Feuille d'exercices n°8

Fonctions de deux variables réelles

(du lundi 15 avril 2013 au vendredi 19 avril 2013)

Exercice 1

Déterminer les extrema locaux éventuels des fonctions suivantes :

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 définie par $f(x,y) = x^2 + (x+y-1)^2 + y^2$

2.
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 définie par $g(x,y) = x^3 + xy^2 - x^2y - y^3$

3.
$$h\,:\,\mathbb{R}^2\to\mathbb{R}$$
 définie par $h(x,y)=(x+y)^2+x^4+y^4$

4.
$$k: \mathbb{R}^2 \to \mathbb{R}$$
 définie par $k(x,y) = x^2 + xy + y^2 + 2x + 3y$

5.
$$l: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$$
 définie par $l(x,y) = x((\ln(x))^2 + y^2)$

6.
$$m\,:\,\mathbb{R}^2\rightarrow\mathbb{R}$$
 définie par $m(x,y)=x^3-x^2y+3y^2$

Exercice 2

- 1. Trouver toutes les fonctions de \mathbb{R}^2 dans \mathbb{R} vérifiant $\frac{\partial^2 f}{\partial x^2} = 0$
- 2. Trouver toutes les fonctions de \mathbb{R}^2 dans \mathbb{R} vérifiant $\frac{\partial^2 f}{\partial x \partial y} = 0$

Exercice 3

Soit $z = e^{\varphi(x,y)}$ où φ est une fonction deux fois dérivable sur \mathbb{R}^2 .

- 1. Calculer $\frac{\partial^2 z}{\partial x \partial y}$
- 2. En déduire toutes les fonctions φ telles que $\frac{\partial^2 \varphi}{\partial x \partial y} + \frac{\partial \varphi}{\partial x} \cdot \frac{\partial \varphi}{\partial y} = 0$