效果展示

课题组轮转介绍

Robot report

第三期轮转汇报

柯宇斌

北京大学信息科学技术学院

2024年5月6日

柯宇斌 北京大学信息科学技术学院

- 1 课题组轮转介绍
- 2 课题背景
- 3 具体行为
- 4 效果展示

- 1 课题组轮转介绍
- 2 课题背景

课题组轮转介绍

- 3 具体行为
- 4 效果展示

柯宇斌

王鹤

课题组轮转介绍

- 需要参加组会
- 据说是全英文组会
- 轮转任务
 - 简单版: 自行阅读论文提交 PPT 即可
 - 复杂版: 找一个学长学姐进一步学习
- 轮转流程
 - 开学时的一个大会议
 - 自行从十个学长学姐中挑选 (以手部为主)

王鹤

课题组轮转介绍

- 由于五一,尚未参加过组会
- 参与一篇论文的后续工作

- 1 课题组轮转介绍
- 2 课题背景
- 3 具体行为
- 4 效果展示

问题

- 如何更好地抓取物体?
- 抓取物体应该为任务服务,不同的任务有不同的抓取姿势
- 好的抓取姿势应该能很好地对物体施加任务所需的力

GWS and TWS

- TWS(Task Wrench Space) 任务力矩空间
 - 由任务所需力矩构成的空间
 - 常常人为指定,一般建模成规则的形状
- GWS(Grasp Wrench Space) 抓握力矩空间
 - 在某个抓握姿势下可以施加的力矩构成的空间
 - 需要一些假设,利用数学物理知识求出

- 1 课题组轮转介绍
- 2 课题背景

课题组轮转介绍

- 3 具体行为
- 4 效果展示

核心思路

- 对 GWS 进行某种程度的近似和简化,得到 GWS 的一个估计
- 人为指定 TWS
- 优化 GWS 使得其与 TWS 相似 (一般地,对力的放大也会使得 GWS 增大,所以标准化是一个很好的方法)

具体操作

- $F_i = (f_{i,1}, f_{i,2}, f_{i,3})$, If $0 \le f_{i,1}, f_{i_2}^2 + f_{i,3}^2 \le \mu^2 f_{i,1}^2$
- p; 是接触点向量, n;, d;, e; 是 p; 处的一个坐标系
- $G_i = \begin{bmatrix} n_i & d_i & e_i \\ p_i \times n_i & p_i \times d_i & p_i \times e_i \end{bmatrix} \in R^{6 \times 3}$ 把 F 映射到 W
- $W_i = G_i F_i$
- GWS 是各个 W 的并集或者闵可夫斯基和
- 我们采用 $W_{L_{\infty}}$ 因为好算
- $\forall f$ 的假设是 $f_{i,1} \leq 1$

具体操作

- 我们描绘 GWS 的边界
- $s_A(u) = \operatorname{argmax}_{a \in A} u^T a, ||u|| = 1$
- 性质: $s_{A \oplus B}(u) = s_A(u) + s_B(u)$
- 性质: $s_{C(A)}(u) = C * S_A(C^T u)$
- $s_{W_g}(u) = s_{\bigoplus_{i=1}^m W_i}(u) = \sum_{i=1}^m s_{W_i}(u) = \sum_{i=1}^m G_i s_{F_i}(G_i^T u)$

GWS 优化至 TWS

- 如何优化 GWS,一个想法是让同一个方向的乘积尽可能大, 这样子形状越相似结果越好
- $E_t = -\sum_{k=1}^K s_T(u_k) s_{W_g}(u_k)$

量化结果

TABLE I

COMPARISON OF OUR GWS ESTIMATOR WITH BASELINE.

			ntacts			7 Co	ntacts	
		Baseline	•	Ours		Baseline		Ours
	4	6	8	Ours	4	6	8	Ours
RLE↓	5.30	2.36	1.26	0.43	6.49	2.78	-	0.70
SP ↓	0.48	0.42	0.38	0.29	0.36	0.31	-	0.26
t ↓	4e3	2e4	4e4	20	5e4	2e5	2e6	20

图 1: Enter Caption

TABLE II

HYPERPARAMETER ANALYSIS OF OUR METHOD WITH 5 CONTACTS.

	δ (with $K = 1e5$)			K (with $\delta = 15^{\circ}$)				
	0°	15°	30°	45°	1e3	1e4	1e5	1e6
RLE↓	0.00	0.42	5.45	19.4	0.43	0.42	0.42	0.43
SP ↓	0.44	0.36	0.36	0.36	0.55	0.45	0.36	0.29
t.	3.2	3.2	3.2	3.2	1.7	1.9	3.2	19.4

图 2: Enter Caption

TABLE III

0.1 MILLION FORCE-CLOSURE DEXTEROUS GRASP SYNTHESIS

	SS (%) ↑	MP (mm) ↓	$\epsilon \uparrow$
DexGraspNet	37.0	5.4	0.77
Ours	57.1	2.4	0.93

图 3: Enter Caption

- 1 课题组轮转介绍
- 2 课题背景
- 3 具体行为
- 4 效果展示

Fig. 7. Visualization of synthesized task-oriented grasps. Three grasps are shown for each task, denoted by the upper left arrow. The fourth task means force closure. Each third grasp is an unnatural example.

图 4: Enter Caption

柯字斌 北京大学信息科学技术学院 Robot report

Thanks!