

Why is Your I_Q Too High?

nanoPower Boost Converter

May, 2017

nano; n 10-9 1/ 1000 000 000 0.000 000 001

10 ⁿ	접두어	기호	배수	십진수		
10 ²⁴	요타 (yotta)	Υ	자	1 000 000 000 000 000 000	000 000	
10 ²¹	제타 (zetta)	Z	십해	1 000 000 000 000 000 000	000	
10 ¹⁸	엑사 (exa)	E	백경	1 000 000 000 000 000 000		
10 ¹⁵	페타 (peta)	P	천조	1 000 000 000 000 000		
10 ¹²	테라 (tera)	Т	조	1 000 000 000 000		
10 ⁹	기가 (giga)	G	십억	1 000 000 000		
10 ⁶	메가 (mega)	M	백만	1 000 000	nano	; n
10 ³	킬로 (kilo)	k	천	1 000	Harro	,
10 ²	헥토 (hecto)	h	백	100	10-9	
10 ¹	데카 (deca)	da	십	10	10-9	
10 ⁰			일	1		
10-1	데시 (deci)	d	십분의 일	0.1	1/10	00 000 000
10^{-2}	센티 (centi)	С	백분의 일	0.01	,	
10^{-3}	밀리 (milli)	m	천분의 일	0.001	0.000	000 001
10^{-6}	마이크로 (micro)	μ	백만분의 일	0.000 001	0.000	000 001
10^{-9}	나노 (nano)	n	십억분의 일	0.000 000 001		
10 ⁻¹²	피코 (pico)	p	일조분의 일	0.000 000 000 001		
10^{-15}	펨토 (femto)	f	천조분의 일	0.000 000 000 000 001		
10^{-18}	아토 (atto)	а	백경분의 일	0.000 000 000 000 000 001		
10^{-21}	젭토 (zepto)	Z	십해분의 일	0.000 000 000 000 000 000	001	
10-24	욕토 (yocto)	У	일자분의 일	0.000 000 000 000 000	000 001	maxim integra

Agenda

- Lower I_Q: nanoPower defined
- Emerging applications
- Unique requirements

nanoPower ICs

Very low power ICs that have quiescent current

 $< 1\mu A$

Extending battery life

Key applications

- Wearable devices
- IoT sensors
- Battery-powered medical equipment
- Low-power wireless communication

Don't Overlook the Regulated Supply!

A boost converter can extend battery life & reduce PCB size

- Every little bit counts
- Shrinking product size
 - > Small coin cell battery
 - > Small footprint
- Extended battery life
 - > Low quiescent boost converter (300nA)
 - > Minimized leakage loss
 - > True shutdown for long shelf life
 - > High/low load efficiency

Why nanoPower Regulators?

Smaller devices need smaller batteries

- CR1216 lithium coin cell
 - > 34mAh from 3V to 2V terminal voltage
 - > 1% per year self-discharge
 - > That's only 39nA self-discharge current!
 - > 10-year operating life is 390nA average load

Why nanoPower Regulators?

Smaller devices need smaller batteries

- CR1216 lithium coin cell
 - > 34mAh from 3V to 2V voltage
 - > 1% per year self-discharge
 - > That's only 39nA self-discharge current!
 - > 10-year operating life is 390nA average load

Specifications	Energizer CR1215	
Nominal voltage	3.0 volts	
Typical capacity	34 mAh (to 2.0 volts) Rated at 62K ohms at 21°C	
Self discharge	~1% / year	

Why nanoPower Regulators?

nanoPower regulators

Need to power circuitry with long idle states

> **15mA** for 10ms every minute = 2.5uA

> 300nA (nanopower boost)/2.5uA = 12% loss

> 1uA (non-nano boost)/2.5uA = 50% loss

Regulator quiescent current should compete with battery self-discharge

nanoPower Boost with True Shutdown™

nanoPower Boost with True Shutdown™

Low I_Q architecture

• 300nA low-power mode optimizes quiescent current

Small external components

2MHz switching frequency, small inductor

True Shutdown

No quiescent current, V_{OUT} from 0V to 5.5V

No resistive feedback

Current loses

Efficiency

High/low load efficiency

nanoPower Boost with True Shutdown

True Shutdown

- Storables (medical patches)
- Long shelf life
- Only 0.5nA leakage in shutdown
- Battery self-discharge dominates

Extending Usable Battery

Battery voltage drops as stored energy is drained

How do we get more usable power

- operates down to 0.4V input
- operation 0.41 How do we keep the device enabled?

Keeping the Boost Enabled

How do we keep the circuit alive?

Input > 0.4V

EN

Unique internal enable circuit (EN)

- Internal pull-up resistors
- Choose between IN and OUT

Losses Through the Feedback

Feedback network

- Setting output voltage
- High impedance resistor
- $10M\Omega$ to $30M\Omega$ = 125 nA
- $10k\Omega$ to $30k\Omega$ = 125 000 nA

= 125uA @always

Losses Through the Feedback

High Efficiency Throughout the Load Range

- Key contributor to power loss
- High losses at low output
- Many long-life IoT applications run on ultra-low power

ULPM, LPM, and HPM Waveforms

Multi-Source Systems

Working with Multiple Power Sources

- Battery detection
- Disconnects body diode
- Soft start slowly ramps output
- No overvoltage oscillations

IOT SENSING SYSTEM WITH MULTIPLE ENERGY SOURCES

Isolate Each Power Source

- Eliminating reverse current leakage
- Diodes are commonly used in higher power systems
 - > Large voltage drops are undesirable
- Ideal diodes
 - > Need power
 - > Take up board space
 - > Need to be controlled

Other Hidden Loses

- Leakage through the divider network
- Costly loss of power for IoT devices

Watch Out for Active Load Discharge

- Feature found on many boost converters
- To discharge the load circuit in SHDN

SHORT TO GROUND WITH ACTIVE LOAD DISCHARGE

Direct short to GND

Working with Multiple Power Sources

- MAX17222 ideal for multiple source applications
- 0.5nA True Shutdown

True output disconnect from input

 No feedback resistive network leak

á	Part Number	Description
	MAX9634	nanoPower, precision current sense amplifier
Min.	MAX16056 - MAX059	125nA nanoPower supervisory circuit with capacitor adjustable reset and watchdog
12	MAX16072 - MAX16074	700nA nanoPower supervisory circuit in tiny WLP package
	MAX17220 – MAX17225	0.4V to 5.5V input, nanoPower synchronous boost converter with True Shutdown
4	MAX40000 - MAX40001	900nA nanoPower comparator
	MAX40002 - MAX40005	500nA nanoPower
	MAX40007	1.7V to 5.5V, nanoPower op-amp

Take Action Now

Order your Eval Kit from Digi-Key:
https://www.digikey.com/products/en/development-boards-kits-programmers/evaluation-boards-dc-dc-ac-dc-off-line-smps/792?k=max17222

Visit the product landing page to learn more about the product:

https://www.maximintegrated.com/en/products/power/switching-regulators/MAX17222.html/tb_tab0

Conclusion

- Consumer products are getting smaller and smaller
- Battery size determines product size
- New nanoPower boost converters solve the need for lower I_Q requirements
- A good boost converter reduces unwanted current losses
- The MAX17222 is ideal for ultra-low-power, multi-source applications

Questions and Answers

Thank You