

Bretagne-Pays de la Loire École Mines-Télécom

# INTÉGRALE STOCHASTIQUE FAVRE THOMAS

# **BIBLIOGRAPHIE**

Jean-Claude Laleuf Introduction à la théorie générale des processus et intégrales stochastiques Cours et exercices corrigés ellipses





# **SOMMAIRE**

- 1. INTRODUCTION
- 2. CONTEXTE ET RAPPELS
- 3. PRÉVISIBILITÉ
- 4. MESURE ET THÉORÈME DE DOLÉANS
- 5. LOCALISATION
- 6. DÉCOMPOSITION DES MARTINGALES
- 7. CONSTRUCTION DE L'INTÉGRALE STOCHASTIQUE
- 8. CONSEILS DE LECTURE



# CHAPITRE 1 INTRODUCTION

- 1. Différentes intégrales
- 2. Exemple d'utilisation
- 3. Notation



# HAPITRE 1 : INTRODUCTION

#### **1.1** Différentes intégrales

# Intégrale stochastique

$$\int_0^t H(s,\omega) \, dX(s,\omega)$$

avec  $H \in b\mathcal{P}_{loc}$  et X une semi-martingale



Lebesgue-Stieltjes

$$\int_0^t H(s,\omega) \, dA(s,\omega)$$

H mesurable A càdlàg variation finie Wiener

$$\int_0^t f(s) dB(s,\omega)$$

f carré intégrable

$$\int_0^t H(s,\omega) \, dB(s,\omega)$$

H carré intégrable B mouvement brownien B mouvement brownien

Itô



# **CHAPITRE 1: INTRODUCTION**

## **1.2** Exemple d'utilisation

#### S&P 500 entre 2010 et 2024



calcul du bénéfice entre 0 et t

$$\int_0^t P(s,\omega) \, dY(s,\omega)$$

avec P le **nombre d'actif** et Y la **prix** de l'actif financier.



#### 1.3 Notation

Les classes de processus :

- $L^1$  Espace de Banach  $L^1(\Omega, \mathcal{F}, P)$
- $L^2$  Espace de Hilbert  $L^2(\Omega, \mathcal{F}, P)$
- $\mathcal{M}$  la classe des martingales
- $\mathcal{M}^2$  la classe des martingales de carré intégrables  $(sup_t E(M_t^2) < +\infty)$  et bornée dans  $L^2$
- ${\mathcal V}$  la classe des processus à variation finie, càdlàg
- $\mathcal C$  la classe des processus croissants
- $\mathcal{AI}$  la classe A des processus intégrables et bornés dans  $L^1$
- $\mathcal{AUI}$  la classe A des processus est uniformément intégrable

$$(\lim_{M \to +\infty} \sup_{X \in A} E(|X|, |X| > M) = 0$$

- $\mathcal{A}_0$  la classe A des processus nuls en 0
- $b\mathcal{A}$  la classe A des processus bornés
- cA la classe A des processus continues

$$a \wedge b =: min(a, b)$$
  $X_t = X(t)$ 

$$a \lor b =: max(a, b)$$



# CHAPITRE 2 CONTEXTE ET RAPPELS

- 1. Contexte
- 2. Rappels



#### 2.1 Contexte

Notre espace de travail sera  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$  et vérifiera les conditions usuelles.

- $\mathcal{N}(\Omega, \mathcal{F}, P) \subset \mathcal{F}$  (Partie négligeable)
- $(\mathcal{F}_t)_{t>0}$  sera une filtration complète et continue à droite
  - $\mathcal{N}(\Omega, \mathcal{F}, P) \subset \mathcal{F}_0$
  - $-\forall t \in \mathbb{R}^+, \mathcal{F}_{t^+} =: \bigcup_{s>t} \mathcal{F}_s = \mathcal{F}_t$

Toutes les martingales seront considérées càdlàg d'après le théorème de régularisation des martingales. En effet il suffit que  $t \to E(M_t)$  soit càd ce qui est le cas pour les martingales.



# **CHAPITRE 2 : CONTEXTE ET RAPPELS**

#### 2.2 Intégrale de Lebesgues-Stieltjes

A càdlag (continue à droite, limite à gauche)

A variation finie et nul en 0

$$\forall \omega \in \Omega, \forall t \in \mathbb{R}^+ \quad \sup_{\Delta \in E} \sum_{k=0} (A(t_{k+1}) - A(t_k)) < \infty$$

Avec E l'ensemble des subdivisions de l'intervalle [0, t].

H mesurable
H est localement
intégrable par rapport
à A

$$\int_0^t H(s,\omega) \, dA(s,\omega)$$

H peut être progressif càd

 $\forall t \in \mathbb{R}^+$ , la restriction de X à  $[0, t] \times \Omega$  est mesurable de  $\mathcal{B}[0, t] \times \mathcal{F}_t$  dans  $(E, \mathcal{B})$ 

Toute martingale continue à variation finie est constante.



2.2 Tribu produit et processus arrêté, stoppé

Soit  $\mathcal{A}$  et  $\mathcal{B}$  deux tribus, on note la tribu produit  $\mathcal{A} \otimes \mathcal{B} = \sigma(\mathcal{A} \times \mathcal{B})$ 

Un temps d'arrêt (TA) est une variable aléatoire T telle que  $\forall t \in \mathbb{R}^+, (t \leq T) \in \mathcal{F}_t$ 

Soit X un processus adapté à  $(\mathcal{F}_t)$  et T TA quelconque, on note  $X_T = X(T(\omega), \omega)$  la variable d'arrêt

Soit X un processus adapté à  $(\mathcal{F}_t)$  et T TA fini, on note  $X^T = X(T(\omega) \wedge t, \omega)$   $(x \wedge y = \min(x, y))$  le processus arrêté

On pose  $\mathcal{F}_{\infty} = \sigma(\cup_t \mathcal{F}_t)$ 

Soit T un TA:

$$\mathcal{F}_T =: \{ A \in \mathcal{F}_{\infty}, \forall t, A \cap (T \leq t) \in \mathcal{F}_t \}$$

$$\mathcal{F}_{T-} =: \sigma(\mathcal{F}_0 \cup \{A \cap (T > s), s \in \mathbb{R}^+, A \in \mathcal{F}_s\})$$

$$\mathcal{F}_{T+} =: \{ A \in \mathcal{F}_{\infty}, \forall t \in \mathbb{R}^+, A \cup (T < t) \in \mathcal{F}_t \}$$



Comme on considère que  $(\mathcal{F}_t)$  est continue à droite,  $\mathcal{F}_T = \mathcal{F}_{T+1}$ 

#### 2.2 Intervalle stochastique et ensemble évanescent

La notion d'intervalle stochastique permet d'étendre la notion d'intervalle sur  $\mathbb{R}^+ \times \Omega$ 

Soit T, S deux TA

$$[S,T] = \{(\omega,t) \in \Omega \times \mathbb{R}^+, S(\omega) \le t \le T(\omega)\}$$
$$[S,T[=\{(\omega,t) \in \Omega \times \mathbb{R}^+, S(\omega) \le t < T(\omega)\}]$$
$$[T] = \{(\omega,t) \in \Omega \times \mathbb{R}^+, t = T(\omega)\}$$

On définit également l'indicatrice d'un intervalle stochastique :

$$1_{[0,T]}(t,\omega) = 1 \text{ si } 0 \le t \le T(\omega) \text{ 0 sinon}$$

L'ensemble A est évanescent si

$$A \in \mathcal{B} \otimes \mathcal{F}, P(\Pi_{\Omega}(A)) = 0$$
 avec  $\Pi_{\Omega}$  la projection sur  $\Omega$ 



#### **2.2** Convergence des martingales

Soit  $p \ge 2$ 

# Inégalité de Doob dans $L^P$

Soit  $M \in L^p$  une sous-martingale positive , on pose  $M^* = \sup_t M_t \in L^p$ . On a l'inégalité suivante :

$$E(M^{*p}) \le \left(\frac{p}{p-1}\right)^p E(M_t^p)$$

# Convergence des martingales

Soit  $M \in L^p$  une martingale bornée dans  $L^P$  càd  $\sup_t E(M_t^p) < +\infty$  alors M convergence simple et dans  $L^P$  vers  $M_\infty$  qui ferme à droite X.

$$\forall t, E(M_{\infty}|\mathcal{F}_t) = M_t$$

# 2.2 Convergence des martingales

# Martingale défini par projection

Soit Z une variable aléatoire intégrable, alors  $E(Z, \mathcal{F}_t)$  est une martingale uniformément intégrable.

# Uniforme intégrabilité

Soit  $Z_t$  un procesus aléatoire, on dit que Z est  $uniformement\ int\'egrable$  si

$$\lim_{M \to +\infty} \sup_{t} E(|X_t|, |X_t| > M) \to 0$$



1.Tribu, processus et temps d'arrêt prévisible

2. Projection prévisible



#### 3.1 Tribu et processus et temps d'arrêt prévisible

La notion de prévisibilité est la notion de base et la classe de processus que l'on utilisera pour construire l'intégrale stochastique.

# Définition

On définit la tribu  $prévisible \mathcal{P}$  par:

$$\mathcal{P} =: \sigma(X \text{ processus }, X \text{ càg})$$

De manière équivalente la tribu prévisible est engendrée par les intervalles stochastiques fermés à droite et également par:

$$\mathcal{E} = \{ [s, t] \times A, A \in \mathcal{F}_s \} \cup \{ \{0\} \times A, A \in \mathcal{F}_0 \}$$

$$\mathcal{P} = \sigma(S, T, S \text{ et } T \text{ TA}) = \sigma(\mathcal{E})$$



## 3.1 Tribu et processus et temps d'arrêt prévisible

On définit également les processus prévisibles

#### Définition

Un processus prévisible est un processus  $\mathcal{P}$ -mesurable, on note encore  $\mathcal{P}$  la classe des processus prévisibles.

# Exemple

Pour un processus à temps discret  $(X_n)$  adapté à une filtration discrète  $\mathcal{F}_n$ 

$$X \in \mathcal{P} \iff \forall n, X_{n+1} \text{ est } \mathcal{F}_n\text{-mesurable}$$



#### 3.1 Tribu, processus et temps d'arrêt prévisible

On définit maintenant la notion de temps d'arrêt *prévisible* :

#### Définition

Un temps d'arrêt T est prévisible si  $[T] \in \mathcal{P}$ 

Cela veut dire que le graphe de T est prévisible.

On peut également prendre comme définition :

$$[T, +\infty[\in \mathcal{P} \text{ ou } [0, T[\in \mathcal{P} \text{ ( car }]T, \infty[\in \mathcal{P} \text{ )}]$$

# Rappel

$$[T] = \{(\omega, t) \in \Omega \times \mathbb{R}^+, t = T(\omega)\}$$



#### 3.2 Projection prévisible

On définit une nouvelle classe de processus, les processus fortement intégrables.

## Définition

Un processus  $X \in \mathcal{B} \otimes \mathcal{F}$  est fortement intégrable si  $\forall T, TA, X_T$  est intégrable (avec la convention  $X_T = 0$  si  $T = +\infty$ )

# Exemples

Les processus bornés, mesurables sont fortement intégrables. Les martingales uniformément intégrables sont fortement intégrables.



#### 3.2 Projection prévisible

On définit maintenant la notion de projection prévisible

#### **Définition**

Pour tout processus fortement intégrable, il existe un unique processus prévisible  ${}^{p}X \in \mathcal{P}$  tel que  $\forall T$ , TA prévisible,  $({}^{p}X)_{T} = E(X_{T}|\mathcal{F}_{T^{-}})$ Ce processus est appelé projection prévisible de X.

De plus on la caractérisation suivante :

$$E(^{p}X_{T}) = E(X_{T}), \forall T \text{ TA } prévisible$$

# Rappel

$$\mathcal{F}_{T-} =: \sigma(\mathcal{F}_0 \cup \{A \cap (T > s), s \in \mathbb{R}^+, A \in \mathcal{F}_s\})$$



# CHAPITRE 4 MESURE ET THÉORÈME DE DOLÉANS

- 1. Mesure et théorème de Doléans
- 2. Compensateur prévisible



On qualifie de brut un processus non **nécessairement** adapté.

#### Définition

 $\forall A \in \mathcal{CI}_0, brut$ , on appelle mesure de Doléans la mesure  $\mu_A$  sur ( $\mathbb{R}^+ \times \Omega, \mathcal{B} \otimes \mathcal{F}$ ) définie par :

$$\forall C \in \mathcal{B} \otimes \mathcal{F}, \mu_A(C) = E(\int_{\mathbb{R}^+} 1_C(t) dA_t)$$

où  $\int_{\mathbb{R}^+} 1_C(t) dA_t$ ) est l'intégrale de Lebesgue-Stieltjes de  $1_C$  par rapport à A

# Exemple

Si 
$$C = [u, v] \times F$$
,  $\mu_A(C) = E(1_F \int_{[u, v]} dA_t) = E(A_v - A_{u-}, F)$ 



#### Extension de la définition

On peut étendre  $\mu_A$  sur les processus bornés :

$$\forall X \in b(\mathcal{B} \otimes \mathcal{F})$$
 (bornés mesurables dans  $\mathcal{B} \otimes \mathcal{F})\mu_A(X) = E(\int_{\mathbb{R}^+} X_t dA_t)$ 

On retrouve la définition de  $\mu_A$  sur  $\mathcal{B} \otimes \mathcal{F}$  en posant

$$\forall C \in \mathcal{B} \otimes \mathcal{F}, \mu_A(C) = \mu_A(1_C) = E(\int_{\mathbb{R}^+} 1_C(t) dA_t)$$



#### Théorème de Doléans

 $\forall A \in \mathcal{CI}_0 , brut :$ 

$$A \in \mathcal{P} \iff \forall X \in b(\mathcal{B} \otimes \mathcal{F}), \, \mu_A(X) = \mu_A({}^pX)$$

#### Caractérisation de la mesure de Doléans

Une mesure positive bornée  $\mu$  sur ( $\mathbb{R}^+ \times \Omega, \mathcal{B} \otimes \mathcal{F}$ ), nulle à l'origine ( $\mu([0] \times \Omega) = 0$ ) est de la forme  $\mu = \mu_A$  avec  $A \in \mathcal{CI}_O$ , brut  $\iff$  la mesure est nulle sur les ensembles évanescents :

$$\forall C \in \mathcal{B} \otimes \mathcal{F}, P(\Pi_{\Omega}(C)) = 0, \mu(C) = 0$$



# **Démonstration** (sens $\Leftarrow$ )

 $\forall t \in \mathbb{R}^+$ , on définit  $\mu_t$  sur  $\mathcal{F}$  par  $\mu_t(F) = \mu([0, t] \times F)$ comme  $\mu$  est nulle sur les ensembles évanescents, on a  $P(F) = 0 \implies \mu_t(F) = 0$ donc  $\mu_t$  est absolument continue par rapport à F.

Il existe donc une dérivée de Radon-Nikodym  $\alpha_t = \frac{d\mu_t}{dP}$ 

$$\mu_t(F) = \int_F \alpha_t(\omega) P(d\omega)$$

A partir de  $\alpha_t$ , on construit le processus  $A \in \mathcal{CI}_0$  brut

Pour  $C = [0, t] \times F$ , on aura donc:

$$\mu(C) = \mu_t(F) = E(A_t, F) = E(1_F A_t) = \mu_A(C)$$
 Définition de  $\mu_t$ 

Dérivée de R-N

4.2 Compensateur prévisible

# Construction du compensateur prévisible

Soit  $A \in \mathcal{CI}_0$  et  $\mu$  la mesure de Doléans associée, on définit,  $\forall X \in b\mathcal{B} \otimes \mathcal{F}$ ),  $\mu^p(X) = \mu(p^pX)$ 

 $\mu^p$  est une mesure positive, bornée, nul sur les ensembles évanescents, donc d'après la caractérisation des mesures de Doléans, il existe un unique  $A^p \in \mathcal{CI}_0$ , brut tq  $\mu^p = \mu_{A^p}$  ce qui s'écrit :

$$E(\int_{\mathbb{R}^+} {}^p X_t dA_t) = E(\int_{\mathbb{R}^+} X_t dA_t^p)$$

De plus,  $\mu^p(X) = \mu({}^pX) = \mu({}^{pp}X) = \mu^p({}^pX)$ , on a donc  $\mu_{A^p}(X) = \mu_{A^p}({}^pX)$  donc d'après le théorème de Doléans,  $A^p \in \mathcal{P}$ 

On appelle  $A^p$  le compensateur prévisible de A car A -  $A^p \in \mathcal{M}_0$ 



#### 4.2 Compensateur prévisible

# **Démonstration** A - $A^p \in \mathcal{M}_0$ :

Soit  $s \leq t$ ,  $F \in \mathcal{F}_s$ , on pose  $X = 1_{]s,t]} 1_F \in \mathcal{P}$ , on a d'après la définition de  $A^p$ :

$$\mu_{A^p}(X) = \mu_A({}^pX) \text{ donc } E(A_t^p - A_s^p, F) = E(A_t - A_s, F) \text{ d'où}$$

$$E(A_t^p - A_s^p | \mathcal{F}_s) = E(A_t - A_s | \mathcal{F}_s)$$
 et finalement

$$E(A_t - A_t^p | \mathcal{F}_s) = A_s - A_s^p \text{ (car A et } A^p \text{ est adapté)}$$

#### Unicité de $A^p$ :

Soit 
$$A - A_1^p = M$$
 et  $A - A_2^p = N$ 

$$\operatorname{donc} A_2^p - A_1^p = N - M$$

donc 
$$A_2^p - A_1^p \in \mathcal{VMI}_0 \subset c\mathcal{MV}$$

donc  $A_2^{\bar{p}} = A_1^{\bar{p}}$  car toute martingale continue à variation finie est constante.



# CHAPITRE 5 LOCALISATION

- 1. Classes de processus locales
- 2. Preuve par localisation



**5.1** Classes de processus locales

#### **Définition**

Soit  $\mathcal{A}$  une classe de processus réels, on définit la classe des processus localisés  $\mathcal{A}_{loc}$  par:

 $\forall X \in \mathcal{A}_{loc}, \exists (T_n) \text{ TA}, T_n \uparrow +\infty$  (suite croissante tendant vers l'infini) telle que  $\forall n \in \mathbb{N}, X^{T_n} \in \mathcal{A}$ 

# Exemple

 $\mathcal{M}_{0,loc}$ , la classe des martingales locales nulles en 0 càd

 $\forall M \in \mathcal{M}_{0,loc}, \exists (T_n) \text{ TA}, T_n \uparrow +\infty \text{ telle que } \forall n \in \mathbb{N}, M^{T_n} \text{ est une martingale nulle en } 0$ 



# **CHAPITRE 5: LOCALISATION**

#### **5.2** Preuve par localisation

Une preuve par localisation permet d'étendre une fonction de  $f: A \to R$  à  $A_{loc} \to R_{loc}$ 

Il faut que  $\mathcal{A}$  soit  $stable\ par\ TA$  càd :

$$\forall X \in \mathcal{A}, \forall T \text{ TA}, X^T \in \mathcal{A}$$

Il faut que f commute avec les TA càd:

$$\forall X \in \mathcal{A}, \forall T \text{ TA}, f(X^T) = f(X)^T$$

#### Démonstration

$$\forall X \in A_{loc}, \forall (t, \omega) \in \mathbb{R}^+ \times \Omega$$
,  $\exists T \text{ TA tel que } T(\omega) \geq t$ ,  $X^T \in \mathcal{A}$ 

On pose  $f(X)(t,\omega) = f(X^T)(t,\omega)$  et comme f commute avec T et  $X \in A_{loc}$ ,  $\exists (T_n) \text{ TA}, T_n \uparrow +\infty \text{ tq } \forall n \in \mathbb{N}, X^{T_n} \in \mathcal{A}$  or  $f(X^{T_n}) = f(X)^{T_n} \text{ donc } f(X) \in \mathcal{R}_{loc}$ 



# CHAPITRE 6 DÉCOMPOSITION DES MARTINGALES

- 1. Décomposition de Doob-Meyer
- 2. Décomposition des martingales locales
- 3. Semi-martingale



Si Z est une sous-martingale telle que {  $Z_T$  , T TA finie } est uniformément intégrable alors il existe une unique décomposition Z = M + A  $M \in \mathcal{MUI}_0$  ,  $A \in \mathcal{PCI}_0$ 

# Remarque

Si 
$$Z = A + M$$
 et que l'on pose pour  $S \leq T$  TA  
 $\mu[S,T] = \mu_A([S,T]) = E(\int_{\mathbb{R}^+} 1_{[S,T]}(t) dA_t)$   
 $= E(\int_{S(\omega)}^{T(\omega)} dA_t)$   
 $= E(A_T - A_S)$   
 $= E(Z_T - Z_S)$  car M est une martingale

### Unicité

$$M_1 + A_1 = M_2 + A_2$$
  
 $M_1 - M_2 = A_2 - A_1 \in \mathcal{MUI}_0 \cap \mathcal{PCI}_0$   
or martingale prévisible  $\implies$  continue donc martingale constante égale à 0  
d'où  $M_1 = M_1$  et  $A_1 = A_2$ 



# Existence

$$(]S,T] = \{(\omega,t) \in \Omega \times \mathbb{R}^+, S(\omega) < t \le T(\omega)\}\)$$

Soit  $S \leq T$  TA, on pose  $\mu[S,T] = E(Z_T - Z_S)$ 

 $\mu$  est une mesure positive bornée sur  $\mathcal{P}^*$ , trace de la tribu  $\mathcal{P}$  sur  $]0, +\infty[\times\Omega]$ 

C'est pour cette affirmation que l'on a besoin que  $\{Z_T, T TAF\}$  soit uniformément intégrale.

On pose 
$$\mu'(X) = \mu({}^pX)$$
 pour  $X \in b(\mathcal{B} \otimes \mathcal{F})$ 

 $\mu'$  est une mesure positive bornée, nulle sur les ensembles évanescents et à l'origine donc d'après le théorème de caractérisation des mesures de Doléans, il existe  $A \in \mathcal{CI}_0$  tel que  $\mu' = \mu_A$ .

De plus  $\mu'({}^pX) = \mu'(X)$  donc  $A \in \mathcal{P}$  d'après le théorème de Doléans.

Pour 
$$T = +\infty$$
,  $E(A_{\infty} - A_S) = \mu']S$ ,  $+\infty[= \mu]S$ ,  $+\infty[= E(Z_{\infty} - Z_S)]$   
Pour  $S = t_F$ ,  $F \in \mathcal{F}_t$  ( $t_F = t1_F$ )  
on a finalement  $E(A_{\infty} - A_t, F) = E(Z_{\infty} - Z_t, F)$   
d'où  $E(A_{\infty} - Z_{\infty}, F) = E(A_t - Z_t, F)$   
En posant  $M = Z - A \in \mathcal{M}_0$  et  $M_t = E(M_{\infty}, \mathcal{F}_t)$  donc  $M \in \mathcal{MUI}_0$ 



# Le crochet de Meyer

Le crochet de Meyer est une application direct de la décomposition de Doob-Meyer à  $\mathcal{M}_0^2$ :

Il faut montrer que si  $M \in \mathcal{M}_0^2$  alors  $\{M_T^2, \text{ TAF}\}$  est uniformément intégrable.

#### Démonstration

 $E(M^{*2}) = E(\sup_t M_t^2) \le 4E(\sup_t M_t^2) = 4E(M_\infty^2)$  (Inégalité de Doob)

Donc pour tout TA finie, on a  $M_t^2 \leq M^{*2}$  avec  $M^{*2}$  qui est uniformément intégrable donc  $\{M_T^2, \text{ T TAF}\}$  est uniformément intégrable.

# Crochet de Meyer

D'après la décomposition de Doob-Meyer , il existe un processus < M > tel que  $M^2-< M> \in \mathcal{MUI}$  et  $< M> \in \mathcal{PCI}_0$ 



# Remarque

Soit  $X \in \mathcal{M}^2$ ,  $(t_k)$  une subdivision de  $\mathbb{R}^+$  càd:

$$t_0 = 0$$
,  $\lim_{k \to +\infty} t_k = +\infty$  et  $(t_k)$  croissante.

On appelle varation quadratique de X la quantité:

$$W(X, \Delta, t) = \sum_{k=0}^{+\infty} (X_{t_{k+1} \wedge t} - X_{t_k \wedge t})^2$$

Si X est continue on a le résultat suivant:

$$\forall t, W(X, \Delta, t) \rightarrow \langle X \rangle_t$$
 en probabilité lorsque  $|\Delta| \rightarrow 0$ 

Toutefois si X n'est pas continue mais càdlàg < X > diffère de la limite de  $W(X,\Delta,t)$ 



# **6.2** Décomposition des martingales locales

On dit qu'une martingale est à saut  $\alpha$ -borné si la hauteur de chaque saut est borné par  $\alpha$ .

#### **Définition**

Un processus réel M est une martingale locale s'il existe une suite  $T_n \uparrow +\infty$  telle que  $\forall n \in \mathbb{N}$ ,  $M^{T_n}$  soit une martingale nulle en zéro. On dit que  $(T_n)$  localise M. On note  $\mathcal{M}_{0,loc}$  cette classe.

De plus, toute martingale locale M peut être localisée en une famille de martingales uniformément intégrables.

# Décomposition des martingales locales

Soit  $M \in \mathcal{M}_{0,loc}$ ,  $\alpha > 0$ , il existe une décomposition (non unique) telle que  $M = M_1 + M_2$  avec  $M_1 \in \mathcal{VM}_{0,loc}$  et  $M_2 \in \mathcal{M}_{0,loc}$  à saut  $\alpha$ -borné.



# **CHAPITRE 5 : DÉCOMPOSITION DES MARTINGALES**

#### **6.2** Décomposition des martingales locales

## Démonstration

On commence avec  $M \in \mathcal{MUI}_0$  puis on localisera le résultat car  $\mathcal{MUI}_{0,loc} = \mathcal{M}_{0,loc}$ 

 $\forall t$ , on pose  $A_t = \sum_{0 < s < t} \Delta M_s 1_{|\Delta M_s| > \alpha/2}$  le processus des sauts de M d'amplitude supérieure à  $\alpha/2$ 

On montre que  $A\in\mathcal{VI}_{0,loc}$  donc A admet un compensateur prévisible  $A^p\in\mathcal{PVI}_{0,loc}$  tel que A -  $A^p\in\mathcal{MV}_{0,loc}$ 

On pose ensuite  $M_1 = A - A^p$  et  $M_2 = M - M_1$ 

Puis on définit f:  $\mathcal{MUI}_0 \to \mathcal{MV}_{0,loc}$  par  $f(M) = M_1$  et g:  $\mathcal{MUI}_0 \to \mathcal{M}_{0,loc}$  par  $g(M) = M_2$ 

On vérifie que f et g commutent avec les TA ce qui permet d'appliquer le principe de localisation pour étendre le résultat de  $\mathcal{MUI}_0$  à  $\mathcal{MUI}_{0,loc}$ .



6.3 Semi-martingale

#### **Définition**

On dit qu'un processus X est localement borné s'il existe un suite  $T_n \uparrow +\infty$  de TA telle que  $\forall n \in \mathbb{N}$ ,  $X^{T_n}$  soit bornée càd qu'il existe une suite réelle  $(C_n)$  telle que  $|X^{T_n}| < C_n$ 

# Propriété

En posant  $T_n = \inf(t \in \mathbb{R}, |X_t| \ge n)$  on a  $\forall n > 1, |X^{T_n}| < n$ Si de plus X est  $c \grave{a} dl \grave{a} g$  alors :

 $\forall n > 1, |X^{T_n}| < |X_0| \lor n + |\Delta X_{T_n}|$  donc si  $X_0$  est borné et si X est à saut borné, alors X est localement borné.

C'est justement les propriété de  $M_2$  dans la décomposition des martingales locales.



6.3 Semi-martingale

#### Définition

Une semi-martingale est un processus adapté càdlàg qui se décompose en la somme d'une martingale locale et d'un processus adapté càdlàg à variation finie.

Soit 
$$X = X_0 + Y + Z$$
,  $X_0$  la valeur en  $0, Y \in \mathcal{M}_{0,loc}$  et  $Z \in \mathcal{V}$ 

## Décomposition d'une semi-martingale

D'après la décomposition des martingales locales:

$$X = X_0 + M_1 + M_2 + Z$$
, avec  $M_1 \in \mathcal{VM}_{0,loc}$  et  $M_2 \in \mathcal{M}_{0,loc}$  à saut  $\alpha$ -borné.  $X = X_0 + M + A$  avec  $M = M_2 \in b\mathcal{M}_{0,loc}$  et  $A = M_1 + Z \in \mathcal{V}_0$ 



# CHAPITRE 7 CONSTRUCTION DE L'INTÉGRALE STOCHASTIQUE

- 0. Principe de la construction
- 1. Processus en escalier
- 2. Processus borné prévisible par rapport à une martingale de carré intégrable
- 3. Localisation
- 4. Calcul d'une intégrale stochastique



#### **7.0** Principe de la construction

On veut définir l'intégrale stochastique H.X pour  $H \in b\mathcal{P}_{loc}$  et X , une semi-martingale.

Comme X est une semi-martingale,  $X=X_0+A+M$ , avec  $X_0$  la valeur en 0 de X,  $A\in\mathcal{V}_0$  et  $M\in b\mathcal{M}_{loc,0}$ 

On a donc  $H.X = H.X_0 + H.A + H.M$ 

$$H.X_0(t) = H_0 X_0$$

H.A se ramène a une intégrale de Lebesgues-Stieltjes

La difficulté est de donner un sens à H.M

Pour ce faire on commence avec  $H \in b\mathcal{E}$  et  $X \in \mathcal{M}_0^2$ . On montre ensuite que  $H \to H.M$  est une isométrie de  $b\mathcal{E}$  dans  $\mathcal{M}_0^2$  puis on étend cette isométrie à  $b\mathcal{P}$  par densité de  $b\mathcal{E}$  dans  $b\mathcal{P}$ .

On conclut par localisation car  $b\mathcal{M}_0 \subset \mathcal{M}_0^2$ 



# **CHAPITRE 7 : INTÉGRALE STOCHASTIQUE**

7.1 Intégrale stochastique par rapport à un processus en escalier

Un processus en escalier X est tel que :

$$X(t,\omega) = \sum_{k=0}^{n-1} X_k(\omega) 1_{t_k,t_{k+1}}(t)$$
 avec  $X_k \in \mathcal{F}_{t_k}$  et  $(t_k)$  une subdivision finie de  $\mathbb{R}^+$ 

On note la classe des processus en escalier  ${\mathcal E}$ 

Soit  $H \in \mathcal{E}$  et X un processus quelconque. On définie *l'intégrale stochastique* H.X par :

$$\forall t \in \mathbb{R}^+, H.X_t = \sum_{k=0}^{n-1} H_k(X_{t_k \wedge t} - X_{t_{k+1} \wedge t})$$
  
On la note  $\int_0^t H_s dX_s$ 



7.1 Intégrale stochastique par rapport à un processus en escalier

# Définition générale de l'intégrale stochastique

Soit X une semi-martingale, l'application  $H\to H.X$  définie sur  $\mathcal E$  à une extension unique à  $b\mathcal P_{loc}$  telle que :

- 1. H.X soit adaptée et càdlàg
- 2.  $H \rightarrow H.X$  est linéaire
- 3. Si  $(H_n)$  une suite de  $b\mathcal{P}_{loc}$  qui converge simplement vers H dans  $b\mathcal{P}_{loc}$  et si :

 $\forall n , |H_n| \leq K \in b\mathcal{P}_{loc} \text{ alors}$ 

 $H_n.X_t \to H.X_t$  en probabilité uniformément en t sur tout compact de  $\mathbb{R}_+$ 

# Propriétés générales de l'intégrale stochastique

- 1.  $\Delta(H.X) = H.\Delta X$  (formule des sauts)
- 2.  $\forall T \text{ TA}$ ,  $(H.X)^T = H.(X^T)$  (formule d'arrêt)
- 3. H.X est une semi-martingale et K.(H.X) = (KH).X (formule d'associativité)
- 4. Si  $X \in \mathcal{M}_{0,loc}$  alors  $H.X \in \mathcal{M}_{0,loc}$



7.2 Processus borné prévisible par rapport à une martingale de carré intégrable

L'intégrale de  $\mathcal{BP}_{loc}$  par rapport à  $\mathcal{V}_0$ 

 $H \in \mathcal{BP}_{loc}$  donc est borné sur [0,t] donc intégrable par rapport à  $A \in \mathcal{V}_0$ . On en déduit que H.A est l'intégrale de Lebesgues-Stieltjes. Cette intégrale vérifie les propriétés de la définition et les 4 propriétés générales

L'intégrale de  $\mathcal{BP}_{loc}$  par rapport à  $b\mathcal{M}_{0,loc}$ 

On commence par  $H \in b\mathcal{P}$  et  $M \in \mathcal{M}_0^2$ .

Quelques rappels sur  $\mathcal{M}_0^2$ :

$$M \in \mathcal{M}_0^2 \iff \sup_t (E(M_t^2)) < +\infty$$
  
 $\mathcal{M}_0^2$  est un espace de Banach pour la norme  $||M||_{\mathcal{M}_0^2} = E(M_\infty^2)^{1/2}$ 



7.2 Processus borné prévisible par rapport à une martingale de carré intégrable

# L'espace $L^2(M)$

On définit l'espace  $L^2(M) = L^2(\mathbb{R}^+ \times \Omega, \mathcal{P}, \mu)$  avec  $\mu$  la mesure associée à M càd la mesure de Doléans de < M>

$$\forall C \in \mathcal{B} \otimes \mathcal{F}, \ \mu(C) = E(\int_{\mathbb{R}^+} 1_C(t)d < M >_t)$$

L'espace  $L^2(M)$  est un espace de Banach pour la norme

 $||H||_{L^2(M)} = E(\int_{\mathbb{R}^+} H_t^2 d < M >_t)^{1/2}$  et un espace de Hilbert pour le produit scalaire  $< H, K >_{L^2(M)} = E(\int_{\mathbb{R}^+} H_t K_t d < M >_t)$ 

# Isométrie de $\mathcal E$ dans $\mathcal M_0^2$

Soit  $M \in \mathcal{M}_0^2$  et  $H \in b\mathcal{E}$  prévisible alors  $H \to H.X$  est une isométrie de  $b\mathcal{E} \subset L^2(M)$  dans  $\mathcal{M}_0^2$  càd

$$||H||_{L^2(M)} = ||H.X||_{\mathcal{M}_0^2}$$



(admis car démonstration calculatoire et sans intérêt théorique)

# **CHAPITRE 7 : INTÉGRALE STOCHASTIQUE**

7.2 Processus borné prévisible par rapport à une martingale de carré intégrable

## Prolongement de $H \to H.X$ par densité de $b\mathcal{E}$ à $b\mathcal{P}$

# Rappels

S est dense dans E  $\iff \bar{S} = E \iff (\bar{S})^{\perp} = \{0\} (\text{avec } \bar{S} \text{ la fermeture de S})$ 

Or on a le résultat suivant  $(\bar{S})^{\perp} = \{0\} \iff S^{\perp} = \{0\}$ 

### Démonstation

$$(\Longrightarrow) S \subset \bar{S} \Longrightarrow S^{\perp} \subset \bar{S}^{\perp} \text{ donc } S^{\perp} = \{0\} \Longrightarrow (\bar{S})^{\perp} = \{0\}$$

$$(\Longleftrightarrow) S^{\perp} = \{0\} \iff \forall x \in E, \forall y \in S, xy = 0$$

$$\implies \forall x \in E, \forall y \in \bar{S}, xy = 0 \iff (\bar{S})^{\perp} = \{0\} \text{ (continuité du produit scalaire)}$$

Il faut donc montrer que  $(b\mathcal{E})^{\perp} = \{0\}$  pour la produit scalaire de  $L^2(M)$ 

# **CHAPITRE 7: INTÉGRALE STOCHASTIQUE**

7.2 Processus borné prévisible par rapport à une martingale de carré intégrable

#### Démonstration

Soit  $H \in b\mathcal{E}, X \in (b\mathcal{E})^{\perp}$ , on a  $\langle X, H \rangle = 0$  on veut montrer que X = 0

Posons 
$$Y_t = \int_0^t X_s d < M >_s$$

Le processus Y est une processus adapté, càdlàg, à varation finie, nul en 0.

Montrons que Y est une martingale ce qui montrera que X = 0

Soit s < t, pour  $H = 1_A 1_{]s,t]} \in b\mathcal{E}, A \in \mathcal{F}_s$  on a:

$$< H, X > = E(\int_{\mathbb{R}^+} HXd < M >) = E(1_A \int_s^t Xd < M >)$$

$$= E(1_A(Y_t - Y_s)) = 0 \text{ donc } E(Y_t | \mathcal{F}_s) = E(Y_s | \mathcal{F}_s) = Y_s$$

A ce stade, on a défini l'intégrale de H.M pour  $H \in b\mathcal{P}$  et  $M \in \mathcal{M}_0^2$ . Il reste à localiser l'application  $H \to H.X$  pour avoir le résultat voulu.



#### 7.2 Localisation

#### Localisation:

On pose  $f: b\mathcal{P} \times b\mathcal{M}_0 \to \mathcal{M}_0^2$  définie par f(H, M) = H.M  $(\mathcal{M}_0 \subset \mathcal{M}_0^2)$ 

Soit  $M \in b\mathcal{M}_{0,loc}$  et  $H \in b\mathcal{P}_{loc}$ ,  $\forall (t,\omega) \in \mathbb{R}_+ \times \Omega$ , si T est un TA tel que  $T(\omega) \geq t$ ,  $M^T \in b\mathcal{M}_0$  et  $H1_{[0,T]} \in b\mathcal{P}$ .

On définit l'intégrale stochastique  $H.X(t,\omega)$  par  $H1_{[0,T]}$ .  $X^T(t,\omega)$ 

# Rappel

$$1_{[0,T]}(t,\omega) = 1 \text{ si } 0 \le t \le T(\omega) \text{ 0 sinon}$$



#### 7.2 Localisation

# Indépendance de T :

Soit S TA tel que  $S(\omega) \geq t$ ,  $M^S \in b\mathcal{M}_0$  et  $H1_{[0,S]} \in b\mathcal{P}$  alors :

$$H1_{[0,T]}$$
.  $X^T(t,\omega) = H1_{[0,T]}$ .  $X^T(t \wedge S(\omega),\omega)$  car  $S(\omega) \geq t$   $(H1_{[0,T]}, X^T)^S(t,\omega)$  définition d'un processus arreté  $H1_{[0,T \wedge S]}$ .  $X^{T \wedge S}(t,\omega)$   $(H1_{[0,S]}, X^S)^T(t,\omega)$ 

#### Justification de l'existence de T

Soit R est un TA tel que  $R(\omega) \ge t$ ,  $M^R \in b\mathcal{M}_0$  et S un TA tel que  $S(\omega) \ge t$  et  $H1_{[0,S]} \in b\mathcal{P}$ .

En posant  $T = R \wedge S$ , T vérifie les conditions voulues.



7.3 Calcul d'une intégrale stochastique

## Approximation de l'intégrale stochastique

Soit  $M \in cb\mathcal{M}^2$  (martingale de carré intégrable continue et bornée)

Soit H un processus prévisible tel que  $H_t^* = \sup_{s < t} |H_s|$  est borné dans  $L^2(M)$ 

Pour toute subdivison  $\Delta = (t_k)$  de  $\mathbb{R}^+$  on pose  $H_{\Delta}(t,\omega) = \sum_{k=0}^{n-1} H(t_k,\omega) 1_{]t_k,t_{k+1}]}$ 

On a le résultat suivant

 $H_{\Delta}.M_t \to H.M_t$  uniformement en t lorsque  $|\Delta| \to 0$  et  $\max \Delta \to +\infty$ 

Ce résultat est admis.



# **CHAPITRE 7 : INTÉGRALE STOCHASTIQUE**

7.3 Calcul d'une intégrale stochastique

## Calcul d'une intégrale stochastique

Soit  $T \in \mathbb{R}^+$ , B le mouvement brownien, et  $B^T \in cb\mathcal{M}^2$ Montrons que  $B^*$  est bornée dans  $L^2(B^T)$ 

$$||B^*||_{L^2(B^T)} = E(\int_{\mathbb{R}^+} B^{*2}d < B^T >) = E(\int_{\mathbb{R}^+} B^{*2}d < B >^T)$$

$$= E(\int_0^T B^{*2} d < B >) = E(\int_0^T B^{*2} dt) \text{ (car } < B_t >= t)$$

$$=\int_0^T E(B^{*2})dt \leq \int_0^T 4E(B^2)dt$$
 (Inégalité de Doob)

$$=\int_{0}^{T} 4t dt = 2T^{2} < +\infty$$

Donc  $B_{\Delta}.B_t^T \to B.B_t^T$  lorsque  $|\Delta| \to 0$  et  $\max \Delta \to +\infty$ 



# **CHAPITRE 7: INTÉGRALE STOCHASTIQUE**

7.3 Calcul d'une intégrale stochastique

# Calcul d'une intégrale stochastique

Soit  $\Delta = (t_k)$  une subdivison de  $\mathbb{R}^+$  On note  $B_{t_k} = B_k$  et on a

Soit 
$$t \leq T$$
 et  $t_n = t$ 

$$B_{\Delta}.B_t^T = \sum_{k=0}^{n-1} B_k (B_{k+1} - B_k)$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} B_{k+1}^2 - B_k^2 - \frac{1}{2} \sum_{k=0}^{n-1} (B_{k+1} - B_k)^2$$

$$(\operatorname{car} a(b-a) = \frac{1}{2}b^2 - a^2 - \frac{1}{2}(b-a)^2)$$

donc 
$$B_{\Delta}.B_t^T = \frac{1}{2}B_t^2 - \frac{1}{2}W(B,\Delta,t) \to \frac{1}{2}B_t^2 - \frac{1}{2}t$$

lorsque  $|\Delta| \to 0$  et  $\max \Delta \to +\infty$ 



finalement  $\int_{0}^{t} B dB = \frac{1}{2}B_{t}^{2} - \frac{1}{2}t \neq \frac{1}{2}B_{t}^{2}$ 

#### 1. Introduction

- De l'intégrale de Riemann à l'intégrale stochastique
- •Contexte de l'intégrale stochastique
- ·Les grandes étapes : plan du livre

#### 2. Compléments sur l'intégration

- •Espace de probabilité filtré
- Applications mesurables
- Espérance d'une variable aléatoire réelle (VAR)
- Uniforme intégrabilité
- Classes monotones
- Variation des fonctions
- Intégrale de Lebesgue-Stieltjes des fonctions

#### 3. Martingales

- •Espérance conditionnelle
- Temps d'arrêt

Bretagne-Pays de la Loire

- Arrêt et échantillonnage des martingales discrètes
- Convergence presque sûre des Smartingales



- Inégalité de Doob dans Lp
- •Martingales en temps continu
- Martingale de carré intégrable

#### 4. Topologie

- Espaces topologiques
- Continuité, topologie initiale
- Espace compact
- •Filtres et ultrafiltres
- Convergence des filtres et limites des applications
- Adhérence des filtres
- Filtres et topologie initiale
- •Théorème de Tychonov
- Compactification
- Espaces métrisables localement compacts

#### 5. Ensembles analytiques et capacités

- Pavage et pavages compacts
- Ensembles analytiques
- Capacités, théorème de Choquet
- •Fonction d'ensembles et capacité extérieure
- •Fonctions d'ensembles additives
- Probabilité extérieure
- Mesurabilité des débuts et théorème de section

#### 6. Temps d'arrêt, tribus de temps d'arrêt

- •Généralités sur les temps d'arrêt
- •Propriétés des tribus de temps d'arrêt
- Tribu optionnelle
- Tribu prévisible
- •Un exemple d'espace filtré

#### 7. Temps d'arrêt prévisibles

- Temps d'arrêt prévisible
- •Temps d'arrêt équitables et annonçables
- Applications du théorème PEA
- •Temps d'arrêt accessible et inaccessible

#### 8. Théorèmes de sections et de projections

- Section optionnelle
- Projection optionnelle
- Section prévisible
- Projection prévisible
- •Mesure de Doléans associée à un processus
- Théorème de Doléans
- Projection duale prévisible

#### 12. Variation quadratique

- Covariation et variation quadratique
- •Partie continue d'une covariation
- Approximation polynomiale
- •Formule d'Ito

#### 9. Décomposition des martingales

- •Classes de processus
- Localisation
- Martingale locale
- Décomposition de Doob-Meyer
- Extension du crochet de Meyer
- •Extension du compensateur prévisible
- Décomposition des martingales

#### 10. Intégrale stochastique : cas général

- Processus localement bornés
- Semi-martingales
- •Processus prévisibles simples
- •Définition générale de l'intégrale stochastique
- Sommes d'Ito
- •Intégrale de  $H \in b\mathcal{P}_{loc}$  par rapport à  $A \in \mathcal{V}_0$

#### 11. Intégrale stochastique : cas martingale

- Notations et objectifs
- •Intégrale stochastique de  $H \in b\mathcal{E}$  par  $M \in \mathcal{M}^2$
- •Espace  $\mathcal{M}^2$
- •Espace  $L^2(M)$
- •Prolongement de l'IS de  $b\mathcal{E}$  à  $b\mathcal{P}$
- •Intégrale de  $H \in b\mathcal{E}$  par  $M \in b\mathcal{M}_{0,loc}$

