

Department of Computer Science

Ramakrishna Mission Vivekananda Educational Research Institute, Belur Math

Optimization for ML –BDA 2023

Problem Set 2: Convexity of Functions

1. *Inverse of an increasing convex function*:

Suppose $f : \mathbb{R} \to \mathbb{R}$ is increasing and convex on its domain (a, b). Let g denote its inverse function, i.e., the function with domain (f(a), f(b)), and g(f(x)) = x for a < x < b. Is g convex/concave?

- 2. For each of the following functions determine whether it is convex, concave, or neither.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
 - (c) $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbb{R}^2_{++} .
 - (d) $f(x_1, x_2) = x_1 / x_2$ on \mathbb{R}^2_{++} .
 - (e) $f(x_1, x_2) = x_1^2 / x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$
 - (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where, $0 \le \alpha \le 1$, on \mathbb{R}^2_+ .
- 3. Products and ratios of convex functions: Show that
 - (a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions on an interval, then fg is convex.
 - (b) If f, g are concave, positive, with one nondecreasing and the other nonincreasing, then f g is concave.
 - (c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and positive, then f/g is convex.
- 4. *Strong, strict convexity of functions:* For each function below, determine whether it is convex, strictly convex, strongly convex or none of the above.
 - (a) $f(x) = (x_1 3x_2)^2$
 - (b) $f(x) = (x_1 3x_2)^2 + (x_1 2x_2)^2$
 - (c) $f(x) = (x_1 3x_2)^2 + (x_1 2x_2)^2 + x_1^3$
 - (d) f(x) = |x|, $x \in \mathbb{R}$.
 - (e) f(x) = ||x||, $x \in \mathbb{R}^n$

Exercise problems of Chapter 3 of Nonlinear Programming by Bazaraa et al.

- [3.1] Which of the following functions is convex, concave, or neither? Why?
 - a. $f(x_1, x_2) = 2x_1^2 4x_1x_2 8x_1 + 3x_2$
 - b. $f(x_1, x_2) = x_1 e^{-(x_1 + 3x_2)}$
 - c. $f(x_1, x_2) = -x_1^2 3x_2^2 + 4x_1x_2 + 10x_1 10x_2$
 - **d.** $f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1^2 + x_2^2 + 2x_3^2 5x_1x_3$
- [3.2] Over what subset of $\{x: x > 0\}$ is the univariate function $f(x) = e^{-ax^b}$ convex, where a > 0 and $b \ge 1$?
- [3.3] Prove or disprove concavity of the following function defined over $S = \{(x_1, x_2): -1 \le x_1 \le 1, -1 \le x_2 \le 1\}$:

$$f(x_1, x_2) = 10 - 3(x_2 - x_1^2)^2$$
.

Repeat for a convex set $S \subseteq \{(x_1, x_2) : x_1^2 \ge x_2\}$.

- [3.4] Over what domain is the function $f(x) = x^2(x^2 1)$ convex? Is it strictly convex over the region(s) specified? Justify your answer.
- [3.5] Show that a function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if f is both convex and concave. [A function f is affine if it is of the form $f(\mathbf{x}) = \alpha + \mathbf{c}^t \mathbf{x}$, where a is a scalar and \mathbf{c} is an n-vector.]
- Let $f(x_1, x_2) = e^{2x_1^2 x_2^2} 3x_1 + 5x_2$. Give the linear and quadratic approximations of f at (1, 1). Are these approximations convex, concave, or neither? Why?

Problems on convexity preserving operations

- [3.8] Let $f_1, f_2, ..., f_k$: $R^n \to R$ be convex functions. Consider the function f defined by $f(\mathbf{x}) = \sum_{j=1}^k \alpha_j f_j(\mathbf{x})$, where $\alpha_j > 0$ for j = 1, 2, ..., k. Show that f is convex. State and prove a similar result for concave functions.
- [3.10] Let $h: \mathbb{R}^n \to \mathbb{R}$ be a convex function, and let $g: \mathbb{R} \to \mathbb{R}$ be a nondecreasing convex function. Consider the composite function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{x}) = g[h(\mathbf{x})]$. Show that f is convex.
- [3.16] Let $g: R^m \to R$ be a convex function, and let $h: R^n \to R^m$ be an affine function of the form h(x) = Ax + b, where A is an $m \times n$ matrix and b is an $m \times n$ l vector. Then show that the composite function $f: R^n \to R$ defined as f(x) = g[h(x)] is a convex function. Also, assuming twice differentiability of g, derive an expression for the Hessian of f.