

Simulating Human Mobility with a Trajectory Generation Framework Based on Diffusion Model

利用基于扩散模型的轨迹生成框架模拟人类流动性

2024 IJGIS

汇报人: 庞媛媛

2024/07/21

录

方法

实验

总结

背景

背景: 大多数移动性建模方法为解决特定任务而设计的,导致通用性不足。

核心: 提出基于扩散模型的轨迹生成框架(TrajGDM),通过学习轨迹生成过程来捕捉数据集中的普遍

移动模式。

定义

- \triangleright 轨迹: $X = [loc_1, loc_2, ..., loc_n]$
- ▶ 轨迹数据集: $\mathbb{D} = \{X^1, X^2, ..., X^{Num}\}$
- ightharpoonup **轨迹潜空间**:高维特征空间Z, $Z_{\mathbb{D}} = \mathcal{M}(\mathbb{D})$
- ightharpoonup **轨迹生成**:通过从潜在空间 $\mathcal{Z}_{\mathbb{D}}$ 中采样轨迹,生成一个显示的数据集 $\hat{\mathbb{D}} = \{\hat{X}^1, \hat{X}^2, ..., \hat{X}^{Num}\}$ 。

$$\widehat{\mathbb{D}} = \mathcal{F}_{\theta}(\mathcal{Z}_{\mathbb{D}})$$

轨迹生成模型F通过可训练参数 θ 学习轨迹数据集 \mathbb{D} 中的移动模式,生成一个合成数据集 $\hat{\mathbb{D}}$ 。

 \triangleright 测量公式: $minJSD[M(\mathbb{D})||M(\widehat{\mathbb{D}})]$

JSD 是詹森-香农发散度(Jensen-Shannon Divergence,JSD),通常用于测量两个分布之间的差异。M是衡量数据集中轨迹特征的不同度量。

- ightharpoonup 轨迹预测: $\overline{loc}_{n-l},...,\overline{loc}_n = \operatorname{Pre}(loc_1,...,loc_{n-l})$
- \triangleright 轨迹重建:填补轨迹中的缺失点, $\bar{u}_i, ..., \bar{u}_{i+l} = Rec(..., loc_{i-1}, u_i, ..., u_{i+l}, loc_{i+l+1}, ...)$

轨迹生成框架

- Figure 2. Structure of the TrajGDM framework.
- 位置编码函数和轨迹编码器:将轨迹编码为隐藏表示
- ▶ 训练过程: 结合扩散和生成模块训练轨迹生成器
- > 采样过程: 从潜在空间采样潜在向量生成轨迹数据
- ▶ 轨迹解码器
- ▶ 轨迹生成器

扩散过程:

模拟轨迹中添加不确定性→构建基于马尔科夫链的扩散过程。

扩散过程中,轨迹生成器学习估计添加的噪声并恢复原始的真实轨迹。

生成过程:

轨迹的生成 \rightarrow 消除不确定性的过程"轨迹生成器G"

轨迹编码器 ε

- ▶ 前提: 大多轨迹数据集将轨迹记录为一系列位置索引(CDR网格、路段、街区、城镇的索引)"离散的"
- ▶ 目的: 离散轨迹数据→编码到"连续"特征空间 X_0
- \triangleright 轨迹编码器 ϵ :

$$X_0 = \mathcal{E}[\mathcal{P}(X)]$$

$$\mathcal{E}[\mathcal{P}(X)] = \text{LSTM}[\mathcal{P}(\log_1), \mathcal{P}(\log_2), \dots, \mathcal{P}(\log_n)]$$

 LSTM 网络对轨迹进行编码,其输出作为轨迹的表示,轨迹点之间的序列关系也被编码到 X_0 。

▶ 位置编码函数尹: 为模型提供位置之间空间关系的感知

$$\mathcal{P}(loc) = W_{\mathcal{P}} * \text{Concat}\{\mathbb{E}(loc) * \gamma, \mathbb{E}[Adj(loc, 1)], ..., \mathbb{E}[Adj(loc, i)]\}$$

$$E(loc) = \underbrace{Encoder_{onehot}(loc)} * W_{E}$$

 W_P 位置编码函数的参数,Concat连接函数, γ 位置编码函数的超参数。

Adj(loc,i) 相邻查询函数,返回与位置loc相邻的第i个位置的轨迹。

E 嵌入函数,将位置嵌入到特征空间中。 W_E 可训练权重

Encoderonehot one-hot 编码,将每个位置索引loc转换为一个 one-hot 向量。

%位置编码函数结合loc的相邻位置: γ 强调实际位置loc,

 W_P 学习复杂的空间来自相邻关系的信息。

 \triangleright 将轨迹中每个位置编码到特征空间后,构造整个轨迹X的表示 X_0 。

轨迹扩散过程

 \triangleright 目的:为确保添加不确定后可以重建轨迹,构建T步马尔科夫链。

▶ 过程:每一步以随机高斯噪声的形式添加不确定性,

T步后轨迹表示 X_0 被映射到潜在表示 X_T , X_T 遵循潜在分布 $q(X_{1:T}|X_0)$

$$q(X_{1:T}|X_0) = \prod_{t=1}^{T} q(X_t|X_{t-1})$$

$$q(X_t|X_{t-1}) = Normal(X_t; \sqrt{1 - \beta_t}X_0, \beta_t \mathbf{I})$$

 $q(X_t|X_{t-1})$ 为扩散过程中的一步, $Normal(X;\mu,\sigma^2)$ 为采样函数,从均值为 μ 、方差为 σ^2 的正态分布中采样向量X。

▶ **简化计算**: 任意时间戳t处以封闭形式对轨迹X_t采样

$$q(X_t|X_0) = Normal(X_t; \sqrt{\bar{\alpha}_t}X_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

其中, $\alpha_t = 1 - \beta_t$, $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ 。因此可以<mark>直接从基于 X_0 的高斯分布中采样得到噪声轨迹的表示 X_t </mark>

$$X_t = \sqrt{\bar{\alpha}_t} X_0 + (1 - \bar{\alpha}_t) \epsilon$$

其中, ϵ 是随机高斯噪声(轨迹 X_0 上添加的不确定性), $\epsilon \sim \mathcal{N}(0, \mathbf{I})$

ightharpoonup 优点:由于 α_t < 1,扩散步长足够大时, $\bar{\alpha}_t$ 足够接近0,导致 $q(X_t|X_0)$ 收敛到标准高斯分布。

*确保训练数据集中所有轨迹表示都投射到相同的潜在分布上。

*正态分布的良好特性保证采样可控。

轨迹生成过程

▶ 核心: 从潜在分布中采样潜在向量表示生成轨迹, 构建T步过程

 \triangleright 过程: 每一步估计一小部分不确定性,T步后形成模型分布 $p_{\theta}(X_0)$

训练数据集中所有 轨迹的潜在分布

有
$$p_{\theta}(X_{0:T}) = p(X_T)$$
 $\prod_{t=1} p_{\theta}(X_{t-1}|X_t)$ — G 在给定参数 θ 的情况下对 X_{t-1} 的估计 $p_{\theta}(X_{t-1}|X_t) = Normal\left(X_{t-1}; \mu_{\theta}(X_t, t), \sum_{t=1}^{\infty} (X_t, t)\right)$

其中,
$$\sum_{0} (X_{t}, t) = \tilde{\beta}_{t} \mathbf{I}$$
和 $\tilde{\beta}_{t} = \frac{1 - \overline{\alpha}_{t-1}}{1 - \overline{\alpha}_{t}} \beta_{t}$ (手动设置)

训练过程

- ▶ 目的: 结合轨迹扩散过程和轨迹生成过程,定义训练目标,以便**Trajectory Generator**从<u>扩散过程</u>中添加的噪声中学习,并利用学习到的模式通过<u>生成过程</u>生成轨迹
- ightharpoonup 训练目标:最小化模型分布 $p_{\theta}(X_0)$ 生成的轨迹与真实轨迹数据所反映的数据分布 $q(X_0)$ 之间的差异即最大化变分下限:

$$\max_{\theta} \mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \le \max_{\theta} \mathbb{E}_{q(x_0, \dots, x_T)}[\log p_{\theta}(x_{0:T}) - \log q(x_{1:T}|x_0)]$$

▶ 简化目标:

$$\min_{\theta} \mathbb{E}_{x_0,\epsilon} \left[\frac{\beta_t^2}{2\tilde{\beta}_t \alpha_t (1 - \bar{\alpha}_t)} || \epsilon - \mathcal{G}_{\theta} \left(\sqrt{\bar{\alpha}_t} X_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t \right) ||^2 \right]$$

其中, $G_{\theta}(X_t,t)$ 是G在生成步骤 t 时预测的不确定性。

目标实质:最小化轨迹扩散过程每一步添加到观测轨迹 X_0 的<u>不确定性</u> ϵ 与轨迹生成器G<u>估计的不确定性G</u>之间的差异。

▶ 过程:

Step1 直接根据扩散过程的 $q(X_t|X_0)$ 计算 X_0 的估计:

$$\overline{X_0} = \frac{1}{\sqrt{\overline{\sigma_t}}} X_t - \left(\sqrt{\frac{1}{\overline{\sigma_t}} - 1} \right) \mathcal{G}_{\theta}(X_t, t)$$

Step2 轨迹解码器 \mathbb{D} 对 $\overline{X_0}$ 解码,将潜在表示解码为每个连位置的概率。 Step3 用SoftMax交叉熵损失的梯度训练网络

$$\min_{\theta} \mathbb{E}_{X,\epsilon \sim N(0,1),t} [-X * \log \mathcal{D}(\overline{X_0})]$$

采样过程

- **▶ 目的:** 从潜在空间中采样潜在向量生成轨迹
- ightharpoonup 过程: $\mathcal{M}_{p_{\theta}}(X_{t-1}|X_t)$ 中采样,优化目标是经过 t 次去噪后,模型分布 $p_{\theta}(X_0)$ 近似于数据分布 $q(X_{\theta})$, $X_t \to X_{t-1}$:

$$X_{t-1} = \frac{1}{\sqrt{\overline{\alpha_t}}} \left(X_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha_t}}} \mathcal{G}_{\theta}(X_t, t) \right) + \tilde{\beta}_t z$$

其中,z表示从标准高斯分布中采样的随机变量, $G_{\theta}(X_t,t)$ 作为 X_t 不确定性的估计值。

Algorithm 2 Generating algorithm

- 1: $X_T \sim N(0, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**

3:
$$z \sim N(0, 1)$$
 if $t > 1$, else $z = 0$

3:
$$\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$$
 if $t > 1$, else $\mathbf{z} = 0$
4: $X_{t-1} = \frac{1}{\sqrt{\overline{\alpha}_t}} \left(X_t - \frac{\beta_t}{\sqrt{1-\overline{\alpha}_t}} \mathcal{G}_{\theta}(X_t, t) \right) + \tilde{\beta}_t \mathbf{z}$
5: end for

$$6: \hat{X} = \mathcal{D}(X_0)$$

7: return *X*

轨迹生成器

- > **目的**: 轨迹生成器网络通过降低轨迹的不确定性来生成轨迹
- ▶ 过程:

Step1: X_t (轨迹X在生成步骤t的潜在表示)输入轨迹生成器

Step2: Step Encoding将步骤信息注入*X_t* (∵扩散过程每步的不确定性增量不同)

Transformer中位置编码函数的变体

$$SE(X_t, t)$$

$$= X_{t} + \begin{cases} \sin\left(\frac{t}{10000^{\frac{2i}{d}}}\right), i\%2 = 0\\ \cos\left(\frac{t}{10000^{\frac{2i}{d}}}\right), i\%2 \neq 0 \end{cases}$$

Step3: LSTM和Transformer 编码器对序列关系

建模,编码表示存储Memory

Step4: Transformer和LSTM解码器解码不确定

性序列,输出估计的不确定性 $G_{\theta}(X_t,t)$

ightharpoonup Step5: 利用不确定性采样生成 X_{t-1}

Figure 3. Structure of the trajectory generator and the trajectory decoder.

轨迹解码器

目的: 将轨迹的潜在便是解码为所有候选位置的概率分布

结构: Transformer的编码器+解码器

Figure 3. Structure of the trajectory generator and the trajectory decoder.

数据集、评估指标

数据集

- ➤ T-Drive: 2008.2.2-2.8北京的出租车GPS轨迹,5分钟为间隔重采样,根据数据集中的移动频率和平均移动距离,以边长为2000米的正方形将六环区域划分为2727个网格,共记录169,984条轨迹。
- ➤ Geo-life: 182个个体5年来的移动GPS轨迹,5分钟为间隔重采样,将网格划分为500米,共110网格,76,360条轨迹。

Figure 4. Geographical distribution of trajectory points in (a) T-Drive,(b) Geo-life.

5种评估指标

JSD: 衡量生成数据集与真实验证数据集之间这些指标分布的相似性,越小越相似。

$$JSD(\mathbb{D}||\widehat{\mathbb{D}}) = \frac{1}{2}KL\left(\mathbb{D}||\frac{\mathbb{D}+\widehat{\mathbb{D}}}{2}\right) + \frac{1}{2}KL\left(\mathbb{D}||\frac{\mathbb{D}+\widehat{\mathbb{D}}}{2}\right)$$

$$KL(\mathbb{D}||\widehat{\mathbb{D}}) = \sum_{x \in \mathcal{X}} \mathbb{D}(x) \log \left(\frac{\mathbb{D}(x)}{\widehat{\mathbb{D}}(x)}\right)$$

- ▶ 移动距离: 测量统一个体两个相邻时刻之间的距离
- ▶ 地理分布:评估所有生成轨迹中轨迹点的地理分布
- ▶ 起源分布 (O-Dis) 和目的地分布 (D-Dis): 所有轨迹的起点、终点位置分布
- ▶ 多样性: 衡量数据集中出现2次以上轨迹比例, 比率越低, 多样性越强。

六个基线

- ▶ FC-LSTM (2014): 处理序列到序列任务的著名<mark>判别模型</mark>。它通过从所有轨迹点的密度分布中采样一个点来开始生成轨迹,然后通过一个逐步的过程生成剩余的轨迹。
- ▶ MoveSim (2020): 用于人类移动模拟的先进方法。判别模型基于GAN结构。该方法从人口密度分布中采样轨迹的起点。然后,剩余轨迹从SeqNet 轨迹预测模型中输出。采用强化学习技术的判别器进行训练。
- ➤ SeqGAN (2017): 序列生成的基准模型。它将 GAN 与强化学习相结合,为生成器提供策略梯度。它采用了两个 GRU 网络作为生成器和判别器。与从潜在空间随机采样开始生成表示的原始 GAN 不同,该模型从起始标记的可训练嵌入开始生成轨迹。被视为一种判别模型。
- ➤ TrajVAE(2021): 现有的少数几个真正的生成模型之一,具有用于轨迹生成的潜在空间。该模型采用两个 LSTM 网络作为 VAE 的编码器和解码器。它通过解码高斯潜空间的采样向量来生成轨迹。
- ➤ Generative SeqGAN(2017):由 seqGAN 修改而来。如前所述,seqGAN 被认为是一种判别模型,因为它在潜空间方面存在缺陷。seqGAN 使用正态分布的潜在表示样本来改变其起始标记。因此,该模型通过将潜在分布映射到现实来生成轨迹。生成模型
- ▶ TrajSynVAE(2024): 一种新颖的轨迹生成模型,它将经典的时间点过程与新颖的神经变分推理框架相结合,从而具有很强的能力为具有连续时间分布的人类轨迹建模。该模型通过从潜在空间采样开始生成轨迹,因此是一个生成模型。

背景

实验结果

Table 1. Performance comparison of all models on two datasets.

	T-Drive				
Metrics (JSD)	Moving	Distribution	O-Dis	D-Dis	Diversit
Test Dataset	0.02949	0.04773	0.05466	0.04458	0.04655
FC-LSTM	0.2227	0.2307	0.1603	0.27594	0.98228
MoveSim	0.3361	0.1763	0.05449	0.24498	0.22914
SeqGAN	0.1106	0.1418	0.1398	0.1732	0.1085
TrajVAE	0.3009	0.4557	0.3713	0.4831	0.0
Generative SeqGAN	0.3194	0.1890	0.4932	0.1701	0.0
TrajSynVAE	0.3922	0.1234	0.1467	0.1426	0.0
TrajGDM	0.05490	0.1171	0.1358	0.1326	0.01367
	Geo-life				
Metrics (JSD)	Moving	Distribution	O-Dis	D-Dis	Diversity
Test Dataset	0.04491	0.08189	0.08631	0.09278	0.08621
FC-LSTM	0.2871	0.3565	0.2711	0.3436	0.4597
MoveSim	0.4487	0.1656	0.06720	0.2274	0.4225
SeqGAN	0.2640	0.2672	0.2627	0.2787	0.2782
TrajVAE	0.7283	0.2609	0.3804	0.2642	0.0
Generative SeqGAN	0.3812	0.4092	0.4504	0.3759	0.0
TrajSynVAE	0.5824	0.3006	0.3212	0.3098	0.0
TrajGDM	0.1142	0.1226	0.1231	0.1386	0.02226

- ➤ 判别模型:通过重复预测过程生成轨迹,可以很好地拟合一般的地理分布,因此在地理分布、O-Dis和D-Dis指标表现好。很可能输出高度重复的轨迹,多样性指标差。
- ➤ 生成模型: 通过连续的潜在空间对轨迹建模,可以生成轨迹的无数变化,因此多样性指标优,但TrajVAE、TrajSynVAE、Generative SeqGAN在模拟当个轨迹方面表现不佳,多样性差。

实验结果

在生成过程的不同步骤中生成的轨迹

我们的方法生成过程中不同预测步骤的轨迹

总结

- ✓ 提出TrajGDM 生成式人类移动模拟方法,将轨迹生成模型化为一个不确定性降低过程。
- ✔ 提出轨迹生成器网络,旨在预测轨迹中现有的不确定性。
- ✓ 定义了一个轨迹扩散过程来模拟轨迹中的不确定性增加过程,这样轨迹生成器就可以通过学习 原始轨迹与扩散过程后的不确定性增加轨迹之间的关系来进行训练。

背景

谢 谢!