

IST - 1° Semestre de 2016/17

EXERCÍCIOS DE ÁLGEBRA LINEAR 1

FICHA 3 - Transformações Lineares

1 Linearidade

Transformações lineares são funções

$$T: E_1 \to E_2$$

entre dois espaços vectoriais E_1 e E_2 (sobre \mathbb{R} ou \mathbb{C}) com as seguintes características:

i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in E_1.$$

ii)
$$T(\alpha \mathbf{u}) = \alpha T(\mathbf{u}), \forall \mathbf{u} \in E_1, \forall \alpha \in \mathbb{K}.$$

A partir destes axiomas pode facilmente mostrar-se que as transformações lineares gozam das seguintes propriedades:

- $T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in E_1, \forall \alpha, \beta \in \mathbb{K}.$
- $T(-\mathbf{u}) = -T(\mathbf{u})$.
- T(0) = 0.

Um exemplo de transformação linear pode ser obtido através da operação de derivação de funções, dadas as suas propriedades no que concerne à soma e ao produto de funções. Se considerarmos o espaço $\mathbb P$ de todos os polinómios, a função $D: \mathbb P \to \mathbb P$ tal que

$$Dp\left(t\right) =p^{\prime}\left(t\right) ,$$

ou mais concretamente

$$D\left(a_nt^n + \dots + a_2t^2 + a_1t + a_0\right) = na_nt^{n-1} + (n-1)a_{n-1}t^{n-2} + \dots + 2a_2t + a_1,$$

constitui uma transformação linear entre P e ele próprio.

¹Coligidos por: João Ferreira Alves, Ricardo Coutinho e José M. Ferreira.

1.1 Algumas transformações lineares de \mathbb{R}^2 em \mathbb{R}^2

Outro exemplo de transformação linear

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

é-nos dado pelo produto de uma matriz \mathbf{A} , $m \times n$, por um vector coluna $\mathbf{x} \in \mathbb{R}^n$:

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x}.$$

Entre elas constam as seguintes transformações lineares de \mathbb{R}^2 em \mathbb{R}^2 (ver exercícios 8 e 11 da secção seguinte).

1. MUDANÇA DE ESCALA:

$$S_r(x,y) = (rx,ry) = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

(ampliação se r > 1, redução se r < 1).

2. ROTAÇÃO EM TORNO DA ORIGEM DE AMPLITUDE θ :

$$R_{\theta}(x,y) = (x \cos \theta - y \sin \theta, \ x \sin \theta + y \cos \theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

3. REFLEXÃO RELATIVAMENTE ÀS RECTAS $y = \pm x$:

$$R(x,y) = (\pm y, \pm x) = \begin{bmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

4. REFLEXÃO RELATIVA AO EIXO DOS xx:

$$R_x(x,y) = (x,-y) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

5. REFLEXÃO RELATIVA AO EIXO DOS yy:

$$R_y(x,y) = (-x,y) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

6. REFLEXÃO RELATIVA À ORIGEM:

$$R_0(x,y) = (-x,-y) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

7. PROJECÇÃO SOBRE O EIXO DOS xx:

$$P_x(x,y) = (x,0) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

8. PROJECÇÃO SOBRE O EIXO DOS yy:

$$P_y(x,y) = (0,y) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

2

1.2 Exercícios

Exercício 1 $T: \mathbb{R}^4 \to \mathbb{R}^2$ é uma transformação linear tal que

$$T(\mathbf{u}_1) = (1, -1), \ T(\mathbf{u}_2) = (1, 2), \ T(\mathbf{u}_3) = (-3, -1).$$

a) Calcule

i)
$$T(\mathbf{u}_1 - 2\mathbf{u}_2)$$
. *ii*) $T(3\mathbf{u}_1 - \mathbf{u}_2)$. *iii*) $T(\mathbf{u}_1 - \mathbf{u}_2 + 4\mathbf{u}_3)$.

b) Determine α e β tais que $T(\alpha \mathbf{u}_1 + \beta \mathbf{u}_3) = (0, -8)$.

Exercício 2 Quais das seguintes transformações são lineares?

- a) $T(x_1, x_2) = (x_1, x_2)$.
- b) $T(x_1, x_2) = (x_1 + 1, x_2)$.
- c) $T(x_1, x_2) = (2x_1^2 + x_1x_2, x_1)$.
- d) $T(x_1, x_2, x_3) = (2x_1 + x_2, x_1 + 2x_2, x_1 + 2x_2 + x_3)$.
- e) $T(x_1, x_2, x_3) = (x_1 + 3, x_1 + 2x_2 + x_3, x_2 4x_3)$.
- f) $T(x_1, x_2, x_3, x_4) = (2x_1 + x_2 x_3 + x_4, x_1 + x_2 3x_3)$.

Exercício 3 Com $k, m \in \mathbb{R}$, sejam T_k e T_m as transformações de \mathbb{R}^3 em \mathbb{R}^2 dadas, respectivamente, por:

$$T_k(x, y, z) = (x - y - z, x + y + z) + (k, k),$$

 $T_m(x, y, z) = (x^m - y^m - z^m, y^{m-1}z).$

Para que valores de k e m são T_k e T_m transformações lineares?

Exercício 4 A transformação $T: \mathbb{P} \to \mathbb{P}$, entre o espaço de todos os polinómios \mathbb{P} e ele próprio, é dada por

$$T(p(t)) = tp(t)$$
.

- a) Calcule $T(5+4t+3t^2+2t^3)$.
- b) Mostre que T é uma transformação linear.

Exercício 5 Seja $\mathbb{P}_1(\mathbb{R}) = \{a_0 + a_1t : a_0, a_1 \in \mathbb{R}\}$ o espaço dos polinómios de grau não superior a 1. A transformação $T : \mathbb{P}_1(\mathbb{R}) \to \mathbb{P}_1(\mathbb{R})$, entre $\mathbb{P}_1(\mathbb{R})$ e ele próprio, é dada por

$$T(a_0 + a_1 t) = b_0 + b_1 t$$

em que

$$\left[\begin{array}{c}b_0\\b_1\end{array}\right]=\left[\begin{array}{cc}1&-1\\-1&1\end{array}\right]\left[\begin{array}{c}a_0\\a_1\end{array}\right].$$

- a) Calcule T(1+2t).
- b) Determine a_0 e a_1 tais que $T(a_0 + a_1 t) = 1 t$. E tais que $T(a_0 + a_1 t) = 1 2t$?
- c) Mostre que T é uma transformação linear.

Exercício 6 Sejam $v_1, ..., v_p$, vectores de \mathbb{R}^n e $T : \mathbb{R}^n \to \mathbb{R}^m$ uma transformação linear. Mostre que se $T(v_1), ..., T(v_p)$ são linearmente independentes então o mesmo sucede a $v_1, ..., v_p$.

Exercício 7 Seja $T: \mathbb{R}^2 \to \mathbb{R}$ a transformação linear definida por T(x,y) = x - y. Dado $E \subset \mathbb{R}$, por $T^{-1}(E)$ entende-se o subconjunto de \mathbb{R}^2 ,

$$T^{-1}(E) = \{(x, y) \in \mathbb{R}^2 : T(x, y) \in E\}.$$

Determine e represente geometricamente:

a)
$$T^{-1}(\{3\})$$
. b) $T^{-1}(\{0\})$. c) $T^{-1}([-1,1])$.

Exercício 8 Seja $\Delta \subset \mathbb{R}^2$ o triângulo de vértices (1,1), (1,-1) e (2,0) e $C_{\rho} \subset \mathbb{R}^2$ a circunferência de centro na origem e raio $\rho > 0$. Relativamente às transformações lineares $T : \mathbb{R}^2 \to \mathbb{R}^2$ descritas a seguir, determine:

$$i) T(\Delta) . ii) T(C_{\rho}) .$$

- a) Reflexão relativamente ao eixo dos xx.
- b) Reflexão relativamente ao eixo dos yy.
- c) Reflexão relativa à recta y = x.
- d) Reflexão relativa à recta y = -x.
- e) Mudança de escala de razão r > 0.

Exercício 9 A transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$T(x,y) = \left(\frac{x}{2}, \frac{y}{3}\right).$$

Determine T(E), onde E designa a elipse de equação

$$\frac{x^2}{4} + \frac{y^2}{9} = 1.$$

Exercício 10 Com $\theta \in \mathbb{R}$, a transformação linear $\mathcal{R}_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$\mathcal{R}_{\theta}(x,y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta),$$

diz-se uma rotação de amplitude θ .

- a) Calcule os vectores $\mathcal{R}_{\pi/2}(1,0)$, $\mathcal{R}_{\pi/2}(0,1)$, $\mathcal{R}_{\pi/2}(1,1)$, $\mathcal{R}_{\pi/3}(1,1)$. Interprete os resultados geometricamente.
- b) Quais das seguintes matrizes representam rotações? Em caso afirmativo indique a respectiva amplitude.

$$i) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot ii) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot iii) \begin{bmatrix} -\sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix} \cdot iv) \begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix} \cdot v) \begin{bmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{bmatrix} \cdot v$$

- c) A composição de duas rotações, $\mathcal{R}_{\theta_2} \circ \mathcal{R}_{\theta_1}$, é uma rotação? Em caso afirmativo, qual a sua amplitude?
- d) Mostre que para qualquer $\theta \in \mathbb{R}$, \mathcal{R}_{θ} admite inversa. Determine-a.
- e) Se $C_{\rho} \subset \mathbb{R}^2$ for a circunferência de centro na origem e raio $\rho > 0$, mostre que $\mathcal{R}_{\theta}(C_{\rho}) = C_{\rho}$, para qualquer $\theta \in \mathbb{R}$.
- f) Seja r_a a recta de \mathbb{R}^2 cuja equação analítica é $y = ax \ (a \neq 0)$. Qual a equação analítica da recta $\mathcal{R}_{\pi/2}(r_a)$?

Exercício 11 Seja $\Delta \subset \mathbb{R}^3$, o triângulo de vértices (1,0,1), (-1,1,0) e (0,0,2). Relativamente às transformações lineares $T: \mathbb{R}^3 \to \mathbb{R}^3$ descritas a seguir, determine $T(\Delta)$.

- a) Reflexão com relação ao plano xOz.
- b) Reflexão com relação ao plano yOz.
- c) Rotação em torno do eixos dos zz de amplitude $\pi/2$.

2 Representação matricial de transformações lineares

Se $T: E_1 \to E_2$ for uma transformação linear entre E_1 e E_2 , e estes forem espaços vectoriais de dimensão finita, então T admite uma representação matricial no sentido que passamos a descrever.

Sejam $\mathcal{B}_1 = \{\mathbf{u}_1,...,\mathbf{u}_n\}$ uma base de E_1 (dim $E_1 = n$) e $\mathcal{B}_2 = \{\mathbf{v}_1,...,\mathbf{v}_m\}$ uma base de E_2 (dim $E_2 = m$). Então com $\mathbf{x} \in E_1$ temos

$$\mathbf{x} = x_1 \mathbf{u}_1 + \dots + x_n \mathbf{u}_n$$

e

$$T(\mathbf{x}) = x_1 T(\mathbf{u}_1) + \dots + x_n T(\mathbf{u}_n).$$

Como tal, as coordenadas de $[T(\mathbf{x})]_{\mathcal{B}_2}$ de $T(\mathbf{x})$ na base \mathcal{B}_2 relacionam-se com as coordenadas $[\mathbf{x}]_{\mathcal{B}_1}$ de \mathbf{x} na base \mathcal{B}_1 através de uma matriz $[T]_{\mathcal{B}_2\mathcal{B}_1}$ $(m \times n)$:

$$[T(\mathbf{x})]_{\mathcal{B}_2} = [T]_{\mathcal{B}_2 \mathcal{B}_1} [\mathbf{x}]_{\mathcal{B}_1},$$

em que as colunas de $[T]_{\mathcal{B}_{2}\mathcal{B}_{1}}$ são as coordenadas na base \mathcal{B}_{2} , $[T(\mathbf{u}_{1})]_{\mathcal{B}_{2}}$, ..., $[T(\mathbf{u}_{n})]_{\mathcal{B}_{2}}$, de

$$T\left(\mathbf{u}_{1}\right),...,T\left(\mathbf{u}_{n}\right).$$

No caso de ser $E_1 = \mathbb{R}^n$ e $E_2 = \mathbb{R}^m$, ou seja, quando $T : \mathbb{R}^n \to \mathbb{R}^m$ é uma transformação linear entre \mathbb{R}^n e \mathbb{R}^m , os vectores \mathbf{x} e $T(\mathbf{x})$ confundem-se com as suas coordenadas nas correspondentes bases canónicas, \mathcal{E}_n e \mathcal{E}_m . Assim, em tal caso

$$T(\mathbf{x}) = [T] \mathbf{x}$$

em que as colunas da matriz [T] são as coordenadas na base \mathcal{E}_m dos vectores $T(\mathbf{u}_1),...,T(\mathbf{u}_n)$.

2.1 Composição de transformações lineares

Com E_1 , E_2 e E_3 espaços vectoriais sobre \mathbb{K} (\mathbb{R} ou \mathbb{C}) sejam $T_1: E_1 \to E_2$ e $T_2: E_2 \to E_3$ duas transformações lineares. Então facilmente se observa que a composição de T_2 com T_1 ,

$$(T_2 \circ T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

é uma transformação linear entre os espaços E_1 e E_3 .

Se E_1 , E_2 e E_3 forem espaços de dimensão finita tais que

$$\dim E_1 = n$$
, $\dim E_2 = m$ e $\dim E_3 = \ell$,

de bases, respectivamente, \mathcal{B}_1 , \mathcal{B}_2 e \mathcal{B}_3 , T_1 admite uma representação matricial através de uma matriz $[T_1]_{\mathcal{B}_2\mathcal{B}_1}$, $m\times n$, e T_2 uma representação matricial por uma matriz $[T_2]_{\mathcal{B}_3\mathcal{B}_2}$, $\ell\times m$. Como tal, $T_2\circ T_1$ terá como representação matricial a matriz $[T_2]_{\mathcal{B}_3\mathcal{B}_2}$ $[T_1]_{\mathcal{B}_2\mathcal{B}_1}$ $(\ell\times n)$. Na verdade,

$$[(T_2 \circ T_1) (\mathbf{x})]_{\mathcal{B}_3} = [T_2 (T_1 (\mathbf{x}))]_{\mathcal{B}_3}$$

$$= [T_2]_{\mathcal{B}_3 \mathcal{B}_2} [T_1 (\mathbf{x})]_{\mathcal{B}_2}$$

$$= [T_2]_{\mathcal{B}_3 \mathcal{B}_2} [T_1]_{\mathcal{B}_2 \mathcal{B}_1} [\mathbf{x}]_{\mathcal{B}_1}.$$

2.2 Representação matricial e mudanças de base

Se \mathcal{D}_1 e \mathcal{D}_2 forem outras bases, respectivamente, de E_1 e E_2 a transformação linear $T: E_1 \to E_2$ terá uma representação matricial diferente, dada agora por uma outra matriz $[T]_{\mathcal{D}_2\mathcal{D}_1}$, igualmente $m \times n$.

As matrizes $[T]_{\mathcal{B}_2\mathcal{B}_1}$ e $[T]_{\mathcal{D}_2\mathcal{D}_1}$ relacionam-se de acordo com o diagrama

$$\mathbf{M}_{\mathcal{B}_{1} \leftarrow \mathcal{D}_{1}} \quad \stackrel{[T]_{\mathcal{B}_{2}\mathcal{B}_{1}}}{\uparrow} \quad \stackrel{[T(\mathbf{x})]_{\mathcal{B}_{2}}}{\longrightarrow} \quad \mathbf{M}_{\mathcal{D}_{2} \leftarrow \mathcal{B}_{2}}$$

$$\mathbf{M}_{\mathcal{B}_{1} \leftarrow \mathcal{D}_{1}} \quad \uparrow \qquad \qquad \downarrow \qquad \mathbf{M}_{\mathcal{D}_{2} \leftarrow \mathcal{B}_{2}}$$

$$[\mathbf{x}]_{\mathcal{D}_{1}} \quad \stackrel{[T]_{\mathcal{D}_{2}\mathcal{D}_{1}}}{\longrightarrow} \quad [T(\mathbf{x})]_{\mathcal{D}_{2}}$$

onde $\mathbf{M}_{\mathcal{B}_1 \leftarrow \mathcal{D}_1}$ é a matriz de mudança de base \mathcal{D}_1 para a base \mathcal{B}_1 e $\mathbf{M}_{\mathcal{D}_2 \leftarrow \mathcal{B}_2}$ é a matriz de mudança de base de \mathcal{B}_2 para \mathcal{D}_2 . Ou seja,

$$[T]_{\mathcal{D}_2\mathcal{D}_1} = \mathbf{M}_{\mathcal{D}_2 \leftarrow \mathcal{B}_2} [T]_{\mathcal{B}_2\mathcal{B}_1} \mathbf{M}_{\mathcal{B}_1 \leftarrow \mathcal{D}_1}$$

2.3 Exercícios

Exercício 12 Considere \mathbb{R}^2 munido da base $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$, onde $\mathbf{v}_1 = (1, 2)$, $\mathbf{v}_2 = (2, 1)$. Represente matricialmente na base \mathcal{B} as seguintes transformações lineares $T: \mathbb{R}^2 \to \mathbb{R}^2$ definidas pelas seguintes relações:

a)
$$T(1,2) = (2,1)$$
 $e T(2,1) = (1,2)$.

b)
$$T(1,2) = (3,3) \ e \ T(2,1) = (6,6)$$
.

c)
$$T(\mathbf{v}_1) = \mathbf{v}_1 + \mathbf{v}_2 \ e \ T(\mathbf{v}_2) = 3\mathbf{v}_1 - 7\mathbf{v}_2$$
.

d)
$$T(\mathbf{v}_1 + \mathbf{v}_2) = 5\mathbf{v}_1 + \mathbf{v}_2 \ e \ T(\mathbf{v}_1 - \mathbf{v}_2) = 3\mathbf{v}_1 - 7\mathbf{v}_2$$
.

Exercício 13 Considere uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que

$$T(1,3) = (1,1,1)$$
 e $T(5,7) = (2,2,3)$

Determine uma base $\mathcal{B}_2 = (\mathbf{v}_1, \mathbf{v}_2)$ de \mathbb{R}^2 e uma base $\mathcal{B}_3 = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ de \mathbb{R}^3 de forma que a representação matricial de T nestas bases \mathcal{B}_2 , \mathcal{B}_3 seja

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Exercício 14 Considerem-se as aplicações lineares $S: \mathbb{R}^3 \to \mathbb{R}^2$ e $T: \mathbb{R}^2 \to \mathbb{R}^3$ definidas por S(x,y,z) = (3x+y+4z,x+z) e T(x,y) = (x-4y,2x-5y,3x-6y). Determine a representação matricial de $S \circ T$ e de $T \circ S$ nas bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 , respectivamente.

Exercício 15 Considere \mathbb{R}^2 munido da base $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$, onde $\mathbf{v}_1 = (0, 2)$, $\mathbf{v}_2 = (2, 0)$. Represente matricialmente na base \mathcal{B} as seguintes transformações lineares $T : \mathbb{R}^2 \to \mathbb{R}^2$:

- a) $T \notin definida \ por \ T(x_1, x_2) = (2x_1 + x_2, x_1 + 2x_2)$.
- b) T é representada na base canónica de \mathbb{R}^2 pela matriz

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right].$$

Exercício 16 $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ constitui uma base de \mathbb{R}^2 , onde $\mathbf{v}_1 = (1, 1)$, $\mathbf{v}_2 = (1, 2)$.

a) Qual a representação matricial da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ na base \mathcal{B} , se na base canónica de \mathbb{R}^2 ela for representada pela matriz

$$\left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right]?$$

b) Supondo que T é representada na base \mathcal{B} pela matriz

$$\left[\begin{array}{cc} 3 & 2 \\ 1 & 2 \end{array}\right],$$

determine a expressão analítica para $T(x_1, x_2)$.

Exercício 17 Com $\mathbf{v}_1 = (0, 2, 0)$, $\mathbf{v}_2 = (0, 0, 2)$ e $\mathbf{v}_3 = (2, 0, 0)$, $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forma uma base de \mathbb{R}^3 . Determine as representações matriciais na base \mathcal{B} das seguintes transformações lineares $T : \mathbb{R}^3 \to \mathbb{R}^3$:

- a) $T \notin dada \ analiticamente \ por \ T(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, x_3 + x_2)$.
- b) Relativamente à base canónica de \mathbb{R}^3 , T é representada pela matriz

$$\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right].$$

7

Exercício 18 Considere a base de \mathbb{R}^3 , $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, onde $\mathbf{v}_1 = (1, 0, 0)$, $\mathbf{v}_2 = (1, 1, 0)$ e $\mathbf{v}_3 = (1, 1, 1)$.

a) Sabendo que $T: \mathbb{R}^3 \to \mathbb{R}^3$ é uma transformação linear que na base canónica de \mathbb{R}^3 é representada pela matriz

$$\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right],$$

determine a sua representação matricial na base \mathcal{B} .

b) Supondo que na base \mathcal{B} , uma transformação linear T é representada matricialmente pela matriz

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{array}\right],$$

determine analiticamente $T(x_1, x_2, x_3)$.

Exercício 19 $T: \mathbb{R}^3 \to \mathbb{R}^2$ é a transformação linear dada por

$$T(x_1, x_2, x_3) = (2x_1 + x_2, x_3 + 3x_2).$$

Por que matrizes é representada T relativamente à base $\mathcal{B}_1 = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ de \mathbb{R}^3 e $\mathcal{B}_2 = (\mathbf{v}_1, \mathbf{v}_2)$ de \mathbb{R}^2 nos casos em que:

- a) $\mathbf{u}_1 = (1,0,0), \ \mathbf{u}_2 = (0,1,0), \ \mathbf{u}_3 = (0,0,1), \ \mathbf{v}_1 = (1,0), \ \mathbf{v}_2 = (0,1).$
- b) $\mathbf{u}_1 = (0, 2, 0), \ \mathbf{u}_2 = (0, 0, 2), \ \mathbf{u}_3 = (2, 0, 0), \ \mathbf{v}_1 = (1, 0), \ \mathbf{v}_2 = (0, 1).$
- c) $\mathbf{u}_1 = (1,0,0)$, $\mathbf{u}_2 = (1,1,0)$, $\mathbf{u}_3 = (1,1,1)$, $\mathbf{v}_1 = (1,1)$, $\mathbf{v}_2 = (1,2)$.
- d) $\mathbf{u}_1 = (1,0,0)$, $\mathbf{u}_2 = (0,1,0)$, $\mathbf{u}_3 = (0,0,1)$, $\mathbf{v}_1 = (1,1)$, $\mathbf{v}_2 = (1,2)$.

Exercício 20 Considerem-se as bases $\mathcal{B}_2 = \{\mathbf{w}_1, \mathbf{w}_2\}$ de \mathbb{R}^2 e $\mathcal{B}_3 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ de \mathbb{R}^3 , onde

$$\mathbf{v}_1 = (1, -1, 0), \ \mathbf{v}_2 = (-1, 1, 1) \ e \ \mathbf{v}_3 = (1, 0, -1).$$

Sejam $S: \mathbb{R}^3 \to \mathbb{R}^2$ e $T: \mathbb{R}^2 \to \mathbb{R}^3$ aplicações lineares tais que

$$S(\mathbf{v}_1) = \mathbf{w}_1 + \mathbf{w}_2, \ S(\mathbf{v}_2) = \mathbf{w}_1 - \mathbf{w}_2, \ S(\mathbf{v}_3) = \mathbf{w}_1,$$

$$T(\mathbf{w}_1) = \mathbf{v}_1 + \mathbf{v}_2 \ e \ T(\mathbf{w}_2) = \mathbf{v}_2 + \mathbf{v}_3.$$

determine a expressão analítica para $T \circ S(x, y, z)$.

Exercício 21 Seja $T: \mathbb{P}_2 \to \mathbb{P}_2$ definida por T(p(t)) = tp'(t). Determine a matriz que representa T na base $\mathcal{P}_2 = \{1, t, t^2\}$.

Exercício 22 Seja $T: \mathbb{P}_2 \to \mathbb{P}_4$ definida por $T(p(t)) = p(t^2) + p(2) t^3$. Determine a matriz que representa T nas bases $\mathcal{P}_2 = \{1, t, t^2\}, \mathcal{P}_4 = \{1, t, t^2, t^3, t^4\}.$

Exercício 23 Seja $T: \mathbb{P}_2 \to \mathbb{R}^3$ definida por T(p(t)) = (p(-1), p(0), p(1)). Determine a matriz que representa T nas bases canónicas \mathcal{P}_2 , \mathcal{E}_3 .

Exercício 24 $T: \mathbb{P}_2 \to \mathbb{P}_3$ é uma transformação linear tal que

$$T(1) = 1 + t$$
, $T(t) = 1 + 2t$, $T(t^2) = t - t^3$.

- a) Que polinómio é $T(1-2t+3t^2)$?
- b) Represente matricialmente T com respeito às bases canónicas de \mathbb{P}_2 e de \mathbb{P}_3 .
- c) Represente matricialmente T relativamente às bases $\mathcal{B} = (1, 1+t, 1+t+t^2)$ de \mathbb{P}_2 e $\mathcal{D} = (1, 1+t, 1+t^2, 1+t^3)$ de \mathbb{P}_3 .

Exercício 25 Seja $F: \mathbb{M}_{2\times 2}(\mathbb{R}) \to \mathbb{M}_{2\times 2}(\mathbb{R})$ dada por

$$F\left(\mathbf{A}\right) = \mathbf{A} + \mathbf{A}^{T}.$$

- a) F é uma transformação linear. Justifique.
- b) Por que matriz é representada F relativamente à base canónica de $\mathbb{M}_{2\times 2}(\mathbb{R})$,

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}.$$

Exercício 26 Seja

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

uma matriz arbitrária do espaço vectorial $\mathbb{M}_{2\times 2}(\mathbb{R})$ das matrizes reais 2×2 . Quais das seguintes transformações de $\mathbb{M}_{2\times 2}(\mathbb{R})$ em \mathbb{R} , são lineares?

$$T_1(\mathbf{A}) = a + d$$
. $T_2(\mathbf{A}) = ab - cd$. $T_3(\mathbf{A}) = a + b + c + d$. $T_4(\mathbf{A}) = abcd$.

Nos casos afirmativos indique a respectiva representação matricial relativamente à base canónica de $\mathbb{M}_{2\times 2}\left(\mathbb{R}\right)$.

Exercício 27 Considere as transformações $D: \mathbb{P}_3 \to \mathbb{P}_2$ e $P: \mathbb{P}_2 \to \mathbb{P}_3$ definidas por:

$$Dp(t) = p'(t), \quad Pp(t) = \int_0^t p(s) ds,$$

em que p designa um polinómio de \mathbb{P}_3 .

- a) Ambas são transformações lineares. Justifique.
- b) Determine as matrizes que representam D e P relativamente às bases canónicas $\{1, t, t^2\}$ de \mathbb{P}_2 e $\{1, t, t^2, t^3\}$ de \mathbb{P}_3 .
- c) D e P são transformações inversas?

3 Núcleo e contradomínio de uma transformação linear

Relativamente a uma qualquer transformação linear $T: E_1 \to E_2$ entre dois espaços vectoriais E_1 e E_2 , facilmente se verifica que o **contradomínio** de T ou **conjunto imagem**

$$\operatorname{Im} T = \left\{ \mathbf{y} \in E_2 : \mathbf{y} = T(\mathbf{x}), \ \mathbf{x} \in E_1 \right\}$$

constitui um subespaço de E_2 . Sempre que Im $T=E_2$ diremos que T é uma transformação linear **sobrejectiva** ou uma **sobrejecção** de E_1 em E_2 .

A invertibilidade de T fica então apenas dependente de ser uma transformação **injectiva**, ou seja de satisfazer a propriedade

$$\mathbf{x}_1 \neq \mathbf{x}_2 \Rightarrow T(\mathbf{x}_1) \neq T(\mathbf{x}_2)$$

(ou de modo equivalente a implicação $T(\mathbf{x}_1) = T(\mathbf{x}_2) \Rightarrow \mathbf{x}_1 = \mathbf{x}_2$). Na verdade, se T for injectiva então podemos considerar a transformação **inversa**

$$T^{-1}: \operatorname{Im} T \to E_1,$$

ou seja a transformação que satisfaz as relações

$$(T^{-1} \circ T)(\mathbf{x}) = \mathbf{x}, \ \forall \mathbf{x} \in E_1,$$

 $(T \circ T^{-1})(\mathbf{y}) = \mathbf{y}, \ \forall \mathbf{y} \in \operatorname{Im} T.$

Nestas circunstâncias, pode facilmente verificar-se que T^{-1} é igualmente uma transformação linear entre Im T e E_1 . Quando T for simultaneamente injectiva e sobrejectiva diremos que T é **bijectiva** ou uma **bijecção** entre E_1 e E_2 .

Para aferirmos da injectividade da transformação T, um outro espaço assume um papel relevante: o chamado de **núcleo** de T definido por

Nuc
$$T = \{ \mathbf{x} \in E_1 : T(\mathbf{x}) = \mathbf{0} \}$$
,

que facilmente se observa constituir um subespaço de E_1 . Na verdade, pode mostrar-se que T é injectiva se e só se for válida a seguinte equivalência

$$T(\mathbf{x}) = \mathbf{0} \Leftrightarrow \mathbf{x} = \mathbf{0},$$

facto que é equivalente a afirmar que $\operatorname{Nuc} T = \{0\}$.

Podemos pois estabelecer que as seguintes afirmações são equivalentes:

- $T: E_1 \to \operatorname{Im} T$ é invertível.
- T é injectiva.
- Nuc $T = \{0\}$.

3.1 Núcleo e contradomínio de uma transformação linear entre espaços de dimensão finita

No caso em que os espaços E_1 e E_2 são de dimensão finita há a registar algumas particularidades específicas. Na verdade, tomando uma base \mathcal{B}_1 de E_1 , uma base \mathcal{B}_2 de E_2 e a matriz $[T]_{\mathcal{B}_2\mathcal{B}_1}$ que, relativamente a estas bases, representa a transformação linear $T: E_1 \to E_2$, atendendo a que

$$[T(\mathbf{x})]_{\mathcal{B}_2} = [T]_{\mathcal{B}_2\mathcal{B}_1} [\mathbf{x}]_{\mathcal{B}_1},$$

podemos concluir que

$$\operatorname{Nuc} T = \left\{ \mathbf{x} \in E_1 : [\mathbf{x}]_{\mathcal{B}_1} \in \operatorname{Nul} [T]_{\mathcal{B}_2 \mathcal{B}_1} \right\}.$$

Do mesmo modo,

$$\operatorname{Im} T = \left\{ \mathbf{y} \in E_2 : [\mathbf{y}]_{\mathcal{B}_2} \in \operatorname{Col} [T]_{\mathcal{B}_2 \mathcal{B}_1} \right\}.$$

Assim, recordando a nulidade, n(A), e a característica, c(A), de uma matriz A, temos

$$\dim (\operatorname{Nuc} T) = \dim \left(\operatorname{Nul} [T]_{\mathcal{B}_2 \mathcal{B}_1}\right) = \operatorname{n} \left([T]_{\mathcal{B}_2 \mathcal{B}_1}\right)$$
$$\dim \left(\operatorname{Im} T\right) = \dim \left(\operatorname{Col} [T]_{\mathcal{B}_2 \mathcal{B}_1}\right) = \operatorname{c} \left([T]_{\mathcal{B}_2 \mathcal{B}_1}\right)$$

e

$$\dim (\operatorname{Nuc} T) + \dim (\operatorname{Im} T) = \dim E_1.$$

Se dim (E_1) = dim (E_2) , podemos ainda afirmar que T é uma transformação invertível (ou bijectiva) se e só se a matriz $[T]_{\mathcal{B}_2\mathcal{B}_1}$ for invertível. Nestas condições, relativamente às bases \mathcal{B}_1 e \mathcal{B}_2 , a matriz que representa a transformação inversa, T^{-1} , é a matriz inversa da matriz que representa T: $[T_{\mathcal{B}_1\mathcal{B}_2}^{-1}] = [T]_{\mathcal{B}_2\mathcal{B}_1}^{-1}$.

3.2 Exercícios

Exercício 28 Determine bases para o núcleo e para o contradomínio (ou espaço imagem) de cada uma das seguintes transformações lineares:

- a) $T(x_1, x_2) = (2x_1 + x_2, 2x_1 + x_2)$.
- b) $T(x_1, x_2) = (x_1 + x_2, x_1 x_2)$.
- c) $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_1 + 2x_2 + 2x_3, x_2 x_3)$.
- d) $T(x_1, x_2, x_3) = (x_1 + 2x_2 x_3, 2x_1 + 4x_2 2x_3, -x_1 2x_2 + x_3)$.
- e) $T(x_1, x_2, x_3) = (x_1 x_3, x_1 + 2x_3, x_2 + 3x_3)$.
- f) $T(x_1, x_2, x_3) = (x_1 x_3, x_2 + x_3)$.
- g) $T(x_1, x_2) = (2x_1 + x_2, 4x_1 + 2x_2, 0)$.

Exercício 29 A transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, na base constituída pelos vectores $\mathbf{v}_1 = (1, 1), \ \mathbf{v}_2 = (1, -1)$ é representada pela matriz

$$\left[\begin{array}{cc} 3 & 3 \\ 2 & 2 \end{array}\right].$$

Determine bases para o núcleo e para o espaço imagem de T e indique a dimensão desses subespaços.

Exercício 30 Na base formada pelos vectores

$$\mathbf{v}_1 = (-1, 1, 1), \ \mathbf{v}_2 = (1, -1, 1), \ \mathbf{v}_3 = (1, 1, -1),$$

a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ é representada pela matriz

$$\left[\begin{array}{ccc} -2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{array}\right].$$

Determine bases dos subespaços $\operatorname{Nuc} T$ e $\operatorname{Im} T$.

Exercício 31 A transformação linear $T : \mathbb{P}_2 \to \mathbb{P}_1$, relativamente às bases canónicas destes espaços, é representada pela matriz

$$\left[\begin{array}{ccc} 2 & 1 & -3 \\ -6 & -3 & 9 \end{array}\right].$$

- a) Que polinómio é $T(1+2t+t^2)$?
- b) Determine bases do núcleo e do contradomínio de T.

Exercício 32 $T: \mathbb{P}_1 \to \mathbb{P}_2$ é uma transformação linear que nas bases canónicas de \mathbb{P}_1 e \mathbb{P}_2 é representada pela matriz

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{array}\right].$$

- a) Caso exista, qual o polinómio p(t) de \mathbb{P}_1 tal que T(p(t)) = 1 t?
- b) Determine bases do núcleo e do contradomínio de T.

Exercício 33 Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ uma transformação linear e \mathbf{A} a matriz que representa T nas bases canónicas de \mathbb{R}^n e \mathbb{R}^m . Justificando as suas respostas, indique se as seguintes afirmações são verdadeiras ou falsas².

- a) $\dim (\operatorname{Nuc} T) = \operatorname{n} (\mathbf{A})$.
- b) T é injectiva se e só se $n(\mathbf{A}) = 0$.
- c) T é injectiva se e só se a característica de A coincide com o número de colunas de A.
- d) A dimensão da imagem de T coincide com a característica de A.
- e) T é sobrejectiva se e só se a característica de A coincide com o número de linhas de A.

Exercício 34 Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear definida por

$$T(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_2 - x_3).$$

a) Calcule a matriz que representa T nas bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 .

 $^{^{2}}$ Recorde que n(A) designa a nulidade da matriz A.

- b) Determine uma base para o núcleo de T. A transformação T é injectiva?
- c) Determine uma base para o contradomínio de T. T é sobrejectiva?
- d) Resolva a equação $T(x_1, x_2, x_3) = (1, 1)$.
- e) Existe algum vector $(a, b) \in \mathbb{R}^2$ para o qual a equação $T(x_1, x_2, x_3) = (a, b)$ é impossível?
- f) Existe algum vector $(a, b) \in \mathbb{R}^2$ para o qual a equação $T(x_1, x_2, x_3) = (a, b)$ é possível e determinada?

Exercício 35 Considere a transformação linear que na base canónica de \mathbb{R}^3 é representada pela matriz

$$\left[\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & 4 \\ 0 & 0 & 2 \end{array}\right].$$

- a) Determine uma base para o núcleo de T. T é injectiva?
- b) Indique uma base para a imagem de T. T é sobrejectiva?
- c) Resolva a equação $T(x_1, x_2, x_3) = (3, 3, 0)$.
- d) Existe algum vector $(a, b, c) \in \mathbb{R}^3$ para o qual a equação $T(x_1, x_2, x_3) = (a, b, c)$ é impossível?
- e) Existe algum vector $(a, b, c) \in \mathbb{R}^3$ para o qual a equação $T(x_1, x_2, x_3) = (a, b, c)$ é indeterminada?

Exercício 36 Na base de \mathbb{R}^2 formada por $\mathbf{v}_1 = (1,1)$, $\mathbf{v}_2 = (1,0)$, a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ é representada pela matriz

$$\left[\begin{array}{cc} 2 & 4 \\ 1 & 2 \end{array}\right].$$

- a) Encontre uma base de Nuc T. T é injectiva?
- b) Indique uma base de ImT. T é sobrejectiva?
- c) Resolva a equação $T(x_1, x_2) = (3, 2)$.
- d) Existe algum vector $(a, b) \in \mathbb{R}^2$ para o qual a equação $T(x_1, x_2) = (a, b)$ é impossível?
- e) Existe algum vector $(a, b) \in \mathbb{R}^2$ para o qual a equação $T(x_1, x_2) = (a, b)$ é possível e determinada?

Exercício 37 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base constituída pelos vectores $\mathbf{v}_1 = (1, 1, 1), \mathbf{v}_2 = (1, 1, 0), \mathbf{v}_3 = (1, 0, 0)$ é representada por

$$\left[\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 0 & 0 & 2 \end{array}\right].$$

- a) Determine uma base para o núcleo de T. T é injectiva?
- b) Indique uma base para a imagem de T. T é sobrejectiva?
- c) Mostre que equação $T(x_1, x_2, x_3) = (2, 4, 0)$ não tem soluções.
- d) Existe algum vector $(a, b, c) \in \mathbb{R}^3$ para o qual a equação $T(x_1, x_2, x_3) = (a, b, c)$ é indeterminada.

Exercício 38 T é a transformação linear dada por

$$T(x_1, x_2) = (x_1 + x_2, x_1 + 2x_2).$$

- a) Qual a matriz que representa T na base canónica?
- b) Mostre que T é bijectiva e calcule $T^{-1}(y_1, y_2)$.
- c) Resolva a equação linear $T(x_1, x_2) = (1, 1)$.

Exercício 39 A matriz

$$\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]$$

representa a transformação linear T na base de \mathbb{R}^3 constituída pelos vectores

$$\mathbf{v}_1 = (1, 1, 1), \ \mathbf{v}_2 = (1, 1, 0), \ \mathbf{v}_3 = (1, 0, 0).$$

- a) Mostre que T é bijectiva e calcule $T^{-1}(y_1, y_2, y_3)$.
- b) Resolva a equação linear $T(x_1, x_2, x_3) = (1, 2, 1)$.

Exercício 40 Relativamente à base canónica de \mathbb{P}_2 , a transformação linear $T: \mathbb{P}_2 \to \mathbb{P}_2$, tem a representação matricial

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & -4 \\ 0 & 0 & 1 \end{array}\right].$$

Mostre que T é bijectiva e calcule $T^{-1}(1+t+2t^2)$.

Exercício 41 Seja $\mathfrak{I}: \mathbb{P}_n \to \mathbb{R}$ a transformação dada por

$$\Im(p) = \int_{0}^{1} p(t) dt \quad (p(t) \in \mathbb{P}_{n}).$$

- a) I é uma transformação linear. Justifique.
- b) Qual a matriz que na base canónica $\{1, t, ..., t^n\}$ de \mathbb{P}_n representa \mathfrak{I} ?
- c) Determine o núcleo de 3? Qual a sua dimensão?
- d) É \Im uma bijecção entre \mathbb{P}_n e \mathbb{R} ?

Exercício 42 Designe-se por S o subespaço das matrizes simétricas 2×2 , i.e.

$$S = \left\{ \mathbf{A} \in \mathbb{M}_{2 \times 2} \left(\mathbb{R} \right) : \mathbf{A} = \mathbf{A}^T \right\}.$$

Considere-se $T:S \to S$ a transformação linear definida por

$$T(\mathbf{A}) = \mathbf{AB} + \mathbf{BA}, \ onde \ \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- a) Determine uma base para S e indique a matriz que, nessa base, representa T.
- b) Calcule uma base do Nuc T e justifique que T não é injectiva nem sobrejectiva.
- c) Resolva em S, a equação $T(\mathbf{A}) = \mathbf{B}$.

Exercício 43 No espaço \mathbb{P}_3 dos polinómios de grau menor ou igual a três considere a transformação linear $T: \mathbb{P}_3 \to \mathbb{P}_3$ definida pela fórmula

$$T(p(t)) = p(0) + 2p(1)t^{3}$$

- a) Indique uma base para o espaço imagem de T.
- b) Determine o conjunto S dos polinómios que são soluções da equação $T(p(t)) = t^3$.

Exercício 44 No espaço \mathbb{P}_2 dos polinómios de grau menor ou igual a dois considere a base ordenada $\mathcal{P}_2 = \{1, t, t^2\}$ e a transformação linear $T : \mathbb{P}_2 \to \mathbb{P}_2$ definida pela fórmula

$$T(p(t)) = p(-3+t) + p(-3-t)$$

- a) Determine a matriz que representa T na base \mathcal{P}_2 .
- b) Determine o conjunto S dos polinómios que são soluções da equação $T(p(t)) = 9 + t^2$.

4 Soluções

- 1) a) i) (-1, -5). ii) (2, -5). iii) (-12, -7). b) $\alpha = 6$, $\beta = 2$.
- 2) São lineares as transformações das alíneas a), d) e f).
- 3) k = 0 e m = 1.
- 4) a) $5t + 4t^2 + 3t^3 + 2t^4$.
- 5) a) t 1. b) $a_0 = a_1 + 1$. Não existe.
- 7) a) Recta y = x 3. b) Recta y = x. c) Região do plano entre as rectas y = x 1 e y = x + 1.
- 8) a) i) $T(\Delta) = \Delta$; ii) $T(C_{\rho}) = C_{\rho}$.
 - b) i) Triângulo de vértices $(-1,1)\,,\,(-1,-1)$ e $(-2,0)\,;$ ii) $T\left(C_{\rho}\right)=C_{\rho}.$
 - c) i) Triângulo de vértices $(1,1)\,,\,(-1,1)$ e $(0,2)\,;\,ii)$ $T\left(C_{\rho}\right)=C_{\rho}.$
 - d) i) Triângulo de vértices (-1,-1), (1,-1) e (-2,0); ii) $T(C_{\rho})=C_{\rho}$.
 - e) i) Triângulo de vértices (r,r), (r,-r) e (2r,0); ii) $T(C_{\rho})=C_{r\rho}$.
- 9) T(E) é a circunferência de centro na origem e raio 1.
- 10) a) (0,1), (-1,0), (-1,1) e $((1-\sqrt{3})/2, (1+\sqrt{3})/2)$.
- b) i) $\theta = \pi/2 + 2k\pi$. ii) $\theta = -\pi/2 + 2k\pi$. iii) $\theta = 3\pi/4 + 2k\pi$. iv) $\theta = -5\pi/6 + 2k\pi$. v) Não.
 - c) Sim; $\theta_1 + \theta_2$. d) $\mathcal{R}_{-\theta}$. f) y = -x/a.
- 11) a) Triângulo de vértices (1,0,1), (-1,-1,0) e (0,0,2).
 - b) Triângulo de vértices (-1,0,1), (1,1,0) e (0,0,2).
 - c) Triângulo de vértices (0, 1, 1), (-1, -1, 0) e (0, 0, 2).

12) a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. b) $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 3 \\ 1 & -7 \end{bmatrix}$ d) $\begin{bmatrix} 4 & 1 \\ -3 & 4 \end{bmatrix}$.

13) Por exemplo $\mathbf{v}_1 = (1,3)$, $\mathbf{v}_2 = (5,7)$, $\mathbf{w}_1 = (1,1,1)$, $\mathbf{w}_2 = (0,0,1)$, $\mathbf{w}_3 = (1,0,0)$.

14)
$$[S \circ T] = \begin{bmatrix} 17 & -41 \\ 4 & -10 \end{bmatrix}$$
, $[T \circ S] = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 2 & 3 \\ 3 & 3 & 6 \end{bmatrix}$

15) a)
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
. b) $\begin{bmatrix} d & c \\ b & a \end{bmatrix}$.

16) a)
$$\begin{bmatrix} 3 & 3 \\ 0 & 1 \end{bmatrix}$$
. b) $T(x_1, x_2) = (4x_1, 4x_1 + x_2)$.

17) a)
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} e & f & d \\ h & i & g \\ b & c & a \end{bmatrix}$$
.

18) a)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
. b) $T(x_1, x_2, x_3) = (2x_1 + x_2, x_1 + x_3, x_2 + x_3)$.

19) a)
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$
. b) $\begin{bmatrix} 2 & 0 & 4 \\ 6 & 2 & 0 \end{bmatrix}$. c) $\begin{bmatrix} 4 & 3 & 2 \\ -2 & 0 & 1 \end{bmatrix}$. d) $\begin{bmatrix} 4 & -1 & -1 \\ -2 & 2 & 1 \end{bmatrix}$.

20)
$$T \circ S(x, y, z) = (0, -y, 3x + 2y + 2z)$$

24) a)
$$-3t^3 - 1$$
. b)
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
. c)
$$\begin{bmatrix} 0 & -1 & -1 \\ 1 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

26) T_1 e T_3 são lineares; T_2 e T_4 não. T_1 é representada pela matriz $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$ e T_3 é representada pela matriz $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$.

27) b)
$$D$$
 é representada por $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$ e P por $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$. c) Não.

- 28) a) $\{(1,-2)\}$ é base de Nuc T e $\{(1,1)\}$ é base de Im T.
 - b) \emptyset é base de Nuc T; $\{(1,1),(1,-1)\}$ é base de Im T.
 - c) $\{(-2,1,1)\}$ é base de Nuc T; $\{(1,2,0),(1,2,1)\}$ é base de Im T.
 - d) $\{(-2,1,0),(1,0,1)\}$ é base de Nuc T; $\{(1,2,-1)\}$ é base de Im T.
 - e) \emptyset é base de Nuc T; $\{(1,1,0),(0,0,1),(-1,2,3)\}$ é base de Im T.
 - f) $\{(1,-1,1)\}$ é base de Nuc T; $\{(1,0),(0,1)\}$ é base de Im T.
 - g) $\left\{(-\frac{1}{2},1)\right\}$ é base de NucT; $\left\{(2,4,0)\right\}$ é base de ImT.
- 29) $\{(0,1)\}$ é base de Nuc T e $\{(5,1)\}$ é base de Im T. dim Nuc T = dim Im T = 1.
- 30) $\{(0,2,-1)\}$ é base de Nuc $T \in \{(2,-4,0),(2,0,0)\}$ é base de Im T.
- 31) a) 1 3t. b) $\{1 2t, 3 + 2t^2\}$ é base de Nuc T, $\{2 6t\}$ é base de Im T.
- 32 a) p(t) = t. b) \emptyset é base de Nuc T, $\{1 + t + t^2, 1 t\}$ é base de Im T.
- 33) Todas as afirmações são verdadeiras.

34) a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
.

- b) $\{(-1,1,0)\}$ é base de Nuc T. A transformação T não é injectiva pois dim Nuc $T \neq 0$.
- c) $\{(1,1),(0,-1)\}$ é base de Im T. A transformação T é sobrejectiva pois dim Im $T=2=\dim\mathbb{R}^2$.
 - d) O conjunto das soluções é $\{(1,0,0)\}$ + Nuc $T = \{(1,0,0) + x_2(-1,1,0) : x_2 \in \mathbb{R}\}$.
 - e) Não, porque T é sobrejectiva.
 - f) Não, porque T não injectiva.
- 35) a) \varnothing é base do Nuc T. T é injectiva.
 - b) $\{(1,2,0),(2,1,0),(2,4,2)\}$ é base de Im T. T é sobrejectiva.
 - c) A única solução da equação é (1,1,0).
- d) e e) Como T é bijectiva a equação $T(x_1, x_2, x_3) = (a, b, c)$ é possível e determinada para qualquer $(a, b, c) \in \mathbb{R}^3$.
- 36) a) $\{(1,2)\}$ é base de NucT, logo T não é injectiva.
 - b) $\{(3,2)\}$ é uma base de Im T, pelo que T não é sobrejectiva.
 - c) O conjunto das soluções é $\{(0, -1)\}$ + Nuc T.
 - d) Sim. Por exemplo, $T(x_1, x_2) = (1, 0)$ é impossível.
 - e) Não.
- 37) a) $\{(1,1,2)\}$ é base de Nuc T, logo T não é injectiva.
 - b) $\{(8,6,2),(-2,0,0)\}$ é uma base de Im T, pelo que T não é sobrejectiva.
 - d) Sim.

38) a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
. b) $T^{-1}(y_1, y_2) = (2y_1 - y_2, -y_1 + y_2)$.

- c) Como T é bijectiva, a única solução da equação é o vector $T^{-1}(1,1)=(1,0)$.
- 39) a) $T^{-1}(y_1,y_2,y_3) = (-y_1 + 2y_2,y_2,y_3)$. b) A única solução da equação é (3,2,1).
- 40) $T^{-1}(1+t+2t^2) = 2t^2+10t-11$.
- 41) b) $\begin{bmatrix} 1 & 1/2 & \dots & 1/(n+1) \end{bmatrix}$.
 - c) Nuc $\Im = \left\{ a_0 + a_1 t + ... + a_n t^n : a_0 + \frac{a_1}{2} + ... + \frac{a_n}{n+1} = 0 \right\}$, dim Nuc $\Im = n$. d) Não.
- 42) a) Na base $\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right)$,
- a matriz que representa T é $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix}.$
 - b) $\left\{ \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ é base de Nuc T. c) O conjunto das soluções é $\left\{ \begin{bmatrix} 1-a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R} \right\}$.
- 43a) $\{1, t^3\}$ b) $S = \left\{\frac{t}{2}\right\} + \mathcal{L}\left\{t^2 t, t^3 t\right\}$
- 44a) $[T]_{\mathcal{P}_2} = \begin{bmatrix} 2 & -6 & 18 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ b) $S = \{3b + bt + \frac{1}{2}t^2 : b \in \mathbb{R}\} = \{\frac{1}{2}t^2\} + \mathcal{L}\{3+t\}$