Theoretische Physik 4

Franz Ferdinand Locker, Milan Ončák

1. Übungsblatt, 4.3.2024

Abgabe bis 11.3.2024, 8:00 Uhr im OLAT

- 1. **Random walk.** Im ersten Proseminar wurde ein *random walk* in einer Dimension besprochen. Programmieren Sie einen *random walk* in zwei Dimensionen: Ein Betrunkener beginnt bei einer Lampe am Punkt (*x*, *y*) = (0,0) und macht Schritte von Länge 1 in einer zufälligen Richtung. Starten Sie 10.000 unabhängige Simulationen mit jeweils 10.000 Schritten. Visualisieren Sie einen Weg und die Distribution der Endpunkte.
- 2. **Anzahl der Möglichkeiten und Entropie.** Betrachten wir ein System von 100 unterscheidbaren Teilchen mit Spins, die zwei Werte (+½ & –½) annehmen können und nicht wechselwirken.
 - a) Berechnen Sie die Anzahl der Möglichkeiten W, dass n Spins den Wert ± 1 und ± 1 und ± 1 und ± 1 spins den Wert ± 1 haben. Plotten Sie diese als Funktion von n. Falls wir annehmen, dass es um eine Normalverteilung geht, berechnen Sie die Standardabweichung dieser Funktion.
 - b) Plotten Sie die Entropie, definiert hier als $S = k_B \ln(W)$, als Funktion von n.
 - c) Wiederholen Sie die Rechnungen aus a) und b) für ein System mit 1000 Teilchen.
- 3. **Anzahl der Zustände und Zustandsdichte.** Für die Energie eines Teilchens im d-dimensionalen Kasten mit gleich langen Seiten von L erhält man die folgende Gleichung (n_i ist die Quantenzahl für die Dimension i, m die Masse des Teilchens):

$$E_{\vec{n}} = \frac{\hbar^2 \pi^2}{2mL^2} \sum_{i=1}^d n_i^2$$

- a) Berechnen Sie die Anzahl der Zustände für ein Elektron in Kasten mit L=100 Bohr für Energien bis zu 1 eV mit d=1, 2, 3.
- b) Berechnen Sie die Anzahl der Zustände bis Energie *E* als Funktion der Energie für die drei Fälle in a).
- c) Berechnen Sie die Zustandsdichte diskretisiert mit 0,1 eV für die drei Fälle in a), d.h. die Anzahl der Zustände pro 0,1 eV.
- 4. **Einleitung zur Monte Carlo-Methodik (nach J. Kolafa, UCT Prag).** Eine Markov-Kette ist eine Folge zufälliger Prozesse, in der der nächste Schritt nur von dem aktuellen Zustand abhängt. Bearbeiten wir hier ein einfaches Beispiel einer Markov-Kette:
 - Das Netz im Büro funktioniert manchmal nicht. Wenn es heute funktioniert, funktioniert es morgen mit der Wahrscheinlichkeit von 90 %. Wenn es heute nicht funktioniert, funktioniert es morgen mit der Wahrscheinlichkeit von 30 %.
 - a) Falls das Netz heute funktioniert, was ist die Wahrscheinlichkeit, dass es auch in 5 Tagen funktioniert?

- b) Falls das Netz heute nicht funktioniert, was ist die Wahrscheinlichkeit, dass es in 5 Tagen funktioniert?
- c) Was ist die durchschnittliche Wahrscheinlichkeit, dass das Netz funktioniert? (D.h. was ist die Wahrscheinlichkeit, dass das Netz "nach sehr vielen Tagen" funktioniert?)
- d) Falls ich 200 Euro pro Tag verdiene, wenn das Netz funktioniert, aber nur 50 Euro pro Tag, falls das Netz nicht funktioniert, wieviel verdiene ich durchschnittlich pro Tag?

Bonusaufgabe (1,5 Punkte)

Betrachten wir eine Matrix von 20x20 Punkten, in der jedem Punkt eine Energie in den Einheiten von ε gegeben sein könnte. Am Anfang hat jeder Punkt die gleiche Energie $n\varepsilon$, wobei n eine ganze Zahl ist. In jedem Simulationsschritt gibt dann ein zufällig gewählter Punkt eine ε -Einheit einem zufällig gewählten Nachbarn, wobei keine negativen Energien auftreten können.

Simulieren Sie 1000-mal die Energiedistribution im System mit n=1 nach 10.000 Schritten (d.h. wie viele Punkte haben eine Energie von 0, ε , 2ε , 3ε usw.?). Mit welcher Funktion könnte man diese Distribution annähern?