

Indian Institute of Information Technology, Nagpur Department of Basic Sciences

Calculus for Data Science (MAL 105)

Sessional -II Examination
B.Tech. 1st Semester - CSE- Data Science, CSE-AIML

Duration: 1 hour

Max. Marks: 15

Date: December 19th, 2023 (Thursday)

Time: 09:00 am - 10:00 am

Important Instructions:

(i) This is a closed book, closed notes examination.

(ii) This question paper comprises total 6 questions printed on one page. Attempt any five questions. Maximum marks for a particular question are indicated in the brackets [] on the extreme right of the corresponding question.

(iii) Use of non-programming calculators are permitted.

(iv) Please indicate the important steps of reasoning/calculations carefully.

(v) Assume suitable data wherever necessary. Please mention the assumptions made, if any.

Q. 1: Show that the whole length of the curve $8a^2y^2 = x^2(a^2 - x^2)$ is $\pi a\sqrt{2}$.

[CO2] **[3 Marks]**

Q. 2: Find the area

[CO2] [3 Marks]

(a) of the loop of the curve $x(x^2 + y^2) = a(x^2 - y^2)$.

(b) of the portion bounded by the curve and its asymptotes.

Q. 3 Find the surface of the solid generated by the revolution of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ or $x = a\cos^3 t$, $y = a\sin^3 t$ about the x-axis. [CO2] [3 Marks]

Q. 4: Find the volume of the solid formed by the revolution of the curve $r = a(1 + \cos \theta)$ about the initial line. [CO 2] [3 Marks]

Q. 5: If $\theta = t^n e^{-r^2/4t}$, what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$ [CO 3] [3 Marks]

Q. 6: If
$$u = \sin^{-1} \left(\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}} \right)^{\frac{1}{2}}$$
, prove that [CO 3] [3 Marks]

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{\tan u}{144} \left(13 + \tan^{2} u \right)$$