Analyse d'un test diagnostique

Contexte

- Suspicion d'une embolie pulmonaire chez un patient aux urgences
- ♦ Recours à un test dichotomique: positif → maladie, négatif
 → absence de maladie
- Les tests ne sont pas parfaits

Les vrais positifs et les autres

- On définit un test de dépistage par les valeurs suivantes :
 - vrais positifs (VP),
 - vrais négatifs (VN),
 - faux positifs (FP),
 - faux négatifs (FN),
 - valeur prédictive positive (VPP)
 - valeur prédictive négative (VPN).

	Malades	Bien Portants	Total tests	Valeur prédictive
Test positif	Vrai positifs (VP)	Faux Positifs (FP)	Total positifs (TP)	VPP = VP/TP
Test négatif	Faux négatifs (FN)	Vrai négatifs (VN)	Total négatifs (TN)	VPN= VN/TN
Total tests	Total malades (TM)	Total (TBP)		
	Sensibilité = VP / TM	Spécificité = VN/TBP		

Sensibilité

- ▲ La sensibilité est définie par la fréquence des tests positifs chez les malades TP/VM.
- Utilisée si
 - La maladie est grave et ne doit pas être ignorée;
 - La maladie est curable ;
 - L'existence d'un faux-positif n'entraîne pas de traumatisme grave.

	Malades	Bien Portants	Total tests	Valeur prédictive
Test positif	Vrai positifs (VP)	Faux Positifs (FP)	Total positifs (TP)	VPP = VP/TP
Test négatif	Faux négatifs (FN)	Vrai négatifs (VN)	Total négatifs (TN)	VPN= VN/TN
Total tests	Total malades (TM)	Total (TBP)		
	Sensibilité = VP / TM	Spécificité = VN/TBP		

Spécificité

- ▲ La **spécificité** est définie par la fréquence des test négatifs chez les non-malades VN/TBP.
- On utilise un test spécifique quand
 - ♦ La maladie est difficilement guérissable ou incurable ;

 - L'existence de faux positifs entraîne des problèmes graves.

Remarque

- Sensibilité et spécificité sont indépendantes de la prévalence de la maladie dans la population.
- Un test de dépistage doit :
 - très sensible (ne pas laisser "passer" une maladie grave)
 - et très spécifique (ne pas faire croire à une maladie grave et provoquer des examens complémentaires inutiles)...
- Mais
 - lus un test est sensible, moins il est spécifique
 - plus il est **spécifique**, moins il sera sensible

Valeur prédictive positive

- La valeur prédictive positive correspond à la probabilité qu'un sujet soit réellement malade lorsque le test est positif.
- ◆ Une valeur prédictive positive faible fait pratiquer, pour essayer d'affirmer le diagnostic, beaucoup d'examens pénibles et coûteux inutiles à des gens bien portants.

Valeur prédictive négative

- La valeur prédictive négative correspond à la probabilité qu'un sujet soit vraiment non-malade quand le test est négatif.

Valeurs prédictives

♦ VPP = Vrais Positifs/Total Positifs = Se x Prévalence de la maladie/ Prévalence du test positif

- ♦ VPN = Vrais Négatifs/Total Négatifs = Sp x (1-Prévalence de la maladie)/ Prévalence du test négatif.
- On note que les valeurs prédictives sont dépendantes à la fois de la sensibilité et de la specificité du test mais aussi de la prévalence de la maladie.

Valeurs prédicitves

- ♦ Ainsi, à sensibilité égale, la VPP est d'autant meilleure que la maladie est fréquente et la positivité du test rare.
- ▶ Et, à spécificité égale, la VPN sera d'autant meilleure que la maladie est rare et que la positivité du test est fréquente.
- Les *rapports de vraisemblance* (LR likehood ratio) décrivent l'apport d'un test au diagnostic.

Le rapport de vraisemblance positif (RVP)

- mesure la vraisemblance d' avoir un test positif si on est malade.
- varie de 0 à 1' infini. Plus il est élevé, plus le
- « gain diagnostique » est important.
- un RVP=1 : n' apporte rien au diagnostic,
- 1<RVP≤10 : apport mineur au diagnostic,
- ▶ RVP > 10 : apport important au diagnostic.
- Ainsi un sujet a RVP fois plus de risque d'avoir un test positif s'il est atteint de la maladie étudiée que s'il n'est pas atteint de la maladie.

- Rapport de vraisemblance + = Se/(1-Sp) = (VP/malades)/(FP/non malades)
- Rapport de vraisemblance = (1-Se)/Sp = (FN/malades)/(VN/non malades)
- ♦ VP = Vrais positifs
- ♦ FP = Faux positifs
- ♦ FN = Faux négatifs
- ♦ VN = Vrais négatifs

Courbe ROC

- La courbe ROC ou courbe de caractéristiques d'efficacité: permet d'étudier les variations de la spécificité et de la sensibilité d'un test quantitatif pour différentes valeurs du seuil de discrimination.
- On haussera le seuil pour rendre un test plus spécifique.
- On baissera le seuil pour avoir un test plus sensible.

Courbe ROC

- ♦ A chaque valeur de la limite L du critère quantitatif : valeur de la sensibilité et de la spécificité.
 - On obtient ainsi 1 point de la courbe.
 - ♦ En faisant varier la limite L on obtient d' autres points.
- Les valeurs de sensibilité et spécificité en fonction de L peuvent être obtenues par l'observation ou par la modélisation du phénomène par une loi de probabilité.

Courbe ROC

- ♦ Aire sous la courbe : AROC
 - ▶ Entre 0,5 (examen au hasard : pile ou face) et 1 (examen parfait)

Validation

Discrimination

• Risque = probabilité p_1 estimée, évaluée par rapport à un résultat observé (0 ou 1)

1- Spécificité (taux de faux positifs)

C index =
$$0.8$$
 C index = 0.55

	M+	M-		
$p_1 > S$	VP	FP	Souil = 0.2	
$p_1 \ll S$	FN	VN	Seuil = 0.2	
,	M+	M-	1	
$p_1 > S$	VP	FP	Seuil = 0.4	
$p_1 \ll S$	FN	VN	Seun – 0.4	
ı	M+	M-		
$p_1 > S$	VP	FP		
$p_1 \ll S$	FN	VN	Seuil = 0.6	

Santé Publique et Informatique Médicale (SPIM-Broussais-Hôtel-Dieu, Paris VI)

Validation

Discrimination

Signification de 1' aire sous la courbe ROC

Santé Publique et Informatique Médicale (SPIM-Broussais-Hôtel-Dieu, Paris VI)

Exemple

