

SÍLABO CONCRETO ARMADO II

ÁREA CURRICULAR: TECNOLOGÍA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-I1.3 Código de la asignatura : 09028609040

1.4Ciclo:IX1.5Créditos:041.6Horas semanales totales:10

1.6.1 Horas lectivas (Total, Teoría, Práctica) 5 (T=3, P=2, L=0))

1.6.2 Horas de trabajo independiente : 5

1.7 Condición del curso : Obligatorio

1.8 Requisito(s)1.9 Docentes1.9 Docentes<

II. SUMILLA

El curso es de naturaleza teórico-práctico permite al estudiante: Conocer los conceptos y principios básicos para diseñar estructuras complejas, aplicando el Código ACI y La NTE-060.

El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Diseño de Cimentaciones, II. Muros de contención y losas armadas en dos sentidos. III. Diseño de muros de corte vigas en torsión y IV. Diseño de escaleras.

III. COMPETENCIAS Y SUS COMPONENTESCOMPRENDIDOS EN LA ASIGNATURA

3.1 COMPETENCIAS

- Aplica conceptos y métodos de los códigos de la ingeniería estructural.
- Analiza y diseñar estructuras de concreto armado.
- Utiliza conceptos teóricos prácticos y las especificaciones dados en los códigos estructurales conocidos.
- Maneja herramientas computacionales para el procesamiento de la información.

3.2 COMPONENTES

Capacidades

- Analiza y diseña elementos estructurales de cimentación.
- Analiza y diseña muros de contención y losas armadas en dos sentidos.
- Aprende a diseñar muros de corte y vigas para resistir torsión.
- Diseña escaleras longitudinales y transversales.

Contenidos actitudinales

- Emplea fórmulas para diseñar zapatas aisladas, cimentaciones corridas, zapatas combinadas, y zapatas conectadas. Aplica conceptos teóricos para resolver problemas.
- Emplea fórmulas para analizar muros de contención de gravedad y de tipo voladizo. Diseñar losas armadas en 2D. Aplica conceptos teóricos para resolver problemas.
- Emplea fórmulas para diseñar muros de corte y diseñar vigas para resistir torsión. Aplica conceptos teóricos para resolver problemas.
- Emplea fórmulas para analizar y diseñar escaleras longitudinales y transversales. Aplica conceptos teóricos para resolver problemas.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I: DISEÑO DE CIMENTACIONES.

CAPACIDAD: Analiza y diseña elementos estructurales de cimentación.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
1	Primera sesión: Cimentaciones. Consideraciones generales. Tipos de cimentaciones. Presión efectiva. Diseño de zapatas de muros. Segunda sesión: Ejercicios prácticos	 Aprende a diseñar zapatas aisladas céntricas. Investiga las etapas del concreto. 	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5
2	Primera sesión: Diseño de zapatas aisladas y concéntricas. Dados de apoyo. Detallado. Segunda sesión: Ejercicios prácticos	- Sabe diseñar zapatas excéntricas. Conoce las cuantías de refuerzo.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5
3	Primera sesión: Cimentación en límite de propiedad: Cimentación conectada, dimensionamiento y análisis. Diseño de zapata y viga de conexión. Segunda sesión: Ejercicios prácticos y detallados.	- Sabe diseñar zapatas combinadas.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5
4	Primera sesión: Cimentación en límite de propiedad: Cimentación combinada, dimensionamiento y análisis. Diseño de la losa y vigas transversales. Segunda sesión: Ejercicios prácticos y detallados	- Diseña losas macizas en una dirección.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5

UNIDAD II: DISEÑO DE MUROS DE CONTENCION Y LOSAS ARMADAS EN DOS SENTIDOS.

CAPACIDAD: Analiza y diseña muros de contención y losas armadas en dos sentidos.

5	Primera sesión: Muros de contención: Empuje de suelos, estabilidad de muro y juntas. Estabilidad de muros de gravedad, análisis y diseño de muros de contención de concreto armado en voladizo Segunda sesión: Ejercicios prácticos y detallados.	- Aprende a diseñar muros de contención.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal: 2H	5	5
6	Primera sesión: Análisis y diseño de muros de contención con contrafuertes. Segunda sesión: Ejercicios prácticos y detallados.	- Aprende a diseñar muros de contención con contrafuertes.	Lectivas(L): Introducción al tema – 1H Desarrollo del tema – 2H Ejercicios en aula – 2H De trabajo Independiente (T.I): Resolución tareas – 1H Trabajo de investigación – 2H Trabajo grupal: 2H	5	5
7	Primera sesión: Diseño de losas armadas en dos sentidos: Dimensionamiento de los espesores, aspectos generales. Análisis: método directo y de pórtico equivalente. Segunda sesión: Diseño de losas armadas en dos sentidos con vigas y sin vigas. Ejercicios prácticos y detallados.	- Aprende diseñar losas 2D. - Sabe diseñar losas 2D con vigas y sin vigas.	Lectivas(L): Introducción al tema – 1H Desarrollo del tema – 2H Ejercicios en aula – 2H De trabajo Independiente (T.I): Resolución tareas – 1H Trabajo de investigación – 2H Trabajo grupal: 2H	5	5
8	Examen parcial				

UNIDAD III: DISEÑO DE MUROS DE CORTE, VIGAS EN TORSIÓN.

CAPACIDAD: Aprende a diseñar muros de corte y vigas para resistir torsión.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO	RAS T.I.
9	Primera sesión: Diseño de muros de corte: generalidades, muros de sótanos y muros de corte. Segunda sesión: Ejercicios prácticos y detallados	- Sabe diseñar muros de corte.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	6
10	Primera sesión: Diseño de muros por el método simplificado, y por corte y flexión. Segunda sesión: Ejercicios prácticos y detallados	- Aplica las especificaciones del ACI para muros de corte.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5
11	Primera sesión: Diseño de vigas Ejercicios prácticos y detallados	- Sabe diseñar vigas para resistir torsión.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas- 1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5
12	Primera sesión: Diseño de viga con torsión y cortante Segunda sesión: Ejercicios prácticos y detallados	- Sabe diseñar secciones de viga para cortante y torsión.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas -1H Trabajo de investigación - 2H Trabajo grupal - 2H	5	5

UNIDAD IV: DISEÑO DE ESCALERAS.

CAPACIDAD: Diseña escaleras longitudinales y transversales.

13	Primera sesión: Diseño de escaleras: Generalidades, escaleras longitudinales. Segunda sesión: Ejercicios prácticos y detallados	- Sabe diseñar escaleras longitudinales.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema- 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas -1H Trabajo de investigación - 2H Trabajo grupal- 2H	5	5
14	Primera sesión: Diseño de escaleras: generalidades, escaleras autoportantes Segunda sesión: Ejercicios prácticos y detallados	- Aprende a diseñar escaleras de varios tipos.	Lectivas(L): Introducción al tema - 1H Desarrollo del tema- 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal- 2H	5	5
15	Primera sesión: Diseño de escaleras: Generalidades, escaleras helicoidales Segunda sesión: Ejercicios prácticos y detallados	- Sabe diseñar escaleras transversales.	Lectivas(L): Introducción al tema -1H Desarrollo del tema - 2H Ejercicios en aula - 2H De trabajo Independiente (T.I): Resolución tareas - 1H Trabajo de investigación - 2H Trabajo grupal- 2H	5	5
16	Examen final			•	•
17	Entrega de promedios finales y acta del curso				

V. ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

- Equipos: computadora, ecran, proyector de multimedia.
- Materiales: Separatas, pizarra, plumones.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF= 0.30*PE+0.30*EP+0.40*EF PE= (P1+P2+P3+P4) /4

Donde:

PF : Promedio final PE = Promedio de evaluaciones

P1 : Práctica calificada 1 EP = Examen parcial P2 : Práctica calificada 2 EF = Examen Final

P3 : Práctica calificada 3 P4 : Práctica calificada 4

VIII FUENTES DE CONSULTA

- Nilson, A. (2011). Diseño de Estructuras de Concreto. Colombia: Ed. Mc Graw Hill.

- Nawy E (.2010). Concreto Reforzado, un enfoque básico. México: Ed. Prentice Hall.
- Park R. & Paulay.T. (2008). Estructuras de Concreto Reforzado. México: Ed. Limusa
- Harmsen. T. (2009). Diseño de Estructuras de Concreto Armado. Perú: Ed. PUCP

IX APORTE DE LA ASIGNATURA AL LOGRO DE RESULTADOS

El aporte de la asignatura al logro de los Resultados del Estudiante (*Student Outcomes*) en la formación del graduado en Ingeniería [jcd1]de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	K
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	R
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	R
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	R
J	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	