

Topologie dans \mathbb{R}^n

Analyse3-AP2 Nov. 2018-2019

Excercice 1:

On considère les normes N_1 , N_2 et N_{∞} définies sur l'e.v. $\mathbb{R}[X]$ des polynômes à coefficients réels et à degré quelconque par:

$$N_1(P) = \sum_{i \in \mathbb{N}} |a_i|, \ N_2(P) = \sqrt{\sum_{i \in \mathbb{N}} a_i^2}, \ N_{\infty}(P) = \sup_{i \in \mathbb{N}} |a_i| \ \text{avec} \ P = \sum_{i=0}^n a_i X^i \ \text{et} \ n \in \mathbb{N} \ ,$$

Montrer que N_1 , N_2 et N_{∞} ne sont pas équivalentes dans $\mathbb{R}[X]$

(Ind: considérer la famille de polynômes $(P_n)_{n\in\mathbb{N}^*}$ définies par: $P_n=\sum_{i=0}^{n-1}X^i$).

Excercice 2:

Les assertions suivantes sont-elles vraies ? (Démonstration ou contre-exemple selon les cas.)

- 1. Toute partie non ouverte de \mathbb{R}^n est fermée.
- 2. Une union quelconque de fermés de \mathbb{R}^n est fermée.
- 3. L'ensemble $\{(x,y) \in \mathbb{R}^2 \mid x^2 + 3y^4 < 1\}$ est ouvert ? fermé ? borné ?
- 4. L'ensemble $\{(x,y)\in\mathbb{R}^2, y^2=x(1-2x)\}$ est ouvert ? fermé ? borné ?

Excercice 3:

Établir les propriétés suivantes de l'adhérence d'un ensemble dans un espace vectoriel normé:

- 1. $\bar{\bar{A}} = \bar{A}$
- 2. si $A \subset B$ alors $\bar{A} \subset \bar{B}$
- 3. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 4. montrer que la formule $\overline{A \cap B} = \overline{A} \cap \overline{B}$ n'est pas vraie en général
- 5. montrer que la formule 3. n'est pas vrai en général pour une infinité d'ensembles.

Excercice 4:

Soit $(x_n)_n$ une suite convergente dans \mathbb{R}^p , avec $p \ge 1$, de limite x. Soit $A = \{x_n | n \in \mathbb{N}\}$. Montrer que $A \cup \{x\}$ est compact.

Excercice 5:

Soit F un fermé, et C un compact de \mathbb{R}^n . On note $G = F + C = \{x + y | x \in F \text{ et } y \in C\}$.

- 1. Montrer que G est fermé.
- 2. Montrer que ${\cal G}$ n'est pas en général fermé si ${\cal C}$ est supposé fermé non borné.

Excercice 6:

Soit $(F_n)_{n\in\mathbb{N}^*}$ une suite décroissante d'ensembles compactes et non vides de \mathbb{R}^p , avec $p\in\mathbb{N}^*$,

- 1. Montrer que $\bigcap_{n\in\mathbb{N}^*} F_n \neq \emptyset$
- 2. Vérifier que le résultat précédent est généralement faux si les ${\cal F}_n$ ne sont pas compactes.