Ключевые понятия и алгоритмы машинного обучения

- Алгоритм предобработки данных и их первичного анализа
 - 1. Проверка типов
 - 2. Проверка пропущенных значений
 - 3. Анализ распределений признаков по одному
 - а. количественные: гистограмма\плотность, ящик с усами
 - b. качественные: столбиковая диаграмма)
 - 4. Выявление аномалий
 - 5. Анализ взаимодействий признаков
 - а. количественная-количественная: аналитический метод корреляции, графический скатерплот.
 - b. количественная- качественные: аналитически метод проверка гипотез (параметрический: стьюдент, непараметрический: маннауитни), графический боксплот.
 - с. качественные качественные: аналитически метод кф согласия Хи-квадрат, графический круговая диаграмма

- 6. Анализ целевой переменной
- 7. Анализ взаимодействия между признаками и целевой переменной
- Алгоритм нахождения модели:
 - 1. Изучаем проблематику бизнеса и самой темы (пытаемся понять суть явления)
 - 2. Генерируем разные признаки любые.
 - 3. Проводим эксперимент:
 - а. определяем тип модели и соответствующие ей способы подготовки данных
 - b. отбираем признаки
 - с. оптимизируем гиперпараметры модели
 - d. анализируем метрики, значимости признаков
- Классификация моделей машинного обучения
 - 1. Линейные
 - 2. Деревянные
 - 3. Метрические
- Ансамбли моделей
 - 1. Бэггинг
 - 2. Лес (бэггинг на различных подпространствах признаков)
 - 3. Бустинг (каждая последующая модель учитывает ошибки предыдущей)
 - 4. Стекинг (использование ооф предсказаний базовых моделей в качестве признаков))

^{*}параметрические тесты предполагают, что параметры распределения ГС известны, непараметрические — неизвестны (менее точные)

• Метрики классификации:

	y = 1	y = 0
$\hat{y} = 1$	True Positive (TP)	False Positive (FP)
$\hat{y} = 0$	False Negative (FN)	True Negative (TN)

- 1. Ассигасу доля правильных ответов
- 2. Precision точность (ошибка 1-го рода) $\frac{tp}{tp+fp}$
- 3. Recall полнота (ошибка 2-го рода) $\frac{tp}{tp+fn}$
- 4. F-score $\frac{precision*recall}{\beta^2*precision+recall}*(1+\beta^2)$
- Roc-auc

$$TPR = \frac{tp}{tp + fp}$$
 (точность)

 $FPR = \frac{fp}{fp + tn}$ (какую долю из объектов negative класса алгоритм предсказал неверно)

В идеальном случае, когда классификатор не делает ошибок (FPR = 0, TPR = 1) мы получим площадь под кривой, равную единице; в противном случае, когда классификатор случайно выдает вероятности классов, AUC-ROC будет стремиться к 0.5, так как классификатор будет выдавать одинаковое количество TP и FP.

Каждая точка на графике соответствует выбору некоторого порога. Площадь под кривой в данном случае показывает качество алгоритма (больше — лучше), кроме этого, важной является крутизна самой кривой — мы хотим максимизировать TPR, минимизируя FPR, а значит, наша кривая в идеале должна стремиться к точке (0,1).

- Метрики регрессии:
 - 1. MAE
 - 2. MSE
 - 3. R2
 - 4. MAPE