Phys 3810, Spring 2012 Problem Set #7, Hint-o-licious Hints

1. Griffiths, 4.29 Show that the eigenvectors of S_y (well, one choice for them) are

$$\chi_{+}^{(y)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ i \end{pmatrix} \qquad \qquad \chi_{-}^{(y)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -i \end{pmatrix}$$

2. Griffiths, 4.52 Follow the example of spin given out in class (G's problem 4.31). The eigenvectors of S_z are

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Using (4.136), find the action of the raising and lowering operators S_+ and S_- on all the eigenstates $|\frac{3}{2} m\rangle$ and then construct the matrices for these operators. Get S_x from $S_x = \frac{1}{2}(S_+ + S_-)$. You should get

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3}\\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$$

but show this!

You just need to get eigenvalues of S_x but it should be clear what they ought to be! For this you need to take the determinant of a 4×4 matrix which needs to be done by an expansion (not by zipping along all the diagonals as you can for 3×3).

- 3. Griffiths, 5.2 (a) Show that the fractional difference between $m_{\rm e}$ and $\mu_{\rm H}$ is 5.4×10^{-4} . This is the same as the fractional change in the binding energy. (Show all of this!)
 - (b) It's same fractional correction to R; one finds that for the H atom

$$R_H = 1.096 \times 10^7 \text{ m}^{-1}$$

The fractional difference between μ_H and μ_D (reduced masses for the H and D atoms) is 2.7×10^{-4} . Take differentials to get the fractional change in the Balmer wavelength; it comes out to about 17.9 nm.

- (c) The reduced mass for positronium is half the electron mass!
- (d) The reduced mass for muonium is 185.9 times the electron mass. That's the factor by which you need to fix R from the value given in the book. With this new value of R, get Lyman- α . It comes out to about 6.54×10^{-10} m.

1

4. Griffiths, **5.3** The energy of the photon emitted in the transition (always between adjacent HO states) is $\hbar\omega$. The frequency of the radiation is

$$\nu = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

where μ is the reduced mass of the oscillator system. Show that if μ changes, the change in frequency is related to the change in μ by

$$d\nu = -\frac{1}{2}\nu \frac{d\mu}{\mu}$$

What is the fractional difference in reduced mass between the two molecules?

- 5. Griffiths, 5.15 Well, he gives the answer. Get it dividing the E_{tot} from (5.45) by Nq.
- **6.** Griffiths, **5.16** I get: (a) Fermi energy of copper is 7.05 eV. (b) Electron speed for this energy is $1.58 \times 10^6 \, \frac{\text{m}}{\text{s}}$. (c) Fermi temperature is $8.19 \times 10^4 \, \text{K}$. (d) Degeneracy pressure is $3.84 \times 10^{10} \, \text{Pa}$.
- 7. Griffiths, 5.19 I get (with the help of Maple's fsolve function) a root of z = 2.628), leading to an energy of

$$E = 0.345 \text{ eV}$$

But show all of this.

8. Griffiths, 5.35 a) Show that the total electron energy is

$$E_{\text{Tot}} = 3\left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 (Nq)^{5/3}}{10mR^2}$$

b) Any way you can, if only by analogy with the electrostatic result, show that

$$E_{\rm grav} = -\frac{3}{5} \frac{GM_s^2}{R}$$

- c) I agree with his R and numerical coefficient of $N^{-1/3}$.
- **d)** I get R = 7170 km.
- e) I get $E_F = 194$ keV. Note, the mass of an electron is 511 keV.
- 9. Griffiths, **5.36**
- a) I find

$$E_{\rm tot} = \frac{\hbar c V K_F^4}{4\pi^2}$$

b) Note, we still have $k_F = (3\rho\pi^2)^{1/3}$. This gives

$$E_{\text{tot}} = \frac{\hbar c \pi^{2/3} (3Nq)^{4/3}}{4V^{1/3}}$$

where of course $V = \frac{4}{3}\pi R^3$, so that $E \propto 1/R$. Eventually I deduce

$$N_c^{2/3} = \frac{5}{16} \frac{\hbar c}{GM^2} 3^{2/3} \pi^{1/3}$$

which gave me

$$N_c = 2.06 \times 10^{57}$$

which comes out to 1.7 times the mass of the Sun.

c) Here we essentially re-do Prob 5.35 for neutrons. I get

$$R = \frac{\hbar^2}{GM^3N^{1/3}} \left(\frac{9\pi}{4}\right)^{2/3}$$

which for a star the mass of the sun gives R=12.4 km.

The neutron Fermi energy comes out to $56.2~\mathrm{meV}$ which is failry small compared to the neutron mass $938~\mathrm{MeV}$.