

0-1 Knapsack Problem

• The goal is to maximize the value of a knapsack that can hold at most W units (i.e. lbs or kg) worth of goods from a list of items I₀, I₁, ... I_{n-1}.

- Each item has 2 attributes:
 - 1) Value let this be v_i for item I_i
 - 2) Weight let this be w_i for item I_i

- The difference between this problem and the fractional knapsack one is that you CANNOT take a fraction of an item.
 - You can either take it or not.
 - Hence the name Knapsack 0-I problem.

- Brute Force
 - The naïve way to solve this problem is to cycle through all 2ⁿ subsets of the n items and pick the subset with a legal weight that maximizes the value of the knapsack.
 - We can come up with a dynamic programming algorithm that will USUALLY do better than this brute force technique.

- As we did before we are going to solve the problem in terms of sub-problems.
 - So let's try to do that...
- Our first attempt might be to characterize a subproblem as follows:
 - Let S_k be the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$.
 - What we find is that the optimal subset from the elements $\{I_0, I_1, ..., I_{k+1}\}$ may not correspond to the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$ in any regular pattern.
 - Basically, the solution to the optimization problem for S_{k+1} might NOT contain the optimal solution from problem S_k .

Let's illustrate that point with an example:

ltem	Weight	Value	
I _o	3	10	
$\mathbf{I_1}$	8	4	
I ₂	9	9	
I ₃	8	11	

- The maximum weight the knapsack can hold is 20.
- The best set of items from $\{I_0, I_1, I_2\}$ is $\{I_0, I_1, I_2\}$
- BUT the best set of items from $\{I_0, I_1, I_2, I_3\}$ is $\{I_0, I_2, I_3\}$.
 - In this example, note that this optimal solution, $\{I_0, I_2, I_3\}$, does NOT build upon the previous optimal solution, $\{I_0, I_1, I_2\}$.
 - (Instead it build's upon the solution, $\{I_0, I_2\}$, which is really the optimal subset of $\{I_0, I_1, I_2\}$ with weight I 2 or less.)

- So now we must re-work the way we build upon previous sub-problems...
 - Let B[k, w] represent the maximum total value of a subset S_k with weight w.
 - Our goal is to find B[n,W], where n is the total number of items and
 W is the maximal weight the knapsack can carry.
- So our recursive formula for subproblems:

```
B[k, w] = B[k - 1, w], \underline{if w_k > w}
= max { B[k - 1, w], B[k - 1, w - w_k] + v_k}, <u>otherwise</u>
```

- In English, this means that the best subset of S_k that has total weight w is:
 - I) The best subset of S_{k-1} that has total weight w, or
 - 2) The best subset of S_{k-1} that has total weight w-w_k plus the item k

Knapsack 0-1 Problem – Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

• The best subset of S_k that has the total weight w, either contains item k or not.

- First case: $w_k > w$
 - Item k can't be part of the solution! If it was the total weight would be > w, which is unacceptable.
- Second case: $w_k \le w$
 - Then the item k <u>can</u> be in the solution, and we choose the case with greater value.

Knapsack 0-1 Algorithm

```
for w = 0 to W { // Initialize 1<sup>st</sup> row to 0's
  B[0,w] = 0
for i = 1 to n \{ // Initialize 1<sup>st</sup> column to 0's
 B[i,0] = 0
for i = 1 to n \{
  for w = 0 to W {
      if w_i \le w  { //item i can be in the solution
              if v_i + B[i-1, w-w_i] > B[i-1, w]
                      B[i,w] = v_i + B[i-1,w-w_i]
              else
                      B[i,w] = B[i-1,w]
       }
      else B[i,w] = B[i-1,w] // w_i > w
```

- Let's run our algorithm on the following data:
 - n = 4 (# of elements)
 - W = 5 (max weight)
 - Elements (weight, value):

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

// Initialize the base cases for
$$w = 0$$
 to W
$$B[0,w] = 0$$

for
$$i = 1$$
 to n

$$B[i,0] = 0$$

Items:

1:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	ø	0	0	0	0
1	0	Ŏ				
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$w = 1$$

$$w-w_i = -1$$

$$\begin{split} &\text{if } w_i <= w \quad /\!/ \text{item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w] \\ &B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &B[i,w] = B[i\text{-}1,w] \\ &\text{else } \textbf{B[i,w]} = \textbf{B[i\text{-}1,w]} \ /\!/ \ w_i > w \end{split}$$

ŀ	tρ	m	JC.	,
	C		13.	

I:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	→ 3			
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 2$
 $\mathbf{w} - \mathbf{w}_i = 0$

$$\begin{split} &\text{if } w_i <= w \quad \text{//item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1\text{,w-}w_i] > B[i\text{-}1\text{,w}] \\ &B[i\text{,w}] = v_i + B[i\text{-}1\text{,w-}w_i] \\ &\text{else} \\ &B[i\text{,w}] = B[i\text{-}1\text{,w}] \\ &\text{else } B[i\text{,w}] = B[i\text{-}1\text{,w}] \\ \end{split}$$

		tems:	
--	--	-------	--

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0 _	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 3$
 $\mathbf{w} - \mathbf{w}_i = 3$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

14	en	nc	•
1	<u>.CI</u>	<u>ns</u>	•

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0_	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 2$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

ŀ	tρ	m	JC.	,
	C		13.	

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0_	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $w = 5$
 $w-w_i = 3$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

ŀ	+	e	r	Y	`	c	•	
ı	L	C	ı	ı	ı	<u> </u>	•	

I:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	10	3	3	3	3
2	0	0				
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 1$
 $w-w_i = -2$

$$\begin{split} &\text{if } w_i <= w \quad /\!/ \text{item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w] \\ &B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &B[i,w] = B[i\text{-}1,w] \\ &\text{else } \textbf{B[i,w]} = \textbf{B[i-1,w]} \text{ } /\!/ \text{ } w_i > w \end{split}$$

ŀ	+	e	r	Y	`	c	•	
ı	L	C	ı	ı	ı	<u> </u>	•	

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3			
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 2$
 $w-w_i = -1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

Items:

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 3$$

$$w-w_i = 0$$

ŀ	+	e	r	Y	`	c	•	
ı	L	C	ı	ı	ı	<u> </u>	•	

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$i = 2$$

 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

ŀ	+	e	r	Y	١.	c	•	
	U	C	ı	ı	ı	3	•	

I:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3_	3	3	3
2	0	0	3	4	4	▶ 7
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 5$$

$$w-w_i = 2$$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

<u>ltems:</u>

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	, 0	, 3	4	4	7
3	0	1 0	V 3	† 4		
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $w = 1..3$
 $w-w_i = -3..-1$

$$\begin{split} &\text{if } w_i <= w \quad /\!/ \text{item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w] \\ &B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &B[i,w] = B[i\text{-}1,w] \\ &\text{else } B[i,w] = B[i\text{-}1,w] \ /\!/ \ w_i > w \end{split}$$

Iten	ns:

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 _	0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

$$i = 3$$

$$v_i = 5$$

$$w_i = 4$$

$$\mathbf{w} = 4$$

$$\mathbf{w} - \mathbf{w}_i = 0$$

te	m	s:	

1:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	▼ 7
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 5$
 $w-w_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items:

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	13	, 4	5	7
4	0	• 0	V 3	* 4	V 5	

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = 1..4$
 $w-w_i = -4..-1$

$$\begin{split} &\text{if } w_i <= w \quad \text{//item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w] \\ &B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &B[i,w] = B[i\text{-}1,w] \\ &\text{else } B[i,w] = B[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Items:

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	† 7

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $w = 5$
 $w - w_i = 0$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

<u>Items:</u>

1:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

We're DONE!!

The max possible value that can be carried in this knapsack is \$7

Knapsack 0-1 Algorithm

- This algorithm only finds the max possible value that can be carried in the knapsack
 - The value in B[n,W]

 To know the *items* that make this maximum value, we need to trace back through the table.

```
    Let i = n and k = W
    if B[i, k] ≠ B[i-1, k] then
    mark the i<sup>th</sup> item as in the knapsack
    i = i-1, k = k-w<sub>i</sub>
    else
    i = i-1 // Assume the i<sup>th</sup> item is not in the knapsack
    // Could it be in the optimally packed knapsack?
```

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	4 7
4	0	0	3	4	5	7

<u>Items:</u> <u>Knapsack:</u>

I:(2,3)

2: (3,4)

3: (4,5)

$$i = 4$$
 $k = 5$
 $v_i = 6$
 $w_i = 5$
 $B[i,k] = 7$
 $B[i-1,k] = 7$

$$i=n \ , \ k=W$$
 while $i, \ k>0$
$$if \ B[i, \ k] \neq B[i-1, \ k] \ then$$

$$mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$$

$$i=i-1, \ k=k-w_i$$
 else
$$i=i-1$$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	↑ 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u> Knapsack:

$$i = 3$$

 $k = 5$
 $v_i = 5$
 $w_i = 4$
 $B[i,k] = 7$
 $B[i-1,k] = 7$

$$i=n\;,\;k=W$$
 while $i,\;k>0$
$$if\;B[i,\;k]\neq B[i\text{-}1,\;k]\;\text{then}$$

$$mark\;the\;i^{th}\;item\;as\;in\;the\;knapsack$$

$$i=i\text{-}1,\;k=k\text{-}w_i$$
 else
$$i=i\text{-}1$$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	- (7)
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i = n, k = W

while i, k > 0

else

Knapsack: <u>ltems:</u> Item 2 1:(2,3)

$$i = 2$$

 $k = 5$
 $v_i = 4$
 $w_i = 3$
B[i,k] = 7
B[i-1,k] = 3
 $k - w_i = 2$

2: (3,4)

3: (4,5)

$$k > 0$$

if $B[i, k] \neq B[i-1, k]$ then
 $mark\ the\ i^{th}\ item\ as\ in\ the\ knapsack$
 $i = i-1, k = k-w_i$
else
 $i = i-1$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i = n, k = W

Items: Knapsack: I: (2,3) Item 2 2: (3,4) Item I

$$i = 1$$
 $k = 2$
 $v_i = 3$
 $w_i = 2$
 $B[i,k] = 3$
 $B[i-1,k] = 0$
 $k - w_i = 0$

while i,
$$k > 0$$

if $B[i, k] \neq B[i-1, k]$ then
 $mark\ the\ i^{th}\ item\ as\ in\ the\ knapsack$
 $i = i-1, k = k-w_i$
else
 $i = i-1$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>ltems:</u>	Knapsack:
I:(2,3)	Item 2
2: (3.4)	ltore I

i = 1
k = 2
$v_i = 3$
$w_i = 2$
B[i,k] = 3
B[i-1,k] = 0
$k - w_i = 0$

k = 0, so we're DONE!

The optimal knapsack should contain: *Item 1 and Item 2*

Knapsack 0-1 Problem – Run Time

$$for w = 0 to W
B[0,w] = 0$$

$$O(W)$$

for
$$i = 1$$
 to n

$$B[i,0] = 0$$

$$O(n)$$

for
$$i = 1$$
 to n
for $w = 0$ to W

The rest of the code >

What is the running time of this algorithm? O(n*W)

Remember that the brute-force algorithm takes: $O(2^n)$

Knapsack Problem

- I) Fill out the dynamic programming table for the knapsack problem to the right.
- 2) Trace back through the table to find the items in the knapsack.

References

Slides adapted from Arup Guha's Computer
 Science II Lecture notes:

http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures/

- Additional material from the textbook:
 - Data Structures and Algorithm Analysis in Java (Second Edition) by Mark Allen Weiss
- Additional images:

www.wikipedia.com xkcd.com