Understanding the Foundations of TensorFlow

INTRODUCING TENSORFLOW

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Introduce TensorFlow(TF), a language for numerical computations

Understand the basics of machine learning, deep learning and neural networks

Learn why TF is slowly becoming the default library for ML

Install and set up TensorFlow on your local machine

What You Need in Your Toolkit

Prerequisites

Familiarity with the command line on a Mac, Linux or Windows machine

Comfortable with writing programs in Python

Install and Setup

The latest version of TensorFlow 1.2rc0

A compatible version of Python, version 2.7 and 3.x

A Mac, Linux or Windows machine on which TensorFlow can be installed

Course Overview

Introduction to TensorFlow, install and set up

Basics of TensorFlow, computation graphs, tensors, sessions and TensorBoard

Fundamentals of TensorFlow, placeholders, variables, the feed dictionary

Working with images, representing RGB and grayscale images, image operations

Machine Learning with TensorFlow, identifying handwritten digits in the MNIST dataset using the nearest neighbors algorithm

Understanding Machine Learning

Machine Learning

Find patterns

Make intelligent decisions

A machine learning algorithm is an algorithm that is able to learn from data

Machine Learning

Emails on a server

Spam or Ham?

Trash or Inbox

Machine Learning

Images represented as pixels

Identify edges, colors, shapes

A photo of a little bird

Types of Machine Learning Problems

Classification

Regression

Clustering

Rule-extraction

Types of Machine Learning Problems

Classification

Regression

Clustering

Rule-extraction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Rule-based Binary Classifier

ML-based Binary Classifier

ML-based Binary Classifier

Corpus

Classification Algorithm

ML-based Binary Classifier

ML-based

Rule-based

Dynamic

Static

Experts optional

Experts required

Corpus required

Corpus optional

Training step

No training step

Feature Vectors The attributes that the ML algorithm focuses on are called features

Each data point is a list - or vector - of such features

Thus, the input into an ML algorithm is a feature vector

"Traditional" ML-based systems still rely on experts to decide what features to pay attention to

"Representation" ML-based systems figure out by themselves what features to pay attention to

Understanding Deep Learning

"Representation" ML-based systems figure out by themselves what features to pay attention to

Corpus

Classification Algorithm

Corpus

Feature Selection by Experts

Classification Algorithm

Corpus

Feature Selection by Experts

Classification Algorithm

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm Classification Algorithm

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm Classification Algorithm

"Representation" ML-based Binary Classifier

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm

Classification Algorithm

"Deep Learning" systems are one type of representation systems

Deep Learning and Neural Networks

Deep Learning and Neural Networks

Deep Learning

Algorithms that learn what features matter

Neural Networks

The most common class of deep learning algorithms

Neurons

Simple building blocks that actually "learn"

"Deep Learning"-based Binary Classifier

Corpus of Images

Feature Selection & Classification Algorithm

"Deep Learning"-based Binary Classifier

Corpus of Images

"Visible layer"

"Deep Learning"-based Binary Classifier

Corpus of Images

"Hidden Layers"

Neural Networks Introduced

Corpus of Images

Layers in a neural network

Neural Networks Introduced

Corpus of Images

Each layer consists of individual interconnected neurons

Neural networks help find unknown patterns in massive data sets

TensorFlow for Machine Learning

TensorFlow™ is an open source software library for numerical computation using data flow graphs.

TensorFlow™ is an open source software library for numerical computation using data flow graphs.

TensorFlow[™] is an open source software library for numerical computation using data flow graphs.

TensorFlow[™] is an open source software library for numerical computation using data flow graphs.

Advantages of TensorFlow

Distributed

Runs on a cluster or machines or multiple CPUs/GPUs on the same machine

Suite of software

TensorFlow,
TensorBoard,
TensorFlow Serving

Uses

Strengths

Challenges

Uses

Research and development of new ML algorithms

Taking models from training to production

Large scale distributed models

Models for mobile and embedded systems

Strengths

Easy to use, stable Python API
Runs on large as well small systems
Efficient and performant
Great support from Google

Additional tools like TensorBoard and TensorFlow serving

Challenges

Distributed support still has a ways to go

Libraries still being developed

Writing custom code is not straightforward

TensorFlow is on its way to becoming the default library for machine learning

The TensorFlow World

Everything is a Graph

A network

Everything is a Graph

Everything is a Graph

Tensors Flow Through the Graph

...and get transformed along the way

Tensors Flow Through the Graph

TensorFlow

Demo

Download and install TensorFlow on your local machine

Validate that the TensorFlow libraries work and can be referenced

Summary

Learnt the basics of machine learning, deep learning and neural networks

Understood the strengths and challenges of using TensorFlow for ML

Understood the modeling of problem as a computational graph

Got TensorFlow up and running on your local machine