# Experiment No. 1

## Modeling of R-C Circuit (SISO Open Loop)

### **Objectives**

- Understand system modeling.
- Understand system transfer function and governing equation.
- Observe response of system.

### Circuit Diagram



FIGURE 1.1: RC Circuit

### Section 1.1: Theoretical Calculations

- Find transfer function of system shown in Figure 1.1
- Find zero, pole and gain from Transfer function.
- Find governing equation of system.
- Find unit step response of system.
- Fill table below.

### **Observation Set:**

| No. | Time            | $V_o$ (dc) |
|-----|-----------------|------------|
| 1   | 1ms             |            |
| 2   | 2ms             |            |
| 3   | $3 \mathrm{ms}$ |            |
| 4   | 4ms             |            |
| 5   | $5 \mathrm{ms}$ |            |
| 6   | 6ms             |            |
| 7   | 7ms             |            |
| 8   | 8ms             |            |

## Section 1.2: Simulation

- Define transfer function of system in Matlab.
- Find zero, pole and gain from Transfer function.
- Find unit step response of system.
- Fill table below.

### **Observation Set:**

| No. | Time            | $V_o$ (dc) |
|-----|-----------------|------------|
| 1   | 1ms             |            |
| 2   | 2ms             |            |
| 3   | $3 \mathrm{ms}$ |            |
| 4   | 4ms             |            |
| 5   | $5 \mathrm{ms}$ |            |
| 6   | 6ms             |            |
| 7   | 7ms             |            |
| 8   | 8ms             |            |

### Matlab Functions:

| No. | Code     |
|-----|----------|
| 1   | tf       |
| 2   | ilaplace |
| 3   | zpkdata  |
| 4   | zero     |
| 5   | pole     |
| 6   | step     |

### Section 1.3: Hardware Results

- Patch circuit on breadboard.
- Generate 50 Hz Square wave with Vp-p 1V and offset 0.5V and use as input.
- Observe output using oscilloscope.
- Fill table below.

#### **Observation Set:**

| No. | Time            | $V_o$ (dc) |
|-----|-----------------|------------|
| 1   | 1ms             |            |
| 2   | 2ms             |            |
| 3   | $3 \mathrm{ms}$ |            |
| 4   | 4ms             |            |
| 5   | $5 \mathrm{ms}$ |            |
| 6   | 6ms             |            |
| 7   | 7ms             |            |
| 8   | 8ms             |            |

#### Point to ponder:

- Product of system transfer function H(s) and unit step (1/s) IS EQUAL to convolution of system time domain h(t) and unit step u(t) and it IS EQUAL to solution of governing equation.
- System have multiple state space representations but single unique transfer function.
- Number of poles is equal to number of zeros.
- Poles in left plane of pole-zero plot make system stable while poles in right plane makes system unstable.
- System becomes marginally stable if there is at least one pole on imaginary axis in pole-zero plot.
- Two poles on origin make system unstable.
- Transfer Function us Unique while state space representation is infinitely many.