Benchmark case: ground reflection

Description

This case corresponds to the propagation of an impulse above a reflecting ground.

The analytic solution for this case can be found in [1]. The total pressure field p_{total} that takes into account both the direct and reflected waves that respectively follow the paths R_1 and R_2 can be written

$$p_{\text{total}} = \frac{e^{jkR_1}}{R_1} + Q \frac{e^{jkR_2}}{R_2},$$
 where k is the wave number and Q is given by

$$Q = R_p + (1 - R_p)F_{\mathbf{w}},\tag{2}$$

where
$$R_p$$
 is the reflection coefficient written as
$$R_p = \frac{\cos(\theta) - 1/Z}{\cos(\theta) + 1/Z},$$
 and $F_{\rm w}$ can be written as

$$F_{\mathbf{w}} = 1 + \jmath \sqrt{\pi} w e^{-w^2} \operatorname{erfc}(-\jmath w). \tag{4}$$

$$w = \frac{1+j}{2}\sqrt{kR_2}\left(\cos(\theta) + \frac{1}{Z}\right),\tag{5}$$

where Z is the surface impedance of the ground and θ the angle between the axis normal to the ground and the reflected path.

Within the framework of a grid convergence study, the results of interest are the error made on the numerical calculation compared to the exact solution of this case. In order to observe the **convergence** rate and the orders of accuracy, the exact same case is calculated on a set of 5 grid sizes [2].

Name	Ground reflection
Field	Linear Acoustics
Code	P. Chobeau, SineCity project, https://github.
	com/pchobeau/sinecity_testcases , BSD 3-
	Clause License.
Categories	
Bounded or Unbounded problems	Half-bounded - perfectly reflecting ground
Dimensionality of the case	2D
Scattering or Radiation problem	N.A.
Time- or Frequency-domain problem	Time or Frequency domain
Description	
PDE	Time Domain Wave Equation or Helmholtz Equa-
Geometry	
Spatial steps for the grid convergence study	3 m if absorbing layers, see Figure 1 h = [0.01, 0.02, 0.04, 0.08, 0.16] m
Time steps for the grid convergence study	T_s is set at the Courant limit for each grid.
Propagation medium	Air: $\rho = 1.2 \text{ kg/m}^3$, $c = 340 \text{ m/s}$
BCs	$Z = \infty$ at boundaries
Source	a Gaussian pulse:
	$\hat{f}_i^n = \exp\left(-\pi^2 \left(0.5 f n T_s - 1\right)^2\right),$
	at the source point.
Receiver	Total of 112 receivers placed on a grid (coarsest
	spatial step), see Figure 1 (right).
Quantity to compute	Acoustic pressure
Frequencies for computation	N.A.

Geometrical details

The geometry of the numerical domain is depicted in Figure 1. The source height is $h_s = 1.50$ m. The receivers are located on the grids with an horizontal spacing of 0.5 m - *i.e.* between $d_{sr} = 0.5$ m and $d_{sr} = 7.0$ m and a vertical spacing of 0.2 m - *i.e.* between $h_r = 0.2$ m and $h_r = 1.4$ m. The spatial steps h and the time steps T_s used for the grids are identical to case 2.

Figure 1: Geometry of the case 4 (left) with $h_s = 0.64$ m, $d_{sr} = [0.32:0.32:5.12]$ m and $h_r = [0.32:0.32:2.24]$ m; depiction of the receiver grid (right) with a total of 112 receivers.

References

- [1] M. C. Bérengier, B. Gauvreau, Ph. Blanc-Benon, and D. Juvé. Outdoor sound propagation: A short review on analytical and numerical approaches. *Acta Acustica united with Acustica*, 89(6):980–991, 2003.
- [2] P. Chobeau and J. Picaut. A verification procedure for environmental acoustic codes. In CFA Le Havre, April 2018.