Lab Task 2

Name: M.Shafeen

Roll No: 22P-9278

Step:1

First we RUN the "afd c01-01.com" command to run the file named c01-01 in the DEBUGGER

Explanation Of the DEBUGGER:

M1:

It displays the MEMORY of the CODE in our computer (DATA)

As you can see in the DS:0008 moved from address DS:0000

M2:
M2 represents the memory of our CODE as a WHOLE (CODE)

Registers:

Code Section / Instruction Section / Instructions in MEMORY:

Norse Methodology Symbols:

Instruction Pointer (IP):

The instruction pointer tells us what commands are to be run next from MEMORY...

Step: 2

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD), The instruction of MEMORY ADDRESS (0100) runs and moves the value 5 into AX (ACCUMULATOR REGISTER)....

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD) , The instruction of MEMORY ADDRESS (0103) runs and moves the value 10 into BX (BASE REGISTER).....

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD) , The instruction of MEMORY ADDRESS (0106) runs and adds the values of AX (ACCUMULATOR REGISTER) AND BX (BASE REGISTER) . Stores the result into AX

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD), The instruction of MEMORY ADDRESS (0108) runs and moves the value 15 into BX (BASE REGISTER)

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD) , The instruction of MEMORY ADDRESS (010B) runs and adds the value of AX (ACCUMULATOR REGISTER) AND BX (BASE REGISTER).Stores it into AX(ACCUMULATOR REGISTER .

• • • •

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD), The instruction of MEMORY ADDRESS (010D) runs and MOVES the value "4C00" (which is an interrupt DEFINED by INTEL)...

As you can see below after pressing F1 on the UBUNTU LINUX (QWERTY KEYBOARD) , The instruction of MEMORY ADDRESS (0110) runs and CHECKS the most recent value in the AX (ACCUMULATOR REGISTER) register in which there is the 4C00 instruction (which is an interrupt DEFINED by INTEL)...

As you can see below after pressing F1 on the UBUNTU LINUX (<code>QWERTY KEYBOARD</code>) , The instruction of <code>MEMORY ADDRESS</code> (<code>0110</code>) runs and program <code>TERMINATES</code>

