Regression Analysis on Asset Returns

By John Lee

Linear Regression Use Cases

- Understand relationship between a stock's historical prices and various factors like market indexes, interest rates, trading volumes, or company-specific financial indicators.
- Quantify the impact of risk factors to understand risks associated with investments.
- Attribute fundamental performances such as revenue, profits, or sales, to various factors like marketing expenditure, pricing strategies, market conditions, or macroeconomic indicators.
- Assess correlations between asset pairs to help with activities like hedging and pairs trading.

Multiple Linear Regression

The multiple linear regression model defines a linear functional relationship between one continuous outcome variable and MULTIPLE input variables that takes on the following form:

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \ldots + \beta_n x_{tn} + \epsilon_t$$
, where

 y_t represents the observed outcome at time t

 β_0 represents the y-intercept, or y value when x=0

 β_{tn} represents the slope of the n-th explanatory variable at time t

 ϵ_t represents the error term, which accounts for the total deviations from the linear hyperplane at time t

Multiple Linear Regression

- In reality, multiple regression is more frequently used than simple regression because a dependent variable is rarely explained by only one variable. For instance, it takes more than just the oil price to explain the inflation in the economy.
- Similar to the simple linear regression, we can use the OLS or MLE methods to estimate the hyperplane that best fit the data points.
- Since multiple regression is more complex than simple regression, it possesses lower bias and higher variance.

Predicting Russell 2000 Returns

We compiled a list of features for building our linear model for predicting the performance of a the Russell 2000 ETF (Ticker: IWM). These features include ETFs considering Environmental, Social and Governance (ESG) factors as well as economic indicators.

Technology Breakthrough	Social Change	Urbanization	Climate Change	Global Wealth	
• IBLC	• IDNA	• IFRA	• ICLN	• CNYA	
• IRBO	• IWFH	• IGF	• IDRV		
• IHAK	• BMED	• EMIF	• IVEG		

Predicting Russell 2000 Returns

 ETF data comes from yfinance; economics data comes from pandas_datareader.

• We gather these data dating between 2022-06-02 and 2023-06-31, a total of 248

days.

	columns (total 17 colum	115).	
#	Column	Non-Null Count	Dtype
0	BMED	248 non-null	float64
1	CNYA	248 non-null	float64
2	EMIF	248 non-null	float64
3	IBLC	248 non-null	float64
4	ICLN	248 non-null	float64
5	IDNA	248 non-null	float64
6	IDRV	248 non-null	float64
7	IFRA	248 non-null	float64
8	IGF	248 non-null	float64
9	IHAK	248 non-null	float64
10	IRB0	248 non-null	float64
11	IVEG	248 non-null	float64
12	IWFH	248 non-null	float64
13	IWM	248 non-null	float64
14	volatiliity_index	248 non-null	float64
15	option_adjusted_spread	248 non-null	float64
16	inflation_rate	248 non-null	float64

Multiple Linear Regression Fit

BMED vs IVEG vs IWM Log Returns Before Fit

Our model has two independent variables, so its predictive formula looks something like this: IWM log return = $\hat{\beta_0} + \hat{\beta_1} \cdot (BMED \log return) + \hat{\beta_2} \cdot (IVEG \log return)$

BMED vs IVEG vs IWM Log Returns After Fit

Fitting a Multiple Linear Regression

- This is a multiple linear regression with two independent variables
- Using OLS, we find that $\beta_0 = -0.0003$, $\beta_1 = 0.0077$, and $\beta_2 = 0.0081$ using OLS
- We fit the estimated coefficients into the regression model and arrived with :

 $\hat{y_t} = -0.0003 + 0.0077x_{t1} + 0.0081x_{t2}$, where $\hat{y_t}$ denotes the predicted value at time t, where $\hat{y_t}$ denotes the predicted IWM log return at time t,

 x_{t1} denotes BMED log return at time t, x_{t2} denotes IVEG log return at time t.

BMED vs IVEG vs IWM Log Returns After Fit

What can you say about this multiple linear regression model?

<u> </u>		OLS R	legress	sion R	esults 		
Dep. Variable:		IWM		R-squared:			0.874
Model:			0LS	Adj.	R-squared:		0.873
Method:		Least Squ	ares	F-st	atistic:		649.3
Date:		Wed, 07 Jun	2023	Prob	(F-statistic):		7.01e-85
Time:		12:1	7:05	Log-	Likelihood:		719.95
No. Observations	:		190	AIC:			- 1434.
Df Residuals:			187	BIC:			-1424.
Df Model:			2				
Covariance Type:		nonro	bust				
==========	=====	========	=====	=====			
	coef	std err		t	P> t	[0.025	0.975]
const 0		0.000			O 474	0.001	0.001
	. 0003				0.471		
	.0077			3.699	0.000	0.007	0.009
IVEG 0	.0081	0.001	14	1.378	0.000 	0.007	0.009
Omnibus:		6	.279	Durb	in-Watson:		1.952
Prob(Omnibus):		e	. 043	Jarq	ue-Bera (JB):		8.704
skew:		e	. 168	Prob	(JB):		0.0129
Kurtosis:		3	.993	Cond	. No.		2.36

- **T-test:** p-value < 0.05, rejects null hypothesis and conclude that BMED and IVEG log returns are able to explain the variance of IWM log returns.
- **F-test:** p-value < 0.05, rejects the hypothesis and conclude that at least BMED or IVEG log returns can explain the variance of IWM log returns.

- Jarque Bera tests: p-value < 0.05, so rejects the null hypothesis and conclude that the model residuals are normally distributed.
- **Durbin-Watson test:** < 2 so conclude that there is a positive relationship between the model residuals at adjacent time periods.
- **Condition number:** < 30 so conclude that the model residuals do not seem to have significant multicollinearity, hence implying more stable and reliable model.
- AIC & BIC: a number alone is meaningless. We need to compare them to the other models.

We fit the multiple linear regression model on the test data.

R-squared: 0.8496716652941945

Adjusted R-squared: 0.8429904059739364

MAE: 0.0045893760263598015 RMSE: 0.005849070813181978

- R-squared: the model explains 84.97% of the variation in IWM's log returns, without adjusting for penalty in feature numbers.
- **Adjusted R-squared:** the model explains 82.30% of the variation in IWM's log returns, adjusting for penalty in feature numbers.
- MAE: On average, the total absolute distance of the predicted log returns for IWM from their actual values is 0.0046.
- **RMSE:** The square root of the average of squared differences between the predicted IWM log returns and their actual values is 0.0058.

Regression Analysis on Asset Returns

By John Lee