Project 3: Models of Growth and Aggregation (Cellular Automata)

Eric Ross

George Mason University

11/29/2016

Dependence of P_{∞} on Lattice Size

Figure 1: P_{∞} as a function of P for three different cluster sizes.

Fractal Dimension Using Box Counting

Figure 2: Log-log plot to determine the fractal dimension .

Anomolous Rate of Diffusion

Figure 3: Root mean squared displacement as a function of time.

The Eden Growth Model

Figure 4: Cluster formed using the Eden Growth model at N=100, N=1000, and N=10000

The Eden Growth Model

Figure 5: Circumference of the Eden cluster as a function of the cluster size.

The Eden Growth Model

Figure 6: Rate of change of the circumference of the Eden cluster.

Epidemic Model for $p > p_c$

Figure 7: Cluster of N = 10000 grown using the epidemic model for p = 0.70.

Epidemic Model for $p < p_c$

Figure 8: Cluster of ${\it N}=1688$ grown using the epidemic model for p=0.55.

Diffusion Limited Aggregation (DLA)

Figure 9: Cluster formed using the DLA model at N=100, N=1000, and N=10000.

Diffusion Limited Aggregation (DLA)

Figure 10: Radius as a function of time for a DLA cluster of size N = 10000.

Diffusion Limited Aggregation (DLA)

Figure 11: DLA cluster of size 10000 with a sticking probability of 1.0, 0.5, and 0.1.

Thank You