Vertex of the Quadratic

 $v_1 = -\frac{b}{2a}$ namely $y(v_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{v}_{1^+}\mathsf{h}$, namely

Given a quadratic $y(v) = a v^2 + b v + c$ compute its value at

 $y(v_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = y(v_1 + h) - y(v_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$y(v) = 4 v^2 + 16 v + 68$

Example 2.

$y(v) = -2v^2 - 12v - 31$

200 -Vertex 100 Δy<0 -10 10 - ∆y<0 -100 -200Secant Line 2 -300

-400

-500