Resorte de compresión.

Factores Mecánicos

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
Fuerza máxima	F_{max}	Es el valor más alto de carga a la que se	lb	N
		somete el resorte en su ciclo de trabajo.		
Fuerza mínima	F_{min}	Es el valor más bajo de carga a la que se	lb	N
		somete el resorte en su ciclo de trabajo.		
		Generalmente se puede considerar como la		
		fuerza inicial que se le suministra al resorte		
		para su ensamble (precarga) pero también		
		puede ser la carga más pequeña que se le		
		aplica a un resorte sometido a cargas		
	,	dinámicas.	112	N
Constante o	k	Es una constante que cuantifica la oposición	$\frac{lb}{\cdot}$	
razón del		del resorte a la deformación. Es la relación	in	mm
resorte		entre la variación de la fuerza aplicada al		
		resorte y la deflexión. Un valor de k alto,		
		provoca que el resorte tenga alta rigidez. Un		
		valor de k bajo, provoca que el resorte tenga alta flexibilidad.		
Resistencia	S_{ut}	Es la resistencia última a la tensión del	psi	МРа
última a la		material con el que se fabrica el resorte.		
tensión.		·		
Resistencia	S_{us}	Es la resistencia última al cortante del	psi	МРа
última al		material con el que se fabrica el resorte.		
cortante.				
Coeficiente A	A	Es un coeficiente propio de cada uno de los	-	-
		materiales utilizados en el desarrollo de este		
		software. Permite el cálculo de la resistencia		
		última a la tensión.		
Exponente b	b	Es un exponente propio de cada uno de los	-	-
		materiales utilizados en el desarrollo de este		
		software. Permite el cálculo de la resistencia		
		última a la tensión.		
Factor de	K_{s}	Es un factor de corrección del esfuerzo	-	-
cortante		cortante. Permite contemplar en su diseño los		
directo.		efectos de los diferentes esfuerzos cortantes		
		internos del resorte. A mayor valor de $\mathcal C$ menor		
		será el factor de K_s y en consiguiente,		
		disminuirá el esfuerzo cortante máximo al que		
	-	se somete el resorte.	an a f	MD
Esfuerzo	$ au_{max}$	Es el esfuerzo cortante que experimenta el	psi	МРа
cortante		resorte en la espira con la mayor fuerza.		
máximo Módulo de	G	Es el módulo de rigidez o cizalladura del	noi	MDa
cizalladura o	G G	material con el que se fabrica el resorte.	psi	МРа
módulo de		Como la lista de materiales de este proyecto		
rigidez.		consiste en aceros se optó por valores de		
Módulo de	E	Es el módulo de Young del material con el que	psi	МРа
Young.	Li	se fabrica el resorte. Como la lista de	μι	mr u
Tourig.		materiales de este proyecto consiste en		
		aceros se optó por valores de		
	l	aceios se opio poi vaidies de	l .	

Fuerza de cierre	F_{solida}	Es la fuerza requerida para comprimir el	lb	N
o Fuerza sólida	- sonaa	resorte hasta su deflexión de cierre (•••	
0140124 001144		$y_{s \circ lida}$).		
Esfuerzo	$ au_{cierre}$	Es el esfuerzo cortante que experimenta el	psi	МРа
cortante de	cierre	resorte cuando se comprime hasta su altura	psi	1.11 tt
cierre.		de cierre (L_s) .		
Factor de	N.T	Es la relación entre la resistencia a la fluencia		
	$N_{scierre}$		-	-
seguridad de		por torsión y el esfuerzo cortante de cierre. Un		
fluencia		valor mayor que 1 significa que el diseño es		
estático de		aceptable.		
cierre.				
Factor de	N_{s}	Es la relación entre la resistencia a la fluencia	-	-
seguridad de		por torsión y el esfuerzo cortante máximo. Un		
fluencia		valor mayor que 1 significa que el diseño es		
estático.		aceptable.		
Relación de	L_f/D	Es la relación entre la longitud libre del	-	-
pandeo	, ,	resorte y el diámetro medio de la espira.		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ayuda a determinar si el resorte puede sufrir o		
		no de pandeo. Un valor de $\frac{L_f}{p} > 4$ significa que		
		el resorte podría pandearse.		

Factores Geométricos

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
		DIAMETROS		
Diámetro medio de la espira.	D	Es el diámetro medio del resorte.	in	mm
Diámetro del alambre.	d	Es el espesor del material utilizado para la conformación del resorte. La forma redonda (utilizada en este software) suele ser la más utilizada para la fabricación de resortes.	in	mm
Diámetro externo de la espira.	D_o	Es el diámetro del resorte medido en su punto más <i>ancho</i> . Su especificación es sumamente relevante cuando el resorte se diseña para trabajar dentro de una cavidad (agujero).	in	mm
Diámetro interno de la espira.	D_i	Es el diámetro del resorte medido en su punto más estrecho. Su especificación es sumamente relevante cuando el resorte se diseña para trabajar sobre una barra o perno.	in	mm
Índice de resorte	С	Es la relación entre el diámetro medio de la espira (D) y el diámetro del alambre (d). Se sugiere que C se encuentre en el rango de 4 a 12, ya que C < 4 es difícil de manufacturar y C > 12 es propenso a enredarse o a sufrir de pandeo.	-	-
Paso del resorte	р	Es la distancia que hay entre el centro de una espira hasta el centro de la espira adyacente. LONGITUDES	in	mm

Longitud libre	L_f	Es la longitud total del resorte cuando se encuentra en estado libre. Es decir, sin cargas aplicadas. Si se desconoce el valor de las cargas, la longitud libre debe	in	mm
		especificarse.		
Altura de cierre	L_s	Es la longitud que tiene el resorte cuando	in	mm
o altura sólida.		es comprimido hasta el punto en que		
		todas sus espiras se encuentran cerradas y		
		en contacto.		
Longitud de	L_m	Es la longitud más pequeña que alcanza un	in	mm
trabajo mínima		resorte al comprimirse cuando se		
		encuentra en servicio. [7]		
		DEFLEXIONES		
Deflexión	у	Es la variación de la longitud del resorte	in	mm
	,	debido a la acción de una carga.		
Deflexión para	Ysólida	Es la deformación requerida para llevar al	in	mm
altura de cierre	э ѕонаа	resorte desde su longitud libre (L_f) hasta	0.0	
o sólida.		su altura de cierre (L_s).		
Holgura de	37	Se obtiene a partir de la diferencia entre la	in	202.202
_	y_{choque}	· · · · · · · · · · · · · · · · · · ·	lIl	mm
choque o entre		longitud de trabajo mínima y la altura de		
espiras		cierre. Sin embargo, suele expresarse		
		como un porcentaje de la deflexión de		
		trabajo (y). Para mitigar la posibilidad de		
		que se alcance la altura de cierre (L_s)		
		durante el servicio, se sugiere una holgura		
		mínima de choque del 10% al 15% de la		
		holgura de trabajo. Para el desarrollo de los		
		cálculos que conciernen a este software		
		se usó un 15%.		
Deflexión inicial	$y_{inicial}$	Es la deflexión que tiene el resorte antes	in	mm
		de que comience a soportar sus cargas de		
		trabajo. Esta deflexión junto con la		
		constante del resorte determina la fuerza		
		de Precarga en el montaje del resorte.		
		ESPIRAS		
Número total de	N_t	Es el número total de vueltas o espiras que	-	-
espiras.	t	tiene el resorte. Puede contribuir de forma		
		activa o no en la deflexión del resorte		
		dependiendo del detalle de los extremos		
		escogido en el diseño.		
Número de	N_a	Es el número de espiras que sí contribuyen	_	_
espiras activas.	··a	a la deflexión del resorte cuando este se		
copiido dotivao.		somete a la acción de cargas. Depende del		
		detalle de los extremos escogido en el		
		diseño. Su valor se redonde al 1/4 de		
		espira más cercano debido a la precisión		
		obtenida en el proceso de fabricación.		
		EXTREMOS		
Dlamas	N1/A			
Planos	N/A	Los extremos tienen el mismo paso que el	-	-
		resto del resorte. Este detalle se obtiene al		
		realizar un simple corte de las espiras. Es		
		el detalle más económico, pero puede		
		presentar problemas de estabilidad debido		

		suelen ser menos precisos. Todas sus		
		espiras contribuyen a la deflexión.		
Planos	N/A	En este tipo de detalle, los extremos	-	-
Esmerilados		también tienen el mismo paso que el resto		
		del resorte. Sin embargo, las espiras de sus		
		extremos se esmerilan de forma plana y		
		perpendicular al eje del resorte con el		
		propósito de que el resorte pueda		
		apoyarse de una mejor forma sobre una		
		superficie, consiguiendo mejorar su		
		estabilidad.		
Cuadrados	N/A	En este tipo de detalle se elimina el paso	-	-
		de las espiras de los extremos mediante su		
		doblado y aplastamiento. De este modo,		
		se consigue una mejora en la alineación		
		del resorte, por lo que es útil en		
		aplicaciones donde se requiera precisión y		
		estabilidad.		
Cuadrados	N/A	Al esmerilar un resorte cuyos extremos son	-	-
Esmerilados		cuadrados se obtiene el detalle de		
		extremos que provoca la mejor		
		transferencia de la carga. Sin embargo,		
		también es el más costoso.		

Fatiga

Variable	Símbolo	Descripción	Unidad	Unidad
			E.S.	I.S.
Fuerza media	F_m	Es la fuerza promedio que se aplica sobre	lb	N
		el resorte durante un ciclo completo		
		cuando se somete a cargas dinámicas		
		$(F_{min} \vee F_{max}).$		
Fuerza	F_a	Es la mitad de la diferencia de fuerzas a las	lb	N
alternante		que se somete un resorte cuando se le		
		aplican cargas dinámicas (F_{min} y F_{max}).		
Esfuerzo	$ au_i$	Es el esfuerzo cortante que experimenta el	psi	МРа
cortante inicial		resorte cuando se le somete a una fuerza		
		de precarga (generalmente F_{min})		
Esfuerzo	$ au_m$	Es el esfuerzo cortante <i>promedio</i> que	psi	МРа
cortante medio		experimenta el resorte durante un ciclo		
		completo cuando se somete a cargas		
		dinámicas (F_{min} y F_{max}).		
Esfuerzo	$ au_a$	Es el esfuerzo cortante que experimenta el	psi	МРа
cortante		resorte cuyo valor varía cíclicamente		
alternante		durante el ciclo de cargas dinámicas.		
Factor de Wahl	K_w	Es un factor que reúne el efecto del	psi	МРа
		cortante directo y la concentración de		
		esfuerzos debido a la curvatura en el		
		resorte. Es de mucha relevancia,		
		especialmente en resortes sometidos a		
		cargas cíclicas.		
Límite de	S_{ew}'	Es el valor máximo de esfuerzo de torsión	psi	МРа
resistencia a la		que el resorte puede soportar sin que este		
torsión		se fractura. Para el desarrollo de este		
		software se tomaron valores definidos para		

		resortes con tratamientos de granallado y sin granallar.		
Resistencia a la	S_{ys}	Es el valor límite de esfuerzo torsional que	psi	МРа
fluencia por	,	puede soportar el resorte sin que este se		
torsión		deforme plásticamente.		
Resistencia	S_{es}	Es la resistencia límite que puede soportar	psi	МРа
límite a la fatiga		el resorte sin que este falle por fatiga.		
por torsión.				
Factor de	N_f	Es el factor de seguridad contra fatiga del	-	-
seguridad	,	resorte. Un valor mayor que 1 significa que		
contra fatiga		el diseño es aceptable.		

RESORTE DE EXTENSIÓN

FACTORES MECÁNICOS

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
Fuerza máxima	F_{max}	Es el valor más alto de carga a la que se somete el resorte en su ciclo de trabajo.	lb	N
Fuerza mínima	F_{min}	Es el valor más bajo de carga a la que se somete el resorte en su ciclo de trabajo.	lb	N
Fuerza de tensión inicial o de precarga	F_i	Es una fuerza de tensión que se genera en el resorte debido a la forma en que se manufactura. Como las espiras de un resorte helicoidal de extensión se encuentran unidas estrechamente se debe superar el valor de esta carga para que estas empiecen a separarse.	lb	N
Constante o razón del resorte	k	Es una constante que cuantifica la oposición del resorte a la deformación. Es la relación entre la variación de la fuerza aplicada al resorte y la deflexión. Un valor de k alto, provoca que el resorte con alta rigidez. Un valor de k bajo, provoca que el resorte con alta flexibilidad.	lb in	$\frac{N}{mm}$
Resistencia última a la tensión.	S_{ut}	Es la resistencia última a la tensión del material con el que se fabrica el resorte.	psi	МРа
Resistencia última al cortante.	S_{us}	Es la resistencia última al cortante del material con el que se fabrica el resorte.	psi	МРа
Coeficiente A	A	Es un coeficiente propio de cada uno de los materiales utilizados en el desarrollo de este software. Permite el cálculo de la resistencia última a la tensión.	-	-
Exponente b	b	Es un exponente propio de cada uno de los materiales utilizados en el desarrollo de este software. Permite el cálculo de la resistencia última a la tensión.	-	-
Factor de cortante directo.	K _s	Es un factor de corrección del esfuerzo cortante. Permite contemplar en su diseño los efectos de los diferentes esfuerzos cortantes	-	-

		T	ı	
		internos del resorte. A mayor valor de $\mathcal C$ menor		
		será el factor de K_s y en consiguiente,		
		disminuirá el esfuerzo cortante máximo al que		
		se somete el resorte.		
Esfuerzo	$ au_{i1}$	Esfuerzo cortante obtenido a partir de la	psi	МРа
cortante inicial		función cúbica $-4.231C^3 + 181.5C^2 -$		
1.		3387 <i>C</i> + 28640. Su cálculo ayuda a		
		determinar un buen valor para el esfuerzo		
		inicial de la espira.		
	$ au_{i2}$	Esfuerzo cortante obtenido a partir de la	psi	МРа
Esfuerzo		función cúbica $-2.987C^3 + 139.7C^2 -$		
cortante inicial		3427 <i>C</i> + 38404. Su cálculo ayuda a		
2.		determinar un buen valor para el esfuerzo		
		inicial de la espira.		
Esfuerzo	$ au_i$	Es el promedio de	psi	МРа
cortante inicial.	·	$ au_{i_1}$ y	•	
		$ au_{i2}$. Permite determinar un buen valor para el		
		esfuerzo inicial en la espira.		
Módulo de	Ε	Es el módulo de Young del material con el que	psi	МРа
Young.		se fabrica el resorte. Como la lista de		
		materiales de este proyecto consiste en		
		aceros se optó por valores de		
Factor de		Es la relación entre la resistencia a la fluencia		
seguridad de	N_s	por torsión y el esfuerzo cortante máximo. Un		
fluencia		valor mayor que 1 significa que el diseño es	-	-
estático en		aceptable.		
espiras.				
Factor de		Es la relación entre la resistencia a la fluencia		
seguridad de		por torsión y el esfuerzo de torsión máximo al		
fluencia	N_{shs}	que se somete el gancho. Un valor mayor que	-	-
estático en		1 significa que el diseño es aceptable.		
gancho por				
flexión.				
Factor de		Es la relación entre la resistencia a la fluencia		
seguridad de		y el esfuerzo de flexión máximo al que se		
fluencia	N_{sht}	somete el gancho. Un valor mayor que 1	-	-
estático en		significa que el diseño es aceptable.		
gancho por				
torsión.				

FACTORES GEOMÉTRICOS

Variable	Símbolo	Descripción	Unidad	Unidad	
			E.S.	I.S.	
Suposición de extremos estándar: Es un tipo de configuración para los extremos de un resorte helicoidal de extensión. Consiste en flexionar las últimas espiras del resorte en un ángulo de 90°. Los resultados de este proyecto se encuentran acotados a la suposición de extremos estándar.					
		DIAMETROS			
Diámetro medio	D	Es el diámetro medio del resorte.	in	mm	
de la espira. Diámetro del	d	Es el espesor del material utilizado para la	in	mm	
alambre.	u	conformación del resorte. La forma redonda (utilizada en este software) suele	in	mm	

		ser la más utilizada para la fabricación de		
		resortes.		
Diámetro externo de la espira.	D_o	Es el diámetro del resorte medido en su punto más <i>ancho</i> . Su especificación es sumamente relevante cuando el resorte se diseña para trabajar dentro de una cavidad (agujero).	in	mm
Diámetro interno de la espira.	D_i	Es el diámetro del resorte medido en su punto más estrecho. Su especificación es sumamente relevante cuando el resorte se diseña para trabajar sobre una barra o perno.	in	mm
Índice de resorte	С	Es la relación entre el diámetro medio de la espira (D) y el diámetro del alambre (d) . Se sugiere que C se encuentre en el rango de 4 a 12, ya que $C < 4$ es difícil de manufacturar y $C > 12$ es propenso a enredarse o a sufrir de pandeo.	-	-
Factor C1	C_1	A partir de este factor se calcula el factor K_b . Depende del radio promedio del gancho y del diámetro del alambre. Bajo la suposición de extremos estándar es factor \mathcal{C}_1 es equivalente a \mathcal{C} .	-	-
Factor C2	<i>C</i> ₂	A partir de este factor se calcula el factor K_{w2} . Depende del radio en el lado de doblez y del diámetro del alambre. Su valor debe ser mayor a 4 .	-	-
Longitud libre	L_f	Es la longitud total del resorte cuando se encuentra en estado libre. Es decir, sin	in	mm
		cargas aplicadas. En un resorte helicoidal de extensión esta longitud se mide desde la parte interior de un extremo (gancho u oreja) hasta la parte interior del extremo opuesto. Si se desconoce el valor de las cargas, la longitud libre debe especificarse.		
Longitud del cuerpo.	L_b	Es la longitud de todas las espiras que contiene el resorte helicoidal de extensión sin contar los ganchos.	in	mm
Longitud de gancho	L_{gancho}	Es la longitud de los ganchos del resorte medida desde donde se terminan las espiras hasta la parte inferior del gancho. Para gancho estándar, la longitud es aproximadamente igual al diámetro interno del resorte. Este valor es de mucha importancia para determinar la longitud mínima del resorte.	in	mm
Espacio o <i>gap</i> .	_	Es la distancia que existe desde el extremo del gancho hasta el inicio del cuerpo del resorte.	in	mm
1		DEFLEXIONES		
Deflexión	у	Es la variación de la longitud del resorte debido a la acción de una carga.	in	mm
Deflexión máxima	y_{max}	Es la deflexión que experimenta el resorte con F_{max}	in	mm

D - fl ; 4		Faladafia.ióa ausa ausa aisa asta al sa assta	2	
Deflexión	y_{min}	Es la deflexión que experimenta el resorte	in	mm
mínima		$\operatorname{con} F_{min}$		
Deflexión inicial	$y_{inicial}$	Es la deflexión que tiene el resorte antes	in	mm
		de que comience a soportar sus cargas de		
		trabajo. Esta deflexión junto con la		
		constante del resorte determina la fuerza		
		de Precarga en el montaje del resorte.		
Radio promedio	R_1	Es el radio promedio del gancho. Bajo la	in	mm
del gancho.		suposición de extremos estándar este		
		radio es equivalente al radio de la espira,		
		es decir D/2		
Radio en el lado	R_2	Es el radio en el lado de doblez del gancho.	in	mm
de doblez.	2			
		ESPIRAS	•	•
Número total de	N_t	Es el número total de vueltas o espiras que	-	-
espiras.		tiene el resorte. En un resorte helicoidal de		
		extensión todas las espiras del cuerpo se		
		consideran activas. Sin embargo, Según		
		Norton, suele sumarse una a la cantidad		
		total de espiras para obtener la longitud		
		total del cuerpo.		
Número de	N_a	Es el número de espiras que sí contribuyen	-	-
espiras activas.	u	a la deflexión del resorte cuando este se		
		somete a la acción de cargas. Su valor se		
		redondea al 1/4 de espira más cercano		
		debido a la precisión obtenida en el		
		proceso de fabricación.		
		<u> </u>		

FATIGA

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
Fuerza media	F_m	Es la fuerza promedio que se aplica sobre el resorte durante un ciclo completo cuando se somete a cargas dinámicas $(F_{min} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	lb	N
Fuerza alternante	F_a	Es la mitad de la diferencia de fuerzas a las que se somete un resorte cuando se le aplican cargas dinámicas $(F_{min} \ y \ F_{max})$.	lb	N
Esfuerzo de torsión mínimo en espiras.	$ au_{min}$	Es el esfuerzo de torsión que experimentan las espiras del resorte helicoidal de extensión al ser sometidas a la carga F_{min} .	psi	МРа
Esfuerzo de torsión medio en espiras.	$ au_m$	Es el esfuerzo de torsión promedio que experimentan las espiras del resorte helicoidal de extensión cuando se somete a cargas dinámicas $(F_{min} \ y \ F_{max})$.	psi	МРа
Esfuerzo de torsión alternante en espiras.	$ au_a$	Es el esfuerzo de torsión que experimentan las espiras del resorte cuyo valor varía cíclicamente durante el ciclo de cargas dinámicas.	psi	МРа
Esfuerzo de torsión mínimo en gancho	$ au_{B_{min}}$	Es el esfuerzo de torsión mínimo que experimenta el gancho.	psi	МРа
Esfuerzo de torsión máximo en gancho	$ au_{B_{mcute{a}x}}$	Es el esfuerzo de torsión máximo que experimenta el gancho.	psi	МРа
Esfuerzo de torsión medio en gancho	$ au_{B_m}$	Es el esfuerzo de torsión promedio que experimenta el gancho cuando este se somete a cargas dinámicas (F_{min} y F_{max}).	psi	МРа
Esfuerzo de torsión alternante en gancho	$ au_{B_a}$	Es el esfuerzo de torsión que experimenta el gancho cuyo valor varía cíclicamente durante el ciclo de cargas dinámicas.	psi	МРа
Esfuerzo de flexión mínimo en gancho	$\sigma_{\!A_{min}}$	Es el esfuerzo de flexión mínimo que experimenta el gancho.	psi	МРа
Esfuerzo de flexión máximo en gancho	$\sigma_{\!A_{mcute{a}x}}$	Es el esfuerzo de flexión máximo que experimenta el gancho.	psi	МРа
Esfuerzo de flexión medio en gancho	$\sigma_{\!Am}$	Es el esfuerzo de flexión promedio que experimenta el gancho cuando este se somete a cargas dinámicas (F_{min} y F_{max}).	psi	МРа
Esfuerzo de flexión alternante en gancho	$\sigma_{\!A_a}$	Es el esfuerzo de flexión que experimenta el gancho cuyo valor varía cíclicamente durante el ciclo de cargas dinámicas.	psi	МРа
Factor de Wahl	K_w	Es un factor que reúne el efecto del cortante directo y la concentración de esfuerzos debido a la curvatura en el resorte. Es de mucha relevancia, especialmente en resortes sometidos a cargas cíclicas.	-	-
		Es un factor de concentración de esfuerzos utilizado en el cálculo de los esfuerzos a	-	-

Factor de concentración de esfuerzos en flexión de Wahl.	K_b	los que se somete la parte del gancho que se encuentra a flexión.		
Factor de gancho en torsión.	K_{w2}	Es un factor utilizado en el cálculo de los esfuerzos a los que se somete la parte del gancho donde se localiza el mayor esfuerzo de torsión.	-	-
Límite de resistencia a la torsión	S_{ew}'	Es el valor máximo de esfuerzo de torsión que el resorte puede soportar sin que este se fracture. Como no es habitual que se haga granallado de partículas en resortes de extensión para este proyecto se optó por usar los valores de $S'_{ew} = 45000 \ psi =$	psi	МРа
Resistencia a la fluencia por torsión	S_{ys}	Es el valor límite de esfuerzo torsional que puede soportar el resorte sin que este se deforme plásticamente.	psi	МРа
Resistencia a la fluencia.	S_y	Es el valor límite de tensión que puede soportar el resorte sin que este se deforme plásticamente.	psi	МРа
Resistencia límite a la fatiga por torsión.	\mathcal{S}_{es}	Es la resistencia límite que puede soportar el resorte sin que este falle por fatiga por torsión.	psi	МРа
Resistencia límite a la fatiga por tensión.	S_e	Es la resistencia límite que puede soportar el resorte sin que este falle por fatiga por tensión.	psi	МРа
Factor de seguridad contra fatiga en espiras.	N_f	Es el factor de seguridad contra fatiga en las espiras Un valor mayor que 1 significa que el diseño es aceptable.	1	-
Factor de seguridad contra fatiga por torsión en gancho.	N_{fht}	Es el factor de seguridad contra fatiga en el gancho por torsión. Un valor mayor que 1 significa que el diseño es aceptable.	-	-
Factor de seguridad contra fatiga por flexión en gancho.	N_{fhs}	Es el factor de seguridad contra fatiga en el gancho por flexión. Un valor mayor que 1 significa que el diseño es aceptable.	-	-

Resorte de torsión.

Factores Mecánicos

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
Momento	M_{max}	Es el valor más alto de carga a la que se	lb.in	N. mm
máximo		somete el resorte en su ciclo de trabajo.		
Momento	M_{min}	Es el valor más bajo de carga a la que se	lb.in	N.mm
mínimo		somete el resorte en su ciclo de trabajo.		
		Generalmente se puede considerar como la		
		fuerza inicial que se le suministra al resorte		
		para su ensamble (precarga) pero también		
		puede ser la carga más pequeña que se le		
		aplica a un resorte sometido a cargas		
		dinámicas.	11 '	M
Constante o	k	Es una constante que cuantifica la oposición	lb.in	$\frac{N.mm}{2}$
razón del		del resorte a la deformación angular. Es la	θ	θ
resorte		relación entre la variación momento aplicado		
		al resorte y la deflexión angular. Un valor de <i>k</i>		
		alto, provoca que el resorte con alta rigidez.		
		Un valor de k bajo, provoca que el resorte conalta flexibilidad.		
Resistencia	S_{ut}	Es la resistencia última a la tensión del	psi	МРα
última a la		material con el que se fabrica el resorte.		
tensión.				
Resistencia	S_{us}	Es la resistencia última al cortante del	psi	МРа
última al		material con el que se fabrica el resorte.		
cortante.				
Coeficiente A	A	Es un coeficiente propio de cada uno de los	-	-
		materiales utilizados en el desarrollo de este software. Permite el cálculo de la resistencia		
		última a la tensión.		
Exponente b	b	Es un exponente propio de cada uno de los	_	_
Exponente b	D	materiales utilizados en el desarrollo de este		_
		software. Permite el cálculo de la resistencia		
		última a la tensión.		
Factor de	K_{S}	Es un factor de corrección del esfuerzo	_	_
cortante	3	cortante. Permite contemplar en su diseño los		
directo.		efectos de los diferentes esfuerzos cortantes		
		internos del resorte. A mayor valor de ${\mathcal C}$ menor		
		será el factor de K_{s} y en consiguiente,		
		disminuirá el esfuerzo cortante máximo al que		
		se somete el resorte.		
Esfuerzo	$ au_{max}$	Es el esfuerzo cortante que experimenta el	psi	МРа
cortante		resorte en la espira con la mayor fuerza.		
máximo				
Módulo de	G	Es el módulo de rigidez o cizalladura del	psi	МРа
cizalladura o		material con el que se fabrica el resorte.		
módulo de		Como la lista de materiales de este proyecto		
rigidez.		consiste en aceros se optó por valores de		-
Módulo de	E	Es el módulo de Young del material con el que	psi	МРа
Young.		se fabrica el resorte. Como la lista de		
		materiales de este proyecto consiste en		
		aceros se optó por valores de		

Factor de	N_{ν}	Es la relación entre la resistencia a la fluencia	-	-
seguridad de		y el esfuerzo de flexión máximo que		
fluencia		experimenta el resorte en su diámetro interior.		
estático.				

Factores Geométricos

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
	<u> </u>	DIAMETROS		
Ángulo entre extremos.	α	Es la medida del ángulo entre los extremos del resorte.		
Diámetro medio de la espira.	D	Es el diámetro medio del resorte.	in	mm
Diámetro del alambre.	d	Es el espesor del material utilizado para la conformación del resorte. La forma redonda (utilizada en este software) suele ser la más utilizada para la fabricación de resortes.	in	mm
Diámetro externo de la espira.	D_o	Es el diámetro del resorte medido en su punto más <i>ancho</i> .	in	mm
Diámetro interno de la espira.	D_i	Es el diámetro del resorte medido en su punto más estrecho.	in	mm
	$D_{i_{min}}$	Es el diámetro interior mínimo de la espira del resorte con su deflexión total.	in	mm
Índice de resorte	С	Es la relación entre el diámetro medio de la espira (D) y el diámetro del alambre (d) . Se sugiere que $\mathcal C$ se encuentre en el rango de 4 a 12, ya que $\mathcal C < 4$ es difícil de manufacturar y $\mathcal C > 12$ es propenso a enredarse o a sufrir de pandeo.	-	-
		LONGITUDES		
Longitud de extremos tangentes.	L_1, L_2	Es la longitud de los extremos tangentes del resorte helicoidal de torsión.	in	mm
Longitud máxima del cuerpo.	L_{max}	Es la longitud máxima que puede tener el resorte cuando este se ha enrollado completamente.	in	mm
	T	DEFLEXIONES	1	T
Deflexión angular.	θ	Es la variación del ángulo de rotación del resorte medida desde su posición libre hasta una posición final.	in	mm
	T	ESPIRAS	1	r
Número de espiras activas.	N_a	Es el número de espiras que sí contribuyen a la deflexión del resorte cuando este se somete a la acción de momentos. Su valor se redondea al 1/4 de espira más cercano debido a la precisión obtenida en el proceso de fabricación.	-	-
Número de espiras en el cuerpo.	N_b	Es el número de espiras totales en el cuerpo del resorte.	-	-

Número	N_e	Es un número que cuantifica la	-	-	
equivalente de		contribución que tienen los extremos			
espiras.		rectos de un resorte helicoidal a torsión			
		sobre el número total de espiras activas de			
		este mismo. Su valor depende de las			
		longitudes de los extremos tangentes del			
		resorte y del diámetro medio de la espira.			

Fatiga

Variable	Símbolo	Descripción	Unidad E. S.	Unidad I. S.
Momento medio	M_m	Es el momento promedio que se aplica sobre el resorte durante un ciclo completo los momentos mínimos y máximo.	lb.in	N.mm
Momento alternante	M_a	Es la mitad de la diferencia de momentos a los que se somete el resorte cuando se le aplican los momentos M_{min} y $M_{máx}$.	lb.in	N.mm
Esfuerzo de flexión máximo en el diámetro interior.	σ _{i_{máx}}	Es el esfuerzo de flexión máximo que experimenta el resorte con alambre redondo en su diámetro interior cuando es sometido a la acción de $M_{m\acute{a}x}$.	psi	МРа
Esfuerzo de flexión máximo en el diámetro exterior.	$\sigma_{o_{mcute{a}x}}$	Es el esfuerzo de flexión máximo que experimenta el resorte con alambre redondo en su diámetro exterior cuando es sometido a la acción de $M_{m\acute{a}x.}$	psi	МРа
Esfuerzo de flexión mínimo	$\sigma_{o_{min}}$	Es el esfuerzo de flexión mínimo que experimenta el resorte con alambre redondo en su diámetro exterior cuando es sometido a la acción de $M_{mín.}$	psi	МРа
Esfuerzo de flexión medio.	σ_{o_m}	Es el esfuerzo de flexión promedio que experimenta el resorte con alambre redondo en su diámetro exterior cuando es sometido a la acción de M_{min} y $M_{máx}$.	psi	МРа
Esfuerzo de flexión alternante.	σ_{o_a}	Es el esfuerzo de flexión que experimenta el resorte, con alambre redondo, cuyo valor varía cíclicamente durante el ciclo de momentos al que se le somete.	psi	МРа
Factor de concentración de esfuerzos en flexión de Wahl en el interior del alambre.	K_{b_i}	Mide la concentración de esfuerzos de flexión en la parte interior de un alambre enrollado.	-	-
Factor de concentración de esfuerzos en flexión de Wahl en el exterior del alambre.	K_{b_o}	Mide la concentración de esfuerzos de flexión en la parte exterior de un alambre enrollado.	-	-
Límite de resistencia a la fatiga por flexión.	S_{ew_b}'	Es el valor máximo de esfuerzo de flexión que el resorte puede soportar sin que este se fracture. Para el desarrollo de este software se tomaron valores definidos para	psi	МРа

		resortes con tratamientos de granallado y sin granallar.		
Resistencia a la	S_{v}	Es el valor límite de esfuerzo torsional que	psi	МРа
fluencia.	,	puede soportar el resorte sin que este se		
		deforme plásticamente.		
Resistencia	S_e	Es la resistencia límite que puede soportar	psi	МРа
límite a la fatiga		el resorte sin que este falle por fatiga por		
por tensión.		tensión.		
Factor de	N_{fb}	Es el factor de seguridad contra fatiga del	-	-
seguridad		resorte. Un valor mayor que 1 significa que		
contra fatiga		el diseño es aceptable.		

Referencias

compresión

https://www.simf-parts.com/measure-a-compression-spring/?lang=es#:~:text=Di%C3%A1metro%20externo%20(DE)%3A%20El,est%C3%A1%20bajo%20carga%20o%20compresi%C3%B3n..

https://www.cideresortes.com/index.php/terminologia-de-los-resortes#:~:text=Deflexi%C3%B3n.,operaci%C3%B3n%2C%20a%20la%20longitud%20libre.

https://mellingperformancesprings.com/technical/spring-terminology/

extensión

https://www.leespring.com/measure-an-extension-spring

torsión

https://www.leespring.mx/es/conoce-mas-resortes-de-torsion

donde la **fuerza máxima** (F_{max}) la cual es el valor más alto de carga a la que se somete el resorte en su ciclo de trabajo del mismo modo se tiene la **fuerza mínima** (F_{min}) donde esta es el valor más bajo de carga a la que se somete el resorte en su ciclo de trabajo. Generalmente se puede considerar como la fuerza inicial que se le suministra al resorte para su ensamble (precarga) pero también puede ser la carga más pequeña que se le aplica a un resorte sometido a cargas dinámicas.

El **diámetro de alambre** (d) es el espesor del material utilizado para la conformación del resorte y este se debe seleccionar del banco de diámetros según el tipo de material escogido para la fabricación del resorte.

El **módulo de rigidez o cizalladura** (G) del material con el que se fabrica el resorte.

El **diámetro medio** de la espiral (D) donde este se calcula como:

$$D = C \cdot d$$

Donde el **índice de resorte** (\mathcal{C}) la cual es la relación entre el diámetro medio de la espira (\mathcal{D}) y el diámetro del alambre (\mathcal{D}). Se sugiere que \mathcal{C} se encuentre en el rango de 4 a 12, ya que $\mathcal{C} < 4$ es difícil de manufacturar y $\mathcal{C} > 12$ es propenso a enredarse o a sufrir de pandeo.

El número de **espiras activas** (N_a) es el número de espiras que sí contribuyen a la deflexión del resorte cuando este se somete a la acción de cargas. Depende del detalle de los extremos escogido en el diseño. Y esta se calcula como:

$$N_a = \frac{d^4G}{8D^3k}$$

La deflexión (γ) es la variación de la longitud del resorte debido a la acción de una carga. Esta se calcula como:

$$\gamma = \frac{8FD^3N_a}{d^4G}$$

Se calcula el **diámetro medio** D de la espiral a partir de la siguiente ecuación:

$$D = C \cdot d$$

Se determina el factor de cortante directo ks con la siguiente ecuación:

$$K_s = 1 + \frac{0.5}{C}$$

Se calcula el esfuerzo cortante de la espira con el mayor esfuerzo con la siguiente ecuación:

$$\tau = k_s * \frac{8FD}{(\pi d^3)}$$

$$S_{ys} = 0.6(S_{ut})$$

El factor de seguridad contra fluencia para esta deflexión de trabajo se calcula como:

$$N_s = \frac{s_{ys}}{\tau} \ge 1$$

El factor de seguridad debe ser mayor a uno de lo contrario se debe iterar el diseño modificando algún parámetro

La altura de cierre se calcula con la ecuación:

$$L_S = d * N_T$$

Se verifica el pandeo con la siguiente relación

$$\frac{L_F}{D}$$
; donde $L_F = L_s + \gamma_{choque} + \gamma_{trabajo} + \gamma_{inicial}$

$$\gamma_{choque} = 0.15\gamma$$

$$\frac{\gamma_{max}}{L_F}$$

$$\gamma_{max} = \gamma_{inicial} + \gamma_{trabajo}$$

los diámetros exterior e interior se calculan con las siguientes ecuaciones respectivamente

$$D_{ext} = D + d$$

$$D_{in} = D - d$$

El peso total del resorte se calcula como:

$$W_T = \frac{\pi d^2 D N_T \rho}{4}$$

Carga dinámica o fatiga

Se calculas las fuerzas medias y alternante a partir de las siguientes ecuaciones

$$F_a = \frac{F_{max} - F_{min}}{2}$$

$$F_m = \frac{F_{max} + F_{min}}{2}$$

Se calcula el esfuerzo cortante de la espira con la fuerza mínima y fuerza media

$$\tau_i = k_s * \frac{8F_i D}{\pi d^3}$$

$$\tau_m = k_s * \frac{8F_m D}{\pi d^3}$$

Ahora se calcula el factor de Wahl kw y se usa para calcula el esfuerzo cortante alternante τ_a en la espiral

$$k_w = \frac{4C - 1}{4C - 1} + \frac{0.615}{C}$$

$$\tau_a = k_w * \frac{8F_a D}{\pi d^3}$$

Se calcula la resistencia ultima a la tensión del material supuesto con la ecuación 10.3 y la tabla 10.4, también calcular resistencia a la fluencia por torsión a partir de la tabla 10.8 (suponiendo eliminación de asentamiento)

$$s_{ut} = A * d^b$$
$$s_{us} = 0.67 * s_{ut}$$

$$S_{ys} = 0.6(S_{ut})$$

Se calcula el límite para resortes granallados con partículas y con cargas repetidas con la ecuación 10.13, luego conviértalo en una resistencia física de ciclo totalmente invertido con la ecuación 10.18b

$$S_{ew} = 67500 psi$$

$$S_{es} = 0.5 \frac{S_{ew} S_{us}}{S_{us} - 0.5 S_{ew}}$$

Se calcula el factor de seguridad con la ecuación 10.18a

$$N_{fs} = \frac{S_{es}(S_{us} - \tau_i)}{S_{es}(\tau_m - \tau_i) + S_{us}t_a}$$

El factor de seguridad debe ser mayor a uno de lo contrario se debe iterar el diseño modificando algún parámetro

- Ahora se calcula el peso de las espiras activas del resorte

$$W_a = \frac{\pi^2 d^2 D N_a \gamma}{4}$$

- La frecuencia natural del resorte se obtiene mediante la siguiente ecuación:

$$f_n = \frac{1}{2} \sqrt{\frac{kg}{W}}$$

DISEÑO RESORTES HELICOIDALES A EXTENSION

Carga dinámica o fatiga

- Suministrar fuerza máxima y mínima
- Suponer material
- Obtener número de ciclos a partir de vida o frecuencia

- Se supone diámetro de alambre de los tamaños disponibles según el material
- Se supone índice de resorte "C" el cual se debe tomar del intervalo recomendado
- De calcula el diámetro medio D de la espiral a partir de la siguiente ecuación:

$$D = C * d$$

Ahora se utiliza el valor supuesto de C para determinar el valor adecuado de esfuerzo inicial f_i en la espira con las ecuaciones 10,22

$$t_{i1} \cong -4.231C^3 + 181.5C^2 - 3387C + 28640$$

$$t_{i2} \cong -2.987C^3 + 139.7C^2 - 3427C + 38404$$

$$t_i \cong \frac{t_{i1} + t_{i2}}{2}$$

- Determinar el factor de cortante directo ks

$$k_s = 1 + \frac{0.5}{C}$$

- Ahora se calcula la fuerza de tensión inicial F_i en la espira

$$F_i = \frac{\pi d^3 t_i}{8k_s D}$$

- Obtener fuerzas medias y alternante a partir de la siguiente ecuación

$$F_a = \frac{F_{max} - F_{min}}{2}$$

$$F_m = \frac{F_{max} + F_{min}}{2}$$

- Ahora se calcula el esfuerzo medio

$$t_m = k_s \frac{8F_m D}{\pi d^3}$$

- Ahora se calcula el factor de Wahl kw y se usa para calcula el esfuerzo cortante alternante τ_a en la espiral

$$k_{w} = \frac{4C - 1}{4C - 1} + \frac{0.615}{C}$$
$$\tau_{a} = k_{w} * \frac{8F_{a}D}{\pi d^{3}}$$

- Ahora se calcula la resistencia ultima a la tensión del material supuesto con la ecuación 10.3 y la tabla 10.4, también calcular resistencia a la fluencia por torsión a partir de la tabla 10.8 (suponiendo eliminación de asentamiento)

$$s_{ut} = A * d^b$$

$$s_{us} = 0.667 * s_{ut}$$

$$S_{ys} = 0.45(S_{ut})$$

 Ahora se calcula el límite para resortes sin granallado de partículas y con cargas repetidas con la ecuación 10.14, luego conviértalo en una resistencia física de ciclo totalmente invertido con la ecuación 10.18b

$$S_{ew} = 65000psi$$

$$S_{es} = 0.5 \frac{S_{ew}S_{us}}{S_{us} - 0.5S_{ew}}$$

 Se necesita calcular también los esfuerzos en los ganchos de los extremos. Los esfuerzos de deflexión en el gancho se obtienen con la ecuación 10.24

$$C_1 = \frac{2R_1}{d} = \frac{2D}{2d}$$
$$k_b = \frac{4C_1^2 - C_1 - 1}{4C_1(C_1 - 1)}$$

$$\sigma_a = k_b \frac{16DF_a}{\pi d^3} + \frac{4F_a}{\pi d^2}$$

$$\sigma_m = k_b \frac{16DF_m}{\pi d^3} + \frac{4F_m}{\pi d^2}$$

$$\sigma_{min} = k_b \frac{16DF_{min}}{\pi d^3} + \frac{4F_{min}}{\pi d^2}$$

 Con la ecuación 10.4 convierta la resistencia a la fatiga por torsión en resistencia a la fatiga a la tensión, y luego úsela junto con la resistencia ultima a la tensión del paso 8 ecuación 10.18 para determinar el factor de seguridad a la fatiga para el gancho en flexión

$$S_e = \frac{S_{es}}{0.67}$$

$$N_{fb} = \frac{S_e(S_{ut} - \sigma_{min})}{S_e(S_{med} - \sigma_{min}) + S_{ut}\sigma_{alt}}$$

- Los esfuerzos de torsión en el gancho se obtienen con la ecuación 10.25 utilizando un calor supuesto de c

$$R_2 = \frac{C_2 d}{2}$$

$$k_{w2} = \frac{4C_2 - 1}{4C_2 - 1}$$

$$\tau_a = k_{w2} * \frac{8F_a D}{\pi d^3}$$

$$\tau_m = k_{w2} * \frac{8F_m D}{\pi d^3}$$

$$\tau_{min} = k_{w2} * \frac{8F_{min} D}{\pi d^3}$$

 El factor de seguridad contra la fatiga por torsión en el gancho se calcula con la ecuación 10.18a

$$N_{fs} = \frac{S_{es}(S_{us} - t_{min})}{S_{es}(t_m - t_{min}) + S_{us}t_a}$$

- Si algún factor de seguridad no da, se varia algún parámetro hasta que sea satisfactorio
- La constante de resorte se define a partir de las dos fuerzas especificadas para su deflexión relativa

$$k = \frac{\Delta F}{\gamma}$$

Donde gamma es la deflexión y se calcula como:

$$\gamma = \frac{8FD^3N_a}{d^4G}$$

Simplificando la expresión se tiene que

$$k = \frac{d^4G}{8D^3N_a}$$

- Número total de espiras en la espiral y la longitud de la espiral son

$$N_T = N_a + 1$$

$$L_b = N_t d$$

- La frecuencia natural del resorte se obtiene mediante la siguiente ecuación:

$$f_n = \frac{2}{\pi N_a} \frac{d}{D^2} \sqrt{\frac{Gg}{32\gamma}}$$

DISEÑO RESORTES HELICOIDALES A TORSION

Carga dinámica

- Suministrar una fuerza mínima y una fuerza máxima
- Suponer material
- Se supone un diámetro de alambre de tamaños disponibles según el material
- Se supone índice de resorte "C" el cual se debe tomar del intervalo recomendado
- De calcula el diámetro medio D de la espiral a partir de la siguiente ecuación:

$$D = C * d$$

- Obtener fuerzas medias y alternante a partir de la siguiente ecuación

$$F_a = \frac{F_{max} - F_{min}}{2}$$

$$F_m = \frac{F_{max} + F_{min}}{2}$$

- Determinar el factor de flexión de Wahl K_{bi} , para la superficie interior, luego úselo para calcular el esfuerzo de compresión máximo en la superficie interior de la espira

$$K_{bi} = \frac{4C^2 - c - 1}{4C(C - 1)}$$

$$\sigma_{imax} = k_{bi} \frac{32M_{max}}{\pi d^3}$$

Determinar el factor de flexión de Wahl K_{bo} , para la superficie exteior, luego úselo para calcular los esfuerzos máximo, mínimo, alternante y medio en la superficie exterior de la espira

$$K_{bo} = \frac{4C^2 - c - 1}{4C(C - 1)}$$

$$\sigma_{omax} = k_{bi} \frac{32M_{max}}{\pi d^3}$$

$$\sigma_{omin} = k_{bi} \frac{32 M_{min}}{\pi d^3}$$

$$\sigma_{omedio} = \frac{\sigma_{omax} + \sigma_{omin}}{2}$$

$$\sigma_{omedio} = \frac{\sigma_{omax} - \sigma_{omin}}{2}$$

- Ahora se calcula la resistencia ultima a la tensión del material supuesto con la ecuación 10.3 y la tabla 10.4, también calcular resistencia a la fluencia por torsión a partir de la tabla 10.15 (suponiendo eliminación de asentamiento)

$$s_{ut} = A * d^b$$

$$S_y = 1.0(S_{ut})$$

 Ahora se calcula el límite para resortes sin granallado de partículas y con cargas repetidas con la ecuación 10.43, luego conviértalo en una resistencia física de ciclo totalmente invertido con la ecuación 10.35b

$$S_{ew_b'} = \frac{45000}{0.577}$$

$$S_e = 0.5 \frac{S_{ew_b} S_{ut}}{S_{ut} - 0.5 S_{ew_b}}$$

- determinar el factor de seguridad a la fatiga para las espiras en flexión se calcula con la ecuación 10.35a

$$N_{fb} = \frac{S_e(S_{ut} - \sigma_{omin})}{S_e(S_{omed} - \sigma_{omin}) + S_{ut}\sigma_{alt}}$$

- factor de seguridad estático contra fluencia es

$$N_{yb} = \frac{s_y}{\sigma_{imax}}$$

 la constante de resorte se define con los dos momentos especificados para su flexión relativa

$$k = \frac{\Delta M}{\theta}$$

- para determinar la constante de resorte definida, el número de espiras activas debe satisfacer 10.29:

$$k = \frac{d^4E}{10.8DN_a}$$

- los extremos contribuyen a las espiras activas como

$$N_e = \frac{L_1 + L_2}{3\pi D}$$

Mientras el número de espiras en el cuerpo del resorte es

$$N_b = N_a - N_e$$

- las deflexiones angulares para las cargas especificadas a partir de la ecuación 10.28c son:

$$\theta_{min} \cong 10.8 \frac{M_{min} D N_a}{d^4 E}$$

$$\theta_{max} \cong 10.8 \frac{M_{max}DN_a}{d^4E}$$