Multiconvex Optimization in Julia

Madeleine UdellDocumentation for Multiconvex.jl

7/16/2015

Multiconvex functions

Definition (Restriction)

For $f: \mathbf{R}^n \to \mathbf{R}$ and $\omega \subseteq \{1, \ldots, n\}$, define the **restriction** $f_{\omega}(\cdot, \bar{x}): \mathbf{R}^{|\omega|} \to \mathbf{R}$ of f to ω to be the function obtained by fixing the coefficients in ω^C to their values in $\bar{x} \in \mathbf{R}^n$: $x \mapsto f_{\omega}(x; \bar{x})$.

Definition (Multiconvex function)

A function $f: \mathbf{R}^n \to \mathbf{R}$ is k-convex if there exists a partition $\Omega = \{\omega_1, \dots, \omega_k\}$ of $\{1, \dots, n\}$ so that f_{ω_j} is convex for every $j = 1, \dots, k$.

Multiconvex functions generalize **biconvex** and **multilinear** functions.

- ▶ A 1-convex function is convex; a 2-convex function is biconvex; a 3-convex function is triconvex; etc.
- A multilinear function is multiconvex.

Multiconvex problems

Consider a (nonconvex) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x_{\beta_i}) \leq 0, \quad i = 1, ..., m$ (\mathcal{P})

with variable $x \in \mathbf{R}^n$.

Definition (Multiconvex problem)

An optimization problem is k-convex if there exists a partition $\Omega = \{\omega_1, \dots, \omega_k\}$ of $\{1, \dots, n\}$ with the following properties:

- f_0 is k-convex with partition Ω ;
- f_i is convex for every $i = 1, \ldots, m$;
- for every constraint $i=1,\ldots,m$, there is an element j of the partition with $\beta_i\subseteq\omega_j$.

MultiConvex.jl

MultiConvex.jl extends Convex.jl to detect and (heuristically) solve multiconvex optimization problems using **disciplined** multiconvex programming:

- simple: less than 300 lines of code
- heuristic solution method: alternating minimization

Definition (Disciplined multiconvex problem)

A multiconvex optimization problem is a **disciplined** multiconvex problem if

- f_0 is k-convex with partition $\Omega = \{\omega_1, \dots, \omega_k\}$
- f_0 restricted to ω_j is a disciplined convex function for every $j=1,\ldots,k$
- f_i is a disciplined convex function for i = 1, ..., m

MultiConvex.jl in action

```
# initialize nonconvex problem
n, k = 10, 1
A = rand(n, k) * rand(k, n)
x = Variable(n, k)
y = Variable(k, n)
problem = minimize(sum_squares(A - x*y), x>=0, y>=0)

# perform alternating minimization on the problem
altmin!(problem)
```

Conflict graphs

Definition

The **conflict graph** G = (V, E) of a multiconvex expression e is a graph on the variables in the expression:

$$V = \text{variablesin}(e), \qquad E \subseteq V \times V$$

with the property that for any independent set of variables ω in the graph, the restriction f_{ω} of f to ω is convex.

Every multiconvex expression has a (unique) conflict graph.

Conflict graphs: recursion

- ► Constant. A constant c is multiconvex with conflict graph (\emptyset, \emptyset)
- ▶ Variable. A variable v is multiconvex with conflict graph (v,\emptyset)
- ► Expressions. The conflict graph of a composite expression is the union of the conflict graphs of its arguments, together with (possibly) a few more edges.
 - multiplication (*, (x, y)) adds complete bipartite graph on variablesin(x) and variablesin(y)
- Constraints. A constraint is multiconvex iff it is convex.
- ▶ Problems. Problems check their convexity by constructing a certifying partition Ω of the conflict graph of the objective that respects the constraints (if one exists).

Alternating minimization

Now that we've found a partition Ω , we can use alternating minimization:

(or ADMM, or ...)

More information (and code!)

- Convex.jl: http://www.github.com/JuliaOpt/Convex.jl
- MultiConvex.jl: http: //www.github.com/madeleineudell/MultiConvex.jl
- Convex.jl paper: http://arxiv.org/abs/1410.4821