

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1971

The kinetics of successive aquation reactions of tetraamminepalladium (II) ion

DeBerry, William Jennings, Jr.

Monterey, California; Naval Postgraduate School

http://hdl.handle.net/10945/15789

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

THE KINETICS OF SUCCESSIVE AQUATION REACTIONS OF TETRAAMMINEPALLADIUM(II) ION

William Jennings DeBerry, Jr.

United States Naval Postgraduate School

THESIS

THE KINETICS OF SUCCESSIVE AQUATION REACTIONS

OF

TETRAAMMINEPALLADIUM(II) ION

by

William Jennings DeBerry, Jr.

Thesis Advisor:

R. A. Reinhardt

June 1971

Approved for public release; distribution wrlimited.

LIEF, TY

(** A E SCHOOL

DON'T EV, C1 F. 93940

The Kinetics of Successive Aquation Reactions

of

Tetraamminepalladium(II) Ion

by

William Jennings DeBerry, Jr. Ensign, United States Naval Reserve B.A., Southern Connecticut State College, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN CHEMISTRY

from the
NAVAL POSTGRADUATE SCHOOL
June 1971

ABSTRACT

Solutions of tetraamminepalladium(II) perchlorate were made up and analyzed.

The following acid hydrolysis reactions of tetraamminepalladium(II) ion were studied by ultraviolet spectroscopy.

First order rate constants were evaluated for each step of
the reaction series at various temperatures. Activation parameters were determined.

$$Pd(NH_3)_{4}^{2+} \xrightarrow{k_1} Pd(NH_3)_{3}OH_{2}^{2+} \xrightarrow{k_2} \underline{cis}-Pd(NH_3)_{2}(OH_2)_{2}^{2+} \xrightarrow{k_3}$$

$$Pd(OH_2)_{3}NH_{3}^{2+} \xrightarrow{k_4} Pd(OH_2)_{4}^{2+}$$

At T = 25°C,
$$\mu = 1M$$
: $k_1 = 11.0 \times 10^{-4} \text{ sec}^{-1}$, $k_2 = 5.6 \times 10^{-4} \text{ sec}^{-1}$, $k_3 = 0.58 \times 10^{-4} \text{ sec}^{-1}$, $k_4 = 0.10 \times 10^{-4} \text{ sec}^{-1}$

Mechanisms for the consecutive reactions are proposed, and cis and trans effects are discussed.

TABLE OF CONTENTS

I.	INT	INTRODUCTION			
	Α.	GENERAL	8		
	В.	TETRAAMMINEPALLADIUM(II)	9		
II.	EXP	ERIMENTAL	13		
	Α.	MATERIALS	13		
		1. Preparation of trans-Dichlorodiammine-palladium(II)	13		
		2. Preparation of Tetraamminepalladium(II) chloride Monohydrate	14		
		3. Preparation of Aqueous Tetraammine- palladium(II) Perchlorate	. 14		
	В.	ANALYSIS OF TETRAAMMINEPALLADIUM(II) PERCHLORATE SOLUTION	. 15		
	C.	EQUIPMENT	. 15		
	D.	KINETIC RUNS	16		
III.	TRE	ATEMENT OF DATA AND RESULTS	- 19		
	Α.	DETERMINATION OF RATE CONSTANTS	19		
		1. Preliminary Investigations	- 19		
		2. General Kinetic Considerations	- 20		
	В.	METHODS USED TO CHECK AND ASSIGN RATE CONSTANTS	- 24		
	c.	KINETIC RESULTS	- 34		
		1. Rate Constants	- 34		
		2. Assignment of Rate Constants to Reaction Steps	- 34		
IV.	DIS	CUSSION	- 41		
	Α.	GENERAL CONSIDERATIONS	- 41		
	в.	STRUCTURAL CONSIDERATIONS	45		

APPENDIX	X A: Absorbance Data	53
LIST OF	REFERENCES	88
INITIAL	DISTRIBUTION LIST	90
FORM DD	1473	91

LIST OF TABLES

I.	Molar Absorptivities of Palladium Compounds	30
II.	Kinetic Runs	35
III.	Wavelength for Occurrence of Absorption Maxima for Experimental and Calculated Rate Scans	39
IV.	Rate Constants and Activation Parameters	40
v.	Summary of Solvent Step Rate Constants	48
VI.	Summary of cis and trans Effects	51

LIST OF ILLUSTRATIONS

F.	iç	ru	r	e

1.	Plot of Log(A_{∞} -A) vs Time	23
2.	Plot of Experimental $(A_{\infty}-A)$ (+) and Equation (13) (Solid Line)	26
3.	Analog Computer Circuit for Simulation of Consecutive Reactions	28
4.	Plot of Log k vs Temperature	33
5.	Concentration of $Pd(OH_2)_2(NH_3)_2$ vs time $T = 37^{\circ}C$	38
6.	Analog Computer Plot of Consecutive Reaction Concentrations vs Time	42
7.	Analog Computer Plot of Consecutive Reaction Concentrations vs Time	43

ACKNOWLEDGEMENT

The author wishes to acknowledge the analog computer staff of the Electrical Engineering Department for their help with the analog computer simulations. Also the author wishes to express his appreciation to Ken Graham for his help during the course of this research; to the typist, M. Wright, for her kindness; to Dr. Richard A. Reinhardt for much patience, understanding, and guidance; and especially to his wife, Susanne, for her contribution to the preparation of this work and her continuous loving encouragement.

I. INTRODUCTION

A. GENERAL

Palladium(II) is one of a group of metals with low spin, d⁸ electronic configuration (others being Pt(II), Ni(II), Au (III), Rh(I) and Ir(I)) which form square planar coordination complexes [Ref. 1]. The idea that the square planar configuration was the form of such complexes was that of Werner [Ref. 1] who could not account for isomeric forms of dichlorodiammineplatinum(II) with a tetrahedral structure. Further evidence for a square planar configuration was the result of x-ray studies by Dickenson [Ref. 2] and dipole moment studies by Jensen [Ref. 2], along with much other experimental evidence regarding isomers.

The reactions of the square planar platinum complexes have been extensively studied [Ref. 3], and most conclusions for square planar reactions have been based on the studies of the platinum complexes. It has been observed in the platinum studies [Ref. 1] that bimolecular substitution reactions predominate. The rate law for such reactions has been determined to be:

Rate = -d [substrate]/dt = $(k_1 + k_2[Y])$ [substrate] where k_2 is the second order rate constant and refers to the bimolecular attack of Y on the substrate [Ref. 4].

The generally accepted transition state for the platinum reactions involves an associative type mechanism where the

metal temporarily takes on five bonds in a trigonal bipyramid structure such as:

$$\begin{array}{c} T > \begin{bmatrix} C_1 \\ 1 \\ C_2 \end{bmatrix}$$

where T, X and Y are in one plane with the C_1 - C_2 axis perpendicular to it.

These same conclusions have been found to apply to the other square planar d⁸ systems, Palladium(II) in particular [Ref. 4]. It has been found that platinum complexes are substitution inert, that is their reactions are quite slow. Pearson and Johnson [Ref. 5] have concluded in their studies of Pd(acac)₂ (acac = acetylacetonate) that there are basic similarities in the reactions of palladium and platinum complexes. Basolo, Grey and Pearson have found that the reactions of palladium complexes are about 10⁵ times faster than those of platinum [Ref. 6].

B. TETRAAMMINEPALLADIUM(II)

The preparation of tetraamminepalladium(II) chloride by

H. Müller is described in Mellor's <u>Comprehensive Treatise On</u>

<u>Inorganic and Theoretical Chemistry</u> [Ref. 7] where the physical properties of the monohydrate crystal are discussed.

In previous work it has been determined that tetraammine-palladium(II) will undergo consecutive substitution reactions in the presence of excess acid. If a nucleophilic reagent is available, such as chloride ion, the two term rate law is

observed to hold as it does for most other square planar complexes, rate = $-d[substrate]/dt = (k_1 + k_2[Y])[substrate]$ where Y is the substituting reagent. Results of the reactions of tetraamminepalladium(II) with chloride are found in the literature [Refs. 8, 9].

There has also been some work done on the reaction of tetraamminepalladium(II) with excess acid in the absence of any nucleophilic reagent other than the solvent. Reference is made specifically to the works of Coe et al and Rasmussen and J ϕ rgensen [Refs. 9, 10]. Both of these works report that the reaction is a consecutive reaction of at least two steps. The values of the rate constants for the first two steps are evaluated by Rasmussen and Jorgensen by pH titration methods. Coe et al determined the rate constant for the first step by initial absorbance gradient techniques. The applicable rate law was found to be, rate = $-d[substrate]/dt = k_1[substrate]$, where k_1 should be equal to the k_1 in the two term rate law for the first step in the reaction involving a nucleophilic reagent. Coe et al report spectral changes of a reacting mixture of 0.001M tetraamminepalladium(II) perchlorate with 0.01M perchloric acid, over a time scale of ninety minutes. These scans agree with scans taken by this author of a reacting mixture of 0.005M tetraamminepalladium(II) perchlorate with 1M perchloric acid in a one-cm cell, except that Coe et al report that the infinite time spectrum resembles the spectrum of diaquodiamminepalladium(II), whereas the infinite time spectrum taken by this author resembles that of tetraaquopalladium(II) [Ref. 10]. Additional evidence of the reaction

going to the tetraaquo ion is that about two weeks after a run, the reaction solution had minute traces of a brown precipitate in it. This observation compares with that of Rasmussen and Jørgensen regarding solutions of tetraaquopalladium(II) ion [Ref. 10].

The objective of this present study was the investigation of the stepwise interaction of tetraamminepalladium(II) ion with excess acid for the purpose of evaluating rate constants and activation parameters. The reactions were followed spectrophotometrically and the rate constants were evaluated from absorbance data.

In this work it was found at 25°C that, in most cases, the kinetic runs revealed three rate constants, the largest of which was on the order of the rate constants determined by Coe et al and assigned by Rasmussen and Jørgensen to be the rate of the first step, and the next largest on the order of the rate constant determined by Rasmussen and Jørgensen, to be the rate of the second step in the substitution series. The smallest values obtained from these kinetic runs was evidently the result of an additional replacement step. When the reaction was carried out at 50°C, the reaction was found to go completely to the tetraaquo ion. However, at this temperature, the largest constant that was extracted from the data was determined to be that for the second step in the replacement sequence. It was found that at any given temperature, at most three rate constants could be extracted. All the rate constants evaluated in this study are listed in Table II and specific values of these rate constants at various

temperatures along with activation parameters are given in Table IV.

II. EXPERIMENTAL

A. MATERIALS

All materials in this research, except the palladium complexes, were reagent grade and used without further purification. Sodium tetrachloropalladate was obtained from Alpha Inorganics Pd108 lot 02218.

Solutions of tetraamminepalladium(II) perchlorate were formed from the corresponding solutions of tetraamminepalladium(II) chloride by adding the equivalent amount of silver perchlorate to remove chloride from the system. The tetramminepalladium(II) chloride solution was prepared in essentially the same manner described by Reinhardt et al [Ref. 11]. Sodium tetrachloropalladate was dissolved in excess aqueous ammonia forming a solution of tetraamminepalladium(II) chloride which was purified by precipitation as transdichlorodiamminepalladium(II). This precipitate was then dissolved in excess aqueous ammonia and tetramminepalladium (II) chloride monohydrate was crystallized out by evaporation. Solutions of tetraamminepalladium(II) chloride were prepared from these crystals. Details of the synthesis follow.

1. Preparation of trans-Dichlorodiamminepalladium(II)

Approximately 2.5 grams of Na₂PdCl₄ were dissolved in distilled water. Concentrated aqueous ammonia was added to this solution until the pink salts (presumably Vauquelin's salt, [Pd(NH₃)₄] [PdCl₄]) which were formed, redissolved. The solution was then placed in an ice bath and concentrated

hydrochloric acid was added slowly until the solution was slightly acidic, at which point a yellow precipitate was formed. This precipitate (<u>trans</u>-dichlorodiamminepalladium (II)) was separated, washed in ice water and ethanol, and allowed to air dry.

2. Preparation of Tetraamminepalladium(II) Chloride Monohydrate

The <u>trans</u>-dichlorodiamminepalladium(II) was dissolved in concentrated aqueous ammonia and left to evaporate at room temperature. Long colorless needles (Pd(NH₃)₄Cl₂.H₂0) interspersed with a fine yellow crystalline material (presumably trans-dichlorodiammine) remained. About 1.3 grams of these crystals were dissolved in 100ml of water, and the resulting tetraamminepalladium(II) chloride solution was filtered to remove any insoluble impurities.

3. Preparation of Aqueous Tetraamminepalladium(II) Perchlorate Solutions

Since the kinetics were to be investigated in the absence of chloride, the chloride had to be removed. This was done by the addition of an equivalent amount of silver perchlorate to the solution, which precipitated silver chloride. The equivalent amount of silver perchlorate was determined as follows: An approximately 0.1M solution of silver perchlorate was made up and was titrated against four 5ml aliquots of the tetraamminepalladium(II) chloride solution using Fajans method [Ref. 12]. The equivalent amount of silver perchlorate was calculated and added to the remaining tetraamminepalladium(II) chloride solution which was then

filtered repeatedly to remove all of the silver chloride and diluted to a total volume of 250ml. To a small amount of this solution $(Pd(NH_3)_4(ClO_4)_2)$ some silver perchlorate was added to test for the presence of chloride. This test was negative.

B. ANALYSIS OF TETRAAMMINEPALLADIUM(II) PERCHLORATE SOLUTION

For the determination of palladium in a solution of roughly 0.015M Pd(NH₃)₄(ClO₄)₂, the precipitation of palladium as a salt of dimethylglyoxime was used essentially as outlined in Treadwell and Hall [Ref. 13]. Four ml of this solution were pipetted into a beaker and three ml of 1% dimethylglyoxime in 95% ethanol were added to this. The solution was diluted to about 75ml with water, and acetic acid was added to precipitate bis(dimethylglyoximato)palladium(II). This precipitate was collected, dried at 110°C, and weighed. From this the concentration of palladium(II) in solution was determined.

Ammonia in the solution was analyzed by the Kjeldahl method [Ref. 12]. A solution which gave a palladium analysis by the dimethylglyoxime method of 0.0151M was determined to contain 0.0602M ammonia (corresponding to 0.0150M Pd).

C. EQUIPMENT

Spectral scans were taken on a Beckman model DB recording spectrophotometer, utilizing both four- and one-cm silica cells. No provisions were made for thermostatting the cell compartment. Spectrophotometric kinetic data were taken on

a Beckman model DU spectrophotometer equipped with a thermostatted cell holder. Fused silica ten-cm cells were used initially for 25°C runs. For runs of higher temperatures, one-cm silica cells were used and the spectrophotometer was adapted with a one-cm cell holder and Beckman thermospacers. The temperature was monitored by a copper-constantan thermocouple with an ice bath cold junction, placed on the cell holder. A Varian G-4000 millivolt recorder was used to record the temperature throughout a run. Kinetic data were also taken on a Beckman model DK lA recording spectrophotometer equipped with a Beckman electrically controlled thermostatted cell holder. To maintain the temperature more precisely, a hot water bath, was used to circulate hot water through the cell holder. The temperature was monitored by a copper-constantan thermocouple with an ice bath cold junction in conjunction with the Varian G-4000 millivolt recorder. spectra were run on Perkin-Elmer 337 and 621 grating spectrophotometers with samples in KBr disc form. Analog computer data were obtained using a Comcor CI 5000 computer.

D. KINETIC RUNS

The kinetics of the acid hydrolysis reaction of tetra-amminepalladium(II) ion were studied by observing the change in absorbance with time. All runs were done at constant ionic strength of $\mu=1$ maintained with perchloric acid. For preliminary kinetic scans on the DB spectrophotometer, 10ml of 0.051M Pd(NH₃)₄(ClO₄)₂ were mixed with 100ml of 1.1M HClO₄ at ambient temperature. At various intervals

an aliquot of the reacting solution was removed, scanned and the spectral changes observed. For later runs, the reaction was run in a thermostatted water bath and aliquots were quenched in an ice bath before being scanned.

For most of the DU kinetic runs at 25°C, ten-cm fused silica cells were used for the reaction. Into both the sample and reference cells were pipetted 26ml of 1.040M perchloric acid. After thermal equilibrium was established, one ml of 0.012M Pd(NH₃)²⁺ solution was injected into the cell with a one ml hypodermic syringe fitted with a small hypodermic needle. The palladium solution was forcefully injected into the perchloric acid solution over a time span of less than two seconds. Complete mixing was almost instantaneous when using one-cm cells and was less than thirty seconds when using ten-cm cells. A timer was started as soon as the syringe was emptied, and the first absorbance reading was made as quickly as possible. Most of the other absorbance readings were taken at intervals of 50 or 100 seconds.

Higher temperature runs were made with one-cm silica cells by pipetting two-ml of 1.50 M perchloric acid into both the sample and reference cells. One ml of water was added to the reference cell. After thermal equilibrium had been obtained, one ml of 0.015M $Pd(NH_3)^{2+}_4$ solution (which was kept at the temperature of the reaction) was injected into the perchloric acid in the sample cell. Absorbance readings were then taken at certain intervals. An identical procedure was used for DK lA runs except that it was not necessary to take

absorbance readings, since the change in absorbance was continuously recorded.

III. TREATMENT OF DATA AND RESULTS

A. DETERMINATION OF RATE CONSTANTS

1. Preliminary Investigations

Initial investigations of the change in spectral scans of a reaction mixture with time indicate that the reaction does not follow simple first order kinetics, but that the acid hydrolysis is probably a stepwise consecutive reaction of the following type:

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D \xrightarrow{k_4} E$$

The complete scheme would be followed if each ammonia ligand is consecutively replaced by a water molecule:

$$Pd(NH_3)_{4}^{2+\frac{k_1}{4}} \rightarrow Pd(OH_2)(NH_3)_{3}^{2+\frac{k_2}{4}} \rightarrow Pd(OH_2)_{2}(NH_3)_{2}^{2+\frac{k_3}{4}} \rightarrow Pd(OH_2)_{4}^{2+\frac{k_3}{4}} \rightarrow Pd(OH_2)_{4}^{2+\frac{k_3}{4}}$$

In general, it was found that at 25°C the kinetic runs revealed three rate constants, presumably those for the first three steps in the overall reaction scheme. Likewise at higher temperatures, three rate constants were also generally observed, presumably those for the last three steps in the reaction scheme. These observations were due to the fact that at low temperatures, the slowest step had a half life much greater than the time over which the run was carried out, and at higher temperatures the fastest step had a half life on the same order of magnitude as the sampling period.

2. General Kinetic Considerations

Based on the previous observations it is possible to consider at any given temperature, the above consecutive reaction occurring via three steps,

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$$

For such a reaction the system of differential equations may be given for each species as follows [Ref. 14]:

$$(1) \quad \frac{-d A}{dt} = k_1 A$$

$$(2) \quad \frac{d B}{dt} = k_1 A - k_2 B$$

$$(3) \quad \frac{d C}{dt} = k_2 B - k_3 C$$

$$(4) \qquad \frac{d D}{dt} = k_3 C$$

Solving equations (1) - (3) for concentration of each species, one obtains:

$$(5) \qquad A = A_0 e^{-k_1 t}$$

(6)
$$B = \frac{A_0 k_1}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t})$$

(7)
$$C = \frac{k_1 k_2 A_0}{k_2 - k_1} \left[\frac{e^{-k_1 t} - e^{-k_3 t}}{k_3 - k_1} + \frac{e^{-k_3 t} - e^{-k_2 t}}{k_3 - k_2} \right]$$

Making the following identifications [Ref. 14]

(8)
$$a = e^{-k_1 t}$$

(9)
$$b = X(e^{-k_1t} - e^{-k_2t})$$

(10)
$$c = XY \left[(k_3 - k_2) e^{-k_1 t} - (k_3 - k_1) e^{-k_2 t} + (k_2 - k_1) e^{-k_3 t} \right]$$

(11) d = 1-a-b-c

where

$$a = A/A_0$$

$$b = B/A_O$$

$$c = C/A_0$$

$$x = \frac{k_1}{k_2 - k_1}$$

$$Y = \frac{k_2}{(k_3 - k_1)(k_3 - k_2)}$$

and

(12)
$$\bar{e} = e_A a + e_B b + e_C c + e_{\infty} d$$

where

e = absorbance per cm divided by total concentration

e; = molar absorptivity of the ith species

e_m = molar absorptivity at infinite time.

One obtains by substitution of equations (8)-(11) into equation (12):

(13)
$$\bar{e} - e_{\infty} = I_1 e^{-k_1 t} + I_2 e^{-k_2 t} + I_3 e^{-k_3 t}$$

where

$$I_1 = [(e_A - e_{\infty}) + (e_B - e_{\infty})X + (e_C - e_{\infty})(k_3 - k_2)XY]$$

$$I_2 = -[(e_B - e_{\infty})X + (e_C - e_{\infty})(k_3 - k_1)XY]$$

$$I_3 = [(e_C - e_\infty)(k_2 - k_1)XY]$$

If k_3 is arbitrarily chosen as the rate constant for the slowest step, the following is obtained:

(14)
$$\ln(\overline{e} - e_{\infty}) = \ln I_3 - k_3 t + \ln \left[1 + \frac{I_2}{I_3} e^{-(k_2 - k_3)t} + \frac{I_1}{I_3} e^{-(k_1 - k_3)t} \right]$$

At long times, the last terms on the right hand side of equation (14) become negligible and a plot of $\ln(\bar{e}-e_{\infty})$ versus time should be linear with slope of $-k_3$ and intercept $\ln I_3$. The rate constants k_2 and k_1 could be extracted from this equation by following the method used by Ashley and Hamm [Ref. 15] of extrapolating the linear portion to zero time, and plotting the difference between the extrapolated line and the nonlinear experimental points. This results again in a linear and nonlinear portion. The linear portion has slope $-k_2$ and intercept $\ln I_2$. The same procedure is repeated, yielding $-k_1$ and $\ln I_1$. Figure (1) is an example of this plot.

The Guggenheim method of analysis [Ref. 14] was used in some cases where infinity readings were difficult to obtain. For these cases, $\ln \bar{e} - \bar{e}_{t+\Delta}$ was plotted versus time where Δ is a fixed interval of time usually greater than twice the half life of the step in question. The rest of the analysis follows the same method previously outlined.

For a few runs, a computer program [Ref. 16] based on a nonlinear least squares fit was used to determine rate constants from the raw data. In this program, which utilized a Wang 700 computer, absorbance and time data as well as estimates of the rate constants and infinite absorbance, if

available, were entered into the program. Based on these estimates of the rate constants, the program calculated the root mean square deviation of equation (13) from the data points. The faster rate constant was then varied with the others held constant and the value of the rate constant which yielded the least deviation was established. The next faster rate constant was now varied to try to obtain the least deviation. With this value fixed, the faster rate constant was again varied to try to find a value which would yield an even smaller deviation. If this yielded a different value for the faster constant, this value was held constant and the process was repeated until the changes in the rate constants were less than experimental error. The slowest rate constant was then varied with the others fixed to give the least deviation. With the best value for this constant the other rate constants were varied to obtain the least deviation. This process was repeated until the value of all rate constants gave the least deviation from the experimental points. These rate constants were then considered the best ones for a given set of data.

B. METHODS USED TO CHECK AND ASSIGN RATE CONSTANTS

After rate constants were determined by the previously outlined methods, it was desirable to check the accuracy of these rate constants. One method used was a computer program [Ref. 16] which involved the use of a Hewlett Packard desk calculator model 9120A and plotter package. This program plotted the data points and utilized the rate constants and

intercepts derived from the rate plots to plot a curve, based on equation (13), where I is to be identified with the intercept for a given step. For this analysis, \overline{e} was the absorbance at time t, e_{∞} was the assumed absorbance at infinite time or the equivalent in Guggenheim analysis $\overline{e}_{t+\Delta}$. Since the data points $\overline{e}-e_{\infty}$ or $\overline{e}-\overline{e}_{t+\Delta}$ were plotted on the same graph as the curve based on the derived constants, it was possible to determine, at least qualitatively, the accuracy of the derived constants in terms of the data for a given kinetic run. The interdependence of the intercepts on the rate constants and the rate constants on each other made "curve fitting" impractical by this method. However, if there was a discrepancy in the fit, it was possible to reanalyze the rate plot in terms of the observed discrepancy. Figure (2) is an example of these plots.

The methods used to determine the rate constants yielded them in order from the slower rates through the faster ones. These methods did not allow one to assign a particular rate constant to a particular step in the overall reaction scheme. Because of this, a method was needed that would enable one logically to assign the rate constants to the reaction steps. The initial gradient method of analysis used by Coe et al [Ref. 9] for the aquation of tetraamminepalladium(II) is generally regarded as best being able to determine the first rate constant in a series reaction. In addition, Reinhardt et al determined through careful analysis of isosbestic conditions [Refs. 8, 17] the rate constant for the chloride independent path of the reaction of tetraamminepalladium(II) chloride

with hydrochloric acid. The fastest rate constant observed by this author agreed substantially with those values for the first step as determined independently by Coe et al, and Reinhardt, et al.

From equation (13) and the expression for $I_3 \ (I_3 = (e_c - e_{\infty}) \ (k_2 - k_1) \ XY) \ \text{it may be seen that at a wavelength}$ where $e_c = e_{\infty}$, the entire coefficient I_3 is equal to zero, and equation I_3 reduces to

 $\overline{e} - e_{\infty} = I_1 e^{-k_1 t} + I_2 e^{-k_2 t}$

A comparison at a given temperature of kinetic runs at the wavelength where the above isosbestic condition holds and some other wavelength should enable one to determine which rate constant to associate with the step involving the isosbestic condition. The problem of assigning the two remaining constants was solved by simulating the reaction scheme on an analog computer [Ref. 8]. The diagram for the analog simulation circuit is given in Fig. (3). The rate constants were assigned to particular reaction steps in the analog computer circuit where they were simulated by potentiometer settings. Five outputs from the circuit, which were recorded simultaneously, represented the change in concentration of species A, B, C, D and E in the reaction scheme given in Section III, A-1 with respect to time. Since the absorbance of the ith species is given by:

$$A_i = e_i C_i d$$

where e_i is the molar absorptivity of the ith species at a given wavelength, C is the molar concentration and d is the

Analog Computer Circuit for Simulation of Consecutive Reactions Figure 3.

path length; it is possible to calculate the absorbance at a given wavelength, knowing the molar absorptivity and concentration and assuming d=1. Also, the average absorbance \overline{A} at a given wavelength is given by [Ref. 17]:

 $\overline{A} = C_{\Delta}e_{\Delta} + C_{R}e_{R} + C_{C}e_{C} + C_{R}e_{R} + C_{E}e_{E}$ The molar absorptivities for the species, $Pd(NH_3)^{2+}_{4}$, $Pd(OH_2)_2(NH_3)_2^{2+}$, $Pd(OH_2)_3NH_3^{2+}$, and $Pd(OH_2)_4^{2+}$ were published by Rasmussen and Jorgensen [Ref. 10], over wavelengths from about 280nm to 400nm. Missing from the data by Rasmussen and $\mathrm{J}\phi$ rgensen are the molar absorptivities for $\mathrm{Pd}(\mathrm{NH}_3)_{3}\mathrm{OH}_{2}^{2+}$. Since the wavelength for the absorbance maximum for this species is given, this author arbitrarily chose the molar absorptivity of this species to be 210 at 320nm. The absorptivities at other wavelengths were found by interpolating between this maximum and the curve in Rasmussen and Jorgensen's Fig. 4 [Ref. 10] labeled \overline{n} = 2.95. The values of this interpolation along with the rest of the data used are given in Table I. Using the data given in Table I along with the analog computer concentration data, the average absorbance data of the reacting species were calculated over the range of wavelengths from 280nm to 400nm for several different times. A Fortran IV program, written by this author, was used to calculate this information on an IBM 360 computer. A plot of this information resulted in scans over the range of wavelengths for different times. These calculated scans were compared with actual scans of the reaction from the DB spectrophotometer

TABLE I

MOLAR ABSORPTIVITIES OF PALLADIUM COMPOUNDS

		Molar Absorptivities a of	ć	Ċ
Pd (NH ₃) 4	Pd(OH ₂) (NH ₃) ²⁺	Pd(OH ₂) ₂ (NH ₃) ₂	Pd(OH ₂) ₃ NH ₃	Pd(OH ₂) 4
	. 20 .	41	70	70
	30	61	93	. 77
	47	06	115	78
	09	125	127	75
	85	153	130	89
	q ⁰¹¹	206	. 122	55
	147 ^b	. 215	108	41
	188 ^b	198	87	27
	210 ^b	160	09	15
	q061	120	40	11
	150 ^b	92	28	0
	108 ^b	45	22	∞
	99	22	20	6

Given in units of absorbance per cm divided by concentration

^a[Ref. 10]. ^b[Ref. 10] values obtained by assuming maximum absorptivity of Pd(OH₂)(NH₃) $_3^2$ occurs between that of Pd(NH₃) $_4^2$ and Pd(OH₂) $_2^2$ (NH₃) $_2^2$

and the assignment of rate constants was based on their comparison.

As an additional check of the proper assignment of rate constants, the concentration of $Pd(OH_2)_2(NH_3)_2^{2+}$ was roughly determined at various times during the course of the reaction. This was accomplished by adding chloride ion to a reacting solution 0.057M in palladium and lM in perchloric acid (at 37° C). The chloride ion should react with any species in the reacting solution as follows: (Rate constants are $10^4 \text{M}^{-1} \text{sec}^{-1}$).

1.
$$Pd(NH_3)_4^{2+} + Cl^{-\frac{8.3^a}{2}} Pd(NH_3)_3Cl^{+}, + Cl^{-\frac{30.8^a}{2}}$$

 $\underline{trans}-Pd(NH_3)_2(Cl_2)$

2.
$$Pd(OH_2)(NH_3)_3^{2+} + Cl^{-} \xrightarrow{fast} Pd(NH_3)_3Cl^{+} + Cl^{-} \xrightarrow{30.8}$$

 $\underbrace{trans-Pd(NH_3)_2Cl_2}$

3.
$$\underline{\text{cis-Pd}}(OH_2)_2(NH_3)_2^{2+} + 2C1^{-} \xrightarrow{\text{fast}} \underline{\text{cis-Pd}}(NH_3)_2^{C1}_2^{a}$$
[Ref. 8].

The anation of the aquo species in reactions 2 and 3 is considered to be quite fast. Aprile and Martin [Ref. 19] give the corresponding rate of anation of Pt(NH₃)₃(OH₂)²⁺ by Cl⁻ as 2.6x10⁻⁵sec⁻¹ at 25°C. Considering that the relative reactivities of Pd to Pt is about 10⁵ [Ref. 6], the corresponding rate of anation for the palladium case should be about 2.6sec⁻¹ at 25°C. Thus it can be seen that the overall rate of reaction 3 is greater than the rate of reaction 2 is greater than reaction 1. Also, reactions 1 and 2 yield trans isomers while reaction 3 yields cis isomer.

The addition of chloride should yield a precipitate [Ref. If this precipitate is filtered off immediately after it is formed it should be a rough measure of the concentration of Pd(OH₂)₂(NH₃) $_2^{2+}$. Actually, according to equations 1, 2, and 3, above, and the discussion of the rates of these reactions, any immediate precipitate should be due to equation 3 and the product should be cis-Pd(NH3)2Cl2, while another precipitation should occur at a later time and should be trans-Pd(NH3)2Cl2. It was anticipated that the actual yield of cis-Pd(NH3)2Cl2 would be less than the concentration of cis- $Pd(OH_2)_2(NH_3)_2^{2+}$, since the reaction of $\underline{cis}-Pd(NH_3)_2Cl_2$ with chloride ion in acid is substantial [Ref. 21]. The approximate concentration of cis-Pd(OH2)2(NH3)2+ determined by this method may be compared with the concentrations using a particular assignment for the rate constants. A favorable comparison would indicate the proper choice for the assignment of k2 and k2. (This analysis would not determine anything about rate constants k₁ and k₂, however since interchanging these two constants has no effect on the concentration of diaquodiammine.)

An experiment designed to determine the relative abundance of <u>trans</u> impurities in the <u>cis</u>-dichlorodiammine precipitate was attempted, based on the differential rates of reaction of <u>cis</u> and <u>trans</u> species in HCl. The findings however, were inconclusive.

C. KINETIC RESULTS

1. Rate Constants

Table II summarizes the results of the kinetic runs done on the DU and DK lA spectrophotometers and analyzed as outlined previously in Section III, A2. The results are also plotted in Fig. (4) to show the temperature dependence of ln k. The plot of ln k vs 1/T yielded the Arrhenius activation energy, which was used to estimate the activation parameters.

2. Assignment of Rate Constants to Reaction Steps

As indicated previously in Section III, B, the largest rate constant was assigned to the first step in the reaction on the basis of previous results. From the dependence of rates on wavelength the smallest constant was assigned to the last step. From Fig. 4 in Rasmussen and Jørgensen [Ref. 10] it was seen that $e_C = e_\infty$ at about 396nm where e_C represents the molar absorptivity of $Pd(OH_2)_3(NH_3)^{2+}$, and e_C represents the absorbance at infinite time, which corresponds to the molar absorbtivity of $Pd(NH_3)_4^{2+}$. Thus at this wavelength, the rate constant for the reaction step $Pd(OH_2)_3NH_3^{2+} \rightarrow Pd(OH_2)_4^{2+}$ should not be seen, as explained in Section III, B. By comparing runs at this wavelength with runs at other wavelengths, it was found that this step corresponded to the smallest constant.

The results of adding chloride ion to a reacting solution of $Pd(NH_3)^{2+}_4$ and $HCl0_4$ are shown in Fig. [5]. The $Pd(NH_3)_2Cl_2$ filtered out was found to be the <u>cis</u>-isomer by the characteristic IR absorbtion band at 1260 cm⁻¹ which is

TABLE II
KINETIC RUNS

All k x 10^{+4} sec. ⁻¹
70 °C runs \pm .25 with electrically heated thermostat

Run No.	T+.1°C	λ(nm)	Analysis ^a	k ₁	k ₂	k ₃	k ₄
DU 2 DU 2 DU 3	25 25 25	300 300 300	$\Delta = 10,000$ $\Delta = 5,000$ $\Delta = 5,000$	10.96 11.5 9.72	5.75 5.35 4.43	.78 1.09	
DU 5 DU 7 DU 6	25 25 25	305 310 310	$\Delta = 2,500$ A_{∞} $\Delta = 2,500$	9.8	6.5 7.08 6.63	.89 .55	
DU 9 DU 10	25 50	360 310	$egin{array}{c} A_{\infty} \ A_{\infty} \end{array}$	10.97	4.79 76.1	9.37	2.32
DU 11 DU 11 DU 15	50 50 55	320 320 323	A_{∞} $\Delta=5,000$ $\Delta=5,000$		70.8	6.14 8.65 15.4	1.82 1.99 3.15
DU 13 DU 14 DU 14	55 55 55	340 350 350	$\Delta=5,000$ $\Delta=5,000$ A_{∞}		76.8 98	14.57 15.5	2.97 2.89 2.89
DU 16 DU 17 DU 18 DU 19	62.8 62.8 63.1 63.2	325 325 350 350	A_{∞} A_{∞} $\Delta = 2,000$ A_{∞}			37.75 41.87 41.50 34.63	7.49 8.01 7.43 7.41
DK 1A 22 DK 1A 22	38.8 38.8	310 310	Wang A∞	83.44	18.83 18.27	2.11	
DK 1A 21 DK 1A 23 DK 1A 24 DK 1A 24	38.8 38.8 38.8 38.8	330 396 400 400	$egin{array}{c} A_{\infty} & & & \ A_{\infty} & & & \ & A_{\infty} & & \ & & & \ & & \ & & \ & \ & \ & \ $	76.7	48.5 29.4 17.1 15.46	2.52 5.26 3.2 2.8	.481
DK 1A 25 DK 1A 26 DK 1A 26	40 40 40	310 396 396	A_{∞} A_{∞} Wang	83.5	18.3 22.83 19.7		

 $^{^{\}mathrm{a}}\Delta$ Refers to delta in Guggenheim analysis.

 A_{∞} Indicates plot of log $A-A_{\infty}$ vs t.

Wang Indicates the nonlinear least square program analysis.

TABLE II--Continued

All k x 10^{+4} sec. ⁻¹
70 °C runs \pm .25 with electrically heated thermostat

Run No.	T <u>+</u> .1°C	λ(nm)	Analysis ^a	ĸ ₁	k ₂	k ₃	k ₄
DK 1A 27	50	328	A∞			7.84	1.47
DK 1A 28	50	396	\mathbb{A}_{∞}		68.8	13.3	
DK 1A 29	58.5	300	A_{∞}		213.2	27.4	6.8
DK 1A-29	58.5	300	Wang		190.0	25.2	7.0
DK 1A 30	59.7	360	A _∞ 6	60.	194.8		8.39
DK 1A 31	59.7	380	A_{∞}		214.0	38.0	
DK 1A 32	59.7	400	A_{∞}		171.3	39.9	
DK 1A 33	59.8	420	A_{∞}			40.4	8.6
DK 1A 34	66.4	325	A_{∞}			65.1	15.1
DK 1A 35	67.6	310	${ m A}_{\infty}$		384	71.0	17.28
DK 1A 36	7 0 ·	310	\mathbb{A}_{∞}				37.2
DK 1A 37	70	320	A_{∞}		640	112.5	24.7
DK 1A 38	70	396	A_{∞}			111.6	

absent in the <u>trans</u> isomer [Ref. 20]. A precipitate formed in the filtrate of the solution and this was determined to be the <u>trans</u>-isomer. At each time, 3ml of reacting solution were removed for determination. Figure (5) shows that the concentration of <u>cis</u>-dichlorodiammine is less than the concentration of <u>cis</u>-diaquodiammine, as would be expected. Also, the curve based on the assignment of k₂ is greater than k₃ best approximates the experimental concentration data.

The rate constants at 25°C as determined by the plot of ln k vs. temperature were used in the analog computer to obtain concentrations as functions of time. These data together with the molar absorptivity data from Rasmussen and Jørgensen [Ref. 10] listed in Table I, were used to plot absorbance vs. wavelength scans at various times. The assignments of the rate constants were permuted in a logical manner and the scans for these permutations were calculated. As can be seen from Table III, the assignment of the rate constants as follows, is in best agreement with the actual scan at 25°C:

$$Pd(NH_{3})_{4}^{2+} \xrightarrow{k_{1}=11.0\times10^{-4}} Pd(OH_{2})(NH_{3})_{3}^{2+} \xrightarrow{k_{2}=5.6\times10^{-4}}$$

$$\underline{cis} Pd(OH_{2})_{2}(NH_{3})_{2}^{2+} \xrightarrow{k_{3}=0.58\times10^{-4}} Pd(OH_{2})_{3}NH_{3}^{2+} \xrightarrow{k_{4}=0.10\times10^{-4}}$$

$$Pd(OH_{2})_{4}^{2+}.$$

4000 $= 18.5, 10^4$ Experimental concentration points Concentration of $Pd(OH_2)_2(NH_3)_2$ 3000 upper curve for 104 X lower curve for 10 vs time T = 37°C. × 2000 Sec 11 Figure 5. × × 100 80 09 20 Percent of initial palladium concentration

TABLE III

WAVELENGTH FOR OCCURRENCE OF ABSORPTION MAXIMA
FOR EXPERIMENTAL AND CALCULATED RATE SCANS

	μ=l Experimental	Order l ^a (order 2ª	Order 3ª	Order 4ª
12 2001	DB Scans	01001 1		01401 0	01401
500 1000 2000 3000 4000 5000 10,000 15,000 20,000 30,000 40,000 50,000 60,000	305 314 325 336 340 344 348 350	302 313 326 333 338 340 344 347 348 352 358 359 360 366	300 307 317 328 330 336 340 340 340 340 340 344 344	300 310 317 320 320 320 322 324 325 331 335 348 355 358	300 305 318 335 338 340 342 345 346 346 350 350 350 360
100,000	368	368	344	362	363
a	4 –1	4 -1	Δ	-1	_ 41
^a Order	10 ⁴ k ₁ sec ⁻¹	$10^4 k_2 sec^{-1}$		3 ^{sec-1}	$10^4 k_4 sec^{-1}$
1 2 3 4	11.0 11.0 11.0 05.6	5.6 5.6 0.58 11.0	0 5	.58 .1 .6 .58	0.1 0.58 0.1 0.1

TABLE IV

RATE CONSTANTS AND ACTIVATION PARAMETERS

T°C	10 ⁴ k ₁ sec ⁻¹	10 ⁴ k ₂ sec ⁻¹	10 ⁴ k ₃ sec ⁻¹	10 ⁴ k ₄ sec ⁻¹
15 20	4.8 ^b 5.5 ^a 7.7 ^b	3.3 ^a		
25	4.0 ^c 11.0 11.0 ^d	1.7 ^c 5.6 4.0 ^c	0.58	0.10 ^a
	13.7 ^b 7.8 ^c			
40 ΔH* kcal./mol	80 24.2	21 19.5	3.4 22.2	0.56
ΔS* eu	+8	- 9	-4	-8

a Values extrapolated from Fig. (4).

b Reference [9].

c Reference [10].

d Reference [8].

IV. DISCUSSION

A. GENERAL CONSIDERATIONS

It may be noticed from Table II for the kinetic runs and Fig. (4) the plot of the kinetic results vs temperature that there are really very few data for k₁. Also, the results presented for this first step are probably the least reliable of the four rate constants determined in this research. arises primarily from the fact that all of the faster rate constants are based on values of the slower rate constants. In the method of analysis employed, (Section IIIA,2) the linear portion of the log $(A^{-}A_{\infty})$ vs time plot was extrapolated to zero time. This linear portion represented the slowest step. In the case of the fastest step, if the reaction was run at a temperature high enough to yield a good value for the slowest step, the fastest step was so fast that its half life was of the same order as the sampling period, and, therefore, was indetectable. Likewise, as a lower temperature, the half life of the slowest step was so long that to follow the reaction that length of time was impractical. For these reasons, there are fewer data in this report for the fastest step than for the others; and except for the results at 25°C which agree fairly well with published values, the temperature dependence of this first step remains uncertain.

It should be pointed out that the peculiar value for the activation entropy, which for the first step is positive, is

Analog computer plot of consecutive reaction Figure 6.

an indication of a problem, since all the other activation entropies are negative, and an associative mechanism predicts a negative activation entropy. The positive activation entropy for this step is undoubtably due to the use of a too high activation enthalpy.

The following mechanism is not inconsistent with the rate data and activation parameters observed for this reaction series, except perhaps for the activation parameters of the first step which are uncertain. One may consider the square planar configuration to be a tetragonally distorted octehedron with solvent molecules loosely held in the axial positions. The process may proceed as follows:

B. STRUCTURAL CONSIDERATIONS

In the reaction series with tetraamminepalladium(II) in perchloric acid, it has been demonstrated that the diaquodiamminepalladium(II), formed as an intermediate, exists predominantly in the <u>cis</u> configuration [Ref. 20]. This is shown by adding chloride ion to the reacting solution in which the diaquodiammine species is present. The chloride immediately replaces the water in the complex and precipitates out as a bright yellow solid. Infrared studies reveal the characteristic absorbtion bands of the cis isomer.

It is interesting to note that in the reaction of tetraamminepalladium(II) with hydrochloric acid, in which the
ammonia ligands are replaced by chloride ions, the configuration of dichlorodiamminepalladium(II) exists as the more stable
trans isomer [Ref. 8]. The question naturally arises as to
what causes these differences. It is known from the studies
of platinum(II) that there are certain ligands which tend to
labilize the ligand trans to it. This is known as the "trans
effect" [Ref. 1]. From the generally accepted order of trans
labilizing ligands, Cl is greater than NH₃ which is greater
than H₂0. The results that the aquation of tetraamminepalladium(II) yields a cis intermediate, and chloride substitution yield a trans intermediate seem consistent with the
accepted trans effect order.

To try to correlate the rate data for a particular set of related reactions and try to make some generalizations is an important goal of the research chemist. For example, the

previously noted "trans effect" order resulted from the correlation of much rate data on the reactions of platinum complexes. Comparisons of rates of different reactions with some features in common give rise to generalizations. Of continuing interest is the testing of these generalizations by new rate data. Of particular interest to those working with square planar complexes is the effect on rate of the substituents cis as well as trans to a leaving group.

It may be appropriate to compare the structural effects on the rate of a solvent path of a reaction. All the rate constants derived in this work refer to the solvent path. Consider Table V, the summary of solvent step rate constants, where n is the number of equivalent NH₃ leaving groups, and the rates are given as 10⁴k. It should be noticed that there are several reactions listed which have the same <u>cis</u> neighbors. For these reactions one may compare the different rate effects of the <u>trans</u> neighbors. Likewise for reactions with the same <u>trans</u> neighbors, the effect of different <u>cis</u> neighbors may be compared.

For reactions 1 and 2 the relative trans effect of Cl $_{1}$ vs. NH $_{3}$ is about 3.3. Comparing reactions 3 and 4, one notices a trans effect of Cl $_{1}$ vs. NH $_{3}$ of about 1.3, using the rate constant given by Poe and Vaughan [Ref. 21] for this step at 25°C $_{1}$ Less than 4 also compare reactions 6 and 7 for the relative trans effect of NH $_{3}$ vs. H $_{2}$ 0 and obtain a factor of 9.7. Thus for a trans effect, the relative order Cl $_{1}$ greater than NH $_{3}$ greater than H $_{2}$ 0 is again observed.

A <u>cis</u> effect may be observed for several reactions.

Considering first reactions 2 and 8 it can be seen that one <u>cis</u> Cl deactivates the reaction relative to one <u>cis</u> NH₃

ligand by a factor of about 3.8, whereas in reactions 3 and 8 for the same ligands one finds a factor of 100. In reactions 1 and 4 one observes a <u>cis</u> deactivation of two Cl vs. two NH₃ of about 150. If one compares reactions 2 and 3 one will observe the <u>cis</u> deactivation of two <u>cis</u> Cl vs two <u>cis</u> NH₃ of 400. It may also be determined that in reactions 5 and 7, an H₂0 ligand <u>cis</u> to the leaving group deactivates the reaction relative to an NH₃ group <u>cis</u> by about 3. Whereas the comparison of equations 1 and 6 indicates a <u>cis</u> deactivation of H₂0 vs NH₃ of 1, i.e., no <u>cis</u> effect. Thus these results would seem to indicate a <u>cis</u> group deactivation order of Cl

> H₂0 > NH₃. However, there seems to be quite a range of values for the deactivation by <u>cis</u> ligands, for example, the observed values for <u>cis</u> deactivation of Cl vs NH₃ of 3.8 in one case and 100 in another. This could indicate that this may not really be an adequate basis for determining <u>cis</u> effects, or that some of the rate constants may be in error.

To attempt to systematize the relative $\underline{\text{trans}}$ and $\underline{\text{cis}}$ effects of various ligands in the substitution of Cl in the chloroammineplatinum(II) series, Tucker, Colvin and Martin [Ref. 22] have used the empirical relationship $k/n=X(Y)^m(Z)^p$ where n is the number of equivalent leaving groups, m is the number of NH₃ ligands $\underline{\text{trans}}$ to the leaving group, p is the

TABLE V
SUMMARY OF SOLVENT STEP RATE CONSTANTS

No.	Reaction	n	10 ⁴ k/n	Group trans	Group <u>cis</u>
1.	Pd(NH ₃) ²⁺ + H ₂ O 11.0	4	2.75	NH ₃	NH3-NH3
	Pd(NH ₃) ₃ OH ₂ ²⁺				
2.	$Pd(NH_3)_3C1^+ + H_2O \xrightarrow{9.0^a}$	1	9.0	cı-	^{NН} 3 ^{-NН} 3
	trans-Pd(NH ₃) ₂ OH ₂ Cl ⁺				
3.	$Pd(NH_3)Cl_3 + H_2O \xrightarrow{.023}$	1	.023	Cl	Cl-Cl
	Pd(OH ₂)Cl ₃				
4.	$\underline{\text{trans-Pd}(NH_3)_2Cl_2} + H_2O \xrightarrow{.037^b}$	2	.018	NH ₃	Cl-Cl
	trans-Pd(NH ₃)(OH ₂)Cl ₂				
5.	$Pd(NH_3)(OH_2)_3^{2+} + H_2O \xrightarrow{.1}$	1	.1	H ₂ O	н ₂ о-н ₂ о
	Pd(OH ₂) ²⁺ ₄			•	
6.	$Pd(NH_3)_3OH_2^{2+} + H_2O \xrightarrow{5.6}$	2	2.8	NH ₃	H ₂ O-NH ₃
	cis-Pd(NH ₃) ₂ OH ₂ ²⁺				
7.	$\underline{\text{cis-Pd}(NH_3)_2(OH_2)_2^{2+} + H_2O} \xrightarrow{.58}$	2	.29	н ₂ о н	^H 2 ^{O-NH} 3
	.Pd(NH ₃)(OH ₂) ²⁺ 3				

a_{Reference} [5].

b_{Reference} [18].

TABLE V--Continued

No.	Reaction	n	10 ⁴ k/n	Group trans	Group cis
8.	<u>cis-Pd(NH₃)₂Cl₂ + H₂O 4.</u>	8 ^b → 2	2.4	cı-	C1-NH ₃
	Pd(NH ₃)Cl ₂ OH ₂				

number of NH₃ ligands <u>cis</u> to the leaving group and X, Y, and Z are empirical constants. Reinhardt and Monk [Ref. 23] have used a similar equation for the <u>cis</u> and <u>trans</u> effects in reactions of the chloroammine series of palladium(II). A similar equation may be used to try to correlate the rates of the reactions in Table V.

Such an equation may be given as:

$$k/n = 0.03 \times 10^{-4} (0.5)^{m} (15)^{p} (0.05)^{o} (10)^{q}$$

where n is the number of equivalent NH $_3$ leaving groups, m is the number of NH $_3$ groups trans to the leaving group; p, the number of NH $_3$ groups cis to the leaving group; o, the number of H $_2$ 0 groups trans to the leaving groups and q the number of H $_2$ 0 groups cis to the leaving group. All of the rate constants fit this equation to within about 20% except that given in reaction 8, for which this equation predicts 0.45x10 $^{-4}$.

Thus it may be seen that in reactions involving chloride ion there is a profound <u>cis</u> effect, whereas in reactions not involving chloride ion there is less of an effect due to the <u>cis</u> neighbor, and the <u>trans</u> effect predominates. This information indicates that perhaps the <u>cis</u> effect is the result of a charge on the <u>cis</u> neighbor. All the reactions in Table V not involving chloride ion should exhibit no charge effect, whereas reactions involving chloride ion may exhibit such an effect. Cis and trans effects are summarized in Table VI.

Further information in this area could be obtained from looking at the reverse series of reactions, starting with tetraaquopalladium(II) ion and determining the rate constants

TABLE VI SUMMARY OF CIS AND TRANS EFFECTS

	trans Effect			
Reaction Pair -Table V	Groups Involved	Activation Factor		
1,2	Cl_vs_NH3	3.3		
3,4	Cl vs NH3	1.3		
6,7	NH ₃ vs H ₂ O	9.7		
	cis Effect			
Reaction Pair -Table V	Groups Involved	Deactivation Factor		
. 2,8	lCl vs lNH3	3.8		
3,8	1Cl vs lNH3	100		
1,4	2Cl vs 2NH ₃	150		
2,3	2Cl vs 2NH ₃	400		
5,7	1H ₂ O vs 1NH ₃	3		
1,6	lH ₂ 0 vs lNH ₂	1		

of successive ammonation. It would be anticipated that these rates would depend on the ammonia concentration and follow the usual two term rate law. Insight could also be gained as to relative cis and trans effects.

APPENDIX A

ABSORBANCE DATA

This Appendix contains all absorbance versus time data taken during the course of this research. Times for DU data are in seconds, while for DK lA data times are in minutes. The data pertains to the following reaction:

$$Pd(NH_3)_4^{2+} \stackrel{k}{\to} 1$$
 $Pd(OH_2)(NH_3)_3^{2+} \stackrel{k}{\to} 2$ $Pd(OH_2)_2(NH_3)_2^{2+} \stackrel{k}{\to} 3$
 $Pd(OH_2)_3(NH_3)^{2+} \stackrel{k}{\to} 4$ $Pd(OH_2)_4^{2+}$

DU Run -1

ALT CI		T = 25.0	U C	٨	- 3001	.1111	
in sec	onds	Pd = .4	45mM	H ⁺	= 1.01	M cell = 10	cm
Time	Abs	Time	Abs	Time	Abs	Time	Abs
80 100	.7 .71	2900 3000	.489 .478	6100 6200	.310	9100 9200	.2555
200 300	.705 .841	3100 3200	.471	6300 6400	.304	9300 9400	.252
400 500	.822	3400 3500	.450	6500 6600	.299	9500 9600	.248
600	.870	3600	.435	6700	.295	9700	.247
.700 800	.765 .749	3700 3800	.431	6800 6900	.293 .291	9900 · 10,000	.246 .244
900 1000	.741 .721	3900 4000	.419	7000 7100	.290 .287	10,100 10,200	.243
1100 1200	.700 .691	4100 4300	.404	7200 7300	.286	10,500 10,800	.238
1300	.675	4400	.387	7400	.282	10,900	.235
1400 1500	.658 .645	4600 4700	.376 .375	7500 7600	.279	11,000 11,500	.235
1600 1700	.635 .620	4800 4900	.362	7700 7800	.276 .275	A_{∞}	.087
1800 1900	.607	5000 5100	.356	7900 8000	.273		
2000*	.586	5200*	.347	8100*	.267		

^{*}Continued on following page.

<u>Time</u>	Abs	Time	Abs	Time	Abs	Time	Abs
2100	.571	5300	.341	8200	.267		
2200	.560	5400	.340	8300	.266		
2300	.550	5500	.334	8400	.264		
2400	.536	5600	.334	8500	.262		
2500	.525	5700	.324	8600	.261		
2600	.516	5800	.322	8700	.260		
2700	.507	5900	.313	8900	.256		
2800	.499	6000	.310	9000	.256		

 $T = 25.0 \,^{\circ} \,$

Pd = .445 mM $H^{+} = 1.0 \text{M}$ cell = 10 cm

50 .800 3700 .411 7400 .2735 100 .795 3800 .406 7500 .271 200 .780 3900 .398 7700 .268 300 .770 4000 .392 7800 .265 400 .755 4100 .386 7900 .266 500 .741 4200 .381 8000 .266 600 .730 4300 .376 8500 .260 700 .711 4400 .371 9000 .255 800 .700 4500 .366 9500 .249 900 .688 4600 .361 10,000 .245 1000 .6673 4700 .362 10,500 .240 1100 .661 4800 .352 11,000 .236 1200 .645 4900 .349 11,500 .232 1300 .635 5000 .345 12,000 .228 1400 .622 5100 .430 <th>300 3700 .411 7400 .2735</th>	300 3700 .411 7400 .2735
1700 .590 5400 .330 14,000 .215 1800 .576 5500 .325 14,500 .213 1900 .566 5600 .323 15,000 .209 2000 .555 5700 .320 15,500 .206 2100 .545 5800 .321 16,000 .2035 2200 .532 5900 .313 16,500 .2015 2300 .521 6000 .311 17,000 .2000 2400 .511 6100 .308 17,500 .1975 2500 .501 6200 .305 18,000 .1945 2600 .493 6300 .302 18,500 .1925 2700 .485 6400 .300 19,000 .1900 2800 .475 6500 .297 19,500 .1870	795 3800 .406 7500 .271 780 3900 .398 7700 .268 770 4000 .392 7800 .265 755 4100 .386 7900 .266 741 4200 .381 8000 .266 730 4300 .376 8500 .260 711 4400 .371 9000 .255 700 4500 .366 9500 .249 688 4600 .361 10,000 .245 673 4700 .362 10,500 .240 661 4800 .352 11,000 .236 645 4900 .349 11,500 .232 632 500 .345 12,000 .228 6522 5100 .430 12,500 .225 610 5200 .337 13,000 .221 6500 5300 .325 14,500 .213 6566 5600 .323 15,500 .206
2900 .467 6600 .295 20,000 .1840	
2400 .511 6100 .308 17,500 .1975 2500 .501 6200 .305 18,000 .1945 2600 .493 6300 .302 18,500 .1925 2700 .485 6400 .300 19,000 .1900	511 6100 .308 17,500 .1975 501 6200 .305 18,000 .1945 493 6300 .302 18,500 .1925 485 6400 .300 19,000 .1900

 $T = 25.0^{\circ} C$ $\lambda = 300 nm$ Pd = 5.33 mM $H^{+} = 1.0 M$ cell = 1 cm

Time	Abs.	Time	Abs.	Time	Abs.
50 100	.760 .759	4800 4900	.357	9600 9700	.245
200	.754	5000	.346	9800	.243
300	.748	5100	.342	9900	.242
400	.736	5200	.339	10,000	.242
500	.729	5300	.335	10,100	.240
600 7 00	.716 .709	5400 5500	.331	10,500 11,000	.236 .231
800	.696	5600	.325	11,500	.227
900	.684	5700	.321	12,000	.223
1000	.671	5800	.318	12,500	.219
1100	.659	5900	.315	13,000	.215
1200	.648	6000	.312	13,500	.209
1300	.634	6100	.308	14,000	.207
1400 1500	.621 .610	6200 6300	.305	14,500	.206
1500	.600	6400	.301	4100	.390
1700	.589	6500	.297	4200	.385
1800	.576	6600	.295	4300	.380
1900	.569	6700	.293	4400	.375
2000	.556	6800	.291	4500	.370
2100	.545	6900	.288	4600	.366
2200	.534 .524	7000 7100	.286	4700	.362
2400	.516	7200	.282	8900	.255
2500	.505	7300	.280	9000	.254
2600	.496	7400	.277	91.00	.253
2700	.488	7500	.275	9200	.251
2800	.479	7600	.274	9300	.250
2900 3000	.471 .463	7700 7800	.273	9400	.248
3100	.458	7900	.272	9500	.247
3200	.449	8000	.267		
3300	.441	8100	.266		
3400	.434	8200	.265		
3500	.429	8300	.263		
3600 3700	.422	8400 8500	.261 .260		
3800 .	.410	8600	.259		
3900	.403	8700	.258		
4000 .	.396	8800	.256	•	

DU RUN-4

T = 25.0° C $\lambda = 300$ nm Pd = .445mM $H^{+} = 1.0$ M cell = 10 cm

All times in seconds

<u>Time</u>	Abs.	Time	Abs.	Time	Abs.
35 100 200 300 400 500 600	.895 .875 .860 .839 .820 .800	1600 1700 1800 1900 2000 2100 2200	.630 .618 .608 .595 .581 .570	3200 3300 3400 3500 3600 3700 3800	.468 .460 .453 .445 .439 .432
700 800 900 1000 1100 1200 1300 1400 1500	.768 .750 .735 .719 .701 .685 .672 .660	2300 2400 2500 2600 2700 2800 2900 3000 3100	.550 .539 .530 .520 .510 .500 .491 .482	3900 4000 4100 4300 4400 4500 4600 4900 5000	.421 .415 .410 .398 .392 .387 .381 .369

DU Run-5

T = 25.0° C $\lambda = 305$ nm Pd = .445^{mM} $H^{+} = 1.0$ M cell = 10 cm

Time	Abs.	Time	Abs.	Time	Abs.
100	.830	1100	.744	4000	.500
200	.821	1200	.735	4500	.471
300	.815	1400	.711	5000	.449
400	.810	1600	692	5500	.428
500	.800	1800	.672	6000	.410
600	.795	2000	.654	6500	.395
700	.782	2400	.616	7000	.382
800	.772	2800	.583	8000	.360
900	.762	3000	.569	9000	.343
1000	.752	3500	.531	10,000	.329
				12,000	.305

T = 25.0° C $\lambda = 310$ nm Pd = .445mM $H^{+} = 1.0$ M cell = 10cm

Time	Abs.	Time	Abs.	<u>Time</u>	Abs.
75	.786	3000	.680	5900	.530
100	.790	3100	.670	6000	.524
200	.799	3200	.665	6500	.509
300	.800	3300	.658	7000	.495
400	.802	3400	.650	7500	.481
500	.804	3500	.642	8000	.471
600	.810	3600	.639	8500	.461
700	.810	3700	.631	9000	. 454
800	.810	3800	.628	9500	.446
900	.805	3900	.620	10,000	.438
1000	.803	4000	.615	10,500	.431
1100	.802	43.00	63.0	11 000	406
1200	.800	4100	.610	11,000	.426
1300	.795	4200	.605	11,500	.420
1400	.789	4300	.600	12,000	.414
1500 1600	.781 .779	4400 4500	.592 .590	12,500 13,000	.409
1700	.770	4600	.582	13,500	.398
1800	.761	4700	.580	14,000	.392
1900	.755	4800	.571	14,500	.387
2000	.750	4900	.570	15,000	.383
2100	.741	. 5000	.565	15,500	.379
2200	.736	5100	.560	16,000	.375
2300	.730	5200	.556	16,500	.370
2400	.721	5300	.551	17,000	.366
2500	.712	5400	.549	17,500	.361
2600	.709	5500	.545	18,000	.358
2700	.700	5600	.540	18,500	.355
2800	.691	5700	.538	19,000	.351
2900	.685	. 5800	.531	19,500	.348

T = 25.0° C $\lambda = 310$ nm Pd = .445mM $H^{+} = 1.0$ M cell = 10 cm

Time	Abs.	Time	Abs.	Time	Abs.
50	.730	2600	.661	5200	.529
100	.734	2700	.659	5300	.520
200	.740	2800	.651	5400	.519
300	.747	2900	.646	5500	.512
400	.750	3000	.641	5600	.510
500	.751	3100	.632	5700	.506
600	.750	3200	.628	5800	.501
700	.750	3300	.620	5900	.500
800	.750	3400	.615	6000	.496
900	.750	3500	.610	6100	.491
1000	.748	3600	.605	6200	.489
1100	.745	3700	.600	6400	.481
1200	.741	3800	.595	6500	.480
1300	.739	3900	.590	7000	.465
1400	.734	4000	.585	7500	.452
1500	.729	4100	.579	8000	.440
1600	.724	4200	.571	8500	.430
1700	.717	4300	.568	9000	.421
1800	.711	4400	.561	9500	.412
1900	.709	4500	.559	10,000	.406
2000	.700	. 4600	.551	10,500	.399
2100	.695	4700	.549	11,000	.391
2200	.690	4800	.542	11,500	.386
2300	.682	4900	.540	12,000	.384
2400	.679	5000	.535	12,500	.377
2500	.670	5100	.530	13,000	. 370

T = 25.0° C $\lambda = 340$ nm Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
28	.246	2000	.739	4000	.888
100	.282	2100	.750	4100	.891
200	.320	2200	.761	4300	.900
300	.354	2300	.771	4500	.905
400	.386	2400	.781	4900	.918
500	.420	2500	.794	5000	.919
600	.450	2600	.800	5300	.920
700	.480	2700		5500	.921
800	.510	2800		6000	.923
900	.534	2900	.824	6500	.925
1000	.560	3000	.832	7000	.923
1100	.584	3100	.840	7500	.921
1200	.605	3200	.848	8000	.920
1300	.622	3300	. 85	8500	.917
1400	.643	3400	.860	9000	.910
1500	.660	3500	.863	9500	.904
1600	.679	3600	.870	10,000	.900
1700	.695	3700	.878	10,500	. 895
1800	.710	3800	.880	11,500	.882
1900	.721	3900	. 885		

DU Run—9

$$T = 25.0^{\circ} C$$
 $\lambda = 360 nm$
 $Pd = 5.33 mM$ $H^{+} = 1.0 M$ $cell = 1 cm$

<u>Time</u>	Abs.	Time	Abs.	Time	Abs.
40	.129	2800	.595	10,000	.800
100	.142	2900	.605	10,500	.800
200	.164	3000	.614	11,000	.800
300	.186	3100	.624	11,500	.800
400	.207	3200	.631	12,000	.799
500	.230	3300	.640	12,500	.798
600	.250	3400	.647	13,000	.795
700 800	.272	3500 3600	.656	13,500 14,000	.794 .791
900	.293 .312	3700	.663 .670	14,500	.791
1000	.330	3800	.680	15,000	.790
1100	.350	3900	.686	15,500	.787
1200	.369	4000	.692	16,000	.785
1300	.385	4100	.699	16,500	.781
1400	.403	4300	.710	17,000	.781
1500	.420	4500	.720	17,500	.780
1600	.436	4900	.739	18,000	.777
1700	.454	5000	.741	18,500	.776
1800	.467	5300	.759	19,000	.771
1900	.481	5500	.760	19,500	.770
2000	.498	6000	.772	20,000	.768
2100	.510	6500	.782	20,500	.765
2200	.522	7000	.791	21,000	.765
2300	.538	7 500	.796	21,500	.762
2400	.550	8000	.800	22,000	.760
2500	.560	8500	.800 .	22,500	.760
2600	.571	9000	.801		
2700	.586	9500	.801		

T = 50.0° C $\lambda = 310$ nm Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
Time 60 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	Abs795 .750 .621 .531 .469 .427 .395 .370 .352 .332 .319 .304 .291 .275 .266 .256 .247 .238	Time 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600	Abs133 .130 .128 .126 .124 .122 .119 .118 .117 .114 .113 .112 .110 .109 .108 .107 .106 .104	Time 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9500 10,000 10,500 11,000	Abs. .0865 .0860 .0855 .0845 .0840 .0835 .0830 .0825 .0820 .0820 .0810 .0805 .0800 .0795 .0780 .0760 .0740 .0730
1800 1900	.229 .222	5700 5800	.102 .1015	11,500 12,000	.0720 .0690
2000 2100 2200 2300	.214 .207 .201 .194	. 5900 6000 6100 6200	.101 .100 .098 .098	12,500 13,000 13,500 14,000	.0685 .0675 .0660
2400 2500 2600	.189 .183 .178	6300 6400 6500	.097 .096 .095	14,500 15,000 15,500	.0655 :0645 .0645
2700 2800 2900 3000	.173 .169 .159 .160	6600 6700 6800 6900	.0945 .094 .093 .092	16,000 16,500 17,000 17,500	.0640 .0635 .0630
3100 3200 3300 3400	.156 .154 .150 .146	7000 7100 7200 7300	.091 .091 .091 .089	18,000 18,500 19,000 19,500	.0625 .0625 .0625
3500 3600 3700	.144 .141 .138	7400 7500 7600	.0885 .088 .0875	20,000 20,500 21,000	.0625 .0625 .0625
3800	.136	7700	.0870	A_{∞}	.0568

T = 50.0° C $\lambda = 320$ nm Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
35	.700	3400	.215	6800	.1335
100 200	.789 .765	3500 3600	.2105 .2065	6900 7000	.1325
300	.706	3700	.2025	7100	.1313
400	.642	3800	.199	7300	.1275
500	.603	3900	.1955	7500	.1255
600	.568	4000	.192	7700	.1235
700	.536	4100	.189	8000	.1205
800	.510	4200	.1855	8500	.116
900	. 484	4300	.183	9000	.112
1000	. 460	4400	.179	9500	.1085
1100	.443	4500	.1765	10,000	.1055
1200	.424	4600	.173	10,500	.1025
1300 1400	.406	4700	.172	11,000	.1005 .098
1500	.374	4800 4900	.1695 .1670	11,500 12,000	.0955
1600	.361	5000	.165	12,500	.0945
1700	.348	5100	.1625	13,000	.093
1800	.335	5200	.1595	13,500	.091
1900	.325	5300	.1570	14,000	.090
2000	.314	5400	.155	14,500	.088
2100	.303	5500	.154	15,000	.0875
2200	.295	5600	.151	15,500	.086
2300	.287	5700	.150	16,000	.085
2400	.277	5800	.1485	16,500	.045
2500	.270	5900	.1475	18,500	.082
2600	.2625	6000	.145	19,000	.081
2700	.2545	6100	.144	19,500	.0805
2800 2900	.2475	6200 6300	.1420 .1415	20,000 20,500	.0805
3000	.235	6400	.140	21,000	.0800
3100	.231	6500	.138	21,500	.079
3200	.225	6600	.137	22,000	.0780
3300	.220	6700	.135	23,500	.076

T = 55.0° C $\lambda = 420$ Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1250 1300 1350	.084 .117 .140 .156 .169 .178 .186 .194 .198 .203 .207 .211 .215 .219 .222 .226 .229 .232 .235 .237 .240 .242 .244 .247 .249 .251	1600 1650 1700 1750 1800 1850 1900 1950 2000 2250 2300 2350 2400 2450 2550 2650 2700 2750 2800 2950 3000 3100	.2625 .2645 .266 .2675 .2685 .270 .272 .273 .274 .278 .280 .281 2825 .284 .285 .286 .286 .2875 .289 .290 .2905 .292 .292 .292	3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4800 4900 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10,000 11,500	.303 .305 .3055 .307 .308 .3095 .311 .312 .3125 .314 .315 .316 .317 .318 .321 .324 .327 .330 .3325 .335 .336 .338 .339 .340 .342 .3425 .3425
1400 1450 1500 1550	.255 .2575 .2595 .261	3200 3300 3400 3500	.298 .300 .301 .302	12,000 12,500 .13,000 A _∞	.345 .345 .3455 .352

T = 55.0° C $\lambda = 340$ Pd = 5.33mM $H^{+} = 1.M$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1150 1200 2150 1300 1400 1450 1500	.420 .670 .822 .900 .930 .932 .920 .900 .880 .860 .840 .819 .775 .760 .740 .728 .711 .695 .681 .665 .651 .640 .630 .619 .609 .599 .580 .570	1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800	.515 .500 .489 .475 .467 .459 .450 .441 .433 .426 .419 .411 .406 .400 .390 .387 .383 .377 .371 .366 .364 .359 .355 .352 .352 .347 .344 .340 .336 .333 .329 .329	5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6700 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400	.312 .310 .307 .305 .302 .300 .298 .296 .295 .293 .291 .289 .288 .285 .285 .285 .285 .277 .276 .277 .276 .275 .271 .270 .269 .269 .265 .264 .263
1450	.570	4700	.329	8300	.264

DU Run-14

T = 55.0° C $\lambda = 350$ Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
50 100 150	.761 .990	2450 2500 2550	.702 .699 .693	4950 5000 5100	.5495 .546 .542
200	1.15	2600	.690	5200	.539
250 300	1.19 1.19	2650 2700	.684 .680	5300 5400	.535 .531
350	1.17	2750	.675	5500	.529
400 450	1.15 1.14	2800 2850	.670 .667	5600 5700	.525 .521
500	1.11	2900	.661	5800	.5195
550 600	1.10 1.08	2950 3000	.659 .653	5900 6000	.515 .512
650	1.055	3050	.650	6100	.509
700	1.04	3100	.646	6200	.506
750 800	1.02 1.00	3150 3200	.643 .640	6300 6400	.502 .500
850	.990	3250	.637	6500	.499
900	.976	3300	.632	6600	.496
950 1000	.960 .942	3350 3400	.629 .625	6700 6800	.492 .490
1050	.930	3450	.621	6900	.488
1100 1150	.920 .904	3500 3550	.620 .617	7000 7100	.486 .484
1200	.894	3600	.612	7200	.482
1250	.880	3650	.610	7300	.480
1300 1350	.870 .860	3700 3750	.609 .604	7400 7500	.479 .476
1400	.850	3800	.601	7600	.473
1450	.8405	3850	.599	7700 7800	.471 .470
1500 1550	.831 .8205	3900 3950	.596 .595	7900	.469
1600	.814	4000	.591	8000	.468
1650 1700	.806 .795	4050 4100	.590 .586	8100 8200	.465 .462
1750	.790	4150	.583	8300	.462
1800	.782	4200	.580 .578	8400 8500	.461 .460
1850 1900	.774	4250 4300	.575	8600	.458
1950	760	4350	.574	8700	.457
2000 2050	.751	4400 4450	.571 .570	8800 8900	.455 .454
2100*	.740	4600*	.563	9000*	.452

^{*}Continued on following page.

Time	Abs.	Time	Abs.	Time	Abs.
2150	.735	4650	.561	9100	.451
2200	.730	4700	.560	9200	.450
2250	.721	4750	.557	9300	.449
2300	.7195	4800	.554	9400	. 447
2350	.711	4850	.551	A_{∞}	
2400	. 709	4900	.550	ω	

 $T = 55.0^{\circ} C$ $\lambda = 323$ Pd = 5.33mM $H^{+} = 1.0M$ cell - 1cm

Time	Abs.	Time	Abs.	Time	Abs.
50	.840	1450	.360	4200	.191
100	.860	1500	.353	4300	.187
150	.823	1550	.345	4400	.185
200 250	.781 .748	1600 1650	.339	4500 4600	.184 .180
300	.710	1700	.325	4700	.179
350	.681	1750	.320	4800	.176
400	.653	1800	.316	4900	.175
450	.630	1900	.305	5000	.172
500	.606	2000	.296	5500	.165
550	.589	2100	.286	6000	.157
600	.569	2200	.279	6500	.151
650	.548	2300	.270	7000	.1455
700	.530	2400	.264	7500	.140
750	.516	2500	.256	8000	.137
800	.500	2600	.251	8500	.135
850	.483	2700	.245	9000	.1305
900	.471	2900	.235	9500	.1275
950	.459	3000	.230	10,000	.125
1000	. 448	3100	.226	10,500	.124
1050	.436	3200	.221	11,000	.1225
1100	.425	3500	.211	11,500	.121
1150	.414	3600	.206	12,000	.120
1200	.404	3700	.204	12,500	.119
1250	.395	3800	.200	13,000	.119
1300	.385	3900	.198	13,500	,118
1350	.375	4000	.195	14,000	.117
1400	.368	4100	.193		

 $T = 62.8^{\circ} C$ $\lambda = 325$ Pd = 5.53mM $H^{+} = 1.0mM$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
50 100 150 200 250 300 350 400	.907 .819 .755 .704 .650 .610 .569	1600 1650 1700 1750 1800 1850 1900	.240 .2355 .2315 .229 .226 .2215 .2195	3300 3400 3500 3600 3700 3800 3900 4000	.168 .1665 .165 .1645 .161 .159 .1575
450 500 550 600 650 700 750 800 850 900 950 1000	.504 .475 .450 .429 .410 .390 .374 .359 .344 .334 .323 .313	2000 2050 2100 2150 2200 2250 2350 2400 2450 2500 2550 2600	.2135 .210 .2075 .204 .2025 .2005 .199 .196 .195 .193 .191	4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5500 6000 6500	.155 .154 .153 .1515 .1504 .150 .1495 .1490 .1475 .1470 .1452 .1425
1100 1150 1200 1250 1300 1350 1400 1450 1500	.2975 .289 .282 .275 .269 .264 .259 .2525 .2480	2650 2700 2750 2800 2850 2900 2950 3000 3100 3200	.186 .1835 .182 .180 .179 .177 .176 .175	7000 7500 8000 8500 9000 9500 10,000 14,500 16,500 3 days	.142 .141 .1405 .140 .140 .140 .1420 .1430 .144

DU Run-17

T = 62.8° C $\lambda = 325$ Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
50	.97	1300	.282	3000	.186
100	.88	1350	.277	3100	.1835
150	.800	1400	.272	3200	.181
200	.730	1450	.268	3300	.178
250 -	.679	1500	.262	3400	.176
300	.630	1550	.257	3500	.175
350	.590	1600	.253	3600	.173
400	•555	1650	.248	3700	.171
450	.521	1700	.244	3800	.1705
500	.492	1750	.241	3900	.168
550	.465	1800	.238	4000	.1665
600	.445	1850	.234	4400 .	.1620
650	.427	1900	.231	4500	.1615
700	.408	1950	.227	4600	.160
750	.390	2000	.225	4700	.1595
800	.375	2050	.222	4800	.159
850	.362	2100	.220	4900	.158
900	.350	2200	.214	5000	.1574
950	.338	2300	.2095	5500	.155
1000	.329	2400	.206	6000	.154
1050	.320	2500	.202	6500	.153
1100	.3125	2600	.198	7000	.1520
1150	.303	2700	.194	8500	.1520
1200	.297	2800	.192	9000	.152
1250	.289	2900	.190	10,000	.1525

DU Run-18

 $T = 63.1^{\circ} C$ $\lambda = 350$ Pd = 5.33mM $H^{+} = 1.0M$ cell = 1cm

All times in seconds

Time	Abs.	Time	Abs.	Time	Abs.
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800	Abs. .892 1.13 1.15 1.11 1.075 1.03 .985 .950 .920 .890 .860 .838 .810 .791 .774 .755	Time 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450	Abs570 .561 .558 .550 .546 .540 .535 .530 .525 .520 .515 .510 .509 .502 .500 .495	Time 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4100 4200	Abs. .448 .446 .441 .440 .439 .439 .436 .435 .432 .430 .430 .429 .428 .425 .424

DU Run-19

$T = 63.2^{\circ}$	C λ	=	350			
Pd = 5.33ml	H H	=	1.0M	cell	=	lcm

All time in seconds

Time	Abs.	Time	Abs.	Time	Abs.
50	.965	1150	.746	2600	.478
100	1.12	1200	.637	2700	.471
150	1.15	1250	.627	2800	.466
200	1.09	1300	.616	2900	.461
250	1.04	1350	.608	3000	.457
300	1.00	1400	.600	3100	.453
350	.96	1600	.571	3200	.450
400	.925	1700	.560	3250	.449
450	.895	1750	.551	3300	.447
500	.861	1800	.546	3400	.443
550	.840	1850	.539	3500	.440
600	.819	1900	.535	3600	.437
650	.795	1950	.530	3700	.434
700	.775	2000	.525	3800	.431
75 0	.755	2050	.520	3900	.430
800	.739	2100	.515	4000	.428
850	.720	2150	.511	4500	.419
900	.709	2200	.507	8000	.395
950	.692	2250	.501	9500	.395
1000	.580	2300	.498	10,000	.395
1050	.670	2400	.490	13,000	.395
1100	.656	2500	. 484	25,000	.395

DU Run-20

$$T = 63.5^{\circ} C$$
 $\lambda = 400$
 $Pd = 5.53mM$ $H^{+} = 1.0M$ cell = 1cm

All times in seconds

Time	Abs.	Time	Abs.	Time	Abs.
50	.280	850	.550	2300	.540
100	.360	900	.551	2400	.539
150	.408	950	.551	2500	.538
200	.438	1000	.551	2600	.535
250	.460	1100	.552	2700	.535
300	. 475	1200	.5525	2800	.535
350	.490	1300	.552	2900	.534
400	.503	1400	.551	3000	.533
450	.513	1500	.5505	3100	.532
500	.520	1600	.5495	3200	.532
550	.529	1700	.5495	3500	.529
600	.535	1800	.547	3600.	.529
650	.537	1900	.544	4000	.529
700	.541	2000	.543	4500	.527
7 50	.545	2100	.541	5000	.527
800	.457	2200	.540	6500	.525

 $T = 38.8^{\circ} C$ $\lambda = 330$ Pd = 5.33mM $H^{+} = 1.0M$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
1	. 476	58	.608	380	.240
2	.558	60 70	.599	390	.239
3 4	.630 .685	80	.563 .532	400 420	.235
5	.730	90	.504	440	.223
6	.765	100	.479	460	.220
7	.788	110	.458	480	.217
8	.810	120	.438	500	.212
9	.823	130	.419	520	.209
10	.831	1.40	.403	540	.207
12	.839	150	.389	560	.202
14	.838	160	.375	5 8 0	.199
16	.830	170	.369	600	.193
18	.820	180	.352	620	.191
20	.808	190	.341	640	.189
22	.795	200	.332	660	.189
24	.780	210	. 325	680	.189
26	.769	220	.316	700	.181
28	.754	230	.310	720	.180
30	.742	240	.301	740	.177
32	.732	. 250	.297	760	.176
34	.720	260	.290	780	.172
36	.710	270	.286	800	.171
38	.698	280	.280	820	.168
40	.688	290	.275	840	.165
42	.676	300	.270	860	.165
44	.665	310	.264	880	.163
46	.655	320 330	.261	900 920	.163 .159
48 50	.649 .639	340	.258 .254	940	.158
50	.639	350	.250	960	.156
54	.622	360	.248	980	.153
56	.613	370	.243	1000	.152
30	•013	0.0		2.00	,

$$T = 38.8^{\circ} C$$
 $\lambda = 310$
 $Pd = 5.33mM$ $H^{+} = 1.0M$ cell = 1cm

All times in minutes

Time	Abs.	Time	Abs.	Time	Abs.
1 2 3 4 5 6 7 8 9 10 12	.724 .730 .733 .725 .708 .684 .660 .634 .608 .578 .540	16 18 20 25 30 35 40 45 50 55 60	.450 .421 .395 .350 .315 .290 .270 .256 .240 .226 .211	70 75 80 85 90 95 100 110 120 130 140 150	.191 .180 .171 .162 .158 .149 .141 .130 .120 .110 .102

DK 1A Run-26

$T = 40^{\circ} C$	λ = 396	
Pd = 5.33mM	H ⁺ = 1: 0M	cell = lcm

Time	Abs.	Time	Abs.	Time	Abs.
1 2 3 4 5 6 7 8	.050 .075 .100 .122 .146 .167 .189	13 14 15 16 17 18 19 20	.268 .280 .288 .294 .305 .311 .317	45 50 55 60 65 70 75 80	.405 .411 .416 .425 .430 .435 .439
9 10 11 12	.220 .231 .245 .256	25 30 35 40	.349 .369 .384 .394	85 90 · 95 100	.445 .448 .450 .453

$$T = 38.8^{\circ} C$$
 $\lambda = 396$
 $Pd = 5.33 \text{mM}$ $H^{+} = 1.0 \text{M}$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
1	.052	16	.329	35	.417
2	.074	17	.336	40	.430
3	.102	18	.344	45	.441
4	.128	19	.354	50	.451
5 ·	.153	20	.360	55	.458
6	.175	21	·365;	60	.462
7	.199	22	.370	65 ·	.468
8	.220	23	.378	70	.473
9	.238	24	.382	75	.478
10	.255	25	.386	80	.481
11	.270	26	.390	85	. 482
12	.285	27	.395	90 ·	.486
13	.298	28	.399	95	.488
14	.307	29	.400	100	.489
15	.319	30	.404	105	.492

$$T = 38.8^{\circ} C$$
 $\lambda = 400$
 $Pd = 5.33$ mM $H^{+} = 1.0$ M $cell = 1$ cm

Time	Abs.	Time	Abs.	Time	Abs.
2	.040	24	.246	70	.332
4	.075	26	.254	7 5	.339
6	.105	28	.260	80	.342
8	.130	30	.269	90	.349
10	.155	35	.282	100	.356
12	.174	40	.291	110	.360
14	.190	45	.302	120	.365
16	.203	50	.310	130	.369
18	.217	55	.317	140	.372
20	.228	60	.322		
22	.237	65	.329		

$$T = 40.0$$
° C $\lambda = 310$
 $Pd = 5.33$ mM $H^{+} = 1.0$ M cell = 1cm

<u>Time</u>	Abs.	Time	Abs.	Time	Abs.
1	.724	45	.256	145	.099
2	.730	50	.240	150	.094
3	.732	55	.226	155	.091
4	.725	60	.212	160	.089
5	.708	65	.200	165	.085
6	.683	70	.191	170	.082
7	.660	75	.80	175	.079
8	.632	80	.171	180	.078
9	.606	85	.161	185	.076
10	.577	90	.157	190	.072
11	.550	95	.150	195	.069
12	.530	100	.141	200	.069
13	.509	105	.136	210	.066
14	.489	110	.130	220	.061
15	.469	115	.1.25	230	.058
20	.394	120	.120	240	.054
25	. 344	125	.112	250	.052
30	.315	130	.110	260	.050
35	.290	135	.106	A_{∞}	.040
40	.270	140	.102		

$$T = 50.0$$
° C $\lambda = 328$
 $Pd = 5.33$ mM $H^{+} = 1.0$ M cell = 1cm

All times in minutes

Time	Abs.	Time	Abs.	Time	Abs.
1	.615	13	.690	45	.390
2	.750	14	.672	50	.368
3	.824	15	.658	55	.346
4	.855	16	.640	60	.330
5 .	.860	17	.625	65	.314
6	.843	18	.610	70	.303
7	.822	19	.598	75	.289
8	.800	20	.595	80	.280
9	.775	25	.530	85	.271
10	.750	30	.482	90	.260
11	.730	35	.449	95	.251
12	.710	40	.418	100 .	.248
				${\tt A}_{\infty}$.120

DK lA Run-28

T =	50.0° C	λ =	396		
Pd =	5.33mM	H ⁺ ==	1.0M	cell =	1cm

Time	Abs.	Time	Abs.	Time	Abs.
1	.074	10	.320	19	.370
2	.129	11	.330	20	.372
3	.169	12	.339	25	.385
4	.207	13	.342	30	.395
5	.240	14 .	.349	35	.400
6	.261	15	.354	40	.403
7	.286	16	.359	45	.406
8	.300	17	.362	50	.410
9	.312	18	.364	\mathbb{A}_{∞}	.411

 $T = 58.5^{\circ} C$ $\lambda = 300$ Pd = 5.33mM $H^{+} = 1.0M$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
. 2	.823	7	.188	23	.084
. 4	.735	7.5	.182	24	.0815
.6	.648	8	.175	25	.080
. 8	.571	8.5	.168	26	.078
1.0	.515	9	.162	27	.075
1.2	.470	9.5	.158	28	.072
1.4	.435	10	.152	29	.071
1.6	.401	11	.144	30	.0695
1.8	.372	12	.135	35	.064
2	.350	13	.130	40	.060
2.5	.310	14	.120	45	.055
3	.280	15	.115	50	.052
3.5	.260	16	.110	55	.048
4	.245	17	.106	60	.0465
4.5	.232	18	.100	65	.0445
5	.221	19	.098	70	.0435
5.5	.212	20	.092	75	.043
6	.202	21	.090	80	.040
6.5	.195	22	.089		

DK 1A Run-30

 $T = 59.7^{\circ} C$ $\lambda = 360$ Pd = 5.33mM $H^{+} = 1.0M$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
1	.5930	11	.700	25	.555
2	.760	12	.684	30	.520
3	.811	13	.672	35	.492
4	.808	14	.660	40	.469
5	.800	15	.649	45	.449
6	.781	16	.636	50	.430
7	.764	17	.625	55	.412
8	.746	18	.612	60	.400
9	.730	19	.605	65	.389
10	.714	2.0	.596		

$$T = 59.7^{\circ} C$$
 $\lambda = 380$
 $Pd = 5.33mM$ $H^{+} = 1.0M$ cell = 1cm

Time	Abs.	Time	Abs.	Time	Abs.
•5	.185	4.5	.490	8.5	.520
1.0	.292	5.0	.498	9.0	.521
1.5	.351	5.5	.502	9.5	.522
2.0	.410	6.0	.509	10.0	.524
2.5	.440	6.5	.510	11	.526
3.0	.460	7.0	.512	12	.528
3.5	.474	7.5	.516	13-	.528
4.0	.483	8.0	.519	14	.528

$$T = 59.7^{\circ} C$$
 $\lambda = 400$
 $Pd = 5.33mM$ $H^{+} = 1.M$ $cell = 1cm$

All times in minutes

Time	Abs.	Time	Abs.	Time	Abs.
.5 1 1.5 2 2.5 3 3.5 4 4.5	.084 .139 .181 .205 .226 .240 .256 .266 .276	5.5 6 6.5 7 7.5 8. 8.5 9	.290 .298 .303 .308 .312 .317 .321 .325 .329	11 12 13 14 15 16 17 18 19 20	.339 .342 .348 .350 .354 .358 .359 .361

DK 1A Run-33

$$T = 59.8^{\circ} C$$
 $\lambda = 420$
 $Pd = 5.33$ mM $H^{+} = 1.0$ M $cell = 1$ cm

Time	Abs.	Time	Abs.	Time	Abs.
1 2 3 4 5 6 7	.2124 .2128 .2132 .2136 .2140 .2144 .2148	13 14 15 16 17 18 19	.2172 .2176 .2180 .2184 .2188 .2192 .2196	25 26 27 28 29 30 32	.2220 .2224 .2228 .2232 .2236 .2240
8 9 10 11	.2152 .2156 .2160 .2164	20 21 22 23	.2200 .2204 .2208 .2212	34 35 40 45	.2256 .2260 .2280 .2300

$$T = 66.4$$
° C $\lambda = 325$
 $Pd = 5.33$ mM $H^+ = 1.0$ M $cell = 1$ cm

Time	Abs.	Time	Abs.	Time	Abs.
1.0	.837	5.5	.413	22	.179
1.2	.801	6.0	.390	23	.175
1.4	.770	6.5	.370	24	.170
1.6	.740	7.0	.350	25	.166
1.8	.718	7.5	.338	26	.162
2.0	.684	8.0	.321	27	.160
2.2	.661	8.5	.312	28	.156
2.4	.639	9.0	.301	29	.154
2.6	.618	9.5	.290	30	.152
2.8	.596	10.0	.281	31	.150
3.0	.577	11.0	.265	32	.149
3.2	.560	12.0	.251	33	.146
3.4	.542	13.0	.240	34	.1445
3.6	.531	14.0	.231	35	.143
3.8	.513	15.0	.221	36	.141
4.0	.499	16.0	.213	37	.1405
4.2	.485	17.0	.206	38	.140
4.4	.475	18.0	.200	39	.1395
4.6	.460	19.0	.191	40	.1385
4.8	.446	20:1	.188		
5.0	.439	21.0	.181		

$$T = 67.6$$
° C $\lambda = 310$
 $Pd = 5.33$ mM $H^{+} = 1.0$ M $Cell = 1$ cm

<u>Time</u>	Abs.	Time	Abs.	Time	Abs.
.2	.804	2.6	.301	8.0	.139
. 4	.682	2.8	.290	8.5	.134
.6	.596	3.0	.275	9.0	.129
. 8	.518	3.5	.250	9.5	.122
1.0	.460	4.0	.230	10.0	.120
1.2	.427	4.5	.212	11.0	.112
1.4	.398	5.0	.200	12.0	.105
1.6	.380	5.5	.184	13.0	.100
1.8	.359	6.0	.172	14.0	.095
2.0	.339	6.5	.162	15.0	.092
2.2	.323	7.0	.151	16.0	089
2.4	.312	7.5	.145	17.0	.087
				A_{∞}	.059

T = 70° C $\lambda = 310$ Pd = 5.33mM $H^{+} = 1.0$ M cell = 1cm

Time	Abs.	Time	Abs.	<u>Time</u>	Abs.
.1	.718	1.3	.500	4.5	.175
. 2	.717	1.4	.475	5.0	.159
.3	.714	1.5	.450	5.5	.145
. 4	.705	1.6	.428	6.0	.132
• 5	.696	1.7	.409	6.5	.122
.6	.679	1.8	.390	7.0	.113
.7	.660	1.9	.371	7.5	.105
.8	.639	2.0	.350	8.0	.098
	.615	.2.5	.290	8.5	.091
1.0	.580	3.0	.249	9.0	.085
1.1	.548	3.5	.220	9.5	.080
1.2	.525	4.0	.196	10.0	.076

T = 70.0° C	$\lambda = 320$	
Pd = 5.33mM	$H^{+} = 1.0M$	cell = lcm

All times in minutes

Time	Abs.	Time	Abs.	Time	Abs.
.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	.740 .700 .606 .526 .467 .411 .369 .340 .314 .290	6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0	.240 .225 .215 .205 .198 .190 .185 .179 .166 .157	15 16 17 18 19 20 21 22 23 24 25	.138 .131 .129 .123 .120 .117 .114 .111 .109 .108
6.0	.255	14.0	.142	A_{∞}	.098

DK 1A Run-38

T = 70.0° C	$\lambda = 396$	
Pd = 5.33mM	H ⁺ = 1.0M	cell = lcm

Time	Abs.	Time	Abs.	Time	Abs.
.1	120	1.3	.329	2.5	.417
. 2	.140	1.4	.342	2.6	.422
. 3	.168	1.5	.350	2.7	.428
. 4	.173	1.6	.359	2.8	.431
•5	.207	1.7	.367	2.9	.435
.6	.224	1.8	.376	3.0	.439
.7	.244	1.9	.383	3.5	.452
.8	.261	2.0	.389	4.0	.461
. 9	.280	2.1	.400	4.5	.471
1.0 .	.295	2.2	.405	5.0	.479
1.1	.308	2.3	.407	5.5	.481
1.2	.318	2.4	.415		

LIST OF REFERENCES

- Basolo, F. and Pearson, R. G., <u>Mechanisms of Inorganic Reactions</u>, 2d ed., John Wiley and Sons, Inc., 1967, p. 351-387.
- Block, B. D., "Sterochemistry of Coordination Number Four," Chemistry of the Coordination Compounds, American Chemical Society Monograph Series, No. 131, Reinhold Publishing Corporation, 1956, p. 354-364.
- 3. Langford, C. H. and Gray, H. B., Ligand Substitution Processes, W. A. Benjamin Inc., 1965.
- 4. Cattalini, L. "Intimate Mechanism of Replacements in d⁸ Square Planar Complexes," <u>Progress in Inorganic Chemistry</u>, 13, Interscience Publishers, 1970.
- 5. Pearson, R. G., and Johnson, D. A., J. Am. Chem. Soc., 86, 3983, 1964.
- 6. Basolo, F., Gray, H. B., and Pearson, R. G., J. Am. Chem. Soc., 82, 4200, 1960.
- 7. Mellor, J. W., A Comprehensive Treatise on Inorganic and and Theoretical Chemistry, v. XV, Longmans, Green and Co., p. 667.
- 8. Reinhardt, R. A., and Sparks, R. K., <u>Inorg. Chem.</u>, <u>6</u>, 2170, 1967.
- 9. Coe, J. S., Hussain, M.D., and Malik, A. A., <u>Inorg. Chim.</u>
 <u>Acta</u>, <u>2</u>, 65, 1968.
- 10. Rasmussen, L., and Jørgensen, C. K., Acta. Chem. Scand., 22, 2315, 1968.
- 11. Reinhardt, R. A., Brenner, N. L., and Sparks, R. K., Inorg. Chem., 6, 254, 1967.
- 12. Skoog, D. A., and West, D. M., <u>Fundamentals of Analytical</u> Chemistry, Hold, Rinehart and Winston, 1966.
- 13. Treadwell, F. D. and Hall, W. T., Analytical Chemistry, v. II, John Wiley and Sons, Inc., 1942, p. 140.
- 14. Frost, A. A. and Pearson, R. G., <u>Kinetics and Mechanism</u> 2d ed., John Wiley and Sons, Inc., 1961, p. 166ff and 49-50.

15. Ashley, K. R., and Hamm, R. E., <u>Inorg. Chem.</u>, <u>5</u>, 1645, 1966.

.

- 16. Nonlinear Least Squares Program and Plotting Routine Program were Designed by Dr. R. A. Reinhardt.
- 17. Reinhardt, R. A., and Coe, J. S., <u>Inorg. Chim. Acta.</u>, 3, 438, 1969.
- 18. Reinhardt, R. A., and Kinney, G. F., United States Naval Postgraduate School Research Paper, No. 15, Operational Analogues for Kinetic Studies, November 1957.
- 19. Aprile, F., Martin, D. S., Jr., <u>Inorg. Chem.</u>, <u>1</u>, 551, 1962.
- 20. Coe, J. S., and Lyons, J. R., <u>Inorg. Chem.</u>, <u>9</u>, 1775, 1970.
- 21. Poë, A. J., and Vaughan, D. H., <u>Inorg. Chim. Acta.</u>, <u>1</u>, 225, 1967.
- 22. Tucker, M. A., Colvin, C. B. and Martin, D. S., Jr., Inorg. Chem., 3, 1373, 1964.
- 23. Reinhardt, R. A. and Monk, W. W., <u>Inorg. Chem.</u>, <u>9</u>, 2026, 1970.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station		2
	Alexandria, Virginia 22314		
2.	Library, Code 0212 Naval Postgraduate School		2
	Monterey, California 93940		
3.	Professor Richard A. Reinhardt Department of Material Science and Chemistry Naval Postgraduate School		1
	Monterey, California 93940		
4.	Ensign William J. DeBerry, Jr. 19 Vernon St.		1
	Hamden, Connecticut 06518		

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of	abstract and indexing annotation must be	e entered when the overall report is classified)

ORIGINATING ACTIVITY (Corporate author)

28. REPORT SECURITY CLASSIFICATION

Origina find activity (corporate author)

Unclassified

Naval Postgraduate School Monterey, California 93940

26. GROUP

REPORT TITLE

THE KINETICS OF SUCCESSIVE AQUATION REACTIONS

OF

TETRAAMMINEPALLADIUM(II) ION

DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Master's Thesis; June 1971

5. AUTHORISI (First name, middle initial, last name)

William Jennings DeBerry, Jr. Ensign, United States Naval Reserve

REPORT DATE	78, TOTAL NO. OF PAGES	7b. NO. OF REFS
June 1971	92	23
SE. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT NU	UMBER(S)
b. PROJECT NO.		
c	9b. OTHER REPORT NO(5) (Any this report)	other numbers that may be assigned

O. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School Monterey, California 93940

3. ABSTRACT

Solutions of tetraamminepalladium(II) perchlorate were made up and analyzed.

The following acid hydrolysis reactions of tetraamminepalladium (II) ion were studied by ultraviolet spectroscopy. First order rate constants were evaluated for each step of the reaction series at various temperatures. Activation parameters were determined.

$$Pd(NH_3)_4^{2+} \xrightarrow{k_1} Pd(NH_3)_3OH_2^{2+} \xrightarrow{k_2} \xrightarrow{cis} Pd(NH_3)_2(OH_2)_2^{2+} \xrightarrow{k_3}$$

$$Pd(OH_2)_{3}NH_3^{2+} \xrightarrow{k_4} Pd(OH_2)_4^{2+}$$

At T = 25°C,
$$\mu = 1M$$
: $k_1 = 11.0 \times 10^{-4} \text{ sec}^{-1}$, $k_2 = 5.6 \times 10^{-4} \text{ sec}^{-1}$, $k_3 = 0.58 \times 10^{-4} \text{ sec}^{-1}$, $k_4 = 0.10 \times 10^{-4}$

Mechanisms for the consecutive reactions are proposed, and cis and trans effects are discussed.

DD FORM 1473 (PAGE 1)

Unclassified

Security Classification									
KEY WORDS	LINK		LINK B		LINKC				
	ROLE	wT	ROLE	WΤ	ROLE	wT			
traamminepalladium(II) ion									
traaquopalladium(II) ion .									
•									
	İ								
•									
					1				
·									
·									
•									

Thesis
D1885 DeBerry
C.1 The kinetics of successive aquation reactions of tetraamminepalladium. (II) ion.

Thesis
D1885 DeBerry

128618

The kinetics of successive aquation reactions of tetraamminepal-

ladium (II) ion.

c.1

The kinetics of successive aquation reac

3 2768 002 10081 0

DUDLEY KNOX LIBRARY