Математический анализ 1.

Направление 38.03.01 Экономика

Семинар 9. Производные высших порядков. Формула Тейлора

1. Найдите производную функции f(x) указанного порядка k:

(1)
$$f(x) = \frac{1}{x}$$
, $k \ge 1$; (2) $f(x) = \frac{4x+5}{2x^2-x-1}$, $k = 5$;

(3)
$$f(x) = \ln(x^2 - 5x + 6), k = 5;$$
 (4) $f(x) = \ln\left(\frac{x-1}{x+1}\right), k = 4;$

(5)
$$f(x) = \sin(3x)\cos(5x)$$
, $k = 4$; (6) $f(x) = xe^{2x}$, $k = 11$;

(7)
$$f(x) = \ln(x + \sqrt{x^2 + 1}), k = 2$$
; (8) $f(x) = x^2 \sin x, k = 15$;

(9)
$$f(x) = \frac{x+4}{2x^2+9x+10}, \ k \geqslant 1;$$
 (10) $f(x) = \ln\left(\frac{2x+1}{x+2}\right), \ k \geqslant 1;$

(11)
$$f(x) = \sin^2(2x)\cos x$$
, $k = 7$; (12) $f(x) = e^{\sqrt{x}}$, $k = 3$;

(13)
$$f(x) = x^2 e^{2x}, k = 20.$$

2. Выпишите формулу Маклорена с первыми тремя ненулевыми слагаемыми функции f(x):

(1)
$$f(x) = x \ln(1+3x^2)$$
; (2) $f(x) = x^2 \cos(3x)$; (3) $f(x) = \cos(2x)\cos(3x)$.

3. Выпишите формулу Маклорена с остаточным членом в форме Пеано указанной степени k функции f(x):

(1)
$$f(x) = \sqrt{1 + \sin x}$$
, $k = 3$; (2) $f(x) = \sqrt{1 + x} \ln(1 + x)$, $k = 3$;

(3)
$$f(x) = \sqrt[3]{1+2x} \cdot \sqrt{1-x}$$
, $k=2$; (4) $f(x) = \lg x$, $k=3$;

(5)
$$f(x) = \ln(\sqrt{1+2x} + \sqrt{1+x} - 1), k = 2;$$
 (6) $f(x) = \sinh x \equiv \frac{1}{2}(e^x - e^{-x}), k \in \mathbb{N};$

(7)
$$f(x) = \operatorname{ch} x \equiv \frac{1}{2} (e^x + e^{-x}), k \in \mathbb{N}.$$

Функция $\sinh x$ называется синусом гиперболическим, а функция $\cosh x$ – косинусом гиперболическим.

4. Выпишите формулу Тейлора 2-го порядка указанной функции f(x) в заданной точке x_0 с остаточным членом в форме Пеано и форме Лагранжа:

(1)
$$f(x) = \frac{3x}{2x^2 - x - 1}$$
, $x_0 = 2$; (2) $f(x) = xe^{2x}$, $x_0 = -1$;

(3)
$$f(x) = \ln \frac{4x}{5-x}$$
, $x_0 = 1$.

5. Выпишите формулу Тейлора 3-го порядка функции f(x) в точке $x=x_0$ с остаточным членом в форме Пеано и форме Лагранжа:

(1)
$$f(x) = \frac{x-3}{2x^2+3x-2}$$
, $x_0 = 1$; (2) $f(x) = \cos^2 x$, $x_0 = \frac{\pi}{2}$;

(3)
$$f(x) = \ln(x^2 + 2x - 3), x_0 = 2;$$

6. Использовав табличные многочлены Маклорена, найдите производную k-го порядка функции f(x) в точке $x=x_0$:

1

(1)
$$f(x) = x \sin(2x)$$
, $k = 8$, $x = x_0$; (2) $f(x) = x^2 \ln(1 + 2x)$, $k = 4$, $x_0 = 0$;

(3)
$$f(x) = \frac{1}{x^2 - 2x - 3}$$
, $k = 4$, $x_0 = 2$; (4) $f(x) = \frac{1}{1 - 2x}$, $k \ge 1$;

$$(5) \ f(x) = \frac{2x+5}{x^2+5x+4}, \ k \geqslant 1;$$
 дополнительно в этой задаче найдите $f^{(10)}(0).$

7. Использовав производную $(\arctan x)' = \frac{1}{1+x^2}$ и табличные многочлены Маклорена, выпишите формулу Маклорена степени 2n+1 функции $f(x)=\arctan x$.