Линейна алгебра

Комплексни числа

Задача 1. Нека $z_1=4+3i$ и $z_2=3+i$. Пресметнете $z_1+z_2,\ z_1-z_2,\ z_1z_2$ и $\frac{z_1}{z_2}$.

Задача 2. Намерете тригонометричния вид на комплексните числа: 4; -3; -5i; 2+2i; $\frac{-3+3\sqrt{3}i}{2}$; $1-i\sqrt{3}$.

Задача 3. Намерете тригонометричния и алгебричния вид на произведението

$$\left(-\frac{3}{2} + \frac{3\sqrt{3}i}{2}\right)(1 - i\sqrt{3}).$$

Задача 4. Пресметнете степента $(1+i)^{10}$.

Задача 5. *Намерете* $\left(\frac{2+6\sqrt{3}i}{8-4\sqrt{2}i}\right)^{255}$.

Задача 6. Намерете $\sqrt[15]{4+4i}$ и $\sqrt[5]{i-1}$. Изобразете намерените числа в комплексната равнина.

Системи линейни уравнения

Задача 7. Решете системата $\begin{vmatrix} x & +y & +2z & =8 \\ -x & -2y & +3z & =1 \\ 3x & -7y & +4z & =10 \end{vmatrix}.$ Задача 8. Решете системата $\begin{vmatrix} x_1 & +x_2 & +2x_3 & =4 \\ x_3 & +x_1 & =2 \\ 2x_2 & +x_1 & +3x_3 & =7 \end{vmatrix}.$

Задача 9. Намерете всички решения на системата $\begin{vmatrix} x & +z & = 2 \\ 2x & +5y & = 7 \\ 3x & +5y & +z & = 9 \end{vmatrix}.$

Задача 10. Peweme $\begin{vmatrix} x & +y & -z & +2t & = 6 \\ -x & +y & +4z & -3t & = -2 \\ y & +3z & +t & = 5 \\ x & +5y & +5z & = 14 \end{vmatrix}$ Задача 11. Peweme $\begin{vmatrix} x_1 & -x_2 & +2x_3 & -x_4 & = -1 \\ 2x_1 & +x_2 & -2x_3 & -2x_4 & = -2 \\ -x_1 & +2x_2 & -4x_3 & +x_4 & = 1 \\ 3x_1 & & -3x_4 & = -3 \end{vmatrix}$

Задача 12. Намерете решенията на системата в зависимост от параметъра а:

$$\begin{vmatrix} x & -y & +z & = 2 \\ 3x & -2y & +(a+3)z & = 5 \\ 2x & -(a+2)y & +z & = 2a+5 \end{vmatrix}.$$

Задача 13. Решете системата в зависимост от стойностите на параметъра λ :

$$\begin{vmatrix} x_1 & -2x_2 & -x_3 & +x_4 & = -2 \\ 2x_1 & +7x_2 & +3x_3 & +x_4 & = 6 \\ 11x_1 & +11x_2 & +4x_3 & +8x_4 & = 8 \\ 10x_1 & +2x_2 & +8x_4 & = \lambda \end{vmatrix}.$$

Задача 14. Определете вида на системата $\begin{vmatrix} 3x & +2y & +z & = 1 \\ x & +2y & +az & = 3 \\ x & +y & +z & = b \end{vmatrix}$ в зависимост от а и $\begin{vmatrix} x & +y & +z & = b \end{vmatrix}$

Линейни пространства

Задача 15. Нека $V=\{r\in\mathbb{R}\mid r>0\}$. Въвеждаме операциите $\oplus:V\times V\to V$ и $\odot:\mathbb{R}\times V\to V$, определени от

$$u \oplus v = uv; \quad \alpha \odot u = u^{\alpha}.$$

Докажете, че V е линейно пространство над $\mathbb R$ относно операциите \oplus $u \odot$.

Задача 16. Кои от подмножествата на \mathbb{R}^2 са линейни пространства относно покоординатните операции:

$$A = \{(x,y) \mid y = 2x\}; \quad B = \{(x,y) \mid x = y - 3\}; \quad C = \{(x,y) \mid y = 2x, \ x = 3y\};$$

 $D = \{(x,y) \mid xy = 0\}?$

Задача 17. Нека $a \in \mathbb{R}$ и $U = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = a\}$. За кои а множеството U е линейно пространство относно покоординатните операции?

Задача 18. Представете тези множества от задачи 16 и 17, които са линейни пространства, като линейни обвивки.

Задача 19. Докажете, че $W = \left\{ \begin{pmatrix} a & a+b \\ b & 2a \end{pmatrix} \mid a,b \in \mathbb{R} \right\}$ е линейно пространство относно събиране и умножение с число на матрици.

Задача 20. Докажете, че $\mathcal{G} = \{f : \mathbb{R} \to \mathbb{R} \mid f(0) + f(1) = 0\}$ е линейно пространство относно поточковите операции.

Линейна зависимост и независимост. Ранг

Задача 21. Дадени са векторите $u, v_1, v_2, v_3 \in \mathbb{R}^3$, където $u = (-1, 7, b), v_1 = (1, -2, 1),$ $v_2 = (-1, 3, 1)$ и $v_3 = (0, 1, 2)$. За кои стойности на b векторът u е линейна комбинация на векторите v_1, v_2, v_3 ?

Задача 22. Линейно зависими ли са векторите $v_1=(1,1,3),\ v_2=(5,-1,2)$ и $v_3=(-3,0,4)$ от линейното пространство \mathbb{R}^3 ?

Задача 23. Линейно зависими ли са полиномите f_1 , f_2 , $f_3 \in \mathbb{R}^{\leq 3}[x]$, където $f_1 = 3x + x^2 - x^3$, $f_2 = 6 + 5x^2 + x^3$ и $f_3 = 4 - 7x + x^2 + 3x^3$?

Задача 24. За кои $a \in \mathbb{R}$ векторите (2,2,a), (2,a,2) и (a,2,2) са линейно зависими?

Задача 25. Намерете ранговете на системите вектори от \mathbb{R}^3 :

$$r((2,1,-3); (3,1,-5); (1,0,-7); (4,2,1); (1,0,-2));$$

 $r((1,1,2); (-2,-2,-4); (0,3,5); (4,1,3); (-2,-5,-9); (3,3,6)).$

Задача 26. Намерете $r(v_1,v_2,v_3,v_4)$, където $v_1=(1,-1,2,3)$, $v_2=(2,1,-1,1)$, $v_3=(1,1,-2,1)$, $v_4=(3,-2,5,6)$.

Задача 27. Намерете r((2,-1,3,1); (-1,2,1,1); (1,1,4,2); (3,-3,2,b)) в зависимост от стойностите на b.

Задача 28. Намерете r((1,-1,2,1,1);(2,1,-1,1,-1);(1,-1,1,-1,1);(-1,-1,2,p,q)) според стойностите на параметтрите p u q.

Базис. Координати

Задача 29. Намерете ранга и максимална линейно независима подсистема на векторите $v_1 = (0,6,6,1,0), v_2 = (3,1,1,0,0), v_3 = (1,-1,3,1,-2), v_4 = (-2,3,1,0,1), v_5 = (2,3,5,1,-1), v_6 = (1,-6,4,2,-5).$

Задача 30. Кои от следните системи вектори образуват базис на \mathbb{R}^2 :

$$v_1 = (2,3) \ u \ \mathbf{0} = (0,0);$$

 $v_1 = (2,3);$

$$v_1 = (2,3) \ u \ v_2 = (3,5);$$

$$v_1 = (2,3), v_2 = (3,5) u v_3 = (1,1)$$
?

Задача 31. Полиномите f_1, f_2, f_3 образуват ли базис на $\mathbb{R}^{\leq 2}[x]$, където:

$$f_1 = 1 - 3x + 2x^2$$
, $f_2 = 1 + x + 4x^2$, $f_3 = 1 - 7x$; $f_1 = 3 + x + 4x^2$, $f_2 = 2 + 5x + 6x^2$, $f_3 = 1 + 4x + 8x^2$?

Задача 32. Покажете, че векторите от \mathbb{R}^4 са линейно независими и ги допълнете до базис на \mathbb{R}^4 , където:

$$a_1 = (1, -1, 2, 3), a_2 = (-2, 2, 1, -1);$$

 $b_1 = (1, -2, -3, 2), b_2 = (2, 1, -4, -3), b_3 = (1, 3, -2, -3).$

Задача 33. Да се провери, че v_1, v_2, v_3 образуват базис на \mathbb{R}^3 и да се намерят координатите на v = (1, 1, 1) спрямо този базис, където:

$$v_1 = (2, 2, -1), v_2 = (2, -1, 2), v_3 = (-1, 2, 2);$$

 $v_1 = (1, 5, 3), v_2 = (2, 7, 3), v_3 = (3, 9, 4).$

Задача 34. Кои от множествата

$$A = \{(x, 2x) \mid x \in \mathbb{R}\};$$

$$B = \{(x, x^2) \mid x \in \mathbb{R}\};$$

$$C = \{(a, b, c, d) \mid c = a - 2b, d = a + b; a, b \in \mathbb{R}\};$$

$$D = \{(a, b, c, d) \in \mathbb{R}^4 \mid a + b + c + d = 0\}$$

са линейни пространства относно покоординатните операции? За тези от тях, които са, намерете размерността им, както и един техен базис.

Сечение и сума на подпространства

Задача 35. *Нека* $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 - x_4 = 0 = x_1 + x_2 + 2x_3 + 3x_4\}.$ Намерете $\dim U$ и един базис на U.

Задача 36. Намерете базис на пространството от решенията (ΦCP) на хомогенната система $x_1 + x_2 + x_3 + x_4 = 0.$

Задача 37. Намерете ΦCP на системата: $\begin{vmatrix} x_1 & +x_2 & +x_3 & +x_4 & -2x_5 & = 0 \\ 2x_1 & -x_2 & +3x_3 & -x_4 & +x_5 & = 0 \\ 4x_1 & +x_2 & +5x_3 & +x_4 & -3x_5 & = 0 \\ 3x_1 & -x_2 & +7x_3 & -x_4 & = 0 \end{vmatrix}$

Задача 38. Представете линейните обвивки като множество от решения на система: $U = l\{(2, 1, -1, 3); (3, 1, 2, 1); (1, 1, -4, 5)\};$ $V = l\{(1, 1, -2, 2); (2, 1, 3, -2); (1, 2, 3, 4); (3, 4, 5, 6)\}.$

Задача 39. Нека $U=l\big\{(1,2,1,-2);\ (1,0,3,-2)\big\}$ и V е множеството от решенията на cucmeмата $\begin{vmatrix} 2x_1 & -x_2 & -x_3 & = 0 \\ x_1 & -x_2 & -x_3 & +2x_4 & = 0 \end{vmatrix}$. Намерете базиси на пространствата $U, V, U \cap V$ и U + V.

Задача 40. Нека $U_1 = l((1, -1, 2, 3); (1, 1, 3, 2))$ и $U_2 = l((1, -2, 1, 1); (3, 1, 2, 4))$. Намерете базиси на пространствата $U_1, U_2, U_1 + U_2$ и $U_1 \cap U_2$.

Задача 41. Намерете базис на сечението $U_1 \cap U_2$, където $U_1 = l\{(1, 1, -3, 1); (2, -1, 0, -1); (1, -1, 1, -1)\} u$ $U_2 = l\{(1, 2, -2, -1); (1, -1, 0, 0); (-3, 6, -2, -1)\}.$

Линейни изображения и оператори – ядро и образ

Задача 42. Нека $\mathbf{0}$, ε и J са оператори в пространството \mathbb{R}^3 , като $\mathbf{0}(x,y,z)=(0,0,0)$, $\varepsilon(x, y, z) = (x, y, z) \ u \ J(x, y, z) = (y, z, 0).$

Докажете, че 0, ε , J, $\varepsilon + J$ и 3J са линейни оператори. Намерете матриците им спрямо стандартния базис.

Задача 43. Определете всички линейни изображения $f: \mathbb{R} \to \mathbb{R}$.

Задача 44. Нека $V = \mathbb{R}^{\leq 3}[x]$ е пространството от полиномите от степен най-много 3. Нека $\varphi: V \to V$ и $\psi: V \to V$ са определени с:

$$(\varphi(f))(x) = f'(x) - (x^2 + 1)f''(x);$$

$$(\psi(f))(x) = f(x+1) - f(x).$$

Докажете, че φ и ψ са линейни оператори във V и намерете матриците им спрямо базиса 1, x, x^2 , x^3 на V.

Задача 45. Намерете ранга и дефекта на операторите $0, \varepsilon, J, J^2$ и J^3 (от задача 42).

Задача 46. Спрямо стандартния базис на \mathbb{R}^4 линейният оператор φ има матрица

$$A = \begin{pmatrix} -1 & -2 & -3 & -2 \\ 0 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ -1 & -2 & -2 & -1 \end{pmatrix}.$$

Hамерете $r(\varphi)$ и $d(\varphi)$. Hамерете базиси на пространствата $\ker \varphi$, $\operatorname{Im} \varphi$, $\ker \varphi + \operatorname{Im} \varphi$ $u \ker \varphi \cap \operatorname{Im} \varphi$.

Умножение на матрици. Обратна матрица. Матрични уравнения

Задача 47. Нека $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Пресметнете AB, BA, CD, DC.

Задача 48. Нека $T:M_2(\mathbb{R}) \to M_2(\mathbb{R})$ е определено от $T(X) = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} X \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix}$.

Докажете, че T е линеен оператор и намерете матрицата му спрямо базиса E_{11} , E_{12} , E_{21} , E_{22} на $M_2(\mathbb{R})$. Пресметнете r(T) и d(T). Намерете базиси на пространствата $\operatorname{Im} T$ и $\ker T$.

Задача 49. Намерете $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^n$, където $n \in \mathbb{N}$.

Задача 50. *Намерете* $\begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}^{-1}$.

Задача 51. Намерете обратната матрица (ако съществува) на всяка от матриците:

Задача 52. Решете матричните уравнения:

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}; \quad \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & -1 \\ 1 & 3 & -5 \end{pmatrix} X = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 0 & 3 \end{pmatrix};$$

$$\begin{pmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{pmatrix} X \begin{pmatrix} 9 & 7 & 6 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -2 \\ 18 & 12 & 9 \\ 23 & 15 & 11 \end{pmatrix}.$$

Смяна на базис

Задача 53. Нека векторите e_1 и e_2 образуват базис на линейното пространство V. Нека $f_1 = e_1 + e_2$ и $f_2 = -2e_1 - e_2$. Докажете, че f_1 , f_2 – базис на V и намерете координатите на вектора $v = x_1e_1 + x_2e_2$ спрямо базиса f_1 , f_2 .

Изображението $\varphi:V \to V$ е определено от

$$\varphi(x_1e_1 + x_2e_2) = x_1e_1 + (-x_1 + 2x_2)e_2.$$

Докажете, че φ е линеен оператор и намерете матрицата му спрямо всеки от базисите e_1, e_2 и f_1, f_2 на V.

Задача 54. Нека $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ е линеен оператор с матрица $A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & -2 \\ 2 & -1 & 0 \end{pmatrix}$ спрямо стандартния базис. Нека още $b_1 = (1,2,1), b_2 = (-1,1,1)$ и $b_3 = (2,-1,-1)$. Покажете, че b_1, b_2, b_3 е базис на \mathbb{R}^3 и намерете матрицата на φ спрямо този базис.

Задача 55. Нека $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ изпълнява $\varphi(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, x_1 - 2x_2 + x_3).$

Нека $e_1'=(1,2,1),\ e_2'=(-1,1,0),\ e_3'=(1,1,1).$ Нека $f_1'=(5,4)\ u\ f_2'=(4,3).$ Покажете, че e_1',e_2',e_3' – базис на $\mathbb{R}^3,\ f_1',f_2'$ – базис на \mathbb{R}^2 и намерете матрицата на φ спрямо тези базиси на \mathbb{R}^3 и \mathbb{R}^2 .

Задача 56. Нека $f:\mathbb{R}^3 \to \mathbb{R}^1$ е линейно изображение и $f(1,0,0)=1,\ f(1,2,0)=7,$ f(2,3,5) = 6. Hamepeme f(3,2,1).

Задача 57. Докажете, че $v_1=(1,1,-3),\ v_2=(0,1,-1),\ v_3=(0,3,-2)$ е базис на $\mathbb{R}^3.$ Намерете дуалния му базис.

Задача 58. Спрямо стандартния базис на \mathbb{R}^3 линейният оператор φ има матрица A= $\begin{pmatrix} 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix}$. Here $f_1 = (1, 2, 2)$, $f_2 = (3, 4, 1)$ u $f_3 = (2, 3, 1)$.

Докажете, че f_1 , f_2 и f_3 образуват базис на \mathbb{R}^3 . Намерете матрицата на φ спрямо този базис.

Детерминанти – първа част

Задача 59. Пресметнете $\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$; $\begin{vmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{vmatrix}$; $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{vmatrix}$.

Задача 60. Намерете детерминантата $\Delta_n = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$

Задача 61. Пресметнете $\begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & x_1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & \dots & 1 & 1 \\ x_n & 1 & \dots & 1 & 1 \end{vmatrix}$

Задача 62. Hамерете $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix};$ $\begin{vmatrix} a & a & a & 1+a \\ b & b & 1+b & b \\ c & 1+c & c & c \\ 1+d & d & d & d \end{vmatrix};$ $\begin{vmatrix} 1 & -1 & -1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \end{vmatrix}$.

Задача 63. Heка $a_1a_2 \dots a_n \neq 0$. Π ресметнете $\begin{vmatrix} a_0 & b_1 & b_2 & \dots & b_n \\ c_1 & a_1 & 0 & \dots & 0 \\ c_2 & 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_n & 0 & 0 & \dots & a_n \end{vmatrix}.$

Задача 64. Пресметнете $\begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & \dots & -1 & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & -1 & \dots & 0 & 9 \\ -1 & 0 & \dots & 0 & 10 \end{vmatrix}.$

Задача 65. Намерете детерминантите от ред
$$n$$
: $\begin{vmatrix} 2 & \dots & 2 & 2 & 5 \\ 2 & \dots & 2 & 5 & 2 \\ 2 & \dots & 5 & 2 & 2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 5 & \dots & 2 & 2 & 2 \end{vmatrix}$, $\begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & x & \dots & x \\ 1 & x & 0 & \dots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x & x & \dots & 0 \end{vmatrix}$

Задача 66.
$$H$$
амерете
$$\begin{vmatrix} 1 & t & t^2 & t^3 \\ t & 1 & t & t^2 \\ t^2 & t & 1 & t \\ t^3 & t^2 & t & 1 \end{vmatrix}.$$

Задача 67. Развийте
$$\begin{vmatrix} 2 & 1 & 3 & 4 \\ 1 & 0 & 0 & 2 \\ 3 & 4 & 1 & 3 \\ 5 & 1 & 1 & 2 \end{vmatrix}$$
 по втория ред.

Задача 68. Пресметнете
$$\begin{vmatrix} 2 & 0 & 1 & 2 & 0 \\ 2 & -1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 \\ -2 & 0 & 2 & -1 & 2 \\ 2 & 0 & 0 & 1 & 1 \end{vmatrix}.$$

Задача 69. Пресметнете
$$\Delta_n = \begin{vmatrix} x & y & 0 & \dots & 0 \\ 0 & x & y & \dots & 0 \\ 0 & 0 & x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y & 0 & 0 & \dots & x \end{vmatrix}$$
 u $a_n = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2 & \dots & 2 \\ 1 & 2 & 3 & \dots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n \end{vmatrix}$.

Детерминанти – втора част

Задача 70.
$$H$$
амерете: $\begin{vmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & \dots & 0 \\ 0 & 1 & 2 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 2 \end{vmatrix}$; $\begin{vmatrix} 3 & 2 & 0 & \dots & 0 \\ 1 & 3 & 2 & \dots & 0 \\ 0 & 1 & 3 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 3 \end{vmatrix}$; $\begin{vmatrix} 1 & i & 0 & \dots & 0 \\ -i & 1 & i & \dots & 0 \\ 0 & -i & 1 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix}$.

Задача 71.
$$H$$
аме p е m e
$$\begin{vmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x \end{vmatrix}.$$

Задача 72. Пресметнете
$$W(x_1,x_2,\ldots,x_n)= \begin{vmatrix} 1 & 1 & 1 & \ldots & 1 \\ x_1 & x_2 & x_3 & \ldots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \ldots & x_n^2 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \ldots & x_n^{n-1} \end{vmatrix}.$$

Задача 73. Намерете ранга по редове, по стълбове и по минори на матрицата $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

Задача 74. Намерете ранга на матриците
$$A = \begin{pmatrix} 0 & 1 & 2 & 1 \\ -1 & \lambda & 0 & 0 \\ 0 & -1 & \lambda & 0 \\ 0 & 0 & -1 & \lambda \end{pmatrix} u$$

$$B = \begin{pmatrix} 1 - \lambda & 0 & 2 & -1 \\ 0 & 1 - \lambda & 4 & -2 \\ 2 & -1 & -\lambda & 1 \\ 2 & -1 & -1 & 2 - \lambda \end{pmatrix} \text{ в зависимост от } \lambda.$$

Задача 75. Пресметнете
$$\begin{vmatrix} a_1+b_1 & a_1+b_2 & \dots & a_1+b_n \\ a_2+b_1 & a_2+b_2 & \dots & a_2+b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n+b_1 & a_n+b_2 & \dots & a_n+b_n \end{vmatrix} \quad \text{3a } n \geq 3.$$

Собствени стойности и вектори

Задача 76. Нека $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ е линейният оператор, дейтващ по правилото

$$\varphi(x,y) = (9x + 12y, 12x + 41y).$$

Намерете матрицата на φ спрямо базиса $b_1 = (1,3), b_2 = (-3,1)$ на \mathbb{R}^2 .

Задача 77. Намерете реалните собствени стойности и вектори на матриците:

$$A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}; \quad C = \begin{pmatrix} -2 & 2 \\ 2 & 1 \end{pmatrix}; \quad P = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix};$$

Задача 78. *Намерете* $\begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}^k$ за $k \in \mathbb{N}$.

Задача 79. Намерете собствените стойности и вектори на матрицата $\begin{pmatrix} 1 & -1 & -1 \\ -2 & -1 & 2 \\ 0 & -1 & 0 \end{pmatrix}$.

Задача 80. Линейният оператор $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ действа според $\varphi(x,y,z) = (z,y,x)$. Намерете базис на \mathbb{R}^3 , спрямо който φ има диагонална матрица D, както и матрицата D.

Задача 81. Намерете обратима матрица T и диагонална матрица D, такива че

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = TDT^{-1}.$$

Задача 82. Намерете всички собствени стойности и вектори на $B = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$

Задача 83. Намерете t_n , ако $t_0=2$, $t_1=5$ и $t_n=5t_{n-1}-6t_{n-2}$ за всяко $n\geq 2$.

Евклидови пространства. Метод на Грам-Шмид

Задача 85. Намерете ъгъла между векторите:

- a = (2, 1, 3, 2), b = (1, 2, -2, 1);
- u = (1, 2, 2, 3), v = (3, 1, 5, 1).

Задача 86. Допълнете до ортогонален базис на \mathbb{R}^n системата:

- $a_1 = (1, 2, 2), a_2 = (2, 1, -2);$
- $b_1 = (1, -2, 3, 1), b_2 = (2, 1, 1, -3).$

Задача 87. Намерете ортонормиран базис на линейната обвивка на дадените вектори по метода на Грам-Шмид:

- $u_1 = (1, -2, 1), u_2 = (4, -5, 4), u_3 = (-1, -8, -3);$
- $v_1 = (2, 1, 3, -1), v_2 = (7, 4, 3, -3), v_3 = (1, 1, -6, 0), v_4 = (5, 7, 7, 8).$

Задача 88. Нека U = l((1,2,0,1); (3,2,1,2); (1,-2,1,0)). Намерете ортонормирани базиси на пространствата U и U^{\perp} .

Задача 89. Нека $a_1=(1,1,-1,-1),\ a_2=(3,1,-1,-3),\ a_3=(-1,-1,-1,3)\ u\ a=(1,3,3,9).$ Намерете ортогонален базис на $U=l(a_1,a_2,a_3),\$ както и проекцията и перпендикуляра от а към U.

Задача 90. Нека $a_1=(1,2,1,1)$, $a_2=(1,3,1,2)$, $a_3=(2,5,3,3)$ и a=(1,2,3,4). Намерете проекцията и перпендикуляра от а към U.

Симетрични оператори и матрици

Задача 91. Докажете, че $||u+v||^2+||u-v||^2=2(||u||^2+||v||^2).$

Задача 92. Нека $a_1=(1,2,-1,0),\ a_2=(-1,-5,1,1),\ a_3=(0,9,0,1)\ u\ U=l(a_1,a_2,a_3).$ Намерете ортогоналното допълнение U^\perp , както и проекцията и перпендикуляра от a=(1,1,1,1) към U.

Задача 93. Намерете собствените стойности и вектори на матрицата $A = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 2 & 0 \\ -3 & 0 & 1 \end{pmatrix}$.

Задача 94. Спрямо стандартния базис на Евклидовото пространство \mathbb{R}^3 линейният оператор φ има матрица $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$. Намерете ортонормиран базис на \mathbb{R}^3 , спрямо който φ има диагонална матрица D.

Задача 95. Нека e_1, e_2, e_3 е ортонормиран базис на Евклидовото пространство V. Операторът $\psi: V \to V$ е определен от

$$\psi(x_1e_1 + x_2e_2 + x_3e_3) = (-2x_1 + 2x_2 + 4x_3)e_1 + (2x_1 - 5x_2 + 2x_3)e_2 + (4x_1 + 2x_2 - 2x_3)e_3.$$

Диагонализирайте ψ спрямо ортонормиран базис на V и докажете, че $\psi^3 + 9\psi^2 = 108\varepsilon$.

Задача 97. Нека $n \geq 3$ и $a \in \mathbb{R}^n$, $b \in \mathbb{R}^n$ са такива че ||a|| = ||b|| = 1 и $\langle a, b \rangle = 0$. Дефинираме $\varphi(v) = \langle a, v \rangle b + \langle b, v \rangle a$. Докажете, че $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ е линеен симетричен оператор. Намерете собствените стойности и вектори на φ .