Statistical Convex

Ryota Tomioka, Taiji

¹The University of Tokyo,

Tucker decomposition [Tucker 66]

 Problem: Given a partially observed approximately low-rank tensor X, find

- Applications: chemo-/psycho-metrics, signal processing, computer vision, neuroscience
- Estimation: alternate minimization (non-convex)

Model: Convex Tensor Estimation

Performance Tensor Deco

Suzuki, Kohei Hayashi,

²Nara Institute of Science & Tech

Convex Tensor Estimation

Overlapped Schatten 1-norm for Tensors

of mposition

Hisashi Kashima^{1,3}

nology, ³PRESTO, JST

Motivation: Phase-transition in Convex Tensor Estimation

Tensor completion result [Tomioka et al. 2010]

Goal: Explain this number of samples M from the size of the tensor [n1, n2, n3] and the Tucker rank [r1, r2, r3]

Previous work

Authors	Observation model	Assumption	Target
Recht, Fazel, Parrilo 2007	$y_i = \langle X_i, W \rangle$ (i = 1,, M)	Restricted Isometry	Matrix
Candès & Recht 2009	$Y_{ij} = W_{ij}$ $((i,j) \in \Omega)$	Incoherence	Matrix
Negahban & Wainwright 2011	$y_i = \langle X_i, W \rangle + \epsilon_i$ $(i = 1, \dots, M)$	Restrited Strong Convexity	Matrix
This work	$y_i = \langle X_i, W \rangle + \epsilon_i$ $(i = 1, \dots, M)$	Restrited Strong Convexity	Tensor

Restricted strong convexity (RSC)

(cf. Negahban & Wainwright 11)

 Assume that there is a positive constantκ(X) such that for all tensors Δ∈C

$$\frac{1}{M} \left\| \mathfrak{X}(\Delta) \right\|_{2}^{2} \ge \kappa(\mathfrak{X}) \left\| \Delta \right\|_{F}^{2}$$

(The set C needs to be defined carefully)

Note:

- If $C=R^N$, $\kappa(X)=\min \operatorname{eig}(X^TX)$ $(X \subseteq R^{M\times N})$
- When M<N, restriction is necessary.
- The smaller C, the weaker the assumption.

Two special cases

- Noisy tensor decomposition (M=N)
 - -RSC: trivial. $\kappa(\mathfrak{X}) = 1/M$
 - -bound on the noise-design correlation term

$$\mathbb{E} \| \mathfrak{X}^*(\boldsymbol{\epsilon}) \|_{\text{mean}} \leq \frac{\sigma}{K} \sum_{k=1}^{K} \left(\sqrt{n_k} + \sqrt{N/n_k} \right)$$

- Random Gauss design
 - -RSC: more difficult (Lemma 5)
 - -bound on the noise-design correlation term

$$\mathbb{E} \| \mathfrak{X}^*(\epsilon) \|_{\text{mean}} \leq \frac{\sigma \sqrt{M}}{K} \sum_{k=1}^{K} \left(\sqrt{n_k} + \sqrt{N/n_k} \right)$$

Theorem 3: random Gauss design

Assume elements of X_i are drown iid from standard normal distribution. Moreover

$$\frac{\# \text{samples }(M)}{\# \text{variables }(N)} \geq c_1 \| \boldsymbol{n}^{-1} \|_{1/2} \| \boldsymbol{r} \|_{1/2}$$

$$\frac{\left\|\hat{\boldsymbol{\mathcal{W}}} - \boldsymbol{\mathcal{W}}^*\right\|_F^2}{N} \le O_p\left(\frac{\sigma^2 \|\boldsymbol{n}^{-1}\|_{1/2} \|\boldsymbol{r}\|_{1/2}}{M}\right)$$

$$\| \boldsymbol{n}^{-1} \|_{1/2} := \left(\tfrac{1}{K} \sum_{k=1}^K \sqrt{1/n_k} \right)^2, \quad \| \boldsymbol{r} \|_{1/2} := \left(\tfrac{1}{K} \sum_{k=1}^K \sqrt{r_k} \right)^2$$

Lemma 1: A key inequality

$$oldsymbol{\mathcal{W}}, oldsymbol{\mathcal{X}} \in \mathbb{R}^{n_1 imes \dots imes n_K} \ ra{\mathcal{W}}, oldsymbol{\mathcal{X}}
angle \leq egin{Vmatrix} oldsymbol{\mathcal{W}} igwedge_{S_s} ig\| oldsymbol{\mathcal{X}} ig\|_{ ext{mean}} \ \end{pmatrix}$$

where

$$\left\| \left\| \boldsymbol{\mathcal{W}} \right\|_{S_1} \coloneqq \frac{1}{K} \sum_{k=1}^K \left\| \boldsymbol{W}_{(k)} \right\|_{S_1} \quad \left\| \left\| \boldsymbol{\mathcal{X}} \right\|_{\text{mean}} \coloneqq \frac{1}{K} \sum_{k=1}^K \left\| \boldsymbol{X}_{(k)} \right\|_{S_\infty}$$

K=2: norm duality (tight) K>2: not tight

$$\|oldsymbol{X}\|_{S_1} := \sum_{j=1}^m \sigma_j(oldsymbol{X}) \ \|oldsymbol{X}\|_{S_\infty} := \max_{j \in \{1, \dots, m\}} \sigma_j(oldsymbol{X})$$

Theorem 1 (deterministic)

- Solution of the opt. problem \hat{w}
- Reg const λ_M satisfies

$$\lambda_M \geq 2 \| \mathfrak{X}^*(\boldsymbol{\epsilon}) \|_{\text{mean}} / M$$

where $\mathfrak{X}^*(\epsilon) = \sum_{i=1}^M \epsilon_i \mathcal{X}_i$ (noise design correlation)

$$\left\|\boldsymbol{\mathcal{X}}\right\|_{\text{mean}} := \frac{1}{K} \sum_{k=1}^{K} \left\|\boldsymbol{X}_{(k)}\right\|_{S_{\infty}}$$

Under the RSC assumption

$$\left\| \left\| \hat{\mathcal{W}} - \mathcal{W}^* \right\|_{\mathrm{F}} \le \frac{32\lambda_M}{\kappa(\mathfrak{X})} \frac{1}{K} \sum_{k=1}^K \sqrt{r_k}$$

(cf. Negahban & Wainwright 11) 12

Theorem 2 (noisy tensor decomp.)

When all the elements are observed (M=N) and the regularization const. satisfies

$$\lambda_M \ge \frac{2\sigma}{K} \sum_{k=1}^K \left(\sqrt{n_k} + \sqrt{N/n_k} \right) / N$$

$$\frac{\left\|\hat{\mathcal{W}} - \mathcal{W}^*\right\|_F^2}{N} \le O_p\left(\sigma^2 \left\| \mathbf{n}^{-1} \right\|_{1/2} \left\| \mathbf{r} \right\|_{1/2}\right)$$

where

Normalized rank

$$\|\boldsymbol{n}^{-1}\|_{1/2} := \left(\frac{1}{K} \sum_{k=1}^{K} \sqrt{1/n_k}\right)^2, \quad \|\boldsymbol{r}\|_{1/2} := \left(\frac{1}{K} \sum_{k=1}^{K} \sqrt{r_k}\right)^2$$

If $n_k = n$ and $r_k = r$, normalized rank = r/n

Simulation: Noisy tensor decomposition

linear relation between MSE and normalized rank!

Simulation: Tensor Completion

Matrix / tensor completion

Tensor completion *easier* than matrix completion!?

Lemma 5 (RSC for random Gaussian)

Let
$$\mathfrak{X}: \mathbb{R}^{n_1 \times \cdots \times n_K} \to \mathbb{R}^M$$

be a random Gaussisan design. Then

$$\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{M}} \geq \frac{1}{4} \|\Delta\|_F - \frac{1}{K} \sum_{k=1}^K \left(\sqrt{\frac{n_k}{M}} + \sqrt{\frac{\overline{n}_{\backslash k}}{M}} \right) \|\Delta\|_{S_1},$$

with probability at least $1 - 2 \exp(-N/32)$

Proof: analogous to that of Prop 1 in Negahban & Wainwright 2011 (use Lemma 1)

Mode-k unfolding (matricization)

Mode-1 unfolding $W_{(1)}$

Mode-2 unfolding $W_{(2)}$

Conclusion

- Convex tensor decomposition --- now with performance guarantee
- Normalized rank predicts empirical scaling behavior well

Issues

- Why matrix completion more difficult than tensor completion?
- Worst case analysis-> average case analysis
- Analyze tensor completion more carefully
 - Incoherence [Candes & Recht 09]
 - Spikiness [Negahban et al. 10]

References

- Candes & Recht (2009) Exact matrix completion via convex optimization. Found. Comput. Math., 9(6):717–772.
- Gandy, Recht, & Yamada (2011) Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 27:025010.
- Kolda & Bader (2009) Tensor decompositions and applications. SIAM Review, 51(3):455–500.
- Liu, Musialski, Wonka, & Ye. (2009) Tensor completion for estimating missing values in visual data. In Prof. ICCV.
- Negahban & Wainwright (2011) Estimation of (near) low-rank matrices with noise and highdimensional scaling. Ann. Statist., 39(2).
- Recht, Fazel, & Parrilo (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501.
- Signoretto, de Lathauwer, & Suykens (2010) Nuclear norms for tensors and their use for convex multilinear estimation. Tech Report 10-186, K.U.Leuven.
- Tomioka, Hayashi, & Kashima (2010) On the extension of trace norm to tensors. In NIPS2010 Workshop: Tensors, Kernels and Machine Learning.
- Tomioka, Hayashi, & Kashima (2011) Estimation of low-rank tensors via convex optimization.
 Technical report, arXiv:1010.0789, 2011.
- Tucker (1966) Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3): 279–311.