Problem definition:

Predicting water quality parameters such as pollutants levels at different points along a river over a specific period of time. The main goal is to develop a model that can accurately forecast these parameters based on various environmental factors, allowing for proactive management and mitigation of water pollution.

Literature Survey:

The momentum concentrate on manages computer based intelligence models utilized for stream WQ displaying. Various models have been planned and applied throughout the long term. Artificial intelligence models have been partitioned into six developments, specifically, ANN model, bit based model, fluffy based models, corresponding models, half breed models that join designs of more than one model or procedures and other metaheuristic models that come from various model characterizations. The initial three classes are the traditional computer based intelligence models and their better forms every now and again named similar by past scientists. In any case, reciprocal models assess the conceivable utilization of wavelet with the blend of different models consequently, they have been classified in a different gathering, which permits the perusers to all the more likely comprehend the near examination of its presentation and viability to manage waterway WQ information when combined with artificial intelligence models. The fifth class was made considering the investigations which managed the nature-propelled calculation for waterway WQ demonstrating, as these calculations conduct depend on a comparative idea which makes them reasonable for a similar class. Subsequently, it groups any remaining metaheuristic models which fall under no past classifications. In any case, in future, these different models can be additionally separated according to their engineering or idea when there is an impressive expansion in the examination articles which is likewise a current hole and future perspectives.

Data Collection & Preparation:

The dataset utilized in this study is gathered from certain verifiable areas in India. It contained 1679 examples from various Indian states during the period from 2005 to 2014. The dataset has 7 huge boundaries, in particular, broke up

oxygen (DO), pH, conductivity, organic oxygen interest (Body), nitrate, waste coliform, and complete coliform. Information was gathered by the Indian government to guarantee the nature of the provided drinking water. Information Preprocessing. The handling stage is vital in information examination to further develop the information quality. In this stage, the WQI has been determined from the most huge boundaries of the dataset. Then, at that point, water tests have been arranged based on the WQI values. For getting predominant precision, the z-score strategy has been utilized as an information standardization strategy. Water Quality Record Estimation. To gauge water quality, WQI is utilized to be determined utilizing different boundaries that essentially influence WQ [40-42].

The WQI has been calculated using the following formula:

$$WQI = \sum N i = 1qi \times wi \sum N i = 1wi, \delta 1$$

where: N is the total number of parameters included in the WQI calculations qi is the quality rating scale for each parameter i calculated below, and wi is the unit weight for each parameter.

```
qi = 100 \times Vi - VIdeal Si - VIdeal, \delta 2P
```

where: Vi is the measured value of parameter i in the tested water samples VIdeal is the ideal value of parameter i in pure water (0 for all parameters except DO = 14:6 mg/l and pH = 7:0), and Si is the recommended standard value of parameter i .wi = K Si , $\eth 3P$ where K is the proportionality constant that can be calculated as follows: $K = 1 \sum N i = 1Si$, $\eth 4P$.Z-Score Normalization Method. Normalization is a way to simplify calculations. It is a dimensional expression transformed into a nondimensional expression and becomes a scalar. Z-score normalization (or normalization score) is a normalization method used to normalize parameters by using the mean (μ) and standard deviation (σ) values of the tested data. It can be calculated as follows:

```
Z-score = \eth \triangleright x - \mu \sigma,
```

```
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
main_df = pd.read_csv("/kaggle/input/water-potability/water_potability.
csv")
df = main_df.copy()
df.head()
```

	ph	hardnes s	so	Sulfat e	Conduct ivity	Organic_c arbon	Trihalomet hanes	Turbidit y	Potabi lity	
0	NaN	204.890 455	20791.31 8981	7.300 212	368.516 441	564.30865 4	10.379783	86.9909 70	2.963 135	0
1	3.716 080	129.422 921	18630.05 7858	6.635 246	NaN	592.88535 9	15.180013	56.3290 76	4.500 656	0
2	8.099 124	224.236 259	19909.54 1732	9.275 884	NaN	418.60621 3	16.868637	66.4200 93	3.055 934	0
3	8.316 766	214.373 394	22018.41 7441	8.059 332	356.886 136	363.26651 6	18.436524	100.341 674	4.628 771	0
4	9.092 223	181.101 509	17978.98 6339	6.546 600	310.135 738	398.41081 3	11.558279	31.9979 93	4.075 075	0

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
print(df.shape)
print(df.shape)
(3276, 10)
print(df.columns)
Index(['ph', 'Hardness', 'Solids', 'Chloramines', 'Sulfate', 'Conductiv
ity',
       'Organic_carbon', 'Trihalomethanes', 'Turbidity', 'Potability'],
      dtype='object')
df.describe()
```

ph	Hardn ess	Solids	Chlora mines	Sulfate	Condu ctivity	Organic _carbon	Trihalom ethanes	Turbidi ty	Potabil ity	
co un t	2785.0 00000	3276.0 00000	3276.0 00000	3276.0 00000	2495.0 00000	3276.00 0000	3276.00 0000	3114.0 00000	3276.0 00000	3276.0 00000
m ea n	7.0807 95	196.36 9496	22014. 092526	7.1222 77	333.77 5777	426.205 111	14.2849 70	66.396 293	3.9667 86	0.3901 10
std	1.5943	32.879	8768.5	1.5830	41.416	80.8240	3.30816	16.175	0.7803	0.4878
	20	761	70828	85	840	64	2	008	82	49
mi	0.0000	47.432	320.94	0.3520	129.00	181.483	2.20000	0.7380	1.4500	0.0000
n	00	000	2611	00	0000	754	0	00	00	00
25	6.0930	176.85	15666.	6.1274	307.69	365.734	12.0658	55.844	3.4397	0.0000
%	92	0538	690297	21	9498	414	01	536	11	00
50	7.0367	196.96	20927.	7.1302	333.07	421.884	14.2183	66.622	3.9550	0.0000
%	52	7627	833607	99	3546	968	38	485	28	00
75	8.0620	216.66	27332.	8.1148	359.95	481.792	16.5576	77.337	4.5003	1.0000
%	66	7456	762127	87	0170	304	52	473	20	00
m	14.000	323.12	61227.	13.127	481.03	753.342	28.3000	124.00	6.7390	1.0000
ax	000	4000	196008	000	0642	620	00	0000	00	00

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64

```
3
   Chloramines
                   3276 non-null
                                 float64
   Sulfate
                   2495 non-null
                                 float64
5
                                 float64
   Conductivity
                   3276 non-null
   Organic_carbon 3276 non-null float64
   Trihalomethanes 3114 non-null
                                 float64
   Turbidity
                   3276 non-null
                                 float64
8
9
   Potability
                   3276 non-null
                                  int64
```

dtypes: float64(9), int64(1)

memory usage: 256.1 KB

print(df.nunique())

ph	2785
Hardness	3276
Solids	3276
Chloramines	3276
Sulfate	2495
Conductivity	3276
Organic_carbon	3276
Trihalomethanes	3114
Turbidity	3276
Potability	2
d+	

dtype: int64

print(df.isnull().sum())

ph	491
Hardness	0
Solids	0
Chloramines	0
Sulfate	781
Conductivity	0
Organic_carbon	0
Trihalomethanes	162
Turbidity	0
Potability	0
dtype: int64	

df.dtypes

ph	float64
Hardness	float64
Solids	float64
Chloramines	float64
Sulfate	float64
Conductivity	float64
Organic_carbon	float64
Trihalomethanes	float64
Turbidity	float64
Potability	int64

dtype: object

```
corr = df.corr()
c1 = corr.abs().unstack()
c1.sort_values(ascending = False)[12:24:2]
```

Hardness Sulfate 0.106923
ph Solids 0.089288
Hardness ph 0.082096
Solids Chloramines 0.070148
Hardness Solids 0.046899
ph Organic_carbon 0.043503

dtype: float64


```
df.hist(column='Hardness', by='Potability')
```

```
df.nunique()
df.nunique()
```


df.nunique()

ph	2785
Hardness	3276
Solids	3276
Chloramines	3276
Sulfate	2495
Conductivity	3276
Organic_carbon	3276
Trihalomethanes	3114
Turbidity	3276
Potability	2
d+	

dtype: int64

lg = accuracy_score(y_test, pred_lg)
print(lg)

0.6284658040665434