

SEQUENCE LISTING

<110> INCYTE GENOMICS, INC.
HILLMAN, Jennifer L.
LAL, Preeti
TANG, Y. Tom
YUE, Henry
AU-YOUNG, Janice
BANDMAN, Olga
AZIMZAI, Yalda
YANG, Junming
LU, Dyung Aina M.
BAUGHN, Mariah R.
PATTERSON, Chandra
SHAH, Purvi

<120> CELL CYCLE AND PROLIFERATION PROTEINS

<130> PF-0722 PCT

<140> To Be Assigned

<141> Herewith

<150> 60/145,075; 60/153,129; 60/164,647

<151> 1999-07-21; 1999-09-08; 1999-11-10

<160> 108

<170> PERL Program

<210> 1

<211> 145

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 116462CD1

<400> 1

Met	Asn	Gly	Arg	Val	Asp	Tyr	Leu	Val	Thr	Glu	Glu	Glu	Ile	Asn
1				5					10				15	
Leu	Thr	Arg	Gly	Pro	Ser	Gly	Leu	Gly	Phe	Asn	Ile	Val	Gly	Gly
				20					25				30	
Thr	Asp	Gln	Gln	Tyr	Val	Ser	Asn	Asp	Ser	Gly	Ile	Tyr	Val	Ser
				35					40				45	
Arg	Ile	Lys	Glu	Asn	Gly	Ala	Ala	Ala	Leu	Asp	Gly	Arg	Leu	Gln
				50					55				60	
Glu	Gly	Asp	Lys	Ile	Leu	Ser	Val	Asn	Gly	Gln	Asp	Leu	Lys	Asn
				65					70				75	
Leu	Leu	His	Gln	Asp	Ala	Val	Asp	Leu	Phe	Arg	Asn	Ala	Gly	Tyr
				80					85				90	
Ala	Val	Ser	Leu	Arg	Val	Gln	His	Arg	Leu	Gln	Val	Gln	Asn	Gly
				95					100				105	
Pro	Ile	Gly	His	Arg	Gly	Glu	Gly	Asp	Pro	Ser	Gly	Ile	Pro	Ile
				110					115				120	
Phe	Met	Val	Leu	Val	Pro	Val	Phe	Ala	Leu	Thr	Met	Val	Ala	Ala
				125					130				135	
Trp	Ala	Phe	Met	Arg	Tyr	Arg	Gln	Gln	Leu					
				140					145					

<210> 2

<211> 340

<212> PRT

WO 01/07471

PCT/US00/19948

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1210462CD1

<400> 2

Met	Leu	Thr	Gln	Leu	Lys	Ala	Lys	Ser	Glu	Gly	Lys	Leu	Ala	Lys
1				5					10					15
Gln	Ile	Cys	Lys	Val	Val	Leu	Asp	His	Phe	Glu	Lys	Gln	Tyr	Ser
				20					25					30
Lys	Glu	Leu	Gly	Asp	Ala	Trp	Asn	Thr	Val	Arg	Glu	Ile	Leu	Thr
				35					40					45
Ser	Pro	Ser	Cys	Trp	Gln	Tyr	Ala	Val	Leu	Leu	Asn	Arg	Phe	Asn
				50					55					60
Tyr	Pro	Phe	Glu	Leu	Glu	Lys	Asp	Leu	His	Leu	Lys	Gly	Tyr	His
				65					70					75
Thr	Leu	Ser	Gln	Gly	Ser	Leu	Pro	Asn	Tyr	Pro	Lys	Ser	Val	Lys
				80					85					90
Cys	Tyr	Leu	Ser	Arg	Thr	Pro	Gly	Arg	Ile	Pro	Ser	Glu	Arg	His
				95					100					105
Gln	Ile	Gly	Asn	Leu	Lys	Lys	Tyr	Tyr	Leu	Leu	Asn	Ala	Ala	Ser
				110					115					120
Leu	Leu	Pro	Val	Leu	Ala	Leu	Glu	Leu	Arg	Asp	Gly	Glu	Lys	Val
				125					130					135
Leu	Asp	Leu	Cys	Ala	Ala	Pro	Gly	Gly	Lys	Ser	Ile	Ala	Leu	Leu
				140					145					150
Gln	Cys	Ala	Cys	Pro	Gly	Tyr	Leu	His	Cys	Asn	Glu	Tyr	Asp	Ser
				155					160					165
Leu	Arg	Leu	Arg	Trp	Leu	Arg	Gln	Thr	Leu	Glu	Ser	Phe	Ile	Pro
				170					175					180
Gln	Pro	Leu	Ile	Asn	Val	Ile	Lys	Val	Ser	Glu	Leu	Asp	Gly	Arg
				185					190					195
Lys	Met	Gly	Asp	Ala	Gln	Pro	Glu	Met	Phe	Asp	Lys	Val	Leu	Val
				200					205					210
Asp	Ala	Pro	Cys	Ser	Asn	Asp	Arg	Ser	Trp	Leu	Phe	Ser	Ser	Asp
				215					220					225
Ser	Gln	Lys	Ala	Ser	Cys	Arg	Ile	Ser	Gln	Arg	Arg	Asn	Leu	Pro
				230					235					240
Leu	Leu	Gln	Ile	Glu	Leu	Leu	Arg	Ser	Ala	Ile	Lys	Ala	Leu	Arg
				245					250					255
Pro	Gly	Gly	Ile	Leu	Val	Tyr	Ser	Thr	Cys	Thr	Leu	Ser	Lys	Ala
				260					265					270
Glu	Asn	Gln	Asp	Val	Ile	Ser	Glu	Ile	Leu	Asn	Ser	His	Gly	Asn
				275					280					285
Ile	Met	Pro	Met	Asp	Ile	Lys	Gly	Ile	Ala	Arg	Thr	Cys	Ser	His
				290					295					300
Asp	Phe	Thr	Phe	Ala	Pro	Thr	Gly	Gln	Glu	Cys	Gly	Leu	Leu	Val
				305					310					315
Ile	Pro	Asp	Lys	Gly	Lys	Ala	Trp	Gly	Pro	Met	Tyr	Val	Ala	Lys
				320					325					330
Leu	Lys	Lys	Ser	Trp	Ser	Thr	Gly	Lys	Trp					
				335					340					

<210> 3

<211> 418

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1305252CD1

<400> 3

WO 01/07471

PCT/US00/19948

Met	Leu	Tyr	Leu	Glu	Asp	Tyr	Leu	Glu	Met	Ile	Glu	Gln	Leu	Pro
1				5				10						15
Met	Asp	Leu	Arg	Asp	Arg	Phe	Thr	Glu	Met	Arg	Glu	Met	Asp	Leu
				20				25						30
Gln	Val	Gln	Asn	Ala	Met	Asp	Gln	Leu	Glu	Gln	Arg	Val	Ser	Glu
				35				40						45
Phe	Phe	Met	Asn	Ala	Lys	Lys	Asn	Lys	Pro	Glu	Trp	Arg	Glu	Glu
				50				55						60
Gln	Met	Ala	Ser	Ile	Lys	Lys	Asp	Tyr	Tyr	Lys	Ala	Leu	Glu	Asp
				65				70						75
Ala	Asp	Glu	Lys	Val	Gln	Leu	Ala	Asn	Gln	Ile	Tyr	Asp	Leu	Val
				80				85						90
Asp	Arg	His	Leu	Arg	Lys	Leu	Asp	Gln	Glu	Leu	Ala	Lys	Phe	Lys
				95				100						105
Met	Glu	Leu	Glu	Ala	Asp	Asn	Ala	Gly	Ile	Thr	Glu	Ile	Leu	Glu
				110				115						120
Arg	Arg	Ser	Leu	Glu	Leu	Asp	Thr	Pro	Ser	Gln	Pro	Val	Asn	Asn
				125				130						135
His	His	Ala	His	Ser	His	Thr	Pro	Val	Glu	Lys	Arg	Lys	Tyr	Asn
				140				145						150
Pro	Thr	Ser	His	His	Thr	Thr	Thr	Asp	His	Ile	Pro	Glu	Lys	Lys
				155				160						165
Phe	Lys	Ser	Glu	Ala	Leu	Leu	Ser	Thr	Leu	Thr	Ser	Asp	Ala	Ser
				170				175						180
Lys	Glu	Asn	Thr	Leu	Gly	Cys	Arg	Asn	Asn	Asn	Ser	Thr	Ala	Ser
				185				190						195
Ser	Asn	Asn	Ala	Tyr	Asn	Val	Asn	Ser	Ser	Gln	Pro	Leu	Gly	Ser
				200				205						210
Tyr	Asn	Ile	Gly	Ser	Leu	Ser	Ser	Gly	Thr	Gly	Ala	Gly	Ala	Ile
				215				220						225
Thr	Met	Ala	Ala	Ala	Gln	Ala	Val	Gln	Ala	Thr	Ala	Gln	Met	Lys
				230				235						240
Glu	Gly	Arg	Arg	Thr	Ser	Ser	Leu	Lys	Ala	Ser	Tyr	Glu	Ala	Phe
				245				250						255
Lys	Asn	Asn	Asp	Phe	Gln	Leu	Gly	Lys	Glu	Phe	Ser	Met	Ala	Arg
				260				265						270
Glu	Thr	Val	Gly	Tyr	Ser	Ser	Ser	Ser	Ala	Leu	Met	Thr	Thr	Leu
				275				280						285
Thr	Gln	Asn	Ala	Ser	Ser	Ser	Ala	Ala	Asp	Ser	Arg	Ser	Gly	Arg
				290				295						300
Lys	Ser	Lys	Asn	Asn	Asn	Lys	Ser	Ser	Ser	Gln	Gln	Ser	Ser	Ser
				305				310						315
Ser	Ser	Ser	Ser	Ser	Ser	Leu	Ser	Ser	Cys	Ser	Ser	Ser	Ser	Thr
				320				325						330
Val	Val	Gln	Glu	Ile	Ser	Gln	Gln	Thr	Thr	Val	Val	Pro	Glu	Ser
				335				340						345
Asp	Ser	Asn	Ser	Gln	Val	Asp	Trp	Thr	Tyr	Asp	Pro	Asn	Glu	Pro
				350				355						360
Arg	Tyr	Cys	Ile	Cys	Asn	Gln	Val	Ser	Tyr	Gly	Glu	Met	Val	Gly
				365				370						375
Cys	Asp	Asn	Gln	Asp	Cys	Pro	Ile	Glu	Trp	Phe	His	Tyr	Gly	Cys
				380				385						390
Val	Gly	Leu	Thr	Glu	Ala	Pro	Lys	Gly	Lys	Trp	Tyr	Cys	Pro	Gln
				395				400						405
Cys	Thr	Ala	Ala	Met	Lys	Arg	Arg	Gly	Ser	Arg	His	Lys		
				410				415						

<210> 4
<211> 297
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature

WO 01/07471

PCT/US00/19948

<223> Incyte ID No: 1416289CD1

<400> 4

Met Ala Tyr Asn Val Ile Ile Ile Tyr Phe Asn Phe Arg Cys Leu			
1	5	10	15
Glu Trp Leu Leu Asn Asn Leu Met Thr His Gln Asn Val Glu Leu			
20	25	30	
Phe Lys Glu Leu Ser Ile Asn Val Met Lys Gln Leu Ile Gly Ser			
35	40	45	
Ser Asn Leu Phe Val Met Gln Val Glu Met Asp Ile Tyr Thr Ala			
50	55	60	
Leu Lys Lys Trp Met Phe Leu Gln Leu Val Pro Ser Trp Asn Gly			
65	70	75	
Ser Leu Lys Gln Leu Leu Thr Glu Thr Asp Val Trp Phe Ser Lys			
80	85	90	
Gln Arg Lys Asp Phe Glu Gly Met Ala Phe Leu Glu Thr Glu Gln			
95	100	105	
Gly Lys Pro Phe Val Ser Val Phe Arg His Leu Arg Leu Gln Tyr			
110	115	120	
Ile Ile Ser Asp Leu Ala Ser Ala Arg Ile Ile Glu Gln Asp Ala			
125	130	135	
Val Val Pro Ser Glu Trp Leu Ser Ser Val Tyr Lys Gln Gln Trp			
140	145	150	
Phe Ala Met Leu Arg Ala Glu Gln Asp Ser Glu Val Gly Pro Gln			
155	160	165	
Glu Ile Asn Lys Glu Glu Leu Glu Gly Asn Ser Met Arg Cys Gly			
170	175	180	
Arg Lys Leu Ala Lys Asp Gly Glu Tyr Cys Trp Arg Trp Thr Gly			
185	190	195	
Phe Asn Phe Gly Phe Asp Leu Leu Val Thr Tyr Thr Asn Arg Tyr			
200	205	210	
Ile Ile Phe Lys Arg Asn Thr Leu Asn Gln Pro Cys Ser Gly Ser			
215	220	225	
Val Ser Leu Gln Pro Arg Arg Ser Ile Ala Phe Arg Leu Arg Leu			
230	235	240	
Ala Ser Phe Asp Ser Ser Gly Lys Leu Ile Cys Ser Arg Thr Thr			
245	250	255	
Gly Tyr Gln Ile Leu Thr Leu Glu Lys Asp Gln Glu Gln Val Val			
260	265	270	
Met Asn Leu Asp Ser Arg Leu Leu Ile Phe Pro Leu Tyr Ile Cys			
275	280	285	
Cys Asn Phe Leu Tyr Ile Ser Pro Glu Lys Lys Asn			
290	295		

<210> 5

<211> 184

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1558289CD1

<400> 5

Met Glu Ser Phe Ser Ser Lys Ser Leu Ala Leu Gln Ala Glu Lys			
1	5	10	15
Lys Leu Leu Ser Lys Met Ala Gly Arg Ser Val Ala His Leu Phe			
20	25	30	
Ile Asp Glu Thr Ser Ser Glu Val Leu Asp Glu Leu Tyr Arg Val			
35	40	45	
Ser Lys Glu Tyr Thr His Ser Arg Pro Gln Ala Gln Arg Val Ile			
50	55	60	
Lys Asp Leu Ile Lys Val Ala Ile Lys Val Ala Val Leu His Arg			
65	70	75	

WO 01/07471

PCT/US00/19948

Asn Gly Ser Phe Gly Pro Ser Glu Leu Ala Leu Ala Thr Arg Phe
 80 85 90
 Arg Gln Lys Leu Arg Gln Gly Ala Met Thr Ala Leu Ser Phe Gly
 95 100 105
 Glu Val Asp Phe Thr Phe Glu Ala Ala Val Leu Ala Gly Leu Leu
 110 115 120
 Thr Glu Cys Arg Asp Val Leu Leu Glu Leu Val Glu His His Leu
 125 130 135
 Thr Pro Lys Ser His Gly Arg Ile Arg His Val Phe Asp His Phe
 140 145 150
 Ser Asp Pro Gly Leu Leu Thr Ala Leu Tyr Gly Pro Asp Phe Thr
 155 160 165
 Gln His Leu Gly Lys Ile Cys Asp Gly Leu Arg Lys Leu Leu Asp
 170 175 180
 Glu Gly Lys Leu

<210> 6
 <211> 173
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1577739CD1

<400> 6

Met	Asp	Val	Arg	Arg	Val	Leu	Val	Lys	Ala	Glu	Met	Glu	Lys	Phe
1					5				10				15	
Leu	Gln	Asn	Lys	Glu	Leu	Phe	Ser	Ser	Leu	Lys	Lys	Gly	Lys	Ile
					20				25				30	
Cys	Cys	Cys	Arg	Ala	Lys	Phe	Pro	Leu	Phe	Ser	Trp	Pro	Pro	
					35				40				45	
Ser	Cys	Leu	Phe	Cys	Lys	Arg	Ala	Val	Cys	Thr	Ser	Cys	Ser	Ile
					50				55				60	
Lys	Met	Lys	Met	Pro	Ser	Lys	Phe	Gly	His	Ile	Pro	Val	Tyr	
					65				70				75	
Thr	Leu	Gly	Phe	Glu	Ser	Pro	Gln	Arg	Val	Ser	Ala	Ala	Lys	Thr
					80				85				90	
Ala	Pro	Ile	Gln	Arg	Arg	Asp	Ile	Phe	Gln	Ser	Leu	Gln	Gly	Pro
					95				100				105	
Gln	Trp	Gln	Ser	Val	Glu	Glu	Ala	Phe	Pro	His	Ile	Tyr	Ser	His
					110				115				120	
Gly	Cys	Val	Leu	Lys	Asp	Val	Cys	Ser	Glu	Cys	Thr	Ser	Phe	Val
					125				130				135	
Ala	Asp	Val	Val	Arg	Ser	Ser	Arg	Lys	Ser	Val	Asp	Val	Leu	Asn
					140				145				150	
Thr	Thr	Pro	Arg	Arg	Ser	Arg	Gln	Thr	Gln	Ser	Leu	Tyr	Ile	Pro
					155				160				165	
Asn	Thr	Arg	Thr	Leu	Asp	Phe	Lys							
				170										

<210> 7
 <211> 591
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1752768CD1

<400> 7

Met	Val	Pro	Val	Ala	Val	Thr	Ala	Ala	Val	Ala	Pro	Val	Leu	Ser
1					5				10				15	
Ile	Asn	Ser	Asp	Phe	Ser	Asp	Leu	Arg	Glu	Ile	Lys	Lys	Gln	Leu

20	25	30
Leu Leu Ile Ala Gly	Leu Thr Arg Glu	Arg Gly Leu Leu His Ser
35	40	45
Ser Lys Trp Ser Ala Glu	Leu Ala Phe Ser	Leu Pro Ala Leu Pro
50	55	60
Leu Ala Glu Leu Gln	Pro Pro Pro Ile	Thr Glu Glu Asp Ala
65	70	75
Gln Asp Met Asp Ala Tyr	Thr Leu Ala Lys	Ala Tyr Phe Asp Val
80	85	90
Lys Glu Tyr Asp Arg Ala	Ala His Phe	Leu His Gly Cys Asn Ser
95	100	105
Lys Lys Ala Tyr Phe	Leu Tyr Met Tyr	Ser Arg Tyr Leu Ser Gly
110	115	120
Glu Lys Lys Asp Asp Glu	Thr Val Asp	Ser Leu Gly Pro Leu
125	130	135
Glu Lys Gly Gln Val	Lys Asn Glu Ala	Leu Arg Glu Leu Arg Val
140	145	150
Glu Leu Ser Lys His Gln	Ala Arg Glu	Leu Asp Gly Phe Gly
155	160	165
Leu Tyr Leu Tyr Gly	Val Val Leu Arg	Lys Leu Asp Leu Val Lys
170	175	180
Glu Ala Ile Asp Val Phe	Val Glu Ala Thr	His Val Leu Pro Leu
185	190	195
His Trp Gly Ala Trp	Leu Glu Leu Cys	Asn Leu Ile Thr Asp Lys
200	205	210
Glu Met Leu Lys Phe	Leu Ser Leu Pro Asp	Thr Trp Met Lys Glu
215	220	225
Phe Phe Leu Ala His	Ile Tyr Thr Glu	Leu Gln Leu Ile Glu Glu
230	235	240
Ala Leu Gln Lys Tyr	Gln Asn Leu Ile Asp	Val Gly Phe Ser Lys
245	250	255
Ser Ser Tyr Ile Val	Ser Gln Ile Ala Val	Ala Tyr His Asn Ile
260	265	270
Arg Asp Ile Asp Lys	Ala Leu Ser Ile Phe	Asn Glu Leu Arg Lys
275	280	285
Gln Asp Pro Tyr Arg	Ile Glu Asn Met Asp	Thr Phe Ser Asn Leu
290	295	300
Leu Tyr Val Arg Ser	Met Lys Ser Glu	Leu Ser Tyr Leu Ala His
305	310	315
Asn Leu Cys Glu Ile	Asp Lys Tyr Arg	Val Glu Thr Cys Cys Val
320	325	330
Ile Gly Asn Tyr Tyr	Ser Leu Arg Ser Gln	His Glu Lys Ala Ala
335	340	345
Leu Tyr Phe Gln Arg	Ala Leu Lys Leu Asn	Pro Arg Tyr Leu Gly
350	355	360
Ala Trp Thr Leu Met	Gly His Glu Tyr Met	Glu Met Lys Asn Thr
365	370	375
Ser Ala Ala Ile Gln	Ala Tyr Arg His Ala	Ile Glu Val Asn Lys
380	385	390
Arg Asp Tyr Arg Ala	Trp Tyr Gly Leu Gly	Gln Thr Tyr Glu Ile
395	400	405
Leu Lys Met Pro Phe	Tyr Cys Leu Tyr Tyr	Cys Arg Arg Ala His
410	415	420
Gln Leu Arg Pro Asn	Asp Ser Arg Met Leu	Val Ala Leu Gly Glu
425	430	435
Cys Tyr Glu Lys Leu	Asn Gln Leu Val Glu	Ala Lys Lys Cys Tyr
440	445	450
Trp Arg Ala Tyr Ala	Val Gly Asp Val Glu	Lys Met Ala Leu Val
455	460	465
Lys Leu Ala Lys Leu	His Glu Gln Leu Thr	Glu Ser Glu Gln Ala
470	475	480
Ala Gln Cys Tyr Ile	Lys Tyr Ile Gln Asp	Ile Tyr Ser Cys Gly
485	490	495

WO 01/07471

PCT/US00/19948

Glu Ile Val Glu His Leu Glu Glu Ser Thr Ala Phe Arg Tyr Leu
 500 505 510
 Ala Gln Tyr Tyr Phe Lys Cys Lys Leu Trp Asp Glu Ala Ser Thr
 515 520 525
 Cys Ala Gln Lys Cys Cys Ala Phe Asn Asp Thr Arg Glu Glu Gly
 530 535 540
 Lys Ala Leu Leu Arg Gln Ile Leu Gln Leu Arg Asn Gln Gly Glu
 545 550 555
 Thr Pro Thr Thr Glu Val Pro Ala Pro Phe Phe Leu Pro Ala Ser
 560 565 570
 Leu Ser Ala Asn Asn Thr Pro Thr Arg Arg Val Ser Pro Leu Asn
 575 580 585
 Leu Ser Ser Val Thr Pro
 590

<210> 8
 <211> 463
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1887228CD1

<400> 8

Met	Pro	Leu	Leu	Asn	Trp	Val	Ala	Leu	Lys	Pro	Ser	Gln	Ile	Thr
1					5				10				15	
Gly	Thr	Val	Phe	Thr	Glu	Leu	Asn	Asp	Glu	Lys	Val	Leu	Gln	Glu
					20				25				30	
Leu	Asp	Met	Ser	Asp	Phe	Glu	Glu	Gln	Phe	Lys	Thr	Lys	Ser	Gln
					35				40				45	
Gly	Pro	Ser	Leu	Asp	Leu	Ser	Ala	Leu	Lys	Ser	Lys	Ala	Ala	Gln
					50				55				60	
Lys	Ala	Pro	Ser	Lys	Ala	Thr	Leu	Ile	Glu	Ala	Asn	Arg	Ala	Lys
					65				70				75	
Asn	Leu	Ala	Ile	Thr	Leu	Arg	Lys	Gly	Asn	Leu	Gly	Ala	Glu	Arg
					80				85				90	
Ile	Cys	Gln	Ala	Ile	Glu	Ala	Tyr	Asp	Leu	Gln	Ala	Leu	Gly	Leu
					95				100				105	
Asp	Phe	Leu	Glu	Leu	Leu	Met	Arg	Phe	Leu	Pro	Thr	Glu	Tyr	Glu
					110				115				120	
Arg	Ser	Leu	Ile	Thr	Arg	Phe	Glu	Arg	Glu	Gln	Arg	Pro	Met	Glu
					125				130				135	
Glu	Leu	Ser	Glu	Glu	Asp	Arg	Phe	Met	Leu	Cys	Phe	Ser	Arg	Ile
					140				145				150	
Pro	Arg	Leu	Pro	Glu	Arg	Met	Thr	Thr	Leu	Thr	Phe	Leu	Gly	Asn
					155				160				165	
Phe	Pro	Asp	Thr	Ala	Gln	Leu	Leu	Met	Pro	Gln	Leu	Asn	Ala	Ile
					170				175				180	
Ile	Ala	Ala	Ser	Met	Ser	Ile	Lys	Ser	Ser	Asp	Lys	Leu	Arg	Gln
					185				190				195	
Ile	Leu	Glu	Ile	Val	Leu	Ala	Phe	Gly	Asn	Tyr	Met	Asn	Ser	Ser
					200				205				210	
Lys	Arg	Gly	Ala	Ala	Tyr	Gly	Phe	Arg	Leu	Gln	Ser	Leu	Asp	Ala
					215				220				225	
Leu	Leu	Glu	Met	Lys	Ser	Thr	Asp	Arg	Lys	Gln	Thr	Leu	Leu	His
					230				235				240	
Tyr	Leu	Val	Lys	Val	Ile	Ala	Glu	Lys	Tyr	Pro	Gln	Leu	Thr	Gly
					245				250				255	
Phe	His	Ser	Asp	Leu	His	Phe	Leu	Asp	Lys	Ala	Gly	Ser	Val	Ser
					260				265				270	
Leu	Asp	Ser	Val	Leu	Ala	Asp	Val	Arg	Ser	Leu	Gln	Arg	Gly	Leu
					275				280				285	
Glu	Leu	Thr	Gln	Arg	Glu	Phe	Val	Arg	Gln	Asp	Asp	Cys	Met	Val

WO 01/07471

PCT/US00/19948

	290	295	300
Leu Lys Glu Phe	Leu Arg Ala Asn Ser	Pro Thr Met Asp Lys	Leu
305	310	315	
Leu Ala Asp Ser	Lys Thr Ala Gln Glu	Ala Phe Glu Ser Val	Val
320	325	330	
Glu Tyr Phe Gly	Glu Asn Pro Lys Thr	Thr Ser Pro Gly Leu	Phe
335	340	345	
Phe Ser Leu Phe	Ser Arg Phe Ile Lys	Ala Tyr Lys Lys Ala	Glu
350	355	360	
Gln Glu Val Glu	Gln Trp Lys Lys Glu	Ala Ala Ala Gln Glu	Ala
365	370	375	
Gly Ala Asp Thr	Pro Gly Lys Gly Glu	Pro Pro Ala Pro Lys	Ser
380	385	390	
Pro Pro Lys Ala	Arg Arg Pro Gln Met	Asp Leu Ile Ser Glu	Leu
395	400	405	
Lys Arg Arg Gln	Gln Lys Glu Pro Leu	Ile Tyr Glu Ser Asp	Arg
410	415	420	
Asp Gly Ala Ile	Glu Asp Ile Ile Thr	Asp Leu Arg Asn Gln	Pro
425	430	435	
Tyr Ile Arg Ala	Asp Thr Gly Arg Arg	Ser Ala Arg Arg Arg	Pro
440	445	450	
Pro Gly Pro Pro	Leu Gln Val Thr Ser	Asp Leu Ser Leu	
455	460		

<210> 9

<211> 270

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1988468CD1

<400> 9

Met Ala Asp His Met	Met Ala Met Asn His	Gly Arg Phe Pro Asp	
1	5	10	15
Gly Thr Asn Gly	Leu His His His Pro	Ala His Arg Met Gly	Met
20	25	30	
Gly Gln Phe Pro Ser	Pro His His His Gln	Gln Gln Gln Pro Gln	
35	40	45	
His Ala Phe Asn Ala	Leu Met Gly Glu	His Ile His Tyr Gly	Ala
50	55	60	
Gly Asn Met Asn Ala	Thr Ser Gly Ile Arg	His Ala Met Gly Pro	
65	70	75	
Gly Thr Val Asn Gly	Gly His Pro Pro Ser	Ala Leu Ala Pro Ala	
80	85	90	
Ala Arg Phe Asn Asn	Ser Gln Phe Met	Gly Pro Pro Val Ala	Ser
95	100	105	
Gln Gly Gly Ser	Leu Pro Ala Ser Met	Gln Leu Gln Lys Leu	Asn
110	115	120	
Asn Gln Tyr Phe Asn	His His Pro Tyr	Pro His Asn His Tyr	Met
125	130	135	
Pro Asp Leu His Pro	Ala Ala Gly His	Gln Met Asn Gly Thr	Asn
140	145	150	
Gln His Phe Arg Asp	Cys Asn Pro Lys	His Ser Gly Gly Ser	Ser
155	160	165	
Thr Pro Gly Gly Ser	Gly Ser Ser	Thr Pro Gly Gly Ser	Gly
170	175	180	
Ser Ser Ser Gly	Gly Ala Gly Ser	Ser Asn Ser Gly Gly	Gly
185	190	195	
Ser Gly Ser Gly Asn	Met Pro Ala Ser	Val Ala His Val Pro	Ala
200	205	210	
Ala Met Leu Pro Pro	Asn Val Ile Asp	Thr Asp Phe Ile Asp	Glu
215	220	225	

WO 01/07471

PCT/US00/19948

Glu	Val	Leu	Met	Ser	Leu	Val	Ile	Glu	Met	Gly	Leu	Asp	Arg	Ile
			230					235					240	
Lys	Glu	Leu	Pro	Glu	Leu	Trp	Leu	Gly	Gln	Asn	Glu	Phe	Asp	Phe
			245					250					255	
Met	Thr	Asp	Phe	Val	Cys	Lys	Gln	Gln	Pro	Ser	Arg	Val	Ser	Cys
			260					265					270	

<210> 10
<211> 255
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2049176CD1

<400> 10

Met	Val	Ser	Trp	Met	Ile	Ser	Arg	Ala	Val	Val	Leu	Val	Phe	Gly
1				5					10				15	
Met	Leu	Tyr	Pro	Ala	Tyr	Tyr	Ser	Tyr	Lys	Ala	Val	Lys	Thr	Lys
				20					25				30	
Asn	Val	Lys	Glu	Tyr	Val	Arg	Trp	Met	Met	Tyr	Trp	Ile	Val	Phe
				35					40				45	
Ala	Leu	Tyr	Thr	Val	Ile	Glu	Thr	Val	Ala	Asp	Gln	Thr	Val	Ala
				50					55				60	
Trp	Phe	Pro	Leu	Tyr	Tyr	Glu	Leu	Lys	Ile	Ala	Phe	Val	Ile	Trp
				65					70				75	
Leu	Leu	Ser	Pro	Tyr	Thr	Lys	Gly	Ala	Ser	Leu	Ile	Tyr	Arg	Lys
				80					85				90	
Phe	Leu	His	Pro	Leu	Leu	Ser	Ser	Lys	Glu	Arg	Glu	Ile	Asp	Asp
				95					100				105	
Tyr	Ile	Val	Gln	Ala	Lys	Glu	Arg	Gly	Tyr	Glu	Thr	Met	Val	Asn
				110					115				120	
Phe	Gly	Arg	Gln	Gly	Leu	Asn	Leu	Ala	Ala	Thr	Ala	Ala	Val	Thr
				125					130				135	
Ala	Ala	Val	Lys	Ser	Gln	Gly	Ala	Ile	Thr	Glu	Arg	Leu	Arg	Ser
				140					145				150	
Phe	Ser	Met	His	Asp	Leu	Thr	Thr	Ile	Gln	Gly	Asp	Glu	Pro	Val
				155					160				165	
Gly	Gln	Arg	Pro	Tyr	Gln	Pro	Leu	Pro	Glu	Ala	Lys	Lys	Lys	Ser
				170					175				180	
Lys	Pro	Ala	Pro	Ser	Glu	Ser	Ala	Gly	Tyr	Gly	Ile	Pro	Leu	Lys
				185					190				195	
Asp	Gly	Asp	Glu	Lys	Thr	Asp	Glu	Glu	Ala	Glu	Gly	Pro	Tyr	Ser
				200					205				210	
Asp	Asn	Glu	Met	Leu	Thr	His	Lys	Gly	Leu	Arg	Arg	Ser	Gln	Ser
				215					220				225	
Met	Lys	Ser	Val	Lys	Thr	Thr	Lys	Gly	Arg	Lys	Glu	Val	Arg	Tyr
				230					235				240	
Gly	Ser	Leu	Lys	Tyr	Lys	Val	Lys	Lys	Arg	Pro	Gln	Val	Tyr	Phe
				245					250				255	

<210> 11
<211> 533
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2686765CD1

<400> 11
Met Ser Gly Thr Leu Glu Ser Leu Ala Asp Asp Val Ser Ser Met

WO 01/07471

PCT/US00/19948

1	5	10	15
Gly	Ser	Asp	Ser
Glu	Ile	Asn	Gly
20	25	30	
Lys	Tyr	Gly	Phe
Leu	Gly	Gly	Ser
35	40	45	
Ser	Ser	Ile	Pro
Val	Asp	Val	Ala
50	55	60	
Leu	Asp	Met	Phe
Ser	Asn	Trp	Asp
65	70	75	
Gln	Lys	Val	Lys
Leu	Arg	Cys	Arg
80	85	90	
Arg	Ala	Lys	Ala
Trp	Gln	Tyr	Leu
95	100	105	
Glu	Gln	Asn	Pro
Gly	Lys	Phe	Glu
110	115	120	
Asp	Pro	Lys	Trp
Leu	Asp	Val	Ile
125	130	135	
Phe	Pro	Phe	His
Glu	Met	Phe	Ala
140	145	150	
Gln	Asp	Leu	Tyr
155	160	165	
Asp	Glu	Gly	Tyr
Cys	Gln	Ala	Gln
170	175	180	
Leu	Met	His	Met
Pro	Ala	Glu	Lys
185	190	195	
Ile	Cys	Asp	Lys
Tyr	Leu	Pro	Gly
200	205	210	
Ala	Ile	Gln	Leu
Asp	Gly	Glu	Ile
215	220	225	
Ala	Ser	Pro	Leu
Ala	His	Arg	His
230	235	240	
Pro	Val	Leu	Tyr
Met	Thr	Glu	Trp
245	250	255	
Thr	Leu	Pro	Trp
Ala	Ser	Val	Leu
260	265	270	
Cys	Glu	Gly	Val
Lys	Ile	Ile	Phe
275	280	285	
Arg	His	Thr	Leu
Gly	Ser	Val	Glu
290	295	300	
Met	Tyr	Glu	Thr
Met	Glu	Gln	Leu
305	310	315	
Met	Gln	Glu	Asp
320	325	330	
Thr	Glu	Ala	Leu
Ile	Glu	Arg	Glu
335	340	345	
Trp	Arg	Glu	Thr
Arg	Gly	Glu	Leu
350	355	360	
Leu	His	Gly	Ser
Arg	Ala	Ile	His
365	370	375	
Pro	Pro	Leu	Gly
Pro	Ser	Ser	Ser
380	385	390	
Lys	Ser	Arg	Gly
Ser	Arg	Ala	Ala
395	400	405	
Pro	Pro	Val	Arg
Arg	Ala	Ser	Ala
410	415	420	
Val	Thr	Ala	Glu
Gly	Leu	His	Pro
425	430	435	
Asn	Ser	Thr	Pro
Leu	Gly	Ser	Ser
440	445	450	
Lys	Glu	Arg	Gln
Lys	Gln	Glu	Lys
455	460	465	
Glu	Arg	Glu	Lys
470	475	480	

WO 01/07471

PCT/US00/19948

Gln Glu Lys Glu Arg Glu Lys Gln Glu Lys Glu Arg Gln Lys Gln
 485 490 495
 Glu Lys Lys Ala Gln Gly Arg Lys Leu Ser Leu Arg Arg Lys Ala
 500 505 510
 Asp Gly Pro Pro Gly Pro His Asp Gly Gly Asp Arg Pro Ser Ala
 515 520 525
 Glu Ala Arg Gln Asp Ala Tyr Phe
 530

<210> 12
<211> 160
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3215187CD1

<400> 12

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ser Leu Val	
1 5 10 15	
Leu Cys Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala	
20 25 30	
Phe Asp Glu Leu Arg Thr Asp Phe Lys Ser Pro Ile Asp Gln Cys	
35 40 45	
Asn Pro Val His Ala Arg Glu Arg Leu Arg Asn Ile Glu Arg Ile	
50 55 60	
Cys Phe Leu Leu Arg Lys Leu Val Leu Pro Glu Tyr Ser Ile His	
65 70 75	
Ser Leu Phe Cys Ile Met Phe Leu Cys Ala Gln Glu Trp Leu Thr	
80 85 90	
Leu Gly Leu Asn Val Pro Leu Leu Phe Tyr His Phe Trp Arg Tyr	
95 100 105	
Phe His Cys Pro Ala Asp Ser Ser Glu Leu Ala Tyr Asp Pro Pro	
110 115 120	
Val Val Met Asn Ala Asp Thr Leu Ser Tyr Cys Gln Lys Glu Ala	
125 130 135	
Trp Cys Lys Leu Ala Phe Tyr Leu Leu Ser Phe Phe Tyr Tyr Leu	
140 145 150	
Tyr Cys Met Ile Tyr Thr Leu Val Ser Ser	
155 160	

<210> 13
<211> 531
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3500375CD1

<400> 13

Met Ala Asp Val Leu Ser Val Leu Arg Gln Tyr Asn Ile Gln Lys	
1 5 10 15	
Lys Glu Ile Val Val Lys Gly Asp Glu Val Ile Phe Gly Glu Phe	
20 25 30	
Ser Trp Pro Lys Asn Val Lys Thr Asn Tyr Val Val Trp Gly Thr	
35 40 45	
Gly Lys Glu Gly Gln Pro Arg Glu Tyr Tyr Thr Leu Asp Ser Ile	
50 55 60	
Leu Phe Leu Leu Asn Asn Val His Leu Ser His Pro Val Tyr Val	
65 70 75	
Arg Arg Ala Ala Thr Glu Asn Ile Pro Val Val Arg Arg Pro Asp	
80 85 90	
Arg Lys Asp Leu Leu Gly Tyr Leu Asn Gly Glu Ala Ser Thr Ser	

WO 01/07471

PCT/US00/19948

	95	100	105
Ala Ser Ile Asp Arg Ser Ala Pro Leu Glu Ile Gly Leu Gln Arg			
110	115	120	
Ser Thr Gln Val Lys Arg Ala Ala Asp Glu Val Leu Ala Glu Ala			
125	130	135	
Lys Lys Pro Arg Ile Glu Asp Glu Glu Cys Val Arg Leu Asp Lys			
140	145	150	
Glu Arg Leu Ala Ala Arg Leu Glu Gly His Lys Glu Gly Ile Val			
155	160	165	
Gln Thr Glu Gln Ile Arg Ser Leu Ser Glu Ala Met Ser Val Glu			
170	175	180	
Lys Ile Ala Ala Ile Lys Ala Lys Ile Met Ala Lys Lys Arg Ser			
185	190	195	
Thr Ile Lys Thr Asp Leu Asp Asp Asp Ile Thr Ala Leu Lys Gln			
200	205	210	
Arg Ser Phe Val Asp Ala Glu Val Asp Val Thr Arg Asp Ile Val			
215	220	225	
Ser Arg Glu Arg Val Trp Arg Thr Arg Thr Thr Ile Leu Gln Ser			
230	235	240	
Thr Gly Lys Asn Phe Ser Lys Asn Ile Phe Ala Ile Leu Gln Ser			
245	250	255	
Val Lys Ala Arg Glu Glu Gly Arg Ala Pro Glu Gln Arg Pro Ala			
260	265	270	
Pro Asn Ala Ala Pro Val Asp Pro Thr Leu Arg Thr Lys Gln Pro			
275	280	285	
Ile Pro Ala Ala Tyr Asn Arg Tyr Asp Gln Glu Arg Phe Lys Gly			
290	295	300	
Lys Glu Glu Thr Glu Gly Phe Lys Ile Asp Thr Met Gly Thr Tyr			
305	310	315	
His Gly Met Thr Leu Lys Ser Val Thr Glu Gly Ala Ser Ala Arg			
320	325	330	
Lys Thr Gln Thr Pro Ala Ala Gln Pro Val Pro Arg Pro Val Ser			
335	340	345	
Gln Ala Arg Pro Pro Pro Asn Gln Lys Lys Gly Ser Arg Thr Pro			
350	355	360	
Ile Ile Ile Ile Pro Ala Ala Thr Thr Ser Leu Ile Thr Met Leu			
365	370	375	
Asn Ala Lys Asp Leu Leu Gln Asp Leu Lys Phe Val Pro Ser Asp			
380	385	390	
Glu Lys Lys Lys Gln Gly Cys Gln Arg Glu Asn Glu Thr Leu Ile			
395	400	405	
Gln Arg Arg Lys Asp Gln Met Gln Pro Gly Gly Thr Ala Ile Ser			
410	415	420	
Val Thr Val Pro Tyr Arg Val Val Asp Gln Pro Leu Lys Leu Met			
425	430	435	
Pro Gln Asp Trp Asp Arg Val Val Ala Val Phe Val Gln Gly Pro			
440	445	450	
Ala Trp Gln Phe Lys Gly Trp Pro Trp Leu Leu Pro Asp Gly Ser			
455	460	465	
Pro Val Asp Ile Phe Ala Lys Ile Lys Ala Phe His Leu Lys Tyr			
470	475	480	
Asp Glu Val Arg Leu Asp Pro Asn Val Gln Lys Trp Asp Val Thr			
485	490	495	
Val Leu Glu Leu Ser Tyr His Lys Arg His Leu Asp Arg Pro Val			
500	505	510	
Phe Leu Arg Phe Trp Glu Thr Leu Asp Arg Tyr Met Val Lys His			
515	520	525	
Lys Ser His Leu Arg Phe			
530			

<210> 14

<211> 165

<212> PRT

<213> Homo sapiens

WO 01/07471

PCT/US00/19948

<220>

<221> misc_feature

<223> Incyte ID No: 5080410CD1

<400> 14

Met	Ala	Ser	Met	Arg	Glu	Ser	Asp	Thr	Gly	Leu	Trp	Leu	His	Asn
1					5				10				15	
Lys	Leu	Gly	Ala	Thr	Asp	Glu	Leu	Trp	Ala	Pro	Pro	Ser	Ile	Ala
					20				25				30	
Ser	Leu	Leu	Thr	Ala	Ala	Val	Ile	Asp	Asn	Ile	Arg	Leu	Cys	Phe
					35				40				45	
His	Gly	Leu	Ser	Ser	Ala	Val	Lys	Leu	Lys	Leu	Leu	Gly	Thr	
					50				55				60	
Leu	His	Leu	Pro	Arg	Arg	Thr	Val	Asp	Glu	His	Pro	Ile	Leu	Pro
					65				70				75	
Met	Lys	Gly	Ala	Leu	Met	Glu	Ile	Ile	Gln	Leu	Ala	Ser	Leu	Asp
					80				85				90	
Ser	Asp	Pro	Trp	Val	Leu	Met	Val	Ala	Asp	Ile	Leu	Lys	Ser	Phe
					95				100				105	
Pro	Asp	Thr	Gly	Ser	Leu	Asn	Leu	Glu	Leu	Glu	Glu	Gln	Asn	Pro
					110				115				120	
Asn	Val	Gln	Asp	Ile	Leu	Gly	Glu	Leu	Arg	Glu	Lys	Val	Gly	Glu
					125				130				135	
Cys	Glu	Ala	Ser	Ala	Met	Leu	Pro	Leu	Glu	Cys	Gln	Tyr	Leu	Asn
					140				145				150	
Lys	Asn	Ala	Ala	Asp	Asp	Pro	Arg	Gly	Thr	Pro	His	Ser	Pro	Gly
					155				160				165	

<210> 15

<211> 199

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5218248CD1

<400> 15

Met	Ser	Asn	Met	Glu	Lys	His	Leu	Phe	Asn	Leu	Lys	Phe	Ala	Ala
1					5				10				15	
Lys	Glu	Leu	Ser	Arg	Ser	Ala	Lys	Lys	Cys	Asp	Lys	Glu	Glu	Lys
					20				25				30	
Ala	Glu	Lys	Ala	Lys	Ile	Lys	Lys	Ala	Ile	Gln	Lys	Gly	Asn	Met
					35				40				45	
Glu	Val	Ala	Arg	Ile	His	Ala	Glu	Asn	Ala	Ile	Arg	Gln	Lys	Asn
					50				55				60	
Gln	Ala	Val	Asn	Phe	Leu	Arg	Met	Ser	Ala	Arg	Val	Asp	Ala	Val
					65				70				75	
Ala	Ala	Arg	Val	Gln	Thr	Ala	Val	Thr	Met	Gly	Lys	Val	Thr	Lys
					80				85				90	
Ser	Met	Ala	Gly	Val	Val	Lys	Ser	Met	Asp	Ala	Thr	Leu	Lys	Thr
					95				100				105	
Met	Asn	Leu	Glu	Lys	Ile	Ser	Ala	Leu	Met	Asp	Lys	Phe	His	
					110				115				120	
Gln	Phe	Glu	Thr	Leu	Asp	Val	Gln	Thr	Gln	Gln	Met	Glu	Asp	Thr
					125				130				135	
Met	Ser	Ser	Thr	Thr	Leu	Thr	Thr	Pro	Gln	Asn	Gln	Val	Asp	
					140				145				150	
Met	Leu	Leu	Gln	Glu	Met	Ala	Asp	Glu	Ala	Gly	Leu	Asp	Leu	Asn
					155				160				165	
Met	Glu	Leu	Pro	Gln	Gly	Gln	Thr	Gly	Ser	Val	Gly	Thr	Ser	Val
					170				175				180	
Ala	Ser	Ala	Glu	Gln	Asp	Glu	Leu	Ser	Gln	Arg	Leu	Ala	Arg	Leu

WO 01/07471

PCT/US00/19948

185	190	195
Arg Asp Gln Val		

<210> 16
<211> 168
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 058336CD1

<400> 16

Met Ala Phe Asn Asp Cys Phe Ser Leu Asn Tyr Pro Gly Asn Pro	15
1 5 10	
Cys Pro Gly Asp Leu Ile Glu Val Phe Arg Pro Gly Tyr Gln His	30
20 25	
Trp Ala Leu Tyr Leu Gly Asp Gly Tyr Val Ile Asn Ile Ala Pro	45
35 40	
Val Asp Gly Ile Pro Ala Ser Phe Thr Ser Ala Lys Ser Val Phe	60
50 55	
Ser Ser Lys Ala Leu Val Lys Met Gln Leu Leu Lys Asp Val Val	75
65 70	
Gly Asn Asp Thr Tyr Arg Ile Asn Asn Lys Tyr Asp Glu Thr Tyr	90
80 85	
Pro Pro Leu Pro Val Glu Glu Ile Ile Lys Arg Ser Glu Phe Val	105
95 100	
Ile Gly Gln Glu Val Ala Tyr Asn Leu Leu Val Asn Asn Cys Glu	120
110 115	
His Phe Val Thr Leu Leu Arg Tyr Gly Glu Gly Val Ser Glu Gln	135
125 130	
Ala Asn Arg Ala Ile Ser Thr Val Glu Phe Val Thr Ala Ala Val	150
140 145	
Gly Val Phe Ser Phe Leu Gly Leu Phe Pro Lys Gly Gln Arg Ala	165
155 160	
Lys Tyr Tyr	

<210> 17
<211> 162
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1511488CD1

<400> 17

Met Leu Arg Ala Val Gly Ser Leu Leu Arg Leu Gly Arg Gly Leu	15
1 5 10	
Thr Val Arg Cys Gly Pro Gly Ala Pro Leu Glu Ala Thr Arg Arg	30
20 25	
Pro Ala Pro Ala Leu Pro Pro Arg Gly Leu Pro Cys Tyr Ser Ser	45
35 40	
Gly Gly Ala Pro Ser Asn Ser Gly Pro Gln Gly His Gly Glu Ile	60
50 55	
His Arg Val Pro Thr Gln Arg Arg Pro Ser Gln Phe Asp Lys Lys	75
65 70	
Ile Leu Leu Trp Thr Gly Arg Phe Lys Ser Met Glu Glu Ile Pro	90
80 85	
Pro Arg Ile Pro Pro Glu Met Ile Asp Thr Ala Arg Asn Lys Ala	105
95 100	
Arg Val Lys Ala Cys Tyr Ile Met Ile Gly Leu Thr Ile Ile Ala	120
110 115	

WO 01/07471

PCT/US00/19948

Cys Phe Ala Val Ile Val Ser Ala Lys Arg Ala Val Glu Arg His
 125 130 135
 Glu Ser Leu Thr Ser Trp Asn Leu Ala Lys Lys Ala Lys Trp Arg
 140 145 150
 Glu Glu Ala Ala Leu Ala Ala Gln Ala Lys Ala Lys
 155 160

<210> 18
<211> 246
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1638819CD1

<400> 18
Met Ala Gly Tyr Leu Lys Leu Val Cys Val Ser Phe Gln Arg Gln
 1 5 10 15
Gly Phe His Thr Val Gly Ser Arg Cys Lys Asn Arg Thr Gly Ala
 20 25 30
Glu His Leu Trp Leu Thr Arg His Leu Arg Asp Pro Phe Val Lys
 35 40 45
Ala Ala Lys Val Glu Ser Tyr Arg Cys Arg Ser Ala Phe Lys Leu
 50 55 60
Leu Glu Val Asn Glu Arg His Gln Ile Leu Arg Pro Gly Leu Arg
 65 70 75
Val Leu Asp Cys Gly Ala Ala Pro Gly Ala Trp Ser Gln Val Ala
 80 85 90
Val Gln Lys Val Asn Ala Ala Gly Thr Asp Pro Ser Ser Pro Val
 95 100 105
Gly Phe Val Leu Gly Val Asp Leu Leu His Ile Phe Pro Leu Glu
 110 115 120
Gly Ala Thr Phe Leu Cys Pro Ala Asp Val Thr Asp Pro Arg Thr
 125 130 135
Ser Gln Arg Ile Leu Glu Val Leu Pro Gly Arg Arg Ala Asp Val
 140 145 150
Ile Leu Ser Asp Met Ala Pro Asn Ala Thr Gly Phe Arg Asp Leu
 155 160 165
Asp His Asp Arg Leu Ile Ser Leu Cys Leu Thr Leu Leu Ser Val
 170 175 180
Thr Pro Asp Ile Leu Gln Pro Gly Gly Thr Phe Leu Cys Lys Thr
 185 190 195
Trp Ala Gly Ser Gln Ser Arg Arg Leu Gln Arg Arg Leu Thr Glu
 200 205 210
Glu Phe Gln Asn Val Arg Ile Ile Lys Pro Glu Ala Ser Arg Lys
 215 220 225
Glu Ser Ser Glu Val Tyr Phe Leu Ala Thr Gln Tyr His Gly Arg
 230 235 240
Lys Gly Thr Val Lys Gln
 245

<210> 19
<211> 483
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1655123CD1

<400> 19
Met Glu Glu Gly Gly Gly Val Arg Ser Leu Val Pro Gly Gly
 1 5 10 15
Pro Val Leu Leu Val Leu Cys Gly Leu Leu Glu Ala Ser Gly Gly

WO 01/07471

PCT/US00/19948

	20	25	30
Gly Arg Ala Leu Pro Gln Leu Ser Asp Asp Ile Pro Phe Arg Val			
35	40	45	
Asn Trp Pro Gly Thr Glu Phe Ser Leu Pro Thr Thr Gly Val Leu			
50	55	60	
Tyr Lys Glu Asp Asn Tyr Val Ile Met Thr Thr Ala His Lys Glu			
65	70	75	
Lys Tyr Lys Cys Ile Leu Pro Leu Val Thr Ser Gly Asp Glu Glu			
80	85	90	
Glu Glu Lys Asp Tyr Lys Gly Pro Asn Pro Arg Glu Leu Leu Glu			
95	100	105	
Pro Leu Phe Lys Gln Ser Ser Cys Ser Tyr Arg Ile Glu Ser Tyr			
110	115	120	
Trp Thr Tyr Glu Val Cys His Gly Lys His Ile Arg Gln Tyr His			
125	130	135	
Glu Glu Lys Glu Thr Gly Gln Lys Ile Asn Ile His Glu Tyr Tyr			
140	145	150	
Leu Gly Asn Met Leu Ala Lys Asn Leu Leu Phe Glu Lys Glu Arg			
155	160	165	
Glu Ala Glu Glu Lys Glu Lys Ser Asn Glu Ile Pro Thr Lys Asn			
170	175	180	
Ile Glu Gly Gln Met Thr Pro Tyr Tyr Pro Val Gly Met Gly Asn			
185	190	195	
Gly Thr Pro Cys Ser Leu Lys Gln Asn Arg Pro Arg Ser Ser Thr			
200	205	210	
Val Met Tyr Ile Cys His Pro Glu Ser Lys His Glu Ile Leu Ser			
215	220	225	
Val Ala Glu Val Thr Thr Cys Glu Tyr Glu Val Val Ile Leu Thr			
230	235	240	
Pro Leu Leu Cys Ser His Pro Lys Tyr Arg Phe Arg Ala Ser Pro			
245	250	255	
Val Asn Asp Ile Phe Cys Gln Ser Leu Pro Gly Ser Pro Phe Lys			
260	265	270	
Pro Leu Thr Leu Arg Gln Leu Glu Gln Gln Glu Glu Ile Leu Arg			
275	280	285	
Val Pro Phe Arg Arg Asn Lys Glu Glu Asp Leu Gln Ser Thr Lys			
290	295	300	
Glu Glu Arg Phe Pro Ala Ile His Lys Ser Ile Ala Ile Gly Ser			
305	310	315	
Gln Pro Val Leu Thr Val Gly Thr Thr His Ile Ser Lys Leu Thr			
320	325	330	
Asp Asp Gln Leu Ile Lys Glu Phe Leu Ser Gly Ser Tyr Cys Phe			
335	340	345	
Arg Gly Gly Val Gly Trp Trp Lys Tyr Glu Phe Cys Tyr Gly Lys			
350	355	360	
His Val His Gln Tyr His Glu Asp Lys Asp Ser Gly Lys Thr Ser			
365	370	375	
Val Val Val Gly Thr Trp Asn Gln Glu Glu His Ile Glu Trp Ala			
380	385	390	
Lys Lys Asn Thr Ala Arg Ala Tyr His Leu Gln Asp Asp Gly Thr			
395	400	405	
Gln Thr Val Arg Met Val Ser His Phe Tyr Gly Asn Gly Asp Ile			
410	415	420	
Cys Asp Ile Thr Asp Lys Pro Arg Gln Val Thr Val Lys Leu Lys			
425	430	435	
Cys Lys Glu Ser Asp Ser Pro His Ala Val Thr Val Tyr Met Leu			
440	445	450	
Glu Pro His Ser Cys Gln Tyr Ile Leu Gly Val Glu Ser Pro Val			
455	460	465	
Ile Cys Lys Ile Leu Asp Thr Ala Asp Glu Asn Gly Leu Leu Ser			
470	475	480	
Leu Pro Asn			

WO 01/07471

PCT/US00/19948

<210> 20
<211> 280
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2553926CD1

<400> 20
Met Glu Ala Ala Glu Thr Glu Ala Glu Ala Ala Leu Glu Val
1 5 10 15
Leu Ala Glu Val Ala Gly Ile Leu Glu Pro Val Gly Leu Gln Glu
20 25 30
Glu Ala Glu Leu Pro Ala Lys Ile Leu Val Glu Phe Val Val Asp
35 40 45
Ser Gln Lys Lys Asp Lys Leu Leu Cys Ser Gln Leu Gln Val Ala
50 55 60
Asp Phe Leu Gln Asn Ile Leu Ala Gln Glu Asp Thr Ala Lys Gly
65 70 75
Leu Asp Pro Leu Ala Ser Glu Asp Thr Ser Arg Gln Lys Ala Ile
80 85 90
Ala Ala Lys Glu Gln Trp Lys Glu Leu Lys Ala Thr Tyr Arg Glu
95 100 105
His Val Glu Ala Ile Lys Ile Gly Leu Thr Lys Ala Leu Thr Gln
110 115 120
Met Glu Glu Ala Gln Arg Lys Arg Thr Gln Leu Arg Glu Ala Phe
125 130 135
Glu Gln Leu Gln Ala Lys Lys Gln Met Ala Met Glu Lys Arg Arg
140 145 150
Ala Val Gln Asn Gln Trp Gln Leu Gln Gln Glu Lys His Leu Gln
155 160 165
His Leu Ala Glu Val Ser Ala Glu Val Arg Glu Arg Lys Thr Gly
170 175 180
Thr Gln Gln Glu Leu Asp Gly Val Phe Gln Lys Leu Gly Asn Leu
185 190 195
Lys Gln Gln Ala Glu Gln Glu Arg Asp Lys Leu Gln Arg Tyr Gln
200 205 210
Thr Phe Leu Gln Leu Leu Tyr Thr Leu Gln Gly Lys Leu Leu Phe
215 220 225
Pro Glu Ala Glu Ala Glu Ala Glu Asn Leu Pro Asp Asp Lys Pro
230 235 240
Gln Gln Pro Thr Arg Pro Gln Glu Gln Ser Thr Gly Asp Thr Met
245 250 255
Gly Arg Asp Pro Gly Val Ser Phe Lys Phe Ser Lys Ala Val Gly
260 265 270
Leu Gln Pro Ala Gly Asp Val Asn Leu Pro
275 280

<210> 21
<211> 425
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2800717CD1

<400> 21
Met Gly Glu Asp Ala Ala Gln Ala Glu Lys Phe Gln His Pro Gly
1 5 10 15
Ser Asp Met Arg Gln Glu Lys Pro Ser Ser Pro Ser Pro Met Pro
20 25 30
Ser Ser Thr Pro Ser Pro Ser Leu Asn Leu Gly Asn Thr Glu Glu

WO 01/07471

PCT/US00/19948

35	40	45
Ala Ile Arg Asp Asn Ser Gln Val Asn Ala	Val Thr Val Leu Thr	
50	55	60
Leu Leu Asp Lys Leu Val Asn Met Leu Asp Ala	Val Gln Glu Asn	
65	70	75
Gln His Lys Met Glu Gln Arg Gln Ile Ser Leu	Glu Gly Ser Val	
80	85	90
Lys Gly Ile Gln Asn Asp Leu Thr Lys Leu	Ser Lys Tyr Gln Ala	
95	100	105
Ser Thr Ser Asn Thr Val Ser Lys Leu	Leu Glu Lys Ser Arg Lys	
110	115	120
Val Ser Ala His Thr Arg Ala Val Lys Glu	Arg Met Asp Arg Gln	
125	130	135
Cys Ala Gln Val Lys Arg Leu Glu Asn Asn His	Ala Gln Leu Leu	
140	145	150
Arg Arg Asn His Phe Lys Val Leu Ile Phe Gln	Glu Glu Asn Glu	
155	160	165
Ile Pro Ala Ser Val Phe Val Lys Gln Pro Val	Ser Gly Ala Val	
170	175	180
Glu Gly Lys Glu Glu Leu Pro Asp Glu Asn Lys	Ser Leu Glu Glu	
185	190	195
Thr Leu His Thr Val Asp Leu Ser Ser Asp Asp	Asp Asp Leu Pro His	
200	205	210
Asp Glu Glu Ala Leu Glu Asp Ser Ala Glu	Glu Lys Val Glu Glu	
215	220	225
Ser Arg Ala Glu Lys Ile Lys Arg Ser Ser Leu	Lys Lys Val Asp	
230	235	240
Ser Leu Lys Lys Ala Phe Ser Arg Gln Asn Ile	Glu Lys Lys Met	
245	250	255
Asn Lys Leu Gly Thr Lys Ile Val Ser Val Glu	Arg Arg Glu Lys	
260	265	270
Ile Lys Lys Ser Leu Thr Ser Asn His Gln Lys	Ile Ser Ser Gly	
275	280	285
Lys Ser Ser Pro Phe Lys Val Ser Pro Leu Thr	Phe Gly Arg Lys	
290	295	300
Lys Val Arg Glu Gly Glu Ser His Ala Glu Asn	Glu Thr Lys Ser	
305	310	315
Glu Asp Leu Pro Ser Ser Glu Gln Met Pro Asn	Asp Gln Glu Glu	
320	325	330
Glu Ser Phe Ala Glu Gly His Ser Glu Ala Ser	Leu Ala Ser Ala	
335	340	345
Leu Val Glu Gly Glu Ile Ala Glu Glu Ala Ala	Glu Lys Ala Thr	
350	355	360
Ser Arg Gly Ser Asn Ser Gly Met Asp Ser Asn	Ile Asp Leu Thr	
365	370	375
Ile Val Glu Asp Glu Glu Glu Ser Val Ala Leu	Glu Gln Ala	
380	385	390
Gln Lys Val Arg Tyr Glu Gly Ser Tyr Ala Leu	Thr Ser Glu Glu	
395	400	405
Ala Glu Arg Ser Asp Gly Asp Pro Val Gln Pro	Ala Val Leu Gln	
410	415	420
Val His Gln Thr Ser		
425		

<210> 22

<211> 128

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5664154CD1

<400> 22

WO 01/07471

PCT/US00/19948

Met Glu Ser Lys Glu Glu Arg Ala Leu Asn Asn Leu Ile Val Glu
 1 5 10 15
 Asn Val Asn Gln Glu Asn Asp Glu Lys Asp Glu Lys Glu Gln Val
 20 25 30
 Ala Asn Lys Gly Glu Pro Leu Ala Leu Pro Leu Asn Val Ser Glu
 35 40 45
 Tyr Cys Val Pro Arg Gly Asn Arg Arg Arg Phe Arg Val Arg Gln
 50 55 60
 Pro Ile Leu Gln Tyr Arg Trp Asp Ile Met His Arg Leu Gly Glu
 65 70 75
 Pro Gln Ala Arg Met Arg Glu Glu Asn Met Glu Arg Ile Gly Glu
 80 85 90
 Glu Val Arg Gln Leu Met Glu Lys Leu Arg Glu Lys Gln Leu Ser
 95 100 105
 His Ser Leu Arg Ala Val Ser Thr Asp Pro Pro His His Asp His
 110 115 120
 His Asp Glu Phe Cys Leu Met Pro
 125

<210> 23

<211> 113

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 017900CD1

<400> 23

Met Asp Gly Arg Val Gln Leu Ile Lys Ala Leu Leu Ala Leu Pro
 1 5 10 15
 Ile Arg Pro Ala Thr Arg Arg Trp Arg Asn Pro Ile Pro Phe Pro
 20 25 30
 Glu Thr Phe Asp Gly Asp Thr Asp Arg Leu Pro Glu Phe Ile Val
 35 40 45
 Gln Thr Gly Ser Tyr Met Phe Val Asp Glu Asn Thr Phe Ser Ser
 50 55 60
 Asp Ala Leu Lys Val Thr Phe Leu Ile Thr Arg Leu Thr Gly Pro
 65 70 75
 Ala Leu Gln Trp Val Ile Pro Tyr Ile Lys Lys Glu Ser Pro Leu
 80 85 90
 Leu Asn Asp Tyr Arg Gly Phe Leu Ala Glu Met Lys Arg Val Phe
 95 100 105
 Gly Trp Glu Glu Asp Glu Asp Phe
 110

<210> 24

<211> 308

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 035102CD1

<400> 24

Met Leu Gln Thr Pro Glu Ser Arg Gly Leu Pro Val Pro Gln Ala
 1 5 10 15
 Glu Gly Glu Lys Asp Gly Gly His Asp Gly Glu Thr Arg Ala Pro
 20 25 30
 Thr Ala Ser Gln Glu Arg Pro Lys Glu Glu Leu Gly Ala Gly Arg
 35 40 45
 Glu Glu Gly Ala Ala Glu Pro Ala Leu Thr Arg Lys Gly Ala Arg
 50 55 60
 Ala Leu Ala Ala Lys Ser Leu Ala Arg Arg Ala Tyr Arg Arg

WO 01/07471

PCT/US00/19948

65	70	75
Leu Asn Arg Thr Val	Ala Glu Leu Val Gln Phe Leu Leu Val Lys	
80	85	90
Asp Lys Lys Lys Ser Pro Ile Thr Arg	Ser Glu Met Val Lys Tyr	
95	100	105
Val Ile Gly Asp Leu Lys Ile Leu Phe	Pro Asp Ile Ile Ala Arg	
110	115	120
Ala Ala Glu His Leu Arg Tyr Val Phe	Gly Phe Glu Leu Lys Gln	
125	130	135
Phe Asp Arg Lys His His Thr Tyr Ile	Leu Ile Asn Lys Leu Lys	
140	145	150
Pro Leu Glu Glu Glu Glu Glu	Asp Leu Gly Gly Asp Gly	
155	160	165
Pro Arg Leu Gly Leu Leu Met Met Ile	Leu Gly Leu Ile Tyr Met	
170	175	180
Arg Gly Asn Ser Ala Arg Glu Ala Gln	Val Trp Glu Met Leu Arg	
185	190	195
Arg Leu Gly Val Gln Pro Ser Lys Tyr	His Phe Leu Phe Gly Tyr	
200	205	210
Pro Lys Arg Leu Ile Met Glu Asp Phe	Val Gln Gln Arg Tyr Leu	
215	220	225
Ser Tyr Arg Arg Val Pro His Thr Asn	Pro Pro Ala Tyr Glu Phe	
230	235	240
Ser Trp Gly Pro Arg Ser Asn Leu Glu	Ile Ser Lys Met Glu Val	
245	250	255
Leu Gly Phe Val Ala Lys Leu His Lys	Lys Glu Pro Gln His Trp	
260	265	270
Pro Val Gln Tyr Arg Glu Ala Leu Ala	Asp Glu Ala Asp Arg Ala	
275	280	285
Arg Ala Lys Ala Arg Ala Glu Ala Ser	Met Arg Ala Arg Ala Ser	
290	295	300
Ala Arg Ala Gly Ile His Leu Trp		
305		

<210> 25

<211> 221

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 259983CD1

<400> 25

Met Phe Gly Phe His Lys Pro Lys Met	Tyr Arg Ser Ile Glu Gly	
1 5	10	15
Cys Cys Ile Cys Arg Ala Lys Ser Ser	Ser Ser Arg Phe Thr Asp	
20 25	30	
Ser Lys Arg Tyr Glu Lys Asp Phe Gln	Ser Cys Phe Gly Leu His	
35 40	45	
Glu Thr Arg Ser Gly Asp Ile Cys Asn	Ala Cys Val Leu Leu Val	
50 55	60	
Lys Arg Trp Lys Lys Leu Pro Ala Gly	Ser Lys Lys Asn Trp Asn	
65 70	75	
His Val Val Asp Ala Arg Ala Gly Pro	Ser Leu Lys Thr Thr Leu	
80 85	90	
Lys Pro Lys Lys Val Lys Thr Leu Ser	Gly Asn Arg Ile Lys Ser	
95 100	105	
Asn Gln Ile Ser Lys Leu Gln Lys Glu	Phe Lys Arg His Asn Ser	
110 115	120	
Asp Ala His Ser Thr Thr Ser Ser Ala	Ser Pro Ala Gln Ser Pro	
125 130	135	
Cys Tyr Ser Asn Gln Ser Asp Asp Gly	Ser Asp Thr Glu Met Ala	
140 145	150	

WO 01/07471

PCT/US00/19948

Ser Gly Ser Asn Arg Thr Pro Val Phe Ser Phe Leu Asp Leu Thr
 155 160 165
 Tyr Trp Lys Arg Gln Lys Ile Cys Cys Gly Ile Ile Tyr Lys Gly
 170 175 180
 Arg Phe Gly Glu Val Leu Ile Asp Thr His Leu Phe Lys Pro Cys
 185 190 195
 Cys Ser Asn Lys Lys Ala Ala Ala Glu Lys Pro Glu Glu Gln Gly
 200 205 210
 Pro Glu Pro Leu Pro Ile Ser Thr Gln Glu Trp
 215 220

<210> 26

<211> 402

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 926810CD1

<400> 26

Met Ala Ser Ile Ile Ala Arg Val Gly Asn Ser Arg Arg Leu Asn
 1 5 10 15
 Ala Pro Leu Pro Pro Trp Ala His Ser Met Leu Arg Ser Leu Gly
 20 25 30
 Arg Ser Leu Gly Pro Ile Met Ala Ser Met Ala Asp Arg Asn Met
 35 40 45
 Lys Leu Phe Ser Gly Arg Val Val Pro Ala Gln Gly Glu Glu Thr
 50 55 60
 Phe Glu Asn Trp Leu Thr Gln Val Asn Gly Val Leu Pro Asp Trp
 65 70 75
 Asn Met Ser Glu Glu Glu Lys Leu Lys Arg Leu Met Lys Thr Leu
 80 85 90
 Arg Gly Pro Ala Arg Glu Val Met Arg Val Leu Gln Ala Thr Asn
 95 100 105
 Pro Asn Leu Ser Val Ala Asp Phe Leu Arg Ala Met Lys Leu Val
 110 115 120
 Phe Gly Glu Ser Glu Ser Ser Val Thr Ala His Gly Lys Phe Phe
 125 130 135
 Asn Thr Leu Gln Ala Gln Gly Glu Lys Ala Ser Leu Tyr Val Ile
 140 145 150
 Arg Leu Glu Val Gln Leu Gln Asn Ala Ile Gln Ala Gly Ile Ile
 155 160 165
 Ala Glu Lys Asp Ala Asn Arg Thr Arg Leu Gln Gln Leu Leu Leu
 170 175 180
 Gly Gly Glu Leu Ser Arg Asp Leu Arg Leu Arg Leu Lys Asp Phe
 185 190 195
 Leu Arg Met Tyr Ala Asn Glu Gln Glu Arg Leu Pro Asn Phe Leu
 200 205 210
 Glu Leu Ile Arg Met Val Arg Glu Glu Asp Trp Asp Asp Ala
 215 220 225
 Phe Ile Lys Arg Lys Arg Pro Lys Arg Ser Glu Ser Met Val Glu
 230 235 240
 Arg Ala Val Ser Pro Val Ala Phe Gln Gly Ser Pro Pro Ile Val
 245 250 255
 Ile Gly Ser Ala Asp Cys Asn Val Ile Glu Ile Asp Asp Thr Leu
 260 265 270
 Asp Asp Ser Asp Glu Asp Val Ile Leu Val Glu Ser Gln Asp Pro
 275 280 285
 Pro Leu Pro Ser Trp Gly Ala Pro Pro Leu Arg Asp Arg Ala Arg
 290 295 300
 Pro Gln Asp Glu Val Leu Val Ile Asp Ser Pro His Asn Ser Arg
 305 310 315
 Ala Gln Phe Pro Ser Thr Ser Gly Gly Ser Gly Tyr Lys Asn Asn

WO 01/07471

PCT/US00/19948

	320		325		330
Gly Pro Gly Glu	Met Arg Arg Ala Arg	Lys Arg Lys His Thr Ile			
335	340	345			
Arg Cys Ser Tyr	Cys Gly Glu Glu Gly	His Ser Lys Glu Thr Cys			
350	355	360			
Asp Asn Glu Ser	Asp Lys Ala Gln Val	Phe Glu Asn Leu Ile Ile			
365	370	375			
Thr Leu Gln Glu	Leu Thr His Thr Glu	Met Glu Arg Ser Arg Val			
380	385	390			
Ala Pro Gly Glu	Tyr Asn Asp Phe Ser	Glu Pro Leu			
	395	400			

<210> 27

<211> 93

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1398816CD1

<400> 27

Met Ser Thr Asp Thr	Gly Val Ser Leu Pro Ser Tyr	Glu Glu Asp			
1	5	10	15		
Gln Gly Ser Lys Leu	Ile Arg Lys Ala Lys	Glu Ala Pro Phe Val			
20	25	30			
Pro Val Gly Ile Ala	Gly Phe Ala Ala	Ile Val Ala Tyr Gly Leu			
35	40	45			
Tyr Lys Leu Lys Ser	Arg Gly Asn Thr	Lys Met Ser Ile His Leu			
50	55	60			
Ile His Met Arg Val	Ala Ala Gln Gly	Phe Val Val Gly Ala Met			
65	70	75			
Thr Val Gly Met Gly	Tyr Ser Met Tyr Arg	Glu Phe Trp Ala Lys			
80	85	90			

Pro Lys Pro

<210> 28

<211> 353

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1496820CD1

<400> 28

Met Asn Arg Glu Asp	Arg Asn Val Leu Arg Met Lys	Glu Arg Glu			
1	5	10	15		
Arg Arg Asn Gln Glu	Ile Gln Gln Gly	Glu Asp Ala Phe Pro Pro			
20	25	30			
Ser Ser Pro Leu Phe	Ala Glu Pro Tyr	Lys Val Thr Ser Lys Glu			
35	40	45			
Asp Lys Leu Ser Ser	Arg Ile Gln Ser Met	Leu Gly Asn Tyr Asp			
50	55	60			
Glu Met Lys Asp Phe	Ile Gly Asp Arg Ser	Ile Pro Lys Leu Val			
65	70	75			
Ala Ile Pro Lys Pro	Thr Val Pro Pro	Ser Ala Asp Glu Lys Ser			
80	85	90			
Asn Pro Asn Phe Phe	Glu Gln Arg His	Gly Gly Ser His Gln Ser			
95	100	105			
Ser Lys Trp Thr Pro	Val Gly Pro Ala	Pro Ser Thr Ser Gln Ser			
110	115	120			
Gln Lys Arg Ser Ser	Gly Leu Gln Ser	Gly His Ser Ser Gln Arg			
125	130	135			

WO 01/07471

PCT/US00/19948

Thr Ser Ala Gly Ser Ser Ser Gly Thr Asn Ser Ser Gly Gln Arg
 140 145 150
 His Asp Arg Glu Ser Tyr Asn Asn Ser Gly Ser Ser Ser Arg Lys
 155 160 165
 Lys Gly Gln His Gly Ser Glu His Ser Lys Ser Arg Ser Ser Ser
 170 175 180
 Pro Gly Lys Pro Gln Ala Val Ser Ser Leu Asn Ser Ser His Ser
 185 190 195
 Arg Ser His Gly Asn Asp His His Ser Lys Glu His Gln Arg Ser
 200 205 210
 Lys Ser Pro Arg Asp Pro Asp Ala Asn Trp Asp Ser Pro Ser Arg
 215 220 225
 Val Pro Phe Ser Ser Gly Gln His Ser Thr Gln Ser Phe Pro Pro
 230 235 240
 Ser Leu Met Ser Lys Ser Asn Ser Met Leu Gln Lys Pro Thr Ala
 245 250 255
 Tyr Val Arg Pro Met Asp Gly Gln Glu Ser Met Glu Pro Lys Leu
 260 265 270
 Ser Ser Glu His Tyr Ser Ser Gln Ser His Gly Asn Ser Met Thr
 275 280 285
 Glu Leu Lys Pro Ser Ser Lys Ala His Leu Thr Lys Leu Lys Ile
 290 295 300
 Pro Ser Gln Pro Leu Asp Ala Ser Ala Ser Gly Asp Val Ser Cys
 305 310 315
 Val Asp Glu Ile Leu Lys Glu Met Thr His Ser Trp Pro Pro Pro
 320 325 330
 Leu Thr Ala Ile His Thr Pro Cys Lys Thr Glu Pro Ser Lys Phe
 335 340 345
 Pro Phe Pro Thr Lys Val Ser Lys
 350

<210> 29

<211> 120

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1514559CD1

<400> 29

Met Ser Glu Pro Ala Gly Asp Val Arg Gln Asn Pro Cys Gly Ser
 1 5 10 15
 Lys Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser Glu Gln Leu
 20 25 30
 Ser Arg Asp Cys Asp Ala Leu Met Ala Gly Cys Ile Gln Glu Ala
 35 40 45
 Arg Glu Arg Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu Glu
 50 55 60
 Gly Asp Phe Ala Trp Glu Arg Val Arg Gly Leu Gly Leu Pro Lys
 65 70 75
 Leu Tyr Leu Pro Thr Trp Ser Ala Gly Trp Tyr Pro Leu Glu Gly
 80 85 90
 Cys Gly Ser Phe Pro Ser Leu Ser Gln Ala Val Met Lys Phe Thr
 95 100 105
 Pro Phe Pro Gly His Ser Asp Leu Asn Ser Phe Ser Phe Glu Lys
 110 115 120

<210> 30

<211> 144

<212> PRT

<213> Homo sapiens

<220>

WO 01/07471

PCT/US00/19948

<221> misc_feature
 <223> Incyte ID No: 1620092CD1

<400> 30
 Met Arg Ser Cys Phe Arg Leu Cys Glu Arg Asp Val Ser Ser Ser
 1 5 10 15
 Leu Arg Leu Thr Arg Ser Ser Asp Leu Lys Arg Ile Asn Gly Phe
 20 25 30
 Cys Thr Lys Pro Gln Glu Ser Pro Gly Ala Pro Ser Arg Thr Tyr
 35 40 45
 Asn Arg Val Pro Leu His Lys Pro Thr Asp Trp Gln Lys Lys Ile
 50 55 60
 Leu Ile Trp Ser Gly Arg Phe Lys Lys Glu Asp Glu Ile Pro Glu
 65 70 75
 Thr Val Ser Leu Glu Met Leu Asp Ala Ala Lys Asn Lys Met Arg
 80 85 90
 Val Lys Ile Ser Tyr Leu Met Ile Ala Leu Thr Val Val Gly Cys
 95 100 105
 Ile Phe Met Val Ile Glu Gly Lys Lys Ala Ala Gln Arg His Glu
 110 115 120
 Thr Leu Thr Ser Leu Asn Leu Glu Lys Lys Ala Arg Leu Lys Glu
 125 130 135
 Glu Ala Ala Met Lys Ala Lys Thr Glu
 140

<210> 31
 <211> 933
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1678765CD1

<400> 31
 Met Phe Tyr Leu Glu Asp Asp Lys Glu Asp Glu Val Val Cys Lys
 1 5 10 15
 Gly Ser Leu Ser Lys Thr Gln Asp Val Tyr His Asp Lys Ser Pro
 20 25 30
 Pro Gly Ile Leu Ser Gln Thr Met Asn Tyr Val Gly Gln Leu Ala
 35 40 45
 Gly Gln Val Ile Val Thr Val Lys Glu Leu Tyr Lys Gly Ile Asn
 50 55 60
 Gln Ala Thr Leu Ser Gly Cys Ile Asp Val Ile Val Val Gln Gln
 65 70 75
 Gln Asp Gly Ser Tyr Gln Cys Ser Pro Phe His Val Arg Phe Gly
 80 85 90
 Lys Leu Gly Val Leu Arg Ser Lys Glu Lys Val Ile Asp Ile Glu
 95 100 105
 Ile Asn Gly Ser Ala Val Asp Leu His Met Lys Leu Gly Asp Asn
 110 115 120
 Gly Glu Ala Phe Phe Val Glu Glu Thr Glu Glu Glu Tyr Glu Lys
 125 130 135
 Leu Pro Ala Tyr Leu Ala Thr Ser Pro Ile Pro Thr Glu Asp Gln
 140 145 150
 Phe Phe Lys Asp Ile Asp Thr Pro Leu Val Lys Ser Gly Gly Asp
 155 160 165
 Glu Thr Pro Ser Gln Ser Ser Asp Ile Ser His Val Leu Glu Thr
 170 175 180
 Glu Thr Ile Phe Thr Pro Ser Ser Val Lys Lys Lys Lys Arg Arg
 185 190 195
 Arg Lys Lys Tyr Lys Gln Asp Ser Lys Lys Glu Glu Gln Ala Ala
 200 205 210
 Ser Ala Ala Ala Glu Asp Thr Cys Asp Val Gly Val Ser Ser Asp

WO 01/07471

PCT/US00/19948

	215		220		225
Asp Asp Lys Gly	Ala Gln Ala Ala Arg	Gly Ser Ser Asn Ala	Ser		
230	235	240			
Leu Lys Glu Glu	Glu Cys Lys Glu Pro	Leu Leu Phe His Ser	Gly		
245	250	255			
Asp His Tyr Pro	Leu Ser Asp Gly Asp	Trp Ser Pro Leu Glu	Thr		
260	265	270			
Thr Tyr Pro Gln	Thr Ala Cys Pro Lys	Ser Asp Ser Glu Leu	Glu		
275	280	285			
Val Lys Pro Ala	Glu Ser Leu Leu Arg	Ser Glu Tyr His Met	Glu		
290	295	300			
Trp Thr Trp Gly	Gly Phe Pro Glu Ser	Thr Lys Val Ser Lys	Arg		
305	310	315			
Glu Arg Ser Asp	His His Pro Arg Thr	Ala Thr Ile Thr Pro	Ser		
320	325	330			
Glu Asn Thr His	Phe Arg Val Ile Pro	Ser Glu Asp Asn Leu	Ile		
335	340	345			
Ser Glu Val Glu	Lys Asp Ala Ser Met	Glu Asp Thr Val Cys	Thr		
350	355	360			
Ile Val Lys Pro	Lys Pro Arg Ala Leu	Gly Thr Gln Met Ser	Asp		
365	370	375			
Pro Thr Ser Val	Ala Glu Leu Leu Glu	Pro Pro Leu Glu Ser	Thr		
380	385	390			
Gln Ile Ser Ser	Met Leu Asp Ala Asp	His Leu Pro Asn Ala	Ala		
395	400	405			
Leu Ala Glu Ala	Pro Ser Glu Ser Lys	Pro Ala Ala Lys Val	Asp		
410	415	420			
Ser Pro Ser Lys	Lys Lys Gly Val His	Lys Arg Ile Gln His	Gln		
425	430	435			
Gly Pro Asp Asp	Ile Tyr Leu Asp Asp	Leu Lys Gly Leu Glu	Pro		
440	445	450			
Glu Val Ala Ala	Leu Tyr Phe Pro Lys	Ser Glu Ser Glu Pro	Gly		
455	460	465			
Ser Arg Gln Trp	Pro Glu Ser Asp Thr	Leu Ser Gly Ser Gln	Ser		
470	475	480			
Pro Gln Ser Val	Gly Ser Ala Ala Ala	Asp Ser Gly Thr Glu	Cys		
485	490	495			
Leu Ser Asp Ser	Ala Met Asp Leu Pro	Asp Val Thr Leu Ser	Leu		
500	505	510			
Cys Gly Gly Leu	Ser Glu Asn Gly Lys	Ile Ser Lys Glu Lys	Phe		
515	520	525			
Met Glu His Ile	Ile Thr Tyr His Glu	Phe Ala Glu Asn Pro	Gly		
530	535	540			
Leu Ile Asp Asn	Pro Asn Leu Val Ile	Arg Ile Tyr Asn Arg	Tyr		
545	550	555			
Tyr Asn Trp Ala	Leu Ala Ala Pro Met	Ile Leu Ser Leu Gln	Val		
560	565	570			
Phe Gln Lys Ser	Leu Pro Lys Ala Thr	Val Glu Ser Trp Val	Lys		
575	580	585			
Asp Lys Met Pro	Lys Lys Ser Gly Arg	Trp Trp Phe Trp Arg	Lys		
590	595	600			
Arg Glu Ser Met	Thr Lys Gln Leu Pro	Glu Ser Lys Glu Gly	Lys		
605	610	615			
Ser Glu Ala Pro	Pro Ala Ser Asp Leu	Pro Ser Ser Ser Lys	Glu		
620	625	630			
Pro Ala Gly Ala	Arg Pro Ala Glu Asn	Asp Ser Ser Ser Asp	Glu		
635	640	645			
Gly Ser Gln Glu	Leu Glu Glu Ser Ile	Thr Val Asp Pro Ile	Pro		
650	655	660			
Thr Glu Pro Leu	Ser His Gly Ser Thr	Thr Ser Tyr Lys Lys	Ser		
665	670	675			
Leu Arg Leu Ser	Ser Asp Gln Ile Ala	Lys Leu Lys Leu His	Asp		
680	685	690			

WO 01/07471

PCT/US00/19948

Gly Pro Asn Asp Val Val Phe Ser Ile Thr Thr Gln Tyr Gln Gly
 695 700 705
 Thr Cys Arg Cys Ala Gly Thr Ile Tyr Leu Trp Asn Trp Asn Asp
 710 715 720
 Lys Ile Ile Ile Ser Asp Ile Asp Gly Thr Ile Thr Lys Ser Asp
 725 730 735
 Ala Leu Gly Gln Ile Leu Pro Gln Leu Gly Lys Asp Trp Thr His
 740 745 750
 Gln Gly Ile Ala Lys Leu Tyr His Ser Ile Asn Glu Asn Gly Tyr
 755 760 765
 Lys Phe Leu Tyr Cys Ser Ala Arg Ala Ile Gly Met Ala Asp Met
 770 775 780
 Thr Arg Gly Tyr Leu His Trp Val Asn Asp Lys Gly Thr Ile Leu
 785 790 795
 Pro Arg Gly Pro Leu Met Leu Ser Pro Ser Ser Leu Phe Ser Ala
 800 805 810
 Phe His Arg Glu Val Ile Glu Lys Lys Pro Glu Lys Phe Lys Ile
 815 820 825
 Glu Cys Leu Asn Asp Ile Lys Asn Leu Phe Ala Pro Ser Lys Gln
 830 835 840
 Pro Phe Tyr Ala Ala Phe Gly Asn Arg Pro Asn Asp Val Tyr Ala
 845 850 855
 Tyr Thr Gln Val Gly Val Pro Asp Cys Arg Ile Phe Thr Val Asn
 860 865 870
 Pro Lys Gly Glu Leu Ile Gln Glu Arg Thr Lys Gly Asn Lys Ser
 875 880 885
 Ser Tyr His Arg Leu Ser Glu Leu Val Glu His Val Phe Pro Leu
 890 895 900
 Leu Ser Lys Glu Gln Asn Ser Ala Phe Pro Cys Pro Glu Phe Ser
 905 910 915
 Ser Phe Cys Tyr Trp Arg Asp Pro Ile Pro Glu Val Asp Leu Asp
 920 925 930
 Asp Leu Ser

<210> 32
<211> 268
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1708229CD1

<400> 32
Met Leu Gly Asp His Cys Ser Leu Pro Glu Asp Gln Ala Arg Pro
 1 5 10 15
 Gly Gln Ser Leu Gln Ser Gly Leu Cys Cys Lys Met Val Leu Gln
 20 25 30
 Ala Val Ser Lys Val Leu Arg Lys Ser Lys Ala Lys Pro Asn Gly
 35 40 45
 Lys Lys Pro Ala Ala Glu Glu Arg Lys Ala Tyr Leu Glu Pro Glu
 50 55 60
 His Thr Lys Ala Arg Ile Thr Asp Phe Gln Phe Lys Glu Leu Val
 65 70 75
 Val Leu Pro Arg Glu Ile Asp Leu Asn Glu Trp Leu Ala Ser Asn
 80 85 90
 Thr Thr Thr Phe Phe His His Ile Asn Leu Gln Tyr Ser Thr Ile
 95 100 105
 Ser Glu Phe Cys Thr Gly Glu Thr Cys Gln Thr Met Ala Val Cys
 110 115 120
 Asn Thr Gln Tyr Tyr Trp Tyr Asp Glu Arg Gly Lys Lys Val Lys
 125 130 135
 Cys Thr Ala Pro Gln Tyr Val Asp Phe Val Met Ser Ser Val Gln

WO 01/07471

PCT/US00/19948

140	145	150
Lys Leu Val Thr Asp Glu Asp Val Phe Pro	Thr Lys Tyr Gly Arg	
155	160	165
Glu Phe Pro Ser Ser Phe Glu Ser Leu Val	Arg Lys Ile Cys Arg	
170	175	180
His Leu Phe His Val Leu Ala His Ile Tyr	Trp Ala His Phe Lys	
185	190	195
Glu Thr Leu Ala Leu Glu Leu His Gly His	Leu Asn Thr Leu Tyr	
200	205	210
Val His Phe Ile Leu Phe Ala Arg Glu Phe	Asn Leu Leu Asp Pro	
215	220	225
Lys Glu Thr Ala Ile Met Asp Asp Leu Thr	Glu Val Leu Cys Ser	
230	235	240
Gly Ala Gly Gly Val His Ser Gly Gly Ser	Gly Asp Gly Ala Gly	
245	250	255
Ser Gly Gly Pro Gly Ala Gln Asn His Val	Lys Glu Arg	
260	265	

<210> 33

<211> 337

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1806454CD1

<400> 33

Met Leu Leu Gly Leu Ala Ala Met Glu Leu Lys Val Trp Val Asp			
1	5	10	15
Gly Ile Gln Arg Val Val Cys Gly Val Ser Glu Gln Thr Thr Cys			
20	25	30	
Gln Glu Val Val Ile Ala Leu Ala Gln Ala Ile Gly Gln Thr Gly			
35	40	45	
Arg Phe Val Leu Val Gln Arg Leu Arg Glu Lys Glu Arg Gln Leu			
50	55	60	
Leu Pro Gln Glu Cys Pro Val Gly Ala Gln Ala Thr Cys Gly Gln			
65	70	75	
Phe Ala Ser Asp Val Gln Phe Val Leu Arg Arg Thr Gly Pro Ser			
80	85	90	
Leu Ala Gly Arg Pro Ser Ser Asp Ser Cys Pro Pro Pro Glu Arg			
95	100	105	
Cys Leu Ile Arg Ala Ser Leu Pro Val Lys Pro Arg Ala Ala Leu			
110	115	120	
Gly Cys Glu Pro Arg Lys Thr Leu Thr Pro Glu Pro Ala Pro Ser			
125	130	135	
Leu Ser Arg Pro Gly Pro Ala Ala Pro Val Thr Pro Thr Pro Gly			
140	145	150	
Cys Cys Thr Asp Leu Arg Gly Leu Glu Leu Arg Val Gln Arg Asn			
155	160	165	
Ala Glu Glu Leu Gly His Glu Ala Phe Trp Glu Gln Glu Leu Arg			
170	175	180	
Arg Glu Gln Ala Arg Glu Arg Glu Gly Gln Ala Arg Leu Gln Ala			
185	190	195	
Leu Ser Ala Ala Thr Ala Glu His Ala Ala Arg Leu Gln Ala Leu			
200	205	210	
Asp Ala Gln Ala Arg Ala Leu Glu Ala Glu Leu Gln Leu Ala Ala			
215	220	225	
Glu Ala Pro Gly Pro Pro Ser Pro Met Ala Ser Ala Thr Glu Arg			
230	235	240	
Leu His Gln Asp Leu Ala Val Gln Glu Arg Gln Ser Ala Glu Val			
245	250	255	
Gln Gly Ser Leu Ala Leu Val Ser Arg Ala Leu Glu Ala Ala Glu			
260	265	270	

WO 01/07471

PCT/US00/19948

Arg Ala Leu Gln Ala Gln Ala Gln Glu Leu Glu Glu Leu Asn Arg
 275 280 285
 Glu Leu Arg Gln Cys Asn Leu Gln Gln Phe Ile Gln Gln Thr Gly
 290 295 300
 Ala Ala Leu Pro Pro Pro Pro Arg Pro Asp Arg Gly Pro Pro Gly
 305 310 315
 Thr Gln Val Gly Val Val Leu Gly Gly Trp Glu Val Arg Thr
 320 325 330
 Trp Pro Ser Pro Thr Pro Ser
 335
 <210> 34
 <211> 565
 <212> PRT
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 1806850CD1

 <400> 34
 Met Lys Glu Glu Glu Glu Val Phe Gln Pro Met Leu Met Glu Tyr
 1 5 10 15
 Phe Thr Tyr Glu Glu Leu Lys Tyr Ile Lys Lys Lys Val Ile Ala
 20 25 30
 Gln His Cys Ser Gln Lys Asp Thr Ala Glu Leu Leu Arg Gly Leu
 35 40 45
 Ser Leu Trp Asn His Ala Glu Glu Arg Gln Lys Phe Phe Lys Tyr
 50 55 60
 Ser Val Asp Glu Lys Ser Asp Lys Glu Ala Glu Val Ser Glu His
 65 70 75
 Ser Thr Gly Ile Thr His Leu Pro Pro Glu Val Met Leu Ser Ile
 80 85 90
 Phe Ser Tyr Leu Asn Pro Gln Glu Leu Cys Arg Cys Ser Gln Val
 95 100 105
 Ser Met Lys Trp Ser Gln Leu Thr Lys Thr Gly Ser Leu Trp Lys
 110 115 120
 His Leu Tyr Pro Val His Trp Ala Arg Gly Asp Trp Tyr Ser Gly
 125 130 135
 Pro Ala Thr Glu Leu Asp Thr Glu Pro Asp Asp Glu Trp Val Lys
 140 145 150
 Asn Arg Lys Asp Glu Ser Arg Ala Phe His Glu Trp Asp Glu Asp
 155 160 165
 Ala Asp Ile Asp Glu Ser Glu Glu Ser Ala Glu Glu Ser Ile Ala
 170 175 180
 Ile Ser Ile Ala Gln Met Glu Lys Arg Leu Leu His Gly Leu Ile
 185 190 195
 His Asn Val Leu Pro Tyr Val Gly Thr Ser Val Lys Thr Leu Val
 200 205 210
 Leu Ala Tyr Ser Ser Ala Val Ser Ser Lys Met Val Arg Gln Ile
 215 220 225
 Leu Glu Leu Cys Pro Asn Leu Glu His Leu Asp Leu Thr Gln Thr
 230 235 240
 Asp Ile Ser Asp Ser Ala Phe Asp Ser Trp Ser Trp Leu Gly Cys
 245 250 255
 Cys Gln Ser Leu Arg His Leu Asp Leu Ser Gly Cys Glu Lys Ile
 260 265 270
 Thr Asp Val Ala Leu Glu Lys Ile Ser Arg Ala Leu Gly Ile Leu
 275 280 285
 Thr Ser His Gln Ser Gly Phe Leu Lys Thr Ser Thr Ser Lys Ile
 290 295 300
 Thr Ser Thr Ala Trp Lys Asn Lys Asp Ile Thr Met Gln Ser Thr
 305 310 315
 Lys Gln Tyr Ala Cys Leu His Asp Leu Thr Asn Lys Gly Ile Gly

WO 01/07471

PCT/US00/19948

	320	325	330
Glu Glu Ile Asp Asn Glu His Pro Trp		Thr Lys Pro Val Ser	Ser
335	340	345	
Glu Asn Phe Thr Ser Pro Tyr Val Trp		Met Leu Asp Ala Glu Asp	
350	355	360	
Leu Ala Asp Ile Glu Asp Thr Val Glu		Trp Arg His Arg Asn Val	
365	370	375	
Glu Ser Leu Cys Val Met Glu Thr Ala		Ser Asn Phe Ser Cys Ser	
380	385	390	
Thr Ser Gly Cys Phe Ser Lys Asp Ile		Val Gly Leu Arg Thr Ser	
395	400	405	
Val Cys Trp Gln Gln His Cys Ala Ser		Pro Ala Phe Ala Tyr Cys	
410	415	420	
Gly His Ser Phe Cys Cys Thr Gly Thr		Ala Leu Arg Thr Met Ser	
425	430	435	
Ser Leu Pro Glu Ser Ser Ala Met Cys		Arg Lys Ala Ala Arg Thr	
440	445	450	
Arg Leu Pro Arg Gly Lys Asp Leu Ile		Tyr Phe Gly Ser Glu Lys	
455	460	465	
Ser Asp Gln Glu Thr Gly Arg Val Leu		Leu Phe Leu Ser Leu Ser	
470	475	480	
Gly Cys Tyr Gln Ile Thr Asp His Gly		Leu Arg Val Leu Thr Leu	
485	490	495	
Gly Gly Gly Leu Pro Tyr Leu Glu His		Leu Asn Leu Ser Gly Cys	
500	505	510	
Leu Thr Ile Thr Gly Ala Gly Leu Gln		Asp Leu Val Ser Ala Cys	
515	520	525	
Pro Ser Leu Asn Asp Glu Tyr Phe Tyr		Tyr Cys Asp Asn Ile Asn	
530	535	540	
Gly Pro His Ala Asp Thr Ala Ser Gly		Cys Gln Asn Leu Gln Cys	
545	550	555	
Gly Phe Arg Ala Cys Cys Arg Ser Gly		Glu	
560	565		

<210> 35

<211> 228

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1851534CD1

<400> 35

Met Asp Phe Ser Phe Ser Phe Met Gln	Gly Ile Met Gly Asn Thr		
1	5	10	15
Ile Gln Gln Pro Pro Gln Leu Ile Asp	Ser Ala Asn Ile Arg Gln		
20	25	30	
Glu Asp Ala Phe Asp Asn Asn Ser Asp	Ile Ala Glu Asp Gly Gly		
35	40	45	
Gln Thr Pro Tyr Glu Ala Thr Leu Gln	Gln Gly Phe Gln Tyr Pro		
50	55	60	
Ala Thr Thr Glu Asp Leu Pro Pro Leu	Thr Asn Gly Tyr Pro Ser		
65	70	75	
Ser Ile Ser Val Tyr Glu Thr Gln Thr	Lys Tyr Gln Ser Tyr Asn		
80	85	90	
Gln Tyr Pro Asn Gly Ser Ala Asn Gly	Phe Gly Ala Val Arg Asn		
95	100	105	
Phe Ser Pro Thr Asp Tyr Tyr His Ser	Glu Ile Pro Asn Thr Arg		
110	115	120	
Pro His Glu Ile Leu Glu Lys Pro Ser	Pro Pro Gln Pro Pro Pro		
125	130	135	
Pro Pro Ser Val Pro Gln Thr Val Ile	Pro Lys Lys Thr Gly Ser		
140	145	150	

WO 01/07471

PCT/US00/19948

Pro Glu Ile Lys Leu Lys Ile Thr Lys Thr Ile Gln Asn Gly Arg
 155 160 165
 Glu Leu Phe Glu Ser Ser Leu Cys Gly Asp Leu Leu Asn Glu Val
 170 175 180
 Gln Ala Ser Glu His Thr Lys Ser Lys His Glu Ser Arg Lys Glu
 185 190 195
 Lys Arg Lys Lys Ser Asn Lys His Asp Ser Ser Arg Ser Glu Glu
 200 205 210
 Arg Lys Ser His Lys Ile Pro Lys Leu Glu Pro Glu Glu Gln Asn
 215 220 225

Met Thr Lys

<210> 36

<211> 495

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1868749CD1

<400> 36

Met Lys Gly Met Lys Val Glu Val Leu Asn Ser Asp Ala Val Leu
 1 5 10 15
 Pro Ser Arg Val Tyr Trp Ile Ala Ser Val Ile Gln Thr Ala Gly
 20 25 30
 Tyr Arg Val Leu Leu Arg Tyr Glu Gly Phe Glu Asn Asp Ala Ser
 35 40 45
 His Asp Phe Trp Cys Asn Leu Gly Thr Val Asp Val His Pro Ile
 50 55 60
 Gly Trp Cys Ala Ile Asn Ser Lys Ile Leu Val Pro Pro Arg Thr
 65 70 75
 Ile His Ala Lys Phe Thr Asp Trp Lys Gly Tyr Leu Met Lys Arg
 80 85 90
 Leu Val Gly Ser Arg Thr Leu Pro Val Asp Phe His Ile Lys Met
 95 100 105
 Val Glu Ser Met Lys Tyr Pro Phe Arg Gln Gly Met Arg Leu Glu
 110 115 120
 Val Val Asp Lys Ser Gln Val Ser Arg Thr Arg Met Ala Val Val
 125 130 135
 Asp Thr Val Ile Gly Gly Arg Leu Arg Leu Leu Tyr Glu Asp Gly
 140 145 150
 Asp Ser Asp Asp Asp Phe Trp Cys His Met Trp Ser Pro Leu Ile
 155 160 165
 His Pro Val Gly Trp Ser Arg Arg Val Gly His Gly Ile Lys Met
 170 175 180
 Ser Glu Arg Arg Ser Asp Met Ala His His Pro Thr Phe Arg Lys
 185 190 195
 Ile Tyr Cys Asp Ala Val Pro Tyr Leu Phe Lys Lys Val Arg Ala
 200 205 210
 Val Tyr Thr Glu Gly Gly Trp Phe Glu Glu Gly Met Lys Leu Glu
 215 220 225
 Ala Ile Asp Pro Leu Asn Leu Gly Asn Ile Cys Val Ala Thr Val
 230 235 240
 Cys Lys Val Leu Leu Asp Gly Tyr Leu Met Ile Cys Val Asp Gly
 245 250 255
 Gly Pro Ser Thr Asp Gly Leu Asp Trp Phe Cys Tyr His Ala Ser
 260 265 270
 Ser His Ala Ile Phe Pro Ala Thr Phe Cys Gln Lys Asn Asp Ile
 275 280 285
 Glu Leu Thr Pro Pro Lys Gly Tyr Glu Ala Gln Thr Phe Asn Trp
 290 295 300
 Glu Asn Tyr Leu Glu Lys Thr Lys Ser Lys Ala Ala Pro Ser Arg

WO 01/07471

PCT/US00/19948

305	310	315
Leu Phe Asn Met Asp Cys Pro Asn His	Gly Phe Lys Val Gly	Met
320	325	330
Lys Leu Glu Ala Val Asp Leu Met Glu	Pro Arg Leu Ile Cys	Val
335	340	345
Ala Thr Val Lys Arg Val Val His Arg	Leu Leu Ser Ile His	Phe
350	355	360
Asp Gly Trp Asp Ser Glu Tyr Asp Gln	Trp Val Asp Cys Glu	Ser
365	370	375
Pro Asp Ile Tyr Pro Val Gly Trp Cys	Glu Leu Thr Gly Tyr	Gln
380	385	390
Leu Gln Pro Pro Val Ala Ala Glu Pro	Ala Thr Pro Leu Lys	Ala
395	400	405
Lys Glu Ala Thr Lys Lys Lys Lys	Gln Phe Gly Lys Lys	Arg
410	415	420
Lys Arg Ile Pro Pro Thr Lys Thr Arg	Pro Leu Arg Gln Gly	Ser
425	430	435
Lys Lys Pro Leu Leu Glu Asp Asp Pro	Gln Gly Ala Arg Lys	Ile
440	445	450
Ser Ser Glu Pro Val Pro Gly Glu Ile	Ile Ala Val Arg Val	Lys
455	460	465
Glu Glu His Leu Asp Val Ala Ser Pro	Asp Lys Ala Ser Ser	Pro
470	475	480
Glu Leu Pro Val Ser Val Glu Asn Ile	Lys Gln Glu Thr Asp	Asp
485	490	495

<210> 37

<211> 1336

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1980010CD1

<400> 37

Met Val Asp Gln Leu Glu Gln Ile Leu Ser Val	Ser Glu Leu Leu	
1	5	10 15
Glu Lys His Gly Leu Glu Lys Pro Ile Ser	Phe Val Lys Asn Thr	
20	25	30
Gln Ser Ser Ser Glu Glu Ala Arg Lys	Leu Met Val Arg Leu Thr	
35	40	45
Arg His Thr Gly Arg Lys Gln Pro Pro Val	Ser Glu Ser His Trp	
50	55	60
Arg Thr Leu Leu Gln Asp Met Leu Thr	Met Gln Gln Asn Val Tyr	
65	70	75
Thr Cys Leu Asp Ser Asp Ala Cys Tyr	Glu Ile Phe Thr Glu Ser	
80	85	90
Leu Leu Cys Ser Ser Arg Leu Glu Asn	Ile His Leu Ala Gly Gln	
95	100	105
Met Met His Cys Ser Ala Cys Ser Glu	Asn Pro Pro Ala Gly Ile	
110	115	120
Ala His Lys Gly Asn Pro His Tyr Arg	Val Ser Tyr Glu Lys Ser	
125	130	135
Ile Asp Leu Val Leu Ala Ala Ser Arg	Glu Tyr Phe Asn Ser Ser	
140	145	150
Thr Asn Leu Thr Asp Ser Cys Met Asp	Leu Ala Arg Cys Cys Leu	
155	160	165
Gln Leu Ile Thr Asp Arg Pro Pro Ala	Ile Gln Glu Glu Leu Asp	
170	175	180
Leu Ile Gln Ala Val Gly Cys Leu Glu	Glu Phe Gly Val Lys Ile	
185	190	195
Leu Pro Leu Gln Val Arg Leu Cys Pro Asp	Arg Ile Ser Leu Ile	

WO 01/07471

PCT/US00/19948

	200	205	210
Lys Glu Cys Ile Ser Gln Ser Pro Thr		Cys Tyr Lys Gln Ser Thr	
215		220	225
Lys Leu Leu Gly Leu Ala Glu Leu Leu Arg Val Ala Gly Glu Asn			
230		235	240
Pro Glu Glu Arg Arg Gly Gln Val Leu Ile Leu Leu Val Glu Gln			
245		250	255
Ala Leu Arg Phe His Asp Tyr Lys Ala Ala Ser Met His Cys Gln			
260		265	270
Glu Leu Met Ala Thr Gly Tyr Pro Lys Ser Trp Asp Val Cys Ser			
275		280	285
Gln Leu Gly Gln Ser Glu Gly Tyr Gln Asp Leu Ala Thr Arg Gln			
290		295	300
Glu Leu Met Ala Phe Ala Leu Thr His Cys Pro Pro Ser Ser Ile			
305		310	315
Glu Leu Leu Leu Ala Ala Ser Ser Ser Leu Gln Thr Glu Ile Leu			
320		325	330
Tyr Gln Arg Val Asn Phe Gln Ile His His Glu Gly Gly Glu Asn			
335		340	345
Ile Ser Ala Ser Pro Leu Thr Ser Lys Ala Val Gln Glu Asp Glu			
350		355	360
Val Gly Val Pro Gly Ser Asn Ser Ala Asp Leu Leu Arg Trp Thr			
365		370	375
Thr Ala Thr Thr Met Lys Val Leu Ser Asn Thr Thr Thr Thr Thr			
380		385	390
Lys Ala Val Leu Gln Ala Val Ser Asp Gly Gln Trp Trp Lys Lys			
395		400	405
Ser Leu Thr Tyr Leu Arg Pro Leu Gln Gly Gln Lys Cys Gly Gly			
410		415	420
Ala Tyr Gln Ile Gly Thr Thr Ala Asn Glu Asp Leu Glu Lys Gln			
425		430	435
Gly Cys His Pro Phe Tyr Glu Ser Val Ile Ser Asn Pro Phe Val			
440		445	450
Ala Glu Ser Glu Gly Thr Tyr Asp Thr Tyr Gln His Val Pro Val			
455		460	465
Glu Ser Phe Ala Glu Val Leu Leu Arg Thr Gly Lys Leu Ala Glu			
470		475	480
Ala Lys Asn Lys Gly Glu Val Phe Pro Thr Thr Glu Val Leu Leu			
485		490	495
Gln Leu Ala Ser Glu Ala Leu Pro Asn Asp Met Thr Leu Ala Leu			
500		505	510
Ala Tyr Leu Leu Ala Leu Pro Gln Val Leu Asp Ala Asn Arg Cys			
515		520	525
Phe Glu Lys Gln Ser Pro Ser Ala Leu Ser Leu Gln Leu Ala Ala			
530		535	540
Tyr Tyr Tyr Ser Leu Gln Ile Tyr Ala Arg Leu Ala Pro Cys Phe			
545		550	555
Arg Asp Lys Cys His Pro Leu Tyr Arg Ala Asp Pro Lys Glu Leu			
560		565	570
Ile Lys Met Val Thr Arg His Val Thr Arg His Glu His Glu Ala			
575		580	585
Trp Pro Glu Asp Leu Ile Ser Leu Thr Lys Gln Leu His Cys Tyr			
590		595	600
Asn Glu Arg Leu Leu Asp Phe Thr Gln Ala Gln Ile Leu Gln Gly			
605		610	615
Leu Arg Lys Gly Val Asp Val Gln Arg Phe Thr Ala Asp Asp Gln			
620		625	630
Tyr Lys Arg Glu Thr Ile Leu Gly Leu Ala Glu Thr Leu Glu Glu			
635		640	645
Ser Val Tyr Ser Ile Ala Ile Ser Leu Ala Gln Arg Tyr Ser Val			
650		655	660
Ser Arg Trp Glu Val Phe Met Thr His Leu Glu Phe Leu Phe Thr			
665		670	675

WO 01/07471

PCT/US00/19948

Asp Ser Gly Leu Ser Thr Leu Glu Ile Glu Asn Arg Ala Gln Asp
 680 685 690
 Leu His Leu Phe Glu Thr Leu Lys Thr Asp Pro Glu Ala Phe His
 695 700 705
 Gln His Met Val Lys Tyr Ile Tyr Pro Thr Ile Gly Gly Phe Asp
 710 715 720
 His Glu Arg Leu Gln Tyr Tyr Phe Thr Leu Leu Glu Asn Cys Gly
 725 730 735
 Cys Ala Asp Leu Gly Asn Cys Ala Ile Lys Pro Glu Thr His Ile
 740 745 750
 Arg Leu Leu Lys Lys Phe Lys Val Val Ala Ser Gly Leu Asn Tyr
 755 760 765
 Lys Lys Leu Thr Asp Glu Asn Met Ser Pro Leu Glu Ala Leu Glu
 770 775 780
 Pro Val Leu Ser Ser Gln Asn Ile Leu Ser Ile Ser Lys Leu Val
 785 790 795
 Pro Lys Ile Pro Glu Lys Asp Gly Gln Met Leu Ser Pro Ser Ser
 800 805 810
 Leu Tyr Thr Ile Trp Leu Gln Lys Leu Phe Trp Thr Gly Asp Pro
 815 820 825
 His Leu Ile Lys Gln Val Pro Gly Ser Ser Pro Glu Trp Leu His
 830 835 840
 Ala Tyr Asp Val Cys Met Lys Tyr Phe Asp Arg Leu His Pro Gly
 845 850 855
 Asp Leu Ile Thr Val Val Asp Ala Val Thr Phe Ser Pro Lys Ala
 860 865 870
 Val Thr Lys Leu Ser Val Glu Ala Arg Lys Glu Met Thr Arg Lys
 875 880 885
 Ala Ile Lys Thr Val Lys His Phe Ile Glu Lys Pro Arg Lys Arg
 890 895 900
 Asn Ser Glu Asp Glu Ala Gln Glu Ala Lys Asp Ser Lys Val Thr
 905 910 915
 Tyr Ala Asp Thr Leu Asn His Leu Glu Lys Ser Leu Ala His Leu
 920 925 930
 Glu Thr Leu Ser His Ser Phe Ile Leu Ser Leu Lys Asn Ser Glu
 935 940 945
 Gln Glu Thr Leu Gln Lys Tyr Ser His Leu Tyr Asp Leu Ser Arg
 950 955 960
 Ser Glu Lys Glu Lys Leu His Asp Glu Ala Val Ala Ile Cys Leu
 965 970 975
 Asp Gly Gln Pro Leu Ala Met Ile Gln Gln Leu Leu Glu Val Ala
 980 985 990
 Val Gly Pro Leu Asp Ile Ser Pro Lys Asp Ile Val Gln Ser Ala
 995 1000 1005
 Ile Met Lys Ile Ile Ser Ala Leu Ser Gly Gly Ser Ala Asp Leu
 1010 1015 1020
 Gly Gly Pro Arg Asp Pro Leu Lys Val Leu Glu Gly Val Val Ala
 1025 1030 1035
 Ala Val His Ala Ser Val Asp Lys Gly Glu Glu Leu Val Ser Pro
 1040 1045 1050
 Glu Asp Leu Leu Glu Trp Leu Arg Pro Phe Cys Ala Asp Asp Ala
 1055 1060 1065
 Trp Pro Val Arg Pro Arg Ile His Val Leu Gln Ile Leu Gly Gln
 1070 1075 1080
 Ser Phe His Leu Thr Glu Glu Asp Ser Lys Leu Leu Val Phe Phe
 1085 1090 1095
 Arg Thr Glu Ala Ile Leu Lys Ala Ser Trp Pro Gln Arg Gln Val
 1100 1105 1110
 Asp Ile Ala Asp Ile Glu Asn Glu Asn Arg Tyr Cys Leu Phe
 1115 1120 1125
 Met Glu Leu Leu Glu Ser Ser His His Glu Ala Glu Phe Gln His
 1130 1135 1140
 Leu Val Leu Leu Gln Ala Trp Pro Pro Met Lys Ser Glu Tyr

WO 01/07471

PCT/US00/19948

	1145	1150	1155
Val Ile Thr Asn Asn Pro Trp Val Arg Leu Ala Thr Val Met Leu			
1160	1165	1170	
Thr Arg Cys Thr Met Glu Asn Lys Glu Gly Leu Gly Asn Glu Val			
1175	1180	1185	
Leu Lys Met Cys Arg Ser Leu Tyr Asn Thr Lys Gln Met Leu Pro			
1190	1195	1200	
Ala Glu Gly Val Lys Glu Leu Cys Leu Leu Leu Asn Gln Ser			
1205	1210	1215	
Leu Leu Leu Pro Ser Leu Lys Leu Leu Glu Ser Arg Asp Glu			
1220	1225	1230	
His Leu His Glu Met Ala Leu Glu Gln Ile Thr Ala Val Thr Thr			
1235	1240	1245	
Val Asn Asp Ser Asn Cys Asp Gln Glu Leu Leu Ser Leu Leu Leu			
1250	1255	1260	
Asp Ala Lys Leu Leu Val Lys Cys Val Ser Thr Pro Phe Tyr Pro			
1265	1270	1275	
Arg Ile Val Asp His Leu Leu Ala Ser Leu Gln Gln Gly Arg Trp			
1280	1285	1290	
Asp Ala Glu Glu Leu Gly Arg His Leu Arg Glu Ala Gly His Glu			
1295	1300	1305	
Ala Glu Ala Gly Ser Leu Leu Leu Ala Val Arg Gly Thr His Gln			
1310	1315	1320	
Ala Phe Arg Thr Phe Ser Thr Ala Leu Arg Ala Ala Gln His Trp			
1325	1330	1335	
Val			

<210> 38
<211> 934
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2259032CD1

	<400> 38		
Met Phe Trp Lys Phe Asp Leu Asn Thr Thr Ser His Val Asp Lys			
1	5	10	15
Leu Leu Asp Lys Glu His Val Thr Leu Gln Glu Leu Met Asp Glu			
20	25	30	
Asp Asp Ile Leu Gln Glu Cys Lys Ala Gln Asn Gln Lys Leu Leu			
35	40	45	
Asp Phe Leu Cys Arg Gln Gln Cys Met Glu Glu Leu Val Ser Leu			
50	55	60	
Ile Thr Gln Asp Pro Pro Leu Asp Met Glu Glu Lys Val Arg Phe			
65	70	75	
Lys Tyr Pro Asn Thr Ala Cys Glu Leu Leu Thr Cys Asp Val Pro			
80	85	90	
Gln Ile Ser Asp Arg Leu Gly Gly Asp Glu Ser Leu Leu Ser Leu			
95	100	105	
Leu Tyr Asp Phe Leu Asp His Glu Pro Pro Leu Asn Pro Leu Leu			
110	115	120	
Ala Ser Phe Phe Ser Lys Thr Ile Gly Asn Leu Ile Ala Arg Lys			
125	130	135	
Thr Glu Gln Val Ile Thr Phe Leu Lys Lys Lys Asp Lys Phe Ile			
140	145	150	
Ser Leu Val Leu Lys His Ile Gly Thr Ser Ala Leu Met Asp Leu			
155	160	165	
Leu Leu Arg Leu Val Ser Cys Val Glu Pro Ala Gly Leu Arg Gln			
170	175	180	
Asp Val Leu His Trp Leu Asn Glu Glu Lys Val Ile Gln Arg Leu			
185	190	195	

WO 01/07471

PCT/US00/19948

Val Glu Leu Ile His Pro Ser Gln Asp Glu Asp Arg Gln Ser Asn
 200 205 210
 Ala Ser Gln Thr Leu Cys Asp Ile Val Arg Leu Gly Arg Asp Gln
 215 220 225
 Gly Ser Gln Leu Gln Glu Ala Leu Glu Pro Asp Pro Leu Leu Thr
 230 235 240
 Ala Leu Glu Ser Arg Gln Asp Cys Val Glu Gln Leu Leu Lys Asn
 245 250 255
 Met Phe Asp Gly Asp Arg Thr Glu Ser Cys Leu Val Ser Gly Thr
 260 265 270
 Gln Val Leu Leu Thr Leu Leu Glu Thr Arg Arg Val Gly Thr Glu
 275 280 285
 Gly Leu Val Asp Ser Phe Ser Gln Gly Leu Glu Arg Ser Tyr Ala
 290 295 300
 Val Ser Ser Ser Val Leu His Gly Ile Glu Pro Arg Leu Lys Asp
 305 310 315
 Phe His Gln Leu Leu Leu Asn Pro Pro Lys Lys Lys Ala Ile Leu
 320 325 330
 Thr Thr Ile Gly Val Leu Glu Glu Pro Leu Gly Asn Ala Arg Leu
 335 340 345
 His Gly Ala Arg Leu Met Ala Ala Leu Leu His Thr Asn Thr Pro
 350 355 360
 Ser Ile Asn Gln Glu Leu Cys Arg Leu Asn Thr Met Asp Leu Leu
 365 370 375
 Leu Asp Leu Phe Phe Lys Tyr Thr Trp Asn Asn Phe Leu His Phe
 380 385 390
 Gln Val Glu Leu Cys Ile Ala Ala Ile Leu Ser His Ala Ala Arg
 395 400 405
 Glu Glu Arg Thr Glu Ala Ser Gly Ser Glu Ser Arg Val Glu Pro
 410 415 420
 Pro His Glu Asn Gly Asn Arg Ser Leu Glu Thr Pro Gln Pro Ala
 425 430 435
 Ala Ser Leu Pro Asp Asn Thr Met Val Thr His Leu Phe Gln Lys
 440 445 450
 Cys Cys Leu Val Gln Arg Ile Leu Glu Ala Trp Glu Ala Asn Asp
 455 460 465
 His Thr Gln Ala Ala Gly Gly Met Arg Arg Gly Asn Met Gly His
 470 475 480
 Leu Thr Arg Ile Ala Asn Ala Val Val Gln Asn Leu Glu Arg Gly
 485 490 495
 Pro Val Gln Thr His Ile Ser Glu Val Ile Arg Gly Leu Pro Ala
 500 505 510
 Asp Cys Arg Gly Arg Trp Glu Ser Phe Val Glu Glu Thr Leu Thr
 515 520 525
 Glu Thr Asn Arg Arg Asn Thr Val Asp Leu Ala Phe Ser Asp Tyr
 530 535 540
 Gln Ile Gln Gln Met Thr Ala Asn Phe Val Asp Gln Phe Gly Phe
 545 550 555
 Asn Asp Glu Glu Phe Ala Asp Gln Asp Asp Asn Ile Asn Ala Pro
 560 565 570
 Phe Asp Arg Ile Ala Glu Ile Asn Phe Asn Ile Asp Ala Asp Glu
 575 580 585
 Asp Ser Pro Ser Ala Ala Leu Phe Glu Ala Cys Cys Ser Asp Arg
 590 595 600
 Ile Gln Pro Phe Asp Asp Asp Glu Asp Glu Asp Ile Trp Glu Asp
 605 610 615
 Ser Asp Thr Arg Cys Ala Ala Arg Val Met Ala Arg Pro Arg Phe
 620 625 630
 Gly Ala Pro His Ala Ser Glu Ser Cys Ser Lys Asn Gly Pro Glu
 635 640 645
 Arg Gly Gly Gln Asp Gly Lys Ala Ser Leu Glu Ala His Arg Asp
 650 655 660
 Ala Pro Gly Ala Gly Ala Pro Pro Ala Pro Gly Lys Lys Glu Ala

WO 01/07471

PCT/US00/19948

	665		670		675									
Pro	Pro	Val	Glu	Gly	Asp	Ser	Glu	Ala	Gly	Ala	Met	Trp	Thr	Ala
			680					685						690
Val	Phe	Asp	Glu	Pro	Ala	Asn	Ser	Thr	Pro	Thr	Ala	Pro	Gly	Val
			695					700						705
Val	Arg	Asp	Val	Gly	Ser	Ser	Val	Trp	Ala	Ala	Gly	Thr	Ser	Ala
			710					715						720
Pro	Glu	Glu	Lys	Gly	Trp	Ala	Lys	Phe	Thr	Asp	Phe	Gln	Pro	Phe
			725					730						735
Cys	Cys	Ser	Glu	Ser	Gly	Pro	Arg	Cys	Ser	Ser	Pro	Val	Asp	Thr
			740					745						750
Glu	Cys	Ser	His	Ala	Glu	Gly	Ser	Arg	Ser	Gln	Gly	Pro	Glu	Lys
			755					760						765
Ala	Phe	Ser	Pro	Ala	Ser	Pro	Cys	Ala	Trp	Asn	Val	Cys	Val	Thr
			770					775						780
Arg	Lys	Ala	Pro	Leu	Leu	Ala	Ser	Asp	Ser	Ser	Ser	Ser	Gly	Gly
			785					790						795
Ser	His	Ser	Glu	Asp	Gly	Asp	Gln	Lys	Ala	Ala	Ser	Ala	Met	Asp
			800					805						810
Ala	Val	Ser	Arg	Gly	Pro	Gly	Arg	Glu	Ala	Pro	Pro	Leu	Pro	Thr
			815					820						825
Val	Ala	Arg	Thr	Glu	Glu	Ala	Val	Gly	Arg	Val	Gly	Cys	Ala	Asp
			830					835						840
Ser	Arg	Leu	Leu	Ser	Pro	Ala	Cys	Pro	Ala	Pro	Lys	Glu	Val	Thr
			845					850						855
Ala	Ala	Pro	Ala	Val	Ala	Val	Pro	Pro	Glu	Ala	Thr	Val	Ala	Ile
			860					865						870
Thr	Thr	Ala	Leu	Ser	Lys	Ala	Gly	Pro	Ala	Ile	Pro	Thr	Pro	Ala
			875					880						885
Val	Ser	Ser	Ala	Leu	Ala	Val	Ala	Val	Pro	Leu	Gly	Pro	Ile	Met
			890					895						900
Ala	Val	Thr	Ala	Ala	Pro	Ala	Met	Val	Ala	Thr	Leu	Gly	Thr	Val
			905					910						915
Thr	Lys	Asp	Gly	Lys	Thr	Asp	Ala	Pro	Pro	Glu	Gly	Ala	Ala	Leu
			920					925						930
Asn	Gly	Pro	Val											

<210> 39
<211> 515
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2359526CD1

	400	39												
Met	Ala	Ala	Asn	Met	Tyr	Arg	Val	Gly	Asp	Tyr	Val	Tyr	Phe	Glu
				1	5			10		15				
Asn	Ser	Ser	Ser	Asn	Pro	Tyr	Leu	Ile	Arg	Arg	Ile	Glu	Glu	Leu
				20				25			30			
Asn	Lys	Thr	Ala	Ser	Gly	Asn	Val	Glu	Ala	Lys	Val	Val	Cys	Phe
				35				40			45			
Tyr	Arg	Arg	Arg	Asp	Ile	Ser	Asn	Thr	Leu	Ile	Met	Leu	Ala	Asp
				50				55			60			
Lys	His	Ala	Lys	Glu	Ile	Glu	Glu	Glu	Ser	Glu	Thr	Thr	Val	Glu
				65				70			75			
Ala	Asp	Leu	Thr	Asp	Lys	Gln	Lys	His	Gln	Leu	Lys	His	Arg	Glu
				80				85			90			
Leu	Phe	Leu	Ser	Arg	Gln	Tyr	Glu	Ser	Leu	Pro	Ala	Thr	His	Ile
				95				100			105			
Arg	Gly	Lys	Cys	Ser	Val	Ala	Leu	Leu	Asn	Glu	Thr	Glu	Ser	Val
				110				115			120			

WO 01/07471

PCT/US00/19948

Leu Ser Tyr Leu Asp Lys Glu Asp Thr Phe Phe Tyr Ser Leu Val
 125 130 135
 Tyr Asp Pro Ser Leu Lys Thr Leu Leu Ala Asp Lys Gly Glu Ile
 140 145 150
 Arg Val Gly Pro Arg Tyr Gln Ala Asp Ile Pro Glu Met Leu Leu
 155 160 165
 Glu Gly Glu Ser Asp Glu Arg Glu Gln Ser Lys Leu Glu Val Lys
 170 175 180
 Val Trp Asp Pro Asn Ser Pro Leu Thr Asp Arg Gln Ile Asp Gln
 185 190 195
 Phe Leu Val Val Ala Arg Ala Val Gly Thr Phe Ala Arg Ala Leu
 200 205 210
 Asp Cys Ser Ser Ser Val Arg Gln Pro Ser Leu His Met Ser Ala
 215 220 225
 Ala Ala Ala Ser Arg Asp Ile Thr Leu Phe His Ala Met Asp Thr
 230 235 240
 Leu Tyr Arg His Ser Tyr Asp Leu Ser Ser Ala Ile Ser Val Leu
 245 250 255
 Val Pro Leu Gly Gly Pro Val Leu Cys Arg Asp Glu Met Glu Glu
 260 265 270
 Trp Ser Ala Ser Glu Ala Ser Leu Phe Glu Glu Ala Leu Glu Lys
 275 280 285
 Tyr Gly Lys Asp Phe Asn Asp Ile Arg Gln Asp Phe Leu Pro Trp
 290 295 300
 Lys Ser Leu Thr Ser Ile Ile Glu Tyr Tyr Tyr Met Trp Lys Thr
 305 310 315
 Thr Asp Arg Tyr Val Gln Gln Lys Arg Leu Lys Ala Ala Glu Ala
 320 325 330
 Glu Ser Lys Leu Lys Gln Val Tyr Ile Pro Thr Tyr Ser Lys Pro
 335 340 345
 Asn Pro Asn Gln Ile Ser Thr Ser Asn Gly Lys Pro Gly Ala Val
 350 355 360
 Asn Gly Ala Val Gly Thr Thr Phe Gln Pro Gln Asn Pro Leu Leu
 365 370 375
 Gly Arg Ala Cys Glu Ser Cys Tyr Ala Thr Gln Ser His Gln Trp
 380 385 390
 Tyr Ser Trp Gly Pro Pro Asn Met Gln Cys Arg Leu Cys Ala Ile
 395 400 405
 Cys Trp Leu Tyr Trp Lys Lys Tyr Gly Gly Leu Lys Met Pro Thr
 410 415 420
 Gln Ser Glu Glu Glu Lys Leu Ser Pro Ser Pro Thr Thr Glu Asp
 425 430 435
 Pro Arg Val Arg Ser His Val Ser Arg Gln Ala Met Gln Gly Met
 440 445 450
 Pro Val Arg Asn Thr Gly Ser Pro Lys Ser Ala Val Lys Thr Arg
 455 460 465
 Gln Ala Phe Phe Leu His Thr Thr Tyr Phe Thr Lys Phe Ala Arg
 470 475 480
 Gln Val Cys Lys Asn Thr Leu Arg Leu Arg Gln Ala Ala Arg Arg
 485 490 495
 Pro Phe Val Ala Ile Asn Tyr Ala Ala Ile Arg Ala Glu Cys Lys
 500 505 510
 Met Leu Leu Asn Ser
 515
 <210> 40
 <211> 146
 <212> PRT
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 2456494CD1

WO 01/07471

PCT/US00/19948

<400> 40

Met	Val	Asp	Glu	Leu	Leu	Val	Leu	Leu	Leu	His	Ala	Leu	Leu	Met	Arg
1				5					10					15	
His	Arg	Ala	Leu	Ser	Ile	Glu	Asn	Ser	Gln	Leu	Met	Glu	Gln	Leu	
					20				25					30	
Arg	Leu	Leu	Val	Cys	Glu	Arg	Ala	Ser	Leu	Leu	Arg	Gln	Val	Arg	
					35				40					45	
Pro	Pro	Ser	Cys	Pro	Val	Pro	Phe	Pro	Glu	Thr	Phe	Asn	Gly	Glu	
					50				55					60	
Ser	Ser	Arg	Leu	Pro	Glu	Phe	Ile	Val	Gln	Thr	Ala	Ser	Tyr	Met	
					65				70					75	
Leu	Val	Asn	Glu	Asn	Arg	Phe	Cys	Asn	Asp	Ala	Met	Lys	Val	Ala	
					80				85					90	
Phe	Leu	Ile	Ser	Leu	Leu	Thr	Gly	Glu	Ala	Glu	Glu	Trp	Val	Val	
					95				100					105	
Pro	Tyr	Ile	Glu	Met	Asp	Ser	Pro	Ile	Leu	Gly	Asp	Tyr	Arg	Ala	
					110				115					120	
Phe	Leu	Asp	Glu	Met	Lys	Gln	Cys	Phe	Gly	Trp	Asp	Asp	Asp	Glu	
					125				130					135	
Asp	Asp	Asp	Asp	Glu	Glu	Glu	Glu	Asp	Asp	Tyr					
					140				145						

<210> 41

<211> 580

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2668536CD1

<400> 41

Met	Lys	Glu	Asn	Lys	Glu	Asn	Ser	Ser	Pro	Ser	Val	Thr	Ser	Ala
1				5					10					15
Asn	Leu	Asp	His	Thr	Lys	Pro	Cys	Trp	Tyr	Trp	Asp	Lys	Lys	Asp
					20				25					30
Leu	Ala	His	Thr	Pro	Ser	Gln	Leu	Glu	Gly	Leu	Asp	Pro	Ala	Thr
					35				40					45
Glu	Ala	Arg	Tyr	Arg	Arg	Glu	Gly	Ala	Arg	Phe	Ile	Phe	Asp	Val
					50				55					60
Gly	Thr	Arg	Leu	Gly	Leu	His	Tyr	Asp	Thr	Leu	Ala	Thr	Gly	Ile
					65				70					75
Ile	Tyr	Phe	His	Arg	Phe	Tyr	Met	Phe	His	Ser	Phe	Lys	Gln	Phe
					80				85					90
Pro	Arg	Tyr	Val	Thr	Gly	Ala	Cys	Cys	Leu	Phe	Leu	Ala	Gly	Lys
					95				100					105
Val	Glu	Glu	Thr	Pro	Lys	Lys	Cys	Lys	Asp	Ile	Ile	Lys	Thr	Ala
					110				115					120
Arg	Ser	Leu	Leu	Asn	Asp	Val	Gln	Phe	Gly	Gln	Phe	Gly	Asp	Asp
					125				130					135
Pro	Lys	Glu	Glu	Val	Met	Val	Leu	Glu	Arg	Ile	Leu	Leu	Gln	Thr
					140				145					150
Ile	Lys	Phe	Asp	Leu	Gln	Val	Glu	His	Pro	Tyr	Gln	Phe	Leu	Leu
					155				160					165
Lys	Tyr	Ala	Lys	Gln	Leu	Lys	Gly	Asp	Lys	Asn	Lys	Ile	Gln	Lys
					170				175					180
Leu	Val	Gln	Met	Ala	Trp	Thr	Phe	Val	Asn	Asp	Ser	Leu	Cys	Thr
					185				190					195
Thr	Leu	Ser	Leu	Gln	Trp	Glu	Pro	Glu	Ile	Ile	Ala	Val	Ala	Val
					200				205					210
Met	Tyr	Leu	Ala	Gly	Arg	Leu	Cys	Lys	Phe	Glu	Ile	Gln	Glu	Trp
					215				220					225
Thr	Ser	Lys	Pro	Met	Tyr	Arg	Arg	Trp	Trp	Glu	Gln	Phe	Val	Gln
					230				235					240

WO 01/07471

PCT/US00/19948

Asp Val Pro Val Asp Val Leu Glu Asp Ile Cys His Gln Ile Leu
 245 250 255
 Asp Leu Tyr Ser Gln Gly Lys Gln Gln Met Pro His His Thr Pro
 260 265 270
 His Gln Leu Gln Gln Pro Pro Ser Leu Gln Pro Thr Pro Gln Val
 275 280 285
 Pro Gln Val Gln Gln Ser Gln Pro Ser Gln Ser Ser Glu Pro Ser
 290 295 300
 Gln Pro Gln Gln Lys Asp Pro Gln Gln Pro Ala Gln Gln Gln
 305 310 315
 Pro Ala Gln Gln Pro Lys Lys Pro Ser Pro Gln Pro Ser Ser Pro
 320 325 330
 Arg Gln Val Lys Arg Ala Val Val Val Ser Pro Lys Glu Glu Asn
 335 340 345
 Lys Ala Ala Glu Pro Pro Pro Pro Lys Ile Pro Lys Ile Glu Thr
 350 355 360
 Thr His Pro Pro Leu Pro Pro Ala His Pro Pro Pro Asp Arg Lys
 365 370 375
 Pro Pro Leu Ala Ala Ala Leu Gly Glu Ala Glu Pro Pro Gly Pro
 380 385 390
 Val Asp Ala Thr Asp Leu Pro Lys Val Gln Ile Pro Pro Pro Ala
 395 400 405
 His Pro Ala Pro Val His Gln Pro Pro Pro Leu Pro His Arg Pro
 410 415 420
 Pro Pro Pro Pro Ser Ser Tyr Met Thr Gly Met Ser Thr Thr
 425 430 435
 Ser Ser Tyr Met Ser Gly Glu Gly Tyr Gln Ser Leu Gln Ser Met
 440 445 450
 Met Lys Thr Glu Gly Pro Ser Tyr Gly Ala Leu Pro Pro Ala Tyr
 455 460 465
 Gly Pro Pro Ala His Leu Pro Tyr His Pro His Val Tyr Pro Pro
 470 475 480
 Asn Pro Pro Pro Pro Val Pro Pro Pro Pro Ala Ser Phe Pro
 485 490 495
 His Leu Pro Ser His Pro Leu Leu Leu Ala Thr Pro Asn Pro His
 500 505 510
 Pro Pro Thr Thr Pro Thr Ser His Pro His Pro His Ala Ser Arg
 515 520 525
 Leu Pro Thr Gln Ser Pro Leu Ile Leu Leu Gln Gly Trp Ala Cys
 530 535 540
 Arg Gln Pro Ala Thr His Leu Leu Pro Ser Pro Leu Glu Asp Ser
 545 550 555
 Leu Leu Cys Pro Arg Pro Phe Pro His Pro Ala Cys Leu Gln Leu
 560 565 570
 Glu Gly Leu Gly Arg Ala Ala Trp Met Arg
 575 580

<210> 42
 <211> 131
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2683225CD1

<400> 42
 Met Ala Glu Pro Asp Tyr Ile Glu Asp Asp Asn Pro Glu Leu Ile
 1 5 10 15
 Arg Pro Gln Lys Leu Ile Asn Pro Val Lys Thr Ser Arg Asn His
 20 25 30
 Gln Asp Leu His Arg Glu Leu Leu Met Asn Gln Lys Arg Gly Leu
 35 40 45
 Ala Pro Gln Asn Lys Pro Glu Leu Gln Lys Val Met Glu Lys Arg

WO 01/07471

PCT/US00/19948

50	55	60
Lys Arg Asp Gln Val Ile Lys Gln Lys Glu	Glu Glu Ala Gln Lys	
65	70	75
Lys Lys Ser Asp Leu Glu Ile Glu Leu Leu	Lys Arg Gln Gln Lys	
80	85	90
Leu Glu Gln Leu Glu Leu Glu Lys Gln Lys	Leu Gln Glu Glu Gln	
95	100	105
Glu Asn Ala Pro Glu Phe Val Lys Val Lys	Gly Asn Leu Arg Arg	
110	115	120
Thr Gly Gln Glu Val Ala Gln Ala Gln Glu	Ser	
125	130	

<210> 43

<211> 812

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2797839CD1

<400> 43

Met Gly Arg Lys Leu Asp Pro Thr Lys Glu Lys Arg Gly Pro Gly			
1	5	10	15
Arg Lys Ala Arg Lys Gln Lys Gly Ala Glu Thr Glu Leu Val Arg			
20	25	30	
Phe Leu Pro Ala Val Ser Asp Glu Asn Ser Lys Arg Leu Ser Ser			
35	40	45	
Arg Ala Arg Lys Arg Ala Ala Lys Arg Arg Leu Gly Ser Val Glu			
50	55	60	
Ala Pro Lys Thr Asn Lys Ser Pro Glu Ala Lys Pro Leu Pro Gly			
65	70	75	
Lys Leu Pro Lys Gly Ile Ser Ala Gly Ala Val Gln Thr Ala Gly			
80	85	90	
Lys Lys Gly Pro Gln Ser Leu Phe Asn Ala Pro Arg Gly Lys Lys			
95	100	105	
Arg Pro Ala Pro Gly Ser Asp Glu Glu Glu Glu Glu Asp Ser			
110	115	120	
Glu Glu Asp Gly Met Val Asn His Gly Asp Leu Trp Gly Ser Glu			
125	130	135	
Asp Asp Ala Asp Thr Val Asp Asp Tyr Gly Ala Asp Ser Asn Ser			
140	145	150	
Glu Asp Glu Glu Glu Gly Glu Ala Leu Leu Pro Ile Glu Arg Ala			
155	160	165	
Ala Arg Lys Gln Lys Ala Arg Glu Ala Ala Gly Ile Gln Trp			
170	175	180	
Ser Glu Glu Glu Thr Glu Asp Glu Glu Glu Glu Lys Glu Val Thr			
185	190	195	
Pro Glu Ser Gly Pro Pro Lys Val Glu Glu Ala Asp Gly Gly Leu			
200	205	210	
Gln Ile Asn Val Asp Glu Glu Pro Phe Val Leu Pro Pro Ala Gly			
215	220	225	
Glu Met Glu Gln Asp Ala Gln Ala Pro Asp Leu Gln Arg Val His			
230	235	240	
Lys Arg Ile Gln Asp Ile Val Gly Ile Leu Arg Asp Phe Gly Ala			
245	250	255	
Gln Arg Glu Glu Gly Arg Ser Arg Ser Glu Tyr Leu Asn Arg Leu			
260	265	270	
Lys Lys Asp Leu Ala Ile Tyr Tyr Ser Tyr Gly Asp Phe Leu Leu			
275	280	285	
Gly Lys Leu Met Asp Leu Phe Pro Leu Ser Glu Leu Val Glu Phe			
290	295	300	
Leu Glu Ala Asn Glu Val Pro Arg Pro Val Thr Leu Arg Thr Asn			
305	310	315	

WO 01/07471

PCT/US00/19948

Thr Leu Lys Thr Arg Arg Arg Asp Leu Ala Gln Ala Leu Ile Asn
 320 325 330
 Arg Gly Val Asn Leu Asp Pro Leu Gly Lys Trp Ser Lys Thr Gly
 335 340 345
 Leu Val Val Tyr Asp Ser Ser Val Pro Ile Gly Ala Thr Pro Glu
 350 355 360
 Tyr Leu Ala Gly His Tyr Met Leu Gln Gly Ala Ser Ser Met Leu
 365 370 375
 Pro Val Met Ala Leu Ala Pro Gln Glu His Glu Arg Ile Leu Asp
 380 385 390
 Met Cys Cys Ala Pro Gly Gly Lys Thr Ser Tyr Met Ala Gln Leu
 395 400 405
 Met Lys Asn Thr Gly Val Ile Leu Ala Asn Asp Ala Asn Ala Glu
 410 415 420
 Arg Leu Lys Ser Val Val Gly Asn Leu His Arg Leu Gly Val Thr
 425 430 435
 Asn Thr Ile Ile Ser His Tyr Asp Gly Arg Gln Phe Pro Lys Val
 440 445 450
 Val Gly Gly Phe Asp Arg Val Leu Leu Asp Ala Pro Cys Ser Gly
 455 460 465
 Thr Gly Val Ile Ser Lys Asp Pro Ala Val Lys Thr Asn Lys Asp
 470 475 480
 Glu Lys Asp Ile Leu Arg Cys Ala His Leu Gln Lys Glu Leu Leu
 485 490 495
 Leu Ser Ala Ile Asp Ser Val Asn Ala Thr Ser Lys Thr Gly Gly
 500 505 510
 Tyr Leu Val Tyr Cys Thr Cys Ser Ile Thr Val Glu Glu Asn Glu
 515 520 525
 Trp Val Val Asp Tyr Ala Leu Lys Lys Arg Asn Val Arg Leu Val
 530 535 540
 Pro Thr Gly Leu Asp Phe Gly Gln Glu Gly Phe Thr Arg Phe Arg
 545 550 555
 Glu Arg Arg Phe His Pro Ser Leu Arg Ser Thr Arg Arg Phe Tyr
 560 565 570
 Pro His Thr His Asn Met Asp Gly Phe Phe Ile Ala Lys Phe Lys
 575 580 585
 Lys Phe Ser Asn Ser Ile Pro Gln Ser Gln Thr Gly Asn Ser Glu
 590 595 600
 Thr Ala Thr Pro Thr Asn Val Asp Leu Pro Gln Val Ile Pro Lys
 605 610 615
 Ser Glu Asn Ser Ser Gln Pro Ala Lys Lys Ala Lys Gly Ala Ala
 620 625 630
 Lys Thr Lys Gln Leu Gln Lys Gln Gln His Pro Lys Lys Ala
 635 640 645
 Ser Phe Gln Lys Leu Asn Gly Ile Ser Lys Gly Ala Asp Ser Glu
 650 655 660
 Leu Ser Thr Val Pro Ser Val Thr Lys Thr Gln Ala Ser Ser Ser
 665 670 675
 Phe Gln Asp Ser Ser Gln Pro Ala Gly Lys Ala Glu Gly Ile Arg
 680 685 690
 Glu Pro Lys Val Thr Gly Lys Leu Lys Gln Arg Ser Pro Lys Leu
 695 700 705
 Gln Ser Ser Lys Lys Val Ala Phe Leu Arg Gln Asn Ala Pro Pro
 710 715 720
 Lys Gly Thr Asp Thr Gln Thr Pro Ala Val Leu Ser Pro Ser Lys
 725 730 735
 Thr Gln Ala Thr Leu Lys Pro Lys Asp His His Gln Pro Leu Gly
 740 745 750
 Arg Ala Lys Gly Val Glu Lys Gln Gln Leu Pro Glu Gln Pro Phe
 755 760 765
 Glu Lys Ala Ala Phe Gln Lys Gln Asn Asp Thr Pro Lys Gly Pro
 770 775 780
 Gln Pro Pro Thr Val Ser Pro Ile Arg Ser Ser Arg Pro Pro Pro

WO 01/07471

PCT/US00/19948

	785		790		795
Ala Lys Arg Lys	Lys Ser Gln Ser Arg	Gly Asn Ser Gln Leu	Leu		
	800		805		810

Leu Ser

<210> 44

<211> 537

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2959521CD1

<400> 44

Met Arg Gly Val Gly Ala Arg Val Tyr Ala Asp Ala Pro Ala Lys					
1	5	10	15		
Leu Leu Leu Pro Pro Pro Ala Ala Trp Asp Leu Ala Val Arg Leu					
20	25	30			
Arg Gly Ala Glu Ala Ala Ser Glu Arg Gln Val Tyr Ser Val Thr					
35	40	45			
Met Lys Leu Leu Leu His Pro Ala Phe Gln Ser Cys Leu Leu					
50	55	60			
Leu Thr Leu Leu Gly Leu Trp Arg Thr Thr Pro Glu Ala His Ala					
65	70	75			
Ser Ser Leu Gly Ala Pro Ala Ile Ser Ala Ala Ser Phe Leu Gln					
80	85	90			
Asp Leu Ile His Arg Tyr Gly Glu Gly Asp Ser Leu Thr Leu Gln					
95	100	105			
Gln Leu Lys Ala Leu Leu Asn His Leu Asp Val Gly Val Gly Arg					
110	115	120			
Gly Asn Val Thr Gln His Val Gln Gly His Arg Asn Leu Ser Thr					
125	130	135			
Cys Phe Ser Ser Gly Asp Leu Phe Thr Ala His Asn Phe Ser Glu					
140	145	150			
Gln Ser Arg Ile Gly Ser Ser Glu Leu Gln Glu Phe Cys Pro Thr					
155	160	165			
Ile Leu Gln Gln Leu Asp Ser Arg Ala Cys Thr Ser Glu Asn Gln					
170	175	180			
Glu Asn Glu Glu Asn Glu Gln Thr Glu Glu Gly Arg Pro Ser Ala					
185	190	195			
Val Glu Val Trp Gly Tyr Gly Leu Leu Cys Val Thr Val Ile Ser					
200	205	210			
Leu Cys Ser Leu Leu Gly Ala Ser Val Val Pro Phe Met Lys Lys					
215	220	225			
Thr Phe Tyr Lys Arg Leu Leu Leu Tyr Phe Ile Ala Leu Ala Ile					
230	235	240			
Gly Thr Leu Tyr Ser Asn Ala Leu Phe Gln Leu Ile Pro Glu Ala					
245	250	255			
Phe Gly Phe Asn Pro Leu Glu Asp Tyr Tyr Val Ser Lys Ser Ala					
260	265	270			
Val Val Phe Gly Gly Phe Tyr Leu Phe Phe Phe Thr Glu Lys Ile					
275	280	285			
Leu Lys Ile Leu Leu Lys Gln Lys Asn Glu His His His Gly His					
290	295	300			
Ser His Tyr Ala Ser Glu Ser Leu Pro Ser Lys Lys Asp Gln Glu					
305	310	315			
Glu Gly Val Met Glu Lys Leu Gln Asn Gly Asp Leu Asp His Met					
320	325	330			
Ile Pro Gln His Cys Ser Ser Glu Leu Asp Gly Lys Ala Pro Met					
335	340	345			
Val Asp Glu Lys Val Ile Val Gly Ser Leu Ser Val Gln Asp Leu					
350	355	360			

WO 01/07471

PCT/US00/19948

Gln Ala Ser Gln Ser Ala Cys Tyr Trp Leu Lys Gly Val Arg Tyr
 365 370 375
 Ser Asp Ile Gly Thr Leu Ala Trp Met Ile Thr Leu Ser Asp Gly
 380 385 390
 Leu His Asn Phe Ile Asp Gly Leu Ala Ile Gly Ala Ser Phe Thr
 395 400 405
 Val Ser Val Phe Gln Gly Ile Ser Thr Ser Val Ala Ile Leu Cys
 410 415 420
 Glu Glu Phe Pro His Glu Leu Gly Asp Phe Val Ile Leu Leu Asn
 425 430 435
 Ala Gly Met Ser Ile Gln Gln Ala Leu Phe Phe Asn Phe Leu Ser
 440 445 450
 Ala Cys Cys Cys Tyr Leu Gly Leu Ala Phe Gly Ile Leu Ala Gly
 455 460 465
 Ser His Phe Ser Ala Asn Trp Ile Phe Ala Leu Ala Gly Gly Met
 470 475 480
 Phe Leu Tyr Ile Ser Leu Ala Asp Met Phe Pro Glu Met Asn Glu
 485 490 495
 Val Cys Gln Glu Asp Glu Arg Lys Gly Ser Ile Leu Ile Pro Phe
 500 505 510
 Ile Ile Gln Asn Leu Gly Leu Leu Thr Gly Phe Thr Ile Met Val
 515 520 525
 Val Leu Thr Met Tyr Ser Gly Gln Ile Gln Ile Gly
 530 535

<210> 45

<211> 584

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3082014CD1

<400> 45

Met Leu Trp Gly Gly Arg Val Gly Leu Thr Gly Val Phe Gln Ser
 1 5 10 15
 Leu Ser Tyr Arg Gly Lys Cys Ser Val Thr Leu Leu Asn Glu Thr
 20 25 30
 Asp Ile Leu Ser Gln Tyr Leu Glu Lys Glu Asp Cys Phe Phe Tyr
 35 40 45
 Ser Leu Val Phe Asp Pro Val Gln Lys Thr Leu Leu Ala Asp Gln
 50 55 60
 Gly Glu Ile Arg Val Gly Cys Lys Tyr Gln Ala Glu Ile Pro Asp
 65 70 75
 Arg Leu Val Glu Gly Glu Ser Asp Asn Arg Asn Gln Gln Lys Met
 80 85 90
 Glu Met Lys Val Trp Asp Pro Asp Asn Pro Leu Thr Asp Arg Gln
 95 100 105
 Ile Asp Gln Phe Leu Val Val Ala Arg Ala Val Gly Thr Phe Ala
 110 115 120
 Arg Ala Leu Asp Cys Ser Ser Ile Arg Gln Pro Ser Leu His
 125 130 135
 Met Ser Ala Ala Ala Ser Arg Asp Ile Thr Leu Phe His Ala
 140 145 150
 Met Asp Thr Leu Gln Arg Asn Gly Tyr Asp Leu Ala Lys Ala Met
 155 160 165
 Ser Thr Leu Val Pro Gln Gly Gly Pro Val Leu Cys Arg Asp Glu
 170 175 180
 Met Glu Glu Trp Ser Ala Ser Glu Ala Met Leu Phe Glu Glu Ala
 185 190 195
 Leu Glu Lys Tyr Gly Lys Asp Phe Asn Asp Ile Arg Gln Asp Phe
 200 205 210
 Leu Pro Trp Lys Ser Leu Ala Ser Ile Val Gln Phe Tyr Tyr Met

WO 01/07471

PCT/US00/19948

215	220	225
Trp Lys Thr Thr Asp Arg Tyr Ile Gln Gln Lys Arg Leu Lys Ala		
230	235	240
Ala Glu Ala Asp Ser Lys Leu Lys Gln Val Tyr Ile Pro Thr Tyr		
245	250	255
Thr Lys Pro Asn Pro Asn Gln Ile Ile Ser Val Gly Ser Lys Pro		
260	265	270
Gly Met Asn Gly Ala Gly Phe Gln Lys Gly Leu Thr Cys Glu Ser		
275	280	285
Cys His Thr Thr Gln Ser Ala Gln Trp Tyr Ala Trp Gly Pro Pro		
290	295	300
Asn Met Gln Cys Arg Leu Cys Ala Ser Cys Trp Ile Tyr Trp Lys		
305	310	315
Lys Tyr Gly Gly Leu Lys Thr Pro Thr Gln Leu Glu Gly Ala Thr		
320	325	330
Arg Gly Thr Thr Glu Pro His Ser Arg Gly His Leu Ser Arg Pro		
335	340	345
Glu Ala Gln Ser Leu Ser Pro Tyr Thr Thr Ser Ala Asn Arg Ala		
350	355	360
Lys Leu Leu Ala Lys Asn Arg Gln Thr Phe Leu Leu Gln Thr Thr		
365	370	375
Lys Leu Thr Arg Leu Ala Arg Arg Met Cys Arg Asp Leu Leu Gln		
380	385	390
Pro Arg Arg Ala Ala Arg Arg Pro Tyr Ala Pro Ile Asn Ala Asn		
395	400	405
Ala Ile Lys Ala Glu Cys Ser Ile Arg Leu Pro Lys Ala Ala Lys		
410	415	420
Thr Pro Leu Lys Ile His Pro Leu Val Arg Leu Pro Leu Ala Thr		
425	430	435
Ile Val Lys Asp Leu Val Ala Gln Ala Pro Leu Lys Pro Lys Thr		
440	445	450
Pro Arg Gly Thr Lys Thr Pro Ile Asn Arg Asn Gln Leu Ser Gln		
455	460	465
Asn Arg Gly Leu Gly Gly Ile Met Val Lys Arg Ala Tyr Glu Thr		
470	475	480
Met Ala Gly Ala Gly Val Pro Phe Ser Ala Asn Gly Arg Pro Leu		
485	490	495
Ala Ser Gly Ile Arg Ser Ser Ser Gln Pro Ala Ala Lys Arg Gln		
500	505	510
Lys Leu Asn Pro Ala Asp Ala Pro Asn Pro Val Val Phe Val Ala		
515	520	525
Thr Lys Asp Thr Arg Ala Leu Arg Lys Ala Leu Thr His Leu Glu		
530	535	540
Met Arg Arg Ala Ala Arg Arg Pro Asn Leu Pro Leu Lys Val Lys		
545	550	555
Pro Thr Leu Ile Ala Val Arg Pro Pro Val Pro Leu Pro Ala Pro		
560	565	570
Ser His Pro Ala Ser Thr Asn Glu Pro Ile Val Leu Glu Asp		
575	580	

<210> 46

<211> 425

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3520701CD1

<400> 46

Met Ala Gly Ala Glu Gly Ala Ala Gly Arg Gln Ser Glu Leu Glu

1 5 10 15

Pro Val Val Ser Leu Val Asp Val Leu Glu Glu Asp Glu Glu Leu

20 25 30

WO 01/07471

PCT/US00/19948

Glu Asn Glu Ala Cys Ala Val Leu Gly Gly Ser Asp Ser Glu Lys
 35 40 45
 Cys Ser Tyr Ser Gln Gly Ser Val Lys Arg Gln Ala Leu Tyr Ala
 50 55 60
 Cys Ser Thr Cys Thr Pro Glu Gly Glu Glu Pro Ala Gly Ile Cys
 65 70 75
 Leu Ala Cys Ser Tyr Glu Cys His Gly Ser His Lys Leu Phe Glu
 80 85 90
 Leu Tyr Thr Lys Arg Asn Phe Arg Cys Asp Cys Gly Asn Ser Lys
 95 100 105
 Phe Lys Asn Leu Glu Cys Lys Leu Leu Pro Asp Lys Ala Lys Val
 110 115 120
 Asn Ser Gly Asn Lys Tyr Asn Asp Asn Phe Phe Gly Leu Tyr Cys
 125 130 135
 Ile Cys Lys Arg Pro Tyr Pro Asp Pro Glu Asp Glu Ile Pro Asp
 140 145 150
 Glu Met Ile Gln Cys Val Val Cys Glu Asp Trp Phe His Gly Arg
 155 160 165
 His Leu Gly Ala Ile Pro Pro Glu Ser Gly Asp Phe Gln Glu Met
 170 175 180
 Val Cys Gln Ala Cys Met Lys Arg Cys Ser Phe Leu Trp Ala Tyr
 185 190 195
 Ala Ala Gln Leu Ala Val Thr Lys Ile Ser Thr Glu Asp Asp Gly
 200 205 210
 Leu Val Arg Asn Ile Asp Gly Ile Gly Asp Gln Glu Val Ile Lys
 215 220 225
 Pro Glu Asn Gly Glu His Gln Asp Ser Thr Leu Lys Glu Asp Val
 230 235 240
 Pro Glu Gln Gly Lys Asp Asp Val Arg Glu Val Lys Val Glu Gln
 245 250 255
 Asn Ser Glu Pro Cys Ala Gly Ser Ser Ser Glu Ser Asp Leu Gln
 260 265 270
 Thr Val Phe Lys Asn Glu Ser Leu Asn Ala Glu Ser Lys Ser Gly
 275 280 285
 Cys Lys Leu Gln Glu Leu Lys Ala Lys Gln Leu Ile Lys Lys Asp
 290 295 300
 Thr Ala Thr Tyr Trp Pro Leu Asn Trp Arg Ser Lys Leu Cys Thr
 305 310 315
 Cys Gln Asp Cys Met Lys Met Tyr Gly Asp Leu Asp Val Leu Phe
 320 325 330
 Leu Thr Asp Glu Tyr Asp Thr Val Leu Ala Tyr Glu Asn Lys Gly
 335 340 345
 Lys Ile Ala Gln Ala Thr Asp Arg Ser Asp Pro Leu Met Asp Thr
 350 355 360
 Leu Ser Ser Met Asn Arg Val Gln Gln Val Glu Leu Ile Cys Glu
 365 370 375
 Tyr Asn Asp Leu Lys Thr Glu Leu Lys Asp Tyr Leu Lys Arg Phe
 380 385 390
 Ala Asp Glu Gly Thr Val Val Lys Arg Glu Asp Ile Gln Gln Phe
 395 400 405
 Phe Glu Glu Phe Gln Ser Lys Lys Arg Arg Arg Val Asp Gly Met
 410 415 420
 Gln Tyr Tyr Cys Ser
 425

<210> 47

<211> 255

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4184320CD1

WO 01/07471

PCT/US00/19948

<400> 47

Met	Tyr	Val	Arg	Val	Ser	Phe	Asp	Thr	Lys	Pro	Asp	Leu	Leu	Leu
1				5					10					15
His	Leu	Met	Thr	Lys	Glu	Trp	Gln	Leu	Glu	Leu	Pro	Lys	Leu	Leu
				20					25					30
Ile	Ser	Val	His	Gly	Gly	Leu	Gln	Asn	Phe	Glu	Leu	Gln	Pro	Lys
				35					40					45
Leu	Lys	Gln	Val	Phe	Gly	Lys	Gly	Leu	Ile	Lys	Ala	Ala	Met	Thr
				50					55					60
Thr	Gly	Ala	Trp	Ile	Phe	Thr	Gly	Gly	Val	Asn	Thr	Gly	Val	Ile
				65					70					75
Arg	His	Val	Gly	Asp	Ala	Leu	Lys	Asp	His	Ala	Ser	Lys	Ser	Arg
				80					85					90
Gly	Lys	Ile	Cys	Thr	Ile	Gly	Ile	Ala	Pro	Trp	Gly	Ile	Val	Glu
				95					100					105
Asn	Gln	Glu	Asp	Leu	Ile	Gly	Arg	Asp	Val	Val	Arg	Pro	Tyr	Gln
				110					115					120
Thr	Met	Ser	Asn	Pro	Met	Ser	Lys	Leu	Thr	Val	Leu	Asn	Ser	Met
				125					130					135
His	Ser	His	Phe	Ile	Leu	Ala	Asp	Asn	Gly	Thr	Thr	Gly	Lys	Tyr
				140					145					150
Gly	Ala	Glu	Val	Lys	Leu	Arg	Arg	Gln	Leu	Glu	Lys	His	Ile	Ser
				155					160					165
Leu	Gln	Lys	Ile	Asn	Thr	Arg	Cys	Leu	Pro	Phe	Phe	Ser	Leu	Asp
				170					175					180
Ser	Arg	Leu	Phe	Tyr	Ser	Phe	Trp	Gly	Ser	Cys	Gln	Leu	Asp	Ser
				185					190					195
Val	Gly	Ile	Gly	Gln	Gly	Val	Pro	Val	Val	Ala	Leu	Ile	Val	Glu
				200					205					210
Gly	Gly	Pro	Asn	Val	Ile	Ser	Ile	Val	Leu	Glu	Tyr	Leu	Arg	Asp
				215					220					225
Thr	Pro	Pro	Val	Pro	Val	Val	Val	Cys	Asp	Gly	Ser	Gly	Arg	Ala
				230					235					240
Ser	Asp	Ile	Leu	Ala	Phe	Gly	His	Lys	Tyr	Ser	Glu	Glu	Gly	Gly
				245					250					255

<210> 48

<211> 111

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4764233CD1

<400> 48

Met	Ser	Trp	Arg	Gly	Arg	Ser	Thr	Tyr	Arg	Pro	Arg	Pro	Arg	Arg
1			5						10					15
Ser	Leu	Gln	Pro	Pro	Glu	Leu	Ile	Gly	Ala	Met	Leu	Glu	Pro	Thr
			20						25					30
Asp	Glu	Glu	Pro	Lys	Glu	Glu	Lys	Pro	Pro	Thr	Lys	Ser	Arg	Asn
			35						40					45
Pro	Thr	Pro	Asp	Gln	Lys	Arg	Glu	Asp	Asp	Gln	Gly	Ala	Ala	Glu
			50						55					60
Ile	Gln	Val	Pro	Asp	Leu	Glu	Ala	Asp	Leu	Gln	Glu	Leu	Cys	Gln
			65						70					75
Thr	Lys	Thr	Gly	Asp	Gly	Cys	Glu	Gly	Gly	Thr	Asp	Val	Lys	Gly
			80						85					90
Lys	Ile	Leu	Pro	Lys	Ala	Glu	His	Phe	Lys	Met	Pro	Glu	Ala	Gly
			95						100					105
Glu	Gly	Lys	Ser	Gln	Val									
			110											

<210> 49

WO 01/07471

PCT/US00/19948

<211> 422
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4817352CD1

<400> 49

Met	Gly	Lys	Ala	Lys	Val	Pro	Ala	Ser	Lys	Arg	Ala	Pro	Ser	Ser
1					5				10					15
Pro	Val	Ala	Lys	Pro	Gly	Pro	Val	Lys	Thr	Leu	Thr	Arg	Lys	Lys
					20				25					30
Asn	Lys	Lys	Lys	Arg	Phe	Trp	Lys	Ser	Lys	Ala	Arg	Glu	Val	
				35				40					45	
Ser	Lys	Lys	Pro	Ala	Ser	Gly	Pro	Gly	Ala	Val	Val	Arg	Pro	Pro
				50				55					60	
Lys	Ala	Pro	Glu	Asp	Phe	Ser	Gln	Asn	Trp	Lys	Ala	Leu	Gln	Glu
				65				70					75	
Trp	Leu	Leu	Lys	Gln	Lys	Ser	Gln	Ala	Pro	Glu	Lys	Pro	Leu	Val
				80				85					90	
Ile	Ser	Gln	Met	Gly	Ser	Lys	Lys	Lys	Pro	Lys	Ile	Ile	Gln	Gln
				95				100					105	
Asn	Lys	Lys	Glu	Thr	Ser	Pro	Gln	Val	Lys	Gly	Glu	Glu	Met	Pro
				110				115					120	
Ala	Gly	Lys	Asp	Gln	Glu	Ala	Ser	Arg	Gly	Ser	Val	Pro	Ser	Gly
				125				130					135	
Ser	Lys	Met	Asp	Arg	Arg	Ala	Pro	Val	Pro	Arg	Thr	Lys	Ala	Ser
				140				145					150	
Gly	Thr	Glu	His	Asn	Lys	Lys	Gly	Thr	Lys	Glu	Arg	Thr	Asn	Gly
				155				160					165	
Asp	Ile	Val	Pro	Glu	Arg	Gly	Asp	Ile	Glu	His	Lys	Arg	Lys	
				170				175					180	
Ala	Lys	Glu	Ala	Ala	Pro	Ala	Pro	Pro	Thr	Glu	Glu	Asp	Ile	Trp
				185				190					195	
Phe	Asp	Asp	Val	Asp	Pro	Ala	Asp	Ile	Glu	Ala	Ala	Ile	Gly	Pro
				200				205					210	
Glu	Ala	Ala	Lys	Ile	Ala	Arg	Lys	Gln	Leu	Gly	Gln	Ser	Glu	Gly
				215				220					225	
Ser	Val	Ser	Leu	Ser	Leu	Val	Lys	Glu	Gln	Ala	Phe	Gly	Gly	Leu
				230				235					240	
Thr	Arg	Ala	Leu	Ala	Leu	Asp	Cys	Glu	Met	Val	Gly	Val	Gly	Pro
				245				250					255	
Lys	Gly	Glu	Glu	Ser	Met	Ala	Ala	Arg	Val	Ser	Ile	Val	Asn	Gln
				260				265					270	
Tyr	Gly	Lys	Cys	Val	Tyr	Asp	Lys	Tyr	Val	Lys	Pro	Thr	Glu	Pro
				275				280					285	
Val	Thr	Asp	Tyr	Arg	Thr	Ala	Val	Ser	Gly	Ile	Arg	Pro	Glu	Asn
				290				295					300	
Leu	Lys	Gln	Gly	Glu	Glu	Leu	Glu	Val	Val	Gln	Lys	Glu	Val	Ala
				305				310					315	
Glu	Met	Leu	Lys	Gly	Arg	Ile	Leu	Val	Gly	His	Ala	Leu	His	Asn
				320				325					330	
Asp	Leu	Lys	Val	Leu	Phe	Leu	Asp	His	Pro	Lys	Lys	Ile	Arg	
				335				340					345	
Asp	Thr	Gln	Lys	Tyr	Lys	Pro	Phe	Lys	Ser	Gln	Val	Lys	Ser	Gly
				350				355					360	
Arg	Pro	Ser	Leu	Arg	Leu	Leu	Ser	Glu	Lys	Ile	Leu	Gly	Leu	Gln
				365				370					375	
Val	Gln	Gln	Ala	Glu	His	Cys	Ser	Ile	Gln	Asp	Ala	Gln	Ala	Ala
				380				385					390	
Met	Arg	Leu	Tyr	Val	Met	Val	Lys	Lys	Glu	Trp	Glu	Ser	Met	Ala
				395				400					405	

WO 01/07471

PCT/US00/19948

Arg Asp Arg Arg Pro Leu Leu Thr Ala Pro Asp His Cys Ser Asp
 410 415 420

Asp Ala

<210> 50

<211> 397

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5040573CD1

<400> 50

Met	Ala	Met	Ile	Glu	Leu	Gly	Phe	Gly	Arg	Gln	Asn	Phe	His	Pro
1				5				10				15		
Leu	Lys	Arg	Lys	Ser	Ser	Leu	Leu	Leu	Lys	Leu	Ile	Ala	Val	Val
					20				25				30	
Phe	Ala	Val	Leu	Leu	Phe	Cys	Glu	Phe	Leu	Ile	Tyr	Tyr	Leu	Ala
					35			40				45		
Ile	Phe	Gln	Cys	Asn	Trp	Pro	Glu	Val	Lys	Thr	Thr	Ala	Ser	Asp
				50				55				60		
Gly	Glu	Gln	Thr	Thr	Arg	Glu	Pro	Val	Leu	Lys	Ala	Met	Phe	Leu
				65				70				75		
Ala	Asp	Thr	His	Leu	Leu	Gly	Glu	Phe	Leu	Gly	His	Trp	Leu	Asp
				80				85				90		
Lys	Leu	Arg	Arg	Glu	Trp	Gln	Met	Glu	Arg	Ala	Phe	Gln	Thr	Ala
				95				100				105		
Leu	Trp	Leu	Leu	Gln	Pro	Glu	Val	Val	Phe	Ile	Leu	Gly	Asp	Ile
				110				115				120		
Phe	Asp	Glu	Gly	Lys	Trp	Ser	Thr	Pro	Glu	Ala	Trp	Ala	Asp	Asp
				125				130				135		
Val	Glu	Arg	Phe	Gln	Lys	Met	Phe	Arg	His	Pro	Ser	His	Val	Gln
				140				145				150		
Leu	Lys	Val	Val	Ala	Gly	Asn	His	Asp	Ile	Gly	Phe	His	Tyr	Glu
				155				160				165		
Met	Asn	Thr	Tyr	Lys	Val	Glu	Arg	Phe	Glu	Lys	Val	Phe	Ser	Ser
				170				175				180		
Glu	Arg	Leu	Phe	Ser	Trp	Lys	Gly	Ile	Asn	Phe	Val	Met	Val	Asn
				185				190				195		
Ser	Val	Ala	Leu	Asn	Gly	Asp	Gly	Cys	Gly	Ile	Cys	Ser	Glu	Thr
				200				205				210		
Glu	Ala	Glu	Leu	Ile	Glu	Val	Ser	His	Arg	Leu	Asn	Cys	Ser	Arg
				215				220				225		
Glu	Gln	Ala	Arg	Gly	Ser	Ser	Arg	Cys	Gly	Pro	Gly	Pro	Leu	Leu
				230				235				240		
Pro	Thr	Ser	Ala	Pro	Val	Leu	Leu	Gln	His	Tyr	Pro	Leu	Tyr	Arg
				245				250				255		
Arg	Ser	Asp	Ala	Asn	Cys	Ser	Gly	Glu	Asp	Ala	Ala	Pro	Pro	Glu
				260				265				270		
Glu	Arg	Asp	Ile	Pro	Phe	Lys	Glu	Asn	Tyr	Asp	Val	Leu	Ser	Arg
				275				280				285		
Glu	Ala	Ser	Gln	Lys	Leu	Leu	Trp	Trp	Leu	Gln	Pro	Arg	Leu	Val
				290				295				300		
Leu	Ser	Gly	His	Thr	His	Ser	Ala	Cys	Glu	Val	His	His	Gly	Gly
				305				310				315		
Arg	Val	Pro	Glu	Leu	Ser	Val	Pro	Ser	Phe	Ser	Trp	Arg	Asn	Arg
				320				325				330		
Asn	Asn	Pro	Ser	Phe	Ile	Met	Gly	Ser	Ile	Thr	Pro	Thr	Asp	Tyr
				335				340				345		
Thr	Leu	Ser	Lys	Cys	Tyr	Leu	Pro	Arg	Glu	Asp	Val	Val	Leu	Ile
				350				355				360		
Ile	Tyr	Cys	Gly	Val	Val	Gly	Phe	Leu	Val	Val	Leu	Thr	Leu	Thr

WO 01/07471

PCT/US00/19948

	365	370	375
His Phe Gly Leu	Leu Ala Ser Pro Phe	Leu Ser Gly Leu Asn	Leu
380	385		390
Leu Gly Lys Arg	Lys Thr Arg		
395			
<210> 51			
<211> 800			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> misc_feature			
<223> Incyte ID No: 5627029CD1			
<400> 51			
Met Gly Ser Ser Lys Lys His Arg Gly Glu Lys Glu Ala Ala Gly			
1 5 10 15			
Thr Thr Ala Ala Ala Gly Thr Gly Gly Ala Thr Glu Gln Pro Pro			
20 25 30			
Arg His Arg Glu His Lys Lys His Lys His Arg Ser Gly Gly Ser			
35 40 45			
Gly Gly Ser Gly Gly Glu Arg Arg Lys Arg Ser Arg Glu Arg Gly			
50 55 60			
Gly Glu Arg Gly Ser Gly Arg Arg Gly Ala Glu Ala Glu Ala Arg			
65 70 75			
Ser Ser Thr His Gly Arg Glu Arg Ser Gln Ala Glu Pro Ser Glu			
80 85 90			
Arg Arg Val Lys Arg Glu Lys Arg Asp Asp Gly Tyr Glu Ala Ala			
95 100 105			
Ala Ser Ser Lys Thr Ser Ser Gly Asp Ala Ser Ser Leu Ser Ile			
110 115 120			
Glu Glu Thr Asn Lys Leu Arg Ala Lys Leu Gly Leu Lys Pro Leu			
125 130 135			
Glu Val Asn Ala Ile Lys Lys Glu Ala Gly Thr Lys Glu Glu Pro			
140 145 150			
Val Thr Ala Asp Val Ile Asn Pro Met Ala Leu Arg Gln Arg Glu			
155 160 165			
Glu Leu Arg Glu Lys Leu Ala Ala Ala Lys Glu Lys Arg Leu Leu			
170 175 180			
Asn Gln Lys Leu Gly Lys Ile Lys Thr Leu Gly Glu Asp Asp Pro			
185 190 195			
Trp Leu Asp Asp Thr Ala Ala Trp Ile Glu Arg Ser Arg Gln Leu			
200 205 210			
Gln Lys Glu Lys Asp Leu Ala Glu Lys Arg Ala Lys Leu Leu Glu			
215 220 225			
Glu Met Asp Gln Glu Phe Gly Val Ser Thr Leu Val Glu Glu Glu			
230 235 240			
Phe Gly Gln Arg Arg Gln Asp Leu Tyr Ser Ala Arg Asp Leu Gln			
245 250 255			
Gly Leu Thr Val Glu His Ala Ile Asp Ser Phe Arg Glu Gly Glu			
260 265 270			
Thr Met Ile Leu Thr Leu Lys Asp Lys Gly Val Leu Gln Glu Glu			
275 280 285			
Glu Asp Val Leu Val Asn Val Asn Leu Val Asp Lys Glu Arg Ala			
290 295 300			
Glu Lys Asn Val Glu Leu Arg Lys Lys Lys Pro Asp Tyr Leu Pro			
305 310 315			
Tyr Ala Glu Asp Glu Ser Val Asp Asp Leu Ala Gln Gln Lys Pro			
320 325 330			
Arg Ser Ile Leu Ser Lys Tyr Asp Glu Glu Leu Glu Gly Glu Arg			
335 340 345			
Pro His Ser Phe Arg Leu Glu Gln Gly Gly Thr Ala Asp Gly Leu			
350 355 360			

WO 01/07471

PCT/US00/19948

Arg Glu Arg Glu Leu Glu Glu Ile Arg Ala Lys Leu Arg Leu Gln
 365 370 375
 Ala Gln Ser Leu Ser Thr Val Gly Pro Arg Leu Ala Ser Glu Tyr
 380 385 390
 Leu Thr Pro Glu Glu Met Val Thr Phe Lys Lys Thr Lys Arg Arg
 395 400 405
 Val Lys Lys Ile Arg Lys Lys Glu Lys Glu Val Val Val Arg Ala
 410 415 420
 Asp Asp Leu Leu Pro Leu Gly Asp Gln Thr Gln Asp Gly Asp Phe
 425 430 435
 Gly Ser Arg Leu Arg Gly Arg Gly Arg Arg Val Ser Glu Val
 440 445 450
 Glu Glu Glu Lys Glu Pro Val Pro Gln Pro Leu Pro Ser Asp Asp
 455 460 465
 Thr Arg Val Glu Asn Met Asp Ile Ser Asp Glu Glu Glu Gly Gly
 470 475 480
 Ala Pro Pro Pro Ala Ser Pro Gln Val Leu Glu Glu Asp Glu Ala
 485 490 495
 Glu Leu Glu Leu Gln Lys Gln Leu Glu Lys Gly Arg Arg Leu Arg
 500 505 510
 Gln Leu Gln Gln Leu Gln Gln Leu Arg Asp Ser Gly Glu Lys Val
 515 520 525
 Val Glu Ile Val Lys Lys Leu Glu Ser Arg Gln Arg Gly Trp Glu
 530 535 540
 Glu Asp Glu Asp Pro Glu Arg Lys Gly Ala Ile Val Phe Asn Ala
 545 550 555
 Thr Ser Glu Phe Cys Arg Thr Leu Gly Glu Ile Pro Thr Tyr Gly
 560 565 570
 Leu Ala Gly Asn Arg Glu Glu Gln Glu Glu Leu Met Asp Phe Glu
 575 580 585
 Arg Asp Glu Glu Arg Ser Ala Asn Gly Gly Ser Glu Ser Asp Gly
 590 595 600
 Glu Glu Asn Ile Gly Trp Ser Thr Val Asn Leu Asp Glu Glu Lys
 605 610 615
 Gln Gln Gln Asp Phe Ser Ala Ser Ser Thr Thr Ile Leu Asp Glu
 620 625 630
 Glu Pro Ile Val Asn Arg Gly Leu Ala Ala Ala Leu Leu Leu Cys
 635 640 645
 Gln Asn Lys Gly Leu Leu Glu Thr Thr Val Gln Lys Val Ala Arg
 650 655 660
 Val Lys Ala Pro Asn Lys Ser Leu Pro Ser Ala Val Tyr Cys Ile
 665 670 675
 Glu Asp Lys Met Ala Ile Asp Asp Lys Tyr Ser Arg Arg Glu Glu
 680 685 690
 Tyr Arg Gly Phe Thr Gln Asp Phe Lys Glu Lys Asp Gly Tyr Lys
 695 700 705
 Pro Asp Val Lys Ile Glu Tyr Val Asp Glu Thr Gly Arg Lys Leu
 710 715 720
 Thr Pro Lys Glu Ala Phe Arg Gln Leu Ser His Arg Phe His Gly
 725 730 735
 Lys Gly Ser Gly Lys Met Lys Thr Glu Arg Arg Met Lys Lys Leu
 740 745 750
 Asp Glu Glu Ala Leu Leu Lys Lys Met Ser Ser Ser Asp Thr Pro
 755 760 765
 Leu Gly Thr Val Ala Leu Leu Gln Glu Lys Gln Lys Ala Gln Lys
 770 775 780
 Thr Pro Tyr Ile Val Leu Ser Gly Ser Gly Lys Ser Met Asn Ala
 785 790 795
 Asn Thr Ile Thr Lys
 800

<210> 52
 <211> 713
 <212> PRT

WO 01/07471

PCT/US00/19948

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5678487CD1

<400> 52

Met Ala Lys Ser Pro Glu Asn Ser Thr Leu Glu Glu Ile Leu Gly			
1	5	10	15
Gln Tyr Gln Arg Ser Leu Arg Glu His Ala Ser Arg Ser Ile His			
20		25	30
Gln Leu Thr Cys Ala Leu Lys Glu Gly Asp Val Thr Ile Gly Glu			
35		40	45
Asp Ala Pro Asn Leu Ser Phe Ser Thr Ser Val Gly Asn Glu Asp			
50		55	60
Ala Arg Thr Ala Trp Pro Glu Leu Gln Gln Ser His Ala Val Asn			
65		70	75
Gln Leu Lys Asp Leu Leu Arg Gln Gln Ala Asp Lys Glu Ser Glu			
80		85	90
Val Ser Pro Ser Arg Arg Arg Lys Met Ser Pro Leu Arg Ser Leu			
95		100	105
Glu His Glu Glu Thr Asn Met Pro Thr Met His Asp Leu Val His			
110		115	120
Thr Ile Asn Asp Gln Ser Gln Tyr Ile His His Leu Glu Ala Glu			
125		130	135
Val Lys Phe Cys Lys Glu Glu Leu Ser Gly Met Lys Asn Lys Ile			
140		145	150
Gln Val Val Val Leu Glu Asn Glu Gly Leu Gln Gln Leu Lys			
155		160	165
Ser Gln Arg Gln Glu Glu Thr Leu Arg Glu Gln Thr Leu Leu Asp			
170		175	180
Ala Ser Gly Asn Met His Asn Ser Trp Ile Thr Thr Gly Glu Asp			
185		190	195
Ser Gly Val Gly Glu Thr Ser Lys Arg Pro Phe Ser His Asp Asn			
200		205	210
Ala Asp Phe Gly Lys Ala Ala Ser Ala Gly Glu Gln Leu Glu Leu			
215		220	225
Glu Lys Leu Lys Leu Thr Tyr Glu Glu Lys Cys Glu Ile Glu Glu			
230		235	240
Ser Gln Leu Lys Phe Leu Arg Asn Asp Leu Ala Glu Tyr Gln Arg			
245		250	255
Thr Cys Glu Asp Leu Lys Glu Gln Leu Lys His Lys Glu Phe Leu			
260		265	270
Leu Ala Ala Asn Thr Cys Asn Arg Val Gly Gly Leu Cys Leu Lys			
275		280	285
Cys Ala Gln His Glu Ala Val Leu Ser Gln Thr His Thr Asn Val			
290		295	300
His Met Gln Thr Ile Glu Arg Leu Val Lys Glu Arg Asp Asp Leu			
305		310	315
Met Ser Ala Leu Val Ser Val Arg Ser Ser Leu Ala Asp Thr Gln			
320		325	330
Gln Arg Glu Ala Ser Ala Tyr Glu Gln Val Lys Gln Val Leu Gln			
335		340	345
Ile Ser Glu Glu Ala Asn Phe Glu Lys Thr Lys Ala Leu Ile Gln			
350		355	360
Cys Asp Gln Leu Arg Lys Glu Leu Glu Arg Gln Ala Glu Arg Leu			
365		370	375
Glu Lys Asp Leu Ala Ser Gln Gln Glu Lys Arg Ala Ile Glu Lys			
380		385	390
Asp Met Met Lys Lys Glu Ile Thr Lys Glu Arg Glu Tyr Met Gly			
395		400	405
Ser Lys Met Leu Ile Leu Ser Gln Asn Ile Ala Gln Leu Glu Ala			
410		415	420

WO 01/07471

PCT/US00/19948

Gln Val Glu Lys Val Thr Lys Glu Lys Ile Ser Ala Ile Asn Gln
 425 430 435
 Leu Glu Glu Ile Gln Ser Gln Leu Ala Ser Arg Glu Met Asp Val
 440 445 450
 Thr Lys Val Cys Gly Glu Met Arg Tyr Gln Leu Asn Lys Thr Asn
 455 460 465
 Met Glu Lys Asp Glu Ala Glu Lys Glu His Arg Glu Phe Arg Ala
 470 475 480
 Lys Thr Asn Arg Asp Leu Glu Ile Lys Asp Gln Glu Ile Glu Lys
 485 490 495
 Leu Arg Ile Glu Leu Asp Glu Ser Lys Gln His Leu Glu Gln Glu
 500 505 510
 Gln Gln Lys Ala Ala Leu Ala Arg Glu Glu Cys Leu Arg Leu Thr
 515 520 525
 Glu Leu Leu Gly Glu Ser Glu His Gln Leu His Leu Thr Arg Gln
 530 535 540
 Glu Lys Asp Ser Ile Gln Gln Ser Phe Ser Lys Glu Ala Lys Ala
 545 550 555
 Gln Ala Leu Gln Ala Gln Gln Arg Glu Gln Glu Leu Thr Gln Lys
 560 565 570
 Ile Gln Gln Met Glu Ala Gln His Asp Lys Thr Glu Asn Glu Gln
 575 580 585
 Tyr Leu Leu Leu Thr Ser Gln Asn Thr Phe Leu Thr Lys Leu Lys
 590 595 600
 Glu Glu Cys Cys Thr Leu Ala Lys Lys Leu Glu Gln Ile Ser Gln
 605 610 615
 Lys Thr Arg Ser Glu Ile Ala Gln Leu Ser Gln Glu Lys Arg Tyr
 620 625 630
 Thr Tyr Asp Lys Leu Gly Lys Leu Gln Arg Arg Asn Glu Glu Leu
 635 640 645
 Glu Glu Gln Cys Val Gln His Gly Arg Val His Glu Thr Met Lys
 650 655 660
 Gln Arg Leu Arg Gln Leu Asp Lys His Ser Gln Ala Thr Ala Gln
 665 670 675
 Gln Leu Val Gln Leu Leu Ser Lys Gln Asn Gln Leu Leu Leu Glu
 680 685 690
 Arg Gln Ser Leu Ser Glu Glu Val Asp Arg Leu Arg Thr Gln Leu
 695 700 705
 Pro Ser Met Pro Gln Ser Asp Cys
 710

<210> 53
 <211> 880
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5682976CD1

<400> 53
 Met Ser Arg Gly Gly Ser Cys Pro His Leu Leu Trp Asp Val Arg
 1 5 10 15
 Lys Arg Ser Leu Gly Leu Glu Asp Pro Ser Arg Leu Arg Ser Arg
 20 25 30
 Tyr Leu Gly Arg Arg Glu Phe Ile Gln Arg Leu Lys Leu Glu Ala
 35 40 45
 Thr Leu Asn Val His Asp Gly Cys Val Asn Thr Ile Cys Trp Asn
 50 55 60
 Asp Thr Gly Glu Tyr Ile Leu Ser Gly Ser Asp Asp Thr Lys Leu
 65 70 75
 Val Ile Ser Asn Pro Tyr Ser Arg Lys Val Leu Thr Thr Ile Arg
 80 85 90
 Ser Gly His Arg Ala Asn Ile Phe Ser Ala Lys Phe Leu Pro Cys

WO 01/07471

PCT/US00/19948

	95		100		105
Thr Asn Asp Lys Gln Ile Val Ser Cys		Ser Gly Asp Gly Val	Ile		
110		115		120	
Phe Tyr Thr Asn Val Glu Gln Asp Ala		Glu Thr Asn Arg Gln	Cys		
125		130		135	
Gln Phe Thr Cys His Tyr Gly Thr Thr		Tyr Glu Ile Met Thr	Val		
140		145		150	
Pro Asn Asp Pro Tyr Thr Phe Leu Ser		Cys Gly Glu Asp Gly	Thr		
155		160		165	
Val Arg Trp Phe Asp Thr Arg Ile Lys		Thr Ser Cys Thr Lys	Glu		
170		175		180	
Asp Cys Lys Asp Asp Ile Leu Ile Asn		Cys Arg Arg Ala Ala	Thr		
185		190		195	
Ser Val Ala Ile Cys Pro Pro Ile Pro		Tyr Tyr Leu Ala Val	Gly		
200		205		210	
Cys Ser Asp Ser Ser Val Arg Ile Tyr		Asp Arg Arg Met Leu	Gly		
215		220		225	
Thr Arg Ala Thr Gly Asn Tyr Ala Gly		Arg Gly Thr Thr Gly	Met		
230		235		240	
Val Ala Arg Phe Ile Pro Ser His Leu		Asn Asn Lys Ser Cys	Arg		
245		250		255	
Val Thr Ser Leu Cys Tyr Ser Glu Asp		Gly Gln Glu Ile Leu	Val		
260		265		270	
Ser Tyr Ser Ser Asp Tyr Ile Tyr Leu		Phe Asp Pro Lys Asp	Asp		
275		280		285	
Thr Ala Arg Glu Leu Lys Thr Pro Ser		Ala Glu Glu Arg Arg	Glu		
290		295		300	
Glu Leu Arg Gln Pro Pro Val Lys Arg		Leu Arg Leu Arg Gly	Asp		
305		310		315	
Trp Ser Asp Thr Gly Pro Arg Ala Arg		Pro Glu Ser Glu Arg	Glu		
320		325		330	
Arg Asp Gly Glu Gln Ser Pro Asn Val		Ser Leu Met Gln Arg	Met		
335		340		345	
Ser Asp Met Leu Ser Arg Trp Phe Glu		Glu Ala Ser Glu Val	Ala		
350		355		360	
Gln Ser Asn Arg Gly Arg Gly Arg Ser		Arg Pro Arg Gly Gly	Thr		
365		370		375	
Ser Gln Ser Asp Ile Ser Thr Leu Pro		Thr Val Pro Ser Ser	Pro		
380		385		390	
Asp Leu Glu Val Ser Glu Thr Ala Met		Glu Val Asp Thr Pro	Ala		
395		400		405	
Glu Gln Phe Leu Gln Pro Ser Thr Ser		Ser Thr Met Ser Ala	Gln		
410		415		420	
Ala His Ser Thr Ser Ser Pro Thr Glu		Ser Pro His Ser Thr	Pro		
425		430		435	
Leu Leu Ser Ser Pro Asp Ser Glu Gln		Arg Gln Ser Val Glu	Ala		
440		445		450	
Ser Gly His His Thr His His Gln Ser		Asp Ser Pro Ser Ser	Val		
455		460		465	
Val Asn Lys Gln Leu Gly Ser Met Ser		Leu Asp Glu Gln Gln	Asp		
470		475		480	
Asn Asn Asn Glu Lys Leu Ser Pro Lys		Pro Gly Thr Gly Glu	Pro		
485		490		495	
Val Leu Ser Leu His Tyr Ser Thr Glu		Gly Thr Thr Thr Ser	Thr		
500		505		510	
Ile Lys Leu Asn Phe Thr Asp Glu Trp		Ser Ser Ile Ala Ser	Ser		
515		520		525	
Ser Arg Gly Ile Gly Ser His Cys Lys		Ser Glu Gly Gln Glu	Glu		
530		535		540	
Ser Phe Val Pro Gln Ser Ser Val Gln		Pro Pro Glu Gly Asp	Ser		
545		550		555	
Glu Thr Lys Ala Pro Glu Glu Ser Ser		Glu Asp Val Thr Lys	Tyr		
560		565		570	

WO 01/07471

PCT/US00/19948

Gln Glu Gly Val Ser Ala Glu Asn Pro Val Glu Asn His Ile Asn
 575 580 585
 Ile Thr Gln Ser Asp Lys Phe Thr Ala Lys Pro Leu Asp Ser Asn
 590 595 600
 Ser Gly Glu Arg Asn Asp Leu Asn Leu Asp Arg Ser Cys Gly Val
 605 610 615
 Pro Glu Glu Ser Ala Ser Ser Glu Lys Ala Lys Glu Pro Glu Thr
 620 625 630
 Ser Asp Gln Thr Ser Thr Glu Ser Ala Thr Asn Glu Asn Asn Thr
 635 640 645
 Asn Pro Glu Pro Gln Phe Gln Thr Glu Ala Thr Gly Pro Ser Ala
 650 655 660
 His Glu Glu Thr Ser Thr Arg Asp Ser Ala Leu Gln Asp Thr Asp
 665 670 675
 Asp Ser Asp Asp Asp Pro Val Leu Ile Pro Gly Ala Arg Tyr Arg
 680 685 690
 Ala Gly Pro Gly Asp Arg Arg Ser Ala Val Ala Arg Ile Gln Glu
 695 700 705
 Phe Phe Arg Arg Arg Lys Glu Arg Lys Glu Met Glu Glu Leu Asp
 710 715 720
 Thr Leu Asn Ile Arg Arg Pro Leu Val Lys Met Val Tyr Lys Gly
 725 730 735
 His Arg Asn Ser Arg Thr Met Ile Lys Glu Ala Asn Phe Trp Gly
 740 745 750
 Ala Asn Phe Val Met Ser Gly Ser Asp Cys Gly His Ile Phe Ile
 755 760 765
 Trp Asp Arg His Thr Ala Glu His Leu Met Leu Leu Glu Ala Asp
 770 775 780
 Asn His Val Val Asn Cys Leu Gln Pro His Pro Phe Asp Pro Ile
 785 790 795
 Leu Ala Ser Ser Gly Ile Asp Tyr Asp Ile Lys Ile Trp Ser Pro
 800 805 810
 Leu Glu Glu Ser Arg Ile Phe Asn Arg Lys Leu Ala Asp Glu Val
 815 820 825
 Ile Thr Arg Asn Glu Leu Met Leu Glu Glu Thr Arg Asn Thr Ile
 830 835 840
 Thr Val Pro Ala Ser Phe Met Leu Arg Met Leu Ala Ser Leu Asn
 845 850 855
 His Ile Arg Ala Asp Arg Leu Glu Gly Asp Arg Ser Glu Gly Ser
 860 865 870
 Gly Gln Glu Asn Glu Asn Glu Asp Glu Glu
 875 880

<210> 54

<211> 855

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5992432CD1

<400> 54

Met Val Val Met Ala Arg Leu Ser Arg Pro Glu Arg Pro Asp Leu
 1 5 10 15
 Val Phe Glu Glu Glu Asp Leu Pro Tyr Glu Glu Glu Ile Met Arg
 20 25 30
 Asn Gln Phe Ser Val Lys Cys Trp Leu Arg Tyr Ile Glu Phe Lys
 35 40 45
 Gln Gly Ala Pro Lys Pro Arg Leu Asn Gln Leu Tyr Glu Arg Ala
 50 55 60
 Leu Lys Leu Leu Pro Cys Ser Tyr Lys Leu Trp Tyr Arg Tyr Leu
 65 70 75
 Lys Ala Arg Arg Ala Gln Val Lys His Arg Cys Val Thr Asp Pro

80	85	90
Ala Tyr Glu Asp Val Asn Asn Cys His	Glu Arg Ala Phe Val Phe	
95	100	105
Met His Lys Met Pro Arg Leu Trp Leu	Asp Tyr Cys Gln Phe Leu	
110	115	120
Met Asp Gln Gly Arg Val Thr His Thr	Arg Arg Thr Phe Asp Arg	
125	130	135
Ala Leu Arg Ala Leu Pro Ile Thr Gln	His Ser Arg Ile Trp Pro	
140	145	150
Leu Tyr Leu Arg Phe Leu Arg Ser His	Pro Leu Pro Glu Thr Ala	
155	160	165
Val Arg Gly Tyr Arg Arg Phe Leu Lys	Leu Ser Pro Glu Ser Ala	
170	175	180
Glu Glu Tyr Ile Glu Tyr Leu Lys Ser	Ser Asp Arg Leu Asp Glu	
185	190	195
Ala Ala Gln Arg Leu Ala Thr Val Val	Asn Asp Glu Arg Phe Val	
200	205	210
Ser Lys Ala Gly Lys Ser Asn Tyr Gln	Leu Trp His Glu Leu Cys	
215	220	225
Asp Leu Ile Ser Gln Asn Pro Asp Lys	Val Gln Ser Leu Asn Val	
230	235	240
Asp Ala Ile Ile Arg Gly Gly Leu Thr	Arg Phe Thr Asp Gln Leu	
245	250	255
Gly Lys Leu Trp Cys Ser Leu Ala Asp	Tyr Tyr Ile Arg Ser Gly	
260	265	270
His Phe Glu Lys Ala Arg Asp Val Tyr	Glu Glu Ala Ile Arg Thr	
275	280	285
Val Met Thr Val Arg Asp Phe Thr Gln	Val Phe Asp Ser Tyr Ala	
290	295	300
Gln Phe Glu Glu Ser Met Ile Ala Ala	Lys Met Glu Thr Ala Ser	
305	310	315
Glu Leu Gly Arg Glu Glu Glu Asp Asp	Val Asp Leu Glu Leu Arg	
320	325	330
Leu Ala Arg Phe Glu Gln Leu Ile Ser	Arg Arg Pro Leu Leu Leu	
335	340	345
Asn Ser Val Leu Leu Arg Gln Asn Pro	His His Val His Glu Trp	
350	355	360
His Lys Arg Val Ala Leu His Gln Gly	Arg Pro Arg Glu Ile Ile	
365	370	375
Asn Thr Tyr Thr Glu Ala Val Gln Thr	Val Asp Pro Phe Lys Ala	
380	385	390
Thr Gly Lys Pro His Thr Leu Trp Val	Ala Phe Ala Lys Phe Tyr	
395	400	405
Glu Asp Asn Gly Gln Leu Asp Asp Ala	Arg Val Ile Leu Glu Lys	
410	415	420
Ala Thr Lys Val Asn Phe Lys Gln Val	Asp Asp Leu Ala Ser Val	
425	430	435
Trp Cys Gln Cys Gly Glu Leu Glu Leu	Arg His Glu Asn Tyr Asp	
440	445	450
Glu Ala Leu Arg Leu Leu Arg Lys Ala	Thr Ala Leu Pro Ala Arg	
455	460	465
Arg Ala Glu Tyr Phe Asp Gly Ser Glu	Pro Val Gln Asn Arg Val	
470	475	480
Tyr Lys Ser Leu Lys Val Trp Ser Met	Leu Ala Asp Leu Glu Glu	
485	490	495
Ser Leu Gly Thr Phe Gln Ser Thr Lys	Ala Val Tyr Asp Arg Ile	
500	505	510
Leu Asp Leu Arg Ile Ala Thr Pro Gln	Ile Val Ile Asn Tyr Ala	
515	520	525
Met Phe Leu Glu Glu His Lys Tyr Phe	Glu Glu Ser Phe Lys Ala	
530	535	540
Tyr Glu Arg Gly Ile Ser Leu Phe Lys	Trp Pro Asn Val Ser Asp	
545	550	555

WO 01/07471

PCT/US00/19948

Ile Trp Ser Thr Tyr Leu Thr Lys Phe Ile Ala Arg Tyr Gly Gly
 560 565 570
 Arg Lys Leu Glu Arg Ala Arg Asp Leu Phe Glu Gln Ala Leu Asp
 575 580 585
 Gly Cys Pro Pro Lys Tyr Ala Lys Thr Leu Tyr Leu Leu Tyr Ala
 590 595 600
 Gln Leu Glu Glu Glu Trp Gly Leu Ala Arg His Ala Met Ala Val
 605 610 615
 Tyr Glu Arg Ala Thr Arg Ala Val Glu Pro Ala Gln Gln Tyr Asp
 620 625 630
 Met Phe Asn Ile Tyr Ile Lys Arg Ala Ala Glu Ile Tyr Gly Val
 635 640 645
 Thr His Thr Arg Gly Ile Tyr Gln Lys Ala Ile Glu Val Leu Ser
 650 655 660
 Asp Glu His Ala Arg Glu Met Cys Leu Arg Phe Ala Asp Met Glu
 665 670 675
 Cys Lys Leu Gly Glu Ile Asp Arg Ala Arg Ala Ile Tyr Ser Phe
 680 685 690
 Cys Ser Gln Ile Cys Asp Pro Arg Thr Thr Gly Ala Phe Trp Gln
 695 700 705
 Thr Trp Lys Asp Phe Glu Val Arg His Gly Asn Glu Asp Thr Ile
 710 715 720
 Lys Glu Met Leu Arg Ile Arg Arg Ser Val Gln Ala Thr Tyr Asn
 725 730 735
 Thr Gln Val Asn Phe Met Ala Ser Gln Met Leu Lys Val Ser Gly
 740 745 750
 Ser Ala Thr Gly Thr Val Ser Asp Leu Ala Pro Gly Gln Ser Gly
 755 760 765
 Met Asp Asp Met Lys Leu Leu Glu Gln Arg Ala Glu Gln Leu Ala
 770 775 780
 Ala Glu Ala Glu Arg Asp Gln Pro Leu Arg Ala Gln Ser Lys Ile
 785 790 795
 Leu Phe Val Arg Ser Asp Ala Ser Arg Glu Glu Leu Ala Glu Leu
 800 805 810
 Ala Gln Gln Val Asn Pro Glu Glu Ile Gln Leu Gly Glu Asp Glu
 815 820 825
 Asp Glu Asp Glu Met Asp Leu Glu Pro Asn Glu Val Arg Leu Glu
 830 835 840
 Gln Gln Ser Val Pro Ala Ala Val Phe Gly Ser Leu Lys Glu Asp
 845 850 855

<210> 55
<211> 1598
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 116462CB1

<400> 55
atttatttttag gtcccttact tttactagcc accccccttcc cacttgcttc taatggcaaa 60
ttagaatggta aacttgcggcc ttgctcacct catgcttggc tttgggaacc ggtgagaaaac 120
tgcaatccat tggcggttagg aaccacgatt cccggcattc ccagtgcgtcc gagtccttcg 180
ggcttccttt tccgggtctc gaggctgctg aaaccgaaac cgctgtgctg tgggcgcagc 240
gccgagattg attcaccttc acctgtgctg cactccagct gacccaagta ggaagccaga 300
cgagctgtaa aacatgaacg gaagagtgga ttatttggtc actgagggaaag agatcaatct 360
taccagaggg ccctcaggggc tgggcttcaa catcgtcggt gggacagatc agcagtatgt 420
ctccaaacgac agtggcatct acgtcagccg catcaaagaa aatggggctg cggccctgga 480
tgggcggctc caggagggtg ataagatcct ttcggtaat ggccaagacc taaagaacct 540
gctgcaccag gatgctgttag acctctttcg taatgcaggc tatgctgtgt ctctgagagt 600
gcagcacagg ttacaggtgc agaatggacc tataggacat cgaggtgaag gggacccaag 660
tggtattcccc atatttatgg tgctgggcc agtgttgc ctcaccatgg tagcagcctg 720

WO 01/07471

PCT/US00/19948

ggcttcatg agataccggc aacaacttg aaaaactgc tctcttcaa tactccaaat 780
 gaagatacat ttcactcacc ctccacccct gctattctgc catgtcttc cctctctcg 840
 catagccaga tttgaagtga ctgataacca cccaaacact tgctgtcac agtctccaat 900
 tcttcattt ctaatggaa agtaaaggta ttgtttgaag gaaaactgaa gaaaagactt 960
 ggcttagaac aaatgaggag ttatataatt tactaggact tttgatagaa attcagctac 1020
 aacccaaaga gagaaagatt gagtcttccct gtcaccatag gcaataccctt ttttcttagc 1080
 tggcatgcca taaaggccag ctatgtgata ttagaggaag aaaggatttt tctttttaaat 1140
 gatcttcctt gggaaattat tgtggccctt attaatttc taactacgta cctgggtgcc 1200
 tatatcgaca aagagtgaga agagcatttt tactttttt aaaaagcaaa tacatatata 1260
 cacatacgtt tgcaaatatt atagtataat agtgcattt atggagaatt aaaggtgaga 1320
 aagctacttt gtgggtgtcta ggtttctgat aaaagggatg atcttaactg aagaatttaa 1380
 agagataactt aaacagagca aatgttagtag gaacaaggaa gtgagccttta taagaggacg 1440
 ttcagtcata ttattaaaaa taataactga gactgggaga ggtggctcat gcctgttaat 1500
 cccagcactt tgtaggcctg aagtggaga ttgcttgagt ccaggagacc agcctggca 1560
 acatagcaaa acctcatctc tattttttt aaaaaaaaaa 1598

<210> 56
<211> 1432
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1210462CB1

<400> 56
tgagaatgaa agtggatgcc cgcgaaatccc ggaagtcaga ctgtttttt cagttccctg 60
gaggctttt gatactgatt cgcgatcacc tggttttga aagctctcag cgggacaatg 120
ctgaccaggc taaaagcaaa atcagagggg aagcttgc当地 aacagattt caaagtttg 180
ttggatcatt ttggaaaaca gtattccaaa gaactcggag atgcctggaa tacagtaagg 240
gagatactaa catctccattt atgctggcaa tatgctgtcc tgcttaaccg attcaattat 300
ccttttgaac ttggaaaagga ttacattt aagggtctatc acacactctc tcagggatct 360
ttacccaaactt atcctaaatc agtgaagtgt taccttagca gaactccggg ccgaatccct 420
tcagaaagac accaaattgg aaacctgaaa aatatttac tcctaaatgc tgcttctt 480
ctccccagtgt ttggctctgaa attaaggat ggggagaagg ttctggatct ctgtgctgct 540
cctggagggaa aatcaatagc tctgctgcag tggcttgc当地 caggttatct tcattgtat 600
gaatatgata gctctgagatt gaggtggcta aggccagacgt tggatctt catccacag 660
cctttgataa atgtaattaa agtgcatttgc ttggatggca gaaaatggg agatgcacag 720
cctgaaatgt ttgacaaggat tttagtggat gctccgtgtt caaatgtatcg aagctgggt 780
ttttctctg actctcagaa ggcattctgtt aggataagtcc aaggaggaa ttgcctt 840
ctacagatag agtgcatttgc ttggatggca aaggccttac gtcctggagg gataacttgc 900
tactctacat gcaacgttttcaaggcagaa aatcaagatg tgatcgtga aattttaaac 960
tccccacggta acatcatgc tatggacattt aaggaaatag caaggacttgc ctcccacgac 1020
ttcacatttgc ctccccactgg ccaggaatgt gggcttttag tgattccaga taaggcataa 1080
gcctggggcc caatgtatgtt agccaaattt aagaaatcat ggagcacagg aaaaatggta 1140
catgaattttt taaaactgtgtt ttatgtgttta ttatatttattt atttctgaac tcagtacatg 1200
ttaatatttta aataattatc cagtaactttt ctctgggtctt gtttggatctt ctatattttt 1260
aatacttttag catcttagaa tctaggcttgc agaattgttc aggtgttattt ttgcctt 1320
aatataatctg taacaatgtt ttaagggtgtt gcagatgggtt tttgttctat attataaaatc 1380
tgctgtctt gcttggcattt ttatgtgttta attaatttgc atatgtgggtt tt 1432

<210> 57
<211> 2317
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1305252CB1

<400> 57
gcgggtgctg ctagcggagg cgccatattt gggggacaa aactccggcg acacgagtgc 60
cacaataaa cccctggacc cccttgc当地 ctcagctctt agggccgc当地 tggtgtacct 120

WO 01/07471

PCT/US00/19948

agaagactat	ctggaaatga	ttgaggcagct	tcctatggat	ctggggacc	gttcaacgga	180
aatgcgcgag	atggacctgc	aggtgcagaa	tgcaatggat	caactagaac	aaagagtcat	240
tgaattctt	atgaatgca	agaaaaataa	acctgagttg	agggaaagac	aatggcattc	300
catcaaaaaaa	gactactata	aagcttgg	agatgcagat	gagaagggtc	agttggcaaa	360
ccagatatat	gacttggtag	atcgacactt	gagaaagctg	gatcaggaac	tggctaagt	420
taaaatggag	ctggaagctg	ataatgctgg	aattacagaa	atattagaga	ggcgatctt	480
ggaatttagac	actccttcac	agccagtgaa	caatcaccat	gctcattcac	atactccagt	540
ggaaaaaaagg	aaatataatc	caacttctca	ccatacagaca	acagatcata	tccctgaaaa	600
gaaatttaaa	tctgaagctc	ttctatccac	cttacgtca	gatgcctcta	aggaaaatac	660
actaggttgt	cgaataata	attccacagc	ctcttctaac	aatgcctaca	atgtgaattc	720
ctccccacct	ctgggatcct	ataacattgg	ctcggttatct	tcagaactg	gtgcaggggc	780
aattaccatg	gcagctgctc	aagcagttca	ggctacagct	cagatgaagg	agggacgaag	840
aacatcaagt	ttaaaagcca	gttatgaagc	attnaagaat	aatgacttcc	agttgggaaa	900
agaattttca	atggccaggg	aaacagttgg	ctattcatca	tcttcggcac	ttatgacaac	960
attaacacag	aatgccagtt	catcagcagc	cgactcacgg	agtgtcgaa	agagcaaaaa	1020
caacaacaag	tcttcaagcc	agcagtcatc	atcttcttcc	tcctcttctt	ccttattcatc	1080
gtgttcttca	tcatcaactg	ttgtacaaga	aatctctcaa	caaacaactg	tagtgcaga	1140
atctgattca	aatagtcagg	ttgattggac	ttacgaccca	aatgaacctc	gatactgcat	1200
ttgtaatcag	gtatctttag	gtgagatgg	gggatgtgt	aaccaagatt	gccctataga	1260
atggttccat	tatggctgct	ttggattgac	agaggcacca	aaaggcaat	gttactgtcc	1320
acagtgcact	gctgcaatga	agagaagagg	cagcagacac	aaataaaggt	ggtccttttg	1380
tttgcataag	aaataaaact	cagctgaaga	ttttatata	gactttaaaa	agaagagaag	1440
agaaaagaaga	aacaatgcat	ttccaggcaa	ccacttaaag	gatttacata	gacaattcta	1500
taagatctt	aacttgaat	ttatgggtt	tattnaata	atgtaaat	attattttatg	1560
cactccttgt	gtgtatgaa	tattatcca	gttagcctt	gattttca	gtggccaaca	1620
tatgcagaca	tttgtactcc	tcaaccattt	tctcaaagta	atgggcattc	tatgatttag	1680
acttcaagga	atcccaatga	tgaagatttt	aaggaaagta	ttttatattc	aacaggtata	1740
ttctgctca	tgtactgtac	tccagagctg	ttatgtaaaca	ctgtatataa	atggttgcaa	1800
aaaaaaaaaa	aaagtcaatgt	cttctaaaaaa	gaattnaaga	taatggttt	aaaatgcct	1860
ttataataag	cttgcatttct	ttgtgaaact	aattcagcag	gctgaaggaa	atggttcatg	1920
tgataatgtg	ggctggatct	ctctagagta	cctgggtaca	taaacagaaa	ctccctgtagg	1980
taaaaaagtaa	tttgcatttct	tagtcttct	atgtttctgc	atccagatag	agtgcagttc	2040
atgacgcgag	ggggccgggg	actgaaagg	gaaaggcgt	taaagtata	cattttata	2100
cccaaatgt	tttatttttt	tttgcatttct	agtaaaaccc	ttaaaaattt	gccaattgt	2160
attaaggggg	gttaaaaata	aaagggtttt	ttaaaaaaaa	ttaaaaacaa	aacaaaagaa	2220
gaaaaaaaaa	aaggggccgg	gcccccccg	tcttaagtt	aagcctcccg	ttggaaacccc	2280
qcqqqqqaaat	tttaaatttt	ccggggaccc	cggggtt			2317

<210> 58
<211> 1774
<212> DNA
<213> Homo

<220>
<221> misc_feature
<223> Incyte ID No: 1416289CB1

WO 01/07471

PCT/US00/19948

aacttggaca gcaggcttct gatccccc ttatatatct gctgttaactt cttgtatata 960
tcaccagaaa aaaagaattg aaaataatcg tcacccagaa aatccagaaa actgaagatt 1020
tcatcagttg gaaacagtag cacttgaaa actttttagg ccagcttaa ttaatggcc 1080
ctactgatat tcacatcgaa ggtgactaac aatgacaaag gccttatgaa ctgtacagac 1140
aatacagaag attattctt tcctcattgc atttctatgc atatgcgtaa gaacatTTA 1200
aagccaaagaa aatatctgtc aaaccatttc tgtagaacg atgtcaattc atgctttaa 1260
tttagcatca atagaaaatt gctgttagta aatctcacat ttatctgaa caaaatata 1320
atthaatttt tagcttaaac tttgttcta ccttatgtt gtggaccta gttatccatc 1380
tgtaaatttc ttttatttg gctaaaataa tctaaaagaa taatttgggtt ggccaattag 1440
aatgccttt ttcagtttgtt gtattgaaag cttccctta acatTTTcac ctgctcattg 1500
tgattcctcc ttttagtcta atatcttcc aggtcatact tgTTTTtaat cattaaatata 1560
tttctcctg gttttggaga ctaagctgat aaacttttt taaaacttaa gcattgtcat 1620
tgctattttt ttaatttga ctcccttagg agtttaagaa cagtggaaagt tagcttcgca 1680
ccttcaaattg atcttgaatg agggaaaaat cagtttgatt ccaaggatat ttcttgcc 1740
acatggtctt ttctttgaca gtctgtacac cttt 1774

<210> 59
<211> 1268
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1558289CB1

<400> 59
taagtgaagc ttctccattc tgtaagcttt ccgggaacat ccaaggcaag actggcaccc 60
agcacagcag tgactgacca cataccccac tctccaggac ccatggagtc cttcagctca 120
aagaggctgg cactgcaagc agagaagaag ctactgagta agatggcggt tcgctctgt 180
gctcatctct tcatacgatga gacaaggcgt gaggtgtctag atgagctcta ccgtgtgtcc 240
aaggaggatac cgacacagccg gccccaggcc cagcgcgtga tcaaggacct gatcaaagt 300
gccatcaagg tggctgtgt gcaccgcaat ggctcccttgc gccccagtga gctggccctg 360
gctaccggct ttcgcccagaa gctgcggcag ggtgccatga cggcacttag ctttggtgag 420
gtagacttca ctttcgaggc tgctgttctg gctggccctgc tgaccgagtg ccggatgt 480
ctgcttagagt tgggtggaaaca ccacccacac cccaaagtac atggccgcat ccggccacgt 540
tttgcatact tctctgaccc aggtctgtc acggccctct atggggcctga cttcactcag 600
cacctggca agatctgtga cggactcagg aagctgctag acgaaggaa gctctgagag 660
ccctgaggcct agcacattcc accttgacaa aatggttgac tgagaaaaca cagataatgg 720
gcttcctaacc cctgctcacc tggcactaacc acttttcaat cttcaggctt cattcccttcc 780
caagagtgtct tttgactctg agaccagccc acccccaaaac agctagtggaa gaaggagca 840
tgctgagggg tgaggccctt ctcaccatcc agccccaggaa cagggaaacag aactgcctga 900
aaaaggtgaa gtgaaacttg gatcttatt tctccatataa gggacttctg aaacaggaa 960
gccccctccc atgtgaacca agggaaaggag gcacagccca gagaacccct ttggggatac 1020
taaagacaga agagggaaag gtggccctta gagacagac ttggacagat gccagaggct 1080
ctgttccaga gtgcagggaa aaggggctag ggcaggggag attctcatag gggaaataaa 1140
actactaaaa tatgagaaaaaaaaggacc cagcgaaacc ccaaggaagc gcaacaggca 1200
agggaaaaga gaacgaggag gggagccggc cccaaagacac aaacgagcaa aaaaagagg 1260
ggggccgc 1268

<210> 60
<211> 1331
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1577739CB1

<400> 60
gacatcttga ggcccacgtg gacctgagtt ctgggtgcagg atttaatcaa ctgaggagtt 60
cagccacccc gtggagagcc tggcgctgac tgtggaaagag gtgatggacg tgcgccgtgt 120
gctggtaag gccgagatgg aaaagtttt gcagaacaag gagctttca gcagtctgaa 180
gaaggggaaag atttgcgtct gctgcccggc caagttcccg ctgttctcggt ggccgcccag 240

WO 01/07471

PCT/US00/19948

ctgtctttc tgcaagagag ccgtctgcac ttccctgtac ataaaatgta agatgccttc 300
 taagaaattt ggacacatcc ctgtctacac actgggctt gagagtccctc agagggtatc 360
 agctgccaaa accgcgccaa tccagagaag agacatctt cagtctctgc aaggcccaca 420
 gtggcagagc gtggaggagg cgttccccca catctactcc cacggctgtc tcctgaagga 480
 tgtctcagt gagtgcacca gctttgtggc agacgtggc cgttccagcc gcaagagcgt 540
 ggacgtcctc aacactacgc cacgacgcag tcgcccagacc caatccctc acatccctaa 600
 caccaggact cttgacttca agtgacagcc ccaggtggcc aggccctccag gaggcaccag 660
 gcagggccctg tatcaggcta ggacgctctg agctgtcat gtacatataat acatataatag 720
 atacatttat aatatataca cacagtctat atatttatat acactgtttc ctggccccag 780
 agctcatttgc ggttcaggcg cacttcaaaa ccctccctgg gggaggctgt ttcttctcag 840
 gattccttgc cagggaggaa ggggaggaa caggggtgggt tttctcactg aagagagaaa 900
 gcagaaggtt ctagatcctg gcacagactg catcccatgt tcccatgctc ttctccgtcc 960
 ccaggaatgc gaacggcagt ttcccttccc cagtggacgt ctaggtgggg acagggtatc 1020
 ttggctccca gctggaccag agtgccttgc ttgcctctgc tctcccttg tggggactca 1080
 ggcagcagag gcatctggga agtctctgag taggcagggc cctctggga ggcaccccca 1140
 cctgtttgaa aggtctggcc aggcgtggc gttcaggcct gtaattccag cactttggga 1200
 ggccgaggag ggaggatcac ctgaggtcag gagtttgaga ccagcctggc caacatgatg 1260
 aaatgttgc tctactgaaa atgaaaaat tagccaggta tagtggcagg aacctgtaat 1320
 cccagctaca g 1331

<210> 61
 <211> 3227
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1752768CB1

<400> 61
 tgcagtacc tccatggtcc cggggctgt gacggcggca gtggcgcctg tcctgtccat 60
 aaacagcgat ttctcagatt tgcggaaat taaaagcaa ctgctgctta ttgcgggcct 120
 tacccggag cggggcctac tacacagtag caaatggcgtc gcggagttgg ctttctct 180
 ccctgcatttgc cctctggccg agctgcacc gcctccgcct attacagagg aagatgccc 240
 gatatggat gcctatacc tggccaaggc ctactttgac gttaaagagt atgatgggc 300
 agcacatttgc tgcattggc gcaatagcaa gaaaggcctat tttctgtata ttttcttgc 360
 atatctgtct ggaaaaaaa agaaggacga taaaacagtt gatacgctt gccccctgga 420
 aaaaggacaa gtgaaaaatg aggcgcctttag agaattgaga gtggagctca gaaaaaaaaaca 480
 ccaagctcga gaacttgatg gattggact ttatctgtat ggtgtggc ttgcggaaact 540
 ggacttgggtt aaagaggcca ttgtatgttt tggaaagct actcatgttt tgcccttgca 600
 ttggggagcc tggtagaaac tctgttaacct gatcacagac aaagagatgc tgaagtccct 660
 gtcttgcac gacaccttggc tggaaagagtt ttttctggct catatataca cagagttgca 720
 gttgatagag gaggccctgc aaaagtatca gaatctcatt gatgtgggct tctctaagag 780
 ctcgtatatt gtttcccaa ttgcaggcgtt ctatcacaat atcagagata ttgacaaaagc 840
 cctctccatt ttaatgagc taaggaaaca agacccttac aggattgaaa atatggacac 900
 attcttcaac cttctttatg tcaggagcat gaaatcgag ttgaggatc tggctataa 960
 cctctgttag attgataaat atcgtgttaga aacgtgtgt gtaatggca attattacag 1020
 tttacgttct cagcatgaga aagcaggctt atatttccat agagccctga aattaaatcc 1080
 tcggtatctt ggtgccttgc cactaatggg acatgaggatc atggagatgc agaacacgtc 1140
 tgctgtatc caggcttata gacatgccc tggatgtcaac aaacgggact acagagctt 1200
 gtatggcctc gggcagact atgaaatccct taagatgcca ttttactgccc ttttatttgc 1260
 tagacgggccc caccagttc gacccaatga ttctcgcatg ctgggtgctt taggagaatg 1320
 ttacgagaaa ctcattcaac tagtggaaagc caaaaagtgt tattggagag cttacgcccgt 1380
 gggagatgtg gagaaaaatgg ctctggtaa actggcaag cttcatgaac agttgactga 1440
 gtcagaacac gctgcccagt gttacatcaa atatatccaa gatatctatt cctgtgggg 1500
 aatagtagaa cacttggagg aaagcactgc ctttcgtat ctggcccagt actatttac 1560
 gtgcaactg tgggatgaag cttcaacttg tgcacaaaag tggatgtcat ttaatgatac 1620
 cccggaaagaa gtaaggcct tactccggca aatcctacag cttcggaacc aaggcggagac 1680
 tcctaccacc gaggtgcctg ctccctttt cctacactgt tcactctctg ctaacaatac 1740
 ccccacacgc agagtttctc cactcaactt gtcttctgtc acggccatagt tggctactct 1800
 caagccagca cattgttaga cccatcttaa ttaagcctta cttccatgtc aagaacacgca 1860
 cgtctgttcc aaggacctca gctttcttg tttctacaga tggcaacagc tccataggga 1920
 cagcttgtat aattaccttca agaggccaa tgacagaatc ctggcaggaa cagacattt 1980

cttgccagtt agaagtactt ctgtctcact tatgtccaaa gagtggttat agatcttggc 2040
 ctcttcctt gaatgccttt ttttttttgg cccccaagaa agtccccttt atagcaactt 2100
 agcacaggca atgctacagg aacaaagttt caatgtctg gagagtgaaa gaaaggagga 2160
 aagtctgcca ctctaccctg agctggcagt agggcactga gtaccctagg aagaagttag 2220
 agcaatggat acaaatacgacc ttgtctttgg atttgcgtgat catgatccctt attctgtatgt 2280
 cagagattttt gtttaaatgg aatagagctt tccattttttt cttactcttcc agggagacaa 2340
 tcttccaaaaa cagttttggg ggggtcttctt aaagcttca aatttggaaat aacttttattt 2400
 aacttagagttt gaataaaaaga aggcaaaaaa taatctcaca gagttggaa ctgctgtatag 2460
 cccttactga gggcaaaaaga tgcttatattt gttagctata ctccttaccaa agcaagcaag 2520
 gagataggat tatagataat ttacaggaca ttggaaaata acattttgttga ttatacagac 2580
 aagaataaac tcacttcaag ctggctgtt ttaataaaattt ttcaacgttta ttgtcttattt 2640
 tttccctcc catctcaac agaatacattt tttttcagcc ttatctttaga tgaggtaaag 2700
 ggaatcattt ttatggtctt cttggagatg ttcaggcctt tgcatgtgt tacagcagga 2760
 ggtatatatgc tataatgtctt gctgtatattt atttgcacag tagatgttat ggatcattct 2820
 gagctcaggg tccagactttt atttttatttcc cagaatttt gtgttacgtt ttaccttctt 2880
 aacatatgac acttcatctt atattaagga aggttttagaa tatctaatac gacttgaattt 2940
 catttggttac taaggccctt caggcaagctt gtataactgt tactggcttc cactgcccattt 3000
 ccttttcaag gttcccatgg tccagaatga ttgttatttttcc ttgtccctttt 3060
 ataattttgtt ttaatgtattt tgctacattt ggaattcaat aaaaatgtg aacaataata 3120
 tcttaataat aactgtttt ttgtgtcatag aaatcatata agtaaataaaa aaaaacaac 3180
 aacatgagat tacataggtt gttataatac aaaagtggaaa aaaaagc 3227

<210> 62
 <211> 1865
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1887228CB1

<400> 62
 gttctagatc gcgagcggcc gcctccggaa ggtccctctt atgcccattt aagacgcgac 60
 tcagaattgg gcccaggagt gaaggccaag aagcccatcc agactaattt ccgaatgcca 120
 ctcttgaact ggggtggcattt gaaacccaggc cagatcaccg gcactgtctt cacagagctc 180
 aatgtatgaga aggtgtcgatc ggagcttagac atgagtgtt ttgaggaaca gttcaagacc 240
 aagtcccaag gccccagcctt ggacccctt cggccatccatc gctctcaaga gtaaggcagc ccagaaggcc 300
 cccagcaagg cgacactcat tgaggccaaac cggggccaaacttggccat caccctgcgg 360
 aaggggcaacc tggggggccga ggcgcatttgc caagccatttgg aggctgtacga cctgcaggct 420
 ctggggcttgg acttccttggatc gctgtctgttgc ccacagagttt tgagcgcagc 480
 ctcatcaccc gcttttggatc ggagccggcgg ccaatggagg agctgtcaga ggaggaccgc 540
 ttcatgttat gcttcagccgc catcccgccgc ctggccggatc gcatgaccac actcacccctt 600
 ctgggcaact tcccgccac acggccatgtt ctcatgcgc aactgtatgc catcatttgc 660
 gcctcaatgtt ccatcaatgtt ctctgacaaa ctccggcaga ttctggagat ttgtccctggcc 720
 tttggcaactt acatgaaatgc tagcaagcgat ggggcagccctt atggcttcccg gctccagagc 780
 ctggatgcgc tggtggatc gaatgtcgactt gatcgcaaggc agacgctgttgc gcaactacctt 840
 gtgaagggtca ttgtgtatc gtaaccggcaatc ctcacaggctt tccacagcgat cctgcactt 900
 ctggacaagg cgggctcaatgtt gtccttggatc agtgccttggatc cggacgtgc cttccctgcag 960
 cgaggccctttagt agttgcacaca gagagatgtt gtgcggcagg atgactgtatc ggtgctcaag 1020
 gagttcccttga gggccaaactt gcccaccatc gacaagctgc tggccatccatc caagacggct 1080
 caggaggccctt tgatgtctgtt ggtggatc ttccggatc accccaaagac cacatcccc 1140
 ggcctgttctt tctcccttgc tagccgcattt attaaggccatc acaagaaaagc tgagcaggag 1200
 gtgaaacagt gaaaaaaaatc agccgcgttcc caggaggcagc ggcgttgcatac cccggccaaa 1260
 ggggagccccc cagcacccaa gtcaccggca aaggccggc ggccatccatc ggacccatc 1320
 tctgatgtatc aacggaggca gcagaaggatc ccacttattt atgagagcgat cctgtatggg 1380
 gccatttgcac acatcatcactt agatgtcggtt aaccaggccatc acatccgcgc agacacaggc 1440
 cgccgcgttcc cccgttggcg tccccccggc ccccccactgc aggttgcatttcc cggccatc 1500
 ctgtatgtatc tattttgtatc ggtggatc ttccggatc gtcagggtgtt gggggccgtgg acaggctgtat 1560
 gctcaaggaa ggtggccatc agtgcgttgc gccggccagc ccctccctccg ctgtggcccg 1620
 cctcaaacgg gctgggtcat ctccttgcattt gccacagagg gcagcatgc cccggccatc 1680
 ccccaaatgc tgcttgcgttcc acccaccctt aagcccccctt caaatagccatc tacttagccat 1740
 cagcaggagc ctggccgtatc acttataaaatc tgcacccatc ccccgcaaggc cccagccccc 1800
 aggaccgttccatc atggaccatc tttttatatc agatgtttgc aaaaaaaaaa 1860

WO 01/07471

PCT/US00/19948

aaaaaa

1865

<210> 63
<211> 1924
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1988468CB1

<400> 63
agctgccggg cggtcctgcc gagctgttag ggcaacggag gggaaataaa agggAACGGC 60
tccgaatctg ccccagcgcc cgctgcgaga cctcggcgcc gacatcgca cagagcgctt 120
tgcacgcccag gaaggcccc tctatgtct gctgagccgg tcctggacgc gacgagcccg 180
ccctcggtct tcggagcaga aatcgaaaa acggaaggac tgaaaatggc agaccatatt 240
atggccatga accacggggc cttcccgac ggcaccaatg ggctgcacca tcaccctgcc 300
caccgcattgg gcatggggca gttcccgagc ccccatcacc accagcagca gcagccccag 360
cacgccttca acgccttaat gggcgagcac atacactacg ggcggggcaa catgaatgcc 420
acgagcggca tcaggcatgc gatggggccg gggactgtga acggagggca ccccccggagc 480
gchgctggccc ccgcggccag gtttaacaac tcccagtca tgggtcccccc ggtggccagc 540
caggaggct ccctgcccgc cagcatgcag ctgcagaagc tcaacaacca gtatttcaac 600
catcacccct acccccacaa ccactacatg cggatttgc accctgtgc aggccaccag 660
atgaacggga caaaccagca cttccgagat tgcacccca agcacagcgg cggcagcagc 720
accccccggcg gtcggggcg cagcagcacc cccggcgct ctggcagcag ctcggggcg 780
ggcgccggca gcagcaacag cggggccgcg agcggcagcg gcaacatgcc cgccctccgt 840
gcccacgtcc ccgtgtca gctgcccggc aatgtcatag aactgatatt catcagcag 900
gaaggttctta tgccttggt gatagaaaatg gtttgaggc gcatcaagga gctgcccggaa 960
ctctggctgg ggcaaaacga gtttatttt atgacggact tcgtgtgcaaa acagcagccc 1020
agcagagtga gctgttgcgat cgatcgaaac cccggcgaaa gaaatcaaac ccccaacttc 1080
ttcggcgtga attaaaagaa acatccctt agacacagta ttcactttt cagatctga 1140
aagggtttag aacttggaaa caaagtaaac tataaacttg tacaatttg ttttaaaaaaa 1200
aattgctgcc actttttttt cctgttttg ttctgtttt gtagccttga cattcaccca 1260
cctcccttat gtatgtaaa tatctagcta acttggctt ttctgttgg ttttttact 1320
ccttccctc actttctcca gtgctcaact gttagatatt aatctggca aactgcttaa 1380
tcttgtggat ttgttagatg gtttcaaattg actgaactgc atttagattt acgagtgaaa 1440
ggaaaaattt cattagttgg ttgcatgaac ttcaaggcc agatattact gcacaaactg 1500
ccatctcgct tcattttttt aactatgcat ttgagtacag actaattttt aaaatatgct 1560
aaacttggaaat attaaacaga tgtggccaa actgttctgg atcaggaaag tcatactgtt 1620
caacttcaag ttggctgtcc ccccccggccgc ccccccacc cccatatgtt cagatgataa 1680
taggggttgg aatgtcgta gtggcaaaaca tttcacagat ttttattttt ttctgtctt 1740
caacattttt gacactgtgc taatagttt attcagtgaca tgaaaagata ctactgtgtt 1800
gaaagctttt taggaatatt tgacagtatt ttgtacaaa acatttttt gaaaaaatatac 1860
ttgttaattt attctatttt aatttgcacaa tgtcaataaa aagttaaagaa ataaaaaaaaa 1920
aaaa 1924

<210> 64
<211> 948
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2049176CB1

<400> 64
ggcctggtcc gcagcgcctt gcgcaccc gccccggacg tggggccaa gccccgtga 60
agatgggttc ctggatgatc tccagagccg tggctgtgtt gtttggatg ctttattcctt 120
catatttttc atacaaagct gtggaaaacaa aaaacgtgaa ggaatatgtt cgatggatga 180
tgtactggat ttgttttgct ctctatactg tgattgaaac agtagccgat caaacagtt 240
cttggtttcc cctgtactat gagctgaaga ttgctttgtt catatggctg ctttctccct 300
atacaaaagg agcaagttt atatatagaa aattccttca tccacttctt tcttcaaagg 360
aaaggagat tgatgattt attgtacaaag caaaggaacg aggtatgaa accatggtaa 420

WO 01/07471

PCT/US00/19948

actttggacg gcaagggtta aaccttgcag ctactgctgc tggtaactgca gcagtaaaga 480
 gccaaggagc aataactgaa cggttaagaa gcttcagat gcatgattt acaactatcc 540
 aagggtatga ggctgtggg caaagaccat accaacctt accagaagca aaaaagaaaa 600
 gtaaaaccgc ccccagtcaa tcagcagggt atggaatcc actgaaagac ggagatgaga 660
 aaacagatga agaagcagag gggccatatt cagataatga gatgttaaca cacaaaggc 720
 ttcgaagatc gcaaagcatg aaatctgtga aaaccacca aggccgcaaa gaggtgcgg 780
 acgggtcact aaaatacaca gtgaagaaac gaccacaagt gtatTTtag tcatctacac 840
 gtcaaataatc ccaagacaga ttatgtctaa tacatcgact tcatcttcta acatgatata 900
 ttcaggattt acacattaa atgattattt aaattgtggc agtgatgg 948

<210> 65

<211> 2035

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2686765CB1

<400> 65

gaccgtggcc ctgaccgcca aacccccgt tgcccccaag ccgggaacca cagtggcctc 60
 aggagtact gcacggagt atgcaggaca agtgacagg gggcatggag ctggcgac 120
 aacatcagca tcagcaggac aggctccgtga ggaccctca ggccctggca caggccctc 180
 tgggacttgt gaggctccgg tagtgcgtg gaccgtgacc ccagctccgg agcctgctg 240
 aaactctcaa gacctgggtt ccacgtcccg cctgggaccc ggeatctctg ggcctcgagg 300
 gcaggccccg gacacgctga gttacttggc ctccgtgagc ctoatgtctg ggaccttgg 360
 gtccttggcg gatgatgtga gctccatggg ctcagattca gagataaaacg ggctggccct 420
 ggcgaagacg gacaagtatg gcttccttgg gggcagccag tactcgggca gcctagagag 480
 ctccatccc gtggacgtgg ctcggcagcg ggagctcaa tggctggaca tggtaactaa 540
 ctgggataag tggctgtcac ggcgatttca gaaggtgaag ctgcgctgcc ggaaggggat 600
 cccctcctct ctcagagcca aagcctggca gtacctgtct aatagcaagg aacttctgga 660
 gcagaaccca ggaaagttt aggagctgga acgggcttccct ggggaccca agtggctgga 720
 tgtgatttag aaggacctgc accggccatgg ctcctccac gagatgtttt ctgctcgagg 780
 ggggcatggg caacaggacc tggtaactaa cctgaaggcc tacaccatct accggcctga 840
 cgagggttac tgccaggccc aggccccgt ggagatctt tttgcactcc tgcgccccgc 1020
 ggagaaggct tttgggtcct gggtcagat gtcgacaaag tacctcccag gttactacag 960
 tgcagggctg gaggccatcc agctggacgg ctcctccac ggcacatgtatg agaccatgg 1080
 ctccccgtg ggcacatcgcc acctgcagcg ggatgttccctt ttcactcc tgcgtgtctg 1140
 ggagatgtt ccacatgtt ttctgtgaag gctttaagat ctcctccgg gtggccctgg tcctgtcg 1200
 ccacacgctg ggctcagttt agaagctgca ctcctgcca ggcacatgtatg agaccatgg 1260
 gcagctgcgt aacctgcccc agcagtgcatt gcaggaagac ttccctggc atgagggtgac 1320
 caatctgcgg gtgacagaag cactgattga gcgggagaat gcaagcccacg tcaagaagtg 1380
 gcgggaaacg cgggggggac tgcagtatcg gcccctcacgg cgactgcatt ggtccccggc 1440
 catccacgag gagcgcggcggc ggcaacagcc acccctggc ccctcctcca gcctcctcag 1500
 ctcctctggc ctcacagagcc gaggtccccggc ggcagctggc gggcccccgt cccggccgc 1560
 cccctccgc agaggccatgt ctggccctgc cccaggccct gtggtaactg ctgaggggact 1620
 gcatccatcc cttccctcac ccactggcaa tagcacccccc ttgggttcca gcaaggagac 1680
 cccggaaacg gagaaggac ggcagaaaca ggagaaggag cggcagaaac aggagaagga 1740
 gcccggaaacg gagcggcggc agcaggagaa agagcgagag aagcagggaa aggagcgaga 1800
 gaagcaggag aaggagccggc agaagcagga gaagaaggct caaggccggc agcttcgt 1860
 gcgtcggaaacg gcagatgggc cccaggccccc ccatgtatggt ggggacaggc ctcagccga 1920
 ggcggccggc gacgcttact tctgacctct gccctggggc tggactgcatt ggcggccctc 1980
 ttcctccatcc ccaagaacacg gcctggccca aggtgcacc cccatgcacc ttgtc 2035

<210> 66

<211> 766

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3215187CB1

WO 01/07471

PCT/US00/19948

<210> 67
<211> 2503

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3500375CB1

<400> 67
tgtccctggc ggcctgggtg gctactgccc ctgctgctgt cgtaggcgag gacggctgtt 60
agtgtgtctg ctgttggttc gtcggggcgg cgaaggagga ggaggaagag ggcgaggcga 120
caagagaaga aggaggcagg cgccggggca gcggccggc cccgagccgg cggaggcgag 180
gggggggaag atggcggacg tgcttagcgt cctgcgacag tacaacatcc agaagaagga 240
gattgtggtg aaggagacg aagtgtatctt cggggagttc tcctggccca agaatgtgaa 300
gaccaactat gtgtttggg ggactggaaa ggaaggccaa cccagagagt actacacatt 360
ggattccatt ttatcttctac ttaataacgt gcaccccttcatcctgttt atgtccgacg 420
tgcagctact gaaaatattc ctgtgttag aagacctgtat cggaaaagatc tacttggata 480
tctcaatggt gaagcgtcaa catcgcaag tatagacaga agcgctccct tagaaatagg 540
tcttcagcga tctactcaag tcaaaccgagc tgcagatgaa gtttagcag aagcaaagaa 600
accacgaatt gaggatgaag agtgtgtgcg ctttgataaa gagagattgg ctgcccgtt 660
ggagggtcac aaagaaggaa ttgtacagac tgaacagatt aggtctttgt ctgaagctat 720
gtcagtggaa aaaattgtctg caatcaaagc caaaattatg gctaagaaaa gatctactat 780
caagactgat ctagatgtat acataactgc ctttaaacag aggagtttg tggatgtca 840
ggttagatgtg acccgagata ttgtcagcag agagagagta tggaggacac gaacaactat 900
cttacaaagc acaggaaaga attttccaa gaacattttt gcaattttc aatctgtaaa 960
agccagagaa gaaggcgtg cacctgaaca ggcacccgtcc cccaaatgtcagcacccttgc 1020
tcccactttc cgacccaaac agcctatccc agctgcctt aacagatacg atcaggaaag 1080
attcaaaagga aaagaagaaa cggaaaggctt caaaatttgc actatggaa cttaccatgg 1140
tatgacactg aatctgtaa cggagggtgc atctggcccg aagactcaga ctcctgcagc 1200
ccagccagta ccaagaccag ttctcaagc aagacctccc cccaaatcaga agaaaaggatc 1260
tcgaacaccc attatcataa ttccctgcagc taccacctt ttaataaccca tgcttaatgc 1320
aaaagacctt ctacaggacc tgaattttgt cccatcagat gaaaagaaga aacaaggttg 1380
tcaacgagaa aatgaaactc taatacaaag aagaaaagac cagatgcaac cagggggcac 1440
tgcaatttagt gtacagttac cttatagatc agtagaccag ccccttaaac ttatgcctca 1500
agactgggac cgcgtttag ccgttttgc gcagggtcct gcatggcagt tcaaaggttg 1560
gccatggctt ttgcctgtat gatcaccatc tgatatatatt gctaaaatta aagccttcca 1620
tctgaagttat gatgaagttc gtctgatcc aatgtttagt aatggatgtaaacagtttgc 1680
agaactcagc tattcacaaac gtcatggta tagaccatg ttcttacggt tttggaaaac 1740
attggacagg tacatggtaa agcataaaatc gcacttgaga ttctgaatta ttggctcct 1800
ccatttctgg aaattgagac tcaagctta tgaatttatac aagaacttaaa aatgaagaa 1860
ggtcacagat tgatctttta taagacctta tttgtatcgt tgcgttcaa ggagatgata 1920
cctgtcatcc atataagcaa acttttggc ttacaactat ttttttaata ttagccttct 1980
agtctgtat gggaaattgtat tattttgtata gaagttttt ctccattggt taaatttagca 2040
ttacttaaaa ttgtttctt tagaaaataa atgcaggta taaatgtgtg tatatttaga 2100
gattataagg ctctctgagc catcttctga tttttcatttgc ctctataatt ctttttactg 2160
aaaataactat gttatgtatcgttattaaatt ttagtctctg gaacatccaa aaccaagcaa 2220
agggatgtga ctatcttgc tgaatcagaa tgtcaacttgc tatgtacact atatctacac 2280

WO 01/07471

PCT/US00/19948

ttactcatta tttaaaaaga ataatgaaaa atctagatca attcttcaat ttgattgaac 2340
 tggcaggcct tttcaagatt tctttatcta caaatgatta catttaaatg aatgtacatt 2400
 ctctcaactg actttggtga ttttggaaacc tagaatgatg tgtttctatc tgtaatatct 2460
 ttccatttga aaaaaatctc aaaacacaga taaaaccac aaa 2503

<210> 68
 <211> 541
 <212> DNA .
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5080410CB1

<400> 68
 atggcggtcca tgcgggagag cgacacgggc ctgtggctgc acaaacaagct gggggccacg 60
 gacgagctgt gggcgccgccc cagcatcgcg tccctgcctca cggccgcggg catcgacaac 120
 atccgtctct gtttccatgg cctctcgctg gcagtgaagc tcaagttgct actcgggacg 180
 ctgcacctcc cgcgcgcac ggtggacgag catcctattt tgccaatgaa gggcgcccta 240
 atggagatca tccagctcg cagctcgac tcggaccctt gggtgctcat ggtcgccgac 300
 atcttgaagt ctttccgga cacaggctcg cttaacctgg agctggagga gcagaatccc 360
 aacgttcagg atattttggg agaacttaga gaaaagggtgg gtgagtgtga agcgtctgcc 420
 atgctgccac tggagtgcca gtacttgaac aaaaacgccc ctgacgaccc tcgcgggacc 480
 cctcactccc ccgggtgaag catttcagt taaagcgaa acccaagagc gccacgctgc 540
 g 541

<210> 69
 <211> 937
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5218248CB1

<400> 69
 gactacgacc aaaacaaagg agcggcggcc gggagcggac ttaccttacc ttctctgcct 60
 tcggcgcgct ttcagccgg gcccggacc caaaggagcc gtccgactat gtctaacatg 120
 gagaacacacc tttcaacct gaagttcgcg gccaaagaac tgagttaggag tgccaaaaaaaa 180
 tgcgataagg aggaaaaggc cgaaaaggcc aaaattaaaa aggccattca gaagggcaac 240
 attggagttt cgaggataca cggccaaaat gccatccggc agaagaacca ggcgggtgaat 300
 ttcttgagaa tgagtgcgcg agtcgatgca gtggctggca gggccagac ggcgggtgacg 360
 atggcaagg tgaccaagt gatggctggt gtggtaagt cgatggatgc gacattgaag 420
 accatgaatc tggagaagat ttctgtttt atggacaaat tcgagcacca gtttgagact 480
 ctggacgtcc agacgcagca aatgaaagac acgatgagca gcacgacgac gtcaccact 540
 cccccagaacc aagtggatg gctgtccag gaaatggcag atgaggcggg cctcgacctc 600
 aacatggagc tgccgcagg ccagaccggc tccgtggca cgagcgtggc ttccgggag 660
 caggatgaac tgtctcagag actggccgc cttcgggatc aagtgtgacg gcagaacccg 720
 ctctgaggtt ttctggccat agccaccctt taaaatgctc tctgtgtgtt agagagatac 780
 tataccctag aaactctgaa caccccagaa tgctgaaatg cccttctacc tttgggtta 840
 cagccccctc cacataaaatt aagaaattca gtatttctgc actcttagct gtattctaaa 900
 gttctgtata gtcgtaatg atggatattt tatagca 937

<210> 70
 <211> 823
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 058336CB1

<400> 70

WO 01/07471

PCT/US00/19948

ccccatcacgg	cgtagtgc当地	gctaaaatta	accctcaacta	aagggaataa	gcttgcggcc	60
gccggggcgaa	tggtcggc当地	ctgcgaggcc	aagagagacc	ccaggacaca	cacagctgcc	120
tcccggtgc当地	agaagaagac	cccggcttga	gagttagatg	gcgtttaatg	attgcttc当地	180
tttgaactac	cctggcaacc	cctgcccagg	ggacttgatc	gaagtgttcc	gtcctggcta	240
tcagcactgg	gccctgtact	tgggtgatgg	ttacgttata	aacatagcac	ctgttagatgg	300
cattcctgc当地	tcctttacaa	gccc当地agtc	tgtattc当地	agtaaggccc	tggtaaaaat	360
gcagctt当地	aaggatgtt当地	tgggaaatga	cacatacaga	ataaacaata	aatacgtatga	420
aacgtacccc	cctctccctg	tggaagaaaat	cataaaggccc	tcagagttt当地	taattggaca	480
ggagggtggcc	tataacttac	ttgtcaacaa	ctgtgaacat	tttgtgacat	tgcttc当地	540
tggagaagga	gttccagagc	aggccaaccg	agcgtataagt	accgtt当地	tgtgacagc	600
tgctgtt当地	gtcttctcat	tcctggctt当地	gttccaaaaa	ggacaaaagag	caaataacta	660
ttaacaattt	accaaagaga	tattgatatt	gaagggattt当地	gggaggagga	aaagaaaacct	720
gggggtgaata	cttattttca	gtgc当地tatt	actgttccag	attcctatga	tggatggc当地	780
actcttaat	aaattgctt当地	ctgatattat	cttaaaaaaaaaa	aaa		823

<210> 71
<211> 1033
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1511488CB1

<400>	71	gcccgggg	tccagctgc	acgtcccagg	ctctccagcg	cgcggcaggc	cggggcggga	60
cgaggagagc	tgccccgaca	acgcctgtgg	ctgggtccgg	aggtgcgggt	gcggcgcggg	120		
acaaggcggc	agcatgctca	ggcggtcgg	gaggctactg	cgccttggcc	gcgggctaac	180		
agtccgctgc	ggccccgggg	cgcctctcga	ggccacgcga	cggcccgcac	cggctttcc	240		
gccccggggt	ctccccctgct	actccagcgg	cggggcccccc	agcaattctg	ggcccccaagg	300		
tcacggggag	attcaccgag	tccccacgca	gcmcaggcct	tcgcagttcg	acaagaaaaat	360		
cctgctgtgg	acagggcggt	tcaaatacgat	ggaggagatc	ccgcctcgga	tccgcgcaga	420		
aatgatagac	accgcaagaa	acaaagctcg	agtggaaaagt	tgttacataa	tgattggact	480		
cacaattatc	gcctgcttttgc	ctgtgatagt	gtcagccaaa	agggctgttag	aacgacatga	540		
atccctaaca	agttggaaact	tggcaagaa	agctaagtgg	cgtgaagaag	ctgcattggc	600		
tgcacaggct	aaagcttaat	gatattctaa	gtgacaaaagt	gttcacactga	ataccatccc	660		
tgtcatcgc	aacagttagaa	gatggggaaa	atagaatatt	tacccaaaat	tctgcattgg	720		
tttttattttgc	gttacaacaagaa	gcacaatgtc	ttttttatttt	ttatTTTTA	gttaaactttt	780		
actgaagtat	accatgcatt	caaaaagtgg	acaaaactgt	atacagtctg	atagatattt	840		
atgtcgtgaa	cacctgtgt	accactgcca	aagtgaagat	gtagaatatt	ggcaacactt	900		
cacagcctca	ttcctgcctt	ttctcagcca	ttacctccca	aacatagcag	tttttctgag	960		
tttcatcacc	tttgattcat	tttgctgtt	tttgaacttt	atataatgg	atttatacat	1020		
aaaaaaaaaa	aaa					1033		

<210> 72
<211> 1622
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1638819CB1

```

<400> 72
ggcacttccg gccccgcgt gcaggcgcg  ggaacaccaa tggcgggta cttgaagctg 60
gtgtgtgtt ccttcagcg tcaagggttc cacactgtt gggatcgctg caagaatcg 120
acaggcgctg agcacctgtg gctgaccgcga catctcaggg acccatttgt gaaggctcg 180
aagggtggaga gttaccggtg tcgaagcgcc ttcaagctcc tggaggtgaa cgagagggac 240
cagattctgc ggccccggct tcgggtgtta gactgtgggg cagctcctgg ggcctggagt 300
caggtggcg  tgcagaagg  caaccccgc  ggcacagatc ccagctctcc tggggcttc 360
gtgcttgggg tagatcttct tcacatattc cccctggaa  gagcaacttt tctgtgcct 420
gctgacgtga ctgaccccgag aacacctacag agaatcctcg aggtgtttcc tggcaggaga 480
gcagatgtga ttctgagcga catggcgccc aatgccacag ggttccggga cctcgatcat 540

```

WO 01/07471

PCT/US00/19948

gacaggctca tcagcctgtg cctgaccctt ctcagcgtga ccccagacat cctgcaacct 600
 gggggacat tcctttgtaa aacctggct ggaagtcaaa gccgtcggtt acagaggaga 660
 ctgacagagg aattccagaa tgtaaggatc atcaaactg aagccagcag gaaagagtca 720
 tcagaagtgt acttcttggc cacacagtac cacggaagga agggcactgt gaagcagtga 780
 ggattcttg tgccatttc ataatggtca ttagctcctt ttaagctaga aacgtagcct 840
 gagctctga agagttcctg ggagatttga gctgatttg gagatggagc aggacaagtg 900
 gggagctct ctctctctt ctctctctct cttttaacc aaaaagagat gacaaaacta 960
 agttcagggg ccatggaaaa tgaaaaagtc cgctataattg tgatttggg agagaaaagt 1020
 atcaagagaa agaggtgagg atggaaggat ggagaaaaac agactgtggg aaggatcaga 1080
 aggaatccgc cgaggcaggg atgggtgtgc ccatgtgtgc cttgacggga cttcatctta 1140
 tagactgtta aactgtcaca cacaacacagg ctttccaccc ctgctctgag agcaccacgc 1200
 acagatttcc agttcttagt gtggctgttt aaagttagaaa atctggggc tgggtgaggc 1260
 cactcatgcc tgtaaaccca gggctttaga aggctgaggg tgggggattt cttgaagtca 1320
 ggagtcbaag accaaccctgg gcaacatagc aacacccccc atgtctacaa aaatgaaaaa 1380
 caaaaagca aaccaaaaaga aaaatctgaa atttccatct ggggattaac ttctgtctt 1440
 ctggtaaca atatagcaat tcacgcattt tcacgcattc ttcaaggcagc aaaagttccc ggaacaatta 1500
 gggaaagacgt atggctgtcaa ttatccagg cagtggtctt gcttgggtt ttgctggaaa 1560
 ttatatcag tgcgtggctt cccaaagaaca taaatgtaat tgccaaagca aaaaaaaaaa 1620
 aa 1622

<210> 73

<211> 2449

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1655123CB1

<400> 73

cgttgccggg ctctccggaa ggagacgtgg cggcggttgg gccgggtgata cccgggcgt 60
 ttatagtccc gcccctcct cctccaccct cccctccctt ccctctccctc ctggagcaga 120
 ggaggttgtg gcgggtggctg gagaaaagcgg cggcggagga tggaggaagg aggccggcgc 180
 gtacggagtc tggccccggg cgggcccgtg ttactggtcc tctgcggcct cctggaggcg 240
 tccggcggcg gcccggccct tcctcaactc agcgatgaca tccctttccg agtcaactgg 300
 cccggcaccc agttctctt gcccacaact ggagtttat ataaaagaaga taattatgtc 360
 atcatgacaa ctgcacataa agaaaaatat aatgcatac ttccccctgt gacaagtggg 420
 gatgaggaag aagaaaagga tttaaaaggc ctaatccaa gagagcttt ggagccacta 480
 tttaaacaaa gcagttgtt ctacagaact gagtcttatt ggacttacga agtatgtcat 540
 gaaaaacaca ttccggcgtt ccatgaagag aaaaaactg gtcagaaaaat aaatattcac 600
 gagtactacc ttgggatatat gtggccaag aaccttctat ttgaaaaaga acgagaagca 660
 gaagaaaagg aaaaatcaaa tgagattccc actaaaaata tcgaaggtca gatgacacca 720
 tactatctg tggaaatggg aaatggtaca ctttgcgtt tgaaacagaa cccgcccaga 780
 tcaagtaactg tgatgtacat atgtcatctt gatatcttgc atgaaattct ttcagtagct 840
 gaagttacaa cttgtgaata tgaagttgtc attttgacac cactttgtg cagtcattct 900
 aaatataatgt tcagagcatc tcctgtgaat gacatatttt gtcaatcact gccagatct 960
 ccatttaagc ccctcacccct gagcagctg gacgacatc aagaaatact aagggtgcct 1020
 ttttaggagaa ataaagagga agatttgcac tcaactaaag aagagagatt tccagcgatc 1080
 cacaagtgcg ttgttatgg ctctcagcca gtcgtcactg ttgggacaac ccacatatcc 1140
 aaatttgacag atgaccaact cataaaagag tttcttagt gttcttactg ctttcgtggg 1200
 ggtgtcggtt ggtggaaata tgaattctgc tatggcaaact atgtacatca ataccatgag 1260
 gacaaggata gtggaaaac ctctgtgggt gtcgggacat ggaaccaaga agagcatatt 1320
 gaatgggcta agaagaatac tgctagagct tatcatcttcc aagacgatgg tacccagaca 1380
 gtcaggatgg tgtcacattt ttatggaaat ggagatattt gtatataac tgacaaacca 1440
 agacaggtga ctgtaaaact aaagtgc当地 gaatcagatt cacctcatgc tgttactgt 1500
 tatatgctag agcctcactc ctgtcaatat attcttgggg ttgaatctcc agtgatctgt 1560
 aaaatcttag atacagcaga tgaaaaatgga cttcttctc tcccccaacta aaggatatta 1620
 aagtttagggg aaagaaaaga tcattgaaag tcatgataat ttctgtccca ctgtgtctca 1680
 ttatagagtt ctcagccatt ggacctcttc taaaggatgg tataaaatgt ctctcaacca 1740
 ctttgtgaat acatatgtgt atataagagg ttattgataa acttctgagg cagacatttg 1800
 tctcgctttt tttcatttt gttgtgtctt ataaactgac tggggggatcc ttatgtaaat tgctggata 1860
 ctgtgattcc aaaataaatac tcacccaagc aagttagagt ccacccataat caaatgtcat 1920
 aattgttgc当地 cttattgaaa gtttttaat aatagatttataat tataatgtat 1980

WO 01/07471

PCT/US00/19948

gtaagttagct aatgaagtaa agatcatgaa gaaagaaaatt gatagggtgt aatgagagac 2040
 catgtaaaat atgtaaaatc tagtacacctg aatcccttca acagattttt atatagcaac 2100
 tgctctctgc aagtagttaa actagaaaact gggcacatgg tagaggctca catgggagtt 2160
 gtcctcaccc ttgttaatct caagaaaactc ttatTTATAA taggttgctt ctctctcaga 2220
 acttttatct attactttt tcttctttagt agtatgtta ctctcagagt atctatctga 2280
 tgttagacagt ttgtgtatgtc tctgagactc agaatggttt actctaaca aacactgtgc 2340
 tgtctatccc ttgtacttgc ctactgtaa atggatttca cttctgaaca gtttacagca 2400
 caatatttat tttaaagtgtc ataaaaatgtc cacaagcaaa aaaaaaaaaa 2449

<210> 74
 <211> 1689
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2553926CB1

<400> 74
 aagtaatctt agggatttgtt ggaaggcagc tgaactcgcc gcctggaaag atggaggcag 60
 cggagacaga ggcggaaagct gcagccctag aggtccttgc tgagggtggca ggcattttgg 120
 aacctgttagg cctgcaggag gaggcagaac tgccagccaa gatccctgggtt gagtttgg 180
 tggactctca aagaaaagac aagctgtctc gcagccagct tcaggttagcg gatttcctgc 240
 agaacatctt ggctcaggag gacactgtca agggtctcga ccccttggct tctgaagaca 300
 cgagccgaca gaaggcaatt gcagctaagg aacaatggaa agagctgaag gccacccata 360
 gggagccacgt agaggccatc aaaattggcc tcaccaaggc cctgactcag atggaggaag 420
 cccagaggaa acggacacaa ctccggaaag ctttgagca gctccaggcc aagaaacaaa 480
 tggccatgga gaaacgcaga gcagtcaga accagtggca gctacaacag gagaagcatc 540
 tgcagcatct ggcggaggtt tctgcagagg tgagggagcg taagacaggg actcagcagg 600
 agcttgacgg ggtgtttcaag aaacttggaa acctgaagca gcaggcagaa caggagcggg 660
 acaagctgca gaggtatcag accttcctcc agcttctgtt taccctgcag ggtaagctgt 720
 tggccatgtt ggctgaggct gaggcagaga atcttccaga tgataaaaccc cagcagccga 780
 ctcgacccca ggagcagagt acaggagaca ccatggggag agaccctggt gtgtccctca 840
 agttctccaa ggctgttggc ctacaacctg ctggagatgt aaatttgcctt tgacttcctg 900
 gaggacagca gcatggagaa agatcctaga aaaggccctt gacttccctc acctcccaac 960
 catcattaca gggaaagactg tgaactccctg agttcagctt gatttctgac tacatccctg 1020
 caagctctgg catctgtgga ttAAAATCCC tggatcttcc tcagttgtgt atttggccat 1080
 cttcatatgc tggcaggAAC aactattaaat acagataactc agaagccaaat aacatgacag 1140
 gagctgggac tgggttgaac acagggtgtc cagatggggaa ggggttactg gccttgggccc 1200
 tcctatgtatc cagacatgtt gaattttattt caaggaggag gagaatgttt taggcagggt 1260
 gttatatgtt ggaagataat ttattttatgt gatccaaatg tttgttgagt cttttttttg 1320
 tgctaagggtt cttgcgggtga accagaattta taacagttag ctcatctgac tgtttttagga 1380
 tgcacggctt agtgttaaca ttcttggat cttttgtgc cttatctaaa acatttctcg 1440
 atcaactgggtt tcagatgttc atttattata ttcttttcaa agattcagag attggctttt 1500
 gtcatccactt attgtatgtt ttgttttattt gacctcttagt gataccttga tctttccac 1560
 ttcttgggtt cggattggag aagatgtacc tttttgtca actcttactt ttatcagatg 1620
 atcaactcac gtatttggat ctttattttgtt ttctcaaat aaatatttaa ggttaaaaaaa 1680
 aaaaaaaaaa 1689

<210> 75
 <211> 2489
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2800717CB1

<400> 75
 tggccccaga acgcgggttag gaagtgtgtc catacgtctg aaccctaaat ggttctcagt 60
 tctgtaaaact tctccctccca ctgggtggag tagggccctt aagagcagct ggaatgcagt 120
 tccctgtatc agcgtaccag ttgttgcctg tctgaacctc tgccagtcct ggagactgg 180
 gcccctgagct ccaaccagcg ggcctcatcc tacaccctca ccaccgcaac ttctcacccg 240

WO 01/07471

PCT/US00/19948

agcagaaggc agctcccgaga gagaagaac gttcccaccc gcctagccat gggagaggac 300
 gctgcacagg ccgaaaagtt ccagcacccct gggctgaca tgcggcagga aaagccctcg 360
 agccccagcc ccatgccttc ctccacacca agccccagcc tgaacctagg gaacacagag 420
 gagggccatcc gggacaactc acaggtgaac gcagtacccg tgctcacgct cctggacaag 480
 ctggtaaca tgctagacgc tgtgcaggag aaccagcaca agatggagca gcgacagatc 540
 agtttggagg gctccgtgaa gggcatccag aatgacctca ccaagctctc caagtaccag 600
 gcctccacca gcaacacccgt gagcaagctg ctggagaagt ccccaaggt cagcgcac 660
 acgcgcgcgg tcaaagagcg catggatagg cagtgcgcac aggttaagcg gctggagaac 720
 aaccacgccc agctccctcg acgcaaccat tccaaagtgc tcatttcca ggagggaaat 780
 gagatccctg ccagcgtgtt tgtgaaacag cccgttccg gtgcgtgga agggaaaggag 840
 gagctcccg atgaaaacaa atccctggag gaaaccctgc acaccgtgga cctctcccta 900
 gatgatgatt tgccccacga tgaggaggcc ctggaaagaca gtgcgagga aaaggtggaa 960
 gaaagttaggg cagagaaaaat aaaaagatcc agcctgaaga aagtggatag cctcaagaaa 1020
 gcattttctc gccagaacat cgagaaaaag atgaacaagc tggggacaaa gatcgatct 1080
 gtagagagga gagagaagat taagaaatct ctcacgtcaa atcaccagaa aatatcccta 1140
 ggaaaaagct ccccttcaa gtttctccc ctcactttcg ggcgaaagaa agtccgagag 1200
 ggagaaaagcc atgcagaaaa tgagaccaag tcagaagacc tgccctagcag tgagcagatg 1260
 ccaaattgacc aggaagagga gtccttgca gagggtcatt ccgaagcgtc cctcgccac 1320
 gctctggtgg aaggggaaat tgcaagggag gctgctgaga agggcactc cagggggagt 1380
 aactcgggga tggacagcaa catcgaactt actattgtgg aagatgaaga ggaggagtca 1440
 gtggccctgg aacaggcaca gaaggtaacg tatgagggta gctaegcgct aacatccgag 1500
 gaggcggagc gctccgatgg ggaccctgt cagcccgccg tgctccaggt gcaccagacc 1560
 tcctgagctt agagccaccc tgccatccctg tgctgtgctc aagccggcag ccagggctga 1620
 agaacaact cttgcacatc tccagcacga ctcacccact cctgcgttcc tgcctaggca 1680
 gtaatcattt accatatacg catagtaaga cacacgagac caggcttac catgaaagcg 1740
 acctgtcacg gactccactt ttaatttgtt ctttaggtttt atctctgttag aatgtctcca 1800
 agatgttta agaaaacttag cagttaaaaa atgctaattt ctttgactta gtcagaaaaaa 1860
 aacagaggat aattaagata ctatgtatga aaagtgtttt attctttttt gtcattccat 1920
 aagcttgcgt aatagtgtac cggtaatata ttgtatccc accgtactct gtgaatctaa 1980
 ttattattct ttaagtgttg atatataata tacataaaata tgtaagctaa acatataact 2040
 atatgttttta agaagaaaaac atctacgaaa gtaaaaaaga gatgatcagt tggttgttta 2100
 ctgtcttagaa accattgttt tattgaaac gaaaggaaaaa tgaagagatt ataaaagtca 2160
 gctaatacgat taagatacgat agtaaagtca ggactattca aaaagtaaga aagaaaaattt 2220
 ggaaaatgag agaaaacaggaa aacaagaat gcccggaaatg ataaaaacag agaaaaatgt 2280
 tatgtgcctt aagtaaaaat acttacaata gtagcttaac tatttcactc tttaaataaa 2340
 aatactaaag aagttcgat atcctggaaat aacatgtcat cttcaaaata ttttttatttt 2400
 ctaatatttt taataataaa cattttatag tgtaaagct gtatTTCT taataaataaa 2460
 aggacattac aaatatttct taaaaaaaaa 2489

<210> 76
<211> 898
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5664154CB1

```

<400> 76
cctctggcga tgacaacacgc cacacgtgat cggccaaacac ttagtcttac ctcgttggtgg 60
cgtcagaacc gccgtcgctc gctcccttct cggcagtggc acctgttccc ggtgtccctg 120
aggacgtgca gggcaggtac ggccccgaaa gtaggaagcg gaggggggagc aggtttgcgg 180
ggccaagtgt tgccggcagc cacctcacgt cgagaatcg gaggaggaga ctgcaaggat 240
aggcccagga gtaatggagt ccaaagagga acgagcgtt aacaatctca tcgtggaaaa 300
tgtcaaccag gaaaatgatg aaaaagatga aaaggagcaa gttgctaata aagggggagcc 360
cttggcccta cctttaaatg ttagtgaata ctgtgtgcct agagggaaacc gttaggcgtt 420
ccgcgtttagg cagcccatcc tgcagtatag atgggacata atgcataaggc ttggagagcc 480
acaggcaagg atgagagaggg agaatatgg aaggattggg gaggaggtga gacagctgat 540
ggaaaagctg agggaaaagc agttgagtca tagtctgcgg gcagtcagca ctgatcccc 600
tcaccatgac catcacatg agtttgcct tatgccctga atcctgatgg tttccctgaa 660
gttaaataggg agacccctgc ttctaaact tacacatttg tgggtgtaccc ttgtcgtaaa 720
cgaaaaatgtt ttacctattt cttgtgggtc tccttattacc agcttctaaa tgaatgttgt 780
ttttgaccca gtttgtaaat ttctgtcagc aggagagtt tacctattgc atggaaagat 840

```

WO 01/07471

PCT/US00/19948

gctcattata tattgtgaag ttaataaaac agttttaaaa agcaaaaaaa aaaaaaaaaa 898
 <210> 77
 <211> 1236
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 017900CB1
 <400> 77
 cctcggtact gacctctgca gagccgggtg gagcccattg acgtccagcg aacgacgtga 60
 gcagcgatgg acggtcgggt gcagctgata aaggccctcc tggccttgcc gatccggcct 120
 gcgacgcgtc gctggagggaa cccgattccc ttccccgaga cgtttgacgg cgataccgac 180
 cgactcccg agttcatcgt gcagacggc tcctacatgt tcgtggacga gaacacgttc 240
 tccagcgacg ccctgaaggt gacgttcctc atcacccgcc tcacagggcc cgccctgcag 300
 tgggtatcc octacatcaa gaaggagagc cccctccca atgattaccg gggcttctg 360
 gccgagatga agcgagtctt tggatgggg gaggacgagg actcttaggc cgggagaccc 420
 tcgggcctgg gggcggtgc tctggggagg gtccgctgtg ttactggccg ccggcagggt 480
 cgcaccggc gcccctccc cgccctccc tccccctcga gcccgcgcga tgccccctgc 540
 gtcctgttc cctcccggtt agtgcttgc tttgttccag gaatagcgct ccaggctcct 600
 gtcggccccc ctgggcctca ctctggagcg agccgcccctcc agccagccag 660
 cccctccat gtacatttg acgctgtct gcgctccagc tgcaagctgg gtcctgtta 720
 cacactggac agaccaccca ctgcccgcgc tgccaagccc tctcctccccc accagactgc 780
 cagacgacta catcattctg cccacagacc tgcgctgcca cagccatcgc catccatcgc 840
 atcccaccga cagactgtc ctcctagtga tctggactca cctcgaggt atctggctg 900
 gccacagtcc ctggacagtg atccagacag ctggccccc cccaagggt ctgtcacctt 960
 cagcgagacc tatttcctcc ccaccccccgg aaacctttg ttttcttgcc taggcccagg 1020
 tgttcctggc agccaaatcg agtctctcat tttctttgt ggaccagttt gttttggcca 1080
 taacgcagta ttctgagttt gcaactgtct ctctgatgtg tgccctttgt tcaacacagt 1140
 aaccctgca ttctgctctg ctctaataca ctacctggag aaagtctttt ccttattttc 1200
 aataaatgtc agacattatt gaaaagaaaa aaaaaaa 1236
 <210> 78
 <211> 1634
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 035102CB1
 <400> 78
 gtttgcactcc cgtgcgggtgc ggcccagcag ccacaaagct cccgctgcca ttgctccttg 60
 tactcccgcc gtcactgccc ctgtccaacc cctccccgg ggcttgcgcg gcggctccca 120
 caccctcgg cccgtgtacg cgctctgcac ctgcctgccc gaaaacatgt tgcaagacacc 180
 agagagcagg gggctcccg tcccgccaggc cgagggggag aaggatggcg gccatgatgg 240
 tgagaccggc gccccgaccg cctcgccaggc ggcggcccaag gaggagctt ggcggggag 300
 ggaggagggg gctgcggagc cccgcctcac ccggaaaggc gcgggggcct tggcgccaa 360
 atccttggca aggccgcaggc cctaccgccc gctgaatcgg acggtgtgcgg agttggcga 420
 gttcctcctg gtgaaagaca agaagaagag tcccatcaca cgctcgagaa tggtaaata 480
 cgttatttgg aacttgaaga ttctgttccc ggacatcatc gcaagggccg cagacatct 540
 gcggtatgtc tttggtttg agctgaaaca gtttgcaccgc aagcaccaca cttacatcct 600
 gatcaacaaa ctaaaacccctc tggaggagga ggaggaggag gaggatctgg gaggagatgg 660
 ccccgatttgg ggtctgttaa tgatgatcct gggcttatac tatatgagag gtaatagcgc 720
 cagggaggcc caggtctggg agatgtgcg tcgggtgggg gtgcacccct caaatatca 780
 tttccctttt gggtatccga agaggcttat tatgaaagat ttgtgcagc agcgatatct 840
 cagttacagg cgggtgcctc acaccaatcc accagcatat gaattctt ggggtcccg 900
 aagcaacctg gaaatcagca agatgaaagt cctgggttc gtggccaaac tgcataagaa 960
 ggaaccgcag cactggccag tgcagttaccg tgaggcccta gcagacggcggc ccgacaggc 1020
 cagagccaaag gccagagctg aagccagttt gaggccagg gccagtgcta gggccggcat 1080
 ccacccctgg tgagggttgg tgaaaagttt gccagtggtt cccctgtgagg acgaactact 1140

WO 01/07471

PCT/US00/19948

gtcctgagtc	ataagaata	tgggtgggc	gagggtctta	tttctgtaga	aatcgtgtga	1200
ctttaaggat	ttagattttg	tatcttatgt	tttgttaacat	ttaataatta	ctgttaaaat	1260
gctgttgta	aatgagattg	gtctactttt	tcctgttagga	ttttattgtta	gagttttgct	1320
ggttttgtaa	aatggatgga	agaaccttgt	atttatactg	tgattttgaa	cagattatgc	1380
aacattggaa	ggaaggctgt	actttgatgg	tttgaaggaa	ctcagcagta	tgatgatctg	1440
gttccagggg	aaaaaaaaatag	ctgggttggtg	tctagcccc	caacactttt	gtctgttg	1500
tataaaagaa	gaaagactgg	catgtacctt	catttgccta	gctatttgag	tatctagaga	1560
aaaattaaaa	tgcaatgagt	tagcagtata	ccctggcaca	cttaataaaat	taaacatttg	1620
tggaaaaaaaa	aaaa					1634

<210> 79
<211> 1258
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 259983CB1

<400>	79	tcccgccag	cggtagcaac	tgcagaactg	caggagacta	tctttctaga	caaggcagtt	60
gaggaggagg		gagcgttga	gggggactgg	cctggcgtgc	actccgcacc	tcggggacat	120	
tattgcgcgt		ggaacggctg	cttttgaag	gcacaacttc	ctgaatggac	catgactccc	180	
acccaaagatc		cctgtctctg	attcacaaaa	cagcttcaac	cctgaaaacca	ggacgagaag	240	
ttgacaacat		ctgagtggac	agctaattga	cctaagactt	cagaccaggc	ctactattgc	300	
ccagaagaaa		agatgttgg	tttcacaag	ccaaagatgt	accgaagtat	agagggctgc	360	
tgtatttgca		gagctaagtc	ctccagttct	cgattcactg	acagtaaacg	ctatgaaaag	420	
gacttccaga		gctgttttg	attgcatgag	actcggtcag	gagacatctg	caatgctgt	480	
gtcctgctt		tggaaaagatg	gaagaagttg	ccagcaggat	aaaaaaaaaa	ctggaatcat	540	
gtggtagatg		caagggctgg	accaggctca	aagactatcat	tggaaaacaaa	aaaagtgaaa	600	
actctatctg		ggaacaggat	aaaaaaacaac	cagatcagta	aactcgagaa	ggaatttaaa	660	
cgtcataatt		ctgatgtc	cagtaccacc	tcaagtgcct	ccccagctca	atctccttgt	720	
tacagtaacc		agtcatgt	cggctcagat	acagagatgg	tttctggttc	taacagaaca	780	
ccagttttt		cctttttaga	tctcaattac	tggaaaagac	agaagatatg	ttgtgggatc	840	
atctataaaag		gcccgttttg	ggaagtcc	attgacacac	atctttcaa	gccttgcgtc	900	
agcaataaaga		aaggcagctgc	tgagaagcca	gaggagcagg	ggccagagcc	tctgcccattc	960	
tccactcagg		agtggtgact	gaggtttta	tgtagaaggg	gaacaaaaaaaa	aaaaatatct	1020	
gaatttgaa		aaaccacaaa	gctacaaact	gaccctctt	tttttttgag	acggagttt	1080	
gctcttgta		cccaggctgg	agtgcagtgg	cgtgatctt	gctcaactgca	acttccgtct	1140	
cccggggttc		aggtgattct	cctgcctcag	cctcccaagt	agctgggtt	ataggtgccc	1200	
gctacagacc		cggctaaattt	tttagttta	gtagagacgg	gggttcacca	cgttgggc	1258	

<210> 80
<211> 2223
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 926810CB1

```

<400> 80
aaaagccgcc ggggctgcct taggaacggc gctgcctcggt ctctgttacc cctgggttggg 60
cgccccctgcg aagcagctcc ttccgggcagc cccgggttcgc ttagcggcca aggaggcttc 120
agttctttgc cgccctgcaag gcggagacca gaaggcggaa tccacagctg gcgacgcggg 180
agcatctgct gtccaccaggc ggagcacagg ccatcaaaggc cgcatctgaa cttgaattct 240
gtgcagctga ttgcagagct ggacccggat ctgcgcacccc ctgtggacag aggttgaccg 300
taccccccggag aggagcttcc tcacggaggg cactgggtgc agaggcttggaa atgtaaaataa 360
agacgcgcctc ttgtttcaga gttcgcccccc tgctgagata ggaaggcggaga gccacccctc 420
ctccctccccc acctgcagat taagctttc taaaaaggctt aggcatcttc ttatatttcag 480
ataccctatc gtcgtcagtc atggctagca tcattgcacg tgtcggtaac agccggcggc 540
tgaatgcacc cttggccgcct tggggccatt ccatgctgag gtccctggggg agaagtctcg 600
gtcctataat qqcccaqcatq gcagacagaa acatgaagttt gttctggggg agggtgggtgc 660

```

WO 01/07471

PCT/US00/19948

cagcccaagg ggaagaaacc tttgaaaact ggctgaccca agtcaatggc gtcctgccag 720
 attggatat gtctgaggag gaaaagctca agcgcttcat gaaaaccctt aggggcctg 780
 cccgcgaggt catgcgttg ctccaggcga ccaaccctaa cctaagtgtg gcagattct 840
 tgcgagccat gaaattgggt tttggggagt ctgaaagcag tgtactgcc catggtaaat 900
 ttttaaacac cctacaagct caaggggaga aagcctccct ttatgtgatc cgtttagagg 960
 tgcagctcca gaacgctatt caggcaggca ttatacgta gaaagatgca aaccggactc 1020
 gcttgcagca gctcctttt ggcggtgagc tgagtaggga cctccgactc agacttaagg 1080
 attttcctcg gatgtatgca aatgagcagg agcggctcc caactttctg gagttaatca 1140
 gaatggtaag ggaggaagag gattgggatg atgctttat taaacggaag cgtcacaaaa 1200
 ggtctgagtc aatggtggag agggcagtc gcccctgtgc attcagggc tccccaccga 1260
 tagtgatcg 220 cagtgcgtac tgcaatgtga tagagataga tgataccctc gacgactccg 1320
 atgaggatgt gatcctgggt gagtctcagg accctccact tccatcctgg ggtgcccctc 1380
 ccctcagaga caggccaga cctcaggatg aagtgtgtt cattgtatcc ccccacaaatt 1440
 ccagggtc 220 gttcccttcc accagtgggt gttctggta taagaataac ggtcctgggg 1500
 agatgcgtag agccaggaag cgaaaacaca caatccgtg ttctgttgg ggtgaggaag 1560
 gccactcaaa agaaacctgt gacaacgaga gtgacaaggc ccagggtttt gagaatttga 1620
 tcatactct ccaggagct acccatactg agatggagag gtcaagagtg gcccctggcg 1680
 aataacaatg 220 cttctctgag ccactgtaa ggaccacccc caggtttcag tgaaccctta 1740
 cctatattca gcatccagta gtggggaaaac tgggggtgggg gtgggggtgg gacttcta 1800
 tgcataattt aatccacaaa gcccgtatct tttgggggtgg agtagaaagg gtcttgata 1860
 ccagcacatt ggagggagat agcctgacct ctgtccctgc tccttctccc tgcagctac 1920
 gggtctgtt tctgtgtgtt cccatttcct tgacagctt attctttgtg aaagtgttat 1980
 aatttattgt taaatattt aacaataaaa aaggtaaaaa aagtgaagta caaatttaccc 2040
 aaatctctcc acccttatat aatcattgtc aaccctttga tgagtat 2100
 ctatgtaccc agatagat atgcatacat 2160 aaaagtgtat aaatataagt gctgttctat
 ctgtat 220 ttccatccaaatac atatatgtt tgagcttcta tgacaataaa tatataatc 2220
 act 2223

<210> 81
<211> 1370
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1398816CB1

<400> 81
 cccacgcgtc cggccggggag gactgggtgc gcctgcaggg atcggaaagcc gggtgggtg 60
 tgagaggttt ttcgtctca gggagattct tcaagcaatc actatgtcaa cagacacagg 120
 tttttccctt cttcatatg aggaagatca gggataaaaa ctcattcgaa aagctaaaga 180
 ggcaccattc gtacccgttg gaatagcggg tttgcagca attttgcatt atggattata 240
 taaactgaag agcagggaaa atactaaaat gtccattcat ctgatccaca tgcgtgtggc 300
 agcccaaggc tttgtgttag gagcaatgac tttgggtatg ggctattcca tttatcggga 360
 attctggca aaacctaagc cttagaagaa gagatgtgtt cttgggtctt tggaggagc 420
 ttgttttagt tagatgtctt attattaaag ttacctatta ttgttggaaa taaactaatt 480
 tttatgggtt tagatggtaa catgcattt tgaatattgg ctcccttct tgcaggctt 540
 atttgcgtgg tgaccgatt actagtgtact agtttactaa ctaggtcatt caaggaagtc 600
 aagtttaactt aaacatgtca cctaaatgca cttgtatggc ttgaaatgtc caccttctta 660
 aatttttaag atgaacttag ttctaaagaa gataacaggc caatcctgaa ggtactccct 720
 gtttgcgtca gaatgtcaga tattttggat gttgcataag agtcttattt gccccagtt 780
 attcaacttt tttctgcctt ttttgtggac tggctggctc tttttagact ctgtccaaaa 840
 agtgcgttca atataactt taaagctcc cacaatttgc aatatataatg catgtgttta 900
 aaccaaatcc agaaagctt aacaatagag ctgcataata gtatttatta aagaatcaca 960
 actgttaaaca tgagaataac ttaaggattc tagtttagtt ttttgttattt gcaaattata 1020
 tttttgcgtc tgatataattt gaataatttt taaatgtcat ctgtttttttt tttttttttt 1080
 ttttgcgttca atataactt taaatgtcat ctgtttttttt tttttttttt 1140
 ccataagaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
 tatgagcaag ctgggttggc cagacagtat acccaaactt ttatataata tacagaaggc 1260
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320
 tatatgttattt gttttaaaatgg tttttttttt tttttttttt tttttttttt tttttttttt 1370

<210> 82

WO 01/07471

PCT/US00/19948

<211> 1541
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1496820CB1

<400> 82

gtgttaagct	gacaaaatct	gtacagaata	ttaattttt	ccttttattt	ctgtgatata	60
aagatttgtt	ttttttcat	agcaacatga	accgtgaaga	ccggaaatgtg	ctgcgtatga	120
aagaacgggaa	aaggcggaat	cagggaaattc	agcagggcga	agacgccttc	ccaccttagct	180
ctcctctctt	tgcagagcca	tacaaagttt	ctagcaaaga	agataagtta	tcaagtgcgt	240
ttcagagtat	gcttgaaaac	tacgatgaaa	tgaaggattt	cataggagac	agatctatac	300
caaagcttgt	tgcaattccc	aagcctacag	taccaccatc	agcagatgaa	aatctaacc	360
caaatttctt	tgaacagaga	catggaggct	ctcatcagag	tagcaaattgg	actccagtag	420
gaccggcacc	cagcacttct	cagtcgtcaga	aacggtcctc	aggcttacag	agtggacata	480
gtagccagcg	gaccagcgca	ggtagcagta	gtggcactaa	cagtagtgg	cagaggcacg	540
accgtgagtc	atataacaat	agtgggagca	gtagccgaa	aaaaggccag	catggatcag	600
aacactccaa	atcacgttct	tccagccctg	aaaaacccca	ggctgtttct	tcattaaact	660
ctagtcattc	caggtctcat	ggaatgatc	accatagcaa	ggaacatcaa	cgctccaaat	720
cacctcgaaa	ccctgtatgca	aactgggatt	ctctttcccg	tgtacatttt	tcaagtggc	780
agcaactcaac	tcaatcttc	ccacccctcat	tgatgtcaaa	gtccaatttca	atgttacaga	840
aacccactgc	ctatgtgcgg	ccccatggacg	gacaggagtc	catggaaacca	aagctgtcct	900
ctgagacta	cagcagccaa	tcccattggca	acagcatgac	tgagctgaag	cccagcagca	960
aagcacatct	caccaagctg	aaaatacctt	cccaaccact	ggatgcatca	gcttctggg	1020
atgtgagctg	tgtggatgaa	atcctaaaag	agatgacca	ttcatggcct	ccccctctaa	1080
cggttattca	tacaccatgc	aaaacagaac	cttccaaatt	tcctttcca	actaaggtaa	1140
gtaaataaaaa	tgtatcttc	ataatgtaa	aaaactctaa	atgcttgac	taaaatcata	1200
tggattaaaa	attgtcttc	cattcctatt	ctagtgggag	acagacagta	aataagtgaa	1260
taaatagata	aattcagata	gtgacaactg	ttatgaagat	aatttagcagg	gtaatggAAC	1320
tgagagcatc	ttggatcaag	aggtattaag	aaagcttga	aggcaatatg	cgagagagat	1380
ttaaaagaca	ttaatacagc	cgacacgggt	ggctcactcc	tgtaatccca	gcactttgga	1440
aggctgagcc	aagagactct	cttgaggcca	ggagtttgcg	accaggctgg	tcagcatggc	1500
aagaccctgt	ctctacaaaa	aatttggagg	aaaaaaaaaa	a		1541

<210> 83
<211> 1372
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1514559CB1

<400> 83

cggttcgagc	agctgccgaa	gtcagttct	tgtggagccg	gagctggcg	cgattcgcc	60
gaggcaccga	ggcactcaga	ggaggcgcca	tgtcagaacc	ggctgggat	gtccgtcaga	120
acccatcgaa	cagcaaggcc	tgcccgcc	tcttcggcc	agttggacagc	gagcagctga	180
gcccgcactg	tgtatgccta	atggcggt	gcatccagga	ggcccgtag	cgatggaaact	240
tgcactttgt	caccgagaca	ccactggagg	gtgacttcgc	ctggagcgt	gtcgcccc	300
ttggcctgcc	caagctctac	cttccactt	ggtccgctgg	gtgttaccct	ctggaggggt	360
gtggccttct	ccatcgctg	tcacaggcg	ttatgaattt	caccccttt	cctggacact	420
cagacctgaa	ttcttttca	tttgagaagt	aaacagatgg	cacttgaag	gggcctcacc	480
gagtgggggc	atcataaaa	acttggagt	ccctcacct	cctctaaggt	tggcagggt	540
gaccctgaag	tgagcacagc	ctaggcgtga	gctggggacc	tggtaccctc	ctggctcttg	600
atacccccct	ctgtcttgc	aaggcagggg	gaagggtggg	tcctggagca	gaccaccccg	660
cctggccctca	tggcccccct	gacctgcact	ggggagccg	tctcagtgtt	gagccttttc	720
cctctttggc	tcccctgtac	cttttgagga	gccccagcta	cccttcttct	ccagctggc	780
tctgcatttc	ccctctgtg	ctgtccctgc	cccttgcct	ttcccttcag	taccctctca	840
gctccaggtg	gctctgaggt	gcctgtccca	cccccacccc	cagtcataatg	gacttggagg	900
ggaaggggaca	cacaagaaga	agggcacccct	agttctacct	caggcagctc	aagcagcgac	960
cgccccctcc	tctagctgtg	ggggtgaggg	tcccattgtgg	tggcacaggc	cccccttgagt	1020

WO 01/07471

PCT/US00/19948

ggggtttatct ctgtgttagg ggtatatgtat gggggagtag atctttctag gagggagaca 1080
 ctggcccctc aaatcgcca gcgacccccc tcattccaccc catccctccc cagttcattt 1140
 cactttgatt agcagcggaa caaggagtca gacatttaa gatgggtggca gtagaggcta 1200
 tggacagggc atgccacgtg ggctcatatg gggctgggg tagttgtctt tcctggact 1260
 aacgttgagc ccctggaggc actgaagtgc tttagtgc tggagtattt gggcttgacc 1320
 ccaaacacct tccagtcct gtaacatact ggcctggact gtttctctc gg 1372

<210> 84
 <211> 868
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1620092CB1

<400> 84
 cattgagctc accagcgcca ccgtccccgg cgaagttctg cgctggtcgg cgagtagca 60
 agtggccatg gggagcctca gcggctcgcg cctggcagca ggttggttca tgtgatccctg 120
 gttaatggaa cataagttagt attttatggg tgacaggagg agagatcagg cttgacttga 180
 gagcacgtgg gaaaagaagg gggctatctc ttgcggaaaga tttaagtatc ttataagaac 240
 tggggccag tgcaattatg agaagctgtt tttaggttatg tgaaagagat gtttccat 300
 ctctaaggct taccagaagc tctgatttga agagaataaa tggatttgc aaaaaaccac 360
 aggaaagtcc cggagctcca tcccgcaactt acaacagat gccttacac aaacctacgg 420
 attggcagaa aaagatcctc atatggtcag gtcgcttcaa aaaggaagat gaaatcccag 480
 agactgtctc gttggagat cttgtatgtg ccaaagaacaa gatgcgagtg aagatcagct 540
 atctaattatgat tgccctgacg gtggtaggat gcatcttcat gtttattttagg ggcaagaagg 600
 ctgccccaaag acacgagat ttaacaagct tgaactttaga aaagaaagct cgtctgaaag 660
 aggaagcagc tatgaaggcc aaaacagatg agcagagat tccgtttgg ctggattttg 720
 aaaatccagg aattatgtt taacgtgcct gtattaaaaa ggatgtggta tgaggatcca 780
 ttccataaaag tatgatttgc ccaaaccctgt accatttccg tatttctgt gtagaagtag 840
 aaataaattt tcttaataaa aaaaaaaaaa 868

<210> 85
 <211> 3388
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1678765CB1

<400> 85
 aactgtgtct gcaaggcagg tttactcgt ttgtcaagag agcagcttcc tttttttagt 60
 atataccctc atctctgaaa aaagacatgc tagttaaatt tcaagatgtt ttacttagaa 120
 gatgacaagg aagatgagggt gttttgtaaa ggctcataa gtaaaactca agatgtttac 180
 catgacaagt cccctctgg tttttgtct caaaccatga attatgtggg acagctggct 240
 gggcagggtga ttgtactgt gaaggaaactc tacaaggggca ttaaccaggc cacccttct 300
 gggtgtcattt atgtcatgtt ggtacagcag caggatggca gctatcgtt ttcaccttt 360
 cacgttcggt ttggaaagct gggagtcctg agatccaaag agaaagtgtat tgatatagaa 420
 atcaacggca gtgcagtggc tttcacatg aagttgggtt ataacggaga agctttctt 480
 gttgaggaga ctgaagaaga atatgaaaag cttctgtt accttgcac ctcaccaatt 540
 cttactgaag atcagttctt taaagatatt gacacccctt tggtaaattt gggggagat 600
 gaaacaccat ctcagagttc agacatctca cacgtctgg aaacagagac aattttact 660
 ccaagttctg tgaaaaagaa aaaacgaagg agaaagaaat acaaacaggc cagtaagaag 720
 gaagagcagg cccatctgc tgctcagaa gacacatgtg atgttaggcgt gagctccgat 780
 gatgacaagg gggcccaggc agcacgagga tcttcaaatg cttcttggaa agaagaagaa 840
 tggtaaagatc ctttgcctt ccattctgg gatcattacc ctttatctga tggagattgg 900
 tccccctttag agaccaccta tccccagaca gcgtgtccta agagtattt agagctggag 960
 gtggaaacctg cggagagcct gctcagatca gaggatcaca tggagtggac gtggggccga 1020
 ttcccagagt ccaccaaggc cagaaaaaga gaacgatctg accatcatcc taggacagct 1080
 acaattacac catcagaaaa tactatttt cgggttaattt ccagtggagga caacccatc 1140
 agtgaagttg agaaggatgc ttccatggaa gacactgtct gtaccatagt gaagccaaa 1200

WO 01/07471

PCT/US00/19948

cccagagccc tgggtacaca gatgagcgac ccaacatctg tggcagagct tctcgaacct 1260
 cctcttgcata gtactcgat ttcatctatg ttagatgctg accacatccc caacgcagcc 1320
 ttagccgagg cgccctcaga atccaaaccg gcagctaaag tagactcgcc gtcaaagaag 1380
 aaagggtttc aaaaaagaat ccaacaccag ggacctgatg atatttacct tgatgactta 1440
 aagggtctag aacctgaagt tgcagcttt tatttccta aaagtgaatc ggagccgg 1500
 tccaggcagt gccccggatc tgacacactc tctggctccc agtccccaca gtccgtgg 1560
 agcgcgatc cagatagccg caccggatgc ctctcagatt ctgcctgaa cttgcctgac 1620
 gttaccctct cccttgcgg gggcctcagt gaaaatggaa aaatttcaaa agaaaaattc 1680
 atggagcata tcattactt tcacaaattt gcagaaaaacc ctggacttat agacaatct 1740
 aaccttgtaa taaggatata taatcgatc tataacttggg ctttggcagc tcccattgatc 1800
 cttagcttc aagtattcca gaagagctt cctaaggcca cagttgatgc ctgggtgaaa 1860
 gacaagatgc caaagaaatc tggtcgctgg tggtttggc gaaagagaga aagcatgacc 1920
 aaacagctgc cagaatccaa ggaggggaaa tctgaggcac cgccagccag tgacctgcca 1980
 tccagctcca aggagccggc cggtgccagg cccggccgaga atgactcctc gaggacgag 2040
 gatatcacagg agctcgaaatc atccatcaca gtggaccctt ccccccacaga gcccctgagc 2100
 cacggcagca caacttcata taagaagtct ctccgcctt cctcagacca gatcgcaaaa 2160
 ctgaagctcc acgatggccc aaatgtatgtt gtgttttagt ttacaaccca gtatcaaggc 2220
 acctgtcgat gtgcaggggac cattttacatc tggaaacttggg atgacaagat catcatattt 2280
 gatattgtatc ggacaataaac caagtcggat gctttgggac agattctccc acagctggc 2340
 aaagacttggaa cccaccagg tatagcaaaatc ctctaccatt ccatcaatga gaatggctac 2400
 aagtttctgt actgtcgatc tcgtccatc ggcattggcc acatgacccg tggctacatc 2460
 cactgggtca atgacaaggc cacaatctt ccccccggggcc ccctgtatgtt gtcggccagc 2520
 agcttggatc cccgccttcca cagagaatgtt atagaaaaga aaccagagaa gttcaaaatt 2580
 gagtgctaa atgatatcaa gaatctgtt gccccgtcta agcagccctt ctatgctgccc 2640
 tttggaaaacc gtccaaatgtt tgcctatgttcc tacacacaag ttggagttcc agactgtaga 2700
 atattcaccg tgaaccccaa gggtaatta atacaagaaa gaaccaaagg aaacaagtca 2760
 tcgtatcaca ggctgagtgatc gctcgatggc catgtgttcc cccttctcag taaggagcag 2820
 aattcccgatc ttccctgccc ggagttcagc tccttctgtt actggcgaga cccgatccct 2880
 gaagtggacc tggatgaccc tgcctggatc ggcacccatc tgggtgggca gggcttggc 2940
 cccctccca cagcaaggga aggcaatctt ctcttctgtt gacccatcagat accagccctc 3000
 cccaggggg acgggtgtt ctggagctgg tcccgccatc ctcctttgccc ttcccaggcc 3060
 agctgtcgat gctcgccagg tctcgatc acgtcccttggg aggagaaggg aggaactggg 3120
 cctggggctt gaggccctggg atccctccctt tggggatc acacatgttt cctgctgtga 3180
 gctggggctt cttccatc tgcattttt aaggaagaaa aaagcagcta aaaaagatg 3240
 gaccaaaaaca ctgcacacac tgaagtgttcc cagtttccac tggcagttt aggtggcttc 3300
 tgtaaccagg gctgtcttca gatgtcaggg tccctgaact gctgctggcc cagtcagtga 3360
 tgctggctga agtcgtcgatc gcacgtttt 3388

<210> 86

<211> 1707

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1708229CB1

<400> 86

ctcgtttca ccagcccttgg ccagcccttgc cctctggaaa gggggcagct gtttgcgttct 60
 gccaggcgatc ccattggcca gggagtgagg ctggaggggcc cggcagcagg catttgcgag 120
 tgctggccatc cccggcaccatc gccccgttcc tcctcccccac ctccccgttc cccactcatg 180
 ctgggagacc actgcgttcc cctgttgcac caagcccccgc ccggccatgc cctgcaaatg 240
 ggactctgtt gcaaaaatgtt gcttcaggatc gtcaatgc tgctcaggaa gtccaaagcc 300
 aagcccaatg gcaagaaggcc cgctcgccgg gagagggaaatc cctacccatc gcctgagcac 360
 accaaggccatc ggatcaccatc cttccatgtt aaggagctgg tgggtgttcc ccgcgagatt 420
 gacctaaccg agtggctggc cagcaacacc acgacgtttt tccaccatc caacctgcag 480
 tatagccatc tctcgatgtt ctgcacatggc gagacgtgtc agacgtatggc cgtgtcaac 540
 acacatgttact actgtgtatgtt cggccgggg aagaaggatc agtgcacccgc cccacatgtt 600
 gttgacttgc tcatgtatgtt cgtgcacatggc ctgggtgttcc atgaggacgt gttcccccaca 660
 aaataccggca gagaatttccatc cagccatccatc gaggatccatc tgagggatc gtgcagacac 720
 ctgttccatc tgcgtggcaca catctactgg gcccacttca aggagacgtt ggcccttggag 780
 ctgcacggac acttgcacac gctctacatc cacttcatcc tctttgttc gggatccaaac 840
 ctgcgtggacc ccaaaggatc cggccatcatc gacgacccatc ccggatgttcc atgcagccgg 900

WO 01/07471

PCT/US00/19948

gcccgggggg tccacagtgg gggcagtggg gatggggccg gcagcgaaaa cccgggagca 960
 cagaaccacg tgaaggagag atgagcccc cgggcccgc acgggcacac gtgtgcaaag 1020
 agacgggtgt gtgtgttctc tcctgcatac gctgtgcac acatgtgctg ggcacgcgtg 1080
 tggtgagggtc tgagagggcc cccggctgca ctgggtgtgg ctgcacaggg acagacgcag 1140
 acggccccgg ccgtgtcctg tggccccctg tcggatggat gcgtgccgtt tgttagagaag 1200
 agccttggg cccattcaact cggttcagcag acacgcattt gactgatgt ttgagtttc 1260
 ttctgtgggg ttttccttc tctggcttc gtcagcccc tgccctccct cgggtgtgc 1320
 tggcccaaa ggaggaactc gtggggggag ggtgtgatcc gcaacactgg gtctctgtc 1380
 tgctctgggg gtggggcttg ctatcacaga gacccttcctt cccttcacc cctcctctcc 1440
 caggcctcgc caggagttt ggctgttggc agctcagagg tgggggaggg ctgtgggtg 1500
 agtgcctgc acctgtctt gtcctgtca ccccttcctt ctgccttcctc catgccaag 1560
 gaacacccat ggtgcagttc tcagcaagg ccaggacggg gctgaggccc tgcgtggaga 1620
 tgctgcacca gcggaaaggct gagacccgtt taccttagtt catctgttca ctgcgttaataa 1680
 aaagaattct ctcagaaaaaa aaaaaaaaaa 1707

<210> 87
 <211> 1752
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1806454CB1

<400> 87
 cccgggtgcg ccgcggcgct gggggcggca ggttgcggcg gcgcggagc gggtctccag 60
 gctggcgagc gcccaggaca ggcattgtt gggactggc ggcattggag ctgaagggtgt 120
 gggtgatgg catccagcgt gtggctgtg gggtctcaga gcaagaccacc tgccaggaag 180
 tggtcatcgc actagccaa gcaataggcc agactggccg ctttgtctt gtgcagcggc 240
 ttcgggagaa ggagcggcag ttgctgccac aagagtgtcc agtggggcggc caggccacct 300
 gcgacagtt tgccagcgtat gtccagtttgc tcctgaggcg cacagggccc agcctagctg 360
 ggaggccctc ctcagacagc tgcacccccc cggAACGCTG CCTTAATTCTGT GCCAGCCTCC 420
 ctgtaaagcc acgggctgcg ctggctgtg agccccccaa aacactgacc cccgaggccag 480
 cccccagcct ctcacgcctt gggcctgcgg cccctgtac acccacacca ggctgctgca 540
 cagacctgcg gggcctggag ctcagggtgc agaggaatgc tgaggagctg ggccatgagg 600
 cttctggga gcaagagctg cgccgggagc aggccccggaa gcgagaggaa caggcacgccc 660
 tgcaggcact aagtgcggcc actgtctgagc atggccggcc gctcaggccc ctggacgctc 720
 aggccctgcg ctcggaggtc gagctgcagc tggcagcggaa ggccccctggg cccccctcac 780
 ctatggcattc tgccactgtg cgcctgcacc aggaccttgc tgcaggagtg cggcagagtg 840
 cggaggtgcg gggcagccctg gctctggta gcccggccct ggaggcgcga gagcggccct 900
 tgcaggtcta ggctcaggag ctggaggagc tgaacccgaga gctccgtcag tgcaacctgc 960
 agcaggatcat ccagcagacc ggggtgcgc tgcacccccc cccacggccct gacaggggcc 1020
 ctcttggcac tcagggtcgaa gtgggtctgg ggggaggctg ggagggtgagg acctggccca 1080
 gccccactcc aagctgactt cccaaacccac agggccctct gcctccagcc agagaggagt 1140
 ccctcttggg cgctccctt gatcccattt ctgggtccca gccttagggccc cgagggtatg 1200
 tctgtcccccc acctccccctt ggggcaccgg gcccctctgt ggctgcagcc acctcagccct 1260
 gtgtctccc gcaagtggccc ccatgacgc gaaactctgg agtagcagc agctccctgccc 1320
 ccagagtggc gtcctctggc agcccgcccc caggctctgt gacagcctag tgagggtcgc 1380
 aagaccatcc tgcccggacc acagaaggag agttggcggt cacagaggcc tcctctgcca 1440
 ggcagttggaa agccctgggt ttggctctgg gagctggggg tgcaagtgggg gactgcctta 1500
 gtccttgcca ggtgcgcagc accctggaga agcatggggc gtagccagct cggaaacttgc 1560
 caggccccaa aggccacgc tgcctgttgg ggacaggaga tgcatggaca gtgtgctcaa 1620
 gctgtggca tgcgtttgcc tgcgggagag gtccttcaact gtgtgtacac agcaagagca 1680
 tgtgtgtgcc acttcccccta ccccaacgtt aaaaacctcaa taaactgccc gaagcagctt 1740
 gaaaaaaaaaa aa 1752

<210> 88
 <211> 2461
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

WO 01/07471

PCT/US00/19948

<223> Incyte ID No: 1806850CB1

<400> 88

ctgaaagaga gattggaggc ttttacaaga gattttcttc ctcacatgaa agaggaagag 60
 gaggttttc agcccatgtt aatgaatat ttacatcg aagagcttaa gtatataaa 120
 aagaaaagtga ttgcacaaca ctgcctcag aaggatactg cagaactct tagaggtctt 180
 agcctatgga atcatgctga agagcgacag aagtttttta aatattccgt ggatgaaaag 240
 tcagataaaag aagcagaagt gtcagaacac tccacaggt taacccatct tcctccgt 300
 gtaatgtgt caatttcag ctatcttaat cctcaagagt tatgtcgatg cagtcaagta 360
 agcatgaaat ggtctcagct gacaaaaacg ggatcgctt ggaacacatct ttaccctgtt 420
 cattggcca gaggtgactg gtatagtgtt cccgcaactg aacttgatac tgaacctgtat 480
 gatgaatggg tgaaaaatag gaaagatgaa agtcgtgtt ttcatgagtg ggatgaagat 540
 gctgacattg atgaatctga agagtctgac gaggaatcaa ttgctatcg cattgcacaa 600
 atggaaaaac gtttactcca tggcttaatt cataacgtt taccatatgt tggtaattct 660
 gtaaaaaccc tagtatttgc atacagctt gcagtttcca gcaaaatggt taggcagatt 720
 ttagagctt gtcctaaccat ggagcatctg gatcttaccc agactgacat ttcaattct 780
 gcatttgaca gttggcttcg gcttgggtgc tgccagagtc ttccgcattc tgatctgtct 840
 ggttgtgaga aaatcacaga tgtggcccta gagaaggattt ccagagctt tggaaattctg 900
 acatctcatc aaagtggctt ttggaaaaca tctacaagca aaattactt aactgcgtgg 960
 aaaataaaag acattccat gcagtcacc aagcgtatg cctgtttgca cgatattact 1020
 aacaaggcga ttggagaaga aatagataat gaacaccctt ggactaagcc tggttttct 1080
 gagaatttca cttctcccta tgtgtggat gaaagtcattt gtgtaatggaa aacagcatcc 1200
 gatactgtgg aatggagaca tagaaatgtt agtaaggaca ttgttggact aaggactagt 1260
 aactttagtt gttccaccc tcgttgcgtt gccttgcgt attgtggtca ctcattttgt 1320
 gtctgtggc agcagcatgt tgcttcacca tcactccatc aatcttctgc aatgtgtaga 1380
 tgtacaggaa cagcttaag aactatgtca aaagacttac tttagatgtt aagatttggc tggatattgaa 1440
 aaagcagcaa ggactagatt gcctagggga tttctcaatc tttacttttgc tcatgctgt 1500
 tctgatcaag agactggacg ttttttttttgc ttttttttttgc ttatcagatc 1560
 acagaccatg gtctcagggt ttttacttgc aatcttctgtt gggaggaggc tgccttattt ggaggcacctt 1620
 aatcttctgtt gttgttttgc tataacttgc ctttacttgc aggatttggc ttcaatgtt 1680
 ctttacttgc atgatgaata cttttacttgc ttttttttttgc ttttttttttgc ttatcagatc 1740
 accgcctgtt gatgccagaa ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1800
 tgacccttgc ctttctgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1860
 ctttacttgc agcacatttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1920
 cccatttgc acaacttgc aatcttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1980
 gcaaattata ctttttttttgc aaaaagggtt tacatttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2040
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2100
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2160
 taacactgtt ccaagcttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2220
 aagacacgcac ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2280
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2340
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2400
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2460
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2461
 a

<210> 89

<211> 965

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1851534CB1

<400> 89

ctttcagaaa aacccttgc gctgctgtt caaattacaa caaacttaat ggcttaaaac 60
 gacacagatt tatttttttgc catttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 120
 agcggcagag gcccgttgc agaaaggaa agttaaaggat gctggagcag aacaatggat 180
 ttcttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 240
 attgactccg ccaacatccg tcaggaggat gcttttttttgc ttttttttttgc ttttttttttgc 300
 gatggggcc agacaccata tgaagctact ttgcagcaag gcttttttttgc ttttttttttgc 360
 acagaagatc ttcccttccact cacaaatggg tatccatcat caatcgtt gatgaaact 420

WO 01/07471

PCT/US00/19948

caaaccataat accagtcata taatcagtat cctaattgggt cagccaatgg ctttggtgca 480
 gtttagaaact ttagccccac tgactattat cattcagaaa ttccaaacac aagaccacat 540
 gaaattctgg aaaaacacctc ccctccacag ccaccacctc ctccttcggt accacaaaact 600
 gtgattccaa agaagactgg ctcacctgaa attaaaactaa aaataaccaa aactatccag 660
 aatggcaggg aattgttta gtctccctt tgtggagacc ttttaatga agtacaggca 720
 agtgagcaca cagaatcaa gcatgaaagc agaaaagaaa agaggaaaaa aagcaacaag 780
 catgactcat caagatctga agagcgcaag tcacacaaaa tccccaaatt agaaccagag 840
 gaacaaaata tgaccaaattg agagggttga cactgtatca gaaaaaccaa gggagaacc 900
 agtactaaaa gaggaaagcc ccagttcagc caatactatc ttctgttcca acaacggtag 960
 tgtcc 965

<210> 90
 <211> 2555
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1868749CB1

<400> 90
 agcacgtccc actctatgac cagtgggagg atgtgatgaa agggatgaag gtggaggtgc 60
 tcaacagtga tgctgtgctc cccagccggg tgcgtactggat cgccctgtc atccagacag 120
 cagggtatcg ggtgtgtctt cggtatgaa gctttgaaaa tgacgcccgc catgacttct 180
 ggtgcaacct gggaaacagt gatgtccacc ccattggctg gtgtgccatc aacagcaaga 240
 tccttagtgcc cccacggacc atccatgcca agttcaccga ctggaaggc tacctcatga 300
 aacggcttgtt gggctccagg acgcttcccg tggatttcca catcaagatg gtggagagca 360
 tgaagtaccc ctttaggcag ggcatgcggc tggaaagtgggt ggacaagtcc caggtgtcac 420
 gcactcgcatt ggctgtgggt gacacagtaa tcgggggtcg cctacggctc ctctacgagg 480
 atggtgacag tgacgacgac ttctgtgccc acatgtggag cccctgtatc caccctgtgg 540
 gttggtcacg acgtgtgggc cacggcatca agatgtcaga gaggcgaagt gacatggccc 600
 atcacccac cttccggaaat atctactgtg atgcccgttcc ttaccttcc aagaaggatc 660
 gagcagtcta cacagaaggc ggttggtttgg aggaaggat gaagctggag gccattgacc 720
 ccctgaatct gggcaacatc tgcgtggcaa ctgtctgtaa ggttcttctg gatggatacc 780
 tgatgatctg tggggacggg gggcccttcca cagatggctt ggactgggtc tgctaccatg 840
 cctcttccca cgcctatctc cccggccaccc tctgtcagaat gaatgacatt gagtcacac 900
 cgccaaaggat ttaggacca cagacttca acttggggaa ctacttggag aagaccaagt 960
 cggaaaggccgc tccatcgaga ctcttaaca tggatttccc aaaccatggc ttcaagggtgg 1020
 gcatgaagct ggaggccgtg gacctgtatgg agccccggct catctgtgt gccacgggt 1080
 aacgagtgtt gcatcggtcc ctcagcatcc acttttgcgg ctggggacagc gagtacgacc 1140
 agtgggtgga ctgcgagttcc ccagacatct acccccgtcg ctgtgtgtgag ctcaccggct 1200
 accagctcca gcctcctgtg gcccgcagaac cggccacacc gctgaaggcc aaagaggcca 1260
 caaagaagaa aaagaaacag tttggaaaga aaaggaaaaa aatcccgccc actaagacgc 1320
 gacccctcag acaggggtcc aagaagcccc tgctggagga cgaccctcag ggtgccagga 1380
 agatctcgcc ggagcctgtt cctggcgaga tcattgtgt gcgtgtgaag gaagagcatc 1440
 tagacgtggc ctgcggccgac aaggcttcaa gtccagagct gcctgtctcc gtcgagaaca 1500
 tcaagcagga aacagacgac tgacccttcc tgccctccagc ctggcttctt gctggaaagcc 1560
 agcccacgt ttctcttacca ccaccacat gcctccaccc gactttggct tggagactga 1620
 tcctctctgt gtaaaattctg cccgggtctg tgaaggctgg acgggtggagg acctgtggg 1680
 gtctcttggg accccgttgt tgcttcttcc ctcggctgt gaaaggctta tatgacgggc 1740
 cgcctgaggc cccagaacatc gtctgtgaac cacctttcc agccagagtt cccaaagctg 1800
 gaacgcttagc tgccctgtct tccttaagat ggcctccccc cgaccggcca cggccctcag 1860
 ttggccaggga tggggccacc actgtcacac tggaaatac aagacagtga actctgtctg 1920
 cctgaacagag tcatgttaat taagttcttag agcagcttc tgagcaggat aaggtcccct 1980
 gacagttagt tgggtgtgg gggcagcctc tgccctaaaa attcaccacaa cagaatgcct 2040
 ctcagcctca tgggtgtggc ctctgtcttcc cctagctccc cagggatgtt ggggacccag 2100
 cttgtctcg cagctaaagaa gcagtgacca ggatgtggat tttggcgacc tgggtgtgg 2160
 ctttgagctg ctttctgtgt ttgtgaggac tgactcccat ttccctaaagg aaatgcctcc 2220
 ggggaggaca ttggggaggaa gatggcctga gtgtgcactt tggctctgtt acctgtctt 2280
 gaagccccgc taaaataat tcatccaaga ttcccttggta gttaaaagggtt ccagttctga 2340
 ctggagcctc tagagagctg ggcttggat tttttttggc cttttgttcc tacctaaatg 2400
 aagaaaccat gcctggaggg gcccgtgaaca cagaaccctc aagacaagga tgacagagct 2460
 ggaggacaca tctagctgcc attgcaaccc cactgggtcc cccagactct gttgtgtgaga 2520

WO 01/07471

PCT/US00/19948

aattaaaccc cctgcttgct tgagaaaaaaaaaaaa 2555

<210> 91
<211> 4172
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1980010CB1

<400> 91

ccacaaaagct tcatgacatg gtagaccaac tggaaacaat tctcagtgtg tcagagcttt 60
tggaaaaaaca tggactcgag aaaccaattt catttggtaa aaacactcaa tctagctcag 120
aagaggcacg caagctgatg gttagattga cgagggcacac tggccggaag cagccctctg 180
tcagtgc tcaattggaga acgttgctgc aagacatgtt aactatgcag cagaatgtat 240
acacatgtct agattctgtat gcctgctatg agatattttac agaaaaggctt ctgtgctcta 300
gtcgccctga aaacatccac ctggctggac agatgatgca ctgcagtgtc tggtcagaaa 360
atcccctcagc tggtatagcc cataaaggga accccccacta cagggtcagc tacgaaaaga 420
gtattgactt gttttggct gccagcagag agtacttcaa ttcttctacc aacctcactg 480
atagctgcat gtatctagcc aggtgctgtc tacaactgtat aacagacaga cccccctgcca 540
ttcaagagga gctagatctt atccaagccg ttggatgtct tgaagaattt ggggtaaaga 600
tcctgccttt gcaagtgcga ttgtgccttg atcgatcag tctcatcaag gagtgatattt 660
cccagtcccc cacatgctat aaacaatcca ccaagcttct gggccttgct gagctgctga 720
gggttgcagg tgagaaccca gaagaaaggc ggggacaggt tctaattctt ttatggagc 780
aggcacttcg cttccatgac tacaaaggcag ccagtatgca ttgtcaggag ctgtggcca 840
cagggtatcc taaaagggtt gatgtttgtt acaatcagaa ggttaccagg 900
acttggccac tcgtcaagag ctcatggctt ttgctttgac acattgcctt cctagcagca 960
ttgaaccttct ttggcagttt agcagctctc tgcagacaga aattctttat caaagagtga 1020
atttccagat ccatcatgaa ggaggggaaa atatcagtgc ttcaccatta actagtaaag 1080
cagtacaaga gatgaagta ggtgttccag gtagcaattc agctgaccta ttgcgttgg 1140
ccactgctac caccatgaaa gtcctttcca acaccacaac caccacaaa gcgggtctgc 1200
aggccgtcag tggatggcag tggatggaaaga agtcttaac ttaccttcga ccccttcagg 1260
ggcaaaaatg tggatgggtcata tataaaatcg gaactacagc caatgaagat cttagagaaac 1320
aagggtgtca tcctttttat gaatctgtca tctcaatcc ttttgtcgct gagtctgaag 1380
ggacccatgaa cacatcttag catgttccag tggaaagctt tgcaagaagta ttgctgagaa 1440
ctggaaaattt ggcagagggtt aaaaataaag gagaagtatt tccaaacact gaagttctt 1500
tgcaacttagc aagtgaagcc ttgccaatgtt acatgacctt ggcttctgtc taccttctt 1560
ccttaccaca agtgttagat gtaaccgggt gctttgaaaaa gcatgttttttctgcattat 1620
ctctccagttt ggcagcgtat tactatagcc tccagatcta tgcccgattt gccccatgtt 1680
tcaggacaaa gtgccatctt ctttacaggg ctgatcccaa agaactaatac aagatggtca 1740
ccaggcatgt gactcgacat gagcacgaaat cctggcttgcga agaccttatt tcactgacca 1800
agcagttaca ctgctacaat gaacgtctcc tggatttcac tcaggcgcag atccttcagg 1860
gccttcgaa ggggtggac gtgcagcggt ttactgcaga tgaccaggat aaaaggaaaa 1920
ctatccttgg tctggcagaa actcttaggg cacaacgtta cagtgtctcc cgtggggaaat 1980
cggacagtgg tttgtccaca cttagaaattt ttttatgac ccatttggag ttccttca 2040
agactttgaa gactgatcca gaaggcttcc aaaatagagc ccaagacctt catcttttgc 2100
ctattggtgg ctttgatcac gaaaggctgc aaccagaaaac ccacattcga ctgctgaaga 2160
gctgtcaga tttggggaaat tggccatta agttaaggt tttgtcata ggtttaattt aaaaaagct 2220
ttccaaaat ccctgaaaag gatggacaga gttacagaa gttgttctgg actggagacc acaaaaaagct 2280
caccggagtg gtttcatgcc tatgtatgtct gcatgaagta ctttgatcgt ctccacccag 2340
gtgacccatcactgtggta gatgcagttt cattttctcc aaaaagctgtg accaagctgt 2400
ctgtgaaagc cctgaaagag atgacttagaa aggctttaaa gacagtcaaa cattttattt 2460
agaaggcaag gaaaagaaaac tcagaagacg aagctcaaga agctaaggat tctaaagttt 2520
cctatgcaga tactttgaat catctggaga aatcacttc cccacctggaa accctgagcc 2580
acagcttcat ctttctctg aagaatagtg agcaggaaac actgcaaaaa tacagtccacc 2640
tctatgatct gttccatgatca gaaaaagaga aacttcatga tgaagctgtg gctatttgg 2700
tagatggtca gctcttagca atgattcagc agtgcgttgc ggtggcaggat gccccttgc 2760
acatctcacc caaggatata gtgcagatgtt aataatttcttgcattgagtg 2820

WO 01/07471

PCT/US00/19948

gtggcagtgc tgaccttgg gggccaaggg acccaactgaa ggtcctggaa ggtgttgtg 3120
 cagcagtcca cgccagtgt gacaagggtg aggagcttgtt ttcaccttag gacctgctgg 3180
 agtggctgcg gcctttctgt gctgatgacg cctggccgtt gcccggccgc attcacgtgc 3240
 tgcagattt gggcaatca tttcacctga ctgaggagga cagcaagctc ctcgtttct 3300
 ttagaactga agccattctc aaagccctct ggccccagag acaggttagac atagctgaca 3360
 ttgagaatga agagaaccgc tactgtctat tcatggact cctggaatct agtcaccacg 3420
 aggctaatt tcagacttg gtttacttt tgcaagctt gccacctatg aaaagtgaat 3480
 atgtcataac caataatcca tgggtgagac tagctacagt gatgctaacc agatgtacga 3540
 tggagaacaa ggaaggattg gggatgaa gtttggaaaat gtgtcgctct ttgtataaca 3600
 ccaaggagat gtcgcctgca gagggtgtga aggagctgtg tctgctgtg cttaaccagt 3660
 ccctcctgtc tccatctctg aaaccttctcc tcgagagccg agatgagcat ctgcacgaga 3720
 tggcactgga gcaaatacagc gcagtcacta cggtaatga ttccaattgt gaccaagaac 3780
 ttcttccct gtcgcctgtt gccaagctgc tggtaagtg tgcgtccact cccttctatc 3840
 cacgtatgt tgaccaccc ttggcttagcc tccagcaagg ggcgtggat gcagaggagc 3900
 tggcagaca ctcgcgggag gcccgcattg aagccgaagc cgggtctctc cttctggccg 3960
 tgagggggac tcaccaggcc ttcaaaaccc tcagtagc cctccgcgcga gcacagact 4020
 gggtgtgagg gccacctgtt gcccgttcc ttagcagaaa aagcatctgg agttgaatgc 4080
 tggcccaga agcaacatgt gtatctgccc attgttctcc atggttccaa caaattgcaa 4140
 ataaaaactgt atggaaacga tgaaaaaaaaaa aa 4172

<210> 92
<211> 4037
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2259032CB1

<400> 92
 tcggagtgcc gcccgcggcc ccgagtcgtt ctcgagccgc cggccggccg tgccgggtgc 60
 cgtaggcgct gcgccttcgg cccggcccat gtgtgtgcgg cccgccccag gccgccccgg 120
 ctttgcctcc accagcgccc tggcctccgc tcgggcctcc acacgggcct ccgaagagct 180
 gccgcgacgc cccggccgcgaa gggcaggtaa agagattata aatcttccac tgaatgaaaa 240
 aaatttctt aaagctgcattt atactccaaag aaaaaaaacca caaatgtttt tctgtttgc 300
 ctgaatacat gatttaaaca agagattttcc acagaagctc tgccggccgtc acgatgttct 360
 ggaagtttga ctgttgcaccc acgtcccatg ttgacaagct gctggacaag gagcatgtga 420
 cgctgcaggaa gttaatggat gaagatgaca tcttgcaggaa gtgttggaggc cagaaccaga 480
 agctgttgc ctgcgttgc aggccaggta gcatgggaga gctgggtgagc ctcatcacac 540
 agatccgccc ctcggacatg gaggagaagg tccgccttcaa atatccaaac acagccgtgc 600
 agttcttgcac ttgttgcattt ctcgcacatca ggcaccgcctt cgggtgggac gagggcctgc 660
 tgagccctctt gtacgacttc ttggaccatg agccgcctctt caatcccttg ctcgccagtt 720
 ttttcagcaa gaccatttgc aatcttccatg caagaaaaac cgaacaggtt attacgtttt 780
 tgaagaagaa ggacaagttc atcagcctgg tggacactgtc gtcagctgtt tggttgcattt 840
 tggacactgtc gtcgcgcctt gtcaactgtt tggagccagc cgggtccgg caggacgtcc 900
 tgcactggct gaatgaagaa aaggtcatcc agaggctgtt ggagttgatc caccggagcc 960
 aggtgaaga taggcagttca aatgttctc agactctctg tgacatagtt aggctggca 1020
 gagaccaggc cagtcagctg caagaggctc tggagccaga cccgcctc acagcgctgg 1080
 agtccaggca ggactgtgtt gaggccatc tgaagaacat gtttgcattt gacccggacgg 1140
 agagctgcct cgtcagtggtt acttcagggtt tactcacctt gctggaaacc aggccgggtt 1200
 ggacagaggg ctgggtggac tcctttctc agggacttggaa aaggtcatac gctgtcagca 1260
 gcagcgtaact acacggcatc gacccctggc tgaaggactt ccaccagctc ctgctcaacc 1320
 cggccaaagaa gaaagcgatc ctgaccacca ttgggtgtgtt ggaggagccc ctggggatg 1380
 cccgtctgca tggcggccgc ctcatggcag cactgctgca cacaacaca cccagcatca 1440
 accaggagct ctgcggctc aacacgttgg acttactgtt ggacttggc tttaagtaca 1500
 ccttggaaataa ctttttgcac ttccaaatgg aactatgcatt agccgttatt ctctccacg 1560
 ctggccgtga ggagaggaca gaagccagcg gatccgagag cagggtggag ctcgcgtatg 1620
 agaacgggaa cccggacgtt gaggacttccccc agccggccgc cagcctccctt gacaacacaa 1680
 tggtgcacca ctcgttccatg aagtgcattt tggtgcaggag gatccctggag gcctggaaag 1740
 ccaacgcacca caccgcaggca gcccgggtggca tgagacgtgg gaacatgggc cacctcacac 1800
 ggatcgccaa cccgggtgggtt cagaacactgg agcggggccccc tggcagacg cacatcagcg 1860
 aggtcatccg agggctccctt gcccgttgc gtcggacttgg ggagagctt gtcggaggaga 1920
 cgctgcacggaa gaccaacactg tggacacttggc ctctctgtac taccagatcc 1980

WO 01/07471

PCT/US00/19948

agcagatgac agccaacttc gtggatca gatgaggag tttgccgacc 2040
 aggacgacaa catcaatgcc ccgtttgaca ggatcgacaa gatcaacttc aacatcgacg 2100
 ctgacgagga cagtcccgac gcagctctgt ttgaggcctg ctgcagtgac cgcatccagc 2160
 ccttgcgtga tgatgaggac gaggacatct gggaggacag tgacactcgc tgtgctgccc 2220
 ggggtatggc cagacccagg tttggagccc cccatgttc agagagttgc tcaaagaatg 2280
 gcccagagcg tggaggccag gatgggaagg cgagcttgcg acacacaga gatgcacctg 2340
 gggcaggtgc cccaccggcc cccgggaaga aggaagcccc ccctgtggag ggtgactcag 2400
 aagcaggcgc catgtggacg gcagtgttg atgagccagc gaactcaacg cccacagccc 2460
 caggagtggt gagggacgtg gtggcactg tggcacccca gctccagagg 2520
 agaaaggctg ggccaagttc actgacttcc aaccttctg ctgctccgag tcagggccca 2580
 ggtcagtc tccgggtggac acagaatgca gccatgtca gggcagccgg agccaaggcc 2640
 ctgagaaaagc cttcagcccg gcttctccat gtgcctggaa cgtgtgtgtc accaggaagg 2700
 ccccccgtct ggcctctgac agtagctct ctggggcgtc ccacagcgag gatggcgacc 2760
 agaaggcgcg gtagtgcgtg gatgcggta gcaggggtcc cggccgggag gccccccgc 2820
 tgcccacagt ggccaggaca gaggaggctg tcggcagggt cgggtgtgtc gacagccggc 2880
 tggtaagccc tgcctggccc ggcaccaagg aagtgtactgc tggccctggcc gtggctgtgc 2940
 ccccccgggc tactgtggcc atcaccacag cactgagca ggtggccccc gccataccca 3000
 ccccaacgt ctcttctgca tggccgtgg cggccccctt agggcccatc atggcagtca 3060
 cagcagcccc agccatggtg gccaccctgg ggacagtgc aaaggacggg aagacagatg 3120
 ccccccggca aggagctgcc taaaatggcc cagtgtgtatgc tggctggcccg cggccacgg 3180
 cccaccctgg tcaggctgcc tcctaatcg agaaaaactac ctgggtatgc aatcttttt 3240
 ttttaattt aatttaattt taaaataaat gctgcattgg taaagctggc agttgaaacc 3300
 agttgacgg cccagcttgc gtctttctg cctgagttgg cctctcaggat cactctgccc 3360
 ctgctggagg acagaggggc acctcagccg cccccaagcc cagagcacag caataaggc 3420
 ggcctgcagg agccgggggt ggggtgggg tggggggggc aggaccctga gatgcacca 3480
 ggacctgtatg ggccaggaaag ggcgtggaca tggaggctgt ttttacagtt ttttttgtt 3540
 gttgttttgt ttttaagaa tacagaagga gccaagctt tttgcactt gtatccagct 3600
 gcaagctcag ggcagagtc agggcctggg ttggaaaaac ctgactcaca ggaatgcata 3660
 attgaccctt gcagctaccc aatagccctt ggagctggca ctgaaccagg ctgcaagatt 3720
 tgactgcctt aaaaacacaa ggcctctag gcctggcagg gatgtccctg tgcccagcac 3780
 agggtcctg gcagggggag accacaggta tgcagggtgg gggacatggt gtggcactgg 3840
 gggctcgaag actggtttct agcactaccg gtcacggcca tgcgtctca gaagggtcca 3900
 gaagattattt ttagtgcgttccat ttttata atgttctgtat cacctgacag ggcaccccaa 3960
 acccccaact ccaataaaa gccgtgacgt tcggacaaaa aaaaaaaaaa aaaaaaaaaa 4020
 aaaaaaaaaa aaaaaaaaaa 4037

<210> 93
 <211> 2031
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2359526CB1

<400> 93
 ggccggggctc ggctcggtt ccgcggggcg gccccggac atggcggcca acatgtaccg 60
 ggtcggagat tatgtctact ttgagaattt ctccagcaac ccatacctaa taagaaggat 120
 agaagaactc aacaagactg caagtggcaa cgtggaaagca aaagtagtat gctttatag 180
 acgacgtat atttccaaca cacttataat gctcgcagat aagcatgcta aagaaattga 240
 ggaagaatct gaaacaacag ttgaggctga ctggaccat aagcagaaac atcagttgaa 300
 acatagggaa ctcttttgt cacccagta tgaatctctg cccgcaacac atatcagggg 360
 aaagtgcagt gttgccttc tgaatgagac agaatcaga ttgtcatatc ttgataagga 420
 ggataacctc ttctactcat tggcttatga cccctcattt aaaaactat tagctgacaa 480
 aggtgaaatc agagtggac ctatgatca agcagacatt ccagaaatgc tggtagaagg 540
 agaatacgat gagagggaaat aatcaaaaatt ggaagttaaa gttgggatc caaatagccc 600
 acttacggat cgacagatgtt accagttttt agttgtatgc cgtgctgttg ggacattcgc 660
 cagaccctg gattgcagca gttctgttagt gcagcctagt ttgcataatga gtgcgtctgc 720
 agttcccgat gacatcacct tggatataca ttgtatagac acagctatga 780
 tttgaggactt gccattatgt tcttagtacc actcgaggaa cctgttttat gcagagatga 840
 aatggaggaa tggtcagct ctgaagctag cttatggaa gaggcactgg aaaaatatgg 900
 caaagacttc aatgacatac ggcaagattt tcttccttgg aaatcattga ctatcatcat 960
 tgaatattat tacatgtgaa aaactactga cagatatgtg caacagaaac gtctaaaagc 1020

WO 01/07471

PCT/US00/19948

agcagaagct	gagagtaaac	tgaaacaagt	atatatccca	acctacagca	aacccaatatcc	1080
caacccaata	tccactagta	atgggaagcc	tggtgctgtg	aatggagctg	tggggaccac	1140
gttccagcct	cagaatcctc	tcttagggag	agcctgtgag	agctgctatg	ctacacagtc	1200
tcaccagtgg	tattcttggg	gccccaccta	tatgcagtgt	agattatgtg	caatttggttg	1260
gctttattgg	aaaaaaatag	gaggcgttcaa	aatgcccacc	cagtcagaag	aagagaagtt	1320
atctccctagc	ccaaactacag	aggacccctcg	tgttagaagt	cacgtgtccc	gccaggccat	1380
gcagggaaatg	ccagtccgaa	acactgggag	tccaaagtct	gcagtgaaga	cccgccaagc	1440
tttcttcctt	catactacat	atttcacaaa	atttgcgtcg	caggctgc	aaaataccct	1500
ccggctgcgg	caggcagcaa	gacggccgtt	tgttgcatt	aattatgctg	ccattagggc	1560
agaatgttaag	atgcttttaa	attcttaacc	ttatatgtt	tgcttctgac	cattttctct	1620
tttcctctct	ttcctttttt	ttttgttgt	ttgtttgc	taaacataag	ttcttgtgt	1680
cagcctttta	tttggtttat	tttttaacat	ttttttgt	tgctgccatt	tgtatcatgc	1740
caacctggaa	aaaaaaaaat	caaaacattg	aaacttctgt	actcttacc	agagagtagt	1800
gcttagcaaa	agattggtgg	gaggtgatcc	tattccatgg	ggttttgtga	tggaattgcc	1860
tgcagagccc	ttattgcagc	acttttacct	tttaggtagt	gccacaatgt	aacccttaag	1920
gatgctgtta	taatgagact	ccataatcga	gacagtacag	tccagtctt	catggattca	1980
ttaggtttaa	ataaaatttg	ccaaatttaca	ctaaaaaaaaa	aaaaaaaaaa	a	2031

<210> 94
<211> 820
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2456494CB1

<400>	94					
aagcgccctcc	gtggacacgc	acttcctgcg	aggcctccgt	gchgacaccc	tttgccgagccga	60
accgagccga	gtccctgtcct	tccaggccgt	tcgcaatgggt	ggatgagtttgc	gtgctgtcgc	120
tgcacgcgct	cctgatgcgg	caccgcgccc	tgtagcatcga	gaacagccag	ctcatggaaac	180
agctgcggct	gctgggtgtgc	gagagggcca	gcctgctgcg	ccaggtacgt	ccgcccggact	240
gccccgggtgcc	cttccccgaa	acgtttaatg	gcgagagctc	ccgggtcccc	gagtttatcg	300
tgcagacggc	gtcttacatg	ctcgtgaacg	agaaccgatt	ctgcaacgac	gccatgaagg	360
tggcattcct	aatcagcctc	ctcacccgggg	aagccgagga	gtgggtgtgc	ccctacatcg	420
agatggatag	ccccatccta	ggtgattacc	gggccttcct	cgatgagatg	aaacagtgt	480
ttggctggga	tgacgacgaa	gacgacgacg	acgaagaaga	ggaggatgtat	tattaggccc	540
tgcacccctcg	ggcctcgggg	gggagggccc	tgcacgcgc	cacccctcc	ccgcagccct	600
caccccgcca	ggagccactg	ctctccccct	tgccctccgg	tccccttacc	taccccgcc	660
cgtctgtct	ctctcttcat	ttctccgtag	tgcttgtctt	tgtttccagga	atagcgctcc	720
agttacatgc	tgctggggtc	ggggctggag	cctcaactcac	tcggaagtgc	ttgaaagtgt	780
catctaccct	ggccatcccc	gggatccctc	ccctgtataat			820

<210> 95
<211> 2070
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2668536CB1

<220>
<221> unsure
<222> 2058, 2067
<223> a, t, c, g, or other

```
<400> 95
gatggccgca gtcggcaagg agagacgtcg ctgaggggct tgcctgaagc gaggggattc 60
taacattttc agagaacctt ttggaaagaa caagcctact tcaataaatg aaggagaata 120
aagaaaattc aagcccttca gtaacttcag caaacctgga ccacacaaag ccatgttgg 180
actgggataa gaaagacttg gctcatacac cctcacaact tgaaggactt gatccagcca 240
ccgaggccccg gtaccgccga gagggcgctc ggttcatctt tgatgtggc acacgttgg 300
```

WO 01/07471

PCT/US00/19948

ggctacacta tgataccctg gcaactggaa taatttattt tcatcgcttc tataatgttc 360
 attcctcaa gcaattccca agatatgtga caggagcctg ttgcctctt ctggctggga 420
 aagtagaaga aacaccaaaa aaatgtaaag atatcatcaa aacagctcgt agtttattaa 480
 atgatgtaca atttggccag tttggagatg acccaaagga ggaagtaatg gttctggaga 540
 gaatcttact gcagaccatc aagtttgatt tacaggtaga acatccatac cagttcctac 600
 taaaatatgc aaagcaactc aaaggtgata aaaacaaaat tcaaaagttg gttcaatgg 660
 catggacatt tgtaaatgac agtctctgca ccaccttgc actgcagtgg gaaccagaga 720
 tcatacgagt agcagtgtat tatctcgac gacgtttgtg caaatttcaa atacaagaat 780
 ggacctccaa acccatgtat aggagatgtt gggagcagtt tggcaagat gtcccggc 840
 acgtttggaa agacatctgc caccataatcc tggatctta ctacaagga aaacaacaga 900
 tgcctcatca caccatccat cagctgcaac agccccatc tcttcagcct acaccacaag 960
 tgccgcaagt acagcagtca cagccgtctc aaagctccga accatcccag cccacgaga 1020
 aggacccca gcaaccaggc cagcagcgc agccagccca acagcccaag aaaccctctc 1080
 cgccggccag ttctcccgaa caggttaagc gagccgttgt tggatctccaa aagaagaga 1140
 acaaagcagc agaaccacca ccacccatc tccccaaaat tgagaccact catccaccgt 1200
 tgcctccagc ccacccaccc ccagaccggc agecccccct cgctgctgcc ttaggtgagg 1260
 ctgagccgccc gggccctgtg gatgccactg acctcccaaa agtccagatt cccctccgg 1320
 cccacccggc ccctgtgcac cagccaccgc cgctgccccca cccggccccc ccccccaccc 1380
 cctccagcta catgaccggg atgtccacca ccagctctca catgtctggg gagggttacc 1440
 agagcctgca gtccatgtat aagaccgggg gaccctctca cgggtccctg ccccccgc 1500
 acggcccccacc tgcacacctg ccctaccacc cccatgtctca cccggcccaac cccggccccc 1560
 cacctgtgcc tcctccccc gcctccttcc cccacctgccc atcccccccc ctactccctgg 1620
 ctaccccaa ccccccaccca cctacaaccc caacttccca ccccccacccc caccctcccc 1680
 gcctacccac gcagttccccc ctcatcctcc tccagggttg ggctgcccgc cagccagcta 1740
 cccacccctt ggcgtccccc ctggaggaca gcctcctgtg ccccccgc 1800
 cggcatgcct ccagttggag gggctggggc gggcagcctg gatgagataa cgtgagcctt 1860
 ttttcctct ttgtttttt aacaagattt tctaattcgac ttgcagagta gttgaagtgg 1920
 gtaaggcagca gggtaacccat tataatgcac gacagttgca gtatggaaag aatggaccgg 1980
 gcccctggaa taaaatcaga gtggcctca cacctagagg acggggacaa ccagcttca 2040
 gagtagcctc atcagtgncc ttgcagnctg 2070

<210> 96
 <211> 2046
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2683225CB1

<400> 96
 tgacatggat gggatgact tcctggctt acacttctct tgcataaaggaa tgattttgca 60
 ccaccttcaa tggccatgtat taagacataa acaagaaaaag agatatgtca ggagaatgca 120
 gttgaaacta attttgtgaa tagagaaact gttgaaactg ctttacaaag tattttaaaca 180
 gcccacctga ggatattgtac cataaggact catatctcat tacaagaagc atcatggccg 240
 agccagacta catagaagat gacaatctg aactcattag gcctcagaaa ctgataatc 300
 ctgtaaaaac ctcccggaac catcaagat ttcacagaga acttctttagt aatcaaaaaa 360
 ggggtcttgc tcctcagaac aaaccagaat tgcagaaggt gatggaaaaaa agaaaacgg 420
 accaagtaat aaagcagaag gaagaagaag cacagaagaa gaaatctgac ttggaaatag 480
 agctattaaa acggcagcag aagttggcgc agcttgaact tgagaagcag aaattgcaag 540
 aagagcaaga aaatgccccc gagttgtga aggtgaaagg caatctcagg agaacaggcc 600
 aagaagtgc ccaagcccaag gagtcctagg ctgaggctgc accaagaccc cgtgtgtcac 660
 cccacagagc tgcctgtggg tgccttctca atctcaggcc aaaaagccctt ggagaatatt 720
 tcagccagca gagaattttt acttgcagta ggatttgggt tgatttccct acgatctggg 780
 tggatgcctt gcctgtgaca gttgcagttc ctattccca aatgaaggcc agtgcggcc 840
 acgtaagttt gaatgtatggc cctgtgttca gagacttaac agaaccaaca agcaaaaacaa 900
 gtgagaacag gaaaaaggaa gaggacactg gaatcaattc ttgagagttt cactactgg 960
 tttttcttcc attccaaatgtt tgcgtggacc cagagccctt tttttttaa aagctaaaaa 1020
 acaagtgttt aattccctttttt gtttagataat tgagatcacc tagaaatgcg 1080
 tttaatctgt tcactcactg taaattttga ggaccaggaa ttgtcttggtaat tttttatac 1140
 tttcaccctt gttgcagttt acaccagaga aggaacgtga atgtcgagca cagccactac 1200
 ccttggcacttta gaaatagggt gagaagttt aaagcccatc ttgattttat 1260
 tttcattccctt tttggcttc tgcgtataaa tagcaggctt ctagtgcata ttccagttcc 1320

WO 01/07471

PCT/US00/19948

aagaaggtac atcctgtcca ttcattaatt gctttgatta ctaggagggt ttctgttcag 1380
 ttttgtttt aaatgtcttg ctgatctagt tctttcagat ggaataaacct tccagtcct 1440
 tagagagtgg aactagtccca tataaccagg cttcagtagc aaaagttagaa gccgccacat 1500
 cttttcattt ctccaagagg agagtgggga aggttcccat gaccagctgg gcagtcagga 1560
 tttctctagg cattctaattt tgaataatgt gttagactgtc gtcaaggagg cttcatcaga 1620
 agatgtatag catttgaatg tctaattgata atgcataatca ttagaatcca agctttgaaa 1680
 atttctgatt aatgctcatg tatttctta tctttgttt tccttgtgaa gaaagacttt 1740
 caccactgtc tgagtgtatg tgctgttgc aaggatgtc tcgatgacta ctatattgca 1800
 tctctcagga acagctgtatg ggaagggagg ggctgctgag ttccccttgc tttagcttagca 1860
 gcacgctcct cagagagggg gccgagttac agacagcagc cgcatctca tgcaaaaatta 1920
 gttttaaact gctagtgtgg gcacatcgat cttttgcctg ggtgataccg aagaattgtt 1980
 gaggatttag tatgctccgt agagacagtt cagccagtca ttctgcatt ggagagactt 2040
 ctcata 2046

<210> 97
<211> 2660
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2797839CB1

<400> 97
 gtggcgagtg ccggccgaaa gctaggtccg gattgcacgt ggagggccgc ccgaaggcga 60
 ctctcgacca ttaaccggca ttctgtacca tggggcgc当地 gttggaccct acgaaggaga 120
 agcggggggcc aggccgaaaag gcccggaaagc agaagggtgc cgagacagaa ctcgtcagat 180
 tcttgcctgc agtaagtgc gaaaatttca agaggctgtc tagtcgtgct cgaaagaggg 240
 cagccaaagag gagattgggc tctgttgc gggccctaaagac aaataagtct cctgaggcga 300
 aaccatttgc tggaaaagctt cccaaaggaa tctctgcagg agctgtccag acagctggta 360
 agaagggacc ccagtcctca ttaatgttc ctcgaggcaa gaagcgc当地 gcacctggca 420
 gtatgagga agaggaggag gaagactctg aagaagatgg tatgttgc当地 cacggggacc 480
 tctggggctc cgaggacgat gctgatacgg tagatgacta tggagctgac tccaactctg 540
 agatgagga ggaagggtgaa gcgttgc当地 ccatttgc当地 agctgtccgg aagcagaagg 600
 cccgggaaggc tgctgctggg atccagtggc gtaagagga gaccgaggac gaggaggaag 660
 agaaaagaagt gacccttgc当地 tcagccccca caaagggtgg agaggcagat gggggcctgc 720
 agatcaatgt ggatgaggaa ccatttgc当地 tgccccctgc tggggagatg gaggcaggatg 780
 cccaggctcc agacctgcaa cgaggccaca agcggatcca ggatattgtg ggaattctgc 840
 gtgatgttgg ggctcagcgg gaggaaaggc ggtctcgatc tgaatacctg aaccggctca 900
 agaaggatct ggccatttac tactcctatg gagacttctc gcttggcaag ctcatggacc 960
 tcttcctct gtctgagctg gtggagttct tagaagctt当地 tgaggtgc当地 cggccctgc当地 1020
 ccctccggac caatacctt当地 aaaaccggac gccgagacct tgcacaggct ctaatcaatc 1080
 gtggggtaa cctggatccc ctggcaagt ggtcaagac tggacttagt gtttatgtt 1140
 cttctgtgcc cattgggtctt acccccggat acctggctgg gcactacatg ctgcaggagg 1200
 cctccagcat gttggccctgc atggcccttgg caccggaggaa acatgagcgg atcctggaca 1260
 tgtgttgtgc ccctggaggaa aagaccagat acatggccca gctgatgaaag aacacgggtg 1320
 tgatccctgc caatgacggc aatgtcgatc ggctcaagag tggacttagt gtttatgtt 1380
 ggctggggatg caccacaccc attatcagcc actatgtgg gcccaggatc cccaaagggtgg 1440
 tggggggctt tgaccggatg ctgtggatg ctccctgc当地 tggactgggg gtcatctcca 1500
 agatccaggc cgtggaaatg aacaaggatc agaaggacat cctggcgatg gtcacactcc 1560
 agaaggaggt gtcctcgatg gctattgtc ctgtcaatgc gacttccaa agaggaggct 1620
 acctgggtta ctgcacacttgc tctatcacag tagaagagaa tgtagtgggg gtagactatg 1680
 ctctgaaaaaa gaggaaatgtg cgactgggtgc ccacggggctt agacttggc caggaaggatg 1740
 ttacccgctt tcgagaaagg cgcttccacc ccaggctgc当地 ttcttccca cgttcttacc 1800
 ctcataaccca caatatggat ggggttccatc ttggcaagttt caagaaatcc tccaatttcta 1860
 tccctcagtc ccagacaggaa aatttgc当地 cggccacacc tacaaatgtt gacttgc当地 1920
 aggtcatccc caagtctgatg aacagcagcc agccaggccaa gaaagccaa ggggctgc当地 1980
 agacaaagca gcagctgc当地 aaacagcaac atcccaagaa ggcttccctt cagaagctga 2040
 atggcatctc caaaggggca gactcagaat tgccactgtt accttctgtc acaaagaccc 2100
 aagcttccctc cagttccag gatagcagtc agccaggatg aaaagccaa gggatcagg 2160
 agccaaaggt gactggaaatg ctaaagcaac gatcaccctaa attacagtcc tccaagaaag 2220
 ttgcttccctc caggcagaat gcccctccca agggcacaaga cacacaaaca cccggctgtgt 2280
 tatccccatc caagactcgat gcccaccctgc当地 aacctaaggaa ccatcatcag ccccttggaa 2340

WO 01/07471

PCT/US00/19948

gggccaagg ggttgagaag cagcagttgc cagagcagcc ttttggaaaa gctgccttcc 2400
 agaaacagaa tgataccccc aaggggccctc agcctccac ttgttctccc atccgttcca 2460
 gccgc(ccccc accagcaaag aggaagaaaat ctca gtcagttccag gggcaacagc cagctgctgc 2520
 tatcttagat gtttggaaaac tagacgggtg gtcactgcc attgtcacca gtttggaaact 2580
 cttgcctctg tgaggatgcc ttctctactg tgcataccca taaaattta tacacat 2640
 aaaacctctg aaaaaaaaaaa 2660

<210> 98
 <211> 4610
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2959521CB1

<400> 98
 gggccccgga cgcattgggg gggtcgccgc gcgtgtctac gcggacgcac cggctaagct 60
 gcttcggc cgccggccg cctggaccc tgcgggtgagg ctgcggccggg ccgaggccgc 120
 ctccgagcgc cagggttatt cagtcaccat gaagctgtc ctgctgcacc cggccttcca 180
 gagctgcctc ctgtgtaccc tgctggctt atggagaacc acccctgagg ctcacgcttc 240
 atccctgggt gcaccagcta tcagggctgc ctccctctg caggatctaa tacatcggt 300
 tggcgagggt gacagcctca ctctgcagca gctgaaggcc ctgctcaacc acctggatgt 360
 gggagtggc cggggtaatg tcaccaggca cgtcaagga cacaggaacc tctccacgtg 420
 cttagttct ggagacctct tcactgccc caatttcaggc gaggatcgcc ggattgggag 480
 cagcgagctc caggagttt gccccaccat cttccagcag ctggattccc ggcctgcac 540
 ctcggagaac caggaaaacg aggagaatga gcagacggag gagggccggc caagcgctgt 600
 tgaagtgtgg ggatacggtc tcctctgtgt gaccgtcatc tccctctgct ccctctggg 660
 ggccagcgtg gtgccttca tgaagaagac ctttacaag aggctgtgc tctacttcat 720
 agctctggcg attggAACCC tctactccaa cgcccttcc cagctcatcc cggaggcatt 780
 tggttcaac cctctggaa attattatgt ctccaagttt gcagtgggtt ttgggggctt 840
 ttatctttc ttttcacag agaagatctt gaagattttt cttaagcaga aaaatgagca 900
 tcatcatgga cacagccatt atgcctctga gtcgttccc tccaaaggacc accaggagga 960
 ggggtgatg gagaagctgc agaacgggaa cctggaccac atgattctc agcaactgcag 1020
 cagttagctg gacggcaagg cccccatggt ggacgagaag gtcattgtgg gtcgctctc 1080
 tgtgcaggac ctgcaggctt cccagagtgc ttgtactgg ctgaaagggtg tccgctactc 1140
 tgatatcgcc actctggctt ggatgatcac tctgagcgc ggcctccata atttcatcg 1200
 tggcctggcc atcggtgctt cttctactgt gtcagtttcaaggcatca gcacctcggt 1260
 ggccatcctc tgtgaggagt tcccacatga gctaggagac ttgtcatcc tgctcaacgc 1320
 tgggatgagc atccaacaag ctctcttcaacttcc tctgctgtct gctgctaccc 1380
 gggtctggcc ttggcatcc tggccggcag ccacttctt gccaactgga ttttgcgt 1440
 agctggagga atgttcttgc atatttcttgc ggctgatatg ttccctgaga tgaatgaggt 1500
 ctgtcaagag gatgaaaggaa agggcagcat cttgatttca tttatcatcc agaacctggg 1560
 cctctgact ggattcacca tcatgggtt cctcaccatg tattcaggac agatccagat 1620
 tggtagggc tctgccaaga gcctgtgggat ctggaaatcg ggcctgggc tgcccgatcg 1680
 ccagcccgag gacttaccat ccacaatgca ccacggaaaga ggcgttcta taaaaactg 1740
 acacagactg tattctgca ttcaaatgtc agccgttgc aatgtgtt atccttagaa 1800
 taagctccc tggtaaccag tctctagcta gtgccttgc ccctcttcc acctcccttt 1860
 ctctcagtga ctctggaaacc tgaatgcgc ttacaagaca agcctgactt tttctctga 1920
 ttaccttgc ctcccttttgc aaccatgtt gaaagggtttt gaatcttta cccaaatgt 1980
 caaaaataga gccaatgggtt ataaatggc tagaaatata aagagttgaa tccatagtgt 2040
 gggcccatg actctagctg ggcaccttgg acctccagct ggcataataga agagacagga 2100
 gacaggaagc ctcccattt tttcaaaatgc tggtaatttgc ccttatttctt ctctcaaaga 2160
 gaacctgaag tcagaacaca tgacgggtt gagaggttgc gcaagggttca tcctgaatgg 2220
 gagaggaagt cgaaccactg ctgtgtgttgc tgtcaggatg ctacttgc tctactgaga 2280
 tgctggatat tgatggatgc acagcaccatg gtgtttcagc gctgtcccgag tgagctaaacg 2340
 tggcggtgtg gtcgttccggc cttcccttcc caggtaacg ctgacagaat ggaggctcg 2400
 gctgtctgca agaaaaacagt tggttggctt gtgatggatgc cttcccttcc cccactgcca 2460
 tcttctaaaga gactttgttgc ctgccttccaa gaagcacatt ctgagcacat ttgagaccc 2520
 tggtttagag gggagactgc acaaacttgc ctccccccagg ttgagacgtc tgcagagttgg 2580
 caagctgact ttagaaatg gggtgccatt tatgctctac ttagacaagg gtaatcagaa 2640
 atggaatcag tgcaggccaa atttaggatt tgccgttcc ataaatcaa gcatgactaa 2700
 tagggggctt ctgaaatgtt gggcacaaa cttcaacttgc ggcacatcgac 2760

WO 01/07471

PCT/US00/19948

aatgggtggc ctaatgatta tgctacagat gggttttaaa tgacccgtct aggttactgc 2820
 ttccttgcaa aaaaagtgcg atccctgcatt gaattgaata tgaatttctc taactctctc 2880
 cagaaaaatgg atggagataa cttgtcttta aaactgttagg ccagccttag ccactgtgga 2940
 gcccttgccc ccgagctctg gcttcaaggg gagctcttct ccaggttac taggtgaatt 3000
 gatttattat tatcatattg ataatgtgag attctttagc cactttgggg agcctgtctc 3060
 tccagaagcc tttcttagt gtcggccacag ttggagccca ggggcatgt ttgcaactg 3120
 attcatgtgc atggctgaca ggagacttgg ttcactacca atgcctgagc tttctctt 3180
 catagaaaaa ctgtccgctc tcagtaatca caagcagcat ccgtttgtt ttctcttctt 3240
 gggagacatc tgtcaaacca ggaatattct tgaaaagaac gtgagcagga aaaactgctg 3300
 gtgatacttt ttttaagtt tgttttatc ttgcctgtt gctcaatac atttggaaat 3360
 acgctgaaga gggaaaattt cagtatggc gattctagat taaatatcag gactgatttc 3420
 ctggggagg gattatggc cagtttacc aaagaaccaa ttcccttgaat gttggaaatct 3480
 aacttttat attgtcatta ttattgtgt ttttaaacgg ttctttgtt tttctgtttt 3540
 attttctca agctgcttc aggagcttagc agaaaataac tcaaagtta agactctgga 3600
 agattttgtt ttaaccta acgcattgtat gtattaaatt tataattttgcattccaa 3660
 tagatccat cattccttaa acataatacc ctttgtctt gaggataata ctaagttaga 3720
 gtttagggat ttcttagttt ggagaggagc tcaaaaactat aatctttaac aaattgaaaa 3780
 atgaatatttggt gttttgtca cacctatattt acccttaagaa atttcccttcc 3840
 atagacagct gcctcaaagg gaaatctctt ttaaaccgta gttggcgcag aggtcagtcc 3900
 tagtcggcgc ttaggggggg cgagacgc tcatcgct gacttgatc gccaactgatt 3960
 gtggcaacag ctttgcctca tgagtcaaaa attggcaatt tcttttgcattttttt 4020
 gaatttgctg tttcaagcat ttgtacat tagaagtcta aggtagca agtcagtggg 4080
 aggactttt cacccttgcg attacgcgc tgcacccat tttccagatg caccagctcc 4140
 tattaaataag ttagcaagaa aagtgtatgt cacgtgcagg aacagtggg cagggacagg 4200
 ggttctgctc cttctcactt caccacccgc acacagcttgc cccctgtt tggccccaaa 4260
 ggttattttgt gtcttagtgc aaattggagc tatttttcac tggccttaa ccttgggttt 4320
 taaaaagaag gcttctctgt ttggtagcg taagagctga gtatagtaag tcctcttcca 4380
 aagagatggc aatatgtgg gcacatctactt taaaacaaag ttgtctgatt tttgcaagag 4440
 aggttaggat ttattgttc ttattttcccttacgttgc tgcagttccat cacagtattt 4500
 ttttaataaa ctcaggtgtt tgagaagaaa ttagaaaaa aaattaactt atgtggactg 4560
 taaaatgtttt atttgtaaga ttctataaat aaagctatata tctgtaaaac 4610

<210> 99
 <211> 1889
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3082014CB1

<220>
 <221> unsure
 <222> 1809, 1848, 1853, 1880
 <223> a, t, c, g, or other

<400> 99
 acgtagaaga tggagagaag gaggtggat tgagagatgc tggggggagg gagagtgggg 60
 ctcacccggg ttttccaatc tcttccttat agggggaaat gcagtgtgac cctcttgaat 120
 gagacagata tcttgagcca gtacctggaa aaggaggact gctttttta ctcactgtg 180
 ttggaccccg tgcagaagac acttctcgct gatcaggcg agatttagt tggttgcaaa 240
 taccaagctg agatcccaga tcgccttagt gaggggaaat ctgataatcg gaaccagcag 300
 aagatggaga tgaaggtctg ggaccacag aaccctctca cagaccggca gatcgaccag 360
 tttcttgtgg tggcccgagc tggggacc tttgcaagag ccctagattt tagcagctcc 420
 attcggcagc caagcttgc aatgatgtca catgagtgca gctgctgcct cccgagatata cactctgttt 480
 cacccatgg ataccttgc aaggaacggc tacgacctgg ctaaggccat gtcgaccctg 540
 gtacccagg gaggccccgt gctgtgtcg gatgagatgg aggaatggc agcctcagag 600
 gccatgttat ttgaggaggg cctagagaag tatggaaagg acttcaatga tattcgccag 660
 gattttctac cttggaaatgc acttgcacg atagtcactt ttttattacat tggaaaacc 720
 acagaccggc atattcagca gaaaagggtt aaagctgctg aagcagacag caaactgaaa 780
 caggtctaca ttcccaccca cactaagcca aaccctaacc agatcatttc tgggggttca 840
 aaacctggca tgaatggggc tggatttcac aaggccctga cttgtgagag ttgccacacc 900
 acacagtctg ctcagtggtt tgcctggggc ccacctaaca tgcagtgccg cctctgtgt 960

WO 01/07471

PCT/US00/19948

tcctgttggaa tctactggaa gaagtatggg ggactgaaga ccccaactca gcttgagggg 1020
 gccactcgaaa gcaccacgaa gccacactca aggggtcatt tatccagacc tgaagtc当地 1080
 agtctctctc cttacacaac cagcgc当地 acg tactggctaa gaacagacaa 1140
 actttcctgc ttccagaccac aaagctgacc cgtcttgc当地 gacgcatgtg cagggaccta 1200
 ttacagccaa ggagggccgc cc当地 acggcct tatgctc当地 tcaatgccaa tgccatcaaa 1260
 gcagagtgc当地 cc当地 tc当地 aggcc gccaagactc cattgaagat tc当地 ct当地 1320
 gtgc当地 ct当地 cc当地 tggcaac tatc当地 taaa gatctggg当地 cccaggc当地 cctgaaaccca 1380
 aaaacacctc ggggtaccaa gacaccgatc aacagaaacc agctgtccca gaaccgggaa 1440
 ctggggggca ttatggtggaa acggcctat gagactatgg cagggc当地 ggttcc当地 1500
 tctgccaatg gaaggccctt ggcttc当地 aggg attc当地 tcaa gctcacagcc agcaggccaa 1560
 cgtagaaac taaacccagc ttagccccc aatc当地 ct当地 tg当地 tt当地 tg当地 cacaaggat 1620
 accaggcccc tacgaaaggc tctgacccat ctgaaatgc ggc当地 gagctgc tc当地 cc当地 1680
 aacttgcccc tgaaggtggaa gccaacgctg attc当地 agtgc当地 ggccccc当地 ct当地 1740
 gcaccctcac atc当地 tggccag caccatgag cctattgtcc tggaggactg agcactgtt当地 1800
 gggaaaggang tgggctgaga aggttagaggt ggatgccc当地 ggc当地 accanac ctncccttcc 1860
 tttc当地 gt当地 tc当地 aaggagtgaa gaggatgatc 1889

<210> 100
 <211> 2032
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3520701CB1

<400> 100

gccggggccg agccgctgtt cggctgacag ttgaggatgg cc当地 gagccgaa gggccccc当地 60
 gggc当地 ggca gggagctgaa gccc当地 tggta tc当地 tggtgc当地 acgtcc当地 tga ggaggacgag 120
 gagctggaga atgaggc当地 ct当地 cgtcttgc当地 ggc当地 ggca gactcc当地 gagaa gt当地 ct当地 180
 tctc当地 agggctt cagtaaagag acaagcacta tatc当地 ct当地 gt当地 acctgc当地 cccagaggaa 240
 gaagaaccag caggaattt当地 ttagcttgc当地 agttatgaaat gtc当地 atgaaacta 300
 tttgagctat acacaaaaaaag aaattt当地 ct当地 tggat当地 tt当地 gaaacagcaa gttt当地 360
 ttggaatgca aattacttcc tgacaaagca aaggtaaatt ct当地 ggcaataa gt当地 acatgac 420
 aactttttt当地 gattgtactg catttgc当地 agacctt当地 tgc当地 atc当地 ct当地 ggatc当地 agacgagatt 480
 ccagatgaga tgatccagc当地 cgtatctgt当地 gaagactt当地 tccatggaaag gcatctt当地 540
 gccatcccc ctgagagttt当地 ggat当地 tt当地 cagatggtat gccaggcc当地 catgaaacgt 600
 tggc当地 tttt当地 tgggctta tgctgc当地 acataa gttt当地 ct当地 ggatc当地 cactgaggat 660
 gatggattgg tgc当地 gaacat tgatgaaata aagttatcaa acctgaaaat 720
 ggagagcatc aagatagtaat cctcaaagag gatgttccag aacaggaaa ggtatgtc 780
 cgggaggatc aagtagagca gaacagtgaa ccatgtcc当地 gctctagttc tgaatctgt 840
 ctccagacag tggtaaagaa tgaaaggcc当地 aacgc当地 gagat caaaatctgg ctgcaaactt 900
 caggagctt aagctaaagca gtttataaag aaagacactg cc当地 acctt当地 gccc当地 tgaac 960
 tggc当地 tagca agttt当地 gt当地 tac ct当地 gcaagac tggat当地 gtc当地 aacaggaaa 1020
 ttatttctt当地 gaatgaaata cgacacagg tggat当地 ct当地 tt当地 tggat当地 tggat当地 1080
 caggccactt acaggagc当地 tccc当地 taatg gatccat当地 tggat当地 ct当地 tggat当地 1140
 caagtggaaac tc当地 attt当地 tggat当地 tggat当地 tggat当地 tggat当地 1200
 agattt当地 gctt当地 atgaaaggc当地 gttt当地 tggat当地 tggat当地 tggat当地 1260
 tttc当地 agtcaaaaagagaag aagagtggat gggatgca ggtt当地 ct当地 tggat当地 tggat当地 1320
 gtatgaaact ttctc当地 tggat当地 tggat当地 tggat当地 tggat当地 tggat当地 1380
 gtgtggtt当地 catttggcc当地 ctttccglocal tggat当地 tggat当地 tggat当地 tggat当地 1440
 ttc当地 atttctt当地 ttagctgca gttt当地 tggat当地 tggat当地 tggat当地 tggat当地 1500
 tgtgactt当地 ct当地 tggat当地 tggat当地 tggat当地 tggat当地 tggat当地 1560
 acccagggtt atttgc当地 atggat当地 tggat当地 tggat当地 tggat当地 tggat当地 1620
 cttgat当地 tggat当地 tggat当地 tggat当地 tggat当地 tggat当地 1680
 cttccagaaac ct当地 cccgca ggc当地 catc当地 acgg local aaggctt当地 tggat当地 tggat当地 1740
 acaggcccc tggccctat gttt当地 tggat当地 tggat当地 tggat当地 tggat当地 1800
 tgctccctt当地 ttccat当地 tggat当地 tggat当地 tggat当地 tggat当地 1860
 ggctt当地 tggat当地 tggat当地 tggat当地 tggat当地 tggat当地 1920
 atgtctgtca caggcgggaga gattaacaga tggat当地 tggat当地 tggat当地 tggat当地 1980
 tgaat当地 tt当地 tggat当地 tggat当地 tggat当地 tggat当地 2032

<210> 101

WO 01/07471

PCT/US00/19948

<211> 1356
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4184320CB1

<400> 101

```
aatgaaaagca acaggagctg ctccggggac tgctttgcc agtacccaga atcagtgc 60
aggctcagaa atcctggata gaaagagcat tttataaaag agaatgtgtc cacatcatac 120
ccagcaccaa agacccccat aggtgttgcgt gtgggcgtct gataggccag catgtggcc 180
tcaccccccag tatctccgtg cttcagaatg agaaaaatga aagtgcgc 240
acatccagtc taaaagtgg tccatcagca aacacactca actcagccct acggatgctt 300
ttgggaccat tgagttccaa ggaggtggcc attccaacaa agccatgtat gtgcgagtat 360
ctttgtatc aaaacctgtat ctcctttaac acctgtatgac caaggaatgg cagttggagc 420
ttcccaagct ttcatcttgcgt gcctgcagaa ctttgaactc cagccaaaac 480
tcaagcaagtttggggaa gggctcatca aagcagctat gacaactgga gcgtggat 540
tcactggagg gtttaacaca ggtgttattc gtcatgttgcgt cgatgcctt aaggatcatg 600
cctctaagtc tcgagggaaat atatgcacca taggtattgc cccctggggaa attgtggaaa 660
accaggagga cctcatttggaa agagatgttgcgt tccggccata ccagaccatg tccaatcccc 720
tgagcaagct cactgttctc aacagcatgc attccccattt cattctggct gacaacggga 780
ccactggaaa atatggagca gaggtgaaac ttcaagagaca actggaaaag catatttac 840
tccagaagat aaacacaaga tgcctgcgt ttttctcttgcgt tgactcccg 900
cattttgggg tagttgccat ttagactcgttggaaatcgg tcaagggtgtt cctgtgggt 960
cactcatagt ggaaggagga cccaaatgtga tctcgattgtt tttggagtac ttccgagaca 1020
cccctccgtt ggcagggtt gtctgtatggggcgttggatggacggcatcgacatcctggcctt 1080
ttgggcataaa atactcagaa gaaggccgggtt aggttaactttt ccaggccccca tggaaagaacc 1140
ctaaaggctgttggaaacagc agggtatgttgcgttggattatgtt tttcagtagc tcaaccaaga 1200
cctcaaatca aaacaagcta tgaacaaattt gtctaaaaaaa tgtctgtcat gggagggtgt 1260
tggtaagaa cagagaaaca tattctaaat gtcctgtgaa gtggaaattt ctatgaaagc 1320
tacacggata ataaaaagggttggaaaag agagga 1356
```

<210> 102
<211> 580
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4764233CB1

<400> 102

```
cacaacgcag gcaccgactt cagttgtgcattt gttcccttggaa cacctgcctc agtgtgc 60
ttcactgggc atcttccctt cggccccctt gcccacgtgg tgaccgctgg ggagctgtga 120
gagttgtgagg ggcacgttcc agccgtctgg actctttctc tcctactgtgg acgcagcc 180
taggttccgca ggcaggcttcccggaaactt gaaatagtga aatatgaggat ggcgaggaag 240
atcaacatataaggcccttaggc caagaagaatggggcacttgcgttgcgtat 300
gtttaacaccactgtatggaaag agcctaaaga agagaaacca cccactaaaaa gtcggaaatcc 360
tacacctgtat cagaagagag aagatgtatggggcacttgcgttgcgtat 420
ggaaaggccgat ctccaggagc tatgtcagac aaagactggggcacttgcgttgcgtat 480
tgcgtcaag gggaaagatc taccaaaaagc agagcactttt aaaaatgcctc aagcaggtga 540
aggaaatca caggttaaa ggaagataag ctgaaacaac 580
```

<210> 103
<211> 1487
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4817352CB1

WO 01/07471

PCT/US00/19948

<400> 103

ccgggaggcc ggggtctcg gtggccgccc gcccagggc tggacggca caggatgggg 60
 aaggcgaagg tccccgcctc caagcgcgcc ccgagcagcc ccgtggctaa gccgggtcct 120
 gtcaagacgc tcactcgaa gaaaaacaag aaaaaaaaaa gttttggaa aagcaaggcg 180
 cgggaagtaa gcaagaagcc agcaagcggc cccgggtctg tggcgacc tccaaaggca 240
 ccagaagact tttctcaaaa ctggaggcg ctgcaagagt ggctgctgaa aaaaaaatct 300
 caggccccag aaaagcctct tgtcatctct cagatgggtt cccaaaagaa gcccaaatt 360
 atccagcaaa acaaaaaaaga gacctcgccct caagtgaagg gagaggagat gccggcagga 420
 aaagaccagg aggccagcag gggctctgtt cttcaggtt ccaagatgga caggaggcg 480
 ccagtacctc gcacccaaggc cagtggaaaca gacacaata agaaaggaac caaggaaagg 540
 acaaattggtg atattgttcc agaacgagggg gacatcgagc ataagaagcg gaaagctaag 600
 gaggcagccc cagccccacc caccggggaa gacatctggt ttgacgacgt ggaccaggcg 660
 gatatcgaaat ctgccatagg tccagaggcg gccaagatag cgaggaaaca gttgggtcag 720
 agcgaggcgca gctgcagct cagctcggtt aaagagcagg ctttcggcgg cctgacaaga 780
 gccttagct tggactgtga gatgggtggc gttggcccta agggggagga gacatggcc 840
 gcccgtgtt ccatcgaa ccgtatggg aagtgcgtt atgacaaga cgtcaaaacca 900
 accgagccccg tgacggacta taggacagcg gtcagtggta ttccggctgaa gAACCTCAAG 960
 caggggagaag agtttgaagt tggcagaag gaagtggcag agatgctgaa gggcagaatt 1020
 ctatggggc acgctctgca taatgaccta aaggtaatctt ttcttgatca tccaaaaaaag 1080
 aagattcggg acacacagaa atataaacct ttcaagatgc aagtaaagag tggaaaggccg 1140
 tctctgagac tactttcaga gaagatcctt gggctccagg tccagcaggc ggacactgt 1200
 tcaattcagg atgcccaggc agcaatgagg ctgtacgtca tggtaagaa ggagtggag 1260
 agcatggccc gagacaggcg cccctgctg actgctccag accactgcg tgacgacgcc 1320
 tagcagtctt gcccgtctc tgctggcgcc cgcctacaga gcaatgtga ccagtccacag 1380
 ggacagatca catctccca gaggcggcaac tctggtaaaa cctttcaga atcatggcag 1440
 agggcgtgg cgtggcgta ctgagaagac ctccctcggtt ttgacga 1487

<210> 104

<211> 2257

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5040573CB1

<400> 104

gcgccggctc cggctgcagt tccgggtcc ctccggccacc gaagccaccc tgccctgg 60
 aaagggctcc cgcaccgccc ggtgtcccc atctgcctgg cgttgtgcgc agagctggaa 120
 agcatggctt ttataaatga attctgattt tggggagcag atgccaactt agagctcgt 180
 accaatctct ctgtctttaa aagatgaggt gacttggta tttccctgga aaattatagg 240
 tgcccagcta agacctgaat gccatcaccc tccccaggcc tctgcagttt tctcggtg 300
 aacccttgcgtt ggattttgtt ttgttgcgaa aatggcgatg atcgaattgg gttttggaaag 360
 acagaattttt catccattaa agaggaagag ttcattgctg ttgaaactca tagctgtt 420
 ctttgtgtt cttctttttt gtgaattttt aatcttacat ttagcgatct ttcagtgtaa 480
 ttggcctgaa gtggaaacca cagccctctgaa tggtaacacg accacacgtg agcctgtgct 540
 caaaggccatg tttttggctg acaccattt gctttgggaa ttccctaggcc actggctgga 600
 caaattacga agggaatggc agatggagag agcgttccag acagctctgt gtttgcgtca 660
 gcccggaaatgc gtcttcatcc tggggatattt ctgtatgaa gggaaatggta gccccctgaa 720
 ggcctggcg gatgtgtgg agcggtttca gaaaatgttc agacacccaa gtcatgtaca 780
 gctgaaggta gttgtggaa accatgacat tggcttccat tatgagatga acacataaa 840
 agtagaaacgc ttgtggaaatg tggcgtctc tgaaagactg ttttcttggaa aaggcattaa 900
 ctttgcgtatg gtcaacagcg tggcgctgaa cggggatggc tggcgtatct gctctgaaac 960
 agaaggcagag ctcattgaaatg tttctcaccatg actgaactgc tcccgagagc aggcacgtgg 1020
 ctccagccgg tggcgtggaa ggcctctgtt gcccacgtct gcccctgtcc tcctgcagca 1080
 ttatccctcg tatcgagaaa gtgtatgtt ggtttcttggaa gaagacgctg ctcctccaga 1140
 ggaaaggggac atcccaatttta aggagaacta tgacgtgtt tcacgggagg catcacaaaa 1200
 gctgtgtgg tggctccagc cgccctgtt tctcagtgcc cacacgcaca gcccctgcga 1260
 ggtgcaccac gggggccgg tcccccggact cagcgccca tctttcagtt ggaggaacag 1320
 aaacaaacccc agtttcatca tgggttagcat caccggccaca gactacaccc tctccaagt 1380
 ctacctccca cgtgaggatg tggttttgtat catctactgt ggagtggtgg gtttcttctgt 1440
 ggtcctcaca ctcactcact ttggcttctt agcctcacct ttctttctg gtttgaactt 1500
 gctcgaaaag cgtaagacaa gatgaagagc aggcgcattt ataaatatca aagcccaaga 1560

WO 01/07471

PCT/US00/19948

aatggaaacct tgggcagaga tcatagtttaga atcaagtggc tgatgagacc aattacaggc 1620
 cgtctctctg cacagcacag aaattctcaa tcactgaaat gagtaactgc aaaataaata 1680
 gttgattgtt ctgttctcat gctataaaaag tggacaggta ctctacaaca aatctgtttt 1740
 ctcatttttca tcaaataatat gtatcatcaa aggttgcattc tgtacagttt gtaaatgcta 1800
 ttaatgtcgta cactcacatg cacgacagtc cttgttcccc caggaaggcc ctggtgccc 1860
 cagcacacac ttgggattat gtgtatacat aaataaaat tggctgttt ccctttccct 1920
 gtgaagtggc tctcaaattc ctatgtactg taaagctgtt cccttaaaag tacagatgtg 1980
 gccggcaca gtggctaca cctgtaatcc cagcactttg ggaggctgag gcgggtggat 2040
 cacttgaggc caggagttca agaccagcc gccaacatg gtgaaacctc gtctccgcta 2100
 gaaatacataa attagccaa gcattgttgc aagtgcctat aataccagct gaggctgagg 2160
 caggagaatc ctttgagccc gggaggccgaa gttgcagtg agccaagatc atgccactgc 2220
 actctagccct gggcaacaga gtgagtcgt ctcaaac 2257

<210> 105
 <211> 2550
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5627029CB1

<400> 105

cggaaagtatt cccattttgc gttgtctggg ctcggcggca gccgggctcg gagtggacgt 60
 gcccactatgg ggtcgccaa gaagcatcgcc ggagagaagg aggccggccgg gacgacggcg 120
 gcggccggca cccgggggtgc caccgagcag cccggccggc accggaaaca caaaaaaacac 180
 aagcaccggc gtggcgccag tggcggttagc ggtggcgaaac gacggaagcg gagccggaa 240
 cgtggggggcg agcgccggag cggggccggc gggggccgaag ctgaggcccg gagcagcacg 300
 cacggggccgg agcgccggcca ggcagagccc tccgagccgc gcgtgaagcg ggagaagcgc 360
 gatgacggcgt acgaggccgc tgccagctcc aaaactagct caggcgatgc ctcctactc 420
 agcatcgagg agactaacaa actccggcga aagtggggc tggaaaccctt ggaggttaat 480
 gccatcaaga aggaggccgg caccaggag gagcccgta cagctgtatgt catcaaccct 540
 atggccttgc gacagcgaga ggagctgccc gagaagctgg cggctgccaa ggagaagcgc 600
 ctgctgaacc aaaagctggg gaagataaaag accctaggag aggatgaccc ctggctggac 660
 gacactgcag cctggatcga gaggagccgg cagctgcaga aggagaagga cctggcagag 720
 aagagggcca agttacttggg ggagatggac caagagttt gtgtcagcac tctggctggag 780
 gaggagttcg ggcagaggcg gcaggacctg tacagtgcgg gggacctgca gggcctcact 840
 gtggagcatg ccattgattc cttccgagaa gggagacaa tgattcttac cctcaaggac 900
 aaaggcgtgc tgcaggagga ggaggacgtg ctggtaacgc tgaaccttgtt ggataaggag 960
 cgggcagaga aaaatgttgg gctgcggaa aagaagctcg actacactgc ctagccgag 1020
 gacgagagcg tggacgaccc ggcgcagcaaa aaacctcgct ctatcctgtc caagtatgac 1080
 gaagagcttgc aagggggagcg gccacattcc ttccgcttgg agcaggccgg cacggctgtat 1140
 ggcctgcggg agcggggatc ggaggagatc cgggccaacgc tgccgctgca ggctcagtc 1200
 ctgagcagac tggggccccc gctggcttcc gaataccctca cgcctgagga gatggtgacc 1260
 ttaaaaaaa ccaagcggag ggtgaagaaaa atccgcagaaggagaaggatgttgc 1320
 cgggcagatg acttgctgcc tctcggggac cagactcagg atggggactt tggttccaga 1380
 ctgcggggac ggggtcgcc ccgagtgtcc gaagtggagg aggagaagga gcctgtgcct 1440
 cagccctgc cgtcggacga caccggatgt gagaacatgg acatcagtga tgaggaggaa 1500
 ggtggagctc caccggccggc gtccccgcag gtgctggagg aggacgaggc ggagctggag 1560
 ctgcagaagc agctggagaa gggacgccc ctgcgacagt tacagcagct acagcagctg 1620
 cgagacagtgc gcgagaaggat ggtggagatt gtgaagaagc tgagatctcg ccagcggggc 1680
 tgggaggagg atgaggatcc cgagcggaaag gggccatcg tggtaacacgc cacgtccgag 1740
 ttctgcggca ccttggggga gatccccacc tacgggctgg ctggcaatcg cgaggagcag 1800
 gaggagctca tggactttga acgggatgag gagcgcctcg ccaacgggtt ccctgaatct 1860
 gacggggagg agaacatcg ctggagcagc gtgaacctgg acgaggagaa gcagcagcag 1920
 gatttcctcg ctccctccac caccatctg gacgagaaac cgatcgtgaa taggggctg 1980
 gcagctgccc tgctctctgt tcagaacaaa gggctgtgg agaccacagt gcagaagggtg 2040
 gcccgggtga aggcccccaa caagtcgtc ccctcagccg tggactgtcat cgaggataag 2100
 atggccatcg atgacaagta cagccggagg gaggataacc gaggcttac acaggacttc 2160
 aaggagaagg acggctacaa acccgacgtt aagatcgaat acgtggatga gacggggccgg 2220
 aaactcacac ccaaggagggc ttccggcag ctgtcgacc gcttccatgg caagggtctca 2280
 ggcaagatga agacagagcg gcggatgaag aagctggacg aggaggcgct cctgaagaag 2340
 atgagctcca gcgacacgccc cttggccacc gtggccctgc tccaggagaa gcagaaggct 2400

WO 01/07471

PCT/US00/19948

cagaagaccc cctacatcggt gtcagcggc agcggcaaga gcatgaacgc gaacaccatc 2460
 accaagtgac agcgcctcc cgccccggcc ctgcctcaac cttcatatta aataaagctc 2520
 ctccttatt ttttcaaaaaaaa aaaaaaaaaaa 2550

<210> 106
 <211> 2566
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5678487CB1

<400> 106
 cggctcgagg tgaggactac aactcccgac gtgcaaagcg agggccagtg ggtgggaaga 60
 gcccccaaga gctctgtcg ggattctagg ctcccctgtg acagccgcgg caggaagcag 120
 gcgggcgtc cccggccaca ggcctgtgt tctcgaaagg gagaagctg gacattccc 180
 cacctaactc ccagctctgg gcctagagt cgtgcattgc gaagtccccg gagaactcta 240
 ccctggagga gattctgggg cagtatcaac ggagtctccg ggaacatgcc agcagaagca 300
 ttccaccaact gacatgtgcc ctgaaagaag gcatgttcac tattggagaa gatgcaccaa 360
 atctttcttt tagcaccagt gtggaaatg aggacgcagg gacagcctgg cccgaattac 420
 aacagagcca tgctgttaat cagctaaag atttgttgcg ccaacaagca gataaggaaa 480
 gtgaagtatc tccgtcaaga agaagaaaaa tgcgtccctt gaggtcatta gaacatgagg 540
 aaaccaatat gcctactatg cacgaccttg ttctactat taatgaccag tctcaatata 600
 ttcatcattt agaggcagaa gttaagttct gcaaggagga actctctgga atgaaaaata 660
 aaatacaagt agttgtgcgt gaaaacgaag ggctccagca acagctaaaa tctcaaagac 720
 aagaggagac actgagggaa caaacacttc tggatgcattt cgaaaaacatg cacaattctt 780
 ggattacaac aggtgaagat tctgggtgg gcgaaaacctc caaaagacca tttccatg 840
 acaatgcaga ttttggcaaa gctgcattc ctggtgagca gctagaactg gagaagctaa 900
 aacttactta tgaggaaaatg tgtgaaattt aggaatccca attgaagttt ttgaggaacg 960
 acttagctga atatcagaga acttgtgaag atcttaaaga gcaactaaag cataaagaat 1020
 ttcttcggc tgctaatact tgtaaccgtg ttgggtgtct ttgtttgaaa tgcgttcagc 1080
 atgaagctgt tctttcccaa acccatacta atgttcatat gcaagaccatc gaaagactgg 1140
 tttaaagaaaag agatgactt atgtctgcac tagttccgt aaggagcagc ttggcagata 1200
 cgcagcaaaag agaagcaagt gcttatgaac aggtgaaaca agttttgcaaa atatctgagg 1260
 aagccaaattt tgaaaaaacc aaggctttaa tccagtgtga ccagttgagg aaggagctgg 1320
 agaggcaggc ggagcgaattt gaaaaagatc ttgcattca gcaagagaaa agggccattg 1380
 agaaagacat gatgaaaaatg gaaataacaa aagaaaggaa gtacatgggat tcaaagatgt 1440
 tgcgttcgtc tcagaatatt gcccactgg aggcccaggt ggaaaaggaa atcaaaggaaa 1500
 agatttcagc tattatcaa ctggaggaaa ttcaaaagcc gctggcttct cgggaaatgg 1560
 atgtcacaaa ggtgtgtgg gaaatgcgt atcagctgaa taaaaccaac atggagaagg 1620
 atgaggcaga aaaggagcac agagagttca gagaaaaac taacaggat cttgaaatta 1680
 aagatcagga aatagagaaa ttgagaatag aactggatga aagcaaacaa cacttggAAC 1740
 aggagcagca gaaggcagcc ctggccagag aggagtgcct gagactaaca gaactgtgg 1800
 gcaaatctga gcaccaactg cacccatca gacaggaaaa agatagcatt cagcagagct 1860
 ttagcaagga agcaaaggcc caagcccttc aggcccagca aagagagcag gagctgacac 1920
 agaaagataca gcaaatggaa gcccagcatc acaaaactgaa aatgaacacag tattttgtgc 1980
 tgacccatca gaatacattt ttgacaaaatg taaaggaaga atgctgtaca ttgccaaga 2040
 aactggaaaca aatctctcaa aaaaccatg ctgaaatagc tcaactcagt caagaaaaaa 2100
 ggtatacata tgataatattt gggaaatggc agagaagaaa tgaagaatgg gaggaaacagt 2160
 gtgtccagca tgggagagta catgagacga tgaagcaag gctaaggcag ctggataaggc 2220
 acagccaggc cacagcccaag cagctggc agctccctcag caagcagaac cagttctcc 2280
 tggagaggca gggctgtcg gaagaggtgg accggctgcg gaccaggatc cccagcatgc 2340
 cacaatctga ttgctgaccc ggtggaaaca ggtgaaata aatgatttac aaagagatat 2400
 ttacatccat ctggtttaga cttaatatgc cacaacgcac caccaccc tcagggtgac 2460
 accgcctcag cctgcagtgg ggctggcttccatcaacgcg ggcgctgtcc cccgcacgcag 2520
 tcgggctgga gctggagtct gactctagct gagcagagct cctgg 2566

<210> 107
 <211> 3022
 <212> DNA
 <213> Homo sapiens

WO 01/07471

PCT/US00/19948

<220>

<221> misc_feature

<223> Incyte ID No: 5682976CB1

<400> 107

gctttcctta ttttttaaa tgttctataa tgatatacaag actatagaac tatctgttt 60
 atgacacttt gaaaagattc aggttagggtc tcccctcca cccggctca gcaagacca 120
 gtctcggtt ggctcctgcc cacacctgtt gtgggacgtg agaaaaaggt ccctcggct 180
 ggaggacccg tcccggctgc ggagtgccta cctggaaaga agagaattt aatacaatct 240
 aaaacttcaa gcaaccctta atgtgcataa tggtgtgtt ttggaaatga 300
 cactggagaa tatattttat ctggctcaga tgacacccaa tttagtaatta gtaatccctt 360
 cagcagaaag gtttgacaa caattcgttc agggcaccga gcaaacatat tttagtgc 420
 gttcttacat tgcataaatg ataaacagat tgcatactgc tctggagatg gagtaatatt 480
 ttatcaccaac gttgagcaag atgcagaaac caacagacaa tgccaaatcc cgtgtcatta 540
 tggaaactt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 600
 tgaagatgga actgttagt gtttgatc acgcataaaa actagctgc caaaagaaga 660
 ttgttaaagat gatattttaa ttaactgtcg acgtgcgtcc acgtctgttgc 720
 accaatacca tattacctt ctgtgggtt ttctgacaggc tcagtgacaa tatatgatcg 780
 gcgaatgctg ggcacaagag ctacaggaa ttatgcaggc cgagggacta ctggaaatgg 840
 tgccccctttt attccttccc atcttataaa taagtccctgc agagtgcacat ctctgtgtt 900
 cagtgaaagat ggtcaagaga ttctcggttag ttactttca gattacatata atcttttga 960
 cccgaaagat gatacagcac gagaacttta aactccctt gccggaaagaga gaagagaaga 1020
 gttgcgacaa ccaccaggta agcgtttgag attcgtgggtt gattgggtca gatctggacc 1080
 cagagcaagg ccggagagtg aacgagaacg agatggagag cagagtccca atgtgtcatt 1140
 gatgcagaga atgtctgata tgtttatcaag atggttgaa gaagcaagtg aggttgcaca 1200
 aagcaataga ggacgaggaa gatctcgacc cagaggtgga acaagtcaat cagatatttc 1260
 aactcttcct acggtcccat caagtcctga ttggaaatg agtgcacatgt caatgaaatg 1320
 agatactcca gctgaacaat ttcttcagcc ttctacatcc tctacaatgt cagctcaggc 1380
 tcattcgaca tcatctccca cagaaagccc tcattctact cttttgttat cttctccaga 1440
 cagtgaacaa aggcaagtctg ttgaggcatt tggacaccac acacatcattc agtctgattc 1500
 tccttcttct gtggtaaca aacagctcg atccatgtca cttgacggc aacaggataa 1560
 caataatgaa aagctgagcc ccaaaccagg gacaggtgaa ccagttttaa gtttgcacta 1620
 cagcacagaa ggaacaacta caagcacaat aaaactgaac ttacagatg aatggagcag 1680
 tatagcatca agttcttagag gaattgggag ccattgcaaa tctgagggtc aggaggaatc 1740
 tttcgccca cagagctcag tgcaaccacc agaaggagac agtgcacatgttca 1800
 agaattcatca gaggatgtga caaaatataca ggaaggagta tctgcagaaa acccagttga 1860
 gaaccatatc aatataaacac aatcagataa gttcacagcc aagccattgg attccaaactc 1920
 aggagaaaaga aatgacctca atcttgatcg ctcttgcgg gttccagaag aatctgttcc 1980
 atctgaaaaa gccaaaggaaac cagaaacttc agatcagact agcactgaga gtgctaccaa 2040
 taaaaataac accaattctg agcctcagtt ccaaacagaa gccactgggc ttcaagctca 2100
 tgaagaaaaca tccaccaggg actctgctct tcaggacaca gatgacagtg atgatgaccc 2160
 agtcctgatc ccaggtgcaaa ggtatcgac aggcaccttgcggtt gatagacgcct 2220
 ccgtattcag gagttttca gacggagaaa agaaaggaaa gaaatggaa aattggatac 2280
 tttgaacattt agaaggccgc tagtaaaaat gtttataaa ggcacatcgca actccaggac 2340
 aatgataaaa gaagccaaatt tctgggggtgc taactttgtt atgagttgggt ctgactgtgg 2400
 ccacattttc atctgggatc ggcacactgc tgagcattt atgcttctgg aagctgtataa 2460
 tcatgtggta aactgcctgc agccacatcc gtttgaccca atttttagcc catctggcat 2520
 agattatgac ataaagatct ggtcaccatt agaagagtc agatgttttta accgaaaaact 2580
 tgctgtgaa gttataactc gaaacgaact catgtggaa gaaacttagaa acaccattac 2640
 agttccagcc tctttcatgt tgaggatgtt ggcttcactt aatcatatcc gagctgaccg 2700
 gttggagggt gacagatcg aaggctctgg tcaagagaat gaaaatgagg atgaggataa 2760
 ataaactctt tttggcaagc acttaaatgt tctgaattt gtataagaca ttattatata 2820
 tttttctttt acagagctt agtgcattt taagggtatg gtttttggag tttttccctt 2880
 tttttggat aacctaacat tggttggaa tgattgtgtg catgaatttgg gtagattgt 2940
 taaaacaaaaa cttagcagaat gtttttaaaa ctttttgcgg ttttttgcgg gtagattgt 3000
 atgcaaaatg caatatttc cc 3022

<210> 108

<211> 2787

<212> DNA

<213> Homo sapiens

<220>

WO 01/07471

PCT/US00/19948

<221> misc_feature

<223> Incyte ID No: 5992432CB1

<400> 108

gtcgtcgaaa agaagtcaat aacgtgggcc tgcgtccaa aaatgattt accaatagaa 60
 aacgggtctg gtcggagggg gcgggcccgc agtggtagac gtcataagcg cgcgactctc 120
 tcctgtacct gggcatccag aaaaatggtg gtgatggcgc gactttcgcg gccccagcgg 180
 cccgacccctg tcttcgagga agaggaccc ccctatgagg agaaatcat gcggaaaccaa 240
 ttctctgtca aatgtcggtc tcgctacatc gagttcaaac agggcgcccc gaagcccagg 300
 ctcaatcagc tatacgagcg ggcactcaag ctgctccct gcaagctacaa actctggta 360
 cgataacctga aggcgcgtcg ggcacaggtg aagcatcgct gtgtgaccga ccctgcctat 420
 gaagatgtca acaactgtca tgagaggccc tttgttctca tgacacaagat gcctcgctg 480
 tggctagatt actgcccatt cctcatggac cagggcgcg tcacacacac ccgcccacc 540
 ttgcgaccgtg ccctccgggc actgcccattc acgcagact ctcgaattttt gccccctgtat 600
 ctgcgttcc tgcgtcaca cccactgcct gagacagctg tgcgaggcta tcggcgcttc 660
 ctcaagctga gtcctgagag tgcaagaggag tacatttggat acctcaagtc aagtgaccgg 720
 ctggatgagg ccccccagcg cctggccacc gtggtaaacg acgagcgttt cgtgtctaag 780
 gccggcaagt ccaactacca gctgtggcac gagctgtcg acctcatctc ccagaatccg 840
 gacaagggtac agtccctcaa tggacgaccc atcatcccg ggggcctcac ccgcttcacc 900
 gaccagctgg gcaagctcg gtgttctctc gccgactact acatcccgca gggccatttc 960
 gagaaggctc gggacgtgtc cgaggaggcc atccggacag tggatgaccgt gcgggacttc 1020
 acacagggtt ttgacagacta cgcccagttc gaggagagca tggatgctgc aaagatggag 1080
 accgcctcg agctggggcg cgaggaggag gatgatgtgg acctggagct gcgcctggcc 1140
 cgcttcgagc agctcatcg ccggcgcccc ctgctctca acagcgtt gctgcgccaa 1200
 aaccacaccc acgtgcacga gtggcacaag cgtgtcccc tgcaccaggg ccccccggg 1260
 gagatcatca acacacacac agaggctgtc cagacggtgg acccccttcaa ggccacaggc 1320
 aagccccaca ctctgtgggt ggcgtttgcc aagtttatg aggacaaacgg acagctggac 1380
 gatgcccgtg tcatcctgga gaaggccacc aaggtgaact tcaagcagggt ggatgacctg 1440
 gcaaggctgt ggtgtcagtg cggagagctg gagtcccgac gggccgagta ctttgatggt 1500
 ttgcggctgc tgcgaaaggc cacggcgctg tcactgaagg tctggtccat gtcgcccac 1560
 tcagagcccc tgcagaaccg cgttacaag accaaggcccg tggacgaccc catcctggac 1620
 ctggaggaga gcctcggcac cttccagtcc aactatgcca tggatcggc ggagcacaag 1680
 ctgcgtatcg caacacccca gatcgtcatc cgcggcatct cgtgttcaa gtggcccaac 1740
 tacttcgagg agagcttcaa ggcgtacgag aaattcattt cccgctatgg gggccgcaag 1800
 gtgtccgaca tctggagcac ctacactgacc gctctggacg gctgccccccc aaaatatgcc 1860
 ctggagcggg cacgggacct gtttgaacag gaggaggagt ggggcctggc cccgcatgcc 1920
 aagaccttgt acctgtgtc cgacacagctg gtggagcccg cccagcagta tgacatgttc 1980
 atggccgtgt acgagcgtgc caccaggccc tatgggtca cccacaccccg cggcatctac 2040
 aacatctaca tcaagcgggc ggccgagatc cagcgcgtg agatgtgcct gcggtttgca 2100
 cagaaggcca ttgaggtgt gtcggacgag cggccccggg ccatctacag cttctgtctcc 2160
 gacatggagt gcaagctcg ggagattgac ttctggcaga cgtggaaaggc ttttgagggtc 2220
 cagatctgtc acccccccggac gaccggcgcc atgctgcgtt tccggcgcac cgtgcaggcc 2280
 cggcatggca atgaggacac catcaaggaa tcgcagatgc tcaaggtctc gggcagtgcc 2340
 acgtacaaca cgcaggtaa cttcatggcc acggccaccg tggatcggaccc tggatcggc 2400
 acggccaccg tggatcggaccc gggccctggg cagatggca tggacgacat gaagctgctg 2460
 gaacagcggg cagagcagct ggcggctgag gcccggccgtg accagccctt gccgcggcc 2520
 agcaagatcc tggatcggc tggatcggc gagtgcacgca tcccgaggagg agtggcaga gctggc 2580
 caggtaacc cggaggagat ccagctggcc gaggacgagg acgaggacga gatggacctg 2640
 gagcccaacg aggttcggct ggagcagcag agcgtgccag ccgcagtgtt tggagccctg 2700
 aaggaagact gaccggccc tccccctcc cccctccccca cccccctcccc aatacagcta 2760
 cgtttgtaca tcaaaaaaaaaaaaaaaa 2787