ÁIGEBRA BOOLEANA

Desarrollada por George Boole

 Herramienta para representar proposiciones lógicas en forma algebraica

 Se aplica en representación de circuitos lógicos y diseño digital Aspectos importantes del álgebra:

- Al elemento 0 se le llama el **elemento cero**.
- Al elemento 1 se le llama **elemento unidad**.
- A la operación unitaria a' se le llama **complemento** de a.
- A los resultados de las operaciones binarias + y * se les llama, respectivamente, suma y producto.

Dualidad

- El dual de cualquier enunciado en un álgebra de Boole B es el enunciado obtenido al intercambiar las operaciones + y *, e intercambiar los correspondientes elementos identidad 0 y 1, en el enunciado original.
 - Ejemplo: $(1+a)*(b+0) = b \Rightarrow \text{el dual es: } (0*a) + (b*1) = b$

- En álgebra booleana, se conoce como forma canónica de una expresión, a todo producto o suma en la cual aparecen todas sus variables en su forma directa o inversa.
- Una expresión lógica puede expresarse en forma canónica usando minitérminos o maxitérminos.
- Todas las expresiones lógicas son expresables en forma canónica como una "suma de minitérminos" o como un "producto de maxitérminos".
- Cuando se trabaja con expresiones booleanas, es deseable que estas se encuentren expresadas en una de dos formas:
- Suma de productos o minitérminos o forma normal disyuntiva (FND).
- Producto de sumas o maxitérminos o forma normal conjuntiva (FNC).

Minitérmino: Es un producto booleano en la que cada variable aparece sólo una vez; es decir, es una expresión lógica que se compone de variables y los operadores lógicos AND y NOT. P. ejem. ABC y AB'C.

Maxitérmino: Es una expresión lógica que se compone de variables y los operadores lógicos OR y NOT. P. ejem. A+B'+C y A'+B+C.

- Suma de productos. Consiste de dos o más grupos de literales, cada literal es recibida como entrada por un AND y la salida de cada una de estas compuertas (AND) es recibida como entrada por una compuerta OR.
 - Cuando dos o más productos se suman mediante la suma booleana.
- Producto de sumas. Un producto de sumas consiste de dos o más grupos de literales, cada literal es recibida como entrada por un OR y la salida de cada una de estas compuertas (OR) es recibida como entrada por una compuerta AND.
 - Cuando dos o más términos de suma se multiplican mediante la multiplicación booleana.

COMPUERTAS LÓGICAS

Es una representación gráfica de una o más variables de entrada a un operador lógico para obtener como resultado una señal determinada de salida.

Expresión	Compuerta Lógica	Tabla de Verdad	Circuito de Interruptores
X = AB	$A \longrightarrow X$ AND	A B X 0 0 0 0 1 0 1 0 0 1 1 1	
X = A + B	$A \longrightarrow X$ OR	A B X 0 0 0 0 1 1 1 0 1 1 1 1	
X = A	A — X NOT	A X 0 1 1 0	
$X = A \oplus B$ \Rightarrow $X = A'B + AB'$	XOR (OR exclusivo)	A B X 0 0 0 0 1 1 1 0 1 1 1 0	A B°

Expresión	Compuerta Lógica	Tabla de Verdad	Circuito de Interruptores
X = (AB)*	A DOWN NAND	A B X 0 0 1 0 1 1 1 0 1 1 1 0	A' O
X = (A + B)'	$ \begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ NOR \end{array} $	A B X 0 0 1 0 1 0 1 0 0 1 1 0	A' B' O
$X = (A')' \Rightarrow X = A$	$A \longrightarrow X$	A X 0 0 1 1	
$X = (A \oplus B)' = A \otimes B$ \Rightarrow X = A'B' + AB	NOR (exclusivo)	A B X 0 0 1 0 1 0 1 0 0 1 1 1	

Nombre	Símbolo gráfico	Función algebraica	Tabla de verdad
AND	<i>x</i>	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	x	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inversor	x — F	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	x — F	F = x	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$
NAND	х у F	$F = (xy)^{\prime}$	x y 1 0 0 0 1 1 0 1 1 0
NOR	x	F = (x + y)'	x y 1 0 0 0 1 1 0 1 1
Excluyente-O (XOR)	R x y F	$F = xy' + x'y$ $= x \oplus y$	x y 1 0 0 0 0 1 1 0 1 1 0
Excluyente-No o equivalente		$F = xy + x'y'$ $= x \odot y$	x y 1 0 0 1 1 0 1 1 1 1

Circuitos Lógicos

- Los circuitos lógicos se pueden visualizar como máquinas que contienen uno o más dispositivos de entrada y exactamente un dispositivo de salida.
- En cada instante cada dispositivo de entrada tiene exactamente un bit de información, un 0 o un 1; estos datos son procesados por el circuito para dar un bit de salida, un 0 o un 1, en el dispositivo de salida.
- De esta manera, a los dispositivos de entrada se les puede asignar sucesiones de bits que son procesadas por el circuito bit por bit, para producir una sucesión con el mismo número de bits.
- Un bit se puede interpretar como un voltaje a través de un dispositivo de entrad/salida; aun más, una sucesión de bits es una sucesión de voltajes que pueden subir o bajar (encendido o apagado).
- Se puede suponer que el circuito siempre procesa la sucesión de izquierda a derecha o de derecha a izquierda. Si no se dice otra cosa se adopta la primera convención.

Referencias Bibliográficas

- Rosen, Kenneth. "Discrete Mathematics and Its Applications". Séptima Edición, Mc Graw Hill. New York, 2012.
- Jonnsonbaugh, Richard. "Matemáticas Discretas". Prentice Hall, México. Sexta Edición, 2005.

