A PROOFS

A.1 Proof of Proposition 1

PROOF. Let $\psi_i(v)$ represent the disk usage of node n_i at timestamp v. For $v < \mu \lor \mu + \text{TTL} < v$, since $\psi_i(v) = \text{TTL} \times C$, we have $\mathcal{D}(v) \equiv 0$. Define $z_i(t) \in \{0,1\}$, where $z_i(t) = 1$ indicates that node n_i is part of the cluster at timestamp t, and $z_i(t) = 0$ otherwise. Thus, we have $\psi_i(v) = \int_{v-TTL}^v C \times z_i(t) \, dt$. Let $\overline{\psi}(v)$ denote the average disk usage of all nodes at timestamp v. It follows $\overline{\psi}(v) = \frac{C}{\alpha + \beta} \times (\alpha \times \text{TTL} + \beta \times (v - \mu))$. Let \mathcal{N} represent the set of all cluster nodes after expansion. The std of disk usage at timestamp

$$\nu$$
 is given by $\mathcal{D}(\nu) = \sqrt{\frac{1}{\alpha + \beta}} \times \sum_{n_i \in \mathcal{N}} \left(\psi_i(\nu) - \overline{\psi}(\nu) \right)^2$.
Let \mathcal{N}_{α} denote the set of α nodes that existed before the cluster

Let \mathcal{N}_{α} denote the set of α nodes that existed before the cluster expansion, and let \mathcal{N}_{β} represent the set of β newly expanded nodes. Then, for all $n_i \in \mathcal{N}_{\alpha}$, $\psi_i(\nu) - \overline{\psi}(\nu) = \frac{\beta C}{\alpha + \beta} \times (\mu + \text{TTL} - \nu)$, and for all $n_j \in \mathcal{N}_{\beta}$, $\psi_j(\nu) - \overline{\psi}(\nu) = -\frac{\alpha C}{\alpha + \beta} \times (\mu + \text{TTL} - \nu)$. Consequently, Equation 2 is derived by combining all the equations above. \square

A.2 Proof of Theorem 1

PROOF. Given an instance, the scatter width increment $\Sigma' - \Sigma$ can be easily computed by adding edges and comparing the vertices' degree before and after this operation. Next, we construct a reduction from the independent set decision problem, defined as $ISDP(V, \mathcal{E}, \rho)$, which asks whether there exists an independent set of size at least ρ in the given undirected graph $G = (V, \mathcal{E})$.

Let $\dot{\mathcal{N}}=\mathcal{V}, \dot{\rho}=\rho$, the adjacency matrix $\dot{\mathcal{H}}$ can be converted from \mathcal{E} in polynomial time. We construct $\dot{\mathcal{W}}=[0]_{1\times n}, \omega=n$ and $\dot{m}=1$, indicating that only 1 scheme needs to be found while all vertices are available for inclusion. Let $\dot{\Delta}=\rho(\rho-1)$, we have $ISDP\leq_p RPDP$ because there exists an independent set of size at least ρ in $G=(\mathcal{V},\mathcal{E})$ iff. there exists an "optimal" scheme that increases $\rho-1$ scatter width for each included node.

A.3 Proof of Lemma 1

PROOF. In Algorithm 1, the $\left\lfloor \frac{\rho}{2} \right\rfloor$ nodes that hold the fewest replicas are included when selecting \mathbf{n}_{α} to ensure storage balance. Thus, generating $\frac{n}{\left\lfloor \frac{\rho}{2} \right\rfloor}$ good placement schemes ensures that each node is included in a good placement scheme at least once.

A.4 Proof of Lemma 2

PROOF. Let $g_{\alpha^*} = \sum_{n_\gamma \in \mathbf{n}_\alpha^*} g\left(n_\gamma, \mathcal{N}_i \setminus \mathbf{n}_\alpha^*, \mathcal{A}\right)$, which is equal to the sum of complement degrees from \mathbf{n}_α^* to the remainder of nodes in \mathcal{N}_i . The initial complement degree for any $n_\gamma \in \mathbf{n}_\alpha^*$ under \mathcal{A} is $|\mathcal{N}_i| - \left\lfloor \frac{\rho}{2} \right\rfloor$. Additionally, each time a vertex is included in \mathbf{n}_α , its complement degree under \mathcal{A} decreases by at most $\left\lfloor \frac{\rho}{2} \right\rfloor$, and it can be selected into \mathbf{n}_α at most ω times. Thus the lower bound is $g_{\alpha^*} \geq \left\lfloor \frac{\rho}{2} \right\rfloor \left(|\mathcal{N}_i| - \left\lfloor \frac{\rho}{2} \right\rfloor (1+\omega)\right)$. According to the pigeonhole principle, when $g_{\alpha^*} > \left(\left\lfloor \frac{\rho}{2} \right\rfloor - 1\right) \left(|\mathcal{N}_i| - \left\lfloor \frac{\rho}{2} \right\rfloor\right)$, there must exist a $n_i \in \mathcal{N}_i$ s.t. $g(n_i, \mathbf{n}_\alpha^*, \mathcal{A}) = \left\lfloor \frac{\rho}{2} \right\rfloor$. Finally, this Lemma is proven by combining the two inequations above.

A.5 Proof of Lemma 3

PROOF. Let $g_{\alpha} = \sum_{n_{\gamma} \in \mathbf{n}_{\alpha}} g\left(n_{\gamma}, \mathcal{N}_{j}, \mathcal{A}\right)$, which is equal to the sum of complement degrees from \mathbf{n}_{α} to all nodes in \mathcal{N}_{j} . Following the same processes as Lemma 2, we obtain an inequation for the lower bound $g_{\alpha} \geq \left(\left\lfloor \frac{\rho}{2} \right\rfloor + 1\right) \left(|\mathcal{N}_{j}| - \left(\left\lfloor \frac{\rho}{2} \right\rfloor + 1\right) \omega\right)$ and another inequation for the pigeonhole principle $g_{\alpha} > \left\lfloor \frac{\rho}{2} \right\rfloor |\mathcal{N}_{j}|$. This lemma is proven by combining the two inequations above.

A.6 Proof of Lemma 4

PROOF. In the worst case, generating ω schemes fills ρ nodes, as though all ω schemes select the same nodes. Since Algorithm 1 always avoids selecting duplicated node combinations to maximize the scatter width, the rate at which the number of filled nodes increases will not be faster than the aforementioned worst case. \square

A.7 Proof of Propositions 2

PROOF. Combining Lemmas 2 and 4, the lower bound for the number of good schemes that Algorithm 1 can generate is $\check{r} \geq (n-\omega+1) \times \frac{\omega}{2}$. Taking this inequation and applying it to Lemma 1, we obtain $\check{\sigma}_n \geq \frac{n-\omega+1}{2n}$, where the limit is $\frac{1}{2}$.

A.8 Proof of Proposition 3

PROOF. Integrating Lemmas 2 and 3 derives the sufficient condition that for a good scheme to exist— $\forall 0 \leq i < \left\lceil \frac{\rho}{2} \right\rceil, |V_i| > \left(\left\lfloor \frac{\rho}{2} \right\rfloor + 1 \right)^2 \omega$. Since $\left(\left\lfloor \frac{\rho}{2} \right\rfloor + 1 \right)^2 \omega > \left\lfloor \frac{\rho}{2} \right\rfloor^2 \omega - \left\lfloor \frac{\rho}{2} \right\rfloor$ works $\forall \omega > 0$, this condition applies universally. Then following the same steps as Proposition 2 and incorporating the inequations that $\frac{\rho-1}{2} \leq \left\lfloor \frac{\rho}{2} \right\rfloor \leq \frac{\rho}{2} \leq \left\lceil \frac{\rho}{2} \right\rceil$, we obtain $\check{\sigma}_n \geq \frac{4 \min(|\mathcal{N}_i|) - (\rho+1)^2}{16n}$. As $|\mathcal{N}_i|$ approximates $\frac{n}{\lceil \frac{\rho}{2} \rceil}$, the limit for $\check{\sigma}_n$'s lower bound is $\frac{1}{4 \times \lceil \frac{\rho}{2} \rceil}$.

A.9 Proof of Proposition 4

PROOF. As long as a group of nodes containing any employed replica placement scheme fail simultaneously, at least one shard becomes unavailable. Assuming that the cluster has employed r pairwise distinct placement schemes. Given that the number of schemes for selecting ρ nodes from n nodes to place a shard is $\binom{n}{\rho}$, if ρ nodes fail concurrently, the probability that the combination of these ρ nodes encounters an employed scheme is $\epsilon = \frac{r}{\binom{n}{\rho}}$.

In the case where m nodes fail simultaneously, these failed nodes correspond to $\binom{m}{\rho}$ possible schemes. Since each has ϵ to be employed, the probability P(X(n,m)=k) follows binomial distribution $Binomial(\binom{m}{\rho},\epsilon)$, i.e., $P(X(n,m)=k)=\binom{\binom{m}{\rho}}{k}\epsilon^k(1-\epsilon)^{\binom{m}{\rho}-k}$. Subsequently, given that the n is relatively large and ϵ is small in real-world deployments, and considering the applicability of the Poisson distribution to such rare events, we apply the Poisson limit theorem to approximate the binomial distribution. The rate parameter for $Poisson(\lambda)$ is $\lambda=\binom{m}{\rho}\times\epsilon$. Therefore, as the number of nodes deployed in the cluster gradually expands, we obtain $\lim_{n\to\infty}P(X(n,m)=k)=e^{-\lambda}\times\frac{\lambda^k}{k!}$. Finally, this proposition is proved by the fact that $P(X(n,m)\geq 1)=1-P(X(n,m)=0)$.

Figure 19: Disk usage distribution in the expansion scenario.

Figure 20: Disk usage distribution in the disaster scenario.

Table 4: Average throughput standard deviation generated through different leader selection algorithms.

Scenario	Algorithm	STD (K points/s)	Difference
	CFS (ours)	10.541	-
After	GREEDY	44.573	+322.9%
expansion	ESDB	78.999	+649.4%
(Figure 15(c))	LOGSTORE	138.347	+1212.5%
	RANDOM	106.827	+913.4%
	CFS (ours)	13.528	-
During	GREEDY	21.683	+60.3%
recovery	ESDB	24.624	+82.0%
(Figure 18(c))	LOGSTORE	31.710	+134.4%
	RANDOM	39.511	+192.1%

Table 3: Maximum disk usage standard deviation generated through different replica placement algorithms.

Scenario	Algorithm	STD (%)	Difference
Expansion after TTL (Figure 10)	PGP (ours)	0.153	-
	WRR	0.172	+12.4%
	COPYSET	0.680	+344.4%
	TIERED	0.533	+248.4%
	GEMINI	0.820	+435.9%
	HYDRA	0.837	+447.1%
During disaster (Figure 13)	PGP (ours)	0.233	-
	WRR	0.803	+244.6%
	COPYSET	0.538	+130.9%
	TIERED	0.396	+70.0%
	GEMINI	0.804	+245.1%
	HYDRA	0.505	+116.7%

A.10 Proof of Lemma 5

PROOF. According to Hall's marriage theorem, if for any subset of the shard set \mathcal{R} , the sum of the number of leader replicas that can be held by its associated nodes exceeds its size, each shard can be matched with a node. Since the commonly configured replication factor $\rho > 1$, which means for any shard, the sum of the number of leader replicas that can be held by its associated nodes is $\rho > 1$, the above condition is satisfied.

A.11 Proof of Proposition 5

PROOF. Lemma 5 guarantees that $\forall r_k \in R, p_k \in r_k$ holds in every generated leader distribution. The storage balance constraint of Algorithm 1 leads to a balanced replica distribution $\forall n_i \in \mathcal{N}, \omega - 1 \leq \omega_i \leq \omega$. Hence the remaining proof is to show that the final distribution is optimally balanced iff. $\forall n_i \in \mathcal{N}, \left| \frac{\omega}{\rho} \right| \leq \eta_i \leq \left| \frac{\omega}{\rho} \right|$.

Necessarily, $\forall n_i \in \mathcal{N}, \left\lfloor \frac{\omega}{\rho} \right\rfloor \leq \eta_i \leq \left\lceil \frac{\omega}{\rho} \right\rceil$ results in the optimally balanced leader distribution. Since the cost for a node n_i to

own η_i leaders— $\sum_{k=1}^{\eta_i} \delta(k) = \eta_i^2$ —is a convex function, and it is additive, combining this property with Jensen's inequality, when $\forall n_i \in \mathcal{N}, \left\lfloor \frac{\omega}{\rho} \right\rfloor \leq \eta_i \leq \left\lceil \frac{\omega}{\rho} \right\rceil$, the total cost of \widetilde{G} is minimized. Sufficiency obtained from the construction process of the next

Sufficiency obtained from the construction process of the next augmenting path for selecting the leader replica of shard r_i . To present vertices involved in this path, we define the relation \sim such that two vertices $v_i \sim v_j$ if, when considering only edges $e \in \widetilde{B}$, v_i

and v_j are connected. Let $\hat{\mathcal{R}} = \{r_j : r_i \sim r_j\}$ and $\hat{\mathcal{N}} = \{n_j : r_i \sim n_j\}$. The next augmenting path must consist of $S \to r_i \to \cdots \to n_j \to T$, where the number of leader replicas η_j possessed by vertex n_j is minimum among $\forall n_i \in \hat{\mathcal{N}}$, ensuring that the cost of this path, $2\eta_j + 1$, is minimized. As each augmenting path ends with reaching the sink vertex T through the node that owns the least number of leader replicas, $\forall n_i \in \mathcal{N}, \left\lfloor \frac{\omega}{\rho} \right\rfloor \leq \eta_i \leq \left\lceil \frac{\omega}{\rho} \right\rceil$ holds eventually. \square