

UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I 2019 / 2020

SUBJECT CODE : SECR1013 / SCSR1013

SUBJECT NAME : DIGITAL LOGIC

SECTION : SECR/J/B/V/P / SCSR/J/B/V/P

TIME : 3 HOURS

DATE/DAY :

VENUES :

INSTRUCTIONS:

Answer all questions from PART A and PART B. Show all your works.

This test will contribute 35% towards the total marks of 100%.

(Please Write Your Lecturer Name And Section In Your Answer Booklet)

Name	
I/C No.	
Year / Course	
Section (Circle)	01 / 02 / 03 / 04 / 05 / 06 / 07 / 08 / 09
Lecturer Name (Circle)	Mr Firoz / Mrs Zuriahati / Mrs Rashidah

This question paper consists of 16 printed pages excluding this page.

PART A: OBJECTIVES

1. What is a multiplexer?

Answer ALL questions in answer booklet.

	A. It is a type of decoder which decodes several inputs and gives one output.
	B. A multiplexer is a device that has many inputs and a single output.
	C. It takes one input and results into many outputs.
	D. It is a type of encoder which decodes several inputs and gives one output.
2.	How many outputs are in a BCD decoder?
	A. 4
	B. 5
	C. 15
	D. 10
3.	In 1-to-4 demultiplexer, how many select lines are required?
	A. 2
	B. 3
	C. 4
	D. 5
4.	In a multiplexer the output depends on its
	A. data outputs
	B. select inputs
	C. select outputs
	D. rotate pin

- 5. Parity generators/checkers use which modulo summation?
 - A. Modulo 8
 - B. Modulo 16
 - C. Modulo 2
 - D. Modulo 10
- 6. A code converter is a logic circuit that ______.
 - A. Inverts the given input
 - B. Converts into decimal number
 - C. Converts data of one type into another type
 - D. Converts to hexadecimal
- 7. Which of the following is NOT a latch?
 - A. S-R latch
 - B. T latch
 - C. Gated S-R latch
 - D. Gated D latch
- 8. The invalid state of active HIGH S-R latch occurs when _____.
 - A. S = 1, R = 0
 - B. S = 0, R = 1
 - C. S = 1, R = 1
 - D. S = 0, R = 0

9. The diagram below shows what type of temporary storage device?

- A. D flip flop
- B. C-D flip flop
- C. Gated S-R latch
- D. Gated D latch
- 10. Which of the following is considered as highest priority asynchronous input(s)?
 - A. Clock
 - B. \overline{PRE}
 - C. T
 - D. J and K
- 11. When both inputs of a J-K pulse-triggered flip-flop are HIGH, and the clock triggers, what will the output be?
 - A. An invalid state will exist.
 - B. No change will occur in the output.
 - C. The output will reset.
 - D. The output will toggle.
- 12. Which statement is FALSE regarding universal bidirectional shift register (74HC194)?
 - A. Can implement Serial In Serial Out (SISO) operation
 - B. Can implement Serial In Parallel Out (SIPO) operation
 - C. Can implement Parallel In Serial Out (PISO) operation
 - D. Can implement Round Robin In Parallel Out (RRPO) operation

13. A modulus 16 ring counter requires how many flip-flops? A. 2 B. 4 C. 8 D. 16 14. If a 10-bit ring counter has an initial state 1101000000, what is the state after the third clock pulse? A. 1101000000 B. 0001101000 C. 1100000000 D. 0000000000 15. A modulus 12 Johnson counter requires a minimum of _____ A. 10 flip-flops B. 12 flip-flops C. 6 flip-flops D. 2 flip-flops 16. On the third clock pulse, a 4-bit Johnson sequence is $Q_0 = 1$, $Q_1 = 1$, $Q_2 = 1$, and $Q_3 = 0$. On the fourth clock pulse, the sequence is ______. A. $Q_0 = 1$, $Q_1 = 1$, $Q_2 = 1$, $Q_3 = 1$ B. $Q_0 = 1$, $Q_1 = 1$, $Q_2 = 0$, $Q_3 = 0$ C. $Q_0 = 1$, $Q_1 = 0$, $Q_2 = 0$, $Q_3 = 0$ D. $Q_0 = 1$, $Q_1 = 0$, $Q_2 = 0$, $Q_3 = 0$

- A. the number of states in its sequence
- C. the method of clocking

B. the type of flip flop used

D. the value of modulus

18. A modulus-12 asynchronous counter must have
A. 12 flip-flops
B. 4 flip-flops
C. 3 flip-flops
D. 5 flip-flops
19. Four cascaded modulus-10 counters have an overall modulus of
A. 40
B. 10
C. 1000
D. 10000
20. Which asynchronous counter mod is a truncated sequence?
A. mod 4
B. mod 8
C. mod 13
D. mod 16

PART B: STRUCTURED

Answer ALL questions in question and answer booklet.

Question 1 [16 Marks]

a) Draw the block diagram for a 3-bit parallel adder using full adder and label clearly the block diagram including the input, sum and carry. Perform addition $011_2 + 110_2$, show the value for each label on the block diagram. [4]

$$\begin{array}{ccccc} & A_3 & A_2 & A_1 \\ + & B_3 & B_2 & B_1 \\ \hline \sum_{4} \sum_{3} \sum_{2} \sum_{1} \end{array}$$

b) For set of binary numbers $A_3A_2A_1A_0 = 0010$ $B_3B_2B_1B_0 = 0101$ are assigned to comparator in Figure 1.

Figure 1

- i. Based on Figure 1, explain how comparator works until final output results appear. [3]
- ii. Determine the final output result for the comparator in Figure 1. [1]

c) Given an active HIGH 7-segment display in Figure 2 showing a digital number from a decoder that is based on the BCD value, **complete Table 1 in your question booklet APPENDIX A**. [4]

Figure 2

d) Figure 3 in APPENDIX A shows DEMUX connection with outputs labelled as $Y_3 Y_2 Y_1 Y_0$ and B is the input of DEMUX. Select bit for DEMUX are noted by C_1 and C_0 (C_1 is the MSB). Draw the waveform for the DEMUX output based on the given values in question booklet Figure 3 APPENDIX A. [4]

Question 2 [15 Marks]

- a) Draw the output Q for a positive edge triggered D flip flop and assume initial Q is LOW. **Draw the** waveform in question booklet Figure 4 APPENDIX A. [4]
- b) Complete Table 2 based on the output for all Q in Figure 4. Complete Table 2 in your question booklet APPENDIX A. [3]
- c) Assume that Q is initially LOW, for gated S-R latch. Draw the waveform for output Q in question booklet Figure 5 APPENDIX A. [3]
- d) Determine output Q in Figure 6 for a positive edge triggered JK flip-flop with PRE, CLR, and J, K inputs. Assume that Q is initially LOW. **Draw the waveform in question booklet Figure**6 APPENDIX A. [5]

Question 3 [18 Marks]

Design a synchronous counter to produce the following binary sequence:

- 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 0, 9... (recycle counter)
- Positive edge flip-flops
- Using T flip-flops, use Q₀ as LSB
- a) Create state diagram [3]
- b) Develop the next state table and flip-flops transition table. [6]
- c) Determine the Boolean expression using K-Map. [4]
- d) Draw the circuit. [5]

Question 4 [16 Marks]

- a) An asynchronous counter with the following specification: [7]
 - Recycle count up from 0 to 5
 - Negative edge flip-flops
 - Using JK flip-flops, use Q₀ as LSB
 - i. Determine the number of flip-flops required.
 - ii. Design an active low decoder (NAND) for the asynchronous counter.
- iii. Draw the circuit connection for the asynchronous counter.

b) Analyze the following circuit as shown in Figure 7. [9]

i. Derive Boolean expression for the J0, K0, J1, K1 and output Y.

ii. Use Method 2 to produce the next state and flip flop transition table. Use the following Table 3 header.

Table 3

	Input	Presen	t State	Next State		JK FF Transition				Output
-	X	Q1	Q0	Q1+	Q0+	J1	K1	J0	K0	Y

iii. Draw a complete state diagram for the circuit shown.

Question 5 [15 Marks]

a) A helpful analogy for a shift register is a conveyor belt. As illustrated in Figure 8 (i), (ii) and (iii) showing a single conveyor belt at four different times and determine which of the following shift register operations the sequence represents. Justify your answer. [4.5]

Answer options:

Parallel-in, serial-out Serial-in, serial-out

Parallel-in, parallel-out Serial-in, parallel-out

Figure 8

- b) Draw and label clearly the logic diagram for 5 bit SISO (serial in serial out) shift register circuit using D flip flops. [4]
- c) For 6 bit SIPO (serial in parallel out) shift register, [4]
 - i. Complete Table 4 header in answer booklet for 6 clock cycles. The following 6 bit data is used with MSB entered first.

Q5 1	1	0	0		0	Q0 1			
Table 4									
Clock	FF0	FF1	FF2	FF3	FF4	FF5			
Initial	0	0	0	0	0	0			

- ii. At what clock cycle can all the input data be read at the output?
- d) Draw the output waveform Q_4 of a 5-bit PISO (parallel in serial out) shift register if the data input entered is $D_4D_3D_2D_1D_0 = 11001_2$. D_4 represents MSB and it will be shifted out first. **Draw** the waveform in question booklet Figure 9 APPENDIX A. [2.5]

NAME		
METRIC NO.	SECTION	

Question 1

c)

Table 1

	BCD 1	Input		Segment Output				Display			
A	В	С	D	а	b	С	d	e	f	g	
											3
											6
1	0	0	0								8

NAME		
METRIC NO.	SECTION	

d)

Figure 3

NAME		
METRIC NO.	SECTION	

Question 2

a)

Figure 4

b)

Table 2

Clock Pulse (1 to 7)	PRE	CLR	D	FF State	Mode (Async/Sync)
	X	1			
	1	X			

NAME		
METRIC NO.	SECTION	

c)

Figure 5

d)

Figure 6

NAME			
METRIC NO.	SEC	CTION	

Question 5

d)

Figure 9