Lösung 2

u_1u_2	$x_1x_2x_3x_4x_5$	$Q(\vec{u})$
00	$1\ 0\ 0\ 1\ 1$	0,3
01	$1\ 1\ 0\ 0\ 0$	0,2
10	$1\ 0\ 1\ 0\ 0$	0,2
11	00111	0,3

a)
$$d = \min D(\vec{x}_i, \vec{x}_j), \quad i \neq j$$

$$D(\vec{x}_1, \vec{x}_2) = D(10011, 11000) = 3$$

$$D(\vec{x}_1, \vec{x}_3) = D(10011, 10100) = 3$$

$$D(\vec{x}_1, \vec{x}_4) = D(10011, 00111) = 2$$

$$D(\vec{x}_2, \vec{x}_3) = D(11000, 10100) = 2$$

$$D(\vec{x}_2, \vec{x}_4) = D(11000, 00111) = 5$$

$$D(\vec{x}_4, \vec{x}_5) = D(10100, 00111) = 3$$

$$\Rightarrow d = 2$$

b) Es wurde die eventuell gestörte Symbolfolge \vec{y} empfangen. Zur Decodierung wird das Codewort \vec{x}_i gewählt, welches die Verbundwahrscheinlichkeit $p(\vec{x}_i, \vec{y})$ maximiert.

$$max_{\vec{x}_i} \ p(\vec{x}_i, \vec{y})$$

$$= max_{\vec{x}_i} \ p(\vec{y} | \vec{x}_i) p(\vec{x}_i)$$

$$= max_{\vec{x}_i} \ p(\vec{y} | \vec{x}_i) Q(\vec{u}_i)$$

Die empfangene Symbolfolge laute $\vec{y} = 11010$.

$$p(\vec{y}, \vec{x}_1) = p^2 (1 - p)^3 \cdot 0, 3$$

$$p(\vec{y}, \vec{x}_2) = p(1 - p)^4 \cdot 0, 2$$

$$p(\vec{y}, \vec{x}_3) = p^3 (1 - p)^2 \cdot 0, 2$$

$$p(\vec{y}, \vec{x}_4) = p^4 (1 - p) \cdot 0, 3$$

Da $p \leq 0, 5$, gilt $p(\vec{y}, \vec{x}_1) \geq p(\vec{y}, \vec{x}_4)$ und $p(\vec{y}, \vec{x}_2) \geq p(\vec{y}, \vec{x}_3)$. Wir müssen also nur noch die Codewörter \vec{x}_1 und \vec{x}_2 betrachten.

$$p(\vec{y}, \vec{x}_1) > p(\vec{y}, \vec{x}_2)$$

$$\Rightarrow p^2 (1 - p)^3 \cdot 0, 3 > p(1 - p)^4 \cdot 0, 2$$

$$\Rightarrow p \cdot 0, 3 > (1 - p) \cdot 0, 2$$

$$\Rightarrow p \cdot 0, 5 > 0, 2$$

$$\Rightarrow p > 0, 4$$