

DATE: March 3, 2022

PRESENTED BY: Emile Latour, MS, Associate Biostatistician, OHSU Knight Cancer Institute

Slides are available

• https://bit.ly/latour_study-design-and-pss_2022-03-023Mfuydn

Acknowledgement

- Meike Niederhausen, PhD, Biostatistics & Design Program (BDP)
- Biostatistics, Epidemiology, & Research Design (BERD) Seminar, OCTRI Research Forum
 - Slides http://bit.ly/BERD-PSS-101
 - Recording https://echo360.org/media/c14ae529-27fe-4208-ae27-95c7c1adc928/public
- Upcoming Thursday March 31, 2022 over Zoom.
 - Register through Compass: "Power and Sample Size 101"

About me

- Pension actuary for 16 years
- MS in Biostatistics from OHSU in 2017
- Associate Biostatistician with OHSU Knight Cancer Institute since 2016
- Long term support for OHSU Dermatology Department since 2018

Goals

- Learn best practices in study design to aid in statistical analysis
- Share tips and suggestions to improve communications with statisticians

Goals

- Understand statistical terms involved in study design:
 - -Hypothesis tests (null and alternative),
 - -Type I error rate,
 - -Type II error rate and Power,
 - -Effect size,
 - -Sample size

Goals

- Perform simple power and sample size calculations
 - Paired t-test (one sample)
 - −2 sample t-test
 - Two proportions test

The research question drives...

- Hypothesis
- The study design
 - Pilot/preliminary, Retrospective, Prospective
 - Case-Control, Cross-sectional, Cohort, RCT
- Data collection
- Statistical analysis

Primary objectives / aims

- The stated principal purpose(s) of the study
- Expressed as a statement of purpose
 - General: efficacy, effectiveness, safety
 - Specific: dose-response, superiority, disease severity, effect on disease incidence, etc.
- "This study seeks to ..."
 - To answer, To investigate, To determine, To compare, To assess....
- Coupled with the research hypothesis

Example from literature

- **Study:** Strober B, Mallya UG, Yang M, et al. Treatment Outcomes Associated With Dupilumab Use in Patients With Atopic Dermatitis: 1-Year Results From the RELIEVE-AD Study. JAMA Dermatol. 2022;158(2):142–150. doi:10.1001/jamadermatol.2021.4778
- **Research question:** What are the benefits of treatment with dupilumab in the clinical practice setting from the perspective of patients with moderate-to-severe atopic dermatitis?
- **Research hypothesis:** Disease control and quality of life in patients with atopic dermatitis (AD) will improve after the initiation of dupilumab treatment.
- **Objective:** To evaluate self-reported disease control and quality of life after initiating dupilumab treatment in patients with atopic dermatitis (AD) in the the clinical setting.

Secondary objectives/aims

 These are goals that provide further information about principal purpose of the study

Primary endpoints/outcomes

- Most important measurement gathered by the study
- Corresponds to the Primary objective/aim
- Used to assess the effect of the study or whether the aim/objective is met
- Used to determine design and sample size

Secondary endpoints/outcomes

- Less important **measurements** that are part of the pre-specified analysis plan
- Each corresponds to a Secondary objective/aim
- Intended to be collected and analyzed (i.e. different from "Other/Exploratory")

As statisticians

- Most interested in Primary Objective and Endpoint
 - Used for Power and Sample Size
- Also interested in Secondary Objectives and Endpoints
 - Statistical analysis plan
 - ClinicalTrials.gov reporting

Recommendations

- Clear and simple statements
- Bulleted or numbered lists are helpful
 - Don't "clump"
- Consider what is secondary vs. exploratory

Hypothesis (to a statistician)

- In a statistical hypothesis test, there is a single null hypothesis (H_0) that specifies the value of the parameter being tested **if there is no effect**.
- There is also an alternative hypothesis (H_1) that contradicts the statement made under H_0 . H_1 Is a statement about what you hope to show or prove.

Hypothesis (to a statistician)

- Hypothesis tests can be one-sided or two-sided, depending on how H_1 is specified
 - $-H_0$: $\mu = \mu_0$ vs. H_1 : $\mu > \mu_0$ -- one-sided, upper tail
 - $-H_0$: $\mu = \mu_0$ vs. H_1 : $\mu < \mu_0$ -- one-sided, lower tail
 - $-H_0$: $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ -- two-sided

Hypothesize first, then collect the data

- Specify parameters of interest, null and alternative hypothesis
- Specify significance level (α)
- Collect data; compute test statistic and *p*-value

Test the hypothesis

- p-value measures the probability of obtaining sample data as extreme or more extreme than that observed, given that H_0 (Null) is true
- Compare p-value to significance level (α), and if the p-value is tiny compared to α , then we reject H_0

Errors can happen

- There exists an underlying, correct truth.
- There are decisions that are made based on evidence.
- Incorrect decision can be made depending on the what is genuinely true

Type I and Type II Errors

Justice system analogy

Justice System - Trial

Statistical hypothesis test

	"Truth"	
Test decision	Null is true	Alternative is true
Reject Null	Type I (α)	Correct
Don't reject Null	Correct	Type II (β)

Type I Error Rate

- Formal statement:
 - $-\alpha = P(Reject H_0|H_0 is true)$
- Informal statement:
 - Significance level (alpha) is the probability that a statistical test can demonstrate that there is a difference (e.g. difference in means between two groups) given that there is a difference.

Type II Error Rate

- Formal statement:
 - $-\beta = P(Fail\ to\ reject\ H_0|H_1\ is\ true)$

- Tend to talk about it in terms of Power:
 - $Power = 1 \beta = P(Reject H_0|H_1 is true)$

Power

- Formal statement:
 - Power = $1 \beta = P(Reject H_0|H_1 is true)$
- Informal statement:
 - The probability before conducting a statistical test that the procedure used (e.g. t-test, z-test) together with the sample data will lead to a correct decision, i.e. the test can show a difference given that there is a diffference

What we control

- We have direct control over α in a hypothesis test
- We have indirect control over β.
- For a fixed sample size:
 - As α increases, β decreases
 - As α decreases, β increases

What we control

- At the design stage of an experiment before data collection, we attempt to control power (1β) and therefore the Type II Error Rate (β) .
- Most often done by selecting an appropriate sample size and an appropriate α level.

4 components

- Significance level (α)
- Statistical Power (1β)
- Sample size (n)
- Effect size (Δ)
- Must specify 3 in order to solve for the 4th.

Effect sizes

- An effect size is a value that measures the strength of a relationship
- Experimental effect
- Magnitude of a difference that study aims to detect (difference in means between two groups for example)

Estimate for effect size

- Pilot or preliminary data
- Published literature
- · Clinically or biologically meaningful difference

Estimate for effect size

- When considering effect sizes, it helps to ask:
 - What is an effect size that must be detected?
 - What is a biologically or clinically meaningful effect?

Sample size

 Sample size seeks to ensure that the study design will have sufficient power to detect an specified effect size.

Study settings: Prospective

- Significance level (α) Typically set at 0.05
- Statistical Power (1β) Typically set at 80%
- Sample size (n) ?????
- Effect size (Δ) determined a priori

Study settings: Pilot/Preliminary

- Significance level (α) Typically set at 0.05
- Statistical Power (1β) Typically set at 80%
- Sample size (n) Usually fixed due to budget, ethical considerations
- Effect size (Δ) ????

Study settings: Retrospective

- Significance level (α) Typically set at 0.05
- Statistical Power $(1 \beta) ????$
- Sample size (n) Usually fixed
- Effect size (Δ) determined a priori

4 components

- Significance level (α)
- Statistical Power (1β)
- Sample size (n)
- Effect size (Δ)
- Must specify 3 in order to solve for the 4th.

Preparation

- Background
- A stated hypothesis, if there is one
- Aims/objectives, especially the primary
- Endpoints (how the aim/objective is measured)
- Effect size, if there is one

Hypothesis and outcome

- Primary objective
 - To assess the change in quality of life in patients with atopic dermatitis (AD) one year after the initiation of dupilumab treatment
- Hypothesis:
 - Quality of life in patients with AD will improve one year after the initiation of dupilumab treatment
- Primary endpoint:
 - Change in Dermatology Life Quality Index (DLQI) from baseline to 12 months

Study design

- Single group
- DLQI at baseline and 12-months (continuous, paired data)
- Statistical analysis plan:
 - Paired t-test

What sample size is needed?

- To solve for sample size (n), we will need:
 - Alpha = 0.05
 - Power = 80.0%
 - Effect size = ?????

Published literature

** Smaller DLQI = Better Quality of Life

	Mean (SD) [PMM range] ^a								
Outcome	Baseline (n = 699)	Month 1 (n = 632) ^b	Month 2 (n = 626) ^b	Month 3 (n = 596) ^b	Month 6 (n = 543) ^b	Month 9 (n = 477) ^b	Month 12 (n = 483) ^b		
DLQI ^c									
Total score	14.4 (7.3)	5.9 (5.8) [5.6-6.7]	5.1 (5.5) [4.9-6.1]	4.8 (5.5) [4.4-6.5]	4.1 (5.0) [3.4-6.7]	3.8 (5.2) [2.9-7.8]	3.5 (4.9) [2.7-7.8]		

Problem

- For an effect size, we need both estimates for
 - Chane in the means, and
 - Standard deviation (SD) of the difference
- From the paper, we have the means and can calculate the change. We have standard deviations, but...
- Issue #1: we don't know the SD of the difference
- Issue #2: need to know correlation between DLQI values

Solution

- Vary the correlation and estimate possible scenarios for SD of the differences
- Involves statistical formula; not shown here

Sample size: Paired t-test

	Baseline		12-months		Assumed	For the estimated difference		Estimated	
Scenario	Mean	SD	Mean	SD	Correlation	Mean	SD	Sample Size	
1	14.4	7.3	3.5	4.9	0.20	10.9	7.9	7	
2	14.4	7.3	3.5	4.9	0.50	10.9	6.4	5	
3	14.4	7.3	3.5	4.9	0.80	10.9	4.5	4	

• Assuming: Paired t-test, Power = 0.80, α = 0.05

Are the estimates realistic?

- Sample size estimates are very small, even for a paired test
- The effects size from the Published literature is very big! 10 points on a 0—30 scale.

Are the estimates realistic?

- Further reading in the article, they state that a clinically meaningful change is 4 or more points. And they provide reference (Basra et al, 2015)
- What if we used that effect size with the standard deviation we already calculated?

Revised sample size: Paired t-test

	Baseline	12-months	Assumed	For the estimate	ted difference	Estimated
Scenario	SD	SD	Correlation	Mean	SD	Sample Size
1	7.3	4.9	0.20	4.0	7.9	33
2	7.3	4.9	0.50	4.0	6.4	23
3	7.3	4.9	0.80	4.0	4.5	12

• Assuming: Paired t-test, Power = 0.80, α = 0.05

Hypothesis and outcome

- Primary objective
 - To compare the quality of life in patients with atopic dermatitis (AD) treated with Novel Treatment and Dupilumab after one year
- Hypothesis:
 - After one year, the quality of life in patients with AD treated with Novel Treatment will be better than those treated with Dupilumab
- Primary endpoint:
 - Difference in Dermatology Life Quality Index (DLQI) after 12 months between treated with Novel Treatment and Dupilumab

Study design

- Two treatment groups
- DLQI at 12-months (continuous, independent data)
- Statistical analysis plan:
 - Two-sample t-test (independent samples)

Published literature

** Smaller DLQI = Better Quality of Life

	Mean (SD) [PMM range] ^a								
Outcome	Baseline (n = 699)	Month 1 (n = 632) ^b	Month 2 (n = 626) ^b	Month 3 (n = 596) ^b	Month 6 (n = 543) ^b	Month 9 (n = 477) ^b	Month 12 (n = 483) ^b		
DLQIc									
Total score	14.4 (7.3)	5.9 (5.8) [5.6-6.7]	5.1 (5.5) [4.9-6.1]	4.8 (5.5) [4.4-6.5]	4.1 (5.0) [3.4-6.7]	3.8 (5.2) [2.9-7.8]	3.5 (4.9) [2.7-7.8]		

Sample size: Two sample t-test

- Assuming: Power = 0.80, α = 0.05
- From published literature:
 - Mean (SD) DLQI at twelve months = 3.5 (4.9)
 - Use this as the mean for our control group (Dupilumab)
- Assume the same standard deviation for both groups
- Effect size = ???
 - Need to know the difference between groups
 - Ideally, there would be preliminary data or a clinically relevant difference
 - Absent this, we can estimate the sample size for varying values

Sample size: Two sample t-test

			PER GROUP	TOTAL
	SD for each group	Assumed	Estimated	Estimated
Scenario	(from Lit.)	Difference in means	Sample Size	Sample Size
1	4.9	1	378	756
2	4.9	2	96	192
3	4.9	3	43	86

^{**} Note: we didn't need the mean for the treatment group since the above sample size calculation is based off of the difference in means

Hypothesis and outcome

- Secondary objective
 - To compare the proportion of patients reporting "No effect" in the Novel Treatment and with those treated with Dupilumab after one year
- Hypothesis:
 - After one year, the proportion of patients reporting "No effect" will be higher in those treated with Novel Treatment than those treated with Dupilumab
- Secondary endpoint:
 - Difference in the proportions of patients in each group reporting "No effect" (DLQI = 0—1)

Study design

- Two treatment groups
- Binary outcome (DLQI = 0 or 1, Yes/No)
- Statistical analysis plan:
 - Two Proportions Z-test

Power analysis: two-proportion z-test

- Assume the sample size calculated in example
 #2 for the primary endpoint
 - Difference in means = 3
 - N = 86 (43 per group)
- Assuming 80% power, what difference of proportions can we detect?

Power analysis: two-proportion z-test

- Assume the sample size calculated in example
 #2 for the primary endpoint
 - Difference in means = 3
 - N = 86 (43 per group)
- Assuming 80% power, what difference of proportions can we detect?

Power analysis: two-proportion z-test

• Assume: 80% power, α = 0.05

	n	n	Proportion in	Estimated proportion	Increase in proportion
Scenario	Ctrl. group	Txgroup	Ctrl. Group	in Tx Group	Detected
1	43	43	0.300	0.596	0.296
2	43	43	0.500	0.786	0.286
3	43	43	0.700	0.931	0.231

 Ask: is this reasonable, achievable, clinically meaningful?

Past talks

- Power and Sample Size 101, Mieke Niederhausen, PhD (February 2021)
 - Slides http://bit.ly/BERD-PSS-101
 - Recording https://echo360.org/media/c14ae529-27fe-4208-ae27-95c7c1adc928/public
- Planning a Study with Power and Sample Size Considerations in Mind, David Yanez, PhD (May 2019)
 - <u>Slides</u> https://www.ohsu.edu/sites/default/files/2019-12/PowerAndSampleSize_29MAY2019.pdf
 - <u>Recording https://echo360.org/media/ee2a5565-1168-4941-82ea-d9eda4223281/public</u>
- Power and Sample Size for Clinical Trials: An Introduction, Yiyi Chen, PhD (February 2021)
 - <u>Slides</u> https://drive.google.com/file/d/1dK4ktxQa81SNjRM4z4JC8JXH8DTgcr8Z/view
 - Recording https://echo360.org/media/c2197215-3c5f-4c9b-b3eb-3877566ad3da/public

Resources

- PASS
 - Training videos (short and good) https://www.ncss.com/videos/pass/training/
 - <u>Documentation</u> https://www.ncss.com/software/pass/pass-documentation/
- <u>Biostats4You</u>, University of Minnesota
 - https://biostats4you.umn.edu/resources
 - "website was developed to serve medical and public health researchers and professionals who wish to learn more about biostatistics"
- · Links I think are pretty good
 - Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies (Serdar et al.)
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745163/#:~:text=When%20the%20sample%20size%20is,the%20power%20of%20the%20study.
 - Understanding Statistical Power and Significance Testing, an interactive visualization https://rpsychologist.com/d3/nhst/
 - Power and Sample Size Applet https://wbakerrobinson.shinyapps.io/Paired_T_test_shiny/
 - The Relationship between Significance, Power, Sample Size & Effect Size (K. Mysiak) https://towardsdatascience.com/the-relationship-between-significance-power-sample-size-effect-size-899fcf95a76d

Software (free)

- Sample size calculators from UCSF
 - <u>Link</u> https://sample-size.net/calculator-finder/
 - User friendly! Web based.
- G*Power software
 - Sample size determination and power analysis using the G*Power software (H. Kang) https://pubmed.ncbi.nlm.nih.gov/34325496/
 - <u>Download</u> https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
 - More involved. Requires download.
- CRAB (Cancer Research and Biostatistics) Statistical Tools
 - Link https://stattools.crab.org/
 - Web based.

Thank You