# Deep Learning

Big Data & Machine Learning Bootcamp - Keep Coding



#### Outline

- 1. Mini batch gradient descent
- 2. Gradient descent with momentum
- 3. Adam optimization algorithm
- 4. Hyperparameters
- 5. Softmax Regression
- 6. Deep Learning Frameworks



## Mini batch gradient descent

One epoch is a single pass through the training set!

Using batch gradient descent, you only take one step per epoch.

Using mini batch gradient descent, you take #batches steps per epoch







#### Sources:

- Coursera
- https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

## Mini batch gradient descent

Fastest learning occurs when using stochastic gradient descent!





- Coursera
- https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

#### Gradient descent with momentum



$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

Blue dots: Data

Red line:  $\beta = 0.9$  (Intuition: You focused on the last 10 values)

Blue line:  $\beta = 0.98$  (Intuition: You focused on the last 50 values)



#### Gradient descent with momentum

#### On iteration *t*:

Compute *dW*, *db* on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW$$

$$v_{db} = \beta v_{db} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}$$
,  $b = b - \alpha v_{db}$ 

Hyperparameters: 
$$\alpha, \beta$$
  $\beta = 0.9$ 



## Adam optimization algorithm

Adam or Adaptive Moment Estimation is probably the most used optimization algorithm!

It is basically a combination of RMSProp and gradient descent with momentum

optimization algorithms!

For each Parameter  $w^j$ 

 $(j \ subscript \ dropped \ for \ clarity)$ 

$$\nu_t = \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t$$
  
$$s_t = \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2$$

$$\Delta\omega_t = -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t$$

$$\omega_{t+1} = \omega_t + \Delta\omega_t$$

 $g_t: Gradient \ at \ time \ t \ along \ \omega^j$ 

 $\nu_t$ : Exponential Average of gradients along  $\omega_j$ 

 $s_t$ : Exponential Average of squares of gradients along  $\omega_i$ 

 $\beta_1, \beta_2: Hyperparameters$ 

 $\eta$ : Initial Learning rate

Sorry for the change in the nomenclature here:)

The essence is that there are three hyperparameters when using Adam: learning rate,  $\beta_1$  and  $\beta_2$ .

 $\beta_1$  is commonly set to 0.9 and  $\beta_2$  is commonly set in 0.99



- Coursera
- https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

## Hyperparameters

So far we have talked about many hyperparameters:

- Learning rate
- Momentum (~0.9)
- $β_1$ ,  $β_2$  (Adam optimizer)
- Mini batch size
- Number of layers
- Number of hidden units
- Learning rate decay

Color means importance of the hyperparameters (Red: very important, Orange: mid importance and Green: low importance)



### Hyperparameters - Batch Normalization

But why **Batch Normalization (BN)** helps? Basically it makes the neural network robust to "covariate shift"

Say you train a neural network on black cats only. If we don't use BN, the performance of the system will be bad when testing on cats of different colors!







<sup>-</sup> Coursera

## Softmax Regression

The Softmax layer outputs probabilities:



© All rights reserved. www.keepcoding.io





- K is the number of classes!
- The output probabilities sum up to 1 as a probability distro



#### Sources:

- https://www.pinterest.co.uk/pin/849702654687897076/
- https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60

## Softmax Regression

How do you encode the labels/classes when using softmax classification?

#### **One-hot encoding**

| id | color |  |
|----|-------|--|
| 1  | red   |  |
| 2  | blue  |  |
| 3  | green |  |
| 4  | blue  |  |

One Hot Encoding

| id | color_red | color_blue | color_green |
|----|-----------|------------|-------------|
| 1  | 1         | Θ          | Θ           |
| 2  | 0         | 1          | Θ           |
| 3  | 0         | Θ          | 1           |
| 4  | 0         | 1          | Θ           |



- Coursera
- https://towardsdatascience.com/building-a-one-hot-encoding-layer-with-tensorflow-f907d686bf39

## Deep Learning Frameworks

The criteria to choose a deep learning framework is:

- Ease of programming (development and deployment)
- Running speed
- Open source

TensorFlow: <a href="https://www.tensorflow.org/">https://www.tensorflow.org/</a>

PyTorch: <a href="https://pytorch.org/">https://pytorch.org/</a>

Keras: <a href="https://keras.io/">https://keras.io/</a>

FastAI: https://www.fast.ai/





#### Sources:

- Coursera
- https://www.kdnuggets.com/2019/05/which-deep-learning-framework-growing-fastest.html