

AFRL-RZ-WP-TP-2010-2082

MICROSTRUCTURAL CHARACTERIZATION OF YBa₂Cu₃O_{7-x} FILMS WITH BaZrO₃ NANORODS GROWN ON VICINAL SrTiO₃ SUBSTRATES (POSTPRINT)

F. Javier Baca, Timothy J. Haugan, Joshua Reichart, and Paul N. Barnes Mechanical Energy Conversion Branch Power Division

Rose Lyn Emergo and Judy Z. Wu University of Kansas

MARCH 2010

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

© 2009 IEEE

AIR FORCE RESEARCH LABORATORY
PROPULSION DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7251
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)	2. REPORT TY	PE	3. DATES COV	/ERED (From - To)
March 2010	Journal A	rticle Postprint	01 July 2	007 – 01 July 2009
4. TITLE AND SUBTITLE MICROSTRUCTURAL CHARAC	TERIZATION	N OF YBa ₂ Cu ₃ O _{7-x} FILMS	WITH	5a. CONTRACT NUMBER In-house
BaZrO ₃ NANORODS GROWN ON	5b. GRANT NUMBER			
				5c. PROGRAM ELEMENT NUMBER 62203F
6. AUTHOR(S)				5d. PROJECT NUMBER
F. Javier Baca, Timothy J. Haugan,	FRL/RZPG)	3145		
Rose Lyn Emergo and Judy Z. Wu (University of Kansas)				5e. TASK NUMBER
				32
				5f. WORK UNIT NUMBER
				314532ZE
7. PERFORMING ORGANIZATION NAME(S) AN	8. PERFORMING ORGANIZATION			
Mechanical Energy Conversion Branch (AF		University of Kansas		REPORT NUMBER
Power Division		Department of Physics and As	tronomy	AFRL-RZ-WP-TP-2010-2082
Air Force Research Laboratory, Propulsion		Lawrence, KS 66045		
Wright-Patterson Air Force Base, OH 45433 Air Force Materiel Command, United States				
,		2500(50)		40 ODONIO ODINO MAGNITODINO
9. SPONSORING/MONITORING AGENCY NAM	10. SPONSORING/MONITORING AGENCY ACRONYM(S)			
Air Force Research Laboratory	AFRL/RZPG			
Propulsion Directorate				
Wright-Patterson Air Force Base, C Air Force Materiel Command	11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)			
United States Air Force	AFRL-RZ-WP-TP-2010-2082			
12. DISTRIBUTION/AVAILABILITY STATEMEN		1		
Approved for public release; distrib	ution unlimite	ea.		

13. SUPPLEMENTARY NOTES

Journal article published in the *IEEE Transactions on Applied Superconductivity*, Vol. 19, No. 3, June 2009.

PA Case Number: 88ABW-2009-2978; Clearance Date: 01 Jul 2009.

© 2009 IEEE. The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.

14. ABSTRACT

When grown on miscut SrTiO₃ substrates, significant microstructural changes are observed in BaZrO₃-doped YBa₂Cu₃O_{7-x} thin films when compared to those on non-vicinal substrates. Scanning Electron Microscopy indicates a surface morphology strongly influenced by the vicinal angle, and an accumulation of BaZrO₃ particles is observed near the step edges. Cross-sectional Transmission Electron Microscopy reveals that while the columnar formations of BaZrO₃ rods typically seen on non-vicinal substrates are present, a significant increase in planar defects in a 10 vicinal film are observed. The effects observed with increasing miscut angle indicate that the modulated surface provided by the vicinal substrate influences the crystalline quality of the YBCO matrix and BZO columnar formation through the thickness ofthe film.

15. SUBJECT TERMS

superconductivity, flux pinning, critical current density, magnetic field, YBa₂Cu₃O_{7-x} or YBCO, BaZrO₃, nanorods, vicinal substrates

16. SECURITY	CLASSIFICATIO	N OF:	17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT	b. ABSTRACT	c. THIS PAGE	OF ABSTRACT:	OF PAGES	Timothy J. Haugan 19b. TELEPHONE NUMBER (Include Area Code) N/A
Unclassified	Unclassified	Unclassified	SAR	10	

Microstructural Characterization of YBa₂Cu₃O_{7-x} Films With BaZrO₃ Nanorods Grown on Vicinal SrTiO₃ Substrates

F. Javier Baca, Rose Lyn Emergo, Judy Z. Wu, Timothy J. Haugan, Joshua N. Reichart, and Paul N. Barnes

Abstract—When grown on miscut $SrTiO_3$ substrates, significant microstructural changes are observed in $BaZrO_3$ -doped $YBa_2Cu_3O_{7-x}$ thin films when compared to those on non-vicinal substrates. Scanning Electron Microscopy indicates a surface morphology strongly influenced by the vicinal angle, and an accumulation of $BaZrO_3$ particles is observed near the step edges. Cross-sectional Transmission Electron Microscopy reveals that while the columnar formations of $BaZrO_3$ rods typically seen on non-vicinal substrates are present, a significant increase in planar defects in a 10° vicinal film are observed. The effects observed with increasing miscut angle indicate that the modulated surface provided by the vicinal substrate influences the crystalline quality of the YBCO matrix and BZO columnar formation through the thickness of the film.

Index Terms—BZO, HTS, microstructure, vicinal substrate, YBCO.

I. INTRODUCTION

The growth of $YBa_2Cu_3O_{7-x}$ (YBCO) thin films has been extensively studied to improve their epitaxial quality on coated metallic substrates and single crystal ceramic substrates [1]–[4]. The resultant microstructural quality is important as it can affect the superconducting properties of the YBCO thin films, including the transition temperature (T_c) through lattice strain and the critical current density (J_c) with, for example, the presence of high angle grain boundaries [3]–[6]. Many of the growth parameters influence the epitaxial quality of a thin film, such as the mismatch between lattice parameters of the substrate and the deposited material, growth temperature, and the substrate surface qualities [7]–[11]. But other microstructural qualities, such as defect structures are also important as they play a significant role in vortex pinning

Manuscript received August 27, 2008. First published June 30, 2009; current version published July 15, 2009. This work was supported in part by the Air Force Research Laboratory and Office of Scientific Research. Corresponding author: F. J. Baca (e-mail: francisco.baca@wpafb.af.mil; jbaca@ku.edu).

- F. J. Baca is with the Air Force Research Laboratory, WPAFB, OH 45433 USA, and also with the University of Kansas, Department of Physics and Astronomy, Lawrence, KS 66045 USA (e-mail: francisco.baca@wpafb.af.mil; ibaca@ku.edu).
- R. L. Emergo and J. Z. Wu are with the University of Kansas, Department of Physics and Astronomy, Lawrence, KS 66045 USA (e-mail: remergo@ku.edu; jwu@ku.edu).
- T. J. Haugan and P. N. Barnes are with the Air Force Research Laboratory, WPAFB, OH 45433 USA (e-mail: timothy.haugan@wpafb.af.mil; paul.barnes@wpafb.af.mil).

Digital Object Identifier 10.1109/TASC.2009.2017908

and hence directly affect the J_c behavior in an applied magnetic field [12], [13].

Many methods have been explored to control the defect structures introduced into the YBCO matrix, with considerable success achieved in improving the flux-pinning properties by the addition of second-phase materials such as Y₂BaCuO₅, BaSnO₃, and BaZrO₃ [14]–[17]. Through the combination of substrate surface modification and second-phase material addition, finer control of structural properties can be achieved and has shown that superconducting properties are indeed improved [18], [19]. In this paper, we make a preliminary examination of the surface morphology and microstructural changes induced by depositing BaZrO₃ (BZO) doped YBCO on miscut SrTiO₃ (STO) substrates. While BZO has been well studied as a second-phase material for flux pinning, and has been shown to produce columnar defects aligned generally along the YBCO c-axis [17], we show some evidence of morphological and structural changes associated with the deposition of thin films of these materials on miscut STO substrates.

II. EXPERIMENTAL

Targets of YBCO with BZO concentrations of 2, 4, and 6 percent (by volume) were mixed, pressed and sintered from commercially available powders. STO substrates with miscut angles of 0° (non-vicinal), 5° , 10° , 15° and 20° were ultrasonically cleaned and mounted in the deposition chamber using colloidal Ag paint. YBCO + BZO films of 160–240 nm thickness were deposited by pulsed laser deposition (PLD) using a KrF excimer laser ($\lambda=248~\mathrm{nm}$) at a pulse rate of 8 Hz and energy density of $\sim3.2~\mathrm{J/cm^2}$. The films were grown at $810^{\circ}\mathrm{C}$ in an O_2 partial pressure of 300 mTorr, and the samples were cooled to $500^{\circ}\mathrm{C}$ in 1 atm O_2 and held at this temperature for 30 min.

Measurement of the transport current densities in the BZO doped YBCO films were made by four probe contact in self-field as well as with an applied magnetic field. $T_{\rm c}$ of the samples were obtained by resistive measurements. Magnetically inferred $J_{\rm c}$ as a function of applied magnetic field was also measured for the non-vicinal films using a Vibrating Sample Magnetometer (Quantum Design PPMS).

Surface morphology was examined using an FEI Sirion FEG high-resolution scanning electron microscope (SEM) at 5–15 kV. In order to observe the microstructural effects induced in the thin film by the inclined (001) plane of the miscut substrate, TEM cross-sections were cut from the samples along the direction transverse to the surface steps. To control the orientation of the cross-sections with respect to the vicinal terraces, focused

ion beam (FIB) systems (FEI Nova 600 NanoLab and DB235) were used for section cutting and lift out. Cross-sectional microstructure was studied using a Philips CM200 (LaB_6) TEM operating at 200 kV.

III. RESULTS AND DISCUSSION

Detailed analyses of the transport J_c and resistive T_c measurements are shown elsewhere [20], however the T_c of the non-vicinal films was shown to decrease as the BZO concentration was increased from 2 vol.% to 6 vol.% and ranged from 89 K to 85 K. However, this decrease in T_c that is typically observed with the inclusion of second-phase defects has been shown to be less substantial for the vicinal films [20]. Magnetic J_c values for the non-vicinal films at 77 K and self-field ranged from 1.6 to 1.9 MA/cm^2 for BZO concentrations of 2, 4 and 6 vol.% and showed enhanced vortex pinning for applied magnetic fields greater than 1.2 T, 0.8 T, and 2.7 T, respectively (when compared to pure YBCO). Transport current measurements of the vicinal films showed increased J_c values for both self-field and in an applied magnetic field [20].

The surface morphology of the BZO-doped YBCO films, as observed by SEM, for BZO concentrations of 4 vol.% and 6 vol.% and vicinal angles of 0°, 5°, 10° and 20° are shown in Fig. 1. Significant changes in the YBCO surface properties are observable as the substrate miscut angle is increased. As the vicinal angle increases from 5° to 20°, terraces become increasingly pronounced, and typical terrace widths decrease from approximately 131 nm to 76 nm with respect to the substrate surface. Since the widths of the substrate terraces are expected to change proportionally with the cotangent of the miscut angle [9], the observed decrease indicates a consistent trend in the widths of the BZO-doped YBCO films.

At high magnification, contrast on particles of higher intensity can be seen on the film surface. As shown in Fig. 1, the largest and most densely arranged particles tend to form toward the vertices of the vicinal steps. It has been previously shown that YBCO grows via a step-flow mode on vicinal STO [8], and the anisotropic accumulation of second phase material on the surface terraces may be an indication that preferential formation at the step edges is similarly followed by BZO.

Table I summarizes the average sizes and densities of the surface particles as measured from SEM images at a higher magnification. It demonstrates that increasing the BZO content from 2 to 6 vol.% increases the particle density by a factor of approximately 1.8 on the non-vicinal substrates. However, the average size of individual (non-agglomerated) particles is slightly reduced (by a factor of \sim 1.4) when the BZO content is increased from 2 to 6 vol.%. The apparent discrepancy in the relative BZO surface area may be due to the lack of BZO nanorods extending completely through the thickness of the films and a greater fraction of the BZO occupying the subsurface volume as the vicinal angle increases. This conjecture is supported by cross-sectional imaging. The surface images also show that agglomeration and clustering of BZO nanoparticles into larger islands becomes more prominent in the vicinal films as the volume concentration is increased.

Although they are not visible in Fig. 1, a small number of rectangular outgrowths, likely indicative of a-axis oriented grains,

Fig. 1. SEM surface images of the YBCO + BZO (4 and 6 vol.%) samples on STO substrates with vicinal angles of 0° , 5° , 10° , and 20° . The scale bars indicate 100 nm.

TABLE I BZO Surface Particle Area Density and Size

BZO Concentration	Avg. Surface Particle	Avg. Surface Particle
(vol. %)	Size (nm)	Area Density (cm ⁻²)
2	7.1 ± 1.2	1.21×10^{11}
4	6.6 ± 1.0	1.65×10^{11}
6	5.0 ± 0.9	2.13×10^{11}

are also observable at lower magnification of the surface of the non-vicinal 6 vol.% BZO sample. The appearance of a-axis oriented grains at 6 vol.% may indicate that the YBCO microstructural quality is affected by the increased dopant concentration in the non-vicinal films. However, it is notable that the vicinal films do not show such growths, which may indicate that the

Fig. 2. Bright-field cross-sectional TEM image of a YBCO film doped with 2 vol.% BZO deposited on a non-vicinal (0°) STO substrate. The image confirms that columnar BZO rods (arrows) form on the non-vicinal films, and shows the relatively well-structured YBCO matrix.

modulated substrate surface provides a mechanism that allows for growth without the structural defects leading to these grain formations. Since a-axis oriented grains become more prominent as the YBCO film thickness is increased, this may suggest that the vicinal films may better accommodate the growth of thicker c-axis oriented films. Additionally, the surface morphologies shown in Fig. 1 clearly show variation with both the increased BZO content as well as with increased vicinal angle, and imply that microstructural changes are occurring. For this reason, cross-sectional TEM was utilized to further investigate the microstructural modification induced by the vicinal substrate.

Figs. 2 and 3 show initial TEM images that illustrate some of the effects of the vicinal substrates on the microstructure of the YBCO films containing 2 vol.% BZO. The bright-field cross-sectional TEM image in Fig. 2 confirms that the non-vicinal (0°) samples form BZO columns of approximately 5.2 nm in diameter that are aligned roughly along the YBCO c-axis. This type of columnar BZO formation has been widely observed in previous studies [17], [21], [22]. However, a significantly different microstructure is seen in Fig. 3(a), which shows a cross-sectional micrograph of a 2 vol.% BZO film grown on a 10° miscut STO substrate. In this image it is notable that the occurrence of planar defects, such as stacking faults, becomes abundant. It is also evident that the BZO forms in a columnar fashion, as on the non-vicinal substrates, and some of the planar defects can be seen to terminate at the column edges.

Fig. 3(b) shows a higher resolution image of a BZO column and the surrounding YBCO matrix. In this image, two regions of increased contrast that contain such planar defects are observable, and are separated by approximately 14 nm of relatively uniform material. The reduced intensity that provides contrast to these regions when compared to the surrounding material is likely to indicate increased structural strain, and the presence of dislocations at the YBCO/BZO interface are indeed visible.

Fig. 3. Bright-field cross-sectional TEM images showing a YBCO film doped with 2 vol.% BZO grown on a 10° miscut STO substrate. (a) Lower magnification image showing abundant planar defects (50 nm scale bar). (b) Higher resolution micrograph with observed dislocations along the BZO column marked (5 nm scale bar). Arrows indicate examples of BZO nanorods.

Since the planar defects appear to coincide with the dislocations at the YBCO/BZO interface, this may provide evidence that the dislocations are inducing effects on the YBCO microstructure over longer distances than in the non-vicinal films, which do not display the prevalence of such planar defects. Since the miscut angle has been shown to affect the epitaxial quality (degree of c-axis orientation) of YBCO films [23], it should be expected that different miscut angles may further influence the microstructural properties of the BZO doped YBCO. For this reason, TEM studies on the other miscut angles and BZO concentrations are in progress.

IV. CONCLUSION

We have shown that BZO doped YBCO thin films deposited on miscut STO substrates undergo significant morphological and structural changes when compared to films deposited on non-vicinal STO. Particles on the film surface are observed to preferentially form near the edges of vicinally-induced terraces. Since the surface energy is known to be higher at steps [8], these areas provide favorable nucleation sites for a deposited material. As the clustering of surface particles indicates, the BZO growth within the YBCO matrix also appears to favor these positions of higher surface energy.

Additionally, TEM cross-sectional images indicate that significantly more extended planar defects are observed in films deposited on 10° miscut substrates when compared to the same film on a non-vicinal substrate. Further examination indicates the presence of dislocations at the YBCO/BZO interface within the vicinity of the planar defects, which may imply that the extent of their structural effects is increased by the miscut substrate.

Since the surface morphology shows considerable variation with the increased substrate miscut angle and with BZO concentration, and since the miscut angle is known to influence the epitaxial quality [8], studies are in progress to investigate the effects of these parameters on the BZO formation and the effects on the YBCO microstructure and superconducting properties.

REFERENCES

- G. Kastner, D. Hesse, R. Scholz, H. Koch, F. Ludwig, M. Lorenz, and H. Kittel, "Microstructure defects in YBCO thin films," *Physica C*, vol. 243, pp. 281–293, 1995.
- [2] A. Goyal, S. X. Ren, E. D. Specht, D. M. Kroeger, R. Feenstra, and D. Norton *et al.*, "Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates," *Micron*, vol. 30, pp. 463–478, 1999.
- [3] D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, "High- T_c superconducting materials for electric power applications," *Nature*, vol. 414, pp. 368–377, 2001.
- [4] H. Wang, S. R. Foltyn, P. N. Arendt, Q. X. Jia, J. L. Mac-Manus-Driscoll, and L. Stan *et al.*, "Microstructure of SrTiO3 buffer layers and its effects on superconducting properties of YBa₂Cu₃O_{7-d} coated conductors," *J. Mater. Res.*, vol. 19, pp. 1869–1875, 2004.
- [5] A. Gurevich and E. A. Pashitskii, "Enhancement of superconductivity at structural defects in high-temperature superconductors," *Phys. Rev.* B, vol. 56, pp. 6213–6225, 1997.
- [6] J. L. Reeves, D. M. Feldmann, C.-Y. Yang, and D. C. Larbalestier, "Current barriers in Y-Ba-Cu-0 coated conductors," *IEEE Trans. Appl. Supercond.*, vol. 11, pp. 3863–3867, 2001.
- [7] J.-L. Maurice, J. Briatico, D.-G. Crete, J.-P. Contour, and O. Durand, "Effects of surface miscuts on the epitaxy of YBa₂Cu₃O_{7-d} and NdBa₂Cu₃O_{7-g} on SrTiO₃ (001)," *Phys. Rev. B*, vol. 68, pp. 115429-1-115429-7, 2003.

- [8] T. Haage, J. Zegenhagen, J. Q. Li, H.-U. Habermeier, M. Cardona, and C. Jooss *et al.*, "Transport properties and flux pinning by self-organization in YBa₂Cu₃O_{7-d} films on vicinal SrTiO₃ (001)," *Phys. Rev.* B, vol. 56, pp. 8404–8418, 1997.
- [9] L. Mechin, P. Berghuis, and J. E. Evetts, "Properties of YBa Cu O thin films grown on vicinal SrTiO₃ (001) substrates," *Physica C*, vol. 302, pp. 102–112, 1998.
- [10] F. J. Baca, D. Fisher, R. L. S. Emergo, and J. Z. Wu, "Pore formation and increased critical current density in YBa₂Cu₃O_x films deposited on a substrate surface modulated by Y₂O₃ nanoparticles," *Supercond. Sci. Technol.*, vol. 20, pp. 554–558, 2007.
- [11] Z. Chen, F. Kametani, S. I. Kim, D. C. Larbalestier, H. W. Jang, K. J. Choi, and C. B. Eom, "Influence of growth temperature on the vortex pinning properties of pulsed laser deposited YBa₂Cu₃O_{7-x} thin films," *J. Appl. Phys.*, vol. 103, pp. 043913-1–043913-7, 2008.
- [12] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, "Vortices in high-temperature superconductors," *Rev. Mod. Phys.*, vol. 66, pp. 1125–1388, 1994.
- [13] R. P. Huebener, Magnetic Flux Structures in Superconductors, 2nd ed. Berlin: Springer, 1979, pp. 179–194.
- [14] T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, "Addition of nanoparticle dispersions to enhance flux pinning of the YBa₂Cu₃O_{7-x} superconductor," *Nature*, vol. 430, pp. 867–870, 2004.
- [15] C. V. Varanasi, P. N. Barnes, J. Burke, L. Brunke, I. Maartense, T. J. Haugan, E. A. Stinzianni, K. A. Dunn, and P. Haldar, "Flux pinning enhancement in YBa₂Cu₃O_{7-x} films with BaSnO₃ nanoparticles," *Supercond. Sci. Technol.*, vol. 19, pp. L37–L41, 2006.
- [16] J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, and L. Civale *et al.*, "Strongly enhanced current densities in superconducting coated conductors of YBa₂Cu₃O_{7-x} + BaZrO₃," *Nature Materials*, vol. 3, pp. 439–443, 2004.
- [17] A. Goyal, S. Kang, K. J. Leonard, P. M. Martin, A. A. Gapud, and M. Varela *et al.*, "Irradiation-free, columnar defects comprised of selfassembled nanodots and nanorods resulting in strongly enhanced fluxpinning in YBa₂Cu₃O_{7-δ} films," *Supercond. Sci. Technol.*, vol. 18, pp. 1533–1538, 2005.
- [18] R. L. S. Emergo, J. Z. Wu, T. J. Haugan, and P. N. Barnes, "Tuning porosity of YBa₂Cu₃O_{7-d} vicinal films by insertion of Y₂BaCuO₅ nanoparticles," *Appl. Phys. Lett.*, vol. 87, pp. 232503-1–232503-3, 2005.
- [19] J. Z. Wu, R. L. S. Emergo, X. Wang, G. Xu, T. J. Haugan, and P. N. Barnes, "Strong nanopore pinning enhances J_c in YBa₂Cu₃O_{7—d} films," *Appl. Phys. Lett.*, vol. 93, pp. 062506-1–062506-3, 2008.
- [20] R. L. Emergo, F. J. Baca, J. Z. Wu, T. J. Haugan, and P. N. Barnes, Combination of Nanopores and Nanorods Improves Overall J_c(B, θ) in YBa₂Cu₃O_{7-d} Films, to be published.
- [21] A. Ichinose I, K. Naoe, T. Horide, K. Matsumoto, R. Kita, M. Mukaida, Y. Yoshida, and S. Horii, "Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO₃ nanorods," *Supercond. Sci. Technol.*, vol. 20, pp. 1144–1150, 2007.
- [22] S. Kang, A. Goyal, J. Li, P. Martin, A. Ijaduola, J. R. Thompson, and M. Paranthaman, "Flux-pinning characteristics as a function of density of columnar defects comprised of self-assembled nanodots and nanorods in epitaxial YBa₂Cu₃O_{7-d} films for coated conductor applications," *Physica C*, vol. 457, pp. 41–46, 2007.
- [23] J. Kim, D. B. Chrisey, J. S. Horwitz, M. M. Miller, and C. M. Gilmore, "Growth mechanism of YBa2Cu3O7-d thin films and precipitates on planar and vicinal SrTiO3 substrates," *J. Mater. Res.*, vol. 15, pp. 596–613, 2000.