Gridlock in Networks: The Leximin Method For Hierarchical Community Detection

Arya D. McCarthy May 9, 2017

Problem: Community Detection (CD)

- No consensus in field
- Methods are ad hoc

What if we had groups in groups?

Main Points

- Leximin method achieves competitive score when communities are clear
- Our method produces ties; popular CD methods don't
- Ties are computably a superposition of behaviors
- Complexity of method: O(N¹¹) / log(N)

Overview

- 1. Motivation
- 2. Technique
- 3. Robustness and ties
- 4. Randomness, gridlock, and Menger's Theorem
- 5. Comparison to other methods

Turtles all the way down

- Formulation as modularity maximization (NP-hard)
- Approximation as min sparsest cut (NP-hard)
- Heuristic through weak dual: lexicographic maximum concurrent flow (P)

Aside: Leximin vs MCF Cut

Complexity

- Linear programming is doable in polynomial time
 - Fastest method:
 O(n³)/log(n) * L
- MCFP "triples" formulation:
 O(MN) variables and O(N²)
 constraints
- Up to N-1 MCFPs are solved
- Result: O(N¹¹) for sparse graphs

Length of an LP

$$L = 1 + \lceil \log_2(n) \rceil + \lceil \log_2(m) \rceil +$$

$$\sum_{j=1}^{n} \lceil \log_2(|c_i|+1) \rceil + n +$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \lceil \log_2(|a_{ij}|+1) \rceil + mn +$$

$$\sum_{i=1}^{m} \lceil \log_2(|b_i|+1) \rceil + n.$$

Courtesy of Dr. Olinick's course notes

Ties and Sensitivity

"Please don't make me choose"

Who should be cut first?

Sensitivity

Gridlock

"There's nothing really here, is there?"

Frequency of gridlock

0.8

0.6

0.4

0.2

K_{3,2} as a multigraph

[N (N - 1) - M] "Edge-disjoint paths"

Comparison

Keeping up with the Joneses and Newman and Clauset and Rosvall and Latapy

LFR Benchmarks

NMI vs community strength

AMI vs community strength

AMI vs network size

Lemma 5.2

If the modularity-maximizing flat clustering produced by the leximin method is into singletons, then gridlock has occurred.

Leads to "failing fast".

Gridlock

Conclusions

- Leximin method achieves competitive score when communities are clear
- AMI is a fairer test than NMI
- Our method produces ties; popular CD methods don't
- Large random graphs lack communities
- Ties are computably a superposition of behaviors
- Complexity of method: $O(N^{11}) / \log(N)$

Future Directions

- Assessment for overlapping community detection
- AMI of MCFP approximations on LFR
- Prove conjecture about diameter-2 graphs

Acknowledgments

- Committee:
 - David W. Matula
 - Daniel W. Engels
 - Eric C. Larson
 - Eli V. Olinick
- Creating figures:
 - Stejara Dinulescu

- Discussions:
 - Zizhen Chen
 - Monnie McGee
 - AJ Rao
 - Fernando Vilas
- Implementing the LP
 - Eli V. Olinick, pt. 2

Conclusions

- Leximin method achieves competitive score when communities are clear
- AMI is a fairer test than NMI
- Our method produces ties; popular CD methods don't
- Large random graphs lack communities
- Ties are computably a superposition of behaviors
- Complexity of method: $O(N^{11}) / \log(N)$