

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт радиоэлектроники и информатики Кафедра геоинформационных систем

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 8

Реализация заданной логической функции от четырех переменных на мультиплексорах 16-1, 8-1, 4-1, 2-1 по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИН	<i>НБО-10-23</i>		Боргачев Т. М.
Принял Ассистент кафедры ГИС Ассистент кафедры ГИС			Синичкина Д. А. Чижикова Н. С.
Практическая работа выполнена	« <u> » </u>	2023 г.	
«Зачтено»	« »	_2023 г.	

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1 Построение таблицы истинности	4
2.2 Сбор схем	5
3 ВЫВОДЫ	10
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	11

1 ПОСТАНОВКА ЗАДАЧИ

- 1. Запустить лабораторный комплекс и получить персональные исходные данные для работы.
- 2. По полученным из лабораторного комплекса персональным данным (смотреть рис. 1) необходимо восстановить таблицу истинности, по таблице истинности реализовать в лабораторном комплексе логическую функцию на мультиплексорах следующими способами:
 - используя один мультиплексор 16-1;
 - используя один мультиплексор 8-1;
 - используя минимальное количество мультиплексоров 4-1;
 - используя минимальную комбинацию мультиплексоров 4-1 и 2-1.

Рисунок 1 - Персональные данные

- 3. Запустить процесс тестирования схем, чтобы убедиться в правильности их работы. В случае обнаружения ошибки найти ее и исправить.
 - 4. Продемонстрировать правильность работы схем преподавателю
- 5. Оформить отчет по практической работе в соответствии с требуемым содержанием.
- 6. Защитить практическую работу, отвечая на дополнительные вопросы, и получить роспись преподавателя в тетради учета.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Построение таблицы истинности

Число F1 представлено в 16-ичной системе счисления, для восстановления таблицы истинности, необходимо каждую цифру числа поочередно перевести в двоичную систему счисления. Таким образом число E95A примет вид: 1110 1001 0101 1010. Представим каждую цифру в качестве a, b, c, d, а само число функцией F соответственно, тогда таблица истинности примет вид:

Таблица 1 - Таблица истинности для функции F

a	b	c	d	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

2.2 Сбор схем

Реализуем функцию, используя мультиплексор 16-1. Количество информационных входов мультиплексора соответствует количеству значений логической функции. Поэтому подадим значения функции на соответствующие входы с помощью констант. На адресные (выбирающие) входы мультиплексора подадим при помощи шины значения логических переменных. Собранная и протестированная схема показана на рис. 2.

Рисунок 2 - Верная схема, реализующая логическую функцию на мультиплексоре 16-1.

Выполним реализацию заданной логической функции при помощи мультиплексора 8-1. Мультиплексор 8-1 имеет 3 адресных входа, мы можем в качестве адресных переменных выбрать любые три из имеющихся, а оставшуюся четвертую рассматривать наравне с логическими константами как элемент исходных данных для информационных входов.

Таблица 2 – Взаимосвязь значений функции и значений «d».

a	b	c	F
0	0	0	1
0	0	1	\bar{d}
0	1	0	\bar{d}

a	b	c	F
0	1	1	d
1	0	0	d
1	0	1	d
1	1	0	\bar{d}
1	1	1	$ar{d}$

Теперь, рассматривая переменную d наравне с константами 0 и 1 в качестве сигналов для информационных входов мультиплексора 8-1, можно по аналогии с предыдущим случаем выполнить реализацию требуемой функции (рис. 3).

Рисунок 3 — Верная схема, реализующая логическую функцию на мультиплексоре 8-1

Реализуем заданную функцию на минимальном количестве мультиплексоров 4-1. Мультиплексор 4-1 имеет 2 адресных входа и 4 информационных. Это означает, что мы должны разбить исходную таблицу истинности на 4 фрагмента, за реализацию каждого из которых должен отвечать отдельный мультиплексор, назовем его операционным. Однако, необходимо учесть требования минимальности по отношению к количеству используемых мультиплексоров и ставить их только там, где без них нельзя обойтись.

Разобьем исходную таблицу истинности на зоны ответственности между

операционными мультиплексорами (рис. 4).

a	b	С	d	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
		_		
1	0	0	1	1
1	0	0	0	0
1	0	1	0	0
1	0	1	0	0
1 1	0 0	1 1 0	0 1 0	0 1

Рисунок 4 - Разбиение исходной таблицы истинности на зоны ответственности для потенциальных операционных мультиплексоров

В третьем случае можно обойтись без мультиплексора, заменив его значением переменной d. В остальных случаях мультиплексор нельзя заменить значением без использования альтернативных логических функций, помимо отрицания. Собранная схема представлена на рис. 5.

Рисунок 5 - Верная схема, реализующая логическую функцию на минимальном количестве мультиплексоров 4-1

Реализуем логическую функцию, используя минимальную комбинацию мультиплексоров 4-1 и 2-1. В качестве отправной точки рассмотрим результаты, полученные в предыдущей реализации. Управляющий мультиплексор нельзя заменить на мультиплексор 2-1, поскольку у него на входах уникальные сигналы, остальные три можно, поскольку они имеют дело с константами.

В первом случае, когда c=0, функция равна 1, а когда c=1 функция равна \bar{d} . Во втором случае, когда c=0, функция равна \bar{d} , а когда c=1 функция равна d. В третьем случае можно обойтись без мультиплексора, подав значение d. В четвертом случае, независимо от c, функция равна \bar{d} . Таким образом, собираем схему, заменяя мультиплексоры 4-1 на мультиплексоры 2-1.

Собранная схема представлена на рис. 6.

Рисунок 6 - Верная схема, реализующая логическую функцию на основе минимальной комбинации мультиплексоров 4-1 и 2-1

Тестирование подтвердило правильность работы схем.

3 ВЫВОДЫ

Используя персональные исходные данные, была восстановлена таблица истинности, продемонстрированы визуализация и построение комбинационных схем, реализующих логическую функцию на различных мультиплексорах четырьмя способами.

Был запущен процесс тестирования, показавший положительный результат, означающий верное составление схем.

Работа была продемонстрирована преподавателю.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Смирнов, С.С., Карпов Д.А., Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. 102 с. URL: https://cloud.mirea.ru/index.php/s/HQgynJsikf2ZsE3?dir=undefined&path=%2F&openfile=9637128 (дата обращения: 30.09.2023). Режим доступа: Электронно-облачная система Cloud MIREA PTУ МИРЭА. Текст: электронный.
- 2. Требования к оформлению электронных отчетов по работам 5-12-М., МИРЭА Российский технологический университет. 10с. URL: https://cloud.mirea.ru/index.php/s/HQgynJsikf2ZsE3?dir=undefined&path=%2FЛОВ T%2FTpe6oBahuяПоОформлениюОтчетов&openfile=9815338 (дата обращения: 30.09.2023). Режим доступа: Электронно-облачная система Cloud MIREA РТУ МИРЭА. Текст: электронный.