Adversarial Best Arm Identification in Gaussian Bandits

Arpan Mukherjee

Department of Electrical, Computer, and Systems Engineering ${\sf Rensselaer\ Polytechnic\ Institute}$

Introduction

- Contaminated best arm identification (CBAI)
- Adversary may contaminate reward sample
- Identify the arm with largest mean

Best Arm Identification (BAI)

- ► K-armed Gaussian bandit $\{\mathcal{N}(\mu_i, \sigma^2) : i \in [K]\}$
- ightharpoonup Each arm has unknown mean μ_i
- ▶ Objective: Identify arm with largest mean

$$a^\star riangleq rg \max_{i \in [\kappa]} \ \mu_i$$

- Fixed confidence setting:
 - Minimize the sample complexity
 - Constraint on the probability of error

$$\mathbb{P}(\hat{a} \neq a^\star) < \delta$$

BAI: Applications

▶ Drug identification in clinical trials

► Recommendation system

BAI: Existing Algorithms

- ► Confidence interval based approach
- Construct confidence interval around mean estimates
- Continue sampling till overlap vanishes
- Representative studies:
 - ► Gabillon, NeurIPS'12
 - ► Jamieson, COLT'14
 - ► Kalyankrishnan, ICML'12
 - Kaufmann, JMLR'13

- Successive elimination based approach
- Maintain an active set of arms
- Remove suboptimal arms
- Continue till one arm remains
- Representative studies:
 - Audibert, COLT'10
 - ► Chen, COLT'17
 - Even-Dar, JMLR'06

Contaminated Best Arm Identification (CBAI)

- lacktriangle At every arm pull, the adversary flips a coin $B_t \sim \operatorname{Bern}(\varepsilon)$
- ▶ If the outcome is "tails" (0), then the true reward $X_{A_t,t} \sim \mathbb{P}_{A_t}$ is sent to the learner
- ightharpoonup Otherwise, a random sample from a contamination model $X'_{A_t,t} \sim \mathbb{Q}_{A_t}$ is sent to the learner
- Relaxed constraint on decision error:

$$\mathbb{P}(\mu_{\hat{s}} < \mu_{s^\star} - \textit{U}) < \delta$$

Definition (Oblivious adversary)

The adversary is defined as oblivious if we have that for all $i \in [K]$, the tripples $\{X_{i,t}, X'_{i,t}, B_t\}_{t \ge 1}$ are assumed to be independent of each other.

Motivation

- ► Efficacy of drug response in clinical trials
- ► Fraction of results reported incorrectly
- Fraction of samples contaminated

- Recommendation system
- Recommendation based on user feedback
- User feedback could be malicious or spam

Related Work

- Contaminated stochastic bandits for regret minimization [Lykouris, SIGACT'19]
 - adversarial power characterized by total number of corrupted samples C
 - algorithm proposed by this study degrades linearly with C, which is the optimal rate
- For best arm identification(BAI), the problem was first studied in [Altschuler, JMLR'19]
 - Best arm redefined as the arm with largest median
 - ▶ Three adversarial models: Oblivious adversary, prescient adversary and malicious adversary
 - Considers very restrictive class of cumulative distribution functions (CDFs)
 - Results not valid for all discrete models (like Bernoulli bandits) or heavy-tailed continuous models
- Mean-based contaminated BAI was first investigated in [Mukherjee, NeurIPS'21]
 - ► Gap-based and successive elimination based algorithms proposed
 - Asymptotically optimal up to constant factors in sub-Gaussian bandits

Partially Identifiable Best Arm Identification (PIBAI)

- Arm means cannot be estimated exactly
- **E**stimation up to uncertainty U_i around mean
- CBAI is a special case of PIBAI
 - $ightharpoonup U_i$'s depend on σ and ε

► **Assumption 1**: no overlapping intervals:

$$(\mu_{\mathsf{a}^\star} - U_{\mathsf{a}^\star}) > (\mu_{\mathsf{a}} + U_{\mathsf{a}}) \ , \mathsf{a} \in [K] \setminus \mathsf{a}^\star$$

Assumption 2: Corruption level $\varepsilon < 1/2$

robust Top Two Sequential Probability Ratio Test (rTT-SPRT):

Overview:

► Likelihood ratio (LLR)-based approach

Score-based outlier removal

Randomized sampling between the top two arms

▶ Stop collecting samples when sufficient evidence has been collected to distinguish the top two arms

Scoring mechanism

- ▶ Rewards from arm $i \in [K] : Y_i^t \triangleq \{R_s, s \in [t] : A_s = i\}$
- ▶ Empirical median of arm $i \in [K]$ at time $t: med(Y_i^t)$
- ► Score for each sample: $Z_{A_t,t} \triangleq \frac{|R_{A_t} \text{med}(Y_{A_t}^t)|}{\sigma}$

Rewards from arm $i \in [K]$

rTT-SPRT Algorithm: Notations

- lacktriangle For each arm $i \in [K]$, compute filtered rewards: \tilde{Y}_i^t by removing the ϵ fraction of largest scores
- ▶ For any $(i,j) \in [K] \times [K]$, compute generalized log-likelihood ratio (GLLR):

$$\Lambda_t(i,j) \triangleq \log \frac{\max\limits_{\mu_i > \mu_j} \ f_i(\tilde{Y}_i^t \mid \mu_i) f_j(\tilde{Y}_j^t \mid \mu_j)}{\max\limits_{\mu_j > \mu_i} \ f_i(\tilde{Y}_i^t \mid \mu_i) f_j(\tilde{Y}_j^t \mid \mu_j)}$$

- ▶ Sample mean of the filtered sequence from $i \in [K]$: $\mu_{t,i} \triangleq \frac{1}{|\tilde{Y}_i^t|} \sum_{y \in \tilde{Y}_i^t} y$
- Closed form for Gaussian bandits:

$$\Lambda_t(i,j) \triangleq \frac{(\mu_{t,i} - \mu_{t,j})^2}{2\sigma^2} \mathbb{1}_{\{\mu_{t,i} > \mu_{t,j}\}}$$

rTT-SPRT: Sampling and Stopping Rules

- ▶ Arm selection rule. Select randomly between the top two arms
 - ► Top arm: $I_1^t \triangleq \arg \max_{i \in [K]} \mu_{t,i}$
 - ► Second arm: $I_2^t \triangleq \arg\min_{i \in [K] \setminus \{I_1^t\}} \Lambda_t(I_1^t, i)$
 - Flip a coin $D_t \sim \text{Bern}(\beta)$,

$$A_{t+1} riangleq \left\{egin{array}{ll} I_1^t \ , & ext{if} \ D_t = 1 \ I_2^t \ , & ext{if} \ D_t = 0 \end{array}
ight.$$

▶ Stopping rule. Stop as soon as top-two arms are sufficiently distinguishable

$$au riangleq \inf \left\{ t \in \mathbb{N} : \mathsf{\Lambda}_t(\mathit{I}_1^t,\mathit{I}_2^t) > c_{t,\delta}
ight\} \,.$$

δ -PAC Guarantee

Theorem

For any $\delta \in (0,1)$, rTT-SPRT is δ -PAC in the PIBAI setting for the choice of the threshold

$$c_{t,\delta} \; riangleq \; rac{1}{(1-arepsilon)^2} \log rac{(\mathcal{K}-1)\mathcal{C}t^lpha}{\delta} \; ,$$

for every $a \in [K]$ and any $\alpha > 1$, where C is a constant set as $C \triangleq (1 + (\alpha - 1)^{-1})$.

▶ Non-contaminated setting suffices with $c_{t,\delta} \triangleq \log \frac{(K-1)Ct^{\alpha}}{\delta}$

 $ightharpoonup \mathcal{O}(1/(1-\varepsilon)^2)$ factor for dealing with contamination

Experimental Result: Synthetic Data

- ▶ Model: $\mu \triangleq [5, 4.5, 1, 1, 1]$
- Adversary: $\varepsilon = 0.1$
- ▶ Tuning parameter $\beta = 0.5$
- $ightharpoonup \sigma = 1$
- ► Averaged over 200 independent trials

Experimental Result: Real Data

- ► PKIS2: protein kinase + kinase inhibitors
- ► Goal: find kinase inhibitors for treating cancer cells
- We test K = 4 inhibitors against "ACVRL1" kinase
- Logarithm of percentage control assumes a Gaussian distribution
- Averaged over 200 independent trials
- rTT-SPRT requires significantly fewer samples for indentifying the best inhibitor

Conclusions

► BAI in contaminated Gaussian bandits

Score-based outlier removal, SPRT based arm selection

ightharpoonup Stopping rule meets the δ -PAC guarantee

► Empirically superior performance on synthetic and real world data

Future Directions

► Sample complexity analysis of rTT-SPRT

Extension to general bandits

▶ Dealing with more powerful adversaries (prescient + malicious)

▶ Time uniform concentration results for tighter confidence intervals

