Problem Set #3

Danny Edgel Econ 761: Industrial Organization Theory Fall 2021

October 26, 2021

1 Nevo's Code

The table below displays the estimates for the coefficient on price, α , for each specification. It is generated by the attached code, edgel_ps3.tex. Note that there are fewer observations than are in the data provided; this is due to the specification requiring an "outside option", for which I chose the first brand.

	(1)	(2)	(3)	(4)
	OLS	OLS	IV	IV
α	1.303	-28.260	5.203	-19.050
	(0.615)	(0.971)	(0.661)	(1.367)
FE?		X		X
R^2	-0.09	0.39	-0.11	0.29
N	2162	2162	2162	2162

I calculate the multi-product Bertrand-Nash markups, $\mu \in \mathbb{R}^{j \times t}$, as

$$\mu = \Omega^{-1} s \mu_j = \frac{s_j}{\partial s_j / \partial \delta_j} = \frac{1}{(1 - s_j)\alpha}$$

Where s is the vector of market shares for each brand in each quarter and city, and

$$\Omega = \Omega^* \odot H, H_{ij} = \frac{\partial s_j}{p_j}$$

$$\Omega_{ij}^* = \begin{cases} 1, & i \text{ and } j \text{ are owned by the same firm} \\ 0, & \text{otherwise} \end{cases}$$

Thus, by decomposing price into marginal cost and markup, we can also back out firm j's marginal cost, c_j , and calculate its margin, m_j :

$$c_j = p_j - \mu_j, \quad m_j = \frac{p_j}{c_j} - 1$$

Using each $\hat{\alpha}$ from the table above, the mean, median, and standard deviation of markups, margins, and implied marginal costs under each specification are given in the table below.

	(1)	(2)	(3)	(4)
$\operatorname{E}[\mu_{jt}] \operatorname{Var}(\mu_{jt})$	-0.098 0.033	0.005 0.000	-0.025 0.002	0.007 0.000
$\operatorname{E}[c_{jt}] \\ \operatorname{Var}(\mathbf{c}_{jt})$	0.224 0.035	0.121 0.001	$0.150 \\ 0.003$	0.119 0.001
$\frac{\mathrm{E}[m_{jt}]}{\mathrm{Var}(\mathbf{m}_{jt})}$	-0.299 0.054	0.044 0.009	-0.127 0.020	$0.075 \\ 0.033$

With