Classification - 2

Sai

Decision Trees, Bagging, and Boosting

if f2 < 105:
 print 'Blue'
else:
 print 'Red'</pre>

Decision Trees

Decision Trees

More explainable

Why do we care?

- More interpretable
- Can be quite powerful
- One of the most commonly used algorithms
- Surprisingly useful for many sensing problems

High-Stakes Decisions

- Healthcare: What treatment to recommend to the patient?
- Criminal Justice: Should the defendant be released on bail?

High-Stakes Decisions: Impact on human well-being.

What is Interpretability?

- Defn: Ability to explain or to present in understandable terms to a human
- No clear answers in psychology to:
 - What constitutes an explanation?
 - What makes some explanations better than the others?
 - When are explanations sought?

When and Why Interpretability?

- Not all ML systems require interpretability
 - E.g., ad servers, postal code sorting
 - No human intervention
- No explanation needed because:
 - No consequences for unacceptable results
 - Problem is well studied and validated well in real-world applications

 trust system's decision

When do we need explanation then?

Motivation for Interpretability

- ML systems are being deployed in complex high-stakes settings
- Accuracy alone is no longer enough
- Auxiliary criteria are important:
 - Safety
 - Nondiscrimination
 - Right to explanation (Now an EU law!)

Decision Trees

More explainable

Why do we care?

- More interpretable
- Can be quite powerful
- One of the most commonly used algorithms
- Surprisingly useful for many sensing problems

Decision Trees with Sensor Data

- Threshold heuristics can be hard to develop
- DTs figures out the thresholds for you
- Especially in case of other environmental variables

Decision Trees

- The tree can look at the same variable multiple times
- Come up with a long sequence of decision points to develop the complete tree

Building a Decision Tree

Figuring out when to ask what question!

Gini Impurity: What is the probability of me randomly picking up class A and being correct?

Color	Measurement	Fruit
Green	15	Apple
Yellow	15	Apple
Red	5	Grape
Red	5	Grape
Yellow	10	Lemon

Courtesy: Josh Gordon, Google

Color	Measurement	Fruit
Green	15	Apple
Yellow	15	Apple
Red	5	Grape
Red	5	Grape
Yellow	10	Lemon

$$G.I. = 0.64$$

Average Impurity = 4/5 * 0.63 + 1/5 * 0.0

= ~0.5

Information Gain

$$= 0.64 - 0.5$$

= 0.14

Color	Measurement	Fruit
Green	15	Apple
Yellow	15	Apple
Red	5	Grape
Red	5	Grape
Yellow	10	Lemon

G.I. =
$$p \text{ (apple)} \cdot (1 - p \text{ (apple)})$$

+ $p \text{ (grape)} \cdot (1 - p \text{ (grape)})$
+ $p \text{ (lemon)} \cdot (1 - p \text{ (lemon)})$

$$G.I. = 0.64$$

Average Impurity

$$= 3/5 * 0.67 + 2/5 * 0.5$$

 $= \sim 0.6$

Information Gain

$$= 0.04$$

Color	Measurement	Fruit
Green	15	Apple
Yellow	15	Apple
Red	5	Grape
Red	5	Grape
Yellow	10	Lemon

G.I. =
$$p \text{ (apple)} \cdot (1 - p \text{ (apple)})$$

+ $p \text{ (grape)} \cdot (1 - p \text{ (grape)})$
+ $p \text{ (lemon)} \cdot (1 - p \text{ (lemon)})$

$$G.I. = 0.64$$

Average Impurity

$$= 3/5 * 0.44 + 2/5 * 0.0$$

= 0.26

Information Gain

$$= 0.64 - 0.26$$

 $= 0.38$

Decision Trees

- This is the output from an SVM with a linear kernel
- DTs cannot build such angled lines
- No "smooth" separations
- Too dependent on the axes
- No need to scale though!

Decision Trees ++

Ensemble of Trees

Build multiple trees and combine their output

- Bagging
- Boosting

Bagging

- In parallel
- Random Forests

Bagging

Image Credit: pluralsight.com

Boosting

- Combining weak classifiers to make a stronger one
- Sequential

Boosting

- AdaBoost (Adaptive Boosting)
 - Fit a tree
 - Calculate error (weighted)
 - Increase weight of wrongly classified points
 - Train another tree
 - •
 - In the end, each tree will have a weight, and
 - the final prediction is the weighted majority vote from each tree

Boosting

- Gradient Boosting
 - Fit a tree
 - Calculate error (weighted)
 - Train on error
 - Train another tree
 - •

• In the end, add up the predictions of each tree

Credit: Tomonori Masui

Credit: Tomonori Masui

Credit: Tomonori Masui

Predictions(F_0) are updated to F_1

$$F_1 = \begin{cases} F_0 + \nu \cdot 6.0 & if \ x \le 49.5 \\ F_0 - \nu \cdot 5.9 & otherwise \end{cases}$$

Credit: Tomonori Masui

Credit: Tomonori Masui