Gauss Seidel & Gaussian Elimination

	١	0	0	え	l
·) Gaussian Elimination	0	١	0	y	Γ
L> A process where a matrix is made into this form:	0	0	١	2	Γ

Example :	X, + 2×2 + 3×3 = 1	1 2 3	1	r2 - 2r1	1 2 3	١	r ₂ / ₅	1 2 3	١	
•	$\begin{cases} 2x_1 + 9x_2 + 4x_3 = 9 \\ \end{cases}$	294	9	→ 13-31,	0 5 -2	7	\rightarrow	0 1 -0.4	1.4	
	8x, + x2 + 2x3 = 15	812	12		0 -15 -22	7_		0 -15 -22	7_	

r, - 2r2	٦	0	3.8	-1.8	F3/-28	٦	0	3.8	-1.8	rı - 3.8r3	٦	0	0	2	
-> ₁₃₊₁₅₁₂					·	0	l	-0.4	1.4	->	0	ı	-0.4	1.4	
			-28			0	O	١	-1		0	O	١	- (

	_				
r2+0.4r3	١	0	0	2	(K, =2
->	0	١	٥	١	x2=1
	0	O	١	- (X3:- //

•) Gauss Seidel

Ls Figuring out if matrix is diagonally dominant or not along with literations

Example:
$$\begin{cases} 9x + 2y + 32 = 23 \implies |9| > |2| + |3| \\ 2x + 5y + 2 = 10 \implies |5| > |2| + |1| \implies \text{conclusion: diagonally dominant} \\ 2x + 3y + 92 = 16 \implies |9| > |2| + |3| \end{cases}$$

L-> Itteration

if error doesn't go down,

X, Y, Z is growing to infinity.

Kegression & Interpolation

- L> Newton Interpolation: Finding one curve that passes through all points given.
- Lo Regression: Finding one curve that passes through the mids of all points given
- Lo Cubic Spline Interpolation: Slice a curve into parts and cubic function. finding the respective

& REGRESSION METHOD NEWTON INTERPOLATION

- $2 \le 2.3 \le 2.5$ -) Take (2,8)(2.5,12.5)
- $\frac{M_1 \cdot y_2 y_1}{x_2 x_1} = \frac{12.5 8}{2.5 2} \cdot \frac{4.5}{0.5} \cdot g$
 - y y, = m(x-x,)
 - 9 8 = 9(x 2)
 - y = 9x-10/f(x)=9x-10
 - 9x 10/5(x) 10 12.5 8 2.5 2
- - - y = 8 + 9(x-2) = 9x 10
 - 9(2.3). g(2.3) -10 = (0.7/

NEWTON'S POLYNOMIAL METHOD

E.X.

- Sample Question: a.) Find degree of Polynomial
- 5 38

- b.) Find the polynomial
- c.) Find f (2.5)
- 6-27/3-(-4)=-3, 6-27/-1-(-4)=-7, 3-27/2-(-4)=-41 y3 38-27/-5-(-4): -11, -7-(-3)/-1-3: 1, -4-(-3)/2-3 = 1 $\frac{-11-(-3)}{-5-3}=\frac{1}{2}$, $\frac{1-1}{2-(-1)}=0$, $\frac{1-1}{-5-(-1)}=0$ a.) Non-Zero stops at Ty2 deg = 2/1 -9 b.) y = 27 - 3(x - (-4)) + 1(x - (-4))(x - 3)38 - 11 = 27 - 3(x+4) + (x+4)(x-3)
 - $= 27 3x 12 + \chi^2 3x + 4x 12$
 - 2 22 -2x +3 //
 - C.) $f(2.5) = (2.5)^2 2(2.5) + 3$
 - = 4.25 //

CUBIC SPLINE

$$K_{i-1} + 4K_i + K_{i+1} = \frac{6}{n^2} (y_{i-1} - 2y_i + y_{i+1})$$

$$\frac{(x_{i}-x_{i})^{3}}{6n} \cdot \kappa_{i-1} + \frac{(x_{i}-x_{i-1})^{3}}{6n} \cdot \kappa_{i} + \frac{x_{i}-x_{i}}{n} \cdot \left(y_{i-1} - \frac{h^{2}}{6} \cdot \kappa_{i-1}\right) + \frac{(x_{i}-x_{i-1})}{n} \cdot \left(y_{i} - \frac{h^{2}}{6} \cdot \kappa_{i}\right)$$

Taylor & McLaurin Series

MCLAURIN

$$\frac{f'(0)}{f(x)} = \frac{f'(0)}{f(0)} + \frac{f''(0)}{f(0)} (x)^{1} + \frac{f'''(0)}{2!} (x)^{2} + \frac{f'''(0)}{3!} (x)^{3} + \dots$$

TAYLOR

- •) Sequence: ordered set of numbers (T, ,T2, T3, Tn)
- •) Series : sum of all sequence up until n terms : T, + T2 + T3 + ... Tn

Taylor Series X->a

$$\frac{f'(a)}{f(x): f(a) + \frac{f'(a)}{1!}(x-a)^{1} + \frac{f''(a)}{2!}(x-a)^{2} + \frac{f'''(a)}{3!}(x-a)^{3} + \dots}$$

Decomposition

E.x. $AX = B \rightarrow LUX = B$

$X_1 + 2X_2 + 3X_3^2$	l 2 3	1	U: 123	L =	_ 	0	0
$\frac{1}{2}2x_1 + 9x_2 + 4x_3 = 9 \longrightarrow$	294	9	0 5 -2		2	١	0
8x, + x2 + 2x3 = 15	812	15	00-28		8	-3	1_

—— Use elimination to obtain this ——

L W X B $\begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0
\end{bmatrix}$ $\begin{bmatrix}
1 & 2 & 3 \\
0 & 5 & -2
\end{bmatrix}$ $\begin{bmatrix}
x_1 \\
2 & 1
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
0 & 5 & -2
\end{bmatrix}$ $\begin{bmatrix}
x_2 \\
3 \\
3
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
3 \\
4
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 \\
4$

1		
ŀ	ivoting	

<u> </u>
L> Using diagonally dominant (absolute value of each diagonal element should be dominant)
L> The diagonal element must be greater than or equal to the sum of the other two values.
E.X. (-2) 4 -1 -2 < 4 + -1
$\begin{bmatrix} -4 & 2 & -1 & -3 \\ 1 & -1 & 3 & 3 \\ -2 & 4 & 1 \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$