MAT2 - Mathématiques

Leonard Cseres - Mars 2024

Angles

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0	∞	0
x	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞			
$\arctan(x)$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$			

Calcul différentiel

Valeur moyenne $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$, $a, b \in \mathbb{R}$

Primitives

$$\int f(x)^a \cdot f'(x)dx = \frac{1}{a+1}f(x)^{a+1} + C, \quad C \in \mathbb{R}$$
$$\int \frac{f'(x)}{1 + (f(x))^2} dx = \arctan(f(x)) + C, \quad C \in \mathbb{R}$$

Aucune racine réelle

$$\int \frac{\alpha(2ax+b)}{ax^2+bx+c} dx = \alpha \ln \left| ax^2 + bx + c \right| + C, \quad C \in \mathbb{R}$$

$$\int \frac{\beta}{ax^2+bx+c} dx = \frac{2\beta}{\sqrt{4ac-b^2}} \arctan \left(\frac{2ax+b}{\sqrt{4ac-b^2}} \right) + C, C \in \mathbb{R}$$

Intégrales impropres Si la limite existe, l'intégrale est convergente, sinon elle est divergente.

Type I Soit f continue sur l'intervalle et possède une asymptote horizontale en $+\infty$ ou $-\infty$, alors

$$\begin{split} &\int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx, \quad a \in \mathbb{R} \\ &\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx, \quad b \in \mathbb{R} \\ &\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx, \quad a \in \mathbb{R} \end{split}$$

Type II Soit f continue sur l'intervalle et possède une asymptote verticale en $c \in]a,b[$, alors

$$\int_a^b f(x)dx = \lim_{t \to b_-} \int_a^t f(x)dx, \quad a \in \mathbb{R}$$

$$\int_a^b f(x)dx = \lim_{t \to a_+} \int_t^b f(x)dx, \quad b \in \mathbb{R}$$

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx, \quad c \in]a,b[$$

Géométrie

Espace \mathbb{R}^3

Équation de la droite

• Cartésienne
$$\begin{cases} A_1x_1 + A_2x_2 + A_3x_3 + A_4 = 0 \\ B_1x_1 + B_2x_2 + B_3x_3 + B_4 = 0 \end{cases}$$

• Paramétrique $\vec{x} = \vec{a} + \lambda \vec{u}, \quad \lambda \in \mathbb{R}$

Équation de π

- Cartésienne $A_1x_1 + A_2x_2 + A_3x_3 + A_4 = 0$
- Paramétrique $\vec{x} = \vec{a} + \lambda \vec{u} + \mu \vec{v}, \quad \lambda, \mu \in \mathbb{R}$

Tétraèdre

Combinatoire

Nom	Formule	Répétition	Ordre
Permutation	$P_n = n!$	Non	Oui
Arrangement	$A_k^n = \frac{n!}{(n-k)!}$	Non	Oui
Arrangement avec rép.	$\overline{A}_k^n = n^k$	Oui	Oui
Combinaison	$C_k^n = \binom{n}{k}$	Non	Non
Combinaison avec rép.	$\overline{C}_k^n = \binom{n+k-1}{k}$	Oui	Non

Partitions Le nombre de façons de diviser n éléments en k groupes de tailles n_1, n_2, \ldots, n_k est donné par $\overline{P}(n_1, n_2, \ldots, n_k) = \frac{n!}{n_1! n_2! \ldots n_k!}$

Moindres carrés

$$\mathbf{A}\vec{x} = \vec{b}, \quad \mathbf{A}^T \mathbf{A}\vec{x} = \mathbf{A}^T \vec{b}, \quad \vec{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{b}$$

Le système $\mathbf{A}\vec{x} = \vec{b}$ est inconsistant si et seulement si la matrice augmentée $[\mathbf{A}|\vec{b}]$ possède un 1 directeur en dernière colonne.

Dérivées et primitives

Dérivées usuelles

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

$$\arccos'(x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\arctan'(x) = \frac{1}{1 + x^2}$$

Primitives usuelles

$$\begin{split} &\int \frac{1}{x} dx = \ln|x| + C, \quad C \in \mathbb{R} \\ &\int \tan(x) = -\ln|\cos(x)| + C, \quad C \in \mathbb{R} \\ &\int \frac{1}{1+x^2} dx = \arctan(x) + C, \quad C \in \mathbb{R} \end{split}$$