Probabilidades

stecine.azureedge.net/repositorio/probabilidades/index.html

OBJETIVOS

Bem-vindo ao estudo das probabilidades

No vídeo a seguir, o professor vai apresentar alguns detalhes sobre o que será abordado no tema. Assista:

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

Embasada nos axiomas básicos de probabilidade.

Experimentos aleatórios

São experimentos que, mesmo repetidos sob as mesmas condições, podem apresentar diferentes resultados.

Exemplos

Espaço amostral (S)

É o conjunto dos possíveis resultados de um experimento aleatório.

Considerando os exemplos listados anteriormente, temos:

Lançamento de uma moeda

a) S=

{(c, c), (c, k), (k, c), (k, k)}, em que c representa cara, e k representa coroa.S=c,c,

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Lançamento de dois dados

```
b) S=[|\{|(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)]|\}|S=1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,3,2,4,2,5,2,6, (3,1),3,2,3,3,3,4,3,5,3,6,4,1,4,2,4,3,4,4,5,4,6,5,1, (5,2),5,3,5,4,5,5,5,6,6,1,6,2,6,3,6,4,6,5,(6,6)
```

Medição do comprime	nto de uma	peca em u	m lote de	produção
---------------------	------------	-----------	-----------	----------

c)
$$S=\{R+\}$$
 $S=\{R+\}$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Medição da temperatura em determinado lugar e horário

d)
$$S=\{R\}S=F$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Evento

É um subconjunto do espaço amostral.

Seja SS o espaço amostral de um experimento. Todo subconjunto A⊂SA⊂S chamado
evento. Nesse caso, SS é denotado como o evento certo, e 🕫 como o evento impossível.

Exemplos			

Fonte:Shutterstock

- I. Considere o experimento de dois lançamentos de uma moeda:
- a) Seja o evento A_1 : "o primeiro resultado é cara".

A1:{(c, c), (c, k)}A1:c,c,c,k

Fonte:Shutterstock

- II. Considere o experimento do lançamento de dois dados:
- a) A2: $\{(x, y) | k = \sqrt{y}\} \Rightarrow A2 = \{(1, 1), (2, 4)\}a)A2:x,y | x = y \Rightarrow A2 = 1,1,2,4$
- b) A₃ "a soma dos resultados é 7".

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Operações com eventos

Consideremos o espaço amostral SS finito. Sejam A e B dois eventos de SS. Assim, usando operações com esses eventos, podemos formar novos eventos, tais como:

- 1 AUBAUE
- 2 AORAOF
- ACAC ou -AA-, representa o complemento do evento AA.

AUA=A e ANA=AAUA=A e ANA=A

Atenção! Para visualização completa da equação utilize a rolagem horizontal

ANB=BNA e AUB=BUAANB=BNAeAUB=BUA

Atenção! Para visualização completa da equação utilize a rolagem horizontal

 $A\cap(B\cap C)=(A\cap B)\cap C$ e $A\cup(B\cup C)=$ (AUB)UCANBNC=ANBNCeAUBUC=AUBUC

Atenção! Para visualização completa da equação utilize a rolagem horizontal

AN(BUC)=(ANB)U(ANC) e AU(BNC)= (AUB)N(AUC)ANBUC=ANBUANCeAUBNC=AUBNAUC

A to mo ~ o			
Atenção			

Partição de um espaço amostral

Dizemos que os eventos A1, A2, ..., AnA1,A2,...,An formam uma partição do espaço amostral, se:

```
I. Ai ≠ ∅ , i = 1, 2, ..., nAi≠∅,i=1,2,...,n
II. Ai ∩ Aj =∅, ∀i≠jAi∩Aj=∅,∀i≠j
III. ∪ni=1 Ai=S∪i=1nAi=S
```

A figura, a seguir, mostra a representação de uma partição do espaço amostral:

Fonte: O autor

Probabilidade frequentista

A frequência relativa de um evento qualquer A é definida por:
Baseado nessa ideia, define-se probabilidade de um evento A como:
Na qual S é o espaço amostral.

E	
Exemplos	

P(A3)=n(A3)n(S)=636=16PA3=nA3nS=636=16

Atenção! Para visualização completa da equação utilize a roladem horizonta

Probabilidade clássica

Considere um experimento aleatório E e um espaço amostral S associado a esse experimento. Define-se probabilidade de um evento A (P(A)) como uma função definida em S que associa a cada evento de S um número real, devendo satisfazer os seguintes axiomas de probabilidade:

- a) 0≤P(A)≤10≤PA≤1
- b) P(S)=1PS=1
- c) P(AUB)=P(A)+P(B)PAUB=PA+P(B), se A e B forem mutuamente excludentes

Generalizando o item C, temos:

Prova:

nUi=1Ai=S⇒P(nUi=1Ai)=P(S)=1Ui=1nAi=S⇒PUi=1nAi=PS=1

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Teorema 2

Se øø é o conjunto vazio, então P(ø)=0Pø=0

Prova: Sabemos que

 $\mathsf{S} \cup \emptyset = \mathsf{S} \Rightarrow \mathsf{P}(\mathsf{S} \cup \emptyset) = \mathsf{P}(\mathsf{S}) + \mathsf{P}(\emptyset) = \mathsf{P}(\mathsf{S}) \Rightarrow \mathsf{P}(\emptyset) = \mathsf{0} \\ \mathsf{S} \cup \emptyset = \mathsf{S} \Rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} + \mathsf{P} \\ \emptyset = \mathsf{P} \\ \mathsf{S} \Rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{S} \Rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{S} \rightarrow \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{P} \\ \mathsf{S} \cup \emptyset = \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} \cup \emptyset = \mathsf{P} \\ \mathsf{P} \\ \mathsf{P} \cup$

Teorema 3

Se ACAC é o complemento do evento A, logo P(AC)=1-P(A)PAC=1-PA

Prova: Temos que

 $\mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{P(AC)} + \mathsf{P(A)} = \mathsf{P(S)} = \mathsf{1} \Rightarrow \mathsf{P(AC)} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{PAC} + \mathsf{PA} = \mathsf{PS} = \mathsf{1} \Rightarrow \mathsf{PAC} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{PAC} + \mathsf{PA} = \mathsf{PS} = \mathsf{1} \Rightarrow \mathsf{PAC} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{PAC} + \mathsf{PA} = \mathsf{PS} = \mathsf{1} \Rightarrow \mathsf{PAC} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{PAC} + \mathsf{PA} = \mathsf{PS} = \mathsf{1} \Rightarrow \mathsf{PAC} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{PAC} + \mathsf{PA} = \mathsf{PS} = \mathsf{1} \Rightarrow \mathsf{PAC} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{A=S} \Rightarrow \mathsf{PAC} + \mathsf{PA} = \mathsf{PS} = \mathsf{1} \Rightarrow \mathsf{PAC} = \mathsf{1} - \mathsf{P(A)} \\ \mathsf{AC} \cup \mathsf{AC} \cup \mathsf{AC} = \mathsf{AC} = \mathsf{AC} \\ \mathsf{AC} \cup \mathsf{AC} = \mathsf{AC} \\ \mathsf{AC} \cup$

PA

Teorema 4

Se A⊂BA⊂B, então P(A)≤P(B)PA≤PB

Prova: Note que podemos escrever B como:

 $B=A\cup(Ac\cap B)B=A\cup(Ac\cap B)$

Assim:

 $P(B)=P(A)+P(Ac\cap B)$, pois A e (Ac\cap B) são disjuntos PB=PA+PAc\cap B,poisAe(Ac\cap B) são disjuntos

Como uma probabilidade é sempre maior ou igual a 0 (zero), temos que $P(A) \le P(B)$.

Mão na Massa

- 1. Suponha P(A) = 1/3 e P(B) = 1/2. Se A e B são mutuamente excludentes, determine $P(A \cup B)$:
- 2. Sabemos que genótipos de certa característica humana são formados pelos elementos AA, Aa, aA e aa, sendo "AA" o gene dominante e "aa" o gene recessivo. Qual é a probabilidade de um casal, cujo homem é dominante, e a mulher tem gene Aa, ter um filho com gene dominante?
- 3. Suponha que um casal quer ter 3 filhos: 1 menino e 2 meninas. Qual é a probabilidade de que isso ocorra?

- 4. Um número é escolhido aleatoriamente entre os números 1, 2, 3, ..., 100. Qual é a probabilidade de que esse número seja divisível por 7?
- 5. Considerando o enunciado da questão anterior, qual é a probabilidade de esse número ser primo?
- 6. O estudo antropométrico em uma amostra de 100 funcionários de determinada empresa resultou na seguinte tabela, que relaciona os pesos com as alturas:

Abaixo de 80kg	30	15
Acima de 80kg	10	45

Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal

Considerando que um funcionário foi escolhido aleatoriamente, qual é a probabilidade de que ele tenha peso abaixo de 80kg e altura abaixo de 1,70m?

Gabarito

1. Suponha P(A) = 1/3 e P(B) = 1/2. Se A e B são mutuamente excludentes, determine $P(A \cup B)$:

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

2. Sabemos que genótipos de certa característica humana são formados pelos elementos AA, Aa, aA e aa, sendo "AA" o gene dominante e "aa" o gene recessivo. Qual é a probabilidade de um casal, cujo homem é dominante, e a mulher tem gene Aa, ter um filho com gene dominante?

Observe que o espaço amostral, que é o conjunto de todos os possíveis resultados, é formado pelos seguintes elementos quando fazemos as combinações dos pares AA e Aa: S = {(AA), (AA), (AA), (AA)}

Assim, considere o evento A: "Ter um filho com gene dominante". Dessa maneira, segundo o conceito de probabilidade frequentista:

Atenção! Para visualização completa da equação utilize a roladem horizontal

Logo, a chance de o casal ter um filho com gene dominante é de 50%.

3. Suponha que um casal quer ter 3 filhos: 1 menino e 2 meninas. Qual é a probabilidade de que isso ocorra?

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

4. Um número é escolhido aleatoriamente entre os números 1, 2, 3,, 100. Qual é a probabilidade de que esse número seja divisível por 7?
Já sabemos que nosso espaço amostral é composto por esses 100 números. Portanto, n(S) = 100. Agora, vejamos o evento de interesse.
Seja A: "O número escolhido é divisível por 7", então:

P(A)=n(A)n(S)=14100=750PA=n(A)n(S)=14100=750

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim, para cada 50 números escolhidos, 7 são divisíveis por 7.

5. Considerando o enunciado da questão anterior, qual é a probabilidade de esse número ser primo?

Solução

Seja P: "O número escolhido é primo", logo:

 $n(A) = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 e 97\}$

Então:

P(A)=n(A)n(S)=25100=14P(A)=n(A)n(S)=25100=14

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim, para cada 4 números escolhidos, 1 é número primo.

6. O estudo antropométrico em uma amostra de 100 funcionários de determinada empresa resultou na seguinte tabela, que relaciona os pesos com as alturas:

Abaixo de 80kg 30 15

Acima de 80kg	10	45

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Considerando que um funcionário foi escolhido aleatoriamente, qual é a probabilidade de que ele tenha peso abaixo de 80kg e altura abaixo de 1,70m?

Solução

Seja o evento A: "Ter peso abaixo de 80kg", portanto:

P(A)=n(A)n(S)=30100=310PA=n(A)n(S)=30100=310

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Portanto, a cada 10 funcionários, 3 têm peso abaixo de 80kg.

Gabarito

Teoria na prática

Um professor usa dois dados não viciados para um experimento. Um dos dados tem o formato de um octaedro, com faces numeradas de 2 a 9; o outro, um dado comum, cúbico, possui as faces numeradas de 5 a 10

Modele um espaço amostral para determinar a probabilidade de, em uma jogada simultânea dos dois dados, se obter:

- 1) O mesmo número nos dois dados
- 2) A soma das faces igual a 7.

<u>RESOLUÇÃO</u>

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

Verificando o aprendizado

- 1. Uma fábrica têxtil produz lotes de 100 camisas. Sabemos que, em geral, cada lote apresenta 5 camisas com defeitos no tamanho, e 7 delas têm defeito no fio. Uma camisa é escolhida ao acaso. Qual é a probabilidade de que ela tenha defeitos?
- 2. Vamos retomar o enunciado de um exercício feito ao longo do conteúdo.

O estudo antropométrico em uma amostra de 100 funcionários de determinada empresa resultou na seguinte tabela, que relaciona os pesos com as alturas:

Abaixo de 80kg	30	15
Acima de 80kg	10	45

Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal

Considerando que um funcionário foi escolhido aleatoriamente, qual é a probabilidade de que ele tenha altura acima de 1,70m?

Gabarito

1. Uma fábrica têxtil produz lotes de 100 camisas. Sabemos que, em geral, cada lote apresenta 5 camisas com defeitos no tamanho, e 7 delas têm defeito no fio. Uma camisa é escolhida ao acaso. Qual é a probabilidade de que ela tenha defeitos?

A alternativa "C" está correta.

Sejam os eventos A: "camisas com defeitos no tamanho" e B: "camisas com defeitos no fio". Observe que não temos camisas com os dois tipos de defeito. Assim, podemos afirmar que os eventos são disjuntos:

P(AUB)=P(A)+P(B)=5100+7100=12100=325PAUB=PA+PB=5100+7100=325PAUB=PA+PB=5100+7100=325PAUB=PA+PA+7100=325PAUB=PA+PA+7100=325PAUB=PA+PA+7100=325PAUB=PA

Atenção! Para visualização completa da equação utilize a rolagem horizontal

2. Vamos retomar o enunciado de um exercício feito ao longo do conteúdo.

O estudo antropométrico em uma amostra de 100 funcionários de determinada empresa resultou na seguinte tabela, que relaciona os pesos com as alturas:

Abaixo de 80kg	30	15
Acima de 80kg	10	45

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Considerando que um funcionário foi escolhido aleatoriamente, qual é a probabilidade de que ele tenha altura acima de 1,70m?

A alternativa "D " está correta.

Seja o evento B: "Ter altura acima de 1,70m", então:

P(B)=n(B)n(S)=60100=0,60PB=n(B)nS=60100=0,60

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Avalie este módulo:				
Aplicar cálculos para	a resolução de pr	oblemas simpl	les de probabil	idade

Princípios de contagem	 	
Princípio da adição		

Se um elemento pode ser escolhido de m formas, e outro elemento pode ser escolhido de n formas, então a escolha de um ou outro elemento se realizará de m+n formas, desde que tais opções sejam independentes, isto é, nenhuma das escolhas de um elemento pode coincidir com a do outro.

Exemplo

Em uma sala, há 2 homens e 3 mulheres. De quantas formas é possível selecionar uma pessoa?

Fonte: Shutterstock

2 + 3 = 5 formas

Princípio da multiplicação

Se um elemento H pode ser escolhido de m formas diferentes, e, se depois de cada uma dessas escolhas, outro elemento M pode ser escolhido de n formas diferentes, a escolha do par (H,M), nesta ordem, poderá ser realizada de $m \times n$ formas.

Exemplo

Em uma sala, há 2 homens e 3 mulheres. De quantas formas é possível selecionar um casal?

Veja que temos $2 \times 3 = 6$ formas de selecionar um casal, que equivale aos pares (H1,M1), (H1,M2), (H1,M3), (H2,M1), (H2,M3).

Análise combinatória

Arranjos

São agrupamentos formados com k elementos, de um total de n elementos, de forma que os k elementos sejam distintos entre si, pela ordem ou pela espécie. Os arranjos podem ser **simples** ou **com repetição**.

Arranjos simples

Não ocorre a repetição de qualquer elemento em cada grupo de k elementos. Logo:

A(n,k)=An,k=n!(n-k)!A(n,k)=An,k=n!(n-k)!

Atenção! Para visualização completa da equação utilize a rolagem horizontales.

Exemplo

Se A = $\{A_1, A_2, A_3, A_4\}$. Quantos grupos de 2 elementos podem ser formados, de modo que não possam apresentar a repetição de qualquer elemento, mas possam aparecer na ordem trocada?

Error parsing MathML: error on line 1 at column 59: xmlns:
'http://www.w3.org/1998/Math/MathML fontmedia' is not a valid URIError parsing MathML: error on line 1 at column 59: xmlns:
'http://www.w3.org/1998/Math/MathML fontmedia' is not a valid URI

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Arranjos com repetição

Todos os elementos podem aparecer repetidos em cada grupo de *k* elementos, então:

Ar(n,k) = Arn,k = nkAr(n,k) = An,kr = nk

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Exemplo

Se A = {A1, A2, A3, A4}. Quantos grupos com repetição de 2 elementos podem ser formados, de modo que possam apresentar a repetição de qualquer elemento e aparecer na ordem trocada?

Error parsing MathML: error on line 1 at column 59: xmlns:

'http://www.w3.org/1998/Math/MathML fontmedia' is not a valid URIError parsing MathML: error on line 1 at column 59: xmlns: 'http://www.w3.org/1998/Math/MathML fontmedia' is not a valid URI

Permutações

Quando formamos agrupamentos com n elementos, de forma que sejam distintos entre si pela ordem. As permutações podem ser **simples, com repetição** ou **circulares**.

Permutação simples

É a ordenação de n elementos distintos. Dessa forma, o número de modos de ordenar n elementos distintos é dado por:

$$n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 1 = n! n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 1 = n!$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Ou simplesmente:

P(n)=Pn=n!P(n)=Pn=n!

Atenção! Para visualização completa da equação utilize a rolagem horizontales.

Exemplo

De quantos modos 4 administradores, 3 economistas e 2 engenheiros podem ser dispostos em uma fila, de maneira que os de mesma profissão fiquem juntos?

Fonte: Shutterstock

Como queremos que os indivíduos de mesma profissão fiquem juntos, consideraremos cada profissão como um bloco. Assim, o número de maneiras para que as três profissões fiquem juntas na fila será: 3! = 6 maneiras. Logo, como os profissionais podem ser "permutados entre si", teremos 3!.4!.3!.2! = 1.728 formas.

Permutação com repetição

O número de permutações de n elementos dos quais n_1 são iguais, n_2 são iguais, ..., n_k são iguais é:

n!n1!n2!...nk!n!n1!n2!...nk!

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Exemplo

Combinações

As combinações nodem ser de dois tipos: simples ou com repetição

•				~		
r - 1	\sim	hı	na	C20	cim	ples
U		vi	IIa	cau	21111	nicə

Não	ocorre a	reneticão	de qual	guer elemen	to em cada	aruno de	<i>k</i> elementos:
Nao	oconc a	repetição	uc quan	quei elellel	to cili cada	grupo uc	A CICITICITIOS.

C(n,k)=Cn,k=(nk)=n!k!(n-k)!C(n,k)=Cn,k=nk=n!k!(n-k)!

Atenção! Para visualização completa da equação utilize a roladem horizontal

Exemplo

Seja A = $\{A_1, A_2, A_3, A_4\}$. Quantas combinações de 2 elementos podem ser formadas?

 $(nk)=n!k!(n-k)!=(42)=4!2!(4-2)!=4\times3\times2!2!2!=6nk=n!k!(n-k)!=42=4!2!(4-2)!=4\times3\times2!2!2!=6$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Veja que, o caso da combinação (A_1, A_2) não é distinto de (A_2, A_1) .

Combinação com repetição

Todos os elementos podem aparecer repetidos em cada grupo até *k* vezes:

Cr(n,k)=C(n+k-1,k)=(n+k-1k)=(n+k-1)!k!(n-1)!Cr(n,k)=C(n+k-1,k)=n+k-1k=(n+k-1)!k!(n-1)!

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Exemplo

Seja A = $\{A_1, A_2, A_3, A_4\}$. Quantas combinações com repetição de 2 elementos podem ser formadas?

 $(n+k-1k)=(n+k-1)!k!(n-1)!=(4+2-1)!2!(4-1)!=5!2!3!=5\times4\times3!2!3!=10n+k-1k=(n+k-1)!k!(n-1)!=(4+2-1)!2!(4-1)!=5!2!3!=5\times4\times3!2!3!=10$

Atenção! Para visualização completa da equação utilize a rolagem horizonta

Mão na Massa

- 1. Qual é a probabilidade de formarmos um código que contenha 2 números e 3 letras, de modo que não tenha nem números nem letras repetidas?
- 2. Suponha que, em um congresso, tenhamos 20 engenheiros e 10 matemáticos. Desejamos formar uma comissão com 5 congressistas para compor a organização do próximo congresso. Qual é a probabilidade de que essa comissão seja formada por 3 engenheiros e 2 matemáticos?
- 3. Em uma classe, existem 3 alunos com média geral acima de 9, 7 alunos com média geral entre 7 e 9, e mais 5 alunos com média geral abaixo de 7. Qual é a probabilidade de que, se selecionarmos 5 alunos, 2 tenham

média geral entre 7 e 9, 2 tenham média geral abaixo de 7, e 1 tenha média geral acima de 9?

- 4. Uma urna contém 6 bolas gravadas com as letras D, L, N, N, O, O. Extraindo as bolas uma por uma, sem reposição, a probabilidade de obtermos a palavra LONDON é:
- 5. Um jogo consiste em lançar uma moeda honesta até obter 3 caras consecutivas. Na primeira situação, quando obtemos 3 caras consecutivas, ganhamos o jogo. Qual é a probabilidade de que o jogo termine no terceiro lance?
- 6. Observamos que uma academia recebe, por hora, cerca de 200 clientes. Destes:
- 90 se dirigem ao setor de musculação.
- 80, ao setor de piscinas.
- 75, ao setor de atividades aeróbicas.
- 30, aos setores de musculação e de piscinas.
- 30, aos setores de musculação e de atividades aeróbicas.
- 25, aos setores de piscinas e atividades aeróbicas.

Sabemos, ainda, que 20 clientes se dirigem a outros setores que não musculação, piscinas ou atividades aeróbicas, e que 10 clientes se dirigem aos três setores. Qual é a probabilidade de que um cliente da academia se dirija exclusivamente à musculação?

Gabarito

1. Qual é a probabilidade de formarmos um código que contenha 2 números e 3 letras, de modo que não tenha nem números nem letras repetidas?

Solução

Apesar de a ideia de probabilidade frequentista estar sempre presente nas soluções de problemas que envolvem probabilidade, para encontrarmos o número de eventos no qual estamos interessados, poderemos recorrer a técnicas de contagem, como no caso desta questão.

Assim, definimos o evento A como "Formar um código que contenha 2 números e 3 letras, de modo que não tenha nem números nem letras repetidas".

Dessa forma, considerando que podemos atribuir 10 números e 26 letras para o código, temos:

10×9×26×25×2410×10×26×26×26=135169≅0.798810×9×26×25×2410×10×26×26×

Atenção! Para visualização completa da equação utilize a rolagem horizontal

2. Suponha que, em um congresso, tenhamos 20 engenheiros e 10 matemáticos. Desejamos formar uma comissão com 5 congressistas para compor a organização do próximo congresso. Qual é a probabilidade de que essa comissão seja formada por 3 engenheiros e 2 matemáticos?

Solução

Para resolver este problema, podemos utilizar os conceitos de combinação – tópico inerente à análise combinatória.

Primeiro, vamos fazer o cálculo do total de comissões satisfatórias.

Seja o evento A: "Formar comissão com 3 engenheiros e 2 matemáticos". Veja que, para escolher 3 engenheiros, escolheremos dos 20 existentes. Portanto, combinação de 20 escolhe 3.

O mesmo raciocínio vale para a escolha dos 2 matemáticos: combinação de 10 escolhe 2, portanto:

(203) Engenheiros×(102) Matemáticos=20!
×10!2!8!=1140×45=51300203_Engenheiros×102_Matemáticos=20!3!17!
×10!2!8!=1140×45=51300

Atenção! Para visualização completa da equação utilize a rolagem norizontal

Por isso: n(A) = 51300.

Agora, vamos fazer o cálculo do total de comissões possíveis:

(20+105) Engenheiros+Matemáticos= 305)=30!5!25!=14250620+105 Engenheiros+Matemáticos=305=30!5!25!=14250620

Atenção! Para visualização completa da equação utilize a rolagem horizontais

Logo: n(S) = 142506.

Por fim, vamos fazer o cálculo da probabilidade:

P(A)=51300142506=0,359984842PA=51300142506=0,359984842

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim sendo, a chance de termos uma comissão formada por 3 engenheiros e 2 matemáticos é de, aproximadamente, 36%.

3. Em uma classe, existem 3 alunos com média geral acima de 9, 7 alunos com média geral entre 7 e 9, e mais 5 alunos com média geral abaixo de 7. Qual é a probabilidade de que, se selecionarmos 5 alunos, 2 tenham média geral entre 7 e 9, 2 tenham média geral abaixo de 7, e 1 tenha média geral acima de 9?

Solução

Este problema segue a mesma ideia do exercício anterior. Dessa forma, seja o evento A: "Selecionar 5 alunos, sendo que 2 têm média geral entre 7 e 9, 2 têm média geral abaixo de 7, e 1 tem média geral acima de 9", então:

P(A)=(72)(52)(31) (155)=30143=0.2097≅0.210PA=725231155=30143=0.2097≅0.210 Por isso, a chance de esse evento ocorrer é de, aproximadamente, 21%.

4. Uma urna contém 6 bolas gravadas com as letras D, L, N, N, O, O. Extraindo as bolas uma por uma, sem reposição, a probabilidade de obtermos a palavra LONDON é:

Solução

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

5. Um jogo consiste em lançar uma moeda honesta até obter 3 caras consecutivas. Na primeira situação, quando obtemos 3 caras consecutivas, ganhamos o jogo. Qual é a probabilidade de que o jogo termine no terceiro lance?

Solução

Este é o típico caso em que podemos utilizar o diagrama de árvore para resolver a questão:

Observe que a sequência em vermelho é aquela em que o jogo termina no terceiro lance. Como em cada lançamento as probabilidades são as mesmas, ou seja, 1/2, temos que, para terminar no terceiro lançamento, a probabilidade será (1/2)³, que é igual a 1/8.

- 6. Observamos que uma academia recebe, por hora, cerca de 200 clientes. Destes:
- 90 se dirigem ao setor de musculação.
- 80, ao setor de piscinas.
- 75, ao setor de atividades aeróbicas.
- 30, aos setores de musculação e de piscinas.
- 30, aos setores de musculação e de atividades aeróbicas.
- 25, aos setores de piscinas e atividades aeróbicas.

Sabemos, ainda, que 20 clientes se dirigem a outros setores que não musculação, piscinas ou atividades aeróbicas, e que 10 clientes se dirigem aos três setores. Qual é a probabilidade de que um cliente da academia se dirija exclusivamente à musculação? No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Gabarito		

Teoria na prática

<u>RESOLUÇÃO</u>

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

Verificando o aprendizado

- 1. Dos 10 professores de uma universidade que se candidataram a uma promoção, 7 têm pós-doutorado e os demais não. Selecionando aleatoriamente 3 desses candidatos para determinada avaliação, a probabilidade de que exatamente 2 tenham pós-doutorado é:
- 2. Os estágios foram classificados em 3 grupos, dependendo do tempo de duração. São eles:
- Estágios de curta duração Tempo de duração inferior a 80 horas.
- Estágios de média duração Tempo de duração com mais de 80 horas e menos de 300 horas.
- Estágios de longa duração Demais estágios.

Experiências anteriores estimam que as probabilidades de se conseguir um estágio de curta, média e longa duração são, respectivamente, 0,5, 0,3 e 0,2.

Selecionando k estagiários, a probabilidade de haver x estagiários de curta duração, y estagiários de média duração e z estagiários de longa duração, sendo x+y+z=nx+y+z=n e x>0x>0, y>0y>0 e z>0z>0, é:

Gabarito

1. Dos 10 professores de uma universidade que se candidataram a uma promoção, 7 têm pós-doutorado e os demais não. Selecionando aleatoriamente 3 desses candidatos para determinada avaliação, a probabilidade de que exatamente 2 tenham pós-doutorado é:

A alternativa "B " está correta.

Seja o evento A: "Selecionar 3 candidatos dos quais exatamente dois tenham pósdoutorado", assim:

P(A)=(72)(31)(103)=2140=0.525PA=7231103=2140=0.525

Atenção! Para visualização completa da equação utilize a rolagem horizontal

- 2. Os estágios foram classificados em 3 grupos, dependendo do tempo de duração. São eles:
- Estágios de curta duração Tempo de duração inferior a 80 horas.
- Estágios de média duração Tempo de duração com mais de 80 horas e menos de 300 horas.
- Estágios de longa duração Demais estágios.

Experiências anteriores estimam que as probabilidades de se conseguir um estágio de curta, média e longa duração são, respectivamente, 0,5, 0,3 e 0,2.

Selecionando *k* estagiários, a probabilidade de haver *x* estagiários de curta duração, *y* estagiários de média duração e *z* estagiários de longa duração, sendo x+y+z=nx+y+z=n e x>0x>0, y>0y>0 e z>0z>0, é:
A alternativa "A" está correta.

Para resolver esta questão, lembre-se da permutação com repetição, a fim de determinar o número de maneiras para escolher *n* elementos, dos quais x são iguais, y são iguais e z são iguais, que é dada por:

k!x!y!z!k!x!y!z!

Atenção! Para visualização completa da equação utilize a roladem horizontal

Agora, multiplique por suas respectivas probabilidades elevadas ao número de elementos de cada estágio ou repetição. Assim, essa probabilidade é:

k!x!y!z!(0,5)x(0,3)y(0,2)zk!x!y!z!0,5x0,3y0,2z

Atenção! Para visualização completa da equação utilize a rolagem horizontal

	ódulo:				
oconhocor	as principais	rograe da to	oria dae pro	hahilidados	
econnecer	as principais	regras da te	oria das pro	Dabilluaues	
primeira reg	gra, trata do cá	ilculo da prol	oabilidade da	união de quais	quer eventos.

A segunda regra, chamada de regra da multiplicação por alguns autores, mas também conhecida como independência estatística, trata do cálculo da interseção de eventos quando estes são independentes.

Regra da adição

Esta regra permite calcular a probabilidade de ocorrência de um evento A ou de um evento B, ou, ainda, de ambos.

Na teoria dos conjuntos, a conjunção "ou" está relacionada à união de eventos. Consequentemente, na regra da adição, estamos interessados em determinar P(A∪B)PA∪B

Dois eventos

Considere dois eventos quaisquer, digamos A e B:

 $P(AUB)=P(A)+P(B)-P(A\cap B)PAUB=PA+PB-P(A\cap B)$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Prova

Fonte: O autor

A to	2222
Alei	nção

n eventos
Generalizando o caso para dois eventos, temos que, para n eventos, essa probabilidade e dada por:

Regra da multiplicação (independência estatística)

Diferente da regra da adição, na regra da multiplicação, o interesse é calcular a probabilidade de que os eventos ocorram simultaneamente, isto é, desejamos determinar a ocorrência do evento A e do evento B.

Saiba mais

Desse modo, queremos determinar $P(A \cap B)P(A \cap B)$. Logo, se a ocorrência do evento A não interfere na ocorrência do evento B, temos:

P(AOB)=P(A) P(B)PAOB=PA P(B)

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Como consequência, surge o conceito de **independência estatística**. Assim, dizemos que dois eventos são independentes se a probabilidade da interseção é igual ao produto das probabilidades individuais, conforme a igualdade anterior.

Podemos, ainda, estender esse conceito para *n* eventos, digamos A₁, A₂, ..., A_n, então:

 $P(A1 \cap A2 \cap \cdots \cap An) = P(A1).P(A2).\cdots.P(An)PA1 \cap A2 \cap \cdots$ $\cap An = PA1.PA2.\cdots.P(An)$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

No entanto, para que os n eventos sejam, de fato, independentes, essa igualdade tem de valer para todos os subconjuntos desses n eventos, ou seja, a igualdade tem de ser satisfeita para n - 1 eventos, $P(A1 \cap A2 \cap \cdots \cap An-1)PA1 \cap A2 \cap \cdots \cap An-1$, para n - 2 eventos, $P(A1 \cap A2 \cap \cdots \cap An-2)PA1 \cap A2 \cap \cdots \cap An-2$, inclusive para apenas dois eventos, $P(A1 \cap A2)PA1 \cap A2$.

Exemplo

Considere os eventos A_i: "a bola na i-ésima retirada é azul" e B_i: "a bola na i-ésima retirada é branca".

Observe que, como a retirada é sem reposição, a retirada da primeira bola não afeta a probabilidade da segunda bola. Portanto:

 $P(A1 \cap B2) = P(A1).P(B2) = 58 \times 38 = 1564PA1 \cap B2 = PA1.PB2 = 1564PA1 \cap B2 = PA1.PB2 = 1564PA1 \cap B2 = PA1.PB2 = PA1.PB2$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Atenção

Mão na Massa	1		
e a de um enge	ade de um físico res nheiro resolver a m le a questão ser res	iesma questão	
	informações da ta s de um produto de		 erência

Marca A	7	3
Marca B	8	12

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Houve a seleção de uma pessoa ao acaso. Qual é a probabilidade de essa pessoa ser mulher ou preferir a marca A?

- 3. Considerando os dados da questão anterior, os eventos "preferir a marca A" e "ser mulher" são independentes?
- 4. Considerando novamente os dados da questão 2, qual é a probabilidade de a pessoa selecionada preferir a marca B e ser homem?
- 5. Uma gaveta contém 3 moedas de 1 real e 2 moedas de cinquenta centavos. Retiramos de uma caixa duas moedas de forma sucessiva e com reposição. Qual é a probabilidade de a primeira moeda ser de 1 real, e a segunda ser de cinquenta centavos?
- 6. As probabilidades de dois times cariocas, A e B, jogando contra times paulistas, vencerem suas partidas, é de 1/3 e 2/5, respectivamente. Sabemos, ainda, que a probabilidade de os dois times empatarem seus jogos com times paulistas é igual a 1/3.

Se A e B jogam uma partida no mesmo dia contra adversários paulistas diferentes, qual a probabilidade de que ambos vençam suas respectivas partidas?

Gabarito

1. A probabilidade de um físico resolver uma questão de cálculo é de 3/4, e a de um engenheiro resolver a mesma questão é de 5/7. Qual é a probabilidade de a questão ser resolvida?

Solução

Sejam os eventos A: "O físico resolve a questão" e B: "O engenheiro resolve a questão".

Veja que os eventos A e B são independentes, pois o fato de o físico resolver a questão não interfere no fato de o engenheiro resolver a questão. Logo:

Atenção! Para visualização completa da equação utilize a rolagem horizontal

2. Considere as informações da tabela a seguir, que trata da preferência de duas marcas de um produto de beleza por sexo:

Marca A 7 3

Marca B 8 12

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Houve a seleção de uma pessoa ao acaso. Qual é a probabilidade de essa pessoa ser mulher ou preferir a marca A?

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

3. Considerando os dados da questão anterior, os eventos "preferir a marca A" e "ser mulher" são independentes?

Considere novamente os eventos A: "Preferir a marca A" e M: "Ser mulher". Para que os eventos sejam independentes, devemos saber que:

P(ANB)=P(A).P(B)PANB=PA.PE

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Mas vimos que $P(A \cap B)=330=110PA \cap B=330=110$ e $P(A).P(B)=1030\times1530=16PA.PB=1030\times1530=16$

Logo: $P(A \cap B) \neq P(A).P(B)PA \cap B \neq PA.PB$

Portanto, A e B não são independentes.

4. Considerando novamente os dados da questão 2, qual é a probabilidade de a pessoa selecionada preferir a marca B e ser homem?

Sejam os eventos B: "Preferir a marca B" e H: "Ser homem", assim:

P(ANB)=830=415PANB=830=415

Atenção! Para visualização completa da equação utilize a rolagem horizontal

5. Uma gaveta contém 3 moedas de 1 real e 2 moedas de cinquenta centavos. Retiramos de uma caixa duas moedas de forma sucessiva e com reposição. Qual é a probabilidade de a primeira moeda ser de 1 real, e a segunda ser de cinquenta centavos?

Solução

Considere os eventos Ai: "A moeda na i-ésima retirada é de 1 real" e Bi: "A moeda na i-ésima retirada é de cinquenta centavos".

Observe que, como a retirada é sem reposição, a retirada da primeira moeda não afeta a probabilidade da segunda. Por isso:

P(A1\cappa B2)=P(A1).P(B2)=35\times25=625PA1\cappa B2=PA1.PB2=35\times25=625

Atenção! Para visualização completa da equação utilize a rolagem horizontal

6. As probabilidades de dois times cariocas, A e B, jogando contra times paulistas, vencerem suas partidas, é de 1/3 e 2/5, respectivamente. Sabemos, ainda, que a probabilidade de os dois times empatarem seus jogos com times paulistas é igual a 1/3.

Se A e B jogam uma partida no mesmo dia contra adversários paulistas diferentes, qual a probabilidade de que ambos vençam suas respectivas partidas?

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Gabarito

Teoria na prática

Uma pesquisa eleitoral apresenta o resultado da preferência para presidente segundo a classe social. Os dados estão apresentados na tabela a sequir:

	Candidato X	Candidato Y
Classe A	150	50
Classe B	170	130
Classe C	220	280

Houve a seleção de um eleitor ao acaso. Qual é a probabilidade de esse eleitor ser da classe C ou preferir o candidato X?

<u>RESOLUÇÃO</u>

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

- 1. Se P(A) = 1/2 e P(B) = 1/4, e A e B são independentes, determine P[(AUB)c]P[AUBc], em que (AUB)cAUBc é o complemento do evento AUBAUB
- 2. Considerando a questão anterior, qual é a P(A∩B)P(A∩B)

Gabarito

1. Se P(A) = 1/2 e P(B) = 1/4, e A e B são independentes, determine $P[(A \cup B)c]P[A \cup Bc]$, em que $(A \cup B)cA \cup Bc$ é o complemento do evento $A \cup BA \cup B$

A alternativa "B " está correta.

Vamos ao raciocínio:

 $P[(AUB)c]=1-P(AUB)=1-[P(A)+P(B)-P(A\cap B)]PAUBc=1-PAUB=1-[PA+PB-PA\cap B)$

Mas como A e B são independentes,	temos que: F	P(A∩B)=P(A	\).P(B)PA∩B=	PA.PB. Logo:
-----------------------------------	--------------	------------	--------------	--------------

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Portanto:

Atenção! Para visualização completa da equação utilize a roladem horizonta

2. Considerando a questão anterior, qual é a P(A∩B)P(A∩B)

A alternativa "D " está correta.

Como A e B são independentes, temos que: P(A∩B)=P(A).P(B)PA∩B=PA.PB, então:

Atenção! Para visualização completa da equação utilize a roladem horizonta

Avalie este módulo:

P(BIA)=P(A∩B)P(A)⇒P(A∩B)=P(A).P(BIA)PBIA=PA∩BPA⇒PA∩B=PA.PBIA

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Teorema da probabilidade total

Este teorema utiliza o teorema do produto para obter a probabilidade de um evento que permeia todos os outros eventos da partição do espaço amostral.

Para dois eventos

Fonte: O autor

Observe que podemos escrever *B* da seguinte forma:

 $B=(A\cap B)\cup(AC\cap B)B=A\cap B\cup AC\cap B$ $P(B)=P(A\cap B)+P(AC\cap B)PB=PA\cap B+PAC\cap B$

P(B)=P(A),P(B|A)+P(Ac)P(B|Ac)PB=PA,PB|A+PAcPB|Ac

Atenção! Para visualização completa da equação utilize a roladem horizonta

Múltiplos eventos

Fonte: O autor

Reescrevendo o evento B, temos:

 $B=(A1 \cap B) \cup ... \cup (An \cap B) B=A1 \cap B \cup ... \cup An \cap B$ $P(B)=P(A1 \cap B)+...+P(An \cap B) PB=PA1 \cap B+...+PAn \cap B$ P(B)=P(BIA1).P(A1)+...+P(BIAn).P(An) PB=PBIA1.PA1+...+PBIAn.PAn

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Teorema de Bayes

Sejam A1,A2,A3,..., AnA1,A2,A3,...,An n eventos mutuamente excludentes, em que a probabilidade de cada AiAi é conhecida, tal que A1 \cup A2 \cup ... \cup An=SA1 \cup A2 \cup ... \cup An=S.

Seja B um evento qualquer de S, e considere que as probabilidades condicionais P(B|Ai)PB|Ai também sejam conhecidas:

P(AilB)=P(Ai).P(BlAi)∑ni=1P(Ai)P(BlAi)PAilB=PAi.PBlAi∑i=1nPAiPBlA

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Prova

P(Ai|B)=Teorema do Produto $P(Ai \cap B)P(B)$ =P(Ai).P(B|Ai) $\sum ni=1P(Ai)P(B|A$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Mão na Massa

1. 50 amostras de um material foram analisadas quanto à resistência ao choque e resistência ao arranhão. Os resultados obtidos estão dispostos na tabela a seguir:

	Alta	Baixa	Total
Alta	40	5	45
Baixa	2	3	5

Total	42	8	50	
Atenção! Para v horizontal	∕isualização	comple	ta da tab	oela utilize a rolagem
Determine a proba				sistência ao arranhão alta,
		-		r, calcule a probabilidade de que a resistência ao
	fusos, um a	pós o ou	ıtro, sem	derados defeituosos. Se n reposição, qual será a os?
	s, sem repo	-		zuis e 3 são verdes. robabilidade da segunda
produziu 1000 des componentes reti lote de 100 compo Escolhemos ao ao	sses compo rados da fá onentes reti caso um co ual a probab	onentes. brica A, rados da mponen bilidade d	Sabemo 5 estava a fábrica te dos 15 de o com	rônicos, e a fábrica B s que, de um lote de 100 m com defeito, e que de um B, 8 estavam defeituosos. 500 produzidos pelas aponente ter sido fabricado uoso?
3/4, da classe B, é indivíduos de cad 3/5 e 3/10, respec	é 1/5, e da cl la classe co tivamente.	lasse C, mpraren	é 1/20. A n um not	A comprar um notebook é as probabilidades de os ebook da marca Y são 1/10,
o indivíduo que c				lual é a probabilidade de que classe B?
Gabarito				
			•	o à resistência ao choque e ispostos na tabela a seguir:
	Alta	Baixa	Total	

Alta	40	5	45
Baixa	2	3	5
Total	42	8	50

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Determine a probabilidade de termos uma resistência ao arranhão alta, dado que a resistência ao choque é baixa:

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

2. Considerando os dados da questão anterior, calcule a probabilidade de termos uma resistência ao choque alta, dado que a resistência ao arranhão é baixa:
Solução
Considerando os eventos da questão anterior, temos que A ^c : "Ter resistência ao arranhão baixa" e B ^c : "Ter resistência ao choque alta". Assim, a probabilidade pedida é:
3. Em um lote com 50 parafusos, 5 são considerados defeituosos. Se retirarmos 2 parafusos, um após o outro, sem reposição, qual será a probabilidade de que ambos sejam defeituosos?

Solução

Seja o evento D: "O parafuso é defeituoso". Desse modo, o que queremos determinar é P(D1∩D2)PD1∩D2. Então, usando o teorema do produto, temos:

P(D1\D2)=P(D1)\timesP(D2|D1)=550\times449=2245PD1\D2=PD1\timesPD2D1=550\times449=224

Atenção! Para visualização completa da equação utilize a rolagem horizontal

4. Uma caixa contém bolas, das quais 4 são azuis e 3 são verdes. Retiramos 2 bolas, sem reposição. Qual é a probabilidade da segunda bola retirada ser azul?

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

5. A fábrica A produziu 500 componentos eletrônicos, e a fábrica P produziu 1000 desses
5. A fábrica A produziu 500 componentes eletrônicos, e a fábrica B produziu 1000 desses componentes. Sabemos que, de um lote de 100 componentes retirados da fábrica A, 5 estavam com defeito, e que de um lote de 100 componentes retirados da fábrica B, 8
estavam defeituosos. Escolhemos ao acaso um componente dos 1500 produzidos pelas fábricas A e B. Qual a probabilidade de o componente ter sido fabricado por A sabendo-se que o componente é defeituoso?
Sejam os eventos A: "O componente foi produzido pela fábrica A", B: "O componente foi produzido pela fábrica B" e D: "O componente é defeituoso".
Empregando o teorema de Bayes, temos:

Atenção! Para visualização completa da equação utilize a rolagem horizontais

6. A probabilidade de um indivíduo da classe A comprar um notebook é 3/4, da classe B, é 1/5, e da classe C, é 1/20. As probabilidades de os indivíduos de cada classe comprarem um notebook da marca Y são 1/10, 3/5 e 3/10, respectivamente. Certa loja vendeu um notebook da marca Y. Qual é a probabilidade de que o indivíduo que comprou o notebook seja da classe B?

Sejam os eventos Y: "Comprar um notebook da marca Y", A: "Classe A", B: "Classe B" e C: "Classe C". Usando o teorema de Bayes, temos:

 $P(B|Y)=P(B\cap Y)P(Y)PB|Y=PB\cap YP(Y)$

P(B|Y)=P(B).P(Y|B)P(A).P(Y|A)+P(B).P(Y|B)+P(C).P(Y|C)PB|Y=PB.PY|BPA.PY|A+P(B|Y)=PB|Y=15.3534.110+15.35+120.31015.3534.110+15.35+120.310=47

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Gabarito

Teoria na prática
RESOLUÇÃO

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

Verificando o aprendizado

- 1. Em certa empresa, 10% dos homens e 5% das mulheres ganham mais de 10 salários mínimos. Além disso, 60% dos empregados são homens. Se estivéssemos interessados em determinar a probabilidade de que o empregado seja mulher, dado que ganha mais de 10 salários mínimos, que teorema de probabilidade seria usado para resolver a questão?
- 2. Um grupo de 100 clientes de uma empresa de telefonia está dividido por sexo e pelo plano (pré-pago e pós-pago), de acordo com a tabela a seguir:

15	33	
17	35	

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Um cliente foi sorteado ao acaso. Qual é a probabilidade de esse cliente ser homem, dado que pertence ao plano pré-pago?

Gabarito

1. Em certa empresa, 10% dos homens e 5% das mulheres ganham mais de 10 salários mínimos. Além disso, 60% dos empregados são homens. Se estivéssemos interessados em determinar a probabilidade de que o empregado seja mulher, dado que ganha mais de 10 salários mínimos, que teorema de probabilidade seria usado para resolver a questão?

A alternativa "D " está correta.

Observe que queremos determinar a probabilidade de que o empregado seja mulher, dado que ganha mais de 10 salários mínimos. Como conhecemos as probabilidades individuais do sexo dos empregados e as probabilidades condicionais dos empregados que ganham mais de 10 salários mínimos dado o sexo, o teorema mais apropriado para resolver a questão seria o teorema de Bayes.

2. Um grupo de 100 clientes de uma empresa de telefonia está dividido por sexo e pelo plano (pré-pago e pós-pago), de acordo com a tabela a seguir:

15	33	
17	35	

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Um cliente foi sorteado ao acaso. Qual é a probabilidade de esse cliente ser homem, dado que pertence ao plano pré-pago?

A alternativa "C" está correta.

Considere os eventos H: "O cliente é homem" e P: "O cliente pertence ao plano prépago", logo:

 $P(H|P)=P(H\cap P)P(P)=15/10032/100=1532PHP=P(H\cap P)P(P)=15/10032/100=15/100$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Avalie este módulo:

Considerações Finais

Aqui, abordamos os conceitos fundamentais para o bom entendimento da definição clássica de probabilidade.

Apresentamos as principais técnicas usadas na resolução de problemas simples de probabilidade e as regras que complementam os conceitos abordados. Por fim, introduzimos todas as definições referentes a eventos condicionais.

Temos certeza de que, através de todos os conceitos essenciais adquiridos neste tema, você está apto para o estudo mais avançado da teoria das probabilidades.

Avaliação do tema:				
REFERÊNCIAS				