Analysis

Erzhuo Wang

May 30, 2024

Contents

1	Fou	ndation	5
	1.1	Construction of Real Number	5
	1.2	Point-Set Topology	9
		1.2.1 Definition	9
		1.2.2 Metric space	11
		1.2.3 Compactness	12
		1.2.4 Connectness	13
		1.2.5 Countability	14
		1.2.6 Separation	15
		1.2.7 Completeness	16
	1.3	Limit	17
	1.4	Series	18
	1.5	Functions of Single variable	20
	1.6	Several Variables functions	21
2	Measure		
	2.1	Measure Space	23
	2.2	Intergration	27
	2.3	Riesz Representation Theorem	32
	2.4	Probablility Theory	32
3	Con	nplex Analysis	33
	3.1	Line Integration	33
	3.2	Multiple Variables	34
4	Fun	actional Analysis	35
	4.1	Foundation	35
	4.2		35
	4.3	Banach Algebra	35
5	Harmonicl Analysis		
	5.1	Harmonic Analysis on topological group	37
6	Diff	Perential Equation	39

4 CONTENTS

Foundation

1.1 Construction of Real Number

Definition 1.1.1 (ordered ring). Thus, a ring(field) $R \neq 0$ with an order < is called an ordered ring(field) if the following holds:

- (1) (R, <) is totally ordered
- (2) $x < y \Rightarrow x + z < y + z, z \in R$
- (3) $x, y > 0 \Rightarrow xy > 0$

Of course, an element $x \in R$ is called positive if x > 0 and negative if x < 0. We gather in the next proposition some simple properties of ordered fields.

Proposition 1.1.2. Let K be an ordered field, then for $x, y, a, b \in K$.

- $(1) x > y \Leftrightarrow x y > 0.$
- (2) If x > y and a > b, then x + a > y + b.
- (3) If a > 0 and x > y, then ax > ay.
- (4) If x > 0, then -x < 0. If x < 0, then -x > 0.
- (5) Let x > 0. If y > 0, then xy > 0. If y < 0, then xy < 0.
- (6) If a < 0 and x > y, then ax < ay.
- (7) $x^2 > 0$ for all $x \neq 0$. In particular, 1 > 0.
- (8) If x > 0, then $x^{-1} > 0$.
- (9) If x > y > 0, then $0 < x^{-1} < y^{-1}$ and $xy^{-1} > 1$.

Definition 1.1.3. K is a ordered field, K is said to be Archimedes if and only if for x, y > 0 there's $n \in \mathbb{Z}$ such that nx > y.

Example 1.1.4. \mathbb{Q} is a Archimedes ordered field with original order.

Proposition 1.1.5. For an ordered field K, the absolute value function, $|\cdot|: K \to K$ and the sign function, $\operatorname{sign}(\cdot): K \to K$ are defined by

$$|x| := \begin{cases} x, & x > 0, \\ 0, & x = 0, \\ -x, & x < 0, \end{cases} \text{ sign } x := \begin{cases} 1, x > 0, \\ 0, x = 0, \\ -1, x < 0. \end{cases}$$

Let K be an ordered field and $x, y, a, \varepsilon \in K$ with $\varepsilon > 0$.

- (1) $x = |x|\operatorname{sign}(x), |x| = x\operatorname{sign}(x).$
- (2) $|x| = |-x|, \quad x \le |x|.$
- (3) |xy| = |x||y|.
- (4) $|x| \ge 0$ and $(|x| = 0 \Leftrightarrow x = 0)$.
- (5) $|x a| < \varepsilon \Leftrightarrow a \varepsilon < x < a + \varepsilon$.
- (6) |x+y| < |x| + |y| (triangle inequality).
- (7) $|x y| \ge ||x| |y||, \quad x, y \in K$

Definition 1.1.6. A ring homomorphism f between ordered field is said to be order-preserving if

$$a < b \iff f(a) < f(b)$$

.

Definition 1.1.7. A sequence $r = (x_n)_{n \in \mathbb{Z}_{>0}}$ is a Cauchy sequence if for all $\epsilon \in \mathbb{Q} > 0$, there's N > 0 such that for all m, n > N, $|x_n - x_m| < \epsilon$.

Proposition 1.1.8. Cauchy sequence is bounded.

Definition 1.1.9. Let

$$\mathcal{R} = \{(x_n) \in \mathbb{Q}^{\mathbb{Z}_{>0}} : (x_n) \text{ is a Cauchy sequence}\}$$

and

$$\mathbf{c}_0 = \{(x_n) \in \mathbb{Q}^{\mathbb{Z}_{>0}} : \text{for all } \epsilon > 0, \text{ there's } N > 0 \text{ such that for all } n > N, |x_n| < \epsilon \}$$

It's clear that $\mathbf{c}_0 \subset \mathcal{R}$ is a maximal ideal of \mathcal{R} . Hence \mathcal{R}/\mathbf{c}_0 is a field and we denote it by \mathbb{R} . For convenience, we usually denote $(a_n) + \mathbf{c}_0$ by (a_n) .

Definition 1.1.10. Now we define a order on \mathbb{R} , for (a_n) , (b_n) in \mathbb{R} , $(a_n) > (b_n)$ if there's $\epsilon > 0$, a sufficiently large integer N, such that $a_n - b_n > \epsilon$ for n > N. And denote this order by <. It's esay to check that '<' is well-defined and totally ordered.

Proposition 1.1.11. $(\mathbb{R}, <)$ is a Archimedes ordered field. And the embedding $l : \mathbb{Q} \to \mathbb{R}$ given by

$$r \mapsto (r, r, r, \dots)$$

is an order-preserving ring homomorphism.

Definition 1.1.12. For a sequence $(A_n) \in \mathbb{R}$, we say $A_n \to A$ if for all $\epsilon \in \mathbb{R} > 0$, there's N > 0 such that for all n > N, $|A_n - A| < \epsilon$. And we say (A_n) is a Cauchy sequence if for all $\epsilon \in \mathbb{R}_{>0}$, there's N > 0 such that for all m, n > N, $|x_n - x_m| < \epsilon$.

Proposition 1.1.13 (dense). For all $a, b \in \mathbb{R}$, if a < b, there's $c \in \mathbb{Q}$ such that a < l(c) < b.

Proposition 1.1.14 (completeness). (A_n) is a Cauchy sequence in \mathbb{R} if and only if there's $A \in \mathbb{R}$ such that $A_n \to A$.

Proof: 'if' is obvious.

'only if': Take $x_n \in \mathbb{Q}$ such that:

$$A_n < l(x_n) < A_n + l(\frac{1}{n})$$

It's cleat that $a = (x_n) + \mathbf{c}_0 \in \mathbb{R}$.

Notice that $A_n \to a$, we have \mathbb{R} is complete.

Now we identity \mathbb{Q} with a subfield of \mathbb{R} in the following content.

Proposition 1.1.15. (1) E is a non-empty subset of \mathbb{R} and if E is lower-bounded, then E has a infimum; if E is upper-bounded, then E has a supremum.

- (2) Every incresing bounded sequence $(x_n) \in \mathbb{R}$ has a limit.
- (3) (Bolzano-Weierstress) Every bounded sequence has a convergent subsequence.
- (4) if

$$[a,b] \subset \bigcup_{i \in I} (a_i,b_i)$$

, then

$$[a,b] \subset \bigcup_{k \in J} (a_k,b_k)$$

for some finite subset J of I.

Proposition 1.1.16. a > 0, $n \in \mathbb{Z}_{>0}$, then there's unique $x \in \mathbb{R}_{>0}$ such that $x^n = a$. We denote the unique positive root by $\sqrt[n]{a}$. And for all $a \in \mathbb{R}$ and $r = \frac{p}{q} \in \mathbb{Q}$, define $a^r = \sqrt[q]{a^p}$. It's easy to check that $\sqrt[q]{a^p} = (\sqrt[q]{a})^p$.

Proof: To prove the existence of a solution, we can, without loss of generality, assume that $n \ge 2$ and $a \ne 1$. We only prove with the case a > 1. Then we have

$$x^n > a^n > a > 0$$
 for all $x > a$.

Now set $A := \{x \ge 0 : x^n \le a\}$. Then $0 \in A$ and $x \le a$ for all $x \in A$. Thus $s := \sup(A)$ is a well defined real number such that $s \ge 0$. We will prove that $s^n = a$ holds by showing that $s^n \ne a$ leads to a contradiction. Suppose first that $s^n < a$ so that $a - s^n > 0$.

$$b := \sum_{k=0}^{n-1} \left(\begin{array}{c} n \\ k \end{array} \right) s^k > 0$$

implies that there is some $\varepsilon \in \mathbb{R}$ such that $0 < \varepsilon < (a - s^n)/b$. By making ε smaller if needed, we can further suppose that $\varepsilon \leq 1$. Then $\varepsilon^k \leq \varepsilon$ for all $k \in \mathbb{Z}_{>0}$, and, using the binomial theorem, we have

$$(s+\varepsilon)^n = s^n + \sum_{k=0}^{n-1} \binom{n}{k} s^k \varepsilon^{n-k} \le s^n + \left(\sum_{k=0}^{n-1} \binom{n}{k} s^k\right) \varepsilon < a.$$

This shows that $s + \varepsilon \in A$, a contradiction of $\sup(A) = s < s + \varepsilon$. Therefore $s^n < a$ cannot be true. Now suppose that $s^n > a$. Then, in particular, s > 0 and

$$b := \sum^{*} \binom{n}{2j-1} s^{2j-1} > 0,$$

where the symbol \sum^* means that we sum over all indices $j \in \mathbb{Z}_{>0}$ such that $2j \leq n$. Then there is some $\varepsilon \in \mathbb{R}$ such that $0 < \varepsilon < (s^n - a)/b$ and $\varepsilon \leq \min\{1, s\}$. Thus we have

$$(s-\varepsilon)^n = s^n + \sum_{k=0}^{n-1} (-1)^{n-k} \binom{n}{k} s^k \varepsilon^{n-k}$$

$$\geq s^n - \sum_{k=0}^{n} \binom{n}{2j-1} s^{2j-1} \varepsilon^{n-2j+1} \geq s^n - \varepsilon \sum_{k=0}^{n} \binom{n}{2j-1} s^{2j-1}$$

$$> a$$

Definition 1.1.17 (complex number). Let $\mathbb{C} = \mathbb{R} \times \mathbb{R}$, define $(a,b) \cdot (c,d) = (ac-bd,bc+ad)$. Then \mathbb{C} is a field under this operator and \mathbb{R} is a subfield of \mathbb{C} .

1.2 Point-Set Topology

Munkres's Topology is a good reference for this section.

1.2.1 Definition

Definition 1.2.1. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \varnothing and X are in \mathcal{T} .
- (2) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (3) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a topological space.

Definition 1.2.2. If X is a set, a basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis elements) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology T generated by \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

Definition 1.2.3. Let X be a topological space with topology \mathcal{T} . If Y is a subset of X, the collection

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

is a topology on Y, called the subspace topology. With this topology, Y is called a subspace of X; its open sets consist of all intersections of open sets of X with Y.

Definition 1.2.4. X is Hausdorff if for any two elements $x \neq y$ in X, there's U, V open in X such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 1.2.5 (convergence).

Proposition 1.2.6. If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Example 1.2.7. Let X be a ordered set; assume X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

- (2) All intervals of the form $[a_0, b)$, where a_0 is the smallest element (if any) of X.
- (3) All intervals of the form $(a, b_0]$, where b_0 is the largest element (if any) of X. The collection \mathcal{B} is a basis for a topology on X, which is called the order topology.

Example 1.2.8. $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}.$

Proposition 1.2.9. Given a subset A of a topological space X, the interior of A is defined as the union of all open sets contained in A, and the closure of A is defined as the intersection of all closed sets containing A.

Let Y be a subspace of X; let A be a subset of Y; let \bar{A} denote the closure of A in X. Then the closure of A in Y equals $\bar{A} \cap Y$.

Definition 1.2.10. If A is a subset of the topological space X and if x is a point of X, we say that x is a limit point of A if every neighborhood of x intersects A in some point other than x itself. Said differently, x is a limit point of A if it belongs to the closure of $A - \{x\}$. The point x may lie in A or not; for this definition it does not matter. Let A be a subset of the topological space X; let A' be the set of all limit points of A. Then

$$\bar{A} = A \cup A'$$
.

Proposition 1.2.11. Let X and Y be topological spaces; let $f: X \to Y$. Then the following are equivalent:

- (1) f is continuous.(U open in X implies $f^{-1}(U)$ open in Y)
- (2) For every subset A of X, one has $f(\bar{A}) \subset \overline{f(A)}$.
- (3) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$. If the condition in (4) holds for the point x of X, we say that f is continuous at the point x.

Definition 1.2.12. Consider $(X_i)_{i\in I}$ be a family of topology spaces, then the sets of the form

$$\prod_{i\in I} U_i$$

 $U_i = X_i$ for all but finite i, form a basis of $\prod_{i \in I} X_i$. We call it the topology induced by this product topology.

In language of category, product topology with projection $p_i: \prod_{i\in I} X_i \to X_i$ is the product object in the category of topological space.

Proposition 1.2.13. If each space X_{α} is Hausdorff space, then $\prod X_{\alpha}$ is a Hausdorff space in product topology.

Proposition 1.2.14. Let $\{X_{\alpha}\}$ be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each α . If $\prod X_{\alpha}$ is given the product topology, then

$$\prod \bar{A}_{\alpha} = \overline{\prod A_{\alpha}}$$

Theorem 1.2.15. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation

$$f(a) = (f_{\alpha}(a))_{\alpha \in J},$$

where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.

1.2.2 Metric space

Definition 1.2.16. A metric on a set X is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

having the following properties:

- (1) $d(x,y) \ge 0$ for all $x,y \in X$; equality holds if and only if x = y.
- (2) d(x,y) = d(y,x) for all $x, y \in X$.
- (3) (Triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$, for all $x,y,z \in X$.

Given a metric d on X, the number d(x, y) is often called the distance between x and y in the metric d. Given $\epsilon > 0$, consider the set

$$B_d(x,\epsilon) = \{ y \mid d(x,y) < \epsilon \}$$

of all points y whose distance from x is less than ϵ . It is called the ϵ -ball centered at x. Sometimes we omit the metric d from the notation and write this ball simply as $B(x, \epsilon)$, when no confusion will arise.

If d is a metric on the set X, then the collection of all ϵ -balls $B_d(x, \epsilon)$, for $x \in X$ and $\epsilon > 0$, is a basis for a topology on X, called the metric topology induced by d.

Example 1.2.17. \mathbb{R}^n is a metric space with distance d(x,y) = ||x-y||

Theorem 1.2.18. Let X be a topological space; let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$; the converse holds if X is metrizable.

Let $f: X \to Y$. If the function f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is metrizable.

Theorem 1.2.19. Let $f_n: X \to Y$ be a sequence of functions from the set X to the metric space Y. Let d be the metric for Y. We say that the sequence (f_n) converges uniformly to the function $f: X \to Y$ if given $\epsilon > 0$, there exists an integer N such that

$$d\left(f_n(x), f(x)\right) < \epsilon$$

for all n > N and all x in X.

Let $f_n: X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If (f_n) converges uniformly to f, then f is continuous.

1.2.3 Compactness

Definition 1.2.20. A collection \mathcal{A} of subsets of a space X is said to cover X, or to be a covering of X, if the union of the elements of \mathcal{A} is equal to X. It is called an open covering of X if its elements are open subsets of X.

A space X is said to be compact if every open covering \mathcal{A} of X contains a finite subcollection that also covers X.

Proposition 1.2.21. Every closed subspace of a compact space is compact. Every compact subspace of a Hausdorff space is closed.

Theorem 1.2.22. The image of a compact space under a continuous map is compact.

Corollary 1.2.23. X is a compact space, Y is a Hausdorff space, then continuous $f: X \to Y$ is closed.

Corollary 1.2.24. Let $f: X \to Y$ be a continuous bijection. X is a compact space, Y is a Hausdorff space, then f is homemorphism.

Lemma 1.2.25 (Lebesgue number lemma). Let \mathcal{A} be an open covering of the metric space (X, d). If X is compact, there is a $\delta > 0$ such that for each subset of X having diameter less than δ , there exists an element of \mathcal{A} containing it. The number δ is called a Lebesgue number for the covering \mathcal{A} .

Theorem 1.2.26. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact(infinite subset has a limit point).
- (3) X is sequentially compact(every sequence has a convergent subsequence).

Theorem 1.2.27 (Tychonoff theorem). An arbitrary product of compact spaces is compact in the product topology.

Definition 1.2.28. A function f from the metric space (X, d_X) to the metric space (Y, d_Y) is said to be uniformly continuous if given $\epsilon > 0$, there is a $\delta > 0$ such that for every pair of points x_0, x_1 of X,

$$d_X(x_0, x_1) < \delta \Longrightarrow d_Y(f(x_0), f(x_1)) < \epsilon.$$

Theorem 1.2.29. Let $f: X \to Y$ be a continuous map of the compact metric space (X, d_X) to the metric space (Y, d_Y) . Then f is uniformly continuous.

Proposition 1.2.30 (finite intersection). A collection \mathcal{C} of subsets of X is said to have the finite intersection property if for every finite subcollection

$$\{C_1,\ldots,C_n\}$$

of C, the intersection $C_1 \cap \cdots \cap C_n$ is nonempty.

Let X be a topological space. Then X is compact if and only if for every collection \mathcal{C} of closed sets in X having the finite intersection property, the intersection $\bigcap_{C \in \mathcal{C}} C$ of all the elements of \mathcal{C} is nonempty.

Definition 1.2.31 (locally compact). A space X is said to be locally compact at x if there is some compact subspace C of X that contains a neighborhood of x. If X is locally compact at each of its points, X is said simply to be locally compact.

Definition 1.2.32 (one-point compactification). Let X be a space. Then X is locally compact Hausdorff if and only if there exists a space Y satisfying the following conditions:

- (1) X is a subspace of Y.
- (2) The set Y X consists of a single point.
- (3) Y is a compact Hausdorff space.

If Y and Y' are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y' that equals the identity map on X.

Proof: We only provide the form of the open sets in Y: U open in Y if and only if U open in X, or U is the complement of a compact subset in X.

Definition 1.2.33. If Y is a compact Hausdorff space and X is a proper subspace of Y whose closure equals Y, then Y is said to be a compactification of X. If Y - X equals a single point, then Y is called the one-point compactification of X.

Proposition 1.2.34. Let X be a Hausdorff space. Then X is locally compact if and only if given x in X, and given a neighborhood U of x, there is a neighborhood V of x such that \bar{V} is compact and $\bar{V} \subset U$.

Proposition 1.2.35. Let X be locally compact Hausdorff; let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proposition 1.2.36. In a locally compact Hausdorff space E, a subset A is closed if and only if its intersection with every compact set is compact

Proof: Let $A \subseteq E$ have the property that $A \cap K$ is closed in K for all compact $K \subseteq E$. We want to show that A is closed whenever E is locally compact Hausdorff, so we will show that E - A is open.

Let $x \in E - A$, let K be a compact neighbourhood of x, and let $U \subseteq K$ be an open neighbourhood of x. Then $x \in U - K \cap A$ and $U - K \cap A$ is open in X. Hence E - A is open in X.

1.2.4 Connectness

Definition 1.2.37. Given X, define an equivalence relation on X by setting $x \sim y$ if there is a connected subspace of X containing both x and y. The equivalence classes are called the components (or the "connected components") of X. The components of X are connected disjoint subspaces of X whose union is X, such that each nonempty connected subspace of X intersects only one of them.

Definition 1.2.38. We define another equivalence relation on the space X by defining $x \sim y$ if there is a path in X from x to y. The equivalence classes are called the path components of X. The path components of X are path-connected disjoint subspaces of X whose union is X, such that each nonempty path-connected subspace of X intersects only one of them.

Definition 1.2.39. A space X is said to be locally connected at x if for every neighborhood U of x, there is a connected neighborhood V of x contained in U. If X is locally connected at each of its points, it is said simply to be locally connected. Similarly, a space X is said to be locally path connected at x if for every neighborhood U of x, there is a path-connected neighborhood V of x contained in U. If X is locally path connected at each of its points, then it is said to be locally path connected.

Proposition 1.2.40. (1) A space X is locally connected if and only if for every open set U of X, each component of U is open in X.

- (2) A space X is locally path connected if and only if for every open set U of X, each path component of U is open in X.
- (3) If X is a topological space, each path component of X lies in a component of X. If X is locally path connected, then the components and the path components of X are the same.

Proposition 1.2.41. The union of a collection of connected subspaces of X that have a point in common is connected.

Proposition 1.2.42. Let A be a connected subspace of X. If $A \subset B \subset \bar{A}$, then B is also connected.

Proposition 1.2.43. The image of a connected space under a continuous map is connected.

Theorem 1.2.44 (Intermediate Value Theorem). Let $f: X \to Y$ be a continuous map, where X is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y lying between f(a) and f(b), then there exists a point c of X such that f(c) = r.

Theorem 1.2.45 (Extreme value theorem). Let $f: X \to Y$ be continuous, where Y is an ordered set in the order topology. If X is compact, then there exist points c and d in X such that $f(c) \leq f(x) \leq f(d)$ for every $x \in X$.

1.2.5 Countability

Definition 1.2.46. A space X is said to have a countable basis at x if there is a countable collection B of neighborhoods of x such that each neighborhood of x contains at least one of the elements of B. A space that has a countable basis at each of its points is said to satisfy the first countability axiom, or to be first-countable.

Proposition 1.2.47. Let X be a topological space.

- (1) Let A be a subset of X. If there is a sequence of points of A converging to x, then $x \in \bar{A}$; the converse holds if X is first-countable.
- (2) Let $f: X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is first countable.

Definition 1.2.48. If a space X has a countable basis for its topology, then X is said to satisfy the second countability axiom, or to be second-countable.

Definition 1.2.49. A subset A of a space X is said to be dense in X if $\bar{A} = X$.

Definition 1.2.50. Suppose that X has a countable basis. Then:

- (1) Every open covering of X contains a countable subcollection covering X (separable)
- (2) There exists a countable subset of X that is dense in X.(Lindelof space)

Proposition 1.2.51. (1) Every metrizable space with a countable dense subset has a countable basis.

(2) Every metrizable Lindelöf space has a countable basis.

1.2.6 Separation

Definition 1.2.52. Suppose that one-point sets are closed in X. Then X is said to be regular if for each pair consisting of a point x and a closed set B disjoint from x, there exist disjoint open sets containing x and B, respectively.

The space X is said to be normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B, respectively.

Proposition 1.2.53. Let X be a topological space. Let one-point sets in X be closed.

- (1) X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\bar{V} \subset U$.
- (2) X is normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A such that $\bar{V} \subset U$.

Proposition 1.2.54. (1) Every metrizable space is normal.

(2) Every compact Hausdorff space is normal.

Theorem 1.2.55 (Usysohn's lemma). Let X be a normal space; let A and B be disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then there exists a continuous map

$$f: X \longrightarrow [a, b]$$

such that f(x) = a for every x in A, and f(x) = b for every x in B.

Theorem 1.2.56 (Tietze extension theorem). Let X be a normal space; let A be a closed subspace of X.

- (1) Any continuous map of A into the closed interval [a, b] of \mathbb{R} may be extended to a continuous map of all of X into [a, b].
- (2) Any continuous map of A into \mathbb{R} may be extended to a continuous map of all of X into \mathbb{R} .

1.2.7 Completeness

Definition 1.2.57. Let (X, d) be a metric space. A sequence (x_n) of points of X is said to be a Cauchy sequence in (X, d) if it has the property that given $\epsilon > 0$, there is an integer N such that

$$d(x_n, x_m) < \epsilon$$
 whenever $n, m \ge N$.

The metric space (X, d) is said to be complete if every Cauchy sequence in X converges.

Theorem 1.2.58. A metric space (X, d) is compact if and only if it is complete and totally bounded.

Theorem 1.2.59 (extension theorem). Suppose Y and Z are metric spaces, and Z is complete. Also suppose X is a dense subset of Y, and $f: X \to Z$ is uniformly continuous. Then f has a uniquely determined extension $\bar{f}: Y \to Z$ given by

$$\bar{f}(y) = \lim_{\substack{x \to y \\ x \in X}} f(x)$$
 for $y \in Y$

and \bar{f} is also uniformly continuous.

Definition 1.2.60. Let X be a metric space. If $h: X \to Y$ is an isometric imbedding of X into a complete metric space Y, such that h(X) dense in Y. Then Y is called the completion of X. By extension theorem, the completion of X is uniquely determined up to an isometry.

Definition 1.2.61. A space X is said to be a Baire space if the following condition holds: Given any countable collection $\{A_n\}$ of closed sets of X each of which has empty interior in X, their union $\bigcup A_n$ also has empty interior in X.

Theorem 1.2.62 (Baire Category Theorem). If X is a compact Hausdorff space or a complete metric space, then X is a Baire space.

Theorem 1.2.63. Any open subspace Y of a Baire space X is itself a Baire space.

Theorem 1.2.64. Let X be a space; let (Y,d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions such that $f_n(x) \to f(x)$ for all $x \in X$, where $f: X \to Y$. If X is a Baire space, the set of points at which f is continuous is dense in X.

1.3. LIMIT 17

1.3 Limit

1.4 Series

In the following theorem, $(E, |\cdot|)$ is a complex Banach space and (x_n) is a sequence in E.

Proposition 1.4.1. For a series $\sum x_k$ in a Banach space $(E, |\cdot|)$, the following are equivalent:

- (1) $\sum x_k$ converges.
- (2) For each $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that

$$\left| \sum_{k=n+1}^{m} x_k \right| < \varepsilon, \quad m > n \ge N.$$

Proposition 1.4.2. A normed vector space is complete if and only if every absolutely convergent series converges.

Proposition 1.4.3. Let $\sum x_k$ be a series in complex Banach space E and $\sum a_k$ a series in \mathbb{R}^+ . Then the series $\sum a_k$ is called a majorant (or minorant) for $\sum x_k$ if there is some $K \in \mathbb{N}$ such that $|x_k| \leq a_k$ (or $a_k \leq |x_k|$) for all $k \geq K$. If a series in a Banach space has a convergent majorant, then it converges absolutely.

Proposition 1.4.4. Let $(a_n)_{n\in\mathbb{Z}}$, $(b_n)_{n\in\mathbb{Z}}$ be two sequences in E, then

$$\sum_{M < n \le M+N} a_n b_n = a_{M+N} B_{M+N} + \sum_{M < n \le M+N-1} (a_n - a_{n+1}) B_n,$$

where $B_n = \sum_{M < k \leq n} b_k$.

If in particular $E = \mathbb{C}$ and (a_n) is a monotone sequence of \mathbb{R} , and

$$\sup_{M < n \le M+N} |B_n| \le \rho,$$

then

$$\left| \sum_{M < n \leqslant M+N} a_n b_n \right| \leqslant \rho \left(|a_{M+1}| + 2 |a_{M+N}| \right).$$

Corollary 1.4.5. (1) (Dirichlet's Rule)

(2) (Leibniz's Rule)

Theorem 1.4.6. Let $\sum x_k$ be a series in E and

$$\alpha := \overline{\lim} \sqrt[k]{|x_k|}.$$

Then the following hold: $\sum x_k$ converges absolutely if $\alpha < 1$. $\sum x_k$ diverges if $\alpha > 1$. For $\alpha = 1$, both convergence and divergence of $\sum x_k$ are possible.

Example 1.4.7. (1) $m \ge 2 \in \mathbb{R}, \sum n^{-m}$ converges.

(2) For any $z \in \mathbb{C}$ such that |z| < 1, the series $\sum z^k$ converges absolutely.

1.4. SERIES 19

(3)

$$\exp: \mathbb{C} \to \mathbb{C}, \quad z \mapsto \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

converges absolutely for all $z \in \mathbb{C}$.

Theorem 1.4.8. Every rearrangement of an absolutely convergent series $\sum x_k$ is absolutely convergent and has the same value as $\sum x_k$.

Theorem 1.4.9. There is a bijection $\alpha: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. If α is such a bijection, we call the series $\sum_{n} x_{\alpha(n)}$ an ordering of the double series $\sum_{k} x_{jk}$. If we fix $j \in \mathbb{N}$ (or $k \in \mathbb{N}$), then the series $\sum_{k} x_{jk}$ (or $\sum_{j} x_{jk}$) is called the j^{th} row series (or j^{th} column series) of $\sum_{k} x_{jk}$. If every row series (or column series) converges, then we can consider the series of row sums $\sum_{j} (\sum_{k=0}^{\infty} x_{jk})$ (or the series of column sums $\sum_{k} (\sum_{j=0}^{\infty} x_{jk})$). Finally we say that the double series $\sum_{j} x_{jk}$ is summable if

$$\sup_{n\in\mathbb{N}}\sum_{j,k=0}^n|x_{jk}|<\infty.$$

Let $\sum x_{jk}$ be a summable double series.

- (1) Every ordering $\sum_{n} x_{\alpha(n)}$ of $\sum_{jk} x_{jk}$ converges absolutely to a value $s \in E$ which is independent of α .
- (2) The series of row sums $\sum_{j} (\sum_{k=0}^{\infty} x_{jk})$ and column sums $\sum_{k} (\sum_{j=0}^{\infty} x_{jk})$ converge absolutely, and

$$\sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} x_{jk} \right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{\infty} x_{jk} \right) = s$$

Theorem 1.4.10. Suppose that the series $\sum x_j$ and $\sum y_k$ in \mathbb{C} converge absolutely. Then the Cauchy product $\sum_n \sum_{k=0}^n x_k y_{n-k}$ of $\sum x_j$ and $\sum y_k$ converges absolutely, and

$$\left(\sum_{j=0}^{\infty} x_j\right) \left(\sum_{k=0}^{\infty} y_k\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} x_k y_{n-k}$$

Corollary 1.4.11.

$$\exp(x+y) = \exp(x)\exp(y)$$

for $x, y \in \mathbb{C}$

1.5 Functions of Single variable

1.6 Several Variables functions

Measure

2.1 Measure Space

Definition 2.1.1. Let X be a nonempty set. An algebra of sets on X is a nonempty collection \mathcal{A} of subsets of X that is closed under finite unions and complements; in other words, if $E_1, \ldots, E_n \in \mathcal{A}$, then $\bigcup_{1}^{n} E_j \in \mathcal{A}$; and if $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$. A σ -algebra is an algebra that is closed under countable unions.

We observe that since $\bigcap_j E_j = \left(\bigcup_j E_j^c\right)^c$, algebras (resp. σ -algebras) are also closed under finite (resp. countable) intersections. Moreover, if \mathcal{A} is an algebra, then $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$, for if $E \in \mathcal{A}$ we have $\emptyset = E \cap E^c$ and $X = E \cup E^c$.

Definition 2.1.2. If X is any topological space, the σ -algebra generated by the family of open sets in X is called the Borel σ -algebra on X and is denoted by \mathcal{B}_X . Its members are called Borel sets. \mathcal{B}_X thus includes open sets, closed sets, countable intersections of open sets, countable unions of closed sets, and so forth.

There is a standard terminology for the levels in this hierarchy. A countable intersection of open sets is called a G_{δ} set; a countable union of closed sets is called an F_{σ} set.

Definition 2.1.3. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be an indexed collection of nonempty sets, $X=\prod_{{\alpha}\in A}X_{\alpha}$, and $\pi_{\alpha}: X \to X_{\alpha}$ the coordinate maps. If \mathcal{M}_{α} is a σ -algebra on X_{α} for each α , the product σ -algebra on X is the σ -algebra generated by

$$\left\{\pi_{\alpha}^{-1}\left(E_{\alpha}\right):E_{\alpha}\in\mathcal{M}_{\alpha},\alpha\in A\right\}.$$

We denote this σ -algebra by $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$. (If $A = \{1, ..., n\}$ we also write $\bigotimes_{1}^{n} \mathcal{M}_{j}$ or $\mathcal{M}_{1} \otimes \cdots \otimes \mathcal{M}_{n}$.

Proposition 2.1.4. If A is countable, then $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$ is the σ -algebra generated by $\{\prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{M}_{\alpha}\}$

Proposition 2.1.5. Let X_1, \ldots, X_n be topological spaces and let $X = \prod_1^n X_j$, equipped with the product topology. Then $\bigotimes_1^n \mathcal{B}_{X_j} \subset \mathcal{B}_X$. If the X_j 's are secound countable, then $\bigotimes_1^n \mathcal{B}_{X_j} = \mathcal{B}_X$

Proposition 2.1.6. Define an elementary family to be a collection \mathcal{E} of subsets of X such that

- $(1) \varnothing \in \mathcal{E},$
- (2) If $E, F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$,
- (3) If $E \in \mathcal{E}$ then E^c is a finite disjoint union of members of \mathcal{E} .

If \mathcal{E} is an elementary family, the collection \mathcal{A} of finite disjoint unions of members of \mathcal{E} is an algebra.

Proposition 2.1.7. X is a topological space, $Y \in B_X$ be a measurable set. Give Y the subspace topology from X, then B_Y equals to the σ -algebra $\{Y \cap E : E \in B_X\}$

Definition 2.1.8. Let X be a set equipped with a σ -algebra \mathcal{M} . A measure on \mathcal{M} (or on (X, \mathcal{M}) , or simply on X if \mathcal{M} is understood) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

- (1) $\mu(\emptyset) = 0$,
- (2) if $\{E_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{M} , then $\mu\left(\bigcup_1^{\infty} E_j\right) = \sum_1^{\infty} \mu\left(E_j\right)$.

If X is a set and $\mathcal{M} \subset \mathcal{P}(X)$ is a σ -algebra, (X, \mathcal{M}) is called a measurable space and the sets in \mathcal{M} are called measurable sets. If μ is a measure on (X, \mathcal{M}) , then (X, \mathcal{M}, μ) is called a measure space.

Definition 2.1.9. Let (X, \mathcal{M}, μ) be a measure space. Here is some standard terminology concerning the "size" of μ . If $\mu(X) < \infty$ (which implies that $\mu(E) < \infty$ for all $E \in \mathcal{M}$ since $\mu(X) = \mu(E) + \mu(E^c)$), μ is called finite. If $X = \bigcup_{1}^{\infty} E_j$ where $E_j \in \mathcal{M}$ and $\mu(E_j) < \infty$ for all j, μ is called σ -finite. More generally, if $E = \bigcup_{1}^{\infty} E_j$ where $E_j \in \mathcal{M}$ and $\mu(E_j) < \infty$ for all j, the set E is said to be σ -finite for μ .

If for each $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ with $F \subset E$ and $0 < \mu(F) < \infty, \mu$ is called semifinite. (σ -finite is semi-finte)

Example 2.1.10. Let X be any nonempty set, $\mathcal{M} = \mathcal{P}(X)$, and f any function from X to $[0,\infty]$. Then f determines a measure μ on \mathcal{M} by the formula $\mu(E) = \sum_{x \in E} f(x)$. Two special cases are of particular significance: If f(x) = 1 for all x, μ is called counting measure; and if, for some $x_0 \in X$, f is defined by $f(x_0) = 1$ and f(x) = 0 for $x \neq x_0$, μ is called the point mass or Dirac measure at x_0 .

Proposition 2.1.11. Let (X, \mathcal{M}, μ) be a measure space.

- (1) (Monotonicity) If $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) \leq \mu(F)$.
- (2) (Subadditivity) If $\{E_j\}_1^{\infty} \subset \mathcal{M}$, then $\mu(\bigcup_1^{\infty} E_j) \leq \sum_1^{\infty} \mu(E_j)$.
- (3) (Continuity from below) If $\{E_j\}_1^{\infty} \subset \mathcal{M} \text{ and } E_1 \subset E_2 \subset \cdots$, then $\mu(\bigcup_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- (4) (Continuity from above) If $\{E_j\}_1^{\infty} \subset \mathcal{M}, E_1 \supset E_2 \supset \cdots$, and $\mu(E_1) < \infty$, then $\mu(\bigcap_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.

Definition 2.1.12. If (X, \mathcal{M}, μ) is a measure space, a set $E \in \mathcal{M}$ such that $\mu(E) = 0$ is called a null set. By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently. If a statement about points $x \in X$ is true except for x in some null set, we say that it is true almost everywhere (abbreviated a.e.), or for almost every x. (If more precision is needed, we shall speak of a μ -null set, or μ -almost everywhere).

Definition 2.1.13. If $\mu(E) = 0$ and $F \subset E$, then $\mu(F) = 0$ by monotonicity provided that $F \in \mathcal{M}$, but in general it need not be true that $F \in \mathcal{M}$. A measure whose domain includes all subsets of null sets is called complete. Completeness can sometimes obviate annoying technical points, and it can always be achieved by enlarging the domain of μ , as follows.

Theorem 2.1.14. Suppose that (X, \mathcal{M}, μ) is a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}$. Then $\overline{\mathcal{M}}$ is a σ -algebra, and there is a unique extension $\bar{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

Definition 2.1.15 (outer measure). The abstract generalization of the notion of outer area is as follows. An outer measure on a nonempty set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ that satisfies

- (1) $\mu^*(\emptyset) = 0$,
- (2) $\mu^*(A) \le \mu^*(B)$ if $A \subset B$,
- (3) $\mu^* \left(\bigcup_{1}^{\infty} A_j \right) \le \sum_{1}^{\infty} \mu^* (A_j).$

Proposition 2.1.16. Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}$, and $\rho(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \mu(E_j) : E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{1}^{\infty} E_j \right\}.$$

Then μ^* is an outer measure.

Proposition 2.1.17. If μ^* is an outer measure on X, a set $A \subset X$ is called μ^* -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
 for all $E \subset X$.

Theorem 2.1.18 (Carathéodory's Theorem). If μ^* is an outer measure on X, the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.

Definition 2.1.19. If $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra, a function $\mu_0 : \mathcal{A} \to [0, \infty]$ will be called a premeasure if

- (1) $\mu_0(\emptyset) = 0$,
- (2) if $\{A_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{A} such that $\bigcup_1^{\infty} A_j \in \mathcal{A}$, then $\mu_0(\bigcup_1^{\infty} A_j) = \sum_1^{\infty} \mu_0(A_j)$.

In particular, a premeasure is finitely additive since one can take $A_j = \emptyset$ for j large. The notions of finite and σ -finite premeasures are defined just as for measures.

Theorem 2.1.20. If μ_0 is a premeasure on $\mathcal{A} \subset \mathcal{P}(X)$, it induces an outer measure on X, namely,

$$\mu^*(E) = \inf \left\{ \sum_{1}^{\infty} \mu_0(A_j) : A_j \in \mathcal{A}, E \subset \bigcup_{1}^{\infty} A_j \right\}.$$

then every set in \mathcal{A} is μ^* measurable and $\mu^* \mid \mathcal{A} = \mu_0$.

Theorem 2.1.21. Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, μ_0 a premeasure on \mathcal{A} , and \mathcal{M} the σ -algebra generated by \mathcal{A} . There exists a measure μ on \mathcal{M} whose restriction to \mathcal{A} is μ_0 - namely, $\mu = \mu^* \mid \mathcal{M}$ where μ^* is given by Proposition 2.1.15. If μ_0 is σ -finite, then μ is the unique extension of μ_0 to a measure on \mathcal{M} and the completion of μ is $\mu^* \mid \mathcal{M}^*$ where \mathcal{M}^* is the μ^* -measurable sets.

Example 2.1.22 (Lebesgue-Stieltjes measure). Consider sets of the form (a, b] or (a, ∞) or \emptyset , where $-\infty \le a < b < \infty$. In this section we shall refer to such sets as h-intervals (h for "half-open"). Clearly the intersection of two h-intervals is an h-interval, and the complement of an h-interval is an h-interval or the disjoint union of two h-intervals. Hence the collection \mathcal{A} of finite disjoint unions of h-intervals is an algebra. Notice that he σ -algebra generated by \mathcal{A} is $\mathcal{B}_{\mathbb{R}}$.

Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. If $(a_j, b_j]$ (j = 1, ..., n) are disjoint h-intervals, let

$$\mu_0\left(\bigcup_{1}^{n}\left(a_j,b_j\right]\right) = \sum_{1}^{n}\left[F\left(b_j\right) - F\left(a_j\right)\right]$$

and let $\mu_0(\emptyset) = 0$. Then μ_0 is a premeasure on the algebra \mathcal{A} .

Example 2.1.23. If $F : \mathbb{R} \to \mathbb{R}$ is any increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a)$ for all a,b. If G is another such function, we have $\mu_F = \mu_G$ iff F - G is constant. Conversely, if μ is a Borel measure on \mathbb{R} that is finite on all bounded Borel sets and we define

$$F(x) = \begin{cases} \mu((0,x]) & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\mu((-x,0]) & \text{if } x < 0 \end{cases}$$

then F is increasing and right continuous, and $\mu = \mu_F$.

Example 2.1.24 (Lebesgue measure). This is the complete measure μ_F associated to the function F(x) = x, for which the measure of an interval is simply its length. We shall denote it by m. The domain of m is called the class of Lebesgue measurable sets, and we shall denote it by \mathcal{L} . We shall also refer to the restriction of m to $\mathcal{B}_{\mathbb{R}}$ as Lebesgue measure.

Proposition 2.1.25. If $E \in \mathcal{L}$, then $E + s \in \mathcal{L}$ and $rE \in \mathcal{L}$ for all $s, r \in \mathbb{R}$. Moreover, m(E + s) = m(E) and m(rE) = |r|m(E).

2.2. INTERGRATION 27

2.2 Intergration

Proposition 2.2.1. $f: X \to Y$ between two sets induces a mapping $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$, defined by $f^{-1}(E) = \{x \in X : f(x) \in E\}$, which preserves unions, intersections, and complements. Thus, if \mathcal{N} is a σ -algebra on Y, $\{f^{-1}(E) : E \in \mathcal{N}\}$ is a σ -algebra on X. If (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, a mapping $f: X \to Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable, or just measurable when \mathcal{M} and \mathcal{N} are understood, if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

If \mathcal{N} is generated by \mathcal{E} , then $f: X \to Y$ is $(\mathcal{M}, \mathcal{N})$ -measurable iff $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$.

Definition 2.2.2. If (X, \mathcal{M}) is a measurable space, a real- or complex-valued function f on X will be called \mathcal{M} -measurable, or just measurable, if it is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ or $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ measurable. $\mathcal{B}_{\mathbb{R}}$ or $\mathcal{B}_{\mathbb{C}}$ is always understood as the σ -algebra on the range space unless otherwise specified. In particular, $f: \mathbb{R} \to \mathbb{C}$ is Lebesgue (resp. Borel) measurable if is $(\mathcal{L}, \mathcal{B}_{\mathbb{C}})$ (resp. $(\mathcal{B}_{\mathbb{R}}, \mathcal{B}_{\mathbb{C}})$) measurable;

Proposition 2.2.3. If (X, \mathcal{M}) is a measurable space and $f: X \to \mathbb{R}$, the following are equivalent:

- (1) f is \mathcal{M} -measurable.
- (2) $f^{-1}((a, \infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (3) $f^{-1}([a,\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (4) $f^{-1}((-\infty, a)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (5) $f^{-1}((-\infty, a]) \in \mathcal{M}$ for all $a \in \mathbb{R}$.

Corollary 2.2.4. $f: X \to Y$ is continuous, then f is (B_X, B_Y) -measurable.

Proposition 2.2.5. A function $f: X \to \mathbb{C}$ is \mathcal{M} -measurable iff Re f and Im f are \mathcal{M} -measurable.

Definition 2.2.6. It is sometimes convenient to consider functions with values in the extended real number system $\overline{\mathbb{R}} = [\infty, \infty]$ (with order topology). It is easily verified that $\mathcal{B}_{\overline{\mathbb{R}}}$ is generated by the rays $(a, \infty]$ or $[-\infty, a)(a \in \mathbb{R})$, and we define $f: X \to \overline{\mathbb{R}}$ to be \mathcal{M} -measurable if it is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. And we always define $0 \cdot \infty$ to be 0.

Proposition 2.2.7. If $f, g: X \to \mathbb{C}$ are \mathcal{M} -measurable, then so are f + g and fg.

Proposition 2.2.8. If $\{f_j\}$ is a sequence of $\overline{\mathbb{R}}$ -valued measurable functions on (X, \mathcal{M}) , then the functions

$$g_1(x) = \sup_j f_j(x), \quad g_3(x) = \overline{\lim}_{j \to \infty} f_j(x),$$

 $g_2(x) = \inf_j f_j(x), \quad g_4(x) = \underline{\lim}_{j \to \infty} f_j(x)$

are all measurable.

Corollary 2.2.9. If $f, g: X \to \overline{\mathbb{R}}$ are measurable, then so are $\max(f, g)$ and $\min(f, g)$.

If $\{f_j\}$ is a sequence of complex-valued measurable functions and $f(x) = \lim_{j \to \infty} f_j(x)$ exists for all x, then f is measurable.

Definition 2.2.10. We now discuss the functions that are the building blocks for the theory of integration. Suppose that (X, \mathcal{M}) is a measurable space. If $E \subset X$, the characteristic function χ_E of E (sometimes called the indicator function of E and denoted by 1_E) is defined by

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

It is easily checked that χ_E is measurable iff $E \in \mathcal{M}$. A simple function on X is a finite linear combination, with complex coefficients, of characteristic functions of sets in \mathcal{M} . (We do not allow simple functions to assume the values $\pm \infty$.) Equivalently, $f: X \to \mathbb{C}$ is simple iff f is measurable and the range of f is a finite subset of \mathbb{C} . Indeed, we have

$$f = \sum_{1}^{n} z_{j} \chi_{E_{j}}$$
, where $E_{j} = f^{-1}(\{z_{j}\})$ and range $(f) = \{z_{1}, \dots, z_{n}\}$.

We call this the standard representation of f. It exhibits f as a linear combination, with distinct coefficients, of characteristic functions of disjoint sets whose union is X. Note: One of the coefficients z_j may well be 0, but the term $z_j\chi_{E_j}$ is still to be envisioned as part of the standard representation, as the set E_j may have a role to play when f interacts with other functions.

Theorem 2.2.11. Let (X, \mathcal{M}) be a measurable space. If $f: X \to [0, \infty]$ is measurable, there is a sequence $\{\phi_n\}$ of simple functions such that $0 \le \phi_1 \le \phi_2 \le \cdots \le f, \phi_n \to f$ pointwise, and $\phi_n \to f$ uniformly on any set on which f is bounded.

If $f: X \to \mathbb{C}$ is measurable, there is a sequence $\{\phi_n\}$ of simple functions such that $0 \le |\phi_1| \le |\phi_2| \le \cdots \le |f|, \phi_n \to f$ pointwise, and $\phi_n \to f$ uniformly on any set on which f is bounded.

Definition 2.2.12. The following implications are valid iff the measure μ is complete:

- (1) If f is measurable and $f = g \mu$ -a.e., then g is measurable.
- (2) If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f \mu$ -a.e., then f is measurable.

Proposition 2.2.13. Let (X, \mathcal{M}, μ) be a measure space and let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be its completion. If f is an $\overline{\mathcal{M}}$ -measurable function on X, there is an \mathcal{M} -measurable function g such that $f = g\overline{\mu}$ -almost everywhere.

Definition 2.2.14. In this section we fix a measure space (X, \mathcal{M}, μ) , and we define

 L^+ = the space of all measurable functions from X to $[0, \infty]$.

2.2. INTERGRATION 29

If ϕ is a simple function in L^+ with standard representation $\phi = \sum_{1}^{n} a_j \chi_{E_j}$, we define the integral of ϕ with respect to μ by

$$\int \phi d\mu = \sum_{1}^{n} a_{j} \mu \left(E_{j} \right)$$

Proposition 2.2.15. Let ϕ and ψ be simple functions in L^+ .

- (1) If $c \ge 0$, $\int c\phi = c \int \phi$.
- (2) $\int (\phi + \psi) = \int \phi + \int \psi.$
- (3) If $\phi \leq \psi$, then $\int \phi \leq \int \psi$.

Definition 2.2.16. We now extend the integral to all functions $f \in L^+$ by defining

$$\int f d\mu = \sup \left\{ \int \phi d\mu : 0 \le \phi \le f, \phi \text{ simple } \right\}.$$

Theorem 2.2.17. If $\{f_n\}$ is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{n \to \infty} f_n$ (= $\sup_n f_n$), then $\int f = \lim_{n \to \infty} \int f_n$.

Corollary 2.2.18. If $\{f_n\}$ is a finite or infinite sequence in L^+ and $f = \sum_n f_n$, then $\int f = \sum_n \int f_n$.

Proposition 2.2.19. If $f \in L^+$, then $\int f = 0$ iff f = 0 a.e.

Lemma 2.2.20 (Fatou's lemma,). If $\{f_n\}$ is any sequence in L^+ , then

$$\int (\liminf f_n) \le \liminf \int f_n.$$

Proposition 2.2.21. The two definitions of $\int f$ agree when f is simple, as the family of simple functions over which the supremum is taken includes f itself and

$$\int f \leq \int g$$
 whenever $f \leq g$, and $\int cf = c \int f$ for all $c \in [0, \infty)$.

Definition 2.2.22. If f^+ and f^- are the positive and negative parts of f and at least one of $\int f^+$ and $\int f^-$ is finite, we define

$$\int f = \int f^+ - \int f^-.$$

We shall be mainly concerned with the case where $\int f^+$ and $\int f^-$ are both finite; we then say that f is integrable. Since $|f| = f^+ + f^-$, it is clear that f is integrable iff $\int |f| < \infty$

Next, if f is a complex-valued measurable function, we say that f is integrable if $\int |f| < \infty$. More generally, if $E \in \mathcal{M}$, f is integrable on E if $\int_{E} |f| < \infty$. Since $|f| \leq |\operatorname{Re} f| + |\operatorname{Im} f| \leq 2|f|$, f is integrable iff $\operatorname{Re} f$ and $\operatorname{Im} f$ are both integrable, and in this case we define

$$\int f = \int \operatorname{Re} f + i \int \operatorname{Im} f.$$

It follows easily that the space of complex-valued integrable functions is a complex vector space and that the integral is a complex-linear functional on it. We denote this space - provisionally - by $L^1(\mu)$ (or $L^1(X,\mu)$, or $L^1(X)$, or simply L^1 , depending on the context).

Proposition 2.2.23. If $f \in L^1$, then $\left| \int f \right| \leq \int |f|$.

Proposition 2.2.24. (1) If $f \in L^1$, then $\{x : f(x) \neq 0\}$ is σ -finite.

(2) If $f, g \in L^1$, then $\int_E f = \int_E g$ for all $E \in \mathcal{M}$ iff $\int |f - g| = 0$ iff f = g a.e.

Remark 2.2.25. (X, M, μ) is a measurable space. Take $E \in M$ and $(E, M \cap E, \mu|_E)$ is also measurable space. If $f \in L^1(E)$, then

$$f' = \begin{cases} f & x \in E \\ 0 & x \in E^c \end{cases}$$

is a function in $L^1(X)$ and $\int_X f' = \int_E f$.

Remark 2.2.26. (X, M, μ) is a measurable space. (X, M', τ) is another measurable space such that $M' \supset M$ and $\tau | M = \mu$. Then if $f \in L^1(X, M)$, $f \in L^1(X, M')$ and values of integration of f on both measurable spaces are the same. This follows by Theorem 2.2.11 and Monotone Convergence Theorem.

Theorem 2.2.27 (Dominated Convergence Theorem). Let $\{f_n\}$ be a sequence in L^1 such that (a) $f_n \to f$, and (b) there exists a nonnegative $g \in L^1$ such that $|f_n| \leq g$ for all n. Then $f \in L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

Proof: By Fatou's lemma.

Theorem 2.2.28. Suppose that $\{f_j\}$ is a sequence in L^1 such that $\sum_{1}^{\infty} \int |f_j| < \infty$. Then $\sum_{1}^{\infty} f_j$ converges a.e. to a function in L^1 , and $\int \sum_{1}^{\infty} f_j = \sum_{1}^{\infty} \int f_j$.

Theorem 2.2.29. If $f \in L^1(\mu)$ and $\epsilon > 0$, there is an integrable simple function $\phi = \sum a_j \chi_{E_j}$ such that $\int |f - \phi| d\mu < \epsilon$. (That is, the integrable simple functions are dense in L^1 in the L^1 metric.) If μ is a Lebesgue measure on \mathbb{R} , the sets E_j in the definition of ϕ can be taken to be finite unions of open intervals; moreover, there is a continuous function g that vanishes outside a bounded interval such that $\int |f - g| d\mu < \epsilon$.

Definition 2.2.30. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. We have already discussed the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$ on $X \times Y$; we now construct a measure on $\mathcal{M} \otimes \mathcal{N}$ that is, in an obvious sense, the product of μ and ν .

To begin with, we define a (measurable) rectangle to be a set of the form $A \times B$ where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Clearly

$$(A\times B)\cap (E\times F)=(A\cap E)\times (B\cap F),\quad (A\times B)^c=(X\times B^c)\cup (A^c\times B)\,.$$

Therefore, by Proposition 2.1.6, the collection \mathcal{A} of finite disjoint unions of rectangles is an algebra, and of course the σ -algebra it generates is $\mathcal{M} \otimes \mathcal{N}$.

If we integrate with respect to x

$$\mu(A)\chi_B(y) = \int \chi_A(x)\chi_B(y)d\mu(x) = \sum \int \chi_{A_j}(x)\chi_{B_j}(y)d\mu(x)$$
$$= \sum \mu(A_j)\chi_{B_j}(y).$$

2.2. INTERGRATION 31

In the same way, integration in y then yields

$$\mu(A)\nu(B) = \sum \mu(A_j) \nu(B_j).$$

It follows that if $E \in \mathcal{A}$ is the disjoint union of rectangles $A_1 \times B_1, \ldots, A_n \times B_n$, and we set

$$\pi(E) = \sum_{1}^{n} \mu(A_j) \nu(E_j)$$

then π is well defined on \mathcal{A} (since any two representations of E as a finite disjoint union of rectangles have a common refinement), and π is a premeasure on \mathcal{A} . Therefore, π generates an outer measure on $X \times Y$ whose restriction to $\mathcal{M} \times \mathcal{N}$ is a measure that extends π . We call this measure the product of μ and ν and denote it by $\mu \times \nu$. Moreover, if μ and ν are σ -finite - say, $X = \bigcup_{1}^{\infty} A_{j}$ and $Y = \bigcup_{1}^{\infty} B_{k}$ with $\mu(A_{j}) < \infty$ and $\nu(B_{k}) < \infty$ - then $X \times Y = \bigcup_{j,k} A_{j} \times B_{k}$, and $\mu \times \nu(A_{j} \times B_{k}) < \infty$, so $\mu \times \nu$ is also σ -finite. Then $\mu \times \nu$ is the unique measure on $\mathcal{M} \otimes \mathcal{N}$ such that $\mu \times \nu(A \times B) = \mu(A)\nu(B)$ for all rectangles $A \times B$.

The same construction works for any finite number of factors. That is, suppose $(X_j, \mathcal{M}_j, \mu_j)$ are measure spaces for $j = 1, \ldots, n$. If we define a rectangle to be a set of the form $A_1 \times \cdots \times A_n$ with $A_j \in \mathcal{M}_j$, then the collection \mathcal{A} of finite disjoint unions of rectangles is an algebra, and the same procedure as above produces a measure $\mu_1 \times \cdots \times \mu_n$ on $\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_n$ such that

$$\mu_1 \times \cdots \times \mu_n (A_1 \times \cdots \times A_n) = \prod_{j=1}^n \mu_j (A_j).$$

Moreover, if the μ_j 's are σ -finite so that the extension from \mathcal{A} to $\bigotimes_1' \mathcal{M}_j$ is uniquely determined.

Proposition 2.2.31. If (X_j, \mathcal{M}_j) is a measurable space for j = 1, 2, 3, then $\bigotimes_1^3 \mathcal{M}_j = (\mathcal{M}_1 \otimes \mathcal{M}_2) \otimes \mathcal{M}_3$. Moreover, if μ_j is a σ -finite measure on (X_j, \mathcal{M}_j) , then $\mu_1 \times \mu_2 \times \mu_3 = (\mu_1 \times \mu_2) \times \mu_3$.

Proof: Consider $\{A \subset M_1 \otimes M_2 : A \times E_3 \in M_1 \otimes M_2 \otimes M_3\}$ for some $E_3 \in M_3$ is a σ -algebra.

Definition 2.2.32. We return to the case of two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) . If $E \subset X \times Y$, for $x \in X$ and $y \in Y$ we define the x-section E_x and the y-section E^y of E by

$$E_x = \{ y \in Y : (x, y) \in E \}, \quad E^y = \{ x \in X : (x, y) \in E \}.$$

Also, if f is a function on $X \times Y$ we define the x-section f_x and the y-section f^y of f by

$$f_x(y) = f^y(x) = f(x, y).$$

Proposition 2.2.33. If $E \in \mathcal{M} \otimes \mathcal{N}$, then $E_x \in \mathcal{N}$ for all $x \in X$ and $E^y \in \mathcal{M}$ for all $y \in Y$. If f is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then f_x is \mathcal{N} -measurable for all $x \in X$ and f^y is \mathcal{M} -measurable for all $y \in Y$. **Theorem 2.2.34.** Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then the functions $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are measurable on X and Y, respectively, and

$$\mu \times \nu(E) = \int \nu(E_x) \, d\mu(x) = \int \mu(E^y) \, d\nu(y).$$

Theorem 2.2.35 (The Fubini-Tonelli Theorem). Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ finite measure spaces.

(1) (Tonelli) If $f \in L^+(X \times Y)$, then the functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$, respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

(2) (Fubini) If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X$, $f^y \in L^1(\mu)$ for a.e. $y \in Y$, Define

$$g(x) = \begin{cases} \int f_x & \text{if } f_x \in L^1(\nu) \\ 0 & \text{otherwise} \end{cases}$$
$$h(y) = \begin{cases} \int f^y & \text{if } f_x \in L^1(\nu) \\ 0 & \text{otherwise} \end{cases}$$

, we have $g(x) \in L^1(\mu)$, $h(y) \in L^1(\nu)$ and $\int g(x) d\mu = \int h(y) d\mu = \int f d(\mu \times \nu)$.

2.3 Riesz Representation Theorem

2.4 Probablility Theory

Complex Analysis

3.1 Line Integration

Theorem 3.1.1 (Open mapping Theorem). If f is a holomorphic function and non-constant in a connected open set $\Omega \subset \mathbb{C}$, then f is open.

Proposition 3.1.2. U is an open subset of \mathbb{C} , $f:U\to\mathbb{C}$ is a injective holomorphic map, then $f'(z)\neq 0$ for all $z\in U$. By Open Mapping Theorem, the image of f is still open in \mathbb{C} , we denote it by V. Then $f:U\to V$ is a holomorphic bijective function. f^{-1} is also holomorphic and $(f^{-1})'(z)=\frac{1}{f(z)}$.

Proposition 3.1.3. f holomorphic, $f(a) \neq 0$, then f is local biholomorphic at a.

Proof: By inverse function theorem and Proposition 3.1.3.

3.2 Multiple Variables

Functional Analysis

- 4.1 Foundation
- 4.2 Spectrum of Opertor
- 4.3 Banach Algebra

Harmonicl Analysis

5.1 Harmonic Analysis on topological group

Differential Equation