Analiza i projektowanie systemów informatycznych

Definiowanie i analiza wymagań

Rodzaje wymagań

- wymagania funkcjonalne
 - określenie funkcjonalności systemu
 - określenie sposobu użycia funkcjonalności przez byty zewnętrzne (użytkownicy, inne systemy)
- wymagania niefunkcjonalne
 - □ ilościowe
 - □ jakościowe

- perspektywa funkcjonalna
 - widok od wewnątrz systemu określa zestaw funkcji, które system może wykonywać
 - □ lista funkcji
 - □ grupy funkcji
 - hierarchia funkcji
- perspektywa użycia
 - widok od zewnątrz systemu określa sposoby użycia funkcjonalności systemu w realnych przypadkach
 - □ przypadki użycia
 - □ aktorzy

Przypadek użycia (Use Case)

Definicja:

 Przypadek użycia jest to dokument opisowy objaśniający sekwencje zdarzeń występujących w ramach procesu używania systemu przez "aktora", czyli obiekt zewnętrzny.

Własności:

- Przypadki użycia same nie stanowią specyfikacji wymagań, ale są doskonałym narzędziem do ich ilustracji i weryfikacji.
 - korzystają ze zdefiniowanych funkcji systemu,
 - odnoszą się do innych wymagań (funkcjonalnych i niefunkcjonalnych)
- □ Przypadek użycia jest zawsze inicjowany przez aktora
 - nie służy do opisu wewnętrznych działań systemu, ani też działań automatycznych

Przypadek użycia (Use Case)

Własności:

- Przypadek użycia jest zawsze opisem "dużego", kompletnego procesu, zwierającego zwykle wiele kroków lub transakcji, produkującego wynik odbierany przez aktora.
 - Opisuje całość interakcji pomiędzy użytkownikiem, a systemem przy realizacji przez użytkownika pełnego, zamkniętego zadania.
 - Nie jest opisem pojedynczego kroku, wywołania funkcji, itp.

Przypadki użycia – forma opisu

- Opis ogólny:
 - nazwa przypadku użycia,
 - □ aktorzy,
 - □ typ,
 - □ opis,
 - □ referencje (lista funkcji, wymagań, etc.)
- Przebieg zdarzeń:
 - □ typowy,
 - alternatywne,
 - □ wyjątki
 - □ opis tekstowy, tabelaryczny,
 - diagramy aktywności

Przebieg zdarzeń, opis tabelaryczny

- inicjacja
- 2. pierwsza akcja aktora
- 4. kolejna akcja aktora
- 6. kolejna akcja aktora

. . .

- 3. odpowiedź systemu
- 5. kolejna odpowiedź systemu
- 7. kolejna odpowiedź systemu

. . .

M

Przypadki użycia - podział

- poziom opisu:
 - □ wysokiego poziomu (high level) tylko opis ogólny
 - tworzone podczas identyfikacji przypadków użycia, na początku zbierania wymagań
 - □ rozszerzone (expanded) opis ogólny wraz z przebiegiem zdarzeń
 - rozszerzanie opisu podczas dalszego zbierania wymagań szczegółowych i w trakcie analizy
- waga:
 - □ główne (*primary*) najważniejsze procesy systemu
 - muszą być zrealizowane
 - wśród nich wyróżniamy przypadki architektonicznie znaczące
 - drugorzędne (secondary) procesy mniej istotne lub rzadko wykonywane
 - muszą być zrealizowane, ale w końcowych iteracjach
 - □ opcjonalne *(optional)* procesy poboczne, dodatkowe
 - nie muszą być koniecznie realizowane

Przypadki użycia - podział

wnikliwość opisu:

- merytoryczne, istotne (essential) koncentrujące się na istocie problemu, opisane w formie wolnej od szczegółów technicznych i implementacyjnych
 - tworzone przez analityków, aby nie ograniczać projektantów w doborze technologii
- rzeczywiste, konkretne (real) opisane przy wykorzystaniu terminologii technologicznej i zawierające szczegóły implementacyjne (np. mechanizmy realizacji wejścia/wyjścia)
 - tworzone przez projektantów dobór odpowiedniej technologii i sposobu realizacji przy uwzględnieniu wszystkich wymagań niefunkcjonalnych

Aktor (Actor)

Definicja:

 Aktor jest bytem zewnętrznym w stosunku do systemu, wchodzącym w interakcje z systemem: wysyłającym i odbierającym komunikaty, wymieniającym informacje.

Własności:

- □ Aktor reprezentuje rolę grana w danym przypadku użycia:
 - rola człowieka,
 - system komputerowy,
 - urządzenie elektroniczne.
- □ Aktor jest klasą, nie instancją
 - Możliwe jest klasyfikowanie aktorów poprzez mechanizm generalizacji-specjalizacji.

Aktorzy – podział

ranking aktorów:

- □ główny (*primary*) używający zasadniczych funkcji systemu, biorący udział w głównych przypadkach użycia,
- drugorzędny (secondary) wykorzystujący fukcje pobocze lub administracyjne.

aktywność:

- □ aktywny (active) inicjujący przypadek użycia,
- pasywny (passive) uczestnik scenariusza odpowiadający na sygnały.

Identyfikacja przypadków użycia

poprzez aktorów:

- identyfikacja aktorów,
- dla każdego aktora identyfikacja procesów i funkcji, które inicjują lub w których biorą udział (odczyt, tworzenie, aktualizacja, usuwanie danych, informowane o zdarzeniach).

poprzez zdarzenia:

- identyfikacja zdarzeń zewnętrznych, na które system musi odpowiadać,
- powiązanie zdarzeń z aktorami i procesami.

poprzez funkcje:

- 🗆 identyfikacja funkcji, które system ma wykonywać,
- określenie kontekstów (procesów), w których każda funkcja jest wykonywana.

Związki pomiędzy przypadkami użycia

- uszczegółowienie generalizacja
 - jeden przypadek użycia stanowi częściowy opis zachowania innego przypadku użycia
 - odpowiednik dziedziczenia w programowaniu
- włączenie <<include>>
 - jeden przypadek użycia (lub wiele) wykorzystuje zawsze i w całości inny przypadek użycia
 - odpowiednik mechanizmu "include" w programowaniu
- rozszerzenie <<extends>>
 - □ jeden przypadek użycia (lub wiele) wykorzystuje w pewnych sytuacjach inny przypadek użycia
 - □ odpowiednik wywołania podprogramu w programowaniu
 - □ jeśli przypadek użycia nigdy nie jest wykorzystywany samodzielnie, nazywany jest abstrakcyjnym

Analiza przypadków użycia

- rozszerzanie i uszczegóławianie opisów
- wyszukiwanie związków pomiędzy przypadkami użycia
 - wyodrębnianie zachowań wspólnych (include, extends)
 - ustalanie szablonów interakcji (generalizacja)
- weryfikacja jakości modelu przypadków użycia:
 - □ niesprzeczność,
 - □ spójność,
 - □ kompletność

Zarys procesu modelowania

- identyfikacja aktorów i przypadków użycia,
- zapis przypadków użycia w formacie wysokiego poziomu,
- stworzenie diagramów, strukturalizacja i powiązanie przypadków użycia,
- określenie wagi i rankingu aktorów i przypadków użycia,
- zapis przypadków istotnych architektonicznie w formie rozszerzonej,
- w razie potrzeby zapis przypadków typu rzeczywistego (real) w formie rozszerzonej,
- analiza zapis wszystkich przypadków użycia w formie rozszerzonej,
- projektowanie przechodzenie od przypadków typu istotnego (essential) do rzeczywistego.

Diagram procesu

- niezawodność, dostępność (fault-tolerance, accessibility)
 - □ dostępność
 - 99,72 1 dzień/rok
 - 99,93 6 h/rok
 - 99,99 1 h/rok
 - ☐ MTBF (Mean Time Between Failures)
 - maksymalizacja odporności na awarie redundancja sprzętu, rozwiązania programowe
 - ☐ MTTR (Mean Time To Recover)
 - minimalizacja czasu odtwarzania dobór technologii oprogramowania systemowego, procedury administratorskie

- bezpieczeństwo (security)
 - klasy zakresu zagrożeń:
 - klasa Internal Business dostęp wyłącznie dla jednostek wewnętrznych organizacji
 - klasa Contract Business dostęp dla podmiotów zewnętrznych związanych umowami
 - klasa Public Business dostęp publiczny
 - najistotniejsze zagrożenia:
 - anonimowy dostęp
 - nieautoryzowany dostęp do danych (odczyt, wstawienie, aktualizacja, usunięcie): w spoczynku / przy przesyłaniu
 - nieautoryzowana instalacja / reinstalacja / usunięcie oprogramowania aplikacyjnego / systemowego
 - uszkodzenie / zniszczenie fizyczne sprzętu / nośników danych

- bezpieczeństwo (security)
 - □ przeciwdziałanie
 - środki techniczne
 - mechanizmy organizacyjne
 - zabezpieczenia fizyczne
 - □ wykrywanie i działania naprawcze
 - środki techniczne
 - procedury awaryjne

- pojemność (capacity)
 - miary ilościowe: liczba użytkowników, elementów systemu, ilość danych
 - dobór technologii pod względem pojemności
- wydajność, sprawność, efektywność (performance, efficiency, effectiveness)
 - wydajność: bezwzględna miara ilościowa realizacji funkcji systemu
 - sprawność: miara ilościowa realizacji funkcji systemu względem używanych zasobów
 - efektywność: miara stopnia, w jaki system wspomaga użytkowników w wykonywaniu ich pracy
 - dobór technologii pod względem wydajnościowym

- zarządzalność, łatwość utrzymania (manageability, maintainability)
 - łatwość wykonywania procedur administratorskich w ramach rozwiązania, takich jak np. zarządzanie oprogramowaniem, użytkownikami, danymi, monitorowanie, strojenie
 - dobór architektury systemu
 - dobór specjalistycznego oprogramowania
 - wbudowanie mechanizmów w system

- wiarygodność (reliability)
 - miara stopnia, w jakim system wykonuje swoje funkcje w sposób poprawny (stopnia zaufania do systemu)
 - dobór technologii
 - jakość i pełność testów
- trwałość, odporność (robustness)
 - zdolność systemu do działania pomimo występowania zdarzeń niekorzystnych, awarii
 - dobór technologii odpornych na awarie
 - modularna architektura systemu
 - architektura rozproszona

- użyteczność (usability)
 - stopień spełnienia wymagań użytkowników i przynoszenia im korzyści w realizacji ich zadań
- ergonomia (ergonomics)
 - □ łatwość wykorzystywania funkcji systemu
- zrozumiałość (understandability)
 - zdolność systemu do komunikowania się z użytkownikami w prosty i odpowiedni dla nich sposób
- wielojęzyczność (internationalization)
 - zdolność systemu do komunikowania się w wielu językach

- zgodność (conformability): normy, reguły, infrastruktura
 - zgodność rozwiązania z obowiązującym prawem i innymi regulacjami
- kompatybilność (compatibility)
 - zdolność rozwiązania do współpracy z innymi systemami
- organizacja (organization)
 - wzajemne dostosowanie systemu i organizacji, w której ma funkcjonować
- topologia (topology)
 - sposób konstrukcji rozwiązania pod względem topologii węzłów i sieci w systemie
 - Wszystkie powyższe można rozumieć jako ograniczenia projektu

- modyfikowalność (modifiability)
 - zdolność rozwiązania do wnoszenia modyfikacji do jego funkcjonalności
- indywidualizacja (customizability)
 - zdolność rozwiązania do dostosowywania interfejsu i funkcjonalności systemu do specyficznych wymagań poszczególnych użytkowników
- uniwersalność, elastyczność (versatility)
 - możliwość zastosowania rozwiązań w innych systemach
- przenośność (portability)
 - zdolność rozwiązania do działania na różnych platformach sprzętowo-systemowych

- reużywalność (reusability)
 - możliwość wykorzystania elementów rozwiązania w wielu elementach danego systemu i/lub w innych systemach
- rozszerzalność (extendibility)
 - zdolność systemu do dodawania nowych elementów funkcjonalnych
- skalowalność (scalability)
 - zdolność systemu do zwiększania parametrów ilościowych wydajności, pojemności
 - wszystkie wymienione wymagają:
 - doboru odpowiedniej technologii
 - opracowania odpowiedniej architektury

- kompletność (completeness)
 - miara stopnia pokrycia przez system funkcjonalności istotnej dla organizacji i użytkowników
 - pełność testów i zapewnienie zgodności z modelem przypadków użycia
- testowalność (testability)
 - zdolność rozwiązania do łatwego, wygodnego i efektywnego testowania
 - wykorzystanie narzędzi do automatyzacji procesu testowania
 - wbudowanie mechanizmów w system

м

Zasady definiowania wymagań ilościowych

- określenie mierzonych wartości
 - formułowanie założeń w jednostkach biznesowych, a nie fizycznych
 - np. pomiar liczby dokumentów (a nie GB)
 - wyeliminowanie ewentualnych niejednoznaczności w określeniu tego, co ma podlegać pomiarowi
 - np. czas wykonania transakcji na serwerze bazy danych (a nie na stacji klienckiej)
- określenie metody pomiaru
 - zdefiniowanie mechanizmu technologicznego i sposobu (metodologii) wykonywania pomiaru
 - pomiar ręczny / elektroniczny
 - wykorzystanie zewnętrznych narzędzi pomiarowych / wbudowanie mechanizmów w rozwiązanie
 - sposób generowania obciążenia

M

Zasady definiowania wymagań ilościowych

- określenie środowiska i warunków pomiaru
 - zdefiniowanie sprzętu, oprogramowania systemowego i podstawowego
 - platforma sprzętowo-systemowa, serwery aplikacyjne, bazy danych, technologia sieci, etc.
 - określenie warunków technicznych
 - uruchomione i działające równolegle oprogramowanie, założone obciążenie testowanego systemu i innego oprogramowania
 - określenie warunków organizacyjnych
 - organizacja testów, zespołu testerów
- określenie interpretacji wyników
 - zdefiniowanie sposobu wyliczania rezultatu testu z wyników pomiarów oraz poziomu akceptowalności rezultatu
 - zalecane: N% wyników jest poniżej/powyżej zadanej wartości
 - lub: średnia pomiarów jest poniżej/powyżej zadanej wartości

Opis

Przypadek użycia umożliwia wprowadzenie do systemu danych wniosku o zarejestrowanie nowego gospodarstwa lub aktualizację danych już zarejestrowanego.

Aktorzy

Operator danych wniosków powierzchniowych i gospodarstw (aktywny), zwany dalej operatorem.

Warunki wstępne

 Dokument wniosku został zarejestrowany w przypadku użycia Rejestracja dokumentu wchodzącego.
 Wniosek jest w stanie Przyjęty lub Wprowadzony.

Warunki końcowe

- Dane wniosku zostały zapisane w systemie.
- Wniosek jest w stanie Wprowadzony.
- Operacja wprowadzenia danych wniosku została zapisana w dzienniku systemowym.
- Wniosek jest gotowy do realizacji przypadku użycia Kontrola i akceptacja wniosku o rejestrację danych gospodarstwa.

Przebieg podstawowy

Operator		System	
1.	Aktor wywołuje funkcję wprowadzenia danych gospodarstwa/gospodarza.	3.	System generuje i prezentuje raport operacyjny.
2.	Aktor określa parametry dla raportu operacyjnego <i>Wybór wniosku o rejestrację danych gospodarstwa</i> .		
4.	Aktor dokonuje wyboru wniosku, którego dane chce wprowadzać.	5.	System wyświetla wypełniony posiadanymi o gospodarstwie i gospodarzu danymi formularz, umożliwiający wprowadzenie danych z wniosku.
6.	Aktor podaje dane z dokumentu wniosku (w zakresie D1).	7.8.	System przeprowadza kontrolę kompletności (R1) i kontrolę administracyjną prostą (R2) wprowadzonych danych. System rejestruje wprowadzenie danych wniosku.

Alternatywne przebiegi zdarzeń

A1. Korekta i uzupełnienie wprowadzonych danych.

Operator	System			
A1.1. Kroki 1 – 7 przebiegu podstawowego.				
	A1.2. System generuje i prezentuje raport o wykrytych błędach (D6).			
A1.3. Aktor dokonuje korekty i uzupełnień wprowadzonych danych.	A1.4. System rejestruje dokonane zmiany (D3).A1.5. Powrót do kroku 7 przebiegu podstawowego.			

A2. Potwierdzenie zgodności wprowadzonych danych

Operator	System
A2.1. Kroki 1 – 7 przebiegu podstawowego.	
	A2.2. System generuje i prezentuje raport o wykrytych błędach (D6).
A2.3. Aktor zatwierdza wprowadzone,	A2.4. Powrót do kroku 8 przebiegu
błędne dane jako zgodne z danymi dokumentu wniosku.	podstawowego.

Sytuacje wyjątkowe w obsłudze procesu

W1. Wprowadzany wniosek nie jest w stanie *Przyjęty* lub *Wprowadzony*. Odmowa modyfikacji danych wniosku.

Zakres przetwarzanych danych

Dane wprowadzane:

- D1. Zawartość opisana w Dodatku D: Wniosek o rejestrację gospodarstwa.
- D2. Informacja o dokonanej operacji wprowadzenia danych wniosku:
 - D2.1. typ operacji (wprowadzenie danych wniosku o rejestrację danych gospodarstwa, wprowadzenie danych wniosku o korektę danych gospodarstwa),
 - D2.2. data operacji,
 - D2.3. miejsce operacji,
 - D2.4. przeprowadzający operację,
 - D2.5. numer kancelaryjny dokumentu źródłowego.
- D3. Zmiany dokonane:
 - D3.1. stara wartość,
 - D3.2. nowa wartość,
 - D3.3. operacja (D2).
- D4. Raporty operacyjne
- D5. Wybór wniosku o rejestrację danych gospodarstwa

Parametry ustalone

- D5.1. status wniosku = *Przyjęty*,
- D5.2. typ wniosku = rejestracja lub korekta.
- D6. Raport o wykrytych błędach

Reguly przetwarzania danych

- R1. Kontrola kompletności wprowadzonych danych polega na sprawdzeniu, czy wszystkie wymagane Przepisami Proceduralnymi dane zostały podane.
- R2. Kontrola administracyjna prosta wprowadzonych danych polega na:
 - R2.1. weryfikacji poprawności konstrukcji podanego numeru PESEL,
 - R2.2. weryfikacji poprawności konstrukcji podanego numeru REGON,
 - R2.3. weryfikacji poprawności konstrukcji podanego numeru rachunku bankowego.

Wymagania niefunkcjonalne

Nie określono.