Disclaimer

- The material provided in this document is not my original work and is a summary of some one else's work(s).
- A simple Google search of the title of the document will direct you to the original source of the material.
- I do not guarantee the accuracy, completeness, timeliness, validity, non-omission, merchantability or fitness of the contents of this document for any particular purpose.
- Downloaded from najeebkhan.github.io

Greedy Heuristic for Dynamic Segment Scheduling

03

Presented By

Greedy Heuristic for Dynamic Segment Scheduling

03

Presented By Najeeb 2013 - 6 - 20

Outline

- Introduction
- Message Schedule for the DS
- **Message Grouping**
- Reproposed Heuristic Algorithm

03

We discuss the scheduling of messages in the dynamic segment of the FlexRay

- We discuss the scheduling of messages in the dynamic segment of the FlexRay
- In [1] bounds on the generation times and the timing requirements of the signals is taken into consideration to propose a reservation-based scheduling approach that preserves the flexible medium access of the DS

- We discuss the scheduling of messages in the dynamic segment of the FlexRay
- In [1] bounds on the generation times and the timing requirements of the signals is taken into consideration to propose a reservation-based scheduling approach that preserves the flexible medium access of the DS
- [1] uses ILP which is computationally very complex, we formulate a fast heuristic algorithm for the scheduling of the dynamic segment

 \bowtie FC \rightarrow SS + DS + SW +NIT

- \bowtie FC \rightarrow SS + DS + SW +NIT
- The smallest time unit in the DS is the minislot (MS) with a duration of T_{MS} (in milliseconds), and the DS contains a fixed number of N_{DS} MS

- \bowtie FC \rightarrow SS + DS + SW +NIT
- The smallest time unit in the DS is the minislot (MS) with a duration of T_{MS} (in milliseconds), and the DS contains a fixed number of N_{DS} MS
- If a message is transmitted in a DYS, then the length of the DYS is equal to the number of MS needed for message transmission. Otherwise, the length of the DYS is one MS

- \bowtie FC \rightarrow SS + DS + SW +NIT
- The smallest time unit in the DS is the minislot (MS) with a duration of T_{MS} (in milliseconds), and the DS contains a fixed number of N_{DS} MS
- If a message is transmitted in a DYS, then the length of the DYS is equal to the number of MS needed for message transmission. Otherwise, the length of the DYS is one MS
- The arbitration procedure ensures that only frames with a FID that equals the current value of the slot counter can be transmitted

- \bowtie FC \rightarrow SS + DS + SW +NIT
- The smallest time unit in the DS is the minislot (MS) with

be transmitted

03

Previous work on the scheduling of DS uses DM approach and also assumes that $T_{\rm C}$, $T_{\rm SS}$ and $T_{\rm DS}$ are pre determined

- ightharpoonupPrevious work on the scheduling of DS uses DM approach and also assumes that T_C , T_{SS} and T_{DS} are pre determined
- Real How DM fails?

M_1^n	lm_{1}^{n}	dm_1^n	FID
	[MS]	[ms]	
M_1^1	2	15	1
M_{1}^{2}	2	15	2
M_1^3	2	15	3
M_1^4	2	15	4
M_1^5	40	15	5
M_{1}^{6}	40	15	6
M_1^7	40	15	7
M_1^8	112	25	8

CB

 \bowtie A reservation R for a node n is a 4-tuple (n,rp,w,l) with the reservation period rp ∈ N, the offset w ∈ {0,...,rp-1} and the reservation length l ∈ N

- \bowtie A reservation R for a node n is a 4-tuple (n,rp,w,l) with the reservation period rp ∈ N, the offset w ∈ {0,...,rp-1} and the reservation length l ∈ N
- \bowtie R stands for 1 MS that are reserved at all FCs (z*rp+w), z ∈ N₀, while 1 MS is reserved in the remaining FCs

- \bowtie A reservation R for a node n is a 4-tuple (n,rp,w,l) with the reservation period rp ∈ N, the offset w ∈ {0,...,rp-1} and the reservation length l ∈ N
- \bowtie R stands for 1 MS that are reserved at all FCs (z*rp+w), z ∈ N₀, while 1 MS is reserved in the remaining FCs
- Bandwidth reservation per FC for a given R is $B_R = 1/rp$ MS

- \bowtie A reservation R for a node n is a 4-tuple (n,rp,w,l) with the reservation period rp ∈ N, the offset w ∈ {0,...,rp-1} and the reservation length l ∈ N
- \bowtie R stands for 1 MS that are reserved at all FCs (z*rp+w), z ∈ N₀, while 1 MS is reserved in the remaining FCs
- Bandwidth reservation per FC for a given R is $B_R = 1/rp$ MS
- Reach reservation is associated with a FID

03

R stands for (z*rp+w), z remaining Fo

 \bowtie Bandwidth $B_R = 1/rp$ MS

03

Cycle Load L_j: The maximum number of MS that is reserved for message transmission in FC j for an arbitrary assignment of FIDs, considering that at most one FID can be assigned per message

CB

- Cycle Load L_j: The maximum number of MS that is reserved for message transmission in FC j for an arbitrary assignment of FIDs, considering that at most one FID can be assigned per message
- \subset L_j includes both the case where no message is transmitted for an FID (duration of 1 MS) and the case where a message is transmitted

CB

- Cycle Load L_j: The maximum number of MS that is reserved for message transmission in FC j for an arbitrary assignment of FIDs, considering that at most one FID can be assigned per message
- CR L_j includes both the case where no message is transmitted for an FID (duration of 1 MS) and the case where a message is transmitted

$$L_j = \sum_{R \in \mathcal{R}_j} l + \left(|\mathcal{M}_{\mathrm{S}}| - \sum_{R \in \mathcal{R}_j} 1 \right) = \sum_{R \in \mathcal{R}_j} (l - 1) + |\mathcal{M}_{\mathrm{S}}|.$$

Where
$$j = (z \cdot rp + w)$$

We define the maximum cycle load as

We define the maximum cycle load as

$$L_{\max} = \max_{j \in \{1, \dots, rp\}} (Lj)$$

We define the maximum cycle load as

$$L_{\max} = \max_{j \in \{1, \dots, rp\}} (Lj)$$

then, we choose N_{DS} = L_{max} and minimize L_{max} to determine a feasible schedule with the shortest possible DS

Randwidth Reservation: Indicate the number of MS reserved per FC for each node n∈N and for all of the nodes

03

Bandwidth Reservation: Indicate the number of MS reserved per FC for each node n∈N and for all of the nodes

$$B^{n} = \sum_{R \in \mathcal{R}^{n}} (l/rp)$$

$$\sum_{n=1}^{N} B^{n}$$

Computed by the algorithms in [1]. We assume that the groups have been computed by the algorithms in [1].

 $\mathcal{G}_1 = \{M_1^1\}, pm_1^1 = 3, dm_1^1 = 5 \mid \mathcal{G}_2 = \{M_1^1, M_2^1\},$ $R_2 = (1, 2, w_2, 30)$ $R_1 = (1, 2, w_1, 20)$ $\mathcal{G}_3 = \{M_2^1\}, pm_2^1 = 5, dm_2^1 = 7$ $\mathcal{G}_4 = \{M_3^1\}, pm_3^1 = 4, dm_3^1 = 6$ $R_3 = (1, 4, w_3, 30)$ $R_4 = (1, 3, w_4, 10)$ $\mathcal{G}_5 = \{M_1^2\}, pm_1^2 = 3, dm_1^2 = 7$ $\mathcal{G}_6 = \{M_1^2, M_2^2\}$ $R_5 = (2, 2, w_5, 22)$ $R_6 = (2, 2, w_6, 48)$ $G_7 = \{M_1^2, M_2^2, M_3^2\}$ $\mathcal{G}_8 = \{M_1^2, \overline{M_2^2}\}$ $R_8 = (2, 2, w_8, 30)$ $R_7 = (2, 2, w_7, 48)$ $\mathcal{G}_9 = \{M_1^2, M_4^2\}$ $\mathcal{G}_{10} = \{M_2^2\}, pm_2^2 = 7, dm_2^2 = 9$ $R_{10} = (2, 6, w_{10}, 48)$ $R_9 = (2, 2, w_9, 42)$ $\mathcal{G}_{11} = \{M_3^2\}, pm_3^2 = 7, dm_3^2 = 9 \mid \mathcal{G}_{12} = \{M_4^2\}, pm_4^2 = 5, dm_4^2 = 5$ $R_{11} = (2, 6, w_{11}, 30)$ $R_{12} = (2, 4, w_{12}, 42)$

Computed by the algorithms in [1]. We assume that the groups have been computed by the algorithms in [1].

- Let N={1,2}. We assume that the groups have been computed by the algorithms in [1].
- Our goal is now to determine G_S and the offsets wi of the corresponding reservations such that Lmax(and, thus, the required duration T_{DS} of the DS) is minimized

```
G=set of groups for each node
gsel=[]
for each node n:
    for each group gi:
        GT=Largest(G)
        if NoOverlap between gsel and GT:
        {
            gsel = gsel U GT
            G = G - GT
        }
}
```


In contrast to the ILP approach used in [1], we propose a fast heuristic algorithm for the selection of optimal groups

```
G=set of groups for each node
gsel=[]
for each node n:
    for each group gi:
        GT=Largest(G)
        if NoOverlap between gsel and GT:
        {
            gsel = gsel U GT
            G = G - GT
        }
}
```

```
w=0
W=[]
for each reservation R:
#1    if w is in W:
        w++
        if (w < period of R)
            offset=w
            W = W U w
        else
        w=0
        goto 1</pre>
```

03

And for the selection of offsets

References

References

1. Message Scheduling for the FlexRay Protocol: The Dynamic Segment

Thank You