

Universidad Tecnológica de la Mixteca

Clave DGP: 111628

Doctorado en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
Cómputo cuántico	

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercero	291301	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Brindar los conocimientos necesarios y panoramas generales sobre algoritmos cuánticos, mecánica cuántica, circuitos cuánticos, algoritmos de búsqueda y algunas aplicaciones.

TEMAS Y SUBTEMAS

1. Notación

2. Conceptos fundamentales

- 2.1. Historia.
- 2.2. Direcciones futuras.
- 2.3. Bits cuánticos.
- 2.4. Qubits múltiples.
- 2.5. Computación cuántica.
- 2.5.1. Puertas singulares y múltiples de qubit.
- 2.5.2. Circuitos cuánticos.
- 2.5.3. Ejemplo: teletransportación cuántica.

3. Algoritmos cuánticos

- 3.1. Computación clásica en una computadora cuántica.
- 3.2. Paralelismo cuántico
- 3.3. Algoritmo de Deutsch, Deutsch-Jozsa.
- 3.4. Resumen de algoritmos cuánticos.

4. Postulados de mecánica cuántica y operadores

- 4.1. Espacio estado.
- 4.2. Evolución.
- 4.3. Medida cuántica.
- 4.4. Estados cuánticos distinguidos.
- 4.5. Medidas proyectivas.
- 4.6. Medidas POVM.
- 4.7. Fase.
- 4.8. Sistemas compuestos.
- 4.9. Mecánica cuántica: un panorama general.
- 4.10. El operador de densidad.

5. Circuitos cuánticos

- 5.1. Operaciones de un solo qubit.
- 5.2. Operaciones controladas.
- 5.3. Medidas.
- 5.4. Puertas cuánticas universales.
- 5.5. Simulación de sistemas cuánticos y ejemplos.

6. Algoritmos de búsqueda cuánticos

- 6.1. El oráculo, el procedimiento y la visualización geométrica.
- 6.2. Búsqueda cuántica como una simulación cuántica.
- 6.3. Conteo cuántico.
- 6.4. Aceleración de la solución para problemas NP-completos.
- 6.5. Búsqueda cuántica de una base no estructurada.
- 6.6. Optimalidad del algoritmo de búsqueda.

7. Realizaciones físicas

- 7.1. Principios rectores
- 7.2. Condiciones para el cálculo cuántico
- 7.3. El Hamiltoniano
- 7.4. El oscilador armónico cuántico

ACTIVIDADES DE APRENDIZAJE

El profesor siempre buscará un balance entre la teoría matemática detrás del método, su aplicación a problemas prácticos y su implementación computacional. Introducir al alumno a un lenguaje computacional actualizado y de alto nivel.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se realizarán al menos dos evaluaciones parciales y una final, debe realizar un trabajo relacionado con los temas del curso. El profesor deberá tomar en cuenta la participación activa del alumno en clases y tareas, además de su puntual asistencia a las clases.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Quantum Computation and Quantum Information: 10th Anniversary Edition; Nielsen, M., & Chuang, I., Cambridge: Cambridge University Press. 2010.
- 2. A course in quantum computing (for the community college); M. Loceff, Creative commons. 2015.
- 3. Quantum computing; J. Gruska, John Wiley and Sons, Inc. 2009.

Consulta:

- Principios fundamentales de computación cuántica; Moret Bonillo, V., Textos de apoyo, Universidad de la Coruña. 2013.
- 2. Quantum computing, A gentle introduction; E. Rieffel, W. Polak, The MIT Press, Cambridge. 2011.
- 3. Quantum computing: Lecture notes; R. de Wolf, Amsterdam. 2018.

PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Matemáticas o Matemáticas Aplicadas con conocimientos de programación.

DIVISION DE

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO