```
FILE 'CAPLUS' ENTERED AT 17:13:34 ON 02 JUN 2008
           125 S "FATTY ACID NITRILE" OR "FATTY ACID DERIVED NITRILE" OR "FATT
        203263 S AMIDE OR "STRONG ACID"
1.3
            20 S L1 AND L2
L4
            3 S US200!-534156/APPS
L5
            1 S L3 AND L4
L6
            19 S L3 NOT L5
=> d 15 bib abs
    ANSWER 1 OF 1 CAPLUS COPYRIGHT 2008 ACS on STN
AN
    2004:453151 CAPLUS <<LOGINID::20080602>>
DN
    141:25327
ΤI
    Purification-decolorization treatment for fatty nitriles for the removal
    of long-chain carboxamides
    Telschow, Jeffrey Earl
IN
    Akzo Nobel N.V., Neth.
PA
    PCT Int. Appl., 13 pp.
SO
    CODEN: PIXXD2
DT
    Patent
LA
    English
FAN.CNT 1
                      KIND DATE
    PATENT NO.
                                         APPLICATION NO.
                                                               DATE
                       ----
                   A2
    WO 2004046067
                                        WO 2003-EP12834
                                                               20031113
    WO 2004046067
                       A3
```

```
20040603
20040722
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
             GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
             LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO,
             NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,
             TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,
             BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE,
             ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
             TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                                20040615 AU 2003-299293
     AU 2003299293
                          A1
                                                                     20031113
     EP 1560808
                          A2
                                20050810
                                           EP 2003-799464
                                                                     20031113
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
                               20050927 BR 2003-16217
     BR 2003016217 A
    JP 2006506429 T 2006203 JP 2004-552623 US 20060030726 A1 20060209 US 2005-534155 IN 2005CN00906 A 20070810 IN 2005-CN906 MX 2005PA05155 A 2005N072 WY 2005-CN906
                               20051221 CN 2003-80103357
                                                                     20031113
                               20060223 JP 2004-552623
                                                                     20031113
                                                                     20050505 <--
                                                                     20050512
                                20050722 MX 2005-PA5155
                                                                     20050513
PRAI US 2002-426537P
                         P
                                20021115
```

AB A process for the removal of impurities comprising amides, but

which may include other impurities such as amines, from a solution of the

fatty acid nitriles and impurities is

described in which the impure nitrile is contacted with a strong acid to remove the amide as a salt in the acid layer.

acid to remove the amide as a sait in the acid layer.

The thus-treated nitrile is then subjected to phase separation and treated with

an adsorbent (e.g., bentonite clay).

^{=&}gt; d 16 tot bib abs

L6 ANSWER 1 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN

AN 2001:208232 CAPLUS <<LOGINID::20080602>>

- DN 134:239307
- TI Method for producing fatty acid amides by the reaction of fatty acid esters with ammonia
- IN Gutsche, Bernhard; Sicre, Christophe; Armengaud, Rene; Rigal, Jean; Wollmann, Gerhard
- PA Cognis Deutschland G.m.b.H., Germany
- SO PCT Int. Appl., 19 pp. CODEN: PIXXD2
- DT Patent
- LA German
- FAN.CNT 1

	PA:	TENT :	NO.			KIN)	DATE			APPL	ICAT	ION	NO.		D.	ATE	
							-									_		
PI	WO	2001	0197	81		A1		2001	0322		WO 2	000-	EP87	24		2	0000	907
		W:	JP,	KR,	US													
		RW:	AT,	BE,	CH,	CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,
			PT,	SE														
	DE	1994	4418			A1		2001	0322		DE 1	999-	1994	4418		1	9990	916
	EP	1212	290			A1		2002	0612		EP 2	000-	9743	67		2	0000	907
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
			IE,	FI,	CY													
	JP	2003	5094	02		T		2003	0311		JP 2	001-	5233	62		2	0000	907

PRAI DE 1999-19944418 A 19990916 WO 2000-EP8724 W 20000907

AB Fatty acid amides are prepared from fatty acid alkyl esters and ammonia in the presence of a catalyst and in this method, substantially water and fatty acid-free esters are used and the catalyst is a compound of tetravalent tin (e.g., dibutyltin oxide) that is soluble in the reaction mixture The method is carried out at low pressure, with short reaction times and to a large extent, without the formation of byproducts.

RE.CNT 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

- L6 ANSWER 2 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN AN 1992:20690 CAPLUS <<LOGINID::20080602>>
- DN 116:20690
- OREF 116:3643a.3646a
- TI Method for manufacturing fatty acid nitriles
- and glycerin by ammonolysis of glycerides with alcohol scrubbing IN Miesiac, Ireneusz; Szymanowski, Jan; Jerzykiewicz, Wojciech; Gebura,
- PA Politechnika Poznanska, Pol.; Instytut Ciezkiej Syntezy Organicznej
- SO Pol., 10 pp. Abstracted and indexed from the unexamined application. CODEN: POXXA7
- DT Patent
- LA Polish
- FAN.CNT 1

	PAT	ENT	NO.	KIND	DATE	APP	LICATION NO.	DATE
PI	PL	1535	523	B1	19910430	PL	1987-269513	19871215
PRAI	PL	1987	7-269513		19871215			

AB Fatty nitriles and glycerin (I) are prepared by ammonolysis of glycerides (especially natural fats and oils) with NH3(g) and a catalyst at 220-300°, whereby the reaction aerosol is absorbed by a polar organic solvent (especially a lower aliphatic alc.) optionally containing S00% (vs. total weight) nonpolar solvent. Distillation of solvent from the condensate

gives

a crude product which is separated into a nitrile phase and an aqueous I phase. Separation may involve neutralization or acidification with CO2 or SO2. Thus, 100 g beef tallow was heated with 2 g $\rm Zn$ dodecylbenzenesulfonate under

NH3(q) at 50 dm3/h for 3 h with the exit gases being scrubbed by MeOH containing 10% benzene. Evaporation of solvent from the condensate gave 92 g crude

product as an emulsion, which was broken by 4 g NaCl to give 83% nitrile fraction (containing 7.3% amide) and 13 g aqueous I containing 53.7% I. Addition of CO2 and SO2 to the emulsion also gave separation

- ANSWER 3 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1989:156506 CAPLUS <<LOGINID::20080602>>
- DN 110:156506
- OREF 110:25883a,25886a
 - Process for the manufacture of glycerin and fatty acid -derived nitriles from the reaction of glycerides with excess ammonia
- TN Stuehler, Herbert; Fischer, Kurt
- PA Hoechst A.-G., Fed. Rep. Ger.
- Ger. Offen., 10 pp. SO CODEN: GWXXBX
- DT Patent

LA	Ge:	rmar
FAN.	CNT	1

	PATENT NO.			
PI	DE 3639857	A1 1988060		
	IN 168556	A1 1991042		
	EP 273173	A2 1988070		
	EP 273173	A3 1988072	20	
	EP 273173	B1 1991070	13	
	R: AT, BE, CH,	DE, ES, FR, GE	B, IT, LI, NL, SE	
	AT 64922	T 1991071	.5 AT 1987-116921	19871117
	DD 262859	A5 1988121	.4 DD 1987-309214	19871119
	US 4801730	A 1989013	31 US 1987-122403	19871119
	DK 8706106	A 1988052	22 DK 1987-6106	19871120
	NO 8704853	A 1988052	24 NO 1987-4853	19871120
	NO 165394	B 1990102		
	NO 165394	C 1991020		
	AU 8781449	A 1988052		19871120
	AU 598881	B2 1990070		
	CN 87107926	A 1988060		19871120
	CN 1014605	B 1991110		
	JP 63150235	A 1988062		19871120
	BR 8706262	A 1988062		
	ZA 8708694	A 1988083		
	SU 1551243	A3 1990031		
	IL 84547	A 1992021		
	CA 1305182	C 1992071		19871120
PRAI		A 1986112		
	EP 1987-116921	A 1987111	.7	

AB Fatty acid-derived nitriles and

glycerin are prepared by the reaction of glycerides with 200 L NH3/kg glyceride-h at 220-230° in the presence of a specialized catalyst, producing a reaction mixture containing water, glycerin, fatty acids, fatty

acid amides, and fatty acid-derived

nitriles. The glycerin and water are removed and the carboxylic acids and derivs. recycled and reacted with 5-150 L NH3 at 240-320°, producing fatty acid-derived nitriles of high purity.

L6 ANSWER 4 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN

AN 1986:209168 CAPLUS <<LOGINID::20080602>>

```
DN 104:209168
```

OREF 104:33157a,33160a

- TI Separation of amides from nitriles
- IN Frank, Dieter; Metcalfe, Lincoln D.; Park, John Y. G.
- PA Akzona Inc., USA
- SO U.S., 13 pp. CODEN: USXXAM
- DT Patent
- LA English
- FAN CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 4575434	A	19860311	US 1984-656083	19840928
	EP 177097	A1	19860409	EP 1985-201535	19850925
	R: AT, BE, CI	, DE, FR	, GB, IT,	LI, LU, NL, SE	
	NO 8503820	A	19860401	NO 1985-3820	19850927
	AU 8547982	A	19860410	AU 1985-47982	19850927
	ES 547371	A1	19860601	ES 1985-547371	19850927
	JP 61126063	A	19860613	JP 1985-212737	19850927
	BR 8504757	A	19860722	BR 1985-4757	19850927
	CA 1260495	A1	19890926	CA 1985-491786	19850927
PRA	I US 1984-656083	A	19840928		

OS MARPAT 104:209168

AB Impurities comprising amides are removed from fatty

acid-derived nitriles by contacting a solution of

the nitriles and impurities with a layered mineral, comprising an Al silicate containing exchangeable cations, and an acid such as H2SO4 which protonates the amides and forms an insol. salt with the exchange

cations, followed by separation of the nitriles from the mixture, especially with a

rotary drum vacuum filter. The water content in the reaction mixture is ≤0.5%. Thus, 550 lb. tallow nitrile having amide content

0.38% and Gardner color 5.5 was treated in a stirred reactor at

60°/74 mm with 7% Ca bentonite (12% H2O content) and 0.7% H2SO4,

agitated 30 min, and filtered with a rotary drum vacuum filter at 200 mm. The first filtrate was agitated with 2% fresh neutral clay at 60°

for 20 min and vacuum filtered. The purified tallow nitrile was a clear liquid having Gardner color <1, no bad odor, and amide content

- ANSWER 5 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1980:221693 CAPLUS <<LOGINID::20080602>>
- 92:221693
- OREF 92:35779a,35782a
- TΙ Prediction of liquid-liquid equilibria for ternary systems by the ASOG method
- AII Tochigi, Katsumi; Hiraga, Mayumi; Kojima, Kazuo
- CS Dep. Ind. Chem., Nihon Univ., Tokyo, 101, Japan SO Journal of Chemical Engineering of Japan (1980), 13(2), 159-62
- CODEN: JCEJAQ; ISSN: 0021-9592
- Journal
- LA English
- Liquid-liquid equilibrium were predicted for 31 ternary systems (25-40°) by using the ASOG (Anal. Solns. of Groups) method to predict activity coeffs. Results for systems containing hydrocarbons, H2O, alcs., ketones, esters, fatty acids, nitriles, and amides

showed that the ASOG approach has the advantage of simplicity.

- L6 ANSWER 6 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1979:594935 CAPLUS <<LOGINID::20080602>>
- DN 91:194935

OREF 91:31399a,31402a

- TI Fatty acid nitriles and glycerin from
- glycerides from natural fats and oils
- IN Billenstein, Siegfried; Kukla, Bruno; Stuehler, Herbert
- PA Hoechst A.-G., Fed. Rep. Ger.
- SO Ger. Offen., 11 pp. Addn. to Ger. Offen. 2,737,607.
- CODEN: GWXXBX DT Patent
- LA German
- FAN.CNT 3

	PATENT NO.	KIND	DATE	A	PPLICATION NO.	DATE
PI	DE 2813204	A1	19791004		E 1978-2813204	
	ES 472553	A1	19790216	E	S 1978-472553	19780814
	IN 150312	A1	19820911		N 1978-CA889	
	RO 77028	A1	19810622	R	0 1978-94982	19780815
	EP 916	A1	19790307	E	P 1978-100666	19780816
	EP 916	B1	19810520			
	R: BE, CH,	DE, FR, GE				
	DD 138311	A5	19791024		D 1978-207321	
	FI 7802516 FI 63961	A	19790221	F	I 1978-2516	19780817
	FI 63961	B	19830531			
	FI 63961	C	19830912			
	JP 54041806		19790403	J	P 1978-99578	19780817
	JP 62046530	B	19871002			
	DK 7803679	A	19790221	D	K 1978-3679	19780818
	DK 159064	В	19900827			
	DK 159064	С	19910121			
	NO 7802821		19790221	N	0 1978-2821	19780818
	NO 147271	В	19821129			
	NO 147271	C	19830316	_	m 4000 5004	40000040
	BR 7805331	A	19790424		R 1978-5331	
	AU 7839076	A	19800221	A	U 1978-39076	19780818
	AU 519437 AT 7806007	B2 A	19811203 19800515		T 1978-6007	19780818
	AT 359991	B B	19800515	А	1 1978-6007	19/80818
	CS 202509	B2	19810130	_	S 1978-5425	19780818
	IL 55385	A A	19810130		L 1978-55385	
	HU 22921	A2	19820728		U 1978-HO2097	
	HU 180472	B	19830328	- 11	.0 1970-no2097	13700010
	SU 971092	A3	19821030	c	U 1978-2650552	19780818
	CA 1135722	A1	19821116		A 1978-309619	
	PL 119196	B1	19811231		L 1978-209133	
	US 4234509	A	19801118		S 1979-32753	
PRAT	DE 1977-2737607				0 23.3 02.00	25/50424
	DE 1978-2813204					
	US 1978-933955	A2	19780815			
				_		

AB In the manufacture of fatty nitriles from glycerides (e.g., tallow) and NH3, the fatty nitrile phase is separated from the glycerol (1) [56-81-5] and treated with NH3 to convert the small amts. of amides and acids in the nitrile phase to nitriles, giving nitriles with high purity. Thus, 500 g tallow containing 2½ m dodecylbenzenesuffonate was treated with NH3 at 230-60° to prepare nitriles. The crude nitrile phase was separated from I, heated to 290°, and treated with NH3 to give 417 g nitriles with amide content 0.05% and acid value 0.1. The yield of I was 42.9 g.

L6 ANSWER 7 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN

AN 1979:186413 CAPLUS <<LOGINID::20080602>>

DN 90:186413

OREF 90:29609a,29612a

- TI Fatty acid nitriles and glycerol from
- glycerides
- IN Billenstein, Siegfried; Kukla, Bruno; Staehler, Herbert
- PA Fed. Rep. Ger.
- SO Ger. Offen., 20 pp. CODEN: GWXXBX
- DT Patent

	3

FAN.	CNT 3				
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI		A1	19790301		
	ES 472553		19790216		19780814
	IN 150312	A1	19820911	IN 1978-CA889	19780814
	RO 77028	A1	19810622	RO 1978-94982	19780815
	EP 916	A1	19790307	EP 1978-100666	19780816
	EP 916	B1	19810520		
	R: BE, CH, DE,				
	DD 138311	A5	19791024	DD 1978-207321	
	FI 7802516	A	19790221	FI 1978-2516	19780817
	FI 63961	В	19830531		
	FI 63961	C	19830912		
	JP 54041806	A	19790403	JP 1978-99578	19780817
	JP 62046530	В	19871002		
	DK 7803679	A	19790221	DK 1978-3679	19780818
	DK 159064	В	19900827		
	DK 159064	C	19910121		
	NO 7802821	A	19790221	NO 1978-2821	19780818
	NO 147271	В	19821129		
	NO 147271	C	19830316		
	BR 7805331	A	19790424	BR 1978-5331	19780818
	ZA 7804717	A	19790829	ZA 1978-4717	19780818
	AU 7839076	A	19800221	AU 1978-39076	19780818
	AU 519437	B2	19811203		
	AT 7806007	A	19800515	AT 1978-6007	19780818
	AT 359991	В	19801210		
	CS 202509	B2	19810130	CS 1978-5425	19780818
	IL 55385	A	19820228	IL 1978-55385	19780818
	HU 22921	A2	19820728	HU 1978-HO2097	19780818
	HU 180472	В	19830328		
	SU 971092	A3	19821030	SU 1978-2650552	19780818
	CA 1135722	A1	19821116	CA 1978-309619	
	PL 119196	B1	19811231	PL 1978-209133	19780819
	US 4234509	A	19801118	US 1979-32753	19790424
PRAI	DE 1977-2737607	A	19770820		
	DE 1978-2813204	A	19780325		
	US 1978-933955	A2	19780815		
GI					

CH2O(COR1, H) CHO(COR2, H) CH2O2CR3 I

AB Fatty acid nitriles R1(R2,R3)CN (R1, R2, R3, the same or different, = C3-23 saturated or unsatd. hydrocarbyl, optionally

OH-substituted) were prepared by treating glycerides I with NH3 in the liquid phase in the presence of a catalyst, e.g., Pb, Zn, Cd, Fe, Nl, or Co salts of carboxylic or sulfonic acids. Thus, N2, then NH3 was passed through tallow and Me(CH2)11C6H4SO3H zincate at 230-90° over 7 h to give 93.6% tallow fatty acid nitrile (containing 1.8% amide) and 80.2% glycerol.

L6 ANSWER 8 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN

AN 1978:172255 CAPLUS <<LOGINID::20080602>>

DN 88:172255

OREF 88:27135a,27138a

TI Aliphatic monocarboxylic acid nitriles

IN Koranis, Jorgos; Krsnak, Frantisek

PA Czech.

SO Czech., 3 pp. CODEN: CZXXA9

DT Patent

LA Czech

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE

PI CS 169169 B1 19760729 CS 1974-180 19740111

PRAI CS 1974-180 A 19740111

AB C6-22 acids and NH3 ware used to account to the control of the c

B. C6-22 acids and NH3 were used to prepare nitriles containing small concns. of amides. Thus, lauric acid [143-07-7] and excess NH3 were passed over an alumina catalyst at 390° to prepare Me(CH2)10CN [2437-25-4] containing 0.5-3.0% amide. Hydrogenation of the nitrile in liquid phase gave >95% primary amine [124-22-1]. Stearin and mixts. of coconut fatty acids were also used to prepare 82-96% primary amines.

L6 ANSWER 9 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN

AN 1967:65132 CAPLUS <<LOGINID::20080602>>

DN 66:65132

OREF 66:12215a,12218a

TI Fatty acid nitriles

IN Potts, Ralph H.

PA Armour and Co.

SO U.S., 4 pp. CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE 19670117 US 1966-544642 AB A multi-step method for the preparation of the title compds. is described. Into a reactor kept at 180° and 5 kg./cm.2 were fed 1000 moles/hr. of a tallow fatty acid (mol. weight 273) and 2000 moles NH3. The discharge product contained 15.8% free acid, 39.2% amide, and 45% nitrile. This mixture was fed into a reactor at 300° and 1.2 kg./cm.2 with a NH3 flow of 1 mole/hr. to give a product 4.4% free acid, 11% amide , and 84.6% nitrile. After passing this mixture through a reactor at 310° and 0 pressure with 0.5 mole/hr. NH3, a product containing 1% free acid, 3.6% amide, and 95.4% nitrile was obtained. After vacuum distillation the material contained 0.25% free acid, 1.5% amide. A total of 3.5 moles NH3 per mole I had been used. The three reactors were preferably filled with dehydration catalysts (Al203, SiO2), but packing (Raschig rings) was also effective.

L6 ANSWER 10 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN

AN 1966:103553 CAPLUS <<LOGINID::20080602>>

```
DN 64:103553
```

- OREF 64:19405b-c
- Secondary processes in the preparation of higher unsaturated aliphatic nitriles from fatty acids and ammonia by the liquid-phase method
- AIT Tsanev, D.: Benbasat, N.
- Godishnik Nauchnoizsled. Inst. Khim. Prom. (1964), 3(2), 49-58 SO From: Abstr. Bulgar. Sci. Lit., Chem. 7(2), 8-19 (1964).
- Journal
- LA Bulgarian
- AB The following reactions are investigated in the preparation of higher unsatd. aliphatic nitriles by the liquid-phase method: decarboxylation of the fatty acids to ketones, formation of secondary amides, and formation of oligomers. It is shown that the main by products of the process in question are the oligomers of the nitriles. This conclusion is supported by ir spectra. On the basis of this investigation the way to increase the yield of the primary nitriles is clarified.
- ANSWER 11 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1963:447927 CAPLUS <<LOGINID::20080602>>
- DN 59:47927
- OREF 59:8602d-e
- TI Nitriles
- IN Potts, Ralph H.
- PA Armour & Co. SO 11 pp.
- Patent
- Unavailable T.A
- FAN.CNT 1

	PATENT NO.	KIND DATE		APPLICATION NO.	DATE	
PI	FR 1320500		19630308	FR		
	GB 981123			GB		
DDAT	116		10610424			

19610424 AB Fatty acids and fatty acid amides are converted to nitriles in a continuous process in a series of reactions in the liquid phase. fatty acid and a mixture of acids and amides (recycled) are simultaneously introduced into a preheater, the mixture is heated at 170-80°, passed into a preactor containing a dehydration catalyst such as activated alumina, bauxite mineral, or silica gel, NH3 (1.5 moles NH3/mole fatty acid) is heated and introduced into the reactor, and the reactor is pressured to approx. 7 kg./sq. cm. The amide obtained is passed into a preheater, then into another reactor containing a dehydration catalyst under 2.10-2.80 kg./sq. cm. and passed into a preheater where it is mixed with material obtained from the base of the reactor, and the resulting mixture is passed into another reactor under 0.35 1.05 kg./sg. cm. and heated at 300-20°. The mixture is then flash distilled to liberate NH3, and the product distilled in the presence of an alkali such as CaCO3 or Na2CO3 to give the nitriles.

- ANSWER 12 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1963:428143 CAPLUS <<LOGINID::20080602>>
- DN 59:28143
- OREF 59:5018h,5019a-b
- Nitrogen derivatives of long chain fatty acids. I. Synthesis of long chain aliphatic nitriles
- Tsanev, D.; Benbasat, N. AU
- SO Khim. i Ind. (Sofia) (1962), 34(6), 209-11
- DT Journal
- Unavailable
- Nitriles can be prepared in the liquid phase by bubbling NH3 through fatty acids at high temperature (with or without catalysts), in the vapor phase

over a stationary dehydrating catalyst or in the boiling layer, and in a combination liquid-vapor phase where the fatty acids form the amides in the liquid phase, and the reaction products together with the H2O of reaction and excess NH3 are passed through a vertical convertor packed with A12O3 as a vapor. Using only the liquid phase method, stearonitrile is produced optimally at 300°. Higher temps. cause a greater amount of side reactions. The oleonitrile is prepared at 250° due to the formation of fatty acid dimers. Excess NH3 significantly accelerates nitrile formation. Up to 6% H2O in the NH3 does not interfere with the process. The process equipment should be 99.5% Al or acid-resistant steel, EXA 1-T.

- L6 ANSWER 13 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1959:53857 CAPLUS <<LOGINID::20080602>>
- DN 53:53857
- OREF 53:9685h-i,9686a-b
- TI Complex chromium salts for waterproofing
- IN Vallette, P.; Tassel, E.
- PA Compagnie francaise des matieres colorantes
- DT Patent
- LA Unavailable
- FAN.CNT 1

11111	PATENT NO.	KIND	DATE	APPLICA	TION NO.	DATE
PI	FR 1110678		19560215	FR		19531105
7.10	The complex Cr calt	0 200	obtained by	troating	if donirod	in the present

AB The complex Cr salts are obtained by treating, if desired, in the presence of a substance oxidizable by sexivalent Cr, a solution in an inert organic solvent of a compound containing an OH, O:, COOH, COOR, CONH2, CN, or SH group, said solution containing Cr(OH)3 or an alkali metal or alkaline earth

dichromate,

with a gaseous hydrogen halide or with nitrous gases. Suitable organic substances include fatty or resin acids, their esters with mono- or polyhydric alcs., aldehydes, ketones, amides, or alkanolamides of fatty acids, esters of alkanolamines with fatty acids, fatty acid nitriles, phenols, or aliphatic mercaptans. The preferred solvents are halogenated hydrocarbons. Oxidizable substances include MeOH, EtOH, paraldehyde, glucose, and ethylene glycol chlorohydrin. These substances are necessary if the organic complexing agent is not oxidizable during the reaction. The reaction is exothermic and may keep a low-boiling solvent boiling. Usually the complex is soluble and the solution is filtered and evaporated The residue can be used in a hydrophilic solvent which may replace the original solvent in azeotropic distillation. The products, especially with a chain of 12C atoms, are excellent waterproofing agents, especially for textiles. For example, stearic acid, Na2Cr207, CC14, and EtOH were refluxed with passage of dry HC1. The product was dried and dissolved in boiling iso-PrOH, cooled, and filtered. Fabric was waterproofed with an aqueous solution of the complex Cr salt, urea, NaO2CH, and HCO2H.

- L6 ANSWER 14 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1955:39485 CAPLUS <<LOGINID::20080602>>
- DN 49:39485
- OREF 49:7572d-g
- TI Fatty aldehydes. II. Synthesis of amides using lithium aluminum hydride
- AU Kaufmann, H. P.; Kirschnek, H.
- CS Deut. Inst. Fettforschung, Munster, Westfalen, Germany
- SO Fette und Seifen (1953), 55, 851-4 CODEN: FTSEAK; ISSN: 0367-3278
- DT Journal
- I.A Ilnavailable

OS CASREACT 49:39485

Reduction of fatty acid derivs. to the corresponding aldehydes (II) with AB LiAlH4 in THF was investigated. From acid chlorides, only the alcs. could be obtained. Fatty acid nitriles yielded some II; thus, stearonitrile gave 25% I in 48 h. at -60°. Reduction of saturated or unsatd. amides or imino ether-HCl salts gave no II. Reduction of N-arylamides (III) was the best of the methods investigated. The following III were obtained by boiling the acid chlorides with the secondary amines in xylene (amine, acid, m.p. of III): carbazole, stearic acid, 91°; phenothiazine, stearic acid, 86°; Ph2NH, stearic acid, 71°; carbazole, oleic acid, 41°; carbazole, elaidic acid, 72°. The phenothiazine derivs. are most useful since they are more soluble in THF and the resulting phenothiazine is insol. in petr. ether. The yields are generally about 90%. The following is a general method: 4.66 g. N-stearylphenothiazine (dried over P205) is dissolved in 30 mL. THF (distilled from LiAlH4), 2.5 mL. M LiAlH4 in Et20 is added dropwise while cooling, and the solution is allowed to stand 3 h. at 0° with occasional shaking. A few drops EtOAc are added, the solution is decomposed with 100 mL. dilute HCl (0°) and 50 mL. Et20, the mixture is neutralized at once, the Et2O layer is evaporated at low temperature in vacuo,

and the residue is dissolved in cold petr. ether (only the aldehyde dissolves); yield 92%.

- L6 ANSWER 15 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1950:25645 CAPLUS <<LOGINID::20080602>>
- DN 44:25645
- OREF 44:5038i,5039a
- TI Armour's star
- AU Potts, Ralph H.; McBride, Gordon W.
- CS Armour & Co., Chicago, IL
- SO Chem. Eng. (1950), 57, 124-7,172-5
- DT Journal
- LA Unavailable
- AB Description and flowsheet of Armour's new plant at McCook, Ill., for chemical production from fats, oils, and fatty acids. Principal products are fatty acids, nitriles, amides, amines, and amine derivs.
- 6 ANSWER 16 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1948:5872 CAPLUS <<LOGINID::20080602>>
- DN 42:5872 OREF 42:1322c-f
- TI Piperidine compounds
- PA Soc. pour l'ind. chim. a Bale.
- DT Patent
- LA Unavailable
- FAN. CNT 1

E LYIN .	CIVI I							
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE			
PI	GB 591992			GB 1944-11882	19440622			
AB				the corresponding este	rs,			
amides, and ketones are prepared by condensing an α -aryl								
	γ-tert-amino fatty acid nitrile with a							
	1,2-alkylene halide in the presence of an acid-binding agent and then							
	converting the CN g	roup in	the usual	manner to esters, etc.				
	α-Phenyl-γ-(benzylm	ethylam	ino)butyro	nitrile 52.8 g. is trea	ted			

with powdered NaNH2 10 in ether 200 in a N atmospheric, then cooled with ice and mixed with (CH2Br)2 40 parts. Stir 1 hr. at room temperature and 4-5 hrs. at 40°C. Upon neutralization 1-methyl-1-benzyl-4-phenyl-4-

```
cyanopiperidinium bromide, m. 245-60°, is obtained. Reduction with
     H and Pd black yields 1-methyl-4-phenyl-4-cyanopiperidine. Similarly
     1,2-dimethyl-4-phenyl-4-cyanopiperidine, b0.7 107-10°,
     1,2-dimethyl-4-phenyl-4-carbethoxypiperidine, b0.15 105-8°,
     1-ethyl-4-phenyl-4-cyanopiperidine, b0.05 110-12°, and
     1-methyl-4-(m-methoxyphenyl)-4-cyanopiperidine (I), bl2 196-7°, m.
     40°, are prepared I heated with caustic gave 1-methyl-4-(m-
     methoxyphenyl)-4-piperidinecarboxylic acid, m. 272-40; Et ester b12
     195-7°. Prepns. are given for 1-methyl-4-(m-methoxyphenyl)-4-
     piperidinecarboxamide, m. 133-5°, 1-methyl-4-(m-hydroxyphenyl)-4-
    piperidyl Pr ketone, m. 153-4° (HCl salt of m-methoxyphenylanalog,
    m. 125-7°), 1-methyl-4-(m-acetoxyphenyl)-4-piperidyl Pr ketone-HCl,
     m. 172-4°, 1-methyl-4-(o-methoxyphenyl)-4-cyanopiperidine, m.
     98-9° (HBr salt, m. 262-4°), 1-methyl-1-benzyl-4-(2,3-
    dimethoxyphenyl)-4-cyanopiperidinium bromide, m. 232-33.5°,
     1-ethyl-4-phenyl-4-piperidyl Et ketone, b0.1 100°, and
     1-methyl-4-(m-hydroxyphenyl)-4-piperidyl Me ketone, m. 158-9°. Cf.
     C.A. 42, 225f.
    ANSWER 17 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
AN
    1938:66987 CAPLUS <<LOGINID::20080602>>
    32:66987
OREF 32:9402f-h
    Therapeutically active amidines
IN Miescher, Karl; Urech, Ernst
   Soc. pour l'ind chim. a Bale
PA
    Patent
    Unavailable
FAN.CNT 1
    PATENT NO.
                   KIND DATE
                                        APPLICATION NO. DATE
                                         -----
                             19380927 US
    US 2131141
AB Phenyloxy alkylene amidines unsubstituted in the phenyl nucleus and
    substituted in the amino group of the amidine group by alkyl, phenalkyl or
     alkyl amino alkyl, the alkyl radicals being of the lower aliphatic series,
     are produced by using as the parent material a phenyloxy fatty
     acid nitrile, amide or thioamide which is not
    substituted in the phenyl nucleus and converting this compound into an
     amidine substituted at the amidine N. Phenoxyethenyl-B-
    phenylphenylethylamidine-HCl m. 201-3° and is freely soluble in water.
    α - Phenoxybutenyldibutylamidine - HCl m. 117-118°. General
    mention is made of other similar compds.
L6 ANSWER 18 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
AN 1938:28246 CAPLUS <<LOGINID::20080602>>
DN
   32:28246
OREF 32:3910h-i,3911a-c
TI
    Therapeutically-active amidines
PA Soc. pour l'ind. chim. a Bale
    Pat.ent.
    Unavailable
FAN.CNT 1
    PATENT NO.
                      KIND DATE APPLICATION NO. DATE
                      19371213 GB
    These are prepared from phenoxy fatty acid
     nitriles, amides or thioamides that are substituted in
     the Ph nucleus or from quinolyloxy fatty acid
    nitriles, amides or thioamides in which the oxy-
     fatty acid nitrile, amide or
     thioamide residue is a substituent of the isocyclic ring by (1) converting
```

DN

TΙ

DT

LA

the nitrile into its imido-ether and treating it with NH3 or a primary or secondary amine, (2) heating the nitrile with a salt of NH3 or of a primary or secondary amine, (3) converting the amide into its imido-chloride and treating it with NH3 or a primary or secondary amine or (4) causing the thioamide in free or nascent form to react with NH3 or a primary or secondary amine. Among examples, (1) 2methoxyphenoxyethenylamidine is obtained when 2-methoxyphenoxyacetonitrile is treated in cold alc. solution with HCl or HBr and the resulting acetimido-ether caused to react with NH3, (2) 8-quinolyloxyethenylamidine is prepared by introducing HCl into an alc. solution of 8quinolyloxyacetonitrile and treating the resulting acetimido-ether with NH3 and (3) 2-methoxyphenoxyacetamide is heated with PC15 in xylene and the imido-chloride formed heated with NHEt2 to give 2methoxyphenoxyethenyl-as-diethylamidine. In Brit. 476,612, Dec. 13, 1937, addition to 476,611, amidines are prepared by the processes of 476,611 from phenoxy fatty acid nitriles, amides or thioamides that are not substituted in the Ph nucleus. Thus, phenoxyethenyl-β-phenylethylamidine is prepared by treating phenoxyacetimido-ether, made from acetonitrile, alc. and HCl, with β-phenylethylamine.

- L6 ANSWER 19 OF 19 CAPLUS COPYRIGHT 2008 ACS on STN
- AN 1938:25795 CAPLUS <<LOGINID::20080602>>
- DN 32:25795
- OREF 32:3595h-i,3596a
- TI Fatty acid nitriles, amides and
- ketones for extreme-pressure lubricants AU Ralston, A. W.; Christensen, C. W.; Hoffman, E. J.; Selby, W.; Conquest,
- SO National Petroleum News (1936), 28(No. 50), 59-62
- CODEN: NPNEAL; ISSN: 0027-9889
- DT Journal
- LA Unavailable
- AB The preparation and lubricating properties of fatty acid

nitriles, ketones, amides and thioamides are discussed.

The nitriles are stable, readily prepared, very soluble in lubricants, noncorrosive and possess oiliness. Their polymerization produces

substances analogous to heavy mineral oils, while cracking under pressure at 550°, gives lower nitriles and straight-chain hydrocarbons with pronounced penetrative properties. High-mol. aralkyl ketones are readily soluble in mineral oils and greases. Ketones containing the phenoxyphenyl radical, e.g., the Cl7M35 ketone, when added to mineral oils produce gels which liquefy under slight pressure. Owing to their limited solubility the amides are of little interest. Certain thioamides with marked

polar properties and fair solubility were examined
The Faville-Le Valley machine

and the Stephens consistometer were used for assessing oiliness and load-carrying capacity.