

Introduction

Combinational logic Circuit

Dr. Yash Agrawal @ DA-IICT Gandhinagar

.

Demultiplexer (DeMUX)

Demultiplexer:

One input to Many outputs.

The Output line is selected based on the select line(s).

The outputs are in the form of 2ⁿ, where n is the select line.

Used in many switching applications.

Demultiplexer Example

1:2 Demultiplexer:

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Demultiplexer Example

1:2 Demultiplexer:

Dr. Yash Agrawal @ DA-IICT Gandhinagar

5

First Step: Truth Table Formation

Determined number of inputs to be 3

Determined number of outputs to be 2

Inputs of 1:2 DeMUX Output of DeMUX

u	18 01 1	.Z Dei	Out	put or	
	E	S	I	Y ₁	Y ₀
	0	0	0	z/0	z/0
	101	0	F	I z/0	z/0
	0	1	0	z/0	z/0
	(Q)	1		120	z/0,
		10		0	0
	1	_0		B	
	1	îlì	(0)	0	0
		11	1	1	0

E	S	output
0	0	z/0
0	1	z/0
1	0	\mathbf{Y}_{0}
1	1	Y ₁

Demultiplexer Example

1:2 Demultiplexer:

Number of Inputs = 3 (E, S, I,)

Number of Input Combinations = $2^3 = 8$

Please Note: Enable is optional. And Many DeMUX may not have Enable input.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

1:2 Demultiplexer

Second Step:

Determining Boolean Expression (For this K-map can be used)

K-map and Boolean Expression determination for Y_0

$$Y_0 = ES'I$$

1:2 Demultiplexer

Second Step:

Determining Boolean Expression (For this K-map can be used)

K-map and Boolean Expression determination for \mathbf{Y}_1

$$Y_1 = ESI$$

Dr. Yash Agrawal @ DA-HCT Gandhinagar

1:2 Demultiplexer

Third Step:

Realization of Boolean Expression by Logic Gates

$$Y_0 = ES'I$$

$$Y_1 = ESI$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

-

Demultiplexer Example

1:4 Demultiplexer:

Demultiplexer Example

1:4 Demultiplexer:

Number of Inputs = $4 (E, S_1, S_0, I)$

Number of Input Combinations = $2^4 = 16$

First Step: Truth Table Formation

Determined number of inputs to be 4

Determined number of outputs to be 4

Input of 1:4 DeMUX Output of DeMUX							
E	S_1	S_0	I	Y ₃	\mathbf{Y}_2	\mathbf{Y}_{1}	$\mathbf{Y_0}$
0	0	0	0	,O-	0	0	-0'1
0	0	0	1	10	0	0	0 1
0	4	-	7	10	0	0	0 1
1 01	0	1	1	I ()	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
<u>0</u> 1	1	1	1	9	0_	0_	رو_
$\begin{bmatrix} 1 \end{bmatrix}$	0	-01	0)	A	0	A	[0]
1	0	0,	11.	0	0	0	1 1
1	10	11	[0]	0	6	ĵ0i	0
1.1	ĺα.	<u> </u> -	<u>[</u>	0	0	1	0
1	[1]	- 01	(0)	6	(0)	0	0
1	$(\underline{1}]$	0,	1_1	0	1	0	0
1	1	-1	0	0 0i	0	0	0
1	(1	_1,	11	1	0	0	0

	E	S_1	S_0	output
	0	X	X	0
\Box	1	0	0	$\mathbf{Y_0}$
,	1	0	1	\mathbf{Y}_1
	1	1	0	\mathbf{Y}_{2}
	1	1	1	Y ₃

1:4 Demultiplexer

Second Step:
Determining Boolean Expression

E	S_1	S_0	output
0	X	X	0
1	0	0	$\mathbf{Y_0}$
1	0	1	\mathbf{Y}_1
1	1	0	\mathbf{Y}_{2}
1	1	1	\mathbf{Y}_3

$$Y_0 = ES_1'S_0'I$$

$$Y_1 = ES_1'S_0I$$

$$Y_2 = ES_1S_0'I$$

$$Y_3 = ES_1S_0I$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

-

1:4 Demultiplexe

Third Step:

Realization of Boolean Expression by Logic Gates

$$\mathbf{Y}_0 = \mathbf{E}\mathbf{S}_1\mathbf{S}_0\mathbf{I}$$

$$\mathbf{Y}_1 = \mathbf{E}\mathbf{S}_1'\mathbf{S}_0\mathbf{I}$$
$$\mathbf{Y}_2 = \mathbf{E}\mathbf{S}_1\mathbf{S}_0'\mathbf{I}$$

$$\mathbf{Y}_3 = \mathbf{E}\mathbf{S}_1\mathbf{S}_0\mathbf{I}$$

$$\begin{array}{c|c} \mathbf{E} & & & \\ \mathbf{S}_0 & & & \\ \mathbf{S}_1 & & & \\ \mathbf{I} & & & \\ \end{array}$$

$$\begin{array}{c|c}
E \\
S_0' \\
S_1 \\
I
\end{array}$$

$$\begin{array}{c|c}
E \\
S_0 \\
S_1 \\
I
\end{array}$$

Demultiplexer Example

1:8 Demultiplexer:

1:8 Demultiplexer

First Step:

Truth Table Formation

S_2	S_1	S_0	Output
0	0	0	$\mathbf{Y_0}$
0	0	1	\mathbf{Y}_{1}
0	1	0	Y ₂
0	1	1	Y ₃
1	0	0	Y ₄
1	0	1	Y ₅
1	1	0	Y ₆
1	1	1	Y ₇

1:8 Demultiplexer

Second Step:

Determining Boolean Expression

		-	
S_2	S_1	S_0	Output
0	0	0	$\mathbf{Y_0}$
0	0	1	Y ₁
0	1	0	Y ₂
0	1	1	Y ₃
1	0	0	Y ₄
1	0	1	Y ₅
1	1	0	Y ₆
1	1	1	Y ₇

$$Y_{0} = S_{2}'S_{1}'S_{0}'I$$

$$Y_{1} = S_{2}'S_{1}'S_{0}I$$

$$Y_{2} = S_{2}'S_{1}S_{0}'I$$

$$Y_{3} = S_{2}'S_{1}S_{0}I$$

$$Y_{4} = S_{2}S_{1}'S_{0}'I$$

$$Y_{5} = S_{2}S_{1}'S_{0}I$$

$$Y_{6} = S_{2}S_{1}S_{0}I$$

$$Y_{7} = S_{2}S_{1}S_{0}I$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

17

Dr. Yash Agrawal @ DA-IICT Gandhinagar

.

Third Step: Realization of Boolean Expression by Logic Gates

$$Y_0 = S_2'S_1'S_0'I$$

$$Y_1 = S_2'S_1'S_0I$$

$$Y_2 = S_2'S_1S_0'I$$

$$Y_3 = S_2'S_1S_0I$$

$$Y_4 = S_2S_1'S_0'I$$

$$Y_5 = S_2S_1'S_0I$$

$$Y_6 = S_2S_1S_0'I$$

$$Y_7 = S_2S_1S_0I$$

Implement 1:8 Demultiplexer using 1:4 Demultiplexer

1:4 DeMUX

- 1 Input
- 2 Select lines
- 4 Output

1:8 DeMUX 1Input

- 3 Select lines
- 8 Output

Implement 1:8 Demultiplexer using 1:4 Demultiplexer

To implementing 1:8 DeMUX using 1:4 DeMUX, Enable signal can be utilized

Dr. Yash Agrawal @ DA-IICT Gandhinagar

21

Dr. Yash Agrawal @ DA-IICT Gandhinagar

2

Numerica

1. Implement Full Subtractor using Demultiplexer.

Second Step:

Realization using DeMUX

A	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Numerica

1. Implement Full Subtractor using Demultiplexer.

First Step:

Truth Table Formation

A	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Accionment_/

1. Implement the following Boolean Function using 1:8 DeMUX (without using any Enable signal).

$$f(P, Q, R, S) = \Sigma m(0, 1, 3, 4, 8, 9, 15)$$