COMP90043: Cryptography and security: Week 7: Polynomial Rings and Finite Field

- (1) Consider a finite filed \mathbf{F}_5 , the field of 5 elements. Given an example for each of the following:
 - (a) A polynomial of degree 3.
 - (b) A monic polynomial of degree 3
 - (c) An irreducible polynomial of degree 2.
- (2) Consider a finite filed \mathbf{F}_3 , the field of 3 elements. Answer the following:
 - (a) $(1+2x+x^3)*(1+x^2+2x^3) = ---$
 - (b) $x^5 \mod (1 + 2 x + x^3) = ----$
 - (c) An irreducible polynomial of degree 2=
 - (d) $GCD((1+2x+x^3), (1+2x)) = ----$
 - (e) Is the polynomial $2 + 2 * x^2$ is an irreducible polynomial?
- (3) Use the irreducible polynomial $1+x^2+x^3$ in the the finite field GF(8) table below:

i	Elements: x^i	As Polynomials	As Vectors
$-\infty$	0	0	[0, 0, 0]
0	1	1	[1, 0, 0]
1	x	x	[0, 1, 0]
2	x^2	$ \begin{array}{c c} x^2 \\ 1+x^2 \end{array} $	[0, 0, 1]
3	x^3	$1 + x^2$	[1, 0, 1]
4	x^4		
5	x^5		
6	$ \begin{array}{c} x^2 \\ x^3 \\ x^4 \\ x^5 \\ x^6 \\ x^7 \end{array} $		
7	x^7		

Table 1. Elements of $GF(2^3)$ as powers of x

- (a) Complete the missing entries in the table.
- (b) What is the multiplicative order of x?
- (c) What is the multiplicative inverse of x^3 ?
- (d) Compute $x + x^2 + x^4$.
- (e) Compute $x^3 + x^6 + x^5$;

(4) Consider the finite field GF(9) as discussed in class last week:

i	Elements: x^i	As Polynomials	As Vectors
$-\infty$	0	0	[0, 0]
0	1	1	[1,0]
1	x	x	[0, 1]
2	x^2		
3	x^3		
4	x^4		
5	x^5		
6	x^6		
7	$x \\ x^{2} \\ x^{3} \\ x^{4} \\ x^{5} \\ x^{6} \\ x^{7} \\ x^{8}$		
8	x^8		

Table 2. Elements of $GF(3^2)$ as powers of x

- (a) Complete the missing entries by using the polynomial $2 + x + x^2$ as the irreducible polynomial for generating powers of x in the table.
- (b) What is the multiplicative order of x?
- (c) What is the multiplicative inverse of x^2 ?
- (d) Compute $x + x^3$.
- (e) Compute $x^2 + x^6$;
- (5) Homework: Generate tables for $GF(2^4)$ and $GF(2^5)$ using primitive polynomials of degree 4 and 5 respectively.
- (6) Homework: Implement extended GCD algorithms for polynomials over finite field.