Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry

VADIM INDELMAN, PINI GURFIL

DISTRIBUTED SPACE SYSTEMS LAB,

AEROSPACE ENGINEERING, TECHNION

EHUD RIVLIN

COMPUTER SCIENCE, TECHNION

HECTOR ROTSTEIN

RAFAEL – ADVANCED DEFENSE SYSTEMS

Contents

- Introduction
- Three-View Constraints
- Fusion with Navigation System
- Results
- Conclusions

Introduction

- A group of cooperative platforms is considered
 - Required to autonomously perform different missions
 - Navigation is an essential capability
- Dead reckoning \ inertial navigation errors have to be compensated
 - External sensors (e.g.: GPS, camera, range sensor)
 - Additional information (e.g.: DTM)
- What happens if GPS is unavailable or unreliable?

This work:

- Vision-based approach for cooperative navigation
- Each platform is equipped only with: INS, single camera
 - No additional sensors or a priori information is required
 - Except for initial navigation solution and camera calibration parameters

Previous Work

- Use some robots as landmarks: "Cooperative Positioning with Multiple Robots", Kurazume R. et al., 1994
- Relative pose measurements between pairs of robots: "Distributed Multirobot Localization", Roumeliotis S.I. and Bekey G.A., 2002
- <u>Direct & indirect encounters between pairs of robots, nonlinear</u>
 <u>optimization</u>: "Multiple Relative Pose Graphs for Robust Cooperative Mapping", Kim B. et al., 2010
- Vision-aided navigation based on three-view geometry: "Mosaic Aided Navigation: Tools, Methods and Results", Indelman V. et al., 2010
- Consistent information fusion: "Consistent Cooperative Localization", Bahr
 A. et al., 2009

Concept

- Navigation update whenever the same scene is observed by three views
 - Possibly captured by different platforms
 - Not necessarily at the same time
 - The camera is not required to be aimed towards other platforms (in contrast to relative pose measurements)

Setup

- Each platform is equipped with its own
 - INS, Camera
 - Perhaps, additional sensors or a-priori information
- All\some platforms maintain a repository of stored images associated with navigation information
- The platforms are able to exchange navigation and imagery data
- Each platform maintains a local graph, required for correlation calculation

Overview

Three-view Constraints

- Each image may be captured by a different platform
- The images are not necessarily captured at the same time
- Images are stored in repositories and retrieved upon demand

- P static landmark
- q line of sight (LOS)
- λ scale parameter, s.t. $\|\lambda q\|$ is the range to landmark
- $lacktriangleup oldsymbol{T}_{ii}$ translation from i to j

Three-view Constraints (cont.)

$$\boldsymbol{q}_{1}^{T} \left(\boldsymbol{T}_{12} \times \boldsymbol{q}_{2} \right) = 0$$

$$\boldsymbol{q}_{2}^{T} \left(\boldsymbol{T}_{23} \times \boldsymbol{q}_{3} \right) = 0$$

$$\left(\boldsymbol{q}_{2} \times \boldsymbol{q}_{1} \right)^{T} \left(\boldsymbol{q}_{3} \times \boldsymbol{T}_{23} \right) = \left(\boldsymbol{q}_{1} \times \boldsymbol{T}_{12} \right)^{T} \left(\boldsymbol{q}_{3} \times \boldsymbol{q}_{2} \right)$$

- First two equations epipolar constraints
- ullet Third equation relates between the magnitudes of $oldsymbol{T}_{12}$ and $oldsymbol{T}_{23}$
- Reformulating:

$$\begin{bmatrix} \boldsymbol{g}^T \end{bmatrix}_{1\times 3} \boldsymbol{T}_{12} = 0$$

$$\begin{bmatrix} \boldsymbol{f}^T \end{bmatrix}_{1\times 3} \boldsymbol{T}_{23} = 0$$

$$\begin{bmatrix} \boldsymbol{u}^T \end{bmatrix}_{1\times 3} \boldsymbol{T}_{23} = \begin{bmatrix} \boldsymbol{w}^T \end{bmatrix}_{1\times 3} \boldsymbol{T}_{12}$$
where
$$\begin{bmatrix} \boldsymbol{u}^T \end{bmatrix}_{1\times 3} \boldsymbol{T}_{23} = \begin{bmatrix} \boldsymbol{w}^T \end{bmatrix}_{1\times 3} \boldsymbol{T}_{12}$$

$$\boldsymbol{w} = \boldsymbol{w} (\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3)$$

$$\boldsymbol{w} = \boldsymbol{w} (\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3)$$

Three-view Constraints (cont.)

- Multiple features
 - Matching pairs between 1st and 2nd view
 - Matching pairs between 2nd and 3rd view
 - Matching triplets between the three views

$$egin{aligned} \left\{m{q}_{1_{i}}^{C_{1}},m{q}_{2_{i}}^{C_{2}}
ight\}_{i=1}^{N_{12}} \ \left\{m{q}_{2_{i}}^{C_{2}},m{q}_{3_{i}}^{C_{3}}
ight\}_{i=1}^{N_{23}} \ \left\{m{q}_{1_{i}}^{C_{1}},m{q}_{2_{i}}^{C_{2}},m{q}_{3_{i}}^{C_{3}}
ight\}_{i=1}^{N_{123}} \end{aligned}$$

$$\begin{bmatrix} \boldsymbol{u}_{i}^{T} \end{bmatrix}_{1\times3} \boldsymbol{T}_{23} = \begin{bmatrix} \boldsymbol{w}_{i}^{T} \end{bmatrix}_{1\times3} \boldsymbol{T}_{12} \quad i = 1, \dots, N_{123}$$

$$\begin{bmatrix} \boldsymbol{f}_{j}^{T} \end{bmatrix}_{1\times3} \boldsymbol{T}_{23} = 0 \quad j = 1, \dots, N_{23}$$

$$\begin{bmatrix} \boldsymbol{g}_{k}^{T} \end{bmatrix}_{1\times3} \boldsymbol{T}_{12} = 0 \quad k = 1, \dots, N_{12}$$

$$\begin{bmatrix} \boldsymbol{w} \end{bmatrix}_{N\times3} \boldsymbol{T}_{12} = 0 \quad N = N_{123} + N_{12} + N_{23}$$

Fusion with Navigation using Implicit Extended Kalman Filter (IEKF)

Residual Measurement

$$\boldsymbol{z} \equiv \begin{bmatrix} \boldsymbol{U} \\ \boldsymbol{F} \\ \boldsymbol{0} \end{bmatrix}_{N \times 3} \boldsymbol{T}_{23} - \begin{bmatrix} \boldsymbol{W} \\ \boldsymbol{0} \\ \boldsymbol{G} \end{bmatrix}_{N \times 3} \boldsymbol{T}_{12}$$

- Recall
 - All original LOS vectors are expressed in camera system of the appropriate view
 - $-T_{23}$, T_{12} are functions of Pos_3 , Pos_2 , Pos_1

$$Pos_i \equiv Pos_i(t_i)$$

$$z = h(Pos_3, \Psi_3, Pos_2, \Psi_2, Pos_1, \Psi_1, \{q_{1_i}^{C_1}, q_{2_i}^{C_2}, q_{3_i}^{C_3}\})$$

Fusion with Navigation using IEKF (cont.)

State vector definition:

$$\boldsymbol{X} = \begin{bmatrix} \Delta \boldsymbol{P}^T & \Delta \boldsymbol{V}^T & \Delta \boldsymbol{\mathcal{Y}}^T & \boldsymbol{d}^T & \boldsymbol{b}^T \end{bmatrix}^T$$

• Inertial navigation error of the i-th platform: $X_i(t_b) = \Phi^i_{t_a \to t_b} X_i(t_a) + \omega^i_{t_a \to t_b}$

Linearization of z

$$z = h(Pos_3, \Psi_3, Pos_2, \Psi_2, Pos_1, \Psi_1, \{q_{1_i}^{C_1}, q_{2_i}^{C_2}, q_{3_i}^{C_3}\})$$

$$\cong H_3 X_{III}(t_3) + H_2 X_{II}(t_2) + H_1 X_{I}(t_1) + Dv + H.O.T.$$

- $X_{III}(t_3)$, $X_{II}(t_2)$, $X_{I}(t_1)$ represent navigation errors of <u>different</u> platforms at <u>different</u> time instances.
 - None of these are known a-priori
 - Can be correlated
- Theoretically, all the participating platforms can be updated

Fusion with Navigation (cont.)

- The measurement update step involves cross-covariance terms
 - E.g., if only platform III is updated: $K = P_{X_{III}(t_3)z(t_3,t_2,t_1)}P_{z(t_3,t_2,t_1)}^{-1}$
 - with

$$P_{X(t_3)z(t_3,t_2,t_1)} = P_3 H_3^T + P_{32} H_2^T + P_{31} H_1^T$$

$$P_{z(t_3,t_2,t_1)} = H_3 P_3 H_3^T + \begin{bmatrix} H_2 & H_1 \end{bmatrix} \begin{bmatrix} P_2 & P_{21} \\ P_{21}^T & P_1 \end{bmatrix} \begin{bmatrix} H_2 & H_1 \end{bmatrix}^T + DRD^T$$

where

$$P_{ij} \equiv E\left[\tilde{\boldsymbol{X}}_{i}\left(t_{i}\right)\tilde{\boldsymbol{X}}_{j}^{T}\left(t_{j}\right)\right]$$

- Maintaining all the possible cross-covariance terms impractical
 - In contrast to relative pose measurements
- Therefore: either neglect, or <u>calculate upon-demand</u>

Explicit Calculation of Cross-covariance terms - Concept

Algorithm:

- More details: "Graph-based Distributed Cooperative Navigation", Indelman V., et al., ICRA 2011
- Allows updating only one platform

Concept:

- Store covariance and cross-covariance terms from all the past three-view measurement updates
- 2. Express $\tilde{X}_i(t_i)$ and $\tilde{X}_j(t_j)$ according to the history of MP measurement updates
- 3. Calculate $E\left[\tilde{X}_{i}\left(t_{i}\right)\tilde{X}_{j}^{T}\left(t_{j}\right)\right]$ based on expressions from step 2.
- Automation of the above for general scenarios using graph representation

Simulation Results – Leader-Follower Scenario

- 2 platforms: Leader, Follower
 - Leader is equipped with a better IMU
 - Initial navigation errors and IMU errors:

Parameter	Description	Leader	Follower	Units
$\Delta \mathbf{P}$	Initial position error (1σ)	$(10, 10, 10)^T$	$(100, 100, 100)^T$	m
$\Delta \mathbf{V}$	Initial velocity error (1σ)	$(0.1, 0.1, 0.1)^T$	$(0.3, 0.3, 0.3)^T$	m/s
$\Delta \Psi$	Initial attitude error (1σ)	$(0.1, 0.1, 0.1)^T$	$(0.1, 0.1, 0.1)^T$	\deg
\mathbf{d}	IMU drift (1σ)	$(1, 1, 1)^T$	$(10, 10, 10)^T$	m deg/hr
b	IMU bias (1σ)	$(1,1,1)^T$	$(10, 10, 10)^T$	$_{ m mg}$

- Trajectory: Straight and level, north heading flight
 - Velocity: 100 m/s
 - Leader is 2000 m ahead (20 second delay)
 - Height above ground level: 2000±200m
- Follower is updated every 10 seconds
- Leader is not updated (inertial navigation)
- Synthetic imagery

Simulation Results – Leader-Follower Scenario (cont.)

Monte Carlo results (1000 runs): Follower's navigation errors

Simulation Results – Leader-Follower Scenario (cont.)

Monte Carlo results (1000 runs): Follower's navigation errors

Simulation Results – Leader-Follower Scenario

Monte Carlo results (1000 runs): Follower's vs. Leader's navigation errors

Experiment Results – Pattern Holding Scenario

- Experiment Setup
 - An IMU and a camera were mounted on top of a ground vehicle
 - IMU\INS: Xsens MTi-G
 - Camera: Axis 207MW
- IMU data and captured images were stored and synchronized
 - IMU data @ 100Hz
 - Imagery data @ 15Hz
- The method was applied in two modes:
 - → Multi-platform update
 - × Self update (all images from the same platform)

Experiment Results – Pattern Holding Scenario (cont.)

- Two different trajectories
- IMU and camera were turned off in between

Two platforms with identical hardware (camera + IMU)

Recorded imagery

Experiment Results – Pattern Holding Scenario (cont.)

Example

Image 1

Image 2

Image 3

Matching Triplets

The Fundamental matrix is not required elsewhere

Image 2

Image 3

$$\qquad \qquad \left\{ \boldsymbol{q}_{1_{i}}^{C_{1}}, \boldsymbol{q}_{2_{i}}^{C_{2}}, \boldsymbol{q}_{3_{i}}^{C_{3}} \right\}_{i=1}^{N_{123}}, \left\{ \boldsymbol{q}_{1_{i}}^{C_{1}}, \boldsymbol{q}_{2_{i}}^{C_{2}} \right\}_{i=1}^{N_{12}}, \left\{ \boldsymbol{q}_{2_{i}}^{C_{2}}, \boldsymbol{q}_{3_{i}}^{C_{3}} \right\}_{i=1}^{N_{23}}$$

Experiment Results – Pattern Holding Scenario (cont.)

- Multi platform update
- × Self update

Position errors

Conclusions

- Distributed cooperative navigation aiding
 - Three-view constraints are formulated whenever the same scene is observed by several platforms
 - The camera is no more required to be aimed towards other platforms (as in relative pose measurements)
 - Range sensor is not required
 - The views are not necessarily captured at the same time
 - Allows reduction of navigation errors in some platforms based on other platforms in the group
 - Including position and velocity errors in all axes