Model Selection

CE/CZ4042 – Tutorial 6

 A three-layer perceptron network is used to approximate the following function mapping:

$$y = \sin(\pi x_1)\cos(2\pi x_2)$$

where
$$-1.0 \le x_1, x_2 \le +1.0$$
.

By using 100 data points in an equally spaced 10x10 grid of the input space, find the optimal number of hidden neurons for the approximation by using the following procedures:

- a. Random subsampling
- b. Five-fold cross validation
- c. Three-way data split

Use a learning factor lpha=0.05 and learning up to 20,000 epochs.

Show learning curves and predicted data points with the optimal number of hidden neurons.

 $y = sin(\pi x_1)\cos(2\pi x_2)$ where $-1.0 \le x_1, x_2 \le +1.0$.

$$y = sin(\pi x_1)\cos(2\pi x_2)$$
 where $-1.0 \le x_1, x_2 \le +1.0$.

Data is in a grid of 10x10

 $y = sin(\pi x_1)\cos(2\pi x_2)$ where $-1.0 \le x_1, x_2 \le +1.0$.

For hidden neurons, let $f(u) = \frac{1}{1+e^{-u}}$

Output neuron is a linear neuron

K Data Splits: Random Subsampling

K Data Splits: Random Subsampling

For each experiment k:

For each model m:

Compute error $e_{k,m}$

Compute mean error $e_m = \frac{1}{K} \sum_{k=1}^{K} e_{k,m}$

Optimal model with minimum error, $m^* = argmin \ e_m$

Train and test data for one experiment: [30: 70] split

Mean error of 10 experiments

Optimum number of hidden neurons = 8

K-fold Cross Validation

For every fold f: For every model m Train the model, using data not in fold f Error $e_{m,f}=$ error on data in fold f

For every model m

CV error
$$e_m = \frac{1}{F} \sum_f e_{m,f}$$

Select the model with minimum CV error, $m^* = argmin \ e_m$

Mean cross-validation error of 10 experiments

Optimum number of hidden neurons = 2

Three-Way Data Splits Method

• **Training set**: examples for *learning* to fit the parameters of several possible classifiers. In the case of DNN, we would use the training set to find the "optimal" weights with the gradient descent rule.

$$W^*, b^* = \underset{W,b}{\operatorname{argmin}} J(W, b)$$

• Validation set: examples to determine the error J_m of different models m, using the validation set. The optimal model m^* is given by

$$m^* = \underset{m}{\operatorname{arg}min} J_m$$

- Training + Validation set: combine examples used to re-train/redesign $model_{m^*}$, and find new "optimal" weights.
- **Test set**: examples used only to *assess* the performance of a *trained model* m^* . We will use the test data to estimate the error rate after we have trained the final model with train + validation data.

Three-Way Data Splits Method

Optimal number of hidden neurons is 8