Лабораторна робота №1. Тема: Комбінаторика

(Розміщення, перестановки, комбінації, біном Ньютона)

Комбінаторика – це галузь математики, предметом якої є теорія скінченних множин. Значна кількість теорем і формул комбінаторики ґрунтується на двох елементарних правилах, які називаються правилами суми і добутку.

Правило суми - якщо деякий об'єкт a можна вибрати m способами, а об'єкт b - n способами, причому ніякий вибір a не збігається з жодним з виборів b, то один з об'єктів a або b можна вибрати m+n способами.

Правило добутку — якщо деякий об'єкт a можна вибрати m способами і при кожному виборі об'єкта a об'єкт b можна вибрати n способами, то вибір пари (a, b) можна здійснити mn способами.

Правило суми та добутку можна узагальнити на будь-яку більшу кількість об'єктів.

У комбінаториці розглядають три типи сполук – розміщення, перестановки та комбінації.

Розміщення з n елементів по m називають сполуки, що складаються з m елементів, взятих з n, і відрізняються або складом елементів, або їх порядком. Кількість всіх можливих розміщень розраховують за формулою:

- без повторень

- з повтореннями

$$A_n^m = \frac{n!}{(n-m)!};$$

$$\overline{A}_n^m = n^m$$
.

Перестановками n елементів називають сполуки, що відрізняються тільки порядком елементів. Кількість всіх можливих перестановок розраховують за формулою:

– без повторень

- з повтореннями

$$P_n = n!;$$

$$P_n(n_1, n_2,...) = \frac{n!}{n_1! n_2! ...}.$$

Комбінаціями з n елементів по m називають сполуки, що складаються з m елементів, взятих з n, і відрізняються тільки складом (порядок не має значеня). Кількість всіх можливих комбінацій розраховують за формулою:

- без повторень

- з повтореннями

$$C_n^m = \frac{n!}{m!(n-m)!};$$
 $\overline{C}_n^m = \frac{(n+m-1)!}{m!(n-1)!}.$

Алгоритм генерування лексикографічно наступної перестановки

Нехай задана перестановка $a_1a_2...a_j$ $a_{j+1}...a_n$ елементів множини $X=\{1,2,...,n\}$. Знаходимо цілі a_j та a_{j+1} такі, що $a_j(a_j) \land a_{j+1} > a_{j+2} > ... > a_n$. Це означає ??????

Знаходимо в перестановці останню (зліва направо) пару сусідніх чисел, у яких перше число менше за друге. Ставимо на j - ту позицію таке найменше серед чисел $a_{j+1}, a_{j+2}, ..., a_n$, яке ϵ більшим, ніж a_j і решту з чисел $a_{j+1}, a_{j+2}, ..., a_n$ у позиціях j+1, j+2, ..., n.

Приклад. Задана перестановка 3 6 2 $\underline{5}$ $\underline{4}$ $\underline{1}$. З підкреслених чисел найменше ціле, що більше 2, ε 4. Отже, на місце числа 2 ставимо 4, а числа 2 5 1 розташовуємо на останніх трьох позиціях у зростаючому порядку: 3 6 4 1 2 5.

Алгоритм генерування лексикографічно наступної сполуки \mathbf{n} -елементної множини $X = \{1, 2, ..., n\}$ по \mathbf{r} елементів.

Елементи сполуки записати у зростаючому порядку. Знайти останній елемент a_i у сполуці такий, що $a_i \neq n-r+i$. Для знайденого елемента виконати присвоювання $a_i \coloneqq a_i + 1$. Для j = i+1, i+2,...,r виконати $a_i \neq a_i + j-i$.

Приклад. X= $\{1,2,3.4,5,6\}$. Знайти сполуку, яка ϵ лексикографічно наступною за $\{1,2,5,6\}$.

Маємо: n = 6, r = 4.

Далі, 6=6-4+4, 5=6-4+3, $2 \neq 6-4+2$

Отже, $a_2 := 2 + 1$, тобто $a_2 = 3$.

Далі, $a_3 := 3+1$; $a_4 := 3+2$.

Відповідь: {1,3,4,5}.

Біном Ньютона (n - додатнє ціле):

$$(x+a)^n = \sum_{k=0}^n C_n^k x^k a^{n-k}$$
.

Завдання

Запрограмувати за варіантом обчислення кількості комбінацій розміщення (перестановок, комбінацій, алгоритму визначення наступної лексикографічної сполуки, перестановки) та формулу бінома Ньютона і побудувати за допомогою неї розклад за варіантом.

Варіант 1.

Задане додатне ціле число n. Розташувати у лексикографічному порядку всі перестановки множини $\{1,2,...,n\}$.

Побудувати розклад $(x+y)^5$.

Варіант 2. Задане додатне ціле число n і невід'ємне ціле число r, $r \le n$. Розташувати у лексикографічному порядку всі сполуки без повторень із r елементів множини $\{1,2,...,n\}$.

Побудувати розклад $(x-y)^5$.

Варіант 3.

Задане додатне ціле число n і невід'ємне ціле число r, $r \le n$. Розташувати у лексикографічному порядку всі розміщення без повторень із r елементів множини $\{1,2,...,n\}$.

Побудувати розклад $(x+y)^6$.

Варіант 4.

Задане додатне ціле число n. Побудувати всі сполуки без повторень елементів множини $\{1,2,...,n\}$.

Побудувати розклад $(x-y)^6$.

Варіант 5.

Задане додатні цілі числа n та r. Побудувати у лексикографічному порядку всі розміщення з повтореннями із r елементів множини $\{1, 2, ..., n\}$.

Побудувати розклад $(x+y)^7$.

Варіант 6.

Задане додатні цілі числа n та r. Побудувати у лексикографічному порядку всі розміщення з повтореннями із r елементів множини $\{1,2,...,n\}$.

Побудувати розклад $(x-y)^7$.

Варіант 7.

Визначити лексикографічно наступну перестановку для кожної з перестановок: 1432, 54123, 12453, 45231, 6714235, 31528764.

Побудувати розклад $(x-y)^8$.

Варіант 8.

Розташувати наведені перестановки елементів множини {1,2,3,4,5,6} у лексикографічному порядку: 234561, 231456, 165432, 156423, 543216, 541236, 231465, 314562, 432561, 654321, 654312, 435612.

Побудувати розклад $(x+y)^8$.

Варіант 9.

Використовуючи алгоритм побудови лексикографічно наступної перестановки, записати перші 12 перестановок елементів множини {1,2,3,4,5,6}.

Побудувати розклад $(x-y)^9$.

Варіант 10.

Використовуючи алгоритм побудови лексикографічно наступної сполуки, виписати всі сполуки по 4 елементи множини $\{1,2,3,4,5,6\}$. Побудувати розклад $(x+y)^9$.