7.2 1)
$$n = pq = 11 \cdot 23 = 253$$

 $\varphi(n) = (p-1)(q-1) = (11-1) \cdot (23-1) = 10 \cdot 22 = 220$

2)
$$pgcd(2, 220) = 2 \neq 1$$

 $pgcd(3, 220) = 1$
 $e = 3$ est le plus petit exposant d'encodage RSA que Bob peut choisir.

3) d est solution de la congruence $e d \equiv 1 \mod \varphi(n)$, ici $3 d \equiv 1 \mod 220$.

(a) 1^{re} méthode

Résolvons l'équation diophantienne 3x + 220y = 1.

Appliquons l'algorithme d'Euclide pour calculer pgcd(3, 220) :

$$220 = 3 \cdot 73 + 1 \implies 1 = 220 - 3 \cdot 73$$

 $3 = 1 \cdot 3$

À partir de la solution particulière $x_0 = -73$ et $y_0 = 1$, on déduit la solution générale :

$$\begin{cases} x = -73 + \frac{220}{1}k = -73 + 220k \\ y = 1 - \frac{3}{1}k = 1 - 3k \end{cases}$$
 où $k \in \mathbb{Z}$

La condition $1 < x < \varphi(n) = 220$ implique k = 1. On conclut que d = -73 + 220 = 147.

(b) 2e méthode

En utilisant l'exercice 7.11, on obtient $d \equiv 3^{\varphi(220)-1} \mod 220$

Sachant que
$$220 = 2^2 \cdot 5 \cdot 11$$
, on en déduit que : $\varphi(220) = 220 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{11}\right) = 80$.

Utilisons l'algorithme d'exponentiation binaire pour calculer $3^{79} \mod 220$:

x	reste r	n	$3^{2^n} \mod 220$	contribution (si $r = 1$)
79	1	0	3	3
39	1	1	$3^2 \equiv 9$	9
19	1	2	$9^2 \equiv 81$	81
9	1	3	$81^2 \equiv -39$	-39
4	0	4	$(-39)^2 \equiv -19$	
2	0	5	$(-19)^2 \equiv -79$	
1	1	6	$(-79)^2 \equiv 81$	81

$$3^{79} \equiv 3 \cdot 9 \cdot 81 \cdot (-39) \cdot 81 \equiv 147 \mod 220$$

On conclut également que d = 147.

4) clé publique : (253, 3) clé secrète : (11, 23, 147)