Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

2 de diciembre de 2020

Transformaciones Lineales

Sean U,V espacios vectoriales, $T:U\longrightarrow V$ una transformación, entonces la transformación $T^\nabla:V^*\longrightarrow U^*$ definida por

$$T^{\nabla}(f) = f \circ T$$
,

se verifica fácilmente que T^{∇} (también se le denota por T^t) es lineal, la cual es llamada la **transpuesta** de T.

$$U \stackrel{T}{\longrightarrow} V \stackrel{f}{\longrightarrow} \mathbb{K}$$

- 1. $(\lambda T)^{\nabla} = \lambda T^{\nabla}$, $\lambda \in \mathbb{K}$.
- 2. $(T_1 + T_2)^{\nabla} = T_1^{\nabla} + T_2^{\nabla}$.
- 3. $(T_1 \circ T_2)^{\nabla} = T_2^{\nabla} \circ T_1^{\nabla}$, donde

$$U \stackrel{T_2}{\longrightarrow} V \stackrel{T_1}{\longrightarrow} W$$

- 4. Si T es inversible, entonces $(T^{-1})^{\nabla} = (T^{\nabla})^{-1}$.
- 5. Si $I:V\longrightarrow V$ es la identidad en V, entonces $I^\nabla:V^*\longrightarrow V^*$ es ;a identidad en V^* .

En efecto:

1. Sea $f \in V^*$, entonces para todo $\lambda \in \mathbb{K}$ tenemos $(\lambda T)^{\nabla}(f) = f \circ (\lambda T) = \lambda (f \circ T) = \lambda T^{\nabla}$.

- 2. Ejercicio.
- 3. Ejercicio.
- 4. Ejercicio.
- 5. Ejercicio.

Proposición

Sean U,V espacios vectoriales, $T \in \mathcal{L}(U,V)$ una transformación, entonces

- 1. $(T(U))^{\circ} = \mathcal{N}(T^{\nabla}).$
- 2. $T^{\nabla}(V^*) \subset (\mathcal{N}(T))^{\circ}$.
- 3. Si U y V son de dimensión finita, entonces

$$dim(T(U)) = dimt(T^{\nabla}(V^*)).$$

4. Con la hipótesis de (3), tenemos

$$(\mathcal{N}(T))^{\circ} = T^{\nabla}(V^*).$$

- 1. Ejercicio.
- 2. Sabemos que $T^{\nabla} \in \mathcal{L}(V^*, U^*)$.

Si $f \in T^{\nabla}(V^*)$, entonces $(\exists g \in V^*)(f = T^{\nabla}(g))$. Luego,

$$(\forall u \in \mathcal{N}(T))(f(u) = (g \circ T)(u) = g(T(u)) = g(\mathbf{0}) = 0),$$

entonces $f \in (\mathcal{N}(T))^{\circ}$.

3. Como $T^{\nabla} \in \mathcal{L}(V^*, U^*)$, entonces

$$\begin{aligned} \dim(V^*) - \dim(T^{\nabla}(V^*)) &= \dim(\mathcal{N}(T^{\nabla})) \\ &= \dim((T(U))^{\circ}) \\ &= \dim(V) - \dim(T(U)), \end{aligned}$$

además, tenemos que $dim(V^*) = dim(V) < \infty$, luego $dim(T^{\nabla}(V^*)) = dim(T(U))$.

4. Ejercicio.

Ejemplo

Pruebe que

$$\mathcal{N}(T) = (T^{\nabla}(V^*))^{\circ}.$$

Definición

Sean V,W $\mathbb{C}-espacios$ vectoriales, una aplicación $T:V\longrightarrow W$ se les llama **transformación lineal conjugada** si para todo $u,v\in U$, para todo $\lambda\in\mathbb{C}$ tenemos

$$T(u + v) = T(u) + T(v)$$

 $T(\lambda u) = \overline{\lambda}T(u).$

Además, si T es biyectiva, entonces T se llama **isomorfismo conjugado**.

Sea $(V, \langle \cdot, \cdot, \rangle)$ un espacio vectorial sobre \mathbb{K} (\mathbb{R} ó \mathbb{C}), con producto interno y $dim(V) < \infty$. Consideremos $u \in V$ y la función $f_u : V \longrightarrow \mathbb{K}$ definida por

$$f_u(v) = \langle v, u \rangle.$$

Observe que f_u es lineal, es decir, $f_u \in V^*$.

Ahora, definamos la aplicación $\psi:V\longrightarrow V^*$ mediante

$$\psi(u)=f_u.$$

Proposición

Con las notaciones anteriores

- 1. Si $\mathbb{K} = \mathbb{R}$, entonces ψ es un isomorfismo.
- 2. Si $\mathbb{K} = \mathbb{C}$, entonces ψ es un isomorfismo conjugado.

Prueba:

1. Como $dim(V) < \infty$, entonces V y V^* son isomorfos.

Veamos que ψ es lineal:

Como f_{μ} es lineal, es decir,

$$(\forall u^1, u^2 \in V)(f_{u^1+u^2} = f_{u^1} + f_{u^2})$$
 y $(\forall \lambda, \forall u \in V)(f_{\lambda u} = \lambda f_u)$, entonces ψ es una transformación lineal, es decir, $\psi \in \mathcal{L}(V, V^*)$.

Veamos $\mathcal{N}(\psi) = \{0\}$:

Sea
$$v \in \mathcal{N}(\psi)$$
, luego $\psi(v) = 0$, es decir, $(\forall v \in V)(\langle v, u \rangle = 0)$.

Entonces $v = \mathbf{0}$, por tanto $\mathcal{N}(\psi) = \{0\}$ si, solo si ψ es inyectiva.

Compruebe que ψ es sobreyectiva, y así φ es un isomorfismo.

2. Ejercicio

Nota

El isomorfismo de ψ no indica que para cada $f \in V^*$, existe un único $u \in V$ tal que

$$(\forall v \in V)(f(v) = \langle v, u \rangle)$$

Ejemplo

Sea $\mathbb{K} = (\mathbb{R} \ \acute{o} \ \mathbb{C})$.

Toda aplicación lineal $f: \mathbb{K}^2 \longrightarrow \mathbb{K}$ es de la forma

$$f(x,y) = ax + by = \langle (a,b), (x,y) \rangle,$$

para todo $a, b, x, y \in \mathbb{K}$, con a, b fijos

Ejercicio

Pruebe que toda aplicación lineal $h: \mathbb{C}^2 \longrightarrow \mathbb{C}$ es de la forma

$$\psi(v^0) = h$$
, con $v^0 \in \mathbb{C}^2$.

Debido a la proposición anterior, para cada aplicación lineal $f \in V^*$, existe un único $v \in V$ tal que

$$(\forall u \in V)(f(u) = \langle u, v \rangle.$$

Proposición

Sean V un espacio vectorial, $\{v^1, \dots, v^n\} \subset V$, $y\{f_1, \dots, f_n\} \subset V^*$ una base (llamada la correspondiente base dual de V) tales que

$$(\forall u \in V) \left(f_j(u) = \left\langle u, v^j \right\rangle \right), \ j = 1, \dots, n$$

Entonces $\{v^1, \dots, v^n\}$ es una base de V.

Prueba:

Veamos $\{v^1, \dots, v^n\}$ son linealmente independiente: sean $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ tales que

$$\sum_{j=1}^{n} \alpha_j v^j = \mathbf{0}.$$

Entonces

$$(\forall u \in V) \left(\sum_{j=1}^{n} \left\langle u, \alpha_{j} v^{j} \right\rangle = 0 = \sum_{j=1}^{n} \overline{\alpha_{j}} \left\langle u, v^{j} \right\rangle \right),$$

de donde

$$(\forall u \in V) \left(\sum_{j=1}^n \overline{\alpha_j} f_j(u) = 0 \right), \text{ esto implica } \sum_{j=1}^n \overline{\alpha_j} f_j = 0,$$

como $\{f_1, \dots, f_n\}$ es una base de V^* , entonces $\alpha_1 = \dots = \alpha_n = 0$. Por tanto $\{v^1, \dots, v^n\}$ son linealmente independientes.

Ejercicio, pruebe que para cada $v \in V$ existen $\beta_1, \cdots, \beta_n \in \mathbb{K}$ tales que

$$\mathbf{v} = \beta_1 \mathbf{v}^1 + \cdots + \beta_n \mathbf{v}^n.$$

Luego $\{v^1, \dots, v^n\}$ es una base de V.

Transpuesta

Base Dual

Consideremos $\{w^1, \dots, w^n\}$ una base de V y su correspondiente base dual $\{f_1, \dots, f_n\} \subset V^*$ tales que

$$f_i(w^j) = \langle w^j, v^i \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

en este caso, decimos que $\{v^1,\cdots,v^n\}$ es la base dual de $\{w^1,\cdots,w^n\}$. como $\langle w^j,v^i\rangle=\delta_{ij}$ es simétrica, entonces decimos que las bases $\{v^1,\cdots,v^n\}$ y $\{w^1,\cdots,w^n\}$ son **bases duales**.

Observación

La base dual de una base ortonormal $\{e^1, \dots, e^n\}$ es ella misma.

Consideremos el siguiente sistema de ecuaciones lineales

$$a_{11}x + a_{12}y = b_1$$

 $a_{21}x + a_{22}y = b_2$

nos conduce a un reordenamiento de la siguiente forma

$$\left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right],$$

llamada **matriz** de orden 2×2 .

En general, una matriz de orden $m \times n$ (m filas y n columnas), es un ordenamiento de la forma

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

donde a_{ij} son escalares (únicos). Denotemos dicho reordenamiento por $A = [a_{ij}]$.

Denotemos por $\mathbb{K}^{m\times n}$ (ó también $\mathbb{K}(m,n)$) al conjunto de matrices de orden $m\times n$.

El conjunto $\mathbb{K}^{m\times n}$ (ó también $\mathbb{K}(m,n)$) está provisto de la operaciones de suma y producto por un escalar de forma análoga a \mathbb{K} , es decir, sean $A = [a_{ii}], B = [b_{ii}] \in \mathbb{K}^{m\times n}, \lambda \in \mathbb{K}$

$$A + B = [a_{ij} + b_{ij}]$$
$$\lambda A = [\lambda a_{ij}].$$

Coon estas operaciones $\mathbb{K}(m, n)$ es un espacio vectorial.

Además, podemos definir, otra operación, producto de matrices de la siguiente forma:

Sean las matrices $A \in \mathbb{K}(m, n)$ y $B \in \mathbb{K}(n, p)$, entonces definimos la matriz $C = AB = [c_{ik}] \in \mathbb{K}(m, p)$, donde

$$c_{ik}=\sum_{j=1}^n a_{ij}b_{jk}, ext{ para } i=1,\cdots,m, ext{ } k=1,\cdots,p,$$

El producto de matrices, presenta las siguientes propiedades:

- 1. $(\forall A \in \mathbb{K}(m, n), B \in \mathbb{K}(n, p), C \in \mathbb{K}(p, q))(A(BC) = (AB)C).$
- 2. $(\forall A \in \mathbb{K}(m, n), B, C \in \mathbb{K}(n, p))(A(B + C) = AB + AC)$ y $(\forall A, B \in \mathbb{K}(m, n), C \in \mathbb{K}(n, p))((A + B)C) = AC + BC)$.
- 3. En general se tiene $AB \neq BA$ para $A \in \mathbb{K}(m, n), B \in \mathbb{K}(n, p)$.

Por ejemplo

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 1 & 3 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 1 & 5 \end{bmatrix}$$

Nota el conjunto de matrices en $\mathbb{K}(n, n)$, diremos sue son **matrices** cuadradas de orden $n \times n$, y lo denotamos por $\mathbb{K}(n) = \mathbb{K}(n, n)$

Para cada $n \in \mathbb{N}$, matrices $I \in \mathbb{K}(n, n)$ definidas por

$$I = [\delta_{ij}]$$

son llamadas **matrices identidad** de orden $n \times n$ o simplemente de orden n, donde δ_{ij} es el δ **de Kronecker**.

Definición

Una matriz $A \in \mathbb{K}^{n \times n}$ es llamada **inversible**, si existe una matriz $B \in \mathbb{K}^{n \times n}$ tal que AB = BA = I, y lo denotamos por $B = A^{-1}$, esta matriz A también es llamada **no singular** y B es llamada la **inversa** de A.

Consideremos la matriz de orden $m \times n$

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right],$$

los vectores $(a_{i1}, a_{i2}, \dots, a_{in})$ son llamados **vectores filas** de A para cada $i = 1, 2, \dots, n$, el cual también es una matriz de orden $1 \times n$; y las matrices

$$A = \left[egin{array}{c} a_{1j} \ a_{2j} \ dots \ a_{mi} \end{array}
ight], \quad j=1,2,\cdots,n$$

son llamados vectores columnas de A de orden $m \times 1$.

Para la determinar la inversa de una matriz cuadrada, si existe, lo podemos hacer por operaciones elementales, sistemas de ecuaciones lineales, entre otras técnicas.

Los vectores filas los vectores $a^i=(a_{i1},a_{i2},\cdots,a_{in}),\ i=1,2,\cdots,m$ de una matriz $A\in\mathbb{K}(m,n)$ puede escribirse de la forma

$$a^{i} = a_{i1}e^{1} + a_{i2}e^{2} + \cdots + a_{in}e^{n}, \quad i = 1, 2, \cdots, n$$

donde $\{e^1, e^2, \cdots, e^n\}$ es una base canónica de $\mathbb{K}^{n \times 1}$.

Supongamos que m=n y que A es inversible. Entonces para cada a^j $j=1,2,\cdots,n$ debemos encontrar escalares b_{jk} $k=1,2,\cdots,n$ (si existen de forma única) tales que

$$e^{j} = \sum_{k=1}^{n} b_{jk} a^{k}, \quad j = 1, 2, \cdots, n,$$

Entonces definimos la matriz inversa de A por $B = [b_{ij}]$, en este caso los vectores filas de $\{a^1, a^2, \dots, a^n\}$ son linealmente independientes.

Por ejemplo, sea la matriz.

$$A = \left[\begin{array}{cc} 5 & 6 \\ 4 & 5 \end{array} \right],$$

en este caso tenemos $a^1 = (5; 6), a^2 = (4; 5),$ entonces

$$a^1 = 5e^1 + 6e^2$$

 $a^2 = 4e^1 + 5e^2$,

de donde, aplicando la teécnica anterior tenemos

$$e^1 = 5a^1 - 6a^2$$

 $e^2 = -4a^1 + 5a^2$.

luego la inversa de A es la matriz $B = \begin{bmatrix} 5 & -6 \\ -4 & 5 \end{bmatrix}$.

Matrices Especiales

Sea una matriz $A \in \mathbb{K}(n, n)$ es llamada

- Diagonal, si $a_{ij} = 0$ para $i \neq j$.
- Triángular superior, si $a_{ij} = 0$ para j < i.
- Triángular inferior, si $a_{ij} = 0$ para i < j.
- simétrica, si ${}^tA = A$.
- anti-simétrica, si ${}^tA = -A$.
- Hermitiana, si $A^* = A$, aquí $\mathbb{K} = \mathbb{C}$.
- anti-Hermitiana, si $A^* = -A$,
- Ortogonal, si ${}^tAA = I$.