Tock OS

An embedded operating system designed for running multiple concurrent, mutually distrustful applications on low-memory and low-power microcontrollers.

TockOS

- A pre-emptive embedded OS (runs on MCUs)
 - Cortex-M
 - RISC-V
- Uses memory protection (MPU required)
- Has separate kernel and user space
 - most embedded OS have the one piece software philosophy
- Runs untrusted apps in user space
- Kernel (and drivers) written in Rust
- Apps written in C/C++ or Rust (any language that can be compiled)

Functional Components

Applications

- user space processes
- any language
- independent executable

System calls (syscall)

Capsules

- hardware independent drivers
- inside the kernel
- safe rust

Hardware Interface Layer (HIL)

HAL

- hardware dependent driver
- unsafe rust

Architecture

Kernel

- Non pre-emptive
 - capsules (drivers) run to completion
 - async API
- Does not allocate dynamic memory
 - only static buffers
 - no out of memory errors in kernel
- Grants
 - memory for capsules in user processes
 - allocated at the start of a process (if possible)

Used by

Open-source implementation for security keys written in Rust that supports both FIDO U2F and FIDO2 standards.

Google Inc.

The first open source project building a transparent, high-quality reference design and integration guidelines for silicon root of trust (RoT) chips.

LowRISC, ETH Zurich, G+D Mobile Security, Google, Nuvoton, Western Digital

Application (Process)

- Standalone executable
 - compiled without TockOS kernel
- Memory Protection
 - MPU Regions
- Can (seg)fault
- Relocatable code
 - where the compiler allows it
- IPC
 - service discovery

Memory

Grant

Only 7 Syscalls

- 0 Yield
- 1 Subscribe
- 2 Command
- 3,4 Allow
- 5 Memop
- 6 Exit

Yield

- Processes have a callback queue
 - similar with an event loop system

Suspends the process until a callback is available

- Callbacks are called only when the process is yielded
 - when main returns, libtock-c runs while (true) yield();

Subscribe

The process registers a callback function

- Parameters
 - *capsule_number* id of the driver
 - subscribe_number a sub_command number, specific to the driver
 - callback pointer to a function or NULL
 - user_data any pointer

Command

- The process sends a command to a driver
 - similar with *ioctl* from Linux

- Parameters
 - capsule_number id of the driver
 - command_number a command_command number, specific to the driver
 - *data1* usize parameter
 - data2 usize parameter

ReadWrite/ReadOnly Allow

The process shares a buffer with a driver

- Parameters
 - *capsule_number* id of the driver
 - allow_number an allow_command number, specific to the driver
 - pointer pointer to the buffer data
 - size size of the buffer data

Memop

- The process requests a memory action
 - similar with *brk* and *sbrk* from Linux

- Parameters
 - op_type action id
 - argument usize parameter

Exit

• Stop or restart the process

- Parameters
 - restart action id
 - completion_code usize

Full system call

Userland libraries

LibTock-C

- Stable (recommended)
- newlib
 - libc
 - libm
- libc+
 - Lua53
 - LittlevGL
- RV32: issue with code relocation

LibTock-RS

- not stable yet
- core
 - active development
- issue with relocation
 - Compiler problem

Tock Executable

- Tock Binary Format
 - TBF
 - Tock header with memory and loading requirements
 - Process binary
- Tock Application Bundle
 - TAB
 - several TBF files for several architectures
 - ARM M0, M3, M4, RV32-IMAC and RV32-IMC

Tockloader

- Manage Tock OS Application
- Uses TAB files
- Written in Python
- Needs implementation for several boards
- Small App Store

Future Plans

- In Progress
 - Ethernet for STM32
 - WiFi for Raspberry Pi Pico W
 - Tockloader Rust version

