STAT 583 Lecture 4

Linjun (Leon) Zhang

Department of Statistics Rutgers University

Feb. 11th

Misc

- Midterm is scheduled at 6:50-8:50pm on March 3rd.
- TA: Youmeng Jiang
 - Office hours: 2:00-3:30pm every Monday.

Last time

- ullet Parameter estimation for population mean μ and binomial parameter p
- \bullet CI for μ
 - Large n: z-interval
 - Small n: we need to assume the sample is normally distributed
 - ullet when σ is unknown, use Student's t-distribution
 - when σ is known, use normal distribution
- CI for p
 - Large n: z-interval
- CI for $p_1 p_2$, $\mu_X \mu_Y$

Paired Sample

 Sometimes it appears we have data from two samples with the further feature that there is a natural "pairing" of the data between the two samples.

Paired Sample

- Sometimes it appears we have data from two samples with the further feature that there is a natural "pairing" of the data between the two samples.
- For example, suppose that the data consists on n brother-sister pairs, with blood pressures $X_1, ..., X_n$ for the n sisters and blood pressures $Y_1, ..., Y_n$ for their respective brothers.

Let's first consider the case where n is small.

• If $X_1, X_2, ..., X_n$ i.i.d. $\sim N(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n$ i.i.d. $\sim N(\mu_Y, \sigma_Y^2)$. In the paired samples' case, it's not realistic to assume that $\{X_i\}$ and $\{Y_i\}$ are independent.

- If $X_1, X_2, ..., X_n$ i.i.d. $\sim N(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n$ i.i.d. $\sim N(\mu_Y, \sigma_Y^2)$. In the paired samples' case, it's not realistic to assume that $\{X_i\}$ and $\{Y_i\}$ are independent.
- However, it's natural to assume $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are n independent pairs.

- If $X_1, X_2, ..., X_n$ i.i.d. $\sim N(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n$ i.i.d. $\sim N(\mu_Y, \sigma_Y^2)$. In the paired samples' case, it's not realistic to assume that $\{X_i\}$ and $\{Y_i\}$ are independent.
- However, it's natural to assume $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are n independent pairs.
- We denote $D_i = X_i Y_i$, then D_i i.i.d. $\sim N(\mu_X \mu_Y, \sigma_D^2)$

- If $X_1, X_2, ..., X_n$ i.i.d. $\sim N(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n$ i.i.d. $\sim N(\mu_Y, \sigma_Y^2)$. In the paired samples' case, it's not realistic to assume that $\{X_i\}$ and $\{Y_i\}$ are independent.
- However, it's natural to assume $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are n independent pairs.
- We denote $D_i = X_i Y_i$, then D_i i.i.d. $\sim N(\mu_X \mu_Y, \sigma_D^2)$
- We estimate $\mu_X \mu_Y$ by $\bar{D} = \bar{X} \bar{Y}$

- If $X_1, X_2, ..., X_n$ i.i.d. $\sim N(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n$ i.i.d. $\sim N(\mu_Y, \sigma_Y^2)$. In the paired samples' case, it's not realistic to assume that $\{X_i\}$ and $\{Y_i\}$ are independent.
- However, it's natural to assume $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are n independent pairs.
- We denote $D_i = X_i Y_i$, then D_i i.i.d. $\sim N(\mu_X \mu_Y, \sigma_D^2)$
- We estimate $\mu_X \mu_Y$ by $\bar{D} = \bar{X} \bar{Y}$
- A (1α) confidence interval for $\mu_X \mu_Y$ is

$$[\bar{D}-t_{\alpha/2,n-1}\frac{s_D}{\sqrt{n}},\quad \bar{D}+t_{\alpha/2,n-1}\frac{s_D}{\sqrt{n}}],$$

where
$$s_D=\sqrt{\frac{(D_1-\bar{D})^2+...+(D_n-\bar{D})^2}{n}}.$$

Let's first consider the case where *n* is small.

- If $X_1, X_2, ..., X_n$ i.i.d. $\sim N(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n$ i.i.d. $\sim N(\mu_Y, \sigma_Y^2)$. In the paired samples' case, it's not realistic to assume that $\{X_i\}$ and $\{Y_i\}$ are independent.
- However, it's natural to assume $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are n independent pairs.
- We denote $D_i = X_i Y_i$, then D_i i.i.d. $\sim N(\mu_X \mu_Y, \sigma_D^2)$
- We estimate $\mu_X \mu_Y$ by $\bar{D} = \bar{X} \bar{Y}$
- A $(1-\alpha)$ confidence interval for $\mu_X \mu_Y$ is

$$[\bar{D}-t_{\alpha/2,n-1}\frac{s_D}{\sqrt{n}},\quad \bar{D}+t_{\alpha/2,n-1}\frac{s_D}{\sqrt{n}}],$$

where
$$s_D = \sqrt{\frac{(D_1 - \bar{D})^2 + \ldots + (D_n - \bar{D})^2}{n}}.$$

• If n is large, we can simply replace $t_{\alpha/2,n-1}$ with $z_{\alpha/2}$ and remove the normality assumptions.

Suppose that we take the blood pressures of n=12 women and their brothers, and get the following blood pressure reading:

Construct the 95% CI for the difference of the mean blood pressure of men and women.

$$(s_{sister}^2 = 307, s_{brother}^2 = 299, s_{diff}^2 = 3, t_{0.025,11} = 2.306, t_{0.05,11} = 1.860, t_{0.025,12} = 2.262, t_{0.05,12} = 1.833)$$

Suppose that we take the blood pressures of n=12 women and their brothers, and get the following blood pressure reading:

Family	1	2	3	4	5	6	7	8	9	10	11	12
Sister	107	134	111	141	121	118	145	110	164	126	148	132
Brother	110	136	115	140	124	119	148	113	168	129	148	137

Construct the 95% CI for the difference of the mean blood pressure of men and women.

$$(s_{sister}^2 = 307, s_{brother}^2 = 299, s_{diff}^2 = 3, t_{0.025,11} = 2.306, t_{0.05,11} = 1.860, t_{0.025,12} = 2.262, t_{0.05,12} = 1.833)$$

$$\bar{D} = 2.5, s_D^2 = 3, t_{0.025,11} = 2.306$$

Suppose that we take the blood pressures of n=12 women and their brothers, and get the following blood pressure reading:

Construct the 95% CI for the difference of the mean blood pressure of men and women.

$$(s_{sister}^2 = 307, s_{brother}^2 = 299, s_{diff}^2 = 3, t_{0.025,11} = 2.306, t_{0.05,11} = 1.860, t_{0.025,12} = 2.262, t_{0.05,12} = 1.833)$$

Answer

•
$$\bar{D} = 2.5$$
, $s_D^2 = 3$, $t_{0.025,11} = 2.306$

•
$$2.5 \pm 2.306 \cdot \frac{\sqrt{3}}{\sqrt{12}} = [1.35, 3.65].$$

5

Overview

- General confidence intervals construction based on pivotal quantities
- General confidence intervals construction based on maximum likelihood estimators

ullet We have now talked about CI for mean parameters: $\mu, p, \mu_1 - \mu_2, p_1 - p_2$

- ullet We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities
 - has a distribution that does not depend on the target parameter

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities
 - has a distribution that does not depend on the target parameter
- Example:

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities
 - has a distribution that does not depend on the target parameter
- Example:
 - We randomly sample an observation from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general Cls, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities
 - has a distribution that does not depend on the target parameter
- Example:
 - We randomly sample an observation from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .
 - If $Y \sim Exp(\theta)$, then $f_Y(y) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$.

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general Cls, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities
 - has a distribution that does not depend on the target parameter
- Example:
 - We randomly sample an observation from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .
 - If $Y \sim Exp(\theta)$, then $f_Y(y) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$.
 - Let $U = \frac{Y}{\theta}$, we have $f_U(u) = f_Y(u \cdot \theta) \cdot \frac{dy}{du} = \frac{1}{\theta} e^{-u} \cdot \theta = e^{-u}$ for u > 0, that is, $U \sim Exp(1)$

- We have now talked about CI for mean parameters: $\mu, p, \mu_1 \mu_2, p_1 p_2$
- For general CIs, a useful method for deriving confidence intervals is to use a pivotal quantity
- A pivotal quantity
 - is a function of the sample data, the unknown target parameter, and no other quantities
 - has a distribution that does not depend on the target parameter
- Example:
 - We randomly sample an observation from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .
 - If $Y \sim Exp(\theta)$, then $f_Y(y) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$.
 - Let $U = \frac{Y}{\theta}$, we have $f_U(u) = f_Y(u \cdot \theta) \cdot \frac{dy}{du} = \frac{1}{\theta} e^{-u} \cdot \theta = e^{-u}$ for u > 0, that is, $U \sim Exp(1)$
 - Thus, we can use $U = \frac{Y}{\theta}$ as a pivotal quantity

• We need to find two numbers a and b such that

$$\mathbb{P}(a \le U \le b) = 90\%$$

We need to find two numbers a and b such that

$$\mathbb{P}(a \le U \le b) = 90\%$$

One way to do this is to choose a and b to satisfy

$$\mathbb{P}(\mathit{U} < \mathit{a}) = \mathbb{P}(\mathit{U} > \mathit{b}) = 5\%$$

We need to find two numbers a and b such that

$$\mathbb{P}(a \le U \le b) = 90\%$$

• One way to do this is to choose a and b to satisfy $\mathbb{P}(U < a) = \mathbb{P}(U > b) = 5\%$

• $1 - e^{-a} = .05$ and $e^{-b} = .05$, equivalently, a = 0.051, b = 2.996

We need to find two numbers a and b such that

$$\mathbb{P}(a \le U \le b) = 90\%$$

• One way to do this is to choose a and b to satisfy $\mathbb{P}(U < a) = \mathbb{P}(U > b) = 5\%$

- $1 e^{-a} = .05$ and $e^{-b} = .05$, equivalently, a = 0.051, b = 2.996
- $0.9 = \mathbb{P}(0.051 \le \frac{Y}{\theta} \le 2.996) = \mathbb{P}(\frac{Y}{2.996} \le \theta \le \frac{Y}{0.051})$

Example

We randomly sample 10 observations $X_1,...,X_{10}$ from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

Example

We randomly sample 10 observations $X_1,...,X_{10}$ from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

Answer

• Hint: If $X_i \sim Exp(\theta_i)$ then $\min\{X_1,...,X_n\} \sim Exp(\frac{1}{\frac{1}{\theta_1}+...+\frac{1}{\theta_n}})$.

Example

We randomly sample 10 observations $X_1,...,X_{10}$ from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

- Hint: If $X_i \sim Exp(\theta_i)$ then $\min\{X_1,...,X_n\} \sim Exp(\frac{1}{\frac{1}{\theta_1}+...+\frac{1}{\theta_n}})$.
- $\bullet \ \ \overset{X_1}{\theta}, ... \overset{X_{10}}{\theta} \stackrel{i.i.d.}{\sim} Exp(1)$

Example

We randomly sample 10 observations $X_1, ..., X_{10}$ from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

- Hint: If $X_i \sim Exp(\theta_i)$ then $\min\{X_1,...,X_n\} \sim Exp(\frac{1}{\frac{1}{\theta_1}+...+\frac{1}{\theta_n}})$.
- $\overset{\bullet}{\bullet} \; \overset{X_1}{\theta}, ... \overset{X_{10}}{\theta} \overset{i.i.d.}{\sim} \; \textit{Exp}(1)$
- $U = \min\{\frac{X_1}{\theta}, \dots, \frac{X_{10}}{\theta}\} \sim Exp(\frac{1}{10})$

Example

We randomly sample 10 observations $X_1, ..., X_{10}$ from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

- Hint: If $X_i \sim Exp(\theta_i)$ then $\min\{X_1,...,X_n\} \sim Exp(\frac{1}{\frac{1}{\theta_1}+...+\frac{1}{\theta_n}})$.
- $\overset{\bullet}{\bullet} \; \overset{X_1}{\theta}, \dots \overset{X_{10}}{\theta} \overset{i.i.d.}{\sim} \; Exp(1)$
- $U = \min\{\frac{X_1}{\theta}, ... \frac{X_{10}}{\theta}\} \sim Exp(\frac{1}{10})$
- Find a, b such that $\mathbb{P}(U < a) = 1 e^{-10a} = .05$ and $\mathbb{P}(U > b) = e^{-10b} = .05$, equivalently, a = 0.005, b = 0.300

Example

We randomly sample 10 observations $X_1, ..., X_{10}$ from an exponential distribution with unknown mean θ . Find a formula for a 90% CI for θ .

- Hint: If $X_i \sim Exp(\theta_i)$ then $\min\{X_1,...,X_n\} \sim Exp(\frac{1}{\frac{1}{\theta_1}+...+\frac{1}{\theta_n}})$.
- $\bullet \ \ \frac{X_1}{\theta}, ... \frac{X_{10}}{\theta} \stackrel{i.i.d.}{\sim} Exp(1)$
- $U = \min\{\frac{X_1}{\theta}, ... \frac{X_{10}}{\theta}\} \sim Exp(\frac{1}{10})$
- Find a, b such that $\mathbb{P}(U < a) = 1 e^{-10a} = .05$ and $\mathbb{P}(U > b) = e^{-10b} = .05$, equivalently, a = 0.005, b = 0.300
- $0.9 = \mathbb{P}(0.005 < U < 0.300) = \mathbb{P}(0.005 < \frac{\min\{X_1, ..., X_{10}\}}{\theta} < 0.300) = \mathbb{P}(\frac{\min\{X_1, ..., X_{10}\}}{0.300} < \theta < \frac{\min\{X_1, ..., X_{10}\}}{0.005})$

Example

Suppose that we take a sample Y from a uniform distribution defined on the interval $[0,\theta]$, where θ is unknown. Find a 95% lower confidence bound for θ , that is, find L(Y), such that $\mathbb{P}(\theta \geq L(Y)) = 0.95$.

Example

Suppose that we take a sample Y from a uniform distribution defined on the interval $[0,\theta]$, where θ is unknown. Find a 95% lower confidence bound for θ , that is, find L(Y), such that $\mathbb{P}(\theta \geq L(Y)) = 0.95$.

Answer

• Consider $U = \frac{Y}{\theta}$

Example

Suppose that we take a sample Y from a uniform distribution defined on the interval $[0,\theta]$, where θ is unknown. Find a 95% lower confidence bound for θ , that is, find L(Y), such that $\mathbb{P}(\theta \geq L(Y)) = 0.95$.

- Consider $U = \frac{Y}{\theta}$
- $U \sim U(0,1)$

Example

Suppose that we take a sample Y from a uniform distribution defined on the interval $[0,\theta]$, where θ is unknown. Find a 95% lower confidence bound for θ , that is, find L(Y), such that $\mathbb{P}(\theta \geq L(Y)) = 0.95$.

- Consider $U = \frac{Y}{\theta}$
- $U \sim U(0,1)$
- $\mathbb{P}(U < 0.95) = 0.95$

Example

Suppose that we take a sample Y from a uniform distribution defined on the interval $[0,\theta]$, where θ is unknown. Find a 95% lower confidence bound for θ , that is, find L(Y), such that $\mathbb{P}(\theta \geq L(Y)) = 0.95$.

- Consider $U = \frac{Y}{\theta}$
- $U \sim U(0,1)$
- $\mathbb{P}(U < 0.95) = 0.95$
- $0.95 = \mathbb{P}(U < 0.95) = \mathbb{P}(\frac{Y}{\theta} < 0.95) = \mathbb{P}(\frac{Y}{0.95} \le \theta)$

Example

Let $Y_1, ..., Y_n$ denote a random sample of size n from $U(0, \theta)$. Let $Y_{(n)} = \max\{Y_1, Y_2, ..., Y_n\}$. Find a 95% lower confidence bound for θ .

Example

Let $Y_1, ..., Y_n$ denote a random sample of size n from $U(0, \theta)$. Let $Y_{(n)} = \max\{Y_1, Y_2, ..., Y_n\}$. Find a 95% lower confidence bound for θ .

Answer

• Consider $U = \frac{Y_{(n)}}{\theta}$

Example

Let $Y_1,...,Y_n$ denote a random sample of size n from $U(0,\theta)$. Let $Y_{(n)}=\max\{Y_1,Y_2,...,Y_n\}$. Find a 95% lower confidence bound for θ .

- Consider $U = \frac{Y_{(n)}}{\theta}$
- U has the cdf

$$F(u) = \mathbb{P}(\frac{\max\{Y_1, Y_2, ..., Y_n\}}{\theta} \leq u) = \mathbb{P}(\frac{Y_1}{\theta} \leq u, ..., \frac{Y_n}{\theta} \leq u) = \mathbb{P}(\frac{Y_1}{\theta} \leq u)^n$$

Example

Let $Y_1, ..., Y_n$ denote a random sample of size n from $U(0, \theta)$. Let $Y_{(n)} = \max\{Y_1, Y_2, ..., Y_n\}$. Find a 95% lower confidence bound for θ .

Answer

- Consider $U = \frac{Y_{(n)}}{\theta}$
- U has the cdf

$$F(u) = \mathbb{P}\left(\frac{\max\{Y_1, Y_2, ..., Y_n\}}{\theta} \le u\right) = \mathbb{P}\left(\frac{Y_1}{\theta} \le u, ..., \frac{Y_n}{\theta} \le u\right) = \mathbb{P}\left(\frac{Y_1}{\theta} \le u\right)^n$$

• $F(u) = u^n$ for $u \in [0, 1]$.

Example

Let $Y_1, ..., Y_n$ denote a random sample of size n from $U(0, \theta)$. Let $Y_{(n)} = \max\{Y_1, Y_2, ..., Y_n\}$. Find a 95% lower confidence bound for θ .

- Consider $U = \frac{Y_{(n)}}{\theta}$
- U has the cdf $F(u) = \mathbb{P}(\frac{\max\{Y_1, Y_2, ..., Y_n\}}{\theta} \le u) = \mathbb{P}(\frac{Y_1}{\theta} \le u, ..., \frac{Y_n}{\theta} \le u) = \mathbb{P}(\frac{Y_1}{\theta} \le u)^n$
- $F(u) = u^n \text{ for } u \in [0, 1].$
- $0.95 = \mathbb{P}(U < (0.95)^{1/n}) = \mathbb{P}(\frac{Y_{(n)}}{\theta} < (0.95)^{1/n}) = \mathbb{P}(\frac{Y_{(n)}}{(0.95)^{1/n}} \le \theta)$

Example

If we have n=10 samples i.i.d. from $U(0,\theta)$, with the max $Y_{\text{max}}=5.7$. We are 95% confident that θ is at least:.

Example

If we have n=10 samples i.i.d. from $U(0,\theta)$, with the max $Y_{\text{max}}=5.7$. We are 95% confident that θ is at least:.

•
$$0.95 = \mathbb{P}(U < (0.95)^{1/n}) = \mathbb{P}(\frac{Y_{(n)}}{\theta} < (0.95)^{1/n}) = \mathbb{P}(\frac{Y_{(n)}}{(0.95)^{1/n}} \le \theta)$$

Example

If we have n=10 samples i.i.d. from $U(0,\theta)$, with the max $Y_{\max}=5.7$. We are 95% confident that θ is at least:.

•
$$0.95 = \mathbb{P}(U < (0.95)^{1/n}) = \mathbb{P}(\frac{Y_{(n)}}{\theta} < (0.95)^{1/n}) = \mathbb{P}(\frac{Y_{(n)}}{(0.95)^{1/n}} \le \theta)$$

• Suppose $Y_1,...,Y_n \overset{i.i.d.}{\sim} N(\mu,\sigma^2)$ with μ and σ^2 unknown. We seek a $100(1-\alpha)\%$ CI for σ^2

- Suppose $Y_1,...,Y_n\stackrel{i.i.d.}{\sim} N(\mu,\sigma^2)$ with μ and σ^2 unknown. We seek a $100(1-\alpha)\%$ CI for σ^2
- Recall that, for $S^2=rac{1}{n-1}\sum_{i=1}^n(Y_i-ar{Y})^2$, we have the pivotal quantity $rac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}.$

- Suppose $Y_1,...,Y_n\stackrel{i.i.d.}{\sim} N(\mu,\sigma^2)$ with μ and σ^2 unknown. We seek a $100(1-\alpha)\%$ CI for σ^2
- Recall that, for $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$, we have the pivotal quantity

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

As a result,

$$\mathbb{P}(\chi^{2}_{1-(\alpha/2),n-1} \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi^{2}_{\alpha/2,n-1}) = 1 - \alpha$$

- Suppose $Y_1,...,Y_n\stackrel{i.i.d.}{\sim} N(\mu,\sigma^2)$ with μ and σ^2 unknown. We seek a $100(1-\alpha)\%$ CI for σ^2
- Recall that, for $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$, we have the pivotal quantity

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

As a result,

$$\mathbb{P}(\chi^{2}_{1-(\alpha/2),n-1} \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi^{2}_{\alpha/2,n-1}) = 1 - \alpha$$

• A $100(1-\alpha)\%$ Confidence Interval for σ^2 :

$$\mathbb{P}(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-(\alpha/2),n-1}}) = 1 - \alpha.$$

Example

Suppose the maturation times for a flower species are $N(\mu, \sigma^2)$. If a random sample of n=13 seeds yielded $s^2=10.7$, then what is a 90% CI for σ^2 ? $(\chi^2_{0.05,12}=21.03,\chi^2_{0.95,12}=5.23)$

Example

Suppose the maturation times for a flower species are $N(\mu, \sigma^2)$. If a random sample of n=13 seeds yielded $s^2=10.7$, then what is a 90% CI for σ^2 ? $(\chi^2_{0.05,12}=21.03,\chi^2_{0.95,12}=5.23)$

$$\mathbb{P}(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-(\alpha/2),n-1}}) = 1 - \alpha.$$

Example

Suppose the maturation times for a flower species are $N(\mu, \sigma^2)$. If a random sample of n=13 seeds yielded $s^2=10.7$, then what is a 90% CI for σ^2 ? $(\chi^2_{0.05,12}=21.03,\chi^2_{0.95,12}=5.23)$

$$\mathbb{P}(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-(\alpha/2),n-1}}) = 1 - \alpha.$$

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} = \frac{12 \times 10.7}{21.03} = 6.11$$

Example

Suppose the maturation times for a flower species are $N(\mu, \sigma^2)$. If a random sample of n=13 seeds yielded $s^2=10.7$, then what is a 90% CI for σ^2 ? $(\chi^2_{0.05,12}=21.03,\chi^2_{0.95,12}=5.23)$

Answer

•

$$\mathbb{P}(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-(\alpha/2),n-1}}) = 1 - \alpha.$$

Example

Suppose the maturation times for a flower species are $N(\mu, \sigma^2)$. If a random sample of n=13 seeds yielded $s^2=10.7$, then what is a 90% CI for σ^2 ? $(\chi^2_{0.05,12}=21.03,\chi^2_{0.95,12}=5.23)$

Answer

•

$$\mathbb{P}(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-(\alpha/2),n-1}}) = 1 - \alpha.$$

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} = \frac{12 \times 10.7}{21.03} = 6.11$$

$$\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}} = \frac{12 \times 10.7}{5.23} = 24.55$$

• The 90% CI is [6.11, 24.55].

 Another general and important method to construct point estimation and confidence intervals are maximum likelihood estimator (MLE)

• Suppose $Y_1, ..., Y_n$ are an i.i.d. random sample from pdf $f_Y(y; \theta)$

- Suppose $Y_1, ..., Y_n$ are an i.i.d. random sample from pdf $f_Y(y; \theta)$
- Then we call

$$f(y_1, y_2, ..., y_n | \theta)$$

the joint density function. It is a function of $y_1, ..., y_n$ for a fixed (unknown) value of θ .

- Suppose $Y_1, ..., Y_n$ are an i.i.d. random sample from pdf $f_Y(y; \theta)$
- Then we call

$$f(y_1, y_2, ..., y_n | \theta)$$

the joint density function. It is a function of $y_1, ..., y_n$ for a fixed (unknown) value of θ .

• This function gives the probability or likelihood of observing the event $\{(Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n)\}$ when the value of the parameter is θ .

- Suppose $Y_1, ..., Y_n$ are an i.i.d. random sample from pdf $f_Y(y; \theta)$
- Then we call

$$f(y_1, y_2, ..., y_n | \theta)$$

the joint density function. It is a function of $y_1, ..., y_n$ for a fixed (unknown) value of θ .

- This function gives the probability or likelihood of observing the event $\{(Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n)\}$ when the value of the parameter is θ .
- By the i.i.d. assumption, we have

$$f(y_1, y_2, ..., y_n | \theta) = \prod_{i=1}^n f(y_i | \theta)$$

• We could also view $f(y_1, y_2, ..., y_n | \theta)$ as a function of θ for a given data set $y_1, ..., y_n$. In that case we write

$$L(\theta \mid y_1,...,y_n) := f(y_1,y_2,...,y_n|\theta).$$

• We could also view $f(y_1, y_2, ..., y_n | \theta)$ as a function of θ for a given data set $y_1, ..., y_n$. In that case we write

$$L(\theta \mid y_1,...,y_n) := f(y_1,y_2,...,y_n|\theta).$$

• We call $L(\theta \mid y_1,...,y_n)$ the likelihood function.

• We could also view $f(y_1, y_2, ..., y_n | \theta)$ as a function of θ for a given data set $y_1, ..., y_n$. In that case we write

$$L(\theta \mid y_1,...,y_n) := f(y_1,y_2,...,y_n|\theta).$$

- We call $L(\theta \mid y_1, ..., y_n)$ the likelihood function.
- Note: the joint density and likelihood function are the same function, but the first is treated as a function of the data, and the second as a function of the parameter θ .

• Loosely speaking, the value of θ that maximizes $L(\theta \mid y_1, ..., y_n)$ is the parameter value that is "most likely" to have produced the data we observe.

- Loosely speaking, the value of θ that maximizes $L(\theta \mid y_1,...,y_n)$ is the parameter value that is "most likely" to have produced the data we observe.
- ullet The maximum likelihood estimator (MLE) of the parameter heta is

$$\hat{\theta} = \arg\max L(\theta \mid y_1, ..., y_n)$$

- Loosely speaking, the value of θ that maximizes $L(\theta \mid y_1,...,y_n)$ is the parameter value that is "most likely" to have produced the data we observe.
- The maximum likelihood estimator (MLE) of the parameter θ is

$$\hat{\theta} = \operatorname{arg\,max} L(\theta \mid y_1, ..., y_n)$$

• Note: θ can be taken as a vector $\theta = (\theta_1, ..., \theta_k)$

- Loosely speaking, the value of θ that maximizes $L(\theta \mid y_1,...,y_n)$ is the parameter value that is "most likely" to have produced the data we observe.
- The maximum likelihood estimator (MLE) of the parameter θ is

$$\hat{\theta} = \arg\max L(\theta \mid y_1, ..., y_n)$$

- Note: θ can be taken as a vector $\theta = (\theta_1, ..., \theta_k)$
- Note 2: In many cases, it is easier to maximize $\log L(\theta)$ than to maximize $L(\theta)$ itself, since \log is a strictly increasing function. We call $\log L(\theta)$ the \log likelihood.

Often, the MLE is found by

- **①** Writing out the (log) likelihood as afunction of the parameter (say, θ)
- $oldsymbol{0}$ Taking the derivative with respect to $oldsymbol{\theta}$
- lacktriangle Setting the derivative equal to 0 and solving for $\hat{ heta}$
- Checking that the second derivative is negative at $\hat{\theta}$ to ensure the solution is a maximum.

Example of maximum likelihood estimator

• Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p

Example of maximum likelihood estimator

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.
 - $L(p) = L(y_1, y_2, ..., y_n | p) = p^y (1-p)^{n-y}$, where $y = \sum_{i=1}^n y_i$.

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.
 - $L(p) = L(y_1, y_2, ..., y_n | p) = p^y (1 p)^{n-y}$, where $y = \sum_{i=1}^n y_i$.

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.
 - $L(p) = L(y_1, y_2, ..., y_n | p) = p^y (1-p)^{n-y}$, where $y = \sum_{i=1}^n y_i$.

 - $\frac{d(\log L(p))}{dp} = y(\frac{1}{p}) + (n-y)\frac{-1}{n-p}$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.
 - $L(p) = L(y_1, y_2, ..., y_n | p) = p^y (1-p)^{n-y}$, where $y = \sum_{i=1}^n y_i$.

 - $\frac{d(\log L(p))}{dp} = y(\frac{1}{p}) + (n-y)\frac{-1}{n-p}$
 - We need to solve for \hat{p} such that

$$\frac{y}{\hat{p}} = \frac{n-y}{1-\hat{p}}$$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.
 - $L(p) = L(y_1, y_2, ..., y_n | p) = p^y (1 p)^{n-y}$, where $y = \sum_{i=1}^n y_i$.

 - $\frac{d(\log L(p))}{dp} = y(\frac{1}{p}) + (n-y)\frac{-1}{n-p}$
 - We need to solve for \hat{p} such that

$$\frac{y}{\hat{p}} = \frac{n-y}{1-\hat{p}}$$

• We then have $p = \frac{y}{n}$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of p
- Solution
 - $f(y_i \mid p) = p^{y_i}(1-p)^{1-y_i}$.
 - $L(p) = L(y_1, y_2, ..., y_n | p) = p^y (1 p)^{n-y}$, where $y = \sum_{i=1}^n y_i$.

 - $\frac{d(\log L(p))}{dp} = y(\frac{1}{p}) + (n-y)\frac{-1}{n-p}$
 - We need to solve for \hat{p} such that

$$\frac{y}{\hat{\rho}} = \frac{n-y}{1-\hat{\rho}}$$

- We then have $p = \frac{y}{n}$
- Hence, the MLE of p is actually the intuitive estimator for p that we

• Suppose that $Y_1,...,Y_n \overset{i.i.d.}{\sim} \mathit{U}(0,\theta).$ Find the MLE of θ

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} U(0, \theta)$. Find the MLE of θ
- Solution

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} U(0, \theta)$. Find the MLE of θ
- Solution
 - $f(y_i \mid \theta) = I_{[0,\theta]}(y_i)$, , where $I_{[a,b]}(\cdot)$ is an indicator function such that $I_{a,b}(x) = 1$ if $x \in [a,b]$, and = 0 otherwise

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} U(0, \theta)$. Find the MLE of θ
- Solution
 - $f(y_i \mid \theta) = I_{[0,\theta]}(y_i)$, , where $I_{[a,b]}(\cdot)$ is an indicator function such that $I_{a,b}(x) = 1$ if $x \in [a,b]$, and = 0 otherwise
 - $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \prod_{i=1}^n I_{[0,\theta]}(y_i) = 1$ if $y_1, ..., y_n \in [0, \theta]$, and 0 otherwise

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} U(0, \theta)$. Find the MLE of θ
- Solution
 - $f(y_i \mid \theta) = I_{[0,\theta]}(y_i)$, , where $I_{[a,b]}(\cdot)$ is an indicator function such that $I_{a,b}(x) = 1$ if $x \in [a,b]$, and = 0 otherwise
 - $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \prod_{i=1}^n I_{[0,\theta]}(y_i) = 1$ if $y_1, ..., y_n \in [0, \theta]$, and 0 otherwise
 - $L(\theta)$ is maximized if $\hat{\theta} \geq \max_i y_i$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} U(0, \theta)$. Find the MLE of θ
- Solution
 - $f(y_i \mid \theta) = I_{[0,\theta]}(y_i)$, , where $I_{[a,b]}(\cdot)$ is an indicator function such that $I_{a,b}(x) = 1$ if $x \in [a,b]$, and = 0 otherwise
 - $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \prod_{i=1}^n I_{[0,\theta]}(y_i) = 1$ if $y_1, ..., y_n \in [0, \theta]$, and 0 otherwise
 - $L(\theta)$ is maximized if $\hat{\theta} \geq \max_i y_i$
 - The MLE can be any value $\geq \max_i y_i$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} U(0, \theta)$. Find the MLE of θ
- Solution
 - $f(y_i \mid \theta) = I_{[0,\theta]}(y_i)$, , where $I_{[a,b]}(\cdot)$ is an indicator function such that $I_{a,b}(x) = 1$ if $x \in [a,b]$, and = 0 otherwise
 - $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \prod_{i=1}^n I_{[0,\theta]}(y_i) = 1$ if $y_1, ..., y_n \in [0, \theta]$, and 0 otherwise
 - $L(\theta)$ is maximized if $\hat{\theta} \geq \max_i y_i$
 - The MLE can be any value $\geq \max_i y_i$
 - Hence, the MLE of θ is not unique

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Exp(\theta)$. Find the MLE of θ .

•
$$f(y_i \mid \theta) = \frac{1}{\theta} e^{-y_i/\theta}$$

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Exp(\theta)$. Find the MLE of θ .

- $f(y_i \mid \theta) = \frac{1}{\theta} e^{-y_i/\theta}$
- $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \theta^{-n} e^{-(y_1 + ... + y_n)/\theta}$

Problem

Suppose that $Y_1, ..., Y_n \stackrel{i.i.d.}{\sim} Exp(\theta)$. Find the MLE of θ .

- $f(y_i \mid \theta) = \frac{1}{\theta} e^{-y_i/\theta}$
- $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \theta^{-n} e^{-(y_1 + ... + y_n)/\theta}$

Problem

Suppose that $Y_1, ..., Y_n \stackrel{i.i.d.}{\sim} Exp(\theta)$. Find the MLE of θ .

- $f(y_i \mid \theta) = \frac{1}{\theta} e^{-y_i/\theta}$
- $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \theta^{-n} e^{-(y_1 + ... + y_n)/\theta}$
- $\bullet \frac{d(\log L(\theta))}{d\theta} = -\frac{n}{\theta} + \frac{y_1 + \dots + y_n}{\theta^2}$

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Exp(\theta)$. Find the MLE of θ .

- $f(y_i \mid \theta) = \frac{1}{\theta} e^{-y_i/\theta}$
- $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \theta^{-n} e^{-(y_1 + ... + y_n)/\theta}$
- $\frac{d(\log L(\theta))}{d\theta} = -\frac{n}{\theta} + \frac{y_1 + \dots + y_n}{\theta^2}$
- We need to solve for $\hat{ heta}$ such that $rac{n}{\hat{ heta}} = rac{y_1 + \ldots + y_n}{\hat{ heta}^2}$

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Exp(\theta)$. Find the MLE of θ .

- $f(y_i \mid \theta) = \frac{1}{\theta} e^{-y_i/\theta}$
- $L(\theta) = L(y_1, y_2, ..., y_n | \theta) = \theta^{-n} e^{-(y_1 + ... + y_n)/\theta}$
- $\log L(\theta) = -n \log \theta (y_1 + ... + y_n)/\theta$
- $\frac{d(\log L(\theta))}{d\theta} = -\frac{n}{\theta} + \frac{y_1 + \dots + y_n}{\theta^2}$
- We need to solve for $\hat{\theta}$ such that $\frac{n}{\hat{\theta}} = \frac{y_1 + \ldots + y_n}{\hat{\theta}^2}$
- We then have $\hat{\theta} = \frac{y_1 + ... + y_n}{n}$.

• Suppose that $Y_1,...,Y_n \overset{i.i.d.}{\sim} N(\mu,\sigma^2)$. Find the MLE of μ and σ .

- Suppose that $Y_1,...,Y_n \overset{i.i.d.}{\sim} N(\mu,\sigma^2)$. Find the MLE of μ and σ .
- $f(y_i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{(y_i \mu)^2}{2\sigma^2}]$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Find the MLE of μ and σ .
- $f(y_i \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp[-\frac{(y_i \mu)^2}{2\sigma^2}]$
- $L(\lambda) = L(y_1, y_2, ..., y_n | \lambda) = (\frac{1}{2\pi\sigma^2})^{n/2} \exp[-\frac{\sum_{i=1}^n (y_i \mu)^2}{2\sigma^2}]$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Find the MLE of μ and σ .
- $f(y_i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{(y_i \mu)^2}{2\sigma^2}]$
- $L(\lambda) = L(y_1, y_2, ..., y_n | \lambda) = (\frac{1}{2\pi\sigma^2})^{n/2} \exp[-\frac{\sum_{i=1}^n (y_i \mu)^2}{2\sigma^2}]$
- $\log L(\lambda) = -\frac{n}{2} \log \sigma^2 \frac{n}{2} \log 2\pi \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i \mu)^2$.

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Find the MLE of μ and σ .
- $f(y_i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{(y_i \mu)^2}{2\sigma^2}]$
- $L(\lambda) = L(y_1, y_2, ..., y_n | \lambda) = (\frac{1}{2\pi\sigma^2})^{n/2} \exp[-\frac{\sum_{i=1}^n (y_i \mu)^2}{2\sigma^2}]$
- $\log L(\lambda) = -\frac{n}{2} \log \sigma^2 \frac{n}{2} \log 2\pi \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i \mu)^2$.
- Taking derivatives:

$$\frac{\partial(\log L(\mu, \sigma^2))}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu)$$

$$\frac{\partial(\log L(\mu, \sigma^2))}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2$$

- Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Find the MLE of μ and σ .
- $f(y_i \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp[-\frac{(y_i \mu)^2}{2\sigma^2}]$
- $L(\lambda) = L(y_1, y_2, ..., y_n | \lambda) = (\frac{1}{2\pi\sigma^2})^{n/2} \exp[-\frac{\sum_{i=1}^n (y_i \mu)^2}{2\sigma^2}]$
- $\log L(\lambda) = -\frac{n}{2} \log \sigma^2 \frac{n}{2} \log 2\pi \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i \mu)^2$.
- Taking derivatives:

$$\frac{\partial(\log L(\mu, \sigma^2))}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu)$$

$$\frac{\partial(\log L(\mu, \sigma^2))}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2$$

• Setting these derivatives equal to zero, we get $\mu = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2$.

Properties of MLEs

- ullet We are often interested in estimating a function of a parameter g(heta)
- The invariance property of MLEs states that if $\hat{\theta}$ is a MLE of θ , and $g(\cdot)$ is any function, then $g(\hat{\theta})$ is a MLE of $g(\theta)$.

Example

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of $Var(\sum_{i=1}^n Y_i)$.

•
$$Var(\sum_{i=1}^{n} y_i) = nVar(y_1) = np(1-p)$$

Example

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of $Var(\sum_{i=1}^n Y_i)$.

- $Var(\sum_{i=1}^{n} y_i) = nVar(y_1) = np(1-p)$
- The MLE of p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$

Example

Problem

Suppose that $Y_1, ..., Y_n \overset{i.i.d.}{\sim} Ber(p)$. Find the MLE of $Var(\sum_{i=1}^n Y_i)$.

- $Var(\sum_{i=1}^{n} y_i) = nVar(y_1) = np(1-p)$
- The MLE of p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
- The MLE of np(1-p) is $n\hat{p}(1-\hat{p}) = \sum_{i=1}^{n} Y_i (1-\frac{1}{n}\sum_{i=1}^{n} Y_i)$

• The asymptotic behavior of an estimator refers to its behavior as the sample size n increases towards ∞

- The asymptotic behavior of an estimator refers to its behavior as the sample size n increases towards ∞
- Since an estimator $\hat{\theta}$ usually depends on n, we may denote a sequence of such estimators by $\hat{\theta}_n$

- The asymptotic behavior of an estimator refers to its behavior as the sample size n increases towards ∞
- Since an estimator $\hat{\theta}$ usually depends on n, we may denote a sequence of such estimators by $\hat{\theta}_n$
- Intuitively, we would like our estimator to "get closer" to the target parameter as $n \to \infty$

- The asymptotic behavior of an estimator refers to its behavior as the sample size n increases towards ∞
- Since an estimator $\hat{\theta}$ usually depends on n, we may denote a sequence of such estimators by $\hat{\theta}_n$
- Intuitively, we would like our estimator to "get closer" to the target parameter as $n \to \infty$
- Definition: An estimator $\hat{\theta}_n$ is a consistent estimator of θ if, for any $\epsilon > 0$.

$$\lim_{n\to\infty} \mathbb{P}(|\hat{\theta}_n - \theta| \le \epsilon) = 1,$$

also denote as $\hat{\theta}_n \stackrel{p}{\to} \theta$ (converge in probability).

Asymptotic properties of MLE

Theorem

If $Y_1, ..., Y_n \overset{i.i.d.}{\sim} f_Y(y; \theta)$ and $\hat{\theta}$ is the MLE of θ , then assuming certain regularity conditions:

$$\hat{\theta}_n \stackrel{p}{\to} \theta \text{ as } n \to \infty.$$

$$rac{\hat{ heta}_n - heta}{\sigma_{\hat{ heta}}} o \mathsf{N}(0,1),$$

where
$$\sigma_{\hat{\theta}}^2 = 1/(n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}])$$
.

Remark: this implies that $\hat{\theta}$ is consistent and asymptotically normal. The term $n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}]$ is called Fisher information.

CI based on MLE

We can then obtain the following approximate large-sample $100(1-\alpha)\%$ confidence interval for θ :

$$\hat{\theta}_n \pm z_{\alpha/2} \sqrt{1/(n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}])} \mid_{\theta = \hat{\theta}_n}.$$

• For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1
- $\log f(Y \mid p) = Y \log p + (1 Y) \log(1 p)$

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1
- $\log f(Y \mid p) = Y \log p + (1 Y) \log(1 p)$
- $\frac{\partial \log f(Y|p)}{\partial p} = \frac{Y}{p} \frac{1-Y}{1-p}$

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1
- $\log f(Y \mid p) = Y \log p + (1 Y) \log(1 p)$
- $\frac{\partial \log f(Y|p)}{\partial p} = \frac{Y}{p} \frac{1-Y}{1-p}$
- $\frac{\partial^2 \log f(Y|p)}{\partial p^2} = -\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}$

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1
- $\log f(Y \mid p) = Y \log p + (1 Y) \log(1 p)$
- $\frac{\partial \log f(Y|p)}{\partial p} = \frac{Y}{p} \frac{1-Y}{1-p}$
- $\frac{\partial^2 \log f(Y|p)}{\partial p^2} = -\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}$
- $\mathbb{E}\left[-\frac{\partial^2 \log f(Y|p)}{\partial p^2}\right] = \mathbb{E}\left[\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}\right] = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}$

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1
- $\log f(Y \mid p) = Y \log p + (1 Y) \log(1 p)$
- $\frac{\partial \log f(Y|p)}{\partial p} = \frac{Y}{p} \frac{1-Y}{1-p}$
- $\frac{\partial^2 \log f(Y|p)}{\partial p^2} = -\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}$
- $\mathbb{E}\left[-\frac{\partial^2 \log f(Y|p)}{\partial p^2}\right] = \mathbb{E}\left[\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}\right] = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}$
- $\hat{\theta}_n \pm z_{\alpha/2} \sqrt{1/(n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}])} \mid_{\theta = \hat{\theta}_n}$.

- For random variable with a Bernoulli distribution with parameter p. If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for p.
- We know the MLE is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- Also, $f(Y \mid p) = p^{Y}(1-p)^{1-Y}$ for Y = 0, 1
- $\log f(Y \mid p) = Y \log p + (1 Y) \log(1 p)$
- $\frac{\partial \log f(Y|p)}{\partial p} = \frac{Y}{p} \frac{1-Y}{1-p}$
- $\frac{\partial^2 \log f(Y|p)}{\partial p^2} = -\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}$
- $\mathbb{E}\left[-\frac{\partial^2 \log f(Y|p)}{\partial p^2}\right] = \mathbb{E}\left[\frac{Y}{p^2} \frac{1-Y}{(1-p)^2}\right] = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}$
- $\hat{\theta}_n \pm z_{\alpha/2} \sqrt{1/(n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}])} \mid_{\theta = \hat{\theta}_n}$.
- The $100(1-\alpha)\%$ CI is $\hat{p}\pm z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

• For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- ullet We know the MLE is $\hat{ heta}=ar{Y}$

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- ullet We know the MLE is $\hat{ heta}=ar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- ullet We know the MLE is $\hat{ heta}=ar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...
- $\log f(Y \mid \theta) = -\log \theta Y/\theta$

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- ullet We know the MLE is $\hat{ heta}=ar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...
- $\log f(Y \mid \theta) = -\log \theta Y/\theta$

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- ullet We know the MLE is $\hat{ heta}=ar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...
- $\log f(Y \mid \theta) = -\log \theta Y/\theta$
- $\frac{\partial \log f(Y|\theta)}{\partial \theta} = -\frac{1}{\theta} + \frac{Y}{\theta^2}$
- $\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2} = \frac{1}{\theta^2} 2\frac{Y}{\theta^3}$

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- We know the MLE is $\hat{\theta} = \bar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...
- $\log f(Y \mid \theta) = -\log \theta Y/\theta$
- $\frac{\partial \log f(Y|\theta)}{\partial \theta} = -\frac{1}{\theta} + \frac{Y}{\theta^2}$
- $\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2} = \frac{1}{\theta^2} 2\frac{Y}{\theta^3}$
- $\mathbb{E}[-\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2}] = \frac{1}{\theta^2}$, since $\mathbb{E}[Y] = \theta$.

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- We know the MLE is $\hat{\theta} = \bar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...
- $\log f(Y \mid \theta) = -\log \theta Y/\theta$
- $\bullet \frac{\partial \log f(Y|\theta)}{\partial \theta} = -\frac{1}{\theta} + \frac{Y}{\theta^2}$
- $\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2} = \frac{1}{\theta^2} 2\frac{Y}{\theta^3}$
- $\mathbb{E}[-\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2}] = \frac{1}{\theta^2}$, since $\mathbb{E}[Y] = \theta$.
- $\hat{\theta}_n \pm z_{\alpha/2} \sqrt{1/(n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}])} \mid_{\theta = \hat{\theta}_n}$.

- For random variable with a Exponential distribution with parameter θ . If $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from this distribution, derive a $100(1-\alpha)\%$ confidence interval for θ .
- We know the MLE is $\hat{\theta} = \bar{Y}$
- $f(Y \mid \theta) = \frac{1}{\theta} e^{-Y/\theta}$ for Y = 0, 1, 2, ...
- $\frac{\partial \log f(Y|\theta)}{\partial \theta} = -\frac{1}{\theta} + \frac{Y}{\theta^2}$
- $\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2} = \frac{1}{\theta^2} 2\frac{Y}{\theta^3}$
- $\mathbb{E}[-\frac{\partial^2 \log f(Y|\theta)}{\partial \theta^2}] = \frac{1}{\theta^2}$, since $\mathbb{E}[Y] = \theta$.
- $\hat{\theta}_n \pm z_{\alpha/2} \sqrt{1/(n\mathbb{E}[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}])} \mid_{\theta = \hat{\theta}_n}$.
- The 100(1-lpha)% CI is $ar{Y}\pm z_{lpha/2}\sqrt{rac{ar{Y}^2}{n}}$.

Summary

- General confidence intervals construction based on
 - pivotal quantities
 - MLE (likelihood function, Fisher information)

Homework

 $8.44,\ 8.102,\ 9.82\ (b),\ 9.84\ (a,\ d),\ 9.97,\ 9.102$