

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

DISRUPTIVE ARCHITECTURES

Aprendizado de Máquina Não Supervisionado – Agrupamento (Clustering)

Prof. André Tritiack profandre farias@fiap.com.br

Aprendizado de Máquina

Para cada grupo de algoritmo (supervisionado, não supervisionado) existe tipos de tarefas que os algoritmos realizam. As três principais tarefas são Classificação, Regressão e Agrupamento.

Aprendizado de Máquina

No aprendizado **supervisionado** temos rótulos para cada entrada de dado. No **não supervisionado**, não fornecemos nenhuma informação (rótulo) para o agrupamento.

Aprendizado de Máquina

No aprendizado supervisionado, fornecemos dados de treinamento com rótulos (saída esperada). Uma vez que o modelo está treinado, podemos inserir entradas cuja saída são, a princípio, desconhecidas.

Aprendizado de Máquina - Supervisionado FIAP

No aprendizado supervisionado iremos separar nosso conjuntos de dados em dois grupos, o conjunto treinamento e o conjunto de teste.

Aprendizado de Máquina - Supervisionado FIAP

No aprendizado supervisionado iremos separar conjuntos de dados em dois grupos, o conjunto treinamento e o conjunto de teste.

Aprendizado de Máquina - Supervisionado FIAP

Dentro do aprendizado supervisionado temos as tarefas de Regressão e Classificação:

Classificação: predição de classe

-0.2 -0.4 -0.6

Regressão: predição de valor

https://static.javatpoint.com/tutorial/machine-learning/images/regression-vs-classification-in-machine-learning.png

Fluxo de trabalho em ML

Aprendizado não supervisionado

- No aprendizado não supervisionado não sabemos inicialmente os rótulos das classes.
- Com essas técnicas gostaríamos de resolver problemas de:
 - Agrupamento (ou clusterização)
 - Regras de Associação
 - Redução de Dimensionalidade
 - Detecção de Outliers

Aprendizado não supervisionado

- Na classificação nosso atributo alvo é um objeto (string) previamente conhecido (dado rotulado);
- Na clusterização nosso atributo alvo é um número (int) previamente desconhecido (dado não rotulado);

Agrupamento

Agrupamento é uma técnica não supervisionada!

Índice da linha	x1	x2	 xn	ŷ
1	548.4	-9789	0.4875	?
2	689.4	-10235	-0.358	?
3	3154.8	-1031858	 -0.1458	?
•••				
k	803.54	-20000	1.054	?

Agrupamento

GERAÇÃO DE GRUPOS OU CLUSTERS

- Os grupos são formados de maneira a maximizar a similaridade entre os elementos de um grupo (similaridade intragrupo) e minimizar a similaridade entre elementos de grupos diferentes (similaridade intergrupos).
- Aprendizado não supervisionado.

ALGORITMOS DE CLUSTERIZAÇÃO

Agrupamento

- Grupos podem:
 - Ter diferentes tamanhos, formas e densidades;
 - Formar uma hierarquia;
 - Ter sobreposição ou serem disjuntos

- Existem muitos algoritmos diferentes para fazer agrupamento.
 Alguns deles são baseados em:
 - Ligações como Agrupamento Hierárquico;
 - Densidade como o DBSCAN;
 - Partições como o K-Means;
 - Grid como o STING e o WaveCluster
 - Modelos como o SOM, redes neurais e Mistura Gaussiana;

Baseado em Partição – k-Means

- O k-Means é um dos métodos mais antigos (referências originais datam de 1956, 1965 e 1967) e mais utilizados;
- Ele é simples e intuitivo, baseado na ideia de se quebrar o espaço multidimensional em partições a partir do centroide dos dados:

k-Means – Algoritmo

O pseudocódigo do k-Means pode ser sumarizado como:

- 1. Escolher aleatoriamente k centros para os clusters;
- Atribuir cada objeto para o cluster de centro mais próximo segundo alguma métrica de distância (ex: euclidiana);
- 3. Mover cada centro para a média (centroide) dos objetos do cluster correspondente;
- 4. Repetir os passos 2 e 3 até que algum critério de convergência seja atendido (ex: número máximo de interação, limiar mínimo de mudança nos centroides).

k-Means – Algoritmo / Métrica

- Precisamos usar uma métrica de distância entre os centroides e os pontos de dados;
- Podemos usar diferentes métricas. A mais comum é a distância Euclidiana:

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (A_{x_i} - B_{x_i})^2}$$

identifier	class name	args	distance function
"euclidean"	EuclideanDistance	•	$sqrt(sum((x - y)^2))$
"manhattan"	Manhattan Distance	•	sum(x - y)

Outras métricas:

k-Means – Algoritmo / Hiperparâmetro

- O k-Means tem o hiperparâmetro k que é o número de grupos;
- Como saber qual é o melhor número de k?
- Podemos usar a Soma dos Erros Quadráticos (SSE) em relação ao centroide para encontrar o "joelho" da curva de otimização:

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i}^{K} dist(c_i, x)^2$$

- *dist* é a distância euclidiana;
- c_i é o centro do i-ésimo agrupamento;
- x são os dados pertencentes ao iésimo agrupamento.

k-Means – Vantagens e Desvantagens

Vantagens:

- Implementação simplificada.
- Facilidade em lidar com qualquer medida de similaridade e por consequência, qualquer tipo de atributo.

Desvantagens:

- Dificuldade na definição do valor de "k".
- Suscetível a outliers e a ausência de normalização.

MÉTRICAS DE DESEMPENHO DE AGRUPAMENTO

Silhouette

O Silhouette Score é uma métrica que avalia o "formato" dos clusters obtidos.

Ele é obtido calculando a distância média entre um dado de um agrupamento com todos os outros dados do mesmo cluster (a) e com a média desse mesmo dado com todos os dados do agrupamento mais próximo.

Essa métrica é definida como:

 b: distância entre i e o agrupamento mais próximo

a: distância média entre i e todos os pontos de seu agrupamento

Silhouette

A média do Silhouette Score de todos os dados nos define o quão bom é o nosso agrupamento:

Agrupamentos com problemas

Agrupamentos ok

Copyright © 2023 Prof. Henrique Ferreira dos Santos

Colaboração e adaptação: Prof. André Tritiack

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).