МЕТОДЫ ДЕФАЗЗИФИКАЦИИ

Дефаззификация представляет собой процесс нахождения четкого значения для некоторого произвольного нечеткого множества. К основным методам дефаззификации относятся [27]: метод относительно центра области, метод относительно среднего максимума в форме выбора минимального из максимальных значений и в форме выбора максимального из максимальных значений.

Расчетные формулы чаще всего используемых способов дефаззификации [18] представлены ниже.

1. Дефаззификация относительно центра области:

$$x_c = \frac{\sum_{i} \mu_{\mathcal{A}}(x_i) \cdot x_i}{\sum_{i} \mu_{\mathcal{A}}(x_i)}.$$
 (16)

2. Дефаззификация относительно среднего максимума:

$$x_M = \frac{\sum_{i=1}^{m} x_i}{m},\tag{17}$$

где m обозначает количество точек переменной x, в которой $\mu_{\mathcal{A}}(x_i)$ достигает максимального значения.

 Дефаззификация в форме выбора минимального из максимальных значений:

$$x_s$$
 — наименьшее значение x , (18)

для которого $\{\mu(x) = \max\}$.

 Дефаззификация в форме выбора максимального из максимальных значений:

$$x_l$$
 — наибольшее значение x , (19)

для которого $\{\mu(x) = \max\}$.

Для иллюстрации примеров методов дефаззификации возьмем нечеткое множество $\mathcal{A} = \{(1;0,3),(2;0,6),(3;0,6),(4;0,4)\}.$

Используя формулу (16), рассчитаем дефаззификацию относительно центра области нечеткого множества \mathcal{A} , результат которого определяется следующим образом:

$$x_c(\mathcal{A}) = \frac{(1 \cdot 0,3) + (2 \cdot 0,6) + (3 \cdot 0,6) + (4 \cdot 0,4)}{0,3 + 0,6 + 0,6 + 0,4}.$$

Вычисляя дефаззификацию относительно центра области, получаем следующий результат:

$$x_c(A) = 2,5789.$$
 (20)

Используя формулу (17), рассчитаем дефаззификацию относительно среднего максимума нечеткого множества А, результат которого определяется следующим образом:

$$x_M(A) = \max\{(1;0,3),(2;0,6),(3;0,6),(4;0,4)\} = ((2+3);0,6) = \frac{5}{2}.$$

Вычисляя дефаззификацию относительно среднего максимума, получаем следующий результат:

$$x_M(\mathcal{A}) = 2.5. \tag{21}$$

Используя формулу (18), рассчитаем дефаззификацию в форме выбора минимального из максимальных значений нечеткого множества *A*, результат которого определяется следующим образом:

$$x_s(A) = \max\{(1;0,3), (2;0,6), (3;0,6), (4;0,4)\} = \min\{(2;0,6), (3;0,6)\}.$$

Вычисляя в форме выбора минимального из максимальных значений, получаем следующий результат:

$$x_{\mathcal{S}}(\mathcal{A}) = 2. \tag{22}$$

Используя формулу (19), рассчитаем дефаззификацию в форме выбора максимального из максимальных значений нечеткого множества *A*, результат которого определяется следующим образом:

$$x_{l}(A) = \max\{(1;0,3),(2;0,6),(3;0,6),(4;0,4)\} = \max\{(2;0,6),(3;0,6)\}.$$

Вычисляя в форме выбора максимального из максимальных значений, получаем следующий результат:

$$x_{I}(A) = 3. \tag{23}$$

5.2. Упражнение № 5 «Методы дефаззификации»

Шаг 1. Для нечетких множеств, заданных на I = [0, 100] функцией принадлежности, параметры которой представлены в табл. 11–13, с использованием соответствующего специального программного модуля определите результат дефаззификации.

Таблица 11

№	Тип ФП	I F	łМ	II HM			
Π/Π	типФп	а	b	а	В		
1	Z -образная $\Phi\Pi$	30	65	45	70		
2	Кривая Гаусса	25	70	10	95		
3	S-образная ФП	20	75	50	100		
4	Сигмоидная ФП	10	100	35	80		
5	Z -образная $\Phi\Pi$	50	70	30	90		
6	Кривая Гаусса	30	95	30	65		

Параметры двухпараметрической функции принадлежности

N2	Тип ФП	I F	łМ	П НМ			
п/п	I MII WII	а	b	а	В		
7	S-образная ФП	45	60	50	60		
8	Сигмоидная ФП	5	95	5	55		
9	Z-образная ФП	5	55	15	90		
10	Кривая Гаусса	45	55	50	85		
11	S-образная ФП	35	55	20	55		
12	Сигмоидная ФП	40	70	45	60		
13	Z-образная ФП	45	75	20	65		
14	S-образная ФП	20	80	35	60		
15	Z-образная ФП	5	60	20	100		
16	Кривая Гаусса	50	70	10	55		
17	S-образная ФП	40	70	5	80		
18	Сигмоидная ФП	35	55	40	75		
19	Z-образная ФП	40	95	10	55		
20	Кривая Гаусса	35	70	15	55		
21	S-образная ФП	50	100	50	85		
22	Сигмоидная ФП	40	55	35	55		
23	Z-образная ФП	40	95	35	70		
24	Кривая Гаусса	20	95	5	90		
25	S-образная ФП	40	90	10	80		
26	Сигмоидная ФП	25	60	20	65		
27	Z-образная ФП	20	60	15	65		
28	Кривая Гаусса	30	60	25	95		
29	S-образная ФП	40	60	10	80		
30	Сигмоидная ФП	40	60	30	60		

Таблица 12 Параметры трехпараметрической функции принадлежности

N ₂	Тип ФП		I HM		II HM			
п/п	I HII TII	а	b	c	а	b	c	
1	Треугольная ФП	25	30	95	35	70	100	
2	Колоколообразная ФП	25	55	95	15	35	80	
3	Треугольная ФП	30	45	90	35	65	65	

N ₂	Тип ФП		I HM			II HM	
п/п	тип ФП	а	b	с	а	b	c
4	Колоколообразная ФП	25	45	90	20	40	60
5	Треугольная ФП	25	40	60	20	40	70
6	Колоколообразная ФП	15	60	100	35	55	95
7	Треугольная ФП	40	35	100	20	55	100
8	Колоколообразная ФП	25	60	80	10	50	100
9	Треугольная ФП	30	65	65	15	65	75
10	Колоколообразная ФП	25	60	95	40	65	75
11	Треугольная ФП	35	30	100	15	30	70
12	Колоколообразная ФП	35	50	90	40	45	100
13	Треугольная ФП	25	40	75	15	40	65
14	Колоколообразная ФП	30	50	95	10	50	90
15	Треугольная ФП	25	45	90	20	40	80
16	Колоколообразная ФП	15	45	70	30	35	60
17	Треугольная ФП	30	40	70	25	70	90
18	Колоколообразная ФП	40	65	75	15	50	65
19	Треугольная ФП	40	70	90	30	45	95
20	Колоколообразная ФП	15	55	80	35	50	100
21	Треугольная ФП	20	40	60	35	35	80
22	Колоколообразная ФП	20	35	90	25	60	60
23	Треугольная ФП	20	70	65	40	65	65
24	Колоколообразная ФП	35	60	85	25	35	95
25	Треугольная ФП	25	65	65	30	35	100
26	Колоколообразная ФП	15	65	90	30	40	75
27	Треугольная ФП	40	45	75	15	35	85
28	Колоколообразная ФП	20	55	75	25	45	95
29	Треугольная ФП	35	50	75	15	50	75
30	Колоколообразная ФП	40	50	85	30	40	65

Таблица 13

Параметры четырехпараметрической функции принадлежности

№2	Тип ФП		I HM				II HM			
п/п	THE VII	a_1	c_1	a_2	C2	a_1	c_1	a_2	C2	
1	Разность сигмоидных ФП	10	40	55	85	10	30	50	80	
2	Двусторонняя кривая Гаусса	25	35	70	80	10	40	60	90	
3	П-образная ФП	30	50	70	75	10	50	55	85	

No.	Тип ФП		ΙE	IM		II HM				
п/п	THE VII	a_1	<i>C</i> ₁	a_2	C2	a_1	c_1	<i>a</i> ₂	C2	
4	Произведение сигмоидных ФП	30	35	55	85	25	45	65	85	
5	Трапециевидная ФП	20	35	60	95	30	45	70	95	
6	Разность сигмоидных ФП	20	30	60	70	30	45	55	80	
7	Двусторонняя кривая Гаусса	15	35	55	70	10	45	70	80	
8	П-образная ФП	5	45	50	85	25	50	55	75	
9	Произведение сигмоидных ФП	5	35	70	85	15	50	60	85	
10	Трапециевидная ФП	30	40	60	70	25	40	55	95	
11	Разность сигмоидных ФП	25	45	65	90	2.5	40	50	80	
12	Двусторонняя кривая Гаусса	10	40	70	90	10	45	70	75	
13	П-образная ФП	5	45	55	70	2.5	30	55	95	
14	Произведение сигмоидных ФП	5	30	70	80	15	35	65	85	
15	Трапециевидная ФП	5	40	55	75	10	50	70	80	
16	Разность сигмоидных ФП	5	35	70	85	5	50	65	8.5	
17	Двусторонняя кривая Гаусса	15	35	60	90	10	45	65	75	
18	П-образная ФП	15	40	55	85	10	35	65	85	
19	Произведение сигмоидных ФП	5	45	55	95	2.5	40	65	95	
20	Трапециевидная ФП	20	40	65	80	25	45	70	85	
21	Разность сигмоидных ФП	30	35	50	80	5	35	65	85	
22	Двусторонняя кривая Гаусса	10	40	55	95	25	40	70	90	
23	П-образная ФП	5	35	60	75	10	35	65	8.5	
24	Произведение сигмоидных ФП	20	50	65	95	25	35	55	90	
25	Трапециевидная ФП	20	35	65	80	15	35	70	75	
26	Разность сигмоидных ФП	10	40	65	90	25	30	55	75	
27	Двусторонняя кривая Гаусса	10	45	70	85	15	40	60	80	
28	П-образная ФП	30	35	60	80	30	35	60	80	
29	Произведение сигмоидных ФП	20	50	65	95	15	40	60	80	
30	Трапециевидная ФП	20	45	70	75	10	50	70	80	

IIIae 2. Для нечеткого множества, заданного на I = [0, 100] с шагом, равным 10, таблицей (табл. 14), определите результат дефаззификации, подтвердите результат, используя соответствующий специальный программный модуль, приложив для каждого расчета скриншот.

Значения функции принадлежности нечеткого множества, заданного таблично

No.	Знач	чения	функ	щии п	рина,	цпежн	ости і	печеті	кого м	шоже	ства
Π/Π	0	10	20	30	40	50	60	70	80	90	100
1	0,8	0,6	0,9	0,9	0,6	0,9	0	1	0,2	0,3	0,6
2	0,1	0,3	0,7	0,7	0,7	0,7	0,5	0,8	0,4	0,4	0,8
3	1	0,4	0,6	0	0,1	0,5	0,1	0,5	0,4	0,9	0,2
4	1	0,5	0,6	0,6	0,5	0,2	0	0,8	0,5	0,1	0,4
5	0,7	0,5	0,3	0,5	0,8	0,7	0,1	0,4	0,1	0,8	0,1
6	0,9	0,8	0,7	0,6	0	0,6	0,2	0,5	0,9	0,9	0,8
7	0,1	0,5	0,1	1	0,6	0,2	0	0,4	0,8	0,6	0,3
8	0,7	0,9	0,3	0,6	1	0,6	0	0,1	1	0	0,2
9	0,5	0,7	0,2	0,2	0,3	0,3	0,8	0,7	0,8	0,7	0,3
10	0,9	0,1	0,4	0,5	0,2	0,4	0,6	0,5	0,3	0,2	0,8
11	0	0,4	0,6	0,1	0,9	0,1	0,8	0,6	0,8	0,7	0,5
12	0,6	0,6	0,1	0,7	0,9	0,4	0,7	0,3	1	0,9	0,5
13	0,3	0,7	0,7	0,8	0,6	0,6	0,4	0,2	0,2	0,5	0,8
14	0,9	0,1	0,8	0,9	0,3	0,2	0,7	0,4	0,4	1	0,6
15	0,1	0,7	0	0,6	0,2	0,8	0,3	0,3	0,2	0,4	0,6
16	0,4	0,2	0,6	0,3	0,2	0,9	0,4	0,7	0,9	0,1	0,1
17	0,7	0	1	0	0,4	0,3	0,9	1	0,3	1	0,5
18	0,1	0,9	0,5	0,8	0,8	0,5	0,6	0,8	0,9	0	0,3
19	0,1	0,8	0,6	0,2	0,1	0,6	0,9	0,1	0,5	0,6	0,5
20	0,8	0,9	1	0,9	0,5	0,1	0,1	0,7	0,7	0,6	0
21	0,6	0,5	0,6	0,8	0	0,2	0,7	0,4	0,9	0,1	0,5
22	0,3	0,8	0,4	0,8	0,1	0,6	0,7	0,7	0	0,7	0,5
23	0,2	0,4	0,2	0,9	0,7	0,6	0,8	0,8	0,5	0,6	1
24	0,9	0,6	0,1	0,8	0,1	0	0,3	0,1	0,8	1	0,9
25	0,4	0,6	0,6	0,1	0,9	0,8	0,2	0,2	0,8	0,7	0,6
26	0,8	0,2	0,3	0,6	0,1	0,1	0,6	0,2	1	1	0,4
27	0,5	0,8	0,5	0,8	0,7	0,4	0,4	0,6	0,2	0,5	0,5
28	1	0,4	0,5	0,9	0,8	0,2	1	0,6	1	0,9	0,7
29	0,4	0,6	0,7	0,5	0,7	0,5	0	0,6	0,8	0	0,8
30	0,4	0,6	0,3	0,3	0,8	0,3	0,5	0,1	0,6	0,8	0,8