

Exercise 4C

Question 11:

Since AB || CD and AC is a transversal.

So, \angle BAC + \angle ACD = 180° [sum of consecutive interior angles is 180°]

⇒ ∠ACD = 180° - ∠BAC

= 180° - 75° = 105°

⇒ ∠ECF = ∠ACD

[Vertically opposite angles]

∠ECF = 105°

Now in ΔCEF,

 \angle ECF + \angle CEF + \angle EFC =180 $^{\circ}$

 $\Rightarrow 105^{\circ} + x^{\circ} + 30^{\circ} = 180^{\circ}$

 \Rightarrow x = 180 - 30 - 105 = 45

Hence, x = 45.

Question 12:

Since AB || CD and PQ a transversal.

So, $\angle PEF = \angle EGH$ [Corresponding angles]

 \Rightarrow ∠EGH = 85°

∠EGH and ∠QGH form a linear pair.

So, \angle EGH + \angle QGH = 180 $^{\circ}$

 $\Rightarrow \angle QGH = 180^{\circ} - 85^{\circ} = 95^{\circ}$

Similarly, $\angle GHQ + 115^{\circ} = 180^{\circ}$

 $\Rightarrow \angle GHQ = 180^{\circ} - 115^{\circ} = 65^{\circ}$

In Δ GHQ, we have,

 $x^{\circ} + 65^{\circ} + 95^{\circ} = 180^{\circ}$

⇒ x = 180 - 65 - 95 = 180 - 160

∴ x = 20

Question 13:

Since AB || CD and BC is a transversal.

So, ∠ABC = ∠BCD

 $\Rightarrow x = 35$

Also, AB \parallel CD and AD is a transversal.

So, $\angle BAD = \angle ADC$

 \Rightarrow z = 75

In \triangle ABO, we have,

 $\angle AOB + \angle BAO + \angle BOA = 180^{\circ}$

⇒ $x^{\circ} + 75^{\circ} + y^{\circ} = 180^{\circ}$ ⇒ 35 + 75 + y = 180⇒ y = 180 - 110 = 70∴ x = 35, y = 70 and z = 75.

********** END ********