DATA SCIENCE

HYPOTHESIS TESTING

Introduction to Hypothesis Testing

Basic Framework of a Hypothesis Test

Distance Measures

Central Limit Theorem

Types of Hypothesis Tests

Agenda

Anova

- One Way
- Two Way
- Post Hoc Tests

Chi Square

- Association Tests
- Goodness-of-Fit Tests

Chi Square Parametric

Tests of Variance

Chi Square tests are multiple sample tests used when dealing with count or categorical data

- Chi Square tests are multiple sample tests used when dealing with count or categorical data
- ➤ **E.G** is there a difference in the number of people responding Yes / No to a direct mail offer, based on income categories?

- Chi Square tests are multiple sample tests used when dealing with count or categorical data
- ➤ **E.G** is there a difference in the number of people responding Yes / No to a direct mail offer, based on income categories?
- The DV or the target variable outcome is a frequency count

- Chi Square tests are multiple sample tests used when dealing with count or categorical data
- E.G is there a difference in the number of people responding Yes / No to a direct mail offer, based on income categories?
- > The DV or the target variable outcome is a frequency count
- There are two common applications of Chi Square tests:

- Chi Square tests are multiple sample tests used when dealing with count or categorical data
- E.G is there a difference in the number of people responding Yes / No to a direct mail offer, based on income categories?
- > The DV or the target variable outcome is a frequency count
- > There are two common applications of Chi Square tests:
 - Tests of association

- Chi Square tests are multiple sample tests used when dealing with count or categorical data
- ➤ E.G is there a difference in the number of people responding Yes / No to a direct mail offer, based on income categories?
- The DV or the target variable outcome is a frequency count
- There are two common applications of Chi Square tests:
 - Tests of association
 - Goodness-of-Fit

Example using categorical or tabular Data

As a retailer you look at brand ROI to assess shelf space effectiveness. Looking at a particular category, carbonated beverages, you know across all your stores the share of wallet for top Brands A, B and all other (C) is as listed in the first table.

Example using categorical or tabular Data

As a retailer you look at brand ROI to assess shelf space effectiveness. Looking at a particular category, carbonated beverages, you know across all your stores the share of wallet for top Brands A, B and all other (C) is as listed in the first table.

Brand	Transaction Share
Α	52%
В	35%
C (All Other)	13%

Example using categorical or tabular Data

As a retailer you look at brand ROI to assess shelf space effectiveness. Looking at a particular category, carbonated beverages, you know across all your stores the share of wallet for top Brands A, B and all other (C) is as listed in the first table.

Brand	Transaction Share
Α	52%
В	35%
C (All Other)	13%

You take a random sample of data from a particular store – 300 purchases of carbonated beverages.

Before you can start on any analysis, you first need to check if this difference implies this store is not like the population

Brand	# of Transactions	%
Α	177	59%
В	78	26%
C (All Other)	45	15%

Random sample of 300 transactions from Store XXX

➤ The idea is to check the difference between what you see in your sample v/s what you expected in your sample, and then assess the chances of seeing that difference purely by chance

Column 1 🔽	Brand A	Brand B 🔻	Brand C 🕝
Observed	177	78	45
Expected	156	105	39

- ➤ The idea is to check the difference between what you see in your sample v/s what you expected in your sample, and then assess the chances of seeing that difference purely by chance
- ➤ If there was no difference between this store and all the other stores, what would be expect to see as the # of transactions for Brands A, B and all other (C)?

Column 1 🔽	Brand A	Brand B 🔻	Brand C 🔻
Observed	177	78	45
Expected	156	105	39

A chi square test uses these "observed" and "expected" frequencies, to generate a conclusion about the statistical significance of the observed differences

Column 1 🔽	Brand A	Brand B 🔻	Brand C 🔽
Observed	177	78	45
Expected	156	105	39

A chi square test uses these "observed" and "expected" frequencies, to generate a conclusion about the statistical significance of the observed differences

$$\sum \frac{(f_o - f_e)^2}{f_e}$$

Column 1	T	Brand A	~	Brand B	•	Brand C	¥
Observed		17	77	-	78		45
Expected		1:	56	10	05		39

A chi square test uses these "observed" and "expected" frequencies, to generate a conclusion about the statistical significance of the observed differences

Mathematically, the quantity
$$\sum \frac{(f_o - f_e)^2}{f_e}$$

follows a Chi Square Distribution, with k -1 degrees of freedom

Column 1 🕝	Brand A 🔻	Brand B 🔻	Brand C 🔻
Observed	177	78	45
Expected	156	105	39

- A Chi Square distribution is an asymmetric distribution that depends only on sample size
- It is generated as the square of std scores (Z) from a normal distribution
- As sample size increases,
 Chi Square tends to normal

A Chi Square distribution is an asymmetric distribution that depends only on sample size

- A Chi Square distribution is an asymmetric distribution that depends only on sample size
- It is generated as the square of std scores (Z) from a normal distribution

- A Chi Square distribution is an asymmetric distribution that depends only on sample size
- It is generated as the square of std scores (Z) from a normal distribution
- As sample size increases,Chi Square tends to normal

The Chi-Square statistic is built as:

$$\chi^2 = \Sigma \frac{(f_o - f_e)^2}{f_e}$$

For our example, Chi-Square Test Statistic:

The Chi-Square statistic is built as:

$$\chi^2 = \Sigma \frac{(f_o - f_e)^2}{f_e}$$

For our example, Chi-Square Test Statistic:

$$(177-156)^2/156 + (78-105)^2/105 + (45-39)^2/39 = 10.69$$

The Chi-Square statistic is built as:

$$\chi^2 = \Sigma \frac{(f_o - f_e)^2}{f_e}$$

For our example, Chi-Square Test Statistic:

$$(177-156)^2/156 + (78-105)^2/105 + (45-39)^2/39 = 10.69$$

To use a table: also need df

Degrees of Freedom = Number of cells - 1 = 3 - 1 = 2

Chi		stribution					
d.f.	χ ² .25	χ ² .10	χ².05	χ ² .025	χ ² .010	χ ² .005	χ ² .001
1	1.32	2.71	3.84	5.02	6.63	7.88	10.8
2	2.77	4.61	5.99	7.38	9.21	10.6	13.8
3	4.11	6.25	7.81	9.35	11.3	12.8	16.3
4	5.39	7.78	9.49	11.1	13.3	14.9	18.5
5	6.63	9.24	11.1	12.8	15.1	16.7	20.5
6	7.84	10.6	12.6	14.4	16.8	18.5	22.5
7	9.04	12.0	14.1	16.0	18.5	20.3	24.3
8	10.2	13.4	15.5	17.5	20.1	22.0	26.1
9	11.4	14.7	16.9	19.0	21.7	23.6	27.9
10	12.5	16.0	18.3	20.5	23.2	25.2	29.6
11	13.7	17.3	19.7	21.9	24.7	26.8	31.3
12	14.8	18.5	21.0	23.3	26.2	28.3	32.9
13	16.0	19.8	22.4	24.7	27.7	29.8	34.5
14	17.1	21.1	23.7	26.1	29.1	31.3	36.1
15	18.2	22.3	25.0	27.5	30.6	32.8	37.7
16	19.4	23.5	26.3	28.8	32.0	34.3	39.3

- 1. What was our null hypothesis?
- 2. What is the critical value here at the 5% significance level?
- 3. What is the conclusion based on your test statistic?

Using Excel:

✓	$f_{\mathcal{X}}$ =CHITEST(AC3:AE3,AC4:AE4)						
AA	AB	AC	AD	AE			
	Column1 💌	Brand A	Brand B 🔻	Brand C 🔻			
	Observed	177	78	45			
	Expected	156	105	39			
		_					
	=CHITEST(AC3:A	E3,AC4:AE4)		B			

Using Excel:

This will generate a p-value directly. In this example: 0.004765139

Coming Up

Chi Square:

- Association Tests
- Goodness-of-Fit Tests

THANK YOU