Assignment 8 MAT 257

Q1:

Since A is Jordan measurable, ∂A has measure 0. A is bounded, so ∂A must be as well. Since the boundary of a set is a closed set, it follows that ∂A is compact by Heine Borel Theorem. Since ∂A is of measure 0 for all $\varepsilon > 0$ there is some collection of open rectangles $\{U_{\alpha}\}$ which cover ∂A and $\sum_{\alpha} U_{\alpha} < \varepsilon$. Any compact set of measure 0 is also content 0 by Spivak Theorem 3-6. Therefore for any $\varepsilon > 0$, it suffices to choose a finite collection of rectangles $\{U_i\}_{i=1}^m$ with $\sum_{i=1}^m vol(U_i) < \varepsilon$. We define our set C as follows.

$$C = A \setminus ((\bigcup_{i=1}^{m} U_i) \cap intA)$$

Since $C \subset A$ it is bounded, and is the compliment of an open set it must be closed. Hence C is compact by the Heine Borel Theorem.

It remains to prove that the boundary of C will be of measure 0. We will find the boundary of C by determining the contents of $\overline{C} \setminus intC$. We note that

$$\overline{C} \setminus intC = C \setminus (A \setminus (\bigcup_{i=1}^{m} \overline{U}_i) \cap \overline{A})$$

$$= A \setminus ((\bigcup_{i=1}^{m} U_i) \cap intA) \setminus (A \setminus (\bigcup_{i=1}^{m} \overline{U}_i) \cap \overline{A}$$

$$= \bigcup_{i=1}^{m} \partial U_i \cap C$$

Now, notice that $\bigcup_{i=1}^m \partial U_i \cap C \subset \bigcup_{i=1}^m \partial U_i$. Since each U_i is a rectangle, the boundary of each will be of measure 0. Hence the finite union over every boundary of the U_i 's will also be measure 0. The subset of any measure 0 set is measure 0 so $\bigcup_{i=1}^m \partial U_i \cap C = \partial C$ is of measure 0 Moreover, it follows that $A \setminus C$ is bounded, since A bounded and $A \supset C$. Notice as well that $\partial A \setminus C = \partial A \cup \partial C$, which will be measure 0. Therefore, $\chi_{A \setminus C}$ is integrable. We now claim that $\int_{A \setminus C} \chi_{A \setminus C} < \varepsilon$. Since A is bounded, take a sufficiently large rectangle $D \supset A \setminus C$. We compute

$$\int_{A \setminus C} \chi_{A \setminus C}
= \int_{(\bigcup_{i=1}^{m} U_{i}) \cap intA} \chi_{(\bigcup_{i=1}^{m} U_{i}) \cap intA}$$
(using the definition of C)
$$\leq \int_{\bigcup_{i=1}^{m} U_{i}} \chi_{\bigcup_{i=1}^{m} U_{i}}$$
(by A7Q3)
$$= \sum_{i=1}^{m} vol(U_{i})$$
(by defintion of volume)
$$< \varepsilon$$