Stochastik I

8. Übung

Aufgabe 29 (4 Punkte)

Seien $\mu_1, \mu_2, \nu_1, \nu_2$ σ -endliche Maße auf einem messbaren Raum (Ω, \mathcal{F}) . Zeigen Sie, dass aus $\nu_i \ll \mu_i$ für i = 1, 2 stets $\nu_1 \otimes \nu_2 \ll \mu_1 \otimes \mu_2$ folgt.

Aufgabe 30 (4 Punkte)

Die Funktion $f:[0,1]^2 \to \mathbb{R}$ sei gegeben durch $f(x,y):=\frac{1}{x^2}\mathbbm{1}_{\{0< y< x< 1\}}(x,y)-\frac{1}{y^2}\mathbbm{1}_{\{0< x< y< 1\}}(x,y)$. Zeigen Sie die folgenden Aussagen:

- (i) $\int_{[0,1]} \int_{[0,1]} f(x,y) \, \ell(dx) \, \ell(dy) = -1$ und $\int_{[0,1]} \int_{[0,1]} f(x,y) \, \ell(dy) \, \ell(dx) = 1$.
- (ii) Die Funktion f verletzt die Voraussetzungen des Satzes von Fubini (so dass Aussage (i) dem Satz von Fubini nicht widerspricht).

Hinweis: Es genügt zu zeigen, dass die Funktion $h^+ := \sum_{n=1}^{\infty} n \mathbb{1}_{\{f^+ \in [n,n+1)\}}$ nicht $\ell^{(2)}$ -integrierbar ist. Warum?

Aufgabe 31 (2 Punkte)

Es seien $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-Raum und $A, B, C \in \mathcal{F}$ Ereignisse.

- (i) Beschreiben Sie die mengentheoretische Verknüpfung $(A \cap B)^{c} \cup (A \cap C)^{c}$ der Ereignisse A, B, C verbal.
- (ii) Finden Sie das mengentheoretische Äquivalent zu: "Wenn A eintritt, treten weder B noch C ein".

Aufgabe 32 (6 Punkte)

Es seien $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-Raum und $(A_n) \subset \mathcal{F}$. Beweisen Sie die folgenden Aussagen:

- (i) $\mathbb{P}[\liminf_n A_n] \leq \liminf_n \mathbb{P}[A_n]$.
- (ii) $\mathbb{P}[\limsup_n A_n] \ge \limsup_n \mathbb{P}[A_n].$
- (iii) $\sum_{n=1}^{\infty} \mathbb{P}[A_n] < \infty$ impliziert $\mathbb{P}[\limsup_n A_n] = 0$.