

Quién Soy

Agustín D'Alessandro. Egresado del Instituto Superior del Profesorado "Dr. Joaquín V. González" como Profesor de Matemática y egresado de la Universidad CAECE como Licenciado en Matemática, busco adentrarme en el mundo de la Ciencia de Datos para llevar a la práctica la formación matemática con la que cuento. Esta búsqueda reflota mi formación básica en programación adquirida durante mi educación media, habiendo obtenido el título de Bachiller en Informática.

Datos

RangeIndex: 103904 entries, 0 to 103903

Data	columns (total 25 columns):				
#	Column	Non-Nu.	ll Count	Dtype	
0	Unnamed: 0	103904	non-null	int64	
1	id	103904	non-null	int64	
2	Gender	103904	non-null	object	
3	Customer Type	103904	non-null	object	
4	Age	103904	non-null	int64	
5	Type of Travel	103904	non-null	object	
6	Class	103904	non-null	object	
7	Flight Distance	103904	non-null	int64	
8	Inflight wifi service	103904	non-null	int64	
9	Departure/Arrival time convenient	103904	non-null	int64	
10	Ease of Online booking	103904	non-null	int64	
11	Gate location	103904	non-null	int64	
12	Food and drink	103904	non-null	int64	
13	Online boarding	103904	non-null	int64	
14	Seat comfort	103904	non-null	int64	
15	Inflight entertainment	103904	non-null	int64	
16	On-board service	103904	non-null	int64	
17	Leg room service	103904	non-null	int64	
18	Baggage handling	103904	non-null	int64	
19	Checkin service	103904	non-null	int64	
20	Inflight service	103904	non-null	int64	
21	Cleanliness	103904	non-null	int64	
22	Departure Delay in Minutes	103904	non-null	int64	
23	Arrival Delay in Minutes	103594	non-null	float64	
24	satisfaction	103904	non-null	object	
dtypes: float64(1), int64(19), object(5)					

		eindex: 259/6 entries, 0 to 259/5			
	Data	columns (total 25 columns):			
-	#	Column	Non-Nu	ıll Count	Dtype
7					
	0	Unnamed: 0	25976	non-null	int64
	1	id		non-null	int64
	2	Gender	25976	non-null	
	3	Customer Type	25976	non-null	
æ	4	Age	25976	non-null	int64
m	5	Type of Travel	25976	non-null	object
	6	Class	25976	non-null	
	7	Flight Distance	25976	non-null	int64
	8	Inflight wifi service		non-null	
	9	Departure/Arrival time convenient	25976	non-null	int64
	10	Ease of Online booking	25976	non-null	int64
	11	Gate location		non-null	
	12	Food and drink	25976	non-null	int64
и	13	Online boarding		non-null	int64
	14	Seat comfort		non-null	
	15	Inflight entertainment	25976	non-null	
	16	On-board service	25976	non-null	
	17	Leg room service	25976	non-null	int64
	18	Baggage handling		non-null	int64
	19	Checkin service	25976	non-null	int64
	20	Inflight service	25976	non-null	int64
	21	Cleanliness	25976	non-null	int64
	22	Departure Delay in Minutes	25976	non-null	int64
	23	Arrival Delay in Minutes	25893	non-null	float64
	24	satisfaction		non-null	object
	dtyp	es: float64(1), int64(19), object(5)		

Datos de entrenamiento: train csv

Lic. Agustín D'Alessandro

Datos

Datos

Ambos datasets cuentan con las mismas veinticinco columnas, la mayoría (20) de tipos numéricos. La columna *Unnamed:* 0 es una repetición del índice del dataframe, por lo que será descartada inmediatamente. La única columna en ambos datasets que tiene valores faltantes es *Arrival Delay in Minutes*, a la que le faltan 310 datos en el conjunto de entrenamiento y 83 en los datos de prueba. Para el primer modelo los datos faltantes serán completados, mientras que para el segundo modelo planteado no será necesario porque no se utilizará esa columna.

Datos

Datos

La variable objetivo en los dos modelos que se presentarán en el trabajo es la *satisfacción* de los usuarios. Esto permitirá identificar las variables más relevantes para el servicio y anticipar qué usuarios podrían mostrarse disconformes de antemano para ofrecerles un servicio personalizado que mejore su opinión.

Porcentaje de Satisfacción

Hipótesis

- ¿Es la **clase** un factor influyente en la satisfacción de los pasajeros?
- ¿La distancia de los viajes afecta la decisión de la clase para volar? ¿Afecta entonces a la satisfacción?
- ¿Qué rangos etários acceden a las mejores clases? ¿Termina la edad siendo relevante para la satisfacción de los pasajeros?
- ¿Las **demoras** logran que los pasajeros se muestren disconformes con el servicio?
- ¿Las **valoraciones promedio** son indicativos relevantes a la hora de medir la satisfacción de los usuarios?

EDA

Hav una marcada relación entre las clases y la satisfacción de los pasajeros. La gran mayoría de los pasajeros satisfechos han volado en clase Business, que además es la única clase en la que hay más pasajeros satisfechos que insatisfechos.

EDA

Un efecto similar pareciera apreciarse en la relación entre las edades y la satisfacción de los pasajeros.

Vemos que a menor distancia hay mayor porcentaje de pasajeros insatisfechos mientras que a mayor distancia hay mayor porcentaje de usuarios satisfechos.

Ambos gráficos muestran como las distancias y edades donde se tiene la mayor cantidad de pasajeros satisfechos coincide con las distancias y edades de pasajeros que vuelan mayormente en clase *Business*. Esto explica los aumentos en la satisfacción de los usuarios en estas franjas.

Eco Plus

En el mapa de calor se pueden apreciar las correlaciones entre las variables del dataset. Pocas muestran un alto grado de correlación con la variable objetivo. Las más destacables son la Class, Type of Travel, Online boarding, Inflight wifi service.

Quién Soy

goritmos Empleados

Para el primer modelo se sometieron las variables a varios procesos de Feature Selection. Las variables no fueron escaladas ni normalizadas. Para este primer análisis se utilizó:

Decision Tree

Para el segundo modelo se seleccionaron únicamente las variables identificables de manera previa al vuelo y se hizo un escalado y normalizacion de las mismas. Los modelos para este análisis fueron:

- Random Forest
 - Support Vector Machine
- Logistic Regresion
- K-Nearest Neighbors

En ambos modelos se toma en cuenta la Especificidad por la importancia que tiene para el problema el detectar aquellos usuarios que queden insatisfechos.

Las métricas obtenidas para el primer modelo, con los distintos

métodos de Feature Selection son:

	Stepwise	Forward	Backward
Especificidad	0,94	0,94	0,88
Exactitud	0,88	0,88	0,89

Se puede ver que los modelos arrojan los mejores resultados con las variables obtenidas con los procesos de Stepwise Selection o Forward Selection.

Con las variables seleccionadas se hizo el entrenamiento del modelo y se pasó a hacer las predicciones sobre el dataset test.csv. Los resultados obtenidos son:

	Modelo 1
Especificidad	0,9355
Exactitud	0,8749

Se puede apreciar que al pasar los nuevos datos por el modelo los resultados obtenidos tuvieron métricas altas, ambas por encima del 85%.

Las métricas obtenidas con las variables previas al vuelo, luego del tuneo de hiperparámetros, son:

	Random Forest	Support Vector Machine	Logistic Regresion	K-Nearest Neighbors
Especificidad	0,9232	0,8455	0,8455	0,8844
Exactitud	0,8602	0,8286	0,8286	0,8711

El modelo con mejores resultados es el Random Forest, con una especificidad del 92, 32% y una exactitud del 86, 02%.

Con el modelo y los hiperparámetros escogidos se hizo el entrenamiento del modelo y se pasó a hacer las predicciones sobre el dataset *test.csv*. Los resultados obtenidos son:

	Modelo 2
Especificidad	0,9195
Exactitud	0,8572

Se puede apreciar que al pasar los nuevos datos por el modelo los resultados obtenidos tuvieron métricas altas, muy similares a las de los datos de entrenamiento.

Conclusiones

Quién Soy

- base a lo analizado en estos datasets se puede concluir lo siguiente:
 - Las variables con mayor influencia en la satisfacción parecen ser: Gender, Customer Type, Age, Class, Flight Distance, Inflight wifi service, Gate location, Departure Delay in Minutes, Mean Satisfaction.
 - El modelo de Random Forest permite predecir con una alta especificidad la satisfacción de los usuarios en base a variables que pueden ser analizadas antes del vuelo, lo que le da la posibilidad a la aerolínea para compensar el servicio previo durante el vuelo.

