R16

Code No: 134CF

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2018 SWITCHING THEORY AND LOGIC DESIGN (Common to FEE FCE MCT)

(Common to EEE, ECE, MCT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A				
		(25 Marks)		
1.a)	Convert the following numbers with the given radix to decimal.	[0]		
1 \	(i) $A1_{16}$ (ii) 61_7	[2]		
b)	Represent the following decimal number in BCD: 13597; 99880; 93286.	[3]		
c)	Find the complements of the following: (i) $x'yz' + x'y'z$ (ii) $x(y'z'+yz)$.	[2]		
d)	Implement the function with only NAND gates: $F(x,y,z) = \Sigma(0,6)$.	[3]		
e)	Differentiate combinational and sequential circuits?	[2]		
f)	Define clock skew.	[3]		
g)	What is state diagram?	[2]		
h)	Differentiate asynchronous and synchronous counters?	[3]		
i)	Differentiate completely specified and incompletely specified sequential machines.[2]			
j)	Write capabilities and limitations of Finite-State machine.	[3]		
PART-B				
		(50 Marks)		
2.a)	Solve for X			
	i) $(F3A7C2)_{16} = (X)_{10}$			
	ii) $(2AC5)_{16} = (10949)_X$			
	iii) $(0.93)_{10} = (X)_8$			
	iv) $(4057.06)_8 = (X)_{10}$			
b)	Subtract 27810 from 49510 using the excess-3 subtractor.	[5+5]		
	OR			
3.a)	Prove that AB'C+B+BD'+ABD'+A'C=B+C.			
b)	Expand minterms and maxterm AB'+ABD'+A+ABC'D.	[5+5]		
	1			
4.	Simplify using Boolean postulates and verify using K-map the following			
	a) $(x + y' + xy') (xy + x'z + yz)$			
	b) (A+B) (A'+C) (B+C)	[5+5]		
	OR			
5.a)	Realize the expression $F=\Sigma m(0,1,3,5,8,11,12,14,15)$ using 8×1 MUX.			
b)	Design the full adder circuit using two half adder circuits.	[5+5]		
,				

- 6.a) With the block diagram, Truth table, describe the principle operation of edge triggered negative SR flip flop.
 - b) Explain the operation of 4-stage twisted ring counter with circuit diagram and timing diagram. [5+5]

OR

- 7.a) With the aid of external logic, convert D type flip-flop to a JK flip-flop.
 - b) Design a synchronous modulo-12 counter using JK flip flops.

[5+5]

- 8.a) Design a mod-10 Ripple counter using T flip flops and explain its operation.
 - b) Draw a state diagram of a sequence detector which can detect 101.

[5+5]

OR

9. Design a 4 bit ring counter with initial count 1100 loaded in it. Prepare a state table and draw the state diagram including those of unused states and also the output waveforms.

[10]

10. For the machine shown, find the equivalent partition and a corresponding reduced machine in standard form. [10]

PS	NS,Z	
	X = 0	X = 1
Α	F,0	В,1
В	G,0	A,1
С	В,0	C,1
D	C,0	В,1
Ε	D,0	A,1
F	E,1	F,1
G	E,1	G,1

OR

11. Design a sequential logic circuit of a 4 bit counter to start counting from 0000 to 1000 and this process should go on. Draw the ASM chart and design the Data processing unit and the control unit. [10]

---00O00---