

Università degli Studi di Brescia, Facoltà di Ingegneria Corso di Teoria dei Segnali Laboratorio di Matlab, A.A. 2010/2011

Lezione N.7, 15/04/2011

Questa sessione di laboratorio si occupa della sintesi di onde periodiche mediante serie di Fourier ed allo studio dell'errore di approssimazione. Si prenda come asse temporale **t=-10:0.01:10**. Si ricordano le espressioni di sintesi della serie di Fourier:

$$x(t) = \sum_{k=-\infty}^{+\infty} X_k \cdot e^{j2\pi \frac{k}{T}t}$$
e, per segnali reali,
$$x(t) = X_0 + 2\sum_{k=0}^{+\infty} a_k \cdot \cos\left(2\pi \frac{k}{T}t\right) + 2\sum_{k=0}^{+\infty} b_k \cdot \sin\left(2\pi \frac{k}{T}t\right)$$

dove X_0 rappresenta il valor medio del segnale e i coefficienti dello sviluppo in serie di Fourier sono determinati da:

$$X_k = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) \cdot e^{-j2\pi \frac{k}{T}t} dt, \quad k = -\infty, \dots, \infty;$$

$$a_k = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) \cdot \cos\left(2\pi \frac{k}{T}t\right) dt, \quad b_k = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) \cdot \sin\left(2\pi \frac{k}{T}t\right) dt, \quad k = 1, \dots, \infty.$$

[Esercizio 1] DENTE DI SEGA

In questo esercizio si considera il segnale $x_1(t)$ definito da:

$$x_1(t) = t \cdot rect\left(\frac{t}{4}\right) * \delta_4(t)$$

che ha periodo $T_1 = 4$ e il cui sviluppo in serie di Fourier è:

$$X_0 = 0$$
, $b_k = -\frac{2}{\pi k}(-1)^k$, $a_k = 0$, $k = 1, \dots, \infty$.

Si consiglia di memorizzare i coefficienti della serie di Fourier utilizzando uno scalare $\mathbf{X0}$ per il valor medio e un vettore $\mathbf{b1}$ lungo \mathbf{Narm} per i coefficienti b_k .

- (i) Si generi e si disegni il segnale x1(t) e lo si memorizzi in x1;
- (ii) Utilizzando i coefficienti dati sopra, sintetizzare un'approssimazione **x1Approx** dell'onda **x1** utilizzando **Narm** armoniche, ponendo **Narm** = {10, 20, 30};
- (iii) Disegnare il segnale approssimato in un'altra finestra con l'onda **x1** e rilevarne le differenze per differenti valori di **Narm**, ad esempio disegnando il segnale errore (differenza) in una finestra a parte.

[Esercizio 2] COSENO RETTIFICATO

In questo esercizio si considera il segnale $x_2(t)$ definito da:

$$x_2(t) = \left| \cos \left(2\pi \frac{1}{4}t - \frac{\pi}{4} \right) \right|$$

che ha periodo $T_2=2$ e il cui sviluppo in serie di Fourier è:

$$X_0 = \frac{2}{\pi}, \quad X_k = -\frac{2}{\pi(4k^2 - 1)}e^{-j\frac{\pi k}{2}}, \qquad k = -\infty, \dots, \infty.$$

Si consiglia di memorizzare i coefficienti della serie di Fourier utilizzando uno scalare $\mathbf{X0}$ per il valor medio e 2 vettori \mathbf{Xpos} e \mathbf{Xneg} lunghi \mathbf{Narm} per i coefficienti X_k .

- (i) Si generi e si disegni il segnale x2(t) e lo si memorizzi in x2;
- (ii) Utilizzando i coefficienti dati sopra, sintetizzare un'approssimazione **x2Approx** dell'onda **x2** utilizzando **Narm** armoniche, ponendo **Narm** = {10, 20, 30};
- (iii) Disegnare il segnale approssimato in un'altra finestra con l'onda $\mathbf{x2}$ e rilevarne le differenze per differenti valori di \mathbf{Narm} , ad esempio disegnando il segnale errore (differenza) in una finestra a parte.

[Esercizio 3] CALCOLO COEFFICIENTI

(i) Utilizzando le definizioni e la funzione bi integrale, verificare le formule dei coeffcienti degli esercizi precedenti, paragonando i risultati numerici con le espressioni esatte date sopra.