Table 1: Overview of Hate Speech Detection Studies Using XAI

Reference	Dataset Source	Classification Task	Models Used	$f XAI \ Method$	XAI Use
Ansari, Kaur and Saxena (2023)	Youtube, Facebook, Twitter	Binary	LSTM, CNN	LIME, Integrated Gradient	4 visual examples: Local explana- tions using and using quantitative metrics of AOPC, log-odds, and co- herence
Hashmi et al. (2024)	Public datasets and multilingual corpora	Binary	DT, RF, LR, SVM, mBERT, LSTM	LIME	23 visual examples: Two for each language, except one with 20 examples (1.00 prob.)
Wich et al. (2021)	Twitter	Binary	DistilBERT, BoW, GraphSage	SHAP	6 visual examples: Explanation of each submodel, 1 example with 1.00 prob.
Imbwaga, Chit- taragi and Koolagudi (2024)	Youtube	Binary	SVM, RF, XGBoost, Bi- LSTM, BERT, GPT-J-6B	LIME	2 visual examples: Hate-labeled examples in English and Kiswahili
Nandini and Schmid (2023)	Twitter	Multiclass	BERT	LIME	4 visual examples: One hate- labeled + aggregated features from 50 examples/class
Siddiqui et al. (2024)	Twitter and cyber- bullying datasets	Fine-grained	mBERT, XLM- RoBERTa, Distil-RoBERTa	LIME	9 visual examples: TP, TN, FP, FN + 5 fine-grained samples, 4 with 1.0 prob.
Tiwari (2024)	Twitter	Binary	LSTM	LIME	4 visual examples: One for each LSTM word embedding method
Yadav, Kaushik and McDaid (2023)	Twitter	Binary	LR, SVM, NB-G, NB-B, NB-M, RF, KNN, DT	LIME	2 visual examples: One TP and one FP, with one at 1.0 prob.
Babaeianjelodar et al. (2022)	Twitter	Multiclass	XGBoost, LSTM	SHAP	1 visual example: Explained hate- labeled tweet
Hashmi and Sule Yildirim Yayilgan (2024)	Facebook, Twitter, Resset	Multiclass	LSTM, GRU, FAST-RNN	LIME	12 visual examples: Two per class + two misclassified
Mehta and Passi (2022)	Twitter, Gab, Wikipedia	Binary	DT, RF, NB, LR, LSTM, BERT+ANN, BERT+MLP	LIME	4 visual examples: DT, RF, LR, NB models and quantit metrics: IOU F1, Token F1, AUPRC, Comprehensiveness, Subgroup AUC, etc.
Mazhar Qureshi, Qureshi and Rashwan (2023)	Twitter	Multiclass	EBM, SVC	LIME, SHAP, Counter- factual	21 visual examples: SHAP/LIME examples across classes + counterfactual text edits
Hareem Kibriya et al. (2024)	Twitter	Fine-grained	LSTM	LIME, SHAP	7 visual examples: 4 Lime (weighted features), 2 SHAP- based instances

Table 2: Distribution of Detrimental Content Types

Detrimental Content	Total Count	
hate	13	
$fake_news$	9	
rumours	3	
toxic	3	
misinformation	2	
troll	2	
sexism	2	
cyberbullying	2	
$fake_reviews$	2	
controversy	1	
misogyny	1	
suspension	1	