Differential Cohomology and Virasoro Central Extensions

Yu Leon Liu

Harvard University

April 3rd 2022

Based on [arXiv:2112.10837]

Joint work with Arun Debray and Christopher Weis

Table of Contents

Motivation

Virasoro groups and central extensions

Motivation

Virasoro groups is a \mathbf{R} family of central extension of $\mathrm{Diff}^+(S^1)$, the group of orientation preserving smooth automorphism of S^1 . The central extension is describe by the Bott-Thurston cocyle. The goal of this talk is to give a novel geometric description these central extensions, using differential cohomology. thus affirmativaly answering a conjecture of Freed-Hopkins.

Bott-Thurston cocycles

Recall that $\mathrm{Diff}^+(S^1)$ is the group of orientation preserving smooth automorphism of S^1 . It is an infinite-dimensional Frechet Lie group.

Bott-Thurston cocycles

Recall that $\mathrm{Diff}^+(S^1)$ is the group of orientation preserving smooth automorphism of S^1 . It is an infinite-dimensional Frechet Lie group.

Definition

The Virasoro group $\widetilde{\Gamma}_{\lambda}$, for $\lambda \in \mathbf{R}$, is a U(1) central extension of $\mathrm{Diff}^+(S^1)$, described by the Bott-Thurston cocycle

$$B_{\lambda}: \mathrm{Diff}^+(S^1) \times \mathrm{Diff}^+(S^1) \to U(1):$$

$$B_{\lambda}(\gamma_1, \gamma_2) = \exp\left(-\frac{i\lambda}{48\pi} \int_{S^1} \log(\gamma_1' \circ \gamma_2) \,\mathrm{d}(\log(\gamma_2))'\right) \tag{1}$$

for $\gamma_1, \gamma_2 \in \mathrm{Diff}^+(S^1)$, viewed as morphisms $S^1 \to S^1$.

Central Extensions

Let's briefly review what is a central extension:

Central Extensions

Let's briefly review what is a central extension:

Definition

Let G be a group and A be an abelian group, a central extension of G by A is a group \tilde{G} with short exact sequence:

$$0 \to A \to \tilde{G} \to G \to 1 \tag{2}$$

such that subgroup $A\subset \tilde{G}$ is in the center, that is, it commutes with every element of \tilde{G} .

Group cohomology

As many other things, central extensions can be classified by cohomology groups:

Group cohomology

As many other things, central extensions can be classified by cohomology groups:

Proposition

Let G be a discrete group, then the isomorphism class of central extensions of G by A is classified by group cohomology class $H^2(G; A)$.