MLFCS

Vector Spaces: Definition, Examples & Span

Rajesh Chitnis

24th November 2022

Lecture attendance code:

51074662

Today's plan

- Definition of a vector space (revisited)
- Some examples of vector spaces
- Detour: why consider vectors?
- Span of a set of vectors
- ► Linear (in)dependence of a set of vectors
- Das medical management

Recall definition of a field F (Week 2)

fis a set with t and x

Examples of fields:

- **▶** {0, 1}
- ► Set of rational numbers Q
- ightharpoonup Set of real numbers $\mathbb R$

Let V be a set of vectors and F be any field. Then V is said to be a vector space over the field F if the following conditions hold:

For any vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and any scalars $r, s \in F$

- Commutativity of vector addition: $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$
- Associativity of vector addition: $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$
- (3) Existence of Additive identity: $\vec{0} \oplus \vec{v} = \vec{v}$
- Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} \oplus -\vec{x} = \vec{0}$
- Associativity of multiplication of scalar & vector: $r(s\vec{v}) = (rs)\vec{v}$
- Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} \oplus s\vec{v}$
- Distributivity of vector sums: $r(\vec{u} \oplus \vec{v}) = r\vec{u} \oplus r\vec{v}$
- (8) Existence of identity of multiplication of scalar & vector: $1\vec{v} = \vec{v}$

First, we need to define two operations for above 8 conditions to make sense:

- ▶ Vector addition: for each \vec{u}, \vec{v} a vector from \vec{V} is assigned to $\vec{u} \oplus \vec{v}$
- Multiplication of a scalar by a vector: for each $s \in F$ and $\vec{v} \in V$, a vector from V is assigned to $s\vec{v}$

nulliplication of two scalars is given by X from F

Note that multiplication of two vectors is not defined here!

Some consequences of the vector space conditions

Let V be a vector space over a field F. Then for every $s \in F$ and $\vec{v} \in V$, we have

- ightharpoonup Additive identity $\vec{0}$ is unique

- - $ightharpoonup s\vec{v} = \vec{0}$ implies s = 0 or $\vec{v} = \vec{0}$

Horder but not very creative)

Prove each of the above five using the 8 conditions given to us:

- (1) Commutativity of vector addition: $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$
- (3) Existence of Additive identity: $\vec{0} \oplus \vec{v} = \vec{v}$
- (4) Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} \oplus -\vec{x} = \vec{0}$
- Associativity of multiplication of scalar & vector: $r(s\vec{v}) = (rs)\vec{v}$
- Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} \oplus s\vec{v}$
- Distributivity of vector sums: $r(\vec{u} \oplus \vec{v}) = r\vec{u} \oplus r\vec{v}$
- Existence of identity of multiplication of scalar & vector: $1\vec{v} = \vec{v}$

Example 1 of a vector space

Every field F is a vector space over itself!

Fames with + and x

Take $F = \mathbb{Q}$ and verify each of the 8 conditions:

(F) is sameay +

- (1) Commutativity of vector addition: $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$
- (3) Existence of Additive identity: $\vec{0} \oplus \vec{v} = \vec{v}$
- (4) Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} \oplus -\vec{x} = \vec{0}$
- (5) Associativity of multiplication of scalar & vector: $r(s\vec{v}) = (rs)\vec{v}$
- (6) Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} \oplus s\vec{v}$
- (7) Distributivity of vector sums: $r(\vec{u} \oplus \vec{v}) = r\vec{u} \oplus r\vec{v}$
- (8) Existence of identity of multiplication of scalar & vector: $1\vec{v} = \vec{v}$

You will need to use the fact that \mathbb{Q} is a field.

Example 2 of a vector space

The set of 2-tuples of rational numbers is a vector space over the rational numbers:

▶ The set of 2-tuples of rational numbers is defined as
$$\mathbb{Q}^2 := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{Q} \right\}$$

Verify each of the 8 conditions for \mathbb{Q}^2 to be a vector space over \mathbb{Q} :

- (1) Commutativity of vector addition: $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$
- (3) Existence of Additive identity: $\vec{0} \oplus \vec{v} = \vec{v}$
- (4) Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} \oplus -\vec{x} = \vec{0}$
- (5) Associativity of multiplication of scalar & vector: $r(s\vec{v}) = (rs)\vec{v}$
- (6) Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} \oplus s\vec{v}$
- (7) Distributivity of vector sums: $r(\vec{u} \oplus \vec{v}) = r\vec{u} \oplus r\vec{v}$
- (8) Existence of identity of multiplication of scalar & vector: $1\vec{v} = \vec{v}$

You will just need to use the fact that $\mathbb Q$ is a field.

Example n of a vector space

The set of *n*-tuples of rational numbers is a vector space over the ational numbers:

The set of *n*-tuples of rational numbers is defined as $\mathbb{Q}^n := \left\{ (a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n \in \mathbb{Q} \right\}$ rational numbers:

$$\mathbb{Q}^n := \left\{ (a_1, a_2, \ldots, a_n) : a_1, a_2, \ldots, a_n \in \mathbb{Q} \right\}$$

Verify each of the 8 conditions for \mathbb{Q}^n to be a vector space over \mathbb{Q} :

- Commutativity of vector addition: $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$
- Associativity of vector addition: $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$
- Existence of Additive identity: $\vec{0} \oplus \vec{v} = \vec{v}$
- Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} \oplus -\vec{x} = \vec{0}$
- Associativity of multiplication of scalar & vector: $r(s\vec{v}) = (rs)\vec{v}$
- Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} \oplus s\vec{v}$
- Distributivity of vector sums: $r(\vec{u} \oplus \vec{v}) = r\vec{u} \oplus r\vec{v}$
- (8) Existence of identity of multiplication of scalar & vector: $1\vec{v} = \vec{v}$

You will just need to use the fact that \mathbb{Q} is a field.

Detour: Why consider tuples of rational numbers?

If you have not seen tuples of rational numbers such as \mathbb{Q}^2 or \mathbb{Q}^3 , then you might be wondering why would one want to consider this

 \blacktriangleright Why not just stick with the set \mathbb{Q} ?

Some potential applications/advantages of using tuples:

Netflix

AM AZON

Co-ordinale system (182 or 183)

Span of a set of vectors

- ▶ Let V be a vector space over a field F.
- ightharpoonup Let $\vec{v_1}, \vec{v_2}$ be two vectors in V
- ▶ We define Span $(\vec{v_1}, \vec{v_2}) := \{r_1\vec{v_1} \oplus r_2\vec{v_2} \mid r_1, r_2 \in F\}$
 - All possible linear combinations of $\vec{v_1}$ and $\vec{v_2}$
 - Span of $\vec{v_1}$ and $\vec{v_2}$

Poel
$$|0V_1|$$
 belong to Span (V_1, V_2) ?

Yes, pick $V_1 = |0\rangle & V_2 = 0$
 $V_1V_1 \oplus V_2V_2 = |0V_1| + 0V_2 = |0V_1| + 0$

- ▶ Exercise: Span $(\vec{v_1}, \vec{v_2})$ is a vector space over the field F.
- Simple verification of 8 conditions & using the fact that V is a vector space over F $\left(V_1V_1 \oplus V_2V_2\right) \oplus \left(S_1V_1 \oplus S_2V_2\right) = \left(Y_1+S_1\right) \overrightarrow{V_1} + \left(Y_2+S_2\right) \overrightarrow{V_2}$ $S(r_1 \overline{V_1}) + Sr_2 \overline{V_2}) = SV_1 \overline{W_1} + SY_2 \overline{V_2}$
 - In general, given any set of vectors from V we can define its span.

How to check if a given vector belongs to a span?

Consider the vector space \mathbb{Q}^3 over \mathbb{Q} .

► Consider the vectors
$$\vec{v_1} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$
, $\vec{v_2} = \begin{pmatrix} 5 \\ 6 \\ 10 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 11 \\ 300 \\ 14 \end{pmatrix}$ from \mathbb{Q}^3

- ▶ I want to check if the vector $\vec{w} = \begin{pmatrix} 41 \\ 12 \\ 110 \end{pmatrix}$ belongs to Span $(\vec{v_1}, \vec{v_2}, \vec{v_3})$
- ► How can we do that?

Is
$$\overrightarrow{w}$$
 in Span $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$?

Do there exist $Y_1, Y_2, Y_3 \in \mathbb{Q}$ s.t. $\overrightarrow{w} = Y_1 \overrightarrow{v_1} \oplus Y_2 \overrightarrow{v_2} \oplus Y_3 \overrightarrow{v_3}$?

R there exist $V_1, Y_2, Y_3 \in \mathbb{Q}$ s.t. $\binom{61}{12} = V_1 \binom{1}{3} + V_2 \binom{5}{6} + V_3 \binom{11}{300} \frac{11}{10}$

$$5.t | 41 = v_1 + 5v_2 + 11v_3$$

$$12 = 3v_1 + 6v_2 + 300v_3$$

$$10 = 4v_1 + 10v_2 + 14v_3$$

Linear (in)dependence of a set of vectors

- \blacktriangleright Let V be a vector space over a field F.
- A set of vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \in V$ is linearly independent if $r_1\vec{v_1} \oplus r_2\vec{v_2} \oplus \dots \oplus r_n\vec{v_n} = \vec{0}$ implies $r_1 = r_2 = \dots = r_n = 0$
 - ▶ Otherwise, the set of vectors is said to be linearly dependent
- ightharpoonup Does $\vec{0}$ always belongs to the span of any set of vectors?
 - Yes! Take $V_1 = V_2 = V_3 = \dots = V_n = 0$. Then $V_1 \overrightarrow{V_1} \oplus V_2 \overrightarrow{V_2} \oplus \dots \oplus V_n \overrightarrow{V_n} = \overrightarrow{V_{11}} + 0 \overrightarrow{V_{21}} + 0 \overrightarrow{V_{21$
- ▶ Therefore, a set of vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \in V$ is linearly independent if the only way to obtain $\vec{0}$ in its span is by taking all the scalars to be 0
- ► Question: Can $\vec{0}$ belong to any set of linearly independent $\vec{0}$ vectors? Say $\vec{1} = \vec{0}$
 - Nol Take $V_1 = 10$ and $V_2 = V_3 = -- = V_n = 0$
- ► <u>Next slide</u>: How can we check if a given set of vectors is linearly independent or not?

= 7+0++7

Checking linear independence of a set of vectors

Consider the vector space \mathbb{Q}^3 over Q.

► Consider the vectors
$$\vec{v_1} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$
, $\vec{v_2} = \begin{pmatrix} 5 \\ 6 \\ 10 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 11 \\ 300 \\ 14 \end{pmatrix}$ from \mathbb{Q}^3

- ▶ Want to check if these three vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ are linearly independent
- ► How can we do that?

S.t.
$$v_1 \sqrt{1} + v_2 \sqrt{2} + v_3 \sqrt{3} = 0$$

and not all of v_1, v_2, v_3 and 0?

$$v_1 \begin{pmatrix} \frac{1}{3} \\ \frac{1}{4} \end{pmatrix} + v_2 \begin{pmatrix} \frac{5}{6} \\ \frac{10}{10} \end{pmatrix} + v_3 \begin{pmatrix} \frac{11}{300} \\ \frac{10}{14} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(5) If $\exists c_1 \text{ solution with not all three of } v_1, v_2, v_3 \text{ being } 0$

Then linearly dependent of the linearly independent.

I Are there V12 Y2, Y3 EQ

Summary of the lecture

- Definition of a vector space (revisited)
- Some examples of vector spaces
 - Every field over itself
 - $ightharpoonup \mathbb{Q}^2$ over \mathbb{Q}
 - $ightharpoonup \mathbb{Q}^3$ over \mathbb{Q}
- Detour: why consider vectors?
- Span of a set of vectors
 - ► How to check if a given vector belongs to span of a set of vectors?
- ► Linear (in)dependence of a set of vectors

