

FACULTY OF MATHEMATICS

Eigenvalue Problems

Celine Reddig 19. August 2025

Outline

- 1. Motivating the QR Algorithm
- 2. The QR Algorithm
- 3. Improvements: Hessenberg form
- 4. Improvements: Shifts
- 5. Summary
- 6. Bibliography

19. August 2025 2 / 4

Introduction

Problem definition

Given a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$. Find scalars $\lambda \in \mathbb{C}$ and vectors $\mathbf{v} \in \mathbb{C}^n$, $\mathbf{v} \neq 0$ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v},$$

i.e. $(\mathbf{A} - \lambda I)\mathbf{v} = 0$. We call λ an eigenvalue of \mathbf{A} and \mathbf{v} an eigenvector of \mathbf{A} .

19. August 2025 3 / 42

Introduction

Problem definition

Given a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$. Find scalars $\lambda \in \mathbb{C}$ and vectors $\mathbf{v} \in \mathbb{C}^n$, $\mathbf{v} \neq 0$ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v},$$

i.e. $(\mathbf{A} - \lambda I)\mathbf{v} = 0$. We call λ an eigenvalue of \mathbf{A} and \mathbf{v} an eigenvector of \mathbf{A} .

Eigenvalue problems arise in many applications:

19. August 2025 3 / 42

Recall Properties I

- $\sigma(\mathbf{A})$ is the set of all eigenvalues and called spectrum of \mathbf{A} .
- $E_{\lambda} = \{ \mathbf{v} : (\mathbf{A} \lambda I)\mathbf{v} = 0 \}$ is called the **eigenspace of** λ .
 - $\dim(E_{\lambda})$ is called **geometric multiplicity**.
- Since $x \neq 0$, $(\mathbf{A} \lambda I)x = 0$, has a non-trivial solution if an eigenvalue is a root of the characteristic polynomial

$$\chi(\lambda) \coloneqq \det(\mathbf{A} - \lambda I) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0.$$

• multiplicity of λ is called **algebraic multiplicity**.

19. August 2025 4 / 47

Recall Properties II

- $A \rightarrow S^{-1}AS =: C$, where S is non-singular, is called **similarity transformation**
 - $\sigma(\mathbf{A}) = \sigma(\mathbf{C})$, and if (λ, x) is an eigenpair of \mathbf{A} , $(\lambda, \mathbf{S}^{-1})$ is an eigenpair of \mathbf{C} .

Transform A into matrices which eigenvalues can be easily read:

- Diagonalization: $D_A = S^{-1}AS$, where $D_A = \text{diag } (\sigma(A))$ and S is non-singular.
 - A is diagonalizable if A has n distinct eigenvalues and for every λ_i the $g(\lambda_i) = m(\lambda_i)$.

Schur decomposition

If $A \in C^{n \times n}$, $\exists U \in C^{n \times n}$ unitary, such that $U^*AU = T$ is upper triangular.

19. August 2025 5 / 4

Some algorithms

For small dense matrices

- QR algorithm
 - computes all eigenvalues and eigenvectors
 - more modern: implicit QR algorithm
 - employed in algorithms for large and sparse matrices to small "internal" auxiliary eigenvalue problems

For symmetric and sparse matrices

- Power method
 - the largest eigenvalue and eigenvector
- Lanczos(hermitian)/Arnoldi(non-hermitian)
 - based on Krylov-Subspaces
 - only a few eigenvalues
 - very efficient

• ..

19. August 2025 6 / 42

Some algorithms

For small dense matrices

- QR algorithm
 - computes all eigenvalues and eigenvectors
 - more modern: implicit QR algorithm
 - employed in algorithms for large and sparse matrices to small "internal" auxiliary eigenvalue problems

For symmetric and sparse matrices

- Power method
 - the largest eigenvalue and eigenvector
- Lanczos(hermitian)/Arnoldi(non-hermitian)
 - based on Krylov-Subspaces
 - only a few eigenvalues
 - very efficient

• ..

19. August 2025 6 / 42

Assumptions

- $\mathbf{A} \in \mathbb{C}^{n \times n}$ with multually different and ordered eigenvalues $|\lambda_1| > |\lambda_2| > ... > |\lambda_n|$
- ullet For the ease of explanation: ${f A}$ is simple, i.e. ${f A}$ has n linearly independent eigenvectors ${f v}_1,...,{f v}_n$
- \mathbf{v}_i denotes the eigenvector associated with eigenvalue λ_i .
- A is dense

19. August 2025 7 / 41

Motivating the QR Algorithm

19. August 2025 8 / 47

Basic Power Method

Method: Choose a vector \mathbf{v} and compute $\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{A}^2\mathbf{v}, \mathbf{A}^3\mathbf{v}, \dots$ This converges usually to an eigenvector \mathbf{v}_1 corresponding to the largest eigenvalue.

Why? Assume: $|\lambda_1| > |\lambda_2|$. The choosen vector \mathbf{v} can be expressed as:

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n.$$

Subspace Iteration/Simultaneous Iteration

Power method applied to a k-dim subspace S and form $S, \mathbf{A}S, \mathbf{A}^2S, ...$

Let $T = \langle \mathbf{v}_1, ..., \mathbf{v}_k \rangle$ and $U = \langle \mathbf{v}_{k+1}, ... \mathbf{v}_n \rangle$. Assume $|\lambda_k| > |\lambda_{k+1}|$ and let S be a k-dim subspace of \mathbb{C}^n such that $S \cap U = \{0\}$). Then, $\mathbf{A}^m S \to T$ linearly with ratio $|\frac{\lambda_{k+1}}{\lambda_k}|$. (T and U are invariant subspaces)

In theory: Iterate over a basis for S given by $\mathbf{q}_1^0,...\mathbf{q}_k^0$. Then, $\langle \mathbf{A}^m q_1^0,...\mathbf{A}^m q_k^0 \rangle = \mathbf{A}^m S$ for m=2,3,4. We get bases for $\mathbf{A}S,\mathbf{A}^2S,...$

In practice:

- 1. Rescaling is required to avoid overflow/underflow
- 2. Each sequence $\mathbf{q}_i^0, \mathbf{A}\mathbf{q}_i^0, \mathbf{A}^2\mathbf{q}_i^0$ for i=1,...k converges independently to $\langle \mathbf{v}_1 \rangle$

Basis is ill-conditioned \rightarrow orthonormalize

Simultaneous Iteration

For $m=1,\dots$ do

- 1. $\mathbf{Q}_m = [\mathbf{q}_1^m, ..., \mathbf{q}_k^m]$ is orthonormal basis of $\mathbf{A}^m S$. Compute $\mathbf{A} \mathbf{Q}_m$.
- 2. Orthonormalize \mathbf{AQ}_m to get $\mathbf{Q}_{m+1} = [\mathbf{q}_1^{m+1}, ..., \mathbf{q}_k^{m+1}]$, a basis for $\mathbf{A}^{m+1}S$

Remark. For a complete set, i.e. k = n, we converge to a unitary basis $\mathbf{q}_1, \mathbf{q}_2, ... \mathbf{q}_n$.

But where are the eigenvalues?

For each i, $\mathbf{A}^m S_i \to T_i$ as $m \to \infty$ the first i columns of \mathbf{Q}_m are a unitary basis for the \mathbf{A} -invariant subspace T_i , i.e. $\forall \mathbf{x} \in T_i$, $\mathbf{A}\mathbf{x} \in T_i$. The subspaces are preserved under orthonormalization.

Eigenvalue Problems

For each i, $\mathbf{A}^m S_i \to T_i$ as $m \to \infty$ the first i columns of \mathbf{Q}_m are a unitary basis for the \mathbf{A} -invariant subspace T_i , i.e. $\forall \mathbf{x} \in T_i$, $\mathbf{A}\mathbf{x} \in T_i$. The subspaces are preserved under orthonormalization.

Let $\mathbf{Q} = [\mathbf{Q}_1 \mathbf{Q}_2]$ be a **unitary matrix** where its first k columns form a basis for the \mathbf{A} -invariant subspace T_k and define $\mathbf{B} = \mathbf{Q}^* \mathbf{A} \mathbf{Q}$. Then,

$$\mathbf{B} = \begin{pmatrix} \mathbf{Q}_1^* \mathbf{A} \mathbf{Q}_1 & \mathbf{Q}_1^* \mathbf{A} \mathbf{Q}_2 \\ \mathbf{Q}_2^* \mathbf{A} \mathbf{Q}_1 & \mathbf{Q}_2^* \mathbf{A} \mathbf{Q}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{0} & \mathbf{B}_{22} \end{pmatrix},$$

where $\mathbf{Q}_2^* \mathbf{A} \mathbf{Q}_1 = \mathbf{0}$ since T is \mathbf{A} -invariant, see [1]. Moreover, $\sigma(\mathbf{A}) = \sigma(\mathbf{B}_{11}) \cup \sigma(\mathbf{B}_{22})$.

The previous result requires invariant subspaces, however we only converge to an invariant subspace:

Let $[\mathbf{q}_1^m,...\mathbf{q}_n^m] = \mathbf{Q}_m$. Then, one can show that

$$\mathbf{A}_m = \mathbf{Q}_m^* \mathbf{A} \mathbf{Q}_m
ightarrow egin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \ \mathbf{0} & \mathbf{B}_{22} \end{pmatrix}$$

as $m \to \infty$.

Since \mathbf{Q}_n contains bases also for i=1,...,n-1 spanning T_i , $\mathbf{A}_m \to \begin{pmatrix} \lambda_1 & * & ... & * \\ 0 & \lambda_2 & ... & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \lambda_n \end{pmatrix}$

Remarks on the Simultaneous Iteration

Algorithm:

$$\begin{aligned} \text{Let } \mathbf{Q}_0 &= \mathbf{I}. \\ \text{for } m = 1, \dots \text{ do} \\ \mathbf{D}_{m+1} &\coloneqq \mathbf{A} \mathbf{Q}_m. \\ \mathbf{D}_{m+1} &= \mathbf{Q}_{m+1} \mathbf{R}_{m+1}. \\ \mathbf{A}_m &= \mathbf{Q}_m^* \mathbf{A} \mathbf{Q}_m. \end{aligned}$$

- Convergence rate to T_k is $|\frac{\lambda_{k+1}}{\lambda_k}|$. Very slow. Speed up with shifts, allows for fast convergence in theory but is numerically unstable.
- To employ shifts we need the QR iteration.
- see [2] for more details.

The QR Algorithm

19. August 2025 16 / 4

QR Iteration

ullet instead of working on ${f A}$ the QR iteration performs equivalent operations on ${f A}_m$

Simultaneous Iteration:

$$\begin{aligned} \operatorname{Let} \ \underline{\mathbf{Q}}_0 &= I. \\ \text{for} \ m &= 1, \dots \, \operatorname{do} \\ \mathbf{D}_{m+1} &\coloneqq \mathbf{A} \underline{\mathbf{Q}}_m. \\ \mathbf{D}_{m+1} &= \underline{\mathbf{Q}}_{m+1} \mathbf{R}_{m+1}. \\ \mathbf{A}_m &\coloneqq \mathbf{Q}_m^* \mathbf{A} \mathbf{Q}_m. \end{aligned}$$

QR Iteration:

$$\begin{aligned} \operatorname{Let} \ \mathbf{A}_0 &= \mathbf{A}. \\ \text{for} \ m &= 1, \dots \operatorname{do} \\ \mathbf{A}_{m-1} &= \mathbf{Q}_m \underline{\mathbf{R}}_m. \\ \mathbf{A}_m &\coloneqq \underline{\mathbf{R}}_m \mathbf{Q}_m. \\ \underline{\mathbf{Q}}_m &\coloneqq \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_m \end{aligned}$$

Simultaneous Iteration ⇔ QR Iteration

Both schemes generate the QR decomposition ${\bf A}^m={f Q}_m{f R}_m$ and the projection ${\bf A}_m={f Q}_m^*{f A}{f Q}_m$

Algorithm 4.1 Basic QR algorithm

- 1: Let $A \in \mathbb{C}^{n \times n}$. This algorithm computes an upper triangular matrix T and a unitary matrix U such that $A = UTU^*$ is the Schur decomposition of A.
- 2: Set $A_0 := A$ and $U_0 = I$.
- 3: **for** $k = 1, 2, \dots$ **do**
- 4: $A_{k-1} =: Q_k R_k$; /* QR factorization */
- 5: $A_k := R_k Q_k$;
- 6: $U_k := U_{k-1}Q_k$; /* Update transformation matrix */
- 7: end for
- 8: Set $T := A_{\infty}$ and $U := U_{\infty}$.

Figure 1: from [3]

Remarks on the basic QR Iteration

- The basic QR iteration has the same slow convergence rate but is numerically stable.
- It is expensive since each iteration step requires the QR decomposition of a full $n \times n$ matrix, that is already $\mathcal{O}(n^3)$.

Improvements

- A preliminary reduction to a Hessenberg matirx decrease the cost of each QR step.
- The use of shifts reduces the total number of steps to attain convergence.

Improvements: Hessenberg form

19. August 2025 21 / 4

Def. A matrix **H** is a Hessenberg matrix if its elements below the lower off-diagonal are zero, $h_{ij} = 0$ for i > j + 1.

Theorem. The Hessenberg form is preserved by the QR algorithm, i.e given $\mathbf{H} = \mathbf{Q}\mathbf{R}$, $\overline{\mathbf{H}} = \mathbf{R}\mathbf{Q}$ is again a Hessenberg matrix.

ullet using Givens rotations, the QR decomposition gets very cheap $\mathcal{O}(n^2)$

Givens rotation

Givens rotation is a rotation in the plane spanned by two coordinates axes,

$$G(i,j,\theta) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & -s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix},$$

where $c=\cos(\theta)$ and $s=\sin(\theta)$. Pre-multiplication corresponds to a counter-clockwise rotation by θ in (i,j) plane, i.e. only the rows i and i are effected.

Givens rotation

If $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} = G(i, j, \theta)^* \mathbf{x}$,

$$\begin{pmatrix} y_i \\ y_j \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} x_i \\ x_j \end{pmatrix}, \text{ and } y_k = x_k \text{ for } k \neq i, j.$$

By setting $c=\frac{x_i}{\sqrt{|x_i|^2+|x_j|^2}}$ and $s=-\frac{x_j}{\sqrt{|x_i|^2+|x_j|^2}}$, we can force y_j to zero, i.e Givens rotations allow zeroing a specific entry.

Givens rotations

A small example:

$$\mathbf{H} = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix} \xrightarrow{G(1,2,\theta_1)^*} \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix} \xrightarrow{\mathbf{With}} \mathbf{G}_k = G(k,k+1,\theta_k), \text{ we obtain the QR decomposition} \\ \mathbf{G}_3^* \mathbf{G}_2^* \mathbf{G}_1^* \mathbf{H} = \mathbf{R} \\ \mathbf{Q}^*$$

$$\frac{G(2,3,\theta_2)^*}{\longrightarrow} \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix} \xrightarrow{G(3,4,\theta_3)^*} \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} = \mathbf{R}$$

Givens rotations

To sketch that the second step of the QR iteration, i.e. computing \mathbf{RQ} is a Hessenberg matrix, we check if $\mathbf{RG_1G_2G_3}$ is Hessenberg:

$$\mathbf{R} = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} \xrightarrow{\cdot G(1,2,\theta_1)} \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} \xrightarrow{\cdot G(2,3,\theta_2)} \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} \xrightarrow{\cdot G(3,4,\theta_3)} \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

Eigenvalue Problems

Algorithm 4.2 A Hessenberg QR step

1: Let $H \in \mathbb{C}^{n \times n}$ be an upper Hessenberg matrix. This algorithm overwrites H with $\overline{H} = RQ$ where H = QR is a QR factorization of H.

2: **for**
$$k = 1, 2, \dots, n-1$$
 do

3: /* Generate
$$G_k$$
 and then apply it: $H = G(k, k+1, \vartheta_k)^* H^*$

4:
$$[c_k, s_k] := givens(H_{k,k}, H_{k+1,k});$$

5:
$$H_{k:k+1,k:n} = \begin{bmatrix} c_k & -s_k \\ s_k & c_k \end{bmatrix} H_{k:k+1,k:n};$$

6: end for

7: **for**
$$k = 1, 2, ..., n-1$$
 do

8: /* Apply the rotations
$$G_k$$
 from the right */

9:
$$H_{1:k+1,k:k+1} = H_{1:k+1,k:k+1} \begin{bmatrix} c_k & s_k \\ -s_k & c_k \end{bmatrix}$$
;

10: end for

Figure 2: from [3]

Householder reflector

Householder reflectors can zero a number of elements of a vector at once.

Def. A matrix of the form $P = I - 2uu^*$, ||u|| = 1 is called a Householder reflector.

- P is Hermitian and $P^2 = I$, so P is unitary.
- ullet only store ${f u}$ for ${f P} x = x u(2u^*x)$
- one can determine ${\bf u}$ such that ${\bf P}{x}=\alpha e_1$, where $\alpha=\rho\|x\|,\ \rho\in\mathbb{C}$ with $|\rho|=1$, since ${\bf P}$ is unitary:

Eigenvalue Problems

$$\mathbf{u} = \frac{x - \rho \|x\| e_1}{\|x - \rho \|x\| e_1\|} = \frac{1}{\|x - \rho \|x\| e_1\|} \begin{pmatrix} x_1 - \rho \|x\| \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

One choice for ρ is $-e^{i\varphi}$, where $x_1=|x_1|e^{i\varphi}$ or in the real case, $\rho=-\mathrm{sign}\ (x_1)$.

Reduction to Hessenberg form

 Reduction is obtained by similarity transformations (preserve eigenvalues) using Householder reflectors

$$\mathbf{A} = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \xrightarrow{P_1 \cdot} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & \times & \times \end{bmatrix} \xrightarrow{P_1} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & \times & \times \end{bmatrix} = \mathbf{P_1} \mathbf{A} \mathbf{P_1}$$

$$P_1 = egin{pmatrix} 1 & 0 & 0 \ 0 & imes & imes \ 0 & imes & imes \end{pmatrix} = egin{pmatrix} 1 & \mathbf{0}^ op \ \mathbf{0} & \mathbf{I}_2 - 2\mathbf{u}_1\mathbf{u}_1^* \end{pmatrix}$$

• In general $\mathbf{H} = \mathbf{P}_{n-2} \cdot ... \cdot \mathbf{P}_1 A \mathbf{P}_1 \cdot ... \cdot \mathbf{P}_{n-2}$. The kth Householder reflector is generated by

$$(\mathbf{I} - 2\mathbf{u}_k \mathbf{u}_k^*) \begin{pmatrix} \alpha_{k+1,k} \\ \alpha_{k+2,k} \\ \vdots \\ \alpha_{n,k} \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{with } |\alpha| = \|x\|$$

- complexity is $\mathcal{O}(n^3)$
- if eigenvectors are desired store $\mathbf{U} = \mathbf{P}_1 \cdot ... \cdot \mathbf{P}_{n-2}$

Improvements: Shifts

19. August 2025 31 / 42

Shifts

Improve convergence of the QR iteration with shifts. We assume to work on a matrix \mathbf{H} in Hessenberg form that is similar to \mathbf{A} .

Lemma. Let ${\bf H}$ be an unreduced hessenberg matrix, i.e $h_{i+1,i} \neq 0$ for all i=1,...,n-1, and ${\bf H}={\bf Q}{\bf R}$ the QR decomposition of ${\bf H}$. Then,

 $|r_{kk}| > 0$, for all k < n.

So if **H** is singular, $r_{nn} = 0$

Shifts

Consider an eigenvalue λ of an unreduced Hessenberg matrix. What happens if we perform:

- 1. $\mathbf{H} \lambda \mathbf{I} = \mathbf{Q}\mathbf{R}$
- 2. $\overline{\mathbf{H}} = \mathbf{RQ} + \lambda \mathbf{I}$?
- $\mathbf{H} \sim \overline{\mathbf{H}}$:
- using the previous Lemma:

• A perfect shift drops out the eigenvalue. We could **deflate** and proceed with a smaller matrix.

QR algorithm with shifts

ullet no perfect shifts available o estimate a shift heuristically

Rayleigh quotient shift: in the k-th step, set the shift σ_k equal to the last diagonal element:

$$\sigma_k\coloneqq h_{nn}^{(k-1)}$$

11: end for

12: $T := H_k$;

Eigenvalue Problems

Algorithm 4.4 The Hessenberg QR algorithm with Rayleigh quotient shift

```
1: Let H_0 = H \in \mathbb{C}^{n \times n} be an upper Hessenberg matrix. This algorithm computes its Schur normal form H = UTU^*.

2: k := 0;

3: for m=n,n-1,...,2 do

4: repeat

5: k := k+1;

6: \sigma_k := h_{m,m}^{(k-1)};

7: H_{k-1} - \sigma_k I =: Q_k R_k;

8: H_k := R_k Q_k + \sigma_k I;

9: U_k := U_{k-1} Q_k;

10: until |h_{m,m-1}^{(k)}| is sufficiently small
```

Figure 3: from [3]

What happens if h_{nn} is a good approximation to an eigenvalue?

$$\begin{pmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \varepsilon & h_{nn} \end{pmatrix}$$

- ullet Assume arepsilon is small and perform shifted QR-Hessenberg step, i.e. compute ${f QR}={f H}-h_{nn}{f I}$
- After n-2 Givens rotations, $\mathbf R$ is almost upper triangular:

$$\begin{pmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \alpha & \beta \\
0 & 0 & \varepsilon & 0
\end{pmatrix}$$

Celine Reddig

To zero ε , we have a non-trivial Givens rotation:

$$c_{n-1} = \frac{\alpha}{\sqrt{|\alpha|^2 + |\varepsilon^2|}} \quad s_{n-1} = -\frac{\varepsilon}{\sqrt{|\alpha|^2 + |\varepsilon^2|}}.$$

Applying Givens rotation from the right to compute $\overline{H}=RQ+h_{nn}I$:

 \bullet quadratic convergence until α is also tiny

Other shift variants

• Wilkinson Shift (for real symmetric matrices):

$$\sigma_k \coloneqq \text{ eigenvalue of } \begin{pmatrix} h_{n-1,n-1}^{(k-1)} & h_{n-1,n}^{(k-1)} \\ h_{n,n-1}^{(k-1)} & h_{nn}^{(k-1)} \end{pmatrix} \text{ that is closer to } \ h_{nn}$$

- ullet it can be shown that $h_{n,n-1}$ converges cubically to zero
- double shift algorithm (Francis algorithm)
 - ightharpoonup resolves the case if α is not tiny
 - real matrices with complex eigenvalues (requires complex shifts) → estimate a pair of complex conjugated eigenvalues

Summary

19. August 2025 38 / 43

Summary

- The QR algorithm can be very powerful tool
 - reduce the matrix to Hessenberg form via Householder reduction
 - Givens rotation for the QR Iteration reduce the complexity of the QR decomposition
 - shifts allow for quadratic converge (or better)
 - deflate: division into smaller subproblems
 - complexity is $10n^3$ or $25n^3$ if Schurvectors are desired

Outlook

- implicit QR iteration for handling multiple shifts efficiently
- special versions for e.g. symmetric matrices with a reduction to a tridiagonal matrix

Bibliography

19. August 2025 40 / 43

Bibliography

- [1] D. S. Watkins, Fundamentals of Matrix Computations, 1st ed. Wiley, 2002. doi: 10.1002/0471249718.
- [2] D. S. Watkins, "Understanding the QR Algorithm," *SIAM Review*, vol. 24, no. 4, pp. 427–440, Oct. 1982, doi: 10.1137/1024100.
- [3] D. P. Arbenz, "Lecture Notes on Solving Large Scale Eigenvalue Problems," 2016.
- [4] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Fourth edition. in Johns Hopkins Studies in the Mathematical Sciences. Baltimore: The Johns Hopkins University Press, 2013.
- [5] Y. Saad, *Numerical Methods for Large Eigenvalue Problems*, 0th ed. Society for Industrial, Applied Mathematics, 2011. doi: 10.1137/1.9781611970739.

19. August 2025 41 / 42