

Análise e Aplicação do Filtro de Kuan em Imagens com Ruído Speckle

Projeto de Processamento de Imagens Médicas - PTC-5892

Igor Topcin topcin@ime.usp.br

Escola Politécnica e Instituto de Matemática e Estatística Universidade de São Paulo

Setembro de 2013

Objetivos

- 1 Apresentar o filtro de Kuan
- 2 Implementar o filtro
- 3 Propor metodologia de medição de eficácia
- 4 Apresentar resultados dos experimentos

- 1 Introdução
- 2 Filtro de Kuan
 - Forma Geral
 - Para Ruídos Multiplicativos
- 3 Implementação e Testes
 - Implementação
 - Medição da Eficácia
 - Imagens de Teste
- 4 Resultados

- 1 Introdução
- 2 Filtro de Kuan
- 3 Implementação e Testes
- 4 Resultados

Introdução

O filtro de Kuan [1] está entre as diversas técnicas propostas na literatura para redução de ruído em imagens.

- 1 Introdução
- 2 Filtro de Kuan
 - Forma Geral
 - Para Ruídos Multiplicativos
- 3 Implementação e Testes
- 4 Resultados

- Modelo estatístico: média e variância são não estacionárias.
- Modelo de ruído: multiplicativo.

$$g = f + n \longrightarrow g = f + f(n-1) \tag{1}$$

■ Estimação linear do EQM mínimo:

$$\hat{f}(i,j) = \bar{f}(i,j) + \frac{v_f(i,j)}{v_f(i,j) + \sigma_p^2(i,j)} (g(i,j) - \bar{g}(i,j))$$
(2)

• localmente: $\bar{f} = \bar{g}$

$$\bar{g}(i,j) = \frac{1}{(2r+1)(2s+1)} \sum_{p=i-r}^{i+r} \sum_{q=i-s}^{j+s} g(p,q)$$
 (3)

$$v_g(i,j) = \frac{1}{(2r+1)(2s+1)} \sum_{p=i-r}^{i+r} \sum_{q=i-s}^{j+s} (g(p,q) - \bar{g}(i,j))^2$$
 (4)

$$v_f(i,j) = v_g(i,j) - \sigma_n^2(i,j)$$
 (5)

■ Equação geral é 2, porém para ruídos multiplicativos:

$$\hat{f}(i,j) = \bar{f}(i,j) + \frac{v_f(i,j)(g(i,j) - \bar{f}(i,j))}{v_f(i,j) + \frac{\sigma_u^2}{E(u)}[(\bar{f}(i,j))^2 + v_f(i,j)]}$$
(6)

u: média e variância estacionárias.

$$v_f(i,j) = \frac{\sigma_g^2(i,j) - \frac{\sigma_u^2}{E(u)^2} E(g(i,j))^2}{1 + \frac{\sigma_u^2}{E(u)^2}}$$
(7)

Reescrevendo 6:

$$\hat{f}(i,j) = \bar{f}(i,j) + w(i,j)(g(i,j) - \bar{f}(i,j))$$

$$\Rightarrow \hat{f}(i,j) = w(i,j)g(i,j) + \overline{f}(1 - w(i,j))$$
 (8)

 \blacksquare com w(i,j):

$$w(i,j) = \frac{v_f(i,j)}{v_f(i,j) + C_u[(\bar{f}(i,j))^2 + v_f(i,j)]}$$
(9)

■ *C_u*: coeficiente de variação do ruído:

$$C_u = \frac{\sigma_u^2}{E(u)} \tag{10}$$

Reescrevendo 7

$$v_f(i,j) = \frac{\sigma_g^2(i,j) - C_u E(g(i,j))^2}{1 + C_u}$$

$$= \frac{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2}{1 + C_u}$$
(11)

■ Substituindo 11 em 9 e assumindo $\bar{f} = \bar{g}$:

$$w(i,j) = \frac{1 - C_u(\frac{\bar{g}(i,j)}{\sigma_g})^2}{1 + C_u}$$
 (12)

■ Reescrevendo 12 com $C_i(i,j) = \frac{\sigma_x(i,j)}{\bar{g}(i,j)}$:

$$w(i,j) = \frac{1 - \frac{C_u}{C_i}}{1 + C_u} \tag{13}$$

- 1 Introdução
- 2 Filtro de Kuan
- 3 Implementação e Testes
 - Implementação
 - Medição da Eficácia
 - Imagens de Teste
- 4 Resultados

Implementação

- Python, IPython [4], SciPy [5] e NumPy [6]
- Filtro de Kuan: equações 8 e 14
- Código fonte: http://github.com/igortopcin/ptc5892.

Medição da Eficácia

- Filtro de média nas regiões homogêneas: preservação da média e a redução do desvio padrão.
- Filtro identidade nas bordas: Pratt's Figure of Merit (FOM) [2].

$$FOM = \frac{1}{\max\{\hat{N}, N_{ideal}\}} \sum_{i=1}^{N} \frac{1}{1 + d_i^2 \alpha}$$
 (14)

Detector de bordas Canny [7] ($\sigma = 0, 1$).

Na prática, o valor do *FOM* pode variar de 0 a 1, sendo 1 o valor para o *padrão ouro*.

Imagens de Teste

Figura: Imagem de teste 1, com figuras geométricas e ruído do tipo speckle

Figura: Imagem de teste 2, com cistos e ruído do tipo Gaussiano de 10dB

Figura: Imagem de teste 3, com cistos e ruído do tipo speckle

- 1 Introdução
- 2 Filtro de Kuan
- 3 Implementação e Testes
- 4 Resultados

Figura: Teste 1; (a) e (b) são resultados do detector de bordas Canny aplicado à imagem filtrada e padrão ouro, respectivamente. (c) é a transformada da distância de (b), usada no cálculo do *FOM*

Figura: Testes 2 e 3; (a) e (b) são resultados do detector de bordas Canny aplicado às imagens filtradas 2c e 3c, respectivamente. (c) é Canny aplicado ao padrão ouro de ambos os testes. (d) é a transformada da distância de (c), usada no cálculo do *FOM*

Imagem		Cu	Área I		
			Média	Desvio Padrão	C_i
1b	com ruído	0,090	77,10	10,23	0,133
1c	filtrada	0,090	72,07	6,63	0,092
2b	com ruído	0,045	96,99	3,80	0,039
_2c	filtrada	0,045	97,70	0,92	0,009
3b	com ruído	0.200	87,92	20,17	0,229
_3c	filtrada	0,200	95,32	12,84	0,135

Tabela: Média e desvio padrão antes e após o filtro de Kuan

Imagem		C_u	Área II		
			Média	Desvio Padrão	C_i
1b	com ruído	0,090	110,78	10,21	0,092
1c	filtrada	0,090	107,87	4,40	0,041
2b	com ruído	0,045	19,79	3,87	0,195
2c	filtrada	0,045	19,73	3,79	0,192
3b	com ruído	0,200	138,11	16,24	0,118
3c	filtrada	0,200	149,30	10,61	0,071

Tabela: Média e desvio padrão antes e após o filtro de Kuan

Imagem	FOM com ruído	FOM filtrada	
Teste 1	0.1766	0.3481	
Teste 2	0.0430	0.4453	
Teste 3	0.0462	0.0735	

Tabela: Valores do FOM antes e após a filtragem

- D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, *Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, (1985)
- W. K. Pratt, Digital Image Processing, Nova Iorque, Wiley, (1977)
- Y. Yu and S. T. Acton, *Speckle Reducing Anisotropic Diffusion*, IEEE Transactions on Image Processing, Vol. 11, No. 11, (2002)
- F. Pérez, B. E. Granger, *IPython: A System for Interactive Scientific Computing*, Computing in Science and Engineering, Vol. 9, No. 3, (2007)

- E. Jones, T. Oliphant, P. Peterson *et al.*, *SciPy: Open Source Scientific Tools for Python*, (2001)
- T. Oliphant *et al.*, *Python for Scientific Computing*, Computing in Science and Engineering, Vol. 9, No. 3, (2007)
- J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, (1986)

Análise e Aplicação do Filtro de Kuan em Imagens com Ruído Speckle

Projeto de Processamento de Imagens Médicas - PTC-5892

Igor Topcin topcin@ime.usp.br

Escola Politécnica e Instituto de Matemática e Estatística Universidade de São Paulo

Setembro de 2013