

Diffractive Jet Production in DIS - Testing QCD Factorization

hep-ex/0012051, acc. by Eur. Phys. J. C

Frank-Peter Schilling, DESY
H1 Collaboration

DIS 2001, Bologna, April 2001

Motivation

Diffractive DIS: probe colour singlet exch. w/ pointlike γ^* \Rightarrow Determine QCD structure:

Diffractive parton distributions:

Factorization proof for diffr. DIS [Collins]:

$$F_2^D(x,Q^2,x_{I\!\!P},t) \sim C_i \otimes p_i^D \; (+ ext{ higher twist})$$

- Constrain $oldsymbol{g}^{oldsymbol{D}}$ with jets
- Consistent picture from $oldsymbol{F_2^{D(3)}}$ and Jets ?
- $m{x}_{I\!\!P}$ (Regge) factorisation $/ m{lpha}_{I\!\!P}(0)$
- Resolved virtual photon contribution
- Colour dipole / 2-gluon exchange models
- Soft colour neutralization models
- 3-jet production

Kinematics

$$oldsymbol{Q}^2$$
, $oldsymbol{y}$

- Usual DIS variables

M_X

- Invariant mass of $oldsymbol{X}$ system

M_{12}

- Invariant mass of two leading jets

$$x_{I\!\!P}pprox rac{Q^2+M_X^2}{Q^2+W^2}$$

- Momentum fraction carried by colourless exchange

$$z_{I\!\!P}^{(jets)}pprox rac{Q^2+M_{12}^2}{Q^2+M_X^2}$$

- Momentum fraction of exch. entering hard scattering

Data Selection

- DIS Selection: Identification of scattered electron in "backward" calorimeter
- Diffractive Selection: "Rapidity gap" selection: no hadr. activity in "forward" (outgoing p) region (3.2 $< \eta < 7.5$)
- ullet Jet Selection: CDF cone algorithm in $oldsymbol{\gamma^*p} ext{-CMS}, oldsymbol{p_T^*} > 4~\mathrm{GeV}$

$$\mathcal{L}_{\text{int}} = 18.0 \text{pb}^{-1}$$
 $N_{2-\mathrm{Jet}} = 2.500$ $N_{3-\mathrm{Jet}} = 130$

- Correction to stable particle level
- Full assessment of systematic uncertainties

$$egin{aligned} 4 < Q^2 < 80 \ {
m GeV}^2 \ 0.1 < y < 0.7 \ x_{I\!\!P} < 0.05 \ M_Y < 1.6 \ {
m GeV} \ |t| < 1.0 \ {
m GeV}^2 \ N_{
m jets} \geq 2 \ {
m or} \ N_{
m jets} = 3 \ p_{T,jet}^* > 4 \ {
m GeV} \ -3 < \eta_{jet}^* < 0 \end{aligned}$$

General Properties of Dijet Events

- Significant energy not contained in dijets, some preference for **IP** hemisphere
- ullet $M_{12} \ll M_X$ typically
- ⇒ exclusive 2-jets just small part of cross section!

Diffractive Parton Distributions

H1 F_2^D Fits: Hard sc. factorization \otimes Regge factorization: (universality of diffr. PDF's with $\boldsymbol{x}_{I\!\!P}$ [t])

$$m{F}_{2}^{D(4)} = f_{I\!\!P/P}(m{x}_{I\!\!P}, m{t}) \otimes m{F}_{2}^{I\!\!P}(m{eta}, m{Q}^2)$$
 where $m{F}_{2}^{I\!\!P}(m{eta}, m{Q}^2) = \sum_{i} e_{i}^2 q^{I\!\!P}(m{z}, m{\mu}^2)$

Scaling violation analysis of $oldsymbol{F}_2^{D(3)}$ yields parton distributions:

- ⇒ diffr. PDF's strongly dominated by gluons
- \Rightarrow direct access to g^D with diffr. jets!

Consistent with Regge factorization

QCD Factorization @ Work

Predict diffr. dijet cross sections with PDF's obtained from inclusive $m{F}_2^{D(3)}$ measurement:

[resolved γ^* component included]

⇒ Consistent with QCD factorization in diffractive DIS

Diffractive Gluon Distribution

Dijets directly constrain shape and normalization of g^D :

[res. γ^* , $I\!\!R$ and quark contributions small]

- H1 fit 2: very good agreement with data
- H1 fit 3: overshoots at high $z_{I\!\!P}$
- ACTW-D: too high

 \Rightarrow Strong support for fully factorizable diffr. PDF's in DIS which are gluon-dominated with momentum distr. flat in z

Proton rest frame picture: $qar{q}g\gg qar{q}$ states

Features of Diffractive PDF's

H1 Diffractive Dijets

- ullet Data consistent with DGLAP evolution of PDF's with factorization scale $\mu^2=Q^2+p_T^2$
- Also compatible with factorization of $x_{I\!\!P}$ dependence $[f_{I\!\!P/P}(x_{I\!\!P}) \otimes p_i^D(z,\mu^2)]$ No visible variation of $\alpha_{I\!\!P}(0)$ with $z_{I\!\!P}$ [see BEKW]

Energy dependence $\alpha_{I\!\!P}(0)$

Shape of $x_{I\!\!P}$ distribution sensitive to energy dependence of cross section:

Parameterization used:

$$egin{align} f_{I\!\!P/P}(x_{I\!\!P},t) &\sim \left(rac{1}{x_{I\!\!P}}
ight)^{2lpha_{I\!\!P}(t)-1} e^{Bt} \ lpha_{I\!\!P}(t) &= lpha_{I\!\!P}(0) + lpha_{I\!\!P}'t \ \ [B = 4.6 \ {
m GeV}^{-2}, \, lpha_{I\!\!P}' = 0.26 \ {
m GeV}^{-2}] \ \end{array}$$

Fit Result:

$$\alpha_{I\!\!P}(0) = 1.17^{~+0.03}_{~-0.03} \text{ (stat.)} ^{~+0.06}_{~-0.06} \text{ (syst.)} ^{~+0.03}_{~-0.07} \text{ (model)}$$

 \Rightarrow Consistent with H1- $F_2^{D(3)}$ [Q^2 similar]

ullet $oldsymbol{eta}$ distribution: Jets are small $oldsymbol{eta}$, compared with $oldsymbol{F_2^D}$

Resolved Virtual Photon Contribution

Since $Q^2 > 4 \text{ GeV}^2$, $p_T^2 > 16 \text{ GeV}^2$ \Rightarrow Jets can "resolve virtual photon" [expected from inclusive dijet production]

H1 Diffractive Dijets

$$x_{\gamma}^{(jets)}=rac{(E-p_Z)_{jets}}{(E-p_Z)_X}$$

 $oldsymbol{E_{rem}}$ in $oldsymbol{\gamma}^*$ hemisphere

Resolved γ^* contribution according to "SaS-2D" parameterization [Schuler, Sjöstrand]

- $m{\phi}$ $m{x}_{\gamma}^{(jets)}$ cross section: Improvement at low $m{x}_{\gamma}^{(jets)}$ if resolved contribution is added
- ullet Corresponding improvement at high $oldsymbol{E_{rem}^{\gamma}}$

Soft Colour Neutralization

- Soft Colour Interactions SCI (Edin, Ingelman, Rathsman) original version and "generalized area law" (Rathsman)
- Semiclassical Model (Buchmüller, Gehrmann, Hebecker)

H1 Diffractive Dijets

$d\sigma / dp^*$ [pb/GeV] do / dM_x [pb/GeV] 10² 10 8 6 10 4 1 2 0 12 60 4 6 8 10 14 20 40 $p^*_{T,jets} \ [\text{GeV}]$ M_{x} [GeV] 700 dσ / d log₁₀x_{lP} [pb] dσ / dz (jets) [pb] 600 10 ² **≗500** 400 300 10 H1 Data 200

100

0

0.2

0.4

0.6

8.0

z ^(jets) IP

 \Rightarrow Sensitivity to differences between models which all (have been tuned to) describe $F_2^{D(3)}$!

log₁₀x_{IP}

SCI (original)

-1.75 -1.5

-2.25

-2

Dipole / 2-Gluon Exchange Models

Proton rest frame picture: $q\bar{q}$, $q\bar{q}g$ photon fluctuations scatter elastically off proton by 2-gluon exchange

$$egin{aligned} {\sigma_{T,L}^{\gamma^*p} \sim |\Psi_{T,L}(lpha,\mathrm{r})|^2 \ \otimes \ \hat{\sigma}^2(r^2,x,...)} \ \hat{\sigma}(x,\mathrm{r}) \sim \int rac{\mathrm{d}^2\mathrm{k}_t}{k_t^2} \left[1-\mathrm{e}^{i\mathrm{r}\cdot\mathrm{k}}
ight] lpha_s(k_t^2) \ \mathcal{F}(x,k_t^2) \end{aligned}$$

 $[\mathcal{F}(x,k_t^2)$: unintegrated gluon distribution]

- BJLW Model [Bartels et al.]:
 - calculation for high $oldsymbol{p_T}$ diffractive final states
 - $p_{T,g}>p_{T,q}$ included (unordered p_{T})
 - $\mathcal{F}(x,k_T^2)$: Derivative of GRV NLO
- Saturation Model [Golec-Biernat, Wüsthoff]:
 - $p_{T,g} \ll p_{T,q}$ required $(p_T$ ordering)
 - $\mathcal{F}(x,k_T^2)$ parameterized from fit to $F_2(x,Q^2)$

2-Gluon Exchange (II)

 $x_{I\!\!P} < 0.01$

 \Rightarrow avoid $I\!\!R$ exch.; P PDF's g-dominated

H1 Diffractive Dijets - $x_{IP} < 0.01$

- tiny $qar{q}$ contribution
- BJLW ∼ OK if $p_{T,g} > 1.5 \; \mathrm{GeV}$
- Saturation Model too low
- $oldsymbol{p_{T,rem}^{(I\!\!P)}}$ not able to discriminate ;-(

2-Gluon Exchange (III)

Variation of parameters in 2-gluon models:

BJLW Model:

Use $\mathcal{F}(x,k_T^2)$ from Saturation model instead of GRV \Rightarrow gluon parameterization in Saturation model seems very large

• Saturation Model:

Variation of $B=6.0~{
m GeV}^{-2}$ (e^{Bt} , normalization of σ^D) \Rightarrow Close to data if $B=4.0~{
m GeV}^{-2}$, then however $F_2^{D(3)}$ no longer described

3-Jet Production

Features:

- Limited statistics: 130 3-jets for $\mathcal{L} = 18.0 \text{ pb}^{-1}$
- Kinematically forced to $x_{I\!\!P}>0.01$

- Data above LO QCD prediction based on diffr. PDF's if MEPS is used for higher order approximation
- CDM does better job

[Difference MEPS/CDM much smaller for dijets]

• 2-gluon exchange (BJLW) low

Summary and Conclusions

- ullet Diffr. Dijets tightly constrain diffractive gluon distribution $m{g^D}$ (shape and norm.), in contrast to $m{F_2^{D(3)}}$ measurements
- Data favour diffr. PDF's, evolving with DGLAP, strongly dominated by gluons with momentum distribution rel. flat in z ("H1 fit 2")
- ullet Consistent picture from $F_2^{D(3)}$ and jet measurements: Concept of factorizing diffr. PDF's in DIS [Collins] works.
- Consistent with factorizing $x_{I\!\!P}$ dependence with $\alpha_{I\!\!P}(0)=1.17$ ("Regge factorization")
- ullet In P rest frame: $qar q g \gg qar q$ configurations
- SCI and Semiclassical models not yet able to simultaneously give correct shape and normalizations of jet cross sections
- Improved models calculations based on 2-gluon exchange can describe part of dijet cross section