Handout 11

Le théorème de Myhill-Nerode

1 Rappel: Relations d'équivalence et congruences droites

1.1 Relations d'équivalence

Une relation \sim sur un ensemble U est une relation d'équivalence si

- 1. \sim est réflexive: pour tout $x \in U$: $x \sim x$;
- 2. \sim est symétrique: pour tous $x, y \in U$: si $x \sim y$ alors $y \sim x$;
- 3. \sim est transitive: pour tous $x, y, z \in U$: si $x \sim y$ et $y \sim z$ alors $x \sim z$.

Quand \sim est une relation d'équivalence sur U et $x \in U$ alors la classe d'équivalence de x est $[x]_{\sim} = \{y \in U \mid x \sim y\}$. Deux classes d'équivalence $[x]_{\sim}$ et $[y]_{\sim}$ sont soit égales (quand $x \sim y$), soit disjointes (quand $x \not\sim y$). Une classe d'équivalence ne peut pas être vide.

L'indice d'une relation d'équivalence \sim , noté $indice(\sim)$, est le nombre de ses classes d'équivalence, ce nombre peut être fini ou infini.

Une relation d'équivalence \sim_1 est un raffinement d'une relation d'équivalence \sim_2 si $x \sim_1 y$ implique que $x \sim_2 y$.

Si \sim_1 est un raffinement de \sim_2 et \sim_1 est d'indice fini, alors \sim_2 est également d'indice fini, et $indice(\sim_2) \leq indice(\sim_1)$.

1.2 Congruences droites

Une relation d'équivalence $\sim \text{sur } \Sigma^*$ est une congruence droite si:

$$\forall x, y, z \in \Sigma^* : x \sim y \Rightarrow xz \sim yz$$

2 Congruence droite induite par un langage

Soit $L \subseteq \Sigma^*$ un langage. La relation \sim_L sur Σ^* est définie par

$$x \sim_L y \text{ ssi } \forall w \in \Sigma^* : xw \in L \Leftrightarrow yw \in L$$

Propriétés de cette relation:

- 1. \sim_L est une relation d'équivalence.
- 2. \sim_L est une congruence droite.
- 3. $x \sim_L y$ si et seulement si $x^{-1}L = y^{-1}L$.
- 4. toute classe d'équivalence $[x]_{\sim_L}$ est soit incluse dans L, soit disjointe de L.

3 Congruence droite induite par un automate

Soit $A=(\Sigma,Q,q_0,F,\delta)$ un automate déterministe complet. La relation \sim_A sur Σ^* est définie par

$$x \sim_A y \text{ ssi } \delta^*(q_0, x) = \delta^*(q_0, y)$$

Propriétés de cette relation:

- 1. \sim_A est une relation d'équivalence
- 2. \sim_A est une congruence droite
- 3. $|Q| \ge indice(\sim_A)$, donc \sim_A est d'indice fini.
- 4. si L est le langage reconnu par A, alors \sim_A est un raffinement de \sim_L , et on a donc que $indice(\sim_A) \geq indice(\sim_L)$.

4 Le théorème de Myhill-Nerode

Soit $L \subseteq \Sigma^*$ un langage.

- 1. L est rationnel si et seulement si \sim_L est d'indice fini.
- 2. Si L est rationnel alors l'indice de \sim_L est égal au nombre d'états du plus petit automate déterministe complet qui reconnaît L.