

Professor Maurício Buess

mbuess@up.edu.br

Objetivo:

- Requisitos do usuário;
- Documentação sistemática das requisições em um banco de dados;
- Estruturação eficaz do banco de dados

"O projeto de um sistema de informações é uma atividade complexa que inclui planejamento, especificações e desenvolvimento de vários componentes. A utilização de uma abordagem correta de metodologia orientada a banco de dados envolve a estruturação nos três níveis de visão de dados: **conceitual**, **lógico** e **físico**."

(MACHADO e ABREU, 2004)

Projeto Conceitual:

Produz um **esquema conceitual** a partir de **requisitos** de um mundo real, ou seja:

- Usa um modelo de dados para descrever a realidade;
- Afirma quais os dados devem ser considerados, mas não como;
- É independente do SGBD escolhido.

Exemplo:

- Dados cadastrais Pessoa Física: Nome, RG, CPF, Rua, Numero, Cidade;
- Dados de um Automóvel com os seguintes atributos: Marca, ano fabricação, ano do modelo, modelo, placa, cor, quantidade máxima de passageiros, tipo (passeio, carga, transporte), combustível.

Modelo E-R:

- É um modelo que visa descrever todos os objetos (entidades) envolvidos em um negócio (ou sistema), com suas características (atributos) e como elas se relacionam entre si (relacionamentos).
- A construção desse modelo resultará em uma visão de como será o banco de dados que atenderá os requisitos de solucionamento do problema apontado.

Modelo E-R:

- Modelo "Entidade-Relacionamento" (MER): Principal ferramenta do Projeto Conceitual;
 - Descreve as entidades, atributos, relacionamentos e restrições do projeto;
 - Representado graficamente pelo Diagrama Entidade-Relacionamento (DER);
 - Composto por um conjunto de objetos gráficos que representam os objetos do MER (entidades, atributos, atributos chaves, etc);
 - Oferece uma visão lógica do banco de dados, fornecendo uma visão mais generalizada de como os dados estão estruturados no sistema.

Construção do B.D.:

Para iniciar a construção do banco de dados de um negócio, é necessário fazer o levantamento dos pré-requisitos do projeto.

- Quais dados serão controlados?
- Quais informações serão armazenadas?
- Qual o objetivo da empresa?
- Quais são os elementos (objetos) do negócio?
- Quais relações serão estabelecidas entre os elementos do negócio?
- As respostas evitam que se construa um B.D. incompleto e que exige um alto grau de ajustes e correções.

Entidade:

- São os elementos envolvidos no negócio. Cada entidade terá associado uma série de atributos (características):
 - Cliente (id do cliente, nome do cliente, cpf)
 - Produto (id do produto, nome do produto, preço)
 - Funcionário (id do funcionário, nome do funcionário, salário)
 - Loja (id da loja, endereço, contato)
 - Projeto (id do projeto, data de início, responsável)
 - Departamento (id do departamento, nome do departamento, número de funcionários)
- Identifica-se uma entidade como um substantivo que representa de forma clara alguma função dentro de um negócio

Atributo Simples ou **Atômico**: atributo que não pode ser subdividido. Ex.: Titulo, Sexo.

Atributo Composto: atributo que pode ser dividido em diversas subpartes com significado independente entre si. Ex.: Endereço (pois é composto por Tipo do Logradouro, Logradouro, Numero, Bairro, CEP).

Atributo Derivado: atributo que é gerado a partir de outro atributo, muitas vezes por meio de processamento no banco de dados. Ex.: Quantidade de alunos, Total de vendas.

Atributo Chave: toda entidade deve ter ao menos um atributo que permita identificá-la de forma única. Ex.: RG, CPF, Código.

Entidade Fraca:

•É aquela que não possui atributo chave e é identificada por meio de um relacionamento total com pelo menos um tipo Entidade Forte.

Relacionamento:

Relacionamento:

Após identificação da(s) entidades, defini-se como será feito o relacionamento entre as entidades. Basicamente, existem 3 classes de relacionamentos (cardinalidade):

- Relacionamento 1 para 1
- Relacionamento 1 para n
- Relacionamento n para n

Os relacionamentos em geral são referidos como verbos que representam a forma como as entidades interagem entre si.

Cardinalidade:

Tipos de Relacionamento:

- Relacionamento binário:
 - Sua ocorrência envolve duas entidades:
 - Cardinalidade possíveis:
 - 1 para 1
 - N para 1
 - 1 para N
 - N para N

- Relacionamento ternário:
 - Envolve três entidades
- Relacionamento n-nário:
 - Envolvem n entidades

Tipos de Relacionamento:

DER Notação de Peter Chen:

DER Notação de Peter Chen:

Generalização e Especialização:

 São conceitos utilizados no Modelo Entidade-Relacionamento (ER) para representar hierarquias e relações entre entidades, permitindo a modelagem de estruturas mais complexas e realistas..

Generalização:

- Processo de identificar e combinar características comuns de várias entidades diferentes em uma entidade mais genérica (superclasse).
- Generalização abstrai as propriedades e relacionamentos comuns de várias entidades específicas para criar uma entidade mais geral.

Exemplo:

Supondo a existência de três entidades diferentes: Carro, Caminhão, e Motocicleta. Cada uma dessas entidades possui atributos específicos, mas todas têm atributos comuns, como Marca, Modelo, e Ano.

Exemplo de Generalização (cont)

Entidades Específicas:

- Carro (atributos específicos: Número de Portas, Capacidade do Porta-malas)
- Caminhão (atributos específicos: Capacidade de Carga, Número de Eixos)
- Motocicleta (atributos específicos: Cilindrada, Tipo de Guidão)

Essas entidades podem ser generalizadas em uma entidade mais genérica chamada Veículo, que contém os atributos comuns a todas elas (Marca, Modelo, Ano).

- Entidade Generalizada:
 - Veículo (atributos: Marca, Modelo, Ano)

A generalização, nesse caso, abstrai as características comuns dos tipos específicos de veículos, permitindo que você represente de forma mais eficiente as similaridades entre eles.

Especialização:

- Especialização é o processo inverso da generalização.
- Quando uma entidade genérica (superclasse) é dividida em entidades mais específicas (subclasses) com características ou atributos adicionais.
- A especialização permite modelar detalhes que são exclusivos de determinadas subclasses.

Exemplo de Especialização:

Imagine uma entidade genérica chamada Funcionário em um sistema de recursos humanos. Todos os funcionários têm atributos como Nome, ID, e Salário.

- Entidade Genérica:
 - Funcionário (atributos: Nome, ID, Salário)

Especialização (cont):

Entretando, o sistema precisa diferenciar entre tipos específicos de funcionários, como Gerente e Engenheiro, que têm atributos específicos:

Subclasses Especializadas:

- Gerente (atributos adicionais: Área de Responsabilidade, Número de Subordinados)
- Engenheiro (atributos adicionais: Especialidade, Projetos)

 A especialização permite que o sistema represente essas distinções de forma clara, atribuindo atributos específicos a cada tipo de funcionário, enquanto ainda herda os atributos comuns da entidade genérica Funcionário.

Especialização e Generalização:

Especialização e Generalização:

- Propriedades podem ser atribuídas a entidades através do conceito de generalização/especialização;
- Através deste conceito é possível atribuir propriedades particulares a um subconjunto das ocorrências (especializadas) de uma entidade genérica;
- O símbolo para representar generalização/especialização é um triângulo isósceles.

ENTIDADE ASSOCIATIVA X AGREGAÇÃO:

- Na modelagem ER não foi prevista a possibilidade de associar dois relacionamentos entre si;
- Na prática, quando se está construindo um novo DER ou modificando um DER existente, surgem situações em que é desejável permitir a associação de uma entidade a um relacionamento.

Relacionamento N-N (muitos para muitos)

• É uma associação em que múltiplos registros de uma tabela podem estar relacionados a múltiplos registros de outra tabela. Esse tipo de relacionamento ocorre quando um item de uma tabela pode estar associado a vários itens de outra tabela, e vice-versa.

Alunos e Disciplinas

 Considere um exemplo de uma escola onde alunos se matriculam em disciplinas. Um aluno pode estar matriculado em várias disciplinas, e uma disciplina pode ter vários alunos matriculados. Esse é um típico relacionamento N-N.

Tabelas Envolvidas

Tabela Aluno:

- id_aluno: Chave primária
- nome: Nome do aluno.

Tabela Disciplina:

- id_disciplina: Chave primária
- nome_disciplina: Nome da disciplina.

Relacionamento N-N (muitos para muitos)

• Para representar esse relacionamento em um banco de dados relacional, cria-se uma tabela associativa ou tabela de junção que captura as associações entre Aluno e Disciplina.

Relacionamento N-N (muitos para muitos)

- Entendendo:
 - O relacionamento N-N é realizado pela tabela Matricula, que contém as chaves estrangeiras id_aluno e id_disciplina, ligando alunos e disciplinas. Sem essa tabela associativa, seria difícil modelar um relacionamento direto muitos-para-muitos entre as tabelas Aluno e Disciplina.

Atividade 01

Uma livraria deseja organizar suas informações sobre os livros que possui em estoque. Cada livro é identificado por um código único, tem um título, uma data de publicação e pertence a um ou mais autores. Além disso, cada autor tem um código único e um nome. A livraria quer poder relacionar cada livro aos seus autores.

Dicas:

- 1)Identifique as entidades: Comece identificando os principais elementos que serão representados no diagrama, como Livro e Autor.
- 2)Defina os atributos: Para cada entidade, defina seus atributos, como código, título, data de publicação para o Livro e código, nome para o Autor.
- 3)Determine os relacionamentos: Identifique o relacionamento entre as entidades Livro e Autor. Qual a cardinalidade desse relacionamento?
- 4)Crie o DER: Use as entidades, atributos e relacionamentos identificados para construir o diagrama.

Atividade 02

Uma empresa de transporte precisa organizar as informações de seus motoristas e os veículos que eles dirigem. Cada motorista tem um código único, um nome, uma data de contratação e pode dirigir vários veículos. Cada veículo é identificado por uma placa única e possui um modelo e uma capacidade de carga. A empresa também quer armazenar a data de início da utilização de cada veículo por cada motorista.

Dicas

- 1)Identifique as entidades: Comece identificando as entidades Motorista e Veículo.
- 2)Defina os atributos: Para Motorista, você deve incluir atributos como codigo_motorista, nome e data_contratacao. Para Veículo, considere atributos como placa, modelo, e capacidade_carga.
- 3)Determine o relacionamento: O relacionamento entre Motorista e Veículo deve incluir um atributo adicional para a data de início da utilização.
- 4)Trate o relacionamento N-N: Como cada motorista pode dirigir vários veículos e cada veículo pode ser dirigido por vários motoristas ao longo do tempo, você precisará de uma tabela associativa.

Atividade 03

Uma universidade deseja criar um sistema de gerenciamento para seus cursos, professores e alunos. Um curso é identificado por um código único, tem um nome e pode ser ministrado em vários semestres diferentes. Cada professor é identificado por um código único, tem um nome, um título (por exemplo, Doutor, Mestre) e pode ministrar várias disciplinas. Uma disciplina é identificada por um código único, pertence a um curso específico, tem um nome, uma carga horária e é ministrada por um ou mais professores. Além disso, cada aluno é identificado por um código único, tem um nome e pode estar matriculado em várias disciplinas. Considere que um professor pode ministrar várias disciplinas, e que um aluno pode se matricular em várias disciplinas ao longo de diferentes semestres.

Dicas:

- 1) Comece identificando as entidades Curso, Professor, Disciplina, e Aluno.
- 2) Determine os relacionamentos entre Curso e Disciplina, Professor e Disciplina, e Aluno e Disciplina.
- 3) Trate relacionamentos complexos: Como existem relacionamentos muitos-para-muitos, use tabelas associativas para representá-los. Por exemplo, Ministra para relacionar Professor e Disciplina, e Matricula para relacionar Aluno e Disciplina.
- 4)Considere o tempo: Para disciplinas que ocorrem em diferentes semestres, você pode incluir um atributo para semestre na tabela associativa Matricula.