2019-07-31 17:00 -0500

Definición (Gráfica, vértices, aristas)

Una gráfica simple es un par ordenado G = (V(G), E(G)) tal que:

Definición (Gráfica, vértices, aristas)

Una gráfica simple es un par ordenado G = (V(G), E(G)) tal que:

• V(G) es un conjunto, cuyos elementos se llaman vértices,

Definición (Gráfica, vértices, aristas)

Una gráfica simple es un par ordenado G = (V(G), E(G)) tal que:

- ullet V(G) es un conjunto, cuyos elementos se llaman vértices,
- E(G) es un conjunto cuyos elementos son subconjuntos de V(G) de cardinalidad 2. Los elementos de E(G) se llaman aristas.

Definición (Gráfica, vértices, aristas)

Una gráfica simple es un par ordenado G = (V(G), E(G)) tal que:

- ullet V(G) es un conjunto, cuyos elementos se llaman vértices,
- E(G) es un conjunto cuyos elementos son subconjuntos de V(G) de cardinalidad 2. Los elementos de E(G) se llaman aristas.
- Si denotamos el conjunto de parejas de elementos de un conjunto X como $\binom{X}{2}$, tenemos que $E(G)\subseteq \binom{V(G)}{2}$.

Definición (Gráfica, vértices, aristas)

Una gráfica simple es un par ordenado G = (V(G), E(G)) tal que:

- ullet V(G) es un conjunto, cuyos elementos se llaman vértices,
- E(G) es un conjunto cuyos elementos son subconjuntos de V(G) de cardinalidad 2. Los elementos de E(G) se llaman aristas.
- Si denotamos el conjunto de parejas de elementos de un conjunto X como $\binom{X}{2}$, tenemos que $E(G)\subseteq \binom{V(G)}{2}$.

Ejemplo

Definamos G como G = (V(G), E(G)) por medio de $V(G) = \{1, 2, 3\}, E(G) = \{\{1, 2\}, \{2, 3\}\}.$

• $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x - y| \ge 5\}.$

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$
- $V(G) = \{x \mid x \text{ es alumno de la UAEH}\},$ $E(G) = \{\{x, y\} \mid x, y \text{ son amigos}\}.$

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$
- $V(G) = \{x \mid x \text{ es alumno de la UAEH}\},$ $E(G) = \{\{x, y\} \mid x, y \text{ son amigos}\}.$
- V(G) es el conjunto de las ciudades del mundo, E(G) es el conjunto de las parejas de ciudades entre las cuales existe un vuelo comercial directo.

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$
- $V(G) = \{x \mid x \text{ es alumno de la UAEH}\},$ $E(G) = \{\{x, y\} \mid x, y \text{ son amigos}\}.$
- V(G) es el conjunto de las ciudades del mundo, E(G) es el conjunto de las parejas de ciudades entre las cuales existe un vuelo comercial directo.
- V(G) es el conjunto de las 28 fichas de dominó, E(G) es el conjunto de parejas de fichas que se pueden juntar de acuerdo a las reglas.

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$
- $V(G) = \{x \mid x \text{ es alumno de la UAEH}\},$ $E(G) = \{\{x, y\} \mid x, y \text{ son amigos}\}.$
- V(G) es el conjunto de las ciudades del mundo, E(G) es el conjunto de las parejas de ciudades entre las cuales existe un vuelo comercial directo.
- V(G) es el conjunto de las 28 fichas de dominó, E(G) es el conjunto de parejas de fichas que se pueden juntar de acuerdo a las reglas.
- Dada una gráfica G, se define una gráfica L(G) como:

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$
- $V(G) = \{x \mid x \text{ es alumno de la UAEH}\},$ $E(G) = \{\{x, y\} \mid x, y \text{ son amigos}\}.$
- V(G) es el conjunto de las ciudades del mundo, E(G) es el conjunto de las parejas de ciudades entre las cuales existe un vuelo comercial directo.
- V(G) es el conjunto de las 28 fichas de dominó, E(G) es el conjunto de parejas de fichas que se pueden juntar de acuerdo a las reglas.
- Dada una gráfica G, se define una gráfica L(G) como:
 - V(L(G)) = E(G),

- $V(G) = \mathbb{N}, \ E(G) = \{\{x, y\} \mid |x y| \ge 5\}.$
- $V(G) = \{1, 2, 3, ..., 20\},$ $E(G) = \{\{x, y\} \mid |x - y| \text{ es primo}\}.$
- $V(G) = \{x \mid x \text{ es alumno de la UAEH}\},$ $E(G) = \{\{x, y\} \mid x, y \text{ son amigos}\}.$
- V(G) es el conjunto de las ciudades del mundo, E(G) es el conjunto de las parejas de ciudades entre las cuales existe un vuelo comercial directo.
- V(G) es el conjunto de las 28 fichas de dominó, E(G) es el conjunto de parejas de fichas que se pueden juntar de acuerdo a las reglas.
- Dada una gráfica G, se define una gráfica L(G) como:
 - V(L(G)) = E(G),
 - $E(L(G)) = \{\{e_1, e_2\} \mid e_1 \neq e_2, e_1 \cap e_2 \neq \emptyset\}.$

Adyacencia

Vértices adyacentes

Si $\{v, w\} \in E(G)$, decimos que v, w son advacentes, y escribimos $v \sim w$.

Adyacencia

Vértices adyacentes

Si $\{v, w\} \in E(G)$, decimos que v, w son adyacentes, y escribimos $v \sim w$.

Grado

Si $v \in V$, el grado de v es la cantidad de vértices adyacentes a v.

Dibujo de una gráfica

La gráfica dada por: $V(G) = \{1, 2, 3\}$, $E(G) = \{\{1, 2\}, \{2, 3\}\}$, se puede representar con el siguente dibujo:

Nota que el dibujo no es único, por ejemplo, no importa el tamaño de las aristas.

Multigráficas, lazos, digráficas

 En una gráfica simple, las aristas unen vértices distintos, y entre un par de vértices distintos puede haber a lo más una arista.

Multigráficas, lazos, digráficas

- En una gráfica simple, las aristas unen vértices distintos, y entre un par de vértices distintos puede haber a lo más una arista.
- Una multigráfica es parecida a una gráfica, pero además se permiten aristas múltiples y lazos.

Multigráficas, lazos, digráficas

- En una gráfica simple, las aristas unen vértices distintos, y entre un par de vértices distintos puede haber a lo más una arista.
- Una multigráfica es parecida a una gráfica, pero además se permiten aristas múltiples y lazos.
- En una digráfica, las aristas son pares ordenados (u, v). En este caso, las aristas se suelen llamar flechas.

Orden y tamaño

• La cantidad de vértices de una gráfica (finita) G se llama el orden y se denota con |G|.

Orden y tamaño

- La cantidad de vértices de una gráfica (finita) G se llama el orden y se denota con |G|.
- La cantidad de aristas de una gráfica G se llama el tamaño de la gráfica y se denota con $\epsilon(G)$. Nótese que $\epsilon(G) \leq \binom{|G|}{2}$.

Gráfica completa y gráfica vacía

• La gráfica completa K_n es la gráfica simple donde $V(K_n) = \{1, 2, ..., n\}$ y $E(G) = \binom{V(G)}{2}$.

Gráfica completa y gráfica vacía

- La gráfica completa K_n es la gráfica simple donde $V(K_n) = \{1, 2, ..., n\}$ y $E(G) = \binom{V(G)}{2}$.
- La gráfica vacía $\overline{K_n}$ es la gráfica con $V(\overline{K_n}) = V(K_n)$ y $E(\overline{K_n}) = \emptyset$.

Complemento

• Dada una gráfica G, su complemento es la gráfica \overline{G} tal que $V(\overline{G}) = V(G)$ y $E(\overline{G}) = {V(G) \choose 2} \setminus E(G)$.

Complemento

- Dada una gráfica G, su complemento es la gráfica \overline{G} tal que $V(\overline{G}) = V(G)$ y $E(\overline{G}) = \binom{V(G)}{2} \setminus E(G)$.
- Por ejemplo:

Gráficas autocomplementarias

 Hay gráficas tales que, salvo renombrar los vértices, se "ven igual" que su complemento. Tales gráficas se llaman autocomplementarias. Por ejemplo:

Gráficas autocomplementarias

 Hay gráficas tales que, salvo renombrar los vértices, se "ven igual" que su complemento. Tales gráficas se llaman autocomplementarias. Por ejemplo:

• La correspondencia entre los vértices está dada por $1 \mapsto 1$, $2 \mapsto 3$, $3 \mapsto 5$, $4 \mapsto 2$ y $5 \mapsto 4$.

Isomorfismo de gráficas

• Se dice que dos gráficas G_1 , G_2 son isomorfas si existe una correspondencia biyectiva $f: V(G_1) \to V(G_2)$ de tal manera que $\{v_1, v_2\} \in E(G_1)$ si y solo si $\{f(v_1), f(v_2)\} \in E(G_2)$. Decimos entonces que f es un isomorfismo y escribimos $G_1 \cong G_2$

Isomorfismo de gráficas

- Se dice que dos gráficas G_1 , G_2 son isomorfas si existe una correspondencia biyectiva $f: V(G_1) \to V(G_2)$ de tal manera que $\{v_1, v_2\} \in E(G_1)$ si y solo si $\{f(v_1), f(v_2)\} \in E(G_2)$. Decimos entonces que f es un isomorfismo y escribimos $G_1 \cong G_2$
- Con este concepto, entonces se puede definir una gráfica autocomplementaria como una gráfica que es isomorfa a su complemento.

Teorema de autocomplementaridad

• Teorema. Si G es autocomplementaria, entonces $|G| \equiv 0$ o 1 (mod 4).

Teorema de autocomplementaridad

- Teorema. Si G es autocomplementaria, entonces $|G| \equiv 0$ o 1 (mod 4).
 - Demostración. Si $G \cong \overline{G}$, entonces $\epsilon(G) = \epsilon(\overline{G})$. Como $E(\overline{G}) = \binom{V(G)}{2} \setminus E(G)$, entonces $\epsilon(\overline{G}) = \binom{|G|}{2} \epsilon(G)$, por lo que:

$$\epsilon(G) = \frac{1}{2} {|G| \choose 2} = \frac{1}{4} |G| (|G| - 1).$$

Teorema de autocomplementaridad

- Teorema. Si G es autocomplementaria, entonces $|G| \equiv 0$ o 1 (mod 4).
 - Demostración. Si $G \cong \overline{G}$, entonces $\epsilon(G) = \epsilon(\overline{G})$. Como $E(\overline{G}) = \binom{V(G)}{2} \setminus E(G)$, entonces $\epsilon(\overline{G}) = \binom{|G|}{2} \epsilon(G)$, por lo que:

$$\epsilon(G) = \frac{1}{2} {|G| \choose 2} = \frac{1}{4} |G| (|G| - 1).$$

• Como |G| y |G| — 1 son enteros consecutivos, uno de ellos es impar. Se deduce que no puede pasar que 2 divida a |G| y 2 divida a |G| — 1, por lo que 4 divide a |G| o 4 divide a |G| — 1, como queríamos demostrar. \square