Multidimensional Optimization: The Simplex Method

Lecture 20 Biostatistics 615/815

Previous Topic: One-Dimensional Optimization

Bracketing

Golden Search

Quadratic Approximation

Bracketing

- Find 3 points such that
 - a < b < c</pre>
 - f(b) < f(a) and f(b) < f(c)</p>
- Locate minimum by gradually trimming bracketing interval
- Bracketing provides additional confidence in result

The Golden Ratio

Parabolic Interpolation

For well behaved functions, faster than Golden Search

Today: Multidimensional Optimization

- Illustrate the method of Nelder and Mead
 - Simplex Method
 - Nicknamed "Amoeba"
- Simple and, in practice, quite robust
 - Counter examples are known
- Discuss other standard methods

C Utility Functions: Allocating Vectors

- Ease allocation of vectors.
- Peppered through today's examples

```
double * alloc_vector(int cols)
   {
    return (double *) malloc(sizeof(double) * cols);
   }

void free_vector(double * vector, int cols)
   {
    free(vector);
   }
```

C Utility Functions: Allocating Matrices

```
double ** alloc matrix(int rows, int cols)
   int i;
   double ** matrix = (double **) malloc(sizeof(double *) * rows);
   for (i = 0; i < rows; i++)
      matrix[i] = alloc_vector(cols);
   return matrix;
void free_matrix(double ** matrix, int rows, int cols)
   int i;
   for (i = 0; i < rows; i++)</pre>
      free vector(matrix[i], cols);
   free(matrix);
```

The Simplex Method

- Calculate likelihoods at simplex vertices
 - Geometric shape with k+1 corners
 - E.g. a triangle in k = 2 dimensions
- Simplex crawls
 - Towards minimum
 - Away from maximum
- Probably the most widely used optimization method

A Simplex in Two Dimensions

Evaluate function at vertices

- Note:
 - The highest (worst) point
 - The next highest point
 - The lowest (best) point
- Intuition:
 - Move away from high point, towards low point

C Code: Creating A Simplex

```
double ** make_simplex(double * point, int dim)
{
  int i, j;
  double ** simplex = alloc_matrix(dim + 1, dim);

for (int i = 0; i < dim + 1; i++)
    for (int j = 0; j < dim; j++)
        simplex[i][j] = point[j];

for (int i = 0; i < dim; i++)
        simplex[i][i] += 1.0;

return simplex;
}</pre>
```

C Code: Evaluating Function at Vertices

- This function is very simple
 - This is a good thing!
 - Making each function almost trivial makes debugging easy

```
void evaluate_simplex
  (double ** simplex, int dim,
    double * fx, double (* func)(double *, int))
  {
  for (int i = 0; i < dim + 1; i++)
    fx[i] = (*func)(simplex[i], dim);
}</pre>
```

C Code: Finding Extremes

```
void simplex_extremes(double *fx, int dim, int *ihi, int *ilo,
   int *inhi)
   int i;
   if (fx[0] > fx[1])
      { *ihi = 0; *ilo = *inhi = 1; }
   else
      { *ihi = 1; *ilo = *inhi = 0; }
   for (i = 2; i < dim + 1; i++)
      if (fx[i] <= fx[*ilo])</pre>
         *ilo = i;
      else if (fx[i] > fx[*ihi])
         { *inhi = *ihi; *ihi = i; }
      else if (fx[i] > fx[*inhi])
         *inhi = i;
```

Direction for Optimization

C Code: Direction for Optimization

```
void simplex_bearings(double ** simplex, int dim,
                      double * midpoint, double * line, int ihi)
   int i, j;
   for (j = 0; j < dim; j++)
      midpoint[j] = 0.0;
   for (i = 0; i < dim + 1; i++)
      if (i != ihi)
         for (j = 0; j < dim; j++)
            midpoint[j] += simplex[i][j];
   for (j = 0; j < dim; j++)
      midpoint[j] /= dim;
      line[j] = simplex[ihi][j] - midpoint[j];
```

Reflection

Reflection and Expansion

Contraction (One Dimension)

C Code: Updating The Simplex

```
int update_simplex(double * point, int dim, double * fmax,
                   double * midpoint, double * line, double scale,
                   double (* func)(double *, int))
   int i, update = 0; double * next = alloc_vector(dim), fx;
  for (i = 0; i < dim; i++)
     next[i] = midpoint[i] + scale * line[i];
  fx = (*func)(next, dim);
   if (fx < *fmax)
      for (i = 0; i < dim; i++) point[i] = next[i];
      *fmax = fx; update = 1;
  free vector(next, dim);
  return update;
```

Contraction ...

"passing through the eye of a needle"

If a simple contraction doesn't improve things, then try moving all points towards the current minimum

C Code: Contracting The Simplex

Summary: The Simplex Method

multiple contraction

C Code: Minimization Routine (Part I)

Declares local variables and allocates memory

C Code: Minimization Route (Part II)

```
while (true)
     simplex extremes(fx, dim, &ihi, &ilo, &inhi);
     simplex bearings(simplex, dim, midpoint, line, ihi);
     if (check tol(fx[ihi], fx[ilo], tol)) break;
     update simplex(simplex[ihi], dim, &fx[ihi],
                    midpoint, line, -1.0, func);
     if (fx[ihi] < fx[ilo])
        update simplex(simplex[ihi], dim, &fx[ihi],
                       midpoint, line, -2.0, func);
     else if (fx[ihi] >= fx[inhi])
        if (!update simplex(simplex[ihi], dim, &fx[ihi],
                            midpoint, line, 0.5, func))
           contract simplex(simplex, dim, fx, ilo, func);
```

C Code: Minimization Routine (Part III)

Store the result and free memory

```
for (j = 0; j < dim; j++)
    point[j] = simplex[ilo][j];
fmin = fx[ilo];

free_vector(fx, dim);
free_vector(midpoint, dim);
free_vector(line, dim);
free_matrix(simplex, dim + 1, dim);

return fmin;
}</pre>
```

C Code: Checking Convergence

```
#include <math.h>
#define ZEPS le-10

int check_tol(double fmax, double fmin, double ftol)
   {
    double delta = fabs(fmax - fmin);
    double accuracy = (fabs(fmax) + fabs(fmin)) * ftol;
    return (delta < (accuracy + ZEPS));
   }</pre>
```

amoeba()

- A general purpose minimization routine
 - Works in multiple dimensions
 - Uses only function evaluations
 - Does not require derivatives
- Typical usage:
 - my_func(double * x, int n) { ... }
 - amoeba(point, dim, my_func, 1e-7);

Example Application Old Faithful Eruptions (n = 272)

Old Faithful Eruptions

Fitting a Normal Distribution

- Fit two parameters
 - Mean
 - Variance
- Requires ~165 likelihood evaluations
 - Mean = 3.4878
 - Variance = 1.2979
 - Maximum log-likelihood = -421.42

Nice fit, eh?

A Mixture of Two Normals

- Fit 5 parameters
 - Proportion in the first component
 - Two means
 - Two variances
- Required about ~700 evaluations
 - First component contributes 0.34841 of mixture
 - Means are 2.0186 and 4.2734
 - Variances are 0.055517 and 0.19102
 - Maximum log-likelihood = -276.36

Two Components

A Mixture of Three Normals

- Fit 8 parameters
 - Proportion in the first two components
 - Three means
 - Three variances
- Required about ~1400 evaluations
 - Did not always converge!
- One of the best solutions ...
 - Components contributing .339, 0.512 and 0.149
 - Component means are 2.002, 4.401 and 3.727
 - Variances are 0.0455, 0.106, 0.2959
 - Maximum log-likelihood = -267.89

Three Components

Tricky Minimization Questions

- Fitting variables that are constrained
 - Proportions vary between 0 and 1
 - Variances must be positive
- Selecting the number of components

Checking convergence

Improvements to amoeba()

- Different scaling along each dimension
 - If parameters have different impact on the likelihood
- Track total function evaluations
 - Avoid getting stuck if function does not cooperate
- Rotate simplex
 - If the current simplex is leading to slow improvement

Other Minimization Strategies

- One parameter at a time
- Using gradient information
- More complex, so we won't provide code examples.
 - Good implementations in R optim() function

optim() Function in R

- optim(point, function, method)
 - Point starting point for minimization
 - Function that accepts point as argument
 - Method can be
 - "Nelder-Mead" for simplex method (default)
 - "BFGS", "CG" and other options use gradient

One parameter at a time

- Simple but inefficient approach
- Consider
 - Parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
 - Function $f(\theta)$
- Maximize θ with respect to each θ_i in turn
 - Cycle through parameters

Steepest Descent

- Consider
 - Parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
 - Function $f(\theta; x)$
- Score vector

$$S = \frac{d \ln f}{d\theta} = \left(\frac{d \ln f}{d\theta_1}, \dots, \frac{d \ln f}{d\theta_k}\right)$$

• Find maximum along $\theta + \delta S$

Still inefficient...

Consecutive steps are still perpendicular!

Multidimensional Minimization

- Typically, sophisticated methods will...
- Use derivatives
 - May be calculated numerically. How?
- Select a direction for minimization, using:
 - Weighted average of previous directions
 - Current gradient
 - Avoid right angle turns

Recommended Reading

- Numerical Recipes in C (or C++, or Fortran)
 - Press, Teukolsky, Vetterling, Flannery
 - Chapters 10.4
- Clear description of Simplex Method
 - Other sub-chapters illustrate more sophisticated methods
- Online at
 - http://www.numerical-recipes.com/