IJCNN 2023

KHÓA LUẬN TỐT NGHIỆP QUY DẪN TỪ TRƯỜNG HỢP TRUNG BÌNH VỀ TRƯỜNG HỢP XẤU NHẤT DỰA TRÊN ĐỘ ĐO GAUSS

Sinh viên: Phan Thành Nhân. Giảng viên hướng dẫn: TS Lê Văn Luyện.

ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP. HỒ CHÍ MINH

Contents

- 1 Introduction and Motivation
- 2 ComImp algorithm
 - ComImp algorithm
 - ComImp algorithm for combining datasets
- 3 Combining datasets with dimension reduction (PCA-ComImp)
- 4 Choices of missing data imputation methods
- **6** Experiments

Introduction and Motivation

Example

Suppose that we have two datasets

$$\mathcal{D}_{1} = \begin{pmatrix} \text{person height (cm) weight (kg)} \\ 1 & 120 & 80 \\ 2 & 150 & 70 \\ 3 & 140 & 80 \\ 4 & 135 & 85 \end{pmatrix}.$$

$$\mathcal{D}_{2} = \begin{pmatrix} \text{person weight (kg) calo/meal} \\ 5 & 90 & 100 \\ 6 & 85 & 150 \\ 7 & 92 & 170 \end{pmatrix}$$

Introduction and Motivation

Motivation

Combining the information from these datasets together can help increase the sample sizes and may allow more efficient model training, prediction, and inferences.

This motivates us to propose ComImp (Combine datasets based on Imputation), a framework that allows vertically combine datasets based on missing data imputation.

ComImp algorithm

Input:

- **2** \mathcal{F}_i : set of features in \mathcal{X}_i
- **②** $g(\mathcal{X}, \mathcal{H})$: a transformation that rearranges features in \mathcal{X} to follow the order of the features in the set of features \mathcal{H} and insert empty columns if a feature in \mathcal{H} does not exist in \mathcal{X}
- lacktriangledown Imputer I.

Procedure:

1:
$$\mathcal{F} = \bigcup_{i=1}^r \mathcal{F}_i$$

2:
$$\mathcal{X}_i^* \leftarrow g(\mathcal{X}_i, \mathcal{F})$$

3:
$$\mathcal{X}^* = \begin{pmatrix} \mathcal{X}_1^* \\ \mathcal{X}_2^* \\ \vdots \\ \mathcal{X}_r^* \end{pmatrix}$$
, $\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_r \end{pmatrix}$

4: $\mathcal{X} \leftarrow$ imputed version of \mathcal{X}^* using imputer I.

Return: $\mathcal{D} = \{\mathcal{X}, \mathbf{y}\}$, the combined dataset of $\mathcal{D}_1, ..., \mathcal{D}_r$.

ComImp algorithm for combining datasets

As an illustration, we use the datasets $\mathcal{D}_1, \mathcal{D}_2$. A newly merged dataset \mathcal{D} can be formed by the following process:

• The union of set of features \mathcal{F} consists of height, weight, and calo/meal,

2

$$\mathcal{X}_{1}^{*} = \begin{pmatrix} \text{person height weight (calo/meal)} \\ 1 & 120 & 80 & * \\ 2 & 150 & 70 & * \\ 3 & 140 & 80 & * \\ 4 & 135 & 85 & * \end{pmatrix},$$

$$\mathcal{X}_{2}^{*} = \begin{pmatrix} \text{person height weight calo/meal} \\ 5 & * & 90 & 100 \\ 6 & * & 85 & 150 \\ 7 & * & 92 & 170 \end{pmatrix},$$

ComImp algorithm for combining datasets

3 Stack \mathcal{X}_1^* , \mathcal{X}_2^* vertically, and stack \mathbf{y}_1 , \mathbf{y}_2 vertically

$$\mathcal{X}^* = \begin{pmatrix} \text{person height weight calo/meal} \\ 1 & 120 & 80 & * \\ 2 & 150 & 70 & * \\ 3 & 140 & 80 & * \\ 4 & 135 & 85 & * \\ 5 & * & 90 & 100 \\ 6 & * & 85 & 150 \\ 7 & * & 92 & 170 \end{pmatrix},$$

and

$$\mathbf{y} = \begin{pmatrix} 80\\90\\85\\95\\100\\95\\82 \end{pmatrix}$$

ComImp algorithm for combining datasets

 \bullet \mathcal{X} = imputed version of \mathcal{X}^* . Suppose that mean imputation is being used, then

$$\mathcal{X} = \begin{pmatrix} (\text{person}) & (\text{height}) & (\text{weight}) & (\text{calo/meal}) \\ 1 & 120 & 80 & 140 \\ 2 & 150 & 70 & 140 \\ 3 & 140 & 80 & 140 \\ 4 & 135 & 85 & 140 \\ 5 & 136.25 & 90 & 100 \\ 6 & 136.25 & 85 & 150 \\ 7 & 136.25 & 92 & 170 \end{pmatrix},$$

Combining datasets with dimension reduction (PCA-ComImp)

Input:

- ① Datasets $\mathcal{D}_i = \{\mathcal{X}_i, \mathbf{y}_i\}, i = 1, 2 \text{ consists of}$ $\mathcal{D}_i^{(tr)} = \{\mathcal{X}_i^{(tr)}, \mathbf{y}_i^{(tr)}\}, i = 1, 2 \text{ as the training sets and}$ $\mathcal{D}_i^{(ts)} = \{\mathcal{X}_i^{(ts)}, \mathbf{y}_i^{(ts)}\} \text{ as the test sets,}$
- \mathcal{F}_i : set of features in \mathcal{X}_i ,
- $g(\mathcal{X}, \mathcal{H})$: a transformation that rearranges features in \mathcal{X} to follow the order of the features in the set of features \mathcal{H} and insert empty columns if a feature in \mathcal{H} does not exist in \mathcal{X}
- **1** Imputer I, classifier \mathcal{C} .

Combining datasets with dimension reduction (PCA-ComImp)

Procedure:

1:
$$\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$$
, $\mathcal{S} = \mathcal{F}_1 \cap \mathcal{F}_2$, $\mathcal{Q}_1 = \mathcal{F}_1 \setminus \mathcal{F}_2$, $\mathcal{Q}_2 = \mathcal{F}_2 \setminus \mathcal{F}_1$

2:
$$(\mathcal{R}_i^{(tr)}, V) \leftarrow pca(\mathcal{Q}_i^{(tr)})$$
 and $\mathcal{R}_i^{(ts)} \leftarrow \mathcal{Q}_i^{(ts)} V$

3:
$$\mathcal{H} = \mathcal{S} \cup \mathcal{R}_1 \cup \mathcal{R}_2$$

4:
$$\mathcal{X}_i^* \leftarrow g(\mathcal{S} \cup \mathcal{R}_i, \mathcal{H}), i = 1, 2$$

5:
$$\mathcal{X}^* = \begin{pmatrix} \mathcal{X}_1^* \\ \mathcal{X}_2^* \end{pmatrix}, \mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}$$

6: $\mathcal{X} \leftarrow \text{imputed version of } \mathcal{X}^* \text{ using imputer I.}$

Return: $\mathcal{D} = \{\mathcal{X}, \mathbf{y}\}$, the combined dataset of $\mathcal{D}_1, \mathcal{D}_2$.

Theorem

Assume that we have two datasets $\mathcal{D}_1 = \{\mathbf{U}, \mathbf{y}\}, \mathcal{D}_2 = \{\mathbf{V}, \mathbf{z}\}$ where \mathbf{U} , \mathbf{V} are inputs, and \mathbf{y}, \mathbf{z} are the labels, such that

$$\mathbf{U} = (\mathbf{1}_{n} \ \mathbf{u}_{1}) = \begin{pmatrix} 1 & u_{11} \\ 1 & u_{21} \\ \vdots & \vdots \\ 1 & u_{n1} \end{pmatrix}, \quad \mathbf{V} = (\mathbf{1}_{m} \ \mathbf{v}_{1} \ \mathbf{v}_{2}) = \begin{pmatrix} 1 & v_{11} & v_{12} \\ 1 & v_{21} & v_{22} \\ \vdots & \vdots & \vdots \\ 1 & v_{m1} & v_{m2} \end{pmatrix},$$

$$(1)$$

where $u_{ij}, v_{ij} \in \mathbb{R}$, and

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix}. \tag{2}$$

Theorem

Next, let $\bar{\mathbf{v}}_2$ be the mean of \mathbf{v}_2 . If mean imputation is being used for ComImp then the resulting combined input is

$$\mathbf{X} = \begin{pmatrix} 1_n & \mathbf{u}_1 & \bar{\mathbf{v}}_2 \\ 1_m & \mathbf{v}_1 & \mathbf{v}_2 \end{pmatrix}. \tag{3}$$

Then, we have the following relation between the sum of squared errors (SSE) of the model fitted on $\mathcal{D} = \{\mathbf{X}, \mathbf{Y}\},$

$$SSE_{\mathcal{D}} \ge SSE_{\mathcal{D}_1} + SSE_{\mathcal{D}_2}. \tag{4}$$

Proof: Note that equation (4) is equivalent to

$$\mathbf{Y}'(I - \mathbf{H}_x)\mathbf{Y} \le \mathbf{y}'(I - \mathbf{H}_u)\mathbf{y} + \mathbf{z}'(I - \mathbf{H}_v)\mathbf{z}, \tag{5}$$

where

$$\mathbf{H}_u = \mathbf{U}(\mathbf{U}'\mathbf{U})^{-1}\mathbf{U}',\tag{6}$$

$$\mathbf{H}_v = \mathbf{V}(\mathbf{V}'\mathbf{V})^{-1}\mathbf{V}',\tag{7}$$

$$\mathbf{H}_x = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'. \tag{8}$$

Hence, we want to prove that

$$\mathbf{y}'\mathbf{H}_{u}\mathbf{y} + \mathbf{z}'\mathbf{H}_{v}\mathbf{z} \ge \mathbf{Y}'\mathbf{H}_{x}\mathbf{Y},\tag{9}$$

Without loss of generality, assume that the data is centered so that $\sum_{i=1}^{n} u_{i1} = 0$, $\sum_{i=1}^{n} v_{i1} = 0$, $\sum_{i=1}^{n} v_{i2} = 0$, so $\bar{\mathbf{v}}_2 = 0$. Next, let $\alpha = \sum_{i=1}^{n} y_i$,

$$\alpha_1 = \sum_{i=1}^n y_i u_{i1}, \ a_1 = \sum_{i=1}^n u_{i1}^2, \ \text{we have}$$

$$\mathbf{y}'\mathbf{U} = \begin{pmatrix} \sum_{i=1}^{n} y_i & \sum_{i=1}^{n} y_i u_{i1} \end{pmatrix} = \begin{pmatrix} \alpha & \alpha_1 \end{pmatrix},$$

$$\mathbf{U}'\mathbf{U} = \begin{pmatrix} 1 & \sum_{i=1}^{n} u_{i1} \\ \sum_{i=1}^{n} u_{i1} & \sum_{i=1}^{n} u_{i1}^{2} \end{pmatrix} = \begin{pmatrix} n & 0 \\ 0 & a_1 \end{pmatrix},$$

$$\mathbf{U}'\mathbf{y} = \begin{pmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} y_i u_{i1} \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha_1 \end{pmatrix}.$$

This implies

$$\mathbf{y}'\mathbf{H}_{u}\mathbf{y} = \mathbf{y}'\left(\mathbf{U}(\mathbf{U}'\mathbf{U})^{-1}\mathbf{U}'\right)\mathbf{y} = \left(\mathbf{y}'\mathbf{U}\right)\left(\mathbf{U}'\mathbf{U}\right)^{-1}\left(\mathbf{U}'\mathbf{y}\right)$$
$$= \frac{\alpha^{2}}{n} + \frac{\alpha_{1}^{2}}{a_{1}}.$$
 (10)

Similarly, let
$$\beta = \sum_{i=1}^{m} z_i$$
, $\beta_1 = \sum_{i=1}^{m} z_i v_{i1}$, $\beta_2 = \sum_{i=1}^{m} z_i v_{i2}$, $b_1 = \sum_{i=1}^{m} v_{i1}^2$, $b_1 = \sum_{i=1}^{m} v_{i2}^2$, $c = \sum_{i=1}^{m} v_{i1} v_{i2}$. Then,

$$\mathbf{z}'\mathbf{V} = \begin{pmatrix} \sum_{i=1}^{m} z_i & \sum_{i=1}^{m} z_i v_{i1} & \sum_{i=1}^{m} z_i v_{i12} \end{pmatrix}$$
$$= \begin{pmatrix} \beta & \beta_1 & \beta_2 \end{pmatrix}$$

$$\mathbf{V'V} = \begin{pmatrix} m & \sum_{i=1}^{m} v_{i1} & \sum_{i=1}^{m} v_{i2} \\ \sum_{m}^{m} v_{i1} & \sum_{m}^{m} v_{i1}^{2} & \sum_{m}^{m} v_{i1} v_{i2} \\ \sum_{i=1}^{m} v_{i2} & \sum_{i=1}^{m} v_{i1} v_{i2} & \sum_{i=1}^{m} v_{i2}^{2} \end{pmatrix}$$

$$= \begin{pmatrix} m & 0 & 0 \\ 0 & b_{1} & c \\ 0 & c & b_{2} \end{pmatrix},$$

$$\mathbf{V'z} = \begin{pmatrix} \sum_{i=1}^{m} z_{i} \\ \sum_{m}^{m} z_{i} v_{i1} \\ \sum_{i=1}^{m} z_{i} v_{i1} \\ \sum_{i=1}^{m} z_{i} v_{i1} \end{pmatrix} = \begin{pmatrix} \beta \\ \beta_{1} \\ \beta_{2} \end{pmatrix}.$$

Therefore,

$$\mathbf{z}'\mathbf{H}_{z}\mathbf{z} = \mathbf{z}'\left(\mathbf{V}(\mathbf{V}'\mathbf{V})^{-1}\mathbf{V}'\right)\mathbf{z} = \left(\mathbf{z}'\mathbf{V}\right)\left(\mathbf{V}'\mathbf{V}\right)^{-1}\left(\mathbf{V}'\mathbf{z}\right)$$

$$= \frac{\beta^{2}}{m} + \frac{\beta_{1}^{2}b_{2} + \beta_{2}^{2}b_{1} - 2\beta_{1}\beta_{2}c}{b_{1}b_{2} - c^{2}}$$

$$= \frac{\beta^{2}}{m} + \frac{(\beta_{1}b_{2} - \beta_{2}c)^{2}}{b_{2}\left(b_{1}b_{2} - c^{2}\right)} + \frac{\beta_{2}^{2}}{b_{2}}.$$
(11)

Besides,

$$\mathbf{Y'X} = \begin{pmatrix} \sum_{i=1}^{n} y_i + \sum_{i=1}^{m} z_i & \sum_{i=1}^{n} y_i u_{i1} + \sum_{i=1}^{m} z_i v_{i1} & \sum_{i=1}^{m} z_i v_{i12} \end{pmatrix}$$

= $(\alpha + \beta \quad \alpha_1 + \beta_1 \quad \beta_2)$

$$\mathbf{X'X} = \begin{pmatrix} m & \sum_{i=1}^{n} u_{i1} + \sum_{i=1}^{m} v_{i1} & \sum_{i=1}^{m} v_{i2} \\ \sum_{i=1}^{n} u_{i1} + \sum_{i=1}^{m} v_{i1} & \sum_{i=1}^{m} u_{i1}^{2} + \sum_{i=1}^{m} v_{i1}^{2} & \sum_{i=1}^{m} v_{i1}v_{i2} \\ \sum_{i=1}^{m} v_{i2} & \sum_{i=1}^{m} v_{i1}v_{i2} & \sum_{i=1}^{m} v_{i2}^{2} \end{pmatrix}$$

$$= \begin{pmatrix} m & 0 & 0 \\ 0 & a_{1} + b_{1} & c \\ 0 & c & b_{2} \end{pmatrix},$$

$$\mathbf{X'Y} = \begin{pmatrix} \sum_{i=1}^{n} y_{i} + \sum_{i=1}^{m} z_{i} \\ \sum_{i=1}^{n} y_{i}u_{i1} + \sum_{i=1}^{m} z_{i}v_{i1} \\ \sum_{i=1}^{m} z_{i}v_{i12} \end{pmatrix} = \begin{pmatrix} \alpha + \beta \\ \alpha_{1} + \beta_{1} \\ \beta_{2} \end{pmatrix}.$$

Hence,

$$\mathbf{Y}'\mathbf{H}_{x}\mathbf{Y} = \mathbf{Y}'\left(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)\mathbf{Y} = \left(\mathbf{Y}'\mathbf{X}\right)\left(\mathbf{X}'\mathbf{X}\right)^{-1}\left(\mathbf{X}'\mathbf{Y}\right)$$
$$= \frac{\left(\alpha + \beta\right)^{2}}{m} + \frac{\left[\alpha_{1}b_{2} + \beta_{1}b_{2} - \beta_{2}c\right]^{2}}{b_{2}\left[a_{1}b_{2} + b_{1}b_{2} - c^{2}\right]} + \frac{\beta_{2}^{2}}{b_{2}}.$$
 (12)

Now, applying Cauchy-Schwarz inequality, we have

$$\frac{\alpha^2}{n} + \frac{\beta^2}{m} \ge \frac{(\alpha + \beta)^2}{m+n},\tag{13}$$

$$\frac{\alpha_1^2}{a_1} + \frac{(\beta_1 b_2 - \beta_2 c)^2}{\beta_2 (b_1 b_2 - c^2)} = \frac{1}{b_2} \left[\frac{\alpha_1^2 b_2^2}{a_1 b_2} + \frac{(\beta_1 b_2 - \beta_2 c)^2}{b_1 b_2 - c^2} \right]
\ge \frac{(\alpha_1 b_2 + \beta_1 b_2 - \beta_2 c)^2}{b_2 (a_1 b_2 + b_1 b_2 - c^2)}.$$
(14)

From (10), (11), (12), (13) and (14), we have $\mathbf{y}'\mathbf{H}_{u}\mathbf{y} + \mathbf{z}'\mathbf{H}_{v}\mathbf{z} > \mathbf{Y}'\mathbf{H}_{x}\mathbf{Y}$, as desired.

Factors should be considered when choosing the imputer for ComImp: speed, imputation quality, and the ability to predict sample by sample.

- When the datasets to be combined are small, methods that are slow but can give promising imputation quality, such as kNN, MICE, missForest, can be considered.
- Matrix decomposition methods may not be suitable when the data is not of low rank, and are not suitable for imputation in online learning, which requires the handling of each sample as it comes.
- When the uncertainty of imputed values is of interest, then Bayesian techniques can be used. However, Bayesian imputation techniques can be slow.
- DIMV is a scalable imputation method that estimates the conditional distribution of the missing values based on a subset of observed entries. As a result, the method provides an explainable imputation, along with the confident region, in a simple and straight forward manner.

Datasets

Bång: Descriptions of datasets used in the experiments

Dataset	# Classes	# Features	# Samples
Seed	3	7	210
Wine	3	13	178
Epileptic Seizure	2	178	11,500
Gene	5	20531	801

Regression simulation

• Run a Monte Carlo experiment for regression with 10000 repeats. For each loop, we generate a dataset \mathcal{D}_1 of 300 samples, and a dataset \mathcal{D}_2 of 200 samples based on the following relation

$$Y = 1 + X_1 + 0.5X_2 + X_3 + \epsilon \tag{15}$$

where $\mathbf{X} = (X_1, X_2, X_3)^T$ follows a multivariate Gaussian distribution with the following mean and covariance matrix

$$\boldsymbol{\mu} = \begin{pmatrix} 1\\2\\0.5 \end{pmatrix}, \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0.5 & 0.3\\0.5 & 1 & 0.4\\0.3 & 0.4 & 1 \end{pmatrix}$$
 (16)

and $\epsilon \sim \mathcal{N}(0, 0.2 I)$, where I is the identity matrix.

Regression simulation

- ② Delete the first feature of \mathcal{D}_1 and the second feature of \mathcal{D}_2 .
- 3 Added Gaussian noise with variance 0.05 to the second feature and Gaussian noise with variance 0.1 to the third feature of \mathcal{D}_2 .
- **1** $\mathcal{D}_1, \mathcal{D}_2$ is split again into training and testing sets ratio 7:3, respectively.

Results

Bång: mean \pm variance of MSE on test sets of regression models fitted on $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}$, respectively.

model	f_1	f_2	f
MSE	3.327 ± 0.093	3.044 ± 0.131	0.734 ± 0.002

Experiments of merging two datasets

Conduct experiments on the Seed dataset and repeat the experiment 1000 times. Follow these steps for each iteration:

- Delete the first two columns of the input in \mathcal{D}_1 and split it into training and testing sets of equal sizes.
- ② Delete the last columns of the input data in \mathcal{D}_2 and split it into the training and testing sets of equal sizes.
- **3** Fit models f_1, f_2 on the training set of $\mathcal{D}_1, \mathcal{D}_2$, respectively.
- ① Use ComImp to combine the training sets of $\mathcal{D}_1, \mathcal{D}_2$ to the training sets of \mathcal{D} , and do similarly for the testing portions
- **6** Fit a model f on the training set of \mathcal{D} .

Results

Bång: mean \pm variance of the accuracy on test sets of models fitted on $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}$ of the Seed dataset, respectively.

	test set of \mathcal{D}_1		
Classifier	f_1	f	
Logistic Regression	0.909 ± 0.001	0.913 ± 0.001	
SVM	0.917 ± 0.001	0.925 ± 0.001	
	$\textbf{test set of } \mathcal{D}_2$		
Classifier	f_2	f	
Logistic Regression	0.858 ± 0.006	0.896 ± 0.003	
SVM	0.882 ± 0.003	0.890 ± 0.003	

Experiments of merging three datasets

We conduct experiments on the Wine dataset.

- Randomly split the data into three datasets $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$
- ② Delete the first column of the input of \mathcal{D}_1 , the last 8 columns of \mathcal{D}_2 , and the 5^{th} and 6^{th} column of the input of \mathcal{D}_3

Results

Bång: mean \pm variance of the accuracy on test sets of models fitted on $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}$ of the Wine dataset, respectively.

	$\textbf{test set of } \mathcal{D}_1$		
Classifier	f_1	f	
Logistic Regression	0.912 ± 0.004	0.941 ± 0.002	
SVM	0.934 ± 0.003	0.955 ± 0.001	
	test set of \mathcal{D}_2		
Classifier	f_2	f	
Logistic Regression	0.735 ± 0.010	0.781 ± 0.007	
SVM	0.793 ± 0.007	0.826 ± 0.005	
	test set of \mathcal{D}_3		
Classifier	f_3	f	
Logistic Regression	0.946 ± 0.003	0.971 ± 0.001	
SVM	0.953 ± 0.002	0.968 ± 0.001	

ComImp with transfer learning

We conduct experiments on multi-variate time series datasets related to EEG signals.

- **Q** Randomly split the data into two datasets $\mathcal{D}_1, \mathcal{D}_2$ with 6:4 ratio.
- ② Simulate the bad EEG recordings with missing values. Delete the first 16 columns of \mathcal{D}_1 and the last 17 columns of \mathcal{D}_2 .
- **3** Split $\mathcal{D}_1, \mathcal{D}_2$ into training and testing sets with a 7:3 ratio.

ComImp with transfer learning

To compare our methods with transfer learning, we conduct the following two procedures:

- We train a fully connected two-layered neural network (f_1) on the training portion of \mathcal{D}_1 . Next, we transfer the weights of f_1 to train a fully connected network f_2 on the training portion of \mathcal{D}_2 and fine-tune f_2 .
- For our method,
 - ① Use ComImp to combine \mathcal{D}_1 and \mathcal{D}_2 , which gives us \mathcal{D} with \mathcal{D}_{train} is the merge between the training portion of \mathcal{D}_1 and \mathcal{D}_2 .
 - ② \mathcal{D}_{test_1} corresponding to the testing portion of \mathcal{D}_1 , and \mathcal{D}_{test_2} corresponding to the testing portion of \mathcal{D}_2 . We train a model f on \mathcal{D}_{train} .
 - 3 Transfer the weights of f onto the training portion of \mathcal{D}_1 and fine-tune the model, which gives us model f_1^{ComImp} .
 - **1** Do similarly for \mathcal{D}_2 , which gives us f_2^{ComImp} .

Run the model for 10,000 epochs.

Results

Bång: Comparison of transfer learning and transfer learning with ComImp on the EEG dataset.

	test set of \mathcal{D}_1		test s	set of \mathcal{D}_2
Classifier	f_1	f_1^{ComImp}	f_2	f_2^{ComImp}
Transfer Learning	0.774	0.796	0.839	0.849

Data imputation performance for missing datasets

We conduct experiments on the Wine dataset.

- Delete the first two columns of the input in \mathcal{D}_1 and split it into training and testing sets of equal sizes.
- ② Delete the last two columns of the input data in \mathcal{D}_2 .
- Generate missing data at missing rates of 20%, 40%, 60% on each training/testing set.
- Use ComImp to combine the corresponding training and testing sets of $\mathcal{D}_1, \mathcal{D}_2$ to the training and testing sets of \mathcal{D} .

For the ComImp approach, the missing values are automatically filled after merging the datasets. For the non-ComImp approach, we use softImpute to impute missing values. Then, we fit a models f_1, f_2, f on the training set of $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}$, respectively.

Results

Bång: mean \pm variance of the accuracy on test sets of models fitted on \mathcal{D}_1 of the Wine dataset.

		test set of \mathcal{D}_1		
missing rate	Classifier	f_1	f	
20%	Logistic Regression	0.917 ± 0.001	0.908 ± 0.001	
2070	SVM	0.939 ± 0.001	0.939 ± 0.001	
40%	Logistic Regression	0.883 ± 0.002	0.877 ± 0.002	
4070	SVM	0.901 ± 0.001	0.901 ± 0.001	
60%	Logistic Regression	0.834 ± 0.002	0.831 ± 0.002	
0070	SVM	0.843 ± 0.002	0.846 ± 0.002	
80%	Logistic Regression	0.762 ± 0.004	0.762 ± 0.003	
3070	SVM	0.762 ± 0.004	0.766 ± 0.003	

Results

Bång: mean \pm variance of the accuracy on test sets of models fitted on \mathcal{D}_2 of the Wine dataset.

		test set of \mathcal{D}_2		
missing rate	Classifier	f_2	f	
20%	Logistic Regression	0.859 ± 0.007	0.874 ± 0.004	
2070	SVM	0.882 ± 0.006	0.893 ± 0.004	
40%	Logistic Regression	0.804 ± 0.009	0.837 ± 0.005	
4070	SVM	0.814 ± 0.009	0.846 ± 0.005	
60%	Logistic Regression	0.733 ± 0.010	0.783 ± 0.007	
0070	SVM	0.716 ± 0.012	0.779 ± 0.008	
80%	Logistic Regression	0.645 ± 0.012	0.712 ± 0.008	
3070	SVM	0.603 ± 0.014	0.692 ± 0.010	

Combining datasets using dimension reduction

We conduct experiments on the Gene dataset.

- Split it into $\mathcal{D}_1, \mathcal{D}_2$ with a ratio 7:3, and then split each of them into halves for training and testing.
- ② Delete the first 10,000 columns of the input in \mathcal{D}_1 and the last 10,000 columns of the input in \mathcal{D}_2 .
- **3** Apply ComImp with PCA and train a neural network f on the merged data.
- Train a separate model f_1 on \mathcal{D}_1 , and f_2 on \mathcal{D}_2

Repeat the experiment 100 times

Results

We conduct experiments on the Gene dataset.

- Split it into $\mathcal{D}_1, \mathcal{D}_2$ with a ratio 7 : 3, and then split each of them into halves for training and testing.
- ② Delete the first 10,000 columns of the input in \mathcal{D}_1 and the last 10,000 columns of the input in \mathcal{D}_2 .
- **3** Apply ComImp with PCA and train a neural network f on the merged data.
- **1** Train a separate model f_1 on \mathcal{D}_1 , and f_2 on \mathcal{D}_2

Repeat the experiment 100 times

Results

Bång: mean \pm variance of the accuracy on test sets of regression models fitted on $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}$ of the Gene dataset, respectively.

	$\mathbf{test} \mathbf{set} \mathbf{of} \mathcal{D}_1$		
Classifier	f_1	f	
Logistic Regression	0.998 ± 0.002	0.998 ± 0.002	
SVM	0.995 ± 0.007	0.997 ± 0.003	
	$\textbf{test set of } \mathcal{D}_2$		
Classifier	f_2	f	
Logistic Regression	0.996 ± 0.006	0.996 ± 0.006	
SVM	0.955 ± 0.021	0.971 ± 0.012	

A case analysis of when OsImp may fail

- This experiment is conducted on the Seed dataset with the same setup as in experiments of merging two datasets except that we delete the first three features of \mathcal{D}_1 and the last four features of \mathcal{D}_2 .
- The Seed dataset has only seven features, and therefore, \mathcal{D}_1 and \mathcal{D}_2 have only one overlapping feature.

Results

Bång: mean \pm variance of the accuracy on test sets of models fitted on $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}$ of the Seed dataset, respectively.

	test set of \mathcal{D}_1		
Classifier	f_1	f	
Logistic Regression	0.912 ± 0.001	0.911 ± 0.001	
SVM	0.926 ± 0.001	0.923 ± 0.001	
	$\textbf{test set of } \mathcal{D}_2$		
Classifier	f_2	f	
Logistic Regression	0.730 ± 0.017	0.675 ± 0.020	
SVM	0.827 ± 0.008	0.826 ± 0.010	

Thank you for your attention!