Modélisation Phonétique

Nicolas Gutehrlé 2021

Table des matières

1	Ondes sonores 1.1 Propagation du son	3
2	Caractéristiques du son	4
3	Période et longueur d'onde	4
4	Fréquences - Hauteur	6
5	Amplitude - Intensité 5.1 Degré de perception de l'intensité du son	8
6	Timbre 6.1 Fréquence fondamentale	9 9 10
7	Son simple et son complexe 7.1 Signal apériodique	12 12 14
8	Exercices 8.1 Exercice 1 8.2 Exercice 2 8.3 Exercice 3 8.4 Exercice 4	15 15 15 15 15
9	Correction exercices 9.1 Exercice 1 9.2 Exercice 2 9.3 Exercice 3 9.4 Exercice 4	17 17 17 17

1 Ondes sonores

Le son est notre perception d'une onde acoustique. Cette dernière est générée par une vibration (corde d'un violon, membrane d'un haut-parleur, ...). La vibration va entraîner un déplacements des particules du milieu (air ambiant, eau, ...). Ces particules vont alors subir de manière cyclique des moments de très fortes pressions, suivis de moment de relâchement de cette pression. Ce cycle de pression-dépression se fait autour d'un point d'équilibre, qui correspond à la position naturelle des particules du milieu. Nous percevons ces ondes grâce au tympan, qui les transforme en vibrations mécaniques qui vont jusqu'à notre cerveau.

FIGURE 1 – Représentation de l'évolution d'une onde sinusoïdale dans le temps

Tout point situé au dessus de la ligne indique une augmentation de la pression de l'air. A l'inverse, tout point situé en dessous de la ligne indique un relâchement de cette pression. Ainsi, une onde sonore consiste en une augmentation rapidement de la pression de l'air, suivi par un relâchement avant de revenir à son état stable.

Dans le cas de la parole, les changements de pression sont produits par la vibration des cordes vocales. La pression de l'air augmente fortement lorsque les cordes vocales sont fermées, puis est brusquement relâchée lorsqu'elles s'ouvrent. Ce sont ces successions rapides d'ouverture-fermeture des cordes vocales qui provoquent des variations de l'air.

1.1 Propagation du son

La célérité, c'est-à-dire la vitesse du son (notée C), dépend de la **densité du milieu de propagation** et de sa **température**. Par exemple, le son se propage à une vitesse de 340m/s dans l'air à 20°C, mais se propage à 1480m/s dans l'eau à 20°C. De même, le son se propage à 6000m/s dans l'acier, qui est un milieu bien plus dense que l'air ou l'eau.

Ainsi, plus un milieu sera dense et plus la vitesse de propagation sera rapide. De même, plus la température sera élevée et plus la vitesse de propagation sera rapide. Par exemple, la vitesse du son est de 331m/s dans l'air à 0°.

2 Caractéristiques du son

Les sons se distinguent selon trois aspects : la fréquence (également appelée hauteur) , l'amplitude (ou intensité) et le timbre.

3 Période et longueur d'onde

La période, notée T, est l'intervalle de temps séparant deux états vibratoires identiques et successifs d'un point du milieu dans lequel l'onde se propage. Elle correspond ainsi à la durée d'un cycle sonore. Elle est donc exprimée en **secondes**. Pour identifier la période d'une onde, on identifie sur l'oscillogramme la portion de l'onde située entre deux points successifs ayant la même amplitude.

La longueur d'une onde correspond à la distance parcourue par l'onde pendant une période. Plus la longueur d'onde est grande et plus la fréquence est faible.

FIGURE 2 – Visualisation de la période d'une onde

4 Fréquences - Hauteur

La fréquence F d'une onde sonore correspond au nombre de répétition d'un cycle sonore en une seconde. En d'autres termes, elle correspond au nombre de fois qu'une période est répétée en une seconde. La fréquence est exprimée en **hertz** (**Hz**). Ainsi, un onde sonore qui se répète 100 fois en une seconde aura une fréquence de 100Hz.

Pour obtenir la fréquence d'un son, on divise 1 seconde par la période de ce son. Par exemple, pour une période T de 0.5s, la fréquence F est de 1/0.05 = 20 Hz

L'oreille humaine peut percevoir des ondes allant de 20Hz à 20 000Hz (ou 20KHz). Plus la fréquence d'une onde sera **élevée** et plus celle-ci sera **aiguë**. A l'inverse, plus la fréquence sera **basse** et plus le son sera **grave**. En fonction de l'âge et du sexe, l'échelle de perception du son peut varier. Par exemple en vieillissant, on perd d'abord la perception des ondes les plus aiguës.

On parle **d'infrasons** pour tout son situé en dessous des 20Hz et d'**ultrasons** pour tout son situé au dessus des 20KHz. L'un comme l'autre ne sont pas perçus par l'oreille humaine, mais peuvent l'être par d'autres espèces vivantes (chiens, baleines, ...) ou par des appareils.

FIGURE 3 – Représentation d'ondes à basses et hautes fréquences

On peut obtenir la période d'une onde à partir de la fréquence : pour cela on divise 1 par la fréquence. Ainsi, T=1/F.

Au vue de la relation entre période et fréquence, plus la période est grande et plus la fréquence est basse. A l'inverse, plus la période est courte et plus la fréquence est haute.

5 Amplitude - Intensité

L'amplitude d'un son, ou intensité, correspond à la pression de l'air lors de l'émission du son. L'intensité d'un son permet de distinguer les sons forts des sons faibles. L'intensité peut donc s'associer au volume du son. Elle est exprimée en décibel (Db),

FIGURE 4 – Représentaton de trois ondes avec différentes fréquences et amplitude

5.1 Degré de perception de l'intensité du son

C 1 1:4:		
Sans danger pour l'audition	. 17 0 11 11	
	0 dB Seuil d'audition	
	15 dB Bruissement de feuilles	
	20 dB Chuchotement / Jardin paisible	
	25 dB Conversation à voix basse	
	30 dB Appartement dans un quartier tranquille	
	35 dB Bateau à voile / Tic tac de montre	
	40 dB Rue résidentielle	
	50 dB Bruit d'une voiture au ralenti	
	60 dB Grands magasins / Sonnerie de téléphone	
	70 dB Restaurant bruyant	
	85 dB Radio volume à fond / Tondeuse à gazon	
Facteurs de troubles auditifs		
	90 dB Rue au trafic intense	
	95 dB Atelier de forgeage / Train passant en gare	
Pénible à entendre		
	100 dB Marteau piqueur / Baladeur à fond	
	105 dB Discothèque / Concert	
Difficile à supporter :		
	110 dB Atelier de chaudronnerie	
Seuil de la douleur		
	120 dB Moteur d'avion	
	130 dB Décollage d'un avion / Formule 1	
Exige une protection auditive:	e :	
	140 dB Turbo réacteur au banc d'essai	
	180 dB Fusée Ariane au décollage	

6 Timbre

Le timbre d'un son correspond à sa qualité, sa couleur. Le timbre d'un son est caractérisé par l'addition des **harmoniques** à la **fréquence fondamentale**. Deux sons ayant la même hauteur et la même intensité peuvent se distinguer par leur timbre : la même note (même hauteur et même intensité) jouée par deux instruments différents (ex : un violon et un saxophone) n'aura pas le même timbre.

Cette notion vaut également pour le langue orale : on peut chanter les sons /i/ et /a/ sur la même note (donc sur la même fréquence) et avec la même intensité (donc avec le même volume). Cependant, en raison de la différence dans le trait d'aperture entre ces deux sons, /i/ produit des harmoniques plus aiguës que /a/.

6.1 Fréquence fondamentale

La fréquence fondamentale d'un son est sa fréquence la plus basse, c'est-à-dire celle dont la période est la plus basse. Cette fréquence est la fréquence d'origine à partir de laquelle vont se créer les harmoniques.

FIGURE 5 – Fréquence fondamental et harmonique du La3

Dans la production orale, la fréquence fondamentale correspond à la vibration des cordes vocales. En moyenne, cette fréquence fondamentale (F0) est de 120Hz pour un homme et de 240Hz pour une femme.

Attention : en anglais, la fréquence fondamentale (F0) se nomme first harmonic (H1). Il ne faut donc pas confondre les deux.

6.2 Harmoniques

Les harmoniques sont des résonances produites par la fréquence fondamentale. Ce sont des multiples de cette fréquence : la première harmonique correspond au **double** de la fréquence fondamentale, la seconde harmonique au **triple** de la fréquence fondamentale, la troisième au **quadruple**, etc.

F0	H1	H2	H3	H4
440Hz	880Hz	1320Hz	1760Hz	2200Hz
261Hz	522Hz	783Hz	1044Hz	1305Hz
120Hz	240Hz	360Hz	480Hz	600Hz
240Hz	480Hz	720Hz	960Hz	1200Hz

FIGURE 6 – Représentation de l'onde du La3 sur l'oscilloscope

7 Son simple et son complexe

Un son simple est composé d'une seule onde sonore. Un son pur est un son qui ne possède pas d'harmonique. Ces sons là n'existent pas dans la nature, et sont donc toujours synthétisé.

A l'inverse, un son complexe est composé d'au moins deux ondes sonores simples. Les ondes simples sont toujours périodiques, tandis que les ondes complexes peuvent être périodiques comme apériodiques ¹.

FIGURE 7 – Synthèse d'une onde complexe à partir de trois ondes simples

7.1 Signal apériodique

Un signal **apériodique** est une onde qui n'a pas de motif propre et qui donc ne se répète pas dans le temps. Les sons apériodiques n'ayant pas de cycles sonores, ils ne possèdent pas de fréquence fondamentale. Le signal apériodique est équivalent au bruit, comme :

- bruit blanc ou bruit rose
- bruit (livre qui tombe, fracas, ...)
- consonnes

^{1.} Allez sur le site Additive synthese waveform generator "https://meettechniek.info/additional/additive-synthesis.html" pour visualiser l'évolution d'une onde simple à une onde complexe

FIGURE 8 – Onde apériodique du bruit blanc

7.2 Signal périodique

Un signal **périodique** est une onde se répétant à l'identique dans le temps. L'onde périodique par excellence est l'onde **sinusoïdale**. On retrouve également les ondes **carrées**, **triangulaires** et **en dent de scie**. Ces trois dernières ne sont obtenues que par synthèse ou par modification d'une onde sinusoïdale.

FIGURE 9 – Représentation des différentes ondes périodiques

Un son complexe est donc par lui-même un son non-sinusoïdale. Un son complexe périodique (note de musique, voix, ...) correspond à la somme de plusieurs ondes sinusoïdales, qui sont respectivement la fréquence fondamentale et ses harmoniques. C'est que l'on appelle la **transformation de Fourier**.

8 Exercices

8.1 Exercice 1

Calculez les fréquences associées aux périodes ci-dessous. Arrondissez le résultat à l'entier :

Période	Fréquence
0,0027s	
0,0083s	
0,004s	
0,0013s	
0,016s	

8.2 Exercice 2

Calculez les périodes associées aux fréquences ci-dessous. Arrondissez le résultat à l'entier :

Fréquence	Période
60Hz	
750Hz	
1400Hz	
440Hz	
2Hz	

8.3 Exercice 3

Indiquer les 4 premières harmoniques de chaque fréquence fondamentale ci-dessous :

F0	H1	H2	Н3	H4
250Hz				
375Hz				
550Hz				
750Hz				

8.4 Exercice 4

Sur chacune des ondes ci-dessous, tracez la période en rouge et l'amplitude à l'aide d'une flèche. A partir de cette période, calculez la fréquence de chaque onde. Vous indiquerez la période, la fréquence et l'amplitude dans le tableau ci-dessous :

Onde	Période	Fréquence	Amplitude
A			
В			
С			
D			

 $Figure\ 10-Exercice$

9 Correction exercices

9.1 Exercice 1

Calculez les fréquences associées aux périodes ci-dessous. Arrondissez le résultat à l'entier :

Période	Fréquence
0,0027s	370Hz
0,0083s	121Hz
0,004s	250Hz
0,0013s	769Hz
0,016s	63Hz

9.2 Exercice 2

Calculez les périodes associées aux fréquences ci-dessous. Arrondissez le résultat à l'entier :

Fréquence	Période
60Hz	0.017 s
750Hz	0.001s
1400Hz	0.001s
440Hz	0.002s
2Hz	0.500s

9.3 Exercice 3

Indiquer les 4 premières harmoniques de chaque fréquence fondamentale ci-dessous :

F0	H1	H2	Н3	H4
250Hz	500Hz	750Hz	1000Hz	1250Hz
375Hz	750Hz	1125Hz	1500Hz	1875Hz
550Hz	1100Hz	1650Hz	2200Hz	2750Hz
750Hz	1500Hz	2250Hz	3000Hz	3750Hz

9.4 Exercice 4

Sur chacune des ondes ci-dessous, tracez la période en rouge et l'amplitude à l'aide d'une flèche. A partir de cette période, calculez la fréquence de chaque onde. Vous indiquerez la période, la fréquence et l'amplitude dans le tableau ci-dessous :

Onde	Période	Fréquence	Amplitude
A	0.0023	434.7826	1
В	0.0013	769.2308	1
С	0.0007	1428.5714	1
D	0.0007	1428.5714	0.5

