PHT / 2021 - INF 280 - Prova 2 - ID: 43

Werikson Alves - 96708
Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br
21 de Fevereiro de 2022

Problema 1

(Baseado em Taha, pg. 14)

Uma empresa imobiliária está desenvolvendo um projeto habitacional de casas de aluguel e um espaço para o comércio varejista. O projeto habitacional consiste em apartamentos funcionais, apartamentos duplex e unidades residenciais simples. A demanda máxima de inquilinos potenciais é estimada em 400 apartamentos funcionais, 340 apartamentos duplex e 200 unidades residenciais simples, mas pelo menos 30% das habitações devem ser compostas por apartamentos duplex. O espaço para o comércio varejista deve conter pelo menos $10 m^2$ para cada apartamento funcional, mais $13 m^2$ para cada apartamento duplex e $20 m^2$ para cada unidade residencial simples (chamaremos essa restrição de ${\bf r6}$). Contudo, a disponibilidade de terreno limita o espaço de comércio varejista a não mais do que $11500 m^2$. A receita mensal de aluguéis é estimada em \$550, \$800 e \$1300 para cada apartamento funcional, apartamento duplex e unidade residencial simples, respectivamente. O aluguel de espaços para comércio varejista é $$115/m^2$. Deseja-se determinar a área ótima de espaço para comércio varejista e o número de unidades residenciais de cada tipo.

1. Resolva esse PPL e preencha a tabela abaixo com a solução obtida.

Obs.: pode arredondar os resultados das variáveis de decisão, pegando o valor inteiro mais próximo.

Solução

Variáveis:

- $x1 \rightarrow$ Apartamentos funcionais;
- $x2 \rightarrow$ Apartamento duplex;
- $x3 \rightarrow$ Residenciais simples;
- $x4 \rightarrow \text{Área usada}$:

Restrições:

I-
$$1 \cdot x1 \le 400$$

II-
$$1 \cdot x2 \le 340$$

III-
$$1 \cdot x3 \le 200$$

IV-
$$x2 >= 0.3 \cdot (x1 + x2 + x3) \rightarrow 0.3 \cdot x1 - 0.7 \cdot x2 + 0.3 \cdot x3 < 0$$

V-
$$10 \cdot x1 + 13 \cdot x2 + 20 \cdot x3 \le x4$$

VI-
$$x4 <= 11500$$

Função Objetivo:

Maximizar: $550 \cdot x1 + 800 \cdot x2 + 1300 \cdot x3 + 115 \cdot x4$

Para os seguinte dados, resolvendo pelo lingo obtemos a seguinte solução ótima:

```
!xl Apartamentos funcionais;
 !x2 Apartementos duplex;
 !x3 Residencias simples;
 !x4 Area usada;
 MAX = (550)*x1 + (800)*x2 + (1300)*x3 + 115*x4;
 [Apto__Func] xl
                                           <= 400;
 [Apto_Duplex]
                          x2
                                           <= 340;
                                           <= 200;
 [Res simples]
                                   х3
 [Duplex min] 0.3*x1 - 0.7*x2 + 0.3*x3
 [R6 Dim min] 10*x1 + 13*x2 + 20*x3 - x4 \le 0;
                                        x4 <= 11500;
 [Area max]
      Variable
                        Value
                                    Reduced Cost
                                         0.000000
            X1
                     308.0000
                                        0.000000
            X2
                     340.0000
            ΧЗ
                     200.0000
                                        0.000000
            X4
                      11500.00
                                         0.000000
                 Slack or Surplus
           Row
                                     Dual Price
             1
                     2023900.
                                        1.000000
   APTO FUNC
                     92.00000
                                        0.000000
   APTO DUPLEX
                     0.000000
                                        85.00000
   RES SIMPLES
                     0.000000
                                        200.0000
   DUPLEX MIN
                     85.60000
                                        0.000000
   R6 DIM MIN
                     0.000000
                                         55.00000
   AREA MAX
                     0.000000
                                         170.0000
                Objective Coefficient Ranges:
                               Allowable
                 Current
                                               Allowable
Variable
             Coefficient
                               Increase
                                               Decrease
                550.0000
                                65.38462
                                                550.0000
                800.0000
     X2
                                INFINITY
                                               85.00000
               1300.000
                                               200.0000
     Х3
                               INFINITY
     X4
                115.0000
                                INFINITY
                                                170.0000
```

Righthand Side Ranges:

Row	Current RHS	Allowable Increase	Allowable Decrease
APTO FUNC	400.0000	INFINITY	92.00000
APTO DUPLEX	340.0000	236.9231	70.76923
RES_SIMPLES	200.0000	154.0000	46.00000
DUPLEX MIN	0.000000	INFINITY	85.60000
R6_DIM_MIN	0.000000	920.0000	3080.000
AREAMAX	11500.00	920.0000	3080.000

Figura 1: Solução obtida no lingo.

Comércio Varejista(m²):	11500
Qtd. apartamentos funcionais:	308
Qtd. apartamentos duplex:	340
Qtd. unidades residenciais simples:	200
Receita total:	2023900

2. Monte a matriz B para a Base ótima obtida na solução.

Solução

$$x_{B} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ s_{1} \\ s_{4} \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0.3 & -0.7 & 0.3 & 0 & 0 & 1 \\ 10 & 13 & 20 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

3. Considere os limites máximos para a área destinada ao comércio varejista e quantidades dos tipos de moradia. Se você pudesse aumentar apenas um desses limites o máximo possível sem alterar a Base da solução, qual deles você escolheria? Justifique sua resposta usando apenas as informações da resposta obtida pelo LINGO na questão 1.

Solução

Por meio da solução obtida no lingo, podemos determinar o impacto máximo no lucro mensal, ao aumentar o limite de um dos parâmetros ao máximo. Logo, como pode ser visto na tabela abaixo, devemos aumentar o limite máximo para a área destinada ao comércio varejista pois este teria um maior impacto na receita.

Limites de:	Preço dual	Aumento máximo	Lucro adicional
Funcionais	0	∞	0
Duplex	85	236.923	20138.455
Residenciais	200	154	30800
Área Máxima	170	920	156400

4. Após algumas consultas na prefeitura, a empresa recebe a notícia de que poderia aumentar a oferta máxima de unidades residenciais simples para 431, mas a um custo extra em impostos e outras taxas de \$170 por mês. Verifique se essa oferta vale a pena. Use apenas os dados obtidos pelo LINGO na solução do problema para justificar sua resposta. Ou seja, suponha que você não pode resolver outro modelo de PL.

Solução

O número de residencias simples atual é de 200 e para alcançar 431 unidades, seriam necessários mais 231 unidades. Com este aumento, haverá uma mudança na Base, e de acordo com a análise de sensibilidade obtidos pelo LINGO, o aumento máximo deveria ser somente 154 unidades.

5. Qual o significado do Preço Dual de -55.00 para a restrição r6?

Solução

O preço dual nos indica o impacto do acréscimo ou decréscimo da variável na função objetivo. Logo, o preço dual de 55.00 na restrição **r6** (R6_Dim_min) indica que ao aumentarmos 1 unidade deste teremos um aumento de 55 na receita mensal (função objetivo).

6. Após obter a solução ótima na Questão 1, a empresa cogitou a construção de apartamentos de luxo. Cada unidade desse novo tipo requer um adicional de espaço na área de comércio varejista de 16 m², e a restrição de pelo menos 30% das em apartamentos duplex deve levar em conta essas novas unidades também. Não há restrição na quantidade máxima de apartamentos de luxo. Usando apenas a restrição Dual correspondente, conforme mostrado na matéria sobre Dualidade, determine o valor mínimo para o aluguel desse novo tipo de moradia, de modo que sua oferta seja interessante economicamente.

Solução

 $x5 \rightarrow \text{Apartamento de luxo}$

Novos dados:

A nova coluna inserida no modelo Primal corresponderia a uma nova restrição no modelo Dual, sendo assim:

$$0y1 + 0y2 + 0y3 + 0.3y4 + 16y5 + 0y6 \ge c5$$
$$0.3y4 + 16y5 \ge c5$$

Além disto, temos que y1, y2, y3, y4, y5 y6 são os preços duais das restrições, logo:

$$0.3\cdot 0 + 16\cdot 55 \geq c5 \rightarrow 880 \geq c5$$

Portanto, para que valha a pena a construção de apartamentos de luxo, ele terá que possuir um aluguel superior a \$ 880 por unidade, para que dessa forma sua oferta seja interessante economicamente.