数学分析 II-习题课

龙子超

本习题答案集所给出的解答尽可能从教材出发. 课程教材为《数学分析》I-III, 伍胜健编著, 北京大学出版社.

2018-Mar-21

1. 证明 R^n 中的闭集可表为可列个开集的交, 每个开集可表为可列个闭集的并.

证明. 首先, 假如 $E \subset \mathbb{R}^n$ 是闭集, 那么对 $\forall \delta > 0$, 我们可以定义 $F_{\delta} = \cup_{e \in E} U(e, \delta)$, 此时根据 F_{δ} 的定义有 $E \subset F_{\delta}$. 从而 $E \subset \bigcap_{n=1}^{\infty} F_{\frac{1}{n}}$

那么这个 $\bigcap F_{\frac{1}{2}}$ 会不会就是 E 呢?

答案是是. 事实上, 对任意的 $r\notin E$, 由于 E 是闭集, 故 $\delta=d(r,E)>0$, 故存在 $n\in\mathbb{N}$ 使得 $\frac{1}{n}<\delta$, 从而对任意的 $e\in E, r\notin U(e,\frac{1}{n})$, 因此 $r\notin F_{\frac{1}{n}}=\cup_{e\in E}U(e,\frac{1}{n})$.

因此 $E = \bigcap_{n=1}^{\infty} F_{\frac{1}{n}}$, 闭集 E 是可数个开集 $\{F_{1/n}\}$ 的交.

另一方面, 若 E 是开集, 则 E^c 是闭集, 根据刚才证明的结论, 存在可数个开集 $\{F_i\}_{i\in I}$, 使得 $E^c = \bigcap_{i\in I} F_i$, 于是 $E = \bigcup_{i\in I} F_i^c$ 是可数个闭集的并.

2. (Rⁿ 的正规性) 设 S_1, S_2 为 Rⁿ 中不相交的闭集 (不一定有界). 证明存在开集 O_1, O_2 满足 $S_i \subset O_i, i=1,2$, 且 $O_1 \cap O_2 = \emptyset$

证明. 取

$$O_1 = \bigcup_{e_1 \in S_1} U(e_1, \frac{1}{3}d(e_1, S_2)), O_2 = \bigcup_{e_2 \in S_2} U(e_2, \frac{1}{3}d(e_2, S_1))$$

容易验证 O_1, O_2 是各自包含 S_1, S_2 的开集. 下面我们证明这个 O_1, O_2 符合题目的要求.

事实上, 若 O_1, O_2 的交非空, 假设 $a \in O_1 \cap O_2$, 那么由 O_1, O_2 的定义, 必存在 $s_1 \in S_1, s_2 \in S_2$ 使得,

$$a \in U(s_1, \frac{1}{3}d(s_1, S_2), a \in U(s_2, \frac{1}{3}d(s_2, S_1))$$

因此 $|s_1-s_2| \le |s_1-a|+|s_2-a| \le \frac{1}{3}(d(s_1,S_2)+d(s_2,S_1)) \le \frac{1}{3}(|s_1-s_2|+|s_1-s_2|) < |s_1-s_2|,$ 矛盾.

故
$$O_1, O_2$$
 满足题设要求. 证毕.

第 1,2 题在点集拓扑中都属于比较常见直观的问题.

3. 设 f_1, \dots, f_n 是 [0,1] 上的 n 个连续函数, 称 f_1, \dots, f_n 在 [0,1] 上是 * 线性相关 *, 若存在不全为零的常数 c_1, \dots, c_n , 使得

$$\sum_{i=1}^{n} c_i f_i(x) \equiv 0, x \in [0, 1].$$

证明: f_1, \dots, f_n 在 [0,1] 上线性相关的充要条件是

$$\det\left(\left(\int_0^1 f_i(x)f_j(x)\mathrm{d}x\right)_{n\times n}\right) = 0$$

证明. 注意到, 对于 $\mathbf{R}^{n\times n}$ 上的矩阵 A,A 的行列式为 0 等价于存在一组不全为 0 的系数 $\{c_i\}_{i=1}^n$, 满足

$$\sum_{i=1}^{n} c_i A_{ij} = 0, \forall j = 1, \cdots, n$$

回到原题, 记 $A = \left(\left(\int_0^1 f_i(x) f_j(x) \mathrm{d}x \right)_{n \times n} \right)$, 那么, 当 $\{f_i\}_{i=1}^n$ 线性相关时, 即存在一组非零系数 $\{c_i\}_{i=1}^n$ 满足 $\sum_{i=1}^n c_i f_i(x) \equiv 0$ 时, 对任意的 $j = 1, \dots, n$, 有

$$\sum_{i=1}^{n} c_i A_{ij} = \sum_{i=1}^{n} c_i \int_0^1 f_i(x) f_j(x) dx = \int_0^1 \left(\sum_{i=1}^{n} c_i f_i(x) \right) f_j(x) dx = 0,$$

从而 det(A) = 0

另一方面, 若 det(A) = 0, 那么存在 $\{c_i\}_{i=1}^n$ 满足 $\sum_{i=1}^n c_i A_{ij} = 0, \forall j = 1, \dots, n$, 记向量

 $c=(c_1,\cdots,c_n),$ 则

$$cAc^{T} = \sum_{ij} c_{i}c_{j}A_{ij} = \int_{0}^{1} \sum_{ij} [c_{i}f_{i}(x)][c_{j}f_{j}(x)]dx = \int_{0}^{1} \left(\sum_{i=1}^{n} c_{i}f_{i}(x)\right)^{2}dx$$

因此 $\sum_{i=1}^{n} c_i f_i(x) \equiv 0$, 即 $\{f_i\}_{i=1}^{n}$ 线性相关.

4.

- 1. 设 \mathcal{T} 是 R^n 到 R^n 的一个映射, 如果存在常数 $\theta \in (0,1)$ 以及自然数 n_0 使得 $|\mathcal{T}^{n_0}x \mathcal{T}^{n_0}| \le \theta |x y|, \forall x, y \in R^n$ 其中 \mathcal{T}^{n_0} 表示 \mathcal{T} 复合 n_0 次. 证明: 映射 \mathcal{T} 有唯一的不动点, 即, 存在唯一的 $x_0 \in R^n$ 使得 $\mathcal{T}x_0 = x_0$
- 2. 设 Ω 是 R 中的有界闭集,f 是 Ω 到 Ω 的一个映射,满足 $|f(x) f(y)| < |x y|, \forall x \neq y \in \Omega$. 证明:f 在 Ω 中存在唯一的不动点. 另外,能否把有界闭集的假设减弱为一般的有界集或无界闭集?

证明.

1. 记 $S = T^{n_0}$,任取一个 $x \in \mathbb{R}^n$,考虑序列 $x, Sx, S^2x, \dots, S^mx, \dots$ 我们先证明 $\{S^ix\}_{i=0}^{\infty}$ 将收敛到一个点 $x_0 \in \mathbb{R}^n$. 事实上, 对给定的 $N \in \mathbb{N}$,

$$|\mathcal{S}^{N+1}x - \mathcal{S}^N x| = |\mathcal{S}(\mathcal{S}^N x) - \mathcal{S}(\mathcal{S}^{N-1} x)| \le \theta |\mathcal{S}^N x - \mathcal{S}^{N-1} x| \dots \le \theta^N |\mathcal{S} x - x|$$

因此对任意两个自然数 l < m,

$$|\mathcal{S}^l x - \mathcal{S}^m x| \leq \sum_{i=l}^{m-1} |\mathcal{S}^{i+1} x - \mathcal{S}^i x| \leq \sum_{i=l}^{m-1} \theta^i |\mathcal{S} x - x| = \theta^l \frac{1 - \theta^{m-l}}{1 - \theta} |\mathcal{S} x - x| < \theta^n \frac{1}{1 - \theta} |\mathcal{S} x - x|$$

因此 $\{S^i x\}_{i=1}^{\infty}$ 是柯西列, 从而收敛到 \mathbb{R}^n 中的一个点 x_0 .

那么 $\mathcal{S}x_0 = x_0$, 这是因为 $|\mathcal{S}x_0 - \mathcal{S}(\mathcal{S}^N x)| \leq \theta |x_0 - \mathcal{S}^N x|$,由于 $\mathcal{S}(\mathcal{S}^N x) = \mathcal{S}^{N+1} x$ 和 $\mathcal{S}^N x$ 都将收敛到 x_0 ,因此 $\mathcal{S}x_0$ 只能等于 x_0 .

我们还需要证明 x_0 也是 \mathcal{T} 的不动点. 由上面 $\mathcal{S}x_0 = x_0$, 即 $\mathcal{T}^N x_0 = x_0$, 可得

 $\mathcal{T}^{n_0}(Tx_0) = \mathcal{T}(\mathcal{T}^{n_0}x_0) = \mathcal{T}x_0$, 而若 $\mathcal{T}x_0 \neq x_0$, 则依题设有

$$|\mathcal{T}x_0 - x_0| = |\mathcal{T}^{n_0}(Tx) - \mathcal{T}^{n_0}x| \le \theta |\mathcal{T}x_0 - x_0|$$

这与 $\theta < 1, |\mathcal{T}x_0 - x_0| > 0$ 矛盾. 因此 $\mathcal{T}x_0 = x_0$, 即 x_0 是 \mathcal{T} 的不动点. 证毕.

2. 假设 f 没有不动点,考虑 $d = \inf_{x \in \Omega} |f(x) - x|$. 于是存在一列 $\{x_n\}_{n=1}^{\infty}$ 满足 $|f(x_n) - x_n| \to d$,由于 Ω 是有界闭集,因此 $\{x_n\}_n$ 在 Ω 有聚点,记作 x_0 ,依题设, $|f(x_n) - f(x_0)| < |x_n - x_0| \to 0$,从而 $f(x_n) \to f(x_0)$,因此

$$|f(x_0) - x_0| = \lim_{n \to \infty} |f(x_n) - x_n| = d$$

但 $|f(f(x_0)) - f(x_0)| < |f(x_0) - x_0| = d$, 这与 d 是 $\{|f(x) - x| : x \in \Omega\}$ 的下确界矛盾. 因此 f 有不动点. 若 f 有两个不动点 x, y,则 x - y = f(x) - f(y) 这与 |f(x) - f(y)| < |x - y| 矛盾.

若将题目条件中的 Ω 有界闭改成无界闭或有界开集则结论不一定成立.

- $\Omega = [1, \infty)$ 为无界闭集, $f(x) = x + \frac{1}{x}$, 则 $|f(x) f(y)| = |x y|(1 \frac{1}{xy}) < |x y|$, 且 f(x) = x 在 $[1, \infty)$ 上不可能成立.
- $\Omega = (0,1)$ 为有界开集, $f(x) = x x^2$ 满足题设条件, 但是在这一区间上没有不动点.