

Homework I - Decision Trees and Evaluation

I. Pen-and-paper [11v]

Consider the partially learnt decision tree from the dataset *D.D* is described by four input variables – one numeric with values in [0,1] and 3 categorical – and a target variable with three classes.

D	<u>y</u> 1	\underline{y}_2	<u>y</u> 3	\underline{y}_4	yout
\mathbf{X}_1	0.24	1	1	0	Α
\mathbf{x}_2	0.06	2	0	0	В
X 3	0.04	0	0	0	В
X 4	0.36	0	2	1	С
X 5	0.32	0	0	2	С
\mathbf{x}_6	0.68	2	2	1	Α
X 7	0.9	0	1	2	Α
X 8	0.76	2	2	0	Α
X 9	0.46	1	1	1	В
X 10	0.62	0	0	1	В
X 11	0.44	1	2	2	С
X 12	0.52	0	2	0	С

1) [5v] Complete the given decision tree using Information gain with Shannon entropy (log₂). Consider that: i) a minimum of 4 observations is required to split an internal node, and ii) decisions by ascending alphabetic order should be placed in case of ties.

Homework I - Decision Trees and Evaluation

2) [2.5v] Draw the training confusion matrix for the learnt decision tree.

_	1400	1 Yout							73X	
1/2=1 X 1/2=2 X ₂ 1/3		B	Pa	Conclusão ra a á terior p	rvore	20 8	ecisai	5 %	exerc	
1/2=0 X4 X5 Y=2~Y3=2 X6	6	C	ATA I	A	Yout B	2				日の日本
Y ₂₌₁ X ₇ Y ₂₌₂ X ₃	AAA	A	queristo (Yout)	A 4 B 0 C 0	2	5				
Y3=1 Kq V3=0X10	8	A B	のでは							
12:0 A / 3:2 X 12	6	C			3)					27/

Homework I - Decision Trees and Evaluation

3) [1.5v] Identify which class has the lowest training F1 score.

4) [1v] Considering y_2 to be ordinal, asses if y_1 and y_2 are correlated using the Spearman coefficient.

		100		1 rank(42	de desir divinion and
X,	0,24	1	3	8	2 ranging tanging = 29+ 22+ 3/5+
X2	0,06	2	1	11	+(5-3,5)+(4.3,5)+190+(12.3,5)+121+
X3	1	130	1393	3,5	+ (7.8)+ (9.3,5)+ (6.8)+ (8.3,5)= 517,5
	0104	6	1	March and	Eranl(1/1)=3+2+1+5+4+ 10+12+11+7+
	0,36	0	5	35	+9+6+8=78
X6	0,68	2	4	3,5	
17	0,9	0		11	Erank(yz)=8+11+3,5+3,5+3,5+11+3,5+
Xs	0,76	2	11	State of the last	+11+8+3,5+8+3,5=78
Xq	0,46	1	7	11 8	E rank(y1)2 = 9+4+1+26+16+100+144+121+
X10	0,62	0	9 .	-	the comments
X11		1	.	. 11.	5 V(V)2-(1) 1421+ 17,75+1225+1465+1617
	0,52	0	Marie I	,5 /1	12,25+121+64+12,25+64+12,25=628,5 rank(y1))2=(\(\Sigma\rm \rm (\yz)\rm 2=6684\)
50	Placem	an()	(4142)=" =1	PCC(ranis	$(y_1), rank(y_2)) = \frac{cov(rank(y_1), rank(y_2))}{\sigma(rank(y_1)) \cdot \sigma(rank(y_2))}$ $(y_2) - \frac{\sum_{rank(y_1)} \sum_{rank(y_2)} rank(y_2)}{n}$

Homework I - Decision Trees and Evaluation

5) [1v] Draw the class-conditional relative histogram of y_1 using 5 equally spaced bins in [0,1]. Challenge: find the root split using the discriminant rules from these empirical distributions.

Homework I - Decision Trees and Evaluation

II. Programming [9v]

To answer the following questions, consider using the sklearn API documentation and the notebooks in the coursewebpageasguidance. Showinyour PDF report both the code and the corresponding results.

Consider the column_diagnosis.arff data available at the homework tab, comprising 6 biomechanical features to classify 310 orthopaedic patients into 3 classes (normal, disk hernia, spondilolysthesis).

1) [1.5v] Apply f_classif from sklearn to assess the discriminative power of the input variables. Identify the input variable with the highest and lowest discriminative power. Plot the class-conditional probability density functions of these two input variables.

```
import pandas as pd
from scipy.io.arff import loadarff
from sklearn.feature_selection import f_classif
import matplotlib.pyplot as plt
import seaborn as sns
data = loadarff('column diagnosis.arff')
df = pd.DataFrame(data[0])
df['class'] = df['class'].str.decode('utf-8')
X = df.drop('class', axis=1)
y = df['class']
fimportance = f_classif(X, y)
# Create a DataFrame to store variable names, F-values, and p-values
values_df = pd.DataFrame(('Attribute': X.columns.values, 'F-Value': fimportance[0], 'P-Value': fimportance[1]))
# Identify the input variable with the highest and lowest discriminative power
highest_d = values_df['Attribute'][values_df['F-Value'].idxmax()]
lowest_d = values_df['Attribute'][values_df['F-Value'].idxmin()]
print(f'Highest discriminative power: {highest_d}')
print(f'Lowest discriminative power: {lowest_d}')
classes = df['class'].unique()
plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
for cls in classes:
    sns.kdeplot(X[y == cls][highest_d], label= cls)
plt.title('Class-Conditional Probability Density Function\nfor Highest Discriminative')
plt.xlabel(highest_d.title().replace("_", " "))
plt.ylabel('Probability
plt.legend()
plt.subplot(1, 2, 2)
for cls in classes:
   sns.kdeplot(X[y == cls][lowest_d], label= cls)
plt.title('Class-Conditional Probability Density Function\nfor Lowest Discriminative')
plt.xlabel(lowest_d.title().replace("_", " "))
plt.ylabel('Probability')
plt.legend()
plt.show()
```


Homework I - Decision Trees and Evaluation

2) [4v]Usingastratified70-30training-testingsplitwithafixedseed(random_state=0),assessina single plotboth the training and testing accuracies of a decision tree with depth limits in $\{1,2,3,4,5,6,8,10\}$ and the remaining parameters as default.

[optional] Note that split thresholding of numeric variables in decision trees is non-deterministic in sklearn, hence you may opt to average the results using 10 runs per parameterization.

```
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
training_accuracies = []
testing_accuracies = []
depth_limits = [1, 2, 3, 4, 5, 6, 8, 10]
n_runs = 10
for depth_limit in depth_limits:
    train_sum = 0
    test sum = 0
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=0)
        clf = tree.DecisionTreeClassifier(max_depth=depth_limit, random_state=0)
        clf.fit(X_train, y_train)
        train_sum += accuracy_score(y_train, clf.predict(X_train))
        test_sum += accuracy_score(y_test, clf.predict(X_test))
    # Calculate average accuracies for each depth limit
    avg_train_acc = train_sum / n_runs
    avg_test_acc = test_sum / n_runs
    training_accuracies.append(avg_train_acc)
    testing accuracies.append(avg test acc)
plt.figure(figsize=(12, 6))
plt.plot(depth_limits, training_accuracies, label='Training Accuracy', marker='o')
plt.plot(depth_limits, testing_accuracies, label='Testing Accuracy', marker='o')
plt.title('Training and Testing Accuracies of a Decision Tree with Different Depth Limits')
plt.xlabel('Depth Limit')
plt.ylabel('Accuracy'
plt.xticks(depth_limits)
plt.legend()
plt.show()
```


Homework I - Decision Trees and **Evaluation**

Training and Testing Accuracies of a Decision Tree with Different Depth Limits

3) [1.5v] Comment on the results, including the generalization capacity across settings.

À medida que a profundidade máxima da árvore aumenta, a precisão do treinamento também aumenta. No entanto, a precisão do teste começa a diminiur após um certo ponto. Isso sugere que, com uma profundidade máxima muito alta, o modelo produz árvores que superajustam os dados de treinamento, ou seja, captura o ruído nos dados de treinamento, em vez de aprender relações gerais que podem ser aplicadas a novos dados. Assim conclui-se que o modelo tem baixa capacidade de generalização.

Homework I - Decision Trees and Evaluation

- 4) [2v] To deploy the predictor, a healthcare team opted to learn a single decision tree (random_state=0) using *all* available data as training data, and further ensuring that each leaf has a minimum of 20 individuals in order to avoid overfitting risks.
 - i. Plot the decision tree.

```
clf = tree.DecisionTreeClassifier(random_state=0, min_samples_leaf=20)
clf.fit(X, y)

plt.figure(figsize=(14, 10))
tree.plot_tree(clf, feature_names=X.columns.tolist(), class_names=clf.classes_.tolist(), impurity=False)
plt.title("Decision Tree for Hernia Classification")
plt.show()
```

Decision Tree for Hernia Classification

Homework I - Decision Trees and Evaluation

 $ii. \quad Characterize a hernia condition by identifying the hernia-conditional associations.\\$

Pelas associações condicionais da árvore obtida, verifica-se a classe Hernia nos casos em que:

- degree spondylolisthesis assume valores inferiores a 16.079 e sacral slope assume valores inferiores a 28.136;
- degree spondylolisthesis assume valores inferiores a 16.079, sacral slope tem valores no intervalo [28.136, 40.149] e pelvic radius assume valores inferiores a 117.36.

END