Multiple Tensor Times Matrix computation

Suraj Kumar

Inria & ENS Lyon Email: suraj.kumar@inria.fr

CR12: October 2023

https://surakuma.github.io/courses/daamtc.html

Tucker decomposition of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

It represents a tensor with d matrices (usually orthonormal) and a small core tensor.

Tucker decomposition of a 3-dimensional tensor.

$$\mathcal{A} = \mathcal{G} \times_1 U_1 \cdots \times_d U_d$$

$$\mathcal{A}(i_1, \cdots, i_d) = \sum_{\alpha_1=1}^{r_1} \cdots \sum_{\alpha_d=1}^{r_d} \mathcal{G}(\alpha_1, \cdots, \alpha_d) U_1(i_1, \alpha_1) \cdots U_d(i_d, \alpha_d)$$

It can be concisely expressed as $\mathcal{A} = [\![\mathcal{G}; U_1, \cdots, U_d]\!]$.

Here r_j for $1 \le j \le d$ denote a set of ranks. Matrices $U_j \in \mathbb{R}^{n_j \times r_j}$ for $1 \le j \le d$ are usually orthonormal and known as factor matrices. The tensor $\mathfrak{G} \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}$ is called the core tensor.

High Order SVD (HOSVD) for computing a Tucker decomposition

Algorithm 1 HOSVD method to compute a Tucker decomposition

Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, desired rank (r_1, \cdots, r_d)

Ensure:
$$A = 9 \times_1 U_1 \times_2 U_2 \cdots \times_d U_d$$

- 1: **for** k = 1 to d **do**
- 2: $U_k \leftarrow r_k$ leading left singular vectors of $A_{(k)}$
- 3: end for
- 4: $\mathfrak{G} = \mathcal{A} \times_1 U_1^\mathsf{T} \times_2 U_2^\mathsf{T} \cdots \times_d U_d^\mathsf{T}$

- When r_i < rank(A_(i)) for one or more i, the decomposition is called the truncated-HOSVD (T-HOSVD)
- The collective operation $\mathcal{A} \times_1 U_1^\mathsf{T} \times_2 U_2^\mathsf{T} \cdots \times_d U_d^\mathsf{T}$ is known as Multiple Tensor-Times-Matrix (Multi-TTM) computation

Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

- This method is more work efficient than T-HOSVD
- In each step, it reduces the size of one dimension of the tensor

Algorithm 2 ST-HOSVD method to compute a Tucker decomposition

Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, desired rank (r_1, \cdots, r_d)

Ensure: $[\![\mathcal{G};U_1,\cdots,U_d]\!]$: a (r_1,\cdots,r_d) -rank Tucker decomposition of \mathcal{A}

- 1: $\mathfrak{B} \leftarrow \mathcal{A}$
- 2: **for** k = 1 to d **do**
- 3: $U_k \leftarrow r_k$ leading singular vectors of $B_{(k)}$
- 4: $\mathfrak{B} \leftarrow \mathfrak{B} \times_k U_k$
- 5: end for
- 6: $\mathfrak{G} = \mathfrak{B}$

We can note that ST-HOSVD also performs Multi-TTM computation by doing a sequence of TTM operations, i.e, $\mathfrak{G} = ((\mathcal{A} \times_1 U_1) \times_2 U_2) \cdots \times_d U_d$.

Bottlenecks for algorithms to compute Tucker decompositions

Multi-TTM becomes the overwhelming bottleneck computation when

- Matrix SVD costs are reduced using randomization via sketching or
- U_k are computed with eigen value decompositions of $B_{(k)}B_{(k)}^T$

Multi-TTM computation

Let $\mathcal{Y} \in \mathbb{R}^{r_1 \times \cdots \times r_d}$ be the output tensor, $\mathcal{X} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be the input tensor, and $A^{(k)} \in \mathbb{R}^{n_k \times r_k}$ be the matrix of the kth mode. Then the Multi-TTM computation can be represented as

$$\mathcal{Y} = \mathcal{X} \times_1 \mathsf{A}^{(1)^\mathsf{T}} \cdots \times_d \mathsf{A}^{(d)^\mathsf{T}}$$

or $\mathcal{X} = \mathcal{Y} \times_1 \mathsf{A}^{(1)} \cdots \times_d \mathsf{A}^{(d)}$.

We will focus only on the first representation in this course. Our results and analysis extend straightforwardly to the latter case.

Two approaches to perform this computation:

TTM-in-Sequence approach – performed by a sequence of TTM operations

$$\mathcal{Y} = ((\mathcal{X} \times_1 \mathsf{A}^{(1)^\mathsf{T}}) \times_2 \mathsf{A}^{(2)^\mathsf{T}}) \cdots \times_d \mathsf{A}^{(d)^\mathsf{T}}$$

All-at-once approach

$$\mathfrak{Y}(r'_1,\ldots,r'_d) = \sum_{\{n'_k \in [n_k]\}_{k \in [d]}} \mathfrak{X}(n'_1,\ldots,n'_d) \prod_{j \in [d]} \mathsf{A}^{(j)}(n'_j,r'_j)$$

Final assignment – deadline Oct 24

Question: Let $\mathcal{Y} \in \mathbb{R}^{r \times r \times r \times r}$, $\mathcal{X} \in \mathbb{R}^{n \times n \times n \times n}$ and $A \in \mathbb{R}^{n \times r}$. What are the different approaches to perform the following Multi-TTM computation:

$$\mathcal{Y} = \mathcal{X} \times_1 A^\mathsf{T} \times_2 A^\mathsf{T} \times_3 A^\mathsf{T} \times_4 A^\mathsf{T}$$

Compute the exact number of arithmetic operation for each approach.

Table of Contents

Parallel Multi-TTM computation

Settings to compute parallel communication lower bound

- Without loss of generality, we assume that $n_1r_1 \leq n_2r_2 \leq \cdots \leq n_dr_d$
- The input tensor is larger than the output tensor, i.e., $n \ge r$
- \bullet The algorithm load balances the computation each processor performs 1/Pth number of loop iterations
- One copy of data is in the system
 - There exists a processor whose input data at the start plus output data at the end must be at most $\frac{n+r+\sum_{j=1}^d n_i r_j}{p}$ words will analyze amount of data transfers for this processor

Table of Contents

- Parallel Multi-TTM computation
 - 3-dimensional Multi-TTM
 - d-dimensional Multi-TTM

Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:

$$\min_{x,y,z} x + y + z$$
 such that

$$\frac{nr}{P} \leq xyz, \quad 0 \leq \ x \ \leq n_1r_1, \quad 0 \leq \ y \ \leq n_2r_2, \quad 0 \leq \ z \ \leq n_3r_3,$$

where $n_1r_1 \le n_2r_2 \le n_3r_3$, and $n_1, n_2, n_3, r_1, r_2, r_3, P \ge 1$. The optimal solution (x^*, y^*, z^*) depends on the relative values of the constraints, yielding three cases:

- ① if $P < \frac{n_3 r_3}{n_2 r_2}$, then $x^* = n_1 r_1$, $y^* = n_2 r_2$, $z^* = \frac{n_3 r_3}{P}$;
- ② if $\frac{n_3 r_3}{n_2 r_2} \le P < \frac{n_2 n_3 r_2 r_3}{n_1^2 r_1^2}$, then $x^* = n_1 r_1$, $y^* = z^* = \left(\frac{n_2 n_3 r_2 r_3}{P}\right)^{\frac{1}{2}}$;
- **3** if $\frac{n_2 n_3 r_2 r_3}{n_1^2 r_1^2} \le P$, then $x^* = y^* = z^* = \left(\frac{nr}{P}\right)^{\frac{1}{3}}$;

which can be visualized as follows.

Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:

$$\min_{u,v} u + v$$
 such that

$$\frac{nr}{P} \leq uv, \quad 0 \leq u \leq r, \quad 0 \leq v \leq n,$$

where $n \ge r$, and $n, r, P \ge 1$. The optimal solution (u^*, v^*) depends on the relative values of the constraints, yielding two cases:

1 if
$$P < \frac{n}{r}$$
, then $u^* = r$, $v^* = \frac{n}{P}$;

2 if
$$\frac{n}{r} \le P$$
, then $u^* = v^* = \left(\frac{nr}{P}\right)^{\frac{1}{2}}$;

which can be visualized as follows.

$$u^* = r$$

$$v^* = \frac{n}{P}$$

$$u^* = v^* = \left(\frac{nr}{P}\right)^{1/2}$$

Both lemma can be proved using the KKT conditions.

Table of Contents

- Parallel Multi-TTM computation
 - 3-dimensional Multi-TTM
 - d-dimensional Multi-TTM