УДК 576.895.771

© 1991

ВОЗМОЖНОСТЬ УСОВЕРШЕНСТВОВАНИЯ КУЛЬТУРЫ AEDES TOGOI И НЕКОТОРЫЕ ДАННЫЕ ОБ ЭКОЛОГИИ ЭТОГО ВИДА

В. В. Ясюкевич, С. П. Расницын

Выявлена возможность выращивания личинок в пресной воде на упрощенном кормовом рационе при плотности посадки 50 лич./дм 2 и содержания комаров в маленьких садках объемом 1 дм 3 . На основании того, что личинки успешно развиваются в воде, содержащей от 0 до 4 % NaCl, а комары предпочитают откладывать яйца в пресную воду, делается вывод, что исследованный штамм не солелюбив, а солеустойчив.

Повышенный интерес к комарам Aedes togoi Theobald, 1907 связан с тем, что они считаются важнейшими переносчиками японского энцефалита (Крашкевич, Тарасов, 1969; Маркович, 1974; Тарасов, 1988). Поскольку лабораторные культуры открывают большие возможности для многостороннего изучения объекта, в разных странах неоднократно создавались экспериментальные колонии этого вида (Чагин, 1943; Lien, 1960; Weathersby, 1962). Последнее и наиболее полное описание лабораторной культуры Aedes togoi в нашей стране опубликовано 10 лет тому назад (Александрова и др., 1978). Авторы этой работы несомненно учли опыт предыдущих исследователей, и поэтому при попытке создания культуры этого вида мы ориентировались главным образом на указанное описание. Это тем более имело смысл, так как наша культура была отводком от культуры, описанной в цитированной публикации.

В процессе поддержания Ae. togoi мы провели ряд экспериментов, результаты которых раскрыли новые стороны биологии данного вида и позволили существенно усовершенствовать методику его культивирования (сократить трудозатраты и производственные площади), чем мы и хотим поделиться с другими исследователями.

методы

Личинок комаров содержали в эмалированных кюветах площадью 3,4 дм² с глубиной слоя воды 2 см. Первоначальные условия содержания во всем (кроме корма) соответствовали условиям культуры, из которой был взят исходный материал. Корм для личинок не дозировался. В течение развития личинок его добавляли. По мере отработки определенных условий (корм, соленость воды и т. д.) методы содержания личинок модернизировались. Как именно это происходило, указано в дальнейшем тексте.

В качестве характеристик культуры использованы следующие показатели: выживаемость личинок — доля особей (в %), достигших стадии

 $^{^{1}}$ Пользуемся случаем выразить глубокую благодарность Н. А. Тамариной и Г. О. Лильпу, снабдивших нас исходным материалом.

куколки (окуклившихся) от вылупившихся из яиц; длительность развития — число суток от выхода личинок из яиц до их окукливания (сбор куколок проводили 1 раз в сутки); доля самок (в %) определялась на стадии куколки путем просмотра особей под микроскопом; масса женских куколок определялась по методике, описанной ранее (Расницын и др., 1983); осемененность самок определялась путем регистрации наличия спермиев в сперматеках; плодовитость самок определяли по числу развитых фолликулов (на 4—5-й стадиях Кристоферса) после завершения самками, принявшими полную порцию крови, процесса пищеварения; выживаемость куколок — доля особей (в %), из которых вылетели комары. В каждом опыте куколок разного пола разделяли, что давало возможность определять выживаемость самцов и самок отдельно.

Три последние характеристики определялись по репрезентативным выборкам (объем исследованного материала приведен вместе с результатами), а все остальные — по всем особям, включенным в соответствующие опыты.

РЕЗУЛЬТАТЫ

1. Корм для личинок. В исходной культуре питание личинок обеспечивалось сложным составом среды, который мы не могли воспроизвести из-за недостатка времени и средств. Известно, что другие виды этого рода могут успешно развиваться, получая в качестве пищи дрожжи или кормовой концентрат для лабораторных животных (Расницын, 1980; Chapmen, Barr, 1969; Singh e. a., 1974). Поэтому мы прежде всего попытались оценить возможность использования этих кормов и для данного вида. Эксперименты (табл. 1) не выявили существенной зависимости характеристик культуры от того, чем кормили личинок. Оба корма оказались вполне пригодными: выживаемость личинок была выше 90 % (в исходной культуре 84 %), развитие их длилось в среднем не более 9 сут (в исходной культуре — около 10 сут), масса женских куколок была такой же, как и в исходной культуре. В дальнейшем в опытах личинки получали дрожжи (их легче дозировать), а в рабочей культуре — кормовой концентрат (он дешевле). Использование указанных кормов обходится гораздо дешевле, чем среды, применявшейся в исходной культуре. Дело в том, что и дрожжи, и кормовой концентрат производятся промышленностью, а настой из торфа, мха и листьев с добавлением гематогена и витаминов приходится готовить вручную, что требует много времени и производственной площади.

2. Соленость среды обитания личинок. Ae. togoi считается солелюбивым видом (Маркович, 1974; McGinnis, Brust, 1983), имеющим специальные приспособления к жизни в условиях повышенного осмотического давления окружающей среды (Asakura, 1978, 1980, 1982). Поэтому в лабораторных культу-

Таблица 1 Результаты выращивания личинок на разном корме Results of rearing larvae on different food

	Корма		
Показатель	дрожжи	кормовой концентрат 24 4080 91±2 8.8±0.3 7.9±0.1 52±3	
Число опытов Число особей Доля выживших (%) Длительность развития (сутки) Вес женских куколок (мг) Доля самок (%)	22 3740 95 ± 2 8.7 ± 0.3 8.1 ± 0.1 $53+4$		

Таблица 2 Развитие личинок в воде разной солености Development of larvae in water of different salinity

Соленость воды (%)	Число опытов	Число личинок	Доля выжив- ших (%)	Длительность развития до окукливания (сут)	Масса женских куколок (мг)	Доля самок (%)
0	7	1190	93+5	8.9+0.2	8.2+0.1	52+3
0.3	7	1190	96 + 2	9.4 ± 0.3	8.2 + 0.1	50 + 3
0.6	7	1190	96 + 3	8.8 + 0.3	8.2 ± 0.1	52 + 2
1	7	1190	98 + 2	8.7 + 0.2	8.2 ± 0.2	50 + 4
2	7	1190	91 + 2	9.1 + 0.2	8.1 ± 0.1	54 + 3
3	7	1190	93 + 2	9.7 + 0.3	7.4 ± 0.2	53 + 4
4	8	1360	80 + 8	10.6 ± 0.4	6.7 ± 0.4	46 + 4
5	8	1360	44 + 11	12.6 ± 0.5	5.9 + 0.3	47 + 7
6	8	1360	2+2	14.6 ± 3.0	5.1 ± 2.3	48 + 42

Таблица 3

Результаты выращивания личинок при разной плотности посадки особей Results of rearing larvae at different densities of holding individuals

	Плотность посадки особей на дм 2			
Показатель	10	25	50	
Число опытов	32	28	31	
Число особей	1088	2380	5270	
Выживаемость (%)	95 ± 1	94 + 1	93 ± 2	
Длительность развития (сутки)	8.4 ± 0.1	8.7 ± 0.2	9.0 ± 0.2	
Macca женских куко- лок (мг)	8.1 ± 0.1	8.0 ± 0.1	7.9 ± 0.1	
Доля самок (%)	56 ± 4	50 ± 3	52 ± 2	

Таблица 4

Результаты выращивания личинок при разной температуре Results of rearing larvae at different temperature

Показатель	Температура среды, в ⁰				
Показатель	16—19 26—27		29-32		
Число опытов	4	8	6		
Число особей	680	1360	1020		
Доля выживших (%)	96 + 4	94 ± 3	82 + 7		
Длительность развития (сутки)	20.9 ± 0.1	9.0 ± 0.2	8.2 ± 0.8		
Масса женских куко- лок (мг)	10.6 ± 0.2	7.9 ± 0.2	6.3 ± 0.2		
Доля самок (%)	50 <u>+</u> 8	53 ± 2	50 ± 4		

Таблица 5

Плодовитость самок на 1-м репродуктивном цикле Fecundity of females at the 1-st reproductive cycle

Средняя ма куколок (м	Число особей	Среднее число яиц в кладке	Средняя масса куколок (мг)	Число особей	Среднее число яиц в кладке
6.3 7.1 7.9 8.5	13 16 17 24	109 ± 6 130 ± 11 139 ± 8 153 ± 7	9.7 10.6 10.3 10.7	15 11 16 10	165 ± 6 169 ± 17 183 ± 8 180 ± 14

Таблица 6 Осемененность комаров в садках разного размера Insemination of mosquitoes in cages of different sizes

	Объем садка (дм³)			
	1	5	64	
число особей в 1 садке	26—30	180—200	438—486	
Число опытов на 8-е сутки	20	6	5	
Число исследованных особей	267	193	184	
Для осемененных (%) на 13-е сутки	66 + 9	93 ± 9	97 ± 3	
Число исследованных особей	278	203	174	
Доля осемененных (%)	88 + 5	97 + 4	100	

рах личинок этого вида содержат в воде определенной солености (Weathersby, 1962; Александрова и др., 1978).

Достаточно точное поддержание солевого состава среды в сосудах с личинками доставляет много хлопот. Поэтому была предпринята попытка определить диапазон их выносливости к этому фактору. В отличие от предыдущих авторов мы не ограничивались регистрацией выживаемости и продолжительности развития, а оценивали также вес куколок, который, как известно, является хорошим морфофизиологическим индикатором состояния особей (Расницын, 1986).

В результате (табл. 2) обнаружено, что Ae. togoi одинаково хорошо развиваются в воде с содержанием NaCl от 0 до 2 %. Начиная с 3 % солености отмечается уменьшение массы куколок, а с 4 % — выживаемости и скорости развития. 6 % NaCl — концентрация, вероятно, близкая к предельной: в этих условиях выживает не более 3 % особей, масса уменьшается чуть ли не вдвое, а развитие удлиняется более чем в 1.5 раза. Во всех вариантах опыта доля женских куколок достоверно не отличалась от 50 %, что говорит об идентичности реакции особей разного пола на этот фактор.

Исходя из полученных результатов, мы перешли на содержание личинок в пресной воде (отстоянной водопроводной) и все дальнейшие опыты проводили в этих условиях.

3. Плотность посадки личинок. Оптимизацией плотности посадки личинок Ae. togoi никто, видимо, не занимался. В литературе этот параметр условий содержания указывается редко и ничем не обосновывается. В то же время на примере других видов (Демина и др., 1985) мы знаем, что использо-

Таблица 7 Откладка комарами яиц в воду разной солености Laying eggs in water of different salinity

Концентрация соли (%) Яиц		Доля яиц (%),	отложенных в солености	Доля случаев наличия (%		
	минимальная	средняя	максимальная	яиц	полных кладок	
0	29265	11.8	27.89	52.4	100	100
0.3	30030	11.1	26.75	51.3	100	100
0.6	16472	8.3	15.78	24.5	100	100
0.8	16056	6.4	15.94	27.8	100	100
1	10246	3.5	9.17	16.7	100	82
2	4024	1.4	4.31	9.6	100	59
3	851	0	0.81	4.1	94	12
4	398	0	0.25	1	76	0
5	95	0	0.08	0.4	70	0
6	49	0	0.02	0.2	29	0

вание оптимальной плотности дает много преимуществ. Эксперименты показали (табл. 3), что для $Ae.\ togoi$ оптимум близок к 50 особям на дм 2 (при глубине 2 см это составляет 250 особей на дм 3). В этих условиях исследованные характеристики культуры почти не отличаются от таковых при плотности, принятой в исходной культуре (разница не более чем на $10\ \%$). Дальнейшее увеличение плотности резко снижало вес получаемых куколок. Использование плотности посадки 50 личинок/дм 2 дает возможность в 1.5 раза повысить эффективность использования оборудования и производственных площадей, отведенных для содержания личинок, по сравнению с исходной культурой, где плотность посадки около $30\$ личинок/дм $^2\$ (Александрова и др., 1978).

4. Температурные условия для личинок. В попытке ускорить развитие особей (что дало бы повышение производительности культуры, аналогичное повышению плотности посадки) проведена оценка возможности выращивания личинок при более высокой температуре. Одновременно в надежде получить более крупных, а следовательно, и более плодовитых особей, оценены результаты их выращивания при пониженной температуре. Опыты показали (табл. 4), что изменять температуру нецелесообразно. При высокой температуре на 13 % падает выживаемость, на 20 % уменьшается вес куколок, а скорость развития возрастает менее чем на 9 %. Аналогично и с низкими температурами: выживаемость практически не изменяется (разница статистически недостоверна), масса куколок увеличивается на 34 %, что обеспечивает увеличение плодовитости на 29 % (табл. 5), но при этом значительно (в 2.3 раза) замедляется скорость развития.

Таким образом, переход на пресную воду, изменение личиночного корма и повышение плотности посадки особей существенно сократили затраты на поддержание культуры. Качество биоматериала при этом не понизилось. Масса куколок не уступала таковой в исходной культуре, их выживаемость осталась на высоком уровне: 94.3 ± 1.9 — у женских и 96.3 ± 1.5 % — у мужских (исследовано по 600 особей каждого пола), не изменилось также и соотношение полов.

5. Условия содержания имаго. Из-за недостатка места мы не могли полностью воспроизвести условия содержания имаго, принятые в исходной культуре. Мы содержали их в садках объемом 5 дм³ (что почти в 45 раз меньше, чем в исходной культуре), практически в полной темноте — свет зажигался не более чем на 1 ч в сутки во время уборки помещения и обслуживания садков (смена глюкозы, сбор яйцекладок и т. п.), донором крови был кролик, а не крыса. Но эти изменения условий не вызвали отрицательных последствий: продолжительность жизни комаров была примерно такой же, как в исходной культуре, а осемененность самок даже выше (табл. 6). Хорошая осемененность наблюдалась во всех вариантах размеров садков, самый большой из которых был почти в 3.5 раза, а самый маленький в 200 раз меньше применяемого в исходной культуре.

О способности комаров данного вида копулировать в небольших объемах (от 12 до 96 дм³) уже писали (Чагин, 1943; Trimble, Wellington, 1979), но отом, что это может происходить в дециметровых садках и в отсутствие суточного ритма смены освещенности, известно не было. Сокращение размеров садков упростило требования к размерам помещения, облегчило изготовление садков и манипуляции с ними. Отказ от специального светового режима позволил сэкономить средства на создание и эксплуатацию соответствующего оборудования.

6. Плодовитость имаго. Специальные исследования (табл. 5) показали, что у Ae. togoi, как и у Ae. aegypti (Steinwascher, 1982), существует тесная связь плодовитости самок на 1-м репродуктивном цикле (конечно, в том случае, если они примут полную порцию крови) с массой женских куколок (коэф-

фициент корреляции 0.99 ± 0.13). Эта связь имеет вид Y=13.7+15.8X, где Y — среднее число яиц (шт.), X — масса женских куколок (мг). В эту зависимость укладываются данные о плодовитости самок в исходной культуре.

Использование выявленной зависимости имеет следующие практические преимущества: 1) взвешивание куколок требует в десятки раз меньше времени, чем кормление комаров кровью и подсчет яиц; 2) путем взвешивания куколок мы можем судить о плодовитости заранее, по крайней мере за неделю до того, как из этих куколок вылетят комары, напьются крови и разовьют яйца (Расницын и др., 1983).

В рабочей культуре плодовитость комаров была близка к ожидаемой для массы их куколок (около 8 мг) и составила 167 ± 10 яиц на самку. Это говорит о том, что большинство особей принимало полную порцию крови.

7. «Солелюбивость» Ae. togoi. Обнаруженная возможность развития личинок в пресной воде поставила вопрос о солелюбивости этого вида. Ответ найден путем изучения откладки комарами яиц. Для этого в садок с комарами помещали 10 одинаковых чашек с растворами NaCl от 0 до 6 %. Расположение чашек было рандомизировано. Оценка числа яиц, отложенных в каждую чашку, приведена в табл. 7; в ней обобщены результаты 17 опытов, в каждом из которых было отложено не менее 1500 яиц (всего более 107 тыс.). Результаты показывают, что комары одинаково часто откладывают яйца и в пресную воду, и в воду, содержащую небольшое количество соли (0.3 %). Дальнейшее повышение солености препятствует откладке, а при достижении уровня, близкого к морской воде (3 %), доля отложенных яиц сокращается до 1 %. При этом, как правило (88 %), это единичные яйца, а не полные кладки. Тот факт, что единичные яйца встречаются даже в очень соленой воде (6%), объясняется, вероятно, следующим: готовая к яйцекладке самка привлекается к воде по градиенту влажности, садится на ее поверхность и почти сразу же приступает к откладке яиц. Чем выше соленость воды, тем быстрее на нее реагируют хемочувствительные рецепторы на лапках, и самка прекращает откладку яиц и улетает.

Сопоставление выбора комарами воды для откладки яиц и способности личинок развиваться при разной солености (раздел 2) позволяет сделать следующий вывод: Ae. togoi (по крайней мере исследованный штамм) не солелюбив, а солеустойчив.

выводы

- 1. В качестве корма личинок Ae. togoi можно использовать дрожжи или кормовой концентрат для лабораторных животных. Применение указанных кормов требует меньше затрат, чем сложной среды в исходной культуре.
- 2. Личинок Ae. togoi можно выращивать в пресной воде. В этом случае отпадают затраты труда на приготовление соленой воды и поддержание стабильной концентрации соли в сосудах с личинками.
- 3. Плотность посадки личинок Ae. togoi можно повысить до 50 особей на $дм^2$ (при глубине слоя воды 2 см), что в 1.5 раза выше, чем в исходной культуре. Это позволяет более эффективно использовать оборудование и производственные площади при сохранении качества биоматериала в культуре.
- 4. Оптимальная температура выращивания личинок 26-27°. Повышение температуры до 29-32° вызывает снижение выживаемости, массы и плодовитости особей. Снижение температуры до 16-19° не сказывается на выживаемости и позволяет получить более крупных и плодовитых особей, но при этом их развитие замедляется более чем в 2 раза.
- 5. Окрыленных комаров Ae. togoi можно держать в небольших садках (до 1 дм ³), в темноте и кормить их кровью кролика. В этих условиях происходит успешное осеменение, кровососание и откладка яиц. Применение малых

садков и отказ от специального режима освещения сокращают затраты на поддержание культуры.

6. У Ae. togoi существует тесная связь между весом куколок и плодовитостью имаго. Использование формулы, приведенной в тексте, позволяет определить ожидаемое число яиц заранее и с меньшими затратами труда.

7. Личинки Ae. togoi одинаково успешно развиваются как в пресной, так и в соленой (до 2 %) воде. Увеличение солености до 3 % сопровождается небольшим снижением массы особей, дальнейшее повышение солености вызывает значительное снижение как массы, так и выживаемости и скорости развития. При 6 % выживает всего 2 % особей. Несмотря на широкий диапазон переносимой личинками солености, самки предпочитают откладывать яйца в пресную или слабосоленую (0.3 %) воду. Из этого следует, что данный вид не солелюбив, а солеустойчив.

Список литературы

- Александрова К. В., Тамарина Н. А., Резник Е. П. Опыт лабораторного культивирования комара Aedes togoi (Diptera, Culicidae) // Паразитология. 1978. Т. 12, вып. 2. С. 167—169.

 Демина В. Т., Шагов Е. М., Расницын С. П. Оптимизация плотности содержания личинок Anopheles sacharovi Favre (Diptera, Culicidae) // Мед. паразитол. 1985. № 4.
- C. 56-58.
- Крашкевич К.В., Тарасов В.В. Медицинская паразитология. М.: Изд-во МГУ, 1969. 390 с. Маркович Н. Я. Немалярийные комары (подсем. Culicinae) // Руководство по медицинской энтомологии. М.: Медицина, 1974. С. 103—133.
- Расницын С. П. Питательная среда для выращивания личинок желтолихорадочного комара Aedes aegypti. Автор. свидет. СССР № 790 389 // Бюл. Открытия, изобретения, промышленные образцы, товарные знаки. 1980. № 47. С. 18.
- Расницын С. П. Анализ применимости показателей, характеризующих размеры, вес и плодовитость комаров, в качестве морфофизиологических индикаторов // Паразитология. 1986. Т. 22, вып. 2. С. 106—111.
- Расницын С. П., Шагов Е. М., Демина В. Т. Возможность использования массы куколок как показателя состояния особей у комаров // Мед. паразитол. 1983. № 4. С. 42—45. Тарасов В. В. Экология кровососущих насекомых и клещей. М.: Изд-во МГУ, 1988. 264 с. Чагин К. П. Наблюдения за циклом развития Aedes (F). togoi в лабораторных и природных условиях // Мед. паразитол. 1943. Т. 12, № 2. С. 44—52.
- As a kura K. Phosphatase activity in the larva of the euryhaline mosquito, Aedes togoi Theobald, with special reference to sea-water adaptation // J. Exp. Mar. Biol. and Ecol. 1978. Vol. 31,
- with special reference to sea-water adaptation // J. Exp. Mar. Biol. and Ecol. 1976. Vol. 31, N 3. P. 325—337.

 As a k u r a K. The anal portion as a salt-excreting organ in a sea-water mosquito larva, Aedes togoi Theobald // J. Comp. Physiol. 1980. Vol. B 138, N 1. P. 59—65.

 As a k u r a K. A possible role of the gastric caecum in osmoregulation of the sea-water mosquito larva, Aedes togoi Theobald // Annot. Zool. Jap. 1982. Vol. 55, N 1. P. 1—8.

 Chapmanh H. C., Barr A. R. Techniques for successful colonization of many mosquito species // Mosquito News. 1969. Vol. 29, N 4. P. 532—535.

 McGinnis K. M., Brust R. A. Effect of different seasalt concentration and temperatures an larval development of Aedes togoi (Dintera Culicidae) from British Columbia // Environ. En-

- larval development of Aedes togoi (Diptera, Culicidae) from British Columbia // Environ. Entomol. 1983. Vol. 12, N 5. P. 1406—1411.
- Lien J. Laboratory culture of Aedes (Finlaya) togoi (Theobald) and measurment of its susceptibility to insecticides // Entomologia experimentalis et applicata. 1960. Vol. 3, N 4. P. 267—429.
- Singh K. R. P., Brooks G. D., Ansari M. A. Mass rearing of mosquitoes // J. Commun. Diseases. 1974. Vol. 6, N 2. P. 121—126.

 Steinwascher K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti // Environ. Entomol. 1982. Vol. 11, N 1. P. 150—151.

 Trimble R. M., Wellington W. Q. Colonization of North American Aedes togoi // Mosquito News. 1979. Vol. 39, N 1. P. 18—20.

- We at hers by A. B. Colonization of six species of mosquito in Japan // Mosquito News. 1962. Vol. 22, N 1. P. 31—34.

ИМПиТМ им. Е. И. Марциновского, Москва

Поступила 12.05.1989, после доработки 10.12.1990

POSSIBILITIES OF IMPROVING THE AEDES TOGOI CULTURE AND SOME DATA ON THE ECOLOGY OF THIS SPECIES

V. V. Jasiukevich, S. P. Rasnitsyn

Key words: Aedes togoi, laboratory culture of mosquitoes

SUMMARY

A possibility of rearing *Aedes togoi* larvae in fresh water on simple diet and at the density of $50 \text{ larvae}/dm^2$ is shown. The mosquitoes were held in small cages up to $1 \text{ } dm^3$. The larvae developed successfully at a concentration of *NaCl* from 0 to 4%, mosquitoes prefer to lay eggs in fresh water. It was concluded that the investigated strain is not salt-loving but salt-tolerant.