

Internet of Things

Senior Design Project Course

Processing - Part 2

Lecturer: Avesta Sasan

University of California Davis

Focus of Today's Lecture: MCU

Image source: http://www.cchc.cl/informacion-a-la-comunidad/industria-de-la-construccion/personaje/

Microcontroller Basic Design (Review)

- All components are connected via an internal bus.
- All components are integrated on one chip.
- Communicate to outside world via IOs.

What is not Inside a MCU? (Review)

- No Cache!
- No MMU (maybe you see this in larger microcontrollers)
- No complicated pipeline (single or simple multicycle pipelines)
- No disk
- No FP ALU
- **...**

A microcontroller is a (stripped-down) processor which is equipped with memory, timers, (parallel) I/O pins and other on-chip peripherals.

Example: Arduino Processor: (Review)

- Uses the Harvard architecture
 - The program code and program data have separate memories
- Single level pipeline to execute the instructions in order
- 32 x 8 bit general purpose registers
- Single clock cycle access time
- Single cycle ALU operation

Simple

Example: IBM Power5 (Review)

- 2 cores, out-of-order execution
- 100-entry instruction window in each core
- 8-wide instruction fetch, issue, execute
- Large, local+global hybrid branch predictor
- 1.5MB, 8-way L2 cache
- Aggressive stream based prefetching

Complex

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

Microcontroller Classification (Review)

Microcontroller vs. Microprocessor (Review)

Microprocessor

- CPU is stand-alone, RAM, ROM, I/O, timer are separate
- designer can decide on the amount of ROM, RAM and I/O ports.
- Expensive
- Versatility
- General-purpose
- High processing power
- High power consumption
- Instruction sets focus on processingintensive operations
- Typically 32/64 bit
- Typically deeply pipelined (5-20 stages)

Microcontroller

- o CPU, RAM, ROM, I/O and timer are all on a single chip
- fixed amount of on-chip ROM, RAM,I/O ports
- For applications in which cost, power and space are critical
- Single (or limited) purpose (controloriented)
- Low processing power
- Low power consumption
- o Bit-level operations
- Instruction sets focus on control and bitlevel operations
- o Typically 8-16 bit
- Typically single-cycle/two-stage pipeline

Example:

- A MPU in a GP architecture, running at 600 MHz has an average CPI (number of Clock needed Per Instruction) of 1.2 and a average power consumption of 400 mW. It costs \$100.
- A processor in a MCU running at 12 MHz with a two cycle datapath has a power consumption of 2.4 mW. It cost \$0.96.
 - What is the associated CPI?
- Calculate their respective MIPS (Millions of Instructions processed Per Second)
 - **MPU:** 600,000,000 $\frac{clk}{s} * \frac{1}{1.2} \frac{lnst}{clk} = 500,000,000 \frac{lnst}{s} = 500MIPS$
 - □ **MCU:** 12,000,000 $\frac{clk}{s} * \frac{1}{2} \frac{Inst}{clk} = 6,000,000 \frac{Inst}{s} = 6MIPS$

Example:

Which one is more efficient in MIPS/mW?

$$\square \quad \mathbf{MCU:} \frac{6MIPS}{2.4mW} = 2.5 \frac{\frac{mitton instructioin}{s}}{\frac{J}{s}} = 2.5 \frac{million instructioin}{j}$$

Which is more efficient in MIPS/\$?

$$\square \quad MCU: \frac{6MIPS}{\$0.48} = 12.5 \frac{milion instructioin}{j.s}$$

Typical General-Purpose Architecture

GPP vs MCU

- Complexity of which processing core (CPU) is higher?
- What is different about the way MCU and GPP communicate to outside?

Which is Used in IoT?

IoT Chain Computation Layers

F. Samie, L. Bauer and J. Henkel, "IoT technologies for embedded computing: A survey," 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, 2016, pp. 1-10.

General Arch. of an IoT Device:

Lets look at some examples!

Arduino Microcontroller

- Inexpensive (\$6 \$50 depending on package!)
- Small size
- Easily Programmable
- Easily connectable
- Open source with big developer community
- Simple to use software
- Easy to augment the functionality
 - Wire directly into the pins on the Arduino board
 - Stack chips called "shields" on top of the base unit.
- https://www.arduino.cc

Arduino Ethernet Shield

- Extends the Microcontroller functionality:
 - Connect your Arduino board to the internet.
- Open source
- Simple to use software
- You can keep stacking the shields!

Raspberry Pi

- It is a computer
- It runs Linux
- More software oriented programming
- Embeds a full Networking System
- It is born in the United Kingdom to promote teaching of basic computer science.

2013

https://www.raspberrypi.org

Model A

2015

Model B

Raspberry Pi vs Arduino

A microcontroller motherboard

run one program at a time, over and over again

begins executing code when turned on and stops when you pull the plug

much easier to connect analog sensors

Software and Networking system

A general-purpose computer

Can run multiple programs

Need 5V supply to remain on, and is shut down via a software process

Built-in Ethernet port

requires software to effectively interface with other devices

Good for Sensors

https://www.arduino.cc

Arduino \$25 ATmega328 http://chipkit.net

ChipKIT \$30 PIC http://www.ti.com/lsds/ti/toolssoftware/launchpads/launchpad s.page

LaunchPad \$4 MSP430

Good for Sensing & Processing

\$30 ARM Cortex M0, M3, M4 Particle \$35 ARM WiFi Internet

Espruino \$30 ARM Javascript

Good for Processing & Networking

Raspberry Pi \$35 900 MHz ARM CPU 250 MHz GPU 1 GB RAM Compute Module

Intel® Galileo \$50 400 MHz Quark x86 256 MB RAM

Intel® Edison \$70 1 GHz Dual Core Atom x86 1 GB RAM WiFi BLE 4 GB Flash

Good for Processing and Network

Beaglebone Black\$451 GHz ARM, GPU512 MB RAM4 GB Flash

\$50 i.MX 6 Solo ARM, GPU ARM M4 512 MB or 1 GB RAM Parallella\$991 GHz Dual Core Zynq ARM16 or 64 Epiphany CPUs

Processing Sensor Data

The number of cycles (i.e. required frequency) to fully process the IoT sensors

F. Samie, L. Bauer and J. Henkel, "IoT technologies for embedded computing: A survey," 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, 2016, pp. 1-10.

Wide Range of MCU Choices

As an example, see how many MCUs are offered by Atmel

The End!

Typical task-specific architecture

Cost of Processing Drops Quickly!

Similar trend happened to sensors!

This allows us to put few sensors and a processor in any and every object!