Implementing an atomic bit

SLR206, P1, 2021

The space of registers

- Nb of writers and readers: from 1W1R to NWNR
- Size of the value set: from binary to multi-valued
- Safety properties: safe, regular, atomic

All registers are (computationally) equivalent!

Transformations

From 1W1R binary safe to 1WNR multi-valued atomic

- i. From safe to regular (1W1R)
- II. From one-reader to multiple-reader (regular binary or multi-valued)
- III. From binary to multi-valued (1WNR regular)
- IV. From 1W1R regular to 1W1R atomic (unbounded)
- v. From 1W1R atomic to 1WNR atomic (unbounded)
 - ✓ Can be turned into bounded using a bounded (in n) number of signaling registers

This class

- The problem: implement a binary 1W1R atomic register (atomic bit) from binary 1W1R safe ones (safe bits)
 - √ From a few safe bits only
 - ✓ No unbounded multi-valued registers
 - ✓ No ever-growing timestamps

An optimal solution

- No sequence numbers?
- Bounded number of safe bits, O(1)?
- Bounded number of base actions, O(1)?

Can we do it if the reader does not write?

Safe bit to regular bit? Easy

the writer is allowed only to change the value

Can we get an atomic bit this way?

Safe to atomic: Impossible if the reader does not write (bounded # of regular bits)

Proof sketch (by contradiction):

- Suppose only the writer executes writes on the base (regular) bits (the reader only reads the base objects).
- Every write operation W(1) is a sequence of writes actions w₁, ...w_k on base regular bits
 - ✓ Corresponds to the sequence of shared-memory states $s_0, s_1, ..., s_k$ (defined for sequential runs)

Proof (contd): digests

- There are only finitely many states!
 (bounded # of base registers)
- Each finite (arbitrarily long) sequence s₀,s₁,...,s_k of states defines a bounded digest d₀,d₁,...,d_m
 - \checkmark d₀=s₀, d_m=s_k (same global state transition)
 - \checkmark d_i=d_i => i=j (all digest elements are distinct)
 - ✓ for all (d_i, d_{i+1}) , exists (s_j, s_{j+1}) such that $s_j = d_i$ and $s_{j+1} = d_{i+1}$ 7,4,8,4,2,8,3 => 7,4,8,3
- Each write operation "looks" like its digest
- There are only finitely many digests!

Proof (contd.): counter-example

Consider a run with infinitely many alternating writes:

```
W_1(1),W(0),W_2(1),... (no reads)
```

- ✓ Writes W₁,W₂,... give an infinite sequence of digests D₁,D₂,...
- At least one digest D=d₀,d₁,...,d_m appears infinitely often in D₁,D₂,...
 ✓Why?
- We can amend our run with a sequence of reads $R_0, R_1, ..., R_m$ (in that order), each R_i "sees" state d_{m-i}

✓ How?

Quiz 1

- Explain why there can be only finitely many digests
- Explain why in the construction of the proof there is at least one digests that appears infinitely often
- Show how to construct the sequence of reads operations $R_0, R_1, ..., R_m$ (in that order) overlapping with $W_1(1), W(0), W_2(1), ...$, where each R_i "sees" state d_{m-i}

Proof (contd.): the "switch"

- R₀ "sees" d_m and, thus, returns 1
 ✓ Could have happened right after W(1)
- R_m "sees" d₀ and, thus, returns 0
 ✓ Could have happened right before W(1)
- ⇒ There exists i such that R_i returns 1 and R_{i+1} returns 0 (by induction on i=0,...,m)

Proof (contd.): contradiction

 The (sequential) execution of R_i and R_{i+1} is indistinguishable (to the reader) from a concurrent one

New-old inversion!

The reader must write

- And the writer must read
- But how the writer would tell what it read?
 - √The writer needs at least two bits!
 - ✓Why?
- Suppose the writer writes to one bit only
 - ✓ there are exactly two digests 0,1 and 1,0
 - √ suppose infinitely many W(1) operations export digests 0,1
 - ✓ new-old inversion:

Optimal construction?

- Two bits for the writer
 - ✓ REG: for storing the current value
 - ✓ WR: for signaling to the reader
- One bit for the reader
 - ✓ RR: for signaling to the writer

Necessary, but is it also sufficient?

Evolutionary approach: Iteration 1

The reader should be able to distinguish the two cases:

✓ A new value was written: WR≠RR:

√The value is unchanged: WR=RR:

Writer:	Reader:
change REG if WR=RR then change WR	if WR≠RR then change RR val:= REG return val

Does not work: the read value does not depend on RR

Iteration 2

Return the "old" value if nothing changed (local variable val initialized to the initial value of REG)

Writer:	Reader:
change REG if WR=RR then change WR	if WR=RR then return val
ii vvii—iiii tileli change vvii	val:= REG
	return val

Counter-example 2?

r₁ reads the new value and r₂ reads the old one? Is this the case?

Counter-example 2, corrected

Does not work: a read finds WR≠RR, a subsequent read finds WR≠RR and reads an old value in REG (new-old inversion)

Iteration 3

Only change RR if needed (read REG before, because otherwise we do not fix the counter-example)

Writer:	Reader:
change REG if WR=RR then change WR	if WR=RR then return val val:= REG if WR≠RR change RR return val

Construct a counter-example?

Iteration 4

Read WR twice, if WR changed while the read is executed, return a conservative (old) value

Writer:	Reader:
change REG if WR=RR then change WR	<pre>if WR=RR then return val aux := REG if WR≠RR change RR val:= REG if WR=RR then return val return aux</pre>

Counter-example 4

Still a problem: the value stored in val can be too conservative

Solution: evaluate val again

Final solution [Tromp, 1989]

Writer protocol

Reader protocol

change REG
if WR=RR then
change WR

- (1) if WR=RR then return val
- (2) aux := REG
- (3) if WR≠RR then change RR
- (4) val :=REG
- (5) if WR=RR then return val
- (6) val := REG
- (7) return aux

Proof sketch: reading functions

A reading function π : for each complete read operation r (returning v), π (r) is a write operation w(v)

Show that for every run of the algorithm, there exists an atomic reading function π :

(A0) No read r precedes $\pi(r)$

No read returns a value not yet written

(A1) w precedes $r \Rightarrow w = \pi(r)$ or w precedes $\pi(r)$

No read obtains an overwritten value

(A2) r1 precedes r2 => π (r2) does not precede π (r1)

No new/old inversion

A run is linearizable iff an atomic reading function exists (Chapter 4.2.4 of the lecture notes)

Proof: constructing π

Let r return a value v

Let pr be the read of REG that got the value of r:

- If r returns in line 7, pr is the read action in line 2 of r
- If r returns in line 5, pr is is the read action in line 4
- If r returns in line 1, pr is the read in line 4 or 6 of some previous r' (depending on how r' returns)

Let ϕ r be the last write action on REG that precedes or is concurrent to ρ r and writes the value returned by r (and ρ r)

Define $\pi(r)$ as the write operation that contains ϕr

Proof: show that π is atomic

• A0 is easy: by construction of π , π (r) precedes or is concurrent to r

A1? A2?

Hint: assume the contrary and come to absurdum

- A complete proof in lecture notes (Chapter 7)
- R. Guerraoui, Vukolic. A Scalable and Oblivious Atomicity Assertion.
 CONCUR 2008

Quiz 2

- What if we change the order of lines 2 and 3 in Iteration 2 (Slide 16)?
- Find a mistake in the "counter-example" of Slide 17
- Find a counter-example to the algorithm in Slide 19
- What if the reader returns the value of aux (instead of val) in the first line of Iteration 4 (slide 21)?