BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

2nd December 2021

Introduction

- ullet Strong-phase analysis of $D^0 o K^+ K^- \pi^+ \pi^-$
- Measure c_i , s_i (and K_i) using double-tags
- Strategy:
 - Determine single tag yields for normalization
 - 2 Determine $KK\pi\pi$ vs flavour tag yields to obtain K_i
 - **3** Determine $KK\pi\pi$ vs CP and self-conjugate tag yields
 - **4** Maximum likelihood fit to obtain c_i and s_i
- Focused a lot on covering all tag modes previously...
- \bullet Current plan is to first obtain K_i and make sure everything works
- Then run toys with yields extrapolated to 20 fb⁻¹ in fit to c_i and s_i

Previous work (before May 2021)

- ullet Fitted single tag ΔE distributions
 - Double Gaussian + 2nd order polynomial
 - Apply cut at $\pm 3\sigma$
- Fitted single tag $m_{\rm BC}$ distributions
 - Signal shape from MC, Argus for combinatorial background, Gaussian for peaking backgrounds
 - Fit quality very poor in flavour tag modes because of higher statistics
- Double tag yield using sideband subtraction (same as K_SKK strong-phase analysis)

New ΔE fits

- Signal: Double Gaussian
- Background: Chebychev polynomials of arbitrary order for two- and three-body modes
- For $KK\pi\pi$ and $K\pi\pi\pi$ use two independent polynomials on each side of $\Delta E = 0$

New ΔE fits

New single tag $m_{\rm BC}$ fits

- Signal: Signal MC shape (after truth matching)
- Resolution: Convolve with double Gaussian
- Combinatorial background: Argus shape
- Can add arbitrary shapes for peaking backgrounds
- New strategy for peaking backgrounds:
 - Identify backgrounds with inclusive MC
 - @ Generate signal MC and fit shape to this sample
 - Calculate yield using relative efficiencies and branching fractions

New single tag $m_{ m BC}$ fits

Yield: 10821 ± 198

New single tag $m_{\rm BC}$ fits

Double tag yield simultaneous fit $(KK\pi\pi \text{ vs } K\pi)$

- Should have enough events to perform fit of $KK\pi\pi$ m_{BC}
 - Same strategy as $\pi\pi\pi\pi$ strong-phase analysis
 - Use 2×4 bins for now
 - Scrap sideband subtraction
- Fit shapes:
 - Signal shape: Signal MC shape (after truth matching)
 - Resolution: Single Gaussian
 - Combinatorial background: Argus shape
- Fit strategy:
 - For each double tag mode, perform simultaneous fit of all bins
 - Ploat signal and combinatorial yield in each bin
 - Gaussian shape and Argus slope are floated
 - Then fix all shapes and any combinatorial background less than 0.5
 - 5 Fit a second time to obtain accurate signal yields in each bin

Double tag yield simultaneous fit ($KK\pi\pi$ vs $K\pi$)

Double tag yield simultaneous fit ($KK\pi\pi$ vs $K\pi$)

Efficiency corrections

- Single tag efficiencies trivially corrected by dividing the yields
- For double tags, construct an efficiency matrix to account for both efficiency and bin migration
- For events reconstructed in bin i and generated in bin j:

$$\epsilon_{ij} = rac{N_{ij}^{ ext{reconstructed}}}{N_{j}^{ ext{generated}}}$$

Efficiency corrections

(b) Reconstructed bin vs true bin (c) Bin migration from bin 2

Bin migration much higher than expected (10%-15%)

But net migration is relatively small

DCS corrections

Calculate using c_i , s_i , K_i from LHCb model

Correction
1.0091 ± 0.0017
0.9538 ± 0.0007
0.9669 ± 0.0014
1.0166 ± 0.0016
1.0599 ± 0.0228
0.7833 ± 0.0027
0.8263 ± 0.0060
1.1850 ± 0.0229

K_i results for $KK\pi\pi$ vs $K\pi$

K_i from $KK\pi\pi$ vs $K\pi$ tags

Conclusion and next steps

- ullet Single tag $m_{
 m BC}$ show acceptable fit quality now
- Double tag simultaneous fit works great!
- K_i from $KK\pi\pi$ vs $K\pi$ tag looks encouraging, but not perfect
- Next steps:
 - Include $K\pi\pi^0$, $K\pi\pi\pi$ and $Ke\nu$ tags in K_i determination
 - Calculate peaking backgrounds in each bin with LHCb model
 - ullet Develop likelihood fitter for c_i/s_i and run some toys
 - Start looking at CP tag fits to data (but yields will be very low!)
 - Remove $K_S\phi$, include K_SKK and K_LKK as self-conjugate tags