Chapitre

Notions de fonctions et résolutions graphiques d'(in)équations

10

10.1 Définitions

- Exemple 10.1 le domaine de définition d'une fonction.
 - a) f est la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = x^3 3x + 1$.

On écrit : $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto x^3 - 3x + 1$$

L'image de x par f est $f(x) = x^3 - 3x + 1$.

L'image de 0 par f est $f(0) = 0^3 - 3 \times 0 + 1 = 1$

L'image de -5 par f est $f(-5) = (-5)^3 - 3(-5) + 1 = -109$.

b) Soit $g: t \mapsto \frac{1}{2t-1}$. L'expression g(t) admet des valeurs interdites, on peut choisir $\mathbb{R} \setminus \{\frac{1}{2}\}$ comme domaine de définition de g. On écrit $g: \mathbb{R} \setminus \{\frac{1}{2}\} \to \mathbb{R}$.

$$x \mapsto x^3 - 3x + 1$$

c) Soit function $h: [0; 4] \to \mathbb{R}$

$$x \mapsto 2x + 3$$

L'image de 0 par h est 3.

Le nombre -1 n'admet pas d'image par h. Il n'est pas dans le domaine.

d) La fonction $i \colon \mathbb{N} \to \mathbb{R}$ est définie uniquement sur des

$$x \mapsto 2x + 3$$

valeurs entières.

à lire « f de \mathbb{R} dans \mathbb{R} qui à x associe $x^3 - 3x + 1$ ».

Le domaine de définition peut exclure des nombres qui ne sont pas des valeurs interdites.

Deux fonctions peuvent avoir la même expression mais pas le même domaine de définition. ¹ (généralement un intervalle ou une réunion d'intervalles)

lire « fonction f de D dans $\mathbb R$ qui à $x \in D$ associe f de x »

 2 $d: \mathbb{N} \to \mathbb{R}$

 $x \mapsto \mathbf{nbr}$ de diviseurs de x

Figure 10.1 – La représentation graphique d'une fonction f dans un repère (O;I,j) est l'ensemble de points notés \mathscr{C}_f :

$$M(u;v) \in \mathscr{C}_f \iff v = f(u)$$

On écrit $\mathscr{C}_f \colon y = f(x)$.

La représentation graphique d'une fonction ne peut pas avoir deux points ayant même abscisse et des ordonnées différentes. **Définition 10.1** — vieillotte. Soit un ensemble $D \subset \mathbb{R}^{-1}$.

Une fonction f définie sur D est une **relation** qui à tout nombre $x \in D$ associe un unique $y \in \mathbb{R}$. On écrit :

$$f: D \to \mathbb{R}$$

 $x \mapsto f(x)$

Dans les cas courants au lycée la relation est décrite par une **ex- pression** (une règle de calcul) pour calculer l'image f(x) connaissant la valeur de x. Mais beaucoup de fonction n'ont pas d'expression algébrique².

Définition 10.2 Une fonction f est un **ensemble de couples** (x,y) (x est l'abscisse, y est l'ordonnée), tel qu'il n'y ait pas 2 couples ayant la même abscisse mais des ordonnées différentes.

si
$$(x,y) \in f$$
 et $(x;y') \in f$ alors $y = y'$

Le domaine de f est l'ensemble noté D_f des abscisses de la fonction

Pour tout $x \in \mathbb{R}$, on a 2 possibilités :

- L'abscisse $x \notin D_f$: Il n'existe pas de y tel que $(x, y) \in f$. x n'a pas d'image.
- l'abscisse $x \in D_f$: Il existe **exactement** une ordonnée y tel que le couple $(x,y) \in f$. On écrit y = f(x) et on dira que « y est **l'image** de x » ou encore « x est **un** antécédent de y ». Noter cette asymétrie.

10.1 Définitions

10.1.1 Exercices

Calcul d'images et d'antécédents

Exercice 1 Soit la fonction f définie sur \mathbb{R} par

$$f(x) = -5x + 3$$

- 1) Calculer f(0), f(10), $f(-\frac{3}{7})$ et $f(\sqrt{2})$.
- 2) Résoudre l'équation f(x) = 0. Quel est l'antécédent de 0?
- 3) Donner le(s) antécédent(s) de 3.

Exercice 2 Soit la fonction g définie sur \mathbb{R} par

$$q(x) = (2x - 3)(5x + 2)$$

- 1) Développer simplifier et réduire g(x).
- 2) Calculer g(0), g(-2) et $g(\sqrt{2})$.
- 3) Résoudre l'équation g(x) = 0. Quels sont les antécédents de 0?
- 4) Retrouver le(s) antécédent(s) de -6.

Exercice 3 Soit la fonction h définie sur \mathbb{R} par

$$h(x) = (2x+1)^2$$

- 1) Développer simplifier et réduire h(x).
- 2) Calculer h(0), h(-1) et $h(\sqrt{2})$.
- 3) Résoudre l'équation h(x) = 0. Quels sont les antécédents de 0?
- 4) Retrouver le(s) antécédent(s) de 25.
- 5) Donner un nombre qui n'a pas d'antécédents par h.

Exercice 4 — \P . Soit la famille de fonction f_m définies pour tout $x \in \mathbb{R}$ par

$$f_m(x) = mx + 3m - 2$$

- 1) Pour m=2. Calculer $f_2(0)$ et $f_2(-5)$.
- 2) Calculer $f_0(10)$ et $f_5(3)$.
- 3) Trouver m tel que $f_m(2) = 0$.

Domaine de définition

Exercice 5

Dans chaque cas, préciser le domaine de définition de la fonction.

- 1) t est la fonction qui à l'heure x de la journée associe la température t(x) dans la salle de classe.
- 2) p est la fonction qui selon le numéro du jour x de l'année associe la précipitation p(x).
- 3) l est la fonction qui au temps écoulé depuis le départ x associe la distance parcourue l(x).
- 4) r est la fonction qui à la quantité de patates x vendue (en kg) associe la recette en \in .
- 5) e est la fonction qui au nombre de plis x associe l'épaisseur de la feuille pliée.

Exercice 6

- a) Drésser le tableau de signe de 2x-3 selon les valeurs de x.
- b) Soit f une fonction d'expression $f(x) = \frac{1}{2x-3}$. Proposer un domaine de définition de f le plus large possible.
- c) Même question pour la foncion g d'expression $g(x) = \sqrt{2x-3}$.

Exercice 7 — Ψ .

- 1) Drésser le tableau de signe de $4 x^2$ selon les valeurs de x.
- 2) Soit f une fonction d'expression $f(x) = \sqrt{4-x^2}$. Proposer un domaine de définition de f le plus large possible.
- 3) Même question pour la foncion g d'expression $g(x) = \frac{1}{4-x^2}.$

Exercice 8 — Ψ .

- 1) Drésser le tableau de signe de $2 + \frac{1}{x+3}$ selon les valeurs de x.
- 2) Soit f une fonction d'expression $f(x) = \sqrt{2 + \frac{1}{x+3}}$. Proposer un domaine de définition de f le plus large possible.

Représentations graphiques

■ Exemple 10.2 Complétez les pointillés

Domaine : $D = \dots$

 $f(\ldots) = \ldots$ Image de -1:

 $f(\ldots) = \ldots$ Image de 3:

 $f(\ldots) = \ldots; f(\ldots) = \ldots$ Antécédent(s) de 3:

 $f(\ldots) = \ldots; f(\ldots) = \ldots$ Antécédent(s) de 2:

Antécédent(s) de -1: f(...) = ...; f(...) = ...

 $f(\ldots) = \ldots$ Image de 0::

Antécédent(s) de 0 : $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

Domaine : $D = \dots$

Image de -2: $f(\ldots) = \ldots$

 $f(\ldots) = \ldots$ Image de 1,5:

Antécédent(s) de 3: $f(\ldots) = \ldots; f(\ldots) = \ldots$

 $f(\ldots) = \ldots; f(\ldots) = \ldots$ Antécédent(s) de 1:

Antécédent(s) de -3: $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

 $f(\ldots) = \ldots$ Image de 0::

Antécédent(s) de 0 :

- 1) Parmi ces graphiques, lesquels correspondent à la représentation graphique d'une fonction?
- 2) Pour chaque fonction donnez leur domaine et l'image de 2.
- 3) Pour chaque fonction donnez le nombre d'antécédents de 1.

10.1 Définitions

5

Exercice 10

Exercice 11

Exercice 12

Pour la fonction f représentée ci-contre

	Vrai	Faux
1/ Domaine est [0; 3]		
2/ L'image de 0 est -3		
3/ f(3) = 0		
4/ f(-2) = f(2)		
5/ f(1+2) = 3		
6 / $f(1) \approx 2.75$		
7/ 2 admet deux antécédents		
8/3 admet deux antécédents		
9/-2 admet un antécédent		

Pour la fonction f représentée ci-contre

	Vrai	Faux
1/ Domaine est $[-3;3]$		
2/f(1.5)=2		
3/f(0)=0		
4/f(-2) = f(2)		
5/f(1+2) = 2.5		
6/f(1) > 0		
7/ 1 admet deux antécédents		
8/-1 admet deux antécédents		
9/ L'image de l'image de -3 est		
-1		
10/ f(f(2)) = 0		

Pour la fonction f représentée ci-contre

- 1) Donner le domaine de f.
- 2) Donner l'image de 2 (utiliser la notation f(...) = ldots).
- 3) Donner l'image de 0.
- 4) Donner les antécédents de -1.
- 5) Combien a 0 d'antécédents?
- 6) Quel est le nombre d'antécédents de -2?

	Vrai	Faux
1/f(-2) = -f(2)		
2/f(-1) = f(1)		
3/f(2) = 2f(1)		

Représente dans le repère ci-contre une fonction f tel que :

- Domaine de f est [-2; 3]
- L'image de -2 est 3
- A(-1,1) est un point de \mathscr{C}_f .
- f(0) < 0.
- Si $x \in [0; 1]$ alors f(x) > -1.
- B(2;1) est en dessous de \mathscr{C}_f .
- f(3) = -2.

Exercice 13 Soit une fonction définie sur \mathbb{R} et \mathscr{C}_f sa représentation graphique.

Égalité	Image	Antécédent	courbe	Équation
f(2) = 3	L'image de est	L'antécédent de est	$A(\ldots;\ldots)\in\mathscr{C}_f$	est solution de l'équation $f() =$

1 a pour image 0

3 est un antécédent de -4

$$A(-2;3) \in \mathscr{C}_f$$

4 est solution de l'équation f(x) = 5.

Inégalité	Courbe
f(2) < 3	Le point $A(\ldots;\ldots)$ est en (en dessous/au dessus) de \mathscr{C}_f
f(5) > 3	Le point $B(\ldots;\ldots)$ est en (en dessous/au dessus) de \mathscr{C}_f
$f(\ldots)$	Le point $C(4; -3)$ est en dessous ou appartient à \mathscr{C}_f
$f(5) \geqslant 3$	Le point $D(\ldots;\ldots)$ est
-2 < f(-5)	

10.2 Résolutions graphiques d'(in)équations

R

La résolution graphique n'offre que des valeurs approchées. C'est un outil de vérification ou de conjecture.

Exemple 10.4 On souhaite conjecturer les solutions de l'équation $x^2 + 2x - 7 = 3$.

On introduit la fonction f:

$$\mathbb{R} \to \mathbb{R}$$
.

$$x \mapsto x^2 + 2x - 7$$

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
f(x)											

- 1) Compléter le tableau et placer les points correspondant sur le repère.
- 2) Relier les points harmonieusement pour tracer \mathscr{C}_f .
- 3) Pour résoudre l'équation

$$x^2 + 2x - 7 = 3$$

- a) Dessinez l'ordonnée 3.
- b) Identifier les points d'intersection.
- c) Lire les abscisses correspondantes.

$$S = \dots$$

$$x^2 + 2x - 7 \leqslant 3$$

- a) Dessinez l'ordonnée 3.
- b) Identifier les points d'ordonnées inférieure à 3
- c) Lire les abscisses correspondantes.

$$S = \dots$$

Définition 10.3 Résoudre graphiquement l'équation f(x) = k d'inconnue x » c'est trouver les abscisses des points de \mathcal{C}_f dont l'ordonnée est égale à k

Définition 10.4 Résoudre graphiquement l'équation $f(x) \leq k$ d'inconnue x » c'est trouver les abscisses des points de \mathcal{C}_f dont l'ordonnée est inférieure à k

10.2.1 Exercices résolutions graphiques

Pour une fonction f, et un réel k. Lors de la résolution (algébrique ou graphique) d'une équation f(x) = k ou d'une inéquation f(x) > k, on cherche les solutions dans le domaine de la fonction f.

■ Exemple 10.5

Résoudre graphiquement avec la précision permise par le graphique les équations et inéquations suivantes.

1)
$$f(x) = 5$$
 d'inconnue x
 $S =$

2)
$$f(x) > 5$$
 d'inconnue x
 $S =$

3)
$$f(x) \ge 5$$
 d'inconnue x

$$S =$$

Exercice 1

Résoudre graphiquement avec la précision permise par le graphique les équations et inéquations suivantes.

1)
$$f(x) = 2$$
 d'inconnue x
 $S =$

2)
$$f(x) \ge -2$$
 d'inconnue x
 $S =$

3)
$$f(x) > 2$$
 d'inconnue x
 $S =$

4)
$$f(x) = -1$$
 d'inconnue x

$$S =$$

5)
$$f(x) \leqslant -1$$
 d'inconnue x
 $S =$

6)
$$f(x) < -1$$
 d'inconnue x

$$S =$$

4)
$$f(x) = -2$$
 d'inconnue x
 $S =$

5)
$$f(x) \ge -2$$
 d'inconnue x
 $S =$

6)
$$f(x) > -2$$
 d'inconnue x
 $S =$

4)
$$f(x) = 0$$
 d'inconnue x
 $S =$

5)
$$f(x) < 0$$
 d'inconnue x
 $S =$

x	 	
signe		
de f(x)		

Bilan Donner selon les valeurs de k, le nombre de solutions de l'équation f(x) = k inconnue x.

Exercice 2

Ci-contre la représentation de la fonction f:

- 1) Donner le domaine D_f de la fonction f.
- 2) Résoudre graphiquement les équations suivantes :
 - a) f(x) = -2 d'inconnue x.
 - b) f(x) = 4 d'inconnue x.
- 3) Préciser selon les valeurs de k le nombre de solution de l'équation f(x) = k.
- 4) Résoudre graphiquement les inéquations suivantes :
 - a) $f(x) \ge 2$ d'inconnue x.
 - b) f(x) > 1.5 d'inconnue x.

Exercice 3 Ci-dessous la représentation de la fonction f:

- 1) Donner le domaine D_f de la fonction f.
- 2) Résoudre graphiquement les équations suivantes :
 - a) f(x) = 0 d'inconnue x.
 - b) f(x) = 4 d'inconnue x.
- 3) Préciser selon les valeurs de k le nombre de solution de l'équation f(x) = k.
- 4) Résoudre graphiquement les inéquations suivantes :
 - a) $f(x) \ge 0$ d'inconnue x.
 - b) f(x) < 1 d'inconnue x.

■ Exemple 10.6 — (In)équations de la forme f(x) = g(x) et $f(x) \ge g(x)$. On considère les courbes représentatives

 \mathscr{C}_f et \mathscr{C}_g .

- 1) Pour résoudre l'équation f(x) = g(x).
 - a) On identifie les points d'intersections entre les courbes :

$$A(\ldots;\ldots)$$
 et $B(\ldots;\ldots)$

b) On lit les abscisses des points :

$$x_A = \dots$$
 et $x_B = \dots$

- c) On donne les solutions $\mathscr{S} = \dots$ $S = \dots$
- 2) Pour résoudre l'inéquation $g(x) \ge f(x)$.
 - a) Identifier les points de la courbe \mathcal{C}_q au dessus de la courbe \mathcal{C}_f
 - b) Lire les abscisses des points correspondants : S =

Dans chaque cas, représentez les fonctions f et g données par leur expressions algébriques à l'aide de la pythonette, puis résoudre l'équation f(x) = g(x) et l'inéquation f(x) > g(x).

1)
$$f(x) = 2x + 3$$
 et $g(x) = 5$

2)
$$f(x) = 3x - 2$$
 et $g(x) = -4x + 2$

3)
$$f(x) = 9x^2$$
 et $g(x) = 6x - 1$

4)
$$f(x) = 2x^3 - x$$
 et $g(x) = 3x^2 - x$.

Exercice 5 Résoudre algébriquement les équations et inéquations de l'exercice précédent.

10.3 Sens de variation et extremums

Soit une fonction f continue sur un **intervalle** I.

Définition 10.5 f est **strictement croissante** sur I lorsque pour tout réels $a, b \in I$:

si
$$a < b$$
 alors $f(a) < f(b)$.

f(a) et f(b) sont rangés dans le même ordre que a et b.

Définition 10.6 f est **strictement décroissante** sur I lorsque pour tout réels $a, b \in I$:

si
$$a < b$$
 alors $f(a) > f(b)$.

f(a) et f(b) sont rangés dans l'ordre contraire de a et b.

Définition 10.7 Une fonction qui ne change pas de sens variation sur un intervalle est une fonction **monotone** sur cet intervalle.

Définition 10.8 — extremum.

La fonction f admet un **minimum** m sur un intervalle I, atteint en x_0 si :

pour tout
$$x \in I$$
 $f(x) \ge f(x_0) = m$

La fonction f admet un **maximum** M sur un intervalle I, atteint en x_0 si :

pour tout
$$x \in I$$
 $f(x) \leq f(x_0) = M$

Définition 10.9 — Parité d'une fonction. Le domaine D d'une fonction est **symétrique** par rapport à 0 lorsque :

si
$$x \in D$$
 alors $-x \in D$

Une fonction f à domaine symétrique par rapport à 0 est dite :

- paire lorsque pour tout $x \in D : f(-x) = f(x)$
- impaire lorsque pour tout $x \in D : f(-x) = -f(x)$

Figure 10.2 – Pour une fonction f impaire (à gauche), \mathscr{C}_f admet l'origine O(0;0) comme centre de symétrie. Pour une fonction f paire (à droite), \mathscr{C}_f est symétrique par rapport à l'axe des ordonnées.

10.3.1 Exercices : étude qualitative de fonctions

■ Exemple 10.7

	Vrai	Faux
1/ f est strictement croissante		
sur [-1;1]		
2/f est strictement décroissante		
sur [4; 5]		
3/f est strictement décroissante		
sur [-5; -4]		
4/f est monotone sur $[3;5]$		
5/f est monotone sur $[1;3]$		
6 / Le maximum de f sur $[-5;2]$		
est atteint en $x = 6$		
7/ Le minimum de f sur $[-5;5]$		
est atteint en $x = -4$		

1) Compléter en donnant le meilleur encadrement possible :

a.)	S_i	-3	< 1	· <	1	alors	
α	$\omega_{\rm L}$	·	\ .	_		aiois	

$$\langle f(x) \rangle \langle f(x) \rangle$$
, car f est sur

b) Si
$$3 < x < 5$$
 alors

$$< f(x) <$$
 , car f est sur

$$f(x) <$$
, car f

c) Si
$$-5 < x < -4$$
 alors $< f(x) <$, car f est sur

d) Si
$$2 < a < b < 4$$
 alors $f(a) \dots f(b) \dots$, car f est sur

$$\dots j(\omega) \dots j(\omega)$$

e) Si
$$-5 < a < b < -4$$
 alors ... $f(a) \dots f(b) \dots$, car f est ... sur

f) Si
$$-5 < a < -1$$
 alors $< f(a) <$.

g) Si
$$-5 \leqslant a \leqslant -1$$
 alors $< f(a) <$

2) Dressons le tableau de variation et de signe :

x	 	 	x	 	
			signe		
f(x)			de		
			f(x)		

3) Un tableau de variations enrichi:

x	 	
f(x)		

Exercice 1

Associer chaque courbe au tableau de variation qui lui correspond.

Exercice 2

- 1) Quelle représentation graphique correspond à la fonction f dont le tableau de variation est donné ci-dessous?
- 2) Complétez les tableaux de variations des fonctions restantes

2) Completez les tableaux de variations des fonctions restantes.								
x	-2.5 1 2.5	x		x				
f(x)	$\begin{array}{ c c c c c }\hline & 1,8 & \\ \hline & & -1 & \\ \hline \end{array}$							
x		x		x				

Exercice 3 Soit le tableau de variation d'une fonction f.

x	-5	-3	-1	2	4
f(x)	4 ~	_2_	-2	_1-	→ 4

- 1) Préciser le domaine de définition de f
- 2) Compléter les pointillés : f(...) = 2; f(2) = ...
- 3) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 4) Donner un encadrement de f(x) pour $x \in [-5, -1]$.
- 5) Même question pour $x \in [2; 4]$.
- 6) Comparer les valeurs suivantes.

Préciser si l'on ne peut pas conclure à partir du tableau de variation.

a)
$$f(-4) \dots f(-2)$$
 b) $f(-4) \dots -2$ c) $f(0) \dots 2$ b) $f(-2) \dots 2$ f) $f(-4) \dots f(1)$

- 7) Quel est le minimum de la fonction f sur [-5; 4]? En valeur de x est-il atteint?
- 8) Quel est le nombre de solution de l'équation f(x) = 1? Donner un encadrement le plus précis possible de chaque solution.

Exercice 4 Soit le tableau de variation d'une fonction f.

x	-4	-1	1	3	3,5
f(x)	-4	-2	_5	0	-1

- 1) Préciser le domaine de définition de f
- 2) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3) Sur chaque intervalle ou f est monotone, donner un encadrement de f(x).
- 4) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.
 - a) $f(-3) \dots f(-2)$ | c) $f(0) \dots f(0,2)$ | e) $f(0) \dots f(2)$ | g) $f(0) \dots f(3,25)$ | b) $f(3) \dots f(3,25)$ | d) $f(2) \dots f(1,8)$ | f) $f(-3) \dots f(0)$ | h) $f(-3) \dots f(2)$
- 5) Quel est le maximum de la fonction f sur [-4; 3,5]?
- 6) Donner le nombre de solution de l'équation f(x) = -4 et un encadrement le plus précis possible de chacune.

^{1.} Il est sous-entendu en seconde, qu'en l'absence d'indications supplémentaires, les fonctions sont strictement monotones et continues. Par exemple, si x varie de -3 à -1, alors f(x) prend toutes les valeurs entre -2 et 2 (une seule fois). La justification est abordée en terminale.

Exercice 5 Soit le tableau de variation d'une fonction f.

- 1) Préciser le domaine de définition de f
- 2) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.

- a) $f(-2) \dots 1$ | b) $f(1) \dots 0$ | c) $f(3) \dots 0$ | d) $f(-2) \dots f(4,5)$
- 4) Quel est le nombre de solution de l'équation f(x) = 0? Donner un encadrement possible.

Exercice 6 Soit le tableau de variation d'une fonction f.

- 1) Donner le domaine de la fonction.
- 2) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.

a)
$$f(4,5) \dots f(5,5)$$

b)
$$f(-1) \dots f(0)$$

- 3) Quel est le nombre de solutions de l'équation f(x) = -1?
- 4) Dresser le tableau de signe de la fonction f.

Exercice 7 Soit le tableau de variation d'une fonction f.

x	-10	-5	1	3	5	10
f(x)	-3	_5	_0_	, 2 .	_0_	-1

- 1) Donner le domaine de la fonction.
- 2) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.

a)
$$f(-1) \dots f(-\frac{2}{3})$$
 | b) $f(2) \dots f(4)$

b)
$$f(2) \dots f(4)$$

| c)
$$f(-1) \dots f(4)$$

- 3) Quel est le nombre de solutions de l'équation f(x) = -0.5. Donner un encadrement de chacune, le plus précis possible.
- 4) Dresser le tableau de signe de la fonction f.

Exercice 8 Construire le tableau de variations de la fonction f sachant que :

- f est définie sur [-1; 6]
- l'image de 3 par f est 1
- f(-1) = 3
- 2 est un antécédent de -1 par f.
- 6 est un antécédent de 5 par f.
- f est décroissante sur [-1; 2]
- f est croissante sur [2;6]

x	
f(x)	

Exercice 9

Les points E, F, G et H sont placés respectivement sur les segments [AB], [BC] et [CD] et [AD] de façon à ce que AE = AH = CF = CG = x. On désigne par A(x) l'aire du parallélogramme EFGH.

- 1) À quel intervalle appartient x?
- 2) Justifier que $A(x) = 10x 2x^2$.
- 3) Quel est le domaine de définition de la fonction A?
- 4) À l'aide du menu fonction de la pythonette compléter le tableau de valeurs ci-dessous à l'aide de la calculatrice. Donner les résultats à 10^{-2} près.

x	0.5	1	2	3	3.5	4
A(x)						

5) À l'aide du menu fonction de la pythonette dresser le tableau de variation de A.

x	
A(x)	

- 6) a) Déterminer graphiquement la valeur de x pour laquelle aire est égale à $4 \,\mathrm{cm}^2$.
 - b) Résoudre graphiquement l'équation A(x)=8 d'inconnue x.
- 7) a) Résoudre graphiquement l'inéquation $A(x) \ge 12$.
 - b) Pour quelles valeurs de x, l'aire est elle inférieure à $4\,\mathrm{cm}^2$.
 - c) Pour quelle valeur de x l'aire est elle maximale?

10.4 AP Fonctions à travailler

exercices du manuel

reconnaitre le graphe d'une fonction à l'oral 31 et 33 pages 54-55

associer représentation graphique et tableau de variation : 27 page 81

erreurs à éviter : 29 page 81;

produire un tableau de variation à partir d'une représentation graphique : 28 page 81

interprétation de tableau de variation : 30 page 81, puis 22 à 25 page 80

résolution graphique équations : 50 et 52 page 59-60 et inéquations 20 et 21 page 79

Exercice 1

desmos.com/calculator/ajzyfyilab

La fonction f est représentée dans le repère orthonormé (O; I, J) par la courbe \mathscr{C}_f .

- 1) Préciser le domaine de f.
- 2) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3) Peut-on dire que f est croissante sur $[-7; -5] \cup [2; 4]$? Justifier.
- 4) Dresser le tableau de variation de f.

5) a) Les extremums de f sur l'intervalle [-7;4] sont

LG Jeanne d'Arc, 2nd
Année 2021/2022

- b) Le minimum de f sur l'intervalle [-3; 4] est, et il est atteint pour $x = \ldots$
- c) Les extremums f sur l'intervalle [-6; -3] sont
- 6) Dresser le tableau de signe de f:

x	$-\infty$	-7	• • •			4	$+\infty$
signe de $f(x)$		-	- 0 +	. 0 -	- 0	+ +	

Exercice 2 Soit le tableau de variation d'une fonction f.

x	-5	-1	1	5
f(x)	5	\rightarrow 1	2	·-1

- 1) Préciser le domaine de définition.
- 2) Compléter $f(5) = \dots$ et $f(\dots) = 5$.
- 3) Comparer $f\left(-\frac{5}{3}\right)$ et $f\left(-\frac{3}{2}\right)$
- 4) Peut-on comparer les images de 0 et de 3?
- 5) Pour chacune des propositions suivantes, justifier si elle est vraie ou fausse :
 - a) Si a et b sont deux réels tels que $2 \le a < b \le 4$ alors f(a) < f(b).
 - b) Tous les réels de l'intervalle [-5;0] ont une image supérieure ou égale à 1.
 - c) Il existe un seul réel de l'intervalle [-5, 5] qui a une image négative.

Exercice 3

On considère une fonction f définie sur l'intervalle [-5;5]. On donne son tableau de variations :

x	-5	-3	-1	2	5
f(x)	0	-2	-1	-3	2

- 1. Tracer une courbe représentative possible de la fonction f à l'aide du tableau de son tableau de variation.
- 2. Déterminer (sans justifier) le nombre de solutions de chacune des équations suivantes. Pour chaque solution donner un encadrement le plus précis possible :
 - f(x) = 3
- f(x) = 1
- $f(x) = -\frac{1}{2}$ f(x) = -1, 5 f(x) = -2

- 3. Justifier chacune des affirmations suivantes :
 - a) $f(-4) \ge f(-3)$

c) Pour tout réel $x \in [-5; 5]$ on a $f(x) \ge -3$ d) Pour tout réel $x \in [-5; 2]$ on a $f(x) \le 0$.

b) $f(3) \le f(4)$