Appendix 1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and	Figure A-14	<i>P-h</i> diagram for refrigerant-134a 789
	critical-point properties 766	Table A-15	Properties of saturated water 790
Table A-2	Ideal-gas specific heats of various common gases 767	Table A-16	Properties of saturated refrigerant-134a 791
Table A-3	Properties of common liquids, solids, and foods 770	Table A-17	Properties of saturated ammonia 792
Table A-4	Saturated water—Temperature	Table A-18	Properties of saturated propane 793
	table 772	Table A-19	Properties of liquids 794
Table A-5	Saturated water—Pressure table 774	Table A-20	Properties of liquid metals 795
Table A-6	Superheated water 776	Table A-21	Ideal-gas properties of air 796
Table A-7	Compressed liquid water 780	Table A-22	Properties of air at 1 atm pressure 798
Table A-8	Saturated ice—water vapor 781	Table A-23	Properties of gases at 1 atm
Figure A-9	T-s diagram for water 782	14510 /1 20	pressure 799
Figure A-10	Mollier diagram for water 783	Table A-24	Properties of solid metals 801
Table A-11	Saturated refrigerant-134a— Temperature table 784	Table A-25	Properties of solid non-metals 804
Table A 10	•	Table A-26	Emissivities of surfaces 805
Table A-12	Saturated refrigerant-134a— Pressure table 786	Figure A–27	The Moody Chart 807
Table A-13	Superheated refrigerant-134a 787	Figure A–28	Nelson-Obert generalized compressibility chart 808

Back Matter Appendix 1: Property
Tables and Charts (SI
Units)

operty © The McGraw-Hill carts (SI Companies, 2008

766 I Introduction to Thermodynamics and Heat Transfer

TABLE A-1

Molar mass, gas constant, and critical-point properties

moral mass, gas constant, and c		•	Gas	Critical-	point properties	S
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg · K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO ₂	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI ₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCl₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHCl ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C_2H_5OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H ₂	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	$N_2^{-}O$	44.013	0.1889	309.7	7.27	0.0961
Oxygen	O_2	31.999	0.2598	154.8	5.08	0.0780
Propane	C ₃ H ₈	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO ₂	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg \cdot K is equivalent to kPa \cdot m³/kg \cdot K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol \cdot K and M is the molar mass.

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

© The McGraw-Hill Companies, 2008

Appendix 1

767

IARLE 4-	2				
Ideal-gas	specific	heats	of various	common	gases

(a) At 300 K

		Gas constant, R	C_D	$C_{_{V}}$	
Gas	Formula	kJ/kg · K	kĴ/kg ⋅ K	kĴ/kg · K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO ₂	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C_8H_{18}	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	$C_3^-H_8$	0.1885	1.6794	1.4909	1.126
Steam	H_2O	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg \cdot K is equivalent to kJ/kg \cdot °C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

© The McGraw-Hill Companies, 2008

768 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Temperature,	c_p kJ/kg · K	<i>c</i> √ kJ/kg · K	k	c_p kJ/kg · K	$c_{_{ee}}$ kJ/kg \cdot K	k	<i>c_p</i> kJ/kg ⋅ K	$c_{_{ec{V}}}$ kJ/kg \cdot K	k
K		Air		Cart	oon dioxide, C	02	Carbon	monoxide,	CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		Hydrogen,	H_2		Nitrogen, N	l ₂	Ox	ygen, O ₂	
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

© The McGraw-Hill Companies, 2008 771

Appendix 1

769

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(*T* in K, c_p in kJ/kmol · K)

						Temperature	<u>% е</u>	rror
Substance	Formula	а	b	С	d	range, K	Max.	Avg.
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273–1800	0.59	0.34
Oxygen	02	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Air	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Hydrogen	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273-1800	1.01	0.26
Carbon	2							
monoxide	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273-1800	0.89	0.37
Carbon								
dioxide	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Water vapor	H ₂ O	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitric oxide	NÔ	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Nitrous oxide	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273-1500	0.59	0.26
Nitrogen	2							
dioxide	NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Ammonia	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Sulfur	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273-1800	0.99	0.38
Sulfur	2							
dioxide	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24
Sulfur	2							
trioxide	SO ₃	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
Methanol	CH₄Ô	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
Ethanol	C_2H_6O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22
Hydrogen	2 0							
chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Methane	CH₄	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Ethane	$C_2 H_6$	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Propane	C_3H_8	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
<i>n</i> -Butane	C_4H_{10}	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
<i>i</i> -Butane	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Pentane	C ₅ H ₁₂	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
<i>n</i> -Hexane	C ₆ H ₁₄	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Ethylene	C_2H_4	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273-1500	0.73	0.17
	5 0							

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

Introduction to Thermodynamics and Heat Transfer 770

Back Matter

TABLE A-3

Properties of common liquids, solids, and foods

	Poiling	data at 1 atm	Erooz	ring data	1	iquid propert	ioc
		data at 1 atm	FIEEZ			iquiu propert	
	Normal	Latent heat of		Latent heat			Specific
	boiling	vaporization	Freezing	of fusion	Temperature,		heat
Substance	point, °C	<i>h_{fg}</i> , kJ/kg	point, °C	<i>h_{if}</i> , kJ/kg	°C	ho, kg/m ³	c_p , kJ/kg \cdot K
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43
					-20	665	4.52
					0	639	4.60
					25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene	80.2	394	5.5	126	20	879	1.72
Brine (20% sodium							
chloride by mass)	103.9	_	-17.4	_	20	1150	3.11
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Carbon dioxide	-78.4*	230.5 (at 0°C)	-56.6		0	298	0.59
Ethanol	78.2	838.3	-114.2	109	25	783	2.46
Ethyl alcohol	78.6	855	-156	108	20	789	2.84
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.9	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8	_	_	-268.9	146.2	22.8
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Kerosene	204-293	251	-24.9	_	20	820	2.00
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
					-100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
					-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)	12	000.0	07.10	200.7	25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum	_	230–384	210.0	10.7	20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
Торино	12.1	127.0	107.7	00.0	0	529	2.53
					50	449	3.13
Refrigerant-134a	-26.1	217.0	-96.6		-50	1443	1.23
itelligeralit-154a	20.1	217.0	90.0	_	-26.1	1374	1.27
					0	1295	1.34
					25	1293	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
vvatel	100	2231	0.0	JJJ./	25	997	4.22
					25 50	988	4.18 4.18
						988 975	
					75 100		4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

Transfer, Second Edition

Appendix 1

771

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_p \; \mathrm{kJ/kg} \cdot \mathrm{K}$	Substance	Density, $ ho$ kg/m ³	Specific heat, c_p kJ/kg \cdot K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C	·	0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water		,	ic heat, g · K	Latent heat of		Water		Specific kJ/kg		Latent heat of
Fand	content,	Freezing	Above	Below	fusion,	Fand	content,	Freezing	Above	Below	fusion,
Food	% (mass)	point, °C	freezing	freezing	kJ/kg	Food	% (mass)	point, °C	freezing	freezing	kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

200

1554.9

0.001157

0.12721

850.46

1743.7

2594.2

852.26

1939.8

2792.0

2.3305

Back Matter

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

772 Introduction to Thermodynamics and Heat Transfer

TABLE A-4 Saturated water—Temperature table Enthalpy, Specific volume, Internal energy, Entropy, m³/kg kJ/kg kJ/kg kJ/kg · K Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Temp., press., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor, h_{fg} T°C P_{sat} kPa V_f U_f U_{fg} h_f h_g S_f V_g U_g S_g S_{fg} 0.01 0.6117 0.001000 206.00 0.000 2374.9 2374.9 0.001 2500.9 2500.9 0.0000 9.1556 9.1556 0.001000 147.03 21.019 2360.8 2381.8 21.020 2489.1 2510.1 8.9487 9.0249 5 0.8725 0.0763 10 1.2281 0.001000 106.32 42.020 2346.6 2388.7 42.022 2477.2 2519.2 0.1511 8.7488 8.8999 15 1.7057 0.001001 77.885 62.980 2332.5 2395.5 62.982 2465.4 2528.3 0.2245 8.5559 8.7803 0.001002 57.762 2402.3 83.915 2453.5 2537.4 0.2965 8.3696 20 2.3392 83.913 2318.4 8.6661 25 43.340 2304.3 2409.1 104.83 2441.7 2546.5 8.1895 8.5567 3.1698 0.001003 104.83 0.3672 30 4.2469 0.001004 32.879 125.73 2290.2 2415.9 125.74 2429.8 2555.6 0.4368 8.0152 8.4520 35 5.6291 0.001006 25.205 146.63 2276.0 2422.7 146.64 2417.9 2564.6 0.5051 7.8466 8.3517 167.53 167.53 2573.5 40 7.3851 0.001008 19.515 2261.9 2429.4 2406.0 0.5724 7.6832 8.2556 45 9.5953 0.001010 15.251 188.43 2247.7 2436.1 188.44 2394.0 2582.4 0.6386 7.5247 8.1633 209.33 209.34 2591.3 50 12.352 0.001012 12.026 2233.4 2442.7 2382.0 0.7038 7.3710 8.0748 55 15.763 0.001015 9.5639 230.24 2219.1 2449.3 230.26 2369.8 2600.1 0.7680 7.2218 7.9898 19.947 2455.9 2357.7 2608.8 60 0.001017 7.6670 251.16 2204.7 251.18 0.8313 7.0769 7.9082 25.043 0.001020 6.1935 272.09 2190.3 2462.4 272.12 2345.4 2617.5 0.8937 6.9360 7.8296 65 70 31.202 0.001023 5.0396 293.04 2175.8 2468.9 293.07 2333.0 2626.1 0.9551 6.7989 7.7540 38.597 2634.6 75 0.001026 4.1291 313.99 2161.3 2475.3 314.03 2320.6 1.0158 6.6655 7.6812 47.416 3.4053 334.97 2481.6 335.02 2308.0 2643.0 1.0756 6.5355 7.6111 80 0.001029 2146.6 85 57.868 0.001032 2.8261 355.96 2131.9 2487.8 356.02 2295.3 2651.4 1.1346 6.4089 7.5435 90 70.183 0.001036 2.3593 376.97 2117.0 2494.0 377.04 2282.5 2659.6 1.1929 6.2853 7.4782 95 84.609 0.001040 1.9808 398.00 2102.0 2500.1 398.09 2269.6 2667.6 1.2504 6.1647 7.4151 100 101.42 0.001043 1.6720 419.06 2087.0 2506.0 419.17 2256.4 2675.6 1.3072 6.0470 7.3542 120.90 0.001047 1.4186 440.15 2071.8 2511.9 440.28 2243.1 2683.4 1.3634 5.9319 7.2952 105 0.001052 461.27 461.42 2229.7 2691.1 1.4188 5.8193 7.2382 110 143.38 1.2094 2056.4 2517.7 169.18 0.001056 1.0360 482.42 2040.9 2523.3 482.59 2216.0 2698.6 1.4737 5.7092 7.1829 115 120 198.67 0.001060 0.89133 503.60 2025.3 2528.9 503.81 2202.1 2706.0 1.5279 5.6013 7.1292 232.23 0.001065 0.77012 524.83 2009.5 2534.3 525.07 2188.1 2713.1 1.5816 5.4956 7.0771 125 0.001070 0.66808 546.10 1993.4 2539.5 546.38 2173.7 2720.1 1.6346 5.3919 7.0265 130 270.28 135 313.22 0.001075 0.58179 567.41 1977.3 2544.7 567.75 2159.1 2726.9 1.6872 5.2901 6.9773 140 361.53 0.001080 0.50850 588.77 1960.9 2549.6 589.16 2144.3 2733.5 1.7392 5.1901 6.9294 145 415.68 0.001085 0.44600 610.19 1944.2 2554.4 610.64 2129.2 2739.8 1.7908 5.0919 6.8827 150 476.16 0.001091 0.39248 631.66 1927.4 2559.1 632.18 2113.8 2745.9 1.8418 4.9953 6.8371 155 543.49 0.001096 0.34648 653.19 1910.3 2563.5 653.79 2098.0 2751.8 1.8924 4.9002 6.7927 160 618.23 0.001102 0.30680 674.79 1893.0 2567.8 675.47 2082.0 2757.5 1.9426 4.8066 6.7492 696.46 1875.4 2571.9 697.24 2762.8 1.9923 4.7143 165 700.93 0.001108 0.27244 2065.6 6.7067 719.08 170 792.18 0.001114 0.24260 718.20 1857.5 2575.7 2048.8 2767.9 2.0417 4.6233 6.6650 175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 2772.7 2.0906 4.5335 6.6242 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.1392 4.4448 6.5841 1996.2 6.5447 0.001134 783.91 785.19 2781.4 2.1875 4.3572 185 1123.5 0.17390 1802.1 2586.0 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2705 6.5059 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.8 2.2831 4.1847 6.4678

97 6.4302 (Continued)

4.0997

© The McGraw-Hill Companies, 2008

773

Appendix 1

TABLE A-4

Saturated water—Temperature table (Concluded)

Saturati	eu water—	- remperatur	e table (Cor	істиаеа)								
		,	<i>c volume,</i> ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		<i>Enthalµ</i> kJ/kg			Entropy, kJ/kg · K	
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	4.0154 3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

Back Matter

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

774 Introduction to Thermodynamics and Heat Transfer

TABLE A	\ _5											
Saturat	ed water-	—Pressure	table									
			<i>fic volume,</i> m³/kg		Internal e kJ/kg			Enthalpy kJ/kg	′,		<i>Entropy,</i> kJ/kg · K	
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	5 99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

(Continued)

© The McGraw-Hill Companies, 2008

Appendix 1

775

		IF.			
м		-	и.	- In	
121	m		1:5	_	

TABLE A	TABLE A-5													
Saturate	d water-	-Pressure ta	ble (<i>Conclu</i>	ded)										
			<i>volume,</i> ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		Enthalpy kJ/kg	;		Entropy, kJ/kg · K			
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g		
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2773.0	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850		
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35 842.82	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2788.9 2791.0	2.1785 2.2159 2.2508 2.2835 2.3143	4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430		
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2801.9	2.4467 2.5029	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856		
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2802.7 2800.8 2794.2 2784.6 2772.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148		
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939		
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.011487	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2581.0	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791		
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2412.1 2338.4 2172.6	3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.2343 1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070		

© The McGraw-Hill Companies, 2008

776 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-6												
	eated wate	r										
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	<i>P</i> =	0.01 MF	Pa (45.81°	°C)*	<i>P</i> =	0.05 MP	a (81.32°	C)	P =	0.10 MP	a (99.61	°C)
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8 2776.6	
150 200	19.513 21.826	2587.9 2661.4		8.6893 8.9049	3.8897 4.3562	2585.7 2660.0	2780.2 2877.8	7.9413 8.1592	1.9367 2.1724	2582.9 2658.2	2875.5	
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	
700	44.911	3480.8		10.4056	8.9813 9.9047	3480.6	3929.7	9.6626	4.4900	3480.4 3665.0	3929.4	
800 900	49.527 54.143	3856.9	4160.6 4398.3	10.6312 10.8429	10.8280	3665.2 3856.8	4160.4	9.8883 10.1000	4.9519 5.4137	3856.7	4160.2 4398.0	
1000	58.758	4055.3		11.0429	11.7513	4055.2		10.1000	5.8755	4055.0	4642.6	
1100	63.373		4893.8	11.2326	12.6745	4259.9		10.4897	6.3372	4259.8		10.1698
1200	67.989	4470.9		11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P =	0.20 MP	a (120.2)	l°C)	P =	0.30 MPa	(133.52	°C)	P =	0.40 MPa	a (143.61	l°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402		2761.2	7.0792	0.47088		2752.8	
200	1.08049		2870.7	7.5081	0.71643		2865.9	7.3132	0.53434		2860.9	
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520		2964.5	
300 400	1.31623 1.54934	2808.8	3072.1 3277.0	7.8941 8.2236	0.87535 1.03155		3069.6 3275.5	7.7037 8.0347	0.65489 0.77265		3067.1 3273.9	
500	1.78142			8.5153	1.18672		3486.6	8.3271	0.77203		3485.5	
600	2.01302			8.7793	1.34139		3704.0	8.5915	1.00558		3703.3	
700	2.24434	3479.9	3928.8	9.0221		3479.5	3928.2	8.8345	1.12152		3927.6	
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730		4158.9	
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298		4396.9	
1000	2.93755			9.6599	1.95824		4642.0	9.4726	1.46859		4641.7	
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414		4892.9	
1200 1300	3.39938 3.63026	4470.5 4687.1	5150.4 5413.1	10.0304 10.2029	2.26624 2.42019	4470.3 4686.9	5150.2	9.8431 10.0157	1.69966 1.81516		5150.0 5412.8	
1500	3.03020	4007.1	3413.1	10.2023					1.01310	4000.7	3412.0	9.0020
0 - 1			°a (151.83			0.60 MPa	-	-		0.80 MPa		
Sat.	0.37483			6.8207	0.31560 0.35212		2756.2	6.7593	0.24035		2768.3	
200 250	0.42503 0.47443			7.0610 7.2725	0.33212		2850.6 2957.6	6.9683 7.1833	0.26088 0.29321		2839.8 2950.4	
300	0.52261			7.4614	0.33330		3062.0	7.1833	0.29321		3056.9	
350	0.57015			7.6346	0.47428		3166.1	7.5481	0.35442		3162.2	
400	0.61731			7.7956	0.51374		3270.8	7.7097	0.38429		3267.7	
500	0.71095			8.0893	0.59200		3483.4	8.0041	0.44332	3126.6	3481.3	7.8692
600	0.80409			8.3544	0.66976		3701.7		0.50186		3700.1	
700	0.89696			8.5978	0.74725		3926.4		0.56011		3925.3	
800	0.98966			8.8240	0.82457		4157.9		0.61820		4157.0	
900	1.08227			9.0362	0.90179		4396.2		0.67619		4395.5 4640.5	
1000 1100	1.17480 1.26728			9.2364 9.4263	0.97893 1.05603		4641.1 4892.4	9.1521 9.3420	0.73411 0.79197		4640.5	
1200	1.35972			9.4203	1.13309		5149.6		0.79197		5149.3	
1300	1.45214			9.7797	1.21012			9.6955	0.90761		5412.2	

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}scriptscriptstyle\dagger}$ Properties of saturated vapor at the specified pressure.

Back Matter

© The McGraw-Hill Companies, 2008

										Append	ix 1	L	777
TABLE	A-6												
	neated wat	er (<i>Conti</i>	nued)										
T	V	и	h	S	v	И	h	s	V	И	h	s	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K		kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg	ς·Κ
	P	= 1.00 M	Pa (179.8	8°C)	Р	= 1.20 MI	Pa (187.9)	6°C)	P =	1.40 MP	a (195.04	4°C)	
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9		 75
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0		
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9		
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.95	53
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.13	79
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1		
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8		
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5		
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7		
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3		
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3		
1000 1100	0.58721 0.63354	4052.7 4257.9	4640.0 4891.4	8.9155 9.1057	0.48928 0.52792	4052.2 4257.5	4639.4 4891.0	8.8310 9.0212	0.41933 0.45247	4051.7 4257.0	4638.8 4890.5		
1200	0.67983	4469.0	5148.9	9.2866	0.56652	4468.7	5148.5	9.2022	0.43247	4468.3	5148.1		
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3		
		= 1.60 M				= 1.80 MF				2.00 MP			
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.9	6.3775	0.09959	2599.1	2798.3		90
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0	2847.2	6.4825	0.10381	2628.5	2836.1		
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7	2911.7	6.6088	0.11150	2680.3	2903.3		
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.9	6.8246	0.12551	2773.2	3024.2		
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6	3141.9	7.0120	0.13860	2860.5	3137.7		
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3	3251.6	7.1814	0.15122	2945.9	3248.4		
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5	3470.4	7.4845	0.17568	3116.9	3468.3		
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7	3692.3	7.7543	0.19962	3291.5	3690.7	7.70	43
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6	3919.4	8.0005	0.22326	3471.7	3918.2	7.95	09
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8	4152.4	8.2284	0.24674	3658.0	4151.5		
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5	4391.9	8.4417	0.27012	3850.9	4391.1		
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.6	8.6427	0.29342	4050.2	4637.1		
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2	4889.6	8.8331	0.31667	4255.7	4889.1		
1200	0.42488 0.45383	4467.9	5147.7	9.0689	0.37766 0.40341	4467.6	5147.3	9.0143	0.33989 0.36308	4467.2 4684.2	5147.0 5410.3		
1300	0.43363	4684.8	5410.9	9.2418	0.40341	4684.5	5410.6	9.1872	0.30306	4004.2	3410.3	9.13	04
		= 2.50 M				= 3.00 MI				3.50 MP		/	
Sat. 225	0.07995 0.08026	2602.1 2604.8	2801.9 2805.5	6.2558 6.2629	0.06667	2603.2	2803.2	6.1856	0.05706	2603.0	2802.7	6.12	.44
250	0.08026	2663.3	2880.9	6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6 17	61
300	0.08703	2762.2	3009.6	6.6459	0.07003	2750.8	2994.3	6.5412	0.03876	2738.8	2978.4		
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4	3116.1	6.7450	0.07680	2836.0	3104.9		
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6	3231.7	6.9235	0.08456	2927.2	3223.2		
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2	3344.9	7.0856	0.09198	3016.1	3338.1		
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6	3457.2	7.2359	0.09919	3104.5	3451.7		
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5	3682.8	7.5103	0.11325	3282.5	3678.9	7.43	57
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912.2	7.7590	0.12702	3464.7	3909.3	7.68	55
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3	4146.9	7.9885	0.14061	3652.5	4144.6	7.91	56
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9	4387.5	8.2028	0.15410	3846.4	4385.7		
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7	4634.2	8.4045	0.16751	4046.4	4632.7		
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6	4886.7	8.5955	0.18087	4252.5	4885.6		
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3	5145.1	8.7771	0.19420	4464.4	5144.1		
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.9502	0.20750	4681.8	5408.0	8.87	86

Transfer, Second Edition

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

778 Introduction to Thermodynamics and Heat Transfer

TABLE	TABLE A-6												
Superh	neated water ((Conti	nued)										
T	v u		h	s	V	и	h	s	V	и	h	S	
°C	m³/kg kJ	J/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	
	P = A	4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MP	a (257.44°	°C)	P =	5.0 MPa	(263.94	°C)	
Sat.		601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0		5.9737	
275		668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571	
300		726.2 827.4	2961.7 3093.3	6.3639	0.05138 0.05842	2713.0	2944.2	6.2854	0.04535 0.05197	2699.0 2809.5		6.2111 6.4516	
350 400		920.8	3093.3	6.5843 6.7714	0.03642	2818.6 2914.2	3081.5 3205.7	6.5153 6.7071	0.05197	2907.5		6.6483	
450		011.0	3331.2	6.9386	0.00477	3005.8	3324.2	6.8770	0.03784	3000.6		6.8210	
500		100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781	
600		279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605	
700	0.11098 34	462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136	
800		650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9		7.7458	
900	0.13476 38	844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619	
1000		045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648	
1100		251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566	
1200		463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388	
1300	0.18157 46	680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405./	8.7124	
	P = 0	6.0 MF	Pa (275.59	9°C)	Р	= 7.0 MP	a (285.83°	°C)	P =	8.0 MPa	(295.01	°C)	
Sat.	0.03245 25	589.9	2784.6	5.8902	0.027378		2772.6	5.8148	0.023525	2570.5		5.7450	
300	0.03619 26	668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279		2786.5	5.7937	
350		790.4	3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321	
400		893.7	3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			6.3658	
450		989.9	3302.9	6.7219	0.044187		3288.3	6.6353	0.038194			6.5579	
500		083.1	3423.1	6.8826	0.048157		3411.4	6.8000	0.041767			6.7266	
550 600		175.2 267.2	3541.3 3658.8	7.0308 7.1693	0.051966 0.055665		3531.6 3650.6	6.9507 7.0910	0.045172 0.048463			6.8800 7.0221	
700		453.0	3894.3	7.1093	0.053663		3888.3	7.3487	0.048403			7.0221	
800		643.2	4133.1	7.6582	0.069856		4128.5	7.5836	0.061011			7.5185	
900		838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			7.7372	
1000		040.1	4625.4	8.0786	0.083571		4622.5	8.0055	0.073079			7.9419	
1100	0.10543 42	247.1	4879.7	8.2709	0.090341		4877.4	8.1982	0.079025			8.1350	
1200	0.11326 44	459.8	5139.4	8.4534	0.097075	4457.9	5137.4	8.3810	0.084934	4456.1	5135.5	8.3181	
1300	0.12107 46	677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925	
	P = 9	9.0 MF	Pa (303.35	5°C)	P =	= 10.0 MF	°a (311.00	°C)	P =	12.5 MPa	a (327.81	L°C)	
Sat.	0.020489 25	558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638	
325	0.023284 26		2857.1	5.8738	0.019877		2810.3	5.7596					
350	0.025816 27	725.0	2957.3	6.0380	0.022440	2699.6	2924.0	5.9460	0.016138	2624.9	2826.6	5.7130	
400	0.029960 28	849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433	
450	0.033524 29		3258.0	6.4872	0.029782		3242.4	6.4219	0.023019			6.2749	
500	0.036793 30		3387.4	6.6603	0.032811		3375.1	6.5995	0.025630			6.4651	
550	0.039885 31		3512.0	6.8164	0.035655		3502.0	6.7585	0.028033			6.6317	
600	0.042861 32		3634.1	6.9605	0.038378		3625.8	6.9045	0.030306			6.7828	
650	0.045755 33		3755.2	7.0954	0.041018		3748.1	7.0408	0.032491			6.9227	
700	0.048589 34 0.054132 36		3876.1	7.2229 7.4606	0.043597 0.048629		3870.0	7.1693	0.034612			7.0540 7.2967	
800 900	0.054132 36		4119.2 4365.7	7.4606	0.048629		4114.5 4362.0	7.4085 7.6290	0.038724			7.2967 7.5195	
1000	0.059562 56		4616.7	7.8855	0.053547		4613.8	7.8349	0.042720			7.7269	
1100	0.070224 42		4872.7	8.0791	0.038331		4870.3	8.0289	0.040041			7.7209	
1200	0.075492 44		5133.6	8.2625	0.067938		5131.7	8.2126	0.054342			8.1065	
1300	0.080733 46		5399.5	8.4371	0.072667		5398.0	8.3874	0.058147			8.2819	

779

Appendix 1

										прропо	IIA I	. ,,,
TABLE	A-6											
Super	heated wate	er (<i>Conclu</i>	ıded)									
T	V	и	h	S	V	и	h	S	V	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K		kJ/kg	// kJ/kg	kJ/kg · K
	III /Kg	NJ/Ng	NJ/Ng	NJ/Ng IN	III /Kg	NJ/Ng	NJ/Ng	NJ/Ng IN	III /Kg	NJ/Ng	NJ/Ng	NJ/Ng IN
	P =	= 15.0 MF	a (342.16	S°C)	P = 1	17.5 MPa	(354.67	°C)		20.0 MP		
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463		2902.4		0.009950			5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204		3111.4		0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385				0.014793		3241.2	
550	0.022945	3106.2	3450.4	6.5230	0.019305		3423.6		0.016571		3396.2	6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073				0.018185		3539.0	6.5075
650	0.026804	3310.1	3712.1	6.8233	0.022742				0.019695			6.6593
700	0.028621 0.032121	3409.8 3609.3	3839.1 4091.1	6.9573 7.2037	0.024342		3823.5		0.021134 0.023870		3807.8 4067.5	6.7991 7.0531
800 900	0.032121	3811.2	4343.7	7.2037 7.4288	0.027405				0.025870			7.0331
1000	0.033303	4017.1	4599.2	7.6378	0.030348		4592.0		0.020484		4584.7	7.4950
1100	0.030000	4227.7	4858.6	7.8339	0.035213				0.023020			7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806			7.9449	0.033952		5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556		5386.5		0.036371		5382.7	8.0574
											0.140	
075		P = 25		1.0015	0.001700	P = 30.0		0.0010	0.001701	P = 35		
375	0.001978	1799.9	1849.4	4.0345	0.001792		1791.9		0.001701			3.8724
400	0.006005	2428.5 2607.8	2578.7 2805.0	5.1400 5.4708	0.002798 0.005299		2152.8 2611.8		0.002105 0.003434			4.2144 4.7751
425 450	0.007886 0.009176	2721.2	2950.6	5.6759	0.005299		2821.0		0.003434		2671.0	5.1946
500	0.003170	2887.3	3165.9	5.9643	0.000737		3084.8		0.004937		2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175		3279.7		0.008348			5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445				0.009523			6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590				0.010565			6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2	4020.0	6.8301	0.013278	3531.6	3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668		3764.6			0.014904		4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240		4555.8		0.016450			7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954		4823.9		0.017942		4812.4	7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630		5094.2		0.019398		5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40	.0 MPa			P = 50.0	О МРа			P = 60	.0 MPa	
375	0.001641		1742.6		0.001560				0.001503			3.7149
400	0.001911								0.001633			
425	0.002538				0.002009				0.001816			
450	0.003692			4.9449	0.002487				0.002086			
500	0.005623	2681.6	2906.5		0.003890				0.002952			
550	0.006985	2875.1	3154.4		0.005118				0.003955			
600	0.008089	3026.8	3350.4		0.006108				0.004833			
650 700	0.009053 0.009930	3159.5 3282.0		6.2078 6.3740	0.006957 0.007717				0.005591 0.006265			
800	0.009930	3511.8	3972.6		0.007717				0.000203			
900	0.011321	3733.3	4252.5		0.003073				0.007430			
1000	0.012360	3952.9	4527.3		0.010230				0.009504			
1100		4173.7			0.012534				0.010439			
1200		4396.9		7.5357	0.013590				0.011339			
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

© The McGraw-Hill Companies, 2008

TABLE	TABLE A-7												
Compi	ressed liqui	d water											
T	V	и	h	S	V	И	h	S	V	И	h	S	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	
	P =	= 5 MPa ((263.94°C)	P =	: 10 MPa	(311.00°C	C)	P =	15 MPa	(342.16°	C)	
Sat.	0.0012862	1148 1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585 5	1610.3	3.6848	
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004	
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932	
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666	
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234	
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659	
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958	
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	1.5148	
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243	
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259	
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206	
200	0.0011531			2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	2.3100	
220	0.0011868			2.5127	0.0011809	934.01		2.5037	0.0011752	929.81	947.43		
240	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774	
260	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586	
280					0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410	
300					0.0013980	1329.4	1343.3	3.2488	0.0013783		1338.3	3.2279	
320									0.0014733		1454.0	3.4263	
340									0.0016311	1567.9	1592.4	3.6555	
	P =	20 MPa	(365.75°(C)		P = 30	MPa			P = 50	MPa		
Sat.	0.0020378	1785.8	1826.6	4.0146									
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010	
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845	
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528	
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055	
80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442	
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705	
120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43		
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	1.6916	
160	0.0010886		687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889	
180	0.0011122		773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06		
200	0.0011390		860.27	2.3027	0.0011304	831.11		2.2888	0.0011149	819.45	875.19		
220	0.0011697		949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45		
240	0.0012053		1040.2	2.6676	0.0011927		1042.7	2.6491	0.0011708	990.55		2.6156	
260	0.0012472		1134.0	2.8469	0.0012314		1134.7	2.8250	0.0012044		1138.4	2.7864	
280	0.0012978		1231.5	3.0265	0.0012770		1229.8	3.0001	0.0012430		1229.9	2.9547	
300	0.0013611		1334.4	3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218	
320	0.0014450		1445.5	3.3996	0.0014014		1433.7	3.3558	0.0013409		1421.4	3.2888	
340	0.0015693		1571.6	3.6086	0.0014932		1547.1	3.5438	0.0014049		1523.1	3.4575	
360	0.0018248	1/03.6	1740.1	3.8787	0.0016276		1675.6	3.7499	0.0014848		1630.7	3.6301	
380					0.0018729	1/82.0	1838.2	4.0026	0.0015884	100/.1	1746.5	3.8102	

© The McGraw-Hill Companies, 2008

Appendix 1

1 **I** 781

	n I	-		n
11/1	BL		Λ_	×
18	DL.	ь.	н-	U

Saturate	aturated ice-water vapor													
			<i>c volume,</i> 1 ³ /kg	Ir	nternal er kJ/kg			<i>Enthalpy</i> kJ/kg	<i>'</i> ,		Entropy, J/kg · K			
Temp., T°C	Sat. press., P _{sat} kPa	Sat. ice, v _i	Sat. vapor, v_g	Sat. ice, <i>u</i> _i	Subl., u _{ig}	Sat. vapor, u_g	Sat. ice, <i>h_i</i>	Subl., h _{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s _{ig}	Sat. vapor, s_g		
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154		
0 -2	0.61115 0.51772	0.001091 0.001091	206.17 241.62	-333.43 -337.63	2707.9 2709.4	2374.5 2371.8	-333.43 -337.63	2833.9 2834.5	2500.5 2496.8	-1.2204 -1.2358	10.375 10.453	9.154 9.218		
-2 -4	0.31772	0.001091	283.84	-337.63 -341.80	2710.8	2369.0	-337.63 -341.80	2835.0	2496.8	-1.2536 -1.2513	10.433	9.218		
-4 -6	0.43748	0.001090	334.27	-341.80 -345.94	2710.8	2366.2	-341.80 -345.93	2835.4	2489.5	-1.2513	10.533	9.347		
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413		
-10	0.25990	0.001030	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480		
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549		
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618		
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689		
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761		
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835		
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909		
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985		
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063		
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141		
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221		
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303		
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386		
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470		
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557		
-40	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644		

FIGURE A-9

T-s diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

Units)

Appendix 1 783

FIGURE A-10

Mollier diagram for water.

Çengel: Introduction to

Thermodynamics and Heat

Transfer, Second Edition

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

Back Matter

TABL	TABLE A-11												
Satur	ated refrig	erant-134a–	–Temperatı	ıre table									
		Specific m³/l		Inte	ernal enei kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg · K		
Temp T °C	Sat. ., press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g	
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	0.000 2.515 5.037 7.566 10.10		225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813	
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748	
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911	
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	41.03 43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253	
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	54.30 56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733	
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310	

(Continued)

© The McGraw-Hill Companies, 2008

Appendix 1

785

TABLE A-11

Saturated refrigerant-134a—Temperature table (Concluded)

Outur	atca iciiig	Scraint 10-ta	Temperati	arc table	(Oonerac	icu)						
		Specific volume, m ³ /kg		Inte	ernal ene kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg · K	
Temp.	Sat. ., press., P _{sat} kPa	Sat. liquid, ı v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., <i>u_{fg}</i>	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20 22 24 26 28	572.07 608.27 646.18 685.84 727.31	0.0008161 0.0008210 0.0008261 0.0008313 0.0008366	0.035969 0.033828 0.031834 0.029976 0.028242	78.86 81.64 84.44 87.26 90.09	162.16 160.42 158.65 156.87 155.05	241.02 242.06 243.10 244.12 245.14	79.32 82.14 84.98 87.83 90.69	182.27 180.49 178.69 176.85 174.99	261.59 262.64 263.67 264.68 265.68	0.30063 0.31011 0.31958 0.32903 0.33846	0.62172 0.61149 0.60130 0.59115 0.58102	0.92234 0.92160 0.92088 0.92018 0.91948
30 32 34 36 38	770.64 815.89 863.11 912.35 963.68	0.0008421 0.0008478 0.0008536 0.0008595 0.0008657	0.026622 0.025108 0.023691 0.022364 0.021119	92.93 95.79 98.66 101.55 104.45	153.22 151.35 149.46 147.54 145.58	246.14 247.14 248.12 249.08 250.04	93.58 96.48 99.40 102.33 105.29	173.08 171.14 169.17 167.16 165.10	266.66 267.62 268.57 269.49 270.39	0.34789 0.35730 0.36670 0.37609 0.38548	0.57091 0.56082 0.55074 0.54066 0.53058	0.91879 0.91811 0.91743 0.91675 0.91606
42 44 46	1017.1 1072.8 1130.7 1191.0 1253.6	0.0008720 0.0008786 0.0008854 0.0008924 0.0008996	0.019952 0.018855 0.017824 0.016853 0.015939	107.38 110.32 113.28 116.26 119.26	143.60 141.58 139.52 137.42 135.29	250.97 251.89 252.80 253.68 254.55	108.26 111.26 114.28 117.32 120.39	163.00 160.86 158.67 156.43 154.14	271.27 272.12 272.95 273.75 274.53	0.39486 0.40425 0.41363 0.42302 0.43242	0.52049 0.51039 0.50027 0.49012 0.47993	0.91536 0.91464 0.91391 0.91315 0.91236
56 60 65 70	1386.2 1529.1 1682.8 1891.0 2118.2 2365.8	0.0009150 0.0009317 0.0009498 0.0009750 0.0010037 0.0010372	0.014265 0.012771 0.011434 0.009950 0.008642 0.007480	125.33 131.49 137.76 145.77 154.01 162.53	130.88 126.28 121.46 115.05 108.14 100.60	256.21 257.77 259.22 260.82 262.15 263.13	126.59 132.91 139.36 147.62 156.13 164.98	149.39 144.38 139.10 132.02 124.32 115.85	275.98 277.30 278.46 279.64 280.46 280.82	0.45126 0.47018 0.48920 0.51320 0.53755 0.56241	0.45941 0.43863 0.41749 0.39039 0.36227 0.33272	0.91067 0.90880 0.90669 0.90359 0.89982 0.89512
85 90 95	2635.3 2928.2 3246.9 3594.1 3975.1	0.0010772 0.0011270 0.0011932 0.0012933 0.0015269	0.006436 0.005486 0.004599 0.003726 0.002630	171.40 180.77 190.89 202.40 218.72	92.23 82.67 71.29 56.47 29.19	263.63 263.44 262.18 258.87 247.91	174.24 184.07 194.76 207.05 224.79	106.35 95.44 82.35 65.21 33.58	280.59 279.51 277.11 272.26 258.37	0.58800 0.61473 0.64336 0.67578 0.72217	0.30111 0.26644 0.22674 0.17711 0.08999	0.88912 0.88117 0.87010 0.85289 0.81215

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

86.16

3000

0.0011406

0.005275 183.04

80.22

263.26 186.46

92.63 279.09

0.62118

0.25776

0.87894

Appendix 1: Property
Tables and Charts (SI

© The McGraw-Hill Companies, 2008

786 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-12 Saturated refrigerant-134a—Pressure table Specific volume, Internal energy, Enthalpy, Entropy, m³/kg kJ/kg kJ/kg kJ/kg · K Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Press., temp., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor, P kPa T_{sat} °C V_f Vg U_f Ug h_f h_{fg} h_g S_f S_{fg} U_{fg} 209.12 3.841 223.95 227.79 0.94807 60 -36.950.0007098 0.31121 3.798 205.32 0.01634 0.96441 70 -33.870.0007144 0.26929 7.680 203.20 210.88 7.730 222.00 229.73 0.03267 0.92775 0.96042 -31.13212.46 0.04711 0.90999 80 0.0007185 0.23753 11.15 201.30 11.21 220.25 231.46 0.95710 90 -28.650.0007223 0.21263 14.31 199.57 213.88 14.37 218.65 233.02 0.06008 0.89419 0.95427 100 -26.370.0007259 0.19254 17.21 197.98 215.19 17.28 217.16 234.44 0.07188 0.87995 0.95183 120 -22.320.0007324 0.16212 22.40 195.11 217.51 22.49 214.48 236.97 0.09275 0.85503 0.94779 219.54 140 -18.770.0007383 0.14014 26.98 192.57 27.08 212.08 239.16 0.11087 0.83368 0.94456 -15.6031.09 31.21 209.90 241.11 0.12693 160 0.0007437 0.12348 190.27 221.35 0.81496 0.94190 180 -12.730.0007487 0.11041 34.83 188.16 222.99 34.97 207.90 242.86 0.14139 0.79826 0.93965 -10.090.0007533 0.099867 38.28 186.21 224.48 38.43 206.03 244.46 0.15457 0.78316 200 0.93773 -5.38182.67 227.14 44.66 202.62 247.28 0.17794 0.75664 240 0.0007620 0.083897 44.48 0.93458 280 -1.250.0007699 0.072352 49.97 179.50 229.46 50.18 199.54 249.72 0.19829 0.73381 0.93210 320 2.46 0.0007772 0.063604 54.92 176.61 231.52 55.16 196.71 251.88 0.21637 0.71369 0.93006 5.82 173.94 233.38 59.72 194.08 253.81 0.23270 0.69566 360 0.0007841 0.056738 59.44 0.92836 400 8.91 0.0007907 0.051201 63.62 171.45 235.07 63.94 191.62 255.55 0.24761 0.67929 0.92691 450 12.46 0.0007985 0.045619 68.45 168.54 237.00 68.81 188.71 257.53 0.26465 0.66069 0.92535 165.82 238.75 185.98 259.30 500 15.71 0.0008059 0.041118 72.93 73.33 0.28023 0.64377 0.92400 0.0008130 550 18.73 0.037408 77.10 163.25 240.35 77.54 183.38 260.92 0.29461 0.62821 0.92282 241.83 180.90 262.40 0.30799 600 21.55 0.0008199 0.034295 81.02 160.81 81.51 0.61378 0.92177 24.20 158.48 243.20 85.26 178.51 263.77 0.32051 0.60030 650 0.0008266 0.031646 84.72 0.92081 88.82 700 26.69 0.0008331 0.029361 88.24 156.24 244.48 176.21 265.03 0.33230 0.58763 0.91994 29.06 0.0008395 91.59 154.08 245.67 92.22 173.98 266.20 0.34345 0.57567 750 0.027371 0.91912 152.00 246.79 95.47 0.35404 800 31.31 0.0008458 0.025621 94.79 171.82 267.29 0.56431 0.91835 97.87 149.98 247.85 98.60 0.55349 850 33.45 0.0008520 0.024069 169.71 268.31 0.36413 0.91762 35.51 0.022683 100.83 148.01 248.85 101.61 0.37377 0.54315 900 0.0008580 167.66 269.26 0.91692 950 37.48 0.0008641 0.021438 103.69 146.10 249.79 104.51 165.64 270.15 0.38301 0.53323 0.91624 39.37 0.0008700 0.020313 106.45 144.23 250.68 107.32 163.67 270.99 0.39189 0.52368 1000 0.91558 1200 46.29 0.0008934 0.016715 116.70 137.11 253.81 117.77 156.10 273.87 0.42441 0.48863 0.91303 0.014107 125.94 130.43 256.37 127.22 148.90 276.12 0.45315 0.45734 1400 52.40 0.0009166 0.91050 1600 57.88 0.0009400 0.012123 134.43 124.04 258.47 135.93 141.93 277.86 0.47911 0.42873 0.90784 62.87 0.0009639 0.010559 142.33 117.83 260.17 144.07 135.11 279.17 0.50294 0.40204 0.90498 1800 2000 67.45 0.0009886 0.009288 149.78 111.73 261.51 151.76 128.33 280.09 0.52509 0.37675 0.90184 77.54 166.99 96.47 263.45 169.63 111.16 280.79 0.57531 0.31695 2500 0.0010566 0.006936 0.89226

787

Appendix 1

Table A-18 Super-based refrigerant-134s Super-based re											прропо	uin i	
Superheated refrigerant-134a T v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v µ	TARIF	A_13											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			rigerant-	134a									
C m³/kg kJ/kg k								6	_			6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-								-			
Sat													
-20 0.33608 220.60 240.76 1.0174 0.19841 219.66 239.50 0.9721 0 1.01605 225.91 246.36 0.9724 0 0.36476 234.66 236.66 1.0074 0.21630 233.95 255.58 1.0332 0.15263 233.23 254.60 1.0031 1.0 0.37893 241.92 264.66 1.1066 0.22506 241.30 263.81 1.0628 0.15908 240.65 262.93 1.0331 1.0 0.37893 249.35 27.294 1.1353 0.23373 248.79 27.217 1.0918 0.15908 240.65 262.93 1.0331 1.0 0.40705 256.95 281.37 1.1636 0.24233 256.40 280.81 1.0 0.2806 1.1203 0.17172 255.93 279.97 1.0912 0.2403 240.0 250.0	0.1												
-10 0.35048 227.55 248.58 1.0477 0.20743 226.75 247.49 1.0030 0.14605 225.91 246.36 0.9724 0.003676 234.67 234.66 265.54 1.0774 0.21630 233.95 255.58 1.0323 0.1508 240.66 262.93 1.0331 1.0037893 241.92 264.66 1.1066 0.22506 241.30 263.81 1.0628 0.15908 240.66 262.93 1.0331 0.03705 256.95 281.37 1.1636 0.24233 256.44 280.68 1.1203 0.1772 255.93 279.97 1.0912 40 0.42102 264.71 299.97 1.1915 0.25088 264.25 289.34 1.1484 0.17794 263.79 288.70 1.1195 0.43495 272.64 298.74 1.1219 0.25938 272.22 298.16 1.176 20 1.1841 271.79 297.57 1.1474 1.000 0.42102 264.71 299.79 1.1915 0.25088 264.25 289.34 1.1484 0.17794 263.79 288.70 1.1195 0.4483 280.73 307.66 1.2463 0.26783 280.35 307.13 1.2035 0.19025 279.96 306.59 1.1749 0.4629 288.99 316.75 1.2722 0.27626 288.64 316.26 1.2305 0.19025 279.96 306.59 1.1749 0.4629 288.99 316.75 1.2722 0.27626 288.64 316.26 1.2305 0.19025 279.96 306.59 1.1749 0.4629 288.99 316.75 1.2722 0.27626 288.64 316.26 1.2305 0.19025 279.96 306.59 1.1749 0.4629 288.99 316.75 1.2722 0.27626 288.64 316.26 1.2305 0.19025 279.96 306.59 1.1749 0.4629 288.99 316.75 1.2752 0.22845 297.08 325.55 1.2572 0.20242 296.75 325.09 1.2288 0.47651 297.41 325.00 1.2997 0.28465 297.08 325.55 1.2572 0.20242 296.75 325.09 1.2288 0.47651 297.41 325.00 1.29303 305.69 334.99 1.2836 0.20449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.21449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.21449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.21449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.20449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.20449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.20449 314.17 344.20 1.2815 0.30318 314.46 334.60 1.3096 0.20449 314.17 344.20 1.2815 0.30318 314.91 31.30 0.309423 246.74 296.55 38.0004 0.30942 246.74 296.55 38.0004 0.30942 246.75 296.86 1.0137 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.00942 246.55 0.009										0.14014	219.54	239.16	0.9446
0 0.36476 294.66 256.54 1.0774 0.21630 239.55 255.88 1.0332 0.15263 233.23 254.60 1.0031 0 0.3783 241.92 244.65 1.066 0.22593 1.0331 20 0.39302 249.35 272.94 1.1353 0.23373 248.79 272.17 1.0918 0.166544 248.22 271.38 1.0624 0.40705 256.95 281.37 1.1636 0.24233 255.64 280.68 1.1203 0.17172 255.93 279.97 1.0912 0.00705 256.95 281.37 1.1636 0.24233 255.64 280.68 1.1203 0.17172 255.93 279.97 1.0912 0.00705 256.95 281.37 1.1636 0.24233 255.64 280.68 1.1203 0.17172 255.93 279.97 1.0912 0.00706 0.448483 280.73 307.66 1.2463 0.25783 269.34 1.1484 0.1774 255.93 279.97 1.0912 0.00706 0.448483 280.73 307.66 1.2463 0.25783 280.35 307.13 1.2035 0.19635 289.28 370 1.1195 0.00706 0.46269 288.99 316.75 1.2732 0.27626 288.64 316.26 1.2305 0.19635 288.28 315.77 1.2020 0.47651 297.41 326.00 1.2997 0.28465 297.08 325.55 1.2572 0.20242 296.75 325.09 1.2288 0.47651 297.41 326.00 1.2997 0.28465 297.08 325.55 1.2572 0.20242 296.75 325.09 1.2288 10 0.50410 314.74 344.99 1.3520 0.30138 314.46 344.60 1.3096 0.21449 314.17 344.20 1.2814 0.50410 314.74 344.99 1.3520 0.30138 314.46 344.60 1.3096 0.21449 314.17 344.20 1.2814 0.00706 0.11722 232.48 253.56 0.3997 0.09997 224.86 0.9991 224.55 244.54 0.9380 0.00817 237.14 247.28 0.9346 0.011722 232.48 253.56 0.9799 0.10481 232.99 253.05 0.9598 0.00617 23.89 251.97 0.9519 0.012240 240.00 0.262.04 1.0102 0.10955 239.67 261.58 1.0004 0.09026 238.99 260.65 0.9831 0.01418 247.20 240.04 0.000 262.04 1.0102 0.10955 239.67 261.58 1.0004 0.09026 238.99 250.65 0.9813 0.01341 263.31 288.05 1.0975 0.13342 255.14 279.25 1.0690 0.11442 251.44 251.44 279.89 1.0595 0.09812 254.61 278.16 1.0429 0.1341 263.31 288.05 1.0975 0.1342 255.14 256.61 278.16 0.0076 233.78 236.61 1.1526 0.13641 287.73 315.01 1.1714 0.11310 287.36 314.51 1.1554 0.0076 233.78 234.63 1.2074 0.14074 296.25 324.40 1.1983 0.11675 295.91 323.93 31.229 0.16149 305.07 334.14 1.2339 0.14504 30.992 333.93 1.2249 0.10642 313.88 343.80 1.2056 0.1343 313.47 343.20 1.2356 0.00900 270.77 295.47 1.0862 0.07823 254.80 20.0993 330.90 331.25 0.00823 233.94										0.14605	225.01	246.26	0.0724
10													
20													
0.40705 256.95 281.37 1.1636 0.24233 256.44 280.68 1.1203 0.17172 255.93 279.97 1.0912													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
0.044883 280.73 307.66 1.2463 0.26783 280.95 307.13 1.2035 0.19025 279.96 306.95 1.1749 70 0.46269 288.99 316.75 1.2732 0.27626 288.64 316.26 1.2305 0.19035 288.28 315.77 1.2020 80 0.47651 297.41 326.00 1.2997 0.28465 297.08 325.55 1.2572 0.20242 295.75 325.09 1.2288 90 0.49032 306.00 335.42 1.3260 0.29303 305.69 334.99 1.2836 0.20847 305.38 334.57 1.2563 100 0.50410 314.74 344.99 1.3520 0.30138 314.46 344.60 1.3096 0.21449 314.17 344.20 1.2814 P = 0.18 MPa (T _{sst} = −12.73°C)													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c} 00 \\ 0.49032 \\ 0.50410 \\ 0.31474 \\ 344.99 \\ 1.3520 \\ 0.50410 \\ 314.74 \\ 344.99 \\ 1.3520 \\ 0.30138 \\ 314.46 \\ 334.46 \\ 334.40 \\ 0.3096 \\ 0.20847 \\ 305.09 \\ 0.21449 \\ 314.17 \\ 344.20 \\ 1.2814 \\ \hline P=0.18 \ MPa \ (T_{sat}=-12.73°C) \\ \hline P=0.20 \ MPa \ (T_{sat}=-10.09°C) \\ \hline P=0.24 \ MPa \ (T_{sat}=-5.38°C) \\ \hline Sat. \\ 0.11041 \\ 222.99 \\ 242.86 \\ 0.9397 \\ 0.09397 \\ 0.011722 \\ 232.48 \\ 253.58 \\ 0.9798 \\ 0.09484 \\ 0.09991 \\ 224.55 \\ 0.09991 \\ 224.55 \\ 0.245.5 \\ 0.09806 \\ 0.017242 \\ 240.00 \\ 240.00 \\ 262.04 \\ 1.0102 \\ 0.10955 \\ 0.3999 \\ 0.11418 \\ 247.35 \\ 247.08 \\ 0.09951 \\ 0.01481 \\ 232.09 \\ 253.05 \\ 0.9698 \\ 0.08617 \\ 0.09062 \\ 238.98 \\ 260.65 \\ 0.9831 \\ 0.09423 \\ 246.74 \\ 269.36 \\ 1.0132 \\ 0.013248 \\ 255.41 \\ 279.25 \\ 1.0690 \\ 0.013248 \\ 255.41 \\ 279.25 \\ 1.0690 \\ 0.01341 \\ 263.31 \\ 280.65 \\ 1.0975 \\ 0.11874 \\ 253.13 \\ 280.65 \\ 1.0975 \\ 0.11874 \\ 253.13 \\ 280.65 \\ 1.0975 \\ 0.11874 \\ 255.14 \\ 278.89 \\ 1.0955 \\ 0.09423 \\ 246.74 \\ 269.36 \\ 1.0133 \\ 262.59 \\ 287.06 \\ 1.00193 \\ 262.59 \\ 287.06 \\ 1.0$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
Sat. 0.11041 222.99 242.86 0.9397 0.09987 224.48 244.46 0.9377 0.08390 227.14 247.28 0.9346 -10 0.11189 225.02 245.16 0.9484 0.09991 224.55 244.54 0.9380 0.08617 231.29 251.97 0.9519 10 0.12720 224.00 262.04 1.0102 0.10955 239.67 261.58 1.0004 0.09026 238.98 260.65 0.9831 20 0.12748 247.64 270.59 1.0399 0.11418 247.35 270.18 1.0303 0.09423 246.74 269.36 1.0134 30 0.13741 263.31 288.05 1.0975 0.12322 263.08 287.72 1.0882 0.0193 262.59 287.06 1.0718 50 0.14230 271.36 296.98 1.1256 0.12726 271.15 296.68 1.1163 0.10570 270.71 296.08 1.1001 60 0.14715	100	0.50+10	314.74	U-T-1.55	1.0020	0.50150	314.40	344.00	1.5050	0.21443	J14.17	544.20	1.2014
-10		P = 0.1						$T_{\rm sat} = -10$.09°C)				
0 0.11722 232.48 253.58 0.9798	Sat.	0.11041								0.08390	227.14	247.28	0.9346
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-10								0.9380				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
30													
40													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
Sat. 0.07235 229.46 249.72 0.9321 0.06360 231.52 251.88 0.9301 0.051201 235.07 255.55 0.9269 10 0.07282 230.44 250.83 0.9362 0.06609 237.54 258.69 0.9544 0.051506 235.97 256.58 0.9305 20 0.07997 246.13 268.52 0.9987 0.06925 245.50 267.66 0.9856 0.054213 244.18 265.86 0.9628 30 0.08338 254.06 277.41 1.0285 0.07231 253.50 276.65 1.0157 0.056796 252.36 275.07 0.9937 40 0.08672 262.10 286.38 1.0576 0.07530 261.60 285.70 1.0451 0.059292 260.58 284.30 1.0236 50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324	100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	1.2356
0 0.07282 230.44 250.83 0.9362 10 0.07646 238.27 259.68 0.9680 0.06609 237.54 258.69 0.9544 0.051506 235.97 256.58 0.9305 20 0.07997 246.13 268.52 0.9987 0.06925 245.50 267.66 0.9856 0.054213 244.18 265.86 0.9628 30 0.08338 254.06 277.41 1.0285 0.07231 253.50 276.65 1.0157 0.056796 252.36 275.07 0.9937 40 0.08672 262.10 286.38 1.0576 0.07530 261.60 285.70 1.0451 0.059292 260.58 284.30 1.0236 50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104		P = 0.	.28 MPa ($T_{\rm sat} = -1.3$	25°C)	<i>P</i> =	0.32 MPa	$(T_{\rm sat} = 2.4)$	16°C)	P = (0.40 MPa	$(T_{\rm sat} = 8.9)$	91°C)
10 0.07646 238.27 259.68 0.9680 0.06609 237.54 258.69 0.9544 0.051506 235.97 256.58 0.9305 20 0.07997 246.13 268.52 0.9987 0.06925 245.50 267.66 0.9856 0.054213 244.18 265.86 0.9628 30 0.08338 254.06 277.41 1.0285 0.07530 261.60 285.70 1.0451 0.056796 252.36 275.07 0.9937 40 0.08672 262.10 286.38 1.0576 0.07530 261.60 285.70 1.0451 0.059292 260.58 284.30 1.0236 50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104 277.32 302.96 1.0814 70 0.09644	Sat.	0.07235	229.46	249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
20 0.07997 246.13 268.52 0.9987 0.06925 245.50 267.66 0.9856 0.054213 244.18 265.86 0.9628 30 0.08338 254.06 277.41 1.0285 0.07231 253.50 276.65 1.0157 0.056796 252.36 275.07 0.9937 40 0.08672 262.10 286.38 1.0576 0.07530 261.60 285.70 1.0451 0.059292 260.58 284.30 1.0236 50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104 277.32 302.96 1.0814 70 0.09644 286.99 314.00 1.1418 0.08395 286.62 313.48 1.1298 0.066443 285.86 312.44 1.1094 80 0.09961	0	0.07282	230.44	250.83	0.9362								
30 0.08338 254.06 277.41 1.0285 0.07231 253.50 276.65 1.0157 0.056796 252.36 275.07 0.9937 40 0.08672 262.10 286.38 1.0576 0.07530 261.60 285.70 1.0451 0.059292 260.58 284.30 1.0236 50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104 277.32 302.96 1.0814 70 0.09644 286.99 314.00 1.1418 0.08395 286.62 313.48 1.1298 0.066443 285.86 312.44 1.1094 80 0.09961 295.57 323.46 1.1690 0.08675 295.22 322.98 1.1571 0.068747 294.53 322.02 1.1369 90 0.10275	10	0.07646				0.06609			0.9544				
40 0.08672 262.10 286.38 1.0576 0.07530 261.60 285.70 1.0451 0.059292 260.58 284.30 1.0236 50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104 277.32 302.96 1.0814 70 0.09644 286.99 314.00 1.1418 0.08395 286.62 313.48 1.1298 0.066443 285.86 312.44 1.1094 80 0.09961 295.57 323.46 1.1690 0.08675 295.22 322.98 1.1571 0.068747 294.53 322.02 1.1369 90 0.10275 304.29 333.06 1.1958 0.08953 303.97 332.62 1.1840 0.071023 303.32 331.73 1.1640 100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 <td>20</td> <td>0.07997</td> <td>246.13</td> <td>268.52</td> <td>0.9987</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20	0.07997	246.13	268.52	0.9987								
50 0.09000 270.27 295.47 1.0862 0.07823 269.82 294.85 1.0739 0.061724 268.90 293.59 1.0528 60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104 277.32 302.96 1.0814 70 0.09644 286.99 314.00 1.1418 0.08395 286.62 313.48 1.1298 0.066443 285.86 312.44 1.1094 80 0.09961 295.57 323.46 1.1690 0.08675 295.22 322.98 1.1571 0.068747 294.53 322.02 1.1369 90 0.10275 304.29 333.06 1.1958 0.08953 303.97 332.62 1.1840 0.071023 303.32 331.73 1.1640 100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 0.073274 312.26 341.57 1.1907 110 0.10897	30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36	275.07	0.9937
60 0.09324 278.56 304.67 1.1142 0.08111 278.15 304.11 1.1021 0.064104 277.32 302.96 1.0814 70 0.09644 286.99 314.00 1.1418 0.08395 286.62 313.48 1.1298 0.066443 285.86 312.44 1.1094 80 0.09961 295.57 323.46 1.1690 0.08675 295.22 322.98 1.1571 0.068747 294.53 322.02 1.1369 90 0.10275 304.29 333.06 1.1958 0.08953 303.97 332.62 1.1840 0.071023 303.32 331.73 1.1640 100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 0.073274 312.26 341.57 1.1907 110 0.10897 322.16 352.68 1.2483 0.09503 321.89 352.30 1.2367 0.075504 321.33 351.53 1.2171 120 0.11205	40	0.08672	262.10	286.38	1.0576	0.07530	261.60	285.70		0.059292			
70 0.09644 286.99 314.00 1.1418 0.08395 286.62 313.48 1.1298 0.066443 285.86 312.44 1.1094 80 0.09961 295.57 323.46 1.1690 0.08675 295.22 322.98 1.1571 0.068747 294.53 322.02 1.1369 90 0.10275 304.29 333.06 1.1958 0.08953 303.97 332.62 1.1840 0.071023 303.32 331.73 1.1640 100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 0.073274 312.26 341.57 1.1907 110 0.10897 322.16 352.68 1.2483 0.09503 321.89 352.30 1.2367 0.075504 321.33 351.53 1.2171 120 0.11205 331.32 362.70 1.2742 0.09775 331.07 362.35 1.2626 0.077717 330.55 361.63 1.2431 130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882<	50			295.47	1.0862	0.07823	269.82		1.0739	0.061724	268.90	293.59	1.0528
80 0.09961 295.57 323.46 1.1690 0.08675 295.22 322.98 1.1571 0.068747 294.53 322.02 1.1369 90 0.10275 304.29 333.06 1.1958 0.08953 303.97 332.62 1.1840 0.071023 303.32 331.73 1.1640 100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 0.073274 312.26 341.57 1.1907 110 0.10897 322.16 352.68 1.2483 0.09503 321.89 352.30 1.2367 0.075504 321.33 351.53 1.2171 120 0.11205 331.32 362.70 1.2742 0.09775 331.07 362.35 1.2626 0.077717 330.55 361.63 1.2431 130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882 0.079913 339.90 371.87 1.2688	60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104	277.32	302.96	1.0814
90 0.10275 304.29 333.06 1.1958 0.08953 303.97 332.62 1.1840 0.071023 303.32 331.73 1.1640 100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 0.073274 312.26 341.57 1.1907 110 0.10897 322.16 352.68 1.2483 0.09503 321.89 352.30 1.2367 0.075504 321.33 351.53 1.2171 120 0.11205 331.32 362.70 1.2742 0.09775 331.07 362.35 1.2626 0.077717 330.55 361.63 1.2431 130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882 0.079913 339.90 371.87 1.2688	70	0.09644	286.99	314.00	1.1418	0.08395	286.62	313.48	1.1298			312.44	1.1094
100 0.10587 313.15 342.80 1.2222 0.09229 312.86 342.39 1.2105 0.073274 312.26 341.57 1.1907 110 0.10897 322.16 352.68 1.2483 0.09503 321.89 352.30 1.2367 0.075504 321.33 351.53 1.2171 120 0.11205 331.32 362.70 1.2742 0.09775 331.07 362.35 1.2626 0.077717 330.55 361.63 1.2431 130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882 0.079913 339.90 371.87 1.2688	80	0.09961	295.57			0.08675	295.22	322.98					
110 0.10897 322.16 352.68 1.2483 0.09503 321.89 352.30 1.2367 0.075504 321.33 351.53 1.2171 120 0.11205 331.32 362.70 1.2742 0.09775 331.07 362.35 1.2626 0.077717 330.55 361.63 1.2431 130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882 0.079913 339.90 371.87 1.2688	90	0.10275	304.29	333.06	1.1958			332.62	1.1840	0.071023			1.1640
120 0.11205 331.32 362.70 1.2742 0.09775 331.07 362.35 1.2626 0.077717 330.55 361.63 1.2431 130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882 0.079913 339.90 371.87 1.2688													
130 0.11512 340.63 372.87 1.2997 0.10045 340.39 372.54 1.2882 0.079913 339.90 371.87 1.2688				352.68	1.2483	0.09503	321.89	352.30		0.075504	321.33	351.53	1.2171
		0.11205	331.32	362.70	1.2742	0.09775	331.07		1.2626	0.077717	330.55	361.63	1.2431
140 0.11818 350.09 383.18 1.3250 0.10314 349.86 382.87 1.3135 0.082096 349.41 382.24 1.2942							340.39						
	140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

© The McGraw-Hill Companies, 2008

788 I Introduction to Thermodynamics and Heat Transfer

TABLE	TABLE A-13											
Super	heated refri	igerant-1	134a (<i>C</i>	oncluded)								
T	V	И	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.9	50 MPa ($T_{\rm sat} = 15.$	71°C)	P = 0	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0.	70 MPa (<i>T</i>	$t_{\rm sat} = 26.69$	9°C)
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115											
30	0.044338				0.035984	249.22	270.81	0.9499	0.029966	247.48		0.9313
40	0.046456				0.037865	257.86	280.58	0.9816	0.031696	256.39		0.9641
50	0.048499				0.039659	266.48	290.28	1.0121	0.033322	265.20		0.9954
60	0.050485				0.041389	275.15	299.98	1.0417	0.034875	274.01		1.0256
70 80	0.052427 0.054331				0.043069 0.044710	283.89 292.73	309.73 319.55	1.0705 1.0987	0.036373 0.037829	282.87 291.80		1.0549 1.0835
90	0.054331				0.044710	301.67	329.46	1.1264	0.037629	300.82		1.1114
100	0.058053				0.047900	310.73	339.47	1.1536	0.033230	309.95	338.40	
110				1.1971	0.047368	319.91	349.59	1.1803	0.042010	319.19	348.60	
120	0.061687				0.050997	329.23	359.82	1.2067	0.043358	328.55		1.1924
130	0.063479				0.052519	338.67	370.18	1.2327	0.044688	338.04		1.2186
140	0.065256	348.83	381.46	1.2747	0.054027	348.25	380.66	1.2584	0.046004	347.66	379.86	1.2444
150	0.067021	358.51	392.02	1.2999	0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	1.2699
160	0.068775	368.33	402.72	1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
	P = 0.8	80 MPa ($T_{\rm sat} = 31.$	31°C)	P = 0	.90 MPa ($T_{\rm sat} = 35.5$	51°C)	P = 1.	00 MPa (<i>T</i>	sat = 39.3	7°C)
Sat.	0.025621	246.79	267.29	0.9183	0.022683	248.85	269.26	0.9169	0.020313	250.68	270.99	0.9156
40	0.027035	254.82	276.45	0.9480	0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	0.9179
50	0.028547				0.024809	262.44	284.77	0.9660	0.021796	260.94		0.9525
60	0.029973			1.0110	0.026146	271.60	295.13	0.9976	0.023068	270.32		0.9850
70	0.031340				0.027413	280.72	305.39	1.0280	0.024261	279.59	303.85	
80	0.032659				0.028630	289.86	315.63	1.0574	0.025398	288.86	314.25	
90 100	0.033941 0.035193				0.029806 0.030951	299.06 308.34	325.89 336.19	1.0860	0.026492 0.027552	298.15 307.51	324.64	1.0748 1.1031
110	0.035193				0.030951	317.70	346.56	1.1140 1.1414	0.027552	316.94		1.1308
120	0.030420				0.032008	327.18	357.02	1.1684	0.028584	326.47	356.06	
130	0.038813				0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	
140	0.039985				0.035302	346.46	378.23	1.2210	0.031554	345.85		1.2109
150	0.041143				0.036349	356.28	389.00	1.2467	0.032512	355.71		1.2368
160	0.042290	366.76	400.59	1.2830	0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	1.2623
170	0.043427	376.81	411.55	1.3080	0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	1.2875
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
	P = 1.3	20 MPa ($T_{\rm sat} = 46.$	29°C)	P = 1	.40 MPa ($T_{\rm sat} = 52.4$	0°C)	P = 1.	60 MPa (<i>T</i>	$s_{\text{sat}} = 57.88$	3°C)
Sat.	0.016715				0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
50	0.017201	257.63	278.27	0.9267								
60	0.018404			0.9614	0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	0.9163
70	0.019502			0.9938	0.016060	274.62	297.10	0.9733	0.013430	271.76	293.25	
80	0.020529			1.0248	0.017023	284.51	308.34	1.0056	0.014362	282.09	305.07	
90	0.021506			1.0546	0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	
100	0.022442			1.0836	0.018778	304.01	330.30	1.0661	0.016014	302.14	327.76	1.0500
110 120	0.023348 0.024228				0.019597 0.020388	313.76 323.55	341.19 352.09	1.0949 1.1230	0.016773 0.017500	312.07 322.02	338.91 350.02	1.0795 1.1081
130	0.024228			1.1394	0.020366	333.41	363.02	1.1230	0.017300	332.00	361.12	
140	0.025080			1.1930	0.021133	343.34	374.01	1.1773	0.018201	342.05	372.26	1.1632
150	0.025327			1.2192	0.021304	353.37	385.07	1.2038	0.010002	352.17	383.44	1.1900
160	0.027566			1.2449	0.022030	363.51	396.20	1.2298	0.020194	362.38	394.69	1.2163
170				1.2703	0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	
180	0.029158				0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	1.2676

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

© The McGraw-Hill Companies, 2008

790 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-15

Properties of saturated water

or Liquid 0.0068×10^{-3} 0.0015×10^{-3} 0.0733×10^{-3} 0.0138×10^{-3} 0.0195×10^{-3} 0.0247×10^{-3} 0.0294×10^{-3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} 0 & 0.733 \times 10^{-3} \\ 0 & 0.138 \times 10^{-3} \\ 0 & 0.195 \times 10^{-3} \\ 0 & 0.247 \times 10^{-3} \end{array}$
0.138×10^{-3} 0.195×10^{-3} 0.247×10^{-3}
0.195×10^{-3} 0.247×10^{-3}
0.247×10^{-3}
) 0 204 \ 10-3
0.337×10^{-3}
0.377×10^{-3}
0.415×10^{-3}
0.451×10^{-3}
0.484×10^{-3}
0.517×10^{-3}
0.548×10^{-3}
0.578×10^{-3}
0.607×10^{-3}
0.653×10^{-3}
0.670×10^{-3}
0.702×10^{-3}
0.716×10^{-3}
0.750×10^{-3}
0.798×10^{-3}
0.858×10^{-3}
$1 0.913 \times 10^{-3}$
0.970×10^{-3}
$2 1.025 imes 10^{-3}$
$5 1.145 imes 10^{-3}$
$5 1.178 imes 10^{-3}$
7 1.210×10^{-3}
$9 1.280 imes 10^{-3}$
)5)7)7)1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_p = \nu/P$ r. The temperatures 0.01°C, 100°C, and 374.14°C are the triple-, boiling-, and critical-point temperatures of water, respectively. The properties listed above (except the vapor density) can be used at any pressure with negligible error except at temperatures near the critical-point value.

 $\textit{Note 2}: \text{The unit kJ/kg} \cdot ^{\circ}\text{C for specific heat is equivalent to kJ/kg} \cdot \text{K, and the unit W/m} \cdot ^{\circ}\text{C for thermal conductivity is equivalent to W/m} \cdot \text{K.}$

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291–1322. Other data are obtained from various sources or calculated.

Çengel: Introduction to
Thermodynamics and Heat
Transfer. Second Edition

Back Matter

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

791

Appendix 1

TABLE A-16

Properties of saturated refrigerant-134a

Temp.		$\rho, $	ensity kg/m³	Enthalpy of Vaporization	1 <i>C_p</i> , .	ecific leat I/kg · K	Cond k, W	ermal luctivity l/m · K	μ, kg	: Viscosity g/m · s	Nu F	andtl ımber Pr	Volume Expansion Coefficient β, I/K	Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	<i>h</i> _{fg} , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	51.2	1418	2.773	225.9	1254	748.6	0.1101	0.00811	4.878×10^{-4}	2.550×10^{-6}	5.558	0.235	0.00205	0.01760
-35	66.2	1403	3.524	222.7	1264	764.1	0.1084	0.00862	4.509×10^{-4}	3.003×10^{-6}	5.257	0.266	0.00209	0.01682
-30	84.4	1389	4.429	219.5	1273	780.2	0.1066	0.00913	4.178×10^{-4}	3.504×10^{-6}	4.992	0.299	0.00215	0.01604
-25	106.5	1374	5.509	216.3	1283	797.2	0.1047	0.00963	3.882×10^{-4}	4.054×10^{-6}	4.757	0.335	0.00220	0.01527
-20	132.8	1359	6.787	213.0	1294	814.9	0.1028	0.01013	3.614×10^{-4}	4.651×10^{-6}	4.548	0.374	0.00227	0.01451
-15	164.0	1343	8.288	209.5	1306	833.5	0.1009	0.01063	3.371×10^{-4}	5.295×10^{-6}	4.363	0.415	0.00233	0.01376
-10	200.7	1327	10.04	206.0	1318	853.1	0.0989	0.01112	3.150×10^{-4}	5.982×10^{-6}	4.198	0.459	0.00241	0.01302
-5	243.5	1311	12.07	202.4	1330	873.8	0.0968	0.01161	2.947×10^{-4}	6.709×10^{-6}	4.051	0.505	0.00249	0.01229
0	293.0	1295	14.42	198.7	1344	895.6	0.0947	0.01210	2.761×10^{-4}	7.471×10^{-6}	3.919	0.553	0.00258	0.01156
5	349.9	1278	17.12	194.8	1358	918.7	0.0925	0.01259	2.589×10^{-4}	8.264×10^{-6}	3.802	0.603	0.00269	0.01084
10	414.9	1261	20.22	190.8	1374	943.2	0.0903	0.01308	2.430×10^{-4}	9.081×10^{-6}	3.697	0.655	0.00280	0.01014
15	488.7	1244	23.75	186.6	1390	969.4	0.0880	0.01357	2.281×10^{-4}	9.915×10^{-6}	3.604	0.708	0.00293	0.00944
20	572.1	1226	27.77	182.3	1408	997.6	0.0856	0.01406	2.142×10^{-4}	1.075×10^{-5}	3.521	0.763	0.00307	0.00876
25	665.8	1207	32.34	177.8	1427	1028	0.0833	0.01456	2.012×10^{-4}	1.160×10^{-5}	3.448	0.819		0.00808
30	770.6	1188	37.53	173.1	1448	1061	0.0808	0.01507	1.888×10^{-4}	1.244×10^{-5}	3.383	0.877	0.00342	0.00742
35	887.5	1168	43.41	168.2	1471	1098	0.0783	0.01558	1.772×10^{-4}	1.327×10^{-5}	3.328	0.935	0.00364	0.00677
40	1017.1	1147	50.08	163.0	1498		0.0757	0.01610	1.660×10^{-4}	1.408×10^{-5}	3.285	0.995	0.00390	0.00613
45	1160.5	1125	57.66	157.6	1529		0.0731	0.01664	1.554×10^{-4}	1.486×10^{-5}	3.253	1.058	0.00420	0.00550
50	1318.6	1102	66.27	151.8	1566		0.0704		1.453×10^{-4}	1.562×10^{-5}	3.231	1.123	0.00455	0.00489
55	1492.3	1078	76.11	145.7		1298	0.0676	0.01777	1.355×10^{-4}	1.634×10^{-5}	3.223	1.193	0.00500	0.00429
60	1682.8	1053	87.38	139.1		1372	0.0647	0.01838	1.260×10^{-4}	1.704×10^{-5}	3.229	1.272	0.00554	0.00372
65	1891.0	1026	100.4	132.1	1722		0.0618	0.01902	1.167×10^{-4}	1.771×10^{-5}	3.255	1.362	0.00624	0.00315
70	2118.2	996.2	115.6	124.4	1801		0.0587	0.01972	1.077×10^{-4}	1.839×10^{-5}	3.307	1.471	0.00716	0.00261
75	2365.8	964	133.6	115.9	1907		0.0555	0.02048	9.891×10^{-5}	1.908×10^{-5}	3.400	1.612	0.00843	0.00209
80	2635.2	928.2		106.4	2056		0.0521	0.02133	9.011×10^{-5}	1.982×10^{-5}	3.558	1.810		0.00160
85	2928.2	887.1	182.3	95.4	2287	2281	0.0484	0.02233	8.124×10^{-5}	2.071×10^{-5}	3.837	2.116	0.01336	0.00114
90	3246.9	837.7	217.8	82.2	2701	2865	0.0444	0.02357	7.203×10^{-5}	2.187×10^{-5}	4.385	2.658	0.01911	0.00071
95	3594.1	772.5	269.3	64.9	3675	4144	0.0396	0.02544	6.190×10^{-5}	2.370×10^{-5}	5.746	3.862	0.03343	0.00033
100	3975.1	651.7	376.3	33.9	7959	8785	0.0322	0.02989	4.765×10^{-5}	2.833×10^{-5}	11.77	8.326	0.10047	0.00004

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg · °C for specific heat is equivalent to kJ/kg · K, and the unit W/m · °C for thermal conductivity is equivalent to W/m · K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994; M.J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, "Viscosity and Thermal Conductivity of Halogenated Methane and Ethane Refrigerants," *IJR*, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).

Back Matter Appendix 1: Property
Tables and Charts (SI
Units)

© The McGraw-Hill Companies, 2008

792 Introduction to Thermodynamics and Heat Transfer

TABLE A-17

Properties of saturated ammonia

Temp.	Saturation Pressure P, kPa	1	ensity kg/m³ Vapor	Enthalpy of Vaporizatio h _{fg} , kJ/kg	H n <u>c_p, J</u>		Cond	ermal luctivity //m · K Vapor	Dynamic \ μ, kg/r Liquid	,	Nui	ndtl mber Pr Vapor	Volume Expansion Coefficient β , I/K Liquid	Surface Tension, N/m
1, 0	I, KI a	Liquiu	vapoi	IIfg, NJ/Ng	Liqui	u vapoi	Liquiu	vapoi	Liquiu	ναμοι	Liquiu	vapoi	Liquid	11/111
-40	71.66	690.2	0.6435	1389	4414	2242	_	0.01792	2.926×10^{-4}	7.957×10^{-6}	_	0.9955	0.00176	0.03565
-30	119.4	677.8	1.037	1360	4465	2322	_	0.01898	2.630×10^{-4}	8.311×10^{-6}	_	1.017	0.00185	0.03341
-25	151.5	671.5	1.296	1345	4489	2369	0.5968	0.01957	2.492×10^{-4}	8.490×10^{-6}	1.875	1.028	0.00190	0.03229
-20	190.1	665.1	1.603	1329	4514	2420	0.5853	0.02015	2.361×10^{-4}	8.669×10^{-6}	1.821	1.041	0.00194	0.03118
-15	236.2	658.6	1.966	1313	4538	2476	0.5737	0.02075	2.236×10^{-4}	8.851×10^{-6}	1.769	1.056	0.00199	0.03007
-10	290.8	652.1	2.391	1297	4564	2536	0.5621	0.02138	2.117×10^{-4}	9.034×10^{-6}	1.718	1.072	0.00205	0.02896
-5	354.9	645.4	2.886	1280	4589	2601	0.5505	0.02203	2.003×10^{-4}	9.218×10^{-6}	1.670	1.089	0.00210	0.02786
0	429.6	638.6	3.458	1262	4617	2672	0.5390	0.02270	1.896×10^{-4}	9.405×10^{-6}	1.624	1.107	0.00216	0.02676
5	516	631.7	4.116	1244	4645	2749	0.5274	0.02341	1.794×10^{-4}	9.593×10^{-6}	1.580	1.126	0.00223	0.02566
10	615.3	624.6	4.870	1226	4676	2831	0.5158	0.02415	1.697×10^{-4}	9.784×10^{-6}	1.539	1.147	0.00230	0.02457
15	728.8	617.5	5.729	1206	4709	2920	0.5042	0.02492	1.606×10^{-4}	9.978×10^{-6}	1.500	1.169	0.00237	0.02348
20	857.8	610.2	6.705	1186	4745	3016	0.4927	0.02573	1.519×10^{-4}	1.017×10^{-5}	1.463	1.193	0.00245	0.02240
25	1003	602.8	7.809	1166	4784	3120	0.4811	0.02658	1.438×10^{-4}	1.037×10^{-5}	1.430	1.218	0.00254	0.02132
30	1167	595.2	9.055	1144	4828	3232	0.4695	0.02748	1.361×10^{-4}	1.057×10^{-5}	1.399	1.244	0.00264	0.02024
35	1351	587.4	10.46	1122	4877	3354	0.4579	0.02843	1.288×10^{-4}	1.078×10^{-5}	1.372	1.272	0.00275	0.01917
40	1555	579.4	12.03	1099	4932	3486	0.4464	0.02943	1.219×10^{-4}	1.099×10^{-5}	1.347	1.303	0.00287	0.01810
45	1782	571.3	13.8	1075	4993	3631	0.4348	0.03049	1.155×10^{-4}	1.121×10^{-5}	1.327	1.335	0.00301	0.01704
50	2033	562.9	15.78	1051	5063	3790	0.4232	0.03162	1.094×10^{-4}	1.143×10^{-5}	1.310	1.371	0.00316	0.01598
55	2310	554.2	18.00	1025	5143	3967	0.4116	0.03283	1.037×10^{-4}	1.166×10^{-5}	1.297	1.409	0.00334	0.01493
60	2614	545.2	20.48	997.4	5234	4163	0.4001	0.03412	9.846×10^{-5}	1.189×10^{-5}	1.288	1.452	0.00354	0.01389
65	2948	536.0	23.26	968.9	5340	4384	0.3885	0.03550	9.347×10^{-5}	1.213×10^{-5}	1.285	1.499	0.00377	0.01285
70	3312	526.3	26.39	939.0	5463	4634	0.3769	0.03700	8.879×10^{-5}	1.238×10^{-5}	1.287	1.551	0.00404	0.01181
75	3709	516.2	29.90	907.5	5608	4923	0.3653	0.03862	8.440×10^{-5}	1.264×10^{-5}	1.296	1.612	0.00436	0.01079
80	4141	505.7	33.87	874.1	5780	5260	0.3538	0.04038	8.030×10^{-5}	1.292×10^{-5}	1.312	1.683	0.00474	0.00977
85	4609	494.5	38.36	838.6	5988	5659	0.3422	0.04232	7.646×10^{-5}	1.322×10^{-5}	1.338	1.768	0.00521	0.00876
90	5116	482.8	43.48	800.6	6242	6142	0.3306	0.04447	7.284×10^{-5}	1.354×10^{-5}	1.375	1.871	0.00579	0.00776
95	5665	470.2	49.35	759.8	6561	6740	0.3190	0.04687	6.946×10^{-5}	1.389×10^{-5}	1.429	1.999	0.00652	0.00677
100	6257	456.6	56.15	715.5	6972	7503	0.3075	0.04958	6.628×10^{-5}	1.429×10^{-5}	1.503	2.163	0.00749	0.00579

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu / \rho$ and $\alpha = k / \rho c_p = \nu / \text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg \cdot °C for specific heat is equivalent to kJ/kg \cdot K, and the unit W/m \cdot °C for thermal conductivity is equivalent to W/m \cdot K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenberg, and Baehr, "Eine neue Fundamentalgleichung fur Ammoniak," DKV-Tagungsbericht 20:167–181, 1993; Liley and Desai, "Thermophysical Properties of Refrigerants," ASHRAE, 1993, ISBN 1-1883413-10-9.

Çengel: Introduction to
Thermodynamics and Heat
Transfer, Second Edition

Back Matter

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

793

Appendix 1

TABLE A-18

Properties of saturated propane

	Saturation Pressure	ρ, k	nsity g/m³	Enthalpy of Vaporization	Spe $_{H}$		Cond	ermal uctivity /m · K	μ, k	c Viscosity g/m · s	Nun F	ndtl nber Pr	Volume Expansion Coefficient β, I/K	Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	<i>h</i> _{fg} , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-120	0.4053	664.7	0.01408	498.3	2003	1115	0.1802	0.00589	6.136×10^{-4}	4.372×10^{-6}	6.820	0.827	0.00153	0.02630
-110	1.157	654.5	0.03776	489.3	2021	1148	0.1738	0.00645	5.054×10^{-4}	4.625×10^{-6}	5.878	0.822	0.00157	0.02486
-100	2.881	644.2	0.08872	480.4	2044	1183	0.1672	0.00705	4.252×10^{-4}	4.881×10^{-6}	5.195	0.819	0.00161	0.02344
-90	6.406	633.8	0.1870	471.5	2070	1221	0.1606	0.00769	3.635×10^{-4}	5.143×10^{-6}	4.686	0.817	0.00166	0.02202
-80	12.97	623.2	0.3602	462.4	2100	1263	0.1539	0.00836	3.149×10^{-4}	5.409×10^{-6}	4.297	0.817	0.00171	0.02062
-70	24.26	612.5	0.6439	453.1	2134	1308	0.1472	0.00908	2.755×10^{-4}	5.680×10^{-6}	3.994	0.818	0.00177	0.01923
-60	42.46	601.5	1.081	443.5	2173	1358	0.1407	0.00985	2.430×10^{-4}	5.956×10^{-6}	3.755	0.821	0.00184	0.01785
-50	70.24	590.3	1.724	433.6	2217	1412	0.1343	0.01067	2.158×10^{-4}	6.239×10^{-6}	3.563	0.825	0.00192	0.01649
-40	110.7	578.8	2.629	423.1	2258	1471	0.1281	0.01155	1.926×10^{-4}	6.529×10^{-6}	3.395	0.831	0.00201	0.01515
-30	167.3	567.0	3.864	412.1	2310	1535	0.1221	0.01250	1.726×10^{-4}	6.827×10^{-6}	3.266	0.839	0.00213	0.01382
-20	243.8	554.7	5.503	400.3	2368	1605	0.1163	0.01351	1.551×10^{-4}	7.136×10^{-6}	3.158	0.848	0.00226	0.01251
-10	344.4	542.0	7.635	387.8	2433	1682	0.1107	0.01459	1.397×10^{-4}	7.457×10^{-6}	3.069	0.860	0.00242	0.01122
0	473.3	528.7	10.36	374.2	2507	1768	0.1054	0.01576	1.259×10^{-4}	7.794×10^{-6}	2.996	0.875	0.00262	0.00996
5	549.8	521.8	11.99	367.0	2547	1814	0.1028	0.01637	1.195×10^{-4}	7.970×10^{-6}	2.964	0.883	0.00273	0.00934
10	635.1	514.7	13.81	359.5	2590	1864	0.1002	0.01701	1.135×10^{-4}	8.151×10^{-6}	2.935	0.893	0.00286	0.00872
15	729.8	507.5	15.85	351.7	2637	1917	0.0977	0.01767	1.077×10^{-4}	8.339×10^{-6}	2.909	0.905	0.00301	0.00811
20	834.4	500.0	18.13	343.4	2688	1974	0.0952	0.01836	1.022×10^{-4}	8.534×10^{-6}	2.886	0.918	0.00318	0.00751
25	949.7	492.2	20.68	334.8	2742	2036	0.0928	0.01908	9.702×10^{-5}	8.738×10^{-6}	2.866	0.933	0.00337	0.00691
	1076	484.2	23.53	325.8	2802	2104	0.0904	0.01982	9.197×10^{-5}	8.952×10^{-6}	2.850	0.950	0.00358	0.00633
	1215	475.8	26.72	316.2	2869	2179	0.0881	0.02061	8.710×10^{-5}	9.178×10^{-6}	2.837	0.971	0.00384	0.00575
	1366	467.1	30.29	306.1	2943	2264	0.0857	0.02142	8.240×10^{-5}	9.417×10^{-6}	2.828	0.995	0.00413	0.00518
	1530	458.0	34.29	295.3	3026	2361	0.0834	0.02228	7.785×10^{-5}	9.674×10^{-6}	2.824	1.025	0.00448	0.00463
	1708	448.5	38.79	283.9	3122	2473	0.0811	0.02319	7.343×10^{-5}	9.950×10^{-5}	2.826	1.061	0.00491	0.00408
	2110	427.5	49.66	258.4	3283	2769	0.0765	0.02517	6.487×10^{-5}	1.058×10^{-5}	2.784	1.164	0.00609	0.00303
	2580	403.2	64.02	228.0	3595	3241	0.0717	0.02746	5.649×10^{-5}	1.138×10^{-5}	2.834	1.343	0.00811	0.00204
	3127	373.0	84.28	189.7	4501	4173	0.0663	0.03029	4.790×10^{-5}	1.249×10^{-5}	3.251	1.722	0.01248	0.00114
90	3769	329.1	118.6	133.2	6977	7239	0.0595	0.03441	3.807×10^{-5}	1.448×10^{-5}	4.465	3.047	0.02847	0.00037

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\mu c_p = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg \cdot °C for specific heat is equivalent to kJ/kg \cdot K, and the unit W/m \cdot °C for thermal conductivity is equivalent to W/m \cdot K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, "Fundamental Equations of State," Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, "Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and Normal Butane," J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G.R. Somayajulu, "A Generalized Equation for Surface Tension from the Triple-Point to the Critical-Point," International Journal of Thermophysics, Vol. 9, No. 4, 1988.

Back Matter

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

794 Introduction to Thermodynamics and Heat Transfer

TABLE /	A-19							
Propert	ies of liqui	ds						
Temp. <i>T</i> , °C	Density ρ , kg/m ³	Specific Heat c_p , J/kg \cdot K	Thermal Conductivity k, W/m · K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m \cdot s	Kinematic Viscosity ν, m ² /s	Prandtl Number Pr	Volume Expansion Coeff. β, 1/K
				Methan	e [CH ₄]			
-160 -150 -140 -130 -120 -110 -100 -90	420.2 405.0 388.8 371.1 351.4 328.8 301.0 261.7	3492 3580 3700 3875 4146 4611 5578 8902	0.1863 0.1703 0.1550 0.1402 0.1258 0.1115 0.0967 0.0797	1.270×10^{-7} 1.174×10^{-7} 1.077×10^{-7} 9.749×10^{-8} 8.634×10^{-8} 7.356×10^{-8} 5.761×10^{-8} 3.423×10^{-8}	1.133×10^{-4} 9.169×10^{-5} 7.551×10^{-5} 6.288×10^{-5} 5.257×10^{-5} 4.377×10^{-5} 3.577×10^{-5} 2.761×10^{-5}	2.699×10^{-7} 2.264×10^{-7} 1.942×10^{-7} 1.694×10^{-7} 1.496×10^{-7} 1.331×10^{-7} 1.188×10^{-7} 1.055×10^{-7}	2.126 1.927 1.803 1.738 1.732 1.810 2.063 3.082	0.00352 0.00391 0.00444 0.00520 0.00637 0.00841 0.01282 0.02922
				Methanol				
20 30 40 50 60 70	788.4 779.1 769.6 760.1 750.4 740.4	2515 2577 2644 2718 2798 2885	0.1987 0.1980 0.1972 0.1965 0.1957 0.1950	1.002×10^{-7} 9.862×10^{-8} 9.690×10^{-8} 9.509×10^{-8} 9.320×10^{-8} 9.128×10^{-8}	5.857 × 10 ⁻⁴ 5.088 × 10 ⁻⁴ 4.460 × 10 ⁻⁴ 3.942 × 10 ⁻⁴ 3.510 × 10 ⁻⁴ 3.146 × 10 ⁻⁴	7.429×10^{-7} 6.531×10^{-7} 5.795×10^{-7} 5.185×10^{-7} 4.677×10^{-7} 4.250×10^{-7}	7.414 6.622 5.980 5.453 5.018 4.655	0.00118 0.00120 0.00123 0.00127 0.00132 0.00137
				Isobutane	(R600a)			
-100 -75 -50 -25 0 25 50 75 100	683.8 659.3 634.3 608.2 580.6 550.7 517.3 478.5 429.6	1881 1970 2069 2180 2306 2455 2640 2896 3361	0.1383 0.1357 0.1283 0.1181 0.1068 0.0956 0.0851 0.0757 0.0669	1.075×10^{-7} 1.044×10^{-7} 9.773×10^{-8} 8.906×10^{-8} 7.974×10^{-8} 7.069×10^{-8} 6.233×10^{-8} 5.460×10^{-8} 4.634×10^{-8}	9.305×10^{-4} 5.624×10^{-4} 3.769×10^{-4} 2.688×10^{-4} 1.993×10^{-4} 1.510×10^{-4} 1.155×10^{-4} 8.785×10^{-5} 6.483×10^{-5}	1.360×10^{-6} 8.531×10^{-7} 5.942×10^{-7} 4.420×10^{-7} 3.432×10^{-7} 2.743×10^{-7} 2.233×10^{-7} 1.836×10^{-7} 1.509×10^{-7}	12.65 8.167 6.079 4.963 4.304 3.880 3.582 3.363 3.256	0.00142 0.00150 0.00161 0.00177 0.00199 0.00232 0.00286 0.00385 0.00628
				Glyc	erin			
0 5 10 15 20 25 30 35 40	1276 1273 1270 1267 1264 1261 1258 1255 1252	2262 2288 2320 2354 2386 2416 2447 2478 2513	0.2820 0.2835 0.2846 0.2856 0.2860 0.2860 0.2860 0.2860 0.2863	9.773×10^{-8} 9.732×10^{-8} 9.662×10^{-8} 9.576×10^{-8} 9.484×10^{-8} 9.388×10^{-8} 9.291×10^{-8} 9.195×10^{-8} 9.101×10^{-8}	10.49 6.730 4.241 2.496 1.519 0.9934 0.6582 0.4347 0.3073	8.219×10^{-3} 5.287×10^{-3} 3.339×10^{-3} 1.970×10^{-3} 1.201×10^{-3} 7.878×10^{-4} 5.232×10^{-4} 3.464×10^{-4} 2.455×10^{-4}	84,101 54,327 34,561 20,570 12,671 8,392 5,631 3,767 2,697	
				Engine Oi	l (unused)			
0 20 40 60 80 100 120 140 150	899.0 888.1 876.0 863.9 852.0 840.0 828.9 816.8 810.3	1797 1881 1964 2048 2132 2220 2308 2395 2441	0.1469 0.1450 0.1444 0.1404 0.1380 0.1367 0.1347 0.1330 0.1327	9.097×10^{-8} 8.680×10^{-8} 8.391×10^{-8} 7.934×10^{-8} 7.599×10^{-8} 7.330×10^{-8} 7.042×10^{-8} 6.798×10^{-8} 6.708×10^{-8}	3.814 0.8374 0.2177 0.07399 0.03232 0.01718 0.01029 0.006558 0.005344	4.242×10^{-3} 9.429×10^{-4} 2.485×10^{-4} 8.565×10^{-5} 3.794×10^{-5} 2.046×10^{-5} 1.241×10^{-5} 8.029×10^{-6} 6.595×10^{-6}	46,636 10,863 2,962 1,080 499.3 279.1 176.3 118.1 98.31	0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070

						A	ppendix 1	- 1	795
TABLE	A-20								
Propert	ties of liquid	d metals							
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl		lume ansion
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Number		oeff.
T, °C	ρ , kg/m ³	c_{p} , J/kg · K	<i>k</i> , W/m ⋅ K	α , m ² /s	μ , kg/m · s	ν , m ² /s	Pr		1/K
		F		Mercury (Hg) Me	Iting Point: –39°C				
0	13595	140.4	8.18200	4.287×10^{-6}	1.687×10^{-3}	1.241×10^{-7}	0.0289	1.810 ×	
25	13534	139.4	8.51533	4.514×10^{-6}	1.534×10^{-3}	1.133×10^{-7}	0.0251	1.810 ×	
50	13473	138.6	8.83632	4.734×10^{-6}	1.423×10^{-3}	1.056×10^{-7}		1.810 ×	
75	13412	137.8	9.15632	4.956×10^{-6}	1.316×10^{-3}	9.819×10^{-8}		1.810 ×	
100	13351	137.1	9.46706	5.170×10^{-6}	1.245×10^{-3}	9.326×10^{-8}		1.810 ×	
150	13231	136.1	10.07780	5.595×10^{-6}	1.126×10^{-3}	8.514×10^{-8}		1.810 ×	
200	13112	135.5	10.65465	5.996×10^{-6}	1.043×10^{-3}	7.959×10^{-8}		1.815 ×	
250	12993	135.3	11.18150	6.363×10^{-6}	9.820×10^{-4}	7.558×10^{-8}	0.0119	1.829 ×	< 10 ⁻⁴
300	12873	135.3	11.68150	6.705×10^{-6}	9.336×10^{-4}	7.252×10^{-8}	0.0108	1.854 ×	< 10 ⁻⁴
				Bismuth (Bi) Melt	ing Point: 271°C				
350	9969	146.0	16.28	1.118×10^{-5}	1.540×10^{-3}	1.545×10^{-7}	0.01381		
400	9908	148.2	16.10	1.096×10^{-5}	1.422×10^{-3}	1.436×10^{-7}	0.01310		
500	9785	152.8	15.74	1.052×10^{-5}	1.188×10^{-3}	1.215×10^{-7}	0.01310		
600	9663	157.3	15.60	1.032×10^{-5} 1.026×10^{-5}	1.013×10^{-3}	1.048×10^{-7}	0.01134		
700	9540	161.8	15.60	1.020×10^{-5}	8.736×10^{-4}	9.157×10^{-8}	0.00906		
				Lead (Pb) Melting	Point: 327°C				
400	10506	158	15.97	9.623×10^{-6}	2.277×10^{-3}	2.167×10^{-7}	0.02252		
450	10449	156	15.74	9.649×10^{-6}	2.065×10^{-3}	1.976×10^{-7}	0.02048		
500	10390	155	15.54	9.651×10^{-6}	1.884×10^{-3}	1.814×10^{-7}	0.01879		
550	10329	155	15.39	9.610×10^{-6}	1.758×10^{-3}	1.702×10^{-7}	0.01771		
600	10267	155	15.23	9.568×10^{-6}	1.632×10^{-3}	1.589×10^{-7}	0.01661		
650	10206	155	15.07	9.526×10^{-6}	1.505×10^{-3}	1.475×10^{-7}	0.01549		
700	10145	155	14.91	9.483×10^{-6}	1.379×10^{-3}	1.360×10^{-7}	0.01434		
				Sodium (Na) Meli	ting Point: 98°C				
100	927.3	1378	85.84	6.718×10^{-5}	6.892×10^{-4}	7.432×10^{-7}	0.01106		
200	902.5	1349	80.84	6.639×10^{-5}	5.385×10^{-4}	5.967×10^{-7}	0.00898		
300	877.8	1320	75.84	6.544×10^{-5}	3.878×10^{-4}	4.418×10^{-7}	0.00675		
400	853.0	1296	71.20	6.437×10^{-5}	2.720×10^{-4}	3.188×10^{-7}	0.00495		
500	828.5		67.41	6.335×10^{-5}	2.411×10^{-4}	2.909×10^{-7}	0.00459		
600	804.0	1272	63.63	6.220×10^{-5}	2.101×10^{-4}	2.614×10^{-7}	0.00420		
				Potassium (K) Meltir	ng Point: 64°C				
200	795.2	790.8	43.99	6.995×10^{-5}	3.350×10^{-4}	4.213×10^{-7}	0.00602	3	
300	771.6	772.8	42.01	7.045×10^{-5}	2.667×10^{-4}	3.456×10^{-7}	0.00490		
400	748.0	754.8	40.03	7.043×10^{-5} 7.090×10^{-5}	1.984×10^{-4}	2.652×10^{-7}	0.00430		
500	723.9	750.0	37.81	6.964×10^{-5}	1.668×10^{-4}	2.304×10^{-7}	0.00374		
600	699.6	750.0	35.50	6.765×10^{-5}	1.487×10^{-4}	2.126×10^{-7}	0.00334		
			Sodium-P	otassium (%22Na-%7	8K) Melting Point: -	- 11°C			
100	847.3	944.4	25.64	3.205×10^{-5}	5.707×10^{-4}	6.736×10^{-7}	0.02102		
200	823.2	922.5	26.27	3.459×10^{-5}	4.587×10^{-4}	5.572×10^{-7}	0.01611		
300	799.1	900.6	26.89	3.736×10^{-5}	3.467×10^{-4}	4.339×10^{-7}	0.01161		
400	775.0	879.0	27.50	4.037×10^{-5}	2.357×10^{-4}	3.041×10^{-7}	0.00753		
500	751.5	880.1	27.89	4.217×10^{-5}	2.108×10^{-4}	2.805×10^{-7}	0.00665		
600	728.0	881.2	28.28	4.408×10^{-5}	1.859×10^{-4}	2.553×10^{-7}	0.00579		
									

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

Back Matter Appendix
Tables an

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

796 Introduction to Thermodynamics and Heat Transfer

TABL	TABLE A-21										
Ideal-	-gas prope	rties of air									
T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V _r	s° kJ/kg ⋅ K	T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V _r	s° kJ/kg ⋅ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540 550 560 570	544.35 555.74 565.17 575.59	11.10 11.86 12.66 13.50	389.34 396.86 404.42 411.97	139.7 133.1 127.0 121.2	2.29906 2.31809 2.33685 2.35531	1200 1220 1240	1277.79 1301.31 1324.93	238.0 254.7 272.3	933.33 951.09 968.95	14.470 13.747 13.069	3.17888 3.19834 3.21751

(Continued)

© The McGraw-Hill Companies, 2008

Appendix 1

797

TABLE	A-21										
Ideal-g	gas propertie	es of air (Concluded)								
<i>T</i> K	<i>h</i> kJ/kg	P_r	и kJ/kg	V _r	<i>s</i> ° kJ/kg ⋅ K	<i>T</i> K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V_r	<i>s</i> ° kJ/kg ⋅ K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

Back Matter Appendix 1: Property
Tables and Charts (SI
Units)

© The McGraw-Hill Companies, 2008

798 Introduction to Thermodynamics and Heat Transfer

TABLE A-22

Properties of air at 1 atm pressure

Temp. <i>T</i> , °C	Density $ ho$, kg/m ³	Specific Heat c_p , J/kg \cdot K	Thermal Conductivity <i>k</i> , W/m · K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m \cdot s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
-150	2.866	983	0.01171	4.158×10^{-6}	8.636×10^{-6}	3.013×10^{-6}	0.7246
-100	2.038	966	0.01171	8.036×10^{-6}	1.189×10^{-6}	5.837×10^{-6}	0.7240
-50	1.582	999	0.01979	1.252×10^{-5}	1.474×10^{-5}	9.319×10^{-6}	0.7440
-40	1.514	1002	0.02057	1.356×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.7436
-30	1.451	1004	0.02134	1.465×10^{-5}	1.579×10^{-5}	1.087×10^{-5}	0.742
-20	1.394	1005	0.02134	1.578×10^{-5}	1.630×10^{-5}	1.169×10^{-5}	0.7408
-10	1.341	1006	0.02288	1.696×10^{-5}	1.680×10^{-5}	1.252×10^{-5}	0.738
0	1.292	1006	0.02364	1.818×10^{-5}	1.729×10^{-5}	1.338×10^{-5}	0.7362
5	1.269	1006	0.02304	1.880×10^{-5}	1.754×10^{-5}	1.382×10^{-5}	0.7350
10	1.246	1006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.426×10^{-5}	0.7336
15	1.225	1007	0.02476	2.009×10^{-5}	1.802×10^{-5}	1.470×10^{-5}	0.7323
20	1.204	1007	0.02514	2.003×10^{-5} 2.074×10^{-5}	1.825×10^{-5}	1.516×10^{-5}	0.732
25	1.184	1007	0.02514	2.141×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.729
30	1.164	1007	0.02588	2.208×10^{-5}	1.872×10^{-5}	1.608×10^{-5}	0.7282
35	1.145	1007	0.02625	2.277×10^{-5}	1.895×10^{-5}	1.655×10^{-5}	0.7268
40	1.127	1007	0.02662	2.346×10^{-5}	1.918×10^{-5}	1.702×10^{-5}	0.725
45	1.109	1007	0.02699	2.416×10^{-5}	1.941×10^{-5}	1.752×10^{-5} 1.750×10^{-5}	0.724
50	1.092	1007	0.02735	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.724
60	1.059	1007	0.02733	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7202
70	1.028	1007	0.02881	2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	0.7202
80	0.9994	1008	0.02953	2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.7154
90	0.9718	1008	0.02533	3.086×10^{-5}	2.139×10^{-5}	2.201×10^{-5}	0.713
100	0.9458	1009	0.03024	3.243×10^{-5}	2.181×10^{-5}	2.306×10^{-5}	0.7132
120	0.8977	1011	0.03033	3.565×10^{-5}	2.161×10^{-5} 2.264×10^{-5}	2.522×10^{-5}	0.7073
140	0.8542	1013	0.03233	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.707
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420×10^{-5}	2.975×10^{-5}	0.7014
180	0.7788	1019	0.03511	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992
200	0.7459	1023	0.03779	4.954×10^{-5}	2.507×10^{-5}	3.455×10^{-5}	0.6974
250	0.6746	1033	0.03773	5.890×10^{-5}	2.760×10^{-5}	4.091×10^{-5}	0.6946
300	0.6158	1044	0.04104	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.693
350	0.5664	1056	0.04721	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.693
400	0.5243	1069	0.05015	8.951×10^{-5}	3.261×10^{-5}	6.219×10^{-5}	0.6948
450	0.4880	1081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997×10^{-5}	0.696
500	0.4565	1093	0.05572	1.117×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.6986
600	0.4042	1115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.703
700	0.3627	1113	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.703
800	0.3289	1153	0.00381	1.855×10^{-4}	4.362×10^{-5}	1.33×10^{-4} 1.326×10^{-4}	0.7092
900	0.3008	1169	0.07465	2.122×10^{-4}	4.600×10^{-5}	1.520×10^{-4} 1.529×10^{-4}	0.714
1000	0.3006	1184	0.07465	2.122×10^{-4} 2.398×10^{-4}	4.826×10^{-5}	1.741×10^{-4}	0.720
1500	0.2772	1184	0.07868	3.908×10^{-4}	4.826×10^{-5} 5.817×10^{-5}	1.741×10^{-4} 2.922×10^{-4}	0.7260
2000	0.1553	1234	0.09599	5.664×10^{-4}	6.630×10^{-5}	4.270×10^{-4}	0.7478

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 1984; and Thermophysical Properties of Matter. Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

© The McGraw-Hill Companies, 2008 801

799

Appendix 1

Properties	s of gases at 1	atm pressure					
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Number
<i>T</i> , °C	ρ , kg/m ³	c_p , J/kg · K	k, W/m ⋅ K	α , m ² /s	μ, kg/m·s	ν, m²/s	Pr
			Carbon L	Dioxide, CO ₂			
-50	2.4035	746	0.01051	5.860×10^{-6}	1.129×10^{-5}	4.699×10^{-6}	0.8019
0	1.9635	811	0.01456	9.141×10^{-6}	1.375×10^{-5}	7.003×10^{-6}	0.766
50	1.6597	866.6	0.01858	1.291×10^{-5}	1.612×10^{-5}	9.714×10^{-6}	0.752
100	1.4373	914.8	0.02257	1.716×10^{-5}	1.841×10^{-5}	1.281×10^{-5}	0.746
150	1.2675	957.4	0.02652	2.186×10^{-5} 2.698×10^{-5}	2.063×10^{-5} 2.276×10^{-5}	1.627×10^{-5} 2.008×10^{-5}	0.744 0.744
200 300	1.1336	995.2	0.03044 0.03814	3.847×10^{-5}	2.682×10^{-5}	2.866×10^{-5}	0.744
400	0.9358	1060 1112	0.03614	5.847×10^{-5} 5.151×10^{-5}	3.061×10^{-5}	3.842×10^{-5}	0.745
500	0.7968 0.6937	1112	0.04363	6.600×10^{-5}	3.416×10^{-5}	4.924×10^{-5}	0.745
1000	0.4213	1292	0.03293	1.560×10^{-4}	4.898×10^{-5}	1.162×10^{-4}	0.745
1500	0.3025	1356	0.10688	2.606×10^{-4}	6.106×10^{-5}	2.019×10^{-4}	0.743
2000	0.2359	1387	0.11522	3.521×10^{-4}	7.322×10^{-5}	3.103×10^{-4}	0.774
			Carb	on Monoxide, CO			
-50	1.5297	1081	0.01901	1.149×10^{-5}	1.378×10^{-5}	9.012×10^{-6}	0.784
0	1.2497	1048	0.01901	1.739×10^{-5}	1.629×10^{-5}	1.303×10^{-5}	0.764
50	1.0563	1048	0.02278	2.407×10^{-5}	1.863×10^{-5}	1.764×10^{-5}	0.749
100	0.9148	1041	0.02041	3.142×10^{-5}	2.080×10^{-5}	2.274×10^{-5}	0.732
150	0.8067	1049	0.02992	3.936×10^{-5}	2.283×10^{-5}	2.830×10^{-5}	0.723
200	0.7214	1060	0.03656	4.782×10^{-5}	2.472×10^{-5}	3.426×10^{-5}	0.715
300	0.5956	1085	0.04277	6.619×10^{-5}	2.812×10^{-5}	4.722×10^{-5}	0.713
400	0.5071	1111	0.04860	8.628×10^{-5}	3.111×10^{-5}	6.136×10^{-5}	0.711
500	0.4415	1135	0.05412	1.079×10^{-4}	3.379×10^{-5}	7.653×10^{-5}	0.708
1000	0.2681	1226	0.07894	2.401×10^{-4}	4.557×10^{-5}	1.700×10^{-4}	0.708
1500	0.1925	1279	0.10458	4.246×10^{-4}	6.321×10^{-5}	3.284×10^{-4}	0.773
2000	0.1502	1309	0.13833	7.034×10^{-4}	9.826×10^{-5}	6.543×10^{-4}	0.930
			Λ	Methane, CH ₄			
-50	0.8761	2243	0.02367	1.204×10^{-5}	8.564×10^{-6}	9.774×10^{-6}	0.811
0	0.7158	2217	0.03042	1.917×10^{-5}	1.028×10^{-5}	1.436×10^{-5}	0.749
50	0.6050	2302	0.03766	2.704×10^{-5}	1.191×10^{-5}	1.969×10^{-5}	0.728
100	0.5240	2443	0.04534	3.543×10^{-5}	1.345×10^{-5}	2.567×10^{-5}	0.724
150	0.4620	2611	0.05344	4.431×10^{-5}	1.491×10^{-5}	3.227×10^{-5}	0.728
200	0.4132	2791	0.06194	5.370×10^{-5}	1.630×10^{-5}	3.944×10^{-5}	0.734
300	0.3411	3158	0.07996	7.422×10^{-5}	1.886×10^{-5}	5.529×10^{-5}	0.745
400	0.2904	3510	0.09918	9.727×10^{-5}	2.119×10^{-5}	7.297×10^{-5}	0.750
500	0.2529	3836	0.11933	1.230×10^{-4}	2.334×10^{-5}	9.228×10^{-5}	0.750
1000	0.1536	5042	0.22562	2.914×10^{-4}	3.281×10^{-5}	2.136×10^{-4}	0.733
1500	0.1103	5701	0.31857	5.068×10^{-4}	4.434×10^{-5}	4.022×10^{-4}	0.793
2000	0.0860	6001	0.36750	7.120×10^{-4}	6.360×10^{-5}	7.395×10^{-4}	1.038
			ŀ	Hydrogen, H ₂			
-50	0.11010	12635	0.1404	1.009×10^{-4}	7.293×10^{-6}	6.624×10^{-5}	0.656
0	0.08995	13920	0.1652	1.319×10^{-4}	8.391×10^{-6}	9.329×10^{-5}	0.707
50	0.07603	14349	0.1881	1.724×10^{-4}	9.427×10^{-6}	1.240×10^{-4}	0.719
100	0.06584	14473	0.2095	2.199×10^{-4}	1.041×10^{-5}	1.582×10^{-4}	0.719
150	0.05806	14492	0.2296	2.729×10^{-4}	1.136×10^{-5}	1.957×10^{-4}	0.717
200	0.05193	14482	0.2486	3.306×10^{-4}	1.228×10^{-5}	2.365×10^{-4}	0.71

Back Matter

Appendix 1: Property Tables and Charts (SI Units)

© The McGraw-Hill Companies, 2008

Introduction to Thermodynamics and Heat Transfer 800

TABLE A	-23						
		atm pressure (Concluded)				
Temp.	Density $ ho$, kg/m 3	Specific Heat c_p , J/kg \cdot K	Thermal Conductivity <i>k</i> , W/m · K	Thermal Diffusivity $lpha$, m ² /s	Dynamic Viscosity μ , kg/m \cdot s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
300 400 500 1000 1500 2000	0.04287 0.03650 0.03178 0.01930 0.01386 0.01081	14481 14540 14653 15577 16553 17400	0.2843 0.3180 0.3509 0.5206 0.6581 0.5480	4.580×10^{-4} 5.992×10^{-4} 7.535×10^{-4} 1.732×10^{-3} 2.869×10^{-3} 2.914×10^{-3}	1.403×10^{-5} 1.570×10^{-5} 1.730×10^{-5} 2.455×10^{-5} 3.099×10^{-5} 3.690×10^{-5}	3.274×10^{-4} 4.302×10^{-4} 5.443×10^{-4} 1.272×10^{-3} 2.237×10^{-3} 3.414×10^{-3}	0.7149 0.7179 0.7224 0.7345 0.7795 1.1717
				Nitrogen, N_2			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	1.5299 1.2498 1.0564 0.9149 0.8068 0.7215 0.5956 0.5072 0.4416 0.2681 0.1925 0.1502	957.3 1035 1042 1041 1043 1050 1070 1095 1120 1213 1266 1297	0.02001 0.02384 0.02746 0.03090 0.03416 0.03727 0.04309 0.04848 0.05358 0.07938 0.11793 0.18590	1.366×10^{-5} 1.843×10^{-5} 2.494×10^{-5} 3.244×10^{-5} 4.058×10^{-5} 4.921×10^{-5} 6.758×10^{-5} 8.727×10^{-5} 1.083×10^{-4} 2.440×10^{-4} 4.839×10^{-4} 9.543×10^{-4}	$\begin{array}{c} 1.390\times10^{-5}\\ 1.640\times10^{-5}\\ 1.874\times10^{-5}\\ 2.094\times10^{-5}\\ 2.300\times10^{-5}\\ 2.494\times10^{-5}\\ 2.849\times10^{-5}\\ 3.166\times10^{-5}\\ 3.451\times10^{-5}\\ 4.594\times10^{-5}\\ 5.562\times10^{-5}\\ 6.426\times10^{-5}\\ \end{array}$	$\begin{array}{c} 9.091\times10^{-6}\\ 1.312\times10^{-5}\\ 1.774\times10^{-5}\\ 2.289\times10^{-5}\\ 2.851\times10^{-5}\\ 3.457\times10^{-5}\\ 4.783\times10^{-5}\\ 6.242\times10^{-5}\\ 7.816\times10^{-5}\\ 1.713\times10^{-4}\\ 2.889\times10^{-4}\\ 4.278\times10^{-5} \end{array}$	0.6655 0.7121 0.7114 0.7056 0.7025 0.7025 0.7078 0.7153 0.7215 0.7022 0.5969 0.4483
				Oxygen, O ₂			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	1.7475 1.4277 1.2068 1.0451 0.9216 0.8242 0.6804 0.5793 0.5044 0.3063 0.2199 0.1716	984.4 928.7 921.7 931.8 947.6 964.7 997.1 1025 1048 1121 1165 1201	0.02067 0.02472 0.02867 0.03254 0.03637 0.04014 0.04751 0.05463 0.06148 0.09198 0.11901 0.14705	1.201×10^{-5} 1.865×10^{-5} 2.577×10^{-5} 3.342×10^{-5} 4.164×10^{-5} 5.048×10^{-5} 7.003×10^{-5} 9.204×10^{-5} 1.163×10^{-4} 2.678×10^{-4} 4.643×10^{-4} 7.139×10^{-4}	1.616×10^{-5} 1.916×10^{-5} 2.194×10^{-5} 2.451×10^{-5} 2.694×10^{-5} 2.923×10^{-5} 3.350×10^{-5} 3.744×10^{-5} 4.114×10^{-5} 5.732×10^{-5} 7.133×10^{-5} 8.417×10^{-5}	9.246×10^{-6} 1.342×10^{-5} 1.818×10^{-5} 2.346×10^{-5} 2.923×10^{-5} 3.546×10^{-5} 4.923×10^{-5} 6.463×10^{-5} 8.156×10^{-5} 1.871×10^{-4} 3.243×10^{-4} 4.907×10^{-4}	0.7694 0.7198 0.7053 0.7019 0.7019 0.7025 0.7030 0.7023 0.7010 0.6986 0.6985 0.6873
			Wa	ater Vapor, H ₂ O			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	0.9839 0.8038 0.6794 0.5884 0.5189 0.4640 0.3831 0.3262 0.2840 0.1725 0.1238 0.0966	1892 1874 1874 1887 1908 1935 1997 2066 2137 2471 2736 2928	0.01353 0.01673 0.02032 0.02429 0.02861 0.03326 0.04345 0.05467 0.06677 0.13623 0.21301 0.29183	7.271×10^{-6} 1.110×10^{-5} 1.596×10^{-5} 2.187×10^{-5} 2.890×10^{-5} 3.705×10^{-5} 5.680×10^{-5} 8.114×10^{-5} 1.100×10^{-4} 3.196×10^{-4} 6.288×10^{-4} 1.032×10^{-3}	7.187×10^{-6} 8.956×10^{-6} 1.078×10^{-5} 1.265×10^{-5} 1.456×10^{-5} 1.650×10^{-5} 2.045×10^{-5} 2.446×10^{-5} 2.847×10^{-5} 4.762×10^{-5} 6.411×10^{-5} 7.808×10^{-5}	7.305×10^{-6} 1.114×10^{-5} 1.587×10^{-5} 2.150×10^{-5} 2.806×10^{-5} 3.556×10^{-5} 5.340×10^{-5} 7.498×10^{-5} 1.002×10^{-4} 2.761×10^{-4} 8.084×10^{-4}	1.0047 1.0033 0.9944 0.9830 0.9712 0.9599 0.9401 0.9240 0.9108 0.8639 0.8233 0.7833

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by ρ and by dividing ν and α by P.

Appendix 1: Property Tables and Charts (SI Units)

Appendix 1

801

TABLE A-24

Properties of solid me	etals										
	Melting		Proper	ties at 300) K		Propertie	s at Vario k(W/n	us Tempe n · K)/c _p (
Composition	Point, K	$ ho$ kg/m 3	c_p J/kg \cdot K	<i>k</i> W/m ⋅ K	$ m _{m^2/s}$	100	200	400	600	800	1000
Aluminum: Pure	933	2702	903	237	97.1	302 482	237 798	240 949	231 1033	218 1146	
Alloy 2024-T6 (4.5% Cu, 1.5% Mg, 0.6% Mn) Alloy 195, Cast	775	2770	875	177	73.0	65 473	163 787	186 925	186 1042		
(4.5% Cu)		2790	883	168	68.2			174	185		
Beryllium	1550	1850	1825	200	59.2	990 203	301 1114	161 2191	126 2604	106 2823	90.8 3018
Bismuth	545	9780	122	7.86	6.59	16.5 112	9.69 120	127			
Boron	2573	2500	1107	27.0	9.76	190 128	55.5 600	16.8 1463	10.6 1892	9.6 2160	
Cadmium	594	8650	231	96.8	48.4	203 198	99.3 222	94.7 242	00.7	71.0	CF 4
Chromium	2118 1769	7160 8862	449 421	93.7 99.2	29.1 26.6	159 192 167	111 384 122	90.9 484 85.4	80.7 542 67.4	71.3 581 58.2	616
Copper:	1709	0002	421	99.2	20.0	236	379	450	503	550	628
Pure	1358	8933	385	401	117	482 252	413 356	393 397	379 417	366 433	352 451
Commercial bronze (90% Cu, 10% AI)	1293	8800	420	52	14		42 785	52 160	59 545		
Phosphor gear bronze (89% Cu, 11% Sn)	1104	8780	355	54	17		41 —	65 —	74 —		
Cartridge brass (70% Cu, 30% Zn)	1188	8530	380	110	33.9	75	95 360	137 395	149 425		
Constantan (55% Cu, 45% Ni) Germanium	1493 1211	8920 5360	384	23 59.9	6.71 34.7	17 237 232	19 362 96.8	43.2	27.3	19.8	17.4
Gold	1336	19,300	129	317	127	190 327	290 323	337 311	348 298	357 284	375 270
Iridium	2720	22,500	130	147	50.3	109 172 90	124 153	131 144	135 138	140 132	145 126 153
Iron: Pure	1810	7870	447	80.2	23.1	134	94.0	133 69.5	138 54.7	144 43.3	32.8
Armco						216	384	490	574	680	975
(99.75% pure)		7870	447	72.7	20.7	95.6 215	80.6 384	65.7 490	53.1 574	42.2 680	32.3 975
Carbon steels: Plain carbon (Mn ≤ 1 Si $\leq 0.1\%$) AISI 1010	%	7854 7832	434 434	60.5 63.9	17.7 18.8			56.7 487 58.7	48.0 559 48.8	39.2 685 39.2	1169
Carbon–silicon (Mn ≤ 1)	%	7832	434	51.9	14.9		487	58.7 559 49.8	48.8 685 44.0	39.2 1168 37.4	
$0.1\% < Si \le 0.6\%$)								501	582	699	971

(Continued)

Introduction to Thermodynamics and Heat Transfer 802

TABLE A-24											
Properties of solid m	etals (<i>Con</i>	tinued)									
	Molting		Proper	ties at 300) K	1	Propertie	s <i>at Vario</i> k(W/n	us Tempe n · K)/c _p (.		(K),
	Melting Point,	ρ	c_p	k	$\alpha \times 10^6$				-		
Composition	K	kg/m ³		W/m · K	m²/s	100	200	400	600	800	1000
Carbon-manganese-s (1% < Mn < 1.65% 0.1% < Si < 0.6%	6	8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090
Chromium (low) steels: \frac{1}{2} \text{ Cr-} \frac{1}{4} \text{ Mo-Si (0.18%} \\ 0.65\% \text{ Cr, 0.23\% Mo} \\ 0.6\% \text{ Si)}		7822	444	37.7	10.9			38.2 492	36.7 575	33.3 688	26.9 969
1 Cr-½ Mo (0.16% C, 1% Cr, 0.54% Mo,		7858	442	42.3	12.2			42.0	39.1	34.5	27.4
0.39% Si) 1 Cr-V (0.2% C, 1.02% Cr,		7836	443	48.9	14.1			492 46.8	575 42.1	688 36.3	969 28.2
0.15% V) Stainless steels:								492	575	688	969
AISI 302		8055	480	15.1	3.91			17.3 512	20.0 559	22.8 585	25.4 606
AISI 304	1670	7900	477	14.9	3.95	9.2 272	12.6 402	16.6 515	19.8 557	22.6 582	25.4 611
AISI 316		8238	468	13.4	3.48			15.2 504	18.3 550	21.3 576	24.2 602
AISI 347		7978	480	14.2	3.71			15.8 513	18.9 559	21.9 585	24.7 606
Lead	601	11,340	129	35.3	24.1	39.7 118	36.7 125	34.0 132	31.4 142		
Magnesium	923	1740	1024	156	87.6	169 649	159 934	153 1074	149 1170	146 1267	
Molybdenum Nickel:	2894	10,240	251	138	53.7	179 141	143 224	134 261	126 275	118 285	112 295
Pure	1728	8900	444	90.7	23.0 232	164 383	107 485	80.2 592	65.6 530	67.6 562	71.8
Nichrome (80% Ni, 20% Cr)	1672	8400	420	12	3.4			14 480	16 525	21 545	
Inconel X-750 (73% Ni, 15% Cr,	1665	8510	439	11.7	3.1	8.7	10.3	13.5	17.0	20.5	24.0
6.7% Fe) Niobium	2741	8570	265	53.7	23.6	 55.2	372 52.6	473 55.2	510 58.2	546 61.3	626 64.4
Palladium	1827	12,020	244	71.8	24.5	188 76.5 168	249 71.6 227	274 73.6 251	283 79.7 261	292 86.9 271	301 94.2 281
Platinum: Pure	2045	21,450	133	71.6	25.1	77.5	72.6	71.8	73.2	75.6	78.7
Alloy 60Pt-40Rh	1800	16,630	162	47	17.4	100	125	136 52	141 59	146 65	152 69
(60% Pt, 40% Rh) Rhenium	3453	21,100	136	47.9	16.7	58.9 97	51.0 127	— 46.1 139	44.2 145	— 44.1 151	— 44.6 156
Rhodium	2236	12,450	243	150	49.6	186 147	154 220	146 253	136 274	127 293	121 311

(Continued)

Appendix 1

803

TABLE A-24

Properties of solid metals (Concluded)

	Melting		Proper	Properties at 300 K		Properties at Various Temperatures (K), $k(W/m \cdot K)/c_p(J/kg \cdot K)$					
Composition	Point, K	$ ho$ kg/m 3	c_p J/kg \cdot K	<i>k</i> W/m ⋅ K	$lpha imes 10^6$ m 2 /s	100	200	400	600	800	1000
Silicon	1685	2330	712	148	89.2	884 259	264 556	98.9 790	61.9 867	42.4 913	31.2 946
Silver	1235	10,500	235	429	174	444 187	430 225	425 239	412 250	396 262	379 277
Tantalum	3269	16,600	140	57.5	24.7	59.2 110	57.5 133	57.8 144	58.6 146	59.4 149	60.2 152
Thorium	2023	11,700	118	54.0	39.1	59.8 99	54.6 112	54.5 124	55.8 134	56.9 145	56.9 156
Tin	505	7310	227	66.6	40.1	85.2 188	73.3 215	62.2 243			
Titanium	1953	4500	522	21.9	9.32	30.5 300	24.5 465	20.4 551	19.4 591	19.7 633	20.7 675
Tungsten	3660	19,300	132	174	68.3	208 87	186 122	159 137	137 142	125 146	118 148
Uranium	1406	19,070	116	27.6	12.5	21.7 94	25.1 108	29.6 125	34.0 146	38.8 176	43.9 180
Vanadium	2192	6100	489	30.7	10.3	35.8 258	31.3 430	31.3 515	33.3 540	35.7 563	38.2 597
Zinc	693	7140	389	116	41.8	117 297	118 367	111 402	103 436		
Zirconium	2125	6570	278	22.7	12.4	33.2 205	25.2 264	21.6 300	20.7 332	21.6 342	23.7 362

From Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., 1990. This material is used by permission of John Wiley & Sons, Inc.

© The McGraw-Hill Companies, 2008

Transfer, Second Edition

804 **Introduction to Thermodynamics and Heat Transfer**

Back Matter

TABLE A-25

Properties of solid non-metals

	Melting		Prope	rties at 300) K		Prope		ous Temperat K)/c _p (J/kg · ł		
Composition	Point, K	hokg/m	c_p 1 3 J/kg \cdot	k KW/m ⋅ K	$lpha imes 10^6$ m ² /s	100	200	400	600	800	1000
Aluminum oxide, sapphire	2323	3970	765	46	15.1	450 —	82 —	32.4 940	18.9 1110	13.0 1180	10.5 1225
Aluminum oxide, polycrystalline	2323	3970	765	36.0	11.9	133	55 —	26.4 940	15.8 1110	10.4 1180	7.85 1225
Beryllium oxide	2725	3000	1030	272	88.0			196 1350	111 1690	70 1865	47 1975
Boron	2573	2500	1105	27.6	9.99	190 —	52.5 —	18.7 1490	11.3 1880	8.1 2135	6.3 2350
Boron fiber epoxy (30% vol.) composite k , \parallel to fibers k , \perp to fibers c_p	590 e	2080	1122	2.29 0.59		2.10 0.37 364	2.23 0.49 757	2.28 0.60 1431			
Carbon Amorphous	1500	1950	_	1.60	_	0.67	1.18	1.89	21.9	2.37	2.53
Diamond, type Ila insulator	_	3500	509	2300	1	10,000	4000 194	1540 853			
Graphite, pyrolytic k , \parallel to layers k , \perp to layers c_p	2273	2210	709	1950 5.70		4970 16.8 136	3230 9.23 411	1390 4.09 992	892 2.68 1406	667 2.01 1650	534 1.60 1793
Graphite fiber epoxy (25% vol.) composite	450	1400	, 00			100		332	1.00	1000	1,50
k , heat flow II to fiber k , heat flow \perp to fiber c_p			0. 935	11.1 87	0.46	5.7 0.68 337	8.7 1.1 642	13.0 1216			
Pyroceram, Corning 9606	1623	2600	808	3.98	1.89	5.25 —	4.78 —	3.64 908	3.28 1038	3.08 1122	2.96 1197
Silicon carbide	3100	3160	675	490 2	230			— 880	1050	 1135	87 1195
Silicon dioxide, crystalline (quartz) k, to c-axis	1883	2650		10.4		39	16.4	7.6	5.0	4.2	
k , \perp to c -axis c_p			745	6.21		20.8	9.5 —	4.70 885	3.4 1075	3.1 1250	
Silicon dioxide, polycrystalline (fused silica)	1883	2220	745	1.38	0.834	0.69	1.14	1.51 905	1.75 1040	2.17 1105	2.87 1155
Silicon nitride	2173	2400	691	16.0	9.65	_	— 570	13.9 778	11.3	9.88	8.76
Sulfur	392	2070	708	0.206	0.141		578 0.185 606	//٥	937	1063	1155
Thorium dioxide	3573	9110	235	13	6.1	400	000	10.2 255	6.6 274	4.7 285	3.68 295
Titanium dioxide, polycrystalline	2133	4157	710	8.4	2.8			7.01 805	5.02 880	8.94 910	3.46 930

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

Appendix 1

805

Emissivities of surfaces (a) Metals					
Material	Temperature, K	Emissivity, $arepsilon$	Material	Temperature, K	Emissivity, ε
Aluminum Polished Commercial sheet Heavily oxidized Anodized Bismuth, bright Brass Highly polished Polished Dull plate Oxidized Chromium, polished Copper Highly polished Polished Commercial sheet	300–900 400 400–800 300 350 500–650 350 300–600 450–800 300–1400 300 300–500 300	0.04-0.06 0.09 0.20-0.33 0.8 0.34 0.03-0.04 0.09 0.22 0.6 0.08-0.40 0.02 0.04-0.05 0.15	Magnesium, polished Mercury Molybdenum Polished Oxidized Nickel Polished Oxidized Platinum, polished Silver, polished Stainless steel Polished Lightly oxidized Highly oxidized Steel Polished sheet	300-500 300-400 300-2000 600-800 500-1200 450-1000 500-1500 300-1000 600-1000 600-1000	0.07-0.13 0.09-0.12 0.05-0.21 0.80-0.82 0.07-0.17 0.37-0.57 0.06-0.18 0.02-0.07 0.17-0.30 0.30-0.40 0.70-0.80
Oxidized Black oxidized Gold	600–1000 300	0.5–0.8 0.78	Commercial sheet Heavily oxidized Tin, polished	500–1200 300 300	0.20–0.32 0.81 0.05
Highly polished Bright foil Iron Highly polished	300–1000 300 300–500	0.03–0.06 0.07 0.05–0.07	Tungsten Polished Filament Zinc	300–2500 3500	0.03–0.29 0.39
Case iron Wrought iron Rusted Oxidized	300 300–500 300 500–900	0.44 0.28 0.61 0.64–0.78	Polished Oxidized	300–800 300	0.02–0.05 0.25
Lead Polished Unoxidized, rough Oxidized	300–500 300 300	0.06–0.08 0.43 0.63			

Appendix 1: Property Tables and Charts (SI Units) © The McGraw-Hill Companies, 2008

806 I Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-26

Emissivities of surfaces (Concluded)

(b) Nonmetals

Material	Temperature, K	Emissivity, ε	Material	Temperature, K	Emissivity, ε
Alumina	800–1400	0.65-0.45	Paper, white	300	0.90
Aluminum oxide	600–1500	0.69–0.41	Plaster, white	300	0.93
Asbestos	300	0.96	Porcelain, glazed	300	0.92
Asphalt pavement Brick	300	0.85–0.93	Quartz, rough, fused Rubber	300	0.93
Common	300	0.93-0.96	Hard	300	0.93
Fireclay	1200	0.75	Soft	300	0.86
Carbon filament	2000	0.53	Sand	300	0.90
Cloth	300	0.75-0.90	Silicon carbide	600-1500	0.87-0.85
Concrete	300	0.88-0.94	Skin, human	300	0.95
Glass			Snow	273	0.80-0.90
Window	300	0.90-0.95	Soil, earth	300	0.93-0.96
Pyrex	300-1200	0.82-0.62	Soot	300-500	0.95
Pyroceram	300-1500	0.85-0.57	Teflon	300-500	0.85-0.92
Ice	273	0.95-0.99	Water, deep	273–373	0.95-0.96
Magnesium oxide	400-800	0.69-0.55	Wood		
Masonry	300	0.80	Beech	300	0.94
Paints			Oak	300	0.90
Aluminum	300	0.40-0.50			
Black, lacquer, shiny	300	0.88			
Oils, all colors	300	0.92-0.96			
Red primer	300	0.93			
White acrylic	300	0.90			
White enamel	300	0.90			

The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $h_L = f \frac{L}{D} \frac{V^2}{2g}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2 \log_{10} \left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re }\sqrt{f}} \right)$.

807

808 Introduction to Thermodynamics and Heat Transfer

Back Matter

FIGURE A-28

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

Appendix 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

Table A-1E	Molar mass, gas constant, and	Table A-13E	Superheated refrigerant-134a 830
	critical-point properties 810	Figure A-14E	P-h diagram for refrigerant-134a 832
Table A-2E	Ideal-gas specific heats of various	Table A-15E	Properties of saturated water 833
Table A-3E	common gases 811 Properties of common liquids, solids,	Table A-16E	Properties of saturated refrigerant-134a 834
	and foods 814	Table A-17E	Properties of saturated ammonia 835
Table A-4E	Saturated water—Temperature table 816	Table A-18E	Properties of saturated propane 836
Table A-5E	Saturated water—Pressure table 818	Table A-19E	Properties of liquids 837
Table A-SE		Table A-20E	Properties of liquid metals 838
Table A-OE	Superheated water 820 Compressed liquid water 824	Table A-21E	Ideal-gas properties of air 839
Table A-8E	Saturated ice—water vapor 825	Table A-22E	Properties of air at 1 atm pressure 841
•	T-s diagram for water 826	Table A-23E	Properties of gases at 1 atm
_	Mollier diagram for water 827		pressure 842
Table A-11E	Saturated refrigerant-134a—	Table A-24E	Properties of solid metals 844
	Temperature table 828	Table A-25E	Properties of solid non-metals 846
Table A-12E	Saturated refrigerant-134a— Pressure table 829		•

Introduction to Thermodynamics and Heat Transfer 810

Back Matter

TABLE A-1E

Molar mass, gas constant, and critical-point properties

		Molar	Gas co	nstant, R	Critica	l-point prope	erties
Substance	Formula	mass, <i>M</i> lbm/lbmol	Btu/ Ibm · R*	psia · ft ³ / lbm · R*	Temperature, R	Pressure, psia	Volume, ft³/Ibmol
Air	_	28.97	0.06855	0.3704	238.5	547	1.41
Ammonia	NH_3	17.03	0.1166	0.6301	729.8	1636	1.16
Argon	Ar	39.948	0.04971	0.2686	272	705	1.20
Benzene	C_6H_6	78.115	0.02542	0.1374	1012	714	4.17
Bromine	Br ₂	159.808	0.01243	0.06714	1052	1500	2.17
<i>n</i> -Butane	C_4H_{10}	58.124	0.03417	0.1846	765.2	551	4.08
Carbon dioxide	CO_2	44.01	0.04513	0.2438	547.5	1071	1.51
Carbon monoxide	CO	28.011	0.07090	0.3831	240	507	1.49
Carbon tetrachloride	CCI ₄	153.82	0.01291	0.06976	1001.5	661	4.42
Chlorine	Cl ₂	70.906	0.02801	0.1517	751	1120	1.99
Chloroform	CHCI₃	119.38	0.01664	0.08988	965.8	794	3.85
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.01643	0.08874	692.4	582	3.49
Dichlorofluoromethane (R-21)	CHCI ₂ F	102.92	0.01930	0.1043	813.0	749	3.16
Ethane	C_2H_6	30.020	0.06616	0.3574	549.8	708	2.37
Ethyl alcohol	C_2H_5OH	46.07	0.04311	0.2329	929.0	926	2.68
Ethylene	C_2H_4	28.054	0.07079	0.3825	508.3	742	1.99
Helium	He	4.003	0.4961	2.6809	9.5	33.2	0.926
<i>n</i> -Hexane	C_6H_{14}	86.178	0.02305	0.1245	914.2	439	5.89
Hydrogen (normal)	H_2	2.016	0.9851	5.3224	59.9	188.1	1.04
Krypton	Kr	83.80	0.02370	0.1280	376.9	798	1.48
Methane	CH_4	16.043	0.1238	0.6688	343.9	673	1.59
Methyl alcohol	CH ₃ OH	32.042	0.06198	0.3349	923.7	1154	1.89
Methyl chloride	CH ₃ CI	50.488	0.03934	0.2125	749.3	968	2.29
Neon	Ne	20.183	0.09840	0.5316	80.1	395	0.668
Nitrogen	N_2	28.013	0.07090	0.3830	227.1	492	1.44
Nitrous oxide	$N_{2}^{-}0$	44.013	0.04512	0.2438	557.4	1054	1.54
Oxygen	O_2	31.999	0.06206	0.3353	278.6	736	1.25
Propane	C_3H_8	44.097	0.04504	0.2433	665.9	617	3.20
Propylene	C_3H_6	42.081	0.04719	0.2550	656.9	670	2.90
Sulfur dioxide	SO_2	64.063	0.03100	1.1675	775.2	1143	1.95
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.01946	0.1052	673.6	588.7	3.19
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.01446	0.07811	848.1	635	3.97
Water	H_2O	18.015	0.1102	0.5956	1164.8	3200	0.90
Xenon	Xe	131.30	0.01513	0.08172	521.55	852	1.90

^{*}Calculated from $R=R_u/M$, where $R_u=1.98588$ Btu/lbmol \cdot R = 10.7316 psia \cdot ft³/lbmol \cdot R and M is the molar mass.

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236, and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

© The McGraw-Hill Companies, 2008

Appendix 2

811

TABLE A-2E

Ideal-gas specific heats of various common gases (a) At 80°F

Gas	Formula	Gas constant, <i>R</i> Btu/lbm · R	$c_{\scriptscriptstyle p}$ Btu/Ibm \cdot R	$c_{\scriptscriptstyle ec u}$ Btu/Ibm \cdot R	k
Air	_	0.06855	0.240	0.171	1.400
Argon	Ar	0.04971	0.1253	0.0756	1.667
Butane	C ₄ H ₁₀	0.03424	0.415	0.381	1.007
Carbon dioxide	CO ₂	0.04513	0.203	0.158	1.285
Carbon monoxide	CO	0.07090	0.249	0.178	1.399
Ethane	C_2H_6	0.06616	0.427	0.361	1.183
Ethylene	C_2H_4	0.07079	0.411	0.340	1.208
Helium	He	0.4961	1.25	0.753	1.667
Hydrogen	H_2	0.9851	3.43	2.44	1.404
Methane	CH₄	0.1238	0.532	0.403	1.32
Neon	Ne	0.09840	0.246	0.1477	1.667
Nitrogen	N_2	0.07090	0.248	0.177	1.400
Octane	$C_8^{-}H_{18}$	0.01742	0.409	0.392	1.044
Oxygen	02	0.06206	0.219	0.157	1.395
Propane	C ₃ H ₈	0.04504	0.407	0.362	1.124
Steam	$H_2^{\circ}O^{\circ}$	0.1102	0.445	0.335	1.329

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 687, Table A–8E.

Introduction to Thermodynamics and Heat Transfer 812

Back Matter

TABLE A-2E

Ideal-gas specific heats of various common gases (Continued) (b) At various temperatures

Temp., °F	<i>c_p</i> Btu/lbm ⋅ R	$c_{\scriptscriptstyle m V}$ Btu/lbm \cdot R	k	c_p Btu/Ibm · R	c_v Btu/lbm \cdot R	k	c_p Btu/Ibm · R	$c_{\scriptscriptstyle m V}$ Btu/lbm \cdot	R <i>k</i>
		Air			oon dioxide, C			n monoxide,	
40	0.240	0.171	1 401				0.040	0 177	1 400
40		0.171 0.172	1.401	0.195	0.150	1.300	0.248	0.177	1.400
100	0.240		1.400	0.205	0.160	1.283	0.249	0.178	1.399
200	0.241	0.173	1.397	0.217	0.172	1.262	0.249	0.179	1.397
300	0.243	0.174	1.394	0.229	0.184	1.246	0.251	0.180	1.394
400	0.245	0.176	1.389	0.239	0.193	1.233	0.253	0.182	1.389
500	0.248	0.179	1.383	0.247	0.202	1.223	0.256	0.185	1.384
600	0.250	0.182	1.377	0.255	0.210	1.215	0.259	0.188	1.377
700	0.254	0.185	1.371	0.262	0.217	1.208	0.262	0.191	1.371
800	0.257	0.188	1.365	0.269	0.224	1.202	0.266	0.195	1.364
900	0.259	0.191	1.358	0.275	0.230	1.197	0.269	0.198	1.357
1000	0.263	0.195	1.353	0.280	0.235	1.192	0.273	0.202	1.351
1500	0.276	0.208	1.330	0.298	0.253	1.178	0.287	0.216	1.328
2000	0.286	0.217	1.312	0.312	0.267	1.169	0.297	0.226	1.314
		Hydrogen, H ₂			Nitrogen, N ₂			Oxygen, O_2	
40	3.397	2.412	1.409	0.248	0.177	1.400	0.219	0.156	1.397
100	3.426	2.441	1.404	0.248	0.178	1.399	0.220	0.158	1.394
200	3.451	2.466	1.399	0.249	0.178	1.398	0.223	0.161	1.387
300	3.461	2.476	1.398	0.250	0.179	1.396	0.226	0.164	1.378
400	3.466	2.480	1.397	0.251	0.180	1.393	0.230	0.168	1.368
500	3.469	2.484	1.397	0.254	0.183	1.388	0.235	0.173	1.360
600	3.473	2.488	1.396	0.256	0.185	1.383	0.239	0.177	1.352
700	3.477	2.492	1.395	0.260	0.189	1.377	0.242	0.181	1.344
800	3.494	2.509	1.393	0.262	0.191	1.371	0.246	0.184	1.337
900	3.502	2.519	1.392	0.265	0.194	1.364	0.249	0.187	1.331
1000	3.513	2.528	1.390	0.269	0.198	1.359	0.252	0.190	1.326
1500	3.618	2.633	1.374	0.283	0.212	1.334	0.263	0.201	1.309
2000	3.758	2.773	1.355	0.293	0.222	1.319	0.270	0.208	1.298

Note: The unit Btu/lbm \cdot R is equivalent to Btu/lbm \cdot °F.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 830, Table A–4. Originally published in Tables of Properties of Gases, NBS Circular 564, 1955.

Appendix 2

813

TABLE A-2E

Ideal-gas specific heats of various common gases (Concluded) (c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(*T* in R, c_p in Btu/lbmol · R)

						Temperature	% e	rror
Substance	Formula	а	Ь	С	d	range, R	Max.	Avg.
Nitrogen	N_2	6.903	-0.02085×10^{-2}	0.05957×10^{-5}	-0.1176×10^{-9}	491-3240	0.59	0.34
Oxygen	02	6.085	0.2017×10^{-2}	-0.05275×10^{-5}	0.05372×10^{-9}	491-3240	1.19	0.28
Air	_	6.713	0.02609×10^{-2}	0.03540×10^{-5}	-0.08052×10^{-9}	491-3240	0.72	0.33
Hydrogen	H_2	6.952	-0.02542×10^{-2}	0.02952×10^{-5}	-0.03565×10^{-9}	491-3240	1.02	0.26
Carbon monoxide	CO	6.726	0.02222×10^{-2}	0.03960×10^{-5}	-0.09100×10^{-9}	491-3240	0.89	0.37
Carbon dioxide	CO ₂	5.316	0.79361×10^{-2}	-0.2581×10^{-5}	0.3059×10^{-9}	491-3240	0.67	0.22
Water vapor	H_2O	7.700	0.02552×10^{-2}	0.07781×10^{-5}	-0.1472×10^{-9}	491-3240	0.53	0.24
Nitric oxide	NO	7.008	-0.01247×10^{-2}	0.07185×10^{-5}	-0.1715×10^{-9}	491-2700	0.97	0.36
Nitrous oxide	N_2O	5.758	0.7780×10^{-2}	-0.2596×10^{-5}	0.4331×10^{-9}	491-2700	0.59	0.26
Nitrogen dioxide	NO_2	5.48	0.7583×10^{-2}	-0.260×10^{-5}	0.322×10^{-9}	491-2700	0.46	0.18
Ammonia	NH_3	6.5846	0.34028×10^{-2}	0.073034×10^{-5}	-0.27402×10^{-9}	491-2700	0.91	0.36
Sulfur	S_2	6.499	0.2943×10^{-2}	-0.1200×10^{-5}	0.1632×10^{-9}	491-3240	0.99	0.38
Sulfur dioxide	SO_2	6.157	0.7689×10^{-2}	-0.2810×10^{-5}	0.3527×10^{-9}	491-3240	0.45	0.24
Sulfur trioxide	SO ₃	3.918	1.935×10^{-2}	-0.8256×10^{-5}	1.328×10^{-9}	491-2340	0.29	0.13
Acetylene	C_2H_2	5.21	1.2227×10^{-2}	-0.4812×10^{-5}	0.7457×10^{-9}	491-2700	1.46	0.59
Benzene	C_6H_6	-8.650	6.4322×10^{-2}	-2.327×10^{-5}	3.179×10^{-9}	491-2700	0.34	0.20
Methanol	CH ₄ O	4.55	1.214×10^{-2}	-0.0898×10^{-5}	-0.329×10^{-9}	491-1800	0.18	0.08
Ethanol	C_2H_6O	4.75	2.781×10^{-2}	-0.7651×10^{-5}	0.821×10^{-9}	491-2700	0.40	0.22
Hydrogen chloride	HCI	7.244	-0.1011×10^{-2}	0.09783×10^{-5}	-0.1776×10^{-9}	491-2740	0.22	0.08
Methane	CH_4	4.750	0.6666×10^{-2}	0.09352×10^{-5}	-0.4510×10^{-9}	491-2740	1.33	0.57
Ethane	C_2H_6	1.648	2.291×10^{-2}	-0.4722×10^{-5}	0.2984×10^{-9}	491-2740	0.83	0.28
Propane	C_3H_8	-0.966	4.044×10^{-2}	-1.159×10^{-5}	1.300×10^{-9}	491-2740	0.40	0.12
<i>n</i> -Butane	C_4H_{10}	0.945	4.929×10^{-2}	-1.352×10^{-5}	1.433×10^{-9}	491-2740	0.54	0.24
<i>i</i> -Butane	C_4H_{10}	-1.890	5.520×10^{-2}	-1.696×10^{-5}	2.044×10^{-9}	491-2740	0.25	0.13
<i>n</i> -Pentane	C_5H_{12}	1.618	6.028×10^{-2}	-1.656×10^{-5}	1.732×10^{-9}	491-2740	0.56	0.21
<i>n</i> -Hexane	C_6H_{14}	1.657	7.328×10^{-2}	-2.112×10^{-5}	2.363×10^{-9}	491-2740	0.72	0.20
Ethylene	C_2H_4	0.944	2.075×10^{-2}	-0.6151×10^{-5}	0.7326×10^{-9}	491-2740	0.54	0.13
Propylene	C_3H_6	0.753	3.162×10^{-2}	-0.8981×10^{-5}	1.008×10^{-9}	491-2740	0.73	0.17

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

814 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-3E

Properties of common liquids, solids, and foods (*Continued*) (a) Liquids

	Boiling	data at 1 atm	Free	zing data	Lic	quid propert	ies
Substance	Normal boiling point, °F	Latent heat of vaporization, h_{fg} Btu/Ibm	Freezing point, °F	Latent heat of fusion, h_{if} Btu/Ibm	Temperature, °F	Density, $ ho$ Ibm/ft ³	Specific heat, c_p Btu/lbm \cdot R
Ammonia	-27.9	24.54	-107.9	138.6	-27.9 0 40 80	42.6 41.3 39.5 37.5	1.06 1.083 1.103 1.135
Argon Benzene Brine (20% sodium chloride	-302.6 176.4	69.5 169.4	-308.7 41.9	12.0 54.2	-302.6 68	87.0 54.9	0.272 0.411
by mass) n-Butane Carbon dioxide Ethanol Ethyl alcohol Ethylene glycol Glycerine Helium Hydrogen Isobutane Kerosene Mercury Methane Methanol Nitrogen Octane Oil (light) Oxygen Petroleum Propane	219.0 31.1 -109.2* 172.8 173.5 388.6 355.8 -452.1 -423.0 10.9 399-559 674.1 -258.7 148.1 -320.4 256.6 - -297.3 - -43.7		0.7 -217.3 -69.8 -173.6 -248.8 12.6 66.0 -434.5 -255.5 -12.8 -38.0 296.0 -143.9 -346.0 -71.5 -361.8 -305.8	34.5	68 31.1 32 77 68 68 68 -452.1 -423.0 10.9 68 77 -258.7 -160 77 -320.4 -260 68 77 -297.3 68 -43.7	71.8 37.5 57.8 48.9 49.3 69.2 78.7 9.13 4.41 37.1 51.2 847 26.4 20.0 49.1 50.5 38.2 43.9 56.8 71.2 40.0 36.3	0.743 0.552 0.583 0.588 0.678 0.678 0.554 5.45 2.39 0.545 0.478 0.033 0.834 1.074 0.609 0.492 0.643 0.502 0.430 0.408 0.478 0.538
Refrigerant-134a	-15.0	93.3	-141.9	_	32 100 -40 -15 32 90	33.0 29.4 88.5 86.0 80.9 73.6	0.604 0.673 0.283 0.294 0.318 0.348
Water	212	970.1	32	143.5	32 90 150 212	62.4 62.1 61.2 59.8	1.01 1.00 1.00 1.01

^{*}Sublimation temperature. (At pressures below the triple-point pressure of 75.1 psia, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of $-69.8^{\circ}F$.)

Appendix 2

815

TABLE A-3E

Properties of common liquids, solids, and foods (*Concluded*) (*b*) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ lbm/ft 3	Specific heat, c_p Btu/Ibm \cdot R	Substance	Density, $ ho$ Ibm/ft 3	Specific heat, c_p Btu/lbm \cdot R
Metals			Nonmetals		
Aluminum			Asphalt	132	0.220
-100°F		0.192	Brick, common	120	0.189
32°F		0.212	Brick, fireclay (500°C)	144	0.229
100°F	170	0.218	Concrete	144	0.156
200°F		0.224	Clay	62.4	0.220
300°F		0.229	Diamond	151	0.147
400°F		0.235	Glass, window	169	0.191
500°F		0.240	Glass, pyrex	139	0.200
Bronze (76% Cu, 2% Zn,	517	0.0955	Graphite	156	0.170
2% AI)			Granite	169	0.243
Brass, yellow (65% Cu, 35% Zn)	519	0.0955	Gypsum or plaster board Ice	50	0.260
Copper			−50°F		0.424
-60°F		0.0862	0°F		0.471
0°F		0.0893	20°F		0.491
100°F	555	0.0925	32°F	57.5	0.502
200°F		0.0938	Limestone	103	0.217
390°F		0.0963	Marble	162	0.210
Iron	490	0.107	Plywood (Douglas fir)	34.0	
Lead	705	0.030	Rubber (soft)	68.7	
Magnesium	108	0.239	Rubber (hard)	71.8	
Nickel	555	0.105	Sand	94.9	
Silver	655	0.056	Stone	93.6	
Steel, mild	489	0.119	Woods, hard (maple, oak, etc.)	45.0	
Tungsten	1211	0.031	Woods, soft (fir, pine, etc.)	32.0	

(c) Foods

	Water	Freezing	Specific Btu/lb	* * * * * * * * * * * * * * * * * * *	Latent heat of		Water content,	Freezing	Rtu/lb	ic heat, om · R	Latent heat of
	content,	point,	Above	Below	fusion,		%	point,	Above	Below	fusion,
Food	% (mass)	°F	freezing	freezing	Btu/lbm	Food	(mass)	°F	freezing	freezing	Btu/Ibm
Apples	84	30	0.873	0.453	121	Lettuce	95	32	0.961	0.487	136
Bananas	75	31	0.801	0.426	108	Milk, whole	88	31	0.905	0.465	126
Beef round	67	_	0.737	0.402	96	Oranges	87	31	0.897	0.462	125
Broccoli	90	31	0.921	0.471	129	Potatoes	78	31	0.825	0.435	112
Butter	16	_	_	0.249	23	Salmon fish	64	28	0.713	0.393	92
Cheese, Swiss	39	14	0.513	0.318	56	Shrimp	83	28	0.865	0.450	119
Cherries	80	29	0.841	0.441	115	Spinach	93	31	0.945	0.481	134
Chicken	74	27	0.793	0.423	106	Strawberries	90	31	0.921	0.471	129
Corn, sweet	74	31	0.793	0.423	106	Tomatoes, ripe	94	31	0.953	0.484	135
Eggs, whole	74	31	0.793	0.423	106	Turkey	64	_	0.713	0.393	92
Ice cream	63	22	0.705	0.390	90	Watermelon	93	31	0.945	0.481	134

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, I-P version (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), Chap. 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

© The McGraw-Hill Companies, 2008

818

816 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-4E

TADLE		_										
Satura	ted water—	-Tempera	ture table									
			<i>ic volume,</i> ³/lbm	Int	<i>ternal energ</i> y Btu/lbm	/,		Enthalpy, Btu/lbm		E	<i>Entropy,</i> Btu/Ibm · R	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,	press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
<i>T</i> °F	P _{sat} psia	V_f	Vg	U_f	U _{fg}	Иg	h_f	h _{fg}	h _g	S_f	S _{fg}	Sg
32.01		0.01602	3299.9	0.000	1021.0	1021.0		1075.2	1075.2	0.00000	2.18672	2.1867
35 40	0.09998 0.12173	0.01602 0.01602	2945.7 2443.6	3.004 8.032	1019.0 1015.6	1022.0 1023.7		1073.5 1070.7	1076.5 1078.7	0.00609 0.01620	2.17011 2.14271	2.1762 2.1589
45	0.14756	0.01602	2035.8	13.05	1012.2	1025.3	13.05	1067.8	1080.9	0.02620	2.11587	2.1421
50	0.17812	0.01602	1703.1	18.07	1008.9	1026.9	18.07	1065.0	1083.1	0.03609	2.08956	2.1256
55 60	0.21413 0.25638	0.01603 0.01604	1430.4 1206.1	23.07 28.08	1005.5 1002.1	1028.6 1030.2	23.07 28.08	1062.2 1059.4	1085.3 1087.4	0.04586 0.05554	2.06377 2.03847	2.1096 2.0940
65	0.30578	0.01604	1020.8	33.08	998.76	1031.8	33.08	1056.5	1089.6	0.06511	2.01366	2.0788
70 75	0.36334 0.43016	0.01605	867.18	38.08	995.39 992.02	1033.5 1035.1	38.08 43.07	1053.7 1050.9	1091.8 1093.9	0.07459 0.08398	1.98931 1.96541	2.0639 2.0494
80	0.43016	0.01606 0.01607	739.27 632.41	43.07 48.06	988.65	1035.1	48.07	1030.9	1095.9	0.06396	1.96541	2.0494
85	0.59659	0.01607	542.80	53.06	985.28	1038.3	53.06	1045.0	1098.1	0.10248	1.91892	2.0332
90	0.69904	0.01610	467.40	58.05	981.90	1040.0	58.05	1042.4	1100.4	0.11161	1.89630	2.0079
95 100	0.81643 0.95052	0.01612 0.01613	403.74 349.83	63.04 68.03	978.52 975.14	1041.6 1043.2	63.04 68.03	1039.5 1036.7	1102.6 1104.7	0.12065 0.12961	1.87408 1.85225	1.9947 1.9819
110	1.2767	0.01617	264.96	78.01	968.36	1046.4	78.02	1031.0	1109.0	0.14728	1.80970	1.9570
120	1.6951	0.01620	202.94	88.00	961.56	1049.6	88.00	1025.2	1113.2	0.16466	1.76856	1.9332
130 140	2.2260 2.8931	0.01625 0.01629	157.09 122.81	97.99 107.98	954.73 947.87	1052.7 1055.9	97.99 107.99	1019.4 1013.6	1117.4 1121.6	0.18174 0.19855	1.72877 1.69024	1.9105 1.8888
150	3.7234	0.01634	96.929	117.98	940.98	1059.0	117.99	1007.8	1125.7	0.21508	1.65291	1.8680
160	4.7474	0.01639	77.185	127.98	934.05	1062.0	128.00	1001.8	1129.8	0.23136	1.61670	1.8481
170 180	5.9999 7.5197	0.01645 0.01651	61.982 50.172	138.00 148.02	927.08 920.06	1065.1 1068.1	138.02 148.04		1133.9 1137.9	0.24739 0.26318	1.58155 1.54741	1.8289 1.8106
190	9.3497	0.01657	40.920	158.05	912.99	1071.0	158.08		1141.8	0.20318	1.51421	1.7930
200	11.538	0.01663	33.613	168.10	905.87	1074.0	168.13	977.60	1145.7	0.29409	1.48191	1.7760
210	14.136	0.01670	27.798	178.15	898.68	1076.8	178.20		1149.5	0.30922	1.45046	1.7597
212 220	14.709 17.201	0.01671 0.01677	26.782 23.136	180.16 188.22	897.24 891.43	1077.4 1079.6	180.21 188.28		1150.3 1153.3	0.31222 0.32414	1.44427 1.41980	1.7565 1.7439
230	20.795	0.01684	19.374	198.31	884.10	1082.4	198.37	958.59	1157.0	0.33887	1.38989	1.7288
240	24.985	0.01692	16.316	208.41	876.70	1085.1	208.49		1160.5	0.35342	1.36069	1.7141
250 260	29.844 35.447	0.01700 0.01708	13.816 11.760	218.54 228.68	869.21 861.62	1087.7 1090.3	218.63 228.79		1164.0 1167.4	0.36779 0.38198	1.33216 1.30425	1.6999 1.6862
270	41.877	0.01717	10.059	238.85	853.94	1092.8	238.98		1170.7	0.39601	1.27694	1.6730
280	49.222	0.01726	8.6439 7.4607	249.04	846.16	1095.2	249.20		1173.9	0.40989	1.25018	
290 300	57.573 67.028	0.01735 0.01745	6.4663	259.26 269.51	838.27 830.25	1097.5 1099.8	259.45 269.73		1177.0 1180.0	0.42361 0.43720	1.22393 1.19818	
310	77.691	0.01745	5.6266	279.79	822.11		280.05		1180.0	0.45720	1.17289	
320	89.667	0.01765	4.9144	290.11	813.84	1104.0	290.40		1185.5	0.46396	1.14802	
330 340	103.07 118.02	0.01776 0.01787	4.3076 3.7885	300.46 310.85	805.43 796.87	1105.9 1107.7	300.80 311.24		1188.1 1190.5	0.47716 0.49024	1.12355 1.09945	
350	134.63	0.01799	3.3425	321.29	788.16	1109.4	321.73		1192.7	0.50321	1.07570	
360	153.03	0.01811	2.9580	331.76	779.28	1111.0	332.28	862.53	1194.8	0.51607	1.05227	1.5683
370	173.36	0.01823 0.01836	2.6252	342.29	770.23 761.00		342.88		1196.7	0.52884 0.54152	1.02914 1.00628	
380 390	195.74 220.33	0.01836	2.3361 2.0842	352.87 363.50	751.58		353.53 364.25		1198.5 1200.1	0.54152	0.98366	

(Continued)

© The McGraw-Hill Companies, 2008

Appendix 2

817

TABLE A-4E

Saturated water—Temperature table (Concluded)

Outurat	.ca water	Temperatur	c table (c	oneraded	,							
		Specific v ft³/lb	•	In	ternal energ Btu/lbm	Ty,		<i>Enthalpy,</i> Btu/lbm		E	<i>Entropy,</i> Btu/lbm · R	
Temp., <i>T</i> °F	Sat. press., P _{sat} psia	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s _g
400 410 420 430 440	247.26 276.69 308.76 343.64 381.49	0.01864 0.01878 0.01894 0.01910 0.01926	1.8639 1.6706 1.5006 1.3505 1.2178	374.19 384.94 395.76 406.65 417.61	741.97 732.14 722.08 711.80 701.26	1116.2 1117.1 1117.8 1118.4 1118.9	375.04 385.90 396.84 407.86 418.97	816.71 806.74 796.46	1201.4 1202.6 1203.6 1204.3 1204.8	0.56663 0.57907 0.59145 0.60377 0.61603	0.96127 0.93908 0.91707 0.89522 0.87349	1.5279 1.5182 1.5085 1.4990 1.4895
450 460 470 480 490	422.47 466.75 514.52 565.96 621.24	0.01944 0.01962 0.01981 0.02001 0.02022	1.0999 0.99510 0.90158 0.81794 0.74296	451.01 462.34	690.47 679.39 668.02 656.34 644.32	1119.1 1119.2 1119.0 1118.7 1118.1	430.18 441.48 452.90 464.43 476.09	763.65 751.98 739.91	1205.1 1205.1 1204.9 1204.3 1203.5	0.62826 0.64044 0.65260 0.66474 0.67686	0.85187 0.83033 0.80885 0.78739 0.76594	1.4801 1.4708 1.4615 1.4521 1.4428
500 510 520 530 540	680.56 744.11 812.11 884.74 962.24	0.02044 0.02067 0.02092 0.02118 0.02146	0.67558 0.61489 0.56009 0.51051 0.46553	496.99 508.80 520.76	631.94 619.17 605.99 592.35 578.23	1117.3 1116.2 1114.8 1113.1 1111.1	487.89 499.84 511.94 524.23 536.70	700.99 687.01 672.47	1202.3 1200.8 1199.0 1196.7 1194.0	0.68899 0.70112 0.71327 0.72546 0.73770	0.74445 0.72290 0.70126 0.67947 0.65751	1.4334 1.4240 1.4145 1.4049 1.3952
550 560 570 580 590	1044.8 1132.7 1226.2 1325.5 1430.8	0.02176 0.02207 0.02242 0.02279 0.02319	0.42465 0.38740 0.35339 0.32225 0.29367	557.68 570.40 583.37	563.58 548.33 532.45 515.84 498.43	1108.8 1106.0 1102.8 1099.2 1095.0	549.39 562.31 575.49 588.95 602.75	624.91 607.55 589.29	1190.9 1187.2 1183.0 1178.2 1172.8	0.75000 0.76238 0.77486 0.78748 0.80026	0.63532 0.61284 0.59003 0.56679 0.54306	1.3853 1.3752 1.3649 1.3543 1.3433
600 610 620 630 640	1542.5 1660.9 1786.2 1918.9 2059.3	0.02362 0.02411 0.02464 0.02524 0.02593	0.26737 0.24309 0.22061 0.19972 0.18019	624.11 638.47 653.35	480.10 460.73 440.14 418.12 394.36	1090.3 1084.8 1078.6 1071.5 1063.2	616.92 631.52 646.62 662.32 678.74	528.03 504.92 480.07	1166.6 1159.5 1151.5 1142.4 1131.9	0.81323 0.82645 0.83998 0.85389 0.86828	0.51871 0.49363 0.46765 0.44056 0.41206	1.3319 1.3201 1.3076 1.2944 1.2803
650 660 670 680 690	2207.8 2364.9 2531.2 2707.3 2894.1	0.02673 0.02767 0.02884 0.03035 0.03255	0.16184 0.14444 0.12774 0.11134 0.09451	702.48 721.23 742.11	368.44 339.74 307.22 269.00 220.77	1053.6 1042.2 1028.5 1011.1 987.6	696.08 714.59 734.74 757.32 784.24	309.57		0.88332 0.89922 0.91636 0.93541 0.95797	0.38177 0.34906 0.31296 0.27163 0.22089	1.2651 1.2483 1.2293 1.2070 1.1789
700 705.10	3093.0 3200.1	0.03670 0.04975	0.07482 0.04975		146.50 0	948.3 866.6	822.76 896.07	168.32 0	991.1 896.1	0.99023 1.05257	0.14514 0	1.1354 1.0526

Source: Tables A-4E through A-8E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

© The McGraw-Hill Companies, 2008

818 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-5E

Saturated		D	4-1-1-
Saturated	water_	_Pressure	tahla

	Specific volume, ft³/lbm			Ini	ternal energ Btu/Ibm	īy,		Enthalpy, Btu/Ibm		[Entropy, Btu/Ibm · R	
Press., P psia	Sat. temp., T _{sat} °F	Sat. Iiquid, <i>v_f</i>	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35	259.25	0.01708	11.901	227.92	862.19	1090.1	228.03	939.16	1167.2	0.38093	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	856.09	1092.1	236.14	933.69	1169.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588
55	287.05	0.01732	7.7882	256.25	840.61	1096.9	256.42	919.70	1176.1	0.41958	1.23162	1.6512
60	292.69	0.01738	7.1766	262.01	836.13	1098.1	262.20	915.61	1177.8	0.42728	1.21697	1.6442
65	297.95	0.01743	6.6560	267.41	831.90	1099.3	267.62	911.75	1179.4	0.43443	1.20341	1.6378
70	302.91	0.01748	6.2075	272.50	827.90	1100.4	272.72	908.08	1180.8	0.44112	1.19078	1.6319
75	307.59	0.01752	5.8167	277.31	824.09	1101.4	277.55	904.58	1182.1	0.44741	1.17895	1.6264
80	312.02	0.01757	5.4733	281.87	820.45	1102.3	282.13	901.22	1183.4	0.45335	1.16783	1.6212
85	316.24	0.01761	5.1689	286.22	816.97	1103.2	286.50	898.00	1184.5	0.45897	1.15732	1.6163
90	320.26	0.01765	4.8972	290.38	813.62	1104.0	290.67	894.89	1185.6	0.46431	1.14737	1.6117
95	324.11	0.01770	4.6532	294.36	810.40	1104.8	294.67	891.89	1186.6	0.46941	1.13791	1.6073
100	327.81	0.01774	4.4327	298.19	807.29	1105.5	298.51	888.99	1187.5	0.47427	1.12888	1.6032
110	334.77	0.01781	4.0410	305.41	801.37	1106.8	305.78	883.44	1189.2	0.48341	1.11201	1.5954
120	341.25	0.01789	3.7289	312.16	795.79	1107.9	312.55	878.20	1190.8	0.49187	1.09646	1.5883
130	347.32	0.01796	3.4557	318.48	790.51	1109.0	318.92	873.21	1192.1	0.49974	1.08204	1.5818
140	353.03	0.01802	3.2202	324.45	785.49	1109.9	324.92	868.45	1193.4	0.50711	1.06858	1.5757
150	358.42	0.01809	3.0150	330.11	780.69	1110.8	330.61	863.88	1194.5	0.51405	1.05595	1.5700
160	363.54	0.01815	2.8347	335.49	776.10	1111.6	336.02	859.49	1195.5	0.52061	1.04405	1.5647
170	368.41	0.01821	2.6749	340.62	771.68	1112.3	341.19	855.25	1196.4	0.52682	1.03279	1.5596
180	373.07	0.01827	2.5322	345.53	767.42	1113.0	346.14	851.16	1197.3	0.53274	1.02210	1.5548
190 200 250 300 350	377.52 381.80 400.97 417.35 431.74	0.01833 0.01839 0.01865 0.01890 0.01912	2.4040 2.2882 1.8440 1.5435 1.3263	350.24 354.78 375.23 392.89 408.55	763.31 759.32 741.02 724.77 709.98	1113.6 1114.1 1116.3 1117.7 1118.5	350.89 355.46 376.09 393.94 409.79	847.19 843.33 825.47 809.41 794.65	1198.1 1198.8 1201.6 1203.3 1204.4	0.53839 0.54379 0.56784 0.58818 0.60590	1.01191 1.00219 0.95912 0.92289 0.89143	1.5460 1.5270 1.5111
400 450 500 550 600	444.62 456.31 467.04 476.97 486.24	0.01934 0.01955 0.01975 0.01995 0.02014	1.1617 1.0324 0.92819 0.84228 0.77020	458.90	696.31 683.52 671.42 659.91 648.88	1119.0 1119.2 1119.1 1118.8 1118.3	424.13 437.30 449.51 460.93 471.70	780.87 767.86 755.48 743.60 732.15	1205.0 1205.2 1205.0 1204.5 1203.9	0.62168 0.63595 0.64900 0.66107 0.67231	0.86350 0.83828 0.81521 0.79388 0.77400	1.4742 1.4642 1.4550

(Continued)

Appendix 2

819

TABLE A-5E

Saturated water—Pressure table (Concluded)

		Specific volume ft ³ /lbm		Internal energy, Btu/lbm			Enthalpy, Btu/lbm			Entropy, Btu/lbm · R		
Press., P psia	Sat. temp., $T_{\rm sat}$ °F	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
		•										
700	503.13	0.02051	0.65589	488.96	627.98	1116.9	491.62	710.29	1201.9	0.69279	0.73771	1.4305
800	518.27	0.02087	0.56920	506.74	608.30	1115.0	509.83	689.48	1199.3	0.71117	0.70502	1.4162
900	532.02	0.02124	0.50107	523.19	589.54	1112.7	526.73	669.46	1196.2	0.72793	0.67505	1.4030
1000	544.65	0.02159	0.44604	538.58	571.49	1110.1	542.57	650.03	1192.6	0.74341	0.64722	1.3906
1200	567.26	0.02232	0.36241	566.89	536.87	1103.8	571.85	612.39	1184.2	0.77143	0.59632	1.3677
1400	587.14	0.02307	0.30161	592.79	503.50	1096.3	598.76	575.66	1174.4	0.79658	0.54991	1.3465
1600	604.93	0.02386	0.25516	616.99	470.69	1087.7	624.06	539.18	1163.2	0.81972	0.50645	1.3262
1800	621.07	0.02470	0.21831	640.03	437.86	1077.9	648.26	502.35	1150.6	0.84144	0.46482	1.3063
2000	635.85	0.02563	0.18815	662.33	404.46	1066.8	671.82	464.60	1136.4	0.86224	0.42409	1.2863
2500	668.17	0.02860	0.13076	717.67	313.53	1031.2	730.90	360.79	1091.7	0.91311	0.31988	1.2330
3000	695.41	0.03433	0.08460	783.39	186.41	969.8	802.45	214.32	1016.8	0.97321	0.18554	1.1587
3200.1	705.10	0.04975	0.04975	866.61	0	866.6	896.07	0	896.1	1.05257	0	1.0526

820 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE	A-6E											
Super	heated wat	er										
-			,	s Di /			,	s Di /			,	S Di /
<i>T</i> °F	v ft³/lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/Ibm	Btu/ Ibm ⋅ R	ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/Ibm	Btu/ Ibm ⋅ R	v ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/Ibm	Btu/ Ibm ⋅ R
	P =	= 1.0 psia	(101.69°F	·)*	P =	= 5.0 psia	(162.18°	F)	P =	= 10 psia	(193.16°I	F)
Sat.†	333.49	1043.7	1105.4	1.9776	73.525		1130.7	1.8438	38.425	1072.0	1143.1	1.7875
200	392.53	1077.5	1150.1	2.0509	78.153	1076.2	1148.5	1.8716	38.849	1074.5	1146.4	1.7926
240	416.44	1091.2	1168.3	2.0777	83.009	1090.3	1167.1	1.8989	41.326	1089.1	1165.5	1.8207
280	440.33	1105.0	1186.5	2.1030	87.838	1104.3	1185.6	1.9246	43.774	1103.4	1184.4	1.8469
320	464.20	1118.9	1204.8	2.1271	92.650	1118.4	1204.1	1.9490	46.205	1117.6	1203.1	1.8716
360	488.07	1132.9	1223.3	2.1502	97.452	1132.5	1222.6	1.9722	48.624	1131.9	1221.8	1.8950
400	511.92	1147.1	1241.8	2.1722	102.25	1146.7	1241.3	1.9944	51.035	1146.2	1240.6	1.9174
440	535.77	1161.3	1260.4	2.1934	107.03	1160.9	1260.0	2.0156	53.441	1160.5	1259.4	1.9388
500	571.54	1182.8	1288.6	2.2237	114.21	1182.6	1288.2	2.0461	57.041	1182.2	1287.8	1.9693
600	631.14	1219.4	1336.2	2.2709	126.15	1219.2	1335.9	2.0933	63.029	1219.0	1335.6	2.0167
700	690.73	1256.8	1384.6	2.3146	138.09	1256.7	1384.4	2.1371	69.007	1256.5	1384.2	2.0605
800	750.31	1295.1	1433.9	2.3553	150.02	1294.9	1433.7	2.1778	74.980	1294.8	1433.5	2.1013
1000	869.47	1374.2	1535.1	2.4299	173.86	1374.2	1535.0	2.2524	86.913	1374.1	1534.9	2.1760
1200	988.62	1457.1	1640.0	2.4972	197.70	1457.0	1640.0	2.3198	98.840	1457.0	1639.9	2.2433
1400	1107.8	1543.7	1748.7	2.5590	221.54	1543.7	1748.7	2.3816	110.762	1543.6	1748.6	2.3052
	<i>P</i>	· ·	(212.99°F	-)	P =	= 20 psia	(227.92°l	F)	P =	= 40 psia	(267.22°I	F)
Sat.	26.297	1077.7	1150.7	1.7549	20.093	1081.8	1156.2	1.7319	10.501	1092.1	1169.8	1.6766
240	27.429	1087.8	1163.9	1.7742	20.478	1086.5	1162.3	1.7406				
280	29.085	1102.4	1183.2	1.8010	21.739	1101.4	1181.9	1.7679	10.713	1097.3	1176.6	1.6858
320	30.722	1116.9	1202.2	1.8260	22.980	1116.1	1201.2	1.7933	11.363	1112.9	1197.1	1.7128
360	32.348	1131.3	1221.1	1.8496	24.209	1130.7	1220.2	1.8171	11.999	1128.1	1216.9	1.7376
400	33.965	1145.7	1239.9	1.8721	25.429	1145.1	1239.3	1.8398	12.625	1143.1	1236.5	1.7610
440	35.576	1160.1	1258.8	1.8936	26.644	1159.7	1258.3	1.8614	13.244	1157.9	1256.0	1.7831
500	37.986	1181.9	1287.3	1.9243	28.458	1181.6	1286.9	1.8922	14.165	1180.2	1285.0	1.8143
600	41.988	1218.7	1335.3	1.9718	31.467		1334.9	1.9398	15.686	1217.5	1333.6	1.8625
700	45.981	1256.3	1383.9	2.0156	34.467	1256.1	1383.7	1.9837	17.197	1255.3	1382.6	1.9067
800	49.967	1294.6	1433.3	2.0565	37.461	1294.5	1433.1	2.0247	18.702	1293.9	1432.3	1.9478
1000	57.930	1374.0	1534.8	2.1312	43.438	1373.8	1534.6	2.0994	21.700	1373.4	1534.1	2.0227
1200	65.885	1456.9	1639.8	2.1986	49.407	1456.8	1639.7	2.1668	24.691	1456.5	1639.3	2.0902
1400	73.836	1543.6	1748.5	2.2604	55.373	1543.5	1748.4	2.2287	27.678	1543.3	1748.1	2.1522
1600	81.784	1634.0	1861.0	2.3178	61.335	1633.9	1860.9	2.2861	30.662	1633.7	1860.7	2.2096
	<i>P</i>	= 60 psia	(292.69°F	-)	P =	= 80 psia	(312.02°l	F)	P =	100 psia	(327.81°	'F)
Sat.		1098.1		1.6442			1183.4		4.4327	1105.5	1187.5	1.6032
320	7.4863	1109.6	1192.7	1.6636	5.5440	1105.9	1187.9	1.6271				
360	7.9259	1125.5	1213.5	1.6897	5.8876	5 1122.7	1209.9	1.6545	4.6628	1119.8	1206.1	1.6263
400	8.3548	1140.9	1233.7	1.7138	6.2187	7 1138.7	1230.8	1.6794	4.9359	1136.4	1227.8	1.6521
440	8.7766	1156.1	1253.6	1.7364	6.5420	1154.3	1251.2	1.7026	5.2006	1152.4	1248.7	1.6759
500	9.4005	1178.8	1283.1	1.7682	7.0177	7 1177.3	1281.2	1.7350	5.5876	1175.9	1279.3	1.7088
600	10.4256	1216.5	1332.2	1.8168	7.7951	1215.4	1330.8	1.7841	6.2167	1214.4	1329.4	1.7586
700	11.4401	1254.5	1381.6	1.8613	8.5616	5 1253.8	1380.5	1.8289	6.8344	1253.0	1379.5	1.8037
800	12.4484	1293.3	1431.5	1.9026	9.3218	3 1292.6	1430.6	1.8704	7.4457	1292.0	1429.8	1.8453
1000	14.4543	1373.0	1533.5	1.9777	10.8313	3 1372.6	1532.9	1.9457	8.6575	1372.2	1532.4	1.9208
1200	16.4525		1638.9	2.0454	12.3331	1455.9	1638.5	2.0135	9.8615	1455.6	1638.1	1.9887
1400	18.4464	1543.0	1747.8	2.1073	13.8306	5 1542.8	1747.5	2.0755	11.0612	1542.6	1747.2	2.0508
1600	20.438	1633.5	1860.5	2.1648	15.3257	7 1633.3	1860.2	2.1330	12.2584	1633.2	1860.0	2.1083
1800	22.428	1727.6	1976.6	2.2187		2 1727.5		2.1869	13.4541	1727.3	1976.3	2.1622
2000	24.417	1825.2	2096.3	2.2694	18.3117	7 1825.0	2096.1	2.2376	14.6487	1824.9	2096.0	2.2130
					1							

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}scriptscriptstyle\dagger}$ Properties of saturated vapor at the specified pressure.

Back Matter

lix 2: Property

© The McGraw-Hill
and Charts (English

Companies, 2008

821

Appendix 2

TABLE	A-6E											
Superh	neated wat	er (<i>Contii</i>	nued)									
<i>T</i> °F	v ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ Ibm ⋅ R	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ Ibm ⋅ R	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ Ibm · R
		= 120 psia		PF)		140 psia				160 psia		
Sat.	3.7289	1107.9	1190.8	1.5883	3.2202	1109.9	1193.4	1.5757	2.8347	1111.6	1195.5	1.5647
360	3.8446	1116.7	1202.1	1.6023	3.2584	1113.4	1193.4	1.5811	2.0547	1111.0	1195.5	1.5047
400	4.0799	1134.0	1224.6	1.6292	3.4676	1131.5	1221.4	1.6092	3.0076	1129.0	1218.0	1.5914
450	4.3613	1154.5	1251.4	1.6594	3.7147	1152.6	1248.9	1.6403	3.2293	1150.7	1246.3	1.6234
500	4.6340	1174.4	1277.3	1.6872	3.9525	1172.9	1275.3	1.6686	3.4412	1171.4	1273.2	1.6522
550	4.9010	1193.9	1302.8	1.7131	4.1845	1192.7	1301.1	1.6948	3.6469	1191.4	1299.4	1.6788
600	5.1642	1213.4	1328.0	1.7375	4.4124	1212.3	1326.6	1.7195	3.8484	1211.3	1325.2	1.7037
700	5.6829	1252.2	1378.4	1.7829	4.8604	1251.4	1377.3	1.7652	4.2434	1250.6	1376.3	1.7498
800	6.1950	1291.4	1429.0	1.8247	5.3017	1290.8	1428.1	1.8072	4.6316	1290.2	1427.3	1.7920
1000	7.2083	1371.7	1531.8	1.9005	6.1732	1371.3	1531.3	1.8832	5.3968	1370.9	1530.7	1.8682
1200	8.2137	1455.3	1637.7	1.9684	7.0367	1455.0	1637.3	1.9512	6.1540	1454.7	1636.9	1.9363
1400	9.2149	1542.3	1746.9	2.0305	7.8961	1542.1	1746.6	2.0134	6.9070	1541.8	1746.3	1.9986
1600	10.2135	1633.0	1859.8	2.0881	8.7529	1632.8	1859.5	2.0711	7.6574	1632.6	1859.3	2.0563
1800	11.2106	1727.2	1976.1	2.1420	9.6082	1727.0	1975.9	2.1250	8.4063	1726.9	1975.7	2.1102
2000	12.2067	1824.8	2095.8	2.1928	10.4624	1824.6	2095.7	2.1758	9.1542	1824.5	2095.5	2.1610
		= 180 psia				200 psia				225 psia		
Sat.	2.5322	1113.0	1197.3	1.5548	2.2882	1114.1	1198.8	1.5460	2.0423	1115.3	1200.3	1.5360
400	2.6490	1126.3	1214.5	1.5752	2.3615	1123.5	1210.9	1.5602	2.0728	1119.7	1206.0	1.5427
450	2.8514	1148.7	1243.7	1.6082	2.5488	1146.7	1241.0	1.5943	2.2457	1144.1	1237.6	1.5783
500	3.0433	1169.8	1271.2	1.6376	2.7247	1168.2	1269.0	1.6243	2.4059	1166.2	1266.3	1.6091
550	3.2286 3.4097	1190.2 1210.2	1297.7	1.6646	2.8939 3.0586	1188.9 1209.1	1296.0	1.6516	2.5590 2.7075	1187.2 1207.7	1293.8 1320.5	1.6370 1.6628
600 700	3.7635	1210.2	1323.8 1375.2	1.6897 1.7361	3.3796	1209.1	1322.3 1374.1	1.6771 1.7238	2.7075	1207.7	1372.7	1.7099
800	4.1104	1249.5	1426.5	1.7785	3.6934	1288.9	1425.6	1.7664	3.2765	1288.1	1424.5	1.7528
900	4.4531	1329.7	1478.0	1.8179	4.0031	1329.2	1477.3	1.8059	3.5530	1328.5	1476.5	1.7925
1000	4.7929	1370.5	1530.1	1.8549	4.3099	1370.1	1529.6	1.8430	3.8268	1369.5	1528.9	1.8296
1200	5.4674	1454.3	1636.5	1.9231	4.9182	1454.0	1636.1	1.9113	4.3689	1453.6	1635.6	1.8981
1400	6.1377	1541.6	1746.0	1.9855	5.5222	1541.4	1745.7	1.9737	4.9068	1541.1	1745.4	1.9606
1600	6.8054	1632.4	1859.1	2.0432	6.1238	1632.2	1858.8	2.0315	5.4422	1632.0	1858.6	2.0184
1800	7.4716	1726.7	1975.6	2.0971	6.7238	1726.5	1975.4	2.0855	5.9760	1726.4	1975.2	2.0724
2000	8.1367	1824.4	2095.4	2.1479	7.3227	1824.3	2095.3	2.1363	6.5087	1824.1	2095.1	2.1232
	P =	= 250 psia	(400.97°	°F)	P =	275 psia	(409.45°	'F)	P =	300 psia	(417.35°I	=)
Sat.	1.8440	1116.3		1.5270	1.6806	1117.0		1.5187	1.5435		1203.3	1.5111
450	2.0027	1141.3	1234.0	1.5636	1.8034	1138.5	1230.3	1.5499	1.6369	1135.6	1226.4	1.5369
500	2.1506	1164.1	1263.6	1.5953	1.9415	1162.0	1260.8	1.5825	1.7670	1159.8	1257.9	1.5706
550	2.2910	1185.6	1291.5	1.6237	2.0715	1183.9	1289.3	1.6115	1.8885	1182.1	1287.0	1.6001
600	2.4264	1206.3	1318.6	1.6499	2.1964	1204.9	1316.7	1.6380	2.0046	1203.5	1314.8	1.6270
650	2.5586	1226.8	1345.1	1.6743	2.3179	1225.6	1343.5	1.6627	2.1172	1224.4	1341.9	1.6520
700	2.6883	1247.0	1371.4	1.6974	2.4369	1246.0	1370.0	1.6860	2.2273		1368.6	1.6755
800	2.9429	1287.3	1423.5	1.7406	2.6699	1286.5	1422.4	1.7294	2.4424	1285.7	1421.3	1.7192
900	3.1930		1475.6	1.7804	2.8984	1327.3	1474.8	1.7694	2.6529		1473.9	1.7593
1000	3.4403	1369.0	1528.2	1.8177	3.1241	1368.5	1527.4	1.8068	2.8605		1526.7	1.7968
1200	3.9295	1453.3	1635.0	1.8863	3.5700	1452.9	1634.5	1.8755	3.2704	1452.5	1634.0	1.8657
1400	4.4144		1745.0	1.9488	4.0116	1540.5	1744.6	1.9381	3.6759		1744.2	1.9284
1600	4.8969		1858.3		4.4507	1631.5	1858.0		4.0789		1857.7	1.9863
1800 2000	5.3777 5.8575	1726.2 1823.9	1974.9		4.8882 5.3247	1726.0 1823.8	1974.7		4.4803	1725.8 1823.6		2.0404 2.0913
2000	5.05/5	1023.9	2094.9	2.1110	J.3247	1023.0	2094.7	2.1010	4.8807	1023.0	2034.0	2.0313

© The McGraw-Hill Companies, 2008

822 Introduction to Thermodynamics and Heat Transfer

TABLE	A-6E											
Superl	neated wat	er (<i>Conti</i>	nued)									
				S				S				S
<i>T</i> °F	ν ft ³ /lbm	<i>u</i> Rtu/lhm	<i>h</i> Btu/Ibm	Btu/	v ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/lbm	Btu/	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/Ibm	Btu/ Ibm · R
•												
		= 350 psia				<u> </u>	(444.62°I				(456.31°)	
Sat. 450	1.3263 1.3739	1118.5 1129.3	1204.4 1218.3	1.4973 1.5128	1.1617 1.1747	1119.0 1122.5	1205.0 1209.4	1.4852 1.4901	1.0324	1119.2	1205.2	1.4742
500	1.4921	1155.2	1251.9	1.5487	1.2851	1150.4	1245.6	1.5288	1.1233	1145.4	1238.9	1.5103
550	1.6004	1178.6	1282.2	1.5795	1.3840	1174.9	1277.3	1.5610	1.2152	1171.1	1272.3	1.5441
600	1.7030	1200.6	1310.9	1.6073	1.4765	1197.6	1306.9	1.5897	1.3001	1194.6	1302.8	1.5737
650	1.8018	1221.9	1338.6	1.6328	1.5650	1219.4	1335.3	1.6158	1.3807	1216.9	1331.9	1.6005
700 800	1.8979 2.0848	1242.8 1284.1	1365.8 1419.1	1.6567 1.7009	1.6507 1.8166	1240.7 1282.5	1362.9 1417.0	1.6401 1.6849	1.4584 1.6080	1238.5 1280.8	1360.0 1414.7	1.6253 1.6706
900	2.2671	1325.3	1419.1	1.7414	1.9777	1324.0	1417.0	1.7257	1.7526	1322.7	1414.7	1.7117
1000	2.4464	1366.9	1525.3	1.7791	2.1358	1365.8	1523.9	1.7636	1.8942	1364.7	1522.4	1.7499
1200	2.7996	1451.7	1633.0	1.8483	2.4465	1450.9	1632.0	1.8331	2.1718	1450.1	1631.0	1.8196
1400	3.1484	1539.6	1743.5	1.9111	2.7527	1539.0	1742.7	1.8960	2.4450	1538.4	1742.0	1.8827
1600	3.4947	1630.8	1857.1	1.9691	3.0565	1630.3	1856.5	1.9541	2.7157	1629.8	1856.0	1.9409
1800 2000	3.8394 4.1830	1725.4 1823.3	1974.0 2094.2	2.0233 2.0742	3.3586 3.6597	1725.0 1823.0	1973.6 2093.9	2.0084 2.0594	2.9847 3.2527	1724.6 1822.6	1973.2 2093.5	1.9952 2.0462
2000												
0 - 1		= 500 psia					(486.24°I				(503.13°)	
Sat. 500	0.92815 0.99304	1119.1 1140.1	1205.0 1231.9	1.4642 1.4928	0.77020 0.79526	1118.3 1128.2	1203.9 1216.5	1.4463 1.4596	0.65589	1116.9	1201.9	1.4305
550	1.07974	1140.1	1267.0	1.5284	0.79520	1158.7	1255.9	1.4996	0.72799	1149.5	1243.8	1.4730
600	1.15876	1191.4	1298.6	1.5590	0.94605	1184.9	1289.9	1.5325	0.79332	1177.9	1280.7	1.5087
650	1.23312	1214.3	1328.4	1.5865	1.01133	1209.0	1321.3	1.5614	0.85242	1203.4	1313.8	1.5393
700	1.30440	1236.4	1357.0	1.6117	1.07316	1231.9	1351.0	1.5877	0.90769	1227.2	1344.8	1.5666
800	1.44097	1279.2	1412.5	1.6576	1.19038	1275.8	1408.0	1.6348	1.01125	1272.4	1403.4	1.6150
900 1000	1.57252 1.70094	1321.4 1363.6	1466.9 1521.0	1.6992 1.7376	1.30230 1.41097	1318.7 1361.4	1463.3 1518.1	1.6771 1.7160	1.10921 1.20381	1316.0 1359.2	1459.7 1515.2	1.6581 1.6974
1100	1.82726	1406.2	1575.3	1.7735	1.51749	1404.4	1572.9	1.7522	1.29621	1402.5	1570.4	1.7341
1200	1.95211	1449.4	1630.0	1.8075	1.62252	1447.8	1627.9	1.7865	1.38709	1446.2	1625.9	1.7685
1400	2.1988	1537.8	1741.2	1.8708	1.82957	1536.6	1739.7	1.8501	1.56580	1535.4	1738.2	1.8324
1600	2.4430	1629.4	1855.4	1.9291	2.0340	1628.4	1854.2	1.9085	1.74192	1627.5	1853.1	1.8911
1800	2.6856	1724.2	1972.7	1.9834	2.2369	1723.4	1971.8	1.9630	1.91643	1722.7	1970.9	1.9457
2000	2.9271	1822.3	2093.1	2.0345	2.4387	1821.7	2092.4		2.08987	1821.0	2091.7	1.9969
		= 800 psia				•	(544.65°	-			(572.45°	
Sat. 550	0.56920 0.61586	1115.0 1139.4	1199.3 1230.5	1.4162 1.4476	0.44604 0.45375	1110.1 1115.2	1192.6 1199.2	1.3906 1.3972	0.34549	1102.0	1181.9	1.3623
600	0.67799			1.4866	0.43373		1249.3	1.4457	0.37894	1129.5	1217.2	1.3961
650	0.73279		1306.0	1.5191	0.56411	1185.1	1289.5	1.4827	0.42703	1167.5	1266.3	1.4414
700	0.78330	1222.4	1338.4	1.5476	0.60844	1212.4	1325.0	1.5140	0.46735	1198.7	1306.8	1.4771
750	0.83102	1246.0	1369.1	1.5735	0.64944		1357.8	1.5418	0.50344	1226.4		1.5076
800	0.87678	1268.9	1398.7	1.5975	0.68821	1261.7	1389.0	1.5670	0.53687	1252.2	1376.4	1.5347
900 1000	0.96434 1.04841	1313.3 1357.0	1456.0 1512.2	1.6413 1.6812	0.76136 0.83078	1307.7 1352.5	1448.6 1506.2	1.6126 1.6535	0.59876 0.65656	1300.5	1439.0 1498.6	1.5826 1.6249
1100	1.13024	1400.7	1512.2	1.7181	1	1396.9	1563.1	1.6911	0.03030	1346.7	1556.8	1.6635
1200	1.21051	1444.6	1623.8	1.7528	0.96327	1441.4	1619.7	1.7263	0.71104	1437.4	1614.5	1.6993
1400	1.36797		1736.7		1.09101	1531.8	1733.7	1.7911	0.86944			1.7649
1600	1.52283	1626.5	1851.9	1.8759	1.21610	1624.6	1849.6	1.8504	0.97072	1622.2		1.8246
1800	1.67606			1.9306	1.33956	1720.3	1968.2	1.9053	1.07036	1718.4	1966.0	1.8799
2000	1.82823	1820.4	2091.0	1.9819	1.46194	1819.1	2089.6	1.9568	1.16892	1817.5	2087.9	1.9315
-												

© The McGraw-Hill Companies, 2008

823

Appendix 2

TABLE	A-6E											
Superl	heated wat	ter (<i>Conc</i>	luded)									
				s				S				S
<i>T</i> °F	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	Btu/ Ibm⋅R	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/Ibm	Btu/ Ibm · R	∨ ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/Ibm	Btu/
												lbm⋅R
		1500 psi					(617.17°				(635.85°	
Sat. 600	0.27695 0.28189	1092.1 1097.2	1169.0 1175.4	1.3362 1.3423	0.22681	1080.5	1153.9	1.3112	0.18815	1066.8	1136.4	1.2863
650	0.28189	1147.2	1239.7	1.4016	0.26292	1122.8	1207.9	1.3607	0.20586	1091.4	1167.6	1.3146
700	0.37198	1183.6	1286.9	1.4433	0.30252	1166.8	1264.7	1.4108	0.24894	1147.6	1239.8	1.3783
750	0.40535	1214.4	1326.9	1.4771	0.33455	1201.5	1309.8	1.4489	0.28074	1187.4	1291.3	1.4218
800	0.43550	1242.2	1363.1	1.5064	0.36266	1231.7	1349.1	1.4807	0.30763		1334.3	1.4567
850	0.46356	1268.2	1396.9	1.5328	0.38835	1259.3	1385.1	1.5088	0.33169	1250.0	1372.8	1.4867
900	0.49015	1293.1	1429.2	1.5569	0.41238	1285.4	1419.0	1.5341	0.35390	1277.5	1408.5	1.5134
1000 1100	0.54031 0.58781	1340.9 1387.3	1490.8 1550.5	1.6007 1.6402	0.45719 0.49917	1334.9 1382.4	1482.9 1544.1	1.5796 1.6201	0.39479 0.43266	1328.7 1377.5	1474.9 1537.6	1.5606 1.6021
1200	0.63355	1433.3	1609.2	1.6767	0.43317	1429.2	1603.9	1.6572	0.43200	1425.1	1598.5	1.6400
1400	0.72172	1525.7	1726.0	1.7432	0.61621	1522.6	1722.1	1.7245	0.53708	1519.5	1718.3	1.7081
1600	0.80714	1619.8	1843.8	1.8033	0.69031	1617.4	1840.9	1.7852	0.60269	1615.0	1838.0	1.7693
1800	0.89090	1716.4	1963.7	1.8589	0.76273	1714.5	1961.5	1.8410	0.66660	1712.5	1959.2	1.8255
2000	0.97358	1815.9	2086.1	1.9108	0.83406	1814.2	2084.3	1.8931	0.72942	1812.6	2082.6	1.8778
	P =	2500 psi	ia (668.17	'°F)		3000 psia	(695.41°	'F)		P = 350	0 psia	
Sat.	0.13076	1031.2	1091.7	1.2330	0.08460	969.8	1016.8	1.1587				
650	0.16040	1000 4	1176.0	1 0070		1005.0	10500	1 1000	0.02492	663.7	679.9	0.8632
700 750	0.16849 0.20327	1098.4 1154.9	1176.3 1249.0	1.3072 1.3686	0.09838 0.14840	1005.3 1114.1	1059.9 1196.5	1.1960 1.3118	0.03065 0.10460	760.0 1057.6	779.9 1125.4	0.9511 1.2434
800	0.20327	1195.9	1302.0	1.4116	0.14640	1114.1	1265.3	1.3676	0.10480	1134.3	1222.6	1.3224
850	0.25174	1230.1	1346.6	1.4463	0.19771	1208.2	1317.9	1.4086	0.15847	1183.8	1286.5	1.3721
900	0.27165	1260.7	1386.4	1.4761	0.21640	1242.8	1362.9	1.4423	0.17659		1337.8	1.4106
950	0.29001	1289.1	1423.3	1.5028	0.23321	1273.9	1403.3	1.4716	0.19245	1257.8	1382.4	1.4428
1000	0.30726	1316.1	1458.2	1.5271	0.24876	1302.8	1440.9	1.4978	0.20687	1289.0	1423.0	1.4711
1100	0.33949	1367.3	1524.4	1.5710	0.27732	1356.8	1510.8	1.5441	0.23289		1496.9	1.5201
1200	0.36966	1416.6	1587.6	1.6103	0.30367	1408.0	1576.6	1.5850	0.25654	1399.3	1565.4	1.5627
1400 1600	0.42631 0.48004	1513.3 1610.1	1710.5 1832.2	1.6802 1.7424	0.35249 0.39830	1507.0 1605.3	1702.7 1826.4	1.6567 1.7199	0.29978 0.33994	1500.7 1600.4	1694.8 1820.5	1.6364 1.7006
1800	0.48004	1708.6	1954.8	1.7991	0.39830	1704.7	1950.3	1.7773	0.33994	1700.8	1945.8	1.7586
2000	0.58295	1809.4	2079.1	1.8518	0.48532	1806.1	2075.6	1.8304	0.41561	1802.9	2072.1	1.8121
		P = 40	00 psia			P = 500	O psia			P = 600	0 psia	
650	0.02448	657.9	676.1	0.8577	0.02379	648.3	670.3	0.8485	0.02325	640.3	666.1	0.8408
700	0.02871	742.3		0.9347	0.02678	721.8	746.6	0.9156	0.02564	708.1		0.9028
750	0.06370		1009.2		0.03373	821.8	853.0		0.02981	788.7		0.9747
800	0.10520		1172.1		0.05937			1.1581	0.03949	897.1	941.0	
850	0.12848			1.3355	0.08551			1.2593	0.05815		1083.1	1.1819
900	0.14647		1310.9	1.4157	0.10390	1155.9		1.3198	0.07584 0.09010		1187.7	
950 1000	0.16176 0.17538	1240.7 1274.6	1404.4		0.11863 0.13128			1.3643 1.4004	0.09010	1163.7 1211.4		1.3153 1.3578
1100	0.17358	1335.1		1.4983				1.4590	0.10200		1424.0	1.4237
1200	0.22121			1.5426	0.17185			1.5070	0.13911			1.4758
1300	0.24128		1621.6		0.18902				0.15434			1.5203
1400	0.26028		1687.0		0.20508	1481.4	1671.1	1.5868				1.5598
1600	0.29620		1814.7		0.23505			1.6542	0.19438			1.6294
1800	0.33033		1941.4		0.26320			1.7142	0.21853			
2000	0.36335	1/99.7	2068.6	1./961	0.29023	1/93.2	2061.7	1./689	0.24155	1/86.7	2054.9	1.7463

© The McGraw-Hill Companies, 2008

Introduction to Thermodynamics and Heat Transfer

TABI	LE A-7E											
Com	pressed lic	quid wate	er									
Т	V	и	h	S	v	и	h	s	V	и	h	S
°F	ft ³ /lbm	Btu/lbm	Btu/Ibm	Btu/Ibm · R	ft ³ /lbm	Btu/Ibm	Btu/lbm	Btu/lbm ⋅ R	ft ³ /lbm	Btu/Ibm	Btu/lbm	Btu/Ibm · R
	P =	= 500 psi	a (467.04	ŀ°F)	P =	1000 ps	a (544.6	5°F)	<i>P</i> =	1500 psi	a (596.26	5°F)
Sat. 32 50	0.019750 0.015994 0.015998	447.68 0.01 18.03	449.51 1.49 19.51	0.64900 0.00001 0.03601	0.021595 0.015966 0.015972	538.58 0.03 17.99	542.57 2.99 20.95	0.74341 0.00005 0.03593	0.023456 0.015939 0.015946	605.07 0.05 17.95	611.58 4.48 22.38	
100 150	0.016107 0.016317	67.86 117.70	69.35 119.21	0.12930 0.21462	0.016083 0.016292	67.69 117.42	70.67 120.43	0.12899 0.21416	0.016059 0.016267	67.53 117.14	71.98 121.66	0.12869 0.21369
200 250 300	0.016607 0.016972 0.017417	218.04		0.29349 0.36708 0.43641	0.016580 0.016941 0.017380	217.51	220.65	0.29289 0.36634 0.43551	0.016553 0.016911 0.017345	166.92 217.00 267.57	171.52 221.69 272.39	0.29229 0.36560 0.43463
350 400 450	0.017954 0.018609 0.019425	373.61		0.50240 0.56595 0.62802	0.017910 0.018552 0.019347	372.48	375.91	0.50132 0.56463 0.62635	0.017866 0.018496 0.019271	318.91 371.37 425.47	376.51	0.50025 0.56333 0.62472
500 550		120.11	100.21	0.02002	0.020368			0.68764	0.020258 0.021595	482.01 542.50		0.68550 0.74731
	P =	2000 ps	ia (635.8	5°F)	P =	3000 ps	a (695.4)	l°F)		P = 500	00 psia	
	0.025634 0.015912 0.015921 0.016035 0.016527 0.017310 0.018442 0.019199 0.020154 0.021739 0.023317	0.07 17.91 67.36 166.54 266.92 370.30 424.06 480.08 552.21	5.96 23.80 73.30 172.66 273.33 377.12 431.16	0.86224 0.00010 0.03574 0.12838 0.29170 0.43376 0.56205 0.62314 0.68346 0.75692 0.80898	0.034335 0.015859 0.015870 0.015988 0.016475 0.017242 0.018338 0.019062 0.019960 0.021405 0.022759 0.024765 0.028821	0.10 17.83 67.04 165.79 265.65 368.22 421.36 476.45 546.59 597.42 654.52	8.90 26.64 75.91 174.94 275.22 378.41 431.94 487.53 558.47 610.06 668.27	0.97321 0.00011 0.03554 0.12776 0.29053 0.43204 0.55959 0.62010 0.67958 0.75126 0.80086 0.85476 0.92288	0.015756 0.015773 0.015897 0.016375 0.017112 0.018145 0.018812 0.019620 0.020862 0.021943 0.023358 0.025366 0.026777		32.25 81.12 179.51 279.07 381.14 433.80 488.10 556.38 604.72 656.56 714.14	0.12652 0.28824 0.42874 0.55492 0.61445 0.67254 0.74154 0.78803 0.83603

© The McGraw-Hill Companies, 2008

Appendix 2

825

TABLE A-8E

Saturated ice—water vapor

	Sat.		volume, Ibm	Int	ernal ener Btu/lbm	gy,		<i>Enthalpy,</i> Btu/lbm			Entropy, u/Ibm · F	?
Temp., <i>T</i> °F	press., P _{sat} psia	Sat. ice, <i>v_i</i>	Sat. vapor, v_g	Sat. ice, u_i	Subl., u _{ig}	Sat. vapor, u_g	Sat. ice, h _i	Subl., h _{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s _{ig}	Sat. vapor, s_g
32.018	0.08871	0.01747	3299.6	-143.34	1164.2	1020.9	-143.34	1218.3	1075.0	-0.29146	2.4779	2.1864
32	0.08864	0.01747	3302.6	-143.35	1164.2	1020.9	-143.35	1218.4	1075.0	-0.29148	2.4779	2.186
30	0.08086	0.01747	3605.8	-144.35	1164.6	1020.2	-144.35	1218.5	1074.2	-0.29353	2.4883	2.1948
25	0.06405	0.01746	4505.8	-146.85	1165.4	1018.6	-146.85	1218.8	1072.0	-0.29865	2.5146	2.2160
20	0.05049	0.01746	5657.6	-149.32	1166.2	1016.9	-149.32	1219.1	1069.8	-0.30377	2.5414	2.2376
15	0.03960	0.01745	7138.9	-151.76	1167.0	1015.2	-151.76	1219.3	1067.6	-0.30889	2.5687	2.2598
10	0.03089	0.01744	9054.0	-154.18	1167.8	1013.6	-154.18	1219.5	1065.4	-0.31401	2.5965	2.282
5	0.02397	0.01743	11,543	-156.57	1168.5	1011.9	-156.57	1219.7	1063.1	-0.31913	2.6248	2.3057
0	0.01850	0.01743	14,797	-158.94	1169.2	1010.3	-158.94	1219.9	1060.9	-0.32426	2.6537	2.3295
-5	0.01420	0.01742	19,075	-161.28	1169.9	1008.6	-161.28	1220.0	1058.7	-0.32938	2.6832	2.3538
-10	0.01083	0.01741	24,731	-163.60	1170.6	1007.0	-163.60	1220.1	1056.5	-0.33451	2.7133	2.3788
-15	0.00821	0.01740	32,257	-165.90	1171.2	1005.3	-165.90	1220.2	1054.3	-0.33964	2.7440	2.4044
-20	0.00619	0.01740	42,335	-168.16	1171.8	1003.6	-168.16	1220.3	1052.1	-0.34478	2.7754	2.430
-25	0.00463	0.01739	55,917	-170.41	1172.4	1002.0	-170.41	1220.3	1049.9	-0.34991	2.8074	2.457
-30	0.00344	0.01738	74,345	-172.63	1173.0	1000.3	-172.63	1220.3	1047.7	-0.35505	2.8401	2.4850
-35	0.00254	0.01738	99,526	-174.83	1173.5	998.7	-174.83	1220.3	1045.5	-0.36019	2.8735	2.5133
-40	0.00186	0.01737	134,182	-177.00	1174.0	997.0	-177.00	1220.3	1043.3	-0.36534	2.9076	2.5423

826

Introduction to Thermodynamics and Heat Transfer

Back Matter

FIGURE A-9E

T-s diagram for water.

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables (New York: John Wiley & Sons, 1969).

Appendix 2 | 827

FIGURE A-10E

Mollier diagram for water.

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables (New York: John Wiley & Sons, 1969).

© The McGraw-Hill Companies, 2008

828 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-11E

Saturated refrigerant-134a—Temperature table

		Specific volume, Internal e				Entha Btu/l				Entropy, Btu/lbm · R		
Temp., <i>T</i> °F	Sat. press., P _{sat} psia	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
-40 -35 -30 -25 -20 -15 -10	7.432 8.581 9.869 11.306 12.906 14.680 16.642	0.01130 0.01136 0.01143 0.01150 0.01156 0.01163 0.01171	5.7796 5.0509 4.4300 3.8988 3.4426 3.0494 2.7091	-0.016 1.484 2.990 4.502 6.019 7.543 9.073	89.167 88.352 87.532 86.706 85.874 85.036 84.191	89.15 89.84 90.52 91.21 91.89 92.58 93.26	0.000 1.502 3.011 4.526 6.047 7.574 9.109	97.100 96.354 95.601 94.839 94.068 93.288	97.10 97.86 98.61 99.36 100.12 100.86 101.61	0.00000 0.00355 0.00708 0.01058 0.01405 0.01749 0.02092	0.23135 0.22687 0.22248 0.21817 0.21394 0.20978 0.20569	0.23135 0.23043 0.22956 0.22875 0.22798 0.22727 0.22660
-5 0 5 10 15	18.806 21.185 23.793 26.646 29.759	0.01178 0.01185 0.01193 0.01201 0.01209	2.4137 2.1564 1.9316 1.7345 1.5612	10.609 12.152 13.702 15.259 16.823	83.339 82.479 81.610 80.733 79.846	93.95 94.63 95.31 95.99 96.67	10.650 12.199 13.755 15.318 16.889	90.886 90.062 89.226	102.35 103.08 103.82 104.54 105.27	0.02431 0.02769 0.03104 0.03438 0.03769	0.20166 0.19770 0.19380 0.18996 0.18617	0.22598 0.22539 0.22485 0.22434 0.22386
20 25 30 35 40 45 50	33.147 36.826 40.813 45.124 49.776 54.787 60.175 65.957	0.01217 0.01225 0.01234 0.01242 0.01251 0.01261 0.01270 0.01280	1.4084 1.2732 1.1534 1.0470 0.95205 0.86727 0.79136 0.72323	18.394 19.973 21.560 23.154 24.757 26.369 27.990 29.619	78.950 78.043 77.124 76.195 75.253 74.298 73.329 72.346	97.34 98.02 98.68 99.35 100.01 100.67 101.32 101.97	18.469 20.056 21.653 23.258 24.873 26.497 28.131 29.775	86.636 85.742 84.833 83.907 82.963 82.000	105.98 106.69 107.40 108.09 108.78 109.46 110.13 110.79	0.04098 0.04426 0.04752 0.05076 0.05398 0.05720 0.06039 0.06358	0.18243 0.17874 0.17509 0.17148 0.16791 0.16437 0.16087 0.15740	0.22341 0.22300 0.22260 0.22224 0.22189 0.22157 0.22127 0.22098
60 65 70 75 80 85 90	72.152 78.780 85.858 93.408 101.45 110.00 119.08	0.01290 0.01301 0.01312 0.01323 0.01334 0.01347 0.01359	0.66195 0.60671 0.55681 0.51165 0.47069 0.43348 0.39959	31.258 32.908 34.567 36.237 37.919 39.612 41.317	71.347 70.333 69.301 68.251 67.181 66.091 64.979	102.61 103.24 103.87 104.49 105.10 105.70 106.30	31.431 33.097 34.776 36.466 38.169 39.886 41.617	78.988 77.939 76.866 75.767 74.641	111.44 112.09 112.71 113.33 113.94 114.53 115.10	0.06675 0.06991 0.07306 0.07620 0.07934 0.08246 0.08559	0.15396 0.15053 0.14713 0.14375 0.14038 0.13703 0.13368	0.22070 0.22044 0.22019 0.21995 0.21972 0.21949 0.21926
95 100 105 110 115	128.72 138.93 149.73 161.16 173.23	0.01372 0.01386 0.01400 0.01415 0.01430	0.36869 0.34045 0.31460 0.29090 0.26913	43.036 44.768 46.514 48.276 50.054	63.844 62.683 61.496 60.279 59.031	106.88 107.45 108.01 108.56 109.08	43.363 45.124 46.902 48.698 50.512	71.080 69.825	115.66 116.20 116.73 117.23 117.71	0.08870 0.09182 0.09493 0.09804 0.10116	0.13033 0.12699 0.12365 0.12029 0.11693	0.21904 0.21881 0.21858 0.21834 0.21809
120 130 140 150 160 170 180 190 200 210	185.96 213.53 244.06 277.79 314.94 355.80 400.66 449.90 504.00 563.76	0.01446 0.01482 0.01521 0.01567 0.01619 0.01681 0.01759 0.01860 0.02009 0.02309	0.24909 0.21356 0.18315 0.15692 0.13410 0.11405 0.09618 0.07990 0.06441 0.04722	67.014 71.126 75.448 80.082 85.267	57.749 55.071 52.216 49.144 45.799 42.097 37.899 32.950 26.651 16.498	109.60 110.57 111.44 112.20 112.81 113.22 113.35 113.03 111.92 108.48	52.346 56.080 59.913 63.864 67.958 72.233 76.752 81.631 87.140 94.395	62.924 59.801 56.405 52.671 48.499 43.726 38.053	120.27 120.63 120.73 120.48 119.68 117.93	0.10428 0.11054 0.11684 0.12321 0.12970 0.13634 0.14323 0.15055 0.15867 0.16922	0.11354 0.10670 0.09971 0.09251 0.08499 0.07701 0.06835 0.05857 0.04666 0.02839	0.21782 0.21724 0.21655 0.21572 0.21469 0.21335 0.21158 0.20911 0.20533 0.19761

Source: Tables A–11E through A–13E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at –40°C (and –40°F).

© The McGraw-Hill Companies, 2008

Appendix 2

829

TABLE A-12E

Saturated refrigerant-134a—Pressure table

		Specific ft ³ /	<i>volume,</i> Ibm	In	ternal ener Btu/lbm	gy,		Enthalpy, Btu/lbm			Entropy, Btu/lbm · R	
Press., P psia	Sat. temp., T°F	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., $s_{\it fg}$	Sat. vapor, s_g
5	-53.09	0.01113	8.3785	-3.918	91.280	87.36	-3.907	99.022	95.11	-0.00945	0.24353	0.23408
10		0.01113	4.3753	3.135	87.453	90.59	3.156	95.528	98.68	0.00943	0.22206	0.22948
15	-14.15	0.01144	2.9880	7.803	84.893	92.70	7.835	93.155	100.99	0.00742	0.22200	0.22715
20		0.01182	2.2772	11.401	82.898	94.30	11.445	91.282	100.33	0.02605	0.19962	0.22567
25	7.17	0.01196	1.8429	14.377	81.231	95.61	14.432	89.701	104.13	0.03249	0.19213	0.22462
30	15.37	0.01209	1.5492	16.939	79.780	96.72	17.006	88.313	105.32	0.03793	0.18589	0.22383
35	22.57	0.01221	1.3369	19.205	78.485	97.69	19.284	87.064	106.35	0.04267	0.18053	0.22319
40	29.01	0.01232	1.1760	21.246	77.307	98.55	21.337	85.920	107.26	0.04688	0.17580	0.22268
45	34.86	0.01242	1.0497	23.110	76.221	99.33	23.214	84.858	108.07	0.05067	0.17158	0.22225
50	40.23	0.01252	0.94791	24.832	75.209	100.04	24.948	83.863	108.81	0.05413	0.16774	0.22188
55	45.20	0.01261	0.86400	26.435	74.258	100.69	26.564	82.924	109.49	0.05733	0.16423	0.22156
60	49.84	0.01270	0.79361	27.939	73.360	101.30	28.080	82.030	110.11	0.06029	0.16098	0.22127
65	54.20	0.01279	0.73370	29.357	72.505	101.86	29.510	81.176	110.69	0.06307	0.15796	0.22102
70	58.30	0.01287	0.68205	30.700	71.688	102.39	30.867	80.357	111.22	0.06567	0.15512	0.22080
75	62.19	0.01295	0.63706	31.979	70.905	102.88	32.159	79.567	111.73	0.06813	0.15245	0.22059
80	65.89	0.01303	0.59750	33.201	70.151	103.35	33.394	78.804	112.20	0.07047	0.14993	0.22040
85	69.41		0.56244	34.371	69.424	103.79	34.577	78.064	112.64	0.07269	0.14753	0.22022
90		0.01318	0.53113	35.495	68.719	104.21	35.715	77.345	113.06	0.07481	0.14525	0.22006
95	76.02		0.50301	36.578	68.035	104.61	36.811	76.645	113.46	0.07684	0.14307	0.21991
100		0.01332	0.47760	37.623	67.371	104.99	37.869	75.962	113.83	0.07879	0.14097	0.21976
110	85.00	0.01347	0.43347	39.612	66.091	105.70	39.886	74.641	114.53	0.08246	0.13703	0.21949
120	90.49	0.01360	0.39644	41.485	64.869	106.35	41.787	73.371	115.16	0.08589	0.13335	0.21924
130	95.64	0.01374	0.36491	43.258	63.696	106.95	43.589	72.144	115.73	0.08911	0.12990	0.21901
140	100.51		0.33771	44.945	62.564	107.51	45.304	70.954	116.26	0.09214	0.12665	0.21879
150		0.01400	0.31401	46.556	61.467	108.02	46.945	69.795	116.74	0.09501	0.12357	0.21857
160		0.01413	0.29316	48.101	60.401	108.50	48.519	68.662	117.18	0.09774	0.12062	0.21836
170 180	113.69 117.69	0.01426 0.01439	0.27466 0.25813	49.586 51.018	59.362 58.345	108.95 109.36	50.035 51.497	67.553 66.464	117.59 117.96	0.10034 0.10284	0.11781 0.11511	0.21815 0.21795
190		0.01459	0.23813	52.402	57.349	109.36	52.912	65.392	117.96	0.10284	0.11311	0.21793
200		0.01452	0.24327	53.743	56.371	110.11	54.285	64.335	118.62	0.10324	0.11230	0.21774
220	132.21	0.01490	0.20645	56.310	54.458	110.77	56.917	62.256	119.17	0.11192	0.10533	0.21710
240	132.21	0.01490	0.20643	58.746	52.591	110.77	59.419	60.213	119.17	0.11192	0.10317	0.21710
260	144.85	0.01516	0.16996	61.071	50.757	111.83	61.813	58.192	120.00	0.11603	0.10061	0.21603
280		0.01543	0.16996	63.301	48.945	111.65	64.115	56.184	120.00	0.11992	0.09625	0.21617
300		0.01578	0.13341	65.452	47.143	112.23	66.339	54.176	120.52	0.12302	0.03203	0.21512
350		0.01672	0.11664	70.554	42.627	113.18	71.638	49.099	120.74	0.13542	0.07814	0.21356
400		0.01072	0.09642	75.385	37.963	113.35	76.686	43.798	120.48	0.14314	0.06848	0.21360
450		0.01757	0.07987	80.092	32.939	113.03	81.641	38.041	119.68	0.15056	0.05854	0.20911
500		0.01000	0.06551	84.871	27.168	112.04	86.718	31.382	118.10	0.15805	0.03034	0.20566

Appendix 2: Property

Tables and Charts (English Units)

© The McGraw-Hill Companies, 2008

Introduction to Thermodynamics and Heat Transfer 830

Back Matter

TABLE	A-13E											
Superl	heated re	frigerant-	-134a									
				S				S				S
<i>T</i> °F	ν ft³/lbm	U Dtu/lbm	<i>h</i> Btu/lbm	Btu/	ν ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/Ibm	Btu/	v ft ³ /lbm	U Dtu/lbm	<i>h</i> Btu/lbm	Btu/
	$P = \frac{1}{2}$	10 psia (<i>T</i>	$s_{sat} = -29$).52°F)	P =	15 psia (<i>T</i>	$s_{sat} = -14$	15°F)	P = 1	20 psia (7	$T_{\text{sat}} = -2.$	43°F)
Sat.	4.3753	90.59		0.22948	2.9880	92.70	100.99	0.22715	2.2772	94.30	102.73	0.22567
-20 0	4.4856 4.7135	92.13 95.41	100.43 104.14	0.23350 0.24174	3.1001	95.08	103 68	0.23310	2.2922	94.72	103.20	0.22671
20	4.9380	98.77	107.91	0.24976	3.2551	98.48		0.24127	2.4130	98.19		0.23504
40	5.1600	102.20	111.75	0.25761	3.4074	101.95	111.41	0.24922	2.5306	101.70	111.07	0.24311
60	5.3802	105.72	115.67		3.5577			0.25700	2.6461	105.28	115.07	0.25097
80 100	5.5989	109.32	119.68	0.27288	3.7064 3.8540		119.42	0.26463 0.27212	2.7600		119.15	0.25866 0.26621
100 120	5.8165 6.0331	113.01 116.79	123.78 127.96	0.28033 0.28767	4.0006	112.84 116.63	123.54 127.74	0.27212	2.8726 2.9842	112.66 116.47	123.29 127.52	
140	6.2490	120.66	132.22	0.29490	4.1464	120.51	132.02	0.28677	3.0950			0.28093
160	6.4642	124.61	136.57	0.30203	4.2915	124.48	136.39	0.29393	3.2051	124.35	136.21	0.28812
180	6.6789	128.65	141.01	0.30908	4.4361	128.53	140.84	0.30100	3.3146	128.41	140.67	0.29521
200	6.8930	132.77	145.53	0.31604	4.5802	132.66	145.37	0.30798	3.4237	132.55	145.22	0.30221
220	7.1068	136.98	150.13	0.32292	4.7239	136.88	149.99	0.31487	3.5324	136.78	149.85	0.30912
	<i>P</i> =	30 psia ($T_{\rm sat} = 15.$	37°F)	P =	40 psia ($T_{\rm sat} = 29.$	01°F)	<i>P</i> =	50 psia (7	$T_{\rm sat} = 40.$	23°F)
Sat.	1.5492			0.22383	1.1760	98.55	107.26	0.22268	0.9479	100.04	108.81	0.22188
20	1.5691	97.56	106.27		1 0100	100.61	100 50	0.00720				
40 60	1.6528 1.7338	101.17 104.82	110.35 114.45	0.23414 0.24219	1.2126 1.2768	100.61 104.34	109.58	0.22738 0.23565	1.0019	103.84	113.11	0.23031
80	1.8130	104.52	114.45		1.3389	104.34	113.79	0.23363	1.0540	103.64	117.43	0.23031
100	1.8908		122.80		1.3995		122.29	0.25140	1.1043			0.24637
120	1.9675	116.15	127.07	0.26517	1.4588		126.62	0.25900	1.1534	115.48	126.16	0.25406
140	2.0434	120.08	131.42		1		131.01	0.26644	1.2015		130.59	0.26159
160	2.1185	124.08	135.84	0.27979	1.5750	123.81	135.47	0.27375	1.2488		135.09	0.26896
180 200	2.1931 2.2671	128.16 132.32	140.34 144.91	0.28693 0.29398	1.6321 1.6887	127.91 132.10	140.00 144.60	0.28095 0.28803	1.2955 1.3416	127.66 131.87	139.65 144.28	0.27621 0.28333
220	2.3408	136.57	144.91	0.29398		136.36	144.00	0.28803	1.3410		144.28	0.28333
240	2.4141	140.89	154.29	0.30778	1.8007	140.70	154.03	0.30190	1.4326	140.50	153.76	0.29728
260	2.4871	145.30	159.10	0.31456	1.8562	145.12	158.86	0.30871	1.4776	144.93	158.60	0.30411
280	2.5598	149.78	163.99	0.32126	1.9114	149.61	163.76	0.31543	1.5223	149.44	163.53	0.31086
	P =	60 psia ($T_{\rm sat} = 49.$	84°F)	P =	70 psia ($T_{\rm sat} = 58.$	30°F)	P =	80 psia (7	$T_{\rm sat} = 65.$	89°F)
Sat.	0.7936			0.22127	0.6821			0.22080	0.59750	103.35	112.20	0.22040
60	0.8179	103.31	112.39	0.22570	0.6857	102.73	111.62	0.22155	0.60400	100.00	115 51	0.00661
80 100		107.23		0.23407 0.24211				0.23016 0.23836	0.62430 0.66009			0.23499
120	0.9495			0.24211	0.7002			0.23636	0.69415			0.23499
140		119.16		0.25751	0.8401	118.85		0.25398	0.72698			0.25083
160		123.25		0.26496	0.8756	122.97			0.75888			0.25841
180		127.41		0.27226	0.9105	127.15	138.94	0.26885	0.79003		138.58	0.26583
200	1.1101	131.63		0.27943	0.9447		143.63	0.27607	0.82059			0.27310
220		135.93		0.28649	0.9785	135.71		0.28317	0.85065		148.09	0.28024
240 260		140.30 144.75		0.29344 0.30030	1.0118	140.10 144.56	153.21 158.10	0.29015 0.29704	0.88030 0.90961		152.93 157.84	0.28726 0.29418
280		149.27		0.30030	1.0776			0.30384	0.93861			0.30100
300		153.87		0.31376	1.1101	153.71		0.31055	0.96737		167.86	0.30773
320	1.3377	158.54	173.39	0.32037	1.1424	158.39	173.19	0.31718			172.98	0.31438
									I			

(Continued)

Units)

© The McGraw-Hill Companies, 2008

831

Appendix 2

Table A-13E Superheated refrigerant-134a (Concluded)												Append	IIA Z	1 031
T	Т	ABLE	A-13E											
P = 90 psia (T _{cst} = 72.78°F)				igerant-1	34a (<i>Cond</i>	cluded)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	•		0	-					c				<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	-	V	11	h		1/	11	h		1/	11	h	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
Sat. 0.53113 104.21 113.06 0.22006 0.47760 104.99 113.83 0.21976 0.39644 106.35 115.16 0.21924	-													
80			P =	= 90 psia ($(T_{\rm sat} = 72.1$	78°F)	P = 1	100 psia ($T_{\rm sat} = 79.$	12°F)	P = 1	120 psia ($T_{\rm sat} = 90.$	49°F)
100	S	at.		104.21	113.06	0.22006	0.47760	104.99	113.83	0.21976	0.39644	106.35	115.16	0.21924
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
140 0.63885														
160														
180														
200														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c} 200 \\ 200 $														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
280														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	00	0.85633	153.38	167.64	0.30522	0.76749	153.21					166.96	0.29896
Sat. 0.33771 107.51 116.26 0.21879 0.29316 108.50 117.18 0.21836 0.25813 109.36 117.96 0.21795 120 0.36243 111.96 121.35 0.22773 0.30578 111.01 120.06 0.22337 0.26083 109.94 118.63 0.21910 140 0.38551 116.41 126.40 0.23628 0.32774 115.62 125.32 0.23230 0.28231 114.77 124.17 0.22850 160 0.40711 120.81 131.36 0.24443 0.34790 120.13 30.4069 0.30154 119.42 129.46 0.23718 180 0.42766 125.22 136.30 0.25227 0.36686 124.62 135.49 0.24871 0.31936 124.00 134.64 0.24540 200 0.44743 129.65 141.21 162.12 0.26730 0.40234 133.64 145.55 0.28364 145.55 0.26313 137.76 150.01 0.26337	3	20	0.88195	158.08	172.77	0.31189	0.79079	157.93	172.56	0.30964	0.65402	157.62	172.14	0.30569
120			P =	140 psia ($(T_{\rm sat} = 100)$.50°F)	P = 1	60 psia ($T_{\rm sat} = 109$.50°F)	P = 1	80 psia (7	$T_{\rm sat} = 117$.69°F)
120	S	at.	0.33771	107.51	116.26	0.21879	0.29316	108.50	117.18	0.21836	0.25813	109.36	117.96	0.21795
180														
180	1	40	0.38551	116.41	126.40	0.23628	0.32774	115.62	125.32	0.23230	0.28231	114.77	124.17	0.22850
200	1	60	0.40711		131.36								129.46	0.23718
220														
$ \begin{array}{c} 240 \\ 260 \\ 0.50345 \\ 143.21 \\ 156.26 \\ 0.28166 \\ 0.28166 \\ 0.28166 \\ 0.28864 \\ 0.45171 \\ 0.45761 \\ 0.45761 \\ 0.45761 \\ 0.45761 \\ 0.45761 \\ 0.45761 \\ 0.45761 \\ 0.48522 \\ 0.50345 \\ 0.450345 \\ 0.43211 \\ 0.46748 \\ 0.45171 \\ 0.4748 \\ 0.46748 \\ 0.45171 \\ 0.27459 \\ 0.28554 \\ 0.28554 \\ 0.28554 \\ 0.28554 \\ 0.39751 \\ 0.4710 \\ 0.27562 \\ 0.39751 \\ 0.4710 \\ 0.42544 \\ 0.38284 \\ 0.4829 \\ 0.300 \\ 0.55630 \\ 0.57345 \\ 0.2131 \\ 0.57345 \\ 0.2131 \\ 0.26151 \\ 0.26131 \\ 0.261$														
260 0.50345 143.21 156.26 0.28166 0.43564 142.81 155.71 0.27849 0.38284 142.40 155.16 0.27562 280 0.52134 147.85 161.35 0.28864 0.45171 147.48 160.85 0.28554 0.39751 147.10 160.34 0.28273 300 0.53895 152.54 166.50 0.29551 0.46748 152.20 166.04 0.29246 0.41186 151.85 165.57 0.28970 320 0.55630 157.30 171.71 0.30228 0.48299 156.98 171.28 0.29927 0.42594 156.66 170.85 0.29656 0.59041 167.02 182.32 0.31555 0.51338 166.74 181.94 0.31260 0.45347 166.46 181.56 0.30331 0.59041 167.02 182.32 0.31555 0.51338 166.74 181.94 0.31260 0.45347 166.46 181.56 0.30996 0.26412 118.66 128.44 0.23344 0.14656 113.82 121.95 0.21745 180 0.28115 123.35 133.76 0.24229 0.16355 119.52 128.60 0.22802 0.09658 113.41 120.56 0.21173 0.2900 0.29704 128.00 138.99 0.25035 0.17776 124.78 134.65 0.23733 0.11440 120.52 128.99 0.22471 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 0.34054 144.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 0.36733 151.50 165.09 0.28718 0.29346 144.965 162.61 0.27681 0.16611 147.65 159.94 0.26851 30 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.18201 157.97 171.44 0.28326 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														
280														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Sat. 0.22983 110.11 118.62 0.21753 0.14266 112.60 120.52 0.21512 0.09642 113.35 120.48 0.21161 140 0.24541 113.85 122.93 0.22481 0.24281 0.21745 0.21745 0.21745 0.26412 118.66 128.44 0.23384 0.14656 113.82 121.95 0.21745 0.09658 113.41 120.56 0.21173 200 0.29704 128.00 138.99 0.25035 0.17776 124.78 134.65 0.23733 0.11440 120.52 128.99 0.22471 220 0.31212 132.64 144.19 0.25812 0.19044 129.85 140.42 0.24594 0.12746 126.44 135.88 0.23500 240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 <td></td>														
140 0.24541 113.85 122.93 0.22481 160 0.26412 118.66 128.44 0.23384 0.14656 113.82 121.95 0.21745 180 0.28115 123.35 133.76 0.24229 0.16355 119.52 128.60 0.22802 0.09658 113.41 120.56 0.21173 200 0.29704 128.00 138.99 0.25035 0.17776 124.78 134.65 0.23733 0.11440 120.52 128.99 0.22471 220 0.31212 132.64 144.19 0.25812 0.19044 129.85 140.42 0.24594 0.12746 126.44 135.88 0.23500 240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270			P =	200 psia ($(T_{\rm sat} = 125)$.22°F)	P = 3	00 psia ($T_{\rm sat} = 156$.09°F)	P = 4	.00 psia (7	$T_{\rm sat} = 179$.86°F)
160 0.26412 118.66 128.44 0.23384 0.14656 113.82 121.95 0.21745 0.09658 113.41 120.56 0.21173 180 0.28115 123.35 133.76 0.24229 0.16355 119.52 128.60 0.22802 0.09658 113.41 120.56 0.21173 200 0.29704 128.00 138.99 0.25035 0.17776 124.78 134.65 0.23733 0.11440 120.52 128.99 0.22471 220 0.31212 132.64 144.19 0.25812 0.19044 129.85 140.42 0.24594 0.12746 126.44 135.88 0.23500 240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 280 <t< td=""><td>S</td><td>at.</td><td>0.22983</td><td>110.11</td><td>118.62</td><td>0.21753</td><td>0.14266</td><td>112.60</td><td>120.52</td><td>0.21512</td><td>0.09642</td><td>113.35</td><td>120.48</td><td>0.21161</td></t<>	S	at.	0.22983	110.11	118.62	0.21753	0.14266	112.60	120.52	0.21512	0.09642	113.35	120.48	0.21161
180 0.28115 123.35 133.76 0.24229 0.16355 119.52 128.60 0.22802 0.09658 113.41 120.56 0.21173 200 0.29704 128.00 138.99 0.25035 0.17776 124.78 134.65 0.23733 0.11440 120.52 128.99 0.22471 220 0.31212 132.64 144.19 0.25812 0.19044 129.85 140.42 0.24594 0.12746 126.44 135.88 0.23500 240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 280 0.35410 146.72 159.82 0.28015 0.22347 144.70 157.11 0.26947 0.15756 142.48 154.14 0.26077 300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61	1	40	0.24541	113.85	122.93									
200 0.29704 128.00 138.99 0.25035 0.17776 124.78 134.65 0.23733 0.11440 120.52 128.99 0.22471 220 0.31212 132.64 144.19 0.25812 0.19044 129.85 140.42 0.24594 0.12746 126.44 135.88 0.23500 240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 280 0.35410 146.72 159.82 0.28015 0.22347 144.70 157.11 0.26947 0.15756 142.48 154.14 0.26077 300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61 0.27681 0.16611 147.65 159.94 0.26851 320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12	1	60												
220 0.31212 132.64 144.19 0.25812 0.19044 129.85 140.42 0.24594 0.12746 126.44 135.88 0.23500 240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 280 0.35410 146.72 159.82 0.28015 0.22347 144.70 157.11 0.26947 0.15756 142.48 154.14 0.26077 300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61 0.27681 0.16611 147.65 159.94 0.26851 320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.17423 152.80 165.70 0.27599 340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66														
240 0.32658 137.30 149.38 0.26565 0.20211 134.83 146.05 0.25410 0.13853 131.95 142.20 0.24418 260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 280 0.35410 146.72 159.82 0.28015 0.22347 144.70 157.11 0.26947 0.15756 142.48 154.14 0.26077 300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61 0.27681 0.16611 147.65 159.94 0.26851 320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.17423 152.80 165.70 0.27599 340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														
260 0.34054 141.99 154.59 0.27298 0.21306 139.77 151.59 0.26192 0.14844 137.26 148.25 0.25270 280 0.35410 146.72 159.82 0.28015 0.22347 144.70 157.11 0.26947 0.15756 142.48 154.14 0.26077 300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61 0.27681 0.16611 147.65 159.94 0.26851 320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.17423 152.80 165.70 0.27599 340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														
280 0.35410 146.72 159.82 0.28015 0.22347 144.70 157.11 0.26947 0.15756 142.48 154.14 0.26077 300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61 0.27681 0.16611 147.65 159.94 0.26851 320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.17423 152.80 165.70 0.27599 340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														
300 0.36733 151.50 165.09 0.28718 0.23346 149.65 162.61 0.27681 0.16611 147.65 159.94 0.26851 320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.17423 152.80 165.70 0.27599 340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														
320 0.38029 156.33 170.40 0.29408 0.24310 154.63 168.12 0.28398 0.17423 152.80 165.70 0.27599 340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														
340 0.39300 161.22 175.77 0.30087 0.25246 159.64 173.66 0.29098 0.18201 157.97 171.44 0.28326														

832 Introduction to Thermodynamics and Heat Transfer

FIGURE A-14E

P-h diagram for refrigerant-134a.

 $Reprinted \ by \ permission \ of \ American \ Society \ of \ Heating, \ Refrigerating, \ and \ Air-Conditioning \ Engineers, \ Inc., \ Atlanta, \ GA.$

Çengel: Introduction to Back Matter
Thermodynamics and Heat
Transfer, Second Edition

Appendix 2: Property Tables and Charts (English Units) © The McGraw-Hill Companies, 2008

Appendix 2

833

TABLE A-15E

Properties of saturated water

Saturation Temp. Pressure T, °F P _{sat} , psia		ensity Ibm/ft³	Enthalpy of Vaporization	H	ecific eat 'Ibm · R	The Condu k, Btu/h	ıctivity	Dynamic μ, Ibn		Nui	ndil mber Pr	Volume Expansion Coefficient β , 1/R	
		Liquid	Vapor	h _{fg} , Btu/Ibm	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid
32.02	0.0887	62.41	0.00030	1075	1.010	0.446	0.324	0.0099	1.204×10^{-3}	6.194×10^{-6}	13.5	1.00	-0.038×10^{-3}
40	0.1217	62.42	0.00034	1071	1.004	0.447	0.329	0.0100	1.308×10^{-3}	6.278×10^{-6}	11.4	1.01	$A0.003 \times 10^{-3}$
50	0.1780	62.41	0.00059	1065	1.000	0.448	0.335	0.0102	8.781×10^{-4}	6.361×10^{-6}	9.44	1.01	0.047×10^{-3}
60	0.2563	62.36	0.00083	1060	0.999	0.449	0.341	0.0104	7.536×10^{-4}	6.444×10^{-6}	7.95	1.00	0.080×10^{-3}
70	0.3632	62.30	0.00115	1054	0.999	0.450	0.347	0.0106	6.556×10^{-4}	6.556×10^{-6}	6.79	1.00	0.115×10^{-3}
80	0.5073	62.22	0.00158	1048	0.999	0.451	0.352	0.0108	5.764×10^{-4}	6.667×10^{-6}	5.89	1.00	0.145×10^{-3}
90	0.6988	62.12	0.00214	1043	0.999	0.453	0.358	0.0110	5.117×10^{-4}	6.778×10^{-6}	5.14	1.00	0.174×10^{-3}
100	0.9503	62.00	0.00286	1037	0.999	0.454	0.363	0.0112	4.578×10^{-4}	6.889×10^{-6}	4.54	1.01	0.200×10^{-3}
110	1.2763	61.86	0.00377	1031	0.999	0.456	0.367	0.0115	4.128×10^{-4}	7.000×10^{-6}	4.05	1.00	0.224×10^{-3}
120	1.6945	61.71	0.00493	1026	0.999	0.458	0.371	0.0117	3.744×10^{-4}	7.111×10^{-6}	3.63	1.00	0246×10^{-3}
130	2.225	61.55	0.00636	1020	0.999	0.460	0.375	0.0120	3.417×10^{-4}	7.222×10^{-6}	3.28	1.00	0.267×10^{-3}
140	2.892	61.38	0.00814	1014	0.999	0.463	0.378	0.0122	3.136×10^{-4}	7.333×10^{-6}	2.98	1.00	0.287×10^{-3}
150	3.722	61.19	0.0103	1008	1.000	0.465	0.381	0.0125	2.889×10^{-4}	7.472×10^{-6}	2.73	1.00	0.306×10^{-3}
160	4.745	60.99	0.0129	1002	1.000	0.468	0.384	0.0128	2.675×10^{-4}	7.583×10^{-6}	2.51	1.00	0.325×10^{-3}
170	5.996	60.79	0.0161	996	1.001	0.472	0.386	0.0131	2.483×10^{-4}	7.722×10^{-6}	2.90	1.00	0.346×10^{-3}
180	7.515	60.57	0.0199	990	1.002	0.475	0.388	0.0134	2.317×10^{-4}	7.833×10^{-6}	2.15	1.00	0.367×10^{-3}
190	9.343	60.35	0.0244	984	1.004	0.479	0.390	0.0137	2.169×10^{-4}	7.972×10^{-6}	2.01	1.00	0.382×10^{-3}
200	11.53	60.12	0.0297	978	1.005	0.483	0.391	0.0141	2.036×10^{-4}	8.083×10^{-6}	1.88	1.00	0.395×10^{-3}
210	14.125	59.87	0.0359	972	1.007	0.487	0.392	0.0144	1.917×10^{-4}	8.222×10^{-6}	1.77	1.00	0.412×10^{-3}
212	14.698	59.82	0.0373	970	1.007	0.488	0.392	0.0145	1.894×10^{-4}	8.250×10^{-6}	1.75	1.00	0.417×10^{-3}
220	17.19	59.62	0.0432	965	1.009	0.492	0.393	0.0148	1808×10^{-4}	8.333×10^{-6}	1.67	1.00	0.429×10^{-3}
230	20.78	59.36	0.0516	959	1.011	0.497	0.394	0.0152	1.711×10^{-4}	8.472×10^{-6}	1.58	1.00	0.443×10^{-3}
240	24.97	59.09	0.0612	952	1.013	0.503	0.394	0.0156	1.625×10^{-4}	8.611×10^{-6}	1.50	1.00	0.462×10^{-3}
250	29.82	58.82	0.0723	946	1.015	0.509	0.395	0.0160	1.544×10^{-4}	8.611×10^{-6}	1.43	1.00	0.480×10^{-3}
260	35.42	58.53	0.0850	939	1.018	0.516	0.395	0.0164	1.472×10^{-4}	8.861×10^{-6}	1.37	1.00	0.497×10^{-3}
270	41.85	58.24	0.0993	932	1.020	0.523	0.395	0.0168	1.406×10^{-4}	9.000×10^{-6}	1.31	1.01	0.514×10^{-3}
280	49.18	57.94	0.1156	926	1.023	0.530	0.395	0.0172	1.344×10^{-4}	9.111×10^{-6}	1.25	1.01	0.532×10^{-3}
290	57–53	57.63	0.3390	918	1.026	0.538	0.395	0.0177	1.289×10^{-4}	9.250×10^{-6}	1.21	1.01	0.549×10^{-3}
300	66.98	57.31	0.1545	910	1.029	0.547	0.394	0.0182	1.236×10^{-4}	9.389×10^{-6}	1.16	1.02	0.566×10^{-3}
320	89.60	56.65	0.2033	895	1.036	0.567	0.393	0.0191	1.144×10^{-4}	9.639×10^{-6}	1.09	1.03	0.636×10^{-3}
340	117.93	55.95	0.2637	880	1.044	0.590	0.391	0.0202	1.063×10^{-4}	9.889×10^{-6}	1.02	1.04	0.656×10^{-3}
360	152.92	56.22	0.3377	863	1.054	0.617	0.389	0.0213	9.972×10^{-5}	1.013×10^{-5}	0.973	1.06	0.681×10^{-3}
380	195.60	54.46	0.4275	845	1.065	0.647	0.385	0.0224	9.361×10^{-5}	1.041×10^{-5}	0.932	1.08	0.720×10^{-3}
400	241.1	53.65	0.5359	827	1.078	0.683	0.382	0.0237	8.833×10^{-5}	1.066×10^{-5}	0.893	1.11	0.771×10^{-3}
450	422.1	51.46	0.9082	775	1.121	0.799	0.370	0.0271	7.722×10^{-5}	1.130×10^{-5}	0.842	1.20	0.912×10^{-3}
500	680.0	48.95	1.479	715	1.188	0.972	0.352	0.0312	6.833×10^{-5}	1.200×10^{-5}	0.830	1.35	1.111×10^{-3}
550	1046.7	45.96	4.268	641	1.298	1.247	0.329	0.0368	6.083×10^{-5}	1.280×10^{-5}	0.864	1.56	1.445×10^{-3}
600	1541	42.32	3.736	550	1.509	1.759	0.299	0.0461	5.389×10^{-5}	1.380×10^{-5}	0.979	1.90	1.883×10^{-3}
650	2210	37.31	6.152	422	2.086	3.103	0.267	0.0677	4.639×10^{-5}	1.542×10^{-5}	1.30	2.54	
700	3090	27.28	13.44	168	13.80	25.90	0.254	0.1964	3.417×10^{-5}	2.044×10^{-5}	6.68	9.71	
705.44	3204	19.79	19.79	0	∞	∞	∞	∞	2.897×10^{-5}	2.897×10^{-5}			

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu / \rho$ and $\alpha = k / \rho c_{\rho} = \nu / Pr$. The temperatures 32.02°F, 212°F, and 705.44°F are the triple-, boiling-, and critical-point temperatures of water, respectively. All properties listed above (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm·°F for specific heat is equivalent to Btu/lbm·R, and the unit Btu/h-ft·°F for thermal conductivity is equivalent to Btu/h-ft·R.

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. T. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291–1322. Other data are obtained from various sources or calculated.

© The McGraw-Hill Companies, 2008

834 Introduction to Thermodynamics and Heat Transfer

Back Matter

TABLE A-16E

Properties of saturated refrigerant-134a

Temp.	Saturation Pressure		ensity om/ft ³	Enthalpy of Vaporization	Spec He c_p , Bto		Condu	rmal uctivity u/h·ft·R	,	Viscosity m/ft·s	Nur	ndil nber Pr	Volume Expansion Coefficient β, 1/R	Surface Tension
<i>T</i> , °F	P _{sat} , psia	Liquid	Vapor	h _{fg} , Btu/Ibm	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	lbf/ft
-40	7.4	88.51	0.1731	97.1	0.2996	0.1788	0.0636	0.00466	3.278×10^{-4}	1.714×10^{-6}	5.558	0.237	0.00114	0.001206
-30	9.9	87.5	0.2258	95.6	0.3021	0.1829	0.0626	0.00497	3.004×10^{-4}	2.053×10^{-6}	5.226	0.272	0.00117	0.001146
-20	12.9	86.48	0.2905	94.1	0.3046	0.1872	0.0613	0.00529	2.762×10^{-4}	2.433×10^{-6}	4.937	0.310	0.00120	0.001087
-10	16.6	85.44	0.3691	92.5	0.3074	0.1918	0.0602	0.00559	2.546×10^{-4}	2.856×10^{-6}	4.684	0.352	0.00124	0.001029
0	21.2	84.38	0.4635	90.9	0.3103	0.1966	0.0589	0.00589	2.345×10^{-4}	3.314×10^{-6}	4.463	0.398	0.00128	0.000972
10	26.6	83.31	0.5761	89.3	0.3134	0.2017	0.0576	0.00619	2.181×10^{-4}	3.811×10^{-4}	4.269	0.447	0.00132	0.000915
20	33.1	82.2	0.7094	87.5	0.3167	0.2070	0.0563	0.00648	2.024×10^{-4}	4.342×10^{-6}	4.098	0.500	0.00132	0.000859
30	40.8	81.08	0.866	85.8	0.3203	0.2127	0.0550	0.00676	1.883×10^{-4}	4.906×10^{-6}	3.947	0.555	0.00142	0.000803
40	49.8	79.92	1.049	83.9	0.3240	0.2188	0.0536	0.00704	1.752×10^{-4}	5.494×10^{-6}	3.814	0.614	0.00149	0.000749
50	60.2	78.73	1.262	82.0	0.3281	0.2253	0.0522	0.00732	1.633×10^{-4}	6.103×10^{-6}	3.697	0.677	0.00156	0.000695
60	72.2	77.51	1.509	80.0	0.3325	0.2323	0.0507	0.00758	1.522×10^{-4}	6.725×10^{-6}	3.594	0.742	0.00163	0.000642
70	85.9	76.25	1.794	78.0	0.3372	0.2398	0.0492	0.00785	1.420×10^{-4}	7.356×10^{-6}	3.504	0.810	0.00173	0.000590
80	101.4	74.94	2.122	75.8	0.3424	0.2481	0.0476	0.00810	1.324×10^{-4}	7.986×10^{-6}	3.425	0.880	0.00183	0.000538
90	119.1	73.59	2.5	73.5	0.3481	0.2572	0.0460	0.00835	1.234×10^{-4}	8.611×10^{-6}	3.357	0.955	0.00195	0.000488
100	138.9	72.17	2.935	71.1	0.3548	0.2674	0.0444	0.00860	1.149×10^{-4}	9.222×10^{-6}	3.303	1.032	0.00210	0.000439
110	161.2	70.69	3.435	68.5	0.3627	0.2790	0.0427	0.00884	1.068×10^{-4}	9.814×10^{-6}	3.262	1.115	0.00227	0.000391
120	186.0	69.13	4.012	65.8	0.3719	0.2925	0.0410	0.00908	9.911×10^{-5}	1.038×10^{-5}	3.235	1.204	0.00248	0.000344
130	213.5	67.48	4.679	62.9	0.3829	0.3083	0.0392	0.00931	9.175×10^{-5}	1.092×10^{-5}	3.223	1.303	0.00275	0.000299
140	244.1	65.72	5.455	59.8	0.3963	0.3276	0.0374	0.00954	8.464×10^{-5}	1.144×10^{-5}	3.229	1.416	0.00308	0.000255
150	277.8	63.83	6.367	56.4	0.4131	0.3520	0.0355	0.00976	7.778×10^{-5}	1.195×10^{-5}	3.259	1.551	0.00351	0.000212
160	314.9	61.76	7.45	52.7	0.4352	0.3839	0.0335	0.00998	7.108×10^{-5}	1.245×10^{-5}	3.324	1.725	0.00411	0.000171
170	355.8	59.47	8.762	48.5	0.4659	0.4286	0.0314	0.01020	6.450×10^{-5}	1.298×10^{-5}	3.443	1.963	0.00498	0.000132
180	400.7	56.85	10.4	43.7	0.5123	0.4960	0.0292	0.01041	5.792×10^{-5}	1.366×10^{-5}	3.661	2.327	0.00637	0.000095
190	449.9	53.75	12.53	38.0	0.5929	0.6112	0.0267	0.01063	5.119×10^{-5}	1.431×10^{-5}	4.090	2.964	0.00891	0.000061
200	504.0	49.75	15.57	30.7	0.7717	0.8544	0.0239	0.01085	4.397×10^{-5}	1.544×10^{-5}	5.119	4.376	0.01490	0.000031
210	563.8	43.19	21.18	18.9	1.4786	1.6683	0.0199	0.01110	3.483×10^{-5}	1.787×10^{-5}	9.311	9.669	0.04021	0.000006

Note 1: Klnematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_p = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm . °F for specific heat is equivalent to Btu/lbm·R, and the unit Btu/h-ft·°F for thermal conductivity is equivalent to Btu/h-ft·R.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tilner-Roth and H. D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluorethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 Mpa," J. Phys. Chem. Ref. Data, Vol. 23, No.5, 1994: M. J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, "Viscosity and Thermal Conductivity of Halogenated Methane and Ethane Refrigerants," IJR, Vol. 22, pp. 525–535, 1999: NIST REPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, Physicial and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303. 1995).

Çengel: Introduction to Back Matter
Thermodynamics and Heat
Transfer, Second Edition

Appendix 2: Property
Tables and Charts (English
Units)

© The McGraw-Hill Companies, 2008

Appendix 2

835

TABLE A-17E

Properties of saturated ammonia

Saturation Temp. Pressure $_{T, ^{\circ}F} P_{sat}$, psia		nsity bm/ft ³	Enthalpy of Vaporization	Spec He $c_{ ho}$, Btu		Condu	rmal uctivity u/h·ft·R	,	Viscosity m/ft⋅s	Nur	ndil nber Pr	Volume Expansion Coefficient β , 1/R	Surface Tension	
<i>T</i> , °F		Liquid	Vapor	h _{fg} , Btu/Ibm	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	lbf/ft
-40	10.4	43.08	0.0402	597.0	1.0542	0.5354	-	0.01026	1.966×10^{-4}	5.342×10^{-6}	-	1.003	0.00098	0.002443
-30	13.9	42.66	0.0527	590.2	1.0610	0.5457	-	0.01057	1.853×10^{-4}	5.472×10^{-6}	_	1.017	0.00101	0.002357
-20	18.3	42.33	0.0681	583.2	1.0677	0.5571	0.3501	0.01089	1.746×10^{-4}	5.600×10^{-6}	1.917	1.031	0.00103	0.002272
-10	23.7	41.79	0.0869	575.9	1.0742	0.5698	0.3426	0.01121	1.645×10^{-4}	5.731×10^{-6}	1.856	1.048	0.00106	0.002187
0	30-4	41.34	0.1097	568.4	1.0807	0.5838	0.3352	0.01154	1.549×10^{-4}	5.861×10^{-6}	1.797	1.068	0.00109	0.002103
10	38.5	40.89	0.1370	560.7	1.0873	0.5992	0.3278	0.01187	1.458×10^{-4}	5.994×10^{-6}	1.740	1.089	0.00112	0.002018
20	48.2	40.43	0.1694	552.6	1.0941	0.6160	0.3203	0.01220	1.371×10^{-4}	6.125×10^{-6}	1.686	1.113	0.00116	0.001934
30	59.8	39.96	0.2075	544.4	1.1012	0.6344	0.3129	0.01254	1290×10^{-4}	6.256×10^{-6}	1.634	1.140	0.00119	0.001850
40	73.4	39.48	0.2521	535.8	1.1087	0.6544	0.3055	0.01288	1.213×10^{-4}	6.389×10^{-6}	1.585	1.168	0.00123	0.001767
50	89.2	38.99	0.3040	526.9	1.1168	0.6762	0.2980	0.01323	1.140×10^{-4}	6.522×10^{-6}	1.539	1.200	0.00128	0.001684
60	107.7	38.50	0.3641	517.7	1.1256	0.6999	0.2906	0.01358	1.072×10^{-4}	6.656×10^{-6}	1.495	1.234	0.00132	0.001601
70	128.9	37.99	0.4332	508.1	1.1353	0.7257	0.2832	0.01394	1.008×10^{-4}	6.786×10^{-6}	1.456	1.272	0.00137	0.001518
80	153.2	37.47	0.5124	498.2	1.1461	0.7539	0.2757	0.01431	9.486×10^{-5}	6.922×10^{-6}	1.419	1.313	0.00143	0.001436
90	180.8	36.94	0.6029	487.8	1.1582	0.7846	0.2683	0.01468	8.922×10^{-5}	7.056×10^{-6}	1.387	1.358	0.00149	0.001354
100	212.0	36.40	0.7060	477.0	1.1719	0.8183	0.2609	0.01505	8.397×10^{-5}	7.189×10^{-6}	1.358	1.407	0.00156	0.001273
110	247.2	35.83	0.8233	465.8	1.1875	0.8554	0.2535	0.01543	7.903×10^{-5}	7.325×10^{-6}	1.333	1.461	0.00164	0.001192
120	286.5	35.26	0.9564	454.1	1.2054	0.8965	0.2460	0.01582	7.444×10^{-5}	7.458×10^{-6}	1.313	1.522	0.00174	0.001111
130	330.4	34.66	1.1074	441.7	1.2261	0.9425	0.2386	0.01621	7.017×10^{-5}	7.594×10^{-6}	1.298	1.589	0.00184	0.001031
140	379.4	34.04	1.2786	428.8	1.2502	0.9943	0.2312	0.01661	6.617×10^{-5}	7.731×10^{-6}	1.288	1.666	0.00196	0.000951
150	433.2	33.39	1.4730	415.2	1.2785	1.0533	0.2237	0.01702	6.244×10^{-5}	7.867×10^{-4}	1.285	1.753	0.00211	0.000872
160	492.7	32.72	1.6940	400.8	1.3120	1.1214	0.2163	0.01744	5.900×10^{-5}	8.006×10^{-6}	1.288	1.853	0.00228	0.000794
170	558.2	32.01	1.9460	385.4	1.3523	1.2012	0.2089	0.01786	5.578×10^{-5}	8.142×10^{-6}	1.300	1.971	0.00249	0.000716
180	630.1	31.26	2.2346	369.1	1.4015	1.2965	0.2014	0.01829	5.278×10^{-5}	8.281×10^{-6}	1.322	2.113	0.00274	0.000638
190	708.5	30.47	2.5670	351.6	1.4624	1.4128	0.1940	0.01874	5.000×10^{-5}	8.419×10^{-6}	1.357	2.286	0.00306	0.000562
200	794.4	29.62	2.9527	332.7	1.5397	1.5586	0.1866	0.01919	4.742×10^{-5}	8.561×10^{-6}	1.409	2.503	0.00348	0.000486
210	887.9	28.70	3.4053	312.0	1.6411	1.7473	0.1791	0.01966	4500×10^{-5}	8.703×10^{-6}	1.484	2.784	0.00403	0.000411
220	989.5	27.69	3.9440	289.2	1.7798	2.0022	0.1717	0.02015	4.275×10^{-5}	8.844×10^{-6}	1.595	3.164	0.00480	0.000338
230	1099.0	25.57	4.5987	263.5	1.9824	2.3659	0.1643	0.02065	4.064×10^{-5}	8.989×10^{-6}	1.765	3.707	0.00594	0.000265
240	1219.4	25.28	5.4197	234.0	2.3100	2.9264	0.1568	0.02119	3.864×10^{-5}	9.136×10^{-6}	2.049	4.542	0.00784	0.000194

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/p$ and $\alpha = k/pc_p = \nu/Pr$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm.°F for specific heat is equivalent to Btu/lbm.R, and the unit Btu/h-ft.°F for thermal conductivity is equivalent to Btu/h-ft.R.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Orginal sources: Tillner-Roth, Harms-Watzenterg, and Baehr, "Eine neue Fundamentalgleichung fur Ammoniak," *DKV-Tagungsbericht* 20: 167–181, 1993; Liley and Desai, "Thermophysical Properties of Refrigerants," *ASHRAE*, 1993, ISBN 1-1883413-10-9.

Transfer, Second Edition

836 **Introduction to Thermodynamics and Heat Transfer**

Back Matter

TABLE A-18E

Properties of saturated propane

Temp.	Temp. Pressure $\frac{\rho}{\rho}$		nsity bm/ft ³	Enthalpy of Vaporization	Specification $c_{ ho}$, Bto		Cond	rmal uctivity u/h·ft·R		Viscosity m/ft∙s	Nur	ndil mber Pr	Volume Expansion Coefficient β, 1/R	Surface Tension
<i>T</i> , °F	$P_{\rm sat}$, psia	Liquid	Vapor	h _{ig} , Btu/Ibn	n Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	lbf/ft
-200	0.0201	42.06	0.0003	217.7	0.4750	0.2595	0.1073	0.00313	5.012×10^{-4}	2.789×10^{-6}	7.991	0.833	0.00083	0.001890
-180	0.0752	41.36	0.0011	213.4	0.4793	0.2680	0.1033	0.00347	3.941×10^{-4}	2.975×10^{-6}	6.582	0.826	0.00086	0.001780
-160	0.2307	40.65	0.0032	209.1	0.4845	0.2769	0.0992	0.00384	3.199×10^{-4}	3.164×10^{-6}	5.626	0.821	0.00088	0.001671
-140	0.6037	39.93	0.0078	204.8	0.4907	0.2866	0.0949	0.00423	2.660×10^{-4}	3.358×10^{-6}	4.951	0.818	0.00091	0.001563
-120	1.389	39.20	0.0170	200.5	0.4982	0.2971	0.0906	0.00465	2.252×10^{-4}	3.556×10^{-6}	4.457	0.817	0.00094	0.001455
-100	2.878	38.46	0.0334	196.1	0.5069	0.3087	0.0863	0.00511	1.934×10^{-4}	3.756×10^{-6}	4.087	0.817	0.00097	0.001349
-90	4.006	38.08	0.0453	193.9	0.5117	0.3150	0.0842	0.00534	1.799×10^{-4}	3.858×10^{-6}	3.936	0.819	0.00099	0.001297
-80	5.467	37.70	0.0605	191.6	0.5169	0.3215	0.0821	0.00559	1.678×10^{-4}	3.961×10^{-6}	3.803	0.820	0.00101	0.001244
-70	7.327	37.32	0.0793	189.3	0.5224	0.3284	0.0800	0.00585	1.569×10^{-4}	4.067×10^{-6}	3.686	0.822	0.00104	0.001192
-60	9.657	36.93	0.1024	186.9	0.5283	0.3357	0.0780	0.00611	1.469×10^{-4}	4.172×10^{-6}	3.582	0.825	0.00106	0.001140
-50	12.54	36.54	0.1305	184.4	0.5345	0.3433	0.0760	0.00639	1.378×10^{-4}	4.278×10^{-6}	3.490	0.828	0.00109	0.001089
-40	16.05	36.13	0.1641	181.9	0.5392	0.3513	0.0740	0.00568	1.294×10^{-4}	4.386×10^{-6}	3.395	0.831	0.00112	0.001038
-30	20.29	35.73	0.2041	179.3	0.5460	0.3596	0.0721	0.00697	1.217×10^{-4}	4.497×10^{-6}	3.320	0.835	0.00115	0.000987
-20	25.34	35.31	0.2512	176.6	0.5531	0.3684	0.0702	0.00728	1.146×10^{-4}	4.611×10^{-6}	3.253	0.840	0.00119	0.000937
-10	31.3	34.89	0.3063	173.8	0.5607	0.3776	0.0683	0.00761	1.079×10^{-4}	4.725×10^{-6}	3.192	0.845	0.00123	0.000887
0	38.28	34.46	0.3703	170.9	0.5689	0.3874	0.0665	0.00794	1.018×10^{-4}	4.842×10^{-6}	3.137	0.850	0.00127	0.000838
10	46.38	34.02	0.4441	167.9	0.5775	0.3976	0.0647	0.00829	9.606×10^{-5}	4.961×10^{-6}	3.088	0.857	0.00132	0.000789
20	55.7	33.56	0.5289	164.8	0.5867	0.4084	0.0629	0.00865	9.067×10^{-5}	5.086×10^{-6}	3.043	0.864	0.00138	0.000740
30	66.35	33.10	0.6259	161.6	0.5966	0.4199	0.0512	0.00903	8.561×10^{-5}	5.211×10^{-6}	3.003	0.873	0.00144	0.000692
40	78.45	32.62	0.7365	158.1	0.6072	0.4321	0.0595	0.00942	8.081×10^{-5}	5.342×10^{-6}	2.967	0.882	0.00151	0.000644
50	92.12	32.13	0.8621	154.6	0.6187	0.4452	0.0579	0.00983	7.631×10^{-5}	5.478×10^{-6}	2.935	0.893	0.00159	0.000597
60	107.5	31.63	1.0046	150.8	0.6311	0.4593	0.0563	0.01025	7.200×10^{-5}	5.617×10^{-6}	2.906	0.906	0.00168	0.000551
70	124.6	31.11	1.1659	146.8	0.6447	0.4746	0.0547	0.01070	6.794×10^{-5}	5.764×10^{-6}	2.881	0.921	0.00179	0.000505
80	143.7	30.56	1.3484	142.7	0.6596	0.4915	0.0532	0.01116	6.406×10^{-5}	5.919×10^{-6}	2.860	0.938	0.00191	0.000460
90	164.8	30.00	1.5549	138.2	0.6762	0.5103	0.0517	0.01165	6.033×10^{-5}	6.081×10^{-6}	2.843	0.959	0.00205	0.000416
100	188.1	29.41	1.7887	133.6	0.6947	0.5315	0.0501	0.01217	5.675×10^{-5}	6.256×10^{-6}	2.831	0.984	0.00222	0.000372
120	241.8	28.13	2.3562	123.2	0.7403	0.5844	0.0472	0.01328	5.000×10^{-6}	6.644×10^{-6}	2.825	1.052	0.00267	0.000288
140	306.1	26.69	3.1003	111.1	0.7841	0.6613	0.0442	0.01454	4.358×10^{-5}	7.111×10^{-6}	2.784	1.164	0.00338	0.000208
160	382.4	24.98	4.1145	96.4	0.8696	0.7911	0.0411	0.01603	3.733×10^{-5}	7.719×10^{-6}	2.845	1.371	0.00459	0.000133
180	472.9	22.79	5.6265	77.1	1.1436	1.0813	0.0376	0.01793	3.083×10^{-5}	8.617×10^{-6}	3.380	1.870	0.00791	0.000065

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = kl\rho c_n = \nu/Pr$. The properties listed here (except the vapor density) can be used at any pressures with negligible error at temperatures near the critical-point value.

Note 2: The unit Btu/lbm-°F for specific heat is equivalent to Btu/lbm-R, and the unit Btu/h-ft-°F for thermal conductivity is equivalent to Btu/h-ft-R.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, "Fundamental Equations of State," Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely. "Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and Normal Butane," J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G. R. Somayajulu, "A Generalized Equation for Surface Tension from the Triple-Point to the Critical-Point," International Journal of Thermophysics, Vol. 9, No. 4, 1988.

Back Matter

837

Appendix 2

						n,	poliuix 2	. 007
TABLE A	_19E							
Propert	ies of liquids	6						
Temp.	Density	Specific Heat c_p , Btu/Ibm·R	Thermal Conductivity	Thermal Diffusivity α , ft ² /s	Dynamic Viscosity μ, Ibm/ft·s	Kinematic Viscosity ν , ft ² /s	Prandtl Number Pr	Volume Expansion Coeff. β , 1/R
7, .	ρ, ισπιτε	op, Bransin it	n, Beam te n	Methane (7,1675		2/11
-280 -260	27.41 26.43	0.8152 0.8301	0.1205 0.1097	1.497×10^{-6} 1.389×10^{-6}	1.057×10^{-4} 8.014×10^{-5}	3.857×10^{-6} 3.032×10^{-6}	2.575 2.183	0.00175 0.00192
-240	25.39	0.8523	0.0994	1.276×10^{-6}	6.303×10^{-5}	2.482×10^{-6}	1.945	0.00132
-220	24.27	0.8838	0.0896	1.159×10^{-6}	5.075×10^{-5}	2.091×10^{-6}	1.803	0.00247
-200	23.04	0.9314	0.0801	1.036×10^{-6}	4.142×10^{-5}	1.798×10^{-6}	1.734	0.00295
-180	21.64	1.010	0.0709	9.008×10^{-7}	3.394×10^{-5}	1.568×10^{-6}	1.741	0.00374
-160	19.99	1.158	0.0616	7.397×10^{-7}	2.758×10^{-5}	1.379×10^{-6}	1.865	0.00526
<u>-140</u>	17.84	1.542	0.0518	5.234×10^{-7}	2.168×10^{-5}	1.215×10^{-6}	2.322	0.00943
				Methanol [Cl	H ₃ (OH)]			
70	49.15	0.6024	0.1148	1.076×10^{-6}	3.872×10^{-4}	7.879×10^{-6}	7.317	0.000656
90	48.50	0.6189	0.1143	1.057×10^{-6}	3.317×10^{-4}	6.840×10^{-6}	6.468	0.000671
110	47.85	0.6373	0.1138	1.036×10^{-6}	2.872×10^{-4}	6.005×10^{-6}	5.793	0.000691
130	47.18	0.6576	0.1133	1.014×10^{-6} 9.918×10^{-7}	2.513×10^{-4} 2.218×10^{-4}	5.326×10^{-6}	5.250	0.000716
150 170	46.50 45.80	0.6796 0.7035	0.1128 0.1124	9.918×10^{-7} 9.687×10^{-7}	2.218×10^{-4} 1.973×10^{-4}	4.769×10^{-6} 4.308×10^{-6}	4.808 4.447	0.000749 0.000789
	+0.00	0.7000	0.112-	Isobutane (F		4.000 // 10	7.777	0.000703
150	40.75	0.4402	0.0700			1 FOO × 10-5	10.00	0.000705
$-150 \\ -100$	42.75 41.06	0.4483 0.4721	0.0799 0.0782	1.157×10^{-6} 1.120×10^{-6}	6.417×10^{-4} 3.669×10^{-4}	1.500×10^{-5} 8.939×10^{-6}	12.96 7.977	0.000785 0.000836
-50	39.31	0.4721	0.0731	1.036×10^{-6}	2.376×10^{-4}	6.043×10^{-6}	5.830	0.000830
0	37.48	0.5289	0.0664	9.299×10^{-7}	1.651×10^{-4}	4.406×10^{-6}	4.738	0.001012
50	35.52	0.5643	0.0591	8.187×10^{-7}	1.196×10^{-4}	3.368×10^{-6}	4.114	0.001169
100	33.35	0.6075	0.0521	7.139×10^{-7}	8.847×10^{-5}	2.653×10^{-6}	3.716	0.001421
150	30.84	0.6656	0.0457	6.188×10^{-7}	6.558×10^{-5}	2.127×10^{-6}	3.437	0.001883
200	27.73	0.7635	0.0400	5.249×10^{-7}	4.750×10^{-5}	1.713×10^{-6}	3.264	0.002970
				Glyceri	n			
32	79.65	0.5402	0.163	1.052×10^{-6}	7.047	0.08847	84101	
40	79.49	0.5458	0.1637	1.048×10^{-6}	4.803	0.06042	57655	
50 60	79.28	0.5541	0.1645	1.040×10^{-6} 1.029×10^{-6}	2.850 1.547	0.03594	34561	
70	79.07 78.86	0.5632 0.5715	0.1651 0.1652	1.029×10^{-6} 1.018×10^{-6}	0.9422	0.01956 0.01195	18995 11730	
80	78.66	0.5713	0.1652	1.013×10^{-6} 1.007×10^{-6}	0.5497	0.00699	6941	
90	78.45	0.5878	0.1652	9.955×10^{-7}	0.3756	0.004787	4809	
100	78.24	0.5964	0.1653	9.841×10^{-7}	0.2277	0.00291	2957	
				Engine Oil (u	inused)			
32	56.12	0.4291	0.0849	9.792×10^{-7}	2.563	4.566×10^{-2}	46636	0.000389
50	55.79	0.4395	0.08338	9.448×10^{-7}	1.210	2.169×10^{-2}	22963	0.000389
75	55.3	0.4531	0.08378	9.288×10^{-7}	0.4286	7.751×10^{-3}	8345	0.000389
100	54.77	0.4669	0.08367	9.089×10^{-7}	0.1630	2.977×10^{-3}	3275	0.000389
125	54.24	0.4809	0.08207	8.740×10^{-7}	7.617×10^{-2}	1.404×10^{-3}	1607	0.000389
150	53.73	0.4946	0.08046	8.411×10^{-7} 7.999×10^{-7}	3.833×10^{-2} 1.405×10^{-2}	7.135×10^{-4}	848.3	0.000389
200 250	52.68 51.71	0.5231 0.5523	0.07936 0.07776	7.999×10^{-7} 7.563×10^{-7}	1.405×10^{-2} 6.744×10^{-3}	2.668×10^{-4} 1.304×10^{-4}	333.6 172.5	0.000389 0.000389
300	50.63	0.5818	0.07673	7.236×10^{-7}	3.661×10^{-3}	7.232×10^{-5}	99.94	0.000389

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

Back Matter Appendix 2: Property
Tables and Charts (English
Units)

© The McGraw-Hill Companies, 2008

838 I Introduction to Thermodynamics and Heat Transfer

TABLE A	–20E							
Properti	ies of liquic	l metals						
		Chasifia	Thormal	Thormal	Dynamia	Vinamatia	Prandtl	Volume Expansion
Temp.	Density	Specific Heat	Thermal Conductivity	Thermal Diffusivity	Dynamic Viscosity	Kinematic Viscosity	Number	Coeff. β ,
<i>T</i> , °F	ρ , Ibm/ft ³	<i>c_p</i> , Btu/Ibm⋅R		α , ft ² /s	μ, Ibm/ft·s	ν , ft ² /s	Pr	1/R
				Mercury (Hg) Me	elting Point: –38°F	=		
32	848.7	0.03353	4.727	4.614×10^{-5}	1.133×10^{-3}	1.335×10^{-6}	0.02895	1.005×10^{-4}
50 100	847.2	0.03344	4.805	4.712×10^{-5} 4.980×10^{-5}	1.092×10^{-3} 9.919×10^{-4}	1.289×10^{-6} 1.176×10^{-6}	0.02737 0.02363	1.005×10^{-4} 1.005×10^{-4}
150	842.9 838.7	0.03319 0.03298	5.015 5.221	5.244×10^{-5}	9.919×10^{-4} 9.122×10^{-4}	1.176×10^{-6} 1.087×10^{-6}	0.02363	1.005×10^{-4} 1.005×10^{-4}
200	834.5	0.03279	5.422	5.504×10^{-5}	8.492×10^{-4}	1.037×10^{-6} 1.017×10^{-6}	0.01849	1.005×10^{-4}
300	826.2	0.03252	5.815	6.013×10^{-5}	7.583×10^{-4}	9.180×10^{-7}	0.01527	1.005×10^{-4}
400	817.9	0.03236	6.184	6.491×10^{-5}	6.972×10^{-4}	8.524×10^{-7}	0.01313	1.008×10^{-4}
500	809.6	0.03230	6.518	6.924×10^{-5}	6.525×10^{-4}	8.061×10^{-7}	0.01164	1.018×10^{-4}
600	801.3	0.03235	6.839	7.329×10^{-5}	6.186×10^{-4}	7.719×10^{-7}	0.01053	1.035×10^{-4}
				Bismuth (Bi) Me	elting Point: 520°F	.		
700	620.7	0.03509	9.361	1.193×10^{-4}	1.001×10^{-3}	1.614×10^{-6}	0.01352	
800	616.5	0.03569	9.245	1.167×10^{-4}	9.142×10^{-4}	1.482×10^{-6}	0.01271	
900	612.2	0.0363	9.129 9.014	1.141×10^{-4} 1.116×10^{-4}	8.267×10^{-4} 7.392×10^{-4}	1.350×10^{-6} 1.215×10^{-6}	0.01183 0.0109	
1000 1100	608.0 603.7	0.0369 0.0375	9.014	1.116×10^{-4} 1.105×10^{-4}	6.872×10^{-4}	1.213×10^{-6} 1.138×10^{-6}	0.0109	
1100		0.0070	3.01.		ting Point: 621°F	1.100 // 10	0.01025	
700	658	0.03797	9.302	1.034×10^{-4}	1.612×10^{-3}	2.450×10^{-6}	0.02369	
800	654	0.03750	9.157	1.034×10^{-4} 1.037×10^{-4}	1.453×10^{-3}	2.223×10^{-6}	0.02303	
900	650	0.03702	9.013	1.040×10^{-4}	1.296×10^{-3}	1.994×10^{-6}	0.01917	
1000	645.7	0.03702	8.912	1.035×10^{-4}	1.202×10^{-3}	1.862×10^{-6}	0.01798	
1100	641.5	0.03702	8.810	1.030×10^{-4}	1.108×10^{-3}	1.727×10^{-6}	0.01676	
1200	637.2	0.03702	8.709	1.025×10^{-4}	1.013×10^{-3}	1.590×10^{-6}	0.01551	
				Sodium (Na) Me	elting Point: 208°F	-		
300	57.13	0.3258	48.19	7.192×10^{-4}	4.136×10^{-4}	7.239×10^{-6}	0.01007	
400	56.28	0.3219	46.58	7.142×10^{-4}	3.572×10^{-4}	6.350×10^{-6}	0.008891	
500	55.42	0.3181	44.98	7.087×10^{-4}	3.011×10^{-4}	5.433×10^{-6}	0.007667	
600 800	54.56 52.85	0.3143 0.3089	43.37 40.55	7.026×10^{-4} 6.901×10^{-4}	2.448×10^{-4} 1.772×10^{-4}	4.488×10^{-6} 3.354×10^{-6}	0.006387 0.004860	
1000	51.14	0.3057	38.12	6.773×10^{-4}	1.541×10^{-4}	3.014×10^{-6}	0.004449	
				Potassium (K) M	elting Point: 147°I			
300	50.40	0.1911	26.00	7.500×10^{-4}	2.486×10^{-4}	4.933×10^{-6}	0.006577	
400	49.58	0.1911	25.37	7.530×10^{-4} 7.532×10^{-4}	2.231×10^{-4}	4.500×10^{-6}	0.005975	
500	48.76	0.1863	24.73	7.562×10^{-4}	1.976×10^{-4}	4.052×10^{-6}	0.005359	
600	47.94	0.1839	24.09	7.591×10^{-4}	1.721×10^{-4}	3.589×10^{-6}	0.004728	
800	46.31	0.1791	22.82	7.643×10^{-4}	1.210×10^{-4}	2.614×10^{-6}	0.003420	
1000	44.62	0.1791	21.34	7.417×10^{-4}	1.075×10^{-4}	2.409×10^{-6}	0.003248	
			Sodium-l	Potassium (%22N	a-%78K) Melting F	Point: 12°F		
200	52.99	0.2259	14.79	3.432×10^{-4}	3.886×10^{-4}	7.331×10^{-6}	0.02136	
300	52.16	0.2230	14.99	3.580×10^{-4}	3.467×10^{-4}	6.647×10^{-6}	0.01857	
400	51.32	0.2201	15.19	3.735×10^{-4}	3.050×10^{-4}	5.940×10^{-6}	0.0159	
600 800	49.65 47.99	0.2143 0.2100	15.59 15.95	4.070×10^{-4} 4.396×10^{-4}	2.213×10^{-4} 1.539×10^{-4}	4.456×10^{-6} 3.207×10^{-6}	0.01095 0.007296	
1000	46.36	0.2100	16.20	4.615×10^{-4}	1.353×10^{-4} 1.353×10^{-4}	2.919×10^{-6}	0.007296	
	. 5.55	0.2100	10.20				3.00002 1	

© The McGraw-Hill Companies, 2008 841

839

Appendix 2

TARLE	A-21E									
	gas proper	ties of air								
T	h		И		s°	T	h		И	s°
R	Btu/lbm	P_r	Btu/Ibm	V_r	Btu/lbm · R		Btu/lbm	P_r	Btu/lbm	v_r Btu/Ibm · R
360	85.97	0.3363	61.29	396.6	0.50369	1600	395.74	71.13	286.06	8.263 0.87130
380	90.75	0.4061	64.70	346.6	0.51663	1650	409.13	80.89	296.03	7.556 0.87954
400	95.53	0.4858	68.11	305.0	0.52890	1700	422.59	90.95	306.06	6.924 0.88758
420	100.32	0.5760	71.52	270.1	0.54058	1750	436.12	101.98	316.16	6.357 0.89542
440	105.11	0.6776	74.93	240.6	0.55172	1800	449.71	114.0	326.32	5.847 0.90308
460	109.90	0.7913	78.36	215.33	0.56235	1850	463.37	127.2	336.55	5.388 0.91056
480	114.69	0.9182	81.77	193.65	0.57255	1900	477.09	141.5	346.85	4.974 0.91788
500	119.48	1.0590	85.20	174.90	0.58233	1950	490.88	157.1	357.20	4.598 0.92504
520	124.27	1.2147	88.62	158.58	0.59173	2000	504.71	174.0	367.61	4.258 0.93205
537	128.10	1.3593	91.53	146.34	0.59945	2050	518.71	192.3	378.08	3.949 0.93891
540	129.06	1.3860	92.04	144.32	0.60078	2100	532.55	212.1	388.60	3.667 0.94564
560	133.86	1.5742	95.47	131.78	0.60950	2150	546.54	223.5	399.17	3.410 0.95222
580	138.66	1.7800	98.90	120.70	0.61793	2200	560.59	256.6	409.78	3.176 0.95919
600	143.47	2.005	102.34	110.88	0.62607	2250	574.69	281.4	420.46	2.961 0.96501
620	148.28	2.249	105.78	102.12	0.63395	2300	588.82	308.1	431.16	2.765 0.97123
640	153.09	2.514	109.21	94.30	0.64159	2350	603.00	336.8	441.91	2.585 0.97732
660	157.92	2.801	112.67	87.27	0.64902	2400	617.22	367.6	452.70	2.419 0.98331
680	162.73	3.111	116.12	80.96	0.65621	2450	631.48	400.5	463.54	2.266 0.98919
700	167.56	3.446	119.58	75.25	0.66321	2500	645.78	435.7	474.40	2.125 0.99497
720	172.39	3.806	123.04	70.07	0.67002	2550	660.12	473.3	485.31	1.996 1.00064
740	177.23	4.193	126.51	65.38	0.67665	2600	674.49	513.5	496.26	1.876 1.00623
760	182.08	4.607	129.99	61.10	0.68312	2650	688.90	556.3	507.25	1.765 1.01172
780	186.94	5.051	133.47	57.20	0.68942	2700	703.35	601.9	518.26	1.662 1.01712
800	191.81	5.526	136.97	53.63	0.69558	2750	717.83	650.4	529.31	1.566 1.02244
820	196.69	6.033	140.47	50.35	0.70160	2800	732.33	702.0	540.40	1.478 1.02767
840	201.56	6.573	143.98	47.34	0.70747	2850	746.88	756.7	551.52	1.395 1.03282
860	206.46	7.149	147.50	44.57	0.71323	2900	761.45	814.8	562.66	1.318 1.03788
880	211.35	7.761	151.02	42.01	0.71886	2950	776.05	876.4	573.84	1.247 1.04288
900	216.26	8.411	154.57	39.64	0.72438	3000	790.68	941.4	585.04	1.180 1.04779
920	221.18	9.102	158.12	37.44	0.72979	3050	805.34	1011	596.28	1.118 1.05264
940	226.11	9.834	161.68	35.41	0.73509	3100	820.03	1083	607.53	1.060 1.05741
1040	231.06	10.61	165.26	33.52	0.74030	3150	834.75	1161	618.82	1.006 1.06212
	236.02	11.43	168.83	31.76	0.74540	3200	849.48	1242	630.12	0.955 1.06676
	240.98	12.30	172.43	30.12	0.75042	3250	864.24	1328	641.46	0.907 1.07134
	250.95	14.18	179.66	27.17	0.76019	3300	879.02	1418	652.81	0.8621 1.07585
	260.97	16.28	186.93	24.58	0.76964	3350	893.83	1513	664.20	0.8202 1.08031
1160 1200 1240 1280	271.03 281.14 291.30 301.52 311.79	18.60 21.18 24.01 27.13 30.55	194.25 201.63 209.05 216.53 224.05	22.30 20.29 18.51 16.93 15.52	0.77880 0.78767 0.79628 0.80466 0.81280	3400 3450 3500 3550 3600	908.66 923.52 938.40 953.30 968.21	1613 1719 1829 1946 2068	675.60 687.04 698.48 709.95 721.44	0.7807 1.08470 0.7436 1.08904 0.7087 1.09332 0.6759 1.09755 0.6449 1.10172
1360 1400 1440	322.11 332.48 342.90 353.37 363.89	34.31 38.41 42.88 47.75 53.04	231.63 239.25 246.93 254.66 262.44	14.25 13.12 12.10 11.17 10.34	0.82075 0.82848 0.83604 0.84341 0.85062	3800	983.15 998.11 1013.1 1028.1 1043.1	2196 2330 2471 2618 2773	732.95 744.48 756.04 767.60 779.19	0.6157 1.10584 0.5882 1.10991 0.5621 1.11393 0.5376 1.11791 0.5143 1.12183
1520	374.47	58.78	270.26	9.578	0.85767		1058.1	2934	790.80	0.4923 1.12571
1560	385.08	65.00	278.13	8.890	0.86456		1073.2	3103	802.43	0.4715 1.12955

4200

4300

4400

4500

1148.7

1179.0

1209.4

1239.9

4067

4513

4997

5521

Appendix 2: Property
Tables and Charts (English

© The McGraw-Hill Companies, 2008

840 Introduction to Thermodynamics and Heat Transfer

860.81

884.28

907.81

931.39

0.3826

0.3529

0.3262

0.3019

1.14809

1.15522

1.16221

1.16905

Back Matter

TABLE A-21E Ideal-gas properties of air (Concluded) s° Т h 11 11 R Btu/lbm P_r Btu/lbm Btu/Ibm · R R Btu/lbm Btu/lbm Btu/lbm · R V_r 4000 1088.3 3280 814.06 0.4518 1.13334 4600 1270.4 6089 955.04 0.2799 1.17575 825.72 1.13709 4050 1103.4 3464 0.4331 4700 1300.9 6701 978.73 0.2598 1.18232 4100 1118.5 3656 837.40 0.4154 1.14079 4800 1331.5 7362 1002.5 0.2415 1.18876 4150 1133.6 3858 849.09 0.3985 1.14446 4900 1362.2 8073 1026.3 0.2248 1.19508

5000

5100

5200

5300

1392.9

1423.6

1454.4

1485.3

8837

9658

10,539

11,481

1050.1

1074.0

1098.0

1122.0

0.2096

0.1956

0.1828

0.1710

1.20129

1.20738

1.21336

1.21923

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 832–33, Table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

Çengel: Introduction to Thermodynamics and Heat Transfer, Second Edition Back Matter Appendix 2: Property
Tables and Charts (English
Units)

© The McGraw-Hill Companies, 2008

841

Appendix 2

						Appelluix 2	1 041
TABLE A	22E						
	s of air at 1 at	m pressure					
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Number
<i>T</i> , °F	ho, Ibm/ft ³	c_p , Btu/Ibm·R	k, Btu/h∙ft∙R	α , ft ² /s	μ, Ibm/ft⋅s	ν , ft ² /s	Pr
-300	0.24844	0.5072	0.00508	1.119×10^{-5}	4.039×10^{-6}	1.625×10^{-5}	1.4501
-200	0.15276	0.2247	0.00778	6.294×10^{-5}	6.772×10^{-6}	4.433×10^{-5}	0.7042
-100	0.11029	0.2360	0.01037	1.106×10^{-4}	9.042×10^{-6}	8.197×10^{-5}	0.7404
-50	0.09683	0.2389	0.01164	1.397×10^{-4}	1.006×10^{-5}	1.039×10^{-4}	0.7439
0	0.08630	0.2401	0.01288	1.726×10^{-4}	1.102×10^{-5}	1.278×10^{-4}	0.7403
10	0.08446	0.2402	0.01312	1.797×10^{-4}	1.121×10^{-5}	1.328×10^{-4}	0.7391
20	0.08270	0.2403	0.01336	1.868×10^{-4}	1.140×10^{-5}	1.379×10^{-4}	0.7378
30	0.08101	0.2403	0.01361	1.942×10^{-4}	1.158×10^{-5}	1.430×10^{-4}	0.7365
40	0.07939	0.2404	0.01385	2.016×10^{-4}	1.176×10^{-5}	1.482×10^{-4}	0.7350
50	0.07783	0.2404	0.01409	2.092×10^{-4}	1.194×10^{-5}	1.535×10^{-4}	0.7336
60	0.07633	0.2404	0.01433	2.169×10^{-4}	1.212×10^{-5}	1.588×10^{-4}	0.7321
70	0.07489	0.2404	0.01457	2.248×10^{-4}	1.230×10^{-5}	1.643×10^{-4}	0.7306
80	0.07350	0.2404	0.01481	2.328×10^{-4}	1.247×10^{-5}	1.697×10^{-4}	0.7290
90	0.07217	0.2404	0.01505	2.409×10^{-4}	1.265×10^{-5}	1.753×10^{-4}	0.7275
100	0.07088	0.2405	0.01529	2.491×10^{-4}	1.281×10^{-5}	1.809×10^{-4}	0.7260
110	0.06963	0.2405	0.01552	2.575×10^{-4}	1.299×10^{-5}	1.866×10^{-4}	0.7245
120	0.06843	0.2405	0.01576	2.660×10^{-4}	1.316×10^{-5}	1.923×10^{-4}	0.7230
130	0.06727	0.2405	0.01599	2.746×10^{-4}	1.332×10^{-5}	1.981×10^{-4}	0.7216
140	0.06615	0.2406	0.01623	2.833×10^{-4}	1.349×10^{-5}	2.040×10^{-4}	0.7202
150	0.06507	0.2406	0.01646	2.921×10^{-4}	1.365×10^{-5}	2.099×10^{-4}	0.7188
160	0.06402	0.2406	0.01669	3.010×10^{-4}	1.382×10^{-5}	2.159×10^{-4}	0.7174
170	0.06300	0.2407	0.01692	3.100×10^{-4}	1.398×10^{-5}	2.220×10^{-4}	0.7161
180	0.06201	0.2408	0.01715	3.191×10^{-4}	1.414×10^{-5}	2.281×10^{-4}	0.7148
190	0.06106	0.2408	0.01738	3.284×10^{-4}	1.430×10^{-5}	2.343×10^{-4}	0.7136
200	0.06013	0.2409	0.01761	3.377×10^{-4}	1.446×10^{-5}	2.406×10^{-4}	0.7124
250	0.05590	0.2415	0.01874	3.857×10^{-4}	1.524×10^{-5}	2.727×10^{-4}	0.7071
300	0.05222	0.2423	0.01985	4.358×10^{-4}	1.599×10^{-5}	3.063×10^{-4}	0.7028
350	0.04899	0.2433	0.02094	4.879×10^{-4}	1.672×10^{-5}	3.413×10^{-4}	0.6995
400	0.04614	0.2445	0.02200	5.419×10^{-4}	1.743×10^{-5}	3.777×10^{-4}	0.6971
450	0.04361	0.2458	0.02305	5.974×10^{-4}	1.812×10^{-5}	4.154×10^{-4}	0.6953
500	0.04134	0.2472	0.02408	6.546×10^{-4}	1.878×10^{-5}	4.544×10^{-4}	0.6942
600	0.03743	0.2503	0.02608	7.732×10^{-4}	2.007×10^{-5}	5.361×10^{-4}	0.6934
700	0.03421	0.2535	0.02800	8.970×10^{-4}	2.129×10^{-5}	6.225×10^{-4}	0.6940
800	0.03149	0.2568	0.02986	1.025×10^{-3} 1.158×10^{-3}	2.247×10^{-5}	7.134×10^{-4}	0.6956
900	0.02917	0.2599	0.03164	11100 10	2.359×10^{-5}	8.087×10^{-4}	0.6978
1000	0.02718	0.2630	0.03336	1.296×10^{-3} 2.041×10^{-3}	2.467×10^{-5}	9.080×10^{-4} 1.460×10^{-3}	0.7004
1500	0.02024	0.2761	0.04106		2.957×10^{-5}	1.460×10^{-3} 2.095×10^{-3}	0.7158
2000	0.01613	0.2855	0.04752	2.867×10^{-3}	3.379×10^{-5}		0.7308
2500	0.01340	0.2922	0.05309	3.765×10^{-3}	3.750×10^{-5}	2.798×10^{-3} 3.560×10^{-3}	0.7432
3000 3500	0.01147	0.2972	0.05811 0.06293	4.737×10^{-3} 5.797×10^{-3}	4.082×10^{-5} 4.381×10^{-5}	3.560×10^{-3} 4.373×10^{-3}	0.7516 0.7543
	0.01002	0.3010		6.975×10^{-3}	4.381×10^{-5} 4.651×10^{-5}	4.373×10^{-3} 5.229×10^{-3}	0.7543
4000	0.00889	0.3040	0.06789	0.9/3 × 10 °	4.001 × 10 °	5.229 X 10 5	0.7497

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 1984; and Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

842 Introduction to Thermodynamics and Heat Transfer

TABLE A	-23E						
Propertie	s of gases at 1	atm pressure					
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Number
<i>T</i> , °F	ho, Ibm/ft ³	c_p , Btu/Ibm·R	k, Btu/h∙ft∙R	α , ft ² /s	μ, Ibm/ft⋅s	ν , ft ² /s	Pr
			Carbo	on Dioxide, CO ₂			
-50	0.14712	0.1797	0.00628	6.600×10^{-5}	7.739×10^{-6}	5.261×10^{-5}	0.7970
0	0.13111	0.1885	0.00758	8.522×10^{-5}	8.661×10^{-6}	6.606×10^{-5}	0.7751
50	0.11825	0.1965	0.00888	1.061×10^{-4}	9.564×10^{-6}	8.086×10^{-5}	0.7621
100	0.10769	0.2039	0.01017	1.286×10^{-4}	1.045×10^{-5}	9.703×10^{-5}	0.7543
200	0.09136	0.2171	0.01273	1.784×10^{-4}	1.217×10^{-5}	1.332×10^{-4}	0.7469
300	0.07934	0.2284	0.01528	2.341×10^{-4}	1.382×10^{-5}	1.743×10^{-4}	0.7445
500	0.06280	0.2473	0.02027	3.626×10^{-4}	1.696×10^{-5}	2.700×10^{-4}	0.7446
1000	0.04129	0.2796	0.03213	7.733×10^{-4}	2.381×10^{-5}	5.767×10^{-4}	0.7458
1500	0.03075	0.2995	0.04281	1.290×10^{-3}	2.956×10^{-5}	9.610×10^{-4}	0.7445
2000	0.02450	0.3124	0.05193	1.885×10^{-3}	3.451×10^{-5}	1.408×10^{-3}	0.7474
			Carbo	n Monoxide, CO			
-50	0.09363	0.2571	0.01118	1.290×10^{-4}	9.419×10^{-6}	1.005×10^{-4}	0.7798
0	0.08345	0.2523	0.01240	1.636×10^{-4}	1.036×10^{-5}	1.242×10^{-4}	0.7593
50	0.07526	0.2496	0.01359	2.009×10^{-4}	1.127×10^{-5}	1.498×10^{-4}	0.7454
100	0.06854	0.2484	0.01476	2.408×10^{-4}	1.214×10^{-5}	1.772×10^{-4}	0.7359
200	0.05815	0.2485	0.01702	3.273×10^{-4}	1.379×10^{-5}	2.372×10^{-4}	0.7247
300	0.05049	0.2505	0.01920	4.217×10^{-4}	1.531×10^{-5}	3.032×10^{-4}	0.7191
500	0.03997	0.2567	0.02331	6.311×10^{-4}	1.802×10^{-5}	4.508×10^{-4}	0.7143
1000	0.02628	0.2732	0.03243	1.254×10^{-3}	2.334×10^{-5}	8.881×10^{-4}	0.7078
1500	0.01957	0.2862	0.04049	2.008×10^{-3}	2.766×10^{-5}	1.413×10^{-3}	0.7038
2000	0.01559	0.2958	0.04822	2.903×10^{-3}	3.231×10^{-5}	2.072×10^{-3}	0.7136
			М	ethane, CH ₄			
-50	0.05363	0.5335	0.01401	1.360×10^{-4}	5.861×10^{-6}	1.092×10^{-4}	0.8033
0	0.04779	0.5277	0.01401	1.780×10^{-4}	6.506×10^{-6}	1.361×10^{-4}	0.7649
50	0.04311	0.5320	0.01839	2.228×10^{-4}	7.133×10^{-6}	1.655×10^{-4}	0.7428
100	0.03925	0.5433	0.02071	2.698×10^{-4}	7.742×10^{-6}	1.972×10^{-4}	0.7311
200	0.03323	0.5784	0.02559	3.690×10^{-4}	8.906×10^{-6}	2.674×10^{-4}	0.7245
300	0.02892	0.6226	0.03077	4.748×10^{-4}	1.000×10^{-5}	3.457×10^{-4}	0.7283
500	0.02289	0.7194	0.04195	7.075×10^{-4}	1.200×10^{-5}	5.244×10^{-4}	0.7412
1000	0.01505	0.9438	0.07346	1.436×10^{-3}	1.620×10^{-5}	1.076×10^{-3}	0.7491
1500	0.01303	1.1162	0.10766	2.390×10^{-3}	1.974×10^{-5}	1.760×10^{-3}	0.7366
2000	0.00893	1.2419	0.14151	3.544×10^{-3}	2.327×10^{-5}	2.605×10^{-3}	0.7353
	0.0000	112.110		ydrogen, H ₂	2.02, 11 20	2.000 // 10	
-50	0.00674	3.0603	0.08246	1.110×10^{-3}	4.969×10^{-6}	7.373×10^{-4}	0.6638
0	0.00601	3.2508	0.09049	1.287×10^{-3}	5.381×10^{-6}	8.960×10^{-4}	0.6960
50	0.00542	3.3553	0.09818	1.500×10^{-3}	5.781×10^{-6}	1.067×10^{-3}	0.7112
100	0.00342	3.4118	0.10555	1.742×10^{-3}	6.167×10^{-6}	1.250×10^{-3}	0.7112
200	0.00493	3.4549	0.10555	2.295×10^{-3}	6.911×10^{-6}	1.652×10^{-3}	0.7177
300	0.00419	3.4613	0.11946	2.293×10^{-3} 2.924×10^{-3}	7.622×10^{-6}	2.098×10^{-3}	0.7197
500	0.00363	3.4572	0.15241	4.363×10^{-3}	8.967×10^{-6}	3.117×10^{-3}	0.7174
1000	0.00288	3.4572	0.15620	4.363×10^{-3} 8.776×10^{-3}	8.967×10^{-5} 1.201×10^{-5}	6.354×10^{-3}	0.7146
1500	0.00189	3.6317	0.26381	1.432×10^{-2}	1.477×10^{-5}	1.048×10^{-2}	0.7241
				1.432×10^{-2} 2.098×10^{-2}	1.477×10^{-5} 1.734×10^{-5}	1.048×10^{-2} 1.544×10^{-2}	
2000	0.00112	3.7656	0.31923	2.030 X 10 2	1./34 X 1U °	1.044 X 10 -	0.7362

(Continued)

Çengel: Introduction to Thermodynamics and Heat Transfer, Second Edition Back Matter

Appendix 2: Property Tables and Charts (English Units) © The McGraw-Hill Companies, 2008

843

Appendix 2

TABLE A	23E						
Propertie	s of gases at 1	atm pressure (<i>Co</i>	ncluded)				
Temp.	Density	Specific Heat	Thermal Conductivity	Thermal Diffusivity	Dynamic Viscosity	Kinematic Viscosity	Prandtl Number
<i>T</i> , °F	ρ, Ibm/ft ³	c_p , Btu/Ibm·R	k, Btu/h⋅ft⋅R	α , ft ² /s	μ, Ibm/ft⋅s	ν , ft ² /s	Pr
			Ν	litrogen, N ₂			
-50	0.09364	0.2320	0.01176	1.504×10^{-4}	9.500×10^{-6}	1.014×10^{-4}	0.6746
0	0.08346	0.2441	0.01300	1.773×10^{-4}	1.043×10^{-5}	1.251×10^{-4}	0.7056
50	0.07527	0.2480	0.01420	2.113×10^{-4}	1.134×10^{-5}	1.507×10^{-4}	0.7133
100	0.06854	0.2489	0.01537	2.502×10^{-4}	1.221×10^{-5}	1.783×10^{-4}	0.7126
200	0.05815	0.2487	0.01760	3.379×10^{-4}	1.388×10^{-5}	2.387×10^{-4}	0.7062
300	0.05050	0.2492	0.01970	4.349×10^{-4}	1.543×10^{-5}	3.055×10^{-4}	0.7025
500	0.03997	0.2535	0.02359	6.466×10^{-4}	1.823×10^{-5}	4.559×10^{-4}	0.7051
1000	0.02628	0.2697	0.03204	1.255×10^{-3}	2.387×10^{-5}	9.083×10^{-4}	0.7232
1500	0.01958	0.2831	0.04002	2.006×10^{-3}	2.829×10^{-5}	1.445×10^{-3}	0.7202
2000	0.01560	0.2927	0.04918	2.992 × 10 ⁻³	3.212×10^{-5}	2.059×10^{-3}	0.6882
-			(Oxygen, O ₂			
-50	0.10697	0.2331	0.01216	1.355×10^{-4}	1.104×10^{-5}	1.032×10^{-4}	0.7622
0	0.09533	0.2245	0.01346	1.747×10^{-4}	1.218×10^{-5}	1.277×10^{-4}	0.7312
50	0.08598	0.2209	0.01475	2.157×10^{-4}	1.326×10^{-5}	1.543×10^{-4}	0.7152
100	0.07830	0.2200	0.01601	2.582×10^{-4}	1.429×10^{-5}	1.826×10^{-4}	0.7072
200	0.06643	0.2221	0.01851	3.484×10^{-4}	1.625×10^{-5}	2.446×10^{-4}	0.7020
300	0.05768	0.2262	0.02096	4.463×10^{-4}	1.806×10^{-5}	3.132×10^{-4}	0.7018
500 1000	0.04566 0.03002	0.2352 0.2520	0.02577 0.03698	6.665×10^{-4} 1.357×10^{-3}	2.139×10^{-5} 2.855×10^{-5}	4.685×10^{-4} 9.509×10^{-4}	0.7029 0.7005
1500	0.03002	0.2626	0.03698	2.224×10^{-3}	2.855×10^{-5} 3.474×10^{-5}	1.553×10^{-3}	0.7005
2000	0.02236	0.2701	0.05614	3.241×10^{-3}	4.035×10^{-5}	2.265×10^{-3}	0.6988
2000	0.01702	0.2701		er Vapor, H ₂ O	1.000 // 10	2.200 // 10	0.0300
-50	0.06022	0.4512	0.00797	8.153 × 10 ⁻⁵	4.933×10^{-6}	8.192×10^{-5}	1.0050
-50 0	0.05367	0.4312	0.00797	1.036×10^{-4}	4.933×10^{-6} 5.592×10^{-6}	1.041×10^{-4}	1.0030
50	0.03367	0.4472	0.01006	1.030×10^{-4} 1.291×10^{-4}	6.261×10^{-6}	1.041×10^{-4} 1.293×10^{-4}	1.0049
100	0.04408	0.4473	0.01121	1.579×10^{-4}	6.942×10^{-6}	1.574×10^{-4}	0.9969
200	0.03740	0.4503	0.01372	2.263×10^{-4}	8.333×10^{-6}	2.228×10^{-4}	0.9845
300	0.03248	0.4557	0.01648	3.093×10^{-4}	9.756×10^{-6}	3.004×10^{-4}	0.9713
500	0.02571	0.4707	0.02267	5.204×10^{-4}	1.267×10^{-5}	4.931×10^{-4}	0.9475
1000	0.01690	0.5167	0.04134	1.314×10^{-3}	2.014×10^{-5}	1.191×10^{-3}	0.9063
1500	0.01259	0.5625	0.06315	2.477×10^{-3}	2.742×10^{-5}	2.178×10^{-3}	0.8793
2000	0.01003	0.6034	0.08681	3.984×10^{-3}	3.422×10^{-5}	3.411×10^{-3}	0.8563

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

844 Introduction to Thermodynamics and Heat Transfer

Back Matter

Properties of solid me	etals											
	Melting	Properties at 540 R				Properties at Various Temperatures (R), k (Btu/h·ft·R)/c,(Btu/lbm·R)						
Composition	Point,	ρ Ibm/ft³	P	<i>k</i> (Btu/ h ⋅ ft ⋅ R)	$lpha imes 10^6$ ft ² /s	180	360	720	1080	1440	1800	
Aluminum	1679	168	0.216	137	1045	174.5	137	138.6	133.4	126		
Pure Alloy 2024-T6 (4.5% Cu, 1.5% Mg,	1395	173	0.209	102.3	785.8	0.115 37.6	0.191 94.2	0.226 107.5	0.246 107.5	0.273		
0.6% Mn) Alloy 195, cast (4.5% Cu)		174.2	0.211	97	734	0.113	0.188 100.5	0.22 106.9	0.249			
Beryllium	2790	115.5		115.6	637.2	572	174	93	72.8	61.3	52.5	
Bismuth	981	610.5	0.029	4.6	71	0.048 9.5	0.266 5.6	0.523 4.06	0.621	0.624	0.72	
Boron	4631	156	0.264	15.6	105	0.026 109.7	0.028 32.06	0.03 9.7	6.1	5.5	5.7	
Cadmium	1069	540	0.055	55.6	521	0.03 117.3	0.143 57.4	0.349 54.7	0.451	0.515	0.5	
Chromium	3812	447	0.107	54.1	313.2	0.047 91.9 0.045	0.053 64.1 0.091	0.057 52.5 0.115	46.6 0.129	41.2 0.138	37.8 0.14	
Cobalt	3184	553.2	0.101	57.3	286.3	96.5	70.5	49.3	39	33.6	80.1	
Copper Pure	2445	559	0.092	231.7	1259.3	0.056 278.5 0.06	0.09 238.6 0.085	0.107 227.07 0.094	0.12 219 0.01	0.131 212 0.103	0.14 203.4 0.10	
Commercial bronze (90% Cu, 10% AI)	2328	550	0.1	30	150.7	24.3	30 0.187	34 0.109	0.130	0.100	0.10	
Phosphor gear bronze (89% Cu, 11% Sn)	1987	548.1	0.084	31.2	183	23.7	37.6	42.8	— —			
Cartridge brass (70% Cu, 30% Zn)	2139	532.5	0.09	63.6	364.9	43.3	54.9 0.09	79.2 0.09	86.0 0.101			
Constantan (55% Cu, 45% Ni)	2687	557	0.092	13.3	72.3	9.8 0.06	1.1 0.09					
Germanium	2180	334.6	0.08	34.6	373.5	134 0.045	56 0.069	25 0.08	15.7 0.083	11.4 0.085	10.05	
Gold	2405	1205	0.03	183.2	1367	189 0.026	186.6 0.029	179.7 0.031	172.2 0.032	164.09 0.033	156 0.03	
Iridium	4896	1404.6	0.031	85	541.4	99.4 0.021	88.4 0.029	83.2 0.031	79.7 0.032	76.3 0.034	72.8 0.03	
Iron: Pure	3258	491.3	0.106	46.4	248.6	77.4 0.051	54.3 0.091	40.2 0.117	31.6 0.137	25.01 0.162	19 0.23	
Armco (99.75% pure)		491.3	0.106	42	222.8	55.2 0.051	46.6 0.091	38 0.117	30.7 0.137	24.4 0.162	18.7 0.23	
Carbon steels Plain carbon (Mn \leq 1%.		490.3	0.103	35	190.6			32.8	27.7	22.7	0.27	
Si ≤ 0.1%) AISI 1010		489	0.103	37	202.4			0.116 33.9 0.116	0.113 28.2 0.133	0.163 22.7 0.163	18	
Carbon-silicon $(Mn \leq 1\%,$		488	0.106	30	160.4			28.8	25.4	21.6	17	
$0.1\% < \text{Si} \le 0.6\%$) Carbon-manganese-silicon $(1\% < \text{Mn} \le 1.65\%,$	า	508	0.104	23.7	125			0.119 24.4 0.116	0.139 23 0.133	0.166 20.2 0.163	0.23 16 0.26	
$0.1\% < \text{Si} \le 0.6\%$) Chromium (low) steels: $\frac{1}{2} \text{Cr} - \frac{1}{4} \text{Mo-Si}$		488.3	0.106	21.8	117.4			22 0.117	21.2 0.137	19.3 0.164	15.6 0.23	
(0.18% C, 0.65% Cr, 0.23% Mo. 0.6% Si)1												
1 Cr-½ Mo (0.16% C, 1% Cr. 0.54% Mo. 0.39	1% Si)	490.6	0.106	24.5	131.3			24.3 0.117	22.6 0.137	20 0.164	15.8 0.23	
1 % Cr. 0.34 % Wo. 0.39 1 Cr–V (0.2% C, 1.02% Cr, 0.1		489.2	0.106	28.3	151.8			27.0 0.117	24.3 0.137	21 0.164	16.3	

(Continued)

845

Appendix 2

Appendix 2

Properties of solid metals (Continued) Properties at 540 R Properties at Various Temperatures (R), k (Rtu/h . ft . R)/c (Rtu/lhm . R)													
	Melting	Properties at 540 R				Properties at Various Temperatures (R), $k \text{ (Btu/h} \cdot \text{ft} \cdot \text{R)/}c_p \text{ (Btu/lbm} \cdot \text{R)}$							
Composition	Point, R	ρ Ibm/ft³		k (Btu/h · ft · R)	$lpha imes 10^6$ ft²/s	180	360	720	1080	1440	1800		
Stainless steels: AISI 302		503	0.114	8.7	42			10 0.122	11.6 0.133	13.2 0.140	14.7 0.14		
AISI 304	3006	493.2	0.114	8.6	42.5	5.31 0.064	7.3 0.096	9.6 0.123	11.5 0.133	13 0.139	14.7 0.14		
AISI 316		514.3	0.111	7.8	37.5	0.12	0.131	8.8 0.137	10.6 0.143	12.3	14		
AISI 347		498	0.114	8.2	40			9.1 0.122	1.1 0.133	12.7 0.14	14.3 0.14		
Lead	1082	708	0.03	20.4	259.4	23 0.028	21.2 0.029	19.7 0.031	18.1 0.034				
Magnesium	1661	109	0.245	90.2	943	87.9 0.155	91.9 0.223	88.4 0.256	86.0 0.279	84.4 0.302			
Molybdenum	5209	639.3	0.06	79.7	578	1034	82.6 0.053	77.4 0.062	72.8 0.065	68.2	64.7 0.07		
Nickel: Pure	3110	555.6	0.106	52.4	247.6	94.8 0.055	61.8	46.3 0.115	37.9 0.141	39 0.126	41.4 0.13		
Nichrome (80% Ni, 20% Cr)	3010	524.4	0.1	6.9	36.6		0.114	8.0 0.125	9.3 0.130	12.2			
Inconel X-750 (73% Ni, 15% Cr, 6.7% Fe)	2997	531.3	0.104	6.8	33.4	5	5.9	7.8 0.112	9.8 0.121	11.8 0.13	13.9 0.14		
Niobium	4934	535	0.063	31	254	31.9 0.044	30.4	32 0.065	33.6 0.067	35.4 0.069	32.2		
Palladium	3289	750.4	0.058	41.5	263.7	44.2	41.4	42.5 0.059	46 0.062	50 0.064	54.4 0.06		
Platinum: Pure	3681	1339	0.031	41.4	270	44.7 0.024	42 0.03	41.5 0.032	42.3 0.034	43.7 0.035	45.5 0.03		
Alloy 60Pt-40Rh (60% Pt, 40% Rh)	3240	1038.2	0.038	27.2	187.3			30	34	37.5 —	40		
Rhenium	6215	1317.2	0.032	27.7	180	34 0.023	30 0.03	26.6 0.033	25.5 0.034	25.4 0.036	25.8 0.03		
Rhodium	4025	777.2	0.058	86.7	534	107.5 0.035	89 0.052	84.3 0.06	78.5 0.065	73.4 0.069	70 0.07		
Silicon	3033	145.5	0.17	85.5	960.2	510.8 0.061	152.5 0.132	57.2 0.189	35.8 0.207	24.4 0.218	18.0 0.22		
Silver	2223	656	0.056	248	1873	257 0.044	248.4 0.053	245.5 0.057	238 0.059	228.8 0.062	219 0.06		
Tantalum	5884	1036.3	0.033	33.2	266	34.2 0.026	33.2 0.031	33.4 0.034	34 0.035	34.3 0.036	34.8 0.03		
Thorium	3641	730.4	0.028	31.2	420.9	34.6 0.024	31.5 0.027	31.4 0.029	32.2 0.032	32.9 0.035	32.9 0.03		
Tin	909	456.3	0.054	38.5	431.6	49.2	42.4 0.051	35.9 0.058					
Titanium	3515	281	0.013	12.7	100.3	17.6 0.071	14.2 0.111	11.8	11.2 0.141	11.4 0.151	12 0.16		
Tungsten	6588	1204.9	0.031	100.5	735.2	120.2	107.5	92 0.032	79.2 0.033	72.2 0.034	68.2 0.03		
Uranium	2531	1190.5	0.027	16	134.5	12.5 0.022	14.5 0.026	17.1 0.029	19.6 0.035	22.4	25.4 0.04		
Vanadium	3946	381	0.117	17.7	110.9	20.7	18 0.102	18 0.123	19.3 0.128	20.6	22.0 0.14		
Zinc	1247	445.7	0.093	67	450	67.6 0.07	68.2 0.087	64.1 0.096	59.5 0.104	0.134	0.14		
Zirconium	3825	410.2	0.067	13.1	133.5	19.2 0.049	14.6 0.063	12.5 0.072	12 0.77	12.5 0.082	13.7 0.08		

Source: Tables A-24E and A-25E are obtained from the respective tables in SI units in Appendix 1 using proper conversion factors.

© The McGraw-Hill Companies, 2008

846

Introduction to Thermodynamics and Heat Transfer

Back Matter

Properties of solid non	-metals												
	Melting	Properties at 540 R					Properties at Various Temperatures (R), k (Btu/h · ft · R)/ c_{ρ} (Btu/lbm · R)						
Composition	Point, R	$ ho$ Ibm/ft 3	$c_p({\sf Btu/}\ {\sf Ibm}\cdot{\sf R})$	k (Btu/ h ⋅ ft ⋅ R)	$lpha imes 10^6$ ft²/s	180	360	720	1080	1440	1800		
Aluminum oxide, sapphire	4181	247.8	0.182	26.6	162.5	260 —	47.4 —	18.7 0.224	11 0.265	7.5 0.281	6 0.293		
Aluminum oxide polycrystalline	4181	247.8	0.182	20.8	128	76.8	31.7	15.3 0.244	9.3 0.265	6 0.281	4.5 0.293		
Beryilium oxide	4905	187.3	0.246	157.2	947.3			113.2 0.322	64.2 0.40	40.4 0.44	27.2 0.459		
Boron	4631	156	0.264	16	107.5	109.8	30.3	10.8 0.355	6.5 0.445	4.6 0.509	3.6 0.561		
Boron fiber epoxy (30% vol.) composite k , \parallel to fibers	1062	130		1.3		1.2	1.3	1.31					
k , \perp to fibers c_p			0.268	0.34		0.21 0.086	0.28 0.18	0.34 0.34					
Carbon Amorphous Diamond,	2700	121.7	_	0.92	_	0.38	0.68	1.09	1.26	1.36	1.46		
type lla insulator		219	0.121	1329	_	5778	2311.2 0.005	889.8 0.046	0.203				
Graphite, pyrolytic k , \parallel to layers k , \perp to layers c_p	4091	138	0.169	1126.7 3.3		2871.6 9.7 0.32	1866.3 5.3 0.098	803.2 2.4 0.236	515.4 1.5 0.335	385.4 1.16 0.394	308.5 0.92 0.428		
Graphite fiber epoxy (25% vol.) composite k, heat flow to fibers	810	87.4		6.4		3.3	5.0	7.5					
k , heat flow \perp to fibers c_p			0.223	0.5	5	0.4 0.08	0.63 0.153	0.29					
Pyroceram, Corning 9606 Silicon carbide,	2921 5580	162.3 197.3	0.193	2.3 283.1	20.3 2475.7	3.0	2.3	2.1	1.9	1.7 —	1.7 50.3		
Silicon dioxide, crystalline (quartz)	3389	165.4						0.210	0.25	0.27	0.285		
k , \parallel to c -axis k , \perp to c -axis c_p	3369	103.4	0.177	6 3.6		22.5 12.0	9.5 5.9	4.4 2.7 0.211	2.9 2 0.256	2.4 1.8 0.298			
Silicon dioxide, polycrystalline (fused silica)	3389	138.6	0.177	0.79	9	0.4	0.65 —	0.87 0.216	1.01	1.25 0.264	1.65 0.276		
Silicon nitride	3911	150	0.165	9.2	104	_	— 0.138	8.0 0.185	6.5 0.223	5.7 0.253	5.0 0.275		
Sulfur	706	130	0.169	0.1	1.51	0.095 0.962	0.1 0.144						
Thorium dioxide	6431	568.7	0.561	7.5	65.7			5.9 0.609	3.8 0.654	2.7 0.680	2.12 0.704		
Titanium dioxide, polycrystalline	3840	259.5	0.170	4.9	30.1			4.0 0.192	2.9 0.210	2.3 0.217	2 0.222		