Chapitre 18

Dérivabilité

18	Dérivabilité	1
	18.13Condition nécessaire du premier ordre pour l'existence d'un extremum	2
	18.17Théorème de Rolle	2
	18.21Théorème des accroissements finis	2
	18.37 Caractérisation par la dérivée de la variation des fonctions	3
	18.43 Théorème de prolongement de classe \mathcal{C}^n - HP	3
	18.45IAF pour les fonctions à valeurs dans C	4

18.13 Condition nécessaire du premier ordre pour l'existence d'un extremum

Théorème 18.13

Soit f une fonction définie sur I un intervalle ouvert et $x_0 \in I$. Si f est dérivable en x_0 et admet un extremum local en x_0 , alors $f'(x_0) = 0$.

On suppose que f atteint un maximum local en x_0 . On choisit $U \in \mathcal{V}(x_0)$ tel que :

$$\forall x \in U \cap I, f(x) \le f(x_0)$$

En particulier:

$$\forall x \in U, x > x_0, \frac{f(x) - f(x_0)}{x - x_0} \le 0$$
$$\forall x \in U, x < x_0, \frac{f(x_0) - f(x)}{x_0 - x} \ge 0$$

D'après le TCILPPL :

$$f'_{\text{droite}}(x_0) \le 0 \text{ et } f'_{\text{gauche}}(x_0) \ge 0$$

Donc f est dérivable en x_0 . Donc $f'_q(x_0) = f'_d(x_0) = 0$.

18.17 Théorème de Rolle

Théorème 18.17

Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] dérivable sur]a,b[. Alors si f(a)=f(b), il existe $c\in]a,b[$ tel que f'(c)=0.

Soit f continue sur [a, b].

D'après le théorème de compacité, elle possède un maximum et un minimum.

Si ils sont tous les deux égaux à f(a), alors f est constante et f'(c) = 0 pour tout $c \in]a, b[$.

Sinon, l'un des deux est différent de f(a) = f(b) et est atteint dans a, b.

D'après (18.13), f'(c) = 0.

18.21 Théorème des accroissements finis

${ m Th\'eor\`eme}$ 18.21

Soit $f:[a,b]\to\mathbb{R}$, continue sur [a,b] et dérivable sur [a,b]. Alors il existe $c\in [a,b]$ tel que :

$$f(b) - f(a) = f'(c)(b - a)$$

Soit $g:[a,b]\to\mathbb{R}; x\mapsto f(x)-\frac{f(a)-f(b)}{a-b}(x-a)$. $g\in\mathcal{C}^0([a,b],\mathbb{R})\cap\mathcal{D}^1(]a,b[,\mathbb{R})$. g(a)=f(a)=g(b), donc d'après le théorème de Rolle, on choisit $c\in]a,b[$ tel que g'(c)=0.

18.37 Caractérisation par la dérivée de la variation des fonctions

Théorème 18.37

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction continue sur I et dérivable sur $I \setminus X$, où X est un ensemble fini. Alors :

- 1. f est croissante sur I si et seulement si pour tout $x \in I \setminus X$, $f'(x) \ge 0$. Si cette inégalité est stricte sauf en un nombre fini de points, alors f est strictement croissante.
- 2. f est décroissante sur I si et seulement si pour tout $x \in I \setminus X$, $f'(x) \leq 0$. Si cette inégalité est stricte sauf en un nombre fini de points, alors f est strictement décroissante.
- 1. □⇒

On suppose f croissante. Soit $a \in I \setminus X$. Soit $x \in I \setminus \{a\}$. On a:

$$\frac{f(x) - f(a)}{x - a} \ge 0$$

D'après le TCILPPL, on a $f'(x) \ge 0$.

 \Leftarrow

On suppose $X \neq 0$. Soit x < y et $f \in \mathcal{C}^0([x, y], \mathbb{R}) \cap \mathcal{D}^1(]x, y[, \mathbb{R})$.

D'après le TAF, on choisit $c \in]x, y[$ tel que :

$$f(y) - f(x) = f'(c)(y - x) \ge 0$$

Supposons $X = \{\alpha\}$ avec $x < \alpha < y$.

On applique les TAF deux fois sur $[x, \alpha]$ et $[\alpha, y]$.

et on choisit $c_1 \in]x, \alpha[$ et $c_2 \in]\alpha, y[$ tel que :

$$f(\alpha) - f(x) = f'(c_1)(\alpha - x) \le 0$$

$$f(y) - f(\alpha) = f'(c_2)(y - \alpha) \le 0$$

On généralise sans difficulté quand X est fini.

Si $\varphi = \{x \in I | f'(x) = 0\}$ est fini, on utilise la même méthode, $X \equiv X \cup \varphi$.

2. RAS

18.43 Théorème de prolongement de classe \mathcal{C}^n - HP

Théorème 18.43 - HP

Soit I un intervalle et $x_0 \in I$. Soit f une fonction définie de classe C^n sur $I \setminus \{x_0\}$. Si $f^{(n)}$ admet une limite finie en x_0 , alors f est prolongeable en une fonction de classe C^n sur I.

— On prouve le théorème pour n=1. On suppose $f\in \mathcal{C}^1(I\setminus\{x_0\},\mathbb{R})$ et que f' admet une limite finie en x_0 .

On prolonge f' en une fonction g par continuité en x_0 . Ainsi, $g \in \mathcal{C}^0(I, \mathbb{R})$.

On remarque que pour tout $x \neq x_0$:

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

où $a \in I \setminus \{x_0\}$ quelconque.

$$f(x) = \underbrace{f(a) + \int_a^x g(t) \, dt}_{\text{Admet une limite finie quand } x \to x_0}$$

Donc f(x) admet également une limite finie quand $x \to x_0$. On prolonge alors f par continuité en \tilde{f} , de classe \mathcal{C}^1 sur I. — On raisonne par récurrence. Pour $n \in \mathbb{N}$, on pose :

P(n): "Pour tout $f \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$, si $f^{(n)}$ admet une limite finie en x_0 , alors f se prolonge en $\tilde{f} \in \mathcal{C}^n(I, \mathbb{R})$ ".

Pour n=0, c'est le prolongement par continuité.

Pour n = 1, c'est fait.

On suppose P(n) vraie pour $n \geq 1$.

Soit $f \in \mathcal{C}^{n+1}(I \setminus \{x_0\}, \mathbb{R})$, etc...

Donc $f' \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$ et $f^{(n)}$ admet une limite finie en x_0 .

D'après P(n), on prolonge f' en $g \in \mathcal{C}^n(I, \mathbb{R})$.

En particulier, g est continue sur I.

Donc f' admet une limite finie en x_0 .

On applique P(1). On prolonge f en $\tilde{f} \in \mathcal{C}^{n+1}(I,\mathbb{R})$.

Or $\tilde{f}' = g \in \mathcal{C}^n(I, \mathbb{R})$.

Donc $\tilde{f} \in \mathcal{C}^{n+1}(I, \mathbb{R})$.

18.45 IAF pour les fonctions à valeurs dans $\mathbb C$

Théorème 18.45

Soit $f \in \mathcal{C}^1([a,b],\mathbb{C})$ et M un réel tel que $|f'| \leq M$ sur]a,b[. Alors

$$|f(b) - f(a)| \le M|b - a|$$

Si $f \in C^1([a,b],\mathbb{R})$, alors :

$$f(b) - f(a) = \int_a^b f'(t) dt$$

D'après l'inégalité triangulaire intégrale :

$$|f(b) - f(a)| = \left| \int_a^b f'(t) dt \right|$$

$$\leq \int_a^b |f'(t)| dt$$

$$\leq \int_a^b M dt$$

$$= M|b - a|$$