William Adams Lab two: Network Sniffing IS 3513-002 November 28, 2023 Professor Wooldridge In lab 4, "Network Sniffing we got to use and experiment with "Wireshark" for the first time. "Wireshark is a network packet analyzer. A network packet analyzer presents captured packet data in as much detail as possible." (What) I have used Wireshark on and off for the past 2 years, so I was familiar on how to get around the application well. After reading the instructions and the steps on the lab I was confident in my ability to get it done without any major problems. Wireshark is a major application for a cyber security worker in today's workforce, so I have been trying to gain more knowledge with the application and practicing as much as I can. With this being the last lab in this class, I was very excited to gain some more knowledge, as these labs have helped me develop my thoughts more and just gain more knowledge in general about cyber security applications that can help me in the future.

To start the lab, we were supposed to download and install Wireshark on our device. I've had Wireshark downloaded on my device for probably about three years now, so I didn't have to do the whole download process which was nice. When I did download Wireshark years ago, I didn't have any problems, it was very simple and an easy installation. With the second step in the lab, we had to put it into capture mode on our wireless connection. This part was easy to follow, I have done packet capturing from time to time, so I had no real trouble with this step. I then accessed a single site for the next step in the lab, I accessed a site on a web browser I was using and then observed what I was looking at after I stopped the capture. When accessing a website using the application Wireshark to capture network traffic, I did see HTTP packets when analyzing the capture that I had conducted when accessing the website. I thought this was pretty interesting because when you do a normal capture of traffic on the network and you don't access any sites, you don't get any HTTP packets that come in. I then cleared my capture and then started another capture where I Logged onto a remote service or application via your network ISP or another Internet connection that requires authentication. For this step I had a little trouble, but it was my fault because I wasn't reading the step correctly. I can't even say what I was reading it as, but I finally got what I was supposed to do. When logging onto a remote service or application via your network ISP or another Internet connection that requires authentication and capturing the traffic with Wireshark, the captured data will reveal the details of the authentication process. I then had to repeat the steps from step five and six and do them again for 8 other protocols that I had to capture. The first protocol that I had to capture was an ARP protocol. ARP (Address Resolution Protocol) may contribute to local network communication; it plays a limited role in authenticating with remote services. Capturing ARP (Address Resolution Protocol) traffic is generally not a challenging task due to the nature of how ARP operates within a network. ARP is a fundamental protocol used for mapping IP addresses to MAC addresses at the local network level. Unlike some higher-layer protocols that might involve encryption or complex handshakes, ARP operates as a simple broadcast protocol. With the second protocol that I had to capture, I had to capture a TCP protocol from my capturing. When engaging in the logon process to a remote service or application via your network ISP or another Internet connection requiring authentication, TCP serves as the foundational protocol orchestrating the reliable and structured communication between your device and the remote server. The TCP three-way handshake initiates the connection, ensuring a systematic setup that establishes a secure channel for data exchange. There were also a ton of TCP

protocols that were captured. The third protocol that I had to capture for this step was UDP (User Datagram Protocol). When logging onto a remote service or application via your network ISP or another Internet connection that requires authentication, the role of UDP (User Datagram Protocol) in the captured traffic is often associated with specific types of applications. Unlike TCP, UDP is a connectionless protocol, which means it doesn't establish a persistent connection before transmitting data. In scenarios requiring authentication, UDP might be involved in certain aspects of the communication. There were tons of UDP packets that were captured during this time. For the next protocol that I had to capture for this step was HTTP (Hypertext Transfer Protocol). HTTP plays a crucial role in facilitating the exchange of information between the client and the remote server. I thought it was really interesting that when you access a site on the internet that there will be HTTP packets that come up. In the case of authentication, the HTTP request may include login credentials, usually in the form of a username and password. For the next protocol that I have captured for this step is HTTPS (TLS). For this specific lab I have used the TLS (Transport Layer Security) protocol. TLS is very crucial for securing the authentication process for a network. The TLS protocols that I had secured was actually pretty interesting, they had YouTube on the source. I did look up something random on YouTube for this specific situation, so I thought it was very cool how it said YouTube on the source. The next protocol that I had captured on this step was FTP (File Transfer Protocol), this was probably the protocol that I had the hardest time to recover and gave me some problems. I honestly wasn't able to recover the protocol, I did watch the video that was provided if we were having trouble, and I couldn't find where to put the connection in loopback mode. I'm not sure if it's because I am on a mac computer and the video that was provided was on windows, I couldn't figure it out sadly. For the next protocol that I needed to capture for this step was ICMP (Internet Control Message Protocol). ICMP packets, while not directly involved in authentication, contribute to the overall network health and efficiency, reflecting the dynamic nature of network communication. I was able to get a lot of packets that came in with this protocol and were named "ICMPv6" so I'm not 100% if that is correct but those were the only ICMP protocols that I had received on my end from my capture. For the last protocol that I had recovered that I needed for this step was DNS (Domain Name System). In the Wireshark capture, the DNS packets reveal the initial steps of the communication. showcasing the translation of human-readable domain names into machine-readable IP addresses. I was able to recover a lot of DNS protocols from my capture, which it was cool to see how my laptop name was on the source. After I had gotten all of the protocols that was required, I restarted my scan and let it run for an hour long and then I stopped to see the resorts. I was at my girlfriend's house while I was doing the scan, it was really fascinating everything that I picked up in the hour that the scan was going on for. I was able to pick up girlfriend's phone source which was really fascinating to see all of that. I was also doing homework while the scan was taking place, it was cool to see how the capture got the websites I was using while the capture was going on. After doing the four-hour capture, it was also really interesting to see how much data and packets were recovered in that time span. During that time, I was just doing homework and watching tv and it is crazy what it can discover when you are capturing data traffic over the network.

HTTP (Hypertext Transfer Protocol) can be a little concerning when you really think about it, especially when transmitting sensitive information. HTTP sends data in plaintext, making it susceptible to interception and unauthorized access. This lack of encryption raises concerns about the confidentiality of personal data, such as login credentials or private messages.

Wireshark has been a very useful and powerful tool for security professionals for many years. Wireshark was founded in 1998 by Gerald Combs and is still one of the most useful tools to date for data capturing over a network. "Wireshark intercepts traffic and converts that binary traffic into human-readable format. This makes it easy to identify what traffic is crossing your network, how much of it, how frequently, how much latency there is between certain hops, and so forth." (Porup 2018) I have only been using Wireshark for a couple years now and I'm no expert or professional, but I could tell how valuable a tool like this can be when finding data traffic. When I had Wireshark capture my network for about an hour, it was insane to me how much data it captured during the time period, so I can only imagine what a security professional can do with the application. One of the most impactful tools that Wireshark offers is that it provides real-time visuality into what is going on with a networks traffic. This will allow professionals to scrutinize packets at a granular level and be able to use this application on the daily. Security professionals use this application to conduct analyses of network traffic patterns. With how many filters that Wireshark offers, it can make it easier to see what you want to view. By investigating and examining packet details, they can identify security threats, vulnerabilities, and unauthorized access to networks. "Given the large volume of traffic that crosses a typical business network, Wireshark's tools to help you filter that traffic are what make it especially useful. Capture filters will collect only the types of traffic you're interested in, and display filters will help you zoom in on the traffic you want to inspect." (Porup 2018) In this lab specifically, the amount of traffic that can come through in such a short amount of time is ridiculous to me. The use of filters with Wireshark can be extremely helpful when it comes to finding specific information. Wireshark can also have great significance in security operations, it can help you find network vulnerabilities and identify them as fast as possible.

Security professions can use Wireshark as a tool to prevent future or detect incidents that are happening. Cyber security analyst can set filters in place for them to focus on specific types of traffic that is coming into the network. This can be malware infections, DDoS attacks, or any unauthorized activity that is happening over the network. "It also gives cybersecurity professionals and cybercrime forensic investigators the ability to trace network connections. Using it, they could access the contents of suspected transactions in order catch criminal and malicious activity." (OT 2021) I thought this quote was very interesting and is crazy how cybercrime investigator teams can use this application to really catch malicious actors. It does make sense on why you could use this application to catch suscepts, using this to look over their network to see if there is any malicious activity that is going on over the network. Wireshark can enhance the support of incident response by providing a detailed record of network during a security breach that may have happened. This is extremely valuable for many reasons, the fact that you can get real time footage of what Is coming in and out of a network is crucial for incident response. The importance of Wireshark in threat intelligence cannot be overstated. By enabling analysts to link existing danger indicators with network activity, the solution improves the organization's capacity to proactively counter new attacks. Security teams can maintain a proactive and knowledgeable security posture by swiftly identifying and responding to patterns linked to hostile actors by utilizing Wireshark's filtering capabilities and integrating threat intelligence feeds. Additionally, Wireshark helps with compliance initiatives by making network activity monitoring and audits easier. Sensitive data must be transmitted securely according to compliance standards, and Wireshark helps businesses to confirm that these rules are being followed. The technology may be used by security experts to examine data flows and make sure that access rules, encryption standards, and other compliance procedures are always followed. "Wireshark can be used to audit network security configurations and policies. By analyzing network traffic, security professionals can identify vulnerabilities, weak spots, and potential security risks." (Ashwani 2023) I thought this quote was very interesting, security audits are very crucial to any organization due to the fact that it can limit vulnerabilities in the network. Wireshark can unravel patterns that are happening in the network that can be patched by a security audit or there may have been a rarity that has happened on the network that can be looked at from the filters. With how much data and packets are sent and received every single second of every single day, no matter where you are, I can see how this can have a pivotal role in how cyber security professionals do their profession on a day to day basis.

I believe that Wireshark is great for any organization to use but I don't believe it is the only thing an organization can count on to provide security for there organization. Following security procedures and following security guidelines make a bigger impact on the security of an organization. In other courses that I have taken past and this semester, it has become paramount on how critical security procedures really are in the cyber industry. While Wireshark can provide a great tool that you can use with the use of data capturing over a network, it can only do so much in terms of security. On the other hand, Wireshark is probably the most valuable tool that I have come across while learning about cyber security so I think both can be true about how important Wireshark is.

Appliances

1910 7.870758	Wills-MBP.attlocal	pki-goog.l.google	HTTP	448 GET /gts1c3/MFAwTjBMMEowSD/
1921 7.889867	pki-goog.l.google	Wills-MBP.attlocal	0CSP	798 Response
6095 13.181495	Wills-MBP.attlocal	pki-goog.l.google	HTTP	450 GET /gts1c3/MFAwTjBMMEowSD/
6104 13.199951	pki-goog.l.google	Wills-MBP.attlocal	0CSP	798 Response
6619 15.457630	Wills-MBP.attlocal	pki-goog.l.google	HTTP	452 GET /gts1c3/MFAwTjBMMEowSD/
6677 15.475923	pki-goog.l.google	Wills-MBP.attlocal	0CSP	799 Response
7338 18.018577	Wills-MBP.attlocal	pki-goog.l.google	HTTP	448 GET /gts1c3/MFAwTjBMMEowSD/
7341 18.033813	pki-goog.l.google	Wills-MBP.attlocal	0CSP	798 Response
9093 23.271086	Wills-MBP.attlocal	pki-goog.l.google	HTTP	448 GET /gts1c3/MFAwTjBMMEowSD/
9097 23.286358	pki-goog.l.google	Wills-MBP.attlocal	0CSP	799 Response
9823 24.595271	rr3.sn-q4fl6n6d.go	Wills-MBP.attlocal	HTTP	352 HTTP/1.1 204 No Content
9826 24.623313	Wills-MBP.attlocal	rr3.sn-q4fl6n6d.go	HTTP	110 Continuation
9829 24.640816	rr3.sn-q4fl6n6d.go	Wills-MBP.attlocal	HTTP	352 HTTP/1.1 204 No Content
9832 24.641257	Wills-MBP.attlocal	rr3.sn-q4fl6n6d.go	HTTP	110 Continuation

Figure 1 my first http captures when I first entered a site.

	1.103311	e.ozec12120110.5pa				APPLICACION VALA, APPLICACION VALA
	7.190060	Wills-MBP.attlocal				62975 → https(443) [ACK] Seq=1132 Ack=1138876 Win=2046528 Len=0 TSval=2679333140 TSecr=1430597330
	7.495015	66:d2:48:30:4a:33	Spanning-tree-(for_			Conf. Root = 0/0/60:d2:48:30:4a:32
	7.803212		st-routers.mcast.n			vcom-tunnel(8001) → vcom-tunnel(8001) Len=200
	7.803213	66:d2:48:30:4a:33	Broadcast	0x7373		Ethernet II
2374	7.803213	Samsung.attlocal.n	192.168.1.255	UDP	77	40524 → 15600 Len=35
	8.417869	66:d2:48:30:4a:33	Spanning-tree-(for_			Conf. Root = 0/0/60:d2:48:30:4a:32
2376	8.724333	66:d2:48:30:4a:33	Broadcast	0x7373		Ethernet II
2377	9.030908	SamsungElect_10:f6	Broadcast	ARP	60	Who has 192.168.1.254? Tell 192.168.1.212
2378	9.135259	fe80::62d2:48ff:fe	Wills-MBP.attlocal	ICMPv6		Neighbor Solicitation for fe80::1c10:3dd9:59e0:9310 from 60:d2:48:30:4a:30
2379	9.135342	Wills-MBP.attlocal	fe80::62d2:48ff:fe	ICMPv6	78	Neighbor Advertisement fe80::1c10:3dd9:59e0:9310 (sol)
2380	9.141548	218.253.158.34.bc	Wills-MBP.attlocal	TCP	77	http(80) → 62294 [PSH, ACK] Seq=1 Ack=1 Win=16 Len=11 TSval=193544038 TSecr=857858900
2381	9.141626	Wills-MBP.attlocal	218.253.158.34.bc	TCP	66	62294 → http(80) [ACK] Seq=1 Ack=12 Win=2047 Len=0 TSval=857918800 TSecr=193544038
2382	9.438514	Wills-MBP.attlocal	2606:4700:3035::68	TCP	74	62971 → https(443) [ACK] Seq=1 Ack=1 Win=65535 Len=0
2383	9.454862	2606:4700:3035::68	Wills-MBP.attlocal	TCP	86	[TCP ACKed unseen segment] https(443) - 62971 [ACK] Seq=1 Ack=2 Win=8 Len=0 TSval=264727982 TSecr
2384	9.496007	Wills-MBP.attlocal	dsldevice6.attloca	DNS	107	Standard query 0xe4ac PTR 218.253.158.34.in-addr.arpa
2385	9.520765	dsldevice6.attloca	Wills-MBP.attlocal	DNS	160	Standard query response 0xe4ac PTR 218.253.158.34.in-addr.arpa PTR 218.253.158.34.bc.googleuserco
	9.644827	66:d2:48:30:4a:33	Spanning-tree-(for-	STP		Conf. Root = 0/0/60:d2:48:30:4a:32
2387	9.645226	Samsung.attlocal.n	st-routers.mcast.n	UDP	242	vcom-tunnel(8001) → vcom-tunnel(8001) Len=200
	9.645308	66:d2:48:30:4a:33	Broadcast	0x7373		Ethernet II
	9.939668		ord31s22-in-x0e.1e			62964 - https(443) [ACK] Seq=1 Ack=1 Win=2048 Len=0
2390	9.977033	ord31s22-in-x0e.1e	Wills-MBP.attlocal	TCP		[TCP ACKed unseen segment] https(443) - 62964 [ACK] Seq=1 Ack=2 Win=274 Len=0 TSval=1365875747 TS
	9.999589		ec2-35-80-210-97.u			Application Data
	10.060512		Wills-MBP.attlocal			https(443) - 62604 [ACK] Seg=1 Ack=40 Win=116 Len=0 TSval=2054801040 TSecr=3069768039
	10.060513		Wills-MBP.attlocal			Application Data
	10.060610		ec2-35-80-210-97.u			62604 - https(443) [ACK] Seg=40 Ack=53 Win=2047 Len=0 TSval=3069768100 TSecr=2054801041
	10.495784		dsldevice6.attloca			Standard query 0x6d88 PTR 3.0.d.0.5.1.8.6.0.0.0.0.0.0.0.0.0.0.0.5.3.0.3.0.0.7.4.6.0.6.2.ip6.arp
	10.495896		dsldevice6.attloca			Standard query 0xa96e PTR e.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0.8.0.9.0.4.0.b.8.f.7.0.6.2.ip6.arp
	10.496045		dsldevice6.attloca			Standard query 0xf289 PTR 97.210.80.35.in-addr.arpa
	10.507005		Wills-MBP.attlocal			Standard query response 0xa96e PTR e.0.0.2.0.0.0.0.0.0.0.0.0.0.0.9.0.8.0.9.0.0.4.0.b.8.f.7.0.6.
	10.526445		Wills-MBP.attlocal			Standard query response 0x6d88 No such name PTR 3.0.d.0.5.1.8.6.0.0.0.0.0.0.0.0.0.0.0.0.5.3.0.3.0
	10.559273		Wills-MBP.attlocal			Standard query response 0xd289 PTR 97.210.80.35.in-addr.arpa PTR ec2-35-80-210-97.us-west-2.compu
	10.566379	66:d2:48:30:4a:33	Spanning-tree-(for-			Conf. Root = 0/0/60:d2:48:30:4a:32
	10.576219		2606:4700:3032::ac			62589 - https(443) [ACK] Seq=1 Ack=1 Win=2048 Len=0
	10.576219		Wills-MBP.attlocal			[TCP ACKed unseen segment] https(443) - 62589 [ACK] Seg=1 Ack=2 Win=8 Len=0 TSval=2902711814 TSec
	10.618622	Samsung.attlocal.n		UDP		45440 + 15600 Len=35
	10.010022	66:d2:48:30:4a:33	Broadcast	0x7373		43440 + 13000 Len=33
	11.147834		ip-2a03-5640-f502			Application Data
	11.147834		ip-2a03-5640-f502			Application Data 62925 → https(443) [ACK] Seg=2306 Ack=33541 Win=2590 Len=1388 TSval=4074565076 TSecr=2423699504 [
	11.147957		ip-2a03-5640-f502			Application Data
	11.181126	SamsungElect_10:f6		ARP		Who has 192.168.1.254? Tell 192.168.1.212
	11.194385	Wills-MBP.attlocal				Application Data
	11.194477	Wills-MBP.attlocal	ip-2a03-5640-f502	ICP	1474	62925 - https(443) [ACK] Seq=5087 Ack=33541 Win=2590 Len=1388 TSval=4074565122 TSecr=2423699504 [

Figure 2 I logged in to my UTSA ASAP account and this is what I saw.

F W									
No.		Time	Source	Destination	Protocol	Length	Info		
	14	1.229426	Samsung.attlocal.n	Wills-MBP.attlocal	ARP	42	Who	has	192.168.1.248?
	15	1.229488	Wills-MBP.attlocal	Samsung.attlocal.n	ARP	42	192.	168.	1.248 is at a4
	26	1.843140	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.254?
	1203	3.684808	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.254?
	1346	5.530808	SAB-WS01.attlocal	Broadcast	ARP	42	Who	has	192.168.1.51?
	1376	5.835732	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.254?
	1381	6.142661	SAB-WS01.attlocal	Broadcast	ARP	42	Who	has	192.168.1.51?
	1390	7.065662	SAB-WS01.attlocal	Broadcast	ARP	42	Who	has	192.168.1.51?
	1483	7.678785	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.2547
	2341	9.214025	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2537
	2342	9.214026	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.1507
	2343	9.214090	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.85?
	2344	9.214404	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2047
	2345	9.214735	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.64?
	2346	9.214735	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2107
	2347	9.215131	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2497
	2348	9.215132	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2397
	2349	9.215132	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2137
	2350	9.215496	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.248?
	2351	9.215501	dsldevice.attlocal	Broadcast	ARP	60	Who	has	192.168.1.2517
	2352	9.215537	Wills-MBP.attlocal	dsldevice.attlocal	ARP	42	192.	168.	1.248 is at a4
	2515	9.828779	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.2547
	4617	11.671673	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.254?
	5344	13.822921	Samsung.attlocal.n	Broadcast	ARP	60	Who	has	192.168.1.2547

Figure 3 ARP protocols captured.

16	1.351263	Wills-MBP.attlocal	2606:4700:3037::68	TCP	74	62977 → https(44)
17	1.365055	2606:4700:3037::68	Wills-MBP.attlocal	TCP	86	[TCP ACKed unseer
32	2.750355	Wills-MBP.attlocal	96.10.190.35.bc.go	TCP	78	57414 → https(44
34	2.765448	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	74	https(443) → 574
35	2.765907	Wills-MBP.attlocal	96.10.190.35.bc.go	TCP	66	57414 → https(44)
36	2.765909	Wills-MBP.attlocal	96.10.190.35.bc.go	TLSv1	583	Client Hello (SN
40	2.782207	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	66	https(443) → 574
49	2.793103	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1 1	466	Server Hello, Ch
50	2.793104	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	714	https(443) → 574
51	2.793105	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP 1	466	https(443) → 574
52	2.793105	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	714	https(443) → 574
53	2.793105	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP 1	466	https(443) → 574
54	2.793106	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP 1	466	https(443) → 574
55	2.793107	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1	411	Application Data
56	2.794107	Wills-MBP.attlocal	96.10.190.35.bc.go	TCP	66	57414 → https(44)
57	2.799456	Wills-MBP.attlocal	96.10.190.35.bc.go	TLSv1	130	Change Cipher Sp
58	2.800875	Wills-MBP.attlocal	96.10.190.35.bc.go	TLSv1	448	Application Data
59	2.801159	Wills-MBP.attlocal	96.10.190.35.bc.go	TLSv1 1	407	Application Data
61	2.814899	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1	620	Application Data
62	2.814899	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1	97	Application Data
63	2.815263	Wills-MBP.attlocal	96.10.190.35.bc.go	TCP	66	57414 → https(44)
64	2.815387	Wills-MBP.attlocal	96.10.190.35.bc.go	TLSv1	97	Application Data
65	2.820657	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	66	https(443) → 574
66	2.829690	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	66	https(443) → 574
75	2.857169	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1	319	Application Data
76	2.857170	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1 1	1097	Application Data
77	2.857170	96.10.190.35.bc.go	Wills-MBP.attlocal	TLSv1	105	Application Data
78	2.861440	Wills-MBP.attlocal	96.10.190.35.bc.go	TCP	66	57414 → https(44)
79	2.861707	Wills-MBP.attlocal	96.10.190.35.bc.go	TLSv1	105	Application Data
80	2.880600	96.10.190.35.bc.go	Wills-MBP.attlocal	TCP	66	https(443) → 574
1344	5.266226	Wills-MBP.attlocal	2606:4700:3033::68	TCP	74	62968 → https(44)
1345	5.281301	2606:4700:3033::68	Wills-MBP.attlocal	TCP	86	[TCP ACKed unseer
1408	7.505932	Wills-MBP.attlocal	ec2-52-88-253-199	TCP 1	514	62982 → https(44
1409	7.505934	Wills-MBP.attlocal	ec2-52-88-253-199	TLSv1	193	Application Data
1410	7.505966	Wills-MBP.attlocal	ec2-52-88-253-199	TLSv1	112	Application Data
1414	7.516856	Wills-MBP.attlocal	www.googleapis.com	TCP	98	62985 → https(44)
1416	7.530493	www.googleapis.com	Wills-MBP.attlocal	TCP	94	https(443) → 629
1417	7.530575	Wills-MBP.attlocal	www.googleapis.com	TCP	86	62985 → https(44)
1418	7.530904	Wills-MBP.attlocal	www.googleapis.com	TLSv1	859	Client Hello (SN_
gure	4 TCP proto	cols captured.				

Figure 5 HTTP protocols captured.

	9934 ZJ:114/03	you cube-u1. c. goog c	WILLSTIDE * GLL LUCG L	I LOV I	11/	мррітсаттоп рата	
	9935 25.114703	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	125	Application Data	
П	9937 25.115108	Wills-MBP.attlocal…	youtube-ui.l.googl	TLSv1	125	Application Data	
Ţ	9939 25.128271	2600:1901:1:194::	Wills-MBP.attlocal	TLSv1	126	Application Data	
İ	9955 25.288794	Wills-MBP.attlocal	b.a69414258aa6.spa	QUIC	1292	Initial, DCID=409f13c	
İ	9956 25.289054	Wills-MBP.attlocal	b.a69414258aa6.spa	TLSv1	195	Application Data	
İ	9963 25.305375	b.a69414258aa6.spa	Wills-MBP.attlocal	QUIC	1262	Initial, SCID=0101b4c	
İ	9970 25.315069	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	604	Application Data	
	9971 25.315069	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	1294	Application Data	
	9972 25.315070	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	1294	Application Data	
П	9973 25.315070	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	1294	[TCP Previous segment	
Т	9974 25.315070	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	1294	Application Data	
	9975 25.315071	youtube-ui.l.googl	Wills-MBP.attlocal	TLSv1	1294	Application Data	
	0076 25 215071	voutube-ui l googl	Wills_MRD attlocal	TI Cv1	120/	Application Data	

Figure 6 TLS protocols captured.

101 3.580526	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
102 3.580527	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
103 3.580527	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
104 3.580528	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
105 3.580529	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
106 3.580529	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
107 3.580530	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
108 3.580530	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
109 3.580531	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
110 3.580531	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
111 3.580877	Wills-MBP.attlocal	i.66a21586b342.spa	UDP	105	60596 → https(44
112 3.580895	Wills-MBP.attlocal	i.66a21586b342.spa	UDP	105	60596 → https(44
113 3.580973	Wills-MBP.attlocal	i.66a21586b342.spa	UDP	105	60596 → https(44
114 3.580992	Wills-MBP.attlocal	i.66a21586b342.spa	UDP	105	60596 → https(44
115 3.581062	Wills-MBP.attlocal	i.66a21586b342.spa	UDP	105	60596 → https(44
116 3.595021	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
117 3.595023	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
118 3.595024	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
119 3.595025	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
120 3.595025	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
121 3.595025	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 6059
122 3.595026	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
123 3.595027	i.66a21586b342.spa	Wills-MBP.attlocal	UDP	1262	https(443) → 605
124 3.595027	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
125 3.595028	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
126 3.595029	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
127 3.595029	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
128 3.595030	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
129 3.595030	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
130 3.595031	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
131 3.595031	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
132 3.595032	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
133 3.595032	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
134 3.595033	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
135 3.595033	i.66a21586b342.spa	Wills-MBP.attlocal	UDP		https(443) → 605
136 3.595318	Wills-MBP.attlocal	i.66a21586b342.spa	UDP		60596 → https(44
137 3.595337	Wills-MBP.attlocal	i.66a21586b342.spa	UDP		60596 → https(44
138 3.595379	Wills-MBP.attlocal	i.66a21586b342.spa	UDP		60596 → https(44
139 3.595450	Wills-MBP.attlocal	i.66a21586b342.spa	UDP	105	60596 → https(441,

Figure 7 UDP protocols captured.

10.	111110	Jourse	Dodination		or Longo mile
	6 0.774191	fe80::62d2:48ff:fe		ICMPv6	•
	7 0.774192	fe80::62d2:48ff:fe		ICMPv6	
	8 0.774926	fe80::62d2:48ff:fe		ICMPv6	
	9 0.774927	fe80::62d2:48ff:fe	ff02::1:ff3d:540c	ICMPv6	
	0 0.775010		fe80::62d2:48ff:fe		
	1 0.775053		fe80::62d2:48ff:fe		
1	5 0.794647	fe80::62d2:48ff:fe	ff02::1:ff00:3b	ICMPv6	
1	6 0.794670	fe80::62d2:48ff:fe	ff02::1:ffe0:9310	ICMPv6	
1	7 0.794734	Wills-MBP.attlocal	fe80::62d2:48ff:fe		- · · · · · · · · · · · · · · · · · · ·
	8 0.794785		fe80::62d2:48ff:fe	ICMPv6	
1	9 0.794916	fe80::62d2:48ff:fe	ff02::1:ff00:22	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150::22 from 60:d2:48:30:4a:30
	0 0.795451	fe80::62d2:48ff:fe		ICMPv6	
2	4 0.815282	fe80::62d2:48ff:fe	ff02::1:ff10:f633	ICMPv6	6 86 Neighbor Solicitation for fe80::9e8c:6eff:fe10:f633 from 60:d2:48:30:4a:30
2	5 0.815284	fe80::62d2:48ff:fe	ff02::1:ffbb:1a67	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:6010:8237:b0bb:1a67 from 60:d2:48:30:4a:30
2	6 0.815645	fe80::62d2:48ff:fe	ff02::1:ff22:5867	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:31a3:e376:9522:5867 from 60:d2:48:30:4a:30
2	8 0.816270	fe80::62d2:48ff:fe	ff02::1:ff59:297a	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:387a:8e59:59:297a from 60:d2:48:30:4a:30
3	1 0.835708	fe80::62d2:48ff:fe	ff02::1:ff00:13	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150::13 from 60:d2:48:30:4a:30
3	2 0.836475	fe80::62d2:48ff:fe	ff02::1:ff83:ab3e	ICMPv6	
3	3 0.836475	fe80::62d2:48ff:fe	ff02::1:ff22:5867	ICMPv6	6 86 Neighbor Solicitation for fe80::31a3:e376:9522:5867 from 60:d2:48:30:4a:30
3	5 0.836550	fe80::62d2:48ff:fe	ff02::1:ffab:60a0	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:d81:a4b6:44ab:60a0 from 60:d2:48:30:4a:30
4	0 0.856206	fe80::62d2:48ff:fe	ff02::1:ffe8:6b76	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:4b3:d569:ede8:6b76 from 60:d2:48:30:4a:30
4	2 0.856989	fe80::62d2:48ff:fe	ff02::1:ff42:71bb	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:a0e0:945f:8d42:71bb from 60:d2:48:30:4a:30
4	3 0.856990	fe80::62d2:48ff:fe	ff02::1:ff8a:3c2b	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:2db7:165d:468a:3c2b from 60:d2:48:30:4a:30
4	5 0.857854	fe80::62d2:48ff:fe	ff02::1:ffbf:a832	ICMPv6	6 Neighbor Solicitation for 2600:1700:1100:a150:d2c:b0a:73bf:a832 from 60:d2:48:30:4a:30
5	1 0.876884	fe80::62d2:48ff:fe	ff02::1:ff28:14a7	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:65e3:f736:6628:14a7 from 60:d2:48:30:4a:30
5	3 0.876901	fe80::62d2:48ff:fe	ff02::1:ff1e:ddec	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:24c1:9092:ce1e:ddec from 60:d2:48:30:4a:30
5	5 0.877611	fe80::62d2:48ff:fe	ff02::1:ffb9:1d7	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:c858:5339:5db9:1d7 from 60:d2:48:30:4a:30
5	6 0.878408	fe80::62d2:48ff:fe	ff02::1:ff26:6243	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:40c4:168c:8026:6243 from 60:d2:48:30:4a:30
6	4 0.897182	fe80::62d2:48ff:fe	ff02::1:ffe2:2d4b	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:d99b:e858:e2e2:2d4b from 60:d2:48:30:4a:30
6	5 0.897905	fe80::62d2:48ff:fe	ff02::1:ff23:c047	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:557e:6bfa:a323:c047 from 60:d2:48:30:4a:30
6	7 0.898215	fe80::62d2:48ff:fe	ff02::1:ffc8:e581	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:b8d2:fdc0:a0c8:e581 from 60:d2:48:30:4a:30
6	9 0.898941	fe80::62d2:48ff:fe	ff02::1:ff45:9ff2	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:dceb:890d:8245:9ff2 from 60:d2:48:30:4a:30
7	8 0.917797	fe80::62d2:48ff:fe	ff02::1:ff15:11be	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:86:8261:7815:11be from 60:d2:48:30:4a:30
8	0 0.918458	fe80::62d2:48ff:fe	ff02::1:ff28:4384	ICMPv6	
8	2 0.919087	fe80::62d2:48ff:fe	ff02::1:ff00:1	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150::1 from 60:d2:48:30:4a:30
8	3 0.919110	fe80::62d2:48ff:fe	ff02::1:ffbf:3ec9	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150:6500:c4bc:f4bf:3ec9 from 60:d2:48:30:4a:30
	6 0.920728	fe80::62d2:48ff:fe		ICMPv6	
8	7 0.920920	fe80::62d2:48ff:fe	ff02::1:ff3c:d659	ICMPv6	6 86 Neighbor Solicitation for fe80::92f8:2eff:fe3c:d659 from 60:d2:48:30:4a:30
8	8 0.921114	fe80::62d2:48ff:fe	ff02::1:ffc0:b185	ICMPv6	
	9 0.921251	fe80::62d2:48ff:fe	ff02::1:ff00:2a	ICMPv6	6 86 Neighbor Solicitation for 2600:1700:1100:a150::2a from 60:d2:48:30:4a:30
	3 0.921993	fe80::62d2:48ff:fe		ICMPv6	
	4 0.922211	fe80::62d2:48ff:fe		ICMPv6	
	5 0.922614	fe80::62d2:48ff:fe		TCMPv6	0
· From	- C. OC but	/ COO Lital OC	htan anntand /con	L:4-\	i-tf0 id 0

Figure 8 ICMP protocols captured.

								٠,	
	7	1.094713	Wills-MBP.attlocal	dsldevice6.attloca	DNS	102	Standard		
		1.094879	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	10	1.105498	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
		1.105499	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	12	1.105499	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	22	2.094411	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	23	2.094510	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	24	2.094661	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	25	2.094888	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	26	2.094963	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	27	2.095045	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	29	2.101207	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	30	2.101207	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	31	2.101208	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	32	2.101208	dsldevice6.attloca	Wills-MBP.attlocal	DNS	106	Standard	query	respon
	49	2.136796	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	61	2.249018	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
ı	70	3.095421	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
1	71	3.095458	Wills-MBP.attlocal	dsldevice6.attloca	DNS	152	Standard	query	0x0172
	72	3.095504	Wills-MBP.attlocal	dsldevice6.attloca	DNS	106	Standard	query	0xa8a8
	73	3.095594	Wills-MBP.attlocal	dsldevice6.attloca	DNS	105	Standard	query	0x3cd2
	74	3.095629	Wills-MBP.attlocal	dsldevice6.attloca	DNS	107	Standard	query	0xbfd8
	75	3.106252	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	76	3.106253	dsldevice6.attloca	Wills-MBP.attlocal	DNS	163	Standard	query	respon
	77	3.112890	dsldevice6.attloca	Wills-MBP.attlocal	DNS	161	Standard	query	respon
	78	3.199172	dsldevice6.attloca	Wills-MBP.attlocal	DNS		Standard		
	79	3.201224	dsldevice6.attloca	Wills-MBP.attlocal	DNS	212	Standard	query	respon
1	116	4.095901	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
- 6	117	4.096007	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
1	118	4.096313	Wills-MBP.attlocal	dsldevice6.attloca	DNS	152	Standard	query	0x101c
	119	4.096462	Wills-MBP.attlocal	dsldevice6.attloca	DNS	152	Standard	query	0x7575
1	120	4.096594	Wills-MBP.attlocal	dsldevice6.attloca	DNS	107	Standard	query	0x875f
	121	4.096674	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	122	4.096784	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
	123	4.096911	Wills-MBP.attlocal	dsldevice6.attloca	DNS		Standard		
1	124	4.097000	Wills-MBP.attlocal	dsldevice6.attloca	DNS	152	Standard	query	0xe85d
- 6									

Figure 9 DNS protocols captured.

Hash (SHA256): bf9d2aeed6aaab56ac54ed2834df1fab86f70f8d61c1ae75472d16b00Hash (SHA1): 7dd5c9ed63c83baa8f4262501071d468476057e1 Format: Wireshark/... - pcapng Encapsulation: Ethernet Time 2023-12-05 15:51:34 First packet: 2023-12-05 16:57:09 Last packet: 01:05:34 Elapsed: Capture Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz (with SSE4.2) Hardware: macOS 13.3.1, build 22E261 (Darwin 22.4.0) OS: Dumpcap (Wireshark) 4.2.0 (v4.2.0-0-g54eedfc63953) Application: Interfaces Interface **Dropped packets** Capture filter Link type Packet si (snaplen) 0 (0.0%) 524288 I Wi-Fi none Ethernet **Statistics** Measurement Captured Displayed Marked **Packets** 196409 196409 (100.0%) 3934.966 Time span, s 3934.966 Average pps 49.9 49.9 Average packet size, B 680 680 133501458 (100.0%) 0 **Bytes** 133501458 Average bytes/s 33 k 33 k Average bits/s 271 k 271 k

Figure 10 1 hour report of network scan.

185 220.875381	dsldevice.attlocal	Broadcast	ARP	60 Who has 192.168.1.248? Tell 192.168.1.25
185 220.875382	dsldevice.attlocal	Broadcast	ARP	60 Who has 192.168.1.249? Tell 192.168.1.25
185 220.875481	Wills-MBP.attlocal	dsldevice.attlocal	ARP	42 192.168.1.248 is at a4:83:e7:53:be:bf
185 220.875775	dsldevice.attlocal	Broadcast	ARP	60 Who has 192.168.1.250? Tell 192.168.1.25
187 221.796764	dsldevice.attlocal	Broadcast	ARP	60 Who has 192.168.1.251? Tell 192.168.1.25
187 221.796765	dsldevice.attlocal	Broadcast	ARP	60 Who has 192.168.1.252? Tell 192.168.1.25
187 221.796791	dsldevice.attlocal	Broadcast	ARP	60 Who has 192.168.1.253? Tell 192.168.1.25
187 227.699619	dsldevice.attlocal	Wills-MBP.attlocal	ARP	60 192.168.1.254 is at 60:d2:48:30:4a:30

Figure 11 ARP protocols with MAC and IP addresses.

Home Network Diagram

Packet size limit (snaplen) 524288 bytes

Marked
__
_
_
_
_
0
_
_

/var/folders/03/8bvv7cgj361fgmfqpvqp82_w0000gn/T/wireshark_Wi-FiH07ZE2.pcapng 251 MB
7eaa6419cad844c0b91b4fa9c49f4b57644f0e00120d63c86e729d34078c7d03
a440715e0dc8865c9af9854bd5f368d273f8eced
Wireshark/... - pcapng Name: Length: Hash (SHA256): Hash (SHA1): Format: Encapsulation: Ethernet Time First packet: Last packet: Elapsed: 2023-12-05 17:56:09 2023-12-05 21:56:59 04:00:49 Capture Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz (with SSE4.2) macOS 13.3.1, build 22E261 (Darwin 22.4.0) Dumpcap (Wireshark) 4.2.0 (v4.2.0-0-g54eedfc63953) Hardware: Application: Interfaces Interface Wi-Fi Dropped packets 0 (0.0%) Capture filter none Link type Ethernet Statistics Measurement
Packets
Time span, s
Average pps
Average packet size, B
Bytes
Average bytes/s
Average bits/s Captured 393135 14449.975 27.2 607 <u>Displayed</u> 393135 (100.0%) 14449.975 27.2 607

238559308 16 k 132 k

Figure 15 4-hour network scan.

238559308 (100.0%) 16 k 132 k

Bibliography

- Ashwani, K. (2023, September 22). What is wireshark and use cases of Wireshark?. DevOpsSchool.com. https://www.devopsschool.com/blog/what-is-wireshark-and-use-cases-of-wireshark/
- Ot, A. (2021, October 18). What is wireshark and how can you use it to secure your network?. MUO. https://www.makeuseof.com/what-is-wireshark/
- Porup, J. (2018, September 17). What is wireshark? what this essential troubleshooting tool does and how to use it. CSO Online. https://www.csoonline.com/article/566309/what-is-wireshark-what-this-essential-troubleshooting-tool-does-and-how-to-use-it.html
- What is Wireshark. Chapter 1. introduction. (n.d.). https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html