Pattern: Spiral Matrix

Given an nxm matrix 'a', return all elements of the matrix in spiral order.

1 2 3 6 9 8 7 45

Try this:

Given a positive integer n, generate an n x n matrix filled with elements from 1 to n^2 in spiral order.

	0	1	2	3	4	5	6 2
0	1	I	1	1		1 (
1		ſ		(1 .	1	1
2	- 1	ا (نري	J	I	1		1
[ع	1	1				V 1 1 1	00/
4	ſ	1	1	1	1		7
5	1	1	J	1	1	CS, 4)	1
6	1	1	1	1	-1	ſ	/

SKILLS

Method 2: Pre-Calculating the horizontal sum for each row in the Matrix

$$0 = \frac{2}{1} \cdot \frac{3}{3} \cdot \frac{4}{4} \cdot \frac{1}{4}$$

$$0 = \frac{3}{3} \cdot \frac{3}{6} \cdot \frac{10}{11} \cdot \frac{11}{3} \cdot \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1$$

pressi]-

		0	1	2	3	4	5	SKILLS 6
0 1 1 1 1 1 1	0	1	2	3	4	(5)	6	7
1 (1	1	2	3	4	5	6	7
2 (3,3)	2	I	(3,1) 2	3	4	5	6	7
4 [1	ع [2	5	4	5	6	7
5 1 1 1 1 CS, 4) 1 6 1 1 1 1 (/	4_	ſ	2	3	4	5	6	7
	5	1	2	3	H			A
0	6		2	3	Y		. 6	
		6.6		1 1 1				
				(2 K	MES	1	
	0 0				1,		1	

		(}	4					SKILLS
	0	1	(2)	3	4	5	6	
0	1	2	3	4	5	6	7	
1	2	И	6	8	10	12	14	
2	9	6	9	12	15	18	21	
ક]	4	0	U ₁ N	16	4 R2	24	28	
4_	5	10	الا	20	25	30	35	
5	6	12	L2,R1	4 4	125R2	36.	42	1,94,
6	7	14	al	32	35	42	y g	
	•		<u>Д</u>	<i>P</i>) c				l2, 31 lx

