5- Scaffolding and further improvement

Bernardo J. Clavijo Richard Smith-Unna Gonzalo Garcia / Jon Wright

A correct assembly has:

The right *motifs*the correct number of times
in the correct order and position.

Creating and Sequencing Paired Libraries

Scaffolding with paired reads

List of contig links: A list of contig-connecting 2R → 1L, 3L links is calculated from 1R → 4L 4R → 5L, 6L mate pairs 6R → 7L Graph of contig links → 2 1 3 4 5L 5R

→ 2L 2R 1L 1R 3L 3R 4L 4R

6 7 The links are resolved in order to connect adjacent contigs with "path steps" by resolving conflicting paths 6 7 6L 6F7L 7R

Fragment Sizes

Read mapping stats

```
abyss-map -j150 -161 /scratch/clavijob/yeast tests/diploid/s 3 1 seq
uence.txt /scratch/clavijob/yeast tests/diploid/s 3 2 sequence.txt nyc3
574 k61-3.fa \
                |abyss-fixmate -h pel-3.hist \
                |sort - snk3 - k4 \rangle
                |DistanceEst -j150 -k61 -l61 -s200 -n10 -o pe1-3.dis
t pe1-3.hist
Building the suffix array...
Building the Burrows-Wheeler transform...
Building the character occurrence table...
Mateless
                0
Unaligned 71619 1.14%
Singleton 516328 8.19%
FR
          4018144 63.8%
               28 0.000444%
RF
FF
             8285 0.131%
Different 1686337 26.8%
Total
           6300741
```

Read mapping stats

```
abyss-map -j150 -l61 /scratch/clavijob/yeast tests/diploid/LIB3796 c
lipped A R1.fastq /scratch/clavijob/yeast tests/diploid/LIB3796 clipped
A R2.fastq nyc3574 k61-6.fa \
                |abyss-fixmate -h lmp1-6.hist \
                |sort -snk3 -k4 \
                |DistanceEst --dot -j150 -k61 -161 -s200 -n10
                                                               -o lmp
1-6.dist.dot lmp1-6.hist
Building the suffix array...
Building the Burrows-Wheeler transform...
Building the character occurrence table...
Mateless
                0
Unaligned 127754 6.8%
Singleton
           828893 44.1%
             3191 0.17%
FR
           668696 35.6%
RF
FF
            20536 1.09%
Different
           230815 12.3%
Total
          1879885
```

A distance penalty function (from A-scaff)

Repetition expansion and re-linking (from A-scaff)

Repetition expansion and re-linking (from A-scaff)

Repetition expansion and re-linking (from A-scaff)

Haplotype collapsing and re-scaffolding (from A-scaff)

1	n	n:500	L50	min	N80	N50	N20	E-size	max	sum	name
4	413248	53397	4046	500	9803	26774	55122	34956	293176	379.4e6	a.lines.f20.prep.contig
	12527	12527	963	1001	37912	104196	217311	138250	771211	360.2e6	DAS 09-93 13 m1000-1.fa

About gap closing

BEWARES:

- Heuristics are too greedy
- If there was a gap... When did we lose that information and why?
- "Walking" is not the same as "bridging"
- You can be masking problems.

• If you need to:

- Last step
- Check QC, metrics and stats before and after, eye-ball typical cases
- Be conscious it IS a patch

A full assembly pipeline example

Integrating non-NGS data, and more...

- Keep in mind the different biases
- Do not expect perfect integration
- You'll need to know your data really well
- Optical mapping and Hi-C (technically NGS) are becoming more typical
- Check internal coherence and significance of every data point you use

Questions?

