9 Hrs

Relations.
UNIT - V

Graphs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

Computer Science & Engineering

Course Code	Discrete Mathematics & Graph theory		L	Т	P	С	
20A54304	(Common to CSE, IT, CSE(DS), CSE (IoT), CSE		3	0	0	3	
201134304	(AI), CSE (AI & ML) and AI & DS)		3		"		
Pre-requisite				III			
1 re-requisite	Dasic Mathematics Semester			111			
Course Objectives:							
	cepts of mathematical logic and gain	knowledge in s	etc	relati	one	and	
	e problems using counting techniques a						
	ns and recurrence relations. Use Grap						
problems	ns una recurrence returnons. Ose Graf	on incory for so		6 10		orra	
Course Outcomes	(CO):						
	of the course, students will be able to						
Apply mathematical logic to solve problems.							
• Understand the concepts and perform the operations related to sets, relations and							
functions.							
• Gain the conceptual background needed and identify structures of algebraic nature.							
Apply basic counting techniques to solve combinatorial problems.							
• Formulate problems and solve recurrence relations.							
	ph Theory in solving computer science						
UNIT - I Mathematical Logic		8 Hrs					
Introduction, State	ements and Notation, Connectives, W	/ell-formed forn	nulas	s, Ta	utolo	ogy,	
Duality law, Equivalence, Implication, Normal Forms, Functionally complete set of							
connectives, Inference Theory of Statement Calculus, Predicate Calculus, Inference theory							
of Predicate Calcu	lus.						
UNIT - II	Set theory		9 Hrs				
Basic Concepts of	of Set Theory, Relations and Orderi	ng, The Princip	ole o	of In	clusi	ion-	
	hole principle and its application, Fun						
Inverse Functions, Recursive Functions, Lattices and its properties. Algebraic structures:							
Algebraic systems-	-Examples and General Properties, Sem	i groups and Mo	noid	s, gro	ups,	sub	
	hism, Isomorphism.		ı				
UNIT - III	Elementary Combinatorics		8 H	[rs			
Basics of Countin	g, Combinations and Permutations, E	numeration of C	Comb	oinati	ons	and	
Permutations, Enu	merating Combinations and Permutation	ons with Repetiti	ons,	Enu	nera	ting	
Permutations with	Constrained Repetitions, Binomial	Coefficients, Tl	he E	Binon	nial	and	
Multinomial Theor							
UNIT - IV	Recurrence Relations		9 H	rs			
Generating Functi	ons of Sequences, Calculating Coeff	ficients of Gene	ratin	g Fi	ıncti	ons,	
	Recurrence relations, Solving Recurrence Relations by Substitution and Generating						
functions, The Method of Characteristic roots, Solutions of Inhomogeneous Recurrence							

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

Computer Science & Engineering

Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four Color Problem

Textbooks:

- 1. Joe L. Mott, Abraham Kandel and Theodore P. Baker, Discrete Mathematics for Computer Scientists & Mathematicians, 2nd Edition, Pearson Education.
- 2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2002.

Reference Books:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications with Combinatorics and Graph Theory, 7th Edition, McGraw Hill Education (India) Private Limited.
- 2. Graph Theory with Applications to Engineering and Computer Science byNarsinghDeo.

Online Learning Resources:

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf