MODELING: CLASSIFICATION

Machine Learning for Marketing

© 2020-2023 Nuno António

Acreditações e Certificações

Summary

- 1. Measures of performance
- 2.Logistic Regression
- 3. Support Vector Machine (SVM)
- 4. K-Nearest Neighbor (KNN)
- 5. Neural Networks
- 6. Naïve Bayes
- 7. Decision Tree

Modeling: Classification

"All models are wrong, but some are useful"

[George E. P. Box]

Binary classification

Batch approach

Measures of performance

FALSE POSITIVE error type I

FALSE NEGATIVE error type II

[opentextbc.ca]

Confusion matrix

		PREDICTED		
		TRUE FALSE		
GET	TRUE	True Positive (TP)	False Negative (FN)	
TARGET	FALSE	False Positive (FP)	True Negative (TN)	

Confusion matrix - cancer prediction

		PREDICTED		
		TRUE FALSE		
SET	TRUE	TP	FN 👺	
TARGET	FALSE	FP 🔑	TN	

It is preferable to have False Positives than False Negatives

Confusion matrix – justice conviction prediction

		PREDICTED		
		TRUE FALSE		
GET	TRUE	TP	FN S	
TARGET	FALSE	FP TOTAL	TN	

It is preferable to have **False Negatives** than False Positives

$$Accuracy = \frac{\sum TP + \sum TN}{\sum TP + \sum TN + \sum FP + \sum FN}$$

Measures de overall accuracy of the model

A high accuracy is not an indication that the model is excellent. For example, if only 1 in 100 observations is positive, a model that classifies all observations as negative has a 99% accuracy

$$Precision = \frac{\sum TP}{\sum TP + \sum FP}$$

Percentage of predicted positive cases classified correctly

$$Sensitivity|Recall|True\ Positive\ Rate\ (TPR) = \frac{\sum TP}{\sum TP + \sum FN}$$

Percentage of actual positive cases that were classified correctly by the model or probability of a positive prediction is really positive

$$Specificity|True\ Negative\ Rate(TNR) = \frac{\sum TN}{\sum TN + \sum FP}$$

Percentage of actual negative cases that were classified correctly by the model or probability of a negative prediction is really negative

$$F1Score = \frac{2 \times \sum TP}{2 \times \sum TP + \sum FP + \sum FN}$$

Combination of *Precision* and *Recall* into one only measure, the harmonic mean of *Precision* and *Recall*

False Positive Rate (FPR) =
$$\frac{\sum FP}{\sum TN + \sum FP}$$

Percentage of predicted positive cases classified incorrectly

False Negative Rate (FNR) =
$$\frac{\sum FN}{\sum TP + \sum FN}$$

Percentage of predicted negative cases classified incorrectly

Churn example

		PREDICTED		
		TRUE	FALSE	
TARGET	TRUE	5 000	1000	
	FALSE	1 500	22 500	

Total customers = 30 000

Churn customers = 6 000

Accuracy = 0.9167

Precision = 0.7692

Sensitivity = 0.8333

False Positive Rate = 0.0625

Classification threshold

$$threshold(score, 0.5) = \begin{cases} negative, & score < 0.5\\ positive, & score \ge 0.5 \end{cases}$$

[Adapted from https://towardsdatascience.com/]

Receiver Operating Characteristic (ROC)

Visualization of *all* confusion matrices (with a different threshold) [0,1]

Very useful to compare models' performance

ROC/AUC

ROC = Receiver Operating Characteristic

AUC = Area Under the Curve

Other measures

- Gini coefficient: the linear rescaling of ROC index
- Kolmogorov-Smirnov Statistic (K-S statistic): captures the separation between the distribution of prediction scores

Binary classification

Rank-ordered approach

Measures of performance

Rank ordered approach

In many areas, you "treat" those who are **most likely** to respond to the "treatment". For example, select the customers that are likely to churn.

The most common metrics are:

Gain (segment) = $\frac{target \ positive \ instances \ in \ segment}{total \ of \ target \ positive \ instances}$

Lift (segment) =
$$\frac{\frac{target\ positive\ instances\ in\ segment}{instances\ in\ segment}}{\frac{total\ target\ positive\ instances}{total\ instances}}$$

-ROI

How to implement

- Sort the numeric output of each observation, either by the probability or confidence (or predicted output in a regression model)
- 2. Bin the predictions into segments (usually deciles 10% of the dataset)
- 3. Create summary statistics of each segment

Churn example (1/3)

Dec.	Pos. count	Neg. count	Gain	Cum. Gain	Lift	Cum. Lift
1st	2	0	0.222	0.222	2.222	2.222
2nd	1	1	0.111	0.333	1.111	1.667
3rd	2	0	0.222	0.556	2.222	1.852
4th	1	1	0.111	0.667	1.111	1.667
5th	0	2	0.000	0.667	0.000	1.333
6th	1	1	0.111	0.778	1.111	1.296
7th	1	1	0.111	0.889	1.111	1.270
8th	1	1	0.111	1.000	1.111	1.250
9th	0	2	0.000	1.000	0.000	1.111
10th	0	2	0.000	1.000	0.000	1.000

Dec.	ID	Target	Prediction	Score	Outcome
4.4	9	Т	Т	0.963	TP
1st	4	Т	Т	0.960	TP
	18	Т	Т	0.877	TP
2nd	20	N	Т	0.833	FP
3rd	6	Т	Т	0.781	TP
Sid	10	T	Т	0.719	TP
	17	N	Т	0.676	FP
4th	8	Т	Т	0.657	TP
	5	N	N	0.348	TN
5th	14	N	N	0.302	TN
C+P	16	N	N	0.293	TN
6th	1	T	N	0.246	FN
746	2	T	N	0.226	FN
7th	3	N	N	0.184	TN
046	19	N	N	0.160	TN
8th	12	T	N	0.094	FN
0+b	15	N	N	0.064	TN
9th	13	N	N	0.059	TN
10+h	7	N	N	0.003	TN
10th	11	N	N	0.001	TN

Churn example (2/3)

Churn example (3/3)

Lift should start with high values in well performing models

A stable model will have monotonic lift values from segment to segment. Erratic segment lift charts are indicative of overfitting The lift curve should cross 1.0 only at one of the lower deciles (around the 5th decile)

ROI: Profit and Loss confusion matrix

In some problems, measures in the confusion matrix are not worth the same, therefore it might be necessary to evaluate the Return On Investment (ROI)

		PREDICTED		
		TRUE FALSE		
GET	TRUE	TP profit	FN profit	
TARGET	FALSE	FP profit	TN profit	

Example: ROI for customer churn (1/2)

Correctly predicting that a customer will not churn or will churn has the same cost. However, predicting a costumer will not churn, but the customer won't have the cost of an "additional discount" (e.g., € 50). Failing to identify customers who will churn has a much higher cost, the "customer average lifetime value"

		PREDICTED		
		TRUE FALSE		
GET	TRUE	0 €	- 700 €	
TARGET	FALSE	- 50 €	0 €	

Example: ROI for customer churn (2/2)

MODEL 1

		PREDICTED		
		CHURN NO-CHURN		
TARGET	CHURN	8 x 0 €	2 x -700 €	
	NO-CHURN	20 x -50 €	70 x 0 €	

$$(8 \times 0 €) + (2 \times -700 €) + (20 \times -50 €) +$$

 $(70 \times 0 €) = -2400 €$

Accuracy = 0.78

MODEL 2

		PREDICTED		
		CHURN	NO-CHURN	
GET	CHURN	7 x 0 €	3 x -700 €	
TARGI	NO-CHURN	16 x -50 €	74 x 0 €	

$$(7 \times 0 €) + (3 \times -700 €) + (16 \times -50 €) +$$

 $(74 \times 0 €) = -2900 €$

Multi categorical classification

Measures of performance

Multi-class confusion matrix

	PREDICTED				
		Level A	Level B	Level C	Level D
	Level A	5	0	2	0
SET	Level B	0	6	1	0
TARGET	Level C	0	1	10	0
	Level D	0	0	2	3

Precision and Recall

			PREDICTED				
	Level A Level B Level C Level D					Recall	
	Level A	5	0	2	0	0.714	
GET	Level B	0	6	1	0	0.857	
TARGET	Level C	0	1	10	0	0.909	
	Level D	0	0	2	3	0.600	
P	recision	1.00	0.857	0.667	1.000		

$$Precision(l) = \frac{\sum TP(l)}{\sum TP(l) + \sum FP(l)}$$

$$Recall(l) = \frac{\sum TP(l) + \sum FN(l)}{\sum TP(l) + \sum FN(l)}$$

Average class accuracy (ACA)

	PREDICTED					
		Level A	Level B	Level C	Level D	Recall
TARGET	Level A	5	0	2	0	0.714
	Level B	0	6	1	0	0.857
	Level C	0	1	10	0	0.909
	Level D	0	0	2	3	0.600

$$ACA = \frac{1}{\frac{1}{|levels(t)|} \sum_{l \in levels(t)} \frac{1}{recall_l}} = \frac{1}{\frac{1}{4} \left(\frac{1}{0.714} + \frac{1}{0.857} + \frac{1}{0.909} + \frac{1}{0.600}\right)} = \frac{1}{1.333} = 0.75$$

Logarithmic loss

Logarithmic Loss (Log Loss) =
$$\frac{-1}{m} \sum_{j=1}^{m} \sum_{k=1}^{m} y_{jk} \times \log(p_{jk})$$

Penalizes incorrect predictions. The classification algorithm assigns a probability to each level of the sample, where:

 y_{ik} , indicates if sample i belongs to level j

 p_{ik} , indicates the probability that sample I belongs to level j

n, indicates the number of levels

m, indicates the number of instances

Result in the domain of $[0, \infty]$. Values close to 0 indicate greater accuracy

Logistic Regression

Modeling: Classification

Logistic regression

Classification: y = 0 or 1

Logistic regression:
$$0 \le h_w(x) \le 1$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_w(x) = \frac{1}{1 + e^{-w^T x}}$$

If threshold is 0.5: $(h_w(x) \ge 0.5, y = 1)$

$$\begin{cases} h_w(x) \ge 0.5, y = 1 \\ h_w(x) < 0.5, y = 0 \end{cases}$$

Odds ratio are the base of logistic regression

odds ratio =
$$\frac{P(1)}{1 - P(1)} = \frac{P(1)}{P(0)}$$

Odds ratio ≠ Likelihood an event will occur

Example: 1 in every 5 customers cancel their insurance policy after one year

Likelihood of canceling = $\frac{1}{5}$ = 0.2 (a policy has a 20% likelihood of being canceled)

$$odds \ ratio(of \ canceling) = \frac{0.2}{1 - 0.2} = 0.25$$

$$odds \ ratio(of \ NOT \ canceling) = \frac{1 - 0.2}{0.2} = 4$$

In other words...the odds of a policy not being canceled is 4 times higher than of canceling

Probability calculation

$$odds \ ratio = \frac{P(1)}{1 - P(1)} = w_o + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$P(target = 1) = \frac{1}{1 + e^{-(w_o + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)}}$$

Logistic regression models

_

Models of the log of the odds ratio

Interpreting the models

- Coefficient (β): weight per input variable, plus the constant (bias term)
- Standard error of the coefficient (SE): measure of certainty of the coefficient. Smaller values imply a smaller level of uncertainty
- Confidence interval (CI): the range of values the coefficient is expected to fall between (CI= β +SE)
- **Z statistic or Wald test:** the larger the z, the more likely the term associated to the coefficient is significant to the model $(z = \frac{\beta}{SE})$
- P(>|z|): values below 0.05 are considered a significant predictor (although there is no theoretical reason for making this inference)

Practical considerations

- Because the model is the linear weighted sum of inputs, to improve models' accuracy, interactions of variables should be explicitly indicated
- Does not support missing values
- As in other numeric algorithms, when creating dummy variables for categorical columns, create a column for category level minus one (if there are 8 levels create only 7 dummy variables), this will avoid multicollinearity

Multinomial logistic regression

Logistic regression

One-vs-all

$$h_w^{(i)}(x) = P(y = i|x; w)$$
 (i = 1,2,3)

$$P(Target = N) = \sum_{i=1}^{N-1} P(Target = i)$$

One-vs-all

- 1. Train a logistic regression classifier $h_w^{(i)}(x)$ for each class *i* to predict the probability that y=I
- 2. On a new input x, to make a prediction, pick the class i that maximizes:

$$\max_{i} h_{w}^{(i)}(x)$$

Application exercise

Logistic regression

Predicting the success of bank telemarketing

- Copy from the datasets folder the dataset "bank-additionalfull.csv"
- 2. Copy and open the Jupyter notebook "PredictBankTelemarketingSucess_LR.ipynb"
- 3. Follow the presentation of the notebook, answer the questions and explore the challenges

Support Vector Machine

Modeling: Classification

SVM

- Known as "Large-margin" classifier:
 - Linear separable
 - Nonlinear separable
- Employs "Kernel" methods to create nonlinear classifiers

Goal

As logistic regression, its goal is to find the best decision boundary between classes

Large-margin decision boundary

The decision boundary (a.k.a. "separating hyperplane") should be as far way from the data of both classes as possible

Fiding the decision boundary

- Let $\{x_1,...,x_n\}$ be a dataset and let $y_i \in \{1,-1\}$ be the class label of x_i
- The decision boundary (DB) should classify all points correctly: $y_i(w^Tx_i + b) \ge$, \forall_i
- The decision boundary can be found by solving the constrained optimization problem:
 - Minimize $\frac{1}{2} ||w||^2$
 - Subject to $y_i(w^Tx_i + b) \ge \forall y_i$

$$||w|| = Euclidean norm of w = \sqrt{w[1]^2 + w[2]^2 + \dots + w[m]^2}$$

Extension to non-linear DB

- Transform x_i to a higher dimensional space
- Apply a "Kernel function" (inner product) which is a similarity measure between objects
- Example of kernel functions: Linear kernel, Polynomial kernel, Gaussian radial basis kernel

Strengths and Weaknesses

Strengths

- Training is relatively easy
- Scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly
- A useful alternative to neural networks

Weaknesses

- Need to choose a "good" kernel function
- Do not provide probabilities (directly)

Application exercise

Support Vector Machine

Predicting the success of bank telemarketing

- Copy from the datasets folder the dataset "bank-additionalfull.csv"
- 2. Copy and open the Jupyter notebook "PredictBankTelemarketingSucess_SVM.ipynb"
- 3. Follow the presentation of the notebook, answer the questions and explore the challenges

K-Nearest Neighbor

Modeling: Classification

"Similar things exist in close proximity"

[https://medium.com/

KNN algorithm

- Non-parametric: no assumption for underlying data distribution
- Lazy: does not require training (all training is done in testing)
- Scans all data points: which consumes time and memory
- Versatile: works both for classification and regression problems

How it works

- 1. Define k (the number of neighbors)
- 2. Calculate distance between instances
- 3. Find k closest neighbors
- 4. Calculate target:
 - 1. Classification: mode
 - 2. Regression: mean

Measures of distances between instances

Eucledian distance

$$\sum_{i=1}^{n} (x_i - y_i)^2 = \sqrt{(2-5)^2 + (1-4)^2} = \sqrt{9+9} = 4.24$$

Manhattan distance

$$\sum_{i=1}^{n} (x_i - y_i) = |2 - 5| + |1 - 4| = 6$$

- Hamming distance
- Minkowski distance

K selection is important

NOTE: Some implementations use a weighted vote mechanism, meaning that near instances have a higher weight than distant ones

Choosing the right K

- As K is decreased to 1, predictions become less stable
- Inversely, as K increases, predictions become stable due to majority voting/averaging. But, after a certain point, the number of errors will start to increase (meaning K was pushed too far)
- In classification, because of the "majority voting", K should be an odd number

Strengths and Weaknesses

Strengths

- No need to train a model or tune many parameters
- Useful with nonlinear data
- Works both for classification and regression problems

Weaknesses

- Testing can be slow and consume time and memory
- Requires normalization [0,1]
- Becomes slower as the number of observations increase
- Not suitable for high dimensional data

Application exercise

K-Nearest Neighbor

Predicting the success of bank telemarketing

- Copy from the datasets folder the dataset "bank-additionalfull.csv"
- 2. Copy and open the Jupyter notebook "PredictBankTelemarketingSucess_KNN.ipynb"
- 3. Follow the presentation of the notebook, answer the questions and explore the challenges

Neural Networks

Modeling: Classification

Neural networks for classification

Similar in everything to regression. The difference is that outputs are a prediction probability for a class

Application exercise

Neural networks

Predicting customers who will leave the bank in the following 6 months

- 1. Copy from the datasets folder the dataset "Bank_Churn_Modelling.csv"
- 2. Copy and open the Jupyter notebook "PredictBankChurn_NN.ipynb"
- 3. Follow the presentation of the notebook, answer the questions and explore the challenges

Naive Bayes

Modeling: Classification

Naïve Bayes

- Based on Bayes theorem
- Is named "naïve" because it assumes inputs are independent

The probability of "B" being true given that "A" is true (posterior)

The probability of "A" being true (prior)

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

The probability of "A" being true given that "B" is true *(posterior)*

The probability of "B" being true (*prior*)

Probabilities review

$$P(A) = \frac{\text{#events=true}}{\text{#all events}} \quad [0,1]$$

- OR: U,V, or +
- \blacksquare AND: \cap , \wedge , or x

$$P(\bar{A}) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A|B) \times P(B)$$
 or $P(B|A) \times P(A)$

Probabilities review: Flu example

Facts:

- People with flu have the same symptoms 90% of the time (headache and sore throat)
- Statistics show only 5% of the population gets the flu every year
- Every year, 20% of the population will have a headache and a sore throat
- Question: What is the probability of having the flu when you have a headache and a sore throat?
- Answer: $P(flu|symptoms) = \frac{P(symptoms|flu) \times P(flu)}{P(symptoms)} = \frac{0.9 \times 0.05}{0.2} = 0.225 = 22.5\%$

How it works

- 1. Calculate the probabilities for each class in the train dataset
- 2. Calculate distance to neighbors
- 3. Calculate probabilities to neighbors

$$P(\text{yellow}) = \frac{7}{17} P(\text{green}) = \frac{10}{17}$$

P'(?|green)=
$$\frac{3}{10}$$
 (probability in vicinity)

P'(?|yellow)=
$$\frac{1}{7}$$
(probability in vicinity)

P"(?|green)=P(green) x P'(?|green)=
$$\frac{10}{17} \times \frac{3}{10} = \frac{30}{170}$$

P"(?|yellow)=P(yellow) x P'(?|yellow)=
$$\frac{7}{17} \times \frac{1}{7} = \frac{7}{119}$$

? is Green

Interpretation

- Many implementations generate a list of probabilities per target level and input
- When the probability percentage of an input is higher than the target level distribution, it means the feature is important

Example (Target_balanced)	Input1=1	Input1=2	Input1=3	Input1=4
Counts Target_0	1268	510	382	266
Counts Target_1	930	530	471	494
Percentage Target_1	42.3%	51.0%	55.2%	65.0%

Strengths and Weaknesses

Strengths

- Easy to understand
- Does not require normalization
- Models are interpretable

Weaknesses

- Requires all inputs to be categorical (some implementations will bin the data)
- Does not find interactions between inputs. Interactions need to be specifically engineered
- Susceptible to high correlated variables
- Requires more data as the number of inputs get larger

Application exercise

Naïve Bayes

Predicting customers who will leave the bank in the following 6 months

- 1. Copy from the datasets folder the dataset "Bank_Churn_Modelling.csv"
- 2. Copy and open the Jupyter notebook "PredictBankChurn_NB.ipynb"
- 3. Follow the presentation of the notebook, answer the questions and explore the challenges

Decision Tree

Modeling: Classification

Decision tree for classification

- Similar in everything to regression. The difference is that outputs are a prediction probability for a class
- In regression, the output is based the mean response of the observations falling in the region of the tree
- In classification, the output is based in the mode response of the observations falling in the region of the tree

Application exercise

Decision tree

Predicting customers who will leave the bank in the following 6 months

- 1. Copy from the datasets folder the dataset "Bank_Churn_Modelling.csv"
- 2. Copy and open the Jupyter notebook "PredictBankChurn_DT.ipynb"
- 3. Follow the presentation of the notebook, answer the questions and explore the challenges

Questions?

Machine Learning for Marketing

© 2020-2023 Nuno António (rev. 2023-02-09)

Acreditações e Certificações

