Class – P: p is a class of Languages that are decidable in polynomial time on a deterministic single – tape Turing – machine.

The Language is $2SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable } 2CNF \text{ formula} \}$

A *cnf* – **formula** is said to be 2 *cnf* if all the clauses have two literals.

Now we have to prove that $2SAT \in P$.

- Let ϕ be the 2 cnf formula one variables x_1, x_2, \dots, x_n
- Let us construct the graph G for the give ϕ as follows :
- \rightarrow The variables and their negations in ϕ are taken as vertices of graph G. That is, $V = \{x_1, ..., x_n\} \cup \{\overline{x_1}, ..., \overline{x_n}\}$.
- \rightarrow For every clause of the form $A \lor B$ in ϕ , add a directed edge from \overline{A} to B and one from \overline{B} to A in graph G.
- So by the construction of the graph, it is follows that, if there is an edge from A to B then there is an edge from \overline{B} to \overline{A} .
- Now let us suppose that there is a directed path from $x_i to x_i$ and from $x_i to x_i$.
- The existence of a directed path from x_i to x_i is equivalent to saying that $x_i \Rightarrow x_i$ and the existence of a directed path from x_i to x_i is equivalent to saying that $x_i \Rightarrow x_i$. Together, they implying that $x_i \cong x_i$, which is false.
- ullet So if this condition occurs then the formula ϕ has an un-satisfiable clause embedded in it.
- Conversely we will show that, if there is no such pair of paths (one form $x_i to x_i$ and another from $x_i to x_i$) then a satisfying assignment can be found for ϕ , by the following algorithm.

Step – 1 For each variable x_i , check if there is a path from x_i to x_i . If there is such a path, assign $x_i = false$. For all variables V such that there is a path from x_i to x_i assign x_i to true and x_i to false.

Step – 2 for each variable x_i , check if there is a path from x_i to x_i . If there is such a path, assign $x_i = true$. For all literal v such that there: a path form x_i to v, assign v to true and v to false.

Step – 3 Propagate all the "true values" down the paths, and the "false values" up the paths.

- So this algorithm never assigns both true and false values to the same variable.
- The entire algorithm will be executed in polynomial time.
- Therefore 2 SAT is in P.