Abstract Algebra Assignment (4): Application on Groups of Permutations

Mostafa Hassanein 23 December 2023

1.

$$|G = (a)| = 5 \implies |G_A| = \phi(5) = |\{1, 2, 3, 4\}| = 4.$$

$$G_A = \{ f_t(a^j) = a^{tj} : t \in \{1, 2, 3, 4\}, \ j \in \{1..5\} \}.$$

$$f_1(a^j) = a^j; \quad j \in \{1..5\}$$

 $f_1 = \begin{pmatrix} a & a^2 & a^3 & a^4 & a^5 \\ a & a^2 & a^3 & a^4 & a^5 \end{pmatrix} = id$

$$f_2(a^j) = a^{2j}, \quad j \in \{1..5\}$$

$$f_2 = \begin{pmatrix} a & a^2 & a^3 & a^4 & a^5 \\ a^2 & a^4 & a & a^3 & a^5 \end{pmatrix} = (a \ a^2 \ a^4 \ a^3)$$

$$f_3(a^j) = a^{3j}, \quad j \in \{1..5\}$$

$$f_3 = \begin{pmatrix} a & a^2 & a^3 & a^4 & a^5 \\ a^3 & a & a^4 & a^2 & a^5 \end{pmatrix} = (a \ a^3 \ a^4 \ a^2)$$

$$f_4(a^j) = a^{4j}, \quad j \in \{1..5\}$$

$$f_4 = \begin{pmatrix} a & a^2 & a^3 & a^4 & a^5 \\ a^4 & a^3 & a^2 & a^1 & a^5 \end{pmatrix} = (a \ a^4)(a^2 \ a^3)$$

 G_A is a cyclic group.

Its generating elements are f_2 and f_3 since $|f_2| = |f_3| = 4 = |G_A|$.

2.

We know that:

- i. The cosets of a subgroup partition the group.
- ii. The size of any coset is equal to the size of the subgroup.
- iii. The size of $A_n = S_n/2$.
- (i), (ii), and (iii) $\Rightarrow H$ has 2 cosets.

Since H is one of the cosets (because $id \circ H = H$ and $H \circ id = H$), then the other coset must be $S_n \setminus H = S_n \setminus A_n = O_n$, which are the odd permutations.

$$S_n/H = \{H, O_n\}$$

 $[S_n : H] = |S_n/H| = 2$

3.

Let's first construct the Cayley table:

0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8
p_1	p_1	p_2	p_3	$\begin{array}{c} p_4 \\ p_1 \\ p_2 \\ p_3 \\ p_8 \\ p_7 \\ p_5 \\ p_6 \end{array}$	p_5	p_6	p_7	p_8
p_2	p_2	p_3	p_4	p_1	p_8	p_7	p_5	p_6
p_3	p_3	p_4	p_1	p_2	p_6	p_5	p_3	p_7
p_4	p_4	p_1	p_2	p_3	p_7	p_8	p_6	p_5
p_5	p_5	p_7	p_6	p_8	p_1	p_3	p_2	p_4
p_6	p_6	p_8	p_5	p_7	p_3	p_1	p_4	p_2
p_7	p_7	p_6	p_8	p_5	p_4	p_2	p_1	p_3
p_8	p_8	p_5	p_7	p_6	p_2	p_4	p_3	p_1

To prove that $H = \{p_1, p_3, p_7, p_8\}$ is self conjugate, we have to show that all elements in H commute with all elements in G i.e. $\forall h \in H$ and $\forall p \in G$: $p^{-1} \circ h \circ p = h$:

```
\begin{array}{c} p_1^{-1} \circ p_1 \circ p_1 = p_1 \\ p_2^{-1} \circ p_1 \circ p_2 = p_1 \\ p_3^{-1} \circ p_1 \circ p_3 = p_1 \\ p_4^{-1} \circ p_1 \circ p_4 = p_1 \\ p_5^{-1} \circ p_1 \circ p_5 = p_1 \\ p_6^{-1} \circ p_1 \circ p_6 = p_1 \\ p_6^{-1} \circ p_1 \circ p_6 = p_1 \\ p_7^{-1} \circ p_1 \circ p_7 = p_1 \\ p_8^{-1} \circ p_1 \circ p_8 = p_1 \\ \end{array}
\begin{array}{c} p_1^{-1} \circ p_3 \circ p_1 = p_3 \\ p_2^{-1} \circ p_3 \circ p_2 = p_3 \\ p_3^{-1} \circ p_3 \circ p_2 = p_3 \\ p_3^{-1} \circ p_3 \circ p_4 = p_3 \\ p_5^{-1} \circ p_3 \circ p_5 = p_3 \\ p_6^{-1} \circ p_3 \circ p_6 = p_3 \\ p_6^{-1} \circ p_3 \circ p_6 = p_3 \\ p_7^{-1} \circ p_3 \circ p_7 = p_3 \\ p_8^{-1} \circ p_3 \circ p_8 = p_3 \\ \end{array}
\begin{array}{c} p_1^{-1} \circ p_7 \circ p_1 = p_7 \\ p_2^{-1} \circ p_7 \circ p_2 = p_7 \\ p_3^{-1} \circ p_7 \circ p_3 = p_7 \\ p_4^{-1} \circ p_7 \circ p_4 = p_7 \\ p_5^{-1} \circ p_7 \circ p_5 = p_7 \\ p_6^{-1} \circ p_7 \circ p_6 = p_7 \\ p_7^{-1} \circ p_7 \circ p_7 = p_7 \\ p_8^{-1} \circ p_8 \circ p_1 = p_8 \\ p_2^{-1} \circ p_8 \circ p_1 = p_8 \\ p_3^{-1} \circ p_8 \circ p_3 = p_8 \\ p_4^{-1} \circ p_8 \circ p_4 = p_8 \\ \end{array}
```

$$\begin{array}{l} p_5^{-1} \circ p_8 \circ p_5 = p_8 \\ p_6^{-1} \circ p_8 \circ p_6 = p_8 \\ p_7^{-1} \circ p_8 \circ p_7 = p_8 \\ p_8^{-1} \circ p_8 \circ p_8 = p_8 \end{array}$$

The right cosets of
$$H$$
 are $H \circ b$, where $b \in \{p_1...p_8\}$:

$$H \circ p_1 = H = \{p_1, p_3, p_7, p_8\} = H \circ p_3 = H \circ p_7 = H \circ p_8$$

$$H \circ p_2 = \{p_1, p_3, p_7, p_8\} \circ p_2 = \{p_2, p_4, p_6, p_5\} = H \circ p_4 = H \circ p_6 = H \circ p_6$$

$$S/H = \{H \circ p_1, H \circ p_2\}$$

$$[S:H] = |S/H| = 2$$

4.

$$G_A = \{ f_a : f_a = \begin{pmatrix} x \\ a^{-1} \circ x \circ a \end{pmatrix} \quad \forall x \in G, \ \forall a \in G \}$$

We start by constructing the Cayley table:

0		p_2		p_4
p_1 p_2	p_1	$p_2 \\ p_1 \\ p_4$	p_3	p_4
p_2	p_2	p_1	p_4	p_3
p_3	p_3	p_4	p_1	p_2
p_{A}	p_A	p_3	p_2	p_1

Element	p_1	p_2	p_3	p_4
Order	1	2	2	2

$$f_1(p_1) = p_1^{-1} \circ (p_1 \circ p_1) = p_1^{-1} \circ p_1 = p_1 \circ p_1 = p_1$$

$$f_1(p_2) = p_2$$

$$f_1(p_3) = p_3$$

$$f_1(p_4) = p_4$$

$$f_2(p_1) = p_2^{-1} \circ (p_1 \circ p_2) = p_2^{-1} \circ p_2 = p_2 \circ p_2 = p_1$$

$$f_2(p_2) = p_2^{-1} \circ (p_2 \circ p_2) = p_2^{-1} \circ p_1 = p_2 \circ p_1 = p_2$$

$$f_2(p_3) = p_2^{-1} \circ (p_3 \circ p_2) = p_2^{-1} \circ p_4 = p_2 \circ p_4 = p_3$$

$$f_2(p_4) = p_2^{-1} \circ (p_4 \circ p_2) = p_2^{-1} \circ p_3 = p_2 \circ p_3 = p_4$$

$$f_2(p_2) = p_2^{-1} \circ (p_2 \circ p_2) = p_2^{-1} \circ p_1 = p_2 \circ p_1 = p_2$$

$$f_2(p_3) = p_2^{-1} \circ (p_3 \circ p_2) = p_2^{-1} \circ p_4 = p_2 \circ p_4 = p_3$$

$$f_2(p_4) = p_2 \circ (p_4 \circ p_2) = p_2 \circ p_3 = p_2 \circ p_3 = p_4$$

$$f_3(p_1) = p_2^{-1} \circ (p_1 \circ p_3) = p_2^{-1} \circ p_3 = p_3 \circ p_3 = p_1$$

$$f_3(p_1) = p_3^{-1} \circ (p_1 \circ p_3) = p_3^{-1} \circ p_3 = p_3 \circ p_3 = p_1$$

$$f_3(p_2) = p_3^{-1} \circ (p_2 \circ p_3) = p_3^{-1} \circ p_4 = p_3 \circ p_4 = p_2$$

$$f_3(p_3) = p_3^{-1} \circ (p_3 \circ p_3) = p_3^{-1} \circ p_1 = p_3 \circ p_1 = p_3$$

$$f_3(p_4) = p_3^{-1} \circ (p_4 \circ p_3) = p_3^{-1} \circ p_2 = p_3 \circ p_2 = p_4$$

$$f_3(p_3) = p_3^{-1} \circ (p_3 \circ p_3) = p_3^{-1} \circ p_1 = p_3 \circ p_1 = p_3$$

$$f_2(p_4) = p_2^{-1} \circ (p_4 \circ p_2) = p_2^{-1} \circ p_2 = p_3 \circ p_2 = p_4$$

$$f_4(p_1) = p_4^{-1} \circ (p_1 \circ p_4) = p_4^{-1} \circ p_4 = p_4 \circ p_4 = p_1$$

$$f_4(p_2) = p_4^{-1} \circ (p_2 \circ p_4) = p_4^{-1} \circ p_3 = p_4 \circ p_4 = p_2$$

$$f_4(p_3) = p_4^{-1} \circ (p_3 \circ p_4) = p_4^{-1} \circ p_2 = p_4 \circ p_2 = p_3$$

$$f_4(p_2) = p_4^{-1} \circ (p_2 \circ p_4) = p_4^{-1} \circ p_3 = p_4 \circ p_4 = p_2$$

$$f_4(p_3) = p_4^{-1} \circ (p_3 \circ p_4) = p_4^{-1} \circ p_2 = p_4 \circ p_2 = p_3$$

$$f_4(p_4) = p_4^{-1} \circ (p_4 \circ p_4) = p_4^{-1} \circ p_1 = p_4 \circ p_1 = p_4$$

We have $f_1 = f_2 = f_3 = f_4 = p_1$ (i.e. the identity permutation). $\Rightarrow G_A = \{p_1\}$ $\Rightarrow |G_A| = 1 = |p_1|$. $\Rightarrow G_A$ is a cyclic group whose generating element is p_1 .