Quiz 29

Key Name:

You must show your work to get full credit.

Consider the system for two competing species:

$$\frac{dx}{dt} = .2x \left(\frac{80 - x - 2y}{80} \right)$$

$$\frac{dy}{dt} = .3y \left(\frac{90 - 3x - y}{90} \right)$$

peting species:
$$\frac{dx}{dt} = .2x \left(\frac{80 - x - 2y}{80}\right)$$

$$\frac{dy}{dt} = .3y \left(\frac{90 - 3x - y}{90}\right)$$

1. Draw the lines where $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} = 0$.

2. Find the equilibrium points.

The points are: (0,0), (80,0), (0,90), (20,30)

$$7 + 29 = 80$$

 $3 \times + 49 = 90$
From @ $9 = 90 - 3 \times$
Use + U15 14 (D)
 $7 + 2(90 - 3 \times) = 86$
 $7 + 180 - 6 \times = 80$
 $-5 \times = 90 - 180$
 $-5 \times = -100$

3. Which of the equilibrium points are stable.

Stable Points: (0,80),

4. If x(0) = 5 and y(0) = 85 estimate x(100) and y(100).

 $x(100) \approx$

 $y(100) \approx 90$

5. Circle one: This is competitive coexistence, competitive exclusion.