Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

October 9, 2020

Nguyen T Huong

Definitio

Theorems of power series

functions int

1 Definition

2 Theorems on power series

Content

1 Definition

2 Theorems on power series

Nguyen Th Huong

Definition

Theorems o

Expansion of functions into power series

Definition

A power series (centered at x_0) is a **function series** of the form

$$\sum_{n=0}^{\infty} a_n(x-x_0)^n = a_0 + a_1(x-x_0) + \ldots + a_n(x-x_0)^n + \ldots$$

where a_n are constants, x is the variable.

Consider $x - x_0$ as X, in the following we consider power series of the form $\sum_{n=0}^{\infty} a_n x^n$.

Example

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \ldots = \frac{1}{1 - x}, \, |x| < 1.$$

Nguyen Tl Huong

Definition

Theorems of power series

Expansion of functions int power series

Theorem (Abel Theorem)

If the series $\sum_{n=0}^{\infty} a_n x^n$ converges at $x_0 \neq 0$ then the series converges absolutely at all x that $|x| < |x_0|$.

If the series $\sum_{n=0}^{\infty} a_n x^n$ diverges at $x_1 \neq 0$ then the series diverges at all x that $|x| > |x_1|$.

Proof.

Nguyen Tl Huong

Definition

Theorems o power series

Expansion of functions into power series

The series $\sum_{n=0}^{\infty} a_n x^n$ always converges at x=0.

 $\exists \, R > 0$ such that the power series converges absolutely in (-R,R) and diverges in $(-\infty,-R) \cup (R,\infty)$.

At the end points $x = \pm R$, the series may converge or diverge.

Definition

R is called the radius of convergence of the series.

(-R; R) is called the interval of convergence of the series.

Definition

Theorem

Radius of convergence of the series $\sum a_n x^n$ is determined by

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} \text{ or } R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}.$$

Example

Find the domain of convergence

a)
$$\sum_{1}^{\infty} \frac{x^n}{n+2}$$

$$\sum_{n=0}^{\infty} n! x^n$$

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n+2}$$
 b) $\sum_{n=1}^{\infty} n! x^n$ c) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$

Content

1 Definition

2 Theorems on power series

Nguyen Th Huong

Definition

Theorems on power series

Expansion of functions into power series

Proposition

Assume that $\sum_{n=0}^{\infty} a_n x^n = S(x)$ has the radius of convergence

 $R \neq 0$. Then

- **3** S(x) is integrable on $[a,b] \subset (-R,R)$.

$$\int \left(\sum_{n=0}^{\infty} a_n x^n\right) dx = \sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1} + C.$$

4 S(x) is differentiable on $(a, b) \subset (-R, R)$.

$$\left(\sum_{n=0}^{\infty}a_nx^n\right)'=\sum_{n=1}^{\infty}na_nx^{n-1}.$$

Nguyen Th Huong

Definition

Theorems on power series

functions into power series

Remark

These series have the same radius of convergence R. But their domains of convergence might be different, because of the convergence at the endpoints $x = \pm R$.

Example

Find the sum

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$\sum_{n=0}^{\infty} (3n+1)x^n.$$

Example

Find the sum
$$\sum_{n=0}^{\infty} \frac{(-1)^n (3n+1)}{8^n}.$$

Content

1 Definition

2 Theorems on power series

Nguyen Th Huong

Definition

Theorems o power series

Expansion of functions into power series

Definition

Let f(x) be an infinitely differentiable function at x_0 .

The Taylor series of f(x) at x_0 is the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

If $x_0 = 0$, the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

is called the Maclaurin series of f(x).

Definition

Expansion of functions into power series

Example

Consider
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

f(x) has derivatives of all orders and $f^{(n)}(0) = 0$, the Taylor series of f(x) is 0.

Remark

The Taylor series of f(x) at x_0 may converge or diverge. In case it converges, the sum may not equal f(x).

Nguyen TI Huong

Definition

Theorems of power series

Expansion of functions into power series

Theorem

Let f(x) have the derivatives of all orders in $I = (x_0 - R; x_0 + R)$. If there is M > 0 such that $|f^{(n)}(x)| \le M$ for all $x \in I$, $n \in \mathbb{N}$. Then the Taylor series

for all
$$x \in I$$
, $n \in \mathbb{N}$. Then the Taylor series
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \text{ converges to } f(x) \text{ in } (x_0 - R; x_0 + R).$$

Example

Expand $f(x) = e^x$ into power series.

Nguyen Th Huong

Definition

Theorems or power series

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}.$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \ x \in \mathbb{R}.$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, |x| < 1.$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n, |x| < 1.$$

Definition

Expansion of functions into power series

Example

Expand the following functions into Maclaurin series

$$f(x) = \frac{1}{x^2 - 3x + 2}.$$

$$f(x) = \ln(1+x)$$
.

$$f(x) = \arctan x$$
.

$$f(x) = \frac{1}{(1-x)^2}.$$

Example

Expand $f(x) = \ln x$ into Taylor series near x = 1.