Cálculo Diferencial

Juan Cribillero Aching

Mayo 13, 2024

Sesión 01

- 1 Teorema de Rolle
- 2 Teorema del valor intermedio
 - Teorema del valor medio generalizado
- 3 Corolarios del teorema del valor medio
- 4 Referencias

Teorema (Rolle)

Sea $f:[a,b]\to\mathbb{R}$ una función continua en [a,b] y derivable en [a,b[. Si f(a)=f(b), entonces existe $x_0\in]a,b[$ tal que $f'(x_0)=0.$

Si f es constante en [a,b], entonces para cada $x_0 \in]a,b[$ se cumple que $f'(x_0)=0$.

Supongamos que f no es constante en [a,b]. Como f es continua en [a,b], entonces f alcanza sus valores máximo y mínimo en [a,b]. Supongamos que f alcanza su valor mínimo en x_1 y su valor máximo en x_2 .

Luego, uno de ellos debe estar en]a,b[, pues si ambos estuvieran en el conjunto $\{a,b\}$ de la condición f(a)=f(b) se tendría que f es constante.

Supongamos que $x_1 \in]a,b[$. Luego, se tiene

$$f(x_1) \leq f(x), \forall x \in [a,b] \text{ y } \frac{f(x) - f(x_1)}{x - x_1} \leq 0, \forall x \in [a,x_1[\text{ y como }]$$

f es derivable en x_1 , entonces $\lim_{x \to x_1^-} \frac{f(x) - f(x_1)}{x - x_1} \le 0$ lo que

implica que $f'_-(x_1) = f'(x_1) \le 0$.

De la misma forma $\forall x \in]x_1, b]$ se tiene f es derivable en x_1 , entonces $\lim_{x o x_1^+} \frac{f(x) - f(x_1)}{x - x_1}$ implica que $f'_+(x_1) = f'(x_1) \ge 0$. Así, se tiene que $f'(x_1) = 0$. Si $x_2 \in]a, b[$, la prueba es similar.

Ejemplo

Sea $f:[0,1]\to\mathbb{R}$, la función definida por

$$f(x) = \begin{cases} x & , 0 \le x < 1. \\ 0 & , x = 1. \end{cases}$$

Es claro que f(0) = f(1), f es derivable en [0, 1], pero f no es continua en [0,1] (f no es continua en 1).

Se puede ver que f'(x) = 1, para cada]0,1[, y por lo tanto, f'nunca es cero en]0,1[. Esto sucede pues f no es continua en [0.1].

Ejemplo

Sea $g:[-1,1]\to\mathbb{R}$, la función definida por g(x)=|x|, $\forall x\in[-1,1].$

Es claro que $g(-1)=g(1)=1,\;g$ es continua en [-1,1] y que g no es derivable en]-1,1[(g no es derivable en 0). Se puede ver que g'(x)=-1, si x<0 y g'(x)=1, si x>0.

Así, g' nunca es cero en]-1,1[. La causa de esto es que g no es derivable en 0.

Ejemplo

Sea $f:[-1,1]\to\mathbb{R}$, la función definida por $f(x)=\sqrt{1-x^2}$, $\forall x\in[-1,1].$

Es claro que $f(-1)=f(1)=0,\; f$ es continua en [-1,1] y f es derivable en]-1,1[con $f'(x)=-\frac{x}{1-x^2}, \forall x\in]-1,1[$.

Como f satisface las condiciones del teorema de Rolle, existe $x_0 \in]-1,1[$ tal que $f'(x_0)=0.$

De la ecuación anterior, se obtiene que $x_0 = 0$.

Sean f, g dos funciones continuas en el intervalo [a, b] y derivable en a, b. Si f(a) = g(a) y f(b) = g(b), demuestre que existe $c \in]a,b[$ tal que f'(c)=g'(c).

Sesión 01

- 1 Teorema de Rolle
- 2 Teorema del valor intermedio
 - Teorema del valor medio generalizado
- 3 Corolarios del teorema del valor medio
- 4 Referencias

Teorema (Valor medio de Lagrange)

Sea $f:[a,b]\to\mathbb{R}$ una función continua en [a,b] y derivable en [a,b[. Luego existe $x_0\in]a,b[$ tal que

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}.$$

Sea $g:[a,b]\to\mathbb{R}$ la función definida por

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a), \quad \forall x \in [a, b].$$

Veamos que g satisface las condiciones del teorema de Rolle g(a) = 0 = g(b). Es claro que g es continua en [a, b], g es derivable en]a,b[y $g'(x)=f'(x)-\frac{f(b)-f(a)}{b-a}.$

Por el teorema de Rolle, existe $x_0 \in]a,b[$ tal que $g'(x_0)=0;$ es

decir,
$$f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$$
.
Por lo tanto, $f'(x_0) = \frac{f(b) - f(a)}{b - a}$

Por lo tanto,
$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Interpretación geométrica del teorema del valor medio

Si f es una función con gráfica continua y tiene recta tangente (no vertical) en todos los puntos P(x, f(x)) con abscisas están en $x_0 \in]a, b[$, entonces existe $x_0 \in]a, b[$ tal que la recta tangente a la gráfica de f en el punto $P(x_0, f(x_0))$ es paralela al segmento que une los puntos $P_1(a, f(a))$ y $P_2(b, f(b))$.

Sea $f:[0,2]\to\mathbb{R}$, la función definida por

$$f(x) = \begin{cases} x & , 0 \le x < 1\\ \frac{x^2 + 1}{2} & , 1 \le x \le 2 \end{cases}$$

¿Se puede aplicar el teorema del valor medio a f? Calcule, si fuera el caso, el valor de x que cumpla con la conclusión del teorema.

Resolución

La función f es continua en [0,2] y es derivable en]0,2[, donde

$$f'(x) = \begin{cases} 1, & \text{si } 0 \le x < 1 \\ 1, & \text{si } x = 1 \\ x, & \text{si } 1 \le x \le 2 \end{cases}$$

La derivada f'(1) se calculo por definición. Luego, se cumplen las condiciones del Teorema del valor medio en virtud de lo cual existe 5

$$x_0 \in]0,2[$$
 tal que $f'(x_0)=\frac{f(2)-f(0)}{2-0}=\frac{\frac{5}{2}-0}{2}=\frac{5}{4}.$ En este caso se obtiene $x_0=\frac{5}{4}.$

Sea $f:]-1,1[
ightarrow\mathbb{R}$ una función derivable. Si $\lim_{x
ightarrow0}f'(x)=L$, entonces demuestre que L = f'(0).

Ejercicio

Un automovilista que viaja de Lima a Cañete hace 1 hora con 50 minutos. La distancia entre estas ciudades es de 240 kilómetros. Si el límite de velocidad es de 110 km/hr, ¿debe o no ser multado el conductor?

Teorema (Valor medio generalizado)

Sean $f,g:[a,b]\to\mathbb{R}$ funciones reales tales que:

- lacksquare f y g son continuas en [a,b].
- lacksquare f y g son derivables en]a,b[.
- $g(a) \neq (b).$
- $g'(x) \neq 0$ para todo x]a, b[.

Luego, existe $x_0 \in]a,b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$$

Sea $h(x): [a,b] \to \mathbb{R}$ la función definida por

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(x) - g(a)), \forall x \in [a, b]$$

La función h es continua en $\left[a,b\right]$ y derivable en $\left]a,b\right[$, donde

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x), \forall x \in]a, b[$$

Teorema del valor medio generalizado

Demostración.

Luego, por el Teorema de Rolle existe $x_0 \in]a,b[$ tal que $h'(x_0) = 0$, esto es

$$f'(x_0) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x_0) = 0$$

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Sesión 01

- 1 Teorema de Rolle
- 2 Teorema del valor intermedio
 - Teorema del valor medio generalizado
- 3 Corolarios del teorema del valor medio
- 4 Referencias

Sea $f: I \to \mathbb{R}$ una función definida en un intervalo $I \subset \mathbb{R}$ tal que para cada $x \in I$, f'(x) = 0. Luego, f es constante en I.

Sean $a,x\in I$ con $[a,x]\subset I$. Como para cada $t\in I, f'(t)=0$ y $[a,x]\subset I$, entonces f'(t)=0, para cada $t\in [a,x]$. Esto implica que f es continua en [a,x] y derivable en]a,x[. Por el teorema del valor medio existe $t_0\in]a,x[$ tal que

$$f'(t_0) = \frac{f(x) - f(a)}{x - a} = 0,$$

lo cual implica que f(x) - f(a) = 0, es decir, f(x) = f(a).

Corolario

Sea f y g funciones derivables en un intervalo I tales que para cada $x \in I$, f'(x) = g'(x). Luego, existe $C \in \mathbb{R}$ tal que

$$f(x) = g(x) + C, \quad \forall x \in I.$$

Es decir f y g se diferencian por una constante.

Sea $h:I\to\mathbb{R}$ la función definida por

$$h(x) = f(x) - g(x), \quad \forall x \in I.$$

Es claro que para cada $x \in I, h'(x) = 0.$

Por el corolario anterior existe $C \in \mathbb{R}$ tal que h(x) = C, $\forall x \in I$, lo que implica que

$$f(x) = g(x) + C, \quad \forall x \in I.$$

Sesión 01

- 1 Teorema de Rolle
- 2 Teorema del valor intermedio
 - Teorema del valor medio generalizado
- 3 Corolarios del teorema del valor medio
- 4 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

