Logistic regression

Logistic regression

- When response variable is measured/counted, regression can work well.
- But what if response is yes/no, lived/died, success/failure?
- Model probability of success.
- Probability must be between 0 and 1; need method that ensures this.
- Logistic regression does this. In R, is a generalized linear model with binomial "family":

```
glm(y ~ x, family="binomial")
```

Begin with simplest case.

Packages

```
library(MASS)
library(tidyverse)
library(marginaleffects)
library(broom)
library(nnet)
library(conflicted)
conflict_prefer("select", "dplyr")
conflict_prefer("filter", "dplyr")
```

The rats, part 1

• Rats given dose of some poison; either live or die:

dose status

- 0 lived
- 1 died
- 2 lived
- 3 lived
- 4 died
- 5 died

Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/rat.txt"
rats <- read_delim(my_url, " ")
rats</pre>
```

dose	status
0	lived
1	died
2	lived
3	lived
4	died
5	died

Basic logistic regression

• Make response into a factor first:

```
rats2 <- rats %>% mutate(status = factor(status))
```

• then fit model:

```
status.1 <- glm(status ~ dose, family = "binomial", data = rats2)
```

Output

```
summary(status.1)
##
## Call:
## glm(formula = status ~ dose, family = "binomial", data = rats2)
##
## Deviance Residuals:
##
## 0.5835 -1.6254 1.0381 1.3234 -0.7880 -0.5835
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6841 1.7979 0.937 0.349
## dose -0.6736 0.6140 -1.097 0.273
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 8.3178 on 5 degrees of freedom
## Residual deviance: 6.7728 on 4 degrees of freedom
## AIC: 10.773
##
## Number of Fisher Scoring iterations: 4
```

Interpreting the output

- ullet Like (multiple) regression, get tests of significance of individual x's
- Here not significant (only 6 observations).
- "Slope" for dose is negative, meaning that as dose increases, probability of event modelled (survival) decreases.

Output part 2: predicted survival probs

predictions(status.1)

rowid	type	predicted	std.error	conf.low	conf.high	status	dose
1	re-	0.8434490	0.2373945	0.1370958	0.9945564	lived	0
	sponse						
2	re-	0.7331122	0.2569246	0.1731865	0.9729896	died	1
	sponse						
3	re-	0.5834187	0.2394051	0.1688476	0.9061463	lived	2
	sponse						
4	re-	0.4165813	0.2394051	0.0938537	0.8311524	lived	3
	sponse						
5	re-	0.2668878	0.2569246	0.0270104	0.8268135	died	4
	sponse						
6	re-	0.1565510	0.2373945	0.0054436	0.8629042	died	5
	sponse						

On a graph

The rats, more

- More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of survivals, number of deaths.

dose lived died

```
0 10 0
1 7 3
2 6 4
3 4 6
4 2 8
5 1 9
```

- 6 lines of data correspond to 60 actual rats.
- Saved in rat2.txt.

These data

Rows: 6 Columns: 3

```
my_url <- "http://ritsokiguess.site/datafiles/rat2.txt"
rat2 <- read_delim(my_url, " ")</pre>
```

```
## Delimiter: " "
## dbl (3): dose, lived, died
##
```

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show col types = FALSE` to quiet this

-- Column specification ------

i Specify the column types or set `show_col_types = FALSE` to quiet this
rat2

dose	lived	died
0	10	0
1	7	3
2	6	4
3	4	6
4	2	8
5	1	9

Create response matrix:

- Each row contains multiple observations.
- Create *two-column* response:
 - #survivals in first column,
 - #deaths in second.

```
response <- with(rat2, cbind(lived, died))
response</pre>
```

```
## lived died
## [1,] 10 0
## [2,] 7 3
## [3,] 6 4
## [4,] 4 6
## [5,] 2 8
## [6,] 1 9
```

Response is R matrix:

```
class(response)
```

```
## [1] "matrix" "array"
```

Fit logistic regression

using response you just made:

```
rat2.1 <- glm(response ~ dose,
  family = "binomial",
  data = rat2
)</pre>
```

Output

```
summary(rat2.1)
##
## Call:
## glm(formula = response ~ dose, family = "binomial", data = rat2)
##
## Deviance Residuals:
##
## 1.3421 -0.7916 -0.1034 0.1034 0.0389 0.1529
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 2.3619 0.6719 3.515 0.000439 ***
## dose -0.9448 0.2351 -4.018 5.87e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 27.530 on 5 degrees of freedom
##
## Residual deviance: 2.474 on 4 degrees of freedom
## AIC: 18.94
##
```

Logistic regression

Predicted survival probs

```
# p <- predict(rat2.1, type = "response")
# cbind(rat2, p)
predictions(rat2.1)</pre>
```

rowid	type	predicted	std.error	conf.low	conf.high	dose
1	response	0.9138762	0.0528798	0.7398304	0.9753671	0
2	response	0.8048905	0.0753564	0.6169584	0.9135390	1
3	response	0.6159474	0.0818379	0.4487610	0.7595916	2
4	response	0.3840526	0.0818379	0.2404084	0.5512390	3
5	response	0.1951095	0.0753564	0.0864609	0.3830417	4
6	response	0.0861238	0.0528798	0.0246329	0.2601697	5

On a picture

Comments

- Significant effect of dose.
- Effect of larger dose is to decrease survival probability ("slope" negative; also see in decreasing predictions.)
- Confidence intervals around prediction narrower (more data).

Multiple logistic regression

- ullet With more than one x, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- Variables, 1=present, 0=absent:
 - survival (death from sepsis=1), response
 - shock
 - malnutrition
 - alcoholism
 - age (as numerical variable)
 - bowel infarction
- See what relates to death.

Read in data

```
my url <-
  "http://ritsokiguess.site/datafiles/sepsis.txt"
sepsis <- read delim(my url, " ")
## Rows: 106 Columns: 6
## -- Column specification ---
## Delimiter: " "
## dbl (6): death, shock, malnut, alcohol, age, bowelinf
##
## i Use `spec()` to retrieve the full column specification for
## i Specify the column types or set `show col types = FALSE`
```

Make sure categoricals really are

```
sepsis %>%
mutate(across(-age, ~factor(.))) -> sepsis
```

The data (some)

sepsis

death	shock	malnut	alcohol	age	bowelinf
0	0	0	0	56	0
0	0	0	0	80	0
0	0	0	0	61	0
0	0	0	0	26	0
0	0	0	0	53	0
1	0	1	0	87	0
0	0	0	0	21	0
1	0	0	1	69	0
0	0	0	0	57	0
0	0	1	0	76	0
1	0	0	1	66	1
0	0	0	0	48	0
0	0	0	0	18	0

22 / 84

Fit model

```
sepsis.1 <- glm(death ~ shock + malnut + alcohol + age +
  bowelinf,
family = "binomial",
data = sepsis
)</pre>
```

Output part 1

tidy(sepsis.1)

term	estimate	std.error	statistic	p.value
(Intercept)	-9.7539056	2.5416952	-3.837559	0.0001243
shock1	3.6738658	1.1648114	3.154044	0.0016103
malnut1	1.2165811	0.7282236	1.670615	0.0947978
alcohol1	3.3548846	0.9821026	3.416022	0.0006354
age	0.0921527	0.0303237	3.038968	0.0023739
bowelinf1	2.7975864	1.1639717	2.403483	0.0162397

- All P-values fairly small
- but malnut not significant: remove.

Removing malnut

```
sepsis.2 <- update(sepsis.1, . ~ . - malnut)
tidy(sepsis.2)</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	-8.8945899	2.3168948	-3.839013	0.0001235
shock1	3.7011932	1.1035347	3.353944	0.0007967
alcohol1	3.1859040	0.9172457	3.473338	0.0005140
age	0.0898318	0.0292153	3.074821	0.0021063
bowelinf1	2.3864685	1.0722662	2.225631	0.0260389

• Everything significant now.

Comments

- Most of the original x's helped predict death. Only malnut seemed not to add anything.
- Removed malnut and tried again.
- Everything remaining is significant (though bowelinf actually became *less* significant).
- All coefficients are *positive*, so having any of the risk factors (or being older) *increases* risk of death.

Another way to see xxx

comparisons(sepsis.2) %>% summary()

type	term	contrast	estimate	std.error	statistic	p.value	conf.low	conf.high
response	shock	1 - 0	0.3985100	0.0963208	4.137321	0.0000351	0.2097247	0.5872952
response	alcohol	1 - 0	0.3059301	0.0679554	4.501923	0.0000067	0.1727399	0.4391203
response	age	(x + 1) - x	0.0074386	0.0019647	3.786060	0.0001531	0.0035878	0.0112894
response	bowelinf	1 - 0	0.2415562	0.1009452	2.392944	0.0167138	0.0437072	0.4394051

27 / 84

xxx Predictions from model without "malnut"

• A few (rows of original dataframe) chosen "at random":

```
sepsis %>% slice(c(4, 1, 2, 11, 32)) -> new
predictions(sepsis.2, newdata = new)
```

rowid	type	predicted	std.error	death	shock	malnut	alcohol	age	bowelinf
1	response	0.0014153	0.0022471	0	0	0	0	26	0
2	response	0.0205524	0.0166577	0	0	0	0	56	0
3	response	0.1534168	0.0740538	0	0	0	0	80	0
4	response	0.9312901	0.0785121	1	0	0	1	66	1
5	response	0.2130010	0.1012365	1	0	0	1	49	0

Comments

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually good job of predicting survival; sometimes death predicted to survive.

Another way to assess effects 1/2 xxx

of age:

predictions(sepsis.2, variables = "age")

rowid	type	predicted	std.error	death	shock	alcohol	bowelinf	age
1	re- sponse	0.0006311	0.0011597	0	0	0	0	17.0
2	re- sponse	0.0026511	0.0037014	0	0	0	0	33.0
3	re- sponse	0.0150914	0.0134607	0	0	0	0	52.5
4	re- sponse	0.0631980	0.0358615	0	0	0	0	69.0
5	re- sponse	0.3892644	0.1790522	0	0	0	0	94.0

Assessing effects 2/2 xxx

predictions(sepsis.2, variables = "shock")

rowid	type	pre- dicted	std.error	death	alcohol	age	bow- elinf	shock
1	re- sponse	0.0135497	0.0124824	0	0	51.28302	0	0
2	re- sponse	0.3574261	0.2065571	0	0	51.28302	0	1

Assessing proportionality of odds for age

- An assumption we made is that log-odds of survival depends linearly on age.
- Hard to get your head around, but basic idea is that survival chances go continuously up (or down) with age, instead of (for example) going up and then down.
- In this case, seems reasonable, but should check:

Residuals vs. age

```
sepsis.2 %>% augment(sepsis) %>%
  ggplot(aes(x = age, y = .resid)) +
  geom_point()
 3 -
 2-
resid
  0 -
 -1-
            25
                                                      75
                                 50
```

Comments

- No apparent problems overall.
- Confusing "line" across: no risk factors, survived.

Probability and odds

• For probability p, odds is p/(1-p):

Prob.	Odds	log-odds	in words
0.5	0.5/0.5 = 1/1 = 1.00	0.00	"even money"
0.5	, ,	0.00	even money
0.1	0.1/0.9 = 1/9 = 0.11	-2.20	"9 to 1"
0.4	0.4/0.6 = 1/1.5 = 0.67	-0.41	"1.5 to 1"
8.0	0.8/0.2 = 4/1 = 4.00	1.39	"4 to 1 on"

- Gamblers use odds: if you win at 9 to 1 odds, get original stake back plus 9 times the stake.
- Probability has to be between 0 and 1
- Odds between 0 and infinity
- Log-odds can be anything: any log-odds corresponds to valid probability.

Odds ratio

- Suppose 90 of 100 men drank wine last week, but only 20 of 100 women.
- Prob of man drinking wine 90/100 = 0.9, woman 20/100 = 0.2.
- Odds of man drinking wine 0.9/0.1 = 9, woman 0.2/0.8 = 0.25.
- Ratio of odds is 9/0.25 = 36.
- Way of quantifying difference between men and women: "odds of drinking wine 36 times larger for males than females'."

Sepsis data again

Recall prediction of probability of death from risk factors:

```
sepsis.2.tidy <- tidy(sepsis.2)
sepsis.2.tidy</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	-8.8945899	2.3168948	-3.839013	0.0001235
shock1	3.7011932	1.1035347	3.353944	0.0007967
alcohol1	3.1859040	0.9172457	3.473338	0.0005140
age	0.0898318	0.0292153	3.074821	0.0021063
bowelinf1	2.3864685	1.0722662	2.225631	0.0260389

Slopes in column estimate.

Multiplying the odds

• Can interpret slopes by taking "exp" of them. We ignore intercept.

```
sepsis.2.tidy %>%
  mutate(exp_coeff=exp(estimate)) %>%
  select(term, exp_coeff)
```

exp_coeff
0.0001371
40.4955951
24.1891449
1.0939902
10.8750206

Interpretation

term	exp_coeff
(Intercept)	0.0001371
shock1	40.4955951
alcohol1	24.1891449
age	1.0939902
bowelinf1	10.8750206

- These say "how much do you multiply odds of death by for increase of 1 in corresponding risk factor?" Or, what is odds ratio for that factor being 1 (present) vs. 0 (absent)?
- Eg. being alcoholic vs. not increases odds of death by 24 times
- One year older multiplies odds by about 1.1 times. Over 40 years, about $1.09^{40}=31$ times.

Odds ratio and relative risk

- Relative risk is ratio of probabilities.
- Above: 90 of 100 men (0.9) drank wine, 20 of 100 women (0.2).
- Relative risk 0.9/0.2=4.5. (odds ratio was 36).
- When probabilities small, relative risk and odds ratio similar.
- Eg. prob of man having disease 0.02, woman 0.01.
- Relative risk 0.02/0.01 = 2.

Odds ratio vs. relative risk

Odds for men and for women:

```
(od1 <- 0.02 / 0.98) # men

## [1] 0.02040816

(od2 <- 0.01 / 0.99) # women

## [1] 0.01010101
```

- Odds ratio
- od1 / od2
- ## [1] 2.020408
 - Very close to relative risk of 2.

xxx More than 2 response categories

- With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.
- With more than 2 categories, have to think more carefully about the categories: are they
- ordered: you can put them in a natural order (like low, medium, high)
- nominal: ordering the categories doesn't make sense (like red, green, blue).
- R handles both kinds of response; learn how.

xxx Ordinal response: the miners

- Model probability of being in given category or lower.
- Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: none, moderate, severe.

Miners data

• Data are frequencies:

Exposure	None	${\tt Moderate}$	Severe
5.8	98	0	0
15.0	51	2	1
21.5	34	6	3
27.5	35	5	8
33.5	32	10	9
39.5	23	7	8
46.0	12	6	10
51.5	4	2	5

Reading the data

Moderate = col_double(),
Severe = col_double()

##

)

Data in aligned columns with more than one space between, so:

```
my_url <- "http://ritsokiguess.site/datafiles/miners-tab.txt"
freqs <- read_table(my_url)

##
## -- Column specification ------
## cols(
## Exposure = col_double(),
## None = col_double(),</pre>
```

The data

freqs

Exposure	None	Moderate	Severe
5.8	98	0	0
15.0	51	2	1
21.5	34	6	3
27.5	35	5	8
33.5	32	10	9
39.5	23	7	8
46.0	12	6	10
51.5	4	2	5

Tidying

```
freqs %>%
  pivot_longer(-Exposure, names_to = "Severity", values_to = "
  mutate(Severity = fct_inorder(Severity)) -> miners
```

xxx Result

miners

Exposure	Severity	Freq
5.8	None	98
5.8	Moderate	0
5.8	Severe	0
15.0	None	51
15.0	Moderate	2
15.0	Severe	1
21.5	None	34
21.5	Moderate	6
21.5	Severe	3
27.5	None	35
27.5	Moderate	5
27.5	Severe	8
33.5	None	32
33.5	Moderate	10
33.5	Severe	9
	Severe	ç

xxx Plot proportions against exposure

xxx Reminder of data setup

miners

Exposure	Severity	Freq
5.8	None	98
5.8	Moderate	0
5.8	Severe	0
15.0	None	51
15.0	Moderate	2
15.0	Severe	1
21.5	None	34
21.5	Moderate	6
21.5	Severe	3
27.5	None	35
27.5	Moderate	5
27.5	Severe	8
33.5	None	32
33.5	Moderate	10
33.5	Severe	9
39.5	None	23
39.5	Moderate istic regression	7

xxx Fitting ordered logistic model

Use function polr from package MASS. Like glm.

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners
)</pre>
```

xxx Output: not very illuminating

```
summary(sev.1)
##
## Re-fitting to get Hessian
## Call:
## polr(formula = Severity ~ Exposure, data = miners, weights = Freq)
##
## Coefficients:
            Value Std. Error t value
##
## Exposure 0.0959 0.01194 8.034
##
  Intercepts:
##
                  Value Std. Error t value
## None | Moderate 3.9558 0.4097 9.6558
## Moderate|Severe 4.8690 0.4411 11.0383
##
## Residual Deviance: 416.9188
## AIC: 422.9188
```

xxx Does exposure have an effect?

Fit model without Exposure, and compare using anova. Note 1 for model with just intercept:

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
1	369	505.1621		NA	NA	NA
Exposure	368	416.9188	1 vs 2	1	88.24324	0

Exposure definitely has effect on severity of disease.

xxx Another way

• What (if anything) can we drop from model with exposure?

	Df	AIC	LRT	Pr(>Chi)
	NA	422.9188	NA	NA
Exposure	1	509.1621	88.24324	0

Nothing. Exposure definitely has effect.

xxx Predicted probabilities

```
freqs %>% select(Exposure) -> new
new
```

```
Exposure
      5.8
     15.0
     21.5
     27.5
     33.5
     39.5
     46.0
     51.5
```

Plot of predicted probabilities

```
plot_cap(model = sev.1, condition = "Exposure", type = "probs'
ggplot(aes(x = Exposure.x, y = predicted, colour = group)) =
geom_point(data = prop, aes(x = Exposure, y = proportion, colour)
```

##
Re-fitting to get Hessian

xxx Comments

- Model appears to match data: as exposure goes up, prob of None goes down, Severe goes up (sharply for high exposure).
- add

xxx Unordered responses

- With unordered (nominal) responses, can use generalized logit.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.
- Data in mlogit.csv separated by commas (so read_csv will work):

```
my_url <- "http://ritsokiguess.site/datafiles/mlogit.csv"
brandpref <- read_csv(my_url)</pre>
```

```
## Rows: 735 Columns: 3
## -- Column specification -----
## Delimiter: "."
```

```
## dbl (3): brand, sex, age ##
```

i Use `spec()` to retrieve the full column specification fo
i Specify the column types or set `show_col_types = FALSE`

xxx The data

brandpref

brand	sex	age
1	0	24
1	0	26
1	0	26
1	1	27
1	1	27
3	1	27
1	0	27
1	0	27
1	1	27
1	0	27
1	0	27
1	1	27
2	1	28
Logist	ic regressi	on

xxx Bashing into shape, and fitting model

• sex and brand not meaningful as numbers, so turn into factors:

```
brandpref <- brandpref %>%
  mutate(sex = factor(sex)) %>%
  mutate(brand = factor(brand))
```

• We use multinom from package nnet. Works like polr.

```
brands.1 <- multinom(brand ~ age + sex, data = brandpref)</pre>
```

```
## # weights: 12 (6 variable)
## initial value 807.480032
## iter 10 value 702.976983
## final value 702.970704
## converged
```

xxx Can we drop anything?

Unfortunately drop1 seems not to work:

```
drop1(brands.1, test = "Chisq", trace = 0)
```

```
## trying - age
```

- ## Error in if (trace) {: argument is not interpretable as log
 - so fall back on fitting model without what you want to test, and comparing using anova.

xxx Do age/sex help predict brand? 1/2

final value 791.861266

converged

Fit models without each of age and sex: brands.2 <- multinom(brand ~ age, data = brandpref)</pre> ## # weights: 9 (4 variable) ## initial value 807.480032 ## iter 10 value 706.796323 ## iter 10 value 706.796322 ## final value 706.796322 ## converged brands.3 <- multinom(brand ~ sex, data = brandpref)</pre> ## # weights: 9 (4 variable) ## initial value 807.480032

xxx Do age/sex help predict brand? 2/2

anova(brands.2, brands.1)

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
age	1466	1413.593		NA	NA	NA
age + sex	1464	1405.941	1 vs 2	2	7.651236	0.021805

anova(brands.3, brands.1)

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
sex	1466	1583.723		NA	NA	NA
age + sex	1464	1405.941	1 vs 2	2	177.7811	0

xxx Do age/sex help predict brand? 3/3

- age definitely significant (second anova)
- sex seems significant also (first anova)
- Keep both.

xxx Another way to build model

• Start from model with everything and run step:

```
step(brands.1, trace = 0)
## trying - age
## trying - sex
## Call:
## multinom(formula = brand ~ age + sex, data = brandpref)
##
## Coefficients:
##
     (Intercept) age
                               sex1
## 2 -11.77469 0.3682075 0.5238197
## 3 -22.72141 0.6859087 0.4659488
##
  Residual Deviance: 1405.941
## AIC: 1417.941
```

• Final model contains both age and sex so neither could be removed.

xxx Predictions: all possible combinations

Create data frame with various age and sex:

```
ages <- c(24, 28, 32, 35, 38)
sexes <- factor(0:1)
new <- crossing(age = ages, sex = sexes)
new</pre>
```

age	sex
24	0
24	1
28	0
28	1
32	0
32	1
35	0
35	1
38	0
38	1

xxx Making predictions

```
p <- predict(brands.1, new, type = "probs")
probs <- cbind(new, p)

or
p %>% as_tibble() %>%
  bind cols(new) -> probs
```

xxx The predictions

probs

1	2	3	age	sex
0.9479582	0.0502293	0.0018125	24	0
0.9153208	0.0818904	0.0027888	24	1
0.7931320	0.1832969	0.0235711	28	0
0.6956179	0.2714391	0.0329430	28	1
0.4048727	0.4081032	0.1870241	32	0
0.2908635	0.4950314	0.2141052	32	1
0.1305782	0.3972405	0.4721813	35	0
0.0840413	0.4316859	0.4842727	35	1
0.0259816	0.2385507	0.7354677	38	0
0.0162309	0.2516220	0.7321471	38	1

- Young males (sex=0) prefer brand 1, but older males prefer brand 3.
- Females similar, but like brand 1 less and brand 2 more.

Logistic regression 68 / 84

xxx Making a plot

- Plot fitted probability against age, distinguishing brand by colour and gender by plotting symbol.
- Also join points by lines, and distinguish lines by gender.
- I thought about facetting, but this seems to come out clearer.
- First need tidy data frame, by familiar process:

```
probs %>%
gather(brand, probability, -(age:sex)) -> probs.long
```

xxx The tidy data (random sample of rows)

probs.long %>% sample_n(10)

age	sex	brand	probability
32	0	1	0.4048727
38	0	3	0.7354677
28	1	1	0.6956179
28	0	3	0.0235711
38	1	3	0.7321471
28	0	1	0.7931320
35	1	1	0.0840413
24	0	1	0.9479582
32	0	3	0.1870241
35	0	1	0.1305782

xxx The plot

```
ggplot(probs.long, aes(
    x = age, y = probability,
    colour = brand, shape = sex
)) +
    geom_point() + geom_line(aes(linetype = sex))
```


xxx Digesting the plot

- Brand vs. age: younger people (of both genders) prefer brand 1, but older people (of both genders) prefer brand 3. (Explains significant age effect.)
- Brand vs. sex: females (dashed) like brand 1 less than males (solid), like brand 2 more (for all ages).
- Not much brand difference between genders (solid and dashed lines of same colours close), but enough to be significant.
- Model didn't include interaction, so modelled effect of gender on brand same for each age, modelled effect of age same for each gender.

xxx Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end:

```
1 0 24 1
```

1 0 30 3

Whole data set in 65 lines not 735! But how?

xxx Getting alternative data format

```
brandpref %>%
  group_by(age, sex, brand) %>%
  summarize(Freq = n()) %>%
  ungroup() -> b
```

`summarise()` has grouped output by 'age', 'sex'. You can
override using the `.groups` argument.

b %>% slice(1:6)

age	sex	brand	Freq
24	0	1	1
26	0	1	2
27	0	1	4
27	1	1	4
27	1	3	1
28	0	1	4
	Logist	ic regression	

74 / 84

xxx Fitting models, almost the same

- Just have to remember weights to incorporate frequencies.
- Otherwise multinom assumes you have just 1 obs on each line!
- Again turn (numerical) sex and brand into factors:

```
b %>%
  mutate(sex = factor(sex)) %>%
  mutate(brand = factor(brand)) -> bf
b.1 <- multinom(brand ~ age + sex, data = bf, weights = Freq)
b.2 <- multinom(brand ~ age, data = bf, weights = Freq)</pre>
```

xxx P-value for sex identical

anova(b.2, b.1)

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
age	126	1413.593		NA	NA	NA
age + sex	124	1405.941	1 vs 2	2	7.651236	0.021805

Same P-value as before, so we haven't changed anything important.

xxx Including data on plot

 Everyone's age given as whole number, so maybe not too many different ages with sensible amount of data at each:

```
b %>%
group_by(age) %>%
summarize(total = sum(Freq))
```

age	total
24	1
26	2
27	9
28	15
29	19
30	23
31	40
32	333
33	55
34	64
35	35
36	85
37	22
38	32
Logistic i	regression

77 / 84

xxx Comments and next

- Not great (especially at low end), but live with it.
- Need proportions of frequencies in each brand for each age-gender combination. Mimic what we did for miners:

```
b %>%
group_by(age, sex) %>%
mutate(proportion = Freq / sum(Freq)) -> brands
```

xxx Checking proportions for age 32

brands %>% filter(age == 32)

age	sex	brand	Freq	proportion
32	0	1	48	0.4067797
32	0	2	51	0.4322034
32	0	3	19	0.1610169
32	1	1	62	0.2883721
32	1	2	117	0.5441860
32	1	3	36	0.1674419

- First three proportions (males) add up to 1.
- Last three proportions (females) add up to 1.
- So looks like proportions of right thing.

xxx Attempting plot

- Take code from previous plot and:
- remove geom_point for fitted values
- add geom_point with correct data= and aes to plot data.

```
g <- ggplot(probs.long, aes(
    x = age, y = probability,
    colour = brand, shape = sex
)) +
    geom_line(aes(linetype = sex)) +
    geom_point(data = brands, aes(y = proportion))</pre>
```

• Data seem to correspond more or less to fitted curves:

xxx The plot

xxx But...

- Some of the plotted points based on a lot of people, and some only a few.
- Idea: make the *size* of plotted point bigger if point based on a lot of people (in Freq).
- Hope that larger points then closer to predictions.
- Code:

```
g <- ggplot(probs.long, aes(
    x = age, y = probability,
    colour = brand, shape = sex
)) +
    geom_line(aes(linetype = sex)) +
    geom_point(
        data = brands,
        aes(y = proportion, size = Freq)
)</pre>
```

xxx The plot

xxx Trying interaction between age and gender

```
b.4 <- update(b.1, . ~ . + age:sex)

## # weights: 15 (8 variable)
## initial value 807.480032
## iter 10 value 704.811229
## iter 20 value 702.582802
## final value 702.582761
## converged
anova(b.1, b.4)</pre>
```

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
age + sex	124	1405.941	1 vs 2	NA	NA	NA
age + sex + age:sex	122	1405.166		2	0.7758861	0.678451

 No evidence that effect of age on brand preference differs for the two genders.