MODULO 1 – Capítulo 2 – BIOS

La BIOS (Basic Input/Output System) y la UEFI (Unified Extensible Firmware Interface) son interfaces de firmware que conectan el hardware de la computadora con el sistema operativo, pero funcionan de manera distinta y presentan diferencias significativas.

¿Cómo funciona una BIOS?

La **BIOS** es el firmware tradicional en muchas computadoras, encargada de iniciar el hardware y preparar el sistema para arrancar el sistema operativo. Al encender el equipo, la BIOS realiza una serie de pruebas conocidas como **POST** (**Power-On Self Test**) para asegurarse de que los componentes principales (memoria RAM, disco duro, tarjeta gráfica, etc.) funcionen correctamente. Luego, busca el sistema operativo en un dispositivo de almacenamiento y lo carga en la memoria.

Diferencias entre BIOS y UEFI

- 1. **Interfaz gráfica**: UEFI puede ofrecer una interfaz gráfica más amigable, que permite usar mouse y mostrar colores, a diferencia de la interfaz básica y de solo texto de la BIOS.
- 2. Capacidad de almacenamiento: UEFI permite el uso de discos duros de mayor tamaño (más de 2 TB) y particiones más grandes, ya que usa la tabla de particiones GPT (GUID Partition Table), mientras que la BIOS usa la MBR (Master Boot Record), que limita el tamaño de las particiones.
- 3. **Velocidad de arranque**: UEFI generalmente permite tiempos de arranque más rápidos, ya que realiza procesos de inicialización más eficientes.
- 4. **Características de seguridad**: UEFI incluye opciones como **Secure Boot**, que ayuda a proteger el sistema de malware y rootkits al verificar la autenticidad de cada componente antes de cargarlos.
- 5. **Compatibilidad**: UEFI suele tener compatibilidad con BIOS en modo legado (CSM o Compatibility Support Module), permitiendo el uso de sistemas operativos más antiguos que no soportan UEFI.

Diferencias entre EEPROM y CMOS

- EEPROM (Electrically Erasable Programmable Read-Only Memory): Es un tipo de memoria no volátil que permite almacenar datos incluso sin alimentación eléctrica. La BIOS o UEFI generalmente están almacenadas en un chip EEPROM, ya que permite que el firmware sea reprogramable mediante actualización.
- CMOS (Complementary Metal-Oxide-Semiconductor): Es una tecnología de fabricación de chips que, en este contexto, se refiere al chip donde se almacenan ciertos ajustes de la BIOS, como la fecha, la hora, y las configuraciones de hardware del sistema. La CMOS necesita una pequeña batería para conservar estos datos cuando el sistema está apagado.

En resumen:

• **EEPROM**: Almacena el firmware (BIOS o UEFI) y es programable y no volátil.

• **CMOS**: Almacena configuraciones básicas de la BIOS y depende de una batería para retener la información.

Aquí tienes una tabla con las características principales de MBR y UEFI:

Característica	MBR (Master Boot Record)	UEFI (Unified Extensible Firmware Interface)
Tipo de almacenamiento de particiones	Tabla de particiones MBR	Tabla de particiones GPT (GUID Partition Table)
Número máximo de particiones	4 particiones primarias o 3 primarias + 1 extendida	Hasta 128 particiones en discos GPT
Compatibilidad de tamaño de disco	Máximo 2 TB	Discos de más de 2 TB (soporta hasta 9.4 ZB)
Método de arranque	BIOS carga el sector de arranque desde el MBR del disco	UEFI usa archivos de arranque desde particiones EFI
Soporte de sistemas operativos	Todos los sistemas antiguos y nuevos soportan MBR	Requiere soporte de sistema operativo para GPT
Seguridad de arranque	No tiene medidas de seguridad adicionales	Soporte para Secure Boot, autenticación de firmware
Interfaz	Interfaz básica y solo texto (modo de texto)	Interfaz gráfica (posible uso de ratón)
Ubicación de almacenamiento de configuración	Almacenado en EEPROM y CMOS	Almacenado en EEPROM con configuraciones en el sistema EFI en disco

Tabla comparativa de MBR vs. UEFI

Aspecto	MBR	UEFI
Almacenamiento de firmware	EEPROM	EEPROM
Particiones	MBR (Master Boot Record): hasta 4 primarias o 3 primarias y 1 extendida	GPT (GUID Partition Table): hasta 128
Compatibilidad de hardware	Compatible con sistemas más antiguos	Compatible con sistemas más modernos
Método de arranque	BIOS busca MBR y ejecuta el cargador de arranque	UEFI usa archivos de arranque EFI
Capacidad de disco	Máximo de 2 TB	Más de 2 TB, ideal para discos grandes
Seguridad	No tiene características avanzadas de seguridad	Secure Boot y autenticación avanzada
Interfaz	Solo texto, sin soporte de ratón	Interfaz gráfica, permite uso de ratón
Velocidad de arranque	Arranque más lento	Arranque rápido con menor POST y optimización

Estas tablas resumen las diferencias clave entre **MBR y BIOS** en contraste con **UEFI y GPT**, mostrando cómo UEFI mejora la funcionalidad y seguridad, especialmente en sistemas modernos.

Aquí tienes la distribución de los 512 bytes del sector de arranque en **MBR** y su equivalente en el **sector GPT de UEFI**.

Estructura del Sector de Arranque en MBR (512 bytes)

Byte Offset	Tamaño	Descripción
0	446	Código de arranque principal (Bootstrap code)
446	16	Entrada de la primera partición (Tabla de particiones, 4 entradas de 16 bytes cada una)
462	16	Entrada de la segunda partición
478	16	Entrada de la tercera partición
494	16	Entrada de la cuarta partición
510	2	Firma de arranque (Boot signature, valor 0x55AA)

Detalles de las entradas de partición (16 bytes cada una):

Byte Offset	Tamaño	Descripción
0	1	Indicador de estado (0x80: activo, 0x00: inactivo)
1	3	CHS de inicio (Cylinder-Head-Sector)
4	1	Tipo de partición
5	3	CHS de fin
8	4	Sector de inicio (en formato LBA)
12	4	Tamaño de la partición en sectores

El sector de MBR tiene un tamaño total de **512 bytes** y permite definir solo cuatro particiones primarias. Si se necesita más de cuatro particiones, una de ellas debe configurarse como una **partición extendida**, que a su vez contiene particiones lógicas.

Estructura del Sector de Arranque en UEFI (GPT)

La tabla GPT no utiliza los 512 bytes de un sector como el MBR. En su lugar, GPT utiliza varios sectores para almacenar su información, distribuyéndola de la siguiente manera:

- 1. **Sector de encabezado GPT** (Generalmente el sector 1)
 - Contiene la información de control de GPT, como su firma, el número de particiones soportadas, y la ubicación de las tablas de particiones.
- 2. **Entradas de partición GPT** (A partir del sector 2)
 - Cada partición tiene una entrada de 128 bytes y puede haber hasta 128 particiones.

Detalle de los Sectores de GPT

Sector/Byte Offset	Tamaño	Descripción
Sector 0	512 bytes	MBR de protección (Protege contra programas de particionado antiguos, contiene una partición MBR falsa)
Sector 1	92 bytes	Encabezado de GPT (incluye la firma GPT, versión, tamaño, CRC32, y ubicación de las tablas de partición)
Sector 2 en adelante	128 bytes/entrada	Entradas de partición GPT (cada entrada describe una partición con 128 bytes)

Estructura del Encabezado de GPT (Sector 1)

Byte Offset	Tamaño	Descripción
0	8	Firma ("EFI PART")
8	4	Versión (generalmente 1.0)
12	4	Tamaño del encabezado
16	4	CRC32 del encabezado
24	8	Dirección del encabezado GPT alternativo
32	8	LBA de inicio de las entradas de partición
40	8	LBA de fin de las particiones
48	16	GUID del disco
80	4	Número de entradas de partición (por defecto, 128)
84	4	Tamaño de cada entrada de partición (128 bytes)
88	4	CRC32 de las entradas de partición

Comparación MBR vs GPT

Aspecto	MBR	GPT
Tamaño del sector	512 bytes (único sector de arranque)	Múltiples sectores para encabezado y entradas de partición
Particiones soportadas	Hasta 4 primarias	Hasta 128
Protección contra errores	No tiene CRC ni redundancia	CRC32 para el encabezado y entradas, encabezado GPT alternativo
Compatibilidad	Compatible con BIOS y sistemas antiguos	Compatible con UEFI y discos modernos
Límite de tamaño de disco	Máximo 2 TB	Más de 2 TB, hasta 9.4 ZB

La **GPT** es mucho más robusta, soporta un mayor número de particiones y discos de gran capacidad, además de contar con redundancia y protección contra corrupción de datos, a diferencia del MBR.