

Complex Variables

Symmetry of partial derivatives

Divergence Theorem

$$\iint
abla \cdot ec{A} dS = \oint ec{A} \cdot dec{
ho}$$

Now, choose A = (v, -u)

$$\iint v_x - u_y dS = \oint ec{(v,-u)} \cdot (dy,-dx) = \oint u dx + v dy$$

Green's theorem proved!!

Green's Theorem

$$\int \int (v_x-u_y)dA=\oint udx+vdy$$

Now, choose $u=f_x, v=f_y$

$$\iint f_{yx} - f_{xy} dA = \oint \nabla F \cdot \vec{dl} = 0$$

If this is true for all areas, $f_{yx}=f_{xy}$!!

Multi-valued Function

- Eg.
 - $\circ \sqrt{z} \to \pm \text{roots}$
 - $\circ~$ If we go through the origin, we incur a $\Delta heta = 2\pi$
 - Order is how many rotations it takes to return to a particular value
 - \circ Eg. $z^{\frac{1}{n}}$
 - $ullet f(z) = |z|^{rac{1}{n}} e^{rac{i heta_p}{n}} e^{rac{2\pi m}{n}} orall m$
 - So, order is n
 - \circ For stuff like $\ln(z)$, there are infinite order
 - Also stuff like $z^{\frac{1}{\sqrt{3}}}$ has infinite order

- \circ Branch Cut \rightarrow If we have a multivalued function, we have to restrict θ to something.
 - ullet For instance, for \sqrt{z} , we can restrict $0 \leq heta < 2\pi$
 - Likewise, for $\log z$, we can restrict θ similarly

Complex function
$$_{ o}$$
 $f(z)=u+iv$, $f:\mathbb{C}
ightarrow \mathbb{C}$

Riemann Sphere

Note that the definition of ∞ is not clear. To remove any ambiguity, we define a Riemann sphere, such that the stereo-graphic projection of the Riemann sphere yields the complex plane. The complex plane is extended to yield the *extended* complex plane, which is $\mathbb{C}' = \mathbb{C} \cup \{\infty\}$

Derivative of a function

If $f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ exists, and is unique, the function is said to be differentiable.

It doesn't matter which path we take, the derivative should be the same. Let's choose the direction to be along x-axis, which yields:

$$f'(z) = u_x + i v_x$$

Cauchy-Riemann conditions for existence of derivative at a point

Complex Variables 2

If f(z) is differentiable at a point iff partial derivatives at u and v are continuous and satisfy $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, and u(x,y) and v(x,y) are real differentiable *Proof:*

• Choose $\Delta z = \Delta x$, $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$

• Choose
$$\Delta z=\Delta y$$
, $f'(z)=rac{1}{i}(rac{\partial u}{\partial y}+irac{\partial v}{\partial y})=(-irac{\partial u}{\partial y}+rac{\partial v}{\partial y})$

· Equate real and imaginary parts!

Some implications

- If f is analytic, $\frac{\partial f}{\partial z^*}=0$. This is because, in the $u_x=v_y$, $\frac{df}{dz^*}=u_x+iv_x=i(u_y+iv_y)=-v_y+iu_y$. $\Longrightarrow u_x=v_x=0$
- · The curves u and v are orthogonal

$$\circ \
abla u = (u_x, u_y),
abla v = (v_x, v_y)$$

$$\circ \
abla u \cdot
abla v = u_x v_x + u_y v_y = 0$$

Polar version:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

Polar Derivative:

$$f'(z)=e^{-i heta}rac{\partial f}{\partial r} \, igg|$$

Analytic Function

<u>Analytic Function:</u> A function is said to be analytic at a point if it is differentiable at that point and some points in a region around it A function is said to be analytic over a region if it satisfies Cauchy-Riemann conditions over that region

•
$$\frac{\partial}{\partial x}\frac{\partial u}{\partial x} = \frac{\partial}{\partial x}\frac{\partial v}{\partial y} = \frac{\partial}{\partial y}\frac{\partial v}{\partial x} = -\frac{\partial}{\partial y}\frac{\partial u}{\partial y} \implies \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

- Real and Imaginary parts of analytic functions are harmonic functions
 - - · Forward is lite
 - Backward
 - Given u is harmonic, u is the real part of some analytic function

$$\circ$$
 Let $abla^2 u = 0$

- \circ Now, choose a field $g(z)=u_x-iu_y$
- Now, let f be the antiderivative of g

$$\circ f(z) = U + iV$$

$$\circ$$
 $f'(z) = U_x + iV_x$

o Now, f is differentiable (we just differentiated it)

$$\circ f'(z) = U_x - iU_y = g(z)$$

$$\circ \ U_x = u_x$$
, therefore $u = U + c$, likewise $v = V + c$

 $\circ \:$ If u is harmonic over a region U_1 , v is harmonic over a region U_2 , z is analytic over $U_1\cap U_2$

Entire function: If a function is harmonic over the entire plane, it is called *entire* function. Eg. e^z , e^{-z} . $\cosh(z)$, $\sinh(z)$, etc.

- Analytic Functions are infinitely differentiable, i.e. derivative is also analytic
 - This implies Taylor series is valid around that point
- Taylor Series $\rightarrow f(z) = f(z_0) + f'(z_0)(z-z_0) + \dots$

Finding derivative

Chain rule, product rule, quotient rule works

Recovering function from u(x,y): Lite, just use Cauchy-Riemann, and integrate

Contour integration

Consider the contour integral $\int f(z)dz = \int (u+iy)(dx+idy)$

Consider $\oint \frac{1}{z^{n+1}} dz$. Let's integrate it along a circle of radius r around the point of singularity a = 0

$$\oint rac{1}{z^{n+1}}dz = \int_0^{2\pi} rac{ie^{i\phi}}{e^{i(n+1)\phi}}d\phi = 2\pi i\delta_{n,0}$$

Cauchy's integral theorem

For a function with no singularities, the closed loop integral is zero

•
$$\oint f(z)dz = 0$$

• Proof: Just use Stokes' theorem on real and imaginary parts, we're done!

Complex Variables 4

Converse

- If f(z) is continuous and $\oint f(z) dx = 0 orall C$ in a region, f(z) is analytic

Cauchy's integral Formula

$$\oint_{ ext{Contour containing z0}} rac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

Proof:

• Let $z-z_0=re^{i\theta}$

$$ullet$$
 $\oint_{ ext{Contour containing z0}} rac{f(z)}{z-z_0} dz = ext{lim}_{r o 0} \oint rac{f(z_0+re^{i heta})}{re^{i heta}} rie^{i heta} d heta = f(z_0) 2\pi i$

Differentiation under the integral sign

Differentiate with respect to z_0

$$\left|f'(z_0)=\ointrac{f(z)}{(z-z_0)^2}dz
ight|$$

Laurent Series

$$f(z) = \sum_{-=\infty}^{\infty} c_i (z-a)^i$$

- It's like a Taylor series + a reciprocal series
- Laurent Series is good, as the point around which we are evaluating could be a singularity!
- · Finding coefficients:

$$\circ \ c_n = rac{1}{2\pi i} \oint_C rac{f(z)}{(z-a)^{n+1}} dz$$

Singularities

Order "m" of a singularity: If $f(z)=rac{\phi(z)}{(z-z_0)^m}$, where $\phi(z)$ is analytic and $\phi(z_0)
eq 0$

Pole strength: $\phi(z_0)$

- Removable Singularity: Has a finite limit at the point of singularity
 - Just make function equal to its limiting value to remove it!
- ullet Pole: Point z_0 such that $f(z_0)=\infty$
 - Note that we could have orders of poles

$$ullet$$
 $f(z)=rac{c_{-1}}{(z-a)^n}+ ext{ stuff}$ has a pole of order n at $z=a$

- Essential Singularity: Neither of the above two, i.e. $\lim_{z\to a} f(z), \lim_{z\to a} \frac{1}{f(z)}$ don't exist
 - \circ Another way to put this is: Laurent Series expanded around that point has all the c_- coefficients non-zero

$$\circ$$
 Eg. $f(z) = \sin(\frac{1}{z})$

$$\hbox{Method 1: } u\equiv \tfrac1z, \sin u=u-\tfrac{u^3}{3!}+\tfrac{u^5}{5!}-\dots, f(z)=\tfrac1z-\tfrac1{z^33!}+\tfrac{1}{z^55!}-\dots$$

• Residue: c_{-1} in Laurent series is called the *residue* of the function.

Residue Theorem

• This is a very nice result, as in general, it $\frac{1}{2\pi i}\oint_C f(z)dz=\sum_a Res_{z=a}\{f(z)\}$, where the summation is over all the residues enclosed by C

Finding Residues

- · Just evaluate the Laurent Series
- For simple pole, $c_{-1} = \lim_{z o a} f(z)(z-a)$
- · For pole of order n
 - \circ Multiply both sides by $(z-z_0)^m, m \geq n$
 - $\circ~$ Differentiate m-1 times and divide by (m-1)!
 - You get the residue!
 - Proof: trivial

Fluid Mechanics Problem

Level set of u(x, y)

$${x, y : u(x, y) = \text{constant}}$$

$$u=y^2-x^2$$

Given u, by CR,
$$f=-z^2+c$$

For a point of intersection, level sets of u and v intersect orthogonally

$$rac{\partial v}{\partial x_t}\Delta x_t + rac{\partial v}{\partial x_p}\Delta x_p$$

Now, if gradients are perpendicular, curves are orthogonal!!

$$abla u = -2x, 2y$$
 , $abla v = -2y, -2x$

 $\nabla u \cdot \nabla v = 0$, hence they are orthogonal

Ideal fluid

- · Zero velocity
- Steady state: $\frac{\partial}{\partial t}=0$
- Incompressible $rac{d
 ho}{dt}=0=rac{\partial
 ho}{\partial t}+v\cdot
 abla
 ho=0$
- ullet Irrotational abla imes v = 0
- Mass conservation $rac{\partial
 ho}{\partial t} +
 abla \cdot (
 ho {f v}) = 0 = rac{\partial
 ho}{\partial t} +
 ho
 abla \cdot v +
 abla
 ho \cdot v$
 - $\circ \implies
 abla \cdot v = 0$
 - Velocity is solenoidal!

Lots of definitions:

- $v = \nabla \phi$
- Velocity $v =
 abla imes \psi$
- ullet Curves for $\psi=\mathrm{const}$ are called **streamlines**
- ϕ \rightarrow Velocity potential

• ψ \rightarrow Stream function

Now,
$$v =
abla imes \psi, v =
abla \phi$$

$$abla^2\psi=0,
abla^2\phi=0$$

Define
$$\Omega = \phi + i \psi$$

$$abla^2\Omega=0$$

$$\Omega' = v_x - i v_y$$

Flow past an obstacle

Asymptotic behavior

- For $rac{r}{a}\gg 1, ec{v}pprox v_o\hat{x}, \Omegapprox V_0z$
- For $rac{r}{a} o 1, v pprox ec{v}_{ heta} \hat{ heta}, \Omega pprox 0$

The solution:

Guess $\Omega = v_0 z + rac{v_0}{z} a^2 \, o\,$ It has to be the only solution by uniqueness theorem

$$\Omega'(z)=v_0(1-rac{a^2}{z^2})$$

$$v_x = v_0(1-rac{a^2}{r^2}\cos 2 heta)$$

$$v_y = v_0(rac{a^2}{r^2}\sin 2 heta)$$

Verifying asymptotic behavior

- As $\frac{r}{a} \to \infty$, $v_x = v_0, v_y = 0$
- As $rac{r}{a} o 1$, $v_x = 2v_0 \sin^2 heta, v_y = 2v_0 \cos heta \sin heta$, so it also satisfies!!

Curious Problem

Where is the field $ec{A}=rac{\hat{ heta}}{r}$ conservative?

At
$$r
eq 0$$
 , $abla \cdot \vec{A} = 0$, $abla imes \vec{A} = 0$

$$\Omega = \phi + i \psi$$
, such that $abla \phi = ec{A},
abla imes \psi \hat{z} = ec{A}$

A is conservative wherever $\boldsymbol{\Omega}$ is analytic

$$\Omega = -i\ln(z)$$
, has discontinuity at $z=0, z=\infty$, for branch $0 \leq rg(z) < 2\pi$

Optics Problem: Fresnel integral

$$\int_0^\infty \sin(x^2), \int_0^\infty \cos(x^2)$$
 is what?

- Choose the given contour above
- There are no residues inside, so $\oint_C e^{-z^2} dz = 0$

$$ullet$$
 Also, $\oint_C e^{-z^2} dz = \int_0^R e^{-x^2} dx + \int_0^{\pi/4} e^{-R^2 e^{2i heta}} i e^{i heta} d heta + + \int_R^0 e^{ir^2} dr e^{i\pi/4}$

- ullet Now, take limit as $R o \infty$
- $ullet \ 0=rac{\sqrt{\pi}}{2}-\int_0^\infty e^{ir^2}dr(rac{1}{\sqrt{2}}+irac{1}{\sqrt{2}})$
- $\int_0^\infty \sin(x^2) = \int_0^\infty \cos(x^2) = \frac{\sqrt{\pi}}{2\sqrt{2}}$

Conformal Mapping

Consider a conformal mapping

 $w=z^2$ makes given boundary into straight line Also note that $\Omega=Aw$ represent complex potential So, $\Omega=Az^2$ would be the correct complex potential

Complex Variables 10