Miejsce na naklejkę z kodem

(Wpisuje zdający przed							
rozpoczęciem pracy)							
KOD	ZD	Δ.Τ	ΔC	EGC			

MMA-R2G1P-021

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Arkusz II

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze niebieskim lub czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 9. Podczas egzaminu można korzystać z tablic matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego.
- 10. Do ostatniej kartki arkusza dołączona jest **karta odpowiedzi**, którą **wypełnia egzaminator**.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 60 punktów

Życzymy powodzenia!

(Wpisuje zdający przed rozpoczęciem pracy)

PESEL ZDAJĄCEGO

ARKUSZ II

MAJ ROK 2003

2

Zadanie 12. *(5 pkt)*

Sprawdź, czy funkcja f określona wzorem

$$f(x) = \begin{cases} \frac{x(x-1)(x-2)}{x^2 - 3x + 2} & dla \ x \neq 1 \ i \ x \neq 2 \\ 1 & dla \ x = 1 \\ 3 & dla \ x = 2 \end{cases}$$

jest ciągła w punktach x = 1 i x = 2. Sformułuj odpowiedź.

Odpowiedź.

Zadanie 13. (3 pkt)

Niech Ω będzie zbiorem wszystkich zdarzeń elementarnych i $A \subset \Omega$, $B \subset \Omega$. Oblicz $P(A \cap B)$ wiedząc, że $P(A \cup B) = \frac{5}{8}$, $P(A) = \frac{1}{2}$, $P(B') = \frac{3}{4}$. Sprawdź, czy zdarzenia A i B są zdarzeniami niezależnymi ?

Zadanie 14. *(4 pkt)*

Odcinek \overline{CD} jest obrazem odcinka \overline{AB} w jednokładności o skali k < 0. Wiedząc, że A(-2,0), B(0,-2), C(3,4), D(7,0) wyznacz:

- a) równanie prostej przechodzącej przez punkt A i jego obraz w tej jednokładności,
- b) równanie prostej przechodzącej przez punkt B i jego obraz w tej jednokładności,
- c) współrzędne środka tej jednokładności.

Odpowiedź. a) Równania prostych mają postać

b) Środek jednokładności ma współrzędne

Zadanie 15. *(5 pkt)*

Dane są funkcje f, g i h określone wzorami : $f(x) = 2^x$, g(x) = -x, h(x) = x - 2, $x \in R$.

- a) Naszkicuj wykres funkcji f.
- b) Wyznacz wzór i naszkicuj wykres funkcji $f \circ g$.
- c) Wyznacz wzór i naszkicuj wykres funkcji $h \circ f \circ g$.

Wykres funkcji f.

Wykres funkcji $f \circ g$.

Wykres funkcji $h \circ f \circ g$.

Odpowiedź. Prawdopodobieństwo jest równe

Zadanie 17. (5 pkt)

Rozwiąż równanie $2\cos^2 x + 5\sin x - 4 = 0$.

Zadanie 18. *(5 pkt)*

W tabeli podane są wartości funkcji $f:(-3,4) \rightarrow \Re$ dla trzech argumentów.

3 0 \ ,			,		
	x	-2	0	3	
	f(x)	$3\frac{5}{8}$	$\frac{5}{8}$	-1	

Rysunek przedstawia wykres pochodnej funkcji f.

- a) Wyznacz równanie stycznej do wykresu funkcji f w punkcie o odciętej x = 0.
- b) Wyznacz ekstremum funkcji *f.* Podaj argument, dla którego funkcja *f* osiąga ekstremum.
- c) Podaj najmniejszą wartość funkcji f.

Odpowiedź. a) Równanie stycznej ma postać

- b) Funkcja f osiąga równe dla
- c) Najmniejsza wartość funkcji f jest równa

Zadanie 19. (4 pkt)

Funkcja f jest funkcją wykładniczą. Określ liczbę rozwiązań równania f(x-1) = m w zależności od wartości parametru m. Odpowiedź uzasadnij.

Zadanie 20. (6 pkt)

Udowodnij stosując zasadę indukcji matematycznej, że dla każdego całkowitego, dodatniego n zachodzi równość: $2+5+8+...+(3n-1)=\frac{3}{2}n^2+\frac{1}{2}n$.

Zadanie 21. (8 pkt)

W trójkącie ABC dane są : $|\overline{AC}| = 8$, $|\overline{BC}| = 3$, $|\angle ACB| = 60^{\circ}$. Oblicz objętość i pole powierzchni całkowitej bryły powstałej po obrocie trójkąta ABC dookoła boku \overline{BC} .

Zadanie 22. (10 pkt) Rozwiąż równanie $\log_3(\log_9 x) = \log_9(\log_3 x)$.

Brudnopis

Brudnopis