Notes

Kerwann

January 14, 2021

1 Plummer model

Consider a Plummer model (Dejonghe, H.1987, MNRAS 224, 13) with potential with units r_s the Plummer scale radius (which sets the size of the cluster core), M the total mass of the cluster and $\bar{\tau}$ some unit time. Let ψ_s be defined by

$$\psi_{\rm s} = \frac{GM}{r_{\rm s}},\tag{1}$$

for the central potential

$$\psi(r) = \frac{\psi_{\rm s}}{\sqrt{1+r^2}}.\tag{2}$$

Let use fix $G=1\,r_{\rm s}^3.M^{-1}.\bar{\tau}^{-2}$ in the new units so that $\psi_{\rm s}=1\,r_{\rm s}^2\cdot\bar{\tau}^{-2}$. This fixes the time unit $\bar{\tau}$, as we have the relation. Therefore, in those units the potential (per unit mass) is given by

$$\psi(r) = \frac{1}{\sqrt{1+r^2}}.\tag{3}$$

Define, given a radius r, the angular momentum $L(r, v_{\rm r}, v_{\rm t})$ and binding energy per unit mass $E(r, v_{\rm r}, v_{\rm t})$, functions of the radial velocity $v_{\rm r}$ and the tangential velocity $v_{\rm t} \geq 0$ (defined as $\boldsymbol{v} = \boldsymbol{v}_{\rm r} + \boldsymbol{v}_{\rm t} = v_{\rm r} \hat{\boldsymbol{r}} + \boldsymbol{v}_{\rm t}$), as

$$E(r, v_{\rm r}, v_{\rm t}) = \psi(r) - \frac{1}{2}v_{\rm r}^2 - \frac{1}{2}v_{\rm t}^2, L(r, v_{\rm r}, v_{\rm t}) = r \cdot v_{\rm t},$$
(4)

whose Jacobian is

$$\operatorname{Jac}_{(r,v_r,v_t)\to(r,E,L)} = \begin{pmatrix} \frac{\partial E}{\partial v_r} & \frac{\partial E}{\partial v_t} \\ \frac{\partial L}{v_{ar}} & \frac{\partial L}{\partial v_t} \end{pmatrix} = \begin{pmatrix} -v_r & -v_t \\ 0 & r \end{pmatrix} \Rightarrow |\operatorname{Jac}| = r|v_r|.$$
 (5)