

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 174 431 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
23.01.2002 Patentblatt 2002/04

(51) Int Cl.7: C07D 487/04, A61K 31/53

(21) Anmeldenummer: 01123321.0

(22) Anmelddatum: 31.10.1998

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Benannte Erstreckungsstaaten:

LT LV RO SI

(30) Priorität: 12.11.1997 DE 19750085
23.03.1998 DE 19812462
04.09.1998 DE 19840289

(62) Dokumentnummer(n) der früheren Anmeldung(en)
nach Art. 76 EPÜ:
98959821.4 / 1 049 695

(71) Anmelder: Bayer Aktiengesellschaft
51368 Leverkusen (DE)

(72) Erfinder:

- Niewöhner, Ulrich, Dr.
42929 Wermelskirchen (DE)
- Es-Sayed, Mazen, Dr.
40764 Langenfeld (DE)

- Haning, Helmut, Dr.
Milford, CT 06460 (US)
- Schenke, Thomas, Dr.
51469 Bergisch Gladbach (DE)
- Schlemmer, Karl-Heinz, Dr.
42113 Wuppertal (DE)
- Keldenich, Jörg, Dr.
42113 Wuppertal (DE)
- Bischoff, Erwin, Dr.
42115 Wuppertal (DE)
- Perzborn, Elisabeth, Dr.
42327 Wuppertal (DE)
- Dembowsky, Klaus, Dr.
Boston, MA 02116 (US)
- Serno, Peter, Dr.
51467 Bergisch Gladbach (DE)
- Nowakowski, Marc, Dr.
42115 Wuppertal (DE)

Bemerkungen:

Diese Anmeldung ist am 08.10.2001 als
Teilanmeldung zu der unter INID-Kode 62
erwähnten Anmeldung eingereicht worden.

(54) **2-Phenyl-substituierte Imidazotriazinone als Phoshodiesterase Inhibitoren**

(57) Die 2-Phenyl-substituierten Imidazotriazinone mit kurzen, unverzweigten Alkylresten in der 9-Position werden aus den entsprechenden 2-Phenyl-imidazotriazinonen durch Chlorsulfonierung und anschließender Umsetzung mit den Aminen hergestellt. Die Verbindun-

gen hemmen cGMP-metabolisierende Phosphodiesterasen und eignen sich als Wirkstoffe in Arzneimitteln, zur Behandlung von cardioaskulären und cerebroaskulären Erkrankungen und/oder Erkrankungen des Urogenitalsystems, insbesondere zur Behandlung der erektilen Dysfunktion.

Beschreibung

[0001] Die vorliegende Erfindung betrifft 2-Phenyl-substituierte Imidazotriazinone, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Inhibitoren cGMP-metabolisierender Phosphodiesterasen.

[0002] In der Offenlegungsschrift DE 28 11 780 sind Imidazotriazine als Bronchodilatoren mit spasmolytischer Aktivität und Hemmaktivität gegen cyclisches Adenosinmonophosphat metabolisierende Phosphodiesterasen (cAMP-PDE's, Nomenklatur nach Beavo: PDE-III und PDE-IV) beschrieben. Eine Hemmwirkung gegen cyclisches Guanosin-monophosphat metabolisierende Phosphodiesterasen (cGMP-PDE's, Nomenklatur nach Beavo und Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) PDE-I, PDE-II und PDE-V) ist nicht beschrieben. Es werden keine Verbindungen beansprucht, die eine Sulfonamidgruppe im Arylrest in der 2-Position enthalten. Weiterhin werden Imidazotriazinone in FR 22 13 058, CH 59 46 71, DE 22 55 172, DE 23 64 076 und EP 000 9384 beschrieben, die in der 2-Position keinen substituierten Arylrest besitzen, und ebenfalls als Bronchodilatatoren mit cAMP-PDE inhibitorischer Wirkung beschrieben werden.

[0003] In WO 94/28902 werden Pyrazolopyrimidinone beschrieben, die sich für die Behandlung von Impotenz eignen.

[0004] Die erfindungsgemäßen Verbindungen sind potente Inhibitoren von entweder einer oder mehrerer der cyclisches Guanosin 3',5'-monophosphat metabolisierenden Phosphodiesterasen (cGMP-PDE's). Entsprechend der Nomenklatur von Beavo und Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) handelt es sich um die Phosphodiesterase Isoenzyme PDE-I, PDE-II und PDE-V.

[0005] Ein Anstieg der cGMP-Konzentration kann zu heilsamen, antiaggregatorischen, antithrombotischen, antiproliferativen, antivasospastischen, vasodilatierenden, natriuretischen und diuretischen Effekten führen. Es kann die Kurz- oder Langzeitmodulation der vaskulären und kardialen Inotropie, den Herzrhythmus und die kardiale Erregungsleitung beeinflussen (J.C. Stoclet, T. Keravis, N. Komas and C. Kugnier, Exp. Opin. Invest. Drugs (1995), 4 (11), 1081-1100).

[0006] Die vorliegende Erfindung betrifft jetzt 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I)

in welcher

R¹ für Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

R² für geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 8 Kohlenstoffatomen stehen, oder

für eine geradkettige oder verzweigte Alkylkette mit bis zu 10 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Trifluormethyl, Trifluormethoxy, Hydroxy, Halogen, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 6 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸', -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

50

55

5

10

15

20

und/oder

25

30

35 substituiert ist,

worin

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

40

A einen Rest CO oder SO₂ bedeutet,

45

R⁷, R^{7'}, R⁸ und R^{8'} gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen, einen 5- bis 6-gliedrigen ungesättigten, partiell ungesättigten oder gesättigten, gegebenenfalls benzokondensierten Heterocyclus, mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Halogen, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

worin

50

c eine Zahl 0 oder 1 bedeutet,

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten,

55

oder

R⁷, R^{7'}, R⁸ und R^{8'} geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehr-

fach, gleich oder verschieden durch Hydroxy, Halogen, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,
worin

5 R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

10 und

15 d eine Zahl 0 oder 1 bedeutet,

oder

20 R⁷ und R⁸ und/oder R^{7'} und R^{8'} gemeinsam mit dem Stickstoffatom einen 5-bis 7-gliedrigen, gesättigten Heterocycus bilden, der gegebenenfalls noch ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR¹⁶ enthalten kann,
worin

25 R¹⁶ Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl, einen 5- bis 7-gliedrigen aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, der gegebenenfalls durch Methyl substituiert ist, oder
geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

30 R⁹ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

35 R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und/oder die oben unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N; O oder einen Rest der Formel -NR¹⁷ enthalten kann, substituiert ist,
worin

40 R¹⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist,

45 und wobei Aryl und der Heterocyclus gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy und/oder durch einen Rest der Formel -SO₂NR¹⁸R¹⁹ substituiert sind,
worin

50 R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

und/oder

55 R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,
worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

und/oder

R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

5

10

oder

15

20

stehen,

oder für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder für einen 5- bis 7-gliedrigen partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus stehen, der bis zu 4 Heteroatome aus der Reihe S, N; O oder einen Rest der Formel -NR²² enthalten kann,

25

worin

30

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen bedeutet,

35

und wobei Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls ein-bis mehrfach, gleich oder verschieden durch Halogen, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

40

worin

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

45

45

bedeutet, oder

Cycloalkyl mit 3 bis 7 Kohlenstoffatomen bedeutet, oder Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, Benzyloxy, Tetrahydropyranil, Tetrahydrofuranil, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Carboxyl, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein-bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy oder Halogen substituiert sein kann,

50

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

55

worin

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, oder

EP 1 174 431 A2

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Heteroatom aus der Reihe S oder O enthalten kann,

und

R³⁰ Phenyl oder Adamantyl bedeutet,

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind

und/oder Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, durch einen 5- bis 7-gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,
worin

R³¹ Wasserstoff bedeutet oder die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen 5- bis 6-gliedrigen gesättigten Heterocyclus bilden, der ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR³⁶ enthalten kann,
worin

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 7 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen, ungesättigten oder gesättigten oder partiell ungesättigten, gegebenenfalls benzokondensierten Heterocyclus bilden, der gegebenenfalls bis zu 3 Heteroatome aus der Reihe S, N, O oder einen Rest der Formel -NR³⁷ enthalten kann,
worin

R³⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxy-carbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls eins- bis mehrfach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_fNR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,
worin

g und h gleich oder verschieden sind und eine Zahl 1, 2, 3 oder 4 bedeuten,

und

f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

EP 1 174 431 A2

R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,

R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,

5 R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

10 R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,
worin

i eine Zahl 0 oder 1 bedeutet,

15 E Cycloalkyl mit 3 bis 7 Kohlenstoffatomen oder Benzyl bedeutet,
Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,
20 worin

25 R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

E Reste der Formeln

30

35

oder

40

45

bedeutet,

50 und der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls ein- bis mehrfach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit bis jeweils zu 6 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

55

5

oder $-(\text{CO})_j\text{NR}^{49}\text{R}^{50}$ substituiert ist,

10 worin

R^{46} und R^{47} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind,

15 R^{48} Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

20 und

25 R^{49} und R^{50} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{14} und R^{15} haben,

und/oder der unter R^3 und R^4 aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das gegebenenfalls ein-bis mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Carboxyl, Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen Rest der Formel $-\text{SO}_3\text{H}$, $-\text{NR}^{51}\text{R}^{52}$ oder $\text{P}(\text{O})\text{OR}^{53}\text{OR}^{54}$ substituiert ist,

worin

30 R^{51} und R^{52} gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

35 R^{53} und R^{54} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{10} und R^{11} haben,

und/oder das Alkyl gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein-bis mehrfach, gleich oder verschieden durch Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, oder durch eine Gruppe der Formel $-\text{NR}^{51'}\text{R}^{52'}$ substituiert sein kann,

worin

40 $\text{R}^{51'}$ und $\text{R}^{52'}$ die oben angegebene Bedeutung von R^{51} und R^{52} haben und mit dieser gleich oder verschieden sind,

45 und/oder der unter R^3 und R^4 aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, gesättigten, partiell ungesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert ist, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen substituiert sein können,

50 oder

R^3 und R^4 gemeinsam mit dem Stickstoffatom Reste der Formeln

55

5

10

oder

15

20

25

bilden,

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen stehen,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

[0007] Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

[0008] Die erfindungsgemäßen Stoffe können auch als Salze vorliegen. Im Rahmen der Erfindung sind physiologisch unbedenkliche Salze bevorzugt.

[0009] Physiologisch unbedenkliche Salze können Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren sein. Bevorzugt werden Salze mit anorganischen Säuren wie beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure oder Schwefelsäure, oder Salze mit organischen Carbon- oder Sulfonsäuren wie beispielsweise Essigsäure, Maleinsäure, Fumarsäure, Äpfelsäure, Zitronensäure, Weinsäure, Milchsäure, Benzoesäure, oder Methansulfonsäure, Ethansulfonsäure, Phenylsulfonsäure, Toluolsulfonsäure oder Naphthalindisulfonsäure.

[0010] Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak oder organischen Aminen, wie beispielsweise Ethylamin, Dibzw. Triethylamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Arginin, Lysin, Ethyldiamin oder 2-Phenylethylamin.

[0011] Heterocyclus, gegebenenfalls benzokondensiert, steht im Rahmen der Erfindung im allgemeinen für einen gesättigten, partiell ungesättigten oder ungesättigten 5- bis 7-gliedrigen Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N und/oder O enthalten kann. Beispielsweise seien genannt: Azepin, Diazepin, Indolyl, Isochinolyl, Chinolyl, Benzo[b]thiophen, Benzo[b]furanyl, Pyridyl, Thienyl, Tetrahydrofuranyl, Tetrahydropyranyl, Furyl, Pyrrolyl, Thiazolyl, Triazolyl, Tetrazolyl, Isoxazolyl, Imidazolyl, Morpholinyl, Thiomorpholinyl, Pyrrolidinyl, Piperazinyl, N-Methylpiperazinyl oder Piperidinyl. Bevorzugt sind Chinolyl, Furyl, Pyridyl, Thienyl, Piperidinyl, Pyrrolidinyl, Piperazinyl, Azepin, Diazepin, Thiazolyl, Triazolyl, Tetrazolyl, Tetrahydrofuranyl, Tetrahydropyranyl, Morpholinyl und Thiomorpholinyl.

[0012] Ein geradkettiger oder verzweigter Acylrest mit 1 bis 6 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Acetyl, Ethylcarbonyl, Propylcarbonyl, Isopropylcarbonyl, Butylcarbonyl, Isobutylcarbonyl, Pentyl-

carbonyl und Hexylcarbonyl. Bevorzugt ist ein geradkettiger oder verzweigter Acylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt sind Acetyl und Ethylcarbonyl.

[0013] Ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen steht im Rahmen der Erfindung für Methoxy, Ethoxy, n-Propoxy, Isopropoxy, tert.Butoxy, n-Pentoxyl und n-Hexoxy. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 6, 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 3 Kohlenstoffatomen.

[0014] Ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 6 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und tert.Butoxycarbonyl. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 3 Kohlenstoffatomen.

[0015] Ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4, 1 bis 6, 1 bis 8 und 1 - 10 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Methyl, Ethyl, n-Propyl, Isopropyl, tert.Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl und n-Decyl. Bevorzugt sind geradkettige oder verzweigte Alkylreste mit 1 bis 3, 1 bis 4 bzw. 1 bis 8 Kohlenstoffatomen. Besonders bevorzugt sind geradkettige oder verzweigte Alkylreste mit 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen.

[0016] Geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Methyl, Ethyl, n-Propyl und n-Butyl.

[0017] (C_6 - C_{10})-Aryl steht im allgemeinen für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

[0018] Cycloalkyl mit 3 bis 8 bzw. 3 bis 7 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl. Bevorzugt seien genannt: Cyclopropyl, Cyclopentyl und Cyclohexyl.

[0019] Cycloalkyloxy mit 3 bis 8 Kohlenstoffatomen steht im Rahmen der Erfindung für Cyclopropyloxy, Cyclopentyloxy, Cyclobutyloxy, Cyclohexyloxy, Cycloheptyloxy oder Cyclooctyloxy. Bevorzugt seien genannt: Cyclopropyloxy, Cyclopentyloxy und Cyclohexyloxy.

[0020] Halogen steht im Rahmen der Erfindung im allgemeinen für Fluor, Chlor, Brom und Jod. Bevorzugt sind Fluor, Chlor und Brom. Besonders bevorzugt sind Fluor und Chlor.

[0021] Ein 5- bis 6-gliedriger bzw. 7-gliedriger gesättigter Heterocyclus, der ein weiteres Heteroatom aus der Reihe S, N und/oder O enthalten kann steht im Rahmen der Erfindung und in Abhängigkeit der oben aufgeführten Substituenten beispielsweise für Morholinyl, Piperidinyl, Piperazinyl, Tetrahydropyranyl oder Tetrahydrofuranyl. Bevorzugt sind Morholinyl, Tetrahydropyranyl, Piperidinyl und Piperazinyl.

[0022] Ein 5- bis 6-gliedriger aromatischer Heterocyclus mit bis zu 3 oder 4 Heteroatomen aus der Reihe S, O und/oder N steht im Rahmen der Erfindung beispielsweise für Pyridyl, Pyrimidyl, Pyridazinyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl oder Imidazolyl. Bevorzugt sind Pyridyl, Pyrimidyl, Pyridazinyl, Furyl und Thiazolyl.

[0023] Ein 5- bis 6-gliedriger ungesättigter, partiell ungesättigter und gesättigter Heterocyclus, der bis zu 3 bzw. 4 Heteroatome aus der Reihe S, O und/oder N enthalten kann, steht im Rahmen der Erfindung beispielsweise für Pyridyl, Pyrimidyl, Pyridazinyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Piperidinyl, Piperazinyl oder Morholinyl. Bevorzugt sind Pyridyl, Pyrimidyl, Piperazinyl, Pyridazinyl, Morholinyl, Furyl und Thiazolyl.

[0024] Die erfindungsgemäßen Verbindungen, insbesondere die Salze, können auch als Hydrate vorliegen. Im Rahmen der Erfindung werden unter Hydraten solche Verbindungen verstanden, die im Kristall Wasser enthalten. Solche Verbindungen können ein oder mehrere, typischerweise 1 bis 5, Äquivalente Wasser enthalten. Hydrate lassen sich beispielsweise herstellen, indem man die betreffende Verbindung aus Wasser oder einem wasserhaltigen Lösungsmittel kristallisiert.

[0025] Bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I), in welcher

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen stehen, oder

für eine geradkettige oder verzweigte Alkylkette mit bis zu 8 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 5 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰), (OR¹¹),

5

10

15

20

und/oder

25

30

substituiert ist,
worin

35 a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

40 R⁷, R^{7'}, R⁸ und R^{8'} gleich oder verschieden sind und Wasserstoff bedeuten, oder
Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxy-carbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,
45 worin

c eine Zahl 0 oder 1 bedeutet,

50 R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

55 R⁷, R^{7'}, R⁸ und R^{8'} geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 7 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy-carbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,
und

d eine Zahl 0 oder 1 bedeutet,

oder

R⁷ und R⁸ und/oder R^{7'} und R^{8'} gemeinsam mit dem Stickstoffatom einen Pyrrolidinyl-, Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

oder

40
bilden,
worin

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morphinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder
geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

45
R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

50
R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,
und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl,
Cycloheptyl, Phenyl, Pyridyl, Chinolyl, Pyrrolidinyl, Pyrimidyl, Morphinyl, Furyl, Piperidinyl, Tetrahydrofuranyl
oder durch Reste der Formeln

5

oder

10

15

20

substituiert ist,
worin

25

R¹⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist,

30

und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂-NR¹⁸R¹⁹ substituiert sind,
worin

35

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und/oder

40

R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,
worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

45

und/oder

R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

50

55

oder

5

10 stehen, oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

15

20

25

oder

30

35

40

stehen,
worin

*R*²² die oben angegebene Bedeutung von *R*¹⁶ hat und mit dieser gleich oder verschieden ist, oder Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen bedeutet,

45

und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls ein-bis dreifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxykarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (*SO*₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,
worin

50

e eine Zahl 0 oder 1 bedeutet,

*R*²³ einen Rest der Formel

55

5

bedeutet, oder

Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl oder Cycloheptyl bedeutet,

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Benzyloxy, Tetrahydropyran, Tetrahydrofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyloxy-carbonyl oder Phenyl substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy, Fluor oder Chlor substituiert sein kann, und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

worin

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

R³⁰ Phenyl oder Adamantyl bedeutet,

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R" haben und mit dieser gleich oder verschieden sind und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

worin

R³¹ die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

50

bilden,

worin

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch

Hydroxy substituiert ist,

oder

5 R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinylring oder einen Rest der Formel

bilden,

15 worin

R³⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxy-

carbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,

20 oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_fNR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

worin

25 g und h gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

und

30 f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

35 R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

40 R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

45 R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,

worin

i eine Zahl 0 oder 1 bedeutet,

50 E Cyclopentyl, Cyclohexyl, Cycloheptyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

worin

55 R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

E Reste der Formeln

5

10

oder

15

20

bedeutet,

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit bis jeweils zu 5 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

25

30

oder

35

40

substituiert sind,

45

worin

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

50

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

55

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben, und/oder die unter R³ und R⁴ aufgeführten gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das

EP 1 174 431 A2

gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch einen Rest der Formel $-\text{SO}_3\text{H}$, $-\text{NR}^{51}\text{R}^{52}$ oder $\text{P}(\text{O})\text{OR}^{53}\text{OR}^{54}$ substituiert ist,

5

worin

R^{51} und R^{52} gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

10

R^{53} und R^{54} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{10} und R^{11} haben,

15

und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, oder durch eine Gruppe der Formel $-\text{NR}^{51'}\text{R}^{52'}$ substituiert sein kann,

worin

$\text{R}^{51'}$ und $\text{R}^{52'}$ die oben angegebene Bedeutung von R^{51} und R^{52} haben und mit dieser gleich oder verschieden sind,

20

und/oder die unter R^3 und R^4 aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Terazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein können,

25

oder

R^3 und R^4 gemeinsam mit dem Stickstoffatom Reste der Formeln

30

40

oder

45

55

bilden,

R^5 und R^6 gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes

Alkoxy mit bis zu 4 Kohlenstoffatomen stehen,

und deren Salze, N-Oxide, Hydrate und isomere Formen.

[0026] Besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),
in welcher

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder
Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen stehen, oder

für eine geradkettige oder verzweigte Alkylkette mit bis zu 6 Kohlenstoffatomen stehen, die gegebenenfalls durch
ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hy-
droxy, Fluor, Chlor, Carboxyl, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 4 Kohlenstoffatomen und/
oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

und/oder

substituiert ist,

worin a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

R⁷, R^{7'}, R⁸ und R^{8'} gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten
Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Nitro, Carboxyl, Fluor,
Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder
durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

worin

c eine Zahl 0 oder 1 bedeutet,

5 R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

10 R⁷, R^{7'}, R⁸ und R^{8'} Methoxy bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder zweifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,
worin

15 R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,
und

20 d eine Zahl 0 oder 1 bedeutet,

oder

25 R⁷ und R⁸ und/oder R^{7'} und R^{8'} gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

35

40

The image shows a morpholine ring with an N-alkyl group (-NR¹⁶) attached at the 4-position.

oder

45

50

The image shows a piperazine ring with two N-alkyl groups (-NR¹⁶) attached at the 4 and 4' positions.

bilden,
worin

55 R¹⁶ Wasserstoff, Phenyl, Benzyl, Morpholinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

5 R⁹ Methyl bedeutet,

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,
und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cy-
cloheptyl, Morpholinyl, Furyl, Tetrahydrofuryl oder durch Reste der Formeln

5

10

15 oder

15

20

substituiert ist,
worin

25

R¹⁷ Wasserstoff, Hydroxy, Formyl, Acetyl oder Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis
zweifach gleich oder verschieden durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlen-
stoffatomen substituiert ist,
und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor,
Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen, Hydroxy
und/oder durch einen Rest der Formel -SO₂NR¹⁸R¹⁹ substituiert sind,
worin

30

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3
Kohlenstoffatomen bedeuten,

35

und/oder

40

R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,
worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden
sind,

45

und/oder

R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

50

55

oder

5

stehen, oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofurananyl, Tetrahydropyranyl oder für Reste der Formeln

15

20

25

oder

30

35

stehen,
worin

40

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder Formyl oder Acetyl bedeutet,
und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls ein-bis zweifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

worin

50

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

55

5

bedeutet, oder

10 Cyclopropyl, Cyclopentyl, Cyclobutyl oder Cyclohexyl bedeutet, Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Methoxy, Hydroxy, Fluor oder Chlor substituiert sein kann,
 15 und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist, worin

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, oder

20 R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

25 R³⁰ Phenyl oder Adamantyl bedeutet,

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

30 R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind
 und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,
 35 worin

R³¹ Methyl bedeutet,

40 R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

45 R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder Methoxy substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

50

55 bilden,
 worin

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 3 Kohlenstoffatomen

EP 1 174 431 A2

oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

5 R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinylring oder einen einen Rest der Formel

bilden,

15 worin

R³⁷ Wasserstoff, Hydroxy, Formyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,

20 oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_f-NR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

worin

25 g und h gleich oder verschieden sind und eine Zahl 1 oder 2 bedeuten,

und

30 f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

35 R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

40 R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

oder

45 R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,

worin

i eine Zahl 0 oder 1 bedeutet,

50 E Cyclopentyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

worin

55 R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

E Reste der Formeln

5

10

oder

15

20

bedeutet,

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom, gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

25

30

oder

35

40

substituiert sind,

worin

45

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder Methoxy bedeutet,

50

j eine Zahl 0 oder 1 bedeutet,

und

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben, und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch

EP 1 174 431 A2

einen Rest der Formel $-\text{SO}_3\text{H}$, $-\text{NR}^{51}\text{R}^{52}$ oder $\text{P}(\text{O})\text{OR}^{53}\text{OR}^{54}$ substituiert ist,

worin

5 R^{51} und R^{52} gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

10 R^{53} und R^{54} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{10} und R^{11} haben, und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, Methoxy oder durch eine Gruppe der Formel $-\text{NR}^{51}\text{R}^{52}'$ substituiert sein kann,

worin

15 R^{51}' und R^{52}' die oben angegebene Bedeutung von R^{51} und R^{52} haben und mit dieser gleich oder verschieden sind, und/oder die unter R^3 und R^4 aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Tetrazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können ,

20

oder

R^3 und R^4 gemeinsam mit dem Stickstoffatom Reste der Formeln

25

40

bilden,

50 R^5 und R^6 gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen stehen,

und deren Salze, N-Oxide, Hydrate und isomere Formen.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I),
in welcher

55

R^1 für Methyl oder Ethyl steht,

R^2 für Ethyl oder Propyl steht,

EP 1 174 431 A2

R³ und R⁴ gleich oder verschieden sind und für eine geradkettige oder verzweigte Alkylkette mit bis zu 5 Kohlenstoffatomen stehen, die gegebenenfalls bis zu zweifach gleich oder verschieden durch Hydroxy oder Methoxy substituiert ist,

5 oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Piperidinyl-, Morpholinyl-, Thiomorpholinylring oder einen Rest der Formel

10

15 bilden,

worin

20 R³⁷ Wasserstoff, Formyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formeln -(D)_fNR³⁸R³⁹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

worin

25 f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel -CO bedeutet,

30 R³⁸ und R³⁹ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten,

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

oder

35 R³⁷ Cyclopentyl bedeutet,

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis zweifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷) oder -(CO)_jNR⁴⁹R⁵⁰ substituiert sind,

40 worin

R⁴⁶ und R⁴⁷ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

45 j eine Zahl 0 oder 1 bedeutet,

und

50 R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl oder durch einen Rest der Formel P(O)OR⁵³OR⁵⁴ substituiert ist,

55 worin

R⁵³ und R⁵⁴ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, ge-

gebenenfalls durch über N-verknüpftes Piperidinyl oder Pyrrolidinyl substituiert sind,

R⁵ für Wasserstoff steht,

5 und

R⁶ für Ethoxy oder Propoxy steht,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

10 Ebenso sind solche erfundungsgemäßen Verbindungen der allgemeinen Formel (I) ganz besonders bevorzugt, in denen R⁵ für Wasserstoff steht und die Reste R⁶ und -SO₂NR³R⁴ in para-Position zueinander am Phenylring stehen.

[0027] Insbesonders bevorzugte Verbindungen sind in der Tabelle A aufgeführt.

15

Tabelle A:

Struktur

55

Struktur

Struktur

Struktur

Struktur

[0028] Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man
25 zunächst Verbindungen der allgemeinen Formel (II)

35 in welcher

R¹ und R² die oben angegebene Bedeutung haben

und

40 L für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,
mit Verbindungen der allgemeinen Formel (III)

55 in welcher

R⁵ und R⁶ die oben angegebene Bedeutung haben,
in einer Zweistufenreaktion in den Systemen Ethanol und Phosphoroxytrichlorid / Dichlorethan in die Verbindungen
der allgemeinen Formel (IV)

in welcher

15 R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,
überführt, in einem weiteren Schritt mit Chlorsulfonsäure zu den Verbindungen der allgemeinen Formel (V)

in welcher

30 R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,
umsetzt und abschließend mit Aminen der allgemeinen Formel (VI)

in welcher

40 R³ und R⁴ die oben angegebene Bedeutung haben,

40 in inerten Lösemitteln umsetzt.

40 [0029] Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

45

50

55

[0030] Als Lösemittel für die einzelnen Schritte eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylool, Hexan, Cyclohexan oder Erdölfractionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethan, Trichlorethylen oder Chlorbenzol, oder Essigester, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton, Dimethoxyethan oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Besonders bevorzugt ist für den ersten Schritt Ethanol und für den zweiten Schritt Dichlorethan..

[0031] Die Reaktionstemperatur kann im allgemeinen in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man in einem Bereich von -20°C bis 200°C, bevorzugt von 0°C bis 70°C.

[0032] Die erfindungsgemäßen Verfahrensschritte werden im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

[0033] Die Umsetzung zu den Verbindungen der allgemeinen Formel (V) erfolgt in einem Temperaturbereich von

EP 1 174 431 A2

0°C bis Raumtemperatur und Normaldruck.

[0034] Die Umsetzung mit den Aminen der allgemeinen Formel (VI) erfolgt in einem der oben aufgeführten chlorierten Kohlenwasserstoffe, vorzugsweise in Dichlormethan.

[0035] Die Reaktionstemperatur kann im allgemeinen in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man in einem Bereich von -20°C bis 200°C, bevorzugt von 0°C bis Raumtemperatur.

[0036] Die Umsetzung wird im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

[0037] Die Verbindungen der allgemeinen Formel (II) sind teilweise bekannt oder neu und können dann hergestellt werden, indem man

[0038] Verbindungen der allgemeinen Formel (VII)

in welcher

R^2 die oben angegebene Bedeutung hat

und

T für Halogen, vorzugsweise für Chlor steht,

zunächst durch Umsetzung mit Verbindungen der allgemeinen Formel (VIII)

in welcher

R^1 die oben angegebene Bedeutung hat

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base und Trimethylsilylchlorid in die Verbindungen der allgemeinen Formel (IX)

in welcher

R^1 und R^2 die oben angegebene Bedeutung haben,

überführt und abschließend mit der Verbindung der Formel (X)

worin L die oben angegebene Bedeutung hat,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base umgesetzt.

[0039] Als Lösemittel für die einzelnen Schritte des Verfahrens eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylool, Hexan, Cyclohexan oder Erdölfraktionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, 5 Trichlorethylen oder Chlorbenzol, oder Essigester, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton, Dimethoxyethan oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Besonders bevorzugt ist für den ersten Schritt Dichlormethan und für den zweiten Schritt ein Gemisch aus Tetrahydrofuran und Pyridin.

[0040] Als Basen eignen sich im allgemeinen Alkalihydride oder -alkoholate, wie beispielsweise Natriumhydrid oder Kalium-tert.butylat, oder cyclische Amine, wie beispielsweise Piperidin, Pyridin, Dimethylaminopyridin oder C₁-C₄-Alkylamine, wie beispielsweise Triethylamin. Bevorzugt sind Triethylamin, Pyridin und/oder Dimethylaminopyridin.

[0041] Die Base wird im allgemeinen in einer Menge von 1 mol bis 4 mol, bevorzugt von 1,2 mol bis 3 mol jeweils bezogen auf 1 mol der Verbindung der Formel (X) eingesetzt.

[0042] Die Reaktionstemperatur kann im allgemeinen in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man in einem Bereich von -20°C bis 200°C, bevorzugt von 0°C bis 100°C.

[0043] Die Verbindungen der allgemeinen Formeln (VII), (VIII), (IX) und (X) sind an sich bekannt oder nach üblichen Methoden herstellbar.

[0044] Die Verbindungen der allgemeinen Formel (III) können hergestellt werden, indem man

[0045] Verbindungen der allgemeinen Formel (XI)

in welcher

30 R⁵ und R⁶ die oben angegebene Bedeutung haben,
mit Ammoniumchlorid in Toluol und in Anwesenheit von Trimethylaluminium in Hexan in einem Temperaturbereich von -20°C bis Raumtemperatur, vorzugsweise bei 0°C und Normaldruck umsetzt und das entstehende Amidin, gegebenenfalls *in situ*, mit Hydrazin-hydrat umsetzt.

35 [0046] Die Verbindungen der allgemeinen Formel (XI) sind an sich bekannt oder nach üblichen Methoden herstellbar.

[0047] Die Verbindungen der allgemeinen Formel (IV) sind teilweise bekannt oder neu und können dann nach bekannten Methoden [vgl. David R. Marshall, Chemistry and Industry, 2 May 1983, 331-335] hergestellt werden.

40 [0048] Die Verbindungen der allgemeinen Formel (V) sind an sich neu, können aber aus den Verbindungen der allgemeinen Formel (IV) nach der Publikation Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1974, Seite 338 - 339, hergestellt werden.

[0049] Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zeigen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum.

45 [0050] Sie inhibieren entweder eine oder mehrere der c-GMP metabolisierenden Phosphodiesterasen (PDE I, PDE II und PDE V). Dies führt zu einem Anstieg von c-GMP. Die differenzierte Expression der Phosphodiesterasen in verschiedenen Zellen, Geweben und Organen, ebenso wie die differenzierte subzelluläre Lokalisation dieser Enzyme, ermöglichen in Verbindung mit den erfindungsgemäßen selektiven Inhibitoren, eine selektive Adressierung der verschiedenen von cGMP regulierten Vorgänge.

50 [0051] Außerdem verstärken die erfindungsgemäßen Verbindungen die Wirkung von Substanzen, wie beispielsweise EDRF (Endothelium derived relaxing factor), ANP (atrial natriuretic peptide), von Nitrovasodilatoren und allen anderen Substanzen, die auf eine andere Art als Phosphodiesterase-Inhibitoren die cGMP-Konzentration erhöhen.

[0052] Sie können daher in Arzneimitteln zur Behandlung von cardiovaskulären Erkrankungen wie beispielsweise zur Behandlung des Bluthochdrucks, neuronaler Hypertonie, stabiler und instabiler Angina, peripheren und kardialen Gefäßerkrankungen, von Arrhythmien, zur Behandlung von thromboembolischen Erkrankungen und Ischämien wie

55 Myokardinfarkt, Hirnschlag, transistorischen und ischämischen Attacken, Angina pectoris, periphere Durchblutungsstörungen, Verhinderung von Restenosen nach Thrombolysetherapie, percutaner transluminaler Angioplastie (PTA), percutan transluminalen Koronarangioplastien (PTCA) und Bypass eingesetzt werden. Weiterhin können sie auch Bedeutung für cerebrovaskuläre Erkrankungen haben. Die relaxierende Wirkung auf glatte Muskulatur macht sie ge-

eignet für die Behandlung von Erkrankungen des Urogenitalsystems wie Prostatahypertrophie, Inkontinenz sowie insbesondere zur Behandlung der erektilen Dysfunktion und der weiblichen sexuellen Dysfunktion.

Aktivität der Phosphodiesterasen (PDE's)

5 [0053] Die c-GMP stimulierbare PDE II, die c-GMP hemmbare PDE III und die cAMP spezifische PDE IV wurden entweder aus Schweine- oder Rinderherzmyokard isoliert. Die Ca²⁺-Calmodulin stimulierbare PDE I wurde aus Schweineaorta, Schweinehirn oder bevorzugt aus Rinderaorta isoliert. Die c-GMP spezifische PDE V wurde aus Schweinedünndarm, Schweineaorta, humanen Blutplättchen und bevorzugt aus Rinderaorta gewonnen. Die Reinigung erfolgte durch Anionenaustauschchromatographie an MonoQ[®] Pharmacia im wesentlichen nach der Methode von M. Hoey and Miles D. Houslay, Biochemical Pharmacology, Vol. 40, 193-202 (1990) und C. Lugman et al. Biochemical Pharmacology Vol. 35 1743-1751 (1986).

10 [0054] Die Bestimmung der Enzymaktivität erfolgt in einem Testansatz von 100 µl in 20 mM Tris/HCl-Puffer pH 7,5 der 5 mM MgCl₂, 0,1 mg/ml Rinderserumalbumin und entweder 800 Bq ³HcAMP oder ³HcGMP enthält. Die Endkonzentration der entsprechenden Nucleotide ist 10⁻⁶ mol/l. Die Reaktion wird durch Zugabe des Enzyms gestartet, die Enzymmenge ist so bemessen, daß während der Inkubationszeit von 30 min ca 50% des Substrates umgesetzt werden. Um die cGMP stimulierbare PDE II zu testen, wird als Substrat ³HcAMP verwendet und dem Ansatz 10⁻⁶ mol/l nicht markiertes cGMP zugesetzt. Um die Ca²⁺-Calmodulinabhängige PDE I zu testen, werden dem Reaktionsansatz noch CaCl₂ 1 µM und Calmodulin 0,1 µM zugesetzt. Die Reaktion wird durch Zugabe von 100 µl Acetonitril, das 1 mM cAMP und 1 mM AMP enthält, gestoppt. 100 µl des Reaktionsansatzes werden auf der HPLC getrennt und die Spaltprodukte "Online" mit einem Durchflußscintillationszähler quantitativ bestimmt. Es wird die Substanzkonzentration gemessen, bei der die Reaktionsgeschwindigkeit um 50% vermindert ist. Zusätzlich wurde zur Testung der "Phosphodiesterase [³H] cAMP-SPA enzyme assay" und der "Phosphodiesterase [³H] cGMP-SPA enzyme assay" der Firma Amersham Life Science verwendet. Der Test wurde nach dem vom Hersteller angegebenen Versuchsprotokoll durchgeführt. Für die Aktivitätsbestimmung der PDEII wurde der [³H] cAMP SPA assay verwendet, wobei dem Reaktionsansatz 10⁻⁶ M cGMP zur Aktivierung des Enzyms zugegeben wurde. Für die Messung der PDEI wurden Calmodulin 10⁻⁷ M und CaCl₂ 1µM zum Reaktionsansatz zugegeben. Die PDEV wurde mit dem [³H] cGMP SPA assay gemessen.

Inhibition der Phosphodiesterasen in vitro			
Bsp.-Nr.	PDEI IC ₅₀ [nM]	PDE II IC ₅₀ [nM]	PDE V IC ₅₀ [nM]
16	300	>1000	2
19	200	>1000	2
20	200	>1000	2
26	100	>1000	1
27	200	>1000	3
32	100	>1000	4
260	300	>1000	10
275	50	>1000	3
338	200	>1000	5

45 [0055] Grundsätzlich führt die Inhibition einer oder mehrerer Phosphodiesterasen dieses Typs zu einer Erhöhung der cGMP-Konzentration. Dadurch sind die Verbindungen interessant für alle Therapien, in denen eine Erhöhung der cGMP-Konzentration als heilsam angenommen werden kann.

50 [0056] Die Untersuchung der cardiovaskulären Wirkungen wurden an SH-Ratten und Hunden durchgeführt. Die Substanzen wurden intravenös oder oral appliziert.

[0057] Die Untersuchung auf erektionsauslösende Wirkung wurde am wachen Kaninchen durchgeführt [Naganuma H, Egashira T, Fuji J, Clinical and Experimental Pharmacology and Physiology 20, 177-183 (1993)]. Die Substanzen wurden intravenös, oral oder parenteral appliziert.

55 [0058] Die neuen Wirkstoffe sowie ihre physiologisch unbedenklichen Salze (z.Bsp. Hydrochloride, Maleinate oder Lactate) können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulat, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90-Gew.-% der Gesamtmasse vorhanden sein, d.h. in Mengen, die

ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

[0059] Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z. B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

[0060] Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal oder parenteral, z.Bsp.perlingual, buccal, intravenös, nasal, rektal oder inhalativ.

[0061] Für die Anwendung beim Menschen werden bei oraler Administration Dosierungen von 0,001 bis 50 mg/kg vorzugsweise 0,01 mg/kg - 20 mg/kg sinnvollerweise verabreicht. Bei parenteraler Administration, wie z.B. über Schleimhäute nasal, buccal, inhalativ, ist eine Dosierung von 0,001 mg/kg - 0,5 mg/kg sinnvoll.

[0062] Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der oben genannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

[0063] Die erfindungsgemäßen Verbindungen sind auch zur Anwendung in der Tiermedizin geeignet. Für Anwendungen in der Tiermedizin können die Verbindungen oder ihre nicht toxischen Salze in einer geeigneten Formulierung in Übereinstimmung mit den allgemeinen tiermedizinischen Praxen verabreicht werden. Der Tierarzt kann die Art der Anwendung und die Dosierung nach Art des zu behandelnden Tieres festlegen.

Ausgangsverbindungen

Beispiel 1A

[0064] 2-Butyrylaminopropionsäure

22,27 g (250 mmol) D,L-Alanin und 55,66g (550 mmol) Triethylamin werden in 250 ml Dichlormethan gelöst und die Lösung auf 0°C abgekühlt. 59,75 g (550 mmol) Trimethylsilylchlorid werden zugetropft und die Lösung 1 Stunde bei Raumtemperatur und eine Stunde bei 40°C gerührt. Nach dem Abkühlen auf -10°C werden 26,64 g (250 mmol) Buttersäurechlorid zugetropft und die resultierende Mischung 2 Stunden bei -10°C und eine Stunde bei Raumtemperatur gerührt.

[0065] Unter Eiskühlung werden 125 ml Wasser zugetropft und die Reaktionsmischung 15 Minuten bei Raumtemperatur gerührt. Die wäßrige Phase wird bis zur Trockene eingedampft, der Rückstand mit Aceton verrieben und die Mutterlauge abgesaugt. Nach dem Entfernen des Lösungsmittels wird der Rückstand chromatographiert. Das erhaltene Produkt wird in 3N Natronlauge gelöst und die resultierende Lösung bis zur Trockene eingedampft. Es wird mit konz. HCl aufgenommen und wieder bis zur Trockene eingedampft. Es wird mit Aceton verrührt, vom ausgefallenen Feststoff abgesaugt und das Lösungsmittel im Vakuum entfernt. Man erhält 28,2 g (71 %) eines zähen Öls, das nach einiger Zeit kristallisiert.

[0066] 200 MHz ¹H-NMR (DMSO-d6): 0.84, t, 3H; 1.22, d, 3H; 1.50, hex, 2H; 2.07, t, 2H; 4.20, quin., 1H; 8.09, d, 1H.

Beispiel 2A

[0067] 2-Butyrylaminobuttersäure

5
10

25,78 g 2-Aminobuttersäure (250 mmol) und 55,66 g (550 mmol) Triethylamin werden in 250 ml Dichlormethan gelöst und die Lösung auf 0°C abgekühlt. 59,75 g (550 mmol) Trimethylsilylchlorid werden zugetroft und die Lösung 1 Stunde bei Raumtemperatur und eine Stunde bei 40°C gerührt. Nach dem Abkühlen auf -10°C werden 26,64g (250 mmol) Buttersäurechlorid zugetropft und die resultierende Mischung 2 Stunden bei -10°C und eine Stunde bei Raumtemperatur gerührt.

15 [0068] Unter Eiskühlung werden 125 ml Wasser zugetropft und die Reaktionsmischung 15 Minuten bei Raumtemperatur gerührt. Die organische Phase wird mit Natronlauge versetzt und das organische Lösungsmittel im Vakuum entfernt. Nach dem Ansäubern wird der ausgefallene Feststoff 1 mal mit Wasser und 2 mal mit Petrolether verrührt und 20 im Vakuum bei 45°C getrocknet. 29,1 g (67 %) farbloser Feststoff.

[0069] 200 MHz ¹H-NMR (DMSO-d₆): 0.88, 2t, 6H; 1.51, quart., 2H, 1.65, m, 2H, 2.09, t, 2H, 4.10, m, 1H; 8.01, d, 1H; 12.25, s,m 1H.

Beispiel 3A

25

[0070] 2-Ethoxybenzonitril

30
35

25 g (210 mmol) 2-Hydroxybenzonitril werden mit 87 g Kaliumcarbonat und 34,3 g (314,8 mmol) Ethylbromid in 500 ml Aceton über Nacht refluxiert. Es wird vom Feststoff abfiltriert, das Lösungsmittel im Vakuum entfernt und der Rückstand im Vakuum destilliert. Man erhält 30,0 g (97 %) einer farblosen Flüssigkeit.

40 [0071] 200 MHz ¹H-NMR (DMSO-d₆): 1.48, t, 3H; 4.15, quart., 2H; 6.99, dt, 2H; 7.51, dt, 2H.

Beispiel 4A

45

[0072] 2-Ethoxybenzamidinhydrochlorid

50
55

21,4 g (400 mmol) Ammoniumchlorid werden in 375 ml Toluol suspendiert und die Suspension auf 0°C abgekühlt. 200 ml einer 2M Lösung von Trimethylaluminium in Hexan werden zugetropft und die Mischung bis zur beendeten Gas-

entwicklung bei Raumtemperatur gerührt. Nach Zugabe von 29,44 g (200 mmol) 2-Ethoxybenzonitril wird die Reaktionsmischung über Nacht bei 80°C (Bad) gerührt.

[0073] Die abgekühlte Reaktionsmischung wird unter Eiskühlung zu einer Suspension aus 100 g Kieselgel und 950 ml Chloroform gegeben und die Mischung 30 Minuten bei Raumtemperatur gerührt. Es wird abgesaugt und mit der gleichen Menge Methanol nachgewaschen. Die Mutterlauge wird eingedampft, der erhaltene Rückstand mit einer Mischung aus Dichlormethan und Methanol (9:1) verrührt, der Feststoff abgesaugt und die Mutterlauge eingedampft. Man erhält 30,4 g (76 %) farblosen Feststoff.

[0074] 200 MHz ^1H -NMR (DMSO-d₆): 1.36, t, 3H; 4.12, quart., 2H; 7.10, t, 1H; 7.21, d, 1H; 7.52, m, 2H; 9.30, s, breit, 4H.

Beispiel 5A

[0075] 2-Propoxybenzonitril

75 g (630 ml) 2-Hydroxybenzonitril werden mit 174 g (1,26 mol) Kaliumcarbonat und 232,2 g (1,89 mol) Ethylbromid in 1 l Aceton über Nacht refluxiert. Es wird vom Feststoff abfiltriert, das Lösemittel im Vakuum entfernt und der Rückstand im Vakuum destilliert.

Kp.: 89°C (0,7 mbar)

Ausbeute: 95,1 g (93,7%)

Beispiel 6A

[0076] 2-Propoxybenzamidin-hydrochlorid

21,41 g (400 mmol) Ammoniumchlorid werden in 400 ml Toluol suspendiert und auf 0-5°C gekühlt. 200 ml einer 2 M Lösung von Triethylaluminium in Hexan werden zugetropft und die Mischung bis zur beendeten Gasentwicklung bei Raumtemperatur gerührt. Nach Zugabe von 32,2 g (200 mmol) 2-Propoxybenzonitril wird die Reaktionsmischung über Nacht bei 80°C (Bad) gerührt. Die abgekühlte Reaktionsmischung wird unter Eiskühlung zu einer Suspension aus 300 g Kieselgel und 2,85 l eisgekühltem Chloroform gegeben und 30 Minuten gerührt. Es wird abgesaugt und mit der gleichen Menge Methanol nachgewaschen. Das Lösemittel wird im Vakuum abdestilliert, der Rückstand in 500 ml einer Mischung aus Dichlormethan und Methanol (9:1) verrührt, der Feststoff abfiltriert und die Mutterlauge eingedampft. Der Rückstand wird mit Petrolether verrührt und abgesaugt. Man erhält 22,3 g (52 %) Produkt.

[0077] ^1H -NMR (200 MHz, CD₃OD): 1,05 (3H); 1,85 (sex, 2H); 4,1 (A, 2H); 7,0 - 7,2 (m, 2H); 7,5 - 7,65 (m, 2H).

Beispiel 7A

[0078] 2-Ethoxy-4-methoxybenzonitril

10 30,0 g (201 mmol) 2-Hydroxy-4-methoxybenzonitril werden mit 83,4 g Kaliumcarbonat (603 mmol) und 32,88 g (301 mmol) Bromethan 18 Stunden in 550 ml Aceton refluxiert. Nach Filtration wird das Lösungsmittel im Vakuum entfernt und der Rückstand durch Chromatographie an Kieselgel (Cyclohexan:Ethylacetat=10:1) gereinigt: 35,9 g Öl
 $R_f=0.37$ (Cyclohexan:Ethylacetat=3:1)

[0079] 200 MHz ^1H -NMR (CDCl_3): 1.48, t, 3H; 3.85, s, 3H; 4.12, quart., 2H; 6.46, m, 2H; 7.48, d, 1H.

15 **Beispiel 8A**

[0080] 2-Ethoxy-4-methoxybenzamidinhydrochlorid

25 6,98 g (130 mmol) Ammoniumchlorid werden in 150 ml Toluol suspendiert und die Suspension auf 0°C abgekühlt. 70 ml einer 2M Lösung von Trimethylaluminium in Hexan werden zugetropft und die Mischung bis zur beendeten Gasentwicklung bei Raumtemperatur gerührt. Nach Zugabe von 11,56 g (65 mmol) 2-Ethoxy-4-methoxybenzonitril wird die Reaktionsmischung über Nacht bei 80°C (Bad) gerührt.

30 [0081] Die abgekühlte Reaktionsmischung wird unter Eiskühlung zu einer Suspension aus 100 g Kieselgel und 950 ml Dichlormethan gegeben und die Mischung 30 Minuten bei Raumtemperatur gerührt. Es wird abgesaugt und mit der gleichen Menge Methanol nachgewaschen. Die Mutterlauge wird eingedampft, der erhaltene Rückstand mit einer Mischung aus Dichlormethan und Methanol (9:1) verrührt, der Feststoff abgesaugt und die Mutterlauge eingedampft. Der Rückstand wird mit Petrolether verrührt und abgesaugt. Man erhält 7,95 g (50 %) Feststoff.

35 [0082] 200 MHz ^1H -NMR (DMSO-d_6): 1.36, t, 3H; 3.84, s, 3H; 4.15, quart., 2H; 6.71, m, 2H; 7.53, d, 1H, 8.91, s, breit, 3H.

40 **Beispiel 9A**

[0083] 2-(2-Ethoxyphenyl)-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

50 [0084] Man legt 24,4 g (0,186 mol) N-Acetyl-D,L-Alanin in 200 ml absolutem Tetrahydrofuran vor und setzt 45 ml absolutes Pyridin und 0,5 g 4-Dimethylaminopyridin hinzu. Man erwärmt zum Rückfluß und tropft 51,85 g (0,372 mol) Oxalsäuremonoethylesterchlorid hinzu. Man erwärmt weitere 90 Minuten unter Rückfluß, kühlt ab, gießt auf Eiswasser, extrahiert dreimal mit Essigsäureethylester. Man trocknet die organische Phase über Natriumsulfat, engt ein und nimmt in 62,5 ml Methanol auf. Man setzt 9 g Natriumhydrogencarbonat hinzu, röhrt 2,5 Stunden unter Rückfluß und filtriert.

55 [0085] Zu einer Lösung von 38,26 g (190,65 mmol) 2-Ethoxy-4-methoxybenzamidinhydrochlorid in 250 ml Methanol tropft man unter Eiskühlung 9,54 g (190,65 mmol) Hydrazinhydrat zu und röhrt die resultierende Suspension noch 30

Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene methanolische Lösung und röhrt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

[0086] Der Rückstand wird in 250 ml 1,2-Dichlorethan aufgenommen, 32,1 ml (348 mmol) Phosphoroxychlorid zugeropft und zwei Stunden unter Rückfluß erhitzt. Man kühl ab, engt ein, nimmt in wenig Methylenchlorid auf, versetzt mit Diethylether und saugt den Feststoff ab. Man chromatografiert an Kieselgel (Methylenchlorid/Methanol 95:5), engt die Lösung ein und verröhrt den kristallinen Rückstand mit Diethylether.

Ausbeute: 8,1g (14,9% der Theorie)

[0087] 200 MHz ^1H -NMR (CDCl_3): 1,58, t, 3H; 2,62, s, 3H; 2,68, s, 3H; 4,25, q, 2H; 7,04, d, 1H; 7,12, t, 1H; 7,5, dt, 1H; 8,19, dd, 1H; 10,02, s, 1H.

Beispiel 10A

[0088] 2-(2-Ethoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

7,16 g (45 mmol) 2-Butyrylamino-propionsäure werden mit 10,67 g Pyridin in 45 ml THF gelöst und nach Zugabe einer Spatelspitze DMAP zum Rückfluß erhitzt. 12,29 g (90 mmol) Oxalsäure-ethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 15 ml Ethanol aufgenommen und mit 2,15 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

[0089] Zu einer Lösung von 9,03 g (45 mmol) 2-Ethoxybenzamidinhydrochlorid in 45 ml Ethanol tropft man unter Eiskühlung 2,25 g (45 mmol) Hydrazinhydrat zu und röhrt die resultierende Suspension noch 10 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene ethanolische Lösung und röhrt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

[0090] Dieser Rückstand wird in 60 ml 1,2-Dichlorethan gelöst und nach Zugabe von 7,5 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Chromatographie mit Ethylacetat und Kristallisation ergeben 4,00 g (28 %) farblosen Feststoff, $R_f=0,42$ (Dichlormethan/Methanol=95:5)

[0091] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.56, t, 3H; 1.89, hex, 2H; 2.67, s, 3H; 3.00, t, 2H; 4.26, quart., 2H; 7.05, m, 2H; 7.50, dt, 1H; 8.17, dd, 1H; 10.00, s, 1H.

Beispiel 11A

[0092] 2-(2-Propoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

7,16 g (45 mmol) 2-Butyrylaminopropionsäure werden mit 10,67 g Pyridin in 45 ml Tetrahydrofuran gelöst und nach Zugabe einer Spatelspitze Dimethylaminopyridin zum Rückfluß erhitzt. 12,29 g (90 mmol) Oxalsäureethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 15 ml Ethanol aufgenommen und mit 2,15 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

15 [0093] Zu einer Lösung von 9,66 g (45 mmol) 2-Propoxybenzamidinhydrochlorid in 45 ml Ethanol tropft man unter Eiskühlung 2,25 g (45 mmol) Hydrazinhydrat zu und röhrt die resultierende Suspension noch 10 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene ethanolische Lösung und röhrt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

20 [0094] Dieser Rückstand wird in 60 ml 1,2-Dichlorethan gelöst und nach Zugabe von 7,5 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ethylacetat ergeben 2,85 g (19,1 %) eines gelben Feststoffs, chromatographische Reinigung der Mutterlauge ergibt weitere 1,25 g (8,4 %) des Produktes. $R_f=0,45$ (Dichlormethan/Methanol=95:5)

25 [0095] 200 MHz $^1\text{H-NMR}$ (CDCl_3): 1.03, t, 3H; 1.15, t, 3H; 1.92, m, 4H; 2.67, s, 3H; 3.01, t, 2H; 4.17, t., 2H; 7.09, m, 2H; 7.50, dt, 1H; 8.17, dd, 1H; 10.02, s, 1H.

30 Beispiel 12A

[0096] 2-(2-Ethoxy-4-methoxyphenyl)-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

45 5,50 g (34,8 mmol) 2-Butyrylaminopropionsäure werden mit 8,19 g Pyridin in 35 ml Tetrahydrofuran gelöst und nach Zugabe einer Spatelspitze Dimethylaminopyridin zum Rückfluß erhitzt. 9,43 g (69 mmol) Oxalsäureethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 11 ml Methanol aufgenommen und mit 1,65 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

50 [0097] Zu einer Lösung von 7,95 g (34,5 mmol) 2-Ethoxy-4-methoxybenzamidinhydrochlorid in 35 ml Ethanol tropft man unter Eiskühlung 1,73 g (34,5 mmol) Hydrazinhydrat zu und röhrt die resultierende Suspension noch 30 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene methanolische Lösung und röhrt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

55 [0098] Dieser Rückstand wird in 46 ml 1,2-Dichlorethan gelöst und nach Zugabe von 5,74 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Va-

EP 1 174 431 A2

kuum entfernt. Chromatographie (Dichlormethan:Methanol=50:1) ergibt 0,31 g (2,5 %) eines Feststoffs.

R_f =0,46 (Dichlormethan:Methanol=20:1)

[0099] 200 MHz ^1H -NMR (CDCl_3): 1.03, t, 3H; 1.58, t, 3H; 1.88, m, 2H; 2.62, s, 3H; 2.98, t, 2H; 3.89, s, 3H; 4.25, quart., 2H; 6.54, d, 1H, 6.67, dd, 1H; 8.14, d, 1H; 9.54, s, 1H.

5

Beispiel 13A

[0100] 2-(2-Ethoxyphenyl)-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

10

15

20

29,06 g (167,8 mmol) 2-Butyrylaminobuttersäure werden mit 39,76 g Pyridin in 170 ml Tetrahydrofuran gelöst und nach Zugabe einer Spatelspitze Dimethylaminopyridin zum Rückfluß erhitzt. 45,81 g (335,5 mmol) Oxalsäureethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 15 ml Methanol aufgenommen und die Hälfte der Lösung mit 7,96 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

25

[0101] Zu einer Lösung von 16,83 g (83,9 mmol) 2-Ethoxybenzoësäureamidin Hydrochlorid in 85 ml Ethanol tropft man unter Eiskühlung 4,20 g (83,9 mmol) Hydrazinhydrat zu und röhrt die resultierende Suspension noch 10 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene methanolische Lösung und röhrt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

30

[0102] Dieser Rückstand wird in 112 ml 1,2-Dichlorethan gelöst und nach Zugabe von 14 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Chromatographie (Dichlormethan:Methanol=50:1) ergibt 3,69 g (12,4 %) farblosen Feststoff, R_f =0,46 (Dichlormethan:Methanol=20:1)

35

[0103] 200 MHz ^1H -NMR (CDCl_3): 1.32, t, 3H; 1.57, t, 3H; 1.94, m, 8H; 3.03, quart., 2H; 3.64, quin., 1H; 4.27, quart., 2H; 7.06, d, 1H; 7.12, t, 1H; 7.50, dt, 1H, 8.16, dd, 1H; 9.91, s, 1H.

40

Beispiel 14A

[0104] 4-Ethoxy-3 -(5,7-dimethyl-4-oxo-3,4-dihydroimidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid

45

50

55 Man legt 7,25 g (25,5 mmol) 2-(2-Ethoxyphenyl)-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on vor und setzt unter Eiskühlung 26,74 g (0,23 mol) Chlorsulfonsäure hinzu. Man röhrt über Nacht bei Raumtemperatur, gießt auf Eiswasser, saugt die Kristalle ab und trocknet sie im Vakuumexsikkator.

Ausbeute: 9,5 g (97 % der Theorie)

[0105] 200 MHz ^1H -NMR ($\text{d}^6\text{-DMSO}$): 1.32, t, 3H; 2.63, s, 3H; 2.73, s, 3H; 4.13, q, 2H; 7.15, d, 1H; 7.77, m, 2H; 12.5, s, 1H;

Beispiel 15A

5

[0106] 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid

10

15

15

2,00 g (6,4 mmol) 2-(2-Ethoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on werden langsam zu 3,83 ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 2,40 g (91 %) farblosen Schaum.

[0107] 200 MHz ^1H -NMR (CDCl_3): 1.03, t, 3H; 1.61, t, 2H; 1.92, hex, 2H; 2.67, s, 3H; 3.10, t, 2H; 4.42, quart., 2H; 7.27, t, 1H; 8.20, dd, 1H; 8.67, d, 1H; 10.18, s, 1H.

25

Beispiel 16A

30

35

40

2,80 g (8,6 mmol) 2-(2-Propoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on werden langsam zu 5,13 ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 3,50 g (96 %) farblosen Schaum.

$R_f=0.49$ (Dichlormethan/Methanol=95:5)

45

[0109] 200 MHz ^1H -NMR (CDCl_3): 1.03, 2t, 6H; 1.95, m, 4H; 2.81, s, 3H; 3.22, t, 2H; 4.11, t., 2H; 7.09, m, 1H; 8.06, dd, 1H; 8.21 m, 1H; 12.0, s, 1H.

Beispiel 17A

50

[0110] 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid

55

0,31 g (0,9 mmol) 2-(2-Ethoxy-4-methoxyphenyl)-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on werden langsam zu 0,54ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 0,355 g (89 %) farblosen Schaum.
 $R_f = 0,50$ (Dichlormethan/Methanol=20:1)

[0111] 200 MHz ^1H -NMR (CDCl_3): 1.05, t, 3H; 1.66, t, 3H; 1.95, m, 2H; 2.61, s, 3H, 3.11, t, 2H; 4.15, s, 3H; 4.40, quart., 2H; 6.65, s, 1H, 8.72, s, 1H; 9.75, s, 1H.

20

Beispiel 18A

[0112] 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonsäurechlorid

25

1,70 g (5,21 mmol) 2-(2-Ethoxy-phenyl)-5-ethyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on werden langsam zu 3,12ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 2,10 g (94%) farblosen Schaum.

40

[0113] 400 MHz ^1H -NMR (CDCl_3): 1.03, t, 3H; 1.35, t, 3H; 1.62, t, 3H; 1.92, sex., 2H; 3.07, quart., 2H; 3.12, t, 2H; 4.42, quart., 2H; 7.38, d, 1H; 8.19, dd, 1H; 8.70, d, 1H; 10.08, s, breit, 1H.

Beispiel 19A

45

[0114] (4-Piperidinylmethyl)-phosphonsäurediethylester

Man legt 2,11 g (528 mmol) 60%iges Natriumhydrid in 50 ml absolutem Tetrahydrofuran vor und tropft 15,7 g (52,8

EP 1 174 431 A2

mmol) Methandiphosphonsäurediethylester hinzu. Man röhrt noch 30 Minuten bei Raumtemperatur und tropft dann 10,1 g (52,8 mmol) 1-Benzyl-4-piperidon hinzu. Man röhrt eine Stunde bei Raumtemperatur und eine Stunde unter Rückfluß, engt ein, versetzt mit Wasser, extrahiert dreimal mit Dichlormethan, trocknet über Natriumsulfat und engt ein. Der Rückstand wird in 50 ml Ethanol an 1,7 g 10%iger Palladium-Aktivkohle bei Raumtemperatur und 3 bar hydriert.

5 Man saugt den Katalysator ab und engt das Filtrat ein.

Ausbeute: 12,5 g (100% d.Th.)

[0115] 400 MHz, ¹H-NMR (CDCl₃): 1,13, m, 2H; 1,32, t, 6H; 1,69, dd, 2H; 1,74 - 1,95, m, 4H; 2,62, dt, 2H; 3,05, m, 2H; 4,1, m, 4H.

10 Beispiel 20A

[0116] 5-Methyl-4-furoxancarbaldehyd

15 40 g (571 mmol) Crotonaldehyd werden in 80 ml Essigsäure gelöst und bei 0°C mit einer Lösung von 137 g (1,99 mol) Natriumnitrit in 300 ml Wasser tropfenweise versetzt. Man röhrt 2 Stunden bei Raumtemperatur. Es wird mit 800 ml Wasser verdünnt und 3 mal mit Dichlormethan extrahiert. Nach Trocknen der organischen Phase erhält man durch Chromatographie (Cyclohexan/Ethylacetat) 13,8 g (18,9 %) 5-Methyl-4-furoxancarbaldehyd.

20 [0117] 200 MHz ¹H-NMR (CDCl₃): 2,39, s, 3H; 10,10, s, 1H.

Beispiel 21A

30 [0118] 5-Methyl-4-furoxancarbonsäurechlorid

35 40 13,5 g (105 mmol) 5-Methyl-4-furoxancarbaldehyd werden in 200 ml Aceton gelöst und bei 0°C tropfenweise mit einer Lösung von 16,86 g (168 mmol) Chromtrioxid in 120 ml einer 2,2M Schwefelsäure versetzt. Man röhrt 2 Stunden bei 10-15°C und bei Raumtemperatur über Nacht. Unter Kühlung werden 100 ml Isopropanol zugetropft und nach 30 Minuten das Lösungsmittel im Vakuum entfernt. Die wäßrige Phase wird 3 mal mit Ether extrahiert, die organische Phase über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird in 1M Natriumhydroxidlösung gelöst und die Lösung 3 mal mit Ether extrahiert. Die wäßrige Phase wird sauer gestellt und 3 mal mit Ether extrahiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird mit Petrolether verrührt und abgesaugt.

45 [0119] 6,92 g des Rückstandes werden mit 10ml Thionylchlorid in 20 ml Dichlormethan 6 Stunden refluxiert. Es wird mit Toluol verdünnt, filtriert und einrotiert. Der Rückstand wird wiederum in Dichlormethan aufgenommen, mit 10 ml Thionylchlorid versetzt und 48 Stunden refluxiert. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand im Vakuum destilliert. Man erhält 2,00 g (25 %) farblose Kristalle.

50 [0120] 200 MHz ¹H-NMR (CDCl₃): 2,41, s.

Beispiel 22A

55 [0121] 1-(5-Methyl-4-furoxancarbonyl)-4-tert-butyl-oxy carbonyl-piperazin

2,75 g (14,7 mmol) Boc-Piperazin werden mit 1,49 g Triethylamin in 20 ml Dichlormethan gelöst und bei 0°C portionsweise mit 2,00 g (12,3 mmol) 5-Methyl-4-furoxancarbonsäurechlorid versetzt. Es wird 30 Minuten bei 0°C und 2 Stunden bei Raumtemperatur gerührt, mit Dichlormethan verdünnt und mit Wasser gewaschen. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand durch Chromatographie (Cyclohexan/Ethylacetat) gereinigt. Man erhält 3,33 g (87 %) 1-(5-Methyl-4-furoxancarbonyl)-4-tert-butyl-oxycarbonyl-piperazin.

[0122] 200 MHz ^1H -NMR (CDCl_3): 1.50, s, 9H; 2.30, s, 3H; 3.55, m, 4H; 3.78, m, 2H; 3.87, m, 2H.

Beispiel 23A

[0123] 1-(5-Methyl-4-furoxancarbonyl)-piperazin Trifluoracetat

3,12 g (10 mmol) 1-(5-Methyl-4-furoxancarbonyl)-4-tert-butyl-oxycarbonyl-piperazin werden in 20 ml Dichlormethan gelöst und bei 0°C mit 2 ml Trifluoressigsäure versetzt. Man lässt auf Raumtemperatur aufwärmen und führt 72 Stunden.

30 Nach Zugabe von 10 ml Ether wird der Niederschlag abgesaugt und getrocknet. Man erhält 2,47 g (83 %) 1-(5-Methyl-4-furoxancarbonyl)-piperazin Trifluoracetat.

[0124] 200 MHz ^1H -NMR (DMSO-d_6): 2.18, s, 3H; 3.18, m, 2H; 3.25, m, 2H; 3.83, m, 2H; 3.90, m, 2H; 8.89, s, breit, 2H.

Herstellungsbeispiele

Beispiel 1

[0125] 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo [5,1-f]-[1,2,4]triazin-4-on

50 0,1 g (0,26 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechloro-

rid werden in 10 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze DMAP werden 80 mg (0,784 mmol) N-Methylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Ammoniumchloridlösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Man chromatografiert an Kieselgel (Dichlormethan/Methanol 9:1).

5

Ausbeute: 40 mg (34,5 % der Theorie)
 Massenspektrum: 447 (M+H); 284; 256; 224;

10 **Beispiel 2**

[0126] 2-[2-Ethoxy-5-(4-hydroxyethyl)piperazine-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

15

20

25

30

Auf analoge Weise erhält man ausgehend von 100mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 100 mg (0,784 mmol) 4-Hydroxypiperazin 45 mg (36,1 % der Theorie) 2-[2-Ethoxy-5-(4-hydroxy-ethyl)piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on.

Massenspektrum: 477 (M+H); 284; 256; 239.

40 **Beispiel 3**

[0127] 2-[2-Ethoxy-5-(4-hydroxypiperidine-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

45

50

55

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 80 mg (0,784 mmol) 4-Hydroxypiperidin 35 mg (29,8 % der Theorie) 2-[2-Ethoxy-5-(4-hydroxymethylpiperidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.
[0128] 200 MHz ^1H -NMR (CDCl_3): 1,61, t, 3H; 1,69, m, 2H; 1,94, m, 2H; 2,67, s, 3H; 2,70, s, 3H; 3,02, m, 2H; 3,30, m, 2H; 3,84, m, 1H; 4,37, q, 2H; 7,18, d, 1H; 7,90, dd, 1H; 8,52, d, 1H; 9,73, s, 1H.

Beispiel 4

[0129] 2-[2-Ethoxy-5-(4-hydroxymethylpiperidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 90 mg (0,784 mmol) 4-Hydroxymethylpiperidin 22 mg (18 % der Theorie) 2-[2-Ethoxy-5-(4-hydroxymethylpiperidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

[0130] 200 MHz ^1H -NMR (CDCl_3): 1,38, dt, 2H; 1,62, t, 3H; 1,82, dd, 2H; 2,35, dt, 2H; 2,78, s, 3H; 2,84, s, 3H; 3,5, d, 2H; 3,87, d, 2H; 4,39, q, 2H; 7,21, d, 1H; 7,95, dd, 1H; 8,51, d, 1H; 10,03, bs, 1H.

Beispiel 5

[0131] 2-[2-Ethoxy-5-(3-hydroxypyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 70 mg (0,784 mmol) 3-Hydroxypyrrolidin 13 mg (11,1 % der Theorie) 2-[2-Ethoxy-5-(3-hydroxy-pyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-on.

20 Massenspektrum: 434 (M+H)

Beispiel 6

25 [0132] 4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-3-(5,7-dimethyl-4-oxo-3,4-dihydro-imidazo[5,1-f]-[1,2,4]triazin-2-yl)benzolsulfonamid

Auf analoge Weise erhält man ausgehend von 100mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 70 mg (0,784 mmol) 2-(Ethylamino)-ethanol 23 mg (20,1 % der Theorie) 4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo-[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonamid.

45 [0133] 200 MHz ^1H -NMR (CDCl_3): 1,2, t, 3H; 1,6, t, 3H; 2,17, bs, 1H; 2,69, s, 3H; 2,75, s, 3H; 3,33, m, 4H; 3,8, t, 2H; 4,36, q, 2H; 7,18, d, 1H; 7,99, dd, 1H; 8,6, d, 1H; 9,84, bs, 1H.

Beispiel 7

50 [0134] N,N-Diethyl-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 60 mg (0,784 mmol) Diethylamin 21 mg (18,6 % der Theorie) N,N-Diethyl-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid.
[0135] 200 MHz ^1H -NMR (CDCl_3): 1,18, t, 6H; 1,61, t, 3H; 2,68, s, 3H; 2,72, s, 3H; 3,29, q, 4H; 4,35, q, 2H; 7,15, d, 1H; 7,95, dd, 1H; 8,58, d, 1H; 9,8, bs, 1H.

20 **Beispiel 8**

[0136] 2-[2-Ethoxy-5-(4-(2-pyrimidinyl)-piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo-[5,1-f][1,2,4]triazin-4-on

25

30

35

40

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 130 mg (0,784 mmol) 1-(2-Pyrimidinyl)-piperazin 38 mg (28,2% der Theorie) 2-[2-Ethoxy-5-(4-(2-pyrimidinyl)-piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo-[5,1-f][1,2,4]triazin-4-on.

[0137] 200 MHz ^1H -NMR (CDCl_3): 1,6, t, 3H; 2,68, s, 3H; 2,72, s, 3H; 3,12, t, 4H; 3,96, t, 4H; 4,34, q, 2H; 6,5, t, 1H; 7,18, d, 1H; 7,9, dd, 1H; 8,28, d, 2H; 8,51, d, 1H; 9,7, bs, 1H;

50

Beispiel 9

[0138] 2-[2-Ethoxy-5-(morpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

55

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 70 mg (0,784 mmol) Morpholin 28 mg (24,2% der Theorie) 2-[2-Ethoxy-5-(morpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

20 [0139] 200 MHz ^1H -NMR (CDCl_3): 1,53, t, 3H; 2,69, s, 3H; 2,72, s, 3H; 3,06, t, 4H; 3,77, t, 4H; 4,39, q, 2H; 7,2, d, 1H; 7,91, dd, 1H; 8,51, d, 1H; 9,78, bs, 1H.

Beispiel 10

25 [0140] 2-[2-Ethoxy-5-(1,4-dioxa-6-azaspiro[4.4]nonan-6-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 100 mg (0,784 mmol) 1,4-Dioxa-6-azaspiro[4.4]nonan 45 mg (35,3% der Theorie) 2-[2-Ethoxy-5-(1,4-dioxa-6-azaspiro[4.4]nonan-6-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

[0141] 200 MHz ^1H -NMR (CDCl_3): 1,58, t, 3H; 2,02, t, 2H; 2,61, s, 3H; 2,65, s, 3H; 3,32, s, 2H; 3,41, t, 2H; 3,88, m, 4H; 4,34, q, 2H; 7,17, d, 1H; 7,92, dd, 1H; 8,51, d, 1H; 9,92, bs, 1H.

50

Beispiel 11

[0142] N,N-Bis-(2-Methoxyethyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 100 mg (0,784 mmol) Bis-(2-Methoxyethyl)-amin 37 mg (27,5% der Theorie) N,N-Bis-(2-Methoxy-ethyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonamid.

[0143] 200 MHz ^1H -NMR (CDCl_3): 1,58, t, 3H; 2,61, s, 3H; 2,64, s, 3H; 3,3, s, 6H; 3,46, t, 4H; 3,56, t, 4H; 4,32, q, 2H; 7,12, d, 1H; 7,95, dd, 1H; 8,51, d, 1H; 9,9, bs, 1H.

20

Beispiel 12

[0144] N-(3-Isoxazolyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid

25

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 70 mg (0,784 mmol) 3-Aminoisoxazol 20 mg (17,2 % der Theorie) N-(3-isoxazolyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo [5,1-f][1,2,4]-triazin-2-yl)benzolsulfonamid.

[0145] 200 MHz ^1H -NMR (CDCl_3): 1,6, t, 3H; 2,73, s, 3H; 2,81, s, 3H; 4,35, q, 2H; 6,6, d, 1H; 7,14, d, 1H; 8,05, dd, 1H; 8,27, d, 1H; 8,63, d, 1H; 9,61, bs, 1H.

Beispiel 13

[0146] 2-[2-Ethoxy-5-(2-t-butoxycarbonylaminomethylmorpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

55

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 170 mg (0,784 mmol) 2-t-Butoxycarbonylaminomethylmorpholin 64 mg (42,2% der Theorie) 2-[2-Ethoxy-5-(2-t-butoxycarbonylaminomethylmorpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

Massenspektrum: 563 (M+H)

Beispiel 14

[0147] 2-[2-Ethoxy-5-(4-phenylpiperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 130 mg (0,784 mmol) 1-Phenylpiperazin, 38 mg (28,3% der Theorie) 2-[2-Ethoxy-5-(4-phenylpiperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

[0148] 200 MHz ¹H-NMR (CDCl₃): 1,62, t, 3H; 2,72, s, 3H; 2,77, s, 3H; 3,25, m, 8H; 4,38, q, 2H; 6,92, m, 2H; 7,02, d, 1H; 7,18-7,37, m, 3H; 7,94, dd, 1H; 8,55, m, 1H; 9,79, bs, 1H.

Beispiel 15

[0149] 2-[2-Ethoxy-5-(3-hydroxy-3-methoxymethylpyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 100 mg (0,784 mmol) 3-Hydroxy-3-methoxymethylpyrrolidin 30 mg (23,5 % der Theorie) 2-[2-Ethoxy-5-(3-hydroxy-3-methoxymethylpyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

Massenspektrum: 478 (M+H)

Beispiel 16

25 [0150] 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

45 1,23 g (3 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f]-[1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 40 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze DMAP werden 0,90 g (9,00 mmol) N-Methylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 1,25 g (88 %) farblosen Feststoff.

50 [0151] 200 MHz ¹H-NMR(CDCl₃): 1.01, t, 3H; 1.59, t, 3H; 1.88, hex, 2H; 2.29, s, 3H; 2.51, m, 4H; 2.63, s, 3H; 3.00, t, 2H; 3.08, m, 4H; 4.33, quart., 2H, 7.17, d, , 1H; 7.88, dd, 1H; 8.44, d, 1H; 9.75, s, 1H.

Beispiel 17

55 [0152] 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Lactat

100 mg (0,211 mmol) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on werden in 5 ml Ether suspendiert und mit 20 mg einer 85%igen Lösung von Milchsäure in Wasser versetzt. Man röhrt 10 Minuten bei Raumtemperatur und dampft bis zur Trockene ein. Es wird mit Ether verrieben und abgesaugt. Man erhält 110 mg (92 %) 2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Lactat.

[0153] 200 MHz ^1H -NMR (DMSO- d_6): 0.92, t, 3H; 1.22, d, 3H; 1.31, t, 3H; 1.74, m, 1H; 2.15, s, 3H; 2.38, m, 4H; 2.81, t, 2H; 2.91, m, 4H; 4.05, quart., 1H; 4.21, quart., 2H; 7.40, d, 1H; 7.85, m, 2H; 11.71, s, breit, 1H.

25

Beispiel 18

[0154] 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

30

100 mg (0,211 mmol) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on werden in 5 ml Diethylether suspendiert, mit 0,23 ml einer 1M Lösung von HCl in Ether versetzt und 15 Minuten bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt. Man erhält 107 mg (97 %) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid.

[0155] 200 MHz ^1H -NMR (DMSO- d_6): 0.93, t, 3H; 1.35, t, 3H; 1.75, sex., 2H; 2.72, s, 3H; 2.86, m, 4H; 3.15, m, 2H; 3.45, m, 2H; 3.81, m, 2H; 4.25, quart., 2H; 7.45, d, 1H; 7.95, m, 2H; 11.39, s, 1H; 11.90, s, 1H.

55

Beispiel 19

[0156] 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

20 470 mg (1,14 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Es werden 390 mg (3,42 mmol) N-Ethylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 370 mg (66 %) farblosen Feststoff.

25 [0157] 400 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.59, t, 3H; 1.88, hex, 2H; 2.42, quart., 2H; 2.56, m, 4H; 2.63, s, 3H; 3.00, t, 2H; 3.10, m, 4H; 4.33, quart., 2H, 7.17, d, 1H; 7.88, dd, 1H; 8.44, d, 1H; 9.75, s, 1H.

Beispiel 20

30 [0158] 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

50 0,35 g (0,712 mmol) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in 8 ml Ether suspendiert und soviel Dichlormethan zugegeben, bis eine homogene Lösung entsteht. Man gibt 0,8 ml einer 1M Lösung von HCl in Ether zu, röhrt 20 Minuten bei Raumtemperatur und saugt ab. Man erhält 372 mg (99 %) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid.

55 [0159] 200 MHz ^1H -NMR (DMSO-d_6): 0.96, t, 3H; 1.22, t, 3H; 1.36, t, 3H; 1.82, sex., 2H; 2.61, s, 3H; 2.88, m, 2H; 3.08, m, 6H; 3.50, m, 2H; 3.70, m, 2H; 4.25, quart., 2H; 7.48, d, 1H; 7.95, m, 2H; 11.42, s, 1H; 12.45, s, 1H.

Beispiel 21

[0160] 2-[2-Ethoxy-5-(4-methyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

20

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,03 g (0,29 mmol) 1-Amino-4-methylpiperazin 40 mg (83 %) 2-[2-Ethoxy-5-(4-methyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on.

25

$R_f=0.09$ (Dichlormethan/Methanol=19:1)

[0161] 200 MHz $^1\text{H-NMR}$ (CDCl_3): 1.02, t, 3H; 1.59, t, 3H; 1.90, sex., 2H; 2.22, s, 3H; 2.40, m, 4H; 2.62, s, 3H; 2.71, m, 4H; 3.00, m, 2H; 4.32, quart., 2H; 7.14, d, 1H; 8.05, dd, 1H; 8.60, d, 1H.

Beispiel 22

30

[0162] 2-[2-Ethoxy-5-(4-hydroxyethyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

35

40

45

50

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,04 g (0,29 mmol) 1-Amino-4-hydroxyethylpiperazin 46 mg (91 %) 2-[2-Ethoxy-5-(4-hydroxyethyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo [5,1-f][1,2,4]triazin-4-on.

55

$R_f=0.08$ (Dichlormethan/Methanol=19:1)

[0163] 200 MHz $^1\text{H-NMR}$ (CDCl_3): 1.02, t, 3H; 1.59, t, 3H; 1.90, sex., 2H; 2.49, m, 6H; 2.62, s, 3H; 2.71, m, 4H; 3.00, t, 2H; 3.55, t, 2H; 4.31, quart., 2H; 7.14, d, 1H; 8.05, dd, 1H; 8.60, d, 1H.

Beispiel 23

[0164] N,N-Bishydroxyethylaminoethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

5

25 auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,043 g (0,29 mmol) N,N-Bishydroxyethylamino-ethylamin 46 mg (91 %) N,N-Bishydroxyethylaminoethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid.

30 [0165] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.53, t, 3H; 1.70, m, 2H; 1.86, sex., 2H; 2.9, m, 9H; 2.95, t, 2H; 3.09, t, 2H; 3.65, t, 4H; 4.28, quart., 2H; 7.14, d, 1H; 7.95, dd, 1H; 8.35, d, 1H.

Beispiel 24

[0166] 2-[2-Ethoxy-5-(4-dimethoxyphosphorylmethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

35

40

45

50

55

auf analoge Weise erhält man ausgehend von 0,4 g (0,97 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid, 390 mg Triethylamin und 0,86 g (2,99 mmol) 4-Dimethoxy-

phosphorylmethyl-piperazin Trifluoracetat 321 mg (53 %) 2-[2-Ethoxy-5-(4-dimethoxyphosphorylmethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.4 (Dichlormethan/Methanol=20:1)

[0167] 200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.60, t, 3H; 1.88, sex., 2H; 2.62, s, 3H; 2.75, m, 4H; 3.02, t, 2H; 3.11, m, 4H; 3.70, s, 3H; 3.75, s, 3H; 4.35, quart., 2H; 5.30, s, 2H; 7.18, d, 1H; 7.88, dd, 1H; 8.45, d, 1H; 9.71, s, 1H.

Beispiel 25

[0168] 2-[2-Ethoxy-5-(4-diethoxyphosphorylmethyl-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 0,4 g (0,97 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,86 g (3,7 mmol) 4-Diethoxyphosphorylmethyl-piperidin 366 mg (49 %) 2-[2-Ethoxy-5-(4-diethoxyphosphorylmethyl-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.4 (Dichlormethan/Methanol=20:1)

[0169] 200 MHz ¹H-NMR (DMSO-d₆): 0.92, t, 3H; 1.20, t, 6H; 1.35, t, 3H; 1.75, m, 7H; 2.25, m, 2H; 2.82, t, 2H; 3.61, d, 2H; 3.95, quin., 4H; 4.21, quart., 2H; 7.38, d, 1H; 7.87, m, 2H; 11.70, s, 1H.

Beispiel 26

[0170] 2-[2-Ethoxy-5-(4-hydroxy-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

45

50

55

auf analoge Weise erhält man ausgehend von 531 mg (1,29 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 393 mg (3,88 mmol) 4-Hydroxypiperidin 400 mg (64 %)

20 2-[2-Ethoxy-5-(4-hydroxy-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo [5,1-f][1,2,4]triazin-4-on
[0171] 200 MHz ^1H -NMR (DMSO-d₆): 0.941, t, 3H; 1.32, t, 3H; 1.45, m, 2H; 1.71, m, 4H; 2.48, s, 3H; 2.82, m, 4H; 3.11,m, 2H; 3.55, m, 1H; 4.20, quart., 2H; 4.72, d, 1H, 7.39, d, 1H; 7.87, m, 2H; 11.70, s, 1H.

Beispiel 27

[0172] 2-[2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 411 mg (1 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 391 mg (3 mmol) 4-Hydroxyethylpiperazin 380 mg (75 %) 2-[2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.198 (Dichlormethan/Methanol=95:5)
[0173] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.87, hex., 3H; 2.60, m, 7H; 3.00, t, 2H; 3.10, m, 4H; 3.60, t, 2H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

Beispiel 28

[0174] 2-[2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]

triazin-4-on Hydrochlorid

200 mg (0,39 mmol) 2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in Ether suspendiert, mit 2 ml einer 1M Lösung von HCl in Ether versetzt und 20 Minuten bei Raumtemperatur gerührt. Nach Entfernen des Lösungsmittels erhält man 209 mg (100 %) 2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid.

[0175] 200 MHz ^1H -NMR (DMSO-d₆): 0.96, t, 3H; 1.35, t, 3H; 1.70, sex., 2H; 2.59, s, 3H; 2.85, t, 2H; 2.99, t, 2H; 3.18, m, 4H; 3.59, d, 2H; 3.75, m, 4H; 4.25, quart., 2H; 7.49, d, 1H; 7.95, m, 2H; 10.62, s, 1H; 12.31, s, 1H.

30 Beispiel 29

[0176] 2-{2-Ethoxy-5-[4-(3-hydroxy-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

55 auf analoge Weise erhält man ausgehend von 150 mg (0,37 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 158 mg (1,09 mmol) 4-(3-Hydroxypropyl)-piperazin 167 mg (83 %) 2-{2-Ethoxy-5-[4-(3-hydroxy-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

$R_f=0.52$ (Dichlormethan/Methanol=10:1)

[0177] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.70, m, 5; 2.62 m, 8H; 3.00, t, 2H; 3.10, m, 4H; 3.72, t, 2H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

5 Beispiel 30

[0178] N-Allyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

10

15

20

25

auf analoge Weise erhält man ausgehend von 420 mg (1,02 mmol) (1 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 300 mg (3 mmol) Allylhydroxyethylamin 400 mg (82 %) N-Allyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

30 $R_f=0.345$ (Dichlormethan/Methanol=95:5)

[0179] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.90, m, 2H; 2.22, s, breit, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.31, t, 2H; 3.78, t, 2H; 3.92, d, 2H; 4.37, quart., 2H; 5.23, m, 2H; 5.71, m, 1H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.66, s, 1H.

35 Beispiel 31

[0180] N-Ethyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

40

45

50

55

auf analoge Weise erhält man ausgehend von 411 mg (1,0 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 267 mg (3 mmol) Ethylhydroxyethylamin 325 mg (70 %) N-Ethyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzol-

sulfonamid

$R_f=0.29$ (Dichlormethan/Methanol=95:5)

[0181] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.20, t, 3H; 1.61, t, 3H; 1.88, sex., 2H; 2.30, s, breit, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.32, m, 4H; 3.78, t, 2H; 3.80, m, 2H; 4.37, quart., 2H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.70, s, 1H.

5

Beispiel 32

[0182] N,N-Diethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

10

15

20

25

auf analoge Weise erhält man ausgehend von 400 mg (0,97 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 210 mg (2,92 mmol) Diethylamin 398 mg (89 %) N,N-Diethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

$R_f=0.49$ (Dichlormethan/Methanol=20:1)

30

[0183] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.20, t, 6H; 1.49, t, 1.61, t, 3H; 1.88, sex., 2H; 2.30, s, breit, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.32, m, 4H; 3.78, t, 2H; 3.80, m, 2H; 4.37, quart., 2H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.70, s, 1H.

Beispiel 33

[0184] N-(2-methoxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonäureamid

40

45

50

55

auf analoge Weise erhält man ausgehend von 1,23 g (3 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 680 mg (9 mmol) 2-Methoxyethylamin 900 mg (67 %) N-(2-methoxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonäureamid

$R_f=0.25$ (Dichlormethan/Methanol=95:5)

[0185] 400 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.58, t, 3H; 1.88, sex., 2H; 2.62, s, 3H; 3.01, t, 2H; 3.18, quart., 2H; 3.30, s, 3H; 3.45, t, 2H; 4.32, quart., 2H; 5.12, t, 1H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

Beispiel 34

[0186] N-(2-N,N-dimethylethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

5

10

15

20

auf analoge Weise erhält man ausgehend von 210 mg (0,49 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 130 mg (9 mmol) 2-N,N-Dimethylethylamin 150 mg (59 %) N-(2-N,N-dimethylethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

25

[0187] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.62, m, 4H; 1.88, sex., 2H; 2.11, s, 6H; 2.39, t, 2H; 2.63, s, 3H; 3.01, m, 3H; 4.38, quart., 2H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

Beispiel 35

[0188] N-[3-(1-morpholino)propyl]-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

35

40

45

auf analoge Weise erhält man ausgehend von 1,23 g (3 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 1,3 g (9 mmol) 3-(1-Morpholino)-propylamin 1,38 g (88 %) N-[3-(1-morpholino)propyl]-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

50

R_f =0.23 (Dichlormethan/Methanol=95:5)

[0189] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.58, t, 3H; 1.72, m, 2H; 1.88, sex., 2H; 2.46, m, 6H; 2.62, s, 3H; 3.01, t, 2H; 3.15, t, 2H; 3.71, t, 4H; 4.32, quart., 2H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.79, s, 1H.

Beispiel 36

55

[0190] N-[3-[1-(4-methyl)piperazino]propyl]-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,05 g (0,29 mmol) 3-[1-(4-Methyl-piperazino)-propyl-amin 0,04 g (77 %) N-[3-[1-(4-methyl)piperazino]-propyl]-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid
 $R_f=0.11$ (Dichlormethan/Methanol=95:5)

15 [0191] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.55, t, 3H; 1.68, m, 2H; 1.88, sex., 2H; 2.27, s, 3H; 2.45, m, 8H; 2.62, 20 s, 3H; 2.98, m, 3H; 3.10, t, 2H; 3.46, s, 1H; 4.30, quart., 2H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H.

Beispiel 37

25 [0192] 2-{2-Ethoxy-5-[4-(2-methoxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 40mg (0,29 mmol) 4-Methoxyethylpiperazin 50mg (99%) 2-{2-Ethoxy-5-[4-(2-methoxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on
 $R_f=0.27$ (Dichlormethan/Methanol=95:5)

50 [0193] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.87, hex., 3H; 2.60, m, 9H; 2.97, t, 2H; 3.10, m, 4H; 3.60, s, 3H; 3.46, t, 2H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

Beispiel 38

[0194] 2- {2-Ethoxy-5-[4-(2-N,N-dimethyl-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 50 mg (0,29 mmol) 4-(2-N,N-dimethyl)-ethylpiperazin 50 mg (99 %) 2-[2-Ethoxy-5-[4-(2-N,N-dimethyl-ethyl)-piperazin-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo [5,1-f][1,2,4]triazin-4-on

$R_f=0.11$ (Dichlormethan/Methanol=95:5)

[0195] 200 MHz ¹H-NMR(CDCl₃): 1.02, t, 3H; 1.61, t, 3H; 1.87, hex., 3H; 2.20, s, 6H; 2.42, m, 4H; 2.58, m, 4H; 2.63, s, 3H; 2.99, m, 3H; 3.10, m, 4H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

Beispiel 39

[0196] 2- {2-Ethoxy-5-[4-(3-N,N-dimethyl-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 100 mg (0,243 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 130 mg (0,73 mmol) 4-(3-N,N-dimethyl)-propylpiperazin 72 mg (54 %) 2-[2-Ethoxy-5-[4-(3-N,N-dimethyl-propyl)-piperazin-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo [5,1-f][1,2,4]triazin-4-on

$R_f=0.08$ (Dichlormethan/Methanol=95:5)

[0197] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.87, sex., 3H; 2.20, s, 6H; 2.25, m, 2H; 2.38, t, 2H; 2.52, m, 4H; 2.63, s, 3H; 2.99, m, 6H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

5 **Beispiel 40**

[0198] 2-[2-Ethoxy-5-(4-dioxolano-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

10

15

20

25

auf analoge Weise erhält man ausgehend von 100 mg (0,243 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 100 mg (0,73 mmol) 4-Dioxolanopiperidin 111 mg (88 %) 2-[2-Ethoxy-5-(4-dioxolano-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

30 [0199] 200 MHz ^1H -NMR(CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.80, m, 6H; 2.63, s, 3H; 2.99, t, 2H; 3.20, m, 4H; 3.90, s, 4H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

Beispiel 41

35 [0200] 2-[2-Ethoxy-5-(4-(5-methyl-4-furoxancarbonyl)-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo [5,1-f][1,2,4]triazin-4-on

40

45

50

55

410 mg (1,0 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-

säurechlorid werden in 10 ml Dichlormethan gelöst und auf 0°C gekühlt. Es werden 590 mg (2,00 mmol) 1-(5-Methyl-4-füroxicarbonyl)-piperazin Trifluoracetat und 400 mg Triethylamin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Ammoniumchloridlösung, 1M Salzsäure und Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 448 mg (74 %) farblosen Feststoff.

[0201] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.59, t, 3H; 1.88, hex, 2H; 2.25, s, 3H; 2.63, s, 3H; 3.00, t, 2H; 3.20, m, 4H; 3.90, m, 2H; 4.02, m, 2H; 4.33, quart., 2H, 7.19, d, 1H; 7.89, dd, 1H; 8.48, d, 1H; 9.57, s, 1H.

Beispiel 42

[0202] 2- {2-Ethoxy-5-[4-acetyl-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 40 mg (0,29 mmol) N-Acetyl-piperazin 9 mg (18 %) 2-{2-Ethoxy-5-[4-acetyl-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on
 $R_f=0.34$ (Dichlormethan/Methanol=95:5)

[0203] 200 MHz ^1H -NMR(CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.87, sex., 3H; 2.05, s, 3H; 2.63, s, 3H; 3.00, m, 6H; 3.59, m, 2H; 3.72, m, 2H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

Beispiel 43

[0204] 2-{2-Ethoxy-5-[4-formyl-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 30 mg (0,29 mmol) N-Formylpiperazin 35 mg (73 %) 2-[2-Ethoxy-5-[4-formyl-piperazin-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on
 $R_f=0.29$ (Dichlormethan/Methanol=95:5)

5 [0205] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.61, t, 3H; 1.87, sex., 3H; 2.05, s, 3H; 2.63, s, 3H; 3.00, m, 6H; 3.50, m, 2H; 3.69, m, 2H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H; 8.00, s, 1H; 8.47, d, 1H, 9.71, s, 1H.

Beispiel 44

10 [0206] 2-[2-Ethoxy-5-(3-butylsydnonimin)-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

110 mg (0,6 mmol) 3-Butylsydnoniminhydrochlorid werden in 2,5 ml Pyridin gelöst und auf 0°C gekühlt. Es werden 210 mg (0,5 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid zugegeben und die Reaktionsmischung wird 2 Stunden bei 0°C und über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Durch Chromatographie (Dichlormethan/Methanol) erhält man 16 mg (6 %) 2-[2-Ethoxy-5-(3-butylsydnonimin)-1-sulfonyl]-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.
 $R_f=0.41$ (Dichlormethan/Methanol=95:5)

35 [0207] 200 MHz ^1H -NMR (CDCl_3): 1.01, 2t, 6H; 1.47, sex., 2H; 1.55, t, 3H; 1.88, m, 2H; 2.04, quin., 2H; 2.62, s, 3H; 2.98, t, 2H; 4.29, quart., 2H; 4.41, t, 2H; 7.08, d, 1H; 7.56, s, 1H; 7.98, dd, 1H; 8.58, d, 1H; 9.79, s, breit, 1H.

Beispiel 45

40 [0208] 5-Methyl-2-[5-(4-methyl-piperazin-1-sulfonyl)-2-propoxy-phenyl]-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

0,85 g (2 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzolsulfonsäurechlorid werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze DMAP werden 0,60 g (6,00 mmol) N-Methylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Ammoniumchloridlösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 0,80 g (77 %) farblosen Feststoff.

$R_f = 0.233$ (Dichlormethan/Methanol=95:5)

[0209] 200 MHz ^1H -NMR (CDCl_3): 1.00, t, 3H; 1.15, t, 3H; 1.87, hex, 2H; 1.99, hex., 2H; 2.30, s, 3H; 2.52, m, 4H; 2.62, s, 3H; 2.99, t, 2H; 3.10, m, 4H; 4.21, t, 2H; 7.17, d, 1H; 7.87, dd, 1H, 8.48, d, 1H, 9.70, s, 1H.

10

Beispiel 46

[0210] 5-Methyl-2-[5-(4-methyl-piperazin-1-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

15

20

25

30

22 mg (0,045 mmol) 5-Methyl-2-[5-(4-methyl-piperazin-1-sulfonyl)-2-propoxyphenyl]-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in 2 ml Ether und 1 ml Dichlormethan gelöst und mit 0,1 ml einer 1M Lösung von HCl in Ether versetzt. Der ausgefallene Niederschlag wird nach 20 Minuten abgesaugt und getrocknet.

35

[0211] 200 MHz ^1H -NMR (CDCl_3): 0.95, t, 3H; 1.75, m, 2H; 2.56, s, 3H; 2.75, m, 4H; 2.97, t, 2H; 3.15, m, 2H; 3.44, m, 2H; 3.81, m, 2H; 4.15, t, 2H; 7.47, d, 1H; 7.95, m, 2H; 11.12, s, 1H; 12.22, s, 1H.

Beispiel 47

40

[0212] 2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

45

50

55

auf analoge Weise erhält man ausgehend von 850 mg (2 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 610 mg (6 mmol) 4-Hydroxypiperidin 736 mg (75 %) 2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-on
 $R_f=0.07$ (Dichlormethan/Methanol=95:5)

5 [0213] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.16, t, 3H; 1.80, m, 9H; 2.65, s, 3H; 3.00, m, 4H; 3.32, m, 2H; 3.85, m, 1H; 4.22, t, 2H; 7.17, d, 1H; 7.89, dd, 1H; 8.50, d, 1H; 11.70, s, 1H.

Beispiel 48

10 [0214] 2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

15 auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 35 mg (0,3 mmol) 4-Hydroxymethylpiperidin 41 mg (82 %) 2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

20 [0215] $R_f=0.52$ (Dichlormethan/Methanol=9:1)

[0215] 200 MHz ^1H -NMR (CDCl_3): 1.001, t, 3H; 1.16, t, 3H; 1.60, m, 4H; 1.82, m, 5H; 2.31, t, 2H, 2.62, s, 3H, 2.98, t, 2H; 3.48, d, 2H; 3.85, d, 2H; 4.21, t, 2H; 7.17, d, 1H; 7.88, dd, 1H; 8.45, d, 1H; 9.71, s, 1H.

Beispiel 49

40 [0216] 2-[5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-2-propoxy-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

45

50

55

20 auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 39 mg (0,3 mmol) 4-Hydroxyethylpiperazin 50 mg (96 %) 2-{5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-2-propoxy-phenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on
 $R_f=0.43$ (Dichlormethan/Methanol=9:1)

25 [0217] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.15, t, 3H, 1.88, m, 2H, 2.00, m, 2H, 2.62, m, 9H, 3.00, t, 2H, 3.07, m, 4H, 3.58, t, 2H, 4.23, t, 2H; 7.19, d, 1H; 7.88, dd, 1H, 8.43, d, 1H, 9.85, s, 1H.

Beispiel 50

30 [0218] N-(1,1-Dioxotetrahydro-1*λ*⁶-thiophen-3-yl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo-[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

50 auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 41 mg (0,3 mmol) 2-Aminosulfolan 8 mg (14 %) N-(1,1-Dioxotetrahydro-1*λ*⁶-thiophen-3-yl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid
 $R_f=0.49$ (Dichlormethan/Methanol=9:1)

55 [0219] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.15, t, 3H, 1.85, m, 2H; 1.99, m, 2H; 2.30, m, 1H; 2.50, m, 1H; 2.62, s, 3H; 2.95, m, 4H; 3.21, m, 1H; 4.20, m, 3H; 5.98, s, 1H; 7.18, d, 1H, 7.98, dd, 1H; 8.51, d, 1H, 9.71, s, 1H.

Beispiel 51

[0220] N-(2-Dimethylaminoethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

15

20

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,3 mmol) 1,1,4-Trimethyldiaminoethan 39 mg (79 %) N-(2-Dimethylaminoethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

25

$R_f=0.28$ (Dichlormethan/Methanol=9:1)

[0221] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.15, t, 3H, 1.88, m, 2H; 2.01, m, 2H; 2.25, s, 6H; 2.50, t, 2H; 2.62, s, 3H; 2.82, s, 3H; 3.01, t, 2H; 3.18, t, 2H; 4.21, t, 2H; 7.16, d, 1H, 7.91, dd, 1H, 8.50, d, 1H; 9.70, s, 1H.

Beispiel 52

30

[0222] 3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-propoxy-benzolsulfonsäureamid

35

40

45

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 43 mg (0,3 mmol) 1-(3-Aminopropyl)-morpholin 52 mg (97 %) 3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-propoxy-benzol-sulfonsäureamid

50

$R_f=0.33$ (Dichlormethan/Methanol=9:1)

[0223] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.15, t, 3H, 1.71, m, 2H; 1.93, m, 4H; 2.43, m, 6H; 2.62, s, 3H; 2.98, t, 2H; 3.12, t, 2H; 3.70, m, 4H; 4.21, t, 2H; 7.15, d, 1H; 7.96, dd, 1H; 8.55, d, 1H; 9.85, s, 1H.

55

Beispiel 53

[0224] N,N-Bis-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 32 mg (0,3 mmol) Bis(hydroxyethyl)amin 34 mg (69 %) N,N'-Bis-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

20 $R_f = 0.36$ (Dichlormethan/Methanol=9:1)

[0225] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.15, t, 3H; 1.85, m, 2H; 1.97, m, 2H; 2.60, s, 3H; 2.98, t, 2H; 3.33, t, 4H; 3.87, t, 4H; 4.20, t, 2H; 7.15, d, 1H; 7.92, dd, 1H; 8.49, d, 1H; 9.85, s, 1H.

25 **Beispiel 54**

[0226] N-(3-Hydroxybenzyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

30

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 37 mg (0,3 mmol) 3-Hydroxybenzylamin 4 mg (8 %) N-(3-Hydroxybenzyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

50 $R_f = 0.43$ (Dichlormethan/Methanol=9:1)

[0227] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H, 1.13, t, 3H; 1.83, m, 2H; 1.96, m, 2H; 2.59, s, 3H, 2.96, t, 2H, 4.16, m, 4H, 5.05, t, 1H; 6.52, s, 1H; 6.70, m, 2H; 7.06, m, 2H; 7.93, dd, 1H, 8.41, d, 1H, 9.77, s, 1H.

55

Beispiel 55

[0228] N-Ethyl-N-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-pro-

poxy-benzolsulfonsäureamid

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 27 mg (0,3 mmol) Ethylhydroxyethylamin 18 mg (38 %)

20 N-Ethyl-N-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonamide

R_f=0.48 (Dichlormethan/Methanol=9:1)

[0229] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, 2t, 6H; 1.75, s, 2H; 1.85, m, 2H; 1.98, m, 2H; 2.40, s, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.32, m, 4H; 3.90, quart., 2H; 4.21, quart., 2H; 7.15, d, 1H; 7.95, dd, 1H; 8.55, d, 1H, 9.73, s, 1H.

Beispiel 56

[0230] N-(3-Ethoxypropyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonamide

50 auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,3 mmol) 3-Ethoxypropylamin 47 mg (96 %) N-(3-Ethoxypropyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonamide

R_f=0.60 (Dichlormethan/Methanol=9:1)

55 [0231] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, m, 6H; 1.89, m, 7H; 2.62, s, 3H; 3.00, t, 2H; 3.12, quart., 2H; 3.46, m, 4H; 4.20, t, 2H; 5.52, m, 1H; 7.15, d, 1H; 7.98, dd, 1H; 8.55, d, 1H, 9.85, s, 1H.

Beispiel 57

[0232] 2-[5(4-Hydroxypiperidin-1-sulfonyl)2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

5

10

15

20

auf analoge Weise erhält man ausgehend von 212 mg (0,5 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 152 mg (1,5 mmol) 4-Hydroxypiperidin 125 mg (50 %) 2-[5(4-Hydroxypiperidin-1-sulfonyl)2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

25

$R_f=0.07$ (Dichlormethan/Methanol=19:1)

[0233] 200 MHz ^1H -NMR (CDCl_3): 1.05, t, 3H; 1.18, t, 3H, 1.98, m, 8H, 2.71, s, 3H; 3.10, m, 2H; 3.28, m, 4H; 3.88, m, 1H; 4.28, t, 2H; 7.21, d, 1H; 7.97, dd, 1H, 8.45, d, 1H, 10.45, s, 1H.

Beispiel 58

30

[0234] 3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-4-propoxy-N-pyridin-4-yl-benzolsulfonäsäureamid

35

40

45

auf analoge Weise erhält man ausgehend von 85 mg (0,2 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 56 mg (0,6 mmol) 4-Aminopyridin nach 18 Stunden reflux in 1 ml THF 24 mg (25 %) 3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-4-propoxy-N-pyridin-4-yl-benzolsulfonäsäureamid

$R_f=0.13$ (Dichlormethan/Methanol=9:1)

[0235] 200 MHz ^1H -NMR ($\text{CDCl}_3 + \text{CD}_3\text{OD}$): 1.01, t, 3H; 1.09, t, 3H; 1.90, m, 4H; 2.60, s, 3H; 2.99, t, 2H; 4.16, t, 2H; 7.05, d, 2H; 7.15, d, 1H; 7.88, d, 2H; 8.05, dd, 1H; 8.41, d, 1H.

Beispiel 59

[0236] N,N-Diethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonäureamid

5

10

15

20

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonäurechlorid und 22 mg (0,6 mmol) Diethylamin 42 mg (92 %) N,N-Diethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonäureamid.
R_f=0.64 (Dichlormethan/Methanol=9:1)

25

[0237] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.18, 2t, 9H; 1.92, 2 hex., 4H; 2.62, s, 3H; 3.00, t, 2H, 3.29, quart., 4H; 4.21, t, 2H; 7.13, d, 1H; 7.93, dd, 1H, 8.51, d, 1H, 9.85, s, 1H.

Beispiel 60

[0238] 1-[3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzosulfonyl]-piperidin-4-carbonsäure

35

40

45

50

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonäurechlorid und 14 mg (0,6 mmol) Piperidincarbonsäure in 1 ml eines Gemisches aus THF und Wasser (1:1) mit 26,5 mg Natriumcarbonat 21 mg (41 %) 1-[3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonyl]-piperidin-4-carbonsäure.

55

R_f=0.28 (Dichlormethan/Methanol=9:1)

[0239] 200 MHz ¹H-NMR (CDCl₃): 0.90, t, 3H; 1.04, t, 3H; 1.80, m, 4H; 2.21, m, 2H, 2.51, s, 3H, 2.85, m, 2H, 3.56, m, 6H; 4.10, t, 2H; 7.12, d, 1H, 7.71, dd, 1H, 8.10, d, 1H, 10.72, s, breit, 1H.

Beispiel 61

[0240] 5-Methyl-2-[5-(morpholin-4-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

5

10

15

20

25

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 26 mg (0,3 mmol) Morpholin 34 mg (71 %) 5-Methyl-2-[5-(morpholin-4-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on.

R_f=0.64 (Dichlormethan/Methanol=9:1)

[0241] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.16, t, 3H, 1.89, hex., 2H, 2.00, hex., 2H; 2.63, s, 3H; 3.02, m, 4H; 4.25, t, 2H, 7.19, d, 1H, 7.89, dd, 1H; 8.48, d, 1H; 9.78, s, 1H.

Beispiel 62

[0242] N-(2-Hydroxyethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-*f*][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

35

40

45

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 23 mg (0,63 mmol) Methylhydroxyethylamin 25 mg (54 %) N-(2-Hydroxyethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid.

R_f=0.53 (Dichlormethan/Methanol=9:1)

[0243] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, t, 3H; 1.82, m, 2H; 1.99, hex., 2H; 2.40, s, breit, 1H, 2.62, s, 3H, 2.89, s, 3H; 2.99, t, 2H; 3.21, t, 2H; 3.80, s, breit, 2H; 4.21, t, 2H, 7.16, d, 1H; 7.92, dd, 1H, 8.50, d, 1H, 9.79, s, 1H.

55

Beispiel 63

[0244] N-(2-Hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-*f*][1,2,4]triazin-2-yl)-4-propoxy-N-propyl-benzolsulfonsäureamid

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,6 mmol) Propylhydroxyethylamin 20 mg (40 %) N-(2-Hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo [5,1-f][1,2,4]triazin-2-yl)-4-propoxy-N-propylbenzolsulfonsäureamid.

20 $R_f=0.52$ (Dichlormethan/Methanol=9:1)

[0245] 200 MHz ^1H -NMR (CDCl_3): 0.90, t, ,3H; 1.01, t, 3H; 1.15, t, 3H; 1.52, m, 2H, 1.88, m, 2H, 2.00, m, 2H; 2.40, s, 1H; 2.63, s, 3H, 3.01, t, 2H, 3.22, m, 4H; 3.80, quart., 2H; 4.21, t, 2H, 7.15, d, 2H, 7.95, dd, 1H, 8.55, d, 1H; 9.75, s, 1H.

25 Beispiel 64

[0246] N-[2-(3,4-Dimethoxy-phenyl)ethyl]-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 59 mg (0,3 mmol) N-Methyl-3,4-dimethoxyphenylethylamin 50 45 mg (78 %) N-[2-(3,4-Dimethoxyphenyl)-ethyl]-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid.

$R_f=0.35$ (Dichlormethan/Methanol=19:1)

[0247] 200 MHz ^1H -NMR (CDCl_3): 0.90, t, 3H; 1.07, t, 3H; 1.78, m, 2H; 1.92, m, 2H; 2.55, s, 3H; 2.73, s, 3H; 2.78, m, 2H; 2.89, t, 2H; 3.23, t, 2H, 3.80, s, 6H, 4.15, t, 2H, 6.65, m, 3H, 7.05, d, 1H, 7.75, dd, 1H, 8.41, d, 1H, 9.67, s, 1H.

55

Beispiel 65

[0248] N-Allyl-N-(2-hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-pro-

poxybenzolsulfonsäureamid

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo [5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,3 mmol) Allylhydroxyethylamin 34 mg (70 %) N-Allyl-N-(2-hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfon-säureamid.

$R_f=0.52$ (Dichlormethan/Methanol=9:1)

[0249] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.15, t, 3H; 1.85, m, 2H; 1.99, m, 2H; 2.38, s, breit, 1H, 2.63, s, 3H; 3.00, t, 2H, 3.32, t, 2H, 3.86, t, 2H, 3.90, d, 2H; 4.25, t, 2H, 5.21, m, 2H, 5.71, m, 1H; 7.15, d, 1H, 7.95, dd, 1H; 8.55, d, 1H, 9.77, s, 1H.

Beispiel 66

[0250] N-Allyl-N-cyclopentyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfon-säureamid

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid und 38 mg (0,3 mmol) Allylcyclopentylamin 33 mg (64 %) N-Allyl-N-cyclopentyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfon-säureamid.

$R_f=0.43$ (Dichlormethan/Methanol=19:1)

[0251] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.15, t, 3H; 1.53, m, 9H; 2.00, m, 4H, 2.63, s, 3H; 3.00, t, 2H; 3.80, m, 2H, 4.21, t, 2H, 5.20, m, 2H; 5.88, m, 1H, 7.12, d, 1H, 7.95, dd, 1H, 8.55, d, 1H, 9.75, s, 1H.

Beispiel 67

[0252] N-Allyl-N-ethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo [5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsul-

fonsäureamid

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 26 mg (0,3 mmol) Allylethylamin 30 mg (64 %) N-Allyl-N-ethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonamide.

$R_f=0.44$ (Dichlormethan/Methanol=19:1)

[0253] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, t, 6H; 1.89, m, 2H, 2.01, m, 2H, 2.63, s, 3H, 3.00, t, 2H, 3.27, quart., 2H, 3.87, d, 2H, 4.23, t, 2H, 5.20, m, 2H, 5.72, m, 1H; 7.15, d, 1H, 7.95, dd, 1H, 8.55, d, 1H; 9.80, s, 1H.

Beispiel 68

[0254] 2-[2-Ethoxy-4-methoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

20 mg (0.045mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo-[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 0,5 ml Dichlormethan gelöst, mit einer Spatelspitze Dimethylaminopyridin und 14 mg (0,136 mmol) N-Methylpiperazin versetzt und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Nach Reinigung über Kieselgel erhält man 12,8 mg (55 %) 2-[2-Ethoxy-4-methoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

$R_f=0.22$ (Dichlormethan/Methanol=20:1).

[0255] 200 MHz ¹H-NMR (CDCl₃): 0.94, t, 3H; 1.55, t, 3H; 1.80, m, 2H; 2.24, s, 3H; 2.42, t, 4H; 2.55, s, ,3H; 2.92, t, 2H; 3.19, t, 4H, 3.91, s, 3H; 4.25, quart., 2H; 6.48, s, 1H; 8.57, s, 1H; 9.54, s, 1H.

Beispiel 69

[0256] 2-{2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-4-methoxy-phenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

20

25 Auf analoge Weise erhält man ausgehend von 20 mg (0,045 mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 18 mg (0,14 mmol) 4-Hydroxyethylpiperazin 11 mg (46 %) 2-{2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-4-methoxyphenyl}-0 5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

$R_f=0.34$ (Dichlormethan/Methanol=15:1)

30 [0257] 200 MHz ^1H -NMR (CDCl_3): 0.94, t, 3H; 1.55, t, 3H; 1.80, m, 3H; 2.52, m, 9H; 2.92, t, 2H; 3.20, t, 4H; 3.44, t, 2H; 3.92, s, 3H; 4.25, quart., 2H; 6.49, s, 1H; 8.56, s, 1H; 5.95, s, 1H.

Beispiel 70

35 [0258] 4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[1,2,4]triazin-2-yl)-benzolsulfonsäureamid [5,1-f]

40

45

50

Auf analoge Weise erhält man ausgehend von 20 mg (0,045 mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 12 mg (0,14 mmol) Ethylhydroxyethylamin 8mg (34 %) 4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäureamid.

$R_f=0.45$ (Dichlormethan/Methanol=15:1)

[0259] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.18, t, 3H; 1.61, t, 2H; 1.88, m, 2H; 2.39, s, breit, 1H; 2.65, s, 3H;

3.00, t, 2H; 3.38, quart., 2H; 3.45, t, 2H; 3.78, m, 2H; 4.01, s, 5 3H; 4.20, quart., 2H; 6.58, s, 1H; 8.67, s, 1H; 9.61, s, 1H.

Beispiel 71

5 [0260] 4-Ethoxy-N-(4-ethoxyphenyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäureamid

Auf analoge Weise erhält man ausgehend von 20 mg (0,045 mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 19 mg (0,14 mmol) 4-Ethoxyanilin 7 mg (34 %) 4-Ethoxy-N-(4-ethoxyphenyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonsäureamid.

$R_f = 0.36$ (Dichlormethan/Methanol=20:1)

[0261] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.33, t, 3H, 1.59, t, 3H, 1.86, hex., 2H, 2.62, s, 3H; 3.02, t, 2H; 3.92, quart., 2H; 4.11, s, 3H; 4.31, quart., 2H; 6.58, s, 1H, 6.72, d, 2H; 6.88, s, breit, 1H; 6.99, d, 2H, 8.50, s, 1H; 9.59, s, 1H.

Beispiel 72

[0262] 4-Ethoxy-N-ethyl-N-(2-hydroxy-ethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonic acid amide

0.64 g (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonic acid chlorid werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze Dimethylaminopyridin werden 0,40 g (4,50 mmol) 2-(Ethylamino)-ethanol zugegeben und die Reaktionsmischung über Nacht bei

55 Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Chromatographie (Dichlormethan/Methanol=95:5) ergibt 0,454 g (63 %) farblosen Feststoff.

[0263] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.20, t, 3H; 1.35, t, 3H; 1.61, t, 3H; 1.88, sex., 2H; 2.25, s, breit, 1H;

3.01, m, 4H; 3.32, m, 4H; 3.70, m, 2H; 3.80, m, 2H; 4.37, quart., 2H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.70, s, 1H.

Beispiel 73

5 [0264] N-(2-methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid

Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 21mg (0,282 mmol) 2-Methoxyethylamin 15 mg (34%) N-(2-methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid.

25 R_f=0.2 (Ethylacetat/Cyclohexan=2:1)

[0265] 200 MHz ¹H-NMR (CDCl₃): 0.97, t, 3H; 1.25, t, 3H; 1.53, t, 3H; 1.82, sex., 2H; 2.97, m, 4H; 3.11, m, 2H; 3.22, s, 3H; 3.39, t, 2H; 4.37, quart., 2H; 5.00, t, 1H; 7.17, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

Beispiel 74

30 [0266] N,N-Bis-(2-Methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid

50 Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 38 mg (0,28 mmol) Bismethoxyethylamin 17 mg (34 %) N,N-Bis-(2-Methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid.

R_f=0.34 (Ethylacetat/Cyclohexan=2:1)

[0267] 200 MHz ¹H-NMR(CDCl₃): 0.97, t, 3H; 1.27, t, 3H; 1.53, t, 3H; 1.80, sex., 2H; 2.95, m, 4H; 3.22, s, 6H; 3.39, m, 4H; 3.49, m, 4H; 4.27, quart., 2H; 7.17, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

Beispiel 75

[0268] 2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-ethoxyphenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

5

10

15

20

Auf analoge Weise erhält man ausgehend von 640 mg (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-*f*][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 460 mg (4,5 mmol) 4-Hydroxypiperidin 485 mg (66 %) 2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-ethoxyphenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on.

25

$R_f=0.37$ (Dichlormethan/Methanol=19:1)

[0269] 200 MHz ^1H -NMR (CDCl_3): 1.02, t, 3H; 1.32, t, 3H; 1.60, t, 3H; 1.80, m, 7H; 2.97, m, 6H; 3.30, m, 2H; 3.82, m, 1H; 4.34, quart., 2H; 7.17, d, 1H; 7.90, dd, 1H, 8.45, d, 1H. 9.75, s, 1H.

30

Beispiel 76

[0270] 2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-ethoxy-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

35

40

45

50

Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-*f*][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 33 mg (0,28 mmol) 4-Hydroxymethylpiperidin 23 mg (48 %) 2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-ethoxyphenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on.

55

$R_f=0.38$ (Dichlormethan/Methanol=10:1)

[0271] 200 MHz ^1H -NMR (CDCl_3): 1.01, t, 3H; 1.33, t, 3H; 1.60, t, 3H; 1.80, m, 8H; 2.41, m, 2H, 3.00, m, 4H; 3.56, m, 4H; 4.35, quart, 2H; 7.17, d, 1H; 7.88, dd, 1H, 8.45, d, 1H; 9.71, s, 1H.

Beispiel 77

[0272] 2-[2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

25 Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 37 mg (0,28 mmol) 4-Hydroxyethylpiperazin 35 mg (71 %) 2-[2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on. R_f=0.65 (Dichlormethan/Methanol=10:1)

Beispiel 78

[0273] 2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

30

50 Auf analoge Weise erhält man ausgehend von 640 mg (1,50 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 450 mg (4,5 mmol) 4-Hydroxyethylpiperazin 495 mg (66 %) 2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on. R_f=0.30 (Dichlormethan/Methanol=19:1)

55 [0274] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.35, t, 3H; 1.61, t, 3H; 1.89, sex., 2H; 2.31, s, 3H; 2.53, m, 4H; 3.05, m, 8H; 4.35, quart., 2H; 7.17, d, 1H; 7.89, dd, 1H; 8.48, d, 1H; 9.65, s, 1H.

Beispiel 79

[0275] 2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

5

10

15

20

300 mg (0,61 mmol) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in einer Mischung aus Ether und Dichlormethan gelöst und mit 2 ml einer 1M Lösung von HCl in Ether versetzt. Nach 20 Minuten wird der ausgefallene Feststoff abgesaugt und getrocknet.

25

[0276] 200 MHz ¹H-NMR (DMSO-d₆): 0.95, t, 3H; 1.32, 2t, 6H; 1.80, sex., 2H; 2.76, m, 4H; 3.01, m, 4H; 3.15, m, 2H; 3.44, m, 2H; 3.81, m, 2H; 4.25, quart., 2H; 7.49, d, 1H; 7.95, m, 2H; 11.25, s, 1H; 12.30, s, 1H.

30

Beispiel 80

[0277] 3-(5-Ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-ethoxybenzolsulfonsäureamid

35

40

45

Auf analoge Weise erhält man ausgehend von 640 mg (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 650 mg (4,5 mmol) 1-(3-Aminopropyl)-morpholin 476 mg (59 %) 3-(5-Ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-ethoxybenzol-sulfonsäureamid.

50

R_f=0.18 (Dichlormethan/Methanol=19:1)

[0278] 200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.32, t, 3H; 1.60, t, 3H; 1.70, m, 3H; 1.89, sex., 2H; 2.43, m, 7H; 3.01, m, 4H; 3.15, t, 2H; 3.70, m, 4H; 4.35, quart., 2H; 7.15, d, 1H; 7.95, dd, 1H; 8.55, d, 1H; 9.82, s, 1H.

55

Beispiel 81

[0279] N-(2-Hydroxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-N-propyl-benzolsulfonsäureamid

Auf analoge Weise erhält man ausgehend von 640 mg (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 464 mg (4,5 mmol) Propylhydroxyethylamin 600 mg (81 %) N-(2-Hydroxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-N-propylbenzolsulfonsäure-amid.

R_f=0.73 (Dichlormethan/Methanol=10: 1)

[0280] 200 MHz ¹H-NMR (CDCl_3): 0.91, t, ,3H; 1.01, t, 3H; 1.32, t, 3H; 1.62, m, 5H; 1.88, m, 2H; 2.32, s, 1H; 3.01, m, 4H; 3.22, m, 4H; 3.80, m, 2H; 4.35, t, 2H; 7.15, d, 2H, 7.95, dd, 1H, 8.55, d, 1H; 9.75, s, 1H.

[0281] Die in den folgenden Tabellen 1, 2, 3, 4 und 6 aufgeführten Sulfonamide wurden mittels automatisierter Parallelsynthese aus 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und dem entsprechenden Amin nach einer der drei folgenden Standardvorschriften hergestellt.

[0282] Die in der Tabelle 5 aufgeführten Sulfonamide wurden in analoger Weise mittels automatisierter Parallelsynthese aus 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-δ][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und dem entsprechenden Amin hergestellt.

[0283] Die Reinheit der Endprodukte wurde mittels HPLC bestimmt, ihre Charakterisierungen durch LC-MS Messung vorgenommen. Der Gehalt der gewünschten Verbindung nach HPLC-MS ist in den Tabellen in der Spalte "HPLC" in Prozent angegeben. Standardvorschrift A wurde angewendet bei Aminen mit aciden Funktionalitäten, Standardvorschrift B bei Aminen mit neutralen Funktionalitäten, Standardvorschrift C bei Aminen mit zusätzlichen basischen Funktionalitäten.

[0284] In den Strukturformeln der folgenden Tabellen 1, 2, 3, 4, 5 und 6 wurde gelegentlich auf die Abbildung der Wasserstoffatome verzichtet. Stickstoffatome mit einer freien Valenz sind daher als -NH-Rest zu verstehen.

[0285] Standardvorschrift A: Umsetzung von Aminen mit aciden Funktionalitäten Zunächst werden 0,05 mmol Amin, 0,042 mmol Sulfonsäurechlorid und 0,10 mmol Na_2CO_3 vorgelegt und 0,5 ml eines Gemisches aus THF/ H_2O von Hand zupipettiert. Nach 24 h bei RT wird mit 0,5 ml 1 M H_2SO_4 -Lösung versetzt und über eine zweiphasige Kartusche filtriert (500 mg Extrelut (Oberphase) und 500 mg SiO_2 , Laufmittel Essigester). Nach dem Einengen des Filtrates im Vakuum erhält man das Produkt.

[0286] Standardvorschrift B: Umsetzung von Aminen mit neutralen Funktionalitäten Zunächst werden 0,125 mmol Amin vorgelegt und vom Synthesizer 0,03 mmol Sulfonsäurechlorid als Lösung in 1,2-Dichlorethan zupipettiert. Nach 24 h wird das Gemisch mit 0,5 ml 1 M H_2SO_4 versetzt und über eine zweiphasige Kartusche (500 mg Extrelut (Oberphase) und 500 mg SiO_2 , Laufmittel: Essigester) filtriert. Das Filtrat wird im Vakuum eingeengt.

[0287] Standardvorschrift C: Umsetzung von Aminen mit basischen Funktionalitäten Zunächst werden 0,05 mmol Amin vorgelegt und vom Synthesizer 0,038 mmol Sulfonsäurechlorid als Lösung in 1,2-Dichlorethan und 0,05 mmol Triethylamin als Lösung in 1,2-Dichlorethan zupipettiert. Nach 24 h wird zunächst mit 3 ml gesättigter NaHCO_3 -Lösung versetzt und das Reaktionsgemisch über eine zweiphasige Kartusche filtriert. Nach dem Einengen des Filtrates im Vakuum erhält man das Produkt.

[0288] Alle Reaktionen werden dünnenschichtchromatographisch verfolgt. Für den Fall, daß nach 24 h bei RT keine vollständige Umsetzung erfolgt ist, wird für weitere 12 h auf 60°C erhitzt und im Anschluß der Versuch beendet.

Tabelle 1:

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
82	<p>Chemical structure of compound 82: 2-(2-(2-methoxyethyl)-6-methyl-2H-pyrimidin-4-yl)-N-(3-((2-methylpropyl)amino)phenyl)sulfonamide.</p>	525,63147	83	526
83	<p>Chiral form of compound 82.</p>	525,63147	71	526
84	<p>2-(2-(2-methoxyethyl)-6-methyl-2H-pyrimidin-4-yl)-N-(3-((S)-2-methoxyethyl)phenyl)sulfonamide.</p>	555,65796	91	556

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
5 10 15 20 25 30 35 40 45 50 55		477,58687	76	478
85		525,63147	81	526
86		463,55978	65	464
87				

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
5 10 15 20 25 30 35 40 45 50 55	<p>Structure of compound 88:</p> <p>Chemical name: 2-(2-(2-methylpropyl)-2-hydroxyethylamino)sulfon-4-((2-methylpropyl)carbamoyl)-N-(2-(2-methoxyethyl)phenyl)-5-methyl-1,2-dihydroimidazo[4,5-f]imidazole-3-carboxamide</p>	531,67929	83	532
88	<p>Structure of compound 89:</p> <p>Chemical name: 2-(2-(2-methylpropyl)-2-hydroxyethylamino)sulfon-4-((2-methylpropyl)carbamoyl)-N-(2-(2-methoxyethyl)phenyl)-5-methyl-1,2-dihydroimidazo[4,5-f]imidazole-3-carboxamide</p>	463,55978	40	464
89	<p>Structure of compound 90:</p> <p>Chemical name: 2-(2-(2-methylpropyl)-2-hydroxyethylamino)sulfon-4-((2-methylpropyl)carbamoyl)-N-(2-(2-methoxyethyl)phenyl)-5-methyl-1,2-dihydroimidazo[4,5-f]imidazole-3-carboxamide</p>	463,55978	44	464

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
91		581,6962	76	582
92		475,5273	61	476
93		421,47851	80	422

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
94		475,57093	81	476
95		491,61396	97	492

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
5 10 15 20 25 30 35 40 45 50 55	<p>Chemical structure 96: A purine derivative with a 4-phenylsulfonamido group at position 6 and a 2-methoxyethyl group at position 2.</p>	567,71274	- 80	568
	<p>Chemical structure 97: A purine derivative with a 4-phenylsulfonamido group at position 6 and a 2-(dimethylamino)ethyl group at position 2.</p>	521,64045	94	522
	<p>Chemical structure 98: A purine derivative with a 4-phenylsulfonamido group at position 6 and a 2-hydroxypropyl group at position 2.</p>	477,58687	70	478

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
99	<p>Chemical structure 99: A purine derivative with a 2-methoxyethyl group at N6, a 2-(methylsulfonyl)ethyl group at N3, and a 2-methylpropyl group at N7.</p>	535,62391	88	536
100	<p>Chemical structure 100: A purine derivative with a 2-methoxyethyl group at N6, a 2-(methylsulfonyl)ethyl group at N3, and a 2-phenylpropyl group at N7.</p>	553,68565	88	554
101	<p>Chemical structure 101: A purine derivative with a 2-methoxyethyl group at N6, a 2-(methylsulfonyl)ethyl group at N3, and a 2-(furan-2-yl)propyl group at N7.</p>	529,61972	85	530

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
102	<p>539,65856</p>		91	540
103	<p>520,61209</p>		55	521
104	<p>502,64038</p>		82	503

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
5 105		564,71207	86	565
20 106		524,64674	85	525
40 107		538,67383	85	539

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MS + H
108		546,69396	84	547
109		504,61269	90	505

45

50

55

Tabelle 2:

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
110		507,6134	74	508
111		539,6586	75	540

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
112		599,7115	83	600
113		535,6675	60	536

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
114	<p>Chemical structure of compound 114: 2-(2-(2-hydroxyethylamino)-2-methylpropylsulfonyl)-4-(2-methoxyethyl)imidazo[1,2-d]imidazole-5(6H)-one.</p>	521,6405	95	522
115	<p>Chemical structure of compound 115: 2-(2-hydroxyethylamino)-4-(2-methoxyethylsulfonyl)imidazo[1,2-d]imidazole-5(6H)-one.</p>	569,6851	84	570
116	<p>Chemical structure of compound 116: 2-(2-hydroxyethylamino)-4-(2-chlorophenylsulfonyl)imidazo[1,2-d]imidazole-5(6H)-one.</p>	608,5486	85	608

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
117		569,6851	88	570
118		463,5598	94	464
119		535,6675	93	536

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
120		517,6522	71	518
121		561,7058	92	562
122		539,6586	85	540

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
123	<p>Chemical structure of compound 123: 2-(2-(2-methylpropyl)-4-(methylsulfonyl)piperidin-1-yl)-5-methyl-4-oxo-1,2-dihydroimidazo[1,2-f]imidazole.</p>	518,6834	87	519
124	<p>Chemical structure of compound 124: 2-(2-(2-chlorophenyl)-4-(methylsulfonyl)piperidin-1-yl)-5-methyl-4-oxo-1,2-dihydroimidazo[1,2-f]imidazole.</p>	588,1307	30	588
125	<p>Chemical structure of compound 125: 2-(2-(1-phenylpiperidin-4-yl)-4-(methylsulfonyl)piperidin-1-yl)-5-methyl-4-oxo-1,2-dihydroimidazo[1,2-f]imidazole.</p>	550,685	83	551

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
126	<p>Chemical structure of compound 126: 2-(2-(2-methoxyethyl)-6-(4-(N,N-dimethylamino)sulfonyl)phenyl)-4-methylimidazole-5-carboxylic acid.</p>	542,7057	77	543
127	<p>Chemical structure of compound 127: 2-(2-(2-methoxyethyl)-6-(4-(dimethylaminomethyl)piperidin-1-yl)sulfonyl)phenyl)-4-methylimidazole-5-carboxylic acid.</p>	502,6404	91	503
128	<p>Chemical structure of compound 128: 2-(2-(2-methoxyethyl)-6-(4-(dimethylaminomethyl)butyl)sulfonyl)phenyl)-4-methylimidazole-5-carboxylic acid.</p>	490,6292	45	491

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
129	<p>Chemical structure of compound 129: 2-(2-(2-methylpropyl)-N-(methylbenzyl)amino)-5-((2-methoxyphenyl)sulfonyl)-4-methylimidazole.</p>	568,7003	66	569
130	<p>Chemical structure of compound 130: 2-(2-(2-hydroxy-2-methylpropyl)-N-(dimethylaminomethyl)amino)-5-((2-methoxyphenyl)sulfonyl)-4-methylimidazole.</p>	534,6828	86	535
131	<p>Chemical structure of compound 131: 2-(2-(2-(dimethylaminomethyl)-N-(methylbenzyl)amino)-5-((2-methoxyphenyl)sulfonyl)-4-methylimidazole.</p>	580,7551	95	581

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
132	<p>Chemical structure of compound 132:</p> <p>2-(2-(2-(2-methylpropyl)amino)-2-hydroxyethyl)piperidin-4-yl 4-(2-(2-methoxyethyl)phenyl)sulfonate</p>	576,7205	87	577
133	<p>Chemical structure of compound 133:</p> <p>2-(2-(2-(1-phenylpiperidin-4-yl)ethyl)phenyl)sulfonate</p>	598,7296	60	599

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
134	<p>Chemical structure of compound 134: 2-(2-(2-methylpropyl)-4-(methylsulfonyl)piperidin-1-yl)-4-methyl-6-(2-methoxyphenyl)uridine. The structure consists of a uridine nucleoside core with a 2-methoxyphenyl ring at position 6. The 2-position of the phenyl ring is substituted with a 4-(methylsulfonyl)piperidin-1-yl group, which further has a 2-methylpropyl group attached to its nitrogen atom.</p>	516,6675	95	517
135	<p>Chemical structure of compound 135: 2-(2-(cyclopentylmethyl)-4-(methylsulfonyl)piperidin-1-yl)-4-methyl-6-(2-methoxyphenyl)uridine. The structure is similar to compound 134, but the 2-methylpropyl group on the piperidin-1-yl ring is replaced by a cyclopentylmethyl group.</p>	528,6786	80	529

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
136	<p>Chemical structure of compound 136: 2-(2-(dimethylaminosulfonyl)-4-methylphenyl)-N-(2-methylpropyl)imidazo[1,2-d]imidazole-4(5H)-one. The structure shows a central imidazolidine ring fused to an imidazole ring. The 2-position of the imidazole ring is substituted with a 4-methylphenyl group (bearing a dimethylaminosulfonyl group) and a 2-methylpropyl group. The 4-position of the imidazole ring is substituted with a methyl group.</p>	538,6738	85	539
137	<p>Chemical structure of compound 137: 2-(2-(dimethylaminosulfonyl)-4-(dimethylaminoethyl)phenyl)-N-(2-methylpropyl)imidazo[1,2-d]imidazole-4(5H)-one. The structure is similar to compound 136, but the 4-methylphenyl group is replaced by a 4-(dimethylaminoethyl)phenyl group.</p>	533,6981	68	534
138	<p>Chemical structure of compound 138: 2-(2-(dimethylaminosulfonyl)-4-methylphenyl)-N-(cyclohexylmethyl)imidazo[1,2-d]imidazole-4(5H)-one. The structure is similar to compound 136, but the 4-methylphenyl group is replaced by a cyclohexylmethyl group.</p>	516,6675	91	517

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
139	<p>Chemical structure of compound 139: 2-(2-(2-hydroxyethyl)piperidin-1-yl)-5-methyl-4-(4-methoxybenzyl)-1-(methylpropyl)imidazole-2,4-dione. The structure features a purine ring system with a 4-((4-methoxybenzyl)amino) group at position 2 and a 1-(methylpropyl) group at position 6. The 4-methoxybenzyl group is further substituted with a 2-(2-hydroxyethyl)piperidin-1-yl group.</p>	489,598	85	490
140	<p>Chemical structure of compound 140: 2-(2-hydroxycyclohexyl)-5-methyl-4-(4-methoxybenzyl)-1-(methylpropyl)imidazole-2,4-dione. The structure is similar to compound 139, but the 2-hydroxyethyl side chain is replaced by a 2-hydroxycyclohexyl group.</p>	475,5709	83	476
141	<p>Chemical structure of compound 141: 2-(3-hydroxybutyl)-5-methyl-4-(4-methoxybenzyl)-1-(methylpropyl)imidazole-2,4-dione. The structure is similar to compound 139, but the 2-hydroxyethyl side chain is replaced by a 3-hydroxybutyl group.</p>	503,6251	85	504

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
142		489,598	91	490
143		461,5438	78	462
144		539,6586	88	540

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	MZ+H
145	<p>Chemical structure of compound 145: 2-(2-(2-hydroxyethyl)-N-(4-methylphenyl)sulfamoyl)ethyl-4,6-dimethyl-2H-pyrazin-3-one. The structure features a pyrazine ring system substituted at position 2 with a 4-methylphenylsulfamoyl group (-SO2-N(4-CH3-Ph)-CH2-CH2-O-), a methyl group at position 4, and another methyl group at position 6. The 2-position of the pyrazine ring is further substituted with a methylene group (-CH2-).</p>	539,6586	58	538
146	<p>Chemical structure of compound 146: 2-(2-(2-hydroxyethyl)-N-(4-phenylbutyl)sulfamoyl)ethyl-4,6-dimethyl-2H-pyrazin-3-one. The structure is similar to compound 145, but the 4-methylphenylsulfamoyl group is replaced by a 4-phenylbutylsulfamoyl group (-SO2-N(4-CH2-Ph-CH2-CH2-)-CH2-CH2-O-).</p>	511,6044	80	512
147	<p>Chemical structure of compound 147: 2-(2-(2-hydroxyethyl)-N-(4-(methylsulfonyl)butyl)sulfamoyl)ethyl-4,6-dimethyl-2H-pyrazin-3-one. The structure is similar to compound 146, but the 4-phenylbutylsulfamoyl group is replaced by a 4-(methylsulfonyl)butylsulfamoyl group (-SO2-N(4-CH2-CH2-SO2CH3-)-CH2-CH2-O-).</p>	505,6411	90	506

Tabelle 3:				
Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
148	<p>Chemical structure of compound 148: 2-(4-(2-methoxyethyl)-6-(4-methylsulfonylphenyl)-4H-pyrimidin-2-yl)-4H-imidazole-4-carboxylic acid. It features a purine-like core with a 2-methoxyethyl group at position 2 and a 4H-imidazole-4-carboxylic acid side chain at position 6.</p>	565,70	38	566
149	<p>Chemical structure of compound 149: 2-(4-(2-methoxyethyl)-6-(4-(2-methoxyethyl)-6-(methylsulfonyl)phenyl)-4H-pyrimidin-2-yl)-4H-imidazole-4-carboxylic acid. It features a purine-like core with a 2-methoxyethyl group at position 2 and a 4H-imidazole-4-carboxylic acid side chain at position 6, where the phenyl ring is substituted with a 2-methoxyethyl group and a methylsulfonyl group.</p>	643,77	85	644

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
150	<p>Chemical structure of compound 150:</p> <pre> CH3 CH2O C6H4 - C = N - C(=O) - N1=C(C=C1)C2=NC(C=C2)C3=CC(C=C3)C(=O)O S(=O)(=O)N(H)CH2CH2OH C6H5 - C2=CC=C(C=C2)N(C)C3=CC=C(C=C3)C(=O)O </pre>	525,63	80	526
151	<p>Chemical structure of compound 151:</p> <pre> CH3 CH2O C6H4 - C = N - C(=O) - N1=C(C=C1)C2=NC(C=C2)C3=CC(C=C3)C(=O)O S(=O)(=O)N(H)CH2CH2OH C6H5 - C2=CC=C(C=C2)N(C)C3=CC=C(C=C3)C(=O)O </pre>	525,63	78	526

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
152	<p>Chemical structure of compound 152:</p> <pre> CH3 O C6H4-C(=O)-N(Cyclohexyl)-S(=O)(=O)- CH3 N1C=CC2=C1C(=O)N(C2=O)C3=C2C(=O)N(C3=O)C2=CH3 CH3 </pre>	560,63	51	561
153	<p>Chemical structure of compound 153:</p> <pre> CH3 O C6H4-C(=O)-N(Cyclohexyl)-S(=O)(=O)- CH3 N1C=CC2=C1C(=O)N(C2=O)C3=C2C(=O)N([NH3+])C2=CH3 CH3 </pre>	503,65	78	504

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
154	<p>Detailed description: The structure shows a 2-methoxyethyl group attached to a phenyl ring at position 4. At position 6 of the phenyl ring is a 4-methanesulfonylpiperidin-1-yl group. At position 5 of the imidazole ring is a 2-methylpropyl group. The imidazole ring is fused to a 2H-pyrimidine ring.</p>	522,63	82	523
155	<p>Detailed description: The structure is identical to compound 154, except the piperidin-1-yl group is replaced by a 4-methylpiperidin-1-yl group where the nitrogen atom is substituted with a methoxymethyl group (CH3OCH2).</p>	502,60	84	503

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
156	<p>Chemical structure of compound 156:</p> <pre> CH3 CH2O C6H4-C(=O)N1=C2=C(C=C2)N(C)C(=O)N3=C(C=C3)CC(C)CC1 O=S(=O)(=O)N4C5=CC=CC=C5N4C6H4-O-H HO-N </pre>	488,57	83	489
157	<p>Chemical structure of compound 157:</p> <pre> CH3 CH2O C6H4-C(=O)N1=C2=C(C=C2)N(C)C(=O)N3=C(C=C3)CC(C)CC1 O=S(=O)(=O)N4C5=CC=CC=C5N4C6H4-C(=O)N7=CC=CC=C7 </pre>	536,66	82	537

50

55

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
158	<p>Chemical structure of compound 158:</p> <pre> CH3 CH2O C6H4 O=S(=O)N(C)CCN(C)CC N=C1N=C2C=CN=C2C(=O)N1C CH3 </pre>	490,63	90	491
159	<p>Chemical structure of compound 159:</p> <pre> CH3 CH2O C6H4 O=S(=O)N1C2CCCCN1Cc3ccccc3 N=C1N=C2C=CN=C2C(=O)N1C CH3 </pre>	537,65	83	538

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
160	<p>Chemical structure of compound 160:</p> <pre> CH3 CH3O C6H4 - C5H4N - C4H4N - C3H4N - C2H4N O=C= N=C= C5H4N S(=O)(=O)N(C)CCN(CC)C N=C= C3H4N C2H4N CH3 CH3 </pre>	504,66	91	505
161	<p>Chemical structure of compound 161:</p> <pre> CH3 CH3O C6H4 - C5H4N - C4H4N - C3H4N - C2H4N O=C= N=C= C5H4N S(=O)(=O)N(C)CCN(CC)C N=C= C3H4N C2H4N CH3 CH3 CH3 CH3 </pre>	589,81	65	590

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
162	<p>Chemical structure of compound 162:</p> <pre> CH3 CH2O C6H4 - C = N - N1C(C(=O)C2=CNC(C)=N2)C(C)=N1 O=S(=O)(=O)N3CCCCN(C)CC3 C6H11 </pre>	488,61	88	489
163	<p>Chemical structure of compound 163:</p> <pre> CH3 CH2O C6H4 - C = N - N1C(C(=O)C2=CNC(C)=N2)C(C)=N1 O=S(=O)(=O)N(C)CCN(C)CCc1ccccc1 </pre>	566,73	32	567

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
164		501,61	75	502
165		491,61	91	492
166		477,59	73	478

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
167	<p>Chiral</p>	525,63	81	526
168		488,57	70	489

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
169	<p>HO</p>	511,60	76	512
170	<p>CH₃C₂H₅NHCH₂CH₂OH</p>	568,70	50	569
171	<p>CH₃C₂H₅NHCH₂CH₂OH</p>	554,67	63	555

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
172	<p>Chemical structure of compound 172: 2-(2-(2-(2-methylpropyl)phenyl)-5-sulfophenyl)-N-(2-hydroxyethyl)-4,5-dimethylimidazole-2(3H)-one. The structure features a central imidazole ring substituted at position 2 with a 2-hydroxyethyl group, at position 4 with a 2-methylpropyl group, and at position 5 with another 2-methylpropyl group. The 5-position is also substituted with a 5-sulfophenyl group.</p>	582,73	50	583
173	<p>Chemical structure of compound 173: 2-(2-(2-(2-(2-methylpropyl)piperidin-4-yl)phenyl)-5-sulfophenyl)-N-(2-methoxyethyl)-4,5-dimethylimidazole-2(3H)-one. The structure is similar to compound 172, but the 2-hydroxyethyl group is replaced by a 2-methoxyethyl group, and the 2-methylpropyl group is part of a piperidin-4-yl group.</p>	637,76	30	638

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz + H
174		554,67	70	555
175		568,70	44	569

Tabelle 4:

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
176	<p>Chemical structure of compound 176: 2-(4-(dimethylamino)-4-methylbutyl)-6-methyl-2H-pyrazin-3-one. It features a pyrazine ring system substituted at position 2 with a 4-(dimethylamino)-4-methylbutyl group, at position 6 with a methyl group, and at position 3 with a carbonyl group.</p>	477,59	82	478
177	<p>Chemical structure of compound 177: 2-(4-(dimethylamino)-4-methylbutyl)-6-methyl-2H-pyrazin-3-one. Similar to compound 176, but the dimethylaminobutyl group is attached to the nitrogen atom at position 2 instead of the ring.</p>	491,61	89	492
178	<p>Chemical structure of compound 178: 2-(4-(dimethylamino)-4-methylbutyl)-6-methyl-2H-pyrazin-3-one. Similar to compound 176, but the dimethylaminobutyl group is attached to the nitrogen atom at position 2 and has a longer chain length.</p>	505,64	88	506

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
179		513,62	47	514
180		504,66	83	505
181		552,70	83	553

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
182	<p>Chemical structure of compound 182:</p> <pre> CH3 CH2O C6H3 / \ N C5H4 C2H4 S(=O)(=O)N(C)CH2CH2OH C2H5 </pre>	492,60	72	493
183	<p>Chemical structure of compound 183:</p> <pre> CH3 CH2O C6H3 / \ N C5H4 C2H4 S(=O)(=O)N(C1CCNCC1)C2=CC=CC=C2 C2H5 </pre>	593,75	52	594

50

55

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
184		504,66	82	505
185		582,75	59	583

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
186	<p>Chemical structure of compound 186:</p> <pre> CH3 \O/ C = N \ / C=O \ / CH3 S(=O)(=O)N(C6=CC=CC=C6)Cc1ccccc1 N1CCOCC1 </pre>	566,68	60	567
187	<p>Chemical structure of compound 187:</p> <pre> CH3 \O/ C = N \ / C=O \ / CH3 S(=O)(=O)N(C6=CC=CC=C6)Cc1ccccc1 N1CCN(C)CCCOCC1 </pre>	579,73	30	580

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
188	<p>Chemical structure of compound 188: 2-(4-(2-methylpropyl)-6-methyl-2H-pyrazin-3-yl)-N-(4-(2-methylpropyl)-6-methyl-2H-pyrazin-3-yl)-N-(4-(2-methylpropyl)-6-methyl-2H-pyrazin-3-yl)sulfonobiphenyl-4-amine.</p>	548,63	73	549
189	<p>Chemical structure of compound 189: 2-(4-(2-methylpropyl)-6-methyl-2H-pyrazin-3-yl)-N-(4-(2-methylpropyl)-6-methyl-2H-pyrazin-3-yl)-N-(4-(2-methylpropyl)-6-methyl-2H-pyrazin-3-yl)sulfonobiphenyl-4-amine.</p>	548,63	72	549

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
190	<p>Chemical structure of compound 190:</p> <pre> CH3 CH2O C6H4-C(=O)N1=C2=C(C=C2)N3=C(C=C3)C(=O)N1C4=CC=CC4 S(=O)(=O)N(c5ccccc5)C(=O)S(=O)(=O)CH3 </pre>	559,67	54	560
191	<p>Chemical structure of compound 191:</p> <pre> CH3 CH2OH C6H4-C(=O)N1=C2=C(C=C2)N3=C(C=C3)C(=O)N1C4=CC=CC4 S(=O)(=O)N(c5ccccc5)C(=O)S(=O)(=O)CH3 </pre>	511,60	70	512

45

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
192		580,76	68	581
193		476,60	89	477
194		583,71	80	584

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
195	<p>Chemical structure of compound 195: 2-(4-(2-hydroxyoctyl)amino)-5-methyl-4-((2-methylpropyl)ethoxy)-6-(4-sulfobutyl)-2,4-dihydropyrimidin-2(1H)-one.</p>	505,64	84	506
196	<p>Chemical structure of compound 196: 2-(4-(2-hydroxyoctyl)amino)-5-methyl-4-((2-methylpropyl)ethoxy)-6-(4-sulfobutyl)-2,4-dihydropyrimidin-2(1H)-one with a dimethylaminomethyl group at the 2-position.</p>	518,68	40	519
197	<p>Chemical structure of compound 197: 2-(4-(2-hydroxyoctyl)amino)-5-methyl-4-((2-methylpropyl)ethoxy)-6-(4-sulfobutyl)-2,4-dihydropyrimidin-2(1H)-one with a piperidin-4-ylmethyl group at the 2-position.</p>	528,68	82 ?	529

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
198	<p>Chemical structure of compound 198:</p> <pre> CH3 CH2O C6H4 O=S(=O)N(c1ccc(O)cc1)c2nc(C3=CNC4=C3C(=O)N2C)CC(C)C C6H4 H3C-O </pre>	566,68	63	567
199	<p>Chemical structure of compound 199:</p> <pre> CH3 CH2O C6H4 O=S(=O)N(CCOCC)c2nc(C3=CNC4=C3C(=O)N2C)CC(C)C C6H4 HO-CH2-CH2-CH2 </pre>	553,69	87	554

50

55

Bsp.-Nr.	Struktur	MG [g/mol]	HPLC	Mz+H
200		491,61	- 84	492

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
201	<p>Detailed description: The structure shows a purine derivative. At position 2, there is a 4-methylimidazol-5-yl group. At position 6, there is a 2-methylpropyl group. At position 8, there is a phenyl ring substituted with a sulfonamido group (-SO2-NH-CH2-CH2-N1CCCC1). The nitrogen atom of the sulfonamide group is also bonded to a 1-methyl-4-methylpiperidin-1-yl group.</p>	516,67	87	517
202	<p>Detailed description: The structure is similar to compound 201, but the 1-methyl-4-methylpiperidin-1-yl group is replaced by a 1-methylcyclopentyl group.</p>	502,64	84	503

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>203</p>	516,67	87	517
	<p>204</p>	538,67	91	539
	<p>205</p>	533,7	85	534

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
206	<p>CH₃ O CH₃ CH₂-O-C(=O)-N1=C(N=C2=C(C=C1)C(C)=CC=C2)C(C)=CC=C(C=C1)C(C)=C1 S(=O)(=O)-N(C)C CH₃ CH₂-N(C)C-CH₂-CH₃</p>	518,68	77	519
207	<p>CH₃ O CH₃ CH₂-O-C(=O)-N1=C(N=C2=C(C=C1)C(C)=CC=C2)C(C)=CC=C(C=C1)C(C)=C1 S(=O)(=O)-N(C)C CH₂-N(C)C-CH₂-CH₃ Phenyl</p>	566,73	92	567

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>208</p>	552,7	87	553
	<p>209</p>	506,63	52	507

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 210		560,72	62	561
25 30 35 40 45 50 55 211		568,7	88	569
212		582,73	89	583

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>213</p>	580,71	83	581
	<p>214</p>	518,64	89	519
	<p>215</p>	463,56	90	464

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 216	<p>Chemical structure of compound 216: 2-(2-(2-hydroxyethyl)ethylamino)-5-methoxy-2-(methylsulfonyl)benzylguanine. It features a purine ring system with a 2-methoxyphenyl group at position 5 and a 2-(methylsulfonyl)ethylamino group at position 2.</p>	548,71	78	549
25 30 35 217	<p>Chemical structure of compound 217: 2-(2-(dimethylaminooethyl)ethylamino)-5-methoxy-2-(methylsulfonyl)benzylguanine. It features a purine ring system with a 2-methoxyphenyl group at position 5 and a 2-(dimethylaminooethyl)ethylamino group at position 2.</p>	490,63	87	491
40 45 50 218	<p>Chemical structure of compound 218: 2-(2-(dimethylaminooethyl)ethylamino)-5-methoxy-2-(methylsulfonyl)benzylguanine. It features a purine ring system with a 2-methoxyphenyl group at position 5 and a 2-(dimethylaminooethyl)ethylamino group at position 2.</p>	532,71	93	533

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>219</p>	564,71	91	565
	<p>220</p>	556,73	92	557

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 221		516,67	92	517
25 30 35 222		504,66	83	505
40 45 50 223		558,75	90	559

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>Structure 224: A purine derivative with a 4-((2-methylpropyl)amino)sulfonylphenyl group and a 6-(2-methylbutyl)imidazo[4,5-d]pyrimidin-2(1H)-one group.</p>	532,71	86 -	533
224				
225	<p>Structure 225: A purine derivative with a 4-((2-methylpropyl)amino)sulfonylphenyl group and a 6-(2-methylbutyl)imidazo[4,5-d]pyrimidin-2(1H)-one group, where the phenyl ring has a cyclohexylmethylamino group instead of a propylamino group.</p>	572,78	68	573
225				
226	<p>Structure 226: A purine derivative with a 4-((2-methylpropyl)amino)sulfonylphenyl group and a 6-(2-methylbutyl)imidazo[4,5-d]pyrimidin-2(1H)-one group, where the phenyl ring has a (2-hydroxyethyl)benzylamino group instead of a propylamino group.</p>	582,73	87	583
226				

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>227</p> <p>228</p> <p>229</p>	<p>548,71</p> <p>594,78</p> <p>590,75</p>	<p>85 ·</p> <p>97</p> <p>90</p>	<p>549</p> <p>595</p> <p>591</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 230		530,69	95	531
25 30 35 40 231		542,71	88	543
45 50 55 232		552,7	91	553

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>233</p> <p>CH₃ O CH₃ O=S=O HO CH₃ N CH₃ CH₃</p>	534,68	65 .	535
234	<p>CH₃ O CH₃ O=S=O OH CH₃ N CH₃ CH₃</p>	520,66	83	521
235	<p>CH₃ O CH₃ O=S=O N CH₃</p>	530,69	89	531

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 236	<p>Chemical structure of compound 236: 2-(2-(2-methylpropyl)-4-methyl-5-(1-methylcyclopentyl)piperidin-1-yl)-5-((2-methoxyphenyl)sulfonyl)imidazole. The structure shows a purine ring system substituted with a 2-methoxyphenylsulfonyl group at position 5 and a 2-(2-methylpropyl)-4-methyl-5-(1-methylcyclopentyl)piperidin-1-yl group at position 2.</p>	542,71	70	543
25 30 35 40 45 50 55 237	<p>Chemical structure of compound 237: 2-(2-(2-methylpropyl)-4-methylimidazol-1-yl)-5-((2-methoxyphenyl)sulfonyl)piperidin-1-ylmethyl ether. The structure shows a purine ring system substituted with a 2-methoxyphenylsulfonyl group at position 5 and a 2-(2-methylpropyl)-4-methylimidazol-1-ylmethyl group at position 2.</p>	580,71	81	581

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>238</p>	504,66	81 -	505
	<p>239</p>	551,67	86	552
	<p>240</p>	518,68	85	519

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
241	<p>Chemical structure of compound 241: A purine derivative with a 4-(2-methoxyethyl)phenyl group at position 6 and a 2-methylimidazo[1,2-d]imidazole-1(2H)-one group at position 9. The imidazolidine ring has two methyl groups at positions 2 and 5.</p>	502,64	85	503
242	<p>Chemical structure of compound 242: A purine derivative with a 4-(2-methoxyethyl)phenyl group at position 6 and a 2-methylimidazo[1,2-d]imidazole-1(2H)-one group at position 9. The imidazolidine ring has two methyl groups at positions 2 and 5. The phenyl ring at position 6 is substituted with a dimethylaminomethyl group.</p>	580,76	79	581

40

45

50

55

Tabelle 6

5
10
15
20
25
30
35
40
45
50
55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
243		477,5869	86	478
244		495,605	62	496
245		511,6044	50	512

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 246		564,495	40	565
25 30 35 40 45 50 55 247		555,658	61	556
248		497,5773	60	498

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>249</p> <p>250</p> <p>251</p>	<p>581,6963</p> <p>557,6303</p> <p>539,615</p>	<p>77</p> <p>76</p> <p>74</p>	<p>582</p> <p>558</p> <p>540</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>252</p>	515,5677	64	516
	<p>253</p>	472,5266	38	473
	<p>254</p>	459,5715	88	460

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>255</p>	551,5486	78	552
256		574,6824	59	575
257		497,5773	40	498

Bsp.-Nr.	Struktur	MW	HPLC	$MZ+H$
5 10 15 20 25 30 35 40 45 50	<p>Structure of compound 258: 2-(4-(2-methoxyethyl)-6-(4-methylpiperazin-1-ylsulfonyl)phenyl)-N-(2-methylpropyl)imidazo[1,2-d]imidazole-4(5H)-one. The structure shows a purine derivative with a 2-methoxyethyl group at position 4, a 4-methylpiperazin-1-ylsulfonyl group at position 6, and a 2-methylpropyl group at position 7.</p>	459,5715	90	460
20 25 30 35 40 45 50	<p>Structure of compound 259: 2-(4-(2-methoxyethyl)-6-(4-(methylpiperidin-1-ylsulfonyl)phenyl)-N-(2-methylpropyl)imidazo[1,2-d]imidazole-4(5H)-one. The structure is similar to compound 258, but the piperazine ring is replaced by a piperidin-1-yl group.</p>	473,5986	80	474
20 25 30 35 40 45 50	<p>Structure of compound 260: 2-(4-(2-methoxyethyl)-6-(4-(morpholin-4-ylsulfonyl)phenyl)-N-(2-methylpropyl)imidazo[1,2-d]imidazole-4(5H)-one. The structure is similar to compound 258, but the piperazine ring is replaced by a morpholine-4-yl group.</p>	461,5439	83	462

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
261	<p>CH₃ O C₆H₄- O=S=O N H₃C H₃ C₂H₅ CH₃</p>	503,6687	71	504
262	<p>CH₃ O C₆H₄- O=S=O N H₃C O-C(=O)CH₂CH₂CH₃</p>	517,6086	71	518
263	<p>CH₃ O C₆H₄- O=S=O N H₃C O-C(=O)CH₂CH₂CH₃</p>	511,6044	76	512

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>264</p>	518,5989	74	519
	<p>265</p>	552,6573	91	553
	<p>266</p>	566,6844	71	567

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>267</p>	567,6692	48	568
	<p>268</p>	477,6084	90	478
	<p>269</p>	569,6851	73	570

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>270</p> <p>Structure details: A purine derivative with a 2-methylpropyl group at position 4 and a 6-methyl group. It is substituted at position 2 with a phenyl ring bearing a (2-methoxybenzyl)sulfonyl group.</p>	651,766	65	652
271	<p>Structure details: A purine derivative with a 2-methylpropyl group at position 4 and a 6-methyl group. It is substituted at position 2 with a phenyl ring bearing a hydroxymethyl group.</p>	541,6309	71	542
272	<p>Structure details: A purine derivative with a 2-methylpropyl group at position 4 and a 6-methyl group. It is substituted at position 2 with a phenyl ring bearing a (2,2,2-trifluoroethyl)oxy group.</p>	607,6133	39	608

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>273</p> <p>274</p> <p>275</p>	<p>511,6044</p> <p>589,7164</p> <p>477,5869</p>	<p>92</p> <p>>95</p> <p>>95</p>	<p>512</p> <p>590</p> <p>478</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
276	<p>Chemical structure of compound 276: 2-(2-(2-hydroxyethylamino)ethylsulfonato)-4-methoxy-N-(2-methylpropyl)imidazo[1,2-d]imidazole-5(1H)-one. The structure shows a purine derivative with a methoxy group at position 4, a 2-methylpropyl group at position 1, and a 2-(2-hydroxyethylamino)ethylsulfonato group at position 2.</p>	463,5598	64	464
277	<p>Chemical structure of compound 277: 2-(2-(2-methoxyethylamino)ethylsulfonato)-4-methoxy-N-(2-methylpropyl)imidazo[1,2-d]imidazole-5(1H)-one. The structure shows a purine derivative with a methoxy group at position 4, a 2-methylpropyl group at position 1, and a 2-(2-methoxyethylamino)ethylsulfonato group at position 2.</p>	449,5327	>95	450
278	<p>Chemical structure of compound 278: 2-(2-(2-methoxyethylamino)ethylsulfonato)-4-methoxy-N-(2-methoxyethyl)imidazo[1,2-d]imidazole-5(1H)-one. The structure shows a purine derivative with a methoxy group at position 4, a 2-methoxyethyl group at position 1, and a 2-(2-methoxyethylamino)ethylsulfonato group at position 2.</p>	507,6134	>95	508

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
279		532,6232	>95	533
280		560,6775	89	561

5

10

15

20

25

30

35

40

45

50

55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20	281 	636,8199	88	637
25 30 35	282 	476,5585	50	477
40 45 50 55	283 	489,5981	93	490

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>284</p>	622,7928	68	623
	<p>285</p>	608,7657	>95	609
	<p>286</p>	583,6873	85	584

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>287</p> <p>HO</p> <p>CH₃</p> <p>O=S=O</p> <p>CH₃</p> <p>CH₃</p> <p>CH₃</p>	511,6044	>95	• 512
288	<p>CH₃</p> <p>O=S=O</p> <p>CH₃</p> <p>CH₃</p> <p>CH₃</p> <p>CH₃-O-</p> <p>OH</p>	541,6309	>95	542
289	<p>CH₃</p> <p>O=S=O</p> <p>N</p> <p>CH₃</p> <p>CH₃</p> <p>CH₃</p> <p>CH₃-O-</p> <p>OH</p>	541,6309	>95	542

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>290</p> <p>CH₃ O CH₃ O HO H₃C-O</p> <p>CH₃ O CH₂-O-CH₂-N(S(=O)(=O)-) C₆H₄-C₆H₃-CH₂-CH₂-</p> <p>CH₃ O CH₂-O-CH₂-N(S(=O)(=O)-) C₆H₄-C₆H₃-CH₂-CH₂-</p> <p>CH₃ O CH₂-O-CH₂-N(S(=O)(=O)-) C₆H₄-C₆H₃-CH₂-CH₂-</p>	571,6574	73	572
291	<p>CH₃ O CH₂-O-CH₂-N(S(=O)(=O)-) C₆H₄-C₆H₃-CH₂-CH₂-</p> <p>CH₃ CH₃ O H₃C-O</p>	569,6851	83	570
292	<p>CH₃ O CH₂-O-CH₂-N(S(=O)(=O)-) C₆H₄-C₆H₃-CH₂-CH₂-</p> <p>CH₃ CH₃ O O-CH₃</p>	597,7393	89	598

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
293		581,6963	76	582
294		609,7504	83	610

45

50

55

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>295</p>	609,7504	77	610
	<p>296</p>	583,7122	82	584
	<p>297</p>	611,7227	88	612

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>Chemical structure 298: A purine nucleoside derivative. It features a purine ring system with a 2'-O-alkyl group (methyl group) and a 3'-O-sulfonated phenyl ring. The sulfonated phenyl ring is substituted with a methoxy group at the para position.</p>	571,6574	89	572
	<p>Chemical structure 299: A purine nucleoside derivative. It features a purine ring system with a 2'-O-alkyl group (methyl group) and a 3'-O-sulfonated phenyl ring. The sulfonated phenyl ring is substituted with a cyclopropylmethyl group at the para position.</p>	567,6692	81	568
	<p>Chemical structure 300: A purine nucleoside derivative. It features a purine ring system with a 2'-O-alkyl group (methyl group) and a 3'-O-sulfonated phenyl ring. The sulfonated phenyl ring is substituted with a tert-butyl ester group at the para position.</p>	627,7221	82	628

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>301</p>	661,7396	64	662
	<p>302</p>	599,668	77	600
	<p>303</p>	555,658	83	556

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20	<p>304</p>	654,7916	60	655
25 30 35 40 45 50 55	<p>305</p>	626,7374	86	627
	<p>306</p>	627,7221	82	628

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>307</p> <p>308</p> <p>309</p>	<p>583,7122</p> <p>631,7568</p> <p>569,6851</p>	<p>81</p> <p>29</p> <p>60</p>	<p>584</p> <p>632</p> <p>570</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>310</p> <p>311</p> <p>312</p>	<p>597,7393</p> <p>581,6963</p> <p>609,7504</p>	<p>62</p> <p>87</p> <p>71</p>	<p>598</p> <p>582</p> <p>610</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>313</p> <p>314</p> <p>315</p>	<p>633,7291</p> <p>570,629</p> <p>633,7291</p>	<p>47</p> <p>59</p> <p>35</p>	<p>634</p> <p>571</p> <p>634</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>316</p> <p>Chemical structure of compound 316: A purine nucleoside derivative. It features a purine ring system with a carbonyl group at position 6 and a methyl group at position 2'. At position 9, there is a phenyl ring substituted with a methylene group and a sulfonate group ($\text{O}-\text{S}(=\text{O})_2-\text{CH}_2-$). The phenyl ring is further substituted with a 4-methoxyphenyl group at the para position and a 4-(dimethylaminophenyl) group at the meta position.</p>	583,7122	51	584
	<p>317</p> <p>Chemical structure of compound 317: A purine nucleoside derivative. It features a purine ring system with a carbonyl group at position 6 and a methyl group at position 2'. At position 9, there is a phenyl ring substituted with a methylene group and a sulfonate group ($\text{O}-\text{S}(=\text{O})_2-\text{CH}_2-$). The phenyl ring is further substituted with a 4-methoxyphenyl group at the para position and a 4-(tetrahydrofuran-2-ylmethyl)phenyl group at the meta position.</p>	611,7227	51	612

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>319</p> <p>320</p> <p>321</p>	<p>603,7026</p> <p>567,6692</p> <p>597,652</p>	<p>64</p> <p>74</p> <p>88</p>	<p>604</p> <p>568</p> <p>598</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>322</p> <p>323</p> <p>324</p>	<p>627,7221</p> <p>647,7562</p> <p>555,658</p>	<p>80</p> <p>47</p> <p>43</p>	<p>628</p> <p>648</p> <p>556</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50	<p>325</p> <p>326</p> <p>327</p>	<p>654,7916</p> <p>624,7214</p> <p>689,8375</p>	<p>54</p> <p>71</p> <p>42</p>	<p>655</p> <p>625</p> <p>690</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>328</p> <p>329</p> <p>330</p>	<p>583,7122</p> <p>555,658</p> <p>525,6315</p>	<p>40</p> <p>49</p> <p>83</p>	<p>584</p> <p>556</p> <p>526</p>

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35 40 45 50 55	<p>331</p> <p>Chiral</p>	525,6315	71	526
	<p>332</p>	555,658	91	556
	<p>333</p>	477,5869	76	478

Bsp.-Nr.	Struktur	MW	HPLC	MZ+H
5 10 15 20 25 30 35	<p>334</p>	478,5745	62	479
40	<p>335</p>	490,6292	42	491

40 **Beispiel 336**

[0289] 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid-Trihydrat

45

50

55

Kristallisiert man die freie Base aus Beispiel 19 aus einem Gemisch eines organischen Lösungsmittels und verdünnter wässriger Salzsäure um, so erhält man ein Hydrochlorid Trihydrat.

Fp.: 218°C

Wassergehalt: 9,4 % (K. Fischer)

Chloridgehalt: 6,1 %

Beispiel 337

30 [0290] 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on
Dihydrochlorid

0,35 g (0,712 mmol) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on werden in 8 ml Ether suspendiert und soviel Dichlormethan zugegeben, bis eine homogene Lösung entsteht. Man gibt 2,4 ml einer 1M Lösung von HCl in Ether zu, röhrt 20 Minuten bei Raumtemperatur und saugt ab. Man erhält 372 mg (99 %) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Dihydrochlorid.

[0291] 200 MHz $^1\text{H-NMR}$ (DMSO-d_6): 0,96, t, 3H; 1,22, t, 3H; 1,36, t, 3H; 1,82, sex., 2H; 2,61, s, 3H; 2,88, m, 2H; 3,08, m, 6H; 3,50, m, 2H; 3,70, m, 2H; 4,25, quart., 2H; 7,48, d, 1H; 7,95, m, 2H; 11,42, s, 1H; 12,45, s, 1H.

Patentansprüche

1. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I)

5

10

15

in welcher

R¹ für Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

20

R² für geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht,

25

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 8 Kohlenstoffatomen stehen, oder für eine geradkettige oder verzweigte Alkylkette mit bis zu 10 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Trifluormethyl, Trifluormethoxy, Hydroxy, Halogen, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 6 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)ₘ-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)ₙ-R⁹, -P(O)(OR¹⁰)(OR¹¹),

30

35

40

45

50

und/oder

55

5

10

substituiert ist,
worin
a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

15

A einen Rest CO oder SO_2 bedeutet,

20

R^7 , $R^{7'}$, R^8 und $R^{8'}$ gleich oder verschieden sind und Wasserstoff bedeuten, oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen, einen 5- bis 6-gliedrigen ungesättigten, partiell ungesättigten oder gesättigten, gegebenenfalls benzokondensierten Heterocyclus, mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeuten, wobei die oben aufgeführten Ring-systeme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Halogen, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel $-(\text{SO}_2)_c\text{-NR}'2\text{R}'3$ substituiert sind,

25

worin

c eine Zahl 0 oder 1 bedeutet,

30

R^{12} und R^{13} gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten,

oder

35

R^7 , $R^{7'}$, R^8 und $R^{8'}$ geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel $-(\text{CO})_d\text{-NR}^{14}\text{R}^{15}$ substituiert ist,

worin

40

R^{14} und R^{15} gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und

45

d eine Zahl 0 oder 1 bedeutet,

oder

50

R^7 und R^8 und/oder $R^{7'}$ und $R^{8'}$ gemeinsam mit dem Stickstoffatom einen 5-bis 7-gliedrigen, gesättigten Heterocyclus bilden, der gegebenenfalls noch ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel $-\text{NR}^{16}$ enthalten kann,
worin

55

R^{16} Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl, einen 5- bis 7-gliedrigen aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, der gegebenenfalls durch Methyl substituiert ist, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

EP 1 174 431 A2

R⁹ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,
und/oder die oben unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N und O oder einen Rest der Formel -NR¹⁷ enthalten kann, substituiert ist,
worin

R¹⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist,

und wobei Aryl und der Heterocyclus gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy und/oder durch einen Rest der Formel -SO₂-NR¹⁸R¹⁹ substituiert sind,
worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

und/oder

R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,
worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

und/oder

R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

oder

stehen,

EP 1 174 431 A2

oder für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder für einen 5- bis 7-gliedrigen partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus stehen, der bis zu 4 Heteroatome aus der Reihe S, N, O oder einen Rest der Formel -NR²² enthalten kann,

5

worin

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen bedeutet,

10

und wobei Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls einbis mehrfach, gleich oder verschieden durch Halogen, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

15

worin

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

20

25

bedeutet, oder

Cycloalkyl mit 3 bis 7 Kohlenstoffatomen bedeutet, oder Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, Benzyloxy, Tetrahydropyranol, Tetrahydrofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Carboxyl, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy oder Halogen substituiert sein kann, und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist, worin

35

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, oder

40

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Heteroatom aus der Reihe S oder O enthalten kann,

45

und

R³⁰ Phenyl oder Adamantyl bedeutet,

50

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

55

R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R["] haben und mit dieser gleich oder verschieden sind

und/oder Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, durch einen 5- bis 7-gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O, oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

worin

5 R³¹ Wasserstoff bedeutet oder die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

10 R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

15 R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist, oder

20 15 R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen 5- bis 6-gliedrigen gesättigten Heterocyclus bilden, der ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR³⁶ enthalten kann, worin

25 20 R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 7 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

20 oder

25 25 R³ und R⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen, ungesättigten oder gesättigten oder partiell ungesättigten, gegebenenfalls benzokondensierten Heterocyclus bilden, der gegebenenfalls bis zu 3 Heteroatome aus der Reihe S, N, O, oder einen Rest der Formel -NR³⁷ enthalten kann, worin

30 30 R³⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_f-NR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

35 35 worin

40 g und h gleich oder verschieden sind und eine Zahl 1, 2, 3 oder 4 bedeuten,

45 40 und

45 f eine Zahl 0 oder 1 bedeutet,

50 D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

55 45 R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

50 R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,

55 50 R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,

55 R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

55 oder

55 R³⁷ einen Rest der Formel -(CO)_j-E bedeutet,

worin

i eine Zahl 0 oder 1 bedeutet,

E Cycloalkyl mit 3 bis 7 Kohlenstoffatomen oder Benzyl bedeutet,

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, $\text{-SO}_3\text{H}$, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel $\text{-SO}_2^{\text{-}}\text{NR}^{44}\text{R}^{45}$, substituiert sind,

worin

R^{44} und R^{45} die oben angegebene Bedeutung von R^{18} und R^{19} haben und mit dieser gleich oder verschieden sind,

oder

E Reste der Formeln

25

oder

30

bedeutet,

40 und der unter R^3 und R^4 aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls ein- bis mehrfach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit bis jeweils zu 6 Kohlenstoffatomen, Nitro und Gruppen der Formeln $\text{-P(O)(OR}^{46}\text{)(OR}^{47}\text{)}$,

45

50

oder

55

substituiert ist,

worin

5 R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R" haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet,

10 j eine Zahl 0 oder 1 bedeutet,

und

15 R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben, und/oder der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Carboxyl, Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder P(O)OR⁵³OR⁵⁴ substituiert ist,

worin

20 25 R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

25 30 R⁵³ und R⁵⁴ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁰ und R" haben, und/oder das Alkyl gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR⁵¹R⁵²' substituiert sein kann,

worin

35 R^{51'} und R^{52'} die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind,

40 45 und/oder der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, gesättigten, partiell ungesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert ist, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen substituiert sein können,

oder

45 50 R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

5

10

15

oder

20

25

bilden,

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen stehen,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

2. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

35

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen stehen, oder für eine geradkettige oder verzweigte Alkylkette mit bis zu 8 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 5 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

50

55

5

10

und/oder

15

20

substituiert ist,
worin

25 a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

30 R⁷, R^{7'}, R⁸ und R^{8'} gleich oder verschieden sind und Wasserstoff bedeuten, oder Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxy-carbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,
35 worin

c eine Zahl 0 oder 1 bedeutet,

40 R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

45 R⁷, R^{7'}, R⁸ und R^{8'} geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 7 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy-carbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,
50 worin

55 R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und

55 d eine Zahl 0 oder 1 bedeutet,

oder

EP 1 174 431 A2

R⁷ und R⁸ und/oder R^{7'} und R^{8'} gemeinsam mit dem Stickstoffatom einen Pyrrolidinyl-, Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

5

10

15

20

oder

25

30

bilden,
worin

35

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morphinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

40

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Pyridyl, Chinolyl, Pyrrolidinyl, Pyrimidyl, Morphinyl, Furyl, Piperidinyl, Tetrahydrofuranyl oder durch Reste der Formeln

45

50

oder

55

10 substituiert ist,
worin

15 R¹⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist, und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂-NR¹⁸R¹⁹ substituiert sind,

20 worin

25 R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und/oder

30 R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,
worin

35 R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

und/oder

40 R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

50 oder

stehen,
oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

5

10

15

oder

20

25

stehen,

30

worin

35

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen bedeutet, und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls ein bis dreifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

40

worin

45

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

50

50

bedeutet, oder Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl oder Cycloheptyl bedeutet, Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, Tetrahydrofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyloxy carbonyl oder Phenyl substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy, Fluor oder Chlor substituiert sein

kann,
und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,
worin

5 R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit
bis zu 5 Kohlenstoffatomen bedeuten, oder

10 R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bil-
den,

15 und

R³⁰ Phenyl oder Adamantyl bedeutet,

15 R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden
sind,

20 R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden
sind

25 und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes
Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl,
Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, -P
(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,
worin

25 R³¹ die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

30 R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschie-
den sind,

35 R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit
bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder ver-
zweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, oder

40 R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring
oder einen Rest der Formel

45 bilden,
worin

50 R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffa-
tomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das ge-
gebenenfalls durch Hydroxy substituiert ist,

55 oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinyl-
ring oder einen Rest der Formel

5

bilden,
worin

10 R^{37} Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch Gruppen der Formel $-(D)_iNR^{38}R^{39}$, $-\text{CO}-(\text{CH}_2)_g-\text{O}-\text{CO}-R^{40}$, $-\text{CO}-(\text{CH}_2)_h-\text{OR}^{41}$ oder $-\text{P}(\text{O})(\text{OR}^{42})(\text{OR}^{43})$ substituiert ist,

15

worin

20 g und h gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

und

25 f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel $-\text{CO}$ oder $-\text{SO}_2$ bedeutet,

30 R^{38} und R^{39} gleich oder verschieden sind und die oben angegebene Bedeutung von R^7 und R^8 haben,

R^{40} geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

35

R^{41} geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

35 R^{42} und R^{43} gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

35

oder

40 R^{37} einen Rest der Formel $-(\text{CO})_iE$ bedeutet,
worin

i eine Zahl 0 oder 1 bedeutet,

45 E Cyclopentyl, Cyclohexyl, Cycloheptyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, $-\text{SO}_3\text{H}$, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel $-\text{SO}_2-\text{NR}^{44}\text{R}^{45}$, substituiert sind,
worin

45

50 R^{44} und R^{45} die oben angegebene Bedeutung von R^{18} und R^{19} haben und mit dieser gleich oder verschieden sind,

50

oder

55 E Reste der Formeln

5

oder

10

15

bedeutet,

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit bis jeweils zu 5 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

20

25

30

oder -(CO)_jNR⁴⁹R⁵⁰ substituiert sind,
worin

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

35

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

40

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben, und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder -P(O)OR⁵³OR⁵⁴ substituiert ist,

45

worin

50

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

55

R⁵³ und R⁵⁴ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben, und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR^{51'}R^{52'} substituiert sein kann,

worin

R^{51'} und R^{52'} die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind,

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Tetrazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein können,

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

,

,

25

oder

35

bilden,

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen stehen,
und deren Salze, Hydrate, N-Oxide und isomere Formen.

3. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

45 R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

50 R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen stehen, oder
für eine geradkettige oder verzweigte Alkylkette mit bis zu 6 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 4 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

5

10

15

20

25

30

substituiert ist,

worin

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO_2 bedeutet,

35

R^7 , $R^{7'}$, R^8 und $R^{8'}$ gleich oder verschieden sind und Wasserstoff bedeuten, oder Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Nitro, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel $-(\text{SO}_2)_c-\text{NR}^{12}\text{R}^{13}$ substituiert sind,

40

worin

c eine Zahl 0 oder 1 bedeutet,

45

R^{12} und R^{13} gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

50

R^7 , $R^{7'}$, R^8 und $R^{8'}$ Methoxy bedeuten, oder

geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder zweifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel $-(\text{CO})_d-\text{NR}^{14}\text{R}^{15}$ substituiert ist,

worin

55

R^{14} und R^{15} gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

und

d eine Zahl 0 oder 1 bedeutet,

oder

5 R⁷ und R⁸ und/oder R^{7'} und R^{8'} gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

10

15

20

25

oder

30

35

bilden,
worin

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morpholinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder

40

geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

R⁹ Methyl bedeutet,

45

R¹⁰ und R["] gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,
und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl,
Cycloheptyl, Morpholinyl, Furyl, Tetrahydrofuranyl oder durch Reste der Formeln

50

55

oder

5

10 substituiert ist,
worin

15 R¹⁷ Wasserstoff, Hydroxy, Formyl, Acetyl oder Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach gleich oder verschieden durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂NR¹⁸R¹⁹ substituiert sind, worin

20 R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

25 und/oder

25 R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht, worin

30 R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

und/oder

35 R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

40 oder

45

The diagram shows a four-membered ring with two carbonyl groups (-C=O-) at the 2 and 4 positions. There are two methyl groups (-CH₃) attached to the ring, one at each of the 1 and 3 positions.

50 55 stehen, oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

5

10

15

oder

20

25

stehen,
worin

30

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder Formyl oder Acetyl bedeutet,
und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

35

worin

40

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

45

50

bedeutet, oder
Cyclopropyl, Cyclopentyl, Cyclobutyl oder Cyclohexyl bedeutet, Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Methoxy, Hydroxy, Fluor oder Chlor substituiert sein kann,
und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,
worin

EP 1 174 431 A2

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, oder

5 R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

10 R³⁰ Phenyl oder Adamantyl bedeutet,

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

15 R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind

und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

20 worin

R³¹ Methyl bedeutet,

25 R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

30 R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder Methoxy substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

40 bilden,

worin

45 R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxy carbonyl mit bis zu 3 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

50 R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinyl-ring oder einen Rest der Formel

bilden,
worin

5 R³⁷ Wasserstoff, Hydroxy, Formyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_fNR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,
10 worin

g und h gleich oder verschieden sind und eine Zahl 1 oder 2 bedeuten,

und

15 f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

20 R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

25 R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

oder

30 R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,
worin

i eine Zahl 0 oder 1 bedeutet,

35 E Cyclopentyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ring-systeme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,
worin

40 R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

45 E Reste der Formeln

oder

55

5

bedeutet,

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxy carbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

15

20

oder —(CO)_jNR⁴⁹R⁵⁰

substituiert sind,

worin

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder Methoxy bedeutet,

30

j eine Zahl 0 oder 1 bedeutet,

und

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben, und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy carbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder P(O)OR⁵³OR⁵⁴ substituiert ist,

worin

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

R⁵³ und R⁵⁴ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben, und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, Methoxy oder durch eine Gruppe der Formel -NR⁵¹'R⁵²' substituiert sein kann,

worin

R⁵¹' und R⁵²' die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind, und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Tetrazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch

EP 1 174 431 A2

geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können ,

oder

5

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

10

15

20

oder

25

30

bilden,

35 R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen stehen,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

40 4. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

R¹ für Methyl oder Ethyl steht,

45 R² für Ethyl oder Propyl steht,

R³ und R⁴ gleich oder verschieden sind und für eine geradkettige oder verzweigte Alkylkette mit bis zu 5 Kohlenstoffatomen stehen, die gegebenenfalls bis zu zweifach gleich oder verschieden durch Hydroxy oder Methoxy substituiert ist,

50

oder

55 R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Piperidinyl-, Morpholinyl-, Thiomorpholinylring oder einen Rest der Formel

bilden,
worin

5 R³⁷ Wasserstoff, Formyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formeln -(D)_fNR³⁸R³⁹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,
10 worin

f eine Zahl 0 oder 1 bedeutet,

D eine Gruppe der Formel -CO bedeutet,

15 R³⁸ und R³⁹ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten,

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

20 oder

R³⁷ Cyclopentyl bedeutet,
und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis zweifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷) oder -(CO)_jNR⁴⁹R⁵⁰ substituiert sind,
worin

30 R⁴⁶ und R⁴⁷ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

j eine Zahl 0 oder 1 bedeutet,

und

35 R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten
und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl oder durch einen Rest der Formel P(O)OR⁵³OR⁵⁴ substituiert ist,

40 worin

R⁵³ und R⁵⁴ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,
und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch über N-verknüpftes Piperidinyl oder Pyrrolidinyl substituiert sind,

45 R⁵ für Wasserstoff steht,

und

50 R⁶ für Ethoxy oder Propoxy steht,
und deren Salze, Hydrate, N-Oxide und isomere Formen.

5. 2-Phenyl-substituierte Imidazotriazinone gemäß Ansprüchen 1 bis 4 mit folgenden Strukturen:

55

Struktur

Struktur

Struktur

Struktur

6. 2-Phenyl-substituierte Imidazotriazine der allgemeinen Formel (I) gemäß Anspruch 1 zur Behandlung von Erkrankungen.

55 7. Verfahren zur Herstellung von 2-Phenyl-substituierten Imidazotriazinonen gemäß Anspruch 1, **dadurch gekennzeichnet, daß man**
zunächst Verbindungen der allgemeinen Formel (II)

5

10

in welcher
R¹ und R² die oben angegebene Bedeutung haben
und

15

L für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,
mit Verbindungen der allgemeinen Formel (III)

20

25

in welcher
R⁵ und R⁶ die oben angegebene Bedeutung haben, in einer Zweistufenreaktion in den Systemen Ethanol und Phosphoroxytrichlorid / Dichlorethan in die Verbindungen der allgemeinen Formel (IV)

35

40

in welcher
R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,
überführt, in einem weiteren Schritt mit Chlorsulfonsäure zu den Verbindungen der allgemeinen Formel (V)

50

55

in welcher

R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,
umsetzt und abschließend mit Aminen der allgemeinen Formel (VI)

5

in welcher

10

R³ und R⁴ die oben angegebene Bedeutung haben,
in inerten Lösemitteln umsetzt.

15

8. Arzneimittel enthaltend mindestens ein 2-Phenyl-substituiertes Imidazotriazinon gemäß Anspruch 1 sowie pharmakologisch unbedenkliche Formulierungsmittel.
9. Arzneimittel gemäß Anspruch 8 zur Behandlung von cardiovaskulären, cerebrovaskulären Erkrankungen und/oder Erkrankungen des Urogenitaltraktes.

20

10. Arzneimittel gemäß Anspruch 9 zur Behandlung von erektiler Dysfunktion.
11. Verwendung von 2-Phenyl-substituierten Imidazotriazinonen gemäß Anspruch 1 zur Herstellung von Arzneimitteln.

25

30

35

40

45

50

55