Assignment 4:

Q4. (5 points) Alice and Bob play a game starting with a pile of n sticks. Each player on their turn can remove 1, 2 or 3 sticks from the pile. The last player to remove a stick wins. Alice goes first. Prove by induction that Alice has a winning strategy if and only if $4 \nmid n$.

- A winning strategy is a rule that a player can follow which guarantees they will win
 no matter what decisions their opponent makes. You may assume, without proof,
 that either Alice or Bob has a winning strategy.
- You may also assume without proof that any integer n can be written as n = 4q + r where $q \in \mathbb{Z}$ and $r \in \{0, 1, 2, 3\}$.

MATH 135: Lecture 11

Dr. Nike Dattani

1 October 2021

- Thursday 30 September:
 - Look at WA4 !!!
- Thursday 30 September:
 - WA03 solutions will be posted, hopefully before 12pm: Check the solutions in detail!
- Thursday 30 September:
 - Complete reading from Chapter 3.6 up to 5 of the course notes. Pages 55-81.
- Friday 1 October:
 - Mobius Quiz 9
- Sunday 3 October:
 - You'll need to know more before 0.4 (Polynomials), so use this time to review Pages 55-81, and do practice problems!
- Monday 4 October:
 - Mobius Quiz 10
- Tuesday 28 September:
 - Look at your WA02 results thoroughly! Where did you lose marks?
- Wednesday 29 September:
 - Complete Written Assignment 3: WA3
- Wednesday 29 September:
 - Mobius Quiz 8

Week 3	Chapter 3: Proving Mathematical Statements Chapter 0: Polynomials Over R	3.2 Proving Existentially Quantified Statements 3.3 Proving Implications 3.4 Divisibility of Integers 3.5 Proof by Contrapositive 0.3 Polynomial Divisibility	Mobius Quizzes 4, 5, 6 Available: Mon Sep 20, Wed Sep 22, Fri Sep 24 WA2 Due: Wed Sep 22 at 5 PM EDT	MQ: 0.4% each WA2: 2.22%	Assessments cover the material from Weeks 1–2
Week 4	Chapter 3: Proving Mathematical Statements	3.6 Proof by Contradiction 3.7 Proving If and Only If Statements 4.1 Notation for Summations, Products and Recurrences 4.2 Proof by Induction 4.4 Proof by Strong Induction	Mobius Quizzes 7, 8, 9 Available: Mon Sep 27, Wed Sep 29, Fri Oct 1 Due: midnight WA3 Due: Wed Sep 29 at 5 PM EDT	MQ: 0.4% each WA3: 2.22%	Assessments cover the material from Weeks 1–3

What method?

Induction on n.

Inductive step:

Case 1: $k\alpha/\pi$ an integer

Case 2: $k\alpha/\pi$ not an integer

e.g. of $k\alpha/\pi$ an integer?

What method?

Induction on n.

Inductive step:

Case 1: $k\alpha/\pi$ an integer

Case 2: $k\alpha/\pi$ not an integer

e.g. of $k\alpha/\pi$ an integer? $\alpha = \pi$

e.g. of $k\alpha/\pi$ not an integer?

What method?

Induction on n.

Inductive step:

Case 1: $k\alpha/\pi$ an integer

Case 2: $k\alpha/\pi$ not an integer

e.g. of $k\alpha/\pi$ an integer? $\alpha = \pi$

e.g. of $k\alpha/\pi$ not an integer? $\alpha = 1$

What method?

Induction on n.

Inductive step:

Case 1: $k\alpha/\pi$ an integer

Case 2: $k\alpha/\pi$ not an integer

e.g. of $k\alpha/\pi$ an integer? $\alpha = \pi$

e.g. of $k\alpha/\pi$ not an integer? $\alpha = 1$

If $(k+1)\alpha/\pi$ is not an integer, then is $k\alpha/\pi$ not an integer?

$$k+1 = 17$$
, $\alpha = \pi/16$, $(k+1)\alpha/\pi = 17/16$

$$k = 16$$
, $\alpha = \pi/16$, $k\alpha/\pi = 1$

What method?

Induction on n.

Inductive step:

Case 1: $k\alpha/\pi$ an integer

Case 2: $k\alpha/\pi$ not an integer

Case 2 is the harder one (need to use the hint).

Another hint: can denominator be 0?

Can this happen when $(k+1)\alpha/\pi$ is not an integer?

b) What type of proof?

Contradiction! Assume cot(1°) is rational!

Try some values of n. If $\cot(1^{\circ})$ is rational and $n\alpha/\pi$ is non-integer, then $\cot(n\alpha)$ must be rational (because of part a).

If we violate what we proved in part (a), then cot(1°) is not rational.

Q2)

First show that m exists.

Marks lost if you assume it exists!

Figure out an m that works, then plug it into $n^2 = 8m + 1$.

Then show it's unique!!

Example of proving uniqueness. If we have: $(n^4 = 9m_1) \wedge (n^4 = 9m_2)$, then:

$$9m_1 = n^4 = 9m_2$$

 $m_1 = m_2$ (So they are the same. You can also try with m_3 , m_4 , etc.)

Q3) Strong induction.

Induction hypothesis:

Make sure you give the correct range for k.

Make sure induction hypothesis is not "for all k".

Assume P(r) is true for r = 1, 2, ..., k and $k \ge last base case.$

- Inductive step begins with the definition of the sequence,
- then you use the induction hypothesis to prove that the definition of the sequence gives you what you want to prove, for the k+1 case.

Q5)

Use induction