$P \leftarrow créerListe(1, créerListe(2, créerListe(3, NULL)));$

 $P \leftarrow \text{cr\'{e}erListe}(1, \text{cr\'{e}erListe}(2, \text{cr\'{e}erListe}(3, \text{NULL})));$ $Q \leftarrow \text{cr\'{e}erListe}(4, P);$

 $P \leftarrow \text{cr\'{e}erListe}(1, \text{cr\'{e}erListe}(2, \text{cr\'{e}erListe}(3, \text{NULL})));$ $Q \leftarrow \text{cr\'{e}erListe}(4, P);$ $Q \leftarrow \text{derListe}(4, P);$ $Q \leftarrow \text{derLi$

$$P \leftarrow cr\acute{e}erListe(1, cr\acute{e}erListe(2, cr\acute{e}erListe(3, NULL)));$$

 $Q \leftarrow créerListe(4,P)$;

 $(P\uparrow succ) \uparrow info \leftarrow 6$;

 $R \leftarrow \text{créerListe}(5, (P \uparrow \text{succ}) \uparrow \text{succ});$

$$P \leftarrow cr\acute{e}erListe(1, cr\acute{e}erListe(2, cr\acute{e}erListe(3, NULL)));$$

 $Q \leftarrow créerListe(4,P)$;

 $(P\uparrow succ) \uparrow info \leftarrow 6$;

 $R \leftarrow créerListe(5, (P \uparrow succ) \uparrow succ);$

 $(\mathsf{P}{\uparrow}\mathsf{succ}) \leftarrow \mathsf{R}\,;$

 $(P\uparrow succ) \leftarrow R;$

 $P \leftarrow R \uparrow succ$;

 $(P\uparrow succ) \leftarrow R;$

 $P \leftarrow R \uparrow succ;$

 $insérerFin(R,Q\uparrow info);$

insérerFin(R,Q↑info);

insérerAprès(Q,P,7);

 $insérerFin(R,Q\uparrow info);$

insérerAprès(Q,P,7);

supprimer(Q,Q↑succ);

supprimer(Q,Q\u2207succ);

 $\mathsf{R}{\uparrow}\mathsf{succ} \leftarrow \mathsf{NULL}\,;$

supprimer(Q,Q\u2207succ);

$R\uparrow succ \leftarrow NULL$;

 $R \leftarrow NULL$;

$R \leftarrow NULL$;

2 $(L \uparrow succ) \leftarrow Q \uparrow succ$

 \odot insérerAprès(P, P, 3)

Algo : estTrié(d L : liste) : booléen


```
Algo : estTrié(d L :liste) : booléen
si L=NULL ou L†succ=NULL alors
renvoyer vrai
sinon si (L†info) > (L†succ)†info alors
renvoyer faux
sinon
renvoyer estTrié(L†succ)
```



```
Algo : estTrié(d L :liste) : booléen
si L=NULL ou L↑succ=NULL alors
renvoyer vrai
sinon si (L↑info) > (L↑succ)↑info alors
renvoyer faux
sinon
renvoyer estTrié(L↑succ)
On peut simplifier en
renvoyer L=NULL ou L↑succ=NULL ou ((L↑info) ≤
(L←succ)↑info et estTrié(L↑succ))
```


Algo : estTrié(d L :liste) : booléen


```
variable P : Liste;
si L = NULL alors renvoyer vrai
sinon
P←L;
tant que P↑succ≠NULL et (P↑info) ≤ (P↑succ)↑infoL faire
P ← P↑succ;
fin tq
renvoyer P↑succ = NULL
```


 $\mathsf{Algo}: \mathsf{adresseDernier}(\mathsf{d}\ \mathsf{L}\ \mathsf{:liste}): \mathsf{Liste}$


```
Algo : adresseDernier(d L :liste) : Liste

si L\u03c4succ=NULL alors

renvoyer L

sinon

renvoyer adresseDernier(L\u03c4succ)
```


 $\underline{\mathsf{Algo}}$: supprimeVal(dr L :liste, d e :entier)

Complexité?

Algo: supprimeVal2(dr L:liste, d e:entier)


```
\label{eq:algo} \begin{split} \underline{\mathsf{Algo}} &: \mathsf{supprimeVal2}(\mathsf{dr}\ \mathsf{L}\ : \mathsf{liste},\ \mathsf{d}\ \mathsf{e}\ : \mathsf{entier}) \\ \mathsf{M} \leftarrow \mathsf{L} \\ \mathbf{Tant}\ \mathsf{que}\ \mathsf{M} \uparrow \mathsf{succ} \neq \mathsf{NULL}\ \mathsf{faire} \\ & \mathsf{si}\ (\mathsf{M} \uparrow \mathsf{succ}) \uparrow \mathsf{info} = \mathsf{e}\ \mathsf{alors} \\ & (\mathsf{M} \uparrow \mathsf{succ}) \leftarrow (\mathsf{M} \uparrow \mathsf{succ}) \uparrow \mathsf{succ} \\ & \mathsf{sinon} \\ & \mathsf{M} \leftarrow \mathsf{M} \uparrow \mathsf{succ} \end{split}
```


Algo: supprimeVal2(dr L:liste, d e:entier)


```
\label{eq:algo} \begin{split} \frac{\mathsf{Algo}}{\mathsf{M}} &: \mathsf{supprimeVal2}(\mathsf{dr}\ \mathsf{L}\ : \mathsf{liste},\ \mathsf{d}\ \mathsf{e}\ : \mathsf{entier}) \\ \mathsf{M} &\leftarrow \mathsf{L} \\ &\quad \mathsf{Tant}\ \mathsf{que}\ \mathsf{M} \!\!\uparrow \! \mathsf{succ} \neq \mathsf{NULL}\ \mathsf{faire} \\ &\quad \mathsf{si}\ (\mathsf{M} \!\!\uparrow \! \mathsf{succ}) \!\!\uparrow \! \mathsf{info} \!\!=\! \mathsf{e}\ \mathsf{alors} \\ &\quad (\mathsf{M} \!\!\uparrow \! \mathsf{succ}) \!\!\leftarrow\! (\mathsf{M} \!\!\uparrow \! \mathsf{succ}) \!\!\uparrow \! \mathsf{succ} \\ &\quad \mathsf{sinon} \\ &\quad \mathsf{M} \!\!\leftarrow\! \mathsf{M} \!\!\uparrow \! \mathsf{succ} \end{split}
```