Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (currently amended) A compound of formula (I)

$$R^{2} \xrightarrow{I} Z^{1} Alk \xrightarrow{A} R^{5}$$
 (I),

a stereochemically isomeric form thereof, an *N*-oxide form thereof, a pharmaceutically acceptable acid addition salt thereof, or a quaternary ammonium salt thereof, wherein Alk is C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonylC₁₋₄alkyl, carbonyl, carbonylC₁₋₄alkyl, or C₁₋₄alkyl, or C₁₋₄alkyl

6alkanediyl optionally substituted with hydroxy, halo, amino, hydroxy C_{1-4} alkyl, C_{1-4} alkyloxy, C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkylcarbonyloxy,

 C_{1-4} alkylcarbonyloxy C_{1-4} alkyloxycarbonyloxy, or C_{3-6} cycloalkylcarbonyloxy C_{1-4} alkyloxycarbonyloxy;

-Z¹-Z²- is a bivalent radical of formula

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy;

R¹, R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₃₋₆alkenyl, C₁₋₆alkyloxy, trihalomethyl, trihalomethoxy, halo, hydroxy, cyano, nitro, amino, C₁₋₆alkylcarbonylamino, C₁₋₆alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, aminocarbonyl, mono- or di(C₁₋₆alkyl)aminocarbonyl, aminoC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkyloxycarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxy-carbonyloxy; or

when R¹ and R² are on adjacent carbon atoms, R¹ and R² taken together may form a bivalent radical of formula

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy, C₁₋₄alkyl or CH₂OH;

R⁴ is hydrogen, C₁₋₆alkyl, phenylmethyl, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonyloxyC₁₋₄alkyloxycarbonyl, C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy[, or a direct bond when the bivalent radical -Z¹-Z²- is of formula (a-6), (a-7) or (a-8)];

(A) is a bivalent radical of formula

wherein m is 0 or 1;

R⁶ is C₁₋₄alkyl, halo, hydroxy, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxy, aminoC₁₋₄alkyl,C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;

[R¹¹ is hydrogen, C₁₋₄alkyl, halo, hydroxy, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxy, aminoC₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkyloxycarbonyl, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkyloxycarbonyloxy;]

R⁵ is a radical of formula

wherein n is 1 or 2;

 p^1 is 0, and p^2 is 1 or 2; p^1 is 1 or 2, and p^2 is 0;

X is oxygen, sulfur, NR⁹ or CHNO₂;

Y is oxygen or sulfur;

R⁷ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁸ is C₁₋₆alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁹ is cyano, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₁₋₆alkyloxycarbonyl or aminocarbonyl;

R¹⁰ is hydrogen or C₁₋₆alkyl;

or R^9 and R^{10} taken together with the nitrogen atom to which they are attached may form a pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, or morpholinyl group, optionally substituted with C_{1-4} alkyl or C_{1-4} alkyloxy; and

Q is a bivalent radical of formula

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C₁₋₄alkyl, hydroxy or phenyl, or

Q is a bivalent radical of formula

$$CH_2$$
, or CH_2

Serial No. 09/980,451

Claim 2 (original) A compound as claimed in claim 1 wherein R⁵ is a radical of formula (d-1) wherein X is oxygen, and Q is a radical of formula (e-1) or (e-2).

Claim 3 (currently amended) A compound as claimed in claim 1 wherein R⁴ is hydrogen;

-Z¹-Z²- is of formula [-CH₂-CH₂-](a-4), Alk is -CH₂-; the bivalent radical — is

of formula (c-1) wherein R[11]6 is hydroxy or methoxy and m = 0; and R⁵ is a radical of formula (d-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (e-2).

Claim 4 (canceled)

Claim 5 (currently amended) A compound according to claim 1 wherein R⁴ is hydrogen; -Z¹-Z²- is of formula [-CH₂-CH₂-] (a-4), Alk is -CH(OH)-CH₂-; the bivalent radical

is of formula (c-1), m = 0, R⁶ is hydroxy or hydroxymethyl; and R⁵ is a radical of formula (d-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (e-2).

Claim 6 (previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in <u>claim</u> 1.

Claim 7 (canceled)

Claim 8 (canceled)

Claim 9 (currently amended) A process for preparing a compound of formula (I) wherein
a) an intermediate of formula (II) is alkylated with an intermediate of formula (III) in a
reaction-inert solvent and, optionally in the presence of a suitable base,

$$R^{2} \xrightarrow{\text{II}} Z^{1} \longrightarrow Alk \longrightarrow W + H \longrightarrow A \longrightarrow R^{5} \longrightarrow (I)$$

$$R^{2} \xrightarrow{\text{II}} Z^{1} \longrightarrow Alk \longrightarrow A \longrightarrow R^{5} \longrightarrow (I),$$

$$R^{2} \xrightarrow{\text{II}} Z^{1} \longrightarrow Alk \longrightarrow A \longrightarrow R^{5} \longrightarrow (I),$$

b) an intermediate of formula (IV), wherein Alk¹ represents a direct bond or C_{1-5} alkanediyl, is reductively alkylated with an intermediate of formula (III);

$$R^{2} \xrightarrow{\text{II}} Z^{1} \longrightarrow Alk^{1} - CHO + H \longrightarrow A \longrightarrow R^{5} \longrightarrow (I)$$

$$(III)$$

wherein in the above reaction schemes the radicals $-Z^1-Z^2-$, R^1 , R^2 , R^3 , $[R^4]$, R^5 , Alk and the bivalent radical A are as defined in claim 1 and W is an appropriate leaving group;

c) or[, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired;] a compound of formula (I) is converted into an acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

Claim 10 (previously presented) A method of treating conditions related to a hampered or impaired relaxation of the fundus comprising administering to a subject in need thereof an effective amount of a compound as claimed in claim 1.