3^{as}

••• <u>قواعد الاشتقاق</u>

❶ الجدول التالي يلخص الدوال المشتقة للدوال المألوفة:

ودالتها المشتقة f' معرفة كمايلي:	قابلة للاشتقاق على	معرفة على	الدالة f حيث
f'(x) = 0	\mathbb{R}	\mathbb{R}	$k \in \mathbb{R}$:حيث $f(x) = k$
f'(x) = 1	\mathbb{R}	\mathbb{R}	f(x) = x
f'(x) = a	\mathbb{R}	\mathbb{R}	f(x) = ax + bحيث: a,b عددان حقيقيان
f'(x) = 2x	\mathbb{R}	\mathbb{R}	$f(x) = x^2$
$f'(x) = 3x^2$	\mathbb{R}	\mathbb{R}	$f(x) = x^3$
$f'(x) = nx^{n-1}$	\mathbb{R}	\mathbb{R}	$f(x) = x^n$ $n > 1$ و $n \in \mathbb{N}$
$f'(x) = -\frac{1}{x^2}$	$]-\infty;0[\ \bigcup\]0;+\infty[$	$]-\infty;0[\ \bigcup\]0;+\infty[$	$f(x) = \frac{1}{x}$
$f'(x) = -\frac{n}{x^{n+1}}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\bigcup]0;+\infty[$	$n \in \mathbb{N}^*$ حيث: $f(x) = \frac{1}{x^n}$
$f'(x) = -\frac{2}{x^3}$	$]-\infty;0[\bigcup]0;+\infty[$	$]-\infty;0[\bigcup]0;+\infty[$	$f(x) = \frac{1}{x^2}$
$f'(x) = \frac{1}{2\sqrt{x}}$]0;+∞[[0;+∞[$f(x) = \sqrt{x}$
$f'(x) = e^x$	\mathbb{R}	\mathbb{R}	$f(x) = e^x$
$f'(x) = \frac{1}{x}$]0;+∞[]0;+∞[$f(x) = \ln(x)$
$f'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$\mathbb{R} - \left\{ \frac{\pi}{2} + 2k\pi, (k \in \mathbb{Z}) \right\}$	$\mathbb{R} - \left\{ \frac{\pi}{2} + 2k\pi, (k \in \mathbb{Z}) \right\}$	$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$

يعني: تحرك حسب السهم (مع عقارب الساعة) يعني: $(\sin(x))' = \cos(x)$ $(-\cos(x))' = \sin(x)$

مثال تطبيقي	ودالتها المشتقة هي	قابلة للاشتقاق على	الدالة
$g(x) = \sqrt{x} \cdot f(x) = x^2$ ليكن $f'(x) + g'(x) = 2x + \frac{1}{2\sqrt{x}}$	f '+ g '	I	f+g
$f'(x) = 12x^3$ ، $f(x) = 3x^4$ ليكن	-f'	I	-f
$g(x) = \frac{1}{x}$ و $f(x) = 3x^2$ ليكن $f(x) = 3x^2$ و $f'(x) - g'(x) = 6x - \left(-\frac{1}{x^2}\right) = 6x + \frac{1}{x^2}$	f '- g '	I	f-g
$f(x) = 3(2x^2 + 1)$ ليكن $f'(x) = 3(4x) = 12x$	kf'	I	kf
$f(x) = (2x^2 + 5)^2$ ليکن	$2f \times f$ '	I	f^2
$f'(x) = 2(2x^{2} + 5)(4x)$ $f'(x) = -\frac{1}{(x+2)^{2}} f(x) = \frac{1}{x+2}$	$\frac{-f'}{f^2}$: جاستثناء قیم x حیث $f(x) = 0$	$\frac{1}{f}$
$g(x) = \sqrt{x} \cdot f(x) = x^{2}$ $\left(\frac{f}{g}\right)(x) = \frac{(2x)(\sqrt{x}) - (x^{2})\left(\frac{1}{2\sqrt{x}}\right)}{\left(\sqrt{x}\right)^{2}}$	$\frac{f'g-g'f}{g^2}$	باستثناء قیم x حیث : $g(x) = 0$	$\frac{f}{g}$
$=\frac{3x}{2\sqrt{x}}$			
$f(x) = 2x^3 - x^2 - 5x + 1$ ليكن $f'(x) = 6x^2 - 2x - 5$	$f'(x) = na_n x^{n-1} + + a_1$	\mathbb{R}	$f(x) = a_n x^n + + a_1 x + a_0$
$f(x) = \frac{3x+2}{2x-1}$ $f'(x) = \frac{3(-1)-(2)(2)}{(2x-1)^2} = \frac{-7}{(2x-1)^2}$	$f'(x) = \frac{ad - bc}{(cx+d)^2}$	$\left -\infty;-\frac{d}{c}\right[\bigcup\left]-\frac{d}{c};+\infty\right[$: خيث $f(x) = \frac{ax+b}{cx+d}$ $c \neq 0$
$f(x) = \frac{2}{\sqrt{x^2 - 1}}$ $f'(x) = \frac{2(2x)}{2\sqrt{x^2 - 1}} = \frac{2x}{\sqrt{x^2 - 1}}$	$\frac{f'}{2\sqrt{f}}$	$f(x) \succ 0$	\sqrt{f}
$f(x) = (-3x+1)^5$ $f'(x) = 5(-3)(-3x+1)^4 = -15(-3x+1)^4$	$(n \in \mathbb{N}^*)$ $n.f'.f^{n-1}$	I	$(n \in \mathbb{N}^*)$ f^n
$f(x) = 3e^{\frac{1}{x}}f'(x) = \frac{-3}{x^2}e^{\frac{1}{x}}$	f '. e^f	I	e^f
$f'(x) = \frac{4x}{2x^2 - 1}$ و منه $f(x) = \ln(2x^2 - 1)$	$\frac{u'(x)}{u(x)} : u(x) \succ 0$	$u(x) \succ 0$	$\ln[u(x)]$
$h(x) = -2\cos\left(\sqrt{x}\right)$	$g'(x) \times f'[g(x)]$	I	$(f \circ g)(x) = f[g(x)]$
$h'(x) = \frac{-2}{2\sqrt{x}} \left[-\sin\left(\sqrt{x}\right) \right] = \frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}}$			