INTRODUCTION TO LANGUAGE THEORY AND COMPILING

Basic definitions: alphabet, word, language

Definition 1.4 (Alphabet). An *alphabet* is a *finite* set of symbols. We will usually denote alphabets by Σ .

Definition 1.6 (Word). A *word* on an alphabet Σ is a *finite* (and possibly empty) sequence of symbols from Σ . We use the symbol ε to denote the *empty word*, i.e., the empty sequence (that contains no symbol).

Definition 1.8 (Language). A *language* on an alphabet Σ is a (possibly empty or infinite) set of words on Σ .

The Σ^* notation

Let Σ be an alphabet. Since any alphabet is a set, we can also regard Σ as a language, which contains only words of one character. Then, we can write Σ^* , which contains all the words (including the empty one) that are made up of characters from Σ . This notation will be used very often in the rest of these notes.

Operations on words and languages

Definition 1.17 (Concatenation of two words). Given two words $w = w_1 w_2 \cdots w_n$ and $v = v_1 v_2 \cdots v_\ell$, the *concatenation* of w and v, denoted $w \cdot v$, is the word:

$$w \cdot v = w_1 w_2 \cdots w_n v_1 v_2 \cdots v_\ell$$

By convention, $\varepsilon \cdot w = w \cdot \varepsilon = w$, for all words w. In particular $\varepsilon \cdot \varepsilon = \varepsilon$.

1. For all languages L, for all natural numbers n, L^n is the language containing all words obtained by taking n words from L an concatenating them:

$$L^n = \{w_1 w_2 \cdots w_n \mid \text{for all } 1 \le i \le n : w_i \in L\}$$

2. For all languages L, the *Kleene closure* of L, denote L^* is the language containing all words made up of an arbitrary number of concatenations of words from L:

$$L^* = \{ w_1 w_2 \cdots w_n \mid n \ge 0 \text{ and for all } 1 \le i \le n : w_i \in L \}$$

3. A variation on the Kleene closure is L^+ which is the language containing all words made up of an arbitrary and *strictly positive* number of concatenations of words from L:

$$L^{+} = \{w_1 w_2 \cdots w_n \mid n \ge 1 \text{ and for all } 1 \le i \le n : w_i \in L\}$$

Regular languages

Definition 2.1 (Regular languages). Let us fix an alphabet Σ . Then, a language L is regular iff:

- 1. either $L = \emptyset$;
- 2. or $L = \{\varepsilon\}$;
- 3. or $L = \{a\}$ for some $a \in \Sigma$;
- 4. or $L = L_1 \cup L_2$;
- 5. or $L = L_1 \cdot L_2$;
- 6. or $L = L_1^*$

where L_1 and L_2 are regular languages on Σ .

Uning the some idea, we can posse flat all finite languages one regular.

Regular expressions

Definition 2.3 (Regular expressions). Given a finite alphabet Σ , the following are regular expressions on Σ :

- 1. The constant \emptyset . It denotes the language $L(\emptyset) = \emptyset$.
- 2. The constant ε . It denotes the language $L(\varepsilon) = \{\varepsilon\}$.
- 3. All constants $a \in \Sigma$. Each constant $a \in \Sigma$ denotes the language $L(a) = \{a\}$.
- 4. All expressions of the form $r_1 + r_2$, where r_1 and r_2 are regular expressions on Σ . Each expression $r_1 + r_2$ denotes the language $L(r_1 + r_2) = L(r_1) \cup L(r_2)$.
- 5. All expressions of the form $r_1 \cdot r_2$, where r_1 and r_2 are regular expressions on Σ . Each expression $r_1 \cdot r_2$ denotes the language $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$.
- 6. All expressions of the form r^* , where r is a regular expression on Σ . Each expression r^* denotes the language $L(r^*) = (L(r))^*$.

In addition, parenthesis are allowed in regular expressions to group subexpressions (with their usual semantics).

Theorem 2.1. For all regular languages L, there is a regular expression r s.t. L(r) = L. For all regular expressions r, L(r) is a regular language.

Finite automata

Definition 2.5 (Finite automaton). A finite automaton is a tuple:

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$

where:

- 1. *Q* is a finite set of states;
- 2. Σ is the (finite) input alphabet;
- 3. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$ is the transition function;
- 4. $q_0 \in Q$ is the initial state;
- 5. $F \subseteq Q$ is the set of accepting states.

Definition 2.7 (Classes of finite state automata).

- 1. A non-deterministic finite state automata with ε -transitions (ε -NFA for short) is a finite state automaton, as in Definition 2.5.
- 2. A non-deterministic finite state automaton (NFA for short) is an ε -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ s.t. for all $q \in Q$: $\delta(q, \varepsilon) = \emptyset$. In this case, we will henceforth assume that the signature of the transition function is δ : $Q \times \Sigma \mapsto 2^Q$.
- 3. A deterministic finite state automaton (DFA for short) is an NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ s.t. for all $q \in Q$, for all $a \in \Sigma$: $|\delta(q, a)| = 1$. In this case, we will henceforth assume that the signature of the transition function is $\delta: Q \times \Sigma \mapsto Q$, and that the function is *complete*.

8

Definition 2.10 (Accepted language of an ε -NFA). Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ be an ε -NFA. Then, its *accepted language* is:

$$L(A) = \left\{ w \in \Sigma^* \mid \exists q \in F \text{ s.t. } \langle q_0, w \rangle \vdash_{\mathsf{A}}^* \langle q, \varepsilon \rangle \right\}$$

Definition 2.8 (Configuration of an ε -NFA). A *configuration* of an ε -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ is a pair $\langle q, w \rangle \in Q \times \Sigma^*$, where q is the *current state*, and w is the *input word suffix* that remains to be read.

The *initial configuration* of *A* on the input word *w* is $\langle q_0, w \rangle$.

A configuration $\langle q, w \rangle$ is *accepting* (or final) iff $q \in F$ and $w = \varepsilon$.

.

Equivalence between automata and regular expressions

Definition 2.13 (ε -closure). Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ be an ε -NFA. For all $i \in \mathbb{N}$, let ε closure i(q) be defined as follows:

$$\varepsilon \mathsf{closure}^i(q) = \left\{ \begin{array}{ll} \{q\} & \text{if } i = 0 \\ \delta(\varepsilon \mathsf{closure}^{i-1}(q), \varepsilon) \cup \varepsilon \mathsf{closure}^{i-1}(q) & \text{otherwise} \end{array} \right.$$

Then, for all $q \in Q$: ε closure $(q) = \varepsilon$ closure $^K(q)$, where K is the least value s.t. ε closure $^K(q) = \varepsilon$ closure $^{K+1}(q)$.

Determinisation of ε -NFAs

Given an ε -NFA $A=\langle Q^A,\Sigma,\delta^A,q_0^A,F^A\rangle$, we build the DFA $D=\langle Q^D,\Sigma,\delta^D,q_0^D,F^D\rangle$ as follows:

- 1. $Q^D = 2^{Q^A}$
- 2. $q_0^D = \varepsilon \operatorname{closure}(q_0^A)$ 3. $F^D = \{S \in Q^D \mid S \cap F^A \neq \emptyset\}$
- 4. for all $S \in Q^D$, for all $a \in \Sigma$: $\delta^D(S, a) = \varepsilon \operatorname{closure} (\delta^A(S, a))$

- 1. As expected, the set of states of the DFA is the set of subsets of the ε -NFAs states.
- 2. The initial state of the DFA is the set of states the NFA can reach from its own initial state q_0^A by reading only ε -labeled transitions. Thus, q_0^D is the set of states in which the ε -NFA can be before reading any letter.
- 3. A state of the DFA is accepting iff it contains at least one accepting state of the ε -NFA. This is coherent with the intuition that at least one execution of the ε -NFA must accept for the word to be accepted.
- 4. The transition function consists in: first reading a letter, then following as many ε -labeled transitions as possible.