Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

09 de junho de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- 3 Complexidade de Tempo
- 4 Classe P

Sumário

- Pensamento
- 2 Avisos
- 3 Complexidade de Tempo
- 4 Classe P

Pensamento

Pensamento,

Frase

Antes de começar o trabalho de modificar o mundo, dê três voltas dentro de sua casa.

Quem?

Provérbio Chinês

Sumário

- Pensamento
- 2 Avisos
- 3 Complexidade de Tempo
- 4 Classe F

Avisos

Teste 04

Dia 11 de junho (Próxima quarta-feira)!!!

Notícias do Santa Cruz

Sumário

- Pensamento
- 2 Avisos
- 3 Complexidade de Tempo
- 4 Classe P

Definição 7.7

Seja $t: \mathbb{N} \to \mathbb{R}^+$ uma função. Defina a **classe de complexidade de tempo**, **TIME**(t(n)), como sendo a coleção de todas as linguagens que são decidíveis por uma máquina de Turing de tempo O(t(n)).

Definição 7.7

Seja $t: \mathbb{N} \to \mathbb{R}^+$ uma função. Defina a classe de complexidade de tempo, TIME(t(n)), como sendo a coleção de todas as linguagens que são decidíveis por uma máquina de Turing de tempo O(t(n)).

Exemplo

- $A = \{0^k 1^k \mid k \ge 0\}$
- $A \in \mathsf{TIME}(n^2)$, pois

Definição 7.7

Seja $t: \mathbb{N} \to \mathbb{R}^+$ uma função. Defina a classe de complexidade de tempo, TIME(t(n)), como sendo a coleção de todas as linguagens que são decidíveis por uma máquina de Turing de tempo O(t(n)).

Exemplo

- $A = \{0^k 1^k \mid k \ge 0\}$
- $A \in \mathsf{TIME}(n^2)$, pois
- M_1 decide A em tempo $O(n^2)$

Problema

Existe uma máquina que decide assintoticamente a linguagem A mais rapidamente?

Problema

Existe uma máquina que decide assintoticamente a linguagem A mais rapidamente?

Com outras palavras...

 $A \in \mathsf{TIME}(t(n))$, para algum $t(n) = o(n^2)$?

Descrição de uma outra MT simples

 M_2 = "Sobre a cadeia de entrada ω :

- Faça uma varredura na fita e *rejeite* se um 0 for encontrado à direita de um 1.
- Repita enquanto alguns 0s e alguns 1s permanecem sobre a fita:
 - Faça uma varredura na fita, verificando se o número total de 0s e 1s remanescentes é par ou ímpar. Se for ímpar, rejeite.
 - Faça uma varredura novamente na fita, cortando alternadamente um 0 não e outro sim (começando com o primeiro 0) e então cortando alternadamente um 1 não e outro sim (começando com o primeiro 1).
- Se nenhum 0 e nenhum 1 permanecer sobre a fita, aceite. Caso contrário, rejeite.

Problema

Podemos decidir a linguagem A em tempo O(n) (também chamado **tempo linear**)?

Problema

Podemos decidir a linguagem A em tempo O(n) (também chamado **tempo linear**)?

Sim... é possível!

Se utilizarmos uma máquina de Turing com duas fitas!

Descrição de uma outra MT simples

 M_3 = "Sobre a cadeia de entrada ω :

- Faça uma varredura na fita e *rejeite* se um 0 for encontrado à direita de um 1.
- 2 Faça uma varredura nos 0s sobre a fita 1 até o primeiro 1. Ao mesmo tempo, copie os 0s para a fita 2.
- Faça uma varredura nos 1s sobre a fita 1 até o final da entrada. Para cada 1 lido sobre a fita 1, corte um 0 sobre a fita 2. Se todos os 0s estiverem cortados antes que todos os 1s sejam lidos, rejeite.
- Se todos os 0s tiverem agora sido cortados, aceite. Se algum 0 permanecer, rejeite.

Sumário

- Pensamento
- 2 Avisos
- 3 Complexidade de Tempo
- 4 Classe P

Relacionamentos de Complexidade entre Modelos

Teorema 7.8

Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing multifita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo O(t(n)).

Relacionamentos de Complexidade entre Modelos

Teorema 7.8

Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing multifita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo O(t(n)).

Teorema 7.11

Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing não-determinística de uma única fita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $2^{O(t(n))}$.

Diferenças de complexidade de tempo

- MT simples x MT multi-fita: potência quadrática (ou polinomial)
- MT simples x MT não-determinística: no máximo exponencial.

Diferenças de complexidade de tempo

- MT simples x MT multi-fita: potência quadrática (ou polinomial)
- MT simples x MT não-determinística: no máximo exponencial.

Uma outra classificação...

Podemos classificar todas as linguagens decidíveis do mundo em duas classes de algoritmos:

- Linguagens que são possíveis de ser decididas em tempo polinomial (P).
- Linguagens que não são possíveis de ser decididas em tempo polinomial, i.e., em tempo não-polinomial (NP).

Diferenças entre as taxas de crescimento

Exemplo: $n^3 e 2^n$

Diferenças entre as taxas de crescimento

Exemplo: $n^3 e 2^n$

• Admita n = 1000;

Diferenças entre as taxas de crescimento

Exemplo: $n^3 e 2^n$

- Admita n = 1000;
- Logo, $n^3 = 1$ bilhão;

Diferenças entre as taxas de crescimento

Exemplo: $n^3 e 2^n$

- Admita n = 1000;
- Logo, $n^3 = 1$ bilhão;
- Mas, 2ⁿ é maior que o número de átomos do universo.

Definição 7.12

P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras

$$\mathsf{P} = \bigcup_k \mathsf{TIME} \ (n^k).$$

Definição 7.12

P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras

$$\mathsf{P} = \bigcup_k \mathsf{TIME} \ (n^k).$$

P é importante porque...

Definição 7.12

P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras

$$\mathsf{P} = \bigcup_{k} \mathsf{TIME} \ (n^k).$$

P é importante porque...

 P é invariante para todos os modelos de computação polinomialmente equivalentes à máquina de Turing determinística de uma única fita;

Definição 7.12

P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras

$$\mathsf{P} = \bigcup_{k} \mathsf{TIME} \ (n^k).$$

P é importante porque...

- P é invariante para todos os modelos de computação polinomialmente equivalentes à máquina de Turing determinística de uma única fita;
- P corresponde aproximadamente à classe de problemas que são realisticamente solúveis em um computador.

Problema do caminho em um grafo

 $CAM = \{ \langle G, s, t \rangle \mid G \text{ \'e um grafo direcionado que tem um caminho direcionado de } s \text{ para } t \}.$

Problema do caminho em um grafo

 $CAM = \{\langle G, s, t \rangle \mid G \text{ \'e um grafo direcionado que tem um caminho direcionado de } s \text{ para } t\}.$

Teorema 7<u>.14</u>

 $\textit{CAM} \in \mathbf{P}$

Teorema 7.14

 $CAM \in P$

Prova

M = "Sobre a cadeia de entrada $\langle G, s, t \rangle$ em que G é um grafo direcionado com nós s e t:

- Ponha uma marca sobre o nó s.
- Repita o seguinte até que nenhum nó adicional seja marcado:
 - Faça uma varredura em todas as arestas de G. Se uma aresta (a, b) for encontrada indo de um nó marcado a para um nó não marcado b, marque o nó b.
- 3 Se t estiver marcado, aceite. Caso contrário, rejeite.

Lista de Exercícios 05

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 7.1;
- 7.2;
- 7.6.

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

09 de junho de 2014

