2 ВЫБОР МЕТОДА ВЫПЛАВКИ ЗАДАННОГО СПЛАВА

При выборе плавильного агрегата для стали 40XM рассмотрим электрическую печь

В электрических печах можно получить высококачественный металл с низким содержанием серы, фосфора, кислорода и высоким содержанием легированных компонентов, также есть возможность использования электрической энергии для нагрева металла, что позволяет в небольшом объеме сконцентрировать большую мощность и нагревать металл с большой скоростью до температуры кипения.

Электрические печи легко поддаются автоматизации, и более экономичные в применении электроэнергии, чем в применении кокса.

Электрические печи классифицируются по признаку превращения электрической энергии в тепловую энергию, и делятся на 4 большие группы:

K **1** группе относятся печи сопротивления, которые основаны на действии выделения тепла при прохождении тока по проводнику по закону Джоуля-Ленца $Q=I^{2*}R*t$ (Дж). Подбирая значение I, R можно получить мощность достаточную для расплавления металла. Элементом сопротивления может служить специальный проводник — нагреватель (печь косвенного действия) или непосредственно прямого нагрева тела (печь прямого действия).

К **2** группе относятся дуговые печи, которые основаны на преобразовании электрической энергии в тепловую в электрической дуге, являющейся одной из форм разряда в газах. При таком разряде в сравнительно небольшом объеме дуги можно сконцентрировать большие мощности и получить высокие температуры. При этом нагрев металла возможен непосредственно (печь Геру — прямого действия) или печи косвенного действия, когда дуга горит над расплавленным металлом (печь Пешона).

К 3 группе относятся индукционные печи.

Металл нагревают вихревыми токами, наводящимися переменным полем индуктора. По существу- это печи сопротивления, но отличаются способом передачи энергии нагрева металлу.

_				_				
					КП ТиТЭСиФ.14.2022.02.00.000 ПЗ			
Изм.	Лист	№ докум	Подпись	Дата				
Разр	аб	Шуляк Д.О.			Таунопогия получания морки	Лит.	Лист	Листов
Пров	3	Астапенко				y	9	2
Н. К	онтр.				Технология получения марки стали 40XM	ГГТУ им.П.О. Сухого		
Утв						гр. МЛ-31		

Электрическая энергия > Электромагнитная > Электрическая > Тепловая.

При индукционном нагреве тепло выделяется в самом обрабатываемом металле, поэтому использование тепла наиболее полное. С этой точки зрения - это наиболее совершенный тип печей.

К 4 группе относятся электронно-лучевые установки.

Нагрев с помощью бомбардирующих электронов поверхности металла и отдачи ими части своей кинетической энергии, повышая тем самым температуру металла. Источником электронов является кольцевой катод или электронная пушка. Получить плотный не рассеивающийся поток электронов можно только в вакууме при давлении не менее 13,33 Па, т.е. все электроннолучевые установки являются вакуумными. Их используют для получения слитков металла высокой чистоты.

Дуговая сталеплавильная печь.

Данная печь быстро нагревается до заданной температуры, которая легко регулируется. Высокая температура плавки (более 2000^{0} C) позволяет выплавлять сплавы с высокой концентрацией тугоплавких компонентов (хрома, молибдена, вольфрама и др.).

В данной печи регулировка температуры проходит за счет изменения параметров электрического тока.

Также есть возможность создания в пространстве печи необходимой атмосферы: окислительной, восстановительной, нейтральной или вакуума все это позволяет получать сталь высокого качества любого химического состава. Электрические печи бывают дуговые и индукционные. Наиболее распространены дуговые печи.

Но также недостатками дуговых печей являются большие затраты на потребление электрической энергии, и связанную с этим высокую стоимость выплавленной таким образом стали.

Таким образом, я пришел к выводу применения печи ДСП, так как все выше ее преимущества, а именно: регулировка температуры, быстрый нагрев, получение сталей высокого качества и практически любого химического состава, подходит мне для выплавки моей стали 40ХМ В данный момент используются дуговые сталеплавильные печи.

Изм.	Лист	№ докум	Подпись	Дата