2. Subgroups and quotient groups

Subgroups and Quotient Groups

Basic Definitions

Suppose G is a group and H is a subgroup of G.

- 1. The **centralizer** $C_G(H)$ of H is the set of elements $g \in G$ such that gh = hg for all $h \in H$.
- 2. The **normalizer** $N_G(H)$ of H is the set of elements $g \in G$ such that $gHg^{-1} = H$. In other words, $ghg^{-1} \in H$ for all $h \in H$.
- 3. H is a normal subgroup if $N_G(H) = G$.
- 4. The **center** Z(G) of G is the theoof elements z of G such that zg = gz for all $g \in G$.
- 5. If $f: G \to H$ is a homomorphism, the **kernel** of f is the set of $g \in G$ such that f(g) = e.

Notice that: 1. $C_G(H) \subset N_G(H)$ 2. The center Z(G) is a normal subgroup of G. 3. $H \subset N_G(H)$ and H is a normal subgroup of $N_G(H)$. 4. The kernel of any homomorphism is a normal subgroup. (In fact, the converse is true as well, as we will see later)

Subgroups from group actions

Suppose that X is a set and G acts on X. Remember that one way to think of this is that we have a homomorphism from G to S(X). Another way is that we have a map $G \times X \to X$ satisfying ex = x and g(h(x)) = (gh)(x) for all $x \in X$ and all $g, h \in G$. Such an action yields subgroups of G as follows:

- 1. The kernel of the action is the set of $g \in G$ such that gx = x for all $x \in X$. In other words, the kernel of the action is the kernel of the homomorphism from G to S(X) corresponding to the action. The kernel of the action is therefore a normal subgroup of G.
- 2. If $x \in X$, the set of elements $g \in G$ such that gx = x is a subgroup of G called the *stabilizer* of x.

Normalizers and centralizers via group actions

Let $\mathcal{P}(G)$ be the power set of G – that is, the set of subsets of G. If $S \subset \mathcal{P}(G)$ is a subset, define

$$g(S) = \{gsg^{-1} : s \in S\}.$$

This defines an action of G on $\mathcal{P}(S)$.

If we choose S = H, then by definition $N_G(H)$ is exactly the *stabilizer* of H for this action.

If we restrict the action of $N_G(H)$ to the set H, then $C_G(H)$ is exactly the subset of $N_G(H)$ that fixes H pointwise. In other words, $C_G(H)$ is the kernel of the conjugation action of $N_G(H)$ on H.

In general the operation $h \mapsto ghg^{-1}$ is called conjugation of h by g.