CS/BCA/ODD/SEM-1/BCA-101/2017-18

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCA-101
DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

	·			and the second s
i)	The Boolean	equation	of AND o	peration is
-,	IIIO D'OIOMI	oquation		poracion no

a)
$$Y = \overline{A}$$

b)
$$Y = AB$$

c)
$$Y = A + B$$

d) None of these.

ii) The logical expression
$$Y = A + AB$$
 is equivalent to

a)
$$Y = A$$

b)
$$Y = AB$$

c)
$$Y = \overline{AB}$$

d)
$$Y = A + B$$
.

10008

[Turn over

iv)	In writ	imal number 123 is				
	a)	11011	b)	C3		
	c)	001010011	d)	000100100011.		
v)	A carry look-ahead adder is frequently used addition, because it					
	a)	is faster	b)	is more accurate		
	c)	uses fewer gates	d)	costs less.		
vi)		combinational circuit is one in which the output pends on the				
	a) input combination at a time					
•	b) previous output and input combination					
	c) previous input and input combination at a time					
	d) present output and previous output.					
vii)	Each individual term in standard SOP form is called as					
	a)	Max-term	b)	Min-term		
	c)	Mid-term	d)	None of these.		
viii)) A decoder with 64 output lines has dat					
	inputs.					
	a)	64	b)	1		
	c)	6	d)	none of these.		
ix)	The number of flip-flops required to build a Mod-counter is					
	a)	4	b)	5		
	c)	6	d)	7.		

- x) The race around condition will be avoided by
 - a) J-K flip-flop
 - b) S-R flip-flop
 - c) Master-Slave flip-flop
 - d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. Draw a full adder circuit as combination of 2 half adders.
- 3. State De Morgan's law and prove it for 2 variables.
- 4. a) Evaluate $(7352)_{10}$ $(9456)_{10}$ using 9's complement.
 - b) State Duality principle.
- 5. Minimize the following Boolean expression using K-map.

 $F(A, B, C, D) = \sum_{i=1}^{n} (0, 1, 3, 6, 8, 10, 11, 13, 15).$

6. Design a 4-bit parallel-in parallel-out (PIPO) shift register.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Represent the decimal number 45 in
 - (i) Hexadecimal code
 - (ii) Gray code
 - (iii) BCD code.
 - b) Which gates are called universal gates and why?
 - c) Design a 2×4 decoder. Giver truth table and draw circuit diagram using basic gates.

10008

3

[Turn over

d) Implement the expression using a Multiplexer. $F(A, B, C, D) = \sum (0, 1, 4, 5, 7, 9, 11, 13, 15).$

3 + 5 + 4 + 3

- 8. a) What is combinational circuit?
 - b) Differentiate between combinational and sequential circuits.
 - c) Explain the functionality of clocked JK flip-flop. Give truth table and diagram.
 - d) Convert SR to JK flip-flop.

2 + 3 + 5 + 5

- 9. a) What is register?
 - b) Design an decimal to binary encoder.
 - c) What do you mean by Johnson counter?
- 10. What do you mean by race around condition in flip-flop? Design a J-K flip-flop and discuss its operation.
 Design and explain the functioning of BCD adder circuit.
 5 + 5 + 5
- 11. Write short notes on any three of the following: 3×5
 - a) Universal Gate
 - b) Multiplexer
 - c) PAL and PLA
 - d) Excitation Table
 - e) Full adder using Half-adder.