Baptiste Plaquevent-Jourdain, avec Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

10 Juin 2023

Outline

- 1 Présentation et objectif
- 2 Algorithme par arbre
- Matroïdes et dualité
- 4 Le cas affine / non-homogène

Plan

- 1 Présentation et objectif
- 2 Algorithme par arbre
- Matroïdes et dualité
- 4 Le cas affine / non-homogène

- dans \mathbb{R}^n
- avec p hyperplans
- un hyperplan : sous-espace linéaire de dimension n-1 orthogonal à un vecteur \boldsymbol{v}
- données : $n, p, V = [v_1 \ v_2 \ \dots \ v_p]$, on note $H_i = v_i^{\perp} = \{x \in \mathbb{R}^n : v_i^{\top} x = 0\}$

- dans \mathbb{R}^n
- avec p hyperplans
- un hyperplan : sous-espace linéaire de dimension n-1 orthogonal à un vecteur ${\it v}$
- données : $n, p, V = [v_1 \ v_2 \ \dots \ v_p]$, on note $H_i = v_i^{\perp} = \{x \in \mathbb{R}^n : v_i^{\top} x = 0\}$

- dans \mathbb{R}^n
- avec p hyperplans
- un hyperplan : sous-espace linéaire de dimension n-1 orthogonal à un vecteur \boldsymbol{v}
- données : $n, p, V = [v_1 \ v_2 \dots \ v_p]$, on note $H_i = v_i^{\perp} = \{x \in \mathbb{R}^n : v_i^{\top} x = 0\}$

- dans \mathbb{R}^n
- avec p hyperplans
- un hyperplan : sous-espace linéaire de dimension n-1orthogonal à un vecteur v
- données : $n, p, V = [v_1 \ v_2 \ \dots \ v_p]$, on note $H_i = v_i^{\perp} = \{x \in \mathbb{R}^n : v_i^{\mathsf{T}} x = 0\}$

- dans \mathbb{R}^n
- avec p hyperplans
- un hyperplan : sous-espace linéaire de dimension n-1 orthogonal à un vecteur \boldsymbol{v}
- données : $n, p, V = [v_1 \ v_2 \dots \ v_p]$, on note $H_i = v_i^{\perp} = \{x \in \mathbb{R}^n : v_i^{\mathsf{T}} x = 0\}$

Demi-espaces d'un hyperplan

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}} x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}} x > 0\}$$

Tous les hyperplans : chaque $x \in \mathbb{R}^n$ est sur H_i , dans H_i^- ou dans H_i^+ pour chaque indice i.

Juste les "chambres" / "régions" := les - et + ($\mathbb{R}^n \setminus \cup H_i$)

Vecteurs de signes et chambres

Demi-espaces d'un hyperplan

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}x > 0\}$$

Tous les hyperplans : chaque $x \in \mathbb{R}^n$ est sur H_i , dans H_i^- ou dans H_i^+ pour chaque indice i.

Juste les "chambres" / "régions" := les - et + ($\mathbb{R}^n \setminus \cup H_i$)

Précision de l'objectif

Chacun des p hyperplans : H_i^- et H_i^+ , donc 2^p possibilités.

On veut trouver quelles chambres sont non-vides :

$$\forall \ s = (s_1, \dots, s_p) \in \{-1, +1\}^p, \exists \ x : \forall \ i \in [1:p], s_i v_i^\mathsf{T} x > 0 \$$
?

$$\begin{cases} s_1 v_1^\top x > 0 \\ \vdots \\ s_p v_p^\top x > 0 \end{cases} \Leftrightarrow \begin{cases} \min & t \\ \text{s.t.} & t \ge -1 \\ & t \ge -s_i v_i^\top x \end{cases} \text{ optimisation linéaire}$$

Chacun des p hyperplans : H_i^- et H_i^+ , donc 2^p possibilités.

On veut trouver quelles chambres sont non-vides :

$$\forall \ s = (s_1, \dots, s_p) \in \{-1, +1\}^p, \exists \ x : \forall \ i \in [1:p], s_i v_i^\mathsf{T} x > 0 \ ?$$

$$\begin{cases} s_1 v_1^{\mathsf{T}} x > 0 \\ \vdots \\ s_p v_p^{\mathsf{T}} x > 0 \end{cases} \Leftrightarrow \begin{cases} \min & t \\ \text{s.t.} & t \ge -1 \\ & t \ge -s_i v_i^{\mathsf{T}} x \end{cases} \text{ optimisation linéaire}$$

L'ensemble des s dont le système est réalisable := S.

"Force brute" : vérifier 2^p systèmes. Facile de vérifier 1, mais 2^p ...

Illustration

$$H_1 = e_1^{\perp}, H_2 = e_2^{\perp}, H_3 = (e_1 + e_2)^{\perp}$$
. L'origine est x (ou l' $\cap H_i$).

Très connu & étudié ; de façon très théorique.

Outils : fonction de Möbius, treillis (lattices), matroïdes Des résultats stupéfiants : formule exacte, expressions très simples sous certaines hypothèses etc (Winder, [winder-1966])

$$\begin{split} |\{\text{chambres}\}| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T|-n+\dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}|-\operatorname{rang}(\mathcal{V})} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{\dim(\mathcal{N}(\mathcal{V}))} \end{split}$$

Très connu & étudié ; de façon très théorique.

Outils : fonction de Möbius, treillis (lattices), matroïdes Des résultats stupéfiants : formule exacte, expressions très simples sous certaines hypothèses etc (Winder, [winder-1966])

$$\begin{aligned} |\{\text{chambres}\}| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T|-n+\dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}|-\operatorname{rang}(\mathcal{V})} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{\dim(\mathcal{N}(\mathcal{V}))} \end{aligned}$$

Plan

- 1 Présentation et objecti
- 2 Algorithme par arbre
- Matroïdes et dualité
- 4 Le cas affine / non-homogène

Schéma

L'algorithme RČ [cerny-rada-2018]

- procédé récursif : hyperplans ajoutés un par un
- arbre deux descendants si H_{k+1} coupe la chambre en 2
- vérification faite par l'optimisation linéaire

→ Il est possible d'apporter des améliorations 'générales'.
Ou d'utiliser les matroïdes !

Schéma

L'algorithme RČ [cerny-rada-2018]

- procédé récursif : hyperplans ajoutés un par un
- arbre deux descendants si H_{k+1} coupe la chambre en 2
- vérification faite par l'optimisation linéaire

→ Il est possible d'apporter des améliorations 'générales'.
Ou d'utiliser les matroïdes !

- 1 Présentation et objectif
- 2 Algorithme par arbre
- Matroïdes et dualité
- 4 Le cas affine / non-homogène

++- (,--+) correspond à un POL non-réalisable. + à droite de H_1 , + en haut de H_2 , — en bas à gauche de H_3 : impossible de trouver un point.

L'alternative de Gordan

L'astuce de l'alternative

 $M \in \mathbb{R}^{p \times n}$, exactement une des deux affirmations est vraie :

$$\begin{cases} \exists x \in \mathbb{R}^n : Mx > 0_{\mathbb{R}^p} \\ \exists \gamma \in \mathbb{R}^p_+ : M^{\mathsf{T}} \gamma = 0 \end{cases}$$
 (1)

si
$$M = \operatorname{diag}(s)V^{\mathsf{T}} \to Mx = (s_1v_1^{\mathsf{T}}x; \dots; s_pv_p^{\mathsf{T}}x)$$
, c'est: "il existe un point dans la chambre définie par s **ou** un $\gamma \in \mathbb{R}_+^p$ "

En optimisation : "dualité" \simeq autre approche/vision

L'astuce de l'alternative

 $M \in \mathbb{R}^{p \times n}$, exactement une des deux affirmations est vraie :

$$\begin{cases} \exists x \in \mathbb{R}^n : Mx > 0_{\mathbb{R}^p} \\ \exists \gamma \in \mathbb{R}^p_+ : M^\mathsf{T} \gamma = 0 \end{cases}$$
 (1)

si
$$M = \operatorname{diag}(s)V^{\mathsf{T}} \to Mx = (s_1v_1^{\mathsf{T}}x; \dots; s_pv_p^{\mathsf{T}}x)$$
, c'est: "il existe un point dans la chambre définie par s **ou** un $\gamma \in \mathbb{R}_+^p$ "

En optimisation : "dualité" \simeq autre approche/vision

Algorithme "dual"

Principe

Détecter les incompatibilités := les γ via l'alternative de Gordan Arrêter une branche de l'arbre si incompatibilité

Algorithme "dual"

Principe

Détecter les incompatibilités := les γ via l'alternative de Gordan Arrêter une branche de l'arbre si incompatibilité

Une incompatibilité = système non-réalisable "de taille minimale"

C'est (une utilité possible) des matroïdes

Algorithme "dual"

Principe

Détecter les incompatibilités := les γ via l'alternative de Gordan Arrêter une branche de l'arbre si incompatibilité

Une incompatibilité = système non-réalisable "de taille minimale"

C'est (une utilité possible) des matroïdes !

Matroïdes linéaires/vectoriels

Définition : circuits de matroïde

Pour $V \in \mathbb{R}^{n \times p}$, $V = [v_1 \dots v_p]$, on cherche les circuits de $V := J \subset [1:p]$, $V_{:,J} = [v_j]_{j \in J}$ a un noyau de dimension = 1 et $\forall J_0 \subsetneq J, \{v_j\}_{j \in J_0}$ indépendants

 \rightarrow trouver tous les J

$$J ext{ circuit } \Rightarrow \exists \eta \in \mathbb{R}_*^J, V_{:,J} \eta = 0 \Leftrightarrow [V_{:,J} \widetilde{\operatorname{sign}(\eta)}] [\widetilde{\operatorname{sign}(\eta)}] \eta] = 0$$

 $M_{(J)} = [V_{:,J} \operatorname{sign}(\eta)]$ et $\gamma_{(J)} = [\operatorname{sign}(\eta)\eta] \ge 0$ vérifient l'alternative la 'chambre' de taille |J| définie par $\operatorname{sign}(\eta)$ est vide !

Matroïdes linéaires/vectoriels

Définition : circuits de matroïde

Pour $V \in \mathbb{R}^{n \times p}$, $V = [v_1 \dots v_p]$, on cherche les circuits de $V := J \subset [1:p]$, $V_{:,J} = [v_j]_{j \in J}$ a un noyau de dimension = 1 et $\forall J_0 \subsetneq J, \{v_j\}_{j \in J_0}$ indépendants

 \rightarrow trouver tous les J:

$$J \text{ circuit} \Rightarrow \exists \eta \in \mathbb{R}_*^J, V_{:,J} \eta = 0 \Leftrightarrow [V_{:,J} \widetilde{\operatorname{sign}(\eta)}] [\widetilde{\operatorname{sign}(\eta)}] \eta] = 0$$

 $M_{(J)} = [V_{:,J} \operatorname{sign}(\eta)]$ et $\gamma_{(J)} = [\operatorname{sign}(\eta)\eta] \ge 0$ vérifient l'alternative la 'chambre' de taille |J| définie par $\operatorname{sign}(\eta)$ est vide !

Matroïdes linéaires/vectoriels

Définition : circuits de matroïde

Pour $V \in \mathbb{R}^{n \times p}$, $V = [v_1 \dots v_p]$, on cherche les circuits de $V := J \subset [1:p]$, $V_{:,J} = [v_j]_{j \in J}$ a un noyau de dimension = 1 et $\forall J_0 \subsetneq J, \{v_j\}_{j \in J_0}$ indépendants

 \rightarrow trouver tous les J:

$$J \operatorname{circuit} \Rightarrow \exists \eta \in \mathbb{R}_*^J, V_{:,J} \eta = 0 \Leftrightarrow [V_{:,J} \widetilde{\operatorname{sign}(\eta)}] [\widetilde{\operatorname{sign}(\eta)}] \eta] = 0$$

 $M_{(J)} = [V_{:,J} \operatorname{sign}(\eta)]$ et $\gamma_{(J)} = [\operatorname{sign}(\eta)\eta] \ge 0$ vérifient l'alternative la 'chambre' de taille |J| définie par $\operatorname{sign}(\eta)$ est vide !

Résumé

Algorithmes

- arbre normal ([cerny-rada-2018])
- arbre dual (matroïdes)
- arbre avec les matroïdes (mais bcp d'optimisation)

Des améliorations générales pour les algorithmes 'normaux'. Ou des versions avec matroïdes qui améliorent beaucoup.

Résumé

Algorithmes

- arbre normal ([cerny-rada-2018])
- arbre dual (matroïdes)
- arbre avec les matroïdes (mais bcp d'optimisation)

Des améliorations générales pour les algorithmes 'normaux'. Ou des versions avec matroïdes qui améliorent beaucoup.

Comparaisons numériques

	temps CPU (en s)						
	original	Arbre+M-1		Arbre+M-2		Juste matroïdes	
Problème	code	Temps	Ratio	Temps	Ratio	Temps	Ratio
rand-4-8-2	1.06	0.10	10.75	0.02	48.44	0.03	36.67
rand-7-9-4	1.13	0.45	2.51	0.29	3.95	0.02	68.67
rand-7-13-5	11.06	4.29	2.58	2.94	3.76	0.25	44.60
rand-8-15-7	64.79	29.53	2.19	27.59	2.35	4.54	14.29
rand-9-16-8	157.05	78.01	2.01	81.61	1.92	18.87	8.32
rand-10-17-9	352.42	196.09	1.80	213.48	1.65	70.19	5.02
srand-8-20-4	874.01	323.56	2.70	649.61	1.35	705.36	1.24
rc-2d-20-6	12.68	0.35	36.06	0.26	48.78	0.26	49.63
rc-2d-20-7	23.01	0.56	40.87	0.53	43.06	0.45	51.50
rc-perm-6	62.89	0.84	74.44	2.33	27.03	2.46	25.61
rc-perm-8	6589.31	85.70	76.89	1599.53	4.12	5290.13	1.25
rc-ratio-20-5-7	91.57	27.43	3.34	29.70	3.08	20.54	4.46
rc-ratio-20-5-9	88.24	25.21	3.50	27.54	3.20	17.75	4.97
rc-ratio-20-7-7	581.28	241.24	2.41	506.67	1.15	447.83	1.30
rc-ratio-20-7-9	460.64	162.95	2.83	315.67	1.46	234.72	1.96
Moyenne (totale)			16.60		13.90		30.31
Médiane (totale)			3.24		4.12		27.80

- 1 Présentation et objecti
- 2 Algorithme par arbre
- Matroïdes et dualité
- 4 Le cas affine / non-homogène

Notations

$$H_i = \{x \in \mathbb{R}^n : v_i^\mathsf{T} x = 0\} \rightarrow H_i = \{x \in \mathbb{R}^n : v_i^\mathsf{T} x = \tau_i\}$$

linéaire/homogène \rightarrow affine/non – homogène

Une chambre auparavant vide, ++-, est maintenant non-vide.

$$\underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > 0 \\ \vdots \\ s_\rho v_\rho^\mathsf{T} x > 0 \end{array} \right.}_{\text{Gordan}} \sim \underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > s_1 \tau_1 \\ \vdots \\ s_\rho v_\rho^\mathsf{T} x > s_\rho \tau_\rho \end{array} \right.}_{\text{Motzkin}}$$

L'autre alternative (Motzkin)

 $M \in \mathbb{R}^{p \times n} \backslash \{0\}, m \in \mathbb{R}^p$, exactement une des affirmations est vraie

$$\begin{cases}
\exists x \in \mathbb{R}^n : Mx > m \\
\exists (\gamma, \gamma_0) \in (\mathbb{R}^p_+ \times \mathbb{R}^-) \setminus \{0\} : M^\mathsf{T} \gamma = 0, m^\mathsf{T} \gamma + \gamma_0 = 0
\end{cases} (2)$$

$$\underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > 0 \\ \vdots \\ s_p v_p^\mathsf{T} x > 0 \end{array} \right.}_{\text{Gordan}} \rightsquigarrow \underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > s_1 \tau_1 \\ \vdots \\ s_p v_p^\mathsf{T} x > s_p \tau_p \end{array} \right.}_{\text{Motzkin}}$$

L'autre alternative (Motzkin)

 $M \in \mathbb{R}^{p \times n} \setminus \{0\}, m \in \mathbb{R}^p$, exactement une des affirmations est vraie

$$\begin{cases}
\exists x \in \mathbb{R}^n : Mx > m \\
\exists (\gamma, \gamma_0) \in (\mathbb{R}_+^p \times \mathbb{R}^-) \setminus \{0\} : M^\mathsf{T} \gamma = 0, m^\mathsf{T} \gamma + \gamma_0 = 0
\end{cases} (2)$$

Résumé

- algorithme initial avec l'arbre & améliorations
- algorithme avec 100% matroïdes
- applicables aussi dans le cas affine, légères adaptations

L'option mixte

Regarder l'arrangement dans \mathbb{R}^{n+1} , $\tau_i \leftrightarrow$ nouvelle dimension. L'idéal : résoudre le cas affine par algorithme pour le cas linéaire.

Résumé

- algorithme initial avec l'arbre & améliorations
- algorithme avec 100% matroïdes
- applicables aussi dans le cas affine, légères adaptations

L'option mixte

Regarder l'arrangement dans \mathbb{R}^{n+1} , $\tau_i \leftrightarrow$ nouvelle dimension.

L'idéal : résoudre le cas affine par algorithme pour le cas linéaire.

$$V = \begin{bmatrix} v_1 \dots v_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\}\$ for $\widetilde{V} := (V; T),$ cas affine:
- $S^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0 \}$, cas mixte := regarder \widetilde{V} comme cas linéaire dans $\mathbb{R}^{(n+1) \times p}$.

$$V = \begin{bmatrix} v_1 \dots v_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\}\$ for $\widetilde{V} := (V; T),$ cas affine;
- $S^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0 \}$, cas mixte := regarder \widetilde{V} comme cas linéaire dans $\mathbb{R}^{(n+1) \times p}$.

L'approche mixte - notations

$$V = \begin{bmatrix} v_1 \dots v_p \\ T = \begin{bmatrix} \tau_1 \dots \tau_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\}\$ for $\widetilde{V} := (V; T),$ cas affine;
- $S^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0 \}$, cas mixte := regarder \widetilde{V} comme cas linéaire dans $\mathbb{R}^{(n+1) \times p}$.

L'approche mixte - notations

$$V = \begin{bmatrix} v_1 \dots v_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\}\$ for $\widetilde{V} := (V; T),$ cas affine:
- $S^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s)\widetilde{V}^T\widetilde{x} > 0\}$, cas mixte := regarder \widetilde{V} comme cas linéaire dans $\mathbb{R}^{(n+1) \times p}$.

L'approche mixte - fin des notations

Partie symétrique et asymétrique d'un cas affine

$$\begin{cases} \mathcal{S}_{sym}^{nH}(\widetilde{V}) &:= \quad \mathcal{S}^{nH}(\widetilde{V}) \cap [-\mathcal{S}^{nH}(\widetilde{V})] \\ \mathcal{S}_{asym}^{nH}(\widetilde{V}) &:= \quad \mathcal{S}^{nH}(\widetilde{V}) \backslash \mathcal{S}_{sym}^{nH}(\widetilde{V}) \end{cases}$$

La nouvelle chambre ++- est asymétrique, les autres sont symétriques.

$$\mathcal{S}^{H}(V) \subseteq \mathcal{S}^{H}(\widetilde{V}) \tag{3}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{4}$$

$$S_{sym}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (5)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (6)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c \tag{7}$$

$$[S^{nH}(\widetilde{V})^c]_{asym} \cup -[S^{nH}(\widetilde{V})^c]_{asym} = S^H(V)^c \backslash S^H(\widetilde{V})^c$$
(8)

L'approche mixte - propriétés

$$\mathcal{S}^{H}(V) \subseteq \mathcal{S}^{H}(\widetilde{V}) \tag{3}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{4}$$

$$S_{\text{sym}}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (5)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (6)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c \tag{7}$$

$$[S^{nH}(\widetilde{V})^c]_{asym} \cup -[S^{nH}(\widetilde{V})^c]_{asym} = S^H(V)^c \backslash S^H(\widetilde{V})^c$$
(8)

$$S^{H}(V) \subseteq S^{H}(\widetilde{V}) \tag{3}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{4}$$

$$S_{\text{sym}}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (5)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (6)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c$$
(7)

$$[S^{nH}(\widetilde{V})^c]_{asym} \cup -[S^{nH}(\widetilde{V})^c]_{asym} = S^H(V)^c \backslash S^H(\widetilde{V})^c$$
(8)

L'approche mixte - propriétés

$$S^{H}(V) \subseteq S^{H}(\widetilde{V}) \tag{3}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{4}$$

$$S_{\text{sym}}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (5)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (6)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c$$
 (7)

$$[S^{nH}(\widetilde{V})^c]_{asym} \cup -[S^{nH}(\widetilde{V})^c]_{asym} = S^H(V)^c \setminus S^H(\widetilde{V})^c$$
(8)

Arguments et intérêt

Preuves : les définitions & basculer entre Gordan et Motzkin

$$\mathcal{S}^{nH}_{sym}(\widetilde{V}) = \mathcal{S}^{H}(\widetilde{V}) \cap \mathcal{S}^{H}(V) = \mathcal{S}^{H}(V)$$

$$\mathcal{S}^{nH}_{asym}(\widetilde{V}) \cup [-\mathcal{S}^{nH}_{asym}(\widetilde{V})] = \mathcal{S}^{H}(\widetilde{V}) \backslash \mathcal{S}^{H}(V)$$

Droite : uniquement des cas linéaires

Gauche : le cas affine recherché

Détail restant : distinguer les bons s des -s. (Ca marche bien.)

Arguments et intérêt

Preuves : les définitions & basculer entre Gordan et Motzkin

$$\mathcal{S}_{\mathsf{sym}}^{\mathsf{nH}}(\widetilde{V}) = \mathcal{S}^{\mathsf{H}}(\widetilde{V}) \cap \mathcal{S}^{\mathsf{H}}(V) = \mathcal{S}^{\mathsf{H}}(V)$$

$$\mathcal{S}^{nH}_{\textit{asym}}(\widetilde{V}) \cup [-\mathcal{S}^{nH}_{\textit{asym}}(\widetilde{V})] = \mathcal{S}^{H}(\widetilde{V}) \backslash \mathcal{S}^{H}(V)$$

Droite : uniquement des cas linéaires

Gauche : le cas affine recherché

Détail restant : distinguer les bons s des -s. (Ca marche bien.)

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votro

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votro

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votro

Conclusion

Algorithmes

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement. Ouverture : si on veut "tout" l'arrangement (\supsetneq chambres) ? \leadsto remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votre

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

```
Ouverture : si on veut "tout" l'arrangement (\supsetneq chambres) ? \rightsquigarrow remplacer \{-,+\} par \{-,0,+\} (mais 3^p...) Merci pour votre
```

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votre

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais 3^p ...) Merci pour votre