STOCHASTIC PROCESSES

University of Tehran

INSTRUCTOR: DR. ALI OLFAT FALL 2020

Homework 7

Problem 1. Let $X(t) = \sum_{k=-\infty}^{+\infty} A_k P(t-kT)$ where $A_k \in \{+1,-1\}$ is a sequence of i.i.d. random variables with $\Pr\{A_k = 1\} = \Pr\{A_k = -1\} = 0.5$ and P(t) is a given (Energy Signal) pulse.

- (a) Find the power spectral density (PSD) of X(t).
- (b) For the special case where $P(t) = \prod \left(\frac{t-0.5T}{T}\right)$, plot the PSD of X(t).

Problem 2. Let x(t) be a zero-mean stationary Gaussian random process with PSD $S_x(f) = \Lambda(f)$. Let $x'(t) = \frac{d}{dt}x(t)$.

- (a) Find the pdf of vector $\underline{X} = [x(t), x'(t), x(t-1)]^T$.
- (b) Find the PSD of x'(t) and cross power spectrum of x(t) and x'(t).
- (c) Can τ be found such that $x'(t + \tau)$ and x'(t) be independent random variables for all t?

Problem 3. Let $X(t) = A\cos(2\pi Yt + \Theta)$, where A > 0 is a known constant, Y is a random variable with pdf $f_Y(y)$, and Θ is a uniform random variable on $[0, 2\pi]$. Y and Θ are independent. Find the power spectrum of X(t).

Problem 4. Let X(t) be a zero-mean stationary random process with $R_X(\tau) = e^{-|\tau|}$. Define

$$Y(t) = \int_{0}^{2} X(t-s)ds.$$

Find the power spectrum of Y(t).

Problem 5. Let X(t) be a stationary random process with

$$S_x(f) = \frac{4(\pi^2 f^2 + 1)}{(4\pi^2 f^2 + 1)(4\pi^2 f^2 + 9)}$$

- a- Find the innovation process of X(t).
- b- Find a causal filter with impulse response h(t), so that when X(t) is passed through it the output Y(t) has the autocorrelation function $R_y(\tau) = e^{-|\tau|}$.

Problem 6. Let $X_1(t)$ and $X_2(t)$ be two random processes with cross-correlation function $R_{X_1X_2}(t_1,t_2)$. Let $Y_1(t)$ and $Y_2(t)$ denote the outputs of two deterministic systems with known impulse responses $h_1(t)$ and $h_2(t)$ to the inputs $X_1(t)$ and $X_2(t)$ respectively, as depicted in the figure.

- (a) Find $R_{X_1Y_2}(t_1, t_2)$, the cross-correlation function, and $S_{X_1Y_2}(f)$, the cross-spectral density of $X_1(t)$ and $Y_2(t)$. Simplify your answer.
- (b) Find $R_{Y_1Y_2}(t_1, t_2)$ and $S_{Y_1Y_2}(f)$. Simplify your answer.
- (c) Show that if $X_1(t)$ and $X_2(t)$ are jointly stationary then $Y_1(t)$ and $Y_2(t)$ are also jointly stationary.
- (d) Assume that $\forall f,\ S_{Y_1Y_2}(f)=0$, where $h_1(t)$ and $h_2(t)$ are unknown. What can be inferred about $h_1(t)$ and $h_2(t)$? Articulate

Problem 7. Let C be a random variable uniformly distributed on the interval [-2,3]. Let the random process $X(t) = e^{-C} \cos(2\pi Ct)$ undergo an ideal low-pass filter with the cutoff frequency $f_0 = 1$. Denote the output process as Y(t).

- (a) Find the power spectral density of X(t).
- (b) Find the power of Y(t).