Rozpoznawanie cyfr

Etap pierwszy - metoda KNN

Opis danych

Jest to podzbiór większego zestawu dostępnego w NIST. Cyfry zostały znormalizowane pod względem wielkości i wyśrodkowane na obrazie o stałym rozmiarze (28x28 pikseli).

Dane są dostępne w formacie binarnym.

Zbiór treningowy: 60 000

Zbiór testowy: 10 000

W pakiecie sklearn dostępny jest podzbiór zbioru MNIST, 1797 obrazków w rozmiarze 8x8

```
[435]: from sklearn import datasets
      mnist = datasets.load digits()
      mnist
[435]: {'data': array([[ 0., 0., 5., ..., 0., 0., 0.],
              [0., 0., 0., 10., 10., 0., 0.],
              [0., 0., 0., ..., 16., 9., 0.],
              [0., 0., 1., ..., 6., 0., 0.],
              [0., 0., 2., ..., 12., 0., 0.],
              [0., 0., 10., ..., 12., 1., 0.]]),
        'target': array([0, 1, 2, ..., 8, 9, 8]),
        'target names': array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        'images': array([[[ 0., 0., 5., ..., 1., 0., 0.],
               [ 0., 0., 13., ..., 15., 5., 0.],
               [ 0., 3., 15., ..., 11., 8., 0.],
               [0., 4., 11., ..., 12., 7., 0.],
               [0., 2., 14., ..., 12., 0., 0.],
               [0., 0., 6., \ldots, 0., 0., 0.]
```

Rozkład wartości

Feature extraction - obraz binarny

Obraz przed progowaniem

Obraz po progowaniu t=150

Preprocessing

Efekty zastosowaniu różnych filtrów, operacji na obrazie, ścienianie (skeletonization).

Żadna z nich (również w połączeniach) nie poprawiła wyniku końcowego w istotnym stopniu

Wady i zalety modelu KNN

Plusy

- Prosty algorytm
- Szybkie uczelnie
- Działa dla danych nieliniowych

Minusy

- Kosztowne obliczeniowo
- Wysokie zapotrzebowanie na pamięć
- Wola predykcja

Dokładność w zależności od zbioru testowego

Predykcje KNN są bardzo wolne

Wyniki

Classification report:				
	precision	recall	f1-score	support
0	0.97	0.99	0.98	176
1	0.92	1.00	0.96	236
2	0.95	0.96	0.96	211
3	0.93	0.93	0.93	194
4	0.95	0.94	0.95	198
5	0.96	0.95	0.96	198
6	0.98	0.98	0.98	191
7	0.93	0.92	0.93	181
8	0.98	0.91	0.94	200
9	0.94	0.92	0.93	215
accuracy			0.95	2000
macro avg	0.95	0.95	0.95	2000
weighted avg	0.95	0.95	0.95	2000

Otrzymaliśmy klasyfikator o predykcyjności 95% na zbiorze testowym

