$11n_5 \ (K11n_5)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2.93438 \times 10^{39} u^{39} + 3.89993 \times 10^{39} u^{38} + \dots + 9.67095 \times 10^{39} b - 1.11354 \times 10^{40}, \\ -5.08844 \times 10^{39} u^{39} + 9.58525 \times 10^{38} u^{38} + \dots + 9.67095 \times 10^{39} a - 1.38422 \times 10^{40}, \ u^{40} + 2u^{39} + \dots - u - 10^{40} u^{40} + 2u^{40} u^{40} u^{40} + 2u^{40} u^{40} u^{40} u^{40} + 2u^{40} u^{40} u^{40$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 2.93 \times 10^{39} u^{39} + 3.90 \times 10^{39} u^{38} + \dots + 9.67 \times 10^{39} b - 1.11 \times 10^{40}, \ -5.09 \times 10^{39} u^{39} + 9.59 \times 10^{38} u^{38} + \dots + 9.67 \times 10^{39} a - 1.38 \times 10^{40}, \ u^{40} + 2u^{39} + \dots - u - 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.526157u^{39} - 0.0991139u^{38} + \dots + 1.57286u + 1.43132 \\ -0.303422u^{39} - 0.403263u^{38} + \dots + 0.625271u + 1.15143 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.222735u^{39} - 0.502377u^{38} + \dots + 2.19813u + 2.58275 \\ -0.303422u^{39} - 0.403263u^{38} + \dots + 0.625271u + 1.15143 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.290241u^{39} + 0.200008u^{38} + \dots + 0.625271u + 1.15143 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.290241u^{39} + 0.200008u^{38} + \dots + 0.237926u + 0.0802655 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.578068u^{39} - 1.17622u^{38} + \dots + 2.15345u + 1.24641 \\ -0.0185294u^{39} - 0.0980063u^{38} + \dots + 1.25512u - 0.0172308 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.410467u^{39} + 0.359513u^{38} + \dots + 1.45577u - 0.692552 \\ -0.101647u^{39} - 0.257991u^{38} + \dots - 0.186972u + 0.381156 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.218303u^{39} + 0.00140845u^{38} + \dots + 1.36554u - 0.312079 \\ -0.337234u^{39} - 0.662090u^{38} + \dots + 0.0692011u + 0.735406 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.278749u^{39} - 0.364781u^{38} + \dots + 2.29798u + 2.37917 \\ -0.264706u^{39} - 0.351837u^{38} + \dots + 0.543689u + 1.12586 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.278749u^{39} - 0.364781u^{38} + \dots + 2.29798u + 2.37917 \\ -0.264706u^{39} - 0.351837u^{38} + \dots + 0.543689u + 1.12586 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.625380u^{39} 2.23284u^{38} + \cdots + 22.1362u 1.81055$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{40} + 2u^{39} + \dots + 5u + 1$
c_2	$u^{40} + 18u^{39} + \dots - u + 1$
c_3, c_7	$u^{40} + 2u^{39} + \dots - u - 1$
<i>C</i> ₅	$u^{40} - 2u^{39} + \dots + 61u + 17$
c_6, c_9	$u^{40} + 5u^{39} + \dots + 64u + 32$
c_8,c_{10}	$u^{40} - 6u^{39} + \dots - 5u - 1$
c_{11}	$u^{40} + 14u^{39} + \dots + 23u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{40} + 18y^{39} + \dots - y + 1$
c_2	$y^{40} + 10y^{39} + \dots - 101y + 1$
c_{3}, c_{7}	$y^{40} - 10y^{39} + \dots - y + 1$
<i>C</i> ₅	$y^{40} + 2y^{39} + \dots + 223y + 289$
c_6, c_9	$y^{40} - 33y^{39} + \dots - 8704y + 1024$
c_8,c_{10}	$y^{40} - 14y^{39} + \dots - 23y + 1$
c_{11}	$y^{40} + 30y^{39} + \dots + 89y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.752901 + 0.442189I		
a = -0.604966 + 0.350008I	-1.98806 - 6.13047I	-7.04352 + 9.47962I
b = 0.829023 + 0.938697I		
u = 0.752901 - 0.442189I		
a = -0.604966 - 0.350008I	-1.98806 + 6.13047I	-7.04352 - 9.47962I
b = 0.829023 - 0.938697I		
u = -0.655458 + 0.476008I		
a = -0.318936 - 0.554304I	-0.42554 + 1.82346I	-2.95478 - 4.65601I
b = 0.613689 - 0.710479I		
u = -0.655458 - 0.476008I		
a = -0.318936 + 0.554304I	-0.42554 - 1.82346I	-2.95478 + 4.65601I
b = 0.613689 + 0.710479I		
u = -0.810417 + 0.872688I		
a = 0.140090 + 0.325947I	4.57008 + 7.07850I	-2.02910 - 5.97329I
b = -0.551174 - 1.182170I		
u = -0.810417 - 0.872688I		
a = 0.140090 - 0.325947I	4.57008 - 7.07850I	-2.02910 + 5.97329I
b = -0.551174 + 1.182170I		
u = -0.643082 + 1.012100I		
a = 0.398027 + 0.191743I	0.145121 + 0.763133I	-4.51767 - 0.23788I
b = -0.617281 - 0.666490I		
u = -0.643082 - 1.012100I		
a = 0.398027 - 0.191743I	0.145121 - 0.763133I	-4.51767 + 0.23788I
b = -0.617281 + 0.666490I		
u = 0.799783 + 0.916888I		
a = 0.215570 - 0.335982I	6.09690 - 1.71389I	0.373315 + 0.701321I
b = -0.650453 + 1.082920I		
u = 0.799783 - 0.916888I		
a = 0.215570 + 0.335982I	6.09690 + 1.71389I	0.373315 - 0.701321I
b = -0.650453 - 1.082920I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.711514 + 0.271124I		
a = -1.148250 + 0.635421I	-3.56782 - 0.26795I	-11.60981 + 1.69985I
b = 1.174800 + 0.553857I		
u = 0.711514 - 0.271124I		
a = -1.148250 - 0.635421I	-3.56782 + 0.26795I	-11.60981 - 1.69985I
b = 1.174800 - 0.553857I		
u = -0.753278 + 0.081360I		
a = -1.63901 - 0.21826I	-4.40562 + 3.00647I	-12.14909 - 4.76014I
b = 1.50673 - 0.20107I		
u = -0.753278 - 0.081360I		
a = -1.63901 + 0.21826I	-4.40562 - 3.00647I	-12.14909 + 4.76014I
b = 1.50673 + 0.20107I		
u = -1.028320 + 0.763633I		
a = 1.61875 + 0.32346I	3.86288 - 0.92225I	-2.44177 - 0.36369I
b = -0.801483 + 0.818338I		
u = -1.028320 - 0.763633I		
a = 1.61875 - 0.32346I	3.86288 + 0.92225I	-2.44177 + 0.36369I
b = -0.801483 - 0.818338I		
u = 0.797251 + 1.038720I		
a = 0.390573 - 0.367350I	5.41673 + 1.52162I	-60.10 - 0.682803I
b = -0.878605 + 0.846502I		
u = 0.797251 - 1.038720I		
a = 0.390573 + 0.367350I	5.41673 - 1.52162I	-60.10 + 0.682803I
b = -0.878605 - 0.846502I		
u = -0.422420 + 0.531130I		
a = 0.580600 - 0.488478I	-0.196422 + 1.363410I	-2.16894 - 4.86353I
b = 0.175715 - 0.238829I		
u = -0.422420 - 0.531130I		
a = 0.580600 + 0.488478I	-0.196422 - 1.363410I	-2.16894 + 4.86353I
b = 0.175715 + 0.238829I		
	1	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.054050 + 0.808417I		
a = 1.58951 - 0.38241I	5.28266 - 4.71026I	0. + 5.00895I
b = -0.921400 - 0.829719I		
u = 1.054050 - 0.808417I		
a = 1.58951 + 0.38241I	5.28266 + 4.71026I	0 5.00895I
b = -0.921400 + 0.829719I		
u = -1.35764		
a = 1.36371	-3.32615	1.98010
b = -0.670384		
u = -0.816149 + 1.085630I		
a = 0.451733 + 0.389885I	3.33510 - 6.89323I	-3.00000 + 5.25790I
b = -0.971878 - 0.771756I		
u = -0.816149 - 1.085630I		
a = 0.451733 - 0.389885I	3.33510 + 6.89323I	-3.00000 - 5.25790I
b = -0.971878 + 0.771756I		
u = -0.460095 + 0.445935I		
a = 1.143080 - 0.772133I	-0.154276 + 1.379410I	-2.57505 - 4.68653I
b = 0.315005 + 0.068617I		
u = -0.460095 - 0.445935I		
a = 1.143080 + 0.772133I	-0.154276 - 1.379410I	-2.57505 + 4.68653I
b = 0.315005 - 0.068617I		
u = 0.392808 + 0.498293I		
a = 1.96044 + 1.55878I	-1.02172 + 2.83866I	-5.26921 + 0.34131I
b = 0.700490 - 0.229460I		
u = 0.392808 - 0.498293I		
a = 1.96044 - 1.55878I	-1.02172 - 2.83866I	-5.26921 - 0.34131I
b = 0.700490 + 0.229460I		
u = 1.093020 + 0.888850I		
a = 1.51810 - 0.48663I	4.47319 - 8.54344I	0. + 4.74667I
b = -1.155200 - 0.809789I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.093020 - 0.888850I		
a = 1.51810 + 0.48663I	4.47319 + 8.54344I	04.74667I
b = -1.155200 + 0.809789I		
u = 0.577742		
a = -2.60696	-2.39024	-2.93570
b = 1.20395		
u = -1.14394 + 0.85054I		
a = 1.46853 + 0.41523I	-1.33633 + 6.06144I	0
b = -1.082180 + 0.668751I		
u = -1.14394 - 0.85054I		
a = 1.46853 - 0.41523I	-1.33633 - 6.06144I	0
b = -1.082180 - 0.668751I		
u = -1.10053 + 0.91184I		
a = 1.49517 + 0.51717I	2.4064 + 14.1156I	0 8.71801I
b = -1.22599 + 0.79743I		
u = -1.10053 - 0.91184I		
a = 1.49517 - 0.51717I	2.4064 - 14.1156I	0. + 8.71801I
b = -1.22599 - 0.79743I		
u = 1.51868 + 0.20012I		
a = 1.325660 - 0.048656I	-7.01606 - 4.59273I	0
b = -0.767634 - 0.087671I		
u = 1.51868 - 0.20012I		
a = 1.325660 + 0.048656I	-7.01606 + 4.59273I	0
b = -0.767634 + 0.087671I		
u = 0.103618 + 0.421336I		
a = 6.03694 + 2.30128I	-1.92691 - 1.82552I	15.7454 + 26.9436I
b = 1.041040 - 0.055984I		
u = 0.103618 - 0.421336I		
a = 6.03694 - 2.30128I	-1.92691 + 1.82552I	15.7454 - 26.9436I
b = 1.041040 + 0.055984I		

II. $I_2^u = \langle b-1, u^4-2u^3-u^2+a+3u+1, u^5-u^4-2u^3+u^2+u+1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u - 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} + 2u^{3} + u^{2} - 3u \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^4 + u^3 7u^2 3u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_2	$u^5 + 3u^4 + 4u^3 + u^2 - u - 1$
<i>c</i> ₃	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
C_4	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_{5}, c_{7}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
c_{6}, c_{9}	u^5
<i>c</i> ₈	$(u-1)^5$
c_{10}, c_{11}	$(u+1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_2	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$
c_3, c_5, c_7	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_{6}, c_{9}	y^5
c_8, c_{10}, c_{11}	$(y-1)^5$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.21774		
a = -1.67436	-4.04602	-10.1350
b = 1.00000		
u = -0.309916 + 0.549911I		
a = 0.29977 - 2.14694I	-1.97403 + 1.53058I	-3.52158 + 1.00973I
b = 1.00000		
u = -0.309916 - 0.549911I		
a = 0.29977 + 2.14694I	-1.97403 - 1.53058I	-3.52158 - 1.00973I
b = 1.00000		
u = 1.41878 + 0.21917I		
a = -1.46259 + 0.14641I	-7.51750 - 4.40083I	-14.4110 + 1.1901I
b = 1.00000		
u = 1.41878 - 0.21917I		
a = -1.46259 - 0.14641I	-7.51750 + 4.40083I	-14.4110 - 1.1901I
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^5 - u^4 + 2u^3 - u^2 + u - 1)(u^{40} + 2u^{39} + \dots + 5u + 1) $
c_2	$ (u5 + 3u4 + 4u3 + u2 - u - 1)(u40 + 18u39 + \dots - u + 1) $
c_3	$ (u^5 + u^4 - 2u^3 - u^2 + u - 1)(u^{40} + 2u^{39} + \dots - u - 1) $
c_4	$ (u^5 + u^4 + 2u^3 + u^2 + u + 1)(u^{40} + 2u^{39} + \dots + 5u + 1) $
<i>C</i> 5	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{40} - 2u^{39} + \dots + 61u + 17)$
c_6, c_9	$u^5(u^{40} + 5u^{39} + \dots + 64u + 32)$
C ₇	$ (u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{40} + 2u^{39} + \dots - u - 1) $
C ₈	$((u-1)^5)(u^{40} - 6u^{39} + \dots - 5u - 1)$
c_{10}	$((u+1)^5)(u^{40}-6u^{39}+\cdots-5u-1)$
c_{11}	$((u+1)^5)(u^{40}+14u^{39}+\cdots+23u+1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)(y^{40} + 18y^{39} + \dots - y + 1)$
c_2	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)(y^{40} + 10y^{39} + \dots - 101y + 1)$
c_3, c_7	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{40} - 10y^{39} + \dots - y + 1)$
<i>C</i> ₅	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{40} + 2y^{39} + \dots + 223y + 289)$
c_6, c_9	$y^5(y^{40} - 33y^{39} + \dots - 8704y + 1024)$
c_8, c_{10}	$((y-1)^5)(y^{40}-14y^{39}+\cdots-23y+1)$
c_{11}	$((y-1)^5)(y^{40}+30y^{39}+\cdots+89y+1)$