2025

ACIDS, BASES AND SALTS

Doubts, Bit More on Acids, Physical and Chemical Properties of Bases

CHEMISTRY

Lecture - 04

BY: SUNIL BHAIYA

Topics

to be covered

- 1 Doubts Solution (V)
- Classification of Acids Based on Concentration (
- 3 Physical and Chemical Properties of Bases (🗸)

Doubts Solution

Classification of Acids Based on Concentration

Physical and Chemical Properties of Bases

RIDDLE WALLAH

Hasmukhlal: My best friend's name is made from chemical symbols of argon, sodium and vanadium.

Simaila: Mereko nahi aata hai baccho se puchlo...

RIDDLE WALLAH

Hasmukhlal: My best friend's name is made from chemical symbols of argon, sodium and vanadium.

Simaila: Mereko nahi aata hai baccho se puchlo...

Pyaare Bacche Be Like ---
Wah bhaai, Wah!

Doubts Solution

Vaibhav Gawali 2 day ago

sir how hydrogen will displace with copper and copper is having High reactivity than hyrdrogen in this double displacement cannot take place

6 Same Doubts • O Reported

Mark Unpopular

(i) Reactivity of hydrogen > copper

(ii) Double displacement

orn

exchange of cations

donnions

frequent

required

Base (HT)

- -> Some metal oxides & hydroxides
- -> NH40H [non-metallic hydroxide]

ore only bases.
ex: NaOH, KOH,

Ca(OH)2, Mg(OH)2,

CuO ek.

 $\left(C_{1} \right)$

Some metal oxides & hydroxides that ore not only base are actually amphotorict (about)

Some metal oxides & hydroxides that ore not only base are

SIABe Pb Zn

Syllabus e

Syllabus e

amph: BOTH

Which among the following oxide will behave only as bose?

- (B) AleO3
- NO20 -> Base
 - (D) (SO₂) non-metal oxide

Bit More on Acids

- (1) acids shows their acidic character due to H+(oq) or [H30][†] ions hydronium ion
- (1) Acids produce H+(aq) or [H30]+ in

$$\underbrace{PX:}_{PX:} H(l + H_2O \longrightarrow [H_3O]^+) + Cl^+$$

$$\underbrace{PX:}_{PX:} H(l + H_2O \longrightarrow [H_3O]^+) + Cl^+(qq)$$

$$\underbrace{PX:}_{PX:} H(l + H_2O \longrightarrow [H_3O]^+) + Cl^+(qq)$$

Important Condition

र हता में ममी ज्याचा है

During the humid climate, hydrogen chloride gas is first passed through a guard tube containing anhydrous calcium chloride which absorbs the moisture and makes the gas dry

Drying Agent Dessicant

aye bhaiya o

Classification of Acids
Based on Concentration

Concentration Classification of Acids Based on Source

More Acid Added

Concentrated Acid

Let's consider case of acids

- Both are relative terms Lo with respect to another substance
- A: Concentrated acid with respect to B (ii) more ocid posticles & less waker particles as compare to B.
- (iii) B: Dilute acid with respect to A less acid padhicles & more water particles as compare to A

Which one is correct way of diluting an acid?

What happens when water is added to acid?

Gienerally, (water will try to stay on acid)

- (i) Density of water < acid.
- (ii) The interaction of acid with water is exothermic due to dissociation of acid in water and a large amount of heat is generated.

Water added to acid converts to water-vapour on the interface and a mixture of acid and water-vapour splash-out and cause burns.

acids have low heating holding capacity of transfers heat to a specific region of beaker

The beaker in which the dilution is carried out may also break due to excessive local heating.

Why and how acid should be added to water?

To slow down the exothermic reaction, dilution of concentrated acid is always done by slowly adding concentrated acid into a sufficient amount of water with gentle stirring.

Beat Your Brains Out

solvent is work

You are given aqueous solutions of four hydrogen-containing compounds, i.e. glucose, alcohol, sulphuric acid and hydrochloric acid. Which of the given solutions will glow a bulb when connected to an electric circuit and why?

why?	Electricity	
(A) -> Glucose, (6H1206 (09)	X	Because these acids dissociate
(B) -> Alcohol, ex: C2H5OH (aq)	X	into ions in waky
		H2SOy(aq) - 2H+(aq) + 502-(09)
(c) -> Sulphuric acid, H2504 (aq)		$H(1(aq) \longrightarrow H^{+}(aq) + (1'(aq))$
(D) - Hydrochloric acid, H(1 (99)		ions are free to make
		a conducts electricity

Beat Your Brains Out

You are given aqueous solutions of four hydrogen-containing compounds, i.e. glucose, alcohol, sulphuric acid and hydrochloric acid. Which of the given solutions will glow a bulb when connected to an electric circuit and why?

CONCLUSION

Thus, we conclude that all hydrogen-containing compounds are not acids as they don't ionise to produce H⁺(aq) and aqueous solutions of all acids conduct electricity.

KYA BOLTI PUBLIC

Physical Properties of Bases

slippery when we touch them

(i) Taste and texture: They taste bitter and they have a soapy texture.

कडवा

(ii) Corrosive nature: Some bases, like sodium hydroxide (NaOH) and potassium hydroxide (KOH) etc. produce a burning sensation on the skin. So, it is advisable to not touch or taste any basic substance.

Physical Properties of Bases

(iii) Electricity conduction: Like acids, bases also conduct electricity in their aqueous solutions (bases dissolved in water).

The bases which are soluble in water and furnish hydroxyl ions (OH⁻) in aqueous solutions are known as alkalis.

True or False

A. TRUE

B. FALSE

Q.) Question

C

In an attempt to demonstrate electrical conductivity through an electrolyte, the following apparatus was set up. Which among the following statement is correct?

A Bulb will not glow because electrolyte is not acidic

Bulb will glow because NaOH is a strong base and furnishes ions for conduction.

6 Volt

Bulb will not glow because circuit is incomple

Bulb will not glow because it depends upon the type of electrolytic solution

KYA BOLTI PUBLIC

Does all metals react with bases to form salt and hydrogen gas? (Studied in class VIII)

A. YES

B. NO

```
(Only amphoteric metals (Sn, Al, Be, Pb, Zn etc.) will react with base (alkali) to form soft of hydrogen gas)
```


Chemical Properties of Bases

evolves with expressence

Ц	amphateric						Ch.
	Metal	+	Alkali +	Water	\rightarrow	Salt +	Hydrogen
Ų	\rightarrow Zn(s)	+	2NaOH(aq) +	2H ₂ O(l)		Na ₂ Zn(OH) ₄ (aq)	+ H ₂ (↑)
	2Al(s)	+	2NaOH(aq) +	6H ₂ O(l)	-	2NaAl(OH) ₄ (aq)	+ (3H ₂ (↑)

→ Burns with a pup-sound

Na₂Zn(OH)₄(aq): Sodium zincate

NaAl(OH)4(aq): Sodium aluminate

The chemical reactions in the above cases will form a mixture of different zincate and aluminate anions and not all metals react with bases to show such reactions.

Chemical Properties of Bases


```
Non-metal oxides
                                  NEUTRAL
     ACIDIC
                                  (0, H20, (N20) etc.
(O2, SO2, NO2, SO3
                                             laughing gas
  94
```

KYA BOLTI PUBLIC

