Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....:: TRE1804023804 R/C....: 92942

YAMVM550 FCC ID.....::

Applicant's name.....: **Hytera Communications Corporation Limited**

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Address....:

Road, Nanshan District, Shenzhen, People's Republic of China

Manufacturer....: Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Address....: Road, Nanshan District, Shenzhen, People's Republic of China

Test item description: **Body Worn Camera**

Trade Mark: Hytera

Model/Type reference....: VM550

Listed Model(s):

47 CFR FCC Part 15 Subpart B Standard::

Date of receipt of test sample.....: Apr.28,2018

Date of testing....: Apr.29,2018-Jun.10,2018

Date of issue.....: Jun.11,2018

Result....: **Pass**

Compiled by

(position+printedname+signature)...: File administrators Yueming Li

Supervised by

(position+printedname+signature)....: Project Engineer Tom ouyang

Approved by

(position+printed name+signature)... RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address....:

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No.: TRE1804023804 Page: 2 of 18 Issued: 2018-06-11

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	<u> 3</u>
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	<u> 5</u>
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	EUT operation mode	5
3.4.	Configuration of Tested System	5
3.5.	Support unit used in test configuration	6
<u>4.</u>	TEST ENVIRONMENT	<u> 7</u>
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Conducted Emissions Test	10
5.2.	Radiated Emissions Test	13
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	17
·		
7	EVTERNAL AND INTERNAL PHOTOS OF THE FUT	40

Report No.: TRE1804023804 Page: 3 of 18 Issued: 2018-06-11

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	Jun.11,2018	Original

Report No.: TRE1804023804 Page: 4 of 18 Issued: 2018-06-11

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Emissions	15.107(a)	PASS	Shower.dai
Radiated Emissions	15.109(a)	PASS	Shower.dai

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1804023804 Page: 5 of 18 Issued: 2018-06-11

3. **SUMMARY**

3.1. Client Information

Applicant:	Hytera Communications Corporation Limited
Address:	Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, People's Republic of China
Manufacturer:	Hytera Communications Corporation Limited
Address:	Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, People's Republic of China

3.2. Product Description

Name of EUT:	Body Worn Camera
Trade Mark:	Hytera
Model No.:	VM550
Listed Model(s)	-
Power supply:	DC 3.85V
	Model: S005AYV0500100
Adapter information:	Input:100-240Va.c.,50/60Hz, 200mA
	Output: 5Vd.c.,1000mA

3.3. EUT operation mode

Test mode	Describe
Data exchange mode	Keep the EUT in data exchange with PC status.
Camera record mode	Keep the EUT in camera record status.

3.4. Configuration of Tested System

Report No.: TRE1804023804 Page: 6 of 18 Issued: 2018-06-11

3.5. Support unit used in test configuration

Item	Equipment	Manufacturer	Model No.	FCC ID / FCC DoC	Data Cable	Power Cord
1	AC/DC ADAPTER	TOSHIBA	PA5035E-1AC3	FCC DoC	N/A	Unshielded 1.8m
2	Person Computer	TOSHIBA	M800-T30B1	FCC ID	N/A	N/A

Report No.: TRE1804023804 Page: 7 of 18 Issued: 2018-06-11

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1804023804 Page: 8 of 18 Issued: 2018-06-11

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emissions	30~1000MHz	4.24 dB	(1)
Radiated Emissions	1~18GHz	5.16 dB	(1)
Conducted Disturbance	0.15~30MHz	3.39 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: TRE1804023804 Page: 9 of 18 Issued: 2018-06-11

4.5. Equipments Used during the Test

Conduc	Conducted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A

Radiat	Radiated Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi- Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	10/16/2016	10/15/2019
2	EMI Test Receiver	R&S	ESCI	100900	11/11/2017	11/10/2018
3	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
4	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2020
5	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2020
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170 472	3/27/2017	3/26/2020
7	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
8	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
9	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
10	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018
11	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018
12	Test Software	Audix	E3	N/A	N/A	N/A
13	Test Software	R&S	ES-K1	N/A	N/A	N/A
14	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
15	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

Report No.: TRE1804023804 Page: 10 of 18 Issued: 2018-06-11

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.107:

Fraguency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: TRE1804023804 Page: 11 of 18 Issued: 2018-06-11

MEASUREMENT RESULT: "GM1806055077_fin"

6	/5/2018	5:14	PM						
	Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.366	000	32.80	9.9	59	25.8	QP	L1	GND
	0.501	000	34.40	10.0	56	21.6	QP	L1	GND
	1.225	500	39.80	10.1	56	16.2	QP	L1	GND
	4.677	000	34.50	10.2	56	21.5	QP	L1	GND
	11.904	000	31.20	10.5	60	28.8	QP	L1	GND
	20.004	000	34.10	10.6	60	25.9	QP	L1	GND

MEASUREMENT RESULT: "GM1806055077_fin2"

6	/5/2018	5:14F	M						
	Freque:	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.361	500	24.30	9.9	50	25.2	AV	L1	GND
	0.505	500	26.60	10.0	46	19.4	AV	L1	GND
	1.185	000	30.40	10.1	46	15.6	AV	L1	GND
	4.690	500	25.20	10.2	46	20.8	AV	L1	GND
	11.818	500	23.40	10.5	50	26.6	AV	L1	GND
	20.440	500	26.20	10.6	50	23.8	AV	L1	GND

Report No.: TRE1804023804 Page: 12 of 18 Issued: 2018-06-11

MEASUREMENT RESULT: "GM1806055078_fin"

6/5/2018 5:1	7PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.397500	37.50	9.9	58	20.4	QP	N	GND
0.451500	39.30	9.9	57	17.5	QP	N	GND
1.261500	35.80	10.1	56	20.2	QP	N	GND
3.952500	30.80	10.1	56	25.2	QP	N	GND
9.874500	28.10	10.4	60	31.9	QP	N	GND
17.425500	27.10	10.6	60	32.9	QP	N	GND

MEASUREMENT RESULT: "GM1806055078_fin2"

6/5/2018	5:17P	M						
Frequ	MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.39	7500	31.30	9.9	49	17.2	AV	N	GND
0.56	4000	31.00	10.0	46	15.0	AV	N	GND
1.05	9000	29.20	10.1	46	16.8	AV	N	GND
2.23	8000	25.30	10.1	46	20.7	AV	N	GND
5.24	8500	24.50	10.2	50	25.5	AV	N	GND
17.88	0000	22.60	10.6	50	27.4	AV	N	GND

Report No.: TRE1804023804 Page: 13 of 18 Issued: 2018-06-11

5.2. Radiated Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109

Frequency	Limit (dBuV/m @3m)	Value	
30MHz-88MHz	40.00	Quasi-peak	
88MHz-216MHz	43.50	Quasi-peak	
216MHz-960MHz	46.00	Quasi-peak	
960MHz-1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
ABOVE TOTIZ	74.00	Peak	

TEST CONFIGURATION

➤ 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

Report No.: TRE1804023804 Page: 14 of 18 Issued: 2018-06-11

TEST MODE: Please refer to the clause 3.3

TEST RESULTS

Not Applicable

Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Report No.: TRE1804023804 Page: 15 of 18 Issued: 2018-06-11

Report No.: TRE1804023804 Page: 16 of 18 Issued: 2018-06-11

Report No.: TRE1804023804 Page: 17 of 18 Issued: 2018-06-11

6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions (30MHz-1GHz)

Radiated Emissions (Above 1GHz)

Report No.: TRE1804023804 Page: 18 of 18 Issued: 2018-06-11

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: TRE1804023801.

-----End of Report-----