TÌM MA TRẬN NGHỊCH ĐẢO BẰNG PHƯƠNG PHÁP GAUSS – JORDAN

THUẬT TOÁN

INPUT: Nhập ma trận vuông từ file "input.txt"

OUTPUT: Ma trận nghịch đảo của ma trận đã cho nếu ma trận đã cho khả nghịch.

Ngược lại, in ra dòng chữ "Ma trận không khả nghịch!!!"

MỘT SỐ HÀM SỬ DỤNG TRONG THUẬT TOÁN

- TimPhanTuGiai(): Tìm phần tử giải của ma trận A

Duyệt từng hàng của ma trận A từ trên xuống dưới

B1: Bỏ qua những hàng có phần tử giải

B2: Xét từ trái qua phải:

- Nếu thấy có giá trị 1 hoặc -1, chọn đó làm phần tử giải
- Nếu không có 1 hoặc 1, chọn phần tử khác 0 có giá trị tuyệt đối lớn nhất

B3: Nếu tìm thấy phần tử giải, lưu giá trị và lưu vị trí hàng cột của nó.

Ngược lại, "Ma trận không khả nghịch!!!" → Dừng chương trình

- GaussJordan(): biến đổi tương đương trên hàng của ma trận bổ sung [A|E]

B1: Dùng hàm TimPhanTuGiai() để tìm phần tử giải Apq

B2: Biến đổi sơ cấp trên [A|E]:

- Giữ nguyên hàng p: $(hàng p)^{(1)} = (hàng p)$
- Các phần tử khác tính theo công thức:

$$(hang i)^{(1)} = (hang i) - [A|E]_{ip}*(hang p)$$

=> Ta thu được ma trận [A|E]⁽¹⁾

B3: Lặp lại bước 2 để tìm $[A|E]^{(2)}$, $[A|E]^{(3)}$, ... cho đến khi không thể chọn được phần tử giải nữa

- Chuanhoaheso(): để chuẩn hoá hệ số 1

 \mathring{O} mỗi hàng của $[A \mid E]^{(n)}$, mọi phần tử của hàng đó chia cho phần tử giải của hàng đó

- SoSanh(a, b, n): kiểm tra xem 2 hàng đã sắp xếp đúng chưa

Xét 2 (hàng a) và (hàng b) của ma trận bên trái của [A|E]⁽ⁿ⁾ sau khi chuẩn hóa hệ số 1, xét các phần tử trên cùng 1 cột

nếu ở hàng a là 1 và ở hàng b là 0 => trả về giá trị 1

nếu ở hàng a là 0 và ở hàng b là 1 => trả về giá trị -1

trường hợp còn lại là cả 2 hàng đều bằng 0 => trả về giá trị 0

- SapXepHang(): chuẩn hóa về ma trận [E/A⁻¹]

Lặp lại n lần:

Dùng hàm SoSanh(hàng i, hàng i+1, n) kiểm tra (hàng i) với các (hàng i+1) đã xếp đúng chưa

Nếu SoSanh(hàng i, hàng i+1, n) trả về giá trị 1 thì đổi chỗ 2 hàng đó trên ma trận $[A|E]^{(n)}$ sau khi chuẩn hóa hệ số 1

*Main(): Chương trình chính

B1: Nhập input ma trận A vuông từ file "input.txt"

B2: Tính kích cỡ ma trận A là: n

B3: Tạo ma trận đơn vị E của A

B4: Với mỗi i = 0, 1, ..., (n-1)

Dùng hàm GaussJordan() để biến đổi tương đương trên hàng của ma trận bổ sung [A|E]

B5: Dùng hàm Chuanhoaheso() để chuẩn hoá hệ số 1

B6: Dùng hàm SapXepHang() để chuẩn hóa về ma trận [E|A-1]

B7: Xuất ra ma trận A⁻¹

VÍ DỤ

```
Ma trận đã cho
[[ 3. 5. 7.]
[ 2. 1. 4.]
[-3. -5. -7.]]
Ma trận không khả nghịch!!!!
```