Intégrales impropres Résumé de cours

I. Définition - Convergence

1. Définition :

a. Soit f continue sur [a,b[. Pour tout $x \in [a,b[$, on étudie $\int_a^x f(t) dt$

Si cette intégrale a une limite quand $x \xrightarrow[x < b]{} b$, on dit que <u>l'intégrale impropre</u> $\int_a^b f(t) dt$ <u>converge</u>,

b. Soit f continue sur]a,b]. Pour tout $x \in]a,b]$, on étudie $\int_x^b f(t) dt$

Si cette intégrale a une limite quand $x \xrightarrow[x>a]{} a$, on dit que <u>l'intégrale impropre</u> $\int_a^b f(t) dt$ <u>converge</u>,

c. Soit f continue sur $[a, +\infty[$. Pour tout $x \in [a, +\infty[$, on étudie $\int_a^x f(t) dt$

Si cette intégrale a une limite quand $x \longrightarrow +\infty$, on dit que <u>l'intégrale impropre</u> $\int_a^{+\infty} f(t) dt$ <u>converge</u>,

et on note
$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \left(\int_{a}^{x} f(t) dt \right)$$

d. Soit f continue sur $]-\infty,b]$. Pour tout $x \in]-\infty,b]$, on étudie $\int_{x}^{b} f(t) dt$

Si cette intégrale a une limite quand $x \longrightarrow -\infty$, on dit que <u>l'intégrale impropre</u> $\int_{-\infty}^{b} f(t)dt$ <u>converge</u>,

et on note $\int_{-\infty}^{b} f(t) dt = \lim_{x \to -\infty} \left(\int_{x}^{b} f(t) dt \right)$

e. Soit f continue sur a,b. On choisit c quelconque dans a,b.

Si <u>les intégrales</u> $\int_a^c f(t)dt$ <u>et</u> $\int_c^b f(t)dt$ <u>convergent toutes les deux</u>, on dit que <u>l'intégrale impropre</u> $\int_a^b f(t)dt$ <u>converge</u>, et on note $\int_a^b f(t)dt + \int_c^b f(t)dt$.

Si l'une au moins des deux intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ diverge, on dit que $\int_a^b f(t)dt$ diverge. On démontre que la convergence et la valeur éventuelle sont les mêmes quel que soit le choix de c.

f. Même définition et même propriété pour f continue sur $]a, +\infty[$ ou sur $]-\infty, b[$ ou sur $]-\infty, +\infty[$

Pour la suite du chapitre, les définitions et propriétés seront énoncés dans le cas de fonctions continues sur [a,b[.

On adaptera facilement les énoncés aux autres cas.

2. Fonctions de \mathbb{R} dans \mathbb{C}

Soit f continue de [a,b[(ou]a,b[) ou]a,b[) dans $\mathbb C$ (a et b sont des réels ou $-\infty$ ou $+\infty$) L'intégrale $\int_a^b f(t) dt$ converge ssi $\int_a^b \operatorname{Re}(f(t)) dt$ et $\int_a^b \operatorname{Im}(f(t)) dt$ convergent toutes les deux Dans ce cas, on note $\int_a^b f(t) dt = \int_a^b \operatorname{Re}(f(t)) dt + i \int_a^b \operatorname{Im}(f(t)) dt$

3. Relation de Chasles

Soit f continue sur [a,b[et $c \in [a,b[$ Alors $\int_a^b f(t) dt$ converge si et seulement si $\int_c^b f(t) dt$ converge et dans ce cas $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$

4. Combinaisons linéaires

Soient f et g continues sur [a,b[et λ un scalaire

Si
$$\int_{a}^{b} f(t) dt$$
 et $\int_{a}^{b} g(t) dt$ convergent, alors $\int_{a}^{b} (\lambda f(t) + g(t)) dt$ converge et dans ce cas, $\int_{a}^{b} (\lambda f(t) + g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt$

Si
$$\int_a^b f(t) dt$$
 converge et $\int_a^b g(t) dt$ diverge, alors $\int_a^b (f(t) + g(t)) dt$ diverge

5. Positivité

Soient f et g continues sur [a,b[

a. Si f est positive sur
$$[a,b[$$
 et si $\int_a^b f(t) dt$ converge, alors $\int_a^b f(t) dt \ge 0$

b. Si
$$f \leq g$$
 sur $[a,b[$, si $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ convergent, alors $\int_a^b f(t)dt \leq \int_a^b g(t)dt$

c. Si
$$\int_a^b |f(t)| dt$$
 converge, (on verra + loin qu'alors $\int_a^b f(t) dt$ converge) alors $\left| \int_a^b f(t) dt \right| \le \int_a^b |f(t)| dt$

II. Intégrale des fonctions positives

1. Majoration des intégrales partielles

Soit f positive et continue sur [a,b[.

On dit que les intégrales partielles sont majorées s'il existe un réel M tel que $\forall x \in [a,b[/\int_a^x f(t) dt \leq M]$

Alors $\int_a^b f(t) dt$ converge si et seulement si les intégrales partielles sont majorées

2. Majoration de la fonction

Soient f et g positives et continues sur [a,b[.telles que $f \le g$ sur [a,b[.

a/ Si
$$\int_a^b g(t) dt$$
 converge, alors $\int_a^b f(t) dt$ converge

b/ Si
$$\int_a^b f(t) dt$$
 diverge, alors $\int_a^b g(t) dt$ diverge

3. Équivalence

Soient f et g positives continues sur [a,b[.

On dit que f et g sont équivalentes en b si $\frac{f(t)}{g(t)} \xrightarrow{t \to b} 1$. On note $f(t) \sim g(t)$

Propriété : Si $f(t) \sim g(t)$, alors $\left(\int_a^b f(t) dt \text{ converge } \Leftrightarrow \int_a^b g(t) dt \text{ converge} \right)$

4. Intégrales de référence

a. Exponentielle

Soit α un réel $\int_0^\infty e^{-\alpha t} dt$ converge vers $\frac{1}{\alpha}$ si $\alpha > 0$ et diverge si $\alpha \le 0$

b. Intégrale de Riemann sur]0,1] : soit α un réel strictement positif

$$\int_{0}^{1} \frac{dt}{t^{\alpha}}$$
 converge si $\alpha < 1$ et diverge si $\alpha \ge 1$

c. Intégrale de Riemann sur $[1,+\infty[$: soit α un réel strictement positif

$$\int_{1}^{\infty} \frac{dt}{t^{\alpha}} \text{ converge si. } \alpha > 1 \text{ et diverge si } \alpha \leq 1$$

III. Intégrale des fonctions quelconques

1. Convergence absolue

Soit f continue de [a,b[dans \mathbb{C}

<u>Définition</u>: $\int_a^b f(t)dt$ converge absolument si et seulement si $\int_a^b |f(t)|dt$ converge.

<u>Théorème</u>: Si $\int_a^b f(t) dt$ converge absolument, alors $\int_a^b f(t) dt$ converge.

La réciproque est fausse . exemple $\int_0^\infty \frac{\sin t}{t} dt$ converge mais ne converge pas absolument (voir + loin)

Corollaire : Si la fonction f est continue et bornée sur a,b

et si l'intervalle
$$]a,b[$$
 est $\underline{born\acute{e}}($ i.e. $a \neq -\infty$ et $b \neq +\infty)$

alors
$$\int_a^b f(t) dt$$
 converge.

2. Primitives

Soit f continue sur [a,b[.

Si F est une primitive de f sur [a,b[, l'intégrale $\int_a^b f(t)dt$ converge ssi F(t) a une limite quand $t \to b$ on note alors : $\int_a^b f(t)dt = [F(t)]_a^b$, ce qui doit être lu comme « $\lim_{t \to b} F(t) - F(a)$ ».

3. Changement de variable :

Soit f continue sur [a,b[.

Soit φ bijection de classe C^1 , de $[\alpha,\beta[$ dans [a,b[(si elle est croissante) ou de $]\alpha,\beta]$ dans[a,b[

alors $\int_a^b f(u) du$ converge ssi $\int_a^\beta (f \circ \varphi)(t) \varphi'(t) dt$ converge.

et dans ce cas
$$\int_a^b f(u) du = \int_{\alpha}^{\beta} (f \circ \varphi)(t) \varphi'(t) dt$$

On note $\int_a^b f(u) du = \int_\alpha^\beta (f \circ \varphi)(t) \varphi'(t) dt$ pour dire que l'intégrale de gauche converge ssi l'intégrale de droite converge et qu'alors ces deux intégrales sont égales.

4. Intégration par parties :

Soient u et v continues sur [a,b[.

Comme au 2. on note $\left[u(t)v(t)\right]_a^b$ pour dire « $\lim_{t\to b}u(t)v(t)-u(a)v(a)$ » si cette limite existe

On a alors $\int_a^b u(t)v'(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u'(t)v(t)dt$ pour dire que l'intégrale de gauche converge si le crochet de droite et l'intégrale de droite convergent tous les deux et que dans ce cas on a égalité.

Si l'un des deux termes de droite converge et que l'autre diverge, alors l'intégrale de gauche diverge.

5. Exemples et compléments :

Pour a < b et $\alpha > 0$

$$\int_{a}^{b} \frac{dt}{(t-a)^{\alpha}}$$
 converge si. $\alpha < 1$ et diverge si $\alpha \ge 1$

$$\int_{a}^{b} \frac{dt}{(b-t)^{\alpha}} \text{ converge si. } \alpha < 1 \text{ et diverge si } \alpha \ge 1$$

donc $\int_0^\infty \frac{\sin t}{t} dt$ converge mais ne converge pas absolument. On peut démontrer que $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$

Intégrale de Gauss
$$\int_{0}^{\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
, $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$

Loi normale

Si la variable aléatoire X suit la loi normale réduite et centrée $\mathcal{N}(0,1)$, alors

$$P(X \leqslant a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{t^2}{2}} dt$$

Si la variable aléatoire X suit la loi normale $\mathcal{N} \big(\mu, \sigma \big)$ de moyenne μ et d'écart-type σ , alors

$$P(X \leqslant a) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}} dt$$

$$P(\mu - \sigma \leqslant X \leqslant \mu + \sigma) \approx 0.68$$

