Fungizide Mischungen

Beschreibung

- 5 Die vorliegende Erfindung betrifft fungizide Mischungen, enthaltend als aktive Komponenten
 - 1) das Triazolopyrimidinderivat der Formel I,

10 und

2) ein Anilid der Formel II,

in der die Variablen folgende Bedeutungen haben:

15

Ar Phenyl oder ein fünf- oder sechsgliedriger aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, wobei die Cyclen unsubstituiert sind oder durch eine bis drei Gruppen R¹ substituiert sein können:

20

R¹ Haiogen, C₁-C₄-Alkyl oder C₁-C₄-Haiogenalkyl;

R Phenyi, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Halogen-

25

Q

alkoxy;

Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Halo-

in einer synergistisch wirksamen Menge.

genalkoxy;

30

Außerdem betrifft die Erfindung ein Verfahren zur Bekämpfung von Schadpilzen mit Mischungen der Verbindung I mit der Verbindung II und die Verwendung der Verbin-

dung I mit der Verbindung II zur Herstellung derartiger Mischungen sowie Mittel, die diese Mischungen enthalten.

2

Die Verbindung I, 5-Chlor-7-(4-methyl-piperidin-1-yl)-6-(2,4,6-trifluor-phenyl)-[1,2,4]triazolo[1,5-a]pyrimidin, ihre Herstellung und deren Wirkung gegen Schadpilze ist aus der Literatur bekannt (WO 98/46607).

Die Verbindungen II, ihre Herstellung und ihre Wirkung gegen Schadpilze sind ebenfalls aus der Literatur bekannt (JP 10130268).

10

20

25

30

Mischungen von Triazolopyrimidinen mit anderen Wirkstoffen sind aus EP-A 988 790 und US 6 268 371 allgemein bekannt.

Mischungen der Verbindungen II mit anderen Wirkstoffen sind beispielsweise aus JP 11228309, JP 2000053506 und JP 2001072513 bekannt.

Im Hinblick auf eine Senkung der Aufwandmengen und eine Verbreiterung des Wirkungsspektrums der bekannten Verbindungen lagen der vorliegenden Erfindungen Mischungen als Aufgabe zugrunde, die bei verringerter Gesamtmenge an ausgebrachten Wirkstoffen eine verbesserte Wirkung gegen Schadpilze zeigen (synergistische Mischungen).

Demgemäss wurden die eingangs definierten Mischungen gefunden. Es wurde außerdem gefunden, dass sich bei gleichzeitiger gemeinsamer oder getrennter Anwendung der Verbindung I und einer der Verbindungen II oder bei Anwendung der Verbindung I und einer der Verbindungen II nacheinander Schadpilze besser bekämpfen lassen als mit den Einzelverbindungen.

Die Mischungen der Verbindung I und der Verbindung II bzw. die gleichzeitige gemeinsame oder getrennte Verwendung der Verbindung I und der Verbindung II zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten. Sie können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

35

40

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Bananen, Baumwolle, Gemüsepflanzen (z.B. Gurken, Bohnen und Kürbisgewächse), Gerste, Gras, Hafer, Kaffee, Kartoffeln, Mais, Obstpflanzen, Reis, Roggen, Soja, Tomaten, Wein, Weizen, Zierpflanzen, Zuckerrohr und einer Vielzahl von Samen.

Insbesondere eignen sie sich zur Bekämpfung der folgenden pflanzenpathogenen Pilze: Blumeria graminis (echter Mehltau) an Getreide, Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen, Podosphaera leucotricha an Äpfeln, Uncinula necator an Reben, Puccinia-Arten an Getreide, Rhizoctonia-Arten an Baumwolle, Reis und Rasen, Ustilago-Arten an Getreide und Zuckerrohr, Venturia inaequalis an Äpfeln, Bipolaris- und Drechslera-Arten an Getreide, Reis und Rasen, Septoria nodorum an Weizen, Botrytis cinerea an Erdbeeren, Gemüse, Zierpflanzen und Reben, Mycosphaerella-Arten an Bananen, Erdnüssen und Getreide, Pseudocercosporella herpotrichoides an Weizen und Gerste, Pyricularia oryzae an Reis, Phytophthora infestans an Kartoffeln und Tomaten, Pseudoperonospora-Arten an Kürbisgewächsen und Hopfen, Plasmopara viticola an Reben, Alternaria-Arten an Gemüse und Obst sowie Fusarium- und Verticillium-Arten.

Sie sind außerdem im Materialschutz (z.B. Holzschutz) anwendbar, beispielsweise gegen *Paecilomyces variotii*.

Die Verbindung I und die Verbindungen II können gleichzeitig gemeinsam oder getrennt oder nacheinander aufgebracht werden, wobei die Reihenfolge bei getrennter Applikation im allgemeinen keine Auswirkung auf den Bekämpfungserfolg hat.

20

10

15

Bei den in Formel II angegebenen Definitionen der Variablen wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

Halogen: Fluor, Chlor, Brom und Jod;

25

30

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6 oder 8 Kohlenstoffatomen, z.B. C_1 - C_6 -Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 2, 4, 6 oder 8 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können: insbesondere C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl,

40 Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluor-

ethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl oder 1,1,1-Trifluorprop-2-yl;

- 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei
 Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, und 1,3,4-Triazol-2-yl;
 - 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 4-Pyridinyl, 4-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl und 2-Pyrazinyl;

·15

20

40

In dem Umfang der vorliegenden Erfindung sind die (R)- und (S)-Isomere und die Razemate von Verbindungen der Formel I eingeschlossen, die chirale Zentren aufweisen.

Im Hinblick auf ihre bestimmungsgemäße Verwendung der Verbindungen II sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

- Ar bedeutet bevorzugt Phenyl oder ein fünfgliedriger aromatischer Heterocyclus, insbesondere ein fünfgliederiger Heteroarylrest, welcher unsubstituiert ist oder durch eine oder zwei Gruppen R¹ substituiert ist.
- Daneben steht Ar bevorzugt für folgende Gruppen: Phenyl, Pyridin, Pyrazin, Furan,
 Thiophen, Pyrazol und Thiazol. Besonders bevorzugte Gruppen Ar sind: 3-Pyridinyl,
 Pyrazinyl, 3-Furyl, 3-Thiophenyl, 4-Pyrazolyl, 5-Thiazolyl.
 - Besonders bevorzugt steht eine Gruppe R¹ in ortho-Stellung zu der Amidgruppierung.
- Bevorzugte Gruppen R¹ sind Halogen, insbesondere Chlor, Alkyl, insbesondere Methyl, und Halogenmethyl, insbesondere Fluormethyl, Difluormethyl oder Trifluormethyl.
 - Bevorzugte Gruppen R sind Alkylgruppen, insbesondere verzweigte C_3 - C_8 -Alkylgruppen, insbesondere 4-Methyl-pent-2-yl.

5

Für die bestimmungsgemäße Verwendung in Mischung mit der Verbindung I kommen insbesondere folgende Verbindungen der Formel II in Frage:

Sofern zwei Gruppen R¹ in einer Formel vorliegen, können diese Gruppen gleich oder verschieden sein.

Besonders bevorzugt sind Verbindungen IIA, insbesondere Verbindungen der Formeln IIA.1 und IIB.1, in denen R¹ gleich oder verschieden sein können und für Methyl und Halogenmethyl und R für Alkyl steht, wie verzweigtes C₃-C₀-Alkyl, insbesondere 4-Methyl-pent-2-yl:

10 4-Methyl-pent-2-yl:

5

15

Insbesondere bevorzugt sind Verbindung IIA.11 (common name: Penthiopyrad) und IIB.11, welche in Form ihrer R- und S-Isomere vorliegen:

$$H_3C-N$$
 CF_3
 H_3C
 CH_3
 H_3C
 CH_3

Die Verbindungen I und II sind wegen des basischen Charakters der in ihnen enthaltenen Stickstoffatome in der Lage, mit anorganischen oder organischen Säuren oder mit Metallionen Salze oder Addukte zu bilden.

Beispiele für anorganische Säuren sind Halogenwasserstoffsäuren wie Fluorwasserstoff, Chlorwasserstoff, Bromwasserstoff und Jodwasserstoff, Schwefelsäure, Phosphorsäure und Salpetersäure.

Als organische Säuren kommen beispielsweise Ameisensäure, Kohlensäure, und Alkansäuren, wie Essigsäure, Trifluoressigsäure, Trichloressigsäure und Propionsäure, sowie Glycolsäure, Milchsäure, Bernsteinsäure, Zitronensäure, Benzoesäure, Zimtsäure, Oxalsäure, p-Toluolsulfonsäure, Salizylsäure, p-Aminosalizylsäure, 2-Phenoxybenzoesäure und 2-Acetoxybenzoesäure in Betracht.

10

15

20

Als Metallionen kommen insbesondere die Ionen der Elemente der ersten bis achten Nebengruppe, insbesondere Chrom, Mangan, eisen, Kobalt, Nickel, Kupfer, Zink und daneben der zweiten Hauptgruppe, insbesondere Calcium und Magnesium, der dritten und vierten Hauptgruppe, insbesondere Aluminium, Zinn und Blei in Betracht. Die Metallionen können dabei gegebenenfalls in verschiedenen ihnen zukommenden Wertigkeiten vorliegen.

Bevorzugt setzt man bei der Bereitstellung der Mischungen die reinen Wirkstoffe I und II ein, denen man je nach Bedarf weitere Wirkstoffe gegen Schadpilze oder andere Schädlinge wie Insekten, Spinntiere oder Nematoden, oder auch herbizide oder wachstumsregulierende Wirkstoffe oder Düngemittel beimischen kann.

Als weitere Wirkstoffe im voranstehenden Sinne kommen insbesondere Fungizide ausgewählt aus der folgenden Gruppe in Frage:

25

- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyprodinil,
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
 - Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimenol, Triflumizol, Triticonazol,
 - Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
 - Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,

- Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Picobenzamid, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
- Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,
- Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl
- Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- 10 Schwefel

5

15

25

35

- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Phosphorige Säure, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
- Strobilurine wie Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- 20 Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid
 - Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

In einer Ausführungsform der erfindungsgemäßen Mischungen werden den Verbindungen I und II ein weiteres Fungizid III oder zwei Fungizide III und IV beigemischt.

Mischungen der Verbindungen I und II mit einer Komponente III sind bevorzugt. Besonders bevorzugt sind Mischungen der Verbindungen I und II.

Die Verbindung I und die Verbindung II werden üblicherweise in einem Gewichtsverhältnis von 100:1 bis 1:100, vorzugsweise 20:1 bis 1:20, insbesondere 10:1 bis 1:10 angewandt.

Die Komponenten III und ggf. IV werden gewünschtenfalls im Verhältnis von 20:1 bis 1:20 zu der Verbindung I zugemischt.

Die Aufwandmengen der erfindungsgemäßen Mischungen liegen je nach Art der Verbindung und des gewünschten Effekts bei 5 g/ha bis 1000 g/ha, vorzugsweise 50 bis 900 g/ha, insbesondere 50 bis 750 g/ha.

Die Aufwandmengen für die Verbindung I liegen entsprechend in der Regel bei 1 bis 1000 g/ha, vorzugsweise 10 bis 900 g/ha, insbesondere 20 bis 750 g/ha.

Die Aufwandmengen für die Verbindung II liegen entsprechend in der Regel bei 1 bis 1000 g/ha, vorzugsweise 10 bis 500 g/ha, insbesondere 40 bis 350 g/ha.

Bei der Saatgutbehandlung werden im allgemeinen Aufwandmengen an Mischung von 1 bis 1000 g/100 kg Saatgut, vorzugsweise 1 bis 200 g/100 kg, insbesondere 5 bis 100 g/100 kg verwendet.

10

15

20

25

30

35

5

Das Verfahren zur Bekämpfung von Schadpilzen erfolgt durch die getrennte oder gemeinsame Applikation der Verbindung I und der Verbindung II oder der Mischungen aus der Verbindung I und der Verbindung II durch Besprühen oder Bestäuben der Samen, der Pflanzen oder der Böden vor oder nach der Aussaat der Pflanzen oder vor oder nach dem Auflaufen der Pflanzen. Bevorzugt erfolgt die Applikation durch Besprühen der Blätter.

Die erfindungsgemäßen Mischungen, bzw. die Verbindungen I und II können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure,

Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylaikoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

9

10

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubmittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% der Wirkstoffe. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

10

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

A) Wasserlösliche Konzentrate (SL)

10 Gew.-Teile der Wirkstoffe werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

B) Dispergierbare Konzentrate (DC)

20 Gew.-Teile der Wirkstoffe werden in Cyclohexanon unter Zusatz eines Dispergier mittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.

C) Emulgierbare Konzentrate (EC)

15 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

D) Emulsionen (EW, EO)

40 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

E) Suspensionen (SC, OD)

25 20 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG) 50 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP)
75 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

11

2. Produkte für die Direktapplikation

H) Stäube (DP)

5 Gew.Teile der Wirkstoffe werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubmittel.

I) Granulate (GR, FG, GG, MG)

0.5 Gew-Teile der Wirkstoffe werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

J) ULV- Lösungen (UL)

10 Gew.-Teile der Wirkstoffe werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

15

20

10

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubmitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-,
Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber
auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

5

10

25

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide. Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel werden üblicherweise zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt.

Die Verbindungen I und II, bzw. die Mischungen oder die entsprechenden Formulierungen werden angewendet, indem man die Schadpilze, die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge der Mischung, bzw. der Verbindungen I und II bei getrennter Ausbringung, behandelt. Die Anwendung kann vor oder nach dem Befall durch die Schadpilze erfolgen.

Die fungizide Wirkung der Verbindung und der Mischungen lässt sich durch folgende 15 Versuche zeigen:

Die Wirkstoffe wurden getrennt oder gemeinsam als eine Stammlösung aufbereitet mit 25 mg Wirkstoff, welcher mit einem Gemisch aus Aceton und/oder DMSO und dem Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis 20 ethoxylierter Alkylphenole) im Volumen-Verhältnis Lösungsmittel-Emulgator von 99 zu 1 ad 10 ml aufgefüllt wurde. Anschließend wurde ad 100 ml mit Wasser aufgefüllt. Diese Stammlösung wurde mit dem beschriebenen Lösungsmittel-Emulgator-Wasser Gemisch zu der unten angegeben Wirkstoffkonzentration verdünnt. Alternativ dazu wurden die Wirkstoffe als handelsübliche Fertigformulierung verwendet und mit Wasser auf die angegebene Wirkstoffkonzentration verdünnt.

Anwendungsbeispiel - Wirksamkeit gegen die Netzfleckenkrankheit der Gerste verursacht durch Pyrenophora teres bei 5 Tag protektiver Anwendung

30 Blätter von in Töpfen gewachsenen Gerstenkeimlingen wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht, 5 Tage nach der Applikation wurden die Versuchspflanzen mit einer wässrigen Sporensuspension von Pyrenophora [syn. Drechslera] teres, dem Erreger der Netzfleckenkrankheit inokuliert. Anschließend wurden die Versuchspflanzen im Gewächshaus bei Temperaturen 35 zwischen 20 und 24°C und 95 bis 100 % relativer Luftfeuchtigkeit aufgestellt. Nach 6 Tagen wurde das Ausmaß der Krankheitsentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.

Die visuell ermittelten Werte für den Prozentanteil befallener Blattflächen wurden in Wirkungsgrade als % der unbehandelten Kontrolle umgerechnet:

Der Wirkungsgrad (W) wird nach der Formel von Abbot wie folgt berechnet:

5

$$W = (1 - \alpha/\beta) \cdot 100$$

- α entspricht dem Pilzbefall der behandelten Pflanzen in % und
- β entspricht dem Pilzbefall der unbehandelten (Kontroll-) Pflanzen in %

10

Bei einem Wirkungsgrad von 0 entspricht der Befall der behandelten Pflanzen demjenigen der unbehandelten Kontrollpflanzen; bei einem Wirkungsgrad von 100 weisen die behandelten Pflanzen keinen Befall auf.

- Die zu erwartenden Wirkungsgrade für Wirkstoffkombinationen wurden nach der Colby-Formel (Colby, S. R. (Calculating synergistic and antagonistic responses of herbicide Combinations", Weeds, <u>15</u>, S. 20 - 22, 1967) ermittelt und mit den beobachteten Wirkungsgraden verglichen.
- 20 Colby Formel:

$$E = x + y - x \cdot y/100$$

- E zu erwartender Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Mischung aus den Wirkstoffen A und B in den Konzentrationen a und b
- x der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs A in der Konzentration a
- y der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs B in der Konzentration b

30

Tabelle A -- Einzelwirkstoffe

Beispiel	Wirkstoff / Mischungsverhältnis	Wirkstoffkonzentration in der Spritzbrühe [ppm]	Wirkungsgrad in % der unbehandelten Kontrolle
1	Kontrolle (unbehandelt)	-	(90 % Befall)
	•	4	33
2	1	1	· 0
		0,25	0

Beispiel	Wirkstoff /	Wirkstoffkonzentration	Wirkungsgrad in % der
Deispiei	Mischungsverhältnis	in der Spritzbrühe [ppm]	unbehandelten Kontrolle
		4	56
3	IIA.11	1	33
		0,25	0 .

Tabelle B – erfindungsgemäße Mischungen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
4	l + II.A.11 4 + 1 ppm 4:1	94	56
5	I + II.A.11 4 + 4 ppm 1:1	97	70
6	I + II.A.11 1 + 1 ppm 1:1	78	33
7	I + II.A.11 1 + 4 ppm 1:4	94	56
8	I + II.A.11 0,25 + 1 ppm 1:4	56	33

^{*)} berechneter Wirkungsgrad nach der Colby-Formel

Aus den Ergebnissen der Versuche geht hervor, dass die erfindungsgemäßen Mischungen aufgrund des starken Synergismus in allen Mischungsverhältnissen deutlich besser wirksam sind, als nach der Colby-Formel vorausberechnet.

Patentansprüche

1. Fungizide Mischungen zur Bekämpfung von pflanzenpathogenen Schadpilzen, enthaltend

5

1) das Triazolopyrimidinderivat der Formel I,

und

10 2) ein Anilid der Formel II.

in der die Variablen folgende Bedeutungen haben:

15

- Ar Phenyl oder ein fünf- oder sechsgliedriger aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, wobei die Cyclen unsubstituiert sind oder durch eine bis drei Gruppen R¹ substituiert sein können:
 - R¹ Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;

20

25

- R Phenyl, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Halogenalkoxy;
- Q Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Halogenalkoxy;

in einer synergistisch wirksamen Menge.

2. Fungizide Mischungen gemäß Anspruch 1, enthaltend als Anilid eine Verbindung der Formeln IIA.1 oder IIB.1;

15

20

in denen R¹ jeweils gleich oder verschieden sein kann und für Methyl und Halogenmethyl und R für Alkyl steht.

5 3. Fungizide Mischungen gemäß einem der Ansprüche 1 oder 2, enthaltend als Anilid Penthiopyrad der Formel IIA.11

- 4. Fungizide Mischungen gemäß einem der Ansprüche 1 bis 3, enthaltend die Verbindung der Formel I und die Verbindung der Formel II in einem Gewichtsverhältnis von 100:1 bis 1:100.
 - 5. Mittel, enthaltend einen flüssigen oder festen Trägerstoff und eine Mischung gemäß einem der Ansprüche 1 bis 4.
 - 6. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, deren Lebensraum oder die vor Pilzbefall zu schützenden Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge der Verbindung I und der Verbindung II gemäß Anspruch 1 behandelt.
 - Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man die Verbindungen I und II gemäß Anspruch 1 gleichzeitig, und zwar gemeinsam oder getrennt, oder nacheinander ausbringt.
- 8. Verfahren nach Ansprüchen 6 oder 7, dadurch gekennzeichnet, dass man die Verbindungen I und II gemäß Anspruch 1 oder die Mischungen gemäß einem der Ansprüche 1 bis 4 in einer Menge von 5 g/ha bis 1000 g/ha aufwendet.
- 9. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass man die Verbindungen I und II gemäß Anspruch 1 oder die Mischung gemäß einem der Ansprüche 1 bis 4 in einer Menge von 1 bis 1000 g/100 kg Saatgut anwendet.

10. Saatgut, enthaltend die Mischung gemäß einem der Ansprüche 1 bis 4 in einer Menge von 1 bis 1000 g/100 kg.

17

Verwendung der Verbindungen I und II gemäß Anspruch 1 zur Herstellung eines
 zur Bekämpfung von Schadpilzen geeigneten Mittels.