TECHNICS IN ANALYTICS: BIRD'S EYE VIEW

Techniques

Machine Learning

Supervised

- Observations from past
 - Known outcome
- Examples
 - Age 40, high blood pressure => diabetes
 - Additional income, Earn \$ => spam

Unsupervised

- Observations from past
 - No associated outcome
- Examples
 - Power forward, 25 ppg
 - □ Income \$50,000, single

Classification

- Example
 - John Doe: 40 age, 180lbs, no exercise = > diabetes
 - □ John Doe Jr.: 25 age, 150 lbs, exercise => no diabetes
 - □ John Doe Sr.: 40 age, 210 lbs, no exercise => diabetes
- □ John Doe Tiny
 - 38 age, 150 lbs, exercise
 - How likely to have diabetes?
 - Should he be considered for treatment?

Classification

- □ Email
 - Email 1 => spam
 - \blacksquare Email 2 => no spam
 - Email 3 => spam
- Extract words from emails
 - Word 1 => spam
 - Word 2 => no spam
- New email with words
 - Spam or not spam?

Loss Functions

- □ X = set of historical data
 - \Box $(x,y) \in X$
 - $\mathbf{x} = \mathbf{feature} \ \mathbf{x}$
 - y = label
- \Box Given x, f(x;w) is prediction
 - w unknown parameters
- Goal
 - $f(x; w) \approx y$
 - l(f(x; w), y) = loss function
 - Penalize the discrepancy

$$\min_{w} \sum_{(x,y)\in X} l(f(x;w),y)$$

$$\min_{w} \sum_{(x,y)\in X} \hat{l}(x,y;w)$$

$$\min_{w} \sum_{i} \widehat{f}_{i}(x_{i}; w)$$

$$\min_{w} E_{X,Y}(\hat{l}(x,y;w))$$

Linear Regression Loss Function

- $\Box f(x; w) = w_1 x + w_o$
 - $\square w = (w_1, w_0)$
 - All are vectors
- $\square l(u,v) = (u-v)^2$
- $\Box l(f(x; w), y) = (f y)^2 = (w_1 x + w_0 y)^2$
- $\hat{l}(x, y; w) = (w_1 x + w_0 y)^2$

$$\min_{w_1, w_0} \sum_{i} (w_1 x_i + w_0 - y_i)^2$$

Feature Preparation

- Large/big feature values pose problems
 - Normalization
- □ For each feature
 - Subtract the mean and
 - Divide by standard deviation
- Standardization
 - Transform to [0,1]
 - Divide by the maximum value after the minimum value is translated to 0

Terminology

- ☐ ML synonyms
 - Record, sample, observation, row
 - Ground truth, label
- Classes
 - Labels belong to classes
- Parametric models have loss functions
 - Non-parametric do not

Support Vector Machines

- □ Binary classification
- □ Maximize the distance from the line

Support Vector Machine Loss Function

- - Want to maximize
- Complete separation

$$\min_{w,b} ||w|| \text{ subject to } y_i(w^T x_i + b) \ge 1 \ \forall \ i$$

- General
- $f(x; w, b) = if w^{T}x + b \ge 0$ $y_{i} = 1$ $else y_{i} = -1$
- $\hat{l}(x, y; w, b) = \frac{\|w\|}{n} + C \max(0, 1 y(w^T x + b))$

Classification

- □ Training set
- ☐ Fit function
 - From training set tune parameters of function
- □ New entity
 - Evaluate the function
 - Classify entity

Evaluation

- □ Data set
 - Split to training and test
 - Calibrate model on training
 - Evaluate on test
 - How many predictions are correct on test data
- Measure is regression error
 - Is it possible to achieve zero error?

10-fold validation

- □ Split the data into 10 chunks
 - Train on 9
 - Validate on 1
 - Repeat for all 10 test chunks/folds
- Model selection
 - Not parameter/weight selection
 - Not one set of parameters/weights on all 10

Precision and Recall

□ Confusion matrix

Precision and Recall

- Accuracy
 - Proportion of correctly predicted
 all correct/all = (tp+tn)/(tp+tn+fp+fn)
- Recall
 - Proportion of + correctly predicted true positive/all positive = tp/(tp+fn)
- Precision
 - Proportion of + among all predicted + true positive/ predicted positive = tp/(tp+fp)
- □ F-measure
 - Harmonic mean of precision and recall
 2 recall * precision / (recall + precision)

Example

Results from Classification Algorithm

ID	Actual Class	Predicted Class
1	+	+
2	+	+
3	+	+
4	+	+
5	+	-
6	-	+
7	-	+
8	=	-

Confusion matrix

		Predicted Class		
		+	-	
Actual	+	4	1	C = 5
Class	-	2	1	
		A = 6		T = 8

- True positive = 4
- False positive = 2
- True Negative = 1
- False Negative = 1

Categorical Features

- Label encoding
 - Assign a number to each category
 - What number?
- One-hot-encoding
 - Large number of features
 - Tight models
 - Does not scale

Advanced Target Encoding

- □ One category
 - Percentage of samples of this category in a class
- □ Issues
 - Data leakage
 - Get the values based on a hold-out set
 - What if only a few samples of a given category
 - Spurious correlation

Smoothed Tae Encoding

- Combine 'local' estimates with 'global' estimates
- □ Global ratio of two classes
- □ One category

$$\frac{ratio_{category} + K \ ratio_{global}}{n+m}$$

n = number of samples in this category

m = total number of samples

K = hyper parameter

Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Logistic Regression

Categorical predictors

- Predicting cancer from smoking and eating tomatoes.
- We don't know what happens when non-smokers eat tomatoes because we have no data
- Probability of cancer?

Do you smoke?	Do you eat tomatoes?	Do you have cancer?
Yes	No	Yes
Yes	Yes	Yes
No	No	Yes
No	Yes	??????

Discrete Choice

- Observations
 - Purchase made
 - AND available options
- Assumption
 - Customers maximize their own utility

```
Choice made = the choice that maximizes utility u(selected) = max u(options)
```

Utility = linear combination of attributes

Discrete Choice

- □ Travel
 - Online purchasing
 - Utility of flight = coeff * departure time + coeff * elapsed time + coeff * price + coeff * loyalty
 - Coefficients fitted based on historical observations
- □ Market basket
 - Available goods in the store
 - Utility of purchase = coeff * price + coeff * brand loyalty + coeff * home inventory

Discrete Choice vs Logistic Regression

- Observe actions
 - Purchase, no-purchase
 - Existing/left customers
 - Choices not available
- □ Observe choices
 - Still capture actions
 - Record all available options
 - Customer select maximum utility option
- Probability of selection

Logistic regression

Discrete choice

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

Reduce the size of large data sets

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},
```

Implication means co-occurrence, not causality!

Other Examples

- Market basket
 - □ If A, then bought B
 - How to use in promotions?
- Click sequence on the web
 - □ If visited X, then visited Y
 - □ If visited Z, then checkout
- □ Amazon.com
 - Recommendations

Machine Learning

Supervised learning

- □ Regression
- Classification
- Logistic regression
- □ Random forests
- Neural networks

Unsupervised learning

- Data clustering
- Principal component analysis
- Independent component analysis
- Association rules

Collaborative Filtering

- Personalized preferences
 - Amazon.com
- Market basket
 - Shopping carts
 - No order of purchases
 - Association rules
- Web click sequences
 - Order of selection
 - Aggregation trees

Collaborative Filtering

- □ Ratings are available
 - What people buy together
 - How they value goods
- User-user
 - Score/difference between two users
 - Recommend the choices of the 'closest' friend
 - Not many common reviews
 - Normalization
 - User rates the same item differently

Collaborative Filtering

- □ Item-item
 - Distance between two items
 - Based on evaluations of users of both items
 - Challenge
 - Two users like books
 - Odds of two books are low
- □ Resolution
 - Split to 'categories'
 - Category-category and item-item

Survival Analysis

- Breakdowns
 - Machines
 - Computers
- What is the probability
 - Breakdown a months from now

Historical observations

Breakdown 1 month ago

Breakdown 3 months ago

Distribution fitting

Probability[breakdown >= 1 month]

SC Network Design

By Industry

Marketing

- □ Churn analysis
 - Attrition rate
 - Probability that a customer will default
 - Logistic regression
- Customer segmentation
 - By demographics
 - By spend
 - Clustering

Propensity

- What is the likelihood the customer will next buy item X
 - Historical purchases
 - Logistic regression
- Yield of campaigns
- □ Budget allocation

Web Analytics

- Study paths on site made by customers
 - Redesign flow on sites
 - Why customers do not buy
 - Aggregation trees
 - Markov chains
- Many steps to get to paths
 - Associating clicks to 'users'
- Digital ads placement
 - Where to place a banner ad
 - Which one
 - Optimization

Text Analytics

- Sentiment analysis
 - Tweet, blog, forum
 - Does it say something positive about a product
- □ List of good words
- □ List of bad words
- □ Count
 - If count of good count of bad <= number</p>
 - Positive sentiment
- □ Many challenges

Text Analytics

- Presidential campaign
 - How many positive tweets about President Obama
- Stock predictions
 - How many tweets make positive comments about the IBM stock
- Similar documents
 - Group similar documents
 - Manually inspect the documents in one group
 - Lawyers

Social Networking Analysis

- □ Six (or less) degrees of separation
 - Facebook
- □ Recommend friends
- □ Placement of ads
- Improved churn analysis
 - Take friendship into account
- Challenge
 - Sheer size of data

Other industries

- □ Healthcare
 - Too many applications
- □ Telecommunication
 - Churn
 - Product bundling
 - Network design
- □ Finance
 - Fraud detection
 - Churn

Other industries

- Sport analytics
 - Performance measures
- □ Service sector
 - Sales force optimization
 - Match employees to projects
- Transportation
 - Too many
 - Airlines one of the earliest users of analytics