

XN297LBW 使用手册

XN297L 系列芯片是工作在 2.400~2.483GHz 世界通用 ISM 频段的单片无线收发芯片。该芯片集成射频收发机、频率发生器、晶体振荡器、调制解调器等功能模块,并且支持一对多组网和带 ACK 的通信模式。发射输出功率、工作频道以及通信数据率均可配置。芯片已将多颗外围贴片阻容感器件集成到芯片内部。

XN297LBW 追求简单实用方便的设计理念, 芯片所需引脚、外围器件和占用 PCB 面积较少。

特性

三线 SPI 接口通信	SPI 接口速率最高支持4Mbps
支持最大数据长度为32字节(两级FIFO)	SOP8封装
或者 64字节(单级FIFO)	
1M / 2Mbps模式,需要晶振精度 ±40ppm	工作电压支持2.2~3.3V
250kbps模式,需要晶振精度 ±20ppm	工作温度支持-40~+85℃

目录

1. 命名规则	3
1.1 XN297L 命 名 规 则	3
1.2 XN297L 系列产品选择	3
2. 引脚定义	3
3. 封装尺寸	4
4. SPI 读写方式	5
5. 参考原理图和版图	6
6. 方案调试注意点	6

版本	修订时间	更新内容	相关文档
V1.2	2015. 11	增加芯片命名规则说明	《10_SampleCode_XN297LBW》

1. 命名規则

1.1 XN297L 命名規则

图1 XN297L系列芯片命名规则

1.2 XN297L 系列产品选择

表1 XN297L系列产品选择

产品型号	芯片版本	封装形式
XN297LBW	В	W

2. 引脚定义

图2 XN297LBW引脚功能图

表 引脚功能说明

引出端	符号	功能	引出端	符号	功能
序号			序号		
1	CSN	SPI 片选信号	5	XC1	晶振输入
2	SCK	SPI 时钟信号	6	XC2	晶振输出
3	DATA	SPI 数据输入输出信号	7	VSS	地 (GND)
4	VDD	电源输入	8	ANT	射频信号输入输出

3. 封装尺寸

(UNITS OF MEASURE=MILLIMETER)

	SYMBOL	MIN	NOM	MAX
	A	1.35	1.55	1.75
	A1	0.10	0.15	0.25
	A2	1.25	1.40	1.65
	A3	0.50	0.60	0.70
	ь	0.38	-	0.51
	b1	0.37	0.42	0.47
<u>A</u>	С	0.17	-	0.25
Δ	c1	0.17	0.20	0.23
	D	4.80	4.90	5.00
	E	5.80	6.00	6.20
	E1	3.80	3.90	4.00
	e		1.27BSC	
	L	0.45	0.60	0.80
	L1		1.04REF	
	L2		0.25BSC	
	R	0.07	_	_
	R1	0.07	_	-
	h	0.30	0.40	0.50
	θ	0.	_	8.
	θ1	15*	17*	19*
	θ2	11*	13*	15*
	03	15*	17*	19"
	θ4	11"	13*	15*

图 XN297LBW封装尺寸

4. SPI 读写方式

- 1)如有读的命令操作(包括 R_REGISTER、R_RX_PAYLOAD、R_RX_PL_WID 三条命令), DATA 引脚先为输入状态,在 SCK 信号的第八个时钟下降沿自动切换为输出状态,并且在后续时钟上升沿输出信号;要求 MCU 的对应 DATA 引脚的 GPIO,在 SCK 信号的第八个时钟上升沿的保持时间后,从输出状态转为输入状态。
- 2)需要 CE_SEL 设为 1, 启动命令方式控制; CE_L_sel 设为 1, 将 CE 的 GPIO 弱下拉电阻 使能;使用 CE_FSPI_ON/CE_FSPI_OFF 命令方式控制 CE 状态。
- 3)中断状态靠查询 STATUS 寄存器方式来获取。
- 4)在发送过程中,采用先在 STB1 或 STB3 状态下修改必要的寄存器,并写入 PAYLOAD;CE high 30us后 CE low,使得进入发射模式,等待发送完成后(约 1ms)再进行 SPI 读写操作。如在发送过程中,进行 SPI 读写操作会引起电源纹波,影响发射信号的质量。

图 三线SPI读写操作

5. 参考原理图和版图

图 XN297LBW原理图

No	封装形式	器件值
C9	0402	1uF
Y1	2*6	16MHz
C6	0402	20pF
C7	0402	20pF
R1	0402	510R

注1:XN297LBW 使用中,需要串联510ohm 电阻于XC2处,降低发射功率输出对于晶振的波形影响。

注 2:作为发射端配单极导线天线,添加 Π 型匹配网络,可以帮助抑制谐波,在 8dBm 发射功率档位,达到 FCC/RTTE 要求。

图 XN297LBW的Ⅱ型射频匹配网络

6. 方案调试注意点

- 1)进行 250Kbps 通信时,需要调整软件使芯片处于单载波发射模式,调整晶振旁的 C6和 C7 电容,使得载波的频率在指定频率的±50kHz以内。
- 2)对于250Kbps应用,晶振需要选择精度20ppm以内的,建议选择10ppm精度的。
- 3)进入发射模式,等待发送完成后(约1ms)再进行SPI读写操作。

- 4) XC2端需要串联510R左右电阻,保证晶振的正常工作。
- 5) 芯片初始化配置,

1Mbps / 2Mbps通信模式配置参考《03_XN297L软件设计和调试参考》 250Kbps通信模式配置

```
unsigned char BB_cal_data[] = \{0x0a,0x6d,0x67,0x9c,0x46\};
unsigned char RF_cal_data[] = \{0xf6,0x33,0x5d\};
unsigned char RF_cal2_data[] = \{0xd5,0x21,0xeb,0x2c,0x5a,0x40\};
unsigned char Dem_cal_data[] = \{0x1e\};
unsigned char Dem_cal2_data[] = \{0x0b,0xdf,0x02\};
SPI_Write(W_REGISTER + RF_SETUP, 0xFF)
发射功率按照方案需要调整。
```