Getting Data set to the Platform

df <- read.csv('/kaggle/input/homicides/homicide-data.csv')
head(df)</pre>

Through this Data set,

- Distribution of the Age and identifying Min, Max, and Quantiles for ages.
- Distribution of ages by victim race and contribution of victims by race.
- To see the contribution of victim's gender by Races.
- To identify which location has reported the most cases and to identify the most cases reported in which year.
- To identify the trend of victim cases over time.
- To identify the most dangerous area.

Investigating and summarizing the data set

summary(df)

Checking on the first and last 5 Rows in the data set

```
cat("First 5 rows in the data Set", "\n")
df[1:5,]
cat("\n")
cat("Last 5 rows in the data set", "\n")
df[-(1:52174),]
```

	uid	reported_date	victim_last	victim_first	victim_race	victim_age	victim_sex	city	state	lat	Ion	disposition
	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	Alb-000001	20100504	GARCIA	JUAN	Hispanic	78	Male	Albuquerque	NM	35.09579	-106.5386	Closed without arrest
2	Alb-000002	20100216	MONTOYA	CAMERON	Hispanic	17	Male	Albuquerque	NM	35.05681	-106.7153	Closed by arrest
3	Alb-000003	20100601	SATTERFIELD	VIVIANA	White	15	Female	Albuquerque	NM	35.08609	-106.6956	Closed without arrest
4	Alb-000004	20100101	MENDIOLA	CARLOS	Hispanic	32	Male	Albuquerque	NM	35.07849	-106.5561	Closed by arrest
5	Alb-000005	20100102	MULA	VIVIAN	White	72	Female	Albuquerque	NM	35.13036	-106.5810	Closed without arrest

Last 5 rows in the data set

	uid	reported_date	victim_last	victim_first	victim_race	victim_age	victim_sex	city	state	lat	lon	disposition
	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
52175	Was-001380	20160908	WILLIAMS	EVAN	Black	29	Male	Washington	DC	38.82870	-77.00207	Closed by arrest
52176	Was-001381	20160913	SMITH	DEON	Black	19	Male	Washington	DC	38.82285	-77.00173	Open/No arrest
52177	Was-001382	20161114	WASHINGTON	WILLIE	Black	23	Male	Washington	DC	38.82802	-77.00251	Open/No arrest
52178	Was-001383	20161130	BARNES	MARCUS	Black	24	Male	Washington	DC	38.82048	-77.00864	Open/No arrest
52179	Was-001384	20160901	JACKSON	KEVIN	Black	17	Male	Washington	DC	38.86669	-76.98241	Closed by arrest

After going through the Data Set

- Data frame: 52,179 Observations(rows) and 12 Variables(columns)
- Variables: From variables, 9 variables are characters, one is an integer, and the other two variables are numbers (double)
- Missing Values: lat: Latitude variable has 60 missing data(NA). lon: Longitude variable is 60 missing data(NA).
- Data type: reported_date: date format is 20100504 . Need to convert to the appropriate format. Victim_age: Data type is character. Need to convert to the integer.

Checking for unique categories in victim race, victim sex, state and disposition

```
df_checking <- df[,c(5,7,9,12)]
colname <- colnames(df_checking)

for(col in colname)
{
    uniques_values <- unique(df[,col])
    unique_counts <- length(unique(df[,col]))
    cat("Unique categories for ",col, "(", unique_counts,")","\n")
    cat("Unique values are : ",uniques_values,"\n\n")
}</pre>
```

```
Unique categories for victim_race ( 6 )
Unique values are : Hispanic White Other Black Asian Unknown

Unique categories for victim_sex ( 3 )
Unique values are : Male Female Unknown

Unique categories for state ( 28 )
Unique values are : NM GA MD LA AL MA NY NC IL OH TX CO MI CA IN FL MO NV KY TN wI MN OK NE PA AZ VA DC

Unique categories for disposition ( 3 )
Unique values are : Closed without arrest Closed by arrest Open/No arrest
```

I see here wI instead of WI

Cleaning the Data Set

```
na_counts <- colSums(is.na(df))
na_counts</pre>
```

uid: 0 reported_date: 0 victim_last: 0 victim_first: 0 victim_race: 0 victim_age: 0 victim_sex: 0 city: 0 state: 0 lat: 60 lon: 60 disposition: 0

We see here only lat and lon has missing values.But, I see reported_date and victim_age. After we change to the correct data type we may receive na values. We can check it. First we need to convert to the data type.

Here I start with repoted_date - Converting to the Date data type

```
df$reported_date <- ymd(df$reported_date)
# checking how many na columns has generated after change the data type of the Date
na_counts <- colSums(is.na(df))
na_counts
# Now I see two na missing data under reported_date
# I want see which observations has the problem
problem_rows_rpt_date <- df[is.na(df$reported_date),]
problem_rows_rpt_date</pre>
```

uid: 0 reported_date: 2 victim_last: 0 victim_first: 0 victim_race: 0 victim_age: 2999 victim_sex: 0 city: 0 state: 0 lat: 60 lon: 60 disposition: 0

A data.frame: 2 × 12

	uid	reported_date	victim_last	victim_first	victim_race	victim_age	victim_sex	city	state	lat	lon	disposition
	<chr></chr>	<date></date>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
33585	Mia-000649	NA	SALAS	LUIS	Hispanic	NA	Male	Miami	FL	25.76990	-80.21719	Closed by arrest
33588	Mia-000652	NA	BUNCH	GERALD A.	Black	NA	Male	Miami	FL	25.82695	-80.20212	Open/No arrest

Move on to the victim age

```
df$victim_age <- as.numeric(df$victim_age, na.rm = TRUE)</pre>
na_counts <- colSums(is.na(df))</pre>
na_counts
```

uid: 0 reported_date: 2 victim_last: 0 victim_first: 0 victim_race: 0 victim_age: 2999 victim_sex: 0 city: 0 state: 0 lat: 60 lon: 60 disposition: 0

#Cheking a few rows from the data set which has the missing data for victim_age problem_rows_victim_age<- df[is.na(df\$victim_age),]</pre> head(problem_rows_victim_age) Now I see 2999 missing values in the victim_age's variable after convert to the number.

	uid	reported_date	victim_last	victim_first	victim_race	victim_age	victim_sex	city	state	lat	lon	disposition
	<chr></chr>	<date></date>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
12	Alb- 000012	2010-02-18	LUJAN	KEVIN	White	NA	Male	Albuquerque	NM	35.07701	-106.5649	Closed without arrest
60	Alb- 000060	2011-05-30	ORTIZ- BURCIAGA	VICTORIA	Hispanic	NA	Female	Albuquerque	NM	NA	NA	Open/No arrest
103	Alb- 000103	2012-04-28	VALERIO	MAY	Unknown	NA	Unknown	Albuquerque	NM	35.08802	-106.5631	Closed by arrest
122	Alb- 000122	2012-10-26	MACAIO	WESTFALL	White	NA	Female	Albuquerque	NM	35.13288	-106.5263	Closed by arrest
165	Alb- 000165	2014-02-08	MONTANO	IZABELLAH	Other	NA	Female	Albuquerque	NM	35.07912	-106.5139	Closed by arrest
186	Alb- 000186	2016-02-05	PURVIS	GEORGE JR.	Unknown	NA	Unknown	Albuquerque	NM	35.07343	-106.5487	Closed by arrest

Now I'm going to drop all "na" from the data set

```
df2 <- na.omit(df)</pre>
# cheking again are there any missing values under variables
na_counts <- colSums(is.na(df2))</pre>
na_counts
```

uid: 0 reported_date: 0 victim_last: 0 victim_first: 0 victim_race: 0 victim_age: 0 victim_sex: 0 city: 0 state: 0 lat: 0 lon: 0 disposition: 0

No missing vaules under the variables now

I'm going to change wI to WI

```
df2$state <- gsub("wI","WI",df2$state)</pre>
# Checking unique values under State variable to make sure Data has been changed.
unique(df2[,9])
```

'NM' 'GA' 'MD' 'LA' 'AL' 'MA' 'NY' 'NC' 'IL' 'OH' 'CO' 'MI' 'TX' 'CA' 'IN' 'FL' 'MO' 'NV' 'KY' 'TN' 'WI' 'MN' 'OK' 'NE' 'PA' 'VA' 'DC'

Now It has been changed

Analysis and Visualization

Identifying Outliers

summary(df2)

```
victim_last
                                                   victim_first
               reported_date
Length: 49122
                Min. :2007-01-01 Length:49122
                                                   Length: 49122
Class :character 1st Qu.:2010-03-19 Class :character Class :character
Mode :character Median :2012-12-16 Mode :character Mode :character
                Mean :2012-11-03
                3rd Qu.:2015-09-13
               Max. :2017-12-31
victim_race
                 victim_age
Length: 49122
             Min. : 0.0 Length:49122
                                             Length:49122
Class :character 1st Qu.: 22.0 Class :character Class :character
Mode :character Median : 28.0 Mode :character Mode :character
                Mean : 31.8
                3rd Qu.: 40.0
                Max. :102.0
  state
                   lat
                                 lon
                                             disposition
                Min. :25.73 Min. :-122.51 Length:49122
Length: 49122
Class :character 1st Qu.:34.04 1st Qu.: -95.47 Class :character
Mode :character
                Median :38.67 Median : -87.67 Mode :character
                Mean :37.25 Mean : -90.91
                3rd Qu.:40.39 3rd Qu.: -81.66
                Max. :45.05 Max. : -71.01
```

I see min of victim_age is 0 and max of victim_age is 102

```
options(repr.plot.width = 30,repr.plot.height = 5 )
```

```
ggplot(df2, aes(x = victim_age))+
scale_x_continuous(breaks = seq(0,105,2))+
geom_boxplot()+labs(title = "Distribution of Victim's Age", x = 'Age')+
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 15),
    axis.title.x = element_text(face = "bold", size = 14),
    axis.title.y = element_text(face = "bold", size = 14),
    axis.text.x = element_text(face = "bold", size = 10),
    axis.text.y = element_text(face = "bold", size = 10))
```


I assumed here that victim_age is less than 3 and more than 64 people don't have physical capability to do the victim. Then I'm going to remove these age range people from the data set.

```
data_set<- df2 %>% filter(victim_age <= 64 & victim_age >3)
ana_data_set <- data.frame(data_set)
summary(ana_data_set)</pre>
```

```
uid
                reported date
                                 victim last
                                                  victim first
Length:46649
               Min. :2007-01-01 Length:46649
                                                 Length:46649
Class :character 1st Qu.:2010-03-22 Class :character Class :character
Mode :character Median :2012-12-22 Mode :character Mode :character
               Mean :2012-11-06
               3rd Qu.:2015-09-15
               Max. :2017-12-31
victim race
                victim_age victim_sex
                                                city
                                           Length:46649
              Min. : 4.0 Length:46649
Length:46649
Class :character 1st Qu.:22.0 Class :character Class :character
Mode :character Median :28.0 Mode :character Mode :character
                Mean :31.2
               3rd Qu.:39.0
               Max. :64.0
                               lon
  state
                 lat
                                            disposition
Length:46649
                Min. :25.73 Min. :-122.51 Length:46649
Class :character 1st Qu.:34.05 1st Qu.: -95.44 Class :character
Mode :character Median :38.69 Median : -87.66 Mode :character
                Mean :37.28 Mean : -90.83
                3rd Qu.:40.44 3rd Qu.: -81.66
                Max. :45.05 Max. : -71.01
```

After Remove Outliers

```
ggplot(data_set, aes(x=victim_age)) +
geom_boxplot()+
scale_x_continuous(breaks = seq(0,80,2))+
labs(title = "Distribution of Victim's Age", x = 'Age')+
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 15),
    axis.title.x = element_text(face = "bold", size = 14),
    axis.title.y = element_text(face = "bold", size = 14),
    axis.text.x = element_text(face = "bold", size = 10),
    axis.text.y = element_text(face = "bold", size = 10))
```

E.A. Distribution of Victim's Age

Checking for victim_race and contribution

```
options(repr.plot.width = 10, repr.plot.height = 10)
```

```
data_set %>%
select(victim_race) %>%
group_by(victim_race)%>%
group_by(victim_race)%>%
summarise(total_count = (count = n()))%>%
ggplot(aes(x="", y = total_count, fill = victim_race ))+
geom_bar(stat = "identity", width = 6, color = 'white')+
coord_polar("y", start =0)+
geom_text(aes(label = scales::comma(total_count)), position = position_stack(vjust = 0.5))+
labs(title = "Total Victims By Race", x = NULL, y = NULL)+
theme_minimal()+
theme(axis.text.y = element_text(face = "bold", size =15))
```


Black people have been involved to victims that other races.

Visualizing Victim Race VS Victim Age in Box plot chart to check the Age Distribution of all Races.

```
options(repr.plot.width = 30)
```


- White people have the Highest median Age.
- The lowest median age for Black race people.
- Asian People and White people have a wider spread of the age.
- Black people's ages clustered around 22 37 age.

Checking how many Females and males have been involved in victims from all races.

```
data_set %>%
  ggplot(aes(y = victim_race, fill = victim_sex)) +
  geom_bar(stat = "count", position = "dodge") +
  labs(title = "Number of Victim's sex by Race", y = "Race", x = "Victims")+
theme_minimal()+
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 15),
    axis.title.x = element_text(face = "bold", size = 14),
    axis.title.y = element_text(face = "bold", size = 14),
    axis.text.x = element_text(face = "bold", size = 10),
    axis.text.y = element_text(face = "bold", size = 10))
```


- Black Male has involved in victims than another Race's Male
- Black Females have involved victims than another Race's Female

```
Year <- year(data_set$reported_date)

data_set %>%
ggplot(aes(x = Year, fill =victim_sex ))+
scale_x_continuous(breaks = seq(2007,2017,1))+
scale_fill_manual(values = c("Male" = "gray28", "Female" = "seagreen", "Unknown" = "gold")) +
geom_bar()+
theme_minimal()+
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 15),
    axis.title.x = element_text(face = "bold", size = 14),
    axis.title.y = element_text(face = "bold", size = 14),
    axis.text.x = element_text(face = "bold", size = 10),
    axis.text.y = element_text(face = "bold", size = 10))
```


• I see in 2016 most cases and in 2009 reported less than the other years.

```
options(repr.plot.height = 10)
```

```
data_set %>%
 select(state) %>%
 group_by(state) %>%
 summarise(total_victims = n(), .groups = "drop") %>%
 arrange(desc(total_victims)) %>%
 ggplot(aes(y = reorder(state, total_victims), x = total_victims, fill = total_victims)) +
 geom_bar(stat = "identity") +
 scale_x_continuous(expand = c(0.005,0), breaks = seq(0,6000,250)) +
 labs(title = "Total Victims by State",
      x = "Total Victims",
      y = "State") +
 theme_minimal() +
 theme(
     plot.title = element_text(hjust = 0.5),
       axis.title.y = element_blank(),
       axis.text.y = element_text(vjust = 0, face = 'bold', size = 12),
       axis.text.x = element_text(vjust = 0, face = 'bold', size = 12))
```


- Most victims have reported in CA state.
- After CA, next two leading states for victims are IL and TX
- Least cases have been reported in CO Colorado

I'm going to investigate deeply the data for the states of CA, TX and IL.

```
data_set %>%
    mutate(year) %>%
    select(year, state)%>%
    group_by(state,year)%>%
    summarise(total_incident = n(), .groups = 'drop')%>%
    filter(state %in% c("CA", "TX", "IL"))%>%
ggplot(aes(x= year, y = total_incident,color = state)) +
    geom_line(linewidth =1) +
    theme_minimal() +
    scale_x_continuous(breaks = seq(2007,2017,1))+
    labs(title = "Trend of victim cases for Top three States over the years",
        x = "Year",
        y = "Reported Cases",
        color = "State") +
    scale_color_manual(values = c("CA" = "blue", "TX" = "green", "IL" = "red"))+
```

```
theme(
    plot.title = element_text(hjust = 0.5),
    axis.title.y = element_text(face = 'bold', size = 14),
    axis.title.x = element_text(face = 'bold', size = 14),
    axis.text.y = element_text(vjust = 0, face = 'bold', size = 12),
    axis.text.x = element_text(vjust = 0, face = 'bold', size = 12),
legend.position = 'none')
```


Checking on the Status of the Disposition

I'm going to create a Pie chart to display this variable. This would help to see the contribution.

```
data_set%>%
    select(disposition)%>%
    group_by(disposition)%>%
    summarise(total_disposition = n())%>%
ggplot(aes(x =" ", y =total_disposition, fill =disposition ))+
    geom_bar(stat = "identity", width = 6, color = "grey")+
    coord_polar("y", start =0)+
    scale_fill_manual(values = c("Closed without arrest" = "navy", "Closed by arrest" = "seagreen", "Open/No arrest" = "gray28"
))+
    geom_text(aes(label =paste(total_disposition, "\n", disposition)), position = position_stack(vjust =0.5), family = "bold",
color = 'white', size = 6)+
    labs(title = "Total count of each Disposition category", x =NULL, y = NULL)+
    theme_minimal()
```


Still remaining more cases to solve.

Through the Analysis

I analyzed homicide data which was generated for the period 2007 - 2017

- The maximum age of the data set shows as 102 and the minimum shows as 0. I see some Victim's ages are not possible to do the victim. It may be a typing mistake or wrong data collection. Should have some mental and physical strength to do the victim.
- CA is the worst place according to the data set (most reported cases).
- CO is the calm place according to the data set (least reported cases).
- Victim races = "black" is involved in most cases according to the data set information.
- I don't see a huge gap through the year for the victims. But I can say most cases were reported in 2016 and the least cases were reported in 2009.
- According to the data set's information 21748 remaining cases are still to be solved or to be arrested.