UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2023/1Prova da área I

1-4	5	6	Total

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

fasta do operator \vec{v} . f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{ abla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{ abla} \cdot \vec{F} + \vec{ abla} \cdot \vec{G}$
3.	$\vec{\nabla} imes \left(\vec{F} + \vec{G} \right) = \vec{\nabla} imes \vec{F} + \vec{\nabla} imes \vec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} ight) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes \left(ec{ abla} f ight) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torçao e aceleração:					
Nome	Fórmula				
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$				
Vetor binormal	$ec{B} = rac{ec{r}'(t) imes ec{r}''(t)}{\ ec{r}'(t) imes ec{r}''(t)\ }$				
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$				
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$				
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $				
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$				
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$				

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (0.5 ponto cada item) Considere a hélice circular não uniforme dada por:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + e^t\vec{k}, \quad -\infty < t < \infty.$$

Marque a resposta correta para cada coluna.

Normal unitário em t=0:

$$(\)\ \vec{N}(0) = rac{\sqrt{3}}{3} \left(\vec{i} - \vec{j} + \vec{k}
ight)$$

()
$$\vec{N}(0) = \frac{\sqrt{6}}{6} (\vec{i} - \vec{j} + \vec{k})$$

()
$$\vec{N}(0) = \frac{\sqrt{6}}{4} \left(-\vec{i} - \vec{j} + 2\vec{k} \right)$$

()
$$\vec{N}(0) = \frac{\sqrt{3}}{3} \left(-2\vec{i} - \vec{j} + \vec{k} \right)$$

$$(\ \)\ \, \vec{N}(0) = \frac{\sqrt{6}}{6} \left(-2\vec{i} - \vec{j} + \vec{k} \right)$$

Binormal unitário em t=0:

()
$$\vec{B}(0) = \frac{\sqrt{3}}{3} (\vec{i} - \vec{j} + \vec{k})$$

()
$$\vec{B}(0) = \frac{\sqrt{6}}{6} (\vec{i} - \vec{j} + \vec{k})$$

()
$$\vec{B}(0) = \frac{\sqrt{6}}{4} \left(-\vec{i} - \vec{j} + 2\vec{k} \right)$$

()
$$\vec{B}(0) = \frac{\sqrt{3}}{3} \left(-2\vec{i} - \vec{j} + \vec{k} \right)$$

$$(\)\ \vec{B}(0) = \frac{\sqrt{6}}{6} \left(-2\vec{i} - \vec{j} + \vec{k} \right)$$

Curvatura em t = 0:

$$(\quad) \ \kappa(0) = \frac{\sqrt{6}}{2}$$

$$(\)\ \kappa(0) = \frac{\sqrt{6}}{4}$$

$$(\)\ \kappa(0) = \frac{\sqrt{3}}{2}$$

()
$$\kappa(0) = \frac{2}{3}$$

()
$$\kappa(0) = \frac{1}{3}$$

Torção em t=0:

()
$$\tau(0) = \frac{\sqrt{6}}{2}$$

$$(\)\ \tau(0) = \frac{\sqrt{6}}{4}$$

$$(\)\ \tau(0) = \frac{\sqrt{3}}{2}$$

()
$$\tau(0) = \frac{2}{3}$$

()
$$\tau(0) = \frac{1}{3}$$

• Questão 2 (0.5 ponto cada item) Uma abelha viaja sobre uma trajetória $\vec{r}(t)$ com velocidade $\vec{r}'(t) = \vec{v}(t) = t\vec{i} + t^2\vec{j} + \vec{k}$, $0 \le t \le 1$. Sabendo que a abelha passa pelo ponto (1,1,1) em t=0, marque a resposta correta para cada coluna.

Posição da abelha $\vec{r}(t)$

()
$$\vec{r}(t) = \frac{t^2}{2}\vec{i} + \frac{t^3}{3}\vec{j} + t\vec{k}$$

()
$$\vec{r}(t) = \left(\frac{t^2}{2} + 1\right)\vec{i} + \left(\frac{t^3}{3} + 1\right)\vec{j} + (t+1)\vec{k}$$

()
$$\vec{r}(t) = \left(\frac{t^2}{2} + 1\right)\vec{i} + \left(\frac{t^3}{3} + 1\right)\vec{j} + t\vec{k}$$

()
$$\vec{r}(t) = \frac{t^2}{2}\vec{i} + \frac{t^3}{3}\vec{j} + \vec{k}$$

()
$$\vec{r}(t) = \vec{i} + 2t\vec{j}$$

Componente tangencial da aceleração a_T

()
$$a_T = \frac{1+t}{\sqrt{t^2+t+1}}$$

()
$$a_T = \frac{t + 2t^2}{\sqrt{t^3 + t^2 + t^2}}$$

()
$$a_T = \frac{1+t^2}{\sqrt{t^4+t^2+t^2}}$$

()
$$a_T = \frac{t + 2t^3}{\sqrt{t^4 + t^2 + 1}}$$

()
$$a_T = \frac{1+2t}{\sqrt{t^2+t+1}}$$

• Questão 3 (0.5 ponto cada item) Considere a superfície fechada limitada pelos plano $x=\pm 2,\,y=\pm 2$ e $z=\pm 2$, orientada para fora, e o campo $\vec{F}=-2(z^2+1)xy\vec{i}+(z^2+1)y^2\vec{j}+xyz^2\vec{k}$.

Divergente

()
$$\vec{\nabla} \cdot \vec{F} = -2(z^2+1)xy + (z^2+1)y^2 + xyz^2$$

()
$$\vec{\nabla} \cdot \vec{F} = -2(z^2 + 1)x + xyz^2$$

()
$$\vec{\nabla} \cdot \vec{F} = -2(z^2 + 1)x + xyz$$

()
$$\vec{\nabla} \cdot \vec{F} = -(z^2 + 1)y + 2xyz$$

$$(\quad) \ \, \vec{\nabla} \cdot \vec{F} = 2xyz$$

Integral de superfície

$$(\quad) \iint_{S} \vec{F} \cdot \vec{n} dS = 0$$

()
$$\iint \vec{F} \cdot \vec{n} dS = 4$$

()
$$\iint_{S} \vec{F} \cdot \vec{n} dS = 8$$

()
$$\iint_{S} \vec{F} \cdot \vec{n} dS = 16$$

()
$$\iint_{S} \vec{F} \cdot \vec{n} dS = 24$$

 \bullet Questão 4 (0.5 ponto cada item) A figura ao lado apresenta o corte z=0 de um campo $\vec{F}(x,y)=F_1(x,y)\vec{i}$ e as seguintes quatro curvas orientadas: C_1 é um círculo, C_2 é um segmento de reta, C_3 é uma elipse e C_4 é a união de dois segmentos de reta. Considere também a esfera S_1 centrada na origem, raio 2 e orientada para fora e o plano S_2 dado por $x = 0, -2 \le y \le 2, -2 \le z \le 2$, orientado no sentido de \vec{i} .

Marque a resposta correta para cada coluna.

Integral de linha:

Curvatura:

- () A curvatura é uma constante para cada curva.
- () A curvatura é zero para C_1 e C_2 .
- () A curvatura não é constante para C_1 e C_3
- () Os pontos de maior curvatura estão sobre a curva C_3
- () A curvatura sobre C_2 cresce da esquerda para

Rotacional:

- () $\nabla \times \vec{F} \cdot \vec{k} > 0$ em todos os pontos.
- () $\nabla \times \vec{F} \cdot \vec{k} < 0$ em todos os pontos.
- () $\nabla \times \vec{F} \cdot \vec{k} = 0$ em todos os pontos.
- () $\nabla \times \vec{F} \cdot \vec{i} > 0$ em todos os pontos
- () $\nabla \times \vec{F} \cdot \vec{j} > 0$ em todos os pontos
- Questão 5 (1.0 ponto) Sejam a_N e a_T indicam as acelerações normal e tangencial, respectivamente. Prove algebricamente a expressão dada por:

$$\|\vec{a}\|^2 = a_N^2 + a_T^2$$

onde \vec{a} é o vetor aceleração. Faça uma interpretação geométrica.

- Questão 6 (3.0 pontos) Considere o campo vetorial $\vec{F} = xz\vec{i} + x\vec{j} + \frac{y^2}{2}\vec{k}$, a superfície S_1 formada pelo parabolóide $z = 1 x^2 y^2$, $z \ge 0$ e a superfície S_2 formada pelo cone $z = 1 \sqrt{x^2 + y^2}$, $0 \le z \le 1$, ambas orientada no sentido positivo do eixo z.
 - a) (1.5) Calcule as seguintes integrais de superfície:

$$\iint_{S_1} \left(\vec{\nabla} \times \vec{F} \right) \cdot \vec{n} dS$$

e

$$\iint_{S_2} \left(\vec{\nabla} \times \vec{F} \right) \cdot \vec{n} dS.$$

convertendo-as em integrais duplas iteradas (sem usar o teoremas de Stokes).

- b) (1.0) Use o teorema de Stokes para justificar o resultado do item a).
- c) (0.5) Usando o resultado do item a) e o teorema do Stokes, é possível calcular o valor da integral

$$\iint_{D} \left(\vec{\nabla} \times \vec{F} \right) \cdot \vec{n} dS.$$

onde Dé disco unitário no plano xydado por $z=0,\,x^2+y^2\leq 1?$