

Monte Carlo simulations of the structures and optical absorption spectra of Na atoms in Ar clusters, surfaces, and solids

Jerry A. Boatz and Mario E. Fajardo

Citation: J. Chem. Phys. 101, 3472 (1994); doi: 10.1063/1.467532

View online: http://dx.doi.org/10.1063/1.467532

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v101/i5

Published by the AIP Publishing LLC.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded

Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Monte Carlo simulations of the structures and optical absorption spectra of Na atoms in Ar clusters, surfaces, and solids

Jerry A. Boatz and Mario E. Fajardo Propulsion Directorate/RKFE, Phillips Laboratory, Edwards Air Force Base, California 93524-7680

(Received 23 September 1993; accepted 20 May 1994)

Optical absorption spectra of Na/Ar systems are calculated by combining the classical Monte Carlo simulation method with a quantum mechanical first-order perturbation scheme [Balling and Wright, J. Chem. Phys. 79, 2941 (1983)] for estimating the energies of the Na* $3p(^2P)$ excited states. The model incorporates many drastic approximations, but contains no adjustable parameters. Our Na/Ar matrix simulations generated relaxed structures for several candidate trapping sites based on various sized vacancies in face-centered-cubic (fcc) solid Ar. Trapping sites for which the equilibrium structures belong to the O_h or T_d point groups yielded the experimentally well-known "triplet" absorption line shape; for these cases, the splitting of the degeneracy of the excited Na* $3p(^2P)$ state is due solely to fluctuations away from the equilibrium structures. Simulations of Na/Ar clusters, surfaces, and matrix sites possessing a strong permanent axial asymmetry yielded a widely split "doublet plus singlet" absorption line shape. Despite our success at reproducing several qualitative aspects of the absorption spectroscopy of Na/Ar matrices, our simulations failed to quantitatively reproduce the experimental data. We discuss the major limitations of our model, as well as several possible improvements.

I. INTRODUCTION

Considerable advances have been made in the production and understanding of prototypical cryogenic solid propellant systems within the U.S. Air Force High Energy Density Materials (HEDM) program. This effort is motivated by thermochemical estimates of the performance of rocket propellant systems consisting of light energetic atoms trapped in cryogenic solid hydrogen.² These preliminary successes demand further improvements in our knowledge of these materials in order to refine our evaluations of propellant system performance. For example, the determination of microscopic trapping site structures would enable estimates of the bulk fuel density, a critical property affecting performance. The simulations described in this manuscript are only part of a broader effort in the HEDM program to apply theoretical chemical methods to issues connected with advanced chemical propellants.

Alkali metal/rare-gas (M/Rg) matrices are nearly perfect model systems for the cryogenic solid propellants under consideration. In particular, Na/Rg matrices have been extensively studied experimentally. Recent experimental efforts in this laboratory have demonstrated the existence of novel, previously unaccessed, trapping sites for Li and Na atoms in Ar and Kr matrices. 13,14 The majority of these matrix results take the form of optical absorption and emission spectra, and provide an extensive database of experimental results for comparison with theoretical calculations. The Na/Ar system is particularly amenable to theoretical study because of the applicability of classical molecular dynamics and Monte Carlo simulation techniques and because of the availability of good Na–Ar and Ar–Ar intermolecular potentials. 15–21

This situation has prompted us to attempt to develop a

simple method of connecting the observed matrix isolation spectroscopy to the microscopic metal atom trapping site structures. Because of the relative simplicity and speed of our approach, it can be easily applied to a wide variety of M/Rg systems, hopefully resulting in an improved qualitative understanding of the experimental data. Ultimately, lessons learned from these model systems should benefit more sophisticated efforts to understand the solid hydrogen systems with their added complexity (e.g., quantum solid behavior and chemical reactivity). A preliminary report on our Na/Ar work has appeared elsewhere;²² this manuscript includes more recent results, and a comparison with our newest experimental data.

II. BACKGROUND

A. Matrix experiments

We have previously reviewed the experimental techniques for producing metal doped matrices¹³ and the optical properties of these samples 13,14 elsewhere; only a brief summary will be given here. Na/Ar matrices are typically prepared by co-condensing Na atoms with a large excess of Ar atoms onto a cryogenically cooled substrate held in vacuum. Because of the large oscillator strength of the Na atomic resonance absorption $[3s(^2S) \rightarrow 3p(^2P), \lambda_{gas} \approx 590 \text{ nm}], \text{ the}$ most common diagnostic technique applied to these matrix samples is optical absorption spectroscopy. The Na atom electronic states are substantially perturbed by the matrix environment, with different trapping sites yielding different characteristic spectra. In fact, each site yields a different socalled "triplet" absorption feature; in Na/Ar matrices, the red triplet shows peaks near 578, 588, and 595 nm; the blue triplet shows peaks near 536, 545, and 554 nm; and the new violet triplet shows peaks near 504, 511, and 523 nm. Addi-

3472

tionally, a strong, broad [full width at half-maximum (FWHM)~1000 cm⁻¹] featureless absorption peaking near 460 nm is sometimes observed in Na/Ar matrices. This so-called "460 nm" absorption has been variously assigned to Na atoms in yet another trapping site, or to Na₂ molecules or larger clusters, or to colloidal Na particles.

B. Absorption spectra and trapping site models

We have also previously reviewed the existing theoretical efforts to explain and connect the matrix spectra and the metal atom trapping site structures. 13,23

The appearance of three peaks in the spectra of $S \rightarrow P$ absorptions in metal-atom/rare-gas (M/Rg) matrices is due to the breaking of the threefold degeneracy of the excited metal atom P state by the matrix environment. The various competing models proposed to explain the triplet splitting mechanism fall into one of four classes:

- (1) crystal field models which invoke a static asymmetry in the equilibrium positions of the atoms comprising the trapping environment;²⁴⁻²⁸
- (2) dynamic Jahn-Teller (J-T) effect models in trapping sites of high mean symmetry, with only minor spin-orbit (S-O) effects due to the matrix environment;^{4,11,29-33}
- (3) dynamic J-T effect models with large S-O modification by the matrix; 12,34-40
- (4) M*-Rg exciplex formation.⁴¹

In evaluating these models, we argued²³ as follows for or against each class: (1) studies invoking Li and Na atoms trapped at or near grain boundaries 14,42 emphasize the relevance of asymmetrical equilibrium trapping environments, and hence of the crystal field models; (2) application of the Franck-Condon principle to condensed phases⁴³ suggests that absorption experiments will be sensitive to lattice vibration induced "dynamic distortions" of the metal atom trapping site; (3) the recent observation of a well-defined triplet absorption feature in the low atomic number Li/Ne system²³ argues against the importance of external S-O modification effects due to mixing of the M atom P state with Rg states;³⁶ (4) finally, we argued that M*-Rg exciplex formation may influence M/Rg emission spectra, 41,45 but not absorption spectra. Regardless, each of these models raises interesting issues about the photodynamics of M/Rg systems; we hope to incorporate the best aspects of each into our own model.

Questions concerning M/Rg spectra cannot be separated from questions about the underlying M/Rg trapping site structures. Both unrelaxed and equilibrated proposed trapping structures have been evaluated by calculating the M/Rg system energy using various approximation schemes. 46-53 These studies concluded that interstitial sites in close-packed rare gas solids are too small to accept an alkali atom, but that plausible trapping sites can be based on single or multiple substitutional vacancies in such solids. Trapping sites of various equilibrium structure symmetries emerge as likely candidates, supporting both the static- and dynamic-distortion absorption spectra models mentioned above.

C. Other useful perspectives

We arrived at our present model after consideration of the strengths and weaknesses of the existing M/Rg absorption spectra models described above. A better appreciation of, and perhaps even improvements to, these models can be gained from studies of different, but related systems.

Electronic excitations in solid state systems are typically described in terms of "excitons," or separated electron—hole pairs. Excitons are classified into two limiting cases according to the extent of the electron—hole spatial separation as either tightly bound Frenkel excitons if the separation is smaller than a lattice constant, or as loosely bound Mott—Wannier excitons if the separation is much larger than a lattice constant. The lowest electronic excitations of M/Rg systems considered in this study are properly treated as tightly bound Frenkel impurity excitons, 55 whereas higher energy excitations corresponding to M atom Rydberg states should be discussed within the Wannier model. 56,57 In dilute M/Rg systems, the lowest excitations are localized on the M atom ionic core, justifying their treatment as matrix-perturbed isolated M atom states.

Much of the theoretical formalism previously applied to the optical spectra of M/Rg systems has its roots in the study of F-center defects in alkali-halide crystals (i.e., an electron trapped at a negative ion vacancy). 43,44,58-62 For example, the optical absorption spectrum of CsF F-centers displays a triplet feature which is explained by a combination of dynamic J-T and S-O modification effects. 44,58-62 These studies pointed out the intractability of solving the fully quantum mechanical dynamic J-T problem, and introduced various approximation strategies which nonetheless attempted to include some of the effects of lattice vibrations. However, the analogy between the F-center and M/Rg problems must not be overstretched. An electron in an F-center is not tightly bound to a central ionic core, rather it is delocalized over several nearest neighbor (NN) ion shells,⁵⁹ implying an intermediate case between Frenkel and Wannier excitons. Orthogonalization of the trapped electron's wave function to the occupied electronic states of the crystal leads to wild structure in its wave function in the neighborhood of the ion nuclei and thus to large S-O interactions. A closer analogy to the M/Rg case can be made to the spectroscopy of $S \rightarrow P$ transitions of heavy metal ion impurities in alkali-halide crystals⁶³ in which the optically active electrons are tied to a central ion core. Similar theoretical methods, however, neglecting S-O coupling modifications, were successfully applied to these systems.⁶⁴ Thus, we choose not to incorporate S-O coupling modification effects into our M/Rg absorption model at this time.

From a very different perspective, we have gained insights on how to evaluate the matrix environment perturbations on the M atom electronic states. Studies of gas phase pressure broadening of alkali atom absorptions, 65-70 and of scattering between S- and P-state atoms 71-73 provide the connection between generalized perturbations and the familiar adiabatic diatomic M-Rg potentials. This literature also utilizes many of the same approximations for treating separated electronic and nuclear coordinates mentioned above in connection to F-centers, however, in systems sufficiently

simple to allow quantitative comparisons and evaluations. Consideration of bound states of gas phase collision complexes leads naturally to the consideration of long-lived MRg_n clusters. Theoretical studies of the structures and spectra of MRg_n clusters have begun to appear in the literature $^{74-78}$ and have had a strong influence on our own work (see also the very recent calculations of BaAr_n clusters 79). We also note the close similarities between studies of the electronic transitions of these MRg_n clusters and ongoing investigations of the vibrational spectroscopy of polyatomic molecules in rare gas clusters. Particularly relevant are experimental and theoretical studies $^{80-83}$ of the splitting of the triply degenerate ν_3 vibration of SF₆ in Ar clusters.

In the following section, we will attempt to combine the best parts of existing M/Rg absorption theories with the insights provided from the other solid state, gas phase, and cluster studies just mentioned. Because of space limitations, we will rely on previously published derivations of expressions for absorption line shapes in condensed phases⁴³ and for the energetics of excited *P*-state M* atoms interacting with multiple *S*-state Rg perturbers. ^{51,67,69} However, we will discuss the specific applicability of these previous workers' approximations to M/Rg systems. Interested readers may contact the present authors directly for a more detailed presentation/derivation of our model.

III. THEORY

A. Line shape expression

We use the "classical Franck-Condon principle" expression for the condensed phase absorption line shape $I(\omega)$ as derived by Lax⁴³

$$I(\omega) \propto \sum_{i} \sum_{f} p_{i} |\overline{\mu_{fi}^{\text{el}}}|^{2} \int d\mathbf{Q} \,\mathcal{P}_{i}(\mathbf{Q})$$
$$\times \delta\{ [E_{f}(\mathbf{Q}) - E_{i}(\mathbf{Q})] / \hbar - \omega \}, \tag{1}$$

in which p_i is the population of the initial electronic state; $\overline{\mu_f^{\rm el}}$ is the electronic transition moment coupling the initial and final electronic states, averaged over the nuclear coordinates \mathbf{Q} ; $\mathscr{P}_i(\mathbf{Q})$ is the classical statistical mechanical probability distribution for the initial electronic state; and $E_i(\mathbf{Q})$ and $E_f(\mathbf{Q})$ are the energies of the system at configuration \mathbf{Q} in the initial and final electronic states, respectively. This expression is the classical analog of the semiclassical reflection approximation^{84–87} line shape expression, which is usually applied to bound—free transitions of polyatomic molecules, but can be generalized to include bound—bound transitions.

A few of the assumptions and approximations inherent in deriving and utilizing Eq. (1) deserve further comment. The classical statistical mechanical treatment of the nuclear coordinates limits the applicability of this approach to systems composed of loosely bound heavy atoms in which the spacings between vibrational energy levels are small compared to the system temperature (vide infra). The use of the Condon approximation, which neglects the dependence of the electronic transition moment on the nuclear coordinates, is justi-

fied in this case as it has been shown to hold to within a few percent for the $X(^2\Sigma) \rightarrow A(^2\Pi)$ and $X(^2\Sigma) \rightarrow B(^2\Sigma)$ transitions of the Na-Ar diatomic system by *ab initio* quantum chemical calculations, ¹⁶ and we expect similar behavior for the corresponding lowest excitations in larger Na/Ar systems. Finally, the delta function over angular frequencies appearing in Eq. (1) should properly be converted to spatial configurations, or "normalized" before the integration can be performed; ^{85,86} failure to follow this procedure can lead to errors in the simulated spectra. ⁸⁸

B. Initial and final state energies

For $S \rightarrow P$ transitions of M/Rg systems, both the initial M atom electronic state and the rare gas perturbers have spherical symmetry. The initial state energy for a given nuclear configuration $E_i(\mathbf{Q})$ can be approximated as a simple pairwise sum over the Σ symmetry diatomic potentials

$$E_{i}(\mathbf{Q}) = U_{\text{M-Rg}} + U_{\text{Rg-Rg}}$$

$$= \sum_{k} V_{\text{M-Rg}}(|\mathbf{R}_{k}|) + \sum_{k} \sum_{l < k} V_{\text{Rg-Rg}}(|\mathbf{R}_{l} - \mathbf{R}_{k}|),$$
(2)

where $U_{\rm M-Rg}$ is the contribution due to M-Rg interactions, $U_{\rm Rg-Rg}$ is the contribution due to Rg-Rg interactions, the indices k and l run over the Rg atoms, and the zero of energy is defined at infinite separation of all atoms.

For the excited M^* atom P state interacting with S-state Rg atoms, there are both Σ and Π symmetry diatomic interactions involved, hence a simple angle-independent summation over pair potentials will not yield the desired M^*/Rg energies. However, following the pioneering work of Baylis, ⁶⁷ Balling and Wright ⁵¹ (henceforth B&W), and independently Sando, Erickson, and Binning ⁶⁹ (see also Ref. 89), developed a simple and elegant first-order perturbation theory approximation to the M^*/Rg energies. The Hamiltonian for the M atom optically active electron is

$$H = H_A(\mathbf{r}) + \sum_k V(\mathbf{r}, \mathbf{R}_k), \tag{3}$$

where $H_A(\mathbf{r})$ is the unperturbed Hamiltonian, $V(\mathbf{r}, \mathbf{R}_k)$ is the perturbation due to the kth Rg atom, and \mathbf{r} and \mathbf{R}_k are the electronic and nuclear coordinates, respectively. The eigenvalues and eigenfunctions of $H_A(\mathbf{r})$ are denoted by ϵ_α and $\chi_\alpha(\mathbf{r})$. The eigenvalues E of the total Hamiltonian H are obtained by solving

$$\det |V_{\alpha\beta} - (E - \epsilon_{\alpha}) \delta_{\alpha\beta}| = 0, \tag{4}$$

where

$$V_{\alpha\beta} = \sum_{k} \langle \chi_{\alpha}(\mathbf{r}) | V(\mathbf{r}, \mathbf{R}_{k}) | \chi_{\beta}(\mathbf{r}) \rangle.$$
 (5)

For a light alkali M atom P state, spin-orbit coupling is ignored, and the basis set $\{\chi_{\alpha}\}$ is restricted to the three free atom states $\{p_{-1}, p_0, p_1\}$. Following B&W, for this basis set, the perturbation matrix becomes

$$V = \sum_{k} \left\{ \langle V_{0}(R_{k}) \rangle | + \frac{1}{10} \langle V_{2}(R_{k}) \rangle \begin{bmatrix} -(3 \cos^{2}\theta_{k} - 1) & -3\sqrt{2} \sin\theta_{k} \cos\theta_{k} e^{-i\phi_{k}} & -3 \sin^{2}\theta_{k} e^{-2i\phi_{k}} \\ -3\sqrt{2} \sin\theta_{k} \cos\theta_{k} e^{i\phi_{k}} & 2(3 \cos^{2}\theta_{k} - 1) & 3\sqrt{2} \sin\theta_{k} \cos\theta_{k} e^{-i\phi_{k}} \\ -3 \sin^{2}\theta_{k} e^{2i\phi_{k}} & 3\sqrt{2} \sin\theta_{k} \cos\theta_{k} e^{i\phi_{k}} & -(3 \cos^{2}\theta_{k} - 1) \end{bmatrix} \right\},$$
(6)

where the distance dependent matrix elements are related to the diatomic pair potentials by $^{71-73}$

$$\langle V_0(R_k) \rangle = \langle \chi_{\alpha}(r) | V_0(r, R_k) | \chi_{\beta}(r) \rangle$$

$$= \frac{1}{3} [V_{B\Sigma}(R_k) + 2V_{A\Pi}(R_k)], \tag{7a}$$

$$\langle V_2(R_k) \rangle \equiv \langle \chi_{\alpha}(r) | V_2(r, R_k) | \chi_{\beta}(r) \rangle$$

$$= \frac{5}{3} [V_{B\Sigma}(R_k) - V_{A\Pi}(R_k)].$$
 (7b)

Combining Eqs. (6) and (7) yields B&W's results, except that we believe that their Eq. (9d) for V_{13} contains a multiplicative sign error (see the Results section).

Equation (4) will yield up to three distinct energies E, which represent the contribution to the total energy due to the electronic excitation and the M^* -Rg interactions. These energies can be summed with $U_{\rm Rg-Rg}$ defined in Eq. (2) to give the total system energies for the final states

$$E_f(\mathbf{Q}) = E + U_{Rg-Rg}. \tag{8}$$

The M/Rg $S \rightarrow P$ transition energies are calculated as the difference between final and initial state energies, and so the initial and final state Rg-Rg interactions cancel

$$\hbar \omega_f = E_f(\mathbf{Q}) - E_i(\mathbf{Q}) = E - U_{\mathsf{M-R}\sigma}. \tag{9}$$

C. Gas-to-matrix spectral shifts

We prefer our form of Eq. (6) for the perturbation matrix since each of the terms has a simple physical significance. The term containing $\langle V_0(R_k) \rangle$ represents a pure shift in the excited state energies due to the presence of the perturbers, while the term containing $\langle V_2(R_k) \rangle$ accounts for any splitting of the initial degeneracies. We can make use of this separation to derive a simple expression for the shift of the centroid of the $S \rightarrow P$ absorption band. Since both the initial state U_{M-Rg} term and the final state term containing $\langle V_0(R_k) \rangle$ depend only on the magnitudes of the separations between the M and Rg atoms, we can write for any given configuration

$$\hbar \omega_{f} - \epsilon_{\alpha} = \left[\sum_{k} \langle V_{0}(R_{k}) \rangle \right] - U_{\text{M-Rg}}$$

$$= \sum_{k} \left[\langle V_{0}(R_{k}) \rangle - V_{X\Sigma}(R_{k}) \right]$$

$$= \sum_{k} V_{\text{shift}}(R_{k}), \tag{10}$$

which is simply the difference between the spherically averaged excited state M^* -Rg interactions and the ground state M-Rg interactions; we denote this difference potential by $V_{\text{shift}}(R_k)$. The position of the centroid of the absorption

band is simply the ensemble average of these shifts; for fairly rigid M/Rg structures in which all the atoms have well-defined equilibrium positions, the centroid shift can be approximated by

$$\langle \hbar \omega_{fi} - \epsilon_{\alpha} \rangle_{av} = \left\langle \sum_{k} V_{\text{shift}}(\langle R_{k} \rangle_{av}) \right\rangle_{av} \approx \sum_{k} V_{\text{shift}}(\langle R_{k} \rangle_{av}),$$
(11)

where $\langle R_k \rangle_{av}$'s are the equilibrium M-Rg separations.

IV. METHODOLOGY

A. Simulation techniques

We have chosen to perform the integration over initial state configurations specified in Eq. (1) by using the classical Monte Carlo (MC) simulation technique. The MC scheme used in this study is based on the original Metropolis algorithm, ⁹⁰ and our implementation was described in a recent manuscript on Li atom doped Ne solids.⁵³

Each MC simulation begins with the choice of an initial configuration for the M and Rg atoms. For our Na/Ar matrix simulations, we based the initial structures on an octahedral interstitial site, and on one-, two-, three-, four-, five-, six-, and 13-atom vacancies in an otherwise perfect fcc Ar crystal. We also ran simulations of the structure of pure solid Ar to test the procedure. In this study, we will restrict our attention to these idealized archetypal trapping sites and leave simulations of Na atoms in amorphous matrices and rare gas liquids for future efforts.

We used two different size "cells" in the various matrix simulations—one a roughly cubical arrangement of $6\times6\times6$ (100) planes containing 108 atoms, and the other a similar $8\times8\times8$ plane collection totaling 256 atoms. We used three dimensional periodic boundary conditions⁹¹ to simulate the infinite solid with experimental values⁹² of the temperature dependent solid Ar lattice constant a. We also truncated all interaction potentials and calculations of structural properties for internuclear separations greater than half of the length of a cell edge (e.g., $R_{\rm cutoff}$ =7.97 Å for the $6\times6\times6$ Ar cell and $R_{\rm cutoff}$ =10.62 Å for the $8\times8\times8$ Ar cell at T=10 K). This truncation scheme requires the inclusion of consistent longrange corrections to the calculated total energies and spectral shifts. ⁹³ The missing long range summations are approximated by integration over a mean density of perturbers

$$E_{\rm corr} = 4 \pi \rho_{\rm Rg} \int_{R_{\rm cutoff}}^{\infty} V(R) R^2 dR, \qquad (12)$$

in which ρ_{Rg} is the number density of Rg atoms in the solid and V(R) represents V_{M-Rg} , V_{Rg-Rg} , or V_{shift} depending on which correction is desired. These corrections were not included in our previous work²² and have the unfortunate ef-

fect of worsening the quantitative agreement between our results and the experimental data (vide infra).

For the Ar surface simulations, the ensemble consisted of six close packed (111) planes, each containing 36 Ar atoms, stacked to yield a small chunk of fcc Ar; the Na atom was placed on an outer close packed surface. We used two-dimensional periodic boundary conditions to mimic an extended surface and we allowed the structure to relax along the surface normal direction. We neglected any long range corrections and did not attempt to include any effects of surface roughness in these simulations.

For our simulations of $NaAr_n$ clusters, the initial Ar atom positions were those for a one-atom substitutional vacancy in fcc Ar, with the Na atom at the "center" (only for the $NaAr_{13}$ case was the Na atom actually initially surrounded by Ar atoms).

In addition to the absorption line shape, we also calculate the Na-Ar radial distribution function [RDF or "g(R)"] for a given mean structure. The Na-Ar RDF measures the probability of finding an Ar atom at a given distance from the Na atom, relative to the same probability calculated for an ideal Na/Ar gas at the same mean density. ⁹³ We actually prefer to work with the radial *probability* distribution function (RPDF) defined as

$$RPDF = 4\pi R^2 g(R) dR, \tag{13}$$

which gives the probability of finding an Ar atom in the interval R to R+dR from the Na atom. We calculate the RPDFs directly as histograms by rounding the Na-Ar distances to the nearest 0.01 Å and binning the contributions. The absorption line shapes are calculated similarly by binning the transition energies from Eq. (10) with a resolution of 15 cm⁻¹.

B. Na-Ar and Ar-Ar pair potentials

The Ar–Ar ground-state potential [HFD-B2 (Ref. 21)] used in these simulations has been constructed to accurately reproduce spectroscopic, scattering, and bulk data, and is expected to be very reliable. For the Na–Ar interactions, we chose to use the internally consistent set of Na–Ar $X(^2\Sigma)$, $A(^2\Pi)$, and $B(^2\Sigma)$ potentials calculated by Saxon et al. ¹⁶ We consider the quantitative discrepancies between these potentials and the published experimental potentials ^{15,17–20} to be relatively unimportant to our application, in view of the simplifying approximations we have introduced into our model. We set the asymptotic energy of the excited Na*–Ar potentials, ϵ_{α} from Eq. (4), to 16 968 cm⁻¹, the weighted average of the energies of the Na* $^2P_{1/2}$ and $^2P_{3/2}$ states. ⁹⁴ Figure 1 shows the various Na–Ar and Ar–Ar potentials used in the simulations, as well as the excited-state/ground-state difference potential $V_{\rm shift}$ defined above in Eq. (10).

V. RESULTS

A. NaAr diatomic

The simplest Na/Ar system provides the opportunity to test certain aspects of our model and its computer code implementation. We confirmed that the excited state energies calculated from Eq. (4) for a single Ar atom perturber at an

FIG. 1. Na-Ar and Ar-Ar diatomic potential energy curves, and $V_{\rm shift}$. (a) shows the two lowest Na*(3p 2P)-Ar excited-state potentials; the asymptotic energy is set to 16 968 cm⁻¹ in the spectral simulations. (b) shows the ground state Ar-Ar potential (R_e =3.76 Å, D_e =100 cm⁻¹) and the Na-Ar ground state potential (R_e =5.01 Å, D_e =55 cm⁻¹). (c) shows the difference potential $V_{\rm shift}$ defined in Eq. (10). The Na-Ar potentials are taken from Ref. 16, and the Ar-Ar potential is taken from Ref. 21.

arbitrary position agreed numerically with the Na-Ar $A(^2\Pi)$ and $B(^2\Sigma)$ potentials input into the calculation. Similar calculations using the original Balling and Wright equation (9d) failed this test, confirming the presence of an arithmetical or typographical error.

We also compared the classical NaAr RPDF calculated at T=10 K with the square of the ground state NaAr vibrational wave function calculated by numerical integration of the one-dimensional radial Schrödinger equation for the Na-Ar $X(^2\Sigma)$ potential. The quantum ground state Na-Ar probability distribution peaks at 5.08 Å and has a full width at half-maximum (FWHM) of 0.71 Å; our calculated classical statistical distribution peaks at 4.99 Å, with a FWHM of 0.55 Å. Thus, in this case, our classical method at T=10 K underpredicts the spread of positions available to the system even at T=0 K and should therefore also underpredict the width and splitting of the absorption line shape. This systematic error most likely pervades all of our Na/Ar cluster, surface, and matrix calculations.

B. Na/Ar clusters

Figure 2 shows the absorption spectra of $NaAr_n$ clusters containing one, two, three, six, eleven, and 12 Ar atoms at T=10 K. Table I includes the absorption peak positions, as well as the calculated peak shifts from the free Na atom transition energy. We do not show the corresponding Na-Ar RPDFs, but Table II contains a summary of the RPDF peak positions, the number of Ar atoms in each peak, and the equilibrium structure symmetry for the entire cluster. The

FIG. 2. Simulated $3s \rightarrow 3p$ absorption spectra of NaAr_n clusters at T=10 K for n=1, 2, 3, 6, 11, and 12. The vertical dotted line shows the position of the free Na* atom absorption centered at 16 968 cm⁻¹. The slanting dashed line shows the shift in the peak of the blue n-perturber satellite absorption.

calculated equilibrium structures correspond to nearly close-packed Ar clusters plus a surface Na atom, in agreement with previous findings. ^{74,76,77,97} This result can be understood by considering the differences in the Na-Ar and Ar-Ar ground state pair potentials. Since the Ar-Ar potential minimum occurs at shorter separations and is deeper than the Na-Ar well, energy minimization demands the close-packed Ar structure and the exclusion of the Na atom (see also the more complete discussions based on molecular dynamics simula-

tions in Refs. 81 and 98). Table III includes the ensemble averaged total ground state energy $\langle E_i(\mathbf{Q})\rangle_{\rm av}$ and the contribution from the averaged M-Rg energy $\langle U_{\rm M-Rg}\rangle_{\rm av}$ for simulations carried out at T=10 K. For these cluster systems and our choice of energy zero, the ensemble averaged ground state energy can be thought of as the "classical binding energy," averaged over the thermally accessible configurations.

At present, we could find no experimental spectral data in the literature on $NaAr_n$ clusters for n>1. Moreover, a direct comparison with results of previous structural and spectral simulations is possible only for the $NaAr_6$ cluster. Our simulations reproduce the correct equilibrium structure at T=10 K—the so-called a_1 isomer in the notation of Ref. 76. Our absorption spectrum shown in Fig. 2(d) and our peak positions listed in Table I, also agree well with the simulated $NaAr_6$ spectrum shown in Fig. 12(a) of Ref. 76, from which we estimate peak positions near 16 860, 17 060, and 17 520 cm⁻¹.

The simulated cluster absorption spectra all show two more or less resolved red components along with one broad, blue shifted component (see also Ref. 79). Since the equilibrium structures of these clusters, close-packed Ar plus an excluded Na atom, introduce the Na-Ar_n axis as a strongly preferred direction, we can make an analogy to the NaAr diatomic case and attribute the absorption features to transitions to "II-like" and " Σ -like" excited electronic states. In particular, Fig. 2 shows a progressively greater shift of the blue satellite absorption feature, which is roughly proportional to the number of Ar atoms in the first NN shell. The magnitude of the calculated shift is \approx 150 cm⁻¹ per first NN Ar perturber, comparable to the difference between the NaAr($B^2\Sigma$) and NaAr($B^2\Sigma$) potentials (\approx 250 cm⁻¹) at the typical first NN separation of $B\approx$ 5 Å. We will encounter this

TABLE I. A summary of optical absorption peaks calculated in this study at T=10 K. Peak positions are rounded to the nearest 15 cm⁻¹, and shifts from the free Na atom $3s(^2S) \rightarrow 3p(^2P)$ transitions centered $\sim 16~968$ cm⁻¹ are rounded to the nearest 5 cm⁻¹. The matrix site values are from simulations employing the $6\times6\times6$ (100) plane cell and include a long range cut-off correction of ~ 210 cm⁻¹.

System	Absorption peak energies (cm ⁻¹)	Peak shifts from free Na atom (cm ⁻¹)	Centroid shift (cm ⁻¹)
Clusters			
[°] NaAr	16 925, 17 195	-45, +225	+130
NaAr ₂	16 895, 16 955, 17 330	-75, -15, +360	+180
NaAr ₃	16 940, 17 480	-30, +510	+220
NaAr ₆	16 880, 17 030, 17 585	-90, +60, +615	+280
NaArıı	16 880, 17 090, 17 660	-90, +120, +690	+330
NaAr ₁₂	17 015, 17 060, 17 765	+45, +90, +795	+390
Surface site	16 775, 17 720	-195, +750	+210
Matrix sites			
O_h interstitial	17 540, 17 675, 18 155	+570, +705, +1185	+805
Oh interstitial annealed	17 585, 17 810, 17 975	+615, +840, +1005	+820
1-atom substitution	17 630, 17 765, 17 930	+660, +795, +960	+800
2-atom substitution	15 770, 18 455, 18 770	-1200, $+1485$, $+1800$	+690
3-atom substitution	16 745, 16 985, 19 325	-225, +15, +2355	+715
4-atom substitution	17 540, 17 645, 17 765	+570, +675, +795	+680
5-atom substitution	17 150, 17 705, 17 840	+180, +735, +870	+600
6-atom substitution	17 360, 17 435, 17 510	+390, +465, +540	+465
13-atom substitution	16 955	-15	-15

TABLE II. A summary of results of the $NaAr_n$ cluster and Na/Ar surface RPDF simulations at T=10 K. The first entry gives the position of a peak maximum in the RPDF; the second entry gives the mean position calculated over the entire peak, and the number of Ar atoms in that peak. For the cluster simulations, the last column lists the symmetry point group of the entire cluster.

	RPD	RPDF peak positions (Å), number of atoms in the peak			
System		1st NN	2nd NN	3rd NN	Symmetry
Clusters					
NaAr	Maximum	4.99		•••	$C_{\infty v}$
	Mean	5.17, 1			-
NaAr ₂	Maximum	5.00	•••	***	C_{2v}
	Mean	5.12, 2			
NaAr ₃	Maximum	4.98	•••	•••	C_{3v}
-	Mean	5.16, 3			
NaAr ₆	Maximum	4.96	7.60	•••	C_{2v}
-	Mean	5.04, 4	7.62, 2		
NaArıı	Maximum	4.92	7.51	8.60	C_1
••	Mean	4.99, 5	7.44, 5	8.61, 1	•
NaAr ₁₂	Maximum	4.95	7.55	8.77	C_{5v}
~	Mean	4.97, 6	7.56, 5	8.78, 1	
Surface	Maximum	4.76	6.1	7.4	•••
	Mean	4.76, 3 1/3	6.0, 3 1/4	7.3, 9	

"doublet plus singlet" absorption line shape again in our Na/Ar surface and matrix simulations.

C. Na/Ar surfaces

Figure 3 shows the RPDF and simulated absorption spectrum for a Na atom trapped on a close-packed Ar(111) surface at T=10 K. The plotted RPDF, and its analysis included in Table II, indicate that at T=10 K, the Na atom is for the most part trapped at a three-atom hollow. However,

TABLE III. A summary of calculated ensemble averaged total ground state energies $\langle E_i(\mathbf{Q})\rangle_{\mathrm{av}}$ and the contribution from the averaged M-Rg energy $\langle U_{\mathrm{M-Rg}}\rangle_{\mathrm{av}}$ for simulations carried out at T=10 K. The matrix simulation values include long range cut-off corrections of -390 cm⁻¹ from the Na-Ar ground state interactions, and -75 cm⁻¹/Ar atom from the Ar-Ar interactions. All energies are rounded to the nearest 10 cm⁻¹.

System	Number of atoms in the ensemble	$\langle E_i(\mathbf{Q}) \rangle_{\mathrm{av}}$	$\langle U_{ m M-Rg} angle_{ m av}$
Clusters			
NaAr	2	-50	-50
NaAr ₂	3	-200	-110
NaAr ₃	4	-450	-160
NaAr ₆	7	-1410	-240
NaAr ₁₁	12	3 440 .	-340
NaAr ₁₂	13	−3 980	-390
Surface site	217	N/A	-510
Matrices			
Pure fcc Ar	108	-85060	N/A
O_h interstitial	109	-82640	-670
Oh interstitial annealed	109	-82660	-700
One-atom substitution	108	-83870	-600
Two-atom substitution	107	-82760	-1020
Three-atom substitution	106	-81970	-1340
Four-atom substitution	105	-81340	-1750
Five-atom substitution	104	-80050	-1730
Six-atom substitution	103	-79 040	-1810
Thirteen-atom substitution	96	-70 890	-1530

examination of the final configuration generated in that particular simulation found the Na atom some 20 Å from its original position, indicating that the Na atom also regularly samples configurations connecting the various three-atom hollows. The simulated spectrum qualitatively resembles the NaAr and NaAr₃ spectra and shows the same centroid shift as the NaAr₃ spectrum, however, with a much larger splitting between the two peaks.

We also performed simulations of this system at temperatures up to T=50 K. Already by T=30 K, most of the structure past the first peak in the RPDF was washed out, except for a broad maximum near 8 Å (almost twice the first NN separation) reminiscent of the pair distribution function for a fluid system. The Na atom remained on the exterior of the Ar surface, and we did not observe any tendency towards solvation or incorporation of the Na atom into the Ar bulk.

FIG. 3. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum of a Na atom on an Ar (111) surface at T=10 K. (a) shows the RPDF calculated for an ensemble of one Na atom and 216 Ar atoms and employing two-dimensional periodic boundary conditions to mimic an infinite surface. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the underlying unresolved components of the red shifted doublet.

TABLE IV. A summary of results of the Na/Ar matrix RPDF simulations at T=10 K. The first entry gives the position of a peak maximum in the RPDF; the second entry gives the mean position calculated over the entire peak, and the number of Ar atoms in that peak; the third entry is the expected peak position around the center of each site for an undistorted fcc Ar lattice. The last column lists the symmetry of the first NN shell of Ar atoms. The simulations employed the $6\times6\times6$ (100) plane cell.

		RPDF peak positions (Å), number of atoms in the peak				
Trapping site		1st NN	2nd NN	3rd NN	4th NN	Symmetry
Pure fcc Ar	Maximum	3.75	5.31	6.50	7.51	•••
	Mean	3.75, 12	5.31, 6	6.50, 24	7.51, 12	
	Ideal	3.76, 12	5.31, 6	6.51, 24	7.51, 12	
O_h interstitial	Maximum	3.91, 4.3sh	5.42	6.54	7.57	$\approx C_{2v}$
	Mean	4.02, 13	5.37, 5	6.60, 25	7.63, 13	
	Ideal	2.66, 6	4.60, 8	5.94, 24	7.97, 30	
O _h interstitial annealed	Maximum	3.96	5.35	6.59	7.60	$\approx O_h$
	Mean	3.96, 12	5.26, 6	6.61, 26	7.61, 12	
	Ideal	2.66, 6	4.60, 8	5.94, 24	7.97, 30	
One-atom substitution	Maximum	3.93	5.31	6.55	7.57	O_h
	Mean	3.93, 12	5.31, 6	6.55, 24	7.57, 12	
	Ideal	3.76, 12	5.31, 6	6.51, 24	7.51, 12	
Iwo-atom substitution	Maximum	3.69	4.18	4.44	4.77	C_{2v}
	Mean	3.70, 4	4.17, 2	4.44, 2	4.75, 4	
	Ideal	3.25, 4	4.20, 4	4.97, 8	5.63, 6	
Three-atom substitution	Maximum	3.63	3.95	4.44	4.89	C_{3v}
	Mean	3.63, 1	3.96, 3	4.42, 3	4.91, 6.50	
	Ideal	3.07, 1	3.76, 3	4.34, 3	4.85, 6	
Four-atom substitution	Maximum	4.50	5.78	6.92	7.89	T_d
	Mean	4.50, 12	5.78, 12	6.92, 16	7.87, 24	•
	Ideal	4.40, 12	5.79, 12	6.90, 16	7.86, 24	
Five-atom substitution	Maximum	4.51	5.78	6.92	7.89	C_1^{-}
	Mean	4.51, 11	5.78, 12	6.92, 16	7.87, 24	·
Six-atom substitution	Maximum	4.64	5.93	•••	•••	O_h
	Mean	4.67, 8	5.94, 24	•••	•••	• "
	Ideal	4.60, 8	5.94, 24	7.97, 30	•••	
Thirteen-atom substitution	Maximum	4.69	5.25	6.4	7.45	C_{3v}
	Mean	4.73, 3	5.27, 3	6.33, 19	7.39, 15	
	Ideal	5.31, 6	6.51, 24	7.51, 12	•••	
sh=shoulder			•	,		

The higher temperatures served to broaden the individual peaks in the simulated absorption spectra; e.g., the FWHM of the sharp red-shifted and broad blue-shifted peaks changed from ≈ 100 and ≈ 300 cm⁻¹ at T=10 K, respectively, to ≈ 150 and ≈ 600 cm⁻¹ at T=50 K. In contrast, the respective peak maxima shifted only slightly, by +45 and -45 cm⁻¹.

D. Pure solid Ar

We once again take advantage of a simple prototypical system to test our model and its computer code implementation. Table IV includes a synopsis of the results of our simulation of the structure of pure fcc solid Ar at T=10 K, which agrees with the known equilibrium structure (note, however, that this agreement is due primarily to our use of periodic boundary conditions and a constant volume cell). The FWHM of the second, third, and fourth NN peaks in the simulated Ar-Ar RPDF were ≈ 0.22 Å. By considering the generated positions of the non-first NN Ar atoms as random independent variables, we can divide these peak widths by $\sqrt{2}$ to yield the root-mean-square displacement $\langle u^2 \rangle^{1/2}$ for an Ar atom of ≈ 0.16 Å. This result is somewhat smaller than the value of $\langle u^2 \rangle^{1/2} \approx 0.18$ Å estimated for the quantum zeropoint motion (ZPM) which dominates $\langle u^2 \rangle^{1/2}$ for solid Ar

from T=0 to 10 K. ^{99,100} Thus, our classical Na/Ar matrix simulations should be limited to temperatures greater than $T\approx10$ K in order to avoid seriously underpredicting the spread of the correct quantum initial state probability distribution.

E. Na/Ar matrices

1. Finite size effects

We checked for finite size effects, and the efficacy of our long range cut-off correction scheme, by comparing the results of simulations of a Na atom in a single atom substitutional vacancy carried out using the $6\times6\times6$ and $8\times8\times8$ cells. The calculated RPDFs were virtually identical, with peak positions and centroids all agreeing to within ± 0.01 Å, from which we conclude that the use of the $6\times6\times6$ 108 atom cell is sufficient to obtain the correct, size converged trapping site structures for this system, and for the multisubstitutional trapping sites. Likewise the splittings between the peaks in the calculated optical absorption spectra agreed to within the 15 cm⁻¹ spectral bin size. However, neglecting long range corrections to the spectral shifts leads to a strong dependence of the absolute position of the centroid of the absorption band on the size of the ensemble. For example, the uncorrected gas-to-matrix centroid shift for the $6\times6\times6$

FIG. 4. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed O_h interstitial site in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 108 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the second through fourth NN shells around an unrelaxed O_h interstitial site. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

cell was +1010 cm⁻¹, as compared to +845 cm⁻¹ for the 8×8×8 cell. The long range corrections appropriate for these two cases are -210 and -50 cm⁻¹, respectively, resulting in good agreement between the final, corrected centroid shifts of +800 and +795 cm⁻¹, respectively. All of the calculated spectral shifts and total energies from the Na/Ar matrix simulations reported in the tables include the appropriate long range corrections.

2. Simulations at T=10 K

Figures 4 through 12 show the results of our simulations of the relaxed structures and optical absorption spectra of Na/Ar matrices at T=10 K for initial geometries based on

FIG. 5. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed O_h interstitial site in solid Ar at T=10 K after "annealing" to T=50 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 108 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the second through fourth NN shells around an unrelaxed O_h interstitial site. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

FIG. 6. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed one-atom substitutional site in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 107 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first four NN shells around an unrelaxed single substitutional site. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

 O_h interstitial, annealed O_h interstitial, and one-, two-, three-, four-, five-, six-, and 13-atom substitutional vacancies in fcc Ar, in that order. The spectral data are summarized in Table I, the calculated mean ground state energies in Table III, and the RPDFs in Table IV.

The relaxed trapping site structure simulated at $T=10~\rm K$ for a Na atom initially placed in an O_h interstitial site [Fig. 4(a)] appears to be a "crowded" version of the relaxed one-atom substitutional site [Fig. 6(a)], with 13 instead of 12 first NN Ar atoms around the Na atom. A comparison of the positions of the peaks in the Na-Ar RPDF in Fig. 4(a) with the vertical bars representing the expected peaks around an O_h interstitial site indicates the gross rearrangement resulting

FIG. 7. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed two-atom vacancy in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 106 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first eight NN shells around the center of an unrelaxed two-atom substitutional site. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

FIG. 8. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed three-atom vacancy in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 105 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first 11 NN shells around the center of an unrelaxed three-atom substitutional site. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

from relaxation. The extra first NN Ar atom reduces the symmetry of the equilibrium positions of the Ar atoms in the first NN shell from O_h to roughly C_{2v} . This "static" distortion is responsible for the "doublet plus singlet" absorption line shape.

We tested for the possibility of other relaxed trapping site structures based on the O_h interstitial site by running the same simulations at temperatures up to T=50 K, and then quenching back to T=10 K. We loosely refer to this procedure as "annealing" the ensemble, and to the resulting new trapping site structure as the "annealed," relaxed O_h interstitial site. Figure 5 shows the RPDF and absorption spectrum for this trapping structure in which extra Ar atoms ap-

FIG. 9. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed four-atom vacancy in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 104 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first four NN shells around the center of an unrelaxed tetrahedral four-atom vacancy. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

FIG. 10. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed five-atom vacancy in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 103 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first four NN shells around the center of an unrelaxed tetrahedral four-atom vacancy. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

pear in the third NN shell. The local structure around the Na atom is very similar to that around the relaxed one-atom substitutional site, and the absorption spectrum shows only a minor asymmetry in its triplet pattern. As Table III shows, the two O_h interstitial based trapping structures differ in total energy by only ≈ 20 cm⁻¹, making an absolute assignment of the global minimum geometry problematical. We attempted, quixotically, to produce the annealed, relaxed structure directly at T=10 K by initially introducing the Na atom into a one-atom substitutional site and adding an extra Ar atom to the third NN shell. In all these cases, the ensemble reverted back to the locally crowded structure depicted in Fig. 4(a).

The simulated spectrum for a Na atom in a relaxed single substitutional vacancy at T=10 K presented in Fig.

FIG. 11. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed six-atom vacancy in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 102 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first three NN shells around the center of an unrelaxed octahedral six-atom vacancy. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

FIG. 12. Simulated RPDF and the $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed 13-atom vacancy in solid Ar at T=10 K. The solid curve in (a) shows the RPDF calculated for an ensemble of one Na atom and 95 Ar atoms in a volume normally occupied by 108 Ar atoms in solid Ar. The vertical bars indicate the positions of the first three NN shells around the center of an unrelaxed octahedral 13-atom vacancy. The solid curve in (b) shows the simulated optical absorption spectrum; the dotted curves show the individual underlying components.

6(b) shows the classic triplet absorption pattern ubiquitous to experimental Na/Rg matrix spectra. Figure 6(a) and Table IV show that the ensemble required only minor radial relaxation of the Ar atoms surrounding the central Na atom to reach equilibrium. This result is somewhat surprising to us, since an estimate of the relative "volumes" of the Na and Ar atoms based on Eq. (1) from Ref. 23 and the Na-Ar and Ar-Ar pair potentials indicates that the removal of roughly two Ar atoms is required to accommodate a Na atom. However, these simulations suggest that the Ar lattice is capable of supporting a Na atom in even tighter trapping sites.

Introducing a Na atom into a two-atom vacancy at T=10 K once again results in a relaxed trapping site structure with an equilibrium symmetry low enough to split the excited Na* states into a doublet plus singlet pattern. However, in this case, the doublet to singlet splitting shown in Fig. 7(b) is nearly 3000 cm⁻¹. Figure 7(a) shows the RPDF for this site which indicates an outward relaxation by the four first NN Ar atoms of ≈ 0.5 Å from their initial positions, and the splitting of the second NN peak into two distinct features. The third and fourth NN shells appear to actually contract towards the central Na atom. This relaxation results in a local equilibrium trapping structure of approximately C_{2v} symmetry.

Figure 8 shows the RPDF and spectrum for a Na atom in a three-atom substitutional vacancy at T=10 K. The equilibrium local trapping environment symmetry is C_{3v} , with one Ar atom on the C_3 axis pushed very close to the Na atom. As for the two-atom vacancy case, the absorption spectrum shows a strongly split doublet plus singlet pattern. This trapping site results in the largest shift of a spectral feature observed in this study—the singlet component is shifted about +2400 cm⁻¹ from the free Na atom transition energy.

The four-atom substitutional vacancy readily accepts a Na atom with only ≈ 0.1 Å radial distortion of the first NN shell Ar atoms required for equilibration at T=10 K. This

expansion is due more to the absence of the long range attraction usually contributed by the four removed Ar atoms than to repulsive interactions with the substituted Na atom. The resulting RPDF and absorption spectrum are shown in Fig. 9. The first NN Ar atom shell has T_d symmetry, and the corresponding absorption spectrum shows a symmetrical triplet feature similar to that for the O_h one-atom vacancy.

The five-atom substitutional site also readily accommodates a Na atom at $T\!=\!10$ K. The RPDF shown in Fig. 10(a) indicates a structure very similar to the four-atom T_d vacancy, however, with only 11 Ar atoms in the first NN shell. The missing atom reduces the local trapping site equilibrium symmetry to C_1 and results in a doublet plus singlet absorption feature.

Figure 11 shows the results of the simulation of a Na atom in a six-atom vacancy at T=10 K. The Ar trapping cage retains its O_h symmetry. At this low temperature, the thermal trapping site geometry fluctuations are barely able to split the absorption line shape into the triplet pattern.

Figure 12 shows the simulated RPDF and absorption spectrum for a Na atom in a spacious 13-atom vacancy at T=10 K. This vacancy was created by removing an Ar atom and its 12 first NN Ar atoms from the fcc lattice. Since the distance from the center of this site to the nuclei of the first NN Ar atoms (≈ 5.3 Å) is larger than the equilibrium separation of the Na-Ar ground state pair potential (≈ 5.0 Å), the Na atom will experience a very flat potential surface near the cage center, allowing it to readily sample off-center positions. However, this form of "long range" asymmetry is apparently ineffective in splitting the degeneracy of the excited Na* atom, and the absorption spectrum in Fig. 12(b) shows only a single broad peak, almost unshifted from the gas phase transition energy.

Examination of the absorption band centroid shifts listed in Table I confirms the expected trend towards increased gasto-matrix blue shifts for smaller volume trapping sites. Furthermore, the magnitude of the calculated centroid spectral shifts can be estimated accurately from Eq. (11) by substituting for each $\langle R_k \rangle_{\rm av}$ the position of the centroid of the RPDF peak containing that particular Ar atom. For example, for the single substitutionally trapped Na atom, including the 54 Ar atoms comprising the first through fourth NN shells into Eq. (11), and the $-210~{\rm cm}^{-1}$ long range cut-off correction, yields an estimated band centroid shift of $+810~{\rm cm}^{-1}$, very close to the calculated $+800~{\rm cm}^{-1}$ listed in Table I.

3. Temperature effects

In order to test the effects of larger fluctuations from the equilibrium trapping site structures on the absorption spectra, we also performed a few simulations at temperatures up to $T=50~\rm K$. Figure 13 shows the results for an initially interstitially trapped Na atom; at the higher temperatures, the absorption feature changes from the doublet plus singlet line shape to a more symmetric triplet pattern. In fact, the $T=50~\rm K$ interstitial absorption spectrum strongly resembles the spectrum calculated for a single substitutionally trapped Na atom at the same temperature, as can be seen from a comparison with Fig. 14(e) and the peak positions listed in Table V. A comparison of the RPDFs for the two systems at $T=50~\rm K$

NaAr108

FIG. 13. Temperature dependence of the simulated $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed O_h interstitial site in solid Ar. (a)–(e) show the spectra calculated for T=10-50 K, in 10 K increments. The spectrum changes from a doublet plus triplet pattern to the classic triplet pattern at the higher temperatures.

K (not shown) reveals them to be virtually identical, except for extra Ar atoms in the third NN shell in the interstitial case. As was discussed above, lowering the simulated temperature yielded the relaxed, annealed trapping structure depicted in Fig. 5. The various spectra for the single substitutional system plotted in Fig. 14 show a general increase in both the separations between the components of the triplet, and in their individual linewidths, with increasing temperature. Figure 15 shows the same behavior for the components of the blue-shifted doublet in the absorption spectra of a Na

FIG. 14. Temperature dependence of the simulated $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed one-atom substitutional site in solid Ar. (a)-(e) show the spectra calculated for T=10-50 K, in 10 K increments. The spectrum retains its classic triplet line shape at all temperatures.

TABLE V. A summary of temperature dependence of the optical absorption peaks calculated in this study. The simulations of the O_h interstitial site at 10, 20, and 30 K represent the unannealed trapping site structure (see the text). These simulations employed the $6\times6\times6$ (100) plane cell and the values in this table include a long range cut-off correction of -210 cm⁻¹. Peak positions are rounded to the nearest 15 cm⁻¹, and shifts from the free Na atom $3s(^2S) \rightarrow 3p(^2P)$ transitions centered around 16 968 cm⁻¹ are rounded to the nearest 5 cm⁻¹.

System	Absorption peak energies (cm ⁻¹)	Peak shifts from free Na atom (cm ⁻¹)	Centroid shift (cm ⁻¹)
O_h interstitial			
<i>T</i> =10 K	17 540, 17 675, 18 155	+570, +710, +1185	+805
T = 20 K	17 495, 17 690, 18 170	+525, +720, +1200	+790
T = 30 K	17 450, 17 675, 18 185	+480, +710, +1215	+750
T = 40 K	17 405, 17 750, 18 140	+435, +780, +1170	+770
T = 50 K	17 345, 17 720, 18 125	+375, +750, +1155	+740
One-atom subs	stitution		
T = 10 K	17 630, 17 765, 17 930	+660, +795, +960	+800
T = 20 K	17 540, 17 765, 17 975	+570, +795, +1005	+785
T = 30 K	17 480, 17 750, 18 020	+510, +780, +1050	+770
T = 40 K	17 420, 17 735, 18 050	+450, +765, +1080	+755
T = 50 K	17 375, 17 735, 18 080	+405, +765, +1110	+740
Two-atom subs	stitution		
T = 10 K	15 770, 18 455, 18 770	-1200, $+1485$, $+1800$	+690
T = 20 K	15 815, 18 410, 18 740	-1155, $+1440$, $+1770$	+685
T = 30 K	15 875, 18 365, 18 740	-1095, $+1395$, $+1770$	+680
T = 40 K	15 935, 18 290, 18 725	-1035, $+1320$, $+1755$	+670
T=50 K	15 965, 18 245, 18 710	-1005, +1275, +1740	+665

atom in a two-atom vacancy. However, for this trapping site, the higher temperatures do not convert the spectrum into the classical triplet line shape.

VI. DISCUSSION

A. Contributions of the present model

As promising as some of our results appear at first glance, we must conclude that our model fails to quantita-

FIG. 15. Temperature dependence of the simulated $3s \rightarrow 3p$ absorption spectrum for a Na atom in a relaxed two-atom substitutional site in solid Ar. (a)-(e) show the spectra calculated for T=10-50 K, in 10 K increments. The spectrum retains its doublet plus singlet line shape at all temperatures.

TABLE VI. A summary of experimentally observed optical absorptions of Na/Ar matrices. Peak positions given in cm⁻¹; data are from Ref. 14. Peak shifts are relative to the gas phase Na atom $3s(^2S) \rightarrow 3p(^2P)$ transitions centered ~16 968 cm⁻¹.

	As depos	ited samples	Annealed samples	
Feature nomenclature	Peaks	Shifts	Peaks	Shifts
Red triplet	16 830	-140	N/A	
•	17 080	+110		
	17 440	+470		
Blue triplet	18 050	+1080	18 100	+1130
	18 360	+1390	18 390	+1420
	18 670	+1700	18 680	+1710
Violet triplet	19 130	+2160	19 120	+2150
	19 510	+2540	19 570	+2600
	19 820	+2850	19 840	+2870
"460 nm" absorption	21 930	+4960	21 930	+4960

tively predict or explain the experimental absorption spectra of Na/Ar matrices. Consideration of the experimental data summarized in Table VI shows that we do not reproduce the exact magnitudes of either the absorption peak splittings, nor of the gas-to-matrix shifts of the centroids, for any given triplet feature. Nonetheless, our model does yield good qualitative agreement with many aspects of the experimental data. These partial successes encourage us to attempt to extract from our efforts at least a few generally or specifically applicable conclusions.

First, our simulations succeeded in producing several, plausible, candidate trapping sites for the Na/Ar matrix system, in agreement with the multiple trapping sites observed experimentally. We confirmed that true interstitial sites in the Ar solid cannot support an intruding Na atom without undergoing major rearrangement upon relaxation. Thus, the notion of a characteristic minimum trapping site volume²³ for a given van der Waals guest/host system appears vindicated, even if our back of the envelope method for predicting that minimum volume [embodied by Eq. (1) from Ref. 23] failed.

We are tempted to try to use the calculated average total ground state energies listed in Table III to choose a most stable, and hence "preferred," Na atom trapping site structure. Such an approach would select the close packed Ar solid plus an excluded Na atom as the preferred structure over even the relaxed Na/Ar trapping site originating as a one-atom vacancy. However, we remind the reader that the experimental M/Rg matrix systems are in practice produced by depositions at a surface *not* at true thermodynamic equilibrium, and furthermore can exhibit multiple M atom trapping sites within the same sample. Thus, even correct free-energy calculations utilizing more general ensembles than we employed cannot by themselves unambiguously designate a "preferred" trapping site for the matrix deposition process.

Our calculated energetics do, however, suggest a further refinement of the microscopic trapping site formation dynamics model developed in Refs. 13, 14, and 23. Our discussions of the trapping site generation mechanisms have so far focused on the relative thermodynamic stabilities, and hence total *energies*, of the candidate trapping sites. For example,

we have explained the absence of the novel Na/Ar violet triplet absorption in matrices produced using slow Knudsen oven generated Na atoms as due to the inability of these atoms to access the "high energy" site responsible for the violet triplet.¹⁴ However, the results in Table III show only small differences in the calculated total energies for the various candidate tight sites. This suggests that for the Na/Ar system, the repulsive forces which arise at small Na-Ar separations may be the determining factor in trapping site formation rather than the total Na/Ar system energy. Thus, for other than thermodynamically equilibrated bulk Na/Ar systems, the localized stresses associated with these repulsive interactions may dynamically favor the formation of larger volume trapping sites. We hope to resolve more of the details of this model in the future via use of the molecular dynamics simulation method.

We note a surprisingly clean separation of the effects on the absorption spectra of "static" vs "dynamic" distortions of the Na atom trapping environment. More precisely (1) trapping sites in which the equilibrium positions of the atoms form a structure belonging to a high symmetry point group (i.e., O_h or T_d) yield the classic triplet absorption pattern. In these cases, the splitting of the degeneracy of the excited Na* atom ${}^{2}P$ state can only be due to fluctuations away from the equilibrium trapping site structure. This conclusion is further supported by the results of simulations of these highly symmetrical sites at higher temperatures, which show an increase in the peak splittings with temperature. Conversely (2) trapping environments with equilibrium structures of lower symmetry, in which a strongly preferred direction exists (i.e., C or D point groups) exhibit a wellseparated doublet plus singlet absorption pattern. For these sites, the static axial asymmetry dominates the doublet to singlet splitting, while geometry fluctuations determine the splitting within the doublet feature itself. In the specific case of the Na atom trapped in the two-atom vacancy, we also showed that this axial asymmetry and the associated doublet plus singlet pattern persists even to T=50 K. Alternatively (3) trapping sites with only minor deviations from a highly symmetrical structure (e.g., the initially interstitial site) can yield the doublet plus singlet pattern at low temperatures and a symmetrical triplet pattern at higher temperatures. The increased magnitude of the geometry fluctuations at higher temperature apparently overwhelms the original mild axial asymmetry of these sites. Such intermediate cases provide for a direct comparison of the relative importance of static and dynamic distortions in determining the absorption line shape. Finally, we also note that "tighter" trapping structures, i.e., those corresponding to smaller vacancies or to lower temperatures for a given trapping site, typically give larger blue shifts of the centroid of the absorption band than do "looser" structures.

We should point out here that our omission of any simulations of amorphous matrix or liquid structures further limits the generality of some of our conclusions. If one considers each different nuclear configuration **Q** as a distinct "isomer" of the Na/Ar system, then our calculated absorption line shapes can be thought of as inhomogeneously broadened spectra in the sense that they are calculated as an

average over the multitude of isomers. Since our MC method in principle does not include any dynamical effects, we cannot distinguish between an ensemble average taken over a superposition of static amorphous sites vs an average over dynamically distorted crystalline sites. Thus, our results do not preclude the possibility that simulations of amorphous or liquid Na/Ar systems may also yield well-defined triplet absorption features.

B. A comparison with experiments and previous models

Even though our results do not allow us to make any definite assignments between a given triplet absorption feature and a proposed trapping site structure, we can now speculate on the nature of the trapping sites from a better informed perspective. We associate the observed red, blue, and violet triplet absorptions with Na atoms trapped at sites lacking a single strongly preferred direction, perhaps even with sites possessing equilibrium structures of high symmetry. This assignment further constrains our recent adoption¹⁴ of a previously proposed model⁴² of the red triplet site structure as "Na atoms trapped at or very near to internal surface defects in the matrix." Our present view is that Na atoms trapped even on atomically rough Rg surfaces would exhibit a doublet plus singlet absorption pattern, not the observed symmetrical triplet feature. We thus refine our model of the red triplet absorption to include only Na atoms trapped "very near to," but not on, internal matrix surfaces. We can also suggest that the broad featureless "460 nm" absorption observed in Na/Rg matrices may be the blue-shifted singlet component of a doublet plus singlet type absorption of Na atoms trapped in a site with a strong axial static asymmetry. Such a structure was previously proposed⁴⁶ to explain the reversible photobleaching phenomena associated with the 460 nm feature.

Our results also permit us to comment on the various previously proposed models of the spectra of $S \rightarrow P$ transitions of M/Rg systems. Essentially, the arguments we presented above in the Background section appear to have been borne out. The basic approach of treating the excitations as tightly bound Frenkel excitons in general, and as matrix perturbed excited metal atom states in particular, appears sound. Our model includes aspects of both the static crystal field, and dynamic J-T effect models, but rejects the importance of large external S-O modification effects on the electronic spectra of light metal atoms. We prefer the MC simulation approach to previously used analytical theoretical methods, since it allows us to make fewer assumptions about the type and form of the results and eliminates several opportunities to introduce human biases into the calculations.

C. Limitations of the present model

The lack of quantitative agreement between the results of our simulations and matrix experiments prompts us to examine our model for inherent deficiencies and possible improvements. We believe that a semiclassical Franck—Condon principle⁴³ line shape expression can yield quantitatively correct absorption spectra, provided the availability of

accurate methods for calculating the initial state probability distribution $\mathcal{P}_i(\mathbf{Q})$ and the excited state energies $E_f(\mathbf{Q})$, in spite of the neglect of the dynamical aspects of the Jahn–Teller problem imposed by the reflection approximation and of the questionable assumption of Born–Oppenheimer separability near electronically degenerate nuclear configurations.

In our model, we incorporate a classical method for generating and integrating over the initial state nuclear coordinate probability distribution. Even for the Na/Ar matrix systems, this method somewhat underpredicts the extent of geometry fluctuations away from the equilibrium structures. As the absorption data in Fig. 14 and Table V show, at the expense of introducing the simulation temperature as an adjustable parameter into our model, we could have achieved better cosmetic agreement with the observed peak splittings by running our simulations at higher temperatures claiming to be compensating for this error. The incorporation of a quantum statistical mechanical method for calculating $\mathcal{P}_i(\mathbf{Q})$ should alleviate this problem and generalize the applicability of our approach to even lighter matrix systems.

Our adaptation of B&W's method for calculating the excited state energies has the compelling practical advantages of being conceptually simple and extremely fast from a computational standpoint. However, due in part to its simplicity, it suffers from an inability to account for several potentially important effects. Most distressing is the absence of even a "particle in a box" level treatment of the energy shifts caused by confining the M atom valence electron in tight trapping sites. Our expression for the shift of the centroid of the absorption band depends only on the absolute distances between the M and Rg atoms and is completely independent of the angular orientations (e.g., open vs closed structures) of the Rg atoms. The only contribution to the confinement energy comes from the repulsive parts of the Na-Ar excited state pair potentials. We believe that this deficiency is responsible for the model's consistent underprediction of the blue shifts of the absorption band centroids. Another important limitation of the B&W model is the use of only firstorder perturbation theory and the minimum $\{p_{-1}, p_0, p_1\}$ basis set. This approach neglects any possible mixing of the p states with other Na atom electronic states, and thus cannot reproduce the spatial distortions of the valence electron excited state probability distribution observed in other Na/Rg calculations.⁷⁴ We are at present investigating alternatives to the original B&W formalism, including higher order perturbation theories and larger M* atomic basis sets.

Our omission of spin limits the applicability of our model to $S \rightarrow P$ transitions of M atoms for which the magnitude of the intrinsic S-O splitting of the excited p states is smaller than a few tens of wave numbers. In matrix absorption spectra of ${}^2S \rightarrow {}^2P$ transitions of heavy M atoms (e.g., Cs, Ag, and Au), the splitting between the observed doublet plus singlet components is due primarily to the *intrinsic* S-O splitting of the M atom. We caution the reader here not to confuse the doublet plus singlet line shapes generated in some of our Na/Ar simulations with these observations from heavy M atom matrices. We are currently working on the inclusion of S-O coupling effects into our model by expanding the basis set to the six 2P_J spin orbitals and including a

term for the intrinsic M atom S-O coupling in our valence electron Hamiltonian. We hope that this approach will also ultimately lead to a method for simulating the magnetic circular dichroism (MCD) spectra of matrix isolated M atoms.

VII. CONCLUSIONS

We have presented a method for calculating the relaxed structures, and optical absorption spectra of $S \rightarrow P$ transitions, of M/Rg systems. The model is based on a combination of the classical MC method and a simple first-order perturbation theory treatment of the excited M* states, and as such is computationally very fast, but yields only qualitatively correct results.

We have applied this method to the specific cases of Na/Ar clusters, surfaces, and solid phase systems. The minimum energy structures for Na/Ar systems consist of approximately close-packed Ar atoms with a surface Na atom. If the Na atom is constrained to remain in the Ar bulk, it can be accommodated in as small a site as a single substitutional vacancy, resulting in minor radial distortions of the Ar surroundings. A Na atom is readily accommodated in a fouratom substitutional site with negligible distortion of the Ar lattice. Trapping sites of high static symmetry yield the wellknown triplet absorption line shape observed in the spectra of matrix isolated light alkali atoms. Na atoms in Ar clusters, on Ar surfaces, or in matrix trapping sites with a strong axial asymmetry result in a doublet plus singlet absorption line shape. We have identified several deficiencies in our model in its present form and are actively pursuing improvements.

We hope that these results will contribute to the ongoing effort 101-103 to explain the structures and photodynamics of light atoms in solid hydrogen.

VIII. FUTURE PLANS

We have begun to perform simulations of emission spectra from excited state Na* atoms in relaxed trapping site structures. We use the B&W formalism for calculating the Na* atom energies and treat the lowest energy as a point on an adiabatic potential energy surface on which we perform the MC simulation. Our preliminary results show strongly Stokes-shifted emissions and strong local lattice distortions which may be loosely interpreted as "NaAr_n exciplex formation." We will also soon begin simulations of the optical absorption spectra of Na atoms in liquid and random closepacked solid Ar, in support of an in-house effort to observe these absorptions experimentally. We will report all of these results elsewhere upon their completion.

ACKNOWLEDGMENTS

The authors would like to acknowledge the direct assistance of Professor V. A. Apkarian and Professor P. W. Langhoff for independently confirming the presence of the error in the original B&W derivation. We again thank Professor Apkarian and Dr. W. L. Lawrence for sharing with us the results of their related simulations prior to publication. We are also grateful for many valuable discussions with numerous other members of the HEDM community.

- ¹ Proceedings of the High Energy Density Matter (HEDM) Conference, April 1992, edited by M. R. Berman (USAF Office of Scientific Research, Bolling Air Force Base, Washington, D.C., 1992).
- ²P. G. Carrick, Specific Impulse Calculations of High Energy Density Solid Cryogenic Rocket Propellants. I. Atoms in Solid H₂ (USAF Phillips Laboratory, Edwards Air Force Base, CA, 1993).
- ³M. McCarty and G. W. Robinson, Mol. Phys. 2, 415 (1959).
- ⁴W. Weyhmann and F. M. Pipkin, Phys. Rev. A 137, 490 (1965).
- ⁵B. Meyer, J. Chem. Phys. **43**, 2986 (1965).
- ⁶R. B. Merrithew, G. V. Marusak, and C. E. Blount, J. Mol. Spectrosc. 29, 54 (1969).
- ⁷L. C. Balling, M. D. Havey, and J. F. Dawson, J. Chem. Phys. **69**, 1670 (1978).
- ⁸ M. Hofmann, S. Leutwyler, and W. Schulze, Chem. Phys. 40, 145 (1979).
- ⁹T. Welker and T. P. Martin, J. Chem. Phys. 70, 5683 (1979).
- ¹⁰ J. Hormes and B. Karrasch, Chem. Phys. **70**, 29 (1982).
- ¹¹ J. Hormes and J. Schiller, Chem. Phys. 74, 433 (1983).
- ¹² J. Rose, D. Smith, B. E. Williamson, P. N. Schatz, and M. C. M. O'Brien, J. Phys. Chem. **90**, 2608 (1986).
- ¹³ M. E. Fajardo, P. G. Carrick, and J. W. Kenney III, J. Chem. Phys. **94**, 5812 (1991).
- ¹⁴S. Tam and M. E. Fajardo, J. Chem. Phys. **99**, 854 (1993).
- ¹⁵R. E. Smalley, D. A. Auerbach, P. S. H. Fitch, D. H. Levy, and L. Wharton, J. Chem. Phys. **66**, 3778 (1977).
- ¹⁶R. P. Saxon, R. E. Olson, and B. Liu, J. Chem. Phys. 67, 2692 (1977).
- ¹⁷ J. Tellinghuisen, A. Ragone, M. S. Kim, D. J. Auerbach, R. E. Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys. 71, 1283 (1979).
- ¹⁸G. Aepfelbach, A. Nunnemann, and D. Zimmermann, Chem. Phys. Lett. 96, 311 (1983).
- ¹⁹R. Duren, W. Groger, E. Hasselbrink, and R. Liedtke, J. Chem. Phys. 74, 6806 (1981).
- ²⁰ F. Van Den Berg, R Morgenstern, and C. Th. J. Alkemade, Chem. Phys. 93, 171 (1985).
- ²¹ R. A. Aziz and M. J. Slaman, Mol. Phys. 58, 679 (1986).
- ²² J. A. Boatz and M. E. Fajardo, in Ref. 1, p. 230.
- ²³ M. E. Fajardo, J. Chem. Phys. **98**, 110 (1993).
- ²⁴ A. A. Belyaeva, Yu. B. Predtechenskii, and L. D. Shcherba, Opt. Spektrosk. (English translation) 24, 233 (1968).
- ²⁵ M. Brith and O. Schnepp, J. Chem. Phys. 39, 2714 (1963).
- ²⁶S. L. Kupferman and F. M. Pipkin, Phys. Rev. 166, 207 (1968).
- ²⁷ J. E. Francis, Jr. and S. E. Webber, J. Chem. Phys. **56**, 5879 (1972).
- ²⁸ F. Forstmann, D. M. Kolb, D. Leutloff, and W. Schulze, J. Chem. Phys. 66, 2806 (1977).
- ²⁹ A. A. Belyaeva, Yu. B. Predtechenskii, and L. D. Shcherba, Opt. Spektrosk. (English translation) 34, 21 (1973).
- ³⁰ R. L. Mowery, J. C. Miller, E. R. Krausz, P. N. Schatz, S. M. Jacobs, and L. Andrews, J. Chem. Phys. **70**, 3920 (1979).
- ³¹ H. Kuppelmaier, H. J. Stockmann, A. Steinmetz, E. Gorlach, and H. Ackermann, Phys. Lett. A 98, 187 (1983).
- ³² K. S. Song and C. H. Leung, Solid State Commun. 57, 129 (1986).
- ³³ I. Ya. Fugol, A. M. Ratner, and E. M. Yurtaeva, Phys. Status Solidi B **160**, 245 (1990).
- ³⁴ P. A. Lund, D. Smith, S. M. Jacobs, and P. N. Schatz, J. Phys. Chem. 88, 31 (1984).
- 35 H. J. Stockmann, Z. Phys. B 54, 229 (1984).
- ³⁶ M. Vala, K. Zeringue, J. ShakhsEmampour, J. Rivoal, and R. Pyzalski, J. Chem. Phys. 80, 2401 (1984).
- ³⁷ M. C. M. O'Brien, J. Chem. Phys. 82, 3870 (1985).
- ³⁸ M. C. M. O'Brien, J. Phys. C 18, 4963 (1985).
- ³⁹C. Samet, J. L. Rose, B. E. Williamson, and P. N. Schatz, Chem. Phys. Lett. **142**, 557 (1987).
- ⁴⁰R. Pellow and M. Vala, J. Chem. Phys. 90, 5612 (1989).
- ⁴¹M. Moskovits and J. E. Hulse, J. Chem. Phys. 67, 4271 (1977).
- ⁴² A. Schrimpf, R. Rosendahl, T. Bornemann, H. J. Stockmann, F. Faller, and L. Manceron, J. Chem. Phys. **96**, 7992 (1992).
- ⁴³ M. Lax, J. Chem. Phys. 20, 1752 (1952).
- ⁴⁴P. R. Moran, Phys. Rev. A 137, 1016 (1965).
- ⁴⁵C. Crepin and A. Tramer, J. Chem. Phys. **97**, 4772 (1992).
- ⁴⁶L. C. Balling, J. F. Dawson, M. D. Havey, and J. J. Wright, Phys. Rev. Lett 43, 435 (1979).
- ⁴⁷J. F. Dawson and L. C. Balling, J. Chem. Phys. **71**, 836 (1979).
- ⁴⁸F. Forstmann and S. Ossicini, J. Chem. Phys. 73, 5997 (1980).
- ⁴⁹S. Ossicini and F. Forstmann, J. Chem. Phys. **75**, 2076 (1981).

- ⁵⁰S. Ossicini and F. Forstmann, Nuovo Cimento Soc. Ital. Fis. D 1, 688 (1982).
- ⁵¹L. C. Balling and J. J. Wright, J. Chem. Phys. 79, 2941 (1983).
- ⁵²L. C. Balling and J. J. Wright, J. Chem. Phys. 81, 675 (1984).
- ⁵³M. E. Fajardo, J. Chem. Phys. 98, 119 (1993).
- ⁵⁴C. Kittel, *Introduction to Solid State Physics*, 6th ed. (Wiley, New York, 1986).
- ⁵⁵N. Schwentner, E. E. Koch, and J. Jortner, *Electronic Excitations in Condensed Rare Gases* (Springer, Berlin, 1985).
- ⁵⁶J. Hormes, Chem. Phys. Lett. 112, 431 (1984).
- ⁵⁷N. Schwentner and M. Chergui, J. Chem. Phys. **85**, 3458 (1986).
- ⁵⁸J. Mort, F. Luty, and F. C. Brown, Phys. Rev. A 137, 566 (1965).
- ⁵⁹D. Y. Smith, Phys. Rev. A 137, 574 (1965).
- ⁶⁰C. H. Henry, S. E. Schnatterly, and C. P. Slichter, Phys. Rev. A 137, 583 (1965).
- ⁶¹G. A. Osborne and P. J. Stephens, J. Chem. Phys. 56, 609 (1972).
- 62 K. Cho, J. Phys. Soc. Jpn. 25, 1372 (1968).
- 63 R. H. Yuster and C. J. Delbecq, J. Chem. Phys. 21, 892 (1953).
- ⁶⁴ Y. Toyozawa and M. Inoue, J. Phys. Soc. Jpn. 21, 1663 (1966).
- ⁶⁵ A. Jablonski, Phys. Rev. 68, 78 (1945).
- ⁶⁶R. P. Futrelle, Phys. Rev. A 5, 2162 (1972).
- ⁶⁷W. E. Baylis, J. Phys. B **10**, L477 (1977).
- ⁶⁸ W. P. West, P. Shuker, and A. Gallagher, J. Chem. Phys. **68**, 3864 (1978).
- ⁶⁹ K. M. Sando, G. J. Erickson, and R. C. Binning, Jr., J. Phys. B 12, 2697 (1979).
- ⁷⁰G. J. Erickson and K. M. Sando, Phys. Rev. A 22, 1500 (1980).
- ⁷¹R. H. G. Reid and A. Dalgarno, Phys. Rev. Lett. 22, 1029 (1969).
- ⁷²C. H. Becker, P. Casavecchia, Y. T. Lee, R. E. Olson, and W. A. Lester, Jr., J. Chem. Phys. **70**, 5477 (1979).
- ⁷³ V. Aquilanti and G. Grossi, J. Chem. Phys. **73**, 1165 (1980).
- ⁷⁴C. Tsoo, D. A. Estrin, and S. J. Singer, J. Chem. Phys. 93, 7187 (1990).
- ⁷⁵D. A. Estrin, C. Tsoo, and S. J. Singer, Chem. Phys. Lett. **184**, 571 (1991).
- Tsoo, D. A. Estrin, and S. J. Singer, J. Chem. Phys. 96, 7977 (1992).
 G. Martyna, C. Cheng, and M. L. Klein, J. Chem. Phys. 95, 1318 (1991).
- ⁷⁸ K. Haug and H. Metiu, J. Chem. Phys. **95**, 5670 (1991).
- ⁷⁹ J. P. Visticot, P. de Pujo, J. M. Mestdagh, A. Lallement, J. Berlande, O. Sublemontier, P. Meynadier, and J. Cuvellier, J. Chem. Phys. 100, 158 (1994).

- ⁸⁰D. Eichenauer and R. J. LeRoy, J. Chem. Phys. 88, 2898 (1988).
- ⁸¹L. Perera and F. G. Amar, J. Chem. Phys. 93, 4884 (1990).
- ⁸² X. J. Gu, D. J. Levandier, B. Zhang, G. Scoles, and D. Zhuang, J. Chem. Phys. **93**, 4898 (1990).
- ⁸³M. Kmetic and R. J. LeRoy, J. Chem. Phys. 95, 6271 (1991).
- ⁸⁴G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand-Reinhold, New York, 1950), Vol. 1.
- ⁸⁵E. A. Gislason, J. Chem. Phys. 58, 3702 (1973).
- ⁸⁶E. J. Heller, J. Chem. Phys. **68**, 2066 (1978).
- ⁸⁷S. Y. Lee, J. Chem. Phys. **82**, 4588 (1985).
- 88 W. G. Lawrence and V. A. Apkarian (to be published).
- ⁸⁹D. Maillard, J. Fournier, H. H. Mohammed, and C. Giradet, J. Chem. Phys. 78, 5480 (1983).
- ⁹⁰ N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
- ⁹¹T. G. Gibbons and M. L. Klein, J. Chem. Phys. 60, 112 (1974).
- ⁹² P. Korpiun and E. Luscher, in *Rare Gas Solids*, edited by M. L. Klein and J. A. Venables (Academic, London, 1976), Vol. 2.
- ⁹³ M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford, New York, 1990).
- ⁹⁴ C. E. Moore, Atomic Energy Levels (Natl. Bur. Stand. Ref. Data. Ser. Natl. Bur. Stand., Washington, D.C., 1971), Vol. 1.
- ⁹⁵ J. W. Cooley, Math. Comput. **15**, 363 (1961).
- ⁹⁶ J. K. Cashion, J. Chem. Phys. **39**, 1872 (1963).
- ⁹⁷N. Kestner and N. Brenner (private communication, 1991).
- ⁹⁸ I. L. Garzon, X. P. Long, R. Kawai, and J. H. Weare, Chem. Phys. Lett. 158, 525 (1989).
- ⁹⁹ H. R. Glyde, in *Rare Gas Solids*, edited by M. L. Klein and J. A. Venables (Academic, London, 1976), Vol. 1.
- ¹⁰⁰ V. V. Goldman, Phys. Rev. 174, 1041 (1968).
- ¹⁰¹ D. Li and G. A. Voth, J. Chem. Phys. **96**, 5340 (1992).
- ¹⁰²D. Scharf, G. J. Martyna, D. Li, G. A. Voth, and M. L. Klein, in *Proceedings of the High Energy Density Matter (HEDM) Conference*, 1993, edited by T. Thompson (USAF Phillips Laboratory, Edwards Air Force Base, CA, 1993).
- ¹⁰³ R. B. Gerber, Z. Li, and A. B. McCoy, in *Proceedings of the High Energy Density Matter (HEDM) Conference*, 1993, edited by T. Thompson (USAF Phillips Laboratory, Edwards Air Force Base, CA, 1993).