MicroBlazeMCS_IO バス用設計データの使い方

ファイル一覧

・mb_mcs_sys. v トップ回路

・iobus_reg. v 設定レジスタ回路

・iobus_bram. v ブロック RAM インターフェース回路

・user_module.v デバック回路

・test_mcs_sys.v テストベンチ

・mb_mcs_sys.ucf ピン配置指定

・helloworld.c Cソースコード

手順

- ・設計用フォルダ mb_i obus/mb_mcs_sys を作成する
- ・記事のダウンロードデータの microblaze_mcs/mb_iobus の下にある Verilog-HDL ソースと UCF ファイルを mb_iobus/mb_mcs_sys ヘコピー
- ・環境変数 XIL_CG_LOAD_ALL_FAMILIES が設定されてない場合は環境変数を追加する コントロールパネル→システムとセキュリティ→システム→システムの詳細設定→環境変数→ユザー環境 変数: 新規をクリック

変数名: XIL CG LOAD ALL FAMILIES 値: true を入力して OK

• ProjectNavigator を起動して以下の手順で設計プロジェクト作成

プロジェクト名と設計フォルダ指定

デバイス指定 LX9 マイクロボードに合わせる

設計データの追加

ファイルの指定、mb_mcs_sys の下にある Verilog-HDL ファイルと UCF ファイルを指定

mb_mcs_sys. ucf はインプリメンテーションで使用するので Inplementation を指定test_mb_mcs_sys. v はテストベンチなので Simulation を指定

ProjectNavigator で MicroBlaze MCS を追加する

ファイル名を mb_mcs に指定

MicroBlaze MCS 選択

Finsh で COREgenerator 起動

MicroBlaze MCS の基本設定

UART の設定

FITの指定

PIT の指定

GPO の設定

GPI の指定

外部割り込みの設定後に Genrate をクリックすると MicroBlaze MCS がプロジェクトに追加される

<u>D</u>atasheet

Generate Cancel Help

ブロック RAM の作成

ファイル名指定 bram_32b_512w

Block Memory Genetator を指定

Finish をクリックすると COREgenetator が起動

ブロック RAM インターフェースの設定

メモリのタイプ指定

データ幅、データ量の指定

Generate をクリックで作成開始

インプリメンテーションの実行

次に Xilinx Software Development Kit(以降 SDK)でソフトウェアを作ります。

SDK を起動するとワークスペースを指定が要求されます。設計フォルダ/sdk/waorkspace を設定

新規のソフトウェアプロジェクト作成

始めに TargetHardware を新規で定義する

SDK の管理するハードウェアプロジェクト名指定

xlm ファイル(設計ファルダ/ipcore_dir/mb_msc. sdk. xml) 指定

ソフトウェアプロジェクト名指定

テンプレートに Hello World 選択後、Finish をクリックでソフトウェアプロジェクトが作成される

hello_world_sw1 の Helloworld. c にダウンロードデータの mb_iobus/ Helloworld. c の内容を書き写しセーブする。ビルドが実行され、

実行ソフトウェアのファイル (sdk/workspace/hello_word_sw1/Debug/hello_word_sw1.elf) が作られる。

ProjectNavigator で Tcl コマンドを使用できるように Tcl Console を表示する

ProjectNavigator で TCL コマンドを使って実行ソフトウェアのファイルを MicroBlazeMCS のメモリの初期値定義ファイルに変換する。

source ipcore_dir/microblaze_mcs_setup.tcl

microblaze_mcs_data2mem sdk/workspace/hello_world_sw1/Debug/hello_world_sw1.elf

Isimの実行

シミュレーションを最後まで実行

- ・シミュレーションで波形確認したら FPGA で動作確認します。
- -LX9 マイクロボードのプログラミング用 USB と UART 用 USB をそれぞれ PC の USB ポートに接続で接続します。

rojectNavigator で iMPACT を起動

BoundaryScan モードにする

BoundaryScan のウインドをダブルクリックで FPAG を検出する

Yes で FPGA に書き込むファイルを指定する

mb_mcs_sys.bit を指定

PROM データは使わないので No を選択

FPGA へのプログラミング実行

ProgramSucceeded と表示されればプログラミング完了、LX9 マイクロボードの動作を確認する。

・ソフトウェアのみを変更した場合はSDKから elfファイルをFPGAにダウンロードできます。

C ソースコードを変更して、save するとビルドが実行されて新しい elf ファイルが作成さる。

hello world sw1をクリックして選択

Run \rightarrow Run As \rightarrow Launch on Hardware で新しい elf が FPGA \sim ダウンロードされて実行される ダウンロードに失敗する場合は SDK を終了させて再起動してください。