Useful Probability Properties

Jonathan Scarlett

January 8, 2020

• General notation:

- \circ If X if a discrete random variable, its <u>probability mass function</u> (PMF) is written as P_X (i.e., $P_X(x) = \mathbb{P}[X = x]$).
- o If X is a continuous random variable, its <u>probability density function</u> (PDF) is written as f_X (e.g., $\mathbb{P}[a \leq X \leq b] = \int_a^b f_X(x) dx$). For now (and most of the course), let's assume all random variables are discrete.
- \circ We will usually use upper case for a random variable (e.g., X) and the corresponding lower-case letter for a specific value (e.g., x).

• Expectation:

- o <u>Definition</u>: $\mathbb{E}[X] = \sum_{x} P_X(x)x$
- Average of function: $\mathbb{E}[f(X)] = \sum_{x} P_X(x) f(x)$ for deterministic f
- Average of scaled RV: $\mathbb{E}[cX] = c\mathbb{E}[X]$ for constant c
- o Average of sum: $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ regardless of whether or not X and Y are independent
- Average of product: If X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Indicator function: If $\mathbf{1}\{A\}$ denotes the indicator function (equaling 1 if the event A holds and 0 otherwise), then $\mathbb{E}[\mathbf{1}\{A\}] = \mathbb{P}[A]$

• Conditioning:

- o Definition: $P_{Y|X}(y|x) = \frac{P_{XY}(x,y)}{P_X(x)}$
- \circ Law of total probability: For an event A and RV X, we have $\mathbb{P}[A] = \sum_x P_X(x)\mathbb{P}[A|X=x]$
- Law of total expectation: (AKA tower property) $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$, where the outer expectation is over X and the inner one is over Y (given X)

 $\circ \ \underline{\text{Bayes' rule}} \colon \mathbb{P}[A|B] = \frac{\mathbb{P}[A]\mathbb{P}[B|A]}{\mathbb{P}[B]}$

• Independence:

- \circ Definition: $P_{XY}(x,y) = P_X(x)P_Y(y)$ for all x,y
- Equivalent definition 1: $P_{Y|X}(y|x) = P_Y(y)$ for all x, y
- Equivalent definition 2: $P_{X|Y}(x|y) = P_X(x)$ for all x, y
- Analogous definitions for conditional independence: (i) $P_{XY|Z}(x,y|z) = P_{X|Z}(x|z)P_{Y|Z}(y|z)$ for all x,y,z; (ii) $P_{Y|XZ}(y|x,z) = P_{Y|Z}(y|z)$ for all x,y,z; (iii) $P_{X|YZ}(x|y,z) = P_{X|Z}(x|z)$ for all x,y,z. We use the terminology "X and Y are conditionally independent given Z".
- \circ Functions: If X and Y are independent, then so are f(X) and g(Y) for deterministic f, g
- \circ Conditional vs. unconditional: The statements "X and Y are independent" and "X and Y are conditionally independent given Z" can be very different:
 - * Example 1: If X and Y are independent and Z = X + Y, then X and Y are certainly not conditionally independent given Z
 - * Example 2: If U and V are independent and X = Z + U, Y = Z + V, then U and V are conditionally independent given Z, but dependent due to the common reliance on Z
- o <u>Joint independence</u> of a collection X_1, \ldots, X_n of random variables can be defined as $P_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n P_{X_i}(x_i)$.
 - * Note: Pairwise independence does not necessarily imply joint independence

• Variance:

- o <u>Definition</u>: $\operatorname{Var}[X] = \mathbb{E}\big[(X \mu)^2\big]$, where μ is the mean of X
- Equivalent definition: $Var[X] = \mathbb{E}[X^2] \mu^2$
- Scaling: $Var[cX] = c^2 Var[X]$ for constant c
- \circ <u>Variance of sum</u>: If X and Y are independent, then Var[X+Y] = Var[X] + Var[Y]. (More generally, Var[X+Y] = Var[X] + Var[Y] + 2Cov[X,Y].)
- \circ Covariance: $Cov[X,Y] = \mathbb{E}[(X \mu_X)(Y \mu_Y)]$ where $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$
- <u>Law of total variance</u>: (Not needed, see Wikipedia if interested)

• Other:

o Marginal distribution: $P_X(x) = \sum_y P_{XY}(x,y)$ and similarly $P_Y(y) = \sum_x P_{XY}(x,y)$

- $\circ \ \underline{\text{Union vs. intersection}} \colon \mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] \mathbb{P}[A \cap B]$
- $\circ \text{ } \underline{\text{Union bound}}\text{: (AKA Boole's inequality) } \mathbb{P}\big[\bigcup_{i=1}^N A_i\big] \leq \sum_{i=1}^N \mathbb{P}[A_i]$
- Law of large numbers: If X_1, \ldots, X_n are independent and identically distributed (i.i.d.) with mean μ , then $\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^n X_i \mu\right| > \epsilon\right] \to 0$ as $n \to \infty$ for arbitrarily small $\epsilon > 0$

• Properties of logarithms (not related to probability):

$$\circ \, \log xy = \log x + \log y$$

$$\circ \log \frac{1}{x} = -\log x$$

$$\circ \log \frac{y}{x} = \log y - \log x$$

$$\circ \ \log x^c = c \log x$$

$$\circ \log_a x = \frac{\log_b x}{\log_b a}$$

$$\circ \log_e x \le x - 1$$
 with equality if and only if $x = 1$

• Very basic calculus (not related to probability):

$$\circ \frac{d}{dx}x^c = cx^{c-1}$$

$$\circ \ \frac{d}{dx}e^{cx} = ce^{cx}$$

$$\circ \ \frac{d}{dx} \ln x = \frac{1}{x}$$

• Chain rule:
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

o Product rule:
$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

$$\circ$$
 Quotient rule: $\frac{d}{dx}(f(x)/g(x)) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$