Spam/Ham Text Detection using Dense network, LSTM and

Bi-LSTM architectures in TensorFlow2

Purpose

To implement Dense, Long Short Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) deep learning models in TensorFlow2 Keras API for spam/ham texts Detection.

Approach

- Dataset Loading and Exploration.
- Preparing Train and Test Data
- Model training using 3 of the above mentioned deep learning models.
- Choosing the final model with the best Accuracy.
- Using Final trained classifier to classify the new messages.

Spam Data Exploration

Libraries for

- Reading data, exploring and plotting.
- Train test split
- Text preprocessing of Deep Learning
- Modelling

Text Dataset is a tab separated (\t) text file.

Statistics summary

5,572 labels and messages
two unique labels indicating for "ham" and "spam"
Lesser unique messages (5,169) than total message count(5,572) indicating some
repeated messages.
duplicates = df[df.duplicated()], shows there are 403 duplicated messages.
The top label and top message are "ham" and "Sorry, I'll call later" respectively.
Data is imbalanced as the number of ham is 4,825 compared to 747 spam messages.
Popular ham sms = "Sorry, I'll call later" and Popular spam sms = "Please call our
customer service"
On average, the ham message has length of 73 words whereas spam message has 138.

WordCloud and Bar charts Visualisation

Create a separate data frame for ham and spam texts and convert it to a numpy array to
generate WordCloud.
Extract words most commonly found in ham and spam messages, remove meaningless
stop words such as "the", "a", "is" etc, and plot it.
According to the Bar plot ,there are more frequent ham messages (85%) than spam
(15%).

Ways to handle imbalanced data

- Using appropriate evaluation metrics.
- Resampling the Dataset (oversampling/upsampling or undersampling/downsampling)
- Putting different resampled Datasets together.

Downsampling the Majority class(Ham)

After Downsampling, 747 messages in each class.

Prepare train/test data and pre-process text

- 80% of data were used for training and 20% for testing purposes.
- Convert labels to numpy arrays to fit deep learning models.
- Text pre-processing which includes Tokenization, Sequencing and Padding.

Compare three different models and select a final one

The dense spam detection model outperformed other two models in terms of Accuracy .Hence,this will be trained and evaluated.

Case 1: Given the text from our original data(Raw text from given dataset)

```
predict sms ham spam = ['Sorry, I'll call later']
 def predict_spam(predict_sms_ham_spam):
     new_seq = tknizer.texts_to_sequences(predict_sms_ham_spam)
     padded = pad_sequences(new_seq, maxlen =max_len,
                        padding = pad_type,
                        truncating=trunc_type)
     return (dense_model.predict(padded))
 predict_spam(predict_sms_ham_spam)
 array([[0.0255329]], dtype=float32)
 final = predict_spam(predict_sms_ham_spam)
 def spam_or_ham(final):
     for message in final:
         if message>=0.7:
             print("SPAM")
         else:
             print("NOT SPAM")
         message = message+1
 spam_or_ham(final)
 NOT SPAM
Case 2: Given the New data
```

```
predict sms ham spam = ["You are awarded a Nikon Digital Camera. Call now"]
def predict_spam(predict_sms_ham_spam):
    new_seq = tknizer.texts_to_sequences(predict_sms_ham_spam)
    padded = pad_sequences(new_seq, maxlen =max_len,
                      padding = pad_type,
                      truncating=trunc_type)
    return (dense_model.predict(padded))
predict_spam(predict_sms_ham_spam)
array([[0.94411016]], dtype=float32)
final = predict_spam(predict_sms_ham_spam)
def spam_or_ham(final):
    for message in final:
        if message>=0.7:
            print("SPAM")
        else:
            print("NOT SPAM")
        message = message+1
spam_or_ham(final)
SPAM
```

Dense spam model correctly classifies the first case as Ham and second case as Spam.

Improvement

Trying	
$\hfill \square$ more sampling approaches like upsampling ,SMOTE etc	
\square using different hyper-parameters.	
☐ sample size increment.	
☐ Machine Learning Classifiers	