Digital Assignment-1 Solution (Set-1)

1. Convert 101010101 to decimal; the radix may not be always indicated.

$$N = d \times r^{8} + d \times r^{7} + d \times r^{6} + d \times r^{5} + d \times r^{4} + d \times r^{3} + d \times r^{2} + d \times r^{1} + d \times r^{0}$$

$$= 1x2^{8} + 0x2^{7} + 1x2^{6} + 0x2^{5} + 1x2^{4} + 0x2^{3} + 1 \times 2^{2} + 0x2^{1} + 1x2^{0}$$

$$= 256 + 0 + 64 + 0 + 16 + 0 + 4 + 0 + 1$$

$$= 34110$$

2. Convert 6910 to binary.

ans:

100001012

3. Convert 69 to binary.

Read the remainders from bottom to top.

$$6910 = 10001012$$
.

4. Add 1011112 and 101112.

Number 1 1 0 1 1 1 1

During the addition, 1 + 1 = 10 and 1 + 1 + carry(1) = 11, and so o

5. Add 1111 and 1111.

Binary subtraction is performed in a manner similar to that in decimal subtraction. Because there are only two digits in binary, its subtraction often requires more borrowing operation than decimal numbers.

6. Subtract 1110 from 1000.

10000 <u>1110</u> 00010₂

We find that in the second column 1 cannot be subtracted from 0. So a 1 must be borrowed the from third column but it is a 0. In this example, 1 is available at the fifth column. So borrow this 1, leaving behind a 0. Then 1 is (1 + 1) in the fourth column. We borrow 1 leaving behind 1 in the fourth column. Finally, successive borrowing makes (1 + 1) in the second column from which we subtract 1, yielding 1 as answer in the second column. At this stage, we have the answers for zeroth and first column. The third, fourth and fifth columns are

Thus, the complete answer is 000102 = 210

7. Subtract 10101 from 101010.

101010 10101 10101₂

8. Convert 10101110111101012 to hexadecimal.

9. Convert FA876₁₆.

Thus, the solution is 1111, 1010, 1000, 0111, 0110₂.

10. Convert FA27D₁₆.

11. Convert 57345.

 $\underline{14}$ 00 1 → Convert decimal to hexadecimal notation. \downarrow E 0 0 1₁₆

The result is E001₁₆.

12. Convert 1111101011012 to octal.

The result is 7655₈

13. Convert 67548 to binary.

The result is 110111101100₂.

14. Convert 86710 to octal number. It is simply a successive division by 8.

The result is (1543)₈

15. Given m = 11010110, n = 01000101 Determine (a) (m - n) and (b) (n - m)

(a) 2's complement of n 01000101

1's complement 10111010

+1

2's complement 10111011

Add in <u>11010110</u>

Delete carry →1 10010001

(m - n)10010001

(b) 2's complement of m

11010110

1's complement 00101001

<u>+1</u>

2's complement 00101010

Add n <u>01000101</u>

No carry <u>01101111</u> 1's complement 10010000

+1 2's complement (n -

m) <u>-10010001</u>

16. Convert the given decimal numbers to binary:

(i) (258)10

(ii) (137)10

(iii) (11.6875)10

ans:

i). 100000010

ii). 10001001

iii). 1011.1011

17. Convert the hexadecimal (8F6)16 to a decimal number.

ans: 2294

18.How can you convert octal numbers to binary and vice versa

ans: Convert each octal number into its 3 bit binary representation.

Group 3 bits from lsb and convert it into equivalent ocatal notation.

19. How can you convert hexadecimal to binary and vice versa?

ans: Convert each hexadecimal number into its 4 bit binary representation.

Group 4 bits from lsb and convert it into equivalent hexadecimal notation.

20. Write the basic rules for addition and subtraction of binary numbers.

ans:

21. Take any two 8-bit binary numbers. Illustrate how to add and subtract the two.

- 22. Find the decimal equivalents of the following binary numbers.
 - (a) 1111111
 - (b) 11001.0101

ans:

- a). 127
- b). 25.3125
- 23. Subtract in binary form:

(47)10 - (23)10

ans: 11000

- 24. Decode the following into decimal form (H stands for Hexadecimal):
 - (a) FCH (b) 9AH

ans:

- a). 1010101
- b). 0110001
- c). 100101011
- d). 11001000
- 27. Convert 1100 0111, 1101 to octal number.

ans:

307.64

28. Convert the decimal number 25.375 to its binary equivalent.

ans:

11001.011

29. Convert (294.6875)10 into octal.

ans:

446.54

30. Convert the following numbers to their hexadecimal equivalents.

- (a) (49.5)10
- (b) (972.625)10

ans:

- a). 31.8
- b). 3CC.A
- 31. Convert 11000111.1101 to octal number.

ans:

307.64