The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Whatever the approach to development may be, the final program must satisfy some fundamental properties. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. Following a consistent programming style often helps readability. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Code-breaking algorithms have also existed for centuries. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Different programming languages support different styles of programming (called programming paradigms).