Final Review

做 CS编程辅 Instructions on the Final Den Boo

Time: 2:00pm - 4:00pm 24-Apr-2023.

Location: NRE 2-001

Scope: All materials.

- tbook, lecture notes, assignments and solutions to the exam. E-1. The exam is open-book versions of the above m Lease be aware of the University of Alberta's Code for Student Behaviour and complete dependently.
- 2. You may also bring a no
- 3. Show your work by prov on calculations and reasoning unless mentioned otherwise.
- 4. A Fourier transform table, properties of Fourier transform, and commonly used formulas will be provided.
- 5. One-card (or other photo ID) is required for identification. Please put your ID on the desk before the exam begins.

Course Material Overview

sed of this earnay effect le exbook for Arther information (Please focus on lecture note

Chapter 1 Introduction

- Section 1.1 Communication System Structure CS @ 163.com
- **Section 1.2** Applications (Haykin & Moher 1.1, 1.2)
- Section 1.3 Primary Resources and Operational Requirements (Haykin & Moher 1.3)
- Section 1.4 Underprining The prids and Revaled Topics (Haykin & Moher 1.4)

Chapter 2 Fourier Representation of Signals and Systems - Review

- Section 2.1 Fourier Transform (Haykin & Moher 2.1)
- Section 2.2 Properties of Fourier Transform (Haykin & Moner 2.2)
- Section 2.3 Fourier Series and Fourier Transform of Periodic Signals (Haykin & Moher 2.4 and 2.5)
- Section 2.4 Transmission of Signals through Linear Time-Invariant Systems (Haykin & Moher 2.6 partial)
- **Section 2.5** Filters (Haykin & Moher 2.7 partial)
- Section 2.6 Energy Spectral Density and Autocorrelation Function for Energy Signals (Haykin & Moher 2.8 partial)
- Section 2.7 Power Spectral Density and Autocorrelation Function for Power Signal (Haykin & Moher 2.9)

Chapter 3 Amplitude Modulation

- Section 3.1 Fundamentals of AM and Conventional AM (Haykin & Moher 3.1, 3.2)
- Section 3.2 Double Sideband-Suppressed Carrier Modulation (Haykin & Moher 3.3, 3.4)
- **Section 3.3** Quadrature-Carrier Multiplexing(Haykin & Moher 3.5)
- **Section 3.4** Single Sideband Modulation (Haykin & Moher 3.6)

Section 3.5 Vestige Sideband Modulation (Haykin & Moher 3.7 partial)

Chapter 4 Angle Modulation Section 4.1 Fundamental Theories of Angle Modulation (Haykin & Moher 4.1) **Section 4.2** Properties of Angle Modulation (Haykin & Moher 4.2, 4.3) Section 4.3 Spec **a** aykin & Moher 4.4, 4.5, 4.6) on of FM (Haykin & Moher 4.7,4.8 partial) Section 4.4 Gen Chapter 5 Pulse Modu Section 5.1 Sam & Moher 5.1) Section 5.2 Puls n (Haykin & Moher 5.2 partial) **Section 5.3** Pulse-Position Modulation (Haykin & Moher 5.3) **Section 5.4** Time-Division Multiplexing (Haykin & Moher 5.10 partial) Section 5.5 Quantization, Transition from Analog to Ogital Symmunications (Haykin & Moher 5.5 and 5.6 partial) Section 5.6 Pulse-Code Modulation (Haykin & Moher 5.4 and 5.6) Section 5.7 Delta Modulation (Haykin & Moher 5.4 and 5.6) Exam Help Section 5.8 Differential Pulse-Code Modulation (Haykin & Moher 5.8) Section 5.9 Linear Codes (Haykin & Moher 5.9) tutorcs@163.com Chapter 6 Digital Communications Section 6.1 Source Coding / Decoding Section 6.2 Change Coding / Decoding 89476 Section 6.3 Binary shift keying modulation Section 6.4 M-ary shift keying modulation Section 6.5 Constitution Sesign tutores.com Section 6.6 Detection Design

	Final Examination
誾	Tubr CS

Instructions:

WeChat: cstutorcs

- 1. Print your name and ID number on your answer.
- 2. Your online submission is accepted.
- 3. Please follow the definitions of basic functions in the lecture notes and formula sheet posted on a Class eClass.
- 4. Show your work.

5. Cheating is an academic offense. The University of Alberta is committed to the highest standards

of academic integrity and honesty.

https://tutorcs.com

Question	Mark Earned	Full Mark
#1		10
# 2		15
# 3		15
# 4		15
# 5		15
# 6		15
# 7		15
Total		100

Problem 1. (10 points) (a) Use the frequency-shifting property of Fourier Transform to show that if $g(t) \rightleftharpoons$

WeChat: cstutorcs

Assignment Project Exam Help

(b) Use (a) to find the time-domain representation and the energy of the signal shown in the following figure.

https://tutorcs.com

Problem 2. (15 points) A message $m_0(t)$ is given as follows:

The signal first passes through an ideal low pass filter those Statement 100 the ideal low pass filter is called m(t).

(a) The upper single-modulated wave s(t) of s(t). Can m(t) be answer.

modulation (USSB AM) is used for m(t) to produce the quency is $\underline{300}$ Hz. Please sketch the frequency spectrum y from s(t) using coherent detection? Please explain your

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

(b)If the double sideband-suppressed carrier (DSB-SC) modulation is used for m(t) to produce the modulated wave s(t) where the carrier frequency is $\underline{30}$ Hz. Please sketch the frequency spectrum of s(t). Can m(t) be demodulated correctly from s(t) using coherent detection? Please explain your answer.

(b) For the modulation $k_f = 0.1$, what is the maximum frequency deviation and the maximum phase deviation of the modulated wave?

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

(c) Consider the FM modulation of a signal whose bandwidth is $W=10^3$ Hz. The carrier frequency is $f_c=10^6$ Hz and the maximum frequency deviation is $\Delta f_{\rm max}=200$ Hz. Use Carson's rule to approximate the bandwidth of the modulated FM wave.

Problem 4. (15 points) The signal $g(t) = \sin(2\pi t)$ is uniformly sampled where the sampling interval is

 $T_s = 0.2$ second.

(a) The instantaneous tampled signal is passed through an idea to passed through the pass

WeChat: cstutorcs

(b) Pulse-coded modulation (PCM) is used for this signal g(t) with the following 4-level quantizer ASS1gnment Project Exam Help

Email: t = 0.75 if $0.5 \le m \le 1$ 0.25 if $0 \le m < 0.5$ $0.5 \le m \le 1$ 0.25 if $0 \le m < 0.5$ $0.5 \le m \le 1$ $0.5 \le 1$ $0.5 \le m \le 1$ $0.5 \ge 1$

Find the binary PCM colod equence via $\frac{1}{3}$ and $\frac{1}{3}$ for the first 5 samples starting from t = 0..

https://tutorcs.com

(c) If PCM is used for this signal g(t) with a <u>16-level</u> quantizer, what is the minimum permissible bit rate and its corresponding bit interval?

Problem 5. (15 points) A message sample has the following probability density function (PDF):

程序代写代版 (CS)编程辅导 $m \in [0,1)$ otherwise

(a) Design the 2-level

r the message sample.

WeChat: cstutorcs

Assignment Project Exam Help

(b) Calculate the mean squared error (MSE) of the quantizer you designed in (a).

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

(c) Find another 2-level quantizer with a lower MSE and justify your answer.

Problem 6. (15 points) A random source produces X with alphabet $\mathcal{A} = \{a, b, c, d, e, f\}$ with the follow-

ing probabilities:

(a) Find the entropy of

P[X = e] = 0.12, P[X = f] = 0.3.

hat: cstutorcs

(b) Consider the following source coding:

Element a

source coding and why?

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com
(c) Design a Huffman coding scheme for this source. What is the the average number of bits per symbol?

Problem 7. (15 points) Consider a 5-point constellation: $A = \{0, -2, 2, -j, j\}$.

(a) Find the average transmit energy and the minimum distance of this constellation 程序代与代数 CS编程辅导

(b) The minimum distance rule is used for detection. If the received signal is 0.5 + 0.4j, what is the detection result? Justify your answer.

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

(c) If the minimum distance rule is used for describin white is the detection region for the constellation element 2 in A? (Simplify your result when possible.)

https://tutorcs.com

程序代写成做识码编辑编品

1. Linearity: $c_1g_1(t) + c_2g_2(t) \rightleftharpoons c_1G_1(f) + c_2G_2(f)$

2. Time scaling: $g(t) \rightleftharpoons G(f)$ then $g(at) \rightleftharpoons \frac{1}{|a|}G(\frac{f}{a})$ (Dilation)

 \blacksquare 3. Conjugation: $g^*(t) \rightleftharpoons G^*(-f)$

Table 1: Basic Fourier transform p

Time-domain function q(t)

 $2W \operatorname{sinc}(2Wt)$

 $\cos(2\pi f_c t)$

4. **Duality**: $g(t) \rightleftharpoons G(f)$ then $G(t) \rightleftharpoons g(-f)$

5. Time shifting: $q(t-t_0) \rightleftharpoons e^{-j2\pi f t_0} G(f)$ $\delta(f)$ We hat 6 (Friquency starting: $g(t) \exp(j2\pi f_c t) \Rightarrow G(f - f_c)$ for any constant f_c . $\delta(t)$

 $\frac{1}{2}\delta(f) + \frac{1}{i2\pi f}$ u(t) $\operatorname{rect}\left(\frac{t}{T}\right)$ $T\operatorname{sinc}(fT)$

rect (

Fourier transform

7. Areas under q(t) and G(f): Assignment Project Exam Help g(0) and g'(0) g'(0)

 $\frac{T}{2}$ sinc² $\left(\frac{fT}{2}\right)$ $\Delta\left(\frac{t}{T}\right)$ $e^{-at}u(t)$ (a>0) $\frac{1}{a+j2\pi f}$

 $e^{-a|t|}$ (a>0) $\frac{2a}{a^2 + (2\pi f)^2}$ $\sin(2\pi f_c t)$

Email: tutores with 103. Com $\frac{d}{dt}g(t) \rightleftharpoons j2\pi fG(f)$ and $\int_{-\infty}^{\infty} g(\tau)d\tau \rightleftharpoons \frac{1}{j2\pi f}G(f) + \frac{1}{2}G(0)\delta(f)$

 $\frac{\frac{1}{2j}[\delta(f-f_c)-\delta(f-f_c)]}{1_{\{f_c\},\{f_c\}}} 493.89 \text{ Myton and Modulation:}$

$$g_1(t) * g_2(t) \rightleftharpoons G_1(f) \cdot G_2(f)$$
 and $g_1(t) \cdot g_2(t) \rightleftharpoons G_1(f) * G_2(f)$

https://tutopesyeopprem:

$$E_g = \int_{-\infty}^{+\infty} |g(t)|^2 dt = \int_{-\infty}^{+\infty} |G(f)|^2 df$$