Fitting logistic regression models

Announcements

- Office hour times:
 - Monday 3 4 (sign up for 15-minute slots)
 - Wednesday 11 12 (15-minute slots)
 - Wednesday 12 12:45 (drop-in)
 - Thursday 1 2 (drop-in)
- Homework 1 and Challenge Assignment 1 released on course website

Course components

- Regular homework assignments
 - Practice material from class
- Challenge assignments
 - Learn additional material related to course
- 2 take-home exams
 - Demonstrate knowledge of theory and methodology
 - No final exam!
- 2 projects
 - Apply material to real data and real research questions

Assigning grades: specifications grading

To get a **B** in the course:

- Receive credit for at least 5 homework assignments
- Master one project
- Master at least 80% of the questions on both exams

To get an **A** in the course:

- Receive credit for at least 5 homework assignments
- Master both projects
- Master at least 80% of the questions on both exams
- Master at least 2 challenge assignments

Late work and resubmissions

- → You get a bank of 5 extension days. You can use 1--2 days on any assignment, exam, or project.
- No other late work will be accepted (except in extenuating circumstances!)
- "Not yet mastered" challenge questions, exams, and projects may be resubmitted once

Recap: three ways of fitting linear regression models

Minimize SSE, via derivatives of

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{i,1} - \dots - \beta_k X_{i,k})^2$$

- lacktriangledown Minimize $||Y-\widehat{Y}||$ (equivalent to minimizing SSE)
- Maximize likelihood (for *normal* data, equivalent to minimizing SSE)

Which of these three methods, if any, is appropriate for fitting a logistic regression model? Do any changes need to be made for the logistic regression setting?

Discuss with your neighbor for 2--3 minutes.

Maximum likelihood for logistic regression

$$Y_i \sim Bernoulli(p_i)$$

$$\logigg(rac{p_i}{1-p_i}igg) = eta_0 + eta_1 X_{i,1} + \dots + eta_k X_{i,k}$$

Suppose we observe independent samples $(X_1,Y_1),\ldots,(X_n,Y_n).$ Write down the likelihood function

$$L(eta) = \prod_{i=1}^n f(Y_i;eta)$$

for the logistic regression problem. Take 2--3 minutes, then we will discuss as a class.

Maximum likelihood for logistic regression

$$L(\beta) =$$

I want to choose β to maximize $L(\beta)$. What are the usual steps to take?

Initial attempt at maximizing likelihood

$$L(eta) = \prod_{i=1}^n p_i^{Y_i} (1-p_i)^{1-Y_i}$$

$$\ell(\beta) =$$

Iterative methods for maximizing likelihood

Fisher scoring

Fisher scoring for logistic regression

Practice question: Fisher scoring

Suppose that
$$\log\!\left(rac{p_i}{1-p_i}
ight)=eta_0+eta_1X_i$$
 , and we have

$$eta^{(r)} = \left[egin{array}{c} -3.1 \ 0.9 \end{array}
ight], \hspace{0.5cm} U(eta^{(r)}) = \left[egin{array}{c} 9.16 \ 31.91 \end{array}
ight],$$

$$\mathcal{I}(eta^{(r)}) = egin{bmatrix} 17.834 & 53.218 \ 53.218 & 180.718 \end{bmatrix}$$

Use the Fisher scoring algorithm to calculate $eta^{(r+1)}$ (you may use R or a calculator, you do not need to do the matrix arithmetic by hand). Take ~ 5 minutes, then we will discuss.

Alternative to Fisher scoring: gradient ascent

$$Y_i \sim Bernoulli(p_i)$$

$$\logigg(rac{p_i}{1-p_i}igg)=eta_0+eta_1X_{i,1}+\cdots+eta_kX_{i,k}$$

Choose $\beta = (\beta_0, \dots, \beta_k)^T$ to maximize $L(\beta)$.

Gradient ascent:

Motivation for gradient ascent: walking uphill

Practice question: gradient ascent

Suppose that
$$\log\!\left(rac{p_i}{1-p_i}
ight)=eta_0+eta_1X_i$$
 , and we have

$$eta^{(r)} = \left[egin{array}{c} -3.1 \ 0.9 \end{array}
ight], \hspace{0.5cm} U(eta^{(r)}) = \left[egin{array}{c} 9.16 \ 31.91 \end{array}
ight]$$

- Use gradient ascent with a learning rate (aka step size) of $\gamma=0.01$ to calculate $\beta^{(r+1)}$.
- The actual maximum likelihood estimate is $\widehat{\beta}=(-3.360,1.174)$. Does one iteration of gradient ascent or Fisher scoring get us closer to the optimal $\widehat{\beta}$?
- Discuss in pairs for 2--3 minutes.