- 1. Subespacios: Teorema de caracterización: Han de contener al $\bar{0}$, y el teorema de caracterización: $\forall \lambda, \mu \in \mathbb{R}, \forall \vec{x}, \vec{y} \in V \Longrightarrow \lambda \vec{x} + \mu \vec{y} \in V$. Dim(E) = $Dim(V) + n^{o}$ ecs. implicitas independientes de V. Suma de subespacios: unión de sus bases, se retiran los generadores dependientes. Intersección: $V_1 \cap V_2$ si esta es $\vec{0}$ entonces se dice que son subespacios disjuntos; para hallarla se juntan las implícitas o se igualan paramétricas. Dimensiones: $dim(V_1) + dim(V_2) =$ $dim(V_1 + V_2) + dim(V_1 \cap V_2)$; si V_1 y V_2 son disjuntos su suma es directa y se denota como $V_1 \oplus V_2$; si su suma es directa e igual al espacio E entonces se llamas complementarios o suplementarios. Cambio de base: matriz cuyas columnas son la base de \bar{X} en \bar{Y} , quedando el sistema $\bar{Y} = B\bar{X}$.
- 2. Aplicaciones lineales: Propiedades: $f(\bar{x}+\bar{y})=f(\bar{x})+f(\bar{y})$ y $f(\lambda\bar{x})=\lambda f(\bar{x})$; $f(\bar{0})=\bar{0}$. Sea $f:E\mapsto F$ una aplicación lineal, entonces si E=F se denomina endomorfismo; si f es inyectiva o "monomorfismo" entonces $x_1 \neq x_2 \Rightarrow f(\bar{x_1}) \neq f(\bar{x_2})$; si f es sobreyectiva o "epimorfismo" entonces $\forall \bar{y} \in F, \exists \bar{x} \in F, \forall \bar{x} \in F$ $E/f(\bar{x}) = \bar{y}$; si f es **inyectiva** y **sobreyectiva**, es biyectiva y se llama isomorfismo y entonces $\exists f^{-1}$; un endomorfismo biyectivo se llama automorfismo. **Kernel:** $ker f = f(\bar{x}) = 0$; propiedades: si $ker f = \bar{0}$ entonces f es un homomorfismo invectivo. Rango de la aplicación: dim E = dim ker f + rang f = dim ker f + dim Im f. **Matriz:** la matriz de la aplicación se crea poniendo los transformados de la base por columnas de manera que $\bar{Y} = A\bar{X}$, siendo \bar{x} las coordenadas del vector a transformar. Notación M(f, B_e , B_f), M es la aplicación f que va de la base B_e a B_f . Composición: $q \circ f(\bar{x}) = q(f(\bar{x}))$.
- 3. Jordan: Matriz semejante: $B = P^{-1}AP$, siendo P la matriz de paso (la de cambio de base). Propiedades: 1. |A| = |B|; 2. $A^n = PB^nP^{-1}$. Autovalores y autovectores: si $f(\bar{x}) = \lambda \bar{x}$ se dice que λ es un autovalor y \bar{x} es un autovector. Polinomio característico: $P(\lambda) = |A - \lambda I|$, sus soluciones de λ cuando se iguala a 0 son los autovalores, si λ es raíz de multiplicidad n se indica como $\dot{\Gamma}_{\lambda=x_1}=n$. Si se tiene una matriz con una fila o columna de un mismo valor ese valor es autovalor. Taza y determinante: |J| = |A|; $traza(J) = traza(A) = suma(\lambda)$. Subespacios invariantes: dado un λ su subespacio invariante (familia de autovectores) $N_{1,\lambda} = ker(A - \lambda I) = \bar{u} / A\bar{u} = \lambda \bar{u}$; A^t tiene los mismos autovalores que A, $kA\bar{u} = k\lambda \bar{u}$, λ autovalor de A, entonces λ^n es de A^n . Cayley-Hamilton: toda matriz A es solución de su polinomio característico. Jordan: $A = PJP^{-1}$. Exponencial de una matriz: $e^{At} = Pe^{Jt}P^{-1}$ suponiendo que estamos en una caja

diagonal:
$$e^{J_i t} = \begin{pmatrix} e^{\lambda_i t} \\ & \ddots \\ & & e^{\lambda_i t} \end{pmatrix}$$
. Si no es diagonal: $e^{J_i t} = \begin{pmatrix} e^{\lambda_i t} \\ & \ddots \\ & & e^{\lambda_i t} \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ \frac{t}{1!} & \ddots & 0 \\ \frac{t^{r_i-1}}{(r_i-1)!} & \frac{t}{1!} & 1 \end{pmatrix}$. Potencia de una matriz: $A^n = PJ^nP^{-1}$, si la caja

diagonal:
$$e^{J_i t} = \begin{pmatrix} e^{\lambda_i t} \\ & \ddots \\ & e^{\lambda_i t} \end{pmatrix}$$
. Si no es diagonal: $e^{J_i t} = \begin{pmatrix} e^{\lambda_i t} \\ & \ddots \\ & e^{\lambda_i t} \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ \frac{t}{\Pi} & \ddots & 0 \\ \frac{t^{r_i-1}}{(r_i-1)!} & \frac{t}{\Pi} & 1 \end{pmatrix}$. Potencia de una matriz: $A^n = PJ^nP^{-1}$, si la caja es diagonal $J^n_i = \begin{pmatrix} \lambda^n_i \\ & \ddots \\ & \lambda^n_i \end{pmatrix}$ si no $J^k_i = \begin{pmatrix} \lambda^k_i & 0 & 0 & \cdots & 0 \\ (k_1^k)\lambda^{k-1}_i & \lambda^k_i & 0 & \cdots & 0 \\ (k_1^k)\lambda^{k-1}_i & \lambda^k_i & 0 & \cdots & 0 \\ (k_1^k)\lambda^{k-1}_i & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \lambda^k_i & 0 \\ \vdots & \vdots & \ddots & \lambda^k_i & 0 \\ (k_{m-1}^k)\lambda^{k-m_i+1}_i & (k_{m-2}^k)\lambda^{k-m_i+2}_i & \cdots & (k_1^k)\lambda^{k-1}_i & \lambda^k_i \end{pmatrix}$. Encadenados: si $\dot{\Gamma}_{\lambda}$ > vectores en $N_{1,\lambda} = ker(A - \lambda I)$

entonces tenemos que ampliar $ker(A - \lambda I)$, así que hacemos tantas potencias como sean necesarias para llegar a la multiplicidad $(ker(A - \lambda I)^h)$. Se calcula un vector $\bar{u_1} \in ker(A-\lambda I)^h$ no existente en las anteriores potencias, y a partir de ahí, se sacan los encadenados: con u_1 el inicial: $\bar{u_2} = (A-\lambda I)\bar{u_1}$, $\bar{u_3} = (A-\lambda I)\bar{u_2}$... Trucos: siempre se puede sacar A si se tienen suficientes transformados. Si se tiene el transformado de un vector, comprobar que si es un encadenado descomponiendo su imagen: $f(\vec{u}) = \vec{x} \to A\vec{u} = \lambda \cdot \vec{u} + \vec{w} : (A - \lambda I)\vec{u} = \vec{w}$. Si \vec{w} es autovector, \vec{u} sería su encadenado. Aunque cambien los autovectores de una misma aplicación, sus subespacios no varían. !Si hay parámetros hay que mirar si nos varían el número de implícitas!

4. Euclídeo: propiedades, simetría, positividad y bilinelidad. Matriz: $G = \begin{pmatrix} \bar{e_1} \circ \bar{e_1} & \bar{e_1} \circ \bar{e_2} & \cdots \\ \bar{e_2} \circ \bar{e_1} & \bar{e_2} \circ \bar{e_2} & \cdots \\ \bar{e_3} \circ \bar{e_1} & \bar{e_3} \circ \bar{e_2} & \ddots \end{pmatrix}$, por lo tanto la matriz tiene que ser simétrica y definida

positiva. Si la base es ortonormal entonces la matriz es la identidad. Matriz congruente: si el producto es $\bar{x} \circ \bar{y} = \bar{X}^t G \bar{Y}$, en un cambio de base $\bar{X} = P \bar{X}^*, \bar{Y} = P \bar{Y}^*$ es $\bar{X}^{*t}P^tGP\bar{Y}^*$. Vectores ortogonales: $\bar{u}\circ\bar{u}=0$. Módulo: $|\bar{u}|=\sqrt{\bar{u}\circ\bar{u}}$; vector unitario: $\frac{\bar{u}}{|\bar{u}|}$. Ángulo entre vectores: $cos(\alpha)=\frac{\bar{u}\circ\bar{u}}{|\bar{u}||\bar{u}|}$. Bases ortonormales: la matriz en estas bases es la identidad. Gram-Schmidt: $\bar{e_1}'=\bar{e_1}$; $\bar{e_2}'=\bar{e_2}-\frac{\bar{e_1}\circ\bar{e_2}}{\bar{e_1}\circ\bar{e_1}}\bar{e_1}'$; $\bar{e_3}'=\bar{e_3}-\frac{\bar{e_1}\circ\bar{e_3}}{\bar{e_1}\circ\bar{e_1}}\bar{e_2}'-\frac{\bar{e_2}\circ\bar{e_3}}{\bar{e_2}\circ\bar{e_2}}\bar{e_2}'$. Lo que nos daría una base ortogonal, se divide

por su módulo, haciendo normal. Alternativa, coges un vector, hallas su genérico \bot coges el que quieras, repites el proceso con este, y para sacar el tercero se unen las condiciones del primero y segundo. **Proyecciones:** la proyección de \bar{u} sobre $\bar{v} \Rightarrow \bar{u} = a\bar{v} + \bar{w}$, siendo $\bar{w} \perp \bar{v}$ y $a\bar{v}$ la proyección; siendo $a = \frac{\bar{u} \circ \bar{v}}{\bar{v} \circ \bar{v}}$. Proyección de \bar{u} sobre un subspacio: siguiendo lo anterior $\bar{w} \perp L(S)$ y la proyección es combinación de los generadores de S. Expresión matricial: sea $A\bar{X}$ la proyección y A la matriz generada con los generadores de S por columnas dando $A\bar{X} = A(A^tA)^{-1}A^t\bar{u}$. Propiedades de la matriz proyección: $P^2 = P$, es idempotente; $P^t = P$ es simétrica. **En bases ortonormales:** $AA^t = I \rightarrow A^{-1} = A^t$.

5. Afín: referencia: $R = \{O; \bar{e_1}, \bar{e_2}, \cdots, \bar{e_n}\}$, siendo O el origen afín. Cambio de base afín: B' = PB siendo $P = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ \hline b_1 & a_{11} & a_{12} & \cdots \\ b_2 & a_{21} & a_{22} & \cdots \end{pmatrix}$; con a y b los

transformados de la base. Bachiller: Interseción de rectas y planos, se sustituyen las rectas en las implícitas y se despeja el parámetro. Perpendicular común: se hace una recta general (punto general de una menos la otra) y se condiciona que sea \bot a ambas. Haz de planos: la suma de dos planos que generen la recta, uno de ellos por un parámetro. Simetría: (Punto P + su simétrico) entre dos = punto medio. Hiperplano: subespacio con dimensión R^{n-1} . Áreas y volumenes: Área: $|\bar{AB} \times \bar{AC}|$, de un triángulo entre dos; Volumen: $|\bar{AB} \times \bar{AC} \times \bar{AD}|$, la de un tetraedro entre 6.

Transformaciones afines: una transformación ortogonal si $f(\bar{x}) \circ f(\bar{y}) = \bar{x} \circ \bar{y}$ y su matriz en una base ortonormal es ortogonal, además de mantener los módulos. Clasificación, transformaciones vectoriales: 2 dimensiones: $|A| = 1 \Rightarrow \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$ giro respecto al origen. $|A| = -1 \Rightarrow \begin{pmatrix} \cos \gamma & \sin \gamma \\ \sin \gamma & -\cos \gamma \end{pmatrix}$ simetría respecto a $N_{1,1}$. Dimensión 3: |A| = 1. Si $\lambda = 1$ triple, entonces es la identidad e indica desplazamiento. Si $\lambda = 1$ simple y -1 doble, se tiene una simetría axial respecto de $\lambda = 1$. Si se tiene dos complejos conjugados entonces $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{pmatrix}$ y es un giro de ángulo γ respecto a $\lambda = 1$. |A| = -1. Si $\lambda = -1$ triple,

entonces es una simetría central. Con $\lambda = -1$ simple y 1 doble es una simetría planar con vector normal $\lambda = -1$. Si $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & cos\gamma & -sen\gamma \\ 0 & sen\gamma & cos\gamma \end{pmatrix}$ es un giro respecto la

recta $\lambda = -1$ y simetría respecto al plano con el vector normal = director de la recta. Matriz de transformaciones afines: $f = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ \hline b_1 & a_{11} & a_{12} & \cdots \\ b_2 & a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$, quedando

$$f(x) = y. \text{ Homotecia: } f = \begin{pmatrix} \frac{1}{(1-k)P_1} & 0 & 0 & 0 \\ \frac{1}{(1-k)P_2} & k & 0 & 0 \\ \frac{1}{(1-k)P_3} & 0 & 0 & k \end{pmatrix}, \text{ siendo P el centro, si } k = 1 \text{ se tiene la identidad, si } k = -1 \text{ es una simetría respecto de P. Movimientos:}$$

f es un movimiento si M (matriz transformadora de vectores) es ortogonal; habrá que estudiar si hay puntos fijos. Si $|M-I| \neq 0$ es determinado y habrá un punto fijo. Sino hay puntos fijos hay que añadir una traslación. La traslación se hallará transformado un punto $\in N_{1,1}$, y la resta entre él y su transformado será la traslación. Para hallar el $N_{1,1}$ en una simetría se puede hacer el punto medio entre un punto y su transformado. **Trucos:** un vector y su transformado "afín" mantienen el módulo. Si solo se tienen transformados de puntos, sus restas darán vectores. Cuando se halla el $N_{1,1}$ en simetría de plano, quedará una implícita, el \vec{v}^{\perp} de esa implícita es el $N_{1,-1}$. Si la matriz es simétrica, entonces es estrictamente diagonalizable con autovalores reales. $\vec{e_1} \circ \vec{e_2} = f(\vec{e_1}) \circ f(\vec{e_2})$. Si nos piden un giro en una recta y no podemos encontrarlo fácil (comparando con la matriz) podemos coger $\vec{v} \perp N_{1,1}$, hallar su transformado y calcular el ángulo entre ellos. Conmutar: $A \cdot B = B \cdot A$.