Membership Testing in Classical Groups

Elliot Costi

2008

Suppose that the field that these matrices are defined over is F = GF(q). Then ω is the primitive element of F. For the Unitary groups defined over the field $GF(q^2)$, $\alpha = \omega^{\frac{q+1}{2}}$. For $\Omega^-(2n,q)$, let γ be the primitive element of $GF(q^2)$. Then the variables A,B and C given in the definition have the following values, with α defined as for the Unitary groups:

$$A = \frac{1}{2}(\gamma^{q-1} + \gamma^{-q+1})$$

$$B = \frac{1}{2}\alpha(\gamma^{q-1} - \gamma^{-q+1})$$

$$C = \frac{1}{2}\alpha^{-1}(\gamma^{q-1} - \gamma^{-q+1}).$$

Group	s	t	δ	u	v	x	y
SL(n,q)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$	I_2	$\begin{pmatrix} 0 & 1 \\ -I_n & 0 \end{pmatrix}$	I_4	I_4
$\operatorname{Sp}(2n,q)$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\left(\begin{smallmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{smallmatrix} \right)$	$ \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} $	$(e_1,e_2,\ldots,e_n)(f_1,f_2,\ldots,f_n)$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$	I_4
$\mathrm{SU}(2n,q)$	$\begin{pmatrix} 0 & \alpha \\ \alpha^{-q} & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$	$\left(\begin{smallmatrix} \omega^{q+1} & 0 \\ 0 & \omega^{-(q+1)} \end{smallmatrix}\right)$	$ \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} $	$(e_1,e_2,\ldots,e_n)(f_1,f_2,\ldots,f_n)$	$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 & 0 & 0 \\ 0 & \omega^{-q} & 0 & 0 \\ 0 & 0 & \omega^{-1} & 0 \\ 0 & 0 & 0 & \omega^{q} \end{pmatrix}$
SU(2n+1,q)	$\begin{pmatrix} 0 & \alpha \\ \alpha^{-q} & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$	$\left(\begin{array}{cc}\omega^{q+1} & 0\\ 0 & \omega^{-(q+1)}\end{array}\right)$	$ \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} $	$(e_1,e_2,\ldots,e_n)(f_1,f_2,\ldots,f_n)$	$\begin{pmatrix} 1 & -1/2 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega^{q-1} & 0 \\ 0 & 0 & \omega^{-q} \end{pmatrix}$

Table 1: Standard generators for non-orthogonal classical groups

Group	s	t	δ	u	v	
$\Omega^+(2n,q)$	$ \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 & 0 & 0 \\ 0 & \omega^{-1} & 0 & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & \omega^{-1} \end{pmatrix}$	I_4	$(e_1, e_2, \ldots, e_n)^{\epsilon_n} (f_1, f_2, \ldots, f_n)^{\epsilon_n}$	
	s'	t'	δ'			
	$ \left(\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{array}\right) $	$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} \omega & 0 & 0 & 0 \\ 0 & \omega^{-1} & 0 & 0 \\ 0 & 0 & \omega^{-1} & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix} $			
Group	t	t'	δ	u	v	
$\Omega^-(2n,q)$	$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 & 0 & 0 \\ 0 & \omega^{-1} & 0 & 0 \\ 0 & 0 & A & B \\ 0 & 0 & C & A \end{pmatrix}$	$(e_1, e_2)^- (f_1, f_2)^-$	$(e_1, \dots, e_{n-1})^{\epsilon_{n-1}} (f_1, \dots, f_{n-1})^{\epsilon_{n-1}}$	
Group	s	t	δ	u	v	
$\Omega(2n+1,q)$	$ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} $	$\begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & \omega^{-2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	I_4	$(e_1,\ldots,e_n)^{\epsilon_n}(f_1,\ldots,f_n)^{\epsilon_n}$	

Table 2: Standard generators for orthogonal groups