

Using the statistical language R as a Geographic Information System

Closing

Stefan Jünger / GESIS – Leibniz Institute for the Social Sciences

November 23, 2021

cessda.eu

@CESSDA_Data

Now

Time	Title
01:00pm-01:20pm	Introduction
01:20pm-01:30pm	Exercise 1: R Warm up
01:30pm-02:00pm	Data Processing & Spatial Linking
02:00pm-02:30pm	Exercise 2: Geospatial Data Wrangling
02:30pm-02:45pm	Break
02:45pm-03:15pm	Easy Maps
03:15pm-03:45pm	Excercise 3: Build your own map
03:45pm-04:00pm	Closing, Q & A

There's So Much Missing...

- 1. Spatial Linking Methods
- 2. Analysis
- 3. Applications

Spatial Linking Methods

Distances

Sources: German Environmental Agency / EIONET Central Data Repository (2016) and OpenStreetMap / GEOFABRIK (2018) / Jünger, 2019

Filter methods

Buffer zones

4/8

Analysis

Source

Spatial Error Model (SEM)

• Clustering on Unobservables

$$\mathbf{y} = \alpha \boldsymbol{\iota} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}, \\ \mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\varepsilon}$$

Spatial Autoregressive Model (SAR)

Interdependence

$$\mathbf{y} = \alpha \mathbf{\iota} + \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Spatially lagged X Model (SLX)

• Clustering on Spillovers in Covariates

$$\mathbf{y} = \alpha \boldsymbol{\iota} + \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\varepsilon}$$

Moreover, there are models combining two sets of the above specifications.

Spatial Durbin Model (SDM)

$$\mathbf{y} = \alpha \boldsymbol{\iota} + \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\varepsilon}$$

Spatial Durbin Error Model (SDEM)

$$\mathbf{y} = \alpha \boldsymbol{\iota} + \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\theta} + \mathbf{u},$$

 $\mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\varepsilon}$

Combined Spatial Autocorrelation Model (SAC)

$$\mathbf{y} = \alpha \boldsymbol{\iota} + \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u},$$

 $\mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\varepsilon}$

Application(s): Environmental Inequalities

Data source: GGSS 2016 & 2018; N = 6,117; 95% confidence intervals based on cluster-robust standard errors (sample point); all models control for age, gender, education, household size, german region and survey year interaction, inhabitant size of the municipality, and distance to municipality administration

Q & A

% cessda.eu

- stefan.juenger@gesis.org
- **y** @StefanJuenger
- ♠ https://stefanjuenger.github.io

@CESSDA_Data

Licence: CC-BY 4.0

