Examen de Ecuaciones Diferenciales I 29 de julio de 2022

Parte Teórica:

- (1) Sean $p, q, q: (a, b) \to \mathbb{R}$ funciones continuas.
 - (a) Probar que el conjunto S de todas las soluciones de y'' + p(t)y' + q(t)y = 0, es un espacio vectorial real de dimensión dos.
 - (b) Probar que dos soluciones y_1, y_2 de la ecuación homogénea y'' + p(t)y' + q(t)y = 0 son linealmente independientes en (a, b) si y sólo si $W[y_1, y_2](t) \neq 0$, para todo $t \in (a, b)$.
 - (c) Si $\{y_1, y_2\}$ es una base de \mathcal{S} , probar que toda solución φ de la ecuación homogénea y'' + p(t)y' + q(t)y = 0 es de la forma $\varphi = c_1y_1 + c_2y_2$, para cierto par de constantes reales c_1, c_2 . ¿Es único el par (c_1, c_2) ? por qué?
 - (d) Dado $t_0 \in (a, b)$, usar el método de variación de parámetros para hallar una solución particular y_p de la ecuación no-homogénea y'' + p(t)y' + q(t)y = g(t), tal que $y_p(t_0) = y'_p(t_0) = 0$. Es única y_p ?
- (2) Sea $A \in M_n(\mathbb{R})$, con $n \geq 2$. Sea $\lambda = a + ib$ un autovalor complejo de A, y sea $v = v_1 + iv_2$, $v_1, v_2 \in \mathbb{R}^n$ un autovector asociado a λ .
 - (a) Probar que $\phi(t) = e^{\lambda t}v$, $\bar{\phi}(t) = e^{\bar{\lambda}t}\bar{v}$ son soluciones (complejas) linealmente independientes de x' = Ax.
 - (b) Mostrar que $\varphi_1(t) = Re\{\phi(t)\}, \varphi_2(t) = Im\{\phi(t)\}\$ son soluciones reales linealmente independientes de x' = Ax tales que $\varphi_1(0) = v_1$, y $\varphi_2(0) = v_2$ (Ayuda: basta ver que v_1, v_2 son linealmente independientes).
 - (c) Deducir que toda solución x(t) de x' = Ax tal que x(0) está en el plano generado por v_1, v_2 , permanece en él para todo t.
- (3) Decir si las siguientes afirmaciones son verdaderas o falsas, justificando correctamente.
 - (a) Si el origen $0 \in \mathbb{R}^n$ es un atractor del sistema x' = Ax, entonces $Re(\lambda) < 0$, para todo autovalor λ de A.
 - (b) Existen soluciones acotadas en \mathbb{R} de la ecuación $y'' + 4y = \sin(2t)$.
 - (c) Toda solución y(t) de la ecuación $y'' + y + (y')^3 = 0$, tiende a cero cuando $t \to +\infty$. (Ayuda: pasar a un sistema plano).

Parte Práctica:

- (1) (a) Hallar la solución general de la ecuación $y' = 3y^{\frac{2}{3}}$, y dar el dominio de definición.
 - (b) Para cada $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}$ hallar una solución que cumpla $x(t_0) = x_0$, y que esté definida para todo $t \in \mathbb{R}$.
 - (c) ¿Para cuáles puntos (t_0, x_0) la solución construida es única?

(2) Por medio del método de variación de parámetros, hallar una solución particular del sistema $\mathbf{x}' = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix} \mathbf{x} + e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Ayuda: proponer una solución particular de la forma X(t)U(t), donde $U=(u_1,u_2)$ es desconocida y X es una matriz fundamental del sistema homogéneo asociado $x'=\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix} x$.

(3) (a) Sea
$$F(s) = \mathcal{L}{f}(s)$$
. Dado $k \ge 0$, probar que
$$\mathcal{L}{H_k(t)f(t-k)}(s) = e^{-ks}F(s).$$

(b) Usar la parte (a) para resolver mediante transformada de Laplace el siguiente problema:

$$y'' + y = e^{-2t}H_k(t), \quad y(0) = 0, \quad y'(0) = 0,$$

donde $k \geq 0$ es arbitrario.

Describir la solución hallada y. ¿Son continuas y', y''? ¿Qué ocurre para $t \to +\infty$? ¿Depende ese comportamiento de k?

Preguntas para alumnos libres:

- (a) Considere el problema $y'=1+y^2, \ y(0)=0$. Usar el Teorema de Picard para determinar el $\alpha>0$ más grande posible para el cual existe una única solución φ del problema dado definida en el intervalo $(-\alpha,\alpha)$.
- (b) Dar una base del espacio vectorial $\mathcal S$ formado por todas las soluciones del sistema

$$x' = Ax$$
, $A = \begin{pmatrix} 3 & 1 \\ 0 & -2 \end{pmatrix}$.

Usar esa información para calcular e^{tA} sin intentar sumar la serie que la define.