

(A) 交换A*的1,2行得到B*

厦门大学《线性代数》课程期中试题

考试日期: 2016.11 信息学院自律督导部整理

_	、单项选择题(每小题 2 分,共 14 分)
1.	已知 4 阶矩阵 A 的第三列的元素依次为1,3,-2,2, 它们的余子式的值分别为
3,-	$-2,1,1$, $\mathbb{U} A = ($).
	(A) 5 (B) -5 (C) -3 (D) 3
2.	设 A, B, C 均为 n 阶矩阵,则下列结论中不正确的是()。
	(A) 若 $ABC = E$,则 A, B, C 都可逆
	(B) 若 $AB = AC$,且 A 可逆 ,则 $B = C$
	(C) 若 $AB = AC$,且 A 可逆 ,则 $BA = CA$
	(D) 若 $AB=0$, 且 $A\neq 0$, 则 $B=0$.
3.	设 A , B , $A+B$, $A^{-1}+B^{-1}$ 均为 n 阶可逆矩阵,则 $(A^{-1}+B^{-1})^{-1}=($
	(A) $A^{-1} + B^{-1}$ (B) $A + B$ (C) $A(A + B)^{-1}B$ (D)
(A	$(\boldsymbol{B})^{-1}$
4.	设 A、B 均为 n 阶矩阵,满足 $AB = O$,则必有 ()。
	(A) $ A + B = 0$ (B) $r(A) = r(B)$
	(C) $A = O \overrightarrow{\mathbb{R}} B = O$ (D) $ A = 0 \overrightarrow{\mathbb{R}} B = 0$
5.	已知 n 阶方阵 A 和常数 k ,且 $ A =d$,则 $ kAA^T $ 的值为()。
	(A) $k d^2$ (B) $k^2 d^2$ (C) $k^{2n} d^2$ (D) $k^n d^2$
6.	设 A 是 3 阶可逆矩阵, 交换 A 的 1, 2 行得 B , 则 ()。

- (B) 交换 A* 的 1, 2 列得到 B*
- (C) 交换A*的 1, 2 行得到-B*
- (D) 交换A*的 1, 2 列得到-B*
- 7. 设A为 $m \times n$ 矩阵,若A的秩为R(A) = r,则下面结论正确的是()。
 - (A) A的r阶子式都不为零。
- (B) A的r-1阶子式都不为零。
- (C) A的所有r+1阶以上子式都为零。 (D) A的r-1阶以下子式都不为零。

二、填空题(每空格 3 分,共 18 分)

1. 设矩阵
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -3 \\ -1 & -2 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & a & -2 \\ 0 & 5 & a \\ 0 & 0 & -1 \end{bmatrix}$. 则矩阵 $AB - A$ 的秩

$$r(AB-A) = \underline{\hspace{1cm}}$$

5. 设 3 阶方阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, 则 $A^{10} =$ ______.

6. 设三阶矩阵
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, $B = \begin{bmatrix} a_{11} & a_{13} & a_{12} \\ a_{21} + 2 a_{31} & a_{23} + 2 a_{33} & a_{22} + 2 a_{32} \\ a_{31} & a_{33} & a_{32} \end{bmatrix}$,

若
$$A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
,则 $B^{-1} =$ _______.

三、计算题(共50分)

1. 按自然数从小到大为标准次序,求下列排列的逆序数:

1 3 ···
$$(2n-1)$$
 $(2n)$ $(2n-2)$ ··· 2

2. 求行列式
$$D$$
的值,其中 $D = \begin{vmatrix} 4 & 1 & 2 & 4 \\ 1 & 2 & 0 & 2 \\ 10 & 5 & 2 & 0 \\ 0 & 1 & 1 & 7 \end{vmatrix}$ 。

3. 求矩阵
$$A = \begin{pmatrix} 1 & -3 & 4 & 0 & 9 \\ -2 & 6 & -6 & -3 & -10 \\ -3 & 9 & -6 & -9 & -3 \\ 3 & -9 & 4 & 12 & 0 \end{pmatrix}$$
的秩。

4.
$$\ \, \Box \ \, \exists A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 4 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \underline{\square} \ \, XA = X + B, \quad \overline{X}X \ \, .$$

5. 设
$$A = (a_{ij})_{3\times 3}$$
, 且 $a_{11} \neq 0$ 。又 $A^* = A^T$,求 $|A|$ 。注: A^* 是A伴随矩阵。

四、证明题(每小题6分,共18分)

1. 设 A为 n阶可逆对称矩阵,B为 n阶对称矩阵,当 E+AB可逆时,证明: (E+AB) ^{-1}A 为对称矩阵。

2. 设 *A* 为可逆矩阵,证明: A*可逆,且(A*)⁻¹=(A⁻¹)*

- 3. 设A为 $m \times n$ 矩阵,B为 $n \times m$ 矩阵。
 - (1) 如果 m > n 时,证明: |AB| = 0.
 - (2) 如果 m<n且 AB=E, 证明: R(B)=m.