# Stabilizing Grand Cooperation of Machine Scheduling Game via Setup Cost Pricing

#### Lindong Liu

School of Management; International Institute of Finance
University of Science and Technology of China

Co-authored with Zikang Li (PG Student, USTC)

NWPU-Online, July, 2020

#### Outline

- Preliminaries
- Motivation and Illustrative Example
- Models and Analyses
- Algorithms and Computations
- Extension and Generalization
- Conclusion

# **P**RELIMINARIES

### Cooperative Game

A cooperative game is defined by a pair (V, C):

- A set  $V = \{1, 2, ..., v\}$  of players, **grand colaition**;
- A characteristic function C(S) = the minimum total cost achieved by the cooperation of members in coalition  $S \in \mathbb{S} = 2^V \setminus \{\emptyset\}$ .

#### The game requires:

• A cost allocation  $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_v] \in \mathbb{R}^v$ , where  $\alpha_k =$  the cost allocated to each player  $k \in V$ .

#### Core

Define 
$$\alpha(S) = \sum_{k \in S} \alpha_k$$
.

A cost allocation  $\alpha \in \mathbb{R}^{\nu}$  is in the **core** if it satisfies:

- Budget Balance Constraint:  $\alpha(V) = C(V)$ ;
- Coalition Stability Constraints:  $\alpha(S) \leq C(S)$  for each  $S \in \mathbb{S}$ .

$$\begin{aligned} \operatorname{Core}(V,C) &= & \left\{ \alpha : \ \alpha(V) = C(V), \right. \\ & \left. \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\}, \ \alpha \in \mathbb{R}^v \right\}. \end{aligned}$$

Define 
$$\alpha(S) = \sum_{k \in S} \alpha_k$$
.

A cost allocation  $\alpha \in \mathbb{R}^{\nu}$  is in the **core** if it satisfies:

- Budget Balance Constraint:  $\alpha(V) = C(V)$ ;
- Coalition Stability Constraints:  $\alpha(S) \leq C(S)$  for each  $S \in \mathbb{S}$ .

$$\begin{aligned} \operatorname{Core}(V,C) &= & \left\{ \alpha : \ \alpha(V) = C(V), \right. \\ & \left. \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\}, \ \alpha \in \mathbb{R}^v \right\}. \end{aligned}$$

However, Core(V, c) can be empty.

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

• Subsidization:  $\alpha(V) = C(V) - \theta$ ,  $\epsilon$ -core;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization:  $\alpha(V) = C(V) \theta$ ,  $\epsilon$ -core;
- Penalization:  $\alpha(S) \leq C(S) + z$ , least core;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization:  $\alpha(V) = C(V) \theta$ ,  $\epsilon$ -core;
- Penalization:  $\alpha(S) \leq C(S) + z$ , least core;
- Simul. S & P:  $\alpha(V) = C(V) \theta$  and  $\alpha(S) \leq C(S) + z$ , **PSF**;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization:  $\alpha(V) = C(V) \theta$ ,  $\epsilon$ -core;
- Penalization:  $\alpha(S) \leq C(S) + z$ , least core;
- Simul. S & P:  $\alpha(V) = C(V) \theta$  and  $\alpha(S) \leq C(S) + z$ , **PSF**;
- Inv. Opt.: Changing c to d such that Core(V, D) is non-empty.

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization:  $\alpha(V) = C(V) \theta$ ,  $\epsilon$ -core;
- Penalization:  $\alpha(S) \leq C(S) + z$ , least core;
- Simul. S & P:  $\alpha(V) = C(V) \theta$  and  $\alpha(S) \leq C(S) + z$ , **PSF**;
- Inv. Opt.: Changing c to d such that Core(V, D) is non-empty.
- S. Caprara and Letchford (2010, MP), Liu et al. (2016, IJOC)
- P. Faigle et al. (2001, IJGT), Schulz and Uhan (2010, OR)
- P&S Liu et al. (2018, OR)
- Inv. Opt. Liu et al. (2020, under review)

# ILLUSTRATIVE EXAMPLE

# Example of Single Machine Scheduling Game

# Models & Analyses

#### Problem Definition and Formulation

# Properties

# ALGORITHMS & COMPUTATIONS

# ... Algorithm

## Computational Results

# EXTENSION & GENERALIZATION

# Machine Scheduling Game with Weighted Jobs

## Pricing in General IM Games

# Conclusions

- \* Cooperative Game Theory:
  - New Instrument for Stabilization via Cost Adjustment.
- \* Inverse Problem:
  - Constrained Inverse Optimization Problem.
- \* Models, Solution Methods and Applications:
  - Several equivalent LP formulations;
  - Feasibility analyses & How to handle infeasibility;
  - Implementations on WMG and UFL games.

#### The End

# Thank you!