Lecture 02: History of ML and Scientific Data

Instructor: Sergei V. Kalinin

Zooming out on history

K. Pearson, 1901

559

LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. By Karl Pearson, F.R.S., University College, London *.

(1) IN many physical, statistical, and biological investigations it is desirable to represent a system of points in plane, three, or higher dimensioned space by the "best-fitting" straight line or plane. Analytically this consists in taking

$$y = a_0 + a_1 x$$
, or $z = a_0 + a_1 x + b_1 y$,
or $z = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n$,

where $y, x, z, x_1, x_2, \dots x_n$ are variables, and determining the "best" values for the constants a_0 , a_1 , b_1 , a_0 , a_1 , a_2 , a_2 , ... a_n in relation to the observed corresponding values of the variables. In nearly all the cases dealt with in the text-books of least squares, the variables on the right of our equations are treated as the independent, those on the left as the dependent variables. The result of this treatment is that we get one straight line or plane if we treat some one variable as independent, and a quite different one if we treat another variable as the independent variable. There is no paradox about this; it is, in fact, an easily understood and most important feature of the theory of a system of correlated variables. The most probable value of y for a given value of x, say, is not given by the same relation as the most probable value of x for a given value of y. Or, to take a concrete example, the most probable stature of a man with a given length of leg l being s, the most probable length of leg for a man of stature s will not be l. The "best-fitting" lines and planes for the cases of z up to n variables for a correlated system are given in my memoir on regression t. They depend upon a determination of the means, standard-deviations, and correlation-coefficients of the system. In such cases the values of the independent variables are supposed to be accurately known, and the probable value of the dependent variable is ascertained.

(2) In many cases of physics and biology, however, the "independent" variable is subject to just as much deviation or error as the "dependent" variable. We do not, for example, know x accurately and then proceed to find y, but both x and y are found by experiment or observation. We observe x and y and seek for a unique functional relation between them. Men of given stature may have a variety

https://jaylatta.net/history-of-ai-from-winter-to-winter/

[·] Communicated by the Author.

⁺ Phil. Trans. vol. clxxxvii. A, pp. 301 et seq.

Visions of the Future

Al Apocalypse: 80% of Projects Crash and Burn, Billions Wasted says RAND Report

August 19, 2024 & Vernon Keenan 🗅 Industry Analysis 🔎 0 Comments

new RAND Corporation report reveals the sobering reality behind artificial intelligence (AI) projects: despite the hype, most of them fail. The study, based on interviews with 65 experienced data scientists and engineers, exposes the root causes of these failures and offers a roadmap for success.

Upcoming Events

8:00 am - 9:00 am

Transform Your Salesforce DevOps Tooling and Practice with Al-Driven OpsBridge Frameworks

View Calendar

GET FREE EMAIL UPDATES

Taking the Human Out of the Loop: A Review of **Bayesian Optimization**

Citation

Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. 2016. "Taking the Human Out of the Loop: A Review of Bayesian Optimization." Proc. IEEE 104 (1) (January): 148-175. doi:10.1109/jproc.2015.2494218.

Published Version

doi:10.1109/JPROC.2015.2494218

Why neural net pioneer Geoffrey Hinton is sounding the alarm on AI

ML of the last decade

- Last decade has experienced an explosive growth of machine learning and artificial intelligence applications
- These developments have spanned areas from computer vision to medicine to autonomous systems and games
- However, the progress and impact as applied to experimental physical sciences has been minimal....

Why is it difficult?

- Requires domain expertise and domain-specific goals
- Deeply causal and hypothesis drive nature of domain sciences
- No single answer: culture, not a method
- Infrastructure, open code, open data
- Most important: active nature of scientific process

Microsoft: GitHub
Meta: Open Catalyst,
Meta: Papers with Code

Toyota: TRI

Google: AlphaFold

NVIDIA: protein folding

ML in Domain Sciences

Analysis by B. Blaiszik, Argonne

- The rapid adoption of ML in domain sciences and industrial R&D is a very recent trend
- Technologies and workforce emerge from academia into industry
- We can estimate potential growth rates comparing to cloud computing 15 20 years ago

"Eras" of ML in Industry

• **Before 2000:** It's all about IT (dotcoms, Amazon, etc)

• **2000 - 2010:** It's all about collecting and searching data (Facebook, Google, Uber)

• **2010 – 2020:** What do we learn from data (correlative era)

• **2020 – now:** Physics is the new data

- Classical machine learning is underpinned by the existence of the **large static data sets** from MNIST to emerging medical, bio, faces, etc.
- Real world problems are associated with the large distribution shifts, often small data sets, and presence of uncontrollable exogenous factors
- Also, real world problems are often **active learning**: we interrogate the data generation process and provide feedback, not deal with static data sets
- However, we often have extensive **prior knowledge** of past data, **physical laws** generalizing them, **human heuristics**, and strong set of inferential biases

ML for real-world applications is different!

Types of Machine Learning

Supervised (inductive) learning

- Given: training data + desired outputs (labels)
- Unsupervised learning
- Given: training data (without desired outputs)
- Semi-supervised learning
- Given: training data + a few desired outputs
- Reinforcement learning
- Rewards from sequence of actions

Supervised Machine Learning

- Regression
- Classification
- Semantic segmentation
- Instance segmentation

• • •

Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
- If y is categorical == classification

Application	Input Data	Classification
Medical Diagnosis	Noninvasive tests	Results from invasive
		measurements
Optical Character	Scanned bitmaps	Letter A-Z and digits 0-9
Recognition		
Protein Folding	Amino acid sequence	Protein shape (helices,
		loops, sheets)
Materials Discovery	Composition	Metal/Semiconducotr
Research Paper	Words in paper title	Paper accepted or rejected
Acceptance		

Regression

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
- y is real-valued == regression

Simple regression: $R^1 \rightarrow R^1$

Not so simple regression

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the *x*'s
- Example: clustering

M. ZIATDINOV, A. MAKSOV, L. LI, A. SEFAT, P. MAKSYMOVYCH, and S.V. KALININ, *Deep data mining in a real space: Separation of intertwined electronic responses in a lightly-doped* BaFe₂As₂, Nanotechnology **27**, 475706 (2016).

Genomics application: group individuals by genetic similarity

[Source: Daphne Koller]

Organize computing clusters

Market segmentation

Slide credit: Andrew Ng

Social network analysis

Astronomical data analysis

Number of signals are being produced simultaneously; with the objective of separating and following each source separately

Separated Sources

Reinforcement Learning

Given a sequence of **states** and **actions** with (delayed) **rewards**, output a policy, i.e. a mapping from states to actions that tells you what to do in a given state

- Examples:
- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

RL: Agent and Environment

Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward : $r_{t+1} \in \Re$

and resulting next state: s_{t+1}

Reinforcement Learning in Action

https://www.youtube.com/watch?v=GtYIVxv0py8

Somewhat remarkably, almost all AI research until very recently has assumed that the performance measure can be exactly and correctly specified in the form of utility or reward function

Reinforcement Learning Applications

Chemical Synthesis and Drug Discovery

Cloud Laboratories

Emerald Cloud Lab, SF and CMU

o. Getting big data: making imaging tools a part of data infrastructure

Physics: Why something happens

1. Big data:

How does it happen?

- Unsupervised learning, clustering, and visualization
- **Biggest hurdle:** Language/ elementary tools

2. Deep data:

How can we understand?

- Physics informed data analytics/ supervised methods
- Biggest hurdles:
 Mathematical
 framework,
 scalability of
 computational tools

- **3. Smart data:** How can we do better?
- Feedback and expert/AI systems
- **Biggest hurdles:** With LLMs, it is possible

How it feels most of the time:

Build the case for machine learning

- Explore the business/scientific problem
- Build workflow (operations, costs, latencies)
- Identify bottlenecks
- Chart the solution
- Prototype the solution
- Test and iterate
- Deploy
- Support
- Upgrade
- Sunset

Homework assignment 2 (part 1)

Identify the type of problem

Supervised (inductive) learning

- Given: training data + desired outputs (labels)
- Unsupervised learning
- Given: training data (without desired outputs)
- Semi-supervised learning
- Given: training data + a few desired outputs
- Reinforcement/active learning
- Rewards from sequence of actions

The pyramid of machine learning

Why bother with infrastructure?

- Almost all of machine learning relies extensively on having access to good quality data
- In most laboratories, this data is acquired via multiple instruments in different formats, and not findable or accessible, and often lacks necessary metadata for ML labeling
- As such, in many cases, ML in science is impossible especially in the experimental domains, without the necessary investments in data standardization and storage
- Similarly, reproducibility of workflows relies on strongly tested codebases, not one-off scripts.

Soon to be a requirement!

- Data management plans in proposals
- Repositories of data and codes associated with publications
- Good to be ready!

https://www.science.org/content/article/white-house-requiresimmediate-public-access-all-u-s--funded-research-papers-2025

Get data – from scientific tools

- Spectra
- (Multimodal) Images
- Hyperspectral images
- Videos
- Time traces
- •

Topography

PFM Amplitude

As scientists, we rarely have to deal with the classical ELT (Extract-Load Transform, aka Data Wrangling) problems. But....

Standardization of Microscope Data

Micro Raman Microscope

<u>A</u>tomic <u>F</u>orce <u>M</u>icroscope (AFM)

<u>AFM</u> with <u>Infrared</u> spectroscopy (AFM-IR)

Multitude of File Formats

Disjointed communities....

- Filter Image
- Register Image ...

... cannot share code efficiently

Solutions: Integrated Ecosystems

Data from measurements or simulations are read into **sidpy.Dataset** (d) objects directly by **SciFiReaders** (SF). Data are processed using multiple science packages in the Pycroscopy ecosystem that interoperate via **Dataset** objects. **Dataset** objects are written to HDF5 files via **pyUSID** (US) or **pyNSID** (NS).

Slide courtesy of R. Vasudevan

Solutions: Integrated Ecosystems

