Løsning av differensialligninger

Fjerde ordens Runge-Kutta metoden for enkel harmonisk pendel TFY4163 Bølgefysikk og fluidmekanikk - Prosjekt

Innledning og teori

Bevegelsesligningen for en pendel med friksjon og drivkraft er

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta + q\frac{d\theta}{dt} = \frac{F_D}{ml}\sin(\omega_D t),\tag{1}$$

hvor θ er pendelens utslagsvinkel, g er tyngdeakselerasjonen, l er lengden av snora pendelen er festet i, q er en friksjonsparameter, F_D/ml er drivkraften som pendelen utsettes for, og $omega_D$ er drivkraftens vinkelfrekvens. Vi definerer $\omega_0 = \sqrt{g/l}$, som er pendelens vinkelfrekvens.

Anta at $\sin \theta \approx \theta$ i alle deloppgavene (dersom ikke annet blir oppgitt), slik at bevegelesesligningen du skal løse er gitt ved

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta + q\frac{d\theta}{dt} = \frac{F_D}{ml}\sin(\omega_D t),\tag{2}$$

Benytt parametrene under når du løser ligningen:

- Lengden av snora, $l = 1.0 \,\mathrm{m}$
- Tyngeakselerasjonen, $g = 9.8 \,\mathrm{m/s^2}$
- Initiell vinkel med hensyn til vertikalen, $\theta_0 = 0.2 \, \mathrm{rad}$
- Initiell vinkelhastighet, $\omega_0 = 0.0 \,\mathrm{rad/s}$
- Friksjonsparameter, $q = 1.0 \,\mathrm{s}^{-1}$
- Drivkraftens vinkelfrekvens, $\omega_D = 3.13 \, \mathrm{s}^{-1}$

Når drivfrekvensen, ω_D er nær pendelens vinkelfrekvens, $\omega_0 = \sqrt{g/l}$, får vi resonans, som vi skal undersøke i oppgavene under.

Oppgaver

- 1. Bruk fjerdeordens Runge-Kutta metoden for å løse bevegelsesligningen. Plot vinkelutslaget som funksjon av tid, opp til $t = 20 \,\text{s}$. Bruk tidssteg $\Delta t = 0.01 \,\text{s}$.
- 2. Finn en passende steglengde, Δt , ved å utføre konvergenstest av løsningen, ved fjerde ordens Runge-Kutta metoden. Utfør også testen for Euler-Cromer metoden (som du må implementere i koden din). Plot de to konvergenstestene i hver sin figur. Vurder ut fra konvergenstesten om tidssteget brukt i oppgave 1 var tilstrekkelig.
- 3. Undersøk hvordan resonantamplituden avhenger av drivfrekvensen Ω_D . Plot vinkelutslaget for minst fem ulike verdier av Ω_D , som du mener viser denne sammenhengen.
- 4. Undersøk hvordan resonantamplituden avhenger av friksjonsparameteren, q. Plot vinkelutslaget for minst fem ulike verdier av q, som du mener viser denne sammenhengen.
- 5. For en dempet pendel *uten* drivkraft (sett $F_D = 0$) skiller vi mellom overkritisk, underkritisk og kritisk dempning. Plot vinkelutslaget opp til t = 4 s, og bestem for hvilke q vi finner disser regimene.
- 6. Ekstra oppgave:
 - a) Gå nå bort fra antakelsen at $\sin \theta \approx \theta$. Plot vinkelutslaget som funksjon av tid, i samme plot som vinkelutslaget for liten-vinkel tilærmelsen for $\theta_0 = 60^{\circ}$ og $\omega_0 = 0.0$. Bruk tiddssteg $\Delta t = 0.01$, og samme parametre som i oppgave 1. *Tips:* Konverter fra grader til radianer med 'np.radians'.
 - b) Prøv deg frem med initialverdiene og parametrene, og finn når *kaotisk* oppførsel begynner å oppstå. Plot vinkelutslaget som funksjon av tid for slik kaotisk oppførsel.

Krav til godkjenning

Kravene under må være oppfylt for å få godkjent prosjektet.

- 1. Besvarelsen skal leveres i Jupyter Notebook.
- 2. Figurene fra alle oppgavene skal være i notebooken du leverer.
- 3. Alle figurer skal ha tittel på aksene, tittel på figuren, og legend (legend kreves kun dersom det er mer enn ett plot).