- We are nainly uncerned with infinite Serile/sequences. Ef. $\frac{1}{2}$, $\frac{1}{2}$, etc.

Def": A sequence is a for whose domain is IN.

eg: (1, 1/2,1/3,...), (F1,F2,F3,...) where Fn= Fn-1+Fn-2 & n7,2,etc.

Defn: A reg (an) converges to a real no. If a, if for every puritive $n \cdot \Sigma$, there exists an NEN 1.t. Whenever $n \cdot 7/N$ we have $|a_n-a| < \Sigma$.

The write this as $(a_n) \rightarrow a$ or $\lim a_n = a$.

Defn: given a EIR, 270, the set $V_{\Sigma}(a) = \{ \pi \in \mathbb{R} \mid |\pi - a| < \Sigma \}$ in called the Σ -ndighbourhood of a.

Recaping now we see that, a segn (an) enverge to a if, given any E-nobal $V_{\Sigma}(a)$ of a, there exists a pt in the segn after which all terms are in $V_{\Sigma}(a)$.

eg: lim $q_n = 0$ where $q_n = \sqrt{y_n}$.

Proof: Let £70 be an arbitrary printive mo. Choose $W \in \mathbb{N}$ 8. E.

N? $\sqrt{y_2}$. Menly, $n > \sqrt{y_2} \Rightarrow \int_{\mathbb{N}} z \cdot z \cdot \frac{1}{2} dz$ for all n > n > n.

Co, $|q_n - 0| \le 2$.

Proof Idea to show nn -> 2:

- det . 270 be arbitrary,
- Choose NEM
- Show that N choren works.
- Assume N7/N.
- Then show | nn-n | L E.

eg: am (n/n+1) = 1. (chare N > 1/2. =) N7/N =) N7/2= 1/n (E.).

Thm: The limit of a segn when it exists is unique.

frof: Let us are that a req has nure than one limit, if possible, say $a_n \rightarrow l_1$ and $a_n \rightarrow l_2$, with $l_1 \neq l_2$.

Let $\mathcal{L} = \frac{1}{3} |l_1 - l_2| > 0$.

Now, chower N, x.t. |an-ly| < & 4 n7, N1.

chou NZEIN At. lan-12/CE + N7/N2.

Let $m_0 > max(N_1, N_2)$, then $lam_0 - l_1 | \leq \epsilon$ and $lam_0 - l_2 | \leq \epsilon$.

Now, | l_1-l_2| = | l_1-a_mo+a_mo-l_2|

≤ | l₁-9m₀| + | 9m₀-l₂| (Triangle inepnality)

≤ ≤ + ≤ = 2 ≤ = ≥ | l₁-l₂|

=) $|l_1-l_2| < 0$ Which is not possible. μ . Hence $l_1=l_2\cdot \mu$.

· We say that an sa converge to a if an -> a.

· If the seque (an) has no limit then we say that (an) is divergent : eq: (1,2,1,2,...), (2,4,6,8,...), (-1,-4,-9,...), etc.

Defn: A sequ (xn) is bounded if there exists a no. M70 s.t.

Thm: Every envergent leg in bounded.

Proof: Let $(a_n) \rightarrow l$. Those S = 1 to find $N \in \mathbb{N}$ s.t. $|a_n - l| < 1$, for all n > 1 $N \cdot i = l - 1 < a_n < l + 1 + n > 1$.

io. The set of an, an+1, an+21 is is bounded.

Again, the set {a1, 92, -.., 9N-1 } is handed by max {9; [i=1,2,...
.., No., we get an result. //.

Thm: Let liman = a and limbn = b. Then,

- (i) lim (can) = ca , ∀ c∈R,
- (ii) lim (an+ lon) = a+ lo,
- (iii) lim (an bn) = ab;
- (iv) lim (an/bn) = yb provided b + 0

Proof: (i) Let e +0, let & >0 be arbitrary positive no.
Now, |can-cal=|c||an-a|.

we can make this as small as we want

So showe N s. E. |an-a| < 2/|c| Whenever n7/N.

For all n7/N, |can-ca|=|c||an-a| < |c| 2/|c| = E.

For c=0, we have (0,0,...) ->0.//.

- (ii) Note, $|(a_n+b_n)-(a+b)| \leq |(a_n-a)+(b_n-b)|$. Since $a_n \rightarrow a$ and $b_n \rightarrow b$ we can choose N_1 and $N_2 \otimes b$. $|(a_n-a)| \leq \frac{a_1}{2}$ Whenever n > 1, N_1 and $|(b_n-b)| \leq \frac{a_1}{2}$ Whenever $|(a_n-a)| \leq \frac{a_1}{2}$ Wh
- (iii) 8bserve, |anbn-ab| = |anbn-abn+abn-ab| $\leq |anbn-abn| + |abn-ab|$ = |bn||an-a| + |a||bn-b|.

Now shoose N, s.t. n7, N, => 16n-61 < 2/101.2. for a = 0.

Since convergent segns are bounded no, we know I M70 s.t.

16 n/ M & n EIN. Chover N2 so that |an-a| < \frac{2}{M.2} whenever N7/N2.

Pick N = max \(\) N1/N2\(\) .

(iv) this will follow from (iii) if we can prove that $b_n \rightarrow b \Rightarrow \frac{1}{b_n} \rightarrow \frac{1}{b}$.

observe, $\left|\frac{1}{bn} - \frac{1}{b}\right| = \frac{|b-bn|}{|b||b||}$. Since $bn \to b$ so nee can make the numerator as small as we like by choosing $n \to \infty$. There exists some N_1 s.t. $|bn-b| < \frac{|b|}{2} + n > N_1$. This implies $|bn| > \frac{|b|}{2}$. Choose N_2 s.t. $n > N_2 \Rightarrow |bn-b| < \frac{2|b|^2}{2}$. At $n = \max\{N_1, N_2\}$, then $n > N_1 > \frac{1}{b} = \frac{1}{b} = \frac{1}{b} = \frac{1}{b} = \frac{1}{b}$.