

Data Analytics - The What and The Why

What is Data Analytics?

 Data analytics is the collecting, cleaning, analyzing, and interpreting of raw data to uncover insights.

Why does it matter?

- Data analysis is apart of our daily lives.
- Utilities companies use data analysis to detect leaks and outages.
- If we were to receive an alien signal, it would be because of a data analyst!

Applying Data Analysis To The Boston Housing Market

- Objectives to apply data analysis
- Explore
- Prepare
- Visualize
- Model
- Summarize

Boston Housing Business Questions

- Do the average number of rooms a house has influence the median price of homes?
- Is crime a significant factor that influences home prices?

Comprehensive Data Summary

- We begin with setting up a data dictionary and information sheet.
- These sheets are explain and share information like the variables we'll be including, the types of variables they are, the number of rows and columns in the dataset, and more.
- We include the summary statistics to help us understand what would be a large amount of data. Easier to see what to look for.

the 1970s.

						Vai	riable Type:	2. Qua	antitative -	Discrete
						1. I	ndependent	3 Qı	uantitative	-
Variable ID	Variable Name	Variable Description				2. [Dependent	Conti	nious	
1	CRIM	per capita crime rate by town				Ind	ndependent Qu		Quantitative - Continious	
2	ZN	proportion of residential land zone	d for lots over 25,000	sq.ft		Ind	ependent	Quan	titative - Co	ontinious
3	INDUS	proportion of non-retail business a	cres per town			Ind	ependent	Quan	titative - Co	ontinious
4	CHAS	Charles River dummy variable (1 if	tract bounds river; 0 o	therwise	e)	Ind	ependent	Quant	titative - Dis	screte
5	NOX	nitric oxides concentration (parts p	er 10 million)			Ind	ependent	Quan	titative - Co	ontinious
6	RM	average number of rooms per dwe	lling			Ind	ependent	Quan	titative - Co	ontinious
7	AGE	proportion of owner-occupied unit	s built prior to 1940			Ind	ependent	Quan	titative - Co	ontinious
8	DIS	weighted distances to five Boston e	employment centres			Ind	ependent	Quan	titative - Co	ontinious
9	RAD	index of accessibility to radial high	way			Ind	ependent	Quant	titative - Dis	screte
10	TAX	full-value property-tax rate per \$10	,000			Ind	ependent	Quant	titative - Dis	screte
11	PTRATIO	pupil-teacher ratio by town				Ind	ependent	Quantitative - Continious		
12	LSTAT	% lower status of the population				Ind	ependent	Quan	titative - Co	ontinious
13	MEDV	Median value of owner-occupied h	omes in 1000s (Your	depende	nt variabl	e) De	pendent	Quan	titative - Co	ontinious
Dataset wa	s received on O	ctober 9th, 2025			- 1		And in case of		W	
Data within	the dataset was	s collected in the 1970s		h.			-400	9		
The dataset	t was received b	y download on Brightspace			À		-			
The format	of the dataset w	as received by CSV			-1				1	-
The size of t	he raw dataset	is 31.1 KB			10.7					
			Summary Statistics	Mean	Median	Mode	Standard Dev	/iation	Minimum	Maxiumum
Dataset Co	mpletion		CRIM	3.61	0.2565	0.02	8.5930	41351	0.00632	88.9762
			ZN	11.4	0	0	23.299	39569	0	100
While there	are no missing	values or empty cells in this datas	INDUS	11.1	9.69	18.1	6.8535	70583	0.46	27.74
there is a va	ariable missing v	which represented the	CHAS	0.07	0	0	0.2537	42935	0	1
proportion	of black residen	ts by town (B).	NOX	0.55	0.538	0.54	0.1157	63115	0.385	0.871
			RM	6.28	6.2085	5.71	0.7019	22514	3.561	8.78
			AGE	68.6	77.5	100	28.121	03257	2.9	100
Dataset Co			DIS	3.8	3.2075	3.5	2.1036	28356	1.1296	12.1265
Number of	Rows: 506		RAD	9.55	5	24	8.6986	51118	1	24
Number of	Columns: 13		TAX	408		666		70495		
			PTRATIO	18.5		20.2				
	se / Purpose		LSTAT	12.7		8.05				
-		lyze various attributes of	MEDV	22.5	21.2	50	9.1880	11545	5	50
houses in d	ifferent areas a	round Boston, Massachussets fro								

All values computed from 506 observations

Variable Data Type
1. Qualitative

Data Cleaning

- Consistent data is crucial!
- Check for missing values, consistent data types, duplicates, and formatting.
- Use conditional formatting to highlight outliers.

Finding Outliers With Quartiles												
Q1	Q3	IQR	Lower Bound U									
0.082045	3.677083	3.595038	0									
0	12.5	12.5	0									
5.19	18.1	12.91	0									
0	0	0	0									
0.449	0.624	0.175	0.1865									
5.8855	6.6235	0.738	4.7785									
45.025	94.075	49.05	0									
2.100175	5.188425	3.08825	0									
4	24	20	0									
279	666	387	0									
17.4	20.2	2.8	13.2									
6.95	16.955	10.005	0									
17.025	25	7.975	5.0625									

Notes

- 1.CHAS should be excluded because it's a binary and not continuous.

 2.Some variables had lower bounds less than 0, but because these are all non negative variables, the MAX function was used to prevent non existent negative values.
 - 3. There are no duplicates in the dataset
- Outliers were confirmed using the IQR method and visually confirmed with conditional formatting. No outliers were deleted due to them being eal data points showing real life variance, and are not considered errors.
- 5. Outliers for each variable were counted using the COUNTIFS function. he only variables that yielded outliers were MEDV, LSTAT, PTARATIO, RM, ZN, and CRIM. This may hint that some of these variables may have a significant influence on the Boston housing market.

Number of ZN outliers	68
Number of INDUS outliers	0
CHAS is exculuded	excluded
Number of NOX outliers	0
Number of RM outliers	30
Number of AGE outliers	0
Number of DIS outliers	5
Number of RAD outliers	0
Number of Tax outliers	0

Univariate Analysis

Histograms show skew, boxplots show outliers.

Bivariate Analysis and Conditional Formatting

 Conditional formatting can show the relationship between variables

PTRATIO	LSTAT	MEDV
20.2	30.59	5
20.2	22.98	5
20.2	26.77	5.6
20.2	29.97	6.3
20.2	36.98	7
20.1	23.97	7
20.2	30.81	7.2
20.2	20.32	7.2
20.2	29.05	7.2
20.2	31.99	7.4
20.2	25.79	7.5
20.1	29.68	8.1
20.2	19.77	8.3
14.4	2.97	50
14.7	2.88	50
17.4	4.63	50
13	5.12	50
13	7.44	50
13.6	3.16	50
20.2	3.26	50
20.2	3.73	50
20.2	2.96	50
20.2	9.53	50
20.2	8.88	50

RM Correlation

0.69536

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	LSTAT	MEDV	
CRIM	1													
ZN	-0.20047	1												
INDUS	0.40658	-0.53383	1											
CHAS	-0.05589	-0.0427	0.06294	1										
NOX	0.42097	-0.5166	0.76365	0.0912	1									
RM	-0.21925	0.31199	-0.39168	0.09125	-0.30219	1								
AGE	0.35273	-0.56954	0.64478	0.08652	0.73147	-0.24026	1							
DIS	-0.37967	0.66441	-0.70803	-0.09918	-0.76923	0.20525	-0.74788	1						
RAD	0.62551	-0.31195	0.59513	-0.00737	0.61144	-0.20985	0.45602	-0.49459	1					
TAX	0.58276	-0.31456	0.72076	-0.03559	0.66802	-0.29205	0.50646	-0.53443	0.91023	1				
PTRATIO	0.28995	-0.39168	0.38325	-0.12152	0.18893	-0.3555	0.26152	-0.23247	0.46474	0.46085	1			
LSTAT	0.45562	-0.41299	0.6038	-0.05393	0.59088	-0.61381	0.60234	-0.497	0.48868	0.54399	0.37404	1		
MEDV	-0.3883	0.36045	-0.48373	0.17526	-0.42732	0.69536	-0.37695	0.24993	-0.38163	-0.46854	-0.50779	-0.73766	1	

Correlation Matrix Helps With Insights

The correlation matrix shows the r value between any two values at a glance. From here we can see RM has the strongest positive correlation with MEDV, while LSTAT has the strongest negative correlation

At this point, one can conclude hypothesize that the Boston housing market is postvely influence by RM, and negatively influenced by PTRATIO and LSTAT

Simple Linear Regression

- What is regression in the first place?
- Regression is a method to understand the relationship between a dependent and independent vairiable
- We can learn how "strong" the relationship is, and the direction it points to.
- Y = b0 + b1x + e
- The difference between r and r^2

					/			
SUMMARY OUTPU	Т							
Regression St	tatistics							
Multiple R	0.695359947							
R Square	0.483525456							
Adjusted R Square	0.482500705							
Standard Error	6.61615975							
Observations	506							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	20654.41622	20654.41622	471.84674	2.48723E-74			
Residual	504	22061.8792	43.77356983					
Total	505	42716.29542						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-34.6706208	2.649802993	-13.0842258	6.9502E-34	-39.87664103	-29.4646005	-39.876641	-29.4646005
RM	9.102108981	0.41902656	21.72203351	2.4872E-74	8.27885504	9.925362923	8.27885504	9.925362923
1344114								

Multiple Linear Regression

- Simple regression includes one independent variable, while multiple includes more than one.
- Y = b0 + b1x + b2x + b3x... + e
- We focus on adjusted r square value here because it takes into account the number of predictors and sample size
- F statistic, coefficients, and significance
- With a model like this we can move on to solving for our hypothesis

SUMMARY OUTPUT								
SUMMART OUTPUT								
Regression Statistics								
Multiple R	0.825628454							
R Square	0.681662343							
Adjusted R Square	0.678478967							
Standard Error	5.21501781							
Observations	506							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	5	29118.09004	5823.618007	214.131859	8.91E-122			
Residual	500	13598.20538	27.19641076					
Total	505	42716.29542						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	17.46891477	4.116286743	4.243852739	2.6193E-05	9.381564549	25.55626499	9.381564549	25.55626499
CRIM	-0.06198012	0.031548912	-1.96457241	0.05001713	-0.123964894	4.65102E-06	-0.12396489	4.65102E-06
NOX	-1.31901846	2.552647452	-0.51672567	0.60557615	-6.334255545	3.696218629	-6.33425555	3.696218629
RM	4.63324063	0.428409886	10.81497133	1.2227E-24	3.79153523	5.474946031	3.79153523	5.474946031
PTRATIO	-0.89353765	0.11914528	-7.49956397	2.9426E-13	-1.127624743	-0.65945055	-1.12762474	-0.65945055
LSTAT	-0.52224493	0.051294261	-10.1813521	2.9865E-22	-0.623023779	-0.42146608	-0.62302378	-0.42146608

Hypothesis

• A null hypothesis is saying an independent variable has no statistically significant relationship with the dependent variable.

 For my hypothesis I chose RM and CRIM.

• An alternative hypothesis says there is a statistically significant relationship

• - Next step is to check the p-values for those predictors in the model. Any value > or = 0.05 is not statistically significant.

Statistical Decisions

• P-value (RM) = 1.22E-24

This model rejected the null hypothesis, indicating that there's a statistically significant relationship between RM and MedV.

• P-value (CRIM) = 0.05

This model failed to reject the null hypothesis, showing there is no statistically significant relationship between CRIM and MedV

- These results suggest that home values in the Boston area are strongly driven by a homes RM, PTRATIO, and LSTAT. While the crime rate appears related, it may not be that strong of a factor once other elements are considered.

SUMMARY OUTPUT								
Regression St	atistics							
Multiple R	0.825628454	8						
R Square	0.681662343							
Adjusted R Square	0.678478967							
Standard Error	5.21501781							
Observations	506							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	5	29118.09004	5823.618007	214.131859	8.9144E-122			
Residual	500	13598.20538	27.19641076					
Total	505	42716.29542						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	17.46891477	4.116286743	4.243852739	2.6193E-05	9.381564549	25.55626499	9.381564549	25.55626499
CRIM	-0.06198012	0.031548912	-1.96457241	0.05001713	-0.123964894	4.65102E-06	-0.12396489	4.65102E-06
NOX	-1.31901846	2.552647452	-0.51672567	0.60557615	-6.334255545	3.696218629	-6.33425555	3.696218629
RM	4.63324063	0.428409886	10.81497133	1.2227E-24	3.79153523	5.474946031	3.79153523	5.474946031
PTRATIO	-0.89353765	0.11914528	-7.49956397	2.9426E-13	-1.127624743	-0.65945055	-1.12762474	-0.659450554
LSTAT	-0.52224493	0.051294261	-10.1813521	2.9865E-22	-0.623023779	-0.42146608	-0.62302378	-0.421466076

Summary of Findings

- From Data Preparation
 -There were 231 outliers out of 6,578 data points (3.51%)
 -No missing values
- From Data Visualization
 - MedV, CRIM, and LSTAT all had a right skewed distribution, while RM maintained a normal distribution. Most neighborhoods are normal, a few have very high house prices, crime, and lower income populations.
- From Regression Analysis

 - -Simple linear regression between RM and showed positive relationship -Multiple regression model displayed PTRATIO, LSTAT, and RM were the only statistically significant predictors in this model.
 - This would lead one to believe that factors like the average income, or the attention the average student receives are stronger influences on homes in Boston rather than crime, or environmental variables.

Actionable Recommendations

- For City Planners and Policy Makers
 - -Investing in smaller class sizes, tutoring, and free programs that gurantee employment could improve housing prices over time.
- For Real Estate Investors
 - -Agents should focus on advertising multi room housing for higher income clients. Investors should also be mindul of demographics, such as low-income population of the town, and pupil to teacher ratio of the schools in the area.
- For Homebuyers
 - -Homebuyers looking to invest should consider towns where the schools in the area put an emphasis on attention to the student, and towns where lower-income residents are evidently escaping poverty overtime
- For Social Programs and Equity Planning
 - -City programs that support low-income residents, such as workforce development, can help balance these imbalances and be a great benefit to the housing market.

Data is the new oil. It's valuable, but if unrefined, it cannot really be used.

Clive Humby

Whether it's housing markets, customer behavior, or discovering alien signals, data analysis can make a world of impact, and I hope this project gave you a glimpse as to how

Thank you!