

Printed Pages: 4

TCS - 405

(Following Paper ID and Roll No. to be filled in your Answer Book) APER ID: 1071 Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2008-09 THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours]

[Total Marks: 100

(1) Attempt all questions. Note:

(2) All questions carry equal marks.

- $5 \times 4 = 20$ Attempt any four parts of the following: 1
 - Let $S=\{ab, bb\}$ and let $T=\{ab, bb, bbbb\}$, (a) show that $S^* = T^*$
 - What do you mean by the Kleene closure of (b) set A?
 - Construct a grammar for each of the following (c) languages:
 - $\left\{a^mb^m\mid m\geq 1\right\} \cup \left\{b^na^n\mid n\geq 1\right\}$
 - $\left\{a^{l}b^{m}c^{n}\mid l+m=n,l,m\geq 1\right\}$
 - Design a FA recognizing the language over (d) {a,b,c, d} which shall accept only those strings in which no symbol appears in consecutive positions.

uptuonline.com

[Contd...

(a)

- (e) Find two different FAs M_1 and M_2 recognizing languages L_1 and L_2 respectively, such that the languages $L_1 \cup L_2$ and $L_1 L_2$ are the same.
- (f) Show that every context-free language is context-sensitive.
- 2 Attempt any four parts of the following: 5×4=2
 - Using induction show that if for some state q and some string n, $\delta^*(q,n) = q$, then for every $n \ge 0$, $\delta^*(q,n^n) = q$.
 - (b) Construct an NFA which recognizes a set of strings containing three consecutive 0's and three consecutive 1's. Also correct this NFA into an equivalent DFA.
 - (c) Discuss the various application of FA.
 - (d) Construct a Moore machine that determines whether an input string contains an even or odd number of 1's. The machine should give I as output if an even number of 1's are in the string and 0 otherwise.
 - - and n is divisible by 4
 - (f) Discuss the conversion of Moore to mealy machine with the help of an example.

Attempt any two parts of the following: $10 \times 2 = 20$ 3

- Using pumping lemma, prove that the following languages are not regular
 - (i) $\{wo^n \mid w \in \{0,1\}^* \land |w| = n\}$
 - (ii) $\{ww | we \{a, b\}^*\}$
- Simplify the following grammar by eliminating (b) uselsess symbols and useless production: $S \rightarrow a |aA|B|C, A \rightarrow aB|\varepsilon,$

$$B \to Aa, C \to cCD, D \to dd$$

Also find the Chomsky Normal form of the simplified grammar.

(c) (i) Show that the CFG with productions.
$$S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$$

- is ambiguous.
- Use pumping lemma to prove that the (ii) following is not CFL: $\{a^n b^m a^n b^{n+m} \mid m, n \geq 0\}$
- Attempt any two parts of the following: 10×2=20 4
 - Non-deterministic PDA is not equivalent (a) (i) deterministic PDA in terms of language recognition. Explain.
 - Covert the following grammar to a PDA (ii) that accepts the same langauge. $S \rightarrow OSI \mid A$

 $A \rightarrow IAO |S| \epsilon$

[Contd..

10711 uptuonline.com http://www.UPTUonline.com

(b) Cosntruct a PDA by empty stack which accepts the following:

Also convert this PDA into an equivalent CFG

(c) Construct a two-stack PDA for recognizing the following:
 {aⁿ bⁿ cⁿ dⁿ | n > 1}

- 5 Attempt any two parts of following: 10×2=20
 - (a) What do you mean by unsolvable problem? Explain.
 - (b) Design a TM recognizing the following language:
 {a^m baⁿ ba^p ba^{m+n+p} | m,n,p>1}
 (c) Design a 2-track TM that takes as input on
 - track-1 a^n and leaves on track-2 the binary representation of n.