Traccia 7/01/	/2016
lunedi 17 maggio 2021	14:00

Esercizio 2 Sette terminali numerati di un sistema interattivo sono collegati da una linea di comunicazione ad un computer centrale. Di questi, esattamente quattro sono pronti a trasmettere un messaggio (stato \mathbf{ON}), e la distribuzione di tali quattro terminali tra i sette è uniforme. Sia X la variabile aleatoria che conta il numero di terminali interrogati (in ordine dal $\mathbf{n}.1$ al $\mathbf{n}.7$) prima di trovare il primo terminale nello stato \mathbf{ON} .

- (i) Ricavare la distribuzione di probabilità di X.
- (ii) Determinare la funzione di distribuzione $F(x) = P(X \le x)$, mostrandone l'andamento grafico.
- (iii) Calcolare valore medio e varianza di X.
- (iv) Posto Y = 1/X, determinare E(Y).

(ii)
$$F(x) = P(X \le x)$$

 $1 = 2 = 3 = 4 \Rightarrow P_{ot} = x \le A, F(x) = P(X \le x) = 0$
Pen $1 \le x \le 2, F(x) = P(X \le x) = P(X = A) = \frac{4}{7}$
Pun $2 \le x \le 3, F(x) = P(X \le x) = \frac{P(X = A) + P(X = 2)}{7} = \frac{A}{7} + \frac{2}{7} = \frac{6}{7}$
Pun $3 \le x \le 4, F(x) = P(X \le x) = P(X \le x) + P(X = 2) + P(X = 3)$
 $= \frac{6}{7} + \frac{A}{35} = \frac{3A}{35}$
Pun $x \ge 4, F(x) = P(X \le x) = 1$
Guiudi
$$F(x) = \frac{4}{7}, 1 \le x \le 2$$

$$\frac{6}{7}, 2 \le x \le 3$$

$$\frac{34}{35}, 3 \le x \le 4$$

$$\frac{1}{7}, x \ge 4$$

$$\frac{1}{7}, x \ge 4$$

$$\frac{1}{7}, x \ge 4$$

$$\frac{1}{7}, x \ge 4$$

Esercizio variabili aleatorie discrete num1

lunedi 17 maggio 2021

14:49

Esercizio 3 Un esperimento consiste nel generare a caso vettori booleani di lunghezza n, dove ogni elemento assume con uguale probabilità valore 0 ed 1 indipendentemente dagli altri. Sia X la variabile aleatoria che rappresenta la lunghezza minima del vettore affinché contenga lo 0.

- (i) Determinare la densità discreta P(X = x).
- (ii) Calcolare E(X) e Var(X).
- (iii) Valutare la probabilità condizionata P(X > 5 | X > 3).

$$X \sim Geom \left(\frac{1}{2}\right)$$

(i)
$$P(X=x) = (1-\frac{1}{2})^{x-1} \cdot \frac{1}{2} = (\frac{1}{2})^{x-1} \cdot \frac{1}{2} = (\frac{1}{2})^{x} = \frac{1}{2} \times x = 1,2,34,...$$

(ii)
$$\mathbb{E}(x) = \frac{1}{1/2} = 2$$
 $|Van(x)| = \frac{1-1/2}{h^2} = \frac{1-1/2}{1/4} = \frac{1/2}{1/4} = 2$

(wi)
$$P(X>5|X>3) = P(X>5 \cap X>3) = P(X>5)$$

 $P(X>3) = P(X>5)$

(i)	$\propto_{\scriptscriptstyle A}$	٧,	$X = (x_{1+x})$	2)2
	1	1	4	
	1	2	9.	Xe{4,9,16,25,36}
	1	3	16 •	
	2	1	16 · 9 ·	$P(x=4)=\frac{1}{6}$
	2	2	16 •	9
	2	3	25•	$\frac{P}{Q}(X=9)=\frac{2}{Q}$
	3	1 2		
	3	2	25 •	$P(X=16)=\frac{3}{9}$
	3	3	16 · 25 • 36	
				$P(X=25)=\frac{2}{9}$

(iii)
$$E(x) = 4 \cdot \frac{1}{9} + 9 \cdot \frac{2}{9} + 16 \cdot \frac{3}{9} + 25 \cdot \frac{2}{9} + 36 \cdot \frac{1}{9} = \frac{52}{3}$$

 $Var(X) = E(X^{4}) - E(X)^{2} = \frac{78}{9}$ (faculto in alobi)

(im) $E(5X - \omega) = 0$

$$E(5X - \omega) = E(5X) - E(\omega) = 5 \cdot E(X) - \omega = 0$$

$$\Rightarrow \omega = 5 \cdot E(X) = 5 \cdot \frac{52}{3} = 87 \in$$

Esercizio variabili aleatorie discrete num3

lunedì 17 maggio 2021

15:34

Esercizio 2 Un gioco consiste nel lanciare a caso 5 biglie in 3 cestini A, B, C, in modo che ogni biglia abbia la stessa probabilità di cadere in A, B o C. Sia X la variabile aleatoria che conta il numero totale di biglie che cadono in A.

- (i) Determinare la densità discreta P(X = x).
- (ii) Ricavare F(x) = P(X ≤ x), mostrandone l'andamento grafico.
- (iii) Determinare E(X) e Var(X).
- (iv) Qual è la probabilità che in A cada almeno una biglia?
- (v) Qual è la probabilità che in A cada almeno una biglia, sapendo che ne è caduto un numero minore-uguale di 3?

$$\times Rim \left(5, \frac{1}{3}\right)$$

(i)
$$\underline{P}(X=x) = {5 \choose x} \cdot {\left(\frac{1}{3}\right)}^{x} \cdot {\left(1-\frac{1}{3}\right)}^{5-x}$$

(ii)
$$E(X) = 5 \cdot \frac{1}{3} = \frac{5}{3}$$

$$Var(x) = 5.\frac{1}{3}(1-\frac{11}{3}) = 5.\frac{1}{3}.\frac{2}{3} = \frac{10}{9}$$

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (\frac{2}{3})^5 = \frac{211}{243} \cong 0.87$$

(n) P	$\frac{P(X \ge 1 \mid X \le 3)}{P(X \le 3)}$	$= \frac{P(1 \leq X \leq 3)}{P(X \leq 3)}$
	$= \frac{\overline{b}(x=0) + \cdots + \overline{b}(x=3)}{\overline{b}(x=1) + \overline{b}(x=3) + \overline{b}(x=3)} =$	<u>25</u> 29