Devoir à la maison n° 2 - MPI

À rendre le lundi 29 septembre 2025

Ce second devoir MPI est constitué de deux problèmes d'analyse autour de la manipulation de normes.

Problème 1 : Des normes sur \mathbb{R}^2

On considère dans \mathbb{R}^2 les deux normes définies pour $x=(x_1,x_2)$ par :

$$||x||_1 = |x_1| + |x_2|$$
 et $||x||_{\infty} = \sup(|x_1|, |x_2|)$

1. Déterminer deux réels positifs α et β tels que pour tout $x \in \mathbb{R}^2$:

$$\alpha \|x\|_{\infty} \le \|x\|_1 \le \beta \|x\|_{\infty}$$

- **2.** On pose, pour $a, b \in \mathbb{R}$ et $x \in \mathbb{R}^2 : N(x) = a||x||_1 + b||x||_{\infty}$. On considère les vecteurs x = (1,0), y = (0,1), x' = (1,1) et y' = (-1,1).
 - a) Calculer N(x), N(y), N(x'), N(y').
 - b) En déduire une condition nécessaire et suffisante pour que N soit une norme.

On supposera que cette condition est vérifiée par la suite.

- **3.** Sur un même repère, construire les sphères unités S_1 pour $\|\cdot\|_1$, S_∞ pour $\|\cdot\|_\infty$ et S_N pour la norme N dans le cas $a=b=\frac{1}{2}$.
- **4.** On suppose toujours $a = b = \frac{1}{2}$.

On note $B_1(R)$, $B_{\infty}(R)$ et $B_N(R)$ les boules de rayons R centrées en (0,0) pour les normes respectives $\|\cdot\|_1$, $\|\cdot\|_{\infty}$ et $\|\cdot\|_N$. Montrer qu'il existe un nombre R tel que :

$$B_1(R) \subset B_N(1) \subset B_\infty(R)$$

Problème 2 : Continuité de la longueur d'une courbe

Pour toute fonction $f:[0,1]\to\mathbb{R}$ de classe \mathcal{C}^1 , on note

$$L(f) = \int_{0}^{1} \sqrt{1 + (f'(t))^{2}} dt$$

une expression intégrale de la longueur de la courbe représentative de f.

On rappelle que l'application

$$f \mapsto ||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$$

définit une norme sur l'espace $E = \mathcal{C}^0([0,1],\mathbb{R})$ des applications continues de [0,1] dans \mathbb{R} .

On note $E_1 = \mathcal{C}^1([0,1],\mathbb{R})$ l'espace des fonctions continûment dérivables de [0,1] dans \mathbb{R} et pour toute fonction $f \in E_1$, on note

$$||f|| = |f(0)| + ||f'||_{\infty}$$

- **1.** Montrer que l'application $f \mapsto ||f||$ définit une norme sur E_1 .
- 2. Montrer que

$$\forall f \in E_1, \quad ||f||_{\infty} \leqslant ||f||$$

3. Les normes $\|\cdot\|$ et $\|\cdot\|_{\infty}$ sont-elles équivalentes sur E_1 ? On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur [0,1] par

$$\forall n \in \mathbb{N}^*, \quad \forall t \in [0, 1], \quad f_n(t) = \frac{\sin(n\pi t)}{\sqrt{n}}$$

4. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur [0,1], c'est-à-dire :

$$||f_n - 0||_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

5. Montrer que pour tout $n \in \mathbb{N}^*$, on a

$$L(f_n) \geqslant 2\sqrt{n}$$

- **6.** L'application $L: f \mapsto L(f)$ est-elle continue sur $(E_1, \|\cdot\|_{\infty})$?
- 7. L'application $L: f \mapsto L(f)$ est-elle continue sur $(E_1, \|\cdot\|)$?

 Indication: On pourra majorer |L(f) L(g)| pour f et g dans E_1 .