Nate Warner MATH 353 Spring 2025

Problem set 13 - Due: Monday, April 21

5. Given a proper angle \underline{hk} , h' the ray opposite h, that ray r bisects \underline{hk} and ray s bisects $\underline{h'k}$, show that rs = 90 (Hint: use insertion to show that r-k-s)

Proof. Assume a proper angle \underline{hk} , with a ray r that bisects \underline{hk} , and a ray s that bisects $\underline{h'k}$. Since r bisects \underline{hk} , h-r-k, with $hr = rk = \frac{1}{2}hk$. Also, s bisects $\underline{kh'}$, k-s-h' and $ks = sh' = \frac{1}{2}kh'$

Consider the fan \overrightarrow{hk} , by the dual of Proposition 9.3, $\overrightarrow{hk} = \overline{hk} \cup \overline{kh'}$. So, since k-s-h', $s \in \overline{kh'}$. Thus, $s \in \overrightarrow{hk}$, specifically h-k-s.

So, h-r-k with h-k-s and the ROI implies h-r-k-s, which implies r-k-s. We have

$$rk + ks = rs$$

$$\implies \frac{1}{2}hk + \frac{1}{2}kh' = rs$$

$$\implies kh + kh' = 2rs.$$

By Theorem 14.1, kh and kh' are supplementary, so hk + kh' = 180. Thus,

$$kh + kh' = 2rs$$

 $\implies 180 = 2rs$
 $\implies rs = 90.$

Therefore, rs = 90

12. Prove Theorem 14.9

Remark. (Theorem 14.9): Every point of the perpendicular bisector of a segment is equidistant from the endpoints of the segment: AX = BX for all X on the perpendicular bisector

Proof. Let \overrightarrow{AB} be a line, at m be the perpendicular bisector of \overrightarrow{AB} at the midpoint M of \overline{AB} . Let $X \in m$.

If $X \in \overleftrightarrow{AB}$, then X = M, and AX = BX by definition of the midpoint M of \overline{AB} . So, assume that $X \notin \overleftrightarrow{AB}$.

Since $X \in m$, $X \notin \overrightarrow{AB}$, A, M, X, B are noncollinear, so we have $\triangle AXM$ and $\triangle BXM$. By definition of perpendicular, $\angle AMX = \angle BMX = 90$.

Consider the correspondence $AXM \leftrightarrow BXM$ between the vertices of triangles $\triangle AXM$ and $\triangle BXM$. We have $\overline{MX} \cong \overline{MX}$, $\angle AMX \cong \angle BMX$, and $\overline{AM} \cong \overline{MB}$ (by definition of of the midpoint M of segment \overline{AB}), so $\triangle AXM \cong \triangle BXM$ by AX.SAS, which gives

$$\overline{AX} \cong \overline{BX}$$
.

Therefore,
$$AX = BX$$

13. Prove Theorem 14.10

Remark. Theorem 14.10 (converse of 14.9): Let $m = \overleftrightarrow{AB}$, suppose that line $n \neq m$ meets m at the midpoint M of \overline{AB} . Suppose that there is some point X on n, not on m, so that AX = BX. Then, $n \perp n$ at M

Proof. Assume that $m = \overleftrightarrow{AB}$, and that $n \neq m$ meets m at the midpoint M of \overline{AB} . Further assume that there is a point X on n, but not on m such that AX = BX

Since $X \in n, X \notin m, A, M, B, X$ are noncollinear, so we have triangles $\triangle AMX$, and $\triangle BMX$.

We consider the correspondence $AMX \leftrightarrow BMX$ between the vertices of $\triangle AMX$ and $\triangle BMX$.

By Pons Asinorum, $\angle MAX = \angle MBX$, so $\underline{\angle MAX} \cong \underline{\angle MBX}$. Also, since AX = BX, we have $\overline{AX} \cong \overline{BX}$, and $\overline{AM} \cong \overline{MB}$ by definition of the midpoint M of \overline{AB} . So, by AX.SAS, $\triangle AMX \cong \triangle BMX$, and thus

$$\angle AMX = \angle BMX$$
.

By definition of the midpoint M of segment \overline{AB} , A-M-B, so \overrightarrow{MA} opposite to \overrightarrow{MB} , and $\overrightarrow{MAMB} = \angle AMB = 180$

Consider the ray \overrightarrow{MX} . By Theorem 11.8, $\overrightarrow{MA} \cdot \overrightarrow{MX} \cdot \overrightarrow{MB}$, so $\overrightarrow{MAMX} + \overrightarrow{MX} \overrightarrow{MB} = \overrightarrow{MAMB} = 180$, or equivalently, $\angle AMX + \angle BMX = 180$. Thus,

$$2\angle AMX = 180$$

$$\implies \angle AMX = \angle BMX = 90.$$

Next, we consider the ray opposite to \overrightarrow{MX} , ray $\overrightarrow{MX'}$. By Ax.RR, there exists a point $C \in \overrightarrow{MX'}$ such that $MC < \omega$. So, by theorem 8.4, $\overrightarrow{MX'} = \overrightarrow{MC}$. By Theorem 11.8, we have that

$$\overrightarrow{MX}$$
- \overrightarrow{MB} - \overrightarrow{MC}

and

$$\overrightarrow{MX} - \overrightarrow{MA} - \overrightarrow{MC}$$
.

So, $\overrightarrow{MXMB} + \overrightarrow{MBMC} = 180 \implies \angle BMX + \angle BMC = 180$, and $\overrightarrow{MXMA} + \overrightarrow{MAMC} = 180 \implies \angle AMX + \angle AMC = 180$. Since $\angle BMX = \angle AMX = 90$, we have

$$90 + \angle BMC = 180$$

$$\implies \angle BMC = 90,$$

and

$$90 + \angle AMC = 180$$

 $\implies \angle AMC = 90.$

So, the four angles determined by the intersection of n with m are 90, thus $n \perp m$ at M by definition of perpendicular.

16. Suppose that A,B and C are noncollinear points such that $AB = AC = \frac{\omega}{2}$ ($\omega < \infty$). Prove that A is a pole for \overrightarrow{BC} (Hint: Consider $\triangle ABC$ and $\triangle A^*BC$)

Proof. Assume that A, B, C are noncollinear points such that $AB = AC = \frac{\omega}{2}$.

We first note that A^*, B, C are also noncollinear points, so we have $\triangle ABC$, $\triangle A^*BC$. Consider the correspondence $ABC \leftrightarrow A^*BC$ between the vertices of triangles $\triangle ABC$ and $\triangle A^*BC$

We have that $\overline{BC} \cong \overline{BC}$. Since $AB = \frac{\omega}{2}$, and A-B-A* by Theorem 9.1, we have that

$$AB + BA^* = AA^* = \omega$$

$$\implies BA^* = \omega - AB$$

$$\implies BA^* = \omega - \frac{\omega}{2} = \frac{\omega}{2}.$$

Similarly, A-C-A*, and $AC = \frac{\omega}{2}$, so

$$AC + CA^* = AA^* = \omega$$

$$\implies CA^* = \omega - AC$$

$$\implies CA^* = \omega - \frac{\omega}{2} = \frac{\omega}{2}.$$

So, $\overline{AB} \cong \overline{A^*B}$, and $\overline{AC} \cong \overline{A^*C}$. By Theorem 13.4 (SSS), we have that $\triangle ABC \cong \triangle A^*BC$. Thus, $\underline{\angle ABC} \cong \underline{\angle A^*BC}$, and $\underline{\angle ACB} \cong \underline{\angle A^*CB}$, which implies $\angle ABC = \angle A^*BC$, and $\angle ACB = \angle A^*CB$.

Consider the rays \overrightarrow{BA} , \overrightarrow{BA}^* , \overrightarrow{BC} . By Theorem 9.6, rays \overrightarrow{BA} and \overrightarrow{BA}^* are opposite, and Theorem 11.8 implies $\overrightarrow{BA} \cdot \overrightarrow{BC} \cdot \overrightarrow{BA}^*$.

Thus,

$$\overrightarrow{BABC} + \overrightarrow{BCBA}^* = \overrightarrow{BABA}^* = 180$$

$$\implies \angle ABC + \angle A^*BC = 180$$

$$\implies 2\angle ABC = 180$$

$$\implies \angle ABC = \angle A^*BC = 90.$$

Also, it can be easily shown by that the angle supplementary to $\angle ABC$ is 90, and the angle supplementary to $\angle A^*BC$ is 90. Thus, the four angles determined by the intersection of \overrightarrow{AB} with \overrightarrow{BC} are all 90, so $\overrightarrow{AB} \perp \overrightarrow{BC}$ at B, and \overrightarrow{AB} meets \overrightarrow{BC} at a point B0 distance B2 from A3, so by the definition of a pole, A4 is a pole for B3.