

PROCESSAMENTO DE IMAGENS

HISTOGRAMA

Prof. Msc. Giovanni Lucca França da Silva

E-mail: giovanni-lucca@live.com

SOBRE A DISCIPLINA

- Bibliografia principal:
 - GONZALEZ, Rafael C.; WOODS, Richard C. Processamento digital de imagens. Pearson, 2011.

- Bibliografia complementar:
 - PEDRINI, Hélio; SCHWARTZ, William Robson. Análise de imagens digitais: princípios, algoritmos e aplicações. Thomson Learning, 2008.

NA AULA PASSADA...

Realces.

ROTEIRO

- Introdução.
- Equalização do Histograma.
- Alongamento do Histograma.
- Especificação do Histograma.

- Representação gráfica em colunas ou em barras (retângulos) de um conjunto de dados previamente tabulado e dividido em classes.
 - A base de cada retângulo representa uma classe.
 - A altura de cada retângulo representa a quantidade ou a frequência absoluta com que o valor da classe ocorre no conjunto de dados.

 O histograma de uma imagem em nível de cinza é uma função H(k) que produz o número de ocorrências de cada nível de cinza na imagem.

- Aplicações do histograma em processamento de imagens:
 - Aumento do contraste.
 - Segmentação do objeto.
 - Extração de características.
 - Recuperação de imagens.

 O histograma fornece uma indicação da qualidade da imagem quanto ao contraste e intensidade luminosa.

- Construção de um histograma:
 - Para todo valor de z: inicialize H(z) = 0.
 - Onde z varia de 0 a L 1, sendo L a quantidade de níveis diferentes possíveis para a imagem.
 - z também é chamado de bin.
 - Para cada pixel da imagem:
 - H(img[i, j])++.

```
Início

h(f(x,y))) = 0

Para cada valor f(x,y) faça

h(f(x,y)) = h(f(x,y)) + 1

Fim-Para

Fim
```

Histograma no OpenCV.

C++: void calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, SparseMat& hist, int dims, const int* histSize, const float** ranges, bool uniform=true, bool accumulate=false)

Python: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) → hist

- Parameters: images Source arrays. They all should have the same depth, CV 8U or CV 32F, and the same size. Each of them can have an arbitrary number of channels.
 - nimages Number of source images.
 - channels List of the dims channels used to compute the histogram. The first array channels are numerated from 0 to images[0].channels()-1 . the second array channels are counted from images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
 - mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size as images[i]. The non-zero mask elements mark the array elements counted in the histogram.
 - hist Output histogram, which is a dense or sparse dims -dimensional array.
 - dims Histogram dimensionality that must be positive and not greater than CV MAX DIMS (equal to 32 in the current OpenCV version).
 - histSize Array of histogram sizes in each dimension.

Exemplo da função calcHist() no OpenCV.

```
img = cv2.imread('home.jpg',0)

# create a mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
masked_img = cv2.bitwise_and(img,img,mask = mask)

# Calculate histogram with mask and without mask
# Check third argument for mask
hist_full = cv2.calcHist([img],[0],None,[256],[0,256])
hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])

plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0,256])

plt.show()
```


- O histograma de uma imagem é um conjunto de números que indica a quantidade de pixels em cada um dos níveis de cinza da imagem.
- Histograma normalizado.
 - Cada elemento do conjunto é calculado por:

$$P_r(r_k) = \frac{n_k}{n}$$

$$0 \le r_k \le 1$$

Histograma normalizado.

$$P_r(r_k) = \frac{n_k}{n}$$

 $r_k = 0, 1, \dots, L-1, L$ é o número de níveis de cinza da imagem.

n, número total de pixels na imagem n_k , número de pixels cujo nível de cinza corresponde a k.

 $P_r(r_k)$, probabilidade do k-ésimo nível de cinza.

 Um histograma pode ser visto como uma função de distribuição de frequência ou como uma função de distribuição de probabilidade.

$$P_r(r_k) = \frac{n_k}{n}$$

• De maneira geral, $P_r(r_k)$ dá uma estimativa da probabilidade de ocorrência do nível de cinza r na imagem.

Ex.: Seja uma imagem de 128x128 pixels cuja a quantidade de pixels em cada nível de cinza são dadas na tabela do lado (8 níveis de cinza).

$$n = 128x128 = 16.384 \text{ pixels}$$

 $P_r(0) = 1120/16.384 = 0.068$
 $P_r(1/7) = 3214/16.384 = 0.196$

Nível de Cinza (r _k)	n _k	$P_r(r_k)=n_k/n$
0	1120	0,068
1/7	3214	0,196
2/7	4850	0,296
3/7	3425	0,209
4/7	1995	0,122
5/7	784	0,048
6/7	541	0,033
1	455	0,028

- Características importantes:
 - A soma das probabilidades é igual a 1.

$$\sum P_r(r_k) = 1$$

Representação gráfica de um histograma.

- Características importantes:
 - As informações espaciais não são representadas.
 - Um histograma é único para um determinada imagem, mas o inverso não é verdadeiro.
 - A movimentação de objetos em uma imagem não tem efeito sobre o seu histograma.

No caso de imagens multidimensionais, o histograma é calculado

separadamente para cada canal.

- Realiza o processo espalhando ocorrências sobre todos os níveis de cinza.
 - Histograma uniforme.
- Aplicado para imagens que possuem baixo contraste.

- Trata-se de uma transformação global: s = T(r).
 - Útil para comparar cenas que foram adquiridas com iluminação diferente.
 - Pré-processamento para outras técnicas.
 - Muitas vezes melhora a qualidade visual da imagem.

- Algoritmo.
 - Calcula o histograma da imagem.
 - Calcula o histograma acumulado.
 - C(0) = H(0).
 - C(p) = C(p-1) + C(p).
 - P = 1, ... L 1.
 - Fator = (L- 1/MN).
 - T(p) = round(C(p) * fator).
 - Novo pixel = T(pixel).

- Exemplo: Considere uma imagem de 3 bits com dimensão 64x64.
 - Primeiro passo: calcular o histograma.

3 bits (L=8) dimensão 64x64 (n = 4096)

r_k	n _k		
0	790		
1	1023		
2	850		
3	656		
4	329		
5	245		
6	122		
7	81		

- Exemplo: Considere uma imagem de 3 bits com dimensão 64x64.
 - Segundo passo: calcular o histograma acumulado.

3 bits (L=8) dimensão 64x64 (n = 4096)

r_k	n_k	C(rk)
0	790	790
1	1023	1813
2	850	2663
3	656	3319
4	329	3648
5	245	3893
6	122	4015
7	81	4096

- Exemplo: Considere uma imagem de 3 bits com dimensão 64x64.
 - Terceiro passo: multiplique o fator pelo histograma acumulado.

r _k	n_k	C(rk)
0	790	790
1	1023	1813
2	850	2663
3	656	3319
4	329	3648
5	245	3893
6	122	4015
7	81	4096

Fator =
$$7 / 64 * 64$$
 Fator = $(L- 1/MN)$
Fator = 0.001708984
 $T(0) = round(C(0) * fator)$ $T(p) = round(C(p) * fator)$
 $T(0) = round(790 * fator) = 1$
 $T(1) = round(1813 * fator) = 3$
 $T(2) = round(2663 * fator) = 5$
 $g(x, y) = T(f(x, y))$

Exemplo: Considere uma imagem de 3 bits com dimensão 64x64.

Código no OpenCV.

C++: void equalizeHist(InputArray src, OutputArray dst)

Python: $cv2.equalizeHist(src[, dst]) \rightarrow dst$

Parameters: • src – Source 8-bit single channel image.

dst – Destination image of the same size and type as src.

Exemplo:

```
img = cv2.imread('wiki.jpg',0)
equ = cv2.equalizeHist(img)
res = np.hstack((img,equ)) #stacking images side-by-side
cv2.imwrite('res.png',res)
```


Código:

```
for(int i = 0; i < width; i++) {
    for(int j = 0; j < height; j++) {

        ImageType::IndexType pixelIndex={{i,j}};

        int pixel = image->GetPixel(pixelIndex);

        histogram[pixel]++;
    }
}

for(int i = 0; i < 256; i++) {

    if(i == 0) {
        acumulatedHistogram[i] = histogram[i];
    }else{
        acumulatedHistogram[i] += acumulatedHistogram[i-1];
    }
}</pre>
```

Código:

```
for(int i = 0; i < 256; i++) {
    float aux = acumulatedHistogram[i] * factor;
    acumulatedHistogram[i] = round(aux);
}

for(int i = 0; i < width; i++) {
    for(int j = 0; j < height; j++) {
        ImageType::IndexType pixelIndex={{i,j}};
        int pixel = image->GetPixel(pixelIndex);
        int newPixel = acumulatedHistogram[pixel];
        histogramImage->SetPixel(pixelIndex, newPixel);
    }
}
```

ALONGAMENTO DO HISTOGRAMA

- Alteração no contraste da imagem.
 - Plow e Phigh são limites de cortes.
 - Minimum e maximum são os valores de pixels obtidos na imagem original.

$$b[m,n] = \begin{cases} 0 & a[m,n] \le p_{\text{low}} \% \\ (2^{s}-1) \cdot \frac{a[m,n] - \text{minimum}}{\text{maximum} - \text{minimum}} & p_{\text{low}} \% < a[m,n] < p_{\text{high}} \% \end{cases}$$

$$(2^{s}-1) & a[m,n] \ge p_{\text{high}} \%$$

ALONGAMENTO DO HISTOGRAMA

ALONGAMENTO DO HISTOGRAMA

Código.

```
for(int i = 0; i < width; i++) {
    for(int j = 0; j < height; j++) {

        ImageType::IndexType pixelIndex={{i,j}};

        float pixel = image->GetPixel(pixelIndex);

        if(pixel <= plow) {
            newPixel = 0;
        }else if(pixel >= phigh) {
            newPixel = 255;
        }else {
            newPixel = level * (pixel - minimum) / (maximum - minimum);
        }

        int roundedPixel = round(newPixel);

        stretchingImage->SetPixel(pixelIndex, roundedPixel);
    }
}
```

- Dada a imagem de entrada e um histograma, o objetivo é transformar o histograma da imagem de entrada o mais próximo possível do histograma dado.
 - Duas imagens de entrada, sendo uma imagem de referência.

 Consiste em fazer o mapeamento do histograma equalizado da imagem com o histograma equalizado na imagem de referência.

- Consiste em fazer o mapeamento do histograma equalizado da imagem com o histograma equalizado na imagem de referência.
- Notação:
 - = zq e rk = bins.
 - Pr(rk) histograma da imagem a ser ajustada.
 - Pz(zq) histograma da imagem de referência.
 - H(rk) histograma acumulado da imagem a ser ajustada.
 - H(zq) histograma acumulado da imagem de referência.
 - sk = resultado da equalização da imagem a ser ajustada.
 - vt = resultado da equalização da imagem de referência.
 - e = resultado da especificação.

 Consiste em fazer o mapeamento do histograma equalizado da imagem com o histograma equalizado na imagem de referência.

r_k	$P_r(r_k)$	H(r _k)	$s_k = T(r_k)$	e(?)	z q	$P_z(z_q)$	$H(z_q)$	$v_t = G(z_q)$
0	0				0	0		
1	0.1				1	0.1		
2	0.1				2	0.2		
3	0.3				3	0.4		
4	0				4	0.2		
5	0				5	0.1		
6	0.4				6	0		
7	0.1				7	0		

- Consiste em fazer o mapeamento do histograma equalizado da imagem com o histograma equalizado na imagem de referência.
 - Calcule os histogramas acumulados e a função de equalização.

r_k	$P_r(r_k)$	H(r _k)	$s_k = T(r_k)$	e(?)	z q	$P_z(z_q)$	$H(z_q)$	$v_t = G(z_q)$
0	0	0	0		0	0	0	0
1	0.1	0.1	1		1	0.1	0.1	1
2	0.1	0.2	1		2	0.2	0.3	2
3	0.3	0.5	4		3	0.4	0.7	5
4	0	0.5	4		4	0.2	0.9	6
5	0	0.5	4		5	0.1	1	7
6	0.4	0.9	6		6	0	1	7
7	0.1	1	7		7	0	1	7

- Consiste em fazer o mapeamento do histograma equalizado da imagem com o histograma equalizado na imagem de referência.
 - O novo valor de rk, e, será o valor correspondente de zq de tal modo que |sk zq| seja mínimo.

r_k	$P_r(r_k)$	H(r _k)	$s_k = T(r_k)$	e(?)	z_q	$P_z(z_q)$	$H(z_q)$	$v_t = G(z_q)$
0	0	0	0	0 ←	- 0	0	0	0
1	0.1	0.1	1	1 ←	7 1	0.1	0.1	1
2	0.1	0.2	1	1 🗸	2	0.2	0.3	2
3	0.3	0.5	4	3 ←	7 3	0.4	0.7	5
4	0	0.5	4	3 4	4	0.2	0.9	6
5	0	0.5	4	3 1	5	0.1	1	7
6	0.4	0.9	6	4 4	6	0	1	7
7	0.1	1	7	5	7	0	1	7

Exemplo: Exames de RM da próstata.

Source Template Matched Exemplo: 100 80 Cumulative % Source 60 Template 40 Matched 20

100

PROF. MSC. GIOVANNI LUCCA FRANÇA DA SILVA

150

Pixel value

200

Exemplo:

Imagem original

Equalização

Especificação

REFERÊNCIAS

- GONZALEZ, Rafael C.; WOODS, Richard C. Processamento digital de imagens. Pearson, 2011.
- PEDRINI, Hélio; SCHWARTZ, William Robson. Análise de imagens digitais: princípios, algoritmos e aplicações. Thomson Learning, 2008.
- SILVA, Aristófanes. Notas de aula da disciplina Processamento de Imagens da Universidade Federal do Maranhão. 2018.
- BRAZ Jr, Geraldo. Notas de aula da disciplina Visão Computacional da Universidade Federal do Maranhão. 2018.