

Knowledge Representation

2023/2024

Exercise Sheet 1 – Classical and Description Logics – Solutions

6th November 2023

Dr. Patrick Koopmann

Exercise 1.1 Consider an interpretation I with

$$I(a) =$$
false

$$I(b) =$$
false

$$I(b) =$$
false $I(c) =$ false

$$I(d) =$$
false

Which of the following propositional formulas are satisfied by this interpretation:

(a)
$$(a \wedge b) \vee \neg c \vee \neg d$$

(c)
$$(a \rightarrow \neg b) \lor (\neg c \rightarrow d)$$

(b)
$$(a \wedge b) \vee (\neg c \wedge d)$$

(d)
$$(\neg a \rightarrow b) \land (c \rightarrow \neg d)$$

Solution:

Satisfied: (a), (c),

Not satisfied: (b),(d)

Exercise 1.2 Consider the two formulas

$$F = \neg p \wedge \neg q \qquad G = p \to q$$

- (a) Which truth assignments to p and q give models of F and G respectively?
- (b) Does F entail G?
- (c) Does G entail F?

Solution:

_						
	intepretation	p	q	$F = \neg p \land \neg q$	$G=p\to q$	
	I_1	false	false	true	true	
	I_2	false	true	false	true	
	I_3	true	false	false	false	
	I_4	true	true	false	true	

- (a) I_1 is a model of F, I_1 , I_2 and I_4 are models of G.
- (b) F entails G every model of F is also a model of G.
- (c) ${\it G}$ does not entail ${\it F}$: for example, ${\it I}_2$ is a model of ${\it G}$ that is not a model of ${\it F}$.

Exercise 1.3 Assume that we use propositional logic for knowledge representation and that the reasoning problem we have to solve is the following: given a formula F, decide whether F is satisfiable. Which of the following algorithms is sound/complete/terminating?

- (a) Always return "yes".
- (b) Always return "no".
- (c) Enter an infinite loop, never return.
- (d) Go through all truth assignments for the variables in F one after the other. For each truth assignment, check whether it gives a model for F. If a satisfying truth assignment is found, return "yes". Otherwise return "no".

Solution:

- (a) complete and terminating, not sound: It never returns wrong "no"-answers, it always stops, but it may return wrong "yes" answers.
- (b) sound and terminating, not complete: It never returns wrong "yes"-answers, it always stops, but it may return wrong "no" answers.
- (c) sound and complete, not terminating: It never returns any wrong answers, but it also never stops.
- (d) sound, complete and terminating a decision procedure.

Exercise 1.4 Consider the interpretation \mathcal{I} represented as the following graph:

For each of the following concepts D, write down the elements in their interpretation $D^{\mathcal{I}}$:

(a)
$$\neg A$$

(c)
$$\exists r.(A \sqcup B)$$

(e)
$$\exists s. \exists s. \neg A$$

(b)
$$A \sqcap \neg B$$

(d)
$$\forall r.(A \sqcup B)$$

(f)
$$\exists r. \forall r. \neg A$$

Solution:

(a)
$$(\neg A)^{\mathcal{I}} = \{f, g, h, i\}$$

(b)
$$(A \sqcap \neg B)^{\mathcal{I}} = \{d\}$$

(c)
$$(\exists r.(A \sqcup B))^{\mathcal{I}} = \{d, f\}$$

(d)
$$(\forall r.(A \sqcup B))^{\mathcal{I}} = \{d, f, g, h, i\}$$

(e)
$$(\exists s. \exists s. \neg A)^{\mathcal{I}} = \{d, e\}$$

(f)
$$(\exists r. \forall r. \neg A)^{\mathcal{I}} = \{d, e, f\}$$

Exercise 1.5

- (a) Express the following phrases using \mathcal{ALC} concepts:
 - (i) "persons that do not have a friendly neighbour,"
 - (ii) "persons that have a neighbour that is not friendly."
- (b) Construct an interpretation where an element satisfies the concept for (i), but not the concept for (ii).
- (c) Construct an interpretation where an element satisfies the concept for (ii), but not the concept for (i).

Solution:

- (a) We could for instance use the following concepts:
 - (i) Person $\neg \exists$ neighbor. Friendly (or Person $\neg \forall$ neighbor. \neg Friendly)
 - (ii) Person □ ∃neighbor.¬Friendly
- (b) It suffices to consider the following interpretation with just one individual \boldsymbol{d} that has no neighbor.

It is true that d does not have a neighbor that is friendly, but it is not true that d has a neighbor that is not friendly.

(c) To satisfy (ii), we need at least two individuals. To also make sure that (i) is not satisfied, we need a third individual. In the following interpretation, d is an instance of the concept in (ii), but not an instance of the concept in (i):

Exercise 1.6 Which of the following \mathcal{ALC} axioms corresponds to the following English statement:

- "A Mule is an animal that has a horse and a donkey as a parent."
- (a) $Mule \equiv Animal \sqcap \exists hasParent.(Horse \sqcap Donkey)$
- (b) Mule \equiv Animal \sqcap \exists hasParent.Horse \sqcap \exists hasParent.Donkey
- (c) Mule \equiv Animal \sqcap (\exists hasParent.Horse \sqcup \exists hasParent.Donkey)

Solution:

(b)

Exercise 1.7 Translate the following axiom into English:

 $KRTeacher \equiv \exists teaches.(Course \sqcap \forall hasTopic.(DL \sqcup Arg \sqcup PGM))$

Solution:

A KR teacher is someone that teaches a course whose only topics are DL, Arg and PGM.

Exercise 1.8 We consider the same graph from Exercise 1.4, but with a different reading: This time, we see it as an *ABox* \mathcal{A} , where the nodes are individual names, i.e. $d, e, f, g, h, i \in \mathbf{I}$, and the labels correspond to concept and role assertions. In particular, it now represents the following ABox:

$$\mathcal{A} = \{ \qquad \qquad d:A, \qquad \qquad e:A, \qquad \qquad e:B, \qquad g:B, \qquad h:C, \qquad i:B, \\ (d,d):s, \qquad (d,e):r, \qquad \qquad (e,d):s, \qquad (e,f):r, \qquad (d,f):s, \qquad (f,g):r, \\ (d,h):s, \qquad (h,i):s \qquad \},$$

which is much more readable as a graph:

We also consider again the following concepts:

$$\neg A$$
, $A \sqcap \neg B$, $\exists r.(A \sqcup B)$, $\forall r.(A \sqcup B)$, $\exists s. \exists s. \neg A$, $\exists r. \forall r. \neg A$

- (a) For each concept D from this set, which are the instances of D w.r.t. \mathcal{A} ? In other words, for which individual name x do we have $\mathcal{A} \models x : D$?
- (b) What are the instances of D w.r.t. the ontology $\mathcal{O} = \mathcal{A} \cup \mathcal{T}$, where $\mathcal{T} = \{C \sqsubseteq \neg A, B \sqsubseteq \forall r.C\}$?

Solution:

- (a) For $\neg A$, $A \sqcap \neg B$, $\exists s. \exists s. \neg A$ we have no instances, because we can add any individual to the extension of A or B. For $\forall r. (A \sqcup B)$ and $\exists r. \forall r. \neg A$, the situation is similar: in models of A, nothing prevents us from adding new elements as r-successors to any individual, this way making sure that the value restrictions are not satisfied for any individual name. The only concept that has instances is $\exists r. (A \sqcup B)$, which are, as in Exercise 1.4, the individual names d and f.
- (b) Using the first GCI, we first observe that

$$\mathcal{O} \models h : \neg A$$

Based on the axiom $B \sqsubseteq \forall r.C$, we can determine additional individual names that have to be in the extension of $C^{\mathcal{I}}$ in any model of the ontology. In particular, this is the case for the r-successors of e, g and i. g and i do not have any r-successors, and consequently, the only affected individual name is f, which is the r-successor of e. We obtain $\mathcal{O} \models f : C$, and using the other GCI,

$$\mathcal{O} \models f : \neg A$$
.

Based on this observation, we can furthermore conclude that

$$\mathcal{O} \models d: \exists s. \exists s. \neg A$$

and

$$\mathcal{O} \models e : \exists s. \exists s. \neg A,$$

since from d and e, we can reach f by following the s-successor twice. Finally, because $C \sqsubseteq \neg A \in \mathcal{O}$ and $B \sqsubseteq \forall r.C \in \mathcal{O}$, we can conclude that

$$\mathcal{O} \models B \sqsubseteq \forall r. \neg A,$$

which also means that

$$\mathcal{O} \models \exists r.B \sqsubseteq \exists r. \forall r. \neg A.$$

This allows us to find instances of $\exists r. \forall r. \neg A$, namely d and f, since both have an r-successor satisfying B.

We also observe that d cannot be an instance of B, because it has an r-successor that cannot be in C: this is the case for e. Consequently, we have $\mathcal{O} \models \neg B$, which gives us $\mathcal{O} \models A \sqcap \neg B$

To summarize:

- (i) $\neg A$: f and h
- (ii) $A \sqcap \neg B$: d
- (iii) $\exists r.(A \sqcup B)$: d and f
- (iv) $\forall r.(A \sqcup B)$: nothing
- (v) $\exists s. \exists s. \neg A: d \text{ and } e$
- (vi) $\exists r. \forall r. \neg A: d \text{ and } f$