23. grad, div og curl

Stærðfræðigreining IIB, STÆ205G, 23. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

23.1

Skilgreining 23.1

Skilgreinum nabla-virkjann sem diffurvirkja

$$\nabla = \mathbf{i} \, \frac{\partial}{\partial x} + \mathbf{j} \, \frac{\partial}{\partial y} + \mathbf{k} \, \frac{\partial}{\partial z}.$$

23.2

Skilgreining 23.2

Látum $\mathbf{F}(x, y, z) = F_1(x, y, z) \mathbf{i} + F_2(x, y, z) \mathbf{j} + F_3(x, y, z) \mathbf{k}$ vera vigursvið og $\varphi(x, y, z)$ vera fall.

Skilgreinum $stigul \varphi$ sem vigursviðið

$$\mathbf{grad}\,\varphi = \nabla\varphi = \frac{\partial\varphi}{\partial x}\,\mathbf{i} + \frac{\partial\varphi}{\partial y}\,\mathbf{j} + \frac{\partial\varphi}{\partial z}\,\mathbf{k}.$$

Skilgreinum sundurleitni (e. divergens) vigursviðsins F sem

$$\operatorname{\mathbf{div}} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$$

Skilgreinum $r \acute{o} t$ vigursviðsins ${\bf F}$ sem

$$\begin{aligned} \mathbf{curl}\,\mathbf{F} &= \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} \\ &= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}. \end{aligned}$$

23.3

Varúð 23.3

Ef $\varphi(x,y,z)$ er fall þá er $\nabla \varphi(x,y,z)$ stigullinn af $\varphi(x,y,z)$ en $\varphi(x,y,z)\nabla$ er diffurvirki.

23.4

Varúð 23.4

Sundurleitnin $\operatorname{\mathbf{div}} \mathbf{F}$ er fall $\mathbb{R}^3 \to \mathbb{R}$ en rótið $\operatorname{\mathbf{curl}} \mathbf{F}$ er vigursvið $\mathbb{R}^3 \to \mathbb{R}^3$.

23.5

Skilgreining 23.5

Látum $\mathbf{F}(x,y) = F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}$ vera vigursvið. Skilgreinum sundurleitni \mathbf{F} sem

$$\operatorname{\mathbf{div}} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}.$$

og $r \acute{o} t \mathbf{F}$ skilgreinum við sem

$$\mathbf{curl}\,\mathbf{F} = \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)\mathbf{k}.$$

23.6

Reiknireglur 23.6

Gerum ráð fyrir að \mathbf{F} og \mathbf{G} séu vigursvið og φ og ψ föll. Gerum ráð fyrir að þær hlutafleiður sem við þurfum að nota séu skilgreindar og samfelldar.

- (a) $\nabla(\varphi\psi) = \varphi\nabla\psi + \psi\nabla\varphi$.
- (b) $\nabla \cdot (\varphi \mathbf{F}) = (\nabla \varphi) \cdot \mathbf{F} + \varphi (\nabla \cdot \mathbf{F}).$
- (c) $\nabla \times (\varphi \mathbf{F}) = (\nabla \varphi) \times \mathbf{F} + \varphi(\nabla \times \mathbf{F}).$
- (d) $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} \mathbf{F} \cdot (\nabla \times \mathbf{G})$.
- (e) $\nabla \times (\mathbf{F} \times \mathbf{G}) = (\nabla \cdot \mathbf{G})\mathbf{F} + (\mathbf{G} \cdot \nabla)\mathbf{F} (\nabla \cdot \mathbf{F})\mathbf{G} (\mathbf{F} \cdot \nabla)\mathbf{G}$.
- (f) $\nabla (\mathbf{F} \cdot \mathbf{G}) = \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F}) + (\mathbf{F} \cdot \nabla)\mathbf{G} + (\mathbf{G} \cdot \nabla)\mathbf{F}$.
- (g) $\nabla \cdot (\nabla \times \mathbf{F}) = 0$ div curl = 0
- (h) $\nabla \times (\nabla \varphi) = \mathbf{0}$ curl grad = $\mathbf{0}$
- (i) $\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) \nabla^2 \mathbf{F}$.

23.7

Skilgreining 23.7

Látum \mathbf{F} vera vigursvið skilgreint á svæði D.

- (a) Vigursviðið \mathbf{F} er sagt vera sundurleitnilaust (e. solenoidal) ef $\mathbf{div} \mathbf{F} = 0$ i öllum punktum D.
 - (b) Vigursviðið \mathbf{F} er sagt vera rótlaust (e. irrotational) ef $\operatorname{\mathbf{curl}} \mathbf{F} = \mathbf{0}$ á öllu D.

23.8

Athugasemd 23.8

Vigursvið $\mathbf{F}(x, y, z) = F_1(x, y, z) \mathbf{i} + F_2(x, y, z) \mathbf{j} + F_3(x, y, z) \mathbf{k}$ er rótlaust ef og aðeins ef

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}.$$

23.9

Setning 23.9

- (a) Rót vigursviðs er sundurleitnilaus.
 - (b) Stigulsvið er rótlaust.

23.10

Skilgreining 23.10

Svæði D í rúmi eða plani kallast stjörnusvæði ef til er punktur P í D þannig að fyrir sérhvern annan punkt Q í D þá liggur allt línustrikið á milli P og Q í D.

23.11

Setning 23.11

Látum ${\bf F}$ vera samfellt diffranlegt vigursvið skilgreint á stjörnusvæði D. Ef ${\bf F}$ er rótlaust þá er ${\bf F}$ stigulsvið. Með öðrum orðum, ef vigursviðið ${\bf F}$ er samfellt diffranlegt og skilgreint á stjörnusvæði D og uppfyllir jöfnurnar

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y},$$

þá er F stigulsvið.

23.12

Setning 23.12

Lát \mathbf{F} vera samfellt diffranlegt vigursvið skilgreint á stjörnusvæði D. Ef \mathbf{F} er sundurleitnilaust þá er til vigursvið \mathbf{G} þannig að $\mathbf{F} = \mathbf{curl} \mathbf{G}$. Vigursviðið \mathbf{G} kallast vigurmætti fyrir \mathbf{F} .

23.13