

INTRODUÇÃO À INVESTIGAÇÃO EM ENGENHARIA

DARYA MARTSINOUSKAYA - 26610

MOTIVATION

Personal connection

Safety concerns

Technological interest

Research relevance

Societal impact

INTRODUCTION

USER
INTERACTION
AND REAL-TIME
FEEDBACK
MECHANISMS

- Accelerometers
 - Gyroscopes
 - GPS

- Edge, cloud, and hybrid computing models
 - Al and ML

- Mobile applications
- Instant messaging platforms
- Heads-Up displays

- The BMW Motorrad
 ConnectedRide
 system
- Harley-Davidson's LiveWire Connect app
- Kawasaki Ninja H2 (sensors)

MOTION SENSORS

CURRENT STATE:

- IoT crash detection systems
- Notification of emergency services [1]
- Feedback on optimal speed and navigation [2]

FUTURE RESEARCH:

 Environmental sensors (e.g., road and weather conditions)

ACCELEROMETERS

Detect sudden changes in speed or jerks

GYROSCOPES

Measure tilt and orientation

GPS

Tracks location and speed

DATA PROCESSING AND COMMUNICATION MODULES

EDGE COMPUTING MODEL

CLOUD COMPUTING MODEL HYBRID COMPUTING MODEL

- + Low latency [3] [4] [5]
- + Bandwidth efficiency [4]
- + Offline functionality [3]
- + Improved privacy [6] [5]
- + Energy efficiency [4]
- Limited computational resources [6] [5]
- High initial costs [4] [5]
- Maintenance complexity [6]
- Software and hardware dependencies [4]

- + Scalability and flexibility [7] [5] [8]
- + Real-time analytics and predictive modeling [9]
- + Cost efficiency [8] [10] [5]
- Latency issues [5]
- Dependence on stable internet connectivity [10] [5]
- Privacy and security risks
- High bandwidth and operational costs [11]

Combines edge and cloud computing for flexibility

Optimizes performance by balancing local and centralized processing

FUTURE RESEARCH DIRECTIONS

EDGE COMPUTING MODEL

Improve AI models for complex tasks

CLOUD COMPUTING MODEL

Reduce latency and enhance security

HYBRID COMPUTING MODEL

Develop dynamic task allocation for seamless integration [12]

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

ROLE

ANALYZE REAL-TIME DATA FROM SENSORS

DETECT IMPROPER
MANEUVERS AND UNSAFE
BEHAVIOR

FUTURE RESEARCH

USE ADVANCED MODELS

ANALYZE REAL-TIME DATA FROM SENSORS

IMPROVE COMPUTATIONAL EFFICIENCY AND SPEED **APPLICATIONS**

REAL-TIME FEEDBACK [4]

ACCIDENT PREDICTION [7]

OUTCOME

RESPONSIVE AND EFFECTIVE SAFETY SYSTEMS

USER INTERACTION AND REAL-TIME FEEDBACK MECHANISMS

MOBILE APPS

Example: Android app with Al and IoT integration

Features: vehicle tracking, theft prevention, regulatory compliance [13]

WEB APPS

INSTANT
MESSAGING PLATFORMS

Example: Real-time notifications via platforms like Telegram

Features: Accident detection and alerts using IoT and Telegram and high accuracy with GPS deviation of 1 meter [14]

HEADS-UP DISPLAY

Example: Smart Helmets

Features: crash

detection, sends real-time alerts with GPS location via IoT

systems [15]

IOT INTEGRATION BY MANUFACTURERS

BMW MOTORRAD CONNECTEDRIDE SYSTEM

HARLEY-DAVIDSON LIVEWIRE CONNECT APP

KAWASAKI NINJA H2

USED FOR MOTOGP

CONCLUSION

CURRENT STATE

- IoT enhances rider safety and performance
- Motion sensors, AI, and data processing enable real-time tracking and predictions
- Edge, cloud, and hybrid computing improve efficiency and scalability

FUTURE RESEARCH DIRECTIONS

- System integration
- Adaptability to road conditions
- Al Model enhancement
- Cost reduction and standardization

BIBLIOGRAPHICAL REFERENCES

- 1. R. Rahman J. e K. Manoj. «Motorcycle Crash Detection And Alert System Using Iot». Em: International Journal of Creative Research Thoughts (IJCRT) (2024). url: https://ijcrt.org/papers/IJCRT2401295.pdf (ver p. 4).
- 2. I. Zolotova K. Micko P. Papcun. «Review of IoT Sensor Systems Used for Monitoring the Road Infrastructure». Em: Sensors (2023). url: https://doi.org/10.3390/s23094469 (ver p. 5).
- 3. Y.-A. Daraghmi. «Vehicle Speed Monitoring System Based on Edge Computing». Em: Sensors (2022). url: https://doi.org/10.1109/ICPET53277.2021.00009 (ver pp. 5, 6).
- 4. M. H. Yousaf A. Akhtar R. Ahmen e S. A. Velastin. «Real-Time Motorbike Detection: Al on the Edge Perspective». Em: Mathematics (2024). url: https://doi.org/10.3390/math12071103 (ver pp. 5–7, 9).
- 5. F. C. Andriulo et al. «Edge Computing and Cloud Computing for Internet of Things: A Review». Em: Informatics (2024). url: https://www.mdpi.com/2227-9709/11/4/71 (ver pp. 6–8).
- 6. Sh. Jin Sh. Liang e Y. Chen. «A Review of Edge Computing Technology and Its Applications in Power Systems». Em: Energies (2024). url: https://doi.org/10.3390/en17133230 (ver pp. 6, 7).
- 7. S. Mukhopadhyay et al. «A Review and Analysis of IoT Enabled Smart Transportation Using Machine Learning Techniques». Em: International Journal of Transport Development and Integration 8.1 (mar. de 2024), pp. 61–77. doi: 10.18280/ijtdi.080106. url: https://www.ijeta.org/journals/jjtdi/paper/10.18280/ijtdi.080106 (ver pp. 1, 7, 9).
- 8. R. Islam et al. «The Future of Cloud Computing: Benefits and Challenges». Em: International Journal of Communications, Network and System Sciences (2023). url: https://www.scirp.org/journal/paperinformation?paperid=124299 (ver pp. 7, 8).
- 9. T-H Yu E. Kristiani e Ch-T Yang. «On Construction of Real-Time Monitoring System for Sport Cruiser Motorcycles Using NB-IoT and Multi-Sensors». Em: Sensors (2024). url: https://doi.org/10.3390/s24237484 (ver pp. 3, 7).
- 10. N. Gouda. «Advantages and Disadvantages of Cloud Computing». Em: Scaler (2024). url: https://www.scaler.com/topics/advantages-and-disadvantages-of-cloud-computing (ver p. 8).
- 11. F. Okeke. «Cloud computing currently has a positive global market outlook, but some of its inadequacies may render it redundant in the future». Em: TechRepublic (2022). url: https://www.techrepublic.com/article/disadvantages-cloud-computing (ver p. 8).
- 12. Vaibhav. «Cloud, Edge or Hybrid IoT Solutions: Which Computing Model is Best Suited for your IoT Application?» Em: Automotive IoT Blog (2019). url: https://www.embitel.com/blog/embedded-blog/cloud-edge-or-hybrid-iot-solutions-which-computing-model-is-best-suited-for-your-iot-application (ver p. 9).
- 13. S. A. Khaskheli et al. «Al Based Motor Vehicles Detection and Tracking System Using Smartphone Application». Em: International Journal of Advanced Trends in Computer Science and Engineering 10.3 (2021), pp. 2279–2282. doi: 10.30534/ijatcse/2021/1121032021 (ver p. 10).
- 14. I. P. E. Setiawan et al. «Implementation of Telegram Notification System for Motorbike Accidents Based on Internet Of Things». Em: Jurnal Galaksi (Global Knowledge, Artificial Intelligence, and Information System) (2024). url: https://doi.org/10.70103/galaksi.v1i1.1 (ver p. 11).
- A. Mohideen et al. «IoT-Based Smart Helmet». Em: International Research Journal of Innovations in Engineering and Technology (2022). url: https://irjiet.com/common_src/article_file/1672295500_2a1079e8f5_6_irjiet.pdf (ver p. 12).