Introduction to Matrix Algebra-II

Sumit

July 19, 2025

1 Matrix Operations

1.1 Scalar Multiplication

We need to define the term 'scalar' first. Any real number will be labelled as a scalar. Multiplying a scalar to a matrix requires us to multiply **each element** of the matrix by the scalar. Formally, if

we have a matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 and a scalar k , the product $k \times A$ is

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}$$

An example: let
$$k=2$$
 and $A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$.
$$kA=2\times\begin{bmatrix}1&2\\3&4\end{bmatrix}$$

$$kA=\begin{bmatrix}2\times1&2\times2\\2\times3&3\times4\end{bmatrix}$$

$$kA = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

1.2 Matrix Addition

Two matrices A and B can only be added if they are of the same order (dimension). Let the dimension of the two matrices be $m \times n$. The sum of two matrices will be defined as:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Example 1:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 0 \\ -2 & -3 \end{bmatrix}$

- Step 1: Check the dimensions of the two matrices. It turns out that $dim(A) = 2 \times 2$ and $dim(B) = 2 \times 2$. They are of the same dimension.
- Step 2: Add each corresponding element from the two matrices. Call each element of the sum of matrices c_{ij} .

-
$$c_{11} = a_{11} + b_{11} = 1 + (-1) = 0$$

- $c_{12} = a_{12} + b_{12} = 2 + 0 = 0$
- $c_{21} = a_{21} + b_{21} = 3 + (-2) = 1$
- $c_{22} = a_{22} + b_{22} = 4 + (-3) = 1$

• Step 3: Write the matrix (call it *C*).

$$C = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

1.2.1 Properties of Matrix Addition

1. Associative: matrix addition is associative

$$A + B = B + A$$

2. Commutative: matrix addition is commutatitve

$$A + (B + C) = (A + B) + C$$

3. Additive zero: adding a zero matrix (of the same order) should keep the matrix unchanged.

$$A + O = A$$

4. Additive inverse: adding the additive inverse of a matrix to the matrix should yield a zero matrix.

$$A + (-A) = O$$

1.3 Matrix Equality

Two matrices A and B are said to be equal if and only if each element of the two matrices are identical.

An example:

$$A = \begin{pmatrix} x & 1 \\ 2 & 2y \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix}$$

If A = B, then

$$x = -1$$
 since $a_{11} = b_{11}$
 $2y = 2$ since $a_{22} = b_{22}$

Therefore, x = -1 and y = 1.

1.4 Matrix Multiplication

Given two matrices A and B whose dimensions are $m_1 \times n_1$ and $m_2 \times n_2$ respectively, $A \times B$ is possible if and only if

$$n_1 = m_2$$

In plain language, for matrix multiplication to happen, you must have the number of columns in matrix A to match the number of rows in matrix B.

An example:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
$$B = \begin{pmatrix} -1 & -2 & -3 \end{pmatrix}$$

We must first note the dimensions of the two matrices.

$$dim(A) = 2 \times 3$$
$$dim(B) = 1 \times 3$$

 $n_1 = 3$, but $m_2 = 1$. Therefore, $A \times B$ is not defined in this case.

If matrix multiplication is indeed possible, the resultant matrix $A \times B$ will be of order(dimension) $m_1 \times n_2$. What will be process of this multiplication? You will need to take an entire **row** from A and multiply each element of that row with all the **columns** from B.

An example:

Consider two matrices

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
$$B = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

 $dim(A) = 2 \times 2$ and $dim(B) = 2 \times 2$. Since, $n_1 = m_2 = 2$, matrix multiplication is possible here. We also know that $A \times B$ will be of dimension 2×2 . Let us call this matrix C.

$$C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Each of the elements of C will come from the multiplication of rows (of A) and columns (of B).

Step 1- Let's now dismantle matrix A and create two different row matrices.

$$A_{R1} = \begin{bmatrix} 1 & 2 \end{bmatrix} \qquad A_{R2} = \begin{bmatrix} 3 & 4 \end{bmatrix}$$

Step 2- Let's create two different column matrices from matrix B.

$$B_{C1} = \begin{bmatrix} -1\\0 \end{bmatrix} \qquad \qquad B_{C2} = \begin{bmatrix} 0\\-2 \end{bmatrix}$$

Step 3- Multiply A_{R1} and B_{C1} , A_{R1} and B_{C2} , A_{R2} and B_{C1} , and A_{R2} and B_{C2} .

$$c_{11} = A_{R1} \times B_{C1} = 1 \times -1 + 2 \times 0 = -1$$

$$c_{12} = A_{R1} \times B_{C2} = 1 \times 0 + 2 \times -2 = -4$$

$$c_{21} = A_{R2} \times B_{C1} = 3 \times -1 + 4 \times 0 = -3$$

$$c_{22} = A_{R2} \times B_{C2} = 3 \times 0 + 4 \times -2 = -8$$

Step 4- Write the matrix C.

$$C = \begin{bmatrix} -1 & -4 \\ -3 & -8 \end{bmatrix}$$

1.4.1 Properties of Matrix Multiplication

- 1. Non-commutative: $A \times B \neq B \times A$.
- 2. Associative: A(BC) = (AB)C.
- 3. Distributive: A(B+C) = AB + AC.
- 4. Multiplicative identity: IA = AI = A.
- 5. Multiplicative zero: OA = AO = O.