Valós számok bevezetése

2020. szeptember 7.

A természetes számok halmaza: IN

A számfogalom felépítésének első lépése: $\mathbb{N} = \{1, 2, 3, \dots\}$.

A IN halmaznak két fontos alaptulajdonsága a következő:

- 1. Van legkisebb elem, ez 1 (egység).
- 2. Mindegyik elem után van közvetlenül következő: n
 ightarrow n+1

Megjegyz'es. Más könyvekben esetleg első elem n=0. $\mbox{\em 4}$

Teljes indukció

Teljes indukciós bizonyítási elv. Legyen A_n valamilyen állítás **minden** n természetes számra. Ha

- 1. A_1 teljesül, és
- 2. A_{k+1} mindig igaz A_k teljesülése esetén, akkor a fenti A_n tulajdonság teljesül <u>minden</u> n-re.

Például: "Minden n természetes szám érdekes."

Próbáljuk igazolni!

1. *Megjegyzés.* A teljes indukciót úgy képzelhetjük el, mintha fel kellene mennünk egy végtelen hosszú lépcsőn.

2. *Megjegyzés.* A teljes indukció esetleg nem 1-gyel kezdődik, hanem ahonnan a képletek érvényesek.

Teljes indukció, példa

Példa. Igazoljuk, hogy minden $n \in \mathbb{N}$ esetén

$$1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Bizonyítás:

A teljes indukció első lépése. n=1 esetén az állítás igaz, hiszen n helyére 1-t behelyettesítve azt kapjuk, hogy

$$1=\frac{1\cdot 2\cdot 3}{6}.$$

Állítás:
$$1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

A teljes indukció második lépése. Tegyük fel, hogy valamely rögzített n=k-ra teljesül az állítás (ez az indukciós feltevés). Nézzük meg, mennyi k+1 négyzetszám összege:

 $1^2 + 2^2 + \cdots + k^2 + (k+1)^2 =$

$$=\frac{k(k+1)(2k+1)}{6}+(k+1)^2=(*).$$

Folytathatjuk:

$$(*) = \frac{(k+1)}{6} (k(2k+1) + 6k + 6) = \frac{(k+1)(k+2)(2k+3)}{6} \sqrt{\text{Miért?}}$$

A természetes számok halmazának bővítése

A számfogalom felépítésének első lépése volt: $\mathbb{N} = \{1, 2, 3, \dots\}$.

Egyik művelet: összeadás.
$$13 + 134 = \sqrt{}$$

13 + ? = 11 megoldásához:

$$\longrightarrow$$
 egész számok: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\}.$

Másik művelet: szorzás.
$$13 \cdot (-134) = \sqrt{}$$

 $13 \cdot ? = 11$ megoldásához:

$$\longrightarrow$$
 racionális számok: $\mathbb{Q} = \{ r = \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}.$

Hogyan tovább?

Axiómák=alaptulajdonságok

Adott egy IR halmaz, melynek elemeit VALÓS SZÁMOKnak nevezzük.

Adott két *kitüntetett eleme*, ezek: 0 és 1 ($0 \neq 1$).

 ${
m I\!R} \equiv$ számegyenes pontjai

Adott \mathbb{R} -en két művelet, az összeadás (+) és a szorzás (·), valamint egy \leq rendezési reláció.

Ezek tulajdonságait AXIÓMÁKBAN adjuk meg.

Axiómák 1. csoportja: a műveletek alaptulajdonságai.

Jelölések.

- 1. Az összeadás asszociatív, azaz (x + y) + z = x + (y + z)
- 2. x + 0 = x, $\forall x \in \mathbb{R}$.
- 3. $\forall x \in \mathbb{R}$ -hez $\exists u \in \mathbb{R}$, melyre x + u = 0. Ez az x szám ellentettje.

- 4. Az összeadás kommutatív, azaz x + y = y + x.
- 5. A szorzás asszociatív, azaz $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- 6. $x \cdot 1 = x$
- 7. $\forall x \in \mathbb{R}, x \neq 0$ -hoz $\exists u \in \mathbb{R}$, melyre $x \cdot u = 1$. Ez az x szám reciproka.
- 8. A szorzás kommutatív, azaz $x \cdot y = y \cdot x$.
- 9. A szorzás disztrubutív az összeadásra, azaz

$$(x+y)\cdot z = x\cdot z + y\cdot z.$$

Megjegyzés. A szorzás művelete: $x \cdot y = xy$.

Axiómák, 2. csoport: a rendezési reláció tulajdonságai.

- 10. $\forall x \in \mathbb{R}$ esetén $x \leq x$ (a rendezési reláció reflexív).
- 11. $\forall x \neq y$ esetén az $x \leq y$ és $y \leq x$ közül pontosan egy igaz.
- 12. Ha $x \le y$ és $y \le z \Longrightarrow x \le y$ (a rendezési reláció tranzitív).
- 13. Ha $x \le y \Longrightarrow x + z \le y + z$
- 14. Ha $x \le y$ és $0 \le z \Longrightarrow x \cdot z \le y \cdot z$.

Axiómák, 3. csoport.

- 15. (Archimedeszi axióma) Nincs legnagyobb elem.
- 16. (Cantor-féle axióma) Ha zárt intervallumok egy sorozata:

$$I_1 = [a_1, b_1], \quad I_2 = [a_2, b_2], \dots I_n = [a_n, b_n], \dots$$

melyek $I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \ldots$

akkor az intervallumoknak van közös pontja.

Más szóval, $\exists c \in \mathbb{R}$ melyre $c \in I_k$, $\forall k \in \mathbb{N}$.

Cantor-féle axióma, 1. példa

Kérem lerajzolni az alábbi az intervallumokat egy számegyenesen.

$$I_1 = [3, 4].$$
 $I_2 = [3.1, 3.2].$
 \vdots
 $I_8 = [3.14159265, 3.14159266]$
 \vdots
Vajon mi a közös pont?

(A Cantor axióma $\implies irracionális$ számok is vannak.)

Cantor-féle axióma, 2. példa

Kérem lerajzolni az alábbi az intervallumokat egy számegyenesen.

$$I_1 = [0, 3].$$

$$I_2 = [1 - \frac{1}{2}, 2 + \frac{1}{2}].$$

$$I_3 = [1 - \frac{1}{3}, \ 2 + \frac{1}{3}].$$

$$I_n = [1 - \frac{1}{n}, 2 + \frac{1}{n}].$$

:

Vajon mi a közös pont?

Cantor-féle közöspont-tétel

A két példában: az intervallumoknak van közös pontja. Mi volt a különbség?

Tétel

Tegyük fel, hogy a Cantor axióma feltételei teljesülnek:

- I_n , $n \in \mathbb{N}$ intervallumok zártak, és
- $I_n \supset I_{n+1} \ \forall n$.

Ezen kívül tegyük fel, hogy

• $\forall \varepsilon > 0$ -hoz $\exists I_k$, mely $|I_k| = b_k - a_k < \varepsilon$.

Ekkor a közös pont egyértelmű.

Cantor-féle közöspont-tétel. Indirekt bizonyítás.

A Cantor-axióma miatt van közös pont.

Feltesszük, hogy $\exists c < d$ melyek $c, d \in I_k \ \forall k$. Legyen $\varepsilon := d - c > 0$.

Ekkor a feltétel szerint $\exists n \in \mathbb{N}$, amire $b_n - a_n < \varepsilon$.

Osszeg, szumma. Szorzat, produktum.

Adott *n* darab szám, $n \in \mathbb{N}$ "valamennyi". Ezek összege:

$$a_1+a_2+\cdots+a_n$$
.

$$\sum_{k=1}^{n} a_k.$$

Kompakt formában: $\left| \sum_{k=1}^{n} a_k \right|$ Itt k jelentése: futóindex.

- Első értéke k=1, ami a szumma jel alatt van. Az összeg első tagja a₁.
- ∀ lépésben k értéke 1-gyel nő. Az összeg következő tagja ak.
- Ha k eléri a szumma fölötti értéket: vége.

Hasonlóan, *n* darab szám szorzata: $a_1 \cdot a_2 \cdot \cdots \cdot a_n$.

$$\prod_{k=1} a_k$$

Kompakt formában: $\left| \prod_{k=1}^{n} a_{k} \right|$ Most is k: futóindex.

Szumma, példák

$$1+4+9+\cdots+144=\sum_{k=1}^{12}k^2=\sum_{j=1}^{12}j^2$$

Futóindex "bármi":
$$\sum_{n=1}^{3} a_n = \sum_{m=1}^{3} a_m$$

DE! Mi a különség:
$$\sum_{n=1}^{3} a_n$$
 és $\sum_{m=1}^{3} a_n$?

Kis variáció:
$$a_2 = 8$$
, $a_3 = 4$, $a_4 = 12$, $a_5 = -3$, $a_6 = -6$, $a_9 = 1$.

Mennyi lesz:

$$\sum_{k=1}^{3} a_{2k} =? \qquad \sum_{j=1}^{4} a_{j+1} =? \qquad \sum_{n=2}^{3} a_{n^2} =?$$

Korlátosság

Legyen $H \subset \mathbb{R}$ a valós számok halmazának egy részhalmaza.

A H halmaz **alulról korlátos**, ha $\exists k \in \mathbb{R}$ (alsó korlát), melyre

$$k \le x \quad \forall x \in H.$$

A H halmaz **felülről korlátos**, ha $\exists K \in \mathbb{R}$ (felső korlát), melyre

$$x \le K$$
 $\forall x \in H$.

A *H* halmaz **korlátos**, ha alulról és felülről is korlátos.

Példa. $H=[-2,\ 2)$ intervallum. Felső korlát? $K=5,15,115\ldots \text{ Melyik a legnagyobb ill. legkisebb?}$

Ha $H \neq \emptyset$ felülről korlátos, akkor a felső korlátok közt \exists legkisebb.

Definíció. A halmaz legkisebb felső korlátját SUPREMUMnak nevezzük. Jele $\sup(H)$.

Ekvivalens **Definíció.** $S = \sup(H)$, ha

- egyrészt S felső korlát, azaz $S \ge x$, $\forall x \in H$
- másrészt $\forall S'$ felső korlátra $S' \geq S$.

Következmény. Ha $S = \sup(H)$, akkor $\forall \beta < S$ számra $\exists x \in H$: $x > \beta$. Miért?

Rajzban?

Ha $H \neq \emptyset$ alulról korlátos, akkor az alsó korlátok közt \exists legnagyobb.

Definíció. A halmaz legnagyobb alsó korlátját INFIMUMnak nevezzük. Jele $\inf(H)$.

Ekvivalens **Definíció.** $s = \inf(H)$, ha

- egyrészt s alsó korlát, azaz $s \le x$, $\forall x \in H$
- másrészt $\forall s'$ alsó korlátra s' < s.

Következmény. Ha $s = \inf(H)$, akkor $\forall \gamma > s$ -hez $\exists x \in H: x > \gamma$.

Rajzban?

Ha H **üres** halmaz, vajon inf H = ? és $\sup(H) = ?$ Tipp?

1. Példa. Legyen H = [a, b]. Ekkor

$$\inf(H) = a, \quad \sup(H) = b.$$

hiszen ... ?

2. Példa. H = (a, b). Ekkor is

$$\inf(H) = a,$$
 $\sup(H) = b.$

Következmény $\inf(H) \in H$ vagy $\inf(H) \notin H$ is lehet. Mitől függ?

Ha H elemei közül $van\ legkisebb$, akkor ez az infimum, azaz $\inf(H) = \min(H)$ ha a minimum létezik.

Ha a halmazban van maximális elem, akkor sup(H) = max(H).

3. Példa.

$$H = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

 $\exists \max(H)$, ezért $\sup(H) = \max(H) = 1$.

$$\exists \min(H)$$
. Belátjuk, hogy $\inf(H) = 0$.

- 1. *lépés*. Nyilván $0 \le 1/n \ \forall n$ -re, tehát a 0 alsó korlát.
- 2. *lépés.* Legyen $\varepsilon > 0$ tetszőleges. $N = \left\lfloor \frac{1}{\varepsilon} \right\rfloor$ választással

$$\varepsilon > \frac{1}{N+1}$$
, ezért $\forall \varepsilon > 0$ nem lehet alsó korlát.

Tétel: "az infimum és supremum jól definiáltak"

Tétel Tfh H nem $\ddot{u}res$, $\underline{alulr\'ol}$ korl'atos halmaz. Ekkor $\underline{\exists} \inf \underline{H}$. Tfh H nem $\ddot{u}res$, $\underline{fel\ddot{u}lr\'ol}$ korl'atos \underline{halmaz} . Ekkor $\underline{\exists} \sup \underline{H}$.

Konstruktív bizonyítás: H alulról korlátos, ezért $\exists a_1$ alsó korlátja.

- 1. eset. Ha $a_1 \in H$, akkor $a_1 = \min(H)$, egyben infimum is. $\sqrt{}$
- 2. eset. Ha $a_1 \notin H$, akkor legyen $b_1 \in H$ tetszőleges, $b_1 > a_1$.

Legyen $I_1=[a_1,b_1]$ és definiáljuk a $c_1=\frac{a_1+b_1}{2}$ számot.