CIMPA Research School:

Algebraic, Enumerative and Geometric Combinatorics - ECCO 2016

Triangulations of polytopes. Problem sheet.

3 Flips. Graph of triangulations

- 1. *Show that for a convex n-gon all triangulations have exactly n-d-1=n-3 flips, where n is the number of vertices and d=2 is the dimension.
- 2. *Show that for the triangular prism $\Delta_2 \times \Delta_1$ all triangulations have exactly n d 1 = 2 flips, where n = 6 is the number of vertices and d = 2 is the dimension.
- 3. If you did problem 2.b of sheet 1, show that flips among triangulations of $\Delta_k \times \Delta_1$ correspond to permutations that differ in a transposition of consecutive elements. In particular, all triangulations have exactly n-d-1=k flips, where n=2k+2 is the number of vertices and d=k+1 is the dimension.
- 4. *Show that m.o.a.e. has triangulations with three and with four flips. (Here n d 1 is three).
- 5. *Show that the 3-cube has triangulations with four, and with six flips. (Here n-d-1 is four).
- 6. *Draw the graphs of flips among triangulations of the configuration you chose in Problem 1.1.
- 7. *Draw the graph of flips among triangulations of the following six points: the five vertices of a regular pentagon, together with its center.
- 8. Let \mathcal{T}_1 and \mathcal{T}_2 be two triangulations of the convex n-gon. Show that:
 - (a) *If one of them is the triangulation that joins one vertex to all the others, then we can go from \mathcal{T}_1 to \mathcal{T}_2 in n-3 or less flips.
 - (b) *No matter what they are, we can go from \mathcal{T}_1 to \mathcal{T}_2 in 2n-6 or less flips.
 - (c) In fact, we can go from \mathcal{T}_1 to \mathcal{T}_2 in 2n-10 or less flips.
 - (d) Let n be even and suppose that \mathcal{T}_1 uses all the even ears³ and \mathcal{T}_2 uses all the odd ears⁴. Show that it is impossible to go from \mathcal{T}_1 to \mathcal{T}_2 in less than $\frac{3}{2}n 5$ flips. Clue: classify the possible diagonals

³that is, suppose that for every even i, the triangle i-1, i, i+1 is in \mathcal{T}_1

 $^{^{4}}$ the same, for all odd i

of an n-gon in three types: even-even, even-odd, and odd-odd. This gives you, for each triangulation, a vector of length three that counts the number of diagonals of each type. Study how that vector changes by a flip (there are several cases), and what change you need in order to go from \mathcal{T}_1 to \mathcal{T}_2 .

- 9. Let $A = \{\pm e_i \pm e_j : i, j \in \{1, 2, 3\}\} \cup \{(0, 0, 0)\}$ (the vertices and barycenter of a regular cube-octahedron). Let \mathcal{T} be a triangulation in which all tetrahedra use (0, 0, 0) as a vertex (put differently, \mathcal{T} is one of the 64 triangulations obtained triangulating the 6 quadrilateral facets of $\operatorname{conv}(A)$ and coning the boundary to (0, 0, 0)). Show that:
 - (a) The number of flips in \mathcal{T} equals 6 plus twice the number of vertices of degree four that you see in the triangulation of the boundary.
 - (b) There are two triangulations with only 6 flips (observe that n d 1 = 9 in this example).
 - (c) Are there any triangulations with 8 flips?

