Dokumentacja

Aplikacji do rozpoznawania języka migowego zrealizowanej w ramach zajęć

Inżynierii oprogramowania

w semestrze zimowym roku akademickiego 2024/2025

Patrycja Sapko Izabela Jesionowska

1. Charakterystyka oprogramowania

Nazwa skrócona: SE

Nazwa: SignEase – połączenie słów "sign" (gest) i "ease" (łatwość), co sugeruje łatwość w nauce i komunikacji w języku migowym.

Krótki opis ze wskazaniem celów: Aplikacja służy do rozpoznawania znaków języka migowego w czasie rzeczywistym przy użyciu kamery internetowej. System wykorzystuje techniki uczenia maszynowego i przetwarzania obrazu do identyfikacji gestów wykonywanych przez użytkownika.

- Umożliwienie rozpoznawania znaków języka migowego w czasie rzeczywistym
- Stworzenie bazy danych gestów języka migowego
- Zapewnienie możliwości trenowania modelu na podstawie własnych przykładów
- Ułatwienie komunikacji z osobami posługującymi się językiem migowym
- Wsparcie procesu nauki języka migowego poprzez natychmiastową informację zwrotną

2. Prawa autorskie

Autorzy:

- Patrycja Sapko
- Izabela Jesionowska

Warunki licencyjne:

Biblioteka	Licencja
OpenCV	Apache 2.0
MediaPipe	Apache 2.0
PyQt5	GPL v3
NumPy	BSD
scikit-learn	BSD 3-Clause
pygame	LGPL

Zgodnie z warunkami licencji GPL v3 (ze względu na wykorzystanie PyQt5), cały projekt musi być udostępniany na tej samej licencji.

3. Specyfikacja wymagań

Wymagania funkcjonalne:

- 1. Zarządzanie danymi treningowymi:
 - Możliwość dodawania nowych znaków do bazy danych
 - Zbieranie obrazów treningowych poprzez kamerę
 - Etykietowanie zebranych danych
- 2. Trening modelu:
 - Przetwarzanie zebranych danych obrazowych
 - Ekstrakcja cech charakterystycznych gestów
 - Trenowanie klasyfikatora Random Forest
 - Zapisywanie wytrenowanego modelu
- 3. Rozpoznawanie znaków:
 - Przechwytywanie obrazu z kamery w czasie rzeczywistym
 - Detekcja i śledzenie dłoni
 - Klasyfikacja wykrytych gestów
 - Wyświetlanie rozpoznanych znaków na ekranie
 - Odtwarzanie dźwięku odpowiadającego rozpoznanemu znakowi
- 4. Interfejs użytkownika:
 - Przycisk do rozpoczęcia rozpoznawania
 - Funkcja dodawania nowych znaków
 - Opcja trenowania modelu
 - Wskaźnik postępu podczas trenowania
 - Wyświetlanie komunikatów o błędach i statusie operacji

Identyfikator	WF.1
Nazwa	Zarządzanie danymi treningowymi
Opis	System umożliwia zbieranie i zarządzanie danymi treningowymi poprzez nagrywanie i etykietowanie gestów języka migowego.
Priorytet	1

Identyfikator	WF.1.1
Nazwa	Dodawanie nowego znaku
Opis	System umożliwia dodanie nowego znaku do bazy danych poprzez nagranie serii gestów przy użyciu kamery.
Priorytet	1

Identyfikator	WF.1.2
Nazwa	Zbieranie obrazów treningowych
Opis	System automatycznie zapisuje serię zdjęć podczas nagrywania nowego znaku, tworząc bazę danych treningowych.
Priorytet	1

Identyfikator	WF.2
Nazwa	Trening modelu
Opis	System przetwarza zebrane dane i trenuje model uczenia maszynowego do rozpoznawania gestów.
Priorytet	1

Identyfikator	WF.3
Nazwa	Rozpoznawanie znaków w czasie rzeczywistym
Opis	System w czasie rzeczywistym analizuje obraz z kamery i rozpoznaje wykonywane gesty języka migowego.
Priorytet	1

Identyfikator	WF.3.1
Nazwa	Informacja dźwiękowa
Opis	System odtwarza dźwiękowy komunikat odpowiadający rozpoznanemu znakowi.
Priorytet	2

Wymagania pozafunkcjonalne

- 1. Wydajność:
 - Rozpoznawanie znaków w czasie rzeczywistym (min. 15 FPS)
 - Czas odpowiedzi interfejsu użytkownika poniżej 100ms
 - Obsługa minimum 100 różnych znaków
- 2. Niezawodność:
 - Logowanie błędów i zdarzeń do pliku
 - Obsługa wyjątków i błędów
 - Zabezpieczenie przed utratą danych podczas treningu
- 3. Użyteczność:
 - Intuicyjny interfejs użytkownika
 - Czytelne komunikaty o błędach
 - Wizualna informacja zwrotna podczas rozpoznawania
- 4. Kompatybilność:
 - Wsparcie dla systemów Windows
 - Kompatybilność z większością kamer internetowych
- 5. Bezpieczeństwo:
 - Lokalne przetwarzanie danych
 - Bezpieczne zapisywanie danych treningowych
 - Ochrona przed nieautoryzowanym dostępem do modelu

Identyfikator	WN.1
Nazwa	Wydajność rozpoznawania
Opis	System musi działać w czasie rzeczywistym z minimalną częstotliwością 15 klatek na sekundę.
Priorytet	1

Identyfikator	WN.2
Nazwa	Dokładność rozpoznawania
Opis	System musi osiągać dokładność rozpoznawania gestów na poziomie minimum 85%.
Priorytet	1

Identyfikator	WN.3
Nazwa	Niezawodność
Opis	System musi działać stabilnie przez minimum 8 godzin ciągłej pracy.
Priorytet	2

Identyfikator	WN.4
Nazwa	Logowanie zdarzeń
Opis	System musi zapisywać wszystkie istotne zdarzenia i błędy w pliku logów.
Priorytet	2

4. Architektura oprogramowania

Architektura rozwoju

Python i Podstawowe Biblioteki

• Nazwa: Python

• Przeznaczenie: Język programowania wykorzystywany jako podstawa aplikacji

• Wersja: 3.x

Biblioteki do Przetwarzania Obrazu i ML

Nazwa: OpenCV (cv2)

• Przeznaczenie: Przechwytywanie i przetwarzanie obrazu z kamery

• Wersja: 4.x

• Nazwa: MediaPipe

• Przeznaczenie: Detekcja i śledzenie punktów charakterystycznych dłoni

• Wersja: Latest stable

Nazwa: NumPy

• Przeznaczenie: Operacje na macierzach i tablicach wielowymiarowych

• Wersja: Latest stable

• Nazwa: scikit-learn

 Przeznaczenie: Implementacja algorytmów uczenia maszynowego (Random Forest Classifier)

• Wersja: Latest stable

Interfejs Użytkownika

Nazwa: PyQt5

• Przeznaczenie: Framework GUI

• Wersja: 5.x

System Dźwięku

Nazwa: Pygame

• Przeznaczenie: Odtwarzanie dźwięków dla rozpoznanych znaków

• Wersja: Latest stable

Przechowywanie Danych

• Nazwa: pickle

• Przeznaczenie: Serializacja modelu ML i danych treningowych

• Wersja: Wbudowany w Python

Architektura uruchomieniowa

Wymagania Systemowe

System operacyjny: Windows/Linux/MacOS

Minimalna pamięć RAM: 4GB

• Procesor: Multi-core CPU

• Kamera internetowa: Wymagana

Wymagane Komponenty

- Python 3.x Runtime Environment
- Sterowniki kamery internetowej
- Zainstalowane biblioteki:
 - o OpenCV
 - o MediaPipe
 - NumPy
 - o scikit-learn
 - o PyQt5
 - o Pygame

Struktura katalogów:

- data dane treningowe
- sounds pliki dźwiękowe
- model.p wytrenowany model
- data.pickle przetworzone dane treningowe
- models zapisane modele
- logs pliki logów
- migowy.py główny plik aplikacji

Przepływ danych

Zbieranie danych:

Kamera -> Przechwytywanie obrazu -> Detekcja dłoni -> Ekstrakcja cech -> Zapis do bazy danych

Trening modelu:

➤ Baza danych -> Preprocessing -> Trening klasyfikatora -> Zapisany model

Rozpoznawanie:

Kamera -> Detekcja dłoni -> Ekstrakcja cech -> Klasyfikacja -> Wyświetlenie wyniku -> Odtworzenie

Proces wdrożenia

- 1. Instalacja Pythona i wymaganych bibliotek
- 2. Konfiguracja środowiska:
 - Utworzenie katalogów dla danych treningowych
 - Konfiguracja parametrów kamery
 - Ustawienie ścieżek do plików dźwiękowych
- 3. Uruchomienie aplikacji:
 - Wiersz poleceń
 - python Migowy.py

5. Testy

Identyfikator	INIT-001
Nazwa scenariusza	Sprawdzenie poprawności uruchomienia aplikacji
Kroki	Uruchom aplikację. Sprawdź czy interfejs GUI się wyświetla. Zweryfikuj obecność wszystkich przycisków.
Oczekiwany rezultat	Aplikacja uruchamia się bez błędów, wszystkie elementy GUI są widoczne

Identyfikator	ADD-001
Nazwa scenariusza	Sprawdzenie funkcjonalności dodawania nowego znaku do bazy danych
Kroki	Kliknij "Dodaj znak". Wprowadź etykietę znaku. Wykonaj serię gestów przed kamerą.
Oczekiwany rezultat	100 zdjęć zostaje zapisanych w odpowiednim katalogu.

Identyfikator	TRAIN-001
Nazwa scenariusza	Weryfikacja procesu trenowania modelu
Kroki	Kliknij "Analizuj i trenuj model". Poczekaj na zakończenie procesu. Sprawdź komunikat o wynikach.
Oczekiwany rezultat	Model zostaje wytrenowany, wyświetlone zostają statystyki sukcesu

Identyfikator	RECOG-001
Nazwa scenariusza	Sprawdzenie funkcjonalności rozpoznawania znaków
Kroki	Kliknij "Rozpoznawanie". Wykonaj znany modelowi gest. Sprawdź czy znak został rozpoznany
Oczekiwany rezultat	Aplikacja poprawnie rozpoznaje gest i wyświetla etykietę

Sprawozdanie z wykonania Testów

Test INIT-001

- Status: PASS
- Uwagi: Interfejs uruchamia się poprawnie na wszystkich testowanych systemach operacyjnych
- Znalezione problemy: Brak

Test ADD-001

- Status: PASS
- Uwagi:
 - o Proces przebiega zgodnie z oczekiwaniami
 - o Zdjęcia są zapisywane w odpowiedniej strukturze katalogów
- Znalezione problemy:
 - o Czasami występują problemy z detekcją dłoni w słabym oświetleniu

Test TRAIN-001

- Status: PASS
- Uwagi:
 - o Proces trenowania działa poprawnie
 - Wyświetlany jest pasek postępu
 - o Generowany jest raport z procesu trenowania
- Znalezione problemy:
 - o Przy bardzo dużej liczbie zdjęć proces może być czasochłonny

Test RECOG-001

- Status: PASS
- Uwagi:
 - o Rozpoznawanie działa w czasie rzeczywistym
 - o Etykiety są wyświetlane na obrazie z kamery
 - Dźwięki są odtwarzane poprawnie
- Znalezione problemy:
 - o Czasami występują fałszywe rozpoznania przy szybkich ruchach
 - o Może wystąpić opóźnienie w odtwarzaniu dźwięku

Ogólne Wnioski z Testów

- 1. Aplikacja działa stabilnie i spełnia podstawowe wymagania funkcjonalne
- 2. Główne problemy związane są z warunkami oświetleniowymi i szybkością ruchów
- 3. Zalecane jest przeprowadzenie dodatkowych testów w różnych warunkach oświetleniowych