Tvrzení 1. Rovinný graf obsahuje vrchol stupně nejvýše 5. Pokud je navíc bez trojúhelníků, tak obsahuje vrchol stupně nejvýše 3.

Definice 1. Obarvení (někdy také dobré obarvení) grafu G = (V, E) k barvami je funkce $f : V \to [k]$, která splňuje:

$$\forall uv \in E : f(u) \neq f(v).$$

Definice 2. Barevnost grafu G, značíme $\chi(G)$, je minimální k takové, že G má obarvení k barvami.

Věta 1 (Věta o čtyřech barvách). Každý rovinný graf má obarvení čtyřmi barvami.

Úloha 1. Určete barevnost grafu na obrázku.

Úloha 2. Mějme graf G s barevností k. Jakou barevnost má graf, který vznikne rozdělením každé hrany přidáním vrcholu?

Úloha 3. Dokažte větu o čtyřech barvách pro rovinné grafy bez trojúhelníků.

Definice 3. Diskrétní pravděpodobnostní prostor je trojice (Ω, Σ, P) , kde Ω je konečná množina nebo spočetná množina, $\Sigma = 2^{\Omega}$ a $P: \Sigma \to [0, 1]$ taková, že

- (i) $P[\Omega] = 1$,
- (ii) $P(A) = \sum_{\omega \in A} P[\{\omega\}].$

Prvkům množiny Ω říkáme elementární jevy, prvkům množiny Σ říkáme jevy a funkci P říkáme pravděpodobnost.

Definice 4. Klasický pravděpodobnostní prostor (Ω, Σ, P) je takový pravděpodobnostní prostor, kde Ω je konečná a platí

$$\forall \omega \in \Omega \ : \ P[\{\omega\}] = \frac{1}{|\Omega|}.$$

Definice 5 (Podmíněná pravděpodobnost). Pravděpodobnost jevu A za podmínky B, P(B) > 0 definujeme

$$P[A|B] = \frac{P[A \cap B]}{P[B]}.$$

Věta 2 (Věta o úplné pravděpodobnosti). Mějme množiny B_1, B_2, \ldots, B_n po dvou disjunktní, pro které platí $\bigcup_{i=1}^n B_i = \Omega$ (jde o tzv. disjunktní rozklad Ω) a navíc $\forall i : P[B_i] > 0$. Potom pro $A \in \Sigma$ platí

$$P[A] = P[A|B_1]P[B_1] + P[A|B_2]P[B_2] + \dots + P[A|B_n]P[B_n]$$

Věta 3 (Bayesova věta). Nechť $A \in \Sigma$ a množiny B_1, \ldots, B_n tvoří disjunktní rozklad Ω a $\forall i: P[B_i] > 0$. Potom platí

$$P[B_i|A] = \frac{P[A|B_i]P[B_i]}{\sum_{j} P[A|B_j]P[B_j]}$$

Definice 6. Jevy A, B jsou nezávislé, pokud platí $P[A \cap B] = P[A]P[B]$. Pokud P[B] > 0 můžeme také psát P[A|B] = P[A] dle definice podmíněné pravděpodobnosti.

Úloha 4. Házíme n šestistěnnými kostkami.

- a) Kolik je v našem pravděpodobnostním prostoru elementárních jevů? Jak bychom je reprezentovali?
- b) Jaká je pravděpodobnost, že nám padl součet 16, pokud n = 3?
- c) Jaká je pravděpodobnost, že na kostkách máme:
 - 1) alespoň jednu šestku
 - 2) právě dvě šestky
 - 3) na všech to samé číslo
 - 4) na každých dvou různá čísla
- d) Jsou jevy "Na první kostce padlo alespoň j" a "Na první kostce padlo sudé číslo" nezávislé pro j = 4? Co pro j = 5?
- e) Jaká je podmíněná pravděpodobnost, že nám padla alespoň jedna šestka pro n=3, jestliže součet hozených čísel je 8?
- f) Jaká musí být hodnota parametru n, aby byl jev "Alespoň na 3 kostkách padne alespoň 4" pravděpodobnost přesně $\frac{1}{2}$?