BTS-VI	((S.S)-1)	1-22-1140	Reg. No.
	(~.~)		

B

B. Tech. Degree VI Semester Special Supplementary Examination November 2022

CS 19-202-0606(IE) NEURAL NETWORKS AND DEEP LEARNING

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

CO1: Identify the basic concepts of deep learning.

CO2: Analyse the deep learning architectures which are appropriate for various types of learning tasks in different domains.

CO3: Illustrate use of TensorFlow libraries to implement deep neural networks.

CO4: Apply TensorFlow in NLP applications.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze,

L5 - Evaluate, L6 - Create

PO - Programme Outcome

PART A
(Answer ALL questions)

		(8 × 3	= 24)	Marks	BL	CO	PO
I.	(a)	Compare biological neuron and artificial neuron.		3	L2	1	1
	(b)	Design a McCulloch Pitts Neuron to solve the function		3	L3	1	3
		(x1 AND x2) OR (x2 AND x3) OR x4.					
	(c)	Given an input that is $63 \times 63 \times 16$ and convolve it with 32 filte are each 7×7 , using a stride of 2 and no padding. What is the volume?		3	L3	2	3
	(d)	Discuss why RNNs work better with text data.		3	L2	2	2
	(e)	Write a program to define two "one dimensional" vectors and su the vectors using TensorFlow 2.0.	ıbtract	3	L3	3	5
	(f)	Discuss on how to implement pooling in TensorFlow.		3	L2	3	5
	(g)	Compare Word2Vec and Doc2Vec.		3	L2	4	2
	(h)	Explain one-hot encoding.		3	L1	4	1
	,	PART B			,		
٠,		(4 × 12	= 48)				
П.	(a)	Explain the architecture and training algorithm of percentworks. Design a perceptron network for the AND gate. Stalimitations.		8	L2	1	1
	(b)	Explain the intuition behind Gradient descent procedure. OR		4	L1	1	1
III.		Explain the architecture and training algorithm for Back propaneural networks. What are its limitations?	gation	12	L2	1.	1

(P.T.O.)

			Marks	BL	CO	PO
IV.	(a)	Explain the architecture of Convolutional Neural Networks.	6	L2	2	1
-	(b)			L3	2	3
		84, and 10 units respectively. Calculate the output shape of each layer and the number of learnable parameters in each stage. OR				
V.		Explain the vanishing gradient problem. How does LSTM solve this problem? Explain the LSTM architecture with detailed diagrams,		L2	2	2
VI.		Elucidate the steps involved in building a deep learning model with TensorFlow.		L2	3	5
		OR				
VII.	(a)	Discuss about overfitting. Explain any two techniques to reduce overfitting.	5	L2	3	2
	(b)	Explain the different types of sequence prediction in LSTM.	7	L2	3	2
VIII.		Discuss the vectorization approaches for text representation. Explain each technique in detail. OR	12	L2	4	1
IX.		Compare the different word2vec and doc2vec embedding architectures.	12	L2	4	2

Blooms's Taxonomy Levels L1 – 11%, L2 – 68%, L3 – 21%.
