Circuits

27-1 SINGLE-LOOP CIRCUITS

Learning Objectives

After reading this module, you should be able to . . .

- 27.01 Identify the action of an emf source in terms of the work it does.
- 27.02 For an ideal battery, apply the relationship between the emf, the current, and the power (rate of energy transfer).
- 27.03 Draw a schematic diagram for a single-loop circuit containing a battery and three resistors.
- 27.04 Apply the loop rule to write a loop equation that relates the potential differences of the circuit elements around a (complete) loop.
- **27.05** Apply the resistance rule in crossing through a resistor.
- 27.06 Apply the emf rule in crossing through an emf.
- 27.07 Identify that resistors in series have the same current, which is the same value that their equivalent resistor has.
- 27.08 Calculate the equivalent of series resistors.
- 27.09 Identify that a potential applied to resistors wired in

- series is equal to the sum of the potentials across the individual resistors.
- 27.10 Calculate the potential difference between any two points in a circuit.
- 27.11 Distinguish a real battery from an ideal battery and, in a circuit diagram, replace a real battery with an ideal battery and an explicitly shown resistance.
- 27.12 With a real battery in a circuit, calculate the potential difference between its terminals for current in the direction of the emf and in the opposite direction.
- 27.13 Identify what is meant by grounding a circuit, and draw a schematic diagram for such a connection.
- 27.14 Identify that grounding a circuit does not affect the current in a circuit.
- 27.15 Calculate the dissipation rate of energy in a real battery.
- 27.16 Calculate the net rate of energy transfer in a real battery for current in the direction of the emf and in the opposite direction.

Key Ideas

ullet An emf device does work on charges to maintain a potential difference between its output terminals. If dW is the work the device does to force positive charge dq from the negative to the positive terminal, then the emf (work per unit charge) of the device is

$$\mathscr{E} = \frac{dW}{dq} \quad \text{(definition of } \mathscr{E}\text{)}.$$

- An ideal emf device is one that lacks any internal resistance. The potential difference between its terminals is equal to the emf.
- A real emf device has internal resistance. The potential difference between its terminals is equal to the emf only if there is no current through the device.
- The change in potential in traversing a resistance R in the direction of the current is -iR; in the opposite direction it is +iR (resistance rule).
- The change in potential in traversing an ideal emf device in the direction of the emf arrow is $+\mathscr{E}$; in the opposite direction it is $-\mathscr{E}$ (emf rule).
- Conservation of energy leads to the loop rule:
 Loop Rule. The algebraic sum of the changes in potential encoun-

tered in a complete traversal of any loop of a circuit must be zero.

Conservation of charge leads to the junction rule (Chapter 26):

Junction Rule. The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

• When a real battery of emf $\mathscr E$ and internal resistance r does work on the charge carriers in a current i through the battery, the rate P of energy transfer to the charge carriers is

$$P = iV$$
,

where V is the potential across the terminals of the battery.

- The rate P_r at which energy is dissipated as thermal energy in the battery is $P_r = i^2 r$.
- \bullet The rate $P_{\rm emf}$ at which the chemical energy in the battery changes is $P_{\rm emf}=i\mathscr{E}.$
- When resistances are in series, they have the same current. The equivalent resistance that can replace a series combination of resistances is

$$R_{\rm eq} = \sum_{j=1}^{n} R_j$$
 (*n* resistances in series).

Courtesy Southern California Edison Company

The world's largest battery energy storage plant (dismantled in 1996) connected over 8000 large lead-acid batteries in 8 strings at 1000 V each with a capability of 10 MW of power for 4 hours. Charged up at night, the batteries were then put to use during peak power demands on the electrical system.

What Is Physics?

You are surrounded by electric circuits. You might take pride in the number of electrical devices you own and might even carry a mental list of the devices you wish you owned. Every one of those devices, as well as the electrical grid that powers your home, depends on modern electrical engineering. We cannot easily estimate the current financial worth of electrical engineering and its products, but we can be certain that the financial worth continues to grow yearly as more and more tasks are handled electrically. Radios are now tuned electronically instead of manually. Messages are now sent by email instead of through the postal system. Research journals are now read on a computer instead of in a library building, and research papers are now copied and filed electronically instead of photocopied and tucked into a filing cabinet. Indeed, you may be reading an electronic version of this book.

The basic science of electrical engineering is physics. In this chapter we cover the physics of electric circuits that are combinations of resistors and batteries (and, in Module 27-4, capacitors). We restrict our discussion to circuits through which charge flows in one direction, which are called either *direct-current circuits* or *DC circuits*. We begin with the question: How can you get charges to flow?

"Pumping" Charges

If you want to make charge carriers flow through a resistor, you must establish a potential difference between the ends of the device. One way to do this is to connect each end of the resistor to one plate of a charged capacitor. The trouble with this scheme is that the flow of charge acts to discharge the capacitor, quickly bringing the plates to the same potential. When that happens, there is no longer an electric field in the resistor, and thus the flow of charge stops.

To produce a steady flow of charge, you need a "charge pump," a device that—by doing work on the charge carriers—maintains a potential difference between a pair of terminals. We call such a device an **emf device**, and the device is said to provide an **emf** %, which means that it does work on charge carriers. An emf device is sometimes called a *seat of emf*. The term *emf* comes from the outdated phrase *electromotive force*, which was adopted before scientists clearly understood the function of an emf device.

In Chapter 26, we discussed the motion of charge carriers through a circuit in terms of the electric field set up in the circuit—the field produces forces that move the charge carriers. In this chapter we take a different approach: We discuss the motion of the charge carriers in terms of the required energy—an emf device supplies the energy for the motion via the work it does.

A common emf device is the *battery*, used to power a wide variety of machines from wristwatches to submarines. The emf device that most influences our daily lives, however, is the *electric generator*, which, by means of electrical connections (wires) from a generating plant, creates a potential difference in our homes and workplaces. The emf devices known as *solar cells*, long familiar as the wing-like panels on spacecraft, also dot the countryside for domestic applications. Less familiar emf devices are the *fuel cells* that powered the space shuttles and the *thermopiles* that provide onboard electrical power for some spacecraft and for remote stations in Antarctica and elsewhere. An emf device does not have to be an instrument—living systems, ranging from electric eels and human beings to plants, have physiological emf devices.

Although the devices we have listed differ widely in their modes of operation, they all perform the same basic function—they do work on charge carriers and thus maintain a potential difference between their terminals.

Work, Energy, and Emf

When an emf device is not connected to a circuit, the internal chemistry of the device does not cause any net flow of charge carriers within it. However, when it is connected to a circuit as in Fig. 27-1, its internal chemistry causes a net flow of positive charge carriers from the negative terminal to the positive terminal, in the direction of the emf arrow. This flow is part of the current that is set up around the circuit in that same direction (clockwise in Fig. 27-1).

Within the emf device, positive charge carriers move from a region of low electric potential and thus low electric potential energy (at the negative terminal) to a region of higher electric potential and higher electric potential energy (at the positive terminal). This motion is just the opposite of what the electric field between the terminals (which is directed from the positive terminal toward the negative terminal) would cause the charge carriers to do.

Thus, there must be some source of energy within the device, enabling it to do work on the charges by forcing them to move as they do. The energy source may be chemical, as in a battery or a fuel cell. It may involve mechanical forces, as in an electric generator. Temperature differences may supply the energy, as in a thermopile; or the Sun may supply it, as in a solar cell.

Let us now analyze the circuit of Fig. 27-1 from the point of view of work and energy transfers. In any time interval dt, a charge dq passes through any cross section of this circuit, such as aa'. This same amount of charge must enter the emf device at its low-potential end and leave at its high-potential end. The device must do an amount of work dW on the charge dq to force it to move in this way. We define the emf of the emf device in terms of this work:

$$\mathscr{E} = \frac{dW}{dq} \quad \text{(definition of \&)}. \tag{27-1}$$

In words, the emf of an emf device is the work per unit charge that the device does in moving charge from its low-potential terminal to its high-potential terminal. The SI unit for emf is the joule per coulomb; in Chapter 24 we defined that unit as the *volt*.

An **ideal emf device** is one that lacks any internal resistance to the internal movement of charge from terminal to terminal. The potential difference between the terminals of an ideal emf device is equal to the emf of the device. For example, an ideal battery with an emf of 12.0 V always has a potential difference of 12.0 V between its terminals.

A **real emf device**, such as any real battery, has internal resistance to the internal movement of charge. When a real emf device is not connected to a circuit, and thus does not have current through it, the potential difference between its terminals is equal to its emf. However, when that device has current through it, the potential difference between its terminals differs from its emf. We shall discuss such real batteries near the end of this module.

When an emf device is connected to a circuit, the device transfers energy to the charge carriers passing through it. This energy can then be transferred from the charge carriers to other devices in the circuit, for example, to light a bulb. Figure 27-2a shows a circuit containing two ideal rechargeable (storage) batteries A and B, a resistance R, and an electric motor M that can lift an object by using

Figure 27-1 A simple electric circuit, in which a device of emf $\mathscr E$ does work on the charge carriers and maintains a steady current i in a resistor of resistance R.

Figure 27-2 (a) In the circuit, $\mathcal{E}_{\rm B} > \mathcal{E}_{\rm A}$; so battery B determines the direction of the current. (b) The energy transfers in the circuit.

energy it obtains from charge carriers in the circuit. Note that the batteries are connected so that they tend to send charges around the circuit in opposite directions. The actual direction of the current in the circuit is determined by the battery with the larger emf, which happens to be battery B, so the chemical energy within battery B is decreasing as energy is transferred to the charge carriers passing through it. However, the chemical energy within battery A is increasing because the current in it is directed from the positive terminal to the negative terminal. Thus, battery B is charging battery A. Battery B is also providing energy to motor M and energy that is being dissipated by resistance R. Figure 27-2b shows all three energy transfers from battery B; each decreases that battery's chemical energy.

Calculating the Current in a Single-Loop Circuit

We discuss here two equivalent ways to calculate the current in the simple *single-loop* circuit of Fig. 27-3; one method is based on energy conservation considerations, and the other on the concept of potential. The circuit consists of an ideal battery B with emf \mathscr{E} , a resistor of resistance R, and two connecting wires. (Unless otherwise indicated, we assume that wires in circuits have negligible resistance. Their function, then, is merely to provide pathways along which charge carriers can move.)

Energy Method

Equation 26-27 $(P = i^2R)$ tells us that in a time interval dt an amount of energy given by i^2R dt will appear in the resistor of Fig. 27-3 as thermal energy. As noted in Module 26-5, this energy is said to be *dissipated*. (Because we assume the wires to have negligible resistance, no thermal energy will appear in them.) During the same interval, a charge dq = i dt will have moved through battery B, and the work that the battery will have done on this charge, according to Eq. 27-1, is

$$dW = \mathcal{E} dq = \mathcal{E} i dt$$
.

From the principle of conservation of energy, the work done by the (ideal) battery must equal the thermal energy that appears in the resistor:

$$\mathscr{E}i\,dt=i^2R\,dt.$$

This gives us

$$\mathscr{E}=iR.$$

The emf \mathscr{E} is the energy per unit charge transferred to the moving charges by the battery. The quantity iR is the energy per unit charge transferred from the moving charges to thermal energy within the resistor. Therefore, this equation means that the energy per unit charge transferred to the moving charges is equal to the energy per unit charge transferred from them. Solving for i, we find

$$i = \frac{\mathscr{E}}{R}.\tag{27-2}$$

Potential Method

Suppose we start at any point in the circuit of Fig. 27-3 and mentally proceed around the circuit in either direction, adding algebraically the potential differences that we encounter. Then when we return to our starting point, we must also have returned to our starting potential. Before actually doing so, we shall formalize this idea in a statement that holds not only for single-loop circuits such as that of Fig. 27-3 but also for any complete loop in a *multiloop* circuit, as we shall discuss in Module 27-2:

The battery drives current through the resistor, from high potential to low potential.

Figure 27-3 A single-loop circuit in which a resistance R is connected across an ideal battery B with emf \mathscr{E} . The resulting current i is the same throughout the circuit.

LOOP RULE: The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

This is often referred to as *Kirchhoff's loop rule* (or *Kirchhoff's voltage law*), after German physicist Gustav Robert Kirchhoff. This rule is equivalent to saying that each point on a mountain has only one elevation above sea level. If you start from any point and return to it after walking around the mountain, the algebraic sum of the changes in elevation that you encounter must be zero.

In Fig. 27-3, let us start at point a, whose potential is V_a , and mentally walk clockwise around the circuit until we are back at a, keeping track of potential changes as we move. Our starting point is at the low-potential terminal of the battery. Because the battery is ideal, the potential difference between its terminals is equal to $\mathscr E$. When we pass through the battery to the high-potential terminal, the change in potential is $+\mathscr E$.

As we walk along the top wire to the top end of the resistor, there is no potential change because the wire has negligible resistance; it is at the same potential as the high-potential terminal of the battery. So too is the top end of the resistor. When we pass through the resistor, however, the potential changes according to Eq. 26-8 (which we can rewrite as V = iR). Moreover, the potential must decrease because we are moving from the higher potential side of the resistor. Thus, the change in potential is -iR.

We return to point a by moving along the bottom wire. Because this wire also has negligible resistance, we again find no potential change. Back at point a, the potential is again V_a . Because we traversed a complete loop, our initial potential, as modified for potential changes along the way, must be equal to our final potential; that is,

$$V_a + \mathcal{E} - iR = V_a$$
.

The value of V_a cancels from this equation, which becomes

$$\mathscr{E} - iR = 0$$
.

Solving this equation for i gives us the same result, $i = \mathcal{E}/R$, as the energy method (Eq. 27-2).

If we apply the loop rule to a complete *counterclockwise* walk around the circuit, the rule gives us

$$-\mathcal{E} + iR = 0$$

and we again find that $i = \mathcal{E}/R$. Thus, you may mentally circle a loop in either direction to apply the loop rule.

To prepare for circuits more complex than that of Fig. 27-3, let us set down two rules for finding potential differences as we move around a loop:

RESISTANCE RULE: For a move through a resistance in the direction of the current, the change in potential is -iR; in the opposite direction it is +iR.

EMF RULE: For a move through an ideal emf device in the direction of the emf arrow, the change in potential is +%; in the opposite direction it is -%.

Checkpoint 1

The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of negligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, b,

and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.

Other Single-Loop Circuits

Next we extend the simple circuit of Fig. 27-3 in two ways.

Internal Resistance

Figure 27-4a shows a real battery, with internal resistance r, wired to an external resistor of resistance R. The internal resistance of the battery is the electrical resistance of the conducting materials of the battery and thus is an unremovable feature of the battery. In Fig. 27-4a, however, the battery is drawn as if it could be separated into an ideal battery with emf $\mathscr E$ and a resistor of resistance r. The order in which the symbols for these separated parts are drawn does not matter.

Figure 27-4 (a) A single-loop circuit containing a real battery having internal resistance r and emf \mathscr{C} . (b) The same circuit, now spread out in a line. The potentials encountered in traversing the circuit clockwise from a are also shown. The potential V_a is arbitrarily assigned a value of zero, and other potentials in the circuit are graphed relative to V_a .

If we apply the loop rule clockwise beginning at point a, the *changes* in potential give us

$$\mathscr{E} - ir - iR = 0. \tag{27-3}$$

Solving for the current, we find

$$i = \frac{\mathscr{E}}{R+r}. (27-4)$$

Note that this equation reduces to Eq. 27-2 if the battery is ideal—that is, if r = 0.

Figure 27-4b shows graphically the changes in electric potential around the circuit. (To better link Fig. 27-4b with the *closed circuit* in Fig. 27-4a, imagine curling the graph into a cylinder with point a at the left overlapping point a at the right.) Note how traversing the circuit is like walking around a (potential) mountain back to your starting point—you return to the starting elevation.

In this book, when a battery is not described as real or if no internal resistance is indicated, you can generally assume that it is ideal—but, of course, in the real world batteries are always real and have internal resistance.

Resistances in Series

Figure 27-5a shows three resistances connected **in series** to an ideal battery with emf \mathcal{E} . This description has little to do with how the resistances are drawn. Rather, "in series" means that the resistances are wired one after another and that a potential difference V is applied across the two ends of the series. In Fig. 27-5a, the resistances are connected one after another between a and b, and a potential difference is maintained across a and b by the battery. The potential differences that then exist across the resistances in the series produce identical currents i in them. In general,

Figure 27-5 (a) Three resistors are connected in series between points a and b. (b) An equivalent circuit, with the three resistors replaced with their equivalent resistance $R_{\rm eq}$.

When a potential difference V is applied across resistances connected in series, the resistances have identical currents i. The sum of the potential differences across the resistances is equal to the applied potential difference V.

Note that charge moving through the series resistances can move along only a single route. If there are additional routes, so that the currents in different resistances are different, the resistances are not connected in series.

Resistances connected in series can be replaced with an equivalent resistance $R_{\rm eq}$ that has the same current i and the same total potential difference V as the actual resistances.

You might remember that $R_{\rm eq}$ and all the actual series resistances have the same current i with the nonsense word "ser-i." Figure 27-5b shows the equivalent resistance $R_{\rm eq}$ that can replace the three resistances of Fig. 27-5a.

To derive an expression for $R_{\rm eq}$ in Fig. 27-5b, we apply the loop rule to both circuits. For Fig. 27-5a, starting at a and going clockwise around the circuit, we find

$$\mathcal{E} - iR_1 - iR_2 - iR_3 = 0,$$

$$i = \frac{\mathcal{E}}{R_1 + R_2 + R_3}.$$
(27-5)

or

For Fig. 27-5b, with the three resistances replaced with a single equivalent resistance R_{eq} , we find

$$\mathcal{E} - iR_{\text{eq}} = 0,$$

$$i = \frac{\mathcal{E}}{R_{\text{eq}}}.$$
(27-6)

or

Comparison of Eqs. 27-5 and 27-6 shows that

$$R_{\rm eq} = R_1 + R_2 + R_3$$
.

The extension to n resistances is straightforward and is

$$R_{\rm eq} = \sum_{j=1}^{n} R_j$$
 (*n* resistances in series). (27-7)

Note that when resistances are in series, their equivalent resistance is greater than any of the individual resistances.

Checkpoint 2

In Fig. 27-5a, if $R_1 > R_2 > R_3$, rank the three resistances according to (a) the current through them and (b) the potential difference across them, greatest first.

Potential Difference Between Two Points

We often want to find the potential difference between two points in a circuit. For example, in Fig. 27-6, what is the potential difference $V_b - V_a$ between points a and b? To find out, let's start at point a (at potential V_a) and move through the battery to point b (at potential V_b) while keeping track of the potential changes we encounter. When we pass through the battery's emf, the potential increases by $\mathscr E$. When we pass through the battery's internal resistance r, we move in the direction of the current and thus the potential decreases by ir. We are then at the

The internal resistance reduces the potential difference between the terminals.

Figure 27-6 Points *a* and *b*, which are at the terminals of a real battery, differ in potential.

potential of point b and we have

$$\begin{aligned} V_a + & \mathcal{E} - ir = V_b, \\ V_b - V_a &= & \mathcal{E} - ir. \end{aligned} \tag{27-8}$$

or

To evaluate this expression, we need the current i. Note that the circuit is the same as in Fig. 27-4a, for which Eq. 27-4 gives the current as

$$i = \frac{\mathscr{E}}{R+r}. (27-9)$$

Substituting this equation into Eq. 27-8 gives us

$$V_b - V_a = \mathscr{E} - \frac{\mathscr{E}}{R+r} r$$

$$= \frac{\mathscr{E}}{R+r} R. \tag{27-10}$$

Now substituting the data given in Fig. 27-6, we have

$$V_b - V_a = \frac{12 \text{ V}}{4.0 \Omega + 2.0 \Omega} 4.0 \Omega = 8.0 \text{ V}.$$
 (27-11)

Suppose, instead, we move from a to b counterclockwise, passing through resistor R rather than through the battery. Because we move opposite the current, the potential increases by iR. Thus,

$$V_a + iR = V_b$$

$$V_b - V_a = iR.$$
(27-12)

Substituting for i from Eq. 27-9, we again find Eq. 27-10. Hence, substitution of the data in Fig. 27-6 yields the same result, $V_b - V_a = 8.0$ V. In general,

or

To find the potential between any two points in a circuit, start at one point and traverse the circuit to the other point, following any path, and add algebraically the changes in potential you encounter.

Potential Difference Across a Real Battery

In Fig. 27-6, points a and b are located at the terminals of the battery. Thus, the potential difference $V_b - V_a$ is the terminal-to-terminal potential difference V across the battery. From Eq. 27-8, we see that

$$V = \mathscr{E} - ir. \tag{27-13}$$

If the internal resistance r of the battery in Fig. 27-6 were zero, Eq. 27-13 tells us that V would be equal to the emf $\mathscr E$ of the battery—namely, 12 V. However, because $r=2.0~\Omega$, Eq. 27-13 tells us that V is less than $\mathscr E$. From Eq. 27-11, we know that V is only 8.0 V. Note that the result depends on the value of the current through the battery. If the same battery were in a different circuit and had a different current through it, V would have some other value.

Grounding a Circuit

Figure 27-7a shows the same circuit as Fig. 27-6 except that here point a is directly connected to *ground*, as indicated by the common symbol $\frac{1}{2}$. Grounding a circuit usually means connecting the circuit to a conducting path to Earth's surface (actually to the electrically conducting moist dirt and rock below ground). Here, such a connection means only that the potential is defined to be zero at the grounding point in the circuit. Thus in Fig. 27-7a, the potential at a is defined to be $V_a = 0$. Equation 27-11 then tells us that the potential at b is $V_b = 8.0$ V.

Figure 27-7 (a) Point a is directly connected to ground. (b) Point b is directly connected to ground.

Figure 27-7b is the same circuit except that point b is now directly connected to ground. Thus, the potential there is defined to be $V_b = 0$. Equation 27-11 now tells us that the potential at a is $V_a = -8.0 \text{ V}$.

Power, Potential, and Emf

When a battery or some other type of emf device does work on the charge carriers to establish a current i, the device transfers energy from its source of energy (such as the chemical source in a battery) to the charge carriers. Because a real emf device has an internal resistance r, it also transfers energy to internal thermal energy via resistive dissipation (Module 26-5). Let us relate these transfers.

The net rate P of energy transfer from the emf device to the charge carriers is given by Eq. 26-26:

$$P = iV, (27-14)$$

where V is the potential across the terminals of the emf device. From Eq. 27-13, we can substitute $V = \mathscr{E} - ir$ into Eq. 27-14 to find

$$P = i(\mathscr{E} - ir) = i\mathscr{E} - i^2 r. \tag{27-15}$$

From Eq. 26-27, we recognize the term i^2r in Eq. 27-15 as the rate P_r of energy transfer to thermal energy within the emf device:

$$P_r = i^2 r$$
 (internal dissipation rate). (27-16)

Then the term $i\mathscr{C}$ in Eq. 27-15 must be the rate $P_{\rm emf}$ at which the emf device transfers energy *both* to the charge carriers and to internal thermal energy. Thus,

$$P_{\rm emf} = i\mathscr{E}$$
 (power of emf device). (27-17)

If a battery is being *recharged*, with a "wrong way" current through it, the energy transfer is then *from* the charge carriers *to* the battery—both to the battery's chemical energy and to the energy dissipated in the internal resistance *r*. The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissipation is given by Eq. 27-16, and the rate at which the carriers supply energy is given by Eq. 27-14.

Checkpoint 3

A battery has an emf of 12 V and an internal resistance of 2Ω . Is the terminal-to-terminal potential difference greater than, less than, or equal to 12 V if the current in the battery is (a) from the negative to the positive terminal, (b) from the positive to the negative terminal, and (c) zero?

Sample Problem 27.01 Single-loop circuit with two real batteries

The emfs and resistances in the circuit of Fig. 27-8*a* have the following values:

$$\mathcal{E}_1 = 4.4 \text{ V}, \quad \mathcal{E}_2 = 2.1 \text{ V},$$

 $r_1 = 2.3 \Omega, \quad r_2 = 1.8 \Omega, \quad R = 5.5 \Omega.$

(a) What is the current *i* in the circuit?

KEY IDEA

We can get an expression involving the current i in this single-loop circuit by applying the loop rule, in which we sum the potential changes around the full loop.

Calculations: Although knowing the direction of i is not necessary, we can easily determine it from the emfs of the

Figure 27-8 (a) A single-loop circuit containing two real batteries and a resistor. The batteries oppose each other; that is, they tend to send current in opposite directions through the resistor. (b) A graph of the potentials, counterclockwise from point a, with the potential at a arbitrarily taken to be zero. (To better link the circuit with the graph, mentally cut the circuit at a and then unfold the left side of the circuit toward the left and the right side of the circuit toward the right.)

two batteries. Because \mathscr{E}_1 is greater than \mathscr{E}_2 , battery 1 controls the direction of i, so the direction is clockwise. Let us then apply the loop rule by going counterclockwise—against the current—and starting at point a. (These decisions about where to start and which way you go are arbitrary but, once made, you must be consistent with decisions about the plus and minus signs.) We find

$$-\mathcal{E}_1 + ir_1 + iR + ir_2 + \mathcal{E}_2 = 0.$$

Check that this equation also results if we apply the loop rule clockwise or start at some point other than a. Also, take the time to compare this equation term by term with Fig. 27-8b, which shows the potential changes graphically (with the potential at point a arbitrarily taken to be zero).

Solving the above loop equation for the current i, we obtain

$$i = \frac{\mathscr{E}_1 - \mathscr{E}_2}{R + r_1 + r_2} = \frac{4.4 \text{ V} - 2.1 \text{ V}}{5.5 \Omega + 2.3 \Omega + 1.8 \Omega}$$
$$= 0.2396 \text{ A} \approx 240 \text{ mA}. \tag{Answer}$$

(b) What is the potential difference between the terminals of battery 1 in Fig. 27-8a?

KEY IDEA

We need to sum the potential differences between points a and b.

Calculations: Let us start at point b (effectively the negative terminal of battery 1) and travel clockwise through battery 1 to point a (effectively the positive terminal), keeping track of potential changes. We find that

$$V_b - ir_1 + \mathcal{E}_1 = V_a,$$

which gives us

$$V_a - V_b = -ir_1 + \mathcal{E}_1$$

= $-(0.2396 \text{ A})(2.3 \Omega) + 4.4 \text{ V}$
= $+3.84 \text{ V} \approx 3.8 \text{ V}$, (Answer)

which is less than the emf of the battery. You can verify this result by starting at point b in Fig. 27-8a and traversing the circuit counterclockwise to point a. We learn two points here. (1) The potential difference between two points in a circuit is independent of the path we choose to go from one to the other. (2) When the current in the battery is in the "proper" direction, the terminal-to-terminal potential difference is low, that is, lower than the stated emf for the battery that you might find printed on the battery.

27-2 MULTILOOP CIRCUITS

Learning Objectives

After reading this module, you should be able to . . .

27.17 Apply the junction rule.

- **27.18** Draw a schematic diagram for a battery and three parallel resistors and distinguish it from a diagram with a battery and three series resistors.
- 27.19 Identify that resistors in parallel have the same potential difference, which is the same value that their equivalent resistor has.
- 27.20 Calculate the resistance of the equivalent resistor of several resistors in parallel.
- **27.21** Identify that the total current through parallel resistors is the sum of the currents through the individual resistors.
- 27.22 For a circuit with a battery and some resistors in parallel and some in series, simplify the circuit in steps by finding

equivalent resistors, until the current through the battery can be determined, and then reverse the steps to find the currents and potential differences of the individual resistors.

- 27.23 If a circuit cannot be simplified by using equivalent resistors, identify the several loops in the circuit, choose names and directions for the currents in the branches, set up loop equations for the various loops, and solve these simultaneous equations for the unknown currents.
- 27.24 In a circuit with identical real batteries in series, replace them with a single ideal battery and a single resistor.
- **27.25** In a circuit with identical real batteries in parallel, replace them with a single ideal battery and a single resistor.

Key Idea

• When resistances are in parallel, they have the same potential difference. The equivalent resistance that can replace a parallel combination of resistances is given by

$$\frac{1}{R_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{R_{j}}$$
 (*n* resistances in parallel).

Multiloop Circuits

Figure 27-9 shows a circuit containing more than one loop. For simplicity, we assume the batteries are ideal. There are two *junctions* in this circuit, at b and d, and there are three *branches* connecting these junctions. The branches are the left branch (bad), the right branch (bcd), and the central branch (bd). What are the currents in the three branches?

We arbitrarily label the currents, using a different subscript for each branch. Current i_1 has the same value everywhere in branch bad, i_2 has the same value everywhere in branch bcd, and i_3 is the current through branch bd. The directions of the currents are assumed arbitrarily.

Consider junction d for a moment: Charge comes into that junction via incoming currents i_1 and i_3 , and it leaves via outgoing current i_2 . Because there is no variation in the charge at the junction, the total incoming current must equal the total outgoing current:

$$i_1 + i_3 = i_2. (27-18)$$

You can easily check that applying this condition to junction b leads to exactly the same equation. Equation 27-18 thus suggests a general principle:

JUNCTION RULE: The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

This rule is often called *Kirchhoff's junction rule* (or *Kirchhoff's current law*). It is simply a statement of the conservation of charge for a steady flow of charge—there is neither a buildup nor a depletion of charge at a junction. Thus, our basic tools for solving complex circuits are the *loop rule* (based on the conservation of energy) and the *junction rule* (based on the conservation of charge).

The current into the junction must equal the current out (charge is conserved).

Figure 27-9 A multiloop circuit consisting of three branches: left-hand branch *bad*, right-hand branch *bcd*, and central branch *bd*. The circuit also consists of three loops: left-hand loop *badb*, right-hand loop *bcdb*, and big loop *badcb*.

Equation 27-18 is a single equation involving three unknowns. To solve the circuit completely (that is, to find all three currents), we need two more equations involving those same unknowns. We obtain them by applying the loop rule twice. In the circuit of Fig. 27-9, we have three loops from which to choose: the left-hand loop (*badb*), the right-hand loop (*bcdb*), and the big loop (*badcb*). Which two loops we choose does not matter—let's choose the left-hand loop and the right-hand loop.

If we traverse the left-hand loop in a counterclockwise direction from point b, the loop rule gives us

$$\mathscr{E}_1 - i_1 R_1 + i_3 R_3 = 0. (27-19)$$

If we traverse the right-hand loop in a counterclockwise direction from point b, the loop rule gives us

$$-i_3R_3 - i_2R_2 - \mathcal{E}_2 = 0. (27-20)$$

We now have three equations (Eqs. 27-18, 27-19, and 27-20) in the three unknown currents, and they can be solved by a variety of techniques.

If we had applied the loop rule to the big loop, we would have obtained (moving counterclockwise from b) the equation

$$\mathscr{E}_1 - i_1 R_1 - i_2 R_2 - \mathscr{E}_2 = 0.$$

However, this is merely the sum of Eqs. 27-19 and 27-20.

Resistances in Parallel

Figure 27-10a shows three resistances connected *in parallel* to an ideal battery of emf \mathcal{E} . The term "in parallel" means that the resistances are directly wired together on one side and directly wired together on the other side, and that a potential difference V is applied across the pair of connected sides. Thus, all three resistances have the same potential difference V across them, producing a current through each. In general,

When a potential difference V is applied across resistances connected in parallel, the resistances all have that same potential difference V.

In Fig. 27-10a, the applied potential difference V is maintained by the battery. In Fig. 27-10b, the three parallel resistances have been replaced with an equivalent resistance $R_{\rm eq}$.

Parallel resistors and their equivalent have the same potential difference ("par-V").

Figure 27-10 (a) Three resistors connected in parallel across points a and b. (b) An equivalent circuit, with the three resistors replaced with their equivalent resistance R_{eq} .

Resistances connected in parallel can be replaced with an equivalent resistance $R_{\rm eq}$ that has the same potential difference V and the same *total* current i as the actual resistances.

You might remember that $R_{\rm eq}$ and all the actual parallel resistances have the same potential difference V with the nonsense word "par-V."

To derive an expression for $R_{\rm eq}$ in Fig. 27-10b, we first write the current in each actual resistance in Fig. 27-10a as

$$i_1 = \frac{V}{R_1}, \quad i_2 = \frac{V}{R_2}, \quad \text{and} \quad i_3 = \frac{V}{R_3},$$

where V is the potential difference between a and b. If we apply the junction rule at point a in Fig. 27-10a and then substitute these values, we find

$$i = i_1 + i_2 + i_3 = V\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right).$$
 (27-21)

If we replaced the parallel combination with the equivalent resistance $R_{\rm eq}$ (Fig. 27-10b), we would have

$$i = \frac{V}{R_{\text{eq}}}. (27-22)$$

Comparing Eqs. 27-21 and 27-22 leads to

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$
 (27-23)

Extending this result to the case of n resistances, we have

$$\frac{1}{R_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{R_j} \quad (n \text{ resistances in parallel}). \tag{27-24}$$

For the case of two resistances, the equivalent resistance is their product divided by their sum; that is,

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}. (27-25)$$

Note that when two or more resistances are connected in parallel, the equivalent resistance is smaller than any of the combining resistances. Table 27-1 summarizes the equivalence relations for resistors and capacitors in series and in parallel.

Table 27-1 Series and Parallel Resistors and Capacitors

Series	Parallel	Series	Parallel	
Resistors		Capacitors		
$R_{\text{eq}} = \sum_{j=1}^{n} R_j$ Eq. 27-7 Same current through all resistors	$\frac{1}{R_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{R_j}$ Eq. 27-24 Same potential difference across all resistors	$\frac{1}{C_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{C_j}$ Eq. 25-20 Same charge on all capacitors	$C_{\text{eq}} = \sum_{j=1}^{n} C_j$ Eq. 25-19 Same potential difference across all capacitors	

Checkpoint 4

A battery, with potential V across it, is connected to a combination of two identical resistors and then has current i through it. What are the potential difference across and the current through either resistor if the resistors are (a) in series and (b) in parallel?

Sample Problem 27.02 Resistors in parallel and in series

Figure 27-11a shows a multiloop circuit containing one ideal battery and four resistances with the following values:

$$R_1 = 20 \,\Omega, \quad R_2 = 20 \,\Omega, \quad \mathcal{E} = 12 \,\mathrm{V},$$

 $R_3 = 30 \,\Omega, \quad R_4 = 8.0 \,\Omega.$

(a) What is the current through the battery?

KEY IDEA

Noting that the current through the battery must also be the current through R_1 , we see that we might find the current by applying the loop rule to a loop that includes R_1 because the current would be included in the potential difference across R_1 .

Incorrect method: Either the left-hand loop or the big loop should do. Noting that the emf arrow of the battery points upward, so the current the battery supplies is clockwise, we might apply the loop rule to the left-hand loop, clockwise from point a. With i being the current through the battery, we would get

$$+\mathscr{E} - iR_1 - iR_2 - iR_4 = 0$$
 (incorrect).

However, this equation is incorrect because it assumes that R_1 , R_2 , and R_4 all have the same current i. Resistances R_1 and R_4 do have the same current, because the current passing through R_4 must pass through the battery and then through R_1 with no change in value. However, that current splits at junction point b—only part passes through R_2 , the rest through R_3 .

Dead-end method: To distinguish the several currents in the circuit, we must label them individually as in Fig. 27-11b. Then, circling clockwise from a, we can write the loop rule for the left-hand loop as

$$+\mathscr{E} - i_1 R_1 - i_2 R_2 - i_1 R_4 = 0.$$

Unfortunately, this equation contains two unknowns, i_1 and i_2 ; we would need at least one more equation to find them.

Successful method: A much easier option is to simplify the circuit of Fig. 27-11b by finding equivalent resistances. Note carefully that R_1 and R_2 are *not* in series and thus cannot be replaced with an equivalent resistance. However, R_2 and R_3 are in parallel, so we can use either Eq. 27-24 or Eq. 27-25 to find their equivalent resistance R_{23} . From the latter,

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3} = \frac{(20 \Omega)(30 \Omega)}{50 \Omega} = 12 \Omega.$$

We can now redraw the circuit as in Fig. 27-11c; note that the current through R_{23} must be i_1 because charge that moves through R_1 and R_4 must also move through R_{23} . For this simple one-loop circuit, the loop rule (applied clockwise from point a as in Fig. 27-11d) yields

$$+\mathscr{E} - i_1 R_1 - i_1 R_{23} - i_1 R_4 = 0.$$

Substituting the given data, we find

$$12 V - i_1(20 \Omega) - i_1(12 \Omega) - i_1(8.0 \Omega) = 0,$$

which gives us

$$i_1 = \frac{12 \text{ V}}{40 \Omega} = 0.30 \text{ A}.$$
 (Answer)

(b) What is the current i_2 through R_2 ?

KEY IDEAS

(1) we must now work backward from the equivalent circuit of Fig. 27-11d, where R_{23} has replaced R_2 and R_3 . (2) Because R_2 and R_3 are in parallel, they both have the same potential difference across them as R_{23} .

Working backward: We know that the current through R_{23} is $i_1 = 0.30$ A. Thus, we can use Eq. 26-8 (R = V/i) and Fig. 27-11e to find the potential difference V_{23} across R_{23} . Setting $R_{23} = 12 \Omega$ from (a), we write Eq. 26-8 as

$$V_{23} = i_1 R_{23} = (0.30 \text{ A})(12 \Omega) = 3.6 \text{ V}.$$

The potential difference across R_2 is thus also 3.6 V (Fig. 27-11f), so the current i_2 in R_2 must be, by Eq. 26-8 and Fig. 27-11g,

$$i_2 = \frac{V_2}{R_2} = \frac{3.6 \text{ V}}{20 \Omega} = 0.18 \text{ A}.$$
 (Answer)

(c) What is the current i_3 through R_3 ?

KEY IDEAS

We can answer by using either of two techniques: (1) Apply Eq. 26-8 as we just did. (2) Use the junction rule, which tells us that at point b in Fig. 27-11b, the incoming current i_1 and the outgoing currents i_2 and i_3 are related by

$$i_1 = i_2 + i_3$$
.

Calculation: Rearranging this junction-rule result yields the result displayed in Fig. 27-11g:

$$i_3 = i_1 - i_2 = 0.30 \text{ A} - 0.18 \text{ A}$$

= 0.12 A. (Answer)

The equivalent of parallel resistors is smaller.

Applying the loop rule yields the current.

Applying V = iR yields the potential difference.

Parallel resistors and their equivalent have the same *V* ("par-V").

Figure 27-11 (a) A circuit with an ideal battery. (b) Label the currents. (c) Replacing the parallel resistors with their equivalent. (d)–(g) Working backward to find the currents through the parallel resistors.

Sample Problem 27.03 Many real batteries in series and in parallel in an electric fish

Electric fish can generate current with biological emf cells called *electroplaques*. In the South American eel they are arranged in 140 rows, each row stretching horizontally along the body and each containing 5000 cells, as suggested by Fig. 27-12a. Each electroplaque has an emf $\mathscr E$ of 0.15 V and an internal resistance r of 0.25 Ω . The water surrounding the eel completes a circuit between the two ends of the electroplaque array, one end at the head of the animal and the other near the tail.

(a) If the surrounding water has resistance $R_w = 800 \Omega$, how much current can the eel produce in the water?

KEY IDEA

We can simplify the circuit of Fig. 27-12a by replacing combinations of emfs and internal resistances with equivalent emfs and resistances.

Calculations: We first consider a single row. The total emf \mathcal{E}_{row} along a row of 5000 electroplaques is the sum of the emfs:

$$\mathcal{E}_{\text{row}} = 5000\mathcal{E} = (5000)(0.15 \text{ V}) = 750 \text{ V}.$$

The total resistance R_{row} along a row is the sum of the internal resistances of the 5000 electroplaques:

$$R_{\text{row}} = 5000r = (5000)(0.25 \,\Omega) = 1250 \,\Omega.$$

We can now represent each of the 140 identical rows as having a single emf \mathscr{E}_{row} and a single resistance R_{row} (Fig. 27-12b).

In Fig. 27-12b, the emf between point a and point b on any row is $\mathcal{E}_{\text{row}} = 750 \text{ V}$. Because the rows are identical and because they are all connected together at the left in Fig. 27-12b, all points b in that figure are at the same electric potential. Thus, we can consider them to be connected so that there is only a single point b. The emf between point a and this single point b is $\mathcal{E}_{\text{row}} = 750 \text{ V}$, so we can draw the circuit as shown in Fig. 27-12c.

Between points b and c in Fig. 27-12c are 140 resistances $R_{\rm row}=1250~\Omega$, all in parallel. The equivalent resistance $R_{\rm eq}$ of this combination is given by Eq. 27-24 as

$$\frac{1}{R_{\rm eq}} = \sum_{j=1}^{140} \frac{1}{R_j} = 140 \frac{1}{R_{\rm row}},$$
or
$$R_{\rm eq} = \frac{R_{\rm row}}{140} = \frac{1250 \,\Omega}{140} = 8.93 \,\Omega.$$

Figure 27-12 (a) A model of the electric circuit of an eel in water. Along each of 140 rows extending from the head to the tail of the eel, there are 5000 electroplaques. The surrounding water has resistance R_{nv} . (b) The emf \mathcal{E}_{row} and resistance R_{row} of each row. (c) The emf between points a and b is \mathcal{E}_{row} . Between points b and c are 140 parallel resistances R_{row} . (d) The simplified circuit.

Replacing the parallel combination with R_{eq} , we obtain the simplified circuit of Fig. 27-12d. Applying the loop rule to this circuit counterclockwise from point b, we have

$$\mathscr{E}_{\text{row}} - iR_w - iR_{\text{eq}} = 0.$$

Solving for *i* and substituting the known data, we find

$$i = \frac{\mathcal{E}_{\text{row}}}{R_w + R_{\text{eq}}} = \frac{750 \text{ V}}{800 \Omega + 8.93 \Omega}$$

= 0.927 A \approx 0.93 A. (Answer)

If the head or tail of the eel is near a fish, some of this current could pass along a narrow path through the fish, stunning or killing it.

(b) How much current i_{row} travels through each row of Fig. 27-12a?

KEY IDEA

Because the rows are identical, the current into and out of the eel is evenly divided among them.

Calculation: Thus, we write

$$i_{\text{row}} = \frac{i}{140} = \frac{0.927 \text{ A}}{140} = 6.6 \times 10^{-3} \text{ A}.$$
 (Answer)

Thus, the current through each row is small, so that the eel need not stun or kill itself when it stuns or kills a fish.

Sample Problem 27.04 Multiloop circuit and simultaneous loop equations

Figure 27-13 shows a circuit whose elements have the following values: $\mathscr{E}_1 = 3.0 \text{ V}$, $\mathscr{E}_2 = 6.0 \text{ V}$, $R_1 = 2.0 \Omega$, $R_2 =$ 4.0Ω . The three batteries are ideal batteries. Find the magnitude and direction of the current in each of the three branches.

KEY IDEAS

It is not worthwhile to try to simplify this circuit, because no two resistors are in parallel, and the resistors that are in series (those in the right branch or those in the left branch) present no problem. So, our plan is to apply the junction and loop rules.

Junction rule: Using arbitrarily chosen directions for the currents as shown in Fig. 27-13, we apply the junction rule at point a by writing

$$i_3 = i_1 + i_2. (27-26)$$

An application of the junction rule at junction b gives only the same equation, so we next apply the loop rule to any two of the three loops of the circuit.

Left-hand loop: We first arbitrarily choose the left-hand loop, arbitrarily start at point b, and arbitrarily traverse the loop in the clockwise direction, obtaining

$$-i_1R_1 + \mathcal{E}_1 - i_1R_1 - (i_1 + i_2)R_2 - \mathcal{E}_2 = 0,$$

where we have used $(i_1 + i_2)$ instead of i_3 in the middle branch. Substituting the given data and simplifying yield

$$i_1(8.0 \Omega) + i_2(4.0 \Omega) = -3.0 \text{ V}.$$
 (27-27)

Right-hand loop: For our second application of the loop rule, we arbitrarily choose to traverse the right-hand loop counterclockwise from point b, finding

$$-i_2R_1 + \mathcal{E}_2 - i_2R_1 - (i_1 + i_2)R_2 - \mathcal{E}_2 = 0.$$

Substituting the given data and simplifying yield

$$i_1(4.0 \Omega) + i_2(8.0 \Omega) = 0.$$
 (27-28)

Figure 27-13 A multiloop circuit with three ideal batteries and five resistances.

Combining equations: We now have a system of two equations (Eqs. 27-27 and 27-28) in two unknowns (i_1 and i_2) to solve either "by hand" (which is easy enough here) or with a "math package." (One solution technique is Cramer's rule, given in Appendix E.) We find

$$i_1 = -0.50 \text{ A}.$$
 (27-29)

(The minus sign signals that our arbitrary choice of direction for i_1 in Fig. 27-13 is wrong, but we must wait to correct it.) Substituting $i_1 = -0.50 \,\text{A}$ into Eq. 27-28 and solving for i_2 then give us

$$i_2 = 0.25 \text{ A.} \qquad \text{(Answer)}$$

With Eq. 27-26 we then find that

$$i_3 = i_1 + i_2 = -0.50 \,\mathrm{A} + 0.25 \,\mathrm{A}$$

= -0.25 A.

The positive answer we obtained for i_2 signals that our choice of direction for that current is correct. However, the negative answers for i_1 and i_3 indicate that our choices for those currents are wrong. Thus, as a *last step* here, we correct the answers by reversing the arrows for i_1 and i_3 in Fig. 27-13 and then writing

$$i_1 = 0.50 \,\text{A}$$
 and $i_3 = 0.25 \,\text{A}$. (Answer)

Caution: Always make any such correction as the last step and not before calculating all the currents.

27-3 THE AMMETER AND THE VOLTMETER

Learning Objective

After reading this module, you should be able to . . .

27.26 Explain the use of an ammeter and a voltmeter, includ-

ing the resistance required of each in order not to affect the measured quantities.

Key Idea

Here are three measurement instruments used with circuits: An ammeter measures current. A voltmeter measures

voltage (potential differences). A multimeter can be used to measure current, voltage, or resistance.

Figure 27-14 A single-loop circuit, showing how to connect an ammeter (A) and a voltmeter (V).

The Ammeter and the Voltmeter

An instrument used to measure currents is called an *ammeter*. To measure the current in a wire, you usually have to break or cut the wire and insert the ammeter so that the current to be measured passes through the meter. (In Fig. 27-14, ammeter A is set up to measure current i.) It is essential that the resistance $R_{\rm A}$ of the ammeter be very much smaller than other resistances in the circuit. Otherwise, the very presence of the meter will change the current to be measured.

A meter used to measure potential differences is called a *voltmeter*. To find the potential difference between any two points in the circuit, the voltmeter terminals are connected between those points without breaking or cutting the wire. (In Fig. 27-14, voltmeter V is set up to measure the voltage across R_1 .) It is essential that the resistance R_V of a voltmeter be very much larger than the resistance of any circuit element across which the voltmeter is connected. Otherwise, the meter alters the potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made to serve as either an ammeter or a voltmeter—and usually also as an *ohmmeter*, designed to measure the resistance of any element connected between its terminals. Such a versatile unit is called a *multimeter*.

27-4 RC CIRCUITS

Learning Objectives

After reading this module, you should be able to . . .

- 27.27 Draw schematic diagrams of charging and discharging RC circuits.
- 27.28 Write the loop equation (a differential equation) for a charging RC circuit.
- **27.29** Write the loop equation (a differential equation) for a discharging *RC* circuit.
- 27.30 For a capacitor in a charging or discharging RC circuit, apply the relationship giving the charge as a function of time.
- **27.31** From the function giving the charge as a function of time in a charging or discharging *RC* circuit, find the capacitor's potential difference as a function of time.
- **27.32** In a charging or discharging RC circuit, find the resistor's current and potential difference as functions of time.
- **27.33** Calculate the capacitive time constant τ .
- **27.34** For a charging *RC* circuit and a discharging *RC* circuit, determine the capacitor's charge and potential difference at the start of the process and then a long time later.

Key Ideas

ullet When an emf $\mathscr E$ is applied to a resistance R and capacitance C in series, the charge on the capacitor increases according to

$$q = C\mathscr{E}(1 - e^{-t/RC})$$
 (charging a capacitor),

in which $C\mathscr{C}=q_0$ is the equilibrium (final) charge and $RC=\tau$ is the capacitive time constant of the circuit.

• During the charging, the current is

$$i = \frac{dq}{dt} = \left(\frac{\mathscr{E}}{R}\right)e^{-t/RC}$$
 (charging a capacitor).

• When a capacitor discharges through a resistance *R*, the charge on the capacitor decays according to

$$q = q_0 e^{-t/RC}$$
 (discharging a capacitor).

• During the discharging, the current is

$$i = \frac{dq}{dt} = -\left(\frac{q_0}{RC}\right)e^{-t/RC}$$
 (discharging a capacitor).

RC Circuits

In preceding modules we dealt only with circuits in which the currents did not vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor

The capacitor of capacitance C in Fig. 27-15 is initially uncharged. To charge it, we close switch S on point a. This completes an RC series circuit consisting of the capacitor, an ideal battery of emf \mathscr{E} , and a resistance R.

From Module 25-1, we already know that as soon as the circuit is complete, charge begins to flow (current exists) between a capacitor plate and a battery terminal on each side of the capacitor. This current increases the charge q on the plates and the potential difference $V_C = q/C$ across the capacitor. When that potential difference equals the potential difference across the battery (which here is equal to the emf $\mathscr E$), the current is zero. From Eq. 25-1 (q = CV), the equilibrium (final) charge on the then fully charged capacitor is equal to $C\mathscr E$.

Here we want to examine the charging process. In particular we want to know how the charge q(t) on the capacitor plates, the potential difference $V_C(t)$ across the capacitor, and the current i(t) in the circuit vary with time during the charging process. We begin by applying the loop rule to the circuit, traversing it clockwise from the negative terminal of the battery. We find

$$\mathscr{E} - iR - \frac{q}{C} = 0. {(27-30)}$$

The last term on the left side represents the potential difference across the capacitor. The term is negative because the capacitor's top plate, which is connected to the battery's positive terminal, is at a higher potential than the lower plate. Thus, there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables, i and q. However, those variables are not independent but are related by

$$i = \frac{dq}{dt}. (27-31)$$

Substituting this for i in Eq. 27-30 and rearranging, we find

$$R\frac{dq}{dt} + \frac{q}{C} = \mathscr{E}$$
 (charging equation). (27-32)

This differential equation describes the time variation of the charge q on the capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies this equation and also satisfies the condition that the capacitor be initially uncharged; that is, q = 0 at t = 0.

We shall soon show that the solution to Eq. 27-32 is

$$q = C\mathscr{E}(1 - e^{-t/RC}) \quad \text{(charging a capacitor)}. \tag{27-33}$$

(Here e is the exponential base, 2.718 ..., and not the elementary charge.) Note that Eq. 27-33 does indeed satisfy our required initial condition, because at t=0 the term $e^{-t/RC}$ is unity; so the equation gives q=0. Note also that as t goes to infinity (that is, a long time later), the term $e^{-t/RC}$ goes to zero; so the equation gives the proper value for the full (equilibrium) charge on the capacitor—namely, q=C%. A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

$$i = \frac{dq}{dt} = \left(\frac{\mathscr{E}}{R}\right) e^{-t/RC}$$
 (charging a capacitor). (27-34)

Figure 27-15 When switch S is closed on *a*, the capacitor is *charged* through the resistor. When the switch is afterward closed on *b*, the capacitor *discharges* through the resistor.

The capacitor's charge grows as the resistor's current dies out.

Figure 27-16 (a) A plot of Eq. 27-33, which shows the buildup of charge on the capacitor of Fig. 27-15. (b) A plot of Eq. 27-34, which shows the decline of the charging current in the circuit of Fig. 27-15. The curves are plotted for $R=2000~\Omega, C=1~\mu\text{F},$ and $\mathscr{E}=10~\text{V}$; the small triangles represent successive intervals of one time constant τ .

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current has the initial value \mathcal{E}/R and that it decreases to zero as the capacitor becomes fully charged.

A capacitor that is being charged initially acts like ordinary connecting wire relative to the charging current. A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q = CV) and Eq. 27-33, we find that the potential difference $V_C(t)$ across the capacitor during the charging process is

$$V_C = \frac{q}{C} = \mathscr{C}(1 - e^{-t/RC}) \quad \text{(charging a capacitor)}. \tag{27-35}$$

This tells us that $V_C = 0$ at t = 0 and that $V_C = \mathscr{E}$ when the capacitor becomes fully charged as $t \to \infty$.

The Time Constant

The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions of time (both because the argument of an exponential must be dimensionless and because, in fact, 1.0 $\Omega \times$ 1.0 F = 1.0 s). The product RC is called the **capacitive time constant** of the circuit and is represented with the symbol τ :

$$\tau = RC$$
 (time constant). (27-36)

From Eq. 27-33, we can now see that at time $t = \tau$ (= RC), the charge on the initially uncharged capacitor of Fig. 27-15 has increased from zero to

$$q = C\mathscr{E}(1 - e^{-1}) = 0.63C\mathscr{E}.$$
 (27-37)

In words, during the first time constant τ the charge has increased from zero to 63% of its final value C%. In Fig. 27-16, the small triangles along the time axes mark successive intervals of one time constant during the charging of the capacitor. The charging times for RC circuits are often stated in terms of τ . For example, a circuit with $\tau=1~\mu s$ charges quickly while one with $\tau=100~s$ charges much more slowly,

Discharging a Capacitor

Assume now that the capacitor of Fig. 27-15 is fully charged to a potential V_0 equal to the emf $\mathscr E$ of the battery. At a new time t=0, switch S is thrown from a to b so that the capacitor can *discharge* through resistance R. How do the charge q(t) on the capacitor and the current i(t) through the discharge loop of capacitor and resistance now vary with time?

The differential equation describing q(t) is like Eq. 27-32 except that now, with no battery in the discharge loop, $\mathscr{E} = 0$. Thus,

$$R\frac{dq}{dt} + \frac{q}{C} = 0 \quad \text{(discharging equation)}. \tag{27-38}$$

The solution to this differential equation is

$$q = q_0 e^{-t/RC}$$
 (discharging a capacitor), (27-39)

where q_0 (= CV_0) is the initial charge on the capacitor. You can verify by substitution that Eq. 27-39 is indeed a solution of Eq. 27-38.

Equation 27-39 tells us that q decreases exponentially with time, at a rate that is set by the capacitive time constant $\tau = RC$. At time $t = \tau$, the capacitor's charge has been reduced to q_0e^{-1} , or about 37% of the initial value. Note that a greater τ means a greater discharge time.

Differentiating Eq. 27-39 gives us the current i(t):

$$i = \frac{dq}{dt} = -\left(\frac{q_0}{RC}\right)e^{-t/RC}$$
 (discharging a capacitor). (27-40)

This tells us that the current also decreases exponentially with time, at a rate set by τ . The initial current i_0 is equal to q_0/RC . Note that you can find i_0 by simply applying the loop rule to the circuit at t=0; just then the capacitor's initial potential V_0 is connected across the resistance R, so the current must be $i_0=V_0/R=(q_0/C)/R=q_0/RC$. The minus sign in Eq. 27-40 can be ignored; it merely means that the capacitor's charge q is decreasing.

Derivation of Eq. 27-33

To solve Eq. 27-32, we first rewrite it as

$$\frac{dq}{dt} + \frac{q}{RC} = \frac{\mathscr{E}}{R}. (27-41)$$

The general solution to this differential equation is of the form

$$q = q_{p} + Ke^{-at}, (27-42)$$

where q_p is a *particular solution* of the differential equation, K is a constant to be evaluated from the initial conditions, and a = 1/RC is the coefficient of q in Eq. 27-41. To find q_p , we set dq/dt = 0 in Eq. 27-41 (corresponding to the final condition of no further charging), let $q = q_p$, and solve, obtaining

$$q_{p} = C\mathscr{E}. \tag{27-43}$$

To evaluate K, we first substitute this into Eq. 27-42 to get

$$q = C\mathscr{E} + Ke^{-at}.$$

Then substituting the initial conditions q = 0 and t = 0 yields

$$0 = C\mathscr{E} + K$$

or $K = -C\mathscr{E}$. Finally, with the values of q_p , a, and K inserted, Eq. 27-42 becomes

$$q = C\mathcal{E} - C\mathcal{E}e^{-t/RC},$$

which, with a slight modification, is Eq. 27-33.

Checkpoint 5

The table gives four sets of values for the circuit elements in Fig. 27-15. Rank the sets according to (a) the initial current (as the switch is closed on a) and (b) the time required for the current to decrease to half its initial value, greatest first.

	1	2	3	4
$\mathscr{E}\left(\mathrm{V}\right)$	12	12	10	10
$R(\Omega)$	2	3	10	5
$C(\mu F)$	3	2	0.5	2

Sample Problem 27.05 Discharging an RC circuit to avoid a fire in a race car pit stop

As a car rolls along pavement, electrons move from the pavement first onto the tires and then onto the car body. The car stores this excess charge and the associated electric potential energy as if the car body were one plate of a capacitor and the pavement were the other plate (Fig. 27-17a). When the car stops, it discharges its excess charge and energy through the tires, just as a capacitor can discharge through a resistor. If a conducting object comes within a few centimeters of the car before the car is discharged, the remaining energy can be suddenly transferred to a spark between the car and the object. Suppose the conducting object is a fuel dispenser. The spark will not ignite the fuel and cause a fire if the spark energy is less than the critical value $U_{\rm fire} = 50$ mJ.

When the car of Fig. 27-17a stops at time t=0, the carground potential difference is $V_0=30\,\mathrm{kV}$. The car-ground capacitance is $C=500\,\mathrm{pF}$, and the resistance of each tire is $R_{\mathrm{tire}}=100\,\mathrm{G}\Omega$. How much time does the car take to discharge through the tires to drop below the critical value U_{fire} ?

KEY IDEAS

(1) At any time t, a capacitor's stored electric potential energy U is related to its stored charge q according to Eq. 25-21 ($U = q^2/2C$). (2) While a capacitor is discharging, the charge decreases with time according to Eq. 27-39 ($q = q_0 e^{-t/RC}$).

Calculations: We can treat the tires as resistors that are connected to one another at their tops via the car body and at their bottoms via the pavement. Figure 27-17b shows how the four resistors are connected in parallel across the car's capacitance, and Fig. 27-17c shows their equivalent resistance R. From Eq. 27-24, R is given by

$$\frac{1}{R} = \frac{1}{R_{\text{tire}}} + \frac{1}{R_{\text{tire}}} + \frac{1}{R_{\text{tire}}} + \frac{1}{R_{\text{tire}}},$$
or $R = \frac{R_{\text{tire}}}{4} = \frac{100 \times 10^9 \,\Omega}{4} = 25 \times 10^9 \,\Omega.$ (27-44)

When the car stops, it discharges its excess charge and energy through *R*. We now use our two Key Ideas to analyze the discharge. Substituting Eq. 27-39 into Eq. 25-21 gives

$$U = \frac{q^2}{2C} = \frac{(q_0 e^{-t/RC})^2}{2C}$$
$$= \frac{q_0^2}{2C} e^{-2t/RC}.$$
 (27-45)

From Eq. 25-1 (q = CV), we can relate the initial charge q_0 on the car to the given initial potential difference V_0 : $q_0 = CV_0$. Substituting this equation into Eq. 27-45 brings us to

$$U = \frac{(CV_0)^2}{2C} e^{-2t/RC} = \frac{CV_0^2}{2} e^{-2t/RC},$$

Figure 27-17 (a) A charged car and the pavement acts like a capacitor that can discharge through the tires. (b) The effective circuit of the car-pavement capacitor, with four tire resistances $R_{\rm tire}$ connected in parallel. (c) The equivalent resistance R of the tires. (d) The electric potential energy U in the car-pavement capacitor decreases during discharge.

or
$$e^{-2t/RC} = \frac{2U}{CV_0^2}$$
. (27-46)

Taking the natural logarithms of both sides, we obtain

$$-\frac{2t}{RC} = \ln\left(\frac{2U}{CV_0^2}\right),$$

$$t = -\frac{RC}{2}\ln\left(\frac{2U}{CV_0^2}\right). \tag{27-47}$$

Substituting the given data, we find that the time the car takes to discharge to the energy level $U_{\rm fire} = 50$ mJ is

$$t = -\frac{(25 \times 10^{9} \,\Omega)(500 \times 10^{-12} \,\mathrm{F})}{2}$$

$$\times \ln \left(\frac{2(50 \times 10^{-3} \,\mathrm{J})}{(500 \times 10^{-12} \,\mathrm{F})(30 \times 10^{3} \,\mathrm{V})^{2}} \right)$$
= 9.4 s. (Answer)

Fire or no fire: This car requires at least 9.4 s before fuel can be brought safely near it. A pit crew cannot wait that long. So the tires include some type of conducting material (such as carbon black) to lower the tire resistance and thus increase the discharge rate. Figure 27-17d shows the stored energy U versus time t for tire resistances of $R=100~\mathrm{G}\Omega$ (our value) and $R=10~\mathrm{G}\Omega$. Note how much more rapidly a car discharges to level U_{fire} with the lower R value.

793

Emf An **emf device** does work on charges to maintain a potential difference between its output terminals. If dW is the work the device does to force positive charge dq from the negative to the positive terminal, then the **emf** (work per unit charge) of the device is

$$\mathscr{E} = \frac{dW}{dq} \quad \text{(definition of } \mathscr{E}\text{)}. \tag{27-1}$$

The volt is the SI unit of emf as well as of potential difference. An **ideal emf device** is one that lacks any internal resistance. The potential difference between its terminals is equal to the emf. A **real emf device** has internal resistance. The potential difference between its terminals is equal to the emf only if there is no current through the device.

Analyzing Circuits The change in potential in traversing a resistance R in the direction of the current is -iR; in the opposite direction it is +iR (resistance rule). The change in potential in traversing an ideal emf device in the direction of the emf arrow is $+\mathcal{E}$; in the opposite direction it is $-\mathcal{E}$ (emf rule). Conservation of energy leads to the loop rule:

Loop Rule. The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

Conservation of charge gives us the junction rule:

Junction Rule. The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

Single-Loop Circuits The current in a single-loop circuit containing a single resistance R and an emf device with emf $\mathscr E$ and internal resistance r is

$$i = \frac{\mathscr{E}}{R+r},\tag{27-4}$$

which reduces to $i = \mathcal{E}/R$ for an ideal emf device with r = 0.

Power When a real battery of emf \mathscr{E} and internal resistance r does work on the charge carriers in a current i through the battery, the rate P of energy transfer to the charge carriers is

$$P = iV, (27-14)$$

1 (a) In Fig. 27-18a, with $R_1 > R_2$, is the potential difference

Figure 27-18 Questions 1 and 2.

where V is the potential across the terminals of the battery. The rate P_r at which energy is dissipated as thermal energy in the battery is

$$P_r = i^2 r. (27-16)$$

The rate $P_{\rm emf}$ at which the chemical energy in the battery changes is

$$P_{\rm emf} = i\mathscr{E}.$$
 (27-17)

Series Resistances When resistances are in **series**, they have the same current. The equivalent resistance that can replace a series combination of resistances is

$$R_{\rm eq} = \sum_{j=1}^{n} R_j$$
 (*n* resistances in series). (27-7)

Parallel Resistances When resistances are in **parallel**, they have the same potential difference. The equivalent resistance that can replace a parallel combination of resistances is given by

$$\frac{1}{R_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{R_j} \quad (n \text{ resistances in parallel}). \tag{27-24}$$

RC Circuits When an emf $\mathscr E$ is applied to a resistance R and capacitance C in series, as in Fig. 27-15 with the switch at a, the charge on the capacitor increases according to

$$q = C\mathscr{E}(1 - e^{-t/RC})$$
 (charging a capacitor), (27-33)

in which $C\mathscr{C}=q_0$ is the equilibrium (final) charge and $RC=\tau$ is the **capacitive time constant** of the circuit. During the charging, the current is

$$i = \frac{dq}{dt} = \left(\frac{\mathscr{E}}{R}\right)e^{-t/RC}$$
 (charging a capacitor). (27-34)

When a capacitor discharges through a resistance R, the charge on the capacitor decays according to

$$q = q_0 e^{-t/RC}$$
 (discharging a capacitor). (27-39)

During the discharging, the current is

$$i = \frac{dq}{dt} = -\left(\frac{q_0}{RC}\right)e^{-t/RC}$$
 (discharging a capacitor). (27-40)

across R_2 more than, less than, or equal to that across R_1 ? (b) Is the current through resistor R_2 more than, less than, or equal to that through resistor R_1 ?

- **2** (a) In Fig. 27-18a, are resistors R_1 and R_3 in series? (b) Are resistors R_1 and R_2 in parallel? (c) Rank the equivalent resistances of the four circuits shown in Fig. 27-18, greatest first.
- **3** You are to connect resistors R_1 and R_2 , with $R_1 > R_2$, to a battery, first individually, then in series, and then in parallel. Rank those arrangements according to the amount of current through the battery, greatest first.
- 4 In Fig. 27-19, a circuit consists of a battery and two uniform resistors, and the section lying along an x axis is divided into five segments of equal lengths. (a) Assume that $R_1 = R_2$ and rank the segments according to the magnitude of the average electric

Figure 27-19 Question 4.