Formulario general

Virgilio Murillo Ochoa 16 de abril de 2021

${\bf \acute{I}ndice}$

1.	probabilidad y estadistica 1.1. Eventos independientes					
	1.2. Leyes de morgan					
	1.3. probabilidades separadas con probabilidad mayoritaria					
2.	Matematicas Discretas					
3.	Ecuaciones Diferenciales					
	3.1. Linealidad					
	3.2. ecuaciones homogeneas					
	3.2.1. Funcion homogenea grado n					
	3.3. Ecuaciones diferenciales exactas					
	3.4. Ecuacion de Bernoullu					
	3.5. Ecuacion de Ricatt					
	3.6. Factor Integrante					
	3.7. Ecuaciones diferenciales lineales					
	3.8. Reduccion De Orden					
	3.9. Ecuacion de coeficientes constantes					
	3.10. variacion de parametros					
	3.11. Coeficientes indeterminados					
4.	Calculo numerico					
	4.1. Polinomio de taylor					
	4.2. Newton Raphson					
	4.3. complemento a uno					
	4.4. complemento a dos					
	4.5. convertir de punto flotante a decimal					
	4.6. convertir de decimal a punto flotante					
	4.7. Convertir de decimal fraccionario a binario					
	4.8. Punto Fijo					
	4.9. Diferencias Divididas					
	4 10 Polinomio de lagrange					

1. probabilidad y estadistica

$$P(\epsilon^c) = 1 - P(\epsilon)$$

$$P(A \cap B^c) = P(A \setminus B) = P(A) - P(A \cup B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$A \cap (B \cup A) = (A \cap B) \cup (A \cap B)$$
$$A \cup (B \cup A) = (A \cup B) \cup (A \cup B)$$

1.1. Eventos independientes

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$p(A|B) = P(A \cup B) = p(A) * P(B)$$

1.2. Leyes de morgan

$$A^{c} \cup B^{c} = (A \cap B)^{c}$$
$$A^{c} \cap B^{c} = (A \cup B)^{c}$$
$$| = dadoque$$

1.3. probabilidades separadas con probabilidad mayoritaria

Sean B_k Eventos mutuamente excluyentes, pariticion de S

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + \dots + P(B_k)P(A|B_k!)$$

$$P(A) = \sum_{i=1}^{k} P(B_i)P(A|B_k)$$

$$P(B_i|A) = \frac{P(B_i) * P(A|B_i)}{P(A)}$$

$$P(B_i|A) = \frac{P(B_i) - P(A|B_i)}{\sum_{i=1}^{k} P(B_i)P(A|B_k)}$$

2. Matematicas Discretas

$$a^{\Phi(m)}=1 (mod\ m)$$

$$\Phi(p\times q)=(p-1)(q-1)\ \text{para pq primos}$$

$$\Phi(p_1^{k_1}\times\ldots\times p_n^{k_n})=(p_1^{k_1}-p_1^{k_1-1})\times\ldots\times(p_n^{k_n}-p_n^{k_n-1})$$

3. Ecuaciones Diferenciales

3.1. Linealidad

$$a_n(x)\frac{d^n y}{dx^n} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

3.2. ecuaciones homogeneas

prototipo de funcion homogenea M(x,y)dx+N(x,y)dy=0 cambio de variable y=ux o x=uy , dy=xdu+udx

3.2.1. Funcion homogenea grado n

$$f(tx, ty) = t^n f(x, y)$$

3.3. Ecuaciones diferenciales exactas

para ser exacta tiene que cumplir dos condiciones

1.
$$M(x,y)dx + N(x,y)dy = 0$$

2.
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

para resolver toma en cuenta las siguientes dos cosas

$$f(x,y) = \int Mdx + g(y) = \int Ndy + h(x)$$

$$\frac{\partial F}{\partial x} = M , \frac{\partial F}{\partial y} = N$$

3.4. Ecuación de Bernoullu

aplica cuando la ecuacion diferencial tiene la siguiente forma:

$$P_0(x)\frac{dy}{dx} + P(x)y = F(x)y^n$$

se hace el cambio de variable $u=y^{1-n}$ y se obtiene una ecuacion lineal

3.5. Ecuación de Ricatt

tiene la siguiente forma

$$y' = Q(x)y^2 + P(x)y + R(x)$$

se hace la sustitución $y = y_1 + u^{-1}$

3.6. Factor Integrante

aplica cuando hay una f(x, y) tal que f(x, y)(ED) = exacta

 \blacksquare si $\frac{M_y-N_x}{N}$ es funcion solamente de x entonces $P(x)=\frac{M_y-N_x}{N}$

 $f(x) = e^{\int P(x)dx}$ es un factor de integracion

• si $M_y - N_x = m\frac{N}{x} - n\frac{M}{y}$ entonces

 $f(x) = x^m y^n$ es un factor de integracion

3.7. Ecuaciones diferenciales lineales

$$\frac{dy}{dx} + P(x)y = q(x)$$

$$u(x) = e^{\int P(x)dx}$$

Sol = $u(x)y = \int u(x)q(x)dx$

3.8. Reduccion De Orden

aplica cuando conoces una solucion de una ED Lineal homogenea de segundo orden

$$y_2 = y_1 \int \frac{e^{-\int P(x)dx}}{y_1'} dx$$

$$y'' + P(x)y' + q(x)y = 0$$

3.9. Ecuacion de coeficientes constantes

para poder resolver por este metodo tiene que ser una ecuacion lineal de coeficientes constantes de la forma

$$y''C_1 + y'C_2 + yC_3 = 0$$

se hace la sustitucion

$$y = e^{rx}$$

quedara una funcion cuadratica en terminos de r se puede llegar a usar la identidad de euler la solucion queda de la forma:

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

nota: si hay multiplicidad, ejemplo: $(r-1)^3 = 0$

$$y_h = e^x + xe^x + x^2e^x$$

3.10. variacion de parametros

tienen la forma $k_1y'' + k_2y' + k_3y = f(x)$

$$u_1 = -\int \frac{y_2 f(x)}{W} dx \qquad u_2 = \int \frac{y_1 f(x)}{W} dx$$
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

siendo y_h la solucion de la ecuacion homogenea asociada

$$y_h = C_1 y_1 + C_2 y_2$$

y siendo y_p la solucion definitiva

$$y_p = u_1 y_1 + C_2 y_2$$

3.11. Coeficientes indeterminados

r(x) = polinomio, exponencial, Seno, Coseno

pasos:

- 1. Calcular y_n es decir calcular la ecuación homogenea relacionada, por coeficientes constantes
- 2. Encontrat y_p

caso 1 No hay funciones en comun con r(x)

nota: tomar en cuenta el teorema de superposicion de soluciones si

$$r(x) = x^3 + x + 10 \operatorname{sen} 8x$$

simplemente se suman los proposiciones

$$y_p = Ax^3 + Bx^2 + Cx + D + A\sin(8x) + B\cos(8x)$$

y lo mismo aplica para la multiplicacion

-
$$y'' + C_1 y' + c_2 y = x^3 + x$$

proponer $\to y_p = Ax^3 + Bx^2 + Cx + D$

$$-y'' + C_1y' + c_2y = 10 \operatorname{sen} 8x$$

$$\operatorname{proponer} \to y_p = A \operatorname{sen}(8x) + B \cos(8x)$$

-
$$y'' + C_1 y' + c_2 y = 12e^{5x}$$

proponer $\to y_p = Ae^{5x}$

caso 2 hay funciones que coinciden con r(x)

simplemente multiplicar la funcion for x hasta que no hayas funciones en comun con x pero tiene que ser la x^n mas pequena posible

4. Calculo numerico

4.1. Polinomio de taylor

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x - x_0)^2}{2!}$$
$$= \sum_{i=0}^n \frac{f^i(x_0)(x - x_0)^i}{i!}$$

4.2. Newton Raphson

$$P_{n+1} = P_n - \frac{f(P_0)}{f'(P_0)}$$

4.3. complemento a uno

se cambian 1 por ceros y viceversa

4.4. complemento a dos

de derecha a izquierda y apartir del primer 1 encontrado sin incluirlo se hace la operacion de complemento a uno

4.5. convertir de punto flotante a decimal

Ejemplo:

$$(-1) \times (1 + mantisa) \times 2^{expo-maxExpo}$$

 $(-1) \times (1 + 0.75) \times 2^{124-127}$
 $= -0.21875$

4.6. convertir de decimal a punto flotante

Ejemplo:

$$171,25 = 10101011,01$$

Se pasa a una forma con exponente dejando solo un entero

$$1,010101101 \times 2^7$$

El primer bit es de signo

$$1 = -$$

$$0 = +$$

Los siguientes 8 numeros son el maximo exponente mas el exponente al que esta elevado el $2\,$

$$127 + 7 = 134$$

se convierte el 134 a base 2

$$134_10 = 10000110_2$$

y la parte decimal es la mantiza, que queda igual

010101101

4.7. Convertir de decimal fraccionario a binario

para convertir de fraccionario a binario primero se convierte la parte entera y la parte fraccionaria se convierte usando el siguiente codigo

Codigo:

```
//se da un flotante de la forma 0.321312 con
//el numero de digitos a convertir
//ejemplo
//in: 0.42344 3
//out: .001
string FraccionBinaria(float FraccionDecimal, int NumeroDeDigitos)
{
        string ans = ".";
        for(int i=0;i<NumeroDeDigitos;i++)</pre>
        ₹
                FraccionDecimal*=2;
                 if(FraccionDecimal > 1.0)
                 {
                         FraccionDecimal-=1.0;
                         ans.push_back('1');
                }
                else
                 {
                         ans.push_back('0');
                }
        }
        return ans;
}
```

4.8. Punto Fijo

de una ecuacion se despeja x y se substituye, tomando el resultado anterior empezando desde una x arbitraria

4.9. Diferencias Divididas

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, x_3] = \frac{x_2, x_3) - f(x_0, x_1)}{x_3 - x_0}$$

$$P_n = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \times \dots \times (x - x_n)$$

j	X_{j}	$f(X_j)$	1	2
0	X_0	$f(X_0)$	1	1
1	X_1	$f(X_1)$	$f(X_0, X_1)$	1
2	X_2	$f(X_2)$	$f(X_1, X_2)$	$f(X_0, X_1, X_2)$

Polinomio de lagrange 4.10.

$$P_n(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$

$$P_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$
$$L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{(x - x_j)}{(x_i - x_j)}$$