Math 571 - Homework 5

Richard Ketchersid

Notation: For $f: X \to Y$ and $E \subseteq X$ set $f(X) = \{f(e) \mid e \in E\}$, this is called the *image of* E under f.

Problem 5.1 (R:4:2*). Let $f: X \to Y$ be continuous. Let $E \subseteq X$, show that $f(Cl(E)) \subseteq Cl(f(E))$. By example, show that this containment can be proper, that is $f(Cl(E)) \nsubseteq Cl(f(E))$) can hold.

Proof 1: Let $y \in f(Cl(X))$, so y = f(x) for $x \in Cl(E)$. Let O be an open nbhd of y and let U be an open nbhd of x so that $f(U) \subset O$. Since $x \in Cl(E)$ we have $U \cap E \neq \emptyset$. Let $e \in U \cap E$, then $f(e) \in f(U) \cap f(E) \subseteq O \cap f(E)$. So we have shown that for any open nbhd O of $y, y \cap f(E) \neq \emptyset$, thus $y \in Cl(f(E))$.

Proof 2: Clearly, $f(E) \subseteq \text{Cl}(f(E))$, so $E \subseteq f^{-1}(\text{Cl}(f(E)))$, but as $f^{-1}(\text{Cl}(f(E)))$ is closed we have $\text{Cl}(E) \subseteq f^{-1}(\text{Cl}(f(E)))$ and hence $f(\text{Cl}(E)) \subseteq \text{cl}(f(E))$.

For the example, consider $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{1}{1+x^2}$. So $f(\mathbb{R}) = (0,1] \subsetneq \text{Cl}(f(\mathbb{R})) = \text{Cl}((0,1]) = [0,1]$.

Definition Let $f: E \subseteq X \to Y$, the graph of f is the set $Graph(f) = \{(x, f(x) \mid x \in E\} \subseteq X \times Y.$

Problem 5.2. Let $f: E \subseteq X \to Y$ be continuous where Y is Hausdorff, show that Graph(f) is closed in $E \times Y$.

(Proof 1) Hausdorff Case: Let $(x,y) \in E \times Y - \operatorname{Graph}(f)$. So $f(x) = y' \neq y$. Let O and O' be open nbhds of y and y' respectively so that $O \cap O' = \emptyset$. (Here we use the Hausdorff property.) Let U be an open nbhd of x so that $f(U \cap E) \subseteq O'$. I claim that $(U \times O) \cap \operatorname{Graph}(f) = \emptyset$. Suppose that $(\tilde{x}, \tilde{y}) \in (U \times O) \cap \operatorname{Graph}(f)$, then $f(\tilde{x}) = \tilde{y}$, so $f(U \cap E) \cap O \neq \emptyset$, contradicting $f(U \cap E) \subseteq O'$ and $O' \cap O = \emptyset$.

(Proof 2) Metric Case: Suppose $((x_i, f(x_i)))$ is a convergent sequence in $E \times Y$, that is $((x_i, f(x_i)) \to (x, y))$. In particular, $x_i \to x \in E$ and as f is sequentially continuous $f(x_i) \to f(x)$, thus y = f(x) and we see Graph(f) is sequentially closed, hence closed.

Problem 5.3 (R:4:6). Suppose $f: E \subseteq X \to Y$ and E is compact. Suppose further that X and Y are Hausdorff (or metric if you prefer). Show that f is continuous on E iff Graph(f) is compact.

Hint: You may use the fact that if K and H are compact, then $K \times H$ is compact and that If K is compact and $C \subseteq K$ is closed, then C is compact. (Both of these are in notes and book.)

(Proof 1) Hausdorff Case: Assume f is continuous, then $f(E) \subset Y$ is compact and $\operatorname{Graph}(f) \subset E \times f(E)$ is closed, hence $\operatorname{Graph}(f)$ is a closed subset of the compact set $E \times f(E)$ and hence compact.

So now, suppose $\operatorname{Graph}(f)$ is compact. Consider the map $F: E \to \operatorname{Graph}(f)$ given by F(x) = (x, f(x)).

Claim: F is continuous iff f is continuous.

Proof of Claim: Suppose F is continuous, then $f(x) = (\pi_2 \circ F)(x)$ where $\pi_2(x,y) = y$ (projection in the second coordinate). $\pi_2 : E \times f(E) \to f(E)$ is continuous and so $f = \pi_2 \circ F$ is a composition of continuous functions and is continuous.

Now suppose f is continuous, then for $U \times V \subset E \times f(E)$ open, $(x,y) \in F^{-1}(U \times V) \iff y = f(x) \land x \in U \land y \in V \iff x \in U \cap f^{-1}(V)$. So $F^{-1}(U \times V) = u \cap f^{-1}(V)$, which is open in E. (Claim) \square

So we need only show now that F is continuous. Since F^{-1} is the projection map $(x, f(x)) \mapsto x$, it is continuous. Since Graph(f) is compact and X is Hausdorff, F^{-1} is a closed map, and hence $F = (F^{-1})^{-1}$ is continuous. (See here.)

(Proof 2) Metric Case: Suppose Graph(f) is compact, hence sequentially compact. Suppose $x_i \in E$ and $x_i \to x \in E$. Consider $((x_i, y_i))$ in Graph(f) we know there is a convergent subsequence $((x_{n_i}, y_{n_i}))_i \to (x, y) \in \text{Graph}(f)$. But then $\lim_i x_{n_i} = \lim_i x_i = x$ and y = f(x) and $y_{n_i} \to y$, so $f(x_{n_i}) \to y$.

Suppose $y_i \not\to y$ as $i \to \infty$, then there is $y' \neq y$ and subsequence $((x_{m_i}, y_{m_i}))_i \to (x, y') \in \operatorname{Graph}(f)$. But then f(x) = y = y' which is a contradiction. so $y_i \to y$, that is $f(x_i) \to f(x)$. Thus f is sequentially continuous and hence continuous.

The other direction is easier. Suppose f is continuous and $((x_i, y_i))$ is a sequence from $\operatorname{Graph}(f)$. then $x_{n_i} \to x \in E$ for some subsequence x_{n_i} since E is sequentially compact. But then $f(x_{n_i}) \to f(x)$ and so $((x_{n_i}, y_{n_i}))_i \to (x, y) = (x, f(x)) \in \operatorname{Graph}(f)$. So $\operatorname{Graph}(f)$ is sequentially compact, hence compact.

Problem 5.4. Let $f: E \subseteq X \to Y$ where both X and Y are metric spaces with Y complete. suppose f is uniformly continuous on E, show that there is a unique continuous extension $\hat{f}: \text{Cl}(E) \to Y$. Moreover, \hat{f} remains uniformly continuous.

Existence: Let $x \in Cl(E) - E$ so that x is a limit point of E, then $x = \lim_i x_i$ for (x_i) a sequence from E. Since (x_i) is a Cauchy sequence and f is uniformly continuous, $(f(x_i))$ is Cauchy and thus has a limit y. To see that $x \mapsto y$ defines an extension of f we must see that y is independent of the particular sequence (x_i) chosen and that y = f(x) for $x \in E$. The second follows from the first trivially, since letting $x_i = x$ for all i, (x_i) is a Cauchy sequence converging to x. Suppose (x_i') is another sequence from E with $\lim_i x_i' = x$. Then the sequence (z_i) where $z_{2i} = x_i$ and $z_{2i+1} = x_i'$ is a sequence from E converging to x and clearly $(f(x_i))$ and $(f(x_i'))$ are both Cauchy subsequences of the Cauchy sequence $(f(z_i))$, thus all of these must have the same limit y.

To see that \hat{f} is uniform continuous, let $\epsilon > 0$ take δ that witnesses uniform continuity on E, so for all $x, x' \in E$, $d^X(x, x') < \delta \implies d^Y(f(x), f(x')) < \epsilon/2$. Suppose $x, x' \in \text{Cl}(E)$

and $d^X(x, x') < \delta$. Take $u, u' \in E$ with $d^Y(f(u), \hat{f}(x)) < \epsilon/4$, $d^Y(f(u'), \hat{f}(x')) < \epsilon/4$, and $d^X(u, u') < \delta$, then $d^Y(\hat{f}(x), \hat{f}(x')) \le d^Y(\hat{f}(x), f(u)) + d^Y(f(u), f(u')) + d^Y(\hat{f}(x'), f(u')) < \epsilon$.

Uniqueness: Suppose $g: Cl(E) \to Y$ is continuous and $f = g|_E$, then we must show that $g = \hat{f}$. This is trivial since if $x \in E$ there is nothing to do. If $x \notin E$, then $x = \lim_i x_i$ for $x_i \in E$, so $g(x) = \lim_i g(x_i) = \lim_i f(x_i) = \hat{f}(x)$.

Definition: A set $E \subseteq X$ has the *Bolzano-Weierstrass property* iff every sequence in X has a convergent subsequence.

Problem 5.5 (R:4:8*). Let $f: E \subseteq X \to Y$ be uniformly continuous on E where E has the Bolzano-Weierstrass property and Y is complete. Show that f is bounded on E, that is, f(E) is bounded in Y.

Suppose f(E) is unbounded. Then get $x_i \in E$ so that $d^Y(x_i, x_j) \ge 1$. By assumption, there is a convergent and hence Cauchy subsequence of (x_i) , say (x_{n_i}) . By uniform continuity of f, $(f(x_{n_i}))$ is a Cauchy sequence in Y. But this is a contradiction.

Problem 5.6 (R:4:19). Show that if $f: \mathbb{R} \to \mathbb{R}$ satisfies the intermediate value theorem and $f^{-1}(r) = \{x \mid f(x) = r\}$ is closed for $r \in \mathbb{Q}$, then f is continuous. (See the text for a hint. \mathbb{Q} here could be replaced by any dense set.)

Suppose f fails to be continuous at x. Fix $\epsilon > 0$ such that for all $\delta > 0$, there is some $x' \in (x - \delta, x + \delta)$ so that $f(x') \notin (f(x) - \epsilon, f(x) + \epsilon)$. We can then choose a sequence $x_i \to x$ so the for all i, $f(x_i) \notin N_{\epsilon}(f(x))$. We may assume WLOG $f(x_i) \leq f(x) - \epsilon < f(x)$ for all i since either infinitely many of the x_i satisfy this or else $f(x) < f(x) + \epsilon \leq f(x_i)$ and the proof would be the same in each case. Fix f(x) = f