Chapter 1 Section 2 Exercises

1. How many substrings aab are in ww^Rw , where w=aabbab.

Solution. Because

$$w^R = babbaa, \qquad ww^R w = aabbabbabbaaaabbab,$$

there are two substrings aab in ww^Rw .

2. Use induction on n to show that $|u^n| = n|u|$ for all strings u and all n.

Proof.

1. Basis

If n = 0, then

$$|u^1| = |u|, \qquad 1 \cdot |u| = |u|.$$

Therefore,

$$|u^1| = 1 \cdot |u|.$$

2. Inductive Assumption

Assume that for $i = 0, 1, 2, \cdots, n$

$$|u^i| = i \cdot |u|.$$

3. Inductive Step

For i = n + 1,

$$|u^{n+1}| = |u^n u| = |u^n| + |u| = n \cdot |u| + |u| = (n+1)|u|.$$

Thus, $|u^n| = n|u|$ for all strings u and all n.

3. The reverse of a string, introduced informally above, can be defined more precisely by the recursive rules

$$a^R = a,$$

$$(wa)^R = aw^R,$$

for all $a \in \Sigma, w \in \Sigma^*$. Use this to prove that

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

Proof.

1. Basis

For |v|=1, suppose that $v=a, a \in \Sigma$

$$(uv)^R = (ua)^R = au^R = v^R u^R.$$

2. Inductive Assumption

Suppose that for $|v| = 1, 2, \dots, n$

$$(uv)^R = v^R u^R.$$

3. Inductive Step

For i = n + 1, suppose that $v = wa, a \in \Sigma$

$$(uv)^R = (uwa)^R = a(uw)^R = aw^R u^R = v^R u^R.$$

Thus,

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

4. Prove that $(w^R)^R = w$ for all $w \in \Sigma^*$.

Proof.

1. Basis

For |w| = 0, which means that $w = \lambda$,

$$(\lambda^R)^R = (\lambda)^R = \lambda = w.$$

2. Inductive Assumption

Suppose that for $|w| = 1, 2, \dots, n$

$$(w^R)^R = w.$$

3. Inductive Step

For i = n + 1, suppose that $w = va, a \in \Sigma$

$$(w^R)^R = ((va)^R)^R = (av^R)^R = (v^R)^R a = va = w.$$

Thus, $(w^R)^R = w$ for all $w \in \Sigma^*$.

5. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaaa? Which strings are in L^4 ?

Solution.

$$abaabaaabaa = ab|aa|baa|ab|aa \in L^5;$$

$$aaaabaaaa = aa|aa|baa|aa \in L^4;$$

$$baaaaabaaaab \notin L^*;$$

$$baaaaabaa = baa|aa|ab|aa \in L^4.$$