3.3 SubGroups

To proceed further, we study the notion of subgroup of a given group. That is, if (G, *) is a group and H is a non-empty subset of G then under what condition is (H, *) a group in its own right (it is important to note that the binary operation is the same as that in G). Formally, we have the following definition.

Definition 3.3.1 (Subgroup). Let (G, *) be a group. Then a non-empty subset H of G is said to be a subgroup of G, if H itself forms a group with respect to the binary operation *.

- **Example 3.3.2.** 1. Let G be a group with identity element e. Then G and $\{e\}$ are themselves groups and hence they are subgroups of G. These two subgroups are called **trivial** subgroups.
 - 2. \mathbb{Z} , the set of integers, and \mathbb{Q} , the set of rational numbers, are subgroups of $(\mathbb{R}, +)$, the set of real numbers with respect to addition.
 - 3. The set $\{e, r^2, f, r^2f\}$ forms a subgroup of D_4 .
 - 4. Let $\sigma \in \mathcal{S}_4$. Then, using Theorem 3.1.7, we know that σ has a cycle representation. With this understanding it can be easily verified that the group D_4 is a subgroup of \mathcal{S}_4 .
 - 5. Consider $H = \{e, r, r^2, \dots, r^{n-1}\}$ as a subset of D_n . Then it can be easily verified that H is a subgroup of D_4 . This subgroup is also written as $\langle r \rangle$ to indicate that it is generated by the element r of D_4 .

Before proceeding further, let us look at the following two results which help us in proving "whether or not a given non-empty subset H of a group G is a subgroup of G"?

Theorem 3.3.3 (Subgroup Test). Let G be a group and let H be a non-empty subset of G. Then H is a subgroup of G if for each $a, b \in H$, $ab^{-1} \in H$.

Proof. As H is non-empty, we can find an $x \in H$. Therefore, for a = x and b = x, the condition $ab^{-1} \in H$ implies that $e = aa^{-1} \in H$. Thus, H has the identity element of G. Hence, for each $h \in H \subset G$, eh = h = he.

We now need to prove that for each $h \in H$, $h^{-1} \in H$. To do so, note that for a = e and b = h the condition $ab^{-1} \in H$ reduces to $h^{-1} = eh^{-1} \in H$.

As a third step, we show that H is closed with respect to the binary operation of G. So, let us assume that $x, y \in H$. Then by the previous paragraph, $y^{-1} \in H$. Therefore, for a = x and $b = y^{-1}$ the condition $ab^{-1} \in H$ implies that $xy = x(y^{-1})^{-1} \in H$. Hence, H is also closed with respect to the binary operation of G.

Finally, we see that since the binary operation of H is same as that of G and since associativity holds in G, it holds in H as well.

3.3. SUBGROUPS 81

We now give another result without proof that helps us in deciding whether a non-empty subset of a group is a subgroup or not.

Theorem 3.3.4. [Two-Step Subgroup Test] Let H be a non-empty subset of a group G. Then H is a subgroup if the two conditions given below hold.

- 1. For each $a, b \in H$, $ab \in H$ (i.e., H is closed with respect to the binary operation of G).
- 2. For each $a \in H$, $a^{-1} \in H$.

We now give a few examples to understand the above theorems.

Example 3.3.5. 1. Consider the group $(\mathbb{Z}, +)$. Then in the following cases, the given subsets do not form a subgroup.

- (a) Let $H = \{0, 1, 2, 3, ...\} \subset \mathbb{Z}$. Note that, for each $a, b \in H$, $a + b \in H$ and the identity element $0 \in H$. But H is not a subgroup of \mathbb{Z} , as for all $n \neq 0$, $-n \notin H$.
- (b) Let $H = \mathbb{Z} \setminus \{0\} = \{\ldots, -3, -2, -1, 1, 2, 3, \ldots\} \subset \mathbb{Z}$. Note that, the identity element $0 \notin H$ and hence H is not a subgroup of \mathbb{Z} .
- (c) Let $H = \{-1, 0, 1\} \subset \mathbb{Z}$. Then H contains the identity element 0 of \mathbb{Z} and for each $h \in H$, $h^{-1} = -h \in H$. But H is not a subgroup of \mathbb{Z} as $1 + 1 = 2 \notin H$.
- 2. Let G be an abelian group with identity e. Consider the sets $H = \{x \in G : x^2 = e\}$ and $K = \{x^2 : x \in G\}$. Then prove that both H and K are subgroups of G.

Proof. Clearly $e \in H$ and $\mathbf{e} \in K$. Hence, both H and K are non-empty subsets of G. We first show that H is a subgroup of G.

As H is non-empty, pick $x, y \in H$. Thus, $x^2 = e = y^2$. We will now use Theorem 3.3.3, to show that $xy^{-1} \in H$. But this is equivalent to showing that $(xy^{-1})^2 = e$. But this is clearly true as G is abelian implies that

$$(xy^{-1})^2 = x^2(y^{-1})^2 = e(y^2)^{-1} = e^{-1} = e.$$

Thus, H is indeed a subgroup of G by Theorem 3.3.3.

Now, let us prove that K is a subgroup of G. We have already seen that K is non-empty. Thus, we just need to show that for each $x, y \in K$, $xy^{-1} \in K$.

Note that $x, y \in K$ implies that there exists $a, b \in G$ such that $x = a^2$ and $y = b^2$. As $b \in G, b^{-1} \in G$. Also, $xy^{-1} = a^2(b^2)^{-1} = a^2(b^{-1})^2 = (ab^{-1})^2 \in K$ as G is abelian and $ab^{-1} \in G$. Thus, K is also a subgroup of G.

As a last result of this section, we prove that the condition of the above theorems can be weakened if we assume that H is a finite, non-empty subset of a group G.

Theorem 3.3.6. [Finite Subgroup Test] Let G be a group and let H be a non-empty finite subset of G. If H is closed with respect to the binary operation of G then H is a subgroup of G.

Proof. By Theorem 3.3.4, we just need to show that for each $a \in H$, $a^{-1} \in H$. If $a = e \in H$ then $a^{-1} = e^{-1} = e \in H$. So, let us assume that $a \neq e$ and $a \in H$. Now consider the set $S = \{a, a^2, a^3, \ldots, a^n, \ldots\}$. As H is closed with respect to the binary operation of G, $S \subset H$. But H has only finite number of elements. Hence, all these elements of S cannot be distinct. That is, there exist positive integers, say m, n with m > n, such that $a^m = a^n$. Thus, using Remark 3.1.2, one has $a^{m-n} = e$. Hence, $a^{-1} = a^{m-n-1}$ and by definition $a^{m-n-1} \in H$.