

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

GUÍA DE ESTUDIO - CÁICULO I (220157) MÓDULO I

Pregunta 1 Andrés tiene un año menos que Pablo y Pablo un año menos que Carlos. Si del cuadrado de la edad de Carlos se resta el cuadrado de la edad de Pablo, la diferencia es 4 años menos que los $\frac{17}{5}$ de la edad de Andrés. Hallar las edades respectivas.

Resuelva paso a paso esta situación problemática, definiendo variables, planteando ecuación y dando respuesta a la pregunta.

Solución: Sea A la edad de Andrés, B la edad de Pablo y C es la edad de Carlos, se plantean las siguientes ecuaciones:

A raíz del enunciado se tiene que:

$$C^2 - B^2 = \frac{17}{5}A - 4$$

Reemplazando se tiene:

$$\Rightarrow (A+2)^{2} - (A+1)^{2} = \frac{17}{5}A - 4$$

$$\Rightarrow (A^{2} + 4A + 4) - (A^{2} + 2A + 1) = \frac{17}{5}A - 4$$

$$\Rightarrow 2A + 3 = \frac{17}{5}A - 4$$

$$\Rightarrow A = 5$$

$$10A - 17A = -35$$

$$-7A = -35 = A = 5$$

Finalmente se tiene que las edades de Andrés, Pablo y Carlos son, respectivamente, 5, 6 y 7 años.

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 2 Cristóbal tiene una barbería. El costo asociado a la renta del local es de £20 diarios. Si por cada corte de pelo cobra £4 (Considere que £ son libras):

- a) Explique por qué su balance neto diario viene dado por $\mathcal{L}(4x-20)$, donde x corresponde al número de cortes de pelo que realiza diariamente.
- b) Él espera alcanzar una ganancia neta de al menos £50 por día. Sin embargo, su expectativa de ganancia no supera los £120. Escriba la inecuación que describe la situación.
- c) Resuelva la inecuación.

Solución:

a) Cristóbal recibe un ingreso variable de £4 por cada corte de pelo que realice, por lo que su ingreso diario se puede escribir de la forma: I = £4x.

Sin embargo, su gasto fijo por el arriendo del local es de £20.

Por lo que la utilidad que presenta diariamente es de $\mathcal{L}(4x-20)$.

b) Dado que la utilidad de Cristóbal se estima entre £50 y £120, inclusive, se tiene que la inecuación asocidad viene dada por:

$$50 \le (4x - 20) \le 120$$

c) La solución de la inecuación viene dada por:

$$50 \le (4x - 20) \le 120$$

$$\Rightarrow 70 \le 4x \le 140$$

$$\Rightarrow \frac{35}{2} \le x \le 35$$

Cristóbal atiende entre 18 y 35 personas diariamente.

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 3 Resuelva las siguientes inecuaciones, indicando específicamente la propiedad o axioma que le permite ejecutar los procedimientos.

a)
$$2x - 3 < 1 + x < 3x - 1$$

b)
$$|x+2| + |2x-1| \ge 0$$

Solución:

a)

b)

$$|x+2|+|2x-1| \ge 0$$

$$\iff |x+2| \ge -|2x-1|$$

$$\iff |x+2| > -|2x-1| \quad \lor \quad |x+2| = -|2x-1|$$

$$\iff F \quad \lor \quad F = F$$

$$\iff c.s. = \{\}.$$

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Profesores: Paulina Llarena - Jenner Chapoñán - Efraín Nova.

Segundo Semestre 2022

Pregunta 4 Un peluquero atiene en promedio 120 clientes a la semana cobrándoles \$4usd por corte. Por cada incremento de \$0.5usd en el precio, el peluquero pierde 8 clientes. ¿Qué precio máximo deberá fijar para obtener ingresos semanales de al menos \$520usd?

Solución:

Sea x el número de incrementos de 0.5 por encima de 4.

Entonces, el precio por corte de cabello es (4 + 0.5x) dólares

Y el número de clientes será de (120 - 8x) por semana . De modo que:

Ingresos totales semanales = (Número de clientes)(Precio por corte)=(120 - 8x)(4 + 0.5x).

Los ingresos por los 120 clientes actuales son de \$480. Por lo tanto, los nuevos ingresos deben ser al menos iguales:

$$(120 - 8x)(4 + 0.5x) \ge 520$$

$$\Rightarrow -4x^2 + 28x \ge 40$$

$$\Rightarrow 4x^2 - 28x + 40 \le 0$$

$$\Rightarrow x^2 - 7x + 10 \le 0$$

$$\Rightarrow (x - 2)(x - 5) \le 0$$

$$\Rightarrow x \in [2, 5]$$

Por lo tanto, el precio máximo que se puede cobrar es 4 + 0.5(2) = 5 usd.

Pregunta 5 Andrés tiene 2 años más que Pablo y éste dos años más que Carlos. Si las edades de Pablo y Carlos se suman, esta suma excede en 12 años a $\frac{7}{8}$ de la edad de Andrés. Hallar las edades respectivas.

Resuelva paso a paso esta situación problemática, definiendo variables, planteando ecuación y dando respuesta a la pregunta.

Solución: Sea A la edad de Andrés, B la edad de Pablo y C la edad de Carlos, se plantean las siguientes ecuaciones: (1 punto)

$$A = B + 2$$
$$B = C + 2$$

Del enunciado se tiene que:

$$B + C = \frac{7}{8}A + 12$$
 (2 punto)

Reemplazando se tiene:

$$\Rightarrow (A-2) + (A-4) = \frac{7}{8}A + 12$$

$$\Rightarrow 2A - 6 = \frac{7}{8}A + 12$$

$$\Rightarrow \frac{9}{8}A = 18$$

$$\Rightarrow A = 16$$

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Finalmente, las edades de Andrés, Pablo y Carlos son 16, 14 y 12 años, respectivamente.

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 6 La distancia que un automóvil puede recorrer con su estanque lleno varía entre 200 y 320 millas.

- a) Si m representa la distancia en millas que recorre el vehículo con el estanque lleno. Escriba la inecuación en términos de m.
- b) La distancia en kilómetros, k, está relacionada con la distancia en millas de la forma:

$$m = \frac{5k}{8}$$

Reescriba la inecuación del punto a) en términos de k.

c) ¿Cuántos kilómetros puede recorrer el vehículo con el estanque lleno?

Solución:

a) Dado que el vehículo puede recorrer entre 200 y 320 millas, la desigualdad se puede escribir como:

$$200 \le m \le 320$$

b) Sea $m = \frac{5k}{8}$, se puede reescribir la inecuación anterior como:

$$200 \le \frac{5k}{8} \le 320$$

c) Resolviendo la inecuación se tiene:

$$200 \le \frac{5k}{8} \le 320$$

$$\Rightarrow 1600 \le 5k \le 2560$$

$$\Rightarrow 320 \le k \le 512$$

El vehículo, con estanque lleno, puede recorrer entre 320 y 512 km.

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 7 Resuelva las siguientes inecuaciones, indicando específicamente la propiedad o axioma que le permite ejecutar los procedimientos.

a)
$$3x - 5 < 1 + x < 2x - 3$$

b)
$$|3x-2|+|2x-7|<0$$

Solución:

a)

$$3x - 5 < 1 + x < 2x - 3$$

$$\iff 3x - 5 < 1 + x \quad \land \quad 1 + x < 2x - 3$$

$$\iff$$
 $3x - x < 1 + 5$ \land $1 + 3 < 2x - x$

$$\iff 2x < 6 \quad \land \quad 4 < x$$

$$\iff x < 3 \land 4 < x$$

$$\iff$$
 $c.s. = \{\}.$

b)

$$|3x - 2| + |2x - 7| < 0$$

$$\iff |3x - 2| < -|2x - 7|$$

$$\iff F$$

$$\iff c.s. = \{\}.$$

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Profesores: Paulina Llarena - Jenner Chapoñán - Efraín Nova.

Segundo Semestre 2022

Pregunta 8 En un cierto estanque se crían peces. Si se introducen n de ellos allí, se sabe que la ganancia de peso promedio de cada pez es de (600 - 3n) gramos. Determine las restricciones de n, si la ganancia total en peso de todos los peses debe ser mayor que 28800 gramos.

Solución:

Dado que la ganancia de peso promedio de cada pez es de (600 - 3n)

Entonces la ganancia por n peces es n(600 - 3n).

La ganancia total en pesos de todos los peces debe ser mayor que 28800 gramos

$$(600 - 3n)n > 28800$$

$$\Rightarrow 3n^2 - 600n + 28800 < 0$$

$$\Rightarrow n^2 - 200n + 9600 < 0$$

$$\Rightarrow (n - 80)(n - 120) < 0$$

$$\Rightarrow n \in]80, 120[$$

Por lo tanto, n debe ser mayor a 80 y menor a 120.

Pregunta 9 La suma de las edades actuales de Andrés y Pablo es 65 años, y dentro de 10 años la edad de Pablo será los $\frac{5}{12}$ de la de Andrés. Hallar las edades actuales.

Resuelva paso a paso esta situación problemática, definiendo variables, planteando ecuación y dando respuesta a la pregunta.

Solución: Sea A la edad de Andrés y B la edad de Pablo, se plantean las siguientes ecuaciones:

$$A + B = 65$$

$$\frac{5}{12}(A + 10) = B + 10$$

Reemplazando se obtiene que:

$$\Rightarrow \frac{5}{12}((65 - B) + 10) = B + 10$$

$$\Rightarrow \frac{5}{12}(75 - B) = B + 10$$

$$\Rightarrow \frac{375}{12} - \frac{5}{12}B = B + 10$$

$$\Rightarrow \frac{375 - 120}{12} = \frac{17}{12}B$$

$$\Rightarrow B - 15$$

Finalmente las edades de Andrés y Pablo son 50 y 15 años, respectivamente.

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 10 Una persona sabe que el monto mensual que debe pagar por la electricidad varía entre £50 y £90. (Considere que £ son libras)

- a) Si C representa el monto que debe pagar por el consumo eléctrico. Escriba la inecuación en términos de C.
- b) La boleta señala que se tiene un cargo fijo mensual de £10 y un costo de £0.1 por kilowatt hora utilizado. Si n es el número de kilowatt por hora usado, reescriba la inecuación del punto a) en términos de n.
- c) ¿Cuántos kilowatt por hora utiliza esta persona mensualmente?

Solución:

a) Sea C el monto a pagar, la inecuación se puede escribir como:

$$50 \le C \le 90$$

b) El monto a cancelar mensualmente se divide en un cargo fijo de £10 y un valor variable por kilowatt hora de £0.1, por lo que la inecuación se puede reescribir como:

$$50 \le (10 + 0.1n) \le 90$$

c) Resolviendo la inecuación se tiene:

$$50 \le (10 + 0.1n) \le 90$$

 $\Rightarrow 40 \le 0.1n \le 80$
 $\Rightarrow 400 \le n \le 800$

El consumo mensual, en kilowatt por hora, varía entre 400 y 800.

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 11 Resuelva las siguientes inecuaciones, indicando específicamente la propiedad o axioma que le permite ejecutar los procedimientos.

a)
$$2x - 3 < 1 + x < 3x - 1$$

b)
$$|2x-3|+|7+7x|<0$$

Solución:

a)

$$5x - 7 \ge 3x + 1 \ge 6x - 11$$

$$\iff$$
 $5x - 7 \ge 3x + 1$ \land $3x + 1 \ge 6x - 11$

$$\iff$$
 $5x - 3x \ge 1 + 7$ \land $1 + 11 \ge 6x - 3x$

$$\iff$$
 $2x \ge 8$ \land $12 \ge 3x$

$$\iff x \ge 4 \quad \land \quad 4 \ge x$$

$$\iff$$
 $4 \le x \le 4$

$$\iff x = 4.$$

b)

$$|2x - 3| + |7 + 7x| < 0$$

$$\iff |2x - 3| < -|7 + 7x|$$

$$\iff$$
 F

$$\iff$$
 $c.s. = \{\}.$

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Pregunta 12 Un supermercado se encuentra con grandes existencias de manzana que debe vender rápidamente. El gerente sabe que si las manzanas se ofrecen a p centavos por libra, venderá x libras, con x = 1000 - 20p. ¿Qué precio deberá fijar con el fin de obtener ingresos por lo menos de \$120?

Solución:

Los ingresos serán, I = xp

pero como x = 1000 - 20p

entonces I = (1000 - 20p)p

Los ingresos deben ser por lo menos \$120,

$$\begin{split} I &\geq 120 \\ \Rightarrow (1000 - 20p)p \geq 120 \\ \Rightarrow 1000p - 20p^2 - 120 \geq 0 \\ \Rightarrow 20p^2 - 1000p + 120 \leq 0 \\ \Rightarrow 25 - \sqrt{619} \leq p \leq \sqrt{619} + 25 \end{split}$$

El precio que debe fijar debe ser mayor o igual a 0.12 y menor o igual 49.88.