2014年全国统一高考化学试卷(新课标II)

- 一、选择题:本题共7小题,每小题6分,在每小题给出的四个选项中,只有 一项是符合题目要求的.
- 1. (6分)下列过程没有发生化学反应的是()
 - A. 用活性炭去除冰箱中的异味
 - B. 用热碱水清除炊具上残留的油污
 - C. 用浸泡过高锰酸钾溶液的硅藻土保鲜水果
 - D. 用含硅胶、铁粉的透气小袋与食品一起密封包装
- 2. (6分) 四联苯 的一氯代物有(
 - A. 3种
- B. 4种
- C. 5种
- D. 6种
- 3. (6分)下列反应中,反应后固体物质增重的是()
 - A. 氢气通过灼热的 CuO 粉末
- B. 二氧化碳通过 Na₂O₂ 粉末
- C. 铝与 Fe₂O₃ 发生铝热反应
- D. 将锌粒投入 Cu (NO₃)₂溶液
- 4. (6分)下列图示实验正确的是(

A. 除去粗盐溶液中不溶物

B. 碳酸氢钠受热分解

C. 除去 CO 气体中的 CO_2 气体 D. 乙酸乙酯的制备演示实验

- 5. (6分)一定温度下,下列溶液的离子浓度关系式正确的是(
 - A. pH=5 的 H_2S 溶液中, $c(H^+)=c(HS^{\square})=1\times 10^{\square 5} mol \cdot L^{\square 1}$
 - B. pH=a 的氨水溶液,稀释 10 倍后,其 pH=b,则 a=b+1
 - C. pH=2 的 $H_2C_2O_4$ 溶液与 pH=12 的 NaOH 溶液任意比例混合: c (Na⁺) +c

 $(H^+) = c (OH^{\square}) + c (HC_2O_4^{\square})$

D. pH 相同的①CH₃COONa②NaHCO₃③NaClO 三种溶液的 c(Na⁺): ①>②>③

6. (6分) 2013 年 3 月我国科学家报道了如图所示的水溶液锂离子电池体系, 下列叙述错误的是()

- A. a 为电池的正极
- B. 电池充电反应为 LiMn₂O₄—Li_{1□x}Mn₂O₄+xLi
- C. 放电时, a 极锂的化合价发生变化
- D. 放电时,溶液中 Li⁺从 b 向 a 迁移
- 7. (6分)室温下将 1mol 的 CuSO₄•5H₂O(s)溶于水会使溶液温度降低,热效应为△H1,将 1mol 的 CuSO₄(s)溶于水会使溶液温度升高,热效应为△H₂; CuSO₄•5H₂O 受热分解的化学方程式为: CuSO₄•5H₂O(s) CuSO₄(s) +5H₂O(1),热效应为△H₃.则下列判断正确的是(
 - A. $\triangle H_2 > \triangle H_3$

B. $\triangle H_1 > \triangle H_3$

C. $\triangle H_1 = \triangle H_2 + \triangle H_3$

- D. $\triangle H_1 + \triangle H_2 > \triangle H_3$
- 二、非选择题:包括必考题和选考题两部分,第 22 题~第 32 题为必考题,每个试题考生都必须作答,第 33 题~第 40 题为选考题,考生根据要求作答
- 8. (13 分)在容积为 1.00L 的容器中,通入一定量的 N_2O_4 ,发生反应 N_2O_4 (g) $\rightleftharpoons 2NO_2$ (g),随温度的升高,混合气体的颜色变深。

回答下列问题:

(1) 反应的△H_____0(填"大于"或"小于");100℃时,体系中各物质浓度 随时间变化如图所示。在 0~60s 时段,反应速率 v(N_2O_4)为_____

 $mol \bullet L^{\square 1} \bullet s^{\square 1}$; 反应的平衡常数 K_1 为_____。

- (2) 100℃时达平衡后,改变反应温度为 T, c(N₂O₄)以 0.0020mol•L□1•s□1的 平均速率降低,经 10s 又达到平衡。
- ①T 100°C (填"大于"或"小于"),判断理由是。。
- ②列式计算温度 T 时反应的平衡常数 K₂。
 - (3)温度 T 时反应达平衡后,将反应容器的容积减少一半,平衡向_____ (填"正反应"或"逆反应")方向移动,判断理由是。

- 9. (15分)铅及其化合物可用于蓄电池、耐酸设备及 X 射线防护材料等,回答下列问题:

 - (2) PbO₂ 与浓盐酸共热生成黄绿色气体,反应的化学方程式为④_____.
 - (3) PbO₂可由 PbO 与次氯酸钠溶液反应制得,反应的离子方程式为⑤_____; PbO₂也可以通过石墨为电极,Pb(NO₃)₂与 Cu(NO₃)₂的混合溶液为电解液电解制取,阳极发生的电极反应式为⑥_____, 阴极上观察到得现象是⑦_____; 若电解液中不加入 Cu(NO₃)₂,阴极发生的电极反应式为⑧_____, 这样做的主要缺点是⑨_____.
 - (4) PbO₂ 在加热过程发生分解的失重曲线如图所示,已知失重曲线上的 a 点为样品失重 4.0%(即样品起始质量-a点固体质量×100%)的残留固体. 若样品起始质量

a 点固体组成表示为 PbO_x或 mPbO₂•nPbO, 列式计算 x 值和 m: n 值 (10) .

- 10. (15 分)某小组以CoCl₂•6H₂O、NH₄Cl、H₂O₂、浓氨水为原料,在活性炭催化下,合成了橙黄色晶体 X,为确定其组成,进行如下实验:
- ①氨的测定:精确称取 w g X,加适量水溶解,注入如图所示的三颈瓶中,然后逐滴加入足量 10% NaOH 溶液,通入水蒸气,将样品液中的氨全部蒸出,用 V_1 mL c_1 mol•L¹ 的盐酸标准溶液吸收.蒸氨结束后取下接收瓶,用 c_2 mol•L¹ NaOH 标准溶液滴定过剩的 HCl,到终点时消耗 V_2 mL NaOH 溶液.

氨的测定装置(已省略加热和夹持装置)。

- ②氯的测定:准确称取样品 X,配成溶液后用 $AgNO_3$ 标准溶液滴定, K_2CrO_4 溶液为指示剂,至出现砖红色沉淀不再消失为终点(Ag_2CrO_4 为砖红色) 回答下列问题:
 - (1) 装置中安全管的作用原理是_____.
 - (2) 用 NaOH 标准溶液确定过剩的 HCl 时,应使用_____式滴定管,可使用的指示剂为_____.

- (3) 样品中氨的质量分数表达式为 .
- (4) 测定氨前应该对装置进行气密性检验,若气密性不好测定结果将 (填"偏高"或"偏低").
- (5) 测定氯的过程中,使用棕色滴定管的原因是, ,滴定终点时,若溶 液中 c(Ag^+)= $2.0 \times 10^{\square 5} mol \cdot L^{\square 1}$,c($CrO_4^{2\square}$)为_____mol \cdot L^{\square 1}. (已 知: K_{sp} (Ag₂CrO₄) =1.12×10^{□12})
- (6) 经测定,样品 X 中钴、氨和氯的物质的量之比为 1:6:3,钴的化合价 为_____, 制备 X 的化学方程式为_____, X 的制备过程中温度不能过高 的原因是____.

化学-选修 2: 化学与技术

11. (15 分)将海水淡化与浓海水资源化结合起来是综合利用海水的重要途径 之一. 一般是先将海水淡化获得淡水. 再从剩余的浓海水中通过一系列工艺 流程提取其他产品.

回答下列问题:

- (1) 下列改进和优化海水综合利用工艺的设想和做法可行的是 . (填 序号)
- ①用混凝法获取淡水 ②提高部分产品的质量
- ③优化提取产品的品种
- ④改进钾、溴、镁等的提取工艺
- (2) 采用"空气吹出法"从浓海水吹出 Br₂,并用纯碱吸收.碱吸收溴的主要反 应是 Br₂+Na₂CO₃+H₂O→NaBr+NaBrO₃+NaHCO₃, 吸收 1mol Br₂时,转移的 电子数为_____mol.
- (3) 海水提镁的一段工艺流程如图:

浓海水的主要成分如下:

离子 Na ⁺	Mg ²⁺	Cl®	SO ₄ ^{2?}
--------------------	------------------	-----	-------------------------------

浓度/ (g•L [™] 1	63.7	28.8	144.6	46.4
该工艺过程中	,脱硫阶段主要反	应的离子方程式	式为, ;	立品 2 的化学式
为,	1L浓海水最多可	得到产品2的质	量为g.	
(4) 采用石墨	墨阳极、不锈钢阴	极电解熔融的氯	化镁,发生反应	应的化学方程式
为;	电解时, 若有少	量水存在会造成	产品镁的消耗,	写出有关反应
的化学方程	式			
化学-选修3:	物质结构与性质			
12. (15分)	周期表前四周期的	元素 a、b、c、d	d、e,原子序数	依次增大. a 的
核外电子总	数与其周期数相同	司,b的价电子原	层中的未成对电	子有3个,c的
最外层电子	数为其内层电子数	数的 3 倍, d 与 d	。同族; e 的最多	外层只有一个电
子,但次外	层有 18 个电子. [回答下列问题:		
(1) b, c, d	中第一电离能最大	的是(填元素符号),	e 的价层电子轨
道示意图为	··			
(2) a 和其他	元素形成的二元共	价化合物中,分)子呈三角锥形,	该分子的中心
原子的杂化	方式为;	分子中既含有极	性共价键、又行	含有非极性共价
键的化合物	是(填化	学式,写出两种)		
(3) 这些元素	素形成的含氧酸中	, 分子的中心	原子的价层电子	子对数为3的酸
是;	酸根呈三角锥结棉	勾的酸是	(填化学式)	
(4) e和 c刑	衫成的一种离子 4	化合物的晶体组	吉构如图 1,则	e离子的电荷
为				
(5) 这5种元	是素形成的一种 1:	1型离子化合物]中,阴离子呈[四面体结构;阳
离子呈轴向	可狭长的八面体组	吉构(如图 2 所	示). 该化合	物中,阴离子
为,	阳离子中存在的	化学键类型有	; 该化合气	物加热时首先失
去的组分是	,判断理[由是		

化学-选修 5: 有机化学基础

13. 立方烷 () 具有高度对称性、高致密性、高张力能及高稳定性等特点,因此合成立方烷及其衍生物成为化学界关注的热点. 下面是立方烷衍生物 I 的一种合成路线:

回答下列问题:

- (1) C 的结构简式为_____, E 的结构简式为_____
- (2) ③的反应类型为______,⑤的反应类型为_____.
- (3) 化合物 A 可由环戊烷经三步反应合成:

反应 I 的试剂与条件为______,反应 2 的化学方程式为______,反应 3 可用的试剂为______.

- (4) 在 I 的合成路线中, 互为同分异构体的化合物是_____. (填化合物代号)
- (5) I 与碱石灰共热可化为立方烷. 立方烷的核磁共振氢谱中有_____个峰.

(6) 立方烷经硝化可得到六硝基立方烷,	其可能的结构有	_种.