

Interlock PCB Introduction

- Generic Interlock PCB presented in September 2021
 - Should be able to monitor resistor type (e.g. NTC) or voltage type signal
 - Can trace source of input failure
 - Should send active low/high interlock signals to device
 - Self-running, no software needed
- Apply to thermal cycle crate
 - Low or high (preset) voltage thresholds trip for Humidity, Temperature, Flow, Door, or LV → board shuts down Chiller, LV, or HV
 - Protects equipment used for the cycle crate and boards inside of it by regulating conditions

COMPONENT	NUMBER LAUNCHED
0Ω resistor	1
10kΩ resistor	3
50kΩ resistor	3
0.1F capacitor	2
Op amp	1

TOTAL MONEY LOST:

0.00000197% of Total Laboratory Costs (as of 2019)

- Ensured all LEDs on PCB fired at correct times
 - Determined U2 (impacting LV0 and LV1) was dead and replaced component
- Documented magnetic proximity switch range of resistance
 - side with the two holes is Side A
 - long side closest to Side A's holes is Side B
 - the short side to the right of Side B when Side A is placed on a flat surface is Side C
 - all other sides are -Side A, -Side B, and -Side C (as they lie opposite to the original sides)
 - axis of the ruler is The Axis
 - first switch has no wires

first switch

First switch has Side A ⊥ to The Axis and Side A at 0mm

Side facing first switch	Activation distance
Α	0.8mm
В	0.2mm
С	N/A
-A	0.4mm
-В	0.2mm
-C	0.8mm

First switch has Side B ⊥ to The Axis and Side B at 0mm

Side facing first switch	Activation distance
Α	0.15mm
В	N/A
С	N/A
-A	N/A
-В	N/A
-C	N/A

First switch has Side C ⊥ to The Axis and Side C at 0mm

Side facing first switch	Activation distance
Α	0.1mm
В	N/A
С	N/A
-A	0.2mm
-B	0.3mm
-C	0.85mm

Ex: First switch has Side A 1 to The Axis and Side A at 0mm

First switch has Side A ⊥ to The Axis and -Side A at 0mm

Side facing first switch	Activation distance
Α	0.6mm
В	0.1mm
С	0.1mm
-A	1.25mm
-В	1.1mm
-C	0.6mm

First switch has Side B ⊥ to The Axis and -Side B at 0mm

Side facing first switch	Activation distance
Α	N/A
В	0.1mm
С	0mm
-A	1.3mm
-В	1.2mm
-C	N/A

First switch has Side C ⊥ to The Axis and -Side C at 0mm

Side facing first switch	Activation distance
Α	N/A
В	N/A
С	N/A
-A	N/A
-В	N/A
-C	N/A

- Determined NTC3 potentiometers were turning together (vs. independently) when board is powered
 - U9 was not working correctly, and was subsequently replaced
 - Determined U2 (impacting LV0 and LV1) was dead and replaced component
- Created models for NTC, HUM, and FLOW based on datasheets
- Tested all sensors at default room conditions
 - HUM1 and HUM2 were 35.16% and 34.84% respectively
 - NTC1, NTC2, NTC3, and NTC4 were 22.44°C, 22.57°C, 22.81°C, and 22.57°C respectively
- Connected PCB to the thermal cycle crate and collected HUM data

- Collected NTC and FLOW data
- Constructed power supply connections for the PCB
 - LV is not shutting off when board is red (i.e. threshold tripped)
 - Testing connections to troubleshoot
- Began troubleshooting how to connect PCB to chiller control
 - Necessary parts determined
- Will itemize components for the three other boards planned for after this PCB is tested

	FIT	ACTUAL	%ERROR
R0 (Ω)	9356.944	10000	7.993316
B (K)	3665.546	3984	6.43056

