FarmWise: Smart Agriculture Investment Case

Mohamed Iyed Tahri Chaima Ben Hamida Mohamed Iheb Hichri Rami Jellali Anas Ganedi

May 2025

Contents

1	Introduction	2
2	Motivation	2
3	Challenges and Solutions	2
	3.1 Challenges	2
	3.2 FarmWise Solutions	2
4	Per-Hectare Investment Analysis	3
	4.1 Cost Breakdown	3
	4.2 Expected Returns	3
5	Scaling to 20 Hectares	3
	5.1 Total Investment	3
	5.2 Expected Returns	3
6	Sustainable Profit Model	4
7	Potential Assistance	4
8	Project Timeline	4
	8.1 Next 6 Months	4
	8.2 6 Months to 1 Year	4
	8.3 1 to 3 Years	4
9	Conclusion	5

1 Introduction

FarmWise is an innovative smart agriculture platform designed to enhance productivity and sustainability for Tunisian farmers. By integrating IoT sensors, edge computing, and AI-driven analytics, FarmWise provides real-time insights to optimize farming practices.

2 Motivation

Tunisia's agriculture sector is vital, contributing approximately 9.47% to the country's GDP in 2023 [1]. However, challenges such as low crop yields, water scarcity, and climate change impacts necessitate the adoption of smart farming solutions to ensure food security and economic growth.

3 Challenges and Solutions

3.1 Challenges

- Low Crop Yields: Average yields are under 2 tonnes per hectare, significantly lower than the average for lower-middle-income countries [2].
- Water Scarcity: Agriculture consumes about 80% of Tunisia's natural water resources, highlighting the need for efficient water management [3].
- Climate Change: Increasing droughts and soil degradation affect agricultural productivity [4].
- Limited Access to Technology: High initial costs and limited digital literacy hinder technology adoption among farmers [5].

3.2 FarmWise Solutions

- Precision Agriculture: Deployment of IoT sensors and AI models to monitor and optimize crop growth.
- Efficient Water Management: Real-time soil moisture monitoring and predictive irrigation scheduling.
- Climate Resilience: Data-driven insights to adapt farming practices to changing climate conditions.
- Accessible Technology: Affordable, offline-capable solutions with user-friendly interfaces and training programs.

4 Per-Hectare Investment Analysis

4.1 Cost Breakdown

Table 1: Estimated Cost per Hectare

Component	Unit Cost (TND)	Quantity
LoRaWAN Gateway (shared)	1,200	0.2
Soil Moisture Sensors	45	4
Temperature & Humidity Sensors	30	2
Edge Computing Device	300	1
Solar Panel & Battery System	210	1
Installation & Miscellaneous	150	_
Total Estimated Cost	1,800 TNI)

4.2 Expected Returns

Assuming an increase in yield from 2 to 3 tonnes per hectare and a market price of 1,000 TND per tonne:

- Additional Revenue: 1 tonne x 1,000 TND = 1,000 TND
- Net Profit (Year 1): 1,000 TND 1,800 TND = -800 TND
- Net Profit (Year 2 onwards): 1,000 TND (assuming no additional investment)

5 Scaling to 20 Hectares

5.1 Total Investment

• Per Hectare Cost: 1,800 TND

• Total for 20 Hectares: 1,800 TND x 20 = 36,000 TND

5.2 Expected Returns

• Additional Revenue per Hectare: 1,000 TND

• Total Additional Revenue: 1,000 TND x 20 = 20,000 TND

• Net Profit (Year 1): 20,000 TND - 36,000 TND = -16,000 TND

• Net Profit (Year 2 onwards): 20,000 TND annually

6 Sustainable Profit Model

- Subscription Services: Monthly fees for data analytics and support.
- Training Programs: Paid workshops and certifications for farmers.
- Partnerships: Collaborations with cooperatives and NGOs for bulk deployments.

7 Potential Assistance

- Banks: Access to agricultural loans for equipment purchase.
- Government Programs: Subsidies and grants for smart farming initiatives.
- NGOs: Support for training and deployment in rural areas.

8 Project Timeline

8.1 Next 6 Months

- Finalize hardware and software integration.
- Conduct pilot tests on 5 hectares.
- Gather data and refine AI models.

8.2 6 Months to 1 Year

- Expand deployment to 20 hectares.
- Launch subscription services.
- Establish partnerships with local cooperatives.

8.3 1 to 3 Years

- Scale to 100 hectares.
- Introduce advanced features (e.g., pest detection).
- Explore international markets.

9 Conclusion

FarmWise presents a viable solution to enhance agricultural productivity in Tunisia. With a manageable initial investment and a clear path to profitability, it offers an attractive opportunity for investors interested in sustainable agriculture and technology.

References

- [1] CEIC TN: GDP:%TotalData. Tunisia ofValueAdded: Agri-Retrieved https://www.ceicdata.com/en/tunisia/ culture. from governance-economic-environment-and-growth-non-oecd-member-annual/ tn-gdp--of-total-value-added-agriculture
- [2] Mordor Intelligence. Agriculture In Tunisia Market Size & Share Analysis. Retrieved from https://www.mordorintelligence.com/industry-reports/agriculture-in-tunisia
- [3] ISS African Futures. *Tunisia's Agricultural Landscape*. Retrieved from https://issafrica.org/research/african-futures/tunisia
- [4] Wikipedia. Climate change in Tunisia. Retrieved from https://en.wikipedia.org/wiki/Climate_change_in_Tunisia
- [5] New Medit Journal. Adoption Barriers in Tunisian Agriculture. Retrieved from https://newmedit.iamb.it/2023/03/15/adoption-barriers-in-tunisian-agriculture