Exercice 1:

On donne le schéma suivant de la fonction booléenne (F₁) exprimée en fonction des cinq variables booléennes (a, b, c, d, e):

Q1- Déduire du schéma l'expression de la fonction (F₁) en fonction de (a, b, c, d, e). (2pts)

$$F_1 = (a + \overline{a}bc).(a + \overline{b}cd\overline{a}) + \overline{bc} + \overline{de}$$
 (*)

Q2- Donner l'expression simplifiée (F_{1s}) de la fonction (F₁):

a/ par la méthode algébrique (donner les étapes de simplification). (2pts)

$$F_{1} = (a + \overline{a}bc).(a + \overline{b}cd\overline{a}) + \overline{bc} + \overline{de}$$

$$F_{1} = (a + bc).(a + \overline{b}cd) + \overline{bc} + \overline{de}$$

$$F_{1} = a + a\overline{b}cd + abc + 0 + \overline{bc} + \overline{de}$$

$$F_{1} = a + \overline{bc} + \overline{de}$$

$$(**)$$

NB : on retrouve directement ce résultat en développant directement (*) b/ par la table de Karnaugh (1.5pts)

Si on adopte (*), il n'y a rien à faire (forme déjà simplifiée), mais si on considère (**), on a :

\ a b c d e	000	001	0 1 1	010	110	111	101	100
0 0	1	1	1	1	1	1	1	1
0 1	1	1	1	1	1	1	1	1
1 1	1	1	0	1	1	1	1	1
1 0	1	1	1	1	1	1	1	1

Donc (par Karnaugh) :: on considère l'état nul inverse :

$$\overline{F_1} = \overline{a}bcde$$

D'où

$$F_1 = a + \overline{b} + \overline{c} + \overline{d} + \overline{e}$$

Q3- Donner l'expression de (F_{1s}) en **NAND(2)**, **PUIS** en **NOR(2)**.

(2+2pts)

09 Novembre 2015 SOLUTION Control continu N°1
Année Univ. 2015/2016

En 'NAND2':

<u>Tlemcen</u>

$$F_1 = \overline{\overline{a} \cdot \overline{b \cdot c}} \cdot \overline{d \cdot e}$$

En 'NOR2':

$$F_1 = \overline{\overline{a + \overline{b} + \overline{c}}} + \overline{\overline{d} + \overline{e}}$$

Q4- On compose une nouvelle fonction (G) à partir de la fonction (F_{1s}) comme suit :

$$G = F_{1s}.b.c.d.e$$

En déduire l'expression de G en fonction des variables (a, b, c, d, e).

(2pts)

$$G = a.b.c.d.e$$

Q5- Donner alors la forme simplifiée maximale de fonction $G_2 = G + \bar{a}\bar{b}\bar{c}\bar{d}\bar{e}$. (1.5pts)

(G₂) Reste inchangée (ne peut être simplifiée davantage) :

$$G_2 = a.b.c.d.e + \overline{a}.\overline{b}.\overline{c}.\overline{d}.\overline{e}$$

Exercice 2: (3pts)

Simplifier la fonction (F₂) définie par la table de Karnaugh suivante :

\ a b c	000	001	0 1 1	010	110	111	101	100
d e								
0 0	1							1
0 1		1		1	1		1	
1 1		1		1	1		1	
1 0	1							1

Regroupement selon les couleurs, donc :

$$F_2 = \overline{b}.\overline{c}.\overline{e} + \overline{b}.c.\overline{e} + b.\overline{c}.\overline{e}$$

Exercice 3: Question d'excellence (4pts)

Simplifier la fonction (F₃) définie par la table de Karnaugh suivante :

\ a b c	000	001	011	010	110	111	101	100
d e `								
0 0	1	1	1	1	1	1	1	1
0 1	1	1	1	1	1	1	1	1
11	1	1	1	1	1	0	1	1
1.0	1	1	1	1	1	1	1	1

Comme en exo1, on raisonne par contraposée (alors « 4pts », sinon « 2pts »):

$$\overline{F_3} = a.b.c.d.e$$

donc

$$F_3 = \overline{a} + \overline{b} + \overline{c} + \overline{d} + \overline{e}$$

Bon Courage