5 Misc. Ring Tools

- 2/10: 5.1. Let M and m denote the lcm and gcd of natural numbers a, b.
 - (i) Prove that there is an isomorphism of rings

$$\phi: \mathbb{Z}/(a) \times \mathbb{Z}/(b) \to \mathbb{Z}/(M) \times \mathbb{Z}/(m)$$

Hint: Chinese Remainder Theorem.

Proof. Let $a=p_1^{e_1}\cdots p_n^{e_n}$ and $b=p_1^{f_1}\cdots p_n^{f_n}$, where $e_i,f_i\geq 0$ $(i=1,\ldots,n)$ and we pick all primes to be greater than zero to obviate the need for multiplication by a unit (1 or -1 in this case). It follows that $ab=p_1^{e_1+f_1}\cdots p_n^{e_n+f_n}$. We know from Proposition 8.13 that we can pick $m=p_1^{\min(e_1,f_1)}\cdots p_n^{\min(e_n,f_n)}$. Additionally, since ab=mM, we know that we can pick

$$M = p_1^{e_1 + f_1 - \min(e_1, f_1)} \cdots p_n^{e_n + f_n - \min(e_n, f_n)} = p_1^{\max(e_1, f_1)} \cdots p_n^{\max(e_n, f_n)}$$

By the Chinese Remainder Theorem (CRT), or more directly Corollary 7.18, we know that

$$\mathbb{Z}/(a) = \mathbb{Z}/(p_1^{e_1}) \times \cdots \times \mathbb{Z}/(p_n^{e_n}) \qquad \mathbb{Z}/(b) = \mathbb{Z}/(p_1^{f_1}) \times \cdots \times \mathbb{Z}/(p_n^{f_n})$$

Thus,

$$\mathbb{Z}/(a) \times \mathbb{Z}/(b) \cong \mathbb{Z}/(p_1^{e_1}) \times \cdots \times \mathbb{Z}/(p_n^{e_n}) \times \mathbb{Z}/(p_1^{f_1}) \times \cdots \times \mathbb{Z}/(p_n^{f_n})$$

Similarly,

$$\mathbb{Z}/(M) \times \mathbb{Z}/(m) \cong \mathbb{Z}/(p_1^{\max(e_1,f_1)}) \times \cdots \times \mathbb{Z}/(p_n^{\max(e_n,f_n)}) \times \mathbb{Z}/(p_1^{\min(e_1,f_1)}) \times \cdots \times \mathbb{Z}/(p_n^{\min(e_n,f_n)})$$

For every i = 1, ..., n, there are two relevant terms in the above direct product: $\mathbb{Z}/(p_i^{\max(e_i, f_i)})$ and $\mathbb{Z}/(p_i^{\min(e_i, f_i)})$. We divide into two cases $(\min(e_i, f_i) = e_i$ and $\min(e_i, f_i) = f_i$). If $\min(e_i, f_i) = e_i$, then $\max(e_i, f_i) = f_i$ (this holds true even when $e_i = f_i$). Thus,

$$\mathbb{Z}/(p_i^{\min(e_i, f_i)}) = \mathbb{Z}/(p_i^{e_i}) \qquad \qquad \mathbb{Z}/(p_i^{\max(e_i, f_i)}) = \mathbb{Z}/(p_i^{f_i})$$

It follows that the i^{th} and $(n+i)^{\text{th}}$ slots in the direct product expansions of $\mathbb{Z}/(a) \times \mathbb{Z}/(b)$ and $\mathbb{Z}/(M) \times \mathbb{Z}/(m)$ above are identical. Now suppose $\min(e_i, f_i) = f_i$. Then for a similar reason to the previous case,

$$\mathbb{Z}/(p_i^{\min(e_i,f_i)}) = \mathbb{Z}/(p_i^{f_i}) \qquad \qquad \mathbb{Z}/(p_i^{\max(e_i,f_i)}) = \mathbb{Z}/(p_i^{e_i})$$

Thus, since the direct product operation is commutative,^[1] we may flip the entries in the i^{th} and $(n+i)^{\text{th}}$ slots in the direct product expansion of $\mathbb{Z}/(M) \times \mathbb{Z}/(m)$ and still have an isomorphic ring. Doing this for all i proves that

$$\mathbb{Z}/(p_1^{e_1}) \times \cdots \times \mathbb{Z}/(p_n^{e_n}) \times \mathbb{Z}/(p_1^{f_1}) \times \cdots \times \mathbb{Z}/(p_n^{f_n})$$

$$\cong \mathbb{Z}/(p_1^{\max(e_1,f_1)}) \times \cdots \times \mathbb{Z}/(p_n^{\max(e_n,f_n)}) \times \mathbb{Z}/(p_1^{\min(e_1,f_1)}) \times \cdots \times \mathbb{Z}/(p_n^{\min(e_n,f_n)})$$

and hence by transitivity that

$$\mathbb{Z}/(a)\times\mathbb{Z}/(b)\cong\mathbb{Z}/(M)\times\mathbb{Z}/(m)$$

Stating that two sets are isomorphic as rings is equivalent to stating that there exists an isomorphism of rings

$$\phi: \mathbb{Z}/(a) \times \mathbb{Z}/(b) \to \mathbb{Z}/(M) \times \mathbb{Z}/(m)$$

so we are done. \Box

¹Ray said that this assertion need not be justified further.

(ii) Find necessary and sufficient conditions for uniqueness of the ϕ . Hint: Do this first when $a = p^c$ and $b = p^d$, where p is prime.

Proof. Let $a = p_1^{e_1} \cdots p_n^{e_n}$ and $b = p_1^{f_1} \cdots p_n^{f_n}$. Then a necessary and sufficient condition for the uniqueness of ϕ is that

$$e_i \neq f_i \ \forall \ i = 1, \dots, n$$

(iii) Prove that the condition you provided for part (ii) is sufficient.

Proof. Taking the hint from part (ii), we first treat the case where $a = p^c$ and $b = p^d$. WLOG, let $c \le d$, in agreement with part (ii). Suppose that $a \ne b$. Then c < d. Since ϕ is a ring homomorphism, we know that $\phi(1,1) = (1,1)$.

Now let's investigate the behavior of $\phi(1,0)$ and $\phi(0,1)$. Let $\phi(1,0)=(\gamma,\delta)$. Since (1,0) is idempotent, i.e., $(1,0)^2=(1,0)$, we have that

$$\phi[(1,0)^2] = \phi(1,0)$$
$$(\gamma,\delta)^2 = (\gamma,\delta)$$
$$(\gamma^2,\delta^2) = (\gamma,\delta)$$
$$(\gamma^2 - \gamma,\delta^2 - \delta) = (0,0)$$

Consider $\gamma(\gamma-1)=0$. It follows that $\gamma,\gamma-1$ are zero divisors. Hence, at *least* one of $\gamma,\gamma-1$ is a multiple of p. Additionally, since $p\geq 2$ and $\gamma,\gamma-1$ are offset by 1, we know that p divides at *most* one of these. Thus, we divide into two cases $(p\mid \gamma \text{ and } p\mid \gamma-1)$. Suppose first that $p\mid \gamma$. Then since the units of $\mathbb{Z}/p^n\mathbb{Z}$ are the integers coprime to p, we know that $\gamma-1$ is a unit. It follows that there exists an element $(\gamma-1)^{-1}$ and thus that

$$0 = (\gamma - 1)^{-1} \cdot \gamma(\gamma - 1)$$
$$0 = \gamma$$

In the case $p \mid \gamma - 1$, we similarly derive that $0 = \gamma - 1$, or $\gamma = 1$. Thus, $\gamma \in \{1, 0\}$. Similarly, $\delta \in \{1, 0\}$.

Now suppose $\gamma = \delta = 1$. Then $\phi(1,1) = (1,1) = \phi(1,0)$ and ϕ is not an isomorphism, a contradiction. Similarly, if $\gamma = \delta = 0$, then $\phi(0,0) = (0,0) = \phi(1,0)$, which is the same contradiction. Therefore, $\phi(1,0) \in \{(1,0),(0,1)\}$.

It follows by a symmetric argument that $\phi(0,1) \in \{(1,0),(0,1)\}$. For the same isomorphism reason, $\phi(1,0)$ and $\phi(0,1)$ must equal distinct elements. Thus, ϕ can be two possible isomorphisms, since the values of $\phi(1,0)$ and $\phi(0,1)$ determine all other values of ϕ .

We now invoke the condition that c < d. We know that $(1,0)^{p^c} = (0,0)$. Suppose $\phi(1,0) = (0,1)$. It follows that $\phi[(1,0)^{p^c}] = (0,p^c) \neq (0,0)$, we have a contradiction. Therefore, we must have that ϕ is the identity isomorphism.

Now suppose that a, b have more complex prime factorizations. In particular, let $a = p_1^{e_1} \cdots p_n^{e_n}$ and $b = p_1^{f_1} \cdots p_n^{f_n}$. The existence of ϕ implies the existence of an isomorphism

$$\psi: \mathbb{Z}/(p_1^{e_1}) \times \cdots \times \mathbb{Z}/(p_n^{e_n}) \times \mathbb{Z}/(p_1^{f_1}) \times \cdots \times \mathbb{Z}/(p_n^{f_n})$$

$$\to \mathbb{Z}/(p_1^{\max(e_1, f_1)}) \times \cdots \times \mathbb{Z}/(p_n^{\min(e_n, f_n)}) \times \mathbb{Z}/(p_1^{\min(e_1, f_1)}) \times \cdots \times \mathbb{Z}/(p_n^{\min(e_n, f_n)})$$

Defining a restriction isomorphism to the n sets consisting of elements where only the p_i slots are nonzero, ψ induces n isomorphisms of the kind treated above. We know that all of these are unique. Thus, reassembling ψ , we have a unique isomorphism. It follows that ϕ is a unique isomorphism.

5.2. The Euclidean algorithm for monic polynomials is valid for every commutative ring, but it does not provide a method of obtaining the gcd because the "remainder" may not have a unit as its leading coefficient, so we cannot proceed by induction. But we may get lucky:

(i) Prove that the ideal generated by $X^m - 1$ and $X^n - 1$ in $\mathbb{Z}[X]$ is the principal ideal $(X^d - 1)$, where $d = \gcd(m, n)$.

Proof. We will prove that $(X^m - 1, X^n - 1) = (X^d - 1)$ via a bidirectional inclusion proof. Suppose first that $p \in (X^m - 1, X^n - 1)$. Then there exist polynomials $a, b \in \mathbb{Z}[X]$ such that $p(X) = a(X) \cdot (X^m - 1) + b(X) \cdot (X^n - 1)$. Now since $d = \gcd(m, n)$, there exist s, t such that m = sd and n = td. Using s, t, we may write

$$X^{m} - 1 = (X^{d} - 1) \cdot \sum_{i=0}^{s-1} X^{di}$$

$$X^{n} - 1 = (X^{d} - 1) \cdot \sum_{i=0}^{t-1} X^{di}$$

Therefore,

$$\begin{split} p(X) &= a(X) \cdot (X^m - 1) + b(X) \cdot (X^n - 1) \\ &= a(X) \cdot (X^d - 1) \cdot \sum_{i=0}^{s-1} X^{di} + b(X) \cdot (X^d - 1) \cdot \sum_{i=0}^{t-1} X^{di} \\ &= \left[a(X) \cdot \sum_{i=0}^{s-1} X^{di} + b(X) \cdot \sum_{i=0}^{t-1} X^{di} \right] \cdot (X^d - 1) \\ &\in (X^d - 1) \end{split}$$

as desired.

On the other hand, suppose that $p \in (X^d - 1)$. Then there exists a polynomial $a \in \mathbb{Z}[X]$ such that $p(X) = a(X) \cdot (X^d - 1)$. WLOG let $n \leq m$. Then since

$$X^{m} - 1 = X^{m-n}(X^{n} - 1) + (X^{m-n} - 1)$$

we see that we can actually invoke a Euclidean algorithm for monic polynomials here. Thus, continuing, we will eventually reach $X^d - 1$ and thus can rewrite

$$X^{d} - 1 = b(X) \cdot (X^{m} - 1) + c(X) \cdot (X^{n} - 1)$$

Therefore,

$$\begin{split} p(X) &= a(X) \cdot (X^d - 1) \\ &= a(X) \cdot [b(X) \cdot (X^m - 1) + c(X) \cdot (X^n - 1)] \\ &= a(X)b(X) \cdot (X^m - 1) + a(X)c(X) \cdot (X^n - 1) \\ &\in (X^m - 1, X^n - 1) \end{split}$$

as desired. \Box

(ii) Deduce that $gcd(q^m-1,q^n-1)=(q^d-1)$ for every integer q.

Proof. Consider the evaluation homomorphism $\operatorname{ev}_q: \mathbb{Z}[X] \to \mathbb{Z}$. Since every integer $z \in \mathbb{Z}$ is an element of $\mathbb{Z}[X]$, ev_q is surjective. It follows by Exercise 7.3.24(b) of Dummit and Foote (2004) (proven in HW2) that ev_q sends ideals to ideals. Thus, under ev_q ,

$$(X^m - 1, X^n - 1) \mapsto (q^n - 1, q^m - 1)$$
 $(X^d - 1) \mapsto (q^d - 1)$

It follows since $(X^m - 1, X^n - 1) = (X^d - 1)$ as per part (i) that $(q^n - 1, q^m - 1) = (q^d - 1)$, and hence $gcd(q^m - 1, q^n - 1) = (q^d - 1)$, as desired.

5.3. Let K be the quotient field of a UFD R. If $f \in R[X]$ is a monic polynomial, $c \in K$, and f(c) = 0, then $c \in R$.

Proof. Since f(c) = 0, it follows that

$$f(X) = q(X) \cdot (X - c)$$

for some $q \in K[X]$. Note that since f is monic, q must have leading coefficient 1. The main takeaway from the above equation is that f is reducible in K[X]. Thus, since R is a UFD, Frac R = K, $f \in R[X]$, and f is reducible in K[X], Gauss' Lemma asserts that there exist $r, s \in K$ such that $rq, s(X - c) \in R[X]$ and

$$f(X) = rq(X) \cdot s(X - c)$$

is a factorization of f in R[X]. But since q, (X - c) have leading coefficient 1 and f is monic, we must have rs = 1. Therefore,

$$f(X) = q(X) \cdot (X - c)$$

is a factorization in R[X]. In particular, $X - c \in R[X]$, meaning that $c \in R$, as desired.

- **5.4.** State whether true or false. If false, give a counterexample.
 - (i) If R is a UFD, then $D^{-1}R$ is a UFD.

Answer. True. \Box

(ii) Let K be the field of fractions of a PID R. If $R \subset A \subset K$ is a chain of rings, then $A = D^{-1}R$ for some multiplicative subset D of R.

Answer. True.
$$\Box$$

(iii) Same problem as in (ii), except that now R is a UFD.

Answer. True.
$$\Box$$

(iv) Let K be the field of fractions of an integral domain R. If D_1, D_2 are multiplicative subsets of R, then $D_1^{-1}R$ and $D_2^{-1}R$ are subrings of K. If $D_1^{-1}R = D_2^{-1}R$, then $D_1 = D_2$.

Answer. False.

Let $R = \mathbb{Z}$. Pick $D_1 = \mathbb{N}$ and $D_2 = \mathbb{Z} - \{0\}$. Then since $D_1 \subset D_2$, any $a/b \in D_1^{-1}R$. If $a/b \in D_2^{-1}R$, then we divide into two cases. If the denominator is positive, we are done. If the denominator is negative, represent the fraction by another member of the equivalence class: $-a/-b \in D_1^{-1}R$.

5.5. Let $f \in \mathbb{Z}[X]$ be a polynomial with content 1. Let p be prime and let \bar{f} denote the image of f in $\mathbb{F}_p[X]$. If $\deg(f) = \deg(\bar{f})$ and \bar{f} is irreducible, show that f is irreducible in $\mathbb{Z}[X]$.

Proof. To prove that f is irreducible in $\mathbb{Z}[X]$, it will suffice to show that for any factorization f = qh of f, q or h is a unit. Let f = qh, let $d = \deg(f)$, and let $\pi : \mathbb{Z}[X] \to \mathbb{F}_p[X]$. We have that

$$\bar{f} = \pi(f) = \pi(qh) = \pi(q)\pi(h) = \bar{q} \cdot \bar{h}$$

Since \bar{f} is irreducible, either \bar{q} or \bar{h} is a unit in $\mathbb{F}_p[X]$. WLOG, let \bar{h} be a unit. Then $\deg(\bar{h}) = 0$. Thus,

$$\deg(\bar{q}) = \deg(\bar{f}) - \deg(\bar{h}) = d - 0 = d$$

It follows since $\deg(q) \geq \deg(\bar{q})$ that $\deg(q) = d$, and hence $\deg(h) = 0$ as well. Consequently, h is an integer. Moreover, since c(f) = 1, $h \mid 1$, so $h = \pm 1$, i.e., is a unit. Therefore, f is irreducible in $\mathbb{Z}[X]$.

5.6. If R is a (commutative) ring of characteristic p, where p is prime, show that $(a+b)^p = a^p + b^p$.

Proof. By the binomial theorem,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} y^k = \sum_{k=0}^p \frac{p!}{k!(p-k)!} a^{p-k} y^k$$

It follows that in all cases except when k=0, p, the coefficient is a multiple of p. In particular, if the coefficient is a multiple of p in a ring of characteristic p, the coefficient is equal to zero. Therefore, all terms save the k=0 and k=p terms disappear, leaving only

$$(a+b)^p = a^p + b^p$$

as desired. \Box