<u>Trabajo Práctico Nº 1:</u> Operaciones y Circuitos Lógicos.

Ejercicio 1.

Realizar las siguientes operaciones lógicas:

(Nota: Se opera lógicamente con los bits ubicados en la misma posición del o de los operandos.)

00010001 AND 010111100 = 0001000001010101 AND 01010101 = 0101010101010101 AND 10101010 = 00000000011110000 AND 11111111 = 11110000 01010101 OR 01010101 = 01010101 01010101 OR 10101010 = 11111111 11110001 OR 11110010 = 11110011 01010101 XOR 01010101 = 00000000001010101 XOR 10101010 = 11111111 00001111 XOR 00000000 = 00001111NOT 11111111 = 00000000NOT 01000000 = 10111111NOT 00001110 = 11110001

Ejercicio 2.

Si DATO "operación_lógica" MASK = RESULTADO, determinar la operación lógica y el valor de MASK tal que RESULTADO sea el indicado:

DATO	Op. lógica	MASK		RESULTADO	
$D_7D_6D_5D_4D_3D_2D_1D_0$	OR	11100111	=	$111D_4D_3111$	
$D_7D_6D_5D_4D_3D_2D_1D_0$	OR	00001000	=	$D_7D_6D_5D_41D_2D_1D_0$	
$D_7D_6D_5D_4D_3D_2D_1D_0$	AND	01111111	=	$0D_6D_5D_4D_3D_2D_1D_0$	
$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	XOR	01010000	_	$D_7 \overline{D}_6 D_5 \overline{D}_4 D_2 D_1 D_0$	
	XNOR	10101111	=		

Ejercicio 3.

Analizar los siguientes esquemas y determinar los valores de las salidas C y D para todas las combinaciones de entrada (A y B o A, B y IN). ¿Se puede asociar los resultados obtenidos con una operación aritmética?

Figura 1:

C = AND(A, B)

C= A AND B

C = A * B.

D = XOR(A, B)

D= A XOR B

 $D=A \oplus B$.

A	В	C	D	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Figura 2:

C = OR (AND (A, B), AND (XOR (A, B), IN))

C= (A AND B) OR ((A XOR B) AND IN)

 $C = A * B + (A \bigoplus B) * IN.$

D = XOR (XOR (A, B), IN)

D= (A XOR B) XOR IN

 $D=(A \oplus B) \oplus IN$.

Licenciatura en Informática UNLP - Conceptos de Organización de Computadoras | 4

Juan Menduiña

A	В	IN	A * B	$A \oplus B$	(A ⊕ B) * IN	C	D
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
0	1	0	0	1	0	0	1
0	1	1	0	1	1	1	0
1	0	0	0	1	0	0	1
1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	0	1	1	1

Ejercicio 4.

Si sólo se poseen puertas lógicas NAND:

(a) ¿Será posible obtener las funciones AND, OR y NOT?

Sí, es posible obtener las funciones AND, OR y NOT si sólo se poseen puertas lógicas NAND.

(b) ¿Cómo se implementarían?

AND:
$$\overline{(\overline{A*B})*(\overline{A*B})} = \overline{\overline{A*B}} = A*B$$
.
OR: $\overline{(\overline{A*A})*(\overline{B*B})} = \overline{\overline{A}*\overline{B}} = \overline{\overline{A+B}} = A+B$.
NOT: $\overline{A*A} = \overline{A}$.