Resposta da Tarefa 2 — Definindo Computação Açúcar Sintático Código como Dados, Dados como Código

Análise e Complexidade de Algoritmos PPComp — Campus Serra, Ifes

Pablo Simões Nascimento

16 de dezembro de 2021

1 Problema 1

Escreva um programa em AON-CIRC (variante de NAND-CIRC que usa as funções AND/OR/NOT) que implemente a função GT6, que recebe uma entrada de 6 bits, $x = x_0x_1x_2x_3x_4x_5$, que retorne 1 se, e somente se, o número binário representado por $x_0x_1x_2$ for maior do que o número binário representado por $x_3x_4x_5$. Considere que os números estão em binário, com o bit menos significativo à direita.

Prove que existe uma constante $c \in \mathbb{N}$ tal que, para todo $c \in \mathbb{N}$ existe um circuito Booleano C, com portas lógicas AND, OR e NOT, com no máximo c.n portas lógicas que computa a função $GT_{2n}: \{0,1\}^{2n} \to 0,1$ tal que $GT_{2n}(x_0 \dots x_{n-1}x_n \dots x_{2n-1}) = 1$ se e somente se o número representado por $x_0 \dots x_n - 1$ for maior do que o número representado por $x_n \dots x_{2n-1}$. Considere que os números estão em binário, com o bit menos significativo à direita.

Prove que existe uma constante $c \in \mathbb{N}$ tal que, para todo $c \in \mathbb{N}$ existe um circuito Booleano C, com portas lógicas NAND, com no máximo c.n portas lógicas que computa a função $GT_{2n}: \{0,1\}^{2n} \to 0,1$ tal que $GT_{2n}(x_0 \dots x_{n-1}x_n \dots x_{2n-1})=1$ se e somente se o número representado por $x_0 \dots x_n-1$ for maior do que o número representado por $x_n \dots x_{2n-1}$. Considere que os números estão em binário, com o bit menos significativo à direita.

1.1 Solução - parte l

Para conseguirmos definir a implementação na linguagem AON-CIRC que dará solução a este problema, iremos buscar definir primeiro uma expressão apenas em termos de and, or e not.

Sejam os números $A = a_2a_1a_0$, sendo $a_2a_1a_0 = x_0x_1x_2$ e $B = b_2b_1b_0$, sendo $b_2b_1b_0 = x_3x_4x_5$, respectivamente. Enumeramos de 2 a 0 dos bits mais significantes para os menos significantes a fim de facilitar intuitivamente o raciocínio.

A função GT_6 é verdadeira quando os bits $a_2a_1a_0$ indicam um número binário maior que o número formado por $b_2b_1b_0$, ou seja, quando A > B. Portanto, vamos analisar quais os casos em que A > B.

A > B nos seguintes casos:

- se $a_2 > b_2$ ou
- se $a_2 = b_2$ e $a_1 > b_1$ ou
- se $a_2 = b_2$ e $a_1 = b_1$ e $a_0 > b_0$

Conforme os casos acima, há duas relações que precisaremos expressar na forma de conjunção e disjunção: a relação *maior que* e a relação de *igualdade* entre dois dígitos binários. Assim, considere a seguinte tabela verdade:

Tabela 1: Tabela verdade para identificação de casos para a > b e a = b

Podemos identificar pela Tabela 1 que $a>b\equiv a\wedge \neg b$ e que $a=b\equiv (\neg a\wedge \neg b)\vee (a\wedge b)$. Agora, podemos redefinir os casos em que A>B apenas utilizando os operadores \wedge,\vee e \neg , conforme abaixo:

A > B nos seguintes casos:

- se $a_2 \wedge \neg b_2$ OU
- se $[((\neg a_2 \land \neg b_2) \lor (a_2 \land b_2)) \land (a_1 \land \neg b_1)]$ OU
- se $[((\neg a_2 \land \neg b_2) \lor (a_2 \land b_2)) \land ((\neg a_1 \land \neg b_1) \lor (a_1 \land b_1)) \land (a_0 \land \neg b_0)]$

Unindo todas 3 partes em uma única expressão, temos:

$$GT_6(a_2a_1a_0b_2b_1b_0) \equiv (a_2 \wedge \neg b_2) \vee$$

$$[((\neg a_2 \wedge \neg b_2) \vee (a_2 \wedge b_2)) \wedge (a_1 \wedge \neg b_1)] \vee$$

$$[((\neg a_2 \wedge \neg b_2) \vee (a_2 \wedge b_2)) \wedge ((\neg a_1 \wedge \neg b_1) \vee (a_1 \wedge b_1)) \wedge (a_0 \wedge \neg b_0)]$$

Finalmente, interpretando essa expressão na linguagem AON-CIRC temos o programa conforme solução no arquivo src/probl1/PROG_AON.txt e orientações de execução no README.

1.2 Solução - parte II

Na solução anterior temos que $GT_{2n} = GT_6$, onde n = 3 e o programa final possui 19 portas lógicas. Supondo c.n = 19 temos que c = 19/3 = 6.33. Como queremos provar que existe certo $c \in \mathbb{N}$, então, aceitamos o natural mais próximo que é 7. Portanto, temos que nossa solução GT_6 possui no máximo 7k portas lógicas.

Vamos abordar a prova como um caso de prova por indução. Analisando o próximo valor de n, ou seja, n=4, temos $GT_8(a_3a_2a_1a_0b_3b_2b_1b_0)$. Para que o número representado por $a_3a_2a_1a_0$ seja maior que o número representado por $b_3b_2b_1b_0$ temos que $a_3>b_3$ ou o resultado é verdadeiro se $a_3=b_3$ e a avaliação da comparação entre $a_2a_1a_0$ e $b_2b_1b_0$ é verdadeira. Note que a comparação dos bits restantes é dada pela função GT_6 já definida. Temos, portanto, que a função GT_8 é verdadeira conforme o seguinte cenário:

```
1. Se a_3 > b_3 ou
2. Se a_3 = b_3 e GT_6(a_2a_1a_0b_2b_1b_0)
```

Por equivalência, podemos construir uma expressão para a função GT_8 conforme abaixo:

$$GT_8(a_3a_2a_1a_0b_3b_2b_1b_0) \equiv (a_3 \land \neg b_3) \lor (((\neg a_3 \land \neg b_3) \lor (a_3 \land b_3)) \land GT_6(a_2a_1a_0b_2b_1b_0))$$

Um pseudo-programa que daria solução a esta solução seria da seguinte forma:

```
a2 = X[0]

a1 = X[1]

a0 = X[2]

b2 = X[3]

b1 = X[4]

b0 = X[5]

notb3 = NOT(b3)

nota3 = NOT(a3)

and1 = AND(nota3,notb3)

and2 = AND(a3,b3)

or1 = OR(and1,and2)

and3 = AND(or1,GT_6(a_2a_1a_0b_2b_1b_0))

and4 = AND(a3,notb3)

Y[0] = OR(and4,and3)
```

Note que precisamos de 8 portas lógicas a mais que em GT_6 para conseguirmos computar GT_8 . Isso significa que a cada incremento de k, 8 portas lógicas a mais serão necessárias para computar a função. Se c.4 = 8, c = 8/4 = 2. Logo, aumentamos em

2k o numero de portas necessárias para computar a função GT_8 . Portanto temos que o número de portas lógicas para computar GT_8 é dado por 2k + 7k = 9k portas.

Assim, podemos definir nossa hipótese de indução da seguinte forma: GT_{2k} é computável usando no máximo 9k portas lógicas.

No passo de indução, podemos construir uma lógica semelhante ao apresentado anteriormente. O número de portas lógicas necessário para computar $GT_{2(k+1)}$ é 8 mais o número de portas lógicas para computar GT_{2k} . Assim, temos que $8 + 9k < 9(k+1) \equiv 8 + 9k < 9k + 9$.

Portanto, provamos que existe uma constante $c \in \mathbb{N}$ tal que, para todo $n \in \mathbb{N}$ existe um circuito Booleano C com no máximo c.n portas lógicas.

1.3 Solução - parte III

Por definição, temos que "Para cada circuito Booleano C de s
 portas lógicas, existe um circuito NAND C' de no máximo 3.s portas lógicas que computa a mesma função que C".

Do exercício anterior, provamos que existe uma constante $c \in \mathbb{N}$, tal que, para todo $n \in \mathbb{N}$ existe um circuito Booleano C com no máximo c.n portas lógicas. Vimos que, em AON-CIRC, um número de portas lógicas necessário para computar $GT_{2(k+1)}$ é 8 mais o número de portas lógicas para computar GT_{2k} . Neste caso, portanto, aplicando a definição, temos que o número de portas lógicas para computar GT_{2k} em NAND-CIRC é no máximo 3 vezes maior que o número necessário em AON-CIRC. Portanto, existe uma nova constante c, múltipla de 3, aplicável sobre uma constante anterior que já provamos existir. Logo, também provamos que existe tal constante c aplicável a linguagem NAND-CIRC.

Se quisermos verificar a prova, mais uma vez, podemos provar por indução. Vamos assumir nosso caso base como sendo o mapeamento do programa GT_6 em AON-CIRC para GT_6 em NAND-CIRC.

Pela definição 3.12, podemos definir nossa hipótese de indução da seguinte forma: GT_{2k} é computável usando no máximo 3(9k) portas lógicas, ou seja, 27k portas lógicas.

No passo de indução, podemos construir uma lógica semelhante. O número de portas lógicas necessário para computar $GT_{2(k+1)}$ em NAND-CIRC é 3 vezes maior que o necessário em AON-CIRC. Assim, temos que $3(8+9k) < 27(k+1) \equiv 24 + 27k < 27k + 27$.

Portanto, provamos que existe uma constante $c \in \mathbb{N}$ tal que, para todo $n \in \mathbb{N}$ existe um circuito Booleano C com no máximo c.n portas lógicas também em NAND-CIRC.

2 Problema 2

Este problema trabalha com uma representação da linguagem NAND-CIRC-IF em Clojure. Tipicamente, ao se processar uma linguagem, o código fonte é convertido para alguma representação interna. Esta representação interna costuma ser chamada de Abstract Syntax Tree (AST). Neste problema você receberá o AST correspondente a um programa em NAND-CIRC-IF.

O AST será representado por um mapa em Clojure. A Tabela 1 apresenta exemplos das estruturas de dados usadas para representar os elementos dos programas em NAND-CIRC-IF. Note que os casos apresentados naquela tabela são apenas exemplos, os programas NAND-CIRCIF podem ser bem mais complexos. A sintaxe completa da linguagem NAND-CIRC-IF é dada na Subseção A.4.

Escreva uma função em Clojure que receba o AST de um programa NAND-CIRC-IF P como entrada e produza um programa P' em NAND-CIRC, i.e., sem a estrutura de controle $if: \dots else: \dots end$, que compute a mesma função que P. A sua função em Clojure pode assumir a existência da função IF em NAND-CIRC.

Seja P1 um programa NAND-CIRC com s1 linha que computa a função $f: \{0,1\}^n \to \{0,1\}$, e seja P2 um programa NAND-CIRC com s2 linhas que computa a função $g: \{0,1\}^n \to \{0,1\}$. Prove que existe um programa P' em NAND-CIRC com no máximo s1 + s2 + 10 linhas que computa a função $h: \{0,1\}^{n+1} \to \{0,1\}$, onde:

$$h(x_0, \dots, x_{n-1}, x_n) = \begin{cases} f(x_0, \dots, x_{n-1}) & \text{se } x_n = 0\\ g(x_0, \dots, x_{n-1}) & \text{se } x_n = 1 \end{cases}$$
(1)

2.1 Solução - parte I

Não finalizado. Implementei o início e testes básicos em Clojure, mas demorei demais e gerenciei a lista, por fim, não deu tempo de finalizar.

2.2 Solução - parte II

Para solução deste problema, observamos primeiramente que a condição para que seja definido se f ou g será executado é dado por x_n . Ou seja, a saída da função h será igual à de f ou g conforme o valor de x_n . Seja $a = g(x_0, \ldots, x_{n-1})$, onde $a \in \{0, 1\}$ é o resultado da computação da função g; e seja $b = f(x_0, \ldots, x_{n-1})$, onde $b \in \{0, 1\}$ é o resultado da computação da função f. Note que a função h é equivalente a um condicional $if(x_n, a, b)$ que verifica o condicional x_n e retorna a saída a caso verdadeiro ou b caso falso. Uma abstração da ideia pode ser interpretada da seguinte forma:

$$\begin{array}{c} \text{if}(xn):\\ g(x) \\ \text{else} \\ f(x) \\ \text{end} \end{array}$$

onde xn equivale a x_n e x equivale a toda a cadeia de entrada x_0, \ldots, x_{n-1} para f ou g.

Em NAND-CIRC não temos o comando if como açúcar sintático, mas podemos implementálo apenas com comandos NAND conforme o seguinte:

```
def IF (cond, a, b):
    notcond = NAND(cond, cond)
    temp = NAND(b, notcond)
    temp1 = NAND(a, cond)
    return NAND(temp, temp1)
```

Essa implementação nos possibilita construirmos um programa P' em NAND-CIRC unindo as linhas de código do programa P_1 (todos comandos estão em NAND-CIRC) com as linhas de código do programa P_2 , respectivamente, e tratarmos as saídas. Para isso, ao final do programa P_1 , acrescentamos um comando de atribuição de uma variável a como saída do programa P_1 ; semelhantemente, ao final do programa P_2 acrescentamos um comando de atribuição de uma variável b e, por fim, adicionamos as 4 linhas de código do IF equivalente em NAND-CIRC passando o condicional x_n . Ao final, nosso programa P' terá executado o programa P_1 , o programa P_2 e verificado quem deverá ser a saída de P' avaliando x_n . Portanto, teríamos um programa da seguinte forma:

$$P' = \begin{cases} P1 & \text{c\'odigo NAND-CIRC} \\ \vdots \\ a = p1 & \text{guarda o resultado da função g} \\ P2 & \text{c\'odigo NAND-CIRC} \\ \vdots & \vdots \\ b = p2 & \text{guarda o resultado da função f} \\ notcond = NAND(X[n], X[n]) & \text{in\'icio do tratamento if} \\ temp = NAND(b, notcond) \\ temp1 = NAND(a, X[n]) \\ Y[0] = NAND(temp, temp1) & \text{resultado conforme condição do if} \end{cases}$$
 e $p1, p2 \in \{0, 1\}$ são os bits de saída do programa P_1 e P_2 , respectivamente. Tote que conseguimos dessa forma um c\'odigo em NAND-CIRC que equivale a função ou seja, dependendo do valor de x_n oferecerá como saída o equivalente à computação de saída dependendo do valor de x_n oferecerá como saída o equivalente à computação de saída de saída de saída o equivalente à computação de saída de saída o equivalente à computação de saída de saída o equivalente à computação de saída o equivalente à computação de saída de saída de saída o equivalente à computação de saída de saída de saída o equivalente à computação de saída de saída de saída o equivalente à computação de saída de saída de saída de saída o equivalente à computação de saída de saída de saída de saída de saída de saída o equivalente à computação de saída de saída

onde $p1, p2 \in \{0, 1\}$ são os bits de saída do programa P_1 e P_2 , respectivamente.

Note que conseguimos dessa forma um código em NAND-CIRC que equivale a função h, ou seja, dependendo do valor de x_n oferecerá como saída o equivalente à computação de q ou de f.

Por fim, o número de linhas que computará o programa P' será dado por $s_1 + s_2 + 6$, sendo s_1 o número de linhas de P_1 , s_2 o número de linhas de P_2 , 4 comandos para implementar o if em NAND-CIRC e 2 comandos de atribuição de variável para a e b recebendo as saídas de P_1 e P_2 .

Portanto, provamos que existe um programa P' em NAND-CIRC com no máximo s1 + s2 + 10 linhas que computa a função $h: \{0,1\}^{n+1} \rightarrow \{0,1\}$.

3 Problema 3

Parte I - (5pts)

Escreva um programa em NAND-CIRC-FOR, conforme definida na Subseção A.5, que compute $MULT3: \{0,1\}^6 \to \{0,1\}^6$, ou seja, a função que multiplica dois números de 3 bits. As entradas X[0], X[1] e X[2] representarão o primeiro número, sendo X[0] o bit de mais alta ordem, e as entradas X[3], X[4] e X[5] representarão o segundo bit, sendo X[3] o bit de mais alta ordem. O resultado da multiplicação será representado pelas saídas Y[0] a Y[5] sendo Y[0] o bit de mais alta ordem.

Escreva uma função em Clojure que receba um número n como entrada e produza como saída um programa em NAND-CIRC padrão que calcule a função $MULT_n: \{0,1\}^{2n} \to \{0,1\}^{2n}$. Sua função deve retornar uma string com o código do programa NAND-CIRC.

Demonstre ou refute a afirmação de que o programa $MULT_n$ em NAND-CIRC gerado pela sua função sempre terá menos do que $1000 \cdot n^2$ linhas de código.

3.1 Solução - parte l

Para solução deste problema, utilizei o for para gerar as multiplicações bit a bit e também for para resolver as somas dos números gerados pelas multiplicações. Fiz a multiplicação bit a bit utilizando a função AND.

Consegui testar esse código interpretando-o com desugar do for, adicionando algumas definições de função (XOR, AND, ZERO...) e executando com variante nand e dialeto proc. Os resultados foram corretos.

Arquivo com a solução do problema está em src/probl3/solucao_mult3.txt e orientações para execução em README.md.

3.2 Solução - parte II

A função "imprime-multn" recebe um número inteiro e escreve em um arquivo multn.txt o código NAND-CIRC. Foi adicionado ao arquivo da solução as definições para as funções NOT, AND, OR, XOR, ONE e ZERO como procedimentos em NAND-CIRC para utilização como açúcar sintático.

Arquivo com a implementação da solução do problema está em src/probl3/multn.clj e orientações para execução em README.md.

Tive o resultado esperado, para os testes de diversos tamanhos de n a função está correta.

3.3 Solução - parte III

Para analisar o crescimento de linhas de código da minha função com a função proposta plotei um gráfico com ambas conforme os seguintes passos:

- Executei a função multn (implementada em Clojure) para valores de n entre 2 e 18 bits. (Obs: tentei gerar até 100, mas ao aplicar o desugar do próximo passo acima de 18 bits deu erro no interpretador)
- Apliquei o desugar desses arquivos para código NAND-CIRC puro
- Contei quantas linhas de código esses programas geraram
- Plotei o gráfico comparando o número de linhas de código que meus arquivos tiveram com o equivalente na fórmula $1000.n^2$ para cada n bits de entrada, conforme tabela 2.

minha função	$1000.n^2$
100	4000
266	9000
508	16000
826	25000
1220	36000
1690	49000
2236	64000
2858	81000
3556	100000
4330	121000
5180	144000
6106	169000
7108	196000
8186	225000
9340	256000
10570	289000
11876	324000
	100 266 508 826 1220 1690 2236 2858 3556 4330 5180 6106 7108 8186 9340 10570

Tabela 2: Número de linhas de código por n
 bits de entrada para minha solução e para a expressão $1000.n^2$

Como podemos perceber na tabela 2, o número de linhas de código limite dado pela expressão $1000.n^2$ cresce muito mais rápido que o número de linhas de código resultante da minha função. Este resultado pode ser visualizado também pela Figura 1. Assim, demonstramos que o resultado da função $MULT_n$ em NAND-CIRC sempre terá menos que $1000.n^2$ linhas de código.

Crescimento de linhas de código NAND-CIRC por nº de bits de entrada

Minha função 1000xn²
350K

250K

250K

250K

0K

0K

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 n bits de entrada

Figura 1: Comparação entre aumento de linhas de código.

4 Problema 4

Considere a representação de programas NAND-CIRC dada na Definição 5.7 de Barak [2021], e repetida abaixo.

4 Definição 5.7: Representação em Lista de Tuplas Seja P um programa NAND-CIRC de n entradas, m saídas e com s linhas de código, e seja t o número de variáveis distintas usadas em P (incluindo entradas e saídas). A representação em lista de tuplas de P é um trio (n, m, L) onde L é uma lista de trios (i, j, k) para $i, j, j \in [t]$. Atribuímos números às variáveis de P da seguinte forma:

- $\bullet\,$ Para cada $i\in[n],$ a variável X[i] é associada ao número i.
- Para cada $j \in [m]$, a variável Y[j] é associada ao número j.
- Cada uma das outras variáveis é associada a um número $\{n, n+1, ..., t-m-1\}$ na ordem em que elas aparecem no programa P.

Escreva uma função em Clojure que receba como entrada o AST de um programa NAND-CIRC, i.e., uma sequência de dicionários de expressões do tipo ":assign", conforme exemplificado na Tabela 1, e retorne a representação em lista de tuplas deste programa.

Escreva uma função em Clojure que receba um trio com a representação em lista de tuplas de P, um programa NAND-CIRC, e uma sequência de 0's e 1's representando as entradas de P, e retorna uma sequência de 0's e 1's representando as saídas de P.

4.1 Solução - parte l

A solução executa um loop na lista de entrada onde cada item é um comando NAND-CIRC em AST. Para cada comando NAND, extraio as variáveis envolvidas e gero uma saída com os trios: as variáveis encontradas no left-side e as duas no rigth-side do comando NAND.

Dessa lista, separo as variáveis de entrada X, as variáveis de saída Y e as variáveis internas ao programa. Ordeno as variáveis de entrada e saída e as combino em um vetor conforme a ordem: variáveis de entrada - variaveis internas - variáveis de saída, respectivamente.

Por fim, percorro todo o AST montando a tupla com os resultados obtidos na função que busca apenas o n de entrada, o m de saída e a lista L.

Arquivo com a implementação da solução do problema está em src/probl4/ast_to_nand.clj e orientações para execução em README.md.

Tive o resultado esperado e os testes executados corretamente.

4.2 Solução - parte II

A solução foi separar as variáveis em um vetor independente com as variáveis de entrada de forma única, identificando seus nomes (números), em ordem crescente e com seu respectivo valor a ser armazenado à frente da posição da variavel. Ex: [001020314150] Neste vetor, as variaveis 0, 1, 2 e 5 estão com valor 0 e as variaveis 3 e 4 estão com valor 1. Dessa forma ficou simples manter um vetor atualizado perpetuando a cada novo passo do loop atualizando os valores das variáveis à medida em que os comandos nand vão sendo interpretados. Ao final, retorno apenas os valores das últimas m variáveis, que são as de saída Y.

Arquivo com a implementação da solução do problema está em src/probl4/exec_nand.clj e orientações para execução em README.md.

Tive o resultado esperado e os testes executados corretamente.

5 Problema 5

(20pts)

Para qualquer $n \in \mathbb{N}$ suficientemente grande, seja $E_n : \{0,1\}^{n^2} \to \{0,1\}$ a função que recebe cadeias de tamanho n2 que codificam pares (P,x), onde $x \in \{0,1\}^n$ e P é um programa NAND-CIRC, tal que P recebe n entradas e gera uma saída, e P tem no máximo $n^{1.1}$ linhas de código, e retorna a saída de P sobre x. Ou seja, $E_n(P,x) = P(x)$.

Prove que para todo valor suficientemente grande de $n \in \mathbb{N}$, não existe um circuito XOR C que compute a função E_n , onde um circuito XOR contém a porta lógica XOR e as constantes 0 e 1. Ou seja, prove que existe alguma constante n0 tal que para todo n > n0 e todo circuito XOR C de n2 entradas e uma saída, existe um par (P, x) tal que $C(P, x) \neq E_n(P, x)$.

5.1 Solução 5

A ideia geral do problema é mostrar que, utilizando somente a porta XOR, não é possível sempre construir um circuito capaz de executar qualquer programa definido em NAND-CIRC. Sempre haverá pelo menos um programa em NAND-CIRC (P,x) que não poderá ser expresso em circuito XOR C(P,x) para qualquer tamanho de n bits na entrada do programa.

Vejamos a seguinte tabela verdade para n = 2, onde $n_0 = a$ e $n_1 = b$:

a	b	NAND	XOR
a 0	0	1	0
0	1	1	1
1	0	1	1
1	1	0	0

Tabela 3: Tabela verdade para NAND e XOR

NAND e XOR são iguais quando (a,b) é (0,1), (1,0), e (1,1) e diferem quando (a,b) é (0,0). Note que o XOR é zero quando ambos bits são iguais e 1 quando são diferentes. Essa é a única distinção que o XOR faz sobre os bits: se são iguais ou diferentes. Não importa para o XOR se os bits são ambos 1 ou ambos 0 e aqui está a primeira parte do problema. Sem fazer esta distinção, não conseguimos criar um circuito apenas com XOR, 0 e 1 que reconheça essa distinção (pois, cada vez que o XOR for utilizado, essa distinção será ignorada) e, consequentemente, não conseguimos implementar um simples NAND em XOR.

Vamos verificar. A função XOR recebe dois bits de entrada e oferece como saída 2 pares de possibilidades: 2 casos em que o resultado é 0 e 2 casos em que o resultado é 1. A função NAND, por outro lado, recebe dois bits de entrada, porém, fornece como saída 3 casos em que o resultado é 1 e um caso em que o resultado é zero. Ou seja, a quantidade de zeros e uns do XOR é par e a quantidade de zeros e uns do NAND é ímpar. Se a quantidade de zeros e uns do NAND é ímpar e as saídas possíveis do XOR são pares, não temos como representar um NAND com um XOR. Vamos analisar porque também não é possível representar um NAND mesmo que utilizemos mais de um XOR.

Considere o seguinte programa XOR e a tabela para cada combinação das entradas a e b:

```
xab = XOR(a,b)
xza = XOR(0,a)
xua = XOR(1,a)
xaab = XOR(a,xab)
```

Observe que todas as saídas XOR, mesmo usando 0 ou 1 fixos ou com XOR no parâmetro (chamada recursiva) sempre retornam quantidades pares de zeros e uns. Isso mostra que a função XOR, necessariamente, apenas implementa circuitos cujas saídas sejam sempre quantidades pares de zeros e uns, independentemente da quantidade de portas XOR utilizadas, uma vez que, a última porta avaliada será uma porta XOR e dará o resultado em pares de zeros e uns.

a	b	XOR(a,b)	XOR(0,a)	XOR(1,a)	$\mid XOR(a, XOR(a,b)) \mid$
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1

Tabela 4: Tabela verdade para NAND e XOR

Assim, vimos que um circuito XOR não consegue implementar uma porta NAND(a,b). Agora vamos considerar a prova de que sempre existe um circuito C(P,x) em XOR para x de n bits que não implementa a função $E_n(P,x)$.

Tomemos como exemplo um programa semelhante ao exercício 1.2, GT_{2n} em NAND-CIRC. Seja P um programa que computa a função $GT_{2n}: \{0,1\}^{2n} \to 0,1$ tal que $GT_{2n}(x0\ldots x_{n-1}x_n\ldots x_{2n-1})=1$ se e somente se o número representado por $x0\ldots xn-1$ for maior do que o número representado por $x_n\ldots x_{2n-1}$. Considere que os números estão em binário, com o bit menos significativo à direita.

Seja n=1, logo $GT_2: \{0,1\}^2 \to \{0,1\}$. Neste caso, basta verificar se a > b que pode ser expressado por $a \land \neg b$, conforme a seguinte tabela verdade.

Tabela 5: Tabela verdade para a > b

Assim, em NAND-CIRC o programa poderia ser definido como:

```
def GT2_NAND(a,b):
    notb = NAND(b,b)
    n1 = NAND(notb, a)
    Y[0] = NAND(n1, n1)
```

Ao tentarmos aplicar uma solução com porta XOR, temos:

```
def GT2\_XOR(a,b):

notb = XOR(1,b)

n1 = ...

Y[0] = XOR(1, n1)
```

Note que não é possível implementar o passo 2 para atribuir um equivalente NAND(not, a) com portas XOR conforme explicado anteriormente. Uma outra solução diferente também não é possível, pois a saída da expressão a>b é de um número ímpar de zeros e uns, que já vimos não ser possível de expressar apenas com portas XOR, o que nos impossibilita escrevermos esse programa em XOR.

Conforme visto no exercício 1.2, a generalização da função GT_{2n} é simples. A cada novo par de bits na entrada, comparamos se o bit mais significativo do primeiro número dado por $x0...x_{n-1}$ é maior que o bit mais significativo do segundo número dado por $xn...x_{2n-1}$ e, dependendo do resultado, repetimos o processo para o próximo bit de cada um dos dois números até encontrarmos a saída. Note que nesse processo, cada comparação entre dois bits necessariamente passa pelo primeiro caso, ou seja $GT_2(a,b)$ em algum momento para avaliar se a > b (ver solução 1.2).

Neste ponto sempre esbarramos no problema de não conseguirmos finalizar essa comparação apenas usando XOR, o que implica não existir um circuito XOR capaz de implementar a função $E_n(P,x)$ para todo $n \in \mathbb{N}$.