1 Numérique

1.1 Circuits

Combinatoires Les sorties dépendent des entrées directement (porte logique par exemple)

Sequentiels synchrones Les sorties dépendent de l'état actuel et des états précédents

Séquentiels asynchrones Les sorties dépendent de l'état actuel, des états précédent et de l'état actuel des entrées et avec des délais non-contrôlés par l'horloge

1.2 Comportement transitoire

Rise time t_r : Temps de montée de 20% à 80%

Fall time t_f : Temps de descente de 80% à 20%

Edge rate : $\frac{t_r+t_f}{2}$

Temps de contamination $t_{\rm cd}$ ($t_{\rm c}$) : Temps le plus court avant qu'un changement sur l'entrée (50 %) apparaisse sur la sortie (50 %)

Temps de propagation $t_{\rm pd}$ ($t_{\rm p}$) : Temps le plus long avant qu'un changement sur l'entrée (50 %) apparaisse sur la sortie (50 %)

Temps de setup $t_{\mathbf{setup}}$: Temps de stabilité avant le flanc d'horloge

Temps de "hold" $t_{\mathbf{hold}}$: Temps de stabilité après le flanc d'horloge (souvent 0)

1.3 Contraintes

1.3.1 Temps de setup

$$T_{\rm clk} \ge T_{\rm pcq} + t_{\rm pd} + t_{\rm setup} + t_{\rm skew}$$

 $t_{\rm pd} \le T_{\rm clk} - (t_{\rm pcq} + t_{\rm setup} + t_{\rm skew})$

1.3.2 Temps de hold

Ou

$$t_{\mathbf{c}cq} + t_{\mathbf{cd}} \ge t_{\mathrm{hold}} + t_{\mathrm{skew}}$$

OU

$$t_{\rm cd} \ge t_{\rm hold} + t_{\rm skew} - t_{\rm ccq}$$

1.3.3 Circuit combinatoire

1.4 Horloge

1.4.1 Skew

Dans le cas des cascades de flip-flop

$$t_{ccq} \ge t_{skew}$$

1.5 FPGA

Timing analysis : Analyse des contraintes de timing du système complet et recherche des erreurs / définition de la fréquence max.

 $t_{\mathbf{pd}}$ pour chaque logic element et t_{wire} entre chaque logic element

1.6 CMOS Transmission Gate

C=1: Le système agis comme un fil.

C=0: Le système agis comme un circuit ouvert

1.7 Optimisation

On va jouer sur : la micro-architecture, la logique, les circuits numériques, le layout (les deux derniers sont traités dans le cours)

1.8 Capacités parasites

Capacité de diffusion : Capacité entre le drain et la sortie et entre source et sortie

Capacité de gate : Capacité entre la gate et la masse (Canal N) et la gate et l'alimentation (canal P)

1.9 Comportement transitoire d'un inverseur

1. A commence à monter, P_1 est allumé N_1 est éteint et B reste inactif

2. A atteint V_{tn} , P_1 est allumé et N_1 s'allume (B commence à diminuer)

3. A est presque à V_{DD} , P_1 s'éteint et B devient 0

1.10 Modèle RC

k est la "taille" du transistor (le nombre d'unités). Le Pmos a le double de résistance parce que les trous ont une moins bonne mobilité que les électrons. Pour avoir un circuit équilibré on utilise :

$$\frac{dV_B}{dt} = -\frac{\beta}{C_{out}} \begin{cases} \frac{(V_{DD} - V_t)^2}{2} & V_B > V_{DD} - V_t \text{ Si les temps de mont\'ee/descente en entr\'ee ne sont pas} \\ \left(V_{DD} - V_t - \frac{V_B}{2}\right) V_B & V_B < V_{DD} - V_t \text{ 0, alors le temps de propagation augmente} \end{cases}$$

1.10.1 Exemple de porte NAND à 3 entrées

$$\begin{aligned} t_{\mathbf{pd}f} &= \ln(2) \cdot 12RC \\ t_{\mathbf{pd}r} &= \ln(2) \cdot 15RC \leftarrow \\ t_{\mathbf{cd}f} &= \ln(2) \cdot 9RC \\ t_{\mathbf{cd}r} &= \ln(2) \cdot 3RC \leftarrow \end{aligned}$$

1.10.2 Exemple avec un inverseur

$$V_{out}(t) = V_{DD}e^{-t/\tau}$$
 $\tau = RC$
$$\boxed{t_{pd} = RC \ln(2)}$$

1.11 Modèle de Elmore

Un seul nœud d'entrée, tous les condensateurs sont entre des noeuds et le GND, aucune boucle résistive

Délai sur le nœud i:

$$\tau_{Di} = R_1 C_1 + (R_1 + R_2) C_2 + (R_1 + R_3) C_3 + (R_1 + R_3 + R_4) C_4 + (R_1 + R_3 + R_i) C_i$$

Vérifier ce qui est en rouge!

1.11.1 Représentation linéaire

$$\frac{\tau_{\mathbf{pd}}}{\tau} = d = (p+f)$$

Délai parasite p : Propre à la porte logique (en principe invariant)

Délai "d'effort" f: Dépend des charges

Effort électrique h: Rapport entre la capacité d'entrée et de sortie C_{out}/C_{in}

1.11.2 Délais parasites

Gate Type	Number of Inputs				
	1	2	3	4	п
inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
tristate, multiplexer	2	4	6	8	2 <i>n</i>

1.11.3 Efforts logiques

Gate Type	Number of Inputs				
	1	2	3	4	п
inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
tristate, multiplexer	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

Des portes avec moins d'entrées sont mieux que des portes avec plus d'entrées

1.12 Système à plusieurs étages

effort logique du chemin G

$$G = \prod g_i$$

Effort électrique du chemin ${\cal H}$

$$H = \frac{C_{out(path)}}{C_{in(path)}}$$

Effort du chemin F

$$F = \prod f_i = \prod g_i h_i$$

 $F \neq GH$ (avec plusieurs chemins)

$$F = GBH$$

Effort "d'embranchement" B

$$b = \frac{C_{\text{sur le chemin}} + C_{\text{hors chemin}}}{C_{\text{sur le chemin}}}$$

Network with two-way branch

$$B = \prod b_i$$

Délai du chemin D

$$D = \sum d_i = D_F + P$$

Délai d'effort du chemin D_F

$$D_F = \sum f_i$$

G=20/9 H=2 F=40/9→F=GH

Délai parasite P

$$P = \sum p_i$$

1.12.1 Autres

Effort pour chaque étage (N étages)

$$\hat{f} = g_i h_i = F^{1/N}$$

Délai minimal pour N étages avec effort F et délai parasite P

$$D = NF^{1/N} + P$$

The method of Logical Effort is applied with the following steps:

- **1.** Compute the path effort: F = GBH
- **2.** Estimate the best number of stages: $\hat{N} = \log_4 F$
- 3. Sketch a path using: \hat{N} stages
- **4.** Estimate the minimum delay: $D = \hat{N}F^{1/\hat{N}} + P$
- **5.** Determine the best stage effort: $\hat{f} = F^{1/\hat{N}}$
- **6.** Starting at the end, work backward to find sizes: $C_{\text{in}_i} = \frac{C_{\text{out}_i} \times g_i}{\hat{f}}$

TABLE 4.5 Suffillary of Eogical Effort Hotation						
Term	Stage Expression	Path Expression				
number of stages	1	N				
logical effort	g (see Table 4.2)	$G = \prod g_i$				
electrical effort	$b = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out(path)}}}{C_{\text{in(path)}}}$				
branching effort	$b = \frac{C_{\text{onpath}} + C_{\text{offpath}}}{C_{\text{onpath}}}$	$B = \prod b_i$				
effort	f = gh	F = GBH				
effort delay	f	$D_F = \sum f_i$				
parasitic delay	p (see Table 4.3)	$P = \sum p_i$				
delay	d=f+p	$D = \sum d_i = D_F + P$				