| SCK                          |                    |                      |  |
|------------------------------|--------------------|----------------------|--|
| Nazwa projektu: Exe_unit_w12 |                    |                      |  |
| Wykonał                      | Przemysław Ziencik | Grupa dziekańska: E3 |  |
| Data:                        | 15.12.2023         |                      |  |
| Nr. indeksu                  | 325104             |                      |  |

• Schemat blokowy układu



Rysunek nr 1 – Schemat blokowy układu

# • Pliki potrzebne do działania ALU

| Nazwa pliku:           | Opis pliku                           | Moduły           |
|------------------------|--------------------------------------|------------------|
| exe_unit_w12.sv        | Plik w którym znajduje się ALU       | exe_unit_w12     |
| exe_unit_w12_tb.sv     | Plik weryfikacji                     | exe_unit_w12_tb  |
| run.ys                 | Plik służący do syntezy logicznej    |                  |
| exe_unit_w12_rtl.sv    | wynik syntezy logicznej exe_unit_w12 | exe_unit_w12_rtl |
| makefile               | Skrypt symulacji                     |                  |
| exe_unit_w12.vcd       | Wynikowy plik symulacji              |                  |
| exe_unit_w12.iveri.log | Wynik syntezy iverilog               |                  |
| synth.log              | Wynik syntezy logicznej              |                  |
| exe_unit_w12.iveri.run | plik skompilowany                    |                  |

Tabela nr 1 – Pliki

# • Wejścia i wyjścia

| Nazwa  | Liczba bitów | Funkcja            |
|--------|--------------|--------------------|
| i_argA | 4            | Argument A         |
| i_argB | 4            | Argument B         |
| i_oper | 2            | Wybór operacji     |
| i_rsn  | 1            | Zbocze narastające |
| i_clk  | 1            | Cykl zegara        |

Tabela nr 2 – wejścia

| Nazwa    | Liczba bitów | Funkcja           |
|----------|--------------|-------------------|
| o_result | 4            | wynik             |
| o_status | 4            | Wyjście stanów    |
| s_result | 4            | Wyjście – wynik-  |
|          |              | wewnętrzne        |
| s_status | 4            | Wyjście – stanów- |
|          |              | wewnętrzne        |

Tabela nr 3 – wyjścia

# • Parametry zawarte w programie

| Nazwa | Liczba bitów |
|-------|--------------|
| M     | 4            |
| N     | 2            |

Tabela nr 4 – parametry

# • Zmienne zawarte w programie

| Nazwa | Liczba bitów | Funkcja |
|-------|--------------|---------|
| k     | -            | integer |
| p     | -            | integer |
| b     | 4            | zmienna |
| P     | 4            | zmienna |

Tabela nr 5 – zmienne

# • Funkcje i operacje zawarte w programie

| Funkcja:          | i_oper (s_oper w |
|-------------------|------------------|
|                   | tb)              |
| dodawanie         | 00               |
| porównanie        | 01               |
| U2 na ZM          | 10               |
| Zamiana bitu na 1 | 11               |

Tabela nr 6 –funkcje i operacje

• Flagi zawarte w programie

| Flaga: | Bit błędu | Przykład dla wartości 1     |          | Przykład dla wartości 0 |
|--------|-----------|-----------------------------|----------|-------------------------|
| ERROR  | 0         | 111111111(Zmiana bitu na 1) |          | 1111 (Zmiana bitu na 1) |
| ZERO   | 1         | 0000                        |          | 1111                    |
| NEG    | 2         | 1001(ZM)                    | 1000(ZM) | 0010(ZM)                |
| EVEN   | 3         | 1010                        | 1111     | 0010                    |

Tabela nr 7 – Flagi

Powyższe flagi są odpowiednimi bitami wyjścia o\_status.

Bit 0:ERROR – operacja nie została wykonana wartość o result jest nie określona.

**Bit 1: ZERO** – wszystkie bity wyniku są ustawione na 0.

Bit 2: NEG – wynik jest liczbą ujemną.

Bit 3: EVEN – w wyniku jest parzysta liczba jedynek.

• Przykładowe przebiegi

## Przykładowe Przebiegi



Zdjęcie nr 1 – Operacja dodawanie

#### Dla zdjęcia powyżej:

 $i_oper = 00 (binary)$ 

 $i_argA = 2$  (decimal)

 $i_argB = 3 (decimal)$ 

o\_result = 5 (decimal)

o\_status = 1000 (binary), bit 3 = 1: w wyniku jest parzysta liczba jedynek



Zdjęcie nr 2 – Operacja dodawanie

```
i\_oper = 00 (binary)
```

 $i_argA = 4$  (decimal)

 $i_argB = 5 (decimal)$ 

o\_result = 9 (decimal)

o\_status = 1000 (binary), bit 3 = 1: w wyniku jest parzysta liczba jedynek



Zdjęcie nr 3 – Operacja dodawanie

#### Dla zdjęcia powyżej:

```
i_oper = 00 (binary)
```

 $i_argA = 8 (decimal)$ 

 $i_argB = 8$  (decimal)

o\_result = 0 (decimal), dla 4 bitów maksymalną liczbą jest 15, naszym wynikiem jest 16 więc wyjście przyjmuje wartość 0.

o status = 0010 (binary), bit 1 jest równy 1 ponieważ wszystkie bity w wyniku są 0, 4'b0000.



Zdjęcie nr 4 – Operacja porównanie

```
i_oper = 01 (binary)
```

 $i_argA = 5 (decimal)$ 

 $i_argB = 3$  (decimal)

o result = 5 (decimal), liczbą większą jest 5 (i argA)

o\_status = 1000 (binary), bit 3 = 1: w wyniku jest parzysta liczba jedynek



Zdjęcie nr 5 – Operacja porównanie

## Dla zdjęcia powyżej:

```
i_oper = 01 (binary)
```

 $i_argA = 5 (decimal)$ 

 $i_argB = 5 (decimal)$ 

o result = 5 (decimal), liczbą dla i argA i i argB są równie sobie.

o\_status = 1000 (binary), bit 3 = 1: w wyniku jest parzysta liczba jedynek.



Zdjęcie nr 6 – Operacja porównanie

```
i_oper = 01 (binary)
```

 $i_argA = 2 (decimal)$ 

 $i_argB = 3$  (decimal)

o result = 0 (decimal), wynikiem jest 0 ponieważ warunek nie został spełniony.

o\_status = 0010 (binary), bit 1 = 1: wszystkie bity na wyjściu są 0, 4'b0000.



Zdjęcie nr 7 – U2 na ZM

#### Dla zdjęcia powyżej:

```
i_oper = 10 (binary)
```

 $i\_argA = 1001$  (binary)

o\_result = 1111 (decimal)

o\_status = 1100 (binary), bit 3 = 1 i bit 2 = 1: w wyniku jest parzysta liczba jedynek, wynik jest liczba ujemną



Zdjęcie nr 8 – U2 na ZM

```
i\_oper = 10 (binary)
```

 $i_argA = 1111$  (binary)

o\_result = 1001 (decimal)

o\_status = 1100 (binary), bit 3 = 1 i bit 2 = 1: w wyniku jest parzysta liczba jedynek, wynik jest liczbą ujemną



Zdjęcie nr 9 – U2 na ZM

#### Dla zdjęcia powyżej:

i\_oper = 10 (binary)

 $i_argA = 1100$  (binary)

o\_result = 1100 (decimal)

o\_status = 1100 (binary), bit 3 = 1 i bit 2 = 1: w wyniku jest parzysta liczba jedynek, wynik jest liczbą ujemną

| Signals             | Waves |           |        |
|---------------------|-------|-----------|--------|
| Time                | 9 ps  | 18 ns 180 | 001 ps |
| i_clk=0             |       |           |        |
| i_rsn=1             |       |           |        |
| s_a[3:0] =0000      | 1100  | 0000      |        |
| s_b[3:0] =2         | 3     | 2         |        |
| s_out[3:0] =0100    | 1100  | 0100      |        |
| s_oper[1:0] =11     | 10    | 11        |        |
| s_status[3:0] =0000 | 1100  | 0000      |        |
| _                   |       |           |        |

Zdjęcie nr 10 – Zamiana bitu na 1

```
i_oper = 11 (binary)
```

 $i_argA = 0000 \text{ (binary)}$ 

 $i_argB = 2 (decimal)$ 

 $o_result = 0100 (decimal)$ 

o\_status = 0000 (binary)



Zdjęcie nr 11 – Zamiana bitu na 1

#### Dla zdjęcia powyżej:

```
i_oper = 11 (binary)
```

 $i_argA = 0010$  (binary)

 $i_argB = 1$  (decimal)

 $o_result = 0010 (decimal)$ 

 $o_status = 0000 (binary)$ 



Zdjęcie nr 12 – Zamiana bitu na 1

```
i_oper = 11 (binary)
i_argA = 0000 (binary)
i_argB = 13 (decimal)
o_result = 0000 (decimal)
o status = 0011 (binary), bit 0 = 1 i bit 1 = 1, mamy error i wynikiem są 4 zera
```



Zdjęcie nr 13 – Koniec działania programu

Raporty syntezy

```
3.23.1.2. Re-integrating ABC results.
ABC RESULTS: AND cells:
                   ANDNOT cells:
ABC RESULTS:
                                       22
ABC RESULTS:
                                       15
                     A0I3 cells:
ABC RESULTS:
                      A0I4 cells:
                                       1
ABC RESULTS:
                      MUX cells:
ABC RESULTS:
                     NAND cells:
ABC RESULTS:
                      NOR cells:
                                        9
ABC RESULTS:
                       NOT cells:
ABC RESULTS:
                      OAI3 cells:
ABC RESULTS:
                      OAI4 cells:
ABC RESULTS:
                       OR cells:
                                       13
ABC RESULTS:
                    ORNOT cells:
                                       4
ABC RESULTS:
                      XNOR cells:
                                       12
ABC RESULTS:
                       XOR cells:
                                       4
ABC RESULTS:
ABC RESULTS:
                                      170
                 internal signals:
                  input signals:
ABC RESULTS:
                   output signals:
                                        8
Removing temp directory.
```

Zdjęcie nr 14 – Raport syntezy logicznej (plik synth.log)

#### === exe\_unit\_w12\_rtl ===

| Number of wires:            | 114 |
|-----------------------------|-----|
| Number of wire bits:        | 158 |
|                             |     |
| Number of public wires:     | 8   |
| Number of public wire bits: | 52  |
| Number of memories:         | 0   |
| Number of memory bits:      | 0   |
| Number of processes:        | 0   |
| Number of cells:            | 114 |
| \$_ANDNOT_                  | 22  |
| \$_AND_                     | 8   |
| \$_A0I3_                    | 15  |
| \$_A0I4_                    | 1   |
| \$_MUX_                     | 9   |
| \$_NAND_                    | 3   |
| \$_NOR_                     | 9   |
| \$_NOT_                     | 6   |
| \$_0AI3_                    | 7   |
| \$_0AI4_                    | 3   |
| \$_ORNOT_                   | 4   |
| \$_0R_                      | 13  |
| \$_XNOR_                    | 10  |
| \$_XOR_                     | 4   |
|                             |     |

#### Zdjęcie nr 15 – Raport syntezy logicznej (plik synth.log)

```
4.1.2. Re-integrating ABC results.
ABC RESULTS:
                            AND cells:
                                              60
ABC RESULTS:
                            NOT cells:
                                              26
ABC RESULTS:
                             OR cells:
                                              53
ABC RESULTS:
                           XOR cells:
                                              10
ABC RESULTS:
                     internal signals:
                                             106
ABC RESULTS:
                        input signals:
                                              11
ABC RESULTS:
                       output signals:
                                               8
Removing temp directory.
```

#### Zdjęcie nr 16 - Raport syntezy logicznej (plik synth.log)

```
exe_unit_w12.sv:21: sorry: constant selects in always_* processes are not currently supported (all bits will be included). exe_unit_w12.sv:21: sorry: constant selects in always_* processes are not currently supported (all bits will be included).
```

## Zdjęcie nr 17 – Raport z syntezy iverilog (plik