Работа 2.2.6

Определение энергии активации по температурной зависимости вязкости жидкости

Малиновский Владимир

galqiwi@galqiwi.ru

Цель работы: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром около 1 мм).

Описание работы

Для измерения вязкости используется стеклянный цилиндрический сосуд, наполненный глицерином. Его диаметр ≈ 3 см, а его длина ≈ 25 см. На сосуде отмечены три черточки на расстоянии 10см друг от друга. Температуру глицерина в сосуде можно изменить с помощью воды, омываемой сосуд с глицерином из термостата. Если в глицерин бросить шарик, то скорость его падения v будет зависить от вязкости η по известному закону:

$$\eta = \frac{2}{9}gr^2\frac{\rho - \rho_{\mathsf{x}}}{v},$$

где ρ – плотность шарика, $\rho_{\rm ж}$ – плотность глицерина, а r – радиус шарика.

Благодаря этому факту, мы можем измерить зависимость вязкости жидкости от ее температуры, кидая в нее шарики. Также из этой зависимости мы можем найти энергию активации, поскольку

$$\eta \sim e^{W/kT}$$
.

Рис. 1. Установка для определения коэффициента вязкости жидкости

Ход работы

1

Перед началом работы надо выбрать ≈ 10 стальных и стеклянных шариков и промерить их диаметры (минимум два раза в различных направлениях, это делается для того, чтобы отбраковать несимметричные шарики (которых среди железных встречается примерно половиина)).

$\mathbf{2}$

4-5 раз надо повторить следующие шаги:

- 1. выставить температуру на термостате
- 2. подождать 5 минут для установления температурного равновесия
- 3. выбрать 2 стальных и 2 стеклянных шарика, и каждый аккуратно окунуть в глицерин, замерив температуру прохождения щарика между 1-2 и 2-3 засечками.

Шарики стоит опускать в воду с помощью пинцета, а также закрывать крышку сосуда с глицерином сразу после опускания шарика, для того, чтобы в глицерин не проникала влага из воздуха. Результаты эксперимента видны на таблице ниже:

Вещество	$T, ^{\circ}C$	d, mm	t_0, c	t_1, c	$\eta, 10 \Pi a \cdot c$	$\Delta \eta, 10 \Pi a \cdot c$
сталь	24.5	0.80	14.2	14.2	3.2	0.2
стекло	24.1	2.13	11.3	11.4	3.74	0.15
стекло	23.9	2.10	11.6	11.5	3.72	0.15
сталь	24.6	0.83	19.8	20.2	4.8	0.3
сталь	24.7	0.80	19.3	19.3	4.3	0.3
стекло	29.8	2.10	8.4	8.4	2.7	0.1
стекло	29.7	2.10	7.9	7.8	2.5	0.1
сталь	29.9	0.80	11.2	11.3	2.5	0.2
сталь	29.9	0.80	10.4	10.4	2.3	0.1
стекло	39.8	2.10	4.1	4.1	1.30	0.09
стекло	39.9	2.10	4.0	4.1	1.29	0.09
сталь	39.7	0.75	7.1	7.2	1.41	0.13
сталь	39.7	0.80	5.3	5.4	1.2	0.1
стекло	50.1	2.10	2.4	2.3	0.75	0.08
стекло	49.9	2.15	2.4	2.3	0.78	0.08
сталь	50.5	0.75	3.7	4.1	0.76	0.09
сталь	50.3	0.90	2.5	2.5	0.72	0.09
стекло	59.4	2.05	1.7	1.7	0.51	0.07
стекло	59.7	2.10	1.7	1.7	0.54	0.07
сталь	59.9	0.90	1.6	1.8	0.48	0.08
сталь	60.0	0.75	2.3	2.3	0.45	0.06

$$\Delta T = 0.2 \,^{\circ}C$$
, $\Delta d = 0.025 \,\text{mm}$, $\Delta t_0 = 0.2 \,\text{c}$, $\Delta t_1 = 0.2 \,\text{c}$.

3

Для каждого опыта надо вычислить число Рейнольдса $Re = \frac{\rho v r}{\eta}$, время релаксации $\tau = \frac{v}{g}$ и путь релаксации $s = \frac{v^2}{g}$ для того, чтобы понять, применимы ли наши предположения о том, что шарик мгновенно выходит на постоянную скорость ламинарного падения в жидкости. Как следует из таблицы ниже, число Рейнольдса не превосходит 0.2, что говорит о ламинарности течения жидкости в системе отчета шарика. Также видно, что шарик успевает выйти на постоянную скорость за миллисекунды, проходя при этом доли миллиметра, что говорит о том, что скорость шарика можно считать постоянной во время падения между засечками. Из этого можно сделать вывод, что формула

$$\eta = \frac{2}{9}gr^2\frac{\rho - \rho_{\mathsf{xK}}}{v}$$

применима в нашей установке.

Вещество	$T,^{\circ}C$	d, mm	t_0, c	t_1, c	10Re	$\Delta 10Re$	au, MC	Δau , MC	s, MKM	Δs , mkm
стекло	24.1	2.13	11.3	11.4	0.065	0.004	0.899	0.015	7.9	0.2
стекло	23.9	2.10	11.6	11.5	0.063	0.004	0.882	0.015	7.6	0.2
стекло	29.8	2.10	8.4	8.4	0.12	0.01	1.22	0.02	14.6	0.6
стекло	29.7	2.10	7.9	7.8	0.14	0.01	1.30	0.03	16.7	0.8
стекло	39.8	2.10	4.1	4.1	0.51	0.06	2.5	0.1	61	6
стекло	39.9	2.10	4.0	4.1	0.52	0.07	2.5	0.1	62	6
стекло	50.1	2.10	2.4	2.3	1.6	0.3	4.4	0.3	186	31
стекло	49.9	2.15	2.4	2.3	1.5	0.3	4.4	0.3	186	31
стекло	59.4	2.05	1.7	1.7	3.1	0.8	6.1	0.7	362	86
стекло	59.7	2.10	1.7	1.7	3.0	0.8	6.0	0.7	355	83
сталь	24.6	0.83	19.8	20.2	0.033	0.003	0.510	0.005	2.55	0.05
сталь	24.7	0.80	19.3	19.3	0.037	0.004	0.529	0.005	2.74	0.05
сталь	29.9	0.80	11.2	11.3	0.109	0.014	0.91	0.01	8.1	0.2
сталь	29.9	0.80	10.4	10.4	0.13	0.01	0.98	0.01	9.5	0.3
сталь	39.7	0.75	7.1	7.2	0.29	0.04	1.43	0.03	20	1
сталь	39.7	0.80	5.3	5.4	0.48	0.08	1.90	0.07	35	2
сталь	50.5	0.75	3.7	4.1	1.0	0.1	2.63	0.13	68	6
сталь	50.3	0.90	2.5	2.5	1.9	0.4	4.0	0.3	158	24
сталь	59.9	0.90	1.6	1.8	4.3	1.3	6.1	0.7	359	85
сталь	60.0	0.75	2.3	2.3	2.8	0.7	4.5	0.3	195	34
сталь	24.5	0.80	14.2	14.2	0.068	0.008	0.72	0.01	5.05	0.14

$$\Delta T = 0.2\,^{\circ}C, \; \Delta d = 0.025\,\mathrm{mm}, \; \Delta t_0 = 0.2\,\mathrm{c}, \; \Delta t_1 = 0.2\,\mathrm{c}.$$

4, 5

Поскольку $\eta \sim e^{W/kT}$, построив график зависимости $ln(\eta)$ от T^{-1} , можно узнать энергию активации W по угловому наклону:

Из графика видно, что зависимости $ln(\eta)$ от 1/T для стали и стекла линейные, и с коэффициентами наклона:

$$T_{\text{a-сталь}} = \frac{W}{k} = (6.2 \pm 0.4) \cdot 10^3 \text{K}.$$

$$T_{\text{a-стекло}} = \frac{W}{k} = (5.6 \pm 0.2) \cdot 10^3 \text{K}.$$

Этот результат был найден по МНК и имеет неполную погрешность. Для учета приборной погрешности, нужно добавить компоненты:

$$\delta T_{\rm a} = \sqrt{\delta T_{\rm a-ctat}^2 + \left(\frac{<\Delta ln(\eta)>}{ln(\eta)_{max} - ln(\eta)_{min}}\right)^2 + \left(\frac{<\Delta 1/T>}{(1/T)_{max} - (1/T)_{min}}\right)^2}.$$

Из этого:

$$T_{\text{a-сталь}} = \frac{W}{k} = (6.2 \pm 0.5) \cdot 10^3 \text{K}.$$

$$T_{\text{a-стекло}} = \frac{W}{k} = (5.6 \pm 0.4) \cdot 10^3 \text{K}.$$

Вещество	$T,^{\circ}C$	$\eta, \Pi a \cdot c$	$\Delta \eta, \Pi a \cdot c$	$\frac{1000}{T}, K^{-1}$	$\Delta \frac{1000}{T}, \mathrm{K}^{-1}$	$ln(\frac{\eta}{1\Pi a \cdot c})$	$\Delta ln(\frac{\eta}{1\Pi a \cdot c})$
стекло	24.1	3.74	0.15	3.36	0.02	1.32	0.04
стекло	23.9	3.72	0.14	3.36	0.02	1.31	0.03
стекло	29.8	2.7	0.1	3.30	0.02	0.99	0.04
стекло	29.7	2.5	0.1	3.30	0.02	0.92	0.04
стекло	39.8	1.30	0.09	3.19	0.01	0.27	0.07
стекло	39.9	1.29	0.08	3.19	0.01	0.26	0.06
стекло	50.1	0.75	0.08	3.09	0.01	-0.2	0.1
стекло	49.9	0.78	0.07	3.09	0.01	-0.2	0.1
стекло	59.4	0.51	0.07	3.01	0.01	-0.67	0.14
стекло	59.7	0.5	0.2	3.00	0.01	-0.6	0.3
сталь	24.6	4.8	0.3	3.36	0.02	1.56	0.06
сталь	24.7	4.3	0.2	3.36	0.02	1.46	0.05
сталь	29.9	2.5	0.1	3.30	0.02	0.92	0.07
сталь	29.9	2.3	0.1	3.30	0.02	0.85	0.06
сталь	39.7	1.4	0.1	3.20	0.01	0.34	0.08
сталь	39.7	1.2	0.1	3.19	0.01	0.18	0.08
сталь	50.5	0.76	0.09	3.09	0.01	-0.2	0.1
сталь	50.3	0.72	0.08	3.09	0.01	-0.3	0.1
сталь	59.9	0.48	0.07	3.00	0.01	-0.73	0.15
сталь	60.0	0.45	0.15	3.00	0.01	-0.8	0.3
сталь	24.5	3.2	0.2	3.36	0.02	1.16	0.07

$$\Delta T = 0.2 \,^{\circ} C.$$

Из этого находим энергию активации, равную

$$W_{\text{сталь}} = k \cdot (6.2 \pm 0.5) \cdot 10^3 \,\mathrm{K} = 0.53 \pm 0.04 \,\mathrm{sB},$$

$$W_{\text{стекло}} = k \cdot (5.6 \pm 0.4) \cdot 10^3 \,\text{K} = 0.48 \pm 0.03 \,\text{эB},$$

что соответствует табличному значению

$$W_{\text{табл}} = 0.52\,\mathrm{эB}.$$

Вывод

Мы изучили новый метод измерения вязкости среды с помощью измерения скорости падающих в ней объектов, и с помощью него нашли температурную зависимость вязкости, из которой получили значение энергии активации глицерина. Полученная энергия активации сходится с табличным значением для каждого типа шариков.