UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE ENGENHARIA ELÉTRICA CIRCUITOS ELÉTRICOS II

LABORATÓRIO Nº 1 CIRCUITOS ACOPLADOS MAGNETICAMENTE

1 – **Objetivo**

Verificar experimentalmente os conceitos teóricos sobre acoplamentos magnéticos, obtenção dos valores das auto-indutâncias e da indutância mútua, e comparar os resultados com os valores obtidos utilizando uma análise teórica.

2 – Montagem

2.1 – Para o conjunto de bobinas fornecido, meça a resistência da **bobina 1 (600 esp.)** e a resistência da **bobina 2 (1200 esp.)** e anote os valores abaixo.

$$R_1 = \Omega \quad e \quad R_2 = \Omega$$

2.2 - Efetue a montagem da figura 1 abaixo, aplicando uma corrente de 50~mA no miliamperímetro mA (cuidado com o fundo de escala), anote a tensão V_1 e marque a polaridade da bobina 1, indicando-a por um ponto ".", no terminal em que a fem $_1$ (terminal ligado ao positivo da fonte CA) é positiva. Na bobina 2 marque a polaridade (o ponto) no terminal ligado ao voltímetro se a tensão V' for menor que a tensão V_1 , e marque o ponto no terminal debaixo se V' for maior que V_1 (terminal em que a fem induzida é positiva). Anote o esquema e o ponto no caderno.

Figura 1- Marcação de polaridade¹

- Se V' for menor que V_1 marque o ponto no terminal superior da bobina 2 (ligado ao voltímetro onde a fem é positiva), $V' = V_2 - V_1$;

¹ Atenção: Observe que SOMENTE o terminal inferior de cada bobina é curto-circuito. O lado superior é interligado por um voltímetro (comportamento de circuito aberto).

- Se V' for maior que V_1 marque o ponto no terminal inferior da bobina 2 (onde a fem é positiva), $V' = V_1 (-V_2) = V_1 + V_2$.
- 2.3 Efetue a montagem do circuito da figura 2, ligação série aditiva das bobinas 1 e 2 (os fluxos são aditivos). Aplique a tensão necessária de modo a obter o valor de corrente indicado na tabela I, completando as demais colunas com os valores das tensões V (tensão total aplicada as bobinas Os valores de Z_{ad} são obtidos fazendo V/I.

Figura 2 – Ligação série aditiva das bobinas 1 e 2

I _{ad} (mA)	V(V)	$Z_{ad}(\Omega)$
16,7		
33,3		
50,0		

Tabela I

2.4 – Na montagem do circuito da figura 2, inverta as ligações nos terminais da bobina 2 de modo a ter uma ligação série subtrativa entre as bobinas 1 e 2 (fluxos subtrativos ou contrários). Aplique a tensão necessária de modo a obter as correntes indicadas na tabela II, completando as demais colunas com os valores das tensões: V (tensão total aplicadas as bobinas). Os valores de Z_{sub} são obtidos fazendo V/I.

Figura 2 – Ligação série subtrativa das bobinas 1 e 2

I _{sub} (mA)	V(V)	$Z_{\mathrm{sub}}\left(\Omega\right)$
50,0		
100,0		
150,0		

Tabela II

2.5 — Efetue a montagem do circuito da figura 3 abaixo, considerando agora as bobinas 1 e 2 isoladas (como num transformador a vazio). Aplique uma tensão na bobina 1 de modo a obter a corrente indicada na tabela III. Meça a tensão na bobina 1 (V_1) e a tensão que é induzida na bobina 2 devido a corrente na bobina 1 (V_2). Os valores de Z_1 são obtidos fazendo V_1/I_1 .

Figura 3 – Transformador com bobina 1 no primário e bobina 2 no secundário

$I_1(mA)$	$V_1(V)$	$Z_1(\Omega)$	$V_2(V)$
50,0			
100,0			
150,0			

Tabela III

2.6 – Efetue a montagem do circuito da figura 4 abaixo, considerando agora as bobinas 1 e 2 isoladas (como num transformador a vazio). Aplique uma tensão na bobina 2 de modo a obter a corrente indicada na tabela IV. Meça a tensão na bobina 2 (V_2) e a tensão que é induzida na bobina 1 devido a corrente na bobina 2 (V_1). Os valores de Z_2 são obtidos fazendo V_2/I_2 .

Figura 4 – Transformador com bobina 2 no primário e bobina 1 no secundário

$I_2(mA)$	$V_2(V)$	$Z_{2}\left(\Omega ight)$	$V_1(V)$
25,0			
50,0			
75,0			

Tabela IV

3 - Análise

- 3.1 A partir dos valores obtidos na tabela I, encontre o valor médio da impedância Z_{ad} .
- 3.2 A partir dos valores obtidos na tabela II, encontre o valor médio da impedância Z_{sub} . Com os valores médios das impedâncias aditiva e subtrativa e os valores das resistências das bobinas (R_1 e R_2), encontre o valor da impedância mútua M.
- 3.3 A partir dos valores obtidos na tabela III, encontre o valor médio da impedância Z₁.
- 3.2 A partir dos valores obtidos na tabela IV, encontre o valor médio da impedância Z_2 . Com os valores médios das impedâncias das bobinas (Z_1 e Z_2) e os valores das resistências das bobinas (Z_1 e Z_2), encontre os valores das reatâncias próprias e das auto indutâncias Z_1 e Z_2).
- 3.4 Com os valores obtidos para L_1 , L_2 e M encontre o valor do coeficiente de acoplamento entre as bobinas 1 e 2.
- 3.5 Para uma corrente de 1,0 A na bobina 1(figura 3), encontre o valor do fluxo Φ_1 , Φ_{L1} , e Φ_{21} e e_{21} .
- 3.6 Para uma corrente de 1,0 A na bobina 2 (figura 4), encontre o valor do fluxo Φ_2 , Φ_{L2} , e Φ_{12} e e_{12} .
- 3.7 O que deve acontecer com as leituras dos instrumentos do primário, em qualquer das montagens efetuadas, se a barra superior do núcleo de ferro for removida (o núcleo for aberto)?
- 3.8 O que deve acontecer com as leituras dos instrumentos do secundário, em qualquer das montagens efetuadas, se o núcleo de ferro for retirado do circuito sem desligamento do mesmo?