Ψηφιακή Σχεδίαση

Γνωριμία με το μάθημα

ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ

ΧΕΙΜΕΙΡΙΝΌ ΕΞΑΜΗΝΌ 2019-2020 | ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Περίληψη

Σήμερα ...

- θα περιγράψουμε τους στόχους για αυτό το μάθημα
- θα παρουσιάσουμε ένα συνοπτικό σχέδιο των διαλέξεων του μαθήματος
- εισαγωγή στα φηφιακά συστήματα

Στόχοι Μαθήματος

- απόκτηση βασικών και απαραίτητων γνώσεων ψηφιακών συστημάτων
- κατανόηση των βασικών αρχών σχεδίασης των ψηφιακών κυκλωμάτων και των σύγχρονων ολοκληρωμένων κυκλωμάτων
 - εξοικείωση με τον τρόπο λειτουργίας τους (κατά τη διάρκεια των εργαστηριακών συναντήσεων)

Τα μέσα...

- Διαλέξεις
 - παρακολουθείστε όλες τις διαλέξεις!
- Εργαστήρια
 - παρακολουθείστε όλα τα εργαστήρια!
 - όχι ότι σας δίνεται και άλλη επιλογή ... Θ
 - ολοκληρώστε όλες τις ασκήσεις που συζητάμε στα εργαστήρια
- Εργασία
 - καταγράψτε τους (νέους) όρους που συζητάμε
 - ασκήσεις
 - ολοκληρώστε όλες τις ασκήσεις θεωρίας

Συνεργαστείτε στη μάθηση

επιπρόσθετα της ατομικής σας εργασίας, ενθαρρύνεστε να συνεργαστείτε και να βοηθήσετε ο ένας τον άλλον

- σε περίπτωση αμφιβολίας εάν μια συνεργασία είναι νόμιμη: ρωτήστε!
 - μην ισχυρίζεστε ότι έχετε επιλύσει ασκήσεις που αντιγράψατε από άλλους
 - μη δίνετε σε κανέναν τις λύσεις των ασκήσεών σας
 - όταν βασίζεστε στη δουλειά κάποιου άλλου, αναφέρετε ρητά όλες τις πηγές σας
 - τιμήστε εκείνους που έκαναν το έργο
- μη μελετάτε μόνοι σας όταν δε χρειάζεται
 - συγκροτήστε ομάδες μελέτης
 - βοηθήστε ο ένας τον άλλον (χωρίς να κάνετε λογοκλοπή)
- εκμεταλευτείτε τις ώρες γραφείου του καθηγητή
 - πηγαίνετε προετοιμασμένοι με ερωτήσεις
 - τα μόνα ανόητα ερωτήματα είναι αυτά που θέλατε να ρωτήσετε, αλλά δεν το κάνατε

Αξιολόγηση Θεωρία

- 3 ή 4 σύνολα ασκήσεων
- (προαιρετική) Ενδιάμεση εξέταση
 - συμμετέχει στην τελική βαθμολογία μόνο εάν τη βελτιώνει
- Τελική εξέταση
- 🕯 Παρακολούθηση Διαλέξεων
 - +10% στην τελική σας βαθμολογία
 - το πολύ 2 απουσίες

Αξιολόγηση Εργαστήριο

για τους υπόχρεους παρακολούθησης:

- Εβδομαδιαίες ασκήσεις, σε ομάδες 2 ατόμων
 - 1. προεργασία
 - 2. παρουσίαση αποτελέσματος
 - 3. τακτοποίηση πάγκου
 - βαθμολόγηση
 - εάν κάποιο από τα 1-3 δεν ισχύει: 0/10
 - εάν ισχύουν τα 1-3: 10/10
- (ατομική) Ενδιάμεση εξέταση
- (ατομική) Τελική εξέταση

για τους μη υπόχρεους παρακολούθησης:

3 ή 4 σειρές ατομικών εργαστηριακών ασκήσεων αξιολόγησης

Στοιχεία για το μάθημα

- Διαλέξεις
 - ▶ Θεωρία: Δευτέρα & Πέμπτη, 9:00 11:00 @ Αμφιθέατρο Κ28
 - Εργαστήριο:
 - ▶ Παρασκευή, 16:00 18:00 (Ομάδα Α), 18:00 20:00 (Ομάδα Β) @ Εργαστήριο 11
- ❖ 'Ωρες Γραφείου
 - όποτε με χρειαστείστε στείλτε μου e-mail!
 - βολικές μέρες/ώρες Δευτέρα και Πέμπτη, μετά τα μαθήματα
- Διδακτικό Υλικό
 - Διαφάνειες
 - Βιβλία
 - ▶ Μ. Mano, Μ. Ciletti, "Ψηφιακή Σχεδίαση", Α. Παπασωτηρίου & ΣΙΑ, 6η Έκδοση, 2018. Εύδοξο: 68406394
 - Μ. Μαπο, Μ. Ciletti, "Ψηφιακή Σχεδίαση", Α. Παπασωτηρίου & ΣΙΑ, 4η Έκδοση, 2010. Εύδοξο: 9783
 - J. F. WAKERLY, '"', Κλειδάριθμος, 3η Έκδοση, 2004. Εύδοξο: 86195856
- Ιστοσελίδα Μαθήματος: https://eclass.hmu.gr/courses/TP113/
- e-mail καθηγητή: <u>ekosmas@hmu.gr</u>

Εισαγωγή

Ζούμε στην ψηφιακή εποχή

τα ψηφιακά ηλεκτρονικά κυκλώματα αποτελούν τον λειτουργικό πυρήνα

- κινητών τηλεφώνων
- συσκευών αναπαραγωγής video
- ψηφιακών φωτογραφικών μηχανών
- υπολογιστών
- διακομιστών δεδομένων
- συστημάτων πλοήγησης με δορυφορική βοήθεια
- πλυντηρίων
- αυτοκινήτων
- ...

- οποιοδήποτε σύνολο με πεπερασμένο σύνολο στοιχείων περιέχει διακριτή πληροφορία
 - τα δεκαδικά ψηφία
 - τα 24 γράμματα του ελληνικού αλφαβήτου
 - τα 52 φύλλα της τράπουλας
- Ψηφιακός υπολογιστής
 - οι πρώτοι ψηφιακοί υπολογιστές χρησιμοποιήθηκαν για αριθμητικούς υπολογισμούς
 - διακριτά στοιχεία: ψηφία αριθμών

Σήματα

- φυσικά μεγέθη που αναπαριστούν τα διακριτά στοιχεία πληροφορίας
- ηλεκτρικά σήματα (τάση, ρεύμα)
 - είναι τα πιο κοινά
 - τρανζίστορς: ηλεκτρικά στοιχεία που κυριαρχούν στα κυκλώματα που χειρίζονται τα ηλεκτρικά σήματα
- δυαδικά σήματα
 - δύο διακριτές τιμές ηλεκτρικών μεγεθών (0 και 1, LOW και HIGH, FALSE και TRUE)
 - χρησιμοποιούνται στην πλειονότητα των ηλεκτρονικών ψηφιακών συστημάτων
 - δυαδικό ψηφίο (bit): 0 ή 1
 - δυαδικοί κώδικες: ομάδες από bits που αναπαριστούν οποιαδήποτε διακριτά στοιχεία πληροφορίας
 - ▶ δεκαδικά ψηφία: π.χ. ο αριθμός 7 παριστάνεται από την ομάδα bits: 0111

Ψηφιακό σύστημα

είναι ένα σύστημα που χρησιμοποιεί διακριτά στοιχεία πληφοροφιών, τα οποία αναπαριστάνονται εσωτερικά σε δυαδική μορφή

με χρήση διαφόρων τεχνικών:
 ομάδες από bits -> αναπαριστούν ποικίλα διακριτά σύμβολα -> τα οποία χρησιμοποιούνται για την ανάπτυξη ενός συστήματος σε ψηφιακή μορφή

Ψηφιακά κυκλώματα

Γιατί επιλέγονται κατά την κατασκευή συσκευών;

- οι περισσότερες συσκευές είναι προγραμματίσιμες
 - ψηφιακός υπολογιστής
 - διαφορετικές εφαρμογές χρησιμοποιούν το ίδιο υλικό, αλλάζοντας κατάλληλα το πρόγραμμα
- εξέλιξη τεχνολογίας ψηφιακών ολοκληρωμένων κυκλωμάτων
 - ► αύξηση αριθμού τρανζίστορ → πιο σύνθετες λειτουργίες
 - μείωση κόστους ψηφιακών συσκευών
- λειτουργούν με υψηλή ταχύτητα
 - εκατοντάδες εκατομμύρια πράξεις το δευτερόλεπτο
- ευκολία σχεδίασης

Επίλυση προβλημάτων

- επιλύουν προβλήματα που βρίσκονται σε ψηφιακή μορφή
 - δηλαδή περιέχουν διακριτές τιμές πληροφορίας
- οι διακριτές τιμές πληροφορίας μπορεί να προκύπτουν:
 - 1. είτε από τη φύση του προβλήματος (π.χ. χρονοδιάγραμμα μισθοδοσίας)
 - 2. είτε από τον κβαντισμό (ή την ψηφιοποίηση) ενός συνεχούς σήματος, δηλαδή την παράσταση του σήματος με ένα πεπερασμένο σύνολο τιμών
 - π.χ. ένας ερευνητής παρατηρεί ένα συνεχές (αναλογικό) σήμα,
 αλλά μετρά και καταγράφει συγκεκριμένες τιμές φυσικών ποσοτήτων σε μορφή πίνακα
 - η ψηφιοποίηση ενδεχομένως μπορεί να γίνει και αυτόματα (μετατροπείς αναλογικού-σε-ψηφιακό)

 για την επίλυση ενός προβλήματος με κάποιο ψηφιακό σύστημα είναι απαραίτητη η μετατροπή του σε ψηφιακή μορφή

Ψηφιοποίηση αναλογικών σημάτων

Ψηφιακό σύστημα

Πώς λειτουργεί;

- αποτελείται από διασυνδεδεμένες ψηφιακές υπομονάδες
- για να γίνει κατανοητή η λειτουργία κάθε ψηφιακής υπομονάδας είναι απαραίτητες:
 - βασικές γνώσεις ψηφιακών κυκλωμάτων και
 - η αντίστοιχη λογική λειτουργίας τους

Το αντικεικείμενο του μαθήματος!

🕝 η απάντηση στο τέλος του εξαμήνου... 😊

Ύλη μαθήματος

- ψηφιακά συστήματα, αριθμητικά συστήματα, δυαδικοί αριθμοί
- άλγεβρα Boole
- λογικές πύλες, ψηφιακά διαγράμματα και ενσωματωμένα κυκλώματα
 - απλοποίηση συναρτήσεων Boole
 - ελαχιστοποίηση σε επίπεδο πυλών
 - υλοποιήσεις ψηφιακών διαγραμμάτων
- συνδυαστική λογική
 - συνδυαστικά κυκλώματα
- σύγχρονη ακολουθιακή λογική
 - σύγχρονα ακολουθιακά κυκλώματα
- καταχωρητές και μετρητές
- μνήμη και προγραμματίσιμη λογική
- αλγοριθμικές μηχανές καταστάσεων

Ευχαριστίες

- το υλικό (διαφάνειες, εργασίες) που θα χρησιμοποιήσουμε στο μάθημα έχει παραχθεί βασιζόμενο
 - σε υλικό του καθηγητή Γιώργου Κορνάρου και
 - στη βιβλιογραφία του μαθήματος

Σύνοψη

- Στόχοι μαθήματος
- Υλη μαθήματος
- Εισαγωγή στα φηφιακά συστήματα