Hodina 21. júla 2023

Program:

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli.
- 3. Dôkazy. Matematická indukcia
- 4. Domáca úloha (nová)

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g ithub.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Telekonferencia Používame SpeakApp, link postnem vždy pred hodinou, *je možné, že sa bude týždeň od týždňa líšiť*.

1. Domáca úloha

Príklad 1

Označme gcd(m, n) najväčší spoločný deliteľ celých čísel m,n (*greatest common divisor*), teda najväčšie číslo, ktoré je deliteľom m i n. Nech m>n. Dokážte, že

a.
$$gcd(m-n, n) = gcd(m,n)$$

b.
$$gcd(m \% n) = gcd(m, n)$$

kde znak % označuje zvyšok po celočíselnom delení m a n.

Riešenie

 $\gcd(m,n)$ je najväčšie prirodzené číslo d také, že pre nejaké prirodzené čísla p, q platí m=pd, n=qd.

Vyjadrime m-n:

$$m-n = pd - qd = (p-q) \cdot d$$

a teda d je deliteľom aj m-n. Ešte musíme ukázať, že d je najväčší spoločný deliteľ m-n a n.

Dôkaz vykonáme sporom: Budeme predpokladať opak, teda že $\gcd(m-n,n)=D>d$, a ukážeme, že takýto predpoklad vedie k logickým rozporom. Skutočne, ak $\gcd(m-n,n)=D>d$, existujú prirodzené čísla P a Q také, že m-n=PD, n=QD. Ďalej ale tiež platí

$$m = (m - n) + n = PD + QD = (P + Q)D$$

D je teda deliteľom m aj n, a pretože sme predpokladali, že d je najväčším spoločným deliteľom m a n, nemôže byť D>d. Negácia pôvodného tvrdenia teda vedie k logickému sporu, a preto musí platiť pôvodné tvrdenie: d je najväčší spoločný deliteľ m-n a n, a teda aj m-n a n.

Podobne dokážeme druhé tvrdenie:

Označme r = m % n, teda existuje nejaké celé číslo k také, že $m=k\cdot n+r$. Nech $d=\gcd(m,n)$, potom píšeme $m=pd, n=qd, r=m-k\cdot n=p\cdot d-k\cdot q\cdot d=(p-kq)\cdot d$ a teda aj r je deliteľné d. Podobne ako v predchádzajúcom prípade treba ešte dokázať, že d je najväčší spoločný deliteľ.

Príklad 2

Dokážte, že $\sqrt{2}$ nie je racionálne číslo.

Riešenie

Dôkaz uskutočníme sporom: Dokážeme, že opačné tvrdenie vedie k logickým rozporom:

Predpokladajme, že platí opačné tvrdenie: $\sqrt{2}$ je racionálne číslo. Potom existujú nesúdeliteľné prirodzené čísla p a q také, že

$$\sqrt{2} = \frac{p}{q}$$

(Nesúdeliteľnosť p a q znamená, že gcd(p, q) = 1). Ak predchádzajúcu rovnosť umocníme na druhú, dostaneme

$$2=\frac{p^2}{q^2}$$

teda $2q^2=p^2$ a teda p musí byť párne, p=2k. Potom ale $2q^2=4k^2$, resp. $q^2=2p^2$ a aj q musí byť párne. To je ale v spore s predpokladom, že p a q sú nesúdeliteľné - znamená to, že nech zlomok p/q krátime, koľko chceme, stále sa dá skrátiť ďalšia dvojka. Opačné tvrdenie nás teda priviedlo k logickým rozporom, a preto musí platiť pôvodné tvrdenie: $\sqrt{2}$ nie je racionálne číslo.

Príklad 3.

Riešte:

$$x^{2} - y^{2} = 24$$
$$xy = 35$$
$$x + y = ?$$

Riešenie

Symetria: ak je $\{x,y\}$ riešením rovníc, potom je ním aj $\{-x,-y\}$.

Skúsme najprv nájsť ľahké riešenie v celých číslach:

x a y musí byť dvojica i združených deliteľov 35, pričom kvôli prvej rovnici bude x väčší z deliteľov, a teda - ak odhliadneme od záporných riešení - máme dve možnosti, $\{35,1\}$ a $\{7,5\}$. Z nich iba druhá dáva použiteľné riešenie, a teda $x+y=\pm 12$. Existuje ešte iné riešenie? Ak z druhej rovnice vyjadríme y a dosadíme do prvej rovnice, dostaneme kvadratickú rovnicu pre x^2 :

$$y=rac{35}{x}$$
 $x^2-rac{35^2}{x^2}=24$ $x^4-24x^2-35^2=0$ $x^2=12\pm37$

Prvý koreň dáva riešenie, ktoré sme už našli, $\{\pm7,\pm5\}$. Druhý koreň nám dáva zábavné komplexné riešenie $\{\pm5i,\pm7i\}$, v ktorom si x a y vymenia roly, ale $x+y=\pm12$ ako u predchádzajúceho riešenia.

Príklad 4

Nájdite reálne riešenia rovnice

$$x^6 = (x-1)^6$$

Riešenie

Faktorizujeme, faktorizujeme:

$$(x^3)^2 - ((x-1)^3)^2 = (x^3 + (x-1)^3) \cdot (x^3 - (x-1)^3)$$

= $(2x-1)(x^2 - x(x-1) + (x-1)^2)(1)(x^2 + x(x-1) + (x-1)^2)$
= $2(x-\frac{1}{2})(x^2 - x + 1)(3x^2 - 3x + 1)$

a pretože dva kvadratické členy nemajú reálne korene, máme jediný reálny koreň x=1/2.

(Aj keď to tak nevyzerá, je to v poriadku, pretože rovnica je skutočnosti 5. stupňa, a máme jeden reálny koreň a dve dvojice komplexných).

2. Príklady na zahriatie

Príklad 1

Nájdite všetky reálne x, spĺňajúce rovnicu

$$\log_4 x = \log_x 4$$

Príklad 2

Rekurzívne štruktúry:

a. Nájdite všetky x, pre ktoré platí

$$2=x^{x^{x^{x^{\cdot \cdot \cdot }}}}$$

a všetky x pre ktoré platí

$$4 = x^{x^{x^{x^{\cdot \cdot \cdot }}}}$$

Porucha...

b. Čomu sa rovná

$$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}}$$

c. Čomu sa rovná

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}$$

Príklad 3

Minule sme delili polynómy a učili sme sa používať vetu o zvyšku na výpočet hodnoty polynómu. Dnes to použijeme na riešenie rovníc:

Nájdite racionálne korene rovnice

$$x^3 + 3x^2 - 4x - 12 = 0$$

Návod: Veta o racionálnych koreňoch

Jediné racionálne korene rovnice s celočíselnými koeficientmi $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0=0$ majú tvar $\pm p_i/q_j$, kde $\{p_1,p_2,\ldots\}$ sú delitelia a_0 a $\{q_1,q_2,\ldots\}$ sú delitelia a_n . V našom prípade máme $q=1,p\in\{1,2,3,4,6,12\}$, a teda korene hľadáme medzi číslami $\{\pm 1,\pm 2,\pm 3,\pm 4,\pm 6,\pm 12\}$: Toto je dobrá aplikácia pre výpočet hodnoty polynómu pomocou vety o zvyšku. Okrem toho po objavení každého koreňa je treba polynóm vydeliť, aby sme mohli nájsť prípadné dvojnásobné korene a tiež aby sme si ušetrili prácu.

Príklad 4

Nech $P(x) = 2x^3 + 7x^2 + 2x + 1$. Pomocou delenia polynómov nájdite P(5).

Návod:

Veta o zvyšku (Remainder theorem): Nech P(x(je polynóm stupňa ≥ 1 . Potom zvyšok po delení

$$\frac{P(x)}{x-a}$$

sa rovná P(a). Dôkaz: Nech výsledok delenia P(x() lineárnym polynómom (x-a) je polynóm Q(x) a zvyšok R. Z definície platí P(x)=(x-a)Q(x)+R, a pre x=a dostaneme P(a)=(a-a)Q(x)+R=R .

3. Dôkazy. Matematická indukcia

Čo je dôkaz

Dôkaz je metóda určenia pravdy. V rôznych oblastiach sa toto dosahuje rôznymi spôsobmi:

- Súdny výrok
- Božie slovo
- Experimentálna veda
- Štatistické zisťovanie
- Vnútorné presvedčenie
- "Neviem, prečo by to nemala byť pravda..."
- Zastrašovanie

V matematike znamená dôkaz výroku reťazec logických dedukcií, ktoré dokazujú pravdivosť výroku vychádzajúc z množiny axióm.

Logický výrok je tvrdenie, ktoré je pravdivé alebo nepravdivé. Ne-výroky: "Umy si nohy!", "A teda čo je to dôkaz?"

- Výrok: 2+3 = 5. Tento výrok je pravdivý, aj keď nie je úplne jednoduché ukázať to, pretože toto tvrdenie spočíva na úplných základoch aritmetiky.
- Výrok. Pre prirodzené číslo n je $n^2 + n + 41$ prvočíslo.

Toto je iný výrok ako predchádzajúci. Máme tu dve nové veci: **Predikát** - teda parametrizovaný výrok (logickú funkciu), ktorý je pravdivý alebo nepravdivý podľa toho, čo doň dosadíme. A máme dokázať, že tvrdenie platí pre nekonečnú množinu čísel 1, 2, ... V matematickej notácii máme špeciálne symboly, označujúce, že nejaký predikát platí pre všetky prvky danej množiny (\forall), alebo že existuje prvok množiny, ktorý spĺňa daný predikát (\exists). Tieto symboly nazývame **kvantifikátory**. Teda posledný výrok môžeme napísať takto: $\forall n \in N: n^2 + n + 41$ je prvočíslo. Negácia takéhoto tvrdenia je $\exists n \in N: n^2 + n + 41$ nie je prvočíslo (nemáme užitočný symbol pre označenie, že číslo je alebo nie je prvočíslo).

Pri takýchto tvrdeniach väčšinou postupujeme tak, že vykonáme prieskum bojom: overíme platnosť tvrdena na niekoľkých hodnotách, a snažíme sa zistiť, ako tvrdenie "funguje". Toto tvrdenie má tú zvláštnu vlastnosť, že platí pre všetky n menšie ako 40, ale pre 40 dostaneme $40^2+40+41=40*41+41$ a teda sa nejedná o prvočíslo.

• Výrok. Neexistujú prirodzené čísla a, b, c, d spĺňajúce rovnosť $a^4+b^4+c^4=d^4$. Toto tvrdenie pochádza od Leonard Eulera z roku 1769, a až o 218 rokov neskôr Noam Elkies ukázal, že neplatí: a = 95800, b = 217519, c = 414560, d = 422481 sú riešením rovnice.

Axiómy sú tvrdenia, ktoré považujeme za pravdivé. Existujú známe systémy axióm, napríklad Euklidove axiómy rovinnej geometrie, často ale ako systém axiómov používame zrejmé vlastnosti celých či reálnych čísel.

Dôkaz je potom reťaz implikácií, ktorými ukážeme, že dané tvrdenie vyplýva z axióm (alebo zrejmých tvrdení).

Dôkaz matematickou indukciou

Ak máme dokázať platnosť tvrdenia pre všetky prirodzené čísla, často využívame dôkaz matematickou indukciou

- Dokážeme tvrdenie pre nejaké počiatočné n, napríklad n=1. (počiatočný prípad, $base\ case$)
- Dokážeme, že z platnosti tvrdenia pre k=n vyplýva platnosť tvrdenia pre k=n+1.

Toto zaručuje platnosť tvrdenia pre všetky n: vychádzajúc z počiatočnej hodnoty n=1, postupne pomocou indukčného kroku vieme dokázať platnosť pre $n=2,3,\ldots$

Úloha

Dokážte, že pre všetky prirodzené čísla $n \geq 1$ platí $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Dôkaz

Ako P(n) označíme predikát

$$1^2+2^2+\cdots+n^2=rac{n(n+1)(2n+1)}{6}$$

Platnosť P(n) pre všetky prirodzené čísla dokážeme matematickou indukciou.

- 1. Počiatočný prípad: P(1) platí , pretože $1^2=rac{1\cdot (1+1)(2+1)}{6}=1.$
- 2. Indukčný krok: Dokážeme, že z platnosti P(n) vyplýva platnosť P(n+1), n = 1, 2,Nech teda platí P(n), , teda $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$. Dokážeme, že z toho vyplýva platnosť P(n+1(). Skutočne,

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^{2}}{6} = \frac{(n+1)(2n^{2} + n + 6n + 6)}{6}$$

$$= \frac{(n+1)(2n^{2} + 7n + 6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)((n+1) + 1)(2(n+1) + 1)}{6}$$

a teda z platnosti P(n) vyplýva platnosť P(n+1), čím je dôkaz dokončený.

Úloha

Dokážte, že všetky kone sú rovnakej farby.

Dôkaz

Ako K(n) označíme predikát "V každej množine koní veľkosti n majú všetky kone rovnakú farbu." Dôkaz vykonáme matematickou indukciou.

- 1. (Base case) K(1) triviálne platí: Pre množinu veľkosti 1 máme jediného koňa a jedinú farbu.
- 2. (Indukčný krok) Predpokladajme, že platí K(n): "V každej množine koní veľkosti n majú všetky kone rovnakú farbu". Ukážeme, že z toho vyplýva platnosť K(n+1). Skutočne, označme $K=\{k_1,k_2,\ldots,k_n,k_{n+1}\}$ nejakú množinu koní veľkosti n+1. Podľa predpokladu kone v množinách veľkosti n, $\Lambda=\{k_1,k_2,\ldots,k_n\}$, a $M=\{k_2,\ldots,k_n,k_{n+1}\}$, majú rovnakú farbu. Potom ale všetky kone v K musia mať rovnakú farbu, pretože množiny Λ a M obsahujú spoločné kone k_2,\ldots,k_n , a teda keďže každý kôň môže mať jedinú farbu všetky

kone v ich zjednotení $\Lambda \cup M = K$ musia mať rovnakú farbu. Tým sme dokázali, že z K(n) vyplýva K(n+1) a dôkaz platnosti K(n) pre všetky prirodzené n tým je dokončený.

4. Domáca úloha (nová)

- 1. Dokážte, že pre všetky prirodzené n je číslo n(n+1)(n+5) deliteľné 3.
- 2. Riešte rovnicu

a.
$$x^3 + x = 350$$

b.
$$x^3 - 9x^2 + 27c - 27 = 0$$

- 3. Riešte rovnicu $8^x 27^x = 6\sqrt[5]{6}$
- 4. Ak je $\sin x\degree=12/13$, čomu sa rovná $\cos{(90\degree-x\degree)}$?