Nomenclature

Table of variables in Section 3

α	Biot constant
ϵ	total strain
ϵ^c	creep strain
ϵ^p	plastic strain
$\boldsymbol{\epsilon}^T$	thermal strain
ρ	fluid density
σ	Cauchy (total) stress
$ ilde{m{\sigma}}$	effective stress
c_0	specific storage coefficient
D	fourth-order elasticity tensor
f	body force
g	gravity vector
I	second-order unity tensor
K	rock permeability tensor divided by fluid viscosity
n	outward unit normal vector
p	fluid pressure
q	source or sink term
u	displacement vector
Z	Darcy velocity

Table of variables in Section 7.1

μ_{α}	viscosity of phase $lpha$
ξ_i^{α}	molar fraction of component i in phase $lpha$
ρ_{α}	density of phase $lpha$
ϕ	porosity at current configuration
ϕ_0	reference porosity
Φ_i^{α}	fugacity coefficient of component i in phase $lpha$
c_r	rock compressibility constant
f_i^{α}	fugacity of component i in phase $lpha$
g	gravity vector
$k_{r\alpha}$	relative permeability of phase $lpha$
K	absolute permeability tensor
n_c	number of hydrocarbon components
N_i	molar concentration of component \emph{i}
p	reference phase pressure
p_0	reference pressure
p_{α}	pressure of phase $lpha$
$p_{c\alpha}$	capillary pressure of phase $lpha$
q_i	source or sink term for component \emph{i}
S_{α}	saturation of phase $lpha$
T	reservoir temperature
\mathbf{u}_{α}	Darcy velocity of phase $lpha$

Table of variables in Section 7.2

ϕ^*	effective porosity at current configuration
M	Biot's modulus
\mathbf{u}_0	initial displacement at reference pressure p_{0}

Table of variables in Section 7.3

α, γ, A, e, R	constants related to the shapes of the shear envelope and cap portion
ã	$[\Delta^*]_n/[\Delta]_n$
β	friction angle
Γ	cohesion
$[\Delta]_n$	normal displacement jump at which normal traction reaches maximum
$[\Delta]_t$	tangential displacement jump at which tangential traction reaches maximum
$[\Delta]^*$	$[\Delta^*]_n = [u]_n _{t_n \to 0}$
ϵ^p	plastic strain
λ	nonnegative consistency parameter
σ	Cauchy (total) stress
σ_0	material shear-related strength
$ ilde{m{\sigma}}$	effective stress
τ	shear stress
Φ	interfacial potential
Ψ	ratio of tri-axial extension strength to compression strength
Ψ_n	$\Psi_n = e \sigma_{\max}[\Delta]_n$
Ψ_t	$\Psi_t = \sqrt{e/2} \tau_{\text{max}}[\Delta]_t$
F	flow potential
H	Heaviside function
I_1	first invariant of effective stress tensor
II	fourth-order identity tensor
J_2	second invariant of effective stress tensor
J_3	third invariant of effective stress tensor
K_0	intersection coordinate of the shear and cap portions
n	outward unit norm vector
q	Ψ_n/Ψ_t
t	traction at prescribed boundary
t_n	normal traction
t_t	tangential traction
[u]	displacement jump across interface
$[u]_n$	$[u]_n = [\mathbf{u}] \cdot \mathbf{n}$
$[u]_t$	$[u]_t = \ (II - \mathbf{n} \otimes \mathbf{n})[\mathbf{u}]\ _2$
\boldsymbol{x}	$x = [u]_n/[\Delta]_n$
X_0	material compaction strength
\mathcal{Y}	$y = [u]_t/[\Delta]_t$
Y	material yielding function
$Y_{\mathcal{S}}$	shear envelop yielding function