Lecture 8 Finding More Shapes

COMP3204 & COMP6223 Computer Vision

How can we go from conic sections to general shapes?

Department of Electronics and Computer Science

Hough Transform for Circles

• Again, it's duality: $(x - x_0)^2 + (y - y_0)^2 = r^2$

• Points: x, y parameters x_0, y_0 radius r

• Points: x_0, y_0 parameters x, y radius r

Circle Voting and Accumulator Space

Speeding it up.....

- Now it's a 3D accumulator, fast algorithms are available
- E.g. by differentiation $\frac{dy}{dx} = -\frac{(x-x_0)}{(y-y_0)}$
- So edge gradient direction can be used, e.g. 2D accumulator by

$$\left(\frac{dy}{dx}\right)^{2} (y - y_{0})^{2} + (y - y_{0})^{2} = r^{2}$$

Applying the HT for circles

Integrodifferential operator?

https://stackoverflow.com/questions/2705805 7/comparing-irises-images-with-opency

Arbitrary Shapes

- Use Generalised HT
- Form (discrete) look-up-table (R-table)
- Vote via look-up-table
- Orientation? Rotate R-table voting
- Scale? scale R-table voting
- Inherent problems with discretisation

R-table Construction

\hat{arphi}_i'	$\gamma = (r, \alpha)$
0	$(r_0,\alpha_0),(r_1,\alpha_1),(r_2,\alpha_2)$
$\Delta\phi$ $2\Delta\phi$:
$2 \triangle \phi$:
•••	

Active Contours

- For unknown arbitrary shapes: extract by evolution
- Elastic band analogy
- Balloon analogy
- Discrete vs. continuous
- Volcanoes?

Geometric active contours

(b) result

Extraction by a Level-Set Based Approach

Parts

Symmetry

