Topology - Homework 06

Question 1.

Denote $\{(x,\sin x(\frac{1}{x})):x\in R_+\}$ by S.

Suppose $f:[a,c]\to X$ is a path that connects (0,0) and arbitrary point in S.

All ts that satisfy $f(t) \in 0 \times R$ construct a closed set that has a largest element b.

Then $f:[b,c]\to X$ is a path that maps b into $0\times R$ and maps other points distinct with b in [b,c] into S.

Replace [b, c] by [0, 1], and denote that f(t) = (x(t), y(t)).

Then we have x(0) = 0 and $y(t) = \sin(\frac{1}{x(t)})$ when x > 0.

Consider a sequence $t_n \to 0$, such that as for given n, choose u with $0 < u < x(\frac{1}{n})$ to make $\sin(\frac{1}{u}) = (-1)^n$, and according to the intermediate value theorem, there is some t_n satisfying $0 < t_n < \frac{1}{n}$ s.t. $x(t_n) = u$.

Then we have $y(t_n) = (-1)^n$, which contradicts with f's continuity for $y(t_n)$'s non-convergence.

This tells us that there doesn't exit such a continuous f being a path between (0,0) and a point in S.

Hence X is not path-connected.

Question 2.

(i)

If there exists a ono-to-one map $f:(0,1)\to(0,1]$ with its inverse map and itself both continuous.

There must be some x satisfying 0 < x < 1 and f(x) = 1.

If we remove x from (0,1) and remove 1 from (0,1], then $(0,x)\bigcup(x,1)$ and (0,1) are left.

Obviously (0,1) is connected while $(0,x) \bigcup (x,1)$ not.

This contradicts the continuity of f.

With similar derivations we can obtain that none of these three spaces is homeomorphic to the other two.

(ii)

If f(0) = 0 or f(1) = 1, then the conclusion establishes.

Otherwise, there are f(0) - 0 > 0 and f(1) - 1 < 0, according to the intermediate value theorem, there must be some with 0 < x < 1 s.t. f(x) - x = 0, the conclusion also establishes.

As for (0,1), consider $f(x) = x^2 : (0,1) \to (0,1)$, obviously for arbitrary 0 < x < 1 there is f(x) < x.

As for (0,1], consider $f(x) = \frac{1}{2}x : (0,1] \to (0,1]$, obviously for arbitrary $0 < x \le 1$ there is f(x) < x.

Thus the conclusion doesn't establish if [0,1] is replaced by (0,1) or (0,1].

Question 3.

Fix $x \in X$ and consider the set S_x of all points in X which are path connected to x.

Let $y \in S_x$, then we can choose an open subset U containing y. For $u \in U$, u is path connected to y which is path connected to x. So by joining paths, we know that u is path connected to x, that is, $U \subset S_x$. Hence, S_x is open.

Consider the closure of S_x . Let $z \in S_x$, and choose an open path connected subset V containing z. Note that $V \cap S_x \neq \emptyset$, because V is open. Thus, let $p \in V \cap S_x$, then z is path connected to p which is connected to x because $p \in S_x$. Hence p is path connected to x and $p \in S_x$. Then we know $S_x = \overline{S_x}$ and that S_x is closed.

Then $S_x = X$ since S_x is not empty. Then we know that X is path connected.

Question 4.

Consider arbitrary $X \subset R$ and a cover of $X \bigcup (R - A_i)$.

$$\bigcup (R - A_i) = R - \bigcap A_i$$

 $\bigcap A_i$ is finite since A_i is finite.

Thus, there is a finite subgroup of $\{A_i\}$, $\{A_{\alpha_i}\}_{i=1}^n$, s.t. $\bigcap_{i=1}^n A_{\alpha_i} = \bigcap A_i$.

Then we have a finite subcover of X.

Hence every subset $X \subset R$ is compact.

Question 5.

 $(i) \Rightarrow (ii)$:

If (X, \mathcal{T}) is compact and suppose all its compact subsets are closed.

Take any topology \mathcal{T}' strictly containing \mathcal{T} .

Let $U \in \mathcal{T}' - \mathcal{T}$, and then X - U is not closed in (X, \mathcal{T}) , that is, it's not compact under \mathcal{T} .

So there is a cover A of X - U by sets in T that has no finite subcover.

Then $A \cup U$ is a cover of X under T' that has no subcover and we know that (X, T') is not compact.

 $(i) \Leftarrow (ii)$:

If there is a subset $U \subset X$ that is compact but not closed.

Consider $\mathcal{T}' = \mathcal{T} \bigcup (X - U)$, a subbase for a strictly larger topology than \mathcal{T} .

Let \mathcal{A} be a cover of X, if $\mathcal{A} \subset \mathcal{T}$, we have a finite subcover because (X, \mathcal{T}) is compact.

Suppose $(X - U) \in \mathcal{A}$. Since U is compact under \mathcal{T} , we can obtain a finite subcover as well by picking X - U plus a finite cover of U.

This tells us that X is compact under \mathcal{T}' .

Thus, the two statements are equivalent.

Hausdorff space is such an example.