Quantum Information Theory

Mid Semester Exam

Wednesday, 24 September 2025

Notations and nomenclature are for problems below are from class lectures and discussion. Attempt questions accordingly. Provide justification for your arguments and steps. [40 points = 15 marks]

1. Let $\mathcal{N}_{A\to B}$ be a quantum channel. Then for any quantum state ρ_A , prove the following identity:

$$id_R \otimes \mathcal{N}_{A \to B}(\rho_A) = tr_A[(\rho_A^T \otimes \mathbb{1}_B)\Gamma_{AB}^{\mathcal{N}}]$$
 (1)

$$= \langle \Gamma |_{A'A} \, \rho_{A'} \otimes \Gamma_{AB}^{\mathcal{N}} \, | \Gamma \rangle_{A'A} \,, \tag{2}$$

where A' is isomorphic to A, id_R denotes the identity channel, and $\Gamma_{AB}^{\mathcal{N}} = \mathrm{id}_{R \to A} \otimes \mathcal{N}_{A \to B}(\Gamma_{RA})$ is the Choi operator of the channel \mathcal{N} . [10+5 points]

- 2. What is the adjoint of the partial trace channel tr_A ? [10 points]
- 3. Write a purification of the following classical-quantum state:

$$\rho_{XA} := \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \rho_A^x, \tag{3}$$

where p_X denotes the probability distribution and $\{|x\rangle\}_x$ forms an orthonormal basis. [5 points]

4. An erasure channel is given as

$$\mathcal{E}_{A \to B}(\rho_A) = p\rho_B + (1-p)|e\rangle\langle e|_B. \tag{4}$$

Find an isometric extension channel of the erasure channel. It is fine if you simply provide isometric operator $V_{A\to BE}$ such that $\operatorname{tr}_E[V(\cdot)V^{\dagger}] = \mathcal{E}(\cdot)$. [10 points]