M3201 - Perfectionnement outils logiciels

TP N°4 : Filtres à réponse impulsionnelle finie et infinie

Exercice 1 – Filtre V On considère le système linéaire défini par sa fonction de transfert

$$H(z) = \frac{a - z^{-1}}{1 - az^{-1}}$$

Etudier ce filtre, pour a = 2 et $a = \frac{1}{2}$ par exemple.

Exercice 2 – Filtre VI On considère le filtre numérique linéaire suivant

$$y(n) = y(n-1) + u(n)$$

- 1. Calculer la réponse impulsionnelle $h_1(n)$ de ce système (calculer numériquement et tracer)
- 2. Justifier son nom de "filtre intégrateur", et si vous ne voyez pas, testez-le sous simulink
- 3. Déterminer fonction de transfert $H_1(z)$
- 4. Etudier ce filtre

Exercice 3 – Filtre VII On considère maintenant le filtre numérique dont la fonction de transfert est

$$H(z) = \frac{(1-\alpha)(1-z^{-1})}{1-\alpha z^{-1}}$$

où α est un paramètre compris entre 0 et 1 (on peut prendre $\alpha = \frac{1}{20}$).

- 1. Écrire l'équation reliant la sortie y(n) à l'entrée u(n) de ce filtre.
- 2. Etudier ce filtre
- 3. Testez ce filtre avec simulink, en essayant plusieurs type d'entrées (Signaux carrés, Heaviside, sin, par exemple)
- 4. Justifiez son nom de "filtre dérivateur approché"

Exercice 4 – Egaliseur, caisson de basse... On considère les deux filtres donnés par les équations suivantes :

$$y_1(n) = \frac{2}{3}y_1(n-1) + \frac{1}{3}(u(n) - u(n-1))$$
$$y_2(n) = \frac{2}{3}y_2(n-1) + \frac{1}{3}u(n-1)$$

dont on notera les fonctions de transfert $H_1(z)$ et $H_2(z)$. Etudier ces deux filtres.

Etudier en particulier le montage suivant, visualiser le signal d'entrée en même temps que le signal de sortie, ainsi que les deux signaux avant leur sommation.

A.N. $F_e = 40 \,\text{kHz}$, on prendra $G_1 = \frac{5}{2}$ et $G_2 = 1$, le signal d'entrée est constitué de deux signaux de fréquences respectives $5 \,\text{kHz}$ et $500 \,\text{Hz}$. La durée de la simulation des de 2 millièmes de secondes.

Exercice 5 – Cascade de filtres Cet exercice est optionnel. On considère le système linéaire suivant, constitué des deux filtres VI et VII, cascadés :

$$U(z) \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow H_2(z)$$

- 12. Calculer la fonction de transfert H(z) équivalente à ce filtre.
- 13. Ecrire y(n) en fonction de u(n).
- 14. Que se passe-t-il quand $\alpha = 0$ (aussi bien concernant H(z) que y(n))? Interprétez.
- 15. Etudier ce filtre
- 16. Quelle est sa fréquence de coupure si la fréquence d'échantillonnage vaut $1000\,\mathrm{Hz}$ et $\alpha=0.97\,?$