250203 논문 피드백

1. 데이터셋 및 초기 설정

- 생성 및 검색 데이터셋 준비 완료:
- 실제 서비스에서는 방대한 데이터셋이 필요하지만,논문에서는 형사 분야 하나에 집중하여 충분한 양의 데이터를 확보

ground truth는 실제 법률 자문을 통해 보완할 필요가 있음(현재는 향후 Scopus 수준의 논문 개발을 위해서는 추가 보완 필요)

- Sparse Encoder 관련 개선:
- 기존에 학습된 Sparse Encoder가 존재하면(예: ../KiwiBM25_sparse_encoder.pkl) 불필요한 학습 과정을 생략하고, 저장된 모델을 바로 로드하는 방식으로 개선하였습니다.
- 로드(load)와 학습(fit) 과정에 대해 "[LOAD]", "[FIT]" 태그가 포함된 상세 로그를 남겨, 각 실험 케이스 별로 어떤 방식이 사용되었는지 명확히 기록되고 있습니다.

```
def fit_and_save_sparse_encoder(self, query: str, documents: List[Document]) -> str:

"""Sparse Encoder를 실시간으로 학습하고 저장합니다."""

try:

doc_contents = [doc.page_content for doc in documents]
    stop_words = [] # 필요 시 추가
    sparse_encoder = create_sparse_encoder(stop_words, mode="kiwi")
    save_path = self.sparse_encoders_dir / f"sparse_encoder_{query}[:10]}_{len(documents)}.pkl"
    logger.info(f"[FIT] Sparse Encoder 학습 시작: query='{query[:10]}', 문서 수={len(documents)}. 저장 경로: {save_path}")
    fit_sparse_encoder(sparse_encoder, doc_contents, save_path=save_path)
    logger.info(f"[FIT] 새로운 Sparse Encoder 저장 완료: {save_path}")
    self.sparse_encoder = sparse_encoder
    return str(save_path)

except Exception as e:
    logger.error(f"Sparse Encoder 학습 및 저장 중 오류 발생: {e}")
    raise
```

2. Context Relevance Check (검색 평가)

- 점수 측정:
- Query와 문서의 Sparse 벡터(키워드 기반) 및 Dense 벡터(의미 기반)를 각각 코사인 유사도로 산출하고, 이를 0∼1 사이의 값으로 정규화

```
def evaluate_sparse_method(self, query: str, documents: List[Document]) -> float:
                                                                                                 """실시간으로 Sparse Encoder를 학습한 뒤 쿼리-문서 유사도를 계산합니다."""
       if not documents:
           logger.warning("문서 리스트가 비어 있음")
           return 0.0
       vectors = self._get_or_create_sparse_vectors(query, documents)
       query_vec = vectors['query_vec']
       doc_vecs = vectors['doc_vecs']
       similarities = []
       # 각 문서와의 코사인 유사도 계산 (Sparse)
       for doc_vec in doc_vecs if isinstance(doc_vecs, list) else [doc_vecs]:
           common_indices = set(query_vec["indices"]) & set(doc_vec["indices"])
           if not common_indices:
               similarities.append(0.0)
           max_index = max(max(query_vec["indices"]), max(doc_vec["indices"]))
           q_vec = np.zeros(max_index + 1)
           d_vec = np.zeros(max_index + 1)
           for idx, val in zip(query_vec["indices"], query_vec["values"]):
               q_vec[idx] = val
           for idx, val in zip(doc_vec["indices"], doc_vec["values"]):
               d_vec[idx] = val
           norm_q = np.linalg.norm(q_vec)
           norm_d = np.linalg.norm(d_vec)
           if norm_q == 0 or norm_d == 0:
               similarities.append(0.0)
           else:
               similarity = np.dot(q_vec, d_vec) / (norm_q * norm_d)
               normalized_similarity = (similarity + 1) / 2 # [0,1] 범위로 정규화
               similarities.append(normalized_similarity)
       avg_similarity = np.mean(similarities) if similarities else 0.0
       logger.info(f"[Sparse 평가] Query: '{query[:15]}...', 문서 수: {len(documents)}, 평균 유사도: {avg_similarity:.4f}")
       return avg_similarity
   except Exception as e:
       logger.error(f"Sparse 평가 중 오류: {e}")
       return 0.0
```

```
def evaluate_dense_method(self, query: str, documents: List[Document]) -> float:
"""Upstage solar-embedding-1-large-query 기반 점수 계산"""

try:

dense_val = self.search_engine._calculate_semantic_similarity(documents, query)

normalized_score = max(min(dense_val, 1.0), 0.0)

logger.info(f"[Dense 평가] Query: '{query[:15]}...', 문서 수: {len(documents)}, 점수: {normalized_score:.4f}")

return normalized_score

except Exception as e:

logger.error(f"Dense 평가 중 오류: {str(e)}")

return 0.0
```

- 두 점수를 가중치 (예: 0.3, 0.4, 0.5, 0.6, 0.7)를 적용하여 Hybrid Score로 결합하는 방법을 사용하였습니다.

• 정규화 전처리 및 평가 개선:

- RAGAS 평가 과정에서 ground truth와 문서(컨텍스트) 간의 형식 차이(대소문자, 불필요한 공백 등)로 인해 평가 점수가 0으로 산출되는 문제를 해결하기 위해, 두 텍스트를 소문자 변환 및 trim(공백 제거) 등 의 정규화를 적용
- -> 현재까지 0으로 나오는 문제 발생
- 정규화된 텍스트의 일부(예: 앞 100자)를 디버그 로그로 출력하여, 평가 데이터의 신뢰성을 확인

• RAGAS 평가:

– 정규화된 데이터를 기반으로 EvaluationDataset과 SingleTurnSample을 생성하고, RAGAS 평가지표(문맥 Precision, Recall) 및 F1 Score도 계산를 산출 평가 결과를 정량적으로 비교 분석

• 상관관계 분석 및 시각화:

– Sparse, Dense, Hybrid 점수와 RAGAS 평가 지표 간의 상관관계를 계산하고, 이를 히트맵과 2차원 그래프(예: Sparse-Dense 관계 시각화)를 통해 분석하였습니다.

이를 통해 Hybrid 방식이 단일 방식 대비 검색 정확도 및 관련 문서 선정에 있어 상호보완적 효과를 지니는지 확인

3. Top-k (n_docs) 파라미터 시험

- 실험 설계:
- Top-k 문서 수(n docs)를 5, 15, 20으로 변경
- 각 설정에 따른 Hybrid Score 및 RAGAS 지표, 사용자 평가 점수를 측정
- K-Means나 K-selection 방법을 참고하여, 최적의 n_docs 값을 도출하는 실험을 진행 중
 특히 n docs가 15일 때 가장 우수한 결과를 보이는 경향을 확인
- => 앞선 실험 이후에 구체화할 예정

4. Response Verifier 및 재작성(Re-RAG) 실험

• 재작성 프로세스:

- GPT-4o 모델을 사용하여 생성된 답변에 대해, UpstageGroundCheck 및 임베딩 유사도 기반의 RAGAS 평가를 수행합니다.
- 만약 평가 점수가 사전 정의된 임계값(예: 0.7)에 미달할 경우, 질문 또는 답변을 재작성(Re-RAG)하여 최대 3회까지 반복하는 루프를 적용하여 답변 품질을 개선하는 실험을 진행 중

• 현재 진행도:

- Response Verifier 및 Re-RAG 실험은 코드 완료도가 약 30% 수준으로, 기존 코드를 재활용하여 진행할 계획이며, 후속 실험을 통해 보완.

5. Boosting 방법 및 향후 계획

· Boosting RAG:

- Sparse와 Dense 검색의 점수를 선형 결합(가중치 적용)하여 Hybrid Score를 산출하는 방법을 적용
- 추후 선형 SVM 등 다른 결합 기법을 도입하여, 두 점수를 최적의 weight로 결합하는 방법도 고려

• 논문 작성 방향:

– 현재 진행 중인 Retrieval(검색) 부분과 Generation(생성) 부분을각각 독립된 논문으로 작성할 수 있는 가능성을 열어둔 상태

종합 및 향후 연구 방향

• 현재 성과:

– 법률 도메인에서 Sparse와 Dense 검색 방식을 결합한 Hybrid 검색 평가 시스템을 구현 저장된 Sparse Encoder의 효율적 활용, 정규화 전처리를 통한 RAGAS 평가 개선, 그리고 상관관계 분석 및 시각화를 통해 하이브리드 접근법의 우수성을 정량적으로 입증

• 남은 과제:

- Dense와 Sparse 점수를 합산하는 최적의 가중치 조합 및 Linear-SVM 등 추가 결합 기법 도입.
- Top-k 파라미터 최적화 및 Re-RAG(재작성) 단계의 코드 완성도 향상.
- ground truth의 법률 자문 보완과 데이터셋 확장을 통한 연구 범위 확대.

• 향후 계획(논문 결론 부분):

- 사용자 평가 및 전문가 피드백을 반영한 동적 튜닝 기법 도입.
- 다양한 LLM 적용과 더 대규모의 법률 전문 임베딩 모델 결합을 통해 시스템 성능을 추가적으로 개선

```
main()
② 357m 50.1s

Python

2025-02-03 04:45:22,168 - datasets - INFO - PyTorch version 2.2.2 available.
2025-02-03 04:45:22,392 - __main__ - INFO - JSON 데이터 로드 완료: /Users/minu/dev/Liberty/Liberty ai/liberty agent/legal category test (2025-02-03 04:45:22,392 - __main__ - INFO - 총 테스트 케이스 수: 30
2025-02-03 04:45:24,033 - liberty_agent.search_engine - INFO - MPS 가용하나 안정성을 위해 CPU 사용
2025-02-03 04:45:24,034 - liberty_agent.search_engine - INFO - KoBERT 모델 로드 완료 (device: cpu)
2025-02-03 04:45:24,560 - __main__ - INFO - [LOAD] 기존 Sparse Encoder 로드 완료: ../KiwiBM25_sparse_encoder.pkl
[load_sparse_encoder]
Loaded Sparse Encoder from: ../KiwiBM25_sparse_encoder.pkl
2025-02-03 04:45:25,079 - __main__ - INFO - 새로운 sparse 벡터 생성: query 길이=215, 문서 수=4
2025-02-03 04:47:55,160 - __main__ - INFO - [Sparse 평가] Query: '질문: "피고인이 주장한 선...', 문서 수: 4, 평균 유사도: 0.5311
2025-02-03 04:47:56,374 - httpx - INFO - HTTP Request: POST https://api.upstage.ai/v1/solar/embeddings "HTTP/1.1 200 OK"
2025-02-03 04:47:56,413 - __main__ - INFO - [Dense 평가] Query: '질문: "피고인이 주장한 선...', 문서 수: 4, 점수: 0.5374
2025-02-03 04:47:56,414 - __main__ - INFO - [Hybrid 평가] Query: '질문: "피고인이 주장한 선...', 문서 수: 4, 점수: 0.5371
2025-02-03 04:47:56,414 - __main__ - INFO - [Hybrid 평가] Query: '질문: "피고인이 주장한 선...', 유서 수: 4, 정수: 0.5371
```