

CONTENTS

CHAPTER	随机事件及其概率	PAGE 2
1.1	随机事件	2
1.2	频率	3
1.3	概率	3
	概率的性质 — 3	

Chapter 1

随机事件及其概率

1.1 随机事件

Definition 1.1.1: Sample Space

考虑样本空间集合 S, 我们有 $S := \{ \text{所有样本点} \}$.

由定义,我们可以得到几种特殊的样本空间:

Example 1.1.1 (特殊的样本空间**)**

- Ø 事件:不可能发生的事件.
- S Ø 发生的事件.
- 基本事件 $\omega : |\omega| = 1$ i.e. 基本事件只含有一个样本点.

Note:-

由于 Ø 事件和 S-Ø 事件是互为对偶的,我们可以得到**对偶律 (De Morgan)**:

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Definition 1.1.2: 和、积事件

$$\bigcup_{i=1}^{n} A_i \text{ happen} \iff \exists i \in [1, n] \text{ s.t. } A_i \text{ happens}$$

$$\bigcap_{i=1}^{n} A_i \text{ happen} \iff \forall i \in [1, n] \text{ s.t. } A_i \text{ happens}$$

1.2 频率

Definition 1.2.1: 频率

考虑事件 A, 其发生的**频率**是

$$f_n(A) := \frac{r_n(A)}{n} \in [0, 1]$$

其中频数 $\frac{r_n(A)}{n} \in [0,n]$. 显然有 $f_n(S) = 1$.

Corollary 1.2.1 有限可加性

若 $A_i \cap A_j = \emptyset$ 且 $i \neq j$, $i, j \in [1, k]$ i.e. 互斥事件则有

$$f_n(\bigcap_{i=1}^k A_i) = \sum_{i=1}^k f_n(A_i)$$

1.3 概率

Definition 1.3.1: 概率

(Kolmogorov 公理化定义)设有随机试验 E 且与之对应的样本空间 S, 考虑事件 A

for
$$\forall A \in E$$
, if

- $\widehat{(1)} \ 0 \leq P(A) \leq 1$
- (2) P(S) = 1
- ③ $\Pr\{\bigcup_{i=1}^{\infty} A_i\} = \sum_{i=1}^{\infty} \Pr\{A_i\}$ i.e. 可列可加性

则称 P 为 S 上的概率.

1.3.1 概率的性质

由上面的定义我们能够得到概率的性质:

- 1. $Pr\{\emptyset\} = 0$
- 2. $\Pr\{\bigcup_{i=1}^{n} A_i\} = \sum_{i=1}^{n} \Pr\{A_i\}$ $\iff \forall i, j (i \neq j \rightarrow A_i A_j = \emptyset)$
- 3. $Pr{\overline{A}} + Pr{A} = 1$
- 4. $Pr{A B} = Pr{A} Pr{AB}$ $\Rightarrow (A - B) \cap B = \emptyset$
- 5. (单调性) $B \subseteq A \Rightarrow \Pr\{B\} \leqslant \Pr\{A\}$
- 6. 若满足 5, 由 4 可得 $Pr\{A B\} = Pr\{A\} Pr\{B\}$
- 7. (容斥原理) $Pr\{A \cup B\} = Pr\{A\} + Pr\{B\} Pr\{AB\}$