Algorithm 2021 Spring HW3

(Chapter 9 and Chapter 15)

1. (25pts) There are two sorted arrays, each containing n numbers. Please give an algorithm to find the median of all 2n elements, and it's running time should be bounded by $O(\lg n)$.

Ans:

```
Two_sorted_arrays_median (A, B, n)
```

- 1. **if** (n == 1)
- 2. return min(A[0], B[0])
- 3. **else if** (n % 2 == 1)
- 4. $median_index \leftarrow n \% 2 + 1$
- 5. **else** $median_index \leftarrow n \% 2$
- 6. compare A[median_index] and B[median_index]
- 7. $a \leftarrow \text{take the lower part of the array with the greater median}$
- 8. $b \leftarrow \text{take the upper part of the array with the lesser median}$
- 9. Two_sorted_arrays_median $(a, b, \left\lfloor \frac{n}{2} \right\rfloor)$

2. (25pts) Determine the cost of an optimal binary search tree for a set of n = 5 keys with the following probabilities:

i	0	1	2	3	4	5
$\mathbf{p_i}$		0.08	0.15	0.05	0.1	0.12
$\mathbf{q_i}$	0.04	0.1	0.08	0.1	0.06	0.12

(A) 2.85

(B) 1.98

(C) 2.12

(D) 1.92

(note: level starts at 1.)

(note2: need to construct the tree)

Ans: A

W	5	4	3	2	1	0
1	0.04	0.1	0.08	0.1	0.06	0.12
2	0.22	0.33	0.23	0.26	0.3	
3	0.45	0.48	0.39	0.5		
4	0.6	0.64	0.63			
5	0.76	0.88				
6	1					
С	1	2	3	4	5	6
0	0.04	0.1	80.0	0.1	0.06	0.12
1	0.36	0.51	0.41	0.42	0.48	
2	0.89	0.99	0.86	1.04		
3	1.37	1.57	1.52			
4	1.98	2.35				
5	2.85					

Tree

3. (25pts)

```
LCS-Length(X, Y, m, n)
```

```
1 for i \leftarrow 1 to m do
          c[i,0] \leftarrow 0
 з for j \leftarrow 1 to n do
          c[0,j] \leftarrow 0
 4
 5 for i \leftarrow 1 to m do
          for j \leftarrow 1 to n do
 6
               if x_i = y_i then
 7
                    \begin{array}{l} c[i,j] \leftarrow c[i-1,j-1] + 1 \\ b[i,j] \leftarrow " \nwarrow \end{array}
 8
 9
               else if c[i-1,j] \ge c[i,j-1] then
10
                    c[i,j] \leftarrow c[i-1,j]
11
                    b[i,j] \leftarrow "\uparrow"
12
               else
13
                    c[i,j] \leftarrow c[i,j-1]
14
                    b[i,j] \leftarrow " \leftarrow "
15
16 return c and b
```

Please find the longest common subsequence of string "ACBDSABBE" and "CADDSBEAB" by using the above algorithm. You need to draw the table to show your process.

Δ	n	C	
$\overline{}$			

		0	1	2	3	4	5	6	7	8	9
		j	С	A	D	D	S	В	Е	A	B
0	i	X 0	X 0	X 0	X 0	X 0	X 0	X 0	X 0	X 0	X 0
1	A	X 0	↑ 0	~ 1	←1	←1	←1	←1	←1	~ 1	←1
2	С	X 0	~ 1	1	1 1						
3	В	X 0	1	1	1	1	1	5 2	← 2	← 2	5 2
4	D	X 0	1	1	5 2	5 2	← 2	↑2	↑2	↑2	↑2
5	S	X 0	1	1	↑2	↑2	5 3	← 3	← 3	← 3	← 3
6	A	X 0	1	₹ 2	↑2	↑2	↑3	↑3	↑3	5 4	← 4
7	В	X 0	1	↑2	↑2	↑2	↑3	5 4	← 4	↑4	√ 5
8	B	X 0	1	1 2	↑2	↑2	↑3	5 4	↑ 4	↑ 4	5 5
9	Е	X 0	1	↑2	↑2	↑2	↑3	↑ 4	√ 5	← 5	↑ 5

We found longest common subsequence "ADSAB" with length 5.

4. (25pts) Matrix-chain

Consider the multiplication of five matrices $A_1A_2A_3A_4A_5$, and the dimensions are as follows:

matrix	A_1	A_2	A ₃	A ₄	A_5
dimension	20×25	25×15	15×10	10×20	20×30

Please find the minimum number of scalar multiplications, optimal parenthesization and fill in the two tables.

Ans:

20750

((A1(A2A3))(A4A5))

Table m:

J	1	2	3	4	5	I
	0	7500	8750	12750	20750	1
		0	3750	8750	16250	2
			0	3000	10500	3
				0	6000	4
					0	5

Table s:

J	2	3	4	5	I
	1	1	3	3	1
		2	3	3	2
			3	3	3
				4	4

```
If i==j then m[i, j] = 0
m[1, 2] = min\{
m[1, 1] + m[2, 2] + p0p1p2 = 0 + 0 + 7500 = 7500
s[1, 2] = 1 because m[1, 1] + m[2, 2] + p0p1p2 = 0 + 0 + 7500 = 7500 is min.
m[2, 3] = min\{
m[2, 2] + m[3, 3] + p1p2p3 = 0 + 0 + 3750 = 3750
}
s[2, 3] = 2 because m[2, 2] + m[3, 3] + p1p2p3 = 0 + 0 + 3750 = 3750 is min.
m[3, 4] = min\{
m[3, 3] + m[4, 4] + p2p3p4 = 0 + 0 + 3000 = 3000
}
s[3, 4] = 3 because m[3, 3] + m[4, 4] + p2p3p4 = 0 + 0 + 3000 = 3000 is min.
m[4, 5] = min\{
m[4, 4] + m[5, 5] + p3p4p5 = 0 + 0 + 6000 = 6000
s[4, 5] = 4 because m[4, 4] + m[5, 5] + p3p4p5 = 0 + 0 + 6000 = 6000 is min.
m[1, 3] = min\{
m[1, 1] + m[2, 3] + p0p1p3 = 0 + 3750 + 5000 = 8750
m[1, 2] + m[3, 3] + p0p2p3 = 7500 + 0 + 3000 = 10500
}
s[1, 3] = 1 because m[1, 1] + m[2, 3] + p0p1p3 = 0 + 3750 + 5000 = 8750 is min.
m[2, 4] = min\{
m[2, 2] + m[3, 4] + p1p2p4 = 0 + 3000 + 7500 = 10500
m[2, 3] + m[4, 4] + p1p3p4 = 3750 + 0 + 5000 = 8750
}
s[2, 4] = 3 because m[2, 3] + m[4, 4] + p1p3p4 = 3750 + 0 + 5000 = 8750 is min.
m[3, 5] = min\{
m[3, 3] + m[4, 5] + p2p3p5 = 0 + 6000 + 4500 = 10500
m[3, 4] + m[5, 5] + p2p4p5 = 3000 + 0 + 9000 = 12000
s[3, 5] = 3 because m[3, 3] + m[4, 5] + p2p3p5 = 0 + 6000 + 4500 = 10500 is min.
m[1, 4] = min\{
m[1, 1] + m[2, 4] + p0p1p4 = 0 + 8750 + 10000 = 18750
m[1, 2] + m[3, 4] + p0p2p4 = 7500 + 3000 + 6000 = 16500
m[1, 3] + m[4, 4] + p0p3p4 = 8750 + 0 + 4000 = 12750
}
```

```
s[1, 4] = 3 because m[1, 3] + m[4, 4] + p0p3p4 = 8750 + 0 + 4000 = 12750 is min.
m[2, 5] = min\{
m[2, 2] + m[3, 5] + p1p2p5 = 0 + 10500 + 11250 = 21750
m[2, 3] + m[4, 5] + p1p3p5 = 3750 + 6000 + 7500 = 17250
m[2, 4] + m[5, 5] + p1p4p5 = 8750 + 0 + 15000 = 23750
}
s[2, 5] = 3 because m[2, 3] + m[4, 5] + p1p3p5 = 3750 + 6000 + 7500 = 17250 is
min.
m[1, 5] = min\{
m[1, 1] + m[2, 5] + p0p1p5 = 0 + 17250 + 15000 = 32250
m[1, 2] + m[3, 5] + p0p2p5 = 7500 + 10500 + 9000 = 27000
m[1, 3] + m[4, 5] + p0p3p5 = 8750 + 6000 + 6000 = 20750
m[1, 4] + m[5, 5] + p0p4p5 = 12750 + 0 + 12000 = 24750
}
s[1, 5] = 3 because m[1, 3] + m[4, 5] + p0p3p5 = 8750 + 6000 + 6000 = 20750 is
min.
```