Project: FBI Gun Data Analysis

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

In this project we will investigate two sets of data.

The first set comes from the FBI's National Instant Criminal Background Check System. It includes records of requested background checks by Gun shops to check if the customer has any criminal records.

The second data set has been supplemented with state level data from census.gov.

We will try and answer a couple of questions by exploring those two data sets like:

- Did gun registerations grow over the years
- Is there a certain type of gun that was more popular
- Which states has the most gun regesterations
- Which states have the highest gun registeration per capita?

```
import pandas as pd
```

```
import numpy as np
import matplotlib.pyplot as plt
```

Data Wrangling

General Properties

```
In [ ]:
         # Loading up the data
         df=pd.read_csv('u.s.-census-data.csv')
         df_gun=pd.read_excel('gun-data.xlsx')
```

Displaying the first set to check it df.head()

Out[]:

] • . 	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	•••	South Dakota	Tennessee	Texas	Utah	Vermont	Virginia	Washington	West Virginia	Wisconsin	Wyoming
0	Population estimates, July 1, 2016, (V2016)	NaN	4,863,300	741,894	6,931,071	2,988,248	39,250,017	5,540,545	3,576,452	952,065		865454	6651194	27,862,596	3,051,217	624,594	8,411,808	7,288,000	1,831,102	5,778,708	585,501
1	Population estimates base, April 1, 2010, (V2	NaN	4,780,131	710,249	6,392,301	2,916,025	37,254,522	5,029,324	3,574,114	897,936		814195	6346298	25,146,100	2,763,888	625,741	8,001,041	6,724,545	1,853,011	5,687,289	563,767
2	Population, percent change - April 1, 2010 (es	NaN	1.70%	4.50%	8.40%	2.50%	5.40%	10.20%	0.10%	6.00%		0.063	0.048	10.80%	10.40%	-0.20%	5.10%	8.40%	-1.20%	1.60%	3.90%
3	Population, Census, April 1, 2010	NaN	4,779,736	710,231	6,392,017	2,915,918	37,253,956	5,029,196	3,574,097	897,934		814180	6346105	25,145,561	2,763,885	625,741	8,001,024	6,724,540	1,852,994	5,686,986	563,626
4	Persons under 5 years, percent, July 1, 2016,	NaN	6.00%	7.30%	6.30%	6.40%	6.30%	6.10%	5.20%	5.80%	•••	0.071	0.061	7.20%	8.30%	4.90%	6.10%	6.20%	5.50%	5.80%	6.50%

5 rows × 52 columns

Checking if there are missing data df.info()

	·	frame.DataFrame'	>
_	eIndex: 85 entri		
Data	columns (total	52 columns):	
#	Column	Non-Null Count	Dtype
0	Fact	80 non-null	object
1	Fact Note	28 non-null	object
2	Alabama	65 non-null	object
3	Alaska	65 non-null	object
4	Arizona	65 non-null	object
5	Arkansas	65 non-null	object
6	California	65 non-null	object
7	Colorado	65 non-null	object
8	Connecticut	65 non-null	object
9	Delaware	65 non-null	object
10	Florida	65 non-null	object
11	Georgia	65 non-null	object
12	Hawaii	65 non-null	object
13	Idaho	65 non-null	object
14	Illinois	65 non-null	object
1 5	Indiana	65 non-null	object
16	Iowa	65 non-null	object
17	Kansas	65 non-null	object
18	Kentucky	65 non-null	object
19	Louisiana	65 non-null	object
20	Maine	65 non-null	object
21	Maryland	65 non-null	object
22	Massachusetts	65 non-null	object
23	Michigan	65 non-null	object
24	Minnesota	65 non-null	object
25	Mississippi	65 non-null	object
26	Missouri	65 non-null	object
27	Montana	65 non-null	object
28	Nebraska	65 non-null	object
29	Nevada	65 non-null	object
30	New Hampshire	65 non-null	object
31	New Jersey	65 non-null	object
32	New Mexico	65 non-null	object
33	New York	65 non-null	object
34	North Carolina	65 non-null	object
35	North Dakota	65 non-null	object
36	Ohio	65 non-null	object
37	Oklahoma	65 non-null	object
38	Oregon	65 non-null	object
39	Pennsylvania	65 non-null	object
40	Rhode Island	65 non-null	object
41	South Carolina	65 non-null	object
42	South Dakota	65 non-null	object
43	Tennessee	65 non-null	object
44	Texas	65 non-null	object
45	Utah	65 non-null	object
46	Vermont	65 non-null	object
47	Virginia	65 non-null	object
48	Washington	65 non-null	object
19	West Virginia	65 non-null	ohiact

49 West Virginia

50 Wisconsin

dtypes: object(52)

memory usage: 34.7+ KB

51 Wyoming

65 non-null

65 non-null

65 non-null

object

object

object

- It seems that the census data is not missing data aside from the fact note which can be discarded
- Also it would be better to transpose the data to be able to compare/merge them later with the second dataframe

Checking the data types in case any needs to be changed df.dtypes object Fact Out[]: object Fact Note

Alabama object Alaska object Arizona object Arkansas object California object Colorado object Connecticut object Delaware object Florida object Georgia object Hawaii object Idaho object Illinois object Indiana object Iowa object object Kansas Kentucky object Louisiana object Maine object Maryland object Massachusetts object Michigan object Minnesota object Mississippi object Missouri object object Montana Nebraska object object Nevada New Hampshire object New Jersey object New Mexico object New York object North Carolina object North Dakota object object Ohio Oklahoma object Oregon object Pennsylvania object Rhode Island object South Carolina object South Dakota object object Tennessee object Texas Utah object Vermont object Virginia object Washington object West Virginia object Wisconsin object Wyoming object dtype: object

• We'll need to change the types of the data into floats to be able to display later

0.0 37165.0

In []: # Checking the second data set df_gun.head()

Out[]: state permit permit_recheck handgun long_gun other multiple admin prepawn_handgun ... returned_other rentals_long_gun private_sale_long_gun private_sale_long_gun private_sale_long_gun private_sale_other return_to_sell month Alabama 16717.0 15.0 ... 0.0 9.0 16.0 3.0 0.0 5734.0 6320.0 221.0 0.0 317 0.0 0.0 209.0 2930.0 219.0 2.0 2320.0 7946.0 920.0 0.0 38.0 2.0 2 Arizona 5069.0 11063.0 0.0 12.0 382.0 631 13.0 ... 0.0 0.0 Arkansas 2935.0 632.0 4347.0 6063.0 165.0 366 51.0 12.0 ... 0.0 0.0 13.0 23.0 0.0 0.0 017 - California 57839.0

0.0 ...

0.0

0.0

0.0

0.0

0.0

0.0

5 rows × 27 columns

In []: # Checking missing data df_gun.info()

0

0.0

24581.0 2984.0

<class 'pandas.core.frame.DataFrame'> RangeIndex: 12485 entries, 0 to 12484 Data columns (total 27 columns):

Non-Null Count Dtype Column -----12485 non-null object state 12485 non-null object permit 12461 non-null float64 1100 non-null float64 permit_recheck 12465 non-null float64 handgun 12466 non-null float64 long_gun 5500 non-null float64 other multiple 12485 non-null int64 admin 12462 non-null float64 prepawn_handgun 10542 non-null float64 10540 non-null float64 10 prepawn_long_gun 5115 non-null float64 11 prepawn_other 10545 non-null float64 12 redemption_handgun 13 redemption_long_gun 10544 non-null float64 14 redemption_other 5115 non-null float64 15 returned_handgun 2200 non-null float64 16 returned_long_gun 2145 non-null float64 17 returned_other float64 1815 non-null 18 rentals_handgun 990 non-null float64 19 rentals_long_gun 825 non-null float64 20 private_sale_handgun 2750 non-null float64 21 private_sale_long_gun 2750 non-null float64 22 private_sale_other 2750 non-null float64 23 return_to_seller_handgun 2475 non-null float64 24 return_to_seller_long_gun 2750 non-null float64 25 return_to_seller_other 2255 non-null float64 26 totals 12485 non-null int64 dtypes: float64(23), int64(2), object(2)

• The null data does not seem to make a problem since it is not age or something that has to have a value other than zero

Data Cleaning

memory usage: 2.6+ MB

We will perform some data cleaning in order to better handle the data based on the previous deductions like:

- Removing the fact note column from the census data set
- Transposing the census data set to match the NICS data set
- Cleaning the census data set of non required columns

- Changing data types to ones that can be better handled
- Adding columns for years since we will check for the trend over the years

```
# Will start with removing the fact note column
df.drop(columns='Fact Note',inplace=True)
df.head()
```

]:		Fact	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	Florida	So	uth T	ennessee	Texas	Utah	Vermont	Virginia	Washington	West	Wisconsin	Wyoming
_													ота							virginia		
	o Popi	ulation estimates, July 1, 2016, (V2016)	4,863,300	741,894	6,931,071	2,988,248	39,250,017	5,540,545	3,576,452	952,065	20,612,439	865	454	6651194	27,862,596	3,051,217	624,594	8,411,808	7,288,000	1,831,102	5,778,708	585,501
,	1 Pop	pulation estimates base, April 1, 2010, (V2	4,780,131	710,249	6,392,301	2,916,025	37,254,522	5,029,324	3,574,114	897,936	18,804,592	814	195	6346298	25,146,100	2,763,888	625,741	8,001,041	6,724,545	1,853,011	5,687,289	563,767
2	Pop	oulation, percent change - April 1, 2010 (es	1.70%	4.50%	8.40%	2.50%	5.40%	10.20%	0.10%	6.00%	9.60%	0.	063	0.048	10.80%	10.40%	-0.20%	5.10%	8.40%	-1.20%	1.60%	3.90%
;	Pop	pulation, Census, April 1, 2010	4,779,736	710,231	6,392,017	2,915,918	37,253,956	5,029,196	3,574,097	897,934	18,801,310	814	180	6346105	25,145,561	2,763,885	625,741	8,001,024	6,724,540	1,852,994	5,686,986	563,626
4	4	Persons under 5 years, percent, July 1, 2016,	6.00%	7.30%	6.30%	6.40%	6.30%	6.10%	5.20%	5.80%	5.50%	0.	071	0.061	7.20%	8.30%	4.90%	6.10%	6.20%	5.50%	5.80%	6.50%

5 rows × 51 columns

Out[]

After trying to transpose the data frame it kept returning the index as the column name
so after searching i will set the index to the first column and then transpose the data frame
df.set_index('Fact',inplace=True)

Next i'll transpose the data frame to be able to compare/merge it with the second data frame df_trns=df.transpose()

Dropping all the non required columns at the end df_trns.drop(df_trns.columns[20:],axis=1,inplace=True)

cols_to_drop.append(df_trns.columns[i])

Dropping columns that are not related to 2016 since this is the year that will be studied later cols_to_drop=[] iter=[1,2,3,5,7,9,11] for i in iter:

df_trns.drop(cols_to_drop,axis=1,inplace=True)

Changing the data types into floats to be ablt to add them or perform any other operation
After trying to change the types there was some values that are numbers so we will remove them first
df_trns.replace(to_replace='Z',value=0,inplace=True)

df_trns.replace(to_replace='Z',value=0,inplace=True)
df_trns.head()

ut_trns.neau

In []:

Out[]: **Hispanic or Female** White alone, **Black or African** American Indian and Asian alone, Persons under Persons under Persons 65 years Native Hawaiian and White alone, not **Population** Two or More Latino, persons, 18 years, American alone, Alaska Native alone, Other Pacific Islander Hispanic or Latino, estimates, 5 years, and over, percent, July Races, percent, percent, percent, July percent, July July 1, 2016, July 1, 2016, percent, July 1, percent, July 1, percent, July 1, 1, 2016, percent, July 1, percent, July 1, 2016, July 1, 2016, alone, percent, July 1, percent, July 1, 1, 2016, 1, 2016, 2016, (V2016) 2016, (V2016) 2016, (V2016) (V2016) 2016, (V2016) 2016, (V2016) (V2016) (V2016) 2016, (V2016) (V2016) (V2016) (V2016) (V2016) **Alabama** 4,863,300 6.00% 22.60% 16.10% 51.60% 69.30% 26.80% 0.70% 1.40% 0.10% 1.60% 4.20% 65.80% 741,894 7.30% 25.20% 10.40% 47.70% 66.10% 3.80% 15.20% 6.30% 1.30% 7.30% 7.00% 61.20% Alaska 4.90% 55.50% **Arizona** 6,931,071 6.30% 23.50% 16.90% 50.30% 83.30% 5.40% 3.40% 0.30% 2.80% 30.90% 2,988,248 6.40% 23.60% 16.30% 50.90% 79.40% 15.70% 1.00% 1.60% 0.30% 2.00% 7.30% 72.90% **Arkansas** 1.70% 37.70% California 39,250,017 6.30% 23.20% 13.60% 50.30% 72.70% 6.50% 14.80% 0.50% 3.80% 38.90%

Changing the data types into floats
for c in df_trns.columns:
 if df_trns[c].dtypes != 'float64':
 df_trns[c]=df_trns[c].str.replace('%|,',"").astype('float')

C:\Users\Fouad\AppData\Local\Temp/ipykernel_1404/4170818147.py:4: FutureWarning: The default value of regex will change from True to False in a future version. df_trns[c]=df_trns[c].str.replace('%|,',"").astype('float')

renaming the month column a proper name since we will add a column later with the name month for the months

df_gun.rename(columns={'month':'date'},inplace=True)
df_gun.head()

Out[]: _	date	state	permit	permit_recheck	handgun	long_gun	other	multiple	admin	prepawn_handgun	returned_other	rentals_handgun	rentals_long_gun	private_sale_handgun	private_sale_long_gun	private_sale_other re	eturn_to_selle
	o 2017-	Alabama	16717.0	0.0	5734.0	6320.0	221.0	317	0.0	15.0	0.0	0.0	0.0	9.0	16.0	3.0	
	1 2017- 09	Alaska	209.0	2.0	2320.0	2930.0	219.0	160	0.0	5.0	0.0	0.0	0.0	17.0	24.0	1.0	
	2 2017- 09	Arizona	5069.0	382.0	11063.0	7946.0	920.0	631	0.0	13.0	0.0	0.0	0.0	38.0	12.0	2.0	
	3 2017- 09	Arkansas	2935.0	632.0	4347.0	6063.0	165.0	366	51.0	12.0	0.0	0.0	0.0	13.0	23.0	0.0	
	4 2017- 09	California	57839.0	0.0	37165.0	24581.0	2984.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

5 rows × 27 columns

Changing the date column data type to be able to extract month and year from
df_gun['date']=pd.to_datetime(df_gun['date'])

df_gun['date'].dtype

out[]: dtype('<M8[ns]')

]: # Adding columns for the year and month to use later

df_gun['year']=df_gun['date'].dt.year
df_gun['month']=df_gun['date'].dt.month_name()

df_gun.head()

dt_gun.head()

Out[]:	date	state	permit	permit_recheck	handgun	long_gun	other	multiple	admin	prepawn_handgun .	rentals_long_gun	private_sale_handgun	private_sale_long_gun	private_sale_other	return_to_seller_handgun	return_to_seller_long_g
	o 2017-09-01	Alabama	16717.0	0.0	5734.0	6320.0	221.0	317	0.0	15.0 .	0.0	9.0	16.0	3.0	0.0	(
	2017- 09-01	Alaska	209.0	2.0	2320.0	2930.0	219.0	160	0.0	5.0 .	0.0	17.0	24.0	1.0	0.0	(
	2 2017- 09-01	Arizona	5069.0	382.0	11063.0	7946.0	920.0	631	0.0	13.0 .	0.0	38.0	12.0	2.0	0.0	(
	3 2017-09-01	Arkansas	2935.0	632.0	4347.0	6063.0	165.0	366	51.0	12.0 .	0.0	13.0	23.0	0.0	0.0	ï
	4 2017-09-01	California	57839.0	0.0	37165.0	24581.0	2984.0	0	0.0	0.0 .	0.0	0.0	0.0	0.0	0.0	(
,	-	20	_													

5 rows × 29 columns

Exploratory Data Analysis

Q1 Did gun registerations grow over the years

```
In []: guns_by_year=df_gun.groupby('year').sum()

In []: # Creating a function to plot columns with different
    def plott(col,type):
        guns_by_year.plot(y=col,kind=type,figsize=(15,10));

In []: # To answer that question we need to group the NICS data by year from the year column we added
    # using the predefined function
    plott('totals', 'bar')
    plt.title('Gun registrations over the years', fontsize=20)
    plt.xlabel('Years', fontsize=18)
    plt.ylabel('Gun registrations', fontsize=18)
```


It seems the gun registeration was steady from 1999 till 2004 then it increased over the years until it reached its peak on 2016 then decreased

Q2 Is there a certain type of gun that was more popular

```
# We will check the main bulk amount of guns registerations, ignoring the rentals, private sales and pawns
# So will again use the grouped data frame but will display the three types using the pre-defined function
plott(['handgun', 'long_gun', 'other'], 'line')
plt.title('Gun Types popularity', fontsize=20)
plt.xlabel('Years', fontsize=18)
plt.ylabel('Gun registrations', fontsize=18)
```

Out[]: Text(0, 0.5, 'Gun registrations')

According to the above graph the long guns where more popular with the handguns closing the gap untill 2013-2014 the handguns became more popular

The other types registerations did not change for the most part with the slight rise from 2015 to 2016

Q3 Which states has the most gun regesterations

```
guns_by_state=df_gun.groupby('state').sum()
guns_by_state.plot(y=['totals'],kind='bar',figsize=(15,10));
plt.title('Gun registrations comparison between states', fontsize=20)
plt.xlabel('State', fontsize=18)
plt.ylabel('Gun registrations', fontsize=18)
```


Kentucky, California and Texas seems to be the highest in gun registeration However that can be related to population

Q4 Which states have the highest gun registeration per capita?

```
# To check the gun registerations per capita we will filter the NICS data to get the 2016 gun registeration
# and compare it against the populations of the states

gun_date_2016=df_gun.query('year == 2016').groupby('state').sum()
gun_date_2016.head()
```

Out[]:		permit	permit_recheck	handgun	long_gun	other	multiple	admin	prepawn_handgun	prepawn_long_gun	prepawn_other	. rentals_handgun	rentals_long_gun	private_sale_handgun	private_sale_long_gun	private_sale_other
_	state															
	Alabama	291039.0	0.0	153123.0	121963.0	6104.0	6545	5.0	111.0	114.0	2.0	0.0	0.0	72.0	65.0	4.0
	Alaska	3121.0	0.0	37491.0	36887.0	2889.0	2316	0.0	84.0	70.0	0.0	0.0	0.0	39.0	66.0	1.0
	Arizona	87771.0	5109.0	166784.0	108988.0	13122.0	7908	0.0	74.0	60.0	3.0	0.0	0.0	76.0	56.0	11.0
	Arkansas	55456.0	7036.0	80244.0	82120.0	3059.0	4400	143.0	77.0	116.0	3.0	0.0	0.0	72.0	64.0	6.0
	California	1036981.0	0.0	560355.0	554550.0	211707.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

5 rows × 26 columns

In []: # Next we will add the filtered NICS data to the 2016 census

combined=pd.concat([df_trns,gun_date_2016],axis=1,join='inner')

combined.head()

Out[]:	Population estimates, July 1, 2016, (V2016)	years, percent, July 1,		Persons 65 years and over, percent, July 1, 2016, (V2016)	persons,	White alone, percent, July 1, 2016, (V2016)	Black or African American alone, percent, July 1, 2016, (V2016)	alone, percent,	Asian alone, percent, July 1, 2016, (V2016)	Native Hawaiian and Other Pacific Islander alone, percent, July 1, 2016, (V2016)	rentals_handgun	rentals_long_gun	private_sale_handgun	private_sale_long_gun	private_sale_other	return_to_seller_handgun re
Alabama	4863300.0	6.0	22.6	16.1	51.6	69.3	26.8	0.7	1.4	0.1	0.0	0.0	72.0	65.0	4.0	3.0
Alaska	741894.0	7.3	25.2	10.4	47.7	66.1	3.8	15.2	6.3	1.3	0.0	0.0	39.0	66.0	1.0	2.0
Arizona	6931071.0	6.3	23.5	16.9	50.3	83.3	4.9	5.4	3.4	0.3	0.0	0.0	76.0	56.0	11.0	11.0
Arkansas	2988248.0	6.4	23.6	16.3	50.9	79.4	15.7	1.0	1.6	0.3	0.0	0.0	72.0	64.0	6.0	7.0
California	39250017.0	6.3	23.2	13.6	50.3	72.7	6.5	1.7	14.8	0.5	0.0	0.0	0.0	0.0	0.0	0.0

5 rows × 39 columns

Then we will plot a gun per capita in every state chart
combined.plot(y=['density'],kind='bar',figsize=(15,10));
plt.title('Gun registrations per capita among the states', fontsize=20)
plt.xlabel('States', fontsize=18)
plt.ylabel('Gun registrations per capita', fontsize=18)

Out[]: Text(0, 0.5, 'Gun registrations per capita')

From the chart we can see Kuntucky seems to lead the highest registered guns per capita with Indiana in second place

California and Texas high gun registerations from the previous questions may be due to high population as we see here they have receeded to lower ranks when checked across the population

Conclusions

From our EDA we can see that gun registeration was steady from 1999 till 2004 then it increased over the years until it reached its peak on 2016 then decreased.

At the same time the long guns were more popular from 1999 with the handguns closing the gap untill 2013-2014 when the handguns became more popular and the other types of guns slightly rise in popularity but still far away from long guns and handguns.

Kentucky, California and Texas seems to be the highest in gun registeration However that turned out to be related to population as we checked them again for the year 2016 against the population. Only Kentucky was leading the chart with Indiana in second place.

Limitations

- The Gun data has the states as well as the territories making 55 however the census data has only the 50 states so had to drop the 5 extra when merging
- The background check for a gun does not represent gun sales by any means therefore this analysis only refers to the registeration requests
- the census data has mostly 2016's data and some 2010's so the comparison is not reliable in comparison to one that would have the data from all the years as the gun data ones
- some data from NICS are supressed as their publication was not possible