PĆT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : G01N 33/53, 33/544, 33/531	A1	 (11) International Publication Number: WO 98/41866 (43) International Publication Date: 24 September 1998 (24.09.98)
(21) International Application Number: PCT/US (22) International Filing Date: 10 March 1998		DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT
 (30) Priority Data: 60/040,795 14 March 1997 (14.03.97) (71) Applicant (for all designated States except US): M. CO., INC. [US/US]; 126 East Lincoln Avenue, Re 07065 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): HERMES, J. [US/US]; 126 East Lincoln Avenue, Rahway, (US). SALOWE, Scott, P. [US/US]; 126 East Avenue, Rahway, NJ 07065 (US). SINCLAIR, [US/US]; 126 East Lincoln Avenue, Rahway, (US). (74) Common Representative: MERCK & CO., INC.; Lincoln Avenue, Rahway, NJ 07065 (US). 	iERCK ahway, I effrey, NJ 070 tt Linco Peter, NJ 070	D

(57) Abstract

This application describes a high throughput assay for screening compounds which are capable of binding to a fusion protein which consists of a target protein and an FK506-binding protein. This application also describes an assay for screening compounds which inhibit a protease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BÉ	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE OF THE INVENTION A HIGH THROUGHPUT ASSAY USING FUSION PROTEINS

BACKGROUND OF THE INVENTION

5

10

Several assays have been developed that screen compounds to determine if they are capable of binding to a fusion protein. One such method uses heterobifunctional cross-linking with diamino-europium-cryptate and a protein of interest. However, the activity of the protein is often affected by the modification with the heterobifunctional cross-linking agents. These methods also require an

heterobifunctional cross-linking agents. These methods also require ar additional purification for the heterogeneous products resulting from the covalent modifications of the proteins.

A new method, Homogeneous Time-Resolved Fluorescence (HTRF), combines the benefits of a fluorescent label and a homogeneous 15 assay protocol in a high throughput screen. HTRF uses a pair of chemically stable labeling molecules, such as a lanthanide cryptate and a fluorescent molecule. Specifically, europium cryptate (Eu(K)) and XL-665 have been used to label biomolecules. XL-665 is a cross-linked derivative of allophycocyanin, a red-green algae pigment. HTRF works 20 by measuring the change in fluorescent energy. If XL-665 is in proximity to Eu(K), it will yield an amplified and long-lived signal. The amount of energy transfer is a function of proximity of the two molecules. Eu(K) has a long-lived fluorescent signal which facilitates the homogeneous nature of the assay. A time delay in reading the signal 25 eliminates the principal difficulty in applying fluorescence to screening formats. This technology is useful in both binding and protease assays. [Kolb et al., J. of Biomolecular Screening, 1, No. 4, 203-210 (1996); Kolb et al., Pharm. Manuf. Int., p. 31 (1996)]

30 SUMMARY OF THE INVENTION

The instant invention relates to a method of screening that can be used to determine if compounds are capable of binding to a protein or are capable of blocking ligand-protein or protein-protein interactions. The instant invention covers a method of screening for

compounds capable of binding to a fusion protein which comprises combining a test compound, a biotinylated ligand, a fusion protein (target protein, peptide linker and FK506-binding protein), a donorlabeled ligand, and acceptor-labeled streptavidin, and then measuring the fluorescence attributable to the binding of the biotinylated ligand to the fusion protein in the presence of the test compound relative to a control assay in the absence of the test compound, so as to determine the effect the test compound has on the binding of the biotinylated ligand. The instant invention also covers a method of screening for compounds which inhibit a protease which comprises combining a test compound, a 10 fusion protein substrate (reporter protein, peptide linker and FK506binding protein), a protease, a donor-labeled ligand, and acceptorlabeled streptavidin, and then measuring the fluorescence attributable to the binding of the intact fusion protein substrate in the presence of the 15 test compound relative to a control assay in the absence of the test compound, so as to determine the effect the test compound has on proteolytic activity. This invention provides an immediate means of making use of HTRF technology for the functional assay of either ligand binding to a single or multiple signal transduction domain(s), tyrosine 20 phosphatases, nuclear receptors or bacterial tRNA synthetases in a signal increase assay or proteolytic activity in a signal decrease assay. The present invention is readily adaptable to robotic automation for high capacity screening for agonists, antagonists, and/or inhibitors.

25 BRIEF DESCRIPTION OF THE FIGURES

30

35

FIGURE 1: Binding of the donor-labeled ligand (Eu(K) labeled ligand for FKBP), fusion protein (FKBP:SH2), biotinylated ligand and the acceptor-labeled streptavidin (SA-XL665), which involves a fluorescent energy transfer that can be measured.

FIGURE 2: Cleaving of donor-labeled ligand (Eu(K) labeled ligand for FKBP), fusion protein substrate (FKBP:SH2:ITAM:B) and the acceptor-labeled streptavidin (SAXL665).

FIGURE 3: Cleaving of donor-labeled ligand (Eu(K) labeled ligand for FKBP), fusion protein substrate (FKBP:acetyl-CoA:B) and the acceptor-labeled streptavidin (SA-XL665).

5

15

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a method of screening for compounds which preferentially bind to a target protein or inhibit a protease.

As depicted in Figure 1, an embodiment of this invention is a method of screening for compounds capable of binding to a fusion protein which comprises the steps of:

- a) mixing a test compound, a biotinylated ligand, the fusion protein, a donor-labeled ligand and acceptor-labeled streptavidin;
- b) incubating the mixture for an appropriate time;
- c) measuring the time-resolved fluorescence attributable to the binding of the biotinylated ligand to the fusion protein in the presence of the test compound; and
- d) determining the binding of the biotinylated ligand to the fusion protein in the presence of the test compound relative to a control assay run in the absence of the test compound.

As depicted in Figures 2 and 3, another embodiment of this invention is a method of screening for compounds capable of inhibiting a protease which comprises the steps of:

- a) mixing a test compound, a fusion protein substrate, a donor-labeled ligand, acceptor-labeled streptavidin, and a protease;
- b) incubating the mixture for an appropriate time;
 - c) measuring the time-resolved fluorescence attributable to the binding of the intact fusion protein substrate to the acceptor-labeled streptavidin in the presence of the test compound; and

d) determining the binding of the intact fusion protein substrate to the acceptor-labeled streptavidin in the presence of the test compound relative to a control assay run in the absence of the test compound.

5

30

For Figures 1-3, the following definitions apply to the terms used therein:

Eu(K) = Europium Cryptate

10 "506" = FK506 analog

FKBP = FK506 Binding Protein

SH2 = Src homology domain 2

12-mer = phosphotyrosine-containing, 12 peptide

B = biotin

15 $(SH2)_2$ = tandem SH2 domains of ZAP70

ITAM = bisphospotyrosine-containing, 25 residue peptide

SA = streptavidin

The term "fusion protein" refers to a "target protein" fused to an "FK506-binding protein" (FKBP), the two proteins being separated by a "peptide linker". The term "fusion protein substrate" refers to a "reporter protein" fused to an FKBP, the two proteins being separated by a peptide linker.

A "peptide linker" may consist of a sequence containing
from about 1 to about 20 amino acids, which may or may not include
the sequence for a protease cleavage site. An example of a peptide
linker which is a protease cleavage site is represented by the amino acid
sequence GLVPRGS. (SEQ. ID. NO. 1).

The term "protease" refers to an enzyme that catalyzes the hydrolytic breakdown of proteins and/or peptides. Examples of proteases may include, but are not limited to, thrombin, Human Immunodeficiency Virus (HIV) protease and Tumor Necrosis Factor (TNF) α converting enzyme.

The term "target protein" refers to any protein that has a defined ligand. Types of target proteins include, but are not limited to, tyrosine phosphatases (FKBP-phosphatase chimera as receptor and biotinylatedpeptide containing a phosphonomethylene isostere as ligand), nuclear receptors (FKBP-receptor and biotinylated DNA) and bacterial tRNA synthetases (FKBP-tRNA synthetase and biotinylated tRNA). Also included within this definition of target protein are single and multiple signal transduction domains, such as, but not limited to, Src homology 1 (SH1), Src homology 2 (SH2), Src homology 3 (SH3), and pleckstrin homology (PH) domains [Hanks & Hunter, FASEB J., 9, 576-596 (1995); Bolen, Curr. Opin. Immunol., 7, 306-311 (1995); Kuriyan & Cowburn, Curr. Opin. Struct. Biol., 3, 828-837 (1993); Cohen et al., Cell, 80, 237-248 (1995)]. The term "SH1 domain" refers to a family of homologous protein domains that bind ATP and catalyze tyrosine phosphorylation of peptide and protein substrates. The term "SH2 domain" refers to a family of homologous protein domains that share the common property of recognizing phosphorylated tyrosine residues in specific peptide contexts. The term "SH3 domain" refers to a family of homologous protein domains that share the common property of recognizing polyproline type II helices. The term "PH domain" refers to a family of homologous protein domains that mediate both proteinprotein and protein-lipid interactions. Examples of SH2 domains which may be utilized in the method of the invention include, but are not limited to, the single and tandem SH2 domains present in the tyrosine kinases ZAP70, Syk and Lck. The DNA sequences were obtained from GenBank, National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894. The Accession Numbers for the sequences are: human ZAP70 (L05148) human Syk (L28824) and human Lck (X13529). The sequences for ZAP70, Syk and Lck are disclosed in the sequence listing as follows: the isolated DNA encoding for a fusion protein containing ZAP70 is (SEQ. ID. NO. 2); the isolated DNA encoding for a fusion protein containing Syk is (SEQ. ID. NO. 3); the isolated DNA encoding for a fusion protein containing Lck is (SEQ. ID. NO. 4); the sequence for the

10

15

20

25

30

FKBP-ZAP70:SH2 fusion protein is (SEQ. ID. NO. 5); the sequence for the FKBP-Syk:SH2 fusion protein is (SEQ. ID. NO. 6); and the sequence for the FKBP-Lck:SH2 fusion protein is (SEQ. ID. NO. 7).

The term "reporter protein" refers to a protein containing covalent biotin or a noncovalently bound biotinylated ligand. Examples 5 of proteins containing covalent biotin are the C-terminal 87 residues of the biotin carboxy carrier protein of acetyl-CoA carboxylase from Escherichia coli and the biotin-carrier subunit of transcarboxylase from Propionibacterium shermannii. An example of a protein containing a noncovalently bound biotinylated ligand is the tandem SH2 domains of 10 ZAP70 bound to a biotinylated phosphopeptide derived from an Immunoreceptor Tyrosine-based Activation Motif (ITAM) sequence of the human T-cell receptor, the B-cell receptor or a high affinity Immunoglobulin E. (IgE) receptor. Specifically, the Zeta (ζ) 1 sequence of the human T-cell receptor may be utilized. (SEQ. ID. NO. 8) (California Peptide Research Inc., 918 Enterprise Way, Suite 1, Napa, CA 94558)

15

The term "donor-labeled ligand" refers to an organic cryptate-containing molecule loaded with a fluorescent lanthanide metal which binds to the FKBP. An example of a fluorescent 20 lanthanide metal is europium. The europium-cryptate molecule was obtained from CIS Bio International, Subsidiary of Compagnie ORIS INDUSTRIE SA, Boite Postale 175, F30203 Bagnols sur Ceze Cedex, France, is depicted below.

Europium Cryptate (Eu(K))

5

An example of a donor-labeled ligand useful in the instant invention is

The term "acceptor-labeled streptavidin" refers to streptavidin coupled to one or more light harvesting molecules. An example of a light harvesting molecule is allophycocyanin and an example of a acceptor-labeled streptavidin useful in the instant invention is SA-XL665. (CIS Bio International, Subsidiary of Compagnie ORIS INDUSTRIE SA, Boite Postale 175, F30203 Bagnols sur Ceze Cedex, France)

5

10

The term "control assay" refers to the assay when performed in the presence of the donor-labeled ligand, acceptor-labeled streptavidin, and either fusion protein substrate or fusion protein plus biotinylated ligand, but in the absence of the test compound.

The term FK506-binding proteins may include, but are not limited to, the below listed FKBPs and FKBP homologues, which

include a citation to the references which disclose them. This list is not intended to limit the scope of the invention.

	<u>Mammalian</u>	
5	FKBP-12	Galat et al., Eur. J. Biochem., 216:689-707 (1993).
	FKBP-12.6	Wiederrecht, G. and F. Etzkorn
		Perspectives in Drug Discovery and
		Design , 2:57-84 (1994).
10	FKBP-13	Galat et al., supra; Wiederrecht and
		Etzkorn, supra.
	FKBP-25	Galat et al., supra; Wiederrecht and
		Etzkorn, supra.
	FKBP-38	Wiederrecht and Etzkorn, supra.
15	FKBP-51	Baughman et al., Mol. Cell. Biol., 8,
		4395-4402(1995) .
	FKBP-52	Galat et al., supra.
	Bacteria	
20	Legionella pneumophilia	Galat et al., supra.
	Legionella micadei	Galat et al., supra.
	Chlamydia trachomatis	Galat et al., supra.
		Carac Ct ar., 500p. 65.
	E. coli fkpa	Horne, S.M. and K.D. Young, Arch.
	E. coli fkpa	•
25	E. coli slyD	Horne, S.M. and K.D. Young, Arch.
25		Horne, S.M. and K.D. Young, <i>Arch</i> . <i>Microbiol.</i> , 163:357-365 (1995).
25		Horne, S.M. and K.D. Young, <i>Arch. Microbiol.</i> , 163:357-365 (1995). Roof et al., <i>J. Biol. Chem.</i> 269:2902-
25	E. coli slyD	Horne, S.M. and K.D. Young, <i>Arch. Microbiol.</i> , 163:357-365 (1995). Roof et al., <i>J. Biol. Chem.</i> 269:2902-2910 (1994).
25	E. coli slyD	Horne, S.M. and K.D. Young, <i>Arch</i> . <i>Microbiol.</i> , 163:357-365 (1995). Roof et al., <i>J. Biol. Chem.</i> 269:2902-2910 (1994). Trandinh et al., <i>FASEB J.</i> 6:3410-3420
25	E. coli slyD E. coli orf149	Horne, S.M. and K.D. Young, <i>Arch. Microbiol.</i> , 163:357-365 (1995). Roof et al., <i>J. Biol. Chem.</i> 269:2902-2910 (1994). Trandinh et al., <i>FASEB J.</i> 6:3410-3420 (1992).

<u>Fungal</u>

15

yeast FKBP-12 Cardenas et al., Perspectives in Drug

Discovery and Design, 2:103-126

(1994).

5 yeast FKBP-13 Cardenas et al., supra.

yeast NPR1(FPR3) Cardenas et al., *supra*.

Neurospora Galat et al., supra.

A variety of host cells used to produce the FKBP

chimeras may be used in this invention, which include, but are not limited to, bacteria, yeast, bluegreen algae, plant cells, insect cells and animal cells.

Expression vectors are defined herein as DNA sequences that are required for the transcription of cloned copies of genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express genes in a variety of host cells, such as, bacteria, yeast, bluegreen algae, plant cells, insect cells and animal cells.

Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast or bacteria-animal cells. An 20 appropriately constructed expression vector may contain: an origin of replication for autonomous replication in host cells, selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and active promoters. A promoter is defined as a DNA 25 sequence that directs RNA polymerase to bind to DNA and initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses. Commercially available vectors suitable for FKBP 30 fusion protein expression include, but are not limited to pBR322 (Promega), pGEX (Amersham), pT7 (USB), pET (Novagen), pIBI (IBI), pProEX-1 (Gibco/BRL), pBluescript II (Stratagene), pTZ18R and pTZ19R (USB), pSE420 (Invitrogen), pVL1392 (Invitrogen), pBlueBac (Invitrogen), pBAcPAK (Clontech), pHIL (Invitrogen), pYES2

5

10

15

20

25

30

(Invitrogen), pCDNA (Invitrogen), pREP (Invitrogen) or the like. The expression vector may be introduced into host cells via any one of a number of techniques including but not limited to transformation, transfection, infection, protoplast fusion, and electroporation.

E. coli containing an expression plasmid with the gene for the target or reporter protein fused to FKBP are grown and appropriately induced. The cells are then pelleted and resuspended in a suitable buffer. Although FKBP-12 lacks sequences that specifically direct it to the periplasm, FKBP fusions may be located there and can be released by a standard freeze/thaw treatment of the cell pellet. Following centrifugation, the resulting supernatant contains >80% pure FKBP fusion, which if desired can be purified further by conventional methods. Alternatively, the assay is not dependent on pure protein and the initial periplasmic preparation may be used directly.

A fusion protein which contains a single or multiple SH2 domain(s) may be purified by preparing an affinity matrix consisting of biotinylated phosphopeptide coupled to avidin or streptavidin immobilized on a solid support. A freeze/thaw extract is prepared from the cells which express the fusion protein and is loaded onto the affinity matrix. The desired fusion protein is then specifically eluted with phenyl phosphate.

To assay the formation of a complex between a target protein and its ligand, the biotinylated ligand is mixed with the FKBP fusion protein in a suitable buffer in the presence of the donor-labeled ligand in the well of a black microplate. After a suitable incubation period to allow complex formation to occur, acceptor-labeled streptavidin is added to capture the tagged ligand and any bound fusion protein. The plate is incubated for a sufficient period to allow the capture to go to completion and then the time resolved fluorescent signal is measured. Screening for agonists/antagonists/inhibitors is carried out by performing the initial incubation prior to the acceptor-labeled streptavidin capture step in the presence of a test compound(s) to determine whether they have an effect upon the binding of the

5

10

biotinylated ligand to the fusion protein. This principle is illustrated by Figure 1.

To assay the catalytic activity of a protease, a FKBP fusion protein substrate is combined with the protease in a suitable buffer in the presence of the donor-labeled ligand and acceptor-labeled streptavidin in the well of a black microplate. After a suitable incubation period, the time resolved fluorescent signal of the remaining intact fusion protein substrate is measured. Screening for inhibitors is carried out by performing the incubation in the presence of a test compound(s) to determine whether they have an effect upon the cleavage of the fusion protein substrate. This principle is illustrated by Figures 2 and 3.

SCHEME 1

$$H_2N$$
 CH_3O
 CH_3
 CH_3O
 CH_3
 CH_3O
 CH_3

Α

5

SCHEME 1 (cont'd.)

$$O_2N$$
 O_2N
 O_3N
 O_4N
 O_4N

5

SCHEME 1 (cont'd.)

5

10

Scheme 1 depicts the treatment of Compound A, an analog of FK506, with 1 equivalent of p-nitrophenylchloroformate in THF in the presence of a tertiary amine, which gives the p-nitrophenylcarbamate, Compound B. The nitrophenylcarbamate is isolated by silica gel chromatography or used without further purification. The nitrophenylcarbamate is an activated acylating group and will undergo attack by a variety of nucleophiles. The cryptate has two primary amino groups (nucleophiles). Treatment of the p-nitrophenylcarbamate with the europium cryptate in a non-protic

solvent (such as THF) in the presence of a tertiary amine should afford the corresponding urea. Compound C, the cryptate hybrid of the FK506 analog, will be purified by either normal phase silica gel chromatography on prep TLC plates or by reverse phase HPLC chromatography.

The cryptate can be linked to Compound A, other FK506 analogs, and related molecules by a variety of linkages, such as carbamates, amides, ureas, amines, etc. One of ordinary skill in the art would be familiar with the standard procedures used to prepare the FK506 analog containing the cryptate molecule.

The present invention can be understood further by the following examples, which do not constitute a limitation of the invention.

15

10

5

EXAMPLE 1

Process for Preparing the FKBP fusion cloning vector

General techniques for modifying and expressing genes in various host cells can be found in Ausubel, F.M., Brent, R., Kingston, 20 R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. Current Protocols in Molecular Biology (John Wiley & Sons, New York, New York, 1989). Sequences for a 3'- altered FKBP fragment that contained a glycine codon (GGT) in place of the stop (TGA) codon followed by a sequence encoding a thrombin site (Leu-Val-Pro-Arg) and BamHI 25 restriction site (GGATCC) were amplified using the polymerase chain reaction (PCR). The PCR reaction contained the following primers: 5'-GATCGCCATGGGAGTGCAGGTGGAAACCATCTCCCCA-3' (SEQ. ID. NO. 9) and 5'-TACGAATTCTGGCGTGGATCCAC GCGGAACCAGACCTTCCAGTTTTAG-3' (SEQ. ID. NO. 10) and a 30 plasmid containing human FKBP-12 as the template. The resulting 367 base pair amplification product was ligated into the vector pCRII (Invitrogen) and the ligation mixture transformed into competent Escherichia coli cells. Clones containing an insert were identified using PCR with flanking vector primers. Dideoxy DNA sequencing 35 confirmed the nucleotide sequence of one positive isolate. The altered

338 base pair FKBP fragment was excised from the pCRII plasmid using *Nco*I and *BamH*I and ligated into *Nco*I and *BamH*I digested pET9d (Novagen) plasmid. Competent *E. coli* were transformed with the ligation mixture, and colonies containing the insert were identified using PCR with primers encoding for flanking vector sequences. The FKBP fusion cloning vector is called pET9dFKBPt.

EXAMPLE 2

10 Process for Preparing the FK-ZAP70 fusion expression vector A DNA fragment encoding for the tandem SH2 domains of ZAP70 was prepared by PCR to contain a BamHI site at the 5'-end such that the reading frame was conserved with that of FKBP in the fusion vector. At the 3'-end, the fragment also incorporated a stop codon 15 followed by a BamHI site. The PCR reaction contained Molt-4 cDNA (Clontech) and the following primers: 5'-ATTAGGATCCATGCCAGATCCTGCAGCTCACCTGCCCT-3' (SEQ. ID. NO. 11) and 5'-ATATGGATCCTTACCAGAGGCGTTGCT-3' (SEQ. ID. NO. 12). The fragment was cloned into a suitable vector, sequenced, digested with BamHI, and the insert containing the SH2 20 domains ligated to BamHI treated pET9dFKBPt, and transformed into E. coli. Clones containing inserts in the correct orientation were identified by PCR or restriction enzyme analysis. Plasmid DNA was prepared and used to transform BL21(DE3) cells.

25

5

EXAMPLE 3

Process for Preparing the FK-Syk fusion expression vector

The expression vector for the tandem SH2 domains of Syk fused to FKBP was prepared as in Example 2 except that the PCR reaction contained Raji cell cDNA (Clontech) and the following primers: 5'-CAATAGGATCCATGGCCAGCAGCAGCAGCATGGCTGA-3' (SEQ. ID. NO. 13) and 5'-GACCTAGGATCCCTAATTAACATTTCCCTGTGTGCCGAT-3' (SEQ. ID. NO. 14).

EXAMPLE 4

Process for Preparing the FK-Lck fusion expression vector

The expression vector for the SH2 domain of Lck fused to FKBP was prepared as in Example 2 except that the PCR reaction contained Molt-4 cDNA (Clontech) and the following primers:

5'-ATATGGATCCATGGCGAACAGCCTGGAGCCCGAACCCT-3' (SEQ. ID. NO. 15) and

10 5'-ATTAGGATCCTTAGGTCTGGCAGGGGCGGCTCAACCGTGT GCA-3' (SEQ. ID. NO. 16).

EXAMPLE 5

FK-ZAP70

15

20

25

5

Step A: Process for Expression of FK-ZAP70

E. coli BL21(DE3) cells containing the pET9dFKBPt/
ZAP70SH2 plasmid were grown in Luria-Bertani (LB) media
containing 50 microgram/ml kanamycin at 37 degrees C until the optical
density measured at 600 nm was 0.5-1.0. Expression of the FK-ZAP70
fusion protein was induced with 0.1 mM isopropyl betathiogalactopyranoside and the cells were grown for another 3-5 hr at 30
degrees C. They were pelleted at 4400 x g for 10 min at 4 degrees C
and resuspended in 2% of the original culture volume with 100 mM tris
pH 8.0 containing 1 microgram/ml each aprotinin, pepstatin, leupeptin,
and bestatin. The resuspended pellet was frozen at -20 degrees C until
further purification.

Step B: Process for Purification of FK-ZAP70

The affinity matrix for purification of FK-ZAP70 was prepared by combining agarose-immobilized avidin with excess biotinylated phosphopeptide derived from the ζ1 ITAM sequence of the human T-cell receptor, biotinyl-GSNQLpYNELNLGRREEpYDVLDK, (SEQ. ID. NO. 8) and washing out unbound peptide. Frozen cells containing FK-ZAP70 were thawed in warm water, refrozen on dry ice

for about 25 min., then thawed again. After the addition of 0.1% octyl glucoside, 1 mM dithiothreitol (DTT) and 500 mM NaCl, the extract was centrifuged at 35,000 x g for approximately 30 minutes. The supernatant was loaded onto the phosphopeptide affinity column, at about 4° and washed with phosphate buffered saline containing 1 mM DTT and 0.1% octyl glucoside. FK-ZAP70 was eluted with 200 mM phenyl phosphate in the same buffer at about 37°. The protein pool was concentrated and the phenyl phosphate removed on a desalting column. The purified FK-ZAP70 was stored at about -30° in 10 mM HEPES/150 mM NaCl/1 mM DTT/0.1 mM EDTA/10% glycerol.

EXAMPLE 6

FK-Syk

10

20

E. coli BL21(DE3) cells containing the pET9dFKBPt/ SykSH2 plasmid were grown, induced, and harvested as described in Example 5. FK-Syk was purified using the same affinity matrix and methodology described in Example 5.

EXAMPLE 7

FK-Lck

E. coli BL21(DE3) cells containing the pET9dFKBPt/
LckSH2 plasmid were grown, induced, and harvested as described in
Example 5. The affinity matrix for purification of FK-Lck was prepared by combining agarose-immobilized avidin with excess biotinyl-EPQpYEEIPIYL, (SEQ. ID. NO. 17) and washing out unbound peptide. The remaining methodology for purification was the same as Example 5.

30

35

EXAMPLE 8

Method of Screening for Inhibitors of FK-ZAP

A DMSO solution of test compound(s) and biotinylphosphopeptide stock solution in a suitable buffer are dispensed into the

wells of a 96-well black microplate. Next, a mixture of FK-ZAP protein and Eu(K)-labeled FK506 analog are added to each test well. Finally, a solution of SA-XL665 is dispensed to each well and the plate is incubated for an appropriate time. The fluorescence ratio is then measured in a Packard Discovery HTRF analyzer. (Packard Instrument Company, 800 Research Parkway, Meridan, CT 06450)

EXAMPLE 9

10 Method of Screening for Inhibitors of Thrombin

5

A DMSO solution of test compound(s) and a suitable buffer containing a mixture of FK-ZAP protein, Eu(K)-labeled FK506 analog, and biotinyl-phosphopeptide are dispensed into the wells of a 96-well black microplate. Next, thrombin is added to each test well. After an appropriate incubation period, a solution of SA-XL665 is dispensed to each well. The fluorescence ratio is then measured in a Packard Discovery HTRF analyzer. (Packard Instrument Company, 800 Research Parkway, Meridan, CT 06450)

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: HERMES, JEFFREY D. SALOWE, SCOTT P. SINCLAIR, PETER J.
- (ii) TITLE OF THE INVENTION: A HIGH THROUGHPUT ASSAY USING FUSION PROTEINS
- (iii) NUMBER OF SEQUENCES: 17
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Merck & Co., Inc.
 - (B) STREET: P.O. Box 2000, 126 E. Lincoln Ave.
 - (C) CITY: Rahway
 - (D) STATE: NJ
 - (E) COUNTRY: USA
 - (F) ZIP: 07065-0900
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/040,795
 - (B) FILING DATE: 14 March 1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Camara, Valerie J
 - (B) REGISTRATION NUMBER: 35,090
 - (C) REFERENCE/DOCKET NUMBER: 19916
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 732-594-3902
 - (B) TELEFAX: 732-594-4720
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Gly Leu Val Pro Arg Gly Ser 1 5

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1137 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

```
ATGGGAGTGC AGGTGGAAAC CATCTCCCCA GGAGATGGAC GCACCTTCCC CAAGCGCGGC
CAGACCTGCG TGGTGCACTA CACCGGGATG CTTGAAGATG GAAAGAAATT TGATTCCTCC 120
CGGGACAGAA ACAAGCCCTT TAAGTTTATG CTAGGCAAGC AGGAGGTGAT CCGAGGCTGG
GAAGAAGGGG TTGCCCAGAT GAGTGTGGGT CAGAGAGCCA AACTGACTAT ATCTCCAGAT
TATGCCTATG GTGCCACTGG GCACCCAGGC ATCATCCCAC CACATGCCAC TCTCGTCTTC
GATGTGGAGC TTCTAAAACT GGAAGGTCTG GTTCCGCGTG GATCCATGCC AGATCCTGCA 360
GCTCACCTGC CCTTCTTCTA CGGCAGCATC TCGCGTGCCG AGGCCGAGGA GCACCTGAAG 420
CTGGCGGCA TGGCGGACGG GCTCTTCCTG CTGCGCCAGT GCCTGCGCTC GCTGGGCGGC
                                                                  480
TATGTGCTGT CGCTCGTGCA CGATGTGCGC TTCCACCACT TTCCCATCGA GCGCCAGCTC 540
AACGGCACCT ACGCCATTGC CGGCGGCAAA GCGCACTGTG GACCGGCAGA GCTCTGCGAG 600
TTCTACTCGC GCGACCCCGA CGGGCTGCCC TGCAACCTGC GCAAGCCGTG CAACCGGCCG 660
TCGGGCCTCG AGCCGCAGCC GGGGGTCTTC GACTGCCTGC GAGACGCCAT GGTGCGTGAC 720
TACGTGCGCC AGACGTGGAA GCTGGAGGCC GAGGCCCTGG AGCAGGCCAT CATCAGCCAG 780
GCCCGCAGG TGGAGAAGCT CATTGCTACG ACGGCCCACG AGCGGATGCC CTGGTACCAC 840
AGCAGCCTGA CGCGTGAGGA GGCCGAGCGT AAACTTTACT CTGGGGCGCA GACCGACGGC 900
AAGTTCCTGC TGAGGCCGCG GAAGGAGCAG GGCACATACG CCCTGTCCCT CATCTATGGG 960
AAGACGGTGT ACCACTACCT CATCAGCCAA GACAAGGCGG GCAAGTACTG CATTCCCGAG 1020
GGCACCAAGT TTGACACGCT CTGGCAGCTG GTGGAGTATC TGAAGCTGAA GGCGGACGGG 1080
CTCATCTACT GCCTGAAGGA GGCCTGCCCC AACAGCAGTG CCAGCAACGC CTCTTAA
                                                                 1137
```

- (2) INFORMATION FOR SEQ ID NO:3:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1155 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGGAGTGC	AGGTGGAAAC	CATCTCCCCA	GGAGATGGAC	GCACCTTCCC	CAAGCGCGGC	60
CAGACCTGCG	TGGTGCACTA	CACCGGGATG	CTTGAAGATG	GAAAGAAATT	TGATTCCTCC	120
CGGGACAGAA	ACAAGCCCTT	TAAGTTTATG	CTAGGCAAGC	AGGAGGTGAT	CCGAGGCTGG	180
GAAGAAGGGG	TTGCCCAGAT	GAGTGTGGGT	CAGAGAGCCA	AACTGACTAT	ATCTCCAGAT	240
TATGCCTATG	GTGCCACTGG	GCACCCAGGC	ATCATCCCAC	CACATGCCAC	TCTCGTCTTC	300
GATGTGGAGC	TTCTAAAACT	GGAAGGTCTG	GTTCCGCGTG	GATCCATGGC	CAGCAGCGGC	360

ATGGCTGACA GCGCCAACCA CCTGCCCTTC TTTTTCGGCA ACATCACCCG GGAGGAGGCA 420
GAAGATTACC TGGTCCAGGG GGGCATGAGT GATGGCTTT ATTTGCTGCG CCAGAGCCGC 480
AACTACCTGG GTGGCTTCGC CCTGTCCGTG GCCCACGGGA GGAAGGCACA CCACTACACC 540
ATCGAGCGGG AGCTGAATGG CACCTACGCC ATCGCCGGTG GCAGGACCCA TGCCAGCCCC 600
GCCGACCTCT GCCACTACCA CTCCCAGGAG TCTGATGGCC TGGTCTGCCT CCTCAAGAAG 660
CCCTTCAACC GGCCCCAAGG GGTGCAGCCC AAGACTGGC CCTTTGAGGA TTTGAAGGAA 720
AACCTCATCA GGGAATATGT GAAGCAGACA TGGAACCTGC AGGGTCAGGC TCTGGAGCAG 780
GCCATCATCA GTCAGAAGCC TCAGCTGGAG AAGCTGATCG CTACCACAGC CCATGAAAAA 840
ATGCCTTGGT TCCATGGAAA AATCTCTCGG GAAGAATCTG AGCAAATTGT CCTGATAGGA 900
TCAAAGACAA ATGGAAAGTT CCTGATCCGA GCCAGAGACA ACAACGGCTC CTACGCCCTG 960
TGCCTGCTGC ACGAAGGGAA GAGTTCGAC TATCGCATCG ACAAAGACAA GACAGGGAAG 1020
CTCTCCATCC CCGAGGGAAA GAAGTTCGAC ACGCTCTGGC AGCAAAAAAA CAGCGCTC CTACGCCCTG 960
TATAAAGCAG ATGGTTTGTT AAGAGTTCT ACTGTCCAT GTCAAAAAAA CGGCACACAG 1140
GGAAATGTTA ATTAG

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 675 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGGGAGTGC AGGTGGAAAC CATCTCCCCA GGAGATGGAC GCACCTTCCC CAAGCGCGGC CAGACCTGCG TGGTGCACTA CACCGGGATG CTTGAAGATG GAAAGAAATT TGATTCCTCC 120 CGGGACAGAA ACAAGCCCTT TAAGTTTATG CTAGGCAAGC AGGAGGTGAT CCGAGGCTGG 180 GAAGAAAGGGGG TTGCCCAGAT GAGTGTGGGT CAGAGAGCCA AACTGACTAT ATCTCCAGAT 240 TATGCCTATG GTGCCACTG GCACCCAGGC ATCATCCCAC CACATGCCAC TCTCGTCTTC 300 GATGTGGAGC TTCTAAAACT GGAAGGTCTG GTTCCGCGTG GATCCATGGC GAACAGCCTG 360 GAGCCCGAAC CCTGGTTCTT CAAGAACCTG AGCCGCAAGG ACGCGGAGCG GCAGCTCCTG 420 GCGCCCGGGA ACACTCACGG CTCCTTCCTC ATCCGGGAGA GCGAGAGCAC CGCGGGATCG 480 ATCCGTAATC CGGTCCGGGA CTTCGACCAG AACCAGGGAG AGGTGGTGAA ACATTACAAG 540 ATCCGTAATC TGGACAACGG TGGCTTCTAC ATCTCCCTC GAATCACTTT TCCCGGCCTG 600 CATGAACTGG TCCGCCATAA CACCAATGCT TCAGATGGC TGTGCACACG GTTGAGCCG 660 CCCTGCCAGA CCTAA

(2) INFORMATION FOR SEO ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 378 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe

1 5 10 15

Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu

20 25 30

```
Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys
                                         45
       35
                         40
Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val
                     55
Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp
                   70
                                    75
Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala
                              90
              85
Thr Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu Gly Leu Val Pro
                             105
Arg Gly Ser Met Pro Asp Pro Ala Ala His Leu Pro Phe Phe Tyr Gly
                         120
                                            125
Ser Ile Ser Arg Ala Glu Ala Glu Glu His Leu Lys Leu Ala Gly Met
                     135
                                        140
Ala Asp Gly Leu Phe Leu Leu Arg Gln Cys Leu Arg Ser Leu Gly Gly
                150
                                     155
Tyr Val Leu Ser Leu Val His Asp Val Arg Phe His His Phe Pro Ile
               165
                                  170
                                                    175
Glu Arg Gln Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Lys Ala His
          180
                            185
Cys Gly Pro Ala Glu Leu Cys Glu Phe Tyr Ser Arg Asp Pro Asp Gly
       195 200
Leu Pro Cys Asn Leu Arg Lys Pro Cys Asn Arg Pro Ser Gly Leu Glu
                     215
                              220
Pro Gln Pro Gly Val Phe Asp Cys Leu Arg Asp Ala Met Val Arg Asp
                   230
                                     235
225
Tyr Val Arg Gln Thr Trp Lys Leu Glu Gly Glu Ala Leu Glu Gln Ala
               245
                                  250
Ile Ile Ser Gln Ala Pro Gln Val Glu Lys Leu Ile Ala Thr Thr Ala
                              265
           260
His Glu Arg Met Pro Trp Tyr His Ser Ser Leu Thr Arg Glu Glu Ala
                                            285
                          280
Glu Arg Lys Leu Tyr Ser Gly Ala Gln Thr Asp Gly Lys Phe Leu Leu
                      295
                                        300
Arg Pro Arg Lys Glu Gln Gly Thr Tyr Ala Leu Ser Leu Ile Tyr Gly
                  31.0
                                     315
Lys Thr Val Tyr His Tyr Leu Ile Ser Gln Asp Lys Ala Gly Lys Tyr
               325
                                  330
Cys Ile Pro Glu Gly Thr Lys Phe Asp Thr Leu Trp Gln Leu Val Glu
           340
                           345
Tyr Leu Lys Leu Lys Ala Asp Gly Leu Ile Tyr Cys Leu Lys Glu Ala
                         360 .
Cys Pro Asn Ser Ser Ala Ser Asn Ala Ser
                      375
```

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 384 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe 10 Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu 25 Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys 40 Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val 55 60 Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp 75 70 Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala 85 90 Thr Leu Val Phe Asp Val Glu Leu Leu Lys Leu, Glu Gly Leu Val Pro 100 105 Arg Gly Ser Met Ala Ser Ser Gly Met Ala Asp Ser Ala Asn His Leu 120 125 115 Pro Phe Phe Phe Gly Asn Ile Thr Arg Glu Glu Ala Glu Asp Tyr Leu 135 140 Val Gln Gly Gly Met Ser Asp Gly Leu Tyr Leu Leu Arg Gln Ser Arg 150 155 Asn Tyr Leu Gly Gly Phe Ala Leu Ser Val Ala His Gly Arg Lys Ala 165 170 His His Tyr Thr Ile Glu Arg Glu Leu Asn Gly Thr Tyr Ala Ile Ala 180 185 Gly Gly Arg Thr His Ala Ser Pro Ala Asp Leu Cys His Tyr His Ser 200 195 Gln Glu Ser Asp Gly Leu Val Cys Leu Leu Lys Lys Pro Phe Asn Arg 215 220 Pro Gln Gly Val Gln Pro Lys Thr Gly Pro Phe Glu Asp Leu Lys Glu 230 235 Asn Leu Ile Arg Glu Tyr Val Lys Gln Thr Trp Asn Leu Gln Gly Gln 245 250 Ala Leu Glu Gln Ala Ile Ile Ser Gln Lys Pro Gln Leu Glu Lys Leu 265 Ile Ala Thr Thr Ala His Glu Lys Met Pro Trp Phe His Gly Lys Ile 280 285 Ser Arg Glu Glu Ser Glu Gln Ile Val Leu Ile Gly Ser Lys Thr Asn 295 300 Gly Lys Phe Leu Ile Arg Ala Arg Asp Asn Asn Gly Ser Tyr Ala Leu 310 315 Cys Leu Leu His Glu Gly Lys Val Leu His Tyr Arg Ile Asp Lys Asp 325 330 Lys Thr Gly Lys Leu Ser Ile Pro Glu Gly Lys Lys Phe Asp Thr Leu 345 Trp Gln Leu Val Glu His Tyr Ser Tyr Lys Ala Asp Gly Leu Leu Arg 355 360 365 Val Leu Thr Val Pro Cys Gln Lys Ile Gly Thr Gln Gly Asn Val Asn 380 375

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 224 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe 10 Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu 25 20 Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val 55 60 Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp 70 75 Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala 85 Thr Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu Gly Leu Val Pro 100 105 110 Arg Gly Ser Met Ala Asn Ser Leu Glu Pro Glu Pro Trp Phe Phe Lys 120 125 115 Asn Leu Ser Arg Lys Asp Ala Glu Arg Gln Leu Leu Ala Pro Gly Asn 135 140 Thr His Gly Ser Phe Leu Ile Arg Glu Ser Glu Ser Thr Ala Gly Ser 150 155 145 Phe Ser Leu Ser Val Arg Asp Phe Asp Gln Asn Gln Gly Glu Val Val 165 170 Lys His Tyr Lys Ile Arg Asn Leu Asp Asn Gly Gly Phe Tyr Ile Ser 190 180 185 Pro Arg Ile Thr Phe Pro Gly Leu His Glu Leu Val Arg His Tyr Thr 200 205 Asn Ala Ser Asp Gly Leu Cys Thr Arg Leu Ser Arg Pro Cys Gln Thr 220

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Other
 - (B) LOCATION: 6...6
 - (D) OTHER INFORMATION: Xaa = Phosphorylated Tyrosine
 - (A) NAME/KEY: Other
 - (B) LOCATION: 17...17
 - (D) OTHER INFORMATION: Xaa = Phosphorylated Tyrosine
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

1			Gln	5		Asn	Glu	Leu	Asn 10	Leu	Gly	Arg	Arg	Glu 15	Glu		
			20														
		(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:):							
		(A) (B) (C)	EQUE LENG TYP: STR: TOP	GTH: E: ni ANDE	37 lucle: DNES	base ic a S: s:	pain cid ingle	rs									
	(ii)	MOLE	CULE	TYP	E: G	enom	ic D	NA								
	(xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	9:						
GAT	CGCC	ATG	GGAG	TGCA	GG T	GGAA.	ACCA'	T CT	cccc	A						37	7
		(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	10:							
	((A) (B) (C)	EQUE LEN TYP STR TOP	GTH: E: n ANDE	48 ucle DNES	base ic a S: s	pai: cid ingl	rs									
	(ii)	MOLE	CULE	TYP	E: G	enom	ic D	NA								
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	10:						
TAC	GAAT	TCT	GGCG	TGGA	TC C	ACGC	GGAA	C CA	GACC	TTCC	AGT	TTTA	G			48	8
		(2) IN	FORM	OITA	N FO	R SE	Q ID	NO:	11:							
	((A) (B) (C)	EQUE LEN TYP STR TOP	GTH: E: n ANDE	38 ucle DNES	base ic a S: s	pai cid ingl	rs									
	((ii)	MOLE	CULE	TYP	E: G	enom	ic D	NA								
	((xi)	SEQU	ENCE	DES	CRIP	MOIT	: SE	Q ID	ΝО:	11:						
ATT	AGGA	ATCC	ATGC	CAGA	TC C	TGCA	GCTC	A CC	TGCC	CT						3	8
		(2	i) IN	FORM	ATIC	N FC	R SE	Q II	NO:	12:							
	((A) (B) (C)	EEQUE LEN TYE STE TOE	GTH: E: n ANDE	27 ucle DNES	base ic a SS: s	e pai cid singl	.rs									
		(ii)	MOLE	CULE	TYI	PE: C	Senon	nic I	ONA								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
ATATGGATCC TTACCAGAGG CGTTGCT	27
(2) INFORMATION FOR SEQ ID NO:13:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CAATAGGATC CATGGCCAGC AGCGGCATGG CTGA	34
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 39 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GACCTAGGAT CCCTAATTAA CATTTCCCTG TGTGCCGAT	39
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 38 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
ATATGGATCC ATGGCGAACA GCCTGGAGCC CGAACCCT	38
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 43 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ATTAGGATCC TTAGGTCTGG CAGGGGCGGC TCAACCGTGT GCA

43

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:

 - (A) NAME/KEY: Other
 (B) LOCATION: 4...4
 - (D) OTHER INFORMATION: XAA = PHOSPHORYLATED TYROSINE
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Glu Pro Gln Xaa Glu Glu Ile Pro Ile Tyr Leu 5 10

WHAT IS CLAIMED IS:

1. A method of screening for compounds capable of binding to a fusion protein which comprises the steps of:

- a) mixing a test compound, a biotinylated ligand, the fusion protein, a donor-labeled ligand and acceptor-labeled streptavidin;
- b) incubating the mixture for a suitable time period;
- c) measuring the time-resolved fluorescence attributable to the binding of the biotinylated ligand to the fusion protein in the presence of the test compound; and
- d) determining the binding of the biotinylated ligand to the fusion protein in the presence of the test compound relative to a control assay run in the absence of the test compound.

15

10

5

2. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 1, wherein the acceptor-labeled streptavidin consists of streptavidin coupled to a light harvesting molecule.

20

- 3. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 2, wherein the acceptor-labeled streptavidin consists of SA-XL665.
- 4. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 3, wherein the donor-labeled ligand comprises a cryptate-containing molecule coupled to a lanthanide metal.
- 5. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 4, wherein the donor-labeled ligand is selected from the group consisting of a Eu(K)-labeled analog of FK506 or and Eu(K)-labeled analog of rapamycin.

6. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 5, wherein the donor-labeled ligand is an Eu(K)-labeled analog of FK506.

5 7. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 6, wherein the donor-labeled ligand is

- 8. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 7, wherein the fusion protein comprises an FK506 binding protein, peptide linker and target protein.
- 9. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 8, wherein the FK506 binding protein is 12kDA human FK506 binding protein.

10. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 9, wherein the target protein is selected from tyrosine phosphatases, nuclear receptors, bacterial tRNA synthetases or single and multiple signal transduction domains.

- 11. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 10, wherein the target protein comprises a single or multiple signal transduction domain.
- 12. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 11, wherein the single or multiple signal transduction domain is selected from the group consisting of: SH1, SH2, SH3 and PH domains.
- 13. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 12, wherein the target protein is a single or multiple SH2 domain.

20

5

10

15

14. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 13, wherein the target protein is a single or multiple SH2 domain selected from the group consisting of: ZAP70:SH2, Syk:SH2 and Lck:SH2.

25

- 15. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 14, wherein the target protein is the SH2 domain, ZAP70:SH2.
- 30 16. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 14, wherein the target protein is the SH2 domain, Syk:SH2.

17. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 14, wherein the target protein is the SH2 domain, Lck:SH2.

- 5 18. A method of screening for compounds capable of inhibiting a protease which comprises the steps of:
 - a) mixing a test compound, a fusion protein substrate, a donor-labeled ligand, acceptor-labeled streptavidin, and a protease;
- b) incubating the mixture for an appropriate time;
 - c) measuring the time-resolved fluorescence attributable to the binding of the intact fusion protein substrate to the acceptor-labeled streptavidin in the presence of the test compound; and
- d) determining the binding of the intact fusion protein substrate to the acceptor-labeled streptavidin in the presence of the test compound relative to a control assay run in the absence of the test compound.
- 19. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 18, wherein the protease is selected from the group consisting of thrombin, HIV or TNFα converting enzyme.
- 25 20. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 19, wherein the protease is thrombin.
- 21. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 20, wherein the acceptor-labeled streptavidin consists of streptavidin coupled to a light harvesting molecule.

22. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 21, wherein the acceptor-labeled streptavidin consists of SA-XL665.

- 5 23. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 22, wherein the donor-labeled ligand comprises a cryptate-containing molecule coupled to a lanthanide metal.
- 10 24. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 23, wherein the donor-labeled ligand is selected from the group consisting of an Eu(K)-labeled analog of FK506 or and Eu(K)-labeled analog of rapamycin.
- 15 25. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 24, wherein the donor-labeled ligand is an Eu(K)-labeled analog of FK506.
- 26. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 25, wherein the donor-labeled ligand is

- 27. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 26, wherein the fusion protein comprises an FK506 binding protein, peptide linker and reporter protein.
- 28. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 27, wherein the FK506 binding protein is 12kDA human FK506 binding protein.
- 29. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 28, wherein the reporter protein is selected from the group consisting of SH2 domains or covalently biotinylated proteins.

15

10

5

الله الله

5

30. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 29, wherein the covalently biotinylated protein is selected from the group consisting of the C-terminal 87 residues of the biotin carboxy carrier protein of acetyl-CoA carboxylase from *Escherichia coli* or the biotin-carrier subunit of transcarboxylase from *Propionibacterium shermannii*.

- 31. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 29, wherein the SH2 domain is
 the ZAP70 bound to a biotinylated phosphopeptide derived from an ITAM sequence.
- 32. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 31, wherein the ITAM
 15 sequence is selected from the group consisting of the human T-cell receptor, the B-cell receptor or a high affinity IgE receptor.
- 33. The method of screening for compounds capable of inhibiting a protease, as recited in Claim 32, wherein the ITAM
 20 sequence is the Zeta 1 sequence of the human T-cell receptor. (SEQ. ID. NO. 8)

INTERNATIONAL SEARCH REPORT

v. e.s

International application No. PCT/US98/04610

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :G01N 33/53, 33/544, 33/531 US CL :435/7.1, 7.5; 436/529, 543							
According to International Patent Classification (IPC) or to both national classification and IPC							
	LDS SEARCHED						
	locumentation searched (classification system follower 435/7.1, 7.5; 436/543	d by classification symbols)					
Documental	Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched						
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) APS, DIALOG, GENBANK, BIOTECHDS, BIOSIS, CA, MEDLINE, LIFESCI						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.					
X,P	WO 97/10502 A1 (MERCK & CO., entire document.	INC.) 20 March 1997, see 1-33					
A	US 5,498,597 A (BURAKOFF et al) 12 March 1996, see entire document.						
A	US 5,352,660 A (PAWSON) 04 October 1994, see entire document. 1-33						
	-						
	·						
Furth	ner documents are listed in the continuation of Box C	. See patent family annex.					
	ecial categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand					
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the invention					
	tier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone					
cit	ed to establish the publication date of another citation or other scial reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be					
	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
	cument published prior to the internstional filing date but later than p priority date claimed	"&" document member of the same patent family					
Date of the	actual completion of the international search	Date of mailing of the international search report					
21 MAY	1998	1 6 JUL 1998					
Commissio	mailing address of the ISA/US	Authorized officer					
Box PCT Washington	n, D.C. 20231	JENNIFER SHAVER					
Facsimile N		Telephone No. (703) 308-0196					