報報報	Nombre:			Nota
	Curso:	3º ESO D	Examen Extraordinario	
	Fecha:	01 de Septiembre de 2020	Lee bien los enunciados. Cada ejercicio vale 1 punto.	

INSTRUCCIONES:

- ✓ Realiza paso a paso cada uno de los ejercicios en tu libreta y envía una foto con cada una de las soluciones.
- ✓ Tienes que enviar 10 fotos, una por cada ejercicio.
- ✓ No se pueden enviar varios ejercicios en una misma foto.
- ✓ La nota máxima será como máximo el número de fotos. (Si sólo envías 3 fotos, como máximo tendrás un 3)
- ✓ En los problemas has de responder a las preguntas que se plantean.
- 1.- Opera paso a paso y simplifica:

a)
$$\frac{-\frac{9}{45}}{\frac{3}{5} - 0.7\hat{5}}$$
 b) $(1-4)\cdot 3^{-2} + \frac{2}{5} + 6\cdot 2^{-3} = c$ c) $\frac{2}{5}\sqrt{20} - \frac{3}{5}\sqrt{80} + \frac{1}{2}\sqrt{180} + 6\sqrt{45} = c$

- **2.-** En un depósito hay 800 l de agua. Por la parte superior un tubo vierte en el depósito 25 l por minuto, y por la parte inferior por otro tubo salen 30 l por minuto. ¿Cuántos litros de agua habrá en el depósito al cabo de 15 minutos?
- **3.-** Al salir un sábado por la tarde con sus amigos. Ahmed gasta la cuarta parte de su paga en la entrada del cine y un tercio en merendar. Si del resto usa la mitad para comprarse un cómic, ¿qué fracción de la paga ha gastado en el tebeo? ¿Qué fracción le quedará cuando vuelva a casa? Si volvió con 20 €, ¿de cuánto dinero disponía Ahmed?
- **4.-** Si tuviéramos un terrón de azúcar gigante con forma de cubo de 8 m³ de volumen y nos dispusiéramos a dividirlo en pequeños terrones de 1 cm de lado, ¿Cuántos terrones obtendríamos?
- **5.-** Los números 2,5 y 2,6 son dos aproximaciones del valor n=18/7.
 - a) Calcula el error absoluto en cada caso.
 - **b)** ¿Qué aproximación es mejor?
- **6.-** Doblando un alambre de 40 cm formamos un rectángulo. Halla la expresión algebraica que define el área de dicho rectángulo y calcula su valor para x=4.

7.- Dados los siguientes polinomios:

$$P(x) = 3x^4 - 6x^3 + 4x - 2$$
 $Q(x) = x^3 - 2x^2 - 3x + 1$ $R(x) = 2x^2 + 4x - 5$ $S(x) = x^2 + 1$

$$Q(x) = x^3 - 2x^2 - 3x + 1$$

$$R(x) = 2x^2 + 4x - 5$$

$$S(x) = x^2 + 1$$

Calcula:

a)
$$P(x) + 3 \cdot Q(x) - 5 \cdot R(x)$$

a)
$$P(x) + 3 \cdot Q(x) - 5 \cdot R(x)$$
 b) $2 \cdot [P(x) \cdot Q(x)] - 5 \cdot S(x)$ c) $3 \cdot P(x) : S(x)$

c)
$$3 \cdot P(x) : S(x)$$

8.- Escribe una expresión algebraica para cada uno de los siguientes enunciados:

Enunciado	Expresión algebraica
La suma de dos números consecutivos.	
El doble de un número menos cuatro unidades.	
La suma de la mitad de un número más sus dos terceras partes.	
El cuadrado de la diferencia del triple de un número menos su mitad.	

9.- Resuelve las siguientes ecuaciones:

a)
$$\frac{x}{4} + 5 = \frac{2x}{5} - 2 - \frac{x}{30}$$

a)
$$\frac{x}{4} + 5 = \frac{2x}{5} - 2 - \frac{x}{30}$$
 b) $(x-3)\cdot(x-2) + \frac{x\cdot(x-3)}{2} = (x-2)^2$

10.- Un granjero va al mercado para vender una partida de botellas de leche a 0,50 € la botella. En el camino se le rompen 60 botellas. Para obtener el mismo beneficio, aumenta en 0,05 € el precio de cada botella.

- a) ¿Con cuántas botellas salió de la granja?,
- **b)** ¿Cuánto dinero pretende ganar?

市の日本	Nombre:	SOLUCIONES		Nota
	Curso:	3º ESO D	Examen Extraordinario	
	Fecha:	01 de Septiembre de 2020	Lee bien los enunciados. Cada ejercicio vale 1 punto.	

INSTRUCCIONES:

- ✓ Realiza paso a paso cada uno de los ejercicios en tu libreta y envía una foto con cada una de las soluciones.
- √ Tienes que enviar 10 fotos, una por cada ejercicio.
- ✓ No se pueden enviar varios ejercicios en una misma foto.
- ✓ La nota máxima será como máximo el número de fotos. (Si sólo envías 3 fotos, como máximo tendrás un 3)
- ✓ En los problemas has de responder a las preguntas que se plantean.

1.- Opera paso a paso y simplifica:

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (1.1) (1.2) (1.3) (1.9)

a)
$$\frac{-\frac{9}{45}}{\frac{3}{5} - 0.7\hat{5}} = \frac{-\frac{1}{5}}{\frac{3}{5} - \frac{17}{225}} = \frac{-\frac{1}{5}}{\frac{118}{225}} = -\frac{225}{590} = -\frac{45}{118}$$

b)
$$(1-4)\cdot 3^{-2} + \frac{2}{5} + 6\cdot 2^{-3} = \frac{-3}{9} + \frac{2}{5} + \frac{6}{8} = \frac{-1}{3} + \frac{2}{5} + \frac{3}{4} = \frac{-20 + 24 + 45}{60} = \frac{49}{60}$$

c)
$$\frac{2}{5}\sqrt{20} - \frac{3}{5}\sqrt{80} + \frac{1}{2}\sqrt{180} + 6\sqrt{45} = \frac{4}{5}\sqrt{5} - \frac{12}{5}\sqrt{5} + 3\sqrt{5} + 18\sqrt{5} = \frac{97}{5}\sqrt{5}$$

2.- En un depósito hay 800 l de agua. Por la parte superior un tubo vierte en el depósito 25 l por minuto, y por la parte inferior por otro tubo salen 30 l por minuto. ¿Cuántos litros de agua habrá en el depósito al cabo de 15 minutos?

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (1.1) (1.4)

Si entran 25 litros por minuto y también salen 30 litros, quiere decir que es como si salieran 5 litros cada minuto.

Al cabo de 15 minutos habrán salido 5.15 = 75 litros, por tanto quedan:

$$800 - 75 = 725$$
 litros

Por tanto, en el depósito quedarán 725 litros.

3.- Al salir un sábado por la tarde con sus amigos. Ahmed gasta la cuarta parte de su paga en la entrada del cine y un tercio en merendar. Si del resto usa la mitad para comprarse un cómic, ¿qué fracción de la paga ha gastado en el tebeo? ¿Qué fracción le quedará cuando vuelva a casa? Si volvió con 20 €, ¿de cuánto dinero disponía Ahmed?

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (1.1) (1.8)

Ahmed gasta: $\frac{1}{4} + \frac{1}{3} = \frac{7}{12}$, por tanto le quedan $\frac{5}{12}$, si para el comic gasta la mitad, gasta: $\frac{1}{2} \cdot \frac{5}{12} = \frac{5}{24}$ Se ha gastado 5/24 en el tebeo y le quedan 5/24 también.

Si volvió con 20€, entonces 5/24 del dinero son los esos 20 €

Si 5/24 son 20 €, entonces 1/24 serán 20/5=4€, y los 24/24 son 4*24=96 €

Por tanto se gasta 5/24, le quedan otros 5/24 y Ahmed disponía de 96€ antes de salir de casa.

4.- Si tuviéramos un terrón de azúcar gigante con forma de cubo de 8 m³ de volumen y nos dispusiéramos a dividirlo en pequeños terrones de 1 cm de lado, ¿Cuántos terrones obtendríamos?

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (1.1) (1.4)

Si los terrones tienen de lado 1 cm, el volumen de un cubo de 1 cm de lado será:

$$V = a^3 = (1cm)^3 = 1 cm^3$$

Por tanto, para calcular cuántos los cubitos que se obtienen del gran cubo, no tenemos más que dividir:

$$\frac{8 \text{ m}^3}{1 \text{ cm}^3} = \begin{cases} 8 \text{ m}^3 = 8 \text{ m}^3 \cdot \frac{10^3 \text{ dm}^3}{1 \text{ m}^3} \cdot \frac{10^3 \text{ cm}^3}{1 \text{ dm}^3} = 8 \cdot 10^3 \cdot 10^3 = 8 \cdot 10^6 \text{ cm}^3 \\ 1 \text{ cm}^3 = 1 \text{ cm}^3 \end{cases} = 8 \cdot 10^6 \text{ Terrones}$$

Con el terrón de 8 m³, obtendríamos 8·10⁶ Terrones, o lo que es lo mismo 8 millones de terrones de 1 cm de lado.

- **5.-** Los números 2,5 y 2,6 son dos aproximaciones del valor n=18/7.
- a) Calcula el error absoluto en cada caso.
- **b)** ¿Qué aproximación es mejor?

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (1.6) (1.7)

El error absoluto es la diferencia, en valor absoluto, entre el valor real y el aproximado:

$$E_A = \left| V_{\text{Real}} - V_{\text{Aproximado}} \right| \rightarrow E_{A_1} = \left| \frac{18}{7} - 2.5 \right| = \frac{1}{14}$$
 $E_{A_2} = \left| \frac{18}{7} - 2.6 \right| = \frac{1}{35}$

Para discutir sobre que aproximación es mejor, tenemos que trabajar con el error relativo.

El error relativo es el cociente entre el error absoluto y el valor real, y normalmente se expresa en porcentajes.

$$E_{r} = \frac{E_{A}}{V_{R}} \cdot 100 \longrightarrow \begin{cases} E_{r_{1}} = \frac{E_{A_{1}}}{V_{R}} \cdot 100 = \frac{\frac{1}{4}}{18/7} \cdot 100 = \frac{7}{72} \cdot 100 = 9,72\% \\ E_{r_{2}} = \frac{E_{A_{2}}}{V_{R}} \cdot 100 = \frac{\frac{1}{35}}{18/7} \cdot 100 = \frac{1}{90} \cdot 100 = 1,11\% \end{cases}$$

La mejor aproximación es la que tiene un error relativo más pequeño, por tanto 2,6 es una aproximación mejor de la fracción 18/7.

6.- Doblando un alambre de 40 cm formamos un rectángulo. Halla la expresión algebraica que define el área de dicho rectángulo y calcula su valor para x=4.

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (1.6) (1.7)

Si el alambre mide 40 cm, entonces el perímetro del rectángulo será de 40 cm. Si llamamos x a la altura, las dos alturas miden 2x, y por tanto las dos bases medirán 40 - 2x. Como son iguales, cada una medirá la mitad de lo que miden las dos:

$$\frac{40 - 2x}{2} = 20 - x$$

Como el área de un rectángulo se calcula multiplicando base por altura, tendremos:

$$A = b \cdot h = (20 - x) \cdot x = 20x - x^2 \rightarrow A(x) = 20x - x^2$$

Y para x=4, tenemos:

$$A(4) = 20x - x^2 = 20.4 - 16 = 80 - 16 = 64 \text{ cm}^2$$

Por tanto el área es $A(x) = 20x - x^2$ y para x=4, el área es de 64 cm²

7.- Dados los siguientes polinomios:

$$P(x) = 3x^4 - 6x^3 + 4x - 2$$
 $Q(x) = x^3 - 2x^2 - 3x + 1$ $R(x) = 2x^2 + 4x - 5$ $S(x) = x^2 + 1$

$$R(x) = 2x^2 + 4x - 5$$

$$S(x) = x^2 + 1$$

Calcula:

a)
$$P(x) + 3 \cdot Q(x) - 5 \cdot R(x)$$

a)
$$P(x) + 3 \cdot Q(x) - 5 \cdot R(x)$$
 b) $2 \cdot [P(x) \cdot Q(x)] - 5 \cdot S(x)$ c) $3 \cdot P(x) : S(x)$

c)
$$3 \cdot P(x) : S(x)$$

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (3.1)

Sol: **a)**
$$3x^4-3x^3-16x^2-25x+26$$
; **b)** $6x^7+6x^5+50x^4-32x^3-21x^2+20x-9$; **c)** $C(x)=9x^2-18x-9$; $R(x)=30x+3$

8.- Escribe una expresión algebraica para cada uno de los siguientes enunciados:

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (4.1)

Enunciado	Expresión algebraica
La suma de dos números consecutivos.	x + (x+1)
El doble de un número menos cuatro unidades.	2x - 4
La suma de la mitad de un número más sus dos terceras partes.	$\frac{x}{2} + \frac{2}{3}x$
El cuadrado de la diferencia del triple de un número menos su mitad.	$\left(3x-\frac{x}{2}\right)^2$

9.- Resuelve las siguientes ecuaciones:

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (3.2) (4.1)

a)
$$\frac{x}{4} + 5 = \frac{2x}{5} - 2 - \frac{x}{30}$$

b)
$$(x-3)(x-2) + \frac{x(x-3)}{2} = (x-2)^2$$

Sol: a) x=60: b) $x_1=1$: $x_2=4$

- 10.- Un granjero va al mercado para vender una partida de botellas de leche a 0,50 € la botella. En el camino se le rompen 60 botellas. Para obtener el mismo beneficio, aumenta en 0,05 € el precio de cada botella.
 - a) ¿Con cuántas botellas salió de la granja?,
 - **b)** ¿Cuánto dinero pretende ganar?

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE: (4.1)

Si llamamos x al número de botellas, el dinero obtenido por la venta de las botellas sería: 0,5 · x Si se rompen 60 y aumenta el precio en 0,05 €, el dinero ahora sería: 0,55 ·(x-60)

Como el dinero será el mismo, las dos cantidades serán iguales y ya tenemos la ecuación:

$$0.5x = 0.55(x - 60)$$

Cuya solución será:

$$0.5x = 0.55x - 33$$
 \rightarrow $-0.05x = -33$ \rightarrow $x = \frac{33}{0.05} = 660$

Por tanto el número de botellas es 660, y el dinero que pensaba recaudar es de 660·0,5=330 €

ESTANDARES DE APRENDIZAJE Y SU RELACION CON LAS COMPETENCIAS CLAVE

- 1.1. Reconoce los distintos tipos de números (naturales, enteros, racionales), indica el criterio utilizado para su distinción y los utiliza para representar e interpretar adecuadamente información cuantitativa.[CMCT]
- **1.2.** Distingue, al hallar el decimal equivalente a una fracción, entre decimales finitos y decimales infinitos periódicos, indicando en este caso, el grupo de decimales que se repiten o forman período.[CMCT, CD]
- **1.3.** Halla la fracción generatriz correspondiente a un decimal exacto o periódico.[CMCT, CD]
- 1.4. Expresa números muy grandes y muy pequeños en notación científica, y opera con ellos, con y sin calculadora, y los utiliza en problemas contextualizados. [CMCT]
- 1.5. Factoriza expresiones numéricas sencillas que contengan raíces, opera con ellas simplificando los resultados. [CMCT]
- **1.6.** Distingue y emplea técnicas adecuadas para realizar aproximaciones por defecto y por exceso de un número en problemas contextualizados, justificando sus procedimientos. [CMCT, SIEP]
- 1.7. Aplica adecuadamente técnicas de truncamiento y redondeo en problemas contextualizados, reconociendo los errores de aproximación en cada caso para determinar el procedimiento más adecuado.[CMCT]
- 1.8. Expresa el resultado de un problema, utilizando la unidad de medida adecuada, en forma de número decimal, redondeándolo si es necesario con el margen de error o precisión requeridos, de acuerdo con la naturaleza de los datos. [CMCT]
- **1.9.** Calcula el valor de expresiones numéricas de números enteros, decimales y fraccionarios mediante las operaciones elementales y las potencias de exponente entero aplicando correctamente la jerarquía de las operaciones. [CMCT]
- 1.10. Emplea números racionales para resolver problemas de la vida cotidiana y analiza la coherencia de la solución. [CMCT]
- 2.1. Calcula términos de una sucesión numérica recurrente usando la ley de formación a partir de términos anteriores. [CMCT]
- 2.2. Obtiene una ley de formación o fórmula para el término general de una sucesión sencilla de números enteros o fraccionarios. [CMCT]
- **2.3.** Identifica progresiones aritméticas y geométricas, expresa su término general, calcula la suma de los «n» primeros términos, y las emplea para resolver problemas.[CMCT]
- 2.4. Valora e identifica la presencia recurrente de las sucesiones en la naturaleza y resuelve problemas asociados a las mismas. [CMCT, SIEP]
- 3.1. Realiza operaciones con polinomios y los utiliza en ejemplos de la vida cotidiana. [CMCT]
- **3.2.** Conoce y utiliza las identidades notables correspondientes al cuadrado de un binomio y una suma por diferencia, y las aplica en un contexto adecuado. [CMCT]
- **3.3.** Factoriza polinomios de grado 4 con raíces enteras mediante el uso combinado de la regla de Ruffini, identidades notables y extracción del factor común.[CMCT]
- **4.1.** Formula algebraicamente una situación de la vida cotidiana mediante ecuaciones y sistemas de ecuaciones, las resuelve e interpreta críticamente el resultado obtenido.[CMCT, SIEP]

Las competencias clave del currículo son:

- 1) Comunicación lingüística CCL
- 2) Competencia matemática y competencias básicas en ciencia y tecnología CMCT
- 3) Competencia digital CD
- 4) Aprender a aprender CPAA
- 5) Competencias sociales y cívicas CSC
- 6) Sentido de la iniciativa y espíritu emprendedor SIEP
- 7) Conciencia y expresiones culturales CEC