- 7.4 Consider whether the following statements are true or false:
 - a. The sum of any two convex functions is convex.

Solution.

Let f_1 and f_2 be two convex functions such that

$$f_1(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f_1(\mathbf{x}) + (1 - \theta)f_1(\mathbf{y})$$

and

$$f_2(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f_2(\mathbf{x}) + (1 - \theta)f_2(\mathbf{y})$$

where $0 \le \theta \le 1$.

Summing up the two equations, we get

$$f_1(\theta \mathbf{x} + (1-\theta)\mathbf{y}) + f_2(\theta \mathbf{x} + (1-\theta)\mathbf{y}) \le \theta f_1(\mathbf{x}) + (1-\theta)f_1(\mathbf{y}) + \theta f_2(\mathbf{x}) + (1-\theta)f_2(\mathbf{y})$$

$$\implies f_1(\theta \mathbf{x} + (1-\theta)\mathbf{y}) + f_2(\theta \mathbf{x} + (1-\theta)\mathbf{y}) \le \theta(f_1(\mathbf{x}) + f_2(\mathbf{x})) + (1-\theta)(f_1(\mathbf{y}) + f_2(\mathbf{y}))$$

 \Longrightarrow The sum of functions f_1 and f_2 is convex.

b. The difference of any two convex functions is convex.

Solution.

Let $f_1 = x^2$ and $f_2 = 2x^2$ be two convex functions.

Then, $f_2 - f_1 = -x^2$ which is not convex.

Therefore, the difference of any two convex functions is not convex.

c. The product of any two convex functions is convex.

Solution.

Let $f_1 = x^2$ and $f_2 = x$ be two convex functions.

Then, $f_2 * f_1 = x^3$ which is not convex.

Therefore, the product of any two convex functions is not convex.

d. The maximum of any two convex functions is convex.

Solution.

Let f_1 and f_2 be two convex functions such that

$$f_1(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f_1(\mathbf{x}) + (1 - \theta)f_1(\mathbf{y})$$

and

$$f_2(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f_2(\mathbf{x}) + (1 - \theta)f_2(\mathbf{y})$$

Let $h = max\{f_1, f_2\}$

To prove:

$$\theta h(\mathbf{x}) + (1 - \theta)h(\mathbf{y}) \ge h(\theta \mathbf{x} + (1 - \theta)\mathbf{y})$$

From the definitions of the convex function above, we can see that

$$max(\theta f_2(\mathbf{x}) + (1-\theta)f_2(\mathbf{y}), \theta f_1(\mathbf{x}) + (1-\theta)f_1(\mathbf{y}))$$

$$max(f_1(\theta \mathbf{x} + (1 - \theta)\mathbf{y}), f_2(\theta \mathbf{x} + (1 - \theta)\mathbf{y}))$$

$$\implies \max(\theta f_2(\mathbf{x}) + \theta f_1(\mathbf{x})) + \max((1 - \theta) f_2(\mathbf{y}) + (1 - \theta) f_1(\mathbf{y}))$$

$$\geq$$

$$\max(\theta f_2(\mathbf{x}) + (1 - \theta) f_2(\mathbf{y}), \theta f_1(\mathbf{x}) + (1 - \theta) f_1(\mathbf{y}))$$

$$\geq$$

$$\max(f_1(\theta \mathbf{x} + (1 - \theta) \mathbf{y}), f_2(\theta \mathbf{x} + (1 - \theta) \mathbf{y}))$$

$$\implies \max(\theta f_2(\mathbf{x}) + \theta f_1(\mathbf{x})) + \max((1 - \theta) f_2(\mathbf{y}) + (1 - \theta) f_1(\mathbf{y}))$$

$$\geq \max(f_1(\theta \mathbf{x} + (1 - \theta) \mathbf{y}), f_2(\theta \mathbf{x} + (1 - \theta) \mathbf{y}))$$

$$\implies \theta \max(f_2(\mathbf{x}) + f_1(\mathbf{x})) + (1 - \theta) \max(f_2(\mathbf{y}) + f_1(\mathbf{y}))$$

$$\geq \max(f_1(\theta \mathbf{x} + (1 - \theta)\mathbf{y}), f_2(\theta \mathbf{x} + (1 - \theta)\mathbf{y}))$$

$$\implies \theta h(\mathbf{x}) + (1 - \theta)h(\mathbf{y}) \ge [h(\theta \mathbf{x} + (1 - \theta)\mathbf{y})]$$

Thus, the maximum of any two convex functions is convex.