

# 自动控制原理实验报告

院(系): 智能工程学院

学号: 20354027

姓名: 方桂安

**自期:** 2022.9.9

实验名称:基于 Matlab 的典型环节模拟

# 一、 实验目的

- 1. 了解典型环节的电路实现。
- 2. 观察和分析各典型环节的单位阶跃响应曲线,掌握它们各自的特性。

## 二、 实验任务

- 1. 绘制比例环节的阶跃响应曲线
- 2. 绘制惯性环节的阶跃响应曲线
- 3. 绘制积分环节的阶跃响应曲线
- 4. 绘制微分环节的阶跃响应曲线
- 5. 绘制比例积分环节的阶跃响应曲线
- 6. 绘制比例微分环节的阶跃响应曲线

## 三、 实验设备

- 1. 笔记本电脑——Windows 11
- 2. MATLAB———R2021b

## 四、实验原理

1. 比例环节

传递函数为: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = -\frac{R_2}{R_1} = K$$
,





### 2. 惯性环节

传递函数为: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = \frac{K}{Ts+1}, K = -\frac{R_2}{R_1}, T = R_2C$$
,

其方块图、模拟电路和阶跃响应分别如下图所示:



## 3. 积分环节

传递函数为: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = -\frac{1}{Ts}, T = RC$$
,





# 4. 微分环节

传递函数为: G(s) = -Ts,  $T = RC_1$ ,

其模拟电路如下图所示:



### 5. 比例积分环节

传递函数为: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = K\left(1 + \frac{1}{TS}\right), K = -\frac{R_2}{R_1}, T = R_2C$$
,



6. 比例微分环节

传递函数为: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = K(Ts+1), K = -\frac{R_2}{R_1}, T = R_1C_1$$
,



### 五、 实验步骤

#### ● 任务 1: 绘制比例环节(P)的阶跃响应曲线

根据电路图,对比例环节进行 simulink 建模。设  $R_i$ =100k  $\Omega$ ,分别取  $R_2$ =100 k  $\Omega$ ,200 k  $\Omega$ ,500 k  $\Omega$ ,1M  $\Omega$ ,对应的 K 应该取值多少?分别绘制比例环节的单位阶跃响应曲线,并观察其规律。将实验过程中的数据和波形图填入表 1 中。

| R <sub>1</sub> 的取值           | R <sub>2</sub> 的取值           | K 的取值 | 传递函数 G(s) | 阶跃响应曲线 |
|------------------------------|------------------------------|-------|-----------|--------|
| $R_1 = 100 \mathrm{k}\Omega$ | $R_2 = 100 \mathrm{k}\Omega$ |       | 16        | 8      |
| $R_1 = 100 \mathrm{k}\Omega$ | $R_2 = 200 \mathrm{k}\Omega$ |       | 38        | 2      |
| $R_1 = 100 \mathrm{k}\Omega$ | $R_2 = 500 \mathrm{k}\Omega$ |       |           | 7      |
| $R_1 = 100 \mathrm{k}\Omega$ | $R_2 = 1M\Omega$             |       |           |        |

表 1: 比例环节阶跃响应及其特性参数数据记录表

#### ● 任务 2: 绘制惯性环节的阶跃响应曲线

根据电路图,对惯性环节进行 simulink 建模。设  $R_i=R_2=100k\ \Omega$ ,分别取 C=0.1 uF, 1 uF, 10 uF, 100 uF, 对应的 K 和 T 应该取值多少? 分别绘制惯性环节的单位阶跃响应曲线,并观察其规律。将实验过程中的数据和波形图填入表 2 中。

| 惯性环节电路参数                                                | K 的<br>取值 | T 的<br>取值 | 传递函数 <i>G(s</i> ) | 阶跃响应<br>曲线 |
|---------------------------------------------------------|-----------|-----------|-------------------|------------|
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 0.1 \mu\text{F}$ | TA        |           |                   |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 1 \mu \text{F}$  |           |           |                   |            |
| $R_1 = R_2 = 100 \text{k}\Omega$ $C = 10 \mu\text{F}$   |           |           |                   |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 100 \mu\text{F}$ |           |           |                   |            |

表 2: 惯性环节介跃响应及其特性参数数据记录表

#### ● 任务 3: 绘制积分环节(I)的阶跃响应曲线

根据电路图,对积分环节进行 simulink 建模。设 R=100k  $\Omega$ ,分别取 C=0.1 uF,1 uF,10 uF,100 uF,对应的 T 应该取值多少?分别绘制积分环节的单位阶跃响应曲线,并观察其规律。将实验过程中的数据和波形图填入表 3 中。

表 3: 积分环节阶跃响应及其特性参数数据记录表

| 积分环节电路参数                                       | T 的取值 | 传递函数 <i>G(s</i> ) | 阶跃响应曲线 |
|------------------------------------------------|-------|-------------------|--------|
| $R=100\mathrm{k}\Omega$ , $C=0.1\mu\mathrm{F}$ |       |                   |        |
| $R=100$ k $\Omega$ , $C=1\mu$ F                |       |                   |        |
| $R=100\mathrm{k}\Omega$ , $C=10\mu\mathrm{F}$  |       |                   |        |
| $R=100\mathrm{k}\Omega$ , $C=100\mu\mathrm{F}$ |       |                   |        |

#### ● 任务 4: 绘制微分环节(D)的阶跃响应曲线

根据电路图,对微分环节进行 simulink 建模。设 R=100k  $\Omega$ ,分别取 C=0.1 uF,1 uF,10 uF,100 uF,对应的 T 应该取值多少?分别绘制微分环节的单位阶跃响应曲线,并观察其规律。将实验过程中的数据和波形图填入表 4 中。

表 4: 微分环节阶跃响应及其特性参数数据记录表

| 微分环节电路参数                                                | T 的取值 | 传递函数 <i>G(s)</i> | 阶跃响应曲线 |
|---------------------------------------------------------|-------|------------------|--------|
| $R = 100 \mathrm{k}\Omega$ , $C_1 = 1 \mu \mathrm{F}$   | 1     | Ī                |        |
| $R=100\mathrm{k}\Omega$ , $C_1=0.1\mu\mathrm{F}$        |       | 7                | I      |
| $R=100\mathrm{k}\Omega$ , $C_1=10\mu\mathrm{F}$         | ΞĽ    | K                | ľ      |
| $R = 100 \mathrm{k}\Omega$ , $C_1 = 100 \mu \mathrm{F}$ | Him   |                  | S      |

#### ● 任务 5: 绘制比例积分环节(PI)的阶跃响应曲线

根据电路图,对比例积分环节进行 simulink 建模。设  $R_1$ = $R_2$ =100k  $\Omega$ ,分别取 C=0.1 uF,1 uF,10 uF,100 uF,对应的 K 和 T 应该取值多少?分别绘制比例积分环节的单位阶跃响应曲线,并观察其规律。将实验过程中的数据和波形图填入表 5 中。

表 5: 比例积分环节阶跃响应及其特性参数数据记录表

| 比例积分环节电路参数                                              | <i>K</i> 的取<br>值 | <i>T</i> 的取<br>值 | 传递函数<br><i>G(s</i> ) | 阶跃响应曲<br>线 |
|---------------------------------------------------------|------------------|------------------|----------------------|------------|
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 0.1 \mu\text{F}$ |                  |                  |                      |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 1 \mu \text{F}$  |                  |                  |                      |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 10 \mu\text{F}$  |                  |                  |                      |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 100 \mu\text{F}$ |                  |                  |                      |            |

#### ● 任务 6: 绘制比例微分环节(PD)的阶跃响应曲线

根据电路图,对比例微分环节进行 simulink 建模。设  $R_1$ = $R_2$ =100k  $\Omega$ ,分别取 C=0.1 uF,1 uF,10 uF,100 uF,对应的 K 和 T 应该取值多少? 分别绘制比例 微分环节的单位阶跃响应曲线,并观察其规律。将实验过程中的数据和波形图填入表 6 中。

表 6: 比例微分环节阶跃响应及其特性参数数据记录表

| 比例微分环节电路参数                                              | K 的取<br>值 | T 的取<br>值 | 传递函数<br><i>G(s</i> ) | 阶跃响应曲<br>线 |
|---------------------------------------------------------|-----------|-----------|----------------------|------------|
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 0.1 \mu\text{F}$ | La .      | ×         |                      |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 1 \mu \text{F}$  | ~         | 7         | 100                  |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 10 \mu\text{F}$  |           |           |                      |            |
| $R_1 = R_2 = 100 \text{k}\Omega, \ C = 100 \mu\text{F}$ |           |           | 5                    |            |

# 六、 实验结果

● 任务 1: 绘制比例环节(P)的阶跃响应曲线

传递函数: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = -\frac{R_2}{R_1} = K$$



表 1: 比例环节阶跃响应及其特性参数数据记录表

| R <sub>1</sub> 的取<br>值 | R <sub>2</sub> 的取<br>值 | K 的<br>取值 | 传<br>递<br>数<br><i>G(s)</i> | 阶跃响应曲线 |
|------------------------|------------------------|-----------|----------------------------|--------|
|------------------------|------------------------|-----------|----------------------------|--------|

|                          | -                      |          |            | 阶级响应曲线                 |
|--------------------------|------------------------|----------|------------|------------------------|
|                          |                        |          |            |                        |
|                          |                        |          |            | 0                      |
|                          |                        |          |            | -0.2                   |
|                          |                        |          |            |                        |
| $R_1$                    | $R_2$                  |          |            | -0.4                   |
| $=100$ k $\Omega$        | $=100\mathrm{k}\Omega$ | -1       | -1         | -0.6                   |
| - 100K22                 | - 100K22               |          |            |                        |
|                          |                        |          |            | -0.8                   |
|                          |                        |          |            | -1                     |
|                          |                        |          |            | 0 1 2 3 4 5 6 7 8 9 10 |
|                          |                        |          |            |                        |
|                          |                        |          |            | PATE Was to the AN     |
|                          |                        | _        |            | 阶跃响应曲线                 |
|                          |                        |          | 0.         | 0                      |
|                          |                        |          | <b>N</b> 1 |                        |
|                          | //                     |          |            | -0.5                   |
| $R_1$                    | $R_2$                  | 36       | 9          |                        |
|                          |                        | -2       | -2         | -1                     |
| $= 100 \mathrm{k}\Omega$ | $=200\mathrm{k}\Omega$ |          |            | -1.5                   |
|                          |                        |          |            | -1.5                   |
|                          |                        |          |            | -2                     |
|                          |                        |          |            |                        |
|                          | 9                      |          |            | 0 1 2 3 4 5 6 7 8 9 10 |
|                          |                        | 4/       |            | 10 10 10               |
|                          | - 1                    |          |            | 阶跃响应曲线                 |
|                          |                        |          |            | 0                      |
|                          |                        | N.       |            |                        |
| 101                      |                        |          |            | 1                      |
| W/                       |                        |          |            | -2                     |
| $R_1$                    | $R_2$                  | -5       | -5         |                        |
| $=100\mathrm{k}\Omega$   | $=500k\Omega$          |          |            | -3                     |
| 10/                      | TVA                    |          |            | 4                      |
| <b>I</b>                 | V                      | <b>^</b> |            |                        |
| 100                      | 1 4                    | in       |            | -5                     |
| 1                        |                        | 787      | -          | 0 1 2 3 4 5 6 7 8 9 10 |
| -                        |                        | V        | 4'7        |                        |
|                          |                        |          | 411        | 阶跃响应曲线                 |
|                          | 10                     |          |            | 0                      |
|                          |                        |          |            |                        |
|                          |                        |          |            | -2                     |
|                          |                        |          |            | 4                      |
| $R_1$                    | $R_2$                  | 10       | 10         |                        |
| $= 100 k\Omega$          | $=1M\Omega$            | -10      | -10        | -6                     |
|                          |                        |          |            |                        |
|                          |                        |          |            | -8                     |
|                          |                        |          |            | -10                    |
|                          |                        |          |            | 0 1 2 3 4 5 6 7 8 9 10 |
|                          |                        |          |            | 0 1 2 3 4 5 6 7 6 9 10 |
| 1                        |                        | <u> </u> | <u> </u>   |                        |

### ● 任务 2: 绘制惯性环节的阶跃响应曲线

传递函数: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = \frac{K}{Ts+1}, K = -\frac{R_2}{R_1}, T = R_2C$$



表 2: 惯性环节介跃响应及其特性参数数据记录表

| 惯性环<br>节电路<br>参数                                           | K<br>的<br>取<br>值 | T<br>的<br>取<br>值 | 传递函数<br><i>G(s</i> ) | 阶跃响应曲线                                                         |
|------------------------------------------------------------|------------------|------------------|----------------------|----------------------------------------------------------------|
| $R_1 = R_2 = 100 \text{k}\Omega,$<br>$C = 0.1 \mu\text{F}$ |                  | 0.01             | $\frac{-1}{0.01s+1}$ |                                                                |
| $R_1=R_2=100 \mathrm{k}\Omega,$ $C=1\mu\mathrm{F}$         | -1               | 0.1              | $\frac{-1}{0.1s+1}$  | 下版映成曲线<br>-0.4<br>-0.6<br>-0.8<br>-1<br>0 1 2 3 4 5 6 7 8 9 10 |



● 任务 3: 绘制积分环节(I)的阶跃响应曲线

传递函数: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = -\frac{1}{Ts}, T = RC$$



表 3: 积分环节阶跃响应及其特性参数数据记录表

| 积分环节<br>电路参数                                                                                                                                          | <i>T</i><br>的<br>取<br>值 | 传递函<br>数<br><i>G</i> (s)             | 阶跃响应曲线 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|--------|
| $R$ $= 100 \text{k}\Omega, C$ $= 0.1 \mu \text{F}$ $R$ $= 100 \text{k}\Omega, C$ $= 1 \mu \text{F}$ $R$ $= 100 \text{k}\Omega, C$ $= 10 \mu \text{F}$ | 0.0                     | $-\frac{1}{0.01s}$ $-\frac{1}{0.1s}$ |        |



## ● 任务 4: 绘制微分环节(D)的阶跃响应曲线

传递函数: G(s) = -Ts,  $T = RC_1$ 



表 4: 微分环节阶跃响应及其特性参数数据记录表

| 微分环节电<br>路参数                                         | <i>T</i><br>的<br>取<br>值 | 传递<br>函数<br><i>G(s</i> ) | 阶跃响应曲线                                                                                                                                                        |
|------------------------------------------------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $R$ $= 100 \text{k}\Omega, C_1$ $= 0.1 \mu \text{F}$ | 0.0                     | -<br>0.01<br>s           | ×10 <sup>11</sup> 阶跃响应曲线       -5     -10       -15     0       0     1       2     3       4     5       6     7       8     9       10     10       (衛移量=0) |



● 任务 5: 绘制比例积分环节(PI)的阶跃响应曲线

传递函数: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = K\left(1 + \frac{1}{TS}\right), K = -\frac{R_2}{R_1}, T = R_2C$$
 仿真系统:



表 5: 比例积分环节阶跃响应及其特性参数数据记录表

| 比例积 分环节 电路参数                                             | K<br>的<br>取<br>值 | <i>T</i><br>的<br>取<br>值 | 传递函<br>数 <i>G(s</i> )                             | 阶跃响应曲线                                                              |
|----------------------------------------------------------|------------------|-------------------------|---------------------------------------------------|---------------------------------------------------------------------|
| $R_1 = R_2 = 100 \text{k}\Omega,$ $C = 0.1 \mu \text{F}$ | NION A           | 0.01                    | $-\left(1\right.\\ \left.+\frac{1}{0.01s}\right)$ |                                                                     |
| $R_1 = R_2 = 100 \text{k}\Omega,$ $C = 1 \mu \text{F}$   | - 1              | 0.1                     | $-\left(1\right.\\ \left.+\frac{1}{0.1s}\right)$  | -20<br>-40<br>-60<br>-80<br>-100<br>0 1 2 3 4 5 6 7 8 9 10<br>億移量=0 |



● 任务 6: 绘制比例微分环节(PD)的阶跃响应曲线

传递函数: 
$$G(s) = \frac{L(c(t))}{L(r(t))} = K(Ts+1), K = -\frac{R_2}{R_1}, T = R_1C_1$$



表 6: 比例微分环节阶跃响应及其特性参数数据记录表

| 比例微<br>分环节<br>电路参<br>数 | K     T       的     的       取     值 | 传递函数<br><i>G</i> (s) | 阶跃响应曲线 |  |
|------------------------|-------------------------------------|----------------------|--------|--|
|------------------------|-------------------------------------|----------------------|--------|--|

| Ì             | Ī   | I    | I           | ]        |                    |     |   |        |      |         |     |    |   |    |
|---------------|-----|------|-------------|----------|--------------------|-----|---|--------|------|---------|-----|----|---|----|
|               |     |      |             | )        | ×10 <sup>11</sup>  |     |   | 阶跃□    | 响应曲线 | _       | 1   |    |   | _  |
|               |     |      |             | 0        |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
| $R_1 =$       |     |      |             | -5 -     |                    |     |   |        |      |         |     |    |   |    |
| $R_1 = R_2 =$ |     |      |             | -5       |                    |     |   |        |      |         |     |    |   |    |
| 100kΩ,        | -   | 0.01 | - (0.01s+1) |          |                    |     |   |        |      |         |     |    |   |    |
| <i>C</i> =    | 1   |      |             | 40       |                    |     |   |        |      |         |     |    |   |    |
| $0.1 \mu$ F   |     |      |             | -10      |                    |     |   |        |      |         |     |    |   |    |
| 012701        |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             | -15      |                    |     |   |        | _    |         |     |    |   |    |
|               |     | 4    |             | 0<br>偏移量 |                    | 2   | 3 | 4      | 5    | 6       | 7   | 8  | 9 | 10 |
|               |     |      |             |          |                    |     |   |        | - 3  | N       |     |    |   |    |
|               |     | 7/   | - A 3       | ) ·      | ×10 <sup>12</sup>  | -   |   | የለበታ ። | 向应曲线 |         |     |    |   |    |
|               |     |      | 90          | Ì        | ×10'2              |     |   | PITECH | 11世域 |         |     |    |   |    |
|               | M.  |      | Z38.        | 0        |                    |     |   |        |      |         |     |    |   | _  |
|               | 7/  |      | Al          |          |                    |     |   |        |      |         |     |    |   |    |
| D _           | 7/  |      |             |          |                    |     |   |        |      |         |     |    |   |    |
| $R_1 =$       | 17  | 7    |             | -5       |                    |     |   |        |      |         |     |    |   | -  |
| $R_2 =$       | //- | 0.1  | (0.1 , 1)   |          |                    |     |   |        |      |         |     |    |   |    |
| 100kΩ,        | 1   | 0.1  | - (0.1s+1)  |          |                    |     |   |        |      |         |     |    |   |    |
| C =           |     |      |             | -10      |                    |     |   |        |      |         |     |    |   | -  |
| $1\mu$ F      | 1   |      |             |          |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
|               |     |      | 1//         | -15      |                    |     |   |        |      |         |     |    |   | _  |
|               |     |      | 11/2        | 0        |                    | 2   | 3 | 4      | 5    | 6       | 7   | 8  | 9 | 10 |
|               |     | M    | 4           | 偏移量      | t=0                |     | - |        |      | April 2 |     | // |   |    |
|               |     | 100  | V.          | *        | <b>Y</b> #         | 24/ |   |        | -    |         | 7 7 |    |   |    |
| 1             |     | , J  |             | >        | × 10 <sup>13</sup> |     |   | 阶跃叫    | 向应曲线 |         |     |    |   | _  |
|               |     | N 1  | 112         | 0        |                    |     |   |        |      |         |     |    |   |    |
|               |     |      | 100         |          |                    |     |   |        |      |         |     |    |   |    |
|               |     | 100  |             | 7        |                    |     |   |        |      |         |     |    |   |    |
| $R_1 =$       |     | 10   |             | -5       |                    |     |   |        |      |         |     |    |   |    |
| $R_2 =$       |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
| 100kΩ,        | 1   | 1    | - (s+1)     |          |                    |     |   |        |      |         |     |    |   |    |
| <i>C</i> =    | 1   |      |             | -10      |                    |     |   |        |      |         |     |    |   |    |
| 10μF          |     |      |             | - 10     |                    |     |   |        |      |         |     |    |   |    |
| ,             |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             | -15      |                    |     |   |        |      |         |     |    |   |    |
|               |     |      |             | -15      | 1                  | 2   | 3 | 4      | 5    | 6       | 7   | 8  | 9 | 10 |
|               |     |      |             | 偏移量      |                    | 2   | 3 | 7      | 5    |         | ,   |    | 3 | 10 |
|               |     |      |             |          |                    |     |   |        |      |         |     |    |   |    |



# 七、实验心得

通过以上实验可以得出:随着 K 的增大终值增大为原来的 K 倍,而调节时间不变。随着 T 的增大调节时间也随之增大,但是终值不变。由此可以总结出, K 直接影响系统的终值, T 与系统的调节时间紧密相关,且均为正相关。积分环节强度随着 T 的增加而减小,微分常数 T 对于微分强度成正相关作用。

本次实验通过 simulink 仿真进一步熟悉了控制系统的构建以及回顾了自动控制原理中各个典型环节的相关知识。

