1. (a) Proof. Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that $\frac{1}{2N} < \epsilon$. Note that $\int_0^1 f_n(x) dx = \frac{n-1}{2n}$ and $f_m(x) \geq f_n(x)$ if m > n. So, for $m, n \geq N$, where $m \geq n$,

$$\int_0^1 |f_m(x) - f_n(x)| dx = \int_0^1 f_m(x) dx - \int_0^1 f_n(x) dx$$

$$= \frac{m - n}{2mn}$$

$$= \frac{m - n}{2(n + (m - n))n}$$

$$\leq \frac{n - m}{2(m - n)n}$$

$$= \frac{1}{2n}$$

$$\leq \frac{1}{2N}$$

$$\leq \epsilon$$

So (f_n) is Cauchy in (C[0,1],d).

To show that (f_n) diverges in (C[0,1],d), we first show that (f_n) converges to the step function

$$g(x) = \begin{cases} 0, & 0 \le x < 1/2 \\ 1, & 1/2 \le x \le 1 \end{cases}$$

in $(\mathbb{R}^{[0,1]}, d)$, where $\mathbb{R}^{[0,1]}$ is the set of functions from $[0,1] \to \mathbb{R}$.

Proof. Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that $\frac{1}{2N} < \epsilon$. Since $g(x) \ge f_n(x)$ for all $n \in \mathbb{N}$, $d(f_n, g) = \int_0^1 g(x) dx - \int_0^1 f_n(x) dx$. $= \frac{1}{2} - \frac{n-1}{2n} = \frac{1}{2n} \le \frac{1}{2N} < \epsilon$.

Since $g \notin C[0,1]$ (the step function is discontinuous at x=1/2), by uniqueness of convergence, (f_n) does not converge in (C[0,1],d).

(b) *Proof.* Choose $\epsilon = 1/2$. Let $N \in \mathbb{N}$. Choose $m, n \in \mathbb{N}$ such that m = 2n > n > N. Then, for $x \in \left(\frac{1}{2}, \frac{1}{2} + \frac{1}{m}\right]$,

$$|f_m(x) - f_n(x)| = mx - \frac{m}{2} - \left(nx - \frac{n}{2}\right)$$
$$= 2nx - n - nx + \frac{n}{2}$$
$$= nx - \frac{n}{2}$$

so $|f_m(\frac{1}{2} + \frac{1}{m}) - f_n(\frac{1}{2} + \frac{1}{m})| = |f_m(\frac{1}{2} + \frac{1}{2n}) - f_n(\frac{1}{2} + \frac{1}{2n})| = \frac{1}{2}$. Thus, $\sup_{x \in [0,1]} |f_m(x) - f_n(x)| \ge \frac{1}{2} = \epsilon$. So (f_n) is not Cauchy.

- 2. *Proof.* First we show d_1 is a metric.
 - (a) $d_1((x,y),(x',y')) \ge 0$ since $d_X(x,x') \ge 0$ and $d_Y(y,y') \ge 0$.
 - (b) $d_1((x,y),(x,y)) = d_X(x,x) + d_Y(y,y) = 0.$
 - (c) $d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y') = d_X(x',x) + d_Y(y',y) = d_1((x',y'),(x,y)).$
 - (d) $d_1((x,y),(x',y')) + d_1((x',y'),(x'',y'')) = d_X(x,x') + d_Y(y,y') + d_X(x',x'') + d_Y(y',y'') \ge d_X(x,x'') + d_Y(y,y'') = d_1((x,y),(x'',y''))$

Next we show d_{∞} is a metric.

- (a) $d_{\infty}((x,y),(x',y')) \ge 0$ since $d_X(x,x'),d_Y(y,y') \ge 0$.
- (b) $d_{\infty}((x,y),(x,y)) = \max\{d_X(x,x),d_Y(y,y)\} = 0.$
- (c) $d_{\infty}((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\} = \max\{d_X(x',x),d_Y(y',y)\} = d_{\infty}((x',y'),(x,y)).$
- (d) Note that if $d_X(x,x') \geq d_Y(y,y')$ and $d_X(x',x'') \geq d_Y(y',y'')$, then $L = d_\infty((x,y),(x',y')) + d_\infty((x',y'),(x'',y'')) = d_X(x,x') + d_X(x',x'') \geq d_X(x,x'')$. Similarly, if $d_Y(y,y') \geq d_X(x,x')$ and $d_Y(y',y'') \geq d_X(x,x'')$, then $L \geq d_Y(y,y'')$. If $d_X(x,x') \geq d_Y(y,y')$ and $d_Y(y',y'') \geq d_X(x',x'')$, then $L = d_X(x,x') + d_Y(y',y'') \geq d_X(x,x') + d_X(x',x'') \geq d_X(x,x'')$. Finally if $d_Y(y,y') \geq d_X(x,x')$ and $d_X(x',x'') \geq d_Y(y',y'')$, then $L = d_Y(y,y') + d_X(x',x'') \geq d_X(x,x'')$. So, we have $L \geq d_X(x,x''), d_Y(y,y'')$; that is, $L \geq \max\{d_X(x,x''), d_Y(y,y'')\} = d_\infty((x,y),(x'',y''))$.

Proof. (\to) Let $S \subseteq (X \times Y)$ be open with respect to d_1 . Let $p = (p_x, p_y) \in S$. Then, there is an $\epsilon > 0$ such that $B_{d_1}(p; \epsilon) \subseteq S$. Let $(x, y) \in B_{d_{\infty}}(p; \epsilon/2)$. Then $d_X(x, p_x), d_Y(y, p_y) \le \epsilon/2$, so $d_X(x, p_x) + d_Y(y, p_y) \le \epsilon$ and $(x, y) \in B_{d_1}(p; \epsilon)$. So $B_{d_{\infty}}(p; \epsilon/2) \subseteq B_{d_1}(p; \epsilon) \subseteq S$, so S is open with respect to d_{∞} .

 (\leftarrow) Let S be open with respect to d_{∞} . Let $p=(p_x,p_y)\in S$. Then, there is an $\epsilon>0$ such that $B_{d_{\infty}}(p;\epsilon)\subseteq S$. Let $(x,y)\in B_{d_1}(p;\epsilon)$. Then, $d_X(x,p_x)+d_Y(y,p_y)\leq \epsilon$, so $d_X(x,p_x),d_Y(y,p_y)\leq \epsilon$. So $\max\{d_X(x,p_x),d_Y(y,p_y)\}\leq \epsilon$, and $(x,y)\in B_{d_{\infty}}(p;\epsilon)$. So $B_{d_1}p;\epsilon\subseteq B_{d_{\infty}}(p;\epsilon)\subseteq S$, so S is open with respect to d_1 .