CLAIMS

1	1. (currently amended) in a spread-spectrum receiver, a method for processing a received			
2	analog spread-spectrum signal, comprising:			
3	determining whether to attenuate the received analog spread-spectrum signal;			
4	based on the attenuation determination, selectively attenuating the received analog spread-			
5	spectrum signal to generate a selectively attenuated analog spread-spectrum signal;			
6	digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-			
7	spectrum signal;			
8	filtering the digital spread-spectrum signal in an attempt to compensate for interference in the			
9	received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and			
10	de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,			
11	wherein:			
12	the attenuation determination is based on the amplitude of the digital spread-spectrum			
13	signal prior to the interference-compensation filtering and the de-spreading; and			
14	the attenuation determination is independent of any determination of bit error rate.			
1	2. (original) The invention of claim 1, wherein the filtering attempts to compensate for off-			
2	channel interference in the received analog spread-spectrum signal.			
1	3. (original) The invention of claim 1, wherein the selectively attenuated analog spread-			
2	spectrum signal has a negative signal-to-noise ratio (SNR).			
1	4. (original) The invention of claim 1, wherein:			
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital			
3	spread-spectrum signal is greater than an upper threshold; and			
4	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital			
5	spread-spectrum signal is less than a lower threshold, wherein the upper threshold is greater than the			
6	lower threshold.			
1	5. (original) The invention of claim 4, wherein the upper threshold is greater than the lowe			
2	threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the			
3	attenuation determination.			

1	6. (original) The invention of claim 1, wherein:				
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and				
3	further comprising:				
4	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and				
5	converting the IF signal to baseband after digitization.				
1	7. (original) The invention of claim 6, wherein the filtering and the de-spreading are				
2	implemented at baseband.				
1	8. (original) The invention of claim 1, wherein:				
2	the filtering attempts to compensate for off-channel interference in the received analog spread-				
3	spectrum signal;				
4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio				
5	(SNR);				
6	the received analog spread-spectrum signal is attenuated when the amplitude of the digital				
7	spread-spectrum signal is greater than an upper threshold;				
8	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital				
9	spread-spectrum signal is less than a lower threshold;				
10	the upper threshold is greater than the lower threshold by an amount greater than the level of				
11	selective attenuation in order to provide hysteresis in the attenuation determination;				
12	the received analog spread-spectrum signal is a radio frequency (RF) signal;				
13	further comprising:				
14	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and				
15	converting the IF signal to baseband after digitization; and				
16	the filtering and the de-spreading are implemented at baseband.				
1	9. (currently amended) A spread-spectrum receiver, comprising:				
2	a variable attenuator adapted to selectively attenuate a received analog spread-spectrum signal to				
3	generate a selectively attenuated analog spread-spectrum signal;				
4	an analog-to-digital converter (ADC) adapted to digitize the selectively attenuated analog spread-				
5	spectrum signal to generate a digital spread-spectrum signal;				
6	an interference-compensation filter adapted to filter the digital spread-spectrum signal in an				

attempt to compensate for interference in the received analog spread-spectrum signal to generate a

7

8

filtered digital spread-spectrum signal;

9	a digital processor adapted to de-spread the filtered digital spread-spectrum signal to generate a				
10	de-spread digital signal; and				
11	a controller adapted to control the variable attenuator based on the amplitude of the digital				
12	spread-spectrum signal prior to the interference-compensation filter and the digital processor, wherein the				
13	selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR).				
1	10.	(original) The invention of claim 9, wherein the filter is adapted to attempt to			
2	compensate for	or off-channel interference in the received analog spread-spectrum signal.			
1	11.	(canceled)			
1	12.	(original) The invention of claim 9, wherein:			
2	the controller is adapted to control the variable attenuator to attenuate the received analog				
3	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper				
4	threshold; and				
5	the controller is adapted to control the variable attenuator not to attenuate the received analog				
6	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower				
7	threshold, wh	erein the upper threshold is greater than the lower threshold.			
1	13.	(original) The invention of claim 12, wherein the upper threshold is greater than the			
2	lower thresho	ld by an amount greater than the level of selective attenuation in order to provide hysteresis			
3	in the attenua	tion determination.			
1	14.	(original) The invention of claim 9, wherein:			
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and				
3	further comprising:				
4		a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the			
5	digitization; and				
6		a digital downconverter adapted to convert the IF signal to baseband after digitization.			
1	15.	(original) The invention of claim 14, wherein the filter and the digital processor are			
2	adapted to operate at baseband.				

Serial No. 10/766,347 -4- Andrew 1168 (1052.045)

2	the filter is adapted to attempt to compensate for off-channel interference in the received analog			
3	spread-spectrum signal;			
4	the controller is adapted to control the variable attenuator to attenuate the received analog			
5	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper			
6	threshold;			
7	the controller is adapted to control the variable attenuator not to attenuate the received analog			
8	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower			
9	threshold;			
10	the upper threshold is greater than the lower threshold by an amount greater than the level of			
11	selective attenuation in order to provide hysteresis in the attenuation determination;			
12	the received analog spread-spectrum signal is a radio frequency (RF) signal;			
13	further comprising:			
14	a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the			
15	digitization; and			
16	a digital downconverter adapted to convert the IF signal to baseband after digitization;			
17	and			
18	the filter and the digital processor are adapted to operate at baseband.			
1	17. (canceled)			
1	18. (previously presented) The invention of claim 1, wherein the attenuation determination			
2	is based on the amplitude of the digital spread-spectrum signal in a time domain.			
1	19. (previously presented) The invention of claim 6, wherein the attenuation determination			
2	is based on the amplitude of the digital IF signal.			
1	20. (currently amended) The invention of claim 1, wherein:			
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital			
3	spread-spectrum signal is greater than a first threshold;			
4	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital			
5	spread-spectrum signal is less than a second threshold, wherein the first threshold is greater than or equa			
6	to the second threshold;			

(previously presented) The invention of claim 9, wherein:

16.

1

Serial No. 10/766,347 -5- Andrew 1168 (1052.045)

a transition from the received analog spread-spectrum signal not being attenuated to the received
analog spread-spectrum signal being attenuated occurs after (i) determining a first duration that the
amplitude of the digital spread-spectrum signal is greater than the first threshold [[for]] and (ii)
comparing the first duration to a first specified amount of time to determine that the first duration is
greater than the first specified amount of time; and

a transition from the received analog spread-spectrum signal being attenuated to the received analog spread-spectrum signal not being attenuated occurs after (i) determining a second duration that the amplitude of the digital spread-spectrum signal is less than the second threshold [[for]] and (ii) comparing the second duration to a second specified amount of time to determine that the second duration is greater than the second specified amount of time.

- 21. (previously presented) The invention of claim 1, wherein the attenuation determination is further based on *a priori* knowledge of maximum expected interference-to-carrier ratio.
- 1 22-23. (canceled)

- 24. (new) The invention of claim 1, wherein the attenuation determination is independent of any determination of bit error rate.
 - 25. (new) The invention of claim 1, wherein the attenuation determination is based on the amplitude of the digital spread-spectrum signal only after the digitalizing and prior to the interference-compensation filtering and the de-spreading.
 - 26. (new) The invention of claim 9, wherein the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio (SNR).
 - 27. (new) The invention of claim 9, wherein the controller controls the variable attenuator based on the amplitude of the digital spread-spectrum signal only after the digitizing by the ADC and prior to the interference-compensation filtering by the interference-compensation filter and the despreading of the digital processor.