#### Substitution Techniques



#### Dr. E. Suresh Babu

**Assistant Professor** 

**Department of CSE** 

National Institute of Technology, Warangal

#### **Outline**

- Substitution Techniques
- \* Types of Substitution Cipher
- Mono-alphabetic Cipher
  - ✓ Caesar Cipher
  - ✓ Analysis of Caesar Cipher
  - **✓** Monoalphabetic Substitution Ciphers

#### Operations on Encryption Algorithm

- All Encryption Algorithms are based on two general principles:
  - **✓** Substitution
  - **✓** Transposition
- Substitution: Each element in the Plaintext (Bit, Letter, Group of Bits Or Letters) is mapped into Another Element,
- Transposition: Each elements in the plaintext are rearranged.

# Substitution Techniques

#### Introduction

- Before Computers, Cryptography consisted of Character-based Algorithms.
- The better algorithms always use both Substitution and

**Transposition** 

#### Substitution Cipher

- ❖ A Substitution Cipher is one in which each character in the plaintext is SUBSTITUTED for another character in the ciphertext.
- \* The receiver inverts the substitution on the ciphertext to recover the plaintext.

#### **Types of Substitution Cipher**

#### Types of Substitution Cipher

- In Classical Cryptography, there are Four Types of Substitution Ciphers:
  - 1. A Simple Substitution Cipher or Mono-alphabetic Cipher.
  - 2. A Homophonic Substitution Cipher.
  - 3. A Polygram Substitution Cipher.
  - 4. A Polyalphabetic Substitution Cipher.

# Mono-alphabetic Cipher

#### Mono-alphabetic Cipher

- \* A Mono-alphabetic Cipher.,
  - ✓ Each character of the plaintext is replaced uniquely with a corresponding character of cipher text.
- The famous Caesar Cipher is falls under simple substitution cipher

## Types of Mono-alphabetic Cipher

#### Types of Mono-alphabetic Cipher

- \* A Mono-alphabetic Cipher falls under three categories
  - √ Caesar Cipher
  - ✓ Substitution Cipher
  - √ The Affine Cipher

# Caesar Cipher

#### Caesar Cipher

- Caesar Cipher is also called as Shift Cipher which is Primitive(basic) Cipher
- Caesar substitution Cipher was introduced by Julius Caesar.

#### Working Model of Caesar Cipher

\* The Caesar cipher involves replacing each letter of the alphabet with the Unique letter standing THREE places further down the alphabet.

#### Working Model of Caesar Cipher

Let us Consider the set

 $Z_{26} = \{0,1,2,3,\ldots\}$  usually represented with Alphabets A-Z

Let us also consider the tuples

P=C=K= Z<sub>26</sub> Here K is the Piece of Information called KEY

which also contains 26 Character(0<K<25)

#### Simplified the Caesar Cipher

❖ We can define the **transformation by listing all possibilities**, as follows:



Let us assign a numerical equivalent to each letter:

|   | Plain Text |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| a | b          | c | d | e | f | g | h | i | j | k  | 1  | m  | n  | О  | p  | q  | r  | S  | t  | u  | V  | W  | X  | y  | Z  |
| 0 | 1          | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

## Working Model of Caesar Cipher

❖ We define Encryption Function with help of KEY

$$E_{K}(x) = x + K \mod 26$$

We define Decryption Function with help of KEY

$$D_{K}(y) = y - K \mod 26$$

Finally We define Caesar Cipher with help of KEY

$$P=D_K(E_k(x))$$

#### Example of Working Model

- $\bullet$  P = {A=0,B=1,C=2,D=3.....}
- $\star$  K = {A=0,B=1,C=2,D=3.....}
- ❖ We define **Encryption Function** with help of **KEY**

$$E_K(x) = x + K \mod 26$$

 $E_K(x) = O(A) + 3(D) \mod 26 = 3(D)$  is a Cipher text

#### Example of Working Model

\* We define Encryption Function with help of KEY

$$D_{K}(y) = y - K \mod 26$$

$$E_K(x) = 3(D) - 3(D) \mod 26 = 0(A)$$
 is a Plain text

# **Analysis of Caesar Cipher**

#### **Analysis of Caesar Cipher**

- Plain Text : meet me after the toga party
- \* Cipher Text : PHHW PH DIWHU WKH WRJD SDUWB

#### **Analysis of Caesar Cipher**

If it is **Cryptanalyst** knows that a given **Cipher text** is a **Caesar Cipher**,

- ✓ Brute-force Cryptanalysis is easily performed
- ✓ Simply try all the **25 possible keys**

#### Characteristics of Caesar Cipher

\*Three important characteristics of this Caesar Cipher enabled

to use a brute force cryptanalysis:

- 1. The encryption and decryption algorithms are known.
- 2. There are **only 25 keys** to try.
- 3. The language of the plaintext is known and easily

recognizable

# What makes brute-force cryptanalyst impractical

- Caesar Cipher Algorithm should employs a large number of keys.
- ❖ For example, the triple DES algorithm, makes use of a 168-bit key,
- ightharpoonup The key space of  $2^{168}$  or  $3.7 * 10^{50}$  possible keys.

#### Brute-Force Cryptanalysis of Caesar Cipher

| Г |     | PHHW | PH | DIWHU | WKH | WRJD | SDUWB |
|---|-----|------|----|-------|-----|------|-------|
|   | KEY |      |    |       |     |      |       |
|   | 1   | oggv | og | chvgt | vjg | vqic | rctva |
|   | 2   | nffu | nf | bgufs | uif | uphb | qbsuz |
|   | 3   | meet | me | after | the | toga | party |
|   | 4   | ldds | ld | zesdq | sgd | snfz | oząsx |
|   | 5   | kccr | kc | ydrcp | rfc | rmey | nyprw |
|   | 6   | jbbq | jb | xcqbo | qeb | qldx | mxoqv |
|   | 7   | iaap | ia | wbpan | pda | pkcw | lwnpu |
|   | 8   | hzzo | hz | vaozm | ocz | ojbv | kvmot |
| ı | 9   | gyyn | gу | uznyl | nby | niau | julns |
| ı | 10  | fxxm | fx | tymxk | max | mhzt | itkmr |
| ı | 11  | ewwl | ew | sxlwj | lzw | lgys | hsjlq |
| ı | 12  | dvvk | đv | rwkvi | kyv | kfxr | grikp |
|   | 13  | cuuj | cu | qvjuh | jxu | jewq | fqhjo |
|   | 14  | btti | bt | puitg | iwt | idvp | epgin |
|   | 15  | assh | as | othsf | hvs | hcuo | dofhm |
| ı | 16  | zrrg | zr | nsgre | gur | gbtn | cnegl |
|   | 17  | yqqf | уq | mrfqd | ftq | fasm | bmdfk |
|   | 18  | xppe | хp | lqepc | esp | ezrl | alcej |
|   | 19  | wood | wo | kpdob | dro | dyqk | zkbdi |
|   | 20  | vnnc | vn | jocna | cqn | схрј | yjach |
|   | 21  | ummb | um | inbmz | bpm | bwoi | xizbg |
|   | 22  |      |    | hmaly |     |      |       |
|   | 23  | skkz | sk | glzkx | znk | zumg | vgxze |
|   | 24  |      |    |       |     |      | ufwyd |
|   | 25  |      |    | ejxiv |     | _    |       |
| L |     |      |    |       |     |      |       |

#### Observation

\*The third characteristic is also **significant**. If the language of the **plaintext is unknown**, then plaintext **output may not be recognizable** 

```
~+Wμ"- Ω-0)≤4{∞‡, ë~Ω%ràu·¯Í ◊¯Z-
Ú≠2Ò#Åæ∂ œ«q7,Ωn·®3N◊Ú Œz'Y-f∞Í[±Û_ èΩ,<NO¬±«`xã Åä£èü3Å
x}ö§k°Å
_yÍ ^ΔÉ] ˌ¤ J/'iTê&ı 'c<uΩ-
ÄD(G WÄC~y_ïõÄW PÔι«Î܆ç],¤;`Ì^üÑπ`≈`L`9OgflO~&Œ≤ ¬≤ ØÔ§″:
~Œ!SGqèvo^ ú\.S>h<-*6ø‡%x´″|fió#≈~my‰`≥ñP<,fi Áj Å◊¿″Zù-
Ω"Õ¯6Œÿ{% "ΩÊó ¸ï π+Áî°úO2çSÿ′O-
2Äflßi /@^"∏K°°PŒπ,úé^′3∑~ŏ~ÔZÌ~Y¬ŸΩœY> Ω+eô/`<Kf¿*+~"≤û~
B ZøK~Qßÿüf,!ÒflÎzsS/]>ÈQ ü
```

Sample of Compressed Text

#### Limitations of Caesar Ciphers

\* Caesar cipher is far from secure, With only 25 possible keys

are used, as **Cryptanalyst** can easily **deduce** the key by

Bruce-force attack.

#### Monoalphabetic Substitution Ciphers

#### Substitution Ciphers

- ❖ One way to increase the key space and improve the security of the cipher is to allow arbitrary substitution.
- In this case, the "cipher" can be any PERMUTATION of the
  26 alphabetic characters.

#### **PERMUTATION**

❖ A Permutation of a finite set of elements is an ordered sequence of all the elements of S, with each element appearing exactly once.

#### For Example

✓ if S= {a, b, c} there are six permutations of abc, acb, bac, bca, cab, cba

#### Monoalphabetic Substitution Cipher

❖ In a monoalphabetic cipher, our substitution characters are a random permutation of the 26 letters of the alphabet



\* The **key** now is the **sequence of substitution letters**. In other words, the **key** in this case is the **actual random permutation** of the alphabet used.

## Monoalphabetic Substitution Cipher

- Arbitrary substitution of letters
- **❖** Number of keys **26×25×...×1** = **26!** (Over 4×1026)
- Note that there are **26! permutations** of the alphabet. That is a

number larger than  $4 \times 1026$ .

# Advantages of Substitution Cipher

- Substitution Cipher will eliminate brute-force techniques for cryptanalysis.
  - ✓ Requires >2<sup>88</sup> Possible Keys for brute-force attacks which take zillions of years to try out even half the keys

#### Limitation of Substitution Cipher

\* Any Substitution Cipher, regardless of the size of the key space, can be broken easily with a Statistical Attack.

# Frequency Analysis of Substitution Ciphers

#### Frequency Analysis

- \* Substitution Cipher suffers Statistics attack,
  - ✓ If the cryptanalyst knows the nature of the plaintext, then the analyst can exploit the regularity of the language, called FREQUENCY ANALYSIS.
- Frequency Analysis studies the frequency of letters or groups of letters in a ciphertext.

#### Frequency Analysis

- When the plaintext is plain English, a simple form of statistical attack consists measuring the frequency distribution for
  - ✓ Single Characters,
  - ✓ Pairs of Characters,
  - ✓ Triples of Characters, etc.,
- Comparing all character with similar statistics for English

#### Relative Frequency of the letters of English text



#### Relative Frequency of the letters of English text



# The Relative Frequencies of the Letters in the Ciphertext (In Percentages)



# The Relative Frequencies of the Letters in the Ciphertext (In Percentages) in Decreasing Order



### Comparing The Relative Frequencies of the Plain Text & Ciphertext



PZSUOMHDEVXFWQTABGYIJCKLNR RELATIVE FREQUENCIES OF CIPHER TEXT



### Digram Frequencies

| digram | frequency | digram | frequency | digram | frequency | digram | frequency |
|--------|-----------|--------|-----------|--------|-----------|--------|-----------|
| th     | 3.15      | to     | 1.11      | sa     | 0.75      | ma     | 0.56      |
| he     | 2.51      | nt     | 1.10      | hi     | 0.72      | ta     | 0.56      |
| an     | 1.72      | ed     | 1.07      | le     | 0.72      | ce     | 0.55      |
| in     | 1.69      | is     | 1.06      | so     | 0.71      | ic     | 0.55      |
| er     | 1.54      | ar     | 1.01      | as     | 0.67      | ll     | 0.55      |
| re     | 1.48      | ou     | 0.96      | no     | 0.65      | na     | 0.54      |
| es     | 1.45      | te     | 0.94      | ne     | 0.64      | ro     | 0.54      |
| on     | 1.45      | of     | 0.94      | ec     | 0.64      | ot     | 0.53      |
| ea     | 1.31      | it     | 0.88      | io     | 0.63      | tt     | 0.53      |
| ti     | 1.28      | ha     | 0.84      | rt     | 0.63      | ve     | 0.53      |
| at     | 1.24      | se     | 0.84      | co     | 0.59      | ns     | 0.51      |
| st     | 1.21      | et     | 0.80      | be     | 0.58      | ur     | 0.49      |
| en     | 1.20      | al     | 0.77      | di     | 0.57      | me     | 0.48      |
| nd     | 1.18      | ri     | 0.77      | li     | 0.57      | wh     | 0.48      |
| or     | 1.13      | ng     | 0.75      | ra     | 0.57      | ly     | 0.47      |

### Trigrams Frequencies

- ❖ A powerful tool is to look at the frequency of THREE-letter combinations, known as Trigrams.
- The most frequently occurring trigrams ordered by decreasing frequency are:

the, and, ent, ion, tio, for, nde ..... are some of the Trigram

The Ciphertext to be solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZVU EPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSXEPYEPOPDZS ZUFPOMBZWPFUPZHMDJUDTMOHMQ

❖ The most common such digram is th. In our ciphertext, the most common digram is ZW which appears three times. So we make the correspondence of Z with t and W with h. we can equate P with e.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZVUEPHZHMDZSHZO WSFPAPPDTSVPQUZWYMXUZUHSXEPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMO HMQ

UZQSOVUOHXMOPVGPOZPEVSGthSZOPFPESXUDBETSXAIZVUEPHZ HMDZSHZOWSFPAPPDTSVPQUthYMXUZUHSXEPYEPOPDZSZUFPOM BthPFUPZHMDJUDTMOHMQ

❖ Now notice that the **sequence ZWP** appears in the **ciphertext**, and we can translate that **sequence as "the."** 

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZVUEPHZHMDZSHZ OWSFPAPPDTSVPQUZWYMXUZUHSXEPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTM OHMQ

UZQSOVUOHXMOPVGPOZPEVSGthSZOPFPESXUDBETSXAIZVUEPHZ HMDZSHZOWSFPAPPDTSVPQUthYMXUZUHSXEPYEPOPDZSZUFPOM BtheFUPZHMDJUDTMOHMQ

❖ Next, notice the sequence ZWSZ in the first line. We do not know that these four letters form a complete word, but if they do, it is of the form th\_t. If so, S equates with 'a'.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZVUEPHZHMDZSHZ OWSFPAPPDTSVPQUZWYMXUZUHSXEPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTM OHMQ

UZQSOVUOHXMOPVGPOZPEVSGthatOPFPESXUDBETSXAIZVUEPHZ HMDZSHZOWSFPAPPDTSVPQUthYMXUZUHSXEPYEPOPDZSZUFPOM BtheFUPZHMDJUDTMOHMQ

we have

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

ta e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

e e e tat e the t
```

Finally, The complete plaintext, with spaces added between words as follows:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

# Limitations of Monoalphabetic Substitution ciphers

Monoalphabetic Substitution ciphers are easy to break because they reflect the frequency data of the original alphabet

#### **Outline**

- Substitution Techniques
- \* Types of Substitution Cipher
- Mono-alphabetic Cipher
  - ✓ Caesar Cipher
  - ✓ Analysis of Caesar Cipher
  - **✓** Monoalphabetic Substitution Ciphers

### Thank U