19 mai 2015 Mat363

Examen

Questions de cours.

- Donner la définition de tribu et de mesure.
- Énoncer le théorème de convergence monotone.
- Énoncer le théorème de dérivation sous le signe somme.
- Énoncer le théorème de Fubini-Lebesgue.

Exercice 1. Calculer les limites suivantes en justifiant et en faisant référence précisément aux théorèmes que vous employez :

$$\lim_{x \to 0} \int_x^{3x} \frac{t}{\tan^2 t} dt \qquad \text{et} \qquad \lim_{x \to 0} \frac{1}{x^3} \int_0^x \frac{t^2}{t + e^{3t}} dt.$$

Exercice 2. Soit $p \in]1, +\infty[$ et q tel que $\frac{1}{p} + \frac{1}{q} = 1$. On se donne $f \in L^p([0, +\infty], \mathbb{R})$ et F définie par $F(t) = \int 0^t f(x) dx$.

- 1. Montrer que F est bien définie.
- 2. Énoncer l'inégalité de Hölder.
- 3. Montrer que $\lim_{t\to 0^+} t^{-1/q} F(t) = 0$.
- 4. Montrer que $\lim_{t\to +\infty} t^{-1/q} F(t) = 0$ (Indication : on pourra utiliser que F(t) = F(A) + (F(t) F(A))).

Exercice 3. Soit f une fonction de \mathbb{R} dans \mathbb{C} impaire et intégrable.

- 1. Montrer que $t\mapsto \frac{\hat{f}(t)}{t}$ est intégrable sur $[\frac{1}{n},n]$.
- 2. Montrer que $\hat{f}(t) = -2i \int_0^{+\infty} \sin(tx) f(x) dx$.
- 3. Montrer que $\int_{\frac{1}{n}}^{n} \frac{\hat{f}(t)}{t} dt = -2i \int_{0}^{+\infty} \phi_{n}(x) f(x) dx$ où

$$\phi_n(x) = \int_{x/n}^{nx} \frac{\sin(u)}{u} du.$$

4. On rappelle que $\int_0^{+\infty} \frac{\sin(u)}{u} du = \frac{\pi}{2}$. Montrer que ϕ_n est bornée sur $]0, +\infty[$ et démontrer que

$$\lim_{n \to +\infty} \int_{\frac{1}{n}}^{n} \frac{\hat{f}(t)}{t} dt = -i\pi \int_{0}^{+\infty} f(x) dx.$$

Problème

A – Pour $f \in \mathcal{C}^0([0,1])$, on définit la fonction $Af : [0,1] \to \mathbb{C}$ par Af(1) = 0 et pour tout $x \in [0,1[$ par :

$$Af(x) = \int_{x}^{1} \frac{f(t)}{\sqrt{t-x}} dt.$$

- 1. Montrer que pour $f \in C^0([0,1])$, Af(x) est bien définie pour $x \in [0,1[$ et que : $\lim_{x\to 1^-} Af(x)=0$.
- 2. Pour $x \in [0, 1[$, montrer que $Af(x) = \sqrt{1-x} \int_0^1 \frac{f(x+(1-x)u)}{\sqrt{u}} du$.
- 3. En déduire que Af appartient à $\mathcal{C}^0([0,1])$ et que $A:f\mapsto Af$ est un opérateur de $\mathcal{C}^0([0,1])$ dans lui même dont on déterminera la norme.
- 4. On suppose dans cette question que $f(1) \neq 0$. Donner un équivalent de Af(x) au voisinage de 1. Af est-elle dérivable en 1?
- 5. On suppose dans cette question que f est de classe C^1 sur [0,1].
 - (a) Montrer que Af est de classe C^1 sur [0,1].
 - (b) On suppose de plus que f(1) = 0, montrer que Af est de classe \mathcal{C}^1 sur [0,1].

B – La formule d'inversion.

1. Soient a, b deux réels tels que a < b. Montrer que :

$$\int_{a}^{b} \frac{dt}{\sqrt{(b-t)(t-a)}} = \int_{0}^{1} \frac{du}{\sqrt{u(1-u)}} = \pi.$$

Pour $f \in \mathcal{C}^0\left([0,1]\right)$, on définit la fonction Vf de [0,1] dans $\mathbb C$ par :

$$V(f)(x) = \int_{x}^{1} f(t) dt.$$

- 2. Montrer que $V: f \mapsto Vf$ est un opérateur de $\mathcal{C}^0([0,1])$ dans lui même et calculer sa norme.
- 3. Montrer l'égalité d'opérateurs de $C^0([0,1]): A \circ A = \pi V$ (indication : on pourra utiliser **B.1.**).
- 4. En déduire que l'opérateur A est injectif sur $\mathcal{C}^0([0,1])$.
- 5. (a) Déterminer l'image $\operatorname{Im}(V)$ de l'opérateur V de $\mathcal{C}^0([0,1])$.
 - (b) En déduire que $\operatorname{Im}(A) = A^{-1}(\mathcal{C}^1([0,1]))$.
 - (c) Montrer que toute fonction $g \in \mathcal{C}^0([0,1])$ telle que g(1) = 0 appartient à $\operatorname{Im}(A)$.
- 6. Soit $g \in \text{Im}(A)$. Montrer que l'unique fonction $f \in \mathcal{C}^0([0,1])$ telle que Af = g est donnée par $f = -\frac{1}{\pi}(Ag)'$.