Due: Feb 4th

1. Recall that the definition of \mathbb{Z} from class: letting $S = \{(a,b) : a,b \in \mathbb{N}\}$ and $(a,b) \sim (m,n)$ if and only if m+b=a+n, then $\mathbb{Z}=S/\sim$. We use [(a,b)] for the equivalence class of (a,b) under \sim . We defined addition by [(a,b)]+[(m,n)]=[(m+a,n+b)] and multiplication by

$$[(a,b)] \times [(m,n)] = [(ma+nb, na+mb)].$$

- (a) Show that [(a,b)] + [(1,1)] = [(a,b)]; hence we think of [(1,1)] as the 'zero' in \mathbb{Z} .
- (b) Show that for each [(a,b)], there is a unique [(c,d)] with [(a,b)]+[(c,d)]=[(1,1)]. We denote [(c,d)] by -[(a,b)].
- (c) Show that multiplication is well defined.
- (d) Show that $[(a,b)] \times [(2,1)] = [(a,b)]$; think of [(2,1)] as the 'multiplicative identity' in \mathbb{Z} .
- (e) Define a map $f: \mathbb{N} \to S/\sim$ so that f(m)+f(n)=f(m+n) and $f(m)\times f(n)=f(m\times n)$ and show it satisfies these equations. (Note that the operations on the lefthand sides is the ones we defined above; on the righthand sides, they are the usual operations in \mathbb{N} .)
- (f) Extra Credit: Show that f is one-to-one but not onto.
- 2. Using only the field axioms and the first few results of Theorem 3.1, prove that, for all $a, b, c \in \mathbb{F}$, \mathbb{F} a field, ac = bc and $c \neq 0$ imply that a = b.
- 3. Using only the ordered field axioms, Theorem 3.1, and the first few results of Theorem 3.2, prove, for an ordered field \mathbb{F} ,
 - (a) 0 < 1, and
 - (b) For all $a, b \in \mathbb{F}$, $|b| \le a$ if and only if $-a \le b \le a$.
 - (c) For all $a, b \in \mathbb{F}$, $||a| |b|| \le |a b|$.

For the last two parts, you are allowed to use the definition of absolute value and the previous parts.

4. Prove, for $h \in \mathbb{R}$, h > -1 and $n \in \mathbb{N}$, that $(1+h)^n \ge 1 + nh$.