Technical Typesetting Assignment

Prakhar Mittal

15 July 2020

Contents

1	Listings and Environments	2
2	Formal Logic: Figures and Tables	•
3	Maths, Theorems and References	4

1 Listings and Environments

Listing 1: [LaTeX]TeX An Example

```
begin{lstlisting}
% A regular \lstlisting environment won't work. You'll
have to use \lstnewenvironment to define a custom
environment.
% \end{lstlisting}
```

Listing 2: Python Regular Stuff

```
from scipy import *

#The custom environment you define should be numbered as
    well. We did this in our tutorial. Think about what
    arguments you can pass to it.

print("Hello!")
```

Listing 3: C++ Generic Title

```
#include <iostream>
using namespace std;

//From the three examples, you must have observed what
you can hardcode.

int main(int argc, char* argv[])

cour<<"Hello!"<<endl;
}</pre>
```

The 2em vertical space aafter the listing is part of the custom environment.

2 Formal Logic: Figures and Tables

Figure 1: Aristotle: the first formal logician

Figure 2: Saul Kripke: we've come a long way since then.

Aristotle image source Saul Kripke image source

Make sure you follow these links, so you know where the hyperlinks lead to when you typeset it yourself.

Assertion	Negation	
p(x)	$\neg p(x)$	
Т	$ \begin{array}{ c c }\hline p(x) \lor \neg p(x)\\ \top \end{array}$	
$p(x) \wedge q(x)$		
$\exists x.p(x)$	$\forall x. \neg p(x)$	
$p(x) \Rightarrow q(x)$		
This statement is false		

Table 1: Some First Order Logic, and an absurdity.

This table uses multirow as well as multicolumn. Replicate it as well as you can.

3 Maths, Theorems and References

Theorem 1 (Divergence Theorem).

$$\iiint_V (\mathbf{\nabla \cdot F}) dV = \oiint_S (\mathbf{F \cdot \hat{n}}) dS$$

Remark. You have efinitely studied and applied the theorem extensively in MA 105. It also showls up as Gauss's Law in electrodynamics.

Proposition 3.1 (Georg Cantor). Let \mathbb{N} be the set of natural numbers. Denoe its cardinality $|\mathbb{N}|$ by \aleph_0 . Let \mathbb{R} be the set of real numbers. Its cardinality \mathfrak{c} is sometimes called the cardinality of the continuum. $\mathfrak{c}=2^{\aleph_0}$

Hint. You will find the \mathfrak command useful to typeset the above.

Lemma 1 (Jordan Normal Form). For every matrix M in $\mathbb{C}^{\kappa \times \kappa}$ having eigenvalues $\gamma_1, \ldots, \gamma_k$, with algebraic multiplicities m_1, \ldots, m_k respectively, there is an invertible matrix P and a matrix D of the form $D = Diag(J_1, \ldots, J_k)$ with each block J_i being a $m_i \times m_i$ matrix of the form

$$J_i = \begin{bmatrix} \gamma_i & 1 & 0 & \dots & 0 \\ 0 & \gamma_i & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \gamma_i \end{bmatrix}$$

and $M = P^{-1}DP$. Moreover, if M is an algebraic matrix, so are D and P, and their entries can be computed from the entries of M.

You have certainly studied that if M is defect free, that is, algebraic and multiplicities of its eigenvalues coincide, then it is similar to a diagonal matrix. If not, the Jordan Normal form is the next best thing. We cite [1] for this lemma.

Hint. Look at the bibliography entry for this citation. It is a book. Specify the author, publisher, title, year and edition. Our bibliography style is plainurl

Consider the last statement of Lemma 1. (Yes, a cross reference.) Algebraic numbers are roots of polynomials with integer coefficients. They can be found efficiently.[2]

Hint. This citation is and article. Specify the author, year, title, journal, volume and number.

References

[1] K.Hoffmann and R.Kunze. *Linear Algebra*. Prentice-Hall, 2 edition, 1971.

[2] V.Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Computers & Mathematics with Applications, 31(12), 1996.