Esempio

$$\begin{aligned} \min 3x_1 + 4x_2 + 5x_3 & \min 3x_1 + 4x_2 + 5x_3 \\ \text{s.t.} & \text{s.t.} \\ 2x_1 + 2x_2 + x_3 & \geq 6 \\ x_1 + 2x_2 + 3x_3 & \geq 5 \\ x_1 + 2x_2 + 3x_3 & \geq 5 \\ x_1, x_2, x_3 & \geq 0 \end{aligned} \qquad \begin{aligned} \min 3x_1 + 4x_2 + 5x_3 \\ 2x_1 + 2x_2 + x_3 - x_4 &= 6 \\ x_1 + 2x_2 + 3x_3 - x_5 &= 5 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{aligned}$$

da cui il tableau:

				0		0
2	2	2	1	- 1	0	6
			3		0 - 1	5

applicando il simplesso primale si eseguirebbe la FASE I

Esempio

Invece, cambiando segno alle righe si ottiene un tableau iniziale per il simplesso duale

3	4 - 2 - 1	5	0	0	0
- 2	- 2	- 1	1	0	- 6
- 2	- 1	- 3	0	1	- 5

scegliamo x_4 (riga t=1) come var. uscente

come scegliere la variabile entrante?

dovendo mantenere l'ammissibilità duale (cioè $\bar{c} \geq 0$), consideriamo esclusivamente i valori $\bar{a}_{tj} < 0$ e scegliamo la colonna h per cui:

$$h = \arg\min\{\frac{\bar{c}_j}{|\bar{a}_{tj}|} : j \in \{1, \dots, n\}, \bar{a}_{tj} < 0\}$$

Esempio (cont.)

$$\min\{\frac{\bar{c}_1}{\bar{a}_{11}} = \frac{3}{2}, \quad \frac{\bar{c}_2}{\bar{a}_{12}} = 2, \quad \frac{\bar{c}_3}{\bar{a}_{13}} = 5\}$$

PIVOT(1,1)

0	1	7/2	3/2	0	-9
		1/2			
0	- 1	- 5/2	-1/2	1	-2

l'unica riga con $\bar{b}_t < 0$ è t=2, cioè, x_5 è la variabile entrante. Ripetendo il ragionamento precedente si individua l'elemento di pivot (2,2):

PIVOT(2,2)

0	0	1	1	1	-11
1	0	-2	-1	1	1
0	1	5/2	1/2	-1	2

soluzione (1,2,0,0,0) ammissibile primale \Longrightarrow ottima

Se aggiungessimo un vincolo?

supponiamo adesso di aggiungere il vincolo

$$3x_1 + x_2 + x_3 \le 4$$

che NON è soddisfatto dalla soluzione ottima.

Aggiungendo la slack è possibile includerlo nel tableau:

0	0	1	1	1	0	-11
1	0	-2	-1	1	0	1
0	1	1 -2 5/2 1	1/2	-1	0	2
3	1	1	0	0	1	4

Di nuovo simplesso duale...

mettendo in forma canonica (con la slack in base), si ottiene:

		1				-11
1	0	-2	-1	1	0	1
0	1	5/2	1/2	-1	0	2
0	0	-2 5/2 9/2	5/2	-2	1	-1

essendo $\bar{b}_3 < 0$ non abbiamo ammissibilità primale. Applicando nuovamente il simplesso duale si individua l'elemento di pivot (3,5) e il nuovo tableau (ottimo):

0	0	13/4	9/4	0	1/2	-23/2
1	0	1/4	1/4	0	1/2	1/2
0	1	1/4	-3/4	0	-1/2	5/2
0	0	-9/4	-5/4	1	-1/2	1/2

nuova sol. ottima (1/2, 5/2, 0, 0, 1/2, 0)