Semana 15:

Programación de Shell Scripts en Linux

Sistemas Operativos

Capacidades de la Sesión

Aplicar comandos básicos de Linux.

Entender el funcionamiento de los Scripts en Linux.

Utilizar sentencias en un script en Linux.

SHELL de Linux

- Es la interfaz entre el usuario final y el sistema operativo linux.
- Una plataforma linux tiene múltiples versiones pero solo utilizamos una de ellas por defecto.
- Para saber la versión de Shell que utiliza puede ayudarse ejecutando el siguiente comando "echo \$SHELL"

[root@linux ~]# echo \$SHELL
/bin/bash

SHELL de Linux

- La versión más popular de Shell ,usada en la actualidad, es bash.
- **bash** no es únicamente una excelente shell por CLI sino que también es un lenguaje de scripting en sí mismo.
- El shell scripting permite utilizar las capacidades de la shell para automatizar multitud de tareas que, de otra forma, requerirían múltiples comandos introducidos de forma manual.

Creacion de Scripts

- Necesitaremos conocer una herramienta de edición de textos (vi, vim, nano, etc).
- Crearemos un archivo de nombre "script01" dentro del directorio home de root; con el siguiente contenido.

[root@linux ~]# vim script01

root@linux ~]# pwd

```
/root
[root@linux ~]# ls
script01
[root@linux ~]# cat script01
comandos.

#!/bin/bash
echo "Esto es una prueba para TECSUP"
```

Veremos que el archivo creado no tiene permisos de ejecución.

Creacion de Scripts (cont.)

 Procederemos a darle permisos de lectura para el propietario del archivo.

```
[root@linux ~]# chmod 744 script01
[root@linux ~]# ls -l
total 4
-rwxr--r--. 1 root root 50 Jul 4 12:55 script01
```

 Procederemos a ejecutar el archivo "ejecutable". Para esto, anteponemos./ delante del nombre del archivo.

```
[root@linux ~]# ./script01
Esto es una prueba para TECSUP
```

 Si quisiéramos crear un script que mueva todo los temporales a un directorio ("/borrado") y luego los borre; ¿Cómo lo haríamos?

Creacion de Scripts (cont.)

 Recordar que los temporales se alojan en "/tmp". Por lo tanto, crearemos un archivo (script02) con el siguiente contenido.

```
[root@linux ~]# cat script02
#!/bin/bash
mkdir /borrado
mv /tmp/* /borrado/
rm -rf /borrado/*
[root@linux ~]# pwd
/root
```

• Si listamos el directorio "/tmp" veremos que tiene contenido.

```
[root@linux ~]# ls /tmp
systemd-private-32e5ef9e99104326b3e02e18ae93cffa-bolt.service-qEIfwq
systemd-private-32e5ef9e99104326b3e02e18ae93cffa-colord.service-ReQ4Qt
systemd-private-32e5ef9e99104326b3e02e18ae93cffa-cups.service-qOgQeS
systemd-private-32e5ef9e99104326b3e02e18ae93cffa-fwupd.service-fX5v7q
systemd-private-32e5ef9e99104326b3e02e18ae93cffa-rtkit-daemon.service-KBeW6S
```


Creacion de Scripts (cont.)

 Procederemos a darle permiso de ejecución al propietario y ejecutaremos el script.

```
[root@linux ~]# chmod 744 script02
[root@linux ~]# ls -l
total 8
-rwxr--r--. 1 root root 50 Jul  4 12:55 script01
-rwxr--r--. 1 root root 65 Jul  4 13:46 script02
[root@linux ~]# _/script02
```

 Ahora, si listamos el directorio "/tmp" veremos que limpió todo el contenido.

```
[root@linux ~]# ls /tmp
[root@linux ~]# ls /borrado/
```


Creacion de Scripts – Declarando variables

- Como en cualquier lenguaje de programación, en shell scripting se pueden utilizar variables.
- Todos los valores son almacenados como cadenas de texto pero también hay operadores matemáticos que convierten las variables en números para el cálculo.
- No es necesario declarar una variable, simplemente asignándole un valor a su referencia será suficiente para crearla.

Creacion de Scripts – Declarando variables

Crearemos un script, en el cual declararemos una variable y le asignaremos una cadena de texto. Luego, recuperaremos la variable anteponiendo el símbolo \$ delante de su nombre.

```
[root@linux ~]# pwd
/root
[root@linux ~]# cat script03
#!/bin/bash
a="Esto es una prueba de variables"
echo $a
[root@linux ~]# chmod 744 script03
```

Luego, ejecutamos el script.

```
[root@linux ~]# ./script03
Esto es una prueba de variables
```


Creacion de Scripts – comando "read"

 El comando read nos permite solicitar un valor de entrada para almacenarlo en una variable.

```
[root@linux ~]# pwd
/root
[root@linux ~]# cat script04
#!/bin/bash
clear
echo "¿Cómo te llamas?:"
echo "Ingresa tu nombre:"
read x
echo "Ahora sé que tu nombre es $x"
[root@linux ~]# chmod 744 script04
```

Luego, ejecutamos el script.

```
¿Cómo te llamas?:
Ingresa tu nombre:
Roberto Rodríguez
Ahora sé que tu <u>n</u>ombre es Roberto Rodríguez
```


Creacion de Scripts – comando "expr"

El comando **expr** nos puede servir para realizar en shell script operaciones aritméticas. Puedes realizar sumas, restas multiplicaciones y divisiones enteras.

```
[root@linux ~]# pwd
/root
[root@linux ~]# cat script05
#!/bin/bash
clear
echo "Ingresar primer valor:"
read a
echo "Ingresar segundo valor:"
read b
c=`expr $a + $b`
d=`expr $a - $b`
echo "La suma de los 2 valores es: $c"
echo "La resta de los 2 valores es: $d"
[root@linux ~]# chmod 744 script05
```


Creacion de Scripts – comando "expr"

Ejecutando el script.

```
Ingresar primer valor:
100
Ingresar segundo valor:
20
La suma de los 2 valores es: 120
La resta de los 2 valores es: 80
[root@linux ~]#
```


Condicionales: if ,elif,else

• La sentencia condicional tiene el siguiente formato:

-lt	Menor que
-le	Menor igual que
-gt	Mayor que
-ge	Mayor igual que
-eq	Igual
-ne	distinto

Condicionales: if ,elif,else - ejemplos

Creamos un script con el siguiente contenido.

Condicionales: if ,elif,else - ejemplos

Creamos otro script con el siguiente contenido.

```
[root@linux ~]# cat script07
#!/bin/bash
echo "Ingrese un número:"
read a
echo "Ingrese otro número:"
read b
c=`expr $a - $b`
if [ $c -gt 0 ]
then
        echo "El primer número es mayor que el segundo"
elif [ $a = $b ]
then
        echo "Los números ingresados son iguales"
else
        echo "El segundo número es mayor que el primero"
```


Bucle: for

 En cada iteración la variable toma un valor de SERIE, que en caso de no contener elementos hará que no se ejecute nada y se devuelva un valor 0. En caso de que se ejecuten comandos, el resultado devuelto tras el bucle es el del último comando ejecutado.

```
for var [in lista]
do
.....
lista de órdenes
.....
done
```


Bucle: for - ejemplos

 Creando un script sencillo, el cual imprimirá en consola el valor definido para la lista de variables.

```
[root@linux ~]# cat script08
#!/bin/bash
for i in 1 2 3 4 5;
do
        echo $i
done
[root@linux ~]# chmod 744 script08
[root@linux ~]# ./script08
```


Bucle: for - ejemplos

 Crearemos otro script, el cual cargará en una lista de variables las rutas de directorios ubicados en "/etc/sysconfig/". Luego por cada directorio imprimirá, en consola, la ruta absoluta y los permisos que tiene configurados.

Sentencia "case"

• El conjunto de palabras **case** y **esac** conforman un selector en función de un resultado.

```
case $var in
 val1)
  instrucciones;;
  val2)
   instrucciones;;
   instrucciones;;
  esac
```


Sentencia "case" - ejemplo

 Creamos un script, usando la sentencia case. El script tendrá el siguiente contenido.

```
#!/bin/bash
echo "Por favor ingrese un número"
read x
case $x in
0) echo "cero"
  echo "uno"
   echo "dos"
   echo "tres"
   echo "El número es mayor a 3"
esac
[root@linux ~]# chmod 744 script10
```


FIN DE LA UNIDAD

Bibliografía

- Adelstein, Torn (2007). Administración de Sistemas Operativos Linux. Madrid: Anaya Multimedia (005.43L/A23)
- Alegría Loainaz, Iñaki (2005). Linux Administración del Sistema y la Red. Madrid: Pearson Educación (005.43L/A37)
- Negus, Christopher (2013). Linux, Bible. Albany NY: A.De Boeck (005.43L/N36)

