1 Espacios Vectoriales

Definicion

Un espacio vectorial es un conjunto no vacío V (vectores) en el que estan definidas una ley de composición interna denominada suma, que a cada par de elementos u, v de V asocia un elemento w de V denotado w=u+v, y una ley de composición externa denominada $producto\ por\ escalares$, que a cada numero $\alpha\in K$ ($K=\mathbb{R}$ ó \mathbb{C}) (escalares) y a cada elemento u de V asigna un elemento $v=\alpha u$ si satisface los diez axiomas siguientes que se enuncian en tres grupos.

Axiomas de clusura

Axioma 1. CLAUSURA RESPECTO DE LA ADICION. A todo par de elementos x e y de V corresponde un elemento unico de V llamado suma de x e y, designado por

$$x + y$$

Axioma 2. CLAUSURA RESPECTO DE LA MULTIPLICACION POR NUMEROS REALES. A todo \boldsymbol{x} de \boldsymbol{V} y todo numero real \boldsymbol{a} corresponde un elemento de \boldsymbol{V} llamado producto de \boldsymbol{a} por \boldsymbol{x} , designado

$$a \cdot x$$

Axiomas para la adicion

Axioma 3. LEY CONMUTATIVA. Para todo x y todo y de V, tenemos que

$$x + y = y + x$$

Axioma 4. LEY ASOCIATIVA. Cualesquiera sean x, y, z de V, tenemos que

$$(x+y) + z = x + (y+z)$$

Axioma 5. EXISTENCIA DE ELEMENTO CERO. Existe un elemento en V, designado con el simbolo O_v tal que

$$x + O_v = x, \forall x \in V.$$

Axioma 6. EXISTENCIA DE OPUESTOS. Para todo x de V, el elemento (-1)x tiene la propiedad

$$x + (-1)x = O_v$$

Axiomas para la multiplicacio por numeros

Axioma 7. LEY ASOCIATIVA. Para todo x de V y todo par de numeros reales a y b, tenemos

$$a\cdot (b\cdot x)=(a\cdot b)\cdot x$$

Axioma 8. LEY DISTRIBUTIVA PARA LA ADICION EN V. Para todo $\boldsymbol{x}y$ todo \boldsymbol{y} de \boldsymbol{V} y todo numero real \boldsymbol{a} , tenemos

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

Axioma 9. LEY DISTRIBUTIVA PARA LA ADICION DE NUMEROS. Para todo \boldsymbol{x} de \boldsymbol{V} y todo par de numeros reales \boldsymbol{a} y \boldsymbol{b} , tenemos

$$(a+b)\cdot x = a\cdot x + b\cdot x$$

Axioma 10. EXISTENCIA DE ELEMENTO IDENTICO. Para todo \boldsymbol{x} de \boldsymbol{V} , tenemos

$$1 \cdot x = x$$

Consecuencias elementales de los axiomas

Teorema 1.1. UNICIDAD DEL ELEMENTO CERO. En cualquier espacio lineal existe un elemento cero y solo uno.

Demostracion. El axioma 5 nos asegura que existe por lo menos un elemento cero. Supongamos que existan dos, sean O_1 y O_2 . Haciendo $x = O_1$, y $O = O_2$ en el axioma 5, obtenemos $O_1 + O_2 = O_1$. Analogamente, haciendo $X = O_2$ y $O = O_1$, encontramos $O_2 + O_1 = O_2$. Pero $O_1 + O_2 = O_2 + O_1$, por la ley conmutativa, asi que $O_1 = O_2$

Teorema 1.2. UNICIDAD DE ELEMENTOS. En cualquier espacio lineal todo elemento tiene exactamente un opuesto. Esto es, para todo x existe un y, y solo uno tal que x + y = 0.

Demostracion. El axioma 6 nos dice que cada \mathbf{x} tiene por lo menos un opuesto, a saber $(-1) \cdot \mathbf{x}$. Supongamos $\mathbf{y_2}$ a los dos miembros de la primera igualdad y aplicando los axiomas 5, 4, y 3, obtenemos que

$$y_2 + (x + y_1) = y_2 + O = y_1$$

у

$$y_2 + (x + y_1) = (y_2 + x) + y_1 = O + y_1 = y_1 + O = y_1$$

- Teorema 1.3. En un espacio lineal, designemos con x e y dos elementos cualesquiera y con a y b dos escalares cualesquiera. Tenemos entonces las pripiedades siquientes
 - (a) $0 \cdot x = 0$.
 - (b) $a \cdot O = O$.
 - (c) $(-a) \cdot x = -(a \cdot x) = a \cdot (-x)$.
 - (d) Si $a \cdot x = O$, entonces a = 0 o x = O, o los dos.
 - (e) Si $a \cdot x = a \cdot y$ y $a \neq 0$ entonces x = y.
 - (f) Si $a \cdot x = b \cdot x$ v $x \neq 0$ entonces a = b.
 - (g) -(x+y) = (-x) + (-y) = -x y.
 - (h) $x + x = 2 \cdot x$, $x + x + x = 3 \cdot x$, y en general, $\sum_{i=1}^{n} x = n \cdot x$.

Demostracion de a). Sea z = 0x. Deseamos demostrar que z = O. Sumando z a si mismo y aplicando el axioma 9, encontramos que

$$z + z = 0x + 0x = (0+0)x = 0x = z$$

Sumando ahora -z a ambos miembros y obtenemos z = O.

Demostracion de b). Sea z = aO, sumar z a su mismo, y aplicar el axioma 8.

Demostracion de c). Sea z = (-a)x. Sumando z a ax y aplicando el axioma 9, encontramos que

$$z + ax = (-a)x + ax = (-a + a)x = 0x = 0$$

asi que z es el opuesto de ax, z = -(ax). Analogamente, si sumamos a(-x) a ax y aplicamos el axioma 8 y la propiedad b), encontramos que a(-x) = -(ax).

Ejemplos

$$(x_1, ..., x_n) + (x'_1, ..., x'_n) = (x_1 + x'_1, ..., x_n + x'_n)$$

$$(1)$$

$$\alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_n) \tag{2}$$

$$\begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix} + \begin{bmatrix} b_{11} & \dots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1m} + b_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nm} + b_{nm} \end{bmatrix}$$
(3)

$$\alpha \begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \dots & \alpha a_{1m} \\ \vdots & \ddots & \vdots \\ \alpha a_{n1} & \dots & \alpha a_{nm} \end{bmatrix}$$
(4)

$$(f+g)(x) = f(x) + g(x), \forall x \in I$$
(5)

$$(\alpha f)(x) = \alpha f(x), \forall x \in I \tag{6}$$

Todo espacio vectorial complejo es a su vez un espacio vectorial real si se considera la misma operacionn suma y el producto por escalares se restringe a escalares reales.

1.1 Subespacios

Definición de subespacio

Un subconjunto S de un espacio vectorial V es subespacio de V si S es un espacio vectorial con las operaciones definidas en V. Para concluir que un subconjunto S de V es subespacio deberiamos probar que:

- 1) S no es vacío.
- 2) La suma y el producto definidos en V son operaciones cerradas en S, es decir, u + v es elemento de S si u y v son elementos de S, y αu es elemento de S si α es un escalar arbitrarioy u es un elemento de S (en caso contrario la suma no sería una ley de composición interna o el producto por escalares no sería una ley de composición externa)
- 3) Se verifican las propiedades 1 a 8 de la ??.

Sin embargo no es necesario probar el tercer punto devido al siguiente teorema

Teorema (teorema del subespacio)

Sea S un subconjunto de un espacio vectorial $V \Rightarrow S$ es subespacio de $V \Leftrightarrow$ se verifican las siguientes condiciones:

- 1. $S \neq \emptyset$
- 2. $Si\ u, v \in S \Rightarrow u + v \in S$
- 3. Si $u \in S$ y α es un escalar arbitrario, $\alpha u \in S$

Ejemplos

- $S = \{0\} \land S = V \rightarrow \text{subespacios triviales}.$
- ullet Toda recta S que pasa por el origen es subespacio.

Apuntes

- \bullet En todos los casos, la suma de elementos de un conjunto V y el producto de un elemento de ese conjunto por un numero, siempre daba como resultado otro elemento de ese conjunto.
- El polinomio nulo no tiene grado.
- Dos polinomios son iguales cuando todos sus coeficientes son iguales $P = Q \Leftrightarrow a_i = b_i, \forall i = 1, ..., n$
- EJERCICIOS 1-4

2 Combinaciones Lineales

Dados $v_1, v_2, ..., v_r$, vectores de un espacio vectorial V, una combinación lineal de ellos una expresión de la forma

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_r v_r$$

con $\alpha_1, \alpha_2, ..., \alpha_r$ escañares. Por otra parte, se dice que un vector $v \in V$ es combinación lineal de (o que depende linealmente de) $v_1, v_2, ..., v_r$ si existen escalares $\alpha_1, \alpha_2, ..., \alpha_r$ tal que $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_r v_r$

Ejemplos

- El vector nulo es combinación lineal de cualquier conjunto de vectores $v_1, v_2, ..., v_r \in V$, pues $0 = 0v_1, 0v_2, ..., 0v_r$.
- En \mathbb{R} , w = (1, 1, 1) es combinación lineal de $v_1 = (2, 1, 3)$ y $v_2 = (1, 0, 2)$ pues $w = 1v_1 + (-1)v_2$. Asimismo, (2, 2, 2) es combinación lineal de (1, 1, 1) ya que (2, 2, 2) = 2(1, 1, 1).
- En \mathbb{C} , w=(1+i,2) es combinación lineal de $v_1=(1,0)$ y $v_2=(0,1)$, pues $w=(1+i)v_1+2v_2$

Dados los vectores $v_1, ..., v_k$ se denomina $gen\{v_1, ..., v_r\}$ al conjunto de todas sus posibles combinaciones lineales. Es decir,

$$gen\{v_1, ..., v_r\} = \{v \in V : v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_r v_r\}$$
(7)

Teorema 1.5. Dados $v_1, ..., v_r \in V$, $gen\{v_1, ..., v_r\}$ es subespacio del espacio vectorial V. Al subespacio $S = gen\{v_1, ..., v_r\}$ se lo denomina subespacio generado por los vectores $v_1, ..., v_r$ y a estos últimos generadores de S. Se dice que un subespacio S de un espacio vectorial V está generado por los vectores $v_1, ..., v_r \leftrightarrow S = S = gen\{v_1, ..., v_r\}$. En esta situación se dice que $\{v_1, ..., v_r\}$ es un conjunto generador de S y que S es un subespacio finitamente generado.

Ejemplos

- $\mathbb{R}^n = qen\{e_1, ..., e_n\}$ con $e_1 = (1, 0, ..., 0), e_2 = (0, 1, ..., 0), ..., e_n = (0, 0, ..., 1).$
- $\mathbb{C}^n = gen\{e_1, ..., e_n\}$ con $e_1, ..., e_n$ definidos anteriormente.
- $\mathbb{P}_n = gen\{1, t, ..., t^n\}.$
- $\mathbb{C}^{2\times 2} = gen\{E_{11}, E_{12}, E_{21}, E_{22}\}$ con

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}; E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}; E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}; E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
(8)

2.1 Conjuntos Linealmente Independientes y Bases

3 Conjuntos Dependientes e Independientes en un Espacio Lineal

Definicion

Un conjunto S de elementos de un espacio lineal V se llama dependiente si existe un conjunto finito de elementos distintos de S, $x_1, ..., x_k$ y un correspondiente conjunto de escalares $c_1, ..., c_k$, no todos cero, tales que

$$\sum_{i=1}^{k} c_i x_i = 0 \tag{9}$$

El conjunto S se llama indepentiende si no es dependiente. En tal caso, cualesquiera que sean los elementos distintos $x_1, ..., x_k$ de S y los escalares $c_1, ..., c_k$,

$$\sum_{i=1}^{k} c_i x_i = 0 \Rightarrow c_1 = c_2 = \dots = c_k = 0$$
(10)

Ejemplos

- Los elementos de un conjunto indepediente se llaman elementos independientes.
- \bullet Si un subconjunto T de un conjunto S es dependiente, el mismo S es dependiente. Esto es logicamente equivalente a la afirmacion de que todo subconjunto de un conjunto independiente es independiente.
- \bullet Si un elemento de S es el producto de otro por un escalar, S es dependiente.
- Si $O \in S \Rightarrow S$ es dependiente.
- El conjunto vacio es independiente.

Teorema 1.6. Sea $S = \{x_1, ..., x_k\}$ un conjuntoindependiente que consta de k elementos de un espacio lineal V y sea L(s) el subespacio generado por S. Entonces todo cojunto de k+1 elementos de L(S) es dependiente.

Demostracion. La demostracion es por induccion sobre k, numero de elementos de S. Supongamos primero que k=1. Entonces, por hipotesis, S contiene un solo elemento x_1 siendo $x_1 \neq O$ puesto que S es independiente. Ahora tomemos en L(s) dos elementos distintos y_1 e y_2 . Entonces, cada uno de estos elementos es un escalar multiplicado por x_1 , sea $y_1 = c_1x_1$ e $y_2 = c_2x_2$, en donde c_1 y c_2 no son ambos cero. Obetenemos

$$c_2 y_1 - c_1 y_2 = O$$

Por lo tanto y_1 e y_2 son dependientes, quedando asi demostrado el teorema cuando k=1. Supongamos ahora que el teorema es cierto para k-1 y demostremos que tambien lo es para k. Tomemos un conjunto de k+1 elementos en L(S), sea $T=\{y_1,---,y_{k+1}\}$. Queremos probar que T es dependiente. Puesto que cada elemento y_i esta contenido en L(S), podemos escribir

$$y_i = \sum_{j=1}^k a_{ij} x_j, \forall i = 1, ..., k+1$$
(11)

Examinaremos todos los escalares a_{ij} que multiplican a x_1 y, para ello, consideremos dos casos en la demostración.

CASO 1. $a_{i1} = 0, \forall i = 1, ..., k+1$. En este caso (11), no incluye a x_1 , asi cada y_1 en T esta en la envolvente lineal del conjunto $S' = \{x_2, ..., x_k\}$. Pero S' es independiente y contiene k-1 elementos. Por induccion y para k-1, el teorema es cierto, siendo por lo tanto, T dependiente.

CASO 2. No son cero todos los escalares a_{i1} . Suponemos que $a_{11} \neq 0$. Tomando i = 1 en (11) y multiplicando los dos miembros por c_i , siendo $c_i = a_{i1}/a_{11}$, obtenemos

$$c_i y_1 = a_{i1} x_1 + \sum_{j=2}^k c_i a_{1j} x_j.$$
 (12)

Si a (12) le restamos (11), resulta

$$c_i y_1 - y_i = \sum_{j=2}^{k} (c_i a_{1j} - a_{ij}) x_j, \forall i = 2, ..., k+1$$

Esta ecuacion expresa cada uno de los elementos $c_i y_1 - y_i$ como una combinacion lineal de los k-1 elementos independientes $x_2, ..., x_k$. Por induccion, los k elementos $c_i y_1 - y_i$ deben ser dependientes. En consecuencia, para cualquier eleccion de escalares $t_2, ..., t_{k+1}$, no son todos cero, tenemos

$$\sum_{i=2}^{k+1} t_i (c_i y_1 - y_i) = O,$$

$$(\sum_{i=2}^{k+1} t_i c_i) y_1 - \sum_{i=2}^{k+1} t_i y_i = O$$

Esto es una combinación de $y_1, ..., y_{k+1}$, que representa el vector cero, de esta manera los elementos $y_1, ..., y_{k+1}$ deben ser dependientes, completando asi la demostración.

3.1 Bases y Dimensiones

Definicion

Un conjunto finito S de elementos de un espacio vectorial V se llama **base finita** de V si S es independiente y genera V. El espacio V es de dimension finita si tiene una base finita. De otro modo, V es de infinitas dimensiones.

Teorema 1.7. Sea V un espacio lineal de dimension finita. Entonces toda base finita de V tiene el mismo numero de elementos.

Demostracion. Sean S y T dos bases finitas de V. Supongamos que S y T constan respectivamente de k y m elementos. Puesto que S es independiente y genera V, el teorema 1.66 nos dice que todo conjunto de k+1 elementos de V es dependiente. Por consiguiente, todo conjunto de mas de k elementos de V es dependiente. Ya que T es un conjunto indeoendiente, debe ser $m \leq k$. El mismo razonamiento con S y T intercambiadas prueba que $k \leq m$. Por lo tanto k=m.

Definicion

Si un espacio lineal V tiene una base de n elementos, el entero n se llama dimension de V. Escribimos n = dim(V).

Ejemplos

• Bases canonicas

$$- \varepsilon_{\mathbb{R}^2} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\begin{split} &-\varepsilon_{\mathbb{R}^3} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \\ &-\varepsilon_{\mathbb{P}_2} = \left\{ 1, x, x^2 \right\} \\ &-\varepsilon_{\mathbb{R}^{2\times 2}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \\ &-\varepsilon_{\mathbb{P}_n} = \left\{ 1, x, x^2, ..., x^n \right\} \end{split}$$

- Dimensiones de las bases canonicas
 - $-dim(\mathbb{R}) = n$
 - $\dim(\mathbb{R}[x]) = n + 1$
 - $-dim(\mathbb{R}^2) = 4$
 - $-dim(\mathbb{P}_n) = n+1$

Teorema 1.8. Sea V un espacio lineal de dimension finita con dim(V) = n se tiene

- (a) Cualquier conjunto de elementos independiente de V es un subconjunto de una cierta base para V.
- (b) Cualquier conjunto de n elementos independientes es una base para V.

Demostracion. Para demostrar (a), consideremos el conjunto independiente $S = \{x_1, ..., x_k\}$ constituido por elementos en V. Si L(S) = V, entonces S es una base. Si no, entonces hay algun elemento y en V que no esta en L(S). Añadamos ese elemento a S y consideremos el nuevo conjunto $S' = \{x_1, ..., x_k, y\}$. Si en este conjunto dependiente multiplicamos sus elementos por escalares $c_1, ..., c_{k+1}$ siendo alguno diferente de cero, estableceremos que

$$\sum_{i=1}^{k} c_i x_i + c_{k+1} y = O$$

Pero $c_{k+1} \neq 0$ puesto que $x_1, ..., x_k$ son independientes. De aqui que podamos resolver esta ecuacion respecto a y llegando a la conclusion de que $y \in L(S)$, lo qe contradice el supuesto de que y no pertenece a L(S). Por lo tanto el conjunto S' es independiente y contiene k+1 elementos. Si L(S') = V, entonces S' es una base y, siendo S un subconjunto de S', la parte (a) queda demostrada. Si S' no es una base, entonces podemos proceder con S', de igual manera que procedimos con S y considerar otro nuevo conjunto S'' que contiene k+2 elementos y es independiente. Si S'' es una base, (a) queda demostrado. Si no, repetimos el proceso. Debemos llegar a una base después de un número finito de etapas, ya que de otra manera obtendríamos un conjunto independiente con n+1 elementos, contradiciendo el teorema 1.6. Por eso, la parte (a) del teorema 1.8 queda demostrada. Para demostrar la parte (b) consideremos un conjunto indepediente S con n elementos. Por la parte (a), S es un subconjunto de base S. Pero por el teorema 1.5, la base S tiene exactamente S0 elementos, por lo tanto, S1 es un subconjunto de base S2.