# Public Key Cryptography

Unit II

# Number Theory

#### Introduction

- Number Theory is branch of mathematics devoted to the study of the properties of natural numbers and the integers.
  - Sometimes called "higher arithmetic," it is among the oldest and most natural
    of mathematical pursuits.
- Mathematical interaction and number types are studied in number theory.
  - Types of numbers: odds, evens, primes, squares, integers
- Formal Mathematical proofs are used to describe or prove relationships among number types.

#### Introduction...

- Euclid was a number theorist who studied prime numbers.
  - He answered the question that "how many prime numbers are there?"
  - He proves that there are infinite prime numbers and used formal mathematics to prove it.
    - He used proof by contradiction for this purpose where he first assumed that there are finite prime numbers and then proved it wrong.
- Number theory is all about asking questions about numbers.

#### Introduction...

Number theory has its roots in the study of the properties of the natural numbers

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

and various "extensions" thereof, beginning with the integers

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

and rationals.

$$\mathbb{Q} = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{Z}, b \neq 0 \right\}$$

This leads directly to distinct properties...

- Divisibility
- Congruences
- Cryptography
- Elliptic curve cryptography

### Divisibility

- Euclidean algorithm and greatest common divisors.
- Primes and the Fundamental Theorem of Algebra
- Results and conjectures concerning primes:
  - Euclid's theorem
  - The Riemann zeta function;
  - Arithmetic progressions

### Congruences

- Modular (clock) arithmetic:  $a^{(p-1)} \equiv 1 \pmod{p}$  and its generalizations.
- Chinese remainder theorem
- A first view of primality testing and factorization.
- Groups, rings and fields (especially finite abelian groups and finite fields).
- Primitive roots modulo a prime
- Quadratic reciprocity

### Cryptography

- Simple cryptosystems and symmetric ciphers
- Public key cryptography
  - Answer the question "How can two parties communicate securely over an insecure channel without first privately exchanging some kind of 'key' to each others' messages?" They need a trapdoor function f that can be used to encode information easily but hard to invert without knowing "extra information".
- Diffie-Hellman key exchange
- RSA cryptosystem

### Elliptic Curve Cryptography

- The security of using elliptic curves for cryptography rests on the difficulty of solving an analogue of the discrete log problem.
- We can also use the group law on an elliptic curve to factor large numbers (Lenstra's algorithm).
- A deeper, more flexible sort of cryptosystem can be obtained from the "Weil pairing" on m-torsion points of an elliptic curve.

### Euclidean Algorithm for GCD

Used to determine GCD of two positive integers

## Modular Arithmetic

#### Introduction

- Modulo operations
  - $7 \mod 4 = 3$
  - $-11 \mod 7 = 3$
- Negative Modulus can be calculated using the formula
  - $-x \mod y = y (x \mod y)$ 
    - $if |x| \mod y \neq 0$ , it works
    - $if |x| \mod y = 0$ , it fails

### Congruent modulo

- Two integers a and b are said to be congruent Modulo n if
  - $(a \bmod n) = (b \bmod a)$
  - This is written as,  $a \equiv (b \mod n)$  or  $b \equiv (a \mod n)$
  - E.g.  $73 \equiv 4 \pmod{23}$  means ...  $73 \mod 23 = 4 \mod 23$
- Properties of congruence
  - $a \equiv b \pmod{n}$  if  $n \mid (a b)$
  - $a \equiv b \pmod{n}$  implies  $b \equiv a \pmod{n}$
  - if  $a \equiv b \pmod{n}$  and  $b \equiv c \pmod{n}$ 
    - then,  $a \equiv c \pmod{n}$

### Modular Arithmetic properties

```
• (a + b) mod n = [(a mod n) + (b mod n)] mod n
• (a-b)mod n = [(a mod n) - (b mod n)] mod n
• (a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n
   • E.g. let a = 11, b = 15, n = 8
                     \therefore (a \times b) \mod n = (11 \times 15) \mod n
                     165 \mod 8 = 5
   • [(a \bmod n) \times (b \bmod n)] \bmod n = [(11 \bmod 8) \times (15 \bmod 8)] \bmod 8
                               = (3 \times 7) mod 8
                               = 21 \mod 8
                               = 5
```

### Modular Arithmetic properties

- if  $x \equiv y \mod n$ ,  $a \equiv b \mod n$  then,  $(x + a) \equiv (y + b) \mod n$ 
  - E.g. if  $17 \equiv 4 \mod 13$  ,  $42 \equiv 3 \mod 13$
  - then,  $59 \equiv 7 \mod 13$  is true
- if  $x \equiv y \mod n$  and  $a \equiv b \mod n$  then,  $(x a) \equiv (y b) \mod n$ 
  - if  $42 \equiv 3 \pmod{13}$ ,  $14 \equiv 1 \pmod{13}$
  - then,  $28 \equiv 2 \pmod{13}$  is true

## Euler's Totient Function

#### Introduction

- It is represented using phi as  $\phi(n)$  and may also be called Euler's phi function.
- Euler's totient function is defined as the no. of +ve integers less than n that are coprime (having GDC 1) to n
  - $n \ge 1$ 
    - $\phi(5) = \{1,2,3,4\}$
    - $\phi(6) = \{1,5\}$  no. of elements in these sets is totient function.
  - Two integers a , b are said to be relatively prime, mutually prime or coprime if the only if +ve integer / factor that divides both of them is 1
    - Now, when  $n \to prime$   $\phi(n) = n-1$ 
      - E.g.  $\phi(5) = 4$ ,  $\phi(23) = 23 1 = 22$
  - Also,  $\phi(a * b) = \phi(a) * \phi(b)$  [a & b should be coprime]
    - E.g.  $\phi(35) = \phi(7)^* \phi(5) = 6 * 4 = 24$

### **Totient Function Chart**

| n  | $\phi(n)$ | nos.of coprime to n |
|----|-----------|---------------------|
| 1  | 1         | 1                   |
| 2  | 1         | 1                   |
| 3  | 2         | 1, 2                |
| 4  | 2         | 1, 3                |
| 5  | 4         | 1, 2, 3, 4          |
| 6  | 2         | 1, 5                |
| 7  | 6         | 1, 2, 3, 4, 5, 6    |
| 8  | 4         | 1, 3, 5, 7          |
| 9  | 6         | 1, 2, 4, 5, 7, 8    |
| 10 | 4         | 1, 3, 7, 9          |

## Euler's Theorem

Fermat-Euler Theorem or Euler's Totient Theorem

#### Introduction

- Euler's theorem states that if x and n are coprime positive integers, then  $x^{\phi(n)} \equiv 1 \mod n$ 
  - where  $\phi(n) \rightarrow Euler's$  totient function
- It is a generalized version of Fermat's Theorem
  - E.g. let x = 11, n = 10 both are coprime
  - : we can represent them as

$$11^{\phi(10)} \equiv 1 \mod 10$$
  
 $11^4 \equiv 1 \mod 10$   
 $14641 \equiv 1 \mod 10$ 

- Note,  $x^{\phi(n)a} \equiv 1 \bmod n$ 
  - $11^{4*2} = 1 \mod 10$

### Numerical Example

- Solve by Euler's Theorem
  - 4<sup>99</sup>mod 35

```
x = 4, n = 35
By Euler's theorem,
4^{\phi(35)} = 1 \mod 35
4^{24} \equiv 1 \mod 35 \dots (1)
4^{99} \rightarrow 4^{24(4)}.4^3
\therefore 4^{99} \mod 35 = 4^{24*4+3} \mod 35
= (4^{24})^4 \times 4^3 \mod 35
= (4^{24})^4 \mod 35 \times 4^3 \mod 35
Type equation here.
(a \times b) \mod n \equiv (a \mod n)(b \mod n)
= 1 \times 4^3 \mod 35
= 64 \mod 35 = 29
4^{99} \mod 35 = 29
```

## Fermat's Theorem

Fermat's Little Theorem

#### Introduction

- It is special case of Euler's theorem
  - If n is prime and 'x' is a + ve integer not divisible by n then  $x^{n-1} \equiv 1 \mod n$ ,  $\phi(n) = n-1$   $n \rightarrow prime no$ . x is not divisible by n
  - e.g.x = 3, n = 5  $3^{5-1} = 3^4 = 81$  $3^{5-1} = 3^4 = 81$

#### Euler's Theorem

- $x^{\phi(n)} \equiv 1 \bmod n$
- $x^{n-1} \equiv 1 \mod n \dots$  Fermat's Theorem
- Another form of Fermat's Theorem
  - $x^n \equiv x \mod n$

### Numerical solved by Fermat's Theorem

•  $2^{16} mod 17$ 

```
By Fermat's Theorem
x^{n-1} \equiv 1 \mod n
2^{17-1} \equiv 1 \mod 17
2^{16} \equiv 1 \mod 17
2^{16} \equiv 1 \mod 17
2^{16} \equiv 1 \mod 17 = 1
```

# RSA Algorithm

#### Introduction

- Rivest-Shamir-Adleman developed in 1978
- It is an asymmetric cryptographic algorithm (2 keys) i.e. public and private key concepts is used here.
- The acronym RSA is made from the initial letters of the surnames of Ron Rivest, Adi Shamir & Leonard Adleman.
- Public key: known to all users in network
- Private Key: Kept secret, not sharable to all

#### Introduction...

- If public key of user A is used for encryption, we have to use the private key of same user for decryption.
- RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and n-1 for some value n.

### Key Generation

- ullet Select 2 large prime numbers 'p' and 'q'
- Calculate n = p \* q
- Calculate  $\phi(n) = (p-1) * (q-1) \dots \dots Euler's Totient F^n$
- Choose value of e  $1 < e < \phi(n)$  and  $\gcd(\phi(n), e) = 1$
- Calculate

$$d \equiv e^{-1} mod \ \phi(n)$$
  
i.e.  $ed \equiv 1 \ mod \ \phi(n)$ 

- Public key : {*e*, *n*}
- Private Key:  $\{d, n\}$

### Encryption & Decryption

- Plaintext = M < n, C = Ciphertext
- Encryption

$$C = M^e mod n$$

Decryption

$$M = C^d \mod n$$

- Note
  - (e, n) is public key used in encryption
  - (d, n) is private key used for decryption

## Chinese Remainder Theorem

#### Introduction

• Chinese remainder theorem states that there always exists an "x" that satisfies the given congruence.

### Examples

- $e.g \ 1: x \equiv 1 \ mod \ 5, x \equiv 3 \ mod \ 7;$ 
  - here 5 and 7 are coprime we have to find this x = 31

- $e.g.x \equiv 2 \mod 3, x \equiv 3 \mod 4, x \equiv 1 \mod 5$ 
  - gcd(3,4) = gcd(4,5) = gcd(3,5) = 1hence they coprime and then only x exists here, x = 11

#### Question

- If we have N books and if we divide it in 5 students remainder=3 and if we divide it in 4 students books left = 2, so find the no. of books?
  - As per Chinese remainder theorem  $x \equiv a_1 \mod m_1$  $x \equiv a_2 \mod m_2$  $x \equiv a_3 \mod m_3$ (i)  $gcd(m_1, m_2) = gcd(m_2, m_3) = gcd(m_3, m_1) = 1$  i.e all are coprime  $(ii)x = (M_1X_1a_1 + M_2X_2a_2 + M_3X_3a_3 + \dots + M_nX_na_n) \mod M$  $M = m_1 * m_2 * m_3 ... ... m_n$  $M_i = \frac{M}{m_i}$  $M_1 = m_2 m_3$ ;  $M_2 = m_1 m_3$ ;  $M_3 = m_1 m_2$

#### Continued...

• To calculate  $X_i$ 

$$M_i X_i \equiv 1 \mod m_i$$
  
  $e. g. M_1 X_1 \equiv 1 \mod m_1$ 

# Diffie-Hellman Key exchange Algorithm

#### Introduction

- It is not an encryption algorithm
- It is used to exchange the secret keys between 2 users
- We will use asymmetric encryption to exchange the secret key b/w users
- Why to use algorithm
  - Because when we are sending a key to receiver, it can be attacked in between

### Algorithm

- Consider a prime number 'q'
- Select ' $\alpha$ ' such that it must be the primitive root of 'q' and  $\alpha < q$  'a' is a primitive root of q if a mod q a  $a^2 mod q$  a  $a^3 mod q$  ... ... ... ...  $a^{q-1} mod q$  gives results  $\{1,2,3,\ldots,q-1\}$  i.e values should not be repeated & we should have all values in the set from 1 to q-1

### Algorithm continued...

Note:  $X \rightarrow private\ key\ of\ user;\ Y \rightarrow public\ key\ of\ user$ 

- Assume  $X_A$  (private key) and  $X_A < q$  of A  $Calculate \ Y_A = \alpha^{X_A} mod \ q \rightarrow public \ key \ of \ A$
- Assume  $X_B$  (private key of B) and  $X_B < q$   $Calculate\ Y_B = \alpha^{X_B} mod\ q \rightarrow public\ key\ of\ B$
- Now to calculate the secret key both the sender & receiver will use public keys

$$K_1 = (Y_B)^{X_B} mod q$$
  $K_2 = (Y_A)^{X_B} mod q$ 

•  $K_1 = K_2$ ; then we say exchange is successful.

# Elliptic Curve Cryptography

#### Introduction

- It is asymmetric public key cryptosystem.
- It provides equal security with smaller key size (as compared to RSA) as compared to non ECC algos. i.e. small key size and high security
- It makes us of Elliptic curves.
- Elliptic curves are defined by some mathematical functions cubic form e.g.  $y^2 = x^3 + ax + b \rightarrow equation of degree 3$



### Trapdoor Function

 It is a function that is easy to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special information, called the trapdoor.



### Algorithm

- Let  $E_p(a,b)$  be the elliptic curve Consider the equation,
  - Q = KP; where Q, P are points on curve & K < n
- If K and  $P \rightarrow given$ , it should be easy to find Q but if we know Q and P, it should be extremely difficult to find K. This is called the discrete logarithm problem for elliptic curves. And it is a one way function i.e. trapdoor function.

### ECC - Algorithm

#### ECC – Key Exchange

- Global Public Elements
  - $E_q(a,b)$ : elliptic curve with parameters a,b and q (prime no. or an integer of the form  $2^m$ )
  - G: Point on the elliptic curve whose order is large value of n
- User A key generation
  - Select private key  $n_A$ ,  $n_A < n$
  - calculate public key  $P_A$ ,  $P_A = n_A \times G$
- User B key generation
  - Select private key  $n_B$ ,  $n_B < n$
  - calculate public key  $P_B$ ,  $P_B = n_B \times G$

### ECC – Algorithm continues...

- Calculation of secret key by user A
  - $K = n_A \times P_B$
- Calculation of secret key by user B
  - $K = n_B \times P_A$

### ECC Encryption

- Let the message be M
- First encode this message M into a point on elliptic curve.
- Let this point be  $P_m \to This\ point\ is\ encrypted$  for encryption chose a random positive integer k
- The Cipher point will be  $C_m = \{kG, P_m + kP_B\}$ , for encryption public key of B is used this point will be sent to the receiver

### ECC - Decryption

- For decryption, multiply 1<sup>st</sup> point in the pair with receiver's secret key i.e.  $kG \times n_B$ , for decryption private key of B used
- Then subtract it from 2<sup>nd</sup> point in the pair i.e

$$P_m + kP_B - (KG * n_B)$$
  
but we know  $P_B = n_B \times G$   
So,  $= P_m + kP_B - kP_B = P_m$  (original point)

So, Receiver gets the same point.