

Bruce M. Boghosian

Another look at sufficiency

Testing binomial data

Type I and
Type II errors

Summar

Testing Binomial Data, Type I and Type II Errors

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M Boghosia

Another loo at sufficienc

Testing binomial data

Type I and Type II errors

- 1 Another look at sufficiency
- 2 Testing binomial data
- 3 Type I and Type II errors
- 4 Summary

Tufts The idea behind sufficiency

Another look

Estimators, by their very nature, discard data, $\hat{\theta}(\vec{X})$

- In doing so, they accomplish a kind of data reduction.
- For example, if you can reduce 10⁶ normally distributed numbers to a mean and a variance, you have accomplished substantial data reduction.
- You need all 10⁶ numbers to estimate the mean and variance, since you want to estimate those as accurately as possible.
- Once you have $\hat{\mu}(\vec{X})$ and $\hat{\sigma}^2(\vec{X})$, however, you don't need \vec{X} any longer
- A sufficient estimator is one that does not *needlessly* discard data.
- If estimator $\hat{\theta}$ is sufficient, everything that can be known about the parameter θ has been extracted from the data, and nothing has been left behind.

Relation between sufficiency and other properties

Bruce M. Boghosiar

Another look at sufficiency

Testing binomial data

Type I and Type II errors

Summany

- Given n pieces of data $\vec{X} = \langle X_1, \dots, X_n \rangle$
- An estimator can be unbiased, but not sufficient
- An estimator can be consistent, but not sufficient
- $\hat{\mu}_n(\vec{X}) = X_1$ is unbiased and consistent, but not sufficient
 - Unbiased because $E(\hat{\mu}_n) = E(X_1) = \mu$
 - Consistent because Prob $(|\hat{\mu}_n \mu| < \epsilon) > 1 \frac{\sigma^2}{n\epsilon^2}$
 - Not sufficient because it wastes n-1 of the numbers in the sample \vec{X}
- An estimator can be sufficient, but not unbiased
 - If $\hat{\theta}$ is sufficient for θ , then any invertible function of $\hat{\theta}$ is likewise.
 - e.g., $\hat{\theta}_2 = \hat{\theta}^3$ has the same information content as $\hat{\theta}$.
 - lacksquare One would not expect $E\left(\hat{ heta}^3\right)$ to equal $E\left[\left(\hat{ heta}\right)
 ight]^3$ so not unbiased

Testing binomial data – H_0 : $p = p_0$

Bruce M. Boghosiar

at sufficiency

Testing binomial data

Гуре I and Гуре II errors ■ Outcome of *n* Bernoulli trials: $k_1, k_2, ..., k_n$ where $k_i \in \{0, 1\}$

■ Bernoulli distribution for one trial $p_Y(k; p) = p^k (1-p)^{1-k}$

■ E(Y) = p and Var(Y) = p(1 - p), but parameter p is unknown

■ We wish to test a null hypothesis H_0 : $p = p_0$

■ We conduct n trials and let $X = Y_1 + Y_2 + \cdots + Y_n$

■ Then X is distributed according to binomial distribution

$$p_X(k;p) = \binom{n}{k} p^k (1-p)^{n-k},$$

where $k = 0, \ldots, n$.

Large-sample versus small-sample testing

Bruce M. Boghosian

Another look at sufficience

Testing binomial data

Type I and Type II errors Summary

- We have $0 \le X \le n$ and E(X) = np and $\sigma_X = \sqrt{np(1-p)}$
- If *n* is sufficiently large, $[pn 3\sigma_X, pn + 3\sigma_X] \subset [0, n]$
- $lue{}$ Of course, p is unknown, so we use null hypothesis p_0 to make this judgement
- We do a large-sample test, relying on the Central Limit Theorem, if

$$0 < np_0 - 3\sqrt{np_0(1-p_0)} < np_0 + 3\sqrt{np_0(1-p_0)} < n.$$

- If the above is true, the normal distribution obtained from the CLT will comfortably fit in [0, n].
- If the above is not true, we must conduct a small-sample test.

How does large-sample testing work?

Bruce M. Boghosiar

Another look at sufficience

Testing binomial data

Type I and Type II errors

- We suppose that $\frac{X-np_0}{\sqrt{np_0(1-p_0)}}$ is distributed as a standard normal.
- Find thresholds for $100(1-\alpha)\%$ confidence of not rejecting H_0 if it is true.
- Take n samples, k_1, \ldots, k_n , let $k = \sum_{j=1}^n k_j$, and define $z := \frac{k np_0}{\sqrt{np_0(1-p_0)}}$
- Three tests similar to our earlier work on hypothesis testing
 - To test $H_0: p = p_0$ versus $H_1: p > p_0$ at the α level of significance, reject H_0 if $z \ge +z_\alpha$
 - To test $H_0: p = p_0$ versus $H_1: p < p_0$ at the α level of significance, reject H_0 if $z \le -z_\alpha$
 - To test $H_0: p = p_0$ versus $H_1: p \neq p_0$ at the α level of significance, reject H_0 if z is either $\leq -z_{\alpha/2}$ or $\geq +z_{\alpha/2}$.

Example: Do people postpone their deaths?

Bruce M. Boghosiar

at sufficienc

Testing binomial data

Гуре I and Гуре II errors

- Study of n = 747 obituaries
- Only 60, or 8%, died in the three months prior to their birthday.
- If deaths were distributed uniformly, one would expect this to be 25%.
- Is the decrease from 25% to 8% statistically significant?
- Define k_j , for $j = 1, \ldots, 747$ to be
 - = 1 if the jth person died in the three months prior to their birthday
 - \blacksquare = 0 if the *j*th person died at any other time of the year
- Then $p_e = \frac{1}{n} \sum_{j=1}^{n} k_j$ is fraction of deaths three months prior to a birthday
- Take H_0 : p = 0.25 since the contrary seems perverse
- Take H_1 : p < 0.25 and demand confidence with $\alpha = 0.05$

Example: Do people postpone their deaths?

Testing

- First note that $np_0 = 747(0.25) = 186.75$ and $\sigma = \sqrt{747(0.25)(1-0.25)} = 11.83$
- Note np_0 is more than 3σ greater than zero and less than n=747.
- Large-sample testing is warranted.
- Our null hypothesis is that $p = p_0 = 0.25$, and n = 747
- Calculate

$$z = \frac{k - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{60 - 747(0.25)}{\sqrt{747(0.25)(1 - 0.25)}} = -10.7.$$

- The above is far, far less than $-z_{0.05} = -1.64$.
- There is very strong evidence (much > 95% confidence) that effect is real.

How does small-sample testing work?

Testing

- **Example:** Experimental drug test with n = 19 patients
- Old treatment is known to be 85% effective
- We wish to test H_0 : p = 0.85 versus H_1 : $p \neq 0.85$
- For n = 19 and $p_0 = 0.85$.

$$p_0 = 16.15$$

$$\sigma = \sqrt{19(0.85)(0.15)} = 1.556$$

- Note that $np_0 + 3\sigma = 16.15 + 3(1.556) = 20.819$
- Indicates that small-sample testing is necessary

How does small-sample testing work?

Bruce M. Boghosian

Another look at sufficiency

Testing binomial data

Type I and
Type II errors

Summary

■ List 19 possibilities, note $P(X \le 13) = 0.053...$, and P(X = 19) = 0.045...

k	$P(X = k) = {19 \choose k} (0.85)^k (0.15)^{19-k}$
6	1.99151×10^{-7}
7	2.09582×10^{-6}
8	0.0000178145
9	0.000123382
10	0.000699164
11	0.00324158
12	0.012246
13	0.0373659
14	0.0907457
15	0.171409
16	0.242829
17	0.242829
18	0.152892
19	0.0455994

- Hence we reject H_0 if $k \le 13$ or k = 19.
- Note that confidence interval is asymmetric.

Tufts Type I and Type II errors

Type II errors

	True state of nature		
Our decision	H_0 is true	$H_{ m 1}$ is true	
Fail to reject H_0	Correct decision	Type II error	
Reject H_0	Type I error	Correct decision	

Analysis of Type I error:

$$\begin{split} P(\mathsf{Type\ I\ error}) = & P\left(\mathsf{Reject}\ H_0 \mid H_0 \ \mathsf{is\ true}\right) \\ = & P\left(Z \geq z_\alpha \mid \mu = \mu_0\right) \\ = & P\left(\frac{X - \mu_0}{\sigma/\sqrt{n}} \geq z_\alpha \mid \mu = \mu_0\right) \\ = & \alpha. \end{split}$$

Tufts Type II errors

Type II errors

Analysis of Type II errors

$$P(\mathsf{Type\ II\ error}) = P\left(\mathsf{Fail\ to\ reject\ } H_0 \mid H_1 \text{ is true}\right)$$

$$= P\left(Z \le z_\alpha \mid \mu = \mu' > \mu_0\right)$$

$$= P\left(\frac{X - \mu'}{\sigma/\sqrt{n}} \le z_\alpha \mid \mu = \mu'\right)$$

$$= \beta.$$

- Note that β depends on the assumed mean $\mu' > \mu_0$.
- A plot of 1β versus $\mu' > \mu_0$ is called a *power curve*.

Graphical depiction of Type I and Type II errors

Bruce M Boghosia

Another look at sufficiency

binomial data

Type I and Type II errors

- For fixed μ' , there is a tradeoff between α and β .
- lacksquare 1 eta is the probability that we reject H_0 when H_1 is true power of the test
- Plot of 1β versus μ' is called a *power curve*

Power curves

Bruce M. Boghosiar

at sufficiency

binomial data

Type I and Type II errors

From Larsen & Marx, Fig. 6.4.4, p. 362

- lacksquare 1 eta is the probability that we reject H_0 when H_1 is true power of the test
- Plot of 1β versus μ' is called a *power curve*
 - If $\mu' = 26$, easy to distinguish μ' from μ , so power is 0.72
 - If $\mu' = 25.5$, difficult to distinguish μ' from μ , so power is 0.29

Summary

Bruce M. Boghosiar

Another look at sufficiency

binomial data

Type I and Type II errors

- We have taken another look at sufficiency
- We have studied the testing of binomial data
- We have studied Type I and Type II errors