Experiment Title: Comparison of Microscope and Screw Gauge Readings

Objective

To compare the accuracy and precision of measurements using a moving microscope and a screw gauge by measuring the thickness of a wire.

Apparatus Required

- Moving microscope with inbuilt main scale and Vernier scale.
- Screw Gauge.
- Wire (thin metallic or non-metallic wire).

Theory

1. Screw Gauge:

- Least Count = Pitch / Number of divisions on the circular scale.
- Measures small dimensions (e.g., thickness) with high precision, typically to 0.01 mm.

2. Moving Microscope:

- Equipped with an inbuilt linear scale (main scale) and Vernier scale for precise measurements.
- Least Count = Value of one main scale division Value of one Vernier scale division.
- Works by focusing on the object and measuring the displacement of the microscope stage while focusing different edges of the object.

Procedure

Using Screw Gauge

- 1. Measure the pitch and determine the least count of the screw gauge.
- 2. Place the wire between the anvil and spindle of the screw gauge.
- 3. Rotate the thimble until the wire is gently but firmly clamped.
- 4. Record the main scale and circular scale readings.
- 5. Repeat the measurements at least three times and calculate the average thickness.

Using Moving Microscope

1. Determine the least count of the microscope:

$$\label{eq:Least Count} \text{Least Count} = \frac{\text{Value of one main scale division}}{\text{Number of Vernier scale divisions}}$$

- 2. Place the wire under the microscope and adjust the focus to view the top edge of the wire against the inbuilt scale.
- 3. Note the initial reading (position of the microscope) using the main scale and Vernier scale.
- 4. Move the microscope to focus on the bottom edge of the wire and note the final reading.
- 5. Calculate the thickness as the difference between the two readings.
- 6. Repeat the measurements at least three times and calculate the average thickness.

Observations

Using Screw Gauge

• Least Count $= \dots mm$

Trial	Main Scale Reading (mm)	Circular Scale Reading	Total Reading (mm)
1			
2			
3			

Average Thickness (mm): ...

Using Moving Microscope

• Least Count $= \dots mm$

Trial	Initial Reading (mm)	Final Reading (mm)	Thickness (mm)
1			
2			
3			

Average Thickness (mm): ...

1 Error Analysis

For a set of measurements we estimate the error of the measured value using standard deviation σ which is nothing but

$$\sigma_x = \sqrt{\overline{(x_i - \overline{x})^2}} \tag{1}$$

1.1 Error associated with measurment using Microscope

...

1.2 Error associated with measurement using Scre Gauge

Calculations

- Least count of the screw gauge and moving microscope.
- Error analysis and comparison of precision.

Result

- 1. The screw gauge provides a highly precise measurement for the thickness of the wire.
- 2. The moving microscope is also precise, with a slightly different method of measurement, depending on the least count of its scales.

Conclusion

- The screw gauge is a direct and reliable tool for measuring small dimensions.
- The moving microscope, while slightly more complex, offers high precision for measurements involving focus and displacement.

Precautions

- Ensure zero error correction is applied for the screw gauge.
- Avoid parallax error while taking readings from the microscope scales.
- Handle the microscope and screw gauge carefully to prevent damage.