1 Arithmetic and Geometric Progressions

2 Summation of Series

2.1 Sigma Notation

$$\sum_{T=1}^{n} T_r = T_1 + T_2 + T_3 + \ldots + T_n$$

Number of terms = m - n + 1Express the following in sigma notation

1.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

$$2. \ 3 + 5 + 7 + 9 + \dots + 41$$

3.
$$1 \times 3 - 2 \times 5 + 3 \times 7 - 4 \times 9 + 5 \times 11$$

Write down the first 3 terms of the following sums

1.
$$\sum_{k=1}^{100} (3k-1)$$

2.
$$\sum_{k=1}^{40} (2r^2)$$

3.
$$\sum_{k=3}^{10} (r-1)(2r+1)$$

2.2 Basic Properties of Sigma

$$\sum_{r=1}^{n} kT_r = k \sum_{r=1}^{n} T_r$$

$$k \sum_{r=1}^{n} (T_r + G_r) = \sum_{r=1}^{n} T_r + \sum_{r=1}^{n} G_r$$

$$\sum_{r=m}^{n} T_r = \sum_{r=1}^{n} T_r - \sum_{r=1}^{m-1} T_r$$

True or False?

1.
$$\sum_{r=1}^{100} (2r+1) = \sum_{r=1}^{100} (2r) + 1$$

2.
$$\sum_{n=1}^{100} (2n+1) = \sum_{m=1}^{100} (2n+1)$$

3.
$$\sum_{n=1}^{100} a_n = \sum_{n=0}^{99} T_{n+1}$$

4.
$$\sum_{m=1}^{100} m^2 = \sum_{m=0}^{100} m^2$$

5.
$$\sum_{r=1}^{100} a = 100a$$

6.
$$\sum_{n=1}^{100} (2n+1) = \sum_{m=2}^{101} (2m-1)$$

7.
$$\sum_{m=1}^{k} (m+2) = \sum_{m=0}^{k} m + \sum_{m=0}^{k} 2m +$$

2.3**Basic Formulas**

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(2n+1)$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

Evaluate $\sum_{r=1}^{n} (r+2)(2r-1)$ in terms of n. Find $\sum_{k=0}^{n} (2n+1-2k)$ in terms of n.

Find an expression, in simplified form, for $\sum_{r=n+1}^{2n} (2r-1)^2$.

Method of difference

If a general term T_r can be expressed as $G_{r+1} - G_r$, then

$$\sum_{r=1}^{n} T_r = \sum_{r=1}^{n} (G_{r+1} - G_r)$$
$$= G_n - G_0$$

Evaluate $\sum_{r=1}^{100} \frac{1}{r(r+1)}$

Find the partial fractions of $\frac{1}{(2x-1)(2x+1)}$. Hence, find the sum of $\frac{1}{1\times 3}+\frac{1}{3\times 5}+\ldots+$

$$\frac{1}{(2n-1)(2n+1)}$$

Express $\frac{2}{y(y+1)(y+2)}$ in partial fractions. Using this result, show that

$$\sum_{r=1}^{N} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{1}{2(N+1)(N+2)}$$

By considering $\frac{1}{1+a^{n-1}} - \frac{1}{1+a^n}$ or otherwise, show that $\sum_{n=1}^N \frac{a^{n-1}}{(1+a^{n-1})(1+a^n)} = \frac{a^N-1}{2(a-1)(a^N+1)}$,

where a is positive and $a \neq 1$. Deduce that $\sum_{n=1}^{N} \frac{2^n}{(1+2^{n-1})(1+2^n)} < 1$.

Express $\frac{2}{n(n+1)(n+2)}$ in partial fractions. Hence, evaluate $\sum_{k=1}^{99} \frac{1}{k(k+1)(k+2)}$ Expand $n^2 - (n-1)^2 e$. Hence or otherwise, prove that $\sum_{n=1}^N e^n \left[(1-e)n^2 + 2ne - e \right] = N^2 e^N$. Find $\sum_{r=2}^n \left[r - 2 - 2n \left(\frac{1}{r-1} - \frac{1}{r} \right) \right]$ in terms of n. Show that $\frac{1}{n^2 - n + 2} - \frac{1}{n^2 + n + 2} = \frac{2n}{n^4 + 3n^2 + 4}$. Find an expression in terms of N for the sum S_N where $S_N = \sum_{n=1}^N \frac{n}{n^4 + 3n^2 + 4}$. Deduce that $S_N < \frac{1}{4}$.