МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра информационной безопасности

ОТЧЕТ

по лабораторной работе №4
по дисциплине «Криптография и защита информации»
Тема: Изучение шифра DES

Студент гр. 9381	 Колованов Р.А.
Преподаватель	Племянников А.К

Санкт-Петербург 2022

Цель работы.

Исследовать шифры DES, 3DES, а также другие модификации шифра DES: DESX, DESL, DESXL и получить практические навыки работы с ними, в том числе с использованием приложения Cryptool 1 и 2.

Основные теоретические положения.

Шифр DES.

Стандарт шифрования данных (DES) — блочный симметричный шифр, разработанный Национальным Институтом Стандартов и Технологии (NIST – National Institute of Standards and Technology).

Шифр DES основан на сети Фейстеля. DES шифрует информацию блоками по 64 бита с помощью 64-битного ключа шифрования. Шифрование выполняется следующим образом (рис. 1):

- 1. Над 64-битными блоками производится начальная перестановка, задаваемая таблично;
- 2. После начальной перестановки блок делится на 2 субблока по 32 бита (A_0 и B_0), над которыми производятся 16 раундов преобразований:

$$A_i = B_{i-1};$$

$$B_i = A_{i-1} \oplus f(B_{i-1}, K_i),$$

где і — номер текущего раунда, $K_{\rm i}$ — ключ раунда, \oplus — логическая операция XOR.

Схема работы функции раунда f представлена на рисунке 2. Этапы раундового преобразования:

- а) Расширяющая перестановка EP, которая преобразует входные 32 бита в 48 бит (рис. 3);
- b) Полученные 48 бит складываются с $K_{\rm i}$ операцией XOR;

Рисунок 1

Рисунок 2.

Рисунок 3.

- с) Результат сложения разбивается на 8 блоков по 6 битов. Каждый блок обрабатывается соответствующей таблицей замен;
- d) Над полученными 32 битами, после выполнения замен, выполняется перестановка (на рисунке 2 обозначена как P);

На последнем раунде алгоритма субблоки местами не меняются.

3. Полученные в итоге субблоки A_{16} и B_{16} образуют 64-битный блок, над которым производится конечная перестановка и в итоге получается результирующий блок шифротекста.

Процедура генерации раундовых ключей представлена на рисунке 4. Из 64-битного ключа шифрования используется только 56 бит, каждый 8-й бит исключается. На рисунке 4 операция сжатия ключа и перестановка обозначена как Е. После перестановки блок в 56 бит делится на два 28-битных блока (С и D). Затем выполняются 16 раундов преобразований:

- 1. Текущие С и D циклически сдвигаются влево на определенное количество бит;
- 2. С и D объединяются в 56-битное значение, к которому применяется сжимающая перестановка. На выходе получаем 48-битный раундовый ключ.

Расшифровывание данных алгоритмом DES происходит при прохождении всех шагов алгоритма в обратном порядке.

Режимы ECB и CBC шифра DES.

В режиме ECB шифра DES используется независимо для каждого 64битного блока шифруемых данных. Схема использования шифра в режиме ECB представлена на рисунке 5.

В режиме СВС перед запуском DES для зашифрования каждого очередного блока открытого текста происходит побитовое XOR-сложение этого блока с блоком зашифрованного текста из предыдущего шага. Схема использования шифра в режиме СВС представлена на рисунке 6.

Шифр 3-DES.

Шифр 3-DES (рисунок 7) состоит в трехкратном применении обычного DES. Существует 4 основные версии данного шифра:

- 1. DES-EEE3 шифрование происходит 3 раза независимыми ключами;
- 2. DES-EDE3 операции шифровкарасшифровка-шифровка с тремя разными ключами;
- 3. DES-EEE2 то же что и DES-EEE3, но на первом и последнем шаге одинаковый ключ;

4. DES-EDE2 – то же что и DES-EDE3, но на первом и последнем шаге используется один и тот же ключ.

На текущий момент самыми популярными версиями шифра являются DES-EDE3 и DES-EDE2.

Модификации DESX, DESL, DESXL шифра DES.

Алгоритм DESX использует на входе ключ длиной 184 бита, который делится на три 56-битные части. Процесс шифрования происходит по следующей схеме:

$$DESX(M) = K_2 \oplus DES_K(M \oplus K_1)$$

Если $K_1 = K_2 = 0$, то данный алгоритм сводится к стандартному DES.

Алгоритм DESL является облегченной версией алгоритма DES. Данный алгоритм был создан в 2006 году для RFID-меток. Алгоритм предполагает отказ от входной и выходной перестановки блока текста, т.к. они не несут криптографической сложности, а также 8 S-блоков заменяется на 1, но более стойкий чем все 8 стандартных блока DES.

Алгоритм DESXL использует те же оптимизации что и DESL, но производит шифрование по алгоритму DESX.

Ход работы.

Исследование преобразований DES.

Задание.

- 1. Изучить преобразования шифра DES с помощью демонстрационного приложения из Cryptool 1 (Indiv.Procedures -> Visualization -> DES);
- 2. Выполнить вручную преобразования первых двух раундов и вычисление раундовых ключей при следующих исходных данных:
 - а. Открытый текст (не более 64 бит) фамилия_имя (транслитерация латиницей);
 - b. Ключ (56 бит) номер зачетной книжки и инициал отчества (всего 7 символов);
- 3. Выполнить вручную обратное преобразование зашифрованного сообщения;
- 4. Убедиться в совпадении результатов.

Изучение преобразования шифра DES.

При помощи приложения CrypTool 1 (Indiv.Procedures -> Visualization -> DES) изучим процесс преобразования шифра DES:

В начале выполняется первый этап, а именно начальная перестановка IP 64-битного блока, задаваемая таблично:

- For DES encryption, the plaintext is split into blocks of 64 bits. Each block (i.e. input X) will pass the following algorithm for complete plaintext encryption.
- The first step is to rearrange all bits of input X according to the initial permutation (IP).
- Therefore the numbers within IP mark the position of the input bit to be put into this place.

 Meaning: Bit 58 of input X moves to the first position, Bit 50 to the second, and so on...

Далее производится генерация раундовых ключей. Для начала 64-битный ключ преобразуется к 56-битному ключу при помощи удаления каждого 8 бита ключа, после чего производится перестановка (PC1):

- Next step is to pass the 64-bit key K through a permutation called permuted choice 1 (PC1).
- Before doing so, the rightmost bits (every 8th bit) of K are stripped. These bits are for parity checking and have no further influence on the encryption.

 Notice that the key is now shortened to 56 bits!
- Again, the numbers within PC1 mark the index of each bit in K that is moved into this place.
- Meaning: Bit 57 moves to the first place, bit 49 to the second, and so on...

Далее производится генерация 16 раундовых 48-битных ключей из полученного 56-битного ключа К'. Для этого К' делится на две части, левую (L) и правую (R):

- The next step is to derive 16 48-bit keys K[1]-K[16] from K'.
- Therefore, K' is split in two halves L and R.
- According to the table below, we let all bits in R and L rotate left in 16 rounds by the number specified:

Далее для левой и правой части производится побитовый сдвиг на определенное количество бит, в зависимости от порядкового номера ключа. Например, для первого раундового ключа сдвиг будет следующий:

После выполнения сдвига выполняется сжимающая перестановка РС2. Для первого раундового ключа она будет выглядеть следующим образом:

На выходе получаем итоговый 48-битный первый раундовый ключ. Аналогичным образом генерируются остальные 15 раундовых ключей:

- Next step is to pull both L and R back together and pass it through a permutation called PC2. The result is our first subkey K[1], which is 8 bits shorter than K'.
- All other subkeys K[2]-K[16] are derived in the same manner in respect to the 16 rounds given in the table..

Все необходимые входные данные для основного алгоритма вычислены, теперь можно переходить к шифровке. Шифровка производится в 16 этапов, на каждом используется соответствующий ему раундовый ключ. В каждом раунде производится шифровка определенного блока, полученного из предыдущего раунда, соответствующим ключом. Данный процесс называется сетью Фейстеля. Далее рассмотрим преобразования, которые происходят в раундах:

- The permuted input is split in two halves called Lound Ro, each 32-bit wide.
- For i=1,...,16 (16 DES rounds) let

$$L_i = R_{i-1}$$
 and $R_i = L_{i-1} \bigoplus f(R_{i-1}, K_i)$

- K_i is the subkey index and \bigoplus means bitwise addition modulo 2 (also called XOR).
- In this schematic round 3 to 15 are abbreviated, but they run just the same.
- Finally we swap L and R after round 16. The result is the pre-output.

Для начала входные данные делятся на две части по 32 бита, левую (L_0) и правую (R_0). На каждом раунде выполняются следующие действия:

$$A_i = B_{i-1};$$

$$B_i = A_{i-1} \oplus f(B_{i-1}, K_i),$$

После выполнения 16 раундов на выходе получаем два блока L_{16} и R_{16} по 32 бита, которые в завершение меняются местами:

На выходе получаем Pre-Output.

Теперь подробнее рассмотрим функцию f шифра DES, которая используется в каждом раунде преобразований. В начале производится расширяющая перестановка EP, которая преобразует 32-битный блок в 48-битный блок:

⁻ Let's take a closer look at the DES core function $f(R_{i+1}, L_i)$.

⁻ Each 32-bit wide R_{i-1} must be expanded before it can be XORed with its corresponding 48-bit subkey K_i .

That's why some of the values in R_{i-1} have to be doubled. The figure above shows how. The exact mapping is determined by the expansion table E, which is not shown here. Next step is to XOR $E(R_{i-1})$ and K_i . This is an example for i=1, having the expanded input R_0 and its corresponding subkey K_1 XORed.

⁻ The result B is divided into 8 blocks.

⁻ The index of B tells us which S-box is applied to the each block.

Function f:

Полученный 48-битный блок складывается по модулю 2 с раундовым ключом, после чего делится на 8 блоков по 6 бит каждый:

Далее каждый блок B[i] обрабатывается соответствующей ему таблицей замены S[i] (4 строки на 16 столбцов). Первый и последний бит и остальные 4 бита блока B[i] используется для определения номера строки и номера столбца значения замены в таблице S[i]:

- The index of B tells us which S-box is applied to the each block.
- S-boxes (Substitution-Boxes) are a set of 8 4x16 matrices with constant values.
- There's not enough space for all boxes on the screen, so let's restrict to box 1 and 8.

110110	001010	110110	010100	000100	100110	101001	010011
B[1]	B[2]	B[3]	B[4]	B[5]	B[6]	B[7]	B[8]

S-box 1:

column	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
0 1 2 3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	3	

:

S-box 8:

column	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
2 3	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

- Now, eight numbers are extracted from the S-boxes; one from each box:
- For every S[n] the first and last bits of B[n] are used as the row index, and the middle four bits as the column index. Here is an example for S[1], B[1] and S[8], B[8]. All remaining B[n] are substituted in the same way.

Пример выполнения замены блока В[1]:

110110	001010	110110	010100	000100	100110	101001	010011
B[1]	B[2]	B[3]	B[4]	B[5]	B[6]	B[7]	B[8]
1 0 = 1x2^	1+0*2^0 =	2	1011 =	= 1*2^3+0*2^	2+1*2^1+1*2	^0 = 11	

S-box 1:

row			2														
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	3	

S-box 1:

row	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	1 1	9	5	3	8	
2	4	1	14	-0-	13	6	-2	-11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	3	

 $7 = 0111_2$

В итоге для B[1] заменой будет является значение 0111_2 . Таким образом 6-битные блоки B[i] заменяются на 4-битные блоки:

B[1]	B[2]	B[3]	B[4]	B[5]	B[6]	B[7]	B[8]
0111	1011	1100	1000	0100	0101	0001	0101

Далее объединяем полученные 4-битные блоки в 32-битный блок R, для которого осуществляем финальную перестановку P:

- The result R is the concatenation of B[1] to B[8], shown in the matrix above.
- Finally, R is passed through the permutation P. Just like the other S-boxes, this matrix is constant.

В итоге получаем результат преобразования функцией f блока R[0] с раундовым ключом R[1]. Таким образом происходит вычисление функции f в раундах.

Для полученного после всех раундов PreOutput в конце выполняется обратная начальная перестановка IP-1.

В итоге получаем зашифрованный блок Y. На этом шифровка входного блока X завершена.

Ручное преобразование первых двух раундов и раундовых ключей.

Теперь выполним ручное преобразование первых двух раундов шифра DES и вычисление раундовых ключей для следующих исходных данных:

- А. Входные данные текст «KOLOVANO»;
- Б. Ключ текст «938106A».

Для начала преобразуем исходные данные к бинарному виду:

Буква	Код ASCII	Двоичный код
K	75	01001011
О	79	01001111
L	76	01001100
О	79	01001111
V	86	01010110
A	65	01000001
N	78	01001110
О	79	01001111

Буква	Код ASCII	Двоичный код
9	57	00111001
3	51	00110011
8	56	00111000
1	49	00110001
0	48	00110000
6	54	00110110
A	65	01000001

Получаем входной 64-битный блок для шифрования и 56-битный ключ.

Теперь найдем первые два раундовых ключа. Для начала выполним перестановку PC1 для 56-битного ключа, после чего поделим его на верхнюю C_0 и нижнюю D_0 части по 28 бит:

Ключ (56 бит)

Перестановка (РС1)

Результат

Получаем C_0 и D_0 соответственно:

Исходя из таблицы побитовых сдвигов выполняем побитовый сдвиг для C_0 и D_0 , C_1 и D_1 на 1 бит влево, чтобы получить блоки C и D для первого и второго раундового ключа:

F	oun	d nu	mbe	ег		1		2	3	4	5		3	7	8		3	10	11	12	13	14	15	16
#	of b	its t	о го	tate		1	,	1	2	2	2	- 2	2	2	2	1	ı	2	2	2	2	2	2	1
									_															
1	1	0	0	1	1	0			0	0	1	1	1	0	0									
0	1	0	0	0	1	0			0	0	0	0	1	1	0									
0	0	0	0	0	0	0			0	0	1	0	0	0	1									
0	1	0	1	0	1	1			1	1	0	0	1	1	1									
		(\mathbb{C}_1								D) 1												
1	0	0	1	1	0	0			0	1	1	1	0	0	0									
1	0	0	0	1	0	0			0	0	0	1	1	0	0									
0	0	0	0	0	0	0			0	1	0	0	0	1	1									
1	0	1	0	1	1	1			1	0	0	1	1	1	0									
		(\mathbb{C}_2								Г) ₂												

В завершение склеиваем блоки C_1 и D_1 , C_2 и D_2 , после чего применяем перестановку PC2 и получаем два итоговых раундовых ключа:

$$K[1] = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$K[2] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Первые два раундовых ключа найдены. Теперь можно приступить к шифрованию. Для начала выполним начальную перестановку IP входных данных:

0	1	0	0	1	0	1	1
0	1	0	0	1	1	1	1
0	1	0	0	1	1	0	0
0	1	0	0	1	1	1	1
0	1	0	1	0	1	1	0
0	1	0	0	0	0	0	1
0	1	0	0	1	1	1	0
0	1	0	0	1	1	1	1

 58
 50
 42
 34
 26
 18
 10
 2

 60
 52
 44
 36
 28
 20
 12
 4

 62
 54
 46
 38
 30
 22
 14
 6

 64
 56
 48
 40
 32
 24
 16
 8

 57
 49
 41
 33
 25
 17
 9
 1

 59
 51
 43
 35
 27
 19
 11
 3

 61
 53
 45
 37
 29
 21
 13
 5

 63
 55
 47
 39
 31
 23
 15
 7

1	1	1	1	1	1	1	1
0	0	0	1	0	0	0	0
1	1	0	1	1	1	1	0
1	0	1	0	1	0	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	0	0	1	1	1	1
1	1	0	1	1	0	1	1

Входные данные

Перестановка (IP)

Результат

Далее разделим блок на две 32-битные части L_0 и R_0 :

Далее выполним первый раунд преобразований:

$$R_1 = f(R_0, E[1]) \text{ XOR } L_0$$

Найдем $f(R_0, E[1])$. Для начала выполним расширяющую перестановка EP для блока R_0 , которая преобразует 32-битный блок в 48-битный блок:

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	0	0	1	1	1	1
1	1	0	1	1	0	1	1

 R_0

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Расширяющая перестановка (ЕР)

 $E(R_0)$

Далее сложим $E(R_0)$ с K[1] по модулю 2 и разделим результат на 8 6-битных блоков $B_1[1], \ldots, B_1[8]$:

1	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	1		
0	1	1	0	0	1		
0	1	1	1	1	1		
1	1	1	0	1	1		
1	1	0	1	1	0		
E(D)							

 $E(R_0)$

K[1]

1	0	0	0	1	1
0	1	0	1	0	0
1	0	0	0	0	0
0	0	1	0	1	0
1	1	0	0	0	0
0	0	0	0	0	1
1	0	1	1	1	1
1	1	1	1	1	1

Результат

B ₁ [1]	1	0	0	0	1	1
B ₁ [2]	0	1	0	1	0	0
B ₁ [3]	1	0	0	0	0	0
B ₁ [4]	0	0	1	0	1	0
B ₁ [5]	1	1	0	0	0	0
B ₁ [6]	0	0	0	0	0	1
B ₁ [7]	1	0	1	1	1	1
B ₁ [8]	1	1	1	1	1	1

Теперь каждый 6-битный блок $B_1[i]$ обработаем соответствующей таблицей замен S[i], после чего склеим полученные 8 4-битных блоков в 32-битный блок R_1 :

S[1]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

	T	1						1		1				1	ı	1
S[2]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
S[3]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
S[4]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
L	ı			1												
S[5]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S[5] 0	0 2	1 12	2	3	4 7	5	6	7	8	9 5	10	11 15	12 13	13 0	14	15 9
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
0	2 14	12 11	4 2	1 12	7	10 7	11	6	8 5	5	3 15	15 10	13	0 9	14	9
1 2	2 14 4	12 11 2	4 2 1	1 12 11	7 4 10	10 7 13	11 13 7	6 1 8	8 5 15	5 0 9	3 15 12	15 10 5	13 3 6	9	14 8 0	9 6 14
1 2	2 14 4	12 11 2	4 2 1	1 12 11	7 4 10	10 7 13	11 13 7	6 1 8	8 5 15	5 0 9	3 15 12	15 10 5	13 3 6	9	14 8 0	9 6 14
0 1 2 3	2 14 4 11	12 11 2 8	4 2 1 12	1 12 11 7	7 4 10 1	10 7 13 14	11 13 7 2	6 1 8 13	8 5 15 6	5 0 9 15	3 15 12 0	15 10 5 9	13 3 6 10	0 9 3 4	14 8 0 5	9 6 14 3
0 1 2 3	2 14 4 11	12 11 2 8	4 2 1 12	1 12 11 7	7 4 10 1	10 7 13 14	11 13 7 2	6 1 8 13	8 5 15 6	5 0 9 15	3 15 12 0	15 10 5 9	13 3 6 10	0 9 3 4	14 8 0 5	9 6 14 3
0 1 2 3 S[6] 0	2 14 4 11 0 12	12 11 2 8	1 12 2 10	1 12 11 7 3 15	7 4 10 1	10 7 13 14 5 2	11 13 7 2 6 6	6 1 8 13	8 5 15 6 8 0	5 0 9 15 9	3 15 12 0 10 3	15 10 5 9	13 3 6 10 12	0 9 3 4	14 8 0 5	9 6 14 3
0 1 2 3 S[6] 0	2 14 4 11 0 12	12 11 2 8 1 1	4 2 1 12 2 10 4	1 12 11 7 3 15 2	7 4 10 1 4 9	10 7 13 14 5 2	11 13 7 2 6 6	6 1 8 13 7 8 5	8 5 15 6 8 0 6	5 0 9 15 9 13	3 15 12 0 10 3 13	15 10 5 9 11 4	13 3 6 10 12 14 0	0 9 3 4 13 7	14 8 0 5 14 5	9 6 14 3 15 11 8
0 1 2 3 S[6] 0 1 2	2 14 4 11 0 12 10 9	12 11 2 8 1 1 15	2 1 12 2 10 4 15	1 12 11 7 3 15 2	7 4 10 1 4 9 7 2	10 7 13 14 5 2 12 8	11 13 7 2 6 6 9	6 1 8 13 7 8 5 3	8 5 15 6 8 0 6 7	5 0 9 15 9 13 1	3 15 12 0 10 3 13	15 10 5 9 11 4 14	13 3 6 10 12 14 0	0 9 3 4 13 7 11 13	14 8 0 5 14 5 3	9 6 14 3 15 11 8
0 1 2 3 S[6] 0 1 2	2 14 4 11 0 12 10 9	12 11 2 8 1 1 15	2 1 1 2 2 10 4 15	1 12 11 7 3 15 2	7 4 10 1 4 9 7 2	10 7 13 14 5 2 12 8	11 13 7 2 6 6 9	6 1 8 13 7 8 5 3	8 5 15 6 8 0 6 7	5 0 9 15 9 13 1	3 15 12 0 10 3 13	15 10 5 9 11 4 14	13 3 6 10 12 14 0	0 9 3 4 13 7 11 13	14 8 0 5 14 5 3	9 6 14 3 15 11 8
0 1 2 3 S[6] 0 1 2 3	2 14 4 11 0 12 10 9 4	12 11 2 8 1 1 15 14 3	4 2 1 12 2 10 4 15 2	1 12 11 7 3 15 2 5	7 4 10 1 4 9 7 2	10 7 13 14 5 2 12 8 5	11 13 7 2 6 6 9 12	6 1 8 13 7 8 5 3 10	8 5 15 6 8 0 6 7 11	5 0 9 15 9 13 1 0	3 15 12 0 10 3 13 4	15 10 5 9 11 4 14 10 7	13 3 6 10 12 14 0 1 6	0 9 3 4 13 7 11 13 0	14 8 0 5 14 5 3 11 8	9 6 14 3 15 11 8 6
0 1 2 3 S[6] 0 1 2 3	2 14 4 11 0 12 10 9 4	12 11 2 8 1 1 15 14 3	2 1 1 12 2 10 4 15 2	1 12 11 7 3 15 2 5 12	7 4 10 1 4 9 7 2 9	10 7 13 14 5 2 12 8 5	11 13 7 2 6 6 9 12 15	6 1 8 13 7 8 5 3 10	8 5 15 6 8 0 6 7 11	5 0 9 15 9 13 1 0 14	3 15 12 0 10 3 13 4 1	15 10 5 9 11 4 14 10 7	13 3 6 10 12 14 0 1 6	0 9 3 4 13 7 11 13 0	14 8 0 5 14 5 3 11 8	9 6 14 3 15 11 8 6 13
0 1 2 3 S[6] 0 1 2 3	2 14 4 11 0 12 10 9 4	12 11 2 8 1 1 15 14 3	2 10 4 15 2 2 2	1 12 11 7 3 15 2 5 12	7 4 10 1 4 9 7 2 9	10 7 13 14 5 2 12 8 5	11 13 7 2 6 6 9 12 15	6 1 8 13 7 8 5 3 10	8 5 15 6 8 0 6 7 11	5 0 9 15 9 13 1 0 14	3 15 12 0 10 3 13 4 1	15 10 5 9 11 4 14 10 7	13 3 6 10 12 14 0 1 6	0 9 3 4 13 7 11 13 0	14 8 0 5 14 5 3 11 8	9 6 14 3 15 11 8 6 13
0 1 2 3 S[6] 0 1 2 3	2 14 4 11 0 12 10 9 4	12 11 2 8 1 1 15 14 3	4 2 1 12 2 10 4 15 2 2 11	1 12 11 7 3 15 2 5 12 3 14 7	7 4 10 1 4 9 7 2 9	10 7 13 14 5 2 12 8 5	11 13 7 2 6 6 9 12 15	6 1 8 13 7 8 5 3 10 7 13	8 5 15 6 8 0 6 7 11 8 3	5 0 9 15 13 1 0 14 9 12 3	3 15 12 0 10 3 13 4 1 1	15 10 5 9 11 4 14 10 7	13 3 6 10 12 14 0 1 6	0 9 3 4 13 7 11 13 0	14 8 0 5 14 5 3 11 8	9 6 14 3 15 11 8 6 13

S[8]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Блок	Значение блока	Номер строки	Номер столбца	Замена
B ₁ [1]	100011	11 = 3	0001 = 1	12 = 1100
B ₁ [2]	010100	00 = 0	1010 = 10	2 = 0010
$B_1[3]$	100000	10 = 2	0000 = 0	13 = 1101
B ₁ [4]	001010	00 = 0	0101 = 5	6 = 0110
B ₁ [5]	110000	10 = 2	1000 = 8	15 = 1111
$B_1[6]$	000001	01 = 1	0000 = 0	10 = 1010
B ₁ [7]	101111	11 = 3	0111 = 7	7 = 0111
B ₁ [8]	111111	11 = 3	1111 = 15	11 = 1011

В конце для R_1 выполним перестановку P:

		11	4	25		
П	epe	ста	Н	ЭВК	a P	

0	1	1	1
1	1	1	1
1	1	1	1
0	1	1	1
1	0	0	1
1	1	0	1
1	0	0	0
0	0	0	0

Результат

Теперь сложим $f(R_0, E[1])$ с L_0 по модулю 2:

Итого после первого раунда получаем:

Теперь выполним второй раунд преобразований:

$$R_2 = f(R_1, E[2]) \text{ XOR } L_1$$

Найдем $f(R_1, E[2])$. Для начала выполним расширяющую перестановка EP для блока R_1 , которая преобразует 32-битный блок в 48-битный блок:

					1	0	0	0	0	0	0	0						
					1	1	1	0	0	1	1	1						
						1			Ť									
					0	1	0	0	0	0	1	1						
					0	0	1	0	1	0	1	1						
					L			_										
								R	-1									
	32	1	2	3	4	5							1	1	0	0	0	0
	4	5	6	7	8	9							0	0	0	0	0	1
	8	9	10	11	12	13							0	1	1	1	0	0
	12	13	14	15	16	17							0	0	1	1	1	0
	16	17	18	19	20	21							1	0	1	0	0	0
	20	21	22	23	24	25							0	0	0	1	1	0
	24	25	26	27	28	29							1	0	0	1	0	1
	28	29	30	31	32	1							0	1	0	1	1	1
Расши	าสห) III S	а п	ene	•ста	ноі	o Ka	(F	7 P)						F(R_1)	
тасши	PAR	още	t/ 1 11	cpc	Ora	1101	JIC	L	11)						T(T.	,	

Далее сложим $E(R_1)$ с K[2] по модулю 2 и разделим результат на 8 6-битных блоков $B_2[1], \ldots, B_2[8]$:

Теперь каждый 6-битный блок $B_2[i]$ обработаем соответствующей таблицей замен S[i], после чего склеим полученные 8 4-битных блоков в 32-битный блок R_2 :

 $B_2[8]$

S[1]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S[2]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

S[3]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

S[4]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

S[5]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

S[6]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

S[7]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

S[8]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Блок	Значение блока	Номер строки	Номер столбца	Замена
B ₂ [1]	110111	11 = 3	1011 = 11	14 = 1110
B ₂ [2]	010001	01 = 1	1000 = 8	12 = 1100
B ₂ [3]	010011	01 = 1	1001 = 9	8 = 1000
B ₂ [4]	000110	00 = 0	0011 = 3	3 = 0011
B ₂ [5]	100001	11 = 3	0000 = 0	11 = 1011
B ₂ [6]	110111	11 = 3	1011 = 11	7 = 0111
$B_2[7]$	011100	00 = 0	1110 = 14	6 = 0110
$B_2[8]$	011110	00 = 0	1111 = 15	7 = 0111

	1	1	1	0
	1	1	0	0
	1	0	0	0
$R_2 =$	0	0	1	1
112 —	1	0	1	1
	0	1	1	1
	0	1	1	0
	0	1	1	1

В конце для R_2 выполним перестановку P:

_			_
16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25
L			_

1	0	1	0
0	0	0	1
1	1	1	1
1	0	1	0
1	0	1	0
1	1	1	1
1	0	1	1
1	0	0	0

Перестановка Р

Результат

Теперь сложим $f(R_1, E[2])$ с L_1 по модулю 2:

Итого после первого раунда получаем:

Ручное обратное преобразование шифротекста.

Теперь выполним обратное преобразование L_2 и R_2 к исходным данным. Поскольку нам известен R_1 (он равен L_2) и R_2 , мы можем найти $f(R_1, E[2])$, после чего зная $f(R_1, E[2])$ и R_2 найти L_1 . Аналогичный принцип можно применить для нахождения L_0 и R_0 .

Найдем L_1 и R_1 . Из предыдущих пунктов:

Отсюда находим L_1 :

Найдем L_0 и R_0 . Из предыдущих пунктов:

Отсюда находим L_0 :

Осталось объединить блоки L_0 и R_0 в один 64-битный блок и выполнить обратную начальную перестановку IP^{-1} :

 L_0 и R_0

Перестановка (IP-1)

Результат

Как видно из результата, расшифрованные данные совпадают с начальными данными. Если перевести результат в текст, то получим сообщение «KOLOVANO».

Исследование DES в режимах ECB и CBC.

Задание.

- 1. Создать картинку со своими ФИО (формат bmp);
- 2. Зашифровать картинку шифром DES в режиме ECB;
- 3. Зашифровать картинку шифром DES в режиме CBC с тем же ключом;
- 4. Сохранить скриншоты картинок для отчета;
- 5. Сжать исходную и 2 зашифрованных картинки средствами CrypTool. Зафиксировать размеры полученных файлов в таблице;
- 6. Выбрать случайный текст на английском языке (не менее 1000 знаков) и зашифровать его DES в режиме ECB;
- 7. Для одного и того же шифротекста оценить время проведения атаки «грубой силы» в случаях, когда известно n-4, n-6, n-8,.., 2 байт секретного ключа. Зафиксировать результаты измерений в таблице;
- 8. Повторить подобные измерения для DES в режиме CBC.

Основные параметры и обобщенная схема шифров.

Существуют следующие режимы работы блочных шифров:

- Электронная кодовая книга (ЕСВ);
- Сцепление шифрованных блоков (СВС);
- Режим обратной связи по шифру (CFB);
- Режим внешней обратной связи (OFB);
- Счетчик (СТК).

Структура режима ЕСВ:

Достоинства режима ЕСВ:

- Шифрование может быть параллельным;
- Ошибка в передаче блока не имеет никакого влияния на другие блоки.

Недостатки режима ЕСВ:

- Одинаковые блоки открытого текста будут преобразовываться в одинаковые блоки шифротекста;
- Независимость блоков создает возможность для замены некоторых блоков зашифрованного текста без знания ключа.

Структура режима СВС:

Достоинства режима СВС:

- Одинаковые блоки открытого текста будут преобразовываться в различные блоки шифротекста;
- Если при передаче произойдет изменение одного бита шифротекста, то данная ошибка распространяется на следующие блоки, но при расшифровке произойдет самовосстановление;
- Последний блок шифротекста зависит от всех бит открытого текста сообщения и может использоваться для контроля целостности сообщения.

Недостатки режима СВС:

• Шифрование сообщения не поддается распараллеливанию.

Структура режима CFB:

Е: Шифрование

D: Дешифрование

S_i: Регистр сдвига

Рі: Блок исходного текста К: Секретный ключ

Сі: Блок зашифрованного текста Ті: Временный регистр IV: Начальный вектор (S1)

Достоинства режима CFB:

- Это шифр потока, в котором ключевой поток зависит от зашифрованного текста;
- В этом режиме не требуется дополнение блоков.

Недостатки режима CFB:

• Ошибка в единственном бите шифротекста создает ошибку в следующих блоках до тех пор, пока ошибка находится в регистре сдвига.

Структура режима OFB:

Достоинства режима OFB:

- Фактически, это шифр потока, в котором ключевой поток не зависит от исходного и зашифрованного текста;
- Каждый бит в зашифрованном тексте независим от предыдущего бита или битов. Это позволяет избежать распространения ошибок.

Недостатки режима OFB:

• Чтобы одним и тем же ключом зашифровать больше, чем одно сообщение, значение IV должно быть изменено для каждого сообщения.

Структура режима CTR:

Достоинства режима CTR:

- Создает п-битовый зашифрованный текст, блоки которого независимы друг от друга они зависят только от значений счетчика. Фактически, это шифр потока;
- Режим, подобно режиму ЕСВ, может использоваться, чтобы зашифровывать и расшифровывать файлы произвольного доступа, и значение счетчика может быть связано номером записи в файле.

Недостатки режима CTR:

• Если значения счетчиков совпадает, то шифрование производится на одном ключе.

Шифрование картинки шифром DES в режимах ECB и CBC.

Для начала была создана исходная картинка с текстом «Колованов Родион Алексеевич» на белом фоне:

Далее исходная картинка (без заголовка ВМР) была зашифрована при помощи DES с режимом ЕСВ, используя ключ «12 21 34 43 56 65 78 87»:

Далее исходная картинка (без заголовка ВМР) была зашифрована при помощи DES с режимом CBC, используя ключ «12 21 34 43 56 65 78 87»:

Далее к полученным зашифрованным картинкам в начало был добавлен незашифрованный исходный ВМР-заголовок. Были получены следующие картинки:

Режим ЕСВ:

Режим СВС:

По полученным изображениям, что для шифрования картинок ЕСВ не очень подходит, поскольку в этом режиме блоки шифротекста являются независимыми, и для одного и того же исходного блока дает один и тот же шифротекст. Поэтому в картинке можно частично различить контуры текста и даже прочитать некоторые буквы. А при использовании режима СВС картинка полностью заполняется шумом, поскольку теперь очередные блоки шифротекста будут зависеть от предыдущих блоков шифротекста.

Определение размера сжатых исходной и зашифрованных картинок.

Теперь выполним сжатие трех картинок, полученных в предыдущем пункте, и определим степень сжатия данных изображений.

Картинка	Исходный размер	Размер после сжатия	Степень сжатия
Исходная	241 664 байт	8 192 байт	97%
ECB	241 664 байт	12 288 байт	95%
CBC	241 664 байт	241 664 байт	0%

Как видно, для исходной картинки и картинки, зашифрованной с режимом ЕСВ, степень сжатия выше 90%, что можно объяснить большим количество повторяющейся информации (повторяющийся фон). А для картинки, зашифрованной с режимом СВС, степень сжатия равна 0%, что можно объяснить наличием сильного шума.

Оценка времени проведения атаки грубой силы в зависимости от количества известных байт ключа для режимов ECB и CBC.

Был выбран ключ «12 21 34 43 56 65 78 87» и следующий исходный текст (количество символов больше 1000, текст взят из файла «CrypTool/reference/english.txt»):

Далее исходный текст был зашифрован шифром DES с режимами работы ECB и CBC:

Далее оценим время проведения атаки «грубой силы» в случаях, когда известно некоторое количество байт ключа:

Режим	Количество известных байт ключа	Время проведения атаки
ECB	6 байт	~ 0.5 секунд
CBC		~ 0.5 секунд
ECB	5 байт	~ 15 секунд
CBC		~ 25 секунд
ECB	4 байта	~ 33 минуты
CBC		~ 53 минуты
ECB	3 байта	~ 2.9 дней
CBC		~ 4.8 дней
ECB	2 байта	~ 363 дней
CBC		~ 1.6 лет
ECB	1 байт	~ 120 лет
CBC		~ 210 лет

Исходя из полученных результатов, можно сделать вывод, что шифр DES с режимом CBC более криптостойкий по отношению к атаке «грубой силы», чем шифр DES с режимом ECB.

Исследование 3-DES.

Задание.

- 1. Выбрать случайный текст на английском языке (не менее 1000 знаков);
- 2. Создать бинарный файл с этим текстом, зашифровав и расшифровав его DES на 0-м ключе;
- 3. Снять и сохранить частотную и автокорреляционную характеристику этого файла;
- 4. Зашифровать бинарный файл шифром 3-DES в режиме ECB;

- 5. Снять и сохранить частотную и автокорреляционную характеристику файла с шифровкой;
- 6. Зашифровать исходный бинарный файл 3-DES в режиме CBC с тем же ключом;
- 7. Снять и сохранить частотную и автокорреляционную характеристику файла с шифровкой;
- 8. Определить экспериментальным путем по какой схеме работает реализация 3-DES в CrypTool. Сохранить подтверждающие скриншоты.

Основные параметры и обобщенная схема шифра.

Шифр 3-DES (рисунок 7) состоит в трехкратном применении обычного DES. Существует 4 основные версии данного шифра:

- 1. DES-EEE3 шифрование происходит 3 раза независимыми ключами;
- 2. DES-EDE3 операции шифровкарасшифровка-шифровка с тремя разными ключами;
- 3. DES-EEE2 то же что и DES-EEE3, но на первом и последнем шаге одинаковый ключ;
- 4. DES-EDE2 то же что и DES-EDE3, но на первом и последнем шаге используется один и тот же ключ.

Самая популярная разновидность это DES-EDE3 и DES-EDE2. Реализован во многих приложениях, ориентированных на работу в сети Интернет, в том числе в PGP и S/mime.

Частотная и автокорреляционная характеристика шифротекста шифра DES и шифра 3-DES с режимами ECB и CBC.

В качестве исходного текста был выбран следующий текст (количество символов больше 1000, текст взят из файла «CrypTool/reference/english.txt»):

Для представления исходного текста в виде бинарного файла была выбрана опция «Show as HexDump»:

Снимем частотную и автокорреляционную характеристику данного файла:

Теперь зашифруем исходный текст шифром 3-DES с использованием режима ECB (используя ключ «12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65»):

Снимем частотную и автокорреляционную характеристику полученного файла с шифровкой:

Floating frequency of <Triple DES (ECB) encryption of <english.txt>, key <12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65>> Different characters per 64 byte block

Autocorrelation of <Triple DES (ECB) encryption of <english.txt>, key <12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65>> Number of characters that match

Теперь зашифруем исходный текст шифром 3-DES с использованием режима CBC (используя ключ «12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65»):

<mark>C</mark>	(CBC)	encr	yptio	on of	<en< th=""><th>glish</th><th>.txt></th><th>, key</th><th><12</th><th>213</th><th>4 43</th><th>56 6</th><th>5 78</th><th>87 90</th><th>09 1</th><th>2 21</th><th>34 43 56 65> 🔳 🖭 🔀</th></en<>	glish	.txt>	, key	<12	213	4 43	56 6	5 78	87 90	09 1	2 21	34 43 56 65> 🔳 🖭 🔀
00000000	04	36	OD	DF	E6	8F	F2	зв	51	12	CD	CE	8A	AC	AA	68	.6;Qh
00000010	CD	81	1D	EF	Α9	3B	89	80	92	42	DD	80	11	AЗ	16	96	;B
00000020	AC	84	A2	ЗA	A0	F7	13	BO	A4	DC	5C	37	CC	A1	24	FA	:\7\$.
00000030	C4	CD	8A	51	E0	5B	41	E4	70	E1	38	D8	24	D9	9D	ΑO	Q.[A.p.8.\$
00000040	CF	2A	F5	8F	65	34	21	15	C8	31	95	DD	45	94	1D	AΑ	.*e4!1E
00000050	CD		DB		1B	DB		38	8F		10			47		37	.j8G.7
00000060	F8		5D					58		4 F	OD	35					.F].]?8XZO.5Y
00000070	C2	D2	73	DD	AB	15	61	14	95	BD	C5	FE			93		saqp
080000080	26	C8	42	20	00	0E	56	2F	00	83	B5	CC	F6	BO	10	FF	&.BV/
00000090	41	D1	69	CC	В6	В7			AЗ	Α9	DO	AC	89	71	A4	28	A.iq.(
000000A0	46	91	03	7E	60		вв			AC		2A				2B	F~`=*:G6+
000000B0	Cl		1B		D2		17										.u.=.9.qB
00000000			CD				07		91		6E	96	DF	D6	5B	64) n [d
000000D0			47									54				01	.VGL+T
000000E0			95								1E	9E	0A	A2	13	8B	C:1<
000000F0			EA												F7	52	7.t Ov`.R
00000100			CB				56					52				04	mDV{.RGC".
00000110			EC							60	87	64			64		.UdZ`.ddp
00000120	FB	ЗC	87	C4	84	87	8C			2E	47	36	6F	D3	Cl	14	. <ag6o< td=""></ag6o<>
00000130	72	A1	E1	27	FD	82	5A	5F	9D	E7	E9	0B	ЗF	F7	7B	E2	r'Z?.{.
00000140	44	ЗA	4D	45	58	88	42	4C	32	ED	A1	9B	73	9C	BA	вз	D:MEX.BL2s
					~~		~~				~~						- v

Снимем частотную и автокорреляционную характеристику полученного файла с шифровкой:

Autocorrelation of <Triple DES (CBC) encryption of <english.txt>, key <12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65>> Number of characters that match

Как видно по характеристикам, в исходном тексте символы в блоках по 64 байта зачастую совпадают (значение количества различных символов не превышает 28) и в целом при посимвольном сдвиге текста значительная часть (более 400) символов совпадают. А в зашифрованном шифром 3-DES с режимами ЕСВ и СВС файле — символы в блоках по 64 байта зачастую различаются (значение количества различных символов зачастую превышает 50) и в целом при посимвольном сдвиге текста только незначительная часть символов (40-80) совпадают.

Оценка времени проведения атаки грубой силы в зависимости от количества известных байт ключа для шифра 3-DES с режимами ECB и CBC.

Оценим время проведения атаки «грубой силы» в случаях, когда известно некоторое количество байт ключа:

Режим	Количество известных байт ключа	Время проведения атаки
ECB	14 байт	~ 0.1 секунд
CBC		~ 0.5 секунд
ECB	12 байт	~ 1 час 3 минуты
CBC		~ 1 час 13 минут
ECB	10 байта	~ 1.9 лет
CBC		~ 2.3 года
ECB	8 байта	~ 31000 лет
CBC		~ 36000 лет
ECB	6 байта	~ 510000000 лет
CBC		~ 590000000 лет
ECB	4 байт	~ 790000000000 лет
CBC		~ 930000000000 лет

Исходя из полученных результатов, можно сделать вывод, что шифр 3-DES с режимом CBC более криптостойкий по отношению к атаке «грубой силы», чем шифр 3-DES с режимом ECB. Шифр 3-DES значительно более криптостойкий по отношению к атаке «грубой силы», чем шифр DES. Если нам известна половина ключа, то шифр DES можно взломать примерно за полчаса, а шифр 3-DES — примерно за 2 года.

Схема реализации шифра 3-DES в CrypTool.

Поскольку шифр 3-DES в CrypTool использует ключ размера 16 байт, то можно сделать вывод, что шифр 3-DES в CrypTool использует схему DES-EEE2 или DES-EDE2.

Поскольку DES-EEE2 и DES-EDE2 для первого и последнего шифрования использует один и тот же ключ, можно попробовать зашифровать текст вручную при помощи трехкратного применения шифрования или дешифрования DES. В зависимости от комбинации шифрования или дешифрования, можно определить схему шифра.

Зашифруем исходный текст при помощи 3-DES с ключом «12 21 34 43 56 65 78 87 12 21 34 43 56 65 78 87»:

Теперь подряд зашифруем исходный текст при помощи DES с ключом «12 21 34 43 56 65 78 87»:

T DES (ECB)	encry	otion	of <	eng	lish.t	xt>,	key «	<12.2	1 34	43 5	6 65	78 87	>				
0000000	35	10	6A	8A	14	2C	10	2D	36	85	DO	87	ЗA	5E	79	1A	5.j,6:^y.
0000010	62	90	18	24	5B	82	4F	99	AF	00	92	97	22	CB	13	DB	ъ\$[.О"
0000020	FE	A1	В9	24	17	75	00	DЗ	96	86	3E	8B	4B	FC	BD	B4	\$.u>.K
0000030	C9	04	DF		1B				60	C6	50	45	9A	36	77	E2	b`.PE.6w.
0000040	DB	80	5B	28	AD	23	FC	вз	ЗF	58	24	D9	FF	95	71	F7	[(.#?X\$q.
00000050	63	51	7F	OΑ	FC	9B	C9	85	5A	90	9E	AΑ	DB	37	86	45	cQZ7.E
0000060	9A	5D	82		4D	8B		86	A8	04	E3				32		.].IMP2.
00000070	49	D9	5C	24	E7			6F	98	EE	5F	67	51	AB	CC	57	I.\\$ogQW
0800000	CO	BC	50	вз	07	B2	ED	1E	52	B4	80	B2	5C	C6	84	93	PR\
00000090	FC	BA	46	ΑO	E6	DC	FΑ	B2	6C	9D	DA	9C	49	09	DD	DC	F1I
0400000	9E		FO	38								DC			FD		.A.8;Q
000000B0	01	52	ΕE	44	50	CB	98	72	F1	39	24	14	03	08	03	29	.R.DPr.9\$)
0000000	75	10	21	01	DF	2D	34	A5	DA	54	72	0E	9F	93	AA	24	u.!4Tr\$
00000000	18	08	ЗC	0A	93	8E	40	9C	4B	95	29	8D	C2	28	DO	C3	<@.K.)(
00000E0	9E	4C	07	01	2A	03	60	0C	43	7F	42	49	9C	7 F	87	91	.L*.`.C.BI
00000F0	33	ΑD	6B	D1	В7	7F	A8	E7	F0	29	86	ΑF	37	F1	F9	6F	3.k)7o
00000100	0C		F9	25	49	98	OΑ	F8	2D	9F	FE	47	Fl	2E	3E	7B	%IG>{
00000110	E6	3B	В9	OD	22	4F	A8	08	1A	8D	06	ЗF	11	66	03	51	.;"O?.£.Q
00000120	17	F4	40	DЗ	A8	F6	E0	30	F7	54	$_{\rm FD}$	07	A1	99	ΑE	7C	@O.T
00000130	56	40	71	41	8A	E2	0B	CE	7E	93	69	2E	2B	EЗ	Bl	1E	V@qA~.i.+
00000140	06	20	2F	5A	8A	08	0B	78	2A	92	62	EΑ	9C	2E	F7	E8	. /Zx*.b
00000150	DA	53	ED	7D	72	F8	CE	71	1F		OΑ	46	BF	C8	BF	E1	.S.}rqF
00000160	1D	7B	29	ЗА	55	BA	88	4C	DO	09	66	04	C5	FE	FC	24	.{):UL£\$
00000170	B1		BA							CA	80			9B	C8	A9	K
00000180	1F	Fl	CB	28		1F			2B	E2	A4	69	68	22	AЗ	44	(q+ih".D
00000190	E6	04	D2	47	B5	29	36	57	1A	AC	52	E8	55	8C	F3	F0	G.) 6WR.U
000001A0	4D	04	ЗA	37	84	18	OΑ	95	80	FE	85	77	A2	вз	AB	FD	M.:7w
000001B0	31	6E	4C	F5	F4	7B	45	D8	FO	91	82	37	E7	87	F4	8F	lnL{E7

Как видно, шифротекст совпадает с шифротекстом 3-DES. Поскольку для шифра 3-DES мы задали ключ, левая и правая половины которых совпадает, можно предположить, что шифр 3-DES зашифровал текст ключом «12 21 34 43 56 65 78 87», после чего расшифровал его этим же ключом, получив исходный текст, после чего заново зашифровал его ключом «12 21 34 43 56 65 78 87». Отсюда можно сделать вывод, что CrypTool 1 использует схему DES-EDE2.

Исследование модификаций DESX, DESL, DESXL шифра DES. Задание.

- 1. Выбрать случайный текст на английском языке (не менее 1000 знаков);
- 2. Создать бинарный файл с этим текстом, зашифровав и расшифровав его DES на 0-м ключе;
- 3. С помощью CrypTool зашифровать текст с использованием шифров DESX, DESL, DESXL;
- 4. Средствами CrypTool вычислить энтропию исходного текста и шифротекстов, полученных в итоге. Зафиксировать результаты измерений в таблице;

5. Средствами CrypTool оцените время проведения атаки «грубой силы» при полном отсутствии информации о секретном ключе.

Основные параметры и обобщенные схемы шифров.

Алгоритм DESX использует на входе ключ длиной 184 бита, который делится на одну 56-битную часть и две 64-битные части. Процесс шифрования происходит по следующей схеме:

$$DESX(M) = K_2 \oplus DES_K(M \oplus K_1)$$

Если $K_1 = K_2 = 0$, то данный алгоритм сводится к стандартному DES.

Алгоритм DESL является облегченной версией алгоритма DES. Алгоритм предполагает отказ от входной и выходной перестановки блока текста, т.к. они не несут криптографической сложности, а также 8 S-блоков заменяется на 1, но более стойкий чем все 8 стандартных блока DES.

Алгоритм DESXL использует те же оптимизации что и DESL, но производит шифрование по алгоритму DESX.

Зависимость энтропии шифротекста от используемого шифра.

В качестве исходного текста был выбран следующий текст (количество символов больше 1000, текст взят из файла «CrypTool/reference/english.txt»):

Для представления исходного текста в виде бинарного файла была выбрана опция «Show as HexDump»:

Далее зашифруем исходный текст при помощи шифра DESX с использованием ключа «12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65 78 87 90 09 12 21 34 43»:

Далее зашифруем исходный текст при помощи шифра DESL о использованием ключа «12 21 34 43 56 65 78 87»:

Далее зашифруем исходный текст при помощи шифра DESXL с использованием ключа «12 21 34 43 56 65 78 87 90 09 12 21 34 43 56 65 78 87 90 09 12 21 34 43»:

DESXL encr	yptio	n of	<eng< th=""><th>glish.</th><th>txt>,</th><th>key</th><th><12</th><th>21 34</th><th>4 43 !</th><th>56 65</th><th>78 8</th><th>7 90</th><th>09 12</th><th>2 21 3</th><th>34 43</th><th>56 6</th><th>5 78</th><th>87 90</th><th>0 09 12 21 34 43></th></eng<>	glish.	txt>,	key	<12	21 34	4 43 !	56 65	78 8	7 90	09 12	2 21 3	34 43	56 6	5 78	87 90	0 09 12 21 34 43>
0000000	OF	1D	87	AC	A9	ЗD	1F	A4	35	ЗD	DE	1F	58	52	67	5C	10	C5	=5=XRg\
0000012	49	CA	43	E1	AC	29	ED	AD	A8	EF	A8	9C	65	5A	30	DB	B4	6A	I.C)eZ0j
00000024	09	ΑE	AD	58	CO	D2	E3	70	B5	C2	DC	FA	7B	В9	33	6B	OF	D6	Xp{.3k
00000036	54	3C	3F	50	1D	59	F7	32	6D	6E	E4	B2	83	6B	E5	3C	BC	74	T < ?P.Y.2mnk. < .t
00000048	3C	08	A6	22	D0	33	7A	8A	51	C5	F6	06	0B	47	1E	82	5C	03	<".3z.QG\.
0000005A	64	F9	DC	4A	36	2B	9B	F7	4B	5C	1D	E3	12	CC	B5	2A	5B	F1	dJ6+K*[.
0000006C	E4	81	Cl	21	22	7B	A2	1B	8F	71	D2	62	8C	AD	0B	77	BC	EF	!"{q.bw
0000007E	F8	F9	98	BA	DB	41	08	8A	20	98	F4	1F	F7	6E	78	F5	0E	12	Апж
00000090	OD	89	D5	55	42	OD	56	59	DC	10	CD	95	98	19	0A	04	10	9E	UB.VY
000000A2	A7	D6	DA	12	83	7A	4D	26	99	FC	4F	35	02	1F	E7	EB	0B	E7	zM&05
000000B4	03	38	2E	18	38	В6	65	9D	DЗ	38	26	59	DЗ	59	AB	7F	83	E1	.88.e8&Y.Y
000000006	4F	10	1D	C8	73	B4	7C	39	E4	10	A4	22	14	11	9A	0E	02	88	0
8000000B	78	17	34	E0	07	35	75	C7	35	2E	40	85	31	FΑ	0B	DE	FΒ	D1	ж.45u.5.@.1
000000EA	DB	ΑE	59	ΑF	70	43	49	44	89	C2	34	27	ΒA	77	0B	76	AF	EF	Y.pCID4'.w.v
000000FC	FA	0A	85	FЗ	49	39	2C	73	D7	E2	A0	DЗ	46	F5	7D	DA	80	46	I9, sF.}F
0000010E	08	06	F2	67	29	D9	44	77	B0	CC	7A	34	84	1F	17	D8	12	CD	g).Dwz4
00000120	05	58	OD	8D	BA	10	DF	Α7	CA	BO	ΑF	CB	AC	D6	43	EΑ	A8	EF	.x
00000132	09	EB	5D	69	OF	5E	33	37	76	6B	AB	5A	58	8B	CC	81	84	44]i.^37vk.ZXD
00000144	10	E2	02	8D	64	E6	31	61	EF	ЗD	A8	4B	65	DE	9D	53	ЗA	31	d.la.=.KeS:1
00000156	FF	C4	32	3B	Α9	80	9A	2E	8F	93	1A	3C	7D	82	83	CE	92	31	2;
00000168	46	DA	1E	C5	C9	F0	2A	F6	C7	E4	FΑ	E7	49	3C	10	07	4C	E7	F*

Далее вычислим энтропию исходного текста и полученных шифротекстов:

Текст	Значение энтропии
Исходный текст	This document contains 62 different byte values (there are 256 different byte values).
	The entropy of the whole document is 4.35 (maximum possible entropy 8.00).
Шифротекст DESX	This document contains all 256 possible byte values.
	The entropy of the whole document is 7.97 (maximum possible entropy 8.00).
Шифротекст DESL	This document contains all 256 possible byte values.
	The entropy of the whole document is 7.97 (maximum possible entropy 8.00).
Шифротекст DESXL	This document contains all 256 possible byte values.
	The entropy of the whole document is 7.97 (maximum possible entropy 8.00).

Как видно из результатов, для исходного текста значение энтропии далеко от максимума, а используемые значения байт не охватывают весь диапазон

возможных значений. Для шифротекстов DESX, DESL, DESXL значение энтропии почти равно максимальному значению энтропии, а используемые значения байт охватывают весь диапазон возможных значений.

Оценка времени проведения атаки грубой силы в зависимости от количества известных байт ключа для шифров.

Оценим время проведения атаки «грубой силы» в случаях, когда известно некоторое количество байт ключа:

Шифр	Количество известных байт ключа	Время проведения атаки
DESX	22 байт	~ 0.5 секунд
DESXL		~ 0.5 секунд
DESX	20 байта	~ 5 часов 53 минуты
DESXL		~ 4 часа 55 минут
DESX	16 байта	~ 2.9 * 10 ⁶ лет
DESXL		~ 2.4 * 10 ⁶ лет
DESX	12 байта	~ 1.3 * 10 ¹⁶ лет
DESXL		~ 1.1 * 10 ¹⁶ лет
DESX	8 байт	~ 5.4 * 10 ²⁵ лет
DESL		~ 0 секунд
DESXL		~ 4.5 * 10 ²⁵ лет
DESX	4 байт	~ 1.4 * 10 ³⁴ лет
DESL		~ 17 минут
DESXL		~ 1.2 * 10 ³⁴ лет
DESX	0 байт	~ 4 * 10 ⁴² лет
DESL		~ 8600 лет
DESXL		~ 3.2 * 10 ⁴² лет

Как видно из результатов, DESL менее криптостойкий по отношению к атаке «грубой силы», чем шифр DES. Шифры DESX и DESXL значительно более

криптостойки по отношению к атаке «грубой силы», чем DES и 3-DES. Шифр DESX более криптостойкий по отношению к атаке «грубой силы», чем шифр DESXL.

Выводы.

В ходе выполнения данной лабораторной работы были рассмотрены следующие шифры:

- Шифр DES с режимами EBC и CBC;
- Шифр 3-DES с режимами EBC и CBC (модификация шифра DES);
- Шифры DESX, DESL, DESXL (модификации шифра DES).

1. Для шифра DES:

- а. Был изучен демонстрационный пример выполняемых преобразований при шифровании блока данных в CrypTool 1;
- b. Было определено, что шифр DES симметричный блочный шифр, основанный на сети Фейстеля. Размер блока составляет 8 байт. Размер ключа составляет 7 байт. Процесс шифрования основан на выполнении 16 раундов преобразований, в каждом из которых используется свой 48-битный раундовый ключ. Расшифрование производится при помощи прохождения всех шагов шифра в обратном порядке;
- с. Были изучены два режима работы ЕСВ и СВС;
- d. Для режима ЕСВ определено: в данном режиме каждый блок шифруется независимо от других блоков одним и тем же способом. Исходя из этого, есть возможность распараллеливания процесса шифрования/дешифрования. Но есть недостаток одинаковые исходные блоки при шифровании дают одинаковые блоки шифротекста;
- е. Для режима СВС определено: в данном режиме каждый блок шифруется с использованием шифротекста предыдущего блока (перед шифрованием производится сложение по модулю 2 исходного текста с шифротекстом предыдущего блока). Исходя из этого, возможность распараллеливания процесса шифрования/дешифрования отсутствует. Но теперь при

- шифровании одинаковых исходных блоков получаются разные блоки шифротекста. При шифровании режимом СВС шифротекст получается более криптостойкий по отношению к атаке «грубой силы», чем при шифровании режимом СВС;
- f. Было определено, что при шифровании изображения шифром DES с режимом ECB зашифрованное изображение в некоторой степени сохраняет контуры деталей, поскольку для одинаковых исходных блоков будут вычисляться одинаковые блоки шифротекста. Сжатие шифротекста при этом достигает 95% на уровне сжатия исходного изображения, равного 97%;
- g. Было определено, что при шифровании изображения шифром DES с режимом CBC зашифрованное изображение полностью теряет детали и превращается в шум, поскольку для одинаковых исходных блоков теперь будут вычисляться разные блоки шифротекста. Сжатие шифротекста при этом равно 0%.

2. Для шифра 3-DES:

- а. Было определено, что шифр 3-DES основан на последовательном использовании DES с тремя или двумя независимыми ключами. Размер блока составляет 8 байт. Размер ключа составляет 14 или 21 байт. Последовательно применяются 3 операции шифрования или дешифрования шифром DES;
- b. Были рассмотрены 4 основные схемы работы: DES-EEE3, DES-EEE2, DES-EDE3 и DES-EDE2. Три буквы после DES означают порядок использования типов операции (шифрование или дешифрования), а цифра количество используемых ключей. В случае использования двух ключей по 7 байт для первого и последнего преобразования используется один и тот же ключ;
- с. Были изучены два режима работы ЕСВ и СВС;

- d. Было определено, что шифр 3-DES значительно более криптостойкий по отношению к атаке «грубой силы», чем шифр DES;
- е. Для режима CBC было определено, что он является более криптостойким по отношению к атаке «грубой силы», чем шифр 3-DES с режимом ECB;
- f. Было определено, что приложение CrypTool 1 использует схему DES-EDE2.

3. Для шифра DESX:

- а. Было определено, что шифр DESX выполняет шифрование по следующей формуле: DESX(M) = $K_2 \oplus$ DES(M \oplus K_1 , K). Размер блока составляет 8 байт. Размер ключа составляет 23 байта;
- b. Было определено, что шифротекст обладает высокой энтропией;
- с. Было определено, что шифр является более криптостойким по отношению к атаке «грубой силы», чем шифры DESXL, DESL, DES и 3-DES;
- d. Были определено, что при отсутствии знаний о ключе, атака «грубой силы» будет осуществляться порядка 10^{42} лет.

4. Для шифра DESL:

- а. Было определено, что шифр DESL является упрощенной версией шифра DES, в котором отказались от начальной входной и выходной перестановки блока, а также в котором используется один, но более криптостойкий, S-блок вместо восьми S-блоков;
- b. Было определено, что шифротекст обладает высокой энтропией;
- с. Было определено, что шифр является менее криптостойким по отношению к атаке «грубой силы», чем шифры DESXL, DESX, DES и 3-DES;
- d. Были определено, что при отсутствии знаний о ключе, атака
 «грубой силы» будет осуществляться порядка 10³ лет.

5. Для шифра DESXL:

- а. Было определено, что шифр DESXL производит шифрование по алгоритму DESX, но с использованием оптимизаций из шифра DESL;
- b. Было определено, что шифротекст обладает высокой энтропией;
- с. Было определено, что шифр является более криптостойким по отношению к атаке «грубой силы», чем шифры DESL, DES и 3-DES;
- d. Были определено, что при отсутствии знаний о ключе, атака «грубой силы» будет осуществляться порядка 10^{42} лет.

Были получены практические навыки работы с рассматриваемыми шифрами с использованием приложения CrypTool 1.