"Wenchoi", a 3DOF Robotic Arm

ME134 HW #2 Final Prototype

By: Jacob Choi, Wenchang Gao

Sales Pitch

Functional Flexibility:

- 3 DOF and arm-like design
- 360° action space
- Potentials beyond writing letters

Computational Flexibility:

- Trajectory and inverse kinematics computed remotely
- Few data stored on ESP32

Sales Pitch

- Lightweight and portable design
- Multiple user interfaces
- Hands-free writing with facial recognition

Sales Pitch

- Remembers your name and your face
- Automatically writes your initials when finds you

Wenchang Gao

CAD Review

Overview

Stretch Goal | Creativity & Innovation

Stretch goal: to automatically write initials based on facial recognition and pre-trained object detection models.

Demo video:

Jacob Choi

Mechanical Updates

Jacob Choi

Thicker mounts

Reduced deflection, controlled base rotation

Mathematical Reasoning

1 Forward Kinematics

$$x = l_1 sin\theta_1 + l_2 sin\theta_2 sin\theta_1 + l_3 sin(\theta_2 + \theta_3) sin\theta_1
 y = l_1 cos\theta_1 + l_2 sin\theta_2 cos\theta_1 + l_3 sin(\theta_2 + \theta_3) cos\theta_1
 z = l_2 cos\theta_2 + l_3 cos(\theta_2 + \theta_3)$$

2 Inverse Kinematics

```
egin{aligned} 	heta_1 &= arctanrac{y}{x} \ a &= rac{x}{cos	heta_1} - l_1 \ 	heta_2 &= arccosrac{a^2 + z^2 + l_2^2 - l_3^2}{2l_2\sqrt{a^2 + z^2}} + arctanrac{a}{z} \ 	heta_3 &= arcsinrac{a^2 + z^2 + l_3^2 - l_2^2}{2l_3\sqrt{a^2 + z^2}} - arctanrac{z}{a} - 	heta_2 \end{aligned}
```

Scientific Reasoning

$$x = x_1 + t(x_2 - x_1)$$
 (Line)
 $x = o + \begin{bmatrix} \cos \theta \\ \sin \theta \\ z \end{bmatrix}$ (Circle)

Using parametric equations, we can discretize lines and circles in Cartesian.

Using Robotics System Toolbox in MatLab, we can safely calculate the inverse kinematics.

Wenchang Gao

Calculating the inverse kinematics trajectory of letter 'J' in matlab.

This letter is combined with 3 lines and 1 half circle

Code Flow

Initialization:

- Setup WiFi server on ESP32
- Move the arm to initial pose

Moving Arm:

- Sequentially send the desired trajectory of joint angles to ESP32
- Move the joints to specified position

Face Recognition (Python):

- Get input from camera in a certain speed
- Run pre-trained face recognition model

Trajectory Determination (MatLab):

- Lines: 2 points.
- Circles: center + radius

Inverse Kinematics

(MatLab):

- Determine 3 links and 3 joints
- Compute the inverse kinematics of the whole trajectory

Wenchang Gao

Thank you for listening!

Any questions?