Examenul național de bacalaureat 2024 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = \frac{a_1 + a_3}{2} \Rightarrow 14 = \frac{a_1 + 18}{2}$	3p
	$a_1 = 10$	2p
2.	f(5) = 7	2p
	$(f \circ f)(5) = f(f(5)) = f(7) = 9$	3 p
3.	$x^{2} + 2x + 1 = 1 - x$, de unde obținem $x^{2} + 3x = 0$	3p
	x = -3 sau $x = 0$	2p
4.	Cifra unităților se poate alege în 4 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în câte 4 moduri, deci se pot forma $4 \cdot 4 = 16$ numere	3 p
5.	$\overrightarrow{OA} = 2\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{AB} = (x_B - 2)\overrightarrow{i} + (y_B - 1)\overrightarrow{j}$, unde $B(x_B, y_B)$	3 p
	$(x_B - 2)\vec{i} + (y_B - 1)\vec{j} = 4\vec{i} + 2\vec{j}$, de unde obţinem $x_B = 6$ şi $y_B = 3$	2p
6.	$AB = 6 , AC = 6\sqrt{3}$	2p
	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 6\sqrt{3}}{2} = 18\sqrt{3}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$	
	$B(1) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \Rightarrow \det(B(1)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} =$	2p
	=2+0+0-0-2-0=0	3 p
b)	$B(x) \cdot B(y) - B(x+y) = \begin{pmatrix} 2^{x+y} & 0 & 0 \\ 0 & 1+xy & y+x \\ 0 & x+y & xy+1 \end{pmatrix} - \begin{pmatrix} 2^{x+y} & 0 & 0 \\ 0 & 1 & x+y \\ 0 & x+y & 1 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & xy & 0 \\ 0 & 0 & xy \end{pmatrix} = xyA, \text{ pentru orice numere reale } x \text{ și } y$	2 p
c)	$B(x) \cdot B(x+1) = B(2x+1) + (x^2 + x)A, B(2x) \cdot B(1) = B(2x+1) + 2xA, \text{ de unde obţinem}$ $B(x) \cdot B(x+1) - B(2x) \cdot B(1) = (x^2 - x)A, \text{ pentru orice număr real } x$	3p
	$(x^2 - x)A = xA$, de unde obținem $x = 0$ sau $x = 2$	2p
2.a)	$f(1) = 1^3 + a \cdot 1^2 + 1 + 2 - a =$	3 p
	=1+a+1+2-a=4, pentru orice număr real a	2p

b)	$f = X^3 + 2X^2 + X = X(X^2 + 2X + 1)$	2p
	Rădăcinile polinomului sunt $x_1 = x_2 = -1$ și $x_3 = 0$	3 p
c)	$x_1 x_2 x_3 = -2 + a, (x_1 - x_1^2)(x_2 - x_2^2)(x_3 - x_3^2) = x_1 x_2 x_3 (1 - x_1)(1 - x_2)(1 - x_3) = (-2 + a) f(1)$	3 p
	4(-2+a)=4, de unde obţinem $a=3$	2p

SUBIECTUL al III-lea (30 de puncte)

	oblect of all int-ica (50 de punct		
1.a)	$f'(x) = (x^2 - 2)'e^{2x} + (x^2 - 2)(e^{2x})' =$	2p	
	$=2xe^{2x}+(x^2-2)\cdot 2e^{2x}=2e^{2x}(x^2+x-2), \ x\in\mathbb{R}$	3p	
b)	$\lim_{x \to +\infty} \frac{f(x)}{f'(x)} = \lim_{x \to +\infty} \frac{x^2 - 2}{2(x^2 + x - 2)} = \lim_{x \to +\infty} \frac{x^2 \left(1 - \frac{2}{x^2}\right)}{2x^2 \left(1 + \frac{1}{x} - \frac{2}{x^2}\right)} =$	3 p	
	$= \lim_{x \to +\infty} \frac{1 - \frac{2}{x^2}}{2\left(1 + \frac{1}{x} - \frac{2}{x^2}\right)} = \frac{1}{2}$	2p	
c)	$f'(x) = 0 \Leftrightarrow x = -2$ sau $x = 1$; pentru orice $x \in (-\infty, -2]$, $f'(x) \ge 0$, deci f este crescătoare pe $(-\infty, -2]$; pentru orice $x \in [-2, 1]$, $f'(x) \le 0$, deci f este descrescătoare pe $[-2, 1]$ și pentru orice $x \in [1, +\infty)$, $f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	3 p	
	Cum $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = +\infty$, $f(1) = -e^2$ și f este continuă, imaginea funcției f este $\left[-e^2, +\infty\right)$	2p	
2.a)	$\int_{-1}^{1} \left(f(x) - 6x^2 \right) dx = \int_{-1}^{1} \left(x^4 + 1 \right) dx = \left(\frac{x^5}{5} + x \right) \Big _{-1}^{1} =$	3 p	
	$= \frac{1}{5} + 1 + \frac{1}{5} + 1 = \frac{12}{5}$	2p	
b)	$\int_{1}^{6} \frac{x^{3}}{f(x) - 1} dx = \int_{1}^{6} \frac{x}{x^{2} + 6} dx = \frac{1}{2} \int_{1}^{6} \frac{(x^{2} + 6)}{x^{2} + 6} dx = \frac{1}{2} \ln(x^{2} + 6) \Big _{1}^{6} =$	3p	
	$=\frac{\ln 42}{2} - \frac{\ln 7}{2} = \frac{\ln 6}{2}$	2p	
c)	$\lim_{x \to 0} \left(\frac{1}{x^3} \int_0^x (f(2t) - f(t)) dt \right) = \lim_{x \to 0} \frac{\left(\int_0^x (f(2t) - f(t)) dt \right)'}{\left(x^3 \right)'} = \lim_{x \to 0} \frac{f(2x) - f(x)}{3x^2} =$	3 p	
	$= \lim_{x \to 0} \frac{15x^4 + 18x^2}{3x^2} = \lim_{x \to 0} (5x^2 + 6) = 6$	2 p	

Pagina 2 din 2