Příklad (1)

Pro která n existuje graf na n vrcholech takový, že on i jeho doplněk jsou bipartitní.

Řešení

Necht A, B jsou partiti dané tím, že hledaný graf je bipartitní. Necht C, D jsou partiti dané tím, že doplněk hledaného grafu je bipartitní. Potom dokážu, že $|A \cap C| \leq 1$, $|A \cap D| \leq 1$, $|B \cap C| \leq 1$, $|B \cap D| \leq 1$. Kdyby totiž nějaká taková podmnožina měla alespoň dva vrcholy, pak mezi nimi buď v hledaném grafu, nebo doplňku existuje hrana, to je ale spor s tím, že oba vrcholy patří do jedné partity. Tedy $n \leq 4$. Na 4 a 3 existuje, např. ([4], {{1,2}, {3,4}}) a ([3], {{1,2}}), na 2 vrcholech jsou zjevně všechny grafy bipartitní. Naopak pro n = 1 už neexistuje rozdělení na 2 množiny, tedy odpověď je $n \in \{2,3,4\}$.

Příklad (2)

Kolik existuje na [n] různých (ale ne nutně neizomorfních):

- 1. Úplných bipartitních grafů?
- 2. Kružnic?

Řešení (Úplných bipartitních grafů)

Úplné bipartitní grafy jsou určené partitou. Tedy počet úplných bipartitních grafů můžeme zjistit pomocí počtu podmnožin, kterých je 2^n . Nesmíme však zapomenout, že každý takový graf jsme započítali 2krát, jednou "za podmnožinu", jednou "za její doplněk". Navíc jsme započítali i bipartitní graf sestávající z prázdné a úplné podmnožiny, tedy ještě musíme odečíst 1. Odpovědí je tedy $2^{n-1}-1$.

 $\check{R}e\check{s}eni$ (Kružnic)

První vrchol můžeme spojit s jedním z n-1 zbylých vrcholů, ten zas nezávisle na tom s jedním z n-2, ..., "předposlední" vrchol spojujeme s jedním dalším vrcholem a "poslední" vrchol s prvním. Tím jsme napočítali (n-1)! grafů, ale každý jsme započítali dvakrát, protože jsme určili orientaci kružnice tím, s kterým vrcholem jsme spojili první vrchol. Tedy odpověď je $\frac{(n-1)!}{2}$.

Druhá možnost je, že kružnice budeme počítat jako cesty, které spojíme v koncových bodech. Podle toho, spojením kterých vrcholů vznikla kružnice, mohla daná kružnice vzniknout z n cest (kružnice má n hran a jednu z nich odebereme). Tedy počet kružnic je $\frac{\text{počet cest}}{n} = \frac{n!}{2 \cdot n} = \frac{(n-1)!}{2}$.

Příklad (3)

V grafu na 15 vrcholech má každý vrchol stupeň nejméně 7. Je tento graf už nutně souvislý?

Řešení (Sporem)

Nechť existují dva vrcholy, mezi nimiž neexistuje cesta. Potom množiny jejich sousedů musí být disjunktní a jelikož mají stupeň nejméně 7, tak množiny sousedů musí být minimálně velikosti 7. Tedy dohromady máme nejméně 14 vrcholů mezi sousedy. Zároveň vrchol nemůže sousedit se sebou samým a z toho, jak jsme si dané 2 vrcholy definovali, tak nemohou sousedit ani tyto dva vrcholy. Tedy k těmto 14 vrcholům máme ještě další 2. Tudíž dohromady minimálně 16 vrcholů. 4. Tedy graf musí být spojitý.