WATER PROBE AND RAINFALL SENSOR UPDATE

Keith Matthews

College of Engineering and Computing

RAINFALL SENSOR

- Case
- Electronics
- Issues
 - Vibrations
 - Increased variance during the day
 - Out of range

PIEZOELECTRIC RAINFALL SENSOR

- Conversion Factor
- Piezo: measurement mV
 - Deflection- caused by Force
- Need "Velocity" inches per hour
- Mathematical(ish)
 - Voltage = Energy per electrical charge ~ Energy (constant amperes)
 - Voltage ~ K.E. = (assume terminal velocity)
 - Velocity
- Statistically
 - Linear Regression:

AUTO RIGHTING

It is auto righting!

WATERPROOF

- Mostly: only one leak
- Small imperfection in base print causing leak
- Higher quality prints take days
 - Still not guaranteed
- Waterproof Electronics box

MEASURING NITRATES

- Chemical Test: Ring Test (iron(II) sulfate and sulfuric acid)
- In Situ with UV absorption?
 - Servo: to move the diffuser
 - Monochromator
 - Source (Sun?)
 - Detector (photosensor)
- Measurement range
- Detect other materials in the water?

Parameter	Sensor type	Possible spill / hazard	Sampling method
Water level	Ultrasound	All	in situ
Rain fall	Acoustic	All	in situ
pH	pH-sensitive electrode	Mine tailing / coal ash	in situ
Salinity	Electrical conductivity	Mine tailing / coal ash	in situ
Ionic strength	Calculated using conductivity and PH	Chemical Spill	in situ
Dissolved oxygen	Dynamic Luminescence Quenching	Organic matter	in situ
Total dissolved solids	Electrical conductivity	Suspended particulate matter	both
Nitrate	UV Absorption (nm) Spectroscopy	Agricultural runoff	sample return
Gadolinium	Nuclear Magnetic Resonance	Human sewage spills	sample return
Algae	Machine vision	Harmful algal plumes	in situ

NEXT STEPS

- Rainfall
 - Case V1
 - Regression Equation
 - Mounting System
- Water Probe
 - Case V3
 - Field testing
 - Test Sensor System

SOURCES

- https://pubs.rsc.org/en/content/articlelanding/2018/en/c8en0058 8e#!divAbstract
- http://www.pitt.edu/~asher/homepage/spec_pdf/UV%20Resona nce%20Raman%20Spectroscopic%20Detection%20of%20Nitra te.pdf
- https://www.shimadzu.com/an/uv/support/fundamentals/monoch romators.html

DISSOLVED OXYGEN

BATTERY

- Samsung cylinder batteries?
 - Stackable
 - Flexible design
 - One charger for all
- LiPo
- Charging?
- Replacing

TABLE OF PARAMETERS

Parameter	Sensor type	Possible spill / hazard	Sampling method
Water level	Ultrasound	All	in situ
Rain fall	Acoustic	All	in situ
рН	pH-sensitive electrode	Mine tailing / coal ash	in situ
Salinity	Electrical conductivity	Mine tailing / coal ash	in situ
Ionic strength	Calculated using conductivity and PH	Chemical Spill	in situ
Dissolved oxygen	Dynamic Luminescence Quenching	Organic matter	in situ
Total dissolved solid	s Electrical conductivity	Suspended particulate matter	both
Nitrate	UV Absorption (nm) Spectroscopy	Agricultural runoff	sample return
Gadolinium	Nuclear Magnetic Resonance	Human sewage spills	sample return
Algae	Machine vision	Harmful algal plumes	in situ

PACKAGE CONDITIONS

3 PACKAGES

- Above water package
 - Currently the water height sensor package
 - Add camera for algae machine vision detection capabilities
- In water package
 - Under development
- Open air package
 - Testing/development

PROBE SWAP

- Easier
- Eliminates Docking

MEASURING NITRATES

- Chemical Test: Ring Test (iron(II) sulfate and sulfuric acid)
- In Situ with UV absorption?
 - Servo: to move the diffuser
 - Monochromator
 - Source (Sun?)
 - Detector (photosensor)
- Measurement range
- Detect other materials in the water?

Parameter	Sensor type	Possible spill / hazard	Sampling method
Water level	Ultrasound	All	in situ
Rain fall	Acoustic	All	in situ
pH	pH-sensitive electrode	Mine tailing / coal ash	in situ
Salinity	Electrical conductivity	Mine tailing / coal ash	in situ
Ionic strength	Calculated using conductivity and PH	Chemical Spill	in situ
Dissolved oxygen	Dynamic Luminescence Quenching	Organic matter	in situ
Total dissolved solids	Electrical conductivity	Suspended particulate matter	both
Nitrate	UV Absorption (nm) Spectroscopy	Agricultural runoff	sample return
Gadolinium	Nuclear Magnetic Resonance	Human sewage spills	sample return
Algae	Machine vision	Harmful algal plumes	in situ

NITRATES

- Determination of Nitrate in Water Containing Dissolved Organic Carbon by Ultraviolet Spectroscopy
- 200-205 nm & 300 nm
- 2 wavelengths avoid organic intereference

DISSOLVED OXYGEN

- Rapid and precise determination of dissolved oxygen by spectrophotometry: Evaluation of interference from color and turbidity
- 430nm
- Low organic interference

UV ABSORPTION

- Sample return
 - Easiest
- Fixed wavelengths
 - Nitrates only
- Spectrum
 - Moving parts
 - accuracy
 - Slit size precision

BATTERY

- Samsung cylinder batteries?
 - Stackable
 - Flexible design
 - One charger for all
- LiPo
- Charging?
- Replacing

DATA

- USGS only registered 0.02 in rainfall event
- USGS records rainfall for every quarter hour
- Very windy
- Increase sample size decrease the sample rate

REDESIGN TOP PIECE

- Deformation internal electrode holder
 - Due to heat
 - Make thicker and connect
- Reciprocal Function
 - V=IR = I*(1/H)
 - Flatten the curve
 - Increase the current
 - Angle the electrodes?

NEW TOP

- Issues
 - Want resolution
 - Want a better capture ratio
 - Disrupted due to wind and drone docking port
- Funnel intake
 - Increase SA?
 - · Better for wind events
 - Reduced Height?
- Magnetic mount area
 - Ferrous steel
 - 400 grade SS
 - Mesh

NEW TOP

- Reduced overall height (reduction of 40mm)
- Easier assembly
- Internal wiring
- More accurate data (ratio of ~16:1)

CAPACITANCE

- Starting capacitance of 11.2768 pF (for rainfall of 0.01 in at a separation of 1mm)*
- Issue: Arduino can measure down to 100 nF*
- How to fix the issue
 - Different circuit?
 - Increase intake ratio
 - Change to PCB sensor (coat with a material)

RAINFALL SENSOR

- No moving parts
- High accuracy: drop counting
- Counts individual drops per area
- Converted to inches/hour
- Water drains out the bottom

