WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/11885 A61K 31/135, 31/195, 31/34, 31/36, A1 (43) International Publication Date: G01N 33/60, 33/68 26 March 1998 (26.03.98) (21) International Application Number: PCT/SE97/01555 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, (22) International Filing Date: 15 September 1997 (15.09.97) GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,

SE.

(71) Applicant (for all designated States except US): ASTRA AKTIEBOLAG [SE/SE]; S-151 85 Södertälje (SE).

18 September 1996 (18.09.96)

(72) Inventors; and

(30) Priority Data:

9603408-7

- (75) Inventors/Applicants (for US only): ANDREWS, Paul, L., R. [GB/GB]; 72 Wavertree Court, Streatham Hill, London SW2 4TW (GB). LEHMANN, Anders [SE/SE]; Borghamnsgatan 14, S-421 66 Västra Frölunda (SE).
- (74) Agent: ASTRA AKTIEBOLAG; Patent Dept., S-151 85 Södertälje (SE).

NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: REFLUX INHIBITORS

(57) Abstract

The present invention relates to the use of GABAB receptor agonists for the inhibition of transient lower esophageal sphincter relaxations, and for the treatment of gastro-esophageal reflux disease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL		FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziland
AU	Australia	GB	United Kingdom	MC	Monaco	TD	Chad
AZ	Azerbaijan		Georgia	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GE	•	MG	Madagascar	ТJ	Tajikistan
BB	Barbados	GH	Ghana	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN	Guinea	14175	Republic of Macedonia	TR	Turkey
BF	Burkina Faso	GR	Greece	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary	MN	Mongolia	UA	Ukraine
ВJ	Benin	IE	Ireland	MR	Mauritania	UG	Uganda
BR	Brazil	IL	Israel	MW	Malawi	US	United States of America
BY	Belarus	IS	Iceland	MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan		Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya	NL		zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzsian	NO	Norway	2.**	Emilion
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

REFLUX INHIBITORS

TECHNICAL FIELD

The present invention relates to the use of GABA_B receptor agonists for the inhibition of transient lower esophageal sphincter relaxations; for the treatment of gastro-esophageal reflux disease; and/or for the treatment of regurgitation in infants.

10 BACKGROUND ART

Reflux

15

25

In some humans, the lower esophageal sphincter (LES) is prone to relaxing more frequently than in other humans. As a consequence, fluid from the stomach can pass into the esophagus since the mechanical barrier is temporarily lost at such times, an event hereinafter referred to as "reflux".

Gastro-esophageal reflux disease (GERD) is the most prevalent upper gastrointestinal tract disease. Current therapy has aimed at reducing gastric acid secretion, or by reducing esophageal acid exposure by enhancing esophageal clearance, lower esophageal sphincter tone and gastric emptying. The major mechanism behind reflux has been considered to depend on a hypotonic lower esophageal sphincter. However, recent research (e.g. Holloway & Dent (1990) Gastroenterol. Clin. N. Amer. 19, 517-535) has shown that most reflux episodes occur during transient lower esophageal sphincter relaxations (TLESR), i.e. relaxations not triggered by swallows. It has also been shown that gastric acid secretion usually is normal in patients with GERD.

Consequently, there is a need for compounds which reduce the incidence of TLESR and thereby prevent reflux. Ideally, the compound should have an effect duration of approximately 12 h, since most reflux occurs during daytime and postprandially.

15

20

25

A pharmaceutical composition comprising a local anaesthetic, adapted to inhibit relaxation of the lower esophageal sphincter, is disclosed in WO 87/04077 and in US 5,036,057.

5 GABA_B receptor agonists

GABA (4-aminobutanoic acid) is an endogenous neurotransmitter in the central and peripheral nervous systems. Receptors for GABA have traditionally been divided into GABA_A and GABA_B receptor subtypes. GABA_B receptors (for a review see Kerr, D.I.B. and Ong, J. (1995) Pharmac. Ther. vol. 67, pp.187-246) belong to the superfamily of G-protein coupled receptors. GABA_B receptor agonists are described as being of use in the treatment of CNS disorders, such as muscle relaxation in spinal spasticity, cardiovascular disorders, asthma, gut motility disorders such as irritable bowel syndrome and as prokinetic and anti-tussive agents. GABA_B receptor agonists have also been disclosed as useful in the treatment of emesis (WO 96/11680).

The GABA_B receptor agonist baclofen (4-amino-3-(4-chlorophenyl)butanoic acid) (Swiss patent No. CH 449,046) has been the most studied of the GABA analogs.

Other GABA_B receptor agonists or partial agonists are disclosed in: EP 0356128; EP 0181833; EP 0399949; EP 0463969; and FR 2,722,192. For a review on the chemistry of

GABA_B modulators, see Froestl, W. and Mickel, S.J. in: The GABA Receptors, pp.271-296 (Eds. S.J. Enna and N.G. Bowery, Humana Press Inc., Totowa, NJ, U.S.A. 1997)

It is known in the art that drug screening can be improved by using cells which are transfected with a cloned receptor gene. Such transfected cells may offer several advantages over traditional screening, the most important being presumably selectivity. Another advantage of transfected cells is that they allow to asses the activity of drugs on cloned human receptors. The fact that the GABA_B receptor has recently been cloned (Kaupmann et al., Nature 386(6622), 239-246, 20 March 1997) thus offers the opportunity to develop more specific drugs acting on the GABA_B receptor. The said article discloses two subtypes of the receptor from rat, designated GABA_BR1a and GABA_BR1b, but it was made very clear that several other subtypes could be isolated.

DISCLOSURE OF THE INVENTION

It has been found surprisingly that GABA_B receptor agonists can be used for the inhibition of transient lower esophageal sphincter relaxations, and thus for the treatment of gastroesophageal reflux disease.

20

25

30

5

10

15

Consequently, the present invention provides the use of a GABA_B receptor agonist for the manufacture of a medicament for the inhibition of transient lower esophageal sphincter relaxations (TLESR), or more specifically, for the treatment of gastroesophageal reflux disease. For the purpose of this invention, the term "agonist" should be understood as including both full agonists as well as partial agonists, wherby a "partial agonist" should be understood as a compound capable of partially, but not fully, activating the GABA_B receptor.

The said inhibition of TLESR also implies that the said compounds can be used for the treatment of regurgitation in infants. Effective management of regurgitation in infants would

be an important way of managing lung disease due to aspiration of regurgitated gastric contents, and for managing failure to thrive due to excessive loss of ingested nutrient.

In a preferred form of the invention, the said GABA_B receptor agonist is a substituted aminopropyl acid derivative where the acidic head is a carboxilic group, a phosphinic group, a phosphonous group or a sulfinic group.

Examples of compounds having agonistic or partially agonistic affinity to GABAB receptors and thus can be used according to the invention are:

4-aminobutanoic acid (GABA),

4-amino-3-(4-chlorophenyl)butanoic acid (baclofen),

4-amino-3-phenylbutanoic acid,

4-amino-3-hydroxybutanoic acid,

4-amino-3-(4-chlorophenyl)-3-hydroxyphenylbutanoic acid,

4-amino-3-(thien-2-yl)butanoic acid,

4-amino-3-(5-chlorothien-2-yl)butanoic acid,

4-amino-3-(5-bromothien-2-yl)butanoic acid,

4-amino-3-(5-methylthien-2-yl)butanoic acid,

4-amino-3-(2-imidazolyl)butanoic acid,

4-guanidino-3-(4-chlorophenyl)butanoic acid,

3-amino-2-(4-chlorophenyl)-1-nitropropane,

(3-aminopropyl)phosphonous acid,

25 (4-aminobut-2-yl)phosphonous acid,

(3-amino-2-methylpropyl)phosphonous acid,

(3-aminobutyl)phosphonous acid,

(3-amino-2-(4-chlorophenyl)propyl)phosphonous acid,

(3-amino-2-(4-chlorophenyl)-2-hydroxypropyl)phosphonous acid.

30 (3-amino-2-(4-fluorophenyl)propyl)phosphonous acid,

- (3-amino-2-phenylpropyl)phosphonous acid,
- (3-amino-2-hydroxypropyl)phosphonous acid,
- (E)-(3-aminopropen-1-yl)phosphonous acid,
- (3-amino-2-cyclohexylpropyl)phosphonous acid,
- (3-amino-2-benzylpropyl)phosphonous acid,
 - [3-amino-2-(4-methylphenyl)propyl]phosphonous acid,
 - [3-amino-2-(4-trifluoromethylphenyl)propyl]phosphonous acid,
 - [3-amino-2-(4-methoxyphenyl)propyl]phosphonous acid,
 - [3-amino-2-(4-chlorophenyl)-2-hydroxypropyl]phosphonous acid,

- (3-aminopropyl)methylphosphinic acid,
- (3-amino-2-hydroxypropyl)methylphosphinic acid,
- (3-aminopropyl)(difluoromethyl)phosphinic acid,
- (4-aminobut-2-yl)methylphosphinic acid,
- 15 (3-amino-1-hydroxypropyl)methylphosphinic acid,
 - (3-amino-2-hydroxypropyl)(difluoromethyl)phosphinic acid,
 - (E)-(3-aminopropen-1-yl)methylphosphinic acid,
 - (3-amino-2-oxo-propyl)methyl phosphinic acid,
 - (3-aminopropyl)hydroxymethylphosphinic acid,
- 20 (5-aminopent-3-yl)methylphosphinic acid,
 - (4-amino-1,1,1-trifluorobut-2-yl)methylphosphinic acid,
 - (3-amino-2-(4-chlorophenyl)propyl)sulfinic acid,
 - 3-aminopropylsulfinic acid.
- Preferably, the said compound having agonistic or partially agonistic affinity to a GABAB receptor is any one of the following compounds:
 - 4-amino-3-(4-chlorophenyl)butanoic acid (baclofen),
 - (3-aminopropyl)methylphosphinic acid,
- 30 (3-amino-2-hydroxypropyl)methylphosphinic acid,

4-aminobutanoic acid (GABA),
(3-amino-2-(4-chlorophenyl)propyl)sulfinic acid,
(3-aminopropyl)(difluoromethyl)phosphinic acid,

(3-amino-2-oxo-propyl)methyl phosphinic acid,

4-amino-3-(5-chlorothien-2-yl)butanoic acid,

(3-aminopropyl)phosphonous acid.

The use of pharmaceutically acceptable salts of GABA_B ligands for the said purposes is also included in the invention. Most known GABA_B ligands such as for example baclofen, (3-aminopropyl) methylphosphinic acid and (3-amino-2-(S)-hydroxypropyl)-methylphosphinic acid are of amphoteric nature and may be present in the form of internal salts. They also can form acid addition salts and salts with bases. Such salts are particularly pharmaceutically acceptable acid addition salts, as well as pharmaceutically acceptable salts formed with bases. Suitable acids for the formation of such salts include, for example, mineral acids such as hydrochloric, hydrobromic, sulfuric or phosphoric acid or organic acids such as organic sulfonic acids and organic carboxylic acids. Salts of GABA_B ligands with bases are, for example, alkali metal salts, e.g. sodium or potassium salts, or alkaline earth metal salts, e.g. calcium or magnesium salts as well as ammonium salts, such as those with ammonia or organic amines.

20

25

30

5

10

The use of optical isomers of GABA_B ligands for the said purposes is also included in the invention. Many known GABA_B ligands such as for example baclofen and (3-amino-2-(S)-hydroxypropyl)methylphosphinic acid are chiral compounds due to the presence of an asymmetric carbon atom. Depending on the presence of asymmetric atoms, the GABA_B ligands may be in the form of mixtures of isomers, particularly racemates, or in the form of pure isomers, especially enantiomers.

In another aspect, the invention provides a method for the inhibition of transient lower esophageal sphincter relaxations which comprises administration to a mammal, including man, in need of such treatment an effective amount of a GABAB receptor agonist as defined above.

PCT/SE97/01555

Included in the invention is also a pharmaceutical composition for use in the inhibition of transient lower esophageal sphincter relaxations. More specifically, the said pharmaceutical composition is useful for the treatment of gastroesophageal reflux disease and/or for treatment of regurgitation in infants. The active ingredient in the said pharmaceutical composition can be any one of the GABAB receptor agonists as defined above.

Daily dose

5

For use as an inhibitor of TLESR and as a reflux inhibitor, the GABA_B receptor agonist may be used at doses appropriate for other conditions for which GABA_B receptor agonists are known to be useful. The typical daily dose of the active substance varies within a wide range and will depend on various factors such as for example the individual requirement of each patient and the route of administration. In general, dosages will be in the range of 1 µg to 100 mg per day and kg body weight.

Pharmaceutical formulations

- For clinical use, the compounds of the invention are formulated into pharmaceutical formulations for oral, rectal, parenteral or other mode of administration. The pharmaceutical formulation contains a compound of the invention in combination with one or more pharmaceutically acceptable ingredients. The carrier may be in the form of a solid, semi-solid or liquid diluent, or a capsule. These pharmaceutical preparations are a further object of the invention. Usually the amount of active compounds is between 0.1-95% by weight of the preparation, preferably between 0.2-20% by weight in preparations for parenteral use and preferably between 1 and 50% by weight in preparations for oral administration.
- In the preparation of pharmaceutical formulations containing a compound of the present invention in the form of dosage units for oral administration the compound selected may be

PCT/SE97/01555

mixed with solid, powdered ingredients, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives, gelatin, or another suitable ingredient, as well as with disintegrating agents and lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylene glycol waxes. The mixture is then processed into granules or pressed into tablets.

Soft gelatine capsules may be prepared with capsules containing a mixture of the active compound or compounds of the invention, vegetable oil, fat, or other suitable vehicle for soft gelatine capsules. Hard gelatine capsules may contain granules of the active compound. Hard gelatine capsules may also contain the active compound in combination with solid powdered ingredients such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives or gelatine.

Dosage units for rectal administration may be prepared (i) in the form of suppositories which contain the active substance mixed with a neutral fat base; (ii) in the form of a gelatine rectal capsule which contains the active substance in a mixture with a vegetable oil, paraffin oil or other suitable vehicle for gelatine rectal capsules; (iii) in the form of a ready-made micro enema; or (iv) in the form of a dry micro enema formulation to be reconstituted in a suitable solvent just prior to administration.

20

15

5

10

Liquid preparations for oral administration may be prepared in the form of syrups or suspensions, e.g. solutions or suspensions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar or sugar alcohols and a mixture of ethanol, water, glycerol, propylene glycol and polyethylene glycol. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharine and carboxymethyl cellulose or other thickening agent. Liquid preparations for oral administration may also be prepared in the form of a dry powder to be reconstituted with a suitable solvent prior to use.

30 Solutions for parenteral administration may be prepared as a solution of a compound of the invention in a pharmaceutically acceptable solvent, preferably in a concentration from

10

15

0.1% to 10% by weight. These solutions may also contain stabilizing ingredients and/or buffering ingredients and are dispensed into unit doses in the form of ampoules or vials. Solutions for parenteral administration may also be prepared as a dry preparation to by reconstituted with a suitable solvent extemporaneously before use.

Screening for compounds active against TLESR

Further included in the invention is the use of cells, transfected with a nucleotide sequence encoding a GABA_B receptor, for screening purposes, in order to identify inhibitors of transient lower esophageal sphincter relaxations. The said GABA_B receptor may be any one of the GABA_B receptor subtype genes, such as GABA_BR1a or the GABA_BR1b or the hitherto uncloned subtypes of the GABA_B receptor. The said nucleotide sequences may be derived from any species, but preferably from a mammal and most preferably from man.

Consequently, the invention further provides a method for the screening of compounds which are inhibitors of transient lower esophageal sphincter relaxations, comprising the use of a nucleotide sequence encoding a GABA_B receptor. In a preferred form such a method comprises the steps (a) transfecting a cultured cell with a nucleotide sequence encoding a GABA_B receptor, so that a GABA_B receptor is expressed on the surface of the cell; (b) contacting a test compound with the said cell; and (c) determining whether the test compound binds to, and/or activate, the GABA_B receptor. The said GABA_B receptor can e.g. be GABA_BR1a or GABA_BR1b.

EXAMPLES

25

30

20

Materials and Methods

Adult Labrador retriever dogs of both sexes (5 males, 3 females) weighing 20-30 kg were used. A cervical esophagostomy was formed to allow intubation. After a recovery period, the dogs were used in control experiments until a stable and reliable control response had been achieved. The dogs were used in other experiments before they were given the

PCT/SE97/01555 WO 98/11885 10

GABAB receptor agonists, but they were always allowed a wash-out period of at least two days during which time no drugs were administered. Every fourth experiment on each dog was a control experiment to ensure stability and reproducibility of the results.

5

25

30

The experiments were started at about 8 a.m. at which time the animals had been fasting for approximately 17 hrs. The dog was placed in a Pavlov stand to which it had been accustomed previously. A thin silicone catheter with a distal opening was introduced retrogradely through the esophagostomy into the pharynx to record swallowing. The catheter was perfused with air at approximately 2 ml/min. A multilumen assembly was positioned so that pressures could be recorded in the proximal stomach, LES and at four 10 sites in the distal esophagus. The assembly was fitted with a 6 cm long sleeve to measure LES pressure reliably. Gastric and LES channels were perfused with distilled degassed water at 0.45 ml/min and esophageal channels at 0.1 ml/min. A low-compliance pneumohydraulic pump was used to achieve optimal perfusion conditions. Intraluminal pressures were measured with external pressure transducers. The signals were amplified 15 and acquired using LabWindows/CVI software (version 3.1). Pressure calibrations were done at 0 and 100 mm Hg with the multilumen assemblies placed at a level slightly below the pressure transducers. The dog was positioned so that the average intragastric (i.g.) pressure approximated 0 mm Hg. An antimony pH-electrode was positioned 3 cm orad to the upper margin of the LES, and the signals were acquired as described above. Analysis of 20 acquired signals was made using LabWindows software.

Baseline measurement was done for at least 10 min, and then vehicle (0.9% NaCl; 0.5 ml/kg) or a GABAB receptor agonist was given i.v. over 2 min. Ten min after the completion of the administration, nutrient was infused i.g. via the multilumen assembly at a rate of 100 ml/min (30 ml/kg). GABA was given as a continuous i.v. infusion which commenced 10 min before nutrient administration; and R. S.-baclofen was in some cases given intragastrically 30 min before nutrient. The nutrient contained 10% peptone (w/v), 5% Intralipid (v/v) and 5% D-glucose (w/v) and was acidified to pH 3.0 with HCl. Immediately after the infusion, air was insufflated at 40 ml/min to make up a total time of WO 98/11885 PCT/SE97/01555

11

90 min starting from the commencement of nutrient infusion. The dog was then extubated and a baseline measurement was done to ensure that no drift had occurred.

A TLESR was identified by the following criteria; The difference between LES and i.g. pressures was less than 2 mm Hg, the duration was more than 0.5 s and the relaxation was not triggered by primary peristalsis (i.e. by a pharyngeal signal). The rate of pressure drop was more than 10 mm Hg/s. Most, but not all, TLESR could also be detected aurally by a characteristic noise at the esophagostomy (i.e. belching). The total number of TLESR was calculated for the first 45 min period and entire experiment (90 min). The effect of GABAB receptor agonists was expressed relative to individual control data ($n \ge 5$). Each agonist was tested in at least two different dogs.

Results and discussion

5

10

20

25

TLESR virtually never occurred in the fasting state but always after nutrient infusion and air insufflation. The incidence of TLESR varied significantly between dogs but the intraindividual variation was low.

GABA_B receptor agonists dose-dependently reduced the incidence of TLESR. The inhibition at 45 min was greater than that calculated for the entire experimental period (90 min). Since distension of the stomach is the chief stimulus for TLESR, the 45 min value is clearly the most relevant measure when inhibiting compounds are administered: A reduction in TLESR leads to an enhanced gas-induced gastric distension and consequently to a new threshold. This confounding effect is less pronounced at the beginning of the experiment (see below).

The inhibitory effect of GABA_B receptor agonists on TLESR was noted in the absence of behavioural side effects with the exception of the high R,S-baclofen dose which induced some sedation that disappeared approximately one hour after the administration.

WO 98/11885 PCT/SE97/01555

5

10

In control experiments, the i.g. pressure increased from 0 to about 4 mm Hg during nutrient infusion/air insufflation. Doses of GABA_B receptor agonists that afforded an almost complete inhibition of TLESR were accompanied by larger increments in i.g. pressure (10-13 mm Hg). Such high i.g pressures occasionally produced emesis at the end of the experiment. They result from the inability of the dogs to vent gas from the stomach when TLESR are abolished.

The results (Table 1) indicate that GABA_B receptor agonists inhibit the occurrence of TLESR after a liquid meal followed by air insufflation. The effect is not secondary to sedation or somnolence. It is concluded that compounds having affinity to GABA_B receptors may be useful therapeutic agents in the treatment of gastroesophageal reflux disease.

WO 98/11885

TABLE 1 Effect of various GABAB receptor agonists on TLESR in dog (mean \pm SEM). All compounds were given intravenously unless it is stated otherwise.

Compound	Dose (mg/kg)	% of control at 45 min	% of control at 90 min
R, S-baclofen	0.3	47 ± 6	66 ± 8
	1.5	11 ± 6	43 ± 19
R, S-baclofen	1.5	12 ± 6	54 ± 12
(intragastric admin.)			
R-baclofen	0.3	36 ± 10	40 ± 11
S-baclofen	1.5	76 ± 10	92 ± 10
(3-aminopropyl) methylphosphinic acid	0.003	57 ± 12	76 ± 5
	0.01	32 ± 8	39 ± 7
	0.03	25 ± 4	50 ± 17
	0.1	5 ± 5	33 ± 9
(3-Amino-2(S)- hydroxypropyl)methylpho sphinic acid	0.03	53 ± 7	65 ± 10
	0.3	0 ± 0	38 ± 6
GABA	1.81	62 ± 2	61 ± 3
	5.41	57 ± 6	54 ± 10

¹ Given as intravenous infusion over 100 min, i.e. 10 min before and during nutrient and air stimulation.

CLAIMS

5

- The use of a GABA_B receptor agonist, or a pharmaceutically acceptable salt or an optical isomer of the said GABA_B receptor agonist, for the manufacture of a medicament for the inhibition of transient lower esophageal sphincter relaxations.
- 2. The use according to claim 1 for the treatment of gastroesophageal reflux disease.
- 3. The use according to claim 1 for the treatment of regurgitation in infants.
- 4. The use according to any one of claims 1 to 3 wherein the said GABA_B receptor agonist is a substituted aminopropyl acid derivative where the acidic head is a carboxilic group, a phosphinic group, a phosphonous group or a sulfinic group.
- 5. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is 4-amino-3-(4-chlorophenyl)butanoic acid (baclofen).
 - 6. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is (3-aminopropyl)methylphosphinic acid.
- 7. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is (3-amino-2-hydroxypropyl)methylphosphinic acid.
 - 8. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is 4-aminobutanoic acid (GABA).
 - 9. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is (3-amino-2-(4-chlorophenyl)propyl)sulfinic acid.
- 10. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is (3-aminopropyl)(difluoromethyl)phosphinic acid.

- 11. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is (3-amino-2-oxo-propyl)methyl phosphinic acid.
- 5 12. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is 4-amino-3-(5-chlorothien-2-yl)butanoic acid.
 - 13. The use according to any one of claims 1 to 4 wherein the said GABA_B receptor agonist is (3-aminopropyl)phosphonous acid.
- 14. A method for the inhibition of transient lower esophageal sphincter relaxations which comprises administering to a mammal, including man, in need of such treatment an effective amount of a GABA_B receptor agonist, or a pharmaceutically acceptable salt or an optical isomer of the said GABA_B receptor agonist.
 - 15. The method according to claim 10 for the treatment of gastroesophageal reflux disease.
 - 16. The method according to claim 10 for the treatment of regurgitation in infants.
- 17. The method according to any one of claims 14 to 16 wherein the said GABA_B receptor agonist is a substituted aminopropyl acid derivative where the acidic head is a carboxilic group, a phosphinic group, a phosphonous group or a sulfinic group.
- 18. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is 4-amino-3-(4-chlorophenyl)butanoic acid (baclofen).
 - 19. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is (3-aminopropyl)methylphosphinic acid.
- 20. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is (3-amino-2-hydroxypropyl)methylphosphinic acid.

- 21. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is 4-aminobutanoic acid (GABA).
- 5 22. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is (3-amino-2-(4-chlorophenyl)propyl)sulfinic acid.
 - 23. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is (3-aminopropyl)(difluoromethyl)phosphinic acid.
 - 24. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is (3-amino-2-oxo-propyl)methyl phosphinic acid.
- 25. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is 4-amino-3-(5-chlorothien-2-yl)butanoic acid.
 - 26. The method according to any one of claims 14 to 17 wherein the said GABA_B receptor agonist is (3-aminopropyl)phosphonous acid.
- 27. A method for the screening of compounds which are inhibitors of transient lower esophageal sphincter relaxations, comprising the use of a nucleotide sequence encoding a GABA_B receptor.
 - 28. The method according to claim 27 comprising the steps (a) transfecting a cultured cell with a nucleotide sequence encoding a GABA_B receptor, so that a GABA_B receptor is expressed on the surface of the cell; (b) contacting a test compound with the said cell; and (c) determining whether the test compound binds to, and/or activate, the GABA_B receptor.
- 29. The method according to claim 27 or 28 wherein the said GABA_B receptor is GABA_BR1a or GABA_BR1b.

International application No. PCT/SE 97/01555

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: A61K 31/135, A61K 31/195, A61K 31/34, A61K 31/36, G01N 33/60, G01N 33/68 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: A61K, G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CA WPI EMBASE MEDLINE IFIPAT

C. DOCU	MENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Brain Research Bulletin, Volume 38, No 6, 1995, Robert J. Washabau et al, "GABA Receptors in the Dorsal Motor Nucleus of the Vagus Influence Feline Lower Esophageal Sphincter and Gastric Function" page 587 - page 594	1-4
A	- -	5-13,27-29
A	Neurochemical Research, Volume 21, No 2, 1996, Kyoji Nakajima et al, "Immunohistochemical Demonstration of GABAB Receptors in the Rat Gastrointestinal Tract" page 211 - page 215	1-13,27-29
A	EP 0556880 A2 (GLAXO GROUP LIMITED), 25 August 1993 (25.08.93)	1-13

X Further documents are listed in the continuation of Bo	x C. See patent family annex.			
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
"E" erlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
Date of the actual completion of the international search	"&" document member of the same patent family Date of mailing of the international search report			
15 January 1998	2 2 -01- 1998			
Name and mailing address of the ISA/ Swedish Patent Office	Authorized officer			
Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86	Eva Johansson Telephone No. + 46 8 782 25 00			

Form PCT/ISA/210 (second sheet) (July 1992)

International application No.
PCT/SE 97/01555

		CL\2F 3\\01	555
G (G a ships	nation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	of the galaxa	nt passages	Relevant to claim No.
A	US 5491134 A (PHILIP M. SHER ET AL), 13 February 1996 (13.02.96)		1-13
A	US 5036057 A (CHRISTOPHER J. MARTIN), 30 July (30.07.91)	1991	1-13
A	WO 9529234 A1 (MERCK SHARP & DOHME LIMITED), 2 November 1995 (02.11.95)		27-29
Α	WO 9009096 A2 (CAMBRIDGE NEUROSCIENCE RESEARCH INC.), 23 August 1990 (23.08.90)	,	27-29
	T/ISA/210 (continuation of second sheet) (July 1992)		

International application No. PCT/SE97/01555

	Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
	This is	nternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons.
	1.	Claims Nos.: 14-26 because they relate to subject matter not required to be searched by this Authority, namely:
		See PCT Rule 39.1.(iv).: Methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods.
	2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3	s	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
E	Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
T	his Int	ernational Searching Authority found multiple inventions in this international application, as follows:
	S	ee extra sheet.
1.	X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
		of any additional fee.
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	☐ ;	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Ren	nark o	The additional search fees were accompanied by the applicant's protest.
_		No protest accompanied the payment of additional search fees.

International application No. PCT/SE97/01555

The subjects, defined by the problems and their means of solution as listed below are so different from each other, that no technical relationship can be appreciated to be present so as to form a single general inventive consept:

Claims 1-26: relate to a use of a GABAB receptor agonist, for the manufacture of a medicament for the inhibition of transient lower esophageal sphincter relaxations.

Clains 27-29: relate to a method for the screening of compounds which are inhibitors of transient lower esophageal sphincter relaxations, comprising the use of a nucleotide sequence encoding a $GABA_B$ receptor.

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.
PCT/SE 97/01555

	atent document i in search repo		Publication date		Patent family member(s)		Publication date
EP	0556880	A2	25/08/93	AU AU CA DE EP SE EP IL JP JP ZA	666904 3198193 2087823 69208666 0596934 0596934 0713698 104464 5255114 6511200 9300424	A A D,T A,B T3 A A	29/02/96 29/07/93 23/07/93 26/09/96 18/05/94 29/05/96 30/09/97 05/10/93 15/12/94 11/10/93
 US	 5491134	Α	 13/02/96	ZA NONI		A 	11/10/93
US	5036057	A	30/07/91	AU AU EP US WO	594424 6844887 0250572 5254591 8704077	A A A	08/03/90 28/07/87 07/01/88 19/10/93 16/07/87
WO	9529234	A1	02/11/95	CA EP GB	2188258 0756626 9408064	A	02/11/95 05/02/97 00/00/00
WO	9009096	A2	23/08/90	AU	5106790		05/09/90

Form PCT/ISA/210 (patent family annex) (July 1992)