Numerical Methods Polynomial Interpolation

Martijn Boussé, Pieter Collins & Başak Sakçak

Department of Advanced Computing Sciences Maastricht University

 $\verb|m.bousse,pieter.collins,basak.sakcak@maastrichtuniversity.nl|\\$

KEN1540 & KEN2540, Block 5, April-May 2025

Introduction	2
Data Analysis	
	_
Taylor Series	4
Taylor polynomial	
Taylor series	
Rolle's theorem	
Taylor's theorem	12
Polynomial Interpolation	16
Polynomial interpolation.	17
Interpolation in Matlab	18
Lagrange polynomials	
Existence/uniqueness	
Divided Differences	26
Neville's method.	33
Divided differences	35
Interpolation of Functions	43
Function approximation	44
Interpolation error	
Chebyshev nodes	
Approximation theorems	
Spline Interpolation	51
Splines	52
Spline interpolation	
Splines in Matlab	
Interpolation conditions	
Interpolation formulae	
Interpolation example	
Equally-spaced knots.	
Tridiagonal system	

Interpolation example	66
3-Splines	69
B-splines (Non-examinable)	70

Introduction 2 / 73

Data Analysis

Data and Models A key task of data science is the construction of *models* from *data*.

Often, the data consists of pairs (x_i, y_i) , and the model is a function g describing y in terms of x.

The function g is usually restricted to lie in some $model\ class$, such as linear functions.

Data Interpolation Given data points $(x_0, y_0), \dots, (x_n, y_n)$, find a function g such that $g(x_i) = y_i$ for $i = 0, \dots, n$.

Data Approximation Given data points $(x_0, y_0), \dots, (x_n, y_n)$, find a function g such that $g(x_i) \approx y_i$ for $i = 0, \dots, n$.

e.g. Minimise the sum-of-squares error $\sum_{i=0}^n (g(x_i)-y_i)^2.$

Taylor Series 4 / 73

Taylor polynomial

Problem Find a polynomial p approximating a function f in a neighbourhood of a point x_0 .

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + a_4(x - x_0)^4 + \cdots$$

Derivatives

$$p'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + 4a_4(x - x_0)^3 + \cdots$$

$$p''(x) = 2a_2 + 6a_3(x - x_0) + 12a_4(x - x_0)^2 + \cdots$$

$$p'''(x) = 6a_3 + 24a_4(x - x_0) + \cdots$$

Match derivatives $p^{(k)}(x_0) = k! \, a_k = f^{(k)}(x_0)$, so $a_k = f^{(k)}(x_0)/k!$.

Taylor polynomial

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \cdots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + \cdots + \frac{f^{(n)}(x_0)}{n}(x - x_0)^n.$$

5 / 73

Taylor polynomial

Example Approximate $f(x) = e^x \cos(2x)$ in a neighbourhood of $x_0 = 0$ by a cubic polynomial p.

Match derivatives, $p^{(k)}(x_0) = f^{(k)}(x_0)$:

$$p(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{3!}f'''(x_0)(x - x_0)^3.$$

Compute derivatives:

$$f'(x) = e^x (\cos(2x) - 2\sin(2x)), \ f''(x) = e^x (-3\cos(2x) - 4\sin(2x)),$$
$$f'''(x) = e^x (-11\cos(2x) + 2\sin(2x)).$$

Evaluate derivatives:

$$f(0) = 1$$
, $f'(0) = 1$, $f''(0) = -3$, $f'''(0) = -11$.

Approximating polynomial:

$$f(x) \approx p_3(x) = 1 + x - \frac{3}{2}x^2 - \frac{11}{6}x^3$$
.

Draw in Matlab:

```
 f=@(x)\exp(x).*\cos(2*x), p3=@(x)1+x-3/2*x.^2-11/6*x.^3, \\ fplot(f,[-2,2]); hold on; fplot(p3,[-2,2]); hold off; \\ fplot(@(x)abs(f(x)-p3(x)),[-2,+2]); \\
```

Taylor series

Taylor series Infinite series

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Example $f(x) = \exp(x)$ gives $f^{(k)}(x) = \exp(x)$, $f^{(k)}(0) = 1$, so the Taylor series at $x_0 = 0$ is

$$\exp(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k.$$

Example $f(x) = 1/(1-x) = (1-x)^{-1}$ gives $f^{(k)}(x) = k!(1-x)^{-(k+1)}$, so

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$$
. (Only for $|x| < 1$.)

7 / 73

Taylor Series

Taylor series Standard functions

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-x)^k = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + x^4 - \cdots$$

$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$

$$\exp(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \cdots$$

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + \cdots$$

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \frac{1}{720}x^6 + \cdots$$

8 / 73

Error in Taylor polynomial

Question: Error in Taylor polynomial What is the error in the approximation

$$f(x) \approx \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$
?

Rolle's theorem (Advanced)

Rolle's Theorem If f is differentiable on [a,b], and f(a)=f(b)=0, then there exists $c\in(a,b)$ such that f'(c)=0.

Multiplicity The *multiplicity* of a root x of f is n if $f^{(k)}(x) = 0$ for k < n and $f^{(n)}(x) \neq 0$.

Theorem (Generalised Rolle's theorem) If f is n-times differentiable on [a,b], and f has roots in [a,b] of total multiplicity at least n+1, then there exists $c \in (a,b)$ such that $f^{(n)}(c)=0$.

Example $f(x)=x(x-1)^3(x-2)^2(x-4)$ has roots at x=0,1,2,4. The root at x=1 has multiplicity 3, and that at x=2 has multiplicity 2 for a total multiplicity of 7. So $f^{(6)}(c)=0$ for some $c\in(0,4)$; can show $c=1\frac{4}{7}$.

10 / 73

Error in linear Taylor polynomial (Non-examinable)

Error in (linear) Taylor polynomial

Let $p(x) = f(x_0) + f'(x_0)(x - x_0)$, the linear approximation to f at x_0 .

Fix x_* and let $E_* = f(x_*) - p(x_*)$.

Define $q(x)=p(x)+E_*(x-x_0)^2/(x_*-x_0)^2$ and g(x)=q(x)-f(x), so $g(x)=f(x_0)+f'(x_0)(x-x_0)+E_*(x-x_0)^2/(x_*-x_0)^2-f(x)$ with $g(x_0)=0$ and $g(x_*)=0$; also $g'(x_0)=0$.

By Rolle's theorem, $g'(\xi_1)=0$ for some ξ_1 between x_0 and x_* . Derivative $g'(x)=f'(x_0)+2E_*(x-x_0)/(x_*-x_0)^2-f'(x)$.

By Rolle's theorem again, $g''(\xi_2)=0$ for some ξ_2 between x_0 and ξ_1 . Second derivative $g''(x)=2E_*/(x_*-x_0)^2-f''(x)$.

Thus $E_* = \frac{1}{2}f''(\xi_2)(x_* - x_0)^2$ for ξ_2 between x_0 and x_* .

Hence (dropping the $_*$), for some ξ between x_0 and x:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2.$$

11 / 73

Taylor's theorem (Advanced)

Taylor's theorem If f is (n+1)-times differentiable. Then there exists $\xi(x)$ between x_0 and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}.$$

Error bound If $x, x_0 \in [a, b]$, then

$$\left| f(x) - \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k \right| \le \frac{1}{(n+1)!} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)| |x - x_0|^{n+1}.$$

Taylor's theorem

Example (Advanced) Approximate $\exp(\frac{1}{2})$ using the Taylor series with $n=3, x_0=0$.

By Taylor's theorem,

$$\exp(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}\exp(\xi)x^4$$
 for some $\xi \in (0, x)$.

Since e < 4, $\exp(\frac{1}{2}) = e^{1/2} < 4^{1/2} = 2$.

Since exp is monotonic, if $\xi \in (0, \frac{1}{2})$, $\exp(\xi) \in (\exp(0), \exp(\frac{1}{2})) \subset [1, 2]$.

So for $x \in [0, \frac{1}{2}]$,

$$\exp(x) \in 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}[1, 2]x^4.$$

Then

$$\begin{split} \exp(\frac{1}{2}) &\in 1 + \frac{1}{2} + \frac{1}{2 \cdot 4} + \frac{1}{6 \cdot 8} + \frac{1}{24 \cdot 16}[1, 2] = [1.6484375, 1.651041\dot{6}] \\ &= 1\frac{499}{768} \pm \frac{1}{768} = 1.6497 \pm 0.0014. \end{split}$$

The exact value is 1.64872127 (8dp), within the computed bounds

13 / 73

Taylor Series

Exercise (Advanced) Estimate $\cos(\frac{1}{2})$ using the fact that $|\cos(x)| \le 1$ and the Taylor approximation $\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{24}\cos(\xi)x^4$.

Answer

$$\cos(\frac{1}{2}) = 1 - \frac{1}{2 \cdot 4} + \frac{1}{24 \cdot 16}[-1, +1] = \frac{7}{8} \pm \frac{1}{384} \in [0.872395, 0.877605].$$

Exact answer 0.87758256 (8dp).

14 / 73

Error bounds (Advanced)

Bounds of a sum $\max_{x \in [a,b]} |f(x) \pm g(x)| \le \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |g(x)|$.

Bounds of a product $\max_{x \in [a,b]} |f(x) \cdot g(x)| \le \max_{x \in [a,b]} |f(x)| \cdot \max_{x \in [a,b]} |g(x)|$.

Bounds of a monotone function

If f is increasing/decreasing, $\max_{x \in [a,b]} |f(x)| = \max\{|f(a)|, |f(b)|\}$

Bounds of a differentiable function If f has critical points c_i with $f'(c_i) = 0$, then $\max_{x \in [a,b]} |f(x)| = \max\{|f(a)|, |f(c_1)|, \dots, |f(c_k)|, |f(b)|\}$

Example Let $f(x) = x(e^x + x)$ on [-2, +1].

 $e^x + x$ is increasing, so $|e^x + x| \le \max(|e^{-2} - 2|, |e^1 + 1|) = |e + 1| \le 4$.

 $\max_{x \in [-2,+1]} |f(x)| \le \max_{x \in [-2,+1]} |x| \cdot \max_{x \in [-2,+1]} |e^x + x| \le 2 \times 4 = 8.$

A more careful analysis shows $\max_{x \in [-2,+1]} |f(x)| \le 5$.

Polynomial interpolation

Problem Let $x = (x_0, x_1, ..., x_n)$ and $y = (y_0, y_1, ..., y_n)$.

Find a polynomial p such that $p(x_i) = y_i$ for $i = 0, \dots, n$.

17 / 73

Polynomial interpolation in Matlab

Computing polynomials The command

computes coefficients of the polynomial p of degree d=n-1 interpolating

$$xs = [x_1, x_2, \dots, x_n], ys = [y_1, y_2, \dots, y_n].$$

The result cs is a row vector of the coefficients of p in descending order

$$cs = [c_d, c_{d-1}, \dots, c_1, c_0].$$

Evaluating polynomials To evaluate the polynomial with coefficients cs at x, use

Polynomial function To construct a function p with the coefficients, use

18 / 73

Polynomial interpolation in Matlab

Example Find a polynomial p such that $p(x_i) = y_i$ for $i = 0, \dots, n$.

```
d=4
xs=[0.0,0.5,1.0,2.0,3.0]
ys=[1.0,0.8,0.5,0.2,0.1]
cs = polyfit(xs,ys,d)
polyval(cs,xs) polyval(cs,1.5)
p = @(x)polyval(cs,x)
fplot(p,[-0.5,3.5])
```

Quadratic interpolation

Exercise Interpolate f at x - h, x, x + h by a quadratic polynomial p_2 .

Answer

$$p_2(y) = f(x) + \frac{f(x+h) - f(x-h)}{2h} (y-x) + \frac{f(x-y) - 2f(x) + f(x+h)}{2h^2} (y-x)^2.$$

Check interpolation at y = x + h:

$$p_{2}(x+h) = f(x) + \frac{f(x+h) - f(x-h)}{2h}h + \frac{f(x-y) - 2f(x) + f(x+h)}{2h^{2}}h^{2}$$

$$= f(x) + \left(\frac{1}{2}f(x+h) - \frac{1}{2}f(x-h)\right) + \left(\frac{1}{2}f(x-y) - f(x) + \frac{1}{2}f(x+h)\right)$$

$$= f(x+h) \checkmark$$

20 / 73

Lagrange polynomials

Lagrange basis Fix x_0, \ldots, x_n . Define Lagrange basis polynomial $l_i(x)$ so that

$$l_i(x_j) = 1$$
 if $i = j$ and $l_i(x_j) = 0$ if $i \neq j$.

Lagrange form The interpolating polynomial is then

$$p(x) = \sum_{i=0}^{n} y_i \, l_i(x),$$

since

$$p(x_j) = \sum_{i=0}^{n} y_i l_i(x_j) = y_j l_j(x_j) + \sum_{i \neq j} y_i l_i(x_j) = y_j l_j(x_j) = y_j.$$

21 / 73

Lagrange polynomials

Lagrange basis element Derive

$$l_i(x) = \frac{(x - x_0)}{(x_i - x_0)} \cdots \frac{(x - x_{i-1})}{(x_i - x_{i-1})} \frac{(x - x_{i+1})}{(x_i - x_{i+1})} \cdots \frac{(x - x_n)}{(x_i - x_n)}$$
$$= \prod_{\substack{j \neq i \\ j = 0}}^{n} \left(\frac{x - x_j}{x_i - x_j}\right).$$

Example For n=2,

$$l_1(x) = \prod_{\substack{j \neq 1 \ j=0}}^{2} \left(\frac{x - x_j}{x_i - x_j} \right) = \prod_{j=0,2} \left(\frac{x - x_j}{x_i - x_j} \right) = \frac{(x - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)}$$

$$l_1(x_0) = \frac{(x_0 - x_0)}{(x_1 - x_0)} \frac{(x_0 - x_2)}{(x_1 - x_2)} = 0; \quad l_1(x_1) = \frac{(x_1 - x_0)}{(x_1 - x_0)} \frac{(x_1 - x_2)}{(x_1 - x_2)} = 1;$$

Lagrange polynomials

Example Interpolate the following data by a polynomial of degree 2.

Lagrange basis

$$l_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-2.5)(x-4.0)}{(2.0-2.5)(2.0-4.0)} = \frac{x^2-6.5x+10.0}{1.0}$$

$$l_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-2.0)(x-4.0)}{(2.5-2.0)(2.5-4.0)} = \frac{x^2-6.0x+8.0}{-0.75}$$

$$l_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x-2.0)(x-2.5)}{(2.4-2.0)(4.0-2.5)} = \frac{x^2-4.5x+5.0}{3.0}$$

So

$$p(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$$

= $0.50 \times \frac{x^2 - 6.5x + 10.0}{1.0} + 0.40 \times \frac{x^2 - 6.0x + 8.0}{-0.75} + 0.25 \times \frac{x^2 - 4.5x + 5.0}{3.0}$

Simplify

$$p(x) = 0.05x^2 - 0.425x + 1.15 = \frac{1}{20}x^2 - \frac{17}{40}x + \frac{23}{20}.$$

23 / 73

Lagrange polynomials

Example Interpolate the following data by a polynomial of degree 2.

Find

$$p(x) = 0.05x^2 - 0.425x + 1.15 = \frac{1}{20}x^2 - \frac{17}{40}x + \frac{23}{20}.$$

Check by substitution:

$$p(2.0) = 0.05 \times 2.0^2 - 0.85 \times 2.0 + 1.15 = 0.2 - 0.85 + 1.15 = 0.5;$$

 $p(2.5) = \cdots$

If $y_i = f(x_i)$, approximate f at other points by p:

$$f(3.0) \approx p(3.0) = 0.05 \times 3.0^2 - 0.425 \times 3.0 + 1.15$$

= 0.45 - 1.275 + 1.15 = 0.325.

Existence and uniqeness

Existence and Uniqueness Theorem There exists a unique polynomial p of degree at most n such that $p(x_i) = y_i$ for $i = 0, \dots, n$.

Proof. Existence is proved by the construction of the Lagrange form.

To show uniqueness, note that for fixed x_0, x_1, \ldots, x_n , the n+1 coefficients c_i in the expansion $p(x) = \sum_{i=0}^n c_i x^i$ satisfy the n+1 linear equations,

$$c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_n x_i^n = y_i, \quad i = 0, \dots, n.$$

Write as a matrix equation

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Since there is a solution for any (y_0, \ldots, y_n) , the rank of the matrix is n+1.

Since the matrix has n+1 columns, the nullity is 0.

Hence for any (y_0, \ldots, y_n) the solution (c_0, \ldots, c_n) is unique.

25 / 73

Polynomial Interpolation by Divided Differences

26 / 73

Nested form

Example Interpolate data

Interpolating at the data point (x_0, y_0) gives

$$p_0(x) = a_0 = y_0 = 5.0$$
.

To also interpolate at (x_1, y_1) we can add a constant multiple of $(x - x_0)$ so as not to change the value at x_0 :

$$p_1(x) = p_0(x) + (x - x_0)a_1 = a_0 + (x - x_0)a_1$$

Substituting $p_1(x_1) = y_1$ gives

$$p_1(x_1) = 5.0 + (3-1)a_1 = y_1 = 1.0$$

So $2a_1 = -4.0$, $a_1 = -2.0$ and hence

$$p_1(x) = a_0 + (x - x_0)a_1 = 5.0 - (x - 1) \times 2.0$$
.

Nested form

Example Interpolate data

The interpolant at x_0, x_1 is

$$p_1(x) = a_0 + (x - x_0)a_1 = 5.0 - (x - 1) \times 2.0$$
.

To also interpolate at (x_2, y_2) we can add a constant multiple of $(x - x_0)(x - x_1)$ so as not to change the value at x_0 or x_1 :

$$p_2(x) = p_1(x) + (x - x_0)(x - x_1)a_2$$

= $a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2$
= $a_0 + (x - x_0)(a_1 + (x - x_1)a_2)$.

Substituting $p_2(x_2) = y_2$ gives

$$p_2(x_2) = p_1(x_2) + (x_2 - x_0)(x_2 - x_1)a_2 = 11.0 + 15a_2 = y_2 = -4.0$$

So $a_2 = -1.0$ and hence

$$p_2(x) = 5.0 + (x - 1) \times (-2.0 + (x - 3) \times (-1.0))$$

28 / 73

Nested form

Example Interpolate data

The interpolant at x_0, x_1, x_2 is

$$p_2(x) = a_0 + (x - x_0)(a_1 + (x - x_1)a_2) = 5.0 + (x - 1) \times (-2.0 + (x - 3) \times (-1.0)).$$

To also interpolate at (x_3, y_3) add a constant multiple of $(x - x_0)(x - x_1)(x - x_2)$:

$$p_3(x) = p_2(x) + (x - x_0)(x - x_1)(x - x_2)a_3$$

$$= a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + (x - x_0)(x - x_1)(x - x_2)a_3$$

$$= a_0 + (x - x_0)(a_1 + (x - x_1)a_2 + (x - x_1)(x - x_2)a_3))$$

$$= a_0 + (x - x_0)(a_1 + (x - x_1)(a_2 + (x - x_2)a_3)).$$

Substituting $p_3(x_3) = p_3(4) = -4.0 + 18a_3 = 9.5 = y_3$ gives $a_3 = 0.75$, so

$$p_3(x) = 5.0 + (x - 1) \times (-2.0 + (x - 3) \times (-1.0 + (x + 2) \times 0.75)).$$

Nested form

Example Interpolate data

The interpolant is

$$p_3(x) = 5.0 + (x - 1) \times (-2.0 + (x - 3) \times (-1.0 + (x + 2) \times 0.75)).$$

We can expand to the standard basis:

$$p_3(x) = 0.75x^3 - 2.5x^2 - 1.75x + 8.5.$$

However, it is usually more accurate to leave the polynomial in nested form!

e.g. For x=1.4, the error using the nested form and single precision is 5.5×10^{-8} , and for the expanded version is 1.8×10^{-6} .

30 / 73

Nested form

Nested Form This (Newton) nested form is a very useful way of writing polynomials:

$$p_0(x) = a_0$$

$$p_1(x) = a_0 + (x - x_0)a_1$$

$$p_2(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2$$

$$= a_0 + (x - x_0)(a_1 + (x - x_1)a_2)$$

$$p_3(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + (x - x_0)(x - x_1)(x - x_2)a_3$$

$$= a_0 + (x - x_0)(a_1 + (x - x_1)(a_2 + (x - x_2)a_3))$$

$$p_4(x) = a_0 + (x - x_0)(a_1 + (x - x_1)(a_2 + (x - x_2)(a_3 + (x - x_3)a_4))).$$

The general formula is

$$p(x) = a_0 + (x - x_0) (a_1 + \dots + (x - x_{n-2}) (a_{n-1} + (x - x_{n-1}) a_n) \dots)$$

$$= (\dots (a_n (x - x_{n-1}) + a_{n-1}) (x - x_{n-2}) + \dots + a_1) (x - x_0) + a_0$$

$$= \sum_{i=0}^n a_i \prod_{j=0}^{i-1} (x - x_j)$$

Recursively:

$$p_n(x) = z_0$$
 where $z_n = a_n$; $z_k = a_k + (x - x_k)z_{k+1}$ for $k = 0, \dots, n-1$.

31 / 73

Nested form

Notation Write $p_{[f;x_0,...,x_k]}$ for the polynomial interpolating f at $x_0,...,x_k$.

Subpolynomials Suppose the nested form of the interpolating polynomial at x_0, \ldots, x_n is

$$p_{[f;x_0,\dots,x_n]} = \sum_{i=0}^n a_i \prod_{j=0}^{i-1} (x - x_j),$$

Then for k < n, the interpolating polynomial at x_0, \ldots, x_k has the same coefficients a_i ! Hence

$$p_{[f;x_0,\dots,x_k]} = \sum_{i=0}^k a_i \prod_{j=0}^{i-1} (x-x_j).$$

Neville's method

Neville's Method Recursively use the formula:

$$p_{[f;x_0,\dots,x_k]}(x) = \frac{(x-x_0)p_{[f;x_1,\dots,x_k]}(x) - (x-x_k)p_{[f;x_0,\dots,x_{k-1}]}(x)}{x_k - x_0}.$$

How do we know this is correct? Compare values at interpolation points!

$$p_{[f;x_0,...,x_k]}(x_0) = \frac{(x_0 - x_0)p_{[f;x_1,...,x_k]}(x_0) - (x_0 - x_k)p_{[f;x_0,...,x_{k-1}]}(x_0)}{x_k - x_0}$$

$$= \frac{-(x_0 - x_k)f(x_0)}{x_k - x_0} = f(x_0)$$

$$p_{[f;x_0,...,x_k]}(x_1) = \frac{(x_1 - x_0)p_{[f;x_1,...,x_k]}(x_1) - (x_1 - x_k)p_{[f;x_0,...,x_{k-1}]}(x_1)}{x_k - x_0}$$

$$= \frac{(x_1 - x_0)f(x_1) - (x_1 - x_k)f(x_1)}{x_k - x_0} = \frac{x_1 - x_0 - x_1 + x_k}{x_k - x_0}f(x_1) = f(x_1)$$

 $p_{[f;x_0,\ldots,x_k]}(x_2)=\cdots$

33 / 73

Neville's method

Example Use Neville's method to interpolate data

$$\frac{x_i}{y_i = f(x_i)} \begin{vmatrix} 1 & -4 & 0 \\ 0.3 & 1.3 & -2.3 \end{vmatrix}.$$

$$p_{[f;x_0]} = f(x_0) = 0.3; \quad p_{[f;x_1]} = f(x_1) = 1.3; \quad p_{[f;x_2]} = f(x_2) = -2.3.$$

$$p_{[f;x_0,x_1]} = \frac{(x - x_0)p_{[f;x_1]} - (x - x_1)p_{[f;x_0]}}{x_1 - x_0}$$

$$= ((x - 1) \times 1.3 - (x + 4) \times 0.3)/(-4 - 1) = -0.2x + 5.0$$

$$p_{[f;x_1,x_2]} = \frac{(x - x_1)p_{[f;x_2]} - (x - x_2)p_{[f;x_1]}}{x_2 - x_1}$$

$$= ((x + 4) \times (-2.3) - x \times 1.3)/(0 - (-4)) = -0.9x - 2.3$$

$$p_{[f;x_0,x_1,x_2]} = \frac{(x - x_0)p_{[f;x_1,x_2]} - (x - x_2)p_{[f;x_0,x_1]}}{x_2 - x_0}$$

$$= ((x - 1)(-0.9x - 2.3) - x(-0.2x + 5.0))/(0 - 1)$$

$$= 0.7x^2 + 1.9x - 2.3$$

Divided differences

Highest-order coefficient Denote the coefficient of x^k in $p_{[f;x_0,...,x_k]}$ by $f[x_0,...,x_k]$.

Coefficients In the nested form

$$p_{[f;x_0,\dots,x_k]}(x) = a_0 + (x - x_0) (a_1 + \dots + (x - x_{k-2}) (a_{k-1} + (x - x_{k-1})a_k) \dots),$$

the coefficient of x^k is a_k , so by definition, $a_k = f[x_0, \dots, x_k]$.

Divided differences From Neville's method:

$$p_{[f;x_0,\dots,x_k]}(x) = \frac{(x-x_0)p_{[f;x_1,\dots,x_k]}(x) - (x-x_k)p_{[f;x_0,\dots,x_{k-1}]}(x)}{x_k - x_0},$$

by considering the coefficient of x^k , we obtain:

$$f[x_0,\ldots,x_k] = \frac{f[x_1,\ldots,x_k] - f[x_0,\ldots,x_{k-1}]}{x_k - x_0}.$$

The $f[x_0, \ldots, x_k]$ are therefore called *divided differences*.

35 / 73

Divided differences

Divided difference formula The divided differences satisfy

$$f[x_i] = f(x_i) ;$$

$$f[x_m,\ldots,x_n] = \frac{f[x_m,\ldots,x_{i-1},x_{i+1},\ldots,x_n] - f[x_m,\ldots,x_{j-1},x_{j+1},\ldots,x_n]}{x_j - x_i} .$$

In particular

$$f[x_i, \dots, x_j] = \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j-1}]}{x_j - x_i}$$
.

Newton formula Since the divided difference $f[x_0,\ldots,x_k]$ is the coefficient a_k in the nested form

$$p_{[f;x_0,...,x_n]}(x) = \sum_{i=0}^n a_i \prod_{j=0}^{i-1} (x - x_j)$$

we can write the nested form of the interpolating polynomial as:

$$p_{[f;x_0,\dots,x_n]}(x) = \sum_{i=0}^n f[x_0,\dots,x_i] \prod_{j=0}^{i-1} (x-x_j)$$

Divided differences

Divided differences table (n=3)

x_0	$f[x_0]$	$f[x_0, x_1]$	$f[x_0, x_1, x_2]$	$f[x_0, x_1, x_2, x_3]$
x_1	$f[x_1]$	$f[x_1, x_2]$	$f[x_1, x_2, x_3]$	
x_2	$f[x_2]$	$f[x_2, x_3]$		
x_3	$f[x_3]$			

Divided differences formulae

x_0	$f(x_0)$	$\frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$\frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$\frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
x_1	$f(x_1)$	$\frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$\frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	
x_2	$f(x_2)$	$\frac{f[x_3] - f[x_2]}{x_3 - x_2}$		
x_3	$f(x_3)$			

Nested form

$$p(x) = f[x_0] + (x - x_0) (f[x_0, x_1] + (x - x_1) (f[x_0, x_1, x_2] + (x - x_2) f[x_0, x_1, x_2, x_3])).$$

37 / 73

Divided differences

Example Interpolate data

Compute divided differences

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{1.3 - 0.3}{-4 - 1} = -0.2$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{-2.3 - 1.3}{0 - (-4)} = -0.9$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{-0.9 - (-0.2)}{0 - 1} = 0.7$$

Divided difference table

$$x_0 = 1$$
 $f(x_0) = 0.3$ $f[x_0, x_1] = -0.2$ $f[x_0, x_1, x_2] = 0.7$ $x_1 = -4$ $f(x_1) = 1.3$ $f[x_1, x_2] = -0.9$ $x_2 = 0$ $f(x_2) = -2.3$

Nested form: $p(x) = 0.3 + (x - 1) \times (-0.2 + (x + 4) \times 0.7)$.

Divided differences

Example Interpolate data

Nested form: $p(x) = 0.3 + (x - 1) \times (-0.2 + (x + 4) \times 0.7)$.

Check:

$$p(1) = 0.3 + (1-1) \times (-0.2 + (1+4) \times 0.7) = 0.3 + 0 \times (\cdots) = 0.3.$$

$$p(-4) = 0.3 + (-4-1) \times (-0.2 + (-4+4) \times 0.7)$$

$$= 0.3 - 5 \times (-0.2 + 0 \times 0.7) = 1.3.$$

$$p(0) = 0.3 + (0-1) \times (-0.2 + (0+4) \times 0.7)$$

$$= 0.3 - (-0.2 + 4 \times 0.7) = 0.3 - 2.6 = -2.3.$$

Note: Only the check $p(x_n) = y_n$ at the final data point tests all calculated coefficients!

Note: The expanded form is $p(x) = 0.7x^2 + 1.9x - 2.3$, but nested form is usually more accurate to evaluate, so it is better to leave your answer in nested form.

39 / 73

Divided differences

Example Interpolate data

Divided differences

$$x_0 = 1$$
 | $f[x_0] = 3.0$ | $f[x_0, x_1] = -2.0$ | $f[x_0, x_1, x_2] = 0.83$ | $f[x_0, x_1, x_2, x_3] = 0.083$
 $x_1 = 2$ | $f[x_1] = 1.0$ | $f[x_1, x_2] = 0.5$ | $f[x_1, x_2, x_3] = 1.17$ | $x_2 = 4$ | $f[x_2] = 2.0$ | $f[x_2, x_3] = 4.0$ | $x_3 = 5$ | $f[x_3] = 6.0$ | $f[x_1, x_2, x_3] = 4.0$ | $f[x_2, x_3] = 4.0$ | $f[x_3, x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_2, x_3] = 4.0$ | $f[x_3, x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_2, x_3] = 4.0$ | $f[x_3, x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_2, x_3] = 4.0$ | $f[x_3, x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] = 1.17$ | $f[x_2, x_3] = 1.17$ | $f[x_1, x_2, x_3] =$

Interpolating polynomial

$$p(x) = 3.0 + (x - 1) \times (-2.0 + (x - 2) \times (0.83 + (x - 4) \times 0.083)).$$

Check by computing p(x) at interpolation point x_3 .

$$p(x_3) = 3.0 + (5 - 1) \times (-2.0 + (5 - 2) \times (0.83 + (5 - 4) \times 0.083))$$

= 3.0 + 4 \times (-2.0 + 3 \times (0.83 + 1 \times 0.083)) = 3.0 + 4 \times (-2.0 + 3 \times 0.917)
= 3.0 + 4 \times (-2.0 + 2.75) = 3.0 + 4 \times 0.75 = 3.0 + 3.0 = 6.0 = f(x_3).

Properties of divided differences

Symmetry The divided difference $f[x_0,\ldots,x_k]$ is independent of the order of the variables:

$$f[x_0,\ldots,x_i,\ldots,x_j,\ldots,x_k]=f[x_0,\ldots,x_j,\ldots,x_i,\ldots,x_k].$$
 e.g. $f[x_0,x_1,x_2,x_3]=f[x_0,x_3,x_2,x_1];\ f[x_1,x_2,x_4]=f[x_4,x_1,x_2].$

Order of computation The divided differences can be computed in many ways.

$$f[x_0, x_1, x_2, x_3] := \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{f[x_0, x_2, x_3] - f[x_1, x_2, x_3]}{x_0 - x_1}.$$

Explicit formula From the Lagrange form of the interpolating polynomial:

$$f[x_0, \dots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{\prod_{i=0: i \neq i}^k (x_i - x_j)}.$$

41 / 73

Extended divided differences (Non-Examinable)

Theorem (Divided differences and derivatives) If $f^{(n)}$ is continous on [a,b] and x_0,\ldots,x_n are distinct points in [a,b], then there exists $\xi\in[a,b]$ such that $f[x_0,\ldots,x_n]=f^{(n)}(\xi)/n!$.

i.e. the n^{th} divided differences are approximations to $f^{(n)}(x)/n!$

Extended divided differences Extend divided differences to the case some of the x_i are equal by defining

$$f[x,x] = f'(x);$$
 $f[x,x,x] = f''(x)/2;$ $f[x,x,...,x] = f^{(n)}(x)/n!$

Then we can compute e.g.

$$f[x, x, y] = \frac{f[x, y] - f[x, x]}{y - x} = \frac{\frac{f(y) - f(x)}{y - x} - f'(x)}{y - x}.$$

Newton's nested form extends naturally to this case!

42 / 73

Function Approximation by Polynomial Interpolation

43 / 73

Function approximation

Function Approximation Given a function $f:[a,b]\to\mathbb{R}$, find a function g such that $g(x)\approx f(x)$

Approximation error Minimise the uniform/supremum norm

$$||f - g||_{\infty} := \sup_{x \in [a,b]} |f(x) - g(x)|.$$

or (easier) the two-norm

$$||f - g||_2 := \left(\int_a^b |f(x) - g(x)|^2 dx\right)^{1/2}.$$

Approximation by interpolation Often compute g as a function interpolating f at points x_0, x_1, \ldots, x_n .

Applications

- ullet Often used for computer arithmetic, by approximating a transcendental function (such as $\exp(x)$) by polynomial or rational function.
- May also be used to simplify a model by replacing a slow-to-evaluate function by a faster-to-evaluate approximation.

Error of polynomial interpolation

```
Lagrange basis example Interpolate y(0)=1, y(i)=0 for i=-m,\ldots,+m. m=4, n=2*m; xs=[-m:+m], ys=zeros(1,n+1); ys(m+1)=1, cs=polyfit(xs,ys,n), p=@(x)polyval(cs,x), p(xs), p(xs), plot([-m,+m],[0,0]); hold; fplot(p,[-m,+m]); hold; \\ Runge example Interpolate <math>f(x)=1/(1+x^2) using n+1 equally spaced nodes on [-4,+4]. f=@(x)1./(1+x.^2); a=4; n=8, xs=linspace(-a,+a,n+1), ys=f(xs), cs=polyfit(xs,ys,n); p=@(x)polyval(cs,x), fplot(f,[-a,+a]); hold; fplot(p,[-a,+a]); hold; \\ Errors <math>e_8=0.73, e_{16}=5.9, e_{32}=7.1\cdot 10^2, e_{64}=2.8\cdot 10^8. Approximation accuracy worsens as n increases!!
```

45 / 73

Error of interpolating polynomial

Theorem (Error of interpolating polynomial) If p is the polynomial of degree at most n that interpolates f at the n+1 distinct nodes x_0, x_1, \ldots, x_n belonging to an interval [a, b], and if $f^{(n+1)}$ is continuous, then for each x in [a, b], there is a ξ in (a, b) for which

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

Hence

$$|f(x) - p(x)| \le \frac{1}{(n+1)!} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)| \prod_{i=0}^{n} |x - x_i|$$

46 / 73

Error of interpolating polynomial

Proof of interpolating polynomial error (Non-Examinable)

Let p interpolate f at x_0, \ldots, x_n . Fix x_* . Let $E_* = f(x_*) - p(x_*)$.

Let l_* be the Lagrange polynomial $l_*(x_*) = 1$ and $l_*(x_i) = 0$ for $i = 0, \ldots, n$.

Then $p(x_i) + E_* l_*(x_i) = f(x_i)$ and $p(x_*) + E_* l_*(x_*) = f(x_*)$.

Let $q(x) = p(x) + E_*l_*(x) - f(x)$ which has zeros at x_0, \ldots, x_n, x_* .

By Rolle's theorem, there exists ξ such that $g^{(n+1)}(\xi)=0$.

Note for all x, $p^{(n+1)}(x) = 0$ and $l_*^{(n+1)}(x) = (n+1)! / \prod_{i=0}^n (x_* - x_i)$.

Hence $E_*(n+1)!/\prod_{i=0}^n (x_*-x_i)-f^{(n+1)}(\xi)=0.$

Rearranging gives $f(x_*) - p(x_*) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^n (x_* - x_i)$.

Chebyshev nodes

Chebyshev nodes Interpolation over [a, b] often best using nodes

$$x_k = \frac{a+b}{2} - \frac{b-a}{2} \cos\left(\frac{2k+1}{2(n+1)}\pi\right)$$
 for $k = 0, \dots, n$.

Runge example Interpolate $f(x) = 1/(1+x^2)$ using n+1 Chebyshev nodes on [-4,+4].

 $f=@(x)1./(1+x.^2); a=4; \\ n=8, xs=-a*cos((2*[0:n]+1)*pi/(2*n+2)), ys=f(xs), \\ cs = polyfit(xs,ys,n); p = @(x)polyval(cs,x); \\ fplot(f,[-a,+a]); hold on; fplot(p,[-a,+a]); hold off;$

Errors $e_8 = 0.10$, $e_{16} = 0.015$, $e_{32} = 2.8 \cdot 10^{-4}$.

Approximation accuracy improves as n increases.

48 / 73

Error of interpolating polynomials

Theorem (Interpolation error with equally-spaced nodes) If p(x) is the interpolating polynomial of f with n+1 equally-spaced nodes on [a,b], then

$$|f(x) - p(x)| \le \frac{(b-a)^{n+1}}{4n^{n+1}(n+1)} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)|$$

Theorem (Interpolation error with Chebyshev nodes) If p(x) is the interpolating polynomial of f with n+1 Chebyshev nodes, then

$$|f(x) - p(x)| \le \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)|$$

Example If $f(x) = \sin(x)$ on [-1, +1], then $\max_{x \in [a,b]} |f^{(n+1)}(\xi)| \le 1$.

Hence with 4+1 equally-spaced nodes have error

$$\epsilon \le 2^{n+1}/4n^{n+1}(n+1) = 2^5/(4 \cdot 4^5 \cdot 5) = 1/640$$

and with 4+1 Chebyshev nodes,

$$\epsilon \le 2^{n+1}/2^{2n+1}(n+1)! = 1/(2^4 \cdot 5!) = 1/1920.$$

49 / 73

Approximation theorems (Non-examinable)

Theorem (Weierstrass) Let f be continuous on [a,b]. Then for every $\epsilon>0$, there exists a polynomial p such that

$$||f - p||_{\infty} := \sup_{x \in [a,b]} |f(x) - p(x)| < \epsilon.$$

Theorem (Chebyshev alternation) Let f be continuous on [a,b]. Then there is a unique best approximating polynomial p_m of degree m.

Further, there exist m+2 points w_0,\ldots,w_{m+1} such that

$$f(w_i) - p_m(w_i) = \pm (-1)^i ||f - p_m||_{\infty},$$

and m+1 points x_0, \ldots, x_m such that $p_m(x_i) = f(x_i)$.

If f is n-times continuously differentiable, there is a constant C such that $||f - p_m|| \le C/m^n$, and if f is smooth (analytic), then there is are constants C and R > 1 such that $||f - p_m|| \le C/R^m$.

The best approximating polynomial can be computed using the Remez exchange algorithm.

Splines

Definition A *spline* of degree n on [a,b] with *knots* at $a=t_0 < t_1 < \cdots < t_{n+1} = b$ is an function s such that s is equal to a degree-n polynomial s_i on $[t_i,t_{i+1}]$ and s is n-1 times differentiable (with continuous derivative) at each t_i .

The function above is not a cubic spline since it is not differentiable at t_1 .

$$\lim_{x \nearrow t_1} s'(x) = s'_0(t_1) \neq s'_1(t_1) = \lim_{x \searrow t_1} s'(x)$$

52 / 73

Spline interpolation

(Cubic) Spline Interpolation Compute a (cubic) spline s such that $s(x_i) = y_i$ for $i = 0, \dots, n$.

Knots at interpolation points For cubic splines, take knots at interpolation points, so $t_i = x_i$ for $i = 0, \dots, n$.

53 / 73

Spline Interpolation in Matlab

Computing splines The command

S=spline(X,Y)

computes the spline interpolating data

$$X = [x_1, x_2, \dots, x_n], Y = [y_1, y_2, \dots, y_n]$$

with *not-a-knot* end conditions $s'''(x_2) = s'''(x_{n-1}) = 0$.

The command

S=spline(X,[b1,Y,bn])

computes the spline interpolating data X, Y with *clamped* end conditions $s'(x_1) = b_1$ and $s'(x_n) = b_n$.

Evaluating splines To evaluate the spline S at x, use the command

ppval(S,x)

Spline Interpolation in Matlab

Example Standard basis s(0) = 1, otherwise s(i) = 0, for i = -n, ..., n.

Example Interpolate $f(x) = 1/(1+x^2)$ on [-4,4] with clamped ends.

```
f=@(x)1./(1+x.^2), df=@(x) 2*x./(1+x.^2).^2, a=-4, b=+4, n=8; X=linspace(a,b,n+1), Y=f(X), wa=df(a), wb=df(b), S=spline(X,[wa,Y,wb]), s=@(x) ppval(S,x), fplot(f,[-4,+4]); hold on; fplot(s,[-4,+4]); hold off;
```

Spline interpolation does not suffer from the extreme oscillations which may occur in polynomial interpolation!

55 / 73

Spline interpolation conditions (Non-examinable)

Spline formulae For $x \in [x_j, x_{j+1}]$, write $s(x) = s_j(x)$ given as

$$s_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

The derivatives of s_i are

$$s'_{j}(x) = b_{j} + 2c_{j}(x - x_{j}) + 3d_{j}(x - x_{j})^{2},$$

$$s_j''(x) = 2c_j + 6d_j(x - x_j).$$

Knot points At knot points, $s(x_j) = s_j(x_j) = a_j$, $s'(x_j) = s'_j(x_j) = b_j$, $s''(x_j) = s''_j(x_j) = 2c_j$. Note $c_j = s''(x_j)/2$.

Interpolation conditions The interpolation conditions at x_j imply $a_j = y_j$ for $j = 0, \dots, n$.

Continuity conditions The continuity of s, s', s'' imply for j = 1, ..., n-1

$$s_{j-1}(x_j) = s_j(x_j), \quad s'_{j-1}(x_j) = s'_j(x_j), \quad s''_{j-1}(x_j) = s''_j(x_j).$$

Alternatively, reindexing gives for $j = 0, \dots, n-2$.

$$s_j(x_{j+1}) = s_{j+1}(x_{j+1})$$
 $s'_j(x_{j+1}) = s'_{j+1}(x_{j+1}),$ $s''_j(x_{j+1}) = s''_{j+1}(x_{j+1}).$

Spline interpolation conditions (Non-examinable)

Continuity conditions Let $h_j = x_{j+1} - x_j$.

The continuity conditions at x_{j+1} for $j=0,\ldots,n-2$ are:

$$s_{j}(x_{j+1}) = a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1} = s_{j+1}(x_{j+1}).$$

$$s'_{j}(x_{j+1}) = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1} = s'_{j+1}(x_{j+1}).$$

$$s''_{j}(x_{j+1}) = 2c_{j} + 6d_{j}h_{j} = 2c_{j+1} = s''_{j}(x_{j+1}).$$

The second derivative condition gives

$$d_j = (c_{j+1} - c_j)/3h_j$$
.

The zeroth derivative condition then becomes

$$a_j + b_j h_j + c_j h_j^2 + \left(\frac{c_{j+1} - c_j}{3h_j}\right) h_j^3 = a_j + b_j h_j + \frac{1}{3} (2c_j + c_{j+1}) h_j^2 = a_{j+1}.$$

From this we find

$$b_j = (a_{j+1} - a_j)/h_j - (h_j/3)(2c_j + c_{j+1}).$$

and also

$$h_i(2c_i + c_{i+1}) = 3((a_{i+1} - a_i)/h_i - b_i).$$

57 / 73

Spline interpolation conditions (Non-examinable)

Continuity conditions

The first derivative conditions at x_j for $j=1,\ldots,n-1$ are

$$s'_{j-1}(x_j) = b_{j-1} + 2c_{j-1}h_{j-1} + 3d_{j-1}h_{j-1}^2 = b_j = s'_j(x_j).$$

The coefficients b_j , d_j are given by

$$b_j = (a_{j+1} - a_j)/h_j - h_j(2c_j + c_{j+1})/3;$$
 $d_j = (c_{j+1} - c_j)/3h_j.$

Substituting for b_{j-1} , b_j , d_{j-1} above gives

$$\begin{aligned} \frac{a_j - a_{j-1}}{h_{j-1}} - \frac{h_{j-1}}{3} (2c_{j-1} + c_j) + 2c_{j-1}h_{j-1} + 3\frac{c_j - c_{j-1}}{3h_{j-1}}h_{j-1}^2 \\ &= \frac{a_{j+1} - a_j}{h_i} - \frac{h_j}{3} (2c_j + c_{j+1}) \end{aligned}$$

Rearranging gives

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = 3((a_{j+1} - a_j)/h_j - (a_j - a_{j-1})/h_{j-1}).$$

Note that the equation for j=n-1 involves a_n and c_n , even though they are not needed for any $s_j!$ However, $a_n=s(x_n)=y_n$ and $c_n=\frac{1}{2}s''(x_n)$.

Spline interpolation conditions (Non-examinable)

End conditions The continuity conditions for the c_j given n-1 linear equations (at knots x_1, \ldots, x_{n-1}) for the n+1 unknowns c_0, \ldots, c_n .

Impose *end conditions* to determine c_0 and c_n .

Clamped boundary $s'(x_0) = b_0$ and $s'(x_n) = b_n$ are given.

$$2h_0c_0 + h_0c_1 = 3((a_1 - a_0)/h_0 - b_0),$$

$$h_{n-1}c_{n-1} + 2h_{n-1}c_n = 3(b_n - (a_n - a_{n-1})/h_{n-1})$$

$$= 3((a_{n-1} - a_n)/h_{n-1} + b_n).$$

Second derivative at boundary $s''(x_0) = 2c_0$ and $s''(x_n) = 2c_n$ given.

$$c_0 = s''(x_0)/2;$$
 $c_n = s''(x_n)/2.$

Natural spline $s''(x_0) = s''(x_n) = 0$, so $c_0 = 0$; $c_n = 0$.

Not a knot (Used by Matlab.) s''' is continuous at x_1 and x_{n-1} .

$$h_1c_0 - (h_0 + h_1)c_1 + h_0c_2 = 0,$$

$$h_{n-1}c_{n-2} - (h_{n-2} + h_{n-2})c_{n-1} + h_{n-2}c_n = 0.$$

59 / 73

Spline interpolation formulae (Non-examinable)

Pieces For j = 0, ..., n - 1, $h_j = x_{j+1} - x_j$. For $x \in [x_j, x_{j+1}]$, $s(x) = s_j(x)$.

Polynomials $s_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$.

Interpolation conditions For j = 0, ..., n, $a_i = y_i$.

Continuity conditions at knots For j = 1, ..., n - 1,

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = 3((a_{j+1} - a_j)/h_j - (a_j - a_{j-1})/h_{j-1}).$$

Coefficients For $j = 0, \dots, n-1$.

$$b_i = (a_{i+1} - a_i)/h_i - h_i(2c_i + c_{i+1})/3;$$
 $d_i = (c_{i+1} - c_i)/3h_i.$

Clamped boundary

$$s'(x_0) = b_0 \implies 2h_0c_0 + h_0c_1 = 3((a_1 - a_0)/h_0 - b_0),$$

$$s'(x_n) = b_n \implies h_{n-1}c_{n-1} + 2h_{n-1}c_n = 3(b_n - (a_n - a_{n-1})/h_{n-1}).$$

Natural spline $s''(x_0) = 0 \implies c_0 = 0;$ $s''(x_n) = 0 \implies c_n = 0.$

60 / 73

Spline interpolation alternative formulae (Non-examinable)

Symmetric spline formula

$$\begin{split} s_j(x) &= \frac{c_{j+1}}{3h_j}(x-x_j)^3 + \frac{c_j}{3h_j}(x_{j+1}-x)^3 \\ &\quad + \Big(\frac{a_{j+1}}{h_j} - \frac{c_{j+1}h_j}{3}\Big)(x-x_j) + \Big(\frac{a_j}{h_j} - \frac{c_jh_j}{3}\Big)(x_{j+1}-x) \end{split}$$

Spline interpolation example (Non-examinable)

Example Compute the cubic spline interpolating the data

$$\begin{array}{c|c|c|c|c} i & 0 & 1 & 2 \\ \hline x_i & 1 & 2 & 4 \\ \hline y_i & 5 & 3 & 2 \\ \end{array}$$

with natural end conditions s''(1) = s''(4) = 0.

We have

$$h_0 = x_1 - x_0 = 2 - 1 = 1;$$
 $h_1 = x_2 - x_1 = 4 - 2 = 2.$

The end conditions give $c_0 = 0$ and $c_2 = 0$.

Taking j=1 gives

$$h_0c_0 + 2(h_0 + h_1)c_1 + h_1c_2 = 3((a_2 - a_1)/h_1 - (a_1 - a_0)/h_0).$$

$$2(1+2)c_1 = 3 \times ((2-3)/2 - (3-5)/1) = 3 \times (-\frac{1}{2} + 2) = \frac{9}{2}$$

Hence $6c_1 = \frac{9}{2}$, so $c_1 = \frac{3}{4}$.

62 / 73

Spline interpolation example (Non-examinable)

Example Compute the cubic spline interpolating the data (i = 0, 1, 2)

with natural end conditions s''(1) = s''(4) = 0.

Given
$$h_0=1, h_1=2, a_i=y_i, c_0=0, c_1=\frac{3}{4}$$
 and $c_2=0$, compute
$$d_0=(c_1-c_0)/3h_0=(\frac{3}{4}-0)/(3\times 1)=\frac{1}{4}$$

$$d_1=(c_2-c_1)/3h_1=(0-\frac{3}{4})/(3\times 2)=-\frac{1}{8}$$

$$b_0=(a_1-a_0)/h_0-h_0(2c_0+c_1)/3=(3-5)/1-1\times(2\times 0+\frac{3}{4})/3=-\frac{9}{4}$$

$$b_1=(a_2-a_1)/h_1-h_1(2c_1+c_2)/3=(2-3)/2-2\times(2\times \frac{3}{4}+0)/3=-\frac{3}{2}.$$

$$s(x)=\begin{cases} s_0(x)=\frac{1}{4}(x-1)^3+0(x-1)^2-\frac{9}{4}(x-1)+5 \text{ for } x\in[1,2];\\ s_1(x)=-\frac{1}{8}(x-2)^3+\frac{3}{4}(x-2)^2-\frac{3}{2}(x-2)+3 \text{ for } x\in[2,4]. \end{cases}$$

Equally-spaced knots (Non-examinable)

Equally-spaced knots $h_j = h$ for all j.

Continuity conditions at knots

$$c_{j-1} + 4c_j + c_{j+1} = 3(a_{j+1} - 2a_j + a_{j-1})/h^2$$
.

Coefficients

$$b_i = (a_{i+1} - a_i)/h - h(2c_i + c_{i+1})/3;$$
 $d_i = (c_{i+1} - c_i)/3h.$

Clamped boundary s' is given at x_0 and/or x_n .

$$s'(x_0) = b_0 \Rightarrow 2c_0 + c_1 = 3((a_1 - a_0)/h - b_0)/h = 3(a_1 - a_0 - b_0 h)/h^2,$$

$$s'(x_n) = b_n \Rightarrow c_{n-1} + 2c_n = 3(b_n - (a_n - a_{n-1})/h)/h = 3(b_n h - a_n + a_{n-1})/h^2.$$

Not a knot s''' is continuous at x_1 and/or x_{n-1} .

$$s_0'''(x_1) = s_1'''(x_1) \implies c_0 - 2c_1 + c_2 = 0,$$

$$s_{n-1}''(x_{n-1}) = s_n'''(x_{n-1}) \implies c_{n-2} - 2c_{n-1} + c_n = 0.$$

64 / 73

Tridiagonal system (Non-examinable)

Tridiagonal matrix The equations for c_j with clamped boundary conditions $s'(x_0) = b_0$, $s'(x_n) = b_n$ can be written in matrix form as:

The matrix is $\it tridiagonal$, and the system easy to solve with $\sim 3n$ operations.

Spline interpolation example (Non-examinable)

Example Compute the cubic spline interpolating the data

with s''(2) = 0 and s'(5) = 6 over the interval [4, 5]. Estimate y at x = 4.5.

Equally-spaced knots h = 1. Boundary conditions $c_0 = 0$, $b_3 = 6$.

$$4c_1 + c_2 = 3(a_2 - 2a_1 + a_0)/h^2 = 3 \times (5 - 2 \times 2 + 1)/1^2 = 6;$$

$$c_1 + 4c_2 + c_3 = 3(a_3 - 2a_2 + a_1)/h^2 = 3 \times (10 - 2 \times 5 + 2)/1^2 = 6;$$

$$c_2 + 2c_3 = 3(b_3 - a_3 + a_2)/h^2 = 3 \times (6 - 10 + 5)/1^2 = 3.$$

Solve linear equations

$$\begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix}$$

to obtain

$$c_1 = \frac{33}{26}, c_2 = \frac{24}{26}, c_3 = \frac{27}{26}.$$

66 / 73

Spline interpolation example (Non-examinable)

Example Compute the cubic spline interpolating the data (i = 0, 1, 2, 3)

$$\begin{array}{c|ccccc} x_i & 2 & 3 & 4 & 5 \\ \hline y_i & 1.0 & 2.0 & 5.0 & 10.0 \\ \end{array}$$

with s''(2) = 0 and s'(5) = 6 over the interval [4, 5]. Estimate y at x = 4.5.

Interpolation and continuity conditions give

$$c_0 = 0, c_1 = \frac{33}{26}, c_2 = \frac{24}{26}, c_3 = \frac{27}{26}.$$

For
$$x \in [4, 5] = [x_2, x_3], s(x) = s_2(x)$$
.

$$b_2 = (a_3 - a_2)/h - h(2c_2 + c_3)/3 = (10 - 5)/1 - 1 \times (2 \times \frac{24}{26} - \frac{27}{26})/3 = \frac{105}{26};$$

$$d_2 = (c_3 - c_2)/3h = (\frac{27}{26} - \frac{24}{26})/(3 \times 1) = \frac{1}{26}.$$

Polynomial piece

$$s_2(x) = \frac{1}{26}(x-4)^3 + \frac{24}{13}(x-4)^2 + \frac{105}{26}(x-4) + 5$$

= 0.0385(x-4)^3 + 0.923(x-4)^2 + 4.04(x-4) + 5.00.

Evaluate at x = 4.5 using s_2 . x - 4 = 4.5 - 4 = 0.5, so

$$s_2(4.5) = 0.0385 \times 0.5^3 + 0.923 \times 0.5^2 + 4.04 \times 0.5 + 5.00 = 7.3 \text{ (1 dp)}.$$

Spline interpolation example (Non-examinable)

Exercise Compute the cubic spline interpolating the data

with s''(2) = s''(5) = 0. Evaluate your result at x = 4.5.

Answer:

$$c_0 + 4c_1 + c_2 = 3 \times (5 - 2 \times 2 + 1)/1^2 = 6;$$

 $c_1 + 4c_2 + c_3 = 3 \times (10 - 2 \times 5 + 2)/1^2 = 6.$

End conditions give $c_0=0$ and $c_3=0$. Find $c_1=1.2$ and $c_2=1.2$. Compute $b_2=4.2$, $d_2=-0.4$.

$$s_2(x) = -0.4(x-4)^3 + 1.2(x-4)^2 + 4.2(x-4) + 5.0.$$

Find $s_2(4.5) = 7.35 = 7.4 (1 dp)$.

68 / 73

B-Splines (Non-examinable)

69 / 73

B-splines (Non-examinable)

Idea The B-splines B_i^k form a *basis* for splines of degree k and have *compact support* $[t_i, t_{i+k+1})$ i.e. $B_i^k = 0$ unless $t_i \le x < t_{i+k+1}$.

Constant B-spline Support $[t_i, t_{i+1})$

$$B_i^0(x) = \begin{cases} 1 \text{ if } x \in [t_i, t_{i+1}). \\ 0 \text{ otherwise.} \end{cases}$$

Higher-order B-splines

$$B_i^k(x) = \frac{x-t_i}{t_{i+k}-t_i} B_i^{k-1}(x) + \frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}} B_{i+1}^{k-1}(x) \text{ for } k>0.$$

B-splines (Non-examinable)

B-splines with integer knots

$$B_i^k(x) = \frac{1}{k} \big((x-i) B_i^{k-1}(x) + (i+k+1-x) B_{i+1}^{k-1}(x) \big).$$

$$\textbf{Cubic B-spline} \quad B_0^3(x) = \begin{cases} x^3/6 \text{ if } x \in [0,1), \\ 2/3 - x(2-x)^2/2 \text{ if } x \in [1,2), \\ 2/3 - (4-x)(x-2)^2/2 \text{ if } x \in [2,3), \\ (4-x)^3/6 \text{ if } x \in [3,4). \end{cases}$$

71 / 73

B-splines (Non-examinable)

Properties of B-splines

Finite support $B_i^k(x) = 0$ for $x \notin [i, i+k]$.

Sum to unity $\sum_{i=-\infty}^{+\infty} B_i^k(x) = 1$ for all k,x.

Basis Any k-spline can be written as $\sum_{i=-\infty}^{\infty} c_i B_i^k$.

Derivatives
$$\frac{d}{dx}B_i^k(x) = \frac{k}{t_{i+k}-t_i}B_i^{k-1}(x) - \frac{k}{t_{i+k+1}-t_{i+1}}B_{i+1}^{k-1}(x)$$
.

Evaluation Use recurrence relation!

$$B_i^k(x) = \frac{x - t_i}{t_{i+k} - t_i} B_i^{k-1}(x) + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1}^{k-1}(x).$$

B-splines example (Non-examinable)

Compute the natural cubic B-spline s interpolating the data

For integer knots, we have

$$B_0^3(1) = B_0^3(3) = \tfrac{1}{6}, \ B_0^3(2) = \tfrac{2}{3}, \ \ [B_0^3]'(1) = -[B_0^3]'(3) = \tfrac{1}{2}, \ [B_0^3]'(2) = 0.$$

Hence the coefficients c_i of B_i satisfy

$$\begin{pmatrix} \frac{-1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0\\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 & 0 & 0\\ 0 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 & 0\\ 0 & 0 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0\\ 0 & 0 & 0 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{-1}{2} \end{pmatrix} \begin{pmatrix} c_{-1}\\c_{0}\\c_{1}\\c_{2}\\c_{3}\\c_{4} \end{pmatrix} = \begin{pmatrix} 0\\2\\3\\5\\10\\0 \end{pmatrix}$$

The solution of the coefficients is $c=\begin{pmatrix}3\frac{1}{3}&1\frac{1}{3}&3\frac{1}{3}&3\frac{1}{3}&3\frac{1}{3}\end{pmatrix}^T$, so

$$s(x) = \frac{1}{3} \left(10B_{-1}^3(x) + 4B_0^3(x) + 10B_1^3(x) + 10B_2^3(x) + 40B_3^3(x) + 10B_4^3(x) \right).$$