## RECOMMENDATION SYSTEM CODE EXPLAIN

| unix_timestamp | rating | movie_id | user_id |       |
|----------------|--------|----------|---------|-------|
| 881250949      | 3      | 242      | 196     | 0     |
| 891717742      | 3      | 302      | 186     | 1     |
| 878887116      | 1      | 377      | 22      | 2     |
| 880606923      | 2      | 51       | 244     | 3     |
| 886397596      | 1      | 346      | 166     | 4     |
| 7.55           | 777    | 557      |         |       |
| 880175444      | 3      | 476      | 880     | 99995 |
| 879795543      | 5      | 204      | 716     | 99996 |
| 874795795      | 1      | 1090     | 276     | 99997 |
| 882399156      | 2      | 225      | 13      | 99998 |
| 879959583      | 3      | 203      | 12      | 99999 |

## Pivot table

|                     |     |     |     |     |     | 7   |     |     |     |     |      | Pivot | Table | •    |      |      |      | 9    | 42   | X    | 9    |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|-------|------|------|------|------|------|------|------|------|
| movie_id<br>user_id | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |      | 1673  | 1674  | 1675 | 1676 | 1677 | 1678 | 1679 | 1680 | 1681 | 1682 |
| 1                   | 5.0 | 3.0 | 4.0 | 3.0 | 3.0 | 5.0 | 4.0 | 1.0 | 5.0 | 3.0 |      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 2                   | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | nee. | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 3                   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ***  | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 4                   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 5                   | 4.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| ***                 |     | *** | *** |     |     | *** | 444 |     |     | hea |      | ***   |       |      | 7446 |      | ***  | 600  |      | -    | -    |
| 939                 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 |      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 940                 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 4.0 | 5.0 | 3.0 | 0.0 | ***  | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 941                 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 |      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |
| 942                 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.   |

### **User similarity table (cosine formula)**

|     | 0                | 1        | 2        | 3        | 4                | 5        | 6        | 7        | 8        | 9        |     | 933      | 934      | 935      | 936      |   |
|-----|------------------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|---|
| 0   | 2.220446e-<br>15 | 0.833069 | 0.952540 | 0.935642 | 6.215248e-<br>01 | 0.569761 | 0.559633 | 0.680928 | 0.921862 | 0.623456 |     | 0.630473 | 0.880518 | 0.725124 | 0.810295 | 0 |
| 1   | 8.330690e-<br>01 | 0.000000 | 0.889409 | 0.821879 | 9.270210e-<br>01 | 0.754157 | 0.892672 | 0.896656 | 0.838952 | 0.840138 |     | 0.843014 | 0.692058 | 0.641211 | 0.575954 | 0 |
| 2   | 9.525405e-<br>01 | 0.889409 | 0.000000 | 0.655849 | 9.787555e-<br>01 | 0.927585 | 0.933863 | 0.916940 | 0.938960 | 0.934849 |     | 0.968125 | 0.957247 | 0.836171 | 0.930962 | 0 |
| 3   | 9.356422e-<br>01 | 0.821879 | 0.655849 | 0.000000 | 9.681958e-<br>01 | 0.931956 | 0.908770 | 0.811940 | 0.898716 | 0.939141 | 141 | 0.947893 | 0.963216 | 0.866885 | 0.806529 | 0 |
| 4   | 6.215248e-<br>01 | 0.927021 | 0.978755 | 0.968196 | 1.110223e-<br>16 | 0.762714 | 0.626400 | 0.751070 | 0.943153 | 0.798573 |     | 0.661206 | 0.919420 | 0.905076 | 0.920221 | 0 |
|     |                  |          |          | _        |                  | _        |          | _        | -        |          |     |          |          |          |          |   |
| 938 | 8.819047e-<br>01 | 0.771417 | 0.973729 | 0.969862 | 9.285415e-<br>01 | 0.888148 | 0.892973 | 0.904102 | 0.960148 | 0.928540 |     | 0.933961 | 0.568846 | 0.741979 | 0.773551 | 0 |
| 939 | 6.859280e-<br>01 | 0.773210 | 0.838110 | 0.803142 | 7.600453e-<br>01 | 0.647551 | 0.670075 | 0.753117 | 0.879505 | 0.657039 | 144 | 0.672847 | 0.892976 | 0.812464 | 0.818683 | 0 |
| 940 | 8.513831e-<br>01 | 0.838515 | 0.898757 | 0.847959 | 8.604049e-<br>01 | 0.855554 | 0.940007 | 0.853855 | 0.856755 | 0.909695 |     | 0.953048 | 0.796699 | 0.711682 | 0.765789 | 0 |
| 941 | 8.204921e-<br>01 | 0.827732 | 0.866584 | 0.829914 | 8.475026e-<br>01 | 0.682672 | 0.717997 | 0.824678 | 0.907503 | 0.787670 | jui | 0.773560 | 0.926487 | 0.910412 | 0.870446 | 0 |
| 942 | 6.018253e-<br>01 | 0.894202 | 0.973444 | 0.941248 | 6.860592e-<br>01 | 0.723958 | 0.605636 | 0.700191 | 0.924383 | 0.778140 | -   | 0.736209 | 0.789237 | 0.856747 | 0.922207 | 0 |

Now find the prediction – If userid 2 can see the movie\_id 2 what rating can give? So compare with (similar user(table)) going to predict what ratings will give. Predict for all user.(now no null values)



```
def predict(ratings, similarity, type='user'):
if type == 'user':
    mean_user_rating = ratings.mean(axis=1)
    #We use np.newaxis so that mean_user_rating has same format as ratings
    mean_user_rating_array = np.array(mean_user_rating) # Convert to numpy array
    ratings_diff = (ratings - mean_user_rating_array[:, np.newaxis])
    pred = mean_user_rating_array[:, np.newaxis] + similarity.dot(ratings_diff) / np.array([np.abs(similarity).sum(axis=1)]).T
elif type == 'item':
    pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
return pred
```

```
mean_user_rating = ratings.mean(axis=1)
```

#### Calculate the Mean rating for each user in the (ratings

**matrix**) is used to calculate the mean rating for each user in a user-item rating matrix.

.mean(axis=1): This applies the mean function along the rows of the ratings matrix (i.e., along the second axis). It calculates the mean rating for each user by averaging the ratings across all the items they have rated.

```
mean_user_rating_array = np.array(mean_user_rating) # Convert to numpy array
```

#### **Np.**array->numpy array converted into a list

```
ratings_diff = (ratings - mean_user_rating_array[:, np.newaxis])
```

#### :→rows will take same

# Np.newaxis→ mean user rating rows can take it as column(1Darray into 2Darray)

```
pred = mean_user_rating_array[:, np.newaxis] + similarity.dot(ratings_diff) / np.array([np.abs(similarity).sum(axis=1)]).T
```

#### similarity.dot(ratings\_diff)

\similarity: This is a 2D NumPy array or pandas DataFrame that represents the similarity between users. Each row corresponds to a user, and each column corresponds to another user. The values in the matrix represent the similarity between each pair of users.

| user | _sim_table       |          |          |          |          |          |          |          |          |          |              |          |          | ↑        |
|------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|
|      | 0                | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | <br>933      | 934      | 935      | 936      |
| 0    | 1.332268e-<br>15 | 0.833069 | 0.952540 | 0.935642 | 0.621525 | 0.569761 | 0.559633 | 0.680928 | 0.921862 | 0.623456 | <br>0.630473 | 0.880518 | 0.725124 | 0.810295 |
| 1    | 8.330690e-<br>01 | 0.000000 | 0.889409 | 0.821879 | 0.927021 | 0.754157 | 0.892672 | 0.896656 | 0.838952 | 0.840138 | <br>0.843014 | 0.692058 | 0.641211 | 0.575954 |
| 2    | 9.525405e-<br>01 | 0.889409 | 0.000000 | 0.655849 | 0.978755 | 0.927585 | 0.933863 | 0.916940 | 0.938960 | 0.934849 | <br>0.968125 | 0.957247 | 0.836171 | 0.930962 |
| 3    | 9.356422e-<br>01 | 0.821879 | 0.655849 | 0.000000 | 0.968196 | 0.931956 | 0.908770 | 0.811940 | 0.898716 | 0.939141 | <br>0.947893 | 0.963216 | 0.866885 | 0.806529 |
| 4    | 6.215248e-<br>01 | 0.927021 | 0.978755 | 0.968196 | 0.000000 | 0.762714 | 0.626400 | 0.751070 | 0.943153 | 0.798573 | <br>0.661206 | 0.919420 | 0.905076 | 0.920221 |
|      |                  |          |          |          |          |          |          |          |          |          | <br>         |          |          |          |
| 938  | 8.819047e-<br>01 | 0.771417 | 0.973729 | 0.969862 | 0.928541 | 0.888148 | 0.892973 | 0.904102 | 0.960148 | 0.928540 | <br>0.933961 | 0.568846 | 0.741979 | 0.773551 |
| 939  | 6.859280e-<br>01 | 0.773210 | 0.838110 | 0.803142 | 0.760045 | 0.647551 | 0.670075 | 0.753117 | 0.879505 | 0.657039 | <br>0.672847 | 0.892976 | 0.812464 | 0.818683 |
| 940  | 8.513831e-<br>01 | 0.838515 | 0.898757 | 0.847959 | 0.860405 | 0.855554 | 0.940007 | 0.853855 | 0.856755 | 0.909695 | <br>0.953048 | 0.796699 | 0.711682 | 0.765789 |
|      | 0.204021-        |          |          |          |          |          |          |          |          |          |              |          |          |          |

#### ratings\_diff

ratings\_diff: This is a 2D NumPy array or pandas DataFrame that represents the ratings differences between users. Each row corresponds to a user, and each column corresponds to an item (e.g., a movie, song, or product). The values in the matrix represent the difference between each user's ratings and the mean user rating.

|       | user_id       | movie_id      | rating        | unix_timestamp |
|-------|---------------|---------------|---------------|----------------|
| 0     | -2.203127e+08 | -2.203126e+08 | -2.203128e+08 | 6.609381e+08   |
| 1     | -2.229294e+08 | -2.229293e+08 | -2.229296e+08 | 6.687882e+08   |
| 2     | -2.197219e+08 | -2.197215e+08 | -2.197219e+08 | 6.591652e+08   |
| 3     | -2.201516e+08 | -2.201518e+08 | -2.201518e+08 | 6.604551e+08   |
| 4     | -2.215994e+08 | -2.215992e+08 | -2.215995e+08 | 6.647981e+08   |
|       |               |               |               |                |
| 99995 | -2.200433e+08 | -2.200437e+08 | -2.200442e+08 | 6.601312e+08   |
| 99996 | -2.199484e+08 | -2.199489e+08 | -2.199491e+08 | 6.598464e+08   |
| 99997 | -2.186990e+08 | -2.186982e+08 | -2.186993e+08 | 6.560965e+08   |
| 99998 | -2.205998e+08 | -2.205996e+08 | -2.205998e+08 | 6.617993e+08   |
| 99999 | -2.199899e+08 | -2.199897e+08 | -2.199899e+08 | 6.599696e+08   |

.dot(): This method performs a matrix multiplication between the similarity matrix and the ratings\_diff matrix. It calculates the dot product of each row in the similarity matrix with the corresponding row in the ratings diff matrix.

**result:** This is the output of the matrix multiplication, which is a new matrix that represents the **weighted sum of the ratings** differences for each user or item based on the similarity between them.

Now having user prediction table, given the ratings for not seen movies using of AI intelligence.

| : | user  | _pred=pd.  | DataFrame | (user_pre | diction)  | #user pr  | ediction  | >datamatr | ix X user             | similari  | ty (table  | as  | dataframe | ) |
|---|-------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------|-----------|------------|-----|-----------|---|
| : | user  | _pred #    | 943 users | 1682 mov  | ie ku pre | dict pana | ratings ( | pakadha   | ovie kum <sub> </sub> | predict p | ana rating | 75) |           |   |
| : |       | 0          | 1         | 2         | 3         | 4         | 5         | 6         | 7                     | 8         | 9          |     | 1672      |   |
|   | 0     | 2.065326   | 0.734303  | 0.629924  | 1.010669  | 0.640686  | 0.476150  | 1.784569  | 1.163032              | 1.513350  | 0.704478   |     | 0.394041  |   |
|   | 1     | 1.763088   | 0.384040  | 0.196179  | 0.731538  | 0.225643  | 0.003892  | 1.493597  | 0.876153              | 1.108467  | 0.261991   |     | -0.086942 | - |
|   | 2     | 1.795904   | 0.329047  | 0.158829  | 0.684154  | 0.173277  | -0.035621 | 1.488230  | 0.835769              | 1.135426  | 0.236383   |     | -0.134795 | - |
|   | 3     | 1.729951   | 0.293913  | 0.127741  | 0.644932  | 0.142143  | -0.062261 | 1.437010  | 0.796249              | 1.096663  | 0.211789   |     | -0.161413 | - |
|   | 4     | 1.796651   | 0.454474  | 0.354422  | 0.763130  | 0.359539  | 0.195987  | 1.547370  | 0.908904              | 1.292027  | 0.437954   |     | 0.101762  |   |
|   |       |            |           |           |           |           |           |           |                       |           |            |     |           |   |
|   | 938   | 1.676950   | 0.346339  | 0.177518  | 0.689906  | 0.199740  | 0.003297  | 1.429565  | 0.830905              | 1.070986  | 0.262183   |     | -0.092434 | - |
|   | 939   | 1.822346   | 0.419125  | 0.286430  | 0.715605  | 0.294442  | 0.106633  | 1.514591  | 0.853050              | 1.195304  | 0.359260   |     | 0.014060  |   |
|   | 940   | 1.591515   | 0.275269  | 0.102195  | 0.624383  | 0.133762  | -0.069553 | 1.320734  | 0.765529              | 1.035088  | 0.192697   |     | -0.166179 | - |
|   | 941   | 1.810363   | 0.404799  | 0.275450  | 0.726616  | 0.281316  | 0.087068  | 1.550310  | 0.850057              | 1.205745  | 0.342987   |     | -0.008362 | - |
|   | 942   | 1.838431   | 0.479648  | 0.384963  | 0.780521  | 0.388442  | 0.240998  | 1.564232  | 0.946704              | 1.289865  | 0.487383   |     | 0.147027  |   |
| 9 | 943 r | ows × 1682 | 2 columns |           |           |           |           |           |                       |           |            |     |           |   |

Next, Find from user\_sim\_table, take particular user(user=34) find the similar user and suggest or recommend the movies.