Stat 435 Intro to Statistical Machine Learning

Week 3: Homework 1, Probability, Bayes rule, etc.

Richard Li

April 12, 2017

Plan for today

- Recap of Homework 1
- Bayes error rate

•00

- Definition
- Simple examples
- Bayes rule
- · Difficult examples

All but Bayes error rate

Logistics:

- In the future, don't submit only .Rmd file.
- Don't forget to "comment" on your findings.

Some other problems:

- 6(c): marginal association v.s. conditional association
- 6(g): In R, which.min() and which.max() returns only the first result when tie exists. I did not deduct points this time.

- Deterministic support (problem 2)
 - Does 1-NN overfit?
 - What if we have more training data?

Bayes error rate: definition

Textbook definition:

- Test error rate produced by the Bayes classifier.
- Bayes classifier: always predict Y to be the class with largest Pr(Y|x).

For 2-class problem,

- For any given x, if we can calculate Pr(Y = 0|x) and Pr(Y = 1|x), we always predict Y to be the more likely class.
- What's the risk of doing this?
 - Y could be from the less likely class!
 - For any given x, we expect the error to be 1 Pr(Y form the most likely class|x).

Bayes error rate: definition

- Bayes error rate: 1 E(Pr(Y form the most likely class|x)).
- The expectation is taken w.r.t. the probability of all possible X.
- It only depends on how X and Y are generated.
- It does not depend on training/testing data.
- It is the theoretical lower bound of the expected error of any classifier.
- Does not guarantee to be lower than any error rates of any classifier on any test dataset.

Bayes error rate: HM problem 1 with more test data

Let's look at a few Bayes error rate calculations.

Bayes error rate: deterministic case

In problem 2 of the Homework,

- What is Pr(Y form the most likely class|x)?
- If given any x there is only one possible Y, we won't make mistakes.
- So Bayes error rate is 0 in that problem.

In the more general case,

- 0 < Pr(Y form the most likely class|x) < 1
- How to calculate Bayes error rate?

Review: Probability density functions

Discrete case

$$f(x) = Pr(X = x)$$

Continuous case

$$f(x) = \lim_{\delta \to 0} \frac{Pr(x \le X \le x + \delta)}{\delta}$$

Discrete case

$$E(x) = \sum_{x} xf(x)$$
 $Var(x) = \sum_{x} (x - E(X))^2 f(x)$

Continuous case

$$E(x) = \int_{x} x f(x) dx$$
 $Var(x) = \int_{x} (x - E(x))^{2} f(x) dx$

- Now, Recall Bayes error rate is the error from Bayes classifier
- Thus the formula,

Bayes error
$$= 1 - E(\max_{j} Pr(Y = j|x))$$

We can also write this as

Bayes error =
$$1 - \int \max_{j} Pr(Y = j|x)f(x)dx$$

Again for two-class problem,

Bayes error =
$$1 - \left(\int_{L_0} Pr(Y=0|x) f(x) dx + \int_{L_1} Pr(Y=1|x) f(x) dx \right)$$

• $L_0 = \{x : Pr(Y = 0|x) > 0.5\}$ and $L_1 = \{x : Pr(Y = 1|x) > 0.5\}$

Bayes error rate: simple example

Suppose the real data are generated such that

$$X \sim Unif[-1,1]$$

• the true labels (0 or 1) of the data are generated such that

$$Pr(Y = 1|X < 0) = 0.2$$
 $Pr(Y = 1|X > 0) = 0.9$

• How often do we expect to observe Y = 1?

$$Pr(Y = 1) = \int_{-1}^{0} Pr(Y = 1|X < 0)f(x)dx + \int_{0}^{1} Pr(Y = 1|X > 0)f(x)dx$$
$$= Pr(Y = 1|X < 0) \int_{-1}^{0} f(x)dx + Pr(Y = 1|X > 0) \int_{0}^{1} f(x)dx$$
$$= 0.2 \times 0.5 + 0.9 \times 0.5 = 0.55$$

What is the Bayes error rate?

$$Pr(Y = 1) = \int_{-1}^{0} Pr(Y = 1|X < 0)f(x)dx + \int_{0}^{1} Pr(Y = 0|X > 0)f(x)dx$$
$$= 0.2 \times 0.5 + (1 - 0.9) \times 0.5 = 0.15$$

Exercise

- What if we change the distribution of X to $X \sim Unif[-10, 1]$?
- What if we change the true labels to be

$$Pr(Y = 1|X < 0) = 0.9$$

 $Pr(Y = 1|0 < X < 0.5) = 0.2$

$$Pr(Y = 1|0.5 < X) = 0.8$$

• What if we change the true labels to be

$$Pr(Y = \{0, 1, \text{re-accommodate}\}|X > 0) = \{0.5, 0.5, 0\}$$

$$Pr(Y = \{0, 1, \text{re-accommodate}\}|X < 0) = \{0.3, 0.5, 0.2\}$$

This calculation seems straight forward Θ , but why is the homework problem so difficult?

Because Pr(Y|X) is not given directly \bigcirc

Bayes rule

A simple application of conditional probability.

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

• In fact, this is something you will see extensively in Chap 4 (LDA).

Bayes rule: example

- You have a (faulty) alarm at home, it goes off
 - with probability 0.9 if your home is burglarized;
 - with probability 0.05 if your home is not burglarized...
- Now, your friend calls you and says your alarm just went off!
- What is the probability of your home being burglarized?

Bayes rule: example

- We can write Pr(A|B=1) = 0.9, and Pr(A|B=0) = 0.05.
- We want to know Pr(B=1|A).
- Use Bayes rule,

$$Pr(B|A) = \frac{Pr(A|B)Pr(B)}{Pr(A)}$$

- Suppose you live in a neighborhood where P(B=1)=0.2,
- Then

$$Pr(B = 1|A) = \frac{0.9 \times 0.2}{Pr(A)}$$
 $Pr(B = 0|A) = \frac{0.05 \times 0.8}{Pr(A)}$

Bayes rule: example

- But we do not know Pr(A) (at least not directly)!
- However, since we know Pr(B = 0|A) + Pr(B = 0|A) = 1
- We only need the relative proportion of the two

$$Pr(B = 1|A) \propto 0.9 \times 0.2 = 0.18$$

$$Pr(B = 0|A) \propto 0.05 \times 0.8 = 0.04$$

To calculate exact numbers,

$$Pr(B=1|A) = \frac{0.18}{0.18 + 0.04} \approx 0.82$$

$$Pr(B = 0|A) = \frac{0.04}{0.18 + 0.04} \approx 0.18$$

- What is the Bayes classifier here?
- How to approximate the Bayes error (through simulation)?
- How to actually calculate it?
- Why my testing error beats the "best" classifier?

Bayes error: Homework revisited

First, what is the Bayes classifier here?

- When you have an x_0 , Bayes classifier will assign
 - the class with higher pdf, $f(x_0|y)$;
 - the class whose center ([0,0] or [1.5, 1.5]) is closer to x_0 ;
 - the class with higher $Pr(y|x_0)$
- Why are they equivalent?
- What assumptions we are making?

From the homework solutions on Canvas:

Notice in the algorithm above, we are comparing $f(\mathbf{x}|y)$ instead of $f(y|\mathbf{x})$. There is a good reason why they are equivalent. We know that using Bayes rule, we have

$$Pr(Y = j|x) = \frac{Pr(x|Y = j)Pr(Y = j)}{Pr(x)}$$

We do not know Pr(x), but we can plug in Pr(Y = j) = 1/2, and that Pr(Y = 1|x) + Pr(Y = 2|x) = 1. Combining these we can derive the formula that we can actually calculate:

$$Pr(Y = j|x) = \frac{Pr(x|Y = j)}{Pr(x|Y = red) + Pr(x|Y = blue)}$$

Bayes error: Homework revisited

```
How to get 1 - E(\max_i Pr(Y = i|x)) without doing calculus?
Nsim <-1e5
total max prob <- 0
for(i in 1:Nsim){
    y \leftarrow sample(c(1, 2), 1)
    if(y == 1){
         x \leftarrow rnorm(2, 0, 1)
    lelse(
         x \leftarrow rnorm(2, 1.5, 1)
    p1 <- standard_binormal_density(x, c(0, 0))</pre>
    p2 <- standard_binormal_density(x, c(1.5, 1.5))
    # use formula
    total_max_prob <- total_max_prob + max(p1 / (p1 + p2), p2 / (p1 + p2))
    total max prob / Nsim
   [1] 0.1444253
```

Double check the formula is correct using definition?

```
# use definition

if((p1 < p2 && y == 1) || (p1 > p2 && y == 2)) {

   total_error <- total_error + 1
}
```

To get an analytical solution, we do not resolve to the computational trick of $p_1/(p_1 + p_2)$ as before. Instead by using the original form,

$$E_{\mathbf{x}}(\max_{j} Pr(\mathbf{Y} = j | \mathbf{x})) = \int_{R^2} \max\{\frac{0.5f_0(\mathbf{x})}{Pr(\mathbf{x})}, \frac{0.5f_1(\mathbf{x})}{Pr(\mathbf{x})}\} Pr(\mathbf{x}) d\mathbf{x}$$

Notice the term $Pr(\mathbf{x})$ cancels out!

$$E_x(max_jPr(Y = j|\mathbf{x})) = \int_{R^2} max\{0.5f_0(\mathbf{x}), 0.5f_1(\mathbf{x})\}d\mathbf{x}$$

We can calculate the regions where $f_0 < f_1$ and vice versa by observing

$$f_0(x) = f_1(x) \Longrightarrow x_1^2 + x_2^2 = (x_1 - 1.5)^2 + (x_2 - 1.5)^2$$

Bayes error: Analytical solution (FYI)

error =
$$1 - \left(0.5 \int_{x_2 < 1.5 - x_1} f_0(\mathbf{x}) d\mathbf{x} + 0.5 \int_{x_2 > 1.5 - x_1} f_1(\mathbf{x}) d\mathbf{x}\right)$$

• The integral can be calculated numerically,

Bayes error: Analytical solution (FYI)

- The integral can be calculated numerically,
- or we can simplify it a little further...

$$\int_{x_2<1.5-x_1} f_0(\mathbf{x}) d\mathbf{x} = \int_{-\infty}^{\infty} \int_{-\infty}^{\frac{\sqrt{1.5^2+1.5^2}}{2}} f_0(\mathbf{x}) dx_1 dx_2$$
$$= \Phi(\frac{\sqrt{1.5^2+1.5^2}}{2})$$

- Same for the other term.
- $1-0.5*(pnorm(\frac{\sqrt{1.5^2+1.5^2}}{2})+pnorm(\frac{\sqrt{1.5^2+1.5^2}}{2}))$

- Bayes error calculation when
 - 1. Pr(Y|X) is known
 - 2. Pr(X|Y) is known
- In the later case, numerical approximation/simulation using
 - 1. definition of Bayes classifier
 - 2. formula of Bayes error rate

Why we learn this

- Bayes error rate is great.
- But it can only be calculated if you know the ground truth.
- In practice, we do not have know P(X|Y), P(X), or even P(Y).
- One of the approaches in real-life classification:
 - Assume some generating distribution.
 - Estimate the distribution from data.
 - Making classifications using the 'approximated' Bayes classifier.
- In the Normal P(X|Y) case, this is called LDA.

143

Why we learn this

4.4 Linear Discriminant Analysis

FIGURE 4.6. An example with three classes. The observations from each class are drawn from a multivariate Gaussian distribution with p = 2, with a class-specific mean vector and a common covariance matrix. Left: Ellipses that contain 95 % of the probability for each of the three classes are shown. The dashed lines are the Bayes decision boundaries. Right: 20 observations were generated from each class, and the corresponding LDA decision boundaries are indicated using solid black lines. The Bayes decision boundaries are once again shown as dashed lines

Takeaway

"The dragon has three heads: probability rules, calculus, and simulation." - Rhaegar Targaryen, A Clash of Kings.

