Cross-discourse development of supervised sentiment analysis

Phil Smith pxs697@cs.bham.ac.uk

Supervisor: Dr. Mark Lee

February 17, 2012

- Introducing my research
- NHS Choices datasets
- Sentiment and Advice Corpus
- 4 Analysing the Corpus
- 5 Supervised Machine Learning Experiments

What is Sentiment Analysis?

- Sentiment Analysis is the computational classification of qualitative and emotional language that is expressed through written discourse.
- Detail in classification can vary:
 - Polarity based classification Positive or Negative
 - ► Finer-grained combinations of emotional states: Joy, anger, surprise, fear, sadness..
- Occasionally referred to as Opinion Mining focuses on product reviews
- Applies knowledge from a number of fields:
 - Natural Language Processing
 - Corpus Linguistics
 - ► Information Retrieval

Why is Sentiment Analysis important?

"Emotion is one of the most central and pervasive aspects of human experience" Ortony, Clore & Collins (1988)

- Decisions are not always motivated by logic alone, and can often be overpowered by emotion.
- The consequences of not understanding or misunderstanding emotion can be costly.

Practical Applications

- Customer-facing industries
- Advertising campaigns
- Augmenting search capabilities
- Personal decision making

Where can it be applied?

- Social media: Facebook, Twitter, blogs, forums, reviews.
- Customer Feedback: Call centres, emails, text messages, web surveys.
- Traditional Media: News headlines and articles

Examples from SemEval 2007 Headline Corpus

"Bombers kill shoppers"

Clearly negative.

"PS3 pricey but impressive"

- Comparative statement, weight put on final word.
- Lexical order is important to understanding the sentiment here.

"Nigeria hostage feared dead is freed"

- Again, interpretation depends on final word.
- The majority of the statement suggests a negative statement.

Sentiment Analysis Corpora

- Pang & Lee (2002) Movie Review Corpora (\sim 2,000).
- Semeval 2013 SMS and Tweet Corpora (\sim 12,000).
- Lin and Hauptmann (2006) Political Perspective Corpora.
- CMC Suicide Note Corpora.

Data Dot Gov

- Making Public Data Public
- ullet \sim 5,400 Datasets available from central government departments.
 - Department for Transport.
 - Department for Communities and Local Government.
 - Office for National Statistics.
 - Department of Health.
- Make clear results of policy changes.
- Can be used to analyse trends over time.

NHS Choices Patient Feedback

- Public given the opportunity to submit feedback online regarding the NHS.
- Post about experiences with individual hospitals and GP surgeries.
- Responses from the relevant organizations are also able to be given.
- Currently there are 3 main datasets:
 - Overall hospital ratings.
 - Individual comments about hospitals and responses.
 - Individual comments about GPs and responses.

Individual Comments About Hospitals and Responses

- Two sub-datasets within this:
 - Feedback from the period 1st January 2008 to 31st July 2011.
 - 2 Feedback from 1^{st} August to today.
- Available as comma-separated value files.
- The most recent dataset was chosen to derive corpora for preliminary experiments.

11 / 30

Structure of the Dataset

- ullet Hospital Name \sim 450 Unique Hospitals and Treatment Centres.
- Relative trust and organisation codes.
- Comment ID
- Comment Title
- Liked
- Disliked
- Advice
- Date of comment
- Date of patient admission
- Response
- Date of Response

Creating the Corpus

- Extract relevant data for preliminary experimentation.
- Liked, Disliked and Advice Data

Corpus	# of Docs	# of words	Doc _{avglength}	# of unique words
Expressive				
Positive	1152	75052	65.15	6107
Negative	1108	76062	68.65	6791
Persuasive				
Positive	768	46642	60.73	4679
Negative	864	113632	131.52	7943

• NB. Advice data was manually annotated.

Annotating the Persuasive Corpus

- 1702 unique documents were annotated.
- Annotations were placed at the document level.
- Overall sentiment of the recommendation taken into account.
 - ▶ In the cases of comparative phrases being used to express sentimental information, the predominant sentiment was chosen.
- 70 were annotated as not containing any emotion due to the content.
 - ► e.g "N/A"
- Neutrally annotated data was removed from the corpus.

Examples from the Corpus

Liked: "The honesty of the Consultants PA's."

Disliked: "The attitude of the nursing staff."

Positive Advice: "Please just do what you do, you are all so good."

Negative Advice: "It's very well spending all this money on a new hospital building, however what is the point when people are being wrongly diagnosed."

Keyword List: Positively Annotated Sections of Corporus: Unusually Frequent

Comparing the Positive section of the Persuasive Corpus with the Positive section of the Expressive Corpus (reference corpus)

Rank	Keyword	Keyness	Frequency
1	thank	46.631	190
2	tameside	27.496	14
3	scan	19.602	42
4	week	18.520	41
5	musgrove	17.676	9
6	wife	16.411	41
7	hospital	16.102	387
8	thanks	14.584	72
9	rotheram	13.876	10
10	cannock	13.748	7

Keyword List: Positively Annotated Sections of Corpora: Unusually Infrequent

Rank	Keyword	-Keyness	Frequency
1	friendly	44.210	57
2	professional	26.628	40
3	polite	24.586	9
4	environment	16.675	5
5	helpful	14.116	59
6	staff	13.723	466
7	including	13.200	3
8	caring	12.912	51
9	treated	12.610	70
10	exceptional	12.400	6

Keyword List: Negatively Annotated Sections of Corpus: Unusually Frequent

Rank	Keyword	Keyness	Frequency
1	hospital	54.296	659
2	now	24.210	165
3	hip	23.245	37
4	catheter	22.266	32
5	wrightington	19.084	18
6	days	18.406	162
7	weeks	17.933	157
8	daughter	17.447	66
9	doctor	16.803	307
10	admitted	16.233	95

Keyword List: Negatively Annotated Sections of Corpus: Unusually Infrequent

Rank	Keyword	-Keyness	Frequency
1	patients	56.453	232
2	improved	50.314	18
3	staff	46.085	444
4	food	39.336	52
5	communication	37.649	32
6	room	34.476	97
7	improvement	28.515	3
8	waiting	25.936	208
9	little	19.653	54
10	training	17.706	10

Concordance Data: Experience

Rank	Keyword	-Keyness	Frequency
24	experience	11.388	107

Positive expressive corpus.

I Helpful in my experience. Very nice nursing this a pleasant experience! nice and relaxed t staff made the experience bearable and the bi y other peoples Experience with midwives in ot id she made the experience very happy for me a ald to make the experience go as smoothly as i Throughout the experience all the staff I end happy with the experience. I would recommend I they made the experience easy to cope with.

Concordance Data: Experience

- Positive persuasive corpus.
 - me. My recent experience gave me a very positive king the overall experience a little negative. The for making this experience as easy as it could be nare my positive experience of excellent care receivly say that our experience as a family of the care A truly great experience! The LGI is a superb ho that the whole experience had been very positive.
 - .. Very good experience. Very welcoming departm

Concordance Data: Negative Experience

Rank	Keyword	-Keyness	Frequency
22	experience	13.558	131

Negative expressive corpus.

rembling at this experience and I have nown it. The whole experience is proving a nive improved in my experience at this hospital distribution that the whole experience was a waste of rd. We know from experience that we can experience—my whole experience can only be designaterible birth experience which left me was Based on my own experience. However, one is

Concordance Data: Negative Experience

Negative Persuasive corpus.

posted about my experience trying to book argueks ago of my experience and still havent have had a bad experience today in that I to about the whole experience. After being add patient. My experience in 2010 and since ach, this whole experience totally knocked ach, this whole experience totally knocked acceptated my experience. I can't speak for experience was so traumatis: waits, in my experience some poor staff of

Applying Supervised Machine Learning Methods

- Treats sentiment analysis as a text classification problem.
- Three machine learning methods were used:
 - Naive Bayes
 - Multinomial Naive Bayes
 - Support Vector Machines
- Various features were used:
 - Unigrams
 - Bigrams
 - Bigrams + Part of Speech information

Validation of training models

• 10-fold cross-validation performed to check model accuracy:

Features	NB	Multinomial NB	SVM
Unigrams	79.65	78.14	76.11
Bigrams	57.79	60.84	63.36
Bigrams + POS	74.25	75.71	72.83

Testing on Persuasive Section

• Testing produces the following accuracy results:

Features	NB	Multinomial NB	SVM
Unigrams	76.60	83.39	68.12
Bigrams	50.10	62.13	57.6
Bigrams + POS	66.73	70.42	64.00

Shortcomings of Machine Learning Methods

- A statistical approach to lanugage
- Does not observe nuances of a language
 - Negation is ignored.
 - Emphasis is ignored.
- Repetition often doesn't imply a particular sentiment.

Discussion

- It would appear that training on a corpus whose discourse function differs to that of the training corpus still enables machine learning algorithms to create suitable models.
- Word frequency should be taken into account when training the models.
- Multinomial Naive Bayes is a machine learning technique well suited to this.

Future Work

- Current Corpus: Experiment with other machine learning approaches and features.
- Annotate the larger dataset: \sim 10,000 rows of data which could be used as the basis for further experimentation.
- Annotate the corpus with fine-grained emotions
- Investigate and present results from suicide note corpus.

Summary

- Sentiment Analysis
- NHS Choices
- Creating the Expressive and Persuasive Corpus
- Analysing the Corpus
- Training and testing supervised machine learning methods