Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc

Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy

Číslo úlohy

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ

204-4R

Zadání

- 1. Navrhněte a sestavte neinvertující nízkofrekvenční zesilovač s OZ: 741, je-li požadováno: napěťový přenos $a_U=22~dB$ pro vstupní napětí $U_I=0,6~V$ a frekvenci f=1~kHz, napájecí napětí $\pm 15~V$, zatěžovací rezistor: $R_L=10~k\Omega$, rezistor ve zpětné vazbě $R1=1~k\Omega$.
- 2. Na sestaveném zesilovači změřte pomocí měřícího systému UNIMA:
 - (a) velikost výstupního harmonického napětí U_0 a z toho vypočítejte velikost skutečného napěťového přenosu A_U , a_U .
 - (b) maximální nezkreslený rozkmit výstupního napětí $U_{PP_{max}}$ při $f=1\ kHz$.
 - (c) znatelně omezený rozkmit výstupního napětí $U_{PP_{max}}$ při $f=1\ kHz$.
- 3. Navrhněte vazební kondenzátor CV tak, aby dolní mezní frekvence zesilovače byla $f_D=150~Hz$ při $R=10~k\Omega$. Přenosovou charakteristiku v rozsahu 10 Hz až 50 kHz zobrazte pomocí systému UNIMA.
- 4. Na nepájivém poli sestavte dolní propust RC a napěťový sledovač s OZ. Obvod předřaď te kaskádově před nf zesilovač. $R=227,4~k\Omega,~C=100~nF,~f_H=7~kHz.$
- 5. Pomocí UNIMY změřte přenosovou frekvenční charakteristiku obvodu z 4. bodu v rozsahu $f_{min}=10\ Hz$ až $f_{max}=50\ kHz.$

Poř. č.	PŘÍJMENÍ a Jméno				Třída	Skupina	Školní rok		
26		VYKYDAL Jan				4A	3	2014	/2015
Datum měření Datu		Datum	tum odevzdání Počet listů			Klasifikace			
						příprava	meření	protokol	obhajoba
4.3.		24.4.		6					
Protokol o měření obsahuje:			Teoretický úvod		Ta	Tabulky naměřených a vypočtených hodnot			
		Schéma		Vzor výpočtu					
		Tabulka použitých přístrojů		Grafy					
		Postup měření		Závěr					

Teoretický úvod

Dolní propust

Dolní propust je dvojbran, který tlumí signály o frekvenci vyšší než je mezní frekvence tohoto obvodu. Základní pasivní doplní propust se dá vytvořit se dvou pasivních součástek a to: RC, RL a LC. V našem případě byla použita varianta RC a tak si ji popíšeme. RC dolní propust může být tvořena jedním rezistorem a jedním kondenzátorem. Tyto prvky jsou zapojeny jako klasický dělič napětí (kondenzátor je dole a odebíráme z něj výstupní napětí). Tento dělič je frekvenčně závislí a to na aktuální kapacitní reaktanci použitého kondenzátoru. Toto zapojení se někdy také označuje jako integrační článek. Ale v našem případě by to bylo chybné označení, protože o integračním článku se bavíme tehdy, řešíme-li přechodové děje, nebo-li odezvu na jednotkový impulz.

Vztah pro výpočet mezní frekvence dolní a zároveň také horní propusti:

$$f_0 = \frac{1}{2\pi RC} \Rightarrow R = \frac{1}{2\pi f_0 C} \tag{1}$$

kde:

Horní propust

Jedná se o dvojbran, který potlačuje signály o kmitočtu nižším, nežli je mezní frekvence tohoto filtru. Jedná se o obdobu filtru popsaného výše, s tím rozdílem, že nahradíme pořadí použitých součástek a výstupní napětí budeme odebírat s rezistoru. Pro výpočet mezní frekvence platí stejný vztah, jako pro výpočet mezní frekvence dolní propusti.

Neinvertující zesilovač s OZ

Neinvertující zesilovač s OZ je zapojení, které zesiluje vstupní signál a přitom neobrací fázi vstupního signálu. Jeho předností je velký vstupní odpor v řádů několika $M\Omega$. V našem případě je ale vstupní odpor snižován rezistorem dolní propusti.

Vztah pro výpočet mezní frekvence použitého integračního článku:

$$a_u = 20 \log \frac{R_2}{R_1} + 1 \Rightarrow R_2 = R_1 (10^{\frac{a_u}{20}} - 1)$$
 (2)

kde:

Napěťový sledovač s OZ

Jedná se o takové zapojení OZ, kdy vstupní signál je přiváděn na neinvertující vstup OZ a výstupní signál tvoří zápornou napěťovou zpětnou vazbu. Napěťový sledovač se tomuto obvodu říká proto, že výstupní napětí sleduje napětí vstupní. Jinými slovy $U_{OUT} = U_{IN}$. Protože zpětná vazba nám odečte zesílení obvodu. Tento obvod se nejčastěji používá pro oddělování různých obvodů od sebe. Slouží jako impedanční transformace. Na vstupu má obvod velký vstupní odpor v řádu několika $M\Omega$. Výstupní odpor je zpravidla nízký a pohybuje se v řádu desítek Ω .

Schémata

Schéma č. 1: Měřící zapojení zesilovače

Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo	
Z_1	symetrický zdroj	TESLA BK-125	0149	
M_1	měřící systém UNIMA	_	19 - 0022/01	
C_1	kapacitní dekáda	_	0258	
C_4	kapacitní dekáda	_	0259	
R_2	odporová dekáda	P33	0103	
R_3	odporová dekáda	P33	0928	
R_4	odporová dekáda	P33	0257	
_	Osciloskop	GOS-620	19-0024/01	

Tabulka č. 1: Použité přístroje

Postup měření

Zapojení obvodu

- Ze zadaných parametrů dopočítáme požadované hodnoty součástek.
- Součástky, které jsme vypočítali připojíme k měřícímu přípravku.
- K obvodu připojíme měřící systém UNIMA a zdroj napětí.

Tabulky naměřených a vypočítaných hodnot

měřená veličina	hodnota	jednotky
R_H	10	$[k\Omega]$
C_H	106, 1	[nF]
R_D	227, 4	$[k\Omega]$
C_D	100	[nF]

Tabulka č. 2: Vypočítané a zadané hodnoty pro pásmové filtry

měřená veličina	hodnota	jednotky
$U_{I_{max}}$	3	[V]
$U_{O_{max}}$	0,5	[V]
A_U	6	[-]
a_U	15,59	[dB]

Tabulka č. 3: Vypočítané a zadané hodnoty pro pásmové filtry

Vzory výpočtů

Výpočet zpětnovazebného rezistoru R_2 s použitím vztahu (2)

$$R_2 = R_1(10^{\frac{a_u}{20}} - 1) = 1000(10^{\frac{22}{20}} - 1) = 11,59 \ k\Omega$$

Výpočet kondenzátoru do dolní propusti s využitím vztahu (1)

$$C = \frac{1}{2\pi f_0 R} = \frac{1}{2\pi \cdot 150 \cdot 10^4} \doteq \underline{106, 1 \ nF}$$

Výpočet napěťového zisku A_U

$$A_U = \frac{U_{O_{MAX}}}{U_{I_{MAX}}} = \frac{3}{0.5} = \underline{6}$$

Výpočet napěťového zisku a_U :

$$a_U = 20 \log A_U = 20 \log 6 \doteq \underline{15,56 \ dB}$$

Grafy

Graf č. 1: Velikost výstupního napětí.
(0,5 $\frac{V}{d}$ a 5 $\frac{\mu s}{d})$

Graf č. 2: frekvenční přenosová charakteristika zesilovače s OZ a horní propustí $a_U = f(f)$

Graf č. 3: frekvenční přenosová charakteristika zesilovače s OZ, horní a dolní propustí a sledovačem $a_U = f(f)$

Závěr

Chyby měřících přístrojů

Uvedená chyba měřícího přístroje UNIMA při měření pomocí módu digitální osciloskop by měla být menší než 1,5 %. Z důvodu použití kapacitních dekád, jsem byl limitován omezeným počtem jmenovitých hodnot, na které jsem musel zaokrouhlit hodnoty použitých kondenzátorů. Procentuální chyby osciloskopu GAS-620 je \pm 3%. Tato chyby ovšem není konečná, jelikož je třeba uvažovat i chybu pozorovatele.

Zhodnocení

- 1. Navrhl jsem zesilovač, dle zadaných parametrů. Tento zesilovač byl realizován na měřícím přípravku, takže k němu stačilo připojit jen vhodné dekády.
- 2. Změřil jsem výstupní napětí, které je zobrazeno v grafu číslo 1. a shrnuto v tabulce číslo 3. Dále jsem spočítal napěťový přenos, který vyšel $A_U = 6$. S tohoto napěťového přenosu byl ještě spočten napěťový zisk zesilovače $a_u = 15,59 \ dB$. Dále byl změřeno špičkové napětí, při kterém obvod začínal deformovat vstupní signál.
- 3. Dále jsem navrhl a na kontaktním poli zrealizoval napěťová sledovač, horní a dolní RC propust.
- 4. Obvody s předchozího bodu byli připojeny k měřícímu přípravku, a následně byla změřena frekvenční přenosová charakteristika.
- 5. V posledním bodu byla změřena frekvenční charakteristika celého obvodu. Tato charakteristika je v grafu číslo 3.