

UNIVERSIDADE FEDERAL DO CARIRI CENTRO DE CIÊNCIAS E TECNOLOGIA

3^a Lista de Exercícios de Cálculo Numérico

Unidade II: Raízes de Equações

Tópico: Método do Ponto Fixo

Prof Dr. Diego Frankin de Souza Veras Sant'Ana

1) As raízes de $f(x) = \ln(x) - x + 2 = 0$ podem ser determinadas usando o processo iterativo na forma $x_{i+1} = \phi(x_i)$, onde $i = 1, 2, 3, \dots$

Considere os seguintes processos iterativos:

a)
$$x_{i+1} = \phi(x_i) = 2 + \ln(x_i)$$

b)
$$x_{i+1} = \phi(x_i) = e^{x_i - 2}$$

Usando o critério de convergência do método das aproximações sucessivas (método do ponto fixo), analise os processos iterativos dados e verifique qual deles possui garantia de convergência para as raízes da equação e, a partir de uma solução inicial dada, determine essas raízes.

2) Utilize as seguintes funções de iteração para encontrar a raiz da função $f(x) = x^2 + \ln x$ pelo **método do ponto fixo**:

a)
$$\phi_1(x) = \sqrt{-\ln x}$$

b)
$$\phi_2(x) = e^{-x^2}$$
.

Em ambos os casos, utilize como solução inicial $x_0 = 0, 1$.

3) Utilize o método do ponto fixo para resolver a equação $x + e^x - 2 = 0$ tomando como aproximação inicial a solução $x_0 = 0.5$ e precisão $\epsilon < 10^{-5}$. Para isto, considere as seguintes funções de iteração:

a)
$$\phi_1(x) = \ln(2-x)$$

b)
$$\phi_2(x) = 2 - e^x$$

Verifique se a condição de convergência é satisfeita para as funções $\phi_1(x)$ e $\phi_2(x)$ no ponto x=0. Utilize este resultado para reforçar a conclusão de qual das funções não converge para a solução.

4) Utilize o método do ponto fixo para encontrar as três raízes da função $f(x) = x^3 - 5x + 2$ com erro relativo de $\epsilon < 10^{-4}$ considerando as seguintes funções de iteração:

a)
$$\phi_1(x) = \frac{x^3+2}{5}$$
 com aproximação inicial $x_0 = 0$

a)
$$\phi_1(x) = \frac{x^3+2}{5}$$
 com aproximação inicial $x_0 = 0$
b) $\phi_2(x) = (5x-2)^{1/3}$ com aproximação inicial $x_0 = 0$

c)
$$\phi_3(x) = \frac{5x-2}{x^2}$$
 com aproximação inicial $x_0 = 1$

Por que no item **c** não se pode utilizar a solução inicial $x_0 = 0$?

5) Utilize o método do ponto fixo para resolver a equação $e^x - 4x^2 = 0$ tomando como aproximação a solução $x_0 = 1$ e com precisão $\epsilon < 10^{-6}$. Considere as seguintes funções de iteração:

a)
$$\phi_1(x) = \sqrt{e^x/4}$$

b)
$$\phi_2(x) = \ln(4x^2)$$

6) Deseja-se utilizar o método do ponto fixo para encontrar as raízes do polimômio $x^2 + x - 6 = 0$. Para isto, tomou-se as seguintes funções de iteração com aproximação inicial $x_0 = 1$:

$$\phi_1(x) = 6 - x^2$$
 $\phi_2(x) = \sqrt{6 - x}$ $\phi_3(x) = \frac{6}{x} - 1$ $\phi_4(x) = \frac{6}{x + 1}$

Com base nas funções de iteração acima, avalie as afirmações a seguir:

- I. O método não converge para a função $\phi_1(x)$.
- II. O método converge para $\xi = 2$ para as funções $\phi_2(x)$ e $\phi_4(x)$.
- III. O método converge para $\xi = -3$ para a função $\phi_3(x)$.

Está correto o que se afirma em

- A) I, apenas
- B) I e II, apenas
- C) III, apenas
- **D)** II e III, apenas
- **E**) I, II, e III

GABARITO

01) As raízes de fsão $\xi_1 = 3,146140339$ e $\xi_2 = 0,158744886.$ Escolha aproximações iniciais que quiser e indique quando a função de iteração convergir ou não.

02)

- a) Não converge. Surgem valores que conduzem à raiz quadrada de número negativo.
- **b)** Converge para $\xi = 0,65291864$

03)

- a) Converge para $\xi = 0,442854401$
- b) Não converge.

04)

- a) $\xi_1 = 0,414213562$
- **b)** $\xi_2 = -2,414213562$
- c) converge para $\xi_3 = 2$

05)

- **a)** $\xi_1 = 0,288842706$ **b)** $\xi_2 = 4,3065847228$

06) E