Fonctions Usuelles Fonctions Hyperboliques MPSI 2

1 Cosinus hyperbolique et Sinus hyperbolique

Definition 1.0.1

On appelle cosinus et sinus hyperboliques les parties paires et impaires de l'exponentielle:

$$\forall x \in \mathbb{R}, ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

1.1 Parties paires et impaires d'une fonction

Propriete 1.1.1

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application definie sur \mathbb{R} et a valeurs reelles. Alors il existe un unique couple d'applications definies sur \mathbb{R} et a valeurs dans \mathbb{R} , (g,h), telles que :

$$\begin{cases} \forall x \in \mathbb{R}, f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

L'application g s'appelle la partie paire de f et h la partie impaire de f.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application fixee.

① Supposons qu'il existe deux applications definies sur $\mathbb R$ a valeurs dans $\mathbb R$ telles que:

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Alors pour x reel,

$$f(x) = g(x) + h(x)$$
$$f(-x) = g(x) - h(x)$$

Ainsi, q(x) et h(x) verifient :

$$\begin{cases} f(x) = g(x) + h(x) \\ f(-x) = g(x) - h(x) \end{cases}$$

Donc:
$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et
$$h(x) = \frac{f(x) - f(-x)}{2}$$

Conclusion 1:

Si g et h existent, alors :

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
 et $h: \mathbb{R} \longrightarrow \mathbb{R}$
$$x \longmapsto \frac{f(x) + f(-x)}{2} \qquad x \longmapsto \frac{f(x) - f(-x)}{2}$$

Conclusion 2:

En particulier, si g et h existent, alors ils sont uniques.

② On considere g et h les deux applications definies sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$

Montrer que g et h verifient :

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Pour x reel :

•
$$g(x) + h(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

= $\frac{1}{2} (f(x) + f(x) + f(-x) - f(-x))$
= $f(x)$

$$= f(x)$$
• $g(-x) = \frac{f(-x) + f(x)}{2} = g(x)$

$$h(-x) = \frac{f(-x) - f(x)}{2} = -h(x)$$

Ceci etant valable pour tout x reel, on conclut que :

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Conclusion Generale:

Il existe un unique couple d'application (g, h) tel que :

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Retour aux fonctions hyperboliques:

$$\forall x \in \mathbb{R}, ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

D'apres la propriete precedente, ch est paire et sh est impaire.

Propriete 1.1.2

- $\forall x \in \mathbb{R}, ch(x) \ge 0$
- ch et sh sont deux applications definies sur \mathbb{R} et : ch' = sh

$$sh' = ch$$

• ch et sh sont deux fonctions de classe \mathscr{C}^{∞} sur \mathbb{R}

Etude de sh:

x	0	$+\infty$
$ch\left(x\right)$	1	+
sh(x)	0	+∞

Etude de ch:

x	0 +	∞
$sh\left(x\right)$	0 +	
$ch\left(x\right)$	1	∞

Propriete 1.1.3

Pour tout x dans \mathbb{R} :

- $ch(x) + sh(x) = e^x$
- $\bullet \ ch(x) sh(x) = e^{-x}$
- $ch^{2}(x) sh^{2}(x) = 1$

2 Tangente hyperbolique

Definition 2.0.1

Definition 2.0.1

La fonction tangente hyperbolique est definie par
$$th = \frac{sh}{ch}$$
.

C'est une application definie sur \mathbb{R} car $ch > 0$ sur \mathbb{R} .

On a, pour tout x reel, $th(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$

$$= \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Etude de th:

x	0	$+\infty$
th'(x)	1	+
$th\left(x\right)$	0	1