Mocninová funkcia

Každá funkcia v tvare

$$f: y = x^n$$

kde n je celé číslo, sa nazýva exponenciálna funkcia.

podľa hodnoty exponentu delíme mocninové funkcie na:

$$n > 0 \wedge n = 2k$$

$$D(f) = R \ H(f) \in \langle 0; \infty \rangle$$

rastúca $(0; \infty)$, klesajúca $(-\infty; 0)$

ohraničená zdola 0, zhora neohraničená maximum nemá, minimum v 0, párna, konvexná

nie je prostá

$$n < 0 \land n = 2k$$

$$D(f)=R-\{0\}\ H(f)\in (0;\infty)$$

klesajúca $(0; \infty)$, rastúca $(-\infty; 0)$

ohraničená zdola 0, zhora neohraničená
nemá maximum ani minimum, párna, konvexná
nie je prostá

$$n > 0 \land n = 2k + 1$$

$$D(f) = R$$
 $H(f) = R$

rastúca na celom definičnom obore

zhora aj zdola neohraničená

nemá maximum ani minimum, nepárna, prostá

konkávna $(-\infty; 0)$ konvexná $(0; \infty)$

$$n < 0 \land n = 2k + 1$$

$$D(f) = R - \{0\}$$
 $H(f) = R - \{0\}$

klesajúca na $(-\infty; 0)$ a na $(0; \infty)$

zhora aj zdola neohraničená

nemá maximum ani minimum, nepárna, prostá

konkávna $(-\infty; 0)$ konvexná $(0; \infty)$