▼ Formulario Unidad 1

El formulario debe contener las siguientes ecuaciones:

ley de desplazamiento de Wien

$$\lambda max = rac{2.898x10^{-8}mK}{T}$$

Donde:

- λ es la longitud de onda en la que la curva tiene un máximo.
- T es la temperatura absoluta de la superficie del objeto que emite la radiación.

Ley de Stefan

Potencia de radiación emitida

La potencia total de radiación aumenta con la temperatura mediante la ley de Stefan

$$P = \sigma A \epsilon T^4$$

Donde:

- P = [W] Potencia radiada en todas las longitudes
- $\sigma = 5.670 imes 10^{-8}$ [$W/(m^2 \cdot K^4)$] Consante de Stefan-Boltzman
- A = $[m^2]$ área de la superficie del objeto
- ullet $\epsilon=1$ Emisividad de la superficie ($\epsilon=1$ para un cuerpo negro)

Ley de Raleigh-Jeans

El resultado del cálculo según la teoría clásica de la radiación de un cuerpo negro

$$I(\lambda,T)=rac{2\pi ck_bT}{\lambda}$$

Donde:

- $I(\lambda,T)$ = es la intensidad o la potencia por unidad de área emitida en el intervalo de longitud de onda $d\lambda$
- k_b = es la constante de Boltzmann.
- λ =es la longitud de onda en la que la curva tiene un máximo.
- T =es la temperatura
- $c = 2.99x10^8 [m^2/s]$ Velocidad de la luz

Ecuación de Planck para la emisión de un cuerpo negro

Planck generó una expresión teórica para la distribución de la longitud de onda

$$I(\lambda,T) = rac{2\pi hc^2}{\lambda^5(e^{rac{hc}{\lambda k_bT}}-1)}$$

Donde:

- k_b = Constante de Boltzman
- h = $6.626x10^-34[J\cdot s]$ Constante de Planck
- $c = [m^2/s]$ Velocidad de la luz
- T = [K] Temperatura
- λ = [m] Longitud de onda

Ecuación del efecto fotoeléctrico

$$k_{max} = hf - \phi$$

donde:

- k_{max} = es energia cinetica maxima
- $h = 6.626x10^-34[J\cdot s]$ Constante de Planck
- f = es la frecuencia

Longitud de onda de corte

$$\lambda = \frac{hc}{\phi}$$

donde:

- λ = longitud de onda de corte
- h = es la constante de planck $6.626x10^-34[J\cdot s]$
- c = es la velocidad de la luz $2.99x10^8[m^2/s]$ la combinacion hc puede abreviarse como: $hc=1240eV\cdot nm$

Ecuación de desplazamiento de Compton

$$\lambda = \frac{h}{m_e c} \left(1 - \cos \theta \right),$$

donde:

- ullet h es la constante de Planck
- ullet m_e es la masa del electrón,
- c es la velocidad de la luz.
- heta el ángulo entre los fotones incidentes y dispersados.

Ecuación de energía total de Einstein

$$E = mc^2$$

donde:

- E = es la energia total
- *m* = masa
- c = velocidad de la luz

×