Лекция Скубачевский 16.09.24

16 сентября 2024 г.

1 Предел последовательности

Опр. $U_{\epsilon}(x_0) = (x_0 - \epsilon; x_0 + \epsilon)$ Что значит $x \in U_{\epsilon}(x_0)$

$$|x - x_0| < 0$$

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Опр. Число $a \in R$ наз-ся пределом последовательности $\{a_n\}$ если:

$$\forall \epsilon > 0 : \exists N \in N \forall n \ge N \mapsto |a - a_n| < \epsilon$$

Пример:

Д-ть:
$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Док-во:
$$\forall \epsilon > 0 : \exists N \in N \forall n \geq N \mapsto |0 - \frac{1}{n}| < \epsilon$$

1) Решим неравенство
$$|0-\frac{1}{n}|<\epsilon\longrightarrow \frac{1}{n}<\epsilon\longrightarrow n>\frac{1}{\epsilon}$$

$$2) \ \forall \epsilon > 0 \\ \exists N = [\frac{1}{\epsilon}] + 1 : \forall n \geq N \mapsto |\frac{1}{n}| < \epsilon \longrightarrow \lim_{n \to \infty} \frac{1}{n} = 0$$

Бесконечно большие п-ти

$$\lim_{n \infty} n = +\infty$$

$$\forall \epsilon > 0 \exists N : \forall n \geq N \mapsto |n - +\infty| < \epsilon \text{ (bullshit)}$$

Onp.
$$U_{\epsilon}(+\infty) = (\epsilon; +\infty), \epsilon > 0$$

Или:
$$U_{\epsilon}(+\infty)=(\frac{1}{\epsilon};+\infty), \epsilon>0$$

$$U_\epsilon(-\infty)=(-\infty;-\epsilon), \epsilon>0$$
 Или $U_\epsilon(-\infty)=(-\infty;-rac{1}{\epsilon})$

Опр.
$$\lim_{n \to \infty} a_n = +\infty$$
, если: $\forall \epsilon > 0 : \exists N \in N : \forall n \geq N \mapsto a_n > \epsilon$

Onp. $\overline{R} \cup \{-\infty\} \cup \{+\infty\}$

Расширенное мн-во действ чисел

Опр. элемент в $n\overline{R}$ наз. пределом $\{a_n\}$, если $\forall \epsilon>0 \exists N\in N: \forall n\geq N\mapsto a_n\in U_\epsilon(a)$

Опр. $\{a_n\}$ - сходится если у нее есть конечный предел, в противном случае - расходится

$$\{a_n\}$$
 - сх. в \overline{R} , если $\exists \lim_{n \to \infty} a_n \in \overline{R}$

 $a_n = n \cdot (-1)^n$ - расходится в R, \overline{R}

Опр $\{a_n\}$ наз-ся бесокнечно большой, если $\forall \epsilon>0 \exists N\in N: \forall n\geq N\mapsto |a_n|>\epsilon$

В этом случае пишут $\lim_{n\to\infty} a_n = \infty$

 $\lim_{n \to \infty} (-1)^n \cdot n = \infty$, но не равен $+\infty$ и $-\infty$

Св-ва сходящихся посл-ти

Th. Всякая сх. посл-ть ограничена.

Док-во: Пусть $\lim_{n\to\infty} a_n = a \in R$

 $orall \epsilon > 0 \exists N \in N : orall n \geq N \mapsto a_n \in U_\epsilon(a)$ Для $\epsilon = 1 \exists N_1 \in N : orall n \geq N \mapsto a_n \in U_1(a)$

Лемма. $\forall a,b \in \overline{R}$ существуют непересекающиеся окрестности.

Д-во:

$$1)a,b \in R \longrightarrow \exists \epsilon \frac{b-a}{2} : U_{\epsilon}(a) \cap U_{\epsilon}(b) \neq 0$$

2)
$$a \in R; b = +\infty$$

$$U_1(a) \cap U_{a+2}(+\infty) =$$
 пустое мн-во

Th. $\{a_n\}$ имеет не более одного предела в \overline{R}

Д-во: Предп., что
$$\begin{cases} \lim_{n\to\infty} a_n = a \\ \lim_{n\to\infty} a_n = b \end{cases}$$

По Лемме: $\exists \epsilon_1, \epsilon_2 : U_{\epsilon_1}(a) \cap U_{\epsilon_2}(b) \neq \text{пустое мн-во}$

1)
$$\forall \epsilon>0 \exists N_1: \forall n\geq N\mapsto a_n\in U_\epsilon(a)\longrightarrow \exists N_1L\forall n\geq N_1\mapsto a_n\in U_{\epsilon 1}(a)$$
 - для ϵ_1

Для ϵ_2 : $\exists N_2: \forall n\geq N_2\mapsto a_n\in U_{\epsilon_2}(b)\longrightarrow \exists N=\max\{N_1,N_2\}: \forall n\geq N\mapsto a_n\in U_{\epsilon_1}(a)\cap U_{\epsilon_2}(b)$ =пустое мн-во

Противоречие. ч т д