MATH 2111 Matrix Algebra and Applications

Homework-9: Due 11/25/2022 at 11:59pm HKT

1. (1 point) Find the dot product of

$$\vec{x} = \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$.

$$\vec{x} \cdot \vec{y} = \underline{\hspace{1cm}}$$

Correct Answers:

• 7

2. (1 point) Let
$$x = \begin{bmatrix} 4 \\ 2 \\ -5 \\ -5 \end{bmatrix}$$
.

Find the length of x and the unit vector u in the direction of x.

$$||x|| = \underline{\qquad},$$

$$u = \begin{bmatrix} \underline{\qquad}, \\ \underline{\qquad} \end{bmatrix}.$$

- - 8.36660026534076 • 0.478091443733757
 - 0.239045721866879
 - -0.597614304667197
 - -0.597614304667197
- **3.** (1 point) Find the value of k for which the vectors

$$\begin{bmatrix} 5 \\ -3 \\ -4 \\ -2 \end{bmatrix} \text{ and } \begin{bmatrix} -3 \\ 3 \\ -4 \\ k \end{bmatrix}$$

are orthogonal.

$$k = \underline{\hspace{1cm}}$$
.

Correct Answers:

4. (1 point) Let $\{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4, \vec{e}_5, \vec{e}_6\}$ be the standard basis in \mathbb{R}^6 . Find the length of the vector $\vec{x} = -2\vec{e}_1 - 4\vec{e}_2 + 3\vec{e}_3 +$ $4\vec{e}_4 - 3\vec{e}_5 - 4\vec{e}_6$.

$$\|\vec{x}\| = \underline{\qquad}$$
. *Correct Answers:*

• sqrt(70)

5. (2 points) All vectors are in \mathbb{R}^n .

Check the true statements below:

- A. If $||u||^2 + ||v||^2 = ||u + v||^2$, then u and v are orthog-
- B. $u \cdot v v \cdot u = 0$.
- C. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
- D. For any scalar c, ||cv|| = c||v||.
- E. If x is orthogonal to every vector in a subspace W, then *x* is in W^{\perp} .

Correct Answers:

ABCE

6. (2 points) Let W be the set of all vectors
$$\begin{bmatrix} x \\ y \\ x + y \end{bmatrix}$$
 with

x and y real.

Determine whether each of the following vectors is in W^{\perp} .

$$\begin{array}{c}
? 1. \ v = \begin{bmatrix} 9 \\ 0 \\ -1 \\ -2 \end{bmatrix} \\
? 2. \ v = \begin{bmatrix} 2 \\ -2 \\ 5 \\ -5 \end{bmatrix}$$

Correct Answers:

- NO
- YES
- YES

7. (1 point) Given
$$v = \begin{bmatrix} 18 \\ 28 \\ -4 \\ 62 \end{bmatrix}$$
, find the linear combination

for
$$v$$
 in the subspace W spanned by $u_1 = \begin{bmatrix} 4 \\ -2 \\ -2 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} -2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$

and
$$u_3 = \begin{bmatrix} -6 \\ -10 \\ -2 \\ -20 \end{bmatrix}$$
. Note that u_1 , u_2 and u_3 are orthogonal.

$$v = \underline{\qquad} u_1 + \underline{\qquad} u_2 + \underline{\qquad} u_3$$
Correct Answers:

- 2
- _ -

8. (1 point) Given
$$v = \begin{bmatrix} -9 \\ 3 \\ -9 \\ -2 \end{bmatrix}$$
, find the linear combination

for
$$v$$
 in the subspace W spanned by $u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 1 \\ 3 \\ 5 \\ 4 \end{bmatrix}$,

$$v = \underline{\qquad} u_1 + \underline{\qquad} u_2 + \underline{\qquad} u_3 + \underline{\qquad} u_4$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Correct Answers:

- -0.666666666666667
- -1.03921568627451
- -0.663101604278075
- -1.81818181818182
- **9.** (1 point) Suppose v_1 , v_2 , v_3 is an orthogonal set of vectors in \mathbb{R}^5 with

$$v_1 \cdot v_1 = 26, v_2 \cdot v_2 = 30, v_3 \cdot v_3 = 1.$$

Let w be a vector in Span (v_1, v_2, v_3) such that $w \cdot v_1 = -26, w \cdot v_2 = -60, w \cdot v_3 = 2$.

Then
$$w = v_1 + v_2 + v_3$$
.

Correct Answers:

- -
- −2
- 2