An application of SCP for the p-Laplacian

Anisa Chorwadwala

IISER PUNE

anisa@iiserpune.ac.in

Joint work with Mrityunjoy Ghosh IIT Madras

September 18, 2021

Motivation

- Motivation
- Shape Optimization Problems

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results
- Key Steps in the Proof

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results
- Key Steps in the Proof
 - (1) Shape Differentiation

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results
- Key Steps in the Proof
 - (1) Shape Differentiation
 - (2) Moving/Rotating Plane Method

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results
- Key Steps in the Proof
 - (1) Shape Differentiation
 - (2) Moving/Rotating Plane Method
 - (3) Maximum Principles/Comparison Principles

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results
- Key Steps in the Proof
 - (1) Shape Differentiation
 - (2) Moving/Rotating Plane Method
 - (3) Maximum Principles/Comparison Principles
- Numerical Evidence

- Motivation
- Shape Optimization Problems
- Isoperimetric Problems
- Isoperimetric Inequalities in Mathematical Physics
- A few Eigenvalue Optimization Problem over given family of domains
- Main results
- Key Steps in the Proof
 - (1) Shape Differentiation
 - (2) Moving/Rotating Plane Method
 - (3) Maximum Principles/Comparison Principles
- Numerical Evidence
- References.

Questions of the following type arise quite naturally.

• Why are small water droplets and bubbles that float in air approximately spherical?

- Why are small water droplets and bubbles that float in air approximately spherical?
- Why does a herd of reindeer form a circle if attacked by wolves?

- Why are small water droplets and bubbles that float in air approximately spherical?
- Why does a herd of reindeer form a circle if attacked by wolves?
- Why does a cat fold her body to form almost a round shape on a cold night?

- Why are small water droplets and bubbles that float in air approximately spherical?
- Why does a herd of reindeer form a circle if attacked by wolves?
- Why does a cat fold her body to form almost a round shape on a cold night?
- Can we hear the shape of a drum?

- Why are small water droplets and bubbles that float in air approximately spherical?
- Why does a herd of reindeer form a circle if attacked by wolves?
- Why does a cat fold her body to form almost a round shape on a cold night?
- Can we hear the shape of a drum?
- Of all geometric figures having a certain property, which one has greatest area or volume?

- Why are small water droplets and bubbles that float in air approximately spherical?
- Why does a herd of reindeer form a circle if attacked by wolves?
- Why does a cat fold her body to form almost a round shape on a cold night?
- Can we hear the shape of a drum?
- Of all geometric figures having a certain property, which one has greatest area or volume?
- And of all figures having a certain property, which one has least perimeter or surface area?

Questions of the following type arise quite naturally.

- Why are small water droplets and bubbles that float in air approximately spherical?
- Why does a herd of reindeer form a circle if attacked by wolves?
- Why does a cat fold her body to form almost a round shape on a cold night?
- Can we hear the shape of a drum?
- Of all geometric figures having a certain property, which one has greatest area or volume?
- And of all figures having a certain property, which one has least perimeter or surface area?

Such problems have stimulated much mathematical thought.

The typical problem :

The typical problem:

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

The typical problem:

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

Mathematically,

The typical problem :

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

Mathematically,

To find a domain Ω that minimizes a functional $J(\Omega)$ possibly subject to a constraint of the form $G(\Omega) = 0$.

The typical problem:

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

Mathematically,

To find a domain Ω that minimizes a functional $J(\Omega)$ possibly subject to a constraint of the form $G(\Omega) = 0$.

In other words,

The typical problem:

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

Mathematically,

To find a domain Ω that minimizes a functional $J(\Omega)$ possibly subject to a constraint of the form $G(\Omega) = 0$.

In other words,

Minimizing a functional $J(\Omega)$ over a family \mathcal{F} of admissible domains Ω .

The typical problem:

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

Mathematically,

To find a domain Ω that minimizes a functional $J(\Omega)$ possibly subject to a constraint of the form $G(\Omega) = 0$.

In other words,

Minimizing a functional $J(\Omega)$ over a family $\mathcal F$ of admissible domains Ω . That is, to find $\Omega^* \in \mathcal F$ such that $J(\Omega^*) = \min_{\Omega \in \mathcal F} J(\Omega)$.

The typical problem:

To find the shape which is optimal in the sense that it minimizes a certain cost functional while satisfying given constraints.

Mathematically,

To find a domain Ω that minimizes a functional $J(\Omega)$ possibly subject to a constraint of the form $G(\Omega) = 0$.

In other words,

Minimizing a functional $J(\Omega)$ over a family $\mathcal F$ of admissible domains Ω . That is, to find $\Omega^* \in \mathcal F$ such that $J(\Omega^*) = \min_{\Omega \in \mathcal F} J(\Omega)$.

In many cases, the functional being minimized depends on the solution of a given partial differential equation defined on the variable domain.

To enclose a given area A with a shortest possible curve.

To enclose a given area A with a shortest possible curve.

$$J(\Omega) =$$
 "perimeter" of Ω .

To enclose a given area A with a shortest possible curve.

$$J(\Omega) =$$
 "perimeter" of Ω .

$$G(\Omega) =$$
 "area" of $\Omega - A$.

To enclose a given area A with a shortest possible curve.

$$J(\Omega) =$$
 "perimeter" of Ω .

$$G(\Omega) =$$
 "area" of $\Omega - A$.

The classical Isoperimetric theorem asserts that in the Euclidean plane the unique solution is a **circle**.

To enclose a given area A with a shortest possible curve.

$$J(\Omega) =$$
 "perimeter" of Ω .

$$G(\Omega) =$$
 "area" of $\Omega - A$.

The classical Isoperimetric theorem asserts that in the Euclidean plane the unique solution is a **circle**.

This property of the circle is most succinctly expressed in the form of an inequality called the isoperimetric inequality.

To enclose a given area A with a shortest possible curve.

$$J(\Omega) =$$
 "perimeter" of Ω .

$$G(\Omega) =$$
 "area" of $\Omega - A$.

The classical Isoperimetric theorem asserts that in the Euclidean plane the unique solution is a **circle**.

This property of the circle is most succinctly expressed in the form of an inequality called the isoperimetric inequality.

Mathematically,

To enclose a given area A with a shortest possible curve.

 $J(\Omega) =$ "perimeter" of Ω .

$$G(\Omega) =$$
 "area" of $\Omega - A$.

The classical Isoperimetric theorem asserts that in the Euclidean plane the unique solution is a **circle**.

This property of the circle is most succinctly expressed in the form of an inequality called the isoperimetric inequality.

Mathematically,

For any piecewise smooth simple closed curve C in a plane with arc-length ℓ and enclosing area A>0 we have

$$\ell^2(C) \geq 4 \pi A(C)$$

and equality holds if and only if C is a circle of radius $\sqrt{\frac{A}{\pi}}$.

 There are many other results of a similar nature, referred to as isoperimetric inequalities of mathematical physics, and useful in quite diverse contexts.

- There are many other results of a similar nature, referred to as isoperimetric inequalities of mathematical physics, and useful in quite diverse contexts.
- Extrema are sought for various quantities of physical significance such as the energy functional or the eigenvalues of a differential equation.

- There are many other results of a similar nature, referred to as isoperimetric inequalities of mathematical physics, and useful in quite diverse contexts.
- Extrema are sought for various quantities of physical significance such as the energy functional or the eigenvalues of a differential equation.
- They are shown to be extremal for a circular or spherical domain.

- There are many other results of a similar nature, referred to as isoperimetric inequalities of mathematical physics, and useful in quite diverse contexts.
- Extrema are sought for various quantities of physical significance such as the energy functional or the eigenvalues of a differential equation.
- They are shown to be extremal for a circular or spherical domain.
- For example, The celebrated Faber-Krahn Theorem: Amongst all domains with fixed volume the ball minimizes the first Dirichlet Eigenvalue of the Laplacian.

- There are many other results of a similar nature, referred to as isoperimetric inequalities of mathematical physics, and useful in quite diverse contexts.
- Extrema are sought for various quantities of physical significance such as the energy functional or the eigenvalues of a differential equation.
- They are shown to be extremal for a circular or spherical domain.
- For example, The celebrated Faber-Krahn Theorem: Amongst all domains with fixed volume the ball minimizes the first Dirichlet Eigenvalue of the Laplacian.
- Let $\lambda_1(\Omega)$ denote the first Dirichlet eigenvalue of the Laplacian on a bounded domain Ω in \mathbb{R}^n . Then

$$\lambda_1(\Omega) \geq \lambda_1(B)$$

where B is a ball in \mathbb{R}^n such that $Vol(B) = Vol(\Omega)$, and equality holds iff $\Omega = B$.

We consider the following eigenvalue problem:

We consider the following eigenvalue problem:

$$-\Delta_{p} u = \lambda |u|^{p-2} u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(1)

We consider the following eigenvalue problem:

$$-\Delta_{p} u = \lambda |u|^{p-2} u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(1)

where

- \bullet $\Omega = B_1 \setminus \bar{B_0}$,
- B_0 , B_1 are open (geodesic) balls in a Riemannian manifold (M,g) such that $\overline{B_0} \subset B_1$,
- $\Delta_p u := \operatorname{div} \left(\|\nabla u\|^{p-2} \nabla u \right) \quad (1$

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

$$\int_{\Omega} |\nabla u|^{p-2} \, \langle \nabla u, \nabla w \rangle \, \, dx = \lambda \int_{\Omega} |u|^{p-2} uw \, dx, \quad \forall \, \, w \in W^{1,p}_0(\Omega).$$

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

$$\int_{\Omega} |\nabla u|^{p-2} \, \langle \nabla u, \nabla w \rangle \, \, dx = \lambda \int_{\Omega} |u|^{p-2} uw \, \, dx, \quad \forall \, \, w \in W^{1,p}_0(\Omega).$$

Let $\lambda_1(\Omega)$ denote the smallest positive eigenvalue of the EVP.

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

$$\int_{\Omega} |\nabla u|^{p-2} \, \langle \nabla u, \nabla w \rangle \, \, dx = \lambda \int_{\Omega} |u|^{p-2} uw \, \, dx, \quad \forall \, \, w \in W^{1,p}_0(\Omega).$$

Let $\lambda_1(\Omega)$ denote the smallest positive eigenvalue of the EVP. Then, $\lambda_1(\Omega)$ has the following variational characterization:

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

$$\int_{\Omega} |\nabla u|^{p-2} \, \langle \nabla u, \nabla w \rangle \, \, \mathrm{d} x = \lambda \int_{\Omega} |u|^{p-2} \mathrm{u} w \, \, \mathrm{d} x, \quad \forall \, \, w \in W^{1,p}_0(\Omega).$$

Let $\lambda_1(\Omega)$ denote the smallest positive eigenvalue of the EVP. Then, $\lambda_1(\Omega)$ has the following variational characterization:

$$\lambda_1(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p} : u \in W_0^{1,p}(\Omega) \setminus \{0\} \right\}. \tag{2}$$

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

$$\int_{\Omega} |\nabla u|^{p-2} \, \langle \nabla u, \nabla w \rangle \, \, \mathrm{d} x = \lambda \int_{\Omega} |u|^{p-2} \mathrm{u} w \, \, \mathrm{d} x, \quad \forall \, \, w \in W^{1,p}_0(\Omega).$$

Let $\lambda_1(\Omega)$ denote the smallest positive eigenvalue of the EVP. Then, $\lambda_1(\Omega)$ has the following variational characterization:

$$\lambda_1(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p} : u \in W_0^{1,p}(\Omega) \setminus \{0\} \right\}. \tag{2}$$

This eigenvalue is simple.

A real number λ is called an eigenvalue of the EVP if $\exists u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that the following holds:

$$\int_{\Omega} |\nabla u|^{p-2} \, \langle \nabla u, \nabla w \rangle \, \, \mathrm{d} x = \lambda \int_{\Omega} |u|^{p-2} \mathrm{u} w \, \, \mathrm{d} x, \quad \forall \, \, w \in W^{1,p}_0(\Omega).$$

Let $\lambda_1(\Omega)$ denote the smallest positive eigenvalue of the EVP. Then, $\lambda_1(\Omega)$ has the following variational characterization:

$$\lambda_1(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p} : u \in W_0^{1,p}(\Omega) \setminus \{0\} \right\}. \tag{2}$$

This eigenvalue is simple.

Without loss of generality, an eigenfunction $y_1(\Omega)$ corresponding to $\lambda_1(\Omega)$ can be chosen to be positive and of unit L^p -norm.

Main Results in the Euclidean case

For $M = \mathbb{E}^n$, and p = 2, Kesavan and Ramm-Shivakumar proved the following:

Main Results in the Euclidean case

For $M = \mathbb{E}^n$, and p = 2, Kesavan and Ramm-Shivakumar proved the following:

Theorem

The first Dirichlet eigenvalue λ_1 attains its maximum if and only if the balls are concentric.

• With A. R. Aithal — Generalized these results to all the three space forms.

- With A. R. Aithal Generalized these results to all the three space forms.
- With M. K. Vemuri Generalized these results to rank one symmetric spaces of non-compact type.

- With A. R. Aithal Generalized these results to all the three space forms.
- With M. K. Vemuri Generalized these results to rank one symmetric spaces of non-compact type.
- With Rajesh Mahadevan Generalized these results for the *p*-Laplacian (Δ_p) operator, 1 .

With Souvik Roy — The case p=2 for $\mathcal{F}=\{B\setminus P\subset\mathbb{R}^2\}$ where

- B is a given disk,
- P is a domain having a \mathbb{D}_n symmetry, n even.
- Partial results were obtained for the *n* odd case.
- λ₁ is optimum when an axis of symmetry of P coincides with a diameter of B.
- Complete characterization of the maximizing and minimizing domains for n even case.
- ullet Monotonicity of λ_1 between the consecutive maximizing and minimizing configurations.

Images

(b) ON position

OPTIMAL SHAPES FOR THE FIRST DIRICHLET EIGENVALUE

FIGURE 1. OFF and ON configurations: P having \mathbb{D}_3 symmetry-(A) and (B), P having \mathbb{D}_4 symmetry-(C) and (D).

With Mrityunjoy Ghosh —

- λ_1 is optimum **only when** an axis of symmetry of P coincides with a diameter of B.
- Complete characterization of the maximizing and minimizing domains for each $n \ge 2$.
- ullet Monotonicity of λ_1 between the consecutive maximizing and minimizing configurations
- We rule out the possibilty of the nodal lines for a second eigenfunction having a dihedral symmetry of same order as that of P.

With Mrityunjoy Ghosh

The key highlights:

- For $\frac{3}{2} , we obtain the strict monotonicity of <math>\lambda_1$.
- We use a strong comparison principle due to Sciunzi in the proof. This
 paper gives a direct and simpler proof for this strict monotonicity as
 compared to the one available in [Anoop-Sasi-Bobkov]. This proof also
 extends results obtained in [Anisa-Mahadevan].
- For $1 we obtain the non-strict monotonicity of <math>\lambda_1$ on the perturbed domains using the weakcomparison principle due to [Chorwadwala-Mahadevan-Toledo].
- Monotonicity results for λ_1 implies for $\frac{3}{2} that the nodal set of a second eigenfunction can not possess a dihedral symmetry of the same order as that of <math>P$.
- To the best our knowledge, this is the first result regarding the geometry
 of the nodal set of a second eigenfunction for doubly connected planar
 domains other than the domains bounded by two spheres.
- We also prove the conjecture posed in [Chorwadwala-Roy] for the n odd and p = 2 case.

Key Steps in the Proof

Key Steps in the Proof

(1) Shape Differentiation

Key Steps in the Proof

- (1) Shape Differentiation
- (2) The Rotating Plane Method

Key Steps in the Proof

- (1) Shape Differentiation
- (2) The Rotating Plane Method
- (3) Comparison Theorems

$$\Omega \rightarrow \Omega_{t},$$

$$\Omega o \Omega_t, \quad t \longmapsto y_1(t) := y_1(\Omega_t),$$

$$\Omega \to \Omega_t, \quad t \longmapsto y_1(t) := y_1(\Omega_t), \quad t \longmapsto y_1^t := y_1(t) \circ \Phi_t,$$

$$\Omega \to \Omega_t, \quad t \longmapsto y_1(t) := y_1(\Omega_t), \quad t \longmapsto y_1^t := y_1(t) \circ \Phi_t, \quad t \longmapsto \lambda_1(t) := \lambda_1(\Omega_t)?$$

$$\Omega o \Omega_t, \quad t \longmapsto y_1(t) := y_1(\Omega_t), \quad t \longmapsto y_1^t := y_1(t) \circ \Phi_t, \quad t \longmapsto \lambda_1(t) := \lambda_1(\Omega_t)?$$

$$\lambda_1'(t) = -(p-1) \int_{\partial P_t} \left| \frac{\partial u_t}{\partial \eta_t}(x) \right|^p \langle \eta_t, v \rangle(x) \, dS.$$

(2) Rotating Plane Method

Fig. 7 Sectors of Ω_l for n = 4, 5

FIGURE 2. (A) Sector pairings for n odd. (B) Containment of sectors which lie on either side of the x_1 -axis as in Lemma 3.1.

(3) Maximum Principles and Comparison Principles

(3) Maximum Principles and Comparison Principles

Lemma of Hopf for the linear case:

(3) Maximum Principles and Comparison Principles

Lemma of Hopf for the linear case: Let Ω be a domain in \mathbb{R}^N , $N \geq 2$. Let $u \in C^1(\overline{\Omega})$ satisfy

$$L(u) := \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial u}{\partial x_{j}} \right) \geq 0 \text{ in } \Omega,$$

where L is a uniformly elliptic operator on Ω and $a_{ij} \in W^{1,\infty}_{\mathrm{loc}}(\Omega)$. Suppose that $u \leq M$ in Ω and $u(x_0) = M$ for some $x_0 \in \partial \Omega$ such that the interior sphere condition is satisfied at x_0 . Then

$$\frac{\partial u}{\partial \eta}(x_0) > 0$$
, unless $u \equiv M$ in Ω ,

where η denotes the unit outward normal to Ω on $\partial\Omega$.

Strong Comparison Principle for the p-Laplacian from [Sciunzi2014]

Strong Comparison Principle for the p-Laplacian from [Sciunzi2014]

Let Ω be a domain in \mathbb{R}^N , $N \geq 2$. Let g be a locally Lipschitz function such that g(x) > 0 for x > 0. Let $u, v \in C^1(\overline{\Omega})$ satisfy

$$-\Delta_p u - g(u) \le -\Delta_p v - g(v)$$
 in Ω .

Assume that either u or v is a non-negative solution of $-\Delta_{p}w=g(w)$ for $\frac{2N+2}{N+2}< p<\infty$. Then if $u\leq v$ in a connected subdomain $\Omega'\subset\Omega$, it follows that

$$u < v$$
 in Ω' , unless $u \equiv v$ in Ω' .

Weak Comparison Principle

Weak Comparison Principle

A version of the Weak Comparison Principle from [Chorwadwala-Mahadevan-Toledo]:

Weak Comparison Principle

A version of the Weak Comparison Principle from [Chorwadwala-Mahadevan-Toledo]:

Let Ω be a Lipschitz domain in \mathbb{R}^N , $N \geq 2$. Let $u, v \in C^1(\overline{\Omega})$ be two non-negative weak solutions of $-\Delta_p w = \lambda w^{p-1}$ on Ω for some $p, 1 . Then if <math>u \leq v$ on $\partial \Omega$,

$$u \leq v$$
 on Ω .

Furthermore, if $x_0 \in \partial \Omega$ be such that $u(x_0) = 0 = v(x_0)$, then $\frac{\partial v}{\partial \eta}(x_0) \leq \frac{\partial u}{\partial \eta}(x_0)$.

An Eigenvalue Optimization Problem over a family of domains

Consider the following Dirichlet Boundary Value Problem:

$$-\Delta_p u = \lambda |u|^{p-2} u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(3)

where,

- $\Omega = B \setminus P \subset \mathbb{R}^2$,
- B is a bounded open disk in \mathbb{R}^2 , and
- ullet P is a compact simply connected subset of \mathbb{R}^2 such that
 - (a) the boundary ∂P is a simple closed C^2 curve in \mathbb{R}^2 ,
 - (b) P is invariant under the action of the dihedral group D_n , n even.
 - (c) Area(P) = A, A > 0 fixed,
 - (d) the distance $d(\underline{o},x)$ between the 'center' \underline{o} of P and a point $x\in\partial P$ is monotonic as a function of the argument ϕ in a sector delimited by two consecutive axes of symmetry of P,
 - (e) $\rho(P) \subset B \ \forall \rho \in D_n$,
 - (f) the center of P is different from the center of B.

The Eigenvalue Optimization Problem over a family of domains

- For $t \in \mathbb{R}$, let $\rho_t \in SO(2)$ denote the rotation in \mathbb{R}^2 about $\underline{o} = (0,0)$ in the anticlockwise direction by an angle t, that is, $\rho_t(\zeta) = e^{it}\zeta$ for $\zeta \in \mathbb{C} \cong \mathbb{R}^2$,
- For $t \in [0, 2\pi)$, let $P_t := \rho_t(P)$ and $\Omega_t := B \setminus P_t$,
- $\mathcal{F} := \{\Omega_t \mid t \in [0, 2\pi)\}.$
- Goal:
- To find Ω_{min} such that $\lambda_1(\Omega_{min}) = \min_{\Omega \in \mathcal{F}} \lambda_1(\Omega)$
- ullet and to find $\Omega_{\it max}$ such that $\lambda_1(\Omega_{\it max}) = {\sf max}_{\Omega \in \mathcal{F}} \, \lambda_1(\Omega)$.

The ON and OFF configurations

- Let C_1 and C_2 denote the 'incircle' and the 'circumcircle' of P_t respectively.
- $V_{in}:=\partial P_t\cap C_1$ called 'inner vertices', $V_{out}:=\partial P_t\cap C_2$ called 'outer vertices'
- A radius of C₁ containing an inner vertex of P_t will be called an 'inradius'.
 Similarly, a radius of C₂ containing an outer vertex of P_t will be called an 'circumradius of P_t'
- For P_t such that $\overline{co(C_2(P_t))} \subset B$, we say
 - **OFF** P_t is in an OFF position w.r.t. B if an inradius of P_t is along a diameter of B
 - **ON** P_t is in an ON position w.r.t. B if a circumradius of P_t is along a diameter of B.

Our Main Result

Theorem

The fundamental Dirichlet eigenvalue $\lambda_1(\Omega_t)$ for $\Omega_t \in \mathcal{F}$ is optimal precisely for those $t \in [0, 2\pi)$ for which an axis of symmetry of P_t coincides with a diameter of B.

The maximizing configurations are the ones corresponding to those $t \in [0, 2\pi)$ for which P_t is in an ON position w.r.t. B,

and the minimizing configurations are the ones corresponding to those $t \in [0,2\pi)$ for which P_t is in an OFF position w.r.t. B.

Theorem

For each
$$k = 0, 1, 2, ..., 2n - 1$$
, $\lambda'_1(k \frac{\pi}{n}) = 0$.

For each
$$t \in (0, \frac{\pi}{n})$$
, $\lambda_1'(t) > 0$.

Figure: Simulations of ON, OFF and intermediate positions of the square.

Figure: Simulations of ON, OFF and intermediate positions of the square.

θ	λ	Configuration
0	7.5735	OFF
$\pi/8$	7.5739	_
$\pi/4$	7.5742	ON
$3\pi/8$	7.5739	_
$\pi/2$	7.5735	OFF

Table: Variation of λ_1 with rotation of the square P by an angle θ from the initial configuration.

References

A. R. Aithal and A. Sarswat, On a functional connected to the Laplacian in a family of punctured regular polygons in \mathbb{R}^2 , *Indian J. Pure Appl. Math.*, 861–874, 2014.

A. El Soufi and R. Kiwan, Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry, *SIAM J. Math. Anal.*, 39(4):1112–1119, 2007.

E. M. Harrel II, P. Kröger and K. Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, *SIAM J. Math. Anal.*, 33(1):240–259, 2001.

S. Kesavan, On two functionals connected to the Laplacian in a class of doubly connected domains, *Proceedings of Royal Society of Edinburgh*, 133A:617–624, 2003.

T. V. Anoop, V. Bobkov and S. Sasi, On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli., Trans. Amer. Math. Soc., 370(10):7181–7199, 2018.

References

A. M. H. Chorwadwala and R. Mahadevan, An eigenvalue optimization problem for the p-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A. 145(6):1145-1151, 2015.

A. M. H. Chorwadwala, R. Mahadevan and F. Toledo, On the Faber-Krahn inequality for the Dirichlet p- Laplacian, ESAIM Control Optim. Calc. Var., 21(1):60-72, 2015.

A. M. H. Chorwadwala and S. Roy, How to place an obstacle having a dihedral symmetry inside a disk so as to optimize the fundamental Dirichlet eigenvalue, J. Optim. Theory Appl., 184(1):162–187, 2020.

A. M. H. Chorwadwala and S. Roy, Placement of an obstacle for optimizing the fundamental eigenvalue of divergence form elliptic operators, Advances in Continuum Mechanics. Birkhauser-Springer, Boston, In Print, 2021.

A. G. Ramm and P. N. Shivakumar, Inequalities for the minimal eigenvalue of the Laplacian in an annulus, Math. Inequal. Appl., 1(4):559-563, 1998.

References

A. Sarswat. On the nodal line of a second eigenfunction of the laplacian-dirichlet in some annular domains with dihedral symmetry. arXiv:1411.0221, 2014.

B. Sciunzi. Regularity and comparison principles for p-Laplace equations with vanishing source term. Commun. Contemp. Math., 16(6):1450013, 20, 2014.

J. Hersch. The method of interior parallels applied to polygonal or multiply connected membranes, Pacific J. Math., 13:1229–1238, 1963.

R. Kiwan, On the nodal set of a second Dirichlet eigenfunction in a doubly connected domain, Ann. Fac. Sci. Toulouse Math. (6), 27(4):863–873, 2018.

Thank You!