Tema 1 (II) - Matrices y sistemas de ecuaciones lineales (1ª parte)

1. Resolver reduciendo a su forma escalonada reducida (método de Gauss) los siguientes sistemas:

$$2x + 2y = 5
x - 4y = 0$$

$$x + y + 2z = 14$$

$$x + z + w = 4$$

$$x_1 + x_3 = 4$$

$$x_1 - x_2 + 2x_3 = 5$$

$$x_1 - x_2 + 5x_3 = 17$$

$$x - b = 0$$

$$x + y - 2z = 0$$

$$x + y - z = 10$$

$$x + y - z = 10$$

$$x + y - z = 0$$

$$x - y + z = 0$$

$$x - y + z = 0$$

$$x - y + z + w = 0$$

$$x - y + z + w = 0$$

$$x - y + z + w = 0$$

$$x - y + z + w = 0$$

$$x - y + z + w = 0$$

$$x - y + z + w = 0$$

$$x - y - z = 0$$

2. Decidir si $w \in \langle v_1, v_2, v_3 \rangle$ en los casos siguientes:

a)
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ $v_3 = \begin{pmatrix} 5 \\ -6 \\ 8 \end{pmatrix}$ $w = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$
b) $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ $v_2 = \begin{pmatrix} -2 \\ 3 \\ -2 \end{pmatrix}$ $v_3 = \begin{pmatrix} -6 \\ 7 \\ 5 \end{pmatrix}$ $w = \begin{pmatrix} 11 \\ -5 \\ 9 \end{pmatrix}$

3. Dada una matriz A, llamamos col(A) al subespacio generado por los vectores columna de A. Determinar si $\mathbf{b} \in col(A)$ en los casos siguientes:

$$A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 3 \\ -7 \\ -3 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$$

4. Hallar, en cada caso, el valor de α para que el sistema sea compatible. Resolver, usando el método de Gauss, dichos sistemas para el valor de a hallado.

$$x + \alpha y = 4$$
 $x + \alpha y = -5$ $x + 4y = -2$ $-4x + 12y = \alpha$ $\alpha x + y = 3$ $3x + 6y = 8$ $2x - 8y = 6$ $3x + \alpha y = -6$ $2x - 6y = -3$ $x - y = 1$

5. ¿Son equivalentes pos filas las matrices $A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 2 \\ 3 & 1 & 2 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 6 \\ 5 & 5 & 10 \end{pmatrix}$?

6. Determinar λ para que el sistema tenga: a) Solución única. b) Infinitas soluciones. c) Ninguna solución.

7. Hallar los valores de λ para los cuales el sistema homogéneo $(\lambda + 2)x_1 - 2x_2 + 3x_3 = 0$ riene solución no trivial. $(\lambda + 2)x_1 - 2x_2 + 3x_3 = 0$ tiene $x_1 + 2x_2 + \lambda x_3 = 0$

8. Sea $n \geq 3$. Hallar la forma escalonada reducida de la matriz:

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ n+1 & n+2 & n+3 & \cdots & 2n \\ 2n+1 & 2n+2 & 2n+3 & \cdots & 3n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ n^2-n+1 & n^2-n+2 & n^2-n+3 & \cdots & n^2 \end{pmatrix}$$