TOWARDS AN ASSESSMENT OF FAULT-TOLERANT DESIGN PRINCIPLES FOR SOFTWARE

Dave E. Eckhardt, Jr. NASA Langley Research Center NASA Computer Science / Data Systems Technical Symposium

April 16-18, 1985

FAULT-TOLERANT SOFTWARE

error detection and isolation, system recovery, and continued service. Dissimilar, redundant software structured to reduce the probability of system failure duc to software faults. Techniques address

Stand-By |
units |
Acceptance test and rollback

Stand-By Sparing Recovery Block

HARDWARE: N-Modular Redundancy SOFTWARE: N-Version Programming

FAULT-TOLERANT SYSTEMS BRANCH: SOFTWARE RESEARCH SUPPORTED BY THE COMPUTER SCIENCE PROGRAM

DESIGN:

- Investigation of fault-tolerant software for	SIFT operating system (Brunelle, NASA LaRC)
OPERATING SYSTEMS	

Integration of control system—theoretic FDI Techniques (Caglayan, Charles River Analytics) SYSTEM THEORY

(ngo
(Wild,
software
FDI
generation of
- Automatic
~
TECHNOLOG
NEW

RELIABILITY ASSESSMENT:

XPERIMENTAL -	- Investigation of independence assumption
1	(Knight, UVA & Leveson, UCI) Investigation of test procedures for
S TAUCH	

Development of basis for analysing strategy of software redundancy (Eckhardt, Lee, NASA LaRC)

THE BASIS FOR FAULT-TOLERANT SOFTWARE

- errors will be randomly distributed among replicate codes. Software faults are assumed to be "independent" so that
- Currently, there are research efforts to analyse this fundamental assumption.

HOWEVER

- software to be effective at reducing failure probability. Independence is not strictly needed for fault-tolerant
- It is a mathematically convenient assumption used to project the reliability of software fault-tolerant structures.

ASSESSING FAULT-TOLERANT SOFTWARE

If software errors are not randomly distributed, what is the impact on reliability?

Current state of the art does not provide answers. Consider:

- (1) is an N-Version system of highly reliable components always more effective at reducing failure probability than a single version of software (on average)? If not, what causes this?
- (2) What are the effects of different intensities of coincident errors on software redundancy?
- (3) What is the effect of increasing N? Is there a limit to the effectiveness of software redundancy?

 Might an optimum value of N exist?
- (4) Does the independence model provide a valid estimate of the failure probability of an N-Version system?
- (5) Under what condition does independence hold?

GOAL OF CURRENT RESEARCH

Assess strategy of software redundancy

- population concepts
- sampling, sample size
- inference

AS OPPOSED TO:

Assessing an instance of fault-tolerance - decide number of versions

- develop
- measure

QUANTITIES DESCRIBING COINCIDENT ERRORS MODEL

INPUT SPACE

CONDITIONAL PAILURE PROBABILITY	$Q(F) = \int v_1(x) dQ$	= Pr Cl fails }	Q = USAGE DISTRIBUTION	AVERAGE FAILURE PROBABILITY		$\mathbb{E}[\int V(x) \ dQ \] = \int \ \Theta(x) \ dQ$		
	V1(X)							
ĸ	0	-		0				
• ;		•		•				
•		•		-				
x1 x2 x3 · · · xk }	0	0		0				
%	_	0						
x 1	0	-		0	_		•	$\theta(\mathbf{x}_1)$
	င ¹	ري دي		ບັ		- ·		
		COMPONENT POPULATION						

INTENSITY DISTRIBUTION $G(y) = \int_{\{x \in B(x) \le u\}} dt$

INTENSITY FUNCTION
$$\Theta(x) = Pr\{ V(x) = 1 \}$$

$$E[V(x)] = \Theta(x)$$

N-VERSION WITH MAJORITY VOTE

SCORE FUNCTION

$$\mathbf{v}(\mathbf{x}) = \sum_{l=m}^{N} \sum_{all} \mathbf{v}_{i(1)}(\mathbf{x}) \dots \mathbf{v}_{l(1)}(\mathbf{x}) [1 - \mathbf{v}_{i(1+i)}(\mathbf{x})] \dots [1 - \mathbf{v}_{i(N)}(\mathbf{x})]$$
permutations, i

$$P_{N} = E[\int V(x) dQ]$$

COINCIDENT ERRORS MODEL

Under the conditions that:

- (1) components are selected from a random sample
- (2) inputs are selected from a common distribution

$$p_N = \int \sum_{l=n}^{N} {\binom{N}{l}} \theta(x)^l \left[1 - \theta(x)\right]^{N-l} dq$$

 $\theta(x)$ = Intensity Function

Q = Usage Distribution

$$= \int h(y;N) dG$$

$$h(y;N) = \sum_{l=m}^{N} {N \choose l} y^{l} [1-y]^{N-l}$$

$$G(y) = \int dQ = Intensity Distribution $\{x : \theta(x) \le y \}$$$

A DISCRETE INTENSITY DISTRIBUTION

Suppose $\theta(\mathbf{x}) = \theta_1$ for $\mathbf{x} \in A_1$ Where A_1, A_2, \dots, A_r is a partition of Ω Indexing so that $0 = \theta_1 < \theta_2 < \dots < \theta_r < 1$ $G(y) = \sum_{\{i: \theta_i \le y\}} Q(A_i) - \infty \le y \le \infty$

.98977

AVERAGE FAILURE PROBABILITY $\Sigma \theta g(\theta) = 2 \times 10^{-4}$ 512×10^{-5} 256×10^{-5} 1×10^{-5} 0 .01 .02 .0310
Intensity of coincident errors

(e.g. on .001% of inputs, expect 10% of population to produce error)

e,g

Under what condition does independence hold?

Under the assumption of a constant intensity the Coincident Errors Model implies the Independent Errors Model.

This constant is the average component failure probability (also the mean of the Intensity Distribution).

$$P = \int \Theta(x) dQ = \int y dG(y)$$
.

Does the Independence Model give a valid estimate of failure probability?

21

Z

On

S

What is the effect of shifting intensity mass probability to the right?
e.g.

		7 ~~
g3(0)	.00001	\$3 \$\frac{2}{\triangle}\$ 17
g ₂ (θ) .99999 .00001	\frac{1}{\sqrt{2}}	× × × × × × × × × × × × × × × × × × ×
g ₁ (θ) .99999 .00001	A A	
θ 0.05 1.0	40 d	10-8-1
	stem Failure}	

Is there a limit on the effectiveness of redundancy?

Under what condition is an N-Version strategy better than a single version choosen at random?

We say an N-Version strategy is better if $P_{\rm N} < P$

Where

$$P_N = \int \sum_{l=m}^{N} {N \choose l} \theta(x) (1-\theta(x))^{N-l} dq$$

$$= \int h(y;N) dG(y)$$

and

$$P = \int \Theta(x) dQ = \int y dG(y)$$

If the asymetry condition,

$$\int_{(y,y+\Delta]} dG \geq \int_{[1-y-\Delta,1-y)} dG$$

holds for y, $y+\Delta < .5$, then $P_N < P$.

In particular, the asymmetry condition holds whenever the Intensity Distribution is limited above by .5.

Might an optimum value of N exist?

A necessary condition for system degradation in the limit is a violation of asymetry condition.

RESULTS

- Provides a probabilistic framework for assessing strategy of redundant software.
- Provides foundation for experimental study of coincident errors.
- Permits an analytical study to increase understanding of impact of coincident errors.