The title compound was prepared in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (200MHz, DMSO-d₆), δ (ppm): 1.23(3H, d), 2.16(3H, s), 2.84(3H, s), 2.87-2.95(2H, m), 3.03(3H, s), 3.15-3.24(2H, m), 5 3.56(1H, s), 4.78(3H, t, J=7.0 Hz), 7.13(2H, d, J=8.4 Hz), 7.25(2H, d, J=8.4 Hz), 8.09(1H, d, J=7.0 Hz), 9.67(1H, s),

12.35(1H, s). MS: 446(M+H) + free

Production Example 94: Synthesis of 2-(acetylamino)-4-[2-(4[amino(imino)methyl]amino)phenyl)ethyl]-N-[(1S)-1-benzyl-2(dimethylamino)-2-oxoethyl]-1,3-thiazole-5-carboxamide
hydrochloride

Step 1

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({[(1S)-1-15 benzyl-2-(dimethylamino)-2-oxoethyl]amino}carbonyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound obtained in Step 2 of Production Example 34 in a similar manner according to Step 1 of Production Example 32.

20 ¹H-NMR (200MHz, CDCl₃), δ (ppm): 1.48(9H, s), 1.52(9H, s), 2.22(3H, s), 2.68(3H, s), 2.84-2.97(5H, m), 3.06(2H, d, J=7.5 Hz), 3.17(H, dd, J=8.0, 6.0 Hz), 5.26(1H, q, J=7.5 Hz), 6.80(1H, d, J=8.0 Hz), 7.08(2H, d, J=8.0 Hz), 7.14-7.33(5H, m), 7.39(2H, d, J=8.0 Hz), 9.96(1H, br), 10.19(1H, s),

25 11.61(1H, s).

MS: 722 (M+H)+

Step 2

The title compound was prepared in a similar manner according to Step 4 of Production Example 31.

30 ¹H-NMR (200MHz, DMSO-d₆), & (ppm): 2.15(3H, s), 2.82-3.15(13H, m), 4.91(1H, q, J=6.7 Hz), 7.09(4H, s), 7.16-7.31(5H, m), 7.36(4H, br), 8.31(1H, d, J=7.7 Hz), 9.71(1H, s), 12.33(1H, s).

PCT/JP2004/004596 WO 2004/087138

MS: 522 (M+H) + free

Production Example 95: Synthesis of 2-(acetylamino)-4-[2-(4-{ [amino (imino) methyl] amino } phenyl) ethyl] -N-[(1S) -2-(dimethylamino)-1-(hydroxymethyl)-2-oxoethyl]-1,3-thiazole-5-5 carboxamide hydrochloride

Step 1

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({[(1S)-2-(dimethylamino)-1-(hydroxymethyl)-2-oxoethyl]amino)carbonyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate 10 was prepared from the compound obtained in Step 2 of Production Example 34 in a similar manner according to Step 1 of Production Example 32. ¹H-NMR (200MHz, CDCl₃), δ (ppm): 1.48(9H, s), 1.52(9H, s), 2.23(3H, s), 2.94(2H, dd, J=7.0 Hz), 3.01(3H, s), 3.14(3H, s), 15 3.26(2H, dd, J=7.0 Hz), 3.78-3.86(3H, br), 5.04(1H, m), 6.85(1H, d, J=7.5 Hz), 7.08(2H, d, J=8.5 Hz), 7.37(2H, d, J=8.5 Hz), 9.70(1H, br), 10.20(1H, s), 11.61(1H, s).

Step 2

20

MS: 662 (M+H) +

The title compound was prepared in a similar manner according to Step 4 of Production Example 31. $^{1}H-NMR$ (200MHz, DMSO-d₆), δ (ppm): 2.16, 2.19(3H, s x2), 2.85-3.50(10H, m), 3.60-3.69(2H, m), 4.81(1H, m), 7.14(2H, m), 2.27(2H, m), 7.39(4H, br), 7.91(1H, br), 8.48(1H, br), 9.77, ²⁵ 9.94(1H, s x2), 12.37, 12.61(1H, s x2). MS: 462(M+H) + free Production Example 96: Synthesis of 2-(acetylamino)-4-[2-(4-{ [amino(imino)methyl]amino}phenyl)ethyl]-N-{(1S,2S)-1-

[(dimethylamino)carbonyl]-2-hydroxypropyl}-1,3-thiazole-5-

Step 1

30 carboxamide hydrochloride

Di-tert-butyl ((Z)-{[4-(2-{2-(acetylamino)-5-[({(1S,2S)-1-[(dimethylamino)carbonyl]-2-hydroxypropyl}amino)carbonyl]-

1,3-thiazol-4-yl}ethyl)phenyl]amino}methylidene)biscarbamate was prepared from the compound obtained in Step 2 of Production Example 34 in a similar manner according to Step 1 of Production Example 32.

5 1_{H-NMR} (200MHz, CDCl₃), δ (ppm): 1.18(3H, d, J=6.5 Hz),
1.48(9H, s), 1.52(9H, s), 2.22(3H, s), 2.95(2H, m), 2.99(3H, s), 3.16(3H, s), 3.20-3.32(2H, m), 4.06-4.12(2H, m), 5.02(1H, dd, J=9.0, 1.5 Hz), 6.55(1H, d, J=9.0 Hz), 7.09(2H, d, J=8.0 Hz), 7.38(2H, d, J=8.0 Hz), 9.70(1H, br), 10.20(1H, s),

10 11.62(1H, s).

MS: 676 (M+H)+

Step 2

The title compound was prepared in a similar manner according to Step 4 of Production Example 31.

20 MS: 475 (M+H) + free

<u>Production Example 97</u>: Synthesis of (2S)-2-[({2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-yl}carbonyl)amino]-N¹,N¹-dimethylpentanediamide hydrochloride Step 1

Di-tert-butyl ((Z)-{[4-(2-{2-(acetylamino)-5-[({(1S)-4-amino-1-[(dimethylamino)carbonyl]-4-oxobutyl}amino)carbonyl]-1,3-thiazol-4-yl}ethyl)phenyl]amino}methylidene)biscarbamate was prepared from the compound obtained in Step 2 of Production Example 34 in a similar manner according to Step 1 of Production Example 32.

 1 H-NMR (200MHz, CDCl₃), δ (ppm): 1.49(9H, s), 1.53(9H, s), 1.86-2.19(2H, m), 2.22-2.37(5H, m), 2.89(2H, m), 2.99(3H, s), 3.05-3.16(5H, m), 3.20-3.41(1H, m), 5.06(1H, m), 6.27(1H, br),

6.35(1H, br), 6.81(1H, d, J=7.5 Hz), 7.09(2H, d, J=8.5 Hz), 7.41(2H, d, J=8.5 Hz), 10.21(1H, s), 10.55(1H, br), 11.62(1H, s).

MS: 703 (M+H)+

5 Step 2

The title compound was prepared in a similar manner according to Step 4 of Production Example 31.

 $^{1}H-NMR$ (200MHz, DMSO-d₆), δ (ppm): 1.70-2.00(2H, m), 2.16(5H, m), 2.84(3H, s), 2.91(2H, m), 3.08(3H, s), 3.19(2H, m),

10 4.75(1H, m), 6.79(1H, m), 7.12(2H, d, J=8.3 Hz), 7.25(2H, d,
 J=8.3 Hz), 7.39(4H, br), 8.13(1H, d), 9.77(1H, s), 12.35(1H,
 s).

MS: 503 (M+H) + free

Production Example 98: Synthesis of N-{4-[2-(4-

15 {[imino(methylamino)methyl]amino}phenyl)ethyl]-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide

The title compound was prepared from the compound obtained in Step 2 of Production Example 50 in a similar manner according to Production Example 58.

20 ¹H-NMR (DMSO-d_s), δ (ppm): 2.09(3H, s), 2.79(3H, s), 2.86(4H,
s), 3.18(3H, s), 4.08(2H, s), 4.43(2H, m), 7.08(2H, d,
J=8.5Hz), 7.22(2H, d, J=8.5Hz), 7.39(2H, d, J=8.5Hz), 7.85(2H,
d, J=8.5Hz), 12.05(1H, brs).

MS: 486 (M+H)+

25 Production Example 99: Synthesis of (2S)-1-({2-(acetylamino)4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol5-yl}methyl)-N,N-dimethyl-2-pyrrolidinecarboxamide
dihydrochloride

Step 1

30

tert-Butyl {4-[2-(2-(acetylamino)-5-([methoxy(methyl)amino]carbonyl}-1,3-thiazol-4-yl)ethyl]phenyl}carbamate was prepared from 2-(acetylamino)-4-(2-{4-[(tert-butoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazole-

5-carboxylic acid in a similar manner according to Step 1 of Production Example 32.

 $^{1}H-NMR \ (CDCl_{3}), \ \delta \ (ppm): \ 1.46(9H, \ s), \ 2.15(3H, \ s), \ 2.74-2.93(2H, \ m), \ 3.12-3.29(2H, \ m), \ 3.22(3H, \ s), \ 3.59(3H, \ s),$ $^{5} \ 7.05(2H, \ d, \ J=8.5Hz), \ 7.33(2H, \ d, \ J=8.5Hz), \ 9.21(1H, \ s),$ $12.34(1H, \ s).$

MS: 471.1 (M+Na) +

Step 2

To a solution of the compound obtained in Step 1 (3.93 g)
in THF (80 mL) was added lithium aluminium hydirde (499 mg)
slowly (over 15 min) at 5-10°C (under ice-cooling). The
mixture was stirred at 5°C for 1 h. 30 mL of aqueous solution
of potassium sodium tartrate (1M) was added slowly under icecooling, and then the mixture was stirred for another 0.5 h at
15 r.t. The mixture was extracted with ethyl acetate, and the
organic layer was dried over MgSO₄, and concecntrated in vacuo
to give pale yellow oil. This oil was triturated with IPE and
EtOAc to give tert-butyl (4-{2-[2-(acetylamino)-5-formyl-1,3thiazol-4-yl]ethyl}phenyl) carbamate as pale yellow powder
20 (2.67a).

 $^{1}\text{H-NMR}$ (200MHz, DMSO-d₆), δ (ppm): 1.46(9H, s), 2.19(3H, s), 2.90(2H, t, J=7.3 Hz), 3.22(2H, t, J=7.3 Hz), 7.01(2H, d, J=8.5 Hz), 7.32(2H, d, J=8.5 Hz), 9.22(1H, s), 9.77(1H, s), 12.68(1H, s).

25 MS: 390 (M+H) +

Step 3

To a solution of the compound obtained in Step 2 (200 mg) in dichloromethane (6 mL) were added (2S)-2-(N,N-dimethylaminocarbonyl)pyrrolidine hydrochloride and disopropylethylamine (0.27 ml) at 5°C. The mixture was stirred at 5°C for 10 min. Then sodium triacetoxyborohydride (327 mg) was added, and the mixture was stirred for 3 hrs. aq. NH₂Cl was added, and the mixture was extracted with

dichloromethane. The organic layer was dried over MgSO₄. The layer was concentrated under reduced pressure. The resulting crude mixture was purified by silica gel column chlomatography with mixed solvent (dichloromethane/methanol=15/1) as an

5 eluent to give tert-butyl (4-{2-[2-(acetylamino)-5-({(2S)-2-[(N,N-dimethylamino)carbonyl]-1-pyrrolidinyl}methyl)-1,3-thiazol-4-yl]ethyl)phenyl)carbamate as a pale yellow amorphous

¹H-NMR (200MHz, CDCl₃), δ (ppm): 1.67-1.99(4H, m), 2.24(3H, s), 10 2.04(4H, s), 2.14(3H, s), 2.95-3.14(5H, m), 3.42-3.58(2H, m), 3.68-3.83(1H, m), 6.97(2H, d, J=8.3 Hz), 7.94(2H, d, J=8.3 Hz).

MS: 516 (M+H) +

substance.

Step 4

15 (2S)-1-({2-(Acetylamino)-4-[2-(4-aminophenyl)ethyl)-1,3-thiazol-5-yl}methyl)-N,N-dimethyl-2-pyrrolidinecarboxamide was prepared in a similar manner according to Step 2 of Production Example 31.

¹H-NMR (200MHz, CDCl₃), δ (ppm): 1.70-2.10(4H, m), 2.22(3H, s), 20 2.39(1H, q, J=8.4 Hz), 2.77(4H, m), 2.91(3H, s), 3.03(3H, s), 3.30-3.81(6H, m), 6.58(2H, d, J=8.3 Hz), 6.89(2H, d, J=8.3 Hz), 8.82(1H, br).

MS; 416(M+H)+

Step 5

25

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({(2S)-2-[(N,N-dimethylamino)carbonyl]-1-pyrrolidinyl}methyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared in a similar manner according to Step 3 of Production Example 31.

30 ¹H-NMR (200MHz, CDCl₃), δ (ppm): 1.50(9H, s), 1.52(9H, s), 1.76-1.92(4H, m), 2.04-2.14(1H, m), 2.43(1H, dd, J=8.1, 8.0 Hz), 2.45(3H, s), 2.85(2H, s), 3.07(3H, s), 3.51(1H, dd, J=5.7, 8.0 Hz), 3.60(1H, d, J=14.3 Hz), 3.84(1H, d, J=14.3

Hz), 6.37(1H, t, J=2.0 Hz), 7.08(2H, d, J=8.4 Hz), 7.44(2H, d, J=8.4 Hz), 7.63(1H, d, J=2.0 Hz), 10.23(1H, s), 11.62(1H, br). MS: $658(M+H)^+$

Step 6

The title compound was prepared in a similar manner according to Step 4 of Production Example 31.

¹H-NNR (200MHz, DMSO-d₆), δ (ppm): 1.60-1.98(2H, br), 1.98-2.16(1H, br), 2.16(3H, s), 2.85(3H, s), 2.95(7H, br); 3.00-3.30(1H, br), 7.15(2H, d, J=8.3 Hz), 7.30(2H, d, J=8.3 Hz), 7.55(4H, br), 7.85(1H, d, J=2.2 Hz), 9.65(1H, br), 10.21(1H, s), 12.35(1H, s).

MS: 458(M+H) + free

Production Example 100: Synthesis of 3-[((2-(acetylamino)-4[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5
25 yl)methyl) (methyl)amino]-N,N-dimethylpropanamide
dihydrochloride

Step 1

tert-Butyl (4-{2-[2-(acetylamino)-5-({[3-(N,N-dimethylamino)-3-oxopropyl]amino}methyl)-1,3-thiazol-4
20 yl]ethyl]phenyl)carbamate was prepared from the compound obtained in Step 2 of Production Example 99 in a similar manner according to Step 3 of Production Example 99.

1H-NNR (200MHz, CDCl₃), & (ppm): 1.50(9H, s), 2.24(3H, s), 2.47(2H, t, J=6.2 Hz), 2.74(2H, t, J=6.2 Hz), 2.82-2.88(4H, 25 m), 2.93(3H, s), 2.97(3H, s), 3.59(2H, s), 6.94(2H, d, J=8.3 Hz), 7.21(2H, d, J=8.3 Hz), 8.02(1H, s).

MS: 490(M+H)⁺

Step 2

To a solution of the compound obtained in Step 1 (100 mg) 30 in dichloromethane (1.5 mL) was added formaline (35%, 87.6 $\mu\rm{l})$. To this suspension was added 0.05 ml of MeOH. Then, sodium triacetoxyborohydride (433 mg) was added, and the mixture was stirred for 12 hrs. To the mixture were added water and 1N

NaOH to adjust pH of aqueous phase (ca. pH 8-9). The mixture was extracted with dichloromethane. The organic layer was dried with MgSO₄ and concentrated under redused pressure. Resulting oil was purified by silica gel column chromatography (mixed solvent of CH₂Cl₂/MeOH 15/1 as an eluent) to give tert-butyl (4-[2-(2-(acetylamino)-5-{[[3-(N,N-dimethylamino)-3-oxopropyl] (methyl) amino]methyl}-1,3-thiazol-4-yl)ethyl]phenyl}carbamate as pale yellow oil (90.4 mg).

1H-NNR (200MHz, CDCl₃), δ (ppm): 1.51(9H, s), 2.18(3H, s), 2.24(3H, s), 2.45(2H, m), 2.62(2H, m), 2.80(4H, s), 2.93(3H, s), 2.99(3H, s), 3.35(2H, s), 6.96(2H, d, J=8.3 Hz), 7.20(2H, d, J=8.3 Hz).

MS: 504 (M+H)+

Step 3

¹H-NMR (200MHz, CDCl₃), δ (ppm): 2.19(3H, s), 2.22(2H, s),

20 2.43-2.51(2H, m), 2.62-2.71(4H, m), 2.78(3H, s), 2.93(3H, s),

2.99(3H, s), 3.33(2H, s), 3.65(1H, m), 3.75(1H, m), 6.58(2H, d, J=8.3 Hz), 6.87(2H, d, J=8.3 Hz).

MS: 404(M+H)*

Step 4

25

Di-tert-butyl $[(Z)-(\{4-[2-(2-(acetylamino)-5-\{[[3-(N,N-dimethylamino)-3-oxopropyl](methyl)amino]methyl\}-1,3-thiazol-4-yl)ethyl]phenyl)amino)methylidene]biscarbamate was prepared in a similar manner according to Step 3 of Production Example 31.$

30 ¹H-NMR (200MHz, CDCl₃), δ (ppm): 1.50(9H, s), 1.53(9H, s), 2.22(3H, s), 2.49(2H, dd, J=6.5, 5.5 Hz), 2.71(2H, dd, J=6.5, 5.5 Hz), 2.84(4H, s), 2.93(3H, s), 2.99(3H, s), 3.43(2H, s), 7.08(2H, d, J=8.4 Hz), 7.46(2H, d, J=8.

U=8.4 Hz), 7.62(1H, s), 10.24(1H, s), 11.62(1H, s).
MS: 646(M+H)⁺

Step 5

The title compound was prepared in a similar manner 5 according to Step 4 of Production Example 31.

¹H-NMR (200MHz, DMSO-d₆), δ (ppm): 2.15(3H, s), 2.68(3H, d, J=4.0 Hz), 2.83-2.88(6H, m), 2.96(6H, s), 3.05-3.15(2H, m), 4.44(2H, m), 7.15(2H, d, J=8.3 Hz), 7.32(2H, d, J=8.3 Hz), 7.62(4H, br), 9.90(1H, s), 12.32(1H, s).

10 MS: 446 (M+H) + free

Production Example 101: Synthesis of 4-(2-{2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-yl}ethyl)-N,N-dimethylbenzamide hydrochloride

Step 1

Methyl 4-(2-[2-(acetylamino)-4-(2-[4-[(tert-butoxycarbonyl)amino]phenyl)ethyl)-1,3-thiazol-5-yl|vinyl}benzoate was prepared from the compound obtained in Step 2 of Production Example 99 in a similar manner according to Step 1 of Production Example 53.

- 20 ¹H-NNR (CDCl₃), δ (ppm): 1.50(9Hx4/9, s), 1.51(9Hx5/9, s), 2.20(3Hx5/9, s), 2.29(3Hx4/9, s), 2.72-3.06(4H, m), 3.90(3Hx5/9, s), 3.92(3Hx4/9, s), 6.42-6.60(2Hx5/9, m), 6.69(1Hx4/9, d, J=16.6Hz), 6.81-7.03(4H + 1Hx4/9, m), 7.31(2Hx5/9, d, J=8.0Hz), 7.39(2Hx4/9, d, J=8.0Hz),
- 25 7.96(2Hx5/9, d, J=8.0Hz), 7.99(2Hx4/9, d, J=8.0Hz). Ms: 522.2(M+H)⁺, 544.2(M+Na)⁺

Step 2

Methyl 4-{2-[2-(acetylamino)-4-(2-{4-[(tert-butoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazol-5-

30 yl]ethyl}benzoate was prepared in a similar manner according to Step 6 of Production Example 45.

MS: 524.25 (M+H)+

Step 3

4-(2-[2-(Acetylamino)-4-(2-[4-[(tert-butoxycarbonyl)amino]phenyl)ethyl)-1,3-thiazol-5-yl]ethyl}benzoic acid was prepared in a similar manner according to Step 2 of Production Example 65.

5 ¹H-NMR (DMSO-d₆), δ (ppm): 1.45(9H, s), 2.09(3H, s), 2.57-2.72(6H, m), 2.75-2.86(2H, m), 6.94(2H, d, J=8.4Hz), 7.21(2H, d, J=8.4Hz), 7.32(2H, d, J=8.4Hz), 7.92(2H, d, J=8.4Hz), 9.21(1H, s), 11.94(1H, s), 12.41-13.20(1H, brs). MS: 510.2(M+H)⁺, 532.2(M+Na)⁺

10 Step 4

tert-Butyl (4-{2-[2-(acetylamino)-5-(2-{4-[(methylamino)carbonyl]phenyl}ethyl)-1,3-thiazol-4yl]ethyl)phenyl)carbamate was prepared in a similar manner according to Step 3 of Production Example 65.

15 'H-NMR (CDCl₃), & (ppm): 1.51(9H, s), 2.24(3H, s), 2.56-2.73(4H, m), 2.73-2.86(4H, m), 2.99(3H, d, J=4.8Hz), 6.05(1H, d, J=4.4Hz), 6.25-6.75(1H, brs), 6.77(2H, d, J=6.6Hz), 7.12(2H, d, J=8.1Hz), 7.15-7.23(2H, m), 7.63(2H, d, J=8.1Hz), 8.43-9.18(1H, brs).

20 MS: 523.29 (M+H)+

Step 5

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-(2-{4-[(methylamino) carbonyl]phenyl}ethyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared in a similar manner according to Step 4 of Production Example 65.

¹H-NMR (CDCl₃), δ (ppm): 1.48(9H, s), 1.54(9H, s), 2.22(3H, s), 2.51-2.61(2H, m), 2.61-2.71(2H, m), 2.79-2.90(4H, m), 2.97(3H, d, J=4.9Hz), 6.20(1H, d, J=4.9Hz), 6.98(2H, d, J=8.4Hz), 7.13(2H, d, J=8.1Hz), 7.40(2H, d, J=8.4Hz), 7.64(2H, d, J=8.4Hz), 8.83-9.42(1H, brs), 10.21(1H,s), 11.62(1H, s).

MS: 687.2(M+Na)⁺

Step 6

The title compound was prepared in a similar manner

according to Step 4 of Production Example 31. 1 H-NNR (DMSO-d₆), δ (ppm): 2.09(3H, s), 2.58-2.79(6H, m), 2.80-3.02(8H, m), 7.13(2H, d, J=8.4Hz), 7.19(2H, d, J=8.1Hz),

7.20(2H, d, J=8.4Hz), 7.29(2H, d, J=8.1Hz), 7.32(4H, s),

⁵ 9.66(1H, s), 11.93(1H, s).

MS: 479.2 (M+H) + free

Production Example 102: Synthesis of 4-(2-{2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-yl}ethyl)-N-methylbenzamide hydrochloride

10 Step 1

tert-Butyl (4-{2-[2-(Acetylamino)-5-(2-{4[(dimethylamino) carbonyl]phenyl}ethyl)-1,3-thiazol-4yl]ethyl]phenyl)carbamate was prepared from the compound
obtained in Step 3 of Production Example 101 in a similar

15 manner according to Step 3 of Production Example 65.

¹H-NMR (CDCl₃), δ (ppm): 1.51(9H, s), 2.23(3H, s), 2.66(4H, s),
2.79(4H, s), 2.93(3H, s), 3.08(3H, s), 6.90(2H, d, J=8.0Hz),
7.11(2H, d, J=8.0Hz), 7.18(2H, d, J=8.0Hz), 8.56-10.01(1H, brs).

20 MS: 537 (M+H)+, 559.2 (M+Na)+

Step 2

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-(2-{4-[(dimethylamino) carbonyl]phenyl}ethyl)-1,3-thiazol-4-yl]ethyl]phenyl)amino]methylidene}biscarbamate was prepared in a similar manner according to Step 4 of Production Example 65.

¹H-NMR (CDCl₃), δ (ppm): 1.49(9H, s), 1.53(9H, s), 2.21(3H, s), 2.57-2.78(4H, m), 2.82(4H, s), 2.94(3H, s), 3.08(3H, s), 7.03(2H, d, J=8.5Hz), 7.13(2H, d, J=8.0Hz), 7.33(2H, d, J=8.0Hz), 7.45(2H, d, J=8.5Hz), 8.28-9.61(1H, brs), 10.24(1H, 30 s), 11.63(1H, s).

MS: 679.2 (M+H) +, 701.2 (M+Na)+

Step 3

The title compound was prapared in a similar manner

according to Step 4 of Production Example 31.

 1 H-NMR (DMSO-d₆), δ (ppm): 2.10(3H, s), 2.60-2.72(4H, m), 2.72-2.80(2H, m), 2.76(3H, d, J=4.4Hz), 2.89(2H, t, J=7.3Hz),

7.12(2H, d, J=8.4Hz), 7.19(2H, d, J=8.4Hz), 7.22(2H, d,

5 J=8.1Hz), 7.33(4H, s), 7.73(2H, d, J=8.1Hz), 8.36(1H, d, J=4.4Hz), 9.66(1H, s), 11.93(1H, s).

MS: 465.2(M+H) + free

<u>Production Example 103</u>: Synthesis of methyl N-[4-({2-(acetylamino)-4-[2-(4-

10 {[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5yl}methyl)phenyl]carbamate hydrochloride

Step 1

To a suspension of 4-{[2-(acetylamino)-4-(2-{4-[(tert-butoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazol-5-

- 15 yl]methyl}benzoic acid (50 mg) in toluene (0.5 ml) and dioxane (0.5 ml) were added triethylamine (28.1 μ l) and diphenylphosphoryl azide (39.1 μ l), and the mixture was stirred at 25°C for 2 hrs., then stirred at 100°C for 1 h. To the reaction mixture was added methanol (1 ml), and the mixture
- was refluxed for 2 hrs., and concentrated in vacuo. The residue was purified by preparative thin-layer chromatography over silica gel with chloroform / methanol (20:1) as an eluent to give methyl N-(4-{[2-(acetylamino)-4-(2-{4-[(tert-butoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazol-5-
- 25 yl]methyl}phenyl)carbamate (17.2 mg).

 ¹H-NMR (CDCl₃), δ (ppm): 1.52(9H, s), 2.22(3H, s), 2.80(4H, s),
 3.76(3H, s), 3.79(2H, s), 6.62-6.78(1H, brs), 6.83-7.05(1H,
 brs), 6.90(2H, d, J=8.0Hz), 6.98(2H, d, J=8.5Hz), 7.17(2H, d,
 J=8.0Hz), 7.20-7.33(2H, m).
- 30 MS: 547.2(M+Na)+

Step 2

Di-tert-butyl [(Z)-({4-[2-(acetylamino)-5-{4-[(methoxycarbonyl)amino]benzyl}-1,3-thiazol-4-

```
yl)ethyl]phenyl}amino)methylidene]biscarbamate was prepared in a similar manner according to Step 4 of Production Example 65.  
^1\text{H-NMR} \ (\text{CDCl}_3), \ \delta \ (\text{ppm}): 1.49(9\text{H}, \text{s}), 1.54(9\text{H}, \text{s}), 2.19(3\text{H}, \text{s}), 2.82(4\text{H}, \text{s}), 3.76(3\text{H}, \text{s}), 3.80(2\text{H}, \text{s}), 6.72-6.90(1\text{H}, \text{brs}), 6.98(2\text{H}, \text{d}, J=8.5\text{Hz}), 7.00(2\text{H}, \text{d}, J=8.5\text{Hz}), 7.26(2\text{H}, \text{d}, J=8.5\text{Hz}), 7.39(2\text{H}, \text{d}, J=8.5\text{Hz}), 9.10-9.59(1\text{H}, \text{brs}), 10.19(1\text{H}, \text{s}), 11.64(1\text{H}, \text{s}).  
MS: 667.2 (M+H)^+, 689.2 (M+Na)^+ Step 3
```

The title compound was prepared in a similar manner according to Step 4 of Production Example 31. $^1\text{H-NMR} \ (\text{DMSO-d}_6) \ , \ \delta \ (\text{ppm}) : \ 2.08 (3\text{H, s}) \ , \ 2.85 (4\text{H, s}) \ , \ 3.64 (3\text{H, s}) \ , \ 3.85 (2\text{H, s}) \ , \ 7.04 (2\text{H, d, J=8.5Hz}) \ , \ 7.14 (2\text{H, d, J=8.4Hz}) \ , \ 7.24 (2\text{H, d, J=8.4Hz}) \ , \ 7.28 - 7.47 (6\text{H, m}) \ , \ 9.58 (1\text{H, s}) \ , \ 9.70 (1\text{H, s}) \ , \ 11.96 (1\text{H, s}) \ .$

MS: 467.2 (M+H)+

<u>Production Example 104</u>: Synthesis of ethyl 1-({2-(acetylamino)-4-[2-(4-

{ [amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-5-

20 yl)methyl)-4-piperidinecarboxylate dihydrochloride Step 1

Ethyl 1-({2-(acetylamino)-4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-5-yl}methyl)-4-piperidinecarboxylate was prepared from N-{4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2-

25 yl}acetamide in a similar manner according to Step 1 of Production Example 67.

MS: 459.17 (M+H)+

Step 2

Ethyl 1-[(2-(acetylamino)-4-{2-[4-({(Z)-[(tert-

30 butoxycarbonyl)amino][(tert-butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5-yl)methyl]-4-piperidinecarboxylate was prepared in a similar manner according to Step 2 of Production Example 68.

 $^{1}H-NMR \ (CDCl_{3}) \ , \ \delta \ (ppm): \ 1.24(3H, \ t, \ J=7.2Hz) \ , \ 1.50(9H, \ s) \ , \\ 1.53(9H, \ s) \ , \ 1.65-2.09(6H, \ m) \ , \ 2.13-2.34(4H, \ s) \ , \ 2.71-2.95(6H, \ m) \ , \ 3.39(2H, \ s) \ , \ 4.12(2H, \ q, \ J=7.2Hz) \ , \ 7.07(2H, \ d, \ J=8.5Hz) \ , \\ 7.46(2H, \ d, \ J=8.5Hz) \ , \ 10.24(1H, \ s) \ , \ 11.63(1H, \ brs) \ .$ $^{5}MS: \ 673.3(M+H)^{+}, \ 695.3(M+Na)^{+}$

Step 3

The title compound was prepared in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (DMSO-d₆), δ (ppm): 1.18 (3H, t, J=7.1Hz), 1.73-1.90 (2H, m), 1.93-2.13 (2H, m), 2.16 (3H, s), 2.87-3.01 (6H, m), 3.30-3.41 (2H, m), 4.08 (2H, q, J=7.1Hz), 4.31-4.43 (2H, m), 7.15 (2H, d, J=8.4Hz), 7.31 (2H, d, J=8.4Hz), 7.42 (4H, s), 9.90 (1H, s), 10.23-10.46 (1H, brs), 12.3 (1H, s).

MS: 473.2 (M+H) +, 495.2 (M+Na) + free

15 Production Example 105: Synthesis of ethyl 1-({2-(acetylamino)-4-[2-(4-

{ [amino (imino)methyl]amino }phenyl) ethyl]-1,3-thiazol-5-yl}methyl)-4-piperidinecarboxylate hydrochloride

 $\label{eq:compound} \mbox{The title compound was prepared in a similar manner} $20 according to Example 104.$

Production Example 106: Synthesis of 4-(2-{2-(acetylamino)-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-4-yl)ethyl)-N-[amino(imino)methyl]benzamide

Guanidine hydrochloride (152 mg) was dissolved in DMF (3 25 ml), and then 28 % sodium methoxide methanol solution (0.3 ml) was added to the solution at r.t. The suspension was stirred at r.t. for 15 minutes, and methyl 4-(2-{2-(acetylamino)-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-4-yl}ethyl)benzoate (150 mg) was added to the mixture at r.t. The reaction mixture was stirred at r.t. for 14 hours, and concentrated in vacuo. The residue was dissolved in water, and neutralized with 1N-HCl. The precipitate was collected through filtration, and purified by preparative silica gel chromatography with CHCl₃ / MeOH

(10:1) as an eluent. The solid was washed with ethyl ether to give 4-(2-{2-(acetylamino)-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-4-yl}ethyl)-N-[amino(imino)methyl]benzamide (36.6 mg) as an off-white solid.

5 mp. 108-109.5°C

¹H-NMR (DMSO-d₆), δ (ppm): 2.09(3H, s), 2.89(4H, s), 3.16(3H, s), 4.06(2H, s), 7.15(2H, d, J=8.0Hz), 7.27(2H, d, J=8.0Hz), 7.78(2H, d, J=8.0Hz), 7.95(2H, d, J=8.0Hz), 12.04(1H, s). MS: 500(M+H)⁺

The title compound was prepared from 2-(acetylamino)-4-[2-(4-aminophenyl)ethyl]-5-[4-(methylsulfonyl)benzyl]-1,3-

15 thiazol in a similar manner according to Step 1 of Production Example 10.

mp. 186-187.5°C

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 1.39(9H, s), 2.08(3H, s), 2.84(4H, s), 3.17(3H, s), 3.71(2H, d, J=6.0Hz), 4.00(2H, s), 7.01(1H,

20 t, J=6.0Hz), 7.06(2H, d, J=8.5Hz), 7.28(2H, d, J=8.5Hz),
7.46(2H, d, J=8.5Hz), 7.79(2H, d, J=8.5Hz), 9.86(1H, s),
12.04(1H, s).

MS: 587 (M+H)+

Production Example 108: Synthesis of N-[4-(2-{2-(acetylamino)25 5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-4-yl)ethyl)phenyl]-2aminoacetamide hydrochloride

The title compound was prepared from the compound of Production Example 107 in a similar manner according to Step 2 of Production Example 10.

30 mp. 142.5-144°C

 1 H-NMR (DMSO-d₆), δ (ppm): 2.09(3H, s), 2.85(4H, s), 3.18(3H, s), 3.78(2H, m), 4.00(2H, s), 7.10(2H, d, J=8.5Hz), 7.26(2H, d, J=8.5Hz), 7.50(2H, d, J=8.5Hz), 7.79(2H, d, J=8.5Hz),

8.22(3H, brs), 10.63(1H, s), 12.06(1H, s).

MS: 487 (M+H) + free

Production Example 109: Synthesis of N-(4-{2-[4-(2-aminoethyl)phenyl]ethyl}-1,3-thiazol-2-yl)acetamide

5 hydrochloride

Step 1

N-(4-{2-[4-(Cyanomethyl)phenyl]ethyl}-1,3-thiazol-2yl)acetamide (1 g), 1N-NaOH (7 ml) and EtOH (14 ml) were combined, and the reaction mixture was refluxed for 8 hours. 10 After cooled to r.t., the organic solvent was removed in vacuo. The aqueous solution was neutralized with 1N-HCl, and extracted with AcOEt. The organic layer was washed with water and brine, dried over anhydrous MgSO4, and concentrated in vacuo. The residual yellow wax (1.03 g) was dissolved in THF 15 (10 ml), and then lithium aluminium hydride (266 mg) was added to the solution at 0°C. The reaction mixture was refluxed for 3 hours, and quenched with MeOH. Then Na_2SO_4 / $10H_2O$ was added to the mixture, the mixture was stirred at r.t. for 1 hour and filtered through a celite pad. The filtrate was concentrated 20 in vacuo. The residual yellow amorphous (835.5 mg) was dissolved in THF (10 ml) and DMF (10 ml) under N2 atmosphere. Then di(tert-butyl) dicarbonate (841 mg) in THF (5 ml) was added to the solution at r.t. The reaction mixture was stirred

25 butyl (2-{4-[2-(2-amino-1,3-thiazol-4yl)ethyl]phenyl}ethyl)carbamate (171.6 mg) as yellow oil.

¹H-NNR (DMSO-d₆), δ (ppm): 1.38(9H, s), 2.60-2.70(4H, m), 2.792.88(4H, m), 6.82(1H, s), 7.07(2H, d, J=8.0Hz), 7.11(2H, d,
J=8.0Hz).

at r.t. for 12 hours, and concentrated in vacuo to give tert-

30 MS: 348 (M+H)+

Step 2

tert-Butyl [2-(4-{2-[2-(acetylamino)-1,3-thiazol-4-y1]ethyl}phenyl)ethyl]carbamate was prepared from the compound

of Step 1 in a similar manner according to Step 3 of Production Example 45.

 $^{1}H\text{-NMR} \ (\text{DMSO-de}), \ \delta \ (\text{ppm}): \ 1.36 (9H, s), \ 2.11 (3H, s), \ 2.58-2.70 (1H, m), \ 2.80-2.97 (6H, m), \ 3.02-3.18 (1H, m), \ 6.72 (1H, s), \\ ^{5} \ 7.08 (2H, d, J=8.0Hz), \ 7.23 (2H, d, J=8.0Hz), \ 12.08 (1H, s). \\ \text{MS: } 390 (M+H)^{+}$

Step 3

The title compound was prepared from the compound of Step 2 in a similar manner according to Step 2 of Production $\dot{}$

10 Example 10. mp. 165-167°C

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.12(3H, s), 2.79-3.09(8H, m), 6.75(1H, s), 7.16(4H, s), 8.14(2H, brs), 12.13(1H, brs). MS: 290(M+H) $^{+}$ free

Step 1

N-(4-{2-[4-(2-Aminoethyl)phenyl]ethyl}-1,3-thiazol-2yl)acetamide hydrochloride (7 mg), N,N'-bis(tertbutoxycarbonyl)-1H-pyrazole-1-carboxamidine (6.57 mg), N,Ndisopropylethylamine (0.00748 ml), THF (0.5 ml) and DMF (0.1
ml) were combined under N₂ atmosphere. The reaction mixture
was stirred at r.t. for 43 hours, and concentrated in vacuo.

25 The residue was purified by preparative silica gel

- chromatography with n-hexane / AcOEt (1:1) as an eluent to give di-tert-butyl ((Z)-{[2-(4-{2-[2-(acetylamino)-1,3-thiazol-4-y1]ethyl}phenyl)ethyl]amino}methylidene)biscarbamate (5.9 mg) as colorless oil.
- 30 ¹H-NMR [CD₃C1/CD₃OD (1:1)], δ (ppm): 1.50(18H, s), 2.24(3H, s),
 2.86(2H, t, J=7.0Hz), 2.95(4H, s), 3.62(2H, t, J=7.0Hz),
 4.24(2H, s), 6.50(1H, s), 7.11(2H, d, J=8.5Hz), 7.16(2H, d,
 J=8.5Hz).

MS: 532 (M+H) +

Step 2

The title compound was prepared from the compound of Step 1 in a similar manner according to Step 4 of Production

5 Example 31.

 $^1\text{H-NMR}$ [CD₃C1/CD₃OD (1:1)], δ (ppm): 2.41(3H, s), 2.87(2H, t, J=7.0Hz), 3.05(4H, s), 3.44(2H, t, J=7.0Hz), 6.86(1H, s), 7.18(4H, s).

MS: 332 (M+H) + free

Production Example 111: Synthesis of N-(4-{4-[(2-([amino(imino)methyl]amino)ethyl)sulfonyl]phenyl}-1,3-thiazol-2-yl)acetamide hydrochloride

Step 1

- 1-[4-(Methylthio)phenyl]ethanone (5.5 g) was dissolved in AcOH (55 ml), and then 90 % pyridinium tribromide (11.8 g) and 30 % hydrobromic acid in AcOH (5.5 ml) were added to the solution at 0°C. The reaction mixture was stirred at r.t. for 30 minutes, and poured into water. The mixture was extracted with AcOEt. The organic layer was washed with saturated NaHCO₃
- and brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The residual solid (8.03 g), thiourea (3.78 g) and EtOH (55 ml) were combined. The reaction mixture was refluxed for 1.5 hours under N_2 atmosphere. After cooled to r.t., the precipitate was filtered in vacuo. The solid was washed with
- 25 EtOH and water to give 4-[4-(methylthio)phenyl]-1,3-thiazol-2-amine (7.48 g) as a pale yellow solid.

mp. 245-246°C

 $^{1}\text{H-NMR} \ (\text{DMSO-d}_{6}) \ , \ \delta \ (\text{ppm}) : \ 2.51(3\text{H}, \ \text{s}) \ , \ 7.18(1\text{H}, \ \text{s}) \ , \ 7.35(2\text{H}, \ \text{d}, \ \text{J=8.5Hz}) \ , \ 7.67(2\text{H}, \ \text{d}, \ \text{J=8.5Hz}) \ .$

30 MS: 223 (M+H)+

Step 2

 $N-\{4-[4-(Methylthio)phenyl]-1,3-thiazol-2-yl\}$ acetamide was prepared from the compound of Step 1 in a similar manner

according to Step 3 of Production Example 45.

mp. 235-236°C

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.16(3H, s), 2.50(3H, s), 7.31(2H, d, J=8.5Hz), 7.56(1H, s), 7.83(2H, d, J=8.5Hz), 12.24(1H,

5 brs).

MS: 265 (M+H) +

Step 3

N-{4-[4-(Methylthio)phenyl]-1,3-thiazol-2-yl}acetamide (2

g) was suspended in CH_2Cl_2 (20 ml), and then 3-

10 chloroperoxybenzoic acid (1.44 g) was added portionwise to the suspension at 0°C. The reaction mixture was stirred at r.t. for 15 minutes. The precipitate was filtered in vacuo, and the solid was washed with 1N-Na₂CO₃, water and EtOH to give N-{4-[4-(methylsulfinyl)phenyl]-1,3-thiazol-2-yl}acetamide (2.80 g)

15 as a colorless solid.

mp. 274-274.5°C

¹H-NNR (DMSO-d₆), δ (ppm): 2.10(3H, s), 2.77(3H, s), 7.62(1H, s), 7.71(2H, d, J=8.5Hz), 8.07(2H, d, J=8.5Hz).

MS: 279(M-H)⁺

20 Step 4

N-{4-[4-(Methylsulfinyl)phenyl}-1,3-thiazol-2-yl}acetamide (1.5 g), sodium acetate (1.54 g), and acetic anhydride (30 ml) were combined under N₂ atmosphere. The reaction mixture was refluxed for 2 hours. After cooled to r.t., the mixture was diluted in AcoEt. The organic solution was washed with water and brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The residual solid was washed with ethyl ether / n-hexane to give ({4-[2-(acetylamino)-1,3-thiazol-4-yl]phenyl}thio)methyl acetate (811.2 mg) as an off-white solid.

mp. 144-145°C

 1 H-NMR (DMSO-d₆), δ (ppm): 2.07(3H, s), 2.17(3H, s), 5.53(2H, s), 7.50(2H, d, J=8.5Hz), 7.63(1H, s), 7.88(2H, d, J=8.5Hz),

PCT/JP2004/004596

WO 2004/087138

12.27(1H, brs).

MS: 323 (M+H)+

Step 5

({4-[2-(Acetylamino)-1,3-thiazol-4-yl]phenyl}thio)methyl

5 acetate (40 mg) was dissolved in CH₂Cl₂ (0.6 ml) and MeOH (0.3
ml) under N₂ atmosphere. Then magnesium monoperoxyphthalate
(120 mg) was added to the solution at 0°C. The reaction
mixture was stirred at r.t. for 2 hours. Water and CHCl₃ were
added to the mixture, and the mixture was extracted. The

organic layer was washed with saturated NaHCO₃ and brine, dried
over anhydrous MgSO₄, and concentrated in vacuo. The residual
solid was washed with ethyl ether to give ({4-[2(acetylamino)-1,3-thiazol-4-yl]phenyl}sulfonyl)methyl acetate

15 mp. 237-238°C

¹H-NMR (DMSO-d₆), δ (ppm): 2.07(3H, s), 2.18(3H, s), 5.43(2H, s), 7.94(1H, s), 7.97(2H, d, J=8.5Hz), 8.17(2H, d, J=8.5Hz), 12.37(1H, brs).

MS: 355(M+H)⁺

(29.7 mg) as a colorless solid.

20 Step 6

({4-[2-(Acetylamino)-1,3-thiazol-4-yl]phenyl}sulfonyl)methyl acetate (700 mg), THF (8 ml), MeOH (4 ml) and 1N-NaOH (1.98 ml) were combined. The reaction mixture was stirred at r.t. for 1.5 hours, and concentrated in vacuo. The residual solid was washed with ethyl ether to give sodium 4-[2-(acetylamino)-1,3-thiazol-4-yl]phenylsulfinate (731 mg) as a colorless solid.

iH-NMR (DMSO-d6), δ (ppm): 2.16(3H, s), 7.52(2H, d, J=8.0Hz), 7.54(1H, s), 7.84(2H, d, J=8.0Hz).

Step 7

30 MS: 281(M-H) free

Sodium 4-[2-(acetylamino)-1,3-thiazol-4-yl]phenylsulfinate (600 mg) was dissolved in DMF (2 ml) under

N₂ atmosphere. Then 2-bromoethanol (0.168 ml) was added to the solution at 0°C. The reaction mixture was stirred at 100°C for 7 hours. After cooled to r.t., water and AcOEt were added to the mixture. The precipitate was filtered *in vacuo* to give N
(4-{4-[(2-hydroxyethyl)sulfonyl]phenyl}-1,3-thiazol-2-yl)acetamide (80.2 mg) as an off-white solid.

mp. 258-260°C

¹H-NNR (DMSO-d₆), δ (ppm): 2.18(3H, s), 3.47(2H, t, J=6.0Hz), 3.70(2H, q, J=6.0Hz), 4.89(1H, t, J=6.0Hz), 7.89(1H, s), 10 7.94(2H, d, J=8.5Hz), 8.13(2H, d, J=8.5Hz), 12.36(1H, brs).

MS: 325 (M-H)+

Step 8

N-(4-{4-[(2-Hydroxyethyl)sulfonyl]phenyl}-1,3-thiazol-2yl)acetamide (200 mg), Et₃N (0.102 ml) and CH₂Cl₂ (4 ml) were 15 combined under N_2 atmosphere, and then MsCl (0.05 ml) was added to the suspension at 0°C. The reaction mixture was stirred at r.t. for 2 hours. MeOH/CHCl3 and water were added to the mixture, and the mixture was extracted. The organic layer was washed with brine, dried over anhydrous MgSO4, and concentrated 20 in vacuo. The residual solid (221.6 mg) was suspended in CH3CN (10 ml), and then 28 % ammonia solution (0.5 ml) was added to the suspension at 0°C. The reaction mixture was stirred at r.t. for 15 hours, and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with 25 [MeOH/CHCl₃ (1:30), then NH₄OH/MeOH/CHCl₃ (1:10:60)] as an eluent, and triturated with EtOH / ethyl ether to give N-(4-{4-[(2-aminoethyl)sulfonyl]phenyl}-1,3-thiazol-2-yl)acetamide (60.4 mg) as an off-white solid.

mp. 287-288°C

30 ¹H-NMR (DMSO-d₆), & (ppm): 2.18(3H, s), 2.79(2H, t, J=6.5Hz), 3.36(2H, q, J=6.5Hz), 7.90(1H, s), 7.94(2H, d, J=8.5Hz), 8.15(2H, d, J=8.5Hz).

MS: 326 (M+H) +

Step 9

Di-tert-butyl ((Z)-{[2-({4-[2-(acetylamino)-1,3-thiazol-4-yl]phenyl}sulfonyl)ethyl]amino}methylidene)biscarbamate was prepared from the compound of Step 8 in a similar manner saccording to Step 3 of Production Example 31.

mp. 280-281°C

10 MS: 568 (M+H) +

Step 10

The title compound was prepared from the compound of Step 9 in a similar manner according to Step 4 of Production Example 31.

¹⁵ mp. 188-189.5°C

 $^1\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.18(3H, s), 3.51(2H, m), 3.59(2H, t, J=6.0Hz), 7.28(3H, brs), 7.62(1H, t, J=5.5Hz), 7.93(1H, s), 7.98(2H, d, J=8.5Hz), 8.17(2H, d, J=8.5Hz), 12.37(1H, brs). MS: 368(M+H) $^+$ free

20 Production Example 112: Synthesis of N-{4-[2-(4{[amino(imino)methyl]amino)phenyl)ethyl]-5-[3(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide
hydrochloride

Step 1

25 N-Methoxy-N-methyl-3-(methylsulfonyl)benzamide was prepared from 3-(methylsulfonyl)benzoic acid in a similar manner according to Step 1 of Production Example 31.

¹H-NNR (CDCl₃), δ (ppm): 3.08(3H, s), 3.40(3H, s), 3.55(3H, s), 7.64(1H, t, J=8.0Hz), 7.99(1H, dt, J=8.0, 1.5Hz), 8.03(1H, dt, J=0.0, 1.5Hz), 8.28(1H, t, J=1.5Hz).

MS: 244 (M+H) +

Step 2

To a stirred solution of N-methoxy-N-methyl-3-

(methylsulfonyl)benzamide (5 g) in dry THF (100 ml) was added dropwise DIBALH (22.6 ml) at -78° C under N_2 atmosphere. The reaction mixture was stirred for 4 hours at r.t. and then quenched with MeOH at 0°C. AcoEt and 1N-HCl were added to the mixture, and extracted. The organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The residual oil (3.38 g), methyl

(triphenylphosphoranylidene)acetate (6.87 g) and THF (68 ml) were combined at r.t. under $N_{\rm 2}$ atmosphere, and the reaction

mixture was refluxed for 3 hours. The solvent was removed in vacuo, and the residue was suspended in AcOEt. The solid was filtered off, and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with n-hexane / AcOEt (2:1) as an eluent to give methyl (2E)-3-[3-(methylsulfonyl)phenyl]acrylate (613.8 mg) as vellow oil.

 $^{1}H-NMR \ (DMSO-d_{6}) \ , \ \delta \ (ppm): \ 3.28(3H, s) \ , \ 3.75(3H, s) \ , \ 6.85(1H, d, J=16.0Hz) \ , \ 7.74(1H, s) \ , \ 7.93(1H, t, J=8.0Hz) \ , \ 7.96(1H, d, J=8.0Hz) \ , \ 8.09(1H, d, J=8.0Hz) \ , \ 8.09(1H, d, J=8.0Hz) \ .$

20 Step 3

Methyl (2E)-3-[3-(methylsulfonyl)phenyl]acrylate (600 mg), MeOH (6 ml) and then 10 % palladium carbon (99.9 mg) were combined under N_2 atmosphere. The reaction mixture was stirred at r.t. for 7 hours under H_2 atmosphere (1 atm), and filtered through a celite pad. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with n-hexane / AcOEt (1:1 \rightarrow 1:2) as an eluent to give methyl 3-[3-(methylsulfonyl)phenyl]propanoate (283.3 mg) as colorless oil.

30 ¹H-NMR (DMSO-d₆), δ (ppm): 2.70(2H, t, J=7.5Hz), 2.97(2H, t, J=7.5Hz), 3.20(3H, s), 3.58(3H, s), 7.52-7.63(2H, m), 7.73-7.80(2H, m).

Step 4

Ethyl 4-[3-(methylsulfonyl)phenyl]-2-oxobutanoate was prepared from the compound of Step 3 in a similar manner according to Step 2 of Production Example 47.

H-NNR (CDCI₃), δ (ppm): 1.35(3H, t, J=7.0Hz), 3.05(2H, t,

 ^{1}H -NNR (CDCl₃), δ (ppm): 1.35(3H, t, J=7.0Hz), 3.05(2H, t, 5 J=7.0Hz), 3.06(3H, s), 3.24(2H, t, J=7.0Hz), 4.32(2H, q, J=7.0Hz), 7.45-7.82(4H, m).

Step 5

Ethyl 3-bromo-4-[3-(methylsulfonyl)phenyl]-2-oxobutanoate
was prepared from the compound of Step 4 in a similar manner

10 according to Step 1 of Production Example 46.

²H-NMR (CDCl₃), 8 (ppm): 1.37(3H, t, J=7.0Hz), 3.07(3H, s), 3.34(1H, dd, J=14.5, 8.0Hz), 3.60(1H, dd, J=14.5, 6.5Hz), 4.35(2H, q, J=7.0Hz), 5.26(1H, dd, J=8.0, 6.5Hz), 7.49-7.88(4H, m).

15 Step 6

Ethyl 2-amino-5-[3-(methylsulfonyl)benzyl]-1,3-thiazole-4-carboxylate was prepared from the compound of Step 5 in a similar manner according to Step 2 of Production Example 46.

¹H-NMR (DMSO-d₆), 8 (ppm): 1.24(3H, t, J=7.0Hz), 3.20(3H, s),

20 4.20(2H, q, J=7.0Hz), 4.46(2H, s), 7.10(2H, s), 7.57-7.61(2H, m), 7.76-7.83(2H, m).

MS: 341 (M+H) +

Step 7

Ethyl 2-(acetylamino)-5-[3-(methylsulfonyl)benzyl]-1,3
25 thiazole-4-carboxylate was prepared from the compound of Step

6 in a similar manner according to Step 3 of Production

Example 45.

 1 H-NNR (DMSO-d₆), δ (ppm): 1.27(3H, t, J=7.0Hz), 2.10(3H, s), 3.20(3H, s), 4.27(2H, q, J=7.0Hz), 4.61(2H, s), 7.56-7.66(2H, 30 m), 7.77-7.89(2H, m), 12.47(1H, s).

m), /://-/:05(211, m), 12:4/(11

MS: 383 (M+H) +

Step 8

Ethyl 2-(acetylamino)-5-[3-(methylsulfonyl)benzyl]-1,3-

thiazole-4-carboxylate (54.7 mg) was suspended in THF (1 ml) under N₂ atmosphere, and then lithium aluminium hydride (7.79 mg) was added portionwise to the suspension at 0°C. The reaction mixture was refluxed for 2.5 hours, and quenched with MeOH and 1N-HCl at 0°C. Anhydrous MgSO₄ was added to the mixture, and stirred at r.t. for 1 hour. The suspension was filtered in vacuo. The filtrate was concentrated in vacuo. The residual oil (114.8 mg), CHCl₃ (1 ml), CH₃CN (1 ml) and Dess-Martin periodinane (88 mg) were combined at 0°C under N₂ atmosphere. The reaction mixture was stirred at r.t. for 1 hour, and diluted in CHCl₃. The organic solution was washed with saturated NaHCO₃, water and brine, dried over anhydrous MgSO₄, and concentrated in vacuo to give N-{4-formyl-5-[3-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide (61.2mg) as

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.13(3H, s), 3.17(3H, s), 4.67(2H, s), 7.56-7.90(4H, m), 10.04(1H, s), 12.39(1H, s). Step 9

 $N-\{5-[3-(Methylsulfonyl)benzyl]-4-[(Z)-2-(4-$

20 nitrophenyl)vinyl]-1,3-thiazol-2-yl)acetamide was prepared from the compound of Step 8 in a similar manner according to Step 5 of Production Example 45.

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.08(3Hx2/3, s), 2.13(3Hx1/3, s), 3.18(3H, s), 4.23(2H×2/3, s), 4.50(2Hx1/3, s), 6.69-8.31(10H,

25 m).

Step 10

N-{4-[2-(4-Aminophenyl)ethyl]-5-[3-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide was prepared from the compound of Step 9 in a similar manner 30 according to Step 6 of Production Example 45.

MS: 430 (M+H) +

15 a vellow amorphous.

Step 11

Di-tert-butyl ((Z)-{[4-(2-{2-(acetylamino)-5-[3-

(methylsulfonyl)benzyl]-1,3-thiazol-4-

yl}ethyl)phenyl]amino}methylidene)biscarbamate was prepared from the compound of Step 10 in a similar manner according to Step 3 of Production Example 31.

5 ¹H-NMR [CD₃Cl/CD₃OD (1:1)], δ (ppm): 1.29(9H, s), 1.55(9H, s), 2.23(3H, s), 2.89(4H, m), 3.07(3H, s), 3.90(2H, s), 7.11-7.87(8H, m).

MS: 672 (M+H)+

Step 12

The title compound was prepared from the compound of Step 11 in a similar manner according to Step 4 of Production Example 31.

 $^1H-NMR~(CD_3OD),~\delta~(ppm):~2.08(3H,~s),~2.98(4H,~m),~3.10(3H,~s),~3.98(2H,~s),~7.10-7.88(8H,~m).$

15 MS: 472 (M+H)+ free

Production Example 113: Synthesis of N-{4-[2-(4-{amino(imino)methyl]amino)phenyl)ethyl]-5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-1,3-thiazol-2-yl}acetamide dihydrochloride

20 Step 1

 $N-\{5-[(1,1-Dioxido-4-thiomorpholinyl)methyl]-4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2-yl\}acetamide was prepared from N-\{4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2-yl\}acetamide in a similar manner according to Step 1 of$

25 Production Example 67.

MS: 437.12(M+H)+

Step 2 .

Di-tert-butyl ((Z)-{[4-(2-{2-(acetylamino)-5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-1,3-thiazol-4-

30 yl]ethyl)phenyl]amino}methylidene)biscarbamate was prepared from the compound of Step 1 in a similar manner according to Step 2 of Production Example 68.

 $^{1}\text{H-NMR}$ (CDCl₃), δ (ppm): 1.49(9H, s), 1.53(9H, s), 2.23(3H, s),

```
WQ 2004/087138 PCT/JP2004/004596
```

2.70-2.95(8H, m), 2.95-3.12(4H, s), 3.45(2H, s), 6.99(2H, d, J=8.3Hz), 7.42(2H, d, J=8.3Hz), 8.94-9.24(1H, brs), 10.24(1H, s), 11.63(1H, s).

MS: 651.1 (M+H)+, 673.3 (M+Na)+

5 Step 3

The title compound was prepared from the compound of Step 2 in a similar manner according to Step 4 of Production Example 31.

¹H-NNR (DMSO-d₆), & (ppm): 2.15(3H, s), 2.97(4H, s), 3.77
10 4.63(8H, s), 4.45(2H, s), 7.15(2H, d, J=8.3Hz), 7.32(2H, d, J=8.3Hz), 7.46(4H, s), 9.96(1H, s), 12.29(1H, s).

MS: 451.3(M+H)⁺, 473.2(M+Na)⁺

Production Example 114: Synthesis of N-[4-[2-(4-

{[amino(imino)methyl]amino}phenyl)ethyl]-5-(4-

15 morpholinylmethyl)-1,3-thiazol-2-yl]acetamide dihydrochloride Step 1

 $\label{eq:normalized} $$N-\{5-(4-Morpholinylmethyl)-4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2-yl}$ acetamide was prepared from $N-\{4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2-$$$

20 yl}acetamide in a similar manner according to Step 1 of Production Example 67.

MS: 389.16(M+H)+

Step 2

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-(4-

25 morpholinylmethyl)-1,3-thiazol-4-

yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 1 in a similar manner according to Step 2 of Production Example 68.

¹H-NMR (CDCl₃), δ (ppm): 1.50(9H, s), 1.53(9H, s), 2.22(3H, s),

30 2.30-2.46(4H, m), 2.85(4H, s), 3.39(2H, s), 3.58-3.75(4H, m), 7.07(2H, d, J=8.4Hz), 7.45(2H, d, J=8.4Hz), 8.80-9.31(1H, brs), 10.24(1H, s), 11.63(1H, s).

MS: 603.3(M+H) +

Step 3

The title compound was prepared from the compound of Step 2 in a similar manner according to Step 4 of Production Example 31.

N-(4-[(Z)-2-(4-Nitrophenyl)vinyl]-5-[(3-oxo-1-

piperazinyl)methyl]-1,3-thiazol-2-yl}acetamide was prepared
from N-{4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2yl}acetamide in a similar manner according to Step 1 of
Production Example 67.

Z : E = 3 : 1

- 25 J=15.7Hz), 7.62(2Hx3/4, d, J=8.8Hz), 7.76(1Hx3/4, s),
 7.78(1Hx1/4, s), 7.90(2Hx1/4, d, J=8.8Hz), 8.14(2Hx3/4, d,
 J=8.8Hz), 8.21(2Hx1/4, d, J=8.8Hz), 11.75-12.06(1Hx3/4, brs),
 12.08-12.33(1Hx1/4, brs).

MS: 402.21 (M+H)+

30 Step 2

 $\label{linear_potential} \begin{tabular}{ll} $\text{Di-tert-butyl } ((Z)-\{[4-(2-\{2-(acetylamino)-5-[(3-oxo-1-piperazinyl)methyl]-1,3-thiazol-4-} \end{tabular}$

yl}ethyl)phenyl]amino}methylidene)biscarbamate was prepared

from the compound of Step 1 in a similar manner according to Step 2 of Production Example 68.

¹H-NMR (CDCl₃), δ (ppm): 1.49(9H, s), 1.53(9H, s), 2.24(3H, s), 2.47-2.55(2H, m), 2.80-2.93(4H, m), 3.13(2H, s), 3.24-3.32(2H, s m), 3.43(2H, s), 6.02(1H, s), 7.04(2H, d, J=8.4Hz), 7.44(2H, d, J=8.3Hz), 9.02-9.26(1H, brs), 10.24(1H, s), 11.62(1H, s).

Step 3

MS: 616.2 (M+H)+, 638.2 (M+Na)+

The title compound was prepared from the compound of Step ¹⁰ 2 in a similar manner according to Step 4 of Production Example 31.

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.15(3H, s), 2.39-2.62(2H, m), 2.95(4H, s), 3.08-3.86(4H, m), 4.20-4.77(2H, brs), 7.15(2H, d, J=8.3Hz), 7.30(2H, d, J=8.0Hz), 7.35(4H, s), 8.04-8.62(1H,

15 brs), 9.70(1H, s), 10.67-11.38(1H, brs), 11.97-12.72(1H, brs).
MS: 416.2(M+H)* free

Production Example 116: Synthesis of 4-({2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-yl}methyl)-N,N-dimethyl-1-piperazinecarboxamide

20 dihydrochloride

Step 1

9H-Fluoren-9-ylmethyl 4-({2-(acetylamino)-4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-5-yl}methyl)-1-piperazinecarboxylate was prepared from N-{4-[(Z)-2-(4-25-nitrophenyl)vinyl]-1,3-thiazol-2-yl}acetamide in a similar manner according to Step 1 of Production Example 67.

H-NMR (CDCl₃), & (ppm): 2.10(3H, s), 2.26-2.61(4H, m), 3.39-3.64(6H, m), 4.19-4.30(1H, m), 4.37-4.49(2H, m), 6.66(2H, s), 7.07-7.67(8H, m), 7.76(2H, d, J=6.9Hz), 8.05(2H, d, J=8.9Hz), 30 10.03(1H, s).

MS: 610.2 (M+H)+, 632.2 (M+Na)+

Step 2

9H-Fluoren-9-ylmethyl 4-({2-(acetylamino)-4-[2-(4-

aminophenyl)ethyl]-1,3-thiazol-5-yl)methyl)-1piperazinecarboxylate was prepared from the compound of Step 1
in a similar manner.according to Step 6 of Production Example

- 5 ¹H-NNR (CDCl₃), δ (ppm): 2.16-2.33(7H, m), 2.80(4H, s), 3.34(2H, s), 3.36-3.84(6H, m), 4.17-4.30(1H, m), 4.36-4.47(2H, m), 6.57(2H, d, J=8.4Hz), 6.86(2H, d, J=8.3Hz), 7.26-7.46(4H, m), 7.56(2H, d, J=7.0Hz), 7.76(2H, d, J=6.9Hz), 8.60-9.52(1H, brs).
- 10 MS: 582.2 (M+H)+, 604.3 (M+Na)+

Step 3

45.

9H-Fluoren-9-ylmethyl $4-[(2-(acetylamino)-4-\{2-[4-(\{(Z)-(tert-butoxycarbonyl)amino)](tert-$

butoxycarbonyl) imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5-

15 yl)methyl]-1-piperazinecarboxylate was prepared from the compound of Step 2 in a similar manner according to Step 3 of Production Example 31.

¹H-NMR (CDCl₃), δ (ppm): 1.50(9H, s), 1.52(9H, s), 2.23(3H, s), 2.28-2.43(4H, m), 2.86(4H, s), 3.36-3.55(6H, m), 4.18-4.29(1H,

20 m), 4.35-4.48(2H, m), 7.05(2H, d, J=8.5Hz), 7.13-7.66(8H, m),
7.75(2H, d, J=7.0Hz), 8.85-9.76(1H, brs), 10.25(1H, Ss),
11.63(1H, s).

MS: 824.2 (M+H) +, 847.3 (M+Na) +

Step 4

25 To a solution of 9H-fluoren-9-ylmethyl 4-[(2-(acetylamino)-4-(2-[4-({(Z)-[(tert-

butoxycarbonyl) amino] [(tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5yl)methyl]-1-piperazinecarboxylate (400 mg) in DMF (0.8 ml)

30 was added piperidine (0.16 ml), and the mixture was stirred for 2 h at 20°C. To the reaction mixture was added piperidine (0.16 ml), stirred at 20°C for 1 h and 40°C for 1 h, then cooled to 20°C, added AcOEt (50 ml), and the mixture was

washed with water (10 mlx3) and brine (10 ml), dried over
MgSO4, filtered and concentrated in vacuo to give crude pale
yellow oil (463 mg). The crude oil was purified by flash
column chromatography over NH silica gel with dichloromethane

5 / methanol (100:0) → (100:1) as an eluent to give di-tertbutyl {(Z)-[(4-{2-[2-(acetylamino)-5-(1-piperazinylmethyl)1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate
as a colorless amorphous.

 1 H-NMR (CDCl₃), δ (ppm): 1.50(9H, s), 1.53(9H, s), 2.21(3H, s), 2.27-2.47(4H, m), 2.71-3.00(8H, m), 3.40(2H, s), 7.07(2H, d, J=8.4Hz), 7.45(2H, d, J=8.4Hz), 10.24(1H, s), 11.47-11.74(1H, brs).

Ms: 602.3 (M+H) +, 624.2 (M+Na) +

Step 5

15 To a solution of di-tert-butvl {(Z)-[(4-{2-[2-(acetylamino)-5-(1-piperazinylmethyl)-1,3-thiazol-4v1|ethv1|phenv1)amino|methvlidene|biscarbamate (30 mg) in dichloromethane (0.3 ml) were added N,N-diisopropylethylamine (9.55 ul) and dimethylcarbamyl chloride (4.59 ul), and the 20 mixture was stirred for 14 h at 20°C. To the reaction mixture was added saturated sodium hydrogen carbonate aqueous solution (2 ml), then the mixture was extracted with dichloromethane (5 mlx3) and the extract was dried over diatomaceous earth. The organic layer was concentrated in vacuo to give crude oil. 25 The residue was purified by preparative silica gel thin-layer chromatography with chloroform / methanol (20:1) as an eluent to give di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({4-[(dimethylamino)carbonyl]-1-piperazinyl}methyl)-1,3-thiazol-4v1|ethv1|phenv1)amino|methvlidene|biscarbamate as colorless 30 oil.

 1 H-NMR (CDCl₃), δ (ppm): 1.50(9H,·s), 1.54(9H, s), 2.23(3H, s), 2.35-2.42(4H,·m), 2.80(6H, s), 2.81-2.89(4H, m), 3.17-3.27(4H, m), 3.41(2H, s), 7.07(2H, d, J=8.4Hz), 7.46(2H, d, J=8.4Hz),

8.73-8.90(1H, brs), 10.25(1H, s), 11.63(1H, s).

MS: 673.3 (M+H)+, 695.2 (M+Na)+

Step 6

. The title compound was prepared from the compound of Step 5 5 in a similar manner according to Step 4 of Production Example 31.

10 J=8.4Hz), 7.41(4H, s), 9.87(1H, s), 10.51-10.69(1H, brs),
12.33(1H, s).

MS: 473.2 (M+H)+

<u>Production Example 117</u>: Synthesis of N-(4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-5-{[4-(4-

15 morpholinylcarbonyl)-1-piperazinyl]methyl}+1,3-thiazol-2yl)acetamide dihydrochloride

Step 1

Di-tert-butyl [(Z)-((4-[2-(2-(acetylamino)-5-{[4-(4-morpholinylcarbonyl)-1-piperazinyl]methyl}-1,3-thiazol-4-yl)ethyl]phenyl}amino)methylidene]biscarbamate was prepared from the compound of Step 4 of Production Example 116 in a similar manner according to Step 5 of Production Example 116.

¹H-NNR (CDCl₃), δ (ppm): 1.50(9H, s), 1.54(9H, s), 2.23(3H, s), 2.32-2.46(4H, m), 2.78-2.91(4H, m), 3.20-3.30(8H, m), 3.42(2H, s), 3.63-3.71(4H, m), 7.07(2H, d, J=8.4Hz), 7.46(2H, d, J=8.4Hz), 8.72-8.89(1H, brs), 10.25(1H, s), 11.64(1H, s).

MS: 715.3(M+H)⁺, 737.2(M+Na)⁺

Step 2

The title compound was prepared from the compound of Step 30 1 in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (DMSO-d₆), δ (ppm): 2.16(3H, s), 2.90-3.07(6H, m), 3.11-3.32(8H, m), 3.48-3.76(6H, m), 4.42(2H, s), 7.15(2H, d,

```
WO 2004/087138 PCT/JP2004/004596

J=8.4Hz), 7.31(2H, d, J=8.4Hz), 7.40(4H, s), 9.85(1H, s),

10.51-10.72(1H, brs), 12.34(1H, s).

MS: 515.3(M+H)* free

Production Example 118: Synthesis of N-(4-[2-(4-

{[amino(imino)methyl]amino}phenyl)ethyl]-5-{[4-(1-
pvrrolidinylcarbonyl)-1-piperazinyl]methyl}-1,3-thiazol-2-.
```

yl)acetamide dihydrochloride Step 1

Di-tert-butyl [(Z)-({4-[2-(2-(acetylamino)-5-{[4-(1-

pyrrolidinylcarbonyl)-1-piperazinyl]methyl}-1,3-thiazol-4yl)ethyl]phenyl}amino)methylidene]biscarbamate was prepared
from the compound of Step 4 of Production Example 116 in a
similar manner according to Step 5 of Production Example 116.

'H-NMR (CDCl₃), δ (ppm): 1.50(9H, s), 1.54(9H, s), 1.72-

15 1.89(4H, m), 2.23(3H, s), 2.28-2.48(4H, m), 2.84(4H, s), 3.193.39(8H, m), 3.41(2H, s), 7.07(2H, d, J=8.4Hz), 7.46(2H, d,
J=8.4Hz), 8.71-8.99(1H, brs), 10.24(1H, s), 11.64(1H, s).
MS: 699.2(M+H)*, 721.3(M+Na)*

Step 2

The title compound was prepared from the compound of Step 1 in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (DMSO-d₆), δ (ppm): 1.70-1.83(4H, m), 2.16(3H, s), 2.89-3.05(6H, m), 3.06-3.19(2H, m), 3.20-3.32(6H, m), 3.64-3.84(2H,

25 m), 4.36-4.50(2H, m), 7.15(2H, d, J=8.2Hz), 7.31(2H, d, J=8.3Hz), 7.42(4H, s), 9.88(1H, s), 10.50-10.75(1H, brs), 12.34(1H, s).

MS: 499.3(M+H) + free

Production Example 119: Synthesis of N-[4-[2-(4-

30 {[amino(imino)methyl]amino}phenyl)ethyl]-5-({4-[(4-methyl-1-piperazinyl)carbonyl]-1-piperazinyl)methyl)-1,3-thiazol-2-yl]acetamide trihydrochloride

Step 1

PCT/JP2004/004596 WO 2004/087138

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({4-[(4methyl-1-piperazinyl)carbonyl]-1-piperazinyl}methyl)-1,3thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 4 of Production Example 116 ⁵ in a similar manner according to Step 5 of Production Example 116.

 $^{1}\text{H-NMR}$ (CDCl₃), δ (ppm): 1.50(9H, s), 1.54(9H, s), 2.23(3H, s), 2.29(3H, s), 2.32-2.48(8H, m), 2.84(4H, s), 3.16-3.35(8H, m), 3.42(2H, s), 7.07(2H, d, J=8.4Hz), 7.46(2H, d, J=8.4Hz), 8.69-10 9.04(1H, brs), 10.24(1H, s), 11.64(1H, s). MS: 728.2 (M+H)+, 750.3 (M+Na)+

Step 2

The title compound was prepared from the compound of Step 1 in a similar manner according to Step 4 of Production

15 Example 31.

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.16(3H, s), 2.76(3H, d, J=4.6Hz), 2.89-3.09(8H, m), 3.17-3.39(8H, m), 3.62-3.77(4H, m), 4.34-4.51(2H, brs), 7.15(2H, d, J=8.3Hz), 7.31(2H, d, J=8.2Hz), 7.41(4H, s), 9.87(1H, s), 10.68-10.97(1H, brs), 12.34(1H, s). 20 MS: 528.3 (M+H) + free

Production Example 120: Synthesis of 3-{2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-5-yl}-N.N-dimethylpropanamide hydrochloride

Step 1

25

Ethyl 3-[2-(acetylamino)-4-(2-{4-[(tertbutoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazol-5-yl]acrylate was prepared from 2-(acetylamino)-4-(2-{4-[(tertbutoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazole-5-carbaldehyde in a similar manner according to Step 7 of Production Example 30 61.

 $^{1}\text{H-NMR}$ (CDCl₃), δ (ppm): 1.16-1.40(3H, m), 1.52(9H, s), 2.23-2.38(3H, m), 2.70-3.06(4H, m), 4.15-4.33(2H, m), 5.53-6.15(1H, m), 6.64-7.85(6H, m).

MS: 482.2 (M+Na) +

Step 2

A mixture of ethyl (2E)-3-[2-(acetylamino)-4-(2-(4-[(tert-butoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazol-5-

- 5 yl]acrylate and ethyl (2Z)-3-[2-(acetylamino)-4-(2-[4-[(tert-butoxycarbonyl)amino]phenyl)ethyl)-1,3-thiazol-5-yl]acrylate (200 mg), THF (7 ml) and 10 % Pd/C (392 mg) were combined under nitrogen atmosphere. The mixture was stirred under 3 atm hydrogen atmosphere at 20°C for 3 h. The reaction mixture was
- filtered through a celite pad, and the filtrate was concentrated in vacuo to give ethyl 3-[2-(acetylamino)-4-(2-{4-[(tert-butoxycarbonyl)amino]phenyl}ethyl)-1,3-thiazol-5yl]propanoate as a colorless amorphous.

 $^{1}\text{H-NMR}$ (CDCl₃), δ (ppm): 1.24(3H, t, J=7.0Hz), 1.51(9H, s),

15 2.24(3H, s), 2.41(2H, t, J=7.5Hz), 2.73-2.93(6H, m), 4.12(2H, q, J=7.0Hz), 6.95(2H, d, J=7.2Hz), 7.23(2H, d, J=7.7Hz).
MS: 484.1(M+Na)*

Step 3

Ethyl 3-(2-(acetylamino)-4-{2-[4-({(Z)-[(tert-

20 butoxycarbonyl)amino][(tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5-yl)propanoate was prepared from the compound of Step 2 in a similar manner according to Step 4 of Production Example 65. $^1\text{H-NMR}$ (CDCl₃), δ (ppm): 1.24(3H, t, J=7.1Hz), 1.50(9H, s),

25 1.53(9H, s), 2.21(3H, s), 2.41(2H, t, J=7.6Hz), 2.70-3.00(6H, m), 4.12(2H, q, J=7.2Hz), 7.07(2H, d, J=8.4Hz), 7.46(2H, d, J=8.4Hz), 8.80-9.20(1H, brs), 10.24(1H, s), 11.63(1H, s).

MS: 604.3(M+H)⁺, 626.2(M+Na)⁺

Step 4 ·

butoxycarbony1)imino]methy1}amino)pheny1]ethy1}-1,3-thiazo1-5y1)propanoic acid was prepared from the compound of Step 3 in

Step 5

Di-tert-butyl ((Z)-{[4-(2-{2-(acetylamino)-5-[3-(dimethylamino)-3-oxopropyl]-1,3-thiazol-4-

yl}ethyl)phenyl]amino}methylidene)biscarbamate was prepared

 10 from the compound of Step 4 in a similar manner according to Step 1 of Production Example 32.

¹H-NMR (CDCl₃), δ (ppm): 1.49(9H, s), 1.53(9H, s), 2.21(3H, s), 2.28-2.43(2H, m), 2.79-2.99(12H, m), 7.05(2H, d, J=8.5Hz), 7.44(2H, d, J=8.5Hz), 8.85-9.37(1H, brs), 10.23(1H, s),

¹⁵ 11.62(1H, s).

 $MS: 603.3 (M+H)^+, 625.3 (M+Na)^+$

Step 6

The title compound was prepared from the compound of Step 5 in a similar manner according to Step 4 of Production

20 Example 31.

 $^1\text{H-NMR}$ (DMSO-d₆), g (ppm): 2.10(3H, s), 2.40(2H, t, J=7.3Hz), 2.75(2H, t, J=7.3Hz), 2.77-2.84(5H, m), 2.84-2.95(5H, m), 7.14(2H, d, J=8.4Hz), 7.24(2H, d, J=8.4Hz), 7.36(4H, s), 9.72(1H, s), 11.93(1H, s).

²⁵ MS: 403.3 (M+H) + free

<u>Production Example 121</u>: Synthesis of 3-{2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-5-yl}-N-methylpropanamide hydrochloride

Step 1

```
similar manner according to Step 1 of Production Example 32.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>), δ (ppm): 1.45(9H, s), 1.54(9H, s), 1.79-

1.88(2H, s), 2.23(3H, s), 2.65(3H, d, J=4.8Hz), 2.69-2.77(2H, m), 2.79-2.86(2H, m), 2.86-2.95(2H, m), 6.04(2H, d, J=4.4Hz),

<sup>5</sup> 6.93(2H, d, J=8.4Hz), 7.28(2H, d, J=8.4Hz), 8.79-9.17(1H, brs), 10.28(1H, s), 11.60(1H, s).

MS: 589.3(M+H)<sup>+</sup>, 611.3(M+Na)<sup>+</sup>
```

Step 2

The title compound was prepared from the compound of Step 10 1 in a similar manner according to Step 4 of Production Example 31.

¹H-NNR (DMSO-d₆), & (ppm): 2.10(3H, s), 2.22(2H, t, J=7.3Hz), 2.53(3H, d, J=4.8Hz), 2.72-2.82(4H, m), 2.82-2.90(2H, m), 7.15(2H, d, J=8.4Hz), 7.26(2H, d, J=8.4Hz), 7.38(4H, s), ¹⁵ 7.79(1H, d, J=4.5Hz), 9.76(1H, s), 11.95(1H, s).

MS: 389.2(M+H)⁺, 411.2(M+Na)⁺ free

<u>Production Example 122</u>: Synthesis of 3-{2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-5-yl}propanamide hydrochloride

20 Step 1

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-(3-amino-3-oxopropyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 4 of Production Example 120 in a similar manner according to Step 1 of Production Example 32.

H-NNR (CDCl₃), δ (ppm): 1.47(9H, s), 1.53(9H, s), 1.57-1.67(2H, m), 2.24(3H, s), 2.65-2.76(2H, m), 2.76-2.87(2H, m), 2.87-2.99(2H, m), 5.37(1H, s), 6.14(1H, s), 6.90(2H, d, J=8.4Hz), 7.28(2H, d, J=8.4Hz), 8.88-9.28(1H, brs), 10.12(1H, 30 s), 11.58(1H, s).

MS: 575.0 (M+H)+, 597.3 (M+Na)+

Step 2

The title compound was prepared from the compound of Step

1 in a similar manner according to Step 4 of Production Example 31.

 $^{1}H-NMR (DMSO-d_{6}), \delta (ppm): 2.10 (3H, s), 2.23 (2H, t, J=7.3Hz), \\ 2.71-2.83 (4H, m), 2.83-2.91 (2H, m), 6.81 (1H, s), 7.14 (2H, d, J=8.4Hz), 7.26 (2H, d, J=8.4Hz), 7.31 (1H, s), 7.35 (4H, s),$

MS: 375.2 (M+H)+, 397.0 (M+Na)+ free

9.70(1H, s), 11.94(1H, s).

Production Example 123: Synthesis of 1-({2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-

10 y1}methy1)-N,N-dimethy1-4-piperidinecarboxamide
dihydrochloride

Step 1

1-[(2-(Acetylamino)-4-{2-[4-({(Z)-[(tertbutoxycarbonyl)amino][(tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5yl)methyl]-4-piperidinecarboxylic acid was prepared from ethyl
1-[(2-(acetylamino)-4-{2-[4-({(Z)-[(tert-

butoxycarbonyl)amino][(tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5-

20 y1)methy1]-4-piperidinecarboxylate in a similar manner according to Step 1 of Production Example 42.

¹H-NMR (CDCl₃), δ (ppm): 1.49(9H, s), 1.51(9H, s), 1.76-2.49(10H, m), 2.69-3.00(6H, m), 3.71(2H, s), 7.04(2H, d, J=8.5Hz), 7.42(2H, d, J=8.5Hz), 10.23(1H, s), 11.13-12.07(1H,

25 brs).

MS: $645.3 (M+H)^{+}$, $667.2 (M+Na)^{+}$

Step 2

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({4[(dimethylamino)carbonyl]-1-piperidinyl}methyl)-1,3-thiazol-4
30 yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared

from the compound of Step 1 in a similar manner according to

Step 1 of Production Example 32.

¹H-NMR (CDCl₃), δ (ppm): 1.50(9H, s), 1.54(9H, s), 1.75-

1.89(2H, m), 1.92-2.03(2H, m), 2.22(3H, s), 2.37-2.49(1H, m), 2.80-2.95(9H, m), 3.02(3H, s), 3.43(2H, s), 7.08(2H, d, J=8.4Hz), 7.46(2H, d, J=8.4Hz), 8.61-9.19(1H, brs), 10.24(1H, s), 11.63(1H, s).

⁵ MS: 672.2 (M+H)⁺, 694.3 (M+Na)⁺

Step 3

The title compound was prepared from the compound of Step 2 in a similar manner according to Step 4 of Production Example 31.

- 10 H-NMR (DMSO-d₆), & (ppm): 1.71-2.01(4H, m), 2.16(3H, s), 2.76-2.87(4H, m), 2.87-3.1(9H, m), 3.3-3.4(2H, m), 4.32-4.45(2H, m), 7.15(2H, d, J=4.2Hz), 7.31(2H, d, J=4.2Hz), 7.41(4H, s), 9.83-9.93(1H, m), 9.99-10.19(1H, m), 12.32-12.37(1H, m).

 MS: 472.3(M+H)*, 494.0(M+Na)* free
- Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({4-20 (methylamino) carbonyl]-1-piperidinyl)methyl)-1,3-thiazol-4-yl]ethyl)phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 1 of Production Example 123 in a similar manner according to Step 1 of Production Example 32.

 ¹H-NMR (CDCl₃), 8 (ppm): 1.5(9H, s), 1.54(9H, s), 1.65-1.74(2H,
- 25 m), 1.75-1.84(2H, m), 1.87-1.98(2H, m), 2-2.11(1H, m),
 2.22(3H, s), 2.8(3H, d, J=4.8Hz), 2.82-2.91(6H, m), 3.39(2H,
 s), 5.5(1H, d, J=4.4Hz), 7.07(2H, d, J=8.4Hz), 7.45(2H, d,
 J=8.4Hz), 8.72-8.99(1H, brs), 10.23(1H, s), 11.62(1H, s).
 MS: 658.3(M+H)*, 680.3(M+Na)*

30 Step 2

The title compound was prepared from the compound of Step 1 in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (DMSO-d₆), δ (ppm): 1.71-2.04(4H, m), 2.16(3H, s), 2.25-2.37(1H, m), 2.54-2.61(3H, m), 2.82-2.94(2H, m), 2.96(4H, s), 3.27-3.37(2H, m), 4.31-4.44(2H, m), 7.15(2H, d, J=8.4Hz), 7.30(2H, d, J=8.4Hz), 7.41(4H, s), 7.89-8.00(1H, m), 9.83-5 10.16(2H, m).

MS: 458.2 (M+H)*, 480.0 (M+Na)* free

Production Example 125: Synthesis of 1-({2-(acetylamino)-4-[2-(4-{[amino (imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-yl}methyl)-4-piperidinecarboxamide dihydrochloride

10 Step 1

Step 2

The title compound was prepared from the compound of Step 1 in a similar manner according to Step 4 of Production 25 Example 31.

¹H-NNR (DMSO-d₆), δ (ppm): 1.68-2.08(4H, m), 2.16(3H, s), 2.25-2.36(1H, m), 2.82-3.09(6H, m), 3.27-3.44(2H, m), 4.30-4.45 (2H, m), 6.87-7.06(1H, m), 7.15(2H, d, J=8.4Hz), 7.30(2H, d, J=8.3Hz), 7.36-7.52(5H, m), 9.87-10.25(2H, m), 12.30-12.37(1H, 30 m).

MS: 444.2 (M+H)*, 466.2 (M+Na)* free

Production Example 126: Synthesis of (3R)-1-({2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-

5-y1}methy1)-N,N-dimethy1-3-piperidinecarboxamide dihydrochloride

Step 1

Ethyl (3R)-1-({2-(acetylamino)-4-[(Z)-2-(4-

5 nitrophenyl)vinyl]-1,3-thiazol-5-yl}methyl)-3piperidinecarboxylate was prepared from N-{4-[(Z)-2-(4nitrophenyl)vinyl]-1,3-thiazol-2-yl}acetamide in a similar
manner according to Step 1 of Production Example 67.
MS: 459.20 MHH)⁺

10 Step 2

Ethyl (3R)-1-[(2-(acetylamino)-4-{2-[4-({(Z)-[(tert-butoxycarbonyl)amino]((tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5yl)methyl]-3-piperidinecarboxylate was prepared from the

15 compound of Step 1 in a similar manner according to Step 2 of Production Example .68.

 $^{1}H-NMR \ (CDCl_{2}), \ \delta \ (ppm): 1.22 (3H, t, J=7.2Hz), \ 1.31-1.78 (21H, m), \ 1.79-2.06 (2H, m), \ 2.07-2.18 (1H, m), \ 2.22 (3H, s), \ 2.43-2.62 (1H, m), \ 2.62-2.75 (1H, m), \ 2.84 (4H, s), \ 2.88-3.01 (1H, m), \ (2.84 (4H, s), \ 2.88 (4H, s), \ (2.84 (4H, s), \ 2.88 (4H, s), \ (2.84 (4H, s), \ 2.88 (4H, s), \ (2.84 (4H, s$

20 3.42(2H, s), 4.11(2H, q, J=7.1Hz), 7.08(2H, d, J=8.4Hz),
7.46(2H, d, J=8.4Hz), 8.76-9.16(1H, brs), 10.24(1H, s),
11.64(1H, s).

MS: 673.3 (M+H) +, 695.2 (M+Na)+

Step 3

25 (3R)-1-[(2-(Acetylamino)-4-{2-[4-({(Z)-[(tertbutoxycarbonyl)amino][(tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5-yl)methyl]-3-piperidinecarboxylic acid was prepared from the compound of Step 2 in a similar manner according to Step 1 of

30 Production Example 42.

MS: 645.37 (M+H)+

Step 4

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({(3R)-3-

[(dimethylamino)carbonyl]-1-piperidinyl}methyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 3 in a similar manner according to Step 1 of Production Example 32.

- 5 ¹H-NMR (CDCl₃), δ (ppm): 1.39-1.57(20H, m), 1.66-1.73(1H, m), 1.74-1.83(1H, m), 1.87-1.98(1H, m), 2.08-2.19(1H, m), 2.22(3H, s), 2.72-2.94(10H, m), 3.02(3H, s), 3.41(2H, s), 7.08(2H, d, J=8.4Hz), 7.46(2H, d, J=8.4Hz), 8.70-9.02(1H, brs), 10.24(1H, s), 11.63(1H, s).
- 10 MS: 672.41 (M+H) +

Step 5

The title compound was prepared from the compound of Step 4 in a similar manner according to Step 4 of Production Example 31.

- 15 ¹H-NMR (DMSO-d_s), δ (ppm): 1.29-1.94(4H, m), 2.16(3H, s), 2.77-3.33(15H, m), 4.27-4.46(2H, m), 7.16(2H, d, J=8.3Hz), 7.27-7.35(2H, m), 7.36-7.48(4H, m), 9.8-9.98(1H, m), 10.22-10.51 (1H, brs), 12.29-12.36(1H, m).
 - MS: 472.3 (M+H)+, 494.2 (M+Na)+ free
- 20 Production Example 127: Synthesis of (3R)-1-({2-(acetylamino)4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol5-yl}methyl)-N-methyl-3-piperidinecarboxamide dihydrochloride
 Step 1
- Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({(3R)-3-25 (methylamino) carbonyl]-1-piperidinyl}methyl)-1,3-thiazol-4-yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 3 of Production Example 126 in a similar manner according to Step 1 of Production Example 32.

 ¹H-NMR (CDCl₃), δ (ppm): 1.50(9H, s), 1.52-1.72(12H, m), 1.84-30 1.98(1H, m), 2.01-2.14(1H, m), 2.14-2.23(1H, m), 2.24(3H, s), 2.43-2.51(1H, m), 2.64-2.76(1H, m), 2.76-2.94(8H, m), 3.32(1H, d, J=14Hz), 3.41(1H, d, J=14Hz), 7.06(2H, d, J=8.4Hz), 7.45(2H, d, J=8.4Hz), 7.53(1H, brs), 8.84(1H, brs), 10.24(1H,

s), 11.63(1H, s).

MS: 658.39(M+H)+

Step 2

The title compound was prepared from the compound of Step 5 1 in a similar manner according to Step 4 of Production Example 31.

²H-NMR (DMSO-d₆), δ (ppm): 1.31-1.94(4H, m), 2.16(3H, s), 2.54-3.36(12H, m), 4.27-4.48(2H, m), 7.12-7.19(2H, m), 7.25-7.35(2H, m), 7.35(4H, brs), 8.05-8.37(1H, m), 9.79-9.92(1H,

¹⁰ m), 10.16-10.42(1H, brs), 12.29-12.37(1H, m).

MS: 458.2 (M+H)+, 480.1 (M+Na)+ free

Production Example 128: Synthesis of (3S)-1-({2-(acetylamino)-4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-5-yl}methyl)-N,N-dimethyl-3-piperidinecarboxamide

15 dihydrochloride

Step 1

Ethyl (3S)-1-({2-(acetylamino)-4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-5-yl}methyl)-3piperidinecarboxylate was prepared from N-(4-[(Z)-2-(420 nitrophenyl)vinyl]-1,3-thiazol-2-yl}acetamide in a similar
manner according to Step 1 of Production Example 67.
MS: 459.21(M+H)*

Step 2

Ethyl (3S)-1-[(2-(acetylamino)-4-{2-[4-({(Z)-[(tert-

- 25 butoxycarbonyl)amino][(tertbutoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5yl)methyl]-3-piperidinecarboxylate was prepared from the compound of Step 1 in a similar manner according to Step 2 of Production Example 66.
- 30 ¹H-NMR (CDCl₃), δ (ppm): 1.22(3H, t, J=7.2Hz), 1.3-1.79(21H, m), 1.8-2.06(2H, m), 2.08-2.18(1H, m), 2.22(3H, s), 2.43-2.62(1H, m), 2.62-2.75(1H, m), 2.84(4H, s), 2.88-3.01(1H, m), 3.42(2H, s), 4.11(2H, q, J=7.1Hz), 7.08(2H, d, J=8.4Hz),

```
7.46(2H, d, J=8.4Hz), 8.71-9.23(1H, brs), 10.24(1H, s), 11.64(1H, s).
MS: 673.3(M+H)<sup>+</sup>, 695.2(M+Na)<sup>+</sup>
```

Step 3

5 (3S)-1-[(2-(Acetylamino)-4-{2-[4-({(Z)-[(tert-butoxycarbonyl)amino][(tert-

butoxycarbonyl)imino]methyl}amino)phenyl]ethyl}-1,3-thiazol-5yl)methyl]-3-piperidinecarboxylic acid was prepared from the
compound of Step 2 in a similar manner according to Step 1 of
Production Example 42.

MS: 645.36(M+H)+

Step 4

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-(((3S)-3-((dimethylamino)carbonyl]-1-piperidinyl}methyl)-1,3-thiazol-4-

15 yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 3 in a similar manner according to Step 1 of Production Example 32.

¹H-NMR (CDCl₃), δ (ppm): 1.4-1.64(20H, m), 1.65-1.73(1H, m), 1.73-1.82(1H, m), 1.86-1.97(1H, m), 2.08-2.18(1H, m), 2.22(3H,

MS: 672.39 (M+H)+

Step 5

25 The title compound was prepared from the compound of Step 4 in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (DMSO-d₆), δ (ppm): 1.29-1.93(4H, m), 2.16(3H, s), 2.77-3.35(15H, m), 4.27-4.45(2H, m), 7.16(2H, d, J=8.4Hz), 7.28-

30 7.35(2H, m), 7.35-7.47(4H, m), 9.8-9.96(1H, m), 10.21-10.46(1H, brs), 12.29-12.36(1H, m).

MS: 472.3(M+H)+, 494.2(M+Na)+ free

Production Example 129: Synthesis of (3S)-1-({2-(acetylamino)-

4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3-thiazol-5-yl}methyl)-N-methyl-3-piperidinecarboxamide dihydrochloride Step 1

Di-tert-butyl {(Z)-[(4-{2-[2-(acetylamino)-5-({(3S)-3-[(methylamino)carbonyl]-1-piperidinyl}methyl)-1,3-thiazol-4yl]ethyl}phenyl)amino]methylidene}biscarbamate was prepared from the compound of Step 3 of Production Example 128 in a similar manner according to Step 1 of Production Example 32. ¹H-NMR (CDCl₃), δ (ppm): 1.46-1.72(21H, m), 1.84-1.97(1H, m),

- 10 1.99-2.14(1H, m), 2.15-2.22(1H, m), 2.24(3H, s), 2.43-2.51(1H, m), 2.65-2.76(1H, m), 2.76-2.91(8H, m), 3.32(1H, d, J=14Hz), 3.41(1H, d, J=14Hz), 7.06(2H, d, J=8.4Hz), 7.45(2H, d, J=8.4Hz), 7.54(1H, brs), 8.84-9.02(1H, brs), 10.24(1H, s), 11.63(1H, s).
- MS: 658.40 (M+H) *

Step 2

The title compound was prepared from the compound of Step 1 in a similar manner according to Step 4 of Production Example 31.

- - MS: $458.2 (M+H)^+$, $480.2 (M+Na)^+$ free
- 25 Production Example 130: Synthesis of N-{4-[2-(2-amino-1H-benzimidazol-6-yl) ethyl]-5-[4-(methylsulfonyl) benzyl]-1,3-thiazol-2-yl}acetamide

Step 1

 $N-\{4-[2-(3,4-Dinitrophenyl) vinyl]-5-[4-$

30 (methylthio)benzyl]-1,3-thiazol-2-yl}acetamide was prepared
from 2-(acetylamino)-5-[4-(methylthio)benzyl]-1,3-thiazole-4carbaldehyde in a similar manner according to Step 5 of
Production Example 45.

Z : E = 3 : 1

¹H-NMR(CDCl₃), & (ppm): 2.08(3Hx3/4, s), 2.12(3Hx1/4, s), 2.44(3H, s), 4.13(2Hx3/4, s), 4.32(2Hx1/4, s), 6.71(1Hx3/4, d, J=12.5Hz), 6.97(1Hx3/4, d, J=12.3Hz), 7.06-8.61(7H + 2Hx1/4, s), 11.85(1Hx3/4, s), 12.18(1Hx1/4, s).

MS: 471.1(M+H)+, 493.9(M+Na)+

MS: 445.0 (M+H) +, 467.0 (M+Na) +

Step 2

N-{4-[2-(3,4-Diaminophenyl) ethyl]-5-[4-(methylsulfonyl) benzyl]-1,3-thiazol-2-yl}acetamide was 10 prepared from the compound of Step 1 in a similar manner according to Step 2 of Production Example 32 and Step 6 of Production Example 45. ¹H-NMR (CDCl₃), δ (ppm): 2.23(3H, s), 2.70-2.85(4H, m), 3.03(3H, s), 3.88(2H, s), 6.34(1H, d, J=1.8Hz), 6.39(1H, dd, 15 J=1.8, 7.8Hz), 6.56(1H, d, J=7.7Hz), 7.14(2H, d, J=8.3Hz), 7.79(2H, d, J=8.4Hz), 8.30-9.45(1H, brs).

Step 3

To a suspension of N-{4-[2-(3,4-diaminophenyl)ethyl]-520 [4-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide (70.8 mg) in MeOH (0.7 ml) was added cyanogen bromide (25.3 mg), then the mixture was stirred for 14 h at 20°C. To the reaction mixture was added 1N-NaOH (0.239 ml) and the mixture was concentrated in vacuo. To the residue was added CHCl₃: MeOH = 25 10 : 1 (10 ml), and an insoluble material was removed by filtration. The filtrate was purified by flash column chromatography over NH silica gel with CHCl₃ / MeOH (100:1 → 10:1) as an eluent to give colorless oil. The oil was solidified with CH₂Cl₂: Et₂O = 2 : 1 to give N-{4-[2-(2-amino-30 1H-benzimidazol-6-yl)ethyl]-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide as a white solid.

¹H-NMR (CDCl₃), δ (ppm): 2.09(3H, s), 2.85(4H, s), 3.16(3H, s),

6.96(1H, d, J=7.8Hz), 7.10-7.30(2H, brs), 7.72(2H, d, J=8.1Hz), 10.55(1H, d, J=10.5Hz), 11.50-12.20(1H, brs).
MS: 470.2(M+H)⁺, 492.1(M+Na)⁺

Production Example 131: Synthesis of N-{4-[2-(2-amino-1H-

benzimidazol-6-yl)ethyl]-1,3-thiazol-2-yl}acetamide

Step 1

N-(4-[2-(3,4-Dinitrophenyl)vinyl]-1,3-thiazol-2yl)acetamide was prepared from 2-(acetylamino)-1,3-thiazole-4carbaldehyde in a similar manner according to Step 5 of

10 Production Example 1.

Z : E = 8 : 1

 $^{1}H-NMR \ (DMSO-d_{6}), \ \delta \ (ppm): \ 2.13 (3Hx8/9, \ s), \ 2.17 (3Hx1/9, \ s), \\ 6.64 (1Hx8/9, \ d, \ J=12.6Hz), \ 6.80 (1Hx8/9, \ d, \ J=12.6Hz),$

7.29(1Hx1/9, d, J=15.7Hz), 7.33(1Hx8/9, s), 7.39(1Hx1/9, s),

15 7.63(1Hx1/9, d, J=15.7Hz), 8.00-8.50(3H, m), 11.97(1Hx8/9, s), 12.30(1Hx1/9, s).

MS: 335.0 (M+H)+, 357.1 (M+Na)+

Step 2

N-{4-[2-(3,4-Diaminophenyl)ethyl]-1,3-thiazol-220 yl)acetamide was prepared from the compound of Step 1 in a similar manner according to Step 6 of Production Example 1.

'H-NNR (CDCl₃), δ (ppm): 2.22(3H, s), 2.58-3.17(8H, m), 6.46-6.56(3H, m), 6.62(1H, d, J=8.3Hz), 8.84-10.42(1H, brs).
MS: 277.1(M+H)⁺, 299.2(M+Na)⁺

25 Step 3

The title compound was prepared from the compound of Step 2 in a similar manner according to Step 3 of Production Example 130.

¹H-NNR (CDCl₃), δ (ppm): 2.11(3H, s), 2.79-2.97(4H, m), 6(2H, 30 s), 6.59-6.8(2H, m), 6.91(1H, s), 6.97(1H, d, J=7.9Hz), 10.34-10.73(1H, brs), 11.94-12.22(1H, brs).

MS: 302.2(M+H)+, 324.1(M+Na)+

Production Example 132: Synthesis of N-((2-(acetylamino)-4-[2-

(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-5yl}methyl)-N-methylacetamide hydrochloride

Step 1

 $N-\{5-[(Methylamino)methyl]-4-[(Z)-2-(4-$

5 nitrophenyl)vinyl]-1,3-thiazol-2-yl}acetamide was prepared from N-{4-[(Z)-2-(4-nitrophenyl)vinyl]-1,3-thiazol-2yl}acetamide in a similar manner according to Step 1 of Production Example 67.

¹H-NMR (CDCl₃), δ (ppm): 2.05(3H, s), 2.46(3H, s), 3.75(2H, s), ¹⁰ 6.67(2H, s), 7.41(2H, d, J=8.9Hz), 8.01(2H, d, J=8.8Hz), 9.7-11.69(1H, brs).

MS: 333.1(M+H)+, 355.1(M+Na)+

Step 2

To a suspension of N-{5-[(methylamino)methyl]-4-[(Z)-2-15 (4-nitrophenyl)vinyl]-1,3-thiazol-2-yl}acetamide (46.8 mg) in dichloromethane (0.5 ml) were added N.N-diisopropylethylamine (27 µl) and acethyl chloride (10 µl), and the mixture was stirred for 2 h at 20°C. To the reaction mixture were added dichloromethane (5 ml), N, N-diisopropylethylamine (27 µl) and 20 acethyl chloride (10 µl), and the mixture was stirred for 5 min. at 20°C, then washed with saturated sodium hydrogen carbonate aqueous solution (5 ml) and brine (5 ml), dried over MgSO4, filtered and evaporated to give a yellow solid (67.8 mg). The crude compound was purified by preparative silica gel 25 thin-layer chromatography with chloroform / methanol (20:1) as an eluent to give N-($\{2-(acetvlamino)-4-[(2)-2-(4$ nitrophenyl) vinyl]-1,3-thiazol-5-vl}methyl)-N-methylacetamide as a vellow solid. $^{1}H-NMR$ (CDCl₃), δ (ppm): 2.12(3Hx2/3, s), 2.13(3Hx1/3, s), 30 2.14(3Hx2/3, s), 2.24(3Hx1/3, s), 3.02(3Hx2/3, s), 3.05(3Hx1/3, s), 4.62(2Hx2/3, s), 4.79(2Hx1/3, s), 6.61 (1Hx1/3, d, J=12.6Hz), 6.70 (1Hx2/3, d, J=12.6Hz), 6.77 (1Hx1/3, d, J=12.6Hz), 6.82 (1Hx2/3, d, J=12.6Hz),

7.43(2Hx2/3, d, J=8.8Hz), 7.65(2Hx1/3, d, J=8.8Hz), 8.06(2Hx2/3, d, J=8.8Hz), 8.22(2Hx1/3, d, J=8.8Hz), 9.09-9.26(1Hx1/3, brs), 9.26-9.51(1Hx2/3, brs).
MS: 375.2(M+H)*, 397.1(M+Na)*

5 Step 3

N-({2-(Acetylamino)-4-[2-(4-aminophenyl)ethyl]-1,3-thiazol-5-yl}methyl)-N-methylacetamide was prepared from the compound of Step 2 in a similar manner according to Step 6 of Production Example 45.

10 MS: 347.25 (M+H)+

Step 4

Di-tert-butyl [(Z)-((4-[2-(2-(acetylamino)-5-(acetyl(methyl)) amino]methyl)-1,3-thiazol-4-yl)ethyl]phenyl}amino)methylidene]biscarbamate was prepared from the compound of Step 3 in a similar manner according to Step 3 of Production Example 31.

H-NMR (CDCl₃), 8 (ppm): 1.49(9H, s), 1.53(9H, s), 2.06(3Hx3/4, s), 2.12(3Hx1/4, s), 2.23(3H, s), 2.77(3Hx1/4, s), 2.81(3Hx3/4, s), 2.90(4H, s), 4.20(2Hx1/4, s), 4.46(2Hx3/4, s), 2.90(4H, s), 4.20(2Hx1/4, s), 4.46(2Hx3/4, s), 2.90(4H, s), 4.20(2Hx1/4, s), 4.46(2Hx3/4, s

20 s), 7.01(2Hx1/4, d, J=8.6Hz), 7.07(2Hx3/4, d, J=8.5Hz), 7.43(2Hx3/4, d, J=8.5Hz), 7.46(2Hx1/4, d, J=8.0Hz), 8.81-9.09(1H, brs), 10.22(1Hx3/4, s), 10.25(1Hx1/4, s), 11.62(1H, s).

MS: 589.2 (M+H)+, 611.2 (M+Na)+

25 Step 5

The title compound was prepared from the compound of Step 4 in a similar manner according to Step 4 of Production Example 31.

¹H-NMR (DMSO-d₆), & (ppm): 1.98(3Hx3/4, s), 2.02(3Hx1/4, s),

³⁰ 2.11(3Hx3/4, s), 2.12(3Hx1/4, s), 2.60(3Hx1/4, s),

2.82(3Hx3/4, s), 2.89(4H, s), 4.39(2Hx3/4, s), 4.45(2Hx1/4,

s), 7.13(2Hx1/4, d, J=8.1Hz), 7.14(2Hx3/4, d, J=8.4Hz),

7.22(2Hx1/4, d, J=8.4Hz), 7.25(2Hx3/4, d, J=8.4Hz), 7.31(4H,

s), 9.61(1H, s), 12.03(1Hx3/4, s), 12.13(1Hx1/4, s).
MS: 389.19(M+H)⁺ free

<u>Production Example 133</u>: Synthesis of N-[4-(2-{4-[(2-aminoethyl)amino]phenyl}ethyl)-1,3-thiazol-2-yl]acetamide

5 dihydrochloride

Step 1

To a suspension of N-{4-[2-(4-aminophenyl)ethyl]-1,3-thiazol-2-yl}acetamide (100 mg) in toluene were added tert-butyl (2-bromoethyl)carbamate (87.5 mg) and N,N-

- diisopropylethylamine (52 µl), and the mixture was stirred at 80°C for 24 h. The reaction mixture was allowed to cool to room temperature, water (10 ml) was added, and the organic layer was separated, washed with saturated aqueous NaCl, dried over MgSO₄, filtered, and concentrated in vacuo to give tert-
- buty1 {2-[(4-{2-[2-(acetylamino)-1,3-thiazol-4yl]ethyl)phenyl)amino]ethyl}carbamate as a pale brown
 amorphous.

 $^{1}H-NMR~(CDCl_{3}),~\delta~(ppm):~1.45(9H,~s),~2.23(3H,~s),~2.86(4H,~s),~3.15-3.28(2H,~m),~3.15-3.47(2H,~m),~4.64-5.02(1H,~brs),$

20 6.49(1H, s), 6.52(2H, d, J=8.0Hz), 6.95(2H, d, J=8.0Hz), 9.22-10.10(1H, brs).

MS: 405.2 (M+H)+, 427.3 (M+Na)+

Step 2

The title compound was prepared from the compound of Step 2 in a similar manner according to Step 2 of Production Example 10.

 $^{1}\text{H-NMR}$ (DMSO-d₆), δ (ppm): 2.11(3H, s), 2.81(4H, s), 2.92-3.05(2H, m), 3.29(2H, t, J=6.2Hz), 6.67(2H, d, J=7.7Hz), 7.01(2H, d, J=8.1Hz), 7.87-8.24(3H, brs), 12.08(1H, s).

30 MS: 305.2(M+H)+, 327.2(M+Na)+

Production Example 134: Synthesis of N-{4-[3-{2-{[amino(imino)methyl]amino}ethyl)phenyl]-1,3-thiazol-2-yl}acetamide hydrochloride

Step 1

To a suspension of lithium aluminium hydride in dry tetrahydrofuran (50 ml) was added (3-bromophenyl)acetic acid (10 g) in tetrahydrofuran (100 ml) under ice cooling. The

(10 g) in tetrahydrofuran (100 ml) under ice cooling. The mixture was refluxed for 2 hours. After cooling, to the reaction mixture were added water and aqueous Rochelle salt. The mixture was stirred for another 30 min. Aqueous layer was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, and concentrated in vacuo to give 2-(3-bromophenyl)ethanol. This compound was used for the next reaction without further purification.

 ^1H-NMR (200 MHz, CDCl₃), δ (ppm): 1.66(1H, brs), 2.84(2H, dd, J=6.5, 14Hz), 3.85(2H, dt, J=6.5, 2.6Hz), 7.13-7.39(4H, m). Step 2

To a solution of 2-(3-bromophenyl)ethanol (7 g) in N,N-dimethylformamide (100 ml) were added tert-butyldimethylsilyl chloride (5.77 g) and imidazole (2.84 g) at 25°C. The mixture was stirred at 25°C for 12 h. The reaction mixture was poured into water (500 ml) and extracted with ethyl acetate (100 mlx2). The combined organic layer was dried over magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography with mixed solvent of n-hexane and ethyl acetate to give [2-(3-bromophenyl)ethoxy] (tert-butyl)dimethylsilane as colorless

¹H-NMR (200 MHz, CDCl₃), δ (ppm): 0.01(6H, s), 0.88(9H, s), 2.81(2H, dt, J=6.5, 9.5Hz), 3.81(2H, dt, J=3.0, 6.5Hz), 7.14-7.39 (5H, brs).

Step 3

30

25 oil.

To a solution of 1.6 g of [2-(3-bromophenyl)ethoxy](tert-butyl)dimethylsilane in tetrahydrofuran (20 ml) was added n-BuLi in hexane (1.57M, 3.88 ml) at -70° C, then the reaction mixture was stirred at same temperature for 30 min. To the

solution was added dimethylacetamide $(1.42\ \mathrm{ml})$ drop wise at the same temperature. The mixture was stirred for another 1 hour. To the reaction mixture were added water and 8 ml of 1N HCl under ice-cooling. The mixture was stirred for 1 hour,

- then extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography with n-hexane and ethyl acetate (20/1-10/1) as an eluent to give 1-[3-(2-{[tert-
- 10 butyl(dimethyl)silyl]oxy}ethyl)phenyl]ethanone (350 mg) as colorless oil.

 $^{1}\text{H-NMR}$ (200 MHz, CDCl₃), δ (ppm): 0.03(6H, s), 0.85(9H, s), 2.61(3H, s), 2.87(2H, t, J=6.7 Hz), 3.82(2H, t, J=6.7Hz), 7.20-7.24(1H, m), 7.35-7.44(2H, m), 7.77-7.82(2H, m).

15 MS: 279 (M+H)+

Step 4

To a solution of 1-[3-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)phenyl]ethanone (755 mg) in tetrahydrofuran (4 ml) was added bromine (168 ml) drop wise at 20 0°C. The mixture was stirred at 25°C for 1 h. To the reaction mixture was added ag. saturated NaHCO3, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated under reduced pressure to give crude of 2-bromo-1-[3-(2-bydroxyethyl)phenyl]ethanone as colorless oil. This compound was used for the next reaction without further purification.

To a solution of 2-bromo-1-[3-(2-hydroxyethyl)phenyl]ethanone (crude, 658 mg) in

30 tetrahydrofuran (15 ml) was added 1-acetyl-2-thiourea (320 mg) at 25°C. The mixture was stirred at 60°C for 2 h. The residual colorless crystals were collected by filtration. The crystals were washed with isopropyl ether, and dried under reduced

pressure to give N-{4-[3-(2-hydroxyethy1)pheny1]-1,3-thiazol-2-yl}acetamide (514 mg) as a colorless crystal.

 $^{1}H-NMR$ (200 MHz, DMSO-d₆), δ (ppm): 2.16(3H, s), 2.76(2H, t, J=6.9Hz), 3.63(2H, t, J=6.9 Hz), 4.89(1H, brs), 7.16(1H, d,

5 J=7.7 Hz), 7.32(1H, dd, J=7.7, 7.6Hz), 7.56(1H, s), 7.70(2H, d, J=7.6 Hz), 7.76(1H, s), 12.24(1H, s).

To a suspension of N-{4-[3-(2-hydroxyethyl)phenyl]-1,3-

MS: 263 (M+H)+

Step 6

thiazol-2-yl}acetamide (300 mg) in CH₂Cl₂ (10 ml) were added methansulfonyl chloride (106 μl) and triethylamine (207 μl) at 5°C. The mixture was stirred at 25°C for 2 h. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with brine,
 dried over magnesium sulfate and concentrated under reduced pressure. Resulting residue was purified by silica gel column chromatography with n-hexane and ethyl acetate (1:1) as an eluent to give 2-{3-[2-(acetylamino)-1,3-thiazol-4-yl]phenyl}ethyl methanesulfonate (388 mg) as a colorless
 solid.
 ¹H-NMR (200 MHz, DMSC-d₆), δ (ppm): 2.16(3H, s), 3.04(2H, t,

TH-NNCR (200 MHz, DMSO-d₆), & (ppm): 2.16(3H, S), 3.04(2H, L) J=6.9 Hz), 3.12(3H, s), 4.45(2H, t, J=6.9 Hz), 7.23-7.42(2H, m), 7.60(1H, s), 7.75-7.81(2H, m), 12.26(1H, s). MS: 341(M+H)⁺

25 Step 7

To a solution of 2-(3-[2-(acetylamino)-1,3-thiazol-4-yl]phenyl}ethyl methanesulfonate (388 mg) in N,N-dimethylformamide (5 ml) were added di-tert-butyliminodicarboxylate (322 mg) and K₂CO₃ (236 mg) at 25°C.

The mixture was stirred at 80°C for 2 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated under reduced pressure.

Resulting colorless oil containing N-{4-(3-[2-{di-{tert-butoxycarbonyl})amino}ethyl]phenyl)-1,3-thiazol-2-yl}acetamide was used for the next reaction without further purification.

Step 8

N-{4-[3-(2-Aminoethyl)phenyl]-1,3-thiazol-2-yl}acetamide was prepared from the compound of Step 7 in a similar manner according to Step 2 of Production Example 31.

¹H-NMR (200 MHz, DMSO-d₆), δ (ppm): 2.16(1H, s), 2.74(2H, dd, J=6.8, 6.2Hz), 2.88(2H, dd, J=7, 7.8Hz), 7.17(1H, d, J=7.7Hz), 7.35(1H, dd, J=7.7, 8Hz), 7.58(1H, s), 7.73(1H, d, J=8Hz),

7.74(1H, s).

MS: 262 (M+H)+

Step 9

Di-tert-butyl {(Z)-[(2-{3-[2-(acetylamino)-1,3-thiazol-4-yl]phenyl}ethyl)amino]methylidene}biscarbamate was prepared from the compound of Step 8 in a similar manner according to Step 5 of Production Example 18.

¹H-NMR (200 MHz, CDCl₃), δ (ppm): 1.45(9H, s), 1.50(3H, s), 2.27(3H, s), 2.92(2H, t, J=7.5Hz), 3.71(2H, dt, J=7.5, 7.2Hz),

20 7.11-7.41(4H, d), 7.65-7.78(1H, m).

MS: 504 (M+H) +

Step 10

The title compound was prepared from the compound of Step 9 in a similar manner according to Step 4 of Production

25 Example 31.

¹H-NMR (200 MHz, CDCl₃), δ (ppm): 2.16(3H, s), 2.83(2H, t, J=6.9Hz), 3.41(2H, m), 7.23(1H, d, J=7.7Hz), 7.38(1H, dd, J=7.7, 7.8 Hz), 7.52(1H, t, J=5.5Hz), 7.59(1H, s), 7.75(1H, d, J=8.1Hz), 7.79(1H, s), 12.23(1H, s).

30 MS: 304 (M+H) + free

Production Example 135: Synthesis of N-(4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-5-{2-[4-(methylsulfonyl)phenyl]ethyl}-1,3-thiazol-2-yl)acetamide

PCT/JP2004/004596

hydrochloride

Step 1

tert-Butyl N-{4-[2-(2-(acetylamino)-5-{(E)-2-[4-(methylsulfonyl)phenyl]vinyl}-1,3-thiazol-4-

5 yl)ethyl]phenyl)carbamate was prepared from 2-(acetylamino)-4-{2-[4-(tert-butoxycarbonylamino)phenyl]ethyl}-1,3-thiazole-5carbaldehyde in a similar manner according to Step 5 of Production Example 45.

MS: 542 (M+H) + free

10 Step 2

tert-Butyl N-{4-[2-(2-(acetylamino)-5-{2-[4-(methylsulfonyl)phenyl]ethyl]-1,3-thiazol-4-yl)ethyl]phenyl}carbamate was prepared from the compound of Step 1 in a similar manner according to Step 6 of Production

15 Example 45.

MS: 544 (M+H)+

Step 3

 $N-(4-[2-(4-Aminophenvl)ethvl]-5-{2-[4-$

(methylsulfonyl)phenyl]ethyl}-1,3-thiazol-2-yl)acetamide was
20 prepared from the compound of Step 2 in a similar manner

according to Step 2 of Production Example 31.

¹H-NMR (200 MHz, CDCl₃), δ (ppm): 2.23(3H, s), 2.61(4H, s),
2.78(4H, s), 2.98(3H, s), 3.55(2H, brs), 6.57(2H, d, J=8.5Hz),

6.81(2H, d, J=8.5Hz), 7.25(2H, d, J=8.5Hz), 7.82(2H, d, ²⁵ J=8.5Hz), 8.80(1H, s).

MS: 444 (M+H) +

Step 4

Di-tert-butyl [(E)-({4-[2-(2-(acetylamino)-5-{2-[4-(methylsulfonyl)phenyl]ethyl}-1,3-thiazol-4-

30 y1)ethyl]phenyl}amino)methylidene]biscarbamate was prepared from the compound of Step 3 in a similar manner according to Step 5 of Production Example 18.

 1 H-NMR (200 MHz, CDCl₃), δ (ppm): 1.49(9H, s), 1.53(9H, s),

```
 2.22(3H, s), 2.59-2.73(4H, m), 2.84(4H, s), 2.98(3H, s), \\ 6.99(2H, d, J=8.4Hz), 7.28(2H, d, J=8.4Hz), 7.44(2H, d, J=8.4Hz), 7.83(2H, d, J=8.4Hz), 8.99(1H, bra), 10.23(1H, s), \\ 11.62(1H, s).
```

5 MS: 686 (M+H)+

Step 5

The title compound was prepared from the compound of Step 4 in a similar manner according to Step 4 of Production Example 31.

10 ¹H-NMR (200 MHz, DMSO-d₆), δ (ppm): 2.16(3H, s), 2.67(4H, brs),
2.82-2.94(4H, m), 3.14(3H, s), 7.12(2H, d, J=8.4Hz), 7.20(2H,
d, J=8.4Hz), 7.43(2H, d, J=8.4Hz), 7.82(2H, d, J=8.4Hz),
9.87(1H, s), 11.97(1H, s).
MS: 486(M+H)⁺

15

The compounds according to the present invention useful as VAP-1 inhibitors are listed in the following tables.

No.	Structure	No.	Structure
1	Me N NH NH NH2	11	Me NH NH2 HC1
2	Me H N N N N S	12	Me H N NH2
3	Me N N N N N N S	13	Eto NH NH NH2 HC1
4	Me H NH S-Me	14	Me HC1 Me N N NH O S NH HC1 Br HN NH ₂
5	Me H N N N N N N N N N N N N N N N N N N	15	Me N NH NH ₂
6	Me H NH NH NH2	16	Me T N ONH2
7	Me H N NH NH2	17	Me N S
8	Me N NH NH NH Me	18	Me T N S NH NH ₂ HC1
9	Me H NH NH ₂	19	Me NH NHMe
10	Me S HC1 O H NH NH2	20	Me N NH NH NH NH2

No.	Structure	No.	Structure
21	Me NH NH2 HC1	26	Me S N NH NH NH2 SO2 HC1 Me
22	Me NH NH ₂	27	Me H NH NH NH ₂ NH ₂
23	Me NH NHEt	28	Me H NH NH NH NH2 NHP1
24	PhCH ₂ O NH NH NH ₂	29	Me H NH NH NH2 HC1
25	Ph NH NH NH2 HC1	30	Me H NH NH NH2 NH HC1

No.	Structure	No.	Structure
31	Me s NH HN NH2	36	EIOAC HN NH ₂ S NH
32	MeO ₂ S NH HO HO HO HO HO HO HO HO HO H	37	Ma HIN NH2
33	F ₅ C NH HN NH ₂	38	MeCys HN NH ₂ NH HCI
34	HN NH ₂ HN 2HCI	39	HN NH ₂
35	HN NH ₂ HN NH S HCI	40	HN NH ₂

No.	Structure	No.	Structure
41	HN NH NH	46	Me s NH NH2
42	HN NH2 HO HCI	47	Me s NH ₂
43	O NHMe HN NH2 HN NH HOI	48	Me s NH NH2
44	ONMe ₂ HN NH ₂ NH OME HCI	49	Me s HCI NH NH2
45	Me s NH NH2	50	Me s - NH HN NH2

No.	Structure	No.	Structure
51	Me s HN NH2	56	Me s HN Me
52	MeO ₂ S OEt S NH NH ₂	57	HN-NH NH
53	Me s NH ₂	58	HN NH2
54	MoO ₂ S	59	o HN NH2
55	Me s HN		Mes HN NH2

No.	Structure	No.	Structure
61	O HN HCI NH	66	CONHMe HIN NH2 HCI
62	SO ₂ Me O=Me NH2	67	Me Me ₂ N .
63	SO ₂ Me HB HB NH ₀	68	Me SHCI NH NH2
64	Me s HCI HN NH2	69	SO ₂ Me N HN NH2 2HCI
65	CONMe2 HN NH2 HCI	70	Me s HN NH-

No.	Structure	No.	Structure
71	Mo s HN HN HN NH2	76	HCI HN NH2
72	Me S NMe2	77	Me s HN HN HN NH ₂
73	Me S HN HN NH2	78	Me S-HOI HN NH2
74	Me S HO HN NH2	79	Me s HN HN NH2
75	Me NMeg NMeg HN NHg	80	Me SO ₂ Me HN HN NH ₂

No.	Structure	No.	Structure
81	Me s HN NH ₂	86	Me s HN HN NH ₂
82	Me s HN HN 2HOI HN NH ₂	87	Me ship him
83	o Hoi Hoi NH2	88	Me OHIO
84	Me s HN HN NH2	89	Me s HN HN HN
85	Me HOI HN NH2	90	Me HOI HN NHe

No.	Structure	No.	Structure
91	Me s HOI HN NH2	96	Me Me Mode NMez HN NHez NH
92	Me SHOWN HO	97	CONH ₂ OHN HCI NH NH ₂
93	Me NMe ₂	98	SO ₂ Me HN NHMe
94	Me NMe ₂ .	99	Me CONMe2 HIN N NH 2HGI NH
95	OHNON OHNON	100	Me NMe ₂

No.	Structure	No.	Structure
101	O HIN NH	106	Mo SolyMe NH2
102	Me CONHIME OHIN NH HCI NH NH NH NH NH NH NH NH NH NH	107	Mo SO,Me NHBoc
103	HN OMe HN NH2 HCI	108	Ma Hol
104	Me s NH NH2	109	NH ₂
105	CO,ER HN, NH-	110	HN NH2 NH HCI NH M6

No.	Structure	No.	Structure
111	Me T NH2	116	Me NH NH2
112	Me HOI	117	Me H NH NH2
113	Mo H NH2 2HCI	118	Me NH NH ₂
114	Md NH NH2	119	Me NH NH2
115	Me H NH ₂	120	CONMe ₂ Me NH NH ₂ HOI

No.	Structure	No.	Structure
121	CONHMe NH NH2 HGI	126	Mo NH NH ₂
122	Me NH NH2	127	Me NH NH2
123	Me H NH ₂ 2HCI	128	CONMo ₂ (S) Ms NH NH ₂ 2HCI
124	Me H NH NH 2 2HG	129	Me S NH NH NH2
125	Me NH NH ₂ 2HCI	130	SO ₂ Me Mo NH ₂

No.	Structure	
131	Me NH ₂	
132	Me NHe NH2	
133	Me H NH ₂	
134	Me NH ₂	
135	SC ₂ Me HCI HN NH ₂	

Example 1

Inhibitory Effect of Compound A on VAP-1 enzyme (SSAO) activity in human and rat plasma.

VAP-1 enzyme (SSAO) activity in both human and rat plasma 5 was determined by a radiochemical-enzyme assay using ¹⁴C-benzylamine as artificial substrate. The enzyme suspension prepared from blood plasma was pre-incubated with Compound A in 96-well microplate at room temperature for 30 min. The enzyme suspension was then incubated with ¹⁴C-benzylamine (2x10⁻⁵ mol/1 final concentration) in a final volume of 50 μl at 37°C for 1 hour. The enzyme reaction was terminated by adding 2 mol/1 (50 μl) citric acid. The oxidized products were directly extracted into a 200 μl toluene scintillator, and its radioactivity was measured by a scintillation spectrometer.

Monoamine oxidase (MAO) and diamine oxidase (DAO, histaminase) activities were also determined by similar method using ¹⁴C-phenylethylamine and ¹⁴C-putrescine as substrate, respectively. Cloned DAO from cDNA libraries was used in human DAO assay. Inhibition activity was expressed as IC₅₀ (µmol/1) value.

20 Compound A completely inhibited the enzyme activity of human and rat plasma SSAO, but not the enzyme activities of other amine oxidases, such as human platelet MAO and cloned DAO, shown in Table 1.

25 Table 1. Inhibitory effect (IC $_{50}$ values, $\mu M)$ of Compound A on various amine oxidase activities

Human	Rat	Human	Cloned
plasma	plasma	platelet	human
SSAO	SSAO	MAO	DAO
0.15	0.012	>100	

Example 2

30 Effect of Compound A on ocular permeability in diabetic rats.

Diabetes in rats was induced with an intraperitoneal

(i.p.) injection of 65 mg/ml/kg of streptozotocin (STZ) in 2 mmol/1 citrate buffer (pH 4.5) after a 20-h fast. At the same time control rats were injected with an equal volume of 2 mmol/1 citrate buffer. Plasma glucose level was checked by a 5 colorimetric method. At day 3 of STZ treatment, the rats were diagnosed with diabetes showing a plasma glucose level of 350 mg/dl.

The treatment of Compound A was given daily from 2 weeks after STZ treatment for 2 weeks. At 24 hrs after final treatment of Compound A, the vascular permeability in oculus was investigated based on the leakage of dye into the vitreous 30 min after intravenous injection of fluorescein solution (40 mg/ml/kg). Permeability was expressed as vitreous/plasma ratio of fluorescein concentration measured by a fluorophotometer.

15 At the same time, the plasma SSAO activity was checked by the

At the same time, the plasma SSAO activity was checked by the radiochemical-enzyme assay using ¹⁴C-benzylamine (2x10⁻⁵ mol/1 final concentration) as substrate.

The significant increase of ocular permeability in diabetic rats was examined at 4 weeks after treatment of STZ 20 and compared with that of normoglycemic normal rats. The treatment of Compound A (10 mg/kg, s.c. u.i.d.) given daily from 2 weeks after STZ treatment improved the ocular permeability, in comparison with the STZ control group (Table 2). Plasma SSAO enzyme activity also increased in diabetic rats at 4 weeks after STZ treatment, but the treatment with Compound A exhibited dose-dependent inhibition of the increased plasma SSAO activity (Table 3).

Table 2. Vitreous/Plasma Ratio of Fluorescein Concentration (x10⁻³)

Normal	STZ control	Compound A treatment
3.30 ± 0.38**	8.93 ± 1.14	5.39 ± 0.73**

5 Values are mean ± S.E.M.s for 10 rats. **p<0.01 vs corresponding value for STZ control by Dunnett's test.

Table 3. Plasma SSAO activity (pmol/min/ml)

Normal	STZ control	Compound A treatment
4.40 ± 0.34**	10.0 ± 0.73	2.51 ± 0.26**

10

Values are mean ± S.E.M.s for 10 rats. **p<0.01 vs corresponding value for STZ control by Dunnett's test.

Example 3

In the same manner as in Example 2, the effect of various VAP-1 inhibitors on ocular permeability was determined in diabetic rats.

The treatment of Compund B (0.003%, ocular instillation, u.i.d. and 0.1 mg/kg, s.c., respectively) given daily from 2 weeks after STZ treatment improved the ocular permeability, in comparison with the STZ control group (Table 4).

WO 2004/087138 PCT/JP2004/004596

Table 4. Vitreous/Plasma Ratio of Fluorescein Concentration $(x10^{-3})$

Compound	Normal	STZ control	Compound treatment
Compund B 0.003%, ocular instillation	6.75±0.63**	14.8±0.77	9.86±1.65*
Compund B 0.1 mg/kg, s.c.	9.30±0.66**	15.6±1.16	7.54±0.80**

Values are mean ± S.E.M.s for 10 rats. **p<0.01 vs corresponding value for STZ control by Dunnett's test.

Example 4

Effect of eye-drop instillation with Compound A on increased 10 retinal VAP-1 activity in STZ diabetic rats.

A 0.1% solution of Compound A was instilled into the eyes of STZ diabetic rats (10 μ l/eye) prepared in the same manner as in Example 2. To the normal group and STZ control group, a vehicle was instilled. At 6 hours from the instillation, the retina was removed from the animals and the retinal VAP-1 activity was determined.

Compound A completely inhibited the increased retinal VAP-1 activity in STZ diabetic rats, shown in Table 5.

20 Table 5. Retinal VAP-1 activity (pmol/min/mg protein)

Compound	Normal	STZ control	Compound A treatment
Compound A 0.1%, ocular instillation	5.97±1.12	8.22±2.60	4.86±0.70

Values are mean ± S.E.M.s for 4 rats.

Example 5

Effect of Compound A on increased retinal VEGF level in STZ diabetic rats.

STZ diabetic rats were prepared in the same manner as in

5 Example 2. Compound A (0.1 mg/kg, sc, u.i.d.) was administered from 3 days to 8 weeks after the STZ administration. To the normal group and STZ control group, a vehicle was treated. At 8 weeks from the STZ administration, the retina was removed from the animals and the retinal VEGF level was determined using a Murine VEGF ELISA kit.

Compound A completely inhibited the increased retinal VEGF level in STZ diabetic rats, shown in Table 6.

Table 6. Retinal VEGF level (pg/mg protein)

15

Compound	Normal	STZ control	Compound A treatment
Compound A 0.1 mg/kg, sc, u.i.d.	33.4±1.95*	42.7±3.47	28.3±2.72**

Values are mean ± S.E.M.s for 10 rats. *p<0.05, **p<0.01 vs corresponding value for STZ control by Dunnett's test.

The above result indicates that VAP-1 inhibitor is useful for treating a vascular hyperpermeable disease (except macular edema).

This application is based on application No. 60/458,370 25 filed in the United States of America, the content of which is incorporated hereinto by reference.

CLAIMS

- A method for treating a vascular hyperpermeable disease (except macular edema), which method comprises administering
 to a subject in need thereof a vascular adhesion protein-1 (VAP-1) inhibitor in an amount sufficient to treat said subject for said disease.
- 2. The method of claim 1, wherein said disease is a disease in mucous membrane.
 - 3. The method of claim 2, wherein said mucous membrane is a mucous membrane of ocular, cutis, otorhinology or respiratory tract.

15

4. The method of claim 1, wherein said disease is aged macular degeneration, aged disciform macular degeneration, cystoid macular edema, palpebral edema, retinal edema, diabetic retinopathy, chorioretinopathy, neovascular maculopathy, 20 neovascular glaucoma, uveitis, iritis, retinal vasculitis, endophthalmitis, panophthalmitis, metastatic ophthalmia, choroiditis, retinal pigment epithelitis, conjunctivitis, cyclitis, scleritis, episcleritis, optic neuritis, retrobulbar optic neuritis, keratitis, blepharitis, 25 exudative retinal detachment, corneal ulcer, conjunctival ulcer, chronic nummular keratitis, Thygeson keratitis, progressive Mooren's ulcer, an ocular inflammatory disease caused by bacterial or viral infection, and by an ophthalmic operation, an ocular inflammatory disease caused by a 30 physical injury to the eye, a symptom caused by an ocular inflammatory disease including itching, flare, edema and ulcer, erythema, erythema exsudativum multiforme, erythema nodosum, erythema annulare, scleredema, dermatitis,

angioneurotic edema, laryngeal edema, glottic edema, subglottic laryngitis, bronchitis, rhinitis, pharyngitis, sinusitis, laryngitis or otitis media.

5 5. The method of claim 1, wherein the VAP-1 inhibitor is a compound of the formula (I):

$$R^1-NH-X-Y-Z$$
 (I)

wherein

20

25

10 R1 is acyl;

X is a bivalent residue derived from optionally substituted thiazole;

Y is a bond, lower alkylene, lower alkenylene or -CONH-; and Z is a group of the formula:

15
$$\longrightarrow$$
 $\stackrel{\text{H}}{\longrightarrow}$ NH_2 or \longrightarrow $\stackrel{\text{R}^2}{\longrightarrow}$

wherein R² is a group of the formula: -A-B-D-E
wherein A is a bond, lower alkylene, -NH- or -SO₂-;
B is a bond, lower alkylene, -CO- or -O-;
D is a bond, lower alkylene, -NH- or -CH₂NH-; and
E is optionally protected amino, -N=CH₂,

$$-\sqrt[N]{}$$
 or $-\sqrt[NH]{}$

wherein

Q is -S- or -NH-; and

 \mbox{R}^3 is hydrogen, lower alkyl, lower alkylthio or -NH-R 4 wherein \mbox{R}^4 is hydrogen, -NH $_2$ or

lower alkyl;

or a derivative thereof; or a pharmaceutically acceptable salt thereof.

30 6. The method of claim 5, wherein, in the formula (I), Z is a

WO 2004/087138

group of the formula:

$$\mathbb{Z}^{\mathbb{R}^2}$$

wherein R2 is a group of the formula:

5 (wherein G is a bond, -NHCOCH₂- or lower alkylene and R⁴ is hydrogen, -NH₂ or lower alkyl); -NH₂; -CH₂NH₂; -CH₂ONH₂; -CH₂ON=CH₂;

$$\begin{array}{c} \begin{array}{c} H \\ -N \end{array}, \begin{array}{c} H \\ -N \end{array}, \begin{array}{c} NH \\ H \end{array}, \begin{array}{c} NH \\ NH_2 \end{array}, \begin{array}{c} -NH \\ -NH \end{array}, \begin{array}{c} -NH \\ S-CH_3 \end{array}, \\ -\frac{H}{NH} \\ -\frac{NH}{NH} \\ Or \end{array}$$

7. The method of claim 6, wherein, in the formula (I), R² is a group of the formula:

(wherein G is a bond, -NHCOCH₂- or lower alkylene and R⁴ is hydrogen or lower alkyl); -CH₂ONH₂; -CH₂ONH₂ONH₂; -CH₂ONH₂; -CH

- 8. The method of any of claims 5 to 7, wherein, in the formula (I), R¹ is alkylcarbonyl and X is a bivalent residue derived from thiazole optionally substituted by
 20 methylsulfonylbenzyl.
 - 9. The method of claim 1, wherein the VAP-1 inhibitor is $N-\{4-[2-(4-\{[amino(imino)methyl]amino\}phenyl)ethyl]-1,3-thiazol-2-yl}acetamide,$

 $N-[4-(2-44-(aminoxy)methyl]phenyl}ethyl)-1,3-thiazol-2-yl]acetamide,$

- N-{4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide,
- 5 N-{4-[2-(4-{[hydrazino(imino)methyl]amino}phenyl)ethyl]-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide, N-{4-[2-(4-{[hydrazino(imino)methyl]amino}phenyl)ethyl]-1,3-thiazol-2-yl}acetamide, or
 - $N-(4-\{2-[4-(2-\{[amino(imino)methyl]amino\}ethyl)phenyl]ethyl\}-$
- 10 1,3-thiazol-2-yl)acetamide;

30

- or a derivative thereof;
- or a pharmaceutically acceptable salt thereof.
- 10. The method of claim 1, wherein the VAP-1 inhibitor is
 15 N-{4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-1,3thiazol-2-yl}acetamide;
 or a derivative thereof;
 or a pharmaceutically acceptable salt thereof.
- 20 11. A pharmaceutical composition for the treatment of a vascular hyperpermeable disease (except macular edema), which comprises, as an active ingredient, a VAP-1 inhibitor.
- 12. The composition of claim 11, wherein said disease is a 25 disease in mucous membrane.
 - 13. The composition of claim 12, wherein said mucous membrane is a mucous membrane of ocular, cutis, otorhinology or respiratory tract.
 - 14. The composition of claim 11, wherein said disease is aged macular degeneration, aged disciform macular degeneration, cystoid macular edema, palpebral edema, retinal edema,

diabetic retinopathy, chorioretinopathy, neovascular maculopathy, neovascular glaucoma, uveitis, iritis, retinal vasculitis, endophthalmitis, panophthalmitis, metastatic ophthalmia, choroiditis, retinal pigment epithelitis,

- ⁵ conjunctivitis, cyclitis, scleritis, episcleritis, optic neuritis, retrobulbar optic neuritis, keratitis, blepharitis, exudative retinal detachment, corneal ulcer, conjunctival ulcer, chronic nummular keratitis, Thygeson keratitis, progressive Mooren's ulcer, an ocular
- inflammatory disease caused by bacterial or viral infection, and by an ophthalmic operation, an ocular inflammatory disease caused by a physical injury to the eye, a symptom caused by an ocular inflammatory disease including itching, flare, edema and ulcer, erythema, erythema exsudativum
- ¹⁵ multiforme, erythema nodosum, erythema annulare, scleredema, dermatitis, angioneurotic edema, laryngeal edema, glottic edema, subglottic laryngitis, bronchitis, rhinitis, pharyngitis, sinusitis, laryngitis or otitis media.
- 20 15. The composition of claim 11, wherein the VAP-1 inhibitor is a compound of the formula (I):

$$R^1-NH-X-Y-Z$$
 (I)

wherein

25 R¹ is acyl;

X is a bivalent residue derived from optionally substituted thiazole;

Y is a bond, lower alkylene, lower alkenylene or -CONH-; and ${\tt Z}$ is a group of the formula:

30
. $^{\text{H}}_{\text{N}}$ -NH₂ or $^{\text{R}}_{\text{N}}$

wherein R² is a group of the formula: -A-B-D-E wherein A is a bond, lower alkylene, -NH- or -SO₂-; B is a bond, lower alkylene, -CO- or -O-; D is a bond, lower alkylene, -NH- or -CH₂NH-; and E is optionally protected amino, -N=CH₂,

$$\stackrel{\text{N}}{\rightleftharpoons}$$
 or $\stackrel{\text{NH}}{\rightleftharpoons}$

wherein

5

Q is -S- or -NH-; and

 R^3 is hydrogen, lower alkyl, lower alkylthio or -NH-R⁴ wherein R⁴ is hydrogen, -NH₂ or lower alkyl;

10 or a derivative thereof; or a pharmaceutically acceptable salt thereof.

16. The composition of claim 15, wherein, in the formula (I), Z is a group of the formula:

wherein R2 is a group of the formula:

(wherein G is a bond, -NHCOCH₂- or lower alkylene and R⁴ is hydrogen, -NH₂ or lower alkyl); -NH₂; -CH₂NH₂; -CH₂ONH₂;

20 -CH2ON=CH2;

17. The composition of claim 16, wherein, in the formula (I), \mathbb{R}^2 is a group of the formula:

(wherein G is a bond, -NHCOCH₂- or lower alkylene and R⁴ is hydrogen or lower alkyl); -CH₂NH₂; -CH₂ONH₂; -CH₂ON=CH₂;

$$\stackrel{H}{\overset{N}{\overset{}}}_{S}, \stackrel{H}{\overset{N}{\overset{}}}_{N}, \stackrel{NH}{\overset{NH}{\overset{}}}_{NH_{2}}, \stackrel{NH}{\overset{}}_{-NH} \stackrel{NH}{\overset{}}_{CH_{3}} \text{ or } \stackrel{NH}{\overset{}}_{S-CH_{3}}.$$

5

18. The composition of any of claims 15 to 17, wherein, in the formula (I), R^1 is alkylcarbonyl and X is a bivalent residue derived from thiazole optionally substituted by methylsulfonylbenzyl.

10

- 19. The composition of claim 11, wherein the VAP-1 inhibitor is
 - $N-\{4-[2-(4-\{[amino(imino)methyl]amino\}phenyl)ethyl]-1,3-thiazol-2-vl\}acetamide,$
- 15 N-[4-(2-{4-[(aminooxy)methyl]phenyl)ethyl)-1,3-thiazol-2vllacetamide,
 - N-{4-[2-(4-{[amino(imino)methyl]amino)phenyl)ethyl]-5-[4-(methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide,
 - $N-\{4-[2-(4-\{[hydrazino(imino)methyl]amino\}phenyl)ethyl]-5-[4-$
- 20 (methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide,
 N-{4-[2-(4-{[hydrazino(imino)methyl]amino}phenyl)ethyl]-1,3-
 - N-(4-{2-[4-(2-{[amino(imino)methyl]amino}ethyl)phenyl]ethyl}-
- 1,3-thiazol-2-yl)acetamide;
 ²⁵ or a derivative thereof;

thiazol-2-vl}acetamide, or

- or a pharmaceutically acceptable salt thereof.
- 20. The composition of claim 11, wherein the VAP-1 inhibitor is
- 30 N-{4-[2-(4-{[amino(imino)methyl]amino}phenyl)ethyl]-1,3-

PCT/JP2004/004596

WO 2004/087138

thiazol-2-vl}acetamide;

or a derivative thereof;

or a pharmaceutically acceptable salt thereof.

- 5 21. A use of a VAP-1 inhibitor for preparing a medicament for the treatment of a vascular hyperpermeable disease (except macular edema).
- 22. The use of claim 21, wherein said disease is a disease in .
 - 23. The use of claim 22, wherein said mucous membrane is a mucous membrane of ocular, cutis, otorhinology or respiratory tract.

15

24. The use of claim 21, wherein said disease is aged macular degeneration, aged disciform macular degeneration, cystoid macular edema, palpebral edema, retinal edema, diabetic retinopathy, chorioretinopathy, neovascular maculopathy, 20 neovascular glaucoma, uveitis, iritis, retinal vasculitis, endophthalmitis, panophthalmitis, metastatic ophthalmia, choroiditis, retinal pigment epithelitis, conjunctivitis, cyclitis, scleritis, episcleritis, optic neuritis, retrobulbar optic neuritis, keratitis, blepharitis, 25 exudative retinal detachment, corneal ulcer, conjunctival ulcer, chronic nummular keratitis, Thygeson keratitis, progressive Mooren's ulcer, an ocular inflammatory disease caused by bacterial or viral infection, and by an ophthalmic operation, an ocular inflammatory disease caused by a 30 physical injury to the eye, a symptom caused by an ocular inflammatory disease including itching, flare, edema and ulcer, erythema, erythema exsudativum multiforme, erythema nodosum, erythema annulare, scleredema, dermatitis,

angioneurotic edema, laryngeal edema, glottic edema, subglottic laryngitis, bronchitis, rhinitis, pharyngitis, sinusitis, laryngitis or otitis media.

5 25. The use of claim 21, wherein the VAP-1 inhibitor is a compound of the formula (I):

$$R^1-NH-X-Y-Z$$
 (I)

wherein

20

25

10 R1 is acvl;

X is a bivalent residue derived from optionally substituted thiazole;

Y is a bond, lower alkylene, lower alkenylene or -CONH-; and Z is a group of the formula:

wherein R² is a group of the formula: -A-B-D-E
wherein A is a bond, lower alkylene, -NH- or -SO₂-;
B is a bond, lower alkylene, -CO- or -O-;
D is a bond, lower alkylene, -NH- or -CH₂NH-; and
E is optionally protected amino, -N=CH₂,

$$\stackrel{N}{\underset{Q}{\smile}}$$
 or $\stackrel{NH}{\underset{R^3}{\smile}}$

wherein

Q is -S- or -NH-; and

R³ is hydrogen, lower alkyl, lower alkylthio or -NH-R⁴ wherein R⁴ is hydrogen, -NH₂ or lower alkyl;

or a derivative thereof;

or a pharmaceutically acceptable salt thereof.

 30 26. The use of claim 25, wherein, in the formula (I), Z is a

PCT/JP2004/004596

group of the formula:

$$\mathbb{R}^{2}$$

wherein R2 is a group of the formula:

5 (wherein G is a bond, -NHCOCH₂- or lower alkylene and R⁴ is hydrogen, -NH₂ or lower alkyl); -NH₂; -CH₂NH₂; -CH₂ONH₂; -CH₂ON=CH₂;

10 27. The use of claim 26, wherein, in the formula (I), R² is a group of the formula:

20

(wherein G is a bond, -NHCOCH₂- or lower alkylene and R^4 is hydrogen or lower alkyl); -CH₂ONH₂; -CH₂ONH₂; -CH₂ONH₂;

$$^{15} \xrightarrow{\text{H}}^{\text{H}}_{\text{S}}, \xrightarrow{\text{H}}^{\text{H}}_{\text{N}}; \xrightarrow{\text{NH}}^{\text{NH}}_{\text{NH}_2}; \xrightarrow{\text{NH}}^{\text{NH}}_{\text{CH}_3} \text{ or } \xrightarrow{\text{NH}}^{\text{NH}}_{\text{S-CH}_3}.$$

28. The use of any of claims 25 to 27, wherein, in the formula (I), R¹ is alkylcarbonyl and X is a bivalent residue derived from thiazole optionally substituted by methylsulfonylbenzyl.

29. The use of claim 21, wherein the VAP-1 inhibitor is $N-\{4-[2-(4-\{[amino(imino)methyl]-amino\}phenyl)ethyl]-1,3-thiazol-2-yl\}acetamide,$

 $N-[4-(2-\{4-[(aminooxy)methyl]phenyl\}ethyl)-1,3-thiazol-2-$

```
yl]acetamide,
    N-\{4-[2-(4-\{[amino(imino)methyl]amino\}phenyl)ethyl]-5-[4-
    (methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide,
    N-{4-[2-(4-{[hydrazino(imino)methyl]amino}phenyl)ethyl]-5-[4-
5 (methylsulfonyl)benzyl]-1,3-thiazol-2-yl}acetamide,
    N-{4-[2-(4-{[hydrazino(imino)methyl]amino}phenyl)ethyl]-1,3-
    thiazol-2-vllacetamide, or
    N-(4-\{2-[4-(2-\{[amino(imino)methyl]amino\}ethyl)phenyl]ethyl\}-
    1,3-thiazol-2-yl)acetamide;
10 or a derivative thereof;
    or a pharmaceutically acceptable salt thereof.
    30. The use of claim 21, wherein the VAP-1 inhibitor is
   N-\{4-[2-(4-\{[amino(imino)methyl]amino\}phenyl)ethyl]-1,3-
15 thiazol-2-yl}acetamide;
   or a derivative thereof;
    or a pharmaceutically acceptable salt thereof.
```

International Application No PCT/JP2004/004596

Relevant to claim No.

1-4.

11-14, 21-24

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/426 A61P27/00 A61P17/00 A61P11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

χ

Minimum documentation searched (clessification system followed by classification symbols) IPC 7-A61K-A61P

Category . Citation of document, with indication, where appropriate, of the relevant passages

page 7, line 21 - page 9, line 2

WO 02/02541 A (BIOTIE THERAPIES CORP

JALKANEN MARKKU (FI); SMITH DAVID JOHN

(FI); B) 10 January 2002 (2002-01-10)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

abstract

Name and mailing address of the ISA

-- DOTTONION (opposed shoot) (lanuary 2004)

European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Х	WO 02/02090 A (BIOTIE THERAP) JALKANEN MARKKU (FI); SMITH E (FI); B) 10 January 2002 (200 abstract page 8, line 9 - page 9, line	1-4, 11-14, 21-24	
Χ .	US 2002/173521 A1 (JALKANEN F 21 November 2002 (2002-11-21) abstract paragraphs '0117!, '0118!		1-4, 11-14, 21-24
* Special e 'A' docur cons 'E' earlie filing 'L' docur whic citati 'O' docur othe 'P' docur	wither documents are listed in the continuation of box C. categories of cited documents: rend defining the general state of the art which is not ideared to be of periodural relevance relocument but published on or affor the International date rent which may throw doubte on priority claiming) or is clade to establish the publication date of another on or other special reason (as specified) rement which are not disclosure, use, exhibition or reasons the priority of the prior	The start document published after the or priority date and not in conflict date to understand the principle date and not in conflict date to understand the principle distribution. The start of particular releasency is described to considered new love or an inventive stage when the "d' columner of particular releasency; cannot be considered to involve a doctiment of particular releasency; cannot be considered to involve a doctiment is combined with one of columners of the considered to involve a doctiment is combined with one of the conflict of the con	International liting date with the application but in the recovery interpretation of the ha-claimed invention mont be considered to a document is taken alone he claimed invention in inventive step when the more other suich docu- vious to a person skilled
Date of th	e actual completion of the international search 17 August 2004	Date of mailing of the International 25/08/2004	search report

Authorized officer

A. Jakobs

International Application No PCT/JP2004/004596

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97/24343 A (BOEHRINGER INGELHEIM CA LTD; BOEHRINGER INGELHEIM PHARMA (US)) 10 July 1997 (1997-07-10) abstract page 49, lines 1-16	1-6,8, 11-16, 18, 21-26,28
	page 116; examples 18,19; table 3 pages 159-161 page 201 page 238	
(WO 02/28835 A (DAISOW CO LTD ; HINOUE KAZUMASA (JP); INOUE YOSHIKAZU (JP); MIKAMI MAS) 11 April 2002 (2002-04-11) abstract page 145; examples	11-15
	194,196,198,202,203,206-208,210,212,214 examples 217,222,224,264	*-
X	WO 03/006003 A (BIOTIE THERAPIES CORP; ALARANTA SAKARI (FI); VAINIO PETRI (FI); PIHLA) 23 January 2003 (2003-01-23) abstract page 10, line 19 - page 14, line 1	1-4, 11-14, 21-24
(,P	WO 03/072557 A (NOVARTIS PHARMA GMBH; NOVARTIS AG (CH); BLAIR NICOLA ELAINE (GB); BLO) 4 September 2003 (2003-09-04)	1-5,8, 11-15, 18, 21-25,28
	abstract page 23, paragraph 2 - page 25, paragraph 2	
	examples 4-13,24-27,35,38-40; table 1 examples 49,51,55-57,68-71,76 examples 80,84-86,156; table 2 example 174; table 3	
X	OHKUBO M ET AL: "STUDIES ON CEREBRAL PROTECTIVE AGENTS. VIII 1A) SYNTHESIS OF 2-MAINOTHIAZOLES AND 2-THIAZOLECARBOXAMIDES WITH ANTI-ANOXIC ACTIVITY" CHEMICAL AND PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO,	15,16
	JP, vol. 43, no. 9, 1995, pages 1497-1504, XP000887179 ISSN: 0009-2363 abstract; compound 2F	
Ą	WO 82/02386 A (MITSUI TOATSU CHEMICALS; AWAYA AKIRA (JP); SAKANO ISAO (JP); KAJIYA S) 22 July 1982 (1982-07-22) the whole document	1-30
	-/	

International Application No PCT/JP2004/004596

		004/004596		
.(Continua ategory °	ktion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
	US 6 114 365 A (SALOM BARBARA ET AL) 5 September 2000 (2000-09-05) the whole document		1-30	
	EP 1 256 578 A (PFIZER PROD INC) 13 November 2002 (2002-11-13) the whole document		1-30	
			×.	

International application No. PCT/JP2004/004596

Box II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This inte	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. χ	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 1-10 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2,	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This inte	metional Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2. 🗌	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з. 🔲	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🗌	No required additional search fees were timely paid by the applicant, Consequently, this international Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT Information on patent family members

International Application No PCT/JP2004/004596

 Patent document dted in search report		Publication date		Patent family member(s)	Publication date
WO 0202541	A	10-01-2002	AU CA CA CN CP EP WO HU JP NO NZ US ZA ZA	8216201 A 8216301 A 8216301 A 2414799 A1 2414807 A1 1450997 T 1450998 T 1301495 A2 1313718 A2 0202541 A2 0202541 A2 0202590 A2 0301336 A2 0301625 A2 2004501962 T 2004502682 T 20026283 A 523463 A 523464 A1 2004106654 A1 2002173521 A1 200300063 A 200300064 A	14-01-2002 14-01-2002 10-01-2002 10-01-2002 22-10-2003 22-10-2003 28-05-2003 10-01-2002 28-08-2003 28-11-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2004 29-01-2003 22-07-2003 22-07-2003
WO 0202090	A	10-01-2002	AU AU CA CN CN EP WO HU JP NO NO NZ US ZA ZA	8216201 A 8216301 A 8216301 A 2414799 A1 2414807 A1 1450998 T 1301495 A2 1313718 A2 0202541 A2 0202590 A2 0301625 A2 2004501962 T 2004502682 T 20026282 A 2026283 A 523463 A 523464 A 2004106654 A1 2002173521 A1 200300063 A	14-01-2002 14-01-2002 10-01-2002 10-01-2002 22-10-2003 22-10-2003 22-10-2003 28-05-2003 10-01-2002 10-01-2002 28-08-2003 28-11-2003 22-01-2004 03-03-2003 28-06-2004 31-10-2003 23-06-2004 21-11-2003 22-07-2003
US 2002173521	A1	21-11-2002	US AU CA CA CN CN EP EP WO WO	2004106654 A1 8216201 A 8216301 A 8216301 A 2414799 A1 2414807 A1 1450998 T 1301495 A2 1313718 A2 0202541 A2 0202090 A2 0301336 A2	03-06-2004 14-01-2002 14-01-2002 10-01-2002 22-10-2003 22-10-2003 28-05-2003 10-01-2002 28-08-2003

Earn SCTTSAMAN (natest family enney) (lawyers 2004)

information on patent family members

International Application No PCT/JP2004/004596

					1, 0, 000
Patent document ited in search report		Publication date		Patent family member(s)	Publication date
JS 2002173521	A1		HU JP JP NO NO NZ NZ ZA ZA	0301625 A 2004501962 T 2004502682 T 20026282 A 20026283 A 523463 A 523464 A 200300063 A 200300064 A	22-01-2004 29-01-2004 03-03-2003 28-02-2003 25-06-2004 31-10-2003 22-07-2003
WO 9724343	A	10-07-1997	AT AU BG BR CA CZ DE DE	227279 T 1682897 A 102583 A 9612435 A 2192433 A 9802072 A 69624728 T	28-07-1997 30-06-1999 4 13-07-1999 41 30-06-1997 43 11-11-1998 01 12-12-2002
			DK EE EP ES HU JP NO NZ PL SK	871619 7 9800154 / 0871619 / 2186811 7 9902341 / 2000502702 7 982950 / 331104 / 327582 / 871619 7 873619 89398 /	13 03-03-2003 15-12-1998 14 21-10-1998 13 16-05-2003 14 28-10-1999 17 07-03-2000 18 25-06-1998 19 27-03-2000 10 21-12-1998 10 31-03-2003 11 30-04-2003 11 30-04-2003
		ş(TR WO US US VS ZA US	9801244 7 9724343 / 6348477 1 6458959 1 6057451 / 9610850 / 6288091 1	A1 10-07-1997 B1 19-02-2002 B1 01-10-2002 A 02-05-2000 A 30-06-1997
WO 0228835	А	11-04-2002	AU BR CA CN CZ EP HU WO JP NO NZ US	20031230 1326835 0301249 0228835 2004510763 20031540 525591	A 30-09-2003 A1 11-04-2002 T 25-02-2004 A3 15-10-2003 A1 16-07-2003 A2 28-01-2004 A1 11-04-2002 T 08-04-2004 A 05-06-2003
WO 03006003	Α	23-01-2003	US CA EP WO	2003125360 2451569 1414426 03006003	A1 23-01-2003 A1 06-05-2004
	Α	04-09-2003	WO	03072557	A1 04-09-2003

Form DCT/ISA/240 (notion) family cancel / leavens 200/1

Information on patent family members

International Application No PCT/JP2004/004596

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 8202386	A	22-07-1982	JP JP JP JP JP JP	1626342 C 2054347 B 57118574 A 1626343 C 2055428 B 57118575 A 1142649 B 8202386 A1	28-11-1991 21-11-1990 23-07-1982 28-11-1991 27-11-1990 23-07-1982 08-10-1986 22-07-1982
US 6114365	A	05-09-2000	AU BG BR CA CN CZ EE HRU WO JP MA NO PL SK ZA	7440000 A 106481 A 0013281 A 2381097 A1 1425009 T 20020486 A3 20020064 A 1204649 A1 20020127 A1 0202492 A2 0114353 A1 2003507461 T 25433 A1 20020683 A 353588 A 1802002 A3 200201117 A	19-03-2001 30-09-2002 18-06-2002 01-03-2001 18-06-2003 13-11-2002 15-04-2003 15-05-2002 30-04-2003 28-11-2002 01-03-2001 25-02-2003 01-04-2002 10-04-2002 01-12-2003 02-05-2003
EP 1256578	A	13-11-2002	BR CA EP JP US	0201691 A 2385692 A1 1256578 A1 2002338556 A 2003078252 A1	11-03-2003 11-11-2002 13-11-2002 27-11-2002 24-04-2003