Lecture 1

Dani Nguyen

September 23, 2025

1 Invertible Matrix Theorem

1.1 Definition

Let A be a square n x n matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- 1. A is invertible.
- 2. A is row equivalent to I.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A are linearly independent.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- 8. The columns of A span \mathbb{R}^n
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an n x n matrix C such that CA = I.
- 11. There is an n x n matrix D such that AD = I.
- 12. A^T is invertible.

- 13. The columns of A form a basis of \mathbb{R}^n .
- 14. Col A = \mathbb{R}^n .
- 15. dim Col A = n.
- 16. rank A = n
- 17. Nul A = 0
- 18. dim Nul A = 0
- 19. The number 0 is *not* an eigenvalue of A.
- 20. det $A \neq 0$.
- 21. $(\text{Col A})^{\perp} = \mathbf{0}$
- 22. (Nul A) $^{\perp} = \mathbb{R}^n$
- 23. Row $A = \mathbb{R}^n$

Exercise

Thm 9.1.16 Let $A \in M_n$ and let $\lambda \in \mathbb{C}$. Then the following statements are equivalent:

- 1. λ is an eigenvalue of A.
- 2. $A\mathbf{x} = \lambda \mathbf{x}$ for some nonzero $\mathbf{x} \in \mathbb{C}^n$.
- 3. $(A \lambda I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution, that is, nullity $(A-\lambda I) > 0$.
- 4. $\operatorname{rank}(A \lambda I) < n$.
- 5. A λI is not invertible.
- 6. A^{\top} λI is not invertible.
- 7. λ is an eigenvalue of A^{\top} .

Proof