IN THE CLAIMS

Please amend the claims as follows:

	1. (Currently Amended) An apparatus for reading and/or writing
	data from and /or onto a data carrier, said data carrier containing
	wobbled tracks, said apparatus having comprising:
	scanning means for scanning said tracks-:
5	detection means for detecting at least two elementary
	signals when scanning said tracks—;
	wobble recovery means for generating a wobble signal from
	said at least two elementary signals—; and
	wobble processing means for filtering said at least two
LO	elementary signals with at least an adaptive filter and for
	generating an improved wobble signal by subtracting said filtered
	elementary signals from said wobble $\operatorname{signal}_{\bot}$
	said apparatus further comprising:
	data recovery means for generating a data signal from said
L5	at least two elementary signals, wherein said adaptive filter uses
	filtering coefficients chosen so as to minimize the cross-
	correlation between said improved wobble signal and said data
	signal, and wherein said filtering coefficients are updated by
	using an iterative gradient algorithm minimizing a cost function
20	having an instantaneous value equal to the instantaneous value of
	the squared product of said improved wobble signal and said data
	<u>signal</u> .

2-3. (Cancelled).

5

4. (Currently Amended) An The apparatus as claimed in claim 1, wherein said adaptive filter uses filtering coefficients chosen so as to minimize the difference between a scaled version of the improved wobble signal and a reference wobble signal reconstructed on the basis of the generated wobble signal.

	5. (Currently Amended) An optical unit <u>having comprising:</u>
	scanning means for scanning wobbled tracks of a data
	carrier , ;
	detection means for detecting at least two elementary
5	signals when scanning said tracks—;
	wobble recovery means for generating a wobble signal from
	said at least two elementary signals, and
	wobble processing means for filtering said at least two
	elementary signals with at least an adaptive filter and for
10	generating an improved wobble signal (IPP) by subtracting said
	filtered elementary signals from said wobble signal,
	said optical unit further comprising:
	data recovery means for generating a data signal from said
	at least two elementary signals, wherein said adaptive filter uses
15	filtering coefficients chosen so as to minimize the cross-
	correlation between said improved wobble signal and said data
	signal, and wherein said filtering coefficients are updated by
	using an iterative gradient algorithm minimizing a cost function

having an instantaneous value equal to the instantaneous value of the squared product of said improved wobble signal and said data signal.

6. (Cancelled).

20

5

- 7. (Currently Amended) An—The optical unit as claimed in claim 5, wherein said adaptive filter uses filtering coefficients chosen so as to minimize the difference between the improved wobble signal and a reference wobble signal reconstructed on the basis of the generated wobble signal.
- 8. (Currently Amended) A wobble processing method for processing a wobble signal generated from at least two elementary signals detected by scanning of a wobbled track of a data carrier, comprising the steps of: 5 <u>a filtering step for filtering said at least two</u> elementary signals with at least an adaptive filter, and ____a subtracting step for subtracting said filtered elementary signals from said wobble signal, thereby generating an improved wobble signal, 10 wherein said filtering step uses filtering coefficients chosen so as to minimize the cross-correlation between said improved wobble signal and a data signal generated from said at least two elementary signals,

and wherein said filtering coefficients are updated by using an iterative gradient algorithm minimizing a cost function having an instantaneous value equal to the instantaneous value of the squared product of said improved wobble signal and said data signal.

9. (Cancelled).

15

5

- 10. (Currently Amended) A—The wobble processing method as claimed in claim 8, wherein said filtering step uses filtering coefficients chosen so as to minimize the difference between a scaled version of the improved wobble signal and a reference wobble signal reconstructed on the basis of the generated wobble signal.
- 11. (Currently Amended) A computer-readable medium having a program comprising instructions for implementing a wobble processing method as claimed in one of claimsclaim 8 to or 10, when said program is executed by a processor.
- 12. (Currently Amended) An—The apparatus as claimed in claims

 claim 1—or 2 comprising, wherein said apparatus further comprises

 sampling means for sampling said at least two elementary signals at a frequency lower than the data bit rate.