The Amortization Elasticity of Mortgage Demand

Young Scholars Nordic Finance Workshop

Claes Bäckman Peter van Santen November 26, 2021

Introduction and research question

Motivation

Signing up for a mortgage commits a borrower to a long stream of mandatory amortization and interest payments

• Amortization payments \approx 60 percent of first year mortgage payments

Research question: Do amortization payments affect borrowing decisions?

Difficult to estimate due to lack of plausible variation in amortization rate

Why should you care?

Motivation

A new macroprudential tool in Sweden, the Netherlands and Norway

 Campbell et al. (2020) show that time-varying amortization payments help stabilize consumption over the business cycle

A key part of mortgage innovation

- Mortgages with low(er) amortization payments constituted 52 percent of new origination in US in 2005 (Justiniano et al., 2021)
- "Complex mortgages" used by households with high income (Amromin et al., 2018)

Credit growth in Sweden

Background

Roadmap

Institutional setting

Theory and Methodology

Results

Bunching

Elasticity

Credit supply mechanism

Threats to identification

Institutional setting

Swedish mortgage contracts prior to 2016

Background

Mainly adjustable rate mortgage with a long maturity provided by banks

- Not annuity contracts
- Durations 40-50 years
- LTV-cap at 85%
- Payment to Income (PTI) constraint
- Adjustable rates or short fixed rate periods
- Full recourse with lifetime garnishing

Swedish mortgage contracts prior to 2016

Background

Mainly adjustable rate mortgage with a long maturity provided by banks

- Not annuity contracts
- Durations 40-50 years
- LTV-cap at 85%
- Payment to Income (PTI) constraint
- Adjustable rates or short fixed rate periods
- Full recourse with lifetime garnishing

The amortization requirement

Background

Swedish FSA (Finansinspektionen) introduced the amortization requirement to reduce debt levels over time

- House prices grew 31 percent betweeen 2011 and 2015 House price growth
- Credit grew at 8 percent a year in 2015 Credit growth

Amortization requirement went into effect for new mortgages in June, 2016

The amortization requirement

Design

Mandatory amortization depends on loan-to-value (LTV) ratio:

- 1 percent of entire mortgage if LTV > 50%
- 2 percent of entire mortgage if LTV > 70%
- (From 1st of March 2018: additional 1 percent if debt-to-income > 4.5)

Roadmap

Institutional setting

Theory and Methodology

Results

Bunching

Elasticity

Credit supply mechanism

Threats to identification

Why is (forced) amortization costly?

Theory

Several reasons:

- Portfolio allocation: Lower rate of return on amortization compared to risky assets and preference for liquid vs illiquid savings (Larsen et al., 2018)
- Life-cycle motive: Current income low relative to permanent income (Cocco, 2013)
- Credit supply: Amortization payments included in payment-to-income calculation (Grodecka, 2020; Greenwald, 2017)
- Illiteracy, mistakes: Borrowers care about total payments

Intuition behind empirical methodology

Methodology

We use the discontinuous jump in average payments at the requirement threshold(s) to identify the trade-off between borrowing and amortizing

You can trade lower borrowing for lower payments by placing yourself at the threshold

We use years prior to the requirement to estimate the counter-factual distribution and compare it to the empirical (actual) distribution

- Bunching estimate: The relative increase in percentage of households placing themselves at the threshold
- Maps directly into an estimate of the change in LTV

Notched and linear amortization schedules

Theory

Number of households bunching at the threshold:

$$B = \int_{\overline{LTV}}^{\overline{LTV} + \Delta LTV} g_{linear}(LTV) dLTV$$

$$\approx g_{linear}(\overline{LTV}) \Delta LTV$$

With an estimate of \widehat{B} and $\widehat{g_{linear}}$, we can solve for ΔLTV :

$$\widehat{\Delta LTV} = \frac{\widehat{B}}{\widehat{g_{linear}}(\overline{LTV})}$$

Data

Methodology

- Microdata reported by 8 largest banks in Sweden from Swedish FSA's "Mortgage survey" (Bolåneundersökningen), 2011 - 2018
 - Survey covers all newly issued mortgage loans within a two-week window during the period August - October
 - 15,000 30,000 households per year
- Variables:
 - Loan-level: size, interest rate, amortization, collateral
 - Household-level: size, age, income, location, total debt (secured, unsecured)

Roadmap

Institutional setting

Theory and Methodology

Results

Bunching

Elasticity

Credit supply mechanism

Bunching at lower threshold

Results

Bunching at upper threshold

Results

Elasticity for the marginal buncher

Elasticity

$$e^{\alpha} = \frac{\overbrace{\Delta LTV}^{\text{From bunching}}}{\underbrace{\alpha^*(\overline{LTV} + \Delta LTV) - \alpha}_{\text{Change in marginal amortization rate}}$$

We convert the average amortization rate (1 or 2 percent) to the marginal amortization rate (\approx 20 percent)

• Intuition: the change in amortization rate from moving just below the threshold \overline{LTV} to the LTV for marginal buncher

Resulting elasticity

Elasticity

Resulting elasticity:

- Lower threshold: Reduction in LTV per unit of amortization of 0.25
- Upper threshold: Reduction in LTV per unit of amortization of 0.14

Implication: Moving from an interest-only mortgage to annuity schedule with a 3 percent interest rate reduces borrowing by between 5.6 and 10 percent

Roadmap

Institutional setting

Theory and Methodology

Results

Bunching

Elasticity

Credit supply mechanism

Threats to identification

Effect of payment-to-income constraint

Credit supply

26.3% of borrowers close to the threshold are unable to borrow more due to credit constraints

Borrowers lower amortization payments to comply with PTI constraints

 Potential implication for wealth accumulation (Bernstein & Koudijs, 2021)

Reduction in discretionary income

Credit supply

Higher amortization would entail a large reduction in discretionary income for many households

39.4 percent of borrowers would have a reduction of more than 50 percent

 Anecdotally, this also seems to explain reluctance to amortize

Estimation of counter-factual distribution

Threats to identification

Placebo test: estimate bunching using only pre-requirement data Placebo tests

Standard approach of fitting a flexible polynomial gives very similar results (Polynomial approach)

But find it difficult to capture round-number bunching

Other reasons to bunch

Threats to identification

Maybe borrowers bunch for other reasons, not the amortization requirement?

- Interest rates around the thresholds are flat Interest rates
- Amortization rates higher above notch only after requirement is in effect Amortization rates
- Borrowing more in response to requirement (Svensson, 2016) would not lead to bunching from above
- We also argue against bank incentives, potential manipulation of collateral assessments, and salience

Conclusion

Summary: We provide evidence that borrowers avoid making amortization payments

Borrowing reduced even for households with low leverage

Contribution: We contribute to a growing literature that studies amortization payments:

- A perhaps under-appreciated part of the financial crisis? (Justiniano et al., 2021;
 Amromin et al., 2018; Ganong & Noel, 2020)
- A potential tool to stabilize the business cycle (Campbell et al., 2020)
- A key part to building wealth (Bernstein & Koudijs, 2021)

Thank you!

Website: https://sites.google.com/view/claesbackman/home

Email claes.backman@econ.au.dk

House price growth in Sweden

Background

Simulated densities with and without a requirement in a simple model

Linear schedule: $\alpha = \alpha_0$

Notched schedule: $\alpha = \alpha_0 + \mathbb{1}(LTV > \overline{LTV})\Delta\alpha$

Key bunching estimates

Methodology

Counter-factual distribution $\widehat{g_{linear}}(LTV)$ estimated using pre-requirement years

Bunching \widehat{B} is the difference between the observed and counterfactual bin fractions:

$$\widehat{m{B}} = \sum_{j=L}^R (n_j^{post} - \hat{n}_j^{post}).$$

 ΔLTV is the change in LTV for the marginal buncher:

Empirical and Counter-factual distribution in 2014

Lower threshold

Upper threshold

Ratio between counter-factual and empirical distribution in placebo years

Lower threshold

Upper threshold

Estimates of ΔLTV using polynomial approach

Threats to identification

Interest rates by LTV ratio over time

Lower threshold

Amortization rates by LTV ratio over time

Lower threshold

References

- Amromin, Gene, Huang, Jennifer, Sialm, Clemens, & Zhong, Edward. 2018. Complex mortgages. *Review of Finance*, **22**(6), 1975–2007.
- Bernstein, Asaf, & Koudijs, Peter. 2021. The Mortgage Piggy Bank: Wealth Building through Amortization. *Available at SSRN 3569252*.
- Campbell, John Y, Clara, Nuno, & Cocco, Joao F. 2020. Structuring mortgages for macroeconomic stability. *The Journal of Finance, forthcoming.*
- Cocco, Joao F. 2013. Evidence on the benefits of alternative mortgage products. *The Journal of Finance*, **68**(4), 1663–1690.
- Ganong, Peter, & Noel, Pascal. 2020. Liquidity versus wealth in household debt obligations: Evidence from housing policy in the Great Recession. *American Economic Review*, **110**(10), 3100–3138.
- Greenwald, Daniel L. 2017. *The Mortgage Credit Channel of Macroeconomic Transmission*. Working Paper, MIT Sloan.

Grodecka Anna 2020. On the Effectiveness of Loan-to-Value Regulation in a Multiconstraint