MAS205 Complex Variables 2005-2006

Exercises 6

Exercise 21: Find the radius of convergence of the following power series

(a)
$$\sum_{n=1}^{\infty} \frac{z^n}{(2+2i)^n}$$
, (b) $\sum_{n=0}^{\infty} (n+1)^7 z^n$, (c) $\sum_{n=0}^{\infty} z^n \exp(n)$,

(d)
$$\sum_{n=0}^{\infty} \frac{z^n}{(n!)^2}$$
, (e) $\sum_{n=0}^{\infty} (-1)^n n! z^n$.

Exercise 22: Give an example, if possible, of power series with the following properties:

- (a) centred at $z_0 = i$, with radius of convergence R = 0
- (b) centred at $z_0 = -2 + 2i$, with radius of convergence R = 2
- (c) centred at $z_0=1$ and convergent for all z with $\Re(z)<2$ but divergent for all z with $\Re(z)>4$
- (d) centred at $z_0 = (1+i)/\sqrt{2}$, with radius of convergence $R = \infty$
- (e) centred at $z_0=0$ and convergent for all z with $\Im(z)=2$ but divergent for all other $z\in\mathbb{C}$

(Proofs are not necessary, but if you can't find an example you should explain why.)

Exercise 23: Let f(z) = (2+z)/(1-z). Determine the Taylor series $\sum_{n=0}^{\infty} a_n z^n$ for

(a)
$$f(z) = \frac{1}{1+z}$$
 around $z_0 = 0$,

(b)
$$f(z) = \frac{1}{1+z}$$
 around $z_0 = 1$,

(c)
$$f(z) = \frac{1}{(1+z)(1-z)}$$
 around $z_0 = 0$.

In each of the cases, give the radius of convergence of the Taylor series.

Exercise 24: Let $D = \{z : |z + 3i| < 2\}$. Suppose that $f : D \to \mathbb{C}$ is defined by

$$f(z) = \sum_{n=0}^{\infty} \frac{(z+3i)^n}{(2i)^n}$$
.

Calculate the Taylor series for f at the point $z_0 = 0$ and determine its radius of convergence.

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 10:30am Wednesday 23rd November