Computational Physics II 5640 Spring 2018 Project Assignment 5

Due: Friday May 11

1. Variational Quantum Monte Carlo. Consider Schrodinger equation for 1D harmonic oscillator:

$$-\frac{1}{2}\frac{d^2\psi(x)}{dx^2} + \frac{x^2}{2}\psi(x) = E\psi(x). \tag{1}$$

Here we employ Monte Carlo method to study the variational wave function. We consider the trial wave function $\psi_{\alpha}(x) \propto \exp(-\alpha x^2)$. Show that the local energy is given by

$$E_L(x) = \alpha + x^2(\frac{1}{2} - 2\alpha^2).$$
 (2)

Write a Markov-chain Monte Carlo code (essentially the 1D random walk) to compute the expectation $\langle E_L \rangle$ and the variance $\langle E_L^2 \rangle - \langle E_L \rangle^2$ of the local energy, and plot them as functions of the variational parameter α ; see Fig. 1. The minimum of both quantities occur at $\alpha = 0.5$ corresponding to the exact ground-state solution.

Figure 1: The expectation value and variance of the local energy $E_L(x)$ computed using random-walk Metropolis method for the 1D harmonic oscillator problem.

Next show that the gradient of expectation value of E_L is given by formula:

$$\frac{d\langle E_L \rangle}{d\alpha} = 2\left(\left\langle E_L \frac{d\ln\psi}{d\alpha} \right\rangle - E_L \left\langle \frac{d\ln\psi}{d\alpha} \right\rangle\right). \tag{3}$$

Here $\langle \cdots \rangle$ means Monte Carlo averages which are computed using the random-walk code. Starting from some arbitrary value for α , use the damped steepest descent method to update α :

$$\alpha^{(n+1)} = \alpha^{(n)} - \gamma \frac{d\langle E_L \rangle}{d\alpha}.$$
 (4)

The optimum α which minimizes the local energy can be reached in a few steps, as demonstrated in Fig. 2.

Figure 2: The variational parameter α versus number of iteration in a gradient descent minimization. Initial $\alpha = 0.7$ and $\gamma = 0.05$.

2. Diffusion Quantum Monte Carlo. Implement the diffusion Monte Carlo (DMC) method to study the single-particle Schrodinger equation in three dimensions:

$$i\frac{\partial\Phi}{\partial t} = -\frac{1}{2}\nabla^2\Phi + V(\mathbf{r})\,\Phi\tag{5}$$

Here we have used units such that $\hbar = 1$, m = 1. The "imaginary time" Schrodinger equation describes a diffusion-death-birth process of particles. The corresponding Green's function has the form:

$$G(\mathbf{r}', \mathbf{r}; \Delta \tau) = e^{\Delta \tau (E_T - V(\mathbf{r}'))} \frac{1}{\sqrt{2\pi \Delta \tau}} e^{-\frac{|\mathbf{r}' - \mathbf{r}|^2}{2\Delta \tau}} = W(\mathbf{r}') G_{\text{diff}}(\mathbf{r}', \mathbf{r}; \Delta \tau).$$
(6)

The DMC algorithm is based on the above Green's function. Specifically, we prepare initially M_0 random walkers. Then repeat the following steps:

begin

for \forall walkers do

- (1) update its position $\mathbf{r}_{\text{new}} = \mathbf{r}_{\text{now}} + \sqrt{\Delta \tau} (\xi_1, \xi_2, \xi_3)$, where ξ_i are Gaussian random variables with zero mean and unit variance.
- (2) evaluate $W := \exp[\Delta \tau (E_T V(\mathbf{r}_{\text{new}}))]$. let s := [W], where [W] is the integer part of W. generate a random number r uniformly distributed in [0,1]. if r < (W - [W]) then s := s + 1.
- (3) if s = 0 then remove this walker. else create s - 1 copies of this walker (total number of same walker at \mathbf{r}_{new} is s). end for

update reference energy $E_T := E_T + \alpha \ln(M_T/M)$,

M is the current number of walkers, and M_T is the target number, α is a small number. end

In this homework, apply the DMC algorithm to study a 3D harmonic oscillator with the potential $V(\mathbf{r}) = \frac{|\mathbf{r}|^2}{2}$ (the spring constant k = 1), which has a ground state energy and wavefunction:

$$E_0 = \frac{3}{2},$$
 $\Phi_0(\mathbf{r}) = \frac{e^{-|\mathbf{r}|^2/2}}{(2\pi)^{3/2}},$ (7)

The ensemble of the walkers provide a sampling of the wavefunction $\Phi(\mathbf{r})$ itself (not the squared one). Plot the histogram of $4\pi r^2 \Phi(r)$ from DMC and compare with exact solution; see Fig. 1. Also plot the distribution of reference energy E_T and number of walkers M using the histogram method. The average $\langle E_T \rangle$ should give the ground state energy $E_0 = 3/2$.

Figure 3: Ground-state wavefunction obtained from DMC simulation compared with exact solution $4\pi r^2 \Phi_0(r)$. Numerically, this is given by the histogram of $|\mathbf{r}_i| = \sqrt{x_i^2 + y_i^2 + z_i^2}$, where \mathbf{r}_i is the position vector of the random walkers in DMC.