- 1. Многочлен $P \in \mathbb{Z}[x]$ равен 1 в трёх различных целых точках. Докажите, что у него нет ни одного целого корня.
- 2. Докажите, что для любого непостоянного многочлена $P \in \mathbb{N}[x]$ найдется такое целое число k, что все числа P(k), $P(k+1),\ldots,P(k+2025)$ будут составными.
- 3. Пусть a,b,c различные целые числа, а $P\in\mathbb{Z}[x]$. Докажите, что равенства $P(a)=b,\,P(b)=c,\,P(c)=a$ не могут выполняться одновременно.
- 4. На графике многочлена с целыми коэффициентами отмечены две целые точки. Докажите, что, если расстояние между ними целое число, то соединяющий их отрезок параллелен оси абсцисс.
- 5. Докажите, что для каждого непостоянного многочлена $P \in \mathbb{Z}[x]$ найдётся многочлен $Q \in \mathbb{Z}[x]$, такой что многочлен P(Q(x)) приводи́м над \mathbb{Z} .
- 6. Докажите, что для любого непостоянного многочлена $P \in \mathbb{Z}[x]$ множество простых делителей его значений в целых точках бесконечно.
- 7. Дан многочлен $P(x) = ax^2 + bx + c$, $a \neq 0$. Докажите, что для любого $n \in \mathbb{N}$ существует не больше одного многочлена Q(x) степени n, удовлетворяющего при всех $x \in \mathbb{R}$ равенству Q(P(x)) = P(Q(x)).
- 8. Даны многочлены $f, g \in \mathbb{Z}[x]$, такие что для каждого $n \in \mathbb{N}$ верно равенство $a_n = \text{HOД}(f(n), g(n)) < 2019$. Докажите, что последовательность (a_n) периодична.
- 9. Дан многочлен $P(x) = x^2 2019$. Докажите, что не существует функции $f \colon \mathbb{R} \to \mathbb{R}$, удовлетворяющей при всех $x \in \mathbb{R}$ равенству f(f(x)) = P(x).
- 10. Пусть $P \in \mathbb{Z}[x]$ многочлен степени n>1, а $k\in\mathbb{N}$. Рассмотрим многочлен $Q_k(x)=P(P(\dots P(P(x))\dots))$ (P применён k раз). Докажите, что существует не более n целых чисел t, при которых $Q_k(t)=t$.