Building Database Management on top of Category Theory in Coq

Jason Gross — jgross@mit.edu

POPL 2013

This document is available at http://web.mit.edu/jgross/Public/POPL/jgross-student-talk.pdf.
My category theory library is available at https://bitbucket.org/JasonGross/catdb.

Outline

Introduction — Databases and Category Theory
Categories
Relational Databases
Relational Database Schema = Category
Usefulness

Outline

Introduction — Databases and Category Theory

Categories

Relational Databases

Relational Database Schema = Category

Usefulness

Category Theory in Coq

Universe Levels

Limits and Colimits

Categories Relational Databases Relational Database Schema = Category Usefulness

Categories

A category is:

a collection of objects,

Categories

A category is:

- a collection of objects, together with
- arrows between those objects,

Categories

A category is:

- a collection of objects, together with
- arrows between those objects, together with
- a composition law for the arrows satisfying coherence conditions:
 - existence of identity
 - associativity

Categories

A category is:

- ▶ a collection of objects, together with
- arrows between those objects, together with
- a composition law for the arrows satisfying coherence conditions:
 - existence of identity
 - associativity

A database schema for a relational database can be modeled as a

collection of tables,

A database schema for a relational database can be modeled as a

- collection of tables, together with
- a collection of attributes or column-labels for each table,

A database schema for a relational database can be modeled as a

- collection of tables, together with
- a collection of attributes or column-labels for each table, together with
- integrity constraints

A database schema for a relational database can be modeled as a

- collection of tables, together with
- a collection of attributes or column-labels for each table, together with
- integrity constraints

Relational Database Schema = Category

Relational Database Schema = Category

Relational Database Schema = Category

The diagrams are "the same".

Usefulness of Categorical Databases

Built in notion of path equivalence (multiple equivalent paths of foreign keys can be a pain in typical database management).

Usefulness of Categorical Databases

- Built in notion of path equivalence (multiple equivalent paths of foreign keys can be a pain in typical database management).
- Provides a rigorous language for data migration between databases (another hard task in standard database management).

Many people learn a proof assistant by coding up category theory.

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.
 - Standard rigorous formulation of concepts exists in the literature.

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.
 - Standard rigorous formulation of concepts exists in the literature.
 - lt's rare to get caught up in minute details of proofs.

- Many people learn a proof assistant by coding up category theory.
- Category theory is relatively simple to code up.
 - Standard rigorous formulation of concepts exists in the literature.
 - lt's rare to get caught up in minute details of proofs.
 - If you can define something categorically, it's probably interesting.

Consider, naïvely, the set of all sets.

Consider, naïvely, the set of all sets. Does it contain itself?

- Consider, naïvely, the set of all sets. Does it contain itself?
 - lt's a set, and it contains all sets, so it must.

- Consider, naïvely, the set of all sets. Does it contain itself?
 It's a set, and it contains all sets, so it must.
- Consider the set of all sets that do not contain themselves.
 Does it contain itself?

- Consider, naïvely, the set of all sets. Does it contain itself?
 - It's a set, and it contains all sets, so it must.
- ► Consider the set of all sets that do not contain themselves. Does it contain itself?
 - ▶ If it contains itself, then it is not a set that doesn't contain itself, and so it cannot be a member of itself; contradiction. Thus it cannot contain itself.

- Consider, naïvely, the set of all sets. Does it contain itself?
 It's a set, and it contains all sets, so it must.
- ► Consider the set of all sets that do not contain themselves.

 Does it contain itself?
 - ▶ If it contains itself, then it is not a set that doesn't contain itself, and so it cannot be a member of itself; contradiction. Thus it cannot contain itself.
 - If it does not contain itself, then it is a set that does not contain itself, and thus must be a member of itself; contradiction. Thus it cannot fail to contain itself.

- Consider, naïvely, the set of all sets. Does it contain itself?
 It's a set, and it contains all sets, so it must.
- ► Consider the set of all sets that do not contain themselves. Does it contain itself?
 - ▶ If it contains itself, then it is not a set that doesn't contain itself, and so it cannot be a member of itself; contradiction. Thus it cannot contain itself.
 - ► If it does not contain itself, then it is a set that does not contain itself, and thus must be a member of itself; contradiction. Thus it cannot fail to contain itself.
- This is the paradox of naïve set theory.

- ► This is the paradox of naïve set theory.
- ► Solution: universe levels

- ► This is the paradox of naïve set theory.
- Solution: universe levels
 - Set or Type(0) is the collection of all sets, Type(1) is the collection of all Type(0)s, ..., Type(i + 1) is the collection of all Type(i)s
 - ▶ The **universe level** of an object of type Type(i) is i

- This is the paradox of naïve set theory.
- Solution: universe levels
 - ▶ Set or Type(0) is the collection of all sets, Type(1) is the collection of all Type(0)s, ..., Type(i + 1) is the collection of all Type(i)s
 - ▶ The **universe level** of an object of type Type(i) is i
- ▶ In some cases, Coq can infer the universe level of an inductive type from the universe levels of its parameters; when this happens, the inductive type is polymorphic over universe levels.

- This is the paradox of naïve set theory.
- Solution: universe levels
 - Set or Type(0) is the collection of all sets, Type(1) is the collection of all Type(0)s, ..., Type(i+1) is the collection of all Type(i)s
 - ▶ The **universe level** of an object of type Type(i) is i
- ▶ In some cases, Coq can infer the universe level of an inductive type from the universe levels of its parameters; when this happens, the inductive type is polymorphic over universe levels.
- It's useful to talk about "a category whose objects are of type T" rather than just "a category".

Limits and Colimits

Categorical limits are like Cartesian products, subject to constraints about equality of components

Limits and Colimits

- Categorical limits are like Cartesian products, subject to constraints about equality of components
- Categorical colimits are like disjoint unions, modulo equivalence relations

Coq Category

- Cog has all limits
 - Product types provide products (function types, e.g., forall a : A, f a is the product $\prod_{a \in A} f(a)$)
 - Sigma types provide constraints about equality of components (e.g., { f : A → B | f a = f b })

Coq Category

- Cog has all limits
 - Product types provide products (function types, e.g., forall a : A, f a is the product $\prod_{a \in A} f(a)$)
 - Sigma types provide constraints about equality of components (e.g., { f : A → B | f a = f b })
- Coq has some colimits
 - ▶ Sigma types provide disjoint unions (e.g., $\{j: J \& f j\}$ is the disjoint union $\bigsqcup_{i \in J} f(j)$)
 - Quotients are ... hard

Quotients can be defined via axioms

- Quotients can be defined via axioms
 - Proof_irrelevance; (A ↔ B) → A = B for propositions; either decidable existence, or a way of turning proofs of existence into objects (constructive_indefinite_description : (exists x, P x) → { x | P x })
 - Not computational

- Quotients can be defined via axioms
 - Proof_irrelevance; (A ↔ B) → A = B for propositions; either decidable existence, or a way of turning proofs of existence into objects (constructive_indefinite_description : (exists x, P x) → { x | P x })
 - Not computational
- Quotients can be defined via setoids

- Quotients can be defined via axioms
 - ▶ proof_irrelevance; (A ↔ B) → A = B for propositions; either decidable existence, or a way of turning proofs of existence into objects (constructive_indefinite_description : (exists x, P x) → { x | P x })
 - Not computational
- Quotients can be defined via setoids
 - All objects carry around extra information of what the equivalence relation is
 - ► This is somewhat clunky
 - Not first-class quotients

Limits and Colimits (High-Level Summary)

► There are two categorical constructions (limits and colimits) that are "dual"

Limits and Colimits (High-Level Summary)

- ► There are two categorical constructions (limits and colimits) that are "dual"
- Cog's type-system fully implements only one of these (limits)

Limits and Colimits (High-Level Summary)

- ► There are two categorical constructions (limits and colimits) that are "dual"
- Coq's type-system fully implements only one of these (limits)
- ► It's harder to define colimits inside of Coq than limits, in general, even for the ones that Coq does support

Thank You!