

Microprocessors & Interfacing

Memory Interface

Dr. Gargi Prabhu Department of CS & IS

Address Decoding

- In order to attach a memory device to the microprocessor, it is necessary to decode the address sent from the microprocessor.
- Why decode memory?

Simple NAND Gate Decoder

- When the 2K × 8 EPROM is used, address connections A10–A0 of the 8088 are connected to address inputs A10–A0 of the EPROM.
- The remaining nine address pins (A19–A11) are connected to the inputs of a NAND gate decoder.

Example

```
1111 1111 1XXX XXXX XXXX

or

1111 1111 1000 0000 0000 = FF800H

to

1111 1111 1111 1111 = FFFFFH
```


Simple NAND Gate Decoder

3 to 8 line Decoder (74LS138)

		Inp	outs	;		Outmute											
Ε	Enable Select						Outputs										
G2A	G2B	G١	С	В	Α	$\overline{0}$ $\overline{1}$		$\overline{2}$	$\bar{3}$	$\frac{1}{4}$	<u>-</u> 5	6	7				
1	X	X	X	X	X	1	1	1	1	1	1	1	1				
X	1	X	X	X	X	1	1	1	1	1	1	1	1				
X	X	0	X	X	X	l	1	1	1	1	1	1	1				
0	0	1	0	0	0	0	1	1	1	1	1	1	1				
()	0	1	0	0	1	1	0	1	1	1	1	1	1				
0	0	1	()	_	0	1	1	0	1	1	1	l	1				
()	0	1	()	1	1	1	1	1	0	1	1	1	1				
0	0	1	1	0	0	1	1	1	1	0	1	1	1				
0	0	1	1 ;	0	1	1	1	1	1	1	0	1	1				
0	0	1	1	1	0	1	1	1	-	1	1	0	1				
()	0	L	1	1	1	1	1	1	1	1	1	1	0				

2764 EPROMs for a 64K × 8 section of memory in an 8088 microprocessor-based system

Address Ranges: Example 1

```
1111 XXXX XXXX XXXX XXXX

or

1111 0000 0000 0000 0000 = FOOOOH

to

1111 1111 1111 1111 = FFFFFH
```


Address Ranges: Example 2

```
CBA
1111 000X XXXX XXXX XXXX

or

1111 0000 0000 0000 0000 = FOOOOH
to
1111 0001 1111 1111 1111 = F1FFFH
```


Address Ranges: Example 3

```
CBA
1111 001X XXXX XXXX XXXX

or

1111 0010 0000 0000 0000 = F2000H
to
1111 0011 1111 1111 1111 = F3FFFH
```

innovate achieve lead

Dual 2 to 4 Line Decoder (74LS139)

,	Inputs	•	Outputs									
E	A	В	$\overline{Y_0}$	$\overline{\mathbf{Y}_{1}}$	$\overline{Y_2}$	$\overline{\mathbf{Y}_3}$						
0	0	0	0	_	1	1						
0	0	1	1	0	1	1						
0	1	0	1	1	0	١						
0	1	1	1	1	1	0						
1	Х	X]	1	1	1						

Odd and Even Banks of Memory

Data Bus $(D_0 - D_{15})$

Address Bus

Odd Addressed Memory Bank Even Addressed Memory Bank

Odd and Even Banks of Memory

	Operation	BHE	A ₀	Data Lines Used
1	Read/ Write byte at an even address	1	0	$D_7 - D_0$
2	Read/ Write byte at an odd address	0	1	D ₁₅ - D ₈
3	Read/ Write word at an even address	0	0	D ₁₅ - D ₀
4	Read/ Write word at an odd address	0	1	D ₁₅ – D ₀ in first operation byte from odd bank is transferred
		1	0	D ₇ – D ₀ in first operation byte from odd bank is transferred

Memory organization in 8086

- Available memory space = EPROM + RAM
- Allot equal address space in odd and even bank for both EPROM and RAM
- Can be implemented in two IC's (one for even and other for odd) or in multiple IC's

Thank You

Memory interfacing

It is required to interface two chips of $32K \times 8$ ROM and four chips of $32K \times 8$ RAM with 8086, according to the following map.

ROM 1 and 2 F0000H - FFFFFH, RAM 1 and 2 D0000H - DFFFFH RAM 3 and 4 E0000H - EFFFFH

Show the implementation of this memory system.

Address	A_{I9}	A_{18}	A ₁₇	A_{16}	A ₁₅	A_{14}	A_{I3}	A12	A_{II}	A_{10}	A_{09}	A ₀₈	A_{07}	A_{06}	Aos	A ₀₄	A_{03}	$A_{\theta 2}$	$A_{\theta I}$	A_0
F0000H	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROM land2	12									6	4K		7.7							
FFFFFH	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
D0000H	1	1	0	-1.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RAM land2											4K									
DFFFFH	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1		-1	1	1
E0000H	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RAM 3and4	13.5		W.	W		43		143			64K				B	1	172			
EFFFFH	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0