

311 Introduction to Machine Learning

Summer 2024

Instructor: Ioannis Konstantinidis

Overview

- Metrics and Scoring:
 - Confusion Matrix
 - Error Functions
 - Regularization
- Hands-on examples
 - Classification
 - Regression

Ways of Quantifying the Predictive Capability of Classification Tasks

accepting (wo

Columns: predictions made by the classifier (labels y)

Columns: predictions made by the classifier (labels y)

- Diagonal: # of points for which predicted label = true label
- Off-diagonal: # of points that are mislabeled by the classifier
- The smaller the off-diagonal values of the confusion matrix, the better

Only one type of error: all the off-diagonal entries

TWO types of error:

TWO types of error:

TWO types of error and two correct types

Positives column (predicted to be the target)

AKA sensitivity, hit rate

$$= \frac{1}{\frac{1}{2} \left(\frac{1}{\text{recall}} + \frac{1}{\text{precision}} \right)}$$

$$= 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

AKA selectivity

Hands-on Example:

Classification using k-NN + Logistic Regression


```
Plot_confusion_matrix(estimator, X, y_true,
labels=None,
sample weight=None,
normalize=None,
display_labels=None,
include values=True,
xticks rotation='horizontal',
values format=None,
cmap='viridis',
ax=None)
```

https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix

Labels: List of labels to index the matrix. This may be used to reorder or select a subset of labels. If None is given, those that appear at least once in y_true or y_pred are used in sorted order.

Normalize: Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.

include_values: Includes values in confusion matrix.

Classification Report

```
classification report(y true, y pred,
labels=None,
target names=None,
sample weight=None,
digits=2,
output dict=False,
zero division='warn')
```


Classification Report

'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall.

Note that if all labels are included, "micro"-averaging in a multiclass setting will produce precision and recall scores that are all identical to accuracy.

Ways of Quantifying the Predictive Capability of Regression Tasks pertaining to

accepting (wor

article).

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

Euclidean distance squared, divided by number of points

$$MSE = \frac{1}{N} \left| \sum_{i=1}^{N} (f_i - y_i)^2 \right|$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

$$N=2$$

2	2.236	2.828
1	1.414	2.236
(y_1,y_2)	1	2

Mean Absolute Deviation (MAD)

$$\frac{1}{N} \sum_{i=1}^{N} [f_i - y_i]$$

Mean Absolute Deviation (MAD)

Manhattan distance divided by number of points

$$\frac{1}{N} \sum_{i=1}^{N} [f_i - y_i]$$

$$N=2$$

2	3	4
1	2	3
(y ₁ ,y ₂)	1	2

Maximum error

2	2	2
1	1	2
(y_1,y_2)	1	2

Remember the L^p norms (Minkowski)?

$$\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Unit circle for different values of p

Hands-on Example:

Linear Regression

Homework Assignment #1
Due Monday, June 10, 11:59 pm (Central)

$$F = A + B_1 X_1 + B_2 X_2 + \dots + B_K X_K$$

$$\sum_{i=1}^{N} (f_i - y_i)^2$$

$$= (y - X\beta)^{T} (y - X\beta)$$

Ridge Cost =
$$(y - X\beta)^T (y - X\beta) + ||\beta||_2^2$$

Lasso Cost = $(y - X\beta)^T (y - X\beta) + ||\beta||_1$

Multivariable Regression: $F = X \beta + constant$

Ridge Cost =
$$(y - X\beta)^T (y - X\beta) + \alpha ||\beta||_2^2$$

Lasso Cost = $(y - X\beta)^T (y - X\beta) + \alpha ||\beta||_1$

α is the regularization(hyper)parameter