Slides, Support, Code and Setup instructions: bit.ly/hub-setup

Keras/LSTM Text Classification Agenda

9:00 - 9:45	Keras/CNN Review	examples/keras-sign
9:45 - 10:30	Simple RNNs and Time Series	examples/Istm/time-series
10:30 - 11:00	Break	
10:30 - 11:00	LSTMs, GRUs applied to Text Generation	examples/Istm/text-gen
11:00 - 12:30 ^T	ext Classification with Word Embeddings, Hybrid CNN/LSTMs	examples/lstm/imdb-classifier

Code: github.com/lukas/ml-class

Build your own box

Build a super fast deep learning machine for under \$1,000

The adventures in deep learning and cheap hardware continue!

By Lukas Biewald. February 1, 2017

https://www.oreilly.com/learning/build-a-super-fast-deep-learning-machine-for-under-1000

Keras Review (ml-class/examples/keras-sign)

Perceptron

Schematic of Rosenblatt's perceptron.

One hot encoding

Label
0
4
4
3
0
9

0	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1

Activation Functions: Sigmoid

(special case of softmax and logistic)

Two Layers of Perceptrons

MLP Activation Function: ReLU

Overfitting

Dropout

Pooling

Time Series and RNNs (ml-class/examples/lstm/time-series)

Timeseries (Airline Sales)

Timeseries (Airline Sales)

Timeseries (Airline Sales)

Time	1	2	3	4	5	6	7	8	9	10	11	12	13
Airline Sales	1	3	4	7	11	18	29	31	42	55	62	74	78

Time	1	2	3	4	5	6	7	8	9	10	11	12	13
Airline Sales	1	3	4	7	11	18	29	31	42	55	62	74	78

Train Label

X1	X2	X3-9	X10	Label
1	3		55	62

Time	1	2	3	4	5	6	7	8	9	10	11	12	13
Airline Sales	1	3	4	7	11	18	29	31	42	55	62	74	78

Train Label

X1	X2	X3-9	X10	Label
1	3		55	62
3	4		62	74

Time	1	2	3	4	5	6	7	8	9	10	11	12	13
Airline Sales	1	3	4	7	11	18	29	31	42	55	62	74	78

Train Label

X1	X2	X3-9	X10	Label
1	3		55	62
3	4		62	74
4	7		74	78

Perceptron Classifier on Timeseries

X1	X2	X3-9	X10	Label
1	3		55	62
3	4		62	74
4	7		74	78

RNN

Input

SimpleRNN

Inside the RNN

State	Input
0.4	3

Input

0.2 0.4

Learned Weights

0.2*0.4 + 0.4*3 = 1.28

Weighted Sum

Activation Function

0.9

RNN

Input

SimpleRNN

Input

SimpleRNN

Hyperbolic Tangent Activation Function (tanh)

Hyperbolic Tangent Activation Function (tanh)

Multidimensional State RNN

LSTMs, GRUs & Text Generation ml-class/examples/lstm/text-gen

Machine learning generated pranks

Put a pair of pants and shoes into your ice dispenser

Put marbles in the refrigerator

A meat and mash potato sundae makes for quite the hand soap dispenser

(Generated with an LSTM at <u>aiweirdness.com</u>)

One-hot encoding

SimpleRNN

Encoded Output

Encoded Output

Encoded Output

The problem with simple RNNs

The problem with simple RNNs

Long Short Term Memory (LSTM) 1997

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Output

Output =/= state

LSTM Forgetting (F_t)

LSTM Update Activation (It)

LSTM Candidate (\tilde{C}_t)

LSTM Output Activation (Ot)

Putting it all together

Putting it all together

Next State (C _t)	Prev State (C _{t-1})	Forget	Update Activation	Candidate
??	0	0.5	0.6	0.2
?? =	0 *	0.9	+ 0.3 *	-0.5
??	1	1.0	0.0	0.6

Putting it all together

Hard Sigmoid

Gated Recurrent Unit (GRU) 2014

$$egin{aligned} z_t &= \sigmaig(x_t U^z + h_{t-1} W^zig) \ r_t &= \sigmaig(x_t U^r + h_{t-1} W^rig) \ ilde{h}_t &= anhig(x_t U^h + (r_t * h_{t-1}) W^hig) \ h_t &= (1-z_t) * h_{t-1} + z_t * ilde{h}_t \end{aligned}$$

LSTMs vs GRUs (1)

LSTM: State =/= Output

GRU: State == Output

LSTMs vs GRUs (2)

LSTM: 4 vectors GRU: 3 vectors

Text Classification, Embeddings and 1D Convolutions ml-class/examples/lstm/imdb-classifier

Character encoding

Bag of Words

Input Text

"Bag of Words"

	а	 hate	1	iPhone	love	my	 zoo
I love my iPhone →	0	 0	1	1	1	1	 0
I hate my iPhone -	0	 1	1	1	0	1	 0

Word Embedding

Embeddings

	Val 1	Val 2	Val 3	Val 4
a	0.1	-0.3	1.7	2.4
aardvark	-2.3	4.1	-5.2	3.1
<unknown></unknown>	0.3	0.9	0.8	0.2

Pre-computing encoding

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning

Introduction

GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.

Getting started (Code download)

- Download the code (licensed under the <u>Apache License</u>, <u>Version 2.0</u>)
- · Unpack the files: unzip GloVe-1.2.zip
- Compile the source: cd GloVe-1.2 && make
- · Run the demo script: ./demo.sh
- . Consult the included README for further usage details, or ask a question
- The code is also available on GitHub

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

GloVe + word2vec

Word Analogy Task

man is to woman as king is to ____?

good is to best as smart is to ____?

china is to beijing as russia is to ____?

Turns out the word-context based vector model we just learnt is good for such analogy tasks,

[king] – [man] + [woman] ≈ [queen]

Microsoft Levy, Goldberg, and Israel, Linguistic Regularities in Sparse and Explicit Word Representations, CoML 2014.

Classification with LSTMs

Classification LSTM

Deep LSTM

Input
Word Embeddings
LSTM

Deep LSTM

Bidirectional LSTM

Bidirectional LSTM

Bidirectional LSTM

Text Classification with CNNs

2D Convolution Review

Input * Kernel

Output

2D Convolution Review Multiple Outputs

2D Convolution Review Multiple Inputs

Multiple Convolutions

Sum all convolutions

	1	love	this	movie
Channel 1	0.4	9.7 _{0.3}	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

$$0.4*0.2 + 9.7*0.3 + (-0.7)*0.2$$

= 2.85

2.85

	1	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

$$23.4*0.2 + 5.4*0.3 + (-5.2)*0.2$$

= 5.26

Conv 1

2.85

5.26

	1	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

$$(-0.6)*0.2 + (-9.4)*0.3 + (-2.1)*0.2$$

= -3.36

2.85 5.26 -3.36

	1.0	lo	ve	this	movie
Channel 1	0.4	9	.7	-0.7	0.4
Channel 2	23.4	5	.4	-5.2	-3.2
Channel 3	-0.6	-9	0.4	-2.1	-9.9
Channel 4	-2.4	-1	.2	-0.9	-1.9

$$(-2.4)*0.2 + (-1.2)*0.3 + (-0.9)*0.2$$

= -1.02

Conv 1

2.85

5.26

-3.36

-1.02

	- 1	love	this		movie
Channel 1	0.4	9.7	-0.7 _{0.3}		0.4
Channel 2	23.4	5.4	-5.2		-3.2
Channel 3	-0.6	-9.4	-2.1		-9.9
Channel 4	-2.4	-1.2	-0.9		-1.9
		Conv 1	Conv 2	9.7*	0.3 + (-0.7)*
		2.85	2.74		
		5.26			
		-3.36			

-1.02

+ (-3.2)*0.1

= -0.26

	1.0	love	this		movie
Channel 1	0.4	9.7	-0.7		0.4
Channel 2	23.4	5.4	-5.2		-3.2 _{0.1}
Channel 3	-0.6	-9.4	-2.1		-9.9
Channel 4	-2.4	-1.2	-0.9		-1.9
		Conv 1	Conv 2	5.4*0.3	3 + (-5.2)*0.3
		2.85	2.74		
		5.26	-0.26		

-3.36

-1.02

	1	love	this		movie
Channel 1	0.4	9.7	-0.7		0.4
Channel 2	23.4	5.4	-5.2		-3.2
Channel 3	-0.6	-9.4	-2.1		-9 <u>.</u> 9
Channel 4	-2.4	-1.2	-0.9		-1.9
		Conv 1	Conv 2	(-9.4)*0.3	3 + (-2.1)*0.3
		2.85	2.74		
		5.26	-0.26		
		-3.36	-4.44		
		-1.02			

		love	this		movie
Channel 1	0.4	9.7	-0.7		0.4
Channel 2	23.4	5.4	-5.2		-3.2
Channel 3	-0.6	-9.4	-2.1		-9.9
Channel 4	-2.4	-1.2 _{0.3}	-0.9		-1.9 0.1
		Conv 1	Convo	/ 1 2)*0 1	2 . (0 0)*0
				(-1.2) 0.	3 + (-0.9)*0.
		2.85	2.74		
		5.26	-0.26		
		-3.36	-4.44		
		-1.02	-0.82		

2D Max Pooling Review

Input 6x4

2D Max Pooling Review

Input 6x4

Output 3x2

2D Max Pooling Review

Input 6x4

Output 3x2

	1.0	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

Max Pooling 1

9.7

	1.0	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

Max Pooling 1

9.7

23.4

	1.0	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

Max Pooling 1

9.7

23.4

-0.6

	1.0	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

9.7 23.4 -0.6 -1.2

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

9.7 23.4 -0.6 -1.2

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

9.7 23.4 -0.6 -1.2

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

Max Pooling 1	
9.7	
23.4	
-0.6	
-1.2	

1D Convolution

		love	this		movie
		1046			
Channel 1	0.4	9.7	-0.7		0.4
Channel 2	23.4	5.4	-5.2		-3.2
Channel 3	-0.6	-9.4	-2.1		-9.9
Channel 4	-2.4	-1.2 _{0.3}	-0.9		-1.9 0.1
		01	00	(40)*0	0 . (0 0)*0
		Conv 1	Conv 2	(-1.2)"0	3 + (-0.9)*0.
		2.85	2.74		
		5.26	-0.26		
		-3.36	-4.44		
		-1.02	-0.82		

CNN/LSTM Hybrid

Input

Word embeddings

Convolutions

LSTM

Encoded Output

Dense layer

Classification

Seq2Seq in translation

seq2seq: the clown car of deep learning

tl; dr: Translating arbitrary-length sequences back and forth is easier than you think

Seq2Seq in this tutorial

Seq2Seq in this tutorial

http://jalammar.github.io/illustrated-transformer/

More about LSTMs

- More online tutorials https://www.wandb.com/classes
- Colah's blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Andrej's blog http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Attention networks https://richliao.github.io/supervised/classification/2016/12/26/textclassifier-HATN/
- Stanford CS 224N

More Resources for Deep Learning/ML

- Books
 - Deep Learning Book (http://www.deeplearningbook.org/)
 - Artificial Intelligence: A Modern Approach
 - Hands-On Machine Learning with Scikit-Learn and TensorFlow
 - Deep Learning with Python
- Video Classes
 - wandb.com/classes
- Hands-on
 - wandb.com/benchmarks