Your grade: 97.50%

Your latest: 97.50% • Your highest: 97.50% • To pass you need at least 80%. We keep your highest score.

Next item $\, o \,$

1/1 point

1. Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- False
- O True
- **⊘** Correct

1/1 point

- 2. In beam search, if you increase the beam width B, which of the following would you expect to be true?
 - O Beam search will use up less memory.
 - O Beam search will converge after fewer steps.
 - O Beam search will run more quickly.
 - **(i.e.** do a better job maximizing P(y|x)).
 - ✓ Correct

As the beam width increases, beam search runs more slowly, uses up more memory, and converges after more steps, but generally finds better solutions.

 ${\bf 3.} \quad {\bf True/False: In \ machine \ translation, \ if \ we \ carry \ out \ beam \ search \ using \ sentence \ normalization, \ the \ algorithm \ will \ tend \ to \ output \ overly \ short \ translations.}$

1/1 point

1/1 point

- False
- O True

⊘ Correct

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio $\operatorname{clip} x$ to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y\mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- igodedown No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- \bigcirc Yes, because $P(y^*\mid x) \leq P(\hat{y}\mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- \bigcirc Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- $\bigcirc \ \ \text{No, because} \ P(y^* \mid x) \leq P(\hat{y} \mid x) \ \text{indicates the error should be attributed to the search algorithm rather than to the RNN.}$
- **⊘** Correct

O False.

True.

6. Consider the attention model for machine translation.

1/1 point

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

- $\square \sum_{t'} \alpha^{< t, t'>} = -1$
- $extstyle lpha^{< t, t'>}$ is equal to the amount of attention $y^{< t>}$ should pay to a < t'>

Correct! $\alpha^{< t,t'>}$ = amount of attention $y^{< t>}$ should pay to $a^{< t'>}$

- network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- 7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small 0.75 / 1 point

Which of the following does $s^{< t>}$ depend on? Select all that apply.

- $\bigcap e^{\langle t,t'\rangle}$
- $\sim \alpha^{< t,t'>}$

⊘ Correct $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$.

- \square $s^{< t+1>}$
- $\begin{tabular}{ll} \hline & s^t \mbox{ is independent of } \alpha^{< t, t'>} \mbox{ and } e^{< t, t'>}. \end{tabular}$

You didn't select all the correct answers

8. Compared to the encoder-decoder model shown in Question 1 of this guiz (which does not use an attention mechanism), we expect the attention model to have the least advantage when:

1/1 point

- \bigcirc The input sequence length T_x is large.
- lacksquare The input sequence length T_x is small.

The encoder-decoder model works quite well with short sentences. The true advantage for the attention model occurs when the input sentence is large.

1/1 point

 $\textbf{9.} \quad \text{Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed.} \\$ Under the CTC model, what does the following string collapse to?

	aaa_aaaaaarr_dddddddddv_aaaaaa_rrrrkk
	oaard var k
	o ardvark
	aardvark
	aaaaaaaaarrdddddddddvaaaaaarrrrkk
	Correct The basic rule for the CTC cost function is to collapse repeated characters not separated by "blank". If a character is repeated, but separated by a "blank", it is included in the string.
.0.	In trigger word detection, $x^{< t>}$ is:
	lacksquare Features of the audio (such as spectrogram features) at time $t.$
	\bigcirc Whether the trigger word is being said at time $t.$
	igcap The t -th input word, represented as either a one-hot vector or a word embedding.
	igcup Whether someone has just finished saying the trigger word at time $t.$
	⊘ Correct