

ML Based Predictive Model for Chip Sizes Using Raw Potato Size Data

Pallavi Gupta

University of Missouri(Columbia)

R&D - Data Science and Analytics

Date - August 6, 2020

About Me

Background

- Born and raised in Shimla, India (a town in Himalayas)
- Family in India
- Lays Chips are my favorite PepsiCo product.

Education

- Currently pursuing PhD in Informatics from University of Missouri (Mizzou)
- M.S. (Bioinformatics & Computational Biology) from Saint Louis University (SLU)
- · Bachelors in Engineering (Biotech) from India

Experience

- Currently working as a Graduate Research fellow (Mizzou), since past 1 year..
 Worked as a Graduate Research assistant (SLU) for 2 years.
 ~5 years of work experience as a Software analyst in India.

Interests

- · Travelling and exploring new parts of the world.
- Love to explore new food(foodie)
- DIY creative decorations & cooking, when at home

Agenda

Introduction

Objectives

Project Significance

Methodology

Results & Analysis

Recommendations

Introduction - Data Science & Analytics

Basic Math

Data Science

Data Transformation & Standardization

Foundational Statistics

Machine **Learning & Al**

Data-Informed Decision Making

Systems and **Enterprise Thinking**

Active Listening

Critical Thinking

Soft skills

Communicating with Data

Objective

To build a machine learning based prediction model to be able to predict the %age of chips produced (having length >2.5 inches), from each truckload of potatoes.

Project Significance

- This project would help the chips production team to estimate the right quantity of small packets to order and avoid wastage.
- Small packets can fit small chips with L<2.5 inches.
- Hence 2.5 inch is our threshold.

```
Note: length > 2.5inch - Large chips length < 2.5inch - Small chips
```

Methodology - ML Based approach

- Step 1: Data exploration Get to know the data
- Step2: Data exploration Biases in data that can affect results
- Step3: Possible solutions Based on data explorations
- Step4: Feature engineering and data structurization
- Step5: Train and Test models (with binarization approach)
- **Step6:** Train and Test models (with multi-class approach)

Methodology - ML Based approach

- Step 1: Data exploration Get to know the data
- Step2: Data exploration Biases observed in data
- Step3: Possible solutions Based on data explorations
- **Step4:** Feature engineering and data structurization
- Step5: Train and Test models with binarization model
- Step6: Train and Test models with multiclass model

Imagining potato population in a truckload

Assumptions in each truckload

- Each truckload will have all the varieties/types/sizes of potato.
- Each truckload will produce multiple sizes of chips including small chips to large chips.
- Considering the consensus of population of potatoes in a truckload we can predict probabilities or %ages of chips(small or large) that can be produced more in number.
- We have got data from ~700 truckloads from 3 months.
- Each truckload sums up into 1 data point in the data we have.

Methodology - ML Based approach

- Step1: Data exploration Get to know the data
- Step2: Data exploration Biases in data
- Step3: Possible solutions Based on data explorations
- Step4: Feature engineering and data structurization
- Step5: Train and Test models with binarization model
- Step6: Train and Test models with multiclass model

Step2: Data exploration - Biases in data

Bias1: Angle of slicing

Types of population of potatoes vs angle bias

- Type1 Population: [L and D] < 2.5 in (Small Potatoes)
 - Produces only small chips (having L< 2.5 inches)
- Type2 Population [L and D] >2.5in (Bulky Potatoes)
 - Produces maximum large chips (having L>2.5 inches)
- Type3 Population: [L >2.5 and D<2.5] in (TUBERS)
 - Most affected by angle bias
 - o If it is sliced along the length, large chips (L > 2.5 in) will be produced
 - o If it is sliced along the diameter, small chips (L < 2.5 in) will be produced

Bias2: Kind of chips produced from each workload would affect number of

chips

No information on chips type is provided.

Bias3: Dimensions are from Image data (2D)

- We have length, diameter & area for potatoes and length & area for chips
- It does not consider factors like curves in chips, tapering ends of potatoes,
 maximum or minimum Diameter in potato, etc.
- Hence, data is incomplete.

• Bias 4: Lesser data points

- Currently we just have 3 months data summing to ~700 data points.
- Bias 5: Missing image data
 - Among 700 data points we have some missing data as well

• Bias 5: Population to population data

- Current data considers that a sample population of potato with varying sizes would produce a sample population of chips with varying sizes.
- However, given a potato with certain dimensions, how many corresponding chips would be produced? Not fully known..
- 1 truckload ultimately sums up into 1 datapoint

Methodology - ML Based approach

- Step1: Data exploration Get to know the data
- Step2: Data exploration Biases in data
- Step3: Possible solutions Based on data explorations
- **Step4:** Feature engineering and data structurization
- Step5: Train and Test models with binarization model
- Step6: Train and Test models with multiclass model

Step3: Possible solutions - Based on data explorations

- Prediction of exact %age of large chips (having length > 2.5 in) is practically challenging due to the biases.
- Possible models/approaches can be classification based:
 - Approach 1 Binary Classification prediction model
 - Approach 2 Multi classification prediction model
- <u>Feature engineering and data structurization is must</u> before modeling the data.

Few more take away from data:

- After data cleaning, only
 476/700 data points left.
- Out of 476 data points,
 maximum %age of large chips
 (L>2.5in) obtained from any
 truck load was <40%
- None of the truckload could produce >40% of large chips

Approach1: Binary Classification prediction model (Broader Classification)

- Binarize the data points into categories of %age of large chips (L > 2.5in)
 - 0-28% as category 1
 - >=28% as category 0
- With this method data looked balanced in two categories with 28 as cutoff for binarizing categories. Out of total data Points (476)
 - Number of datapoints in >=28% slab(0)==> 247
 - Number of datapoints in <28% slab(1)==> 229

Approach2: Multi classification prediction model (Narrowed Classification)

- Define categories for % of large chips (L>2.5 in), and then make predictions falling in either of these slabs.
 - 0-10%chips defined as category 1
 - 10- 20% as category 2,
 - 20-30% as category 3,
 - 30-40% as category 4
 - As per current data, there are 0 data points >40%.

- Data is imbalanced when categorized in multi-classes.
- Out of 476 data points available for training the model
 - 6 data points in 0-10% slab of chips having L >2.5inch
 - 46 data points in 10-20% slab
 - o 229 data points in 20-30% slab
 - 195 data points in 30-40% slab
- Currently, data is insufficient for this approach, still tried.

Methodology - ML Based approach

- Step1: Data exploration Get to know the data
- Step2: Data exploration Biases in data
- Step3: Possible solutions Based on data explorations
- Step4: Feature engineering and data structurization
- Step5: Train and Test models (with binarization approach)
- Step6: Train and Test models (with multi-class approach)

PepsiCo R&D

Step4: Feature engineering and data structurization

- Engineering the right features to train the model with the statistics of data is very important.
- Less features carrying more weightage is good to have.
- Having features that correlate in certain way helps to make predictions in the right direction.
- In current case, I engineered total 7 features.
- In those 7 features, I also tried to get over angle bias of slicing using L/D ratio for TUBERS category.

PepsiCo R&D

Step4: Feature engineering and data structurization

 Calculation of L/D ratio for tubers (L>=2.5in and D=<2.5in) (prone to max. Angle bias)

- L/D ratio will help reduce the angle bias, as ML model can learn from the examples we provide.
- Tubers having L/D ratio <1.25 will show very less angle bias. (If cut diametrically or longitudinally)(typically roundish potatoes)
- Tubers having L/D >1.25 are expected to show major angle bias.

Set of 7 features created

- Feature1: %age of small potatoes (L AND D) < 2.5 in
- Feature2: %age of bulky potatoes (L AND D) >2.5 in
- Feature3: %age of TUBER potatoes (L >=2.5 AND D=<2.5in)
- Feature4: %age of TUBER potatoes having L/D ratio == 1 (round)
- Feature5: %age of TUBER potatoes having L/D ratio ~ [1-1.25] (roundish)
- Feature6: %age of TUBER potatoes having L/D ratio ~ [1.25-2.5] (Fairly long)
- Feature7: %age of TUBER potatoes having L/D ratio >2.5 (very long)
- Target Column: %age of large chips produced [With categorized %age]

Methodology - ML Based Approach

- Step1: Data exploration Get to know the data
- Step2: Data exploration Biases in data
- Step3: Possible solutions Based on data explorations
- **Step4:** Feature engineering and data structurization
- Step5: Train and Test models (with binarization approach)
- Step6: Train and Test models (with multi-class approach)

Step5: Train and Test models (with binarization approach)

Trained the following models and tested them for accuracy:

- Logistic Regression: With cross validation=10, C=1.
- Neural Networks: Sequential with following architecture

```
10 inputs -> [8 hidden nodes] -> binary output (Input layer) (Hidden layer) (Sigmoid layer)
```

- Random Forest Classifier: With grid search and cross validation=10.
 (Depth=5, n_estimator=100)
- XGBoost Classifier: With grid search and cross validation=10.

Methodology - ML Based Approach

- Step1: Data exploration Get to know the data
- Step2: Data exploration Biases in data
- Step3: Possible solutions Based on data explorations
- **Step4:** Feature engineering and data structurization
- Step5: Train and Test models (with binarization approach)
- **Step6:** Train and Test models (with multi-class approach)

Step6: Train and Test models (with multi-class approach)

Trained the following models and tested them for accuracy:

- Logistic Regression: With grid search and cross validation=10
 - o C=0.1
- Random Forest Classifier: With grid search and cross validation=10
 - max_depth=10, n_estimators=50
- XG Boost Classifier: With grid search and cross validation=10
 - booster='gblinear'

Result and Analysis

Models

	Binarization Approach		Multi-Class Approach	
	Training	Testing	Training	Testing
	Accuracy	Accuracy	Accuracy	Accuracy
Logistic Regression	63.42%	67.70%	52.65%	56.30%
Random Forest				
Classifier	60.50%	62.50%	50.44%	48.74%
Sequential Neural			Not applicable due to less	
Network	64.21%	66.67%	data in each category	
XGBoost Classifier	62.90%	67.71%	52.38	52.94%

Result and Analysis

- Tried two classification approaches out of which binarization approach performed better.
- Multi-class approach suffered due to insufficient data.
- Models trained with both the approaches exhibited average accuracy for predictions.
- Models alone cannot make predictions betters. Data is also equally important.
- Hence, I have some recommendations going forward in future.

Recommendations

- **Insufficient data:** At least 6-9 months data required to train the model sufficiently, in current case.
- Garbage-in garbage out: Data Quality has to be improved. Reduce missing data.
- Right Data: Having some experimental lab data examples would be helpful
 - Like given some standard potato shapes and sizes, how many %age of large chips (L>2.5in) would be produced?
- When enough data is available, neural networks approach would be effective with multi-classification approach.

Acknowledgements

- James Yuan
 Sr. Director Data Science & Analytics
- Hua Xu
 Senior Principal Scientist Data Science & Analytics
- Sonchai Lange
 R&D Engineer Process & Product Development

Internship Learnings

Success metric

First and foremost understand the success metric for building any predictive model.

Understand the data

Data might not be complete always. Hence, it's a duty of a data scientist to explore, talk to cross functional team and decide if more data is required.

Discussions are must

Collaborative interactions within own team as well as with cross functional teams are must to be productive and successful in the endeavor

• Be open in thoughts

Be open and confident about own perspective. Also, be open to receive any kind of suggestions/critiques.

Along with projects, networking is also equally important.

Questions?

APPENDIX

THANK YOU!!

