

Digitale Integrierete Schaltungen

CMOS-Technologie

Axel Jantsch

Inhalt

- Einleitung
- MOSFET & CMOS
 - Aufbau
 - Grundlegende Funktionsweise
- Logikfamilien, Ausgangsschaltungen & Pegel
- Aufbau integrierter CMOS-Schaltungen

Wie groß ist ein Transistor?

Beispiel

- Pentium IV
 - Chipgröße 217 mm² (180 nm, Jahr 2000)
 - 42 x 10⁶ Transistoren
 - 20 % der Fläche für Verdrahtung genutzt
 - → 4,1 µm² pro Transistor!
- Haswell-E(P)
 - → 0,1 µm² pro Transistor!
- 10/11nm Technologie:
 - SRAM 1bit: $\frac{10^6 \mu m^2}{29 \cdot 10^6} = 0.034 \ \mu m^2 = 34000 \ nm^2 = 184 \times 184 \ nm^2$
 - NAND Gate: $\frac{10^6 \mu m^2}{19 \cdot 10^6} = 0.052 \ \mu m^2 = 52000 \ nm^2 = 228 \times 228 \ nm^2$
 - Transistor: $0.013 \ \mu m^2 = 13000 \ nm^2 = 114 \times 114 \ nm^2$

International Roadmap for Devices and Systems, 2016 Edition More Moore White Paper, https://irds.ieee.org

Der MOSFET

N-Kanal-Transistor

P-Kanal-Transistor

MOSFET - Funktionsweise

- Spannungsloser Zustand
 - 2 Raumladungszonen zw. Source und Drain
 - Kein Stromfluß möglich
 - Selbstsperrender MOSFET

MOSFET - Funktionsweise

- Spannung zwischen Gate und Bulk (Source)
 - Elektronen werden an die Oberfläche gezogen
 - Ab Erreichen einer Schwellspannung (Threshold Voltage) bildet sich eine Inversionsschicht
 - Leitfähiger Kanal entsteht zw. Source & Drain

CMOS Technologie

CMOS Inverter (1)

1. $Vss < Uin < U_{thn}$

NMOS-Transistor: kein Strom, PMOS-Transistor = Stromquelle

→ Last H-Pegel (Vdd)

2. $U_{thn} < Uin < Vdd/2$

NMOS-Transistor = kleiner werdender Lastwiderstand , PMOS-Transistor = Stromquelle → Uout fällt langsam

CMOS Inverter (2)

3. $Vdd/2 < Uin < Vdd - | U_{thp} |$

NMOS-Transistor = Stromsenke, PMOS-Transistor = größer werdenden Lastwiderstands → Uout sinkt weiter

4. $Vdd - |U_{thp}| < Uin < Vdd$

PMOS-Transistor: kein Strom, NMOS-Transistor entlädt Lastkapazität → L-Pegel

Institut für Computertechnik Institute of Computer Technology

Aufbau integrierter CMOS-Schaltungen

CMOS-Gatter

- Kombination von N- und P-Kanal-FETs zur Realisierung logischer Funktionen
- Einfachstes Beispiel Inverter
- Kombinatorische Funktionen
 - AND, NAND (einfacher)
 - OR, NOR (einfacher)
- Funktionen mit Gedächtnis
 - Flip Flop
 - Latch

Inverter

NOR

- Mehrere Inputs möglich
- OR durch nachgeschalteten Inverter

NAND

- Mehrere Inputs möglich
- AND durch nachgeschalteten Inverter

- A steuert Transmission Gate (leitet bei A = 0)
- Bei A = 1 funktioniert Inverter bei B

- A steuert Transmission Gate (leitet bei A = 0)
- Bei A = 1 funktioniert Inverter bei B

- A steuert Transmission Gate
 (leitet bei A = 0)
- Bei A = 1 funktioniert Inverter bei B

- A steuert Transmission Gate
 (leitet bei A = 0)
- Bei A = 1 funktioniert Inverter bei B

Latch

- Speicherelement
- Einfachste Form aus zwei rückgekoppelten Invertern
 - Hält den jeweiligen Zustand
 - Schwache Inverter (kleine Transistoren)

- Kann durch starken Treiber überschrieben werden
- Schieberegister
 - Zwei Latches und zwei Transmission Gates
 - Benötigt einen Takt
 - Flankengesteuert

Latch

- Speicherelement
- Einfachste Form aus zwei rückgekoppelten Invertern
 - Hält den jeweiligen Zustand
 - Schwache Inverter (kleine Transistoren)

- Kann durch starken Treiber überschrieben werden
- Schieberegister
 - Zwei Latches und zwei Transmission Gates
 - Benötigt einen Takt
 - Flankengesteuert

Latch

- Speicherelement
- Einfachste Form aus zwei rückgekoppelten Invertern
 - Hält den jeweiligen Zustand
 - Schwache Inverter (kleine Transistoren)

- Kann durch starken Treiber überschrieben werden.
- Schieberegister
 - Zwei Latches und zwei Transmission Gates
 - Benötigt einen Takt
 - Flankengesteuert

D-Flip-Flop

Transmission Gates in der Rückkopplung

- Bei Takt = 0 werden Daten gehalten
- Bei Takt = 1 werden neue Daten übernommen
- Eine Möglichkeit von vielen

D-Flip-Flop

Transmission Gates in der Rückkopplung

- Bei Takt = 0 werden Daten gehalten
- Bei Takt = 1 werden neueDaten übernommen
- Eine Möglichkeit von vielen

D-Flip-Flop

Transmission Gates in der Rückkopplung

- Bei Takt = 0 werden Daten gehalten
- Bei Takt = 1 werden neue Daten übernommen
- Eine Möglichkeit von vielen

Input-Pad mit Überspannungsschutz

Output-Pad

Institut für
Computertechnik
Institute of
Computer Technology

Gatteraufbau & Ausgangsschaltungen

Aufbau statischer CMOS-Gatter

- NMOS-Teil ist dual zum PMOS Teil
- Gegeben ist function F (a,b,..)
 - Im PMOS Teil wird F mit invertierten Eingängen NOT A, NOT b, ... implementiert
 - Im NMOS Teil wird NOT F implementiert

Komplexere Funktion

CMOS-Standardausgang

- Push-Pull Prinzip
 - Push
 bei H-Pegel am Ausgang bringen
 PMOS-Transistoren angeschlossene
 Eingänge auf H-Pegel
 - Pull
 bei L-Pegel am Ausgang bringen
 NMOS-Transistoren angeschlossene
 Eingänge auf L-Pegel
 - Problem beim direkten Verbinden

Open-Drain- / Open-Collector-Ausgang

- obere (PMOS-) Transistor durch Widerstand ersetzt
- Drain-Anschluss des NMOS-Transistors nach außen geführt
- Pull-Up-Widerstand nach Vdd
- x Open-Drain-Ausgänge / ein gemeinsamer Pull-Up-Widerstand

Р

Three-State-Ausgang

Vdd

- Three-State-Ausgänge (Freigabeeingänge)
- Pegel = neg. Dateneingang (EN-Signal)

EN	A	Y
L	L	Z
L	Н	Z
Н	L	Н
Н	Н	L

Bidirektionale Busverbindung mit Three-State-Ausgängen

- Three-State-Ausgang (Bus)
 - Eingangsverstärker (IBUF),
 - Ausgangsverstärker (OBUFT),
 - bidirektionaler Portpin (InOut).
- EN = 1: BK 1 → BUS
- EN = 0: BUS \rightarrow BK 1

Institut für Computertechnik Institute of Computer Technology

CMOS Technologie Transistoren Gatter