Push Down Automata (2)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Rahmad Mahendra

Membangun PDA dari Grammar

Teorema

Diberikan suatu CFG $G = (V, \Sigma, R, S)$, terdapat sebuah PDA M sehingga L(M) = L(G)

- Pembuktian dengan cara konstruksi (dua alternatif cara)
 - Top-down parsing
 Mulai dari S, menerapkan sejumlah rule R, dan memeriksa apakah ada derivasi dari G ke w
 - Bottom-up parsing
 Mulai dari w, menerapkan sejumlah rule R backward,
 dan memeriksa apakah S dicapai

CFG ke PDA top down

• Algoritma *CFGtoPDAtopdown*

Diberikan CFG $G = (V, \Sigma, R, S)$

PDA $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\})$ dapat dibentuk, yang mana Δ mengandung:

- Transisi $((p, \varepsilon, \varepsilon), (q, S))$, push start symbol S ke stack dan pindah ke state q
- Transisi $((q, \varepsilon, X), (q, \gamma_1 \gamma_2 \dots \gamma_n))$ untuk setiap *rule* $X \to \gamma_1 \gamma_2 \dots \gamma_n$
- Transisi $((q, c, c), (q, \varepsilon))$ untuk setiap $c \in \Sigma$

CFG ke PDA bottom up

• Algoritma *CFGtoPDAbottomup*

Diberikan CFG $G = (V, \Sigma, R, S)$

PDA $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\})$ dapat dibentuk, yang mana Δ mengandung:

- Transisi *shift* $((p, c, \varepsilon), (p, c))$ untuk setiap $c \in \Sigma$
- Transisi *reduce* $((p, \varepsilon, (\gamma_1 \gamma_2 \dots \gamma_n)^R), (p, X))$ untuk setiap rule $X \to \gamma_1 \gamma_2 \dots \gamma_n$
- Transisi $((p, \varepsilon, S), (q, \varepsilon))$
- Shift-reduce parser

Contoh-1

```
• G = (\{E, T, F, id, +, *, (, )\}, \{id, +, *, (, )\}, R, E)
R = \{
E \rightarrow E + T / T
T \rightarrow T * F / F
F \rightarrow (E) \mid id
}
```

Buatlah PDA yang ekuivalen dengan grammar di atas!

Contoh-1 (top-down)

• PDA yang dibentuk dengan top-down parsing

Contoh-1 (bottom-up)

• PDA yang dibentuk dengan bottom-up parsing

Restricted Normal Form

- Suatu PDA M restricted normal form iff
 - M memiliki start state s yang hanya melakukan push karakter spesial (#) ke dalam stack, kemudian pindah ke state berikut di mana komputasi dimulai.
 - M memiliki accepting state tunggal a. Seluruh transisi menuju a tidak membaca input dan melakukan pop # dari stack.
 - Setiap transisi dalam *M*, kecuali transisi dari *s*, *pop* tepat satu simbol dari *stack*.

Algoritma PDAtoRestricted

- Input: PDA $M = (K, \Sigma, \Gamma, \Delta, s, \{q_1, q_2, ..., q_n\})$
- Output : PDA restricted normal form M'
 - 1. M' = M
 - 2. Buat start state baru s' untuk M'
 - 3. Tambahkan transisi $((s', \varepsilon, \varepsilon), (s, \#))$
 - 4. Buat accepting state baru a untuk M'
 - 5. Untuk setiap state q_k
 - a. Tambahkan transisi $((q, \varepsilon, \#), (a, \varepsilon))$
 - b. Ubah q_k menjadi non-accepting state

PDAtoRestricted (lanjutan)

- 6. Untuk setiap transisi yang pop k simbol, k > 1, ganti dengan sejumlah k transisi yang masing-masing pop tepat satu simbol tunggal
 - a. Tambahkan (k-1) state baru, misalkan *state* qq_1 , qq_2 , ..., qq_{k-1}
 - b. Ganti transisi $((q_1, c, \gamma_1 \gamma_2 \dots \gamma_n), (q_2, \gamma_P))$ dengan
 - $((q_1, \varepsilon, \gamma_1), (qq_1, \varepsilon)),$
 - $((qq_1, \varepsilon, \gamma_2), (qq_2, \varepsilon)),$
 - •
 - $((qq_{k-1}, c, \gamma_n), (q_2, \gamma_P))$
- 7. Untuk setiap transisi $((q_1, c, \varepsilon), (q_2, \gamma))$, ganti dengan sejumlah $|\Gamma \cup \{\#\}|$ transisi
 - a. Untuk setiap simbol $\alpha \in \Gamma \cup \{\#\}$, tambahkan transisi $((q_1, c, \alpha), (q_2, \gamma \alpha))$
 - b. Hapus transisi $((q_1, c, \varepsilon), (q_2, \gamma))$

Contoh-2

• $WcW^R = \{wcw^R: w \in \{a, b\}^*\}$

Konversi PDA di atas ke dalam restricted normal form!

• Buat start state dan accepting state yang baru

- Tidak ada transisi pada *M* yang melakukan *pop* lebih dari satu simbol
- 3 transisi dari *s* yang tidak melakukan *pop* diubah menjadi 9 transisi sebagai berikut

$$((s, a, \#), (s, a\#)), \#((s, a, a), (s, aa)), \#((s, a, b), (s, ab)),$$

 $((s, b, \#), (s, b\#)), \#((s, b, a), (s, ba)), \#((s, b, b), (s, bb)),$
 $((s, c, \#), (f, \#)), \#((s, c, a), (f, a)), \#((s, c, b), (f, b)).$

Membangun Grammar dari PDA

Teorema

Diberikan suatu PDA $M = (K, \Sigma, \Gamma, \Delta, s, A)$, terdapat sebuah CFG G sehingga L(G) = L(M)

- Pembuktian dengan cara konstruksi
 - Ubah PDA ke dalam restricted normal form
 - Bangun grammar

Algoritma PDAtoCFG

- Input: PDA restricted normal form M
- Output yang diharapkan: CFG $G = (V_G, \Sigma_G, R, S)$
 - 1. $\Sigma_{\rm G} = \Sigma_{\rm M}$
 - 2. Start symbol G = S
 - 3. Rule R
 - s' adalah *start state*, *s* adalah state yang dituju dari *s*' dan *a* adalah accepting state

 Tambahkan rule $S \rightarrow \langle s, \#, a \rangle$
 - b. Untuk setiap transisi yang tidak *push* simbol apapun $((q, c, \gamma), (r, \varepsilon))$ dan setiap state w selain s'
 Tambahkan rule $\langle q, \gamma, w \rangle \rightarrow c \langle r, \varepsilon, w \rangle$
 - c. Untuk setiap transisi yang *push* satu simbol tunggal $((q, c, \gamma), (r, \alpha))$ dan setiap state w selain s'
 Tambahkan rule $\langle q, \gamma, w \rangle \rightarrow c \langle r, \alpha, w \rangle$

Algoritma *PDAtoCFG* (lanjutan)

3. Rule R

- d. Untuk setiap transisi yang *push* dua simbol sekaligus $((q, c, \gamma), (r, \alpha\beta))$ serta setiap pasangan state v dan w $(v \neq s', w \neq s')$
 - Tambahkan rule $\langle q, \gamma, w \rangle \rightarrow c \langle r, \alpha, v \rangle \langle v, \beta, w \rangle$
- e. Dengan cara yang sama dengan d, tambahkan rule untuk transisi yang *push* lebih dari dua simbol.
- f. Untuk setiap state selain s,

 Tambahkan rule $\langle q, \varepsilon, q \rangle \rightarrow \varepsilon$
- 4. $V_G = \Sigma_M \cup$ himpunan simbol non terminal dalam rule R yang ditambahkan pada langkah 3

• PDA restricted normal form untuk WcW^R

Panah yang dilabeli dengan asterisk bermakna

[*]
$$((s, a, \#), (s, a\#)), ((s, a, a), (s, aa)), ((s, a, b), (s, ab)),$$

[**] $((s, b, \#), (s, b\#)), ((s, b, a), (s, ba)), ((s, b, b), (s, bb)),$
[***] $((s, c, \#), (f, \#)), ((s, c, a), (f, a)), ((s, c, b), (f, b)).$

		$S \rightarrow \langle s, \#, a \rangle$	[1]
	$((s', \varepsilon, \varepsilon), (s, \#))$	no rules based on the transition from s"	
[*]	((s, a, #), (s, a#))	$\langle s, \#, s \rangle \rightarrow a \langle s, a, s \rangle \langle s, \#, s \rangle$	[x]
		$\langle s, \#, s \rangle \rightarrow a \langle s, a, f \rangle \langle f, \#, s \rangle$	[x]
		$\langle s, \#, s \rangle \rightarrow a \langle s, a, a \rangle \langle a, \#, s \rangle$	[x]
		$\langle s, \#, f \rangle \rightarrow a \langle s, a, s \rangle \langle s, \#, f \rangle$	[x]
		$\langle s, \#, f \rangle \rightarrow a \langle s, a, f \rangle \langle f, \#, f \rangle$	[x]
		$\langle s, \#, f \rangle \rightarrow a \langle s, a, a \rangle \langle a, \#, f \rangle$	[x]
		$\langle s, \#, a \rangle \rightarrow a \langle s, a, s \rangle \langle s, \#, a \rangle$	[x]
		$\langle s, \#, a \rangle \rightarrow a \langle s, a, f \rangle \langle f, \#, a \rangle$	[2]
		$\langle s, \#, a \rangle \rightarrow a \langle s, a, a \rangle \langle a, \#, a \rangle$	[x]

	((s, a, a), (s, aa))	$\langle s, a, f \rangle \rightarrow a \langle s, a, f \rangle \langle f, a, f \rangle$	[3]
	((s, a, b), (s, ab))	$\langle s, b, f \rangle \rightarrow a \langle s, a, f \rangle \langle f, b, f \rangle$	[14]
[**]	((s, b, #), (s, b#))	$< s, \#, f > \rightarrow b < s, b, f > < f, \#, f >$	[15]
	((s,b,a),(s,ba))	$\langle s, a, f \rangle \rightarrow b \langle s, b, f \rangle \langle f, a, f \rangle$	[4]
	((s, b, b), (s, bb))	$\langle s, b, f \rangle \rightarrow b \langle s, b, f \rangle \langle f, b, f \rangle$	[16]
[***]	((s, c, #), (f, #))	$\langle s, \#, f \rangle \rightarrow c \langle f, \#, f \rangle$	[17]
	((s,c,a),(f,a))	$\langle s, a, f \rangle \rightarrow c \langle f, a, f \rangle$	[18]
	((s,c,b),(f,b))	$\langle s, b, f \rangle \rightarrow c \langle f, b, f \rangle$	[5]
	$((f,\varepsilon,\#),(a,\varepsilon))$	$\langle f, \#, a \rangle \rightarrow \varepsilon \langle a, \varepsilon, a \rangle$	[6]
	$((f, a, a), (f, \varepsilon))$	$\langle f, a, f \rangle \rightarrow a \langle f, \varepsilon, f \rangle$	[7]
	((f,b,b),(f,arepsilon))	$\langle f, b, f \rangle \rightarrow b \langle f, \varepsilon, f \rangle$	[8]
		$\langle s, \varepsilon, s \rangle \rightarrow \varepsilon$	[19]
		$\langle f, \varepsilon, f \rangle \rightarrow \varepsilon$	[9]
		$\langle a, \varepsilon, a \rangle \rightarrow \varepsilon$	[10]

- Pada halaman 17 slide ini, beberapa rule hasil konversi dari PDA ditandai [x], artinya non produktif atau *unreachable* (review slide 10 : CFG-1)
- Contoh: $\langle s, \#, a \rangle \rightarrow a \langle s, a, a \rangle \langle a, \#, a \rangle$ non produktif karena simbol $\langle s, a, a \rangle$ dan $\langle a, \#, a \rangle$ tidak bisa menurunkan simbol terminal (rule tersebut tidak dapat digunakan untuk derivasi string)
- Catatan: rule-rule yang ditampilkan pada halaman 18 hanya yang produktif saja.
- Contoh: dari transisi ((s, a, a), (s, aa)) bisa dibuat 9 rule seperti langkah yang ditunjukkan pada halaman 17. Namun, hanya rule $\langle s, a, f \rangle \rightarrow a \langle s, a, f \rangle \langle f, a, f \rangle$ yang produktif.

Non Determinisme dan Halting

- Komputasi C pada M halt iff salahsatu kondisi terpenuhi
 - C adalah accepting computation
 - \circ C berakhir dalam suatu konfigurasi di mana tidak ada transisi dalam Δ yang dapat diterapkan
- PDA mungkin tidak *halt* atau tidak pernah selesai membaca input.
- Tidak ada algoritma untuk minimisasi PDA.

Contoh-3

- $L(M) = \{a\}$
- Komputasi $(1, a, \varepsilon) \mid_M (2, a, a) \mid_M (3, \varepsilon, \varepsilon)$ menyebabkan string a diterima
- Akan tetapi, PDA tidak menerima juga tidak menolak string selain a
- Contoh: PDA tidak pernah selesai membaca input aa $(1, aa, \varepsilon) \mid_M (2, aa, a) \mid_M (1, aa, aa) \mid_M (2, aa, aaaa) \mid_M (2, aa, aaaaa) \mid_M (2, aa, aaaaaa) \mid_M ...$