Input: WOECALH

Letter Number	Letter
1	A
2	В
3	C
4	D
5	Е
6	F
7	G
8	H
9	I
10	J
	K
12	L
13	M
14	N
15	0
16	P
17	Q
18	R
19 20	S
20	T
21	U
22	V
23 24 25 26	W
24	X
25	Y
26	Z

I measure the time with System.nanoTime() and increase the number of words by 100 at a time. And I also take average of 15 tries for each increase in words.

The reason why binarySearchST is slower is because it uses two arrays which in turn gives it a time complexity of N² while initiating the arrays.