

Künstliche Intelligenz

Christoph Benzmüller und Christoph Schommer

Freie Universität Berlin

Sommer 2019

Eine (sehr kurze und sehr unvollständige) Geschichte der Logik

Rechenmaschinen

Leibniz (1646-1716)

Rechenmaschinen

Leibniz (1646-1716)

Bsp.: Modus Barbara

Alle Rechtecke sind Vierecke Alle Quadrate sind Rechtecke

Es folgt: Alle Quadrate sind Vierecke

Alle A sind B Alle C sind A

Es folgt: Alle C sind B

Aristoteles (384-322 BC)

Rechenmaschinen

Leibniz (1646-1716)

Leibniz war (u.a.) auf der Suche nach einer *lingua characteristica* (Sprache in der das gesamte Wissen formal ausgedrückt werden konnte) und einem *calculus ratiocinator* (Kalkül zum allgemeinen Schließen).

Vision: Zwei streitende/argumentierende Philosophen sollten Streitfragen durch einfaches *rechnen* (Calculemus!) klären können. Dazu müssten sie sich lediglich auf eine Formalisierung des Problems in der lingua characteristica einigen und dann den calculus ratiocinator anwenden.

Aristoteles (384-322 BC)

Rechenmaschinen

Leibniz (1646-1716)

De Morgan (1806-1871)

Boole (1815-1864)

Cantor (1845-1918)

Gottlob Frege (1848-1925)

- Begriffsschrift Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1879)
 - Prädikatenlogik (höherer Stufe) als formale Sprache
- Logizismus: Mathematik lässt sich auf die Logik zurückführen
- Grundlagen der Arithmetik (1884)
- Grundgesetze der Arithmetik (1893,1903)

Betrand Russell (1872-1970)

```
443. F:.p. =:pvq.pv~q
   Dem.
                        \existsF:p.\exists.pvq:p.\exists.pv\simq:
            F.*2.2.
            [Comp]
                        >>:p. J.pvq.pv~q
                                                                (1)
           [*2:53.*8:47] >+:.pvq.pv~q.>.p
                                                                (2)
           F.(1).(2). DF. Prop
#444. F :. p . = : p . v . p . q
   Dem.
                            ⊃+:.p.⊃:p.v.p.q
                                                               (1)
                F.Id.*3·26.⊃F:.p⊃p:p.q.⊃.p:
                            DF:.p.v.p.a:D.n
                                                               (2)
                F.(1).(2). ⊃F. Prop
*4.45. h:p. = .p.pvq [*3.26.*2.2]
  The following formulae are due to De Morgan, or rather, are the propo-
sitional analogues of formulae given by De Morgan for classes. The first
of them, it will be observed, merely embodies our definition of the logical
```

Findet Paradoxon in Frege's Prädikatenlogik (Russel's Paradox):

sei
$$R = \{x | x \notin x\}$$
; es gilt $x \in R \Leftrightarrow x \notin R$

- schlägt Lösung vor: Russel's Typentheorie
- (anderer Ausweg: Zermelo's Mengentheorie, Hilbert-Gruppe)
- Principia Mathematica (mit Whitehead, 1910, 1912, 1913)
 - verfolgt ähnliches Ziel wie Frege, vermeidet Paradoxien
 - Herleitung der Arithmetik aus der Logik, Basis für Mathematik

David Hilbert (1862-1943)

Hilbert's twenty-three problems are:

Problem	Brief explanation	
1st	The continuum hypothesis (that is, there is no set whose cardinality is strictly between that of the integers and that of the real numbers)	
2nd	Prove that the axioms of arithmetic are consistent.	
3rd	Given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second?	
4th	Construct all metrics where lines are geodesics.	

23 Probleme (1900)

- Einflussreichster Mathematiker seiner Zeit, breites Arbeitsspektrum
- Grundlagen der Geometrie (1899)
- Hilbert's Programm Logische Fundierung der Mathematik
 - ▶ 1900–1917: Formuliert Programm; gewinnt Mitstreiter
 - 1917–1930: Vorlesungen mit Bernays und Behmann (1917-1921), Logik
 1. Stufe, Arbeit am Programm (inkl. Widerspruchsfreiheit der Arithmetik),
 Lehrbuch Grundzüge der theoretischen Logik (1928, mit Ackermann)
 - nach 1931: Moderne Beweistheorie

Kurt Gödel (1906-1978)

- geboren 28.4.1906 in Brünn (Tschechien)
- kränklich, schmächtig, introvertiert
- Studium ab 1924 in Wien, Wiener Kreis
- ▶ 1933/34 erste Reisen nach Princeton, USA
- ▶ 1938 heiratet Adele Porkert (Kabarettänzerin)
- 1940 Flucht nach USA (über Russland/Japan)
- Professor in Princeton, Freund von Einstein
- Hungertod
- ▶ 1929/30 Dissertation: Über die Vollständigkeit des Logikkalküls (Vollständigkeit der Logik 1. Stufe — Hilbert's Programm)
- ▶ 6. Sep. 1930: Vortrag in Königsberg: Unvollständigkeitssätze "Die Logik wird nie mehr dieselbe sein." (John von Neumann)
- ▶ 1931: Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I (Unvollständigkeitsätze)
- 1938: Wichtiger (negativer) Beitrag zur Beweisbarkeit der Kontinuumshypothese
- Weiter interessante Arbeiten aber: "I do not fit in this century!"

Natürliche Sprache

Formale Logik

Max is a baby boy. He is the son of chris All babies are cute. Question: Is Max cute?

Logische Konnektive Konstantensymbole Prädikaten- und Relationensymbole

Natürliche Sprache

Max is a baby boy. He is the son of chris All babies are cute. Question: Is Max cute?

Formale Logik

(isBaby max) \land (isBoy max) (isSonOf max chris) $\forall X.$ (isBaby X) \Rightarrow (isCute X) Theorem: (isCute max)

<mark>Logische Konnektive</mark> Konstantensymbole Prädikaten- und Relationensymbole

Natürliche Sprache

Max is a baby boy. He is the son of chris All babies are cute. Question: Is Max cute?

Formale Logik

```
(isBaby max) \land (isBoy max)
(isSonOf max thris)
\forall X. (isBaby X) \Rightarrow (isCute X)
theorem: (isCute max)
```

Logische Konnektive

Konstantensymbole

Prädikaten- und Relationensymbol

(weitere Konnektive: \neg , \lor , \leftrightarrow , \exists , =)

Natürliche Sprache

Max is a baby boy. He is the son of chris All babies are cute.

Question: Is Max cute?

Formale Logik

```
(isBaby max) \land (isBoy max)
(isSonOf max chris)
\forall X. (isBaby \mid X) \Rightarrow (isCute \mid X)
Theorem: (isCute max)
```

Logische Konnektive

Konstantensymbole

(so viele wie wir benötigen)

Prädikaten- und Relationensymbole

Natürliche Sprache

Max is a baby boy. He is the son of chris All babies are cute.

Question: Is Max cute?

Logische Konnektive

Konstantensymbole

Prädikaten- und Relationensymbole

Formale Logik

(isBaby max) \land (isBoy max) (isSonOf max chris) $\forall X$. (isBaby X) \Rightarrow (isCute X) Theorem (isCute max)

(so viele wie wir benötigen)

Formaler Kalkül:

System Abstrakter Regeln Freie Universität Perlin

$$\frac{\triangle \wedge \square}{\wedge} \quad \frac{\triangle \wedge \square}{\square} \quad \frac{\triangle \square}{\wedge \wedge \square}$$

$$\frac{(isBaby \ max) \land (isBoy \ max)}{(isBaby \ max)}$$

$$\frac{\forall X.\square}{[t \to X]\square} \qquad \dots$$

$$\frac{\forall X. (isBaby X) \Rightarrow (isCute X)}{(isBaby max) \Rightarrow (isCute max)}$$

$$\frac{\triangle \quad \triangle \Rightarrow \square}{\square} \quad \dots$$

$$\frac{(isBaby \ max) \Rightarrow (isCute \ max)}{(isCute \ max)}$$

Axiom (Axiomenschemata)

$$\triangle \vee \neg \triangle$$

(isBaby max)
$$\vee \neg$$
(isBaby max)

Kalkiil des Natiirlichen Schliessens — Gerhard Gentzen (1909-1945)

Natürliche Sprache Formale Logik

Max is a baby boy. (isBaby max) \land (isBoy max)
He is the son of Chris (isSonOf max chris)
All babies are cute. $\forall X$. (isBaby X) \Rightarrow (isCute X)
Question: Is Max cute? Theorem: (isCute max)

Formaler Beweis

(isBaby max) \land (isBoy max)

Natürliche Sprache Formale Logik

Max is a baby boy. (isBaby max) \land (isBoy max)
He is the son of Chris (isSonOf max chris)
All babies are cute. $\forall X$. (isBaby X) \Rightarrow (isCute X)
Question: Is Max cute? Theorem: (isCute max)

Formaler Beweis

(isBaby max) ∧ (isBoy max) (isBaby max)

Natürliche Sprache Formale Logik

Max is a baby boy. (isBaby max) \land (isBoy max)
He is the son of Chris (isSonOf max chris)
All babies are cute. $\forall X$. (isBaby X) \Rightarrow (isCute X)
Question: Is Max cute? Theorem: (isCute max)

Formaler Beweis

 $\frac{(isBaby \ max) \land (isBoy \ max)}{(isBaby \ max)} \quad \frac{\forall X. (isBaby \ X) \Rightarrow (isCute \ X)}{}$

Natürliche Sprache	Formale Logik

Max is a baby boy. He is the son of Chris All babies are cute. Question: Is Max cute? (isBaby max) \land (isBoy max) (isSonOf max chris) $\forall X.$ (isBaby X) \Rightarrow (isCute X)

Formaler Beweis

$$\frac{(isBaby \ max) \land (isBoy \ max)}{(isBaby \ max)} \qquad \frac{\forall X. (isBaby \ X) \Rightarrow (isCute \ X)}{(isBaby \ max) \Rightarrow (isCute \ max)}$$

Natürliche Sprache	Formale Logik
Max is a baby boy.	(isBaby max) \land (isBoy max)
He is the son of Chris	(isSonOf max chris)
All babies are cute.	$\forall X$. (isBaby X) \Rightarrow (isCute X)
Question: Is Max cute?	Theorem: (isCute max)

Formaler Beweis

```
\frac{(isBaby \ max) \land (isBoy \ max)}{(isBaby \ max)} \quad \frac{\forall X. (isBaby \ X) \Rightarrow (isCute \ X)}{(isBaby \ max) \Rightarrow (isCute \ max)}
```


Artificial Intelligence

Artificial Intelligence

Artificial Intelligence

Computational Linguistics

Artificial Intelligence

Computational Linguistics

Wichtige Begriffe in der Logik

- Ausdrucksstärke der Sprache (Expressivität)
- Kalkül
 - Axiome
 - Schlussregeln
- ► Korrektheit und Widerspruchsfreiheit/Konsistenz: Es gibt keine Formel △, so dass △ und ¬△ ableitbar sind.
- Entscheidbarkeit vs. Unentscheidbarkeit
- Vollständigkeit

Ausdrucksstärke von Logiken versus Berechnungseigenschaften:

Aussagenlogik

itRains ∧ isCold \ (itRains ∧ isCold ⇒ slipperyRoad)

⇒ slipperyRoad

► Logik erster Stufe

isHuman(sokrates) $\land (\forall x.isHuman(x) \Rightarrow isMortal(x))$

 $\land \quad (\forall x. isHuman(x) \Rightarrow isMortal(x))$

 \Rightarrow isMortal(sokrates)

► Logik höherer Stufe

 $(\forall F. isSurjective(F) \Leftrightarrow \forall y. \exists x. y = F(x))$ $\Rightarrow isSurjective(\lambda x. x)$

Ausdrucksstärke von Logiken versus Berechnungseigenschaften:

Aussagenlogik

► Logik erster Stufe

► Logik höherer Stufe

```
entscheidbar
```

```
itRains ∧ isCold
 \land (itRains \land isCold \Rightarrow slipperyRoad)
 ⇒ slipperyRoad
         isHuman(sokrates)
   \land (\forall x. isHuman(x) \Rightarrow isMortal(x))
  ⇒ isMortal(sokrates)
     (\forall F. isSurjective(F) \Leftrightarrow \forall y. \exists x. y = F(x))
\Rightarrow isSurjective(\lambda x.x)
```

Ausdrucksstärke von Logiken versus Berechnungseigenschaften

itRains ∧ isCold Aussagenlogik $(itRains \land isCold \Rightarrow slipperyRoad)$ ⇒ slipperyRoad isHuman(sokrates) Logik erster Stufe $(\forall x. isHuman(x) \Rightarrow isMortal(x))$ ⇒ isMortal(sokrates) $(\forall F. isSurjective(F) \Leftrightarrow \forall y. \exists x. y = F(x))$ Logik höherer Stufe isSurjective($\lambda x.x$) unentscheidbar, vollständig

Ausdrucksstärke von Logiken versus Berechnungseigenschaften!

Aussagenlogik

- $itRains \land isCold$ ($itRains \land isCold \Rightarrow slipperyRoad$)
- ⇒ slipperyRoad

► Logik erster Stufe

- isHuman(sokrates)
- $\land \quad (\forall x. isHuman(x) \Rightarrow isMortal(x))$
- ⇒ isMortal(sokrates)

Logik höherer Stufe $(\forall F. isSurjective(F) \Leftrightarrow \forall y. \exists x. y = F(x))$ $\Rightarrow isSurjective(\lambda x. x)$

.

unentscheidbar, unvollständig

Kurze Demo: Automatische Theorembeweiser

The TPTP Problem (and System) Library for Automated Theorem Proving

www.tptp.org