

Лабораторная работа №1

по дисциплине: Тестирование программного обеспечения

Вариант: 3202

Выполнил: Неграш Андрей, Р33301

Преподаватель: Гаврилов Антон Валерьевич

Оглавление

Задание	2
Описание работы	2
Пункт 1: функция sec(x)	2
Пункт 2: алгоритм формирования бинарных деревьев	4
Пункт 3: Тестовое покрытие доменной модели для заданного текста	4
Вывод	5

Задание

- 1. Для указанной функции провести модульное тестирование разложения функции в степенной ряд. Выбрать достаточное тестовое покрытие.
- 2. Провести модульное тестирование указанного алгоритма. Для этого выбрать характерные точки внутри алгоритма, и для предложенных самостоятельно наборов исходных данных записать последовательность попадания в характерные точки. Сравнить последовательность попадания с эталонной.
- 3. Сформировать доменную модель для заданного текста. Разработать тестовое покрытие для данной доменной модели

Please, enter your variant: 3202

- 1. Функция sec(x)
- 2. Программный модуль для работы с В деревьями (количество элементов в ключе до 3, http://www.cs.usfca.edu/~galles/visualization/BTree.html)
- 3. Описание предметной области:

Ерунда, подумал Форд. Даже если предположить, что здесь когда-то существовала цивилизация, превратившаяся теперь в пыль, даже если предположить еще много маловероятных вещей, все равно огромные богатства не могли бы сохраниться здесь в форме, представляющей какой-либо интерес. Он пожал плечами.

Описание работы

Пункт 1: функция sec(x)

Формула для вычисления приближённого значения в радианах:

$$\sec(x) = \frac{1}{\sum_{i=1}^{14} \frac{(-1)^i * x^{2i}}{(2 * i)!}}$$

```
for (int i = 1; i <= 14; i++)
    result = result + ((Math.pow(-1, i)) * (Math.pow(rad, 2 * i)) /
getFactorial(2 * i));
result = 1 / result;</pre>
```

Формула, используемая для проверки работоспособности алгоритма:

$$\sec(x) = \frac{1}{\cos(x)}$$

double result = 1 / Math.cos(Math.toRadians(value));

В обоих случаях х — это значение в радианах. Однако пользовательский ввод подразумевает данные в градусах, для этого реализована функция перевода градусов в радианы.

Результаты тестов представлены на скриншоте:

Пункт 2: алгоритм формирования бинарных деревьев

Основные операции, которые выполняются над В-деревьями:

- Добавление узла
- Поиск узла
- Удаление узла

В реализации данного алгоритма реализована возможность добавления элементов по одному или массивом, каждый элемент которого будет добавлен последовательно в дерево.

При поиске элемента возвращается путь от корня до найденного элемента или ошибка, сообщающая, что такого элемента не существует.

Все операции и результаты, с которыми сравнивается работа алгоритма, взяты из приведённого в задании сайта (http://www.cs.usfca.edu/~galles/visualization/BTree.html), отформатированного под вывод моей реализации алгоритма.

Результаты тестов представлены на скриншоте:

Пункт 3: Тестовое покрытие доменной модели для заданного текста

Ниже представлена UML-диаграмма классов для полученного согласно варианту текста:

Историю можно запустить, обратившись к методу doStory() в классе Story.

Результат работы программы представлен в виде таблицы сравнения оригинального текста и вывода программы:

Оригинал	Программа
Ерунда, подумал Форд. Даже если	Форд подумал: "Ерунда"
предположить, что здесь когда-то	Даже если предположить:
существовала цивилизация,	цивилизация существовала когда-то
превратившаяся теперь в пыль, даже если	цивилизация превратилась в пыль теперь
предположить еще много маловероятных	Даже если предположить ещё:
вещей, все равно огромные богатства не	много маловероятных вещей
могли бы сохраниться здесь в форме,	огромные богатства не могли бы
представляющей какой-либо интерес. Он	сохраниться
пожал плечами.	форма не представляет интерес
	Форд пожал плечами

Основной задачей было разработать тестовое покрытие для данной доменной модели. Результат тестирования представлен на скриншоте:

Вывод

Итак, в процессе данной лабораторной работы я ознакомился с понятием модульного тестирования и способами его реализации при помощи фреймворка Junit. Репозиторий с кодом доступен на GitHub по ссылке: https://github.com/ANegrash/TPO lab1