Nature of Invention: Process design

Applicant: ChemiEvolve Industries

Inventors: Adarsh Pal, Raj Patel, Manas Dhakad, Akash Kumar Gupta

Chemical Formula: (C₆H₄CO₂H)₂

Chemical Name: Diphenic Acid

Process Title: Production of Diphenic Acid from the diazotization of Anthranilic Acid

followed by reduction with copper(I)

Process Description:

Block Diagram

Equipment Labelling

Mixers: B_1 , B_7 , B_{10} , B_{25}

 $\textbf{Heat Exchangers \& Boilers:} \ B_2, \ B_8, \ B_{11}, \ B_{12}, \ B_{21}, \ B_{23}, \ B_{24}, \ B_{29}, \ B_{30}$

 $\begin{tabular}{lll} \textbf{Storage \& Cooling:} & B_{14}, B_{28} \\ \textbf{Stirrers:} & B_{3}, B_{9}, B_{13}, B_{15}, B_{22}, B_{26} \\ \end{tabular}$

Separators (filters, precipitators, driers): $B_6,\,B_{16},\,B_{17},\,B_{18},\,B_{20},B_{31},\,B_{32}$

Process Conditions

Stream(s)	Condition(s)
4 and 5	Product cooled to ice point

28 and 5	Product cooled to 5°C
27 and 26	Reducing solution cooled to 10°C
30 and 29	Product cooled to 10°C

Mass Balance & Stream Labelling

Stream No.	Component(s) (C)	Flow Rate (R)
1	HCL	86.95 L/day
2	Anthranilic Acid	47.26 kg/day
3	Water	141.78 L/day
S11	NaNO ₂	24.84 kg/day
7	Water	0.184 kg/day
4	C_1, C_2, C_3	262.49 L/day
5	-	262.49 L/day
S12	C _{S11} , C ₇	25.02 kg/day
9	$C_{S12,}C_{5}$	273.82 L/day
11, 28	Diazonium solution	10 cm ³ /day
12	CuSO ₄ .5H ₂ O	85.8 kg/day
13	Water	340.476 L/day
15	NH ₄ OH (conc.)	143 L/day
17	Hydroxylammonium sulphate	28.6 kg/day
18	Water	81.7 L/day
22	NaOH (sol.)	57.87 L/day
21	C ₁₇ , C ₁₈	110.3 kg/day

14	C ₁₂ , C ₁₃	426.276 kg/day
16	C ₁₄ , C ₁₅	552.116 kg/day
23	C ₂₂ , C ₂₁	233.56 kg/day
24	Reducing Sol.	785.67 kg/day
26	Filtration of reducing sol.	786.67 kg/day
27	Cooling of reducing sol.	786.67 kg/day
29	C ₂₈ , C ₂₇	786.68 kg/day
30	C ₂₉	786.68 kg/day
32	Makeup stream (partly optional)	-
33, 34	C ₃₀	786.68 kg/day
37	C ₃₄ (After boiling)	786.68 kg/day
35	HCL (conc.)	300 kg/day
36	C ₃₅	300 kg/day
S5	HCL (conc.)	6N and excess
S10	Diphenic Acid	1000 kg/day

Capital cost (only for the reactor):

<u>Reactors</u>	<u>Capacity</u> (<u>litre)</u>	<u>Cost</u> (\$)
For Anthranilic acid	950	22,600
For CuSO ₄	1400	27,700
		Total cost = \$50,300

References:

1. http://www.matche.com/equipcost/Reactor.html

List the contributions of each author:

- **RAJ PATEL** and **MANAS DHAKAD** converted the lab scale design of the process flow into an industrial design design and performed the scale up process.
- ADARSH PAL and AKASH KUMAR GUPTA calculated the respective flow rates in the streams of the diagram and computed the capital cost of the reactors.

Sign the pdf and upload.

Name	Roll No	Signature
Aadityaamlan Panda	220007	Sadityaamlan Panda
Adarsh Pal	220054	AdaxhPal
Raj Patel	220860	Ray Parted
Manas Dhakad	220610	
Akash Kumar Gupta	220095	Akash Kumar Gupta