2020 年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1.
$$x \to 0^+$$
 时,下列无穷小量中最高阶是

A.
$$\int_0^x (e^{t^2} - 1) dt$$
C.
$$\int_0^{\sin x} \sin t^2 dt$$

B.
$$\int_0^x \ln\left(1 + \sqrt{t^3}\right) dt$$
D.
$$\int_0^{1 - \cos x} \sqrt{\sin^3 t} dt$$

2. 设函数
$$f(x)$$
 在区间 $(-1,1)$ 内有定义, 且 $\lim_{x\to 0} f(x) = 0$, 则 ()

A. 当
$$\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导

B.
$$\stackrel{\triangle}{=} \lim_{x \to 0} \frac{f(x)}{x^2} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导

C. 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$

D. 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$

3. 设函数
$$f(x,y)$$
 在点 $(0,0)$ 处可微, $f(0,0) = 0$, $\mathbf{n} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right)\Big|_{(0,0)}$, 非零向量 $\boldsymbol{\alpha}$

A.
$$\lim_{(x,y)\to(0,0)} \frac{|\mathbf{n}\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在

B.
$$\lim_{(x,y)\to(0,0)} \frac{\left|\mathbf{n}\times(x,y,f(x,y))\right|}{\sqrt{x^2+y^2}}$$
 存在

C.
$$\lim_{(x,y)\to(0,0)} \frac{\left|\boldsymbol{\alpha}\cdot(x,y,f(x,y))\right|}{\sqrt{x^2+y^2}}$$
 存在

4. 设
$$R$$
 为幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径, r 是实数, 则 ()

A.
$$\sum_{n=1}^{\infty} a_{2n} r^{2n}$$
 发散时, $|r| \geqslant R$ B. $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛时, $|r| < R$

B.
$$\sum_{n=1}^{\infty} a_{2n} r^{2n}$$
 收敛时, $|r| < R$

C.
$$|r| \geqslant R$$
 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散

D.
$$|r| \leqslant R$$
 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛

5. 若矩阵
$$A$$
 经初等列变换化成 B ,则

B. 存在矩阵
$$P$$
, 使得 $BP = A$

A. 存在矩阵
$$P$$
, 使得 $PA = B$ C. 存在矩阵 P , 使得 $PB = A$

D. 方程组
$$Ax = 0$$
 与 $Bx = 0$ 同解

)

6. 已知直线
$$L_1: \frac{x-a_2}{a_1} = \frac{y-b_2}{b_1} = \frac{z-c_2}{c_1}$$
 与直线 $L_2: \frac{x-a_3}{a_2} = \frac{y-b_3}{b_2} = \frac{z-c_3}{c_2}$

相交于一点, 记向量
$$\boldsymbol{\alpha}_i = \begin{pmatrix} a_i \\ b_i \\ c_i \end{pmatrix}, i = 1, 2, 3, 则$$
 ()

 $A. \alpha_1$ 可由 α_2, α_3 线性表示

B. α_2 可由 α_1 , α_3 线性表示

 $C. \alpha_3$ 可由 α_1, α_2 线性表示

 $D. \alpha_1, \alpha_2, \alpha_3$ 线性无关

7. 设 A, B, C 为三个随机事件, 且

$$P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0, P(AC) = P(BC) = \frac{1}{12},$$
 C 中恰有一个事件发生的概率为
 2
 1
 5

- 8. 设 X_1, X_2, \dots, X_{100} 为来子总体 X 的简单随机样本, 其中 P(X=0) = P(X=1) = $\frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数, 则利用中心极限定理可得 $P\left(\sum_{i=1}^{100} X_i \leqslant 55\right)$ 的近 似值为
 - A. $1 \Phi(1)$
- B. $\Phi(1)$
- C. $1 \phi(0.2)$ D. $\phi(0.2)$

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9.
$$\lim_{x\to 0} \left(\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right) = \underline{\hspace{1cm}}$$

10.设
$$\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln(t + \sqrt{t^2 + 1}) \end{cases}, 风 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \bigg|_{t=1} = \underline{\qquad}.$$

- 11.若函数 f(x) 满足 f''(x) + af'(x) + f(x) = 0 (a > 0), 且 f(0) = m, f'(0) = n, 则 $\int_0^{+\infty} f(x) dx = \underline{\qquad}.$
- 12.设函数 $f(x,y) = \int_0^{xy} e^{xt^2} dt$, 则 $\left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(1,1)} = \underline{\qquad}$

13.行列式
$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}.$$

14.设 X 服从区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的均匀分布, $Y = \sin X$, 则 $\operatorname{Cov}(X, Y) = \underline{\hspace{1cm}}$

博客: yuxtech.github.io

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

求函数 $f(x, y) = x^3 + 8y^3 - xy$ 的极值.

16.(本题满分 10 分)

计算曲线积分 $\int_L \frac{4x-y}{4x^2+y^2} dx + \frac{x+y}{4x^2+y^2} dy$, 其中 $L \stackrel{\cdot}{=} x^2+y^2=2$, 方向为逆时针方向.

17.(本题满分 10 分)

设数列 $\{a_n\}$ 满足 $a_1=1,(n+1)a_{n+1}=\left(n+\frac{1}{2}\right)a_n$, 证明: 当 |x|<1 时, 幂级数 $\sum_{n=1}^{\infty}a_nx^n$ 收敛, 并求其和函数.

18.(本题满分 10 分)

设 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ (1 $\leq x^2 + y^2 \leq 4$) 的下侧, f(x) 为连续函数, 计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] \, dy \, dz + [yf(xy) + 2y + x] \, dz \, dx + [zf(xy) + z] \, dx \, dy.$$

19.(本题满分 10 分)

设函数 f(x) 在区间 [0,2] 上具有连续导数, f(0) = f(2) = 0, $M = \max_{x \in [0,2]} |f(x)|$, 证明:

- (1) 存在 $\xi \in (0,2)$, 使得 $|f'(\xi)| \ge M$;
- (2) 若对任意 $x \in (0,2), |f'(x)| \leq M, 则 M = 0.$

20.(本题满分 11 分)

设二次型 $f(x_1, x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$ 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $a \ge b$.

- (1) 求 a,b 的值;
- (2) 求正交矩阵 Q.

21.(本题满分 11 分)

设 A 为二阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量, 且不是 A 的特征向量.

- (1) 证明: **P** 是可逆矩阵:
- (2) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.

22.(本题满分 11 分)

设随机变量 X_1, X_2, X_3 相互独立, 其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分 布为 $P(X_3=0)=P(X_3=1)=\frac{1}{2}, Y=X_3X_1+(1-X_3)X_2.$

- (1) 求二维随机变量 (X_1,Y) 的分布函数, 结果用标准正态分布函数 $\phi(x)$ 表示;
- (2) 证明:随机变量 Y 服从标准正态分布.

23.(本题满分11分)

设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t > 0 \\ 0, & \text{ 其他.} \end{cases}$$

其中 θ , m 为参数且大于零.

- (1) 求概率 P(T > t) 与 P(T > s + t | T > s), 其中 s > 0, t > 0;
- (2) 任取 n 个这种元件做寿命试验, 测得他们的寿命分别为 t_1, t_2, \dots, t_n , 若 m 已知, 求 θ 的最大似然估计值 $\hat{\theta}$.

