

Optical Setup

Generation of Optical Tweezers

Why?

- For quantum computing, we need continuous array of atoms

Why we get array with defects?

- Probability of atom getting trapped at each sites is 0.5
- probability for trapping N atoms is $(0.5)^N$, e.g. trapping 9 atoms it is around 0.002

- How to increases probability?
 - One approach is to design a system to capture atom >2N
 - Afterwards, fill vacant sites from nearby reservoir atoms

- Why it has higher probability?
 - Probability is equivalent to P(N|M), where N is #atoms we want out of M traps

$$P(N|M) = \left(\frac{1}{2}\right)^{M} \sum_{n=N}^{M} {M \choose n}$$

For N = 9 and M = 25, probability of obtaining defect free atom is about 0.9

- How will we approach?
 - 1. Determine the location of trapped atoms
 - 2. Identify the target positions of atoms
 - 3. Matching between reservoir atoms and voids
 - 4. Path Planning
 - 5. Generation of phase mask and movement of tweezers

Determination of location of trapped atoms

- In original experiment, image of fluorescence of the atom captured will determine location
- For now, trapped atom configuration is generated randomly
 - Known dimensions n
 - Probability of each site = 0.5
 - Pre defined spacing between sites

- Identification of target positions of atoms
 - Optimal position of centre target array position obtained through Centre of Mass (COM) strategy

- Identification of target positions of atoms
 - Optimal position of centre target array position obtained through Centre of Mass (COM) strategy

- Identification of target positions of atoms
 - Optimal position of centre target array position obtained through Centre of Mass (COM) strategy

Reservoir atomsVacant Sites

Matching between void and reservoir atoms

- Matching can be done using
 - Brute Force (Time complexity: exponential)
 - Hopcroft Karp Algorithm (Time complexity: polynomial)
 - Hungarian Algorithm (Time complexity: polynomial)
- Hopcroft Karp Algorithm gives matching without any constraint
- Hungarian Algorithm gives matching by minimizing the constraint
- Distance between void sites and reservoir is used as constraint

- Obtaining Path
 - Atom will be moved in straight line
 - Speed of movement of tweezers depends on:
 - # frame
 - Frame rate

- Movement of tweezers
 - Generation of phase mask for each frame
 - Projecting each phase mask on SLM with desired frame rate

