Métodos para Redução de Dimensionalidade

Stanley Robson de M. Oliveira

Necessidade,

- Necessidade, motivação e aplicações.
- Principais Abordagens:

Índice da Aula

□ Redução de dimensão:

- Extração de atributos (não-Supervisionada);
- Seleção de atributos (Supervisionada).
- Métodos para extração de atributos:
 - Análise de Componentes Principais (PCA);
 - Projeção Aleatória (Random Projection);
 - Multidimensional Scaling (MS);
 - Decomposição do Valor Singular (SVD);
 - Latent Semantic Indexing (LSI).

AP-532: Preparação de Dados para Mineração de Dados – Aula 10 (Parte1/2)

2

Por que redução de dimensão?

- Muitas técnicas de aprendizado de máquina e mineração de dados podem não ser eficientes para dados com alta dimensionalidade:
 - A maldição da dimensionalidade.
 - A precisão e a eficiência de uma consulta degradam rapidamente à medida em que a dimensão aumenta.
- □ A dimensão intrínseca pode ser menor.
 - Muitos atributos são irrelevantes.
 - **Exemplo**: o número de genes responsáveis por um certo tipo de doença pode ser menor.

Por que redução de dimensão? ...

- Visualização: projeção de dados com alta dimensionalidade em 2D ou 3D.
- □ Compressão de dados: eficiência no armazenamento e recuperação.
- Remoção de ruído: efeito positivo na acurácia de modelos e de consultas.

Motivação

- Quando a dimensionalidade aumenta, os dados tornamse progressivamente esparsos no espaço em que ocupam.
- Definição de distância entre pontos, que é critica para agrupamento e detecção de outliers, torna-se menos significativa.
- A análise de dados pode ficar muito cara se todos os atributos forem considerados.

- 500 pontos gerados aleatoriamente.
- Cálculo da diferença entre a distância max e min para os pares de pontos.

AP-532: Preparação de Dados para Mineração de Dados – Aula 10 (Parte1/2)

5

Motivação ...

- □ Os alvos principais do processo de redução de dimensionalidade são:
 - Melhorar a performance dos algoritmos de aprendizado de máquina.
 - Simplificar os modelos de predição e reduzir o custo computacional para "rodar" esses modelos.
 - Fornecer um melhor entendimento sobre os resultados encontrados, uma vez que existe um estudo prévio sobre o relacionamento entre os atributos.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

6

Aplicações

- □ Relacionamento com clientes (CRM).
- Mineração e/ou processamento de textos.
- □ Recuperação de informação em banco de imagens.
- Análise de dados de microarrays.
- □ Classificação de proteínas.
- Reconhecimento de face.
- □ Aplicações com dados meteorológicos.
- Química combinatorial.
- ctc.

Classificação de documentos

Outros exemplos de aplicações

Reconhecimento de dígitos manuscritos

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

. .

Seleção de Atributos

□ IDEIA GERAL: Processo que escolhe um subconjunto ótimo de atributos de acordo com uma função objetivo.

□ Objetivos:

- Reduzir dimensionalidade e remover ruído.
- Melhorar a performance da mineração de dados:
 - Aumenta a velocidade do aprendizado.
 - □ Melhora a acurácia de modelos preditivos.
 - □ Facilita a compreensão dos resultados minerados.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

10

Extração de Atributos

- □ IDEIA GERAL: Ao invés de escolher um subconjunto de atributos, define novas dimensões em função de todos os atributos do conjunto original.
- Não considera o atributo classe, somente os atributos numéricos (vetores de dados).

Extração de Atributos ...

□ Ideia:

- Dado um conjunto de pontos no espaço d-dimensional,
- Projetar esse conjunto de pontos num espaço de menor dimensão, preservando ao máximo as informações dos dados originais.
- Em particular, escolher uma projeção que minimize o erro quadrático na reconstrução dos dados originais.
- Principais Métodos:
 - □ Análise de Componentes Principais (PCA);
 - □ Projeção Aleatória (Random Projection);
 - Multidimensional Scaling (MS);
 - □ Decomposição do Valor Singular (SVD);
 - □ Latent semantic indexing (LSI).

Seleção versus Extração

■ Extração de atributos:

- Todos os atributos originais são usados.
- Os novos atributos são combinação linear dos atributos originais.

□ Seleção de atributos:

- Somente um subconjunto dos atributos originais são selecionados.
- □ Atributos contínuos versus discretos.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

13

Análise de Componentes Principais (PCA)

Análise de Componentes Principais

- Método para transformar variáveis correlacionadas em um conjunto de variáveis não-correlacionadas que melhor explica os relacionamentos entre os dados originais.
- Método para identificar as dimensões que exibem as maiores variações em um conjunto de dados.
- Método que possibilita encontrar a melhor aproximação dos dados originais usando um conjunto menor de atributos.

PCA: Ideia Geral

- A **linha verde** tem uma representação reduzida dos dados originais que **captura o máximo da variação** original dos dados.
- A segunda linha (azul), perpendicular à primeira (verde), captura menos variação nos dados originais.

PCA: Redução de Dimensão

- □ O alvo é encontrar uma **projeção** que capture a **maior variância** possível nos dados.
- De uma forma geral:
 - Encontrar os autovetores da matriz de covariância dos dados. Os autovetores definem o novo espaço.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

17

Autovalores e Autovetores

- □ Dado um operador linear T: $V \to V$, estamos interessados em um vetor $v \in V$ e um escalar $\lambda \in \Re$ tais que $T(v) = \lambda v$.
- Neste caso T(v) será um vetor de mesma "direção" que v, ou melhor, T(v) e v estão sobre a mesma reta suporte.
- Um autovalor de uma matriz $A_{n\times n}$ é um escalar λ tal que existe um vetor v ($n\tilde{a}o$ -nulo), com $Av = \lambda v$, onde v é chamado de autovetor de A associado a λ .
- □ Podemos encontrar os autovalores \(\lambda \) e autovetores \(\bar{v} \) pela função característica definida como:

$$p(\lambda) = det(A - \lambda I)$$
 onde:

- $--p(\lambda)$ é chamado de **polinômio característico** de A;
- / é a matriz identidade.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

18

Interpretação geométrica em \Re^2

- u é **autovetor** de T pois $\exists \lambda \in \Re / T(u) = \lambda u$.
- v não é autovetor de T pois $\nexists \lambda \in \Re / T(v) = \lambda v$.

Exemplo: Autovalores e Autovetores

- Calcular os **autovalores** e **autovetores** da matriz: $A = \begin{pmatrix} 4 & 5 \\ 2 & 1 \end{pmatrix}$
- T: $\Re^2 \rightarrow \Re^2$ $(x, y) \rightarrow (4x + 5y, 2x + y)$
- Cálculo dos autovalores: det $(A \lambda I) = 0$

$$\det(A - \lambda I) = \det\begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \det\begin{bmatrix} 4 - \lambda & 5 \\ 2 & 1 - \lambda \end{bmatrix}$$

- det $(A \lambda I) = 0 \Leftrightarrow (4 \lambda)(1 \lambda) 10 = 0 \Leftrightarrow \lambda^2 5\lambda 6 = 0$
- Os autovalores são $\lambda_1 = -1$ e $\lambda_2 = 6$.
- Para cada autovalor encontrado, resolvemos o sistema linear (A λI)v = 0. Os respectivos autovetores são: v₁ = (-1, 1) e v₂ = (5/2, 1).

Redução de Dimensão: PCA ...

- As componentes principais são vetores ortogonais.
- Minimizar o erro quadrático (Root Mean Square).
- RMS representa a diferença entre os pontos originais e os novos pontos calculados pela transformação.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

21

PCA: Algoritmo

■ Algoritmo PCA:

- X ← Matriz de dados (N x d), em que cada linha é um vetor x_n.
- X ← Em cada linha, subtrair a média x de cada elemento do vetor x_n em X.
- Σ ← matriz de covariância de X.
- Encontrar os autovalores e autovetores de Σ.
- PC's ← os K autovetores com os maiores autovalores.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

22

Algoritmo PCA no Matlab

```
% generate data
Data = mvnrnd([5, 5],[1 1.5; 1.5 3], 100);
figure(1); plot(Data(:,1), Data(:,2), '+');
%center the data
for i = 1:size(Data,1)
   Data(i, :) = Data(i, :) - mean(Data);
end

DataCov = cov(Data); %covariance matrix
[PC, variances, explained] = pcacov(DataCov); %eigen
% plot principal components
figure(2); clf; hold on;
plot(Data(:,1), Data(:,2), '+b');
plot(PC(1,1)*[-5 5], PC(2,1)*[-5 5], '-r')
plot(PC(1,2)*[-5 5], PC(2,2)*[-5 5], '-b'); hold off
% project down to 1 dimension
PcaPos = Data * PC(:, 1);
```

Qual é o número ideal de componentes?

- □ Verifique a distribuição dos autovalores.
- □ Selecione um número de autovetores que cubra 80-90% da variância.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

24

Exemplo: Dados sobre a eficiência de cana-de-açúcar para 20 municípios em SP, em 2002.

Municipio	Chuva	Tmax	Rad_Sol	Def_Hid	Prod	Eficiencia
Barretos	1347,8	30,2	18,8	391,6	91,5	0,02
Campinas	1335,2	28,1	18,2	354,6	89,9	0,72
Campos do Jordão	1494,6	26,0	18,2	339,2	84,0	0,01
Caraguatatuba	1558,0	28,2	17,9	327,4	87,0	0,40
Cubatão	1460,7	28,2	17,8	328,4	75,4	0,52
Franca	1415,3	28,6	18,7	391,4	90,3	0,82
Ilha Solteira	1198,7	31,0	18,8	382,9	101,2	0,50
Itanhaem	1456,0	28,3	17,9	325,2	84,5	0,72
Leme	1329,1	28,3	18,4	373,7	78,9	0,47
Limeira	1320,6	28,2	18,3	362,5	79,2	0,54
Ourinhos	1348,7	29,5	19,0	332,7	99,5	0,70
Paulínia	1329,3	28,1	18,2	358,6	78,5	0,35
Piracicaba	1318,3	28,3	18,3	356,2	84,9	0,75
Presidente Prudente	1349,7	29,9	18,8	333,8	109,4	0,03
Ribeirão Preto	1368,5	29,2	18,7	388,0	88,8	0,67
Rio Claro	1323,6	28,3	18,4	366,4	88,3	0,28
São João da Boa Vista	1352,6	27,8	18,4	387,2	86,1	0,68
São José do Rio Preto	1255,3	30,2	18,7	380,8	92,0	0,67
São Paulo	1417,2	27,8	17,9	334,5	79,1	0,02
Ubatuba	1614,2	28,0	17,9	336,2	80,5	0,03

Resultado da Análise (Minitab)

				•		
Análise de	autovalor	es e au	tovetore	s matriz	de corr	elação
Autovalor	3,3115 1	,1964 (7118	0,3769 0	,3075	0,0958
Proporção	0,552 0	,199 (,119	0,063 0	,051	0,016
Acumulado	0,552 0	,751	,870	0,933 0	,984	1,000
Variável	PC1	PC2	PC3	PC4	PC5	PC6
Chuva	-0,449	-0,235	0,126	-0,692	-0,492	-0,085
Tmax	0,458	-0,233	0,130	0,360	-0,759	-0,113
Rad_Sol	0,506	-0,139	-0,083	-0,390	0,255	-0,708
Defic_hidr	0,370	0,418	-0,600	-0,368	-0,238	0,369
Produtividade	0,403	-0,508	0,325	-0,272	0,239	0,585
Eficiencia	0,184	0,662	0,703	-0,177	-0,055	-0,003

É possível explicar **aproximadamente 90%** da variabilidade total observada nos dados com apenas **três componentes principais**:

```
Z_1 = -0.45 Chuva + 0.46 Tmax + 0.51 Rad_Sol + 0.37 Def_Hidr + 0.40 Prod + 0.18 Effc Z_2 = -0.24 Chuva - 0.23 Tmax - 0.14 Rad_Sol + 0.42 Def_Hidr - 0.51 Prod + 0.66 Effc Z_3 = 0.13 Chuva + 0.13 Tmax - 0.09 Rad_Sol - 0.60 Def_Hidr + 0.33 Prod + 0.70 Effc
```

Resultado da Análise (Minitab) ...

A Figura acima evidencia a importância das três primeiras componentes, em relação às demais (quanto maior é o autovalor, maior será a porcentagem de variação explicada pela componente correspondente).

Resultado da Análise (Minitab) ...

A Figura acima ilustra **geometricamente** como as **seis variáveis** do exemplo podem ser adequadamente representadas por **duas componentes principais** (Z_1 e Z_2).

Resultado da Análise (Minitab) ...

As duas componentes descrevem, de uma forma geral, características das cidades vizinhas que possuem climas e condições de cultivo semelhantes.

PCA: Descarte de Atributos ...

□ IDEIA GERAL:

- Executar PCA sobre uma matriz de correlação com p variáveis.
- Inicialmente, k variáveis são selecionadas (retidas).
- No final, (**p k**) variáveis serão descartadas.

PCA: Descarte de Atributos

□ Dados N vetores no espaço n-dimensional, encontrar $k \le n$ vetores ortogonais (componentes principais) que podem ser melhor usados para representar os dados.

■ Passos:

- Normalizar dados originais: todos atributos ficam na mesma faixa (intervalo).
- Calcular *k* vetores ortogonais, i.e., **componentes principais**.
- Cada vetor (original) é uma combinação linear dos k vetores (componentes principais).
- As componentes principais são ordenadas (ordem decrescente) representando a "significância" ou "força".
- Como as componentes s\(\tilde{a}\) o rdenadas, o tamanho dos dados pode ser reduzido eliminando-se as componentes fracas, i.e., aquelas com baixa vari\(\tilde{a}\) ncia.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

30

PCA: Descarte de Atributos ...

■ Algoritmo:

- Selecione o autovetor (componente) correspondente ao menor autovalor;
- Rejeite a variável com maior coeficiente (valor absoluto) na componente.
- O processo continua até que os (p k) menores autovalores sejam considerados.

Princípio para descarte de variáveis: uma componente com baixo autovalor é menos importante e, consequentemente, a variável que domina essa componente deve ser menos importante ou redundante.

PCA: Descarte de Atributos ...

- □ A escolha de **k** (variáveis retidas):
 - **Jolliffe (1972)** recomenda o *threshold* $\lambda_0 = 0.70$ depois de investigar vários conjuntos de dados;
 - Qualquer autovalor λ₀ ≤ 0.70 contribui muito pouco para a explicação dos dados.

Jolliffe, I. T. (1972). Discarding variables in principal component analysis I: artificial data. Appl. Statist., **21**, 160-173.

Jolliffe, I. T. (1973). Discarding variables in principal component analysis II: real data. Appl. Statist., **22**, 21-31.

AP-532: Preparação de Dados para Mineração de Dados – Aula 10 (Parte1/2)

PCA: Descarte de Atributos ...

Dataset: IRIS

Variáveis	Componentes Principais (Autovetores)						
	V1	V2	V3	V4			
sepallength	0.5224	-0.3723	0.7210	0.2620			
sepalwidth	-0.2634	-0.9256	-0.2420	-0.1241			
petallength	0.5813	-0.0211	-0.1409	-0.8012			
petalwidth	0.5656	-0.0654	-0.6338	0.5235			
Autovalor λ_i	2.91082	0.92122	0.14735	0.02061			
Proporção	0.7277	0.23031	0.03684	0.00515			
% acumulado	0.7277	0.95801	0.99480	1			

- ✓ Variáveis descartadas: petallength, sepallength.
- ✓ Variáveis retidas: sepalwidth, petalwidth.

AP-532: Preparação de Dados para Mineração de Dados - Aula 10 (Parte1/2)

34