偏微分方程理论作业

王允磊

2020年4月12日

目录

1 Sobolev 空间 1

1 Sobolev 空间

习题 1. 若 $1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1$, 证明 Hölder 不等式:

 $||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^q}.$

证明: 由不等式的齐次对称性, 不妨令 $||f||_{L^p} = ||g||_{L^q} = 1$. 设 $\theta = \frac{1}{p}$, 则 $1 - \theta = \frac{1}{q}$. 令 $F = |f|^p$, $G = |g|^q$. 则需要被证明的不等式转化为

$$\int_{X} F^{\theta} G^{1-\theta} d\mu \le 1. \tag{1}$$

由 ln x 函数的凸性可得

$$F^{\theta}(x)G^{1-\theta}(x) \le \theta F(x) + (1-\theta)G(x).$$

对上式积分便得到(1)式.

习题 2. 若 $f \in L^2(\mathbb{R}^n)$, 证明 $e^{-|x|^2} * f \in L^p(\mathbb{R}^n)$, $2 \le p \le \infty$.

证明: 令 q 满足

$$1 + \frac{1}{p} = \frac{1}{2} + \frac{1}{q},$$

其中 $1 \le q \le 2$. 则由 Young 不等式可得

$$||e^{-|x|^2} * f||_{L^p(\mathbb{R}^n)} \le ||e^{-|x|^2}||_{L^q(\mathbb{R}^n)} ||f||_{L^2(\mathbb{R}^n)}.$$
(2)

而

$$\|e^{-|x|^2}\|_{L^q(\mathbb{R}^n)}^q = \int_{\mathbb{R}^n} e^{-q|x|^2} dx < \infty,$$

且
$$f \in L^2(\mathbb{R}^n)$$
,所以 $e^{-|x|^2} * f \in L^p(\mathbb{R}^n)$.