מבוא לקריפטוגרפיה מודרנית (0368-3049)

נכתב ע"י רון גולדמן ע"פ הרצאות של פרופ' בני אפלבאום

1 בנובמבר 2025

תוכן העניינים

2		מבוא	1
2	הגדרות ומושגים ראשונים	1.1	
3	דוגמאות	1.2	
4	התקפה כללית (נראות מירבית)	1.3	

פרק 1

מבוא

1.1 הגדרות ומושגים ראשונים

1.1.1 מערכת הצפנה

.ciphertext-הגדרה בפנה]. $E_k(m)=E(k,m)=c\in\mathcal{C}$ נסמן $k\in\mathcal{K}, m\in\mathcal{M}$ לכל $E:\mathcal{K}\times\mathcal{M}\to\mathcal{C}$. [פונקצית הצפנה]. $D_k(c)=D(k,c)=m\in\mathcal{M}$ נסמן $k\in\mathcal{K}, c\in\mathcal{C}$ ה-וומפתח $D_k(c)=D(k,c)=m\in\mathcal{M}$ נסמן $k\in\mathcal{K}, c\in\mathcal{C}$ ה-ודעה $m\in\mathcal{M}$ ומפתח $m\in\mathcal{M}$ ומפתח $m\in\mathcal{M}$ מתקיים $m\in\mathcal{M}$ מתקיים $m\in\mathcal{M}$ הגדרה בפנה ופיענוח. מערכת הצפנה שבה משתמשים במפתח יחיד לצורך הצפנה ופיענוח. הגדרה 1.1 [מערכת הצפנה סימטרית]. מערכת הצפנה שבה משתמשים המפתח יחיד לצורך הצפנה ופיענוח.

- $.k \sim \mathrm{Unif}(\mathcal{K})$ המפתח •
- $\mathcal{M} = \{0,1\}^*$ מרחב ההודעות •
- הרבה פעמים אורך ההודעות קשור למרחב המפתחות.

1.1.2 מודל התקשורת

- שתי צדדים אליס ובוב
 - קו תקשורת אמין
- E,D,k :סכמת הצפנה משותפת
- m מטרה: לשלוח בבטיחות הודעה \bullet

מטרות אבטחה 1.1.3

יש מספר מטרות שנרצה להשיג

- m אף יריב לא יכול לקבוע את ullet
- m אף יריב לא יכול לקבוע אף אינפורציה לגבי ullet
- m יכול לקבוע אינפורציה משמעותית אינפור אף יריב אף יריב איכול יכול יכול אינפורציה אינפורציה פו

פרק 1. מבוא .1.2 דוגטאות

שאלות חשובות:

- מה היריב יודע מראש?
- מה המגבלות החישוביות של היריב?

האם בכלל אפשר לפרמל מתמטית את מושג הסודיות?

1.1.4 מודל היריב: מאזין פאסיבי

איב מאזינה לערוץ התקשורת.

- m איב מנסה לגלות אינפורציה לגבי ullet
- (עיקרון קרכהוף) E,D איב יודעת את אלגוריתמים \bullet
 - איב יודעת את מרחב ההודעות
 - $E_k(m)$ איב תפסה את ullet
 - k איב לא יודעת את ullet

1.2 דוגמאות

 $k \in \{0,1,\dots,25\}$ מפתח: $\{0,1,\dots,25\}$ דוגמה 1.6 צופן קיסר

- $p \in \{0,1,\ldots,25\}$ כל אות מיוצגת כמספר
 - $E_k(p) = p + k \mod 26$ הצפנה:
 - $.D_k(p) = p k \mod 26$ פיענות:
 - פתרון: חיפוש ממצה.
 - מסקנה: דרוש מרחב מפתחות גדול.

 $\sigma:[26]\hookrightarrow[26]$ תמורה (26]. • מפתח: תמורה (1.7 בופן החלפה).

- $p \in \{0, 1, \dots, 25\}$ כל אות מיוצגת כמספר
 - $E_{\sigma}(p) = \sigma(p)$ הצפנה: •
 - $D_{\sigma}(p) = \sigma^{-1}(p)$ פיענות:
- עבוד. $26! pprox 4 \cdot 10^{27}$ יש $26! pprox 4 \cdot 10^{27}$ יש
- ניתן לשבור את ההצפנה באמצעות סטטיסטיקות של שפה טבעית, שכן התדירות שימוש לא אחידה.

דוגמה 1.8 [הצפנת ויז'נר]. המפתח הוא beads:

t	h	e	m	a	n	a	n	d	t	h	e	W	0	m	a	n
b	e	a	d	S	b	e	a	d	S	b	e	a	d	S	b	e
V	M	F	Q	T	P	F	Ο	Н	M	J	J	X	S	F	С	S

- האם הוא מאובטח?
- ויז'נר: אני לא מצליח לשבור אותו אז הוא מאובטח.
 - קסיסיקי (1863): שבר אותו.

1.3 התקפה כללית (נראות מירבית)

 ${\mathcal M}$ על מרחב ההודעות, הנתונה הנתונה על מרחב ליריב ש מידע ליריב אל ההודעות, ההודעות מקדים על מייפרטקסט. כהינתן אוריב אל כווער אל כווער בהינתן הייפרטקסט. אל $C=E_k(M) \stackrel{R}{\leftarrow} {\mathcal K}$

• פענח לכל מפתח אפשרי:

$$D_{000}(C) = \text{blabla}, D_{001}(C) = \text{lunch}, \dots, D_{111}(C) = \text{attack}$$

בחר את ההודעה הכי סבירה M בהתבסס על ההתפלגות ullet

שאלה: האם ניתן להביס כזה יריב?

1.3.1 בטיחות מושלמת

אם אם עבור התפלגויות מעל $X\equiv Y$.[פילוגים שווים] אם הגדרה 1.9 פילוגים שווים].

$$\forall d \in \mathcal{D}. \ \Pr[X = d] = \Pr[Y = d]$$

 $M|C\equiv M$ מתקיים (שאנון 1.10). מתקיים 1.10 הגדרה

 $c\in\mathcal{C}$ ההה, לכל $m_0,m_1\in\mathcal{M}$ באורך הה, לכל מתקיים כי לכל ההרך ההה, לכל

$$\Pr_{k \stackrel{R}{\leftarrow} \mathcal{K}} [E_k(m_0) = c] = \Pr_{k \stackrel{R}{\leftarrow} \mathcal{K}} [E_k(m_1) = c]$$

 $.C|M\equiv C$ כלומר

 $\mathcal{M} = \{0,1\}^n$ מרחב ההודעות • מרחב חד-פעמין.

- מרחב המפתחות $\mathcal{K}=\{0,1\}^n$ מרחב המפתחות •
- כדי להצפין/לפענח נחשב XOR של ההודעה/הטקסט המצופן עם המפתח:

$$E_k(m) = m \oplus k$$

$$D_k(c) = c \oplus k$$

הערה 1.13. להשתמש במפתח רק פעם אחת! אחרת נקבל ויז'נר.

משפט 1.14. לפנקס חד-פעמי יש בטיחות מושלמת. כלומר, לכל $m_0,m_1\in\{0,1\}^n$ מתקיים $m_0,m_1\in\{0,1\}^n$, כאשר געמי יש בטיחות מושלמת. כלומר, לכל $k\in\mathbb{R}$ \mathcal{K}

הוכחה. מספיק להוכיח את הטענה הבאה:

טענה 1.15. לכל $m,c \in \{0,1\}^n$ מתקיים

$$\Pr_{k \leftarrow \mathbb{R} K} [E_k(m) = c] = \frac{1}{2^n} \iff E_k(m) \sim U_n$$

הטענה את המשפט כי מטרנזטיביות שוויון ההתפלגות לכל $m_0, m_1 \in \{0,1\}^n$ מתקיים הטענה גוררת את המשפט כי מטרנזטיביות

$$E_k(m_0) \equiv U_n \equiv E_k(m_1)$$

כעת נוכיח את הטענה.

:נקבע $m,c\in\{0,1\}^n$ נקבע

$$\Pr_{k}[E_{k}(m) = c] = \Pr_{k}[m \oplus k = c] = \Pr_{k}[k = m \oplus c] = \frac{1}{2^{n}}$$

 $.k \sim U_n$ -כי $m \oplus c$ כי

1.3.2 יתרונות וחסרונות של פנקס חד-פעמי

- יתרון: בטיחות מושלמת.
- בעיה: גודל מרחב המפתחות.

 $|\mathcal{K}| \geq |\mathcal{M}|$ אזי משפט 1.16 $\mathcal{K} \times \mathcal{K} \times \mathcal{M} \to \mathcal{C}, D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ משפט 1.16 שאנון]. אם מערכת הצפנה

אם ורק $\{m,c\}\in E$ ווים כמרחבים שונים) אם ורק (בה"כ נזהה אותם כמרחבים שונים) ווישר G=(V,E) אם ורק הוכחה. נגדיר גרף דו-צדדי ווישר $E_k(m)=c$ אם קייים $k\in\mathcal{K}$ אם קייים

 $.\{m,c\} \in E$ נקבע נקבע , $|\mathcal{K}| < |\mathcal{M}|$ ניח בשלילה כי

 $\deg(c) \leq |\mathcal{K}|$ יכול להיות מחובר לכל היותר ל- $|\mathcal{K}|$ הודעות, כלומר יכול להיות מחובר לכל היותר ל-

 $c=E_k(m_0)=$ כך ש- $m_0
eq m_1$ ו ו- $m_0
eq m_1$ ו פתח א ו- $\deg(c)>|\mathcal{K}|$ כך ש- $\deg(c)>|\mathcal{K}|$ כך ש- $E_k(m_0)=$ וזו סתירה לנכונות ההצפנה.

c שלנה שכנה שכנה m^st כך שאינה שכנה של מסקנה.

 $\operatorname{Pr}_k[E_k(m^*)=c]=0$ ולכך , $E_k(m^*)
eq c$, $k\in\mathcal{K}$ לכל

. $\Pr_k[E_k(m)=c] \geq rac{1}{|\mathcal{K}|} > 0$ ולכן ולכן $E_{k'}(m)=c$ עבורו אזי יש $k' \in \mathcal{K}$ אזי יש $\{m,c\} \in E$ משום ש

בפרט מתקיים כי $E_k(m^*)
ot\equiv E_k(m)$ וזו סתירה לבטיחות המושלמת.