Московский физико-технический институт

ТЕОРИЯ ВЕРОЯТНОСТЕЙ ІЗАДАНИЕ

Автор: Яфаров Руслан, Б13-202

1. Элементы комбинаторики

1. Имеются m белых и n чёрных шаров, причём m > n. Сколькими способами можно разложить все шары в ряд так, чтобы никакие два чёрных шара не лежали рядом?

Peшение. Расставим все чёрные шары. Для белых шаров останется m+1 место, куда можно положить шар. Тогда ответ - C^n_{m+1}

2. Сколько различных пар можно образовать из 28 костей домино так, чтобы кости, входящие в пару, можно было приложить друг к другу?

Решение. Сначала рассмотрим вариант, когда одна из доминошек - дубль. Вторую доминошку определяет одно число не равное числу на первой доминошке. Дублей 7, чисел, не равных первому $6 \Rightarrow$ вариантов 6*7=42. Пусть теперь среди доминошек нет дублей. Выберем число, по которому соприкасаются доминошки. Остаётся выбрать пару (a,b) так, что a < b (ведь доминошки разные) и $a,b \neq$ выбранному числу. Тогда таких вариантов 7*(1+2+3+4+5)=105

Ответ: 147

3. Сколькими способами 12 полтинников можно разложить по пяти различным пакетам, если ни один из пакетов не должен быть пустым?

Решение. Положим в каждый пакет по полтиннику. Останется неупорядоченная выборка из 7 элементов по 5, т. е. ответ - C_{5+7-1}^7 .

Ответ: C_{11}^7

4.

- а Доказать, что число всевозможных подмножеств конечного множества, содержащего n элементов, равно 2^n .
- b В множестве из n элементов выбираются подмножества A и B так, что $A \subset B$ и $A \neq B$. Доказать, что количество таких пар (A,B) равно 3^n-2^n .

Решение.

- а Пусть $A = \{a_1, a_2, \cdots, a_n\}$. Поставим каждому $B \subset A$ в соответсвие двоичное число из n бит, на i бите 1, если $a_i \in B$ и 0 иначе. Очевидно, что соответсвие взаимно однозначно. Всего n-битных чисел 2^n .
- b Пар $(A,B): |B| = k, A \subseteq B$ $2^k C_n^k$. Тогда всего пар $\sum_{k=0}^n 2^k C_n^k = (1+2)^n$. Пар вида (A,A) $2^n \Rightarrow$ Ответ $3^n 2^n$.

5. Доказать, что множество из n элементов можно разбить $\frac{n!}{m_1!m_2!\cdots m_k!}$ различными способами на k попарно непересекающихся подмножеств, содержащих по m_1, m_2, \cdots, m_k элементов, где $m_1+m_2+\cdots+m_k=$ n и числа m_1, m_2, \cdots, m_k попарно различны.

Решение. Представим себе, что порядок в каждом из k множеств важен. Тогда кол-во способов разбить все элементы n! (рассматриваем перстановки элементов, первые m_1 - в первое множество, следующие m_2 во второе и т. д.). Теперь предположим, что порядок в первом множестве неважен. Тогда предыдущий ответ в $m_1!$ больше настоящего \Rightarrow настоящий $\frac{n!}{m_1!}$. Также для второго и т. д. получим $\frac{n!}{m_1!m_2!\cdots m_k!}$.

6. Сколькими различными способами можно разбить множество из 10 элементов на два подмножества из 3 элементов и два подмножества из 2 элементов?

Решение. Аналогично логике предыдущей задаче получим ответ $\frac{10!}{3!3!2!2!}$, но подмножества по 3 элемента неотличимы, так же как и по $2\Rightarrow$ Ответ $\frac{10!}{3!3!2!2!2!2!}$

7. Для пилки дров выделено 14 человек. Сколькими способами их можно разделить на пары?

Peшение. Аналогично предыдущей задаче $\frac{14!}{7!(2!)^7}$

8. Сколькими способами можно выбрать из полной колоды, содержащей 52 карты, 6 карт так, чтобы среди них были все четыре масти? (В полной колоде имеется по 13 карт каждой масти.)

Решение. Возможны 2 интересующих нас варианта: либо в колоде 3 карты одной масти, а остальные карты разл. масти, либо 2 карты одной масти, 2 другой, а остальные разл. Тогда ответ $C_4^1 C_9^3 (C_9^1)^3 + C_4^2 (C_9^2)^2 (C_9^1)^2$

9. Найти номер наибольшего члена в разложении $(a+b)^n$, если:

a
$$a = \frac{2}{3}, b = \frac{1}{3}, n = 100;$$

b
$$a = b = \frac{1}{2}, n = 100;$$

c
$$a = b = \frac{1}{2}, n = 99.$$

Решение.

а
$$\left(\frac{2}{3}+\frac{1}{3}\right)^{100}=\sum_{k=0}^{n}\frac{2^{k}}{3^{k}}\frac{1}{3^{n-k}}\frac{100!}{k!(100-k)!}=\frac{100!}{3^{n}}\sum_{k=0}^{n}\frac{2^{k}}{k!(100-k)!}$$
. Положим $a_{k}=\frac{2^{k}}{k!(100-k)!}$ Тогда $k_{\text{иск}}=\operatorname{argmax}_{0\leq k\leq 100}a_{k}$. $\frac{a_{k}}{a_{k-1}}=\frac{2(101-k)}{k}>1$ при $k<\frac{202}{3}\Rightarrow k_{\text{иск}}=67;$

b Аналогично а.
$$a_k = \frac{1}{k!(100-k)!}$$
. $\frac{a_k}{a_{k-1}} = \frac{101-k}{k} > 1 \Rightarrow k < \frac{101}{2} \Rightarrow k_{\text{иск}} = 50$;

с Аналогично а.
$$a_k = \frac{1}{k!(99-k)!}$$
. $\frac{a_k}{a_{k-1}} = \frac{100-k}{k} > 1 \Rightarrow k < 50 \Rightarrow k_{\text{иск}} = 49$.

10. Доказать тождества:

а
$$C_n^k = C_n^{n-k}$$
, если $0 \le k \le n$;

b
$$C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$$
, если $0 \le k \le n-1$;

c
$$\sum_{k=0}^{n} C_n^k = 2^n$$
;

d
$$\sum_{k=0}^{n} (C_n^k)^2 = C_{2n}^n;$$

е
$$C_n^n + C_{n+1}^n + \cdots + C_{n+m-1}^n = C_{n+m}^{n+1}$$
, если $m \ge 1$.

- Решение. а C_n^k показывает кол-во неупорядоченных выборок из k элементов по n без возвращений, но когда мы выбираем k элементов, мы оставляем n-k элементов, которую можно рассматривать как выборку из n-k элементов без возвращений. $\Rightarrow C_n^k = C_n^{n-k}$;
 - b Покрасим один из элементов множетсва. Тогда кол-во способов выбрать k+1 элементов из множества мощности п равно кол-во способов выбрать k элементов из множества без закрашенного элемента(мы его уже взяли) + кол-во способов выбрать k+1 элемент из множества без закрашенного элемента(мы его не берем) $\Rightarrow C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$, если $0 \le k \le n-1$;
 - с Решим задачу 4а иначе. Сначала посчитаем сколько есть подмножеств A мощности 0 C_n^0 . Затем можности 1 C_n^1 . \cdots мощности k C_n^k Получим, что $\sum_{k=0}^n C_n^k = 2^n$;
 - d C_{2n}^n Показывает кол-во подмножеств мощности n множества мощности 2n. Положим $A_1=\{a_1,a_2,\cdots,a_n\},\ A_2=\{a_{n+1},a_{n+2},\cdots,a_{2n}\}$ Тогда n элементов можно выбрать n+1 способом 0 из $A_1,\ n$ из $A_2,\ 1$ из $A_1,\ n-1$ из A_2 и т.д. $C_{2n}^n=\sum_{k=0}^n C_n^k C_n^{n-k}=\sum_{k=0}^n (C_n^k)^2;$
 - е Крч комбинаторно я не смог, по индукции изи(.
- 11. Доказать, что сумма чисел C_n^k по всем чётным k равна сумме чисел C_n^k по всем нечётным k.

Решение. abc

2. Вероятностное пространство (Ω, \mathcal{A}, P)

12. Из урны, содержащей M различных шаров, наудачу последовательно извлекаются n шаров. Рассмотреть два способа выбора: с возвращением и без возвращения; описать для каждого способа структуру простран- ства элементарных событий и подсчитать число элементов в в случае упорядоченных и неупорядоченных выборок.

Решение.

Без возвращения упорядоченно. $\Omega = \{(a_1, a_2, \cdots, a_n) | 1 \le a_i \le M, a_i \ne a_j$ при $i \ne j\}$ $|\Omega| = A_M^n$

- Без возвращения неупорядоченно. $\Omega = \{\{a_1, a_2, \cdots, a_n\} | 1 \le a_i \le M, a_i \ne a_j$ при $i \ne j\}$ $|\Omega| = C_M^n$
- ho С возвращением упорядоченно. $\Omega = \{(a_1, a_2, \cdots, a_n) | 1 \le a_i \le M\} \ |\Omega| = M^n$
- ho С возвращением неупорядоченно. $\Omega = \{\{a_1, a_2, \cdots, a_n\} | 1 \le a_i \le M\} \ |\Omega| = C_{M+n-1}^n$

Во всех случаях $\mathcal{A}=2^{\Omega}$

13. Пусть A и B произвольные события. Проверить справедливость следующих соотношений:

$$\overline{(A)} = A; A \setminus B = A \setminus AB = A\overline{B}; A \setminus (A \setminus B) = AB;$$

$$A \subseteq B \Rightarrow \overline{B} \subseteq \overline{A}; \overline{A \cup B} = \overline{A} \cap \overline{B}; \overline{A \cap B} = \overline{A} \cup \overline{B};$$

$$(A \cup B) \cap C = (A \cap B) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup B) \cap (B \cup C)$$

Решение.

1.
$$\overline{(\overline{A})} = \Omega \setminus \overline{A} = \Omega \setminus (\Omega \setminus A) = A$$

2.

$$x \in A \setminus AB \Leftrightarrow x \in A \land x \notin AB \Leftrightarrow x \in A \land (x \notin A \lor x \notin B) \Leftrightarrow x \in A \land x \notin B \Leftrightarrow x \in A \setminus B$$

$$\Leftrightarrow x \in A \land x \notin B \Leftrightarrow x \in A \land x \in \overline{B}$$

3. Пользуясь 2. и 1.

$$A \setminus (A \setminus B) = A \setminus A\overline{B} = A\overline{\overline{B}} = AB$$

4. $x \in \overline{B} \Rightarrow x \notin A$ (иначе бы $x \in B$) $\Rightarrow x \in \overline{A}$

5.
$$x \notin (A \cup B) \Leftrightarrow x \notin A \land x \notin B \Leftrightarrow x \in \overline{A} \cap \overline{B}$$

6.
$$x \notin (A \cap B) \Leftrightarrow x \notin A \lor x \notin B \Leftrightarrow x \in \overline{A} \cup \overline{B}$$

7.

$$x \in (A \cup B) \cap C \Leftrightarrow x \in (A \cup B) \land x \in C \Leftrightarrow x \in A \cap C \lor x \in B \cap C \Leftrightarrow x \in (A \cap C) \cup (B \cap C)$$

8.

$$x \in (A \cap B) \cup C \Leftrightarrow x \in (A \cap B) \lor x \in C \Leftrightarrow x \in A \cup C \land x \in B \cup C \Leftrightarrow x \in (A \cup C) \cap (B \cup C)$$

14. Пусть $A_n=[a,a+\frac{1}{n}), B_n=[a,b-\frac{1}{n}],$ где $n=1,2,\cdots,\ a$ и b - действительные числа. Найти $\bigcap_{n=1}^\infty A_n$ и $\bigcup_{n=1}^\infty B_n$

Решение. Пусть $A = \bigcap_{n=1}^{\infty} A_n$, $B = \bigcup_{n=1}^{\infty} B_n$ Предположим $\exists c \in A : c > a$. Тогда $c \in \bigcap_{n=1}^N A_n$, где $N = \lceil \frac{1}{c-a} \rceil$, но $c \notin A_N$. Очевидно $a \in A \Rightarrow A = \{a\}$. Аналогично доказывается, что B = [a, b]

15. Электрическая цепь между точками M и N составлена по схеме, при- ведённой на рисунке.

Выход из строя элемента a_i событие A_i ($i=1,\cdots,5$). Записать выражения для событий \overline{C} и C , если C означает разрыв в цепи.

Решение.
$$\overline{C}=\{\{A_3,A_1\},\{A_3,A_2\},\{A_4,A_1\},\{A_4,A_2\},\{A_4,A_2,A_1\},\{A_1,A_2\},\{A_3\},\{A_3\},\{A_4\},\{A_1\}\}\}$$
 $C=\Omega\setminus\overline{C},$ где $\Omega=2^{\{A_i|1\leq i\leq 5\}}$

16. Пусть \mathcal{A}_1 и \mathcal{A}_2 две алгебры подмножеств с общей единицей $E=\Omega$. Доказать, что $\mathcal{A}=\mathcal{A}_1\cap\mathcal{A}_2$ также алгебра.

Решение. Действительно, если $A, B \in \mathcal{A}_1 \cap \mathcal{A}_2$, то $A, B \in \mathcal{A}_1 \Rightarrow A \cup B \in \mathcal{A}_1$. Аналогично для $\mathcal{A}_2 \Rightarrow A \cup B \in \mathcal{A}_1 \cap \mathcal{A}_2$. Аналогично д-ся, что $A \in \mathcal{A}_1 \cap \mathcal{A}_2 \Rightarrow \overline{A} \in \mathcal{A}_1 \cap \mathcal{A}_2$

- 17. Пусть A некоторое событие, причём P(A)=0, B произвольное событие. Найти P(AB). Peшение. По монотонности меры P получаем, что $P(AB) \leq P(A) \Rightarrow P(AB) = 0$
- 18. Последовательность событий A_n такова, что $A_n \supseteq A_{n+1}$ для каждого $n=1,2,\cdots$ Доказать, что существует $\lim_{n\to\infty} P(A_n)$.

Pешение. По монотонности меры P получаем, что $P(A_{n+1}) \leq P(A_n) \Rightarrow \{P(A_n)\}$ - невозрастающая ограниченная снизу посл-ть $\Rightarrow \exists$ конечный $\lim_{n\to\infty} P(A_n) = \inf P_n$

3. Классическое определение вероятности. Геометрические вероятности. Дискретное вероятностное пространство

19. Что вероятнее: выиграть у равносильного противника 3 партии из четырёх или 5 из восьми (ничьих не бывает)?

Peшение. $\Omega_1=\{(a_1,a_2,a_3,a_4)|a_i\in\{0,1\}\},\ 0$ - выигрывает 1 игрок, 1 - второй. Тогда $|\Omega_1|=2^4\ P(A_1)=rac{C_4^3}{2^4}=rac{8}{32}$

 $\Omega_2=\{(a_1,a_2,\cdots,a_8)|a_i\in\{0,1\}\},\ 0$ - выигрывает 1 игрок, 1 - второй. Тогда $|\Omega_2|=2^8$ $P(A_2)=\frac{C_8^5}{2^8}=\frac{7}{32}\Rightarrow$ Вероятнее выиграть 3 партии из 4

20. C. 1.1-1.4.

- а Из ящика, содержащего три билета с номерами 1, 2, 3, вынимают по одному все билеты. Предполагается, что все последовательности номеров билетов имеют одинаковые вероятности. Найти вероятность того, что хотя бы у одного билета порядковый номер совпадает с собственным.
- b Колода из 36 карт хорошо перемешана (т. е. все возможные расположения карт равновероятны). Найти вероятности событий: $A = \{$ четыре туза расположены рядом $\}$, $B = \{$ места расположения тузов образуют арифметическую прогрессию с шагом $7\}$.
- с На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник А. С. Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания слева направо (но не обязательно рядом).
- d Брошено три монеты. Предполагая, что элементарные события равновероятны, найти вероятности событий: $A = \{$ первая монета выпала «гербом» вверх $\}$, $B = \{$ выпало ровно два «герба» $\}$, $C = \{$ выпало не больше двух «гербов» $\}$

Решение.

а
$$1 - \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$
 (см. задачу 26 для $n = 3$)

- b $\Omega=S_{36}$ Объединим 4 туза в однку карту. Тогда $|A|=4!*33!\Rightarrow P(A)=\frac{4!}{34*35*36}$. Выберем минимальный номер карты 15 способами. Мы выбрали номера для карт, но не выбрали их относительного расположения \Rightarrow умножим на 4! и получим $P(B)=\frac{15*4!}{36!}$
- с Заметим, что

$$\sum_{\sigma \in S_2} P(a_{\sigma_1} < a_{\sigma_2} < a_{\sigma_3}) = 1 \Rightarrow P(a_1 < a_2 < a_3) = \frac{1}{6}$$

d
$$\Omega = \{(a_1, a_2, a_3) | a_i \in \{0, 1\}\} | \Omega| = 2^3 A = \{(1, a_2, a_3) | a_2, a_3 \in \{0, 1\}\} \Rightarrow P(A) = \frac{1}{2} P(B) = \frac{C_3^2}{2^3} P(\overline{C}) = \frac{1}{8} \Rightarrow P(C) = \frac{7}{8}$$

21. *С 1.10 Из чисел $\{1, 2,N\}$ случайно выбирается число a. Найти вероятность p_N того, что: а) число a не делится ни на a_1 , ни на a_2 , где a_1 и a_2 — фиксированные натуральные взаимно простые числа; б) число а не делится ни на какое из чисел a_1, a_2, \cdots, a_k , где числа a_i — натуральные и попарно взаимно простые. Найти $\lim_{N\to\infty} p_N$ в случаях а) и б).

Peшение. Найдем \overline{p}_N : Всего чисел, делящихся либо на a_1 , либо на $a_2 \left[\frac{N}{a_1} \right] + \left[\frac{N}{a_2} \right] - \left[\frac{N}{a_1 a_2} \right]$. $\overline{p}_N = \frac{\frac{N}{a_1} - \{\frac{N}{a_1}\} + \frac{N}{a_2} - \{\frac{N}{a_1}\} + \frac{N}{a_1 a_2} - \{\frac{N}{a_1 a_2}\} + \frac{N}{a_1 a_2} - \{\frac{N}{a_1 a_2}\} }{N}$. Заметим, что $\forall x \in \mathbb{R}\{\{\frac{N}{x}\}\}_{N=1}^{\infty}$ ограничена $\Rightarrow \lim_{N \to \infty} \overline{p}_N = \frac{1}{a_1} + \frac{1}{a_2} - \frac{1}{a_1 a_2}$. $\Rightarrow p_N = 1 - \left(\frac{1}{a_1} + \frac{1}{a_2} - \frac{1}{a_1 a_2}\right)$. По аналогии с п. а)

$$\overline{p}_N = \sum_{m=1}^k \left[\frac{N}{a_m} \right] - \sum_{1 \le m_1 \le m_2 \le k} \left[\frac{N}{a_{m_1} a_{m_2}} \right] + \dots + (-1)^{k-1} \left[\frac{N}{a_1 a_2 \cdots a_k} \right] \Rightarrow$$

$$\lim_{N \to \infty} \overline{p}_N = \sum_{m=1}^k \frac{1}{a_m} - \sum_{1 \le m_1 \le m_2 \le k} \frac{1}{a_{m_1} a_{m_2}} + \dots + (-1)^{k-1} \frac{1}{a_1 a_2 \cdots a_k}$$

- 22. С. 2.7. Среди 25 экзаменационных билетов 5 «хороших». Два студента но очереди берут по одному билету. Найти вероятность того, что:
 - а первый студент взял «хороший» билет
 - b второй студент взял «хороший» билет
 - с оба студента взяли «хорошие» билеты

Решение. $\Omega = \{(a_1, a_2, \dots, a_{25}) | a_i \in \{0, 1\}, \sum_{i=1}^{25} a_i = 5\} |\Omega| = C_{25}^5.$

a
$$|A| = C_{24}^4 \Rightarrow P(A) = \frac{1}{5}$$

b
$$|B| = |A|$$

c
$$|C| = C_{23}^3 \Rightarrow P(C) = \frac{1}{30}$$

- 23. С. 2.74. Двое по очереди бросают монету. Выигрывает тот, кто первым получит «герб». Найти вероятности событий:
 - а игра закончится до 4-го бросания;
 - ь выиграет начавший игру (первый игрок);
 - с выиграет второй игрок.

Решение. Чтобы было понятно, что происходит, пусть p— вероятность получить герб, q— вероятность получить не герб.

a
$$P(\overline{A}) = q^3 \Rightarrow P(A) = 1 - q^3 = 0.875$$

b Пусть B_k - событие, озн-ее, что 1 игрок выигрывает на (2k+1)-м ходу. Тогда $P(B_k)=q^{2k}p$. Получаем, $P(B)=\sum_{k=0}^{\infty}P(B_k)=\sum_{k=0}^{\infty}pq^{2k}=p\sum_{k=0}^{\infty}q^{2k}=\frac{p}{1-q^2}=\frac{1}{1+q}=\frac{2}{3}$

c
$$P(C) = P(\overline{B}) = 1 - P(B) = \frac{q}{1+q} = \frac{1}{3}$$

24. (Т. §1. Задача 4.) Найти вероятность того, что дни рождения 12 человек приходятся на разные месяцы года.

Решение.
$$\Omega = \{(a_1, \dots, a_{12}) | a_i \in \{1, \dots, 12\}\} | \Omega | = 12^{12}$$

 $A = \{(a_1, \dots, a_{12}) | a_i \in \{1, \dots, 12\}, a_i \neq a_j \text{ при } i \neq j\} | A | = 12! \Rightarrow P(A) = \frac{12!}{19!2}$

25. (Т. §1. Задача 5.) Участник лотереи Спортлото заполнил две карточки так, что все зачёркнутые им номера на обеих карточках разные. Найти вероятность того, что участник не угадал ни одного номера.

Решение. Пусть m номеров выйгрышные и для каждой карточки нужно выбрать m номеров из n возможных. Тогда $\Omega = \{(a_1, a_2, \cdots, a_m, b_1, b_2, \cdots, b_m, c_1, c_2, \cdots, c_m) | a_i, b_i \in \{1, \cdots, n\}, a_i \neq a_j, b_i \neq b_j, c_i \neq c_j$ при $i \neq j, c_i \in \{1, \cdots, n\} \setminus \{b_1, \cdots, b_m\}\}$. $|\Omega| = C_n^m C_n^m C_{n-m}^m$ Сначала расставим все выигрышные клетки C_n^m способами. Теперь нам надо на первой карте выбрать m клеток из n-m оставшихся, а на второй m клеток из n-2m оставшихся. Получим $P(A) = \frac{C_n^m C_{n-m}^m C_{n-2m}^m}{C_n^m C_{n-m}^m C_{n-m}^m} = \frac{C_{n-2m}^m}{C_n^m}$. Заглянув в ответы учебника, установим, что m=6, n=49. Ответ: $\frac{C_{37}^6}{C_{49}^6}$

26. (Т. §1. Задача 11.) В n конвертов разложено по одному письму n адресатам. На каждом конверте наудачу написан один из n адресов. Найти вероятность p_n того, что хотя бы одно письмо отправится по назначению. Вычислить $\lim_{n\to\infty} p_n$.

Решение. $\Omega = \{(a_1, a_2, \cdots, a_n) | 1 \leq a_i \leq n, a_i \neq a_j$ при $i \neq j\}$ Пусть A_k — событие, при котором k -е письмо отправлено по назначению. По формуле включений и исключений получим

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k) - \sum_{1 \le k \le j \le n} P(A_k \cap A_j) + \dots + (-1)^{n-1} P(\bigcap_{k=1}^{n} A_k)$$

При данных $k_1 < k_2 < \dots < k_i P(A_{k_1} A_{k_2} \dots A_{k_i}) = \frac{(n-i)!}{n!}$ Тогда

$$\sum_{1 \le k_1 \le k_2 \le \dots \le k_i \le n} P(A_{k_1} A_{k_2} \cdots A_{k_i}) = C_n^i \frac{(n-i)!}{n!} = \frac{1}{i!} \Rightarrow P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!}$$

$$\lim_{n\to\infty} P(\bigcup_{k=1}^n A_k) = 1 - e^{-1}$$

27. Т. $\S 1$. Задача 10.) Стержень длины l разломан в двух наудачу выбран- ных точках. Чему равна вероятность того, что из полученных кусков можно составить треугольник?

Решение.
$$\Omega = \{(x,y)|0 < x \le y < l, x+y < l\}, \ \mu(\Omega) = \frac{l^2}{2}$$
 Тогда $A = \{(x,y)|0 < x \le y < l, x+y < l, x+y > l-x-y, x+l-x-y > y, y+l-x-y > x\} = $\{(x,y)|0 < x \le y < l, x+y < l, x+y > \frac{l}{2}, y < \frac{l}{2}, x < \frac{l}{2}\}, \mu(A) = \frac{l^2}{8} \Rightarrow P(A) = \frac{1}{4}$$

28. Два лица A и B условились встретиться в определённом месте меж- ду 12 часами и часом. Пришедший первым ждёт другого в течение 20 минут, после чего уходит. Чему равна вероятность встречи лиц A и B, если приход каждого из них в течение указанного часа может произойти наудачу и моменты прихода независимы?

Решение.
$$\Omega = \{(t_1, t_2) | 0 < t_i < 60\}, \mu(\Omega) = 3600C = \{(t_1, t_2) \in \Omega | |t_1 - t_2| \le 20\}, \mu(C) = 2000 \Rightarrow P(C) = \frac{5}{9}$$

29. (Парадокс Бертрана.) В круге наудачу выбирается хорда. Чему равна вероятность того, что её длина превзойдёт длину стороны правильного вписанного треугольника?

Pewenue. Непонятно, как выбирать хорду. Приведем несколько вариантов выбора и посчитаем ответ для них(всё в единичной окружности):

а
$$\Omega = \{(\varphi_1, \varphi_2) | 0 \le \varphi_1 < \varphi_2 < 2\pi\}$$
 (Выбираем 2 точки на основе углов φ). $\mu(\Omega) = 2\pi^2$. В единичной окружности $L = \sqrt{(\cos \varphi_1 - \cos \varphi_2)^2 + (\sin \varphi_1 - \sin \varphi_2)^2} = 2 \left| \sin \frac{\varphi_1 + \varphi_2}{2} \right|$. $l = \sqrt{3}$

$$L > l \Leftrightarrow (\varphi_1 + \varphi_2) \in \left(\frac{2\pi}{3}, \frac{4\pi}{3}\right) \cup \left(\frac{8\pi}{3}, 4\pi\right) \Rightarrow \mu(A) = \frac{\pi^2}{3} + \frac{4\pi^2}{9} = \frac{7\pi^2}{9} \Rightarrow P(A) = \frac{7}{18}$$

- b Предположим, теперь неважно в какой части окружности хорда(2 выбора хорд одинаковы, если из первого можно получить второй вращением окружности). Тогда хорда определяется её длиной. $\Omega = \{L | 0 < L \le 2\}$. $P(A) = \frac{2-\sqrt{3}}{2}$
- с Впишем $\triangle ABC$ в окружность. Тогда любой конец хорды мы можем совместить с вершиной треугольника вращением. В таком случае, если один конец хорды A, то второй должен лежать на дуге BC (меньшей). Тогда $P(A) = \frac{l_{BC}}{l} = \frac{1}{3}$

4. Условная вероятность. Формула полной вероятности. Формула Байеса. Независимость событий

30. С. 2.10. Из урны, содержащей 3 белых шара, 5 черных и 2 красных, два игрока поочередно извлекают по одному шару без возвращения. Выигрывает тот, кто первым вынет

белый шар. Если появляется красный шар, то объявляется ничья. Пусть $A_1 = \{$ выигрывает игрок, начавший игру $\}$, $A_2 = \{$ выигрывает второй участник $\}$, $B = \{$ игра закончилась вничью $\}$. Найти $P(A_1), P(A_2), P(B)$

Peшение. Пусть A_i^k - событие, означающее, что i-й игрок на k-м (своём) ходу вытаскивает белый шар. B_i^k - тоже самое, только чёрный. Тогда

$$P(A_1^k) = P(B_1^1)P(B_2^1|B_1^1)P(B_1^2|B_1^1B_2^1)\cdots P(A_1^k|B_1^1B_2^1\cdots B_2^{k-1}) \Rightarrow P(A_1) = \sum_k P(A_1^k)$$

$$P(A_1^1)=0,3,$$
 $P(A_1^2)=\frac{5}{10}\frac{4}{9}\frac{3}{8},$ $P(A_1^3)=\frac{5}{10}\frac{4}{9}\frac{3}{8}\frac{2}{7}\frac{3}{6},$ $P(A_1^k)=0 \forall k>3 \Rightarrow P(A_1)=\frac{83}{210}.$ Аналогично $P(A_2)=\frac{1847}{10080}.$ $P(B)=1-P(A_1)-P(A_2)=\frac{833}{1440}$

31. С. 1.6. Из 28 костей домино случайно выбираются две. Найти вероятность того, что из пих можно составить «цепочку» согласно правилам игры.

Решение. Была задача 2, там $\Omega = \{\{a_1, a_2\}, a_i \in \{1, \cdots 28\}, a_1 \neq a_2\}.$ $|\Omega| = C_2 8^2 \Rightarrow P(A) \frac{7}{18}$. Как решать с условной вероятностью я хз))

- 32. С. 2.43. При рентгеновском обследовании вероятность обнаружить заболевание туберкулезом у больного туберкулезом равна $1-\beta$. Вероятность принять здорового человека за больного равна α . Пусть доля больных туберкулезом по отношению ко всему населению равна γ .
 - а Найти условную вероятность того, что человек здоров, если он был признан больным при обследовании.
 - b Вычислить найденную в п. а условную вероятность при следующих числовых значениях*): $1-\beta=0.9, \alpha=0.01, \gamma=0.001.$
- Решение. а Пусть A событие, озн-ее, что человек болен, B что он признан больным. По условию $P(A) = \gamma, P(B|A) = 1 \beta, P(B|\overline{A}) = \alpha$ По формуле Байеса $P(\overline{A}|B) = \frac{P(B|\overline{A})P(\overline{A})}{P(B)}$. Далее по формуле полной вероятности $P(B) = P(B|A)P(A) + P(B|\overline{A})P(\overline{A}) \Rightarrow P(\overline{A}|B) = \frac{\alpha(1-\gamma)}{\alpha(1-\gamma)+\gamma(1-\beta)}$

b
$$P(\overline{A}|B) = \frac{111}{121}$$

33. Отрезок [0, 10] точками 1, 2, 3, 4, 7 разделен на 4 отрезка длины 1 и 2 отрезка длины 3. Пусть A_1, \dots, A_8 — независимые случайные точки, имеющие равномерное распределение на отрезке [0, 10]. Какова ве-роятность того, что нз этих точек в два каких-либо от- отрезка длиной 1 попадет по 2 точки, а в каждый из остав- оставшихся отрезков — по одной точке? *Решение*. Не знаю равномерное распределение, как только узнаю, решу)

34. (Т. §2. Задача 12.) Вероятность того, что молекула, испытавшая в мо- мент t=0 столкновение с другой молекулой и не имевшая других столк- новений до момента t, испытает столкновение в промежуток времени (t,t+h), равна $\lambda h + o(h), h \to 0$. Найти вероятность того, что время свободного пробега будет больше t.

Решение. Пусть A - событие, означающее, что молекула не столкнулась до времени t, а B - событие, означающее, что молекулы столкнулись в интервале (t,t+h). Пусть $f(t)=P(t_{\text{свободного пробега}}>t)$. Тогда по условию $P(A)=f(t), P(B|A)=1-P(\overline{B}|A)=1-(\lambda h+o(h))=1-\lambda h+o(h)$ $P(B|A)=\frac{P(AB)}{P(A)}=\frac{f(t+h)}{f(t)}\Rightarrow f(t+h)=f(t)-\lambda f(t)h+f(t)o(h)$. Предположив, что f дифференциируема, поделив на h и устремя h получим $f'(t)=-\lambda f(t)\Rightarrow f(t)=ce^{-\lambda t}$. Так как $f(0)=1\Rightarrow c=1\Rightarrow f(t)=e^{-\lambda t}$

Ответ: $e^{-\lambda t}$

35. (Т. §2. Задача 11.) По каналу связи может быть передана одна из трёх последовательностей букв: АААА, ВВВВ, СССС. Известно, что вероятности каждой из последовательностей равны соответственно 0,3; 0,4 и 0,3. В результате шумов буква принимается правильно с вероятностью 0,6. Вероятности приёма переданной буквы за две другие равны 0,2 и 0,2. Предполагается, что буквы искажаются независимо друг от друга. Найти вероятность того, что передано АААА, если на приёмном устрой- стве получено АВСА.

Peшение. Пусть A - событие, означающее, что было приятно ABCA. Пусть H_1 - соб-е озне, что передана AAAA, H_2 - BBBB, H_3 - CCCC. Тогда $P(H_1|A) = \frac{P(A|H_1)P(H_1)}{P(A)}$. По формуле полной вероятностит $P(A) = \sum_{i=1}^3 P(A|H_i)P(H_i) = 0.3*0.6^2*0.2^2 + 0.4*0.6*0.2^3 + 0.3*0.6*0.2^3 = <math>\frac{24}{3125}.P(A|H_1)P(H_1) = 0.3*0.6^2*0.2^2 = \frac{27}{6250} \Rightarrow P(H_1|A) = \frac{9}{16}$