1.

(1)

$$B^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

$$B^{-1}b' = \begin{bmatrix} -\frac{2}{3} \\ \frac{10}{3} \end{bmatrix}$$

所以原问题的最优基不再是可行的,用对偶单纯形法接着往下做即可

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b'$
x_5	0	3	-3	-1	1	2
x_1	1	1	2	1	0	2
检验系数	0	-1	-5	-2	0	-4

新问题的最优表如上,最优值是-4,最优解是 $x^T = (2,0,0)$

(2)

$$\Delta c = c' + 2$$

$$z'_1 - c'_1 = 0$$

$$z'_2 - c'_2 = -6 + (c' + 2) * 3 \le 0$$

$$z'_3 - c'_3 = 0 + (c' + 2) * 0 \le 0$$

$$z'_4 - c'_4 = -\frac{1}{3} + (c' + 2) * \frac{1}{3} \le 0$$

$$z'_5 - c'_5 = -\frac{5}{3} + (c' + 2) * \frac{2}{3} \le 0$$

 \therefore 当 $c' \le -1$ 时,最优解不变,最优值变为 $-\frac{26}{3} + \frac{14}{3} * (c' + 2)$

增加x4,x5为松弛变量,选取x4,x5为基变量,经过单纯形法,得到最优单纯形表为

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
x_2	-1	1	3	1	0	20
x_5	16	0	-2	-4	1	10
检验系数	0	0	-2	-5	0	-100

最优值为 100,最优解为 $x^T = (0,20,0)$

(1)

$$x_3$$
是非基变量, $\Delta c = 8 - 13 = -5$
 $\therefore z' - c' = -2 + \Delta c = -7$
 因此最优解和最优值不变

(2)

$$B^{-1}b' = \begin{bmatrix} 30\\ -30 \end{bmatrix}$$

此时,原问题的最优基不再是可行的,但是是对偶可行的,继续用对偶单纯形法求解,得

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
x_4	$-\frac{23}{5}$	$-\frac{1}{5}$	0	1	$-\frac{10}{3}$	3
x_3	6 5	2 5	1	0	$\frac{1}{10}$	9
检验系数	$-\frac{103}{5}$	$-\frac{1}{5}$	0	0	$-\frac{13}{10}$	-117

最优值是 117,最优解为 $x^T = (0,0,9)$

(3)

$$B^{-1}b' = \begin{bmatrix} 20\\ -10 \end{bmatrix}$$

此时,原问题的最优基不再是可行的,但是是对偶可行的,继续用对偶单纯形法求解,得

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
x_2	23	1	0	-5	$\frac{3}{2}$	5
x_3	-8	0	1	2	$-\frac{1}{2}$	5
检验系数	-16	0	0	-1	-1	-90

最优值是 90,最优解为 $x^T = (0,5,5)$

(4)

 $C_B B^{-1} P_1' - C_1 = -5 \le 0$ 所以最优值和最优解不变

(5)

原问题的最优解代入约束条件为 60,不满足约束条件。 将约束条件加入原最优表,增加x₆为松弛变量,再使用对偶单纯形法,得到改变后的最优表

	x_1	x_2	x_3	x_4	x_5	x_6	$B^{-1}b$
x_2	$\frac{11}{4}$	1	0	$-\frac{5}{4}$	0	$\frac{3}{4}$	$\frac{25}{2}$
x_5	$\frac{27}{2}$	0	0	$-\frac{5}{2}$	1	$-\frac{1}{2}$	15
x_3	$-\frac{5}{4}$	0	1	$\frac{3}{4}$	0	$-\frac{1}{4}$	$\frac{5}{2}$
检验系 数	$-\frac{5}{2}$	0	0	$-\frac{7}{2}$	0	$-\frac{1}{2}$	-95

最优值为 95,最优解为 $x^T = (0, \frac{25}{2}, \frac{5}{2})$

3.

对偶问题可表示为

 $\max wb$ $s. t. wA \le c$

将 A 按行分块,然后把对偶问题展开,得
$$\max w_1b_1+w_2b_2+\cdots+w_kub_k+\cdots+w_mb_m$$
 $s.t.w_1A_1+w_2A_2+\cdots+w_kuA_k+\cdots+w_mA_m\leq c$

所以, $w = \left(w_1^{(0)}, w_2^{(0)}, ..., \frac{1}{u} w_k^{(0)}, ..., w_m^{(0)}\right)$ 是这个对偶问题的一个可行解,且对偶问题的目标函数值和原问题的目标函数值相等,根据强对偶定理,w 是这个对偶问题的最优解

(2)

与第(1)问类似,将 A 按行分块,然后把对偶问题展开,得
$$\max w_1b_1 + w_2b_2 + \cdots + w_r(ub_k + b_r) + \cdots w_mb_m$$
 $s.t.$ $w_1A_1 + w_2A_2 + \cdots + w_r(uA_k + A_r) + \cdots w_mA_m$

所以, $w = (w_1^{(0)}, w_2^{(0)}, ..., w_k^{(0)} - uw_r^{(0)}, ..., w_m^{(0)})$ 是这个对偶问题的一个可行解, 且对偶问题的目标函数值和原问题的目标函数值相等,根据强对偶定理,w 是这个对偶问题的最优解.

4.

因为只有3个变量, 总共8种情况, 挨个枚举即可

x_1	x_2	x_3	是	目标函数值
0	0	0	不满足	X
0	0	1	不满足	X
0	1	0	不满足	X
0	1	1	满足	7
1	0	0	满足	2
1	0	1	不满足	X
1	1	0	满足	5
1	1	1	满足	9

所以最优值为 2,最优解为 $x^T = (1,0,0)$