

Introduction

Background Info.

Tucker Circles

Special Cases

Topic 29 Introduction

Tucker circles is a family of circles obtained by parallel displacing sides of corresponding Cosine or Lemoine hexagons, which contains the Cosine Circle and the First Lemoine Circle as special cases.

Background Info.

Two lines, PQ and BC, are antiparallel if $\angle APQ = \angle C$ and $\angle AQP = \angle B$.

ANTIPARALLEL

Tucker Circles Topic 29

Therefore, this circle is called the <u>Tucker Circle</u> of △ABC.

Set point D on one side of △ABC.

Draw a segment from point D antiparallelled to BC, intersecting with side AC at point E.

Draw a segment from point E || AB, intersecting with side BC at point F.

Similarly, we will get six points on these 3 sides: D, E, F, G, H, and J, which are cocircular.

Tucker Circles Proof ①

Since \overline{DE} is antiparallel to \overline{BC} and \overline{FG} is antiparallel to \overline{AC} ,

$$\angle 1 = \angle 2$$
,

And $\angle 2 = \angle 3$.

Thus, $\angle 1 = \angle 3$.

Because \overline{EF} is parallel to \overline{AB} , DEFG is an isoceles trapezoid.

Therefore, points D, E, F, and G are cocircular.

We set this circle as O_1 .

Tucker Circles Proof (2)

Because \overline{GH} is parallel to \overline{BC} ,

 \overline{DE} is antiparallel to \overline{GH} .

Therefore, points D, E, H, and G are cocircular.

We set this circle as O_2 .

Tucker Circles Proof ③

Since circle O_1 and circle O_2 both pass through point D, point E and point G,

And the circle that can pass through 3 points is unique.

Thus, circle O_1 and circle O_2 is the same circle.

Therefore, points D, E, F, G, and H are cocircular.

Tucker Circles Proof 4

Similar to ①, GHJF is another isosceles trapezoid.

Thus, points F, G, H, and J are cocircular.

Therefore, point J is on the circle that passes through points F, G, and H

That circle is the circle in 3.

Finally, points D, E, F, G, H, and J are cocircular,

Which is called the Tucker Circle of $\triangle ABC$.

Topic 29

Special Cases - First Lemoine Circle

Let L be the symmedian point, and draw 3 lines through L parallel to the sides of △ABC, respectively. If points PA, QA, PB, QB, PC, and QC are cocircular, then this circle is called the First Lemoine circle.

Let K be the circumcenter, and we can find the center of the circle by the midpoint of LK.

Topic 29

Special Cases - Cosine Circle

Let K be the symmedian point, and draw 3 lines through K antiparallel to the sides of △ABC, respectively. If points P1, P2, P3, Q1, Q2, and Q3 are cocircular, this circle is called the Cosine Circle, and sometimes Second Lemoine Circle

