受験番号 氏 名 カラス 出席番号

試験開始の合図があるまで、この問題冊子の中を見てはいけません。

2012年度 全統マーク高2模試問題

数 学 ② (100点 60分)

〔数学Ⅱ,数学Ⅱ·数学B〕

2013年2月実施

この問題冊子には、「数学 Π 」「数学 Π ・数学B」の 2 科目を掲載しています。解答する科目を間違えないよう選択しなさい。

I 注 意 事 項

- 1 解答用紙は,第1面(表面)及び第2面(裏面)の両面を使用しなさい。 解答用紙には解答欄以外に次の記入欄があるので,監督者の指示に従って,それ ぞれ正しく記入し,マークしなさい。必要事項欄及びマーク欄に正しく記入・マー クされていない場合は、採点できないことがあります。
 - ① **受験番号欄** 受験票が発行されている場合のみ、必ず**受験番号**(数字及び英字)を**記入**し、さらにその下のマーク欄に**マーク**しなさい。
 - ② 氏名欄,高校名欄,クラス・出席番号欄 氏名・フリガナ,高校名・フリガナ及びクラス・出席番号を記入しなさい。
 - ③ 解答科目欄 解答する科目を一つ選び、マーク欄にマークしなさい。 マークされていない場合又は複数の科目にマークされている場合は、0点となることがあります。

解答科目については、間違いのないよう十分に注意し、マークしなさい。

2 出題科目、ページ及び選択方法は、下表のとおりです。

出題科目	ページ	選択方法
数 学 II	2~12	左の2科目のうちから1科目を選択し,解答しなさ
数学 II·数学 B	13~31	V2 ₀

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、手を挙げて監督者に知らせなさい。
- 4 選択問題については、解答する問題を決めたあと、その問題番号の解答欄に解答しなさい。ただし、**指定された問題数をこえて解答してはいけません**。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 この注意事項は、問題冊子の裏表紙にも続きます。問題冊子を裏返して必ず読みなさい。

河合塾

数 学 Ⅱ

(全 問 必 答)

第1問 (配点 30)

[1] $-1 \le x \le 3$ において, x の関数

$$f(x) = 4^x - 2^{x+3}$$

を考える。

 $t=2^x$ とおくと, f(x) は t を用いて

$$f(x) = t^{\boxed{P}} - \boxed{1} t$$

と表される。

ここで, tのとり得る値の範囲は

であるから, f(x) の

最大値は カ , 最小値は キクケ

である。

(数学Ⅱ 第1問 は次ページに続く。)

また、x の方程式 $f(x) = -\frac{15}{4}$ を満たす x は二つあり、それらを α 、 β とすると

$$\alpha + \beta = \log_2$$
 コサ -2

である。

(数学Ⅱ 第1問 は次ページに続く。)

数学Ⅱ

[2] a を実数の定数とする。また、 $0 \le x < 2\pi$ において、x の関数

$$g(x) = \cos 2x + a \cos x - 1$$

を考える。

$$\cos 2x = \boxed{\flat} \cos^2 x - \boxed{\lambda}$$

が成り立つから

$$g(x) = \boxed{>} \cos^2 x + a \cos x - \boxed{2}$$

である。

a=3 のときの g(x) を h(x) とする。

(1) h(x) の最小値は y であり、最小値を与える x のうち $0 \le x \le \pi$

を満たすものを θ とすると

$$\sin 2\theta = \frac{\boxed{\overline{\tau} \, \mathsf{N}} \sqrt{\boxed{\tau}}}{\boxed{\Xi}}$$

である。

(数学Ⅱ 第1問 は次ページに続く。)

(2) x の不等式 $h(x) \leq 0$ を解くと

$$\frac{\pi}{\boxed{\mathtt{Z}}} \le x \le \frac{\boxed{\lambda}}{\boxed{\prime}} \pi \qquad \dots \dots (*)$$

である。また,(*)を満たすすべての実数 x に対して $g(x) \leq 0$ が成り立つような a の値の範囲は

$$N \leq a \leq E$$

である。

数学Ⅱ

第2間 (配点 30)

関数 $f(x) = x^3 - x^2 - x + 2$ の導関数 f'(x) は

$$f'(x) = \boxed{P} x^2 - \boxed{1} x - \boxed{9}$$

であるから、f(x) は

極小値 エ

極大値 **オカ キク**

をとる。ここで、曲線 y = f(x) を C とする。

(1) 曲線 C 上の点 (0, 2) における C の接線 ℓ の方程式は

$$y = \boxed{f} x + \boxed{\Box}$$

である。また、曲線 $y=x^2$ と直線 ℓ で囲まれた部分のうち、 $x \ge 0$ を満たす部分

(数学Ⅱ 第2問は次ページに続く。)

(2) 曲線 C 上の点 (t, f(t)) における C の接線の方程式は

である。これが点(1,1)を通るとき,tの値は

である。

ここで、2点 A, Bをそれぞれ

$$A([\![\mathcal{Y}]\!], f([\![\mathcal{Y}]\!]), B([\![\bar{\mathcal{T}}]\!], f([\![\bar{\mathcal{T}}]\!]))$$

点 P と直線 AB の距離は $\frac{p^{\square}-p^{\square}}{\sqrt{\square}}$ であるから,三角形 ABP の面積

S(p) は

$$S(p) = \frac{\overline{z}}{\overline{z}} \left(p^{\overline{b}} - p^{\overline{z}} \right)$$

である。

C の交点のうち、 $B \ge P_0$ 以外の点を Q とすると

$$\frac{P_0B}{QP_0} = \boxed{ \begin{tabular}{|c|c|c|c|c|c|}\hline Z & \hline & & \\ \hline \hline & & & \\ \hline \end{array}$$

である。

数学Ⅱ

第3間 (配点 20)

O を原点とする座標平面上に、円 $C: x^2 + y^2 = 13$ があり、C 上の点 (2, 3) を A とする。

である。また、接線 ℓ_1 とx 軸の交点をBとすると、点Bの座標は $\left(\begin{array}{c} \boxed{\texttt{ケコ}} \\ \hline \end{bmatrix}$, 0

である。よって,三角形 OAB の面積 S は $\boxed{\begin{array}{c} \boldsymbol{\flat}\boldsymbol{\lambda} \\ \boldsymbol{\upsilon} \end{array}}$ である。

(数学Ⅱ 第3問 は次ページに続く。)

次に、点(8,12) を通り、y軸に平行でない直線を ℓ_2 とし、その傾きをm とする。 ℓ_2 が三角形 OAB の内部を通過するとき、m のとり得る値の範囲は

である。このとき、 ℓ_2 と ℓ_1 の交点を P、 ℓ_2 と x 軸の交点を Q とすると

である。

- (1) 三角形 PQB の面積をT とすると,m=2 のとき,T $\boxed{\mathbf{z}}$ $\frac{S}{2}$ である。
 - ヌ に当てはまるものを,次の⑩~②のうちから一つ選べ。
 - 0 < 0 = 2 >
- (2) m が(*)の範囲を変化するとき、三角形 OAQ の重心 G の軌跡は

である。

数学Ⅱ

第4間 (配点 20)

a, b を実数とし、二つの整式

$$P(x) = x^{3} - ax^{2} + ax + b$$

$$Q(x) = 2x^{2} + (a + 2b)x - 5a + 5$$

について考える。

P(x) を x-2 で割ったときの余りは \boxed{P} - $\boxed{1}$ a+b であり,Q(x) を x-1 で割ったときの余りは \boxed{r} - \boxed{r} a+ \boxed{r} \boxed{r}

$$b = \boxed{ }$$
 $a + \boxed{ }$

である。

(数学Ⅱ 第4問 は次ページに続く。)

以下において、
$$b=$$
 カ $a+$ $+$ とする。

$$P(x) = \left(x + \boxed{\tau}\right)\left\{x^2 - \left(a + \boxed{\Box}\right)x + \boxed{\psi}a + \boxed{\flat}\right\}$$

と因数分解できる。よって、方程式 P(x)=0 が虚数解をもつような a の値の範囲は

である。このとき、方程式 P(x)=0 の実数解を α 、二つの虚数解を β 、 γ とすると

$$\alpha + \beta + \gamma + 4 = a + \boxed{9}$$

$$\alpha^2 + \beta^2 + \gamma^2 = a^2 - \boxed{\mathcal{F}} a$$

であるから、 $\alpha + \beta + \gamma + 4 \le \alpha^2 + \beta^2 + \gamma^2$ を満たすような α の値の範囲は

$$y \leq a < \overline{\tau} + \sqrt{\tau}$$

である。

また,
$$a = y$$
 のとき

$$2\beta^3 - 10\beta^2 + 18\beta + 3 = \boxed{\Xi}$$

である。

(下書き用紙)

数学Ⅱ·数学B

問題	選択方法
第1問	必答
第2問	必答
第3問	
第4問	いずれか2問を選択し,
第5問	解答しなさい。
第6問	

数学 \mathbf{II} ・数学 \mathbf{B} (注) この科目には、選択問題があります。(13ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] $-1 \le x \le 3$ において、x の関数

$$f(x) = 4^x - 2^{x+3}$$

を考える。

 $t=2^x$ とおくと, f(x) は t を用いて

$$f(x) = t^{2} - 1 t$$

と表される。

ここで、 t のとり得る値の範囲は

$$\frac{\boxed{}}{\boxed{}} \leq t \leq \boxed{}$$

であるから、f(x) の

最大値はカー、最小値はキクケー

である。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

また、x の方程式 $f(x) = -\frac{15}{4}$ を満たす x は二つあり、それらを α 、 β とすると

$$\alpha + \beta = \log_2$$
 コサー2

である。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

数学Ⅱ·数学B

[2] a を実数の定数とする。また、 $0 \le x < 2\pi$ において、x の関数

$$g(x) = \cos 2x + a \cos x - 1$$

を考える。

$$\cos 2x = \boxed{\flat} \cos^2 x - \boxed{\lambda}$$

が成り立つから

$$g(x) = \boxed{> \cos^2 x + a\cos x - \boxed{2}}$$

である。

a=3 のときの g(x) を h(x) とする。

(1) h(x) の最小値は y であり、最小値を与える x のうち $0 \le x \le \pi$

を満たすものを θ とすると

$$\sin 2\theta = \frac{\boxed{\overline{\tau} \, \mathsf{N}} \sqrt{\boxed{\tau}}}{\boxed{\Xi}}$$

である。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

(2) x の不等式 $h(x) \leq 0$ を解くと

$$\frac{\pi}{\boxed{3}} \le x \le \frac{\boxed{\lambda}}{\boxed{J}} \pi \qquad \dots (*)$$

である。また,(*) を満たすすべての実数 x に対して $g(x) \leq 0$ が成り立つような a の値の範囲は

である。

数学Ⅱ·数学B

第 2 問 (必答問題) (配点 30)

関数 $f(x) = x^3 - x^2 - x + 2$ の導関数 f'(x) は

$$f'(x) =$$
 ア $x^2 -$ イ $x -$ ウ

であるから、f(x) は

極小値 エ

極大値 **オカ キク**

をとる。ここで、曲線 y = f(x) を C とする。

(1) 曲線 C 上の点 (0, 2) における C の接線 ℓ の方程式は

$$y = \boxed{f} x + \boxed{\Box}$$

である。また、曲線 $y=x^2$ と直線 ℓ で囲まれた部分のうち、 $x \ge 0$ を満たす部分

(数学Ⅱ・数学B 第 2 問 は次ページに続く。)

(2) 曲線 C 上の点 (t, f(t)) における C の接線の方程式は

である。これが点(1,1)を通るとき、tの値は

である。

ここで、2点 A, Bをそれぞれ

$$A([\![\mathcal{Y}]\!], f([\![\mathcal{Y}]\!]), B([\![\bar{\mathcal{T}}]\!], f([\![\bar{\mathcal{T}}]\!]))$$

点 P と直線 AB の距離は $\frac{p^{\square}-p^{\square}}{\sqrt{\square}}$ であるから,三角形 ABP の面積

S(p) は

$$S(p) = \frac{\boxed{\mathbf{Z}}}{\boxed{\mathbf{A}}} \left(p^{\boxed{\mathbf{b}}} - p^{\boxed{\mathbf{b}}} \right)$$

である。

C の交点のうち、 $B \ge P_0$ 以外の点を Q とすると

$$\frac{P_0B}{QP_0} = \boxed{ \begin{tabular}{|c|c|c|c|c|c|}\hline Z & \hline & & \\ \hline \hline & & & \\ \hline \end{array}$$

である。

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 3 間 (選択問題) (配点 20)

初項が 2 , 公差が d である等差数列 $\{a_n\}$ において, $a_6=17$ が成り立っている。

このとき,
$$d = \boxed{\mathbf{P}}$$
 であるから, 一般項は

$$a_n = \boxed{1} n - \boxed{0} \quad (n = 1, 2, 3, \cdots)$$

である。また

$$\sum_{k=1}^{n} a_k = \frac{n}{2} \left(\boxed{1} n + \boxed{1} \right) \quad (n = 1, 2, 3, \cdots)$$

である。

(1)
$$\frac{1}{a_n a_{n+1}} = \frac{1}{\boxed{n}} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right)$$

であるから

$$\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}} = \frac{n}{2(\boxed{+} n + \boxed{2})} \quad (n = 1, 2, 3, \cdots)$$

である。

(2)
$$\sum_{k=1}^{n} a_{2k-1} = S_n$$
, $\sum_{k=1}^{n} a_{2k} = T_n \ge 3 \le \le 2$

$$S_{100} - T_{100} = \boxed{$$
 ケコサシ

である。

(数学Ⅱ・数学B 第 3 問 は次ページに続く。)

(3) 数列 $\{b_n\}$ を $b_1=4$, $b_{n+1}-b_n=a_n$ $(n=1,2,3,\cdots)$ で定義する。 $n \ge 2$ のとき

$$b_n = b_1 + \boxed{\lambda}$$

したがって、数列 $\{b_n\}$ の一般項は

$$b_n = \frac{\boxed{2}}{\boxed{\gamma}} n^2 - \frac{\boxed{9}}{\boxed{f}} n + \boxed{\gamma} \quad (n = 1, 2, 3, \cdots)$$

である。

また、 b_n が 5 の倍数であるための必要十分条件は、自然数 n が $\boxed{$

- **(0)** 2
- **1**) 5
- **2** 10
- **③** 15
- **4**) 20

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 4 間 (選択問題) (配点 20)

三角形 OAB において,辺 OA の中点をM,辺 OB を 1:2 に内分する点を N とする。このとき

$$\overrightarrow{\mathrm{OM}} = \frac{\overrightarrow{\mathcal{P}}}{\boxed{1}}\overrightarrow{\mathrm{OA}}, \quad \overrightarrow{\mathrm{ON}} = \frac{\overrightarrow{\mathcal{P}}}{\boxed{\mathtt{I}}}\overrightarrow{\mathrm{OB}}$$

である。

また、直線 AN と直線 BM の交点を P とする。まず、点 P が直線 AN 上にあるから、実数 s を用いて $\overrightarrow{AP} = s\overrightarrow{AN}$ とおける。よって、 \overrightarrow{OP} は

と表される。次に、点 P は直線 BM 上にあるから、実数 t を用いて $\overrightarrow{BP} = t\overrightarrow{BM}$ とおける。よって、 \overrightarrow{OP} は

$$\overrightarrow{\mathrm{OP}} = \underbrace{t}_{} \overrightarrow{\mathrm{OA}} + \left(\boxed{2} - t \right) \overrightarrow{\mathrm{OB}}$$

と表される。したがって

$$s = \frac{5}{3}$$
, $t = \frac{5}{2}$

である。

(数学Ⅱ・数学B 第 4 問 は次ページに続く。)

以下において、
$$|\overrightarrow{OA}|=4$$
、 $|\overrightarrow{OB}|=3$ 、 $\angle AOB=60^\circ$ とする。このとき $\overrightarrow{OA}\cdot\overrightarrow{OB}=$ ス

である。また,直線 BM 上に点 Q を \overrightarrow{OQ} \bot \overrightarrow{BM} となるようにとると

$$\overrightarrow{OQ} \cdot \overrightarrow{BM} = \boxed{\mathbf{t}}$$

である。さらに,実数 u を用いて $\overrightarrow{BQ} = u\overrightarrow{BM}$ とおくと, $u = \boxed{\frac{\mathcal{Y}}{\mathbf{g}}}$ である。

また、三角形 OAB の面積は $\mathbf{f} \sqrt{ \mathbf{y} }$ であるから、三角形 OPQ の面積

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。」

第 5 間 (選択問題) (配点 20)

生徒番号 1 から 10 までの生徒 10 人が立位体前屈の測定を行い,以下の表の結果になった。単位は cm であり,この測定結果を変量 x とする。

生徒番号	1	2	3	4	5	6	7	8	9	10
変量 x	3	-6	-5	-8	-9	5	-10	-3	9	4

以下,小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入し,解答せよ。途中で割り切れた場合,指定された桁まで①にマークすること。

(1) 変量 x の中央値は $\boxed{\textbf{P1}}$. $\boxed{\textbf{p}}$ cm であり、平均値は $\boxed{\textbf{x1}}$. $\boxed{\textbf{p}}$ cm である。 3 a 3 a 4 a

(数学Ⅱ・数学B第5問は次ページに続く。)

(数学Ⅱ・数学B第5問は次ページに続く。)

数学Ⅱ·数学B

(3) 10人の生徒が 1 か月後に二度目の測定を行った。測定値はすべて整数であり、この測定結果を変量 y とする。10 人の生徒のうち、9 人の生徒の変量 x と変量 y の相関図が次の図である。

変量yの相関係数の値は $\boxed{\mathbf{9}}$ に最も近い。 $\boxed{\mathbf{9}}$ に当てはまるものを、次の

◎~④のうちから一つ選べ。

 $\bigcirc 0 -0.93$ $\bigcirc 0 -0.13$ $\bigcirc 0.13$ $\bigcirc 0.93$ $\bigcirc 0.93$

(下書き用紙)

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第6間 (選択問題) (配点 20)

1から自然数 n までの和

$$1 + 2 + 3 + \cdots + n$$

で表される数を三角数という。

例えば6や10は

$$6 = 1 + 2 + 3$$
, $10 = 1 + 2 + 3 + 4$

と表されるので三角数である。

また, 7, 8, 9 は三角数ではない。

そこで、入力された自然数 N について、N 以下の最大の三角数 f(N) を出力する [プログラム 1] を作成した。

[プログラム1]

100 INPUT N

110 LET S=0

120 FOR J=1 TO 100

130 IF ア THEN GOTO 160

140 LET S=S+J

150 NEXT J

170 END

(数学Ⅱ・数学B第6問は次ページに続く。)

(1) / に当てはよるものを, 外のしてめのプラかり フ選	(1)	ア	に当てはまるものを,	次の⑩~3のうちから一つ選べ	~°c
------------------------------------	-----	---	------------	----------------	-----

- \bigcirc S+J>N
- (1) S+J>=N (2) S+J<N
- \bigcirc S+J<=N

イ に当てはまるものを,次の**0~3**のうちから一つ選べ。

- **(0)** S
- **(1)** J
- **②** S+J **③** S-J
- (2) $1+2+3+\cdots+n=\frac{1}{2}n(n+1)$ と計算することができる。これと 120 行の J の値の範囲より、〔プログラム 1〕が正しい値を出力するような自然数 N のうち、 最大のものは「ウエオカ」である。
- (3) 〔プログラム 1〕を実行し、変数 N に 100 を入力したとき、140 行は **キク** 行され

と出力される。

(数学Ⅱ・数学B 第 6 問 は次ページに続く。)

数学Ⅱ·数学B

この考え方と〔プログラム1〕を利用して、次の〔プログラム2〕を作成した。

```
[プログラム2]
      100 INPUT N
      110 PRINT N:"=":
      120 LET S=0
      130 FOR J=1 TO 100
         IF ア
      140
                     THEN GOTO 170
      150 LET S=S+J
      160 NEXT J
      170 PRINT
      180 LET
      190 IF > THEN GOTO 220
      200 PRINT "+";
      210 GOTO 120
      220 END
```

(数学Ⅱ・数学B 第 6 問 は次ページに続く。)

(4)	サーに	当てはまるも	のを,次の①	~③のうちか	ら一つ選	اِ×′،	
0	N=N-1	(1) N=N+1	2 N=	:N-S 3	N=N+S		
[シ」に	当てはまるも	のを,次の①	~⑤のうちか	ら一つ選	<u>ا</u> رِّ،	
0	N<0	① N=0	2 N>1	3 N <s< td=""><td>4</td><td>N=S</td><td>⑤ N>S</td></s<>	4	N=S	⑤ N>S
(5)	〔プログラ	ム2〕を実行	し , 変数Nに	204 を入力し	たとき,	200 行は [ス 回,
150	行は セ	ソ 回実行され	れる。				

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 Pイウ | c -8a | と答えたいとき

	000000000000000000000000000000000000000
ウ	-00023456789●66

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

また, それ以上約分できない形で答えなさい。

例えば, $\frac{3}{4}$, $\frac{2a+1}{3}$ と答えるところを, $\frac{6}{8}$, $\frac{4a+2}{6}$ のように答えてはいけませ

4 根号を含む形で解答する場合は、根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ 、 $6\sqrt{2a}$ と答えるところを、 $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ 、 $3\sqrt{8a}$ のように答えてはいけません。

問題を解く際には、「問題」冊子にも必ず自分の解答を記録し、試験終了後に配付される「学習の手引き」にそって自己採点し、再確認しなさい。