## 注: 试题共6页, 满分100分

- 一、 选择题(将正确答案的字母填在方括号内,每小题 3 分,共 30 分)
- 1. 如图所示,砂子从h = 0.8m 高处下落到以 3 m/s 的速率水平向右运动的传送带上. 取重力加速度 g = 10m/s²,传送带给予刚落到传送带上的砂子的作用力的方向为:



- A、与水平夹角53°向下
- C、与水平夹角37°向上

- B、与水平夹角53°向上
- D、与水平夹角37°向下
- 2. 一平面简谐波在弹性介质中传播,在介质质元从最大位移处回到平衡位置的过程中
- A、它的势能转换成动能
- B、它的动能转换成势能
- C、它从相邻的一段介质质元获得能量,其能量逐渐增加
- D、它把自己的能量传给相邻的一段介质质元,其能量逐渐减小[ ]
- 3. 一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是:
- (A) 杆沿力的方向平动.
- (B) 杆绕其未受打击的端点转动.
- (C) 杆的质心沿打击力的方向运动,杆又绕质心转动.
- (D) 杆的质心不动,而杆绕质心转动.
- 4. 图示系统置于以 $a = \frac{1}{2}g$ 的加速度上升的升降机内,A、B 两物体质量相同均为m,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为:



A. mg

B,  $\frac{1}{2}mg$ 

C. 2mg

 $D, \frac{3}{4}mg$ 

5. 光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为 $\frac{1}{3}mL^2$ ,起初杆静止.桌面上有两个质量均为m的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v相向运动,如图所示. 当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为



A, 
$$\frac{2v}{3L}$$
C,  $\frac{6v}{7L}$ 

B, 
$$\frac{4v}{5L}$$

D. 
$$\frac{8v}{9L}$$

6. 下面列出的真空中静电场的电场强度公式,试判断哪种表述是正确的

A、点电荷q周围空间的电场强度为 $\bar{E} = \frac{q}{4\pi\epsilon_0 r^2} (r$ 为点电荷到场点的距离)

B、电荷线密度为 $\lambda$ 的无限长均匀带电直线周围空间的电场强度为 $\bar{E}=\frac{\lambda}{2\pi\varepsilon_0 r^2}\bar{e}_r(\bar{e}_r)$ 为带电直线到场点并且垂直于带电直线的单位矢量)

C、电荷面密度为 $\sigma$ 的无限大均匀带电平面周围空间的电场强度为 $\bar{E} = \frac{\sigma}{2\varepsilon_0}$ 

D、电荷面密度为 $\sigma$  半径为R 的均匀带电球面外的电场强度为 $\bar{E} = \frac{\sigma R^2}{\varepsilon_0 r^2} \bar{e}_r (\bar{e}_r)$  为球心到场

## 点的单位矢量)

7. 半径为R的均匀带电球面,若其电荷面密度为 $\sigma$ ,取无穷远处为零电势点,则在距离球面r(r>R)处的电势为

$$B \sim \frac{\sigma}{\varepsilon_0} R$$

$$C, \frac{\sigma R^2}{\varepsilon_0 r}$$

$$D, \frac{\sigma R^2}{4\varepsilon_0 r}$$

В 8. 在感应电场中电磁感应定律可写成  $\oint \bar{E}_{\mathbf{k}} \cdot \mathbf{d} \, \bar{l} = -\frac{\mathbf{d} \, \Phi}{\mathbf{d} \, t}$ , 式中  $\bar{E}_{\mathbf{k}}$  为感应电场的电场强 度. 此式表明 A、闭合曲线L上 $\hat{E}$ , 处处相等 B、感应电场是保守力场 C、感应电场的电场强度线不是闭合曲线 D、在感应电场中不能像对静电场那样引入电势的概念 9. 关于恒定电流磁场的磁场强度  $\bar{H}$ ,下列几种说法中哪个是正确的 A、 $\hat{H}$ 仅与传导电流有关 B、若闭合曲线内没有包围传导电流,则曲线上各点的 $\bar{H}$ 必为零 C、若闭合曲线上各点 $\bar{H}$ 均为零,则该曲线所包围传导电流的代数和为零 D、以闭合曲线 L 为边缘的任意曲面的  $\hat{H}$  通量均相等 10. 如图所示,两个线圈 P 和 Q 并联地接到一电动势恒定的电源上. 线圈 P的自感和电阻分别是线圈Q的两倍,线圈P和Q之间的互感可忽略不计. 当 达到稳定状态后,线圈P的磁场能量与Q的磁场能量的比值是 (A) 4. (B) 2. (C) 1. [ ] 二、 填空题 (每小题 3 分, 共 30 分) 1. 现对火箭加速飞行作一简化讨论如下: 设火箭从地面竖直向上发射,不计空气阻力,重 力加速度 $\bar{g}$ 恒定,喷出气体相对于火箭的速率为u. 取由地面竖直向上方向为正方向,则对 由火箭和燃料组成的系统而言,在喷气过程中动量定理在竖直方向的投影式为: 2. 一质量为M的质点沿x轴正向运动,假设该质点通过坐标为x的位置时速度的大小为 kx (k 为正值常量),则此时作用于该质点上的力F=\_\_\_\_\_\_,该质点从 $x=x_0$ 点 出发运动到 $x=x_1$ 处所经历的时间 $\Delta t=$ \_\_\_\_\_\_



3. 一物体作如图所示的斜抛运动,测得在轨道 A 点处速度  $\bar{v}$  的大小为 v ,其方向与水平方

向夹角成 $30^\circ$ .则物体在A点的切向加速度 $a_t = _____$ ,轨道的曲率半径 $\rho = ______$ .

| 4. 一列平面简谐波沿 $x$ 轴正向无衰减地传播,波的振幅为 $2\times10^{-3}$ m ,周期为 $0.01$ s,波                            |
|-----------------------------------------------------------------------------------------------|
| 速为 400 m/s. 当 $t=0$ 时 $x$ 轴原点处的质元正通过平衡位置向 $y$ 轴正方向运动,则该简谐波                                    |
| 的表达式为                                                                                         |
|                                                                                               |
| 5. 一质点沿 $x$ 轴作简谐运动,振动范围的中心点为 $x$ 轴的原点. 已知周期为 $T$ ,振幅为 $A$ .                                   |
| (1) 若 $t=0$ 时质点过 $x=0$ 处且朝 $x$ 轴正方向运动,则振动方程为 $x=$                                             |
| (2) 若 $t = 0$ 时质点处于 $x = \frac{1}{2}$ $A$ 处且向 $x$ 轴负方向运动,则振动方程 为 $x =$ .                      |
| 6. 一个作定轴转动的物体,对转轴的转动惯量为 $J$ ,正以角速度 $\omega_0=10$ rad/s匀速转动.现                                  |
| 对物体加一恒定制动力矩 $M=-0.5\mathrm{N\cdot m}$ ,经过时间 $t=5.0\mathrm{s}$ 后,物体停止了转动.物体的                   |
| 转动惯量 $J=$                                                                                     |
|                                                                                               |
| 7. 若静电场的某个区域电势等于恒量,则该区域的电场强度分布是;                                                              |
| 若电势随空间坐标作线性变化,则该区域的场强分布是                                                                      |
|                                                                                               |
| B. 如图所示,真空中两个正点电荷 $Q$ 相距 $2R$ . 若以其中一点电荷所在处 $Q$ 点为中心,以                                        |
| $R$ 为半径作高斯球面 $S$ ,则通过该球面的电场强度通量 $oldsymbol{arPhi}_{ m e} =$ ; 若以 $oldsymbol{ec{e}}_{ m r}$ 表示 |
| 高斯面外法线方向的单位矢量,则高斯面上 $a$ 、 $b$ 两点的电场强度分别为 $ec{m{E}}_a$ =,                                      |
| 和 $ec{E}_b =$                                                                                 |
| b $Q$                                                     |
| 9. 磁场中某点处的磁感强度为 $\vec{B} = 0.40\vec{i} - 0.20\vec{j}$ (SI) ,一电子以速度                            |

 $\vec{v} = 0.50 \times 10^6 \vec{i} + 1.0 \times 10^6 \vec{j}$  (SI)通过该点,则作用于该电子上的磁场力  $\vec{F}$  为

\_\_\_\_\_. (基本电荷 e=1.6×10<sup>-19</sup>C)

10. 如图,平行的无限长直载流导线 A和B,电流强度均为 I,垂直纸面 向外, 两根载流导线之间相距为 a, 则

- (1)  $\overline{AB}$  中点(P 点)的磁感强度  $\overline{B}_p =$ \_\_\_\_\_.
- (2) 磁感强度  $\bar{B}$  沿图中环路 L 的线积分:





## 三、 计算题 (每小题 10 分, 共 40 分)

- 1. 一质量为m的质点在Oxy平面上运动,其位置矢量为  $\vec{r} = a\cos\omega t \ \vec{i} + b\sin\omega t \ \vec{j}$  (SI), 式中a、b、 $\omega$ 是正值常量,且a > b.
- (1) 求质点在A点(a, 0)时和B点(0, b)时的动能;
- (2) 求质点所受的合外力  $\vec{F}$  以及当质点从 A 点运动到 B 点的过程中  $\vec{F}$  的分力  $\vec{F}_x$  和  $\vec{F}_y$  分别作的功.

2. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为 a,外筒半径为 b,筒长都是 L,中间充满相对介电常量为 $\varepsilon$  的各向同性均匀电介质. 内、外筒分别带有等量异号电荷+Q 和-Q. 设 (b-a) << a,L >> b,可以忽略边缘效应,求:



- (1) 圆柱形电容器的电容;
- (2) 电容器贮存的能量.

- 3. 半径为 R 的均匀带电细圆环, 带电荷 q (q> 0), 在圆环轴线 Ox 上的 P 点处 有一质量为m, 电荷为-e的电子, 如图所示. 环心〇与P点距离 OP=b, 且 b (1) 试说明电子作什么运动;
- (2) 写出电子运动的表达式;
- (3) 求电子由 P 点运动到 O 点所需的时间.



4. 一长圆柱状磁场,磁场方向沿轴线并垂直图面向里,磁场大小既随到 轴线的距离r成正比而变化,又随时间t作正弦变化,即 $B=B_0r\sin\omega t$ ,  $\omega$ 均为常数. 若在磁场内放一半径为 a 的金属圆环, 环心在圆柱状 的轴线上, 求金属环中的感生电动势, 并讨论其方向.

