Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Samuel Barbosa Feitosa

Divisibilidade I

Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um único par (q,r) de inteiros não negativos tais que b=aq+r e r < a. Os números q e r são chamados de quociente e resto, respectivamente, da divisão de b por a.

Exemplo 2. Encontre um número natural N que, ao ser dividido por 10, deixa resto 9, ao ser dividido por 9 deixa resto 8, e ao ser dividido por 8 deixa resto 7.

O que acontece ao somarmos 1 ao nosso número? Ele passa a deixar resto 0 na divisão por 10,9 e 8. Assim, um possível valor para $N \in 10 \cdot 9 \cdot 8 - 1$.

Exemplo 3. a) Verifique que
$$a^n - 1 = (a - 1)(a^{n-1} + a^{n-2} + ... + a + 1)$$

b) Calcule o resto da divisão de 4²⁰¹² por 3.

Para o item a), usando a distributividade e efetuando os devidos cancelamentos no lado direito, podemos escrever:

$$a^{n} + a^{n-1} + \ldots + a^{2} + a - a^{n-1} - a^{n-2} - \ldots - a - 1 = a^{n} - 1.$$

Para o item b), veja que 3=4-1 e assim é natural substituir os valores dados na expressão do primeiro item:

$$4^{2012} - 1 = 3(4^{2011} + \ldots + 4 + 1).$$

Isso significa que $q = (4^{2011} + ... + 4 + 1)$ e que r = 1.

Observação 4. O teorema anterior admite um enunciado mais geral: Para quaisquer inteiros $a \in b$, com $a \neq 0$, existe um único par de inteiros (q,r) tais que $b = aq + r, 0 \leq r < |a|$. Por exemplo, o resto da divisão de -7 por -3 é 2 e o quociente é 3.

Iremos agora estudar propriedades a respeito das operações com restos.

Teorema 5. (Teorema dos Restos) Se b_1 e b_2 deixam restos r_1 e r_2 na divisão por a, respectivamente, então:

 $b_1 + b_2$ deixa o mesmo resto que $r_1 + r_2$ na divisão por a b_1b_2 deixa o mesmo resto que r_1r_2 na divisão por a.

Demonstração. Por hipótese, existem q_1 , q_2 e q tais que: $b_1 = aq_1 + r_1$, $b_2 = aq_2 + r_2$ e $r_1 + r_2 = aq + r$, logo:

$$b_1 + b_2 = a(q_1 + q_2 + q) + r.$$

Como 0 < r < |a|, $b_1 + b_2$ deixa resto r quando dividido por a. A demonstração para o produto é deixada ao cargo do leitor.

Observação 6. Em alguns casos, é preferível que o professor faça uma demonstração do resultado anterior para a=3 ou a=5 apenas com o intuito de deixar os alunos mais confortáveis a respeito do resultado. É preferível que mais tempo seja gasto resolvendo exemplos e problemas. Na seção de congruências, os alunos terão um contato mais apropriado com o enunciado anterior.

Exemplo 7. Qual o resto que o número $1002 \cdot 1003 \cdot 1004$ deixa quando dividido por 7?

Como 1002 deixa resto 1 por 7, o número acima deixa o mesmo resto que $1 \cdot 2 \cdot 3 = 6$ por 7.

Exemplo 8. Qual o resto que o número 4⁵⁰⁰⁰ deixa quando dividido por 3?

Como 4 deixa resto 1 por 3, 4^{5000} deixa o mesmo resto que $\underbrace{1 \cdot 1 \cdot \ldots \cdot 1}_{5000} = 1$ por 3.

Exemplo 9. Qual o resto que o número 2^{2k+1} deixa quando dividido por 3?

Note que 2^0 deixa resto 1 por 3, 2^1 deixa resto 2 por 3, 2^2 deixa resto 1 por 3, 2^3 deixa resto 2 por 3, 2^4 deixa resto 1 por 3. Precebeu alguma coisa? Como 100 é par, o resto deverá ser 1. Como 2^2 deixa resto 1, então $2^{2k} = \underbrace{2^2 \cdot 2^2 \cdot \ldots \cdot 2^2}_k$ deixa o mesmo resto que

$$\underbrace{1 \cdot 1 \cdot \ldots \cdot 1}_{k} = 1$$
 e $2^{2k+1} = 2^{2k} \cdot 2$ deixa o mesmo resto que $1 \cdot 2 = 2$ por 3.

Exemplo 10. Qual o resto de $n^3 + 2n$ na divisão por 3?

Se o resto de n por 3 é r, o resto de $n^3 + 2n$ é o mesmo de $r^3 + 2r$. Para r = 0, esse resto seria 0. Para r = 1, seria o mesmo resto de 3 que é 0. Finalmente, para r = 2, o resto seria o mesmo de 8 + 4 = 12 que também é 0. Assim, não importa qual o resto de n por 3, o número $n^3 + 2n$ sempre deixará resto 0. Uma ideia importante nessa solução foi dividí-la em casos. Também poderíamos ter resolvido esse exemplo apelando para alguma fatoração:

$$n^{3} + 2n = n^{3} - n + 3n = n(n^{2} - 1) + 3n = n(n - 1)(n + 1) + 3n.$$

Como n-1, $n \in n+1$ são consecutivos, um deles é múltiplo de 3. Assim, o último termo da igualdade anterior é a soma de dois múltiplos de 3 e consequentemente o resto procurado é 0.

Observação 11. Fatorações podem ser muito úteis para encontrarmos os valores explícitos de q e r.

Exemplo 12. Prove que, para cada n natural,

$$(n+1)(n+2)\dots(2n)$$

 \acute{e} divisível por 2^n .

Veja que

$$(n+1)(n+2)\dots(2n) = \frac{1\cdot 2\cdots 2n}{1\cdot 2\cdots n}.$$

Para cada número natural k no produto escrito no denominador, temos uma aparição de 2k no produto escrito no numerador. Basta efetuarmos os cancelamentos obtendo:

$$(n+1)(n+2)\dots(2n) = 2^n \cdot 1 \cdot 3 \cdots (2n-1).$$

Exemplo 13. (Olimpíada de Leningrado 1991) Cada um dos naturais a, b, c e d \acute{e} divisível por ab-cd, que também \acute{e} um número natural. Prove que ab-cd=1.

Se chamarmos p=ab-cd, teremos a=px, b=py, c=pz e d=pt onde x,y,z e t são inteiros. Assim, $p=p^2(xy-zt)$. Consequentemente 1=p(xy-zt) e concluímos que p=1, pois p é natural.

Exemplo 14. A soma digital D(n) de um inteiro positivo n é definida recursivamente como segue:

$$D(n) = \begin{cases} n & \text{se } 1 \le n \le 9, \\ D(a_0 + a_1 + \dots + a_m) & \text{se } n > 9, \end{cases}$$

onde a_0, a_1, \ldots, a_m são todos os dígitos da expressão decimal de n na base 10, i.e.,

$$n = a_m 10^m + a_{m-1} 10^{m-1} + \dots + a_1 10 + a_0$$

Por exemplo, D(989) = D(26) = D(8) = 8. Prove que: D((1234)n) = D(n), para n = 1, 2, 3...

Como $10^n - 1^n = (10-1)(10^{n-1} + 10^{n-2} + \ldots + 1)$, podemos concluir que 10^n sempre deixa resto 1 na divisão por 9. Assim, $n = a_m 10^m + a_{m-1} 10^{m-1} + \ldots + a_1 10 + a_0$, deixa o mesmo resto que $a_m + a_{m-1} + \ldots + a_0$ na divisão por 9. Desse modo, D(n) nada mais é do que o resto na divisão por 9 do número n. Como 1234 deixa resto 1 por 9, o número (1234)n deixa o mesmo resto que $1 \cdot n$ por 9, ou seja, D((1234)n) = D(n).

Observação 15. O exemplo anterior contém o critério de divisibilidade por 9, i.e., n deixa o mesmo resto que D(n) na divisão por 9. O critério de divisibilidade por 3 é análogo pois 10^n também sempre deixa resto 1 por 3.

Exemplo 16. Encontre todos os pares de inteiros positivos a e b tais que 79 = ab + 2a + 3b.

Fatoremos a expressão anterior. Somando 6 aos dois lados da equação, obtemos:

$$85 = 6 + ab + 2a + 3b$$
$$= (3+a)(2+b)$$

Assim, (3+a) e (2+b) são divisores positivos de 85 maiores que 1. Os únicos divisores positivos de 85 são 1, 5, 19, 85. Logo, os possíveis pares de valores para (3+a,2+b) são (5,19) ou (19,5) que produzem as soluções (a,b)=(2,17) e (16,3).

Problema 17. (Olimpíada Russa) Prove que se $\frac{2^n-2}{n}$ é um inteiro, então $\frac{2^{2^n-1}-2}{2^n-1}$ também é um inteiro.

Se
$$k = \frac{2^n - 2}{n}$$
, então
$$\frac{2^{2^n - 1} - 2}{2^n - 1} = \frac{2(2^{2^n - 2} - 1)}{2^n - 1}$$
$$= 2\left(\frac{2^{nk} - 1}{2^n - 1}\right)$$
$$= 2\left(\frac{(2^n - 1)(2^{n(k-1)} + 2^{n(k-2)} + \dots + 2^n + 1)}{2^n - 1}\right)$$
$$= 2(2^{n(k-1)} + 2^{n(k-2)} + \dots + 2^n + 1).$$

é um número inteiro.

Problemas Propostos

Problema 18. Encontre os inteiros que, na divisão por 7, deixam um quociente igual ao resto.

Problema 19. Determinar os números que divididos por 17 dão um resto igual ao quadrado do quociente correspondente.

Problema 20. (OCM 1985) Encontre o quociente da divisão de $a^{128} - b^{128}$ por

$$(a^{64} + b^{64})(a^{32} + b^{32})(a^{16} + b^{16})(a^8 + b^8)(a^4 + b^4)(a^2 + b^2)(a + b)$$

Problema 21. (OCM 1994) Seja A = 777...77 um número onde o dígito "7" aparece 1001 vezes. Determinar o quociente e o resto da divisão de A por 1001.

Problema 22. Encontre um inteiro que deixa resto 4 na divisão por 5 e resto 7 na divisão por 13

Problema 23. Encontre o menor inteiro que, dividido por 29 deixa resto 5, e dividido por 31 dá resto 28.

Problema 24. Prove que, para todo inteiro positivo n o número $n^5 - 5n^3 + 4n$ é divisível por 120.

Problema 25. (Fatorações Importantes)

a) Seja $S = 1 + z + z^2 + z^3 + \ldots + z^{n-1}$. Veja que $S + z^n = 1 + zS$ então $S(z-1) = z^n - 1$. Conclua que, para quaisquer x e y vale:

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^{2} + \dots + x^{2}y^{n-3} + xy^{n-2} + y^{n-1})$$

b) Mostre que se n é impar vale:

$$x^{n} + y^{n} = (x+y)(x^{n-1} - x^{n-2}y + x^{n-3}y^{2} - \dots + x^{2}y^{n-3} - xy^{n-2} + y^{n-1})$$

Problema 26. Prove que, o número $1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99}$ é múltiplo de 5.

Problema 27. Mostre que o número $1^n + 8^n - 3^n - 6^n$ é multiplo de 10 para todo natural n.

Problema 28. Encontre o resto da divisão $37^{10} - 1$ por 11.

Problema 29. Prove que $2222^{5555} + 5555^{2222}$ é divisível por 7.

Problema 30. Encontre o último dígito do número 1989¹⁹⁸⁹.

Problema 31. Mostre que se n divide a então $2^n - 1$ divide $2^a - 1$.

Problema 32. (Cone Sul 1996) Provar que o número

$$\frac{1995 \cdot 1997^{1996} - 1996 \cdot 1997^{1995} + 1}{1996^2}$$

é um inteiro.

Problema 33. Mostre que para n ímpar, n divide $1^n + 2^n + \ldots + (n-1)^n$

Problema 34. Existe um natural n tal que $n^n + (n+1)^n$ é divisível por 2011?

Problema 35. Quantos números inteiros positivos n existem tais que n+3 divide n^2+7 ?

Problema 36. Encontre o número de inteiros n tais que

1. 1000 < n < 8000.

2. $n^{n+1} + (n+1)^n$ é divisível por 3.

Problema 37. Sejam m e n naturais tais que mn+1 é múltiplo de 24, mostre que m+n também é múltiplo de 24.

Problema 38. (Irlanda 1997) Encontre todos os pares de inteiros (x, y) tais que 1+1996x+1998y=xy.

Dicas e Soluções

- 18. Os números são $\{0, 8, 16, 24, \dots, 8 \cdot 7\}$.
- 18. Escreva $n = 17q + q^2$ e note que $0 \le q^2 < 17$. Assim, q = 0, 1, 2, 3, 4.
- 19. Use a diferença de quadrados sucessivas vezes para obter (a b) como quociente.
- 21. O número do problema é igual a $\frac{7(10^{1001}-1)}{9}$. Além disso, $\frac{10^{999}+1}{10^3+1}$ é inteiro e $\frac{10^{1001}-1}{10^3+1} = 100 \cdot \frac{10^{999}+1}{10^3+1} \frac{100}{10^3+1}$.
- 22. Os números que satisfazem essa propriedade são os números da forma 65k + 59.
- 24. Basta mostrar que $n^5 5n^3 + 4n$ é múltiplo de 3,8 e 5. Na divisão por 5, temos quatro restos possíveis: $\{0,1,2,3,4\}$. Assim, o número $n^5 5n^3 + 4n$ possui o mesmo resto na divisão por 5 que um dos cinco números: $\{0^5 5 \cdot 0^3 + 40, 1^5 5 \cdot 1^3 + 4, 2^5 5 \cdot 2^3 + 8, 3^5 5 \cdot 3^3 + 12, 4^5 5 \cdot 4^3 + 16\}$. Como todos esses números são múltiplos de 5, segue que $n^5 5n^3 + 4n$ é múltiplo de 5 para todo n inteiro. O procedimento com 3 e 8 é semelhante.
- 25. Para o item a), troque z por $\frac{x}{y}$. Para o item b), substitua y por -y no item anterior.
- 26. Pelo problema anterior, como 99 é ímpar temos: $1^{99} + 4^{99} = (1+4)(1^{98} + 1^{97} \cdot 4 + \dots + 1 \cdot 4^{97} + 4^{98})$. Daí, segue que $1^{99} + 4^{99}$ é múltiplo de 5. Analogamente podemos mostrar que $2^{99} + 3^{99}$ é múltiplo de 5.
- 27. O número em questão é mútiplo de 2 pois é a soma de dois ímpares e dois pares. Para ver que também é múltiplo de 5, basta notar que 5 divide $1^n 6^n$ e $8^n 3^n$. Isso pode ser facilmente mostrado usando a fatoração do exercício 25.
- 31. Se a = nk, temos $(2^n 1)(2^{n(k-1)} + 2^{n(k-2)} + \dots + 2^n + 1) = 2^{nk} 1$.
- 32. Veja que $1995 \cdot 1997^{1996} 1996 \cdot 1997^{1995} + 1 = 1995 \cdot (1997^{1996} 1) 1996 \cdot (1997^{1995} 1)$. Pela fatoração de $x^n y^n$,

$$\frac{1996 \cdot (1997^{1995} - 1)}{1996^2} = (1997^{1994} + 1997^{1993} + \ldots + 1),$$

é inteiro. Além disso, pela mesma fatoração,

$$\frac{1995 \cdot (1997^{1996} - 1)}{1996^2} = 1995 \cdot \left(\frac{1997^{1995} - 1}{1996} + \frac{1997^{1994} - 1}{1996} + \ldots + \frac{1997 - 1}{1996} + \frac{1996}{1996}\right),$$

é uma soma de números inteiros.

33. Como n é impar,

$$(n-i)^n + i^n = ((n-i)+i)((n-i)^{n-1} - (n-i)^{n-2}i + \dots - (n-i)i^{n-2} + i^{n-1}).$$

- 34. Faça n = 1005 e use a fatoração de $x^n + y^n$.
- 37. Fatore a expressão como:

$$(x-1998)(y-1996) = xy-1998y-1996x+1998\cdot 1996 = 1997^2.$$

Os divisores de 1997^2 são $\{\pm 1, \pm 1997, \pm 1997^2\}$. Resolvendo os sistemas correspondentes à essas possibilidades, temos: $(x, y) = (1999, 1997^2 + 1996), (1997, -1997^2 + 1996), (3995, 3993), (1, -1), (1997^2 + 1998, 1997), (-1997^2 + 1998, 1995).$

Referências

- [1] F. E. Brochero Martinez, C. G. Moreira, N. C. Saldanha, E. Tengan Teoria dos Números um passeio com primos e outros números familiares pelo mundo inteiro, Projeto Euclides, IMPA, 2010.
- [2] E. Carneiro, O. Campos and F. Paiva, Olimpíadas Cearenses de Matemática 1981-2005 (Níveis Júnior e Senior), Ed. Realce, 2005.
- [3] S. B. Feitosa, B. Holanda, Y. Lima and C. T. Magalhães, Treinamento Cone Sul 2008. Fortaleza, Ed. Realce, 2010.
- [4] D. Fomin, A. Kirichenko, Leningrad Mathematical Olympiads 1987-1991, MathPro Press, Westford, MA, 1994.
- [5] D. Fomin, S. Genkin and I. Itenberg, Mathematical Circles, Mathematical Words, Vol. 7, American Mathematical Society, Boston, MA, 1966.
- [6] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers.

Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Prof. Samuel Feitosa

Divisibilidade II

Definição 1. Dados dois inteiros a e b, com $a \neq 0$, dizemos que a divide b ou que a é um divisor de b ou ainda que b é um múltiplo de a e escrevemos $a \mid b$ se o r obtido pelo algoritmo de divisão aplicado à a e b é 0, ou seja, se b = aq para algum inteiro q.

Lema 2. Sejam a, b, c, d inteiros. Temos

- i) ("d divide") Se d | a e d | b, então d | ax + by para quaisquer x e y inteiros.
- ii) ("Limitação") Se $d \mid a$, então a = 0 ou $|d| \leq |a|$.
- iii) (Transitividade) Se $a \mid b \mid e \mid b \mid c$, então $a \mid c$.

Em particular, segue da propriedade i) que $d \mid a + b \in d \mid a - b$.

Exemplo 3. (Olimpíada de Maio 2006) Encontre todos os naturais a e b tais que a|b+1 e b|a+1.

Pela propriedade da Limitação, temos $a \le b+1$ e $b \le a+1$. Daí, $a-1 \le b \le a+1$. Vejamos os casos:

- (i) a = b. Como a|b+1 e $a \mid b$ (pois b = a) temos que $a \mid [(b+1)-b] = 1$. Assim, a = 1Nesse caso, só temos a solução (a,b) = (1,1)
- (ii) a = b + 1. Como b|a + 1 e b|a 1 (pois b = a 1) temos que b|[(a + 1) (a 1)] = 2. Assim, b = 1 ou b = 2 e nesse caso, só temos as soluções (3, 2) e (2, 1).
- (iii) a = b 1. Esse caso é análogo ao anterior e as soluções para (a, b) são (1, 2) e (2, 3).

Exemplo 4. (Critério de Divisibilidade por 7) Existem alguns métodos práticos para decidirmos se um número é múltiplo de outro. Certamente o leitor já deve ter se deparado com algum critério de divisibilidade. Existe um critério por 7 bastante popular: Para saber se um inteiro é multiplo de 7, basta apagar seu último dígito, multiplicá-lo por 2 e o subtrair do número que restou. Se o resultado é múltiplo de 7, então o número original também é múltiplo de 7.

Podemos aplicar esse algoritmo sucessivas vezes até que o resultado obtido seja facilmente verificável como um múltiplo de 7. Por exemplo, para o número 561421 podemos escrever:

$$56142 - 2 = 56140$$

 $5614 - 0 = 5614$
 $561 - 8 = 553$
 $55 - 6 = 49$

Como 49 é múltiplo de 7, nosso número original também é. Por que esse processo funciona? Se o nosso número original está escrito na forma 10a+b, então o número obtido após a operação descrita é a-2b. Basta mostrarmos que se $7 \mid a-2b$, então $7 \mid 10a+b$. Se $7 \mid a-2b$, pela propriedade (i) do lema, concluímos que $7 \mid 10a-20b$. Como $7 \mid 21b$, também temos que $7 \mid [(10a-20b)+21b] = 10a+b$.

Exemplo 5. Mostre que se $7 \mid 3a + 2b$ então $7 \mid 4a - 2b$.

Veja que 7 | 7a e 7 | 3a + 2b, então 7 | [7a - (3a + 2b)] = 4a - 2b. Na prática, o que fizemos foi multiplicar o número 3a + 2b por algum inteiro para posteriormente subtraímos um múltiplo de 7 conveniente e obtermos o número 4a - 2b. Existem outras formas de fazermos isso. Observe os números $3 \cdot 0, 3 \cdot 1, 3 \cdot 2, 3 \cdot 3, 3 \cdot 4, 3 \cdot 5, 3 \cdot 6$. O número $3 \cdot 6$ deixa o mesmo resto que 4 por 7, pois $3 \cdot 6 = 7 \cdot 2 + 4$. Como 7|3a + 2b podemos concluir que 7|(18a + 12b) e consequentemente 7|[18a + 12b - 14a)] = 4a + 12b. Mas 7|14b, então 7|[4a + 12b - 14b] = 4a - 2b.

Para o proximo exemplo, o leitor precisará lembrar dos critérios de divisibilidade por 9 e 3 vistos na aula passada.

Exemplo 6. Usando os dígitos 1, 2, 3, 4, 5, 6, 7, construímos vários números de sete dígitos distintos. Existem dois deles, distintos, tais que um divide o outro?

Não. Suponha, por absurdo, que m < n sejam dois desses números, com $m \mid n$. Claramente $m \mid n-m$ e $9 \mid n-m$, pois n e m possuem a mesma soma dos dígitos e consequentemente possuem o mesmo resto na divisão por 9. Por outro lado, sabemos a soma dos dígitos de m: $1+2+\cdots+7=3\cdot 9+1$. Daí, m não possui fator 9 e podemos garantir que $9m \mid n-m$. Mas então $9m \le n-m \Rightarrow 10m \le n \Rightarrow n$ tem pelo menos oito dígitos, uma contradição.

Exemplo 7. (Leningrado 1989) Seja A um número natural maior que 1, e seja B um número natural que é um divisor de $A^2 + 1$. Prove que se B - A > 0, então $B - A > \sqrt{A}$.

Seja B-A=q. Assim, $A+q\mid A^2+1$. Como $(A-q)(A+q)=A^2-q^2$ é divisível por A+q, podemos concluir que $A+q\mid [(A^2+1)-(A^2-q^2)]=q^2+1$. Pela propriedade de limitação, $A+q\leq q^2+1$. Nessa desigualdade, não podemos ter q=1 pois A>1. Usando então que q>1, temos $A\leq q^2-q+1< q^2$, ou seja, $\sqrt{A}< q$.

Problema 8. (AIME 1986) Qual é o maior inteiro n para o qual $n^3 + 100$ é divisível por n + 10?

Para achar explicitamente o quociente de $n^3 + 100$ por n + 10 podemos fazer uso de alguma fatoração. Utilizaremos a soma dos cubos $n^3 + 10^3 = (n + 10)(n^2 - 10n + 100)$. Como,

$$n^3 + 100 = (n+10)(n^2 - 10n + 100) - 900,$$

podemos concluir que o número 900 deve ser múltiplo de n+10. O maior inteiro n para o qual n+10 divide 900 é 890. Veja que se n=890, o quociente da divisão de n^3+100 por n+10 é $n^2-10n+100-1=890^2-10\cdot890+99$.

Exemplo 9. (Extraído de [1]) Encontre todos os inteiros positivos n tais que $2n^2 + 1 \mid n^3 + 9n - 17$.

Utilizando o " $2n^2 + 1$ divide" para reduzir o grau de $n^3 + 9n - 17$, temos que

$$\begin{cases} 2n^2 + 1 \mid n^3 + 9n - 17 \\ 2n^2 + 1 \mid 2n^2 + 1 \end{cases}$$

$$\implies 2n^2 + 1 \mid (n^3 + 9n - 17) \cdot 2 + (2n^2 + 1) \cdot (-n)$$

$$\iff 2n^2 + 1 \mid 17n - 34$$

Como o grau de 17n-34 é menor do que o de $2n^2+1$, podemos utilizar a "limitação" para obter uma lista finita de candidatos a n. Temos $17n-34=0 \iff n=2$ ou $|2n^2+1| \le |17n-34| \iff n=1,4$ ou 5. Destes candidatos, apenas n=2 e n=5 são soluções.

Exemplo 10. (Leningrado 1990) Sejam a e b números naturais tais que $b^2 + ba + 1$ divide $a^2 + ab + 1$. Prove que a = b.

Pela propriedade de limitação, $b^2 + ba + 1 \le a^2 + ab + 1$ e daí $b \le a$. Além disso, $b^2 + ab + 1 > a - b$. A igualdade $b(a^2 + ab + 1) - a(b^2 + ba + 1) = b - a$ implica que a - b é divisível por $b^2 + ba + 1$. Se $a - b \ne 0$, então $b^2 + ab + 1 \le a - b$. Mas isso é um absurdo, logo a - b = 0.

Problemas Propostos

Problema 11. Mostre que se $3 \mid a + 7b \text{ então } 3 \mid a + b$.

Problema 12. Mostre que se $7 \mid a + 3b \; ent \tilde{a}o \mid 13a + 11b$

Problema 13. Mostre que se $19 \mid 3x + 7y \ ent\ \tilde{a}o \ 19 \mid 43x + 75y$

Problema 14. Mostre que se $17 \mid 3a + 2b \ ent \tilde{a}o \ 17 \mid 10a + b$

Problema 15. Encontre todos os inteiros positivos n tais que n + 2009 divide $n^2 + 2009$ e n + 2010 divide $n^2 + 2010$.

Problema 16. Seja n > 1 e k um inteiro positivo qualquer. Prove que $(n-1)^2|(n^k-1)$ se, e somente se, (n-1)|k.

Problema 17. (OBM 2005) Prove que a soma $1^k + 2^k + \ldots + n^k$, onde n é um inteiro e k é impar, é divisível por $1 + 2 + \ldots + n$.

Problema 18. O número de seis dígitos $X = \overline{abcdef}$ satisfaz a propriedade de que $\overline{abc} - \overline{def}$ é divisível por 7. Prove que X também é divisível por 7.

Problema 19. (Bielorússia 1996) Inteiros m e n, satisfazem a igualdade

$$(m-n)^2 = \frac{4mn}{m+n-1}.$$

- a) Prove que m + n é um quadrado perfeito.
- b) Encontre todos os pares (m,n) satisfazendo a equação acima.

Problema 20. (Olimpíada de Leningrado) Os números naturais a,b e c têm a propriedade que a^3 é divisível por b, b^3 é divisível por c e c^3 é divisível por a. Prove que $(a+b+c)^{13}$ é divisível por abc.

Problema 21. (OBM 2000) É possível encontrar duas potências de 2, distintas e com o mesmo número de algarismos, tais que uma possa ser obtida através de uma reordenação dos dígitos da outra? (Dica: Lembre-se do critério de divisibilidade por 9)

Problema 22. (IMO 1998) Determine todos os pares de inteiros positivos (x, y) tais que $xy^2 + y + 7$ divide $x^2y + x + y$.

Dicas e Soluções

- 11. Como $3 \mid 6b$, segue que $3 \mid [(a+7b)-6b] = a+b$.
- 12. Como 7 | a + 3b, segue que 7 | 13a + 39b = (13a + 11b) + 28b. Mas 7 | 28b, portanto 7 | [(13a + 11b) + 28b 28b] = 13a + 11b.
- 13. Como 19 | 3x + 7y, segue que 19 | 27(3x + 7y) = (43x + 75y) + (38x + 114y). Mas 19 | 19(2x+6y), portanto 19 | [(43x+75y)+(38x+114y)-19(2x+6y)] = 43x+75y.
- 14. Como 17 | 3a + 2b, segue que 17 | 27a + 18b = (10a + b) + 17(a + b).
- 16. Veja que

$$\frac{n^k - 1}{(n-1)^2} = \left(\frac{n^{k-1} - 1}{n-1} + \frac{n^{k-2} - 1}{n-1} + \dots + \frac{n-1}{n-1} + \frac{k}{n-1}\right).$$

Como os números $\frac{n^l-1}{n-1}$ sempre são inteiros, o número do lado esquerdo da equação será inteiro se, e somente se, o número $\frac{k}{n-1}$ for inteiro.

- 17. Comece dividindo o problema quando em dois casos: n é par ou n é impar. Sabemos que $1+2+\ldots+n=\frac{n(n+1)}{2}$. Para n impar, basta mostrar que o número em questão é divisível por n e $\frac{n+1}{2}$. O próximo passo é lembrar do problema 33 da aula 1. Pela fatoração de x^n+y^n , temos que $i^k+(n-i)^k$ é divisível por n. Faça outros tipos de pares para mostrar a divisibilidade por $\frac{n}{2}$. O caso quando n é par é análogo.
- 18. Veja que $X = 10^3 \cdot \overline{abc} + \overline{def} = 1001\overline{abc} (\overline{abc} \overline{def})$. Como 1001 é multiplo de 7, concluímos que X é a soma de dois múltiplos de 7.
- 19. Somando 4mn em ambos os lados, obtemos:

$$(m+n)^2 = \frac{4mn}{m+n-1} + 4mn$$

$$= \frac{4mn(m+n)}{m+n-1} \Rightarrow$$

$$(m+n) = \frac{4mn}{m+n-1}$$

$$= (m-n)^2.$$

Assim, m+n é o quadrado de um inteiro. Se m-n=t, então $m+n=t^2$ e $(m,n)=(\frac{t^2+t}{2},\frac{t^2-t}{2})$. É fácil verificar que para qualquer t inteiro esse par é solução do problema.

- 20. Analise a expansão pelo binômio de Newton.
- 21. Não. Suponha, por absurdo, que existam duas potências de 2, $2^m < 2^n$, satisfazendo o enunciado. Como 2^n é um múltiplo de 2^m , podemos ter: $2^n = 2 \cdot 2^m, 4 \cdot 2^m, 8 \cdot 2^m, \ldots$ Além disso, como ambos possuem a mesma quantidade de dígitos, temos $1 < \frac{2^n}{2^m} < 10$. Assim, as únicas possibilidade são $2^n = 2 \cdot 2^m, 4 \cdot 2^m, 8 \cdot 2^m$. Pelo critério de divisibilidade por 9, como 2^m e 2^n possuem os mesmos dígitos, podemos concluir que $2^n 2^m$ é um múltiplo de 9. Entretanto, nenhuma das possibilidade anteriores satisfaz essa condição e chegamos em um absurdo.
- 22. Começaremos usando a ideia do exemplo 10. A igualdade $y(x^2y+x+y)-x(xy^2+y+7)=y^2-7x$ implica que y^2-7x é divisível por xy^2+y+7 . Se $y^2-7x\geq 0$, como $y^2-7x< xy^2+y+7$, segue que $y^2-7x=0$. Assim, $(x,y)=(7t^2,7t)$ para algum $t\in\mathbb{N}$. É fácil checar que esses pares são realmente soluções. Se $y^2-7x<0$, então $7x-y^2>0$ é divisível por xy^2+y+7 . Daí, $xy^2+y+7\leq 7x-y^2<7x$, que nos permite concluir que $y\leq 2$. Para y=1, temos $x+8\mid 7x-1$ e consequentemente $x+8\mid 7(x+8)-(7x-1)=57$. Então as únicas possibilidades são x=11 e x=49, cujos pares correspondentes são (11,1),(49,1). Para y=2, temos $4x+9\mid 7x-4$ e consequentemente 7(4x+9)-4(7x-4)=79 é divisível por 4x+9. Nesse caso, não obtemos nenhuma solução nova. Todas as soluções para (x,y) são: $(7t^2,7t)(t\in\mathbb{N}),(11,1)$ e (49,1).

Referências

- [1] F. E. Brochero Martinez, C. G. Moreira, N. C. Saldanha, E. Tengan Teoria dos Números um passeio com primos e outros números familiares pelo mundo inteiro, Projeto Euclides, IMPA, 2010.
- [2] E. Carneiro, O. Campos and F. Paiva, Olimpíadas Cearenses de Matemática 1981-2005 (Níveis Júnior e Senior), Ed. Realce, 2005.
- [3] S. B. Feitosa, B. Holanda, Y. Lima and C. T. Magalhães, Treinamento Cone Sul 2008. Fortaleza, Ed. Realce, 2010.
- [4] D. Fomin, A. Kirichenko, Leningrad Mathematical Olympiads 1987-1991, MathPro Press, Westford, MA, 1994.
- [5] D. Fomin, S. Genkin and I. Itenberg, Mathematical Circles, Mathematical Words, Vol. 7, American Mathematical Society, Boston, MA, 1966.
- [6] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers.