第3节 椭圆中的设点设线方法(★★★☆)

内容提要

有时椭圆小题中的条件不易用几何方式翻译,我们就需要设出点或线,用坐标运算来翻译.

- 1. 若点 P 在椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上运动,由此而产生的求最值(求范围)问题,设动点 P 的坐标并用它表示求最值的目标量是常用解法之一,动点 P 的设法主要有两种:
- ①设 $P(x_0, y_0)$,用该坐标表示的目标量往往有 x_0 和 y_0 两个变量,可利用P在椭圆上(即 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$)来消元化单变量函数分析最值(范围).

②利用
$$\cos^2\theta + \sin^2\theta = 1$$
进行三角换元,可令
$$\begin{cases} \frac{x}{a} = \cos\theta \\ \frac{y}{b} = \sin\theta \end{cases}$$
,则
$$\begin{cases} x = a\cos\theta \\ y = b\sin\theta \end{cases}$$
,于是可设 $P(a\cos\theta, b\sin\theta)$,将求

最值的目标量表示成关于 θ 的三角函数,再分析最值(范围).

2. 设直线 l 与椭圆 C 交于 A, B 两点,由此产生的诸多问题中,需要将直线 l 与椭圆 C 的方程联立,但联立后我们往往不去解方程组,求交点 A, B 的坐标,而是消去 y (或 x)整理得出关于 x (或 y)的一元二次方程,结合韦达定理来计算一些目标量,如数量积、弦长、面积等.

典型例题

【例 1】已知椭圆 $\frac{y^2}{a^2} + x^2 = 1(a > 1)$ 的离心率 $e = \frac{2\sqrt{5}}{5}$,P 为椭圆上的一个动点,B(-1,0),则 |PB| 的最大值为(

(A)
$$\frac{3}{2}$$
 (B) 2 (C) $\frac{5}{2}$ (D) 3

解法 1: 由题意,椭圆的离心率 $e = \frac{c}{a} = \frac{\sqrt{a^2 - 1}}{a} = \frac{2\sqrt{5}}{5}$,解得: $a = \sqrt{5}$,椭圆的方程为 $\frac{y^2}{5} + x^2 = 1$,

|PB|可用两点间的距离公式来算,于是设P的坐标,设 $P(x_0, y_0)$,则 $|PB| = \sqrt{(x_0 + 1)^2 + y_0^2}$ ①,有 x_0 , y_0 两个变量,可结合椭圆方程消元, y_0 只有平方项,所以消 y_0 ,

因为点 P 在椭圆上,所以 $\frac{y_0^2}{5} + x_0^2 = 1$,故 $y_0^2 = 5 - 5x_0^2$,

代入①整理得:
$$|PB| = \sqrt{-4x_0^2 + 2x_0 + 6} = \sqrt{-4(x_0 - \frac{1}{4})^2 + \frac{25}{4}}$$
, 其中 $-1 \le x_0 \le 1$,

所以当 $x_0 = \frac{1}{4}$ 时, |PB| 取得最大值 $\frac{5}{2}$.

解法 2: 求 a 的过程同解法 1,接下来也可将点 P 的坐标设为三角的形式,

设
$$P(\cos\theta, \sqrt{5}\sin\theta)$$
,则 $|PB| = \sqrt{(\cos\theta + 1)^2 + 5\sin^2\theta} = \sqrt{\cos^2\theta + 2\cos\theta + 1 + 5\sin^2\theta}$ ①,

要求式①的最大值,可用 $\sin^2\theta = 1 - \cos^2\theta$ 化同名,

$$|PB| = \sqrt{\cos^2 \theta + 2\cos \theta + 1 + 5 - 5\cos^2 \theta} = \sqrt{-4\cos^2 \theta + 2\cos \theta + 6} = \sqrt{-4(\cos \theta - \frac{1}{4})^2 + \frac{25}{4}},$$

所以当 $\cos\theta = \frac{1}{4}$ 时,|PB|取得最大值 $\frac{5}{2}$.

答案: C

【**反思**】椭圆上动点到定点的距离最值问题,常用两种做法: ①设动点 P 的坐标为 (x_0, y_0) ,利用椭圆方程消去目标式中只含平方项的变量,再求最值; ②将动点 P 设为三角形式,用函数的方法求最值.

【变式】求椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上的动点 *P* 到其中心 *O* 的距离的取值范围.

 \mathbf{m} : (P 在椭圆上运动,|OP| 可由坐标计算,故设坐标分析)

设 $P(x_0,y_0)$,则 $|OP| = \sqrt{x_0^2 + y_0^2}$ ①,(有 x_0 , y_0 两个变量,可利用椭圆方程消元)

由 P 在椭圆上可得 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$, 所以 $y_0^2 = b^2 - \frac{b^2}{a^2} x_0^2$,

代入①得:
$$|OP| = \sqrt{x_0^2 + b^2 - \frac{b^2}{a^2}x_0^2} = \sqrt{\frac{a^2 - b^2}{a^2}x_0^2 + b^2} = \sqrt{\frac{c^2}{a^2}x_0^2 + b^2} = \sqrt{\frac{c^2}{a^2}x_0^2 + b^2}$$
 ②,

因为 $-a \le x_0 \le a$,所以 $0 \le x_0^2 \le a^2$,代入②得: $b \le |OP| \le \sqrt{c^2 + b^2} = a$.

【例 2】已知 F_1 , F_2 是椭圆 $E: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的两个焦点,P 是椭圆 E 上任意一点,则 $\overrightarrow{F_1P} \cdot \overrightarrow{F_2P}$ 的取值范围是

解析: 设点 P 的坐标, 即可表示 $\overline{F_1P} \cdot \overline{F_2P}$, 设 P(x,y), 由题意, $F_1(-1,0)$, $F_2(1,0)$,

所以
$$\overrightarrow{F_1P} = (x+1,y)$$
, $\overrightarrow{F_2P} = (x-1,y)$, 故 $\overrightarrow{F_1P} \cdot \overrightarrow{F_2P} = (x+1)(x-1) + y^2 = x^2 + y^2 - 1$ ①,

有x, y两个变量,且都只含平方项,可利用椭圆方程来消元,消谁都行,

因为点 P 在椭圆上,所以 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,故 $y^2 = 3 - \frac{3}{4}x^2$,代入①整理得: $\overrightarrow{F_1P} \cdot \overrightarrow{F_2P} = \frac{1}{4}x^2 + 2$,

因为 $-2 \le x \le 2$,所以 $0 \le x^2 \le 4$,故 $2 \le \overrightarrow{F_1P} \cdot \overrightarrow{F_2P} \le 3$.

答案: [2,3]

【反思】本题也可设三角形式的坐标,请自行尝试.

【例 3】已知点 P 在直线 l: x+y+7=0上,点 Q 在椭圆 $C: \frac{x^2}{16} + \frac{y^2}{9} = 1$ 上,则 |PQ| 的最小值是_____.

解法 1: 如图 1,若固定 Q,则无论点 Q 在何处,总有当 $PQ \perp l$ 时,|PQ|最小,故只需求点 Q 到直线 l 的 距离的最小值,点 Q 在椭圆 C 上运动,可将其坐标设为三角形式,

设
$$Q(4\cos\theta,3\sin\theta)$$
,则点 Q 到直线 l 的距离 $d = \frac{|4\cos\theta+3\sin\theta+7|}{\sqrt{1^2+1^2}} = \frac{|5\sin(\theta+\varphi)+7|}{\sqrt{2}} = \frac{5\sin(\theta+\varphi)+7}{\sqrt{2}}$

所以当 $\sin(\theta + \varphi) = -1$ 时,d 取得最小值 $\sqrt{2}$,故 $|PQ|_{\min} = \sqrt{2}$.

解法 2: 也可从图形来看最值在何处取,如图 2,将 l 上移至恰好与椭圆 C 相切的位置,则该切点 Q 到直线 l 的距离即为 |PQ| 的最小值,可先求出该切线的方程,用平行线间的距离公式算答案,

设图 2 中
$$l': x + y + m = 0$$
,联立
$$\begin{cases} x + y + m = 0 \\ \frac{x^2}{16} + \frac{y^2}{9} = 1 \end{cases}$$
 消去 y 整理得: $25x^2 + 32mx + 16m^2 - 144 = 0$,

因为l'与椭圆C相切,所以判别式 $\Delta = (32m)^2 - 4 \times 25 \times (16m^2 - 144) = 0$,解得: $m = \pm 5$,

由图可知l'在y轴上的截距-m<0,所以m>0,从而m=5,故 $\left|PQ\right|_{min}=\frac{\left|7-m\right|}{\sqrt{1^2+1^2}}=\sqrt{2}$.

答案: √2

【反思】①和例 1、例 2 不同,本题若将 Q 的坐标设为 (x,y),则 $d = \frac{|x+y+7|}{\sqrt{2}}$, x 和 y 都有一次项,利用椭圆方程消元不易,故而舍弃这种设法;②注意:有的题目条件较为隐蔽,要学会翻译,例如本题不给 l 的方程,换成给出 P 的坐标为 (m,-m-7),也要发现点 P 在直线 l: x+y+7=0上.

【总结】从类型 I 的这些题可以看出,涉及与椭圆上的动点有关的量(如数量积、距离等)的最值,都可设出动点坐标求解,具体设为 (x_0,y_0) ,还是三角形式的坐标,因题而异.

类型 II: 设点、设线翻译条件

【例 4】椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的上顶点为 A, F 是 C 的一个焦点,点 B 在 C 上,若 $3\overrightarrow{AF} + 5\overrightarrow{BF} = \mathbf{0}$,

则 C 的离心率为 ()

(A)
$$\frac{1}{2}$$
 (B) $\frac{3}{5}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

解析: 用几何方法翻译 $3\overrightarrow{AF} + 5\overrightarrow{BF} = 0$ 不易, 故考虑设坐标, 用坐标来翻译,

由题意,A(0,b),不妨设F为右焦点,则F(c,0),设 $B(x_0,y_0)$,则 $\overrightarrow{AF}=(c,-b)$, $\overrightarrow{BF}=(c-x_0,-y_0)$,

因为
$$3\overrightarrow{AF} + 5\overrightarrow{BF} = \mathbf{0}$$
,所以 $\begin{cases} 3c + 5(c - x_0) = 0 \\ -3b + 5(-y_0) = 0 \end{cases}$,故 $x_0 = \frac{8c}{5}$, $y_0 = -\frac{3b}{5}$,

代入椭圆方程得:
$$\frac{64c^2}{25a^2} + \frac{9b^2}{25b^2} = 1$$
, 整理得离心率 $e = \frac{c}{a} = \frac{1}{2}$.

答案: A

【例 5】已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的焦距为 2,右顶点为 A,过原点且与 x 轴不重合的直线交 C 于 M,N 两点,线段 AM 的中点为 B,若直线 BN 经过 C 的右焦点,则椭圆 C 的方程为(

(A)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
 (B) $\frac{x^2}{6} + \frac{y^2}{5} = 1$ (C) $\frac{x^2}{9} + \frac{y^2}{8} = 1$ (D) $\frac{x^2}{36} + \frac{y^2}{32} = 1$

答案: C

解法 1: 由题意, 椭圆的焦距 2c=2, 所以 c=1, 故 $a^2-b^2=1$ ①,

如图,接下来若设M的坐标,则N,B也能用M的坐标表示,

设 $M(x_0,y_0)(y_0\neq 0)$,则 $N(-x_0,-y_0)$,由题意,A(a,0),右焦点F(1,0),所以 $B(\frac{a+x_0}{2},\frac{y_0}{2})$,

直线 BN 过右焦点可看成 B, F, N 三点共线,不妨考虑斜率存在的情形,用斜率相等来翻译,

由题意,
$$B$$
, F , N 三点共线,所以 $k_{BF}=k_{NF}$,故 $\dfrac{\dfrac{y_0}{2}}{\dfrac{a+x_0}{2}-1}=\dfrac{y_0}{x_0+1}$,约去 y_0 可解得: $a=3$,

代入①得: $b^2 = 8$,所以椭圆的方程为 $\frac{x^2}{9} + \frac{y^2}{8} = 1$.

解法 2: 记右焦点为 F,椭圆的焦距 2c=2,所以 c=1,故 |OF|=1,且 $a^2-b^2=1$ ①,

涉及中点,也可考虑构造中位线分析,如图,连接OB,由对称性,O为MN中点,

又 B 为 MA 中点,所以 $|OB| = \frac{1}{2} |AN|$,且 OB//AN,平行可产生相似三角形,进而分析相似比,

所以
$$\triangle OBF \hookrightarrow \triangle ANF$$
 ,从而 $\frac{|OF|}{|AF|} = \frac{|OB|}{|AN|} = \frac{1}{2}$,故 $|AF| = 2|OF| = 2$,所以 $|OA| = 3$,即 $a = 3$,

代入①得: $b^2 = 8$,所以椭圆的方程为 $\frac{x^2}{9} + \frac{y^2}{8} = 1$.

【反思】①本题的条件既可用几何语言翻译(解法 2),也可用坐标方式翻译(解法 1),但对于某些几何语言不好翻译的问题,我们一般就只能尝试设点、设线,用坐标翻译了(如下题);②A,B,C 三点共线按坐标翻译一般用 $k_{AB}=k_{AC}$.

【例 6】过椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 的左焦点F的直线l与椭圆C交于A,B两点,若线段AB的中垂线与x轴,y轴各有唯一公共点M,N,则MF|的取值范围是_____.

解析:用几何思路不易求|MF|,但若求出M的坐标,|MF|就知道了,故先求AB中垂线的方程,可设直线l的方程,与椭圆联立,结合韦达定理来求,直线l过x轴上的定点,常设横截式方程,

由题意,F(-1,0),直线 l 不与坐标轴垂直,可设其方程为 $x = my - 1 (m \neq 0)$,设 $A(x_1,y_1)$, $B(x_2,y_2)$,

联立
$$\begin{cases} x = my - 1 \\ \frac{x^2}{2} + y^2 = 1 \end{cases}$$
 消去 x 整理得: $(m^2 + 2)y^2 - 2my - 1 = 0$, 判别式 $\Delta = 4m^2 - 4(m^2 + 2) \times (-1) = 8(m^2 + 1) > 0$,

由韦达定理, $y_1 + y_2 = \frac{2m}{m^2 + 2}$,求AB中垂线要用中点坐标,还得算 $x_1 + x_2$,可用A,B在l上来算,

$$x_1 + x_2 = my_1 - 1 + my_2 - 1 = m(y_1 + y_2) - 2 = \frac{2m^2}{m^2 + 2} - 2 = -\frac{4}{m^2 + 2}$$
, 所以 $AB 中 点为 G(-\frac{2}{m^2 + 2}, \frac{m}{m^2 + 2})$,

故
$$AB$$
 的中垂线方程为 $y - \frac{m}{m^2 + 2} = -m(x + \frac{2}{m^2 + 2})$,整理得: $y = -mx - \frac{m}{m^2 + 2}$,

令
$$y = 0$$
 可得: $x = -\frac{1}{m^2 + 2}$, 所以 $M(-\frac{1}{m^2 + 2}, 0)$, 故 $|MF| = \left|-\frac{1}{m^2 + 2} - (-1)\right| = \left|1 - \frac{1}{m^2 + 2}\right|$,

因为
$$m \neq 0$$
,所以 $m^2 + 2 > 2$,从而 $0 < \frac{1}{m^2 + 2} < \frac{1}{2}$,故 $\frac{1}{2} < 1 - \frac{1}{m^2 + 2} < 1$,所以 $|MF| \in (\frac{1}{2}, 1)$.

答案: $(\frac{1}{2},1)$

【反思】①涉及直线与椭圆交于 A, B 两点,常设直线方程和交点坐标,把直线与椭圆联立消去 x 或 y,得到一个一元二次方程,但很多时候我们并不去解此方程,而是结合韦达定理来计算有关的量,这种设而不求思想的应用非常广泛;②当直线过 y 轴上的定点 (0,t) 时,常设斜截式方程 y=kx+t,但需注意考虑斜率不存在的情况;过 x 轴上的定点 (t,0) 时,常设横截式方程 x=my+t,但它不能表示垂直于 y 轴的直线.

强化训练

- 1. (2023•海南琼海模拟•★★)设 F_1 , F_2 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)的左、右焦点,点 A 为椭圆的上$ 顶点,点 B 在椭圆上且满足 $\overline{F_1A} = 5\overline{F_2B}$,则椭圆的离心率为()

- (A) $\frac{\sqrt{2}}{2}$ (B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{\sqrt{6}}{3}$

- 2. (★★) 已知 $M(x_0, y_0)$ 是椭圆 $C: \frac{x^2}{3} + y^2 = 1$ 上的一点, F_1 , F_2 是 C 的两个焦点,若 $\overrightarrow{MF_1} \cdot \overrightarrow{MF_2} > 0$,则 y_0 的取值范围是()

- (A) $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ (B) $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ (C) $\left(-\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}\right)$ (D) $\left(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right)$

- 3. (2021・全国乙卷・★★) 设 B 是椭圆 $C: \frac{x^2}{5} + y^2 = 1$ 的上顶点,P 在 C 上,则 |PB| 的最大值为()
- (A) $\frac{5}{2}$ (B) $\sqrt{6}$ (C) $\sqrt{5}$ (D) 2

- 4. (2010•福建卷•★★★) 若点 O 和 F 分别是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的中心和左焦点,点 P 为椭圆上的任意一 点,则 $\overrightarrow{OP} \cdot \overrightarrow{FP}$ 的最大值为()
- (A) 2 (B) 3 (C) 6 (D) 8

- 5. (★★★) 已知圆 $C_1: x^2 + y^2 = b^2$ 和椭圆 $C_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,直线 $y = kx(k \in \mathbf{R})$ 与 C_1 的一个交点 为 A,与 C_2 的一个交点为 B,若 $\frac{|OB|}{|OA|}$ 的取值范围是 (1,2],则椭圆 C_2 的离心率为()
- (A) $\frac{1}{2}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{3}{4}$

6. (★★★) 点 P 在椭圆 $\frac{x^2}{4}$ + y^2 = 1上运动,则当点 P 到直线 l: x+y-4=0 的距离最小时,点 P 的坐标为

7. $(2022 \cdot 上海模拟 \cdot \star \star \star \star \star)$ 已知定点 A(a,0)(a>0) 到椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 上的点的距离的最小值为 1, 则 a 的值为____.

- 8. (2022 河南模拟 ★★★★) 已知椭圆 $C: \frac{x^2}{18} + \frac{y^2}{9} = 1$ 的上、下顶点分别为 A 和 B,点 $P(x_0, y_0)(x_0 \neq 0)$ 在椭圆 C 上,若点 $Q(x_1,y_1)$ 满足 $AP \perp AQ$, $BP \perp BQ$, 则 $\frac{x_1}{y_1} = ($

- (A) $-\frac{1}{3}$ (B) $-\frac{1}{2}$ (C) $-\frac{\sqrt{2}}{2}$ (D) $-\frac{2}{3}$