

Container-Level Energy Observability in Kubernetes Clusters

ICT4S 2025 Dublin, Ireland **Bjorn Pijnacker**¹ Author & Speaker

Vasilios Andrikopoulos¹ Co-author **Brian Setz**¹ Co-author

¹ University of Groningen

Introduction

- Research in energy efficiency focus on efficiency/waste and reducing overprovisioning
- Existing solutions:
 - Optimize entire cluster or datacenter at once, little regard for the individual workload
- Missing: insight (observability) into workload power usage in Kubernetes

How can we accurately measure (or estimate) the power usage of Kubernetes containers based on external measurements?

Workload observability (why?)

- Give developers or operations engineers live metrics for power usage
 - Optimize solutions for energy usage, E.g. comparing different approaches
 - Alerting after deploy → power usage went up <u>\$\mathbb{\omega}\$</u>
- CPU cycles is simple, kWh is approachable
 - Bottom-up: optimizing applications themselves
- First steps towards granular energy efficiency

Kubernetes Overview

Cluster

Kubernetes Pod Lifecycle

Approach

- 1. Evaluate state-of-the art tool **Kepler** (CNCF Sandbox maturity)
 - Spoilers: not great...

Approach

- 1. Evaluate state-of-the art tool **Kepler** (CNCF Sandbox maturity)
- 2. Build and evaluate alternative **KubeWatt** based on *simple* power mapping model¹ as a proof-of-concept

¹ Andringa, L., Setz, B., & Andrikopoulos, V. (2025). Understanding the Energy Consumption of Cloud-native Software Systems. In Proceedings of the 16th ACM/SPEC International Conference on Performance Engineering (pp. 309–319). ICPE '25: 16th ACM/SPEC International Conference on Performance Engineering. ACM. https://doi.org/10.1145/3676151.3719371

Two "types" of power

- System power isn't a single number
- A system at rest uses power → idle (or static) power
 - Divided over all containers equally
- Resource utilization uses power → dynamic power
 - Attributed based on amount of resources used by container

CNCF Sandbox Kepler

- Kubernetes-based Efficient Power Level Exporter
- Estimates power usage per Kubernetes pod
- Measurements of platform and component power based on Intel RAPL, Redfish API and software estimation
 - Multiple or custom software estimation models available
- Export to Prometheus (/Grafana)

Experimental Validation

- Goal: Run Kepler with workloads and validate its estimations against real measurements
 - Accuracy of node metrics
 - Accuracy of container-level power metrics

Experimental Results

- Experimental validation shows significant drift from real-world measurements, e.g.:
 - Containers that were not running were attributed significant idle power usage → unrealistic
 - Power misattributed to non-existent processes, even though a single process is responsible for significant power usage → incorrect
 - Software estimation failed altogether
- Node metrics align precisely to the source data

Example > single stressor pod

Example > ghost-containers using power

KubeWatt

- KubeWatt as a proof-of-concept
 - Validate that Kepler's shortcomings are not inherent to the problem at hand
- Simple power mapping model:
 - 1) Determine dynamic power fraction
 - 2) Scale dynamic power value to CPU usage by container
- Data collected using Redfish API and Kubernetes metrics collector
- Export to Prometheus (/Grafana)

https://github.com/bjornpijnacker/kubewatt

Calculating static/dynamic power fraction

- Either:
 - 1) Measure the cluster at idle for some time
 - 2) Measure the cluster while running → find the value with regression
- Not an online measurement, cluster is expected not to change
 - Fine for short tests
 - Novel work on online power ratio model

KubeWatt estimation mode

- Divide dynamic power per node proportionally to container CPU utilization per node
- Due to its remarkably simple design, able to overcome the limitations shown for Kepler
 - Power attributed to the containers using the CPU
 - No power attributed to containers that are not running

Example, same test as Figure 2

Estimation mode limitations

- Estimation based on real-world measurements
 - Not always available
 - No sufficient software solution exist (yet)
- Only supports CPU-based estimation
 - As a proof-of-concept
 - Largest power draw in non-GPU scenario's

Container-Level Energy Observability in Kubernetes Clusters

ICT4S 2025 Dublin, Ireland **Bjorn Pijnacker**¹ Author & Speaker

Vasilios Andrikopoulos¹ Co-author

Brian Setz¹ Co-author

¹ University of Groningen