

AD-A170 945

RADIATION RESISTANCE OF THIN ANTENNAS OF ARBITRARY
ELEVATION AND CONFIGUR. (U) NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO CA R A PAPPERT JUN 96 NOSC/TR-1112

1/1

UNCLASSIFIED

F/G 9/5

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A170 945

(12)

Technical Report 1112
June 1986
Interim Report for period
December 1985—June 1986

DTIC
SELECTED
S D
AUG 1 8 1986
D

RADIATION RESISTANCE OF THIN ANTENNAS OF ARBITRARY ELEVATION AND CONFIGURATION OVER PERFECTLY CONDUCTING GROUND

R. A. Pappert

Prepared for
Defense Nuclear Agency

Naval Ocean Systems Center

San Diego, California 92152-5000

ONE FIVE COPY

Approved for public release; distribution is unlimited.

NAVAL OCEAN SYSTEMS CENTER

San Diego, California 92152-5000

F. M. PESTORIUS, CAPT, USN
Commander

R. M. HILLYER
Technical Director

ADMINISTRATIVE INFORMATION

The work reported in this document was conducted over the period from December 1985 to June 1986 by the NOSC Modeling Branch, Code 544, for the Defense Nuclear Agency Radiation Directorate. The task was funded under DNA-RAAE program element 62715H, project number 599QMXBB.

Released by
J. A. Ferguson, Head
Modeling Branch

Under authority of
J. H. Richter, Head
Ocean and Atmospheric
Sciences Division

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. P. Hansen and Mr. D. Fern for useful discussions about NEC and for providing table 1 and the current input for figure 34. The programming assistance of Ms. L. Hitney is also gratefully acknowledged.

RT

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

AD-H120945

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS	
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT	
2b DECLASSIFICATION DOWNGRADING SCHEDULE		Approved for public release; distribution is unlimited	
4 PERFORMING ORGANIZATION REPORT NUMBER(S) NOSC TR 1112		5 MONITORING ORGANIZATION REPORT NUMBER(S)	
6a NAME OF PERFORMING ORGANIZATION Naval Ocean Systems Center	6b OFFICE SYMBOL <i>(if applicable)</i> Code 544	7a NAME OF MONITORING ORGANIZATION	
6c ADDRESS (City State and ZIP Code) San Diego, CA 92152-5000		7b ADDRESS (City State and ZIP Code)	
8a NAME OF FUNDING SPONSORING ORGANIZATION Defense Nuclear Agency Radiation Directorate	8b OFFICE SYMBOL <i>(if applicable)</i> DNA-RAAE	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c ADDRESS (City State and ZIP Code) Hybla Valley Federal Bldg Washington, DC 20305		10 SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO 62715H	PROJECT NO S99QMXBB
		TASK NO 544-MP20	Agency Accession No. DN651 524
11 TITLE (Include Security Classification) Radiation Resistance of Thin Antennas of Arbitrary Elevation and Configuration Over Perfectly Conducting Ground			
12 PERSONAL AUTHOR(S) R. Pappert			
13a TYPE OF REPORT Interim	13b TIME COVERED FROM Dec 85 TO June 86	14 DATE OF REPORT (Year, Month, Day) June 1986	15 PAGE COUNT 60
16 SUPPLEMENTARY NOTATION			
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Sinusoidal current distribution Trailing-wire antennas Thin antenna radiation resistance Half-wave spiral type antennas	
19 ABSTRACT (Continue on reverse if necessary and identify by block number) Dipole segmentation is used to estimate the radiation resistance of thin antennas of arbitrary elevation and configuration over a perfectly conducting ground plane. Sample results include half-wave linear antennas of varying inclination, half-wave spiral type antennas, and a TACAMO configuration. Utility of the method for estimating the radiation resistance of VLF LF trailing-wire antennas from aircraft depends upon the extent to which the current distribution deviates from a sinusoid. That deviation is due in part to finite wire thickness as well as to the finite conductivity of both wire and ground. The influence of those effects requires further study.			
20 DISTRIBUTION AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a NAME OF RESPONSIBLE INDIVIDUAL R. Pappert		22b TELEPHONE (Include Area Code) (619) 225-7677	22c OFFICE SYMBOL Code 544

DD FORM 1473, 84 JAN

83 APR EDITION MAY BE USED UNTIL EXHAUSTED
ALL OTHER EDITIONS ARE OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

Section	Page
1.0 Introduction	1
2.0 Development of the Segmentation Formula	2
3.0 Results	13
4.0 Conclusions	18
5.0 References	19

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

ILLUSTRATIONS

Figure	Title	Page
1	Dipole geometry	21
2	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Vertically oriented	22
3	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 15° from vertical	23
4	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 30° from vertical	24
5	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 45° from vertical	25
6	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 60° from vertical	26
7	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 75° from vertical	27
8	Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Horizontally oriented	28
9	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Vertically oriented	29
10	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 15° from vertical	30
11	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 30° from vertical	31
12	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 45° from vertical	32
13	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 60° from vertical	33
14	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 75° from vertical	34
15	Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Horizontally oriented	35
16	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 15° from vertical. $R_0/\lambda = 0.1$	36

ILLUSTRATIONS (Continued)

Figure	Title	Page
17	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 30° from vertical. $R_0/\lambda = 0.1$	37
18	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 45° from vertical. $R_0/\lambda = 0.1$	38
19	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 60° from vertical. $R_0/\lambda = 0.1$	39
20	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 75° from vertical. $R_0/\lambda = 0.1$	40
21	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Partial horizontal loop. $R_0/\lambda = 0.1$	41
22	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 15° from vertical. $R_0/\lambda = 0.2$	42
23	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 30° from vertical. $R_0/\lambda = 0.2$	43
24	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 45° from vertical. $R_0/\lambda = 0.2$	44
25	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 60° from vertical. $R_0/\lambda = 0.2$	45
26	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 75° from vertical. $R_0/\lambda = 0.2$	46
27	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Partial horizontal loop. $R_0/\lambda = 0.2$	47
28	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 15° from vertical. $R_0/\lambda = 0.3$	48

ILLUSTRATIONS (Continued)

Figure	Title	Page
29	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 30° from vertical. $R_0/\lambda = 0.3$	49
30	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 45° from vertical. $R_0/\lambda = 0.3$	50
31	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 60° from vertical. $R_0/\lambda = 0.3$	51
32	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 75° from vertical. $R_0/\lambda = 0.3$	52
33	Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Partial horizontal loop. $R_0/\lambda = 0.3$	53
34	TACAMO 6,000-foot orbit configuration	54

TABLES

Table	Page
1 Antenna coordinates (6,000-foot orbit)	16

1.0 INTRODUCTION

As a possible aid to improving VLF/LF modeling capability associated with trailing-wire antennas, this study examines a dipole segmentation process for rather quickly estimating the radiation resistance of thin antennas of arbitrary elevation and orientation over a perfectly conducting ground. For thin antennas, the current distribution is sinusoidal, and that distribution serves as the basis for sample calculations presented in this report. Utility of the method for estimating the radiation resistance of airborne trailing-wire systems depends upon the validity of the assumed sinusoidal current distribution. Deviations from the assumed distribution arise, in part, from the finite conductivity of the wire and ground as well as from the nonzero thickness of the antenna. A computer program that allows for such effects is the Numerical Electromagnetic Code (NEC)¹, and additional studies using this code should be made to define clearly the limitations of the present development.

In the following section, the formula for radiated power, based on dipole segmentation, is developed by integrating the Poynting flux generated by the system of radiators over a hemisphere. Although the emf method^{2,3,4} may offer advantages (e.g., the method determines the complex impedance) over the direct Poynting flux integration, no attempt has been made to use that method in the present development. In Section 3, numerical results are given for half-wave linear antennas of varying inclination and for half-wave spiral type antennas.

2.0 DEVELOPMENT OF THE SEGMENTATION FORMULA

Figure 1 shows the configuration for the n^{th} dipole of current moment \hat{M}_n . The dipole is located at (x_n, y_n, z_n) with orientation ϕ_n and γ_n relative to the x and z axes, respectively. The field point at P has the spherical coordinates (R, θ, ϕ) . A time-dependence $\exp(i\omega t)$ is assumed where $i = \sqrt{-1}$, ω is the circular frequency, and t the time. The point P is assumed to be in the far field so that the dipole field components in the θ, ϕ directions are as follows:⁵

- i) Field components generated by z component of dipole.

$$E_\theta = -A_n g(R) \cos \gamma_n \sin \theta [\exp(i\psi_n^d) + R_v \exp(i\psi_n^r)] \quad (1)$$

$$H_\phi = B_n g(R) \cos \gamma_n \sin \theta [\exp(i\psi_n^d) + R_v \exp(i\psi_n^r)] \quad (2)$$

- ii) Field components generated by x component of dipole.

$$E_\theta = A_n g(R) \sin \gamma_n \cos \phi_n \cos \theta \cos \phi [\exp(i\psi_n^d) - R_v \exp(i\psi_n^r)] \quad (3)$$

$$H_\phi = -B_n g(R) \sin \gamma_n \cos \phi_n \cos \theta \cos \phi [\exp(i\psi_n^d) - R_v \exp(i\psi_n^r)] \quad (4)$$

$$E_\phi = -A_n g(R) \sin \gamma_n \cos \phi_n \sin \phi [\exp(i\psi_n^d) + R_H \exp(i\psi_n^r)] \quad (5)$$

$$H_\theta = -B_n g(R) \sin \gamma_n \cos \phi_n \sin \phi [\exp(i\psi_n^d) + R_H \exp(i\psi_n^r)] \quad (6)$$

- iii) Field components generated by y component of dipole.

$$E_\theta = A_n g(R) \sin \gamma_n \sin \phi_n \cos \theta \sin \phi [\exp(i\psi_n^d) - R_v \exp(i\psi_n^r)] \quad (7)$$

$$H_\phi = -B_n g(R) \sin \gamma_n \sin \phi_n \cos \theta \sin \phi [\exp(i\psi_n^d) - R_v \exp(i\psi_n^r)] \quad (8)$$

$$E_\phi = A_n g(R) \sin \gamma_n \sin \phi_n \cos \phi [\exp(i\psi_n^d) + R_H \exp(i\psi_n^r)] \quad (9)$$

$$H_\theta = B_n g(R) \sin \gamma_n \sin \phi_n \cos \phi [\exp(i\psi_n^d) + R_H \exp(i\psi_n^r)] \quad (10)$$

where

$$g(R) = \frac{e^{-ikR}}{R} \quad (11)$$

$$A_n = \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{k M_n}{4\pi i} \quad (12)$$

$$B_n = \frac{ik M_n}{4\pi} \quad (13)$$

$$\psi_n^d = k(\sin \theta \cos \phi x_n + \sin \theta \sin \phi y_n + \cos \theta z_n) \quad (14)$$

$$\psi_n^r = k(\sin \theta \cos \phi x_n + \sin \theta \sin \phi y_n - \cos \theta z_n) \quad (15)$$

k = free space wave number

R_v = Fresnel reflection coefficient for TM polarization

R_H = Fresnel reflection coefficient for TE polarization.

For the special case of a perfectly conducting ground, $R_V = 1$ and $R_H = -1$. The total field components then become:

$$E_\theta = -A_n g(R) [g_{1n}(\theta, \phi) \exp(i\psi_n^d) + g_{2n}(\theta, \phi) \exp(i\psi_n^r)] \quad (16)$$

$$H_\phi = B_n g(R) [g_{1n}(\theta, \phi) \exp(i\psi_n^d) + g_{2n}(\theta, \phi) \exp(i\psi_n^r)] \quad (17)$$

$$E_\phi = -A_n g(R) g_{3n}(\theta, \phi) [\exp(i\psi_n^d) - \exp(i\psi_n^r)] \quad (18)$$

$$H_\theta = -B_n g(R) g_{3n}(\theta, \phi) [\exp(i\psi_n^d) - \exp(i\psi_n^r)] \quad (19)$$

where

$$g_{1n}(\theta, \phi) = \cos\gamma_n \sin\theta - \sin\gamma_n \cos\theta \cos(\phi - \phi_n) \quad (20)$$

$$g_{2n}(\theta, \phi) = \cos\gamma_n \sin\theta + \sin\gamma_n \cos\theta \cos(\phi - \phi_n) \quad (21)$$

$$g_{3n}(\theta, \phi) = \sin\gamma_n \sin(\phi - \phi_n) \quad (22)$$

The time average Poynting flux in the radial direction is

$$\bar{\Pi}_R = \frac{1}{2} \operatorname{Re} [E_\theta H_\phi^* - E_\phi H_\theta^*] \quad (23)$$

where Re stands for the real part and the $*$ for the complex conjugate. Therefore,

$$\bar{\Pi}_R = -\frac{1}{2} g(R) g^*(R) \operatorname{Re} \left\{ \sum_{n,m} A_n B_m^* [\exp(i(\psi_n^d - \psi_m^d)) (g_{1n} g_{1m} + g_{3n} g_{3m})] \right\}$$

$$\begin{aligned}
& + \exp(i(\phi_n^r - \phi_m^r))(g_{2n}g_{2m} + g_{3n}g_{3m}) \\
& + \exp(i(\phi_n^d - \phi_m^r))(g_{1n}g_{2m} - g_{3n}g_{3m}) \\
& + \exp(i(\phi_n^r - \phi_m^d))(g_{2n}g_{1m} - g_{3n}g_{3m})] \} \quad (24)
\end{aligned}$$

Now the phase terms are given by:

$$\phi_n^d - \phi_m^d = r_{nm} \sin \theta \cos(\phi - \Phi_{nm}) + z_{nm}^- \cos \theta \quad (25)$$

$$\phi_n^r - \phi_m^r = r_{nm} \sin \theta \cos(\phi - \Phi_{nm}) - z_{nm}^- \cos \theta \quad (26)$$

$$\phi_n^d - \phi_m^r = r_{nm} \sin \theta \cos(\phi - \Phi_{nm}) + z_{nm}^+ \cos \theta \quad (27)$$

$$\phi_n^r - \phi_m^d = r_{nm} \sin \theta \cos(\phi - \Phi_{nm}) - z_{nm}^+ \cos \theta \quad (28)$$

where

$$r_{nm} = k((x_n - x_m)^2 + (y_n - y_m)^2)^{1/2} \quad (29)$$

$$z_{nm}^- = k(z_n - z_m) \quad (30)$$

$$z_{nm}^+ = k(z_n + z_m) \quad (31)$$

$$\Phi_{nm} = \tan^{-1} \frac{y_n - y_m}{x_n - x_m} \quad (32)$$

Also,

$$\begin{aligned}
 g_{1n}g_{1m} &= \cos\gamma_n \cos\gamma_m \sin^2\theta + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(\phi_n - \phi_m) \\
 &\quad - \cos\gamma_n \sin\gamma_m \sin\theta \cos\theta \cos(\phi - \phi_m) - \cos\gamma_m \sin\gamma_n \sin\theta \cos\theta \cos(\phi - \phi_n) \\
 &\quad + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(2\phi - \phi_n - \phi_m)
 \end{aligned} \tag{33}$$

$$\begin{aligned}
 g_{2n}g_{2m} &= \cos\gamma_n \cos\gamma_m \sin^2\theta + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(\phi_n - \phi_m) \\
 &\quad + \cos\gamma_n \sin\gamma_m \sin\theta \cos\theta \cos(\phi - \phi_m) + \cos\gamma_m \sin\gamma_n \sin\theta \cos\theta \cos(\phi - \phi_n) \\
 &\quad + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(2\phi - \phi_m - \phi_n)
 \end{aligned} \tag{34}$$

$$\begin{aligned}
 g_{1n}g_{2m} &= \cos\gamma_n \cos\gamma_m \sin^2\theta - \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(\phi_n - \phi_m) \\
 &\quad + \cos\gamma_n \sin\gamma_m \sin\theta \cos\theta \cos(\phi - \phi_m) - \cos\gamma_m \sin\gamma_n \sin\theta \cos\theta \cos(\phi - \phi_n) \\
 &\quad - \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(2\phi - \phi_m - \phi_n)
 \end{aligned} \tag{35}$$

$$\begin{aligned}
 g_{2n}g_{1m} &= \cos\gamma_n \cos\gamma_m \sin^2\theta - \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(\phi_n - \phi_m) \\
 &\quad + \cos\gamma_m \sin\gamma_n \sin\theta \cos\theta \cos(\phi - \phi_n) - \cos\gamma_n \sin\gamma_m \sin\theta \cos\theta \cos(\phi - \phi_m) \\
 &\quad - \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos^2\theta \cos(2\phi - \phi_n - \phi_m)
 \end{aligned} \tag{36}$$

$$g_{3n}g_{3m} = \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos(\phi_n - \phi_m) - \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos(2\phi - \phi_n - \phi_m) \tag{37}$$

The time-averaged power, P_w , radiated by the system of dipoles is obtained by integrating the radial component of the time-averaged Poynting vector over the surface of a large hemisphere. Thus,

$$P_w = \lim_{R \rightarrow \infty} [R^2 \int_0^{\pi/2} \sin\theta d\theta \int_0^{\pi} \frac{1}{R} d\phi] \quad (38)$$

The integral over ϕ may be evaluated by using the well-known expansion⁶

$$e^{i\lambda \cos\beta} = \sum_{n=-\infty}^{\infty} i^n J_n(\lambda) e^{in\beta} \quad (39)$$

where J_n is the Bessel function of the first kind of order n . In effect, only terms with $n=0, \pm 1$ and ± 2 survive the ϕ integration. The result after integration over ϕ is

$$\begin{aligned} P_w = & -2\pi \sum_{n,m} A_n B_m^* \int_0^\pi \sin\theta d\theta \\ & \{ [\cos\gamma_n \cos\gamma_m + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos(\phi_n - \phi_m)] \cos(z_{nm}^- \cos\theta) J_0(r_{nm} \sin\theta) \\ & + [\cos\gamma_n \cos\gamma_m - \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos(\phi_n - \phi_m)] \cos(z_{nm}^+ \cos\theta) J_0(r_{nm} \sin\theta) \\ & + [-\cos\gamma_n \cos\gamma_m + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos(\phi_n - \phi_m)] \cos^2 \theta \cos(z_{nm}^- \cos\theta) J_0(r_{nm} \sin\theta) \\ & - [\cos\gamma_n \cos\gamma_m + \frac{1}{2} \sin\gamma_n \sin\gamma_m \cos(\phi_n - \phi_m)] \cos^2 \theta \cos(z_{nm}^+ \cos\theta) J_0(r_{nm} \sin\theta) \\ & + \cos\gamma_n \sin\gamma_m \sin\theta \cos\theta \cos(\phi_n - \phi_m) \sin(z_{nm}^- \cos\theta) J_1(r_{nm} \sin\theta) \end{aligned}$$

$$\begin{aligned}
& -\cos \gamma_n \sin \gamma_m \sin \theta \cos \theta \cos(\Phi_{nm} - \phi_n) \sin(z_{nm}^+ \cos \theta) J_1(r_{nm} \sin \theta) \\
& + \cos \gamma_m \sin \gamma_n \sin \theta \cos \theta \cos(\Phi_{nm} - \phi_n) \sin(z_{nm}^- \cos \theta) J_1(r_{nm} \sin \theta) \\
& + \cos \gamma_m \sin \gamma_n \sin \theta \cos \theta \cos(\Phi_{nm} - \phi_n) \sin(z_{nm}^+ \cos \theta) J_1(r_{nm} \sin \theta) \\
& + \frac{1}{2} \sin \gamma_n \sin \gamma_m \sin^2 \theta \cos(2\Phi_{nm} - \phi_n - \phi_m) \cos(z_{nm}^- \cos \theta) J_2(r_{nm} \sin \theta) \\
& - \frac{1}{2} \sin \gamma_n \sin \gamma_m \sin^2 \theta \cos(2\Phi_{nm} - \phi_n - \phi_m) \cos(z_{nm}^+ \cos \theta) J_2(r_{nm} \sin \theta) \}
\end{aligned} \tag{40}$$

The integral over theta in equation (40) may be evaluated using the following three formulas:

$$\int_0^{\pi/2} (\sin x)^{v+1} \cos(\beta \cos x) J_v(\alpha \sin x) dx = \sqrt{\frac{\pi}{2}} \alpha^v (\alpha^2 + \beta^2)^{-1/2} v^{-1/4} J_{v+1/2}((\alpha^2 + \beta^2)^{1/2}) \tag{41}$$

$$\int_0^{\pi/2} (\sin x)^{v+1} \cos x \sin(\beta \cos x) J_v(\alpha \sin x) dx = \sqrt{\frac{\pi}{2}} \alpha^v \beta (\alpha^2 + \beta^2)^{-1/2} v^{-3/4} J_{v+3/2}((\alpha^2 + \beta^2)^{1/2}) \tag{42}$$

$$\begin{aligned}
& \int_0^{\pi/2} (\sin x)^{v+1} \cos^2 x \cos(\beta \cos x) J_v(\alpha \sin x) dx = \sqrt{\frac{\pi}{2}} \alpha^v (\alpha^2 + \beta^2)^{-1/2} v^{-3/4} [J_{v+3/2}((\alpha^2 + \beta^2)^{1/2}) \\
& - \beta^2 (\alpha^2 + \beta^2)^{-1/2} J_{v+5/2}((\alpha^2 + \beta^2)^{1/2})]
\end{aligned} \tag{43}$$

Equation (41) is from Gradshteyn and Ryzhik⁷, and equations (42) and (43) are easily obtained from equation (41). To evaluate the theta integrals in equation (40), equation (41) is used with $v = 0, 2$, equation (42) is used with $v = 1$, and equation (43) is used with $v = 0$. With the understanding that

the current moment M_n is to be expressed in terms of the rms current associated with the n^{th} element, the expression for the radiated power after carrying out the theta integrations becomes

$$P_w = 30k^2 \sum_{n,m} M_n M_m$$

$$\begin{aligned}
& \left[[\cos \gamma_n \cos \gamma_m + \frac{1}{2} \sin \gamma_n \sin \gamma_m \cos(\phi_n - \phi_m)] (\omega_{nm}^-)^{-1/2} j_{1/2}(\omega_{nm}^-) \right. \\
& + \left[\cos \gamma_n \cos \gamma_m - \frac{1}{2} \sin \gamma_n \sin \gamma_m \cos(\phi_n - \phi_m) \right] (\omega_{nm}^+)^{-1/2} j_{1/2}(\omega_{nm}^+) \\
& + \left[-\cos \gamma_n \cos \gamma_m + \frac{1}{2} \sin \gamma_n \sin \gamma_m \cos(\phi_n - \phi_m) \right] (\omega_{nm}^-)^{-3/2} [j_{3/2}(\omega_{nm}^-) \right. \\
& \quad \left. - (z_{nm}^-)^2 (\omega_{nm}^-)^{-1} j_{5/2}(\omega_{nm}^-)] \\
& - \left[\cos \gamma_n \cos \gamma_m + \frac{1}{2} \sin \gamma_n \sin \gamma_m \cos(\phi_n - \phi_m) \right] (\omega_{nm}^+)^{-3/2} [j_{3/2}(\omega_{nm}^+) \right. \\
& \quad \left. - (z_{nm}^+)^2 (\omega_{nm}^+)^{-1} j_{5/2}(\omega_{nm}^+)] \\
& + \left[\cos \gamma_n \sin \gamma_m \cos(\phi_{nm} - \phi_m) z_{nm}^- + \cos \gamma_m \sin \gamma_n \cos(\phi_{nm} - \phi_n) z_{nm}^- \right. \\
& + \frac{1}{2} \sin \gamma_n \sin \gamma_m \cos(2\phi_{nm} - \phi_n - \phi_m) r_{nm}] r_{nm} (\omega_{nm}^-)^{-5/2} j_{5/2}(\omega_{nm}^-) \\
& + \left[-\cos \gamma_n \sin \gamma_m \cos(\phi_{nm} - \phi_m) z_{nm}^+ + \cos \gamma_m \sin \gamma_n \cos(\phi_{nm} - \phi_n) z_{nm}^+ \right. \\
& \quad \left. - \frac{1}{2} \sin \gamma_n \sin \gamma_m \cos(2\phi_{nm} - \phi_n - \phi_m) r_{nm} \right] r_{nm} (\omega_{nm}^+)^{-5/2} j_{5/2}(\omega_{nm}^+) \} \tag{44}
\end{aligned}$$

where

$$\omega_{nm}^{\pm} = ((z_{nm}^{\pm})^2 + r_{nm}^2)^{1/2} \quad (45)$$

$$j_v(x) = \sqrt{\frac{\pi}{2}} J_v(x) \quad (46)$$

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi}} \frac{\sin x}{\sqrt{x}}, \quad J_{3/2}(x) = \sqrt{\frac{2}{\pi}} \left(-\frac{\cos x}{\sqrt{x}} + \frac{\sin x}{x\sqrt{x}} \right) \quad (47)$$

$$J_{5/2}(x) = \frac{3}{x} J_{3/2}(x) - J_{1/2}(x)$$

Equation (44) gives the power radiated from an assembly of dipoles. This section will be concluded by checking the limiting case of Equation (44) for a single dipole over a perfectly conducting plane. Additional checks are given in the following section.

For a single dipole, the dipole subscripts may be omitted. Observe first that $r = 0$ so that the first four terms of Equation (44) are the only non-vanishing terms. Observe also that $\omega^- = z^- \rightarrow 0$ and that $\omega^+ = z^+ = 2kz$, where z is the height of the dipole above ground. Also, the following relationships apply:

$$x^{-1/2} j_{1/2}(x) = \frac{\sin x}{x} \xrightarrow{x \rightarrow 0} 1 \quad (48)$$

$$x^{-3/2} j_{3/2}(x) = \left(-\frac{\cos x}{x^2} + \frac{\sin x}{x^3} \right) \xrightarrow{x \rightarrow 0} \frac{1}{3} \quad (49)$$

$$x^{-5/2} j_{5/2}(x) = \left(-1 + \frac{3}{x^2} \right) \frac{\sin x}{x^3} - \frac{3\cos x}{x^4} \quad (50)$$

By using Equations (47) through (50), Equation (44) for the single-dipole case is reduced to:

$$P_w = 2\Omega k^2 M^2 f(z^+, \gamma)$$

where

$$\begin{aligned} f(z^+, \gamma) &= [1 + \frac{3}{(z^+)^3} (\sin z^+ - z^+ \cos z^+) \cos^2 \gamma \\ &+ [1 + \frac{3}{2(z^+)^3} ((1-(z^+)^2) \sin z^+ - z^+ \cos z^+) \sin^2 \gamma \end{aligned} \quad (51)$$

Limiting values of $f(z^+, \gamma)$ are:

$$f(z^+, \gamma) \xrightarrow[z^+ \rightarrow \infty]{} 1 \quad (52)$$

$$f(z^+, \gamma) \xrightarrow[z^+ \rightarrow 0]{} 2 \cos^2 \gamma \quad (53)$$

In VLF/LF applications, airborne trailing-wire systems are often modeled by a single-point dipole. An often-used input to the NOSC mode-summing programs (e.g., reference 8) is the power radiated by a vertically oriented point dipole immediately above a perfectly conducting ground plane. Thus, if a point dipole at height z is used to model a trailing-wire system radiating a known power P_z , then the power, P , to be used in the waveguide program, is

$$P/P_z = 2/f(z^+, \gamma) \quad (54)$$

However, it should still be realized that the point-dipole approximation is a questionable simplification, and that the preferred method is to model the antenna by a series of dipoles⁹. This requires, for a given radiated power, knowledge of the antenna current, and the present method is suggested as a possible way of expeditiously estimating that current, especially when the antenna is over highly conducting ground (e.g., seawater).

Because it is common practice to use the point-dipole approximation, the following section will begin with results based on Equation (54), followed by results for linear half-wave antennas, half-wave spiral type antennas, and finally for a TACAMO configuration.

3.0 RESULTS

Shown in figures 2 through 8 are results, based on Equation (54), along with the curves

$$z = (23.9/f_{\text{kHz}})z^+ \quad (55)$$

which are parametric in the frequency, f_{kHz} , expressed in kilohertz. The individual figures are for inclinations, γ , ranging from vertical ($\gamma = 0^\circ$) to horizontal ($\gamma = 90^\circ$) at 15° intervals. All of the curves for P/P_z approach a value of 2 (or 3 dB) for $z^+ \gg 1$. As pointed out previously¹⁰, that results simply from the fact that a dipole in free space radiates one half the energy of the dipole of the same strength situated vertically and immediately above a perfectly conducting plane. In the latter configuration, the image source reinforces the primary source. This gives rise to an effective moment which is twice the primary, or equivalent to, a radiated power which is four times that of the primary source in free space. However, the dipole over the conducting plane radiates only into a hemisphere, and, so, the net effect is the factor of two quoted above.

When $z^+ \lesssim 1$, the power ratio, P/P_z , increases as γ increases. This occurs because the vertical component decreases and because the radiation resistance corresponding to the horizontal component decreases (the image totally negates the primary source for a horizontal dipole immediately above a perfectly conducting plane).

Figures 9 through 15 show radiation-resistance results for a half-wave linear antenna of inclinations varying from 0° (vertical) to 90° (horizontal) at 15° intervals. The horizontal axis is the dimensionless ratio of the altitude of the antennas midpoint (z_0) to wavelength. A sinusoidal current distribution is assumed, and the radiation resistance is referenced to the current maxima. The radiation resistance is normalized to the free-space half-wave dipole value of $73.1\Omega^2$.

Figure 9 shows comparisons between the results predicted from Equation (44) and exact results¹¹ for a half-wave vertical dipole ($\gamma = 0^\circ$) over a perfectly conducting ground. Results of Equation (44) are shown for 2 segments ($N = 2$), 5 segments ($N = 5$), and 20 segments ($N = 20$). Convergence to the exact result is evident. In particular, the 20-segment calculation differs from the exact calculation by $\lesssim 1\%$.

Figure 15 shows a comparison between the 20-segment result predicted from Equation (44) and exact (analytical) results¹¹ for a half-wave horizontal dipole ($\gamma = 90^\circ$) over a perfectly conducting plane. Again the results differ by $\lesssim 1\%$. As expected, for all orientations the results oscillate and gradually settle to the value one for $z_0/\lambda \gtrsim 1$.

As an example of a somewhat more general application of Equation (44), figures 16 through 33 show results for what has been termed here a half-wave "spiral dipole." The antenna configuration is described by the parametric equations

$$\left. \begin{aligned} x/\lambda &= (R_0/\lambda) \cos \left[\frac{m}{(4R_0/\lambda)} \frac{(t+1)}{(1+m^2)^{1/2}} \right] \\ y/\lambda &= (R_0/\lambda) \sin \left[\frac{m}{(4R_0/\lambda)} \frac{t+1}{(1+m^2)^{1/2}} \right] \\ z/\lambda &= z_0/\lambda + \frac{1}{4(1+m^2)^{1/2}} t \end{aligned} \right\} -1 < t < 1 \quad (56)$$

where $m = \tan \gamma$ and R_0 is the radius of the spiral. The total rotation angle of the spiral is

$$\psi = \frac{m}{2(R_0/\lambda)(1+m^2)^{1/2}} \quad (57)$$

Again, the current distribution is assumed sinusoidal with the radiation resistance referenced to the current maxima. Figures 16 through 21 show results for $R_0/\lambda = 0.1$, figures 22 through 27 are for $R_0/\lambda = 0.2$, and figures 28 through 33 are for $R_0/\lambda = 0.3$. At 30 kHz these values correspond to radii of 1, 2, and 3 km. Equation (57) shows that the total rotation angle increases as m increases and varies inversely with R_0 . All of the figures from 16 through 33 have been generated from Equation (44) using a 20-segment approximation.

Unlike the half-wavelength linear dipole, the "spiral dipole" curves approach values for $z_0/\lambda \approx 1$, less than the free space values because the spiral feature produces a loop like characteristic to the antenna. The level approached for $z_0/\lambda > 1$ decreases as the total rotation angle ψ increases. For the same inclination angle, γ , the tighter spiral yields the lower radiation resistance.

A realistic TACAMU configuration is considered as the final example. Table 1 gives the coordinates of the end points of the segments used to model a 6,000-foot orbit configuration used by Bickel et al.¹²

Table 1. Antenna coordinates (6,000-foot orbit).

x (km)	y (km)	z (km)
-0.275	0.000	1.844
-0.200	-0.175	2.312
-0.689	-0.275	2.937
0.094	-0.350	3.609
0.269	-0.350	4.172
0.469	-0.288	4.750
0.688	-0.125	5.312
0.862	0.181	5.859
0.925	0.575	6.234
0.825	1.000	6.656
0.594	1.425	7.062
0.212	1.737	7.250
0.000	1.862	7.344
0.010	1.862	7.347
0.604	1.750	7.347

Figure 34 shows the radiation resistance calculated from Equation (44) using both a sinusoidal current distribution and the current distribution taken from a NEC program output¹³ at 19.8 kHz for the antenna configuration of table 1 above a perfectly conducting ground. In this case, $z_0 = (z_b + z_t)/2$, where z_b is the z coordinate of the bottom of the antenna, and z_t is the coordinate of the top of the antenna. For the configuration of table 1, $z_0 =$

4.595 km and $z_0/\lambda = 0.303$. The results exhibit the same shape but differ by about 3%. Somewhat surprisingly, the NEC current distribution (which has both in-phase and quadrature components whose ratio slowly varies over the antenna) yields the higher radiation resistance. That may be due, at least partly, to the fact that the NEC current output did not include the precise current maximum (all resistances given here are presumed referenced to the current maximum). At any rate, the agreement is sufficiently encouraging to warrant further comparisons with NEC. In particular, the influence of finite wire diameter, as well as the influence of the finite conductivity of the wire and ground, should be pursued.

Exclusive of the counterpoise, coordinate extremes of which are given by the last two row entries in table 1, the total rotation angle, ψ , of the TACAMO antenna is 3.77 Radians. It is interesting to note that the result for the spiral antenna for $R_0/\lambda = 0.1$, $\gamma = 45^\circ$ (figure 18) corresponds to a total rotation angle $\psi = 3.53$ Radians. Though differing in detail, a decided resemblance exists between the TACAMO result and that of figure 18.

4.0 CONCLUSIONS

A dipole-segmentation formula has been developed for estimating the radiation resistance of thin antennas of arbitrary elevation and configuration over a perfectly conducting ground plane. The formula yields good agreement with the known results for linear-vertical and horizontal half-wave dipoles over a perfectly conducting ground plane. As an illustration of more general configurations, results have been given for half-wave spiral type antennas, as well as for a TACAMO configuration. Preliminary comparison of results for the latter case, with output from the NEC code, indicates a 3% discrepancy. Additional comparisons with NEC should be made with particular emphasis on determining the influence of wire thickness, as well as the influence of the finite conductivity of the antenna wire and of the ground.

5.0 REFERENCES

1. Burke, G. J. and A. J. Poggio, Numerical Electromagnetic Code (NEC) - Method of Moments, NOSC-TD 116, prepared by Lawrence Livermore Laboratory for the Naval Ocean Systems Center and Air Force Weapons Laboratory, July 1977.
2. King, R. W. P., The theory of linear antennas, Harvard University Press, Cambridge, Mass., 1956.
3. Wait, J. R., Possible influence of the ionosphere on the impedance of a ground-based antenna, J. Res. NBS 66D (Radio Prop.), No. 5, 563-569, 1962.
4. Vogler, L. E. and J. L. Noble, Curves of input impedance change due to ground for dipole antennas, NBS Monograph 72, Jan. 1964.
5. Norton, K. A., The physical reality of space and surface waves in the radiation field of radio antennas, Proc. IRE, 25, 1192-1202, 1937.
6. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, Inc., New York, New York, 1941.
7. Gradshteyn, I. S. and Ryzhik, Table of Integrals, Series and Products, 4th edition, Academic Press, New York, New York, 1965.
8. Ferguson, J. A. and D. G. Morfitt, WKB mode summing program for dipole antennas of arbitrary orientation and elevation for VLF/LF propagation, NOSC TR-697, interim report prepared for the Defense Nuclear Agency, Oct. 1981.
9. Pappert, R.A. and L. R. Shockley, WKB mode summing program for VLF/ELF antennas of arbitrary length, shape and elevation, NELC interim report 713, prepared for the Defense Atomic Support Agency, June 1971.
10. Pappert, R. A. and J. E. Bickel, Vertical and horizontal VLF fields excited by dipoles of arbitrary orientation and elevation, Radio Science 5 (12), 1445-1452, 1970.
11. Kraus, J. D., Antennas, McGraw-Hill Book Co., Inc., New York, New York, 1950.
12. Bickel, J. E., D. G. Morfitt, I. J. Rothmuller and W. F. Moler, Propagation analysis of diversity for VLF communication systems, NELC TD 139, Sept. 1971.
13. Fern, D., private communication.

ILLUSTRATIONS

Figure 1. Dipole geometry.

Figure 2. Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Vertically oriented.

Figure 3. Power ratio (Eq. 54) for point dipole versus $z^+ = 2k_z$ where z is the dipole height. Inclined 15° from vertical.

Figure 4. Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 30° from vertical.

Figure 5. Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 45° from vertical.

Figure 5. Power ratio (Eq. 54) for point dipole versus $z^+ = 2k_z$ where z is the dipole height. Inclined 60° from vertical.

Figure 7. Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Inclined 75° from vertical.

Figure 3. Power ratio (Eq. 54) for point dipole versus $z^+ = 2kz$ where z is the dipole height. Horizontally oriented.

Figure 9. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Vertically oriented.

Figure 10. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 15° from vertical.

Figure 11. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 30° from vertical.

Figure 12. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 45° from vertical.

Figure 13. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 60° from vertical.

Figure 14. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Inclined 75° from vertical.

Figure 15. Normalized radiation resistance for linear half-wave dipole versus its normalized center height. Horizontally oriented.

Figure 16. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 15° from vertical.
 $R_0/\lambda = 0.1$.

Figure 17. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 30° from vertical.
 $R_0/\lambda = 0.1$.

Figure 18. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 45° from vertical.
 $R_0/\lambda = 0.1$.

Figure 19. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 60° from vertical.
 $R_0/\lambda = 0.1$.

Figure 20. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 75° from vertical.
 $R_0/\lambda = 0.1$.

Figure 21. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Partial horizontal loop.
 $R_d/\lambda = 0.1$.

Figure 22. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 15° from vertical.
 $R_0/\lambda = 0.2$.

Figure 23. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 30° from vertical.
 $R_0/\lambda = 0.2$.

Figure 24. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 45° from vertical.
 $R_0/\lambda = 0.2$.

Figure 25. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 60° from vertical. $R_0/\lambda = 0.2$.

Figure 26. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 75° from vertical.
 $R_0/\lambda = 0.2$.

Figure 27. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Partial horizontal loop.
 $R_0/\lambda = 0.2$.

Figure 28. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 15° from vertical.
 $R_0/\lambda = 0.3$.

Figure 29. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 30° from vertical.
 $R_0/\lambda = 0.3$.

Figure 30. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 45° from vertical.
 $R_0/\lambda = 0.3$.

Figure 31. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 60° from vertical.
 $R_0/\lambda = 0.3$.

Figure 32. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Inclined 75° from vertical.
 $R_0/\lambda = 0.3$.

Figure 33. Normalized radiation resistance for half-wave spiral type dipole versus its normalized center height. Partial horizontal loop.
 $R_0/\lambda = 0.3$.

Figure 34. TACAMO 6,000-foot orbit configuration.

DISTRIBUTION LIST

<u>DEPARTMENT OF DEFENSE</u>	DIRECTOR
DEPUTY UNDER SECRETARY OF DEFENSE	DEFENSE NUCLEAR AGENCY
CMD, CONT, COMM & INTELL	WASHINGTON, DC 20305
DEPARTMENT OF DEFENSE	DDST
WASHINGTON, DC 20301	TITL TECH LIBRARY
DIRECTOR	RAAE
COMMAND CONTROL TECHNICAL CENTER	STVL
11440 ISAAC NEWTON SQUARE, N	
RESTON, VA 22091	
C-650	
DIRECTOR	DIRECTOR
COMMAND CONTROL TECHNICAL CENTER	JOINT STRAT TGT PLANNING STAFF JCS
ROOM ME682, THE PENTAGON	OUFFUTT AFB
WASHINGTON, DC 20301	OMAHA, NB 68113
C-312	JPST
DIRECTOR	COMMANDER
DEFENSE ADVANCED RESEARCH PROJECT	FIELD COMMAND
AGENCY	DEFENSE NUCLEAR AGENCY
1440 WILSON BLVD	KIRKLAND AFB, NM 87115
ARLINGTON, VA 22209	FCPR
NUCLEAR MONITORING RSCH	
STRATEGIC TECH OFFICE	
DEFENSE COMMUNICATION ENGINEERING CENTER	DIRECTOR INTERSERVICE NUCLEAR WEAPONS SCHOOL
1860 WIEHLE AVENUE	KIRKLAND AFB, NM 87115
RESTON, VA 22090	DOCUMENT CONTROL
CODE R220 (M HOROWITZ)	
CODE R410	
CODE R103	
DIRECTOR	CHIEF
DEFENSE COMMUNICATIONS AGENCY	LIVERMORE DIVISION FLD COMMAND DNA
WASHINGTON, DC 20305	LAWRENCE LIVERMORE LABORATORY
CODE 810	PO BOX 808
CODE 480	LIVERMORE, CA 94550
CODE 101B	FCPRL
DEFENSE COMMUNICATIONS AGENCY	
WWMCCS SYSTEM ENGINEERING ORG	
WASHINGTON, DC 20305	
RL CRAWFORD	
DEFENSE TECHNICAL INFORMATION CENTER	DIRECTOR
CAMERON STATION	NATIONAL SECURITY AGENCY
ALEXANDRIA, VA 22314	FT GEORGE G MEADE, MD 20755
DIAST-5	W65
DB-4C (EDWARD O'FARRELL)	OLIVER H BARTLETT W32
	TECHNICAL LIBRARY
	JOHN SKILLMAN R52
	OJCS/J-3
	THE PENTAGON
	WASHINGTON, DC 20301
	OPERATIONS (WWMCCS EVAL
	OFF, MR TOMA)
	OJCS/J-5
	THE PENTAGON
	WASHINGTON, DC 20301
	PLANS & POLICY (NUCLEAR DIVISION)
	UNDER SECRY OF DEFENSE FOR RESEARCH
	AND ENGINEERING
	DEPARTMENT OF DEFENSE
	WASHINGTON, DC 20301
	S&SS (OS)

DEPARTMENT OF THE ARMY

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
US ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
DELAS-AE-M (FE NILES)

COMMANDER
HARRY DIAMOND LABORATORIES
2800 POWDER MILL RD
ADELPHI, MD 20783
DELHD-NP (FN WIMENITZ)
MILDRED H WEINER DRXDO-II

COMMANDER
US ARMY NUCLEAR AGENCY
7500 BACKLICK ROAD
BUILDING 2073
SPRINGFIELD, VA 22150
MONA-WE (J BERBERET)

CHIEF
US ARMY RESEARCH OFFICE
PO BOX 12211
TRIANGEL PARK, NC 27709
DRXRD-ZC

DEPARTMENT OF THE NAVY
CHIEF OF NAVAL OPERATIONS
NAVY DEPARTMENT
WASHINGTON, DC 20350
OP 941
OP 604C3
OP 943
OP 981

CHIEF OF NAVAL RESEARCH
NAVY DEPARTMENT
ARLINGTON, VA 22217
CODE 402
CODE 420
CODE 421
CODE 461
CODE 464

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CENTER
4301 SUITLAND RD BLDG 5
WASHINGTON, DC 20390

OFFICER-IN-CHARGE
WHITE OAK LABORATORY
NAVAL SURFACE WEAPONS CENTER
SILVER SPRING, MD 20910
CODE WA501 NAVY NUC PRGMS OFF
CODE WX21 TECH LIBRARY

COMMANDER
NAVAL TELECOMMUNICATIONS COMMAND
NAVTELCOM HEADQUARTERS
4401 MASSACHUSETTS AVE, NW
WASHINGTON, DC 20390
CODE 24C

COMMANDING OFFICER
NAVY UNDERWATER SOUND LABORATORY
FORT TRUMBULL
NEW LONDON, CT 06320
PETER BANNISTER
DA MILLER

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
NAVY DEPARTMENT
WASHINGTON, DC 20376
N141

DEPARTMENT OF THE AIR FORCE
COMMANDER
ADC/DC
ENT AFB, CO 80912
DC (MR LONG)

COMMANDER
ADCOM/XPD
ENT AFB, CO 80912
XPQDQ
XP

AF GEOPHYSICS LABORATORY, AFSC
HASCOM AFB, MA 01731
CRU (S HOROWITZ)

AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117
SUL (2)
DYC

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13440
EMTLD DOC LIBRARY

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSOM AFB, MA 01731
EEP JOHN RASMUSSEN

COMMANDER IN CHIEF
STRATEGIC AIR COMMAND
OFFUTT AFB, NB 68113
NRT
XPFS

LAWRENCE LIVERMORE NATIONAL
LABORATORY
PO BOX 808
LIVERMORE, CA 94550
TECH INFO DEPT L-3

LOS ALAMOS NATIONAL SCIENTIFIC
LABORATORY
PO BOX 1663
LOS ALAMOS, NM 87545
DOC CON FOR TF TASCHEK
DOC CON FOR D R WESTERVELT
DOC CON FOR PW KEATON

SANDIA LABORATORY
LIVERMORE NATIONAL LABORATORY
PO BOX 969
LIVERMORE, CA 94550
DOC CON FOR BE MURPHEY
DOC CON FOR TB COOK ORG 8000

SANDIA NATIONAL LABORATORY
PO BOX 5800
ALBUQUERQUE, NM 87115
DOC CON FOR SPACE PROJ DIV
DOC CON FOR AD THORNBROUGH
DOC CON FOR 3141 SANDIA RPT COLL

OTHER GOVERNMENT
DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, DC 20234
RAYMOND T MOORE

DEPARTMENT OF COMMERCE
OFFICE OF TELECOMMUNICATIONS
INSTITUTE FOR TELECOM SCIENCE
BOULDER, CO 80302
WILLIAM F UTLAUT
LA BERRY
A GLENN JEAN

DEPARTMENT OF DEFENSE CONTRACTORS
AEROSPACE CORPORATION
PO BOX 92957
LOS ANGELES, CA 90009
IRVING M GARFUNKEL

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD RD
BURLINGTON, MA 01803
RADIO SCIENCES

THE BOEING COMPANY
PO BOX 3707
SEATTLE, WA 98124
GLENN A HALL
JF KENNEY

ESL, INC
495 JAVA DRIVE
SUNNYVALE, CA 94086
JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
PO BOX 8555
PHILADELPHIA, PA 19101
SPACE SCIENCE LAB (MH BORTNER)

KAMAN TEMPO
816 STATE STREET
PO DRAWER QQ
SANTA BARBARA, CA 93102
B GAMBILL
DASIA C
WARREN S KNAPP

GTE SYLVANIA, INC
ELECTRONICS SYSTEMS GRP
EASTERN DIVISION
77 A STREET
NEEDHAM, MA 02194
MARSHAL CROSS

ITT RESEARCH INSTITUTE
10 WEST 35TH STREET
CHICAGO, IL 60616
TECHNICAL LIBRARY

UNIVERSITY OF ILLINOIS
DEPARTMENT OF ELECTRICAL ENGINEERING
URBANA, IL 61803
AERONOMY LABORATORY

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
J NEWLAND
PT KOMISKE

LOCKHEED MISSILE & SPACE CO, INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
EE GAINES
WL IMHOFF D/52-12
JB REAGAN D652-12
RG JOHNSON D/52-12

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY
PO BOX 73
LEXINGTON, MA 02173
DM TOWLE

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
R HENDRICK
F FAJEN

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025
EC FIELD, JR

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERIC RESEARCH LABORATORY
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
IONOSPHERIC RSCH LAB

R&D ASSOCIATES
PO BOX 9695
MARINA DEL REY, CA 90291
FORREST GILMORE
WILLIAM J KARZAS
PHYLLIS GREIFINGER
CARL GREIFINGER
HA ORY
BRYAN GABBARD
RP TURCO
SAUL ALTSCHULER

RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406
TECHNICAL LIBRARY
CULLEN CRAIN

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
DONALD NEILSON
GEORGE CARPENTER
WG CHETNUT
JR PETERSON
GARY PRICE

STANFORD UNIVERSITY
RADIO SCIENCE LABORATORY
STANFORD, CA 94305
RA HELLIWELL
FRASER SMITH
J KATSURFRAKIS

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
4800 OAK GROVE DRIVE
PASADENA, CA 91103
ERNEST K SMITH

E

M

D

D

T i

C

9

-

86