

Nada humano me es ajeno

Complejidad en movilidad

SISTEMA DE TRANSPORTE COLECTIVO

Dr. Fernando Ramírez Alatriste
Universidad Autónoma de la Ciudad de México

¿Los sistemas sociales son sistemas complejos?

Algunas disciplinas que estudian a los sistemas sociales (por escala)

- Humanidades
- Ciencias políticas
- Economía
- Administración
- Sociología
- Antropología
- Psicología

¿Ingeniería del transporte que escala tiene?

Problemas asociados a la movilidad

 Para proponer posibles soluciones a los problemas de tránsito se necesita una integración del conocimiento, desde la psicología, pasando por geografía, economía, urbanismo, física, etc.

Un enfoque de sistemas (¿complejos?).

¿Física?

EXCUSE ME...
WHAT ARE YOU DOING?

¿Los humanos se pueden comportar cómo partículas?

 Sistema social con constricciones fuertes de espacio.

Sistemas complejos

 Enfoque complementario a la forma "analítica" tradicional de hacer ciencia (reduccionismo)

Sistema simple

- ☐ Única causa → único efecto
- Un cambio pequeño en la causa cambio pequeño en el efecto
- Predecible
- Estructuralmente estable

¿Qué es un sistema complejo?

Causalidad circular, circuitos de retroalimentación

- Cambios pequeños en la causa puede implicar cambios drásticos
- Propiedades emergentes

Propiedades emergentes: Auto-organización

 Semáforos autoorganizantes, plática del Dr. Carlos Gershenson

Causalidad Circular

No hay una clara diferenciación entre causa y

efecto

Las soluciones simples casi nunca funcionan

 Es como el juego de rompecabezas numérico, si acomodas una pieza desacomodas otra

¿Cómo me sirve para solucionar problemas del transporte?

 Existen muchas áreas relacionadas al transporte donde se puede aplicar estas herramientas.

Simular vialidades

- Simular comportamientos
- Simular políticas públicas
- Simulación en netlogo ¿se puede generar tráfico en una autopista?-efectos contra intuitivos

Ejemplo: Tráfico Efectos negativos del tráfico

- Perdida del tiempo de los automovilistas y pasajeros
- Como una actividad no productiva para la mayoría de la gente, reduce la salud económica regional
- Desperdicio de combustible, aumenta la contaminación en el aire y las emisiones de dióxido de carbono

Posibles soluciones

• La obvia (¿simple?): reducir el número de coches particulares en circulación.

¿Cómo?

• Que las personas usen más el transporte

público

Buena intención, pero ...

- Implica un transporte público eficiente y de calidad
- Implica dinero, ¿más impuestos?, ¿financiamiento privado? ...

Supongamos

- Que el dinero no es problema
- Podemos comprar todos los vagones de metro necesarios
- ¿Resolvería el problema de retrasos en el metro?

Sistema social complejo

 Debemos de tomar en cuenta muchas variables, situaciones, etc.

Por ejemplo comportamiento humano

(¿mexicano?)

¿Es sólo cuestión de educación?

Respetar señales de tránsito

Campañas televisivas

Posibles explicaciones desde los sistemas complejos

- Simulaciones basada en agentes
- Dinámica de cooperación-competencia: obedecer señales de tránsito.
- Teoría de juegos
- Juego de la minoría
- Simulaciones de vialidades, interacción con bicicletas
- Predicciones de demanda

Conclusiones

- Es necesaria una aproximación interdisciplinaria
- Los sistemas complejos ofrecen un enfoque integrador, que complementa las aproximaciones tradicionales