# Lecture 19 Additional Material: Optimization

# CS109A Introduction to Data Science Pavlos Protopapas and Kevin Rader



# Outline

# **Optimization**

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization



# Learning vs. Optimization

Goal of learning: minimize generalization error In practice, empirical risk minimization:

$$J(\theta) = \mathbf{E}_{(x,y) \sim p_{data}} \left[ L(f(x;\theta), y) \right]$$

$$\hat{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})$$

Quantity optimized different from the quantity we care about



# Batch vs. Stochastic Algorithms

#### Batch algorithms

Optimize empirical risk using exact gradients

#### Stochastic algorithms

Estimates gradient from a small random sample

$$\nabla J(\theta) = \mathbf{E}_{(x,y) \sim p_{data}} \left[ \nabla L(f(x;\theta), y) \right]$$

Large mini-batch: gradient computation expensive

Small mini-batch: greater variance in estimate, longer steps for convergence



# **Critical Points**

#### Points with zero gradient

2<sup>nd</sup>-derivate (Hessian) determines curvature





#### Stochastic Gradient Descent

Take small steps in direction of negative gradient Sample *m* examples from training set and compute:

Update parameters: 
$$g = \frac{1}{m} \sum_{i} \nabla L(f(x^{(i)}; \theta), y^{(i)})$$

$$\theta = \theta - \varepsilon_k g$$

In practice: shuffle training set once and pass through multiple times



#### Stochastic Gradient Descent



Oscillations because updates do not exploit curvature information

Goodfellow et al. (2016)



## Outline

# **Optimization**

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization



#### Local Minima





#### Local Minima

Old view: local minima is major problem in neural network training

#### Recent view:

- For sufficiently large neural networks, most local minima incur low cost
- Not important to find true global minimum



#### Saddle Points



Recent studies indicate that in high dim, saddle points are more likely than local min

Gradient can be very small near saddle points



# Saddle Points

#### SGD is seen to escape saddle points

- Moves down-hill, uses noisy gradients



#### Second-order methods get stuck

solves for a point with zero gradient



# Poor Conditioning

Poorly conditioned Hessian matrix

High curvature: small steps leads to huge increase
 Learning is slow despite strong gradients

Oscillations slow down progress





## No Critical Points

Some cost functions do not have critical points. In particular classification.





#### No Critical Points

## Gradient norm increases, but validation error decreases



Convolution Nets for Object Detection





Linear activation

$$\mathbf{h}_1 = \mathbf{W}\mathbf{x}$$

$$\mathbf{h}_i = \mathbf{W}\mathbf{h}_{i-1}, \quad i = 2...n$$

$$y = \sigma(h_1^n + h_2^n)$$
, where  $\sigma(s) = \frac{1}{1 + e^{-s}}$ 



Suppose 
$$\mathbf{W} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
:

$$\begin{bmatrix} h_1^1 \\ h_2^1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \cdots \qquad \begin{bmatrix} h_1^n \\ h_2^n \end{bmatrix} = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y = \sigma(a^{n}x_{1} + b^{n}x_{2})$$

$$\nabla y = \sigma'(a^{n}x_{1} + b^{n}x_{2}) \begin{bmatrix} na^{n-1}x_{1} \\ nb^{n-1}x_{2} \end{bmatrix}$$



Suppose 
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Case 1: a = 1, b = 2:

$$y \to 1, \quad \nabla y \to \begin{bmatrix} n \\ n2^{n-1} \end{bmatrix}$$
 Explodes!

Case 2: 
$$a = 0.5$$
,  $b = 0.9$ :

$$y \to 0, \quad \nabla y \to \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Vanishes!



Exploding gradients lead to cliffs

Can be mitigated using gradient clipping





# Outline

# **Optimization**

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization



#### SGD is slow when there is high curvature



Average gradient presents faster path to opt:

vertical components cancel out



Uses past gradients for update

Maintains a new quantity: 'velocity'

Exponentially decaying average of gradients:





Compute gradient estimate:

$$g = \frac{1}{m} \sum_{i} \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$

Update velocity:

$$v = \alpha v - \varepsilon g$$

Update parameters:

$$\theta = \theta + v$$



Damped oscillations: gradients in opposite directions get cancelled out





found in the file.

#### **Nesterov Momentum**

Apply an interim update:

$$\tilde{\theta} = \theta + v$$

Perform a correction based on gradient at the interim point:

$$g = \frac{1}{m} \sum_{i} \nabla_{\theta} L(f(x^{(i)}; \tilde{\theta}), y^{(i)})$$

$$v = \alpha v - \varepsilon g$$

$$\theta = \theta + v$$



Momentum based on look-ahead slope



## Outline

# **Optimization**

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization



# Adaptive Learning Rates



Oscillations along vertical direction

Learning must be slower along parameter 2

Use a different learning rate for each parameter?



#### AdaGrad

Accumulate squared gradients:

$$r_i = r_i + g_i^2$$

• Update each parameter:

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} g_i$$

Greater progress along gently sloped directions

Inversely proportional to cumulative squared gradient



# **RMSProp**

- For non-convex problems, AdaGrad can prematurely decrease learning rate
- Use exponentially weighted average for gradient accumulation

$$r_i = \rho r_i + (1 - \rho)g_i^2$$

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} g_i$$



#### Adam

- RMSProp + Momentum
- **Estimate first moment:**

$$v_i = \rho_1 v_i + (1 - \rho_1) g_i$$

Estimate second moment:

$$r_i = \rho_2 r_i + (1 - \rho_2) g_i^2$$

Update parameters:

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} v_i$$
 Works well in practice is fairly robust to hyper-parameters

Works well in practice, hyper-parameters





## Outline

# **Optimization**

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization



## Parameter Initialization

- Goal: break symmetry between units
  - so that each unit computes a different function
- Initialize all weights (not biases) randomly
  - Gaussian or uniform distribution
- Scale of initialization?
  - Large -> grad explosion, Small -> grad vanishing



#### Xavier Initialization

- Heuristic for all outputs to have unit variance
- For a fully-connected layer with *m* inputs:

$$W_{ij} \sim N\left(0, \frac{1}{m}\right)$$

For ReLU units, it is recommended:

$$W_{ij} \sim N\left(0, \frac{2}{m}\right)$$



#### Normalized Initialization

• Fully-connected layer with *m* inputs, *n* outputs:

$$W_{ij} \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right)$$

- Heuristic trades off between initialize all layers have same activation and gradient variance
- Sparse variant when m is large
  - Initialize k nonzero weights in each unit



#### Bias Initialization

- Output unit bias
  - Marginal statistics of the output in the training set
- Hidden unit bias
  - Avoid saturation at initialization
  - E.g. in ReLU, initialize bias to 0.1 instead of 0
- Units controlling participation of other units
  - Set bias to allow participation at initialization



## Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

**Batch Normalization** 



#### Feature Normalization

Good practice to normalize features before applying learning algorithm:



Features in same scale: mean 0 and variance 1

Speeds up learning





Before normalization

After normalization



#### Internal Covariance Shift

Each hidden layer changes distribution of inputs to next layer: slows down learning





## Training time:

Mini-batch of activations for layer to normalize

$$H = \begin{bmatrix} H_{11} & \cdots & H_{1K} \\ \vdots & \ddots & \vdots \\ H_{N1} & \cdots & H_{NK} \end{bmatrix}$$
 K hidden layer activations

N data points in mini-batch



## Training time:

Mini-batch of activations for layer to normalize

where

$$H' = \frac{H - \mu}{\sigma}$$

$$\mu = \frac{1}{m} \sum_{i} H_{i,:}$$

Vector of mean activations across mini-batch

$$\sigma = \sqrt{\frac{1}{m}} \sum_{i} (H - \mu)_{i}^{2} + \delta$$

Vector of SD of each unit across mini-batch



# Training time:

- Normalization can reduce expressive power
- Instead use:

$$\gamma H' + \beta$$
Learnable parameters

- Allows network to control range of normalization











Differentiate the joint loss for N mini-batches Back-propagate through the norm operations

#### Test time:

- Model needs to be evaluated on a single example
- Replace  $\mu$  and  $\sigma$  with running averages collected during training

