1 Week 2 Homework - Ethan Hua

1.1 Exercise. (a) Prove that there exists an infinitely differentiable function $\alpha: \mathbf{R} \to \mathbf{R}$ such that $\alpha(t) = 0$ for all $t \le 0$, and $\alpha(t) > 0$ for all t > 0.

Proof. We define
$$\alpha(t) = \begin{cases} 0, & \text{if } t \leq 0; \\ e^{-\frac{1}{t}}, & \text{if } t > 0. \end{cases}$$

Trivially $\alpha(t) = 0$ if $t \le 0$ and $\alpha(t) > 0$ if t > 0. It remains to show that α is infinitely differentiable.

Since 0 is infinitely differentiable, and $e^{-\frac{1}{x}}$ is infinitely differentiable for x > 0, it suffices to show that derivatives of all orders of α are continuous at t = 0.

We will prove using induction that

$$\forall n \in \mathbb{N} \cup \{0\}, \lim_{t \to 0} \alpha^{(n)}(t) = 0$$

We will only worry about the right hand limit, as the left hand limit always evaluates to 0.

For n = 0,

$$\lim_{t \to 0^+} \alpha^{(0)}(t) = \lim_{t \to 0^+} \alpha(t) = \lim_{t \to 0^+} e^{-\frac{1}{x}} = 0$$

Thus the case for n = 0 holds.

Now suppose that the claim holds for n = k, for some $k \in \mathbb{N} \cup \{0\}$. It can be shown that when t > 0,

$$\alpha^{(k)}(t) = \sum_{i=0}^{\infty} \frac{(-1)^{i+k+1}(i+k+1)!}{t^{i+k+1}i!(i+1)!} = \frac{(-1)^{k+1}(k+1)!}{t^{k+1}} + \sum_{i=1}^{\infty} \frac{(-1)^{i+k+1}(i+k+1)!}{t^{i+k+1}i!(i+1)!}$$

(b) Prove that there exists an infinitely differentiable function $\beta : \mathbf{R} \to \mathbf{R}$ such that $\beta(t) = 1$ for all $t \ge 1$, and $\beta(t) = 0$ for all $t \le 0$.

Hint: The shape you're looking for is $\frac{X}{X+Y}$.

(c) Prove that there exists an infinitely differentiable function $\varphi : \mathbf{R} \to \mathbf{R}$ such that $\varphi(t) = 1$ for all $t \in [2,3]$, and $\varphi(t) = 0$ for $t \in \mathbf{R} \setminus (1,4)$.

Hint: Your function $\beta(t)$ does half the job. Make a function $\gamma(t)$ that does the other half of the job. Then multiply them together.

- **1.2 Exercise.** Let $S \subseteq \mathbb{R}^n$. Consider the following three statements:
 - S is a bounded subset of $(\mathbf{R}^n, \|\cdot\|_1)$.
 - S is a bounded subset of $(\mathbf{R}^n, \|\cdot\|_2)$.
 - S is a bounded subset of $(\mathbf{R}^n, \|\cdot\|_{\max})$.

Among these statements, determine which implications are true and which are false. There are six implications to investigate. Supply proof or counterexample as appropriate. Include pictures.

1.3 Exercise. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed vector spaces. A linear mapping $T: X \to Y$ is called **bounded** if there exists a constant $M \ge 0$ such that

$$||T(x)||_Y \le M||x||_X$$
 for all $x \in X$.

Let B(X,Y) denote the set of these bounded linear operators. The **operator norm** on B(X,Y), denoted by $\|\cdot\|_{\text{op}}$, is defined as follows:

$$||T||_{\text{op}} = \sup\{||T(x)||_Y : x \in X \text{ and } ||x||_X \le 1\}.$$

- (a) Prove that B(X,Y) is a linear subspace of L(X,Y). (In MAT257, the term "linear subspace" means what "subspace" meant in MAT240, *i.e.* "a nonempty subset of a vector space which is closed under addition and scalar multiplication.")
- (b) Prove that $\|\cdot\|_{\text{op}}$ is a norm on B(X,Y).
- (c) Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the linear mapping given by T(x,y) = (x+y,x). Find, with proof, the exact value of $||T||_{\text{op}}$. (Here, \mathbf{R}^2 is equipped with the usual norm.)
- (d) Find, with proof, an example of an unbounded linear operator.