

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 31. März 2005 (31.03.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/028417 A1

- (51) Internationale Patentklassifikation7: C07C 209/48, 211/27
- (21) Internationales Aktenzeichen: PCT/EP2004/009568
- (22) Internationales Anmeldedatum:

27. August 2004 (27.08.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität: 103 41 613.7 10. September 2003 (10.09.2003)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]: 67056 Ludwigshafen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HUGO, Randolf [DE/DE]; Martin-Luther-Str. 7, 67246 Dirmstein (DE). JOURDAN, Sabine [DE/DE]; Meerwiesenstrasse 25, 68163 Mannheim (DE). WENZ, Kirsten [DE/DE]; S 6, 29, 68161 Mannheim (DE). PREISS, Thomas [DE/DE]; Schlagweg 18, 67256 Weisenheim (DE). WECK, Alexander [DE/DE]; Buttstädter Strasse 9, 67251 Freinsheim (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR PRODUCING XYLYLENEDIAMINE (XDA)
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON XYLYLENDIAMIN (XDA)

15 RESIDUE

16 EVAPORATION OR STRIPPING

- (57) Abstract: The invention relates to a method for producing xylylenediamine comprising the steps: ammoxidation of xylol to form phthalodinitrile, the vaporous product of the ammoxidation step being brought into direct contact with a liquid, organic solvent (quench stage) and hydrogenation of the phthalodinitrile in the quench solution or suspension that has been obtained, whereby N-methyl-2-pyrrolidone (NMP) constitutes the organic solvent.
- (57) Zusammenfassung: Verfahren zur Herstellung von Xylylendiamin umfassend die Schritte Ammonoxidation von Xylol zu Phthalodinitril, wobei das dampfförmige Produkt der Ammonoxidationsstufe direkt mit einem flüssigen organischen Lösungsmittel in Kontakt gebracht wird (Quench) und Hydrierung des Phthalodinitrils in der erhaltenen Quenchlösung oder -suspension, wobei es sich bei dem organischen Lösungsmittel um N-Methyl-2-pyrrolidon (NMP) handelt.

WO 2005/028417 A1

4 WASTE GAS

8 HYDROGENATION

WASTE GAS
 WASTE GAS PURIFICATION/SOLVENT PREPARATION
 WATER/LOW BOILER SEPARATION
 PHTHALODINITRILE IN NMP

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. Verfahren zur Herstellung von Xylylendiamin (XDA)

Beschreibung

15

25

30

- 5 Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Xylylendiamin umfassend die Schritte
 - Ammonoxidation von Xylol zu Phthalodinitril, wobei das dampfförmige Produkt der Ammonoxidationsstufe direkt mit einem flüssigen organischen Lösungsmittel in Kontakt gebracht wird (Quench) und
- 10 Hydrierung des Phthalodinitrils in der erhaltenen Quenchlösung oder -suspension.
 - Xylylendiamin (Bis(aminomethyl)benzol) ist ein nützlicher Ausgangsstoff, z.B. für die Synthese von Polyamiden, Epoxyhärtern oder als Zwischenstufe zur Herstellung von Isocyanaten.
 - Die Bezeichnung "Xylylendiamin" (XDA) umfasst die drei Isomere ortho-Xylylendiamin, meta-Xylylendiamin (MXDA) und para-Xylylendiamin.
- Der Begriff "Phthalodinitril" (PDN) umfasst die drei Isomere 1,2-Dicyanbenzol = o-Phthalodinitril, 1,3-Dicyanbenzol = Isophthalodinitril = IPDN und 1,4-Dicyanbenzol = Terephthalodinitril.
 - Die zweistufige Synthese von Xylylendiamin durch Ammonoxidation von Xylol und anschließender Hydrierung des erhaltenen Phthalodinitrils ist bekannt.
 - EP-A2-1 113 001 (Mitsubishi Gas Chem. Comp.) beschreibt ein Verfahren zur Herstellung von Nitrilverbindungen durch Ammonoxidation entsprechender carbocyclischer oder heterocyclischer Verbindungen, wobei überschüssiger Ammoniak aus dem Reaktionsprodukt recycliert wird. Beschrieben wird auch das direkte in Kontakt bringen des dampfförmigen Produkts der Ammonoxidationsstufe mit einem flüssigen organischen Lösungsmittel, bei dem es sich insbesondere um aliphatische oder aromatische Kohlenwasserstoffe handelt. (Absätze [0045] und [0046]).
- EP-A2-1 193 247 und EP-A1-1 279 661 (beide Mitsubishi Gas Chem. Comp.) betreffen
 ein Verfahren zur Reinigung von Isophthalodinitril (IPDN) bzw. ein Verfahren zur Herstellung von reinem XDA, in dem das Phthalodinitril durch Ammonoxidation von Xylol synthetisiert wird, wobei das dampfförmige Produkt der Ammonoxidationsstufe direkt mit einem flüssigen organischen Lösungsmittel in Kontakt gebracht wird (Quench). Das organische Lösungsmittel ist ausgewählt aus Alkylbenzole, heterocyclische Verbindungen, aromatische Nitrile und heterocyclische Nitrile und hat einen Siedepunkt, der unter dem von Phthalodinitril liegt (EP-A2-1 193 247: Spalte 4, Absatz [0018] und [0019]; EP-A1-1 279 661: Spalten 4-5, Absatz [0023] und [0024]).

EP-A2-1 193 244 (Mitsubishi Gas Chem. Comp.) beschreibt ein Verfahren zur Herstellung von XDA durch Hydrierung von Phthalodinitril, welches in einer vorherigen Stufe durch Ammonoxidation von Xylol synthetisiert wird, wobei das dampfförmige Produkt der Ammonoxidationsstufe direkt mit einem flüssigen organischen Lösungsmittel in Kontakt gebracht wird (Quench) und die erhaltene Quenchlösung oder –suspension der Hydrierung zugeführt wird.

Bevorzugte organische Lösungsmittel sind C_6 - C_{12} aromatische Kohlenwasserstoffe, wie Xylol und Pseudocumol (Spałte 6, Absatz [0027] und [0028]).

10

20

35

5

DE-A-21 64 169 beschreibt auf Seite 6, letzter Absatz, die Hydrierung von IPDN zu meta-XDA in Gegenwart eines Ni- und/oder Co-Katalysators in Ammoniak als Lösungsmittel.

Fünf parallele BASF-Patentanmeldungen mit jeweils gleichem Anmeldetag betreffen jeweils Verfahren zur Herstellung von XDA.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein verbessertes wirtschaftliches Verfahren zur Herstellung von hoch reinem Xylylendiamin, insbesondere meta-Xylylendiamin, mit hoher Ausbeute und Raum-Zeit-Ausbeute (RZA) aufzufinden, welches bei mit Verfahren des Stands der Technik (z.B. EP-A2-1 193 244) vergleichbaren Durchsätzen aufgrund verringerter Stoffströme, insbesondere Lösungsmittelströme, inkl. Rückführströme, verkleinerte Apparate und Maschinen ermöglicht.

25 Demgemäß wurde ein Verfahren zur Herstellung von Xylylendiamin umfassend die Schritte

Ammonoxidation von Xylol zu Phthalodinitril, wobei das dampfförmige Produkt der Ammonoxidationsstufe direkt mit einem flüssigen organischen Lösungsmittel in Kontakt gebracht wird (Quench) und

30 Hydrierung des Phthalodinitrils in der erhaltenen Quenchlösung oder –suspension gefunden, welches dadurch gekennzeichnet ist, dass es sich bei dem organischen Lösungsmittel um N-Methyl-2-pyrrolidon (NMP) handelt.

Bevorzugt findet das erfindungsgemäße Verfahren Anwendung zur Herstellung von meta-Xylylendiamin (MXDA) durch Hydrierung von Isophthalodinitril (IPDN), welches in einer vorherigen Stufe durch Ammonoxidation von meta-Xylol synthetisiert wird.

Das erfindungsgemäße Verfahren lässt sich wie folgt ausführen:

5

10

Ammonoxidationsstufe:

Die Ammonoxidation von Xylol (o-, m- oder p-Xylol) zum entsprechenden Phthalodinitril (ortho-Xylol → o-Phthalodinitril; meta-Xylol → Isophthalodinitril; para-Xylol → Terephthalodinitril) wird im allgemeinen nach dem Fachmann bekannten Verfahren durchgeführt.

Die Ammonoxidation des Methylaromaten wird bevorzugt durchgeführt an einem Multioxidkatalysator mit Ammoniak und einem sauerstoffhaltigen Gas (Sauerstoff oder Luft oder beides) in einem Wirbelschichtreaktor oder einem Rohr(bündel)reaktor.

Die Reaktionstemperatur liegt dabei im allgemeinen bei 300 bis 500°C, bevorzugt bei 330 bis 480°C.

- Der Katalysator enthält bevorzugt V, Sb und/oder Cr und setzt sich besonders bevorzugt zusammen aus [V, Sb und Alkalimetallen] oder [V, Cr, Mo und B], jeweils als Vollkatalysator oder auf einem inerten Träger.

 Als inerter Träger sind bevorzugt SiO₂, Al₂O₃ oder ein Gemisch der beiden oder Steatit.
- 20 Solch eine Verfahrensweise ist z.B. in den BASF-Patentanmeldungen EP-A-767 165 und EP-A-699 476 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird.

Auch die BASF-Patentanmeldungen EP-A-222 249, DE-A-35 40 517 und DE-A-37 00 710 offenbaren geeignete Ammonoxidationskatalysatoren.

Die Ammonoxidation kann auch gemäß den in den eingangs zitierten Anmeldungen EP-A2-1 113 001, EP-A2-1 193 247, EP-A1-1 279 661 und EP-A2-1 193 244 beschriebenen Verfahren durchgeführt werden.

30 Quench:

25

35

Der bei der Ammonoxidation produzierte Dampf, enthaltend das Wertprodukt Phthalodinitril, wird direkt mit dem flüssigen organischen Lösungsmittel N-Methyl-2-pyrrolidon (NMP) in Kontakt gebracht (Quench mit NMP als Quenchflüssigkeit, Quenchmittel).

Das für den Quench verwendete NMP kann auch bereits gelöstes oder suspendiertes Phthalodinitril (bevorzugt dasjenige Isomer, das dem synthetisierten PDN entspricht) enthalten.

Durch die plötzliche Temperaturabsenkung beim in Kontakt bringen des dampfförmigen Phthalodinitrils mit dem flüssigen Lösungsmittel NMP (Quench) wird die Bildung

WO 2005/028417 PCT/EP2004/009568

5

20

25

30

35

von unerwünschten Neben- und Zersetzungsprodukten, die zur Qualitätsminderung des Phthalodinitrils und schließlich des XDAs führen, verringert.

4

Das dampfförmige Phthalodinitril wird durch den Quench direkt in das flüssige Lösungsmittel NMP aufgenommen, wobei eine Lösung und/oder eine Suspension entsteht, welche unmittelbar weiter verarbeitet werden kann.

Als Frischzulauf wird im allgemeinen technisches NMP mit einer Reinheit > 99 Gew.-%, insbesondere > 99,5 Gew.-%, eingesetzt.

Bevorzugt kann aus dem Verfahren zurückgewonnenes NMP als Quenchflüssigkeit eingesetzt werden. Hier kann die Reinheit der Quenchflüssigkeit auch ≤ 99 Gew.-%, z.B. 90-98 Gew.-%, betragen, insbesondere dann, wenn es sich nicht um verfahrensfremde Substanzen (also u.a. um Wasser, Ammoniak, Benzonitril, Tolunitril, Xylol, o-, m- oder p-Methyl-benzylamin, Benzylamin, Xylylendiamin) als Verunreinigungen handelt.

Die Menge des verwendeten Lösungsmittels NMP ist im allgemeinen so bemessen, dass Lösungen/Suspensionen mit einem Phthalodinitril-Gehalt von 15 bis 75 Gew.-%, bevorzugt 25 bis 60 Gew.-%, erhalten werden.

Die Einleitung des dampfförmigen Austrags der Ammonoxidation, enthaltend das Phthalodinitril (PDN), in das flüssige NMP erfolgt in einem Quenchapparat, z.B. bevorzugt in einem Fallfilmkondensator (Dünnschicht-, Rieselfilm- oder Fallstromkondensator), in einem Düsenapparat oder in einer Kolonne. Dabei kann das dampfförmige Phthalodinitril im Gleich- oder im Gegenstrom mit dem flüssigen Lösungsmittel geführt werden. Bei Gleichstromführung wird das dampfförmige Phthalodinitril von oben in den Quenchapparat eingeleitet. Vorteilhaft ist die tangentiale Zufuhr des flüssigen Lösungsmittels am Kopf des Fallfilmkondensators oder die Zufuhr des flüssigen Lösungsmittels durch eine oder mehrere Düsen um eine vollständige Benetzung der In-

Im Falle einer Quenchkolonne wird das Gas aus der Ammonoxidation am Kolonnensumpf aufgegeben und das Lösungsmittel am Kopf zugeführt. Der Quenchapparat kann zur Vergrößerung der zur Kondensation verfügbaren Oberfläche mit Einbauten wie Böden, geordneten Packungen oder ungeordneten Schüttungen ausgerüstet sein. Das NMP für den Quench kann im einmaligen Durchlauf oder als Kreislaufmedium eingesetzt werden.

nenwand des Quenchapparates zu erreichen.

Vorteilhafterweise wird ein Teil der Quenchlösung oder –suspension im Kreis gefahren.

40 Mittels eines im Kreislauf eingebauten Wärmeüberträgers wird die Quenchlösung oder –suspension gekühlt.

5

Dabei werden die Temperatur des Kreislaufmediums und der Kreislaufmengenstrom so eingestellt und aufeinander abgestimmt, dass die gewünschte Temperatur im Quenchaustritt erreicht wird. Die Temperatur des Kreislaufmediums wird umso niedriger gewählt, je kleiner der Mengenstrom des Kreislaufmediums ist und umgekehrt, wobei Löslichkeiten und Schmelzpunkte sowie die hydraulischen Belastungsgrenzen des Quenchapparates zu berücksichtigen sind.

Der Mengenstrom des frisch zulaufenden NMPs ist von der Quenchtemperatur abhängig, da mit höher werdender Temperatur mehr Lösungsmittel im dampfförmigen Quenchaustrag enthalten ist. Er wird so eingestellt, dass die gewünschte Konzentration der PDN-Lösung oder –suspension erhalten wird. Da die Löslichkeit von PDN in NMP mit zunehmender Temperatur ansteigt, kann mit zunehmender Quenchaustrittstemperatur eine höhere PDN-Konzentration im NMP gefahren werden.

5

- Das Kreislaufmedium wird gemeinsam mit dem frischen Lösungsmittel oder davon getrennt an geeigneter Stelle des Quenchapparats zugefahren.

 Im Falle einer im Gegenstrom betriebenen Quenchkolonne wird das frische NMP am Kopf und das Kreislaufmedium weiter unten, etwa in Kolonnenmitte zugefahren.
- Im allgemeinen wird durch Temperierung des eingesetzten NMPs und/oder des Kreislaufmediums die Temperatur des flüssigen Quenchaustrags auf 40 bis 180°C, bevorzugt 50 bis 120°C, insbesondere 80 bis 120°C, eingestellt.
- Der Siedepunkt von Phthalodinitril liegt im Bereich von 1 bis 100 mbar um ca. 60 Kelvin über dem Siedepunkt von NMP.
 - Der Absolutdruck beim Quenchen beträgt im allgemeinen 0,5 bis 1,5 bar. Bevorzugt wird bei leichtem Überdruck gefahren.
- 30 Xylol, Wasser, NH₃, CO₂, N₂ etc., die im dampfförmigen Austrag der Ammonoxidation in der Regel enthalten sind, werden unter Quenchbedingungen im Quench-Lösungsmittel NMP nur teilweise oder praktisch nicht gelöst und werden aus dem Quench-Apparat überwiegend gasförmig abgetrennt.
- Je niedriger die Quenchtemperatur ist, desto höher ist der Anteil von Wasser und tiefer als PDN siedenden Nebenkomponenten (bei gleichem Druck) (z.B. Benzonitril, Tolunitril) im flüssigen Quenchaustrag.
- In einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens können daher vor der Hydrierung des Phthalodinitrils aus der erhaltenen Quenchlösung oder suspension Wasser und gegebenenfalls Produkte mit einem Siedepunkt niedriger als Phthalodinitril (bei gleichem Druck) (Leichtsieder; z.B. nicht umgesetztes Xylol, Benzo-

5

nitril, Tolunitril, jeweils als Heteroazeotrop mit Wasser, Wasser, Benzonitril, Tolunitril; Aufzählung mit zunehmenden Siedepunkt (bei gleichem Druck); wie ggf. auch o-, moder p-Methyl-benzylamin, Benzylamin, Xylylendiamin, wobei diese Amine aus zurückgeführten Lösungsmittel von der Hydrierstufe stammen) teilweise oder vollständig destillativ abgetrennt werden.

Diese Abtrennung der Leichtsieder erfolgt bevorzugt in einer Destillationskolonne über Kopf.

10 Bevorzugt wird eine Destillationskolonne verwendet, welche vorzugsweise mit den üblichen Einbauten zur Erhöhung der Trennleistung, wie Böden, geordnete oder ungeordnete Packungen, etc., ausgerüstet ist.

Die Auslegung der Kolonne (insbesondere Zahl der Trennstufen, Zulaufstelle, Rücklaufverhältnis, etc.) kann, abgestimmt auf die jeweilige Zusammensetzung der Lösung
oder Suspension, durch den Fachmann nach ihm geläufigen Methoden vorgenommen
werden.

Bevorzugt wird unter vermindertem Druck gefahren, um die Sumpftemperatur zu be-20 grenzen.

Hydrierung:

Die erhaltene Quenchlösung oder –suspension wird anschließend der Hydrierung zugeführt.

Optional kann vorher der Quenchlösung oder –suspension weiteres NMP oder ein weiteres organisches Lösungsmittel, wie z.B. Xylol, Benzylamin, o-, m- oder p-Methylbenzylamin, Xylylendiamin und Mischungen hiervon, zugegeben werden.

- Es ist also ein kennzeichnendes Merkmal des erfindungsgemäßen Verfahrens, dass das als Zwischenstufe erhaltene Phthalodinitril nicht in Substanz isoliert wird. Das zu hydrierende Phthalodinitril wird für die Hydrierstufe nicht von dem im Quench-Schritt verwendeten NMP abgetrennt.
- Eine Abtrennung von Hochsiedern, also von Produkten mit einem Siedepunkt höher als Phthalodinitril (bei gleichem Druck), aus der Quenchlösung oder –suspension findet im erfindungsgemäßen Verfahren bevorzugt nicht statt.

Für die Hydrierung des Phthalodinitrils zum entsprechenden Xylylendiamin (o-, m- bzw. p-Xylylendiamin) wird der Lösung oder Suspension besonders bevorzugt Ammoniak, bevorzugt in flüssiger Form, zugefügt. Das Hinzufügen des Ammoniaks kann direkt nach der Quenchstufe oder erst in der Hydrierstufe erfolgen.

Das Gewichtsverhältnis von Dinitril zu Ammoniak beträgt hierbei im Frischzulauf im allgemeinen 1:0,15 bis 1:15, vorzugsweise 1:0,5 bis 1:10, besonders bevorzugt 1:1 bis 1:5.

5

15

Für die Hydrierung können die dem Fachmann für diese Umsetzung bekannten Katalysatoren und Reaktoren (z.B. Festbett- oder Suspensionsfahrweise) sowie Verfahren (kontinuierlich, halbkontinuierlich, diskontinuierlich) angewendet werden.

Bei der Katalysatorfestbettfahrweise ist sowohl die Sumpf- als auch die Rieselfahrweise se möglich. Bevorzugt ist eine Rieselfahrweise.

Diesbezüglich wird hiermit z.B. auf die in den Anmeldungen GB-A-852,972 (Äquivalent: DE-A-11 19 285) (BASF AG), DE-A-12 59 899 (BASF AG) und dem US Patent Nr. 3,069,469 (California Research Corp.) beschriebenen Verfahren verwiesen.

Der Hydrierreaktor kann in geradem Durchgang gefahren werden. Alternativ ist auch eine Kreislauffahrweise möglich, bei der ein Teil des Reaktoraustrages an den Reaktoreingang zurückgeführt wird, bevorzugt ohne vorherige Aufarbeitung des Kreislaufstromes

20 stromes.

Damit lässt sich eine optimale Verdünnung der Reaktionslösung erreichen, was sich günstig auf die Selektivität auswirkt. Insbesondere kann der Kreislaufstrom mittels eines externen Wärmeüberträgers auf einfache und kostengünstige Weise gekühlt und somit die Reaktionswärme abgeführt werden. Der Reaktor lässt sich dadurch auch adiabat betreiben, wobei der Temperaturanstieg der Reaktionslösung durch den gekühlten Kreislaufstrom begrenzt werden kann. Da der Reaktor selbst dann nicht gekühlt werden muss, ist eine einfache und kostengünstige Bauform möglich. Eine Alternative stellt ein gekühlter Rohrbündelreaktor dar.

30

25

Bevorzugt sind Katalysatoren, die Kobalt und/oder Nickel und/oder Eisen, als Vollkatalysator oder auf einem inerten Träger, enthalten.

Hierbei liegen die Reaktionstemperaturen im allgemeinen bei 40 bis 150°C, bevorzugt bei 40 bis 120°C.

Der Druck liegt im allgemeinen bei 40 bis 300 bar, bevorzugt 100 bis 200 bar.

Isolierung des XDAs:

40

Nach der Hydrierung werden das Lösungsmittel und der gegebenenfalls eingesetzte Ammoniak abdestilliert.

Bevorzugt erfolgt eine Reinigung des Xylylendiamins durch Abdestillation leichtersiedender Nebenprodukte (bei gleichem Druck) über Kopf und destillativer Abtrennung von schwerersiedenden Verunreinigungen über Sumpf.

5

Besonders bevorzugt ist die Fahrweise, in der man nach der Hydrierung das NMP, gegebenenfalls Ammoniak sowie gegebenenfalls leichtersiedende Nebenprodukte über Kopf abdestilliert und danach schwerersiedende Verunreinigungen vom Xylylendiamin destillativ über Sumpf abtrennt.

10

In einer besonderen Ausführungsform kann die Abtrennung leichter- und schwerersiedender Nebenprodukte auch in einer Seitenabzugs- oder Trennwandkolonne erfolgen, wobei reines Xylylendiamin über einen flüssigen oder gasförmigen Seitenabzug gewonnen wird.

15

Je nach gewünschter Reinheit wird das Produkt (XDA) zusätzlich mit einem organischen Lösungsmittel, bevorzugt einem aliphatischen Kohlenwasserstoff, insbesondere einem cycloaliphatischen Kohlenwasserstoff, ganz besonders Cyclohexan oder Methylcyclohexan, extrahiert.

20 Diese Reinigung durch Extraktion kann z.B. gemäß DE-A-1 074 592 erfolgen.

Einen schematischen Überblick über eine bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens gibt die Abbildung 1 in der Anlage.

25 Die optionalen Verfahrenssehritte "Wasserabtrennung" und "extraktive XDA-Reinigung" sind gestrichelt gezeichnet.

Beispiele

30 Beispiel 1:

Ammonoxidation von m-Xylol, anschließendes Quenchen der Reaktionsgase mit NMP als Lösungsmittel und Hydrierung des in der Ammonoxidationsstufe entstandenen IPDNs (vergl. Verfahrensschema in Abbildung 1)

Ein Katalysator der Zusammensetzung V₄Sb₃W_{0,4}Cs_{0,2} auf Steatit wurde als Festbett in einen Rohrreaktor eingebaut. Die Apparatur wurde von außen auf 400°C aufgeheizt. Dem Reaktor wurde verdampftes m-Xylol, gasförmiger Ammoniak, Luft und Stickstoff zugefahren (NH₃ / m-Xylol = 8 mol / 1 mol; O₂ / m-Xylol = 4 mol / 1 mol). Der vordere Teil des Reaktors war mit einer Inertschüttung gefüllt, so dass die Einsatzstoffe vorgemischt und auf 400°C vorgeheizt die Reaktionszone erreichten. Im Reaktor herrschte ein leichter Überdruck von 0,02-0,03 bar. Die Hot-Spot-Temperatur erreichte 450°C.

WO 2005/028417 PCT/EP2004/009568

Man erhielt bei einem Umsatz (U) von m-Xylol von 79 % eine Selektivität (S) zu IPDN von 68 %.

9

Das aus dem Reaktor austretende Gasgemisch wird in einer Kolonne mit NMP gequencht. Aus der Quenchkolonne wird bei 122°C eine Lösung von IPDN in NMP ausgetragen, welche 0,6 Gew.-% m-Xylol, 1,6 Gew.-% Wasser, 0,1 Gew.-% Benzonitril, 4 Gew.-% Tolunitril, 27 Gew.-% IPDN und ca. 66,7 Gew.-% NMP enthält. Über Kopf der Quenchkolonne werden nicht umgesetzte Reaktionsgase und Inertgase sowie nicht umgesetztes m-Xylol sowie etwas NMP gasförmig abgezogen. Dieses Gas kann aufgearbeitet werden, um die Wertstoffe (insbesondere NH₃, m-Xylol, NMP sowie Tolunitril) in die Reaktionsstufe bzw. in den Quenchkreis zurückzuführen. Inerte und Begleitkomponenten (H₂O, Benzonitril, N₂, CO₂, etc.) werden aus der Aufarbeitungsstufe ausgeschleust.

- Eine Lösung entsprechend der berechneten Zusammensetzung am Quenchaustritt, bestehend aus 0,44 g m-Xylol, 1,7 g Wasser, 0,88 g Benzonitril, 3,1 g Tolunitril, 24 g IPDN und 58 g NMP, wurde aus den reinen Komponenten zusammengemischt und der Hydrierung zugeführt. Zur Hydrierung wurde der Mischung flüssiges NH₃ zudosiert (NH₃ / IPDN = 14 mol / 1 mol). Die Hydrierung erfolgte in Gegenwart von H₂ und 5 g
 Raney-Nickel-Katalysator bei 100°C und einem Druck von 100 bar in einem Rührau-
 - Die Umsetzung von IPDN war quantitativ, wobei eine Ausbeute von 92 % bezogen auf eingesetztes IPDN erhalten wurde.
- (Die oben angegebenen Daten des Quenchschrittes sind die Ergebnisse einer thermodynamischen Simulation. Dabei wurde der Quench als Apparat gerechnet, in dem thermodynamisches Gleichgewicht zwischen Gas- und Flüssigphase herrscht. Neben den Reinstoffdaten der beteiligten Komponenten wurden bei der Berechnung reale Binärdaten verwendet. Derartige Berechnungen können mit kommerziellen Rechenprogrammen, hier: Aspen Plus, die dem Fachmann geläufig sind, durchgeführt werden).

Beispiel 2:

35

toklaven.

Die Ammonoxidation wurde wie im Beispiel 1 durchgeführt, jedoch beträgt die Austrittstemperatur aus dem Quench 91°C. Der Wassergehalt der Lösung beträgt 5,2 Gew.-%. Die Lösung wird einer Kolonne mit 15 Glockenböden zugefahren. Der Zulauf ist auf dem 6. Glockenboden. Das Wasser wird zusammen mit anderen Komponenten (gelöste Gase, m-Xylol, Benzonitril, Tolunitril, letztere als Azeotrope mit Wasser) über Kopf abgetrennt. Über Sumpf wird eine praktisch wasserfreie Lösung bestehend aus ca.

40 27 Gew.-% IPDN, 67 Gew.-% NMP, 6 Gew.-% Tolunitril und 600 Gew.-ppm Benzonitril erhalten.

Eine Mischung bestehend aus 27 Gew.-% IPDN und 73 Gew.-% NMP, die aus den reinen Komponenten zusammengemischt wurde, wurde in einem kontinuierlich betriebenen 70 ml-Rohrreaktor an einem Kobalt-Vollkontakt bei 80°C und 190 bar hydriert. Über den Katalysator wurden stündlich 70 g IPDN-Lösung sowie 90 g Ammoniak geleitet. Die Ausbeute an MXDA betrug 96 % bezogen auf eingesetztes IPDN.

10

(Die oben angegebenen Daten des Quenchschrittes sind die Ergebnisse einer thermodynamischen Simulation, durchgeführt wie bei Beispiel 1).

10 Beispiel 3:

5

15

40

Eine Mischung bestehend aus 27 Gew.-% IPDN und 73 Gew.-% NMP, die aus den reinen Komponenten zusammengemischt wurde, wurde in einem kontinuierlich betriebenen 70 ml-Rohrreaktor an einem Kobalt-Vollkontakt bei 80°C und 190 bar hydriert. Über den Katalysator wurden stündlich 70 g IPDN-Lösung sowie 54 g Ammoniak geleitet. Die gleiche Volumenmenge wurde als Lösemittel im Kreis gefahren. Die Ausbeute an MXDA betrug 95,5 % bezogen auf eingesetztes IPDN.

Beispiel 4:

Eine Mischung bestehend aus 15 Gew.-% IPDN und 85 Gew.-% NMP, die aus den reinen Komponenten zusammengemischt wurde, wurde in einem kontinuierlich betriebenen 70 ml-Rohrreaktor an einem Kobalt-Vollkontakt bei 80°C und 190 bar hydriert. Über den Katalysator wurden stündlich 140 g IPDN-Lösung sowie 72 g Ammoniak geleitet. Die Ausbeute an MXDA betrug 96 % bezogen auf eingesetztes IPDN.

25 Beispiel 5:

Ammonoxidation von m-Xylol, anschließendes Quenchen der Reaktionsgase mit NMP als Lösungsmittel

Ein Katalysator der Zusammensetzung V₄Sb₃K_{0,4}Ba_{0,2} auf Steatit wurde als Festbett in einen Rohrreaktor eingebaut. Die Apparatur wurde von außen auf 415°C aufgeheizt. Dem Reaktor wurde verdampftes m-Xylol, gasförmiger Ammoniak und Luft zugefahren (NH₃ / m-Xylol = 14 mol / 1 mol; O₂ / m-Xylol = 4 mol / 1 mol). Der Katalysator der ersten Hälfte des Reaktors war mit 70 Gew.-% Steatitkugeln verdünnt, die zweite Hälfte mit 40 Gew.-%. Im Reaktor herrschte ein leichter Überdruck von 0,02 bar. Die Hot-Spot-Temperatur erreichte 430°C. Man erhielt bei einem Umsatz von m-Xylol von 88 % eine Selektivität zu IPDN von 71 %.

Das aus dem Reaktor austretende Gasgemisch wird in einer Kolonne mit NMP gequencht. Aus der Quenchkolonne wird bei 120°C und 1,02 bar (abs.) eine Lösung von IPDN in NMP ausgetragen, welche 0,25 Gew.-% m-Xylol, 1,3 Gew.-% Wasser, 3,6 Gew.-% Tolunitril, 27 Gew.-% IPDN und ca. 67,7 Gew.-% NMP enthält. Über Kopf der Quenchkolonne werden nicht umgesetzte Reaktionsgase und Inertgase sowie nicht

umgesetztes m-Xylol sowie etwas NMP gasförmig abgezogen. Dieses Gas kann aufgearbeitet werden, um die Wertstoffe (insbesondere NH₃, m-Xylol, NMP sowie Tolunitril) in die Reaktionsstufe bzw. in den Quenchkreis zurückzuführen. Inerte und Begleitkomponenten (H₂O, N₂, CO₂, etc.) werden aus der Aufarbeitungsstufe ausgeschleust.

(Die oben angegebenen Daten des Quenchschrittes sind die Ergebnisse einer thermodynamischen Simulation, durchgeführt wie bei Beispiel 1).

10 Beispiel 6:

5

Untersuchungen zur Löslichkeit von IPDN in verschiedenen Lösungsmitteln

Die Löslichkeit von IPDN in NMP beträgt bei 60°C ca. 26 Gew.-% und bei 90°C ca. 41 Gew.-%.

15 Pseudocumol erreicht bei 90°C lediglich eine Löslichkeit von 20 Gew.-% und Mesitylen lediglich von 12 Gew.-%.

Bei 60°C liegt die Löslichkeit von IPDN in Mesitylen oder Pseudocumol jeweils unter 10 Gew.-%.

15

25

30

35

Patentansprüche

- Verfahren zur Herstellung von Xylylendiamin umfassend die Schritte
 Ammonoxidation von Xylol zu Phthalodinitril, wobei das dampfförmige Produkt
 der Ammonoxidationsstufe direkt mit einem flüssigen organischen Lösungsmittel
 in Kontakt gebracht wird (Quench) und
 Hydrierung des Phthalodinitrils in der erhaltenen Quenchlösung oder –suspension,
 dadurch gekennzeichnet, dass es sich bei dem organischen Lösungsmittel um N Methyl-2-pyrrolidon (NMP) handelt.
 - 2. Verfahren nach Anspruch 1 zur Herstellung von meta-Xylylendiamin umfassend die Schritte Ammonoxidation von meta-Xylol zu Isophthalodinitril und Hydrierung des Isophthalodinitrils.
- Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass vor der Hydrierung des Phthalodinitrils aus der erhaltenen Quenchlösung oder —suspension Wasser und gegebenenfalls Produkte mit einem Siedepunkt niedriger als Phthalodinitril (Leichtsieder) teilweise oder vollständig destillativ abgetrennt werden.
 - 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor der Hydrierung des Phthalodinitrils keine Abtrennung von Produkten mit einem Siedepunkt höher als Phthalodinitril (Hochsiedern) aus der erhaltenen Quenchlösung oder –suspension erfolgt.
 - 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ammonoxidation bei Temperaturen von 300 bis 500°C an einem Katalysator enthaltend V, Sb und/oder Cr, als Vollkatalysator oder auf einem inerten Träger, durchgeführt wird.
 - 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Quench mit NMP die Temperatur des Quenchaustrags 40 bis 180 °C beträgt.
 - 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von Ammoniak durchgeführt wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
 40 dass die Hydrierung bei Temperaturen von 40 bis 150°C an einem Katalysator
 enthaltend Ni, Co und/oder Fe, als Vollkatalysator oder auf einem inerten Träger,
 durchgeführt wird.

PCT/EP2004/009568

5

20

- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der Hydrierung eine Reinigung des Xylylendiamins durch Abdestillation von NMP, gegebenenfalls Ammoniak sowie gegebenenfalls leichtersiedender Nebenprodukte über Kopf und destillativer Abtrennung von schwerersiedenden Verunreinigungen über Sumpf erfolgt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man nach der Hydrierung das NMP, gegebenenfalls Ammoniak sowie gegebenenfalls leichtersiedende Nebenprodukte über Kopf abdestilliert und danach schwerersiedende Verunreinigungen vom Xylylendiamin destillativ über Sumpf abtrennt.
- 11. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass das Xylylendiamin nach der Destillation zur weiteren Reinigung mit einem organischem Lösungsmittel extrahiert wird.
 - 12. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass man zur Extraktion Cyclohexan oder Methylcyclohexan verwendet.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C209/48 C07C211/27 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-12EP 1 193 244 A (MITSUBISHI GAS CHEMICAL Α CO) 3 April 2002 (2002-04-03) cited in the application abstract; claims; examples 1 - 12US 2 970 170 A (LIND WILTON H) Α 31 January 1961 (1961-01-31) claims; examples 1 - 12EP 1 279 661 A (MITSUBISHI GAS CHEMICAL Α CO) 29 January 2003 (2003-01-29) cited in the application abstract; claims 1,3,6; examples page 3, column 4, line 56 - page 4, column 5. line 12 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Χ Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 30/11/2004 23 November 2004 Authorized officer Name and mailing address of the ISA Reduces of the ICA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Kiernan, A

INTERNATIONAL SEARCH REPORT

Intermional Application No PCT/EP2004/009568

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCI/EFZU	
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
4	GB 1 164 354 A (TOYO RAYON KABUSHIKI KAISHA) 17 September 1969 (1969-09-17) page 4, column 1, line 33; example 8; table 3		1-12
,	EP 1 209 146 A (BASF AG) 29 May 2002 (2002-05-29) abstract; claims 1,4,5		1-12

INTERNATIONAL SEARCH REPORT

Intermation on patent family members

Intermonal Application No PCT/EP2004/009568

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 1193244 A	03-04-2002	JP 2002105035 A EP 1193244 A2 US 2002038054 A1	10-04-2002 03-04-2002 28-03-2002
US 2970170 A	31-01-1961	NONE	
EP 1279661 A	29-01-2003	JP 2003026639 A CN 1397543 A DE 60201480 D1 EP 1279661 A1 US 2003013917 A1	29-01-2003 19-02-2003 11-11-2004 29-01-2003 16-01-2003
GB 1164354 A	17-09-1969	BE 700877 A FR 1530809 A	18-12-1967 28-06-1968
EP 1209146 A	29-05-2002	DE 10056840 A1 AT 270264 T DE 50102724 D1 EP 1209146 A1 JP 2002201163 A US 2002058842 A1	23-05-2002 15-07-2004 05-08-2004 29-05-2002 16-07-2002 16-05-2002

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIF	ZIERUNG DES	ANME	LDUNGSGEGENSTANDES
IPK 7	C07C209/	/48	C07C211/27

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	n Teile Betr. Anspruch Nr.		
A	EP 1 193 244 A (MITSUBISHI GAS CHEMICAL CO) 3. April 2002 (2002-04-03) in der Anmeldung erwähnt Zusammenfassung; Ansprüche; Beispiele	1-12		
А	US 2 970 170 A (LIND WILTON H) 31. Januar 1961 (1961-01-31) Ansprüche; Beispiele	1-12		
A	EP 1 279 661 A (MITSUBISHI GAS CHEMICAL CO) 29. Januar 2003 (2003-01-29) in der Anmeldung erwähnt Zusammenfassung; Ansprüche 1,3,6; Beispiele Seite 3, Spalte 4, Zeile 56 - Seite 4, Spalte 5, Zeile 12	1-12		
	-/			

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Slehe Anhang Patentfamille
 Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeulsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche 	 *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung geracht wird und diese Verbindung für einen Fachmann nahellegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
23. November 2004	30/11/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Kiernan, A

INTERNATIONALER RECHERCHENBERICHT

Interponales Aktenzeichen
PCT/EP2004/009568

	rtsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.		
A	GB 1 164 354 A (TOYO RAYON KABUSHIKI KAISHA) 17. September 1969 (1969-09-17) Seite 4, Spalte 1, Zeile 33; Beispiel 8; Tabelle 3				
A	EP 1 209 146 A (BASF AG) 29. Mai 2002 (2002-05-29) Zusammenfassung; Ansprüche 1,4,5 		1-12		

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Januar 2004)

INTERNATIONALER RECHERCHENBERICHT Angaben zu Veröffentlichungen, die zur seiben Patenttamilie genoren

nales Aktenzeichen PCT/EP2004/009568

Im Recherci	nenbericht	\neg	Datum der		Mitglied(er) der		Datum der
angeführtes Patentdokument			Veröffentlichung	Patentfamille			Veröffentlichung
EP 1193	1244	A	03-04-2002	JP EP	2002105035 1193244		10-04-2002 03-04-2002
				ŪS	2002038054		28-03-2002
US 2970	170	A	31-01-1961	KEI	VE		
EP 1279	661	A	29-01-2003	JP CN DE EP US	2003026639 1397543 60201480 1279661 2003013917	A D1 A1	29-01-2003 19-02-2003 11-11-2004 29-01-2003 16-01-2003
GB 1164	354	Α	17-09-1969	BE FR	700877 1530809		18-12-1967 28-06-1968
EP 1209	146	A	29-05-2002	DE AT DE EP JP US	10056840 270264 50102724 1209146 2002201163 2002058842	T D1 A1 A	23-05-2002 15-07-2004 05-08-2004 29-05-2002 16-07-2002 16-05-2002