Instructor: Stephen Fulling

1 \mathbb{F}_2 and the Fano plane

1.1 Introduction

The purpose of this paper is to answer Exercise 2.5 (p. 96) of Greenberg [1]:

Let \mathbb{F}_2 be the field of two elements $\{0,1\}$, whose multiplication and addition have the usual tables except that 1+1=0. Show that \mathbb{F}_2^2 is isomorphic to the smallest affine plane. Show that $P^2(\mathbb{F}_2)$ is isomorphic to the Fano plane.

We will need a few preliminary definitions from Greenberg.

Definition 1. An incidence geometry $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ consists of a set of points \mathcal{P} , a set of lines \mathcal{L} , and an incidence relation $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$ such that:

- 1. Every pair of distinct points is incident to a unique line.
- 2. Every line is incident to at least two distinct points.
- 3. There exist three distinct noncollinear points.

Definition 2. Two lines are parallel if there is no point incident to both lines.

Definition 3. A projective plane is an incidence geometry in which:

- 1. No two lines are parallel.
- 2. Every line is incident to at least three distinct points.

Definition 4. An affine plane is an incidence geometry in which, for every line l and point P not incident to l, there exists a unique line m incident to P and parallel to l.

1.2 The affine plane \mathbb{F}_2^2

As in \mathbb{R}^2 , the points in \mathbb{F}_2^2 are simply the elements of the vector space \mathbb{F}_2^2 , i.e. ordered pairs of elements of \mathbb{F}_2 .

Also analogous to \mathbb{R}^2 , the lines in \mathbb{F}_2^2 are cosets of 1-dimensional subspaces of \mathbb{F}_2^2 . That is, every line in \mathbb{F}_2^2 can be written as V + h for some 1-dimensional subspace $V \subset \mathbb{F}_2^2$ and $h \in \mathbb{F}_2^2$.

Incidence in \mathbb{F}_2^2 corresponds to inclusion. For example, the point $(1,1) \in \mathbb{F}_2^2$ is incident to the line $\{(1,0)t+(0,1): t \in \mathbb{F}_2\}$, since (1,1)=(1,0)(1)+(0,1).

As Greenberg notes, the smallest affine plane, call it A, consists of a set of four points $\{A, B, C, D\}$ and a set of four lines $\{\{A, B\}, \{B, C\}, \{C, D\}, \{D, A\}\}$,

where incidence corresponds to inclusion. For example, the point B is incident to the line $\{A, B\}$.

To see that \mathcal{A} and \mathbb{F}_2^2 are isomorphic, first note that each 1-dimensional subspace over \mathbb{F}_2 has exactly 2 elements, so each line in \mathbb{F}_2^2 has 2 elements. Conversely, given two elements $a, b \in \mathbb{F}_2^2$, the line L((b-a)t, a) passes through a and b. Thus, the lines in \mathbb{F}_2^2 are precisely the two-element subsets of \mathbb{F}_2^2 .

Therefore, an arbitrary bijection f from the points of \mathbb{F}_2^2 to the points of \mathcal{A} induces a bijection of lines (two-element subsets), and since inclusion is preserved under f, incidence is also preserved.

1.3 $P^2(\mathbb{F}_2)$ as the Fano plane

For an arbitrary field K, the points of the projective space $P^2(K)$ are the 1-dimensional subspaces of K^3 . The lines are the 2-dimensional subspaces of K^3 . Incidence corresponds to containment.

Projective points in $P^2(K)$ are usually denoted (a:b:c) for some generator $(a,b,c) \in K^3 \setminus \{0\}$. Then (a:b:c) = (d:e:f) iff (a,b,c) is a nonzero multiple of (d,e,f). For example, the projective line $\{x+y+z=0:(x:y:z)\in P^2(\mathbb{R})\}$ is incident to the point $(1:0:-1)\in P^2(\mathbb{R})$ since t+0-t=0 for all $t\in \mathbb{R}$.

Note that a strange thing occurs in $P^2(\mathbb{F}_2)$: there is a correspondence between each point in $P^2(\mathbb{F}_2)$ as a 1-dimensional subspace of \mathbb{F}_2^3 and its unique nonzero element in \mathbb{F}_2^3 . Since, on the other hand, each non-zero element in \mathbb{F}_2^3 generates a 1-dimensional subspace of F_2^3 , this correspondence defines a bijection from $P^2(\mathbb{F}_2)$ to $\mathbb{F}_2^3 \setminus \{0\}$. Hence, there are $2^3 - 1 = 7$ points in $P^2(\mathbb{F}_2)$.

Since every 2-dimensional subspace of \mathbb{F}_2^3 contains 0, a 1-dimensional subspace $V \subset \mathbb{F}_2^3$ lies within a 2-dimensional subspace $W \subset \mathbb{F}_2^3$ iff the unique nonzero element in V lies within W. Hence, since each 2-dimensional subspace of \mathbb{F}_2^3 contains exactly $2^2-1=3$ nonzero \mathbb{F}_2^3 -elements, each line in $P^2(\mathbb{F}_2)$ is incident to precisely 3 projective points.

Since we have seen that no two nonzero elements of an \mathbb{F}_2 -vector space are linearly dependent, each pair of distinct nonzero elements in \mathbb{F}_2^3 determines a 2-dimensional subspace. Hence, since each 2-dimensional subspace of \mathbb{F}_2^3 contains exactly $\binom{3}{2} = 3$ pairs of distinct points, there are $(1/3)\binom{7}{2} = 7$ 2-dimensional subspaces of \mathbb{F}_2^3 .

References

[1] Marvin J Greenberg. Euclidean and non-Euclidean geometries: Development and history. WH Freeman, 2007.

Figure 1: An isomorphism between $P^2(\mathbb{F}_2)$ and the Fano plane