

Введение

Команда LEGO® Education рада представить комплект заданий по изучению окружающего мира и физики с LEGO MINDSTORMS® Education EV3 для использования в 6–9 классах. Эти инновационные учебные материалы помогут вам выполнять научные проекты с учащимися в соответствии с учебным планом.

Целевая аудитория

Эти научные эксперименты помогут учителям побудить учащихся обдумывать явления, принципы и процессы, связанные с физикой и естествознанием. Учащиеся получат возможность приобрести знания и умения в рамках учебного плана в творческом процессе. Учителя также смогут использовать редактор контента, встроенный в программное обеспечение EV3.

Научные эксперименты помогают упростить планирование урока и собственно процесс обучения, используя практические решения для наполнения обычного урока в курсе естествознания и физики в 6–9 классах. Помощь учителю предоставляется в виде конспекта для подготовки урока, описаний учебных заданий, педагогических указаний, инструкций по сборке, заранее определенных программ и вопросников для проверки усвоения материала. Для использования этих материалов в вашем классе от вас НЕ требуется большого опыта работы с LEGO MINDSTORMS EV3. Учителя, которые не знакомы с LEGO MINDSTORMS, могут легко познакомиться с его возможностями с помощью самоучителя.

Задача

Работая над научными экспериментами, учащиеся должны действовать как исследователи. Каждый учащийся войдет в небольшую команду, которой поручено провести эксперимент. Сначала весь класс рассматривает общие предварительные рекомендации; ученикам предлагается представить обоснованные предположения о последовательности проведения и результатах эксперимента. После этого учащиеся будут проводить эксперимент в соответствии с рекомендациями. Если несколько команд работают параллельно, они могут объяснить друг другу свои вырианты и сравнить результаты. Этот вид обучения, на основе эксперимента, требует работы в команде, навыков общения и возможности самовыражения для каждого учащегося; это помогает в приобретении и применении в инженерной деятельности полученных знаний в области физики.

Содержание комплекта

Научные проекты

Комплект включает 14 научных проектов в следующих разделах:

- Энергия
- Сила и движение
- Свет
- Тепловые явления

Мультимедийная среда содержит материалы для учителей и учащихся. Необходимая подготовка (например, подготовка дополнительных материалов, таких как лампы, вентиляторы или лед) подробно описана в рекомендациях для учителя. Эксперимент должен выполняться как центральная часть каждого отдельного проекта. Сопутствующие материалы включают пошаговые инструкции по сборке, указания и справочные материалы по теме или категории, к которой относится этот научный проект, наряду с контрольными вопросами (включающими примеры решения). Кроме базового комплекта LEGO MINDSTORMS Education EV3, для большинства проектов требуется датчик температуры LEGO MINDSTORMS (9749) или дополнительный набор LEGO Education «Возобновляемые источники энергии» (9688).

Научные проекты

Каждый проект строится вокруг задания, основанного на эксперименте. Задание организуются редактором контента, встроенным в программное обеспечение EV3, которое отличается возможностью использования мультимедийной презентации, взаимодействия и документации. Он также включает:

- Изображения экспериментальной установки как в общем виде, так и на детальном уровне
- Указания о том, как построить или использовать модели
- Таблицы для облегчения структурирования и организации данных испытаний и наблюдений
- Инструменты для регистрации данных для анализа данных датчика (измеренных величин)
- Кнопки программного обеспечения позволяют легко добавить видеоклипы, фото и другие изображения, также как текст, звукозаписи и записи веб-камеры.

Каждый проект для учащихся, посвященный отдельному эксперименту, состоит из следующих разделов:

- Введение
- Предварительное обсуждение
- Инструкция по сборке
- Загрузка программы
- Рекомендации по использованию модели
- Экспериментальные измерения
- Днализ
- Что мы измеряли и что мы обнаружили?
- Вот что мы узнали
- К новым открытиям

Проверка усвоения материала может выполняться с использованием тестовых заданий, которые выдает учитель.

В ходе работы над научным проектом разделы с рекомендациями для учителя отображаются на мониторе в режиме учителя. Вот эти разделы:

- Информация о проекте
- Цели обучения
- Рекомендации для учителя
- Подготовка урока
- Рекомендации по предварительному обсуждению
- Экспериментальные измерения
- Анализ
- Переосмысление
- Отчет
- Проверка усвоения материала

Кроме того, рекомендации для учителя включают комментарии, предупреждения, предложения относительно дальнейших экспериментов и другие вспомогательные материалы.

Для переключения между страницами учащихся и заметками учителя нажимайте кнопку на страницах проекта.

Последовательность проведения урока

Выберите опцию «Наука» в меню программного обеспечения EV3.

- 1. Выберите категорию «Энергия», «Сила и движение», «Свет» или «Тепловые явления», далее выберите один из предлагаемых проектов.
- 2. Прочитайте раздел «Информация о проекте», чтобы узнать, в каком классе (классах) может быть использован проект, сколько времени занимает эксперимент и какие технические условия необходимы. Следующие два раздела содержат информацию об учебных заданиях и педагогических методиках. Раздел «Подготовка урока» содержит дополнительные сведения, которые вы должны изучить перед тем, как дать задание классу провести эксперимент.
- 3. Следующий раздел содержит инструкции по сборке модели, необходимой для выбранного вами эксперимента. На следующем этапе постройте модель или попросите учащихся построить ее. Большинство экспериментов требуют, чтобы вы также загрузили программу.
- 4. Далее выполните эксперимент в соответствии с указаниями. Порядок проведения для разных экспериментов может отличаться. Большинство экспериментов связано с выполнением серий измерений, когда величины отображаются на экране модуля EV3, и некоторые из этих величин необходимо занести в таблицы данных.
- 5. Затем следует проанализировать наблюдения, сделанные в ходе эксперимента; предложите учащимся ввести комментарии в соответствующие поля.
- 6. Теперь учащиеся должны задокументировать эксперимент, обобщив результаты эксперимента и внеся информацию в выделенное для этого поле.
- 7. Учащиеся описывают, что они узнали (физическое явление), вводя свою информацию в выделенное для этого поле.

Советы по организации урока

Требуемое время

Требуемое для каждого проекта время зависит от многих обстоятельств, в том числе от возраста учащихся, их опыта работы с LEGO® MINDSTORMS®, сложности эксперимента и объемности темы, которой посвящен проект.

Есть четыре Раздела, содержащие разное количество проектов. Эти разделы соответствуют учебным планам по физике, изучаемые в 6–9 классах. Каждый эксперимент предусматривает возможность направлений для дальнейших исследований. Стандартных решений относительно нормирования времени не существует. Рекомендуется выделять примерно 45 минут — столько времени требуется среднему учащемуся, чтобы построить модель в соответствии с инструкцией по сборке и провести эксперимент. Выделенное время не включает время, которое требуется на документацию или проверку усвоения материала, так как для этого может потребоваться различное время в зависимости от способностей учащихся и требований, предъявляемых учителем.

Дополнительные материалы для учителя доступны в виде файлов PDF по темам, изучаемым в четырнадцати научных проектах. Эти материалы включают базовые сведения, определения, соответствующие уравнения, исторические факты, связи с современными разработками и идеи для учащихся, связанные с темами исследований. Также в этот материал включены вопросы, которые вы можете использовать для предварительной или последующей оценки по широкому кругу вопросов, связанных с четырнадцатью научными проектами. Изучите этот материал, перед тем как использовать его с учащимися, чтобы удостовериться, что он подходит вашим учебным целям.

Проекты разделены на четыре раздела:

Энергия

- Передача энергии
- Энергия ветра
- Солнечная энергия
- Эффективность использования энергии
- Электромобили

Сила и движение

- Зубчатые колеса
- Наклонная плоскость
- Трение
- Скорость
- Ускорение свободного падения

Свет

• Сила света

Тепловые явления

- Замерзание и теплоизоляция
- Теплопередача
- Конвекция

Если вы не располагаете двумя уроками подряд для выполнения проекта, цифровые инструменты помогут учащимся сохранить текущее состояние их работы и продолжить работу над проектом на следующем уроке. Учащимся предлагается презентовать свои работы перед одноклассниками, попросив их документировать процесс работы и ее результаты. Например, вы можете поручить каждой группе учащихся презентовать их проект и обсудить его в большей группе или всем классом. Это позволит учащимся сравнить свои эксперименты и обсудить причины отличий в результатах. Один из главных уроков для учащихся заключается в том, что в физических проектах нет идеальных решений. Любой эксперимент подвергается действию погрешностей или непредвиденных побочных явлений, которые могут исказить результаты.

Совместное использоание разделов «Самоучитель» и «Научные проекты»

Область «Лобби» программного обеспечения EV3 содержит Самоучитель, состоящий из сорока восьми тем (проектов). Если учащиеся не имеют опыта работы с программным обеспечением EV3, мы рекомендуем проработать несколько соответствующих учебных тем самоучителя, перед тем как перейти к физическим экспериментам. Регистрация данных проводится во многих экспериментах является важным этапом и.

Многие учителя просят учащихся проработать несколько заданий, прежде чем разрешить им начать стоить модели. Другие учителя информируют класс о том, какое оборудование и программное обеспечение будет в распоряжении учащихся для сборки их моделей. Оба метода могут привести к желаемым результатам.

Полезно детально ознакомиться с содержанием меню самоучителя, что позволит учащимся познакомиться с общей структурой и содержанием разделов и узнать, как находить в них информацию.

Если вы предпочитаете сначала предложить учащимся проработать задания самоучителя, прежде чем начитать выполнять проекты по физике, вы можете найти более детальную информацию в документе в формате PDF «Самоучитель — введение», который находится в разделе самоучителя «Книга для учителя».

Редактор контента

Индивидуальные инструкции

Редактор контента дает вам возможность изменять файлы, которые входят в дополнение «научные проекты», позволяя создавать урок, предназначенный именно для вашего класса. Вы можете сделать следующее:

- Изменять текст так, чтобы он лучше соответствовал уровню навыков чтения и восприятия ваших учащихся.
- Добавлять изображения, которые больше подходят для ваших учащихся.
- Изменять задания, делая их проще или сложнее.
- Изменять цели проекта, чтобы расширить или сузить выбор возможных экспериментов.
- Формулировать ваши собственные цели и задания в проекте.
- Добавлять ваши собственные направления анализа или инструменты анализа.

Во избежание перезаписи вами файлов, предоставляемых вместе с комплектом заданий «Научные проекты», любые вносимые вами изменения будут сохраняться как новый проект. Все файлы, входящие в первоначальный проект, будут также помещены в файл нового проекта, которым вы впоследствии сможете обмениваться со своими учащимися (например, посредством общего сетевого диска).

Редактор контента можно использовать для документирования процесса работы, данных и результатов соответствующего проекта. Это позволяет учащимся

- составлять протоколы обсуждений в своих группах, описывать применявшиеся методы, наблюдения, результаты и размышления;
- вносить их данные в таблицы;
- размешать аудиозаписи своей текущей работы над экспериментом и записи, касающиеся их обсуждений и экспериментальных методов;
- добавлять собственные страницы;
- добавлять изображения и видео своих моделей в действии;
- публиковать свои уникальные проекты и делиться ими со своими одноклассниками.

Дополнительная информация о редакторе контента содержится в видеороликах с кратким руководством (откройте видео, которое называется «Редактор контента») и в руководстве пользователя, которое расположено под кратким руководством в области «Лобби» программного обеспечения EV3.

Проекты по естествознанию (обзор)

