CS3231 Theory of Computation AY24/25 Semester 1

by Isaac Lai

Finite Automata

DFAs

Definition. A DFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is a finite set of input symbols
- $\delta(q, w)$ is a transition function that takes as input $q \in Q$ and $w \in \Sigma$
- $q_0 \in Q$ is a starting state
- $F \subseteq Q$ is the set of accepting states

Properties

- We can extend δ as $\hat{\delta}$ which accepts strings. Basis: $\hat{\delta}(q, \epsilon) = q$, Induction: $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$
- The **language** accepted by DFA *A* is $L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$
- q is a dead state if ∀w ∈ Σ*, δ̂(q, w) ∉ F,
 i.e. an accepting state cannot be reached from q
- q is an unreachable state if ∀w ∈ Σ*,
 ∂̂(q₀, w) ≠ q, i.e. q cannot be reached from the starting state

NFAs

Definition. An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ defined similarly to a DFA except δ maps the input (state, symbol) to a set of states (i.e. a subset of Q)

Properties

- We can extend δ as $\hat{\delta}$ which accepts strings. Basis: $\hat{\delta}(q, \epsilon) = \{q\}$, Induction: $\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$
- The **language** accepted by an NFA is $L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$
- NFA with ϵ -transitions: δ maps $Q \times (\Sigma \cup \{\epsilon\})$ to subsets of Q

Definition (ϵ closures). $1. q \in Eclose(q)$

- 2. If state $p \in Eclose(q)$, then each state in $\delta(p, \epsilon)$ is in Eclose(q)
- 3. Iterate step 2, until no more changes can be done to Eclose(q)
- For ϵ -NFA, we can extend δ to $\hat{\delta}$ where $\hat{\delta}(q, \epsilon) = Eclose(q)$ and $\hat{\delta}(q, wa) = \bigcup_{n \in R} Eclose(p)$

Equivalence

- NFAs (and ϵ -NFAs) and DFAs are equivalent
- To convert an NFA to a DFA, create one state in the DFA for every subset of states in the NFA. Draw the transitions accordingly from the NFA for each state in the DFA (which is a subset of the original states)

Minimisation of DFA

Suppose we have a DFA $A = (Q, \Sigma, \delta, q_0, F)$. States p, q are indistinguishable iff for all w, $\hat{\delta}(p, w) \in F$ iff $\hat{\delta}(q, w) \in F$. To build a table to determine distinguishable pairs,

- 1. Base case: Initially, each (p,q) pair such that $p \in F$ and $q \notin F$ (or vice versa) is distinguishable
- 2. Inductive step: For any $a \in \Sigma$, if $\delta(p,a)$ and $\delta(q,a)$ are distinguishable, then (p,q) are distinguishable

3. Continue the inductive step, till no more pairs of distinguishable states can be added

The new DFA is formed by

- 1. First delete all non-reachable states
- 2. Find all nondistinguishable pairs of states
- 3. Each pair of non-distinguishable states is equivalent, and gives an equivalence relation
- 4. States of the new DFA are these equivalence classes
- 5. If $\delta(p,a)=q$ in the original DFA, then $\delta_{new}(E_p,a)=Eq$ where E_p and E_q are equivalence classes corresponding to p and q respectively
- 6. Initial state of the new DFA is the equivalence class containing the start state of the original DFA, final states of the new DFA are all equivalence classes containing a final state

Parallel Simulation of 2 DFAs

- Suppose we have $A = (Q, \Sigma, \delta, q_0, F)$ and $A' = (Q', \Sigma, \delta', q'_0, F')$
- Let $A'' = (Q \times Q', \Sigma, \delta', (q_0, q'_0), F'')$ where $\delta''((q, q'), a) = (\delta(q, a), \delta'(q', a))$ and F'' depends on the need. Then A'' simulates A and A' in parallel
- If F" = F × F', then A" accepts the intersection of languages accepted by A and A'
- If $F'' = F \times Q' \cup Q \times F'$, A'' accepts the union of languages accepted by A and A'

Regular Languages

Basis

- ϵ and \emptyset are regular expressions, $L(\epsilon) = \{\epsilon\}$ and $L(\emptyset) = \emptyset$
- If $a \in \Sigma$, then a is a regular expression, and $L(a) = \{a\}$

Induction

If r_1, r_2 are regular expressions, then so are

- $r_1 + r_2$. The language is $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- $r_1 \cdot r_2$. The language is $L(r_1 \cdot r_2) = \{xy \mid x \in L(r_1), y \in L(r_2)\}$
- r_1^* . The language is $L(r_1^*) = \{x_1 x_2, \dots, x_k \mid 1 \le i \le k, x_i \in L(r_1)\}$
- (r_1) . The language is $L((r_1)) = L(r_1)$

DFA to Regex

- R^k_{i,j} denotes the regex of strings which can be formed by going from state i to j using intermediate states ≤ k
- Base case: for $R_{i,i}^0$
- If $i \neq j$, $R_{i,j}^0 = a_1 + a_2 + \dots + a_m$ where a_1, \dots, a_m are all symbols such that $\delta(i, a_r) = j$
- If i = j, $R_{i,i}^0 = \epsilon + a_1 + \dots + a_m$ where a_1, \dots, a_m are all symbols such that $\delta(i, a_r) = i$
- Inductive case: $R_{i,j}^{k+1} = R_{i,j}^k + R_{i,k+1}^k (R_{k+1,k+1})^* R_{k+1,j}^k$
- Regex for the DFA is $\sum_{i \in F} R_{1,i}^n$

Regex Properties

- Operator precedence: *,·,+
- M + N = N + M
- L(M+N) = LM + LN
- L + L = L
- $(L^*)^* = L^*$
- Ø* = ε
- $\epsilon^* = \epsilon$
- $L^+ = LL^* = L^*L$
- $L^* = \epsilon + L^+$
- $(L+M)^* = (L^*M^*)^*$

Regular Language Properties

Theorem (Pumping Lemma). Let L be a regular language. Then there exists a constant n (dependent on L) such that for every string $w \in L$ satisfying $|w| \ge n$, w can be broken into three strings w = xyz, such that

- 1. $y \neq \epsilon$
- $2. |xy| \le n$
- 3. For all $k \ge 0$, $xy^k z \in L$
- If L_1, L_2 are regular, so is $L_1 \cup L_2$
- If L_1, L_2 are regular, so is $L_1 \cdot L_2$
- If L is regular, so is $\overline{L} = \Sigma^* L$
- If L_1, L_2 are regular, so is $L_1 \cap L_2$
- If L_1, L_2 are regular, so is $L_1 L_2$
- If L is regular, so is L^R
- Let h be a homomorphism. If L is regular, so is h(L)

Definition (Homomorphism). Let Σ and Γ be two alphabets, and suppose h is a mapping from Σ to Γ^* . h can be extended to strings as follows:

- $h(\epsilon) = \epsilon$
- $h(aw) = h(a) \cdot h(w)$ for any $a \in \Sigma$, $w \in \Sigma^*$