Optimization Methods. Seminar 5. Introduction to Matrix calculus.

Alexandr Katrutsa

Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

October 1, 2017

Reminder

- Conjugate sets
- Properties of conjugate sets
- Farkas' lemma

Basic definitions

More details see here. Let $f: D \to E$ be some function, then its derivative $\frac{\partial f}{\partial x} \in G$:

D	Ε	G	Name
\mathbb{R}	\mathbb{R}	\mathbb{R}	Derivative, $f'(x)$
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	Gradient, $\frac{\partial f}{\partial x_i}$
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{n \times m}$	Jacobian, $\frac{\partial \hat{f_i}}{\partial x_i}$
$\mathbb{R}^{m \times n}$	\mathbb{R}	$\mathbb{R}^{m \times n}$	$\frac{\partial f}{\partial x_{ij}}$

Also square matrix $n \times n$ of the second derivatives $\mathbf{H} = [h_{ij}]$ in case of $f: \mathbb{R}^n \to \mathbb{R}$ is called hessian and its elements equal $h_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.

Alexandr Katrutsa

The main technique

Examples

- 1. Linear function: $f(x) = c^{T}x$
- 2. Quadratic form: $f(x) = \frac{1}{2}x^TAx + b^Tx$
- 3. ℓ_2 norm of difference squared: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- 4. Determinant: $f(X) = \det X$
- 5. Trace: f(X) = Tr(AXB)
- 6. $f(x) = (x As)^TW(x As)$
- 7. $f(\mathbf{A}) = (\mathbf{x} \mathbf{A}\mathbf{s})^{\mathsf{T}}\mathbf{W}(\mathbf{x} \mathbf{A}\mathbf{s})$
- 8. $f(s) = (x As)^TW(x As)$

Function composition

Let $f(\mathbf{x}) = g(u(\mathbf{x}))$, then $\nabla f(\mathbf{x}) = \frac{\partial g}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$ Check dimensions and understand how to write $\frac{\partial g}{\partial u}$. Examples:

- 1. ℓ_2 norm of vector: $f(\mathbf{x}) = \|\mathbf{x}\|_2$
- 2. Bilinear form: $f(x) = u^{T}(x)Rv(x)$, $R \in \mathbb{R}^{m \times n}$
- 3. Exponent: $f(\mathbf{x}) = -e^{-\mathbf{x}^T\mathbf{x}}$

Recap

- Derivative by scalar
- Derivative by vector
- Derivative by matrix
- Derivative of function composition