Problem D. a-Good String

Time limit 2000 ms **Mem limit** 262144 kB

You are given a string $s[1\dots n]$ consisting of lowercase Latin letters. It is guaranteed that $n=2^k$ for some integer $k\geq 0$.

The string $s[1 \dots n]$ is called c-qood if **at least one** of the following three conditions is satisfied:

- The length of s is 1, and it consists of the character c (i.e. $s_1 = c$);
- The length of s is greater than 1, the first half of the string consists of only the character c (i.e. $s_1=s_2=\cdots=s_{\frac{n}{2}}=c$) and the second half of the string (i.e. the string $s_{\frac{n}{2}+1}s_{\frac{n}{2}+2}\ldots s_n$) is a (c+1)-good string;
- The length of s is greater than 1, the second half of the string consists of only the character c (i.e. $s_{\frac{n}{2}+1}=s_{\frac{n}{2}+2}=\cdots=s_n=c$) and the first half of the string (i.e. the string $s_1s_2\dots s_{\frac{n}{2}}$) is a (c+1)-good string.

For example: "aabc" is 'a'-good, "ffgheeee" is 'e'-good.

In one move, you can choose one index i from 1 to n and replace s_i with any lowercase Latin letter (any character from 'a' to 'z').

Your task is to find the minimum number of moves required to obtain an 'a'-good string from s (i.e. c-good string for c = 'a'). It is guaranteed that the answer always exists.

You have to answer t independent test cases.

Another example of an 'a'-good string is as follows. Consider the string s = "cdbbaaaa". It is an 'a'-good string, because:

- the second half of the string ("aaaa") consists of only the character 'a';
- the first half of the string ("cdbb") is 'b'-good string, because:
 - the second half of the string ("bb") consists of only the character 'b';
 - the first half of the string ("cd") is 'c'-good string, because:
 - the first half of the string ("c") consists of only the character 'c';
 - the second half of the string ("d") is 'd'-qood string.

Input

The first line of the input contains one integer t ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then t test cases follow.

The first line of the test case contains one integer n ($1 \le n \le 131\ 072$) — the length of s. It is guaranteed that $n=2^k$ for some integer $k\ge 0$. The second line of the test case contains the string s consisting of n lowercase Latin letters.

It is guaranteed that the sum of n does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).

Output

For each test case, print the answer — the minimum number of moves required to obtain an 'a'-good string from s (i.e. c-good string with c = 'a'). It is guaranteed that the answer exists.

Sample 1

Input	Output
6	Θ
8	7
bbdcaaaa	4
8	5
asdfghjk	1
8	1
ceaaaabb	
8	
bbaaddcc	
1	
z	
2	
ac	