Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 2019

Instructor: Dr. Sateesh Mane

Quiz 1 Spring 2019
Thursday Feb. 21, 2019 (in class questions)
Sunday Feb. 24, 2019, 11:59 pm (take home questions)

- <u>NOTE</u>: It is the policy of the Computer Science Department to issue a failing grade to any student who either gives or receives help on any test.
- This test is partly in class and partly take home (see below for instructions about the take-home part).
- The in-class part of the test is **open-book**.
- Once you leave the classroom, you cannot come back to the in-class test.
- Any problem to which you give two or more (different) answers receives the grade of zero automatically.
- Submit your solution in the envelope provided, with your name and student id on the cover.
 - 1. Write your answers in the blue book provided, with your name and student id on the cover of the blue book.
 - 2. If you require extra sheets of paper, write your name and student id at the top of each page and place the sheets in the envelope provided.
 - 3. Answers must be written in legible handwriting: a failing grade will be awarded if the examiner is unable to decipher your handwriting.
- Some questions require you to perform computations using a computer program.
 - 1. You are permitted to use Excel on your computer, and/or a pocket calculator.
 - 2. If you use software such as MatLab or Wolfram Alpha, etc., state the software package you use.
 - 3. It is permitted to use MatLab or Wolfram Alpha, etc., but you must state the name of the software.
- The take home part of this test requires you to write program code.
- All program code for this test must be written in C++.
- Submit your program code via email, as a file attachment, to Sateesh.Mane@qc.cuny.edu.

```
StudentId_first_last_CS365_quiz1_Spring2019.zip StudentId_first_last_CS765_quiz1_Spring2019.zip
```

• For students who have submitted program code as a solution for HW2, your code will be accepted as satisfying the requirement for the take home part of this quiz.

Student id and parameters

- The following numbers will be employed in the questions below.
- Define the integers d_1, d_2, \dots, d_8 as the digits of your student id:

(your student id) =
$$d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8$$
. (0.1)

- Hence $0 \le d_i \le 9$ for $i = 1, \dots, 8$.

$$\beta = (\text{your student id}) \times 10^{-8}$$
. (0.2)

- Hence $0 < \beta < 1$.
- Example: if your student id is 12305670, then

$$d_1=1\,,\quad d_2=2\,,\quad d_3=3\,,\quad d_4=0\,,\quad d_5=5\,,\quad d_6=6\,,\quad d_7=7\,,\quad d_8=0\,,$$

$$\beta=0.12305670\,.$$

1 Question 1 (in class)

- A cashflow F_1 at time t_1 has a present value of F_0 at time t_0 (= today).
- The times are measured in years, so $t_1 t_0 = 1$ means a time interval of 1 year.
- Let d denote the discount factor of the above cashflows, i.e. F_1 discounted from t_1 to t_0 .
- Let r be the corresponding interest rate (measured in percent).
- Let $F_0 = 100 + d_1$, $F_1 = 110 + d_2$, $t_0 = 0$ and $t_1 = 1 + \beta$.
 - 1. Calculate the value of d to four decimal places.
 - 2. Calculate the value of r as a percentage to two decimal places.
 - 3. You may employ Excel or a pocket calculator, etc. to answer this question.

2 Question 2 (in class)

- A cashflow F_1 at time t_1 has a present value of F_0 at time t_0 (= today).
- The times are measured in years, so $t_1 t_0 = 1$ means a time interval of 1 year.
- Let d denote the discount factor of the above cashflows, i.e. F_1 discounted from t_1 to t_0 .
- Let r be the corresponding interest rate (measured in percent).
- Write a C++ function to calculate the discount factor d and interest rate r, given inputs F_0 , F_1 , t_0 and t_1 .
- The output value of r must be expressed as a percentage.
- The function signature is

```
int df_and_r(double F0, double F1, double t0, double t1, double &df, double &r);
```

- The function return type is int because we want some validation checks.
 - 1. If $t_1 t_0$ equals zero, set d = 0 and r = 0 and exit with a return value -1.
 - 2. If $F_0 \leq 0$ or $F_1 \leq 0$, set d = 0 and r = 0 and exit with a return value -2.
 - 3. If everything is fine, then calculate d and r and exit with a return value 0.

3 Question 3 (in class)

- Consider a bond with a maturity of four years.
- Suppose the bond pays semiannual coupons (two coupons per year).
- Hence the coupons are paid at times $t_i = 0.5, 1.0, \ldots 4.0$.
- Let the bond face be F and the annualized coupon rates be c_1, \ldots, c_8 and the yield be y.
- The face value of the bond is F = 100.
- The coupon values are given by the digits of your student id, i.e. $c_i = d_i$.
- The current time is $t_0 = 0.5 + \beta$.
- Fill in the table below with the values of B(y) (answers to two decimal places).

y (%)	B(y)
0	(2 d.p.)
2	(2 d.p.)
4	(2 d.p.)
6	(2 d.p.)
8	(2 d.p.)
10	(2 d.p.)

- Let the market price of the bond be $B_{\text{market}} = 100 + \beta$.
- Denote the yield corresponding to B_{market} be y_* .
 - 1. State which pair (y, y + 2) gives a lower and upper bound for y_* .
 - 2. Call these values y_{low} and y_{high} , so $y_{\text{high}} = y_{\text{low}} + 2$ and define $y_{\text{mid}} = (y_{\text{low}} + y_{\text{high}})/2.0$.
 - 3. Calculate the bond price $B(y_{\text{mid}})$.
 - 4. State the updated values of y_{low} and y_{high} for the next iteration step.
 - 5. Calculate the updated value of y_{mid} and the updated bond price $B(y_{\text{mid}})$.
 - 6. STOP. No credit will be awarded if you attempt to iterate further.

4 Question 4 (take home)

- Write the Bond class given in HW2.
- Submit your code in a zip archive following the instructions on the front page of this test.