

Chapter Five Introduction to Text Mining

"What is a moderate interpretation of the text? Halfway between what it really means and what you'd like it to mean?"

Antonin Scalia

Anasse Bari, Ph.D.

Learning Outcomes

■ Learning the Fundamentals of Text Mining and Text Categorization

Acquiring Understanding of Data Cleaning in Textual Data

 Learning Document Vector Representation, Term Frequency Measures and Document Nearest Neighbors

Outline

- Introduction to Text Mining
- Text Categorization
- Data Cleaning in Textual Data
- Vector Representation
- Term Frequency Measures
- Similarity Measures in Text
- Document Nearest Neighbors

Introduction to Text Mining

- Text Categorization
 - Assign text documents to existing, well-defined categories.
- Clustering
 - Group text documents into clusters of similar documents.
- Text Filtering
 - Retrieve documents which match a user profile.
- Text Summarization: single vs. multiple documents

Text Categorization

- Classify each test document by assigning category labels.
 - M-ary categorization assumes M labels per document.
 - Binary categorization requires yes/no decision for every document/category pair.
- Most techniques require training.
 - Parametric vs non-parametric.
 - Batch vs. on-line.

Data Cleaning in Textual Data

- Document parsing
- Stopwords: Set of words that are deemed "irrelevant", even though they may appear frequently
 - E.g., a, the, of, for, with, etc.
 - Stop lists may vary when document set varies
- Stemming:
 - Several words are small syntactic variants of each other since they share a common word stem
 - E.g., drug, drugs, drugged
 - Porter's algorithm
 - Dimension reduction
- Proximity Search support (n-gram, sliding window..): To be able to search for a group of words as a single unit (like a noun phrase)

Vector Representation

- All documents are represented by word vectors
- Each document is represented by a vector
- Each dimension of the vector is associated with a word/term
- For each document, the value of each dimension is the frequency of that word that exists in the vector
- Given a collection of training data, present each term as a n-dimensional vector

a **vector** is a geometric object which has both magnitude or length and direction. A **vector** is commonly represented by a line segment in a specific direction, indicated by an arrow.

	D_1	D_2	 \mathbf{D}_{j}	 D_n
T_1	w_{11}	w_{12}	 \mathbf{w}_{1j}	 \mathbf{w}_{1n}
T_2	w_{21}	w ₂₂	 \mathbf{w}_{2j}	 \mathbf{w}_{2n}
T_i	w_{i1}	w_{i2}	 \mathbf{w}_{ij}	 \mathbf{w}_{in}
T_{m}	w_{m1}	w_{m2}	 \mathbf{w}_{mj}	 w _{mn}

Weighted Schemes

- The weighted scheme of each term in a vector (sentence or document) is defined as follows:
 - $w(t_{ji})=L(t_{ji})$. $G(t_{j})$ ---- Local Weight and Global Weight
 - where, $L(t_{ji})$ is the local weight for term j in sentence i (or in the document)

G(t_i) is the global weight for term j in the whole document.

- The local weights are:
 - No weight (TF): $L(t_{ii}) = tf(t_{ii})$
 - Binary weight: $L(t_{ii}) = 1$, if $tf(t_{ii}) \ge 1$, $L(t_{ii}) = 0$, otherwise
 - Augmented weight: $L(t_{ji}) = 0.5 + 0.5 * (tf(t_{ji})/tf(max))$ where, $tf(max) = max\{tf(t_{1i}), tf(t_{2i}), ...$, $tf(t_{mi})\}$ and m is the max number of terms in the document.
 - Logarithm weight: $L(t_{ij}) = log (1 + tf(t_{ij}))$
- The global weights are:
 - No weighting: $G(t_i) = 1$
 - Inverse document frequency (IDF): $G(t_j) = \log(N/n(t_j))$ where, N is the total number of sentences in the document, and $n(t_i)$ is the number of sentences that contain term j.
- Normalization
 - lacktriangle Normalizes the sentence S_i (or document D) by its length $\mid S_i \mid$ (or $\mid D \mid$)

Term Frequency Measure

- Let's define some statistics for text documents:
 - TF: term frequency
 - In the case of the term frequency tf(t,d), the simplest choice is to use the raw frequency of a term in a document, i.e. the number of times that term t occurs in document d.
 - IDF: Inverse document frequency
 - The inverse document frequency is a measure of how much information the word provides, that is, whether the term is common or rare across all documents.

$$idf(t, D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

- N is the total number of documents in the corpus.
- The denominator of above equation is the number of documents where the term t appears. If the term is not in the corpus, this will lead to a division-by-zero. It is therefore common to adjust the denominator to

$$1 + |\{d \in D : t \in d\}|$$

Term Frequency Measure

- Let's define some statistics for text documents:
 - TFIDF: Term frequency—Inverse document frequency
 - Then tf-idf is calculated as

$$tfidf(t, d, D) = tf(t, d) \times idf(t, D)$$

- A high weight in tf—idf is reached by a high term frequency (in the given document) and a low document frequency of the term in the whole collection of documents;
- Since the ratio inside the idf's log function is always greater than or equal to 1, the value of idf (and tf-idf) is greater than or equal to 0.
- As a term appears in more documents, the ratio inside the logarithm approaches 1, bringing the idf and tf-idf closer to 0.

Similarity Measures in Text

- For various tasks, need measurement of similarity between documents
 - Cosine similarity
 - Manhattan Distance
 - Mahalanobis Distance
- Cos similarity correspond to the angle between the two vectors

$$|\vec{v}| = \sqrt{\sum_{i=1}^{n} v_i^2}; |\vec{u}| = \sqrt{\sum_{i=1}^{n} u_i^2};$$
$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \times |\vec{v}|}$$

Document Nearest Neighbors

- Training set includes classes.
- Examine K documents near document to be classified.
- K is determined empirically.
- New document placed in class with the most number of close documents.
- O(n) for each document to be classified
- For each pattern in the test set, search for the k nearest patterns to the input pattern using a Euclidean distance measure
- Compute the confidence Ci /k for a class i, that is the number of patterns among the K nearest patterns belonging to class i . The output is the class with the highest confidence.

- We have three kinds of document:
 - Politics
 - D1: President Obama went to Europe to negotiate on foreign policy
 - D2: North Korea changed it's foreign policy to make the world more peaceful for people.
 - D3: President Obama will talk about peaceful world in the future.
 - Health
 - D1: Recent research on human body tell us successes to treat the cancer.
 - D2: To have more healthy body you should have minimum 10 minutes workout
 - D3: Doing sport, workout prevent your body to get some cancers and even make you more happier.
 - Social
 - D1: There are lots of homeless people in the world.
 - D2: To have more happy life, do the thing you like.
 - D3: We hope a day all people in the world have a happier life.

- We have three kinds of document:
 - Politics
 - D1: President Obama went to Europe to negotiate on foreign policy
 - D2: North Korea changed it's foreign policy to make the world more peaceful for people.
 - D3: President Obama will talk about peaceful world in the future.
 - Health
 - D1: Recent research on human body tell us successes to treat the cancer.
 - D2: To have more healthy body you should have minimum 10 minutes workout
 - D3: Doing sport, workout prevent your body to get some cancers and even make you more happier.
 - Social
 - D1: There are lots of homeless people in the world.
 - D2: To have more happy life, do the thing you like.
 - D3: We hope a day all people in the world have a happier life.

Dictionary

negotiate

foreign

policy

world

peaceful

Research

Human

Body

Treat

Cancer

Healthy

Workout

Sport

Homeless

People

Happy

Life

TF – T	erm F	reque	ncy						
Class	Politics		Health			Social			
Dictionary	D1	D2	D3	D1	D2	D3	D1	D2	D3
negotiate	1	0	0	0	0	0	0	0	0
foreign	1	1	0	0	0	0	0	0	0
policy	1	1	0	0	0	0	0	0	0
world	0	1	1	0	0	0	1	0	1
peaceful	0	1	1	0	0	0	0	0	0
Research	0	0	0	1	0	0	0	0	0
Human	0	0	0	1	0	0	0	0	0
Body	0	0	0	1	1	1	0	0	0
Treat	0	0	0	1	0	0	0	0	0
Cancer	0	0	0	1	0	1	0	0	0
Healthy	0	0	0	0	1	0	0	0	0
Workout	0	0	0	0	1	1	0	0	0
Sport	0	0	0	0	0	1	0	0	0
Homeless	0	0	0	0	0	0	1	0	0
People	0	1	0	0	0	0	1	0	1
Нарру	0	0	0	0	0	1	0	1	1
Life CopyRi	ghts @	Apasse	e Bari	0	0	0	0	1	1

- Now, suppose we have a new document and we are looing for the most related class:
 - When you help some homeless people, you will feel more happy.
 - We create the term frequency vector of input document →
- We need to compute the cosine distance based on mentioned formulas

Dictionary	TF				
negotiate	0				
foreign	0				
policy	0				
world	0				
peaceful	0				
Research	0				
Human	0				
Body	0				
Treat	0				
Cancer	0				
Healthy	0				
Workout	0				
Sport	0				
Homeless	1				
People	1				
Нарру	1				
Life	0				

- We have three kinds of document (higher value = more similar).
- We used the mentioned cos formula, the results are:
 - Politics
 - D1: $\cos(u,v)$ is 0
 - D2: cos(u,v) is 0.29
 - D3: $\cos(u,v)$ is 0
 - Health
 - D1: $\cos(u,v)$ is 0
 - D2: $\cos(u,v)$ is 0
 - D3: cos(u,v) is 0.26
 - Social
 - D1: cos(u,v) is 0.66
 - D2: cos(u,v) is 0.33
 - D3: cos(u,v) is 0.66
- Therefore, the new document is classified as social class (K=2 or 3).

Predictive Analytics

Chapter Five Introduction to Text Mining

"What is a moderate interpretation of the text? Halfway between what it really means and what you'd like it to mean?"

Antonin Scalia

Anasse Bari, Ph.D.