

Tecnología Digital V: Diseño de algoritmos

Licenciatura en Tecnología Digital Primer Semestre, 2024

Modelo del primer parcial

1. (30 puntos) Dado un multiconjunto (es decir, un conjunto con repeticiones) de números enteros $C = \{a_1, a_2, \ldots, a_n\}$ y un número k, el Subset-Sum Problem consiste en determinar si existe un subconjunto $S \subseteq C$ tal que la suma de los elementos en S sea k. Por ejemplo, si tenemos como entrada el conjunto $C = \{2, 2, 5, 10\}$ y k = 9, entonces la respuesta es el multiconjunto $S = \{2, 2, 5\}$, cuya suma es 9. En cambio, para k = 11 no hay solución al problema.

Consideremos el siguiente algoritmo de programación dinámica, que contiene dos bugs.

```
bool subsetsum_pd(int* C, int n, int k)
        // Retorna una matriz de bool de nxk
        // Los valores por default es False
                                                        (=\{2,2,3\}\ k=4
        m** = crear_matriz < bool > (n+1, k+1);
        for (int i = 0; i \le n; i++)
            m[i][0] = MM,
                         True!
9
        for (int l = 0; l \le k; l++)
                                                         T
10
            m[0][1] = False;
11
                                                      2
                                                         Т
12
                                                       3 l
                                                         T
        for (int i = 1; i \le n; i++) {
13
             for (int 1 = 1; 1 <= k; 1++) {
14
                 if (l < C[i])
15
                    m[i][1] = m[i-1][1] A/VANA # case dende me le incluye
16
17
                     m[i][1] = m[i-1][1] | | m[i-1][1 - C[i]];
18
19
20
21
        return m[n][k];
22
```

- a) Dar dos casos de test con que consideren $|C| \ge 2$ para evidenciar cada uno de los bugs.¹
- b) Proponer una corrección para este algoritmo, y argumentar por qué con esta corrección los casos de test del punto anterior dejan de fallar.
- 2. (30 puntos) Un grafo es un árbol si no tiene ciclos y es conexo.
 - a) Existe algún árbol T con 4 vértices, tres de grado 1 y uno de grado 2?
 - b) Demostrar que si se agrega una arista nueva a un árbol se crea un ciclo.
- 3. El algoritmo de Dijkstra resuelve el problema de camino mínimo en grafos dirigidos.
 - a) Dado un digrafo D=(N,A) con una función de distancia $w:A\to\mathbb{R}_{\geq 0}$, y sea $s\in N.$ Proponer un algoritmo que retorne un subonconjunto $S\subseteq N$ con todos los nodos tal que el costo de llegar desde s es lo sumo C. Justificar por qué el algoritmo es correcto.

¹No forma parte del modelo de parcial: se puede dar un caso de test donde la función actual retorne el valor correcto?

b)	¿Cómo se puede utilizar el algoritmo de Dijkstra para deteminar si un grafo no dirigido es conexo?. Justificar y escribir el pseudocódigo del algoritmo propuesto.