

# Chapitre VII – Probabilités

Bacomathiques -- https://bacomathiqu.es

| TABLE DES MATIÈRES                |                                                                                        |                  |  |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| I - Pi                            | robabilités conditionnelles                                                            | 1                |  |  |  |  |  |  |
| 1.                                | Définition                                                                             | 1                |  |  |  |  |  |  |
| 2.                                | Arbre de probabilité                                                                   | 1                |  |  |  |  |  |  |
| 3.                                | Formule des probabilités totales                                                       | 3                |  |  |  |  |  |  |
| 11 - <b>V</b> 3<br>1.<br>2.<br>3. | ariables aléatoires  Définition  Loi de probabilité  Espérance, variance et écart-type | 4<br>4<br>4<br>5 |  |  |  |  |  |  |

## I - Probabilités conditionnelles

#### 1. Définition

Soient A et B deux événements avec A de probabilité non nulle. Alors la probabilité conditionnelle de B sachant que A est réalisé est :

#### À RETENIR 💡

$$p_A(B) = \frac{p(A \cap B)}{p(A)}$$

#### À LIRE 99

On rappelle que  $p(A \cap B) = p(A) + p(B) - p(A \cup B)$ .

**De plus il faut faire attention**, à bien faire la distinction entre une probabilité conditionnelle ("**Sachant qu'on a** A, quelle est la probabilité d'avoir B?") et une intersection ("Quelle est la probabilité d'avoir A **et** B à la fois?").

Deux événements A et B sont dits **indépendants** si la réalisation de l'un n'a aucune incidence sur la réalisation de l'autre et réciproquement. C'est-à-dire :

#### À RETENIR 💡

$$p(A \cap B) = p(A) \times p(B)$$

Pour deux événements indépendants A et B, on a les relations suivantes :

#### À RETENIR 9

$$-- p_A(B) = p(B)$$

$$-- p_B(A) = p(A)$$

## 2. Arbre de probabilité

Au lycée, pour représenter visuellement des probabilités on utilise très souvent un **arbre de probabilité**. Nous nous limiterons ici au cas de deux événements, mais il est possible d'en rajouter encore d'autres.

Ainsi, soient A et B deux événements. L'arbre de probabilité décrivant la situation est le suivant :



La somme (dans le sens vertical) des probabilités de chacune des branches ayant un "tronc" commun doit toujours faire 1.



## 3. Formule des probabilités totales

Soient  $A_1, A_2, ..., A_n$  des événements qui partitionnent (qui recouvrent) l'univers  $\Omega$ , alors pour tout événement B:

#### À RETENIR 🕴

$$p(B) = p(B \cap A_1) + p(B \cap A_2) + \dots + p(B \cap A_n)$$

#### À LIRE 99

En reprenant l'arbre précédent, comme A et  $\bar{A}$  recouvrent notre univers (en effet, soit on tombe sur A, soit on tombe sur  $\bar{A}$ : pas d'autre issue possible), calculons p(B):



D'après la formule des probabilités totales,  $p(B) = p(B \cap A) + p(B \cap \bar{A}) = \frac{107}{252}$ .

## II - Variables aléatoires

#### 1. Définition

Une **variable aléatoire** X est une fonction qui, à chaque événement élémentaire de l'univers  $\Omega$  y associe un nombre réel. C'est-à-dire :  $X:\Omega\to\mathbb{R}$ . L'ensemble des valeurs prises par X est noté  $X(\Omega)$ .

## À LIRE 99

Les variables aléatoires sont très utiles notamment pour modéliser des situations de gains ou de pertes (à un jeu d'argent par exemple).

#### 2. Loi de probabilité

Soit X une variable aléatoire. La **loi de probabilité** de X attribue à chaque valeur  $x_i$  la probabilité  $p_i = p(X = x_i)$  de l'événement  $X = x_i$  constitué de tous les événements élémentaires dont l'image par X est  $x_i$ . Cette loi est généralement représentée dans un tableau :

| Å | RETENIR •  |                       |                       |  |            |  |  |  |  |
|---|------------|-----------------------|-----------------------|--|------------|--|--|--|--|
|   | Xi         | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> |  | Xn         |  |  |  |  |
|   | $p(X=x_i)$ | $p(X=x_1)$            | $p(X=x_2)$            |  | $p(X=x_n)$ |  |  |  |  |
|   | 0 ()/      | ) . ()/ ) .           | . ()(                 |  |            |  |  |  |  |

## On a $p(X = x_1) + p(X = x_2) + ... + p(X = x_n) = 1.$

## À LIRE 👀

Cette définition peut sembler un peu compliquée mais elle signifie juste qu'une loi de probabilité assigne une probabilité à chaque valeur prise par notre variable aléatoire.

## 3. Espérance, variance et écart-type

Soit X une variable aléatoire. L'**espérance** E(X) de la variable aléatoire X est un réel :

À RETENIR 💡

$$E(X) = x_1 \times p_1 + x_2 \times p_2 + \dots + x_n \times p_n$$

La variance V(X) et l'écart-type  $\sigma(X)$  de la variable aléatoire X sont les réels positifs :

À LIRE 99

**Exemple :** Calcul de l'espérance, de la variance et de l'écart-type. Soit X une variable aléatoire suivant la loi de probabilité donnée par le tableau ci-dessous :

| Xi         | -1            | 0             | 2             | 6             |
|------------|---------------|---------------|---------------|---------------|
| $p(X=x_i)$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |

On a:

$$-E(X) = -1 \times \frac{1}{4} + 0 \times \frac{1}{2} + 2 \times \frac{1}{8} + 6 \times \frac{1}{8} = \frac{3}{4}$$

$$-V(X) = ((-1)^2 \times \frac{1}{4} + 0^2 \times \frac{1}{2} + 2^2 \times \frac{1}{8} + 6^2 \times \frac{1}{8}) - (\frac{3}{4})^2 = \frac{75}{16}$$

$$-\sigma(X) = \sqrt{\frac{75}{16}} \approx 2.165$$

Chacun de ces paramètres a une utilité précise :

#### À RETENIR ¶

- L'espérance est la **valeur moyenne** prise par X.
- La variance et l'écart-type mesurent la **dispersion** des valeurs prises par *X*. Plus ces valeurs sont grandes, plus les valeurs sont dispersées autour de l'espérance.