Project — Part I (Bootstrapping Swap Curves)

- ① In the IR Data.xlsm spreadsheeet, OIS data is provided. Bootstrap the OIS discount factor $D_o(0,T)$ and plot the discount curve for $T \in [0,30]$.
- ② Using the IRS data provided, bootstrap the LIBOR discount factor D(0,T), and plot it for $T\in[0,30]$.
 - Assume that the swap market is collateralized in cash and overnight interest is paid on collateral posted.
- 3 Calculate the following forward swap rates:
 - $1y \times 1y$, $1y \times 2y$, $1y \times 3y$, $1y \times 5y$, $1y \times 10y$
 - $5y \times 1y$, $5y \times 2y$, $5y \times 3y$, $5y \times 5y$, $5y \times 10y$
 - $10y \times 1y$, $10y \times 2y$, $10y \times 3y$, $10y \times 5y$, $10y \times 10y$

start at year.
Use linear interpolation on discount factors when necessary.

10 then ends

1 year later

each row for a set parameters of SABAR and

dd model Project — Part II (Swaption Calibration)

Under the Swaption tab of IR Data.xlsm, swaption implied volatilities (lognormal) are provided.

- Calibrate the displaced-diffusion model to the swaption market data, and document
 - a table of σ parameters
 - a table of β parameters
- 2 Calibrate the SABR model to the swaption market data using $\beta=0.9$, and document
 - ullet a table of lpha parameters
 - a table of ρ parameters
 - a table of ν parameters
- Price the following swaptions using the calibrated displaced-diffusion and SABR model:
 - payer $2y \times 10y$ K = 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%
 - receiver $8y \times 10y \ K = 1\%, 2\%, 3\%, 4\%, 5\%, 6\%, 7\%, 8\%$

swaps lasts for 10 years

Project — Part III (Convexity Correction)

- Using the SABR model calibrated in the previous question, value the following constant maturity swap (CMS) products:
 - PV of a leg receiving CMS10y semi-annually over the next 5 years
 - PV of a leg receiving CMS2y quarterly over the next 10 years
- **2** Compare the forward swap rates with the CMS rate:
 - $1y \times 1y$, $1y \times 2y$, $1y \times 3y$, $1y \times 5y$, $1y \times 10y$
 - $5y \times 1y$, $5y \times 2y$, $5y \times 3y$, $5y \times 5y$, $5y \times 10y$
 - $10y \times 1y$, $10y \times 2y$, $10y \times 3y$, $10y \times 5y$, $10y \times 10y$

Discuss the effect of maturity and tenor on convexity correction (difference between forward swap rates and CMS rates).

Project — Part IV (Decompounded Options)

1 A decompounded option pays the following at time T = 5y:

CMS
$$10y^{1/p} - 0.04^{1/q}$$

where p=4 and q=2. Use static replication to value the PV of this payoff.

2 Supose the payoff is now

$$\left(\text{CMS } 10 \text{y}^{1/p} - 0.04^{1/q} \right)^+$$

Use static replication to value the PV of this payoff.

Project Report

Deadline: 1-Mar-20 (Sunday) noon.

Please submit

- Project report (no more than 10 pages, including title page and appendix)
- Python codes (1 file for each part, 4 files overall)