Bevezetés az Arduino és az elektronika világába II.

Agócs Norbert és Nagy Dániel

 $2020.\ {\rm szeptember}\ 8.$

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- 3 Fizika: A gomb
- 4 Programozási alapok: If
- Feladatok
- 6 Arduino alapok: digitalRead
- Űrhajó műszerfal

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- 3 Fizika: A gomb
- Programozási alapok: If
- Feladatok
- 6 Arduino alapok: digitalRead
- Ürhajó műszerfal

Mit tanultunk eddig?

Hardware:

- Ardunio alaplap
- Breadboard
- LED
- Ellenállás

Software

- Változó létrehozása
- Alapműveletek (=, +, -, /, *)
- Alapvető parancsok
 - Serial.begin(9600)
 - Serial.println(" ")
 - pinMode()
 - digitalWrite()
 - delay()

Készítsünk egy LED-et, ami egyre gyorsabban kezd el villogni.

• LED

- LED
- Ellenállás (100 500 Ω)

- LED
- Ellenállás (100 500 Ω)
- Kábelek

- LED
- Ellenállás (100 500 Ω)
- Kábelek

Megoldás

• Segítség: Sima villogtatás, csak a várakozási idővel kell játszani.

Megoldás

- Segítség: Sima villogtatás, csak a várakozási idővel kell játszani.
- Újdonság: Minden ciklus végén csökkentjük a vározakozási időt

Megoldás

- Segítség: Sima villogtatás, csak a várakozási idővel kell játszani.
- Újdonság: Minden ciklus végén csökkentjük a vározakozási időt

```
int led = 7:
float ido = 1000;
void setup()
 pinMode(led, OUTPUT);
void loop()
 digitalWrite(led, HIGH);
 delay(250);
 digitalWrite(led, LOW);
 delay(ido);
 ido = ido/1.2; //varakozasi ido csokkentese
```

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- Fizika: A gomb
- Programozási alapok: If
- Feladatok
- 6 Arduino alapok: digitalRead
- Ürhajó műszerfal

Áramkör

Áramkör

Egy áramforrás vezetékekkel összekapcsolva egy fogyasztóval.

Áramkör

Egy áramforrás vezetékekkel összekapcsolva egy fogyasztóval.

Fogyasztó

Áramkör

Egy áramforrás vezetékekkel összekapcsolva egy fogyasztóval.

Fogyasztó

Minden, ami áram hatására csinál valamit (világít, hangot ad ki, ...).

Áramkör

Egy áramforrás vezetékekkel összekapcsolva egy fogyasztóval.

Fogyasztó

Minden, ami áram hatására csinál valamit (világít, hangot ad ki, ...).

Rövidzárlat

Áramkör

Egy áramforrás vezetékekkel összekapcsolva egy fogyasztóval.

Fogyasztó

Minden, ami áram hatására csinál valamit (világít, hangot ad ki, ...).

Rövidzárlat

Nagyon kis ellenállású összekötettés két áramköri elem között.

- Az áram mindig a legkisebb ellenállású úton halad
- A rövidzárlat nagyon veszélyes!

Áramkör

Egy áramforrás vezetékekkel összekapcsolva egy fogyasztóval.

Fogyasztó

Minden, ami áram hatására csinál valamit (világít, hangot ad ki, ...).

Rövidzárlat

Nagyon kis ellenállású összekötettés két áramköri elem között.

- Az áram mindig a legkisebb ellenállású úton halad
- A rövidzárlat nagyon veszélyes!

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- 3 Fizika: A gomb
- Programozási alapok: If
- 5 Feladatok
- 6 Arduino alapok: digitalRead
- Ürhajó műszerfa

Áramköri szerepe: Fizikailag megszakítja az áramkört, tehát nem tud folyni az áram az adott áramkörben, amíg nincs lenyomva.

(a) A gomb, amit találhattok az iskolai arduino készletekben

Áramköri szerepe: Fizikailag megszakítja az áramkört, tehát nem tud folyni az áram az adott áramkörben, amíg nincs lenyomva.

(a) A gomb, amit találhattok az iskolai arduino készletekben

(b) A gomb sematikus ábrája

Áramköri szerepe: Fizikailag megszakítja az áramkört, tehát nem tud folyni az áram az adott áramkörben, amíg nincs lenyomva.

(a) A gomb, amit találhattok az iskolai arduino készletekben

(b) A gomb sematikus ábrája

Mire tudjuk mi felhasználni?

Áramköri szerepe: Fizikailag megszakítja az áramkört, tehát nem tud folyni az áram az adott áramkörben, amíg nincs lenyomva.

(a) A gomb, amit találhattok az iskolai arduino készletekben

(b) A gomb sematikus ábrája

Mire tudjuk mi felhasználni?

• Folyamatok elindítása gombnyomással

Áramköri szerepe: Fizikailag megszakítja az áramkört, tehát nem tud folyni az áram az adott áramkörben, amíg nincs lenyomva.

(a) A gomb, amit találhattok az iskolai arduino készletekben

(b) A gomb sematikus ábrája

Mire tudjuk mi felhasználni?

- Folyamatok elindítása gombnyomással
- Állapotok változtatása gombnyomással

Áramköri szerepe: Fizikailag megszakítja az áramkört, tehát nem tud folyni az áram az adott áramkörben, amíg nincs lenyomva.

(a) A gomb, amit találhattok az iskolai arduino készletekben

(b) A gomb sematikus ábrája

Mire tudjuk mi felhasználni?

- Folyamatok elindítása gombnyomással
- Állapotok változtatása gombnyomással

Ezek azok a lehetőségei, amikhez kell a programozás ...

Csináljunk gombnyomásra felvillanó LED-et!

Fontos:

- Az ellenállás legyen 100Ω és 500Ω között.
- Ha nem világít a LED akkor fordítva kötöttük be.

Csináljunk gombnyomásra villogó LED-et!

Mi a célunk?

- Ne csak akkor világítson a LED, ha nyomom a gombot.
- Gombnyomásra különféle akciókat tudjunk végrehajtani bármilyen eszközzel.
- Mi kell ehhez?
 - A kapcsolás megértése
 - If()
 - digitalRead()

A gomb bekötése az áramkörbe

Miért így kötjük be?

- Az arduino pinjeivel csak feszültséget tudunk mérni
 - A feszültség méréséhez, kell egy "segéd"áramkör
 - Ezt az áramkört fogjuk a gombbal megszakítani
- Az áramkör a következő módón áll össze:
 - 0V Ellenállás Gomb 5V
 - Az ellenállás a rövidzár elkerülése miatt kell
- Ha a gomb be van kapcsolva, akkor folyik az áram, és tudunk mérni a pinen.

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- 3 Fizika: A gomb
- Programozási alapok: If
- 6 Feladatok
- 6 Arduino alapok: digitalRead
- Ürhajó műszerfal

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float osztando = 10; float oszto = 5; //változók
   if(oszto == 0) {
      Serial.println("Nullával nem lehet osztani!");
   else {
      float hanyados = osztando/oszto;
      Serial.println("A_hányados:_", hanyados);
```

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float osztando = 10; float oszto = 5; //változók
   if(oszto == 0) {
      Serial.println("Nullával nem lehet osztani!");
   else {
      float hanyados = osztando/oszto;
      Serial.println("A hányados: ", hanyados);
```

```
if(feltétel) {...} else {...}
```

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float osztando = 10; float oszto = 5; //változók
   if(oszto == 0) {
      Serial.println("Nullával_nem_lehet,osztani!");
   else {
      float hanyados = osztando/oszto;
      Serial.println("A hányados: ", hanyados);
```

```
if(feltétel) {...} else {...}
```

 \bullet Ha igaz a feltétel, akkor le fut az if parancs $\{\dots\}$ közötti része.

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float osztando = 10; float oszto = 5; //változók
   if(oszto == 0) {
      Serial.println("Nullával_nem_lehet,osztani!");
   else {
      float hanyados = osztando/oszto;
      Serial.println("A hányados: ", hanyados);
```

```
if(feltétel) {...} else {...}
```

- Ha igaz a feltétel, akkor le fut az if parancs {...} közötti része.
- Ha hamis a feltétel nem fut le az if parancs {...} közötti része, csak else része, ha van.

Összehasonlító operátorok

Művelet	Operátor	Példa	Eredmény
Egyenlő	==	5==8	false
Nem egyenlő	! =	5!=8	true
Kisebb	<	5<8	true
Nagyobb	>	5>8	false
Kisebb egyenlő	<=	5<=8	true
Nagyobb egyenlő	>=	5>=8	false
És	& &	5<=8 && 8>10	false
Vagy	11	5<=8 8>10	true
Nem	!	! (5 < 10)	false

Művelet	Operátor	Példa	Eredmény
Egyenlő	==	5==8	false
Nem egyenlő	! =	5!=8	true
Kisebb	<	5<8	true
Nagyobb	>	5>8	false
Kisebb egyenlő	<=	5<=8	true
Nagyobb egyenlő	>=	5>=8	false
És	& &	5<=8 && 8>10	false
Vagy	11	5<=8 8>10	true
Nem	!	! (5 < 10)	false

Logikai operátorok:

Művelet	Operátor	Példa	Eredmény
Egyenlő	==	5==8	false
Nem egyenlő	! =	5!=8	true
Kisebb	<	5<8	true
Nagyobb	>	5>8	false
Kisebb egyenlő	<=	5<=8	true
Nagyobb egyenlő	>=	5>=8	false
És	& &	5<=8 && 8>10	false
Vagy	1.1	5<=8 8>10	true
Nem	!	! (5 < 10)	false

Logikai operátorok:

• ÉS: Mindkét feltételnek igaznak kell lennie

Művelet	Operátor	Példa	Eredmény
Egyenlő	==	5==8	false
Nem egyenlő	! =	5!=8	true
Kisebb	<	5<8	true
Nagyobb	>	5>8	false
Kisebb egyenlő	<=	5<=8	true
Nagyobb egyenlő	>=	5>=8	false
És	& &	5<=8 && 8>10	false
Vagy		5<=8 8>10	true
Nem	!	! (5 < 10)	false

Logikai operátorok:

- ÉS: Mindkét feltételnek igaznak kell lennie
- VAGY: Az egyik feltételnek kell igaznak lennie

Művelet	Operátor	Példa	Eredmény
Egyenlő	==	5==8	false
Nem egyenlő	! =	5!=8	true
Kisebb	<	5<8	true
Nagyobb	>	5>8	false
Kisebb egyenlő	<=	5<=8	true
Nagyobb egyenlő	>=	5>=8	false
És	& &	5<=8 && 8>10	false
Vagy		5<=8 8>10	true
Nem	!	! (5 < 10)	false

Logikai operátorok:

- ÉS: Mindkét feltételnek igaznak kell lennie
- VAGY: Az egyik feltételnek kell igaznak lennie
- NEM: Az ellentetjére változtatja az eredményt

16 / 26

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- Fizika: A gomb
- Programozási alapok: If
- 5 Feladatok
- 6 Arduino alapok: digitalRead
- Ürhajó műszerfal


```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float a = 3;
   int b = 5;
   if(a != b); {
      Serial.println("Ok");
   else {
      Serial.println("Nem, ok!");
```

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float a = 3;
   int b = 5;
   if(a != b); {
      Serial.println("Ok");
   else {
      Serial.println("Nem, ok!");
```

Megoldás: Nem ír ki semmit.

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float Galambos = 1;
   int dolgozat = 5;
   if (Galambos == dolgozat) {
      Serial.println("Hha_itt_bajok_vannak!");
   else {
      Serial.println("Huh, ..ezt megúsztuk!");
```

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   float Galambos = 1;
   int dolgozat = 5;
   if (Galambos == dolgozat) {
      Serial.println("Hha_itt_bajok_vannak!");
   else {
      Serial.println("Huh, _ezt_megúsztuk!");
```

Megoldás: Huh, ezt megúsztuk!

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   int alma = 3;
   int korte = 5;
   int szilva = 6;
   if(alma * szilva - korte <= alma) {
      Serial.println("Ok");
   else {
      Serial.println("Nem. ok!");
```

```
void setup() {
   Serial.begin (9600); //Kommunikáció
void loop() {
   int alma = 3;
   int korte = 5;
   int szilva = 6;
   if(alma * szilva - korte <= alma) {
      Serial.println("Ok");
   else {
      Serial.println("Nem, ok!");
```

Megoldás: Nem ok!

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- 3 Fizika: A gomb
- Programozási alapok: If
- 5 Feladatok
- 6 Arduino alapok: digitalRead
- Ürhajó műszerfal

A beolvasás függvénye

A függvény: digitalRead(pin)

- Beolvassa egy pin állapotát
- Lehetséges értékek: HIGH vagy LOW

Mire kell ez nekünk?

- Állapot (HIGH, LOW) beolvasása
- Felhasználói bemenetek érzékelése (pl.: gomb, kapcsoló)
- Visszajelzés (pl.: Van-e feszültség a LED-en?)

Tartalom

- Ismétlés
- 2 Fogalomak: Áramkör és Rövidzár
- 3 Fizika: A gomb
- Programozási alapok: If
- Feladatok
- 6 Arduino alapok: digitalRead
- Űrhajó műszerfal

Készítsük el egy űrhajó műszerfalának egy részét!

Alkatrészek

- 3db LED
- 3db 220 Ω-os ellenállás
- 1db Gomb
- 1db 1k Ω -os ellenállás

A kód I.

Használjuk az újonnan tanult parancsot!

- If() és else
- digitalRead()

```
int led_piros1 = 3;
int led_piros2 = 4;
int led_zold = 5;
int \text{ gomb} = 7;
int gomb_allapot = 0;
void setup()
 pinMode(led_piros1, OUTPUT);
 pinMode(led_piros2, OUTPUT);
 pinMode(led_zold, OUTPUT);
 pinMode(gomb, INPUT);
```

A kód II.

```
void loop(){
 gomb_allapot = digitalRead(gomb);
 if (gomb_allapot == LOW) {
   digitalWrite(led_piros1, LOW);
   digitalWrite(led_piros2, LOW);
   digitalWrite(led_zold, HIGH);
 else {
   digitalWrite(led_piros1, HIGH);
   digitalWrite(led_piros2, LOW);
   digitalWrite(led_zold, LOW);
   delay (250);
   digitalWrite(led_piros1, LOW);
   digitalWrite(led_piros2, HIGH);
   delay(250);
```