Comparison results of different symbolic regression methods

Content

EFS	2
EFS Fastsr	5
FFX	
Eureqa	25
gplearn	30
gplearn GPOLS GPTips2 GSGP	35
GPTips2	36
GSGP	37
SR	38
MRGP	39

Remark:

efs=Evolutionary Feature Synthesis EFS can converge in 1 minute for all test cases

efs.jar

artifical_plus.csv

features X1,X2,X3,X4,(* (+ X4 X1) X1),X1,(- X0 X0),(+ X4 X1),(* X3 (mydivide X1 X3)),(mydivide (+ X4 X1) X3),(- (sin X2) (sin X1)),(- (sin X1) X1),(+ (+ X4 X1) X1),(square (- (sin X1) X1)),(- (sin X1) (cos X3)),(cube (- (sin X1) X1)),

model

102.52,112.2

100.55995586025419

- + 0.017650136206987282 * X1
- + 0.0036553571172496524 * (* (+ X4 X1) X1)
- + 0.022312405431059737 * X1
- + 1.3719529547547789E-7 * (* X3 (mydivide X1 X3))
- + 0.04428576634901983 * (mydivide (+ X4 X1) X3)
- + 0.9797377025624736 * (- (sin X2) (sin X1))
- + -0.4266300600741692 * (- (sin X1) X1)
- + 0.9640714261976043 * (+ (+ X4 X1) X1)
- + 0.031004925173474508 * (square (- (sin X1) X1))
- + -0.17851331967613354 * (- (sin X1) (cos X3))
- + -0.004768748264297034 * (cube (- (sin X1) X1))

BEST MSE IS: 5.488359831081745E-4

artifical_plus2.csv

X1,X2,X3,X4,(mylog (exp (- X2 X4))),(mylog (exp (- X1 X2))),(mylog (exp (- X1 X2))),(cube (* (cos X3) X1)),(exp (- X1 X2)),(square (- (sin X2) X2)),(cos (sin X2)),(cos (* (sin X4) X4)),(sin X1),(exp (* (cos X3) X1)),(- (sin X2) X2),(* (cos X3) X1),

-58.674,25.603

6.950591643811229

- + -6.2148791944573105 * (mylog (exp (- X2 X4)))
- + 3.3420449336691 * (mylog (exp (- X1 X2)))
- + 6.535891621610734E-5 * (mylog (exp (- X1 X2)))

- + -0.07690428305643965 * (cube (* (cos X3) X1))
- + 0.013104185552987537 * (exp (- X1 X2))
- + -3.9255993741793844 * (square (- (sin X2) X2))
- + -6.908975516402892 * (cos (sin X2))
- + 1.443374788706805 * (cos (* (sin X4) X4))
- + -1.9324941289706499 * (sin X1)
- + -0.1502562542580562 * (exp (* (cos X3) X1))
- + 2.33070174729363 * (- (sin X2) X2)
- + -0.380384707342273 * (* (cos X3) X1)

BEST MSE IS: 0.060118209286092655

artifical_times.csv

X1,X2,X3,X4,(* (* X3 X1) X2),(sin (exp (* X1 X2))),(cube (exp (+ X1 X4))),(cos (cube (sin X2))),(mydivide X1 (sin X2)),(exp (* X1 X2)),(* (+ X1 X4) X1),(* (* X1 X2) X4),(cos (cube (- X4 X3))),(* (- X4 X3) X1),(sin X3),(cos (mydivide X1 (sin X2))),

100.07,121.55

105.12001968215547

- + -2.688632663840392 * X1
- + 0.926481347149887 * X2
- + 0.4373241436239971 * X3
- + -1.4105861695888247 * X4
- + 0.27840211597929515 * (* (* X3 X1) X2)
- + 0.09705348338642723 * (sin (exp (* X1 X2)))
- + 5.995419124000901E-9 * (cube (exp (+ X1 X4)))
- + -3.7359990142388284 * (cos (cube (sin X2)))
- + -0.16810459229992672 * (mydivide X1 (sin X2))
- + -3.821382244434078E-4 * (exp (* X1 X2))
- + 1.244475571795417 * (* (+ X1 X4) X1)
- + -0.5249683917389024 * (* (* X1 X2) X4)
- + -0.2648005761747757 * (cos (cube (- X4 X3)))
- + 1.4265200451610192 * (* (- X4 X3) X1)
- + -0.7412380194760737 * (sin X3)
- + -0.5535735355763786 * (cos (mydivide X1 (sin X2)))

BEST MSE IS: 0.4333283981977147

Cd_wedge.csv

X1,X2,X3,X4,X5,(mydivide X3 X1),(cos (mydivide X3 X4)),(cos (* X4 X3)),(* (sin X4) X5),(* X3 (+ X4

X5)),(mydivide X3 X4),(cube (* X3 X1)),(sin (mylog (* X4 X3))),(sin (cube X4)),(mylog (* X4 X3)),(* X3 X1),(cube X1),(* X4 X3),(mydivide X1 (cube X4)),(- X3 (* X4 X3)),

-0.026123,0.52245

5241.530151973486

- + 0.8883894949790235 * X1
- + -0.020815310308269334 * X2
- + 0.0390293002176287 * X3
- + 3.2163149013525493E-6 * X4
- + 2.1360147915438648E-5 * X5
- + -1.2032084794585817E-5 * (mydivide X3 X1)
- + -5239.5281741743365 * (cos (mydivide X3 X4))
- + 7.710877064058126E-5 * (cos (* X4 X3))
- + 4.43859148943097E-6 * (* (sin X4) X5)
- + -2.902293796065195E-6 * (* X3 (+ X4 X5))
- + -40.50474406335109 * (mydivide X3 X4)
- + 0.017334184770760597 * (cube (* X3 X1))
- + -0.17355954453337216 * (sin (mylog (* X4 X3)))
- + -0.006616561718920441 * (sin (cube X4))
- + -0.23384550450797092 * (mylog (* X4 X3))
- + -0.16269244533199922 * (* X3 X1)
- + -1.895679286113042 * (cube X1)
- + 3.1600796123525943E-7 * (* X4 X3)
- + 7.130469000005459E8 * (mydivide X1 (cube X4))
- + -6.134168125530679E-6 * (- X3 (* X4 X3))

BEST MSE IS: 3.408355395774077E-4

Heatflux_flatplate.csv

X1,X2,X1,X1,(* X2 X1),X1,(* X1 (cos X2)),(mydivide X1 X2),

3.9684E-4,0.012392

8.075918523422826E-5

- + 0.02827779834776515 * X1
- + -9.283086026444351E-9 * X2
- + 1.2976313540933493E-6 * X1
- + 3.266004648603294E-11 * X1
- + -1.1351857673131511E-6 * (* X2 X1)
- + 6.567821239593858E-4 * X1
- + -5.971388646123781E-4 * (* X1 (cos X2))
- + 43.62414124233322 * (mydivide X1 X2)

Progress Stalled, exiting. BEST MSE IS: 2.5466379029676866E-9

Heatflux_sphere.csv

X1,X2,X3,X4,X5,(sin (square (- X3 X1))),(cos (* X1 X3)),(* X5 (* X1 X2)),(sin (cube (* X1 X3))),(cube (* X1 X3)),(- X3 (mydivide X4 X5)),(cos (square (- X3 X1))),(square (- X3 X1)),(cube (* X1 X2)),(* X1 X3),(mydivide (mydivide X4 X3) X4),(* (* X1 X3) X2),(cos (cube (* X1 X3))),(* X1 X2),(mydivide X5 (* X3 X2)),

361.69.57291.0

- -2765.3870873867054
- + -18.432634875194108 * X1
- + -1.895962834548321E7 * X2
- + 310786.9587430987 * X3
- + -1.1162212500659648E-5 * X4
- + -0.001331360900516985 * X5
- + -200.97042722738058 * (sin (square (- X3 X1)))
- + -457.7657708571279 * (cos (* X1 X3))
- + 0.004073272540864728 * (* X5 (* X1 X2))
- + 588.7139943790503 * (sin (cube (* X1 X3)))
- + 0.010578316285994994 * (cube (* X1 X3))
- + 10019.955215188047 * (- X3 (mydivide X4 X5))
- + -86.29951097746415 * (cos (square (- X3 X1)))
- + 0.035012855350998774 * (square (- X3 X1))
- + -3475.93354468703 * (cube (* X1 X2))
- + -494.65217888160436 * (* X1 X3)
- + 82.7112134609334 * (mydivide (mydivide X4 X3) X4)
- + -153693.3432149793 * (* (* X1 X3) X2)
- + 203.11933956602363 * (cos (cube (* X1 X3)))
- + 45875.3959883699 * (* X1 X2)
- + -3.881581577399716E-9 * (mydivide X5 (* X3 X2))

Progress Stalled, exiting. BEST MSE IS: 2059271.9574341103

Remark:

(数据格式不是 csv, 在 excel 中复制到 txt 即可)

fastsr_paper.py

artifical_plus.txt

Score: 2542.081509036366

Best Individuals:

2542.08150904: add(X0, add(add(cube(X3), add(multiply(X3, exp(numpy_protected_sqrt(X1))), cube(X3))),

multiply(exp(X0), add(X2, X1))))

2964.89701394 : add(add(cube(X3), add(multiply(X0, X1), cube(X3))), multiply(exp(X0), add(X2, X1)))

3013.53941564 : add(add(square(add(X0, X0)), multiply(exp(X0), add(X2, X1))), cube(X3))

3200.86223946 : add(add(cube(X3), cube(X1)), multiply(exp(X0), add(X2, X1)))

3415.66476448 : add(cube(add(X0, X3)), X3)

3485.99329248 : cube(add(X0, X3)) 6921.64162898 : square(square(X0))

9276.53681048 : cube(X0)

10210.7750205 : add(X0, add(X0, X0))

10619.6535005 : add(X0, X0)

10626.4650525 : numpy_protected_log_abs(square(exp(X2)))

11037.5319805 : X0

artifical_plus2.txt

Score: 129.134174737376

Best Individuals:

129.134174737 : subtract(subtract(x3, cube(X1)), X1), cube(cbrt(cube(X1))))

136.583417432 : subtract(cube(subtract(X3, X1)), cube(X1))

161.723155424 : subtract(subtract(X3, X1), cube(X1))

182.352272625 : subtract(numpy_protected_log_abs(X3), cube(X1))

186.320264738 : subtract(X3, cube(X1))

541.677526797 : subtract(subtract(X3, X1), X1) 579.787614466 : subtract(subtract(X2, X1), X0)

614.124636111 : subtract(X3, X1)

661.303220672 : numpy_protected_log_abs(X3)

679.28524297 : cbrt(X3)

682.420336276 : numpy_protected_sqrt(X3)

695.571745425 : X3

artifical_times.txt

Score: 1439.6021055178285

Best Individuals:

1439.60210552 : cube(numpy_protected_log_abs(square(add(X1, add(add(X3, X0), X0)))))

1999.56810032 : add(square(add(add(x3, X0), X1), X1)), X0)

2039.25770032 : square(add(X1, add(add(X3, X0), X0)))

3228.84234832 : cube(add(X3, X0))

6647.75803082 : square(square(X1))

7366.61986832 : add(add(add(add(add(add(add(add(add(x3, X0), X0), X1), X0), X1), X0), X1), X0)

7712.45478032 : add(add(add(x3, add(add(add(add(x3, X0), X1), X0), X0)), X1), X0)

8067.28969232 : add(add(X3, add(add(add(add(X3, X0), X1), X0), X1))

8426.85593232 : add(add(add(x3, add(add(x3, x0), x0)), x1), x0)

8660.49075032 : cube(X0)

9178.06705232 : add(add(add(X3, X0), X1), X0)

9562.63329232 : add(add(X3, X0), X0)

9959.46820432 : add(X3, X0) 10112.4896284 : add(cbrt(X3), X0)

10363.8444123 : X0

10456.7492348 : cbrt(square(X1))

10521.3612654 : cbrt(X3)

Cd_wedge.txt

Score: 0.0024001156393774524

Best Individuals:

0.00240011563938 : subtract(multiply(X1, X0), X0)
0.00242580625339 : numpy_protected_sqrt(cube(X0))

0.00257609590654 : square(X0) 0.0032521474577 : subtract(X0, X0)

0.00834067856007 : X0

0.00834067856007 : numpy_protected_log_abs(exp(X0))

Heatflux flatplate.txt

Score: 6.222447586898567e-06

Best Individuals:

6.2224475869e-06: multiply(square(X0), add(X0, X0))

6.25340946164e-06 : cube(X0)

1.74682945075e-05 : subtract(X1, X1)

0.0109053443065 : X0

7818.94183676: multiply(cbrt(X1), numpy_protected_sqrt(numpy_protected_log_abs(cube(X1))))

Heatflux_sphere.txt

Score: 32985930.491694402

Best Individuals:

32985930.4917: exp(cbrt(subtract(X0, cbrt(exp(cbrt(subtract(X0, cbrt(X0)))))))

33617984.239 : exp(cbrt(subtract(X0, cbrt(cbrt(add(X3, square(X4)))))))

34133807.029 : exp(cbrt(subtract(X0, cbrt(X0))))
35295500.9437 : add(X1, exp(cbrt(subtract(X0, X2))))

35295501.0617 : exp(cbrt(subtract(X0, X2)))

35313089.2119 : exp(cbrt(X0))

47264747.5935 : subtract(add(add(subtract(X3, X3), add(X0, X2)), multiply(X0, cbrt(X0))), X2)

51307865.5365 : multiply(X0, cbrt(X0)) 75054084.4149 : cbrt(add(X3, square(X4)))

120290548.838 : subtract(add(add(add(subtract(X3, X3), add(X0, X2)), add(X0, X2)), cbrt(X2)), X2)

133295911.868 : cbrt(square(X3))

134194787.177 : subtract(add(add(subtract(X3, X3), add(X0, X2)), cbrt(X2)), X2)

134200395.374 : add(X1, X0)

134200406.207 : X0

149271982.655 : square(numpy_protected_log_abs(add(cbrt(cbrt(add(X2, X1))),

numpy_protected_sqrt(cbrt(numpy_protected_log_abs(cube(X4))))))

149277164.892 : square(numpy_protected_log_abs(add(cbrt(cbrt(add(X2, X1))),

numpy_protected_sqrt(cbrt(X0)))))

FFX_paper.py

artifical_plus.txt

('Number of bases is: ', 0)

('nmse is: ', 24.98346751270535)

model is:

107

('Number of bases is: ', 1)

('nmse is: ', 11.983232756250928)

model is:

103 + 2.15*x1

('Number of bases is: ', 2)

('nmse is: ', 6.1084599453686685)

model is:

 $103 + 0.524 \times 1^2 + 0.356 \times 4 \times 1$

('Number of bases is: ', 3)

('nmse is: ', 4.488932443230234)

model is:

 $103 + 0.553*x1^2 + 0.393*x4*x1 - 0.0434*x2^2$

('Number of bases is: ', 4)

('nmse is: ', 3.807428650764011)

model is:

(100 - 0.651*log10(x3) - 0.293*x2) / (1.0 - 0.0274*x1 - 0.00834*x4)

```
('Number of bases is: ', 5)
('nmse is: ', 2.6883547606853484)
model is:
(99.5 - 3.41 \times \log 10(x1) - 0.721 \times \log 10(x3) - 0.307 \times x2) / (1.0 - 0.0346 \times x1 - 0.00836 \times x4)
('Number of bases is: ', 6)
('nmse is: ', 1.9366750961895705)
model is:
(99.5 - 5.45*log10(x1) - 0.744*log10(x3) - 0.717*x2) / (1.0 - 0.0387*x1 - 0.0162*log10(x2) - 0.00831*x4)
('Number of bases is: ', 7)
('nmse is: ', 1.0256312429579237)
model is:
98.5 - 10.4 \times \log 10(x1) + 5.65 \times x1 + 4.73 \times \log 10(x2) - 1.47 \times x2 + 0.994 \times x4 - 0.866 \times \log 10(x3) + 0.00195 \times \log 10(x4)
('Number of bases is: ', 9)
('nmse is: ', 1.0152266741361116)
model is:
102 + 0.926 \times x4 + 0.784 \times x1^2 + 0.454 \times x2 - 0.222 \times x2^2 - 0.198 \times x3 + 0.0177 \times x2 \times x4 + 0.0146 \times x4 \times x1 + 0.0146 \times x1 + 0.01
0.0143*x2*x1 + 0.000326*x4^2
('Number of bases is: ', 13)
('nmse is: ', 0.909580081970452)
model is:
101 + 1.78 \times x1 + 1.13 \times max(0,x1-2.20) + 0.923 \times x4 + 0.736 \times max(0,x1-1.40) - 0.676 \times max(0,x2-2.20) -
0.539 \times \log 10(x3) + 0.385 \times \max(0,x1-1.67) + 0.232 \times \max(0,x1-2.47) - 0.140 \times \max(0,x2-1.93) +
0.0481 \times \max(0, 2.20 - x3) - 0.0281 \times \max(0, 2.73 - x4) + 0.0102 \times \max(0, 1.67 - x3) + 0.00308 \times \max(0, x4 - 1.40)
artifical_plus2.txt
('Number of bases is: ', 0)
('nmse is: ', 26.60507268424809)
model is:
-12.1
('Number of bases is: ', 1)
('nmse is: ', 23.384884157799608)
model is:
-9.35 - 5.50 \times \max(0, x2 - 1.67)
('Number of bases is: ', 2)
('nmse is: ', 6.846915943215394)
model is:
12.5 - 6.36 \times x2^2 + 0.997 \times x1 \times x4
('Number of bases is: ', 3)
('nmse is: ', 4.115712744954907)
model is:
11.5 - 7.18 \times 2^2 + 1.67 \times 1 \times 4 + 0.455 \times 4^2
('Number of bases is: ', 4)
```

```
('nmse is: ', 3.9940474808526374)
model is:
11.1 - 7.23 \times 2^2 + 1.70 \times 1 \times 4 + 0.482 \times 4^2 + 0.159 \times 3
('Number of bases is: ', 5)
('nmse is: ', 3.3600290734278193)
model is:
8.27 - 7.44 \times 2^2 + 1.23 \times 4^2 + 0.952 \times 3 + 0.750 \times 1^2 + 0.565 \times 1 \times 4
('Number of bases is: ', 6)
('nmse is: ', 2.361759219008762)
model is:
59.1 + 178 \times \log_{10}(x^2) - 71.4 \times 2 + 6.32 \times 4 + 4.38 \times 1 + 2.58 \times \log_{10}(x^3) + 0.617 \times 3
('Number of bases is: ', 7)
('nmse is: ', 2.2185101898227844)
model is:
59.6 + 186 \times \log 10(x^2) - 73.3 \times x^2 + 7.54 \times x^4 - 5.11 \times \log 10(x^4) + 4.40 \times x^1 + 2.63 \times \log 10(x^3) + 0.628 \times x^3
('Number of bases is: ', 8)
('nmse is: ', 1.007967614542168)
model is:
-13.5 + 22.8 \times x^2 - 13.1 \times x^2 + 1.56 \times x^4 + 1.28 \times x^3 + 1.08 \times x^4 + 0.0440 \times x^4 \times x^2 + 0.0390 \times x^1 \times x^2 + 0.0390 \times x^4 \times x^4 + 0.0390 \times 
0.0270*x1 * x4
('Number of bases is: ', 16)
('nmse is: ', 0.9725610795220343)
model is:
4.84 - 15.4 \times \max(0,x2-2.20) - 10.8 \times \max(0,x2-2.47) - 9.05 \times 2 - 7.47 \times \max(0,x2-1.40) - 6.28 \times \max(0,x2-1.67) + 10.8 \times \max(0,x2-1.40) - 10.8 \times \min(0,x2-1.40) - 10
3.32*x4 - 2.26*max(0,x2-1.93) + 2.25*x1 + 1.99*max(0,x4-2.20) + 1.37*max(0,x4-1.67) + 1.30*max(0,x1-1.67)
+ 1.18*max(0,x4-1.40) + 1.03*max(0,x1-2.20) + 0.651*max(0,x1-1.40) - 0.578*max(0,2.73-x3) + 0.425*x3
('Number of bases is: ', 17)
('nmse is: ', 0.9712551944214991)
model is:
4.07 - 15.4*max(0,x2-2.20) - 10.8*max(0,x2-2.47) - 9.05*x2 - 7.47*max(0,x2-1.40) - 6.28*max(0,x2-1.67) +
3.32*x4 - 2.26*max(0,x2-1.93) + 2.25*x1 + 1.99*max(0,x4-2.20) + 1.69*log10(x3) + 1.37*max(0,x4-1.67) +
1.30*\max(0,x1-1.67) + 1.18*\max(0,x4-1.40) + 1.03*\max(0,x1-2.20) + 0.651*\max(0,x1-1.40) + 0.415*x3
0.145*max(0,2.73-x3)
artifical_times.txt
('Number of bases is: ', 0)
('nmse is: ', 17.137290900859234)
model is:
104
('Number of bases is: ', 1)
('nmse is: ', 14.079753525490277)
model is:
```

102 + 0.482*x4 * x1

```
('Number of bases is: ', 2)
('nmse is: ', 13.55087856203186)
model is:
101 + 0.545*x4 * x1 + 0.0403*x1^2
('Number of bases is: ', 3)
('nmse is: ', 9.978370362990091)
model is:
101 + 0.774*x4*x1 - 0.260*x2^2 + 0.194*x1^2
('Number of bases is: ', 4)
('nmse is: ', 8.024439755999206)
model is:
102 + 0.946 \times 4 \times 1 - 0.784 \times 3 - 0.458 \times 2^2 + 0.309 \times 1^2
('Number of bases is: ', 5)
('nmse is: ', 7.595292847702499)
model is:
102 - 1.45 \times \max(0.x2 - 2.20) \times x1 + 1.34 \times \max(0.x1 - 1.40) \times x4 - 0.997 \times \log_10(x3) - 0.326 \times \max(0.x2 - 2.20) \times x4 + 1.34 \times \log_10(x3) \times x4 +
0.321*x4*x1
('Number of bases is: ', 6)
('nmse is: ', 7.125656726523736)
model is:
102 - 1.41 \times \log 10(x3) + 1.38 \times \max(0,x1-1.40) \times x4 - 1.35 \times \max(0,x2-2.20) \times x1 - 0.554 \times \max(0,x1-1.40) \times x4 - 1.35 \times x4 - 
max(0,x2-2.47) - 0.428*max(0,x2-2.20) * x4 + 0.343*x4 * x1
('Number of bases is: ', 7)
('nmse is: ', 5.192526716187131)
model is:
93.6 + 9.46 \times 2 - 1.76 \times 2^2 + 1.65 \times 4 \times 1 - 1.48 \times 2 \times 1 - 1.01 \times 3 + 0.743 \times 1^2 - 0.720 \times 4 \times 2
('Number of bases is: ', 8)
('nmse is: ', 5.141278010502279)
model is:
93.4 + 9.85 \times 2 - 1.83 \times 2^2 + 1.67 \times 4 \times 1 - 1.51 \times 2 \times 1 - 1.21 \times 3 + 0.753 \times 1^2 - 0.739 \times 4 \times 2 + 1.67 \times 4 \times 1 - 1.51 \times 2 \times 1 - 1.21 \times 3 + 0.753 \times 1^2 - 0.739 \times 4 \times 2 + 1.67 \times 4 \times 1 - 1.51 \times 2 \times 1 - 1.21 \times 3 + 0.753 \times 1^2 - 0.739 \times 4 \times 2 + 1.67 \times 4 \times 1 - 1.51 \times 2 \times 1 - 1.21 \times 3 + 0.753 \times 1^2 - 0.739 \times 4 \times 2 + 1.67 \times 4 \times 1 - 1.51 \times 2 \times 1 - 1.21 \times 3 + 0.753 \times 1^2 - 0.739 \times 4 \times 2 + 1.67 \times 1 - 1.21 \times 1 - 1.21 \times 3 + 0.753 \times 1^2 - 0.739 \times 4 \times 2 + 1.67 \times 1 - 1.21 \times 1 - 
0.0477*x3^2
('Number of bases is: ', 9)
('nmse is: ', 4.99729593774279)
model is:
92.4 + 11.5 \times x2 - 2.22 \times x3 - 2.09 \times x2^2 + 1.67 \times x4 \times x1 - 1.65 \times x2 \times x1 - 0.892 \times x4 \times x2 + 0.820 \times x1^2 + 0.308 \times x4 \times x1 + 0.820 \times x1^2 + 0.820 \times x
 + 0.297*x3^2
('Number of bases is: ', 11)
('nmse is: ', 4.975495653684135)
model is:
91.8 + 12.3 \times 2 - 2.67 \times 3 - 2.22 \times 2^2 - 1.71 \times 2 \times 1 + 1.67 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 4 \times 2 + 0.833 \times 1^2 + 0.461 \times 4 \times 1 - 0.962 \times 
 + 0.409*x3^2 + 0.0933*x1 + 0.000269*x4^2
('Number of bases is: ', 12)
('nmse is: ', 4.448755888716317)
model is:
```

```
(93.4 - 7.60*x4 - 6.08*x1 - 0.822*x2^2 - 0.815*x1 - 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 - 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 - 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 - 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 + 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 + 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 + 0.748*x1 * x2 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 + 0.748*x1 * x3 - 0.405*x1 * x3 - 0.178*x4^2) / (1.0 - 0.822*x2^2 - 0.815*x1 + 0.822*x1 * x3 - 0.822*x2^2) / (1.0 - 0.822*x1 + 0.822*x1
0.0918 \times 1 - 0.0893 \times 4 - 0.0345 \times 2 - 0.0135 \times 1 - 0.00161 \times 3 \times 2
('Number of bases is: ', 13)
('nmse is: ', 3.900818102347504)
model is:
(94.3 - 9.06*x4 - 7.83*x1 - 0.794*x2^2 - 0.659*x1 * x2 - 0.633*x1 - 0.341*x1 * x3 - 0.200*x4^2 - 0.0992*x3)
/ (1.0 - 0.107*x1 - 0.103*x4 - 0.0325*x2 - 0.00935*x1 - 0.00171*x3 * x2)
('Number of bases is: ', 16)
('nmse is: ', 3.6881671272707264)
model is:
(94.6 - 9.27*x4 - 8.23*x1 - 1.06*x2 - 0.760*x2^2 - 0.641*x1 * x2 - 0.565*x1 - 0.310*x1 * x3 - 0.203*x4^2 - 0.641*x1 * x3 - 0.203*x1 * x
0.144 \times 3 - 0.0187 \times 1^2 - 0.00120 \times 1^2 / (1.0 - 0.110 \times 1 - 0.105 \times 4 - 0.0416 \times 2 - 0.00818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.00818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.00818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.00818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.001818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.001818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.001818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.001818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.001818 \times 1 - 0.00176 \times 3 - 0.0416 \times 2 - 0.001818 \times 1 - 0.00176 \times 3 - 0.001818 \times 1 - 0.0018
* x2)
('Number of bases is: ', 17)
('nmse is: ', 3.6666916491947656)
model is:
(95.2 - 9.48*x4 - 8.63*x1 - 2.31*x2 - 0.682*x2^2 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x2 - 0.500*x1 - 0.283*x1 * x3 - 0.211*x3 - 0.610*x1 * x3 - 0.211*x3 - 0.211*x3 - 0.610*x1 * x3 - 0.211*x3 - 0.2
0.206*x4^2 - 0.0478*x1^2 - 0.00170*x1^2) / (1.0 - 0.113*x1 - 0.107*x4 - 0.0505*x2 - 0.00710*x1 - 0.00710*x1
0.00178*x3*x2 - 8.01e-5*x3^2
('Number of bases is: ', 20)
('nmse is: ', 3.6281822258348986)
model is:
100 + 4.06 \times \log_{10}(x3) \times \max(0,x2-2.20) - 3.83 \times \max(0,x1-1.40) \times \max(0,x2-2.20) - 1.83 \times \log_{10}(x3) \times x1 - 2.00 \times \log_{10}(x3) \times x1 + 2.00 \times \log_{10}(x3
1.51*max(0,x1-2.47) * log10(x3) - 1.02*max(0,x2-2.20) * x4 - 0.962*max(0,x1-2.47) * max(0,x2-2.20) +
0.929 \times 4 \times 1 + 0.773 \times (0,x1-1.40) \times 4 - 0.707 \times (0,x1-1.40) \times 4 - 0.657 \times (0,x1-1.40) \times 4 - 0.657 \times (0,x1-1.40) \times 4 \times 1 + 0.773 \times (0,x1-1.40) \times (0,x1-1.40) \times 1 + 0.773 \times (0,x1-1.40) \times 
1.40) * max(0,x2-1.93) + 0.527*max(0,x1-2.47) * x4 - 0.371*max(0,1.40-x2) * x1 + 0.371*max(0,x1-1.93) -
0.272*max(0,x2-1.67) * x4 + 0.203*x1^2 - 0.181*max(0,x2-1.93) * x4 + 0.152*max(0,x1-1.40) * x1 - 0.152*max(0,x1-
0.0721*max(0,x1-2.47)*max(0,x2-2.47) + 0.0438*max(0,x1-2.20)
('Number of bases is: ', 21)
('nmse is: ', 3.5356567893051567)
model is:
100 + 4.31 \times \log 10(x3) \times \max(0,x2-2.20) - 3.67 \times \max(0,x1-1.40) \times \max(0,x2-2.20) - 1.82 \times \log 10(x3) \times x1 - 1.00 \times x1 \times x1 = 0.00 \times
1.81*max(0,x1-2.47)*log10(x3) - 0.993*max(0,x2-2.20)*x4 + 0.944*x4*x1 - 0.901*max(0,x1-2.47)*
\max(0,x2-2.20) + 0.749*\max(0,x1-1.40) * x4 - 0.737*\log(10(x3) * x4 - 0.698*\max(0,x1-1.40) * \max(0,x2-1.93)
 -0.580*max(0,1.40-x2) + 0.549*max(0,x1-2.47) * x4 - 0.435*max(0,1.40-x2) * x1 + 0.330*max(0,x1-1.93) - 0.580*max(0,x1-2.47) * x4 - 0.435*max(0,x1-2.47) * x4 - 0.435*max
0.279*max(0,x2-1.67)*x4 - 0.224*max(0,x1-2.47)*max(0,x2-2.47) + 0.201*x1^2 - 0.195*max(0,x2-1.93)*
x4 + 0.171*max(0,x1-1.40) * x1 + 0.0997*max(0,x1-2.20) - 0.0443*max(0,x2-2.47) * x4
('Number of bases is: ', 23)
('nmse is: ', 3.167193307240467)
model is:
100 + 5.31 \cdot \log 10(x3) \cdot \max(0,x2-2.20) - 2.99 \cdot \max(0,x1-2.47) \cdot \log 10(x3) - 2.65 \cdot \max(0,x1-1.40) \cdot \max(0,x2-2.20) = 2.99 \cdot \max(0,x1-2.47) \cdot \log 10(x3) = 2.65 \cdot \max(0,x1-2.40) \cdot \max(0,x2-2.20) = 2.99 \cdot \max(0,x1-2.47) \cdot \log 10(x3) = 2.65 \cdot \max(0,x1-2.40) \cdot \max(0,x2-2.20) = 2.99 \cdot \max(0,x1-2.40) \cdot \max(0,x1-2.40) = 2.65 \cdot \max(0,x1-2.40) \cdot \max(0,x1-2.40) = 2.65 \cdot \max(0,x1-2.40) \cdot \max(0,x1-2.40) = 2.65 \cdot \max(0,x1-2.40) = 2.65 \cdot \max(0,x1-2.40) \cdot \max(0,x1-2.40) = 2.65 \cdot \max(0,x1-2.40) \cdot \max(0,x1-2.40) = 2.65 \cdot \min(0,x1-2.40) = 2.65
2.20) - 1.78*log10(x3) * x1 - <math>1.45*max(0,x1-1.40) * max(0,x2-1.93) + <math>1.01*x4 * x1 - 0.862*log10(x3) * x4 - 0
0.843*max(0,x2-2.20) * x4 - 0.838*max(0,x1-2.47) * max(0,x2-2.20) - 0.689*max(0,1.40-x2) * x1 + 0.838*max(0,x2-2.20) + x4 - 0.838*max(0,x2-2.47) * max(0,x2-2.20) - 0.689*max(0,x2-2.20) + x1 + 0.838*max(0,x2-2.47) + 0.838*max(0,
0.656*max(0,x1-2.47) * x4 + 0.638*max(0,x1-1.40) * x4 - 0.548*max(0,x1-2.47) * max(0,x2-2.47) +
```

```
0.545 \times \max(0,x1-2.20) + 0.454 \times \max(0,x1-1.67) - 0.299 \times \max(0,x2-1.67) \times x4 - 0.281 \times \max(0,x2-1.93) \times x4 - 0.545 \times \max(0,x1-2.20) \times x4 - 0.545 \times x4 - 0.54 \times x4 - 0.545 \times x4 - 0.545 \times x4 - 0.545 \times x4 - 0.545 \times x4 - 0.54
0.242 \times \max(0, x_1 - 1.40) \times \max(0, x_2 - 2.47) - 0.227 \times \max(0, x_2 - 2.47) \times x_4 + 0.199 \times x_1^2 - 0.183 \times \max(0, 1.40 - x_2) + 0.183 \times \max(0, x_1 - 1.40) \times \max(0, x_2 - 2.47) \times x_4 + 0.199 \times x_1^2 - 0.183 \times \max(0, x_1 - 1.40) \times x_1^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_1 - 1.40) \times x_1^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_1 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times \max(0, x_2 - 2.47) \times x_2^2 + 0.183 \times 
0.111*max(0,x1-1.40)*x1 - 0.0448*max(0,1.40-x2)*x4
('Number of bases is: ', 25)
('nmse is: ', 3.013755006166342)
model is:
100 + 5.71 \cdot \log 10(x3) \cdot \max(0,x2-2.20) - 3.47 \cdot \max(0,x1-2.47) \cdot \log 10(x3) - 2.10 \cdot \max(0,x1-1.40) \cdot \max(0,x2-2.20) - 3.47 \cdot \max(0,x2-2.47) \cdot \log 10(x3) - 2.10 \cdot \max(0,x1-2.47) \cdot \log 10(x3) - 2.10 \cdot \log 10(x3) - 2.1
2.20) - 1.80*max(0,x1-1.40)*max(0,x2-1.93) - 1.76*log10(x3)*x1 + 1.05*x4*x1 - 0.925*max(0,x1-2.47)*
\max(0,x^2-2.20) - 0.917 + \log_10(x^3) * x^4 - 0.773 * \max(0,x^2-2.20) * x^4 + 0.715 * \max(0,x^1-2.20) - 0.917 * \log_10(x^3) * x^4 + 0.715 * \max(0,x^2-2.20) * x^4 + 0.715 * x^4 
0.714 \times (0,1.40 - x2) \times x1 + 0.693 \times (0,x1 - 2.47) \times x4 + 0.591 \times (0,x1 - 1.40) \times x4 - 0.525 \times (0,x1 - 2.47)
 * max(0,x2-2.47) + 0.459*max(0,x1-1.67) - 0.457*max(0,x1-1.40) * <math>max(0,x2-2.47) - 0.329*max(0,x2-1.93) *
x4 - 0.307*max(0,x2-1.67) * x4 - 0.294*max(0,x2-2.47) * x4 + 0.176*x1^2 + 0.139*max(0,x1-1.40) - 0.139*max(0,x1-1.40) + 0.139*max(0,x1-
0.105*max(0,1.40-x2) * x4 + 0.0973*max(0,x1-1.40) * x1 - 0.0865*max(0,x1-1.40) * max(0,1.40-x2) - 0.0865*max(0,x1-1.40) * x1 - 0.0865*max(0,x1-1.40) * x2 - 0.0865*max(0,x1-1.40) * x3 - 0.0865*max(0,x1-1.40) * x4 + 0.0973*max(0,x1-1.40) * x5 - 0.0865*max(0,x1-1.40) * x5 - 0.0
0.0401*max(0,1.40-x2)
('Number of bases is: ', 26)
('nmse is: ', 2.934964592035354)
model is:
100 + 6.05 \times \log 10(x3) \times \max(0,x2-2.20) - 3.79 \times \max(0,x1-2.47) \times \log 10(x3) - 2.14 \times \max(0,x1-1.40) \times \max(0,x2-2.20) + 3.79 \times \max(0,x1-2.47) \times \log 10(x3) + 3.79 \times \log 10(
1.93) - 1.78*log10(x3) * x1 - <math>1.55*max(0,x1-1.40) * max(0,x2-2.20) + <math>1.08*x4 * x1 - 1.02*max(0,x1-2.47) *
\max(0,x2-2.20) - 0.978*\log 10(x3) * x4 + 0.849*\max(0,x1-2.20) + 0.739*\max(0,x1-2.47) * x4 -
0.705 \times max(0,x2-2.20) \times x4 - 0.674 \times max(0,x1-1.40) \times max(0,x2-2.47) + 0.541 \times max(0,x1-1.40) \times x4 - 0.674 \times max(0,x1-1.40)
0.483 \times (0,x1-2.47) \times (0,x2-2.47) - 0.481 \times (0,1.40-x2) \times x1 - 0.473 \times (0,x1-1.40) \times (0,1.40-x2)
 + 0.422*max(0,x1-1.67) + 0.381*max(0,x1-1.40) - 0.378*max(0,x2-1.93) * x4 - 0.354*max(0,x2-2.47) * x4 - 0.354*ma
0.309*max(0,x2-1.67) * x4 - 0.217*max(0,1.40-x2) - 0.154*max(0,1.40-x2) * x4 + 0.144*x1^2 + 0.
0.0808*max(0,x1-1.40)*x1+0.00585*x3^2
('Number of bases is: ', 29)
('nmse is: ', 2.7764546828341663)
model is:
100 + 5.83 \times \log 10(x3) \times \max(0,x2-2.20) - 3.89 \times \max(0,x1-2.47) \times \log 10(x3) - 2.47 \times \max(0,x1-1.40) \times \max(0,x2-2.20) = 3.89 \times \max(0,x1-2.47) \times \log 10(x3) = 2.47 \times \max(0,x1-2.40) \times \max(0,x2-2.20) = 3.89 \times \max(0,x1-2.47) \times \log 10(x3) = 2.47 \times \max(0,x1-2.40) \times \max(0,x1-2.40) = 3.89 \times \max(0,x1-2.40) \times \log 10(x3) = 2.47 \times \max(0,x1-2.40) \times \log 10(x3) = 3.89 \times \log 10(x3) 
1.93) - 1.88*log10(x3) * x1 + <math>1.12*x4 * x1 - 1.07*log10(x3) * x4 - 1.06*max(0,x1-2.47) * max(0,x2-2.20) - 1.88*log10(x3) * x2 + 1.12*x4 * x2 - 1.07*log10(x3) * x4 - 1.06*max(0,x1-2.47) * max(0,x2-2.20) - 1.88*log10(x3) * x4 - 1.06*max(0,x1-2.47) * max(0,x2-2.20) - 1.88*log10(x3) * x4 - 1.06*max(0,x2-2.20) * max(0,x2-2.20) 
1.04*max(0,x1-1.40)*max(0,x2-2.20) + 0.890*max(0,x1-2.20) - 0.883*max(0,x1-1.40)*max(0,x2-2.47) - 0.883*max(0,x1-1.40)*max(0,x2-2.47) + 0.890*max(0,x1-2.20) + 0.890*max(0,x1-2.20) + 0.883*max(0,x1-1.40)*max(0,x2-2.47) + 0.890*max(0,x1-2.20) + 0.883*max(0,x1-1.40)*max(0,x2-2.47) + 0.890*max(0,x1-2.20) + 0.883*max(0,x1-1.40)*max(0,x2-2.47) + 0.890*max(0,x1-2.20) + 
0.637*max(0,x1-1.40) + 0.474*max(0,x1-1.40) * x4 - 0.459*max(0,x2-1.93) * x4 - 0.448*max(0,x1-2.47) *
\max(0,x^2-2.47) + 0.425*\max(0,x^1-1.67) - 0.410*\max(0,x^2-2.47) * x^4 - 0.306*\max(0,x^2-1.67) * x^4 - 0.410*\max(0,x^2-2.47) * x^4 - 0.425*\max(0,x^2-1.67) * x^4 - 0.410*\max(0,x^2-2.47) * x^4 - 0.425*\max(0,x^2-1.67) * x^4 - 0.410*\max(0,x^2-2.47) * x^4 - 0.410*\min(0,x^2-2.47) * x^4 - 0.410*\min(0,x^2-2.47
0.284*max(0,1.40-x2)*x1 + 0.276*log10(x3)*max(0,x2-1.93) - 0.259*max(0,1.40-x2) - 0.237*max(0,1.40-x2)
x2) * x4 + 0.183*max(0,x2-2.20) + 0.110*x1^2 + 0.0597*max(0,x1-1.40) * x1 + 0.0418*max(0,x1-1.93) +
0.0273*x3^2
('Number of bases is: ', 32)
('nmse is: ', 2.6290040135495074)
model is:
100 + 5.39 \times \log 10(x3) \times \max(0,x2-2.20) - 4.00 \times \max(0,x1-2.47) \times \log 10(x3) - 2.78 \times \max(0,x1-1.40) \times \max(0,x2-2.20) = 4.00 \times \log 10(x3) + \log 10(x3) = 2.78 \times \log 10(x3) 
1.93) - 1.96 \times \log 10(x3) \times x1 + 1.17 \times x4 \times x1 - 1.15 \times \log 10(x3) \times x4 - 1.14 \times \max(0,x1-1.40) \times \max(0,1.40-x2) -
1.08*max(0,x1-2.47)*max(0,x2-2.20) - 1.08*max(0,x1-1.40)*max(0,x2-2.47) + 0.874*max(0,x1-1.40) +
0.800*max(0,x1-2.47)*x4 + 0.701*max(0,x1-2.20) + 0.642*log10(x3)*max(0,x2-1.93) - 0.608*max(0,x2-1.93)
```

```
2.20) * x4 - 0.595*max(0,x1-1.40) * max(0,x2-2.20) - 0.557*max(0,x2-1.93) * x4 - 0.465*max(0,x2-2.47) * x4
 + 0.453*max(0,x2-2.20) + 0.442*max(0,x1-1.67) + 0.412*max(0,x1-1.40) * x4 - 0.389*max(0,x1-2.47) *
\max(0,x2-2.47) - 0.332*\max(0,1.40-x2) * x4 - 0.300*\max(0,x2-1.67) * x4 - 0.231*\max(0,1.40-x2) +
0.226 \times \max(0,x_1-1.93) - 0.114 \times \max(0,1.40-x_2) \times x_1 + 0.105 \times \max(0,x_1-2.73) + 0.0728 \times x_1^2 + 0.0455 \times x_3^2 + 0.045 \times x_3^
0.0425*max(0,x1-2.47) + 0.0365*max(0,x1-1.40) * x1 + 0.0109*max(0,x1-2.47) * x1
('Number of bases is: ', 33)
('nmse is: ', 2.4222562795347424)
model is:
98.8 + 3.88 \times \log_{10}(x_3) \times \max(0.x_2 - 2.20) - 3.62 \times \max(0.x_1 - 2.47) \times \log_{10}(x_3) - 3.24 \times \max(0.x_1 - 1.40) \times \max(0.x_2 - 2.20) \times \log_{10}(x_3) 
1.93) - 2.51*log10(x3) * x1 + <math>1.90*log10(x3) * max(0,x2-1.93) - 1.57*log10(x3) * x4 - <math>1.53*max(0,x1-1.40) * max(0,x2-1.93) - 1.57*log10(x3) * x4 - 1.53*max(0,x1-1.40) * max(0,x2-1.93) - 1.57*log10(x3) * max
\max(0,1.40-x2) - 1.39*\max(0,x1-1.40) * \max(0,x2-2.47) + 1.17*\max(0,x2-2.20) + 1.14*x4 * x1 + 1.17*\max(0,x2-2.20) + 1.14*x4 * x1 + 1.17*\text{max}(0,x2-2.20) + 1.14*x4 * x1 + 1.14*x4 * x
1.07*max(0,x1-1.40) - 0.842*max(0,x2-1.93) * x4 + 0.770*max(0,x1-2.47) * x4 + 0.763*log10(x3) *
\max(0,1.40-x2) - 0.713*\max(0,x1-2.47)*\max(0,x2-2.47) + 0.632*\max(0,x1-1.93) - 0.588*\max(0,x2-2.47)*x4
 + 0.574*max(0,x1-2.47) - 0.571*max(0,1.40-x2) * x4 - 0.563*max(0,x1-2.47) * max(0,x2-1.67) + 0.499*x3 - 0.571*max(0,x1-2.47) + 0.571*ma
0.479*max(0,x2-2.20)*x4 + 0.454*max(0,x1-1.40)*x4 + 0.377*max(0,x1-1.67) + 0.313*x1 - 0.284*max(0,x2-1.40)*x4 + 0.377*max(0,x2-1.60)*x4 + 0.313*x1 - 0.284*max(0,x2-1.40)*x4 + 0.284*max(0,x2-1.40)
1.67) * x4 - 0.276*max(0,x1-2.47) * max(0,1.40-x2) + 0.257*x4 + 0.213*log10(x3) + 0.184*max(0,x1-2.20) -
0.0547*max(0,2.47-x3) + 0.0179*x1^2 + 0.00296*x3^2
('Number of bases is: ', 34)
('nmse is: ', 2.393128943967868)
model is:
98.6 - 3.46 \times \max(0,x1-2.47) \times \log(10(x3) - 3.25 \times \max(0,x1-1.40) \times \max(0,x2-1.93) + 3.10 \times \log(10(x3) \times \max(0,x2-1.93) + 3.10 \times \log(10(x3) \times \log(10(x3) + 3.25 \times \log(10(x3)
2.20) - 2.64*log10(x3) * x1 + <math>2.40*log10(x3) * max(0,x2-1.93) - 1.67*log10(x3) * x4 - 1.54*max(0,x1-1.40) * (0,x1-1.40) * (
\max(0.1.40-x2) - 1.42 \times \max(0.x1-1.40) \times \max(0.x2-2.47) + 1.29 \times \max(0.x2-2.20) + 1.09 \times x4 \times x1 + 1.05 \times \log 10(x3)
* \max(0,1.40-x2) + 0.988*\max(0,x1-1.40) - 0.870*\max(0,x2-1.93) * x4 + 0.762*\max(0,x1-2.47) * x4 + 0.762*\min(0,x1-2.47) * x4 + 0.76
0.681*max(0,x1-1.93) - 0.635*max(0,x1-2.47) * max(0,x2-1.67) + 0.627*log10(x3) + 0.614*max(0,x1-2.47) - 0.635*max(0,x1-2.47) + 0.627*log10(x3) + 0.614*max(0,x1-2.47) + 0.614*max
0.611 \times \max(0, 1.40 - x2) \times x4 - 0.611 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x1 - 2.47) \times \max(0, x2 - 2.47) + 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times \max(0, x2 - 2.47) \times x4 - 0.569 \times x4 - 0.5
0.508 \times \max(0,x_1-1.40) \times x_4 + 0.477 \times x_3 - 0.454 \times \max(0,x_2-2.20) \times x_4 + 0.449 \times x_1 - 0.405 \times \max(0,x_1-2.47) \times x_2 + 0.405 \times \max(0,x_1-2.47) \times x_3 + 0.405 \times \max(0,x_1-2.47) \times x_4 + 0.405 \times x_4 + 
\max(0.1.40-x2) + 0.361*x4 + 0.347*\max(0.x1-1.67) - 0.298*\max(0.x2-1.67) * x4 + 0.245*\log 10(x3) *
\max(0,x2-2.47) + 0.127*\max(0,x1-2.20) - 0.0607*\max(0,2.47-x3) + 0.0137*x1^2 + 0.00634*x3^2
('Number of bases is: ', 36)
('nmse is: ', 2.378149796555744)
model is:
98.4 - 3.33*max(0,x1-2.47)*log10(x3) - 3.26*max(0,x1-1.40)*max(0,x2-1.93) + 2.83*log10(x3)*max(0,x2-1.93)
1.93) - 2.75*log10(x3) * x1 + <math>2.35*log10(x3) * max(0,x2-2.20) - 1.75*log10(x3) * x4 - 1.54*max(0,x1-1.40) * (0,x1-1.40) * (
\max(0,1.40-x2) - 1.45 \times \max(0,x1-1.40) \times \max(0,x2-2.47) + 1.29 \times \log_10(x3) \times \max(0,1.40-x2) + 1.16 \times \max(0,x2-1.40) \times \max(0,x1-1.40) \times \min(0,x1-1.40) \times \min(
2.20) + 1.05*x4*x1 + 0.988*log10(x3) + <math>0.924*max(0,x1-1.40) - 0.880*max(0,x2-1.93) * x4 +
0.754*max(0,x1-2.47) * x4 + 0.735*max(0,x1-1.93) - 0.696*max(0,x1-2.47) * max(0,x2-1.67) +
0.662*max(0,x1-2.47) - 0.646*max(0,1.40-x2) * x4 - 0.625*max(0,x2-2.47) * x4 + 0.583*x1 + 0.580*log10(x3)
* \max(0,x2-2.47) + 0.556*\max(0,x1-1.40) * x4 - 0.523*\max(0,x1-2.47) * \max(0,1.40-x2) + 0.455*x3 + 0.454*x4
 -0.451*max(0,x1-2.47)*max(0,x2-2.47) - 0.429*max(0,x2-2.20)*x4 - 0.328*max(0,x2-1.67)*x4 + 0.451*max(0,x2-2.47) - 0.429*max(0,x2-2.20)*x4 - 0.328*max(0,x2-1.67)*x4 + 0.451*max(0,x2-2.47) - 0.429*max(0,x2-2.20)*x4 - 0.328*max(0,x2-1.67)*x4 + 0.429*max(0,x2-2.20)*x4 - 0.429*max
0.320*max(0,x1-1.67) + 0.144*max(0,x2-1.93) + 0.0713*max(0,x1-2.20) - 0.0661*max(0,2.47-x3) +
0.0540*max(0,x2-2.47) + 0.00968*x3^2 + 0.00382*x1^2
('Number of bases is: ', 40)
('nmse is: ', 2.347451806561142)
```

model is:

('Number of bases is: ', 46)

```
98.1 - 3.22*max(0,x1-2.47) * log10(x3) - 3.07*max(0,x1-1.40) * max(0,x2-1.93) - 2.85*log10(x3) * x1 + 3.22*max(0,x1-2.47) * log10(x3) + + 3.22*max(0,x1-2.
2.60 \times \log 10(x3) \times \max(0,x2-1.93) + 2.00 \times \log 10(x3) \times \max(0,x2-2.20) - 1.83 \times \log 10(x3) \times x4 - 1.62 \times \max(0,x1-2.00) \times \log 10(x3) \times x4 - 1.62 \times \log 10(x3) \times x4 - 1.62 \times \log 10(x3) \times \log 10(x
1.40) * max(0,1.40-x2) + 1.56*\log 10(x3) * max(0,1.40-x2) - 1.45*\max (0,x1-1.40) * max(0,x2-2.47) +
1.25 \times \log 10(x3) + 1.01 \times x4 \times x1 - 1.01 \times \max(0,x2-1.93) \times x4 + 0.863 \times \max(0,x2-2.20) + 0.863 \times \log 10(x3) \times x4 + 0.863 \times \log 10(x3
\max(0,x2-2.47) + 0.817*\max(0,x1-1.40) + 0.766*\max(0,x1-1.93) + 0.757*x1 + 0.746*\max(0,x1-2.47) * x4 - 0.757*x1 + 0.746*max(0,x1-2.47) * x4 - 0.757*x1 + 0.746*max(0,x1-2.47) * x4 - 0.757*x1 + 0.
0.692*max(0,x1-2.47) * max(0,x2-1.67) + 0.676*max(0,x1-2.47) - 0.664*max(0,1.40-x2) * x4 -
0.608*max(0,x2-2.47)*x4 + 0.602*max(0,x2-1.93) + 0.600*max(0,x1-1.40)*x4 - 0.566*max(0,x1-2.47)*
 \max(0.x2-2.47) + 0.529*x4 - 0.517*\max(0.x1-2.47) * \max(0.1.40-x2) + 0.436*x3 - 0.398*\max(0.x2-2.20) * x4
 + 0.328*max(0,x2-1.67)*log10(x3) - 0.272*max(0,x2-1.67)*x4 + 0.271*max(0,x1-1.67) - 0.143*max(0,x2-1.67)*x4 + 0.271*max(0,x2-1.67) - 0.143*max(0,x2-1.67) - 0.143*max(0,x2-1.67) + 0
1.67) * \times 1 - 0.0671 \times (0.2.47 - x3) + 0.0596 \times (0.x2 - 2.47) + 0.0502 \times (0.x1 - 2.20) + 0.0248 \times (0.x2 - 2.47) + 0.0502 \times (0.x1 - 2.20) + 0.0248 \times (0.x2 - 2.47) + 0.0502 \times (0.x1 - 2.20) + 0.0248 \times (0.x2 - 2.47) + 0.0502 \times (0.x1 - 2.20) + 0.0248 \times (0.x2 - 2.47) + 0.0502 \times (0.x1 - 2.20) + 0.0248 \times (0.x1 - 2.20) + 0.024 
1.40) * max(0,x2-2.20) + 0.0131*x3^2 - 0.00760*max(0,2.20-x3) + 0.00159*x1^2
('Number of bases is: ', 43)
('nmse is: ', 2.326338925094848)
model is:
97.9 - 3.12 \times \max(0.x1 - 2.47) \times \log_{10}(x3) - 2.93 \times \log_{10}(x3) \times x1 - 2.89 \times \max(0.x1 - 1.40) \times \max(0.x2 - 1.93) +
2.28 + \log 10(x3) + \max(0,x2-1.93) - 1.89 + \log 10(x3) + x4 + 1.82 + \log 10(x3) + \max(0,1.40-x2) - 1.70 + \max(0,x1-x2) + 1.80 + \log 10(x3) + 1.80 + \log 
1.40) * max(0,1.40-x2) + 1.67*\log 10(x3) * max(0,x2-2.20) - 1.49*\max(0,x1-1.40) * max(0,x2-2.47) +
1.44 + \log 10(x3) - 1.12 + \max(0,x2-1.93) + x4 + 1.10 + \log(10(x3)) + \max(0,x2-2.47) + 0.980 + x4 + x1 + 0.905 + 0.905 + 0.905 + 0.905 + 0.905 + 0.905 + 0.905 + 0.905 + 0.905 + 0.9
0.836*max(0,x2-1.93) + 0.797*max(0,x1-1.93) + 0.740*max(0,x1-2.47) * x4 + 0.736*max(0,x2-1.67) *
log10(x3) + 0.720*max(0,x1-1.40) - 0.697*max(0,x1-2.47) * max(0,x2-1.67) + 0.687*max(0,x1-2.47) -
0.682 \times \max(0, 1.40 - x2) \times x4 + 0.645 \times \max(0, x2 - 2.20) + 0.638 \times \max(0, x1 - 1.40) \times x4 - 0.629 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times \max(0, x1 - 2.47) \times x4 + 0.645 \times 
\max(0.x2-2.47) - 0.624*\max(0.x2-2.47) * x4 + 0.592*x4 - 0.507*\max(0.x1-2.47) * \max(0.1.40-x2) + 0.419*x3
   -0.353*max(0,x2-2.20)*x4-0.272*max(0,x2-1.67)*x1+0.229*max(0,x1-1.67)-0.217*max(0,x2-1.67)*
x4 + 0.0815*max(0,x2-1.40)*max(0,x2-1.93) - 0.0633*max(0,2.47-x3) + 0.0426*max(0,x2-1.67)*max(0,x2-1.67)
1.93) + 0.0350*max(0,x2-1.40) * max(0,x2-2.20) + 0.0251*max(0,x1-2.20) - 0.0235*max(0,2.20-x3) +
0.0169*x3^2 + 0.00106*x1^2 - 0.000350*max(0,2.73-x4) + 3.63e-5*x4^2
('Number of bases is: ', 45)
('nmse is: ', 2.3113277661134872)
model is:
97.7 - 3.02*max(0,x1-2.47) * log10(x3) - 3.01*log10(x3) * x1 - 2.75*max(0,x1-1.40) * max(0,x2-1.93) +
2.31 \times \log 10(x3) \times \max(0,x2-1.93) + 2.01 \times \log 10(x3) \times \max(0,1.40-x2) - 1.94 \times \log 10(x3) \times x4 - 1.75 \times \max(0,x1-x2) + 1.94 \times \log 10(x3) \times x4 - 1.75 \times \max(0,x1-x2) + 1.94 \times \log 10(x3) \times x4 - 1.75 \times \max(0,x1-x2) + 1.94 \times \log 10(x3) \times x4 - 1.75 \times \max(0,x1-x2) + 1.94 \times \log 10(x3) \times x4 - 1.75 \times \max(0,x1-x2) + 1.94 \times \log 10(x3) \times x4 - 1.75 \times \max(0,x1-x2) + 1.94 \times \log 10(x3) \times x4 + 1.75 \times \log 10(x3) \times 
1.40) * max(0,1.40-x2) + 1.64*\log 10(x3) - 1.39*\max (0,x1-1.40) * max(0,x2-2.47) + 1.33*\log 10(x3) * max(0,x2-1.40) * max(
2.47) - 1.27*max(0,x2-1.93) * x4 + 1.22*log10(x3) * max(0,x2-2.20) + 1.05*x1 + 0.951*x4 * x1 +
0.927*max(0,x2-1.93) + 0.915*max(0,x2-1.67) * log10(x3) + 0.823*max(0,x1-1.93) + 0.738*max(0,x1-2.47) *
x4 - 0.719 \times (0,x2 - 2.47) \times x4 - 0.711 \times (0,x1 - 2.47) \times max(0,x2 - 1.67) - 0.707 \times max(0,x1 - 2.47) \times max(0,x2 - 2.47) \times ma
2.47) + 0.697*max(0,x1-2.47) - 0.696*max(0,1.40-x2) * x4 + 0.670*max(0,x1-1.40) * x4 + 0.644*x4 +
0.625 \times \max(0,x_1-1.40) - 0.517 \times \max(0,x_1-2.47) \times \max(0,1.40-x_2) + 0.494 \times \max(0,x_2-2.20) + 0.396 \times x_3 - 0.625 \times \max(0,x_1-1.40) + 0.517 \times \max(0,x_1-2.47) \times \min(0,x_1-2.47) \times \min(0,x_
0.296*max(0,x2-1.67) * x1 - 0.210*max(0,x2-2.20) * x4 + 0.205*max(0,x2-1.67) * max(0,x2-1.93) +
0.194*max(0,x1-1.67) - 0.162*max(0,x2-1.67) * x4 + 0.127*max(0,x2-1.40) * max(0,x2-1.93) -
0.122*max(0,x2-2.20)*x1 - 0.0605*max(0,2.47-x3) - 0.0378*max(0,2.20-x3) - 0.0314*max(0,x2-1.40)*x1 +
0.0313*max(0,x2-1.40)*max(0,x2-2.20) + 0.0212*x3^2 - 0.0182*max(0,x2-2.47)*x1 + 0.00346*max(0,x1-2.20) + 0.0212*x3^2 - 0.0182*max(0,x2-2.47) + 0.00346*max(0,x2-2.47) + 0.003
2.20) - 0.00237*max(0,2.73-x4) + 0.000414*x4^2
```

```
('nmse is: ', 2.3000588700464357)
model is:
97.5 - 3.07 * log 10(x3) * x1 - 2.95 * max(0,x1-2.47) * log 10(x3) - 2.62 * max(0,x1-1.40) * max(0,x2-1.93) + 2.62 * max(0,x1-1.40) * max(0,x1-1.
2.50 \times \log 10(x3) \times \max(0,x2-1.93) + 2.13 \times \log 10(x3) \times \max(0,1.40-x2) - 1.98 \times \log 10(x3) \times x4 + 1.81 \times \log 10(x3) - 1.98 \times \log 10(x3) \times x4 + 1.81 \times \log 10(x3) \times 1.98 \times \log 10(x3) \times x4 + 1.81 \times \log 10(x3) \times 1.98 \times \log 10(x3) \times x4 + 1.81 \times \log 10(x3) \times 1.98 \times \log 10(x3) \times
1.78*max(0,x1-1.40)*max(0,1.40-x2) + 1.59*log10(x3)*max(0,x2-2.47) - 1.37*max(0,x2-1.93)*x4 + 1.19*x1
   -1.08*max(0,x1-1.40)*max(0,x2-2.47) + 0.963*max(0,x2-1.67)*log10(x3) + 0.959*max(0,x2-1.93) +
0.923*x4*x1+0.839*max(0,x1-1.93)-0.777*max(0,x1-2.47)*max(0,x2-1.67)-0.750*max(0,x1-2.47)*
\max(0,x2-2.47) + 0.745*\max(0,x1-2.47) + 0.740*\log(10)(x3) * \max(0,x2-2.20) + 0.728*\max(0,x1-2.47) * x4 - 0.745*\max(0,x1-2.47) * x4 - 0.745*\min(0,x1-2.47) * x4 -
0.720*max(0,1.40-x2) * x4 - 0.714*max(0,x2-2.47) * x4 + 0.704*max(0,x1-1.40) * x4 + 0.698*x4 - 0.714*max(0,x2-2.47) * x4 + 0.704*max(0,x1-1.40) * x4 + 0.698*x4 - 0.714*max(0,x2-2.47) * x4 + 0.704*max(0,x1-1.40) * x4 + 0.698*x4 - 0.714*max(0,x2-2.47) * x4 + 0.704*max(0,x1-1.40) * x4 + 0.698*x4 - 0.714*max(0,x2-2.47) * x4 + 0.704*max(0,x1-1.40) * x4 + 0.704*max(0,
0.580 \times \max(0,x_1-2.47) \times \max(0,1.40-x_2) + 0.508 \times \max(0,x_1-1.40) + 0.377 \times x_3 + 0.351 \times \max(0,x_2-2.20) + 0.580 \times \max(0,x_1-2.47) \times \min(0,x_1-2.47) 
0.340 \times \max(0, x_2 - 1.67) \times \max(0, x_2 - 1.93) - 0.281 \times \max(0, x_2 - 2.47) \times x_1 + 0.265 \times \max(0, x_2 - 1.40) \times \max(0, x_2 - 1.93)
 -0.208*max(0,x2-1.67)*x1+0.156*max(0,x1-1.67)-0.143*max(0,x2-1.67)*x4-0.135*max(0,x2-2.20)*
x1 - 0.133*max(0,x2-2.20)*x4 - 0.110*max(0,x2-1.93)*x1 - 0.101*max(0,x2-1.40)*x1 - 0.0581*max(0,2.47-1.40)*x1 - 0.101*max(0,x2-1.40)*x1 - 0.0581*max(0,x2-1.40)*x1 - 0.0581*max(0,x2-
x3) - 0.0500*max(0,2.20-x3) + 0.0276*max(0,x2-1.40) * max(0,x2-2.20) + 0.0249*x3^2 -
0.00378*max(0,2.73-x4) + 0.00333*max(0,x2-2.47) + 0.000681*x4^2
('Number of bases is: ', 47)
('nmse is: ', 2.2825327789615444)
model is:
97.2 - 3.16 \times \log 10(x3) \times x1 + 3.06 \times \log 10(x3) \times \max(0,x2-1.93) - 2.84 \times \max(0,x1-2.47) \times \log 10(x3) + 2.84 \times \max(0,x1-2.47) \times \log 10(x3) \times \log
2.37*\log 10(x3) * max(0,1.40-x2) - 2.27*max(0,x1-1.40) * max(0,x2-1.93) + 2.08*log10(x3) - 2.05*log10(x3) * max(0,x1-1.40) * max(0,x2-1.93) + 2.08*log10(x3) - 2.05*log10(x3) * max(0,x1-1.40) * max(0,x2-1.93) + 2.08*log10(x3) - 2.05*log10(x3) * max(0,x1-1.40) * 
x4 + 1.84 \times \log 10(x3) \times \max(0,x2-2.47) - 1.81 \times \max(0,x1-1.40) \times \max(0,1.40-x2) - 1.45 \times \max(0,x2-1.93) \times x4 + 1.84 \times \log 10(x3) \times \max(0,x2-1.93) \times x4 + 1.84 \times \log 10(x3) \times \max(0,x2-1.93) \times x4 + 1.84 \times \log 10(x3) \times 
1.44 \times 1 + 0.952 \times \max(0, x^2 - 1.93) - 0.915 \times \max(0, x^2 - 2.47) \times \max(0, x^2 - 1.67) + 0.877 \times x^4 \times x^1 + 0.853 \times \max(0, x^2 - 1.67) \times x^4 \times
1.93) + 0.829*max(0,x1-2.47) - 0.796*max(0,x1-2.47) * max(0,x2-2.47) + 0.785*x4 + 0.759*max(0,x1-1.40) *
x4 - 0.754*max(0,1.40-x2)*x4 - 0.747*max(0,x2-2.47)*x4 + 0.714*max(0,x1-2.47)*x4 - 0.693*max(0,x1-2.47)*x4 - 0.693*max(0
2.47) * max(0,1.40-x2) - 0.669*max(0,x2-2.47) * x1 - 0.651*max(0,x1-1.40) * max(0,x2-2.47) +
0.636 \times \max(0,x2-1.67) \times \log(0(x3) + 0.630 \times \max(0,x2-1.67) \times \max(0,x2-1.93) + 0.510 \times \max(0,x2-1.40) \times \log(0,x2-1.67) \times 
\max(0,x2-1.93) - 0.481*\max(0,x2-1.93) * x1 + 0.344*x3 + 0.288*\max(0,x1-1.40) + 0.190*\max(0,x2-1.40) *
log10(x3) - 0.176*max(0,x2-1.40) * x1 + 0.163*max(0,x2-2.20) - 0.134*max(0,x2-1.67) * x4 +
0.0894*max(0,x1-1.67) - 0.0791*max(0,x2-2.20) * x1 - 0.0699*max(0,x2-1.67) * x1 - 0.0690*max(0,2.20-x3)
 -0.0679*max(0,x2-2.20)*x4-0.0546*max(0,2.47-x3)+0.0539*log10(x3)*max(0,x2-2.20)+0.0310*x3^2
 + 0.0126*max(0,x1-2.20) + 0.0108*max(0,x2-1.40) * max(0,x2-2.20) - 0.00528*max(0,2.73-x4) +
0.000975*x4^2
('Number of bases is: ', 50)
('nmse is: ', 2.277470123502084)
model is:
96.9 + 4.28 \times \log 10(x3) \times \max(0,x2-1.93) - 3.25 \times \log 10(x3) \times x1 - 2.73 \times \max(0,x1-2.47) \times \log 10(x3) + 2.73 \times \log 10(x3) \times \log 10(
2.41 \times \log 10(x3) + 2.25 \times \log 10(x3) \times \max(0,1.40-x2) - 2.12 \times \log 10(x3) \times x4 - 1.78 \times \max(0,x1-1.40) \times \max(0,x2-x2) = 0.00 \times 10^{-2} 
1.93) - 1.71*max(0,x1-1.40)*max(0,1.40-x2) + <math>1.59*x1 - 1.47*max(0,x2-1.93)*x4 - <math>1.36*max(0,x2-2.73) + 1.59*x1
1.35*max(0,x2-2.20) * max(0,x2-1.93) + 1.18*log10(x3) * max(0,x2-2.47) - 1.06*max(0,x2-1.93) * x1 - 
1.04*max(0,x1-2.47)*max(0,x2-1.67) - 0.995*max(0,x2-2.47)*x1 - 0.970*max(0,x1-2.47)*max(0,1.40-x2)
 -0.913*max(0,x2-2.47)*x4+0.867*max(0,x1-2.47)+0.852*x4+0.842*x4*x1+0.815*max(0,x1-1.93)+
0.798 \times (0,x1-1.40) \times x4 - 0.781 \times (0,1.40-x2) \times x4 + 0.716 \times (0,x1-2.47) \times x4 + 0.679 \times (0,x2-1.67)
 * \max(0,x2-1.93) + 0.517*\max(0,x2-1.40) * \max(0,x2-1.93) + 0.496*\max(0,x2-1.93) - 0.462*\max(0,x1-2.47) *
 \max(0,x2-2.47) - 0.453*\max(0,x1-1.40)*\max(0,x2-2.47) + 0.339*x3 + 0.230*\max(0,x2-1.40)*\max(0,x2-1.67)
```

```
-0.156*max(0,x2-1.40) * max(0,x1-2.47) - 0.112*max(0,x2-1.67) * x4 + 0.0962*max(0,x1-2.20) - 0.112*max(0,x1-2.20) - 0.112*max(0,x1-2.20) + 0.112*
0.0877*max(0,x2-1.40)*x1 - 0.0821*max(0,2.20-x3) + 0.0782*max(0,x1-1.40) + 0.0702*max(0,x2-1.40)*
log10(x3) + 0.0664*max(0,1.93-x2) - 0.0504*max(0,2.47-x3) + 0.0401*log10(x3) * max(0,x2-2.20) +
0.0396*max(0,x1-2.73) + 0.0329*x3^2 + 0.0220*max(0,x2-1.67) * log10(x3) + 0.0167*x1^2 -
0.00752*max(0,x2-1.40)*x4 - 0.00584*max(0,2.73-x4) + 0.00431*max(0,x1-1.67) + 0.00111*x4^2
('Number of bases is: ', 52)
('nmse is: ', 2.2737208867833334)
model is:
96.8 + 3.49 \times \log 10(x3) \times \max(0,x2-1.93) - 3.30 \times \log 10(x3) \times x1 - 2.67 \times \max(0,x1-2.47) \times \log 10(x3) - 2.67 \times \log 10(x3) \times \log 10(
2.63*max(0,x2-2.47) + 2.56*log10(x3) * max(0,1.40-x2) + 2.53*log10(x3) - 2.45*max(0,x2-2.73) +
 2.29*max(0,x2-2.20)*max(0,x2-1.93) - 2.16*log10(x3)*x4 - 1.85*max(0,x1-1.40)*max(0,x2-1.93) -
1.76*max(0,x1-1.40)*max(0,1.40-x2) + 1.61*x1 + 1.58*log10(x3)*max(0,x2-2.47) + 1.47*max(0,x2-2.47)*
\max(0,x2-1.93) - 1.26*\max(0,x2-1.93) * x4 - 1.03*\max(0,x2-1.93) * x1 - 0.999*\max(0,x1-2.47) * \max(0,1.40-1.93) * x2 - 1.93 * x3 - 0.999*\max(0,x1-2.47) * x4 - 1.03*\max(0,x2-1.93) * x4 - 1.03*\min(0,x2-1.93) * x4 
x^2) - 0.919*max(0,x^2-2.47) * x^4 + 0.916*x^4 + 0.884*<math>max(0,x^1-2.47) - 0.873*max(0,1.40-x^2) * x^4 + 0.825*x^4
*x1 + 0.818*max(0,x1-1.40) *x4 + 0.810*max(0,x1-1.93) + 0.804*max(0,x2-1.67) *max(0,x2-1.93) -
0.769 \times \max(0,x1-1.40) \times \max(0,x2-2.47) - 0.763 \times \max(0,x1-2.47) \times \max(0,x2-1.67) + 0.712 \times \max(0,x1-2.47) \times x4
 -0.686*max(0,x2-2.47)*x1-0.487*max(0,x1-2.47)*max(0,x2-2.47)+0.398*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.4
1.93) + 0.377*max(0,x2-1.40) * log10(x3) - 0.345*max(0,x2-1.40) * max(0,x1-2.47) + 0.334*x3 -
0.302*max(0,x2-1.67) * x4 + 0.291*max(0,x2-1.93) + 0.246*max(0,x2-1.40) * max(0,x2-1.67) +
0.244*max(0,x2-1.67)*log10(x3) + 0.218*max(0,1.40-x2) - 0.0958*max(0,x2-1.40)*x1 + 0.0865*max(0,x1-x2-1.40)*x1 + 0.0865*max(
2.20) + 0.0855*max(0,x1-1.40) - 0.0753*max(0,2.20-x3) - 0.0522*max(0,2.47-x3) + 0.0330*x3^2 +
0.0304*max(0,x2-1.67) + 0.0295*max(0,x1-1.67) + 0.0202*max(0,x2-1.40) + 0.0143*x1^2 - 0.0202*max(0,x2-1.40) + 0.0143*x1^2 - 0.0202*max(0,x2-1.40) + 
0.00576*max(0,2.73-x4) - 0.00388*max(0,x2-1.67) * x1 + 0.00111*x4^2
('Number of bases is: ', 56)
('nmse is: ', 2.271972939426071)
model is:
96.7 - 3.76 \times \max(0, x^2 - 2.47) + 3.36 \times \log(10(x^3) + \max(0, x^2 - 1.93) - 3.34 \times \log(10(x^3) + x^2 - 3.19 \times \max(0, x^2 - 2.73) + 3.36 \times \log(10(x^3) + x^2 - 3.19 \times \max(0, x^2 - 2.47) + 3.36 \times \log(10(x^3) + x^2 - 3.34 \times \log(10(x^3) + x^2 - 3.19 \times \max(0, x^2 - 2.47) + 3.36 \times \log(10(x^3) + x^2 - 3.34 \times \log(10(x^3) + x
2.83 \times \log 10(x3) - 2.62 \times \max(0,x1-2.47) \times \log 10(x3) + 2.62 \times \max(0,x2-2.47) \times \max(0,x2-1.93) + 2.57 \times \log 10(x3) \times \log 10(x3) + 2.62 \times \max(0,x2-2.47) \times \log 10(x3) + 2.62 \times \log 10(x3) \times \log 10(x3) + 2.62 \times \log 10(x3) \times \log 10(x3) + 2.62 \times \log 10(x3) \times \log 1
\max(0,1.40-x2) + 2.27*\max(0,x2-2.20) * \max(0,x2-1.93) - 2.18*\log 10(x3) * x4 - 1.82*\max(0,x1-1.40) * 2.18*\log 10(x3) * 2
\max(0,1.40-x2) - 1.75*\max(0,x1-1.40) * \max(0,x2-1.93) + 1.69*\log(10(x3)) * \max(0,x2-2.47) + 1.66*x1 - 1.60*x1 + 1.
1.06*max(0,x2-1.93) * x4 - 0.997*max(0,x2-1.93) * x1 + 0.946*x4 - 0.930*max(0,1.40-x2) * x4 - 0.946*x4 - 0.9
0.921*max(0,x1-2.47)*max(0,1.40-x2) - 0.886*max(0,x1-1.40)*max(0,x2-2.47) + 0.870*max(0,x2-1.67)*
\max(0,x2-1.93) + 0.821*x4*x1 + 0.821*\max(0,x1-1.40)*x4 + 0.812*\max(0,x1-2.47) + 0.810*\max(0,x1-1.93)
   -0.785*max(0,x2-2.47) * x4 - 0.739*max(0,x1-2.47) * max(0,x2-1.67) + 0.715*max(0,x1-2.47) * x4 - 0.739*max(0,x1-2.47) * x4 - 0.739*max(0,x1-
0.597*max(0,x1-2.47)*max(0,x2-2.47) - 0.567*max(0,x2-2.47)*x1 + 0.424*max(0,x2-1.40)*log10(x3) +
0.408 \times \max(0, x_2 - 1.40) \times \max(0, x_2 - 1.93) + 0.366 \times \max(0, 1.40 - x_2) - 0.325 \times \max(0, x_2 - 1.40) \times \max(0, x_1 - 2.47) - 0.366 \times \max(0, x_2 - 1.40) \times \max(0, x_2 - 1.40) \times \max(0, x_1 - 2.47) - 0.366 \times \max(0, x_2 - 1.40) \times \max(0, x_2 - 1.40) \times \max(0, x_2 - 1.40) \times \max(0, x_1 - 2.47) - 0.366 \times \max(0, x_2 - 1.40) \times \min(0, x_2 - 1.40) \times \min
0.320*max(0,x2-1.67)*x4 + 0.317*max(0,x2-1.67) + 0.303*x3 - 0.256*max(0,x2-2.20)*x4 + 0.247*max(0,x2-1.67)
1.67) * log10(x3) + 0.193*max(0,x2-1.40) * max(0,x2-1.67) + 0.145*max(0,x2-1.93) - 0.139*max(0,x2-1.67) *
x1 + 0.0886*max(0,x1-2.20) - 0.0788*max(0,x2-1.40) * x1 + 0.0628*max(0,x1-1.40) + 0.0596*max(0,x1-2.73)
 -0.0587*max(0,2.47-x3) - 0.0459*max(0,x2-1.40) * x4 + 0.0443*max(0,x2-1.40) - 0.0420*max(0,2.20-x3) + 0.0420*max(0,x2-1.40) + 0.0443*max(0,x2-1.40) - 0.0420*max(0,x2-1.40) + 0.0443*max(0,x2-1.40) + 0.0443*max(0,x2-1.40) - 0.0443*max(0,x2-1.40) + 0.0443*max(0,x2-1.40) 
0.0330*x3^2 + 0.0298*max(0,x1-1.67) + 0.0158*x1^2 + 0.00633*max(0,1.40-x3) - 0.00549*max(0,2.73-x4)
 + 0.00107*x4^2
('Number of bases is: ', 59)
('nmse is: ', 2.2689292958813225)
```

model is:

```
96.6 - 4.55 \times \max(0, x^2 - 2.47) - 3.73 \times \max(0, x^2 - 2.73) - 3.35 \times \log(10(x^3)) \times x^1 + 3.30 \times \max(0, x^2 - 2.47) \times \max(0, x^2 - 2.47) \times (0, x^
1.93) + 3.25*log10(x3)*max(0,x2-1.93) + 3.24*log10(x3) + 2.60*log10(x3)*max(0,1.40-x2) - 2.60*max(0,x1-x2)
2.47) * log10(x3) + 2.40*max(0,x2-2.20) * max(0,x2-1.93) - 2.20*log10(x3) * x4 + 1.79*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * x4 + 1.79*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * x4 + 1.79*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * x4 + 1.79*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) * x4 + 1.79*log10(x3) * max(0,x2-1.93) - 2.20*log10(x3) + 2.20*log10(x3) + 2.20*log10(x3) + 2.20*log10(x
2.47) - 1.71*max(0,x1-1.40) * max(0,1.40-x2) + 1.68*x1 - 1.65*max(0,x1-1.40) * max(0,x2-1.93) -
0.980 \times \max(0, x_2 - 1.93) \times x_1 + 0.977 \times x_4 - 0.976 \times \max(0, 1.40 - x_2) \times x_4 - 0.971 \times \max(0, x_1 - 1.40) \times \max(0, x_2 - 2.47)
 -0.902*max(0,x1-2.47)*max(0,1.40-x2) -0.897*max(0,x2-1.93)*x4 +0.886*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1.67)*max(0,x2-1
1.93) + 0.832*max(0,x1-1.40) * x4 + <math>0.826*max(0,x1-2.47) + 0.820*max(0,x1-1.93) + 0.811*x4 * x1 - 0.820*max(0,x1-1.93) + 0.820*max(
0.751 \times \max(0,x_1-2.47) \times \max(0,x_2-1.67) + 0.712 \times \max(0,x_1-2.47) \times x_4 - 0.668 \times \max(0,x_1-2.47) \times \max(0,x_2-2.47)
 -0.644*max(0,x2-2.47)*x4+0.641*max(0,1.40-x2)+0.526*max(0,x2-1.67)-0.522*max(0,x2-2.20)*x4-0.526*max(0,x2-1.67)
0.490*max(0,x2-2.47)*x1 + 0.482*max(0,x2-1.40)*log10(x3) + 0.445*max(0,x2-1.40)*max(0,x2-1.93) -
0.312*max(0,x2-1.67)*x4 - 0.291*max(0,x2-1.40)*max(0,x1-2.47) + 0.259*x3 + 0.241*max(0,x2-1.67)*
log10(x3) - 0.237*max(0,x2-1.67) * x1 + 0.145*max(0,x2-1.40) * max(0,x2-1.67) - 0.140*max(0,1.40-x2) * x1
 -0.0879 \times \max(0,x2-1.40) \times x4 + 0.0751 \times \max(0,x1-2.20) - 0.0740 \times \max(0,x2-1.40) \times x1 + 0.0695 \times \max(0,x1-1.40)
 + 0.0673*max(0,1.40-x3) + 0.0600*max(0,x2-1.40) - 0.0592*max(0,1.40-x1) - 0.0520*max(0,2.47-x3) + 0.0600*max(0,x2-1.40) - 0.0592*max(0,x2-1.40) - 0.0592*max(0,x2-1.40) - 0.0592*max(0,x2-1.40) + 0.0600*max(0,x2-1.40) + 0.0600*max(0,x2-1.40) - 0.0592*max(0,x2-1.40) - 0.0592*max(0,x2-1.40) + 0.0600*max(0,x2-1.40) + 0.
0.0451*max(0,x2-1.93) + 0.0396*max(0,x1-2.73) + 0.0371*max(0,x1-1.67) +
1.40)
('Number of bases is: ', 61)
('nmse is: ', 2.267313931033559)
model is:
96.6 - 4.85 \times \max(0, x^2 - 2.47) - 3.90 \times \max(0, x^2 - 2.73) + 3.52 \times \max(0, x^2 - 2.47) \times \max(0, x^2 - 1.93) + 3.39 \times \log 10(x^3)
 -3.36 + \log 10(x3) \times x1 + 3.20 + \log 10(x3) \times \max(0.x2 - 1.93) - 2.61 \times \max(0.x1 - 2.47) \times \log 10(x3) + 2.61 \times \log 10(x3)
* \max(0,1.40-x2) + 2.44*\max(0,x2-2.20) * \max(0,x2-1.93) - 2.20*\log 10(x3) * x4 + 1.83*\log 10(x3) * \max(0,x2-1.93) + 2.44*\max(0,x2-1.93) * (0,x2-1.93) * (0
2.47) + 1.69*x1 - 1.60*max(0,x1-1.40) * max(0,x2-1.93) - 1.56*max(0,x1-1.40) * max(0,1.40-x2) -
1.02*max(0,x1-1.40)*max(0,x2-2.47) - 0.992*max(0,1.40-x2)*x4 + 0.988*x4 - 0.971*max(0,x2-1.93)*x1 - 0.971*max(0,x2-1.93)*x1 - 0.971*max(0,x2-1.93)*x1 - 0.971*max(0,x2-1.93)*x1 - 0.971*max(0,x2-1.93)*x2 - 0.971*max(0,x2-1.93)*x3 - 0.971*max(0,x2-1.93)*x4 + 0.988*x4 - 0.971*max(0,x2-1.93)*x4 - 0.971*max
0.906 \times \max(0,x1-2.47) \times \max(0,1.40-x2) + 0.901 \times \max(0,x2-1.67) \times \max(0,x2-1.93) + 0.879 \times \max(0,1.40-x2) - 0.906 \times \max(0,x1-2.47) \times \min(0,x1-2.47) \times \min(
0.840*max(0,x2-1.93)*x4 + 0.837*max(0,x1-1.40)*x4 + 0.833*max(0,x1-2.47) + 0.825*max(0,x1-1.93) +
0.807 \times x4 \times x1 - 0.712 \times (0,x1-2.47) \times (0,x2-1.67) + 0.711 \times (0,x1-2.47) \times x4 - 0.699 \times x4 - 0
 * \max(0,x^2-2.47) - 0.616*\max(0,x^2-2.20) * x^4 + 0.603*\max(0,x^2-1.67) - 0.593*\max(0,x^2-2.47) * x^4 + 0.603*\max(0,x^2-2.47) + 0.616*\max(0,x^2-2.47) * x^4 + 0.603*\max(0,x^2-2.47) + 0.603*\min(0,x^2-2.47) + 0.603*
0.506 \times \max(0, x^2 - 1.40) \times \log_{10}(x^3) + 0.469 \times \max(0, x^2 - 1.40) \times \max(0, x^2 - 1.93) - 0.443 \times \max(0, x^2 - 2.47) \times x^1 - 0.469 \times \max(0, x^2 - 1.40) \times \min(0, x^2 - 1.40)
0.309*max(0,x2-1.67)*x4 - 0.287*max(0,1.40-x2)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.274*max(0,x2-1.40)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.274*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.274*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x1 - 0.280*max(0,x2-1.67)*x2 - 0.280*max(0,x2-1.67)*x2 - 0.280*max(0,x2-1.67)*x2 - 0.280*max(0,x2-1.67)*x2 - 0.280*max(0,x2-1.67)*x2 - 0.280*max(0,x2-1.67)*x2 - 0.280*max(0,x2-1.67)*x3 - 0.280*max(0,x2-1
\max(0,x_1-2.47) + 0.241*x_3 + 0.237*\max(0,x_2-1.67) * \log_{10}(x_3) + 0.121*\max(0,x_2-1.40) * \max(0,x_2-1.67) - 0.121*\max(0,x_2-1.40) * \max(0,x_2-1.67) + 0.121*\max(0,x_2-1.40) * \max(0,x_2-1.40) * \max(0,x_2-1.40
0.101*max(0,x2-1.40)*x4 - 0.0945*max(0,1.40-x1) + 0.0915*max(0,1.40-x3) - 0.0803*max(0,x2-1.40)*x1 + 0.0915*max(0,x2-1.40)*x2 + 0.0945*max(0,x2-1.40)*x4 + 0.0915*max(0,x2-1.40)*x4 + 0.0945*max(0,x2-1.40)*x4 +
0.0703*max(0,x1-1.40) + 0.0696*max(0,x1-2.20) + 0.0604*max(0,x2-1.40) - 0.0572*max(0,x1-2.47) *
\max(0,x2-1.93) - 0.0489*\max(0,2.47-x3) + 0.0392*\max(0,x1-1.67) + 0.0300*x3^2 + 0.0279*\max(0,x1-2.73)
 + 0.0229*max(0,x2-1.93) - 0.0201*max(0,1.93-x2) - 0.00811*max(0,2.20-x3) + 0.00715*x1^2 - 0.00811*max(0,2.20-x3) + 0.00811*max(0,
0.00496*max(0,2.73-x4) + 0.000897*x4^2 + 0.000450*max(0,x4-1.40)
('Number of bases is: ', 66)
('nmse is: ', 2.26626792962813)
model is:
96.5 - 4.67*max(0,x2-2.47) - 4.25*max(0,x2-2.73) + 3.98*max(0,x2-2.47) * max(0,x2-1.93) + 3.78*log10(x3)
 -3.37*log10(x3)*x1 + 3.04*log10(x3)*max(0,x2-1.93) + 2.62*log10(x3)*max(0,1.40-x2) - 2.61*max(0,x1-1.93) + 2.62*log10(x3)*max(0,1.40-x2) - 2.61*max(0,1.40-x2) + 2.62*log10(x3)*max(0,1.40-x2) - 2.61*max(0,1.40-x2) + 2.62*log10(x3)*max(0,1.40-x2) + 2.62*log10(
```

2.47) * log10(x3) + 2.53*max(0,x2-2.20) * max(0,x2-1.93) - 2.22*log10(x3) * x4 + 1.87*log10(x3) * max(0,x2-1.93) - 2.22*log10(x3) + 2.22*log10(x3) + 2.22*log10(x3)

```
2.47) + 1.81*x1 + 1.61*max(0,1.40-x2) - 1.41*max(0,x1-1.40) * max(0,x2-1.93) - 1.23*max(0,x1-1.40) *
 \max(0,1.40-x2) - 1.17*\max(0,x1-1.40)*\max(0,x2-2.47) + 1.05*x4 + 1.05*\max(0,x2-1.67)*\max(0,x2-1.93) - 1.17*\max(0,x1-1.40)*
1.03*max(0,1.40-x2)*x4 + 0.986*max(0,x1-2.47) - 0.939*max(0,x1-2.47)*max(0,1.40-x2) - 0.924*max(0,x2-2.47)*max(0,x1-2.47) + 0.986*max(0,x1-2.47) - 0.939*max(0,x1-2.47) + 0.986*max(0,x2-2.47) + 0.986*max(0,x1-2.47) + 0.986*max(0
1.93) * x1 + 0.882*max(0,x1-1.40) * x4 + 0.870*max(0,x1-1.93) - 0.786*max(0,x2-2.20) * x4 + 0.773*x4 * x1
 -0.735*max(0,x2-1.93)*x4+0.699*max(0,x2-1.67)+0.683*max(0,x1-2.47)*x4+0.662*max(0,x2-1.40)*
\max(0,x2-1.93) - 0.614*\max(0,1.40-x2) * x1 + 0.588*\max(0,x2-1.40) * \log 10(x3) - 0.521*\max(0,x1-2.47) *
max(0,x2-2.47) - 0.493*max(0,x2-2.47) * x4 - 0.490*max(0,x1-2.47) * max(0,x2-1.93) - 0.489*max(0,x2-1.40)
* \max(0,x2-2.47) - 0.466*\max(0,x2-1.93) - 0.420*\max(0,x2-1.67) * x1 - 0.370*\max(0,x2-2.47) * x1 - 0.370*\min(0,x2-2.47) * x1 - 0.37
0.361 \times \max(0, x^2 - 1.40) \times \max(0, x^2 - 1.47) - 0.333 \times \max(0, x^2 - 1.67) \times \max(0, x^2 - 2.47) - 0.310 \times \max(0, x^2 - 1.67) \times x^4
 -0.276*max(0,x1-2.47)*max(0,x2-1.67) + 0.229*max(0,x2-1.40)*max(0,x2-1.67) - 0.214*max(0,1.93-x2) + 0.214*max(0,
0.201 \times x3 + 0.168 \times max(0,x2-1.67) \times log10(x3) + 0.153 \times max(0,1.40-x3) + 0.143 \times log10(x3) \times max(0,x2-2.20) - 0.143 \times log10(x3) \times log1
0.132*max(0,1.40-x1) - 0.129*max(0,x2-1.40) * x4 + 0.113*max(0,x2-2.20) - 0.111*max(0,x1-2.47) *
\max(0,x^2-2.20) - 0.0970*\max(0,x^2-1.40) * x^1 + 0.0696*\max(0,x^1-2.20) + 0.0323*\max(0,x^1-1.40) - 0.0323*\max(0,x^2-1.40) * 0.0323*\min(0,x^2-1.40) 
0.0321*max(0,x1-1.40) * x1 - 0.0296*max(0,2.47-x3) + 0.0281*x3^2 + 0.0278*max(0,x2-1.40) +
0.0206*max(0,x1-1.67) - 0.0128*max(0,x1-2.47) * x1 - 0.00457*max(0,2.73-x4) + 0.00109*x1^2 + 0
0.000825*max(0,x4-1.40) + 0.000759*x4^2
('Number of bases is: ', 73)
('nmse is: ', 2.2661927605111387)
model is:
96.3 - 5.09*max(0,x2-2.73) + 4.33*max(0,x2-2.47) * max(0,x2-1.93) + 4.25*log10(x3) - 4.03*max(0,x2-2.47)
```

-3.39*log10(x3)*x1 + 2.83*log10(x3)*max(0,x2-1.93) + 2.67*log10(x3)*max(0,1.40-x2) + 2.66*max(0,x2-1.93) + 2.67*log10(x3)*max(0,x2-1.93) + 2.66*max(0,x2-1.93) + 2.67*log10(x3)*max(0,x2-1.93) + 2.66*max(0,x2-1.93) + 2.66*max(0,x2-1.93) + 2.66*max(0,x2-1.93) + 2.67*log10(x3)*max(0,x2-1.93) + 2.66*max(0,x2-1.93) + 2.67*log10(x3)*max(0,x2-1.93) + 2.62.20) * max(0,x2-1.93) - 2.56*max(0,x1-2.47) * log10(x3) + 2.34*max(0,1.40-x2) - 2.22*log10(x3) * x4 + $2.05 \times 1 + 1.97 \times \log(10(x3)) \times \max(0.x2 - 2.47) - 1.32 \times \max(0.x1 - 1.40) \times \max(0.x2 - 1.93) + 1.28 \times \max(0.x1 - 2.47) - 1.32 \times \max(0.x1 - 1.40) \times \max(0.x2 - 1.93) + 1.28 \times \max(0.x1 - 2.47) - 1.32 \times \max(0.x1 - 1.40) \times \max(0.x2 - 1.93) + 1.28 \times \max(0.x1 - 1.40) \times \min(0.x1 - 1.40) \times$ 1.26*max(0,x1-1.40)*max(0,x2-2.47) + 1.13*max(0,x2-1.67)*max(0,x2-1.93) + 1.08*x4 - 1.06*max(0,1.40-1.40)*max(0,x2-1.40)*max(0,x2-1.40)*max(0,x2-1.67)*maxx2) * x4 - 1.06*max(0,x2-1.93) - 1.00*max(0,x1-2.47) * <math>max(0,1.40-x2) - 0.995*max(0,x2-1.67) * <math>max(0,x2-1.67) + max(0,x2-1.67) * max(0,x2.47) + 0.977*max(0,x1-1.93) - 0.970*max(0,x2-1.40)*max(0,x2-2.47) - 0.950*max(0,x1-1.40)*max(0,1.40-1.40) x^2) + 0.906* $max(0,x^2-1.40)$ * x^4 - 0.865* $max(0,1.40-x^2)$ * x^2 - 0.861* $max(0,x^2-1.93)$ * x^2 - 0.800* $max(0,x^2-1.93)$ * x^2 2.20) * x4 + 0.785*max(0,x2-1.40) * max(0,x2-1.93) + 0.760*max(0,x2-2.20) + 0.752*x4 * x1 -0.710*max(0,x2-1.93) * x4 + 0.687*max(0,x1-2.47) * x4 - 0.574*max(0,x1-2.47) * max(0,x2-1.93) +0.557*max(0,x2-1.40) * log10(x3) - 0.549*max(0,x1-2.47) * max(0,x2-2.47) - 0.524*max(0,1.93-x2) +0.502*max(0,x2-1.67) - 0.490*max(0,x2-2.47) * x4 - 0.481*max(0,x1-2.73) - 0.457*max(0,x2-1.67) * x1 +0.389*max(0,x2-1.67)*log10(x3) - 0.376*max(0,x2-1.40)*max(0,x1-2.47) - 0.312*max(0,x2-1.67)*x4 +0.244*max(0,x2-1.40) * max(0,x2-2.20) - 0.243*max(0,x1-1.67) - 0.236*max(0,x2-2.47) * x1 - 0.244*max(0,x2-2.47) + 0.244*max(0,x2-2.47)0.232*max(0,x1-2.47)*max(0,x2-1.67) + 0.223*max(0,x2-1.40)*max(0,x2-1.67) + 0.214*max(0,x2-1.67)* $\max(0,x2-2.20) + 0.175*\max(0,1.40-x3) - 0.164*\max(0,x2-2.20)*\max(0,x2-2.47) - 0.147*\max(0,x2-2.20)*x1$ -0.143*max(0,x2-1.40)*x4+0.143*x3-0.113*max(0,x2-1.40)*x1+0.0740*log10(x3)*max(0,x2-2.20)+ $0.0577*max(0,1.67-x3) + 0.0439*max(0,x1-2.20) - 0.0264*max(0,x1-2.47) * max(0,x2-2.20) + 0.0259*x3^2 - 0.0264*max(0,x2-2.20) * 0.0$ $0.0249*x1^2 - 0.0197*max(0,x1-2.47) * x1 + 0.0193*max(0,x2-1.40) - 0.0109*max(0,x1-1.40) * x1 - 0.0193*max(0,x1-1.40) + 0.01$ 0.00883*max(0,1.40-x1) - 0.00739*max(0,2.47-x3) - 0.00420*max(0,2.73-x4) + 0.00399*max(0,x1-1.40) + $0.00113*max(0,x4-1.40) - 0.000770*max(0,x1-1.40) * max(0,x2-2.20) + 0.000639*x4^2$

Cd_wedge.txt

('Number of bases is: ', 0)

```
('nmse is: ', 9.142765158861952)
model is:
0.0271
('Number of bases is: ', 1)
('nmse is: ', 8.499975532459482)
model is:
0.0450 - 5.95e-6*x4
('Number of bases is: ', 2)
('nmse is: ', 8.078290478581488)
model is:
0.171 - 0.0356 * log 10(x4) - 0.00937 * log 10(x4) * log 10(x3)
('Number of bases is: ', 3)
('nmse is: ', 7.814776760089645)
model is:
0.0666 + 0.0437*max(0,5.93-x3) * x1 - 0.0142*log10(x4) + 1.28e-5*max(0,2333-x4)
('Number of bases is: ', 4)
('nmse is: ', 6.1487304384523265)
model is:
0.357 + 0.212*x1 - 0.0989*log10(x3) - 0.0926*log10(x4) + 5.51e-6*x5
('Number of bases is: ', 5)
('nmse is: ', 6.032348516235229)
model is:
0.386 + 0.253 \times x1 - 0.115 \times \log 10(x3) - 0.101 \times \log 10(x4) + 0.000330 \times \log 10(x5) + 6.40e - 6 \times x5
('Number of bases is: ', 6)
('nmse is: ', 6.020781023961515)
model is:
0.382 - 0.0985 \times \log 10(x4) - 0.0825 \times \log 10(x3) + 0.0673 \times \log 10(x5) \times x1 - 0.0211 \times x2 \times \log 10(x3) + 5.10e - 6 \times x5
+ 4.61e-11*x5^2
('Number of bases is: ', 7)
('nmse is: ', 5.811980910848709)
model is:
0.375 - 0.523 \times \log 10(x3) \times x1 + 0.169 \times \log 10(x5) \times x1 - 0.104 \times \log 10(x4) - 0.0394 \times \log 10(x3) - 0.0238 \times x2 \times \log 10(x3) \times x1 + 0.169 \times \log 10(x5) \times \log 1
log10(x3) + 4.18e-6*x5 + 1.09e-10*x5^2
('Number of bases is: ', 8)
('nmse is: ', 4.692854609158447)
model is:
0.618 - 0.952 * \log 10(x3) * x1 + 0.730 * \log 10(x5) * x1 - 0.602 * \log 10(x3) - 0.529 * \log 10(x4) * x1 + 0.177 * \log 10(x4) * (x1 + 0.177 * \log 10(x4) * (x2 + 0.177 * \log 10(x4) * (x3 + 0.177 * (x3 + 0.177 * \log 10(x4) * (x3 + 0.177 * (x3 + 
* \log 10(x3) - 0.176* \log 10(x4) - 0.0271*x2 * \log 10(x3) + 1.30e-10*x5^2
('Number of bases is: ', 11)
('nmse is: ', 4.549350023814631)
model is:
0.707 - 0.992 * log 10(x3) * x1 + 0.783 * log 10(x5) * x1 - 0.745 * log 10(x3) - 0.594 * log 10(x4) * x1 + 0.220 * log 10(x4) * log 1
* \log 10(x3) - 0.199* \log 10(x4) + 0.0492* x1 - 0.0274* x2 * \log 10(x3) + 0.0163* x1^2 - 0.00297* \log 10(x5) + 0.00297 \log 10(x5) + 0.0029 \log 10(x5) + 0.0029
1.19e-10*x5^2
```

```
('Number of bases is: ', 12)
('nmse is: ', 4.280602987460225)
model is:
0.959 - 1.12 \times \log 10(x3) \times x1 - 1.07 \times \log 10(x3) + 0.930 \times \log 10(x5) \times x1 - 0.792 \times \log 10(x4) \times x1 + 0.320 \times \log 10(x4) \times 
* \log 10(x3) - 0.249* \log 10(x4) + 0.222*x1 - 0.0331*x2 * \log 10(x3) + 0.0296*x2 * x1 - 0.0281* \log 10(x5) + 0.028
0.0230*x1^2 + 1.91e-10*x5^2
('Number of bases is: ', 14)
('nmse is: ', 4.071335680851557)
model is:
1.17 - 4.62 \times \log 10(x^2) \times x^1 + 1.86 \times \log 10(x^2) \times \log 10(x^3) + 1.46 \times x^2 \times x^1 - 1.26 \times \log 10(x^3) \times x^1 - 1.04 \times \log 10(x^4)
* x1 + 0.888*log10(x5) * x1 - 0.881*log10(x3) - 0.638*x2 * log10(x3) + 0.438*log10(x4) * log10(x3) -
0.305 \times \log 10(x4) - 0.0362 \times \log 10(x5) + 0.0217 \times x1^2 - 0.00130 \times \log 10(x2) + 2.71e - 10 \times x5^2
('Number of bases is: ', 15)
('nmse is: ', 4.042709183462439)
model is:
1.29 - 7.47 \times \log 10(x^2) \times x^1 + 2.62 \times \log 10(x^2) \times \log 10(x^3) + 2.33 \times x^2 \times x^1 - 1.33 \times \log 10(x^3) \times x^1 - 1.12 \times \log 10(x^4)
* x1 + 0.896*log10(x5) * x1 - 0.834*x2 * log10(x3) - 0.821*log10(x3) - 0.539*x1 - 0.482*log10(x2) +
0.471*\log 10(x4) * \log 10(x3) - 0.333*\log 10(x4) + 0.112*\log 10(x2) * \log 10(x4) - 0.0401*\log 10(x5) + 2.92e-
10*x5^2
('Number of bases is: ', 18)
('nmse is: ', 4.02152092138915)
model is:
1.43 - 8.72 \times \log 10(x^2) \times x^1 + 2.92 \times \log 10(x^2) \times \log 10(x^3) + 2.73 \times x^2 \times x^1 - 1.33 \times \log 10(x^3) \times x^1 - 1.12 \times \log 10(x^4)
* x1 - 0.940*x1 - 0.912*x2 * log10(x3) + 0.903*log10(x5) * x1 - 0.795*log10(x3) - 0.554*log10(x2) + 0.903*log10(x3) + 0.903*log10(x5) * x1 - 0.795*log10(x3) + 0.903*log10(x3) + 0.903*log10(x5) * x1 - 0.795*log10(x3) + 0.903*log10(x5) * x1 - 0.795*log10(x5) * x1 - 0.795*lo
0.483 \times \log 10(x4) \times \log 10(x3) - 0.350 \times \log 10(x4) + 0.149 \times \log 10(x2) \times \log 10(x4) - 0.107 \times 2 - 0.0420 \times \log 10(x5)
+ 0.0250*x2^2 + 0.00290*x2 * log10(x4) + 3.00e-10*x5^2
Heatflux_flatplate.txt
('Number of bases is: ', 0)
```

('Number of bases is: ', 0)
('nmse is: ', 19.767544808991673)
model is:
0.00344
('Number of bases is: ', 1)
('nmse is: ', 14.678437218217045)
model is:
0.00626 + 0.000699*log10(x1) * log10(x2)
('Number of bases is: ', 2)
('nmse is: ', 6.675645623137373)
model is:
0.0147 + 0.0319*x1 - 0.00391*log10(x2)
('Number of bases is: ', 3)
('nmse is: ', 6.319695806879151)

```
model is:
0.0163 + 0.0345 \times x1 - 0.00440 \times \log 10(x2) + 6.97e - 5 \times \log 10(x1)
('Number of bases is: ', 4)
('nmse is: ', 6.014054150956064)
model is:
0.0237 + 0.0351*x1 - 0.00682*log10(x2) + 8.98e-5*log10(x1) + 2.55e-7*x2
('Number of bases is: ', 5)
('nmse is: ', 4.559636617784359)
model is:
0.00702 + 0.0268 \times 1^2 + 0.0122 \times (0,x1-0.0489) - 0.000742 \times (0,x1-0.0488) + 0.000548 \times (0,x1-0.0489) + 0.000742 \times (0,x1-0.0489
+ 1.60e-5*max(0,2800-x2) * x1
('Number of bases is: ', 6)
('nmse is: ', 1.4510256400190196)
model is:
0.000699 + 0.0223 \times 1 - 0.00299 \times (0.0154 - x1) + 1.04e - 5 \times (0.2800 - x2) \times x1 + 3.73e - 6 \times (0.6400 - x2)
*x1 + 2.79e-6*max(0,2800-x2) * max(0,x1-0.0489) - 3.50e-12*x2^2
('Number of bases is: ', 7)
('nmse is: ', 1.441456390232969)
model is:
0.000698 + 0.0223 \times 1 - 0.00298 \times (0,0.154 - x1) + 1.03e - 5 \times (0,2800 - x2) \times x1 + 3.73e - 6 \times (0,6400 - x2)
*x1 + 2.96e-6*max(0,2800-x2) * max(0,x1-0.0489) - 3.56e-12*x2^2 + 1.49e-12*max(0,5200-x2) *
max(0,2800-x2)
('Number of bases is: ', 8)
('nmse is: ', 1.277558686617337)
model is:
0.00794 + 0.172 \times x1^2 - 0.116 \times \log 10(x1) \times x1 + 0.0804 \times x1 - 0.0360 \times \log 10(x2) \times x1 - 0.00471 \times \log 10(x2) + 0.00471 \times \log 10(x2) \times x1 + 0.0804 \times x1 + 0.080
0.00143*log10(x1) - 0.00130*log10(x1) * log10(x2) + 2.46e-7*x2
('Number of bases is: ', 9)
('nmse is: ', 1.1023542153135928)
model is:
0.00204*log10(x1) - 0.00150*log10(x1) * log10(x2) + 6.39e-7*x2 - 2.10e-11*x2^2
('Number of bases is: ', 10)
('nmse is: ', 1.0939993105898445)
model is:
0.000637 + 0.0235 \times x1 - 0.00211 \times max(0,0.154 - x1) + 1.10e - 5 \times max(0,2800 - x2) \times x1 + 3.48e - 6 \times max(0,6400 - x2)
*x1 + 1.49e - 6*max(0,2800 - x2) *max(0,x1 - 0.0489) + 4.07e - 7*max(0,5200 - x2) *max(0,x1 - 0.0489) - 2.90e - 2.90
7*max(0,5200-x2) * max(0,0.154-x1) - 1.55e-10*x2 * max(0,2800-x2) + 5.58e-11*max(0,5200-x2) *
max(0,2800-x2) - 5.28e-12*x2^2
('Number of bases is: ', 11)
('nmse is: ', 0.9117660084162871)
model is:
0.000585 + 0.0260*x1 - 0.00223*max(0,0.154-x1) + 1.23e-5*max(0,2800-x2) * x1 + 3.02e-6*max(0,6400-x2)
*x1 + 7.20e-7*max(0,5200-x2) * max(0,x1-0.0489) - 3.30e-7*x2 * x1 - 5.39e-8*max(0,5200-x2) *
```

```
max(0,0.154-x1) - 1.40e-9*x2 * max(0,x1-0.0489) - 2.37e-10*x2 * max(0,2800-x2) + 6.06e-11*max(0,5200-x2) * max(0,2800-x2) - 4.12e-12*x2^2
```

Heatflux_sphere.txt

```
('Number of bases is: ', 0)
('nmse is: ', 14.16355573042179)
model is:
9180
('Number of bases is: ', 1)
('nmse is: ', 10.813060845161639)
model is:
1691 - 7.43*x1 * log10(x3)
('Number of bases is: ', 2)
('nmse is: ', 6.761750130831229)
model is:
-7057 + 7406*x1*x2 - 13.1*x1*log10(x3)
('Number of bases is: ', 3)
('nmse is: ', 5.33902143074762)
model is:
-1.18e4 + 1.11e4*x1 * x2 - 15.5*x1 * log10(x3) + 0.00129*x1^2
('Number of bases is: ', 4)
('nmse is: ', 5.027829051043651)
model is:
-1.92e4 + 1.22e4*x1*x2 + 1087*log10(x5) - 16.1*x1*log10(x3) + 0.00163*x1^2
('Number of bases is: ', 5)
('nmse is: ', 4.735086477174632)
model is:
-2.28e4 + 1.17e4*x1 * x2 + 1989*log10(x5) - 701*log10(x2) * log10(x3) - 19.5*x1 * log10(x3) - 0.0188*x4
('Number of bases is: ', 6)
('nmse is: ', 4.699825564535121)
model is:
-2.32e4 - 5.40e8 \times 2^2 + 1.25e4 \times 1 \times 2 + 2056 \times \log 10(x5) - 706 \times \log 10(x2) \times \log 10(x3) - 19.4 \times 1 \times \log 10(x3)
- 0.0202*x4
('Number of bases is: ', 7)
('nmse is: ', 4.518443658651105)
model is:
-2.09e4 - 1.72e9*x2^2 + 1.25e4*x1*x2 + 2149*log10(x5) - 1214*log10(x2)*log10(x3) - 21.7*x1*log10(x3)
+ 0.907*x1 * log10(x2) - 0.0222*x4
('Number of bases is: ', 8)
('nmse is: ', 4.246682694588461)
model is:
-4560 - 8.62e7*x3 * x2 + 1.13e6*x3^2 + 1.99e4*x1 * x2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x2 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x3 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x3 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x3 + 0.0235*x1^2 - 254*x1 * x3 - 17.8*x4 * x3 + 0.0235*x1^2 - 254*x1 * x3 + 0.0235*x1^2 - 254*x1^2 -
0.0105*x4 + 0.00178*x5
```

```
('Number of bases is: ', 9)
('nmse is: ', 3.6453647086756886)
model is:
 -5085 - 3.88e9*x2^2 - 1.04e8*x3 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x2 - 348*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x2 - 348*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x2 - 348*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x2 - 348*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x2 - 348*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x2 - 348*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x3 - 29.6*x4 * x2 + 1.85e6*x3^2 + 2.72e4*x1 * x3 - 29.6*x4 * x3 - 29.6*x4 * x3 + 2.86e6*x3^2 
0.0246*x1^2 - 0.0100*x4 + 0.00208*x5
('Number of bases is: ', 10)
('nmse is: ', 3.602762669863214)
model is:
  -5293 - 4.18e9 \times 2^2 - 1.05e8 \times 3 \times 2 + 1.91e6 \times 3^2 + 2.78e4 \times 1 \times 2 - 356 \times 1 \times 3 - 30.6 \times 4 \times 2 + 3.91e6 \times 3 \times 2 + 3.91e
0.0247*x1^2 - 0.00997*x4 + 0.00294*x5 - 7.59e-10*x5^2
('Number of bases is: ', 11)
('nmse is: ', 2.7653599981250676)
model is:
 -4.91e4 - 3.00e8*x2^2 - 7.68e6*x2 - 4.58e6*log10(x3) * x2 - 1.90e4*log10(x2) + 9598*x1 * x2 - 1.90e4*log10
5794*log10(x2) * log10(x3) + 2433*log10(x5) - 38.6*x1 * log10(x3) + 20.5*x1 * log10(x2) + 0.0294*x1^2 - 20.5*x1 * log10(x2) + 0.0294*x1^2 
0.0283*x4
('Number of bases is: ', 12)
('nmse is: ', 2.7214675867809817)
model is:
 -4.72e4 - 7.17e7*x2^2 - 9.08e6*x2 - 5.65e6*log10(x3) * x2 - 1.94e4*log10(x2) + 8944*x1 * x2 - 1.94e4*log10(x2) + 8944*x2 * x2 - 1.94e4*log10
5315 \times \log 10(x2) \times \log 10(x3) + 3007 \times \log 10(x3) + 2449 \times \log 10(x5) - 39.7 \times 1 \times \log 10(x3) + 22.1 \times 1 \times \log 10(x2)
 + 0.0323*x1^2 - 0.0286*x4
('Number of bases is: ', 14)
('nmse is: ', 2.616452340114885)
model is:
 1.84e4 \times \log 10(x2) + 9769 \times x1 \times x2 - 3842 \times \log 10(x2) \times \log 10(x3) - 1611 \times \log 10(x5) \times \log 10(x3) - 41.5 \times x1 \times \log 10(x3) + \log 10(x3) \log
log10(x3) + 22.8*x1*log10(x2) - 8.70*x1 + 0.0377*x1^2 - 0.0291*x4
('Number of bases is: ', 15)
('nmse is: ', 2.5968822180285995)
model is:
 1.89e4 \times \log 10(x^2) + 9952 \times x^1 \times x^2 - 3430 \times \log 10(x^2) \times \log 10(x^3) - 1868 \times \log 10(x^5) \times \log 10(x^3) + 173 \times \log 10(x^5)
* \log 10(x2) - 41.9*x1 * \log 10(x3) + 22.9*x1 * \log 10(x2) - 10.8*x1 + 0.0390*x1^2 - 0.0292*x4
('Number of bases is: ', 16)
('nmse is: ', 2.572181895911521)
model is:
 -6372 - 7.31e8 \times 2^2 - 2.57e7 \times 2 - 9.40e6 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) - 2.57e7 \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 3.01e4 \times \log 10(x3) \times x2 + 2.16e6 \times \log 10(x5) \times x2 + 2.16e6 \times x
1.81e4 \times \log 10(x2) + 9751 \times x1 \times x2 - 2891 \times \log 10(x2) \times \log 10(x3) - 2620 \times \log 10(x5) \times \log 10(x3) - 2026 \times \log 10(x5)
 +56.6*log10(x5)*log10(x2) - 42.4*x1*log10(x3) + 23.6*x1*log10(x2) - 12.0*x1 + 0.0408*x1^2 - 0.0294*x4
```

Eureqa

go-eureqa.exe -data="test.txt"

go-eureqa.exe -data="artifical_plus.txt"

```
Final Results
_____
0: 3 1.503261
                (1.0437e+02+X0)
                (1.0293e+02+(X_0)^2)
1: 4 0.847366
2: 11 0.690317
                 (1.0327e+02 + X_0 + {(-1.3047e+00 + 8.8848e-01*X_0*X_3)}/{1.4565e+00})
3: 13
                        (1.0293e+02 + X_0 + { ( { -1.1186e+00 }/{ X_0 } } + 8.8848e-
         0.612277
01*X_0*X_3)}/{1.4565e+00})
4: 3 1.571222
                (1.0409e+02+X0)
5: 4 0.915643
                (1.0312e+02+(X_0)^2)
6: 6 0.847366
                ((X_0)^2 + 1.0000e + 00 \times 1.0293e + 02)
7: 11 0.733583
                 (1.0327e+02 + X_0 + {(-2.5468e-03 + 6.1002e-01*(X_0)^2)}/{1.4565e+00})
8: 13
        0.690317
                      (X_0 + \{ (-1.3047e+00 + 8.8848e-01*X_0*X_3 ) \}/\{ 1.4565e+00 \} +
1.0000e+00*1.0327e+02)
9: 15  0.612277
                   (X_0 + { ( { -1.1186e+00 }/{ X_0 } + 8.8848e-01*X_0*X_3 ) }/{ 1.4565e+00 } +
1.0000e+00*1.0293e+02)
10: 3 6.995900
                 (1.1204e+02+X_3)
11: 4 4.893858
                 (1.1385e+02+-(X 0))
12: 5 2.762450
                 (9.1218e+01+6.7252e+00*X_0)
13: 6 1.157325
                 2.7572e+00*(3.4804e+01+X0+X3)
14: 3 7.776971
                 (1.1283e+02 + X 2)
15: 4 5.170128
                 (1.1422e+02+-(X_1))
16: 5 2.928180
                 (1.1558e+02 + {X_1}/{-2.4201e-01})
17: 6 1.363650
                 2.7755e+00*(3.4228e+01+X_0+X_3)
18: 10 1.157325
                 2.7572e+00*( 3.4804e+01 + 1.0000e+00*X 0 + 1.0000e+00*X 3 )
19: 3 10.535607
                  (1.1558e+02 + X_0)
                 (1.1434e+02 + -(X_0))
20: 4 5.320290
21: 5 2.938035
                 (1.1577e+02 + {X_1}/{-2.4201e-01})
22: 6 2.080473
                 (1.2032e+02 + -((1.1964e+01 + X_1)))
23: 7 1.510524
                 (1.1833e+02 + X_0 + -((1.1813e+01 + X_1)))
24: 8 1.412760
                 (1.1706e+02 + X_0 + X_3 + -((1.2025e+01 + X_1)))
25: 3 10.535607
                 (1.1558e+02+X_1)
26: 4 6.532402
                 (1.1558e+02+-(X_2))
27: 5 3.880560
                 (8.9738e+01+6.7252e+00*X 0)
28: 6 2.081379
                 (1.2042e+02 + -((1.1375e+01 + X_1)))
29: 16 1.794880
                   ( \{ 3.6838e+00 \}/\{ X_0 \} + 1.0000e+00*8.6837e+01 + 6.7252e+00*X_0 + 6.7185e-1852e+00*X_0 \}/\{ X_0 \}
01*X 1 + 1.0000e+00*X 3)
30: 21 1.534501
                   (8.6837e+01 + {3.6838e+00}/{X_0} + {3.6838e+00}/{X_3} + {-9.0181e-}
```

```
01*X_1*cos(X_3) }/{ X_2 } + 6.7252e+00*X_0 + 1.0000e+00*X_3 )
31: 3 23.701550 (8.1347e+01 + X 1)
```

go-eureqa.exe -data="artifical_plus2.txt"

Final Results

```
0: 3 11.122978
                                     -((X 1)^3)
1: 4 9.968431
                                  -1.1921e+00*(X_1)^3
2: 5 7.059069
                                   -6.0528e-01*(-(X 1))^4
3: 7 5.704560
                                  ((X_3)^2 + -1.9159e + 00*(X_1)^3)
4:8 5.329786
                                  \{(X_3 + -4.1046e - 01*(X_1)^4)\}/\{6.1426e - 01\}
5: 9 4.775733
                                   \{(9.4172e-01 + X_3 + \{(X_1)^4\}/\{-2.6896e+00\})\}/\{5.7413e-01\}
6: 10 4.166238
                                    \{(4.1046e-01 + X_0 + X_3 + -4.1046e-01*(X_1)^4)\}/\{6.1426e-01\}
7: 11 3.833625
                                    \{(X_0 + X_3 + \cos(X_1) + -4.1046e - 01*(X_1)^4)\}/\{6.1426e - 01\}
8: 3 11.122978
                                    -((X_1)^3)
9: 4 10.518023
                                    \{-6.6022e+00\}/\{\sin(X 1)\}
10: 5 7.637722
                                    -6.6822e-01*1.0000e+00*(X_1)^4
11: 6 7.491609
                                    (X_0 + -1.7923e + 00*(X_1)^3)
12: 7 5.892981
                                    (4.3772e+00 + X_0 + -2.1259e+00*(X_1)^3)
13: 8 5.755457
                                    X_1*cos(X_1)*(6.3914e+00 + (X_1)^2)
14: 11 5.604703
                                      cos(X_1)*(2.0407e+00 + X_1)*(sin(X_0) + (X_1)^2)
15: 12 5.496194
                                       \{(X_1 + 6.9752e + 00*sin((1.2114e + 00 + X_1))*(X_1)^3)\}/\{X_1\}
16: 13 5.454139
                                       \cos(X \ 1)*(\ 2.0407e+00 + X \ 1)*(\ (X \ 1)^2 + 1.0000e+00*\sin(X \ 3))
17: 15 5.401366
                                       6.2459e-01*(X_1)^2*(3.1132e+00+X_3+-((X_1)^2)+\cos(X_1)+\{X_1\}/\{-9.3702e-1.2459e-01*(X_1)^2*(3.1132e+00+X_3+-((X_1)^2)+\cos(X_1)+\{X_1\}/\{-9.3702e-1.2459e-01*(X_1)^2*(3.1132e+00+X_3+-((X_1)^2)+\cos(X_1)+\{X_1\}/\{-9.3702e-1.2459e-01*(X_1)^2*(3.1132e+00+X_3+-((X_1)^2)+\cos(X_1)+(X_1)^2*(3.1132e+00+X_3)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)+((X_1)^2)
01 } )
18: 16 5.146235
                                       cos(X_1)*(2.0407e+00 + X_1)*(7.0442e-01 + sin(-1.9412e+00*(-2.2777e+00 + X_3))
+ (X 1)^2
                                                     cos(X_1)*(3.1837e-01 + sin(-3.8407e-01*(-2.2777e+00 + X_3)) +
19: 21
                    5.141369
(X_1)^2 \times (2.0407e+00 + X_1 + -3.8407e-01*(-2.2777e+00 + X_3))
                                                     cos(X_1)*(7.0442e-01 + sin(-3.8407e-01*(-2.2777e+00 + X_0)) +
20: 22
                   5.064263
(X_1)^2 \times (2.0407e+00 + X_1 + \sin(-3.8407e-01*(-2.2777e+00 + X_3)))
21: 23 4.449073
                                       6.2459e-01*(X_1)^2*(-((X_1)^2) + {(2.6546e+00 + sin(X_1) + cos(X_1) + {X_1}/{(2.6546e+00 + sin(X_1) + cos(X_1) + (X_1)^2)} + {(2.6546e+00 + sin(X_1) + cos(X_1) + (X_1)^2)}
9.3702e-01 + 1.0000e+00*X_0*X_3) /{X_1}
22: 3 11.122978
                                       -((X_1)^3)
23: 4 10.537437
                                       -1.0928e+00*(X_1)^3
24: 5 8.629967
                                    \{-((X_1)^4)\}/\{X_3\}
25: 6 7.520618
                                    (X 0 + -1.6441e + 00*(X 1)^3)
26: 7 7.154285
                                     -6.2459e-01*(X_1)^2*(-(X_1))^2
27: 8 6.730952
                                     cos(X_1)*(X_1)^2*(3.2220e+00 + X_2)
28: 10 6.607990
                                    6.2459e-01*(X_1)^2*(-((X_1)^2) + \sin(X_1))
29: 12 5.893958
                                       (2.1028e+00+X_2+(X_3)^2+-1.0000e+00*(X_1)^2*(2.1028e+00+X_1))
30: 14 5.677488
                                       (-1.0000e+00 + X_2 + -1.0000e+00*(X_1)^2*(X_1 + X_2) + X_0*X_2*X_3)
31: 22 5.243866
                                        6.2459e-01*(X_1)^2*(-((X_1)^2) + {(2.6546e+00 + sin(X_1) + cos(X_1) + {X_1}/{(2.6546e+00 + sin(X_1) + cos(X_1) + (X_1)^2})}
9.3702e-01 + 1.0000e+00*X 3)/{ X 1 })
```

go-eureqa.exe -data="artifical_times.txt"

Final Results

1: 5 0.021776

```
0: 3 2.284771
                (1.0056e+02+X_0)
1: 4 2.012787
                (9.9654e+01+(X_0)^2)
2: 5 1.756972
                (9.9381e+01+X0*X3)
3: 8 1.717916
                1.7414e+00*(5.7695e+01+X_0*sin(X_1))
                1.7414e+00*(5.6877e+01+X_0*X_3*sin(X_1))
4: 9 1.121218
5: 3 2.289405
                (1.0046e+02+X_0)
6: 4 2.017065
                (9.9193e+01+(X 0)^2)
7: 5 1.773293
                (9.9654e+01+X_0*X_3)
8: 7 1.756972
                (1.0000e+00*9.9381e+01+X_0*X_3)
9: 3 2.289801
                (1.0046e+02+X_0)
10: 4 2.020498
                (9.9718e+01+(X_0)^2)
11: 5 1.783062
                 (9.9718e+01+X0*X3)
12: 3 2.294270
                 (1.0040e+02+X_0)
13: 4 2.029976
                (9.9780e+01+(X_0)^2)
14: 5 1.784627
                 (9.7299e+01 + X_3 + (X_0)^2)
15: 3 2.302041
                 (1.0099e+02+X_0)
16: 4 2.031369
                 (9.9789e+01+(X_0)^2)
17: 5 1.794410
                 (9.9780e+01+X_0*X_3)
18: 7 1.784627
                 (9.7299e+01+(X 0)^2+1.0000e+00*X 3)
19: 3 2.309820
                 (1.0027e+02 + X_0)
20: 4 2.051447
                 (9.9887e+01+(X_0)^2)
21: 5 1.810199
                 (9.7159e+01 + X_3 + (X_0)^2)
22: 3 20.638199
                 (8.1115e+01+X_0)
23: 4 10.834665
                 ((8.2709e+00+X0))^2
24: 5 2.119196
                 1.7414e+00*( 5.6877e+01 + X_0 )
25: 7 1.868870
                 1.7414e+00*(5.5576e+01+X_0*X_3)
26: 3 21.575252
                (8.0178e+01+X_2)
27: 4 11.850665
                  ((8.2709e+00 + X_3))^2
28: 5 2.271687
                 1.7414e+00*(5.7695e+01+X_0)
29: 7 2.070970
                 1.7414e+00*(5.7695e+01+{X_0}/{X_1})
30: 3 25.451825 (7.6302e+01 + X_0)
31: 4 12.657213
                  (8.0964e+01+(X_0)^3)
go-eureqa.exe -data=" Cd_wedge.txt"
Final Results
0: 3 0.021890
                { 3.5572e+01 }/{ X_3 }
```

 ${3.4148e+01}/{(-8.2558e+01+X_3)}$

```
2: 6 0.020635
                                   \{ X_4*(X_0)^2 \}/\{ X_3 \}
3: 7 0.017634
                                   \{X \ 0*X \ 4 \}/\{ 1.9040e+01*X \ 3 \}
4: 9 0.015717
                                   \{X_0*X_4\}/\{9.3870e-01*X_3*(X_2)^2\}
5: 10 0.009176
                                    { X_0*X_1*X_4 }/{ 5.5131e-01*X_3*(X_2)^2 }
6: 3 0.021890
                                   { 3.5572e+01 }/{ X_3 }
7: 5 0.021777
                                   {3.3811e+01}/{(-8.2558e+01+X_3)}
8:7 0.021322
                                   \{4.9100e+01\}/\{(X3+\{3.8745e+01\}/\{X0\})\}
9:8 0.018859
                                    { X_0*X_4 }/{ X_1*X_2*X_3 }
                                        {X_0*X_4}/{X_3*cos(X_0)*(X_2)^2}
10: 10 0.016306
11: 11 0.015472
                                        sin({3.7684e+01*X_4}/{(X_3)^2*(-1.4463e+00+X_2)})
12: 12 0.012165
                                       \{X_0*(X_4)^2\}/\{(X_1)^2*(X_2)^2*(X_3)^2\}
13: 3 0.021903
                                     { 3.3805e+01 }/{ X 3 }
14: 5 0.021854
                                     {3.3160e+01}/{(-3.5260e+01+X_3)}
15: 8 0.020904
                                     \{3.2909e+01\}/\{(X_3+-2.4300e+00*X_0*X_3)\}
                                     {3.2909e+01}/{(-8.2558e+01+X_3+-2.4300e+00*X_0*X_3)}
16: 9 0.020784
17: 10 0.020656
                                       \{X_0*(2.7389e+00 + X_0 + \sin(X_3))\}/\{(X_2)^2\}
18: 11 0.020353
                                        \{X_0*(1.9539e+00 + X_0 + X_1 + \sin(X_3))\}/\{(X_2)^2\}
19: 12 0.019615
                                        \{X_0*(1.0000e+00 + X_1 + 2.2410e+00*sin(X_3))\}/\{(X_2)^2\}
20: 13 0.015390
                                        sin({3.8745e+01*X_4}/{X_3*(-3.5565e+01+X_3)*(-1.6749e+00+X_2)})
21: 16
                    0.014520
                                                    sin({ 3.7684e+01*X_4 }/{ X_3*( -1.4463e+00 + X_2 )*( X_2 + X_3 + X_3 )})
{ 3.8745e+01 }/{ X 0 } ) })
22: 3 0.021908
                                     { 3.7684e+01 }/{ X_3 }
23: 5 0.021884
                                     \{(3.6485e+01+X0)\}/\{X3\}
24: 8 0.020907
                                     {3.2956e+01}/{(X_3 + -2.4300e+00*X_0*X_3)}
25: 11 0.020619
                                     \{3.2956e+01\}/\{(X_3+\{X_2\}/\{X_0\}+-2.4300e+00*X_0*X_3)\}
26: 12 0.020304
                                       {3.3536e+00*((2.6843e+00+\sin(X_3)+4.4842e+00*X_0))^2}/{X_3}
27: 14 0.017948
                                        \{X_0*(1.9539e+00 + X_1 + cos(X_3) + 2.2410e+00*sin(X_3))\}/\{(X_2)^2\}
28: 15 0.017251
                                        \{X_0*(1.9539e+00 + \sin(X_3))*(8.8884e-01 + X_0 + X_1 + \sin(X_4))\}/\{(X_2)^2\}
29: 17
                                                            \{ X_0*(X_0 + X_1 + \sin(X_4) + 1.0000e+00*1.9539e+00 + 1.0000e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9539e+00*1.9559e+00*1.9559e+00*1.9559e+00*1.9559e+00*1.95599e+00*1.95599e+
                        0.016899
2.2410e+00*sin(X_3)) /{ (X_2)^2}
30: 3 0.021912
                                     { 3.7909e+01 }/{ X_3 }
                                     {3.8454e+01}/{(-3.5260e+01+X_3)}
31: 5 0.021897
go-eureqa.exe -data=" Heatflux_flatplate.txt"
Final Results
_____
0:3 0.001752
                                   { 1.0590e+01 }/{ X_1 }
```

1:4 0.001363

2: 5 0.001358

3: 6 0.001206

4: 7 0.001186

5: 9 0.001162

2.2567e-01*(X_0)^2

 $\{ (\sin(X_0))^2 \}/\{ 4.1948e+00 \}$

 $1.6819e-01*((2.0706e-02 + X_0))^2$

{ 1.0227e+01 }/{ { 8.6406e-02*X_1 }/{ X_0 } }

 $\{8.8479e+00\}/\{(1.2293e+01+\{8.6406e-02*X_1\}/\{X_0\})\}$

```
6: 10 0.001051
                                                      \{1.0227e+01\}/\{(1.0409e+02+X_0+\{8.6406e-02*X_1\}/\{X_0\})\}
7: 11 0.001049
                                                       \{1.0227e+01\}/\{(1.0409e+02+\{8.6406e-02*(2.5244e+00+X1)\}/\{X0\})\}
8: 12 0.001047
                                                       {1.0859e+01}/{(1.2293e+01 + {1.1084e+01}/{X_0} + {8.6406e-02*X_1}/{X_0})}
9: 3 0.001752
                                                    { 1.0394e+01 }/{ X_1 }
10: 4 0.001569
                                                      1.6819e-01*(X_0)^2
11: 6 0.001351
                                                      \{(X_0)^2\}/\{(4.2537e+00 + X_0)\}
12: 7 0.001202
                                                       { 1.0852e+01 }/{ { 8.6406e-02*X 1 }/{ X 0 } }
13: 9 0.001192
                                                       \{(X_0)^2\}/\{(3.7452e+00 + X_0 + \sin((X_1)^2))\}
14: 10 0.001114
                                                         ((2.0706e-02 + X_0))^2*(1.6819e-01 + {3.1741e-03}/{X_0})
15: 3 0.001753
                                                       { 1.0335e+01 }/{ X_1 }
16: 5 0.001575
                                                       1.6819e-01*(sin(X 0))^2
17: 6 0.001358
                                                       \{(X_0)^2\}/\{(4.3693e+00+X_0)\}
18: 7 0.001202
                                                       1.6819e-01*((2.0875e-02 + sin(X_0)))^2
19: 11 0.001162
                                                        \{(\sin(X_0))^2\}/\{((1.4427e+00+5.2138e+00*\sin(X_0)))^2\}
20: 3 0.001753
                                                       { 1.0324e+01 }/{ X_1 }
21: 5 0.001728
                                                       \{1.0227e+01\}/\{(1.0409e+02+X1)\}
22: 6 0.001391
                                                       1.7431e-01*({X_0}/{-9.1750e-01})^2
23: 7 0.001349
                                                      \{ (\sin(X_0))^2 \}/\{ (4.2537e+00 + X_0) \}
24: 8 0.001205
                                                       \{(X_0)^2\}/\{(4.1948e+00 + \sin((X_1)^2))\}
25: 24 0.001205
                                                            \{5.8177e+00\}/\{(X_1\}/\{2.4915e+00\}+\{X_1\}/\{(-3.9618e-01+7.0506e-01\}\}/\{(X_1\}/\{(-3.9618e-01+7.0506e-01\}/\{(-3.9618e-01+7.0506e-01+7.0506e-01\}/\{(-3.9618e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01+7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.0506e-01-7.
02*X_0*X_1) + { ( -3.9618e-01 + X_1 ) }/{ ( -3.9618e-01 + 7.0506e-02*X_0*X_1 ) } )
26: 27 0.001200
                                                              {7.0250e+00}/{(X_1)/{2.2360e+00}} + {X_1}/{(4.0061e-01 + 7.0506e-1)}
27: 29 0.001181
                                                         \{6.5284e+00\}/\{(\{X_1\}/\{2.4915e+00\}+\{(3.7331e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)\}/\{(4.0061e-01+X_1)
7.0506e-02*X 0*X 1) + { (7.4325e-01 + X 1 + {X 1}){2.4915e+00} } ) }/{ (4.6822e-01 + 7.0506e-
02*X_0*X_1)})}
28: 3 0.001783
                                                      { 9.0232e+00 }/{ X_1 }
29: 5 0.001728
                                                      \{1.0227e+01\}/\{(1.0409e+02+X_1)\}
30: 6 0.001462
                                                      \{(X_0)^2\}/\{(3.2912e+00 + X_0)\}
31: 7 0.001350
                                                      \{(X_0)^2\}/\{(4.1052e+00 + \sin(X_0))\}
```

go-eurega.exe -data=" Heatflux_sphere.txt"

Final Results

```
0: 3 4543.927705
                                                                                                          1.0157e+01*X_0
1: 5 4469.408135
                                                                                                          1.0356e+01*(-1.0184e+02+X0)
                                                                                                          (X_0 + 1.0557e + 01*(-1.0319e + 02 + X_0))
2: 7 4403.549527
3: 8 3952.401317
                                                                                                           -4.0012e+00*X_0*(-1.8272e+00 + sin(-(X_0)))
4: 10 3941.931909
                                                                                                              (-4.0012e+00 + -4.0460e+00*X_0*(-1.9384e+00 + sin(-(X_0))))
5: 13 3921.971386
                                                                                                               (1.3488e+00 + {2.7711e+00}/{X_2} + -4.0012e+00*X_0*(-1.9384e+00 + sin(-1.9384e+00 
(X_0)))
6: 14 3871.724753
                                                                                                                (1.3488e+00 + {9.7128e+00}/{\sin(X_2)} + -4.0012e+00*X_0*(-1.9384e+00 +
sin(-(X_0)))
```

```
7:15 3656.257066
                    + X 0 ))
8: 18 3616.731019
                     (1.0000e+00 + \sin(X_4) + \{1.0000e+00\}/\{(X_2)^2\} + 6.8890e+00*X_0 +
6.4940e+00*X_0*X_1*(X_0 + X_1)
                     (1.0000e+00 + sin(X_1) + {1.0000e+00} /{(X_2)^2} + 6.8890e+00*X_0 +
9: 20 3592.092682
6.8890e+00*X_0*X_1*(X_0 + {X_0}/{X_3}))
10: 3 4545.191026
                    1.0356e+01*X 0
                    1.0157e+01*(-1.0157e+01+X_0)
11: 5 4531.397459
12: 6 4520.142841
                    -3.5760e+00*X 0*(-2.9928e+00+X 2)
13: 7 4415.781632
                    (1.0356e+01+1.1021e+01*(-1.0184e+02+X_0))
14: 8 4351.704680
                    (-3.7035e+02 + X 0 + 1.1021e+01*(-1.0319e+02 + X 0))
15: 9 4158.945018
                    (-2.8239e+00 + 1.2144e+01*X 0 + -7.7099e-01*X 2*X 3)
16: 11 4082.458639
                     (-2.9382e+00 + -((X_2 + X_2*X_3)) + {X_0}/{8.2345e-02})
17: 12 4073.574550
                     (-2.9382e+00 + X_1 + -((1.0000e+00 + X_2*X_3)) + 1.2478e+01*X_0)
                     (-2.9382e+00 + -((8.2345e-02 + X_2*(X_0 + X_3))) + 1.2478e+01*X_0)
18: 13 4069.209599
19: 14 4013.694973
                     (1.0000e+00 + 5.9376e+00*X 0 + 6.4940e+00*X 0*X 1*(X 0 + {X 0}/{X 3}))
20: 3 4696.388699
                    1.2144e+01*X 0
21: 5 4544.088106
                    (X_0 + \{X_0\}/\{1.0810e-01\})
22: 6 4540.316377
                    (-2.7581e+01 + X_0 + {X_0}/{1.0810e-01})
23: 7 4497.160596
                    (X_0 + {(-4.7738e+01 + X_0)}/{1.0810e-01})
24: 8 4403.549485
                    (X_0 + X_1 + 1.0557e + 01*(-1.0319e + 02 + X_0))
25: 11 4360.515395
                    1.0157e+01*(X_0 + {(X_0 + -3.1354e+00*X_3)}/{X_0})
26: 12 4101.053887
                     (1.0000e+00 + 5.9376e+00*X 0 + 5.9376e+00*X 0*X 1*(1.0447e+00 + X 0))
27: 14 4068.970768
                     (-2.9382e+00 + X_1 + -((2.2595e+00 + X_2*(X_0 + X_3))) + 1.2478e+01*X_0)
28: 15 4065.862248
                       (-3.6616e+00 + -(( { -9.1864e-01 }/{ X_2 } + X_2*( X_0 + X_3 ) )) +
1.2478e+01*X 0)
29: 3 5028.497173
                    6.8890e+00*X 0
                    1.0000e+00*7.6315e+00*X 0
30: 4 4830.134063
31: 5 4544.884759
                    (X_2 + 1.0033e + 01*X_0)
```

gplearn

gplearn_paper.py

Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:22:17) [MSC v.1500 32 bit (Intel)] on win32 Type "copyright", "credits" or "license()" for more information.

RESTART: C:\Users\rochant\Desktop\SymbolicRegressionAlgorithms\gplearn\gplearn_paper.py

artifical_plus.txt

	Population	Average		Best Individual			
 Ger	Length	Fitness	Length	Fitness	OOB Fitness	Time Le	 ft
C	31.03 1601.	.1143966917869	31	31.900898940340	646 32.2918308	4923351	55.04s
1	33.89 106.9	0622793550976	39	27.875401443502	47 26.48544306	871639	55.78s
2	43.44 127.2	7137042722262	13	9.7513342171547	05 9.843203109	43285	57.09s
3	41.47 89.94	630714629533	13 9	.81272211751057	6 9.2955840618	13802	55.45s
4	35.86 91.80	406340377107	15 2	.92669244587208	1 2.6378470634	53318	52.03s
5	36.97 112.1	.0988634076118	19	1.8517640294113	817 1.69407494	1066577	49.03s
6	36.37 145.1	7703097404052	13	1.6775461138754	926 1.94481372	45458188	45.83s
7	19.1 175.2	4441912533618	27	1.5340038896316	475 1.60106650	6180889	40.97s
8	17.02 612.6	50391771854	27 0.9	980362893898299	4 1.0032453949	824334	36.39s
9	16.95 167.2	5779272640483	27	0.9938120249494	451 0.88327060	68753877	32.25s
10	17.09 156.8	6719254506755	27	0.9629292021169	357 1.15876499	46828549	28.35s
11	17.43 150.3	1456682942226	27	0.7105118964130	313 0.69215797	09828363	24.72s
12	20.58 120.9	7477912837239	27	0.7071862900951	379 0.72182449	08345195	21.43s
13	24.14 86.02	867474806737	27 0	.61326001820335	94 0.723121659	1932784	18.35s
14	26.41 72.91	.625634625393	27 C	.61867296116929	3 0.6748347711	479651	15.27s
15	27.35 62.83	3000871674856	27 0	.55911768284548	24 0.636194828	6470369	12.24s
16	27.12 61.89	7147176674764	27	0.5659734651054	769 0.57503689	80102599	9.18s
17	27.16 69.89	193109937275	31 0	.52498033704339	79 0.575183253	0416001	6.13s
18	27.04 57.31	.276664661897	31 0	.47858499963849	13 0.635663093	9852865	3.07s
19	27.18 58.35	679912777584	33 0	.48195946337218	337 0.48738176	35168119	0.00s
sub(sub(mul(0.140, X	(2), add(add(X2, d	div(X2, mul	(X3, X3))), sub(div(add(X1, div(X2, >	(3)), X2), su	ub(mul(X0, X0)
X0)))), div(add(X3, X3	s), mul(-0.018, X3	5)))				

artifical_plus2.txt

Population	Average		Best Individual	Ţ		
Length	Fitness	Length	Fitness	OOB Fitness	Time Le	ft
31.03 1521.0	0878091557802	63	10.4698231608093	323 12.58015548	2863502	53.50s
23.2 22.418	8625639852433	9	8.29944916370107	7 8.44304809523	8094	49.27s
31.31 28.62	1308264621206	17	5.0147355650493	73 4.6314857039	77409	48.57s
29.28 27.85	8663766740392	21	2.47279435171080	044 2.223115546	937173	46.24s
24.3 28.842	244967641777	21 2	2.44671106438751	2.455795030678	309	42.51s
20.28 27.04	239631230495	33 2	2.05452398220640	5 2.07874031746	0318	38.47s
20.04 22.67	3045781041044	27	1.20970303914590	074 1.217044603	174603	35.24s
24.37 20.86	8590195018424	27	1.21687106405693	393 1.153101269	84127	32.29s
27.36 23.30	133396258285	27 1	173744658362989	91 1.5378161904	761904	30.02s
26.27 33.16	854908225364	27 1	175256386120996	64 1.5243306190	47619	27.20s
25.66 20.07	5828838582915	23	1.08023804092520	67 1.1983390317	460318	24.33s
	Length 31.03 1521.4 23.2 22.418 31.31 28.62 29.28 27.85 24.3 28.84 20.28 27.04 20.04 22.67 24.37 20.86 27.36 23.30 26.27 33.16	31.03 1521.0878091557802 23.2 22.418625639852433 31.31 28.621308264621206 29.28 27.858663766740392 24.3 28.84244967641777 20.28 27.04239631230495 20.04 22.673045781041044 24.37 20.868590195018424 27.36 23.30133396258285 26.27 33.16854908225364	Length Fitness Length 31.03 1521.0878091557802 63 23.2 22.418625639852433 9 31.31 28.621308264621206 17 29.28 27.858663766740392 21 24.3 28.84244967641777 21 2 20.28 27.04239631230495 33 2 20.04 22.673045781041044 27 24.37 20.868590195018424 27 27.36 23.30133396258285 27 1 26.27 33.16854908225364 27 1	Length Fitness Length Fitness 31.03 1521.0878091557802 63 10.4698231608093 23.2 22.418625639852433 9 8.29944916370103 31.31 28.621308264621206 17 5.01473556504933 29.28 27.858663766740392 21 2.47279435171080 24.3 28.84244967641777 21 2.44671106438751 20.28 27.04239631230495 33 2.0545239822064003 20.04 22.673045781041044 27 1.20970303914590 24.37 20.868590195018424 27 1.216871064056933 27.36 23.30133396258285 27 1.175256386120990	Length Fitness Length Fitness OOB Fitness 31.03 1521.0878091557802 63 10.469823160809323 12.58015548 23.2 22.418625639852433 9 8.29944916370107 8.44304809523 31.31 28.621308264621206 17 5.014735565049373 4.6314857039 29.28 27.858663766740392 21 2.4727943517108044 2.223115546 24.3 28.84244967641777 21 2.44671106438751 2.455795030678 20.28 27.04239631230495 33 2.054523982206405 2.07874031746 20.04 22.673045781041044 27 1.2097030391459074 1.217044603 24.37 20.868590195018424 27 1.2168710640569393 1.153101269 27.36 23.30133396258285 27 1.1737446583629891 1.5378161904 26.27 33.16854908225364 27 1.1752563861209964 1.5243306190	Length Fitness Length Fitness OOB Fitness Time Le 31.03 1521.0878091557802 63 10.469823160809323 12.580155482863502 23.2 22.418625639852433 9 8.29944916370107 8.443048095238094 31.31 28.621308264621206 17 5.014735565049373 4.631485703977409 29.28 27.858663766740392 21 2.4727943517108044 2.223115546937173 24.3 28.84244967641777 21 2.44671106438751 2.455795030678309 20.28 27.04239631230495 33 2.054523982206405 2.078740317460318 20.04 22.673045781041044 27 1.2097030391459074 1.217044603174603 24.37 20.868590195018424 27 1.2168710640569393 1.15310126984127 27.36 23.30133396258285 27 1.1737446583629891 1.5378161904761904 26.27 33.16854908225364 27 1.1752563861209964 1.524330619047619

11	30.59 19.66926238770216	23 1.081889747330961 1.183604761904762	21.67s
12	32.87 32.7538378944892	23 1.065654017793594 1.328437777777776	19.02s
13	29.46 22.445640139294714	27 0.9106076298932384 0.9393471428571425	16.24s
14	26.2 17.778675595228602	27 0.8992252829181494 1.0408849047619049	13.42s
15	24.26 17.19453800319043	27 0.893498181494662 1.0919742857142856	10.63s
16	23.69 17.659427289182442	29 0.8710426151620936 0.98215881441984	7.91s
17	24.05 34.85691260232086	23 0.8461286085409252 0.7400619047619048	5.23s
18	24.55 17.529731615424645	23 0.8202371850533808 0.9710298412698412	2.61s
19	23.77 16.47545494690101	23 0.8173021156583631 0.9972125238095236	0.00s

 $add(sub(add(mul(X2,X0),mul(add(X3,X0),X3)),\, mul(X1,X1)),\, sub(X0,\, mul(add(X1,X1),\, mul(X1,X1))))\\$

artifical_times.txt

l	Population	Average		Best Individual				
Gen	Length	Fitness	Length	Fitness	OOB F	itness	Time Left	
0	31.03 1597.9	97396510374	8 31	29.73165460750	754 29.63710	5410249	9145	52.65s
1	33.66 104.08	85768592794	03 3	9 26.7479988640	9086 24.8740	1449728	37813	52.54s
2	42.99 123.68	87306860851	55 13	3 13.0398348114	3413 13.4720	9199832	21739	54.44s
3	41.13 88.000	02560244742	1 13	13.17780634168	324 12.24129	8347528	3089	52.89s
4	34.48 77.090	06601141503	2 23	5.511025011297	956 5.628116	6187214	433 4	49.49s
5	40.92 90.689	92596825648	8 21	3.228637346618	4215 3.36774	4646975	5829	47.68s
6	52.44 101.5	55044687744	2 11	3.137069680542	4623 2.72221	3196537	7741	46.27s
7	24.32 162.30	69592853945	05 19	9 2.69729630503	10392 2.6760	4971165	573947	41.61s
8	23.9 134.13	34155351012	37 1 ⁻	7 2.30672296410	3045 2.85866	6480447	79116	37.42s
9	23.04 136.82	24164133453	65 6°	7 2.17780886177	05973 2.3949	5242557	794366	33.49s
10	24.22 122.14	47438153830	31 8	5 2.15845940820	09727 2.6174	0715675	56565	29.76s
11	23.09 135.7	88885900527	9 65	2.087957682416	5973 2.26935	0536762	2043	26.14s
12	21.27 143.79	91459572265	52 7	5 2.01227455386	60824 2.2222	4378620	08399	22.59s
13	19.19 124.9	65219691198	6 19	2.006350782058	7687 1.60137	9498697	77257	19.08s
14	18.12 123.2	54987968914	75 1	9 1.91853786304	99217 2.3847	2649049	909324	15.69s
15	18.99 109.6	41718882536	61 2	3 1.70180189683	42778 1.5954	2597789	990247	12.41s
16	19.96 105.0	19157277191	82 3	5 1.59311495300	38569 1.9064	5351854	487048	9.22s
17	20.58 113.9	14985195793	63 3	5 1.59768332782	85059 1.8657	007145	573925	6.10s
18	21.73 83.56	16580242090	8 35	1.421293921097	2073 1.61382	775201	70408	3.04s
19	23.36 87.28	94131603523	35 1	4238328119563	943 1.591179	2335588	3952	0.00s
مار مار م		(aula/)/0 0 77	1) add(\/)	V(0)) a u la / a u la / a u		-1/\/0 0	710\\ 0.7	74\\\

sub(sub(add(add(sub(sub(X0, 0.774), add(X3, X0)), sub(sub(mul(X3, X0), add(X2, 0.710)), 0.774)), sub(X0, 0.774)), sub(add(X1, X1), 0.432)), div(add(X3, X3), mul(-0.018, X3)))

artifical_Cd_wedge.txt

	Populat	tion Average		Best Individual	l	
Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Left
0	29.43	4.3758200715351	08e+28	127 0.010719	128448091482	0.012075854505530474
1.74m						

1	9.06 198760856.7570989	15 0.017988023832180344 0.018397433883293002
1.35m		
2	3.47 288003914395143.2	7 0.02260026704063492 0.022848529142857142 1.11m
3	3.06 21335466821955.66	5 0.0227336412318579 0.02686563934998644 57.70s
4	1.73 78967519.03677294	3 0.02323729053079365 0.028724237518095237 50.66s
5	1.5 2.1811835271433e+16	3 0.023638556262962965 0.025112845928571426
45.04s		
6	1.45 39580951.06375474	7 0.02402654118116402 0.021620981664761903 40.25s
7	1.46 2.2417717538960528e+1	3 0.02372558644222222 0.0243295743152381
36.16s		
8	1.56 2.6372187531815246e+26	5 0.023010294057853514 0.02437576391602593
32.51s		
9	1.49 148231713759163.7	3 0.02432580409505467 0.026518751184528 29.10s
10	1.39 389073275.32989043	3 0.023555083812169312 0.025864097985714287
25.80s		
11	1.52 163569539.23097983	7 0.025006646610819284 0.02651054679576165 22.69s
12	1.5 153847845606.8845	3 0.024214145917791776 0.027523674779894 19.64s
13	1.47 613847508.7308334	3 0.0234327767844444442 0.026964861235238093 16.67s
14	1.57 637998585496862.5	5 0.023006043058201402 0.024414022912894937 13.81s
15	1.45 1832945446542.7407	15 0.019322801648250256 0.01999334374133749 11.00s
16	1.47 66180495689.87054	3 0.024456128914166445 0.025345827812522 8.19s
17	1.48 208642295.72529942	3 0.024269000534011778 0.027029983233913996
5.42s		
18	1.48 105665584.00804216	9 0.019633757654336614 0.01681563332493183 2.70s
19	1.45 367878026013.9694	3 0.023822565571851848 0.02345676214857143 0.00s
div(X0, X	2)	

artifical_Heatflux_flatplate.txt

1	Populatio	on Average	Best Individual	
Gen	Length 38 13 1	Fitness Length .222681990406716e+29	Fitness 15 0 0009722	OOB Fitness Time Left 268415255915 0.0011713905570498548
55.61s div(sub		X0), mul(X1, X0)), mul(add(

artifical_Heatflux_sphere.txt

	Population .	Average		Best Individual			
Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Left	
0	29.43 2.5247	'318035185896	Se+41	7 3984.8329162	55144 4211.2156	97777778	6.41m

1	17.35 5053732907261.99	9 3802.2618	2553204 3847.562	2443174602	23 5.	24m
2	27.6 6.6473270352923896e	+16	65 3734.0144	1414677616	3726.366	827114342
5.11m						
3	41.25 5.3539726795797535e-	+22	13 2634.3243	301125841	2758.9283	3526080903
5.28m						
4	25.65 3.5841453244781437e-	+19	17 2640.5473	396352774	2703.1149	9678581132
4.85m						
5	37.78 177712769025208.16	71 2622.41	7394393974 2666	5.881833974	1254	4.64m
6	59.01 806118436591084.1	67 2384.378	6305150147 2397	'.504834499	9385	4.65m
7	47.96 6.135877418534893e+21	69 2328	3.428119532658 2	305.284634	19015804	4.42m
8	37.43 7.702385736555299e+	24	61 2279.94136	638939373	2286.1224	1060829263
4.08m						
9	54.66 60520653627877.695	81 1886.48	54568799778 191	7.23368514	18318	3.81m
10	71.33 5147593235307.232	81 1882.559	7553609398 1952	2.564998819	96617	3.58m
11	75.26 142675223187442.7	83 1876.906	0782777901 2003	3.833157056	60701	3.32m
12	86.27 43032525215091.55	99 1846.997	317168193 1942.	4196254118	3044	3.04m
13	99.64 1.9907856257622584e+	+18	87 1839.54348	305320954	1833.1728	3424720038
2.74m						
14	104.96 3.257804793129515e+3	31	151 1768.90030	082928973	1746.7669	9058341608
2.39m						
15	110.73 4.676862288867244e+16	151 176	1.87614534818 1	809.984372	3366187	1.99m
16	109.03 733292309002361.8	155 1751.776	7887959528 1793	3.916890446	69802	1.55m
17	113.2 4.469972699520196e+	16	163 1730.63151	198921093	1762.0472	2342093835
1.07m						
18	138.0 1.7338060560783094e-	+17	225 1708.27544	469421918	1676.3472	2323222377
33.35s						
19	150.38 2.2218210282237647e+	-18	223 1698.61070	017045726	1763.3296	5247509684
0.00s						
div(add	l(mul(sub(add(add(mul(mul(X0, X0),	div(X1, X2)),	X0), X0), mul(X1,	X4)), add(s	ub(0.785, >	(3), add(X1,
X0))), s	ub(div(sub(X3, X0), mul(sub(add(mu	ul(mul(X0, X0)	, div(X1, X2)), X0)	, mul(X1, X	3)), add(mi	ul(X1, X3), -
0.539))	, mul(mul(X0, X0), mul(add(div(add	l(mul(sub(add	(add(div(add(mul	(sub(add(m	ul(mul(X0,	X0), div(X1,
X2)), X(), mul(X1, X3)), add(sub(0.785, X3), a	add(X1, X0))), s	sub(sub(div(X2, X4), div(div(X1	L, X2), X0)),	mul(mul(X0,
X0), ad	d(X2, X2)))), sub(add(add(sub(X2, X	<3), mul(X1, X	(3)), div(X2, X2)),	div(mul(div	(X0, X3), m	nul(X0, X0)),
mul(mı	ıl(0.108, X2), mul(0.108, X2))))), X0), >	K0), mul(X1, X3	3)), sub(0.021, X3)), sub(div(X1	L, X3), mul(ı	mul(X0, X0),
add(X2	, X2)))), sub(add(add(sub(X2, X3), su	b(-0.627, X1))	, div(X2, X2)), sub	(add(mul(m	ul(X0, X0),	div(X1, X2)),
X0), su	o(add(mul(mul(Mul(X0, X0), div(X1,	X2)), div(X1, >	(2)), X0), mul(-0.0	046, X0))))),	X0), mul(0.	108, X2))))),
sub(ad	d(add(sub(X2, X3), sub(-0.627,	X1)), div(X2,	X2)), div(mul(a	add(X3, -C).473), mu	ul(X3, X1)),
mul(ad	d(mul(mul(X0, X0), add(X2, X2)), X0)	mul(0.108_X	211111			
		, mai(0.±00, 7.	∠)))))			
>>>		, mai(0.100, A	<i>∠)))))</i>			

GPOLS

GPOLS_paper.m

artifical_plus.csv

```
fitness: 0.958992, mse: 126.280720
0.525791 * (((x4)+(x1))*(x1)) +
102.575452
```

artifical_plus2.csv

```
fitness: 0.917117, mse: 24741.588277
-7.526976 * ((x2)*(x2)) +
21.774349
```

artifical_times.csv

```
fitness: 0.786810, mse: 1705.589089

4.279160 * (x1) +

1.125629 * ((((x4)/(x3))-(x2))*(x1)) +

97.083056
```

Cd_wedge.csv

```
fitness: 0.682984, mse: 3.700585  
0.201815 * ((((x3)*((x5)*(x3)))*((x1)^(x3)))/((x4)*(x1))) + 0.011800
```

Heatflux_flatplate.csv

Heatflux_sphere.csv

```
fitness: 0.777709, mse: 418323430297.922974
25.220063 * (x1) +
13650.587647 * ((x2)*(x1)) +
-114069.748374 * (x3) +
-9092.076308
```

GPTips2

gp.genes.max_genes = 4;

artifical_plus.csv

mfun =

 $1.0*x4 - 3.63*cos(x3^{(1/4)}) + 1.0*sin(x2) + 0.8*x1^2 - 9.98*x3^{(1/8)} + 113.0$

with fit error: 0.0031025

artifical_plus2.csv

mfun =

 $1.91*x1 - 1.91*cos(x4) - 3.25*exp(x2) + 0.496*exp(x4) + 0.139*x3*exp(x1) + 0.496*x1^(1/2) - 0.496*x2^2 + 1.91*x4^(1/2) + 5.55$

with fit error: 0.4703

artifical_times.csv

mfun =

 $2.56*x1 + 0.854*x2 + 0.854*x4 + 0.0907*x1^2*x4^2 - 0.107*x1*exp(x2) - 0.107*x1*x3*x4^2 + 0.0907*x1^2*x2*x4^2 - 0.0109*x1^2*x2^3*x4^2 + 96.0$

with fit error: 0.65413

Cd_wedge.csv

mfun =

 $3.13e - 6 \times x1 \times x5 \times (3.46 \times x4) \wedge (1/2) \times (x3 - 7.14) - 4.35e - 8 \times x1 \times x4 \times x5 \times (x3 - 7.09) - 2.1e - 4 \times x1 \times x5 \times (x3 - 7.21) + 0.0267 \times x1 \times x2 \times (x3 - 6.83) \times (x3 - 1.0 \times exp(x1)) + 0.00107$

with fit error: 0.0093015

Heatflux_flatplate.csv

mfun =

 $0.0711*x1 + 1.04e-6*x2 - 2.85e-4*(x1*x2)^{(1/2)} - 1.16e-4*x2^{(1/2)} + 0.00514$

with fit error: 0.00041841

Heatflux_sphere.csv

mfun =

 $0.138*(x1*x3 + x1*x5)^{(1/2)} - 380.0*x1*x2^{(1/2)}*(x1*x3)^{(1/2)} + 2.57*x1^{2}*x2^{(1/2)}*\cos(x2) + 1.77e4*x1*x2^{(1/2)}*x3*\cos(x3) - 3844.0$

with fit error: 1354.7769

GSGP

(注意 GSGP 的文本文件需要多两行。

第一行: 自变量个数(不含应变量);

第二行: 样本点个数)

 $\label{lem:condition} C:\Users\rochant\Desktop\Symbolic Regression Algorithms\GSGP>a -train_file \ artifical_plus.txt -test_file \ artifical_plus.txt$

artifical_plus.txt

17.6202

((x1 - x2) * (x2 + x1))

artifical_plus2.txt

3.989

```
 (((((((x0*x2)+(x3*x1))/((x3+x2)-(x1+x1)))-(((x0/x3)-(x0*x2))-((x3/x1)/(x3*x0))))+((((x2+x0)-(x1*x0))/((x0+x0)*(x3-x0)))+(((x3+x2)/(x1*x2))*((x0+x3)+(x0*x3)))))-(((((x2-x1)+(x3+x2))*((x3+x2)-(x0-x2)))/(((x0+x2)/(x2+x0))*((x1-x1)-(x3*x1))))*((((x2*x2)/(x2-x2))*((x0+x0)*(x0/x1)))+(((x3+x1)*(x0-x0))+((x1/x0)*(x0-x2))))) )
```

artifical_times.txt

42.1349

```
(((((x2-x1)+(x1-x2))+((x0*x2)+(x0/x0)))*(((x0-x2)-(x0+x0))-((x1*x0)/(x1-x1))))/((((x0-x3)+(x1*x0))+((x0*x3)*(x3+x1)))*(((x3*x3)/(x1/x0))-((x2/x3)*(x0-x2)))))
```

Cd_wedge.txt a -train_file Cd_wedge.txt -test_file Cd_wedge.txt

0 (should be NaN, actually)

```
((((((x1*x1)-(x2/x0))+((x0/x4)+(x2*x3)))/(((x4-x4)+(x1+x3))*((x3+x0)-(x0*x4))))/((((x4*x3)+(x4+x3))-((x4-x0)/(x0+x0)))*(((x2/x0)-(x2/x0))*((x2+x4)*(x0/x3)))))+(((((x3/x4)-(x0-x4))/((x3+x4)+(x4+x4)))*(((x4*x3)/(x3*x2))*((x4*x4)/(x2*x0))))*((((x4+x3)/(x3+x3))/((x1-x3)-(x4*x4)))-(((x3-x1)/(x4-x4))*((x1+x4)-(x2*x2)))))
```

Heatflux_flatplate.txt

0.000803012

((x1/x0) - (x1 + x0))

Heatflux_sphere.txt a -train_file Heatflux_sphere.txt -test_file Heatflux_sphere.txt

6594.47

```
 ((((((x1+x0)-(x1+x3))-((x4-x2)*(x0/x3)))-(((x4+x4)-(x3*x3))/((x0+x0)+(x3/x4))))/((((x2+x2)*(x3/x0))-((x2+x4)-(x2*x0)))+(((x3*x1)/(x1+x2))*((x1-x2)-(x3/x2)))))/(((((x2+x0)/(x1*x3))+((x0/x2)/(x3-x0)))-(((x0/x0)*(x4+x2))+((x4-x1)/(x4/x4))))*((((x0*x2)*(x3/x2))*((x2+x0)*(x3*x3)))+(((x4-x2)/(x2+x4))+((x2+x3)+(x1+x0))))))
```


artifical_plus.csv

mostAccurate:

artifical_plus2.csv

mostAccurate:

(3.1319943477638796 .* (- (- (- (* X4 (exp (cos (sin (exp (cos (sin (sin X1)))))))) (exp X2)) (cos X1)) (sin (sin X3)))) X2)) + 11.5291274776289950

artifical times.csv

mostAccurate:

(0.3886738851582918 .* (* (+ X1 (- X1 (mydivide X1 X3))) (* (sin X2) (* (+ X1 (+ X1 (- (mydivide X1 (+ (+ (+ X1 (- X1 (mydivide X1 X3))) (- X1 (+ X1 X3))) (sin X3)))) (mydivide X4 X3))))) + 100.0014980527669500

Cd_wedge.csv

mostAccurate:

(2.9806816126984310 .* (exp (mydivide (* (mydivide X1 X3) X3) (- X5 X4)) X4))) + - 2.9801206653481094

Heatflux_flatplate.csv

mostAccurate:

Heatflux_sphere.csv

mostAccurate:

(0.0000011019011184 .* (mydivide (* (* (* (* X2 (- X1 (* X2 (mydivide (* (exp (* X2 X1)) X1) X3)))) (- X1 (* X2 (mydivide (* (exp (* X2 X1)) X1) X3)))) (- X1 (* X2 (mydivide (* (exp (* X2 X1)) X1) X3)))) (sin X3))) + 3242.5354888817938000

artifical_plus.csv

mostAccurate:

(+ (+ (quart (sin (exp (* (quart (quart (sin X3))) (* X4 (mydivide X3 X4)))))) (* (quart (- (sin (sin (sin X3))) (quart (- (sin (sin X3))))))) (* (* X3 (* (square X1) (mydivide X4 (square X1)))) (+ (* (mydivide X2 X4)))) (quart (sin (exp (* (quart (quart (sin X3))) X3)))))))

artifical_plus2.csv

mostAccurate:

(* X4 (+ (* (mydivide (cube X1) (quart X2)) (+ (* (sqrt (+ (cos (- (* (square (- X1 X3)) (mylog (- (cos X1) (cube X1)))) X4)) (sin (mydivide (sin (* (cube X3) (sin (- (mydivide (sin X1) X3) (* (cube X2) (mydivide X1 (mydivide (cube (sqrt X1)) X4))))))) (* X4 X3))))) (exp (cube (sin (sin X4))))) X4))

artifical_times.csv

mostAccurate:

Cd_wedge.csv

mostAccurate

(* (* (mydivide X1 X4) X5) (+ X3 (mylog (- (cube (* (mydivide X5 X2) (mydivide (mydivide X1 X3) X4))) (mydivide (* (* (* (* (mydivide X1 X4) X5) (+ (mydivide X1 X4) (mylog (- (cube X3) (mylog X5))))) X5) X3) X4))))) (* (mydivide (* (mydivide X5 X2) (mydivide (mydivide X1 (mylog (- (cube X3) (mylog (* (mydivide X1 X4) X5) (mylog (* (mydivide X1 X4) X5) (mylog (* (mydivide X1 X4) X5))))) X4) X5) X4) X5) X4) X5) X4) X5) X4) X5) X4) X5) X4) X5)

Knee: (* (mydivide X5 X2) (mydivide (mydivide (mydivide X1 X3) X4))

Heatflux_flatplate.csv

mostAccurate:

(mydivide (sqrt (mydivide (sin (sin X1)) (sqrt X2))) (sqrt (mydivide (mylog (mydivide X1 X2)) (sqrt (mydivide (sqrt (mydivide (sin X1) (sqrt (mydivide (mylog X2) (sqrt (mylog (mylog (mylog X1))))))))) (sqrt (mydivide (mylog (mydivide X1 X2)) (sqrt (mydivide (sqrt (mydivide (sin (sin X1)) (mylog X2))) (sqrt (mydivide (mylog (mylog X2)) (sqrt (mydivide X1 X2) X2))))))))))) (sqrt (mydivide (mydivide X1 X2) X2)))))))))

Knee: (sqrt (mydivide X1 (sqrt X2)))

Heatflux_sphere.csv

mostAccurate:

(mydivide (* (cube X1) (mylog (mydivide (mydivide (* (mydivide (* (square (* X2 X1)) (mydivide (* X3 (mydivide (* (cube X1) (mydivide X4 X3)) X3)) (- X4 X5))) (mylog (mydivide (mydivide X1 (mylog (quart

(mylog (mydivide (mydivide (mydivide (* (quart (mylog (mydivide (mydivide (mydivide X3 (sin X2)) X1) (sqrt X1))))) (mydivide (* (cube X1) X2) X3)) (sin X2)) X1) (sqrt X1)))))) (sqrt (mydivide (mydivide (* X1 (mydivide (* X2 (cube X1)) X3)) (- X4 X5)) (- X4 X2)))))) (mydivide (* (cube X1) X2) X3)) (sin X2)) X1) (sqrt X1)))) (- (mydivide (mydivide X1 (mylog (mydivide X3 (sin X2)))) (sqrt (mydivide (mydivide (* (cube X1) (mydivide (* X2 X1) X3)) (- X4 X5)) X3))) X5))

Knee: mydivide (* X4 X1) (mylog (mydivide X1 (mylog (mydivide X3 (sin X2)))) (sqrt (mydivide (mydivide (* (cube X1) (mydivide (* X2 X1) X3)) (- X4 X5)) (mydivide (* (cube X1) (mydivide (mydivide (mydivide (* X2 (cube X1)) (cube X1)) X5) X3)) X5)))))