

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 572 142 B1

(12)

1.

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 31.07.1996 Bulletin 1996/31

(51) Int. Cl.⁶: **C07D 249/08**, A01N 43/82, C07D 401/12, C07F 7/10, A01N 55/00

(21) Application number: 93303700.4

(22) Date of filing: 13.05.1993

(54) Novel 3,5-diphenyl substituted 1,2,4-triazoles and their use as insecticides and acaricides

Neue 3,5-Diphenyl-substituierte 1,2,4-Triazole und ihre Verwendung als Insektizide und Akarizide

Nouveaux 1,2,4-triazoles 3,5-diphényl-substitués et leur utilisation comme insecticides et acaricides

- (84) Designated Contracting States: DE ES FR GB IT NL
- (30) Priority: 29.05.1992 JP 161759/92
- (43) Date of publication of application: 01.12.1993 Bulletin 1993/48
- (73) Proprietors:
 - KUMIAI CHEMICAL INDUSTRY CO., LTD. Tokyo (JP)
 - IHARA CHEMICAL INDUSTRY Co., Ltd. Taitoh-ku, Tokyo 110 (JP)
- (72) Inventors:
 - Ozaki, Masami,
 c/o K I CHEMICAL RES. INST. CO. LTD
 lwata-gun, Shizuoka Pref. (JP)
 - ikeda, Atsuhiko,
 c/o K I CHEMICAL RES. INST.CO.LTD
 lwata-gun, Shizuoka Pref. (JP)
 - Honami, Reljiro,
 c/o K I CHEMICAL RES. INST.CO.LTD
 Iwata-gun, Shizuoka Pref. (JP)

- Yumita, Takashi,
 c/o K I CHEMICAL RES. INST.CO.LTD
 lwata-gun, Shizuoka Pref. (JP)
- Yano, Hiroyuki
 Ogasa-gun, Shizuoka Pref. (JP)
- Hirano, Tadayoshi
 Kakegawa City, Shizuoka Pref. (JP)
- Minoguchi, Naokazu
 Ogasa-gun, Shizuoka Pref. (JP)
- Izawa, Norihiko
 Ogasa-gun, Shizuoka Pref. (JP)
- (74) Representative: Ede, Eric Fitzpatricks, 4 West Regent Street Glasgow G2 1RS, Scotland (GB)
- (56) References cited: EP-A- 0 036 711

EP-A- 0 185 256

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

EP 0 572 142 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

This invention relates to novel triazole derivatives as well as insecticide and acaricide containing the same as an active ingredient.

Japanese Patent laid open No. 56-154464 and DE-A-363-1511 disclose that various triazole derivatives develop insecticidal and acaricidal activities. However, it can not be said that the insecticidal and acaricidal activities of these compounds described in these specifications are satisfactory.

An insecticidal compound is described in EP-A-0 036 711 (equivalent to JP-A-56-154464) which is characterized by bonding a phenyl group to the 5-position of 1H-1,2,4-triazole, but there is no description of the groups used in the invention to be more particularly described below (namely a 4-decylphenyl group, 4-phenyloxymethyl group, 4-phenyloxymethyl group or the like). The compounds according to the present invention have improved insecticidal and acaricidal activities as compared with the compounds described in JP-A-56-154464.

EP-A-0 185 256 describes a compound characterized by bonding the o-trifluoromethylphenyl group or 4-trifluoromethyl-3-pyridyl group to the 5-position of 1H-1,2,4-triazole, which is different from the invention to be described hereinbelow (which has a 4-decylphenyl group, 4-phenyloxymethyl group, 4-phenyloxymethylphenyl group or the like). EPA-0 185 256 discloses that such a compound is useful as an insecticide and acaricide.

Up to the present, various compounds such as organophosphorus compound, organotin compound and the like have been used for the control of pests in farm and garden crops and mites. However, these compounds have been used over many years, so that the above injurious insects have a resistance to chemicals to a certain extent and it recently becomes difficult to control these insects. Particularly, this tendency is conspicuous in lepidopteran injurious insects, mites and aphids and becomes serious. As a result, it is demanded to develop new types of insecticide and acaricide having a different function.

The inventors have made various studies in order to create novel insecticides and acaricides having a very high effect against wide injurious pests and capable of safely using, which have never been found in the conventional technique, in the development of the insecticide and acaricide having a function different from that of the conventional ones.

Further, the inventors have synthesized various triazole derivatives and examined their physiological activities. As a result, the inventors have found that novel triazole derivatives having a general formula [I] as mentioned later have an excellent effect against wide injurious pests in farm and garden crops, particularly lepidopteran injurious insects, mites and aphids and also develop a very high effect against eggs and larvae of mites and larvae of aphids having a resistance to the conventional chemicals, and the invention has been accomplished.

According to the invention, there is the provision of a triazole derivative having the following general formula [1]:

[wherein R¹ is an alkyl group, X is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, a nitro group, a cyano group or a trifluoromethyl group, n is an integer of 1-5 provided that when n is 2 or more, X may be an optional combination of same or different atoms or groups, and Y is an alkenyl group, an alkynyl group, an alkoxyalkoxy group, an alkylthioalkyl group, a cycloalkyl group, a cycloalkylalkoxy group, a cycloalkylalkoxy group, a cycloalkylalkoxy group, an alkyl group, a cycloalkylalkoxy group, an alkyl group having a carbon number of not less than 7, an alkoxy group having a carbon number of not less than 7, an alkylsulfinyl group having a carbon number of not less than 7, an alkylsulfinyl group having a carbon number of not less than 7, an alkylsulfinyl group represented by the following general formula (1):

$$-(A)k - Q = R^{2m}$$

35

(wherein A is an oxygen atom, a sulfur atom, a lower alkylene group, a lower alkyleneoxy group, an oxy-lower alkylene group or a lower alkyleneoxyalkylene group, k is 0 or 1, Q is CH- group or a nitrogen atom, R2 is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, trifluoromethyl group or trifluoromethoxy group, m is an integer of 1-5 provided that when m is 2 or more, R² may be an optional combination of same or different atoms or groups)].

Furthermore, the invention provides an insecticide or an acaricide containing the above triazole derivative as an active ingredient.

Throughout the specification, the term "lower" means that the carbon number in the group added with this term is not more than 6.

Further, the term "alkyl group" means a straight or branched-chain alkyl group having a carbon number of 1-30, which includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, isoamyl group, neopentyl group, n-hexyl group, isohexyl group, 3,3dimethylbutyl group, n-heptyl group, 5-methylhexyl group, 4-methylhexyl group, 3-methylhexyl group, 4,4-dimethylpentyl group, n-octyl group, 6-methylheptyl group, n-nonyl group, 7-methyloctyl group, n-decyl group, 8-methylnonyl group, nundecyl group, 9-methyldecyl group, n-dodecyl group, 10-methylundecyl group, n-tridecyl group, 11-methyldodecyl group, n-tetradecyl group, 12-methyltridecyl group, n-pentadecyl group, 13-methyl-tetradecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like.

The terms "alkoxy group", "alkylthio group", "alkylsulfinyl group" and "alkylsulfonyl group" are (alkyl)-O- group, (alkyl)-S- group, (alkyl)-SO- group, and (alkyl)-SO2 group in which the alkyl portion has the same meaning as mentioned above, respectively.

The term "halogen atom" means fluorine, chlorine, bromine and iodine.

r

5

20

35

40

The term "alkenyl group" means a straight or branched-chain alkenyl group having a carbon number of 2-20, which includes, for example, vinyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, 3-methyl-1-butenyl group, 4-methyl-1-pentenyl group and the like.

The term "alkynyl group" means a straight or branched-chain alkynyl group having a carbon number of 2-20, which includes, for example, ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, 3,3-dimethyl-1-butynyl group, 4-methyl-1-pentynyl group, 3-methyl-1-pentynyl group, 5-methyl-1-hexynyl group, 4-methyl-1-hexynyl group, 3-methyl-1-hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group, undecynyl group, dodecynyl group, tridecynyl group, tetradecynyl group, pentadecynyl group, hexadecynyl group and the like.

The term "cycloalkyl group" means a cycloalkyl group having a carbon number of 3-12, which includes, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclo the like.

The term "cycloalkylalkyl group" means a cycloalkylalkyl group having a carbon number of 6-12, which includes, for example, cyclopentylmethyl group, cyclohexylmethyl group, cyclopentylethyl group, cyclohexylethyl group, cyclopentylpropyl group, cyclohexylpropyl group, cyclohexylpentyl group and the like.

The term "cycloalkylalkoxy group" means a (cycloalkylalkyl)-O- group in which the cycloalkylalkyl portion has the

same meaning as mentioned above. The term "cycloalkylalkenyl group" means a cycloalkylalkenyl group having a carbon number of 5-12, which includes, for example, cyclopentylvinyl group, cyclohexylvinyl group, 3-cyclopentyl-1-propenyl group, 3-cyclohexyl-1propenyl group, 5-cyclohexyl-1-pentenyl group and the like.

The term "cycloalkylalkynyl group" means a cycloalkylalkynyl group having a carbon number of 5-12, which includes, for example, cyclopentylethynyl group, cyclohexylethynyl group, 3-cyclopentyl-1-propynyl group, 3-cyclohexyl-

The term "tri(lower alkyl)silyl lower alkyl group" includes, for example, trimethylsilylmethyl group, dimethylethylsilyl-1-propynyl group and the like.

methyl group, butyldimethylsilylmethyl group and the like. The term "tri(lower alkyl)silyl lower alkoxy group" means [tri(lower alkyl)silyl lower alkyl]-O- group in which the tri(lower alkyl)silyl lower alkyl portion has the same meaning as mentioned above.

The term "lower alkylene group" means a straight or branched-chain alkylene group having a carbon number of 1-4, which includes, for example, $-CH_2$ -, $-CH_2CH_2$ -, $-CH(CH_3)$ -, $-CH_2CH_2CH_2$ -, $-CH(CH_3)CH_2$ -, $-CH(CH_3)$ -, $-CH(CH_3)$ -, $-CH(CH_3)$ -, $-CH(CH_3)$ -, $-CH(CH_3)$ CH₂CH₂CH₂-, -CH(CH₃)CH₂CH₂-, -CH₂CH(CH₃)CH₂- and the like.

The term "lower alkyleneoxy group" means -(lower alkylene)-O- group in which the lower alkylene portion has the

same meaning as mentioned above. The term "oxy-lower alkylene group" means -O-(lower alkylene)- group in which the lower alkylene portion has the

The term "lower alkyleneoxyalkylene group" means -(lower alkylene)-O-(lower alkylene)- group in which the lower same meaning as mentioned above. alkylene portion has the same meaning as mentioned above.

As a preferable compound according to the invention, there are mentioned compounds having the general formula [I] wherein R1 is a straight or branched-chain alkyl group having a carbon number of 1-6, preferably methyl group, X is a hydrogen atom, a halogen atom, a straight or branched-chain alkyl group having a carbon number of 1-4, a nitro group, a cyano group or trifluoromethyl group, n is an integer of 1-3 provided that when n is 2 or 3, X may be an optional

combination of same or different atoms or groups, Y is a straight or branched-chain alkyl group having a carbon number of 7-20, a cycloalkyl group having a carbon number of 3-12, a cycloalkylalkyl group having a carbon number of 6-12, a straight or branched-chain alkoxy group having a carbon number of 7-16, a cycloalkylalkoxy group having a carbon number of 7-12, a straight or branched-chain alkylthio group having a carbon number of 3-16, an alkylsulfinyl group, an alkylsulfonyl group, a straight or branched-chain alkenyl group having a carbon number of 3-16, a cycloalkylalkenyl group having a carbon number of 5-12, a straight or branched-chain alkynyl group having a carbon number of 3-16, a cycloalkylalkynyl group having a carbon number of 5-12, a tri(lower alkyl)silyl lower alkyl group, a tri(lower alkyl)silyl lower alkyl group or a group represented by the formula (1) (wherein A is an oxygen atom, a sulfur atom, a lower alkylene group having a carbon number of 1-4, methyleneoxy group or oxymethylene group, k is 0 or 1, Q is CH- group or a nitrogen atom, R² is a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, trifluoromethyl group or trifluoromethoxy group, and m is an integer of 1-3 provided that when m is 2 or 3, R² may be an optional combination of same or different atoms or groups).

Concrete examples of the compounds having the general formula [I] according to the invention are shown in Tables 1 to 10. Moreover, the compound No. is referred in subsequent description.

5

Table 1

N-N

10

5

, L

14

Compound Melting point (°C) or RI Y Xn No. refractive index(n20) 1 4-C7H15 CH₃ H 1.5819 15 2 CH3 2-F 4-C7H15 1.5650 3 CH3 2-C1 4-C7H15 1.5816 4 CH3 2-Br 4-C7E15 1.5924 20 5 CH3 2-I 4-C7H15 1.6025 4-C7H15 6 CH₃ 2,3,4,5,6-F₅ 1.5252 7 CH₃ 2-CH3 4-C7H15 1.5803 8 CH₃ 2-OCH3 4-C7H15 1.5840 25 9 CH₃ 2-SCH₃ 4-C7H15 1.6003 10 CH₃ 2-CN 4-C7H15 50.0-53.5 CH₃ 11 4-C7H15 2-NO2 1.5780 12 CH3 2-CF3 4-C7H15 1.5407 30 13 2-C1 4-C8H17 CH₃ 1.5800 14 CH₃ 4-C8H17 2,6-F₂ 1.5532 15 2-C1,6-F 4-C8H17 CH₃ 1.5652 35 16 2-C1 CH3 4-C9H19 1.5766 2-C1,6-F 17 CH₃ 4-C9H19 1.5612 18 CH3 2,6-F₂ 4-C9H19 1.5518 19 CH3 1.5698 4-C9H19 40 2-F 4-C10H21 1.5595 20 CH3 21 2-Cl 4-C10H21 1.5708 CH₃ 4-C10H21 22 CH₃ 1.5780 2-Br

CH₃

CH₃

2-I

2-CH3

23

24

50

45

*5*5

 $4-C_{10}H_{21}$

4-C10H21

1.5875

48.0-50.0

Table 2

_	Compound No.	R ¹	Xn	Y	Melting point (°C) or refractive index(n ²⁰ _D)
5	25	CH ₃	2-OCH ₃	4-C ₁₀ H ₂₁	1.5649
	26	CH ₃	2-SCH ₃	4-C ₁₀ H ₂₁	
	27	CH ₃	2-CN	4-C ₁₀ H ₂₁	37.0-40.0
10	28	CH ₃	2-NO ₂	4-C ₁₀ H ₂₁	55.0-58.0
	29	CH ₃	2-CF ₃	4-C ₁₀ H ₂₁	56.0-57.0
	30	CH ₃	2-Cl,6-F	4-C ₁₀ H ₂₁	1.5570
	31	CH ₃	2,6-F ₂	4-C ₁₀ H ₂₁	1.5482
15	32	CH ₃	2,6-Cl ₂	4-C ₁₀ H ₂₁	1.5678
	33	CH ₃	2,4,6-F3	4-C ₁₀ H ₂₁	1.5340
	34	CH ₃	2-Cl	4-C ₁₁ H ₂₃	52.0-54.0
20	35	CH ₃	2-CI,6-F	4-C ₁₁ H ₂₃	1.5495
	36	CH ₃	2,6-Cl ₂	4-C ₁₁ H ₂₃	58.0-60.0
	37	CH ₃	2,6-F ₂	4-C ₁₁ H ₂₃	1.5437
25	38	CH ₃	2-Cl	4-C ₁₂ H ₂₅	62.0-63.0
25	39	CH ₃	2-Cl,6-F	4-C ₁₂ H ₂₅	51.0-52.0
	40	CH ₃	2,6-F ₂	4-C ₁₂ H ₂₅	43.0-44.5
	41	CH ₃	2,6-Cl ₂	4-C ₁₂ H ₂₅	53.0-54.5
30	42	CH ₃	2-CI	4-C ₁₃ H ₂₇	55.0-57.0
	43	CH ₃	2-Cl,6-F	4-C ₁₃ H ₂₇	43.0-47.0
	44	CH ₃	2,6-F ₂	4-C ₁₃ H ₂₇	37.0-40.0
35	45	CH ₃	2,6-Cl ₂	4-C ₁₃ H ₂₇	52.0-55.0
	46	CH ₃	2-Cl	4-C ₁₄ H ₂₉	66.0-67.5
	47	CH ₃	2-Cl,6-F	4-C ₁₄ H ₂₉	56.0-58.0
	48	CH ₃	2,6-F ₂	4-C ₁₄ H ₂₉	61.0-62.5
40	49	CH ₃	2,6-Cl ₂	4-C ₁₄ H ₂₉	47.0-49.0
	50	CH ₃	2-Cl	4-C ₁₅ H ₃₁	62.0-65.0
	51	CH ₃	2-Cl,6-F	4-C ₁₅ H ₃₁	61.0-63.0
45	52	CH ₃	2,6-F ₂	4-C ₁₅ H ₃₁	54.0-56.0

Table 3

5	Compound No.	R ¹	Xn	Y	Melting point (°C) or refractive index (n ²⁰ _D)
	53	CH ₃	2,6-Cl ₂	4-C ₁₅ H ₃₁	61.5 -6 4.0
	54	CH ₃	2-Cl	4-C ₁₆ H ₃₃	70.0-73.0
10	55	CH ₃	2-Cl,6-F	4-C ₁₆ H ₃₃	65.0-67.0
70	56	CH ₃	2,6-F ₂	4-C ₁₆ H ₃₃	55.0-57.0
	57	CH ₃	2,6-Cl ₂	4-C ₁₆ H ₃₃	69.5-71.0
	58	CH3	2-Cl	4-C ₁₇ H ₃₅	
15	59	CH3	2-CI,6-F	4-C ₁₇ H ₃₅	
	60	CH ₃	2,6-F ₂	4-C ₁₇ H ₃₅	
	61	CH ₃	2-C1	4-C ₁₈ H ₃₇	
20	62	CH ₃	2-Cl,6-F	4-C ₁₈ H ₃₇	
20	63	CH₃	2,6-F ₂	4-C ₁₈ H ₃₇	
	64	C ₂ H ₅	2-CI,6-F	4-C ₁₂ H ₂₅	43.0-45.0
	65	CH(CH ₃) ₂	2-Cl	4-C ₁₂ H ₂₅	
<i>2</i> 5	66	CH(CH ₃) ₂	2-Cl,6-F	4-C ₁₂ H ₂₅	63.0-66.0
	67	CH₃	2-Cl	4-CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂	64.0 -6 7.0
	68	CH ₃	2-Cl,6-F	4-CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂	1.5614
30	69	CH ₃	2,6-F ₂	4-CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂	1.5578
	70	CH ₃	2-Cl	4-CH ₂ CH ₂ CH ₂ CH(C ₂ H ₅)CH ₃	1.5935
	71	CH ₃	2-Cl,6-F	4-CH ₂ CH ₂ CH ₂ CH(C ₂ H ₅)CH ₃	1.5759
	72	CH ₃	2-Cl	4-CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃	1.5879
3 5	73	CH ₃	2-Cl,6-F	4-CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃	1.5693
	74	CH ₃	2-Cl	4-CH ₂ CH ₂ CH ₂ C(CH ₃) ₃	
	75	CH3	2-Cl,6-F	4-CH ₂ CH ₂ CH ₂ C(CH ₃) ₃	
40	76	CH ₃	2,6-F ₂	4-CH ₂ CH ₂ CH ₂ C(CH ₃) ₃	
	77	CH3	2-Cl	4-OC ₈ H ₁₇	58.0-59.5
	78	CH ₃	2-Cl	4-O(CH ₂) ₄ CH(CH ₃) ₂	
	79	CH ₃	2-CI,6-F	4-O(CH ₂) ₄ CH(CH ₃) ₂	
45	L	L	<u> </u>	L	

50

Table 4

			 		
5	Compound No.	Rl	Xn	Y	Melting point (°C) or refractive index(n ²⁰)
	80	CH3	2-C1	4-OCH ₂	83.0-86.0
10	81	CH ₃	2-C1,6-F	4-OCH ₂	83.0-85.0
	82	CH3	2-C1	4-OC ₁₀ H ₂₁	67.5-69.0
	83	CH ₃	2-Cl,6-F	4-OC ₁₀ H ₂₁	55.0-57.0
15	84	CH ₃	2,6-F ₂	4-OC ₁₀ H ₂₁	1.5399
	85	CH ₃	2,6-Cl ₂	4-OC10H21	60.0-64.0
	86	CH ₃	2-C1	4-OC ₁₂ H ₂₅	73.5-75.0
20	87	CH ₃	2-Cl,6-F	4-OC ₁₂ H ₂₅	59.0-61.0
:	88	CH ₃	2-C1	4-SC8H17	1.6082
	89	CH ₃	2-Cl,6-F	4-SC8H17	61.0-63.0
	90	CH ₃	2-C1	4-SOC ₈ H ₁₇	1.5933
25	91	CH ₃	2-C1	4-SO ₂ C ₈ H ₁₇	1.5855
	92	CH ₃	2-C1	4-OCH ₂ CH ₂ OCH ₃	1.6003
	93	CH ₃	2-C1	4-CH ₂ OC ₄ H ₉	1.5850
30	94	CH ₃	2-C1	4-CH ₂ OC ₁₀ H ₂₁	
	95	CH ₃	2-Cl,6-F	4-CH ₂ OC ₁₀ H ₂₁	
	96	CH ₃	2-C1,6-F	4-CH ₂ SC ₃ H ₇	1.6023
35	97	CH ₃	2-C1	4-CH=CHCH ₃	1.6410
	98	CH ₃	2-C1	4-CH=CHC ₁₀ H ₂₁	
	99	CH ₃	2-C1,6-F	4-CH=CHC ₁₀ H ₂₁	
40	100	CH ₃	2-C1	$4-C \equiv CCH_3$	93.5-95.0
	101	CH ₃	2-C1,6-F	4-C≡CCH ₃	124.0-126.5
	102	CH ₃	2-C1	$2-C \equiv CC_2H_5$	1.6249
	103	CH3	2-C1	4-C=CC2H5	1.6478
45	104	CH ₃	2,6-F ₂	4-C=CC2H5	1.6158

8

50

Table 5

5	Compound No.	RI	Xn	Y	Melting point (°C) or refractive index (n20)
	105	CH3	2-Cl,6-F	4-C ⇒CC2H5	1.6244
	106	CH3	2-C1	3-C = CC3H7	1.6265
10	107	СН3	2-C1	4-C≡CC3H7	1.5380
	108	CH3	2,6-F2	4-C≡CC3H7	1.6018
	109	CH3	2-Cl,6-F	4-C≡CC3H7	1.6175
15	110	CH3	2-C1	4-C = CCH ₂ CH(CH ₃) ₂	82.0-84.0
	111	CH3	2-C1	3-C=CC4H9	1.6191
20	112	CH3	2-Cl,6-F	3-C≡CC4Hg	1.6121
	113	CH3	2-C1	4-C ≅CC4H9	1.6273
	114	CH3	2-C1,6-F	4-C≡CC4Hg	1.6110
25	115	CH3	2,6-F2	4-C≡CC4H9	
	116	CH3	2,6-Cl ₂	4-C≡CC4H9	
	117	CH3	2-C1	3-C = CC5H11	1.6010
	118	CH3	2~Cl,6~F	3-C=CC5H11	1.5947
	119	CH3	2-C1	4-C = CC5H11	1.6224
30	120	CH3	2-C1,6-F	4-C≡CC5H11	1.6052
	121	CH3	2,6-F2	4-C = CC5H11	
	122	CH3	2,6-Cl ₂	4-C=CC5H ₁₁	
<i>35</i>	123	CH3	2-Cl,6-P	4-C≡CC6Hl3	
	124	CH3	2,6-F ₂	4-C =CC6H13	
	125	CH3	2,6-Cl ₂	4-C = CC6H13	
40	126	CH3	2-C1	4-C ≅CC8H17	1.5852
	127	CH3	2-Cl,6-F	4-C≡CC8H ₁₇	60.5-64.0
	128	CH3	2-C1	4 -	79.5-82.0
45	129	CH3	2-C1	3-CH ₂ -	

50

Table 6

5	C mpound No.	Rl	Xn	Y	Melting p int (°C) or refractive index (n ²⁰)
	130	CH ³	2-C1	4-CH2CH2	116.0-118.0
10	131	CH ³	2-C1,6-F	4-CH ₂ CH ₂	88.5-90.0
	132	CH3	2-C1	4-CH2CH2 -	90.0-95.0
15	133	CH3	2-C1,6-F	4-CH2CH2	105.0-108.0
	134	СН3	2-C1	4-(CH ₂) ₃	65.0-69.0
20	135	CH3	2-C1,6-F	4-(CH ₂) ₃	53.0-57.0
	136	CH3	2-Cl	4-(CH ₂) ₃	118.0-121.0
<i>25</i>	137	CH3	2-C1,6-F	4-(CH ₂) ₃	100.0-103.0
25	138	CH3	2-C1	4-CH=CH	
	139	CH3	2-C1	4-c≡c -	104.0-107.0
30	140	CH3	2-C1,6-1	4-c≡c -	not measurable
	141	CH3	2-C1	4-CH2CH2-Si(CH3)3	79.0-81.0
<i>35</i>	142	CH:	2-C1,6-	4-CH ₂ CH ₂ -Si(CH ₃) ₃	1.5728
	143	CH		4-O-CH2-Si(CH3)3	55.0-57.0
	144		2-C1,6-	F 4-0-CH2-Si(CH3)3	1.5730
40	145		2-C1,6-		56.0-59.0

5

Table 7

5	Compound No.	Rl	Хn	Y	Melting p int (°C) or refractive index (n ²⁰)
	146	CH3	2,6-F ₂	4-CH2CH2CH2-	not measurable
10	147	CH3	2-C1	4-C ≡ CCH(CH ₃)CH ₂ CH ₂ CH ₃	1.6171
	148	CH3	2-Cl	3-C8H ₁₇	1.5810
	149	CH3	2-C1,6-F	3-C8H17	1.5586
15	150	CH3	2-C1	3-CH ₂ CH ₂ C(CH ₃) ₃	1.5803
	151	CH3	2-C1,6-F	3-CH2CH2C(CH3)3	1.5499
	152	CH3	2-C1	3-0C8H ₁₇	1.5789
20	153	СНЗ	2-C1,6-F	3-0C8H17	1.5559
	154	CH3	2-Cl,6-F	3-0C7H15	
	155	CH3	2,6-F2	3-0C7H ₁₅	
25	156	CH3	2-C1,6-F	3-0 C 9H ₁ 9	
	157	CH3	2,6-F2	3-OC9H19	
	158	CH3	2-Cl,6-F	3-OC10H21	
30	159	CH3	2,6-F2	3-OC10H21	
	160	CH3	2-C1,6-F	3-0C11H23	
	161	CH3	2,6-F ₂	3-0C ₁₁ H ₂ 3	
35	162	CH3	2-C1	3-OC12H25	1.5624
	163	CH3	2-C1,6-F	3-OC12H25	1.5491
	164	CH3	2,6-F2	3-0C ₁₂ H ₂₅	

Table 8

N - N R^{1} $R^{2}m$

Com-Melting point (°C) or Substitution R^{1} $R^{2}m$ pound Xn A position refractive index (n_{D}^{20}) No. 15 CH3 2-C1 165 152.0-154.5 H 4 – CH3 166 2,6-F2 4-C3H7 112.0-116.0 CH3 2-C1 167 4-C3H7 111.5-114.0 20 CH3 2-C1,6-F 168 4-C3H7 158.0-160.5 CH3 2-C1 169 4-C6H13 112.0-114.0 4 -170 CH3 2-C1,6-F 4-C6H13 93.0-95.0 4-25 171 CH3 2,6-F2 4-C6H13 96.0-98.0 4 -2,6-Cl2 172 CH3 96.0-97.5 4-C6H13 173 2-C1 CH3 4-C1 4-OCH3 30 CH3 2-C1 174 137.0-141.0 175 3-CH3 CH3 2-C1 137.0-139.0 4-176 CH3 2-C1 CH₂ 68.0-71.0 4-H 177 CH3 2-C1,6-F 1.6248 CH₂ H 35 178 CH3 2-C1 CH₂ 4-C1 179 CH3 2-C1,6-F CH2 4-C1 180 CH3 CH₂ 40 CH3 2-C1,6-F 181 CH₂ 4-C4H9 4-182 CH3 2-C1 CH2CH2 68.0-69.0 4-H CH3 2-C1,6-F 183 CH2CH2 160.0-162.0 H 4-45 184 2-C1 CH3 CH₂O 99.0-102.0 4-H CH3 2-C1,6-F 185 103.0-106.0 CH20 4-H 186 2-C1 CH3 83.0-87.0 OCH₂ 4-H CH3 2-C1,6-F OCH₂ 187 143.0-153.0 H 4-50

55

5

Table 9

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index(n ²⁰ _D)
	188	CH ₃	2-Cl	4-	CH ₂ OCH ₂	Н	87.0-92.0
	189	CH ₃	2-Cl,6-F	4-	CH ₂ OCH ₂	н	93.0-98.0
10	190	CH ₃	2-Cl	3-	0	Н	1.6354
10	191	CH ₃	2-Cl	4-	0	Н	106.0-108.0
	192	CH ₃	2-Cl,6-F	4-	0	н	165.0-168.0
	193	CH ₃	2,6-F ₂	4-	0	н	85.0-89.0
15	194	CH ₃	2-Cl	4-	0	4-CH ₃	not measurable
	195	CH ₃	2-Cl,6-F	4-	0	4-CH ₃	not measurable
	196	CH ₃	2-Cl	4-	0	4-C ₄ H ₉	
20	197	CH ₃	2-Cl,6-F	4-	0	4-C ₄ H ₉	
20	198	CH ₃	2-Cl	4-	0	2-CI	1.6388
	199	CH ₃	2-Cl,6-F	4-	0	2-CI	1.6251
	200	CH ₃	2-Cl	4-	0	2-C1,4-CF ₃	
25	201	CH ₃	2-Cl,6-F	4-	0	2-Cl,4-CF ₃	
	202	CH ₃	2-Cl	4-	-	4-CH ₃	151.0-154.0
	203	CH ₃	2-Cl,6-F	4-	-	4-CH ₃	207.0-211.0
<i>30</i>	204	CH ₃	2-Cl	4-	-	4-OCF ₃	119.0-122.0
	205	CH₃	2-Cl,6-F	4-	-	4-OCF ₃	114.0-116.0
	206	CH₃	2-Cl	4-	-	4-CF ₃	155.0-159.0
	207	CH ₃	2-Cl,6-F	4-	-	4-CF ₃	146.0-149.0
<i>35</i>	208	CH ₃	2-Cl	4-	-	3,4-Cl ₂	
	209	CH ₃	2-Cl,6-F	4-	-	3,4-Cl ₂	
	210	CH ₃	2-Cl	4-	•	2,4-Cl ₂	
40	211	CH ₃	2-Cl,6-F	4-	-	2,4-Cl ₂	
	212	CH ₃	2-Cl	4-	CH ₂ O	4-CH ₃	135.0-138.0
	213	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-CH ₃	149.0-152.0
	214	CH ₃	2-CI	4-	CH ₂ O	4-C ₄ H ₉	
4 5	215	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-C ₄ H ₉	

*5*5

Table 10

_	Compound No.	R ¹	Xn	Substitution position	Α	R ² m refractive	Melting point (°C) or index(n _D ²⁰)
5		CU	2-Cl	4-	OCH ₂	4-CH ₃	108.0-110.0
	216	CH ₃		4-	OCH ₂	4-CH ₃	150.0-155.0
	217	CH ₃	2-Cl,6-F	4-	OCH ₂	2,3,4,5,6-F ₅	
10	218	CH ₃	2-Cl		OCH ₂	2,3,4,5,6-F ₅	
	219	CH ₃	2-Cl,6-F	4-	0	4-C ₆ H ₁₃	1.6060
	220	CH ₃	2-Cl	4-			1.5891
	221	CH ₃	2-Cl,6-F	4-	0	4-C ₆ H ₁₃	115.0-118.0
15	222	CH ₃	2-Cl	4-	0	3,4-Cl ₂	!
	223	CH ₃	2-Cl,6-F	4-	0	3,4-Cl ₂	103.0-106.0
	224	CH ₃	2-Cl	4-	0	2,4-Cl ₂	not measurable
	225	CH ₃	2-Cl,6-F	4-	0	2,4-Cl ₂	not measurable
20		CH ₃	2-Cl,6-F	4-	-	4-OCH ₃	191.0-192.0
	226		2-Cl	4-	-	4-OC ₄ H ₉	118.0-121.0
	227	CH ₃		4-	-	4-OC ₄ H ₉	141.0-144.0
	228	CH₃	2-Cl,6-F	4-		3-CH ₃	131.0-134.0
25	229	CH ₃	2-Cl,6-F		_	4-Cl	105.0-107.0
	230	CH ₃	2-Cl,6-F	1	CH CH		95.0-97.0
	231	CH ₃	2-Cl	4-	CH ₂ CH ₂		188.0-192.0
30	232	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂	1	105.0-108.0
30	233	CH ₃	2-Cl	4-	0	3,5-Cl ₂	121.0-123.0
	234	CH ₃	2-Cl,6-F	4-	0	3,5-Cl ₂	
	235	CH ₃	2-Cl,6-F	4-	0	4-Cl	not measurable

Table 11

	Companyed No.	01	V-	Cubatitutian position	Λ 1	R ² m	Malting point (90% or
5	Compound No.	R ¹	Xn	Substitution position	A	rt-m	Melting point (°C) or refractive index(n ²⁰ _D)
	236	CH ₃	2-Cl	3-		4-CF ₃	, emergence mean(n. p.)
	237	CH ₃	2-Cl,6-F	3-	•	4-CF ₃	
!	238	CH ₃	2,6-F ₂	3-	_	4-CF ₃	
10	239	CH ₃	2-Cl,6-F	3-	0	4-CF ₃	not measurable
	240	CH ₃	2-Cl,6-F	3-	_	4-OCF ₃	not measurable
,	241	CH ₃	2-Cl,6-F	3-	0	4-OCF ₃	Tiot measurable
15		}	2-Cl,6-F	3-	0	2-Cl,4-CF ₃	
	242	CH ₃				4-CF ₃	
	243	CH ₃	2,6-F ₂	4-			1140 1170
	244	CH ₃	2-Cl,6-F	4-	0	4-CF ₃	114.0-117.0
20	245	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-CF ₃	121212
	246	CH ₃	2-C1,6-F	4-	0	4-OCF ₃	101.0-102.0
	247	CH ₃	2-Cl,6-F	4-	0	3,4-F ₂	95.0-99.0
	248	CH ₃	2-Ci	3-	0	4-CF ₃	
25	249	CH ₃	2,6-F ₂	3-	0	4-CF ₃	
	250	CH ₃	2-Cl	3-	S	4-CF ₃	
	251	CH ₃	2,6-F ₂	3-	S	4-CF ₃	
30	252	CH ₃	2-Cl,6-F	3-	S	4-CF ₃	
	253	CH ₃	2,6-F ₂	3-	0	4-OCF ₃	
	254	CH ₃	2,6-F ₂	3-	S	4-OCF ₃	
	255	CH ₃	2-CI	4-	0	4-CF ₃	
35	256	CH ₃	2,6-F ₂	4-	0	4-CF ₃	
	257	CH ₃	2-Cl,6-F	4-	0	4-CF ₃	
	258	CH ₃	2,6-F ₂	4-	-	4-OCF ₃	
40	259	CH ₃	2-Cl,6-F	3-	CH ₂	4-CF ₃	
,,	260	CH ₃	2,6-F ₂	3-	CH ₂	4-CF ₃	
	261	CH ₃	2-Cl,6-F	4-	CH ₂	4-CF ₃	
	262	CH ₃	2,6-F ₂	4-	CH ₂	4-CF ₃	
45	263	CH ₃	2-Cl,6-F	3-	CH ₂ CH ₂	4-CF ₃	
	264	CH ₃	2,6-F ₂	3-	CH ₂ CH ₂	4-CF ₃	
	L		<u> </u>	<u> </u>	L	L	<u>. </u>

50

Table 12

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index(n _D ²⁰)
	265	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂	4-CF ₃	
	266	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂	4-CF ₃	
10	267	CH ₃	2-CI,6-F	3-	CH ₂	4-OCF ₃	
70	268	CH ₃	2,6-F ₂	3-	CH ₂	4-0CF ₃	
	269	CH ₃	2-Cl,6-F	4-	CH ₂	4-OCF ₃	
	270	CH ₃	2,6-F ₂	4-	CH2	4-OCF ₃	
15	271	CH ₃	2-Cl,6-F	3-	CH ₂ O	4-CF ₃	
	272	CH ₃	2,6-F ₂	3-	CH ₂ O	4-CF ₃	
:	273	CH ₃	2-Cl,6-F	4-	CH₂O	4-CF ₃	
20	274	CH ₃	2,6-F ₂	4-	CH ₂ O	4-CF ₃	
	275	CH ₃	2-Cl,6-F	3-	CH ₂ O	4-OCF ₃	
!	276	CH ₃	2,6-F ₂	3-	CH ₂ O	4-0CF ₃	
,	277	CH ₃	2-Cl,6-F	4-	CH2O	4-OCF ₃	
25	278	CH ₃	2,6-F ₂	4-	CH ₂ O	4-OCF ₃	
	279	CH ₃	2-Cl,6-F	3-	OCH ₂	4-CF ₃	
,	280	CH ₃	2,6-F ₂	3-	OCH ₂	4-CF ₃	
30	281	CH ₃	2-Cl,6-F	4-	OCH ₂	4-CF ₃	
	282	CH ₃	2,6-F ₂	4-	OCH ₂	4-CF ₃	
	283	CH ₃	2-Cl,6-F	3-	0	2-Cl,4-CF ₃	
	284	CH ₃	2,6-F ₂	3-	0	2-Cl,4-CF ₃	
35	285	CH ₃	2-CI,6-F	3-	CH ₂ O	2-Cl,4-CF ₃	
	286	CH ₃	2,6-F ₂	3-	CH ₂ O	2-Cl,4-CF ₃	
	287	CH ₃	2-Cl,6-F	4-	CH ₂ O	2-Cl,4-CF ₃	
40	288	CH ₃	2,6-F ₂	4-	CH ₂ O	2-Cl,4-CF ₃	
	289	CH ₃	2-CI,6-F	3-	0	2,6-Cl ₂ ,4-CF ₃	
	290	CH ₃	2,6-F ₂	3-	0	2,6-Cl ₂ ,4-CF ₃	
	291	CH ₃	2-Cl,6-F	4-	0	2,6-Cl ₂ ,4-CF ₃	
45	292	CH ₃	2,6-F ₂	4-	0	2,6-Cl ₂ ,4-CF ₃	
	293	CH ₃	2-Cl,6-F	3-	CH ₂ O	2,6-Cl ₂ ,4-CF ₃	

50

Table 13

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index(n _D ²⁰)
	294	CH ₃	2,6-F ₂	3-	CH ₂ O	2,6-Cl ₂ ,4-CF ₃	
	295	CH ₃	2-Cl,6-F	4-	CH2O	2,6-Cl ₂ ,4-CF ₃	
10	296	CH ₃	2,6-F ₂	4-	CH ₂ O	2,6-Cl ₂ ,4-CF ₃	
10	297	CH ₃	2-Cl,6-F	3-	0	3,5-(CF ₃) ₂	
	298	CH ₃	2,6-F ₂	3-	0	3,5-(CF ₃) ₂	
	299	CH ₃	2-Cl,6-F	4-	0	3,5-(CF ₃) ₂	
15	300	CH ₃	2,6-F ₂	4-	0	3,5-(CF ₃) ₂	
	301	CH ₃	2-Cl,6-F	3-	0	4-CI,3-CF ₃	
	302	CH ₃	2,6-F ₂	3-	0	4-Cl,3-CF ₃	
20	303	CH ₃	2-Cl,6-F	4-	0	4-Cl,3-CF ₃	
	304	CH3	2,6-F ₂	4-	0	4-Cl,3-CF ₃	
	305	CH3	2-CI,6-F	3 - '	0	3-F,5-CF ₃	
	306	CH ₃	2,6-F ₂	3-	0	3-F,5-CF ₃	
25	307	CH ₃	2-C1,6-F	4-	0	3-F,5-CF ₃	
	308	CH ₃	2,6-F ₂	4-	0	3-F,5-CF ₃	
	309	CH ₃	2-Cl,6-F	3-	0	4-Br	
30	310	CH ₃	2,6-F ₂	3-	0	4-Br	
	311	CH ₃	2-C1,6-F	4-	0	4-Br	
	312	CH ₃	2,6-F ₂	4-	0	4-Br	
	313	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Br	
<i>35</i>	314	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Br	
	315	CH ₃	2-Cl,6-F	4-	0	2,4,6-Br ₃	
	316	CH ₃	2,6-F ₂	4-	0	2,4,6-Br ₃	
40	317	CH ₃	2-Cl,6-F	4-	CH ₂ O	2,4,6-Br ₃	
	318	CH ₃	2,6-F ₂	4-	CH ₂ O	2,4,6-Br ₃	
	319	CH ₃	2-CI,6-F	4-	0	2,4-Br ₂	
	320	CH ₃	2,6-F ₂	4-	0	2,4-Br ₂	
45	321	CH ₃	2-C1,6-F	4-	CH ₂ O	2,4-Br ₂	
	322	CH ₃	2,6-F ₂	4-	CH ₂ O	2,4-Br ₂	

50

Table 14

		_1	· · · ·	Table 14			
5	Compound No.	R¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index (n_D^{20})
	323	CH ₃	2-Cl,6-F	4-	0	4-Br,3,5-(CH ₃) ₂	
	324	CH ₃	2,6-F ₂	4-	0	4-Br,3,5-(CH ₃) ₂	
10	325	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Br,3,5-(CH ₃) ₂	
10	326	CH3	2,6-F ₂	4-	CH ₂ O	4-Br,3,5-(CH ₃) ₂	
	327	CH3	2-Cl,6-F	4-	0	4-Br,3-CH ₃	
	328	CH ₃	2,6-F ₂	4-	0	4-Br,3-CH ₃	
15	329	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Br,3-CH ₃	
	330	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Br,3-CH ₃	
	331	CH ₃	2-Cl,6-F	4-	0	3-Cl,4-F	
20	332	CH ₃	2,6-F ₂	4-	0	3-Cl,4-F	
20	333	CH ₃	2-C1,6-F	4-	CH ₂ O	3-Cl,4-F	
	334	CH ₃	2,6-F ₂	4-	CH ₂ O	3-Cl,4-F	
	335	CH ₃	2-Cl,6-F	4-	0	2,6-Cl ₂ ,5-CF ₃	
25	336	CH ₃	2,6-F ₂	4-	0	2,6-Cl ₂ ,5-CF ₃	
	337	CH ₃	2-Cl,6-F	4-	CH ₂ O	2,6-Cl ₂ ,5-CF ₃	
	338	CH ₃	2,6-F ₂	4-	CH ₂ O	2,6-Cl ₂ ,5-CF ₃	
30	339	CH ₃	2-Cl,6-F	4-	0	3,4,5-F ₃	
	340	CH ₃	2,6-F ₂	4-	0	3,4,5-F ₃	
	341	CH ₃	2-Cl,6-F	4-	CH ₂ O	3,4,5-F ₃	
	342	CH ₃	2,6-F ₂	4-	CH ₂ O	3,4,5-F ₃	
<i>3</i> 5	343	CH ₃	2-Cl,6-F	4-	0	4-F,2-CF ₃	
	344	CH ₃	2,6-F ₂	4-	0	4-F,2-CF ₃	
	345	CH ₃	2-CI,6-F	4-	CH ₂ O	4-F,2-CF ₃	
40	346	CH ₃	2,6-F ₂	4-	CH ₂ O	4-F,2-CF ₃	
	347	CH ₃	2-Cl,6-F	4-	CH ₂ O	3,4-Cl ₂	
	348	CH ₃	2,6-F ₂	4-	CH ₂ O	3,4-Cl ₂	
	349	CH3	2-CI,6-F	4-	CH ₂ O	2,4-Cl ₂	
45	350	CH ₃	2,6-F ₂	4-	CH ₂ O	2,4-Cl ₂	
	351	CH ₃	2-Cl,6-F	4-	0	2,4,5-Cl ₃	

50

Table 15

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index (n ²⁰)
,	352	CH ₃	2,6-F ₂	4-	0	2,4,5-Cl ₃	
10	353	CH ₃	2-Cl,6-F	4-	CH ₂ O	2,4,5-Cl ₃	
	354	CH₃	2,6-F ₂	4-	CH ₂ O	2,4,5-Cl ₃	
10	355	CH₃	2-Cl,6-F	4-	0	2,4,6-Cl ₃	
	356	CH ₃	2,6-F ₂	4-	0	2,4,6-Cl ₃	
	357	CH ₃	2-Cl,6-F	4-	CH ₂ O	2,4,6-Cl ₃	
15	358	CH ₃	2,6-F ₂	4-	CH ₂ O	2,4,6-Cl ₃	
	359	CH ₃	2-Cl,6-F	4-	0	4-Cl,3-CH ₃	
	360	CH ₃	2,6-F ₂	4-	0	4-Cl,3-CH ₃	
20	361	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Cl,3-CH ₃	
	362	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Cl,3-CH ₃	
	363	CH ₃	2-CI,6-F	4-	0	4-Cl,3,5-(CH ₃) ₂	
	364	CH ₃	2,6-F ₂	4-	0	4-Cl,3,5-(CH ₃) ₂	
25	365	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Cl,3,5-(CH ₃) ₂	
!	366	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Cl,3,5-(CH ₃) ₂	
	367	CH ₃	2-C1,6-F	4-	0	4-Cl,3-C ₂ H ₅	
3 0	368	CH ₃	2,6-F ₂	4-	0	4-Cl,3-C ₂ H ₅	
	369	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Cl,3-C ₂ H ₅	
	370	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Cl,3-C ₂ H ₅	
	371	CH ₃	2-Cl,6-F	4-	0	4-Cl,3-F	
<i>35</i>	372	CH ₃	2,6-F ₂	4-	0	4-Cl,3-F	
	373	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Cl,3-F	
	374	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Cl,3-F	
40	375	CH ₃	2-C1,6-F	4-	0	4-CI,2-F	
	376	CH ₃	2,6-F ₂	4-	0	4-Cl,2-F	
	377	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-Cl,2-F	
	378	CH ₃	2,6-F ₂	4-	CH ₂ O	4-Cl,2-F	
45	379	CH ₃	2-Cl,6-F	4-	OCH ₂	4-Cl	
	380	CH ₃	2,6-F ₂	4-	OCH ₂	4-Cl	

50

Table 16

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index (n ²⁰ _D)
	381	CH ₃	2-Cl,6-F	4-	OCH ₂	3,4-Cl ₂	
	382	CH ₃	2,6-F ₂	4-	OCH ₂	3,4-Cl ₂	
10	383	CH ₃	2-Cl,6-F	4-	OCH ₂	2,4-Cl ₂	
70	384	CH ₃	2,6-F ₂	4-	OCH ₂	2,4-Cl ₂	
	385	CH ₃	2-Cl,6-F	4-	OCH ₂	4-F	
	386	CH ₃	2,6-F ₂	4-	OCH ₂	4-F	
15	387	CH ₃	2-Cl,6-F	4-	OCH ₂	3,4-F ₂	
	388	CH ₃	2,6-F ₂	4-	OCH ₂	3,4-F ₂	
	389	CH ₃	2-Cl,6-F	4-	OCH ₂	2,4-F ₂	
20	390	CH ₃	2,6-F ₂	4-	OCH ₂	2,4-F ₂	
20	391	CH ₃	2-Cl,6-F	4-	OCH ₂	4-Br	
	392	CH ₃	2,6-F ₂	4-	OCH ₂	4-Br	
	393	CH ₃	2-Cl,6-F	4-	OCH ₂	4-F,3-CF ₃	
25	394	CH ₃	2,6-F ₂	4-	OCH ₂	4-F,3-CF ₃	
	395	CH ₃	2-Cl,6-F	4-	OCH ₂	4-OCF ₃	
	396	CH ₃	2,6-F ₂	4-	OCH ₂	4-OCF ₃	
30	397	CH ₃	2-Cl,6-F	4-	OCH ₂	3-OCF ₃	
	398	CH ₃	2,6-F ₂	4-	OCH ₂	3-OCF ₃	
	399	CH ₃	2-Cl,6-F	4-	OCH ₂	3,4,5-F ₃	
	400	CH ₃	2,6-F ₂	4-	OCH ₂	3,4,5-F ₃	
3 5	401	CH ₃	2-Cl,6-F	4-	OCH ₂	2,4-(CF ₃) ₂	
	402	CH ₃	2,6-F ₂	4-	OCH ₂	2,4-(CF ₃) ₂	
	403	CH ₃	2-Cl,6-F	4-	OCH ₂	2-F,4-CF ₃	
40	404	CH ₃	2,6-F ₂	4-	OCH ₂	2-F,4-CF ₃	
	405	CH ₃	2-Cl,6-F	4-	OCH ₂	4-F,2-CF ₃	
	406	CH ₃	2,6-F ₂	4-	OCH ₂	4-F,2-CF ₃	
	407	CH3	2,6-F ₂	3-	-	4-OCF ₃	
45	408	CH ₃	2-Cl,6-F	4-		4-CI,2-CH ₃	·
	409	CH3	2,6-F ₂	4-		4-Cl,2-CH ₃	

50

Table 17

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index (n ²⁰ _D)
	410	CH ₃	2-Cl,6-F	4-	-	3,5-Cl ₂	
	411	CH ₃	2,6-F ₂	4-	-	3,5-Cl ₂	·
	412	CH ₃	2-Cl,6-F	4-	-	3-Cl,4-F	
10	413	CH ₃	2,6-F ₂	4-		3-Cl,4-F	
	414	CH ₃	2-Cl,6-F	4-	-	2-Cl,4-CF ₃	
	415	CH ₃	2,6-F ₂	4-	-	2-CI,4-CF ₃	
15	416	CH ₃	2-Cl,6-F	4-	-	2,4,6-Cl ₃	
	417	CH ₃	2,6-F ₂	4-	-	2,4,6-Cl ₃	
	418	CH ₃	2-Cl,6-F	4-	-	2,4-F ₂	
	419	CH ₃	2,6-F ₂	4-	-	2,4-F ₂	
20	420	CH ₃	2-Cl,6-F	4-	-	3,4-F ₂	
	421	CH ₃	2,6-F ₂	4-	-	3,4-F ₂	
	422	CH ₃	2-Cl,6-F	4-	-	2,4-(CF ₃) ₂	
25	423	CH ₃	2,6-F ₂	4-	<u> </u>	2,4-(CF ₃) ₂	

Table 18

N-N R^{1} $R^{2}m$

15		
20		
25		
30		
35		

Com- pound No.	Rl	Хn	Substi- tution position	A	R ² m	Melting point (°C) or refractive index $(n\frac{20}{D})$
424	СН3	2-C1	4-	0	Н	
425	СНЗ	2,6-F2	4-	٥	н	122.0-127.0
426	CH3	2-Cl	4-	0	5-CF3	107.0-109.0
427	CH3	2-C1,6-F	4-	0	5-CF3	94.0-96.0
428	CH3	2-C1	4~	0	3-C1,5-CF3	not measurable
429	CH3	2-Cl,6-F	4~	0	3-C1,5-CF3	not measurable
430	Сн3	2-C1	4	s	3-C1,5-CF3	127.0-131.0
431	CH3	2-C1	4~	CH20	H	
432	CH3	2-Cl,6-F	4-	CH20	H	
433	CH3	2-Cl,6-F	2-	0	5-CF3	126.0-129.0
434	CH3	2-Cl,6-F	3-	0	Ħ	not measurable
435	CH3	2-C1,6-F	3-	0	5-C1	not measurable
436	CH3	2,6-F2	3-	0	5-Cl	
437	CH3	2-C1,6-F	3-	0	6-C1	124.0-127.0
438	СНЗ	2,6-F2	3-	0	6-C1	
439	CH3	2-Cl,6-F	3-	0	4-CH3	
440	CH3	2-C1,6-F	3-	0	5-CH3	not measurable
441	CH3	2-C1,6-F	3-	0	6-CH3	not measurable
442	CH3	2-C1,6-F	3-	0	4-C2H5	
443	CH3	2-C1,6-F	3~	0	6-C3H7	
444	CH3	2-C1	3-	0	3-CF3	not measurable
445	CH3	2-C1,6-F	3~	0	3-CF3	122.0-124.0
446	CH3	2,6-F ₂	3-	0	3-CF3	
447	CH3	2-C1,6-F	3~	0	4-CF3	1.5820

5

Table 19

5	Compound No.	R ¹	Хn	Substitution position	Α	R ² m	Melting point (°C) or refrac- tive index(n ²⁰ _p)
	448	CH ₃	2,6-F ₂	3-	0	4-CF ₃	
:	449	CH ₃	2-Cl,6-F	3-	0	5-CF ₃	
10	450	CH ₃	2-CI	3-	0	5-CF ₃	not measurable
,0	451	CH ₃	2-CI,6-F	3-	0	5-CF ₃	65.0-68.0
	452	CH ₃	2,6-F ₂	3-	0	5-CF ₃	not measurable
	453	CH ₃	2,6-Cl ₂	3-	0	5-CF ₃	
15	454	CH ₃	2-Cl,6-F	3-	S	5-CF ₃	82.0-86.0
	455	CH ₃	2-Cl,6-F	3-	CH ₂	5-CF ₃	
	456	CH ₃	2-Cl	3-	CH ₂ O	5-CF ₃	
20	457	CH ₃	2-Cl,6-F	3-	CH ₂ O	5-CF ₃	
	458	CH ₃	2,6-F ₂	3-	CH2O	5-CF ₃	
	459	CH ₃	2,6-Cl ₂	3-	CH⁵O	5-CF ₃	
	460	CH ₃	2-Cl,6-F	3-	C ₂ H ₄ O	5-CF ₃	
25	461	CH ₃	2-Cl,6-F	3-	0	6-CF ₃	98.0-102.0
	462	CH ₃	2,6-F ₂	3-	0	6-CF ₃	
	463	CH ₃	2-C1,6-F	3-	0	5-CI,3-CF ₃	
30	464	CH ₃	2,6-F ₂	3-	0	5-Cl,3-CF ₃	
	465	CH ₃	2-Cl	3-	0	5-Cl,3-CF ₃	71.0-73.0
	466	CH ₃	2-Cl,6-F	3-	0	5-Cl,3-CF ₃	109.0-111.0
	467	CH ₃	2,6-F ₂	3-	0	5-Cl,3-CF ₃	
35	468	CH ₃	2-Cl	3-	0	3-Cl,5-CF ₃	not measurable
	469	CH3	2-C1,6-F	3-	0	3-CI,5-CF ₃	not measurable
	470	CH3	2,6-F ₂	3-	0	3-CI,5-CF ₃	
40	471	CH3	2-Cl,6-F	3-	0	3,5-(CF ₃) ₂	91.0-95.0
!	472	CH ₃	2,6-F ₂	3-	0	3,5-(CF ₃) ₂	
	473	CH ₃	2-Cl,6-F	3-	0	6-Cl,5-CF ₃	not measurable
	474	CH ₃	2,6-F ₂	3-	0	6-CI,5-CF ₃	
45	475	CH ₃	2-Cl,6-F	3-	0	4,5-(CF ₃) ₂	122.0-126.0
	476	CH ₃	2,6-F ₂	3-	0	4,5-(CF ₃) ₂	

50

Table 20

							
5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index(n _D ²⁰)
	477	CH ₃	2-Cl,6-F	3-	0	6-Cl,4-CF ₃	not measurable
	478	CH ₃	2,6-F ₂	3-	0	6-Cl,4-CF ₃	
10	479	CH ₃	2-Cl,6-F	3-	0	4,6-(CF ₃) ₂	1.5453
	480	CH ₃	2,6-F ₂	3-	0	4,6-(CF ₃) ₂	
	481	CH₃	2-Cl,6-F	3-	0	6-CH ₃ ,4-CF ₃	121.0-123.0
	482	CH₃	2,6-F ₂	3-	0	6-CH ₃ ,4-CF ₃	
15	483	CH3	2-CI,6-F	4-	0	5-Cl	136.0-139.0
	484	CH₃	2,6-F ₂	4-	0	5-Cl	
	485	CH ₃	2-Cl,6-F	4-	0	6-CI	134.0-136.0
20	486	CH3	2,6-F ₂	4-	0	6-CI	
	487	CH ₃	2-Cl,6-F	4-	0	4-CH ₃	136.0-140.0
	488	CH ₃	2-Cl,6-F	4-	0	4-C ₂ H ₅	
;	489	CH ₃	2-Cl,6-F	4-	0	5-CH ₃	154.0-157.0
25	490	CH ₃	2-Cl,6-F	4-	0	6-CH₃	not measurable
	491	CH₃	2-Cl,6-F	4-	0	6-C ₃ H ₇	
!	492	CH ₃	2-Cl,6-F	4-	0	3-CF ₃	158.0-159.9
30	493	CH ₃	2,6-F ₂	4-	0	3-CF ₃	
	494	CH ₃	2-Cl,6-F	4-	0	4-CF ₃	110.0-114.0
	495	CH ₃	2,6-F ₂	4-	0	4-CF ₃	
	496	CH₃	2-Cl,6-F	4-	-	5-CF ₃	
35	497	CH₃	2,6-F ₂	4-	-	5-CF ₃	
	498	C ₂ H ₅	2-Cl,6-F	4-	0	5-CF ₃	not measurable
	499	CH(CH ₃) ₂	2-Cl,6-F	4-	0	5-CF ₃	not measurable
40	500	CH₃	2,6-F ₂	4-	0	5-CF ₃	127.0-131.0
	501	CH ₃	2,6-Cl ₂	4-	0	5-CF ₃	127.0-130.0
	502	C ₆ H ₁₃	2-CI,6-F	4-	0	5-CF ₃	1.5573
	503	CH ₃	2-Cl	4-	Ş	5-CF ₃	not measurable
45	504	CH₃	2-Cl,6-F	4-	S	5-CF ₃	111.0-115.0
	505	CH₃	2,6-F ₂	4-	S	5-CF ₃	

50

Table 21

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index(n _D ²⁰)
	506						
	507	CH ₃	2-Cl,6-F	4-	CH ₂	5-CF ₃	
10	508	CH ₃	2,6-F ₂	4-	CH ₂	5-CF ₃	
10	509	CH ₃	2-Cl	4-	CH ₂ O	5-CF ₃	
	510	CH ₃	2-Cl,6-F	4-	CH2O	5-CF ₃	1.5859
	511	CH3	2,6-F ₂	4-	CH ₂ O	5-CF ₃	
15	512	CH ₃	2,6-Cl ₂	4-	CH ₂ O	5-CF ₃	
	513	CH ₃	2-Cl,6-F	4-	C ₂ H ₄ O	5-CF ₃	
	514	CH ₃	2-Cl,6-F	4-	0	6-CF ₃	97.0-101.0
20	515	CH ₃	2-CI,6-F	4-	0	3,5-Cl ₂	
	516	CH ₃	2-Cl,6-F	4-	0	5-Cl,3-CF ₃	not measurable
	517	CH ₃	2,6-F ₂	4-	0	5-Cl,3-CF ₃	
	518	CH ₃	2-Cl,6-F	4-	s	3-Cl,5-CF ₃	not measurable
25	519	CH ₃	2,6-F ₂	4-	S	3-Cl,5-CF ₃	
!	520	CH ₃	2-Cl,6-F	4-	CH ₂ O	3-Cl,5-CF ₃	1.5778
	521	CH ₃	2,6-F ₂	4-	CH2O	3-CI,5-CF ₃	
30	522	CH ₃	2-Cl,6-F	4-	0	3,5-(CF ₃) ₂	85.0-89.0
	523	CH ₃	2,6-F ₂	4-	0	3,5-(CF ₃) ₂	
	524	CH ₃	2-Cl,6-F	4-	0	6-Cl,5-CF ₃	108.0-112.0
	525	CH ₃	2,6-F ₂	4-	0	6-Cl,5-CF ₃	
35	526	CH ₃	2-Cl,6-F	4-	0	4,5-(CF ₃) ₂	158.0-160.0
!	527	CH ₃	2,6-F ₂	4-	0	4,5-(CF ₃) ₂	
	528	CH ₃	2-Cl,6-F	4-	0	6-Cl,4-CF ₃	not measurable
40	529	CH ₃	2,6-F ₂	4-	0	6-Cl,4-CF ₃	
!	530	CH ₃	2-Cl,6-F	4-	0	4,6-(CF ₃) ₂	125.0-129.0
1	531	CH ₃	2,6-F ₂	4-	0	4,6-(CF ₃) ₂	
45-	532	CH ₃	2-Cl,6-F	4-	0	6-CH ₃ ,4-CF ₃	98.0-101.0
45	533	CH ₃	2,6-F ₂	4-	0	6-CH ₃ ,4-CF ₃	
i	Compound No. 50	06 delet	ed				

50

Table 22

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index(n _D ²⁰)
	534	CH ₃	2,6-F ₂	3-	-	5-CF ₃	
10	535	CH ₃	2,6-F ₂	3-	S	5-CF ₃	
	536	CH ₃	2,6-F ₂	3-	CH ₂	5-CF ₃	
70	537	CH ₃	2,6-Cl ₂	3-	0	3-Cl,5-CF ₃	
	538	CH ₃	2-Cl	3-	S	3-Cl,5-CF ₃	
	539	CH ₃	2-Cl,6-F	3-	S	3-CI,5-CF ₃	
15	540	CH ₃	2,6-F ₂	3-	S	3-CI,5-CF ₃	
	541	CH3	2,6-Cl ₂	3-	S	3-CI,5-CF ₃	
	542	CH ₃	2-CI	3-	CH ₂ O	3-Cl,5-CF ₃	
20	543	CH ₃	2-Cl,6-F	3-	CH ₂ O	3-CI,5-CF ₃	
	544	CH3	2,6-F ₂	3-	CH ₂ O	3-CI,5-CF ₃	
	545	CH ₃	2,6-Cl ₂	3-	CH ₂ O	3-CI,5-CF ₃	
	546	CH ₃	2-Cl,6-F	3-	CH ₂ O	3,5-(CF ₃) ₂	
25	547	CH ₃	2,6-F ₂	3-	CH ₂ O	3,5-(CF ₃) ₂	
	548	CH ₃	2-Cl,6-F	3-	CH ₂ O	4,5-(CF ₃) ₂	
	549	CH ₃	2,6-F ₂	3-	CH ₂ O	4,5-(CF ₃) ₂	
30	550	CH ₃	2-Cl,6-F	3-	CH ₂ O	4,6-(CF ₃) ₂	
	551	CH ₃	2,6-F ₂	3-	CH ₂ O	4,6-(CF ₃) ₂	
	552	CH ₃	2-Cl,6-F	3-	CH ₂ O	6-CH ₃ ,4-CF ₃	
	553	CH ₃	2,6-F ₂	3-	CH ₂ O	6-CH ₃ ,4-CF ₃	
35	554	CH ₃	2-Cl,6-F	3-	CH ₂ O	5-Cl	
	555	CH ₃	2,6-F ₂	3-	CH5O	5-Cl	
	556	CH ₃	2-Cl,6-F	3-	CH ₂ O	5-CH ₃	
40	557	CH ₃	2,6-F ₂	3-	CH ₂ O	5-CH ₃	
	558	CH ₃	2-Cì,6-F	3-	CH ₂ O	3,5-Cl ₂	
	559	CH ₃	2,6-F ₂	3-	CH ₂ O	3,5-Cl ₂	
	560	CH ₃	2-Cl,6-F	3-	CH ₂ O	5-Cl,3-CF ₃	
45	561	CH3	2,6-F ₂	3-	CH ₂ O	5-Cl,3-CF ₃	
	562	CH ₃	2-Cl,6-F	3-	CH ₂ O	6-CI,5-CF ₃	

55

Table 23

	idble 52									
5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refrac- tive index(n ²⁰ _D)			
	563	CH ₃	2,6-F ₂	3-	CH ₂ O	6-CI,5-CF ₃				
	564	CH ₃	2-Cl,6-F	3-	CH ₂ O	6-Cl,4-CF ₃				
10	565	CH ₃	2,6-F ₂	3-	CH ₂ O	6-Cl,4-CF ₃				
,0	566	CH ₃	2-Cl,6-F	3-	0	3,5-Cl ₂				
:	567	CH ₃	2,6-F ₂	3-	0	3,5-Cl ₂				
	568	CH ₃	2-Cl,6-F	4-	CH ₂ O	5-CI				
15	569	CH ₃	2,6-F ₂	4-	CH ₂ O	5-CI				
	570	CH ₃	2-Cl,6-F	4-	CH2O	6-CI				
	571	CH ₃	2,6-F ₂	4-	CH ₂ O	6-CI				
20	572	CH ₃	2-C1,6-F	4-	CH ₂ O	4-CH ₃				
	573	CH ₃	2,6-F ₂	4-	CH ₂ O	4-CH ₃				
	574	CH ₃	2-Cl,6-F	4-	CH ₂ O	5-CH ₃				
	575	CH ₃	2,6-F ₂	4-	CH ₂ O	5-CH ₃				
25	576	CH ₃	2-CI,6-F	4-	CH ₂ O	6-CH ₃				
	577	CH ₃	2,6-F ₂	4-	CH ₂ O	6-CH₃				
	578	CH ₃	2-C1,6-F	4-	CH ₂ O	3-CF ₃				
30	579	CH ₃	2,6-F ₂	4-	CH ₂ O	3-CF ₃				
	580	CH ₃	2-Cl,6-F	4-	CH ₂ O	4-CF ₃				
	581	CH ₃	2,6-F ₂	4-	CH ₂ O	4-CF ₃				
	582	CH ₃	2-Cl,6-F	4-	CH ₂ O	6-CF ₃				
35	583	CH ₃	2,6-F ₂	4-	CH ₂ O	6-CF ₃				
	584	CH ₃	2-Cl	4-	CH ₂ O	3,5-Cl ₂				
	585	CH ₃	2-Cl,6-F	4-	CH ₂ O	3,5-Cl ₂				
40	586	CH ₃	2,6-F ₂	4-	CH ₂ O	3,5-Cl ₂				
	587	CH ₃	2,6-Cl ₂	4-	CH ₂ O	3,5-Cl ₂				
	588	CH ₃	2-Ci	4-	CH ₂ O	5-Cl,3-CF ₃				
4.5	589	CH ₃	2-Cl,6-F	4-	CH ₂ O	5-Cl,3-CF ₃	·			
45	590	CH ₃	2,6-F ₂	4-	CH ₂ O	5-Cl,3-CF ₃				
:	591	CH ₃	2,6-Cl ₂	4-	CH ₂ O	5-Cl,3-CF ₃				

50

Table 24

5	Compound No.	R ¹	Xn	Substitution position	Α	R ² m	Melting point (°C) or refractive index (n ²⁰ _D)
	592	CH ₃	2-Cl	4-	CH ₂ O	3-Cl,5-CF ₃	. 57
	593	CH ₃	2,6-Cl ₂	4-	CH ₂ O	3-Cl,5-CF ₃	
	594	CH ₃	2-CI	4-	CH ₂ O	3,5-(CF ₃) ₂	
10	595	CH ₃	2-Cl,6-F	4-	CH ₂ O	3,5-(CF ₃) ₂	
•	596	CH ₃	2,6-F ₂	4-	CH2O	3,5-(CF ₃) ₂	
	597	CH ₃	2,6-Cl ₂	4-	CH ₂ O	3,5-(CF ₃) ₂	
15	598	CH ₃	2-CI	4-	CH ₂ O	6-CI,5-CF ₃	
	599	CH ₃	2-Cl,6-F	4-	CH ₂ O	6-CI,5-CF ₃	
	600	CH ₃	2,6-F ₂	4-	CH ₂ O	6-Cl,5-CF ₃	
20	601	CH ₃	2,6-Cl ₂	4-	CH ₂ O	6-CI,5-CF ₃	
	602	CH3	2-Cl	4-	CH ₂ O	4,5-(CF ₃) ₂	
	603	CH ₃	2-Cl,6-F	4-	CH ₂ O	4,5-(CF ₃) ₂	
	604	CH ₃	2,6-F ₂	4-	CH ₂ O	4,5-(CF ₃) ₂	
25	605	CH ₃	2,6-Cl ₂	4-	CH ₂ O	4,5-(CF ₃) ₂	
:	606	CH ₃	2-CI	4-	CH ₂ O	6-Cl,4-CF ₃	
	607	CH ₃	2-Cl,6-F	4-	CH ₂ O	6-Cl,4-CF ₃	
30	608	CH ₃	2,6-F ₂	4-	CH ₂ O	6-Cl,4-CF ₃	
	609	CH ₃	2,6-Cl ₂	4-	CH₂O	6-CI,4-CF ₃	
	610	CH ₃	2-CI	4-	CH ₂ O	4,6-(CF ₃) ₂	
	611	CH ₃	2-Cl,6-F	4-	CH ₂ O	4,6-(CF ₃) ₂	
<i>35</i>	612	CH ₃	2,6-F ₂	4-	CH ₂ O	4,6-(CF ₃) ₂	
	613	CH ₃	2,6-Cl ₂	4-	CH ₂ O	4,6-(CF ₃) ₂	
	614	CH ₃	2-CI	4-	CH ₂ O	6-CH ₃ ,4-CF ₃	
40	615	CH ₃	2-Cl,6-F	4-	CH ₂ O	6-CH ₃ ,4-CF ₃	
	616	CH ₃	2,6-F ₂	4-	CH ₂ O	6-CH ₃ ,4-CF ₃	
	617	CH ₃	2,6-Cl ₂	4-	CH ₂ O	6-CH ₃ ,4-CF ₃	
4-	618	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂ O	3-Cl,5-CF ₃	
45	619	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	3-CI,5-CF ₃	
	620	CH ₃	2-C1,6-F	4-	CH ₂ CH ₂ O	3,5-(CF ₃) ₂	

50

Table 25

5	Compound No.	R ¹	Xn	Substitution position	A	R ² m	Melting point (°C) or refractive index (n ²⁰ ₀)
	621	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	3,5-(CF ₃) ₂	
İ	622	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂ O	6-Cl,5-CF ₃	
10	623	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	6-Cl,5-CF ₃	
	624	CH ₃	2-Cl,6-F	4-	CH2CH2O	5-Cl,3-CF ₃	
	625	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	5-Cl,3-CF ₃	
	626	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂ O	4,5-(CF ₃) ₂	
15	627	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	4,5-(CF ₃) ₂	
	628	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂ O	6-Cl,4-CF ₃	
	629	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	6-Cl,4-CF ₃	
20	630	CH ₃	2-Cl,6-F	4-	CH ₂ CH ₂ O	4,6-(CF ₃) ₂	
	631	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	4,6-(CF ₃) ₂	
	632	СН₃	2-Ci,6-F	4-	CH ₂ CH ₂ O	6-CH ₃ ,4-CF ₃	
	633	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	6-CH ₃ ,4-CF ₃	
<i>25</i>	634	CH ₃	2-CI,6-F	4-	CH ₂ CH ₂ O	3,5-Cl ₂	
!	635	CH ₃	2,6-F ₂	4-	CH ₂ CH ₂ O	3,5-Cl ₂	
!	636	CH ₃	2-Cl,6-F	4-	S	3,5-Cl ₂	
30	637	CH ₃	2,6-F ₂	4-	S	3,5-Cl ₂	
	638	CH ₃	2-Cl,6-F	4-	S	5-Cl,3-CF ₃	
	639	CH ₃	2,6-F ₂	4-	S	5-Cl,3-CF ₃	
	640	CH ₃	2-Cl,6-F	4-	S	3,5-(CF ₃) ₂	
35	641	CH ₃	2,6-F ₂	4-	S	3,5-(CF ₃) ₂	
!	642	CH ₃	2-C1,6-F	4-	S	6-Cl,5-CF ₃	
!	643	CH ₃	2,6-F ₂	4-	S	6-CI,5-CF ₃	
40	644	CH ₃	2-Cl,6-F	4-	s	4,5-(CF ₃) ₂	
!	645	CH ₃	2,6-F ₂	4-	s	4,5-(CF ₃) ₂	
	646	CH ₃	2-CI,6-F	4-	s	4,6-(CF ₃) ₂	
45	647	CH ₃	2,6-F ₂	4-	s	4,6-(CF ₃) ₂	

The compounds according to the invention can be produced by the following methods. However, it is not intended to restrict the invention to these methods.

50 Production Method A

55

The compound of the general formula [I] according to the invention can be obtained by reacting an alkyl N-acyl(thio) imidate derivative of a general formula [II] with a hydrazine derivative of a general formula [III] in an inert solvent according to the following reaction formula (1):

(wherein W is a sulfur atom or an oxygen atom, L is an alkyl group having a carbon number of 1-4 and R¹, X, n and Y have the same meaning as mentioned above).

As the solvent, use may be made of any solvent not obstruction the reaction, which includes, for example, an alcohol such as methanol, ethanol or the like; an ether such as diethyl ether, tetrahydrofuran, dioxane, diglyme or the like; an aromatic hydrocarbon such as benzene, toluene, chlorobenzene or the like; an aliphatic hydrocarbon such as pentane, hexane, petroleum ether or the like; a halogenated hydrocarbon such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride or the like; a nitrile such as acetonitrile or the like; an aprotic polar solvent such as N,Ndimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide or the like; water and a mixture thereof.

In general, the compound of the general formula [III] is used in an amount of 1.0-5.0 moles per 1 mole of the compound of the general formula [I].

The reaction temperature is optional within a range of 0°C to a boiling point of the solvent, but is preferably 0°C-50°C. The reaction time is dependent upon the kind of compounds used, but is usually 1-72 hours.

A concrete example of this reaction is disclosed, for example, in Synthesis, page 483 (1983).

The compound of the general formula [II] as a starting material can be produced by the following method.

Production Method B

30

45

5

The compound of the general formula [II] can be obtained by reacting compounds of general formulae [IV] and [V] in an inert solvent in the presence of a base according to the following reaction formula (2):

(wherein a derivative of the general formula [IV] may be an acid addition salt (e.g. a salt with boron tetrafluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide or the like), Z is a halogen atom, and L, W, X, n and Y have the same meaning as mentioned above).

As the base, use may be made of an inorganic base such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide or the like; and an organic base such as diethylamine, triethylamine, diisopropylethylamine, pyridine, 4-N,N-dimethylamino pyridine or the like.

As the solvent, use may be made of a ketone such as acetone, methyl ethyl ketone or the like; an ether such as diethyl ether, tetrahydrofuran, dioxane, diglyme or the like; an aromatic hydrocarbon such as benzene, toluene, chlorobenzene or the like; an aliphatic hydrocarbon such as pentane, hexane, petroleum ether or the like; a halogenated hydrocarbon such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride or the like; a nitrile such as acetonitrile or the like; an aprotic polar solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide or the like; and a mixture thereof.

In general, the compound of the general formula [V] is used in an amount of 0.8-1.3 moles per 1 mole of the compound of the general formula [IV]. The amount of the base used is 1.0-2.0 moles per 1 mole of the compound of the general formula [IV].

The reaction time is dependent upon the kind of the compounds used, but is usually within a range of 1-24 hours. The reaction temperature is within a range of 0°C to a boiling point of the solvent.

Production Method C

The compound of the general formula [I] according to the invention can be obtained by reacting an N-(phenylsulfonyl) benzohydrazonoyl chloride derivative of a general formula [VI] with a benzonitrile derivative of a general formula [VII] in an inert solvent in the presence of Lewis acid according to the following reaction formula (3):

(wherein R¹, X, n and Y have the same meaning as mentioned above, and R³ is benzene or benzene substituted with an alkyl group having a carbon number of 1-4).

As the solvent, use may be made of any solvent not obstruction the reaction, which includes, for example, an ether such as diethyl ether, tetrahydrofuran, dioxane, diglyme or the like; an aromatic hydrocarbon such as benzene, toluene, chlorobenzene, dichlorobenzene or the like; an aliphatic hydrocarbon such as pentane, hexane, petroleum ether or the like; a halogenated hydrocarbon such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride or the like; a non-protonic polar solvent such as nitrobenzene, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide or the like; and a mixture thereof.

As the Lewis acid, use may be made of aluminum bromide, aluminium chloride, ferric chloride, boron trifluoride, titanium tetrachloride and the like.

In general, the amount of the compound of the general formula [VII] used is 1.0-2.0 moles per 1 mole of the compound of the general formula [VI], and the amount of Lewis acid used is 1.0-2.0 moles per 1 mole of the compound of the general formula [VI].

The reaction temperature is optionally within a range of 0°C to a boiling point of the solvent, but is preferably within a range of 50-180°C. The reaction time is dependent upon the kind of the compounds used, but is usually within a range of 15 minutes to 8 hours.

A concrete example of this reaction is disclosed, for example, in BULLETIN of the CHEMICAL SOCIETY of JAPAN, vol. 56, pages 545~548 (1983).

Production Method D

50

The compound of the general formula [I] according to the invention can be obtained by reacting an N-(phenylsulfonyl) benzamidrazone derivative of a general formula [VIII] with a benzoylhalide derivative of the general formula [V] in the absence of a solvent or in an inert solvent according to the following reaction formula (4):

$$N-N$$
 $N-N$
 N

(wherein R1, R3, X, n, Y and Z have the same meaning as mentioned above).

As the solvent, use may be made of any solvent not obstruction the reaction, which includes, for example, an ether such as diethyl ether, tetrahydrofuran, dioxane, diglyme or the like; an aromatic hydrocarbon such as benzene, toluene, chlorobenzene or the like; an aliphatic hydrocarbon such as pentane, hexane, petroleum ether or the like; a halogenated hydrocarbon such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride or the like; an aprotic polar solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1-methyl-2-pyrolidinone or the like; and a mixture thereof.

[I]

In general, the amount of the compound of the general formula [V] used is 1.0-2.0 moles per 1 mole of the compound of the general formula [VIII].

The reaction temperature is optionally within a range of 0°C to a boiling point of the solvent, but is preferably within a range of 50-250°C. The reaction time is dependent upon the kind of the compounds used, but is usually within a range of 30 minutes to 5 hours.

A concrete example of this reaction is disclosed, for example, in Bulletin of the Chemical Society of Japan, vol. 56, page 548 (1983).

The compound of the general formula [VIII] as a starting material can be produced by the following method.

Production Method E

5

10

20

30

35

40

55

The compound of the general formula [VIII] can be obtained by reacting the compound of the general formula [VII] with ammonia gas in an inert solvent according to the following reaction formula (5):

(wherein R¹, R³, X and n have the same meaning as mentioned above).

As the solvent, use may be made of any solvent not obstruction the reaction, which includes, for example, an ether such as diethyl ether, tetrahydrofuran, dioxane, diglyme or the like; an aromatic hydrocarbon such as benzene, toluene, chlorobenzene or the like; an aliphatic hydrocarbon such as pentane, hexane, petroleum ether or the like; a halogenated hydrocarbon such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, diclorobenzene or the

like; an aprotic polar solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide or the like; and a mixture thereof.

In general, the amount of ammonia gas used is 5.0-10.0 moles per 1 mole of the compound of the general formula [VI].

5

10

15

20

25

30

35

40

*5*0

55

The reaction temperature is optionally within a range of 0°C to a boiling point of the solvent, but is preferably within a range of 20-150°C. The reaction time is dependent upon the kind of the compounds used, but is usually within a range of 1-24 hours.

A concrete example of this reaction is disclosed, for example, in BULLETIN of the CHEMICAL SOCIETY of JAPAN, vol. 56, pages 545~548 (1983).

The invention will be described concretely with reference to the following production examples, formulation examples and applications.

Production Example 1: 3-(2-chloro-6-fluorophenyl)-1-methyl-5-(4-octylphenyl)-1H-1,2,4-triazole (Compound No. 15)

In 100 ml of toluene were dissolved 2.20 g of ethyl 2-chloro-6-fluorobenzimidate and 1.10 g of triethylamine, to which was added dropwise 2.53 g of 4-octylbenzoyl chloride within a temperature range of 5-10°C with stirring and then stirred at room temperature for 1 hour and further refluxed under heating for 2 hours. After the cooling to room temperature, the resulting reaction solution was added with 100 ml of toluene, washed with a diluted hydrochloric acid and further with a saline solution, and thereafter the resulting toluene layer was dried over anhydrous magnesium sulfate.

The toluene layer was added with 3.00 g of monomethylhydrazine and stirred at room temperature for 8 hours. After the completion of the reaction, the reaction mixture was washed with a diluted hydrochloric acid solution and further with a saturated saline solution, dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting concentrate was purified through a chromatography of silica gel column using a mixed solution of hexane and ethyl acetate as a developing solvent to obtain 1.34 g of the given compound ($n_D^{20} = 1.5652$).

NMR data (60 MHz, CDCl ₃ solvent, δ value)		
0.77	(3H, t)	
1.00-1.79	(12H, m)	
2.57	(2H, t)	
3.95	(3H, s)	
6.83-7.67	(7H, m)	

Production Example 2: 3-(2-chlorophenyl)-1-methyl-5-[4-(6-methylhexyl)phenyl]-1H-1,2,4-triazole (Compound No. 67)

A mixture of 2.06 g of N-methyl-N-phenylsulfonyl-2-chlorobenzohydrazonoyl chloride, 1.30 g of 4-(6-methylhexyl) benzonitrile, 0.93 g of anhydrous aluminum chloride and 5 ml of o-dichlorobenzene was stirred in an oil bath at a temperature of 140°C for 30 minutes. After the cooling, the resulting solution was dissolved in 200 ml of chloroform, washed with diluted hydrochloric acid solution, diluted sodium hydroxide aqueous solution and saline water in this order, dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting concentrate was purified through a chromatography of silica gel column using a mixed solution of hexane and ethyl acetate as a developing solvent to obtain 1.52 g of the given compound (melting point: 64.0-67.0°C).

NMR data (60 MHz, CDCl ₃ solvent, δ value)	
0.86	(6H, d)
1.15-1.80	(7H, m)
2.67	(2H, t)
4.00	(3H, s)
7.17-8.00	(8H, m)

5 Production Example 3: 3-(2-chlorophenyl)-1-methyl-5-(4-tridecylphenyl)-1H-1,2,4-triazole (Compound No. 42)

A mixture of 0.82 g of N-methyl-N-phenylsulfonyl-2-chlorobenzohydrazonoyl chloride, 0.70 g of 4-tridecylbenzonitrile, 0.4 g of anhydrous aluminium chloride and 3 ml of o-dichlorobenzene was stirred in an oil bath at a temperature of 140°C for 30 minutes. After the cooling, the resulting solution was dissolved in 100 ml of chloroform, washed with diluted hydrochloric acid solution, diluted sodium hydroxide solution and saline water in this order, dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting concentrate was purified through a chromatography of silica gel column using a mixed solution of hexane and ethyl acetate as a developing solvent to obtain 0.70 g of the given compound (melting point: 55.0-57.0°C).

NMR data (NMR data (60 MHz, CDCl ₃ solvent, δ value)	
0.67-1.80	(25H, m)	
2.67	(2H, t)	
4.00	(3H, s)	
7.16-8.03	(8H, m)	

Production Example 4: 3-(2-chlorophenyl)-1-methyl-5-(4-pentadecylphenyl)-1H-1,2,4-triazole (Compound No. 50)

A mixture of 3.24 g of N-methyl-N-phenylsulfonyl-2-chlorobenzamidrazone and 3.50 g of 4-pentadecylbenzoyl chloride was stirred in an oil bath at a temperature of 170-180°C for 4 hours. After the cooling, the resulting solution was added with water and extracted with ethyl acetate (200 ml x 2) and the extracted organic layer was washed with saline water, dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting concentrate was purified through a chromatography of silica gel column using a mixed solution of hexane and ethyl acetate as a developing solvent and washed with n-hexane to obtain 0.34 g of the given compound (melting point: 62.0-65.0°C).

NMR data (60 MHz, CDCl ₃ solvent, δ value)	
0.77-1.73	(29H, m)
1.67	(2H, m)
4.00	(3H, s)
7.17-7.97	(8H, m)

Production Example 5: 5-(4-decyloxyphenyl)-3-(2,6-dichlorophenyl)-1-methyl-1H-1,2,4-triazole (Compound No. 85)

A mixture of 1.10 g of N-methyl-N-phenylsulfonyl-2,6-dichlorobenzohydrazonoyl chloride, 0.70 g of 4-decyloxybenzonitrile, 0.4 g of anhydrous aluminium chloride and 3 ml of o-dichlorobenzene was stirred in an oil bath at a temperature of 140°C for 30 minutes. After the cooling, the resulting solution was dissolved in 100 ml of chloroform, washed with diluted hydrochloric acid solution, diluted sodium hydroxide solution and saline water in this order, dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting concentrate was purified through a chromatography of silica gel column using a mixed solution of hexane and ethyl acetate as a developing solvent to obtain 0.40 g of the given compound (melting point: 60.0-64.0°C).

NMR data (60 MHz, CDCl ₃ solvent, δ value)	
0.77-1.90	(19H, m)
3.98	(2H, t)
4.04	(3H, s)
6.88-7.73	(7H, m)

20

10

15

<u>Production Example 6</u>: 3-(2-chloro-6-fluorophenyl)-5-[4-(3-chloro-5-trifluoromethylpyridin-2-yloxy)phenyl]-1-methyl-1H-1,2,4-triazole (Compound No. 429)

25

A mixture of 1.30 g of N-methyl-N-phenylsulfonyl-2-chloro-6-fluorobenzohydrazonoyl chloride, 1.00 g of 4-(3-chloro-5-trifluoromethylpyridin-2-yloxy)-benzonitrile, 0.50 g of anhydrous aluminum chloride and 3 ml of o-dichlorobenzene was stirred in an oil bath at a temperature of 140°C for 30 minutes. After the cooling, the resulting solution was dissolved in 100 ml of chloroform, washed with diluted hydrochloric acid solution, diluted sodium hydroxide solution and saline water in this order, dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting concentrate was purified through a chromatography of silica gel column using a mixed solution of hexane and ethyl acetate as a developing solvent to obtain 0.70 g of the given compound (measurement of n_D²⁰ was impossible).

35

NMR data (60 MHz, CDCl ₃ solvent, δ value)	
4.07	(3H, s)
6.75-8.58	(9H, m)

40

Production Example 7: N-methyl-N-phenylsulfonyl-2-chlorobenzamidrazone

In 100 ml of N,N-dimethylformamide was dissolved 17.2 g of N-methyl-N-phenylsulfonyl-2-chlorobenzhydrazonoyl chloride, which was stirred at 60-70°C for 3 hours while introducing ammonia gas thereinto. After the cooling, the reaction solution was dissolved in 500 ml of ethyl acetate, washed with water, dried on anhydrous magnesium sulfate and concentrated under a reduced pressure. The resulting crystal was washed with n-hexane to obtain 15.4 g of the given compound (melting point: 94.0-96.0°C).

50

NMR data (60 MHz, CDCl ₃ solvent, δ value)	
2.75	(3H, s)
5.80	(2H, s)
7.10-8.00	(9H, m)

The insecticide and acaricide according to the invention contain the triazole derivative represented by the general formula (I) as an active ingredient.

When the triazole compounds according to the invention are used as an active ingredient for insecticides and acaricides, these compounds themselves may be used alone, or may be compounded with a carrier, a surfactant, a dispersing agent, an adjuvant or the like usually used in the formulation to form dusts, wettable powder, emulsion, fine powder, granulates or the like.

As the carrier used in the formulation, mention may be made of a solid carrier such as zeeklite, talc, bentonite, clay, kaolin, diatomaceous earth, white carbon, vermiculite, calcium hydroxide, quartz sand, ammonium sulfate, urea or the like; and a liquid carrier such as isopropyl alcohol, xylene, cyclohexane, methylnaphthalene or the like.

As the surfactant and dispersing agent, mention may be made of a metal salt of alkylbenzene sulfonic acid, a metal salt of dinaphtylmethane disulfonic acid, a sulfuric acid ester of alcohol, alkylarylsulfonate, lignin sulfonate, polyoxyethylene glycol ether, polyoxyethylene alkylaryl ether, polyoxyethylene sorbitan monoalkylate and the like.

As the adjuvant, mention may be made of carboxymethylcellulose, polyethylene glycol, gum arabi and the like.

In use, the compound according to the invention is directly applied or sprayed by diluting to a proper concentration.

The insecticide and acaricide according to the invention may be used by spraying onto stem and leaves, by applying to soil, by applying to a nursery box, by spraying onto water surface or the like.

In the formulation, the amount of the active ingredient used may be selected in accordance with the use purpose, but it is properly selected within a range of 0.05-20% by weight, preferably 0.1-10% by weight in case of the dusts or granules. In case of the emulsion or wettable powder, the amount of the active ingredient is properly selected within a range of 0.5-80% by weight, preferably 1-60% by weight.

The amount of the insecticide and acaricide applied is dependent upon the kind of the compound used as an active ingredient, injurious insect to be controlled, tendency and degree of insect injury, environmental condition, kind of formulation used and the like. When the insecticide and acaricide according to the invention are directly used as dusts or granules, the amount of the active ingredient is properly selected within a range of 0.05 g - 5 kg, preferably 0.1-1 kg per 10 are. Furthermore, when they are used in form of a liquid as emulsion or wettable powder, the amount of the active ingredient is properly selected within a range of 0.1-5000 ppm, preferably 1-1000 ppm.

Moreover, the insecticide and acaricide according to the invention may be used by mixing with other insecticide, fungicide, fertilizer, plant growth regulator and the like.

The formulation will concretely be described with respect to typical examples. In this case, the kind of the compounds and additives and the compounding ratio are not limited to these examples and may be varied within wide ranges. Moreover, % is by weight otherwise specified.

Formulation Example 1: Emulsion

35

45

50

55

An emulsion was prepared by uniformly dissolving 30% of compound No. 55, 20% of cyclohexanone, 11% of polyoxyethylene alkylaryl ether, 4% of calcium alkylbenzenesulfonate and 35% of methylnaphthalene.

Formulation Example 2: Wettable powder

A wettable powder was prepared by uniformly mixing and pulverizing 40% of compound No. 38, 15% of diatomaceous earth, 15% of clay, 25% of white carbon, 2% of sodium dinaphthylmethane disulfonate and 3% of sodium lignin sulfonate.

Formulation Example 3: Dust

A dust was prepared by uniformly mixing and pulverizing 2% of compound No. 120, 5% of diatomaceous earth and 93% of clay.

Formulation Example 4: Granules

A mixture of 5% of compound No. 71, 2% of sodium salt of lauryl alcohol sulfuric acid ester, 5% of sodium lignin sulfonate, 2% of carboxymethyl cellulose and 86% of clay was uniformly pulverized and added with 20 parts by kneaded, shaped into granules of 14-32 mesh through an extrusion type granulating machine and dried to form granules.

The triazole derivatives according to the invention are effective to control planthoppers such as brown planthopper, white-backed planthopper, small brown planthopper and the like; leafhoppers such as green rice leafhopper, tea green leafhopper and the like; aphids such as cotton aphid, green peach aphid, cabbage aphid and the like; whiteflies such as greenhouse whitefly and the like; hemipteran injurious insects such as mulberry scale, corbett rice bug and the like; lepidopteran injurious insects such as diamond-back moth, lima-bean cutworm, tobacco cutworm and the like; dipteran

injurious insects such as house maggot, mosquito and the like; elytron injurious insects such as rice plant weevil, soy bean weevil, cucurbit leaf beetle and the like; orthopteran injurious insects such as american cockroach, steam fly and the like; mites such as two-spotted spider mite, kanzawa spider mite, citrus red mite and the like; and mites having an increased resistance to organotin, synthesized pyrethroid and organophosphorus chemicals.

Particularly, they develop a very excellent effect of controlling mites such as two-spotted spider mite, kanzawa spider mite, citrus red mite and the like.

The effect of the compounds according to the invention will be described with respect to the following test examples. Moreover, the following compounds were used as a comparative chemical, wherein a comparative chemical a is a compound described in Japanese Patent laid open No. 56-154464, and a comparative chemical b is a commercial product usually used for the control of mites.

Comparative chemical A: 3,5-bis(o-chlorophenyl)-1-methyl-1H-1,2,4-triazole

Comparative chemical B: Hexythiazox (common name)

Test Example 1: Insecticidal test for diamond-back moth

The wettable powder prepared according to Formulation Example 2 was diluted with water so that the concentration of the active ingredient was 500 ppm. Cabbage leaves were immersed in the resulting diluted solution, dried in air and then placed in a vinyl chloride cup of 60 ml capacity. Ten larvae of 3rd instar diamondback moth were released in the cup and thereafter a cover was placed thereon. Then, the cup was placed in a thermostatic chamber of 25°C for 6 days, and the number of larvae died was counted to calculate the percentage of mortality. The test was carried out by double series. Moreover, the comparative chemical A was used for the comparison. The results are shown in Table 26.

Table 26

Table 20							
Compound	No.	Mortality	(8)	Compound	No.	Mortality	(%)
17		90		479		100	
30		100		483		100	
37		90		494		100	
43		95		500		100	
71	!	95		504		95	
120	!	95		510		100	!
135	!	90		514		100	
140		95		520		100	
185		100		524		90	
207		90	}	526		100	
217		100		528		100	
240		100		530		100	
244		100		532		100	
427		100		Comparat		20	
471		95		CHEMITCA			

55

50

5

15

25

35

40

Test Example 2: Insecticidal test for larvae of cotton aphid

The wettable powder prepared according to Formulation Example 2 was diluted with water so that the concentration of the active ingredient was 100 ppm. In the resulting diluted solution were immersed cucumber seedlings previously inoculated with larvae of cotton aphid and then subjected to a drying treatment in air. After the treatment, the cucumber seedlings were placed in a thermostatic chamber of 25°C for 3 days and then the number of larvae died was counted to calculate the percentage of mortality. The test was carried out by double series. The results are shown in Table 27.

10

Table 27

	Compound No.	Mortality (%)	Compound No.	Mortality (%)	Compound No.	Mortality (%)
!	3	100	109	100	229	100
15	7	100	111	100	234	100
	13	100	112	100	235	100
	14	100	113	100	239	100
20	15	100	114	100	240	100
20	17	100	117	100	247	100
	19	100	118	100	425	100
	30	100	119	100	427	100
25	35	100	127	100	434	100
	39	100	131	100	435	100
	47	100	135	100	447	100
30	51	100	140	100	450	100
	68	100	144	100	451	100
	69	100	146	100	452	100
	71	100	148	100	468	100
35	73	100	149	100	469	100
	81	100	150	100	475	100
40	84	100	151	100	490	100
	87	100	152	100	494	100
	89	100	153	100	503	100
	96	100	163	100	504	100
	97	100	190	100	510	100
45	100	100	194	100	516	100
	101	100	195	100	518	100
50	103	100	220	100	520	100
	104	100	223	100	522	100
	105	100	224	100	528	100
	106	100	225	100	530	100
	107	100	228	100	532	100
55	108	100				

Test Example 3: Ovicidal test for eggs of two-spotted spider mite

Female adults of two-spotted spider mite were placed on three leaf discs of kidney bean (diameter: 15 mm) and oviposited over 24 hours, and thereafter these adults were removed therefrom. The wettable powder prepared according to Formulation Example 2 was diluted with water so that the concentration of the active ingredient was 0.16 ppm. In the resulting diluted solution were immersed these leaf discs for 10 seconds. After the treatment, the leaf discs were placed in a thermostatic chamber of 25°C for 7 days and then the number of unhatched eggs was counted to calculate the percentage of ovicidal activity. The test was carried out by double series. Moreover, the comparative chemicals A and B were used for the comparison. The results are shown in Table 28.

10

15

20

25

30

35

Table 28				
Compound No.	Ovicidal activity (%)			
21	100			
30	100			
34	100			
35	100			
38	100			
39	95			
42	100			
43	95			
47	100			
50	100			
51	100			
54	100			
55	100			
Comparative chemical A	24			
Comparative chemical B	95			

Test Example 4: Ovicidal test for eggs of chemical-resistant kanzawa spider mite

Female adults of kanzawa spider mite having a resistance to commercially available chemicals were placed on three leaf discs of kidney bean (diameter: 15 mm) and oviposited over 2 days, and thereafter these adults were removed therefrom. The wettable powder prepared according to Formulation Example 2 was diluted with water so that the concentration of the active ingredient was 4 ppm. In the resulting diluted solution were immersed these leaf discs for 10 seconds. After the treatment, the leaf discs were placed in a thermostatic chamber of 25°C for 7 days and then the number of unhatched eggs was counted to calculate the percentage of ovicidal activity. The test was carried out by double series. Moreover, the comparative chemicals A and B were used for the comparison. The results are shown in Table 29 and Table 30.

50

Table 29

	Compound No.	Ovicidal activity (%)	Compound No.	Ovicidal activity (%)
5	3	100	81	100
į	6	100	83	100
	13	100	84	90
10	14	100	88	100
	15	100	89	100
•	30	100	106	100
	33	100	110	100
15	34	100	111	95
	35	100	112	100
	36	100	117	100
20	37	100	118	100
	38	100	140	100
	39	100	148	100
	40	100	151	100
25	41	100	153	100
:	42	100	166	100
	43	100	167	100
30	44	100	168	100
	46	90	183	100
	47	100	191	100
os.	48	100	192	100
35	51	100	193	100
	52	95	204	100
	53	90	205	100
40	55	100	206	100
	56	100	217	100
	57	90	223	100

5

Table 30

	Compound	Ovicidal		Compound	Ovicidal
5	No.	activity (%)		No.	activity (%)
	225	100		473	100
j	232	100		475	100
	235	100		477	100
10	239	100		479	100
	240	100		481	100
	247	100		483	100
16	425	100		487	100
15	426	100		489	100
	427	100	- {	494	100
	428	100		498	100
20	429	100		500	100
	433	100		501	100
	434	100		503	100
	437	100		504	100
25	444	100		510	100
	445	100		514	100
	447	100		516	100
30	450	100		518	100
	451	100		520	100
	452	100		522	100
<i>35</i>	454	100		524	100
	461	100		526	100
	465	100		530	100
	466	100		532	100
40	468	100		Comparative	31
	469	100		chemical A Comparative	_
	471	100		chemical B	0

Test Example 5: Insecticidal test for larvae of chemical-resistant kanzawa spider mite

45

three leaf discs of kidney bean (diameter: 15 mm) and oviposited over 2 days, and thereafter these adults were removed therefrom. Then, these leaf discs were placed in a thermostatic chamber of 25°C for 5 days and the number of hatched larvae was counted. Separately, the wettable powder prepared according to Formulation Example 2 was diluted with water so that the concentration of the active ingredient was 20 ppm. After these leaf discs were sprayed with the resulting diluted solution, they were placed in a thermostatic chamber of 25°C for 7 days and then the number of living adults was counted to calculate the percentage of mortality on the hatched larvae. The test was carried out by double series. Moreover, the comparative chemicals A and B were used for the comparison. The results are shown in Table 31.

Table 31

Compound No.	Mortality (%)		Compound No.	Mortality (%)				
3	100		41	100				
13	100		42	100				
14	100		43	100				
15	100		44	100				
16	100		45	100				
17	100		46	100				
18	100		47	100				
21	100		48	100				
30	100		49	100				
31	100		50	100				
32	100		51	100				
34	100		52	100				
35	100		53	100				
36	100		55	100				
37	100		56	100				
38	100		Comparative	55				
39	100		chemical A Comparative	1				
40	100		chemical B	25				

35 Test Example 6: Ovicidal test for eggs of citrus red mite

Female adults of citrus red mite were placed on two laminae of citrus fruit (diameter: 10 mm) and oviposited over 2 days, and thereafter these adults were removed therefrom. The wettable powder prepared according to Formulation Example 2 was diluted with water so that the concentration of the active ingredient was 4 ppm. In the resulting diluted solution were immersed these laminae for 10 seconds. After the treatment, the laminae were placed in a thermostatic chamber of 25°C for 7 days and then the number of unhatched eggs was counted to calculate the percentage of ovid-cidal activity. The test was carried out by double series. Moreover, the comparative chemicals A and B were used for the comparison. The results are shown in Table 32.

Table 32

	14310 02		
	Compound No.	Ovicidal activity (%)	
5	3	95	
	16	90	
	17	100	
10	18	100	
	21	95	
	30	100	
	31	100	
15	32	100	
	34	100	
	35	100	
20	36	95	
	37	100	
	38	100	
	39	100	
<i>25</i>	40	90	
	43	100	
	44	100	
30	47	95	
	48	100	
	52	100	
	97	95	
35	106	100	
	Comparative chemical A	33	
	Comparative chemical B	90	

Claims

40

45

1. A triazole derivative having the following general formula [I]:

(wherein R¹ is an alkyl group, X is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, a nitro group, a cyano group or trifluoromethyl group, n is an integer of 1-5 provided that when n is 2 or more,

X may be an optional combination of same or different atoms or groups, and Y is an alkenyl group, an alkynyl group, an alkoxyalkyl group, an alkoxyalkyl group, an alkylthioalkyl group, a cycloalkylalkoxy group, a cycloalkylalkoxy group, a cycloalkylalkyl group, a cycloalkylalkyl group, a trialkylsilylalkyl group, a trialkylsilylalkoxy group, an alkyl group having a carbon number of not less than 7, an alkylsulfinyl group having a carbon number of not less than 7, an alkylsulfinyl group having a carbon number of not less than 7, an alkylsulfinyl group having a carbon number of not less than 7 or a group represented by the following general formula (1):

$$-(A)k - \sqrt{\frac{R^2m}{Q}}$$

(wherein A is an oxygen atom, a sulfur atom, a lower C_1 - C_4 alkylene group, a lower C_1 - C_4 alkylene oxygen group, an oxy-lower C_1 - C_4 alkylene group or a lower C_2 - C_8 alkylene oxyalkylene group, k is 0 or 1, Q is CH- group or a nitrogen atom, R^2 is a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, trifluoromethyl group or trifluoromethoxy group, m is an integer of 1-5 provided that when m is 2 or more, R^2 may be an optional combination of same or different atoms or groups)].

- 2. A triazole derivative according to claim 1, wherein said R¹ is a straight or branched-chain alkyl group having a carbon number of 1-6, X is a hydrogen atom, a halogen atom, a straight or branched-chain alkyl group having a carbon number of 1-4, a nitro group, a cyano group or trifluoromethyl group, n is an integer of 1-3 provided that when n is 2 or 3, X may be an optional combination of same or different atoms or groups, Y is a straight or branched-chain alkyl group having a carbon number of 7-20, a cycloalkyl group having a carbon number of 3-12, a cycloalkylalkyl group having a carbon number of 6-12, a straight or branched-chain alkoxy group having a carbon number of 7-16, a cycloalkylalkoxy group having carbon number of 7-12, a straight or branched-chain alkylthio group having a carbon number of 7-16, an alkylsulfinyl group, an alkylsulfonyl group, a straight or branched-chain alkenyl group having a carbon number of 3-16, a cycloalkylalkenyl group having a carbon number of 5-12, a straight or branched-chain alkynyl group having a carbon number of 3-16, a cycloalkylalkynyl group having a carbon number of 5-12, a tri(lower C₁-C₆ alkyl)silyl lower C₁-C₆ alkyl group, a tri(lower C₁-C₆ alkyl)silyl lower C₁-C₆ alkoxy group or a group represented by said formula (1) (wherein A is an oxygen atom, a sulfur atom, a lower alkylene group having a carbon number of 1-4, methyleneoxy group or oxymethylene group, k is 0 or 1, Q is CH- group or a nitrogen atom, R² is a hydrogen atom, a halogen atom, a lower C₁-C₆ alkyl group, a lower C₁-C₆ alkoxy group, trifluoromethyl group or trifluoromethoxy group, and m is an integer of 1-3 provided that when m is 2 or 3, R2 may be an optional combination of same or different atoms or groups).
- 3. A triazole derivative according to claim 2, wherein said R1 is methyl group.

5

10

15

20

25

30

35

40

50

*5*5

- 4. An insecticide containing a triazole derivative claimed in claim 1 as an active ingredient.
- 5. An acaricide containing a triazole derivative claimed in claim 1 as an active ingredient.
- 5 6. A method of producing a triazole derivative having the following general formula [1]:

$$\begin{array}{c|c}
N - N \\
\hline
N \\
\hline
\end{array}$$

(wherein R¹, X, Y and n have the same meaning as in claim 1) which comprises reacting a compound represented by the following general formula [II]:

$$C = NC - X$$

$$[I]$$

(wherein W is a sulfur atom or an oxygen atom, L is an alkyl group having a carbon number of 1-4 and X, n and Y have the same meaning as mentioned above) with a hydrazine derivative represented by a general formula [III] of R¹NHNH₂ (wherein R¹ has the same meaning as mentioned above).

7. A method of producing a triazole derivative having the following general formula [1]:

$$\begin{array}{c|c}
N-N \\
N-N
\end{array}$$

(wherein R¹, X, Y and n have the same meaning as in claim 1) which comprises reacting a compound represented by the following general formula [VI]:

$$\begin{array}{c|c} x_{n} & & \\ \hline & & \\ &$$

(wherein R¹, X and n have the same meaning as mentioned above, and R³ is benzene or benzene substituted with an alkyl group having a carbon number of 1-4) with a benzonitrile derivative represented by the following general formula [VII]:

(wherein Y has the same meaning as mentioned above) in the presence of Lewis acid.

8. A method of producing a triazole derivative having the following general formula [I]:

$$\begin{array}{c|c}
 & N - N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N \\
\hline
 &$$

(wherein R¹, X, Y and n have the same meaning as in claim 1) which comprises reacting a compound represented by the following general formula [VIII]:

$$N-N$$
 SO_2-R^3
 NH_2

(wherein R¹, X and n have the same meaning as mentioned above, and R³ is benzene or benzene substituted with an alkyl group having a carbon number of 1-4) with a compound represented by the following general formula [V]:

$$\begin{array}{c|c}
 & C-Z \\
 & C & C
\end{array}$$

(wherein Z is a halogen atom and Y has the same meaning as mentioned above).

Patentansprüche

5

10

15

20

25

30

35

40

45

50

55

1. Triazole-Derivat mit der folgenden allgemeinen Formel [I]:

[wobei R¹ eine Alkylgruppe ist, X ein Wasserstoffatom, ein Halogenatom, eine Alkylgruppe, eine Alkoxygruppe, eine Alkylthiogruppe, eine Nitrogruppe, eine Cyangruppe oder eine Trifluormethylgruppe bedeutet, n eine ganze Zahl von 1-5 ist, und sofern n = 2 oder mehr ist, kann X eine wahlweise Kombination von gleichen oder unterschiedlichen Atomen oder Gruppen sein, und Y eine Alkenylgruppe, eine Akkynylgruppe, eine Alkoxyalkylgruppe, eine Alkoxyalkylgruppe, eine Zycloalkylgruppe, eine Zycloalkylgruppe, eine Zycloalkylgruppe, eine Zycloalkylgruppe, eine Trialkylsilylalkoxygruppe, eine Alkylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfinylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylgruppe mit einer Kohlenstoffzahl nicht geringer als 7, eine Alkylsulfonylg

$$-(\lambda) \times \sqrt{2} = \frac{32\pi}{2}$$

(worin A ein Sauerstoffatom, ein Schwefelatom, eine niedrige C_1 - C_4 Alkylengruppe, eine niedrige C_1 - C_4 Alkylengruppe oder eine niedrige C_2 - C_8 Alkylenoxyalkylengruppe, k bedeutet 0 oder 1, Q ist eine CH-Gruppe oder ein Stickstoffatom, R^2 ist ein Wasserstoffatom, ein Halogenatom, eine Alkylgruppe, eine Alkoxygruppe, Trifluormethylgruppe oder Trifluormethoxygruppe, m ist eine ganze Zahl von 1 bis 5, und wenn m=2 oder mehr ist, kann R^2 eine wahlweise Kombination von gleichen oder unterschiedlichen Atomen oder Gruppen sein)].

- Triazole-Derivat nach Anspruch 1, wobei R1 eine gerade oder verzweigtkettige Alkylgruppe mit einer Kohlenstoffzahl von 1-6 darstellt, X ist ein Wasserstoffatom, ein Halogenatom, eine gerade oder verzweigtkettige Alkylgruppe mit einer Kohlenstoffzahl von 1-4, eine Nitrogruppe, eine Zyan- oder Trifluormethylgruppe, n ist eine ganze Zahl von 1-3, und wenn n=2 oder 3 ist, kann X eine wahlweise Kombination von gleichen oder unterschiedlichen Atomen oder Gruppen sein, Y ist eine gerade oder verzweigtkettige Alkylgruppe mit einer Kohlenstoffzahl von 3-12, ein 20 Zykloalkylalkylgruppe mit einer Kohlenstoffzahl von 6-12, eine gerade oder verzweigtkettige Alkoxygruppe mit einer Kohlenstoffzahl von 7-16, eine Zykloalkylalkoxygruppe mit einer Kohlenstoffzahl von 7-12, eine gerade oder verzweigtkettige Alkylthiogruppe mit einer Kohlenstoffzahl von von 7-16, eine Alkylsulfinylgruppe, eine Alkylsulfonylgruppe, eine gerade oder verzweigtkettige Alkenylgruppe mit einer Kohlenstoffzahl von 3-16, eine Zykloalkylalkenylgruppe mit einer Kohlenstoffzahl von 5-12, eine gerade oder verzweigtekettige Alkynylgruppe mit einer Kohlenstoffzahl von 3-16, eine Zykloalkylalkynylgruppe mit einer Kohlenstoffzahl von 5-12, eine Tri(untere C₁-25 C₆ Alkyl)Silyl untere C₁-C₆ Alkylgruppe, eine Trì(untere C₁-C₆ Alkyl)Silyl untere C₁-C₆ Alkoxygruppe oder eine Gruppe, welche durch die Formel (1) dargestellt wird, (worin A ein Sauerstoffatom, ein Schwefelatom, eine niedrige Alkylengruppe mit einer Kohlenstoffzahl von 1-4, Methylenoxygruppe oder Oxymethylengruppe darstellt, k ist 0 oder 1, Q ist eine CH-Gruppe oder ein Stickstoffatom, R² ein Wasserstoffatom, ein Halogenatom, eine niedrige C₁-C₆ Alkylgruppe, eine niedrige C₁-C₆ Alkoxygruppe, Trifluormethylgruppe oder Trifluormethoxygruppe, und m eine 30 ganze Zahl von 1-3 ist, und falls m=2 oder 3 ist, kann R2 eine wahlweise Kombination von gleichen oder unterschiedlichen Atomen oder Gruppen sein).
 - 3. Triazole-Derivat nach Anspruch 2, wobei R¹ eine Methylgruppe ist.
 - 4. Ein Insektizid enthaltend ein Triazol-Derivat nach Anspruch 1 als einen aktiven Bestandteil.
 - 5. Ein Akarizid enthaltend ein Triazol-Derivat nach Anspruch 1 als einen aktiven Bestandteil.
- 40 6. Verfahren zur Herstellung eines Triazol-Derivats nach der folgenden allgemeinen Formel [I]:

$$\begin{array}{c|c} x & & \\ &$$

(worin R¹, X, Y und n die gleiche Bedeutung wie im Anspruch 1 haben), welches die Reaktion einer Verbindung aufweist, die durch die allgemeine Formel [II] dargestellt wird:

55

35

45

50

5

$$C = NC - X$$

$$[I]$$

(wobei W ein Schwefelatom oder ein Sauerstoffatom darstellt, L eine Alkylgruppe mit einer Kohlenstoffzahl von 1-4 und X, n und Y die gleiche Bedeutung haben wie oben aufgeführt) mit einem Hydrazinderivat, welches durch die allgemeine Formel [III] R¹NHNH² dargestellt wird, (wobei R¹ die gleiche Bedeutung hat wie oben aufgeführt.

7. Verfahren zur Herstellung eines Triazole-Derivats mit der folgenden allgemeinen Formel [I]:

5

10

15

20

25

30

*3*5

40

45

50

55

(wobei R¹, X, Y und n die gleiche Bedeutung wie im Anspruch 1 haben, welches die Reaktion einer Verbindung aufweist, die durch die folgende allgemeine Formel [VI] dargestellt wird:

(wobei R¹, X, Y und n die gleiche Bedeutung wie oben aufgeführt haben, und R³ Benzol oder Benzol, substituiert mit einer Alkylgruppe einer Kohlenstoffzahl von 1-4) mit einem Benzonitrilderivat, dargestellt durch die folgende allgemeine Formel [VII]:

(worin Y die gleiche Bedeutung wie oben aufgeführt hat) unter Anwesenheit von Lewis-Säure.

8. Verfahren zur Herstellung eines Triazole-Derivats mit der folgenden allgemeinen Formel [I]:

(wobei R¹, X, Y und n die gleiche Bedeutung wie im Anspruch 1 haben,) welches die Reaktion einer Verbindung aufweist, die durch die folgende allgemeine Formel [VIII] dargestellt wird:

(wobei R¹, X, Y und n die gleiche Bedeutung wie oben aufgeführt haben, und R³ Benzol oder Benzol, substituiert mit einer Alkylgruppe mit einer Kohlenstoffzahl von 1-4 ist) mit einer Verbindung, welche durch die folgende allgemeine Formel [V] dargestellt wird:

(worin Z ein Halogenatom ist und Y die gleiche Bedeutung wie oben aufgeführt hat.

Revendications

5

10

15

20

25

35

45

50

55

1. Dérivé de triazole ayant la formule générale suivante:

$$\begin{array}{c|c}
N-N\\
\end{array}$$

$$\begin{array}{c|c}
N-N\\
\end{array}$$

$$\begin{array}{c|c}
Y\\
\end{array}$$

[dans laquelle R¹ est un groupe alkyle, X est un atome d'hydrogène, un atome d'halogène, un groupe alkyle, un groupe alcoxy, un groupe alkylthio, un groupe nitro, un groupe cyano ou un groupe trifluorométhyle, n est un entier de 1 à 5, du moment que, quand n vaut 2 ou plus, X peut être une combinaison quelconque d'atomes ou groupes identiques ou différents, et Y est un groupe alcényle, un groupe alcynyle, un groupe alcoxyalkyle, un groupe alcoxyalkyle, un groupe alcoxyalkyle, un groupe cycloalkyle, un groupe cycloalkylakcoxy, un groupe cycloalkylalcenyle, un groupe trialkylsilylalkyle, un groupe trialkylsilylalcoxy, un groupe alkyle n'ayant pas moins de 7 atomes de carbone, un groupe alkylsulfynyle n'ayant pas moins de 7 atomes de carbone, un groupe alkylsulfynyle n'ayant pas moins de 7 atomes de carbone, un groupe alkylsulfynyle n'ayant pas moins de 7 atomes de carbone, un groupe alkylsulfynyle n'ayant pas moins de 7 atomes de carbone, un groupe alkylsulfynyle n'ayant pas moins de 7 atomes de carbone, un groupe alkylsulfynyle n'ayant pas moins de 7 atomes de carbone.

ou un groupe représenté par la formule générale (1):

5

10

15

20

25

30

35

45

50

55

$$-(A)k - \sqrt{\frac{R^2m}{n}}$$

(dans laquelle A est un atome d'oxygène, un atome de soufre, un groupe alkylène inférieur en C₁ à C₄, un groupe alkylène-oxy inférieur en C₁ à C₄, un groupe oxy(alkylène inférieur en C₁ à C₄) ou un groupe alkylène-oxyalkylène inférieur en C₂ à C₈, k vaut 0 ou 1, Q est un groupe CH-ou un atome d'azote, R² est un atome d'hydrogène, un atome d'halogène, un groupe alkyle, un groupe alcoxy, le groupe trifluorométhyle ou le groupe trifluorométhoxy, m est un entier de 1 à 5, du moment que, quand m vaut 2 ou plus, R² peut être une combinaison quelconque d'atomes ou groupes identiques ou différents)].

- Dérivé de triazole selon la revendication 1, dans lequel ledit radical R1 est un groupe alkyle à chaîne droite ou ramifiée, ayant de 1 à 6 atomes de carbone, X est un atome d'hydrogène, un atome d'halogène, un groupe alkyle à chaîne droite ou ramifiée ayant de 1 à 4 atomes de carbone, un groupe nitro, un groupe cyano ou un groupe trifluorométhyle, n est un entier de 1 à 3, du moment que, quand n vaut 2 ou 3, X peut être une combinaison quelconque d'atomes ou groupes identiques ou différents, Y est un groupe alkyle à chaîne droite ou ramifiée, ayant de 7 à 20 atomes de carbone, un groupe cycloalkyle ayant de 3 à 12 atomes de carbone, un groupe cycloalkylalkyle ayant de 6 à 12 atomes de carbone, un groupe alcoxy à chaîne droite ou ramifiée ayant de 7 à 16 atomes de carbone, un groupe cycloalkylalcoxy ayant de 7 à 12 atomes de carbone, un groupe alkylthio à chaîne droite ou ramifiée ayant de 7 à 16 atomes de carbone, un groupe alkyisulfynyle, un groupe alkyisulfonyle, un groupe alcényle à chaîne droite ou ramifiée ayant de 3 à 16 atomes de carbone, un groupe cycloalkylalcényle ayant de 5 à 12 atomes de carbone, un groupe alcynyle à chaîne droite ou ramifiée ayant de 3 à 16 atomes de carbone, un groupe cycloalkylalcynyle ayant de 5 à 12 atomes de carbone, un groupe tri(alkyle inférieur en C1 à C6) silyl(alkyle inférieur en C1 à C₆), un groupe tri(alkyle inférieur en C₁ à C₆) silyl(alcoxy inférieur en C₁ à C₆) ou un groupe représenté par ladite formule (1) dans laquelle A est un atome d'oxygène, un atome de soufre, un groupe alkylène inférieur ayant de 1 à 4 atomes de carbone, le groupe méthylène-oxy ou le groupe oxyméthylène, k vaut 0 ou 1, Q est un groupe CHou un atome d'azote, R² est un atome d'hydrogène, un atome d'halogène, un groupe alkyle inférieur en C₁ à C₆, un groupe alcoxy inférieur en C1 à C6, le groupe trifluorométhyle ou le groupe trifluorométhoxy, et m est un entier de 1 à 3, du moment que, quand m vaut 2 ou 3, R² peut être une combinaison quelconque d'atomes ou groupes identiques ou différents).
- 3. Dérivé de triazole selon la revendication 2, dans lequel ledit radical R1 est le groupe méthyle.
- 4. Insecticide contenant comme matière active un dérivé du triazole selon la revendication 1.
- 40 5. Acaracide contenant comme matière active un dérivé du triazole selon la revendication 1.
 - 6. Procédé de production d'un dérivé du triazole ayant la formule générale (I) :

$$Xu \longrightarrow M$$

$$U \longrightarrow M$$

(dans laquelle R¹, X, Y et n ont les mêmes significations que dans la revendication 1), qui consiste à faire réagir un composé représenté par la formule générale (II) ci-après :

$$X = X$$

$$C = NC$$

$$X = \{II\}$$

5

10

25

30

35

55

(dans laquelle W est un atome de soufre ou un atome d'oxygène, L est un groupe alkyle ayant de 1 à 4 atomes de carbone et X, n et Y ont les mêmes significations que ci-dessus) avec un dérivé d'une hydrazine représentée par la formule générale (III) R¹NHNH₂ (où R¹ a les mêmes significations que ci-dessus).

7. Procédé de production d'un dérivé du triazole ayant la formule générale (I) ci-après :

(dans laquelle R¹, X, Y et n ont les significations données dans la revendication 1), qui consiste à faire réagir un composé représenté par la formule générale (VI) ci-après :

$$\begin{array}{c|c} xn & & \\$$

(dans laquelle R¹, X, n et Y ont les mêmes significations que ci-dessus, et R³ est le benzène, ou un benzène substitué par un groupe alkyle ayant de 1 à 4 atomes de carbone) avec un dérivé du benzonitrile représenté par la formule générale (VII) ci-après :

(dans laquelle Y a les mêmes significations que ci-dessus) en présence d'un acide de Lewis.

8. Procédé de production d'un dérivé du triazole ayant la formule générale (I) ci-après :

5

10

15

20

25

*3*0

35

45

50

55

 $\begin{array}{c|c} xu & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

(dans laquelle R¹, X, Y et n ont les mêmes significations que dans la revendication 1), qui consiste à faire réagir un composé représenté par la formule générale (VIII) ci-après :

 $\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

(dans laquelle R¹, X, n ont les mêmes significations que ci-dessus, et R³ est le benzène, ou un benzène substitué par un groupe alkyle ayant de 1 à 4 atomes de carbone) avec un composé représenté par la formule générale (V) ci-après :

 $\begin{array}{c|c} \mathbf{Y} & \mathbf{C} - \mathbf{Z} & \mathbf{C} & \mathbf{V} \end{array}$

(dans laquelle Z est un atome d'halogène et Y a les mêmes significations que ci-dessus).