Consider a charged particle that gets a kick V Reperiod of rapid acceleration In general we could imagine the particle gets rapidly accelerated over time Taccel: We want to compute the fourier transform of the radiation field Erad (w) = 9/4Tirche e tourier transform The is easier to use a form which makes the acceleration explicit: Exactly acceleration explicit: Exactly acceleration explicit:	Radiation During Collisions
In general we could imagine the particle gets rapidly accelerated over time Taccel: Taccel We want to compute the fourier transform of the radiation field Erad (w) = 9/411 rc^2 e (-iw) fat e wt-ik.r. It is easier to use a form which makes the acceleration explicit:	Consider a charged particle that gets a kick
In general we could imagine the particle gets rapidly accelerated over time Taccel: Taccel We want to compute the fourier transform of the radiation field Erad (w) = 9/411 rc^2 e (-iw) fat e wt-ik.r. It is easier to use a form which makes the acceleration explicit:	
We want to compute the fourier transform of the radiation field Erad (w) = 9/4Tirc e (-iw) dTe (wT-ik.r.) The is easier to use a form rxnxV(t) which makes the acceleration explicit:	v, reperiod of rapid acceleration
of the radiation field Erad (w) = 9/47/rc^2 e' (-iw) fdTe wT-ik.r. It is easier to use a form which makes the acceleration explicit:	In general we could imagine the particle gets rapidly accelerated over time Taccel:
of the radiation field Erad (w) = 9/471rc2 e' (-iw) fdTe wT-ik.r. It is easier to use a form which makes the acceleration explicit:	
of the radiation field Erad (w) = 9/47/rc^2 e' (-iw) fdTe wT-ik.r. It is easier to use a form which makes the acceleration explicit:	
of the radiation field Erad (w) = 9/471rc2 e' (-iw) fdTe wT-ik.r. It is easier to use a form which makes the acceleration explicit:	Taccel
It is easier to use a form - mxnxv(t) which makes the acceleration explicit:	of the radiation field
which makes the acceleration explicit:	- 22 3 3
$\frac{E_{rad}(\omega) = q}{4\pi rc^2} e^{i\omega r/c} \int_{-\infty}^{qo} e^{i\omega(T-n\cdot r_*/c)} \frac{d}{d\tau} \frac{n \times n \times V}{(1-\vec{n}\cdot\vec{\beta})} dT$	
	$\frac{E_{rad}(\omega) = q}{4\pi rc^2} e^{i\omega r/c} \int_{-\infty}^{\infty} e^{i\omega(T-n\cdot r_*/c)} \frac{d}{d\tau} \frac{n \times n \times \vec{V}}{(1-\vec{n}\cdot\vec{\beta})} dT$

.---

. - --

Bremm	pg.	2
	' 0	

The integrand vanishes except over a Short period of DT ~ Taccel . Over this period of time the phase is essentially constant, provided the frequency is not too lorge. Change in phase $\Delta \phi = \omega \Delta T \left(1 - n \cdot \delta r_{\star}\right) \ll 1$ Then, we integrate constant, change $\Delta \phi \ll 1$ End (w) $\simeq q$ e $\frac{i \omega r}{c} \int \frac{e^{i\phi}}{d} \frac{d \cdot n \times n \times v}{dT} dT$ $\frac{1}{4\pi rc^2} \int_{-\infty}^{\infty} dT (1-n\beta)$ $\frac{1}{\left(\frac{E_{nad}(\omega)}{\Gamma_{nad}(\omega)} = \frac{Q}{Q} e^{i\omega r/c} e^{i\varphi} \left[\frac{n\times n\times V_{2}}{(1-n\beta_{1})} \frac{n\times n\times V_{1}}{(1-n\beta_{1})}\right]}$ Thus during a collision expect a distribution of energy: $\frac{2\pi}{d\omega d\Omega} = \frac{g^2}{16\pi^2c^3} \frac{n\times n\times V_2}{(1-n\cdot \beta_1)} = \frac{n\times n\times V_1}{(1-n\cdot \beta_1)}$

Tets Look at the qualitative features
1) There are two collinear factors
$\frac{1}{(1-n\cdot v_2/c)} \text{and} \frac{1}{(1-n\cdot v_1/c)}$
As long as V, and V are separated by a wide angle, then the radiation will be peaked in the V, and V directions final state radiation
initial state radiation
2) In the non-relativistic limit find, neglecting the denominators that
$\frac{2\pi}{dwd\Omega} = \frac{q^2}{ 6\pi^2c^3 } n \times n \times (\sqrt{2} - \sqrt{1}) ^2$
Kind of Larmour like

Qualitative pg. 2
(3) Independent of Frequency
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Now
2T dW _ T dI _ Tr (hw) dN/x _ independent dwds dwds dwds of frequency
So
$\frac{\pi dN_{x}}{d\Omega} = \frac{d\omega}{\omega} \left(\frac{q^{2}}{16\pi^{2} + c}\right) \left(\frac{n \times n \times \beta_{z}}{1 - n \beta_{z}}\right) = \frac{n \times n \times \beta_{z}}{(1 - n \beta_{z})} = \frac{n \times n \times \beta_{z}}{(1 - n \beta_{z})}$
Currence & distribution of radiated
So you see a distribution of radiated photons which is extremely characteristic:
$\frac{1}{\sqrt{2}}$
The yield soft photons, Jdw, is infinite in the
infrared, but the energy they carry is finite
DE ~ Jaw tw ~ finite & more next time

Analysis of Cone Near one of the directions (say B,) for $\theta \sim 1$) Then, nxnxB = Bsin0 = sin0 = 0 To and $\sqrt{(1-n.\beta)} \approx \frac{2\gamma^2}{(1+\langle \gamma \theta \rangle^2)}$ $\frac{dN}{d\omega dR} = \frac{\sqrt{Y^2 (Y\theta)^2}}{\sqrt{(Y\theta)^2}} \qquad (Eg xx)$ Then we see a characteristic 1/w distribution. We integrate over the cone, to find, dsz = sino do = 2TO do $\frac{dN}{T} = \frac{2\alpha}{\omega} \frac{d\omega}{(1+\delta \theta)^2} \frac{(8\theta) d(8\theta)}{(1+\delta \theta)^2}$ For 8-100 but 0 fixed, i.e. 80>>1 we find $\frac{dN_{g}=2\alpha}{T}\frac{d\omega}{\omega}\frac{d\theta}{\theta}$

Analysis of cone pg. 2		pg. 2	cone	of	Analysis
------------------------	--	-------	------	----	----------

May sis of cone pg. 2
To evaluate the number of photons in the cone
we use a logarithmic approximation
e .
$dN_{\gamma} = 2\alpha d\omega d\theta$
- Pmic
= 2x dw log 0 max
The Words
We should set the limits of integration where
the approximation breaks down. The upper limit
is 0 max ~ 1. At this point we can no longer
make small angle
nxnxV2 nxnxV1 approximations.
(i-n·v2) (I-n·v1) Similarly for the
lower limit we set Omin ~ Vx. At this point we should
return to Eq * ion the previous page. In a logarithmic
approximation we find,
dNy = 2x dw log &
π ω
101 0 1 1 1 /F 1
$\frac{dN = 2\alpha \ dw \ \log(E)}{\pi \ w \ \log(mc^2)}$

$$E = (0, 1, i, 0)$$
 records circularly light

Last lime Continued
The properties that we derived from the analys of waves are, $\vec{E} = E, \vec{\epsilon}, + E, \vec{\epsilon},$
$\mathcal{E}_{a}^{*} \cdot \mathcal{E}_{b} = \mathcal{S}_{ab} \leftarrow \text{orthogonal}$
$\vec{R} \cdot \vec{E}_a = 0$ = transverse to direction
Then we write the energy per frequency der solid angle with polarization
2TT dW // = cle, El r2 // (in n, p plane) dwds and I (out of n, p plane)
andw c/E/2r2 dw2
Then since for this example n'xnx v is already transverse we have
$E = -\frac{q}{q} e^{ikr} \left[\frac{\vec{\epsilon}_{\parallel}^* \cdot \vec{v}}{(1 - n \cdot \beta)} - \frac{\vec{\epsilon}_{\parallel}^* \cdot \vec{v}}{(1 - n \cdot \beta)} \right]$
And the frequency Spectrum is
$\frac{2\pi dW_{\parallel}}{dwd\Omega} = \frac{q}{16\pi\epsilon^{3}} \left(\frac{\epsilon_{\parallel}^{*} \cdot V_{2}}{(1-n\cdot\beta_{2})} - \frac{\epsilon_{\parallel} \cdot V_{1}}{(1-n\cdot\beta_{3})}\right)^{2}$
You will need this of homework