Project review

Reviewed team: C

Ondrej Mosnáček, Manoja Kumar Das, Mmabatho Idah Masemene

PV204 - Security Technologies

May 19, 2015

The reviewed project

- Tomcat / Web Browser Based Authentication using JavaCard
- Original goal:
 - to provide web-based authentication using JavaCard
- What was actually implemented:
 - a server application that checks if the client sent the string "Auth" and sends back the string "Authorized"
 - a client Java browser applet that sends the string "Auth" to the server
 - a JavaCard applet for password-based authentication with a very crude PC application
 - the browser applet does not communicate with the card at all

Design

- server and card share a master password and counter
- client downloads a Java applet from the server
- the browser applet retrieves SHA-1(Password XOR Counter) from the card (and the counter is incremented in the card)
- the browser applet sends the hash to the server
- the server computes the expected hash and increments the counter
- the server checks if the recieved hash matches the expected one

Design flaws I

the crypto

- SHA-1(Password XOR Counter)
- non-standard construct (possibly prone to cryptanalysis)
- "Never design your own crypto!"
- SHA-1 is not considered secure nowadays (but this is addressed in the documentation)
- a proper password-based KDF should be used instead (or at least HMAC)

no secure channel between client and server

- design does not mandate the use of TLS for client-server communication
- an MITM attacker could hijack the authenticated session after the hash has been sent

Design flaws II

using a Java browser applet

- Java browser plugins are now deprecated¹
- historically suffered from many vulnerabilites
- in this case, the applet requires unlimited permissions security problem if server gets compromised

¹https://blogs.oracle.com/java-platform-group/entry/
moving_to_a_plugin_free

Implementation flaws

JavaCard applet vulnerability

- access to JavaCard is protected by user PIN
- the PIN is set using INS_SETPIN APDU instruction
- this instruction is not authenticated (the old PIN is not required)
- attacker can just set the PIN to a new value and authenticate to the card
- after authentication, the attacker can pre-generate a sequence of valid hashes

Summary

- original goals not achieved
- several flaws in the design
- one serious flaw in the implementation
- most code was copied from the Internet/study materials;
 only small parts were modified
- some useless functionality was left over from the original code
 - AES encryption and RSA signing in the JavaCard applet
 - a file containing arbitrary sentences to be returned by the server