Week 8 Attendance Solutions

MATH 23A

(1) (Q) Assuming |x| < 1 and |y| < 1 write down the Taylor series centered at (0,0) for the function:

$$f(x,y) = \frac{1}{1 - x - y + xy}$$

(Hint: Think about the Geometric series.)

(A) First notice the following:

$$f(x,y) = \frac{1}{1-x-y-xy} = \frac{1}{(1-x)(1-y)} = \frac{1}{1-x}\frac{1}{1-y}$$

In this scenario our function is decomposed as f(x,y) = g(x)h(y) where:

$$g(x) = \frac{1}{1-x}$$
 and $h(y) = \frac{1}{1-y}$

The Taylor expansions of g and h at x = 0 and y = 0 respectively take the form:

$$g(x) = \sum_{n_1=0}^{\infty} x^{n_1}$$
 and $h(y) = \sum_{n_2=0}^{\infty} y^{n_2}$

providing us with the Taylor expansion of f:

$$f(x,y) = g(x)h(y) = \sum_{n_1=0}^{\infty} x^{n_1} \cdot \sum_{n_2=0}^{\infty} y^{n_2} = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} x^{n_1} y^{n_2}$$

(2) (O) Find the absolute maximum and minimum of the function:

$$g(x,y) = x^2 - y^2$$

on the domain:

$$\mathbb{D} = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}$$

(Hint: Find all normal critical points that belong to the interior first. Then parametrize the boundary, restrict g to the boundary, and find all critical points on the boundary. Finally compute the value of g at all these critical points and determine the smallest and biggest values.)

(A) For the normal critical points we want to satisfy:

$$\nabla g = \begin{pmatrix} 2x \\ -2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \overrightarrow{0}$$

Clearly the only solution occurs when x=y=0. Now we restrict our attention to the boundary which can be parametrized via $x=\cos(t)$ and $y=\sin(t)$ for $0 \le t < 2\pi$. The restriction of the function to the boundary takes the form:

$$\tilde{g}(t) = g(\cos(t), \sin(t)) = \cos^2(t) - \sin^2(t) = \cos(2t)$$

To find the critical points of \tilde{g} we must satisfy:

$$\tilde{g}'(t) = -2\sin(2t) = 0$$

This occurs when $2t=k\pi$ for $k\in\mathbb{Z}$. This is equivalent to $t=\frac{\pi}{2}k$. On our domain the acceptable values are $t=0,\frac{\pi}{2},\pi,\frac{3\pi}{2}$. Among the points (0,0),(1,0),(0,1),(-1,0),(0,-1) we have g obtaining 1 and -1 as the absolute maximum and minimum on \mathbb{D} .