Relationship Between Track Tie Situation and Its Components Health Conditions

This manuscript (<u>permalink</u>) was automatically generated from <u>uiceds/cee-492-term-project-fall-2022-shans@a545625</u> on October 31, 2022.

Authors

•	Arthur Bilheri
	Hogwarts school of witchcraft

Negin Shafie

 $Department of \textit{Civil and Environmental Engineering, University of Illinois at \textit{Urbana-Champaign} \cdot \textit{Funded by none}$

• Shirin Qiam

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign · Funded by none

Sadaf Shafie

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign · Funded by none

Introduction

Railroad tracks have four main components: rail, ties, fastening systems, and ballast. The rail is the main component that supports the loads transmitted by the trains. The fastening system is responsible for fastening the rail to the ties and keeping the rail in a proper position. Fastening systems are made of spikes, tie plates, anchors, and sometimes clips. The ties are the interface between the rails and ballast. The two main materials used for ties in the United States are timber and concrete. The last layer on the railroad superstructure is the ballast. Its main functions are to spread the loads on the ground and to provide proper drainage for the track system.

These components are inspected using the LRAIL technology that combines 2D imagery and laser triangulation to assess the health and condition of each component. The collected data is processed through a DNN (Deep Convolutional Neural Network) model that identifies and classifies the components. This technology has been used under the scope of research led by the RailTEC group at UIUC, funded by the FRA-DOT with two Class I railroads in the US. The output of this technology, which will be used in this project, is described in an Excel file (filename: Datasets) attached to this proposal and Table 1.

Track geometry can be defined as the relative position of the rails. The common measurements are related to horizontal and vertical irregularities, gage, and superelevation. CFR 213 establishes safety limits that must be kept in order to provide the trains with a safe ride. Railroads use laser-based contactless systems to measure track geometry. Recently these systems have been installed in boxcars and locomotives to provide autonomous measurements, reduce inspection costs, and collect more data. Geometry cars, as they are called, collect measurements of each foot of the track to calculate the deviations.

The purpose of this project is to look for relationships between components' health and geometry data collected over the same tracks in a short period and to identify possible correlations. The approaches of this project consist of but are not limited to EDA methods, regressions, and correlation models. The data can be found in Project, "LRAIL" contains the component health conditions, "Geometry 1" and "Geometry 2" include the geometry data for that same track, and "Datasets" describes each of the above.

Table 1: Description of data

Column name	Туре	Range	Unit	Observation
SectionID	int	0-inf		The ID number of section containing the tie. Each section is 2m wide.
Distance_m	float	0-inf	meters	The position of the tie. The distance is computed from the beginning of the survey. The unit is meter
Material	string	Wooden, Concrete		The material of the tie

Column name	Туре	Range	Unit	Observation	
Rating	int	0-3 (Wooden) 0-2 (Concrete)		The rating of tie based on condition of crack on surface of tie. 0: good. 3 or 2 is bad.	
Askew_Angle	float	-inf to inf	degrees	Askew angle of the tie. This is angle between the horizontal line and the center line of the tie (passing through middle of tie) positive if we need to rotate the tie clockwise to make the center line fit the horizontal line and it is negative if we need to rotate the tie counter-clockwise. The unit is degrees.	
FastenerConditionROI _1	int	1, 2, 3, 20		The condition of fastener in ROI 1 to 4. 1: Good, 2: Covered, 3: Missing and 20: Defective	
SpikeTotalROI_1 to 4	int	0-inf		Number of spike in each ROI on tie	
SpikeMean_Height_R Ol1_mm	float	0-inf	milimeters	The mean height of all tie in each ROI on tie. The unit is millimeter	
SpikeNearRailROI_1	int	0-inf		Number of spike is near the rail boundary in each ROI on tie	
AnchorROI_1	int	0-inf		Number of anchor in each ROI (relating to the tie)	
Tieplate_Right	int	0-inf		Number of tieplate on left/right side of tie	
TieplateCondition_Rig	int	1-5		Condition of tieplate. 1: Good, 2: Sunken, 4: Covered, 5: Twisted	
Latitude	float	-90 to +90	degrees	GPS coordinates of the center of the tie	
Longitude	float	-90 to +90	degrees	GPS coordinates of the center of the tie	

Exploratory Data Analysis

Negin's part

Does Askew Angle relate to the number of anchors?

Anchors are spring steel clips that attach to the underside of the rail baseplate and bear against the sides of the sleepers to prevent longitudinal movement of the rail, either from changes in temperature or through vibration. Based on the definition of askew angle in table 1, the anchors may have a relationship with the askew angle. Figure 1 shows regions of interest 1 to 4 for anchors. The following parts describe the steps we do to investigate any relationship between the askew angle and the number of anchors in a tie.

Figure 1:

Selecting related columns:

To create the data frame, using the "select" function in Julia, we select columns about askew angle and anchors, which are "Askew_Angle", "Material", "AnchorROI_1", "AnchorROI_2", "AnchorROI_3", "AnchorROI_4". The material is important because we only have anchors for wooden ties. Therefore, the data frame has 89982 rows and six columns.

Filtering wooden ties:

Using the "filter" function, we choose only ties with wooden material. The new data frame for wooden ties has 33687 columns which shows more than half of the ties are concrete.

Adding total number of anchors:

Since we have only 0 or 1 for having or not having an anchor in the raw data, we need to know the total number of anchors for each tie. Therefore, we add a column to our data frame representing the total number of anchors for each tie by adding columns for anchors in each ROI.

<u>Describing statistical features of data:</u>

The "describe" function gives a good overview of the statistical features of the data frame. Using this function, we find the statistics for our data. Figure 2 represents the result.

	variable	mean	min	median	max	nmissing	eltype
	Symbol	Float64	Real	Float64	Real	Int64	DataType
1	:Askew_Angle	-0.741635	-14.19	-0.73	6.13	0	Float64
2	:AnchorROI_1	0.429483	0	0.0	1	0	Int64
3	:AnchorROI_2	0.420221	0	0.0	1	0	Int64
4	:AnchorROI_3	0.428682	Θ	0.0	1	0	Int64
5	:AnchorROI_4	0.42604	Θ	0.0	1	0	Int64
6	:Total_Anchor_Number	1.70443	0	0.0	4	0	Int64

Figure 2:

Plotting corrplot for data:

The first thing we can plot to check whether some variables are correlated or not is a corrplot. Figure 3 shows the corrplot for the data.

Figure 3:

The corrplot indicates that there is no correlation between askew angle and anchors. However, this idea comes to mind that comparing the statistics for situations with a different total number of anchors assures us that we don't have any relationship between askew angle and anchors. Therefore, we filter the data based on each value we can have as the total number of anchors (0 to 4) and find their distribution of askew angle using the "histogram" function.

Plotting histogram for different values of total number of anchors:

Plotting all five histograms in a graph shows us that they are so close and different numbers anchors have not caused different askew angles. Figure ?? shows these histograms.

Histograms based on total number of anchors

{#fig:hist_all_ask_anc height=2in}

Different numbers of bins are because of the different numbers of data we have in each situation. To make our conclusion more precise, we normalize the data and compare situations with no anchor and 4 anchors. Figure $\frac{4}{2}$ represents no meaningful difference between these two conditions.

Figure 4:

Plotting boxplot:

The last graph we plot is a boxplot which provides a good sense of statistics to compare skew angle with different total numbers of anchors. Figure ?? shows these boxplots and confirms no such difference between the mean and other statistics of askew angle.

{#fig:bo_ask_anc height=2in}

Conclusion:

Even though the anchors seem to play a significant role for the askew angle, the data surprisingly shows they do not have any relationship.

Does Askew Angle relate to the number of spikes?

As what we had for anchors, we are interested in finding a relationship between spike conditions and askew angle. The steps to figure out this relationship is as follows.

Selecting related columns:

To create the data frame, we select columns about askew angle and spikes, which are "Askew_Angle", "SpikeTotalROI_1", "SpikeMean_Height_ROI1_mm", "SpikeNearRailROI_1", and these last three coulmns for ROI 2, ROI 3, and ROI 4. Therefore, the data frame has 89982 rows and 13 columns.

Plotting corrplot for data:

The first thing we can plot to check whether some variables are correlated or not is a corrplot. Figure ?? shows the corrplot for ROI 1. As the corrplot for other regions of interest are similar to ROI 1, we do not put it on the report. For the rest of this part, we just consider ROI 1 because the results are the same for all the regions.

{#fig:corr_ask_spi height=4in}

Like anchors, the corrplot indicates no correlation between askew angle and spike conditions. However, an interesting pattern can be seen in the scatter plots we have in corrplot. To illustrate this pattern better, figure ?? shows a scatter plot for the number of spikes in ROI1 and askew angle, which is one of the plots in corrplot. We can see that the range of the askew angle for fewer spikes is larger. It is reasonable and having no correlation between askew angle and spike condition is because a large share of ties are healthy and do not have defective spikes. However, the unsatisfactory situation is crucial for us. Therefore, as the askew angle is approximately symmetric relative to zero, we consider the maximum askew angle for the different numbers of spikes and find the correlation between it and the number of spikes.

Number of spikes in ROI 1 - Askew angle

{#fig:scatt_ask_spi height="50%"}

Correlation between maximum askew angle and the number of spikes:

Using "corr" function, we find the correlation value between the maximum askew angle and the number of spikes which is about -0.64. Therefore, we say they are correlated, and there is a relationship between the maximum askew angle and the number of spikes. The same results happen for other regions of interest and even the total number of spikes in all regions.

During the EDA section we tried to look for relationships between the gauge of the track and the component's condition. The Gauge Deviation is the difference between the standard gauge (4'-8.5") and the measured gauge. So a value close to 0 indicates that the gauge is correct. Due to the train traffic and tie degradation the gauge deviation tends to increase over time. When it reaches certain limits, it is called a defect and maintenance must be made to restore the gauge. Negative values usually mean that the tie was installed with a tighter gauge or that there was a measurement error and should be considered outliers if it is too tight, around -1 in or less. To be reasonable in this section, the analysis are divided between concrete and Wooden ties, since they have different characteristics that make it harder compare both together. The most directly relationship is the gauge of the track and the condition of the ties. Based on the technology used the concrete ties are graded from 0 (Good) to 2 (Bad). 1 (Fair) is a intermediate condition. The following graph represents the distribution of gauge deviation by each concrete tie rating.

Intuitively we can think that bad ties would have wide gauge, but for this specific region it is not the case. Comparing the median values we see that the values are not too far from each other. Another interesting finding is that the max value does not have big changes when changing the tie rating, indicating that any tie rating can have a gauge defect. Now let's look to the same criteria but for Wooden ties. Wooden ties have one more bin for classification, still following the same idea as 0 being Good and 3 being Bad. The following graph shows the distribution of gauge deviation by each wooden tie rating.

First thing to mention is that the Good ties (Condition 0) has more outliers than the other ones, this can be related to the fact that there are a lot more ties with this condition than the other ones. In contrast to the concrete ties, the median gets slightly higher when we have a bad condition tie, indicating that the condition of the tie can be related to the gauge of the track. Comparing the max values, only condition zero (Good) and 3 (Bad) have higher max values. It makes sense for condition 3 (Bad) ties but measurement errors should be account for condition 0 (Good) ties. The next component to be investigated is the tie plate. Only wooden ties have tie plates. Their main function is to support the rail and distribute the load on the ties. Normal wooden ties have two tie plates – one per rail. The metric used to analyze the data is the number of defective tie plates per tie, 0 being a tie with 2 tie plates and 2 a tie plate without tie plates in good condition. The following graph shows the distribution of gauge deviation by the number of defectives tie plates per wooden tie.

Again, the number of outliers for ties with two tie plates must be taken into consideration since this is the highest population on the dataset. The main takeaway is that the number of defective tie plates are not directly related to the gauge. Fasteners are the components that have hold down force to hold the rails connected to the tie plates. They are used in very specific situations in the railroad, such as tight curves, switches and grade crossings. When used, each tie has four fasteners, two per rail, one on each side of the rail. Fasteners may or may not used in wooden ties but must be used in concrete ties. The following graph shows the distribution of gauge deviation by the number of defectives fasteners per wooden tie.

Relationship between Gauge and Defective Fasteners per tie on Wooden Ties

Outside the outliers for ties without any defective fasteners, ties with only two defective fasteners have more variability in gauge. It can be explained by the fact that if the two missing fasteners are on the outside side of the rails, it is likely that the gauge will be widened. The ties with 3 and 4 bad fasteners are not that common, but when they happen they have wider gauge than the ties in better condition. Only one bad fastener does not have much influence in the gauge. For concrete ties there were no ties with zero defective fasteners (all four fasteners present) or with 4 defective fasteners (no fasteners at all). That can be related to the fact of having less concrete ties in the section analyzed. The following graph shows the distribution of gauge deviation by the number of defectives fasteners per concrete tie.

Concrete ties are less prone to have gauge problems related to defective fasteners, as we can see by comparing the median of the distributions. It can be explained by the fact that they have metal shoulders that holds the rails in place, regardless of having a fastener or not. Concrete ties with 3 defective fasteners are more prone to have wide gauge, as shown by the higher median than the other conditions.

References