a).

- ① For li_1 : $LR = -2 \times (-149.521 (-134.178)) = 30.7 > 3.8$;
- ② For li_2 : $LR = -2 \times (-139.747 (-134.178)) = 11.1 > 3.8;$
- ③ For li_1 and li_2 jointly: $LR = -2 \times (-152.763 134.178) = 37.2 > 6.0$.

All of the above are significant.

b).

- ① When the models to be compared share the same dependent variable and same number of explanatory variables, we can use McFadden R^2 .
- ② The optimal model according to this criterion is:

$$\text{GDPIMPR}_t = 0.746 - 0.429 \mathrm{li}_{1t}(-2) - 0.131 \mathrm{li}_{2t}(-1) + \epsilon_t$$

Explanatory Variables	McFadden R^2	
li1(-2), li2(-1)	0.1468	
li1(-2), li2(-2)	0.1460	
li1(-1), li2(-2)	0.1220	
li1(-1), li2(-1)	0.1217	

c).

Date	Pridicted Prob.	GDPIMPR		Hit
Date	Filaliciea Filob.	Proidicted	Actual	ПІ
2011Q1	0.24	0	1	
2011Q2	0.22	0	0	0
2011Q3	0.08	0	0	0
2011Q4	0.08	0	0	0
2012Q1	0.16	0	1	
2012Q2	0.23	0	0	0
2012Q3	0.38	0	1	
2012Q4	0.56	1	1	0
2013Q1	0.60	1	1	0
2013Q2	0.52	1	1	0
2013Q3	0.56	1	1	0
2013Q4	0.71	1	0	
2014Q1	0.74	1	0	
2014Q2	0.65	1	1	0
2014Q3	0.76	1	1	0
2014Q4	0.85	1	1	0
2015Q1	0.85	1	1	0
2015Q2	0.83	1	1	0
2015Q3	0.71	1	1	0
2015Q4	0.35	0	0	0

Hit rate = 0.75

d).

As $GROWTHRATE = \Delta LOGGDP$, then GROWTHRATE(-1) = D(LOGGDP(-1));

T denotes the trend.

Dependent Variable: GROWTHRATE

Method: Least Squares Date: 05/13/17 Time: 15:43

Sample (adjusted): 1951Q1 2010Q4

Included observations: 240 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.089935	0.037476	2.399775	0.0172
GROWTHRATE(-1)	0.612861	0.050087	12.23584	0.0000
LOGGDP(-1)	-0.019278	0.008130	-2.371164	0.0185
T	6.23E-05	2.59E-05	2.406563	0.0169

As observed, t-statistic of LOGGDP(-1) = -2.371164 > -3.7;

Conclusion: LOGGDP is non-stationary.

e).

② Suggested model:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.001737	0.000320	5.432574	0.0000
GROWTHRATE(-1)	0.461579	0.048302	9.556130	0.0000
LI1(-1)	-0.001023	0.000130	-7.880028	0.0000
LI2(-1)	-0.000149	6.42E-05	-2.326183	0.0209
R-squared	0.507975	Mean dependent var		0.003406
Adjusted R-squared	0.501720	S.D. dependent var		0.005817

1

Explanatory Variables	R^2
li1(-1), li2(-1)	0.5080
li1(-1), li2(-2)	0.5077
li1(-2), li2(-1)	0.4772
li1(-2), li2(-2)	0.4771

f).

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000100	0.000384	-0.261442	0.7940
GROWTHRATE(-1)	0.029135	0.079152	0.368094	0.7131
RESID01(-1)	-0.049992	0.103221	-0.484322	0.6286
LI1(-1)	3.14E-05	0.000149	0.210114	0.8338
LI2(-1)	2.77E-06	6.50E-05	0.042611	0.9660
R-squared	0.001002	Mean dependent var		-6.65E-07
Adjusted R-squared	-0.016075	S.D. dependent var		0.004089

Breusch-Godfrey test: $nR^2 = 240 \times 0.001002 = 0.24 < 3.8$

Conclusion: there is no serial correlation

g).

RMSE=0.008156

