

Introduction to Neural Networks

Johns Hopkins University

Engineering for Professionals Program

605-447/625-438

Dr. Mark Fleischer

Copyright 2013 by Mark Fleischer

Module 3.1: Basic Symbolic Logic

This Sub-Module Covers ...

- Basic review of Symbolic Logic and Truth Tables.
- Rules of Inference.
- The Truth Value of Compound Statements
- Perceptrons and Logic.

What is ...

... information or statements on which we can act with confidence.

Meaningful ... but vague!

Learning Truth

Young children and babies often learn how to assess things in their brand new world, but often in a very dualistic fashion!

Let's keep things simple...

- Avoid all the vagaries of the human condition.
- Simplify issues ... make them amenable to analysis.
- Provide for a rich set of possibilities ...
 allow encoding of all the shades of gray.

True = 1False = 0

AND OR

Α	В	A∧B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A∨B
0	0	0
0	1	1
1	0	1
1	1	1

NAND

A	В	A∧B
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Ā	B	A v B
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

Α	В	A	В	A v B
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

NAND

Α	В	Ā∧B
0	0	1
0	1	1
1	0	1
1	1	0

Not A OR Not B

Α	В	AvB
0	0	1
0	1	1
1	0	1
1	1	0

Logically Equivalent

$$\overline{A \wedge B} \equiv \overline{A \vee B}$$

Rules of Inference

What does $A \Rightarrow B$ mean?

Recited often as

A implies B... or If A then B...

But what does this mean?

Answer:

If A is a true statement, then B is a true statement.

Sometimes stated as:

A is sufficient for B, or

B is a necessary consequence of A.

Truth Table of $A \Rightarrow B$

Α	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

NAND XOR

Α	В	Ā∧B
0	0	1
0	1	1
1	0	1
1	1	0

A	В	A⊗B
0	0	0
0	1	1
1	0	1
1	1	0

Evaluating Compound Statements

NAND

Α	В	Ā∧B
0	0	1
0	1	1
1	0	1
1	1	0

Not A OR Not B

Α	В	AvB
0	0	1
0	1	1
1	0	1
1	1	0

How would we determine the truth value of this statement?

$$\overline{A \wedge B} \Rightarrow \overline{A} \vee \overline{B}$$

A'

$$\mathsf{B}'$$

Compound Statements

Α	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

A' B'

Α	В	Ā∧B	A v B	$\overline{A \wedge B} \Rightarrow \overline{A \vee B}$
0	0	1	1	1
0	1	1	1	1
1	0	1	1	1
1	1	0	0	1

Tautology

Really Compound Statements!

$$[(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)$$

Rule of Inference Basis of Deductive Reasoning

A | B | C | A
$$\Rightarrow$$
 B | B \Rightarrow C | (A \Rightarrow B) \land (B \Rightarrow C) | A \Rightarrow C | [(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)

0 0 0 1 1 1 1 1 1

Can Perceptrons Model AND?

Α	В	A۸B
0	0	0
0	1	0
1	0	0
1	1	1

$$A = W_1X_1 + W_2X_2 + \theta = 1 + 1 - 1.5 = 0.5$$

We can now input this value into the activation function.

Threshold Logic

Threshold Logic

Output =
$$\begin{cases} 1 & \text{if } f(A) \ge C \\ 0 & \text{otherwise} \end{cases}$$

Activation Function

$$f(A) = \frac{1}{1 + e^{-A}}$$

A New Angle to Perceptrons

Introduction to Neural Networks

Johns Hopkins University
Engineering for Professionals Program
605-447/625-438

Dr. Mark Fleischer

Copyright 2013 by Mark Fleischer

Module 3.2: Perceptrons and Logic

This Sub-Module Covers ...

- How Perceptrons can model logic statements.
- How Perceptron networks can model compound statements.
- Limitations on Perceptrons: The XOR problem.
- Second Order Perceptrons and the XOR problem.

A New Angle to Perceptrons

Linear Separability & Perceptrons

- Inputs x₁, x₂ values we use or control
- Activity $A = w_1x_1 + w_2x_2 + \theta$, a weighted function of the inputs
- A Monotonically increasing Activation Function, possibly coupled to some 'threshold logic' function.

Linear Separability Bisects The Input Space

What Can We Do With Linear Separability?

A Multi-layered Network

What Can We Do With Linear Separability?

What Can We Do With Linear Separability?

- Segregate regions of the input-space
- Classification, categorization, labeling, etc.
- What do we need to do to enable this?
- Determine the weights!
- Is that all we need to do?

Can Do the AND and NAND

Can We Do XOR?

Still, We Can't Solve XOR

With a Single Perceptron

$$w_1 x_1 + w_2 x_2 + B = A$$

X ₁	X ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

$$0 + 0 + B < 0$$

$$0 + w_2x_2 + B >= 0$$

$$w_1x_1 + 0 + B >= 0$$

$$w_1x_1 + w_2x_2 + B < 0$$

Adding together the two middle rows we get:

$$w_1x_1 + w_2x_2 + 2B >= 0$$

Adding together the first and last rows we get:

$$w_1 x_1 + w_2 x_2 + 2B < 0$$

Does there exist values of w_1 and w_2 that can yield this? Is there any combination of values for w_1 and w_2 ?

An Example of the XOR Problem

An Example of the XOR Problem

<i>x</i> ₁	x_2	I to HN	I + b	HN out	Input to Output Node	I + b	Output
0	0	(0,0)	(2.6,6.8)	(0.93, 1.0)	0.465	-4	0.2->0
0	1	(-6.4,-4.6)	(-3.8,2.2)	(0.02,0.9)	8.37	3.96	0.98->1
1	0	(-4.6,-6.4)	<->	<->	<->	<->	<->
1	1	(-12.9,-9.2)	(-10.3,-2.4)	(0.0,0.08)	0.77	.77-4.4 =-3.6	0.03->0

A Second-Order Perceptron

$$y_{i} = \sum_{j=1}^{n} w_{ij} x_{j} + \sum_{\substack{j=1\\k=1}}^{n} w_{ikj} x_{k} x_{j} + \theta$$

XOR and 2nd Order Perceptron

If we change the alphabet to 'bipolar' values of -1 and 1 AND set $w_{12} = -1$, then this can solve XOR.

XOR

Inpi	ıt	Output
x_1	x_2	
-1	-1	-1
-1	1	1
1	-1	1
-1	-1	-1

How do we set the weights in a complicated network like this?

