Estrutura de Dados em Python

Prof. Nisston Moraes Tavares de Melo

Agenda

Árvore binária

Árvore binária

ÁRVORES

- Uma árvore combina as vantagens de duas estruturas: um vetor ordenado e uma lista encadeada
- Busca rápida (como em um vetor ordenado)
- Inserção e eliminação rápida (como em uma lista encadeada)

ÁRVORE BINÁRIA

 Uma árvore consiste em nós (círculos) conectados por arestas (linhas)

TERMINOLOGIA DE ÁRVORES

- Caminho
 - Caminho que liga um nó até outro nó
- Raiz
 - É o nó na parte superior. Há apenas uma raiz em uma árvore e deve haver somente um caminho da raiz até qualquer outro nó

TERMINOLOGIA DE ÁRVORES

Pai

 Qualquer nó (exceto a raiz) tem exatamente uma aresta que sobe para outro nó. O nó acima dele é chamado de pai do nó

Filho

 Qualquer nó pode ter uma ou mais linhas descendo para outros nós. Esses nós abaixo de um dado nó são chamados de seus filhos

Folha

Um nó que não tem filhos

TERMINOLOGIA DE ÁRVORES

- Subárvore
 - Qualquer nó pode ser considerado como sendo a raiz de uma subárvore, que consiste em seus filhos
- Visitando

 Um nó é visitado quando o controle do programa chega ao nó, em geral para a finalidade de executar alguma operação do nó

- Percorrendo
 - · Visitar todos os nós em alguma ordem especificada
- Níveis
 - O nível de um determinado nó refere-se a quantas gerações o nó está da raiz
- Chaves
 - Valor usado para buscar um item

ÁRVORE BINÁRIA DE BUSCA

 O filho à esquerda de um nó tem que ter uma chave menor que seu pai e o filho à direita de um nó tem que ter uma chave maior ou igual ao seu pai

ÁRVORE BINÁRIA DE BUSCA – INSERÇÃO

- Primeiro, o local para inserir deve ser encontrado
- Segue-se o caminho da raiz até o devido nó, que será pai do novo nó
- Quando esse pai for localizado, o novo nó será conectado como seu filho à esquerda ou a direita, dependendo da chave do novo nó ser menor ou maior que a do pai
- Visualização on-line: https://visualgo.net/en/bst
- Big-O: O(log n) para o caso médio e O(n) no pior caso

ÁRVORE BINÁRIA DE BUSCA - PESQUISA

- Procurar nas subárvores da esquerda ou direita
- Visualização on-line: https://visualgo.net/en/bst
- Big-O: O(log n) para o caso médio e O(n) no pior caso

ÁRVORE BINÁRIA – TRAVESSIA PRÉ-ORDEM

 Primeiro visita a raiz e depois recursivamente faz uma travessia na subárvore esquerda, seguido de uma travessia recursiva na subárvore direita

ÁRVORE BINÁRIA – TRAVESSIA EM ORDEM

 Recursivamente faz a travessia na subárvore esquerda, visita a raiz e faz uma travessia recursiva na subárvore direita

ÁRVORE BINÁRIA – TRAVESSIA PÓS-ORDEM

 Recursivamente faz a travessia na subárvore esquerda, faz uma travessia recursiva na subárvore direita e por fim visita a raiz

