Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 08: Computer networks

Version: March 3, 2011

vrije Universiteit amsterdam

1/53

Contents

Chapter	Description
<u> </u>	
01: Introduction	History, background
02: Foundations	Basic terminology and properties of graphs
03: Extensions	Directed & weighted graphs, colorings
04: Network traversal	Walking through graphs (cf. traveling)
05: Trees	Graphs without cycles; routing algorithms
06: Network analysis	Basic metrics for analyzing large graphs
07: Random networks	Introduction modeling real-world networks
08: Computer networks	The Internet & WWW seen as a huge graph
09: Social networks	Communities seen as graphs

Introduction

Observation

The Internet as we know it today is a communication network that allows us to exchange messages. The (World Wide) Web is a huge distributed information system, implemented on top of the Internet. The two are very different.

- 1 The organization and structure of the Internet
- The organization of overlay (i.e., peer-to-peer) networks
- 3 The organization and structure of the Web

Computer networks: basics

- There are many different kinds of computer networks:
 - Traditional networks in buildings and on campus
 - Home networks (wired and wireless)
 - Networks for mobile phones
 - Access networks (with so-called hot spots)
 - Networks owned by Internet Service Providers (ISPs)
 - ...
- The Internet ties all these networks together (well, that's what we think).
- For starters: make distinction between small-area networks and large-area networks.

4/53

Small-area networks

5/53

Example: router

6/53

Example: switch

7/53

Example: security gateway

Example: server group

_	
_	
_	
_	
Π	
Π	
	9

Addressing

Essence

Each networked device has (in principle) a worldwide unique low-level address, also called its MAC address. The MAC address is nothing but a device identifier.

- When a device transmits a message, it always sends its MAC address as part of the message.
- A switch can connect several devices, and discovers the MAC addresses.
- When a MAC address has been discovered, a switch can distinctively forward messages to the associated device.

10/53 10/53

Assigning an Internet address

Structure of an IP address

An IP address consists of a network identifier and a host

Network ID: worldwide unique address of a (small area) network to which messages can be routed Host ID: network-wide unique address associated with a device/host

■ In the Internet, messages are always routed to a network. Internal routers handle subsequent forwarding to the hosts/devices using host IDs

IP addresses and home networks

Observation

Each home (or small organization) is assigned exactly one IP address.

Note

Using a bag of tricks, we can **share** that address among different devices. For now, it is important to know that all your devices at home have (essentially) the same **external** IP address.

Consequence

All devices in a home network are seen by the outside world as being one and the same.

13/53

Large-area networks

Autonomous system

Description

An autonomous system is an organizational unit that maintains a collection of (interconnected) communication networks. An AS announces its **accessible** networks as $\langle AS \ number, network \ identifier \rangle$ pairs.

15/53

A simple number...

In 2009, there were approximately 25,000 ASes.

Measuring the AS topology

- Each AS i has a number of border gateways: a special router that can transfer messages between AS i and an AS to which that router is linked.
- If BG_1^i of AS i is linked to BG_2^i of AS j \Rightarrow there is a physical connection between the two routers.
- Two gateways BG_1^i and BG_2^i of the same AS i, are always internally linked: they know how to reach each other through a communication path.
- A border gateway BG_1^i of AS i, attached to network n_i , announces $\langle i, n_i \rangle$ to its neighboring gateways.
- Assume BG_1^j of AS j is linked to $BG_1^j \Rightarrow BG_1^j$ can then announce that it knows a path to n_i : $\langle j, i, n_i \rangle$.
- Each other gateway BG_2^i of AS j can announce $\langle j,i,n_i \rangle$ to its linked neighbors.

16/53

Measuring the AS topology

Important observations

- Gateways store and announce entire paths to destinations
- For proper routing, each gateway needs to store paths to every network in the Internet.

Conclusion

If we read the routing tables from only a few gateways, we should be able to obtain a reasonable complete picture of the **AS topology of the Internet**.

53

Visualizing the AS topology (CAIDA)

18/53

Example topology: October 2008

- Over 30,000 registered autonomous systems (including "double" registeries).
- Over 100,000 edges. Note: we may be missing more than 30% of all existing links!

19/53

Example topology: October 2008

Rank:	1	2	3	4	5	6	7	8	9	10
Degree:	3309	2371	2232	2162	1816	1512	1273	1180	1029	1012

Some observations

- Very high clustering coefficient for top-1000 hubs: an almost complete graph!
- Most paths no longer than 3 or 4 hops.
- Most ASes separated by shortest path of max. length 6.

/53 20/53

Peer-to-peer overlay networks

Issue

Large-scale **distributed computer systems** are spread across the Internet, yet their constituents need to communicate directly with each other ⇒ organize the system in an **overlay network**.

Overlay network

Collection of **peers**, where each peer maintains a **partial view** of the system. View is nothing but a list of other peers with whom communication connections can be set up.

Observation

Partial views may change over time \Rightarrow an ever-changing overlay network.

-		
		01

21/53 21

Structured overlay network: Chord

Basics

- Each peer is assigned a unique *m*-bit identifier *id*.
- Every peer is assumed to store data contained in a file.
- Each file has a unique *m*-bit key *k*.
- Peer with smallest identifier $id \ge k$ is responsible for storing file with key k.
- succ(k): The peer (i.e., node) with the smallest identifier $p \ge k$.

Note

All arithmetic is done modulo $M = 2^m$. In other words, if $x = k \cdot M + y$, then $x \mod M = y$.

> 22/53 22/53

Example

Efficient lookups

Partial view = finger table

■ Each node p maintains a finger table $FT_p[]$ with at most mentries:

$$FT_p[i] = succ(p+2^{i-1})$$

Note: $FT_p[i]$ points to the first node succeeding p by at least 2^{i-1} .

 \blacksquare To look up a key k, node p forwards the request to node with index j satisfying

$$q = FT_p[j] \le k < FT_p[j+1]$$

■ If $p < k < FT_p[1]$, the request is also forwarded to $FT_p[1]$

Example finger tables

25/53 25/53

Example lookup: 15@4

26/53

Example lookup: 22@4

27/53 27/53

Example lookup: 18@20

28/53 28/53

The Chord graph

Essence

Each peer represented by a vertex; if $FT_p[i] = j$, add arc $\langle \overrightarrow{i,j} \rangle$, but keep directed graph strict.

53 29/5

Chord: path lengths

Observation

With $d_2^n(i,j)=\min\{|i-j|,n-|i-j|\}$, we can see that every peer is joined with another peer at distance $\frac{1}{2}n,\frac{1}{4}n,\frac{1}{8}n,\ldots,1$.

Chord: degree distribution

31/53 31/53

Chord: clustering coefficient

Note

CC is computed over undirected Chord graph; x-axis shows number of 1000 nodes.

Epidemic-based networks

Basics

Consider a collection of peers $\mathbf{P} = \{p_1, \dots, p_n\}$. Each peer can store lots of files. Each file f has a version v(f). The owner of f is a single, unique peer, own(f) who can update f.

Goal

We want to propagate updates of file f through a network of peers. v(f,p) denotes version of file f at peer p. FS(p) is set of files at peer p. If $f \notin FS(p) \Rightarrow v(f,p) = 0$.

$$\forall f, p : v(f, own(f)) \geq v(f, p)$$

Epidemic protocol

The core

Each peer $p \in \mathbf{P}$ periodically does the following:

 $\forall f \in FS(q) : v(f,p) < v(f,q) \Rightarrow FS(p) \leftarrow FS(p) \cup \{f@q\}$

34/53

General framework

Active part

repeat wait T $q \leftarrow$ select 1 from PV_p $R_p \leftarrow$ select s from PV_p send $R_p \cup \{p\} \setminus \{q\}$ to q skip receive R_q^p from q $PV_p \leftarrow$ select m from $PV_p \cup R_q^p$ until forever

Passive part

repeat skip skip skip skip receive R_q^q from any p $R_q \leftarrow$ select s from PV_q send $R_q \cup \{q\} \backslash \{p\}$ to p $PV_q \leftarrow$ select m from $PV_q \cup R_p^q$ until forever

5/53 35/53

Newscast

Issue	Policy	Description
view size	m = 30	Each partial view has size 30
peer	random	Each peer uniformly at random selects a
selection		peer from its partial view
reference	random	A random selection of s peers is selected
selection		from a partial view to be exchanged with
		the selected peer
view size	random	If the view size has grown beyond <i>m</i> , a
reduction		random selection of references is
		removed to bring it back to size m

Newscast: evolution indegree distribution

37/53 37/53

Newscast: evolution path length

3/53

Newscast: evolution cluster coefficient

Question

For which kind of ER(n,p) graphs is this a fair comparison?

The Web

40/53

Web basics

- Simple view: the Web consists of hyperlinked documents.
- Hyperlinked: document A carries a reference to document B. When reference is activated, browser fetches document B.
- Collection of documents forms a site, with its own associated domain name.

Some numbers

It has been estimated that by 2008, there were at least 75 million Web sites from which Google had discovered more than a trillion Web pages.

1/53 41/53

Web basics

42/53 42/53

Measuring the topology of the Web

Problem

With an estimated size of over a trillion Web pages, pages coming and going, and links changing all the time, how can we ever get a **snapshot** of the Web? We can't.

Practical issue: crawling the Web

In order to measure anything, we need to be able to identify pages and the links that refer to them.

43/53

Web crawler

- Start with seed pages
- Store pages to inspect in frontier
- Analyze page and store found references in frontier

Using seed documents, we are accessing the **reachable** pages.

45/53

3 44/53

Webpages as graphs: The VU website

Sampling the Web

Observation

The Web is so huge, that we can only hope to draw a reasonable sample, and hope that this sample represents the structure of the actual Web. We are asking for trouble.

Starting point

Let us try to represent the Web as a bowtie:

SCC: $\forall v, w \in SCC, \exists (v, w)$ -path of hyperlinks.

IN: $\forall v \in IN, w \in SCC : \exists (v, w)$ -path, but no (w, v)-path. OUT: $\forall v \in SCC, w \in OUT : \exists (v, w)$ -path, but no (w, v)-path.

TENDRILS: Essentially: the rest.

46/53 46/53

The Web as a bowtie: Starting from AltaVista

/53 47/53

Sampling the Web

Observation

It turns out that for different seeds, we do obtain different bowties.

Component	Sample 1	Sample 2	Sample 3	Sample 4
SCC	56.46%	65.28%	85.87%	72.30%
IN	17.24%	1.69%	2.28%	0.03%
OUT	17.94%	31.88%	11.26%	27.64%
Other	8.36%	1.15%	0.59%	0.02%
Total size	80.57M	18.52M	49.30M	41.29M

 %
 85.87%
 72.30%

 %
 2.28%
 0.03%

 %
 11.26%
 27.64%

 %
 0.59%
 0.02%

 M
 49.30M
 41.29M

Sampling the Web

Component	Sample 1	Sample 2	Sample 3	Sample 4
SCC	56.46%	65.28%	85.87%	72.30%
IN	17.24%	1.69%	2.28%	0.03%
OUT	17.94%	31.88%	11.26%	27.64%
Other	8.36%	1.15%	0.59%	0.02%
Total size	80.57M	18.52M	49.30M	41.29M

Question

Which conclusion can we draw from these samples?

49/53 49/53

Web graphs: indegree distribution

Observation

It turns out that $\mathbb{P}[\delta_{\mathit{in}} = k] \propto \frac{1}{k^{2.1}} \Rightarrow$ another scale-free network.

/53 50

Side step: Google's PageRank

Observation

Google uses hyperlinks to a page p as a criterion for the importance of a page:

$$\mathit{rank}(p) = (1-d) + d \sum_{\langle \overline{q}, \overline{p} \rangle \in E} \frac{\mathit{rank}(q)}{\delta_{out}(q)}$$

where $d \in [0,1)$ is a constant (probably 0.85 in the case of Google).

Question

This is a recursive definition. What's going on?

51/53 51/53

Side step: Google's PageRank

Observation

PageRank is clearly based on indegrees, yet the rank of a page and its indegree turn out to be only weakly correlated.

Observation

When we rank pages according to PageRank: $\mathbb{P}[rank = k] \propto \frac{1}{k^{2.1}}$

Observation

Characterizing and sampling the Web is again seen to be far from trivial.

52/53 52/53

Web graphs: oudegree distribution

Observation

To analyze the Web graph, we need to be very careful regarding measurements and conclusions.