高雄中學 107 學年度第二學期期末考二年級自然組數學科試題

一、單一選擇題:第1題至第3題,每題選出最適當的一個選項,將答案寫在答案卷上對應題號的空格內。

1. 直角坐標平面上,拋物線 $\Gamma: x^2 = 4y$ 的焦點為 F ,已知 Γ 上有一點 P 滿足 $\overline{PF}=4$,則 P 到直線 $L: y = -4$ 的距離為
(1)4 (2)5 (3)6 (4)7 (5)8 2. 直角坐標平面上,下列哪一個方程式的圖形可以放進一個夠大的橢圓裡面?
(1) $x^2 + 2y^2 = 1$ (2) $x^2 - 2y^2 = 1$ (3) $x = 1$ (4) $y^2 = x^2$ (5) $y = x^2$
3. 在坐標空間中,將連接 $(1,0,0)$ 與 $(0,0,1)$ 兩點的直線 L ,繞 z 軸旋轉而得一直圓錐面 Ω ,假設平面 E 的方程式為 $2019x+z=108$,則 Ω 與 E 相交所得的圖形為下列何者? (1) 拋物線 (2) 橢圓 (3) 雙曲線 (4) 一直線 (5) 兩相交直線
二、多重選擇題:第4題至第6題,每題有5個選項,其中至少有一個是正確的選項,將答案寫在答案卷上對應題號的空格內。
4. k 為實數,直角坐標平面上,考慮方程式 Γ : $kx^2 + 2kx + (1-k)y^2 = 0$ 的圖形,下列敘述何者為真?
(1) 若 k =2019,則 Γ 為雙曲線 (2) 若 0 < k <1,則 Γ 為橢圓 (3) 若 Γ 為兩平行直線,則 k =1 (4) 若 k =0,則 Γ 為一點 (5) 不論 k 之值為何, Γ 不可能為拋物線
5. 直角坐標平面上,自點 $P(2,0)$ 作圓 $C: x^2 + y^2 - 2x - 4y + 1 = 0$ 的兩條切線,分別切圓 C 於 $A \cdot B$ 兩點,下列敘述何者
正確?
(1) \overline{PA} = 1 (2) $\cos(\angle APB) = \frac{3}{5}$ (3) $\triangle PAB$ 的外接圓之直徑長為 $\sqrt{5}$
(4) 過點 $Q(3,2)$ 且與直線 PA 、直線 PB 均相切的圓有兩個,一個是圓 C ,另一個是圓 C' : $(x+3)^2 + (y-10)^2 = 100$
(5) 圓 C 上,與 P 點距離最遠的點為 $(1-\frac{2}{\sqrt{5}},2+\frac{4}{\sqrt{5}})$
6. 設二個實數常數 $a \cdot b$ 滿足 $a^2 > b^2 > 0$ 。在直角坐標平面上,有一直線 $L: ax + by = 0$,則下列各方程式的圖形中,何者
與 $oldsymbol{L}$ 恰交於兩相異點?
(1) $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ (2) $x^2 + y^2 = 1$ (3) $(x-a)^2 + (y-b)^2 = a^2$ (4) $\sqrt{(x-a)^2 + (y-b)^2} = \frac{ ax+by }{\sqrt{a^2 + b^2}}$
$(5)\sqrt{x^2 + (y - \sqrt{a^2 - b^2})^2} + \sqrt{x^2 + (y + \sqrt{a^2 - b^2})^2} = 2 a $
三、填充題:第7題至第18題為填充題,將答案寫在答案卷上對應題號的空格內。
7. 直角坐標平面上,圓 C 過 $A(1,2)$ 、 $B(3,-2)$ 二點,且 \overline{AB} 之弦心距為 $\sqrt{5}$,若圓 C 的圓心在第一象限,則圓 C 的圓心坐標
為。
8. 直角坐標平面上,拋物線 Γ 的頂點為 $(1,2)$,焦點為 $(-1,2)$,則拋物線 Γ 的方程式為。(答案以配方後的標準式表示)
9. 直角坐標平面上,橢圓 Γ 有一焦點 $(2+\sqrt{5},1)$,長軸的一頂點為 $(5,1)$,短軸長為 4 ,則橢圓 Γ 的方程式為 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$

10. 直角坐標平面上,雙曲線 Γ 的兩焦點為(0,6)、(0,-4),且 Γ 過點 $(\frac{16}{3},6)$,則雙曲線 Γ 的方程式為_____。(答案以配方後的標準式表示)

案以配方後的標準式表示)

- 11. 直角坐標平面上,求過點 A(4,2) 且與圓 $C:(x-1)^2+(y+2)^2=9$ 相切之直線方程式為_____。(答案展開化簡 成一般式)
- 12. 直角坐標平面上,有一橢圓 Γ_1 與一雙曲線 Γ_2 有共同的焦點 F_1 、 F_2 ,且 Γ_1 、 Γ_2 的正焦弦長皆相同。設P為此橢圓與雙 曲線的一個交點,且 $\overline{PF_1}$ =4、 $\overline{PF_2}$ =6,若「 Γ_1 的短軸長」是「 Γ_2 的共軛軸長」的k倍,求值: k=_______
- 13. 直角坐標平面上,已知雙曲線 Γ 的兩焦點為(-2,4)、(-2,-2),其一漸近線斜率為 $\frac{2}{\sqrt{5}}$,若點A(3,t)在 Γ 上,則A到兩焦點距 離差的絕對值為
- 14. 直角坐標平面上,滿足不等式 $(x-1)^2 + (|y|-1)^2 \le 2$ 的所有點(x,y)所形成之圖形的面積為
- 15. 史上最著名的隕石撞擊地球事件,是「希克蘇魯伯事件」:6500 萬年前直徑 10 公里的隕石猛烈撞擊現今墨西哥猶加敦 半島,導致地球氣候變遷,恐龍因而滅絕。隕石在接近地球時的拋物線速度一般約為每秒42公里,如果它迎頭撞上地球, 每秒速度高達72公里,天文學界在1990年代就開始組成專業團隊,監督天上的危險天體。

假設有一隕石接近地球,天文學家訂定一個直角坐標平面,算出此隕石軌跡為拋物線 $\Gamma: y^2 = 16x$,並於同一坐標平面 上,在地球外緣劃定一直線L:4x+3y+19=0做為警戒線,則 Γ 軌跡上的點到L的最短距離為

16. 哈雷彗星是著名的短周期彗星,每隔75年就能從地球上看見,下次預計西元2061年又能看到它。 哈雷彗星的軌道為一橢圓型,太陽為此橢圓的一焦點,其半長軸長約為 17.8AU(天文單位)、 半短軸長約為 4.19AU。

天文迷雄雄將其橢圓型軌道經縮小變形繪製於直角坐標平面上(參考右圖),使其方程式為

- 17. 直角坐標平面上,有一圓C過點A(1,0)且其圓心在拋物線 $y^2 = 2x 1$ 上,已知圓C上的所有點中,離y軸最遠的距離 為 $\frac{10}{\Omega}$,則過點A且與圓C相切的切線斜率為____。
- 18. 直角坐標平面上,點 $F_1(4,0)$ 、 $F_2(8,9)$, Γ 表雙曲線 $\frac{x^2}{4} \frac{y^2}{12} = 1$ 的圖形x > 0之部份。已知「與 Γ 有交點」且「以 F_1 、

 F_2 為焦點」的橢圓有無限多個,求這些橢圓中,正焦弦長的最小值為____。

高雄中學 107 學年度第二學期期末考二年級自然組數學科 答案卷

班級:二年_____组 座號:_____ 姓名:_____

依下列配分表計分。

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
總得分	8	16	23	32	40	48	56	60	64	68	72	76	80	84	88	92	96	100

1	(4)	2	(1)	3 (3)		4	(1)(3)(5)	
5	(1)(3)(4)(5)	6	(2)(5)	7	7 (4,1)		$(y-2)^2 = -8(x-1)$	
9	$\frac{(x-2)^2}{9} + \frac{(y-1)^2}{4} = 1$	10	$\frac{(y-1)^2}{9} - \frac{x^2}{16} = 1$	11	7x - 24y + 20 = 0	12	$\sqrt{5}$	
13	4	4 14		15	2	16	$\frac{4}{\sqrt{5}}$	
17.	$\pm \frac{4}{3}$	18.	24 11					