Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002155

- International filing date:

14 February 2005 (14.02.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-042534

Filing date:

19 February 2004 (19.02.2004)

Date of receipt at the International Bureau: 30 June 2005 (30.06.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁 JAPAN PATENT OFFICE

09.06.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 2月19日

出 願 番 号 Application Number: 特願2004-042534

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願

番号
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

J P 2 0 0 4 - 0 4 2 5 3 4

出 願 人

コニカミノルタオプト株式会社

Applicant(s):

特許庁長官 Commissioner, Japan Patent Office 2005年 6月 2日

) · [1]

【書類名】 【整理番号】 【あて先】 特許願 0H0039361 特許庁長官殿 G02B 13/00

【国際特許分類】

【発明者】

【住所又は居所】 東京都日野市さくら町1番地コニカミノルタテクノロジーセンタ

一株式会社内 中村 和明

【氏名】 【発明者】

マロー 【住所又は居所】 東京都日野市さくら町1番地コニカミノルタテクノロジーセンタ

一株式会社内 倉地 育夫

【氏名】

【特許出願人】

303000408

【識別番号】 【氏名又は名称】

コニカミノルタオプト株式会社

【代表者】

松丸 隆

【手数料の表示】

【予納台帳番号】 【納付金額】 201559 21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】 【物件名】 【物件名】

図面 1 要約書 1

明細書 1

【書類名】特許請求の範囲

【請求項1】

少なくとも、(a) 一般式 R_1MgOR_2 (式中、 R_1 及 UR_2 は脂肪族または芳香族炭化水素基を表し、 R_1 と R_2 は同一でも異なっていてもよい。)で表される有機マグネシウム化合物、(b) 一般式 R_3 (n-m) MX_m (式中、M は周期表 3B、4B または 5B 族元素を表し、 R_3 は脂肪族または芳香族炭化水素基を、X はハロゲン原子を表す。また n は M の原子価を、m は 1 以上の整数を表す。)で表されるハロゲン化物、及び(c)ハロゲン化チタンを接触反応させて得られるチタン含有固体触媒成分と有機アルミニウム化合物を含む触媒系を使用して、オレフィンを重合して得れた重合体を用いることを特徴とするブルーレーザー用光学用樹脂レンズ。

【請求項2】

前記オレフィンが環状オレフィンを含有することを特徴とする請求項1に記載のブルーレーザー用光学用樹脂レンズ。

【請求項3】

前記オレフィンが環状オレフィン及び非環状オレフィンを含有することを特徴とする請求 項1に記載のブルーレーザー用光学用樹脂レンズ。

【請求項4】

前記オレフィンを重合して得れた重合体中の炭素-炭素二重結合を水素化した重合体を用いることを特徴とする請求項1~3のいずれか1項に記載のブルーレーザー用光学用樹脂レンズ。

【請求項5】

前記重合体が可塑剤または酸化防止剤を含有することを特徴とする請求項1~4のいずれか1項に記載のブルーレーザー用光学用樹脂レンズ。

【請求項6】

請求項1~5のいずれか1項に記載のブルーレーザー用光学用樹脂レンズを用いることを 特徴とする光ディスク用ピックアップレンズ。

【書類名】明細書

【発明の名称】ブルーレーザー用光学用樹脂レンズ及び光ディスク用ピックアップレンズ 【技術分野】

[0001]

本発明は、主に情報記録装置に用いられる光学用樹脂レンズに関する。

【背景技術】

[0002]

光学的に透明なプラスチックはその軽量性、量産性の高さから光学製品に広く用いられている。カメラ、フィルム一体型カメラ(レンズ付きフィルム)、ビデオカメラ等の各種カメラ、CD、CD-ROM、CD-R、CD-RW、CD-Video、MO、DVD等の光ピックアップ装置、複写機及びプリンター等のOA機器といった各種機器等に使用される高性能光学用レンズには、これまでポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、シクロポリオレフィン(CO)等の透明熱可塑性樹脂を用いて射出成型されたプラスチックレンズ等がその光学系の一部または全部に使用されてきた。

[0003]

例えば、PMMA(ポリメチルメタクリレート)は光学異方性が小さくよく利用されている樹脂だが、屈折率が1.49と小さく、吸湿性が大きい、湿度変化による膨縮が大きい、耐熱性が比較的低い等という問題点があった。

[0004]

このような欠点を改善することを目的にメチルメタクリレートの側鎖に嵩高く、疎水性の置換基を有するメタクリレートモノマーを共重合する等の方法が数多く報告されているが、長時間レーザ光を照射した条件下で高精度や高安定性を求められるプラスチックレンズに使用するには、耐熱性の問題が残されていた。また、従来公知のPC(ポリカーボネート)は、屈折率が1.59と比較的大きく、吸湿性は比較的小さいという特性を有し、レンズ、光ディスク等に用いられているが、一方で、溶融粘度が高く、成型時に歪が残りやすい、またベンゼン環が分子配向を起こしやすく、成型時に光学異方性が生じやすいという問題点があった。

[0005]

この問題点を解決するために、分子量を小さくして溶融粘度を低下させて成型性を向上させたり、分子配向を軽減させる目的で、側鎖にベンゼン環を有するポリスチレンとのプロック共重合をしたり、側鎖にベンゼン環を有するモノマーを用いる等の方法が開示されている。

[0006]

しかし、成型樹脂の強度低下や相分離のために光学的な不均一性が生じやすかったり、 流動性が改善されにくい等から必ずしも満足し得るものではなく、耐熱性が比較的高い樹脂であるが、成型体が複屈折を生じやすいので、高精度が要求されるプラスチックレンズ には用いられていないのが現状である。

[0007]

また、骨格全体もしくはその一部に環状構造を有するシクロポリオレフィンは青色透過性を持つが、PC(ポリカーボネート)と比較して、光学異方性は小さいものの、高性能プラスチックレンズとして用いるには必ずしも満足できるものではなく、その改良が鋭意検討されている。

[0008]

例えば、低複屈折、高耐熱性、高耐湿性を有するシクロポリオレフィン系重合体(特許文献 1 参照。)や、シクロポリオレフィン系重合体を水素添加処理することにより、色相改善を目的として開発されたポリマー(特許文献 2 参照。)、スチレンとブタジエンとのブロック共重合体の芳香環部分を含む不飽和結合を水素化した特定構造の共重合体が透明性、低複屈折性、機械的強度に優れ、大型で薄型のレンズの作製を可能にした樹脂(特許文献 3 参照。)等、材料の改良がなされてきたが、PMMAよりも耐熱性の高い材料を使用しても、長時間レーザ光を照射すると、物性が損なわれるといった問題が依然未解決の

まま残されていた。

[0009]

近年CD-R、DVDやMO等の光を使った高密度高速記録方式が盛んに研究され、実用化されている中で、光学系に求められる基準はさらに厳しくなっている。高速にディスクが回転する場合、光学性能がデータ書込及び読み出し精度に大きく響いてくる。また、高密度を求める場合にも、光学系の集光力とその安定性が記録密度に直接影響する。光学異方性が大きいと、焦点が1点に定まらず、高密度、高速どちらにとっても不利である。

[0010]

一方、VTRやデジタルスチルカメラ(DSC)等は、より高解像度を求めて研究が盛んに行われているが、これらにはCCD配列と撮影シーンの周波数の関係でモアレ縞を生じ、撮像に縞模様が現れる場合がある。この現象を防ぐためにローパスフィルタが用いられるが、これら撮像機器のプラスチックレンズにはPC(ポリカーボネート)を用いる場合が多く、レンズ自体の光学異方性が大きいため1枚のローパスフィルタでは縞模様を解消できず、2枚以上で対応せざるを得ないという問題点がある。

[0011]

ローパスフィルタは水晶を用いるため高価であり、これではコスト高となるという問題点がある。上記問題を解決するため光学異方性が小さく、かつ、屈折率が大きい素材としては、フルオレン骨格を含む樹脂または光学用レンズ(特許文献4~9参照。)が挙げられる。しかしながら、光学性能の要求が厳しく、作製も難しい高密度高速記録用、あるいは撮像用等の高性能光学用レンズに適用した例はない。また、近年、これらの高性能レンズは小型軽量化の流れからどんどん小さくなっている。

[0012]

上記のような高性能光学用レンズを、成型法等を用いて樹脂を加工する場合、前記樹脂の注入部は圧力が集中するので、ひずみが起きやすく、特に小さいレンズを作る場合、面積の割合からそのひずみが光学面に影響を及ぼしやすく、その結果、内部応力が発生し、光学異方性を生じやすいという問題点がある。また、長時間のレーザ照射またはその他の光エネルギ照射条件下での温度が上がれば、レンズ中の白濁発生という問題点が顕著に現れるが、解決手段は提案されていないのが現状である。

【特許文献1】特開平5-230148号公報

【特許文献2】特開2002-105131号公報

【特許文献3】特開2002-148401号公報

【特許文献4】特開平7-198901号公報

【特許文献5】特開平8-109249号公報

【特許文献6】特開平9-302077号公報

【特許文献7】特開平8-160222号公報

【特許文献8】特開平5-215902号公報

【特許文献9】特開平6-287230号公報

【発明の開示】

【発明が解決しようとする課題】

[0013]

本発明の目的は、長時間のレーザ照射またはその他の光エネルギ照射条件下でも光学特性が劣化しない高耐久性を示す光学用樹脂レンズの組成物を提供することである。

【課題を解決するための手段】

[0014]

本発明の上記課題は、以下の構成により達成される。

[0015]

(請求項1)

少なくとも、(a)一般式 R_1MgOR_2 (式中、 R_1 及び R_2 は脂肪族または芳香族炭化水素基を表し、 R_1 と R_2 は同一でも異なっていてもよい。)で表される有機マグネシウム化合物、(b)一般式 $R_3(n-m)MX_m$ (式中、Mは周期表3B、4Bまたは5B族元素を表

し、 R_3 は脂肪族または芳香族炭化水素基を、Xはハロゲン原子を表す。またnはMの原子価を、mは1以上の整数を表す。)で表されるハロゲン化物、及び(c)ハロゲン化チタンを接触反応させて得られるチタン含有固体触媒成分と有機アルミニウム化合物を含む触媒系を使用して、オレフィンを重合して得れた重合体を用いることを特徴とするブルーレーザー用光学用樹脂レンズ。

[0016]

(請求項2)

前記オレフィンが環状オレフィンを含有することを特徴とする請求項1に記載のブルーレーザー用光学用樹脂レンズ。

[0017]

(請求項3)

前記オレフィンが環状オレフィン及び非環状オレフィンを含有することを特徴とする請求 項1に記載のブルーレーザー用光学用樹脂レンズ。

[0018]

(請求項4)

前記オレフィンを重合して得れた重合体中の炭素 - 炭素二重結合を水素化した重合体を用いることを特徴とする請求項1~3のいずれか1項に記載のブルーレーザー用光学用樹脂レンズ。

[0019]

(請求項5)

前記重合体が可塑剤または酸化防止剤を含有することを特徴とする請求項1~4のいずれか1項に記載のブルーレーザー用光学用樹脂レンズ。

[0020]

(請求項6)

請求項1~5のいずれか1項に記載のブルーレーザー用光学用樹脂レンズを用いることを 特徴とする光ディスク用ピックアップレンズ。

【発明の効果】

[0021]

本発明により、長時間のレーザ照射またはその他の光エネルギ照射条件下でも光学特性が劣化しない高耐久性を示すブルーレーザー用光学用樹脂レンズ及び光ディスク用ピックアップレンズを提供することができる。

【発明を実施するための最良の形態】

[0022]

本発明者は鋭意研究の結果、少なくとも、(a)一般式 R_1MgOR_2 (式中、 R_1 及び R_2 は脂肪族または芳香族炭化水素基を表し、 R_1 と R_2 は同一でも異なっていてもよい。)で表される有機マグネシウム化合物、(b)一般式 R_3 (n-m) MX_m (式中、Mは周期表3B、4Bまたは5B族元素を表し、 R_3 は脂肪族または芳香族炭化水素基を、Xはハロゲン原子を表す。またnはMの原子価を、mは1以上の整数を表す。)で表されるハロゲン化物、及び(c)ハロゲン化チタンを接触反応させて得られるチタン含有固体触媒成分と有機アルミニウム化合物を含む触媒系を使用して、オレフィンを重合して得れた重合体を用いることことにより、長時間のレーザ照射またはその他の光エネルギ照射条件下でも光学特性が劣化しない高耐久性を示すブルーレーザー用光学用樹脂レンズが得られることを見出した。

[0023]

また、本発明の効果をより発現するには、前記オレフィンが環状オレフィンを含有すること、前記オレフィンが環状オレフィン及び非環状オレフィンを含有すること、前記オレフィンを重合して得れた重合体中の炭素ー炭素二重結合を水素化した重合体を用いること、前記重合体が可塑剤または酸化防止剤を含有することが好ましい。

[0024]

以下本発明を詳細に説明する。

[0025]

ポリオレフィン類の重合は1953年にKarl Zieglerがリチウムやアルミニウム等の有機アルカリ金属を用い、10気圧程度の穏和な条件下においてエチレンを重合させることができるZiegler触媒を発見し、1954年にNattaが $TiCl_4$ を還元して結晶性の $TiCl_3$ とした後、アルキルアルミニウムと組み合せ結晶性のポリプロピレンの重合に成功してから勢力的に研究が行なわれきた。

[0026]

エチレンの重合は当初TiCl4をそのまま用いていたため、重合容器壁面へのポリマ ー付着やポリマー粒子の性状不良といった生産性悪化をもたらすという問題を抱えていた 。その後の改良でTiCl4を還元して得られる不溶性のTiCl3を用いることで工業化 に至ったが、重合活性が低くポリマー中に多量に残留する触媒成分を除去するための煩雑 な脱灰工程を必要とした。またポリプロピレンでは立体規則性が不十分であったため、ア タクチックポリマーを除去する工程も必要になる等、製造プロセスも煩雑でエネルギー多 消費であった。1973年のオイルショックを境に電力、用役等の大幅高騰は製造プロセ スの徹底的な簡素化や収率、選択性の大幅改良を必要不可欠とした。この命題解決に向け たアプローチとして1968年に三井石油化学はエチレンに極めて高い活性を示すMgC l2担持型Ti触媒を見出した。その後種々の高重合活性担体付オレフィン重合用触媒が 種々提案されている。例えば、特開昭48-92489号には、ジフェニルシランジオー ルとグリニヤール化合物との反応生成物に、チタンまたはバナジウムのハロゲン化合物を 反応させて得られる固体触媒をエチレンの重合に使用することが提案されている。また、 特開昭46-34098号及び同47-42137号においてはマグネシウムのアルコレ ートとハロゲン化チタンとの反応生成物を、また特開昭45-9548号においてはマグ ネシウムの酸化化合物とハロゲン化チタンとの反応生成物をオレフィンの重合に使用する ことが提案されている。1975年には三井石油化学、Montedison社はMgC l 2担持型Ti触媒に電子供与体を導入した触媒が、重合活性と立体規則性のいずれも高 めることを見出し、プロピレンの立体規則性重合についても高活性化をもたらした。

[0027]

光学用樹脂レンズに用いられているシクロオレフィンの重合は、MoまたはWを触媒としたシクロプテン、シクロペンテンの開環メタセシス重合が1964年にNatta等により見い出されて以来、1992年にGrubbs等により発表されたRuのビニルカルベン錯体等種々の高活性触媒が開発され、また高立体選択性の開発が行なわれてきた。しかし現在開環メタセシス重合を用いたポリマーが光学材料として利用されているが、本発明の目的である長時間のブルーレーザ照射またはその他の高光エネルギー照射条件下では、光学特性の劣化を示し、高耐久性を示す光学用樹脂レンズが得られていないのが現状である。

[0028]

そこで、本発明者等はそのような欠点を解決すべく鋭意研究を重ねた結果、特定の有機マグネシウム化合物、ハロゲン化物及びハロゲン化チタンを接触反応させて得られるチタン含有固体触媒成分と有機アルミニウム化合物を含む触媒系を使用して得られた重合体を用い、光学特性の耐久性が高い光学用樹脂レンズが得られるという知見を得て、本発明を完成するに至った。

[0029]

本発明で使用するチタン含有触媒成分は、少なくとも、(a)一般式 R_1MgOR_2 (式中、 R_1 及び R_2 は脂肪族または芳香族炭化水素基を表し、 R_1 と R_2 は同一でも異なっていてもよい。)で表される有機マグネシウム化合物、(b)一般式 $R_3(n_{-m})MX_m$ (式中、Mは周期表 3B、 4Bまたは 5B族元素を表し、 R_3 は脂肪族または芳香族炭化水素基を、Xはハロゲン原子を表す。また n は M の原子価を、m は 1 以上の整数を表す。)で表されるハロゲン化物、及び(c)チタン塩化物を接触することにより得られる。

[0030]

本発明で使用されるこれらの各成分について説明する。

[0031]

(a) 有機マグネシウム化合物

本発明の触媒の成分に用いられる有機マグネシウム化合物は、一般式 R_1MgOR_2 (式中、 R_1 及び R_2 は脂肪族または芳香族炭化水素基を表し、 R_1 と R_2 は同一でも異なっていてもよい。)で表され、脂肪族または芳香族炭化水素溶媒に可溶な化合物が好ましい。該有機マグネシウム化合物はMethoden Der Organischen Chemie, Band XIII/2a, 192~196頁、1973年(Houben-Wey1)に記されているように、いくつかの方法によって製造することができる。該有機マグネシウム化合物の合成法の一例を挙げれば、次式に示すようにメチルシクロヘキサン溶媒中、金属マグネシウムとアルコール及びハロゲン化炭化水素とを接触させるこのによりほぼ定量的に得ることができる。

[0032]

 $2 \text{ Mg} + (\text{CH}_3) \ _2 \text{ CHOH} + 2 \text{ CH}_3 \ (\text{CH}_2) \ _3 \text{Cl} \rightarrow \text{CH}_3 \ (\text{CH}_2) \ \text{MgOCH} \ (\text{CH}_3) \ _2$

具体的にはR1及びR2としては炭素1~20のアルキル、シクロアルキル、アリール、アラルキル基が挙げられる。特にエチル、nープロピル、iープロピル、nーブチル、tーブチル、デシル、ドデシル等のアルキル基、フェニル等のアリール基、ベンジル等のアラルキル基が好ましく、R1及びR2は同一であっても異なっていてもよい。

[0033]

(b) ハロゲン化物

本発明の触媒の成分に用いられるハロゲン化物は、一般式 R3(n-m) MXm(式中、Mは 周期表3B、4Bまたは5B族元素を表し、R3は脂肪族または芳香族炭化水素基を、X はハロゲン原子を表す。またnはMの原子価を、mは1以上の整数を表す。)で表される 。周期表3B、4Bまたは5B族元素はIUPACの無機化学命名法委員会1965年の 規約に従う。Mとしてはホウ素、アルミニウム、炭素、ケイ素、スズ、リン等、R3とし ては R_1 、 R_2 で例示したものが挙げられる。具体例として、三塩化ホウ素、三臭化ホウ素 、三ヨウ化ホウ素等のハロゲン化ホウ素化合物、塩化アルミニウム、臭化アルミニウム、 ヨウ化アルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等 のハロゲン化アルミニウム化合物、四塩化炭素、クロロホルム、クロロベンゼン、塩化ベ ンジル、臭化ベンジル等のハロゲン化炭化水素、四塩化ケイ素、トリクロロシラン、メチ ルトリクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニル ジクロロシラン等のハロゲン化ケイ素化合物、四塩化スズ、四臭化スズ、四ヨウ化スズ、 トリメチルクロロスタナン、ジメチルジクロロスタナン、メチルトリクロロスタナン、ト リプチルクロロスタナン、フェニルトリクロロスタナン等のハロゲン化スズ化合物、及び 窒素、リン等の塩化物、臭化物が挙げられる。特に塩化アルミニウム、エチルアルミニウ ムジクロリド等塩化アルミニウム化合物及び四塩化ケイ素、フェニルトリクロロシラン、 フェニルジクロロシラン、メチルトリクロロシラン等の塩素化ケイ素化合物が好ましい。 なお、これらのハロゲン化物のうち2種以上を適宜組み合せて固体触媒成分の調製を行な うこともできる。

[0034]

また添加量は有機マグネシウム化合物のモル数の3倍モル以下が好ましく、更に好まし くは等モル以下である。

[0035]

(c) ハロゲン化チタン

本発明の触媒の成分に用いられるハロゲン化チタンとしては、例えば四塩化チタン、四 臭化チタン、四ヨウ化チタン、三塩化チタン、二塩化チタン、またオキシ二塩化チタンの ようなオキシジハロゲノチタン等が挙げられる。特に好ましいのは四塩化チタンである。

[0036]

本発明において、上述した(a)、(b)及び(c)の3成分を適宜の順序に接触させて、チタン含有固体触媒成分を得る。例えば、(a)有機マグネシウム化合物と(b)ハ 出証特2005-3048025 ロゲン化物とを接触反応させ、次いで(c)ハロゲン化チタンで処理する方法等、種々の 方法によって得ることができる。

[0037]

これらの方法において、有機マグネシウム化合物、ハロゲン化物及びハロゲン化チタン は、純粋なものでもまた適宜希釈剤で希釈して用いてもよい。希釈剤としては、ベンゼン 、トルエン等の芳香族炭化水素、nーペンタン、n-ヘキサン、n-ヘプタン、n-オク タン、nードデカン、流動パラフィン等の飽和脂肪族炭化水素、シクロヘキサン、メチル シクロヘキサン等の脂環式炭化水素、ジエチルエーテル、ジブチルエーテル等のエーテル 等が挙げられる。

[0038]

更に具体的に、チタン含有固体触媒の接触法について説明する。

[0039]

室温~100℃付近で有機マグネシウム化合物及びハロゲン化物を接触し、次いで50 ~200℃、好ましくは80~150℃で数時間反応させる。次いでこの生成物をそのま ま、あるいは減圧乾燥等により乾燥して粉末状態としたものに、ハロゲン化チタンを添加 し、60~160℃、好ましくは80~150℃にて0.1時間以上、好ましくは0.5 ~ 2 時間接触反応する。次いで炭化水素溶媒を用いて十分に洗浄する。炭化水素溶媒とし ては、ペンゼン、トルエン等の芳香族炭化水素、nーペンタン、nーヘキサン、nーヘプ タン、n-オクタン、n-ドデカン、流動パラフィン等の飽和脂肪族炭化水素、シクロへ キサン、メチルシクロヘキサン等の脂環式炭化水素等が使用できる。

[0040]

これらの方法で使用される各成分量は、次の範囲から選ばれる。有機マグネシウム化合 物1モル当り、ハロゲン化物0.1~20モル、好ましくは0.5~5モル、ハロゲン化 チタン0.1~50モル、好ましくは1~30モル。

[0041]

かくして有機マグネシウム化合物、ハロゲン化物、ハロゲン化チタンを接触反応するこ とによって、チタン含量 $0.1\sim20$ 質量%好ましくは $0.1\sim10$ 質量%の淡褐色また は淡黄褐色の固体を得ることができ、これを前記炭化水素溶媒で洗浄してオレフィンの重 合に使用する。

[0042]

オレフィンの重合は、前記チタン含有固体触媒成分と有機アルミニウム化合物とを組み 合せた触媒系を使用して行なう。有機アルミニウム化合物としては、例えば一般式AlR 4 k X^1_{3-k} (式中 R^4 は炭素数 $1\sim 8$ のアルキル基を表し、 R^4 が 2 個以上である時は、そ れぞれ異なっていてもよい。 k は $1\sim3$ の数、 X^1 はハロゲン原子を示す)で表されるも のが使用される。特に、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソ ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム等トリアル キルアルミニウムが好ましい。有機アルミニウム化合物の使用量は、Ti 1グラム原子 あたり1~20モルの範囲から選ばれる。

[0043]

本発明において、重合または共重合反応は、不活性炭化水素溶媒等の存在下で溶液重合 、あるいはスラリー重合、そして溶媒不存在下での気相重合等種々の重合方法を取ことが できる。更に、必要に応じて公知の第3成分を添加することもできる。

[0044]

重合体または共重合体を構成する環状オレフィンとしては、下記一般式(1)または(2) で表される環状オレフィンが挙げられる。

[0045]

【化1】

一般式(1)

[0046]

式中、nは0または1であり、mは0または正の整数であり、kは0または1である。なおkが1の場合には、kを用いて表される環は6 員環となり、kが0の場合にはこの環は5 員環となる。

[0047]

 $R^{1}\sim R^{18}$ ならびに R a 及び R b は、それぞれ独立に、水素原子、ハロゲン原子または 炭化水素基である。ここで、ハロゲン原子は、フッ素原子、塩素原子、臭素原子または R ウ素原子である。

[0048]

また、炭化水素基としては、通常、炭素原子数1~20のアルキル基、炭素原子数1~20のハロゲン化アルキル基、炭素原子数3~15のシクロアルキル基または芳香族炭化水素基が挙げられる。より具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、アミル基、ヘキシル基、オクチル基、デシル基、ドデシル基及びオクタデシル基等が挙げられる。これらアルキル基はハロゲン原子で置換されていてもよい。

[0049]

シクロアルキル基としては、シクロヘキシル基が挙げられ、芳香族炭化水素基としてはフェニル基、ナフチル基等が挙げられる。さらに上記一般式(1)において、 R^{15} と R^{16} とが、 R^{17} と R^{18} とが、 R^{15} と R^{17} とが、 R^{16} と R^{17} とが、 R^{15} と R^{17} とが、 R^{15} と R^{18} とが、 R^{15} と R^{18} とが、 R^{15} と R^{18} とが、あるいは R^{16} と R^{17} とがそれぞれ結合して(互いに共同して)、単環または多環の基を形成していてもよく、しかもこのようにして形成された単環または多環が二重結合を有していてもよい。ここで形成される単環または多環としては、具体的に以下のようなものが挙げられる。

[0050]

【化2】

【0051】 なお上記例示において、1または2の番号を付した炭素原子は、前記一般式(1)においてそれぞれ R^{15} (R^{16})または R^{17} (R^{18})結合している炭素原子を表す。

[0052]

また、 R^{15} と R^{16} とで、または R^{17} と R^{18} とでアルキリデン基を形成していてもよい。 このようなアルキリデン基は、通常は炭素原子数2~20のアルキリデン基であり、この ようなアルキリデン基の具体的な例としては、エチリデン基、プロピリデン基及びイソプ ロピリデン基が挙げられる。

[0053] 【化3】

[0054]

式中、p及びqはそれぞれ独立に、0または正の整数であり、r及びsはそれぞれ独立に 、0、1または2である。また、 $R^{21} \sim R^{39}$ はそれぞれ独立に、水素原子、ハロゲン原子 、炭化水素基またはアルコキシ基である。

[0055]

ここでハロゲン原子は、上記一般式 (1) 中のハロゲン原子と同じである。また炭化水 素基としては、通常、炭素原子数1~20のアルキル基、炭素原子数3~15のシクロア ルキル基または芳香族炭化水素基が挙げられる。より具体的には、アルキル基としては、 メチル基、エチル基、プロピル基、イソプロピル基、アミル基、ヘキシル基、オクチル基 、デシル基、ドデシル基及びオクタデシル基等が挙げられる。これらアルキル基はハロゲ ン原子で置換されていてもよい。

[0056]

シクロアルキル基としては、シクロヘキシル基が挙げられ、芳香族炭化水素基としては 、アリール基、アラルキル基等が挙げられ、具体的には、フェニル基、トリル基、ナフチ ル基、ベンジル基、フェニルエチル基等が挙げられる。

[0057]

アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。ここ で、 R^{29} 及び R^{30} が結合している炭素原子と、 R^{33} が結合している炭素原子または R^{31} が 結合している炭素原子とは、直接あるいは炭素原子数1~3のアルキレン基を介して結合 していてもよい。すなわち、上記二個の炭素原子がアルキレン基を介して結合している場 合には、 R^{29} と R^{33} とが、または、 R^{30} と R^{31} とが互いに共同して、メチレン基(-CH2-) 、エチレン基(- C H 2 C H 2-) またはプロピレン基(- C H 2 C H 2 C H 2-) の内 のいずれかのアルキレン基を形成している。

[0058]

さらに、r=s=0のとき、 R^{35} と R^{32} または R^{35} と R^{39} とは互いに結合して単環また は多環の芳香族環を形成していてもよい。具体的には、 r=s=0 のとき、 R^{35} と R^{32} と により形成される以下のような芳香族環が挙げられる。

[0059]

【化4】

$$-\left(-CH_2\right)_q$$

$$-\left(-CH_{2}\right)_{q}$$

[0060]

ここで、qは一般式(2)におけるqと同じである。上記のような一般式(1)または(2)表される環状オレフィンとしては、具体的には、ビシクロー2ーペプテン誘導体(ビシクロへプトー2ーエン誘導体)、トリシクロー3ーデセン誘導体、トリシクロー3ーウンデセン誘導体、テトラシクロー3ードデセン誘導体、ペンタシクロー4ーペンタデセン誘導体、ペンタシクロー3ーペンタデセン誘導体、ペンタシクロー3ーペンタデセン誘導体、ペンタシクロー3ーペンタデセン誘導体、ペンタシクロー4ーペーンが導体、ペンタシクロー4ーペーン誘導体、ペプタシクロー5ーエイコセン誘導体、ペプタシクロー4ーエイコセン誘導体、ペプタシクロー5ーエイコセン誘導体、オクタシクロー5ードコセン誘導体、ノナシクロー5ーペンタコセン誘導体、ノナシクロー6ーペキサコセン誘導体、シクロペンタジエンーアセナフチレン付加物、1、4ーメタノー1、4、4 a、5、10 aーペキサヒドロアントラセン誘導体等が挙げられる。

[0061]

以下に上記のような一般式 (1) または (2) で表される環状オレフィンのより具体的な例を示す。

[0062]

【化5】

ビシクロ[2.2.1]ヘプトー2ーエン (=ノルボルネン)

5ーメチルビシクロ [2.2.1]ヘプトー2ーエン

5,6-ジメチルビシクロ [2.2.1]ヘプト**-2**-エン

1-メチルビシクロ [2.2.1]ヘプト**-2**-エン

$$C_2H_5$$

5-エチルビシクロ [2.2.1]ヘプト-2-エン

5-nーブチルビシクロ [2.2.1]ヘプトー2ーエン

5ーイソブチルビシクロ [2.2.1]ヘプトー2ーエン

7ーメチルビシクロ [2.2.1]ヘプトー2ーエン

等のビシクロ[2.2.1]ヘプト-2-エン誘導体;

[0063]

【化6】

テトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-メチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8ーエチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-プロピルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-ブチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-イソブチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0064]

8-ヘキシルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-シクロヘキシルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-ステアリルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

5,10ージメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

2,10ージメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8,9-ジメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0065]

【化8】

8-エチルー9-メチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

11,12-ジメチルテトラシクロ [**4.4.0.1**^{2.5}.1^{7.10}]-3-ドデセン

2,7,9ートリメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

2,7-ジメチルー9ーエチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

9ーイソブチルー2,7ージメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

9,11,12ートリメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

[0066]

【化9】

9-エチルー11,12-ジメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

9ーイソブチルー11,12ージメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

5,8,9,10ーテトラメチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-エチリデンテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-エチリデン-9-メチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-エチリデン-9-エチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0067]

【化10】

 CH_3 8-n-プロピリデン-9-メチルテトラシクロ $CHCH_2CH_3$ [4.4.0.1 $^{2.5}$.1 $^{7.10}$]-3-ドデセン

CH(CH₃)₂ 8-n-プロピリデンー9-イソプロピルテトラシクロ CHCH₂CH₃ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0068]

【化11】

8-n-プロピリデン-9-ブチルテトラシクロ [4.4.0.1 $^{2.5}$.1 $^{7.10}$]-3-ドデセン

8-イソプロピリデンテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-イソプロピリデン-9-メチルテトラシクロ [4.4.0.1 $^{2.5}$.1 $^{7.10}$]-3-ドデセン

8ーイソプロピリデンー9ーエチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8ーイソプロピリデンー9ーイソプロピルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-イソプロピリデンー9-ブチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0069]

【化12】

8-クロロテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8ーブロモテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8ーフルオロテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8,9-ジクロロテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

等のテトラシクロ[4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン誘導体;

【0070】

ヘキサシクロ [6.6.1.1 $^{3.6}$.1 $^{10.13}$.0 $^{2.7}$.0 $^{9.14}$]ー4ーヘプタデセン

12ーメチルヘキサシクロ [6.6.1.1 $^{3.6}$.1 $^{10.13}$.0 $^{2.7}$.0 $^{9.14}$]ー4ーヘプタデセン

12ーエチルヘキサシクロ [6.6.1.1^{3.6}.1^{10.13}.0^{2.7}.0^{9.14}]ー4ーヘプタデセン

12ーイソブチルヘキサシクロ [6.6.1.1 $^{3.6}$.1 $^{10.13}$.0 $^{2.7}$.0 $^{9.14}$]ー4ーヘプタデセン

1,6,10ートリメチルー12ーイソブチルヘキサシクロ [6.6.1.1^{3.6}.1^{10.13}.0^{2.7}.0^{9.14}]ー4ーヘプタデセン

等のヘキサシクロ[**6.6.1.1**^{3.6}.**1**^{10.13}.0^{2.7}.0^{9.14}]-4-ヘプタデセン誘導体;

[0071]

【化14】

オクタシクロ [8.8.0.1^{2.9}.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}] -5 - ドコセン

15ーメチルオクタシクロ [8.8.0.1 $^{2.9}$.1 $^{4.7}$.1 $^{11.18}$.1 $^{13.16}$.0 $^{3.8}$.0 $^{12.17}$]ー5ードコセン

 $^{\text{C}_2\text{H}_5}$ 15ーエチルオクタシクロ [8.8.0.1^{2.9}.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}]ー5ードコセン

等のオクタシクロ[8.8.0.1^{2.9}.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}]-5-ドコセン誘導体;

ペンタシクロ [6.6.1.1^{3.6}.0^{2.7}.0^{9.14}]ー4ーヘキサデセン

1,3-ジメチルペンタシクロ [6.6.1.1^{3.6}.0^{2.7}.0^{9.14}]-4-ヘキサデセン

1,6-ジメチルペンタシクロ [6.6.1.1^{3.6}.0^{2.7}.0^{9.14}]-4-ヘキサデセン

15,16ージメチルペンタシクロ [6.6.1.1^{3.6}.0^{2.7}.0^{9.14}]-4-ヘキサデセン

等のペンタシクロ[6.6.1.1^{3.6}.0^{2.7}.0^{9.14}]ー4ーヘキサデセン誘導体;

[0072]

【化15】

ヘプタシクロ [8.7.0.1^{2.9}.1^{4.7}.1^{11.17}.0^{3.8}.0^{12.16}] -5 エイコセン

ヘプタシクロ [8.8.0.1 $^{2.9}$.1 $^{4.7}$.1 $^{11.17}$.0 $^{3.8}$.0 $^{12.16}$] -5 ーヘンエイコセン

等のヘプタシクロー5-エイコセン誘導体あるいは ヘプタシクロー5-ヘンエイコセン誘導体;

トリシクロ**[4.3.0.1^{2.5}]-3**-デセン

2ーメチルトリシクロ**[4.3.0.1^{2.5}]-3**ーデセン

5-メチルトリシクロ**[4.3.0.1^{2.5}]-3-**デセン

等のトリシクロ**[4.3.0.1^{2.5}]-3**-デセン誘導体;

[0073]

【化16】

トリシクロ[4.4.0.1^{2.5}]-3-ウンデセン

10ーメチルトリシクロ[4.4.0.1^{2.5}]ー3ーウンデセン

等のトリシクロ[4.4.0.1^{2.5}]-3-ウンデセン誘導体;

ペンタシクロ [6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]ー4ーペンタデセン

1,3ージメチルペンタシクロ [6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]ー4ーペンタデセン

1,6ージメチルペンタシクロ [6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]ー4ーペンタデセン

14,15ージメチルペンタシクロ [6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]ー4ーペンタデセン

等のペンタシクロ**[6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]-4**-ペンタデセン誘導体;

【0074】 【化17】

ペンタシクロ

 $[6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]$ -4,10 - ペンタデカジエン

等のジエン化合物;

ペンタシクロ [7.4.0.1^{2.5}.1^{9.12}.0^{8.13}]-3-ペンタデセン

メチル置換ペンタシクロ [7.4.0.1^{2.5}.1^{9.12}.0^{8.13}]ー3ーペンタデセン

等のペンタシクロ[7.4.0.1^{2.5}.1^{9.12}.0^{8.13}]-3-ペンタデセン誘導体;

【0075】

ペンタシクロ [8.7.0.1 $^{3.6}$.1 $^{10.17}$.1 $^{12.15}$.0 $^{2.7}$.0 $^{11.16}$] -4 - エイコセン

ジメチル置換ヘプタシクロ [8.7.0.1^{3.6}.1^{10.17}.1^{12.15}.0^{2.7}.0^{11.16}]-4-エイコセン

等のヘプタシクロ[8.7.0.1 $^{3.6}$.1 $^{10.17}$.1 $^{12.15}$.0 $^{2.7}$.0 $^{11.16}$]ー4ーエイコセン誘導体;

ノナシクロ [10.9.1.1^{4.7}.1^{13.20}.1^{15.18}.0^{3.8}.0^{2.10}.0^{12.21}.0^{14.19}] -5ーペンタコセン

トリメチル置換基ノナシクロ [10.9.1.1^{4.7}.1^{13.20}.1^{15.18}.0^{3.8}.0^{2.10}.0^{12.21}.0^{14.19}] ー5ーペンタコセン

等のノナシクロ[10.9.1.1^{4.7}.1^{13.20}.1^{15.18}.0^{3.8}.0^{2.10}.0^{12.21}.0^{14.19}]ー5ーペンタコセン誘導体;

[0076]

【化19】

ペンタシクロ [8.4.0.1 $^{2.5}$.1 $^{9.12}$.0 $^{8.13}$]-3-ヘキサデセン

11-メチルーペンタシクロ [8.4.0.1^{2.5}.1^{9.12}.0^{8.13}]-3-ヘキサデセン

$$C_2H_5$$

11ーエチルーペンタシクロ [8.4.0.1 $^{2.5}$.1 $^{9.12}$.0 $^{8.13}$] -3 ーヘキサデセン

10,11ージメチルーペンタシクロ [8.4.0.1^{2.5}.1^{9.12}.0^{8.13}]ー3ーヘキサデセン

等のペンタシクロ[8.4.0.1^{2.5}.1^{9.12}.0^{8.13}]-3-ヘキサデセン誘導体;

$$5 \underbrace{ \begin{array}{c} 4 & 3 & 2 & 1 & 18 & 17 & 16 \\ 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \end{array}}_{7 & 8 & 9 & 10 & 11 & 12 & 13 \\ \end{array}}_{10} 15$$

ヘプタシクロ [8.8.0.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}] ー5ーヘンエイコセン

15ーメチルヘプタシクロ [8.8.0.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}] -5-ヘンエイコセン

トリメチルーヘプタシクロ [8.8.0.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}] ー5ーヘンエイコセン

等のヘプタシクロ[8.8.0.1^{4.7}.1^{11.18}.1^{13.16}.0^{3.8}.0^{12.17}]-5-ヘンエイコセン誘導体;

【0077】

ノナシクロ [10.10.1.1 $^{5.8}$.1 $^{14.21}$.1 $^{16.19}$.0 $^{2.11}$.0 $^{4.9}$.0 $^{13.22}$.0 $^{15.20}$] -5ーヘキサコセン

等のノナシクロ[10.10.1.1^{5.8}.1^{14.21}.1^{16.19}.0^{2.11}.0^{4.9}.0^{13.22}.0^{15.20}]ー5ーヘキサコセン 誘導体;

[0078]

【化21】

そしてさらには、

$$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \end{array}$$

5ーフェニルービシクロ[2.2.1]ヘプトー2ーエン

5ーメチルー5ーフェニル[2.2.1]ヘプトー2ーエン

5ーベンジルービシクロ[2.2.1]ヘプトー2ーエン

5ートリルービシクロ[2.2.1]ヘプトー2ーエン

5ー(エチルフェニル)ービシクロ [2.2.1]ヘプトー2ーエン

5ー(イソプロピルフェニル)ービシクロ [2.2.1]ヘプトー2ーエン

[0079]

[化22]

5-(ビフェニル)ービシクロ[2.2.1]ヘプトー2ーエン

5-(β-ナフチル)-ビシクロ[2.2.1]ヘプト-2-エン

5-(α-ナフチル)-ビシクロ[2.2.1]へプトー2-エン

5-(アントラセニル)-ビシクロ[2.2.1]ヘプト-2-エン

[0080] 【化23】

5,6-ジフェニルービシクロ[2.2.1]ヘプトー2-エン

シクロペンタジエンーアセナフチレン付加物

1,4-メタノー1,4,4a,9a-テトラヒドロフルオレン

1,4-メタノー1,4,4a,5,10,10a-ヘキサヒドロアントラセン

[0081]

【化24】

8-フェニルーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-メチル-8-フェニルーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-ベンジルーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8ートリルーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-(エチルフェニル)ーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-(イソプロピルフェニル)ーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0082]

【化25】

8,9ージフェニルーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8ー(ビフェニル)ーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-(β -ナフチル)ーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

8-(α ーナフチル)ーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]ー3ードデセン

8-(アントラセニル)ーテトラシクロ [4.4.0.1^{2.5}.1^{7.10}]-3-ドデセン

[0083]

【化26】

(シクロペンタジエンーアセナフチレン付加物)にシクロペンタジエンを さらに付加した化合物

11,12ーベンゾーペンタシクロ[6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]ー4ーペンタデセン

11,12ーベンソーペンタシクロ[6.6.1.1^{3.6}.0^{2.7}.0^{9.14}]ー4ーヘキサデセン

11ーフェニルーヘキサシクロ[6.6.1.1 $^{3.6}$.1 $^{10.13}$.0 $^{2.7}$.0 $^{9.14}$]ー4ーヘプタデセン

$$5 \underbrace{ \left(\begin{array}{c} 4 \\ 5 \\ 6 \end{array} \right)^{3} \underbrace{ \left(\begin{array}{c} 1 \\ 7 \\ 8 \end{array} \right)^{10} \underbrace{ \left(\begin{array}{c} 17 \\ 10 \end{array} \right)^{17} \underbrace{ \left(\begin{array}{c} 16 \\ 15 \end{array} \right)^{17} \underbrace{ \left(\begin{array}{c} 16 \\ 13 \end{array} \right)^{14}} }_{10}$$

14,15ーベンゾーヘプタシクロ[8.7.0.1 $^{2.9}$.1 $^{4.7}$.1 $^{11.17}$.0 $^{3.8}$.0 $^{12.16}$]ー5ーエイコセン

[0084]

共重合体を構成する非環状オレフィンとしては、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-トラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の直鎖状 $\alpha-$ オレフィン;4-メチルー1-ペンテン、3-メチルー1-ペンテン、3-メチルー1-ペンテン、3-メチルー1-プテン等の分岐状 $\alpha-$ オレフィン等が挙げられる。好ましくは、炭素原子数が 2-20の $\alpha-$ オレフィンが好ましい。このような直鎖状または分岐状の $\alpha-$ オレフィンは置換基で置換されていてもよく、また 1種単独、あるいは 2種以上組合わせて用いることができる。

[0085]

置換基としては、種々のものが挙げられ特に制限はないが、代表的なものとしてアルキル、アリール、アニリノ、アシルアミノ、スルホンアミド、アルキルチオ、アリールチオ、アルケニル、シクロアルキル、シクロアルケニル、アルキニル、複素環、アルコキシ、

アリールオキシ、複素環オキシ、シロキシ、アミノ、アルキルアミノ、イミド、ウレイド 、スルファモイルアミノ、アルコキシカルボニルアミノ、アリールオキシカルボニルアミ ノ、アルコキシカルボニル、アリールオキシカルボニル、複素環チオ、チオウレイド、ヒ ドロキシル及びメルカプトの各基、並びにスピロ化合物残基、有橋炭化水素化合物残基、 スルホニル、スルフィニル、スルホニルオキシ、スルファモイル、ホスホリル、カルバモ イル、アシル、アシルオキシ、オキシカルボニル、カルボキシル、シアノ、ニトロ、ハロ ゲン置換アルコキシ、ハロゲン置換アリールオキシ、ピロリル、テトラゾリル等の各基及 びハロゲン原子等が挙げられる。

[0086]

上記上記アルキル基としては炭素数1~32のものが好ましく、直鎖でも分岐でもよい 。アリール基としてはフェニル基が好ましい。

[0087]

アシルアミノ基としては、アルキルカルボニルアミノ基、アリールカルボニルアミノ基 ;スルホンアミド基としては、アルキルスルホニルアミノ基、アリールスルホニルアミノ 基;アルキルチオ基、アリールチオ基におけるアルキル成分、アリール成分は上記のアル キル基、アリール基が挙げられる。

[0088]

アルケニル基としては炭素数2~23のもの、シクロアルキル基としては炭素数3~1 2、特に5~7のものが好ましく、アルケニル基は直鎖でも分岐でもよい。シクロアルケ ニル基としては炭素数3~12、特に5~7のものが好ましい。

[0089]

ウレイド基としてはアルキルウレイド基、アリールウレイド基;スルファモイルアミノ 基としてはアルキルスルファモイルアミノ基、アリールスルファモイルアミノ基;複素環 基としては5~7員のものが好ましく、具体的には2-フリル、2-チエニル、2-ピリ ミジニル、2-ベンゾチアゾリル等;飽和複素環としては5~7員のものが好ましく、具 体的にはテトラヒドロピラニル、テトラヒドロチオピラニル等;複素環オキシ基としては 5~7員の複素環を有するものが好ましく、例えば3,4,5,6ーテトラヒドロピラニ ルー2ーオキシ、1ーフェニルテトラゾールー5ーオキシ等;複素環チオ基としては5~ 7員の複素環チオ基が好ましく、例えば2-ピリジルチオ、2-ベンゾチアゾリルチオ、 2, 4-ジフェノキシー1, 3, 5-トリアゾールー6-チオ等;シロキシ基としてはト リメチルシロキシ、トリエチルシロキシ、ジメチルブチルシロキシ等;イミド基としては 琥珀酸イミド、3-ヘプタデシル琥珀酸イミド、フタルイミド、グルタルイミド等;スピ 口化合物残基としてはスピロ [3.3] ヘプタン-1-イル等;有橋炭化水素化合物残基 としてはビシクロ [2. 2. 1] ヘプタンー1ーイル、トリシクロ [3. 3. 1. 13. 7] デカンー1ーイル、7, 7ージメチルービシクロ[2.2.1] ヘプタンー1ーイル 等が挙げられる。

[0090]

スルホニル基としては、アルキルスルホニル基、アリールスルホニル基、ハロゲン置換 アルキルスルホニル基、ハロゲン置換アリールスルホニル基等;スルフィニル基としては 、アルキルスルフィニル基、アリールスルフィニル基等;スルホニルオキシ基としては、 アルキルスルホニルオキシ基、アリールスルホニルオキシ基等;スルファモイル基として は、N, N-ジアルキルスルファモイル基、N, N-ジアリールスルファモイル基、N-アルキルーN-アリールスルファモイル等;ホスホリル基としては、アルコキシホスホリ ル基、アリールオキシホスホリル基、アルキルホスホリル基、アリールホスホリル基等; カルバモイル基としては、N, N-ジアルキルカルバモイル基、N, N-ジアリールカル バモイル基、NーアルキルーNーアリールカルバモイル基等;アシル基としては、アルキ ルカルボニル基、アリールカルボニル基等;アシルオキシ基としては、アルキルカルボニ ルオキシ基等;オキシカルボニル基としては、アルコキシカルボニル基、アリールオキシ カルボニル基等;ハロゲン置換アルコキシ基としてはα-ハロゲン置換アルコキシ基等; ハロゲン置換アリールオキシ基としては、テトラフルオロアリールオキシ基、ペンタフル

オロアリールオキシ基等;ピロリル基としては1-ピロリル等;テトラゾリル基としては 1-テトラゾリル等の各基が挙げられる。

[0091]

上記置換基の他に、トリフルオロメチル、ヘプタフルオローiープロビル、ノニルフル オロー t ープチル等の各基や、テトラフルオロアリール基、ペンタフルオロアリール基等 も好ましく用いられる。更に、これらの置換基は、他の置換基で置換されてもよい。

[0092]

本発明共重合体中の非環状モノマー含有量は成形性の観点から20質量%以上であるこ とが好ましく、25~90質量%であることがより好ましく、30~85質量%であるこ とがさらに好ましい。

[0093]

本発明の重合体または共重合体のガラス転移温度 (Tg) は、好ましくは80~250 ℃、より好ましくは90~220℃、最も好ましくは100~200℃の範囲である。数 平均分子量(M n)は、ゲルパーミエーションクロマトグラフィー(G P C)により測定 されるポリスチレン換算値で、好ましくは10, $000\sim1$, 000, 000、より好ま しくは20,000~500,000、最も好ましくは50,000~300,000の 範囲である。分子量分布は、上記Mnと、同様にGPCで測定されるポリスチレン換算の 質量平均分子量 (Mw) との比 (Mw/Mn) で表したときに、好ましくは2.0以下で ある。

[0094]

Mw/Mnが大き過ぎると、成形体の機械的強度や耐熱性が低下する。特に機械的強度 、耐熱性、成形加工性を向上させるには、Mw/Mnが1. 8以下がより好ましく、1. 6以下が特に好ましい。

[0095]

重合時の温度は、0~200℃、好ましくは50~150℃の範囲から選ばれ、圧力は 0. 1~10MPaの範囲から選ばれる。また、重合体帯域に水素を存在させることによ って、生成する重合体の分子量を容易に調整することができる。

本発明のオレフィン系樹脂は、1成分の環状モノマーから合成された高分子でもよいが 、好適には2成分以上の環状モノマー、あるいは環状モノマーと非環状モノマーを用いて 合成された共重合体が選ばれる。この共重合体については、100成分以上のモノマーを 用いて製造してもよいが生産効率重合安定性からモノマーの混合は10成分以下が好まし い。更に好ましいのは、5成分以下である。

[0097]

また、得られた共重合体は、結晶性高分子でも非晶性高分子でもかまわないが、好まし くは非晶性高分子がよい。

[0098]

本発明の重合体及び共重合体の炭素-炭素不飽和結合(芳香環含む)を水素添加する方 法には、公知の方法を用いることができるが、中でも、水素添加率を高くし、かつ水素添 加反応と同時に起こる重合体鎖切断反応を少なくするためには、有機溶媒中、ニッケル、 コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム及びレニウムから選ば れる少なくとも1つの金属を含む触媒を用いて水素添加反応を行なうのが好ましい。水素 化触媒は、不均一触媒、均一触媒のいずれも使用可能である。不均一系触媒は、金属また は金属化合物のままで、または適当な担体に担持して用いることができる。担体としては 、例えば、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコ ニア、ケイソウ土、炭化珪素等が挙げられ、触媒の担持量は、触媒合計質量に対する金属 含有量で、通常0.01~80質量%、好ましくは0.05~60質量%の範囲である。 均一系触媒は、ニッケル、コバルト、チタンまたは鉄化合物と有機金属化合物(例えば、 有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒、またはロジウム 、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒を用いることができる

。これらの水素添加触媒は、それぞれ単独で、あるいは2種類以上組み合わせて使用することができ、その使用量は、重合体100質量部に対して、通常、0.01-100質量部、好ましくは0.05-50質量部、より好ましくは0.1-30質量部である。

[0099]

[0100]

また、水素圧力は、通常 0. 1~30 MPa、好ましくは 1~20 MPa、より好ましくは 2~15 MPaである。得られた水素添加物の水素添加率は、耐熱性や耐候性の観点から、1H-NMRによる測定において、主鎖の炭素-炭素不飽和結合の通常 90%以上、好ましくは 95%以上、より好ましくは 99%以上である。水素化率が低いと、得られる重合体の透過率、低複屈折性、熱安定性等の光学特性が低下する。

[0101]

本発明の重合体及び共重合体の水素添加反応において用いられる溶媒としては、本発明の重合体及び共重合体を溶解し溶媒自体が水素添加されないものであればどのようなものでもよく、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタン等のエーテル類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリン等の脂肪族環状炭化水素、メチレンジクロリド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロルベンゼン、トリクロルベンゼン等のハロゲン化炭化水素等が挙げられ、これらは2種以上混合して使用してもよい。

[0102]

本発明の重合体または共重合体水素添加物の製造は、重合体溶液から重合体または共重合体水素添加物を単離した後、再度溶媒に溶解しても可能であるが、単離することなく、上記有機金属錯体と有機アルミニウム化合物からなる水素添加触媒を加えることにより水素添加反応を行う方法を採用することもできる。水素添加反応の終了後、公知の方法により重合体に残存する水素添加触媒を除去することができる。例えば、吸着剤による吸着法、良溶媒による溶液に乳酸等の有機酸と貫溶媒と水とを添加し、この系を常温下あるいは、良溶媒による溶液に乳酸等の有機酸と貫溶媒による溶液または重合体スラリーを窒素または水素ガスの雰囲気下でトリメチレンジアミン、アニリン、ピリジン、エタンジアミド、水酸化ナトリウム等の塩基性化合物で接触処理した後に、あるいは接触処理と同時に酢酸、クエン酸、安息香酸、塩酸等の酸性化合物を接触処理した後、洗浄除去する方法等が挙げられる。

[0103]

本発明の重合体または共重合体水素添加物溶液から重合体水素化物の回収法は特に限定されず、公知の方法を用いることができる。例えば、撹拌下の貧溶媒中に反応溶液を排出し重合体水素化物を凝固させ濾過法、遠心分離法、デカンテーション法等により回収する方法、反応溶液中にスチームを吹き込んで重合体水素化物を析出させるスチームストリッピング法、反応溶液から溶媒を加熱等により直接除去する方法等が挙げられる。

[0104]

本発明の水素添加方法を用いると水素添加率は90%以上が容易に達成でき、95%以上、特に99%以上とすることが可能であり、そうして得られる重合体または共重合体水素添加物は容易に酸化されることがなく、優れた重合体または共重合体水素添加物となる

[0105]

(樹脂組成物の調製方法)

本発明に係る重合体を用いた樹脂組成物の調製方法について説明する。

[0106]

樹脂組成物は、成型する工程(成型プロセス)の前に特定の加工処理をすることが好ま 出証特2005-3048025 しく、加工処理の段階で通常樹脂に添加される可塑剤、酸化防止剤、その他の添加剤を加 えてもよい。

[0107]

樹脂組成物の調製方法としては、混練プロセスまたは混合物を溶媒に溶解、溶媒除去、 乾燥を経て組成物を得るプロセス等が好ましい調製方法として挙げられるが、更に好まし い調製方法は混練プロセスである。また、混練プロセスとして、通常の樹脂の配合に用い るプロセスを用いることができる。例えば、ロール、バンバリーミキサ、二軸混練機、ニ ーダールーダ等を用いることができるが、好ましくは、バンバリーミキサ、二軸混練機、 ニーダールーダ等が挙げられる。樹脂の酸化を防ぐ目的で、密閉系で混練り可能な装置が 好適に使用され、さらに好ましくは、窒素やアルゴン等の不活性ガス化で混練プロセスを 行うことが望ましい。

[0108]

(プルーレーザー用光学用樹脂レンズの作製方法)

本発明のブルーレーザー用光学用樹脂レンズの作製方法について説明する。

本発明のブルーレーザー用光学用樹脂レンズは、まず、樹脂組成物(樹脂単独の場合も あれば、樹脂と添加剤との混合物の場合もある)を調製し、次いで、得られた樹脂組成物 を成型する工程を含む。

[0110]

本発明に係る樹脂組成物の成型物は、前記樹脂組成物からなる成型材料を成型して得ら れる。成型方法としては、格別制限されるものはないが、低複屈折性、機械強度、寸法精 度等の特性に優れた成型物を得るためには溶融成型が好ましい。溶融成型法としては、例 えば、市販のプレス成型、市販の押し出し成型、市販の射出成型等が挙げられるが、射出 成型が成型性、生産性の観点から好ましい。成型条件は使用目的、または成型方法により 適宜選択されるが、例えば射出成型における樹脂組成物(樹脂単独の場合または樹脂と添 加物との混合物の両方がある)の温度は、成型時に適度な流動性を樹脂に付与して成型品 のヒケやひずみを防止し、樹脂の熱分解によるシルバーストリークの発生を防止し、更に 、成型物の黄変を効果的に防止する観点から150~400℃の範囲が好ましく、更に好 ましくは200~350℃の範囲であり、特に好ましくは200~330℃の範囲である

[0111]

本発明に係る成型物は、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、フィ ルムまたはシート形状等種々の形態で使用することができ、また、低複屈折性、透明性、 機械強度、耐熱性、低吸水性に優れるため、本発明のブルーレーザー用光学用樹脂レンズ として用いられるが、その他の光学部品としても好適である

(ブルーレーザー用光学用樹脂レンズ)

本発明のブルーレーザー用光学用樹脂レンズは、上記の作製方法により得られるが、光 学部品への具体的な適用例としては、以下のようである。

[0112]

例えば、光学レンズや光学プリズムとしては、カメラの撮像系レンズ;顕微鏡、内視鏡 、望遠鏡レンズ等のレンズ;眼鏡レンズ等の全光線透過型レンズ;CD、CD-ROM、 WORM(追記型光ディスク)、MO(書き変え可能な光ディスク;光磁気ディスク)、 MD (ミニディスク)、DVD (デジタルビデオディスク) 等の光ディスクのピックアッ プレンズ;レーザビームプリンターの f θ レンズ、センサー用レンズ等のレーザ走査系レ ンズ;カメラのファインダー系のプリズムレンズ等が挙げられる。

[0113]

光ディスク用途としては、CD、CD-ROM、WORM(追記型光ディスク)、MO (書き変え可能な光ディスク;光磁気ディスク)、MD(ミニディスク)、DVD(デジ タルビデオディスク)等が挙げられる。その他の光学用途としては、液晶ディスプレイ等 の導光板;偏光フィルム、位相差フィルム、光拡散フィルム等の光学フィルム;光拡散板

; 光カード; 液晶表示素子基板等が挙げられる。

[0114]

これらの中でも、低複屈折性が要求されるピックアップレンズやレーザ走査系レンズと して好適であり、光ディスク用ピックアップレンズに最も好適に用いられる。

[0115]

本発明に係る樹脂組成物の調製時や樹脂組成物の成型工程においては、必要に応じて各 種添加剤(配合剤ともいう)を添加することができる。添加剤については、格別限定はな いが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤 等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;帯電防止剤、難燃剤 、フィラー等が挙げられる。これらの配合剤は、単独で、あるいは2種以上を組み合せて 用いることができ、その配合量は本発明に記載の効果を損なわない範囲で適宜選択される

[0116]

(酸化防止剤)

本発明に用いられる酸化防止剤について説明する。

[0117]

酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止 剤等が挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール 系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等 を低下させることなく、成型時の酸化劣化等によるレンズの着色や強度低下を防止できる 。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いること ができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明に係 る重合体100質量部に対して好ましくは0.001~5質量部、より好ましくは0.0 1~1質量部である。

[0118]

フェノール系酸化防止剤としては、従来公知のものが使用でき、例えば、2-t-ブチ ν -6 -(3-t-プチルー2-ヒドロキシー5-メチルベンジル) <math>-4 -メチルフェニ ルアクリレート、2, 4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレート等の特開昭63-179953号公 報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシルー 3-(3,5-ジーtープチルー4ーヒドロキシフェニル) プロピオネート、<math>2,2'-メチレンービス (4-メチルー6-t-プチルフェノール)、1,1,3-トリス(2-メチルー4ーヒドロキシー5ーtーブチルフェニル)ブタン、1,3,5ートリメチルー 2, 4, 6-トリス (3, 5-ジーt-ブチルー4-ヒドロキシベンジル) ベンゼン、テ トラキス (メチレン-3- (3′, 5′-ジ-t-ブチル-4′-ヒドロキシフェニルプ ロピオネート)) メタン [すなわち、ペンタエリスリメチルーテトラキス (3-(3,5 ージー t ープチルー 4 ーヒドロキシフェニルプロピオネート))]、トリエチレングリコ ールビス (3- (3-t-ブチル-4-ヒドロキシ-5-メチルフェニル) プロピオネー ト) 等のアルキル置換フェノール系化合物; 6-(4-ヒドロキシ-3, 5-ジーt-ブ チルアニリノ) -2, 4-ビスオクチルチオ-1, 3, 5-トリアジン、4-ビスオクチ ルチオー1, 3, 5ートリアジン、2ーオクチルチオー4, 6ービスー(3, 5ージーt ーブチルー4ーオキシアニリノ)-1,3,5-トリアジン等のトリアジン基含有フェノ ール系化合物;等が挙げられる。

[0119]

リン系酸化防止剤としては、一般の樹脂工業で通常使用される物であれば格別な限定は なく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニ ルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニ ルフェニル) ホスファイト、トリス (2, 4-ジーt-プチルフェニル) ホスファイト、 10-(3,5-ジ-t-ブチルー4-ヒドロキシベンジル)-9,10-ジヒドロ-9ーオキサー10ーホスファフェナントレンー10ーオキサイド等のモノホスファイト系化

合物;4,4′ーブチリデンービス(3-メチルー6-tーブチルフェニルージートリデ シルホスファイト)、4, 4′イソプロピリデンービス(フェニルージーアルキル(C 12~C15) ホスファイト) 等のジホスファイト系化合物等が挙げられる。これらの中で も、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、ト リス (ジノニルフェニル) ホスファイト、トリス (2, 4ージー t ープチルフェニル) ホ スファイト等が特に好ましい。

[0120]

イオウ系酸化防止剤としては、例えば、ジラウリル3,3ーチオジプロピオネート、ジ ミリスチル3, 3′ーチオジプロピピオネート、ジステアリル3, 3ーチオジプロピオネ ート、ラウリルステアリル3, 3ーチオジプロピオネート、ペンタエリスリトールーテト チル) -2, 4, 8, 10 - テトラオキサスピロ [5, 5] ウンデカン等が挙げられる。

[0121]

(耐光安定剤)

本発明に用いられる耐光安定剤について説明する。

[0122]

耐光安定剤としては、ベンゾフェノン系耐光安定剤、ベンゾトリアゾール系耐光安定剤 、ヒンダードアミン系耐光安定剤等が挙げられるが、本発明においては、レンズの透明性 、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ましい。ヒンダ ードアミン系耐光安定剤(以下、HALSと記す。)の中でも、THFを溶媒として用い たGPCにより測定したポリスチレン換算のMnが1000~10000であるものが好 ましく、 $2000\sim5000$ であるものがより好ましく、 $2800\sim3800$ であるもの が特に好ましい。Mnが小さ過ぎると、該HALSをブロック共重合体に加熱溶融混練し て配合する際に、揮発のため所定量を配合できなかったり、射出成型等の加熱溶融成型時 に発泡やシルバーストリークが生じる等、加工安定性が低下する。また、ランプを点灯さ せた状態でレンズを長時間使用する場合に、レンズから揮発性成分がガスとなって発生す る。逆にMnが大き過ぎると、ブロック共重合体への分散性が低下して、レンズの透明性 が低下し、耐光性改良の効果が低減する。したがって、本発明においては、HALSのM nを上記範囲とすることにより加工安定性、低ガス発生性、透明性に優れたレンズが得ら れる。

[0123]

このような HALS の具体例としては、 N , N' , N'' , N''' ーテトラキスー〔4, 6-ビス- ⟨ブチルー (N-メチル-2, 2, 6, 6-テトラメチルピペリジン-4-イ ル) アミノ ートリアジンー2ーイル] ー4, 7ージアザデカンー1, 10ージアミン、 ジブチルアミンと 1 , 3 , 5 ートリアジンと N , N' ービス(2 , 2 , 6 , 6 ーテトラメ チルー4ーピペリジル) ブチルアミンとの重縮合物、ポリ〔 \((1, 1, 3, 3-テトラメチルプチル) アミノー1, 3, 5ートリアジンー2, 4ージイル | (2, 2, 6, 6ーテトラメチルー4ーピペリジル) イミノ ヘキサメチレン | (2, 2, 6, 6-テトラメチルー4-ピペリジル)イミノ $race{1}$ 、 $race{1}$ ス(2, 2, 6, 6ーテトラメチルー4ーピペリジル) とモルフォリンー2, 4, 6ート リクロロー1, 3, 5ートリアジンとの重縮合物、ポリ〔(6-モルフォリノーsートリ アジンー2, 4ージイル) (2, 2, 6, 6ーテトラメチルー4ーピペリジル) イミノ] - ヘキサメチレン [(2, 2, 6, 6-テトラメチル-4-ピペリジル) イミノ]]等の 、ピペリジン環がトリアジン骨格を介して複数結合した髙分子量HALS;コハク酸ジメ チルと4ーヒドロキシー2, 2, 6, 6ーテトラメチルー1ーピペリジンエタノールとの 重合物、1,2,3,4ープタンテトラカルボン酸と1,2,2,6,6ーペンタメチル -4-ピペリジノールと3, 9-ビス(2-ヒドロキシー1, 1-ジメチルエチル)-2, 4, 8, 10-テトラオキサスピロ [5, 5] ウンデカンとの混合エステル化物等の、 ピペリジン環がエステル結合を介して結合した高分子量HALS等が挙げられる。

[0124]

これらの中でも、ジブチルアミンと 1, 3, 5-トリアジンと N, N'-ビス(2, 2, 6, 6-テトラメチルー4-ピペリジル)ブチルアミンとの重縮合物、ポリ〔 - (1, 1, 3, 3-テトラメチルブチル)アミノー 1, 3, 5-トリアジンー 2, 4-ジイル - (2, 2, 6, 6-テトラメチルー4-ピペリジル)イミノ - へキサメチレン - (2, 2, 6, 6-テトラメチルー-4-ピペリジル)イミノ -5、コハク酸ジメチルと-4-6、ロキシー 2, 2, 6, 6-5トラメチルー -1-6、ロンエタノールとの重合物等の-6、が 2, -6、000~5, 0000ものが好ましい。

[0125]

本発明に係る樹脂に対する上記配合量は、重合体100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.02~15質量部、特に好ましくは0.05~10質量部である。添加量が少な過ぎると耐光性の改良効果が十分に得られず、屋外で長時間使用する場合等に着色が生じる。一方、HALSの配合量が多過ぎると、その一部がガスとなって発生したり、樹脂への分散性が低下して、レンズの透明性が低下する。

[0126]

また、本発明に係る樹脂組成物に、さらに最も低いガラス転移温度が30℃以下である化合物を配合することにより、透明性、耐熱性、機械的強度等の諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。

[0127]

すなわち本発明においては、本発明の樹脂組成物と、(1)軟質重合体、(2)アルコール性化合物、からなる群から選ばれる少なくとも1種類の配合剤を含んでなる樹脂組成物が提供される。これらの配合剤を配合することにより、透明性、低吸水性、機械的強度等の諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。

[0128]

これらの中でも、(1) 軟質重合体、及び(2) アルコール性化合物が、高温高湿度環境下における白濁防止効果、得られる樹脂組成物の透明性に優れる。

[0129]

(1) 軟質重合体

本発明に用いる軟質重合体は、通常30℃以下のTgを有する重合体であり、Tgが複数存在する場合には、少なくとも最も低いTgが30℃以下であることが好ましい。

[0130]

これらの軟質重合体の具体例としては、例えば、液状ポリエチレン、ポリプロピレン、 ポリー1ープテン、エチレン・ α ーオレフィン共重合体、プロピレン・ α ーオレフィン共 重合体、エチレン・プロピレン・ジエン共重合体 (EPDM) 、エチレン・プロピレン・ スチレン共重合体等のオレフィン系軟質重合体、ポリイソブチレン、イソブチレン・イソ プレンゴム、イソブチレン・スチレン共重合体等のイソブチレン系軟質重合体;ポリブタ ジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレ ンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタ ジエン・スチレン共重合体、プタジエン・スチレン・ブロック共重合体、スチレン・ブタ ジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチ レン・イソプレン・スチレン・ブロック共重合体等のジエン系軟質重合体、ジメチルポリ シロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサン、等のケイ素含有 軟質重合体、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチ ルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・ スチレン共重合体等の α , β -不飽和酸からなる軟質重合体、ポリビニルアルコール、ポ リ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体等の不飽和アル コール及びアミンまたはそのアシル誘導体またはアセタールからなる軟質重合体、エチレ ンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴム、等のエポキシ系軟質軟 質重合体、フッ化ビニリデン系ゴム、四フッ化エチレンープロピレンゴム、等のフッ素系 軟質重合体、天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、 塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等のその他の軟

質重合体、等が挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性反応により官能基を導入したものでもよい。

[0131]

上記軟質重合体の中でもジエン系軟質重合体が好ましく、特に該軟質重合体の炭素-炭素不飽和結合を水素化した水素化物が、ゴム弾性、機械強度、柔軟性、分散性の点で優れる。

[0132]

(2) アルコール性化合物

また、アルコール性化合物は、分子内に少なくとも1つの非フェノール性水酸基を有する化合物で、好適には、少なくても1つの水酸基と少なくとも1つのエーテル結合またはエステル結合を有する。このような化合物の具体例としては、例えば2価以上の多価アルコール、より好ましくは3価以上の多価アルコール、さらに好ましくは3~8個の水酸基を有する多価アルコールの水酸基の1つがエーテル化またはエステル化されたアルコール性エステル化合物が挙げられる。

[0133]

2価以上の多価アルコールとしては、例えば、ポリエチレングリコール、グリセロール、トリメチロールプロパン、ペンタエリスリトール、ジグリセロール、トリグリセロール、ジペンタエリスリトール、1,6,7ートリヒドロキシー2,2ージ(ヒドロキシメチル)ー4ーオキソへプタン、ソルビトール、2ーメチルー1,6,7ートリヒドロキシー2ーヒドロキシメチルー4ーオキソへプタン、1,5,6ートリヒドロキシー3ーオキソヘキサンペンタエリスリトール、トリス(2ーヒドロキシエチル)イソシアヌレート等が挙げられるが、特に3価以上の多価アルコール、さらには3~8個の水酸基を有する多価アルコールが好ましい。またアルコール性エステル化合物を得る場合には、 α , β -ジオールを含むアルコール性エステル化合物が合成可能なグリセロール、ジグリセロール、トリグリセロール等が好ましい。

[0134]

このようなアルコール性化合物として、例えば、グリセリンモノステアレート、グリセ リンモノラウレート、グリセリンモノベヘネート、ジグリセリンモノステアレート、グリ セリンジステアレート、グリセリンジラウレート、ペンタエリスリトールモノステアレー ト、ペンタエリスリトールモノラウレート、ペンタエリスリトールモノベヘレート、ペン タエリスリトールジステアレート、ペンタエリスリトールジラウレート、ペンタエリスリ トールトリステアレート、ジペンタエリスリトールジステアレート等の多価アルコール性 エステル化物;3-(オクチルオキシ)-1,2-プロパンジオール、3-(デシルオキ (5)3-(4-)ニルフェニルオキシ)-1, 2-プロパンジオール、1, 6-ジヒドロオ キシー2, 2-ジ(ヒドロキシメチル)-7-(4-ノニルフェニルオキシ)-4-オキ ソヘプタン、p-ノニルフェニルエーテルとホルムアルデヒドの縮合体とグリシドールの 反応により得られるアルコール性エーテル化合物、pーオクチルフェニルエーテルとホル ムアルデヒドの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物 、p-オクチルフェニルエーテルとジシクロペンタジエンの縮合体とグリシドールの反応 により得られるアルコール性エーテル化合物等が挙げられる。これらの多価アルコール性 化合物は単独でまたは2種以上を組み合わせて使用される。これらの多価アルコール性化 合物の分子量は特に限定されないが、通常500~2000、好ましくは800~150 0のものが、透明性の低下も少ない。

[0135]

(3) 有機または無機フィラー

有機フィラーとしては、通常の有機重合体粒子または架橋有機重合体粒子を用いることができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン含有ビニル重合体;ポリアリレート、ポリメタクリレート等のα,β-不飽和酸から誘導された重合体;ポリビニルアルコール、ポリ酢酸ビニル

等の不飽和アルコールから誘導された重合体;ポリエチレンオキシド、またはビスグリシジルエーテルからから誘導された重合体;ポリフェニレンオキシド、ポリカーボネート、ポリスルフォン等の芳香族縮合系重合体;ポリウレタン;ポリアミド;ポリエステル;アルデヒド・フェノール系樹脂;天然高分子化合物等の粒子または架橋粒子を挙げることができる。

[0136]

無機フィラーとしては、例えば、フッ化リチウム、硼砂(硼酸ナトリウム含水塩)等の1族元素化合物;炭酸マグネシウム、燐酸マグネシウム、炭酸カルシウム、チタン酸ストロンチウム、炭酸バリウム等の2族元素化合物;二酸化チタン(チタニア)、一酸化チタン等の4族元素化合物;二酸化モリブデン、三酸化モリブデンの6族元素化合物;塩化マンガン、酢酸マンガン等の7族元素化合物;塩化コバルト、酢酸コバルト等の8~10族元素化合物;沃化第一銅等の11族元素化合物;酸化亜鉛、酢酸亜鉛等の12族元素化合物;酸化アルミニウム(アルミナ)、フッ化アルミニウム、アルミノシリケート(珪酸アルミナ、カオリン、カオリナイト)等の13族元素化合物;酸化珪素(シリカ、シリカゲル)、石墨、カーボン、グラファイト、ガラス等の14族元素化合物;カーナル石、カイナイト、雲母(マイカ、キンウンモ)、バイロース鉱等の天然鉱物の粒子が挙げられる。

[0137]

(1)~(3)の化合物の配合量は脂環式炭化水素系共重合体と配合される化合物の組み合わせによって決まるが、一般に、配合量が多過ぎれば、組成物のガラス転移温度や透明性が大きく低下し、光学材料として使用するのに不適である。また配合量が少な過ぎれば、高温高湿下において成型物の白濁を生じる場合がある。配合量としては、脂環式炭化水素系共重合体100質量部に対して、通常0.01~10質量部、好ましくは0.02~5質量部、特に好ましくは0.05~2質量部の割合で配合する。配合量が少な過ぎる場合には高温高湿度環境下における白濁防止効果が得られず、配合量が多過ぎる場合は成型品の耐熱性、透明性が低下する。

[0138]

(その他の配合剤)

本発明に係る樹脂組成物には、必要に応じて、その他の配合剤として、紫外線吸収剤、 光安定剤、近赤外線吸収剤、染料や顔料等の着色剤、滑剤、可塑剤、帯電防止剤、蛍光増 白剤等を配合することができ、これらは単独で、あるいは2種以上混合して用いることが でき、その配合量は本発明の目的を損ねない範囲で適宜選択される。

【実施例】

[0139]

[重合体、共重合体及び水素添加物の合成]

以下、本発明の重合体、共重合体及び水素添加物の代表的合成例を示すが、本発明はこれらによって限定されるものではない。

[0140]

なお、得られた重合体、共重合体及び水素添加物の物性値は、以下の方法により測定した。

[0141]

平均分子量(Mn):GPCを使用し、得られた重合体、共重合体及び水素添加物をクロロホルムに溶解し、TOSOH製HLC-8220GPC、TSKgelSuperHM-Mカラムを使用し、40℃において流量0.6ml/minでポリスチレンスタンダードによって分子量を較正した。

[0142]

ガラス転移温度(Tg):島津製作所製DSC-50により、窒素中10℃/分の昇温速度で、10mgの重合体、共重合体及び水素添加物の粉末を測定し、JIS-K-7121に規定の方法に従いガラス転移温度を求めた。

[0143]

水素添加率: 重合体及び共重合体の水素添加物の粉末を重水素化クロロホルムに溶解し 出証特2005-3048025 、 $400 \, \mathrm{MHz^1H-NMR}$ を用いて $\delta=4$. $5\sim6$. 0ppm の主鎖の炭素ー炭素間二 重結合に帰属するピークが、水素添加反応によって減少する大きさを算出した。

[0144]

(n-ブチルマグネシウム-1-プロポキシドの合成)

乾燥窒素で置換した300mlのフラスコに金属マグネシウム粉末8g及びメチルシクロヘキサン100mlを仕込み、還流温度下で撹拌した。次いで1-プロピルアルコール6.6g(110mmol)及び塩化n-ブチル10.2g(110mmol)の混合物を10分で滴下し、同一条件で30分撹拌した。更に同一条件下で、塩化n-ブチル10.2g(110mmol)を10分で滴下し、2時間の撹拌を行なって反応を完結させた。反応完結後、室温で未反応の金属マグネシウム及び塩化マグネシウムをグラスフィルターを用いて分離、除去して、n-ブチルマグネシウム-1-プロポキシドがメチルシクロヘキサンの1.06mol/1溶液 [1]として得られた。

[0145]

(チタン含有固体触媒成分の調製1):本発明

上記調製したメチルシクロへキサン溶液 [1] 9. 4 m l($10\,\mathrm{mmol}$)を乾燥窒素 置換した $200\,\mathrm{ml}$ フラスコに仕込み、室温下で撹拌しながら四塩化ケイ素 $10\,\mathrm{mmol}$ を徐々に滴下し、同条件下に $30\,\mathrm{分間撹拌}$ したが、反応液は無色透明の均一溶液であった。次いで $100\,\mathrm{C}$ に昇温して 1 時間の撹拌を行なったところ、昇温時に白濁し沈殿が表れた。室温まで昇温後、溶媒を減圧下で留去し、乾燥することによって白色粉末を得た。次いで白色粉末に四塩化チタン $200\,\mathrm{mmol}$ を加え $130\,\mathrm{C}$ に昇温し、同温度で 1 時間反応した後室温に冷却し、上澄み液を分離し、沈殿を $n-\mathrm{C}$ クン $100\,\mathrm{ml}$ で $4\,\mathrm{G}$ 回洗浄して淡褐色の固体 [A] を得た。得られた固体のチタン含有量は $2.7\,\mathrm{G}$ 量%であった。

[0146]

(チタン含有固体触媒成分の調製2):比較例

チタン含有固体触媒成分の調製1において、四塩化ケイ素10mmo1添加時にエチルベンゾエートも同時に2mmo1添加した以外は同様にして、チタン含量2. 8質量%の触媒成分 [B] を得た。

[0147]

合成例 1

エチレン・ノルボルネン共重合体 [A-1] の合成:本発明

滅圧乾燥及び窒素置換した15Lのオートクレーブに、常温でノルボルネン887g (9.42mo1)、シクロヘキサン777m1、トリエチルアルミニウム411.0mg (3.60mmo1)、安息香酸エチル84.6mg (0.56mmo1)加え、続いて攪拌下にエチレンを600k Paまで加圧した後、脱圧し、この加圧脱圧操作を3 回繰り返した。その後、系内をエチレンで150k Paに加圧し、昇温を開始し80 Cに到達させた。その後エチレンにて内圧が600k Paとなるように加圧した。15 分間攪拌した後、チタン含有固体触媒成分の調製1で調製した触媒成分 [A] 443.0mg を系へに添加することによって、エチレンとノルボルネンとの共重合を開始させた。重合中、エチレンを連続的に供給することにより内圧を600k Paに保持した。60 分後、重合下をイソプロピルアルコールを添加することにより停止した。脱圧後、ポリマー溶液を取り出し、水1 Lに対して濃塩酸5m1 を添加した水溶液と1:1 の割合で用いて洗浄し触媒残で2 回水洗し、重合液相を油水分離した。次いで油水分離された重合液相を3 倍量のアセトンと強攪拌下に接触させ、重合体を析出させた後、アセトンで充分に洗浄し固体部(共重合体)を濾過により採取した。窒素流通下、130 C、47k Paで12 時間乾燥した。

[0148]

以上のようにして得られたエチレン・ノルボルネン共重合体 [A-1] の収量は 294 g、GPCで測定した数平均分子量Mnは 86300、Mw/Mnは 1.91でありガラス転移点 (Tg) は 130 \mathbb{C} 、ノルボルネン含量は 42.9 mol_{∞} であった。

[0149]

合成例2

ノルポルネン・1 - ヘキセン共重合体 [B-1] の合成:本発明

減圧乾燥及び窒素置換した15Lのオートクレーブに、常温でノルボルネン887g(9. 42mol)、1-ヘキセン1178ml(9.42mol)、シクロヘキサン77 7 m l 、トリエチルアルミニウム 4 1 0. 0 m g (3. 5 9 m m o l) 、安息香酸エチル 85. 0mg (0. 56mmol) 加え、続いて攪拌下に窒素を600k P a まで加圧し た後、脱圧し、この加圧脱圧操作を3回繰り返した。その後、系内を窒素で150kPa に加圧し、昇温を開始し100℃に到達させた。その後窒素にて内圧が600kPaとな るように加圧した。15分間攪拌した後、チタン含有固体触媒成分の調製1で調製した触 媒成分〔A〕 443.0mgを系内に添加することによって、ノルボルネンと1ーヘキセ ンとの共重合を開始させた。重合中、窒素を連続的に供給することにより内圧を 6 0 0 k Paに保持した。60分後、重合反応をイソプロピルアルコールを添加することにより停 止した。脱圧後、ポリマー溶液を取り出し、水1Lに対して濃塩酸5mlを添加した水溶 液と1:1の割合で用いて洗浄し触媒残渣を水相に移行させた。この接触混合溶液を静置 した後、水相を分離除去しさらに蒸留水で2回水洗し、重合液相を油水分離した。次いで 油水分離された重合液相を3倍量のアセトンと強攪拌下に接触させ、重合体を析出させた 後、アセトンで充分に洗浄し固体部(共重合体)を濾過により採取した。窒素流通下、1 30℃、47kPaで12時間乾燥した。

[0150]

以上のようにして得られたノルボルネン・1-ヘキセン共重合体 [B-1] の収量は 2 85g、GPCで測定した数平均分子量Mnは79100、Mw/Mnは1.76であり ガラス転移点 (Tg) は127 \mathbb{C} 、ノルボルネン含量は58.5 mol 1% であった。

[0151]

比較合成例 1

エチレン・ノルボルネン共重合体 [C-1] の合成:比較例

合成例1において、チタン含有固体触媒成分の調製2で調製した触媒成分[B] 442 . 6mgを系内に添加する以外は同様に行なった。エチレン・ノルボルネン共重合体 [C -1] の収量は311g、GPCで測定した数平均分子量Mnは96400、Mw/Mn は1. 87でありガラス転移点 (Tg) は123℃、ノルボルネン含量は41. 8mo1 %であった。

[0152]

合成例3

炭素-炭素二重結合を水素化した共重合体の合成:本発明

25Lのオートクレーブに合成例1で得られた共重合体粉末 [A-1] 250.0gを 乾燥テトラヒドロフラン (13.5L) に溶解して、水素添加触媒として予め調製したジ クロロトリス (トリフェニルホスフィン) ルテニウム (200mg、0.21mmol) とトリエチルアルミニウム (125mg、1.06mmol) の乾燥テトラヒドロフラン (1. 5 L) 溶液を加え、水素圧 8. 5 M P a 、 1 6 5 ℃で 5 時間水素添加反応を行った 後、温度を室温まで戻し水素ガスを放出した。

[0153]

この開環メタセシス重合体水素添加物溶液を撹拌下のメタノール(50L)液中に加え て共重合体水素添加物を析出させ、濾別分離後真空乾燥を行うことにより白色粉末状の共 重合体水素添加物 [A-2] を得た。得られた共重合体水素添加物の1H-NMRから算 出した水素添加率は主鎖のオレフィンのプロトンに帰属するピークが認められず、その水 素添加率は100%であり、GPCで測定した数平均分子量Mnは84700、Mw/M nは1.83であり、DSCで測定したガラス転移温度は127℃であった。

[0154]

合成例4

炭素-炭素二重結合を水素化した共重合体の合成:本発明

合成例 3 において合成例 1 で得られた共重合体粉末 [A-1] の代わりに、合成例 2 で得られた共重合体粉末 [B-1] を用いた以外は同様に行ない白色粉末状の共重合体水素添加物 [B-2] を得た。

[0155]

1H-NMRから算出した水素添加率は主鎖のオレフィンのプロトンに帰属するピークが認められず、その水素添加率は100%であり、GPCで測定した数平均分子量Mnは 81300、Mw/Mnは1.65であり、DSCで測定したガラス転移温度は122 であった。

[0156]

比較合成例 2

炭素-炭素二重結合を水素化した共重合体の合成:比較例

合成例3において合成例1で得られた共重合体粉末 [A-1] の代わりに、比較合成例1で得られた共重合体粉末 [C-1] を用いた以外は同様に行ない白色粉末状の共重合体水素添加物 [C-2] を得た。

[0157]

1H-NMRから算出した水素添加率は主鎖のオレフィンのプロトンに帰属するピークが認められず、その水素添加率は100%であり、GPCで測定した数平均分子量Mnは 94700、Mw/Mnは1.77であり、DSCで測定したガラス転移温度は117 であった。

[0158]

本発明の光学用樹脂レンズの用途の一例として、光ディスク用のピックアップ装置に用いる対物レンズとして用いられる例を図1を用いて説明する。

[0159]

本形態では、使用波長が405 nmのいわゆる青紫色レーザ光源を用いた「高密度な光ディスク」をターゲットとしている。この光ディスクの保護基板厚は0.1 mmであり、記憶容量は約30GBである。

[0160]

図1は、本発明に用いられる光ピックアップ装置の一例を示す模式図である。

[0161]

[0162]

ビームスプリッタ (BS) 3はLD2から入射する光源を対物光学素子 (OBL) 4の方向へ透過させるが、光ディスク (光情報記録媒体) 5からの反射光 (戻り光) について、センサーレンズ (SL) 6を経て受光センサー (PD) 7に集光させる機能を有する。

[0163]

LD2から出射された光束は、コリメータ(COL)8に入射し、これによって無限平行光にコリメートされたのち、ビームスプリッタ(BS)3を介して対物レンズOBL4に入射する。そして光ディスク(光情報記録媒体)5の保護基板5aを介して情報記録面5b上に集光スポットを形成する。ついで情報記録面5b上で反射したのち、同じ経路をたどって、1/4波長板(Q)9によって偏光方向を変えられ、BS3によって進路を曲げられ、センサーレンズ(SL)6を経てセンサー(PD)7に集光する。このセンサーによって光電変換され、電気的な信号となる。

[0164]

なお対物光学素子OBL4は、樹脂によって射出成型された単玉の光学用樹脂レンズである。そしてその入射面側に絞り(AP)10が設けられており、光束径が定められる。ここでは入射光束は3mm径に絞られる。そして、アクチュエータ(AC)11によって、フォーカシングやトラッキングが行われる。

[0165]

なお、光情報記録媒体の保護基板厚、さらにピットの大きさにより、対物光学素子OBL4に要求される開口数も異なる。ここでは、高密度な、光ディスク(光情報記録媒体)5の開口数は0.85としている。

[0166]

実施例1

「光学用樹脂レンズの作製」

(光学用樹脂レンズ1):本発明

合成例 1 で得られたエチレン・ノルボルネン共重合体 [A-1] 200 gをポリラボシステム(英弘精機(株))を用いて窒素雰囲気下 190 $\mathbb C$ 、10 分間混練を行った。前記と同一条件で 10 バッチ混練を行った材料を作製し、粉砕した。粉砕された材料を用いてインライン射出成型機により、型締圧力 50 t、金型温度 120 $\mathbb C$ 、射出圧力 69.0 MP a で射出成型を行い、直徑 1 c mのレンズを 20 個作製した。

[0167]

(光学用樹脂レンズ2):本発明

合成例2で得られたノルボルネン・1ーヘキセン共重合体 [B-1] を用いた以外は光 学用樹脂レンズ1の作製と同様な方法で直徑1cmのレンズを20個作製した。

[0168]

(光学用樹脂レンズ3):比較例

比較合成例1で得られたエチレン・ノルボルネン共重合体 [C-1] を用いた以外は光学用樹脂レンズ1の作製と同様な方法で直徑1cmのレンズを20個作製した。

[0169]

[光学用樹脂レンズの耐久性評価]

上記で得られた本発明の光学用樹脂レンズ1及び2、比較の光学用樹脂レンズ3を、図1に示すような光ピックアップ装置の対物レンズとして用い、60℃の雰囲気下、15mWの青色レーザ光(波長405nm)を500時間連、2000時間連続照射した時の各々の連続照射後のレンズの白濁の度合いを目視観察し、下記のようにランク評価した。評価の結果を表1に示す。

[0170]

〇:白濁発生等が全くない (実用可)

△:僅かに白濁発生が観察される(実用可)

×:白濁発生等が明らかに観察される(実用不可)

[0171]

【表1】

光学用樹脂レンズ	耐:	久性	備考
No.	500 時間	2000 時間	1/# 45
1	0	Δ	本発明
2	0	0	本発明
3	×	×	比較例

[0172]

表1から、本発明の光学用樹脂レンズ1及び2は、比較のレンズ3に比べて耐久性に優れていることが明らかである。

[0173]

実施例2

[光学用樹脂レンズの作製]

(光学用樹脂レンズ4):本発明

合成例3で得られた共重合体水素添加物 [A-2] を用いた以外は光学用樹脂レンズ1 の作製と同様な方法で直徑1cmのレンズを20個作製した。

[0174]

(光学用樹脂レンズ5):本発明

合成例3で得られた共重合体水素添加物 [B-2] を用いた以外は光学用樹脂レンズ1 の作製と同様な方法で直徑1cmのレンズを20個作製した。

[0175]

(光学用樹脂レンズ6):比較例

比較合成例2で得られた共重合体水素添加物 [C-2] を用いた以外は光学用樹脂レンズ1の作製と同様な方法で直徑1cmのレンズを20個作製した。

[0176]

[光学用樹脂レンズの耐久性評価]

上記で得られた本発明の光学用樹脂レンズ4及び5、比較の光学用樹脂レンズ6を、実施例1と同様に評価した。得られた結果を表2に示す。

[0177]

【表2】

光学用樹脂レンズ	耐久性		備考
No.	500 時間	2000 時間	V⊞ ~⊃
4	0	Δ	本発明
5	0	0	本発明
6	×	×	比較例

[0178]

表2から、本発明の光学用樹脂レンズ4及び5は、比較のレンズ6に比べて耐久性に優れていることが明らかである。

[0179]

実施例3

[光学用樹脂レンズの作製]

(光学用樹脂レンズ7):本発明

合成例1で得られたエチレン・ノルボルネン共重合体 [A-1] を実施例1の光学用樹脂レンズ1の作製と同様な方法で得た粉砕物により、インライン射出成型機で、型締圧力50 t、金型温度120℃、射出圧力67.0MPaで射出成型を行った。このとき樹脂フィード量100gに対し0.5gのイルガノックス1010(チバスペシャリティケミカルズ社製、フェノール系酸化防止剤)を添加しながら直徑1cmのレンズを20個作製した。

[0180]

(光学用樹脂レンズ8):本発明

合成例 2 で得られたノルボルネン・1-ヘキセン共重合体 [B-1] を用いた以外は光学用樹脂レンズ 7 と同様な方法で直徑 1 c mのレンズを 2 0 個作製した。

[0181]

(光学用樹脂レンズ9):比較例

比較合成例1で得られたエチレン・ノルボルネン共重合体 [C-1] を用いた以外は光学用樹脂レンズ7の作製と同様な方法で直徑1cmのレンズを20個作製した。

[0182]

(光学用樹脂レンズ10):本発明

合成例3で得られた共重合体水素添加物 [A-2] を用いた以外は光学用樹脂レンズ7と同様な方法で直徑1cmのレンズを20個作製した。

[0183]

(光学用樹脂レンズ11):本発明

合成例4で得られた共重合体水素添加物 [B-2] を用いた以外は光学用樹脂レンズ7と同様な方法で直徑1cmのレンズを20個作製した。

[0184]

(光学用樹脂レンズ12):比較例

比較合成例 2 で得られた共重合体水素添加物 [C-2] を用いた以外は光学用樹脂レン ズ7の作製と同様な方法で直徑1 c mのレンズを20個作製した。

[0185]

[光学用樹脂レンズの耐久性評価]

上記で得られた本発明の光学用樹脂レンズ7、8、10及び11、比較の光学用樹脂レ ンズ9及び12を、実施例1と同様に評価した。得られた結果を表3に示す。

[0186]

【表3】

光学用樹脂レンズ	耐:	久性	備考
No.	500 時間	2000 時間	/H ~->
7	0	0	本発明
8	0	0	本発明
9	×	×	比較例
10	0	0	本発明
11	0	0	本発明
12	×	×	比較例

[0187]

表3から、本発明の光学用樹脂レンズ7、8、10及び11は、比較のレンズ9及び1 2に比べて耐久性に優れていることが明らかである。

【図面の簡単な説明】

[0188]

【図1】本発明の光学用樹脂レンズが対物レンズとして用いられている光ディスク用 のピックアップ装置の一例を示す模式図である。

【図2】本発明の光学用樹脂レンズの破断面のSEM画像の一例である。

【符号の説明】

[0189]

- 1 光ピックアップ装置
- レーザダイオード
- ビームスプリッタ
- 4 対物光学素子(対物レンズともいう)
- 5 光ディスク
- 5 a 保護基板
- 5 b 情報記録面
- 6 センサーレンズ
- 7 センサー
- 8 コリメータ
- 1/4波長板
- 10 絞り
- 11 アクチュエータ
- 12 空隙

【図2】

【要約】

【課題】 長時間のレーザ照射またはその他の光エネルギ照射条件下でも光学特性が劣化しない高耐久性を示す光学用樹脂レンズの組成物を提供すること。

【解決手段】 少なくとも、(a)一般式 R_1MgOR_2 (式中、 R_1 及び R_2 は脂肪族または芳香族炭化水素基を表し、 R_1 と R_2 は同一でも異なっていてもよい。)で表される有機マグネシウム化合物、(b)一般式 $R_3(n-m)$ MX_m (式中、M は周期表 3 B、 4 B または 5 B 族元素を表し、 R_3 は脂肪族または芳香族炭化水素基を、X はハロゲン原子を表す。また n は M の原子価を、m は 1 以上の整数を表す。)で表されるハロゲン化物、及び(c)チタン塩化物を接触反応させて得られるチタン含有固体触媒成分と有機アルミニウム化合物を含む触媒系を使用して、オレフィンを重合して得れた重合体を用いることを特徴とするブルーレーザー用光学用樹脂レンズ。

【選択図】

なし

認定・付加情報

特許出願の番号

特願2004-042534

受付番号

5 0 4 0 0 2 6 7 1 5 9

書類名

特許願

担当官

第一担当上席

0090

作成日

平成16年 2月20日

<認定情報・付加情報>

【提出日】

平成16年 2月19日

出願人履歴情報

識別番号

[303000408]

1. 変更年月日 [変更理由]

2003年10月 1日

名称変更 住所変更

住 所 氏 名 東京都八王子市石川町2970番地

名 コニカミノルタオプト株式会社

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT To

KONICA MINOLTA TECHNOLOGY CENTER, INC. Intellectual Property & Licensing Department 1, Sakura-machi
Hino-shi, Tokyo 1918511
JAPON

(PCT Administrative Instructions, Section 411)

IMPORTANT NOTIFICATION ling date (day/month/year)
ing date (day/month/year)
ruary 2005 (14.02.2005)
ay/month/year) ruary 2004 (19.02.2004)

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, an the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No_	Country or regional Office or PCT receiving Office	Date of receipt of priority document
19 February 2004 (19.02.2004)	2004-042534	JP	NR
23 February 2004 (23.02.2004)	2004-046042	JP	NR
26 February 2004 (26.02.2004)	2004-051516	JP	NR
01 March 2004 (01.03.2004)	2004-055802	JP	NR
02 March 2004 (02.03.2004)	2004-057288	JP	NR
02 March 2004 (02.03.2004)	2004-057289	JP .	30 June 2005 (30.06.2005)

The International Bureau of WIPO	Authorized officer
34, chemin des Colombettes 1211 Geneva 20, Switzerland	M. CHEVALLAY WORLEY (Fax 338 7010)
	Facsimile No. (41-22) 338.70.10
Facsimile No. +41 22 338 82 70	Telephone No. +41 22 338 8859

Form PCT/IB/304 (January 2004)

CH96D1A3

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT. To:

KONICA MINOLTA TECHNOLOGY CENTER, INC. Intellectual Property & Licensing Department 1, Sakura-machi
Hino-shi, Tokyo 1918511
JAPON

(PCT Administrative Instructions, Section 411)

08 July 2005 (08.07.2005)	
Applicant's or agent's file reference F05-00826970	IMPORTANT NOTIFICATION
International application No. PCT/JP2005/002155	International filing date (day/month/year) 14 February 2005 (14.02.2005)
International publication date (day/month/year)	Priority date (day/month/year) 19 February 2004 (19.02.2004)

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No_	Country or regional Office or PCT receiving Office	Date of receipt of priority document
19 February 2004 (19.02.2004)	2004-042534	JP	NR
23 February 2004 (23.02.2004)	2004-046042	JP	NR
26 February 2004 (26.02.2004)	2004-051516	JP	NR
01 March 2004 (01.03.2004)	2004-055802	JP	NR
02 March 2004 (02.03.2004)	2004-057288	JP	30 June 2005 (30.06.2005)
02 March 2004 (02.03.2004)	2004-057289	JP	30 June 2005 (30.06.2005)

The International Bureau of WIPO	Authorized officer
34, chemin des Colombettes 1211 Geneva 20, Switzerland	M. CHEVALLAY WORLEY (Fax 338 7010)
	Facsimile No. (41-22) 338.70.10
Facsimile No. +41 22 338 82 70	Telephone No. +41 22 338 8859

Form PCT/IB/304 (January 2004)

CH96E883

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT To

KONICA MINOLTA TECHNOLOGY CENTER, INC. Intellectual Property & Licensing Department 1, Sakura-machi Hino-shi, Tokyo 1918511 JAPON

(PCT Administrative Instructions, Section 411)

Date of mailing (day/month/year) 08 July 2005 (08.07.2005)	
Applicant's or agent's file reference F05-00826970	IMPORTANT NOTIFICATION
International application No. PCT/JP2005/002155	International filing date (day/month/year) 14 February 2005 (14.02.2005)
International publication date (day/month/year)	Priority date (day/month/year) 19 February 2004 (19.02.2004)
Applicant KONICA	MINOLTA OPTO, INC. et al

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all carlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, an the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
19 February 2004 (19.02.2004)	2004-042534	76	NR
23 February 2004 (23.02.2004)	2004-046042	76	NR
26 February 2004 (26.02.2004)	2004-051516	76	NR
01 March 2004 (01.03.2004)	2004-055802	76	30 June 2005 (30.06.2005)
02 March 2004 (02.03.2004)	2004-057288	76	30 June 2005 (30.06.2005)
02 March 2004 (02.03.2004)	2004-057289	76	30 June 2005 (30.06.2005)

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No. +41 22 338 82 70

Authorized officer

M. CHEVALLAY WORLEY (Fax 338 7010)

Facsimile No. (41-22) 338.70.10

Telephone No. +41 22 338 8859

Form PCT/IB/304 (January 2004)

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT To:

KONICA MINOLTA TECHNOLOGY CENTER, INC. Intellectual Property & Licensing Department 1, Sakura-machi Hino-shi, Tokyo 1918511 JAPON

(PCT Administrative Instructions, Section 411)

Date of mailing (day/month/year) 08 July 2005 (08.07.2005)	
Applicant's or agent's file reference F05-00826970	IMPORTANT NOTIFICATION
International application No. PCT/JP2005/002155	International filing date (day/month/year) 14 February 2005 (14.02.2005)
International publication date (day/month/year)	Priority date (day/month/year) 19 February 2004 (19.02.2004)

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
19 February 2004 (19.02.2004) 23 February 2004 (23.02.2004) 26 February 2004 (26.02.2004) 01 March 2004 (01.03.2004) 02 March 2004 (02.03.2004) 02 March 2004 (02.03.2004)	2004-042534 2004-046042 2004-051516 2004-055802 2004-057288 2004-057289	JP JP JP JP JP	NR NR 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

M. CHEVALLAY WORLEY (Fax 338 7010)

Facsimile No. (41-22) 338.70.10 Telephone No. +41 22 338 8859

Facsimile No. +41 22 338 82 70 Form PCT/IB/304 (January 2004)

CIAA28AY

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT To

KONICA MINOLTA TECHNOLOGY CENTER, INC. Intellectual Property & Licensing Department 1, Sakura-machi
Hino-shi, Tokyo 1918511
JAPON

(PCT Administrative Instructions, Section 411)

Date of mailing (day/month/year) 11 July 2005 (11.07.2005)	·
Applicant's or agent's file reference F05-00826970	IMPORTANT NOTIFICATION
International application No. PCT/JP2005/002155	International filing date (day/month/year) 14 February 2005 (14.02.2005)
International publication date (day/month/year)	Priority date (day/month/year) 19 February 2004 (19.02.2004)
Applicant KONICA	MINOLTA OPTO, INC. et al

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No_	Country or regional Office or PCT receiving Office	Date of receipt of priority document
19 February 2004 (19.02.2004) 23 February 2004 (23.02.2004) 26 February 2004 (26.02.2004) 01 March 2004 (01.03.2004) 02 March 2004 (02.03.2004) 02 March 2004 (02.03.2004)	2004-042534 2004-046042 2004-051516 2004-055802 2004-057288 2004-057289	JP JP JP JP JP	NR 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005)

The International Bureau of WIPO	Authorized officer
34, chemin des Colombettes 1211 Geneva 20, Switzerland	M. CHEVALLAY WORLEY (Fax 338 7010)
	Facsimile No. (41-22) 338.70.10
Facsimile No. +41 22 338 82 70	Telephone No. +41 22 338 8859

Form PCT/IB/304 (January 2004)

CIEAFS93

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT To:

KONICA MINOLTA TECHNOLOGY CENTER, INC. Intellectual Property & Licensing Department 1, Sakura-machi
Hino-shi, Tokyo 1918511
JAPON

(PCT Administrative Instructions, Section 411)

Date of mailing (day/month/year) 11 July 2005 (11.07.2005)	
Applicant's or agent's file reference F05-00826970	IMPORTANT NOTIFICATION
International application No. PCT/JP2005/002155	International filing date (day/month/year) 14 February 2005 (14.02.2005)
International publication date (day/month/year)	Priority date (day/month/year) 19 February 2004 (19.02.2004)
Applicant KONICA	A MINOLTA OPTO, INC. et al

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No_	Country or regional Office or PCT receiving Office	Date_of_receipt of_priority_document
19 February 2004 (19.02.2004) 23 February 2004 (23.02.2004) 26 February 2004 (26.02.2004) 01 March 2004 (01.03.2004) 02 March 2004 (02.03.2004) 02 March 2004 (02.03.2004)	2004-042534 2004-046042 2004-051516 2004-055802 2004-057288 2004-057289	JP JP JP JP JP	30 June 2005 (30.06.2005) 30 June 2005 (30.06.2005)

The International Bureau of WIPO	Authorized officer
34, chemin des Colombettes 1211 Geneva 20, Switzerland	M. CHEVALLAY WORLEY (Fax 338 7010)
,	Facsimile No. (41-22) 338.70.10
Facsimile No. +41 22 338 82 70	Telephone No. +41 22 338 8859

Form PCT/IB/304 (January 2004)

CIEAINKC