presentation

December 16, 2020

1 Aplicação de PSO Híbrido:

- 2 Caixeiro Viajante
- 2.1 Overview
- 2.1.1 PSO Hibrido + Fator Genético
 - Posição da Partícula: Uma rota válida
 - Velocidade: N par de trocas simples entre elementos da rota
 - Fator Genético: Cada partícula tem 50% de chance de desencadear evento genético que substitui os 2 piores elementos do enxame por 2 partículas da próxima geração
 - Seleção dos pais: GENITOR
 - Cross-over: Order Cross-over (OX1)
 - Sem mutação

2.1.2 Partícula

2.1.3 Fit

2.1.4 Atualização

```
[3]: def discrete_velocity(particle: DParticle):
    return random.choices(particle.velocity, k=np.random.randint(len(particle.
    →position)))
```

2.1.5 Algoritmo PSO Discreto Híbrido

```
[4]: def submit(self, iterations=1000):
         for i in range(iterations):
             for particle in self.particles:
                 distance = fit(particle.position, self.problem)
                 logger.debug(f"Distance: {distance}\t Path:{particle.position}\tV:
      → {particle.velocity}")
                 # Is it the best particle distance so far?
                 if distance < particle.best_path_len:</pre>
                     particle.best_position = np.copy(particle.position)
                     particle.best_path_len = distance
                     # May be the best global distance as well?
                     if distance < self.best path:</pre>
                         self.best path = distance
                         self.best_path_pos = np.copy(particle.position)
                         logger.info(f"Best distance: {self.best path}\tBest Path:
      →{self.best_path_pos}")
                 # Adjust position
                 velocity = discrete_velocity(particle)
                 adjust_discrete_position(particle, velocity)
                 # Adding genetic vector
                 if random.random() <= 0.5:</pre>
                     parents = self.parent_extractor.extract_parent(problem=self.
      →problem, population=self.particles)
                     offspring = self.crossover.cross(parents, 2, self.problem)
                     self.particles.extend(DParticle(off) for off in offspring)
                     natural_select(problem=self.problem, population=self.particles,_

die=len(offspring))
```

2.1.6 Auxiliares

```
[5]: # Realiza as trocas entre posições, similar a mutação SIM

def adjust_discrete_position(particle, velocity):
    for exchange in velocity:
        tmp = np.copy(particle.position[exchange[0]])
        particle.position[exchange[0]] = particle.position[exchange[1]]
        particle.position[exchange[1]] = tmp
```

2.2 Resultados

```
[6]: import pandas as pd pd.read_csv("benchmark.csv")
```

[6]:		algoritmo	problem	mean	min
	0	Ideal	24	_	1272
	1	AG Sugerido	24	1331	1272
	2	AG Desenvolvido	24	_	1300
	3	DPSO Hibrido	24	1471.5	1307
	4	PSO Discreto	24	2125.6	1813
	5	PSO Continuo	24	2148.3	2021
	6	_	_	_	_
	7	Ideal	48	_	5046
	8	AG Sugerido	48	5533	5080
	9	AG Desenvolvido	48	_	6893
	10	DPSO Hibrido	48	7924.3	7293
	11	PSO Continuo	48	15801	14630
	12	PSO Discreto	48	16074	15422

2.3 Referências

[1] PARTICLE SWARM OPTIMIZATION FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS,Lin., https://core.ac.uk/download/pdf/56374467.pdf