Advanced data structures

William Hendrix

Outline

- Project overview
- Review
- Other dictionary implementations
 - Bit vectors
- Heaps
- Union-find
- Prefix and suffix trees (not going to cover)

Project 1

- Implement 4 sorting algorithms
 - SelectionSort
 - InsertionSort
 - MergeSort
 - QuickSort
 - Submit your code (C++ or Java)
- Run these algorithms with 4 kinds of input
 - Increasing, decreasing, random, and constant arrays
 - Array size 10k-100k
 - Submit table of results (10 \times 16 + headers)
- Apply OLS regression to estimate time complexity
- Compare empirical complexity to theoretical (given in assignment)
 - Submit PDF with equations and analysis

Hash tables

- Apply hash function to map value into an allocated array
- Use one of two strategies to handle collisions
- Separate chaining
 - Each location is the head of a linked list
 - Append new element to list
 - Never "need" to reallocate
- Open addressing
 - Find the next open location, insert there
 - Can scan quadratically to avoid "congestion"
 - No links, so table can be larger with same memory
 - Linear scanning benefits from caching
 - Deleting an element requires reinserting everything that follows
- Expected-case complexity
 - Collisions are relatively infrequent (O(1))
 - Array size (m) is O(n)

Hash table complexity

Operation	Hash tables worst-case	Hash tables expected-case	Balanced BST	
Search(x)	O(n)	O(1)	O(lg n)	
Delete(x)	O(n)/ O(n²)	O(1)	O(lg n)	
Insert(x)	O(n)	O(1)	O(lg n)	
Build	$O(m + n^2)$	O(n)	O(n lg n)	
Resize	$O(m + n^2)$	O(1), amortized	n/a	
Min()	O(m+n)/O(m)	O(n)	O(lg n)	
Max()	O(m+n)/O(m)	O(n)	O(lg n)	
Predecessor(x)	O(m+n)/O(m)	O(n)	O(lg n)	
Successor(x)	O(m+n)/O(m)	O(n)	O(lg n)	

- This is <u>amazing!</u>
- The three most important techniques are hashing, hashing, and hashing.

-Udi Manber, Chief Scientist, Yahoo! (2001)

Hash tables: summary

- Poor worst-case complexity
- Excellent expected-case complexity
- Often fastest data structure in practice
 - Not as space-efficient as array
- **However:** be careful about expected-case assumptions
 - Hash function matters intensely for good performance
 - If too many values are mapped to the same location, we get worstcase performance
 - If data distribution includes lots of values that hash function collides, we get worst-case performance
 - Must be fast (impacts all operations)
 - Data distribution is also important
 - Some datasets are very skewed in frequency
 - Another data structure might be more appropriate
 - Need to ensure that we don't insert too many elements into table
 - Load factor: n/m
 - Usually resize above a certain threshold (e.g., 0.5, 0.75)

Bit vectors

- Represents a set as a sequence of Boolean values (bits)
 - One bit per value the set could contain

• Example:

- Set of 1-100

00000000	00000000	00000000	00000000	00000000	00000000	00000000
8	16	24	32	40	48	56
00000000	00000000	00000000	00000000	00000000	0000	
64	72	80	88	96	100	•

- Insert 3, 15, 25, 27, 82, 96, 100

Bit vectors

- Represents a set as a sequence of Boolean values (bits)
 - One bit per value the set could contain

• Example:

- Set of 1-100

00100000	00000010	00000000	10100000	00000000	00000000	00000000
8	16	24	32	40	48	56
00000000	00000000	00000000	01000000	00000001	0001	
64	72	80	88	96	100	•

- Insert 3, 15, 25, 27, 82, 96, 100
- Byte = floor((x min) / 8)
- Bit = (x-min) mod 8
- Implemented as char array (C, C++, Java)
- Use bitwise operations
 - Left shift and right shift (<<, >>)
 - Bitwise and, or, xor, not $(\&, |, ^{\land}, ^{\land})$

Bit vector operations

Search(x)

- Test bit with bitwise and
- arr[byte] & (1 << bit)</pre>
- -O(1) time

Insert(x)

- Set bit with bitwise or
- arr[byte] |= (1 << bit)</pre>
- *O*(1) time

• Delete(x)

- Unset bit with bitwise and
- arr[byte] &= ~(1 << bit)
- *O*(1) time

Summary: bit vector

Operation	Bit vector	Hash table (expected)	Balanced BST
Search(x)	O(1)	O(1)	O(lg n)
Delete(x)	O(1)	O(1)	O(lg n)
Insert(x)	O(1)	O(1)	O(lg n)

- Constant time operations, even in worst case
- Very low coefficients
- Set operations (union, intersection, difference) can be implemented with bitwise ops
- Can only store integer data
- Cannot store duplicate values
- Space (and initialization/set op cost) determined by data *range*, not by number of values (*n*)
 - Inefficient if range not bounded

Priority queues

- Data structure for finding maxima or minima
 - E.g., in a greedy algorithm
- Main operations
 - Insert(x): adds a value to the heap
 - **Max()/Min()**: returns max/min value
 - DeleteMax()/DeleteMin(): deletes the max/min value from the heap
- Primary implementation: heap
 - Complete binary tree (possibly incomplete bottom level)
 - Heap property
 - Every child has value ≤ its parent's value (max-heap)
 - Every child has value ≥ its parent's value (min-heap)
 - Consequence: root node is max (min)
 - Extra op:
 - Heapify(arr): builds a heap from an unsorted array

Heap implementation

- Implemented as array
- Root stored at index 1
- Children of element i stored at 2i and 2i+1
 - Parent at floor(i/2)

Because heaps are complete, array has no "gaps"

Priority queue operations

- Descriptions assume max-heap
- Insert(x):
 - Append to array
 - Swap with parents until parent is larger (or at root)
 - $O(\lg n)$ time
- Max():
 - Return root
 - O(1) time

Priority queue deletion

DeleteMax()

 Swap max with last element and call PercolateDown(1)

PercolateDown(i)

- If *heap[i]* is smaller than its max child, swap
- If so, repeat on that element until it is larger than max child or a leaf
- $O(\lg n)$ time
- $O(\lg n)$ time

Heapify()

- Call PercolateDown(i) from end to beginning
- Half have no children, half of rest have 1 child, etc
- O(n) time total

```
    Algorithm: Delete(x)
    Swap heap[1] and heap[n];
    n = n - 1;
    PercolateDown(1);
```

```
1 Algorithm: PercolateDown(i)2 if 2i \le n then3 | mc = 2i;4 | if mc + 1 \le n and<br/>
heap[mc + 1] > heap[mc] then5 | mc = mc + 1;6 | end7 | if heap[i] < heap[mc] then8 | Swap heap[i] and heap[mc];9 | PercolateDown(mc);10 | end11 end
```

```
1 Algorithm: Heapify(i)
2 for i = \lfloor n/2 \rfloor to 1 step -1
do
3 | PercolateDown(i);
4 end
```

Priority queue implementations

Operation	Heap	Unsorted array	Sorted array	Balanced BST	Fibonacci heap
Insert(x)	O(lg n)	O(1)	O(n)	O(lg n)	O(1)
Max()	O(1)	O(1)	O(1)	O(1)	O(1)
DeleteMax()	O(lg n)	O(n)	O(1)	O(lg n)	O(lg n), amort.
Build	O(n)	O(n)	$O(n \lg n)$	$O(n \lg n)$	O(n)

- BST has similar complexity, but higher coefficients
- Great at finding max (or min)
- Other operations (min/max, search, predecessor, etc.) are not good
 - Min-max heap can do either, but is more complex
- Fibonacci heap has even better complexity
 - More complex, higher coefficients, less space efficient
 - Fairly slow unless data is quite large

Union-Find data structure

- A.k.a., disjoint set data structure
- Used to represent a *partition*
 - Larger set split into smaller sets with no overlap
 - E.g., clusters, connected components
- Primary operations
 - Find(x)
 - Return the partition ID for element x
 - All elements in the same partition must return the same value
 - IDs might not be consecutive
 - Union(a, b)
 - Join partitions containing a and b

Union-Find implementation

- Array contains element IDs
- Partition IDs are elements pointing to themselves
- Initially, all elements are isolated:

0	1	2	3	4	5	6	7
{0}	{1}	{2}	{3}	{4 }	{5 }	{6 }	<i>{</i> 7 <i>}</i>

- First try:
 - Find(x)
 - Follow links until you hit a partition ID
 - Return partition ID
 - *O*(*n*) time
 - Union(a, b)
 - Point Find(a) to b
 - *O*(*n*) time

```
    1 Algorithm: Find(x)
    2 if unionfind[x] = x then
    3 | return x;
    4 else
    5 | id = Find(unionfind[x])) return id;
    6 end
```

```
1 Algorithm: Union(a, b)
```

- id = Find(a);
- **3** unionfind[id] = b;

Coming up

- Finish union-find
- Sorting algorithms
- **Project 1** is posted on Canvas
 - Sorting algorithms, Big-Oh analysis
- Recommended readings: Sections 4.2 and 4.5
- **Practice problems:** p. 100: 1-2 problems from "Applications of Tree Structures", attempt a problem from "Interview Problems"