0.1 Introduksjon

Algebra er matematikk der bokstaver representerer tall. Dette gjør at vi lettere kan jobbe med generelle tilfeller. For eksempel er $3 \cdot 2 = 2 \cdot 3$ og $6 \cdot 7 = 7 \cdot 6$, men disse er bare to av de uendelig mange eksemplene på at multiplikasjon er kommutativ! En av hensiktene med algebra er at vi ønsker å gi ett eksempel som forklarer alle tilfeller, og siden sifrene våre (0-9) er uløselig knyttet til bestemte tall, bruker vi bokstaver for å nå dette målet.

Verdien til tallene som er representert ved bokstaver vil ofte variere ut ifra en sammenheng, og da kaller vi disse bokstavtallene for **variabler**. Hvis bokstavtallene derimot har en bestemt verdi, kaller vi dem for **konstanter**.

I $Del\ I$ av boka har vi sett på regning med konkrete tal, likevel er de fleste reglene vi har utledet generelle; de gjelder for alle tall. På side 1-6 har vi gjengitt mange av disse reglene på en mer generell form. En fin introduksjon til algebra er å sammenligne reglene du finner her med slik du finner dem 1 i $Del\ I$.

0.1 Addisjon er kommutativ (??)

$$a+b=b+a$$

$$7 + 5 = 5 + 7$$

0.2 Multiplikasjon er kommutativ (??)

$$a\cdot b=b\cdot a$$

 $^{^1\}mathrm{Reglene}$ sine nummer i Del~Istår i parentes.

Eksempel 1	$9 \cdot 8 = 8 \cdot 9$	
Eksempel 2	$8 \cdot a = a \cdot 8$	

Ganging med bokstavuttrykk

Når man ganger sammen bokstaver, er det vanlig å utelate gangetegnet. Og om man ganger sammen en bokstav og et konkret tal, skriver man det konkrete tallet først. Dette betyr for eksempel at

$$a \cdot b = ab$$

og at

$$a \cdot 8 = 8a$$

I tillegg skriver vi også

$$1 \cdot a = a$$

Det er også vanlig å utelate gangetegn der parentesuttrykk er en faktor:

$$3 \cdot (a+b) = 3(a+b)$$

0.3 Brøk som omskriving av delestykke (??)

$$a:b=\frac{a}{b}$$

Eksempel

$$a:2=\frac{a}{2}$$

0.4 Brøk ganget med brøk (??)

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{2}{11} \cdot \frac{13}{21} = \frac{2 \cdot 13}{11 \cdot 21} = \frac{26}{231}$$

$$\frac{3}{b} \cdot \frac{a}{7} = \frac{3a}{7b}$$

0.5 Deling med brøk (??)

$$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

Eksempel 1

$$\frac{1}{2} : \frac{5}{7} = \frac{1}{2} \cdot \frac{7}{5}$$

Eksempel 2

$$\frac{a}{13} : \frac{b}{3} = \frac{a}{13} \cdot \frac{3}{b}$$
$$= \frac{3a}{13b}$$

0.6 Ganging med parentes (distributiv lov) (??)

Eksempel 1

$$(2+a)b = 2b + ab$$

Eksempel 2

$$a(5b-3) = 5ab - 3a$$

0.7 Ganging med negative tall I(??) = $-(a \cdot b)$

Eksempel 1

$$3 \cdot (-4) = -(3 \cdot 4)$$
$$= -12$$

Eksempel 2
$$(-a) \cdot 7 = -(a \cdot 7)$$
$$= -7a$$

0.8 Ganging med negative tall II
$$(??)$$
 $(-a) \cdot (-b) = a \cdot b$

Eksempel 1
$$(-2) \cdot (-8) = 2 \cdot 8$$

$$= 16$$

Eksempel 2
$$(-a) \cdot (-15) = 15a$$

Språkboksen

Hvis vi i et uttrykk har én variabel isolert på den ene siden av likhetstegnet, og konstanter og variabler på den andre siden, sier vi at den isolerte variabelen er **uttrykt ved** de andre tallene. For eksempel, om vi har uttrykket a = 2b - 4, sier vi at "a er uttrykt ved b". Har vi uttrykket q = 9y - x, sier vi at "q er uttrykt ved x og y".

Utvidelser av reglene

Noe av styrken til algebra er at vi kan lage oss kompakte regler som det er lett å utvide også til andre tilfeller. La oss som et eksempel finne et annet uttrykk for

$$(a+b+c)d$$

Regel 0.6 forteller oss ikke direkte hvordan vi kan regne mellom parentesuttrykket og d, men det er ingenting som hindrer oss i å omdøpe a+b til k:

$$a + b = k$$

Da er

$$(a+b+c)d = (k+c)d$$

Av regel 0.6 har vi nå at

$$(k+c)d = kd + cd$$

Om vi setter inn igjen uttrykket for k, får vi

$$kd + cd = (a+b)d + cd$$

Ved å utnytte regel 0.6 enda en gang kan vi skrive

$$(a+b)d + cd = ad + bc + cd$$

Altså er

$$(a+b+c)d = ad + bc + cd$$

Obs! Dette eksempelet er ikke ment for å vise hvordan man skal gå fram når man har uttrykk som ikke direkte er omfattet av regel 0.1-0.8, men for å vise hvorfor det alltid er nok å skrive regler med færrest mulige ledd, faktorer og lignende. Oftest vil man bruke utvidelser av reglene uten engang å tenke over det, og i alle fall langt ifra så pertentlig som det vi gjorde her.

0.2 Potenser

$$\operatorname{grunntal} \longrightarrow 2^3 \! \longleftarrow \operatorname{eksponent}$$

En potens består av et **grunntall** og en **eksponent**. For eksempel er 2^3 en potens med grunntall 2 og eksponent 3. En positiv, heltalls eksponent sier hvor mange eksemplar av grunntallet som skal ganges sammen, altså er

$$2^3 = 2 \cdot 2 \cdot 2$$

0.9 Potenstall

 a^n er et potenstall med grunntall a og eksponent n.

Hvis n er et naturlig tall, vil a^n svare til n eksemplar av a multiplisert med hverandre.

$$5^3 = 5 \cdot 5 \cdot 5$$
$$= 125$$

$$c^4 = c \cdot c \cdot c \cdot c$$

$$(-7)^2 = (-7) \cdot (-7)$$

$$a^1 = a$$

Språkboksen

Vanlige måter å si 2^3 på er

- "2 i tredje"
- "2 opphøyd i 3"

I programmeringsspråk brukes gjerne symbolet ^ eller symbolene ** mellom grunntall og eksponent.

 $\hbox{\normalfont\AA}$ opphøye et tall i 2 kalles "å kvadrere" tallet.

Merk

De kommende sidene vil inneholde regler for potenser med tilhørende forklaringer. Selv om det er ønskelig at de har en så generell form som mulig, har vi i forklaringene valgt å bruke eksempel der eksponentene ikke er variabler. Å bruke variabler som eksponenter ville gitt mye mindre leservennlige uttrykk, og vi vil påstå at de generelle tilfellene kommer godt til synes også ved å studere konkrete tilfeller.

0.10 Ganging med potenser

$$a^m \cdot a^n = a^{m+n} \tag{1}$$

Eksempel
$$1$$

$$3^5 \cdot 3^2 = 3^{5+2} = 3^7$$

$$b^4 \cdot b^{11} = b^{3+11} = b^{14}$$

$$a^{5} \cdot a^{-7} = a^{5+(-7)}$$
$$= a^{5-7}$$
$$= a^{-2}$$

(Se regel 0.13 for hvordan en potens med negativ eksponent kan tolkes.)

0.10 Ganging med potenser (forklaring)

La oss se på tilfellet

$$a^2 \cdot a^3$$

Vi har at

$$a^2 = a \cdot a$$

$$a^3 = a \cdot a \cdot a$$

Med andre ord kan vi skrive

$$a^{2} \cdot a^{3} = \underbrace{a^{2} \cdot a \cdot a \cdot a}_{a \cdot a \cdot a \cdot a}$$
$$= a^{5}$$

0.11 Divisjon med potenser

$$\frac{a^m}{a^n} = a^{m-n}$$

$$\frac{3^5}{3^2} = 3^{5-2} = 3^3$$

$$\frac{2^4 \cdot a^7}{a^6 \cdot 2^2} = 2^{4-2} \cdot a^{7-6}$$
$$= 2^2 a$$
$$= 4a$$

0.11 Divisjon med potenser (forklaring)

La oss undersøke brøken

$$\frac{a^5}{a^2}$$

Vi skriver ut potensene i teller og nevner:

$$\frac{a^5}{a^2} = \frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a}$$
$$= \frac{\alpha \cdot \alpha \cdot a \cdot a \cdot a}{\alpha \cdot \alpha}$$
$$= a \cdot a \cdot a$$
$$= a^3$$

Dette kunne vi ha skrevet som

$$\frac{a^5}{a^2} = a^{5-2}$$
$$= a^3$$

0.12 Spesialtil
fellet a^0

$$a^0 = 1$$

Eksempel 1
$$1000^0 = 1$$

Eksempel 2
$$(-b)^0 = 1$$

0.12 Spesialtilfellet a^0 (forklaring)

Et tall delt på seg selv er alltid lik 1, derfor er

$$\frac{a^n}{a^n} = 1$$

Av dette, og regel 0.11, har vi at

$$1 = \frac{a^n}{a^n}$$

$$= a^{n-n}$$

$$= a^0$$

0.13 Potens med negativ eksponent

$$a^{-n} = \frac{1}{a^n}$$

Eksempel 1

$$a^{-8} = \frac{1}{a^8}$$

Eksempel 2

$$(-4)^{-3} = \frac{1}{(-4)^3} = -\frac{1}{64}$$

0.13 Potens med negativ eksponent (forklaring)

Av regel 0.12 har vi at $a^0 = 1$. Altså er

$$\frac{1}{a^n} = \frac{a^0}{a^n}$$

Av regel 0.11 er

$$\frac{a^0}{a^n} = a^{0-n}$$
$$= a^{-n}$$

0.14 Brøk som grunntall

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \tag{2}$$

Eksempel 1

$$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2} = \frac{9}{16}$$

Eksempel 2

$$\left(\frac{a}{7}\right)^3 = \frac{a^3}{7^3} = \frac{a^3}{343}$$

0.14 Brøk som grunntall (forklaring)

La oss studere

$$\left(\frac{a}{b}\right)^3$$

Vi har at

$$\left(\frac{a}{b}\right)^3 = \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b}$$
$$= \frac{a \cdot a \cdot a}{b \cdot b \cdot b}$$
$$= \frac{a^3}{b^3}$$

0.15 Faktorer som grunntall

$$(ab)^m = a^m b^m (3)$$

Eksempel 1
$$(3a)^5 = 3^5 a^5$$

= $243a^5$

Eksempel 2
$$(ab)^4 = a^4b^4$$

0.15 Faktorer som grunntall (forklaring)

La oss bruke $(a\cdot b)^3$ som eksempel. Vi har at

$$(a \cdot b)^3 = (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b)$$
$$= a \cdot a \cdot a \cdot b \cdot b \cdot b$$
$$= a^3 b^3$$

0.16 Potens som grunntall
$$(a^m)^n = a^{m \cdot n}$$
 (4)

Eksempel 1
$$\left(c^4\right)^5 = c^{4\cdot 5}$$

$$= c^{20}$$

Eksempel 2
$$\left(3^{\frac{5}{4}} \right)^8 = 3^{\frac{5}{4} \cdot 8}$$

$$= 3^{10}$$

0.16 Potens som grunntall (forklaring)

La oss bruke $(a^3)^4$ som eksempel. Vi har at

$$\left(a^3\right)^4 = a^3 \cdot a^3 \cdot a^3 \cdot a^3$$

Av regel 0.10 er

$$a^{3} \cdot a^{3} \cdot a^{3} \cdot a^{3} = a^{3+3+3+3}$$

$$= a^{3\cdot 4}$$

$$= a^{12}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Symbolet $\sqrt{}$ kalles et **rottegn**. For eksponenten $\frac{1}{2}$ er det vanlig å utelate 2 i rottegnet:

$$a^{\frac{1}{2}} = \sqrt{a}$$

Eksempel

Av regel 0.16 har vi at

$$\left(a^b\right)^{\frac{1}{b}} = a^{b \cdot \frac{1}{b}}$$
$$= a$$

For eksempel er

$$9^{\frac{1}{2}} = \sqrt{9} = 3$$
, siden $3^2 = 9$

$$125^{\frac{1}{3}} = \sqrt[3]{125} = 5$$
, siden $5^3 = 125$

$$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
, siden $2^4 = 16$

Språkboksen

 $\sqrt{9}$ kalles "kvadratrota til 9"

 $\sqrt[5]{9}$ kalles "femterota til 9".

0.3 Irrasjonale tall

0.18 Irrasjonale tall

Et tall som ikke er et rasjonalt tall, er et irrasjonalt tall¹.

Verdien til et irrasjonalt tall har uendelig mange desimaler med et ikke-repeterende mønster.

Eksempel 1

 $\sqrt{2}$ er et irrasjonalt tall.

 $\sqrt{2} = 1.414213562373...$

¹Strengt tatt er irrasjonale tall alle *reelle* tall som ikke er rasjonale tall. Men for å forklare hva *reelle* tall er, må vi forklare hva *imaginære* tall er, og det har vi valgt å ikke gjøre i denne boka.