Advanced statistics and modelling

5. week

Hypothesis testing

> Parameter inference in statistics Hypothesis testing, MLE, Bootstrap

Hypothesis testing, MLE, Bootstrap

Hypothesi:

- Recall: The basic statistical inference problem was the following:
- We have some observed data: $X_1, X_2, \dots, X_n \sim F$.
- Based on the observations we would like to **infer** (or estimate or learn) some parameters (e.g. *p* in a Binomial).
- In data science: based on the observations validate an assumption (hypothesis) on some parameters.
- Statistical decision: calculate the probability, that the observations are consistent with the hypothesis.
- Calculate some parameters (3 methods):
 - assume normal distribution
 - assume the observation is the most probable realization
 - assume all possible values to be observed

Hypothesis testing, MLE, Bootstrap

Hypothesi:

- Recall: The basic statistical inference problem was the following:
- We have some observed data: $X_1, X_2, \dots, X_n \sim F$.
- Based on the observations we would like to **infer** (or estimate or learn) some parameters (e.g. *p* in a Binomial).
- In data science: based on the observations validate an assumption (hypothesis) on some parameters.
- Statistical decision: calculate the probability, that the observations are consistent with the hypothesis.
- Calculate some parameters (3 methods):
 - assume normal distribution
 - assume the observation is the most probable realization
 - assume all possible values to be observed

Hypothesis testing, MLE, Bootstrap

- Recall: The basic statistical inference problem was the following:
- We have some observed data: $X_1, X_2, \dots, X_n \sim F$.
- Based on the observations we would like to **infer** (or estimate or learn) some parameters (e.g. *p* in a Binomial).
- In data science: based on the observations validate an assumption (hypothesis) on some parameters.
- Statistical decision: calculate the probability, that the observations are consistent with the hypothesis.
- Calculate some parameters (3 methods):
 - assume normal distribution
 - assume the observation is the most probable realization
 - assume all possible values to be observed

Hypothesis testing, MLE Bootstrap

Hypothesis

- Recall: The basic statistical inference problem was the following:
- We have some observed data: $X_1, X_2, \dots, X_n \sim F$.
- Based on the observations we would like to **infer** (or estimate or learn) some parameters (e.g. *p* in a Binomial).
- In data science: based on the observations validate an assumption (hypothesis) on some parameters.
- Statistical decision: calculate the probability, that the observations are consistent with the hypothesis.
- Calculate some parameters (3 methods):
 - assume normal distribution
 - assume the observation is the most probable realization
 - assume all possible values to be observed

Hypothesis testing, MLE Bootstrap

Hypothesis

- Recall: The basic statistical inference problem was the following:
 - We have some observed data: $X_1, X_2, \dots, X_n \sim F$.
 - Based on the observations we would like to **infer** (or estimate or learn) some parameters (e.g. *p* in a Binomial).
- In data science: based on the observations validate an assumption (hypothesis) on some parameters.
- Statistical decision: calculate the probability, that the observations are consistent with the hypothesis.
- Calculate some parameters (3 methods):
 - assume normal distribution
 - assume the observation is the most probable realization
 - assume all possible values to be observed

Hypothesis testing, MLE Bootstrap

- Recall: The basic statistical inference problem was the following:
 - We have some observed data: $X_1, X_2, \dots, X_n \sim F$.
 - Based on the observations we would like to **infer** (or estimate or learn) some parameters (e.g. *p* in a Binomial).
 - In data science: based on the observations validate an assumption (hypothesis) on some parameters.
 - Statistical decision: calculate the probability, that the observations are consistent with the hypothesis.
 - Calculate some parameters (3 methods):
 - assume normal distribution,
 - assume the observation is the most probable realization
 - assume all possible values to be observed

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

• The **parameter space** Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).

Hypothesis testing, MLE, Bootstrap

- The **parameter space** Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$

Hypothesis testing, MLE, Bootstrap

- The **parameter space** Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$

Hypothesis testing, MLE, Bootstrap

- The **parameter space** Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$
- Note: θ is a fixed parameter

Hypothesis testing, MLE, Bootstrap

- The **parameter space** Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$
- Note: θ is a fixed parameter
- We collect data $X \in \mathcal{X}$, and we want to make a decision on the hypothesis.

Hypothesis testing, MLE, Bootstrap

- The parameter space Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$
- Note: θ is a fixed parameter
- We collect data $X \in \mathcal{X}$, and we want to make a decision on the hypothesis.
- The **rejection region** is $R \subset \mathcal{X}$ if $X \in R \Rightarrow \text{reject } H_0$
 - $X \notin R \Rightarrow \text{retain}(\text{not reject})H_0$

Hypothesis testing, MLE Bootstrap

- The parameter space Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$
- Note: θ is a fixed parameter
- We collect data $X \in \mathcal{X}$, and we want to make a decision on the hypothesis.
- The **rejection region** is $R \subset \mathcal{X}$ if $X \in R \Rightarrow \text{reject } H_0$ $X \notin R \Rightarrow \text{retain(not reject)} H_0$
- A function $T: \mathcal{X} \to \mathbb{R}$ is a **test statistics**

Hypothesis testing, MLE, Bootstrap

- The parameter space Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$
- Note: θ is a fixed parameter
- We collect data $X \in \mathcal{X}$, and we want to make a decision on the hypothesis.
- The rejection region is $R \subset \mathcal{X}$ if $X \in R \Rightarrow \text{reject } H_0$ $X \notin R \Rightarrow \text{retain(not reject)} H_0$
- A function $T: \mathcal{X} \to \mathbb{R}$ is a **test statistics**
- The **critical value** is c if the rejection region can be expressed as $R = \{x \in \mathcal{X} \mid T(x) > c\}$

Hypothesis testing, MLE, Bootstrap

- The parameter space Θ is partitioned: Θ_0 and Θ_1 ($\Theta_0 \cap \Theta_1 = \emptyset$).
- The **null hypothesis** is $H_0: \theta \in \Theta_0$
- The alternative hypothesis is $H_1: \theta \in \Theta_1$
- Note: θ is a fixed parameter
- We collect data $X \in \mathcal{X}$, and we want to make a decision on the hypothesis.
- The rejection region is $R \subset \mathcal{X}$ if $X \in R \Rightarrow \text{reject } H_0$ $X \notin R \Rightarrow \text{retain(not reject)} H_0$
- A function $T: \mathcal{X} \to \mathbb{R}$ is a **test statistics**
- The **critical value** is c if the rejection region can be expressed as $R = \{x \in \mathcal{X} \mid T(x) > c\}$
- The hypothesis test is to find T and c, which leads the least harmful decision.
 - (e.g. Do I have cancer? or Do I got the most points for home work?)

Hypothesis testing, MLE, Bootstrap

		Retain H_0	Reject H_0
Possible outcomes:	H_0 true	OK	type I error
	H_1 true	type II error	OK

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

- The power function of the test is a $\Theta \to \mathbb{R}$

$$\beta(\theta=\mu)=P_{\theta}(X\in R)$$

where R is the rejection region and X are some collected data.

- The power function of the test is a $\Theta \to \mathbb{R}$

$$\beta(\theta=\mu)=P_{\theta}(X\in R)$$

where R is the rejection region and X are some collected data.

• The test is **two sided** if $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$

• The power function of the test is a $\Theta \to \mathbb{R}$

$$\beta(\theta=\mu)=P_{\theta}(X\in R)$$

where R is the rejection region and X are some collected data.

- The test is **two sided** if $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$
- The test is **one sided** if $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$

or
$$H_0: \theta = \theta_0$$
 and $H_1: \theta < \theta_0$

• The power function of the test is a $\Theta \to \mathbb{R}$

$$\beta(\theta=\mu)=P_{\theta}(X\in R)$$

where R is the rejection region and X are some collected data.

- The test is **two sided** if $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$
- The test is **one sided** if $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$

or
$$H_0: \theta = \theta_0$$
 and $H_1: \theta < \theta_0$

• The **level** of the test is $\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$

the maximum probability for rejecting the observations, when the parameter is in the retained set.

- The power function of the test is a $\Theta \to \mathbb{R}$ $\beta(\theta = \mu) = P_{\theta}(X \in R)$ where R is the rejection region and X are some collected data.
- The test is **two sided** if $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$
- The test is **one sided** if $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$

or
$$H_0: \theta = \theta_0$$
 and $H_1: \theta < \theta_0$

• The **level** of the test is $\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$

the maximum probability for rejecting the observations, when the parameter is in the retained set.

Note some alternatives in the literature:

- $H_0 \le \theta_0$ for one sided tests (later we see problems with this)
- $1 \beta(\theta) = P_{\theta}(X \in R)$ (though the **power** is the same!)

 $\overline{\mathbb{A}}$

Hypothesis testing

Example:

We observe X_1, X_2, \ldots, X_n standard normally distributed, independent variables, and we want to test:

Do these values tend to be negative or positive?

.

Hypothesis testing

Example:

We observe X_1, X_2, \ldots, X_n standard normally distributed, independent variables, and we want to test:

Do these values tend to be negative or positive?

.

Possible solution: the variables are from a $N(\mu=0,\sigma)$ distribution and we test for $\mu\leq 0$.

Hypothesis testing

Example:

We observe X_1, X_2, \ldots, X_n standard normally distributed, independent variables, and we want to test:

Do these values tend to be negative or positive?

.

Possible solution: the variables are from a $N(\mu=0,\sigma)$ distribution and we test for $\mu<0$.

Parameter space: $\Theta = (-\infty, \infty)$,

partition: $\Theta_0 = (-\infty, 0], \, \Theta_1 = (0, \infty),$

Hypothesis testing

Example:

We observe X_1, X_2, \ldots, X_n standard normally distributed, independent variables, and we want to test:

Do these values tend to be negative or positive?

.

Possible solution: the variables are from a $N(\mu=0,\sigma)$ distribution and we test for $\mu<0$.

Parameter space: $\Theta = (-\infty, \infty)$,

partition: $\Theta_0 = (-\infty, 0], \, \Theta_1 = (0, \infty),$

Null hypothesis: $H_0: \mu=0, H_1: \mu>0$

(Note the different relations $H_0 \leftrightarrow \Theta_0$ and $H_1 \leftrightarrow \Theta_1$!)

Hypothesis testing

Example:

We observe X_1, X_2, \dots, X_n standard normally distributed, independent variables, and we want to test:

Do these values tend to be negative or positive?

.

Possible solution: the variables are from a $N(\mu=0,\sigma)$ distribution and we test for $\mu \leq 0$.

Parameter space: $\Theta = (-\infty, \infty)$,

partition: $\Theta_0 = (-\infty, 0], \, \Theta_1 = (0, \infty),$

Null hypothesis: $H_0: \mu = 0, H_1: \mu > 0$

(Note the different relations $H_0 \leftrightarrow \Theta_0$ and $H_1 \leftrightarrow \Theta_1$!)

Let us define $T = \overline{X}$ (average of observed values), and find c which rejects H_0 if T > c.

Rejection region: $R = \{x : T(x) > c\}.$

Example

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

The power function:

$$\begin{split} \beta(\theta = \mu) &= P_{\mu}(\overline{X} > c) \\ &= P_{\mu}\left(\frac{\overline{X} - \mu}{\sigma} \sqrt{n} > \sqrt{n} \frac{c - \mu}{\sigma}\right). \end{split}$$

Example

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

The power function:

$$\begin{split} \beta(\theta = \mu) &= P_{\mu}(\overline{X} > c) \\ &= P_{\mu}\left(\frac{\overline{X} - \mu}{\sigma}\sqrt{n} > \sqrt{n}\frac{c - \mu}{\sigma}\right). \end{split}$$

Because $\sqrt{n} \frac{\overline{X} - \mu}{\sigma}$ is the *z*-transformed (normalized) value of the average,

The power function:

$$\beta(\theta = \mu) = P_{\mu}(\overline{X} > c)$$

$$= P_{\mu}\left(\frac{\overline{X} - \mu}{\sigma}\sqrt{n} > \sqrt{n}\frac{c - \mu}{\sigma}\right).$$

Because $\sqrt{n} \frac{\overline{X} - \mu}{\sigma}$ is the *z*-transformed (normalized) value of the average, it is $Z \sim N(0,1)$ distributed:

$$\begin{split} \beta(\theta) &= \beta(\mu) &= P_{\mu} \left(Z > \sqrt{n} \frac{c - \mu}{\sigma} \right) \\ &= 1 - \Phi \left(\sqrt{n} \frac{c - \mu}{\sigma} \right) \end{split}$$

Example

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

The power function:

$$\beta(\theta = \mu) = P_{\mu}(\overline{X} > c)$$

$$= P_{\mu}\left(\frac{\overline{X} - \mu}{\sigma}\sqrt{n} > \sqrt{n}\frac{c - \mu}{\sigma}\right).$$

Because $\sqrt{n} \frac{\overline{X} - \mu}{\sigma}$ is the *z*-transformed (normalized) value of the average, it is $Z \sim N(0,1)$ distributed:

$$\beta(\theta) = \beta(\mu) = P_{\mu} \left(Z > \sqrt{n} \frac{c - \mu}{\sigma} \right) = 1 - \Phi \left(\sqrt{n} \frac{c - \mu}{\sigma} \right)$$

For level (α) , note: $\beta(\mu)$ is increasing and $\Theta_0 = (-\infty, 0]$,

The power function:

$$\beta(\theta = \mu) = P_{\mu}(\overline{X} > c)$$

$$= P_{\mu}\left(\frac{\overline{X} - \mu}{\sigma}\sqrt{n} > \sqrt{n}\frac{c - \mu}{\sigma}\right).$$

Because $\sqrt{n} \frac{\overline{X} - \mu}{\sigma}$ is the *z*-transformed (normalized) value of the average, it is $Z \sim N(0,1)$ distributed:

$$\beta(\theta) = \beta(\mu) = P_{\mu} \left(Z > \sqrt{n} \frac{c - \mu}{\sigma} \right) = 1 - \Phi \left(\sqrt{n} \frac{c - \mu}{\sigma} \right)$$

For level (α) , note: $\beta(\mu)$ is increasing and $\Theta_0 = (-\infty, 0]$, so $\sup \beta(\mu)$ for $\mu \in \Theta_0$ is at $\mu = 0$.

The power function:

$$\beta(\theta = \mu) = P_{\mu}(\overline{X} > c)$$

$$= P_{\mu}\left(\frac{\overline{X} - \mu}{\sigma}\sqrt{n} > \sqrt{n}\frac{c - \mu}{\sigma}\right).$$

Because $\sqrt{n} \frac{\overline{X} - \mu}{\sigma}$ is the *z*-transformed (normalized) value of the average, it is $Z \sim N(0,1)$ distributed:

$$\beta(\theta) = \beta(\mu) = P_{\mu} \left(Z > \sqrt{n \frac{c - \mu}{\sigma}} \right) = 1 - \Phi \left(\sqrt{n \frac{c - \mu}{\sigma}} \right)$$

For level (α) , note: $\beta(\mu)$ is increasing and $\Theta_0 = (-\infty, 0]$, so $\sup \beta(\mu)$ for $\mu \in \Theta_0$ is at $\mu = 0$.

Find the level of the test:

$$\alpha = \sup_{\mu \in [-\infty, 0]} \beta(\mu) = \sup_{\mu \in [-\infty, 0]} \left\{ 1 - \Phi\left(\sqrt{n} \frac{c - \mu}{\sigma}\right) \right\}$$
$$= 1 - \Phi\left(\sqrt{n} \frac{c}{\sigma}\right)$$

or vica – verse: at given level find the critical value

$$c = \Phi^{-1}(1-\alpha)\frac{\sigma}{\sqrt{n}}$$

Example

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

We reject H_0 if $T=\overline{X}>c=\Phi^{-1}(1-\alpha)rac{\sigma}{\sqrt{n}}$

Example

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

We reject H_0

if
$$T = \overline{X} > c = \Phi^{-1}(1 - \alpha)\frac{\sigma}{\sqrt{n}}$$

Or

$$\frac{\sqrt{n}(\overline{X} - 0)}{\sigma} > z_{\alpha}$$

where z_{α} is the tabulated critical value of the standard normal distribution.

Example

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

We reject H_0

if
$$T = \overline{X} > c = \Phi^{-1}(1 - \alpha)\frac{\sigma}{\sqrt{n}}$$

Or

$$\frac{\sqrt{n}(\overline{X} - 0)}{\sigma} > z_{\alpha}$$

where \emph{z}_{α} is the tabulated critical value of the standard normal distribution.

Note the substituted value of $\mu = 0$, which is the H_0 null hypothesis expressed as an equation, instead of an inequality.

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

This test is valid for asymptotically normally distributed variables.

- \bullet θ denotes the real value of the parameter,
- ullet $\hat{\theta}$ an estimated value of the parameter,
- \hat{se} estimated standard error of $\hat{\theta}$

The formal test: $H_0: \theta = \hat{\theta}$ and $H_1: \theta \neq \hat{\theta}$

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

This test is valid for asymptotically normally distributed variables.

- \bullet θ denotes the real value of the parameter,
- \bullet $\hat{\theta}$ an estimated value of the parameter,
- \hat{se} estimated standard error of $\hat{\theta}$

The formal test: $H_0: \theta = \hat{\theta}$ and $H_1: \theta \neq \hat{\theta}$ Test statistics: reject H_0 if

-

Hypothesis testing, MLE Bootstrap

Hypothesis testing This test is valid for asymptotically normally distributed variables.

- \bullet denotes the real value of the parameter,
- \bullet $\hat{\theta}$ an estimated value of the parameter,
- \hat{se} estimated standard error of $\hat{\theta}$

The formal test: $H_0: \theta = \hat{\theta}$ and $H_1: \theta \neq \hat{\theta}$

Test statistics: reject
$$H_0$$
 if

$$\left| \frac{(\hat{\theta} - \theta)}{\hat{se}} \right| > z_{\alpha/2}$$

in case of a two sided test

Hypothesis testing, MLE, Bootstrap

Hypothesis testing This test is valid for asymptotically normally distributed variables.

- \bullet denotes the real value of the parameter,
- \bullet $\hat{\theta}$ an estimated value of the parameter,
- \hat{se} estimated standard error of $\hat{\theta}$

The formal test: $H_0: \theta = \hat{\theta}$ and $H_1: \theta \neq \hat{\theta}$ Test statistics: reject H_0 if

$$\frac{(\hat{\theta} - \theta)}{\hat{se}} > z_c$$

in case of a one sided test

Hypothesis testing, MLE, Bootstrap

Hypothesis testing This test is valid for asymptotically normally distributed variables.

- \bullet θ denotes the real value of the parameter,
- \bullet $\hat{\theta}$ an estimated value of the parameter,
- \hat{se} estimated standard error of $\hat{\theta}$

The formal test: $H_0: \theta = \hat{\theta}$ and $H_1: \theta \neq \hat{\theta}$ Test statistics: reject H_0 if

$$\frac{(\hat{\theta} - \theta)}{\hat{se}} < z_{\epsilon}$$

in an other case of a one sided test

Hypothesis testing, MLE, Bootstrap

Hypothesis testing This test is valid for asymptotically normally distributed variables.

- \bullet denotes the real value of the parameter,
- \bullet $\hat{\theta}$ an estimated value of the parameter,
- \hat{se} estimated standard error of $\hat{\theta}$

The formal test: $H_0: \theta = \hat{\theta}$ and $H_1: \theta \neq \hat{\theta}$

Test statistics: reject H_0 if

$$\left| \frac{(\hat{\theta} - \theta)}{\hat{se}} \right| > z_{\alpha/2}$$

$$\frac{(\hat{\theta} - \theta)}{\hat{se}} > z_{\alpha}$$
 or $\frac{(\hat{\theta} - \theta)}{\hat{se}} < z_{\alpha}$

Note the difference between the one sided and the two sided test: one sided compares with: z_{α} and no $|\cdot|$ two sided compares with: $z_{\alpha/2}$ and takes absolute value

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

Hypothesis testing, MLE Bootstrap

Hypothesis testing

When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

$$P(X \in R) = 1 - P(X \not\in R)$$

where

$$P(X \notin R) = P(\theta_{\star} \text{ close to } \hat{\theta}) = \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} + z_{\alpha/2}\right) - \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} - z_{\alpha/2}\right)$$

SO

Hypothesis testing, MLE Bootstrap

Hypothesis testing

When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

$$P(X \in R) = 1 - P(X \not\in R)$$

where

$$P(X \notin R) = P(\theta_{\star} \text{ close to } \hat{\theta}) = \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} + z_{\alpha/2}\right) - \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} - z_{\alpha/2}\right)$$

SO

$$\beta = 1 - \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} - z_{\alpha/2}\right)$$

or with the true value

$$\beta = 1 - \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} - z_{\alpha/2}\right)$$

_

Hypothesis testing, MLE Bootstrap

Hypothesis testing

When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

$$\beta = 1 - \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{\hat{\theta} - \theta_{\star}}{\hat{se}} - z_{\alpha/2}\right)$$

or with the true value

$$\beta = 1 - \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} - z_{\alpha/2}\right)$$

which is the probability correctly rejecting a false H_0 under assuming θ_{\star} as the parameter instead θ .

Hypothesis testing, MLE Bootstrap

Hypothesis testing When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

$$\beta = 1 - \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} - z_{\alpha/2}\right)$$

which is the probability correctly rejecting a false H_0 under assuming θ_\star as the parameter instead θ .

The power increases if:

• difference between θ_* and θ increases (note: we change only θ_*)

Hypothesis testing, MLE Bootstrap

Hypothesis testing

When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

$$\beta = 1 - \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} - z_{\alpha/2}\right)$$

which is the probability correctly rejecting a false H_0 under assuming θ_\star as the parameter instead θ .

The power increases if:

- difference between θ_{\star} and θ increases (note: we change only θ_{\star})
- sample variance decreases ($\hat{se} \sim 1 / \sqrt{n}$ decreases as n grows)

Hypothesis testing, MLE Bootstrap

Hypothesis testing When the true value would be different what we expect as real parameter:

$$\theta_{\star} \neq \theta$$
,

the power of the test $(\beta = P(X \in R))$ will be:

$$\beta = 1 - \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} + z_{\alpha/2}\right) + \Phi\left(\frac{(\hat{\theta} - \theta) - (\theta_{\star} - \theta)}{\hat{se}} - z_{\alpha/2}\right)$$

which is the probability correctly rejecting a false H_0 under assuming θ_\star as the parameter instead θ .

The power increases if:

- difference between θ_{\star} and θ increases (note: we change only θ_{\star})
- sample variance decreases ($\hat{se} \sim 1/\sqrt{n}$ decreases as n grows)

Wald test is equivalent with a confidence interval:

$$C = (\hat{\theta} - z_{\alpha/2}\hat{se}, \hat{\theta} + z_{\alpha/2}\hat{se},)$$

 $H_0: \hat{\theta} = \theta_{\star}$ rejected at level α if and only if $\theta_{\star} \not\in C$

_

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

 $W \sim \operatorname{Binomial}(p_1, n)$ and $Y \sim \operatorname{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$? and

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

 $W \sim \operatorname{Binomial}(p_1, n)$ and $Y \sim \operatorname{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

and

Ā

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1-p_1)/n)$

 $(p_2 \text{ similar})$

Hypothesis testing, MLE Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1-p_1)/n)$

 $(p_2 \text{ similar})$

If the two samples are independent, variances are additive.

Hypothesis testing, MLE Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1-p_1)/n)$

 $(p_2 \text{ similar})$

If the two samples are independent, variances are additive.

Results to:

$$z_{sample} = \frac{\delta - 0}{\hat{se}} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$$

Hypothesis testing, MLE Bootstrap

Hypothesis testing

 $W \sim \operatorname{Binomial}(p_1, n)$ and $Y \sim \operatorname{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1-p_1)/n)$ (p_2 similar)

If the two samples are independent, variances are additive.

Results to:

$$z_{sample} = \frac{\delta - 0}{\hat{se}} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$$

$$\beta = P(z_{sample} > z_{crit})$$

Hypothesis testing, MLE Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1-p_1)/n)$

 $(p_2 \text{ similar})$

If the two samples are independent, variances are additive.

Results to:

$$z_{sample} = \frac{\delta - 0}{\hat{se}} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$$

and

$$\beta = P(z_{sample} > z_{crit})$$

Conclusion: power increases as $\hat{p_1}$ is farther from $\hat{p_2}$ or sample sizes (n and m) increase

Hypothesis testing, MLE Bootstrap

Hypothesis testina $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1 - p_1)/n)$ If the two samples are independent, variances are additive.

Results to:

$$z_{sample} = \frac{\delta - 0}{\hat{se}} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$$

and

$$\beta = P(z_{sample} > z_{crit})$$

Conclusion: power increases as $\hat{p_1}$ is farther from $\hat{p_2}$ or sample sizes (n and m) increase

Note: the minimum of min(n, m) dominates!

Hypothesis testing, MLE Bootstrap

Hypothesis testina $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1 - p_1)/n)$ If the two samples are independent, variances are additive.

Results to:

$$z_{sample} = \frac{\delta - 0}{\hat{se}} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$$

and

$$\beta = P(z_{sample} > z_{crit})$$

Conclusion: power increases as $\hat{p_1}$ is farther from $\hat{p_2}$ or sample sizes (n and m) increase

Note: the minimum of min(n, m) dominates!

Note2: X and Y independent, two different samples

Hypothesis testing, MLE Bootstrap

Hypothesis testing

 $W \sim \text{Binomial}(p_1, n)$ and $Y \sim \text{Binomial}(p_2, m)$ are the number of incorrect predictions of two methods in two different samples.

Question: is $p_1 = p_2$?

Test: $H_0: \delta = p_1 - p_2 = 0$ and $H_1: \delta \neq 0$

Power of the test: $\beta = P(X \in R)$

For large samples: Binomial \sim Gauss distribution.

 $\hat{p}_1 = \frac{W}{n}$ is approx. Normal distr.: $N(\mu, \sigma^2) = N(p_1, p_1(1-p_1)/n)$

If the two samples are independent, variances are additive.

Results to:

$$z_{sample} = \frac{\delta - 0}{\hat{se}} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$$

and

$$\beta = P(z_{sample} > z_{crit})$$

Conclusion: power increases as $\hat{p_1}$ is farther from $\hat{p_2}$ or sample sizes (n and m) increase

Note: the minimum of min(n, m) dominates!

Note2: *X* and *Y* independent, two different samples

Note3: if X and Y measured together (**paired samples**), then $\delta = \overline{D}$ and $\hat{se}^2 = \overline{(D - \overline{D})^2} / \sqrt{n}$, where $D_i = X_i - Y_i$ for each case i

- If a test rejects at level α , then it rejects for all $\alpha' > \alpha$.
- The rejection region R depends on the α level (smaller α results smaller R).
- The **p-value** of a test is the smallest α where the test rejects.

$$p-value = \inf \{ \alpha \mid \exists X \in R_{\alpha} \}$$

Recall: X is a random variable taking values from the observed values \mathcal{X} Note: the p-value is a measure **against** H_0 , and different from $\mathbb{P}(H_0|data)$ (which is the probability of H_0 being true with the condition of observed data.) The latter will be discussed under Bayesian inference later.

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

• The smaller the p-value, the stronger evidence against H_0

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

- ullet The smaller the p-value, the stronger evidence against H_0
- Large p-value can result when:
- H₀ is true

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

- ullet The smaller the p-value, the stronger evidence against H_0
- Large p-value can result when:
 - H₀ is true
- H_1 is true and the test has low power

Hypothesis testing, MLE Bootstrap

Hypothesis testing

- The smaller the p-value, the stronger evidence against H_0
- Large p-value can result when:
 - Ho is true
- H₁ is true and the test has low power

Let's calculate the p-value:

$$\operatorname{reject} H_0: T(X) > c_\alpha \Leftrightarrow \operatorname{p-value} = \sup_{\theta \in \Theta_0, \xi \in \mathcal{X}} \mathbb{P}_{\theta}(T(\xi) \geq T(X))$$

which is the probability of observing a test statistics as extreme or more extreme that was actually observed.

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

- Why prefer the null hypothesis $H_0: \theta = \theta_0$ against $H_0: \theta \leq \theta_0$?
 - In practice, the probability is calculated at a given value of the parameter θ , which is set according to the null hypothesis.
- If the distribution of T(X) is continuous, and $H_0: \theta = \theta_0$, then the p-value has a uniform distribution on [0,1]

The test is **statistically significant** if $\alpha > p$ -value.

Hypothesis testing, MLE, Bootstrap

Hypothesis testing

- Why prefer the null hypothesis $H_0: \theta = \theta_0$ against $H_0: \theta \leq \theta_0$?
- In practice, the probability is calculated at a given value of the parameter θ , which is set according to the null hypothesis.
- If the distribution of T(X) is continuous, and $H_0: \theta = \theta_0$, then the p-value has a uniform distribution on [0,1]

The test is **statistically significant** if $\alpha > p$ -value.

Note: a test can be statistically significant, but practically not significant, if the confidence interval is very small.