

尚硅谷大数据技术之 HUE

一、HUE 简介

1.1、来源

HUE=Hadoop User Experience(Hadoop 用户体验), 直白来说就一个开源的 Apache Hadoop UI 系统,由 Cloudera Desktop 演化而来,最后 Cloudera 公司将其贡献给 Apache 基金会的 Hadoop 社区,它是基于 Python Web 框架 Django 实现的。通过使用 HUE 我们可以在浏览器端的 Web 控制台上与 Hadoop 集群进行交互来分析处理数据。

1.2、官网及使用者

官网网站: http://gethue.com/

使用的公司:

二、HUE 安装(非 root 用户)

2.1、帮助文档

http://archive.cloudera.com/cdh5/cdh/5/hue-3.7.0-cdh5.3.0/manual.html

2.2、HUE 安装

三、HUE 与其他框架的集成

3.1、HUE 与 HDFS

3.1.1、梳理集群环境

hadoop01	hadoop02	hadoop03	hadoop04
oozie			
zk	zk	zk	
hbase	hbase	hbase	
Hadoop	Hadoop	Hadoop	

3.1.2、配置 HDFS

修改: hdfs-site.xml

属性: dfs.webhdfs.enabled

属性值: true

解释: Enable WebHDFS (REST API) in Namenodes and Datanodes.

修改: core-site.xml

区别: WebHDFS 是 HDFS 内置的组件,已经运行于 NameNode 和 DataNode 中。对 HDFS 文件的读写,将会重定向到文件所在的 DataNode,并且会完全利用 HDFS 的带宽。HttpFS 是独立于 HDFS 的一个服务。对 HDFS 文件的读写,将会通过它进行中转,它能限制带宽占用。

修改: httpfs-site.xml

解释:以上两个属性主要用于 HUE 服务与 Hadoop 服务不在同一台节点上所必须的配置。 提示:

- * 如果没有配置 NameNode 的 HA, HUE 可以用 WebHDFS 来管理 HDFS
- * 如果配置了 NameNodeHA,则 HUE 只可用 HttpFS 来管理 HDFS

3.1.3、scp 同步配置

//打包
\$ tar cvf conf.tar.gz hadoop/
//发送
\$ scp -r conf.tar.gz hadoop@192.168.56.87:/home/hadoop/apps/hadoop26/etc/
\$ scp -r conf.tar.gz hadoop@192.168.56.87:/home/hadoop/apps/hadoop26/etc/

3.1.4、启动 httpfs 服务

\$ /home/hadoop/apps/hadoop26/sbin/httpfs.sh start

3.1.5、配置 hue.ini 文件

找到[hadoop]标签

```
# HA support by using HttpFs

[[[default]]]

# Enter the filesystem uri

##HDFS 服务器地址

fs_defaultfs=hdfs://192.168.56.86:8020

# fs_defaultfs=hdfs://mycluster

# NameNode logical name.

# 如果开启了高可用,需要配置如下

## logical_name=mycluster

# Use WebHdfs/HttpFs as the communication mechanism.

# Domain should be the NameNode or HttpFs host.

# Default port is 14000 for HttpFs.
```


webhdfs url=http://localhost:50070/webhdfs/v1

##向 HDFS 发送命令的请求地址

webhdfs url=http://192.168.56.86:14000/webhdfs/v1

Change this if your HDFS cluster is Kerberos-secured

security enabled=false

Default umask for file and directory creation, specified in an octal value.

umask=022

Directory of the Hadoop configuration

hadoop conf dir=\$HADOOP CONF DIR when set or '/etc/hadoop/conf'

#HADOOP 的一些配置

hadoop_conf_dir=/home/hadoop/apps/hadoop26/etc/hadoop

hadoop_hdfs_home=/home/hadoop/apps/hadoop26

hadoop bin=/home/hadoop/apps/hadoop26/bin

3.1.6、测试

开启 HUE 服务:

\$ build/env/bin/supervisor

打开 HUE 的页面,进行 HDFS 管理。

提示 1(不修改也可以):

如果提示错误根目录应该归属于 hdfs, 如下图:

hadoop.hdfs_clusters.default.webhdfs_url 当前值: http://192.168.56.86:14000/webhdfs/v1 文件系统根目录"/"应归属于"hdfs"

请修改 python 变量, 位置如下

cd desktop/libs/hadoop/src/hadoop/fs/ vi webhdfs.py 修改其中的变量值为: DEFAULT HDFS SUPERUSER = 'hadoop' #设置的 hue 超级用户

然后重启 HUE 服务即可。

提示 2:

启动 HUE 服务时,请先 kill 掉之前的 HUE 服务,如果提示地址被占用,请使用如下命令查 看占用 8888 端口的进程并 kill 掉:

\$ netstat -tunlp | grep 8888

3.2、HUE 与 YARN

3.2.1、配置 hue.ini

找到[[yarn_clusters]]标签,涉及修改配置如下:

```
[[yarn clusters]]
```

[[[default]]]

#yarn 服务的配置

resourcemanager host=192.168.56.86

resourcemanager port=8032

#是否将作业提交到此群集,并监控作业执行情况

submit to=True

#logical name=cluster-yarn1(如果开高可用的话)

#配置 yarn 资源管理的访问入口

resourcemanager api url=http://192.168.56.86:8088

proxy api url=http://192.168.56.86:8088

#历史服务器管理的入口,查看作业的历史运行情况

history server api url=http://192.168.56.87:19888

Hadoop 启动 jobhistoryserver 来实现 web 查看作业的历史运行情况: ./mr-jobhistory-daemon.sh start historyserver

3.2.2、重启 HUE 测试

\$ build/env/bin/supervisor

//测试

/bin/yarn jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.1.jar wordcount /input/ /output

3.3、HUE 与 Hive

3.3.1、修改 Hive 配置文件 apache-hive-2.3.3-bin/conf/hive-site.xml

HUE 与 hive 集成需要 hive 开启 HiveServer2 服务,相关配置如下:

属性: hive.server2.thrift.port

属性值: 10000

描述: TCP 的监听端口

属性: hive.server2.thrift.bind.host

属性值: 192.168.56.88

描述: TCP 绑定的主机

属性: hive.server2.long.polling.timeout

属性值: 5000

描述: HiveServer2 在响应使用长轮询的异步调用之前等待的时间(毫秒)

属性: hive.metastore.uris

属性值: thrift://192.168.56.88:9083

描述: 指向的是运行 metastore 服务的主机

3.3.2、启动 Hive 相关服务

\$ bin/hive --service metastore &

\$ bin/hive --service hiveserver2 &

提示 1: 如果设置了 uris,在今后使用 Hive 时,那么必须启动如上两个命令,否则 Hive 无法正常启动。

提示 2: 如果如法正确启动,请尝试 kill -9 RunJar,在重新启动

3.3.3、配置 hue.ini

找到[beeswax]属性标签,涉及修改如下:

[beeswax]

hive server host=192.168.56.88

hive server port=10000

hive conf dir=/home/hadoop/apps/apache-hive-2.3.3-bin/conf

3.3.4、重启 HUE 测试

\$ build/env/bin/supervisor

3.4、HUE 与 Mysql

3.4.1、配置 hue.ini

找到[[[mysql]]]标签,涉及修改如下:

[[[mysql]]]

nice_name=db_mysql

engine=mysql

host=192.168.56.88

port=3306

user=root

password=123456

3.4.2、重启 hue.ini 测试

启动后即可测试是否成功连接 Mysql 服务,并且测试是否可以看到数据

\$ build/env/bin/supervisor

3.5.3、重启 HUE 测试

\$ build/env/bin/supervisor

提示: 如果提示无法关联 oozie 的 share/lib, 请使用 hdfs 命令创建该目录即可:

\$ bin/hdfs dfs -mkdir -p /user/oozie/share/lib

3.5、HUE 与 Zookeeper

3.7.1、配置 hue.ini

找到[zookeeper]标签,涉及修改如下:

[zookeeper]

[[clusters]]

[[[default]]]

host ports=192.168.56.86:2181,192.168.56.87:2181,192.168.56.88:2181

3.7.2、启动 zk 测试

启动:

zkServer.sh start

状态:

zkServer.sh status

3.7.3、重启 HUE 测试

\$ build/env/bin/supervisor

3.6、HUE 与 HBase(先启动 zk)

3.6.1、修改 hue.ini 配置

找到[hbase]标签,涉及修改内容如下:

[hbase]

hbase_clusters=(Cluster|192.168.56.87:9090)

hbase conf dir=/home/hadoop/apps/hbase/conf

3.6.2、启动 HBase 服务和 Hbase 的 thrift 服务

启动:

\$ bin/start-hbase.sh

\$ bin/hbase-daemon.sh start thrift

3.6.3、重启 HUE 进行测试

\$ build/env/bin/supervisor

3.7、HUE 与 Oozie

3.5.1、配置 hue.ini

找到[liboozie]标签以及[oozie]标签涉及修改如下:

[liboozie]:

[liboozie]

#运行 Oozie 服务的 URL。

oozie url=http://192.168.56.87:11000/oozie

#HDFS 上的位置,提交时部署工作流。

remote_deployement_dir=/user/hadoop/oozie-apps

[oozie]:

[oozie]

#本地存储 oozie 示例的位置。

local data dir=/home/hadoop/apps/oozie-4.0.0-cdh5.3.6/examples

#本地存储 oozie 示例数据的位置。

sample data dir=/home/hadoop/apps/oozie-4.0.0-cdh5.3.6/oozie-apps

#HDFS 上存储 oozie 示例和工作流的位置。

remote data dir=/user/hadoop/oozie-apps

#启用 Cron 来定义协调器的频率替换旧的频率数/单位。

enable cron scheduling=true

3.5.2、启动 Oozie 相关服务

\$ bin/oozied.sh start

四、总结

在此我们总结一下集成 HUE 时,我们开启的后台服务项

4.1、Hadoop (hdfs 和 yarn)

启动:

```
$ ./bin/start-hdfs.sh
$ ./bin/start-hdfs.sh

□

□

□
```

\$./bin/start-all.sh

注意:

\$ ~/modules/cdh/hadoop-2.5.0-cdh5.3.6/sbin/httpfs.sh start

4.2 Hive

启动:

\$ ~/modules/cdh/hive-0.13.1-cdh5.3.6/bin/hive --service metastore

\$ ~/modules/cdh/hive-0.13.1-cdh5.3.6/bin/hive --service hiveserver2

或

\$./bin/hive

4.3、zk 启动

启动:

zkServer.sh start

状态

zkServer.sh status

4.4、HBase

启动:

bin/start-hbase.sh

注意: 在 192.168.56.87 thrift

\$ bin/hbase-daemon.sh start thrift &

4.5. Oozie

启动:

\$ bin/oozied.sh start &

注意:

先启动 hadoop 和 zookpeer