SIEMENS

2-Phase Stepper-Motor Driver

TCA 3727

Overview Bipolar IC

Features

- 2 x 0.75 amp. / 50 V outputs
- Integrated driver, control logic and current control (chopper)
- Fast free-wheeling diodes
- Max. supply voltage 52 V
- Outputs free of crossover current
- Offset-phase turn-ON of output stages
- Z-diode for logic supply
- Low standby-current drain
- Full, half, quarter, mini step

Туре	Ordering Code	Package
TCA 3727	Q67000-A8302	P-DIP-20-6
TCA 3727 G	Q67000-A8335	P-DSO-24-3

Description

TCA 3727 is a bipolar, monolithic IC for driving bipolar stepper motors, DC motors and other inductive loads that operate on constant current. The control logic and power output stages for two bipolar windings are integrated on a single chip which permits switched current control of motors with 0.75 A per phase at operating voltages up to 50 V.

The direction and value of current are programmed for each phase via separate control inputs. A common oscillator generates the timing for the current control and turn-on with phase offset of the two output stages. The two output stages in a full-bridge configuration have integrated, fast free-wheeling diodes and are free of crossover current. The logic is supplied either separately with 5 V or taken from the motor supply voltage by way of a series resistor and an integrated Z-diode. The device can be driven directly by a microprocessor with the possibility of all modes from full step through half step to mini step.

Figure 1 Pin Configuration (top view)

Pin Definitions and Functions

Pin No.	Funct	tion								
1, 2, 19, 20 (1, 2, 23, 24) ¹⁾	Digital control inputs IX0, IX1 for the magnitude of the current of the particular phase.									
	IX1	IX0	Phase Current	Example of Motor Status						
	Н	Н	0	No current	typical $I_{\sf max}$ with					
	Н	L	1/3 I _{max}	Hold	$R_{\rm sense} = 1 \ \Omega : 750 \ \rm mA$					
	LH		2/3 I _{max}	Set						
	LL		I_{max}	Accelerate						
3	H-pot	ential t		-	phase winding 1. On to Q12, on L-potential in					
5, 6, 15, 16 (5, 6, 7, 8, 17, 18, 19, 20) 1)	Grou	nd; all	pins are connect	ed internally.						
4		lator ; v s 2.2 n	• •	25 kHz if this pi	n is wired to ground					
8 (10) ¹⁾	Resis	stor R ₁	for sensing the o	current in phase	1.					
7, 10 (9, 12) ¹⁾		-	utputs Q11, Q12 g diodes.	2 for phase 1 wi	th integrated					
9 (11) 1)	a stab	le ele	_		s possible to the IC, with F in parallel with a					
12 (14) ¹⁾	acros	s a ser block	ies resistor. A Z-c to ground directl	liode of approx. y on the IC with	/ or connect to + $V_{\rm S}$ 7 V is integrated. In both a stable electrolytic capacitor of 100 nF.					
11, 14 (13, 16) ¹⁾		-pull o ling did	=	1 for phase 2 wi	th integrated free					
13 (15) ¹⁾	Resis	stor R ₂	for sensing the o	current in phase	2.					

Pin Definitions and Functions (cont'd)

Pin No.	Function
17 (21) ¹⁾	Inhibit input; the IC can be put on standby by low potential on this pin. This reduces the current consumption substantially.
18 (22) ¹⁾	Input phase 2; controls the current flow through phase winding 2. On H-potential the phase current flows from Q21 to Q22, on L potential in the reverse direction.

¹⁾ TCA 3727 G only

Figure 2 Block Diagram TCA 3727

Figure 3 Block Diagram TCA 3727 G

Absolute Maximum Ratings

 $T_{\rm A}$ = - 40 to 125 °C

Parameter	Symbol	I Limit Values		Unit	Remarks	
		min.	max.			
Supply voltage	V_{S}	0	52	V	_	
Logic supply voltage	V_{L}	0	6.5	V	Z-diode	
Z-current of V _L	I_{L}	_	50	mA	_	
Output current	I_{Q}	– 1	1	Α	_	
Ground current	I_{GND}	-2	2	Α	_	
Logic inputs	V_{Ixx}	- 6	$V_{\rm L}$ + 0.3	V	I _{XX} ; Phase 1, 2; Inhibit	
R_1 , R_2 , oscillator input voltage	$V_{RX,} \ V_{OSC}$	- 0.3	V _L + 0.3	V	_	
Junction temperature	$T_{ m j}$		125 150	°C °C	– max. 10,000 h	
Storage temperature	$T_{ m stg}$	- 50	125	°C	_	

Operating Range

Parameter	Symbol	Limit Values		Limit Values		Limit Values		Limit Values		I Limit Values		Limit Values		Unit	Remarks
		min.	max.												
Supply voltage	V_{S}	5	50	V	_										
Logic supply voltage	V_{L}	4.5	6.5	V	without series resistor										
Case temperature	T_{C}	- 40	110	°C	measured on pin 5 $P_{\text{diss}} = 2 \text{ W}$										
Output current	I_{Q}	- 1000	1000	mA	_										
Logic inputs	V_{IXX}	- 5	V_{L}	V	I _{XX} ; Phase 1, 2; Inhibit										

Thermal Resistances

Junction ambient	R_{thja}	_	56	K/W	P-DIP-20-3
Junction ambient (soldered on a 35 μm thick 20 cm ² PC board copper area)	R_{thja}	_	40	K/W	P-DIP-20-3
Junction case	R _{th jc}	_	18	K/W	measured on pin 5 P-DIP-20-3
Junction ambient	$R_{\text{th ja}}$	_	75	K/W	P-DSO-24-3
Junction ambient (soldered on a 35 μm thick 20 cm ² PC board copper area)	R_{thja}	_	50	K/W	P-DSO-24-3
Junction case	R_{thjc}	_	15	K/W	measured on pin 5 P-DSO-24-3

Characteristics

 $V_{\rm S}$ = 40 V; $V_{\rm L}$ = 5 V; -25 °C ≤ $T_{\rm j}$ ≤ 125 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Current Consumption						
$\overline{\text{from + } V_{\text{S}}}$	I_{S}	_	0.2	0.5	mA	$V_{inh} = L$
from + $V_{\rm S}$	I_{S}°	-	16	20	mA	$V_{\text{inh}}^{\text{inh}} = H$
•						$I_{Q1/2} = 0, I_{XX = L}$
from + $V_{\rm L}$	I_{L}	-	1.7	3	mA	$V_{inh} = L$
from + V_{L}	I_{L}^{-}	-	18	25	mA	$V_{inh}^{m} = H$
						$I_{Q1/2} = 0, I_{XX = L}$
Oscillator						
Output charging current	I_{OSC}	_	110		μΑ	_
Charging threshold	$V_{ m OSCL}$	_	1.3	_	V	_
Discharging threshold	V_{OSCH}	_	2.3	_	V	_
Frequency	$f_{\rm OSC}$	18	25	35	kHz	$C_{\rm OSC} = 2.2 \rm nF$

Phase Current Selection $(R_{1;}R_{2})$ Current Limit Threshold

No current	$V_{ m sense\ n}$	_	0	_	mV	IX0 = H; IX1 = H
Hold	$V_{ m sense\ h}$	200	250	300	mV	IX0 = L; IX1 = H
Setpoint	V_{senses}	460	540	620	mV	IX0 = H; IX1 = L
Accelerate	V_{sensea}	740	825	910	mV	IX0 = L; IX1 = L

Logic Inputs

 $(I_{x_1}; I_{x_0}; Phase x)$

(X1 / X0 /						
Threshold	$V_{ m I}$	1.4	_	2.3	V	_
		$(H \rightarrow L)$		(L→H)		
L-input current	$I_{ m IL}$	– 10	_	_	μΑ	$V_{\rm I}$ = 1.4 V
L-input current	$I_{ m IL}$	– 100	_	_	μΑ	$V_{\rm I}$ = 0 V
H-input current	$I_{ m IH}$	_	_	10	μΑ	$V_{\rm I}$ = 5 V

Characteristics (cont'd)

 $V_{\rm S}$ = 40 V; $V_{\rm L}$ = 5 V; - 25 °C \leq $T_{\rm i}$ \leq 125 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Standby Cutout (inhibit)						
Threshold	$V_{lnh} \ (L { ightarrow} H)$	2	3	4	V	_
Threshold	$V_{lnh} \ (H { ightarrow} L)$	1.7	2.3	2.9	V	_
Hysteresis	V_{Inhhy}	0.3	0.7	1.1	V	_
Internal Z-Diode						
Z-voltage	V_{LZ}	6.5	7.4	8.2	V	$I_{\rm L}$ = 50 mA

Power Outputs

Diode Transistor Sink Pair

(D13, T13; D14, T14; D23, T23; D24, T24)

Saturation voltage	V_{satl}	_	0.3	0.6	V	$I_{\rm O} = -0.5 {\rm A}$
Saturation voltage	V_{satl}	_	0.5	1	V	$I_{\rm O} = -0.75 {\rm A}$
Reverse current	I_{RI}	_	_	300	μΑ	$V_{\rm O} = 40 \text{ V}$
Forward voltage	V_{Fl}	_	0.9	1.3	V	$I_{\rm O} = 0.5 {\rm A}$
Forward voltage	V_{Fl}	_	1	1.4	V	$I_{\rm Q} = 0.75 {\rm A}$

Diode Transistor Source Pair

(D11, T11; D12, T12; D21, T21; D22, T22)

(,,,,,										
Saturation voltage	V_{satuC}	_	0.9	1.2	V	$I_{\rm Q} = 0.5 {\rm A};$				
						charge				
Saturation voltage	V_{satuD}	_	0.3	0.7	V	$I_{\rm O} = 0.5 \text{ A};$				
-	00.02					discharge				
Saturation voltage	$V_{\sf satuC}$	_	1.1	1.4	V	$I_{\rm O} = 0.75 \text{A};$				
_	Salue					charge				
Saturation voltage	V_{satuD}	_	0.5	1	V	$I_{\rm O} = 0.75 \text{ A};$				
G	Satub					discharge				
Reverse current	I_{Ru}	_	_	300	μΑ	$V_{Q} = 0 \text{ V}$				
Forward voltage	V_{Fu}	_	1	1.3	V	$I_{\rm Q} = -0.5 {\rm A}$				
Forward voltage	V_{Fu}^{ru}	_	1.1	1.4	V	$I_{\rm Q}^{\rm q} = -0.75 {\rm A}$				
Diode leakage current	I_{SL}^{Tu}	_	1	2	mΑ	$I_{\rm F} = -0.75 {\rm A}$				
3		1	I		1	· •				

Quiescent Current $I_{\rm S}, I_{\rm L}$ versus Supply Voltage $V_{\rm S}$

Quiescent Current $I_{\rm S}, I_{\rm L}$ versus Junction Temperature $T_{\rm i}$

Output Current I_{QX} versus Junction Temperature T_i

Operating Condition:

 $\begin{array}{ll} V_{\rm L} &= 5 \; {\rm V} \\ V_{\rm Inh} &= {\rm H} \\ C_{\rm OSC} &= 2.2 \; {\rm nF} \\ R_{\rm sense} &= 1 \; \Omega \end{array}$

Load: L = 10 mH

 $R = 2.4 \Omega$

 $f_{\text{phase}} = 50 \text{ Hz}$ mode: fullstep

Output Saturation Voltages V_{sat} versus Output Current I_{Q}

Forward Current $I_{\rm F}$ of Free-Wheeling Diodes versus Forward Voltages $V_{\rm F}$

Typical Power Dissipation P_{tot} versus Output Current I_{Q} (Non Stepping)

Permissible Power Dissipation P_{tot} versus Case Temperature T_{C}

Input Characteristics of $I_{\rm xx}$, Phase X, Inhibit

Input Current of Inhibit versus JunctionTemperature $T_{\rm i}$

Oscillator Frequency $f_{\rm OSC}$ versus Junction Temperature $T_{\rm i}$

Figure 4 Test Circuit

Figure 5 Application Circuit

Figure 6 Full-Step Operation

Figure 7 Half-Step Operation

Figure 8 Quarter-Step Operation

Figure 9 Mini-Step Operation

Figure 10 Current Control

Figure 11 Phase Reversal and Inhibit

Calculation of Power Dissipation

The total power dissipation P_{tot} is made up of

saturation losses $P_{\rm sat}$ (transistor saturation voltage and diode forward voltages), quiescent losses $P_{\rm q}$ (quiescent current times supply voltage) and switching losses $P_{\rm s}$ (turn-ON / turn-OFF operations).

The following equations give the power dissipation for chopper operation without phase reversal. This is the worst case, because full current flows for the entire time and switching losses occur in addition.

$$\begin{split} P_{\text{tot}} &= 2 \times P_{\text{sat}} + P_{\text{q}} + 2 \times P_{\text{S}} \\ \text{where} \quad P_{\text{sat}} &\cong I_{\text{N}} \left\{ \left. V_{\text{satl}} \times d + V_{\text{Fu}} \left(1 - d \right) + V_{\text{satuC}} \times d + V_{\text{satuD}} \left(1 - d \right) \right\} \\ P_{\text{q}} &= I_{\text{q}} \times V_{\text{S}} + I_{\text{L}} \times V_{\text{L}} \\ P_{\text{S}} &\cong \frac{V_{\text{S}}}{T} \left\{ \frac{i_{\text{D}} \times t_{\text{DON}}}{2} + \frac{i_{\text{D}} + i_{\text{R}} \times t_{\text{ON}}}{4} + \frac{I_{\text{N}}}{2} t_{\text{DOFF}} + t_{\text{OFF}} \right\} \end{split}$$

 $I_{\rm N}$ = nominal current (mean value)

 I_{q} = quiescent current

 $i_{\rm D}$ = reverse current during turn-on delay

 i_{R} = peak reverse current

 $t_{\rm p}$ = conducting time of chopper transistor

 t_{ON} = turn-ON time t_{OFF} = turn-OFF time t_{DON} = turn-ON delay t_{DOFF} = turn-OFFdelay T = cycle duration d = duty cycle t_{p}/T

 $V_{\rm satt}$ = saturation voltage of sink transistor (T3, T4)

 $V_{
m satuC}$ = saturation voltage of source transistor (T1, T2) during charge cycle $V_{
m satuD}$ = saturation voltage of source transistor (T1, T2) during discharge cycle

 V_{Fu} = forward voltage of free-wheeling diode (D1, D2)

 $V_{\rm S}$ = supply voltage $V_{\rm L}$ = logic supply voltage $I_{\rm L}$ = current from logic supply

Figure 12

Figure 13

Application Hints

The TCA 3727 is intended to drive both phases of a stepper motor. Special care has been taken to provide high efficiency, robustness and to minimize external components.

Power Supply

The TCA 3727 will work with supply voltages ranging from 5 V to 50 V at pin $V_{\rm s}$. As the circuit operates with chopper regulation of the current, interference generation problems can arise in some applications. Therefore the power supply should be decoupled by a 0.22 μF ceramic capacitor located near the package. Unstabilized supplies may even afford higher capacities.

Current Sensing

The current in the windings of the stepper motor is sensed by the voltage drop across R_1 and R_2 . Depending on the selected current internal comparators will turn off the sink transistor as soon as the voltage drop reaches certain thresholds (typical 0 V, 0.25 V, 0.5 V and 0.75 V); (R_1 , R_2 = 1 Ω). These thresholds are neither affected by variations of $V_{\rm L}$ nor by variations of $V_{\rm S}$.

Due to chopper control fast current rises (up to $10 \text{ A/}\mu\text{s}$) will occure at the sensing resistors R_1 and R_2 . To prevent malfunction of the current sensing mechanism R_1 and R_2 should be pure ohmic. The resistors should be wired to GND as directly as possible. Capacitive loads such as long cables (with high wire to wire capacity) to the motor should be avoided for the same reason.

Synchronizing Several Choppers

In some applications synchrone chopping of several stepper motor drivers may be desireable to reduce acoustic interference. This can be done by forcing the oscillator of the TCA 3727 by a pulse generator overdriving the oscillator loading currents (approximately $\geq \pm 100 \, \mu$ A). In these applications low level should be between 0 V and 1 V while high level should be between 2.6 V and $V_{\rm L}$.

Optimizing Noise Immunity

Unused inputs should always be wired to proper voltage levels in order to obtain highest possible noise immunity.

To prevent crossconduction of the output stages the TCA 3727 uses a special break before make timing of the power transistors. This timing circuit can be triggered by short glitches (some hundred nanoseconds) at the Phase inputs causing the output stage to become high resistive during some microseconds. This will lead to a fast current decay during that time. To achieve maximum current accuracy such glitches at the Phase inputs should be avoided by proper control signals.

Thermal Shut Down

To protect the circuit against thermal destruction, thermal shut down has been implemented. To provide a warning in critical applications, the current of the sensing element is wired to input Inhibit. Before thermal shut down occures Inhibit will start to pull down by some hundred microamperes. This current can be sensed to build a temperature prealarm.

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.