Introduction to Statistical Machine Learning CSC/DSCC 265/465

<u>Lecture 12</u>: Unsupervised Learning – Part III

Cantay Caliskan

Notes and updates

Notes and updates

- Any questions?
- <u>No</u> Problem Set due next week
- Midterm review: Next week (Wednesday, March 2, 2022)

Plan for the next lectures

- Kmeans
- DBSCAN
- OPTICS
- GMM
- PCA

An example of distribution-based clustering: GMM

Reminder: Types of Clustering

- Goal: Find the underlying (latent) structures in a dataset
 - Question: How can we do that?
 - <u>Centroid-Based Clustering</u>: Find a center and associate all points with a center
 - <u>Distribution-Based Clustering</u>: Cluster points by the distributional differences in the data-generating function
 - Density-Based Clustering: Cluster points by the density of feature vectors
 - Hierarchical Clustering: Cluster points by building a tree

GMM: Gaussian Mixture Models

- Idea: Can we model K many clusters by using K many Gaussian distributions? (Dempster, 1977)
- And, can we do this by using Maximum Likelihood Estimation (MLE)?
- And, can we group data points belonging to a single distribution together?
- Answer: Yes!

GMM: Summary

- Specify the number of clusters (k) in advance
- Initialize the parameter estimates according to their *priors*
- Run an Expactation-Maximization (EM) algorithm until convergence
- Advantages:
 - Simple
 - Allows classification of new points
- Disadvantages:
 - Must know the number of clusters in advance
 - Errors in cluster assignments propagate

GMM-Clustering

GMM-Clustering

- <u>Definition</u>: A probabilistic model that assumes that all data points are generated from a mixture of a finite number of Gaussian distributions with unknown parameters
- <u>Idea</u>: Let's say we have an n-dimensional feature vector $\mathbf{X} = [X_1, X_2, ..., X_n]$ where each dimension is represented by an **i.i.d** random variable coming from an *unknown* distribution
 - i.i.d: independent and identically distributed
- GMM demands a specific form of density:

$$p(x) = \sum_{j=1}^k \pi_j \phi(x; \mu_j, \Sigma_j)$$
 Question: What do we have here?

GMM: Technical Background

$$p(x) = \sum_{j=1}^{k} \pi_j \phi(x; \mu_j, \Sigma_j)$$

Idea: This is a mixture of k component multivariate Gaussian distributions:

$$\phi(x; \mu_j, \Sigma_j) = \frac{1}{|2\pi\Sigma_j|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1}(x - \mu_j)\right)$$

A multivariate Gaussian density with unknown parameters

- where we have the unknown parameters: (μ_j, Σ_j)
- and the unknown probability of selecting component j: π_j $\sum_{j=1}^k \pi_j = 1$
- GMM has the same representation as a generative model: $z_i \stackrel{\text{ind}}{\sim} \operatorname{Mult}(\pi, 1)$ $x_i | z_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$
- z_i represents the latent class \leftarrow This is a probabilistic approach

Clustering with GMM

- Idea: GMM with known parameters defines a joint distribution over (x_i, z_i)
- Using the Bayes' Formula, we have: $p(z_i=j|x_i) = rac{p(z_i=j)p(x_i|z_i=j)}{p(x_i)}$

Question: What does this formula mean?

- Before we observe x_i , we have the belief that it belongs to cluster j with probability π_j ; after observing x_i we update this belief in accordance with the likelihood of x_i
- Question: What does this imply?
 - We have to run Maximum Likelihood Estimation (MLE)
 - We have to make a <u>probabilistic inference</u>
- Question: Is this soft clustering or hard clustering?
- Answer: Depends on how you make the assignment (raw probability vs. argmax)

Clustering with GMM

What is left: We don't know the parameters of the probability distribution(!)

$$p(z_i=j|x_i) = \frac{p(z_i=j)p(x_i|z_i=j)}{p(x_i)} = \frac{\pi_j\phi(x_i;\mu_j,\Sigma_j)}{\sum_{l=1}^k\pi_l\phi(x_i;\mu_l,\Sigma_l)}$$
 Here are the parameters to estimate

Let's derive the *maximum likelihood estimates* (MLEs) of GMM parameters:

$$\sum_{i=1}^{n} \log(p(x_i)) = \sum_{i=1}^{n} \log(\sum_{j=1}^{k} \pi_j \phi(x_i; \mu_j, \Sigma_j))$$

Goal: Maximize log-likelihood (example: when k = 1):

$$\sum_{i=1}^{n} \log(\phi(x_i; \mu_j, \Sigma_j)) = \sum_{i=1}^{n} \left[-\frac{1}{2} (x_i - \mu_1)^T \Sigma_1^{-1} (x_i - \mu_1) - \log|2\pi\Sigma_1|^{1/2} \right]$$

$$(\mu_1^*, \Sigma_1^*) = (\frac{1}{n} \sum_{i=1}^n x_i, \frac{1}{n} \sum_{1=1}^n (x_i - \mu_1^*)(x_i - \mu_1^*)^T) \xrightarrow{\text{Question: Do we need to run 'gradient descent' for this solution?}} \underbrace{\text{Answer: No, this is a closed-form solution.}}$$

Clustering with GMM

What happens when k > 1?

$$\frac{\text{What nappens}}{\sum_{i=1}^n \log(p(x_i))} = \sum_{i=1}^n \log(\sum_{j=1}^k \pi_j \phi(x_i; \mu_j, \Sigma_j))$$
 This cannot be simplified to have closed-form solutions.

- (1) We can use *numerical optimizers*
 - Examples: Gradient descent, line search, stochastic optimization etc.
- (2) We can use the *expectation-maximization algorithm (EM)*

Let's take a look at expectation-maximization algorithm (EM)!

Expectation-Maximization Algorithm (EM)

- Step 1: Initialize the parameters arbitrarily π , $(\mu_{1:k}, \Sigma_{1:k})$
- **Probabilities** associated with cluster membership, distribution **means** and **variances** for each cluster
- Step 2 (Expectation step E): Compute soft class memberships, given the current parameters: $\tau_{ij} = P(z_i = j | x_{ij}, \pi, (\mu_\ell, \Sigma_\ell))$.
- Step 3 (Maximization step \underline{M}): Update the parameters by plugging in τ_{ij} (our guess) for the unknown probability of $z_i = j$ which gives us:

$$\pi_j = \frac{1}{n} \sum_{i=1}^n \tau_{ij} \qquad \mu_j = \frac{\sum_{i=1}^n \tau_{ij} x_i}{\sum_{i=1}^n \tau_{ij}} \qquad \Sigma_j = \frac{\sum_{i=1}^n \tau_{ij} (x_i - \mu_j) (x_i - \mu_j)^T}{\sum_{i=1}^n \tau_{ij}}$$

- Now, each x_i is partially assigned to each cluster j through the conditional probability that $z_i = j$.
- Question: How is this similar to K-Means?

GMM-Clustering

GMM vs. KMeans

Kmeans:

- We use an algorithm called Lloyd's algorithm
- Makes (usually) hard assignments in each iteration
 - Each point assigned to one class

- GMM:

- We model the mixture proportions and covariance structure in the data
- Makes (usually) soft assignments in each iteration
 - Each point is assigned a probability of belonging to a cluster

Questions: GMM

- Does it converge? —— Yes
- Do we know the rates of convergence? Depends on the density of data
- Are the solutions optimal? Usually sub-optimal
- Can we bound the sub-optimality of the solutions? —— Yes
- What is its relationship to the maximum likelihood estimation?

Find parameters to maximize the likelihood of our data

Plan for the next lectures

- Kmeans
- DBSCAN
- OPTICS
- GMM
- PCA

- <u>Definition</u>: Transformation of data from a *high-dimensional space* into a *low-dimensional* space
 - Goal: Low-dimensional space should retain some <u>meaningful</u> properties of the original data
 - Idea: High-dimensional data may be 'problematic'
 - Curse of dimensionality
 - But: Many domains are using high dimensional data

- Motivation for dimensionality reduction:
 - Sparse data (= a lot of zeros or NA's)
 - (High/extremely high) number of features
 - Highly correlated/redundant features
 - Noisy features
 - Features that are hard to describe
 - The need to know which feature is important
 - Interpretation / visualization
 - Computational burden
 - Curse of dimensionality

The Curse of Dimensionality

 "Many algorithms that work fine in low dimensions become intractable when the input is high-dimensional."

Bellman, 1961

- Refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces
 - Original definition: As dimensionality increases, the volume of the space increases so fast that the available data become sparse. Sparsity is a problem

for any method that requires statistical signific

- <u>Example</u>: Volume of a unit sphere in higher dimensions is zero.
- Another example: #observations vs. #features

Volume of a Unit Sphere

Question: How do we calculate the volume of a sphere in 3D?

• Formula:
$$V = \frac{4}{3} \pi r^3$$

Question: How do we calculate the volume of a sphere in 2D?

• Formula:
$$V = (1) * \pi r^2$$

Question: How do we calculate the volume of a sphere in 1D?

■ Formula: $V = (2) * r^1$

Question: How do we calculate the volume of a sphere in n-D?

Formula: V = Constant* rⁿ

• Question: What observation can we make here?

Volume of a Unit Sphere

- Observation: What if we find the difference in volume between two spheres?
 - Let's say $\mathbf{r}_1 = \mathbf{2}$ and $\mathbf{r}_2 = \mathbf{1}$
- Question: The difference in volume in 1D?
- Formula: V-diff = 2 * 2 2 * 1 = 2

- Question: The difference in volume in 2D?
- Formula: V-diff = $\pi 2^2 \pi 1^2 = 3 \pi$
- Question: The difference in volume in 3D?

■ Formula: V-diff =
$$\frac{4}{3}\pi 2^3 - \frac{4}{3}\pi 1^3 = \frac{28}{3}\pi = 9.33\pi$$

- Question: What happens when $n \rightarrow \infty$?
- Answer: Volume concentrates around the ring between two spheres(!)

Different techniques:

- Missing Values Ratio
- Low Variance Filter
- High Correlation Filter
- Random Forests / Ensemble Trees
- Backward Feature Elimination
- Forward Feature Construction
- Linear Discriminant Analysis (LDA)
- Generalized Discriminant Analysis (GDA)
- T-Stochastic Neighbor Embedding (t-SNE)
- Principal Component Analysis (PCA)

Big and High-Dimensional Data

Document classification

- Features per document =
 - Thousands of words / unigrams
 - Millions of bigrams
 - Possibly: billions of trigrams
- Surveys Netflix
 - 524564 users x 5579 movies and TV shows

Users	M1	M2	МЗ	M4
U1	2	4	3	1
U2	0	0	4	4
U3	3	2	2	3
U4	2	?	3	?

Users may watch a movie more than once.

Big and High-Dimensional Data

MEG Brain Imaging

120 locations x 500 time points x 20 objects

Image Data

■ Full HD: 1920 x 1080

QHD: 2560 x 1440

■ UHD: 3840 x 2160

Any image data is high-dimensional data

Big and High-Dimensional Data

Spam or not spam

- Title
- Content of the e-mail
- Template

Music Data

# bits	SNR	Possible integer values (per sample)	Base-ten signed range (per sample)
4	24.08 dB	16	−8 to +7
8	48.16 dB	256	-128 to +127
11	66.22 dB	2048	-1024 to +1023
12	72.24 dB	4096	-2048 to +2047
16	96.33 dB	65,536	-32,768 to +32,767
20	120.41 dB	1,048,576	-524,288 to +524,287
24	144.49 dB	16,777,216	-8,388,608 to +8,388,607
32	192.66 dB	4,294,967,296	-2,147,483,648 to +2,147,483,647
48	288.99 dB	281,474,976,710,656	-140,737,488,355,328 to +140,737,488,355,327
64	385.32 dB	18,446,744,073,709,551,616	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

love Sandra love sandra 05@yahoo.com wrote:

Hello.

how are you doing today hope all is well with you, now i want to let you know that i have tell my company that i have saw a room but is \$750dollars and them said that they will issue you a check of \$4950 dollars, so as soon as you receive the check and cash it you will take your own money there which is \$750 dollars and send the balance to me, so that i will use it to pay for my ticket, i need it urgent.

Becasue the wedding will be comeing up soon.

This is all i needed from you so that my company will send the check for you immediatley.

Your full name

Your cantcat address

Your country code and name.

Your telephone number.

Please i will like you to send this now so that i will forward it to my company okay.

Looking forward to hear from you now.

Thanks and god bless you.

Love Sandra

Spam message

Principal Component Analysis

- Dimensionality Reduction by Google
- https://www.youtube.com/watch?v=wvsE8jm1GzE

- What if machines can see music?
- https://www.youtube.com/watch?v=yGl5KFlfSsY

- 1) Feature elimination
- 2) Feature extraction
- High Dimensions = Lots of Features
- Dimensionality reduction is helpful:
 - Often too many features to do a final classification
 - Higher #features -> more difficult to visualize
 - Higher #features -> more difficult to make classification

Kaggle Competition and Team Building

Kaggle Competition

- Goal: Classifying fake news by topic (multi-class classification problem)
 - Original dataset contains ~10,000 fake news
 - Plan: You will be provided with ~5,000 observations
 - Expectation: Predict the topics for the rest of the news!
 - You can work in a team of two (2) people
 - And, you are encouraged to work in a team!
 - Dataset contains:
 - Date
 - Origin (Country)
 - Origin (Media Source)
 - Brief information
 - Long information
 - Topic class (~30 different topics)

Kaggle Competition

Expectations

- A descriptive analysis
 - One section for undergraduate students
 - Two sections for graduate students
- A prediction challenge
 - Plan: You will be able to choose any classification model you would like
 - Two separate lists of ranking for undergraduates and graduates
- A report
 - Summarize your findings and strategies with a final report

Team Building

- Have you met any people from the classroom?
- Would you like to get to know more people?
- Have you checked the class Facebook?

Not this Facebook! ©

- There is a link on BlackBoard that you can use to identify your team
 - Content Menu -> Kaggle Teams
- Let's use the remainder of the time for team building.