§ 4.2 多因素方差分析

Variance analysis of multiple factor

建立模型

参数估计

统计检验

设A、B为两个因子,A有k个水平 A_1 , A_2 ,…, A_k ,B有r个水平 B_1 , B_2 ,…, B_r ,两个因子共有kr个水平组合 A_iB_j (i=1,2,3,…,k;j=1,2,3,…,r)。

设对每一个水平组合 A_iB_j 做了n次试验(这里只讨论每个水平所作试验次数相同的情形),试验结果为 $y_{ij1}, y_{ij2}, \dots, y_{ijn}$ ($i=1,2,3,\dots,k$; $j=1,2,3,\dots,r$)。

例 4-2 考虑合成纤维弹性,影响因素为收缩率 A和拉伸倍数B,A、B各有四个水平,每个水平分别作了两次试验,相应的试验结果见表 4-8

表 4-8

试验 因子 结果 <i>A</i> 因 子 <i>B</i>	$A_1 \ 0$	$egin{array}{c} A_2 \ 4 \end{array}$	A_3 8	A_4 12
$B_1 = 460$	71 73	73 75	76 73	75 73
$B_2 = 520$	72 73	76 74	79 77	73 72
$B_3 = 580$	75 73	78 77	74 75	70 71
$B_4 = 640$	77 75	74 74	74 73	69 69

一. 建立模型

modeling

假定对水平组合 $A_i B_j$ 试验结果的理论值为 μ_{ij} ,即 $Ey_{ijl} = \mu_{ij}$,则 y_{iil} 可分解为

$$y_{ijl} = \mu_{ij} + \varepsilon_{ijl}$$
 $i = 1, 2, 3, \dots, k$; $j = 1, 2, 3, \dots, r$; $l = 1, 2, \dots, n$ (4-9)

其中 ε_{ijl} 为试验误差,它是一个随机变量。通常假定 ε_{ijl} ($i=1,2,3,\dots,k$; $j=1,2,3,\dots,r$; $l=1,2,\dots,n$)

独立同分布 $N(0, \sigma^2)$ 。

为了反映因子A、B的水平变化对试验结果影响的大小,将 μ_{ii} 再进行分解,记

$$\mu = \frac{1}{kr} \sum_{i=1}^{k} \sum_{j=1}^{r} \mu_{ij}$$

$$\mu_i = \frac{1}{r} \sum_{j=1}^r \mu_{ij} \ (i = 1, 2, \dots, k)$$
 (4-10)

$$v_j = \frac{1}{k} \sum_{i=1}^k \mu_{ij} \quad (j = 1, 2, \dots, r)$$
 (4-11)

于是有

$$\mu_{ij} = \mu + (\mu_i - \mu) + (v_j - \mu) + (\mu_{ij} - \mu_i - v_j + \mu)$$

$$\hat{=} \mu + \alpha_i + \beta_j + \gamma_{ij}$$

其中, $\alpha_i = \mu_i - \mu$, $\beta_j = v_j - \mu$, $\gamma_{ij} = \mu_{ij} - \mu_i - v_j + \mu$, 不难验证:

$$\sum_{i=1}^{k} \alpha_i = 0, \qquad \sum_{j=1}^{r} \beta_j = 0, \qquad \sum_{i=1}^{k} \gamma_{ij} = \sum_{j=1}^{r} \gamma_{ij} = 0,$$

一.建立模型

两个因素方差分析的一般数学模型:

$$\begin{cases} y_{ijl} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijl}, \\ \sum_{i=1}^k \alpha_i = 0, \sum_{j=1}^r \beta_j = 0, \sum_{i=1}^k \gamma_{ij} = \sum_{j=1}^r \gamma_{ij} = 0, \\ \varepsilon_{ijl} i \cdot i \cdot dN(0, \sigma^2), \quad i = 1, \dots, k; \quad j = 1, \dots, r; \quad l = 1, \dots, n, \end{cases}$$

需要解决如下问题:

(1) 估计未知参数 μ , α_i , β_j , γ_{ij}

$$(i = 1, \dots, k; j = 1, \dots, r; l = 1, \dots, n)$$
;

(2)考察因子 A和因子 B的水平变化对试验结果的影响有无显著差异,以及因子 A和因子 B有无交互作用,归结为下述三个假设检验:

需要解决如下问题:

(1) 估计未知参数 μ , α_i , β_j , γ_{ij}

$$(i = 1, \dots, k; j = 1, \dots, r; l = 1, \dots, n)$$
;

(2) 考察因子 *A* 和因子 *B* 的水平变化对试验结果的影响有无显著差异,以及因子 *A* 和因子 *B* 有无交互作用,归结为下述三个假设检验:

$$H_{01}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$;

$$H_{10}$$
: $\beta_1 = \beta_2 = \dots = \beta_r = 0$;

$$H_{11}: \gamma_{ij} = 0$$
, $i = 1, \dots, k$; $j = 1, \dots, r$.

二. 参数估计 Parameter estimate

记

$$\overline{y} = \frac{1}{nkr} \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} y_{ijl} \qquad \overline{y}_{i.} = \frac{1}{nr} \sum_{j=1}^{r} \sum_{l=1}^{n} y_{ijl}
\overline{y}_{.j} = \frac{1}{nk} \sum_{i=1}^{k} \sum_{l=1}^{n} y_{ijl} \qquad \overline{y}_{ij} = \frac{1}{n} \sum_{l=1}^{n} y_{ijl}$$

完全类似于单因素方差分析,得未知参数 μ , α_i , β_i , γ_{ii} 的矩估计为

$$\hat{\mu} = \overline{y}$$
, $\hat{\alpha}_i = \overline{y}_{i\cdot} - \overline{y}$, $\hat{\beta}_j = \overline{y}_{\cdot j} - \overline{y}$ (4-13)

$$\hat{\gamma}_{ij} = \overline{y}_{ij} - \overline{y}_{i\cdot} - \overline{y}_{\cdot j} + \overline{y}$$
, $i = 1, 2, \dots, k$; $j = 1, 2, \dots, r$

易证它们分别是 μ , α_i , β_j , γ_{ij} 的无偏估计。

三. 统计检验

Statistical tests

$$S_{\mathbb{H}}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (y_{ijl} - \overline{y})^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} [(y_{ijl} - \overline{y}_{ij}) + (\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}) + (\overline{y}_{.j} - \overline{y})^{2} + (\overline{y}_{.j} - \overline{y})^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (y_{ijl} - \overline{y}_{ij})^{2} + \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (\overline{y}_{i.} - \overline{y})^{2}$$

$$+ \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (\overline{y}_{.j} - \overline{y})^{2} + \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y})^{2} + 0$$

$$= S_{\mathbb{H}}^{2} + S_{A}^{2} + S_{B}^{2} + S_{AB}^{2}$$

$$(4-14)$$

其中,交叉项全为零,例如

$$\sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (y_{ijl} - \overline{y}_{ij})(\overline{y}_{i.} - \overline{y}) = \sum_{i=1}^{k} (\overline{y}_{i.} - \overline{y}) \sum_{j=1}^{r} \sum_{l=1}^{n} (y_{ijl} - \overline{y}_{ij})$$

$$= \sum_{i=1}^{k} (\overline{y}_{i.} - \overline{y})(nr\overline{y}_{i.} - nr\overline{y}_{i.}) = 0$$

$$S_{\mathbb{R}}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (y_{ijl} - \overline{y}_{ij})^{2}$$
 (4-15)

$$S_A^2 = \sum_{i=1}^k \sum_{j=1}^r \sum_{l=1}^n (\overline{y}_{i.} - \overline{y})^2 = rn \sum_{i=1}^k (\overline{y}_{i.} - \overline{y})^2$$
 (4-16)

$$S_B^2 = \sum_{i=1}^k \sum_{j=1}^r \sum_{l=1}^n (\overline{y}_{.j} - \overline{y})^2 = kn \sum_{j=1}^r (\overline{y}_{.j} - \overline{y})^2$$
 (4-17)

$$S_{AB}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y})^{2}$$

三. 统计检验

Statistical tests

$$S_{AB}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} (\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y})^{2}$$

$$= n \sum_{i=1}^{k} \sum_{j=1}^{r} (\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y})^{2}$$

$$(4-18)$$

类似于单因素方差分析, $S_{\mathbb{R}}^2$ 、 S_A^2 、 S_B^2 、 S_{AB}^2

的相对大小分别反映了因子 A 和因子 B 的水平单独以及联合对试验结果的影响大小。可以证明

当
$$H_{01}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ 成立时

$$F_1 = \frac{S_A^2/(k-1)}{S_{\mathbb{H}}^2/kr(n-1)} \sim F(k-1, kr(n-1)) \quad (4-19)$$

三. 统计检验

Statistical tests

当
$$H_{10}$$
: $\beta_1 = \beta_2 = \cdots = \beta_r = 0$ 成立时

$$F_2 = \frac{S_B^2/(r-1)}{S_{\mathbb{H}}^2/kr(n-1)} \sim F(r-1, kr(n-1))$$
 (4-20)

当
$$H_{11}$$
: γ_{ij} =0, $i=1,\dots,k$; $j=1,\dots,r$ 成立时

$$F_3 = \frac{S_{AB}^2/(k-1)(r-1)}{S_{\mathbb{R}}^2/kr(n-1)} \sim F((k-1)(r-1), kr(n-1))$$
(4-21)

因此可利用上述三个统计量对假设 H_{01} 、 H_{10} 、 H_{11} 进行 F 检验。若以 $f_{\text{因子}}$ 表示相应于 $S_{\text{因子}}^2$ 的因子的自由度,上述三个统计量可统一写成

$$F = \frac{S_{\boxtimes \mathcal{F}}^2 / f_{\boxtimes \mathcal{F}}}{S_{\mathbb{R}}^2 / kr(n-1)}$$

表 4-7 方差分析表

方差来源	平方和	自由度	平均平方和	F 值		
因素 A	S_A^2	k-1	$S_A^2/(k-1)$	$F_1 = \frac{S_A^2 / (k-1)}{S_{\mathbb{R}}^2 / kr(n-1)}$		
因素 B	S_B^2	r-1	$S_B^2/(r-1)$	$F_2 = \frac{S_B^2 / (r-1)}{S_{\mathbb{R}}^2 / kr(n-1)}$		
$A \times B$	S_{AB}^2	$(k-1) \times (r-1)$	$\frac{S_{AB}^2}{(k-1)(r-1)}$	$F_3 = \frac{S_{AB}^2 / (k-1)(r-1)}{S_{\mathbb{R}}^2 / kr(n-1)}$		
误差	$S^2_{ m 误}$	kr(n-1)	$S_{\rm e}^2/kr(n-1)$			
总和	S^2 总	<i>krn</i> −1				

三. 统计检验

Statistical tests

$$S_{\stackrel{\sim}{\bowtie}}^{2} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} \sum_{l=1}^{n} (y_{ijl} - \overline{y})^{2} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} \sum_{l=1}^{n} y_{ijl}^{2} - \frac{T_{...}^{2}}{krn}$$

$$S_{A}^{2} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} \sum_{l=1}^{n} (\overline{y}_{i.} - \overline{y})^{2} = rn \sum_{i=1}^{k} (\overline{y}_{i.} - \overline{y})^{2} = \frac{1}{rn} \sum_{i=1}^{k} T_{i...}^{2} - \frac{T_{...}^{2}}{krn}$$

$$S_{B}^{2} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} \sum_{l=1}^{n} (\overline{y}_{.j} - \overline{y})^{2} = kn \sum_{j=1}^{r} (\overline{y}_{.j} - \overline{y})^{2} = \frac{1}{kn} \sum_{j=1}^{r} T_{.j.}^{2} - \frac{T_{...}^{2}}{krn} - \frac{T_{...}^{2}}{krn}$$

$$S_{AB}^{2} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} \sum_{l=1}^{n} (\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y})^{2} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{r} T_{ij.}^{2} - \frac{T_{...}^{2}}{krn} - S_{A}^{2} - S_{B}^{2}$$

$$S_{\stackrel{\sim}{\bowtie}}^{2} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} (y_{ijl} - \overline{y}_{ij})^{2} = S_{\stackrel{\sim}{\bowtie}}^{2} - S_{A}^{2} - S_{B}^{2} - S_{AB}^{2}$$

$$T_{...} = \sum_{i=1}^{k} \sum_{j=l=1}^{r} y_{ijl}, \quad T_{ij.} = \sum_{l=1}^{n} y_{ijl} \quad T_{i...} = \sum_{j=1}^{r} \sum_{l=1}^{n} y_{ijl}$$

$$T_{..j.} = \sum_{i=1}^{k} \sum_{l=1}^{n} y_{ijl} \quad i = 1, \dots, k; \quad j = 1, \dots, r$$

例 4-2 考虑合成纤维弹性,影响因素为收缩率 A和拉伸倍数B,A、B各有四个水平,每个水平分别作了两次试验,相应的试验结果见表 4-8

表 4-8

试验 因子 结果 <i>A</i> 因 子 <i>B</i>	$A_1 \ 0$	A_2 4	A_3 8	A_4 12
$B_1 = 460$	71 73	73 75	76 73	75 73
$B_2 = 520$	72 73	76 74	79 77	73 72
$B_3 = 580$	75 73	78 77	74 75	70 71
B_4 640	77 75	74 74	74 73	69 69

解: 由题意知 k = 4, r = 4, n = 2,又由表 4-8 得 $T_{1..} = 589$, $T_{2..} = 601$, $T_{3..} = 601$, $T_{4..} = 572$, $T_{.1.} = 589$, $T_{.2.} = 596$, $T_{.3.} = 593$, $T_{.4.} = 585$, $T_{...} = 2363$, T_{ij} .见表 4-8中两数之和。

$$S_{AB}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} y_{ijl}^{2} - \frac{T_{...}^{2}}{krn} = 174678 - 174492. \ 78 = 180. \ 22$$

$$S_{A}^{2} = \frac{1}{rn} \sum_{i=1}^{k} T_{i..}^{2} - \frac{T_{...}^{2}}{krn} = 174563. \ 38 - 174492. \ 78 = 70. \ 60$$

$$S_{B}^{2} = \frac{1}{kn} \sum_{j=1}^{r} T_{.j.}^{2} - \frac{T_{...}^{2}}{krn} = 174501. \ 38 - 174492. \ 78 = 8. \ 60$$

$$S_{AB}^{2} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{r} T_{ij.}^{2} - \frac{T_{...}^{2}}{krn} - S_{A}^{2} - S_{B}^{2}$$

=174651.5-174492.78-8.60-70.60=79.52

$$S_{\mathbb{R}}^2 = S_{\mathbb{R}}^2 - S_A^2 - S_B^2 - S_{AB}^2 = 21.5$$

对给定水平 α =0.10,由 $P\{F > \lambda\}$ =0.10分别 查相应表得 $\lambda_1 = \lambda_2$ =2.46, λ_3 =2.06。

方差分析表

方差来源	平方和	自由度	平均平方和	F值
收缩率A	70. 60	3	23. 55	17.57**
拉伸倍数B	8. 60	3	2.87	2. 14
交互作用 AB	79. 52	9	8.84	6.59**
误差	21.50	16	1.34	
总 和	180. 22	31		

解: 将数据进行预处理 $(y_{iil} - 73)$, 然后进行方差分析:

表 4-8

试验 因子 结果 A 因 子 B	$egin{array}{c} A_1 \ 0 \end{array}$	A_2 4	A_3 8	A_4 12
B_1 460	-2 0	0 2	3 0	2 0
$B_2 = 520$	-1 0	3 1	6 4	0 -1
$B_3 = 580$	2 0	5 4	1 2	-3 -2
B_4 640	4 2	1 1	1 0	-4 -4

由题意知 k=4, r=4, n=2, 又由表 4-8 得 $T_{1..}=5$, $T_{2..}=17$, $T_{3..}=17$, $T_{4..}=-12$, $T_{.1.}=5$, $T_{.2.}=12$, $T_{.3.}=9$, $T_{.4.}=1$, $T_{...}=27$, T_{ij} . 见表 4-8 中两数之和。

由题意知 k=4, r=4, n=2, 又由表 4-8 得 $T_{1..}=5$, $T_{2..}=17$, $T_{3..}=17$, $T_{4..}=-12$, $T_{1..}=5$, $T_{.2.}=12$, $T_{.3.}=9$, $T_{.4.}=1$, $T_{...}=27$, T_{ii} . 见表 4-8 中两数之和。

$$S_{A}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{r} \sum_{l=1}^{n} y_{ijl}^{2} - \frac{T_{...}^{2}}{krn} = 203 - 22.78 = 180.22$$

$$S_{A}^{2} = \frac{1}{rn} \sum_{i=1}^{k} T_{i...}^{2} - \frac{T_{...}^{2}}{krn} = 93.38 - 22.78 = 70.59$$

$$S_B^2 = \frac{1}{kn} \sum_{j=1}^r T_{\cdot j}^2 - \frac{T_{\cdot \cdot \cdot}^2}{krn} = 31.38-22.78=8.59$$

$$S_{AB}^{2} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{r} T_{ij}^{2} - \frac{T_{...}^{2}}{krn} - S_{A}^{2} - S_{B}^{2}$$

=181. 5-22. 78-70. 60-8. 60=79. 53

$$S_{\mathbb{H}}^2 = S_A^2 - S_A^2 - S_B^2 - S_{AB}^2 = 21.51$$

对给定水平 α =0.10,由 $P\{F > \lambda\}$ =0.10分别 查相应表得 $\lambda_1 = \lambda_2$ =2.46, λ_3 =2.06。

方差分析表

方差来源	平方和	自由度	平均平方和	F值
收缩率A	70. 59	3	23. 53	17.51**
拉伸倍数点	8. 59	3	2. 87	2. 13
交互作用 A	B 79. 53	9	8.84	6.58**
误差	21. 51	16	1. 34	
总 和	180. 22	31		

4. Matlab多因素方差分析

在Matlab中,anova2函数用于双因素等重复试验的方差分析。

假设双因素方差分析条件满足:样本服从正态总体;正态总体的方差相同;样本相互独立。

其调用格式为

p=anova2(X, reps)

[p,table]=anova2(X, reps)

[p,table,stats]=anova2(X, reps)

其中,输入参数X为样本观测值组成的矩阵,X每一列对应因素A的一个水平,每一行对应因素B的一个水平,X还应满足方差分析的基本假定。

输入参数reps表示因素A和因素B的每一水平组合下重复 试验的次数。

当reps大于1时,还检验因素A和因素B交互作用是否显著。

输出参数为检验的p值,是一个行向量,视reps是否大于 1,确定其维数。 若p的分量小于显著性水平alpha,则拒绝原假设;否则接受原假设。

table为元胞数组形式的方差分析表。

stats为结构体变量,用于后续的多重比较。

例1.在某种金属材料的生产过程中,对热处理温度(因素B)与时间(因素A)各取两个水平,产品强度的测定结果(相对

值)下表所示.在同一条件下每个实验重复两次.设各水平 搭配下强度的总体服从正态分布且方差相同,各样本独立.

问:热处理温度,时间以及这两者的交互作用对产品强度是 否有显著的影响 (取alpha=0.05)?

	B1	B2
A 1	38. 0 38. 6	47. 0 44. 8
A2	45 43. 8	42. 4 40. 8

解: 这是双因素有交互作用方差分析

问题,用MATLAB计算,结果如下:

>> X=[38.0 38.6 47.0 44.8;

45.0 43.8 42.4 40.8]';

>> [p,table,stats]=anova2(X,2)

 $p = 0.3009 \quad 0.0340 \quad 0.0024$

ANOVA 表

来源	SS	df	MS	F	p值(F)
列 行	1.62	1	1.62	1.41	0.3009
行	11.52	1	11.52	10.02	0.034
交互效应	54.0	08 1	54.0	08 47.0	0.0024
误差	4.6	4	1.15		
	71.82	7			

由于0.3009>0.05,接受原假设H01,认为不同时间对产品强度无显著影响;

由于0.0340<0.05, 拒绝原假设H10, 认为不同温度对产品强度有显著影响;

由于0.0024<0.05, 拒绝原假设H11, 认为交互作用对产品强度有显著影响.

例2:设三名工人操作四台机器各一天,其日产量下表所示, 问不同机器或不同工人对日产量是否有显著影响 (alpha=0.05)?

	机器1	机器2	机器3	机器4
工人1	50	47	47	53
工人2	53	54	57	58
工人3	52	42	41	48

解: 这是双因素无交互作用方差分析

问题,用MATLAB计算,结果如下:

53 54 57 58;

52 42 41 48]';

>> [p,table,stats]=anova2(X,1)

p = 0.0144 0.2308

ANOVA 表

来源	SS	df	MS	F	p值(F)
列	195. 167	2	97.5833	9.32	0.0144
行误差	59.667 62.833	3		1.9	0.2308
合计	317.667	11	10. 1122		

由于0.0144<0.05, 拒绝原假设H01, 认为不同工人对产量有显著影响;

由于0.2308>0.05,接受原假设H10,认为不同机器对产量无显著影响;

例 4-2 考虑合成纤维弹性,影响因素为收缩率 A和拉伸倍数B,A、B各有四个水平,每个水平分别作了两次试验,相应的试验结果见表 4-8

表 4-8

试验 因子 结果 <i>A</i> 因 子 <i>B</i>	$A_1 \ 0$	A_2 4	A_3 8	A_4 12
$B_1 = 460$	71 73	73 75	76 73	75 73
$B_2 = 520$	72 73	76 74	79 77	73 72
$B_3 = 580$	75 73	78 77	74 75	70 71
B_4 640	77 75	74 74	74 73	69 69

解: 这是双因素无交互作用方差分析

问题,用MATLAB计算,结果如下:

X=[71 73 73 75 76 73 75 73;

72 73 76 74 79 77 73 72;

75 73 78 77 74 75 70 71;

77 75 74 74 74 73 69 69]';

[p,table,stats] = anova2(X,2)

= 1x3

0.1363 0.0000

0.0006

ANOVA 表

来源	SS	df	MS	F	p值(F)
列	8.594	3	2.8646	2.13	0.1363
行 交互效应 误差 合计	70. 594 79. 531 21. 5 180. 219	3 16 31	23. 5313 9 8. 8368 1. 3438		0 58 0.0006

方差分析表

方差来源	平方和	自由度	平均平方和	F值
收缩率 A	70. 60	3	23. 55	17.57**
拉伸倍数B	8. 60	3	2.87	2. 14
交互作用 AB	79. 52	9	8. 84	6.59**
误 差	21.50	16	1.34	
总 和	180. 22	31		