Semaine du 10 Mars - Planche nº 1

Exercice no 1:

(Question de cours) : Énoncé et démontrer les propositions suivantes : Chapitre 20, théorème 11 : division euclidienne dans $\mathbb{K}[X]$.

Exercice nº 2:

(Polynômes) : Soit $t \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Déterminer le reste de la division euclidienne dans $\mathbb{R}[X]$ de $(X\cos(t) + \sin(t))^n$ par $X^2 + 1$.

Exercice no 3:

(Polynômes) : On notera dans cet exercice pour \mathbb{K} un corps, l'ensemble $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X], \deg(P) \leq n\}$. Soit $(H_n)_{n \in \mathbb{N}}$ la suite de polynômes définies par récurrence par :

$$H_0 = 1$$
 et pour tout $n \in \mathbb{N}, H_{n+1} = XH_n - H'_n$

- 1. Démontrer que pour tout $n \in \mathbb{N}$, H_n est un polynôme unitaire de degré n.
- 2. Étudier la parité de H_n .
- 3. Démontrer que pour tout $n \in \mathbb{N}, H'_{n+1} = (n+1)H_n$.
- 4. On fixe $n \in \mathbb{N}$, montrer que si $\sum_{k=0}^{n} a_k H_k = 0$, alors pour tout $k \in \{0, \dots, n\}, a_k = 0$.
- 5. Montrer par récurrence sur $k \in \mathbb{N}$, qu'il existe $(a_{0,k}, a_{1,k}, \dots, a_{k,k}) \in \mathbb{R}^{k+1}$ tel que

$$X^k = \sum_{i=0}^k a_{i,k} H_i$$

6. Déduire des deux questions précédentes que :

$$\forall P \in \mathbb{R}_n[X], \exists !(a_0, \dots, a_n) \in \mathbb{R}^{n+1}, P = \sum_{i=0}^n a_i H_i$$

En conséquence de cette question, on notera pour tout $P \in \mathbb{R}_n[X]$, pour tout $k \leq n$, $[[P]]_k$ le coefficient devant H_k dans la décomposition précédente (c.a.d $[[P]]_k = a_k$).

- 7. Montrer que pour tout $P, Q \in \mathbb{R}_n[X], \lambda \in \mathbb{R}, k \leq n, [[\lambda P + Q]]_k = \lambda[[P]]_k + [[Q]]_k$.
- 8. Montrer que pour tout $P \in \mathbb{R}_n[X]$, et tout $k \leq n$, $[[P]]_k = \frac{1}{k!}[[P^{(k)}]]_0$. En déduire une expression de P de type Taylor-Hermite. (On pourra commencer par démontrer que pour tout $T \in \mathbb{R}[X], [[T']]_{k-1} = k[[T]]_k$.)
- 9. Appliquer cette formule au polynôme $P = X^3 + X^2 + X + 1$.

Semaine du 10 Mars - Planche nº 2

Exercice no 1:

(Question de cours) : Énoncé et démontrer les propositions suivantes : Chapitre 20, propriétés 25 et 26 et théorème 27 : nombre de racines distinctes et divisiblités.

Exercice nº 2:

(Polynômes) : Déterminer une condition nécessaire et suffisante sur $(\lambda, \mu) \in \mathbb{K}^2$ pour que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.

Exercice no 3:

(Polynômes) : On considère la suites de polynômes $(P_n)_{n\in\mathbb{N}}$ à coefficients réels définie par :

$$P_0 = 1$$
 et pour tout $n \in \mathbb{N}, P_{n+1} = 2XP_n - \frac{1}{n+1}(X^2 + 1)P'_n$

- 1. (a) Montrer que pour tout $n \in \mathbb{N}$, $\deg(P_n) \leq n$.
 - (b) En notant a_n le coefficient du monôme X^n du polynôme P_n , montrer que pour tout $n \in \mathbb{N}, a_{n+1} = \frac{n+2}{n+1}a_n$.
 - (c) En déduire la valeur de a_n pour tout $n \in \mathbb{N}$ et conclure quant au degré de P_n .
- 2. Étudier la parité de P_n .
- 3. (a) Montrer que pour tout $n \in \mathbb{N}, P'_{n+1} = (n+2)P_n$
 - (b) En déduire que pour tout $n \in \mathbb{N}$, pour tout $x \in \mathbb{R}$, $P_{n+1}(x) = P_{n+1}(0) + (n+2) \int_0^x P_n(t) dt$
 - (c) Montrer que pour tout $n \in \mathbb{N}$, $P_{2n+1}(0) = 0$ et $P_{2n}(0) = (-1)^n$.
- 4. (a) Montrer que pour tout $n \in \mathbb{N}, P_{n+2} 2XP_{n+1} + (X^2 + 1)P_n(X) = 0.$
 - (b) Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose $u_n = P_n(x)$. Déterminer une relation de récurrence sur la suite u_n et en déduire une expression de u_n en fonction de n et x.
 - (c) En déduire une expression pour P_n .
- 5. Soit $n \in \mathbb{N}^*$.
 - (a) Rappeler la factorisation du polynômes $R = X^{n+1} 1$ en produit de facteurs irréductibles de $\mathbb{C}[X]$.
 - (b) Montrer qu'un nombre complexe $z \in \mathbb{C}$ est racine de P_n si et seulement si $\frac{z+i}{z-i}$ est racine de R.
 - (c) En déduire que l'ensemble des racines de P_n est $\left\{\cot\left(\frac{k\pi}{n+1}\right)|k\in\{1,\ldots,n\}\right\}$ où cot désigne la fonction cotangente.
 - (d) Justifier que les racines sont deux à deux distinctes et en déduire la factorisation de P_n en produit de facteurs irréductibles de $\mathbb{R}[X]$.

Semaine du 10 Mars - Planche nº 3

Exercice no 1:

(Question de cours) : Énoncé et démontrer les propositions suivantes : Chapitre 20, propriété 46 : existence et unicité d'un polynôme d'interpolation.

Exercice nº 2:

(Polynômes) : Déterminer une condition nécessaire et suffisante sur $(a, b, c) \in \mathbb{K}^3$ pour que $X^2 + X + 1$ divise $X^4 + aX^2 + bX + c$.

Exercice no 3:

(Polynôme et analyse asymptotique) : Pour $n \in \mathbb{N}$, on considère la fonction f_n suivante :

$$f_n:]0, \pi[\longrightarrow \mathbb{R}$$

$$\theta \longmapsto \frac{\sin((n+1)\theta)}{\sin(\theta)}$$

- 1. Montrer que la fonction f_n est prolongeable par continuité en 0 et π . On notera encore f_n ce prolongement. Que valent alors $f_n(0)$ et $f_n(\pi)$?
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe une unique polynôme P_n tel que pour tout $x \in [-1,1]$, $P_n(x) = f_n(\arccos(x))$.
- 3. Déterminer le degré et la parité de P_n en fonction de n.
- 4. Déterminer les valeurs de $P_n(1), P_n(-1), P_n(0)$ et $P'_n(0)$.
- 5. Montrer que pour tout $x \in [-1,1], |P_n(x)| \le n+1$.
- 6. Établir que les polynômes P_n vérifient la relation de récurrence : $P_{n+1} + P_{n-1} = 2XP_n$.
- 7. Justifier que f_n est de classe \mathcal{C}^{∞} sur $[0,\pi]$. En dérivant deux l'identité $\sin(\theta)f_n(\theta) = \sin((n+1)\theta)$, déterminer une équation différentielle linéaire homogène que vérifie f_n .
- 8. En déduire une équation différentielle linéaire homogène que vérifie P_n .
- 9. En notant $P_n = \sum_{k=0}^n a_k X^k$. Déduire de la question précédente une relation de récurrence entre a_{k+2} et a_k Expliciter les a_k (on pourra distinguer en fonction de la parité de n).