Aproximación Numérica de Ecuaciones Diferenciales de Segundo Orden

Coordinación de Ecuaciones Diferenciales y Métodos Numéricos, DMCC

 Tema 6: Métodos Numéricos para resolver ecuaciones diferenciales de segundo orden.

DMCC, Facultad de Ciencia, USACH

E.D.O. de orden superior

Una ecuación diferencial de orden n

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x))$$

se puede expresar como un sistema de n ecuaciones de primer orden al definir

$$\mathbf{z}(\mathbf{x}) = \begin{pmatrix} z_1(\mathbf{x}) \\ z_2(\mathbf{x}) \\ \vdots \\ z_n(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} y(\mathbf{x}) \\ y'(\mathbf{x}) \\ \vdots \\ y^{(n-1)}(\mathbf{x}) \end{pmatrix}.$$

En efecto,

$$\mathbf{z}'(x) = \begin{pmatrix} y'(x) \\ y''(x) \\ \vdots \\ y^{(n)}(x) \end{pmatrix} = \begin{pmatrix} z_2(x) \\ z_3(x) \\ \vdots \\ f(x, z_1, z_2, \dots, z_n) \end{pmatrix} =: \mathbf{f}(x, \mathbf{z})$$

y luego, $\mathbf{z}'(\mathbf{x}) = \mathbf{f}(\mathbf{x}, \mathbf{z})$ es un sistema de E.D.O. de primer orden al que se pueden aplicar los métodos numéricos vistos.

Por ejemplo, considere la ecuación diferencial de orden dos (n = 2):

$$y''(x) = f(x, y(x), y'(x)).$$

Definamos

$$\mathbf{z}(x) = \begin{pmatrix} z_1(x) \\ z_2(x) \end{pmatrix} = \begin{pmatrix} y(x) \\ y'(x) \end{pmatrix}.$$

se obtiene un sistema de 2 ecuaciones de primer orden, en efecto

$$\mathbf{z}'(x) = \begin{pmatrix} y'(x) \\ y''(x) \end{pmatrix} = \begin{pmatrix} z_2(x) \\ f(x, z_1, z_2) \end{pmatrix} =: \mathbf{f}(x, \mathbf{z})$$

o, en su forma vectorial,

$$\left\{ \begin{array}{ll} \mathbf{z}'(x) = \mathbf{f}(x,\mathbf{z}(x)), & x \in [a,b], \\ \mathbf{z}(a) = \mathbf{z}_0 \ \ (\mathsf{dado}). \end{array} \right.$$

El método de Euler (RK_{11}) se expresa como sigue:

$$\begin{cases} & \mathbf{z}_0: \text{ dato,} \\ & \mathbf{z}_{i+1} = \mathbf{z}_i + hf(x_i, \mathbf{z}_i), \quad i = 0, 1, 2, \dots, N-1. \end{cases}$$

o bien por componentes:

$$\left\{ \begin{array}{l} z_{10}, \ z_{20} \colon \mathsf{datos}, \\ z_{1,i+1} = z_{1,i} + \mathit{hf}_1(x_i, z_{1,i}, z_{2,i}), \\ z_{2,i+1} = z_{2,i} + \mathit{hf}_2(x_i, z_{1,i}, z_{2,i}), \quad i = 0, 1, 2, \dots, N-1. \end{array} \right.$$

Todos los otros métodos numéricos estudiados se pueden formular similarmente en forma vectorial para sistemas.

Ejemplo.

Resolver el P.V.I. para la ecuación del péndulo.

Solución

Considere la dinámica del péndulo que muestra la figura:

$$\begin{cases} \ddot{\theta} + \frac{g}{L} \operatorname{sen} \theta = 0, & t \in [0, 2\pi], \\ \theta(0) = \frac{\pi}{4}, & \dot{\theta}(0) = 0, \end{cases}$$

donde $\dot{\theta}$ y $\ddot{\theta}$ denotan derivadas respecto del tiempo.

Para resolver esta ecuación no lineal (que no tiene solución analítica) debemos hacer el siguiente cambio de variable

$$\theta_1 = \theta, \\
\theta_2 = \dot{\theta}_1,$$

de donde obtenemos el siguiente sistema:

$$\left\{ \begin{array}{l} \dot{\theta}_1 = \theta_2, \\ \dot{\theta}_2 = -\frac{g}{L} \mathrm{sen}(\theta_1), \\ \theta_1(0) = \frac{\pi}{4}, \quad \theta_2(0) = 0. \end{array} \right.$$

Notemos que θ_1 corresponde al ángulo θ y θ_2 a la velocidad angular $\dot{\theta}$.

Aplicaremos el método de RK $_2$ con h=0.1 al sistema anterior para encontrar la solución en t=0.1 seg., consideraremos $g=9.8\,\mathrm{m/s}$ y $L=0.5\,\mathrm{m}$,

Algoritmo (RK2)
Para
$$i = 0, ..., N - 1$$
 $x_i = a + ih$
 $k_1 = hF(x_i, y_i)$
 $k_2 = hF(x_i + h, y_i + k_1)$
 $y_{i+1} = y_i + \frac{1}{2}[k_1 + k_2]$
fin i .

donde

$$\mathbf{x} = \mathbf{t}, \quad \mathbf{y} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, \quad \mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \frac{\theta_2}{t} \\ \frac{\theta_2}{t} \\ \frac{\theta_2}{t} \end{pmatrix}, \quad \mathbf{y}_0 = \begin{pmatrix} \pi/4 \\ 0 \end{pmatrix},$$

Notemos que k₁ y k₂ también son vectores de dimensión 2, en efecto

$$\mathbf{k}_1 = 0.1 \mathbf{F}(0, \mathbf{y}_0) = \begin{pmatrix} 0 \\ -1.385929 \end{pmatrix}, \qquad \mathbf{k}_2 = 0.1 \mathbf{F}(0.1, \mathbf{y}_0 + \mathbf{k}_1) = \begin{pmatrix} -0.1385929 \\ -1.385929 \end{pmatrix},$$

luego

$$\textbf{y}_1 = \textbf{y}_0 + \frac{1}{2}[\textbf{k}_1 + \textbf{k}_2] = \begin{pmatrix} 0.716101 \\ -1.385929 \end{pmatrix}$$

El método de RK₄₄ tiene el siguiente algoritmo:

donde

$$x = t, \quad \mathbf{y} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, \quad \mathbf{F}(x, \mathbf{y}) = \begin{pmatrix} \theta_2 \\ -\frac{\mathbf{g}}{L} \operatorname{sen}(\theta_1) \end{pmatrix}.$$

Notemos que k_1, \ldots, k_4 también son vectores de dimensión 2.

Resolviendo para $g=9.8\,\mathrm{m/s}$ y $L=0.5\,\mathrm{m}$, obtenemos

