Shape Matching

- Chamfer Matching
- HOG

Lecturer: Sang Hwa Lee

Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm (HCMA)

HCMA

- Chamfer Matching minimize a generalized distance between two sets of edge points.
 - Parametric transformations

• HCMA is embedded in a resolution pyramid.

Distance Transform: Sequential Algorithm

- Start with zero-infinity image: set each edge pixel to 0 and each non-edge pixel to infinity.
- Make 2 passes over the image with a mask:
 - 1. Forward, from left to right and top to bottom
 - 2. Backward, from right to left and from bottom to top.

d2	d1	d2
d1	0	

	0	d1
d2	d1	d2

Forward Mask

Backward Mask

d1 and d2, are added to the pixel values in the distance map and the new value of the zero pixel is the minimum of the five sums. (eg., d1=3, d2=4)

DT Parallel Algorithm

- For each position of mask on image,
- $\bullet \quad V_{i,j} = minimum(v_{i\text{-}1,j\text{-}1} + d2, v_{i\text{-}1,j} + d1, v_{i\text{-}1,j\text{+}1} + d2, v_{i,j\text{-}1} + d1, v_{i,j})$

d2	d1	d2
d1	0	

Distance Transform

- Distance image gives the distance to the nearest edge at every pixel in the image
- Calculated only once for each frame

- Edge-model translated over Distance Image.
- At each translation, edge model superimposed on distance image.
- Average of distance values that edge model hits gives Chamfer Distance.

R.M.S. Chamfer Distance =

$$\frac{1}{3}\sqrt{\frac{1}{n}}\sum_{i=1}^{n}v_{i}^{2}$$

Distance Image
Chamfer Distance = 1.12

 V_i = distance value, n = number of points

- Chamfer score is average nearest distance from template points to image points
- Nearest distances are readily obtained from the distance image
- Computationally inexpensive

- Distance image provides a smooth cost function
- Efficient searching techniques can be used to find correct template

Applications: Hand Detection

- Initializing a hand model for tracking
 - Locate the hand in the image
 - Adapt model parameters
 - No skin color information used
 - Hand is open and roughly fronto-parallel

Results: Hand Detection

Original Shape Context

Shape Context with Continuity Constraint

Results: Hand Detection

Original Shape Context

Shape Context with Continuity Constraint

Discussion

- Chamfer Matching
 - Variant to scale and rotation
 - Sensitive to small shape changes
 - Need large number of template shapesBut
 - Robust to clutter
 - Computationally cheap

Histogram of Oriented Gradient (HoG)

HOG(1)

- HOG: Histogram of Oriented Gradient
 - Originated by SIFT descriptor
 - SIFT: Texture modeling
 - HOG: Object shapes modeling
 - Modeling dominant orientation in the patch

HOG (2)

Calculation of Gradient Orientations

HOG (3)

HOG Generation

Similar to SIFT descriptor

HOG (4)

Example: Human modeling

- **HOG Vector space modeling**
 - Elliptical shape centroid, vector distance
 - Non-elliptical shape: SVM

