Relaciones y sus propiedades

Clase 11

IIC 1253

Prof. Pedro Bahamondes

Outline

Introducción

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

Introducción

Las relaciones son un concepto muy usado en computación.

- Principalmente en Bases de Datos.
- ¿Bases de datos relacionales?

Intuitivamente, una relación matemática puede verse como una correspondencia entre elementos de dominios posiblemente distintos.

■ En una base de datos, esta correspondencia está dada por una tabla.

Introducción

id	Nombre	Apellido	Ocupación	MBTI
154	Angela	Merkel	Política	ISTJ
339	Johann Wolfgang	Von Goethe	Escritor	INFJ
271	Luke	Skywalker	Jedi	INFP
404	Ada	Lovelace	Matemática	ENTP

¿Qué le falta a los conjuntos para poder definir tablas?

Objetivos de la clase

- □ Comprender el concepto de relación
- □ Conocer ejemplos de relaciones binarias
- ☐ Conocer propiedades notables de las relaciones

Outline

Introducción

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

Definición

Sean $a, b \in \mathcal{U}$ (donde \mathcal{U} es un conjunto universal). Definimos el par ordenado (a, b) como

$$(a,b) = \{\{a\},\{a,b\}\}$$

¿Por qué lo definimos así?

■ Para establecer la igualdad entre dos pares ordenados.

Propiedad

$$(a,b)=(c,d)$$
 si y sólo si $a=c \land b=d$.

Demostración

 (\Leftarrow) Debemos demostrar que si $(a=c) \land (b=d)$, entonces (a,b)=(c,d). Si se cumplen tales igualdades, entonces la siguiente igualdad también se cumple: $\big\{\{a\},\{a,b\}\big\}=\big\{\{c\},\{c,d\}\big\}$. Aplicando la definición de par ordenado, obtenemos entonces que (a,b)=(c,d).

Observación (propuesta 🖈)

Considere la siguiente definición alternativa de un par ordenado:

$$(a,b) = \{a,\{b\}\}$$

Esta no es una buena definición. Tomemos por ejemplo los siguientes elementos:

$$a = \{x\}, b = y, c = \{y\}, d = x, \text{ con } x \neq y.$$

Es claro que $a \neq c$ y $b \neq d$. Sin embargo, si construimos los pares ordenados con esta definición alternativa:

$$(a,b) = (\{x\},y) = \{\{x\},\{y\}\}\}$$

 $(c,d) = (\{y\},x) = \{\{y\},\{x\}\}\}$

Estos conjuntos son iguales por axioma de extensión, y luego la propiedad de igualdad de pares ordenados no se cumple con esta definición.

Podemos extender el concepto a tríos ordenados:

$$(a,b,c) = ((a,b),c)$$

o a cuadruplas ordenadas:

$$(a, b, c, d) = ((a, b, c), d) = (((a, b), c), d)$$

En general:

Definición

Sean $a_1, \ldots, a_n \in \mathcal{U}$. Definimos una *n*-tupla como:

$$(a_1,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n).$$

Definición

Dados dos conjuntos A y B, definimos el **producto cartesiano** entre A y B como

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Ejemplo

Si
$$A = \{1, 2\}$$
 y $B = \{3, 4\}$, entonces $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$.

También podemos extender esta noción.

Definición

Dados conjuntos A_1, \ldots, A_n , definimos el **producto cartesiano** entre los A_i como

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \wedge \ldots \wedge a_n \in A_n\}$$

Ejemplo

Podemos definir producto cartesiano de dimensión n usando la definición de producto cartesiano entre dos conjuntos.

$$A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

Note que esta definición es recursiva: para calcular $A_1 \times \ldots \times A_{n-1}$ se debe aplicar de nuevo la definición hasta llegar a un producto cartesiano entre dos conjuntos.

Outline

Introducción

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

Definición

Dados conjuntos A_1, \ldots, A_n , diremos que R es una **relación** sobre tales conjuntos si $R \subseteq A_1 \times \ldots \times A_n$.

Ejercicio

Defina la suma sobre los naturales como una relación sobre $\mathbb{N}, \mathbb{N}, \mathbb{N}$.

$$+_{\mathbb{N}} = \{ (n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid sum(n_1, n_2) = n_3 \}$$

$$(3, 4, 7) \in +_{\mathbb{N}} \qquad (0, 0, 1) \notin +_{\mathbb{N}}$$

Recuerde que *sum* es la suma que definimos en el capítulo de teoría de conjuntos.

La aridad de una relación R es el tamaño de las tuplas que la componen.

■ Equivalentemente, diremos que *R* es una relación *n*-aria.

Ejemplo							
La tabla que vimos al inicio:							
id	Nombre	Apellido	Ocupación	MBTI			
154	Angela	Merkel	Política	ISTJ			
339	Johann Wolfgang	Von Goethe	Escritor	INFJ			
271	Luke	Skywalker	Jedi	INFP			
404	Ada	Lovelace	Matemática	ENTP			
representa una relación 5-aria.							

Un caso particular de suma importancia:

Definición

Dados conjuntos A y B, diremos que R es una **relación binaria** de A en B si $R \subseteq A \times B$.

Ejemplo

Si $A = \{1,2\}$ y $B = \{3,4\}$, entonces $R = \{(1,3),(2,4)\}$ es una relación binaria de A en B.

¿Cuántas posibles relaciones binarias hay sobre dos conjuntos A y B?

Podemos tener una relación sobre un solo conjunto:

Definición

Dado un conjunto A, diremos que R es una **relación binaria** sobre A si $R \subseteq A \times A = A^2$.

Notación: cuando tengamos productos cartesianos entre un mismo conjunto, usaremos una notación de "potencia":

$$A \times \stackrel{(n-2 \text{ veces})}{\dots} \times A = A^n$$

Ejemplo

La relación binaria menor que :

$$\leq \mathbb{N}^2$$
,

definida como sigue: dados $m, n \in \mathbb{N}$:

$$(m, n) \in < \text{si y sólo si } m \in n.$$

$$(1,3) \in \langle (10,4) \notin \langle (7,7) \notin \langle (7,7) \rangle$$

La notación de conjuntos es un poco incómoda: $\xi(3,17) \in <?$

Dados $a, b \in A$, para indicar que están relacionados a través de R usamos cualquiera de las siguientes notaciones:

- $(a,b) \in R$
- R(a,b)
- aRb
 - Si no están relacionados, podemos escribir aRb.

Nuestra elección dependerá del contexto.

Ejemplo

Ahora podríamos escribir:

Paréntesis: notación infija

La última forma de escribir relaciones se llama notación infija.

Podemos extender tal notación a relaciones de mayor aridad. Por ejemplo, podríamos escribir $n_1 + n_2 = n_3$ si $(n_1, n_2, n_3) \in +_{\mathbb{N}}$:

$$3 + 4 = 7$$

y por lo tanto $n_1 + n_2 = n_3$ si y sólo si $sum(n_1, n_2) = n_3$.

¡Cuidado! El símbolo = ocupado en la primera parte es sólo un símbolo que forma parte de nuestra notación, y no debe ser confundido con el símbolo = usado en la segunda parte, que representa la igualdad de conjuntos definida en el capítulo anterior.

Ejemplo

La relación divide a, denotada por |, sobre los naturales sin el 0, es una relación tal que a está relacionado con b si y sólo si b es múltiplo de a:

$$a|b$$
 si y sólo si $\exists k \in \mathbb{N}$ tal que $b = ka$.

Ejemplo

La relación *equivalencia módulo n*, denotada por \equiv_n , sobre los naturales, es una relación tal que a está relacionado con b si y sólo si |a-b| es múltiplo de n:

$$a \equiv_n b$$
 si y sólo si $\exists k \in \mathbb{N}$ tal que $|a - b| = kn$.

Por ejemplo, dado n = 7:

$$2 \equiv_7 23$$
 $8 \equiv_7 1$ $19 \not\equiv_7 4$

De ahora en adelante trabajaremos con relaciones binarias sobre un conjunto, a las que nos referiremos simplemente como relaciones.

Outline

Introducción

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

Definición

Una relación R sobre un conjunto A es:

- Refleja si para cada $a \in A$ se tiene que R(a, a).
- Irrefleja si para cada $a \in A$ no se tiene que R(a, a).

Ejercicio

Dé ejemplos de relaciones reflejas e irreflejas sobre $\mathbb{N}.$

Definición

Una relación R sobre un conjunto A es:

- Simétrica si para cada $a, b \in A$, si R(a, b) entonces R(b, a).
- **Asimétrica** si para cada $a, b \in A$, si R(a, b) entonces no es cierto que R(b, a).
- Antisimétrica si para cada $a, b \in A$, si R(a, b) y R(b, a), entonces a = b.

Ejercicio

Dé ejemplos de relaciones simétricas, asimétricas y antisimétricas sobre $\,\mathbb{N}.\,$

Definición

Una relación R sobre un conjunto A es:

- Transitiva si para cada $a, b, c \in A$, si R(a, b) y R(b, c), entonces R(a, c).
- **Conexa** si para cada $a, b \in A$, se tiene que R(a, b) o R(b, a).

Ejercicio

Dé ejemplos de relaciones transitivas y conexas sobre \mathbb{N} .

Ejercicios

- 1. Demuestre que la relación | es refleja, antisimétrica y transitiva.
- 2. Demuestre que la relación \equiv_n es refleja, simétrica y transitiva.

Ejercicio

Demuestre que la relación | es refleja, antisimétrica y transitiva.

Reflexividad: Propuesto (*).

Antisimetría: Debemos demostrar que si a|b y b|a, entonces a=b. Si a|b, sabemos que existe $k_1 \in \mathbb{N}$ tal que $b=k_1 \cdot a$. Similarmente, si b|a sabemos que existe $k_2 \in \mathbb{N}$ tal que $a=k_2 \cdot b$. Reemplazando la segunda igualdad en la primera, obtenemos que $b=k_1 \cdot k_2 \cdot b$. Como la relación | está definida sobre los naturales sin el 0, podemos dividir por b y obtenemos que $1=k_1 \cdot k_2$. Como $k_1, k_2 \in \mathbb{N}$, necesariamente se debe cumplir que $k_1=k_2=1$, y aplicando esta igualdad en $b=k_1 \cdot a$, obtenemos que b=a.

Ejercicio

Demuestre que la relación | es refleja, antisimétrica y transitiva.

<u>Transitividad:</u> Debemos demostrar que si a|b y b|c, entonces a|c. Aplicando la definición, sabemos que existen $k_1, k_2 \in \mathbb{N}$ tales que $b = k_1 \cdot a$ y $c = k_2 \cdot b$. Aplicando la primera igualdad en la segunda, obtenemos que $c = k_2 \cdot k_1 \cdot a$, y por lo tanto existe $k_3 = k_1 \cdot k_2 \in \mathbb{N}$ tal que $c = k_3 \cdot a$, de donde concluimos que a|c.

Ejercicio (Propuesto ★)

Demuestre que la relación \equiv_n es refleja, simétrica y transitiva.

Demostración

<u>Reflexividad</u>: Debemos demostrar que para todo $x \in \mathbb{N}$, $x \equiv_n x$. Por definición, debemos mostrar que existe $k \in \mathbb{N}$ tal que $|x - x| = k \cdot n$. Como x - x = 0 para todo natural, podemos tomar k = 0 y luego se cumple la igualdad anterior, con lo que mostramos que $x \equiv_n x$.

<u>Simetría</u>: Debemos demostrar que si $x \equiv_n y$, entonces $y \equiv_n x$. Por definición, sabemos que existe $k \in \mathbb{N}$ tal que $|x-y|=k \cdot n$. Como |x-y|=|y-x|, tenemos que $|y-x|=k \cdot n$, y luego por definición de equivalencia módulo n, se cumple que $y \equiv_n x$.

Demostración

<u>Transitividad:</u> Dados x, y, z tales que $x \equiv_n y$ e $y \equiv_n z$, debemos demostrar que $x \equiv_n z$. Usando la definición, esto es equivalente a demostrar que si $|x-y|=k_1\cdot n\ y\ |y-z|=k_2\cdot n$, entonces $|x-z|=k\cdot n$ para algún $k\in\mathbb{N}$. Asumiremos que x,y y z son distintos (el resultado es trivial de otra manera). Supongamos ahora que x-y>0 e y-z>0 (los demás casos son análogos). Entonces, podemos escribir

$$x - y = k_1 \cdot n$$
$$y - z = k_2 \cdot n$$

y sumando ambas igualdades, obtenemos que $x-z=k_1\cdot n+k_2\cdot n$. Notemos que x-z>0 también. Por lo tanto, si tomamos $k=k_1+k_2$, tenemos que $|x-z|=k\cdot n$, concluyendo entonces que $x\equiv_n z$.

Outline

Introducción

Producto cartesiano

Relaciones

Propiedades de las relaciones

Epílogo

Objetivos de la clase

- □ Comprender el concepto de relación
- □ Conocer ejemplos de relaciones binarias
- ☐ Conocer propiedades notables de las relaciones