Formal Languages and Automata Theory, SS 2020. Homework 7 (due Week 10)

- 1. Design ε -NFAs for the following languages. Try to use ε -transitions to simplify your design.
 - (a) The set of strings consisting of zero or more a's, followed by zero or more b's, followed by zero or more c's.
 - (b) The set of strings that consist of either 01 repeated one or more times or 010 repeated zero or more times.
- 2. Construct the ε -NFAs for the following r.e. Then transform them into DFAs.
 - (a) a|b|c
 - (b) io|ma
 - (c) $(a|b)b^*$
 - (d) $a^*b|c^*$
 - (e) (0|1)*01(0|1)*
- 3. Specify the languages represented by the following regular expressions:
 - (a) $(11|0)^*(00|1)^*$;
 - (b) $(1|01|001)^*(\varepsilon|0|00)$;
 - (c) $10|(0|11)0^*1$;
 - (d) $((0|1)(0|1))^*$;
 - (e) 01*|1;
 - (f) $((11)^*|101)^*$.
- 4. Build the ε -NFAs that recognize the languages specified at the previous exercise.
- 5. Consider the DFA from Course 8 slide 20. Minimize it using the Table Filling Algorithm. Show all the steps of the algorithm.
- 6. Consider the following transition table for a DFA:

	0	1
$\rightarrow A$	B	A
B	A	C
C	D	B
*D	D	A
E	D	F
F	G	E
G	F	G
H	G	D

Construct the minimum-state equivalent DFA.

7. Minimize the following DFA using state equivalence method:

	0	1
$\rightarrow A$	B	E
B	C	F
*C	D	H
D	$\mid E \mid$	H
E	F	I
*F	G	B
G	H	B
H	I	C
*I	A	E