Appendix: noise

Riccardo Miccini¹ Eren Can ¹

¹Technical University of Denmark Digital Communication

November 29, 2016

Characterization of noise in systems

- Noise can be modeled and characterized on a subsystem-basis
- Each subsystem can be analyzed separately and optimized for low noise performances

Noise Figure of a System

- Noise figure F_l : ratio between SNR at subsystem input and output: $\left(\frac{S}{N}\right)_l = \frac{1}{F_l} \left(\frac{S}{N}\right)_{l-1}$
- Ideally, $F_l=1$ (no additional noise introduced), tipically between 2 and 8 dB
- Without having to calculate the signal power:

$$F_l = 1 + \frac{P_{int,l}}{G_a k T_0 B}$$

 $P_{int,l}$ Available, internally-generated noise power

 G_a Available power gain

k Boltzmann's constant

 T_0 Standardized temperature, 290K

B Frequency band

■ For high gains, F_l approaches 1

Noise Temperature

- Power produced by a noisy resistor: $P_{a,R} = kTB$
 - k Boltzmann's constant, $1.38 \times 10^{-23} J/K$
 - T Temperature of the resistor, in Kelvin
 - B Frequency band, in Hertz
 Noise power independent on the resistor value
- \blacksquare Equivalent noise temperature: $T_n = \frac{P_{n,max}}{kB}$

Free Space Propagation Example

- As a final work for the noise calculation, we will investigate the "free-space electromagnetic-wave propagation channel.
- To understand it fully on a practical example, we will investigate the communication tie between a synchronous-orbit relay satellite and a low-orbit satellite.