ECE F341/ EEE F341 /INSTR F341

Analog ElectronicsLecture -1 and 2

Dr. Tushar Sakorikar

Course Introduction

• NAME OF SUBJECT : ANALOG ELECTRONICS

• SUBJECT CODE : ECE/EEE /INSTR F341

• LECTURE HOURS : 3

• TUTORIAL HOURS : 1

• LAB HOURS : 2

Scope and Objective of the Course

- The aim of the course is to deal with various electronic techniques and building blocks used in Analog signal processing.
- Discrete and Integrated electronic circuits will be studied.
- Experiments using discrete IC modules will be carried out using PSPICE (Simulation Program with Integrated Circuit Emphasis) is used as a simulation tool for circuit analysis.

Objectives

At the end of this course, the students should be able to:

- Discuss about the functions of the op-amp
- Demonstrate the op-amp application in amplifiers
- Adders, subtractors, instrumentation amplifiers
- Non-linear op-amp applications
- Signal sources, and Phase Locked Loops
- Voltage regulators
- Tuned amplifiers
- D/A and A/D converters and troubleshooting.

S.No	Topic	No. of	Reference to
		Lectures	Text
1	Introduction & Review of Concepts	1	TB1 Ch 1
2	Op-amp basics	3	TB1 Ch 2
3	Special purpose opamp circuits	3	TB1 Ch 3
4	Filters	6	TB1 Ch 4
5	Non-linear Op-amp circuits	5	TB1 Ch 5
6	Signal Sources & Phase lock loop	6	TB1 Ch 6
7	Voltage Regulators	5	TB1 Ch 7
8	IC Power Amplifiers	3	TB1 Ch 8
9	Tuned Amplifiers	2	TB1Ch 9
10	Data Converters-D/A, A/D	4	TB1Ch10
	Converters		
11	IC sensors and Analog Systems	2	TB1Ch 11
	Total lectures	40	

Text Books

L.K. Maheshwari, Analog Electronics, PHI, 2008

L.K. Maheshwari and M.M.S. Anand, Laboratory Experiments & PSPICE Simulation in Analog Electronics Experiments, PHI, 2008.

Reference Books

1. Sergio Franco

Design with Operational Amplifiers and Analog Integrated Circuits
Third Edition

2. Ramakant A. Gayakwad

Op-Amps and Linear Integrated Circuits, PHI 2009

3. Sedra Smith

Microelectronic Circuits Fifth Edition, OXFORD

Evaluation Scheme

Component	Duration	Marks	Date and Time	Remarks
Mid Sem Exam	90 min	80	3/3/2025 (2 – 3:30 pm)	Closed Book
Online Quiz (Two)		15+15	TBA	Open Book
Online Test (PSPICE Computer Simulation)		20	TBA	Open Book
Laboratory Experiments/Viva	2 hours	30	Regularly	Open Book
Laboratory Compre Examination		30	TBA	Closed Book
Comprehensive	3 hours	110	2/5/2025 (FN)	Closed Book
TOTAL		300		

Makeup Policies and Notices

Make-up Policy: Make-up shall be granted only on extremely genuine grounds only. Application for Make-up will be considered only for mid-sem and Comprehensive Examination. An application in writing with relevant certificates attached needs to be submitted to the IC of the course at least a day before the scheduled exam. No makeup will be given for labs, lab evaluations, tests, tutorials and quizzes...

What is analog?

```
analog 1 of 2 adjective
```

```
an·a·log (¹a-nə-ˌlòg ◄») -ˌläg
```

1 a: of, relating to, or being a mechanism or device in which information is represented by continuously variable physical quantities

Analog Signal

Digital Signal

010101010

Passive Components

Black	0	0	x 1	
Brown	1	1	x10	±1%
Red	2	2	x10 ²	±2%
Orange	3	3	x10 ³	±3%
Yellow	4	4	x10 ⁴	±4%
Green	5	5	x10 ⁵	±0.5%
Blue	6	6	x10 ⁶	±0.25%
Violet	7	7	x10 ⁷	±0.1%
Grey	8	8	x10 ⁸	±0.05%
White	9	9	x10 ⁹	
Gold			x10 ⁻¹	±5%
Silver			x10 ⁻²	±10%

Passive Components

Common ones in your lab experiments:

Ceramic

Electrolytic

Passive Components

Air core inductor

Active Components

Active Components

General Purpose Transistors

NPN Silicon

2N3903, 2N3904

Features

Pb–Free Packages are Available*

COLLECTOR **EMITTER**

MAXIMUM RATINGS

	Rating	Symbol	Value	Unit	l
	Collector - Emitter Voltage	V _{CEO}	40	Vdc	l
	Collector - Base Voltage	V _{CBO}	60	Vdc	l
	Emitter - Base Voltage	V _{EBO}	6.0	Vdc	l
, l	Collector Current - Continuous	_ او	200	mAdc	Ļ
i L	Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C	1
_	Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C	
	Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

390x

T_A: Ambient temp T_C: Case temp

MARKING DIAGRAMS

Transistor as an Amplifier

Differential Amplifier

Differential amplifier configurations

- Dual input, balanced output differential amplifier.
- Dual input, unbalanced output differential amplifier.
- Single input balanced output differential amplifier.
- Single input unbalanced output differential amplifier.

Balanced output

UnBalanced output

Differential Amplifier with current source

Differential Amplifier with active current mirror load

Differential Amplifier with common mode signal

Differential Amplifier with differential input

Differential Amplifier with pnp transistors

Block diagram of a typical opamp

Dual-Input balanced-output differential Amplifier Dual-Input unbalanced-output differential Amplifier Such as emitter follower using constant current source

Complimentary symmetry push-pull Amplifier