Optimize your Machine Learning workloads

Julien Simon Global Evangelist, AI & Machine Learning @julsimon

Amazon SageMaker

Optimizing infrastructure

Amazon EC2 P3dn

https://aws.amazon.com/blogs/aws/new-ec2-p3dn-gpu-instances-with-100-gbps-networking-local-nvme-storage-for-faster-machine-learning-p3-price-reduction/

Reduce machine learning training time

Better GPU utilization

Support larger, more complex models

100Gbps of networking bandwidth

KEY
FEATURE §2GB of
8 NVIDIA Tesla
V100 GPUs

Memory per
GPU
(2x more P3)

96 Intel Skylake vCPUs (50% more than P3) with AVX-512

Amazon EC2 C5n

https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/

Intel Xeon Platinum 8000

Up to 3.5GHz single core speed

Up to 100Gbit networking

Based on Nitro hypervisor for bare metal-like performance

Instance Name	vCPUs	RAM	EBS Bandwidth	Network Bandwidth
c5n.large	2	5.25 GiB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.xlarge	4	10.5 GiB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.2xlarge	8	21 GiB	Up to 3.5 Gbps	Up to 25 Gbps
c5n.4xlarge	16	42 GiB	3.5 Gbps	Up to 25 Gbps
c5n.9xlarge	36	96 GiB	7 Gbps	50 Gbps
c5n.18xlarge	72	192 GiB	14 Gbps	100 Gbps

Optimizing frameworks

Making TensorFlow faster

Training a ResNet-50
benchmark with the synthetic
ImageNet dataset using our
optimized build of TensorFlow 1.11
on a c5.18xlarge instance type is
11x faster than training on the
stock binaries.

https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/ (March 2018)

https://aws.amazon.com/about-aws/whats-new/201 8/10/chainer4-4 theano 1-0-2 launch deep learnin g ami/ (October 2018)

Scaling TensorFlow near-linearly to 256 GPUs

https://aws.amazon.com/about-aws/whats-new/2018/11/tensorflow-scalability-to-256-gpus/

Available with Amazon SageMaker and the AWS Deep Learning AMIs

Dynamic training with Apache MXNet and RIs

https://aws.amazon.com/blogs/machine-learning/introducing-dynamic-training-for-deep-learning-with-amazon-ec2/

Use a variable number of instances for distributed training

No loss of accuracy

Coming soon spot instances, additional frameworks

Optimizing models

Examples of hyperparameters

XGBoost

Tree depth

Max leaf nodes

Gamma

Eta

Lambda

Alpha

. . .

Neural Networks

Number of layers

Hidden layer width

Learning rate

Embedding

dimensions

Dropout

. . .

Automatic Model Tuning

Finding the optimal set of hyper parameters

- Manual Search ("I know what I'm doing")
- Grid Search ("X marks the spot")
 - Typically training hundreds of models
 - Slow and expensive
- 3. Random Search ("Spray and pray")
 - Works better and faster than Grid Search
 - But... but... it's random!
- HPO: use Machine Learning
 - Training fewer models
 - Gaussian Process Regression and Bayesian Optimization
 - You can now resume from a previous tuning job

Demo: HPO with Apache MXNet

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning/hpo_mxn_et_mnist.ipynb

Optimizing inference

Predictions drive complexity and cost in production

Model optimization is extremely complex

Amazon Neo: compiling models

https://aws.amazon.com/blogs/aws/amazon-sagemaker-neo-train-your-machine-learning-models-once-run-them-anywhere/

- Train once, run anywhere
- Frameworks and algorithms
 - TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost
- Hardware architectures
 - ARM, Intel, and NVIDIA starting today
 - Cadence, Qualcomm, and Xilinx hardware coming soon
- Amazon SageMaker Neo is open source, enabling hardware vendors to customize it for their processors and devices:

https://github.com/neo-ai/

Compiling ResNet-50 for the Raspberry Pi

```
Configure the compilation job
  "RoleArn": $ROLE ARN,
  "InputConfia": {
   "S3Uri": "s3://jsimon-neo/model.tar.gz",
   "DataInputConfig": "{\"data\": [1, 3, 224, 224]}",
   "Framework": "MXNET"
 "OutputConfig": {
  "S30utputLocation": "s3://jsimon-neo/",
  "TargetDevice": "rasp3b"
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
```

```
Compile the model

$ aws sagemaker create-compilation-job
--cli-input-json file://config.json
--compilation-job-name resnet50-mxnet-pi

$ aws s3 cp s3://jsimon-neo/model-
rasp3b.tar.gz .

$ gtar tfz model-rasp3b.tar.gz
compiled.params
compiled_model.json
compiled.so
```

```
Predict with the compiled model
from dlr import DLRModel
model = DLRModel('resnet50', input_shape,
output_shape, device)
out = model.run(input_data)
```

Demo: compiling a pre-trained PyTorch model with Neo

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/pytorch_torchvision_neo.ipynb

Amazon Elastic Inference

https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/

Lower inference costs up to 75%

Match capacity to demand

Available between 1 to 32 TFLOPS

Integrated with
Amazon EC2,
Amazon SageMaker,
and Amazon DL
AMIs

KEY
FEATURES
Support for TensorFlow,
Apache MXNet, and
ONNX
with PyTorch coming soon

Single and mixed-precision operations

Demo: Elastic Inference with TensorFlow

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow iris dnn classifier using estimators/

Train & predict faster Save time **Save money** Save your sanity (no plumbing!)

Getting started

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

Thank you!

Julien Simon
Global Evangelist, AI & Machine Learning
@julsimon
https://medium.com/@julsimon

