Cas Kaggle: Mushroom classification

Rubén Simó Marín-1569391

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	 stalk- surface- below- ring	stalk- color- above- ring	stalk- color- below- ring	veil- type	veil- color	ring- number	ring- type	spore- print- color	population	habitat
0	р	x	s	n	t	р	f	С	n	k	 S	w	w	р	w	0	р	k	S	u
1	е	x	S	у	t	a	f	С	b	k	 S	w	w	р	w	0	р	n	n	g
2	е	b	S	w	t	- 1	f	С	b	n	 S	w	w	р	w	0	р	n	n	m
3	р	x	у	w	t	р	f	С	n	n	 S	w	w	р	w	0	р	k	s	u
4	е	x	s	g	f	n	f	W	b	k	 S	w	w	р	w	0	е	n	a	g
8119	e	k	S	n	f	n	a	С	b	У	 S	0	0	р	0	0	р	b	С	1
8120	e	x	S	n	f	n	a	С	b	У	 S	0	0	р	n	0	р	b	V	1
8121	е	f	S	n	f	n	a	С	b	n	 S	0	0	р	0	0	р	b	c	1
8122	р	k	у	n	f	у	f	С	n	b	 k	w	w	р	w	0	е	w	v	1
8123	е	x	s	n	f	n	a	С	b	У	 S	0	0	р	0	0	р	0	С	1

Tipus d'atributs:	
class	object
cap-shape	object
cap-surface	object
cap-color	object
bruises	object
odor	object
gill-attachment	object
gill-spacing	object
gill-size	object
gill-color	object
stalk-shape	object
stalk-root	object
stalk-surface-above-ring	object
stalk-surface-below-ring	object
stalk-color-above-ring	object
stalk-color-below-ring	object
veil-type	object
veil-color	object
ring-number	object
ring-type	object
spore-print-color	object
population	object
habitat	object
dtype: object	

Г	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment			gill- color	 stalk- surface- below- ring	stalk- color- above- ring	stalk- color- below- ring		veil- color	ring- number		spore- print- color	population	habitat
0	1	3	4	1	1	8	3	1	2	1	 4	8	8	1	3	2	6	1	4	5
1	2	3	4	10	1	1	3	1	1	1	 4	8	8	1	3	2	6	2	3	1
2	2	1	4	9	1	2	3	1	1	2	 4	8	8	1	3	2	6	2	3	3
3	1	3	3	9	1	8	3	1	2	2	 4	8	8	1	3	2	6	1	4	5
4	2	3	4	4	2	7	3	2	1	1	 4	8	8	1	3	2	2	2	1	1
8119	2	5	4	1	2	7	1	1	1	12	 4	5	5	1	2	2	6	3	2	2
8120	2	3	4	1	2	7	1	1	1	12	 4	5	5	1	1	2	6	3	5	2
8121	2	4	4	1	2	7	1	1	1	2	 4	5	5	1	2	2	6	3	2	2
8122	1	5	3	1	2	4	3	1	2	3	 3	8	8	1	3	2	2	8	5	2
8123	2	3	4	1	2	7	1	1	1	12	 4	5	5	1	2	2	6	6	2	2

Tipus d'atributs:

dtype: object

class	int64
cap-shape	int64
cap-surface	int64
cap-color	int64
bruises	int64
odor	int64
gill-attachment	int64
gill-spacing	int64
gill-size	int64
gill-color	int64
stalk-shape	int64
stalk-root	int64
stalk-surface-above-ring	int64
stalk-surface-below-ring	int64
stalk-color-above-ring	int64
stalk-color-below-ring	int64
veil-type	int64
veil-color	int64
ring-number	int64
ring-type	int64
spore-print-color	int64
population	int64
habitat	int64

2 4208 1 3916

Name: class, dtype: int64

```
sns.set(font_scale = 1.5)
fig, ax = plt.subplots()
labels = 'Edible', 'Poisonus'
ax.pie(perc, labels = labels, autopct='%1.1f%%')
ax.axis('equal')
plt.show()
```


Prepocessing (normalitzation, outlier removal, feature selection..)

<pre>dataset.isnull().sum()</pre>	
class	0
cap-shape	0
cap-surface	0
cap-color	0
bruises	0
odor	0
gill-attachment	0
gill-spacing	0
gill-size	0
gill-color	0
stalk-shape	0
stalk-root	0
stalk-surface-above-ring	0
stalk-surface-below-ring	0
stalk-color-above-ring	0
stalk-color-below-ring	0
veil-color	0
ring-number	0
ring-type	0
spore-print-color	0
population	0
habitat	0
dtype: int64	


```
class cap-shape cap-surface cap-color bruises odor \
    -1.036613 -0.545782
                           1.065669 -1.255302 -1.185917 1.115027
     0.964680 -0.545782
                           1.065669 1.357802 -1.185917 -2.413988
     0.964680 -2.764967
                           1.065669 1.067457 -1.185917 -1.909843
    -1.036613 -0.545782
                           0.217892 1.067457 -1.185917 1.115027
     0.964680 -0.545782
                           1.065669 -0.384267 0.843230 0.610882
                                          . . .
8119 0.964680 1.673403
                           1.065669 -1.255302 0.843230 0.610882
8120 0.964680 -0.545782
                           1.065669 -1.255302 0.843230 0.610882
8121 0.964680 0.563811
                           1.065669 -1.255302 0.843230 0.610882
8122 -1.036613 1.673403
                           0.217892 -1.255302 0.843230 -0.901553
8123 0.964680 -0.545782
                           1.065669 -1.255302 0.843230 0.610882
     gill-attachment gill-spacing gill-size gill-color ... \
0
            0.162896
                       -0.438864 1.494683 -1.415071 ...
1
            0.162896
                        -0.438864 -0.669038
                                             -1.415071 ...
2
            0.162896
                      -0.438864 -0.669038
                                             -1.115866 ...
                       -0.438864 1.494683
3
            0.162896
                                             -1.115866 ...
4
            0.162896
                      2.278612 -0.669038
                                             -1.415071 ...
. . .
8119
          -6.138869
                        -0.438864 -0.669038
                                             1.876178 ...
8120
          -6.138869
                      -0.438864 -0.669038
                                             1.876178 ...
8121
          -6.138869
                      -0.438864 -0.669038
                                             -1.115866 ...
8122
           0.162896
                       -0.438864 1.494683
                                             -0.816662 ...
8123
           -6.138869
                       -0.438864 -0.669038
                                             1.876178 ...
     stalk-surface-above-ring stalk-surface-below-ring \
0
                    0.615908
                                            0.660796
1
                    0.615908
                                            0.660796
2
                    0.615908
                                            0.660796
3
                    0.615908
                                            0.660796
4
                    0.615908
                                            0.660796
. . .
                      . . . .
8119
                    0.615908
                                            0.660796
8120
                    0.615908
                                            0.660796
8121
                    0.615908
                                            0.660796
8122
                    0.615908
                                           -0.488242
8123
                    0.615908
                                            0.660796
```

```
stalk-surface-above-ring stalk-surface-below-ring \
0
                   0.615908
                                           0.660796
                   0.615908
1
                                           0.660796
2
                   0.615908
                                           0.660796
                   0.615908
                                           0.660796
                   0.615908
                                           0.660796
8119
                   0.615908
                                          0.660796
8120
                   0.615908
                                          0.660796
8121
                   0.615908
                                          0.660796
8122
                   0.615908
                                          -0.488242
8123
                   0.615908
                                          0.660796
     stalk-color-above-ring stalk-color-below-ring veil-color ring-number \
0
                  0.724622
                                       0.732112 0.142037
                                                           -0.256132
1
                  0.724622
                                       0.732112
                                                 0.142037
                                                            -0.256132
                  0.724622
                                       0.732112 0.142037
                                                           -0.256132
3
                  0.724622
                                       0.732112 0.142037
                                                           -0.256132
                 0.724622
                                       0.732112 0.142037
                                                           -0.256132
                  . . . .
                                          ... ...
                                                              . . . .
8119
                 -0.674783
                                      -0.634961 -3.979055
                                                           -0.256132
8120
                 -0.674783
                                                           -0.256132
                                      -0.634961 -8.100146
                                      -0.634961 -3.979055
8121
                 -0.674783
                                                           -0.256132
                                      0.732112 0.142037
                                                            -0.256132
8122
                 0.724622
                                     -0.634961 -3.979055
8123
                 -0.674783
                                                           -0.256132
     ring-type spore-print-color population habitat
   0.948081
                      -1.083856 -0.514389 0.307811
0
   0.948081
                      -0.729891 -1.313108 -1.272882
1
   0.948081
                      -0.729891 -1.313108 -0.482535
2
3 0.948081
                      -1.083856 -0.514389 0.307811
   -1.272216
                      -0.729891 -2.910546 -1.272882
8119 0.948081
                      -0.375925 -2.111827 -0.877709
8120 0.948081
                      -0.375925 0.284330 -0.877709
8121 0.948081
                      -0.375925 -2.111827 -0.877709
8122 -1.272216
                      1,393903 0,284330 -0,877709
8123 0.948081
                       0.685972 -2.111827 -0.877709
[8124 rows x 22 columns]
```

Cross-validation

Cross-validation k-fold

Cross-validation sufflesplit

Leave-one-out

```
# escollir la millor K per al nostre problema

folds = range(2,15)

def evaluatemodel(cv, standar):
    x = standar[:,[8]]
    y = standar[:,9]
    lab = preprocessing.LabelEncoder()
    y_transformed = lab.fit_transform(y)

    logReg = LogisticRegression()
    scores = cross_val_score(logReg, x, y_transformed, scoring='accuracy', cv=cv, n_jobs=-1)
    return mean(scores), scores.min(), scores.max()

for k in folds:
    cv = KFold(n_splits=k, shuffle=True, random_state=10)
    k_mean, k_min, k_max = evaluatemodel(cv, standardized)
    print('-> folds=%d, accuracy=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max))
```

```
-> folds=2, accuracy=0.374 (0.366,0.382)
-> folds=3, accuracy=0.374 (0.363,0.385)
-> folds=4, accuracy=0.374 (0.364,0.382)
-> folds=5, accuracy=0.374 (0.363,0.385)
-> folds=6, accuracy=0.374 (0.360,0.387)
-> folds=7, accuracy=0.374 (0.357,0.397)
-> folds=8, accuracy=0.374 (0.360,0.390)
-> folds=9, accuracy=0.374 (0.353,0.405)
-> folds=10, accuracy=0.374 (0.347,0.400)
-> folds=11, accuracy=0.374 (0.347,0.400)
-> folds=12, accuracy=0.374 (0.340,0.399)
-> folds=13, accuracy=0.374 (0.342,0.403)
-> folds=14, accuracy=0.374 (0.349,0.407)
```

Metric Analysis

Accuracy_score

F1_score

Average_precision_score

```
# PR Curve and Roc Curve functions
from sklearn.metrics import f1_score, precision_recall_curve, average precision_score, roc_curve, auc
def PRCurve(y_v,probs, n_classes):
   precision = {}
   recall = {}
   average precision = {}
   plt.figure()
   for i in range(n classes):
       precision[i], recall[i], _ = precision_recall_curve(y_v == i, probs[:, i])
       average_precision[i] = average_precision_score(y_v == i, probs[:, i])
       plt.plot(recall[i], precision[i],
       label='Precision-recall curve of class {0} (area = {1:0.2f})'
                              ''.format(i, average precision[i]))
       plt.xlabel('Recall')
       plt.ylabel('Precision')
       plt.legend(loc="upper right")
def RocCurve(y_v, probs, n_classes):
   fpr = {}
   tpr = \{\}
   roc_auc = {}
   for i in range(n classes):
       fpr[i], tpr[i], _ = roc_curve(y_v == i, probs[:, i])
       roc_auc[i] = auc(fpr[i], tpr[i])
   # Compute micro-average ROC curve and ROC area
   # Plot ROC curve
   plt.figure()
   for i in range(n classes):
       plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i]))
   plt.legend()
```

LOGISTIC REGRESION

Logistic Regression Score: 0.4073846153846154 Logistic Regression Cross Val Score: 0.42791292993776225

963 Errores de clasificacion de un total de 1625 662 Aciertos de clasificacion de un total de 1625

Confusion matrix:

COI	Hus	TOIL	IIIa CI	TV:								
]]	1	15	0	0	1	0	0	40	0	0	25	0]
[8	19	0	0	4	0	4	51	0	0	110	7]
[0	0	325	0	0	0	0	0	0	0	0	0]
[4	7	0	56	25	0	0	46	0	0	0	0]
[8	16	2	59	33	4	0	23	0	0	12	0]
[0	0	0	0	0	0	0	3	0	0	0	0]
[0	0	0	0	0	0	1	0	0	0	0	11]
[10	24	4	59	40	0	0	84	0	0	106	0]
[3	3	1	0	2	0	0	9	0	0	83	0]
[0	0	0	0	0	0	0	0	0	8	14	0]
[6	31	2	1	4	4	0	59	0	6	123	0]
[1	0	0	4	0	0	1	1	0	0	0	12]]

Logistic Regression F1 Score: 0.4073846153846154

NEAREST K NEIGHBORS

k=1: 920.109 errores de clasificación de un total de 1625 k=2: 920.096 errores de clasificación de un total de 1625 k=3: 927.693 errores de clasificación de un total de 1625 k=4: 933.55 errores de clasificación de un total de 1625 k=5: 933.705 errores de clasificación de un total de 1625 k=6: 935.644 errores de clasificación de un total de 1625 k=7: 938.564 errores de clasificación de un total de 1625 k=8: 940.675 errores de clasificación de un total de 1625 k=9: 942.616 errores de clasificación de un total de 1625 k=10: 944.828 errores de clasificación de un total de 1625

Nearest K Neighbour Score: 0.4006153846153846 Nearest K Neighbour Cross Val Score: 0.4136011889924456

974 Errores de clasificacion de un total de 1625 651 Aciertos de clasificacion de un total de 1625

Confusion matrix:

[[32 18 0 10 9 0 0 9 0 0 4 0]
[28 51 0 19 12 0 2 44 19 0 24 4]
[0 0 325 0 0 0 0 0 0 0 0 0 0 0]
[14 4 0 40 46 0 0 22 3 0 9 0]
[17 11 0 52 46 4 0 16 0 0 11 0]
[0 0 0 0 1 0 0 0 0 0 0 2 0]
[0 3 0 0 0 0 4 0 0 0 0 2 0]
[29 50 0 60 48 0 0 75 22 0 43 0]
[0 28 0 0 2 0 0 42 14 0 15 0]
[0 0 0 0 0 0 0 0 1 1 7 13 0]
[13 35 2 3 21 4 0 71 17 16 54 0]
[0 4 0 2 1 0 2 1 0 0 6 3]

Nearest K Neighbour F1 Score: 0.4006153846153846

SVM with rbf kernel Score: 0.4024615384615385

SVM with rbf kernel Cross Val Score: 0.4314517704002638

971 Errores de clasificacion de un total de 1625 654 Aciertos de clasificacion de un total de 1625

Confusion matrix:

]]	0		0	0	5	0	0	38	0	0	29	0]
[0	6	0	0	6	0	0	47	6	0	127	11]
[0	0	325	0	0	0	0	0	0	0	0	0]
[0	0	0	49	32	0	0	55	0	0	2	0]
[0	18	2	71	20	4	0	23	5	0	14	0]
[0	0	0	0	0	0	0	0	0	0	3	0]
[0	0	0	0	0	0	0	0	0	0	0	12]
[0	3	4	67	35	0	0	82	3	0	133	0]
[0	2	1	0	2	0	0	3	1	0	92	0]
[0	0	0	0	0	0	0	0	0	0	22	0]
[0	13	2	1	0	4	0	54	0	0	162	0]
[0	0	0	4	0	0	0	0	0	0	6	9]]

SVM with rbf kernel F1 Score: 0.4024615384615385

SVM Linear Score: 0.4086153846153846

SVM Linear Cross Val Score: 0.4312980189282621

961 Errores de clasificacion de un total de 1625 664 Aciertos de clasificacion de un total de 1625

Confusion matrix:

]]	0	14	0	0	0	0	0	36	0	0	32	0]
[1	20	4	0	0	0	4	48	0	0	119	7]
[0	0	325	0	0	0	0	0	0	0	0	0]
[0	7	0	63	18	0	0	50	0	0	0	0]
[7	12	2	67	23	4	0	23	0	0	19	0]
[0	0	0	0	0	0	0	3	0	0	0	0]
[0	0	0	0	0	0	1	0	0	0	0	11]
[8	29	5	71	27	0	0	78	0	0	109	0]
[3	3	3	0	0	0	0	0	0	0	92	0]
[0	0	0	0	0	0	0	0	0	10	12	0]
[5	27	2	1	4	4	0	49	0	12	132	0]
[0	0	0	4	0	0	1	2	0	0	0	12]]

SVM Linear F1 Score: 0.4086153846153846

Nearest K Ne.	Nearest K Neighbour precision	_	-
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9	class 6 0.50 class 7 0.27 class 8 0.18 class 9 0.30 class 10 0.30	class 1 0.25 0.25 class 2 0.99 1.00 class 3 0.22 0.29 class 4 0.25 0.29 class 5 0.00 0.00 class 6 0.50 0.33 class 7 0.27 0.23 class 8 0.18 0.14 class 9 0.30 0.32 class 10 0.30 0.23	class 1 0.25 0.25 0.25 class 2 0.99 1.00 1.00 class 3 0.22 0.29 0.25 class 4 0.25 0.29 0.27 class 5 0.00 0.00 0.00 class 6 0.50 0.33 0.40 class 7 0.27 0.23 0.25 class 8 0.18 0.14 0.16 class 9 0.30 0.32 0.31 class 10 0.30 0.23 0.26
	0.25 0.99 0.22 0.25 0.00 0.50 0.27 0.18 0.30	0.25 0.25 0.99 1.00 0.22 0.29 0.25 0.29 0.00 0.00 0.50 0.33 0.27 0.23 0.18 0.14 0.30 0.32 0.30 0.23	0.25 0.25 0.99 1.00 0.22 0.29 0.25 0.29 0.26 0.29 0.27 0.00 0.50 0.33 0.27 0.23 0.18 0.14 0.30 0.32 0.30 0.23 0.26

SVM				
	precision	recall	f1-score	support
class 0	0.00	0.00	0.00	82
class 1	0.12	0.03	0.05	203
class 2	0.97	1.00	0.99	325
class 3	0.26	0.36	0.30	138
class 4	0.20	0.13	0.16	157
class 5	0.00	0.00	0.00	3
class 6	0.00	0.00	0.00	12
class 7	0.27	0.25	0.26	327
class 8	0.07	0.01	0.02	101
class 9	0.00	0.00	0.00	22
class 10	0.27	0.69	0.39	236
class 11	0.28	0.47	0.35	19
accuracy			0.40	1625
macro avg	0.20	0.24	0.21	1625
weighted avg	0.35	0.40	0.36	1625

Hyperparameter Search

Exhaustive Grid Search

Randomized Parameter Optimization

Bayesian optimization search

```
# GridSearchCV
from sklearn.model_selection import GridSearchCV

parameters = {'kernel':('linear', 'rbf'), 'C':[0,0.2,0.5,0.75,1,1.25,1.5], 'gamma':[0.09,0.08,0.07,0.1]}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters)
search = clf.fit(x_train,y_train)
print("GridSearchCV: ", search.best_params_)

# RandomizedSearchCV
from sklearn.model_selection import RandomizedSearchCV

clf = RandomizedSearchCV(svc, parameters, random_state=0)
search = clf.fit(x_train,y_train)
print("RandomizedSearchCV: ", search.best_params_)

GridSearchCV: {'C': 0.5, 'gamma': 0.07, 'kernel': 'rbf'}
RandomizedSearchCV: {'kernel': 'linear', 'gamma': 0.09, 'C': 1.25}
```

Comparativa de models

Correct classification Logistic 0.5 % of the data: 0.3380108321024126 Correct classification SVM 0.5 % of the data: 0.3380108321024126 Correct classification Logistic 0.7 % of the data: 0.33305988515176377 Correct classification SVM 0.7 % of the data: 0.33305988515176377 Correct classification Logistic 0.8 % of the data: 0.3686153846153846 Correct classification SVM 0.8 % of the data: 0.3464615384615385

