Лабораторная работа 2.2.1

Исследование взаимной диффузии газов

Шерхалов Денис Б02-204

25 апреля 2023 г.

Цель работы: 1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

В работе используются: измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

1. Введение

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

Диффузия в системе, состоящей из двух компонентов a и b (бинарная смесь), подчиняется закону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как

$$j_a = -D\frac{\partial n_a}{\partial x}, \quad j_b = -D\frac{\partial n_b}{\partial x},$$

где D – коэффициент взаимной диффузии компонентов. Знак «минус» отражает тот факт, что диффузия идёт в направлении выравнивания концентраций. Равновесие достигается при равномерном распределении вещества по объёму сосуда $(\partial n/\partial x = 0)$.

В случае работы с данной установкой можно считать, что диффузионный поток одинаков в любом сечении трубки, соединяющей сосуды V_1 и V_2 . Следовательно:

$$J = -DS \frac{n_1 - n_2}{l} \qquad DS \frac{n_1 - n_2}{l} = -V_1 \frac{dn_1}{dt} = V_2 \frac{dn_2}{dt}$$
$$\frac{dn_1 - dn_2}{dt} = -\frac{n_1 - n_2}{l} DS \left(\frac{1}{V_1} + \frac{1}{V_2}\right) \quad \Rightarrow \quad n_1 - n_2 = (n_1 - n_2)_0 e^{-\frac{t}{\tau}}$$

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление Р и температура Т в условиях опыта предполагаются неизменными: $p = (n_{He} + n_{\rm B})kT$, где n_{He} и $n_{\rm B}$ – концентрации (объёмные плотности) диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_{He} = -\Delta n_{\rm B}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия n_{He} :

$$j_{He} = -D \frac{\partial n_{He}}{\partial x}.$$

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала ($n_{He} \ll n_{\rm B}$). Кроме того, атомы гелия существенно легче молекул, составляющих воздух ($\mu_{He} \ll \mu_{O_2}, \mu_{N_2}$), значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц He на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен

$$D = \frac{1}{3}\lambda \overline{v},$$

где $\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$ – средняя тепловая скорость частиц примеси, $\lambda = \frac{1}{n_0\sigma}$ – их длина свободного пробега, n_0 – концентрация рассеивающих центров (фона), σ – сечение столкновения частиц примеси с частицами фона.

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе $D \propto 1/P$, и не зависит от пропорций компонентов, что и предлагается проверить в работе экспериментально.

Экспериментальная установка

Рис. 1: Схема установки

Для исследования взаимной диффузии используется следующая установка:

Здесь V_1 , V_2 – два сосуда с примерно равным объемом, в которые мы будем загонять воздух и гелий.

Данная конструкция позволяет провести диффузию, которая возможна только при равенстве давлений.

Основное оборудование, с помощью которого мы будем снимать измерения — датчики теплопроводности, через которые пропускают ток. Они подключены к мосту, который позволяет нам устанавливать начальное равновесное состояние.

При изменении концентрации в колбах вольтметр покажет нам разность напряжений на датчиках, что, из-за их конструкции, означает разность концентраций.

С помощью изменения напряжения мы и будем изучать процесс диффузии, т.к. во время ее протекания концентрации газов начинают устанавливаться, что заметно на графике разницы напряжений от времени.

2. Выполнение

- 1. Ознакомимся с установкой. Наша установка 1.
- 2. Для смеси гелий-воздух исследуем зависимость коэффициента взаимной диффузии о начального давления в системе. Для этого будем фиксировать с помощью компьютера в лаборатории зависимость показаний вольтметра от времени, прошедшего с начала эксперимента. Полученные результаты находятся в папке "Санников Шерхалов и не были продублированы в отчете, т.к. содержат очень много данных. Эксперимент проводился при давлении P=753.6торр.

3. По полученным результатам нарисуем график зависимости логарифма напряжения от времени. Проверим то, что процесс диффузии подчиняется закону:

$$U = (U)_0 e^{-\frac{t}{\tau}}.$$

4. Графики линейны, следовательно у нас действительно происходит диффузия. Далее мы можем найти τ как коэффициент наклона. Находить будем по МНК. В нашем случае:

$$ln U = a - kt \qquad k = \frac{1}{\tau}$$

5. Проведем расчеты для каждого значения давления, получим таблицу:

Р, торр	$k \cdot 10^{-3}, c^{-1}$	τ , c
37	5.126	195
63	3.321	301
75	2.873	348
97	2.154	464
201	1.056	947
295	0.727	1376

Погрешность k и τ получилась менее 0.1%, поэтому отдельно она не указана.

6. Далее посчитаем коэффициенты взаимной диффузии для различных давлений по формуле:

$$D = \frac{1}{\tau} \frac{VL}{2S}$$

$$\Delta D = D \cdot \sqrt{\left(\frac{\Delta \tau}{\tau}\right)^2 + \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta S}{S}\right)^2}$$

Параметры моей установки (1): $V=(775\pm 10)~{
m cm}^3, \, \frac{L}{S}=(5.3\pm 0.1)~\frac{1}{{
m cm}}.$ Посчитаем D и ΔD :

Р, торр	37	63	75	97	201	295
$D, \frac{\mathrm{cm}^2}{\mathrm{c}}$	10.53	6.82	5.90	4.43	2.17	1.49
$\Delta D, \frac{\text{cm}^2}{\text{c}}$	0.22	0.14	0.12	0.09	0.04	0.03

Таблица 1: Значения коэффициента диффузии при различных давлениях

7. Построим график зависимости $D\left(\frac{1}{P}\right)$:

Рис. 2: Зависимость D от $\frac{1}{P}$

Найдем коэффициент наклона $k = (390 \pm 10) \frac{\text{см}^2}{\text{с-торр}}$.

8. Значит, коэффициент диффузии при атмосферном давлении можно найти таким образом:

$$D_{\text{atm}} = k \frac{1}{P_{\text{atm}}} = (0.52 \pm 0.01) \frac{\text{cm}^2}{\text{c}}$$

9. По полученным данным оценим длину свободного пробега атомов гелия в воздухе:

$$D=rac{1}{3}\lambda\langle v
angle,$$
 где $\langle v
angle=\sqrt{rac{8RT}{\pi\mu}}\Rightarrow\lambda=3D\sqrt{rac{\pi\mu}{8RT}}pprox130$ нм

3. Вывод

- Была зарегистрирована зависимость концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при различных начальных давлениях смеси газов.
- По результатам измерений был определен коэффициент взаимной диффузии для смеси гелий-воздух: $D_{\rm atm}=(0.52\pm0.01)\,\frac{{\rm cm}^2}{{\rm c}}$, что близко к табличному значению: $D_{\rm табл}=0.62\,\frac{{\rm cm}^2}{{\rm c}}$.
- Была оценена длина свободного пробега гелия в воздухе: $\lambda = (130 \pm 3)$ нм, что близко к табличным данным: $\lambda_{\text{табл}} = 175$ нм.

Основная доля ошибок приходится на барометр и на тот факт, что мост легко расстраивался. Еще метод МНК очень сильно зависит от точки с наибольшей ошибкой, так как если выкинуть ее, и провести те же действия, мы получим D=0.58, что уже ближе к табличному значению.