Úloha 1. (6 bodů) Měříme elektrický proud, který se během našeho experimentu postupně mění v rozsahu 4 – 25 mA. Bude tak přesnější měřit digitálním multimetrem Metex M-3860D se 4-místným displejem, rozsahem do 40 mA a výrobcem udanou přesností ±(2,5% + 3 dgt), anebo bude lepší použít deprézský (analogový) miliampérmetr s třídou přesnosti 0,5 a rozsahem do 80 mA?

- 2 b. Vypočítejte standardní nejistotu měření proudu digitálním přístrojem.
- 2 b. Totéž pro analogový ampérmetr.
- 2 b. Srovnejte oba přístroje kdy bude který přístroj vhodnější.

Úloha 2. (4 body) Smíchali jsme 0,45 molu normální vody H_2O s neznámým množstvím těžké vody D_2O . V takové směsi je chemická výměna velmi rychlá, tzn. vodíkové atomy se libovolně vyměňují mezi molekulami. Důsledkem je, že se prakticky okamžitě ustanoví dynamická rovnováha mezi všemi třemi možnými isotopickými kombinacemi H_2O , HDO, a D_2O . (Isotopický efekt je zanedbatelný, tj. je chemicky úplně jedno, zda je jádrem vodíku proton nebo deuteron – oba druhy isotopů se tedy vážou v molekule vody zcela náhodně a nezávisle.)

- Výslednou směs měříme jadernou magnetickou rezonancí na jádrech deuteria a ve spektru detekujeme dva odlišné signály: jednu čáru příslušející HDO a druhou čáru příslušející D_2O , a tyto čáry mají poměr intenzit Int(HDO): $Int(D_2O)$ = 9. Molekul HDO je tedy ve směsi 18x více než molekul D_2O .
- 2 b. Spočítejte, jaké množství D₂O (v molech) bylo na začátku přimícháno do H₂O.
- 2 b. Budeme-li měřit naopak signál normálního vodíku 1 H, naměříme také dvě čáry pro H_2O a HDO. Jaký budou mít poměr intenzit?

Úloha 3. (5 body) Studujeme optické signály, u kterých průměrně vzniká (a dopadá na náš detektor) 10⁶ fotonů za sekundu. Signály jsou jednotlivé fotony, jsou tedy extrémně slabé, a proto k jejich detekci používáme fotonásobič v Geigerově režimu. V takovém nastavení je ale po detekci jedné události detektor po určitou krátkou dobu (tzv. mrtvá doba) neschopen detekovat žádnou jinou událost – pokud by tedy dopadl další foton na detektor dříve, než uplyne mrtvá doba, tak prostě není zaregistrován. Ten použitý detektor (i s celou související aparaturou) má mrtvou dobu 100 ns.

- 2 b. Jaká je pravděpodobnost, že během mrtvé doby na detektor dopadne právě jeden foton?
- 3 b. Stanovte účinnost detektoru, tj. spočtěte, jakou část z dopadajícího množství signálů detektor zvládne detekovat. (Pro jednoduchost uvažujte, že foton, který dopadne během mrtvé doby, s detektorem neinteraguje, tj. nevyvolá žádnou lavinu a tím třeba novou mrtvou dobu apod.)