MGMT MFE 431-3 Statistical Arbitrage Lecture 05: Alphas Professor Olivier Ledoit

University of California Los Angeles
Anderson School of Management
Master of Financial Engineering
Fall 2019

Geometric Interpretation

True covariance matrix

Shrinking the Covariance Matrix

$$\hat{S} = (1 - \beta) \overline{\sigma} \mathbb{I} + \beta S$$
 Shrinkage Target

$$\overline{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{ii}$$

Scaling factor = average variance

Alpha

- Source of expected return over and beyond what is explained by market beta
- Time-varying $\rightarrow (T \times n)$ matrix of alphas
 - -T = number of days
 - n = number of stocks
- Cross-sectionally standardized every day:
 - Mean zero across all (active) stocks
 - Variance one across all (active) stocks

Winsorization

- Subtract robust estimate of the mean
- Divide by the standard deviation
- Every alpha > 3 is brought down to 3
- Every alpha < -3 is brought up to -3

Reiterate a few times

Some Sources of Alpha

- 1) Value vs. Glamour
- 2) Long-term price momentum
- 3) High-volume premium
- 4) New issues puzzle
- 5) Post-earnings announcement drift

1) Value vs. Glamour

- Fama & French (1992): B/M Book-to-Market
- Basu (1983): E/P ratio: Earnings yield
- Kothari & Shanken (1997): D/P: Dividend Yield
- Lakonishok, Schleifer & Vishny (1994): C/P:
 Cash flow to price
- Etc...

Long-term Contrarian bucket

General Structure of Value Alpha

- <Fundamental> divided by market price
- Not the other way around!
- Only market price is guaranteed to be > 0

Combining Alphas

- Let $\alpha_{ti}^{\ 1}$ be a standardized winsorized alpha for stock i on date t
- Let $\alpha_{\rm ti}^{\ 2}$ be another alpha
- Aggregate Alpha:

$$\alpha_{ti} = w_1 \times \alpha_{ti}^1 + w_2 \times \alpha_{ti}^2$$

Winsorize aggregate alpha

Generalization

- Combine many flavors of the value alpha to make better aggregate value alpha
- Numerator:
 - 1. Last reported book value of equity
 - 2. Trailing earnings
 - 3. Trailing sales
 - 4. Trailing dividends
 - 5. Trailing cash flow

Forward-looking

- Use consensus of analyst forecasts
- Numerator:
 - 6. Analyst forecast of future earnings
 - 7. Analyst forecast of future sales
 - 8. Analyst forecast of future dividends
 - 9. Analyst forecast of future cash flow
- Choose the weights: judgement
- If use backtest

Combine Next 2 Fiscal Years

Aggregate Value Alpha

Combine several value alphas together

- Flow alphas balance stock alphas
- Backward-looking balance forward-looking alphas

- Choose optimal weights using judgement
- If using backtest: beware of data-mining!

Accounting-Based Valuation Models

- Ohlson (1995) "Earnings, book values, and dividends in security valuation" Contemporary Accounting
- Residual Income Model (RIM) / Economic Value Added (EVA)
- Gishan Dissanaike and Kim-Hwa Lim (2010)
 "The Sophisticated and the Simple" European
 Financial Management ⇒ C/P almost as good

2) Momentum

- a) Straight momentum
- b) Echo momentum
- c) Momentum Consistency
- d) Industry Momentum
- e) Style Momentum
- f) Momentum Acceleration

2a) Straight Momentum

- Jegadeesh and Titman (1993) "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency" Journal of Finance
- Compute stock return from T-12 months to T-1 month
- If high → buy the stock
- If low \rightarrow sell the stock

Deutsche Bank – July 2011

Figure 39: Cumulative performance

Source: Axioma, Compustat, Russell, IBES, Deutsche Bank

2b) Echo Momentum

 Momentum is primarily driven by firms' performance 12 to 7 months ago

Novy-Marx (JFE 2012)

Independent	Full sample	Half samples	
variable	Whole	Early	Late
$r_{12,7}$	1.07	1.21	0.93
	[5.72]	[3.70]	[5.17]
$r_{6,2}$	0.49	0.62	0.36
	[1.88]	[1.40]	[1.32]
$r_{1,0}$	-7.77	-9.44	-6.10
	[-20.9]	[-16.0]	[-13.8]
log(ME)	-0.14	-0.18	-0.09
	[-4.08]	[-3.40]	[-2.29]
log(BM)	0.26	0.22	0.31
	[5.51]	[2.86]	[5.39]
$r_{12.7} - r_{6.2}$	0.58	0.60	0.57
, , -	[2.47]	[1.46]	[2.42]

2c) Momentum Consistency

- Achieving a high past return with a series of steady positive months generates larger expected return than a high past return achieved with just a few extraordinary months
- One-year winner (loser) consistency dummy is one if the monthly return of the stock was positive (negative) in at least eight of the oneyear horizon's 11 months

Grinblatt and Moskowitz (JFE 2004)

Dependent variable:	Cross-section of size, BE/ME, and industry hedged returns			
Regressors:	All months	January	February-November	December
r _{-1:-1}	-0.0472	-0.1002	-0.0436	-0.0431
	(-11.39)	(-4.44)	(-10.34)	(-3.54)
$r_{-1;-1}^{L}$	-0.0764	-0.2189	-0.0606	-0.0921
	(-9.63)	(-6.79)	(-7.19)	(-4.20)
$D_{-1:-1}^{CW}$	0.0051	0.0097	0.0048	0.0060
	(8.79)	(2.73)	(8.62)	(3.10)
$r_{-12;-2}$	0.0028	-0.0072	0.0029	0.0075
	(2.50)	(-1.88)	(2.38)	(2.17)
$r_{-12:-2}^{L}$	0.0113	-0.0725	0.0170	0.0440
-122	(2.97)	(-3.57)	(4.62)	(4.72)
$D_{-12:-2}^{\mathrm{CW}}$	0.0046	0.0126	0.0042	0.0017
12. 2	(5.80)	(2.61)	(5.30)	(0.67)
$D_{-12:-2}^{\mathrm{CL}}$	-0.0007	0.0044	-0.0014	0.0011
-122	(-0.76)	(1.18)	(-1.29)	(0.40)
r_36:-13	-0.0015	-0.0002	-0.0021	0.0023
	(-3.47)	(-0.10)	(-4.28)	(1.42)
$r_{-36:-13}^{L}$	-0.0052	-0.0537	-0.0025	0.0159
-5015	(-2.04)	(-3.91)	(-1.02)	(2.31)
$D_{-36:-13}^{\text{CW}}$	0.0014	0.0040	0.0011	0.0010
-5015	(2.73)	(1.93)	(2.03)	(0.63)
$D_{-36:-13}^{\text{CL}}$	-0.0007	0.0108	-0.0015	-0.0036
-3013	(-0.80)	(2.06)	(-1.78)	(-1.22)

2d) Industry Momentum

- Industry portfolios exhibit significant momentum, even after controlling for size, book-to-market equity (BE/ME), individual stock momentum, the cross-sectional dispersion in mean returns, and potential microstructure influences.
- Once returns are adjusted for industry effects, momentum profits from individual equities are significantly weaker and, for the most part, are statistically insignificant.

Moskowitz and Grinblatt (JF 1999)

- Industry momentum strategies are more profitable than individual stock momentum strategies.
- Industry momentum strategies are robust to various specifications and methodologies, and they appear to be profitable even among the largest, most liquid stocks.

2e) Style Momentum

- 1. Small-cap, growth
- 2. Small-cap, blend
- 3. Small-cap, value
- 4. Mid-cap, growth
- 5. Mid-cap, blend
- 6. Mid-cap, value
- 7. Large-cap, growth
- 8. Large-cap, blend
- 9. Large-cap, value
- 10. No-dividend

Chen and De Bondt (JEF 2004)

Table 3
The returns of style momentum portfolios

	Average monthly return during the test period					
	K=3	K=6	K=9	K=12	2nd Year	3rd Year
Panel A						
	Arbitrage portfolio holds two style portfolios					
J=3			-			
1 Winner	1.61	1.58	1.62	1.63	1.47	1.45
1 Loser	1.48	1.48	1.43	1.39	1.37	1.41
Arbitrage	0.13 (0.65)	0.10 (0.70)	0.19 (1.73)	0.23 (2.07)	0.11 (1.00)	0.04 (0.36)
J=6						
1 Winner	1.54	1.65	1.68	1.68	1.41	1.47
1 Loser	1.42	1.48	1.38	1.36	1.37	1.43
Arbitrage	0.12 (0.59)	0.18 (1.21)	0.30 (2.07)	0.32 (2.41)	0.04 (0.36)	0.04 (0.36)
J = 12						
1 Winner	1.75	1.80	1.78	1.71	1.48	1.40
1 Loser	1.27	1.30	1.32	1.28	1.39	1.38
Arbitrage	0.48 (2.24)	0.50 (2.63)	0.46 (2.69)	0.43 (2.49)	0.09 (0.61)	0.02 (0.21)

2f) Momentum Acceleration

- Acceleration is defined as the change in sixmonth momentum relative to the crosssection of other firms.
- Trading strategies based on acceleration offer significant abnormal profits of approximately 4.5% annually when controlled for other known regularities in equity returns.

Gettleman and Marks (2006)

3) Volume

- Gervais, Kaniel and Mingelgrin (2001) "The high-volume return premium" Journal of Finance
- Stocks experiencing unusually high (low)
 volume over a day or a week tend to
 appreciate (depreciate) over the next month

Event Study

The Journal of Finance

Log Volume in Month *t-2*

- "Trading activity and expected stock returns"
- Chordia, Subrahmanyam & Anshuman
- Journal of Financial Economics (2001)

- If stocks had high volume 2 months ago then they tend to go down this month
- And vice-versa

Table 4

	Panel A	Panel A: Dollar trading volume			
		Returns adjusted using Fama-French factors			
	Excess returns	Raw	Purged		
Intercept	0.718	- 0.002	- 0.022		
	(2.35)	(0.05)	(-0.46)		
SIZE	0.125	0.149	0.136		
	(2.06)	(3.61)	(3.29)		
BM	0.222	0.099	0.093		
	(4.49)	(2.39)	(2.26)		
PRICE	0.088	- 0.048	- 0.139		
111102	(0.81)	(-0.50)	(-1.47)		
DVOL	-0.183	<u> </u>	<u> </u>		
	(-3.63)	(-5.84)	(-6.07)		

4) New Issues Puzzle

- Loughran and Ritter (1995) "The New Issues Puzzle" Journal of Finance
- Companies that issue stock subsequently underperform over the next 5 years
- Worse for IPO's than for Seasoned Equity Offerings
- Cannot winsorize!

5) Post-Earnings Announcement Drift

- Bernard and Thomas (1989) "Post-Earnings-Announcement Drift: Delayed Price Response or Risk Premium?" Journal of Accounting Research
- Stocks whose earnings are above (below) analyst consensus outperform (underperform) for two months afterwards
- Do not winsorize!

Cumulative Abnormal Return

Fig. 1.—Cumulative abnormal returns for FOS earnings-based model (EBM) tests.

Earnings Announcement Premium

- On average, stock prices rise around scheduled earnings announcement dates.
- Earnings announcement premium is large, robust, and strongly related to the fact that volume surges around announcement dates.
- Stocks with high past announcement period volume earn the highest announcement premium, suggesting some common underlying cause for both volume and the premium.
- High premium stocks experience the highest levels of imputed small investor buying, suggesting that the premium is driven by buying by small investors when the announcement catches their attention.

Frazzini & Lamont (2006)

Alpha Aggregation

Combine several alphas together

- Short-term alphas balance long-term alphas
- Technical alphas balance fundamental alphas
- Contrarian alphas balance momentum alphas

- Choose optimal weights using judgement
- If using backtest: beware of data-mining!

Assignment for Next Class

Go to:

- Social Science Research Network
 - Financial Economics Network
 - Subject Matter eJournals
 - Capital Markets
 - Market Efficiency
- ⇒ Find anomaly published in the past 12 months (not explained in class today)