

## Universidade Federal do Rio Grande do Norte Centro de Ensino Superior do Seridó Departamento de Computação e Tecnologia Prof. Dr. Francisco Márcio Barboza



## Avaliação 01 de Álgebra Linear

[M] In Exercises 41 and 42, use as many columns of A as possible to construct a matrix B with the property that the equation  $B\mathbf{x} = \mathbf{0}$  has only the trivial solution. Solve  $B\mathbf{x} = \mathbf{0}$  to verify your work.

**41.** 
$$A = \begin{bmatrix} 3 & -4 & 10 & 7 & -4 \\ -5 & -3 & -7 & -11 & 15 \\ 4 & 3 & 5 & 2 & 1 \\ 8 & -7 & 23 & 4 & 15 \end{bmatrix}$$

42. 
$$A = \begin{bmatrix} 12 & 10 & -6 & 8 & 4 & -14 \\ -7 & -6 & 4 & -5 & -7 & 9 \\ 9 & 9 & -9 & 9 & 9 & -18 \\ -4 & -3 & -1 & 0 & -8 & 1 \\ 8 & 7 & -5 & 6 & 1 & -11 \end{bmatrix}$$

- 43. [M] With A and B as in Exercise 41, select a column v of A that was not used in the construction of B and determine if v is in the set spanned by the columns of B. (Describe your calculations.)
- **44.** [M] Repeat Exercise 43 with the matrices A and B from Exercise 42. Then give an explanation for what you discover, assuming that B was constructed as specified.

[M] In Exercises 37 and 38, the given matrix determines a linear transformation T. Find all  $\mathbf{x}$  such that  $T(\mathbf{x}) = \mathbf{0}$ .

37. 
$$\begin{bmatrix} 2 & 3 & 5 & -5 \\ -7 & 7 & 0 & 0 \\ -3 & 4 & 1 & 3 \\ -9 & 3 & -6 & -4 \end{bmatrix}$$
 38. 
$$\begin{bmatrix} 3 & 4 & -7 & 0 \\ 5 & -8 & 7 & 4 \\ 6 & -8 & 6 & 4 \\ 9 & -7 & -2 & 0 \end{bmatrix}$$

**39.** [M] Let 
$$\mathbf{b} = \begin{bmatrix} 8 \\ 7 \\ 5 \\ -3 \end{bmatrix}$$
 and let  $A$  be the matrix in Exercise 37.

Is **b** in the range of the transformation  $\mathbf{x} \mapsto A\mathbf{x}$ ? If so, find an **x** whose image under the transformation is **b**.

**40.** [M] Let 
$$\mathbf{b} = \begin{bmatrix} 4 \\ -4 \\ -4 \\ -7 \end{bmatrix}$$
 and let  $A$  be the matrix in Exercise 38.

Is **b** in the range of the transformation  $\mathbf{x} \mapsto A\mathbf{x}$ ? If so, find an **x** whose image under the transformation is **b**.

[M] In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps  $\mathbb{R}^5$  onto  $\mathbb{R}^5$ . Justify your answers.

37. 
$$\begin{bmatrix} -5 & 6 & -5 & -6 \\ 8 & 3 & -3 & 8 \\ 2 & 9 & 5 & -12 \\ -3 & 2 & 7 & -12 \end{bmatrix}$$
 38. 
$$\begin{bmatrix} 7 & 5 & 9 & -9 \\ 5 & 6 & 4 & -4 \\ 4 & 8 & 0 & 7 \\ -6 & -6 & 6 & 5 \end{bmatrix}$$

38. 
$$\begin{bmatrix} 7 & 5 & 9 & -9 \\ 5 & 6 & 4 & -4 \\ 4 & 8 & 0 & 7 \\ -6 & -6 & 6 & 5 \end{bmatrix}$$

40. 
$$\begin{bmatrix} 9 & 43 & 5 & 6 & -1 \\ 14 & 15 & -7 & -5 & 4 \\ -8 & -6 & 12 & -5 & -9 \\ -5 & -6 & -4 & 9 & 8 \\ 13 & 14 & 15 & 3 & 11 \end{bmatrix}$$

- 36. [M] Write the command(s) that will create a  $5 \times 6$  matrix with random entries. In what range of numbers do the entries lie? Tell how to create a  $4 \times 4$  matrix with random integer entries between -9 and 9. [Hint: If x is a random number such that 0 < x < 1, then -9.5 < 19(x .5) < 9.5.]
- 37. [M] Construct random 4 × 4 matrices A and B to test whether AB = BA. The best way to do this is to compute AB BA and check whether this difference is the zero matrix. Then test AB BA for three more pairs of random 4 × 4 matrices. Report your conclusions.
- 38. [M] Construct a random 5 × 5 matrix A and test whether (A + I)(A I) = A² I. The best way to do this is to compute (A + I)(A I) (A² I) and verify that this difference is the zero matrix. Do this for three random matrices. Then test (A + B)(A B) = A² B² the same way for three pairs of random 4 × 4 matrices. Report your conclusions.

**31.** [M] Consider the heat plate in the following figure (refer to Exercise 33 in Section 1.1).



The solution to the steady-state heat flow problem for this plate is approximated by the solution to the equation  $A\mathbf{x} = \mathbf{b}$ , where  $\mathbf{b} = (5, 15, 0, 10, 0, 10, 20, 30)$  and

$$A = \begin{bmatrix} 4 & -1 & -1 & & & & & \\ -1 & 4 & 0 & -1 & & & & \\ -1 & 0 & 4 & -1 & -1 & & & & \\ & -1 & -1 & 4 & 0 & -1 & & & \\ & & -1 & 0 & 4 & -1 & -1 & & \\ & & & -1 & -1 & 4 & 0 & -1 \\ & & & & -1 & -1 & 4 \end{bmatrix}$$

**WEB** 

The missing entries in A are zeros. The nonzero entries of A lie within a band along the main diagonal. Such band matrices occur in a variety of applications and often are extremely large (with thousands of rows and columns but relatively narrow bands).

a. Use the method in Example 2 to construct an LU factorization of A, and note that both factors are band matrices (with two nonzero diagonals below or above the main diagonal). Compute LU - A to check your work.

- b. Use the LU factorization to solve  $A\mathbf{x} = \mathbf{b}$ .
- c. Obtain  $A^{-1}$  and note that  $A^{-1}$  is a dense matrix with no band structure. When A is large, L and U can be stored in much less space than  $A^{-1}$ . This fact is another reason for preferring the LU factorization of A to  $A^{-1}$  itself.
- 32. [M] The band matrix A shown below can be used to estimate the unsteady conduction of heat in a rod when the temperatures at points  $p_1, \ldots, p_4$  on the rod change with time.<sup>2</sup>



The constant C in the matrix depends on the physical nature of the rod, the distance  $\Delta x$  between the points on the rod, and the length of time  $\Delta t$  between successive temperature measurements. Suppose that for k = 0, 1, 2, ..., a vector  $\mathbf{t}_k$  in  $\mathbb{R}^4$  lists the temperatures at time  $k \Delta t$ . If the two ends of the rod are maintained at  $0^\circ$ , then the temperature vectors satisfy the equation  $A\mathbf{t}_{k+1} = \mathbf{t}_k$  (k = 0, 1, ...), where

$$A = \begin{bmatrix} (1+2C) & -C \\ -C & (1+2C) & -C \\ & -C & (1+2C) & -C \\ & & -C & (1+2C) \end{bmatrix}$$

- a. Find the LU factorization of A when C=1. A matrix such as A with three nonzero diagonals is called a *tridiagonal matrix*. The L and U factors are *bidiagonal matrices*.
- b. Suppose C = 1 and  $\mathbf{t}_0 = (10, 15, 15, 10)^T$ . Use the LU factorization of A to find the temperature distributions  $\mathbf{t}_1$ ,  $\mathbf{t}_2$ ,  $\mathbf{t}_3$ , and  $\mathbf{t}_4$ .