Randomness in Cryptography

Vanesa Daza

Fundamentals Principles of Modern Cryptography

- 1. Security depends on the resources of the attacker.
- 2. Kerckhoffs Principle
- 3. Security is impossible without randomness

Photo by Solen Fevissa on Unaplash

The One-Time Pad

Quick Review

(KeyGen, Enc, Dec)

$$k \frac{\mathsf{KeyGen:}}{\leftarrow \{0,1\}^{\lambda}}$$

$$\mathsf{return} \ k$$

$$\operatorname{\mathsf{Enc}}_k(m)$$
: $\operatorname{\mathsf{return}} \ k \oplus m$

$$\frac{\mathsf{Dec}_k(c):}{\mathsf{return}\ k \oplus c}$$

- Perfectly Secure (unconditional security)
- Computationally Efficient
- Key too long and only used one time
- Malleable

ocrucial point: keys are uniformly selected at random, and true randomner is expensive.

hoto by Reilly Durfy on Unaples

How to make the OTP practical?

basic idea: randonnem -> pseudo-randonnem

Definition 2.2 A pseudorandom number generator (PRNG) is a function

$$G:\{0,1\}^\ell o \{0,1\}^h$$

such that no efficient adversary can distinguish the output distribution of G from the uniform distribution on $\{0,1\}^h$. \longrightarrow for practical purposes, the ortput is considered uniformly

Si=GCS+1), i=0,1,2,... or in general: Sin=G(Si,Sin,...,Sin) for some t

Photo by Eduardo Soares on Unaplash

PRNG Example

Linear Congruential Generator

$$s_0 = \text{seed}$$

 $s_{i+1} \equiv a s_i + b \mod m, \quad i = 0, 1, \dots$

integer constants (secret)

- O produce a sequence of random looking integers between 0 and mi
- 1 durice of a,5 and us is very important to guarantee good

roud() fuction used in ANSIC statistical properties

$$s_0 = 12345$$

$$s_{i+1} \equiv 1103515245 \, s_i + 12345 \, \text{mod } 2^{31}, \ i = 0, 1, \dots$$

Photo by Markus Spiske on Unsplast

Example: Livear feedback shift registers (LFSR)

But the output of an LSFR of length l repeats periodically, with a period of at most 2^l-1 — be not suitable for cryptography.

Still, a dever condituation of some UFSR remains secure !! -

Stream Ciphers Security

Length key <<< Length Plaintext - no perfect secrety!

We need to define what security means, and it will depend on PRNG

@ unpredictability

Photo by Erol Ahmed on Unsplash

Predictability of PRNG

Informally, a PRNG is *predictable* if there exists an efficient way to predict a bit from previous computed bits. $\exists i \quad G(\kappa) \mid_{A_{i} = 1} A_{i} G(\kappa) \mid_{A_{i} = 1} A_{i}$

Observe that if PRNG G is predictable, then the corresponding stream cipher is insecure. (known plaintext affects)

Photo by Jen Theodore on Unspiral

Can we apply the 2-time attack to Stream Ciphers?

 $C_1 = M_1 \oplus G(K)$ $C_2 = M_2 \oplus G(K)$ $M_1, M_2?$

Observe that $C_1 \oplus C_2 = m_1 \oplus C_2$ and as it happened with the OTP, this could leak information as m_1 and m_2 .

Photo by Jon Tyson on Unsplash

Are the Stream Ciphers malleable?

Similarly as it happeur in the OTP, stream appears are malleable. Indeed just noticed that

Photo by Jon Tyson on Unsplash

Randomness in Cryptography

Vanesa Daza