Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil A: Reguläre Sprachen

2: Endliche Automaten

Version von: 17. April 2018 (12:10)

Testprogramme für reguläre Sprachen

• In der letzten Stunde hatten wir einen (erweiterten) regulären Ausdruck für e-Mail-Adressen konstruiert:

$$\begin{aligned} ([a\text{-}zA\text{-}Z][a\text{-}zA\text{-}Z0\text{-}9\backslash - \backslash _]^* \centerdot)^* [a\text{-}zA\text{-}Z][a\text{-}zA\text{-}Z0\text{-}9\backslash - \backslash _]^* @ \\ ([a\text{-}zA\text{-}Z][a\text{-}zA\text{-}Z0\text{-}9\backslash - \backslash _]^* \centerdot)^+ [a\text{-}zA\text{-}Z]^{\{2,4\}} \end{aligned}$$

- Heute beschäftigen wir uns mit Testalgorithmen für reguläre Sprachen
 - Also: Algorithmen, die für eine gegebene Sprache $m{L}$ testen, ob ein Eingabewort $m{w}$ in $m{L}$ ist
- Im ersten Teil werden wir aus einem in Pseudocode geschriebenen Testalgorithmus ein Berechnungsmodell für reguläre Sprachen abstrahieren: **endliche Automaten**
- Im zweiten Teil werden wir eine flexiblere Variante endlicher Automaten betrachten, die die automatische Umwandlung von REs in endliche Automaten erleichtern wird

Ein "Programm" zur Erkennung von e-Mail-Adressen

2.1

Alg. 2.1: Erkennung von e-Mail-Adressen InLabel := false; Error := false; Local := true; Letters := true

chars := 0; labs := 0; while NOT EOF() do

```
z := NextSymbol case z \mid N
```

```
[a-zA-Z]: InLabel := true; chars := chars + 1
```

[0-9\-_]:

if InLabel then

chars := chars + 1; Letters := false

else

Error := true

[.]:

if InLabel then

```
chars := 0; labs := labs + 1 lnLabel := false; Letters := false
```

else

Error := true

```
Alg. 2.1 (Fortsetzung)
```

```
while ... do {Fortsetzung while-Schleife}
  case ...
   [@]:
    if Local then
       chars := 0; labs := 0;
       InLabel := false;
       Local := false; Letters := true
    else
       Error := true
if NOT Error AND Letters AND NOT Local
AND labs \geqslant 1 AND 2 \leqslant chars \leqslant 4 then
  Print("OK")
else
  Print("Nicht OK")
```

- Das ist "einfach so runter programmiert"
- Ist das Programm korrekt?
- → Gibt es einen Weg, um einen regulären Ausdruck automatisch und zuverlässig in ein Programm zu übersetzen?

Vom Programm zum Automaten

- Was ist besonders an Algorithmus 2.1?
 - Die Eingabe wird Zeichen für Zeichen gelesen und verarbeitet
 - Es gibt nur begrenzt viele (relevante) Kombinationen von Werten der Programm-Variablen:
 - * $InLabel \in \{true, false\}$
 - * Error \in {true, false}
 - * Local \in {true, false}
 - * Letters \in {true, false}
 - * chars $\in \{0, 1, 2, 3, 4, \geqslant 5\}$
 - * labs $\in \{0, \text{``} \geqslant 1\text{``}\}$
- Wir nennen jede mögliche Kombination von Variablenwerten einen Zustand
- Beim Lesen eines Zeichens geht das Programm also von einem Zustand in einen anderen Zustand über

- Ein solches System aus (endlich vielen)
 Zuständen und Zustandsübergängen heißt endliches Transitionssystem oder endlicher Automat
 - Die feinen Unterschiede zwischen diesen Begriffen werden wir später betrachten
- Wieviele Zustände hat der Automat für Algorithmus 2.1?
 - Bei naiver Vorgehensweise:

• Wir werden sehen:

das geht erheblich besser

 Jetzt betrachten wir aber zunächst mal ein kleineres Beispiel eines Automaten

Inhalt

- > 2.1 Endliche Automaten: Definition und Konstruktion
 - 2.2 Nichtdeterministische endliche Automaten
 - 2.3 Von regulären Ausdrücken zu nichtdeterministischen Automaten

Endliche Automaten: Beispiel

• Eingabe: 001101010

• Eingabe: 101100

- Der String 001101010 wird von dem Automaten akzeptiert
- Der String 101100 wird von dem Automaten nicht akzeptiert
- ullet Dieser Automat akzeptiert einen String genau dann, wenn er den Teilstring 010 enthält, also wenn er in der Sprache $L((0+1)^*010(0+1)^*)$ ist
- ullet Wir sagen, dass der Automat die Sprache $oldsymbol{L}((\mathbf{0}+\mathbf{1})^*\mathbf{0}\mathbf{1}\mathbf{0}(\mathbf{0}+\mathbf{1})^*)$ entscheidet
- Die graphische Darstellung von Automaten ist zwar anschaulich, aber wir benötigen präzise Definitionen, die unzweideutig festlegen,
 - was ein endlicher Automat ist, und
 - wie ein endlicher Automat "funktioniert"

Endliche Automaten: Definition

Definition (Syntax endlicher Automaten)

- ullet Ein **endlicher Automat** ${\mathcal A}$ besteht aus
 - einer endlichen Menge $oldsymbol{Q}$ von $oldsymbol{Zu-ständen},$
 - einem Eingabealphabet Σ ,
 - einer Transitionsfunktion

$$\delta: Q \times \Sigma \to Q$$
,

- einem Startzustand $s \in Q$, und
- einer Menge $F\subseteq Q$ akzeptierender Zuständen
- ullet Wir schreiben $oldsymbol{\mathcal{A}} = (oldsymbol{Q}, oldsymbol{\Sigma}, oldsymbol{\delta}, s, oldsymbol{F})$
- In der graphischen Darstellung von endlichen Automaten
 - wird der Startzustand durch eine "aus dem nichts kommende" Kante markiert,
 - werden die akzeptierenden Zustände durch einen doppelten Rand markiert

Beispiel: der 010-Automat formal

- ullet ${\cal A}_{010}=(Q_{010},\{0,1\},\delta_{010},s_{010},F_{010})$
- $Q_{010} = \{a, b, c, d\}$
- $s_{010} = a$
- $F_{010} = \{d\}$
- ullet $\delta_{010}(a,0)=b$, $\delta_{010}(a,1)=a$, . . .

Abkürzung:

DFA für deterministic finite automaton

 Plural: DFAs für deterministic finite automata

Endliche Automaten: Semantik (1/2)

- Informelle Semantik endlicher Automaten:
 - Der Automat liest die Eingabe Zeichen für Zeichen, beginnend im Startzustand
 - Er geht dabei jeweils gemäß der Transitionsfunktion δ in einen Zustand über
 - Er akzeptiert die Eingabe, falls er am Ende in einem Zustand aus $m{F}$ ist
- Um Aussagen über Automaten beweisen zu können, benötigen wir wieder eine formale Semantik

- Dazu definieren wir die **erweiterte Transi**tionsfunktion δ^* :
 - $\pmb{\delta}^*(\pmb{q}, \pmb{w})$ soll der Zustand sein, den der Automat annimmt, wenn er vom Zustand \pmb{q} aus den String \pmb{w} liest

Definition (Semantik endlicher Automaten)

- Die <u>erweiterte Transitionsfunktion</u> $\delta^*: Q \times \Sigma^* \to Q$ eines Automaten $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ ist wie folgt induktiv definiert:
 - $egin{aligned} -\delta^*(q,\epsilon) \stackrel{ ext{def}}{=} q, \ -\delta^*(q,u\sigma) \stackrel{ ext{def}}{=} \delta(\delta^*(q,u),\sigma) \ & ext{für } u \in \Sigma^*, \sigma \in \Sigma \end{aligned}$
- ullet $oldsymbol{\mathcal{A}}$ akzeptiert $oldsymbol{w} \overset{ ext{def}}{\Leftrightarrow} oldsymbol{\delta}^*(oldsymbol{s}, oldsymbol{w}) \in oldsymbol{F}$
- Von \mathcal{A} entschiedene Sprache:

$$\underline{L(\mathcal{A})} \stackrel{ ext{ iny def}}{=} \{ oldsymbol{w} \in oldsymbol{\Sigma^*} \mid \mathcal{A} ext{ akzeptiert } oldsymbol{w} \}$$

Endliche Automaten: Semantik (2/2)

```
Beispiel
                                                                                        0.1
\delta^*(a, 0110101)
   =\delta(\delta^*(a,011010),1)
  =\delta(\delta(\delta^*(a,01101),0),1)
  =\delta(\delta(\delta(\delta^*(a,0110),1),0),1)
  \delta = \delta(\delta(\delta(\delta(\delta^*(a,011),0),1),0),1)
  =\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(a,01),1),0),1),0),1))
  =\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(a,0),1),1),0),1),0),1))
  =\delta(\delta(\delta(\delta(\delta(\delta(\delta(a,0),1),1),0),1),0),1)
  =\delta(\delta(\delta(\delta(\delta(\delta(b,1),1),0),1),0),1)
  =\delta(\delta(\delta(\delta(\delta(c,1),0),1),0),1)
  oldsymbol{\delta} = \delta(\delta(\delta(\delta(a,0),1),0),1)
  =\delta(\delta(\delta(b,1),0),1)
  =\delta(\delta(c,0),1)
  = \delta(d, 1)
   = d
```

Konstruktion endlicher Automaten: Beispiel

- Wie lässt sich zu einer gegebenen Sprache ein Automat konstruieren?
- Es müssen folgende Fragen geklärt werden
- Welche Informationen muss der Automat sich merken?
 Zustände
 - Welche Bedeutung haben dann die einzelnen Zustände?
- Wie ändern sich diese Informationen durch das Lesen eines
 Zeichens?
- Wie ist die Initialisierung?

Startzustand

 Wie beeinflussen die gemerkten Informationen das Akzeptierverhalten?
 Akzeptierende Zustände

Beispiel

- ullet Konstruktion eines DFA für die Menge L_g aller Zeichenketten über $\{0,1\}$ mit gerade vielen 0 und 1
- Informationen, die der Automat sich merkt:
 - Ist die Anzahl der bisher gelesenen 0-Zeichen gerade oder ungerade
 - Ist die Anzahl der bisher gelesenen 1-Zeichen gerade oder ungerade
- Das ergibt vier Zustände: $q_{gg}, q_{gu}, q_{ug}, q_{uu}$ mit offensichtlicher Bedeutung:

- Wie ändern sich die Zustände? Klar!
- ullet Welches ist der Startzustand? q_{qq}
- ullet Welche Zustände sollen Akzeptieren bewirken? q_{gg}

Zwischenfrage

PINGO-Frage: pingo.upb.de

Wie viele Zustände benötigt ein DFA, der genau die Strings über $\{a,b\}$ akzeptiert, die mit a beginnen und gerade viele b's haben?

- (A) 3
- (B) 4
- (C) 5
- (D) 6

Inhalt

- 2.1 Endliche Automaten: Definition und Konstruktion
- > 2.2 Nichtdeterministische endliche Automaten
 - 2.3 Von regulären Ausdrücken zu nichtdeterministischen Automaten

Von REs zu DFAs: Grundideen

- Unser Ziel: Wir suchen eine Methode zur Umwandlung von REs in Automaten
- Die Grundideen dafür sind sehr einfach und werden hier zunächst anhand von Automatenfragmenten vorgestellt
- Im Prinzip sollen REs induktiv in DFAs umgewandelt werden
- ullet Ein Zeichen $oldsymbol{\sigma}$ eines regulären Ausdrucks wird in eine einzelne Transition übersetzt:

 Die Konkatenation von Zeichen entspricht der Hintereinanderausführung von Transitionen, z.B. für 010:

Die Auswahl in REs entspricht einer Verzweigung im Automaten, z.B. ergibt sich für 10+01:

• Die **Iteration** entspricht einer Schleife im Automaten: z.B. ergibt sich für $(010)^*$:

Von REs zu DFAs: Schwierigkeiten und Lösungsansatz

Schwierigkeiten

- ullet Die Umsetzung der Auswahl 10+01 ist einfach, da die beiden Teilausdrücke mit verschiedenen Zeichen anfangen
- Aber wie soll eine **Auswahl** wie $((\mathbf{00})^+ + \mathbf{001})$ umgesetzt werden?
 - Soll eine gelesene 0 als erstes Zeichen von $(00)^+$ oder als erstes Zeichen von 001 angesehen werden?
- Und wie soll die Konkatenation einer Iteration mit einem anderen RE umgesetzt werden?
 - Z.B.: (0+1)*0
 - Soll eine gelesene 0 als Zeichen von $(0+1)^*$ oder als abschließende 0 betrachtet werden?
- ullet Beide Schwierigkeiten kommen in dem Ausdruck $(0+1)^*((00)^++001)0$ kombiniert vor

Lösungsansatz

- Wir erweitern unser Automatenmodell und erlauben, dass ein Automat in einem Zustand mehrere Transitionen für das selbe gelesene Zeichen hat
- Der Ausdruck $(0+1)^*((00)^++001)0$ lässt sich dann übersetzen in:

- Ein solcher Automat kann für dieselbe Eingabe verschiedene Berechnungen haben
- Wie soll dann definiert sein, dass er eine Eingabe akzeptiert?

Nichtdeterministische Endliche Automaten

- ullet Wir sagen, "der Automat akzeptiert ein Wort w", falls eine Berechnung existiert, in der w vollständig gelesen und dann ein akzeptierender Zustand erreicht wird
 - → nichtdeterministisches Akzeptieren

Definition (NFA)

- ullet Ein <u>nichtdeterministischer endlicher Automat</u> ${\cal A}=(Q,\Sigma,\delta,s,F)$ besteht aus
 - einer Zustandsmenge Q,
 - einem Eingabealphabet Σ ,
 - einem Anfangszustand $s \in Q$,
 - einer Menge $oldsymbol{F}$ akzeptierender Zustände,
 - sowie einer Transitionsrelation

$$\delta \subseteq Q imes \Sigma imes Q$$

Beispiel (Forts.)

- ullet Im Beispiel enthält δ unter anderem:
 - -(d,0,b)
 - -(d, 0, g)
 - -(e, 1, f)
 - -(a, 1, a)

aber kein Tupel der Art $(oldsymbol{g}, oldsymbol{\sigma}, oldsymbol{p})$ für ein $oldsymbol{\sigma} \in \{oldsymbol{0}, oldsymbol{1}\}$ und $oldsymbol{p} \in oldsymbol{Q}$

Nichtdeterministische Automaten: Notation

 NFA: Abkürzung für den Begriff "nichtdeterministischer Automat"

non-deterministic finite automaton

- ullet Statt $(p,\sigma,q)\in oldsymbol{\delta}$ verwenden wir häufig die intuitivere Notation $p\overset{\sigma}{
 ightarrow}q$
 - Um zu betonen, dass es sich um eine Transition im Automaten $\mathcal A$ handelt, schreiben wir manchmal auch $p\overset{\sigma,\mathcal A}{\to}q$
- Zur Vorbereitung für die Definition der Semantik von NFAs formalisieren wir zunächst den informellen Begriff "Berechnung" durch den formalen Begriff Lauf

NFAs: Semantik (1/2)

Definition (Lauf eines NFA)

- $oldsymbol{\bullet}$ Ein <u>Lauf</u> ho eines NFAs $\mathcal{A}=(Q,\Sigma,\delta,s,F)$ ist eine Folge der Art $q_0,\sigma_1,q_1,\ldots,\sigma_n,q_n$, wobei
 - für alle $i \in \{0,\ldots,n\}$: $q_i \in Q$,
 - für alle $i \in \{1, \dots, n\}$: $\sigma_i \in \Sigma$, und
 - für alle $i \in \{1, \dots, n\}$: $q_{i-1} \overset{oldsymbol{\sigma}_i}{
 ightarrow} q_i$
- ullet Wir sagen: ho ist ein Lauf von q_0 nach q_n , der den String $w=\sigma_1\cdots\sigma_n$ liest
- $egin{aligned} ullet & ext{Statt }
 ho = q_0, \sigma_1, q_1, \ldots, \sigma_n, q_n \ & ext{schreiben wir meist} \
 ho = q_0 {\stackrel{\sigma_1}{
 ightarrow}} q_1 \cdots q_{n-1} {\stackrel{\sigma_n}{
 ightarrow}} q_n \end{aligned}$
- Abkürzende Schreibweise:
 - $-\underbrace{p\overset{w}{
 ightarrow}q}_{q, ext{ der}}\overset{ ext{def}}{\Leftrightarrow}$ es gibt einen Lauf von p nach q, der den String w liest
- riangle Spezialfall n=0: q ist ein Lauf für das leere Wort

Beispiel

- a,0,b,0,d,0,b,0,d,0,g ist ein Lauf von a nach g, der das Wort 00000 liest
- ullet a,1,a,1,b,0,d ist kein Lauf
- b, 0, d, 0, g ist ein Lauf von b nach g, der das Wort 00 liest
- In der anderen Notation:

$$-a \xrightarrow{0} b \xrightarrow{0} d \xrightarrow{0} b \xrightarrow{0} d \xrightarrow{0} g$$

$$-a \stackrel{00000}{\rightarrow} g$$

$$-b \xrightarrow{0} d \xrightarrow{0} g$$

NFAs: Semantik (2/2)

Definition (Semantik von NFAs)

- ullet Sei ${\cal A}=({m Q},{m \Sigma},{m \delta},s,{m F})$ ein NFA
- ullet Ein Lauf von s zu einem Zustand aus F heißt **akzeptierend**
- $L(\mathcal{A})$ ist die Menge aller Strings, für die es einen akzeptierenden Lauf von \mathcal{A} gibt: $L(\mathcal{A}) \stackrel{\scriptscriptstyle \mathsf{def}}{=} \{ w \in \Sigma^* \mid s \stackrel{w}{
 ightarrow} q, q \in F \}$

Beispiel

- ullet Sei ${\cal A}$ der obige NFA
- $a \xrightarrow{0} a \xrightarrow{0} b \xrightarrow{0} d \xrightarrow{0} b \xrightarrow{0} d$ ist ein nicht akzeptierender Lauf für 00000
- $a \xrightarrow{0} b \xrightarrow{0} d \xrightarrow{0} b \xrightarrow{0} d \xrightarrow{0} g$ ist ein akzeptierender Lauf für 00000
- ullet Da es einen akzeptierenden Lauf für 00000 gibt, ist $00000 \in L(\mathcal{A})$
- ullet Für 01001 gibt es keinen akzeptierenden Lauf, deshalb ist $01001
 otin L(\mathcal{A})$

Bemerkungen zu nichtdeterministischen Automaten

- Nichtdeterminismus ist zunächst gewöhnungsbedürftig und hat für viele etwas "Beunruhigendes"
- Zur Beruhigung:
 - Nichtdeterministische Automaten sind für uns zunächst nur Mittel zum Zweck:
 - * Sie stellen einen Zwischenschritt zwischen regulären Ausdrücken und (deterministischen) endlichen Automaten dar
 - * Die am Ende resultierenden Testprogramme sind also deterministisch
- Nichtdeterminismus ist zur Modellierung von Systemen allerdings häufig sehr hilfreich

NFA mit ϵ -Transitionen

- Um den Übergang von regulären Ausdrücken (REs) zu nichtdeterministischen endlichen Automaten (NFAs) zu erleichtern, betrachten wir die Erweiterung von NFAs um ε-Transitionen
- Damit machen wir NFAs "noch nichtdeterministischer":
 - Sie bekommen die Möglichkeit den Zustand zu wechseln, ohne ein Zeichen zu lesen
- Warum ist das praktisch?
 - Damit lassen sich Konkatenationen und Wiederholungen übersichtlicher im NFA repräsentieren
- ullet Als Beispiel betrachten wir einen Automaten für den RE $oldsymbol{1^*(10)^*1}$

NFA mit ϵ -Transitionen: formal

Beispiel

Definition (ϵ -NFA)

- Ein <u>nichtdeterministischer endlicher Automat</u> $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ <u>mit ϵ -Transitionen</u> (ϵ -NFA) besteht aus
 - einer Zustandsmenge Q,
 - einem Eingabealphabet Σ ,
 - einem Anfangszustand $s \in Q$,
 - einer Menge $oldsymbol{F}$ akzeptierender Zustände,
 - sowie einer Transitionsrelation

$$oldsymbol{\delta} \subseteq oldsymbol{Q} imes (oldsymbol{\Sigma} \cup \{oldsymbol{\epsilon}\}) imes oldsymbol{Q}$$

ullet Im Beispiel gilt $a \overset{\epsilon}{
ightarrow} b$

- Wie lässt sich die Semantik von ϵ -NFAs definieren?
 - Im Prinzip wie zuvor: aber Läufe dürfen jetzt auch Schritte der Art $p \overset{\epsilon}{
 ightharpoonup} q$ enthalten, falls $(p,\epsilon,q) \in \delta$
- ullet Wir überladen unsere Notation etwas und schreiben $p \stackrel{\epsilon}{\to} q$ auch, wenn es einen Lauf von p nach q gibt, der nur ϵ -Transitionen verwendet
- Bei einem ϵ -NFA bedeutet die Schreibweise $p \xrightarrow{w} q$, dass es einen Lauf von p nach q gibt, der w liest und zwischendurch möglicherweise auch noch ϵ -Transitionen verwendet

Inhalt

- 2.1 Endliche Automaten: Definition und Konstruktion
- 2.2 Nichtdeterministische endliche Automaten

Umwandlung RE -> NFA: Beispiel

• Die Umwandlung von REs in NFAs lässt sich relativ einfach **in- duktiv** umsetzen (im Beispiel sogar ohne ϵ -Transitionen)

Beispiel

• Für $(0+1)^*(011+001)0$ ergeben sich Teilautomaten:

• ... aus denen sich der Gesamtautomat zusammensetzen lässt:

Vom RE zum ϵ -NFA (1/2)

Proposition 2.2

ullet Zu jedem RE lpha gibt es einen ϵ -NFA $oldsymbol{\mathcal{A}}$, so dass $L(lpha) = L(oldsymbol{\mathcal{A}})$ gilt

Beweisskizze

- Wir zeigen etwas mehr: A kann so konstruiert werden, dass
 - in den Startzustand keine Transitionen hineinführen, und
 - aus dem eindeutigen akzeptierenden Zustand keine Transitionen herausführen
- ullet Also: $oldsymbol{\mathcal{A}}=(oldsymbol{Q},oldsymbol{\Sigma},oldsymbol{\delta},s,oldsymbol{F})$ mit
 - wenn $p \overset{\sigma}{
 ightarrow} q$ oder $p \overset{\epsilon}{
 ightarrow} q$ dann $p \notin F$ und $q \neq s$
 - -|F| = 1
- ullet Wir konstruieren ${\cal A}$ durch Induktion nach der Struktur von lpha
- Den Beweis, dass die Konstruktion korrekt ist, ersparen wir uns: er wird mit struktureller Induktion geführt

Beweisskizze (Forts.)

• $\alpha = \epsilon$:

• $\alpha = \emptyset$:

 $\bullet \ \alpha = \sigma$:

Vom RE zum ϵ -NFA (2/2)

Beweisskizze (Forts.)

• $\alpha = \beta \gamma$:

• $\alpha = \beta + \gamma$:

• $\alpha = \beta^*$:

Vom RE zum ϵ -NFA: Beispiel

Beispiel

ullet Bei der Umwandlung des regulären Ausdrucks $(ab)^*(c+\epsilon)$ nach der beschriebenen Methode erhalten wir:

E-Mail-Adressen: Vom RE zum NFA

- ullet Jetzt können wir also einen RE automatisch in einen äquivalenten ϵ -NFA umwandeln
- Wir betrachten das Beispiel des e-Mail-Ausdrucks:
 ([a-zA-Z][a-zA-Z0-9\-_]*.)*[a-zA-Z][a-zA-Z0-9\-_]*.)*[a-zA-Z]^{2,4}
- ullet Statt des automatisch erzeugten ϵ -NFA betrachten wir aus Platzgründen allerdings einen etwas "optimierten" NFA
- Wir verwenden im NFA einige Abkürzungen:
 - A steht für a,\ldots,z,A,\ldots,Z
 - 1 steht für $0,\ldots,9$ sowie \setminus und \setminus _
- NFA:

Jetzt fehlt nur noch der Schritt zum DFA...

Die bisher betrachteten Modelle

Erläuterungen (1/2)

Bemerkung <2.1

- Die informelle Bedeutung der Variablen des Testprogramms für e-Mail-Adressen
 - InLabel: erstes Zeichen des aktuellen labels schon gelesen
 - Local: Noch im lokalen Namen
 - Letters: im aktuellen Label bisher nur Buchstaben
 - chars: Anzahl der bisherigen Zeichen im aktuellen Label
 - labs: Anzahl der Labels im bisherigen (lokalen oder Domain-) Namen

Bemerkung (2.2)

- Die akzeptierenden Zustände von DFAs werden häufig auch "Endzustände" genannt
- Diese Begriffsbildung verwenden wir in dieser Veranstaltung nicht
- Denn:
 - DFAs halten an, wenn sie das Eingabewort gelesen haben, unabhängig davon, ob sie einen akzeptierenden Zustand erreicht haben
 - Den Begriff "Endzustand" werden wir später noch für Zustände (für andere Berechnungsmodelle) verwenden, die zum sofortigen Anhalten führen
- ullet Wir verwenden trotzdem den üblichen Buchstaben $m{F}$ für die Menge der akzeptierenden Zustände, auch wenn er sich von **final** herleitet

Bemerkung <2.3

ullet Wir verwenden hier $((\mathbf{00})^+$ als Abkürzung für $\mathbf{00}(\mathbf{00})^*)$

Erläuterungen (2/2)

δ : Funktion oder Relation?

- ullet Wir bezeichnen mit δ in DFAs eine Funktion, in NFAs eine Relation
 - In DFAs könnten wir δ auch als Relation schreiben
 - * aber Funktionen sind dort intuitiver, da es zu jedem $m{p} \in m{Q}$ und $m{\sigma} \in m{\Sigma}$ nur genau einen Zustand $m{q}$ mit $(m{p}, m{\sigma}, m{q}) \in m{\delta}$ gibt
 - Umgekehrt ließe sich δ in NFAs auch als die Funktion definieren, die p und σ auf $\{q \mid (p,\sigma,q) \in \delta\}$ abbildet
 - * Für NFAs hat aber die Relationsschreibweise Vorteile

Mengen von Startzuständen

ullet In der Literatur werden NFAs manchmal auch mit einer Menge I von Startzuständen definiert

Fehler- oder Senkenzustand

- Manche DFAs haben einen sogenannten Senkenzustand, der
 - nicht akzeptierend ist und
 - für den alle Transitionen in sich selbst führen
- Im Webformular aus Kapitel 1 entspricht dieser Zustand der roten Ampel: es kann kein akzeptierender Zustand mehr erreicht werden
- Manchmal gibt es viele Transitionen in den Senkenzustand
- In solchen Fällen werden diese Transitionen häufig im Diagramm weggelassen und stattdessen angemerkt, dass alle "fehlenden Transitionen" in den Senkenzustand münden

Zusammenfassung

Themen dieses Kapitels

- Definition von endlichen Automaten, deterministisch und nichtdeterministisch
- Semantik von endlichen Automaten
- Konstruktion endlicher Automaten

Kapitelfazit

- Endliche Automaten sind die Abstraktion von Programmen einer sehr einfachen Struktur
- Um reguläre Ausdrücke in DFAs umzuwandeln, sind nichtdeterministische endliche Automaten ein hilfreicher Zwischenschritt
- ullet REs lassen sich leicht in ϵ -NFAs umwandeln