Hoeffding 不等式

名前:松島完忠 学籍番号:t211d070

日付:7/11

[演習 230] 離散確率変数に対する Hoeffding 不等式

離散確率変数 $z_1, \dots z_m \in \{\pm 1\}$ を考える。

$$P[z_i = +1] = P[z_i = -1] = 0.5$$
とする。 $z \coloneqq z_1, \dots z_m^T$ とおく

 $1.∀i ∈ [m], E[z_i] = 0$ となることを証明する。

$$E[z_i] = +1 * P[z_i = +1] - 1 * P[z_i = -1] = 1 * 0.5 - * 0.5 = 0$$

よって、 $\forall i \in [m], E[z_i] = 0$

2.3. Hoeffding 不等式の右辺,左辺の値,と重ねてプロットする,

m=100,1000,10000 としたとき、プロットしら結果を図 1、図 2、図 3 に示す。

図 1:Hoeffding 不等式のプロット(m=100)

図 2: Hoeffding 不等式のプロット(m=1000)

図 3:Hoeffding 不等式のプロット(m=10000)

図 1、図 2、図 3より各mの値でも Hoeffding 不等式が成立していることがわかる。また、 m が大きいほど左辺の値が小さくなり、値 0 に収束する epsilon の値が小さくなった。

作成プログラム

図4に本レポートで使用したプログラムを示す。

1	import numpy as np
2	import matplotlib.pyplot as plt
3	import scipy.stats as norm
4	import matplotlib.ticker as ticker
5	import math

```
m = 10000
     n = 10000
     x=20.0
10
     z=0
     eps=[]
     S=[]
12
13
     LHS=[]
14
     RHS=[]
15
16
     while x>0:
17
         t=x/10
18
         eps. append (10**(-t))
         x=x-2
19
20
     eps. append (10**0)
21
22
     for e in eps:
         sumP = 0
23
24
         for t in range(m):
25
             sum=0
             S=np. random. uniform(-1, 1, n)
26
27
             for zi in S:
28
                 if zi<0:
29
                     sum=sum-1
```

30	else:
31	sum=sum+1
32	ave = abs(float(sum)/n)
33	if ave>=e:
34	sumP=sumP+1
35	LHS. append (float (sumP) /m)
36	t=(-2.0*m*e*e)/(2.0*2.0)
37	RHS. append (2. 0*math. exp (t))
38	
39	X=[]
40	for x in eps:
41	X. append (math. log10(x))
42	fig = plt. figure()
43	ax=fig.add_subplot(111, xlabel='log10(epsilon)', ylabel='LHSandRHS')
44	plt.plot(X, LHS, color="red", marker="o", label="LHS")
45	plt.plot(X, RHS, color="blue", marker="o", label="RHS")
46	ax. legend()

図 4:作成プログラム