Reinforcement Learning

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Why?

- In supervised learning, we see examples $x^{(t)}$'s that are 1) i.i.d. and 2) given the unambiguous "right" labels $r^{(t)}$'s
- In sequential decision making and control problems, neither holds
- The next example may be the outcome of your "action" to the previous example
- It is very difficult to provide explicit supervision on the "correct" action of an example
 - E.g., if we have just built a four-legged robot and are trying to program it to walk, then initially we have no idea what the "correct" actions $(r^{(t)})$ to take are to make it walk under a certain condition $(x^{(t)})$

Reinforcement Learning

- In the reinforcement learning framework, we will instead provide only a reward function for the learning algorithm to maximize
 - In the four-legged walking example, the reward function might give the robot positive rewards for moving forwards, and negative rewards for falling over
- Based on Markov Decision Process

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Random Processes (1/2)

Definition

Given a probability space (Ω, \mathcal{F}, P) , a **random process** (or **stochastic process**), denoted by $\{X^{(t)}: t \in \mathcal{T}\}$, is a collection of random variables defined over (Ω, \mathcal{F}, P) and indexed by elements t of a set \mathcal{T} .

- Typically, we think $t = 1, 2, \cdots$ as **time**
 - ullet t could also be space or position on a DNA string, etc.
- The values of $X^{(t)}$ are called the **states**
- ullet $X^{(t)}$ is a function of both the outcome ω and time t
 - Fixing the outcome $\omega \in \Omega$, $X^{(t)}$ is a deterministic function of t
 - Fixing t, $X^{(t)}$ is a random variable
- The distribution of $X^{(t)}$, called **state distribution**, changes with t

Random Processes (2/2)

- A random process is said to be discrete or continuous in time depending on whether T is discrete (finite or infinitely countable) or continuous
- A random process is discrete or continuous in state depending on whether X is discrete or continuous
- Random processes vs graphical models (e.g., Bayesian networks and Markov random fields)?

Random Processes (2/2)

- A random process is said to be discrete or continuous in time depending on whether T is discrete (finite or infinitely countable) or continuous
- A random process is discrete or continuous in state depending on whether X is discrete or continuous
- Random processes vs graphical models (e.g., Bayesian networks and Markov random fields)?
 - A Bayesian network degenerates into a discrete-state-and-time random process when its random variables are indexed by time

Why Random Process?

- So far, we assume that instances in a dataset are i.i.d.
 - This simplifies the calculation of the likelihood $P[X|\theta]$
- However, in practice instances may come in order and successive instances may be dependent
 - E.g., letters in a word, phonemes in speech utterance, page visits in the Web, etc.
- The sequence can be characterized as being generated by a parametric random process
 - We want to estimate the parameter of a random process and then make predictions

Markov Processes

- A random process is called the *Markov process* if it satisfies the *Markov property*: $P\left[X^{(t_0+t_1)} \leqslant x | X^{(t_0)} = x_0, X^{(t)} = x_t, -\infty < t < t_0\right] = P\left[X^{(t_0+t_1)} \leqslant x | X^{(t_0)} = x_0\right]$
 - We can think t_0 and t_1 be the present and future time respectively
 - This is a mathematical version of the saying "today is the first day of the rest of your life"

	States are fully observable	States are partially observable
Transition is autonomous	Markov chains	Hidden Markov models
Transition is controlled	Markov decision processes	Partially observable Markov decision processes

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Markov Decision Process

- A Markov decision process $\{X^{(t)}\}_t$ defined over (S, A, γ, R) is a Markov process, where
 - \bullet S is the state space
 - A is the **action space**
 - \bullet γ is the **discount factor**
 - $R: \mathbb{S} \times \mathcal{A} \to \mathbb{R}$ (or simply $R: \mathbb{S} \to \mathbb{R}$) is the **reward function**
- The *transition distribution*, $P_{S,a}$, where $P_{S,a}(S') = P\left[X^{(t+1)} = S' | X^{(t)} = S\right]$, is controlled by the action, but does not change with time t
- An MDP proceeds as follows:

$$X^{(0)} \xrightarrow{a^{(0)}} X^{(1)} \xrightarrow{a^{(1)}} X^{(2)} \xrightarrow{a^{(2)}} \cdots$$

with the total payoff

$$R(X^{(0)}, a^{(0)}) + \gamma R(X^{(1)}, a^{(1)}) + \gamma^2 R(X^{(2)}, a^{(2)}) + \cdots$$
(or $R(X^{(0)}) + \gamma R(X^{(1)}) + \gamma^2 R(X^{(2)}) + \cdots$)

Goal of Reinforcement Learning

Determine the actions over time such that the expected total payoff

$$E_{\{X^{(t)}\}_t}[R(X^{(0)},a^{(0)})+\gamma R(X^{(1)},a^{(1)})+\gamma^2 R(X^{(2)},a^{(2)})+\cdots]$$

is maximized

- Note that the reward at time t is discounted by a factor of γ
- To make this expectation large, we would like to accrue positive rewards as soon as possible
- ullet E.g., in economic applications where $R(\cdot)$ is the amount of money made, γ has a natural interpretation in terms of the interest rate (where a dollar today is worth more than a dollar tomorrow)

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Policy and Value Function

- A *policy* is a function $\pi: S \to A$
 - We say that we are executing some policy π if, whenever we are in state S, we take action $a=\pi(S)$
- We can also define the *value function* for a policy π by

$$V_{\pi}(S) = E[R(X^{(0)}) + \gamma R(X^{(1)}) + \gamma^2 R(X^{(2)}) + \dots | X^{(0)} = S, \pi]$$

1

¹We abuse the notation here as π is not a random variable

Bellman Equations

ullet Given a fixed policy π , the values of V_π satisfy the Bellman equations:

$$V_{\pi}(S) = R(S) + \gamma \sum_{S' \in \mathcal{S}} P_{S,\pi(S)}(S') V_{\pi}(S')$$

- In a finite-state MDP ($|S|<\infty$), Bellman equations can be used to efficiently solve for the values of V_π
 - |S| linear equations in |S| variables
 - Complexity: $O(|S|^3)$

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Determining the Best Actions

Optimal value function:

$$V^*(S) := \max_{\pi} V_{\pi}(S)$$

By Bellman equations:

$$V^{*}(S) = R(S) + \max_{a \in \mathcal{A}} \gamma \sum_{S' \in \mathcal{S}} P_{S,a}(S') V^{*}(S')$$

ullet We can also define the optimal policy $\pi^*: \mathbb{S} o \mathcal{A}$ as

$$\pi^*(S) := \arg \max_{a \in \mathcal{A}} \gamma \sum_{S' \in \mathcal{S}} P_{S,a}(S') V^*(S')$$

- How?
- Memoryless property: π^* is the optimal policy for **all** states S's
 - ullet This means that we can use the same policy π^* no matter what the initial state of our MDP is

Value Iteration

- To have $\pi^*(S) := \arg\max_{a \in \mathcal{A}} \gamma \sum_{S' \in \mathcal{S}} P_{S,a}(S') V^*(S')$, we need to determine V^* first
- ullet Idea: iteratively improve V

```
For each state S, initialize V(S) := 0; Repeat until convergence \{ For each state S, update V(S) := R(S) + \max_{a \in \mathcal{A}} \gamma \sum_{S' \in \mathcal{S}} P_{S,a}(S') V(S'); For each state S, solve \pi(S) := \arg\max_{a \in \mathcal{A}} \gamma \sum_{S' \in \mathcal{S}} P_{S,a}(S') V(S'); \}
```

Policy Iteration

- ullet Recall that given any π , we can solve V_{π} by the system of Bellman equations
- Idea: iteratively improve π

```
Initialize \pi randomly; Repeat until convergence { Solve V_{\pi} from the system of Bellman equations; For each state S, let \pi(S) := \arg\max_{a \in \mathcal{A}} \gamma \sum_{S' \in S} P_{S,a}(S') V_{\pi}(S'); }
```

Value vs. Policy Iteration

• Which one is better?

Value vs. Policy Iteration

- Which one is better?
- For MDPs with small state spaces, policy iteration is often very fast and converges with very few iterations
- However, for large MDPs, solving for V_{π} explicitly is time consuming $(O(|S|^3))$. Value iteration is preferred

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Modeling MDP

- MDP is a Markov process $\{X^{(t)}\}_t$ defined over (S, A, γ, R)
 - The transition distribution, $P_{S,a}$, where $P_{S,a}(S')=P\left[X^{(t+1)}=S'|X^{(t)}=S\right]$, is controlled by the action
- ullet In practice, the $P_{S,a}$ (and/or the reward R) may not be known
- We need to estimate them from trials

$$X^{(1,0)} \xrightarrow{a^{(1,0)}} X^{(1,1)} \xrightarrow{a^{(1,1)}} X^{(1,2)} \xrightarrow{a^{(1,2)}} \cdots$$

$$X^{(2,0)} \xrightarrow{a^{(2,0)}} X^{(2,1)} \xrightarrow{a^{(2,1)}} X^{(2,2)} \xrightarrow{a^{(2,2)}} \cdots$$

$$\cdots$$

• Example estimation of $P_{S,a}$: $P_{S,a}(S') = \frac{\# \text{ times the action } a \text{ takes states to state } s'}{\# \text{ times action } a \text{ is taken in states}}$

Value Iteration with Unknown Transition Distribution

ullet Idea: improve both V and the estimated transition probabilities iteratively

```
For each state S, initialize V(S) := 0;
Repeat until convergence \{
1. Execute \pi in the MDP for some number of trials;
2. Update our estimates for P_{S,a} (and R, if applicable) using the experience from trials;
3. Apply value iteration with the estimated state transition probabilities and rewards to get a new estimated value function V;
4. Update \pi with respect to V;
```

 Can speed up if Step 3 starts from the V obtained in the previous iteration of this algorithm

Initialize π randomly;

Example: Data Partitioning and Replication for the Cloud Database Systems

• How?

Example: Data Partitioning and Replication for the Cloud Database Systems

- How?
- A state: a particular placement of data chunks on the machines
- An action: splitting hot data chunks, merging cold data chunks, or replicating chunks, etc.
- \bullet γ : the cost of data migration
- R: system throughput, which is unknown due to the changing capabilities of machines
- $P_{S,a}$ is **unknown** since the workload is changing (a chunk may become hotter or colder)

- Preliminaries
 - Random Process and Markov Process
- Markov Decision Process
 - Definitions
 - Bellman Equations
 - Determining the Best Actions: Value and Policy Iteration
 - Learning a Model for MDP
- 3 Continuous State MDPs

Continuous State MDPs

TBA