Plan Introduction Définitions et vocabulaire Arbres binaires

OOO
OOO
OOO
OOO

Les arbres (I)

Nour-Eddine Oussous, Éric Wegrzynowski

Licence ST-A, USTL - API2

16 novembre 2009

Plan Introduction Définitions et vocabulaire Arbres binaires

Introduction

- Les <u>arbres</u> offrent une des plus importantes structures de données non linéaires en informatique.
- Ils permettent une organisation naturelle des données, par exemple
 - système de fichiers
 - base de données
 - ▶ sites web....
- ▶ Dans les arbres, on a une <u>relation hiérarchique</u> entre les objets.
- ▶ Ils permettent parfois d'obtenir des algorithmes plus performants que lorsqu'on utilise des structures de données linéaires (listes, tableaux,...)

Plan Introduction Définitions et vocabulaire Arbres binaires

Introduction

Définitions et vocabulaire

Notion d'arbres

Branches et profondeur des nœuds

Taille et hauteur

Arbres binaires

Définition

Constructeur

Sélecteurs

Prédicat

Opérations modificatrices

Licence ST-A, USTL - API2

Plan Introduction Définitions et vocabulaire Arbres binaires

O
OOO
OOO
OOO
OOO
OOO
OOO
OOO

Exemple

L'arborescence des répertoires d'un système d'exploitation imaginaire.

Licence ST-A, USTL - API2

Les arbres (I)

Licence ST-A, USTL - API2

Plan	Introduction	Définitions et vocabulaire Oco Oco Oco Oco Oco Oco Oco Oco Oco Oc	Arbres binaires
			000

Notion d'arbres

Notion d'arbres

Un arbre est une sructure de données qui peut

- ▶ soit être vide
- ▶ soit comporter un nombre fini de nœuds tels que
 - ▶ à chaque nœud est associée une valeur
 - chaque nœud possède un nombre fini de successeurs
 - un (et un seul) nœud n'est le successeur d'aucun autre, c'est la racine
 - ▶ tout autre nœud est le successeur d'un seul nœud, son père.

Les arbres (I)		I	icence ST-A, USTL - API2
Plan	Introduction	Définitions et vocabulaire ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Arbres binaires

Profondeur d'un nœud

- ▶ Un nœud y est un <u>descendant</u> d'un nœud x s'il existe une branche qui va de x à y. Autrement dit, $\exists x_0, \ldots, x_p$ tels que
 - $\rightarrow x_0 = x$
 - $> x_p = y$
 - $\forall k \in [1, p], \text{ pere}(x_k) = x_{k-1}$
- ► Le nombre *p* est appelé <u>profondeur</u> du nœud *y* <u>par rapport à</u> *x*.
- ► La <u>profondeur</u> d'un nœud <u>dans un arbre</u> est la profondeur de ce nœud par rapport à la racine.

Licence ST-A, USTL - API2

Branches et profondeur des nœuds

Branches et profondeur des nœuds

- ► Un nœud qui ne possède aucun successeur est appelé <u>nœud</u> externe ou feuille.
- Les autres nœuds sont appelés nœuds internes.
- ▶ Une <u>branche</u> est une suite finie x_0, x_1, \dots, x_p de nœuds telle que
 - ► x₀ est la racine
 - \triangleright x_p est une feuille
 - $\forall k \in \llbracket 1, p \rrbracket \text{ pere}(x_k) = x_{k-1}$
- ► La longueur d'une branche est le nombre de nœuds qui la composent moins 1 : p.

Les arbres (I)		L	icence ST-A, USTL - API
Plan	Introduction	Définitions et vocabulaire	Arbres binaire

Hauteur d'un arbre

Les arbres (I)

▶ La <u>hauteur</u> d'un arbre non vide A, notée h(A), est la longueur maximale d'une branche de cet arbre.

Licence ST-A, USTL - API2

- ► La hauteur d'un arbre est aussi la profondeur maximale d'un nœud.
- ▶ La hauteur n'est pas définie pour un arbre vide.lorsque nous

programmerons la hauteur, nous définirons par convention la hauteur de l'arbre vide.

Taille et hauteur

Exemple

Fig.: Un arbre de hauteur 5 et de taille 14

nœuds internes : feuilles : (profondeurs)

Licence ST-A, USTL - API2

Plan Introduction

Arbres binaires

Licence ST-A, USTL - API2

Taille et hauteur

Les arbres (I)

Relation entre hauteur, arité et taille

Théorème

Soit A un arbre d'arité a, de taille n et de hauteur h.

▶ Le nombre n_p de nœuds de A à profondeur $0 \le p \le h$ vérifie

$$1 \le n_p \le a^p$$

▶ La taille *n* vérifie l'encadrement

$$h+1 \le n \le \frac{a^{h+1}-1}{a-1}$$

► La hauteur *h* vérifie l'encadrement

$$\log_a (n(a-1)+1) - 1 \le h \le n-1$$

Taille et hauteur

Arité et taille d'un arbre

- ▶ Un arbre est dit d'<u>arité</u> *a* si chacun de ses nœuds possède au maximum *a* successeurs. L'arbre vide est de toute arité.
- ▶ La taille d'un arbre *A* est son nombre de nœuds.

Les arbres (I) Licence ST-A, USTL - API2

Définition récursive des arbres binaires

Définition

Un arbre binaire composés d'éléments d'un ensemble E est

- ▶ soit l'arbre vide Δ ;
- ▶ soit un triplet < e; g; d > composé d'un élément $e \in E$, et de deux arbres binaires g et d

En notant AB(E) l'ensemble des arbres binaires composés d'éléments de E, on a donc

$$AB(E) = \{\Delta\} \cup (E \times AB(E) \times AB(E))$$

Les arbres (I) Licence ST-A, USTL - API2

Définition

Représentations abstraites d'un arbre binaire

Fig.: Représentation graphique

Fig.: Représentation triplet

Les arbres (I) Licence ST-A, USTL - API2

Plan

Introduction

Définitions et vocabulaire

Arbres binaires

Constructeur

Création d'un arbre binaire

Spécification

creerArbre :
$$E \times AB(E) \times AB(E) \longrightarrow AB(E)$$

 $e, g, d \longmapsto \langle e; g; d \rangle$

Exemples

Les arbres (I)

$$creerArbre(3, \Delta, \Delta) = \langle 3; \Delta; \Delta \rangle$$
$$creerArbre(1, \langle 3; \Delta; \Delta \rangle, \Delta) = \langle 1; \langle 3; \Delta; \Delta \rangle; \Delta \rangle$$

C'est une opération de construction d'arbres.

Opérations primitives sur les arbres binaires

- 1. Constructeur
- Sélecteurs
- 3. Prédicat

Définition

4. Opérations modificatrices

Les arbres (I) Licence ST-A, USTL - API2

Accès à la racine

Spécification

racine: $AB(E) \longrightarrow E$ $\langle e; g; d \rangle \longmapsto e$

CU : l'arbre passé en paramètre ne peut pas être vide

Exemple

 $\mathtt{racine}(<1;<3;\Delta;\Delta>;\Delta>)=1$

C'est un sélecteur.

Licence ST-A, USTL - API2 Les arbres (I) Licence ST-A, USTL - API2

Plan	Introduction	Définitions et vocabulaire	Arbres binaires
		0	000
		00	0
		0000	000
			0
			000

Sélecteurs

Accès au sous-arbre gauche

Spécification

gauche :
$$AB(E) \longrightarrow AB(E)$$

 $\langle e; g; d \rangle \longmapsto g$

CU : l'arbre passé en paramètre ne peut pas être vide

Exemple

$$gauche(<1;<3;\Delta;\Delta>;\Delta>) = <3;\Delta;\Delta>$$

C'est un sélecteur.

Licence ST-A, USTL - API2

Plan

Introduction

Définitions et vocabulaire

Arbres binaires

000

Prédicat

Test de vacuité d'un arbre

Spécification

estArbreVide :
$$AB(E) \longrightarrow Booleen$$

$$a \longmapsto \begin{cases} Vrai & \text{si a est vide} \\ Faux & \text{sinon} \end{cases}$$

Exemples

Les arbres (I)

$$estArbreVide(\Delta) = Vrai$$

 $estArbreVide(<1; \Delta; \Delta>) = Faux$

C'est un prédicat.

Licence ST-A, USTL - API2

Sélecteurs

Accès au sous-arbre droit

Spécification

droit :
$$AB(E) \longrightarrow AB(E)$$

 $\langle e; g; d \rangle \longmapsto d$

CU : l'arbre passé en paramètre ne peut pas être vide

Exemple

$$\mathtt{droit}(<1;<3;\Delta;\Delta>;\Delta>) = \Delta$$

C'est un sélecteur.

Licence ST-A, USTL - API2

Opérations modificatrices

Changer la valeur de la racine

Spécification

modifierRacine : $AB(E) \times E \longrightarrow AB(E)$ $< e; g; d >, e' \longmapsto < e'; g; d >$

CU : l'arbre passé en paramètre ne doit pas être vide

Exemple

 $\texttt{modifierRacine}(<1;<3;\Delta;\Delta>;\Delta>,4)=<4;<3;\Delta;\Delta>;\Delta>$

C'est une opération de modification d'arbre.

Licence ST-A, USTL - API2

000

Opérations modificatrices

Changer le sous-arbre gauche

Spécification

modifierGauche :
$$AB(E) \times AB(E) \longrightarrow AB(E)$$

 $< e; g; d >, g' \longmapsto < e; g'; d >$

CU : le premier arbre passé en paramètre ne doit pas être vide

Exemple

$$modifierGauche(<1;<3;\Delta;\Delta>;\Delta>,\Delta)=<1;\Delta;\Delta>$$

C'est une opération de modification d'arbre.

Licence ST-A, USTL - API2

Opérations modificatrices

Changer le sous-arbre droit

Spécification

modifierDroit :
$$AB(E) \times AB(E) \longrightarrow AB(E)$$

 $< e; g; d >, d' \longmapsto < e; g; d' >$

CU : le premier arbre passé en paramètre ne doit pas être vide

Exemple

$$\texttt{modifierDroit}\big(<1;\Delta;\Delta>,<2;\Delta;\Delta>\big) = <1;\Delta;<2;\Delta;\Delta>>$$

C'est une opération de modification d'arbre.

Licence ST-A, USTL - API2