VaRank Manual

Version 2.0 VaRank is a program designed for annotating and ranking SNV/indel from NGS data

Copyright (C) 2016-2021 GEOFFROY Véronique, MULLER Jean

Please feel free to contact us for any suggestions or bug reports email: veronique.geoffroy@inserm.fr; jeanmuller@unistra.fr

Table of contents

1. II	INTRODUCTION	3
2. II	INSTALLATION/REQUIREMENTS	4
а	a) Tcl (required)	4
b	b) VaRank quick installation	4
С	c) Alamut Batch installation	5
d	d) SnpEff and SnpSift installation:	5
е	e) PolyPhen-2 (PPH2) (optional):	5
f	f) Temporary SQLite database	6
g	g) VaRank installation directory	7
3. II	INPUT	7
а	a) VCF	7
b	b) Arguments / configfile	8
С	c) External Gene annotation	8
4. C	OUTPUT	8
а	a) TSV output files (ByVar/ByGene and allVariants/filteredVariants)	8
b	b) Organization of the output directory	9
С	c) Annotation columns available in the output files	11
d	d) VariantID	15
е	e) Family Barcode	16
f	f) Absence of annotations	17
5. S	SCORING	17
6. P	PHENOTYPE-DRIVEN ANALYSIS POWERED BY EXOMISER	19
7. L	USAGE / OPTIONS	20
9. R	REMARKS	23
а	a) EVS dataset	23
b	b) dbSNP MAF	23
С	c) gnomAD FILTER	23
d	d) Filtered output files	23
е	e) Variant annotated on several transcripts of a same gene	23
10	FΔO	23

1. INTRODUCTION

VaRank is a program designed for variants (SNVs and indels) annotation and ranking from next generation sequencing data. It provides a comprehensive workflow detailed below.

Four modules create the strength of this workflow:

- (i) Integration of the sequencing data: variant call quality summary (total and variant depth of coverage, phred like information), to filter out false positive calls.
- (ii) Alamut Batch or SnpEff annotations, to integrate genetic and predictive information (functional impact, putative effects in the protein coding regions, population frequency...) from different sources, using HGVS nomenclature.
- (iii) Barcode representing the presence/absence of variants (with homozygote/heterozygote status), to search for recurrence between families or group of individuals.
- (iv) Phenotype-driven analysis (HPO scoring)
- (v) Prioritization score to rank variants according to their predicted pathogenic status.

2. INSTALLATION/REQUIREMENTS

The VaRank program is described at http://www.lbgi.fr/VaRank.

The sources can be downloaded from https://github.com/lgmgeo/VaRank under the GNU GPL license.

a) Tcl (required)

The VaRank program is written in the Tcl/Tk language. Modern Unix systems have this scripting language already installed (otherwise it can be downloaded from http://www.tcl.tk/).

To make sure the Tcl script finds correctly the Tcl interpreter, the best way is to put, as the first line of the main script (which is already done in VaRank-main.tcl), the following command:

```
#!/usr/bin/env tclsh
```

It can also be changed to any other path like:

```
#!/usr/local/ActiveTcl/bin tclsh
```

Typically, you can create an alias of the main Tcl script "sources/VaRank-main.tcl" for example to "VaRank", place it in the "/bin" directory"(this is done be default already) and add the path to this in your \$PATH.

WARNING: From VaRank v2.0, the "sqlite3" package is required and used to improve the running time.

WARNING: **The "http" and the "json" packages** are used for the phenotype-driven analysis. Moreover, in order to use the phenotype-driven analysis based on one Exomiser module, a **minimal Java 8** installation is required. Moreover, the Exomiser module writes in the **/tmp/spring.log** file that must therefore have write permissions.

b) VaRank quick installation

1. The sources can be cloned to any directory:

```
cd /path/to/install/
git clone git@github.com:lgmgeo/VaRank.git
```

2. Set the VARANK global environmental variable as the location of the git repo on your system.

In csh:

```
setenv VARANK /path/to/install/VaRank/
```

In bash:

export VARANK=/path/to/install/VaRank

- 3. Set the ALAMUT/SNPEFF global environmental variable. Depending on the selected annotation engine:
 - \$ALAMUT: Alamut Batch installation directory
 - \$SNPEFF: SnpEff and SnpSift installation directory

The annotation engine could be from either:

- Alamut Batch developed and commercialized by Interactive Biosoftware (Rouen, France). If you
 do not own a license, a 30-day free trial can be requested here (https://www.interactive-biosoftware.com/request-trial-alamut/).
- SnpEff and SnpSift developed by Pablo Cingolani (https://pcingola.github.io/SnpEff/).

VaRank version	Compatibility	Release Date		
1.5	Alamut Batch 1.11	February 2019		
	SnpEff 4.3T (Requires Java 1.8)	2017-11-24		
1.4.2	Alamut Batch 1.6-1.9			
	SnpEff V4.2-4.3			
1.4	Alamut Batch 1.6-1.9	2018/04/20		
	SnpEff V4.2-4.3			
1.3.5	Alamut Batch 1.5.0-1.5.2	2016/08/04		
	SnpEff V4.2			
1.3.3->1.3.4	Alamut Batch 1.4.3-1.4.4	2016/01/18-		
	SnpEff V4.2	>2016/03/11		
1.3->1.3.2	Alamut Batch 1.4.2	2015/11/20-		
	SnpEff V4.1L	>2015/12/18		
1.2.3->1.2.5	Alamut Batch 1.4.0	2015/02/26-		
	SnpEff V4.1a/V4.1b	>2015/07/24		
1.1 -> 1.2.2	Alamut Batch 1.3	2014/11/12-		
	SnpEff V4.1	>2015/02/02		
1.0	Alamut Batch 1.2	2014/07/27		

4. Set the PPH global environmental variable (optional) as the location of the PolyPhen-2 installation directory.

c) Alamut Batch installation

Regarding Alamut Batch, we recommend using the standalone version which is very handy to install with a single tar.gz file and a single database file, and more efficient for the annotation. The first use of Alamut Batch requires the user license agreement, we recommend to do it right after the installation.

d) SnpEff and SnpSift installation:

The installation of SnpEff and SnpSift is also well described on its website. Apart from the programs, additional databases should be downloaded (the human reference genome, dbSNP, dbNFSP, phastCons). Make sure you are running the required java version (i.e. SnpEff 4.3 requires Java 1.8).

SnpEff annotation of some multiple alleles (at the same position), especially deletions, is not clear enough, thus these variations are split into multiple variant/lines while creating the non-redundant input vcf files. During this process the genotype are stored in memory but modified in the novel vcf files to "0/1" by default (VcfDirectory/SnpEff/Input). These specific vcf files should then not be used.

While running VaRank with SnpEff some parameters should be included: -snpeffHumanDB, -dbSNP, -dbNSFP and -phastConsDB (see section 6 for more details).

e) PolyPhen-2 (PPH2) (optional):

PolyPhen-2 (PPH2) provides prediction of functional effects of human nsSNPs (Adzhubei IA *et al* Nature Methods 2010). It needs to be locally installed to be used. You can freely download it from http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads.

Protein databases can be used to connect to PPH2 by helping extracting the protein sequences, checking the amino acid change to be tested and then submit this sequence if no precomputed data exists.

UniProt and RefSeq can respectively be downloaded using the following procedures and should be placed in the "pph2Databases" directory.

• UniProt:

The human reference protein file can be downloaded and renamed using the following commands:

```
cd $VARANK/pph2Databases
wget
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_p
roteomes/Eukaryota/UP000005640_9606_fasta.gz
mv UP000005640_9606.fasta.gz HUMAN.fasta.gz
```

RefSeq

Please run these commands to download and prepare the data for VaRank and copy them in the the "pph2Databases" directory:

```
cd $VARANK/pph2Databases
wget -rnd -A 'human.*.protein.faa.gz'
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/
foreach file (*.protein.faa.gz)
echo "reading $file"
cat $file >> human.protein.faa.gz
chmod 755 $file
rm $file
end
```

f) Temporary SQLite database

During the VaRank execution, an SQLite database is temporary created to load the VCF input data. This database is written in the same directory as your VCF input files.

WARNING: Using NFS volumes to write the SQLite database can lead to an increase of the running time. To avoid lost network traffic, the directory containing the VCF files is preferred to be local.

Entity Relationships Diagrams:

g) VaRank installation directory

By default, the VaRank installation directory looks like this:

VaRank I	#the program installation directory
Annotations_Exomiser/	#contains phenotype-driven annotations
 bash/	#where bash scripts are stored
 bin/	#where an alias is set to the main .tcl script
 etc/	#contains the application.properties file (for an exomiser use)
 ExtAnn/	#used to add external annotations
 jar/	#contains a jar file for the exomiser use
 pph2Databases/	#where to store the UniProt and RefSeq fasta files
sources/	#where the source .tcl files are stored
 Tests/	#contains examples to check VaRank execution
 changeLog.txt configfile 	#description of VaRank changes #a configfile example that can be copied to any analysis directory #for modification purpose
License.txt	#GNU GPL license
README.md README.VaRank.*.pdf	#Github readme #this file

3. INPUT

a) VCF

VaRank supports the commonly used VCF (Variant Call Format, https://github.com/samtools/hts-specs) input format for variants analysis that allows the program to be easily integrated into NGS bioinformatics analysis pipelines.

Since version 1.3, VaRank is compatible with the VCF version 4.2 specification (26 Jan 2015). One major addition is the use of the '*' allele. The '*' is used to indicate that one allele is missing due to an upstream deletion. This implies that the variant calling is aware of false homozygous status for variants in *trans* of deletions. As in the following example, the variant genotype is now properly annotated in the VCF version 4.2:

```
#CHROM POS ID REF ALT ... FORMAT Sample1
1 172 . A G ... GT:AD:DP 1/1:0,20:20 (VCF up to version 4.1)
1 172 . A G,* ... GT:AD:DP 1/2:0,20,9:29 (VCF since version 4.2)
```

Limitations of the VCF support in VaRank:

• Analysis of structural variants (ALT=<ID=type,Description=description>) is not supported.

• Genotype phase/unphase status ('|' vs '/') is not supported.

In order not to miss any variant and given that structural variations are not always reported and not analyzed by VaRank, we have decided to systematically report a variant for each '*'. Nevertheless, given the unknown positions of the deletion no score is attributed to the variant.

Depending on the VCF file origin (different variant callers), the variant read depth information can be stored in many different fields (NR, AD, AC, AO...). Moreover in certain situation these fields can be present together (merged VCF file). We have therefore decided to select the first information (not empty) available within the following ordered fields: NR, AD, AC, AO and DV.

Variant that do not have a depth of coverage (AD="." or AD="NA") and wild type variants (GT="0/0") are not considered (i.e. not annotated) by VaRank and will thus absent from the output files.

It is to notice that Gzip VCF files are supported.

b) Arguments / configfile

VaRank takes also several arguments as options to the command line that are detailed in section 7 ("USAGE / OPTIONS"). The different arguments can be passed on either the command line or using a specific file named "configfile" that needs to be put in the same directory as the input VCF files. An example of configfile is provided in the VaRank installation directory.

c) External Gene annotation

In order to further enrich the annotation for each variant gene, VaRank can integrate external annotations into the output files. It is to notice that only the first annotated gene of each variant will be used for these external gene annotations.

Usage:

- VaRank installation directory contains an ExtAnn directory that is used by default to list all the additional files provided there
- Else, the user can use the –extann option to add all its additional files.

Format:

The format is a tab separated values file and should look like this: the first line is a header including a column entitled "genes" that should be the first column too. Gzip files are supported.

The following example (provided in the VaRank sources) has been set to provide annotation for the gene including the MIM number, the phenotypes as well as the transmission mode of the gene (here AR means "autosomic recessive", AD means "autosomic dominant").

genes	Mim Number	Phenotypes	Inheritance
ACTG2	102545	Visceral myopathy, 155310 (3)	AD
ADAMTSL2	612277	Geleophysic dysplasia 1, 231050 (3)	AR

4. OUTPUT

a) TSV output files (ByVar/ByGene and allVariants/filteredVariants)

VaRank provides 4 .tsv (TAB separated values) output files divided into 2 categories:

• Files named with "ByVar" contains variations sorted from the most to the least pathogenic (according to the VaRank score.

In some cases, one variation can be annotated using several genes. This happens when overlapping genes exists. VaRank selects the most pathogenic annotation and thus the first gene described is the one corresponding to this situation. VaRank keep all the other gene names. In the following example, *BBS1* is the gene retained for the annotation of the considered variation but as indicated in the column "Gene" there is a second overlapping gene (e.g. *DPP3*):

```
11_66277969_C_T BBS1/DPP3
```

• Files named with "ByGene" contains variations classified by gene ("ByGene") where the list is sorted using the gene as a proxy to the score. Each gene is scored according to most pathogenic variant (homozygous) or the first two most pathogenic variants. In order to make sure that no variants are missed all gene variation are reported also below the variant(s) used to score the gene. This file is more suitable when dealing with a recessive mode of inheritance.

It is to notice that given the focus on genes in those output files, variants that could be attributed to several genes are duplicated and associated to each gene individually.

A part from these 2 categories, each file is also available in 2 versions:

- Raw file ("allVariants") with no variants filtered out.
- Already prefiltered files ("filteredVariants") with variants filtered out using the following default criteria:
 - ✓ with a total depth of coverage <=10x
 - ✓ with a supporting reads count <=10x</p>
 - ✓ with a percent of supporting reads <=15%
 </p>
 - ✓ with validated annotation in the dbSNP database (i.e. at least with 2 evidences from the ClinVar field) that are not pathogenic (from the ClinicalSignificance field in dbSNP and from ClinVar)
 - ✓ with an allele frequency >1% (extracted from the dbSNP, 1000Genomes, gnomAD...)

b) Organization of the output directory

The output organization can be described as follow:

```
VcfDirectory
                                                   #Contains all Alamut Batch related files
|-- Alamut/
| |--AlamutInputFile_all.txt
                                                   #Alamut input file generated from the vcf(s) files
                                                   #Alamut output file with annotated variants
| |--AlamutAnnotations all.txt
| |--AlamutUnnanotated all.txt
                                                   #Alamut output file with unannotated variants
| |--AlamutOutput all.txt
                                                   #Alamut log file
|-- SnpEff/
                                                   #Contains all SnpEff and SnpSift related files
| |-- Input/
      |--*.vcf
                                                   #Non redundant variant input vcf files
| |-- Output/
| |--*.varType.vcf.log
                                                   #SnpSift varType annotation log
| |--*.varType.dbsnp.vcf.log
                                                   #SnpSift dbSNP annotation log
| |--*.varType.dbsnp.dbnsfp.vcf.log
                                                   #SnpSift dbsnfp annotation log
| |--*.varType.dbsnp.dbnsfp.phastCons.vcf.log
                                                   #SnpSift phastCons annotation log
| |--*.varType.dbsnp.dbnsfp.phastCons.vcf
                                                   #Final annotation file
```

```
|-- PPH2/
                                                  #(option) Contains all PolyPhen-2 related files
| |-- PPH2input_all.txt
                                                  #PPH2 input file
| |-- PPH2features_all.txt
                                                  #PPH2 output file
| |-- PPH2humvar_all.txt
                                                  #PPH2 output file
| |-- PPH2errors_all.txt
                                                  #PPH2 log file
|----- fam#_SampleName_allVariants.rankingByVar.tsv
|----- fam#_SampleName_filteredVariants.rankingByVar.tsv
|----- fam#_SampleName_allVariants.rankingByGene.tsv
|----- fam#_SampleName_filteredVariants.rankingByGene.tsv
|----- fam#_SampleName_statistics.tsv
                                                  #Short counts report (e.g. homozygous, heterozygous
                                                  #and total counts) for each of the variant categories
|----- SNV_global_statistics.tsv
                                                  #Contains the same counts as defined for each patient
                                                  #but for the whole analyzed cohort
|----- VCF_Coordinates_Conversion.tsv
                                                  #List of VariantID and corresponding VCF positions
|---- configfile
                                                  #To define sample group and set running options
|----- *InputFile.vcf or *.vcf.gz
                                                  #Input files
```

c) Annotation columns available in the output files

In the following table, we describe the annotations that are available in the VaRank output files. It is to notice that, since VaRank can be configured using 2 different annotation engines, in some cases specific annotations are only present while using one annotations engine and in some cases the values for the same type of information are slightly different.

Moreover, in order to add more flexibility to the output files, the user can select the annotation columns and their order using the configfile.

Column name	Annotation	Alamut Batch	SnpEff		
variantID	Variant identifier [#chr]_[genomicposition]_[RefBase]_[VarBase]	Х	Х		
gene	Gene symbol	Х	Х		
geneDesc	Gene description	Х			
omimId	OMIM® id	Х			
transcript	RefSeq transcript id	Х			
strand	Transcript strand	Х			
transLen	Length of transcript (full cDNA length)	Х			
cdsLen	CDS length	Х			
chr	Chromosome of variant	Х	Х		
start	Start position of variant	Х	Х		
end	End position of variant	Х	Х		
ref	Nucleotide sequence in the reference genome (restricted to 50bp)	Х	Х		
alt	Alternate nucleotide sequence (restricted to 50bp)	Х	Х		
protein	Protein ID (NCBI)	Х			
Uniprot	UniProt ID	Х	Х		
posAA	Amino acid position	Х	Х		
wtAA_1	Reference codon				
wtCodon	WT codon	Х			
varAA_1	Alternate codon	Х	Х		
zygosity	ity Homozygote or heterozygote status				
totalReadDepth	Total number of reads covering the position	Х	Х		
varReadDepth	Number of reads supporting the variant	Х	Х		
varReadPercent	Percent of reads supporting variant over those supporting reference sequence/base	Х	Х		
QUALphred	QUAL: The Phred scaled probability that a REF/ALT polymorphism exists at this site given sequencing data. Because the Phred scale is -10*log(1-p), a value of 10 indicates a 1 in 10 chance of error, while a 100 indicates a 1 in 10^10 chance. These values can grow very large when a large amount of NGS data is used for variant calling.	Х	х		
varType	Variant Type (substitution, deletion, insertion, duplication, delins)	Х	Х		
codingEffect	Variant Coding effect (synonymous, missense, stop gain, in-frame, frameshift, start loss, stop loss)	Х	Х		
VarLocation	Variant location (upstream, 5'UTR, exon, intron, 3'UTR, downstream)	Х	Х		
assembly	Genome assembly	Х			
exon	Exon number (nearest exon if intronic variant)	Х	Х		
intron	Intron number	Х	х		
gDNAstart	gDNA start	Х			
gDNAend	gDNA end	Х			
gNomen	Genomic-level nomenclature	Х			

cDNAstart	cDNA start	Х						
cDNAend	cDNA end	х						
cNomen	cDNA-level nomenclature	Х	Х					
pNomen	Protein-level nomenclature							
clinVarlds	List of ClinVar Ids separated by " "	х						
clinVarOrigins	List of ClinVar origins separated by " ", values: germline, somatic, de novo, maternal	х						
clinVarMethods	List of ClinVar methods separated by " ", values: clinical testing, research, literature only	х						
clinVarClinSignifs	List of ClinVar clinical significances separated by " "	х						
clinVarReviewStatus	List of ClinVar reviews separated by " ", number of stars (0-4)	х						
clinVarPhenotypes	List of ClinVar phenotypes Ids separated by " "	х						
rsID	dbSNP variation	X	Х					
rsValidation	dbSNP validated status	х						
rsValidationNumber	dbSNP number of validation categories	X						
rsAncestralAllele	dbSNP ancestral allele	х						
rsHeterozygosity	dbSNP variation average heterozygosity	Х						
rsClinicalSignificance	dbSNP variation clinical significance	Х						
rsMAF	dbSNP variation global Minor Allele	X						
rsMAFAllele	dbSNP variation global minor allele	х						
rsMAFCount	dbSNP variation sample size	х						
1000g_AF	1000 genomes global allele frequency	х						
1000g_AFR_AF	1000 genomes allele frequency in African population	Х						
1000g_SAS_AF	1000 genomes allele frequency in South Asian population	х						
1000g_EAS_AF	1000 genomes allele frequency in East Asian population	х						
1000g_EUR_AF	1000 genomes allele frequency in European population	х						
1000g_AMR_AF	1000 genomes allele frequency in American population	Х						
gnomadAltFreq_2	gnomAD alternate allele frequency ²	X						
gnomadHomCount_2	gnomAD homozygous genotype count ²	Х						
gnomadHetCount_2	gnomAD heterozygous genotype count ²	Х						
gnomadHemCount_2	gnomAD hemizygous genotype count ²	X						
gnomadFilter	gnomAD VCF filter value (ACO, PASS, RF)	Х						
gnomadReadDepth	gnomAD read depth	X						
gnomadOrigin	gnomAD variant origin (Exomes, genomes, or both)	Х						
deltaMaxEntSscorePercent	% difference between the splice score of variant with the score of the reference base	х						
wtMaxEntScore	WT seq. MaxEntScan score	Х						
varMaxEntScore	Variant seq. MaxEntScan score	Х						
deltaSSFscorePercent	% difference between the splice score of variant with the score of the reference base	Х						
wtSSFScore	WT seq. SpliceSiteFinder score	X						
varSSFScore	Variant seq. SpliceSiteFinder score	Х						
deltaNNSscorePercent	Percent % difference between the splice score of variant with the score of the reference base							
wtNNSScore	ore WT seq. NNSPLICE score							
varNNSScore	Variant seq. NNSPLICE score	Х						
nearestSSChange	Nearest splice site change	Х						
distNearestSS	Distance to Nearest splice site	Х						

nearestSSType	Nearest splice site type	X						
localSpliceEffect	Splicing effect in variation vicinity (New donor Site, New Acceptor Site, Cryptic Donor Strongly Activated, Cryptic Donor Weakly Activated, Cryptic Acceptor Strongly Activated, Cryptic Acceptor Weakly Activated)	Х						
localSpliceSiteAnnotation	Splice site annotation: -"essential splice donor": variant in 5' SS at intronic position +1 or +2 -"essential splice acceptor": variant in 3' SS at intronic position -1 or -2 -"close splice donor": variant in 5' SS at position -3 to -1, +3 to +6 -"close splice acceptor": variant in 3' SS at position -12 to -2, and 0 to +2	Х						
localSS_pos	Genomic position of predicted new splice site or activated cryptic site							
localSS_wtMaxEntScore	_wtMaxEntScore							
localSS_varMaxEntScore	AISS_varMaxEntScore Variant seq. MaxEntScan score used for local splice effect detection							
localSS_wtNNSScore	WT seq. NNSPLICE score used for local splice effect detection	Х						
localSS_varNNSScore	Variant seq. NNSPLICE score used for local splice effect detection	Х						
localSS_wtSSFScore	WT seq. SSF score used for local splice effect detection	Х						
localSS_varSSFScore	Variant seq. SSF score used for local splice effect detection	Х						
branchPointPos	Genomic position of affected putative branch point	Х						
branchPointChange	Change between WT and variant BP scores (range -5 to 100)	Х						
proteinDomain1	Protein domain 1	Х						
proteinDomain2	Protein domain 2	Х						
proteinDomain3	Protein domain 3	Х						
proteinDomain4	Protein domain 4	Х						
SIFTprediction	SIFT prediction	Х	Х					
SIFTweight	SIFT score ranges from 0 to 1. The amino acid substitution is predicted damaging is the score is <= 0.05, and tolerated if the score is > 0.05.	Х						
SIFTmedian	SIFT median ranges from 0 to 4.32. This is used to measure the diversity of the sequences used for prediction. A warning will occur if this is greater than 3.25 because this indicates that the prediction was based on closely related sequences. The number should be between 2.75 and 3.5							
PPH2pred ¹	PolyPhen-2 prediction using HumVar model are either "neutral, possibly damaging, probably damaging" or "neutral, deleterious" depending on the annotation engine.	Х						
phyloP	phyloP score	X						
PhastCons	phastCons score	X	Х					
GranthamDist	Grantham distance	Χ						
AGVGDclass	AlignGVGD class	Х						
AGVGDgv	AlignGVGD: variation (GV)	Χ						
AGVGDgd	AlignGVGD: deviation (GD)	Х						
varank_VarScore	Prioritization score according to VaRank	Χ	Х					
annotationAnalysis	Indicates the annotation status (value: Yes or No)	Х	Х					
avgTotalDepth	Total read depth average at the variant position for all samples analyzed that have the variation	Х	Х					
sdTotalDepth	Standard deviation associated with Avg_TotalDepth	Х	Х					
countTotalDepth	Number of samples considered for the average total read depth	Х	Х					
avgVariantDepth	Variation read depth average at the variant position for all samples analyzed that have the variation	Х	х					
sdVariantDepth	Standard deviation associated with Avg_SNVDepth	X	Х					
countVariantDepth	Number of samples considered for the average SNV read depth	X	Х					
familyBarcode ³	Homozygote or heterozygote status for the sample of interest and its associated samples	Х	Х					
barcode	Homozygote or heterozygote status for all sample analyzed together (Hom: 2; Het: 1; Sample name is given at the first line of the file: ## Barcode)	Х	х					
homCount	Number of homozygote over all samples analyzed together	Х	Х					

hetCount	Number of heterozygote over all samples analyzed together	Х	Х					
alleleCount	Number of alleles supporting the variant							
sampleCount	Total number of samples	Х	Х					
alleleFrequency	Allele frequency in all samples analyzed (with 4 decimals)	Х	Х					
samVa	Sample ID of the 10 first non WT variants, with their homozygote/heterozygote status							
Annotation_Impact	Estimation of putative impact / deleteriousness : {HIGH, MODERATE, LOW, MODIFIER}							
Gene_ID	Gene identifier		Х					
Feature_Type	Which type of feature is in the next field (e.g. transcript, motif, miRNA,)		Х					
Feature_ID	Transcript ID (preferably using version number), Motif ID, miRNA,)		Х					
Transcript_BioType	The bare minimum is at least a description on whether the transcript is {"Coding", "Noncoding"}		Х					
cDNA.pos	Position in cDNA		Х					
cDNA.length	Transcript's cDNA length		Х					
CDS.pos	Position of coding bases		Х					
CDS.length	Number of coding bases		Х					
AA.pos	Position of AA		Х					
AA.length	Number of AA		Х					
Distance	Up/Downstream: Distance to first / last codon Intergenic: Distance to closest gene Distance to closest Intron boundary in exon (+/- up/downstream)		Х					
LOF	Loss of function prediction		Х					
NMD	Nonsense-mediated decay prediction		Х					
dbNSFP_1000Gp1	1000 genomes allele frequency in population							
dbNSFP_CADD_phred	CADD phred score							
dbNSFP_ExACAC	ExAC allele count in population							
dbNSFP_ExACAF	ExAC allele frequency in population		Х					
dbNSFP_FATHMM_pred	FATHMM prediction scores		Х					
dbNSFP_GERPNR	GERP conservation NR scores		Х					
dbNSFP_GERPRS	GERP conservation RS scores		Х					
dbNSFP_LRT_pred	LRT conservation scores		Х					
dbNSFP_MetaSVM_pred	dbNSFP scores based on 10 component scores (SIFT, PolyPhen-2 HDIV and HVAR, GERP++, MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy, PhyloP) and the maximum frequency observed (1000 genomes)		Х					
dbNSFP_MutationAssessor_pred	MutationAssessor prediction scores		Х					
dbNSFP_MutationTaster_pred	MutationTaster prediction scores		Х					
dbNSFP_PROVEAN_pred	Provean prediction scores		Х					
dbNSFP_Polyphen2_HDIV_pred	PolyPhen-2 HDIV prediction scores		Х					
dbNSFP_Polyphen2_HVAR_pred	PolyPhen-2 HVAR prediction scores		Х					
dbNSFP_SIFT_pred	SIFT prediction scores		Х					
ACMG	ACMG gene list	Χ	Х					
н	ClinGen Haploinsufficiency Score	Х	Х					
TS	ClinGen Triplosensitivity Score	Х	Х					
DDD_HI_percent	Haploinsufficiency ranks from DDD (DECIPHER)	Х	Х					
DDD_status	DDD status: e.g. confirmed, probable	Х	Х					
DDD_mode	DDD allelic requirement: e.g. biallelic, hemizygous	Х	Х					
DDD_consequence	DDD mutation consequence: e.g. "loss of function", uncertain	Х	Х					
DDD_disease	DDD disease name: e.g. "OCULOAURICULAR SYNDROME"	Х	Х					

DDD_pmid	DDD Pubmed Id	Χ	Х				
OMIM_ID	IIM_ID OMIM unique six-digit identifier						
OMIM_phenotype	e.g. Charcot-Marie-Tooth disease	Х	Х				
OMIM_inheritance ⁴	MIM_inheritance ⁴ e.g. AD (= "Autosomal dominant")						
OMIM_morbid	Set to "yes" if the gene is an OMIM morbid gene	Х	Х				
OMIM_morbid_candidate	Set to "yes" if the gene is an OMIM morbid gene candidate	Х	Х				
ExAC_delZ	Positive delZ_ExAC (Z score) indicate gene intolerance to deletion	Х	Х				
ExAC_dupZ	Positive dupZ_ExAC (Z score) indicate gene intolerance to duplication	Х	Х				
ExAC_cnvZ	Positive cnvZ_ExAC (Z score) indicate gene intolerance to CNV	Х	Х				
ExAC_synZ	Positive synZ_ExAC (Z score) indicate gene intolerance to synonymous variation	Х	Х				
ExAC_misZ	_misZ Positive misZ_ExAC (Z score) indicate gene intolerance to missense variation						
LOEUF_bin	х	х					
GnomAD_pLI	Values = integer [0-9] Score computed by gnomAD indicating the probability that a gene is intolerant to a loss of function variatio (Nonsense, splice acceptor/donor variants due to SNV/indel). A pLI>=0.9 is considered as an extremely Lo intolerant gene						
ExAC_pLI	Score computed by ExAC indicating the probability that a gene is intolerant to a loss of function variation (Nonsense, splice acceptor/donor variants due to SNV/indel). A pLI>=0.9 is considered as an extremely LoF intolerant gene	х	х				
Exomiser_gene_pheno_score	Exomiser score for how close each overlapped gene is to the phenotype	Х	Х				
Human_pheno_evidence	Phenotypic evidence from Human model	Х	Х				
Mouse_pheno_evidence	Phenotypic evidence from Mouse model	Х	Х				
Fish_pheno_evidence	Phenotypic evidence from Fish model	Х	Х				

¹ if PPH2 is installed separately.

When -vcfinfo is set to "yes", all the annotations within the "INFO" field within the vcf are reported in separate columns after the last columns described here.

d) VariantID

The output files contain a column named *VariantID* which is a variation identifier meant to be unique. The format is described as follows:

[RefBase] being the nucleotide sequence in the reference genome [VarBase] being the alternate nucleotide sequence.

Ex1: 16_56548501_C_T describes the change of C to T on chromosome 16 at position 56548501.

In order to optimize the description of this identifier for larger indels, the [RefBase] and [VarBase] values are restricted to 50bp by default.

Ex2: 21_9448722_330bp_- describes the deletion on chromosome 21 of 330pb.

In case of redundancy (e.g. insertion of different sequences at the same position of the same size) in order to keep non-redundant identifiers a versioning is applied.

² all = All populations, afr = African, amr = Latino, asj = Ashkenazy Jewish, eas = East Asian, sas = South Asian, nfe = Non-Finnish European, fin = Finnish European, oth = Other populations, popmax = Maximum Allele Frequency across populations (excluding OTH)

³ See the "Family Barcode" section

⁴ Detailed in the FAQ

Ex3:21_9448722_-_89bp and 21_9448722_-_89bp.1 correspond to the insertion of 2 different sequences of the same length on chromosome 21.

The "VCF_Coordinates_Conversion.tsv" is a tab separated output file containing for each *VariantID* the corresponding VCF positions ([#chr] [genomicposition] [RefBase] [VarBase]).

e) Family Barcode

The barcode in VaRank allows a quick overview of the presence/absence status of each variant and their zygosity status within the analyzed individuals ("0" representing homozygous wild type, "1" heterozygous and "2" homozygous for the variant, see the figure below Panel A). Panel B displays 3 variants example and 32 patients analyzed together. Together with the barcode, simple counts on the individuals (homozygous, heterozygous and total allelic counts) are also available as well as an estimate of the allele frequency in the user cohort.

Gene	Chr	Start	Re	f Mut	Zygosity	TotalRead Depth	VarRead Depth	cNomen	pNomen	familyBarcode	Barcode	#Hom #	Het#	Allele #	Sample
BBS2	16	56548501	С	Т	hom	142	142	c.209G>A	p.=	222	222222222022222222222222222222	31	0	62	32
ALMS1	2	73716993	-	С	hom	143	126	c.7911dup	p.Asn2638GInfs*24	121	000000000000000000000000000000000000000	1	0	2	32
TTC21B	2	166797646	С	Т	het	144	80	c.601G>A	p.Val201Met	011	12211011112122101111212220121221	. 12	17	41	32

Together with the main barcode describing all the patients analyzed together in one VaRank run, one can define a second barcode. This second barcode named "familyBarcode" can be configured by the user to group selected samples (e.g. trios where affected child and parents could be analyzed together). This can be done using the configfile by simply grouping sample names together. As an example, 2 families where the fam1 corresponds to a trio sequencing (proband and parents, see Fig. C) and fam2 with 2 affected child:

fam1: Sample1 Sample2 Sample3

fam2: Sample4 Sample5

В

Grouping sample names together allows also to follow the same naming convention for the files with the same prefix (fam1_ for all family members).

In order to have more details about which samples are different from the reference within the barcode (values 1 for heterozygote and 2 for homozygote alternative base), the "samVa" output column (for Samples containing genotyped Variant) gives access to the list of the 10 first "Sample ID" and their associated status that are different from the reference.

As an example, this allows users to quickly know in which samples a single variation belongs. This can be useful in case of rare variants and potential pathogenic mutations.

f) Absence of annotations

It is to notice that when no annotation is available for a specific column, the empty value is set to "NA". Exception is made for several numerical columns (including the frequency, read depth or count related columns: rsMAF, alleleFrequency, $1000g_AF$, $gnomadAltFreq_all$, gnomadReadDepth, gnomadHomCount...) where "-1" is used that allows the user to further filter information without losing data.

5. SCORING

VaRank uses the variation type (i.e. substitution, deletion, insertion, duplication) and the coding effect to score. The VaRank scoring is categorized from the most likely to the less likely pathogenic state as follows (score into parenthesis): known mutation (110), stop gain (100), frameshift (100), essential splice site (2 first bases before and after the exon) (90), start loss (80), stop loss (80), intron-exon boundary (donor site is -3 to +6, acceptor site -12 to +2) (70), missense (50), splice site creation (40), strong or weak splice site activation (40, 35), in-frame (30), deep intronic changes (25), synonymous coding (10), exonic or intronic changes (2) and 3'/5' UTR (1). Each category is further described in the USAGE/OPTIONS section and each score can be changed.

Each specific variant score is further adjusted using additional information. For this, variants are assessed at the genomic level (phastCons) and at the protein level (SIFT and if installed PolyPhen-2), and an adjustment score (0 or +5) is added to the relevant category. The adjustment score can be changed by the user.

To ensure the best use of SIFT predictions, the deleterious status is only taken if the SIFT median value is comprised between [2.75-3.5].

Scores in bold reflect score values after the adjustment score is applied. 1/ Each variant score is adjusted (+5) if high conservation at the genomic level is observed (phastCons cutoff >0.95). 2/ Missense scores are adjusted (+5) for each deleterious prediction (SIFT and/or PPH2).

Variant Category	Option name	VaRank Score	Description
Known mutation	S_Known	110	Known mutation as annotated by HGMD and/or dbSNP (rsClinicalSignificance or clinVarClinSignifs="pathogenic/likely pathogenic")
Stop gain	S_StopGain ¹	100, 105	A single-base substitution in DNA resulting in a STOP codon (TGA, TAA or TAG).
Frameshift	S_Fs	100	Exonic insertion/deletion of a non-multiple of 3bp resulting often in a premature stop in the reading frame of the gene.
Essential splice site	S_EssentialSplice ¹	90, 95	Variation in one of the canonical splice sites resulting in a significant effect on splicing.
Start loss	S_StartLoss ¹	80, 85	Variation leading to the loss of the initiation codon (Met).
Stop loss	S_StopLoss ¹	80, 85	Variation leading to the loss of the STOP codon.
Intron-exon boundary	S_CloseSplice ¹	70, 75	Variation outside of the canonical/essential splice sites (donor site is -3 to -1, +3 to +6, acceptor site is -12 to +2).
Missense	S_Missense ^{1,2}	50, 55, 60, 65	A single-base substitution in DNA not resulting in a change in the amino acid.
Local Splice Effect	S_LSEstrong S_LSEweak	40 35	LocalSpliceEffect field is used to score splice site creation (40, based on New Donor Site, New Acceptor Site), strong splice site activation (40, based Cryptic Donor Strongly Activated, Cryptic Acceptor Strongly Activated) or weak splice site activation (35, based on Cryptic Donor Weakly Activated, Cryptic Acceptor Weakly Activated).
Indel in-frame	S_Inframe	30	Exonic insertion/deletion of a multiple of 3bp.
Deep intron-exon boundary	S_DeepSplice ¹	25 , 30	Intronic variation resulting in a significant effect on splicing.
Synonymous coding	S_Synonymous ¹	10, 15	A single-base substitution in DNA not resulting in a change in the amino acid.
Exonic or intronic	S_ExonIntron	2	Exonic or intronic variant without any predicted effect
3'/5' UTR	S_UTR	1	3'/5' UTR variant without any predicted effect

6. PHENOTYPE-DRIVEN ANALYSIS POWERED BY EXOMISER

To score genes overlapped with a SNV/indel on biological relevance to the individual phenotype, VaRank rely on Exomiser (Smedley et al., 2015) and HPO (Köhler et al., 2019).

This can be done using the configfile by simply reporting the HPO terms of each sample. The HPO terms must be a comma, semicolon or space separated values list. As an example, 2 samples are described as follow in the configfile:

```
#-----
# Phenotype-driven analysis :
#------
sample = Sample1
HP:0000510, HP:0001513, HP:0001249

sample = Sample2
HP:0004322, HP:0001251
```

For a given phenotype, a HPO-based score corresponding to a damaging probability is provided for each gene overlapped with an SNV/indel so that:

- Genes previously associated with disease can be highlighted easily
- Genes not previously associated with disease can be highlighted
- Genes associated with diseases that have little or no similarity to the observed phenotypes can be removed along

For each variant, only the first gene described is scored and annotated by Exomiser (Exomiser_gene_pheno_score, Human_pheno_evidence, Mouse_pheno_evidence and Fish_pheno_evidence).

HPO:

VaRank uses the Human Phenotype Ontology (version reported in the VaRank output). Find out more at http://www.human-phenotype-ontology.org.

Please cite the 2 following articles if you use these phenotype data in your work:

- Next-generation diagnostics and disease-gene discovery with the Exomiser. Smedley D., et al, Nature Protocols (2015) doi:10.1038/nprot.2015.124
- Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Köhler S., et al, Nucleic Acids Research (2019) doi: 10.1093/nar/gky1105

Usage:

The user describe in the configfile a human phenotype for each patient as a list of HPO terms. The HPO terms need to be as specific as possible.

According to our own (limited) experience, a known disease gene with an Exomiser_gene_pheno_score >= 0.7 can be considered to be associated with the disease. For a gene that has not been previously associated with a disease, the threshold can be lowered to 0.5.

If not provided, the Exomiser_gene_pheno_score is set to "-1.0".

7. USAGE / OPTIONS

A tutorial together with examples are available on the website to further describe the use of VaRank. To run VaRank, the default command line is the following:

\$VARANK/bin/VaRank -vcfdir '/Path/To/The/Directory/Containing/vcf/files' >& log.log &

The command line can be completed by the list of options described below or modified in the configfile. To show the options simply type:

\$VARANK/bin/VaRank -help or \$VARANK/bin/VaRank

OPTIONS:

-help More information on the arguments.

-vcfDir Path of your study directory containing your vcf input file.

-vcfInfo To extract the info column from the .vcf file and insert the data in the output file (last columns).

Range values: yes or no (default)

-vcfFields "List of fields". To extract selected fields from the VCF "INFO" column and insert these data in the output

files (last columns). Only if -vcfInfo is set to "yes".

-rsfromvcf To extract the rsID and validation status from the .vcf file and insert this in the output files.

Range values: yes or no (default)

-Homstatus To force the determination of the homozygous or heterozygous state of one variation. If set to yes it will

use the Homcutoff value to decide. Range values: yes or no (default)

-Homcutoff To determine the homozygous or heterozygous state of one variation. If set to some value it will force

to reconsider the data provided.

Range values: [0,100] default: 80 (active only if Homstatus=yes or when no status is given)

-MEScutoff MaxEntScan cutoff, to determine the impact of the variant on splicing. Expressed as the % difference

between the variant and the WT score. Range values: [-100,0], default: -15

-SSFcutoff Splice Site Finder cutoff, to determine the impact of the variant on splicing. Expressed as the % difference

between the variant and the WT score. Range values: [-100,0], default: -5

-NNScutoff NNSplice cutoff, to determine the impact of the variant on splicing. Expressed as the % difference

between the variant and the WT score. Range values: [-100,0], default: -10

-phastConsCutoff To determine when a genomic position is conserved or not. Above the cutoff is considered as

conserved.

Range values: [0,1], default: 0.95

-readFilter Minimum number of reads for the variants.

Range values: [0,-], default: 10

-depthFilter Minimum depth for the variants.

Range values: [0,-], default: 10

-readPercentFilter Minimum percent of variant reads for considering a variant.

Range values: [0,100], default: 15

-freqFilter Filtering variants based on their MAF in the SNV databases (dbsnp, 1000Genome, EVS, gnomAD, ...).

Range values: [0.0,1.0], default: 0.01

-rsFilter Filtering variants on the SNP information.

Values: removeNonPathoRS (remove variants without "probable-pathogenic" or "pathogenic" annotation, see clinical significance field in dbSNP website. Filtering only for variants with at least 2

validations).

none = keep all variants, no filtering on rsID.

Default: removeNonPathoRS

-extann Tab separated file containing annotation to add to the final output files. Restrictions for the format are:

first line is a header, first column is the gene name. Typical use would be a gene file containing specific

annotations such as transmission mode, disease, expression...

-metrics Changing numerical values from frequencies to us or fr metrics (e.g. 0.2 or 0,2).

Range values: us (default) or fr

-alamutHumanDB Alamut Batch specific option to select the reference human genome version.

-javaPath To explicitly set the Java path.

-snpeffHumanDB SnpEff specific option to select the reference human genome version.

Ex: "GRCh37.75"

-dbSNP SnpEff specific option to describe the full path to the location of the dbSNPvcf file used by SnpSift.

Ex: "\$SNPEFF/db/dbSNP.2015-01-09 00-All.vcf"

-dbNSFP SnpEff specific option to describe the full path to the location of the dbNSFPvcf file used by SnpSift.

Ex: "\$SNPEFF/db/dbNSFP/dbNSFP2.4.txt.gz"

-phastConsDB SnpEff specific option to describe the full path to the location phastConsdirectory used by SnpSift.

Ex: "\$SNPEFF/db/phastCons"

-uniprot Name of the UniProt sequence file (optional, only use if PPH2 is installed).

Ex: HUMAN.fasta.gz (default)

-refseq Name of the RefSeq sequence file (optional, only use if PPH2 is installed).

Ex: human.protein.faa.gz (default)

-hgmdUser HGMD User login (optional, only use if you have an HGMD license).
-hgmdPasswd HGMD User password (optional, only use if you have an HGMD license).

-proxyUser Proxy User login.

-proxyPasswd Proxy User password (optional, default is "password").

-proxyServer The name of the proxy.

-proxyPort The port used by the proxy to communicate (default is "8080").

-SamVa To add a new column with the sample ID of the 10 first non homozygous WT variants, with their

homozygote/heterozygote status. Range values: yes or no (default)

-SamOut A "Sample list". To write output files only for selected samples.

Ex: "sample1 sample2".

- AlamutProcesses #processes (Alamut batch Standalone version only). Alamut Annotation jobs are split among multiple

processes on the same computer.

Range values: Integer (default=0, no multi-process)

- AlamutAlltrans Annotate variants on all transcripts with Alamut (rather than on the longest transcript).

Range values: yes (default) or no

The following options are provided to adapt the scoring scheme to the users:

-S_Known Known mutation as annotated by HGMD and/or dbSNP (rsClinicalSignificance or

clinVarClinSignifs="pathogenic/probable-pathogenic").

Default: 110

-S_StopGain A single-base substitution in DNA resulting in a STOP codon (TGA, TAA or TAG).

default: 100

-S_Fs Exonic insertion/deletion of a non-multiple of 3bp resulting often in a premature stop in the reading

frame of the gene.

default: 100

-S_EssentialSplice Mutation in one of the canonical splice sites resulting in a significant effect on splicing (at least 2 out of

the 3 programs indicate a relative variation in their score compared to the wild type sequence).

default: 90

-S_StartLoss Mutation leading to the loss of the initiation codon (Met).

default: 80

-S_StopLoss Mutation leading to the loss of the STOP codon.

default: 80

-S_CloseSplice Mutation outside of the canonical splice sites (donor site is -3 to +6', acceptor site -12 to +2) resulting in

a significant effect on splicing (at least 2 out of the 3 programs indicate a relative variation in their score

compared to the wild type sequence).

default: 70

-S_Missense A single-base substitution in DNA not resulting in a change in the amino acid.

default: 50

-S_LSEstrong Strong local splice effect (splice site creation or strong activation).

default: 40

-S_LSEweak Weak local splice activation.

default: 35

-S_Inframe Exonic insertion/deletion of a multiple of 3bp.

default: 30

-S DeepSplice Intronic mutation resulting in a significant effect on splicing (at least 2 out of the 3 programs indicate a

relative variation in their score compared to the wild type sequence).

default: 25

-S_Synonymous A single-base substitution in DNA not resulting in a change in the amino acid.

default: 10

-B_phastCons Each variant score is adjusted if a conservation at the genomic level is observed (PhastCons cutoff >0.95).

default: 5

-S_ExonIntron Exonic or intronic variations without any predicted effect

default: 2

-S_UTR 3'/5' UTR variant without any predicted effect

default: 1

-B_SIFT Missenses scores are adjusted for each SIFT deleterious prediction.

default: 5

-B_PPH2 Missenses scores are adjusted for each PPH2 deleterious prediction status.

default: 5

9. REMARKS

a) EVS dataset

A high false positive variant calls has been observed for indels in the EVS dataset, leading to unexpectedly highly frequent (>1%) frameshifts in gene known to cause rare diseases. Therefore, we have decided to remove the EVS dataset from the outputs starting from version 1.4 and from the automatic filtering steps.

b) dbSNP MAF

Since the minor allele frequency described in the dbSNP database (MAF, see http://www.ncbi.nlm.nih.gov/projects/SNP/docs/rs attributes.html) does not necessary represent the variation that is being observed in the vcf file being annotated but rather one at the position, we only filter on this if the allele is the same.

c) gnomAD FILTER

Using the gnomAD database, when available we only filter variation when marked "PASS" in the "gnomadFilter" field.

d) Filtered output files

The "filtered" files can be considered as very stringent filtering step to ensure a very quick first analysis of the data. Users can always modify the default parameters.

e) Variant annotated on several transcripts of a same gene

For a variant annotated on several transcripts of a same gene, keep (i) the transcript annotation with the best score or (ii) with an equal score the longest transcript annotation

10. FAQ

Q: How to cite VaRank in your work?

A: If you are using VaRank, please cite our work using the following reference:

Geoffroy V.*, Pizot C.*, Redin C., Piton A., Vasli N., Stoetzel C., Blavier A., Laporte J. and Muller J.

VaRank: a simple and powerful tool for ranking genetic variants. PeerJ. 2015. (10.7717/peerj.796)

Q: What are the WARNINGs that VaRank mention while running?

A: VaRank writes to the standard output the progress of the analysis including warnings about issues or missing information that can be either blocking or simply informative. More specifically while loading the VCF file(s) specific information are under survey such as VCF format consistency, patient redundancy, the total and variant read depth, the genotype, the indels. Any surveyed default will be reported to the user.

Q: I want to run a VaRank analysis again, what shall I do?

A: Simply remove all output files (*.tsv) and type the new command line. All annotations will be kept and the analysis should be done very quickly.

Q: I have already computed 5 samples in my analysis and I want to add 10 more, what should I do?

A: Considering no updated version of any annotation source or VaRank available, you can simply add the new vcf files to the already computed ones, remove all output files (*.tsv) and rerun VaRank. VaRank will only recompute the missing annotations and will save you the computation time of reannotating multiple times the same variants.

Q: How are the variant homozygous or heterozygous status reported?

A: VaRank trust by default the zygosity status provided by the vcf and report this in the column "Zigosity" in the output files. Nonetheless, in the case when no data is provided but total and variant depth of coverage is available, VaRank recompute this by applying the simple rule everything >= Homcutoff (default 80% see options) is homozygous and the rest is heterozygous. In order to clearly show difference with other variants those recomputed will be noted "hom?" or "het?". The same rule is applied when using the option "-Homstatus" except that variant are noted "hom" or "het".

Q: In the output files, some values are set to "NA"?

A: When for a specific type of annotation no information is available then the empty value is set to "NA" (e.g. Not Available). Exception is made for several numerical columns (including rsMAF, gnomAD frequencies...) where "-1" is used that allows the user to further filter information without losing data.

Q: When PolyPhen-2 prediction are running?

A: Depending on the annotation engine PPH2 either needs to be installed separately (Alamut Batch) or is already integrated (SnpEff). Nevertheless one can still have SnpEff installed and a local installation of PPH2. If the 2 programs are installed and properly setup for the use in VaRank, despite the fact that SnpEff annotations might already contain PPH2 predictions, the local PPH2 installation will be used. If this is not your intention simply unset PPH2 environment variable

Q: If SNPEFF and ALAMUT environment variables are both set, what annotation engine is running? A: By default, the Alamut annotation engine is used.

Q: I do have a proxy, how can deal with this?

A: if you use Alamut Batch, 4 parameters can be used to allow the program to connect to the internet via the proxy. Depending on your setup (white list or not), you can add the servers name (proxyServer), the port (proxyPort), the user (proxyUser) and corresponding password (proxyPasswd). Please be aware that the command line will be launched with these informations. If your configuration allows the use of only you user ID, the password will be set by default to the following value "default".

Q: Why can we have several genes in the annotation of one variation?

In some cases, one variation can be annotated using several genes. This happens when overlapping genes exist. VaRank selects the most pathogenic annotation and thus the first gene described is the one corresponding to this situation. VaRank keep all the other gene names. In the following example, BBS1 is the gene in consideration for the annotation of the considered variation but as indicated in the column "Gene" there is a second gene that is DPP3:11 66277969 C T BBS1/DPP3

Q: What do the OMIM Inheritance annotations mean?

AD = "Autosomal dominant"

AR = "Autosomal recessive"

XLD = "X-linked dominant"

XLR = "X-linked recessive"

YLD = "Y-linked dominant"

YLR = "Y-linked recessive"

XL = "X-linked"

YL = "Y-linked"