Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

ANS:

The optimal value of alpha for ridge and lasso regression

- 1. Ridge Alpha = 0.3
- 2. lasso Alpha = 0.0001

	Linear Regression	Ridge Regression	Lasso Regression
Metric			
R2 Score Train	0.840192	0.839569	0.838861
R2 Score Test	0.770704	0.788097	0.792077
RSS Train	5.687107	5.709275	5.734475
RSS Test	3.874647	3.580751	3.513482
MSE Train	0.005809	0.005832	0.005857
MSE Test	0.009225	0.008526	0.008365
RMSE Train	0.076217	0.076366	0.076534
RMSE Test	0.096049	0.092334	0.091463

06]:		Linear	Ridge	Lasso
	MSSubClass	-0.081507	-0.077529	-0.078457
	MSZoning	-0.056144	-0.056533	-0.051615
	LotFrontage	-0.147273	-0.124712	-0.098191
	LotArea	0.189829	0.168074	0.136816
	Street	0.157030	0.147080	0.123167
	Utilities	-0.148644	-0.112552	-0.042532
	LandSlope	0.050361	0.053391	0.051050
	Condition2	-0.150373	-0.123803	-0.084784
	OverallQual	0.352826	0.356576	0.360227
	OverallCond	0.142210	0.141200	0.137280
	YearBuilt	0.175854	0.171377	0.173571
	ExterQual	-0.056136	-0.058145	-0.056056
	BsmtQual	-0.061259	-0.062336	-0.062124
	BsmtFinSF2	0.054453	0.052533	0.045578
	TotalBsmtSF	0.059232	0.060484	0.030649
	GrLivArea	0.716484	0.663262	0.694659
	BsmtFullBath	0.106874	0.103575	0.107183
	KitchenQual	-0.063108	-0.063162	-0.061334
	Functional	0.067929	0.064413	0.061593
	Fireplaces	0.073346	0.079607	0.077672
	GarageCars	0.078568	0.087237	0.085216
	GarageArea	0.079795	0.076577	0.070600
	ScreenPorch	0.086382	0.080720	0.076026
	PoolArea	-0.437712	-0.377045	-0.382027
	MiscVal	0.076884	0.062885	0.038098

These are the metrics and coefficients calculated for the optimal alpha value.

When we choose to double the value of alpha i.e., ridge alpha = 0.6 and lasso alpha = 0.0002, we get

	Linear Regression	Ridge Regression	Lasso Regression
Metric			
R2 Score Train	0.840192	0.838185	0.835515
R2 Score Test	0.770704	0.798683	0.804947
RSS Train	5.687107	5.758531	5.853544
RSS Test	3.874647	3.401854	3.296012
MSE Train	0.005809	0.005882	0.005979
MSE Test	0.009225	0.008100	0.007848
RMSE Train	0.076217	0.076695	0.077325
RMSE Test	0.096049	0.089998	0.088587

	Linear	Ridge	Lasso
MSSubClass	-0.081507	-0.074148	-0.075575
MSZoning	-0.056144	-0.056545	-0.047020
LotFrontage	-0.147273	-0.106794	-0.049531
LotArea	0.189829	0.152256	0.085226
Street	0.157030	0.138305	0.089340
Utilities	-0.148644	-0.090463	-0.000000
LandSlope	0.050361	0.055156	0.051346
Condition2	-0.150373	-0.104990	-0.019614
OverallQual	0.352826	0.358132	0.367837
OverallCond	0.142210	0.139940	0.132092
YearBuilt	0.175854	0.167793	0.171360
ExterQual	-0.056136	-0.059953	-0.055656
BsmtQual	-0.061259	-0.063337	-0.062834
BsmtFinSF2	0.054453	0.051115	0.037741
TotalBsmtSF	0.059232	0.061675	0.000827
GrLivArea	0.716484	0.619093	0.672318
BsmtFullBath	0.106874	0.100619	0.107135
KitchenQual	-0.063108	-0.063482	-0.059983
Functional	0.067929	0.061689	0.055414
Fireplaces	0.073346	0.084902	0.082067
GarageCars	0.078568	0.093453	0.091577
GarageArea	0.079795	0.075407	0.062115
ScreenPorch	0.086382	0.076496	0.067950
PoolArea	-0.437712	-0.330605	-0.327112
MiscVal	0.076884	0.052450	0.000000

It makes some of the coefficients to zero which leads to automatic feature selection in lasso regression. By comparing the metrics, R2 score on training data has decreased but it has increased on testing data for both Ridge Regression and Lasso Regression.

Most important variables after the change are,

- 1. GrLivArea
- 2. OverallQual
- 3. OverallCond
- 4. YearBuilt
- 5. LotArea
- 6. Street
- 7. Fireplaces
- 8. GarageCars
- 9. GarageArea
- 10. ScreenPorch
- 11. PoolArea

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

ANS:

I will choose Lasso regression to solve this problem because it has optimal test and train r2 scores comparing the other regression models.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

ANS:After Dropping the five most important predictor, the metrics and the coefficients are

	Linear Regression	Ridge Regression	Lasso Regression
Metric			
R2 Score Train	0.713411	0.713209	0.712683
R2 Score Test	0.716183	0.715748	0.716182
RSS Train	10.198857	10.206057	10.224795
RSS Test	4.795945	4.803298	4.795960
MSE Train	0.010418	0.010425	0.010444
MSE Test	0.011419	0.011436	0.011419
RMSE Train	0.102067	0.102103	0.102196
RMSE Test	0.106859	0.106941	0.106859

	Linear	Ridge	Lasso
MSSubClass	-0.010338	-0.012027	-0.010965
MSZoning	-0.080094	-0.077587	-0.076333
LotFrontage	0.071193	0.073426	0.056436
Street	0.261458	0.237881	0.225848
Utilities	-0.146674	-0.112876	-0.042957
LandSlope	0.063538	0.061399	0.057447
Condition2	-0.118733	-0.099256	-0.059749
OverallCond	0.233673	0.227841	0.226079
YearBuilt	0.191974	0.191574	0.190097
ExterQual	-0.140531	-0.141212	-0.139582
BsmtQual	-0.085302	-0.087726	-0.087025
BsmtFinSF2	0.045013	0.045572	0.036461
TotalBsmtSF	0.386172	0.353358	0.371395
BsmtFullBath	0.041839	0.044492	0.041735
KitchenQual	-0.098974	-0.099471	-0.098581
Functional	0.052458	0.052903	0.049611
Fireplaces	0.201575	0.203159	0.203695
GarageCars	0.276910	0.275865	0.276782
ScreenPorch	0.069256	0.068354	0.060201
MiscVal	0.002371	-0.000118	0.000000

Now the top five predictors are

- 1. TotalBsmtSF
- 2. GarageCars
- 3. OverallCond
- 4. Street
- 5. FirePlaces

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

ANS:

Develop a robust, generalized model by preprocessing data to handle outliers, retaining relevant ones, and removing irrelevant ones. Train the model with balanced training and test accuracies, employing regularization techniques to prevent overfitting. Evaluate its performance on unseen datasets to ensure trustworthiness for predictive analysis.