Сети

Пирамида для сетей

- 1) Аппаратная реализация передачи данных: NRZ/NRZI и т.д.
- 2)Протоколы, алгоритмы: предмет рассмотрения текущей лекции
- 3) Абстракции ОС/API: предмет рассмотрения следующей лекции

ISO/OSI

Прикладной

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Горизонтальное взаимодействие

Назначение, примеры

- Физический: передача, кодирование сигнала (биты). 802.11 (WiFi)
- Канальный: передача фреймов. Целостность. Ethernet, PPP
- Сетевой: организация (наикратчайшего) пути передачи данных. IP(+IPv6), IPX (Novell)
- Транспортный: организация надежной передачи данных. TCP/UDP, SPX (Novell)
- Сеансовый: установление/возобновление сеанса. RPC
- Представление: преобразование в единый формат (BE,LE)
- Прикладной (Приложений): обеспечение взаимодействия программ. HTTP, SMTP

В одной сети

В разных сетях

Сетевое оборудование и уровни

- L1: концентратор (hub): транслирует все фреймы, которые приходят с одного порта на все другие
- L2: коммутатор (switch), мост (bridge): просматривает пакеты, запоминает МАС-адреса, отправляет нужному
- L3: маршрутизатор: просматривает пакеты, собирает в IP, принимает решение и на уровне IP-адреса

Протоколы и уровни

- Протокол работает на уровне К:
 - Для работы требуется К-1 уровень
- Протокол реализует уровень К:
 - Работает на уровне К
 - Используется для уровня К+1

Примеры

- ARP (Address Resolution Protocol):
 - служебный, использует ethernet
- AoE (ATA over Ethernet):
 - использует ethernet
- IP:
 - использует ethernet
 - реализует Сетевой уровень

Текущая реальность

- Стек TCP/IP:
 - Сетевого доступа (Канальный (Ethernet) + физический)
 - Межсетевого доступа (Сетевой) IP, IGMP (224.x.x.x)
 - Транспортный (TCP/UDP/SCTP)
 - Приложений (все остальное)
- Все остальные над/между уровнями:
 - VLAN (802.11q): между физическим и канальным
 - PPPoE: между канальным и сетевым
 - IPSec: между сетевым и транспортным
 - SSL: на уровне представления (над транспортным)
 - HTTP/FTP/SMTP: на уровне приложения

Пример

- Письмо:
 - Content-Type: multipart/alternative;
 - ---= mimepart_532941cfcd90f_7e143fc3e72e09b034488
 - Content-Type: text/plain;
 - Content-Transfer-Encoding: base64
 - ----=_mimepart_532941cfcd90f_7e143fc3e72e09b034488
 - Content-Type: text/html;
- SMTP: telnet smtp.yandex.ru 25
 - ehlo test
 - mail from: <>
 - rcpt to: [адрес получателя]
 - data
 - .

Сетевые диски (NAS)

- На уровне диска/раздела:
 - AoE (ethernet)
 - ISCSI (TCP)
 - FC (FCP) на своем стеке протоколов
- На уровне директорий:
 - NFS (RPC → UDP/TCP)
 - SMB
- На уровне приложения:
 - FTP/SSH/HTTP

Сетевое взаимодействие на примере TCP/IP

- Устройства: А ↔ В ↔ С
- Сети: N1 (AB), N2 (BC)
- Сетевые карты: N1A, N1B, N2B, N2C
- MAC (N1A) MAC-адрес сетевой карты N1A
- IP(N1A) IP-адрес сетевой карты N1A
 - вообще говоря на одной карте может быть несколько адресов
- Пакеты:
 - MAC(кому):IP(кому) # MAC(от кого):IP(от кого)
 - MAC:IP:Port (для TCP/UDP/SCTP/...)

Локальная передача данных

- (... → IP → MAC → кабель)
- ARP-таблица: IP → MAC
 - Если адреса нет, то послать ARP-запрос в сеть:
 - MAC(все):IP(кого ищем) # MAC(свой):IP(свой)
- В ответе:
 - MAC(A):IP(A)#MAC(B):IP(B):: мой МАС=МАС(B)
- A → B:
 - MAC(N1B):IP(N1B) # MAC(N1A):IP(N1A)

Адреса

- IP 10.1.1.10, netmask: 255.255.255.0 (/24):
 - Bce: 0.0.0.0
 - Все из этой сети: 10.1.1.255
- MAC:
 - Bce: ff:ff:ff:ff:ff

Межсетевая передача

- IP + netmask:
 - Локальная передача или межсетевая?
- Таблица маршрутизации:
 - netstat -rn
 - route add ...

Destination Gateway Genmask Flags MSS Window irtt Iface

```
0.0.0.0 192.168.0.1 0.0.0.0 UG 0 0 0 wlan1 192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan1
```

• Найти маршрут, послать пакет маршрутизатору

Межсетевая передача: пакеты

- Пусть в таблице маршрутизации А в направлении N2C стоит IP(N1B)
- А: (узнает MAC(N1B), если не знала)
 - MAC(N1B):IP(N2C) # MAC(N1A):IP(N1A)
- В: (имеет право отвергнуть на IP-уровне, т. к. адрес не его, должен знать, что маршрутизатор):
 - MAC(N2C):IP(N2C) # MAC (N2B):IP(N1A)
- С: получает пакет, знает N1A. Обратный маршрут не обязан идти через В

Межсетевая передача: NAT

- Пусть в таблице преобразования маршрутизатора В стоит правило:
 - N2B: IP(N1A) → Ext
- Пусть соединение идет по 80 порту (ТСР)
- А: (обратный порт выдает ОС, пусть будет 4000):
 - MAC(N1B):IP(N2C):80 # MAC(N1A):IP(N1A):4000
- В: (видит, что пакет уходит в N2B):
 - Запоминает: IP(N1A):4000 ↔ Ext:5123
 - Посылает: MAC(N2C):IP(N2C) # MAC (N2B):Ext:5123
- С: получает пакет, знает Ext и порт 5123. Обратный маршрут должен пройти через В

NAT: ответ

- С: Посылает ответ (Аналогично найдя, что для Ext маршрутизатором является N2B):
 - MAC(N2B):Ext:5123 # MAC(N2C):IP(N2C):80
- В: (видит, что пакет пришел через N2B):
 - Смотрит: IP(N1A):4000 ↔ Ext:5123
 - Посылает: MAC(N1A):IP(N1A):4000 # MAC (N1B):IP(N2C):80
- А: Получает свой ответ

Сетевое взаимодействие: DHCP

- Поверх UDP
- Клиент (A):
 - MAC(Bce):IP(Bce):67 # MAC(A):IP(Bce):68
- Сервер (ответ):
 - MAC(A):IP(A):68 # MAC (сервера):IP(сервера):67:
 - Твой адрес: IP(A)
 - Сетевая маска: Net(A)
 - Шлюз: IP(Gateway) (не обязательно сервер)
 - Грузиться: IP(Boot-server) (если сетевая загрузка)
 - Файл для загрузки: /A/pxeboot (если сетевая загрузка)
- Если загрузка по сети, то дальнейшее общение A и IP(Bootserver) по TFTP

ARP-атаки

- Н атакует А, чтобы выдать себя за В:
 - ARP otbet: MAC(A):IP(A)#MAC(H):IP(B)
- Если А не запрашивал, то:
 - ARP ответ: MAC(A):IP(D)#MAC(H):IP(B)