Numeri interi

Numeri naturali in base 2

Cristiana Bolchini

010100101011

informazione da rappresentare

informazione dati e istruzioni

numerica

non numerica

24 6 11 naturali -24₊₁+315 interi relativi +2.409 -14.25 razionali

casa n0-0ne! testi

10101001010100101010100<mark>100010010 10</mark>1<mark>010100 101010</mark>

suoni

numerica non n

100100010101010100010100

C.Bolchini

numeri naturali

rappresentazione di un valore

- Numero naturale: oggetto matematico che può essere rappresentato come una sequenza di simboli a partire da un alfabeto
 - base 10: [0,9]
 - base 5: [0,4]
 - base 2: [0,1]
 - base 16: $[0,\bar{F}] = \{0,1,...,9,A,B,...,F\}$
- il numero è l'entità astratta, il numerale è il suo rappresentante
 - 125 in base 10
 - CXXV in cifre romane
 - 1111101 in base 2
 - 7D in base 16
 - $-\exists$ \pm in sistema numerico giapponese/cinese

confronto

- additiva
 - simboli: {I V X L C D M}

simbolo	valore	
I	1	
V	5	
X	10	
L	50	
С	100	
D	500	
М	1000	

- ruolo posizione:
 - cifra crescente (da sx a dx) ▶ sottratta
 - cifra decrescente ▶ sommata

confronto

- posizionale
 - simboli: {0,1,2,3,4,5,6,7,8,9}
 - ruolo posizione:
 - peso rispetto alla base **b** (numero di simboli dell'alfabeto)

notazione posizionale pesata

rappresentazione posizionale pesata

corrispondenza numero - numerale

- base: insieme di simboli $\sigma = \{s_1, ..., s_b\}$ b = $|\sigma|$ (cardinalità)
- numerale: $c_{n-1}c_{n-2}...c_1c_0$ con $c_i \in \sigma$
- •valore (numero): $\sum_{i=0}^{n-1} c_i \times b^i$

confronto

- posizionale
 - peso rispetto alla base **b** (base 10)

valore =
$$3 \times b^2 + 5 \times b^1 + 1 \times b^0 = 3 \times 10^2 + 5 \times 10^1 + 1 \times 10^0$$

= trecentocinquantuno

confronto

• posizionale
• b = {0,1,...,A,B,...,F} (base 16)

posizione: 210
peso minore
cifra meno significativa

peso maggiore
cifra più significativa

valore =
$$3 \times b^2 + 5 \times b^1 + 1 \times b^0 = 3 \times 16^2 + 5 \times 16^1 + 1 \times 16^0$$

= ottocentoquarantanove

estensione ...

- posizionale
 - simboli: {〇 一 二 三 四 五 六 七 八 九}
 - peso rispetto alla base **b** (base 10)

trecentocinquantuno: $\Xi\Xi$

estensione ...

- simboli: {〇 一 二 三 四 五 六 七 八 九}
- peso rispetto alla base **b** (base 10)

trecentocinquantuno: $\Xi\Xi$ —

• simboli: {〇 一 二 三 四 五 六 七 八 九 十 百 千}

trecentocinquantuno: 三百五十一

sistema binario - base 2

• base:
$$\sigma = \{0,1\}$$

b = 2

• numerale: $c_{n-1}c_{n-2}...c_1c_0$ con $c_i \in \{0,1\}$

•valore (numero):
$$\sum_{i=0}^{n-1} c_i \times 2^i$$

sistema binario - base 2

• numerale: 100101 base 2

100102

•valore (numero):
$$\sum_{0}^{n-1} c_i \times 2^i$$

• valore: $1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

 $1 \times 2^5 + 1 \times 2^2 + 1 \times 2^0$

32+4+1

trentasette

sistema decimale - base 10

• numerale: 100101 base 10

1001010

•valore (numero): $\sum_0^{n-1} c_i \times 10^i$

• valore: $1 \times 10^5 + 0 \times 10^4 + 0 \times 10^3 + 1 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$

 $1 \times 10^5 + 1 \times 10^2 + 1 \times 10^0$

10000+100+1

diecimilacentouno

sistema decimale - base 10

• numerale: 100101 base 16

10010₁₆

•valore (numero): $\sum_0^{n-1} c_i \times 16^i$

• valore: $1 \times 16^5 + 0 \times 16^4 + 0 \times 16^3 + 1 \times 16^2 + 0 \times 16^1 + 1 \times 16^0$

 $1 \times 16^5 + 1 \times 16^2 + 1 \times 16^0$

1048576+256+1

1048833

un milione quarantottomila ottocentotrentatre

caratteristica

base 2

- i componenti elettronici che costituiscono il sistema di calcolo sono caratterizzati da una realtà costituita da due stati
 - condensatore carico/scarico
 - linea con tensione alta/bassa
 - ...
- mappatura diretta con un sistema costituito da due simboli ▶ sistema binario ▶ alfabeto: [0,1]
- per qualsiasi cosa (segno, modulo ...)

- alfabeto = {0,1}, simboli: 0 1
- ipotesi: tutti i numerali hanno ugual lunghezza

- come rappresentiamo i valori?
- volendo rappresentare k valori utilizzando l'alfabeto {0,1}, quanto saranno lunghe le codifiche?

rappresentazione

• obiettivo: rappresentare i valori naturali dell'intervallo [0,9] utilizzando il sistema binario

- si tratta di 10 valori (informazioni) distinte
- l'alfabeto ha due simboli

- lunghezza della codifica: $[log_2(10)] = 4$
- numero di configurazioni generabili con 4 cifre binarie: 2⁴ = 16

rappresentazione

• generiamo tutte le 16 configurazioni usiamo la stessa strategia delle configurazioni in base 10, che riflettono la notazione posizionale pesata

• associamo il valore

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

rappresentazione

• generiamo tutte le 16 configurazioni usiamo la stessa strategia delle configurazioni in base 10, che riflettono la notazione posizionale pesata

• associamo il valore

0000	zero
0001	
OOOT	uno
0010	due
0011	tre
0100	quattro
0101	cinque
0110	sei
0111	sette
1000	otto
1001	nove
1010	
1011	
1100	
1101	
1110	
1111	

rappresentazione

• generiamo tutte le 16 configurazioni usiamo la stessa strategia delle configurazioni in base 10, che riflettono la notazione posizionale pesata

• associamo il valore

• associamo la rappresentazione in base 10

0000	zero	0
0001	uno	1
0010	due	2
0011	tre	3
0100	quattro	4
0101	cinque	5
0110	sei	6
0111	sette	7
1000	otto	8
1001	nove	9
1010		
1011		
1100		
1101		
1110		
1111		

aritmetica

somma e sottrazione di numeri relativi

- numeri naturali
 - somma sempre consentita
 - sottrazione: solo se il sottraendo è minore del minuendo
 - prodotto
 - divisione: solo se esiste un valore quoziente tale che moltiplicato per il divisore dà il dividendo

aritmetica

somma e sottrazione di numeri relativi

- numeri naturali
 - somma sempre consentita
 - sottrazione: solo se il sottraendo è minore del minuendo
 - prodotto
 - divisione: solo se esiste un valore quoziente tale che moltiplicato per il divisore dà il dividendo

rappresentazioni / conversione

da base b a base 10

rappresentati nella base in cui vogliamo esprimere il valore

$$c_i$$
 base $b \equiv c_i$ base 10
 $0 \equiv 0$
 $1 \equiv 1$
 $2 \equiv 2$

metodi

- 1. metodo della somma dei prodotti per le basi elevate alla potenza in base alla posizione
- 2. metodo del resto delle divisioni rispetto alla base

- metodi equivalenti (in termini di funzionalità)
- ·da qualsiasi base a qualsiasi altra base
- in relazione alla base di partenza e di arrivo, un metodo risulta più immediato dell'altro

da base 2 a base 10

```
• 101011<sub>2</sub> ?? ___10
```

• base: 2₁₀

$$\bullet \ 0_2 = 0_{10}$$
 $1_2 = 1_{10}$

```
• 101011_2 = 1_{10} \times 2_{10}^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0

= 32_{10} + 8_{10} + 2_{10} + 1_{10}

= 43_{10}

= quarantatre
```

da base 16 a base 10

```
c_i base 16 \equiv valore base 10
                0 \equiv 0
                1 \equiv 1
                2 \equiv 2
                3 \equiv 3
                4 ≡ 4
                5 \equiv 5
                6 \equiv 6
                7 \equiv 7
                8 = 8
                9 = 9
               A \equiv 10
               B = 11
               C \equiv 12
               D \equiv 13
               E ≡ 14
```

F ≡ 15

$$\bullet \ 0_{16} = 0_{10}$$
 $1_{16} = 1_{10}$

•
$$10A_{16}$$
 = $1_{10} \times 16_{10}^2 + 0_{10} \times 16_{10}^1 + 10_{10} \times 16_{10}^0$
= $256_{10} + 10_{10}$

$$= 266_{10}$$

= duecentosessantasei

da base 10 a base 2

```
• 28<sub>10</sub> ?? ____2
• base: 10_{10} = 1010_2
\bullet \ 0_{10} = 0_{2} \\ 1_{10} = 1_{2}
  • • •
               2 rappresentato
                             10 rappresentato
                                              8 rappresentato
                              in base 2
                                              in base 2
               in base 2
\bullet 28<sub>10</sub> = 0010_2 \times 1010_2^1 + 1000_2 \times 1010_2^0
            = 10100_{2} + 1000_{2}
            = 11100_{2}
            = ventotto
```

```
base 10 \equiv \text{base } 2
      0 \equiv 0000
         ≡ 0001
       2 \equiv 0010
       3 \equiv 0011
       4 \equiv 0100
       5 \equiv 0101
       6 \equiv 0110
         ≡ 0111
         = 1000
         = 1001
     10 \equiv 1010
```

da base 10 a base 2

```
• 28<sub>10</sub> ?? ____2
• base: 10_{10} = 1010_2
\bullet \ 0_{10} = 0_{2} \\ 1_{10} = 1_{2}
               2 rappresentato
                            10 rappresentato
                                             8 rappresentato
               in base 2
                              in base 2
                                             in base 2
\bullet 28<sub>10</sub> = 0010_2 \times 1010_2^1 + 1000_2 \times 1010_2^0
            = 10100_{2} + 1000_{2}
            = 11100_{2}
            = ventotto
```

```
base 10 \equiv base 2
                    0 \equiv 0000
                      ≡ 0001
                      ≡ 0010
                    3 \equiv 0011
                    4 \equiv 0100
                    5 \equiv 0101
                    6 \equiv 0110
                      ≡ 0111
                      = 1000
complicato (ma non abituati non siamo abituati
                      = 1001
```

da base 10 a base 2

tutto nella base di partenza

base $10 \equiv \text{base } 2$ ≡ 0000 ≡ 0001 ≡ 0010 ≡ 0011 **= 0100 = 0101 =** 0110 **= 0111 = 1000** 1001 \equiv $10 \equiv 1010$

• dividendo rispetto a 2 i resti possibili sono 0 o 1

da base 10 a base 2

base $10 \equiv base 2$ $\equiv 0000$ ≡ 0001 ≡ 0010 ≡ 0011 **= 0100 = 0101 =** 0110 **= 0111 = 1000 = 1001** $10 \equiv 1010$

i resti vanno **rappresentati nella base di destinazione**(qua coincide la rappresentazione)

base
$$10 \equiv \text{base } 2$$

 $0 \equiv 0000$
 $1 \equiv 0001$
 $2 \equiv 0010$
 $3 \equiv 0011$
 $4 \equiv 0100$
 $5 \equiv 0101$
 $6 \equiv 0110$
 $7 \equiv 0111$
 $8 \equiv 1000$
 $9 \equiv 1001$
 $10 \equiv 1010$

0

• il primo resto calcolato è quello meno importante

da base 10 a base 2

1

• i resti rapprentati nella base di destinazione e presi in ordine inverso costituiscono la codifica cercata

base $10 \equiv \text{base } 2$

sistema binario

• due valori adiacenti (28 e 29) differiscono per la sola cifra meno significativa

- numeri dispari: cifra meno significativa = 1
- numeri pari: cifra meno significativa = 0

• con il metodo delle divisioni ripetute, la cifra più significativa è sempre diversa da 0 (e nel sistema binario è sempre 1).

da base 2 a base 10

• 101011₂ ?? ____10

tutto nella base di partenza

• i resti rapprentati nella base di destinazione e presi in ordine inverso costituiscono la codifica cercata

da base 2 a base 10

• 101011₂ ?? ___10

tutto nella base di partenza

base $10 \equiv \text{base } 2$ $0 \equiv 0000$ ≡ 0001 ≡ 0010 ≡ 0011 **= 0100** $5 \equiv 0101$ **= 0110 ≡** 0111 **= 1000 = 1001** $10 \equiv 1010$

quasi impossibillati non siamo abituati

- tipicamente si utilizza
 - il metodo delle divisioni ripetute per passare da base 10 a qualsiasi altra base
 - il metodo della somma dei prodotti per gli altri casi
- caso speciale: la conversione da base 2 a base 16 e viceversa

• perché?

da base 16 a base 2

- 10A₁₆ ?? ___2
- i 16 simboli della base 16 hanno una corrispondenza biunivoca con le 16 configurazioni che si possono ottenere utilizzando il sistema base 2 e 4 cifre

da base 16 a base 2

- 10A₁₆ ?? ___2
- i 16 simboli della base 16 hanno una corrispondenza biunivoca con le 16 configurazioni che si possono ottenere utilizzando il sistema base 2 e 4 cifre

```
b16 = b10 = b2
          0 \equiv 0000
   1 \equiv 1 \equiv 0001
   2 \equiv 2 \equiv 0010
   3 \equiv 3 \equiv 0011
          4 \equiv 0100
   5 \equiv 5 \equiv 0101
   6 \equiv 6 \equiv 0110
   7 \equiv 7 \equiv 0111
   8 = 8 = 1000
   9 \equiv 9 \equiv 1001
   A \equiv 10 \equiv 1010
   B \equiv 11 \equiv 1011
   C \equiv 12 \equiv 1100
   D = 13 = 1101
   E = 14 = 1110
   F = 15 = 1111 S. Bolchini
```

da base 16 a base 2

- 10A₁₆ ?? ___2
- i 16 simboli della base 16 hanno una corrispondenza biunivoca con le 16 configurazioni che si possono ottenere utilizzando il sistema base 2 e 4 cifre

> è immediato il passaggio da base 16 a base 2 e viceversa

```
b16 = b10 = b2
   0 \equiv 0 \equiv 0000
   1 \equiv 1 \equiv 0001
   2 \equiv 2 \equiv 0010
   3 \equiv 3 \equiv 0011
   4 \equiv 4 \equiv 0100
   5 \equiv 5 \equiv 0101
   6 \equiv 6 \equiv 0110
   7 \equiv 7 \equiv 0111
   8 = 8 = 1000
   9 \equiv 9 \equiv 1001
   A = 10 = 1010
   B \equiv 11 \equiv 1011
   C \equiv 12 \equiv 1100
   D = 13 = 1101
   E = 14 = 1110
   F = 15 = 1111 S. Bolchini
```

da base 16 a base 2

- 10A₁₆ ?? ___2
- si identifica per ogni cifra della base 16 la corrispondente sequenza di 4 cifre in base 2

10A₁₆

0001000010102

• se è richiesto poi di rappresentare il valore utilizzando il numero strettamente necessario di cifre, si ottiene

1000010102

```
b16 = b10 = b2
   0 \equiv 0 \equiv 0000
   1 \equiv 1 \equiv 0001
   2 \equiv 2 \equiv 0010
   3 \equiv 3 \equiv 0011
   4 \equiv 4 \equiv 0100
   5 \equiv 5 \equiv 0101
   6 \equiv 6 \equiv 0110
   7 \equiv 7 \equiv 0111
   8 \equiv 8 \equiv 1000
   9 \equiv 9 \equiv 1001
   A \equiv 10 \equiv 1010
   B \equiv 11 \equiv 1011
   C \equiv 12 \equiv 1100
   D = 13 = 1101
   E = 14 = 1110
  C. Bolchini
```

da base 2 a base 16

- 101111010110₂ ?? ____₁₆
- per ogni sequenza di 4 cifre della base 2 si identifica la corrispondente cifra in base 16

1011110101102 BD6₁₆

• cosa fare nel caso in cui il numero di cifre del valore non sia un multiplo di 4?

```
b16 = b10 = b2
           0 \equiv 0000
   1 \equiv 1 \equiv 0001
   2 \equiv 2 \equiv 0010
   3 \equiv 3 \equiv 0011
   4 \equiv 4 \equiv 0100
   5 \equiv 5 \equiv 0101
   6 \equiv 6 \equiv 0110
   7 \equiv 7 \equiv 0111
   8 \equiv 8 \equiv 1000
   9 \equiv 9 \equiv 1001
   A \equiv 10 \equiv 1010
   B \equiv 11 \equiv 1011
   C \equiv 12 \equiv 1100
   D = 13 = 1101
   E \equiv 14 \equiv 1110
   F = 15 = 1111 S. Bolchini
```

da base 2 a base 16

- 1111010110₂ ?? ____16
- il valore non cambia aggiungendo 0 in posizione più significativa
- $1111010110_2 = 001111010110_2$?? ____16

```
0011110101102
       3D6<sub>16</sub>
```

```
b16 = b10 = b2
   0 \equiv 0 \equiv 0000
   1 \equiv 1 \equiv 0001
   2 \equiv 2 \equiv 0010
   3 \equiv 3 \equiv 0011
   4 \equiv 4 \equiv 0100
   5 \equiv 5 \equiv 0101
   6 \equiv 6 \equiv 0110
   7 \equiv 7 \equiv 0111
   8 \equiv 8 \equiv 1000
   9 \equiv 9 \equiv 1001
   A \equiv 10 \equiv 1010
   B \equiv 11 \equiv 1011
   C \equiv 12 \equiv 1100
   D \equiv 13 \equiv 1101
   E \equiv 14 \equiv 1110
   C. Bolchini
```

sistema esadecimale

base 16

- il sistema esadecimale viene adottato nel contesto dei sistemi di calcolo per l'estrema facilità di conversione dal/verso il sistema binario
- invece di far riferimento a sequenze di cifre binarie è efficace convertire la sequenza nel sistema esadecimale (più compatta)

- $010101010010101010101010101111_2 = 552AAAB7_{16}$
- 552AAAB7₁₆ oppure 552AAAB7_H oppure ∅x552AAAB7