Nonparametric Methods

شناسایی آماری الگو بخش سوه بخش سوه (۱۱-۱۱۷)

دانشگاه شهید بهشتی پژوهشکدهی فضای مجازی زمستان ۱۳۹۵ احمد محمودی ازناوه

فهرست مطالب

- روشهای ناپارامتری
 - تف*مین* چِگالی
 - دستەبندى
 - رگرسیون

پیشگفتار

- «روشهای پارامتری»: یک مدل برای تماه دادههای ورودی در نظر گرفته میشود.
- در رگرسیون فطی فرض میشود برای تماه ورودیها، فروجی از یک تابع فطی یکسان تبعیت میکند.
- هر چند تقلیل مسأله به یافتن چند پارامتر محدود، مطلوب است، اما ممکن است این فرض صحیح نباشد و باعث ایجاد خطا شود.

• «روشهای ناپارامتری»:

- ورودیهای مشابه، خروجیهای مشابه دارند.
- «نمونه های مشابه» به معنای «چیزهای مشابه» هستند.
 - توابع، هموار هستند، تغییرات آن نره است.

یادگیری بر مبنای نمونه

- الگوریتههای ناپارامتری، شامل یافتن نمونههای نزدیک (بر اساس یک تابع فاصلهی مناسب) و سپس درونیابی برای یافتن فرومی درست است.
- تفاوتهای روشهای ناپارامتری به انتخاب تابع فاصله و روش درونیابی بستگی دارد.
- در مدلهای پارامتری کل دادههای آموزشی بر مدل نهایی اثرگذار هستند، در مالی که در روشهای ناپارامتری یک مدل مملی بر اساس نمونههای همسایه تخمین زده میشود.
- در روشهای نایارامتری یک مدل از پیشتعیین شده وجود ندارد.
 - بعضا مدل معلی تنها در صورت نیاز تغمین زده میشود.
- نیاز به مافظه (و مماسبات) بالا از عیبهای این دسته از روشهاست.

lazy/memory-based/case-based/instance-based learning

Density Estimation

تخمین چگالی در مالت یک بعدی

- دادههای آموزشی $X = \{x^t\}_{t=1}^N$ به صورت مستقل از یک توزیع تصادفی یکسان (p(x)) استخراج شدهاند.
- تخمین ناپارامتری «تابع توزیع تجمعی» به صورت زیر $\hat{F}(x) = \frac{\#\{x^t \leq x\}}{N}$
 - و به همین ترتیب برای تابع چگالی احتمال

$$\hat{p}(x) = \frac{1}{h} \left\lceil \frac{\#\{x^t \le x + h\} - \#\{x^t \le x\}}{N} \right\rceil$$

طول بازهای است که دادههای آن به اندآزهی کافی به هم نزدیک(شبیه) هستند.

$$x < x^t \le x + h$$

تخمین هیستوگراه(بافت نگار)

 تخمین هیستوگراه یکی از قدیمیترین و متداولترین روشهاست، دادهها به یک سری نوار(bin) با عرض h تقسیم میشوند:

$$\hat{p}(x) = \frac{\#\{x^t \text{ in the same bin as } x\}}{Nh}$$

تغییر عرض نوارها و مبدأ آنها بر روی تخمین به دست آمده اثرگذار است.

• نیازی به ذخیره کردن نمونه ها نیست.

لگوشناسی آماری

Naive estimator

 در این روش نیازی به مشخص کردن مبدأ نوارها وچود ندارد:

$$\hat{p}(x) = \frac{\#\{x - h/2 < x^t \le x + h/2\}}{Nh}$$
يا با تمريف يک تابع وزن دهی: •

$$\hat{p}(x) = \frac{1}{Nh} \sum_{t=1}^{N} w \left(\frac{x - x^{t}}{h} \right) \quad w(u) = \begin{cases} 1/2 & \text{if } |u| < 1 \\ 0 & \text{otherwise} \end{cases}$$

• با توجه به نامیهی تمت تأثیر(hard)، تخمین به دست آمده، در نوامی مرزی دارای پرش میباشد.

الكوشناسي آماري

لگوشناسي آماري

9

Kernel Estimator

استفاده از کرنل

Parzen windows

برای به دست آوردن تخمینی هموارتر میتوان از
یک تابع وزندهی هموار (کرنل) بهره برد، یکی از
معروفترین کرنلها، تابع گاوسی است.

$$K(u) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{u^2}{2}\right]$$

$$\hat{p}(x) = \frac{1}{Nh} \sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right)$$

هر تابع نامنفی و متقارن حول صفر که دارای سطح
 یک باشد، را می توان به عنوان کرنل استفاده کرد.

مثال

شناسی آماری

11

k-Nearest Neighbor Estimator

 در این روش بازهی به صورت وفقی در نظر گرفته میشود. بازهای که k همسایهی نزدیک در آن واقع هستند. در واقع به جای ثابت در نظر گرفتن نوار، تعداد نمونههای واقع در نوار ثابت در نظر گرفته میشود.

$$\hat{p}(x) = \frac{k}{2Nd_{\nu}(x)} \qquad \hat{p}(x) = \frac{\#\{x - h < x^t \le x + h\}}{2Nh}$$

- امین همسایهی نزدیک است.-k فاصلهی $d_k(x)$
- در چِگالی تخمین زده شده، شکستگی(گسستگی در مشتق) وجود دارد، برای به دست آوردن تقریب هموارتر میتوان از کرنل استفاده کرد:

$$\hat{p}(x) = \frac{1}{Nd_k(x)} \sum_{t=1}^{N} K\left(\frac{x - x^t}{d_k(x)}\right) \qquad \hat{p}(x) = \frac{1}{Nh} \sum_{t=1}^{N} K\left(\frac{x - x^t}{h}\right)$$

مثال

lШ

تعمیم به دادههای مِندبعدی

• تخمین چگالی به صورت زیر انجاه میشود:

$$\hat{p}(\mathbf{x}) = \frac{1}{Nh^d} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) \qquad \int_{R^d} K(x) dx = 1$$

• در این مالت تابع کرنل به صورتهای زیر خواهد بود:

$$K(\mathbf{u}) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \exp\left[-\frac{\|\mathbf{u}\|^2}{2}\right] \quad \text{spheric}$$

$$K(\mathbf{u}) = \frac{1}{(2\pi)^{d/2} |\mathbf{S}|^{1/2}} \exp\left[-\frac{1}{2}\mathbf{u}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{u}\right] \quad \text{ellipsoid}$$

تعمیم به دادههای مندبعدی(ادامه...)

 برای تخمین هیستوگراه یک مجموعه دادهی هشتبعدی در صورتی که برای هر بعد تنها ده نوار در نظر گرفته شود:
 Curse of dimensionality

- به 10⁸ بخش نیاز خواهی<mark>ی داشت.</mark>
- برای دادههای گسسته میتوان از فاصلهی همینگ نیز استفاده کرد.

$$HD(\mathbf{x},\mathbf{x}^t) = \sum_{j=1}^d 1(x_j \neq x_i)$$

دستەبندى نايارامترى

• برای دستهبندی ابتدا چِگالی امتمال هر کلاس $\hat{p}(\mathbf{x}|C_i) = \frac{1}{N_i h^d} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) r_i^t$

$$\hat{p}\left(\mathbf{x}|C_{i}\right) = \frac{1}{N_{i}h^{d}} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^{t}}{h}\right) r_{i}^{t}$$

• و جداساز به ترتیب زیر به دست می آید:

$$g_i(\mathbf{x}) = \hat{p}(\mathbf{x}|C_i)\hat{P}(C_i)$$
 $\hat{P}(C_i) = \frac{N_i}{N}$

$$g_i(\mathbf{x}) = \hat{p}(\mathbf{x}|C_i)\hat{P}(C_i) = \frac{1}{Nh^d} \sum_{t=1}^N K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) r_i^t$$

متعلق به کلاسی است که جداساز آن بیشترین xمقدار را داشته باشد، از بخش مشترک جداساز

مىتوان چشەپوشىد.

$$g_i(\mathbf{x}) = \sum_{t=1}^N K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right)_{r_i}$$
(...هامی ناپارامتری (ادامه...)

• هر نمونهی آموزشی متعلق به کلاس i-اه به ورودی یک «رأی» میدهد. رأی توسط تابع کرنل مشخص میشود.

 $\hat{p}(\mathbf{x}|C_i) = \frac{k_i}{N_i V^k(\mathbf{x})}$ در مالتی که از k-nn استفاده کنیم:

$$\hat{p}\left(\mathbf{x}|C_{i}\right) = \frac{k_{i}}{N_{i}V^{k}\left(\mathbf{x}\right)}$$

 $k_i - i$ تعداد بخشی از k_i همسایه است که به کلاس k_i تعلق دارند و V ابرکرهای است به مرکز x و با شعاع $\|\mathbf{x} - \mathbf{x}_{(k)}\|$ زدیگ ترین همسایهی kاه

$$V^{k} = r^{d} c_{d}, \quad c_{1} = 2, c_{2} = \pi, c_{3} = 4\pi/3, \cdots$$

k-nn classifier ונוסה... ונוסה...

$$\hat{P}(C_i|\mathbf{x}) = \frac{\hat{p}(\mathbf{x}|C_i)\hat{P}(C_i)}{\hat{p}(\mathbf{x})}$$

$$\hat{p}(\mathbf{x}|C_i) = \frac{k_i}{N_i V^k(\mathbf{x})} \qquad \hat{p}(C_i) = \frac{N_i}{N} \qquad \hat{p}(\mathbf{x}) = \frac{k}{V^d(\mathbf{x})N}$$

$$\hat{P}(C_i|\mathbf{x}) = \frac{\hat{p}(\mathbf{x}|C_i)\hat{P}(C_i)}{\hat{p}(\mathbf{x})} = \frac{k_i}{k}$$

در دستهبندی k-nn ورودی به کلاسی نسبت داده می شود که در بین k همسایهی نزدیک بیشترین عضو را داشته باشد.

Nearest neighbor classifier

در مالت فاص که k=1 در نظر گرفته شود، ورودی
به کلاسی نسبت داده میشود که نزدیک ترین
نمونه به ورودی متعلق به آن است:

Voronoi tessellation

5-Nearest Neighbor

 b°

Condensing methods

Condensed Nearest Neighbor (C.N.N.)

- پیچیدگی مکانی و زمانی روشهای ناپارامتری به تعداد نمونههای آموزشی (N) بستگی دارد.
- روشهایی ارائه شده است که هدف آن کاهش نمونههای ذخیره شده بدون افت کارایی است.
- در این روشها یک زیر مجموعهی کوچک (Z) از نمونههای آموزشی (X) به نموی انتخاب میشود که ضمن کاهش دادههای ذخیره شده خطا اغزایش چندانی نیابد.

• در .C.N.N برای دستهبندی از 1-nn استفاده میشود.

Condensed Nearest Neighbor (C.N.N.)

در ۱-nn جداساز به صورت خطی تکهای تقریب زده می شود و تنها نمونه هایی که در تشکیل جداساز نقش دارند، لازم است، نگهداری شوند. به چنین مجموعهای consistent می گویند.

الكوشناسي آماري

Incremental algorithm

- پاسخ نهایی به ترتیب اعمال ورودیها بستگی دارد.
- با تعریف تابع هزینهی زیر میتوان بین پیچیدگی و خطای مدل بسته به مقدار λ نوعی مصالحه برقرار کرد: (۲۰۱۵) میلید (۲۰۱۵) در ۱۵۵۱

$$E'(Z|X) = E(X|Z) + \lambda |Z|$$

الكوشناسي آماري

Outlier Detection

تشفیص دادههای پرت

- دادهی پرت(ناهنجار)، دادهای است که با سایر نمونهها تفاوت زیادی دارد.
 - چنین نمونهای بیانگر یک رفتار غیرعادی است:
 - تراکنشهای کارت اعتباری، سوءاستفاده از کارت
 - در تصاویر پزشکی، وجود تومور
 - در ترافیک شبکه، نفوذ در شبکه
 - در پروندهی پزشکی، بروز بیماری
 - بروز خطا در یک سیستی، خراب شدن یک سنسور
- معمولا به عنوان یک مسألهی دو کلاسه با نظارت تلقی نمیشوند.
- دادههای پرت، نسبت به دادههای نرمال بسیار اندک هستند و معمولا بدون برچسب هستند.

تشفیص دادههای پرت(ادامه...)

one-class classification problem

- در واقع، مسأله یک دستهبندی کنندهی تککلاسه است.
- در این مالت دادههای نرمال مدل میشوند؛ توزیع دادههای نرمال به دست می آید.
- در این مالت هرچند می توان از شیوه های پارامتری
 و نیمه پارامتری استفاده کرد، اما با توجه به
 مساسیت روشهای پارامتری به داده های پرت،
 روشهای ناپارامتری ترجیح داده می شود.
 - یک دادهی پرت مدل را تمت تأثیر قرار میدهد.

تشفیص دادههای پرت(ادامه...)

Local Outlier Factor

 در روشهای ناپارامتری در صورتی که یک نمونه از سایر نمونهها دور باشد، پرت تشخیص داده میشود.

$$LOF(\mathbf{x}) = \frac{d_k(\mathbf{x})}{\sum_{\mathbf{S} \in \mathcal{N}(\mathbf{X})} d_k(\mathbf{s}) / |\mathcal{N}(\mathbf{x})|}$$

py

___رگرسیون نایارامتری(تک متغیره)

Nonparametric Regression smoothing models(smoother)

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}, \qquad r^t = g(\mathbf{x}^t) + \varepsilon$$

- رگرسیون نایارامتری زمانی مورد استفاده قرار میگیرد که نتوان یک مدل کلی برای دادهها در نظر
- در این مالت فرض میشود که دادههای نزدیک به xمقادیر نزدیک به g(x) خواهند داشت.
- x در این مالت رویکرد یافتن همسایههای x و میانگین گرفتن از مقادیر ۲ مربوط به آنهاست.

egressogram

این واژه در سال ۱۹۶۱ توسط شخصی به نام Tukey مطرم شد تا شباهت آن را به هیستوگراه نشان دهد.

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} b(x, x^{t}) r^{t}}{\sum_{t=1}^{N} b(x, x^{t})}$$

 $\hat{g}(x) = \frac{\sum_{t=1}^{N} b(x, x^{t}) r^{t}}{\sum_{t=1}^{N} b(x, x^{t})} \quad \text{where} \quad b(x, x^{t}) = \begin{cases} 1 & \text{if } x^{t} \text{ is in the same bin with } x \\ 0 & \text{otherwise} \end{cases}$

Running Mean Smoother

pq

Kernel Smoother

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right)}$$

K() is Gaussian

 μ_{\circ}

الگوشناسي آماري

Running line smoother

 در این مالت برای هر همسایگی، یک رگرسیون فطی به صورت مملی در نظر گرفته میشود.

ml

لگوشناسی آماری

تعیین پارامتر هموارسازی

در صورتی که لا یا ط کوچک در نظر گرفته شوند (به عنوان مثال زمانی که تنها خود نمونه در نظر گرفته شود)، میزان بایاس که است، اما واریانس بالا خواهد بود (پیچیدگی زیاد).

undersmoothing

 در صورت افزایش دامنهی هموارسازی، واریانس کاهش یافته، اما بایاس افزایش مییابد (پیمیدگی که).

میتوان از cross validation نیز برای تنظیم پارامتر هموارسازی استفاده کرد.

روش*های* جستجو

- یافتن «نزدیک ترین همسایه» به صورت جستجوی خطی به ویژه زمانی که تعداد نمونههای آموزشی بالاست، به صرفه نیست.
 - در این شرایط عموما از درخت kd استفاده میشود.

• همچنین روشهای درههسازی نظیر (LSH) استفاده میشود.

للوسناسي اماري

http://bigdata.csail.mit.edu/node/17

щщ