

Amendments to the Claims:

No claims have been amended. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 1. (Previously Presented) A method of simulating relative motion of objects
2 in computer animation comprising:

3 providing a motion of a kinematic object, where the kinematic object is an
4 element of a computer animation display;

5 providing at least one dynamic object associated with said kinematic object,
6 where said at least one dynamic object is another element of the computer animation display and
7 where motion of said at least one dynamic object is influenced by the motion of the kinematic
8 object, wherein the motion of said at least one dynamic object is simulated using a physically-
9 based numerical technique;

10 manipulating the motion of said at least one dynamic object in response to the
11 motion of the kinematic object when the motion of the kinematic object exceeds a predetermined
12 threshold; and

13 displaying the elements of the computer animation display, including associated
14 motions of said elements.

1 2. (Previously Presented) A method of simulating relative motion of objects
2 according to claim 1 wherein manipulating the motion of said at least one dynamic object
3 comprises compensating for motions of said at least one dynamic object when the motion of the
4 kinematic object exceeds the predetermined threshold.

1 3. (Previously Presented) A method of simulating relative motion of objects
2 according to claim 2 wherein the motion of said at least one dynamic object is manipulated when
3 the motion of the kinematic object comprises accelerations that are unrealistic for humans.

1 4. (Previously Presented) A method of simulating relative motion of objects
2 according to claim 2 wherein the manipulating comprises compensating for the motion of said at
3 least one dynamic object when the kinematic object undergoes accelerated motions above a
4 predetermined limit.

1 5. (Original) A method of simulating relative motion of objects according to
2 claim 1 wherein said kinematic object is an animated character and said at least one dynamic
3 object is coupled to the animated character.

1 6. (Original) A method of simulating relative motion of objects according to
2 claim 5 wherein said at least one dynamic object is a representation of hair attached to the
3 animated character.

1 7. (Original) A method of simulating relative motion of objects according to
2 claim 5 wherein said at least one dynamic object is a representation of clothing attached to the
3 animated character.

1 8. (Previously Presented) A method of simulating relative motion of objects
2 according to claim 1 wherein said at least one dynamic object comprises a first set of dynamic
3 objects and a second set of dynamic objects and manipulating the motion of said at least one
4 dynamic object comprises selectively manipulating motions of said first set of dynamic objects
5 with respect to a first reference point on said kinematic object and selectively manipulating
6 motions of said second set of dynamic objects with respect to a second reference point on said
7 kinematic object.

1 9. (Previously Presented) A method of simulating relative motion of objects
2 according to claim 1 wherein said at least one dynamic object comprises a plurality of dynamic
3 objects coupled to a plurality of reference points on said kinematic object and wherein
4 manipulating the motion of said at least one dynamic object comprises manipulating the motions

5 of each of said plurality of dynamic objects with respect to said plurality of reference points
6 coupled thereto.

1 10. (Original) A method of simulating relative motion of objects according to
2 claim 9 wherein said kinematic object is an animated character and said plurality of dynamic
3 objects are coupled to the animated character and said plurality of reference points are different
4 points on the animated character.

1 11. (Previously Presented) A method of simulating relative motion of objects
2 according to claim 9 wherein the manipulating comprises compensating for motions of said
3 plurality of dynamic objects when the kinematic object undergoes exaggerated motion.

1 12. (Previously Presented) The method of claim 1 wherein manipulating the
2 motion of said at least one dynamic object comprises manipulating the motion of the said at least
3 one dynamic object when acceleration of the kinematic object exceeds the predetermined
4 threshold.

1 13. (Previously Presented) A computer animation system comprising:
2 a processor;
3 a display;
4 wherein the processor is configured to:
5 receive information specifying motion for a kinematic object;
6 compute motion for a dynamic object based upon the motion of the
7 kinematic object, wherein the motion of the dynamic object is specified using a physically-based
8 numerical technique; and
9 manipulate the motion of the dynamic object in response to the motion of
10 the kinematic object when the motion of the kinematic object exceeds a predetermined threshold;
11 and
12 wherein the display is configured to display the kinematic object and the dynamic
13 object and their associated motions.

1 14. (Previously Presented) The method of claim 13 wherein the processor is
2 configured to manipulate the motion of the dynamic object when acceleration of the kinematic
3 object exceeds the predetermined threshold.

1 15. (Previously Presented) The method of claim 13 wherein the kinematic
2 object represents an animated character and the dynamic object represents a hair attached to the
3 animated character.

1 16. (Previously Presented) The method of claim 13 wherein the kinematic
2 object represent an animated character and the dynamic object represents clothing attached to the
3 animated character.

1 17. (Previously Presented) A computer animation apparatus comprising:
2 means for receiving information specifying motion for a kinematic object;
3 means for computing motion for a dynamic object based upon the motion of the
4 kinematic object, wherein the motion of the dynamic object is specified using a physically-based
5 numerical technique;
6 means for manipulating the motion of the dynamic object in response to the
7 motion of the kinematic object when the motion of the kinematic object exceeds a predetermined
8 threshold; and
9 means for displaying the kinematic object and the dynamic object and their
10 associated motions.

1 18. (Previously Presented) A computer program product stored on a
2 computer-readable storage medium for simulating relative motion of objects, the computer
3 program product comprising:
4 code for receiving information specifying motion for a kinematic object;
5 code for computing motion for a dynamic object based upon the motion of the
6 kinematic object, wherein the motion of the dynamic object is specified using a physically-based
7 numerical technique;

8 code for manipulating the motion of the dynamic object in response to the motion
9 of the kinematic object when the motion of the kinematic object exceeds a predetermined
10 threshold; and

11 code for displaying the kinematic object and the dynamic object and their
12 associated motions.

1 19. (Previously Presented) A computer-implemented method of simulating
2 relative motion of objects in computer animation, the method comprising:
3 receiving information specifying motion for a kinematic object;
4 computing motion for a dynamic object based upon the motion of the kinematic
5 object, wherein the motion of the dynamic object is specified using a physically-based numerical
6 technique; and
7 manipulating the motion of the dynamic object in response to the motion of the
8 kinematic object when the motion of the kinematic object exceeds a predetermined threshold.

1 20. (Previously Presented) The method of claim 19 wherein manipulating the
2 motion of the dynamic object comprises manipulating the motion of the dynamic object when
3 acceleration of the kinematic object exceeds the predetermined threshold.