RADIUS OF CIRCLE

Aim: Python program which accepts the radius of a circle from the user and compute the area Python program which accepts the radius of a circle from the user and compute the area

Apparatus: System Installed with Python Software

Program:

```
from math import pi

radius = float(input ("Input the radius of the circle : "))

print ("The area of the circle with radius " + str(radius) + "
is: " + str(pi * radius**2))
```

Output:

```
Input the radius of the circle : 1.1
The area of the circle with radius 1.1 is: 3.8013271108436504
```

PART-B EXPERIMENT NO.: 2 NUMBER OF POSTIVE, NEGATIVE OR ZERO ENTRIES OF GIVEN NUMBER

Aim: Write a Python program that asks the user for seven numbers. Then print the total, the number of positive entries, the number entries equal to zero, and the number of negative entries.

Apparatus: System Installed with Python Software

Program:

```
nums = []
totPositive = 0
totNegative = 0
totZero = 0
print("Enter 10 Numbers: ")
for i in range(10):
  nums.insert(i, int(input()))
for i in range(10):
  if nums[i]>0:
    totPositive = totPositive+1
  elif nums[i]<0:</pre>
    totNegative = totNegative+1
    totZero = totZero+1
print("\nPositive Number: ")
print(totPositive)
print("Negative Number: ")
print(totNegative)
print("Zero: ")
print(totZero)
```

Output:

PART-B EXPERIMENT NO.: 3

CELSIUS TO FAHRENHEIT

Aim: Create a program that asks the user for a temperature in Celsius, and then prints the temperature in Fahrenheit

Apparatus: System Installed with Python Software

Program:

```
faren=int(input("enter temperature in faranheit"))
cel=((faren-32)*5)/9
print("Temperature in celsius is",cel)
```

Output:

```
enter temperature in faranheit98
Temperature in celsius is 36.66666666666664
```

PART-B EXPERIMENT NO.: 4

AREA OF A TRAPEZOID

Aim: Create a program that will ask the user for the information needed to find the area of a trapezoid, and then print the area.

Apparatus: System Installed with Python Software

Program:

```
a=int(input("Enter top width"))
b=int(input("Enter base width"))
h=int(input("Enter height of trapezoid"))
area=((a+b)*h)/2
print("Area of trapezoid is", area)
```

Output:

Enter top width10 Enter base width20 Enter height of trapezoid15 Area of trapezoid is 225.0

PART-B EXPERIMENT NO.: 5 PRINTS NUMBERS IN DIFFERENT PATTERN

Aim: Create a program that prints numbers in different Pattern

Apparatus: System Installed with Python Software

Program:

```
1. Write a single program in Python that will print the numbers:
i=10
1=1
1 = 1
while k <= 10:
    j=1
    while j<1:</pre>
         print(i,end=" ")
         if i = 54:
             break
         i=i+1
         j=j+1
    print(end="\n")
    1=1+1
    if i = 54:
         break
```

Output:

```
10
11 12
13 14 15
16 17 18 19
20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36 37
38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
```

PART-B EXPERIMENT NO.: 6
LIST AND TUPLE

Aim: Write a Python program which accepts a sequence of comma-separated numbers from user and generate a list and a tuple with those numbers.

Apparatus: System Installed with Python Software

Program:

```
values = input("Input some comma seprated numbers : ")
list = values.split(",")
tuple = tuple(list)
print('List : ',list)
print('Tuple : ',tuple)
```

Output:

```
Input some comma seprated numbers : 3,5,7,23
List : ['3', '5', '7', '23']
Tuple : ('3', '5', '7', '23')
```

NUMBER OF DAYS BETWEEN TWO DATES

Aim: Write Python program to calculate number of days between two dates

Apparatus: System Installed with Python Software

Program:

```
from datetime import date
f_date = date(2014, 7, 2)
l_date = date(2014, 7, 11)
delta = l_date - f_date
print(delta.days)
```

Output:

9

PART-B EXPERIMENT NO.: 08
SWAPING

Aim: Write code to swap the values 15 and 14 list = [15,57,14,33,72,79,26,56,42,40]

Apparatus: System Installed with Python Software

Program:

```
l=[15,57,14,33,72,79,26,56,42,40]
a,b=l.index(15),l.index(14)
l[a],l[b]=l[b],l[a]
print (1)
```

Output:

```
[14, 57, 15, 33, 72, 79, 26, 56, 42, 40]
```

SENSOR INTERFACING PRORAMS WITH NODE MCU

PART-B EXPERIMENT NO.: 09
GAS SENSOR INTERACING

Aim: To write a program to interface Gas Sensor with Node MCU

Apparatus: 1. System Installed with Arduino Software

2. Things Speak Cloud

```
#include <ESP8266WiFi.h>
 #include <WiFiClient.h>
#include <ThingSpeak.h>
const char* ssid = "xxxxxxxxxx";
const char* password = "zzzzzzzzzz";
WiFiClient client;
unsigned long myChannelNumber =1437349;
const char * myWriteAPIKey = "EHOXS5VWFLZWJD1E";
float g;
int gas;
void setup()
 Serial.begin(9600);
   Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED)
  {
```

```
delay(500);
  Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 // Print the IP address
 Serial.println(WiFi.localIP());
ThingSpeak.begin(client);
void loop()
gas = analogRead(A0);
 g = gas * 5.0/1023;
 Serial.println(g);
 ThingSpeak.writeField(myChannelNumber,1,g,myWriteAPIKey);
 delay(10000);
```

PART-B EXPERIMENT NO.: 10
IR SENSOR INTERFACING

Aim: To write a program to interface IR Sensor with Node MCU

Apparatus: 1. System Installed with Arduino Software

2. Things Speak Cloud

```
#include <ESP8266WiFi.h>
 #include <WiFiClient.h>
 #include <ThingSpeak.h>
 const char* ssid = "xxxxxxxx";
 const char* password = "zzzzzzzzz";
 WiFiClient client;
 unsigned long myChannelNumber = 1443079;
 const char* myWriteAPIKey = "HBLU0B6UM888WVQ0";
 #define LED D4
 #define IR D5
 void setup()
 pinMode(LED,OUTPUT);
pinMode(IR, INPUT);
  Serial.begin(9600);
   Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL CONNECTED)
```

```
delay(500);
   Serial.print(".");
  }
  Serial.println("");
  Serial.println("WiFi connected");
  // Print the IP address
  Serial.println(WiFi.localIP());
  ThingSpeak.begin(client);
void loop()
if (digitalRead(IR) ==LOW)
  Serial.print("obstacle ahead");
digitalWrite(LED, HIGH);
delay(100);
else
  Serial.print("No obstacle");
digitalWrite(LED,LOW);
delay(100);
}
```

1	OT	1 ^	$D \cap$	DV.	$T \cap \Gamma$) / I		NII	1 / 1	
- 1		IΑ	n u	KA	ゖしゖ	SY I	VIA	M N	JAI	

PART-B EXPERIMENT NO.: 11 ULTRASONIC SENSOR INTERFACING

Aim: To write a program to interface Ultrasonic Sensor with Node MCU

Apparatus: 1. System Installed with Arduino Software

2. Things Speak Cloud

```
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ThingSpeak.h>
const char* ssid = "xxxxxxxxxx";
const char* password = "zzzzzzzzz";
WiFiClient client;
unsigned long myChannelNumber = 1443079;
 const char * myWriteAPIKey = "HBLU0B6UM888WVQ0";
 #define trig D7
 #define echo D8
long duration;
 int cm;
void setup()
pinMode(trig,OUTPUT);
pinMode(echo,INPUT);
  Serial.begin(9600);
   Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL CONNECTED)
```

```
delay(500);
   Serial.print(".");
  Serial.println ("");
  Serial.println ("WiFi connected");
  // Print the IP address
  Serial.println(WiFi.localIP());
  ThingSpeak.begin(client);
void loop()
 {
digitalWrite(trig,LOW);
delayMicroseconds(5);
digitalWrite(trig, HIGH);
delayMicroseconds(10);
digitalWrite(trig,LOW);
duration = pulseIn(echo, HIGH);
cm= duration/29/2;
ThingSpeak.writeField(myChannelNumber,1,cm,myWriteAPIKey);
Serial.print("value");
Serial.println(cm);
delay(1000);
}
```

LDR SENSOR INTERFACING

Aim: To write a program to interface LDR Sensor with Node MCU

Apparatus: 1. System Installed with Arduino Software

2. Things Speak Cloud

```
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ThingSpeak.h>
WiFiClient client;
unsigned long myChannelNumber = xxxxxxxxxx;
uint8 t l=0;
int ldr;
void setup()
 Serial.begin(9600);
  Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL CONNECTED)
 {
```

```
delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 // Print the IP address
 Serial.println(WiFi.localIP());
ThingSpeak.begin(client);
void loop()
 ldr = analogRead(A0);
 l = 1dr * 5.0/1023;
 ThingSpeak.writeField(myChannelNumber,1,1,myWriteAPIKey);
delay(10000);
```

GPS SENSOR INTERFACING

Aim: To write a program to interface GPS Sensor with Raspberry Pi

Apparatus: 1. System Installed with Linux OS

2. Things Speak Cloud

Program:

```
import serial
import requests
import time
ser =serial.Serial("/dev/ttyUSB0",9600)
link = " "
gps = " "
lat = " "
lon = " "
while True:
     gps=""
     gps=ser.readline()
     ifgps.startswith("SGPGLL"):
           printgps
           lat=gps[7:16]
           lon=gps[20:29]
           lat="1234"
           lon="4567"
           print "Lat:",lat
           print"Long:",lon
```

Output:

PH SENSOR INTERFACING

Aim: To write a program to interface PH Sensor with Node MCU

Apparatus: 1. System Installed with Arduino Software

2. Things Speak Cloud

```
#define SensorPin A0
                             // the pH meter Analog output is
connected with the Arduino's Analog
unsigned long int avgValue; //Store the average value of the sensor
feedback
float b;
int buf[10], temp;
void setup()
 pinMode(13,OUTPUT);
 Serial.begin(9600);
 Serial.println("Ready"); //Test the serial monitor
}
void loop()
  for(int i=0; i<10; i++) //Get 10 sample value from the sensor
for smooth the value
   buf[i] = analogRead(SensorPin);
    delay(10);
  for (int i=0; i<9; i++) //sort the analog from small to large
    for(int j=i+1; j<10; j++)
      if(buf[i]>buf[j])
       temp=buf[i];
       buf[i]=buf[i];
       buf[j]=temp;
      }
    }
  avgValue=0;
 for(int i=2;i<8;i++)
                                            //take the average value
of 6 center sample
    avqValue+=buf[i];
  float phValue=(float)avgValue*5.0/1024/6; //convert the analog into
millivolt
 phValue=3.5*phValue;
                                 //convert the millivolt into pH value
                   pH:");
  Serial.print("
  Serial.print(phValue,2);
```

```
Serial.println(" ");
digitalWrite(13, HIGH);
delay(800);
digitalWrite(13, LOW);
}
```