DNA to which the secondary primer has hybridized in step (a);
    - (c) treating the product of step (b) under denaturing conditions to separate the secondary primer DNA extensi n product from its template;
  - (d) contacting the single-stranded nucleic acid produced in step (c) with an oligonucleotide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, wherein said promoter-primer is selected to be homologous t all or part of the nucleic acid sequence to be detected and not complementary to the secondary primer used in step (a), under conditions that permit hybridization of the promoterprimer to the secondary primer DNA extension product;

10

15

20

25

30

- (e) contacting the product of step (d) with a DNA polym rase such that a promoter-primer DNA extension product is synthesized, wherein the template for synthesis of the promoter-primer DNA extension product is the secondary primer DNA extension product;
- (f) contacting the product of step (e) with a dadicated RNA polymerase capable of recognizing the promoter of the oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequence to be detected are synthesized under the control of said promoter; and
- (g) correlating the presence of said RNA transcripts with the presence of the nucleic acid sequence to be detected.
- 34. A method for the detection of a specific nucleic acid sequence in a test sample containing single-stranded DNA which comprises:
  - (a) contacting the test sample with an oligonucleotide secondary primer, under conditions that permit hybridization of the secondary primer to the specific nucleic acid sequ nce to be detected;
  - (b) contacting the test sample with a DNA polymerase such that a secondary primer DNA extension product is synthesized, wherein the template for synthesis of the secondary primer DNA extension product is the test sample RNA or single-stranded DNA to which the secondary primer has hybridized in step (a);
  - (c) treating the product of step (b) under denaturing conditions to separate the secondary primer DNA extensi n product from its template;

(d) contacting the single-stranded nucleic acid produced in step (c) with an oligonucleotide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, wherein said promoter-primer is selected to be homologous t all or part of the nucleic acid sequence to be detected and not complementary to the secondary primer used in step (a), under conditions that permit hybridization of the promoter-primer to the secondary primer DNA extension product;

10

5

(e) contacting the product of step (d) with a DNA polymerase such that a promoter-primer DNA extension product is synthesized, wherein the template for synthesis of th promoter-primer DNA extension product is the secondary primer DNA extension product;

20

15

- (f) contacting the product of step (e) with a dedicated RNA polymerase capable of recognizing the promoter of the oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequence to be detected are synthesized under the control of said promoter; and
- (g) correlating the presence of said RNA transcripts with the presence of the nucleic acid sequence to be detected.

25

30

- 35. A kit for use in the detection of a nucleic acid sequence in a test sample containing an oligonucleotide promoter-primer and an oligonucleotide probe, wherein the promoter-primer is capable of hybridizing to the test sample nucleic a id sequence and the oligonucleotide probe is homologous to all or part of the nucleic acid sequence to be detected.
- 37. A method for preparing a double-stranded nucleic acid which

10

15

includes a prom ter operably linked t a sequence t be detected, which method comprises:

- (a) providing an oligonucleotide promoter-primer;
- (b) contacting said promoter-primer with a nucleic acid comprising the sequence to be detected under conditions that permit hybridization of the promoter-primer to the nucleic acid sequence to be detected;
- (c) synthesizing an extension product from the 3' end of the promoter-primer, which extension product is complementary to the nucleic acid sequence to be detected;
- (d) contacting the product of step (c) with an agent possessing 3' 5' exonuclease activity; and
- (e) synthesizing an extension product from the 3' end of the sequence to be detected, which extension product is complementary to the promoter of the promoter-primer.
- 38. The method of claim 37 wherein the promoter-primer of step (a) is the only primer utilized.
- 20 39. The method of claim 37 wherein the nucleic acid comprising th sequence to be detected is digested with a restriction enzyme before or during step (b).
- 40. The method of claims 37 or 38 wherein the synthesis of the extension products of steps (c) and (e) is accomplished using an enzyme selected from the group consisting of E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, and T4 DNA polymerase.
- 30 41. The method of claims 37 or 38 wherein the agent of step (d) is an enzyme selected from the group consisting of E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, and T4 DNA polymerase.

- 42. The method of claims 37 or 38 wherein the synthesis of the extension products f st p (c) and (e) is accomplished using the same agent as that utilized in step (d).
- 5 43. The method of claims 37 or 38 wherein steps (c), (d), and (e) are carried out simultaneously in the same reaction vessel.
- 44. A method useful for the detection of a specific nucleic acid sequence in a test sample containing nucleic acid, comprising the synthesis of a plurality of RNA transcripts from a double-stranded nucleic acid prepared according to the method of claim 37 or claim 38, wherein each RNA transcript comprises an RNA sequence corresponding to the specific nucleic acid sequence to be detected, and determining the presence of said RNA sequence.
  - 45. The method of claim 44 wherein the plurality of RNA transcripts is synthesized using T7 RNA polymerase.
- 20 46. The method of claim 44 wherein the plurality of RNA transcripts is synthesized using SP6 RNA polymerase.
- 47. The method of claim 44 wherein the presence of said RNA sequence is determined by contacting the RNA transcripts under hybridizing conditions with an oligonucleotide probe selected to hybridize with a predetermined sequence within the RNA transcripts.
- 48. The method of claim 47 wherein the RNA transcripts are immobilized on a solid support.

#### STATEMENT UNDER ARTICLE 19

10

15

Claims 1-30 and 36 have been cancelled. In their place is added new claims 37-48. The basis for the additional claims is found in the original claims and in the specification, as foll ws:

| Claim<br>20<br>37 | Basis                                                         |                                                           |
|-------------------|---------------------------------------------------------------|-----------------------------------------------------------|
|                   | Specification: p.14, line 28-p.16, line 13; Example 1; Fig.1. |                                                           |
| 25                | 38                                                            | Specification: p.13, line 26-<br>p.14, line 4; Example 1. |
|                   | 39                                                            | Original claim 9.                                         |
| 30                | - <b>40</b>                                                   | Original claim 11; Specification: p.16, lines 5-9.        |
|                   | 41                                                            | Specification: p.16, lines 5-9.                           |
| 35                | <b>42</b>                                                     | Specification: p.15, line 34-p.16, line 5.                |
|                   | 43                                                            | Specification: p.15, line 34-p.16, line 5.                |

| 5  | 44 | Original claim 1; Specificati n. p.5, lines 24-34; p.16, line 15-p.18, line 27; Fig.1. |
|----|----|----------------------------------------------------------------------------------------|
| 3  | 45 | Original claim 7; p.9, lines 1-5; Example 1.                                           |
| 10 | 46 | Original claim 8; p. 9, lines 1-5.                                                     |
|    | 47 | Original claim 21; Specification: p.17, lines 9-14; p.18, lines 4-18.                  |
| 15 | 48 | Original claim 22; Specificati n: p.18, lines 16-18.                                   |
| 20 | •  |                                                                                        |
| 25 |    |                                                                                        |

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### DITERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| INTERNATIONAL APPLICATION PUBLIS                                                                                                        |                   | 1,                     | l) International Publication Number: WO 89/06700                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 4:                                                                                             | A1                | Ľ                      | ,                                                                                                                                                                                                                                                                      |
| C12Q 1/68                                                                                                                               |                   | (43                    | 3) International Publication Date: 27 July 1989 (27.07.89)                                                                                                                                                                                                             |
| (21) International Application Number: PCT/US (22) International Filing Date: 12 January 1989                                           | ·                 |                        | (81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NO, SE (European patent), NO, SE (European patent) |
| (31) Priority Application Number:                                                                                                       | 146,4             |                        | pean patent).                                                                                                                                                                                                                                                          |
| (32) Priority Date: 21 January 1988                                                                                                     |                   |                        | Published                                                                                                                                                                                                                                                              |
| (33) Priority Country:                                                                                                                  | 1                 | US                     | With international search report.  Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt                                                                                                                   |
| (71) Applicant: GENENTECH, INC. [US/US]; 4 San Bruno Boulevard, South San France 94080 (US).                                            | 25CU, \           | O Point of amendments. |                                                                                                                                                                                                                                                                        |
| (72) Inventors: MILLER, Harvey, I.; 225 Linda La<br>ant Hill, CA-94523 (US). JOHNSTON, See<br>Emmerson Street, Palo Alto, CA 94306 (US) | ).<br>).          |                        |                                                                                                                                                                                                                                                                        |
| (74) Agents: HENSLEY, Max, D. et al.; Genent<br>Legal Department, 460 Point San Bruno B<br>South San Francisco, CA 94080 (US).          | ech, L<br>louieve | nc.,<br>urd,           |                                                                                                                                                                                                                                                                        |
|                                                                                                                                         |                   |                        |                                                                                                                                                                                                                                                                        |
| ·                                                                                                                                       |                   |                        |                                                                                                                                                                                                                                                                        |
| (54) Title: AMPLIFICATION AND DETECTIO                                                                                                  | N OF              | NU                     | CLEIC ACID SEQUENCES                                                                                                                                                                                                                                                   |
|                                                                                                                                         |                   |                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                  |
| (57) Abstract                                                                                                                           |                   |                        | 3'                                                                                                                                                                                                                                                                     |
| The present invention is directed to improved methods for assaying specific                                                             |                   | 3'*                    | , Setternan                                                                                                                                                                                                                                                            |
| nucleic acid sequences in a test sample and<br>the reagents for carrying out the methods.                                               |                   | •                      | ~ · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                |
| In the general, the methods of the invention involve the synthesis of a double-stranded                                                 |                   |                        |                                                                                                                                                                                                                                                                        |
| anclaic acid containing the nucleic acid so-                                                                                            | -                 | -                      |                                                                                                                                                                                                                                                                        |
| quence to be detected and a promoter, the synthesis of a multiplicity of RNA tran-                                                      |                   |                        | · ·                                                                                                                                                                                                                                                                    |
| scripts under the control of the promoter,                                                                                              |                   | •                      | Summan -                                                                                                                                                                                                                                                               |
| and the detection of the specific RNA tran-<br>scripts produced.                                                                        |                   | :                      |                                                                                                                                                                                                                                                                        |
| ourhm hracean                                                                                                                           |                   | •                      | gunnana                                                                                                                                                                                                                                                                |
|                                                                                                                                         |                   |                        |                                                                                                                                                                                                                                                                        |
|                                                                                                                                         |                   |                        |                                                                                                                                                                                                                                                                        |
| •                                                                                                                                       |                   | •                      |                                                                                                                                                                                                                                                                        |
|                                                                                                                                         |                   | •                      |                                                                                                                                                                                                                                                                        |

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

#### AMPLIFICATION AND DETECTION OF NUCLEIC ACID SEQUENCES

#### Background of the Invention

Recent developments in the general field of molecular bil gy have made possible the detection of specific nucleic acid sequences of clinical and commercial importance. Analysis of the nucleic acid sequences of various human genes, for example, has revealed unique sequence alterations that are associated with specific diseases. Likewise, sequences have been identified within the genome of various pathogens which uniquely characterize each organism, and distinguish them from even closely related species. The availability of such sequence information has made possible th diagnosis of diseases at the genetic level.

15

20

25

30

35

10

5

The most common method for the detection of a specific nucleic acid sequence is hybridization. This method takes advantage of the ability of a nucleic acid sequence to form a stable noncovalent complex with a complementary nucleic acid sequence. In order to determine whether a specific nucleic acid sequence is present within a test sample, a complementary nucleic acid prob is prepared, labeled with a detectable chemical modification, and then added to the test sample. If the sequence to be detected is present, the labeled probe will become hybridized to it, with the detectable label providing the means for determining in a known manner whether hybridization has occurred, and to what extent.

The principal limitation on the use of present hybridization methods for the determination of a nucleic acid in a test sample is that they are not sensitive enough and therefore require a relatively large amount of sample to accurately verify the presence of a specific nucleic acid sequence. This limitation pr sents significant practical difficulties in a clinical setting becaus of the limited quantity of sample that is typically available f r analysis. Consequently, much attention has been focused n

developing methods for improving the sensitivity f the hybridization m thod f r detecting a specific nucleic acid sequenc in a test sample and thereby expanding its utility in the diagnostic arts.

5

10

One general approach to improving the sensitivity of the hybridization method has been to increase the signal generated by the hybridization probe. Methods have been described, for example, for preparing nucleic acid probes labeled to high specific activity with radioactive labels, either by nick-translation (Rigby, et al., 1977, J. Mol. Biol. 113:237) or by SP6 transcription (Melton, et al., 1984, Nuc. Acids Res. 12:7035).

15

Schneider, et al., PCT Pat. App. WO 87/03622, describe the use of multiple signal-generating secondary probes, each capabl of binding to a primary probe which has hybridized to a DNA r RNA sequence of interest, as a means for amplifying the signal generated by the hybridization event.

20

Chu, et al., PCT Pat. App. WO 87/06270 describe the use of "replicative RNA", alone or in conjunction with an affinity molecule, as a nucleic acid hybridization probe, and the use f an RNA-dependent RNA polymerase to replicate, and thereby increase the signal generated by, the bound probe RNA.

25

Rodland, et al., U.S. Pat. No. 4,647,529, teach the use of thiomucleotides, which when incorporated into a hybridization probe increase the amount of binding between the probe and the nucleic acid sequence to be detected.

30

In contrast to the substantial efforts that have been made t increase the sensitivity of probe detection methods, relatively little research has been devoted to methods of amplifying the nucleic acid sequence to be detected in a test sample so that it is

10

15

20

25

30

pr duced in sufficient quantities to be detected by currently available hybridizati n methods.

Mullis, et al., U.S. Pat. No. 4,683,195, teach a process f r amplifying a specific nucleic acid sequence in a test sample by the use of two oligonucleotide primers, and the synthesis of primer extension products. The extension product of one primer, when hybridized to the other primer, becomes a template for production of the desired specific nucleic acid sequence, and vice versa, and this process is repeated as often as necessary to produce the desired amount of the specific sequence.

Mullis, et al. also teach the use of this amplification method to prepare large quantities of a recombinant nucleic acid, using primers to which a non-complementary sequence is ligated. Mullis, et al. disclose ligating a nucleotide sequence for a pr moter, linker, or coding sequence to one or both primers, whereby the non-complementary sequence is amplified together with the test sample nucleic acid sequence. In this manner, a large quantity f a recombinant nucleic acid is produced, consisting of an existing test sample nucleic acid sequence ligated to a selected ex genous nucleic acid sequence.

The essence of the Mullis, et al. process, therefore, is the amplification of a desired nucleic acid sequence in the form of complementary primer extension products. Because each primer extension product formed serves as the template for synthesis f yet another primer extension product, multiple repetitions of the Mullis, et al. primer extension procedure theoretically should result in the accumulation of the desired sequence at an exponential rate relative to the number of reaction cycles. In contrast, by-products formed by primer hybridizations other than those intended are not expected to be self-catalytic, and should therefore accumulate at a linear rate.

10

15

20

25

30

35

The sp cificity and accuracy f the Mullis, et al. process is thus seen to be strictly dependent upon the substantially increased rate of synthesis of the desired nucleic acid sequence relative to that of by-products. In practice, however, it is observed that the accumulation of by-products may proceed at a much greater rate than that predicted by theoretical calculations. Mullis et al., fr example, disclose the use of their process to amplify a portin f the human beta-hemoglobin gene which is present in a sample containing human genomic DNA, and find that due to amplification of other sequences within the genome, only la of the final resulting population of amplified sequences correspond to the desired sequence.

To the extent that the Mullis, et al. process results in the amplification of nucleic acid sequences other than the one desired, the method assays a greater amount of the desired nucleic acid sequence than is actually present in the test sample, and produces false-positive results. It is one object of the present invention, therefore, to provide a method for specifically and quantitatively amplifying a desired nucleic acid sequence in a test sample, thereby improving the sensitivity of detection of the desired sequence, while avoiding the problems of false-positive and otherwise inaccurate results inherent in the existing technology.

Furthermore, the Mullis, et al. process contemplates multiple cycles of primer hybridization and primer extension synthesis, resulting in burdensome labor or automation costs. Automation f the Mullis, et al. process not only necessitates the use of specialized equipment but also the use of a specialized reag nt, a heat-stable DNA polymerase, and reaction conditions tail red to each analyte test system so that the primer hybridization and primer extension synthesis steps may be conducted continuously. It is thus a further object of the present invention to provide a method for detecting a specific nucleic acid sequence in a test sample which is rapid and simple to perform without ostly,

15

20

25

30

35

r petiti us reaction steps, specialized equipment and reagents, r burdensome requirements for changing reacti n conditions f r each different test sample.

#### 5 Summary of the Invention

The objects of this invention are accomplished by a m thod which comprises:

- (a) synthesizing a double-stranded nucleic acid which includes the sequence to be detected and a promoter;
- (b) synthesizing a multiplicity of RNA transcripts from said double-stranded nucleic acid under the control f said promoter;
- (c) determining the presence of RNA transcripts pr duced in step (b); and
- (d) correlating the presence of said RNA transcripts with the presence of the nucleic acid sequence to be detect d.

In a further embodiment, the objects are accomplished by a method wherein the nucleic acid of step (a) is obtained by the steps comprising:

- (1) providing an oligonucleotide promoter-primer comprising a promoter ligated to a primer;
- (2) contacting the test sample with the promoter-primer under conditions that permit the hybridization f the promoter-primer to the nucleic acid sequence to be detected; and
- (3) synthesizing an extension product from the promoterprimer which is complementary to the nucleic acid sequence to be detected, using as a template the test sample nucleic acid to which the promoter-primer has hybridized in step (2).

In an additional embodiment, the objects are accomplished by a method wherein the nucleic acid of step (a) is obtained by the steps comprising:

- (1) pr viding an oligonucleotide promoter-primer, comprising a promoter ligated to a primer, and an oligonucleotide secondary primer, wherein said primers are not complementary to one another, and are selected such that the extension product synthesized from one primer, when separated from its complement, can serve as a template for synthesis of the extension product of the other primer;
- (2) contacting the test sample under hybridizing conditions with the promoter-primer such that a promoter-primer extension product is synthesized; and
- (3) contacting the test sample under hybridizing conditions such that a secondary primer extension product is synthesized.

20

25

30

35

10

5

The present invention is directed to improved methods for determining the presence of a specific nucleic acid sequenc in a test sample, and kits containing reagents necessary for practicing the invention. In general, the methods of the invention involve the synthesis of a double-stranded nucleic acid containing the nucleic acid sequence to be detected and a promoter, the synthesis of a multiplicity of RNA transcripts under the control f the promoter, and the detection of the specific RNA transcripts produced. The advantage obtained by amplification in the f rm of RNA transcripts rather than DNA primer extension products is that the synthesis of RNA transcripts, in the presence of an enzyme for polymerization and ribonucleoside triphosphates, continuously, thus producing any desired level of amplification f the nucleic acid sequence to be detected without resort to repeated cycles of exacting and inherently error-prone primer hybridization reactions.

#### Brief Description of the Drawings

Fig. 1 illustrates the hybridization of an oligonucleotide promoter-primer to a specific sequence to be detected within a

15

20

25

singl -stranded nucleic acid, synthesis of a double-stranded nucleic acid which comprises the squence to be detected and the promoter of the promoter-primer, and the synthesis of a multiplicity of RNA transcripts from the double-stranded nucl ic acid, under the control of the promoter.

Fig. 2 depicts an embodiment of the invention wherein an oligonucleotide promoter-primer is used in concert with an oligonucleotide secondary primer to produce a double-stranded nucleic acid containing the sequence to be detected and the promoter of the promoter-primer. The promoter-primer is hybridized to the sequence to be detected within a single-stranded nucleic acid and the secondary primer is hybridized to a sequence within the promoter-primer extension product which is complementary to the The resulting product is a doubl sequence to be detected. stranded nucleic acid, wherein one strand comprises an oligonucleotide promoter-primer extension product and the oth r strand comprises an oligonucleotide secondary primer extension product, from which RNA transcripts are synthesized under the control of the promoter.

Fig. 3 depicts an additional embodiment of the invention wherein an oligonucleotide promoter-primer is used in concert with an oligonucleotide secondary primer. In this instance, the oligonucleotide secondary primer is hybridized to the sequence to be detected within a single-stranded nucleic acid and the oligonucleotide promoter-primer is hybridized to a sequence within the secondary primer extension product which is complementary t the sequence to be detected.

30

35

#### Detailed Description of the Invention

The term "promoter" as used herein refers to a nucleic acid sequence at which an RNA polymerase enzyme binds and initiat s the synthesis of RNA transcripts. The promoter is preferably a dedicated promoter, and the RNA polymerase is preferably a

10

15

20

25

30

35

dedicated RNA p lymeras. The term "dedicated" refers to the ability of the promoter to be recognized substantially only by an RNA polymerase other than that which is typically present in the test sample to be assayed. Similarly, the dedicated RNA polymeras will bind only to or preferentially to the dedicated promoter as compared to other promoters present in the test sample, and synthesize RNA transcripts of any nucleic acid sequence located downstream from the promoter. The combination of a dedicated promoter and a dedicated RNA polymerase results in an unusually specific promoter-RNA polymerase interaction.

Typically, the dedicated promoter and dedicated RNA polymerase will be obtained from the same source, as for example bacteri phage T7 or bacteriophage SP6. In the case of both T7 and SP6, the phage encoded RNA polymerase efficiently initiates synthesis of RNA transcripts only at the cognate phage promoter. RNA transcripts resulting from initiation at other procaryotic or eucaryotic promoters are rarely observed. Moreover, the transcription reaction, consisting of a simple salt buffer, double-stranded nucleic acid template, ribonucleoside triphosphates, and phage RNA polymerase, results in rapid synthesis of large amounts of RNA. The promoter is desirably selected or its nucleotide s quence modified from the native sequence in order to minimize any adventitious hybridization to any known sequences in the test sample DNA.

The term "primer" as used herein refers to an oligonucleotide sequence, whether occurring naturally or produced synthetically, which is substantially complementary or homologous to all r part of a nucleic acid sequence to be detected. The primer must be sufficiently long to hybridize with a template nucleic acid containing the sequence to be detected or its complement, and to prime the synthesis of an extension product in the presence f an agent for polymerization. The exact length of the primer will depend on many factors, including hybridization and primer

xtension synthesis reacti n c nditions, and the c mposition f th specific nucleic acid sequence to be detected. Typically the primer will contain 10-25 or more nucleotides, although it may contain fewer nucleotides. It is not necessary, however, that the primer reflect the exact sequence of the nucleic acid sequence to be detected or its complement. For example, non-complementary bases can be interspersed into the primer, or complementary bases deleted from the primer, provided that the primer is capable f hybridizing specifically with the nucleic acid sequence to b detected, or its complement, under the conditions chosen.

The term "promoter-primer" as used herein refers to an oligonucleotide whether occurring naturally or produced synthetically which comprises a promoter joined to the 5' end of a primer. Under suitable conditions and in the presence of an agent for polymerization, the promoter-primer is capable of acting as a point of initiation of a promoter-primer extension product that includes the nucleic acid sequence to be detected, or its complementary sequence, and the promoter of the promoter-primer. The promoter-primer is preferably single-stranded for maximum efficiency of hybridization, but may alternatively be double-stranded. If double-stranded, the promoter-primer is first treated to separate its strands before being used to prepare extension products.

25

30

35

10

15

20

The term "secondary primer" as used herein refers to an oligonuclectide whether occurring naturally or produced synthetically, which under suitable conditions and in the presence of an agent for polymerization, is capable of acting as a point of initiation for a secondary primer extension product that includes the nucleic acid sequence to be detected or its complement. The secondary primer is preferably single-stranded for maximum efficiency of hybridization, but may alternatively be double-stranded. If double-stranded, the secondary primer is first treated to separate its strands before being used to prepare

10

15

20

25

30

35

extension products. The sec ndary primer may consist f any nucle tide sequence which is substantially complementary or homologous to all or part of a nucleic acid sequence to be detected, but is preferably selected so as not to be complementary to the promoter-primer.

The term "probe" as used herein refers to an oligonucle tide whether occurring naturally or produced synthetically, which is either homologous or complementary to all or part of a nucleic acid sequence to be detected. The probe is preferably selected s that under appropriate conditions it is capable of hybridizing specifically to RNA transcripts of the nucleic acid sequence t be detected.

The term "oligonucleotide" as used herein in reference to primers and probes is defined as a nucleic acid molecule comprised of two or more decayribonucleotides or ribonucleotides. A desired oligonucleotide may be prepared by any suitable method, such as purification from a naturally occurring nucleic acid, or de novo Several methods have been described in the literature, for example, for the synthesis of oligonucleotides from nucle side derivatives using various techniques of organic chemistry. type of organic synthesis is the phosphotriester method, wherein phosphotriester nucleosides are joined together to form an oligonucleotide with a desired sequence (Narang, et al., 1979, Meth. Enzymol. 68:90). Other methods of organic synthesis which have been described involve the use of phosphodiester nucle sides (Brown, et al., 1979, Meth. Enzymol. 68:109), or phosphoramidate nucleosides (Caruthers, et al., 1985, Math. Enzymol. 154:287). Oligonucleotides synthesized by any of these methods may subsequently be joined together to form a single oligonucle tide of any required length and sequence. Alternatively, oligonucleotides are produced by in vitro transcriptional amplification, by cloning in host calls or by recovery from natural sources by the use f appropriate restriction enzymes.

10

15

20

25

30

35

The term "RNA transcript" as used herein refers to a ribonucleic acid molecule synthesized by an RNA polymerase enzyme under the control of the promoter of the promoter-primer. The RNA transcript of a specific nucleic acid sequence to be detected is either homologous or complementary to that sequence, depending upon the nature of the promoter-primer.

The term "extension product" as used herein refers t a nucleic acid molecule, the synthesis of which is initiated at the 3'-OH terminus of a primer, using as a template for synthesis the nucleic acid molecule to which the primer is hybridized.

The term "agent for polymerization" as used herein is generally understood to refer to any enzyme that catalyzes the synthesis of a nucleic acid molecule from decayribonucleotides or ribonucleotides, using an existing nucleic acid as a template.

Any source of nucleic acid, in purified or non-purified form, can be utilized as the test sample. For example, the test sample may be a food or agricultural product, or a human or veterinary clinical specimen. Typically, the test sample is a biol gical fluid such as urine, blood, plasma, serum, sputum or the like. The nucleic acid to be detected in the test sample is DNA or RNA, including messenger RNA, from any source, including bacteria, yeast, viruses, and the cells or tissues of higher organisms such as plants or animals. Methods for the extraction and/or purification of such nucleic acids have been described, frexample, by Maniatis, et al., Molecular Cloning: A Laboratory Manual (New York, Cold Spring Harbor Laboratory, 1982).

The nucleic acid sequence to be detected in the test sample may be present initially as a discrete molecule so that the sequence to be detected constitutes the entire nucleic acid, or may only be a component of a larger molecule. It is not necessary that

10

15

20

25

30

35

th nucl ic acid sequence to be detected be present initially in a pure f rm. The test sample may contain a compl x mixture of nucleic acids, of which the nucleic acid sequence to be detected comprises a minor fraction. For example, the nucleic acid sequence to be detected may correspond to an oncogene contained in total human genomic DNA, or a portion of the nucleic acid sequence of a pathogenic organism which organism is a minor component of a clinical sample.

Any nucleic acid sequence may be detected by the present invention. It is only necessary that a sufficient number of nucleotides of the sequence be known so that at least one and preferably two primers may be prepared that are capable f hybridizing with the nucleic acid sequence to be detected r its complement. The nucleic acid sequence to be detected may b ascertained by any of the known methods of nucleic acid sequencing, for example, or may be predicted based upon a determined protein sequence. The greater the knowledge of the nucleic acid sequence to be detected, the greater can be the specificity of the primers selected, and thus the greater the accuracy of the invention.

Sufficient sequence information should be available, for example, to allow the selection of a promoter-primer which will hybridize specifically with the nucleic acid sequence to be detected, or its complement, but no other sequence in th test sample, under the hybridization conditions chosen. If both a promoter-primer and a secondary primer are to be used, it is desirable that the nucleic acid sequence to be detected be known to such an extent that the primers may be selected so as not to be complementary to one another.

Referring to the methods depicted in Figs. 1-3, each has as its core initial step the preparation of a double-stranded nucleic acid which includes the sequence to be detected and a promoter. In general, the preparation of this double-stranded nucleic acid

involves the synthesis of a promoter-primer extensi n product and opti nally, a secondary primer extensi n product, using as a template a single-stranded nucleic acid to which the primer has hybridized. Depending upon whether a promoter-primer is used alon or in combination with a secondary primer, the template will therefore comprise a test sample nucleic acid which contains the sequence to be detected or a previously synthesized primer extension product which contains the complement of the nucleic acid sequence to be detected.

10

15

5

If the template is originally contained in a double-stranded nucleic acid, it is necessary to separate the strands of the nucleic acid before or simultaneous with the synthesis of a primer extension product. Strand separation is desirably accomplished by heat denaturation, wherein the test sample is heated to about 90°-100°C for times ranging from about 1-10 minutes, although other physical, chemical, or enzymatic denaturation procedures may be used.

20

25

Primer hybridization is typically performed in a buffered aqueous solution, for which the conditions of temperature, salts concentration, and pH are selected to provide sufficient stringency such that the primer will hybridize specifically to the nucleic acid sequence to be detected, or its complement, but not any ther sequence. Generally, the efficiency of hybridization between primer and template will be improved under conditions wher the amount of primer added is in molar excess to the template, preferably a 1000 to 10<sup>6</sup> molar excess. It is understood, however, that the amount of template in the test sample may not be known, s that the amount of primer relative to template cannot be det rmined with certainty.

30

Fig. 1A-G depict one embodiment of the present inventi n wherein a promoter-primer is used to prepare a double-stranded

**5** .

10

15

20

25

nucl ic acid which includes the sequence to be detected and a promoter.

In Fig. 1A, the primer <u>c</u> of the promoter-primer <u>c</u> <u>d</u> is shown hybridizing with the nucleic acid sequence to be detected <u>b</u> as part of a nucleic acid <u>a</u>, through non-covalent base pairing <u>e</u> of complementary nucleotide sequences. The promoter <u>d</u> of the promoter-primer, being preferably selected so as not t be complementary with any known nucleic acid sequence in the test sample, remains unhybridized.

The subsequent addition of a polynucleotide polymerase f, in the presence of nucleoside triphosphates, results (Fig. 1B-C) in the synthesis of a promoter-primer extension product g, initiating at the 3' end of the primer and proceeding in the 5' direction along the single-stranded template, which template consists f the test sample nucleic acid sequence g flanking on the 5' side f the sequence b within which the primer is originally hybridized. The primer extension product is thus complementary to the nucleic acid sequence to be detected and the 5'-flanking test sample nucleic acid sequence, if any, forming a double-stranded molecule.

In the presence of an agent possessing 3'-5' exonuclease activity h, the single-stranded sequence at the 3' end of the test sample nucleic acid, if any, is excised as shown in Fig. 1D, and replaced by new nucleic acid (Fig. 1E-G), the synthesis of which is initiated by a polynucleotide polymerase f at the 3' end of the test sample nucleic acid using as a template the promoter of the promoter-primer.

30

35

The method depicted in Fig. 1A-G for generating a double-stranded molecule which includes the sequence to be detected and a promoter depends upon hybridization of a promoter-primer to the nucleic acid sequence to be detected and subsequent steps f promoter-primer extension synthesis, nucleic acid excision, and

replacement synthesis. Although th excision reacti n may be carried ut by an agent h differ nt from that used for prom terprimer extension synthesis and replacement synthesis f, it is desirable to use a single agent such that the synthesis of th double-stranded product may be carried out in a continuous manner following promoter-primer hybridization. Accordingly, polynucleotide polymerase is preferably one which possesses both 5'-3' polymerase activity and 3'-5' exonuclease activity, such as, for example, E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, and T4 DNA polymerase. As each of these enzymes requires a DNA template for primer extension synthesis, it is understood that their use according to the method depicted in Fig. 1B and 1F will be appropriate in instances where the nucleic acid sequence to be detected is DNA.

15

20

10

5

The double-stranded nucleic acid which includes the sequence to be detected and a promoter serves as the source f a multiplicity of RNA transcripts of the sequence to be detected. As depicted in Fig. 1H-I, addition of a suitable RNA polymerase as to the test sample results in the binding of the RNA polymerase to the promoter of the double-stranded product, and in the presence of ribonucleoside triphosphates, the subsequent synthesis f RNA transcripts bb of the nucleic acid sequence located downstream from the promoter, including the nucleic acid sequence to be detected.

25

30

35

Under suitable reaction conditions, including the presence f the necessary reagents, the synthesis of RNA transcripts will occur continuously and in proportion to the amount of the nucleic acid sequence to be detected that was originally present in the test sample. Additional reagents may be added as necessary to prepare the desired quantity of RNA transcripts. Preferably the synthesis of RNA transcripts will be carried out in the presence f a ribonuclease inhibitor, as for example vanadyl-ribonucle side complexes or human placental ribonuclease inhibitor, in order t avoid possible degradation of the transcripts by any adventitious

ribonuclease contaminant. B rger, 1987, Meth. Enzymol. 152:227; de Martynoff et al., 1980, Bi chem. Biophys. Res. Commun. 93:645; Sheel et al., 1979, Proc. Natl. Acad. Sci. 76:4898. After the appropriate length of time has passed to produce the desired quantity of RNA transcripts, the reaction may be halted by inactivating the RNA polymerase in any known manner or separating the components of the reaction.

Determination of the specific RNA transcripts produced is accomplished by any suitable method, as for example, by labeling f the RNA transcripts with a detectable moiety during or after their synthesis, or by the use of a labeled probe capable of hybridizing specifically with RNA transcripts of the nucleic acid sequence to be detected.

15

20

25

30

35

10

5

RNA transcripts may be labeled, for example, by providing ribonucleoside triphosphates which are themselves labeled with a detectable moiety, and which are utilized as a substrate by RNA polymerase and thereby incorporated into RNA transcripts. detectable moiety can be any one which is capable of producing. either directly or indirectly, a detectable signal. for example, the detectable moiety may be a radioisotope, such as <sup>32</sup>P, <sup>3</sup>H, <sup>14</sup>C, <sup>125</sup>I, and <sup>35</sup>S. In a further embodiment, the detectable moiety may be a non-radioactive chemical modification capable of producing a detectable signal upon interaction with one or more appropriate agents. example, the detectable moiety can be biotin, and the detectabl signal produced by the formation of a complex between the biotin moiety and a protein capable of binding specifically to biotin, as for example avidin, streptavidin, or anti-biotin antibody, which binding protein is conjugated with a detectable molecule. like fluorescein, or with an enzyme which reacts with a suitable substrate to form a fluorescent, luminescent, or colored product. Langer et al., 1981, Proc. Natl. Acad. Sci. 78:6633; Bayer and Wilchek, 1980, Meth. Biochem. Anal. 26:1.

10

15

20

25

30

35

In an additional emb diment, the specific RNA transcript produced may be determined by the use of a nucleic acid Falkow et al., U.S. Pat. No. 4,358,535; hybridization probe. Goodson et al., European Pat. App. 0 238 332. The prob desirably selected so as to hybridize within the sequence f th RNA transcript which is either complementary or homologous t the nucleic acid sequence to be detected. The hybridization method may be carried out by any suitable method, including the liquid hybridization methods described in European Pat. Publication N s. 70,685 and 70,687, and the liquid-solid hybridization meth ds described in U.S. Pat. Nos. 4,358,535 (Falkow) and 4,647,529 (Rodland), European Pat. App. 0 238 332 (Goodson), and Ranki, et al., 1983, Gene 21:77. In the case of liquid-solid hybridizati n, either the probe molecules or the RNA transcripts can be immobilized on the solid support.

Any suitable method may be used for correlating the amount f RNA transcripts with the amount of nucleic acid sequence to be detected in the test sample, including, for example, determination of a fixed quantity of a standard nucleic acid which standard nucleic acid contains the sequence to be detected or another known sequence, simultaneous or in parallel with determination of the sequence to be detected in the test sample. Ranki, et al., UK Pat. App. 2 187 283 A.

In further embodiments of the invention, the synthesis f a double-stranded nucleic acid containing the sequence to be detected and a promoter is accomplished using a promoter-primer in c neart with a secondary primer to initiate the synthesis of two different primer extension products that are capable of hybridizing to ne another.

Fig. 2A-F illustrate the method wherein the synthesis f the promoter-primer extension product is carried out first, and is

10

15

20

25

30

foll wed by the synthesis f the secondary primer extension product. In Fig. 2A, the primer c of the promoter-primer c d is shown hybridizing at the 3' end of the nucleotide sequence to b detected b, through non-covalent base pairing e of complementary nucleotide sequences. Upon addition of an agent for polymerization f, and in the presence of nucleoside triphosphates, an extension product g is synthesized initiating at the 3' end of the promoter-primer and proceeding in the 5' direction along the single-stranded template. The resulting product is thus a double-stranded nucleic acid, of which one strand is the test sample nucleic acid and the other is the promoter-primer extension product g.

In the next step (Fig. 2D), the two strands are separated using any of the procedures described above to provide single-stranded molecules. Following this strand separation step, the test sample is contacted with the secondary primer h under conditions suitable for hybridization of the secondary primer to the sequence within the promoter-primer extension product which is complementary to the sequence to be detected. As it is desirable, however, that the secondary primer not be complementary to the promoter-primer in order to improve the accuracy of the assay, th secondary primer is preferably selected to hybridize at the 3' end of the complementary sequence (Fig. 2E).

In the continued presence of the agent for polymerization used for promoter-primer extension synthesis f, or upon addition f an agent for polymerization i, a secondary primer extension product is synthesized, initiating at the 3' end of the secondary primer and proceeding in a 5' direction along the promoter-primer extension product template (Fig. 2F). The secondary primer extension product will thus be complementary to the promoter-primer extension product and hybridize therewith to form a double-stranded nucleic acid which includes the sequence to be detected and the promoter f the promoter-primer.

10

15

20

25

30

35

The agent for polymerization which is used to synthesize the prom ter-primer ext nsion product is preferably deficient T7 DNA polymerase (Tab r and Richardson, 1987, Proc. Natl. Acad. Sci. 84:4767), although other agents may be used, including reverse transcriptase and other polynucle tide polymerases deficient in 3'-5' exomuclease activity. To the extent that commercially available exonuclease deficient T7 DNA polym rase (SequenaseTM, United States Biochemical Corp., Cleveland, Ohio) possesses residual 3'-5' exonuclease activity, its usage may be undesirable in certain instances, as for example, where the unhybridized 3' end of the test sample deoxyribonucleic acid t which a promoter-primer is bound may be excised before the strand separation step shown in Fig. 2D. This may be expected to occur in circumstances where the test sample nucleic acid is mechanically sheared or digested with a restriction enzyme, thereby reducing the length of the test sample nucleic acid sequence on the 3' side f the sequence to which the promoter-primer is bound.

Synthesis of the secondary primer extension product is accomplished using any agent for polymerization which is capable of initiating synthesis at the 3' end of the secondary primer and proceeding in the 5' direction along the promoter-primer extension product template. Suitable enzymes for this purpose include, for example, E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, T4 DNA polymerase, exonuclease deficient T7 DNA polymerase, and reverse transcriptase.

Fig. 3A-I illustrate the method wherein the synthesis of a secondary primer extension product is carried out first and is followed by the synthesis of a promoter-primer extension pr duct. In Fig. 3A the secondary primer c is shown hybridizing at th 3' end of the nucleotide sequence to be detected b, through non-covalent base pairing d of complementary nucleotide sequences. Upon addition of an agent for polymerization g, and in the presence of nucleoside triphosphates, an extension product f is synthesized

10

15

20

initiating at the 3' and f the secondary primer and pr ceeding in the 5' directi n along the single-stranded template. The resulting product (Fig. 3C) is thus a double-stranded nucleic acid, of which one strand is the test sample nucleic acid and the other is the secondary primer extension product.

In the next step (Fig. 3D), the two strands are separated using any of the procedures described above to provide single. stranded molecules. Following this strand separation step, the test sample is contacted with the promoter-primer g h under conditions suitable for hybridization of the promoter-primer t the sequence within the secondary primer extension product which is complementary to the nucleic acid sequence to be detected. As it is desirable that the promoter-primer not be complementary to the secondary primer in order to improve the accuracy of the invention, the primer of the promoter-primer is preferably selected to hybridize at the 3' end of the complementary sequence.

In the continued presence of the agent for polymerization used for secondary primer extension synthesis a, or upon addition f an agent for polymerization i, a promoter-primer extension product i is synthesized, initiating at the 3' end of the promoter-primer and proceeding in a 5' direction along the secondary primer extension product template. The promoter-primer extension product includes the nucleic acid sequence to be detected, which sequence is hybridized to its complement within the secondary primer extension product, and the promoter. The resulting product is thus a double-stranded nucleic acid which includes the sequence to be detected and the promoter of the promoter-primer.

30

35

25

In the presence of an agent k possessing 3,-5, exonuclease activity, the single-stranded sequence at the 3' end of the promoter-primer extension product, if any, is excised and replaced by a promoter complementary sequence (Fig. 3G-I), the synthesis of which is initiated by an agent for polymerization 1 at the 3' end

10

15

20

f th promoter-primer extension pr duct using as a template the prom ter of the promoter-primer.

Synthesis of the secondary primer extension product is accomplished using any agent for polymerization which is capable f initiating synthesis at the 3' end of the secondary primer and proceeding in the 5' direction along the test sample nucleic acid template. Suitable enzymes for this purpose include, for example, E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, T4 DNA polymerase, exonuclease deficient T7 DNA polymerase, and reverse transcriptase. Synthesis of the promoter-primer extension product and synthesis of the promoter complementary sequence may be accomplished using the same agent or different agents, including the agent for polymerization used for secondary primer extension To improve the efficiency of the process depicted in synthesis. Fig. 3, it is desirable, however, that the agent used for synthesis of the promoter-primer extension product also be capable of carrying out the excision reaction shown in Fig. 3G, whereby any unhybridized sequence at the 3' end of the secondary primer Enzymes suitable for carrying ut extension product is removed. synthesis and excision reactions include polynucleotide polymerases that possess 3'-5' exonuclease activity. such as E. coli DNA polymerase 1, Klenow fragment of E. coli DNA polymerase I, and T4 DNA polymerase.

25

30

35

Once formed, the double-stranded nucleic acid product of this or the preceding method serves as the source of a multiplicity of RNA transcripts of the sequence to be detected, the synthesis and determination of which may be accomplished using any of the procedures described above.

One advantage obtained from the use of a promoter-primer and a secondary primer in combination to produce a double-stranded nucleic acid which includes the sequence to be detected and a promoter is greater accuracy of the assay. In the event that

10

15

20

either the promoter-primer or secondary primer rroneously hybridizes to a sequence ther than the sequence to be det cted r its complement, the resulting primer extension side-product is not expected, whether by hybridization to the test sample nuclei acid or to another primer extension product, to produce a double-stranded product from which RNA transcripts will by synthesized.

Another advantage of using the two primers in combinati n is that the RNA transcripts of the sequence to be detected will b a discrete size. As depicted in Figs. 2 and 3, by selecting the promoter-primer and the secondary primer such that one primer hybridizes at the 3' end of the sequence to be detected, and the other primer hybridizes at the 3' end of the complementary sequence, the double-stranded region of the nucleic acid product from which RNA transcripts are synthesized may be limited to the sequence to be detected and the promoter of the promoter-primer. The discrete size of the resulting RNA transcripts may be advantageous to the subsequent detection or isolation of the transcripts, as for example, separation of the desired RNA transcripts from the test sample by gel filtration chromatography. Furthermore, to the extent that the transcripts produced are shorter than those produced according to the method depicted in Fig. 1. their synthesis will proceed more rapidly and require lesser amounts of reagents.

25

The following examples are offered by way of illustration, and are not intended to limit the invention in any manner. All references described herein are expressly incorporated.

30

35

#### Example 1

This example illustrates the use of a deoxyribonucleotide promoter-primer having the sequence

5'AAATTAATACGACTCACTATAGGGAGATGTACCTCTGTATCATATGC 3'
for the detection of the <u>env</u> gene of HIV (human immunodeficiency
virus; formerly called HTLV-III/LAV). The sequence f this

10

15

20

25

30

35

pr moter-primer is selected such that the 5' end of the prom terprimer c rr sponds to the sequence of the functional d main of a ba teri phage T7 class III promoter (Dunn and Studier, 1983, J. Mol. Biol. 166:477), and the 3' end is complementary to a p rtion of the coding sequence of the <u>env</u> gene of HIV, between nucleotides 5981-6000 of the HIV genomic sequence (Mussing et al., 1985, Natur 313:450).

Nucleic acid for analysis is extracted from test samples f citrate-treated human blood or virus-infected H9 cells (Popovic, t al., 1984, Science 224:497) using the techniques described by Hermann and Fischauf, 1987, Meth. Enzymol. 152:180.

A total of 10  $\mu$ g of test sample nucleic acid is added to 100 pmoles of promoter-primer in 100  $\mu$ l of reaction buffer containing 40mM Tris HCl (pH 8.0), 20mM MgCl<sub>2</sub>, lmM dithiothreitol, 5 mg/ml gelatin, 10mM vanadyl-ribonucleoside complexes, and 10mM each f the four deoxyribonucleoside triphosphates (dATP, dTTP, dGTP, dCTP) and the four ribonucleoside triphosphates (ATP, UTP, GTP, CTP). The mixture is heated at 100°C for one minute, and allowed t c 1 to 37°C. 5 units of Klenow fragment of E. coli DNA polymerase I and 5 units of T7 RNA polymerase are then added to the mixture and the reactions allowed to proceed for one hour at 37°C.

The RNA transcripts produced are detected by dot-blot hybridization, using as a hybridization probe a <sup>32</sup>P end-labeled decayoligonucleotide having the sequence

#### 5' TTGATGATCTGTAGTGCTAC 3'.

The sequence of this probe was selected to be homologous t a portion of the coding sequence of the HIV env gene, located between nucleotides 5875 and 5895 of the HIV genomic sequence.

Aliquots from the RNA synthesis reaction are added to 100  $\mu$ l of 15% SSC buffer (1% SSC = 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0) and filtered through nitrocellulose filters pr wat

10

15

20

25

30

in 6% SSC. The filters are then baked for ne hour at 80°C in a vacuum oven.

After baking, each filter is contacted with hybridization solution consisting of 6X SSC, 50mM sodium phosphate (pH 6.5), 5X Denhardt's solution (1X = 0.02% polyvinylpyrrolidone, 0.02% Fic 11, 0.02% bovine serum albumin, 0.2mM Tris HCl, 0.2mM EDTA, pH 8.0), 0.1% sodium dodecyl sulfate, and 0.2% denatured salmon sperm DNA for one hour at 42°C. The labeled probe is then added to the hybridization solution to a final concentration of 10<sup>7</sup> cpm/ml and incubation of the filters continued for two hours at 42°C.

Finally, the filters are washed in 6X SSC for one hour at 37°C with two changes of buffer. After drying, the filters are autoradiographed or counted for Gerenkov radioactivity.

#### Example 2

This and the following example illustrate the use f a promoter-primer in combination with a secondary primer for the detection of the env gene of HIV.

10  $\mu$ g of test sample nucleic acid prepared from human bl od or virus-infected H9 cells as described in Example 1 is mixed with 100 pmoles of promoter-primer and 100 pmoles of secondary primer (5' ATGAGAGTGAAGGAGAAATA 3') in 100  $\mu$ l of reaction buffer. This secondary primer is homologous to the amino-terminal c ding sequence of the any gene of HIV (nucleotides 5803-5822). This specific combination of promoter-primer and secondary primer was selected such that a 225 base-pair double-stranded nucleic acid will be produced, containing 198 base-pairs of the sequence of the env gene of HIV, from which a 206 nucleotide RNA transcript will be synthesized under the transcriptional control of a flanking T7 promoter.

10

15

20

25

30

35

The mixture of the tw primers and the test sample nucleic acid is heated at 100°C f r ne minute and allowed to c 1 to 37°C whereupon 5 units of exonuclease deficient T7 DNA p lymeras (Sequenase<sup>TM</sup>, United States Biochemical Corp.) is added. After incubation at 37°C for 5 minutes. the reaction mixture is again heated at 100°C for one minute and allowed to cool to 37°C. 5 units of Sequenase<sup>TM</sup> and 5 units of T7 RNA polymerase are the added to the mixture, and the reaction allowed to proceed at 37°C f r 30 minutes to one hour. Finally, the reaction mixture is heated at 100°C for 5 minutes and allowed to cool to 42°C.

The resulting RNA transcripts are determined by reverse transcription which is specifically primed by the hybridization of the secondary primer with the mascent RNA transcripts.  $\alpha$ - $^{32}P$ -dTTP (specific activity approx. 3000 Ci/mmol) is added to the test sample reaction mixture to a final concentration of 1  $\mu$ M, together with 5 units of reverse transcriptase, and the mixture is then incubated for 15 minutes at 42°C.

 $^{32}$ P-labeled reverse transcription products are quantitated by determining the total acid insoluble radioactivity in the reacti n mixture. Aliquots of the reaction mixture are added to  $500~\mu l$  f 108 trichloroacetic acid (TCA) contained in polystyrene tubes and incubated on ice for 10 minutes. The contents of each tube is th n filtered through a Whatman glass fiber filter with suction and the filter washed with ice cold TCA. After drying, the filters are counted for Cerenkov radioactivity.

### Example 3

Nucleic acid isolated from human blood or HIV-infect d H9 cells is sheared by sonication to produce fragments with an average length of 500 nucleotides. 10  $\mu g$  of sheared test sample nucleic acid is then mixed with 100 pmoles of promoter-primer and 100 pmoles of secondary primer in 100  $\mu l$  of buffer containing 40mM Tris HC1 (pH 8.0), 20mM MgCl<sub>2</sub>, lmM dithiothreitol, 5 mg/ml gelatin, 10mM

10

15

20

vanadyl-ribonucle side complexes, 10 mM each of th f ur deoxyribonucl oside triphosphates (dATP, dTTP, dGTP, dCTP), 500  $\mu$ M ATP, 500  $\mu$ M UTP, 500  $\mu$ M GTP, 500  $\mu$ M CTP, and 1  $\mu$ M  $\alpha$ - $^{32}$ P-UTP (specific activity approx. 3000 Ci/mmol). The mixture is heated at 100°C for one minute and allowed to cool to 28°C, whereupon 5 units of reverse transcriptase is added. After incubation at 28°C for 15 minutes, the reaction mixture is reheated at 100°C for one minute, and allowed to cool to 28°C. 5 units of reverse transcriptase and 5 units of T7 DNA polymerase are then added, and the reactions allowed to proceed for one hour at 28°C.

<sup>32</sup>P-labeled RNA transcripts are quantitated by determining the total acid insoluble radioactivity in the reaction mixtur, as described above. The 206 nucleotide labeled RNA transcript may also be determined by autoradiography of urea-polyacrylamide gels on which aliquots of the RNA synthesis reaction are run in parallel with various amounts of radiolabeled standard RNAs. Quantitation of the 206 nucleotide transcript of the any gene sequence is then accomplished by densitometry analysis of the devel ped autoradiogram.

10

25

30

#### Claims

- 1. A method for the detecti n f a specific nucleic acid sequence in a test sample containing a nucleic acid which comprises:
- (a) synthesizing a double-stranded nucleic acid which includes the sequence to be detected and a promoter;
  - (b) synthesizing a multiplicity of RNA transcripts from said double-stranded nucleic acid under the control of said promoter;
    - (c) determining the presence of RNA transcripts produced in step (b); and
- (d) correlating the presence of said RNA transcripts with the presence of the nucleic acid sequence to be detected.
- 2. The method of claim 1 wherein the specific nucleic acid sequence to be detected in the test sample is contained in double-stranded DNA, and the two strands are separated by denaturing before or during step (a).
  - The method of claim 1 wherein the specific nucleic acid sequence to be detected in the test sample is contained in RNA or single-stranded DNA.
    - 4. The method of claim 1 wherein the specific nucleic acid sequence to be detected is characteristic of a g netic disease, or is homologous to a sequence contained in a pathogenic organism or in an oncogene.
    - 5. The method of claim 4 wherein the pathogenic organism is a retrovirus or a bacterium.

10

20

30

- 6. The method f claim 4 wherein the pathogenic organism is a human immunodeficiency virus.
- 7. The mathod of claim I wherein the promoter is a bacteriophage T7 promoter, and the multiplicity of RNA transcripts is synthesized using T7 RNA polymerase.
- 8. The method of claim 1 wherein the promoter is a bacteriophage SP6 promoter, and the multiplicity of RNA transcripts is synthesized using SP6 RNA polymerase.
  - 9. The method of claim 1 wherein the test sample nucleic acid is digested with a restriction enzyme before or during step (a).
- 15 10. The method of claim 1 wherein the double-stranded nucleic acid of step (a) is obtained by the steps comprising:
  - (1) providing an oligonucleotide promoter-primer comprising a promoter ligated to a primer;
  - (2) contacting the test sample with the promoter-primer under conditions that permit the hybridization of the promoterprimer to the nucleic acid sequence to be detected; and
- 25 (3) synthesizing an extension product from the promoterprimer which is complementary to the nucleic acid sequence to be detected, using as a template the test sample nucleic acid to which the promoter-primer has hybridized in step (2).
  - 11. The method of claim 10 wherein the synthesis of the promoter-primer extension product is accomplished using an enzyme selected from the group consisting of <u>E. coli</u> DNA polymerase I, Klenow fragment of <u>E. coli</u> DNA polymerase I, and T4 DNA polymerase.

10

15

20

25

- 12. The m thod f claim 1 wherein th double-stranded nucleic acid f step (a) is brained by the steps omprising:
- (1) providing an oligonucleotide promoter-primer, comprising a promoter ligated to a primer, and an oligonucle tide secondary primer, wherein said primers ar not complementary to one another, and are selected such that the extension product synthesized from one primer, when separated from its complement, can serve as a template for synthesis of the extension product of the ther primer;
- (2) contacting the test sample under hybridizing conditions with the promoter-primer such that a promoter-primer extension product is synthesized; and
  - (3) contacting the test sample under hybridizing conditions with the secondary primer such that a secondary primer extension product is synthesized.
  - 13. The method of claim 12 wherein the synthesis of the primer extension products is accomplished using exonuclease deficient T7 DNA polymerase or reverse transcriptase.
  - 14. The method of claim 12 wherein the synthesis of the primer extension products is accomplished using exonuclease deficient T7 DNA polymerase and one or more enzymes selected from the group consisting of E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, and T4 DNA polymerase.
    - 5. The method of claim 12 wherein the synthesis of the primer extension products is accomplished using reverse transcriptase and one or more enzymes selected from the group consisting f

25

E. coli DNA polymerase I, Klenow fragment of E. coli DNA p lymerase I, and T4 DNA p lymerase.

- 16. The method of claim 12 wherein synthesis of the promoterprimer extension product is carried out before synthesis f
  the secondary primer extension product, and synthesis of the
  promoter-primer extension product is accomplished using
  exonuclease deficient T7 DNA polymerase or reverse
  transcriptase.
- 17. The method of claim 12 wherein synthesis of the secondary primer extension product is carried out before synthesis of the promoter-primer extension product, and synthesis of the secondary primer extension product is accomplished using an enzyme selected from the group consisting of E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, and T4 DNA polymerase.
- 18. The method of claim 1 wherein the RNA transcripts synthesized in step (b) are labeled.
  - 19. The method of claim 18 wherein the RNA transcripts are labeled with one or more radioisotopes and step (c) is accomplished by measuring the amount of radioactivity incorporated.
  - 20. The method of claim 18 wherein the RNA transcripts are labeled with a detectable non-radioactive chemical modification.
- 21. The method of claim 1 wherein, after step (b) and before step

  (c), the RNA transcripts are contacted under hybridizing
  conditions with an oligonucleotide probe selected to hybridiz
  with a predetermined sequence within the RNA transcripts.
- 22. The method of claim 21 wherein the RNA transcripts are immobilized on a solid support.

10

- 23. The method f claim 21 wher in a labeled extensi n pr duct is synthesized from the oligonucle tide pr be, using as a template the RNA transcripts to which the probe has hybridized, and step (c) is accomplished by measuring the amount of probe extension product.
- 24. The method of claim 23 wherein the probe extension product is labeled with one or more radioisotopes and step (c) is accomplished by measuring radioactivity.
  - 25. The method of claim 23 wherein the probe extension product is labeled with a detectable non-radioactive chemical modification.
- 26. The method of claim 21 wherein the probe is labeled and step (c) is accomplished by measuring the amount of probe hybridized to RNA transcripts.
- 27. The method of claim 26 wherein the probe is labeled with one or more radioisotopes and step (c) is accomplished by measuring radioactivity.
- 28. The method of claim 26 wherein the probe is labeled with a detectable non-radioactive chemical modification.
  - 29. The method of claims 20, 25, or 28 wherein the label is detected by optical analysis.
- 30 30. The method of claims 20, 25, or 28 wherein the label is biotin.
- 31. A method for the detection of a specific nucleic acid sequence in a test sample containing single-stranded DNA which comprises:

10

15

25

- (a) contacting the test sample with an ligonucleotide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, under conditions that permit hybridization of the promoter-primer to the nucleic acid sequence to be detected;
- (b) contacting the test sample with a DNA polymerase, such that a double-stranded nucleic acid is synthesized, comprising the nucleic acid sequence to be detected and the promoter of the promoter-primer:
  - (c) contacting the product of step (b) with a dedicated RNA polymerase capable of recognizing the promoter of the oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequence to be detected are synthesized by the RNA polymerase under the control of said promoter;
- 20 (d) determining the presence of RNA transcripts synthesized in step (c); and
  - (e) correlating the presence of the RNA transcripts with the presence of the nucleic acid sequence to be detected.
  - 32. A method for the detection of a specific nucleic acid sequence in a test sample containing RNA or single-stranded DNA which comprises:
- 30 (a) contacting the test sample with an oligonucle tide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, under conditions that permit hybridization of the promoter-primer to the specific nucleic acid sequence to be detected;

10

15

20

25

- (b) c ntacting the test sampl with reverse transcriptase such that a pr m ter-primer DNA xtension product is synthesized, wherein the template for synthesis f the promoter-primer DNA extension product is the test sampl RNA or single-stranded DNA to which the promoter-primer has hybridized in step (a);
- (c) treating the product of step (b) under denaturing conditions to separate the promoter-primer DNA extensi n product from its template;
- (d) contacting the single-stranded nucleic acid produced in step (c) with an oligonucleotide secondary primer, wherein said secondary primer is selected to be homologous to all or part of the nucleic acid sequence to be detected and not complementary to the promoter-primer used in step (a), under conditions that permit hybridization of the secondary primer to the promoterprimer DNA extension product;
  - (e) contacting the product of step (d) with a DNA polymerase or reverse transcriptase, such that a secondary primer DNA extension product is synthesized, wherein the template for synthesis of the secondary promoter DNA extension product is the promoter-primer DNA extension product;
  - (f) contacting the product of step (e) with a dedicated RNA polymerase capable of recognizing the promoter f the oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequence to be detected are synthesized under the control of said promoter; and

15

25

- (g) c rrelating the presenc of the RNA transcripts with the pres nce f the nucleic acid sequence to be detected.
- 33. A method for the detection of a specific nucleic acid sequence in a test sample containing RNA or single-stranded DNA which comprises:
  - (a) contacting the test sample with an oligonucl tide secondary primer, under conditions that permit hybridization of the secondary primer to the specific nucleic acid sequence to be detected;
    - (b) contacting the test sample with reverse transcriptase such that a secondary primer DNA extension product is synthesized, wherein the template for synthesis of the secondary primer DNA extension product is the test sample RNA or single-stranded DNA to which the secondary primer has hybridized in step (a);
- 20 (c) treating the product of step (b) under denaturing conditions to separate the secondary primer DNA extension product from its template;
  - (d) contacting the single-stranded nucleic acid produced in step (c) with an oligonucleotide promoter-primer, comprising a promoter for a dedicated RNA polymerase ligated to a primer, wherein said promoter-primer is selected to be homologous to all or part of the nucleic acid sequence to be detected and not complementary to the secondary primer used in step (a), under conditions that permit hybridization of the promoter-primer to the secondary primer DNA extension product;
- (e) contacting the product of step (d) with a DNA polymerase such that a promoter-primer DNA extension product is

10

20

25

30

synthesized, wherein the template f r synthesis f the pr moter-primer DNA extensi n product is the secondary primer DNA extension product;

- (f) contacting the product of step (e) with a dedicated RNA polymerase capable of recognizing the promoter f th oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequence to be detected are synthesized under the control of said promoter; and
  - (g) correlating the presence of said RNA transcripts with the presence of the nucleic acid sequence to be detected.
- 15 34. A method for the detection of a specific nucleic acid sequence in a test sample containing single-stranded DNA which comprises:
  - (a) contacting the test sample with an oligonucle tide secondary primer, under conditions that permit hybridization of the secondary primer to the specific nucleic acid sequence to be detected;
  - (b) contacting the test sample with a DNA polymeras such that a secondary primer DNA extension product is synthesized, wherein the template for synthesis f the secondary primer DNA extension product is the test sample RNA or single-stranded DNA to which the secondary primer has hybridized in step (a);
    - (c) treating the product of step (b) under denaturing conditions to separate the secondary primer DNA extensi n product from its template;

(d) contacting the single-stranded nucleic acid pr duced in stap (c) with an oligonucle tide promoter-primer, comprising a promoter for a dedicated RNA polymeras ligated to a primer, wherein said promoter-primer is selected to be homologous to all or part of the nucleic acid sequence to be detected and not complementary to the secondary primer used in stap (a), under conditions that permit hybridization of the promoter-primer to the secondary primer DNA extension product;

10

5

(e) contacting the product of step (d) with a DNA polymerase such that a promoter-primer DNA extension product is synthesized, wherein the template for synthesis of the promoter-primer DNA extension product is the secondary primer DNA extension product;

15

(f) contacting the product of step (e) with a dedicated RNA polymerase capable of recognizing the promoter of the oligonucleotide promoter-primer, whereby a multiplicity of RNA transcripts of the nucleic acid sequenc to be detected are synthesized under the control f said promoter; and

20

(g) correlating the presence of said RNA transcripts with the presence of the nucleic acid sequence to be detected.

25

30

35. A kit for use in the detection of a nucleic acid sequence in a test sample containing an oligonucleotide promoter-primer and an oligonucleotide probe, wherein the promoter-primer is capable of hybridizing to the test sample nucleic acid sequence and the oligonucleotide probe is homologous to all or part of the nucleic acid sequence to be detected.

36. A kit f r use in the detection of a nucleic acid sequence in a test sample c ntaining an oligonucleotide pr m ter-primer and an oligonucle tide secondary primer, wherein the primers are not complementary to one another, and are selected such that one primer is capable of hybridizing to the test sample nucleic acid and the other is capable of hybridizing to the complement of the nucleic acid sequence to be detected.







## INTERNATIONAL SEARCH REP RT International Application No

| L CLASS           | BIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| IPC4:             | to intermetional Patent Classification (IPC) or to both National Classification and IPC C 12 Q 1/68                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |  |  |  |  |
| II. FIELD         | S SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |  |  |  |  |
|                   | Minimum Decumentation Searched 7                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |  |  |  |  |
| Classification    | on System Classification Symbols                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |  |  |  |  |
| IPC4              | C 12 Q; C 12 N; C 12 P                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |  |  |  |  |
|                   | Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched <sup>2</sup>                                                                                                                                                                                                                                                                                                                |                                                                                                                         |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |  |  |  |  |
| III. DOCL         | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                          | Relevant to Claim No. 13                                                                                                |  |  |  |  |
| Category *        | Charles of Document, 11 with indication, where appropriate, or the resource passages                                                                                                                                                                                                                                                                                                                                                                      | 1-36                                                                                                                    |  |  |  |  |
| E,X               | WO, A1, 88/10315 (SISKA DIAGNOSTICS, INC.) 29 December 1988, See the whole document but especially the claims.                                                                                                                                                                                                                                                                                                                                            | 1-30                                                                                                                    |  |  |  |  |
| P,X               | Science, Vol. 239, 1988 E.S. Stoflet et al: "Genomic Amplification with Transcript Sequencing", see page 491 - page 494 see especially figures 1 and 2 page 492.                                                                                                                                                                                                                                                                                          |                                                                                                                         |  |  |  |  |
| A                 | Nucleic Acids Research, Vol. 15, No. 21, 1987 John F. Milligan et al: "Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates ", see page 8783 - page 8798                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |
| "A" de            | tial categories of cited documents: 10 "T" later document published after or priority date and not in conformat defining the general state of the art which is not cited to understand the princip invention                                                                                                                                                                                                                                              | te or theory underlying the                                                                                             |  |  |  |  |
|                   | refler decument but published on or after the international ing date of particular development which may threw doubts on priority claim(a) or hich is cited to establish the publication date of another tation or other special reason (an specified) somment referring to an oral discissure, use, exhibition or their meent, such combination being accurrent published prior to the international filing date but for than the priority date claimed. | nce; the claimed invention<br>of an inventive stop when the<br>of more other such docu-<br>elyvious to a person skilled |  |  |  |  |
|                   | PTIFICATION Date of Mailing of this International Search                                                                                                                                                                                                                                                                                                                                                                                                  | learch Report                                                                                                           |  |  |  |  |
| Date of 0<br>10th | May 1989 3 0. 05 89                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                |  |  |  |  |
| Internati         | enal Searching Authority EUROPEAN PATENT OFFICE  M. YAN MCL                                                                                                                                                                                                                                                                                                                                                                                               | 00                                                                                                                      |  |  |  |  |

| III. DOCU  | MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHE                                                                                                           | Relevant to Claim No   |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Category • | Citation of Document, with indication, where appropriate, of the relevant passages                                                                                       | Assertant to Comm into |  |
| A          | Nucleic Acids Research, Vol. 14, No. 8, 1986 Jeanne E. Brown et al: "Sequences of three promoters for the bacteriophage SP6 RNA polymerase. ", see page 3521 - page 3526 | 1-36                   |  |
| Т          | Bio/technology, Vol. 6, 1988 Paul M. Lizardi et al: "Exponential amplification of recombinant-RNA hybridization probes ", see page 1197 - page 1202                      | 1-36                   |  |
| A          | EP, A2, 0236069 (CETUS CORPORATION) 9 September 1987, see the whole document                                                                                             | 1-36                   |  |
|            |                                                                                                                                                                          | 1                      |  |
|            | ·                                                                                                                                                                        |                        |  |
|            | •••                                                                                                                                                                      |                        |  |
|            |                                                                                                                                                                          | -                      |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          | •                      |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            | ·                                                                                                                                                                        | 1                      |  |
|            |                                                                                                                                                                          | ľ                      |  |
| •          |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            | •                                                                                                                                                                        |                        |  |
|            |                                                                                                                                                                          |                        |  |
|            |                                                                                                                                                                          |                        |  |

# ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. PCT/US 89/00120

26896

SA

This assets lists the patent family members relating to the patent documents cited in the above-mentioned interpational sea. The succeives are as contained in the European Patent Office FIIP (ile on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

| Patent document<br>cited in search report<br>WO-A1- 88/10315 |         | 1 | Publication<br>date | Patent family member(s) NONE |                      | Publication date     |
|--------------------------------------------------------------|---------|---|---------------------|------------------------------|----------------------|----------------------|
|                                                              |         |   | 29/12/88            |                              |                      |                      |
| EP-A2-                                                       | 0236069 |   | 09/09/87            | AU-D-<br>JP-A-               | 69180/87<br>62240862 | 27/08/87<br>21/10/87 |
|                                                              |         |   |                     |                              |                      | •                    |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         |   |                     | •                            |                      |                      |
|                                                              |         |   |                     |                              | •                    |                      |
|                                                              |         | · |                     |                              |                      | •                    |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         |   | :                   | •                            |                      |                      |
|                                                              |         |   |                     |                              |                      | •                    |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         |   |                     |                              |                      |                      |
|                                                              |         | , |                     |                              |                      |                      |
|                                                              |         |   |                     |                              |                      | `                    |
|                                                              |         | , |                     |                              |                      |                      |
|                                                              |         |   |                     |                              |                      |                      |

out this manex : see Official Journal of the European Patent Office, No. 12/R2