Here is a full table of the 4-bit binary system with the 2's complement method:

Decimal	Binary	2's complement
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
-8	1000	1111

Decimal	Binary	2's complement
-7	1001	1110
-6	1010	1101
-5	1011	1100
-4	1100	1011
-3	1101	1010
-2	1110	1001
-1	1111	1000

As you can see, the 2's complement representation of a negative number is different from the 2's complement representation of the same number as an unsigned number. The 2's complement representation of a negative number is formed by inverting all of the bits in the number and then adding 1.

The 2's complement method is a very efficient way to represent signed numbers in binary code. It allows us to perform arithmetic operations on signed numbers without having to worry about the sign of the numbers.

The 2's complement method is used in most computers and microprocessors to represent signed numbers. It is also used in many other applications, such as telecommunications and signal processing.