How do Switches Maintain Routing Tables? Distance-vector (Bellman-Ford) Distance Vector (Bellman-Ford) s.t. patt langth & h haps 14= N nodes Duit Diest =0 Di & Jest for h=192,3,...,2 N-1 Di = min (Dk + Wik) keNeighbors(i) Matta @ BUCS - Routing 1-18

18

19

How do Switches Maintain Routing Tables?

Distance-vector (Bellman-Ford)

- □ Each node keeps in its routing table its current best distance (cost) to each destination node: (Destination, Cost, NextHop)
- Initially, the routing table of each node contains its neighbor nodes and distances to them
- Each node sends a copy of its routing information {(Destination, Cost)} to each of its neighbor nodes
 - $_{\mathrm{m}}$ periodically (on the order of several seconds)
 - m whenever its table changes (called *triggered* update)
- m wnenever its table changes (called *Traggered* update)

 Upon receiving a message from a neighbor J, a node K updates its routing table as follows:

 m If node J knows a shorter path to some destination, node K updates its corresponding entry with J as the new next-hop

 m If node J reports a distance for an unknown destination, node K adds a new entry for it with J as the next-hop

 m If node K is using node J as its next-hop to some destination node and J reports a change in its distance to it, K updates the corresponding entry

Matta @ BUCS - Routing 1-20

Routing Loops can still happen!

- □ link CD goes down
- □ loop forms involving A, B and C

Matta @ BUCS - Routing 1-27

27

Path Vector Routing

□ loops can be completely avoided

Matta @ BUCS - Routing 1-28

28

<u>Distance-Vector versus Link-State</u>

Distance-Vector:

- □ Easy to implement
- □ Larger routing update messages: message size is proportional to the number of nodes in the network
- □ Slow to converge: route computation is distributed
- □ Loops/count-to-infinity may happen
- □ If link changes don't affect shortest path, no message exchange

Matta @ BUCS - Routing 1-29

<u>Distance-Vector versus Link-State</u>

Link-State:

 Smaller routing update messages: message size depends on the number of neighbors a node has

 Converges quickly: route computation is centralized A node stores a complete view of the network 	
□ Any link change requires a broadcast	
Both have strengths and weaknesses. One or the other is used in almost every network	
Matta @ BUCS - Routing 1-30	
30	