

Vivekananda College of Engineering & Technology

[Sponsored by Vivekananda Vidyavardhaka Sangha, Puttur ®]
Affiliated to Visvesvaraya Technological University
Approved by AICTE New Delhi & Govt of Karnataka

Rev 1.0 FY- PHY 17/08/15

INTERNAL ASSESSMENT TEST - 1

	2111611111		
Dept: FY	Sem / Div:I /A,B,C & D	Sub:Engineering Physics	S Code:15PHY12
Date: 20/08/2015	Time:3.00pm - 4.30pm	Max Marks: 40	Elective: N
Note: (i)Answer any	2 full questions.		22 - 22
(ii)Some constants:	$e = 1.6 \times 10^{-19} \mathrm{C}; c = 3 \times 10^{8}$	m/s; $h = 6.626 \times 10^{-34} \text{ Js}$; k	$= 1.38 \times 10^{-23} \text{ J/K}$

QN		Questions		Marks
1	a	What is a perfect black body and explain characteristics of black body radiation spectrum with diagram?	L2	5
	b	Explain quantum theory of radiation and reduce Planck's law to Wien's law and Rayleigh-Jeans law.	L2	7
-	С	State and explain Heisenberg's uncertainty principle and discuss its physical significance.	L2	4
	А	Explain Compton effect.	L2	4
2 3	a	Explain the limitations of Wien's law and Rayleigh- Jeans law of black body radiation.	L2	4
	h	Explain dual nature of light.	L2	3
		Explain the concept of phase velocity and group velocity and obtain the expression for group velocity.	L2	8
	d	X-ray photons of energy 0.12 MeV undergo Compton scattering through 180°. Calculate energy and wavelength of the scattered photon.	L3	5
3	a	State de Broglie hypothesis and show that the de Broglie wavelength for an electron accelerated by a potential difference V volt is $\lambda = \frac{1.226}{\sqrt{V}} nm$	L2	7
	b	Derive the relation between group velocity and phase velocity and show that group velocity is equal to particle velocity.	L2	8
	c	Compute the de Broglie wavelength for a neutron moving with one tenth part of the velocity of light. Given: Mass of neutron is $1.674 \times 10^{-27} kg$	L3	3
	4	If the group velocity of a particle is $3 \times 10^6 \text{m/s}$, find its phase velocity.	L3	2

May

Prepared by:

Checked by:

Prepared by:

Nehru Nagar, Puttur - 574 203, DK, Karnataka State - INDIA.

Phone: +91-8251-235955, 234555 Fax: 236444, Web: www.vcetputtur.ac.in, E-Mail: iso@vcetputtur.ac.in

HOD 17/3/15

Page: 1