ESP32 蓝牙配网

用户指南

关于本手册

本文为用户提供使用乐鑫 ESP32 进行蓝牙配网的指南,并提供示例。

发布说明

日期	版本	发布说	領
2017.03	V1.0	首次发布。	
2019.05	V1.1	更新图片。	

文档变更通知

用户可通过乐鑫官网订阅页面 https://www.espressif.com/zh-hans/subscribe 订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网证书下载页面 https://www.espressif.com/zh-hans/certificates 下载产品证书。

目录

1.	简介.		. 1
	1.1.	概述	.1
	1.2.	EspBlufi	.1
2.	配网	相关 API 说明相关 API 说明	.3
	2.1.	BluFi 协议	.3
		ESP32 端开发	
		APK 端开发	
		32 蓝牙配网示例	
		硬件准备和软件下载	
	3.2.	Station 模式配置示例	.5
	3.3.	SoftAP 模式配置示例	.9

1. 简介

1.1. 概述

作为集成 2.4 GHz Wi-Fi 和蓝牙双模的单芯片方案,ESP32 支持 SmartConfig 和蓝牙配网两种模式,用户可以使用 ESP32 为物联网设备进行安全配网。

蓝牙在设备配置方面有以下优势:

- 蓝牙协议公开并且容易扩展。
- 通过蓝牙可以便捷地搜索到附近的蓝牙设备。
- 蓝牙协议安全性高,用户通过蓝牙连接给设备授权后,才把密码传输到设备端。
- 在路由无法正常工作的情况下,客户还能通过蓝牙把数据传输给手机,通过手机把数据上传到网络。
- 在 Wi-Fi 出现问题的时候,手机也能连接蓝牙设备,通过发送指令控制设备。

1.2. EspBlufi

ESP32 支持的蓝牙基础协议为蓝牙 v4.2 完整标准,包含传统蓝牙(BR/EDR)和低功耗蓝牙(BLE)。乐鑫提供配套 app,即 EspBlufi,供用户为设备进行配网。该 app 支持的最低安卓版本为 Android 4.3。Android 6.0 版本之后,由于 Google 官方对于 Android API 的修改,扫描蓝牙必须给予位置权限并开启位置信息模块。

- 点击链接,下载 EspBlufi app: https://github.com/EspressifApp/EspRelease/tree/master/EspBlufi
- 下载 EspBlufi 之后,打开 app,进入以下信息界面,点击右上角的菜单键 🔠。

图 1-1. EspBlufi 信息界面

• 页面将显示设置菜单,点击设置进入设置界面。

图 1-2. 设置菜单

• 设置 BLE mtu 长度和 BLE 扫描名字过滤,并查看 app 版本和 Blufi 库版本。

图 1-3. 设置界面

2.

配网相关 API 说明

2.1. BluFi 协议

协议文档: https://docs.espressif.com/projects/esp-idf/zh CN/latest/api-guides/blufi.html

2.2. ESP32 端开发

在 ESP32 端的代码中,密钥协商等安全处理的流程,由使用者来决定和开发。手机 app 向 ESP32 发送 negotiate data, negotiate data 类型的包将传送给应用层处理。如果应用 层不愿意处理,可使用 BluFi 提供的 DH 加密算法来磋商密钥。应用层需向 BluFi 注册表 2-1 中的安全相关函数:

表 2-1. 安全相关函数

函数	说明
	• 该函数用来接收协商期间的 negotiate data, 处理完成后,需要将待发送的数据使用 output_data 和 output_len 传出到 BluFi。
<pre>typedef void (*esp_blufi_negotiate_data_handler_t) (uint8_t *data, int len, uint8_t **output_data, int *output_len, bool</pre>	• BluFi 在调用 negotiate_data_handler 后,发送 negotiate_data_handler 传 出的 output_data。
_	• 由于最后发出去的数据长度不确定,所以 *output_data需要自己 malloc 一段内 存或者指向全局缓存,通过 need_free 通 知 BluFi 是否需要释放内存。
<pre>typedef int (* esp_blufi_encrypt_func_t) (uint8_t iv8, uint8_t *crypt_data, int</pre>	加密和解密的数据长度必须一致。其中 i v8 为包的 8 bit 的 sequence,可作为初始化向量的某 8 bit 来使用。
<pre>typedef int (* esp_blufi_decrypt_func_t) (uint8_t iv8, uint8_t *crypt_data, int</pre>	加密和解密的数据长度必须一致。其中 i v8 为包的 8 bit 的 sequence,可作为初始化向量的某 8 bit 来使用。
<pre>typedef uint16_t (*esp_blufi_checksum_func_t)(uint8_t iv8,</pre>	该函数用来计算 checksum,返回值为 checksum 的值。BluFi 会使用该函数返回值与 包末尾的 checksum 做比较。

2.3. APK 端开发

- Android app 源码: https://github.com/EspressifApp/EspBlufiForAndroid
- Android API文档: https://github.com/EspressifApp/EspBlufiForAndroid/blob/master/doc/Introduction to the EspBlufi API Interface for Android cn.md
- iOS app 源码: https://github.com/EspressifApp/EspBlufiForiOS
- iOS API 文档: https://github.com/EspressifApp/EspBlufiForiOS/blob/master/doc/Blufi APP API for iOS CN.md

3.

ESP32 蓝牙配网示例

3.1. 硬件准备和软件下载

- ESP32 模组一个
- PC 一台, 并与模组连接, 为模组供电并提供串口打印
- 安卓手机一台
- 安卓手机上安装乐鑫提供的配套 EspBlufi app, 并打开 Wi-Fi 和蓝牙, 下载链接: https://github.com/EspressifApp/EspRelease/tree/master/EspBlufi

3.2. Station 模式配置示例

1. 给模组上电,可通过串口工具看到如下打印:

```
E (3155) BT: Startup BTU

E (3165) BT: GATTS_CreateService: handle of service handle1

E (3175) BT: bta_dm_co_ble_load_local_keys: func not ported

I (3185) BLUFI_DEMO: BD ADDR: 24:0a:c4:01:4d:be

I (3185) BLUFI_DEMO: BLUFI VERSION 0100

I (3185) BLUFI_DEMO: BLUFI init finish
```

2. 打开手机上的 EspBlufi app, 在 app 界面下拉刷新,可以看到周围的蓝牙设备,如下图 所示:

图 3-1. EspBlufi 信息界面

3. 在刷新后界面显示的一系列蓝牙设备中,点击 ESP32 模组,跳转到设备界面,点击**连接**,进行蓝牙连接。如果连接成功,则会出现图 3-2 所示页面,此时可点击**配网**按钮。

图 3-2. 蓝牙连接成功界面

同时, 串口工具中会出现如下图中的打印:

```
E (37875) BT: btm_ble_resolve_random_addr_on_conn_cmpl unable to match and resolve random address
E (38145) BT: device is connected 48:63:0f:47:72:86, server_if=4,reason=0x0,connect_id=4
E (38145) BT: smp_br_connect_callback is called on unexpected transport 2
I (38145) BLUFI_DEMO: BLUFI ble connect
E (38285) BT: MTU request PDU with MTU size 64
E (38285) BT: BTM_SetBleDataLength failed, peer does not support request E (38285) BT: Call back not found for application conn_id=3
I (40185) BLUFI_DEMO: BLUFI get wifi status from AP
```

山 说明:

在图 3-2 显示的界面上,如没有出现**配网**按钮,或配网按钮无法点击,则说明蓝牙连接失败。

4. 点击配网按钮、进入配网界面。如图 3-3 所示:

图 3-3. 配网界面

5. 点击下拉箭头,选择设备模式(BluFi 配网支持 Station/SoftAP/Station+SoftAP 这三种模式)。如图 3-4 所示:

图 3-4. 选择配网模式

6. 在图 3-5 中,以配置 Station 模式为例,点击右侧的**刷新**按钮,选择需要的 SSID,并填写对应的密码:

图 3-5. 配置 Station 模式

7. 点击**确定**按钮进行配网,如果配网成功,则会出现图 3-6 的界面,且下方红字将显示配置完成后 Wi-Fi 模式 的 Station 连接信息,包括 AP 的 BSSID 和 SSID 信息,以及连接状态等。本例中,SoftAP 没有开启,依旧是 Station 模式。

图 3-6. Station 连接信息

同时, 串口工具会打印如下信息:

```
I (121745) BLUFI_DEMO: BLUFI Set WIFI opmode 1
I (121845) BLUFI_DEMO: Recv STA SSID DVES_HOME
I (121945) BLUFI_DEMO: Recv STA PASSWORD 12345678
I (122085) BLUFI_DEMO: BLUFI requset wifi connect to AP
I (122955) wifi: n:6 2, o:1 0, ap:255 255, sta:6 2, prof:1
I (123615) wifi: state: init -> auth (b0)
I (123625) wifi: state: auth -> assoc (0)
I (123645) wifi: state: auth -> assoc (0)
I (123675) wifi: connected with DVES_HOME, channel 6
I (124305) event: ip: 192.168.1.105, mask: 255.255.255.0, gw: 192.168.1.1
I (133645) wifi: pm start, type:0
```

3.3. SoftAP 模式配置示例

1. 如同章节 **3.2** 中的步骤 1-步骤 4 所示,用户将模组上电,通过手机 app 与 ESP32 模组 进行蓝牙连接后,进入配网界面选择 device mode 为 SoftAP 模式,如图 3-7 所示:

图 3-7. 选择 SoftAP 模式

2. 选择配置 SoftAP 的相关参数,包括信道,加密方式,可连接的 STA 最大个数,并填写 SoftAP 的 SSID 以及密码。点击**确定**按钮,进行 SoftAP 配置。

Espressif 9/13 2019.05

图 3-8. 配置 SoftAP 模式

3. 配置成功后,则会出现如图 3-9 所示的界面,且最下方红字将会显示当前设置的模式,以及当前 SoftAP 的连接状态。

图 3-9. SoftAP 连接信息

Espressif 10/13 2019.05

同时, 串口工具会打印如下信息:

```
I (141967) wifi: mode : softap (24:0a:c4:01:4d:bd)
I (142067) BLUFI_DEMO: RECV SOFTAP SSID blufi_softap
, ssid len 13
I (142167) BLUFI_DEMO: RECV SOFTAP PASSWORD 12345678
I (142267) BLUFI_DEMO: RECV SOFTAP CHANNEL 10
I (142357) BLUFI_DEMO: RECV SOFTAP MAX CONN NUM 2
I (143107) BLUFI_DEMO: RECV SOFTAP AUTH MODE 4
```

4. 打开手机 Wi-Fi, 可以搜索到已设置的 SoftAP, 如图 3-10 所示:

图 3-10. 搜索 SoftAP

5. 将手机 Wi-Fi 连接此 SoftAP, 出现"网络已连接"提示, 如图 3-11 所示:

Espressif 11/13 2019.05

图 3-11. 网络连接提示

同时, 串口工具打印如下信息:

```
I (293557) wifi: n:10 0, o:10 0, ap:10 2, sta:255 255, prof:10

<u>I</u> (293557) wifi: station: 98:d6:f7:64:13:08 join, AID=1, n, 20
```

至此, 蓝牙配网成功。

単 说明:

此例的 app 上相关时间显示为演示专用,配网时间取决于实际情况。

Espressif 12/13 2019.05

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2019 乐鑫所有。保留所有权利。