Points fixes

Définition : treille complet

Un poset (D, \sqsubseteq) est un treille complet ssi $\sqcap X$ et $\sqcup X$ existent pour tout $X \subseteq D$ Pour un treille complet (D, \sqsubseteq) on appelle $bottom \perp = \sqcap D$ et $top \perp T = \sqcup D$ Par exemple pour $(\mathcal{P}(P), \subseteq) \perp = \emptyset$ et $\perp T = P$

Définition: fonction monotone

Soit (D, \sqsubseteq) un poset, une fonction $f: D \to D$ est monotone ssi $d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d')$ pour tout $d, d' \in D$

Définition : point fixe

Soit (D, \sqsubseteq) et $f: D \to D$, $d \in D$ est un point fixe ssi d = f(d)

Théorèmes Knaster-Tarski 1

Soit (D, \sqsubseteq) un treille complet et $f: D \to D$ une fonction monotone, alors f a un plus grand point fixe z_{max} et un plus petit point fixe z_{min} donnés par :

Théorème Knaster-Tarski 2

Soit (D, \sqsubseteq) un treille complet et $f: D \to D$ une fonction monotone et continue à gauche et soit $f^n(d)$ définie par :

$$f^{0}(d) = d$$

$$f^{n+1}(d) = f(f^{n}(d))$$

alors,

- $z_{min} = f^m(\bot)$ pour $m \in \mathbb{N}$ si la suite croissante $f^n(\bot)$ est constante à partir d'un certain k.
- 2 $z_{max} = f^M(\top)$ pour $M \in \mathbb{N}$ si la suite décroissante $f^n(\top)$ est constante à partir d'un certain k.

Sorbonne Université Paradigmes de Programmation Concurrente MU5IN553

Cours 4 - Hennessy-Milner Logic

Carlos Agon - Romain Demangeon

8 octobre 2024

Plan du cours

- Logiques modales
- Logique de Hennessy-Milner
- Logique de Hennessy-Milner avec récursion

Introduction

- Voir un terme de CCS comme une spécification
- On peut faire de queries au système pour voir si elles sont vérifiées
- Pour vérifier les propriétés d'un processus donné, de fois il est plus facile de le faire en explorant l'espace des états du processus que en cherchant des équivalences.
- On a besoin d'un langage pour exprimer les propriétés (syntaxe, sémantique et un algorithme de vérification)

Logiques modales

- Connue par les grecques, mais formalisée fin XIX siècle
- Introduction des opérateurs
 L (il est nécessaire) □
 M (il est possible) ◊
 liées par les formules : Lp = ¬M¬p et Mp = ¬L¬p

Sémantique

Saul Kripke

- La sémantique est donnée par un modèle I = (W, R, s) avec W un ensemble non vide de mondes. R une relation sur $W \times W$ et $s : (w, p) \rightarrow \{tt, ff\}$ avec p une proposition et $w \in W$
- On note $I_{w,s}f$ le fait que s satisfait la formule f dans le monde w du modèle I
- $0 I_{w,s} f \iff s(w,f) \text{ est vrai}$

Logiques temporelles

Dans le cas des logiques temporelles L et M sont remplacés par P et F

Fp: p sera vrai à tout instant future

Pp : p a toujours été vrai dans le passé

W représente les points du temps

R exprime la notion de précédence temporelle

- $I_{w,s} FA \iff I_{w',s} A \forall w' \text{ tq. } wRw'$
- $I_{w,s} PA \iff I_{w',s} A \forall w' \text{ tq. } w' Rw$
- Sp: p sera vrai à un instant future : $\neg F \neg p$
- Ep: p a été vrai à un instant dans le passé : $\neg P \neg p$

Systèmes classiques par rapport à R

- K : pas de restriction $F(p \Rightarrow q) \Rightarrow (Fp \Rightarrow Fq)$
- T : réflexive $Fp \Rightarrow p$
- B : symétrique $p \Rightarrow FPp$
- S4 : transitive $Fp \Rightarrow FFp$

Hennessy-Milner logic (HML)

Définition

L'ensemble ${\mathcal M}$ des formules Hennessy-Milner sur un ensemble d'actions ${\it Act}$ est donné par :

$$F, G := tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

avec $a \in Act$, $tt = \text{vrai}$, $ff = \text{faux}$

- ullet Un processus P satisfait $F \lor G$ ssi P satisfait F ou P satisfait G
- Un processus P satisfait $F \wedge G$ ssi P satisfait F et P satisfait G
- Un processus P satisfait (a) F ssi il existe une transition a à partir de P menant à un processus satisfaissant F
- Un processus P satisfait [a]F ssi toute transition a partant de P mène à un processus satisfaissant F
- Tous les processus satisfont tt
- Aucun processus satisfait ff

Hennessy-Milner logic (notation)

- En fait c'est une logique modale avec :
- ♦ possiblement
- $\langle a \rangle F$: Il est possible de s'engager dans une action a et satisfaire F
- □ nécessairement
- [a]F: Peut importe comme on s'engage dans une action a, F sera nécessairement satisfaite

Sémantique d'une formule

La sémantique est paramétrisée par un LTS (Proc, Act, $\{\stackrel{a}{\to}|a\in {\sf Act}\ \}$) On dénote $[\![F]\!]$ l'ensemble de processus dans Proc qui satisfont F

Définition

```
On défini \llbracket F \rrbracket \subseteq \operatorname{Proc} \operatorname{pour} F \in \mathcal{M} \operatorname{par} :
\llbracket tt \rrbracket = \operatorname{Proc} 
\llbracket ff \rrbracket = \emptyset 
\llbracket F \wedge G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket 
\llbracket F \vee G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket 
\llbracket \langle a \rangle F \rrbracket = \langle .a. \rangle \llbracket F \rrbracket 
\llbracket [a] F \rrbracket = \llbracket .a. \rrbracket \llbracket F \rrbracket
```

avec

$$\langle .a. \rangle$$
 S = { $p \in Proc | \exists p' \in S \text{ tq. } p \xrightarrow{a} p'$ }
[.a.] S = { $p \in Proc | \forall p' \text{ tq. } p \xrightarrow{a} p' \Rightarrow p' \in S$ }

$$\langle .a.\rangle \{\mathit{S1},\mathit{R1}\} =$$

$$\langle .a.\rangle \{S1,R1\} = \{S,R\}$$

$$[.a.] \{S1, R1\} =$$

$$\langle .a. \rangle \{S1, R1\} = \{S, R\}$$

$$\begin{split} & [.a.]\{S1,R1\} = \{S1,S2,R,R1\} \\ & \text{Pour } S1 \text{ il est vrai que } \forall p'tq.S1 \xrightarrow{a} p' \Rightarrow p' \in \{S1,R1\} \end{split}$$

$$< .b. > {S1, R1} =$$

$$\langle .a.\rangle \{S1,R1\} = \{S,R\}$$

$$\begin{split} & [.a.]\{S1,R1\} = \{S1,S2,R,R1\} \\ & \text{Pour } S1 \text{ il est vrai que } \forall p'tq.S1 \xrightarrow{a} p' \Rightarrow p' \in \{S1,R1\} \end{split}$$

$$< .b. > {S1, R1} = {R1} [.b.]{S1, R1} =$$

$$\langle .a.\rangle \{S1,R1\} = \{S,R\}$$

$$\begin{split} & [.a.]\{S1,R1\} = \{S1,S2,R,R1\} \\ & \text{Pour } S1 \text{ il est vrai que } \forall p'tq.S1 \xrightarrow{a} p' \Rightarrow p' \in \{S1,R1\} \end{split}$$

$$< .b. > {S1, R1} = {R1}$$

[.b.]{S1, R1} = {S, R, R1}

Comment formuler "Le client peut choisir un café"?

Comment formuler "Le client peut choisir un café"? Il peut faire une transition $\langle coffee \rangle$ donc la formule est $\langle coffee \rangle F$, mais c'est qui F?


```
Comment formuler "Le client peut choisir un café"? Il peut faire une transition \langle \text{coffee} \rangle donc la formule est \langle \text{coffee} \rangle F, mais c'est qui F? (F = tt) Il est possible de s'engager dans une action coffee et satisfaire tt [\![\langle \text{coffee} \rangle tt]\!] = \langle .\text{coffee}. \rangle [\![tt]\!] = \langle .\text{coffee}. \rangle \text{Proc} = \{p \mid \exists p' \in \text{Proc tq. } p \xrightarrow{\text{coffee}} p'\} = \{P\}
```

Le client ne peut pas choisir du tea.

Le client ne peut pas choisir du tea.

[tea]ff

Aucun processus satisfait ff donc les seuls processus qui marchent sont ceux qui n'ont pas de transition tea.

Que veut dire [coffee] (biscuit) tt?

Comment écrire :

Le client est prêt pour choisir un tea ou un coffee

Que veut dire [coffee] $\langle biscuit \rangle tt$?

Comment écrire : Le client est prêt pour choisir un tea ou un coffee $\langle \texttt{coffee} \rangle tt \lor \langle \texttt{tea} \rangle tt$

Le client est prêt pour choisir un tea, mais pas un coffee

Que veut dire [coffee] (biscuit) tt?

Comment écrire :

Le client est prêt pour choisir un tea ou un coffee $\langle \texttt{coffee} \rangle tt \lor \langle \texttt{tea} \rangle tt$

Le client est prêt pour choisir un tea, mais pas un coffee [coffee] $ff \wedge \langle \text{tea} \rangle tt$

Le client peut choisir un tea après avoir choisit deux coffee

Que veut dire [coffee] $\langle biscuit \rangle tt$?

Comment écrire :

Le client est prêt pour choisir un tea ou un coffee $\langle \texttt{coffee} \rangle tt \lor \langle \texttt{tea} \rangle tt$

Le client est prêt pour choisir un tea, mais pas un coffee [coffee] $ff \wedge \langle \text{tea} \rangle tt$

Le client peut choisir un tea après avoir choisit deux coffee [coffee][coffee] $\langle tea \rangle tt$

On va écrire
$$p \models F \Leftrightarrow p \in \llbracket F \rrbracket$$
.

Est-ce que
$$s \models \langle a \rangle (\langle a \rangle tt \land \langle b \rangle tt)$$
? $s \models [a][a]\langle b \rangle tt$?

La negation

Pour chaque formule $F \in \mathcal{M}$ il y a une formule équivalente à la négation de F, F^{C} définie par :

- $tt^C = ff$, $ff^C = tt$
- $(F \wedge G)^C = F^C \vee G^C$
- $(F \vee G)^C = F^C \wedge G^C$
- $(\langle a \rangle F)^C = [a]F^C$
- $([a]F)^C = \langle a \rangle F^C$

En particulier :

$$(\langle a \rangle tt)^C = [a]ff$$

 $([a]ff)^C = \langle a \rangle tt$

Trouver une formule qui soit satisfaite par a.(b.0 + c.0), mais pas pour a.b.0 + a.c.0?

Trouver une formule qui soit satisfaite par a.(b.0 + c.0), mais pas pour a.b.0 + a.c.0? [a]($< b > tt \land < c > tt$)

Trouver une formule qui soit satisfaite par a.(b.c.0 + b.c.0), mais pas pour a.b.c.0 + a.b.c.0?

Théorème de Hennessy-Milner

Définition : LTS à image finie

Un état est à image finie si pour toute *a* l'ensemble $\{P' \mid P \xrightarrow{a} P'\}$ est fini. Un LTS est à image finie si tous ses états le sont.

Théorème: Hennessy-Milner

Soit (Proc, Act, $\{\stackrel{a}{\to} | a \in Act\}$) an LTS à image finie et P, Q \in Proc. Alors P \sim Q ssi P et Q satisfont exactement les mêmes formules dans la logique de Hennessy-Milner.

Excercice

Prouver que $s \not\sim t$

Excercice

Prouver que $s \nsim t$ [a][b]($\langle a \rangle tt \wedge \langle b \rangle$)

Formules récursives

Après avoir fait a p peut toujours faire une autre a (ce n'est pas vrai pour q) $p \models [a]\langle a \rangle tt$, mais $q \not\models [a]\langle a \rangle tt$

Formules récursives

Après avoir fait a p peut toujours faire une autre a (ce n'est pas vrai pour q) $p \models [a]\langle a \rangle tt$, mais $q \not\models [a]\langle a \rangle tt$

On aimerait écrire les formules :

$$Inv(\langle a \rangle tt) = \langle a \rangle tt \wedge [a] \langle a \rangle tt... \wedge [a]^n \langle a \rangle tt \wedge ...$$

Toujours on peut faire une a transition (Invariante)

Formules récursives

Après avoir fait a p peut toujours faire une autre a (ce n'est pas vrai pour q) $p \models [a]\langle a \rangle tt$, mais $q \not\models [a]\langle a \rangle tt$

On aimerait écrire les formules :

$$Inv(\langle a \rangle tt) = \langle a \rangle tt \wedge [a] \langle a \rangle tt \dots \wedge [a]^n \langle a \rangle tt \wedge \dots$$

Toujours on peut faire une a transition (Invariante)

$$Pos([a]ff) = [a]ff \vee \langle a \rangle [a]ff ... \vee \langle a \rangle^{n} [a]ff \vee ...$$

On peut refuser a tout suite ou après un certain nombre de a (Proprieté)

Formules récursives

Après avoir fait a p peut toujours faire une autre a (ce n'est pas vrai pour q) $p \models [a]\langle a \rangle tt$, mais $q \not\models [a]\langle a \rangle tt$

On aimerait écrire les formules :

$$Inv(\langle a \rangle tt) = \langle a \rangle tt \wedge [a] \langle a \rangle tt... \wedge [a]^n \langle a \rangle tt \wedge ...$$

Toujours on peut faire une a transition (Invariante)

$$Pos([a]ff) = [a]ff \vee \langle a \rangle [a]ff ... \vee \langle a \rangle^n [a]ff \vee ...$$

On peut refuser a tout suite ou après un certain nombre de a (Proprieté)

$$X \equiv \langle a \rangle tt \wedge [a] X$$
$$Y \equiv [a] ff \vee \langle a \rangle Y$$

HML avec récursion

Le sense S d'une formule X par rapport à un LTS est donné par l'ensemble de processus dans P qui satisfont X.

•
$$X \equiv \langle a \rangle tt \wedge [a]X$$

 $S = \langle .a. \rangle Proc \cap [.a.]S$
 $S = \emptyset$ est un solution, mais il y a d'autres ...
 $S = \{p\}$ c'est celle qu'on cherche, alors on va dire que :
 $X \equiv^{max} \langle a \rangle tt \wedge [a]X$

HML avec récursion

• $Y \equiv [a]ff \lor \langle a \rangle Y$ $S = [.a.]\emptyset \cup \langle .a. \rangle S$ il y a $\{p, q, r\}$ comme solution, mais nous on ne veut pas p $S = \{q, r\}$ c'est celle qu'on cherche, alors on va dire que : $Y \equiv^{min} [a]ff \lor \langle a \rangle Y$

Syntaxe et sémantique de $M_{\{X\}}$

Logique de Hennessy-Milner avec une variable X

- $F, G ::= X|tt|ff|F \wedge G|F \vee G| < a>F|[a]F$
- Sémantiquement, une formule F(qui peut contenir une variable X) est interprétée comme une fonction
 - $\mathcal{O}_F : \mathcal{P}(Proc) \to \mathcal{P}(Proc)$ que pour un ensemble de processus satisfaisant X retourne un ensemble de processus que satisfont F

Exemple

Soit
$$F = \langle a \rangle X$$

 $\mathcal{O}_{\langle a \rangle X}(\{p1\}) = \langle .a. \rangle \{p1\} = \{p3\}$
si X est satisfaite par p_1 alors $\langle a \rangle X$ sera satisfaite par p_3

Exemple

Soit
$$F = \langle a \rangle X$$

 $\mathcal{O}_{\langle a \rangle X}(\{p1\}) = \langle .a. \rangle \{p1\} = \{p3\}$
si X est satisfaite par p_1 alors $\langle a \rangle X$ sera satisfaite par p_3

$$\mathcal{O}_{\langle a \rangle X}(\{p1,p2\}) = \langle .a. \rangle \{p1,p2\} = \{p1,p3\}$$
 si X est satisfaite par p_1 et p_2 alors $\langle a \rangle X$ sera satisfaite par p_1 et p_3

Sémantique de $M_{\{X\}}$

•
$$\mathcal{O}_X(S) = S$$

•
$$\mathcal{O}_{tt}(S) = proc$$

•
$$\mathcal{O}_{ff}(S) = \emptyset$$

•
$$\mathcal{O}_{F_1 \wedge F_2}(S) = \mathcal{O}_{F_1}(S) \cap \mathcal{O}_{F_2}(S)$$

•
$$\mathcal{O}_{F_1 \vee F_2}(S) = \mathcal{O}_{F_1}(S) \cup \mathcal{O}_{F_2}(S)$$

•
$$\mathcal{O}_{\langle a \rangle F}(S) = \langle .a. \rangle \mathcal{O}_F(S)$$

•
$$\mathcal{O}_{[a]F}(S) = [.a.]\mathcal{O}_F(S)$$

$$\mathcal{O}_{F_X}$$
 est monotone et continue à droîte et on est sur un treille complet (\top = Proc et $\bot = \emptyset$)
FIX $\mathcal{O}_{F_X} = (\mathcal{O}_{F_X})^M Proc$ et fix $\mathcal{O}_{F_X} = (\mathcal{O}_{F_X})^m \emptyset$

$$X \equiv^{\mathit{max}} \langle b \rangle \mathit{tt} \wedge [b] X$$

$$X \equiv^{max} \langle b \rangle tt \wedge [b] X$$

Pour trouver la solution on itère en partant de \top

$$\mathcal{O}_{\langle b\rangle tt \wedge [b]X}\big(\{s,s1,s2,t,t1\}\big) = \big(\langle .b.\rangle \{s,s1,s2,t,t1\}\big) \cap \big([.b.]\{s,s1,s2,t,t1\}\big)$$


```
 \begin{split} X &\equiv^{\mathit{max}} \langle b \rangle tt \wedge [b] X \\ \text{Pour trouver la solution on itère en partant de } \top \\ \mathcal{O}_{\langle b \rangle tt \wedge [b] X} (\{s, s1, s2, t, t1\}) &= (\langle .b. \rangle \{s, s1, s2, t, t1\}) \cap ([.b.] \{s, s1, s2, t, t1\}) \\ &= \{s2, s1, t1\} \cap \{s, s1, s2, t, t1\} \\ &= \{s2, s1, t1\} \\ \mathcal{O}_{\langle b \rangle tt \wedge [b] X} (\{s2, s1, t1\}) &= (\langle .b. \rangle \{s, s1, s2, t, t1\}) \cap ([.b.] \{s2, s1, t1\}) \end{split}
```



```
 \begin{split} X &\equiv^{\max} \langle b \rangle tt \wedge [b] X \\ \text{Pour trouver la solution on itère en partant de } \top \\ \mathcal{O}_{\langle b \rangle tt \wedge [b] X} \big( \{s, s1, s2, t, t1\} \big) &= \big( \langle .b. \rangle \{s, s1, s2, t, t1\} \big) \cap \big( [.b.] \{s, s1, s2, t, t1\} \big) \\ &= \{s2, s1, t1\} \cap \{s, s1, s2, t, t1\} \\ &= \{s2, s1, t1\} \\ \mathcal{O}_{\langle b \rangle tt \wedge [b] X} \big( \{s2, s1, t1\} \big) &= \big( \langle .b. \rangle \{s, s1, s2, t, t1\} \big) \cap \big( [.b.] \{s2, s1, t1\} \big) \\ &= \{s2, s1, t1\} \cap \{s, s1, s2, t, t1\} \\ &= \{s2, s1, t1\} \end{split}
```