R Visualizing: 从入门到放弃

画出条形图

- I. 为什么要选择R
- II. ggplot绘图语法
- III.色彩原理
- IV.基本图表类型
- V. 单变量分析
- VI.双变量分析

I. 为什么要选择R

- II. ggplot绘图语法
- III.色彩原理
- IV.基本图表类型
- V. 单变量分析
- VI.双变量分析

为什么要选择R

• 开源免费、功能强大

LOGO	名称	开源	付费	技能要求
X	Excel ¹	否	是	界面操作
	Origin ²	否	是	界面操作
Σ	SigmPlot ³	否	是	界面操作
	GraphPad Prism ⁴	否	是	界面操作
◆	MATLAB ⁵	否	是	编程
	Python ⁶	是	否	编程
R	R ⁷	是	否	编程

WU WENQUAN Oct. 29 2020 Oct. 29 2020 清华大学社会科学学院政治学系

为什么要选择R

• 上手极快,使用简单

Matplotlib

"坚(最)痛苦的就是把鸭嘴笔这个水 弄到里面,描图的时候一下子就…然后 就用刀片去刮,这个是描图坠(最)痛 苦的"

——江泽民

为什么要选择R

• 上手极快,使用简单

```
ggplot(data = <data>), mapping = aes(<mappings>)) +
geom_xxx() +
scale_xxx() +
coord_xxx() +
facet_xxx() +
theme_xxx()
```

ggplot

为什么要选择R

ggplot(Grammar of Graphic,绘图语法)

- 图层的设计方式,通过"+"叠加
- 将数据和图形细节分离
- 图形美观

```
ggplot(data = <data>), mapping = aes(<mappings>)) +
geom_xxx() +
geom_xxx() +
scale_xxx() +
scale_xxx() +
coord_xxx() +
facet_xxx() +
theme_xxx()
```


I. 为什么要选择R

II. ggplot绘图语法

III.色彩原理

IV.基本图表类型

V. 单变量分析

VI.双变量分析

ggplot绘图语法

ggplot八股文的要素

- Data 数据
- Aesthetics 美学映射
- Geometry objects 几何对象
- Theme adjustments 其他元素

```
ggplot(data = <data>),aes(<mappings>)) +
geom_xxx() +
scale_xxx() +
coord_xxx() +
facet_xxx() +
theme_xxx()
```


ggplot绘图语法

极大提升coding节奏感的五个快捷键

• <- Alt +-

• Run Ctrl + Enter

• Tab Tab

Note Ctrl+Shift+C

• Help ?<Function> #在R里面打问号并不会激怒函数

Data 数据

• 首先,输入并run:

View(mtcars)

• 其次,帅气的输入并run:

library(tidyverse)

ggplot绘图语法

*	mpg ‡	cyl ‡	disp ‡	hp ‡	drat ‡	wt ‡	qsec ‡	vs ‡	am ‡	gear ‡	carb ‡	type ‡
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	Automatic	4	4	Automobiles
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	Automatic	4	4	Automobiles
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	Automatic	4	1	Automobiles
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	Mannual	3	1	Automobiles
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	Mannual	3	2	Automobiles
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	Mannual	3	1	Automobiles
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	Mannual	3	4	Automobiles
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	Mannual	4	2	Automobiles
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	Mannual	4	2	Automobiles
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	Mannual	4	4	Automobiles
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	Mannual	4	4	Automobiles
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	Mannual	3	3	Automobiles
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	Mannual	3	3	Automobiles
More 4E0SLC	15.0	0	275.9	190	2 07	2 790	19.00	٥	Mannual	7	,	Automobiles

WU WENQUAN Oct. 29 2020 Oct. 29 2020 清华大学社会科学学院政治学系

ggplot绘图语法

Data

ggplot(data = mtcars)

ggplot绘图语法

Data + Aesthetics

```
ggplot(data = mtcars, aes(x = mpg)) +
  geom_histogram(fill = 'grey', color = 'black', bins = 5) +
  geom_density(color = 'red')
```

WU WENQUAN Oct. 29 2020 Oct. 29 2020 清华大学社会科学学院政治学系

ggplot绘图语法

Data + Aesthetics

ggplot绘图语法

Data + Aesthetics + Geometrics

```
ggplot(data = mtcars, aes(x = mpg)) +
geom_histogram(aes(y = ..density..), fill = 'grey', color =
'black', bins =5) +
geom_density(color = 'red', lwd =1) 设置比例
```


ggplot绘图语法

Data + Aesthetics + Geometrics

ggplot绘图语法

Data + Aesthetics + Geometrics + Others

```
ggplot(data = mtcars, aes(x = mpg)) +
  geom_histogram(aes(y = ..density..), fill = 'grey', color = 'black',
bins = 5) +
  geom_density(color = 'red', lwd = 1) +
  ggtitle('Histogram with Imposed Density Curve \n (Miles Per Gallon')
```

ggplot绘图语法

Data + Aesthetics + Geometrics + Others

Histogram with Imposed Density Curve (Miles Per Gallon

ggplot绘图语法

Data + Aesthetics + Geometrics + Others

```
ggplot(data = mtcars, aes(x = mpg)) +
  geom_histogram(aes(y = ..density..), fill = 'grey', color =
'black',bins = 5) +
  geom_density(color = 'red', lwd =1) +
  ggtitle('Histogram with Imposed Density Curve \n (Miles per
Gallon)') +
  ylab('Density') +
  xlab('Miles per Gallon') +
  theme(plot.title = element_text(hjust = 0.5))
```

ggplot绘图语法

Data + Aesthetics + Geometrics + Others

Histogram with Imposed Density Curve (Miles per Gallon)

ggplot绘图语法

主题: 感觉图中的灰格子有亿点点丑

```
ggplot(data = mtcars, aes(x = mpg)) +
  geom_histogram(aes(y = ..density..), fill = 'grey', color =
'black',bins = 5) +
  geom_density(color = 'red', lwd =1) +
  ggtitle('Histogram with Imposed Density Curve \n (Miles per
Gallon)') +
  ylab('Density') +
  xlab('Miles per Gallon') +
  theme_cowplot() +
  theme(plot.title = element_text(hjust = 0.5))
```

ggplot绘图语法

主题: 感觉图中的灰格子主题有亿点点丑

ggplot绘图语法

保存:那,怎么把我的图存下来?

• 存在变量中

```
fig1 \leftarrow ggplot(data = mtcars, aes(x = mpg)) +
  geom_histogram(aes(y = ..density..), fill = 'grey', color
'black',bins = 5) +
  geom_density(color = 'red', lwd =1) +
  ggtitle('Histogram with Imposed Density Curve \n (Miles per Gallon)') +
  ylab('Density') +
  xlab('Miles per Gallon') +
  theme_cowplot() +
  theme(plot.title = element_text(hjust = 0.5))
```

ggplot绘图语法

保存:那,怎么把我的图存下来?

• 存在电脑中

ggsave("C:/Users/mi/SynologyDrive/Rclub/myfirstplot.pdf", fig1)

• 直接用鼠标点也可

WU WENQUAN Oct. 29 2020 Oct. 29 2020 清华大学社会科学学院政治学系

ggplot绘图语法

分格: 放在同一个张图里之横着放

```
mtcars$am <- factor(mtcars$am, labels = c('Mannual', 'Automatic'))
fig2 <- ggplot(data = mtcars, aes(y = mpg, x = am)) +
   geom_boxplot() +
   ggtitle('Boxplot for Miles per Gallon \n By Transmisstion Type') +
   xlab('Transmission Types') +
   ylab('Miles per Gallon')</pre>
```

plot_grid(fig1, fig2, nrow = 1)

ggplot绘图语法

分格: 放在同一个张图里之横着放

Transmission Types

ggplot绘图语法

分格: 放在同一个张图里之竖着放

plot_grid(fig1, fig2, nrow = 2)

ggplot绘图语法

分格: 放在同一个张图里之竖着放

plot_grid(fig1, fig2, nrow = 2)

Boxplot for Miles per Gallon By Transmisstion Type

为什么要选择F gplot绘图语法 色彩原理 基本图表类型 单变量分析

ggplot绘图语法

分面: 还想放在同一坐标轴里

ggplot绘图语法

分面: 还想放在同一坐标轴里

Histogram of Miles per Gallon By Transmission Type

为什么要选择F gplot绘图语法 色彩原理 基本图表类型 单变量分析

ggplot绘图语法

分面: 还想放在同一坐标轴里

ggplot绘图语法

分面: 还想放在同一坐标轴里

Histogram of Miles per Gallon By Transmission Type

- I. 为什么要选择R
- II. ggplot绘图语法
- III.色彩原理
- IV.基本的图表类型
- V. 单变量分析
- VI.双变量分析

色彩原理

色彩的表达

• RGB: 红、绿、蓝。显示色

• CMYK: 青 (Cyan)、洋红 (Magenta)、黄 (Yellow)、黑。印刷色

• HSL: 色相 (Hue) 、饱和度 (Saturatio) 、亮度 (Lightness)

色彩原理

色彩的搭配

- (1) 单色(monochromatic) 搭配色相由暗、中、明三种色调组成的单色。单色搭配并没有形成颜色的层次,但形成了明暗的层次。这种搭配在设计中应用时,效果永远不错。
- (2) 互补色(complement) 搭配如果颜色方案只包括两种颜色,就会选择色环上对立的2 个颜色(在色轮上直线相对的两种颜色称为补色,比如红色和绿色)。互补色搭配在正式的设计中比较少见,主要由于它色彩之间强烈对比所产生的特殊性和不稳定
- (3) 三角形(triad) 搭配如果颜色方案只包括三种颜色,那么就会以120°的间限选择3个颜色。三角形搭配是一种能使得画面生动的搭配方式,即使使用了低饱和度的色彩也是如此

色彩原理

色彩的搭配

色彩原理

色彩如何运用于学术图表之中——Colorbrewer

单色系 (sequential)	双色渐变系 (dsiverging)	多色系 (qualitative)
色相基本相同,饱和度呈单调递增的	两个不同的色系使用于不同的两类	数据为非数值情况,不同色系的颜色
变化。有序数据一般从大到小排列,	情况, 如正值与负值。双色渐变系搭	用于表示不同类别, 尤其是使用色相
对应的颜色亮度也逐步增加。小数值	配方案主要强调数据基于一个关键	最轻或最暗的颜色强调关键的类别。
通常使用较亮的颜色表示,而大数值	中间数值 (midpoint) 的级数分布情	多色系颜色搭配方案使用不同色相
通常使用较暗的颜色表示。单色系颜	况。把关键的中间数值作为中间点,	值的颜色,表示不同类别或数值的差
色搭配方案中可能存在颜色的色相	使用一个较亮的颜色表示, 然后两端	异。这些颜色的亮度不一定要完全相
不同, 但它的主要特征还是颜色从亮	逐步变化到两个不同色相的颜色。比	等,但是要基本差不多。多色系还包
到暗的亮度变化。比如地区的人口密	如基于某疾病平均死亡率的分布情	括圆形分布的多色系
度等通常使用单色系搭配方案	况,就可以使用双色渐变系搭配方案	
[-A, 0], [0, A], 或者[A, B]	[A, 0, B], 或者[A, C, B] (C 为 mean, medium 等)	类别,特征, 时间类的周期性数据

色彩原理

色彩如何运用于学术图表之中——Colorbrewer

色彩原理

操作化: 怎么在ggplot中调色

```
fig8 <- ggplot(data =diamonds) +
  geom_boxplot(aes(x = color, y = price, fill = color)) +
  xlab('Color of Diamonds') +
  ylab('Price (USD)') +
  ggtitle('Diamond Price by Color')
fig8

fig8 <- fig8 + scale_fill_brewer(palette = 'Accent')
fig8</pre>
```

更多调色方案及其他类型的配色: ?scale_fill_brewer()

其他包: wesanderson、ggsci、viridis

色彩原理

案例

色彩原理

案例

- I. 为什么要选择R
- II. ggplot绘图语法
- III.色彩原理
- IV.基本的图表类型
- V. 单变量分析
- VI.双变量分析

基本图表类型

变量数	类型	函数	常用图表类型
1	连续型	<pre>geom_histogram() \ geom_density() \ geom_density() \ geom_freqpoly() \ geom_qq() \ geom_area()</pre>	统计直方图、核密度估计曲线图
	离散型	geom_bar()	柱形图系列
2	x-连续型 y-连续型	<pre>geom_point() \ geom_area() \ geom_line() \ geom_jitter() \ geom_smooth() \ geom_label() \ geom_text() \ geom_bin2d() \ geom_hex() \ geom_density2d() \ geom_map() \ geom_step() \ geom_quantile() \ geom_rug()</pre>	散点图系列、面积图系列、折线 图系列,包括抖动散点图、平滑 曲线图、文本、标签、二维统计 直方图、二维核密度估计图、地 理空间图表
	x-离散型 y-连续型	geom_boxplot(), geom_violin(), geom_dotplot(), geom_col()	箱形图、小提琴图、点阵图、统 计直方图
	x-离散型 y-离散型	geom_count()	二维统计直方图
3	x, y, z- 连续型	geom_contour(), geom_raster(), geom_tile()	等高线图、热力图

- I. 为什么要选择R
- II. ggplot绘图语法
- III.色彩原理
- IV.基本图表类型
- V. 单变量分析
- VI.双变量分析

单变量分析

直方图 histogram

```
fig1 <- ggplot(data = mtcars, aes(x = mpg)) +
  geom_histogram(aes(y = ..density..), bins = 30, fill = 'blue')
  geom_density(color = 'black') +
  xlab('Miles per Gallon') +
  ylab('') +
  ggtitle('Histogram of Miles per Gallon')
fig1</pre>
```

单变量分析

直方图 boxplot

单变量分析

箱型图 boxplot

```
mtcars$type <- 'Automobiles'
fig2 <- ggplot(data = mtcars, aes(y = mpg, x = type))
  geom_boxplot(fill = 'blue', color = 'black') +
  xlab('') +
  ylab('Miles per Gallon') +
  ggtitle('Boxplot of Miles per Gallon')
fig2</pre>
```

单变量分析

箱型图 boxplot

单变量分析

小提琴图 boxplot

```
mtcars$type <- 'Automobiles'</pre>
fig3 <- ggplot(data = mtcars, aes(y = mpg, x = type))
  geom_violin(fill = 'blue', color = 'black',
              draw_quantiles = c(0.25, 0.5, 0.75),
              trim = F) +
  xlab('') +
  ylab('Miles per Gallon') +
  ggtitle('Violinplot of Miles per Gallon')
fig3
```

单变量分析

小提琴图 boxplot

单变量分析

条形图 bar chart

单变量分析

条形图 bar chart

单变量分析

饼图 bar chart

pie.data <- diamonds %>%
 group_by(cut) %>%
 summarise(perct = n()/nrow(diamonds))

单变量分析

饼图 bar chart

```
fig5 <- ggplot(data = pie.data, aes(x = '')) +
 geom_bar(aes(y = perct, fill =cut), stat = 'identity')
 coord_polar('y', start = 0) +
 xlab('') +
 ylab('') +
 ggtitle('Pie Chart of Diamond Cuts') +
 theme(axis.ticks = element_blank(),
        axis.text = element_blank(),
        axis.line = element_blank())
fig5
```

单变量分析

饼图 bar chart

Pie Chart of Diamond Cuts

- I. 为什么要选择R
- II. ggplot绘图语法
- III.色彩原理
- IV.基本图表类型
- V. 单变量分析
- VI.双变量分析

双变量分析

集中趋势

```
cars.new <- mtcars %>%
  group_by(am) %>%
  summarise(wt.avg =mean(wt))
cars.new$am <- factor(cars.new$am , labels = c('Mannual','Auto'))</pre>
fig6 <- ggplot(data = cars.new) +
  geom_bar(aes(x = am, y = wt.avg), stat = 'identity')
  xlab('Transmission System') +
  ylab('Average Weight (tons)') +
  ggtitle('Automobile Average Weight by Transmission')
fig6
```

双变量分析

集中趋势

双变量分析

离散趋势

双变量分析

离散趋势

双变量分析

均值+离散

```
fig8 <- ggplot(data =diamonds) +
  geom_boxplot(aes(x = color, y = price, fill = color))
  xlab('Color of Diamonds') +
  ylab('Price (USD)') +
  ggtitle('Diamond Price by Color')
fig8</pre>
```

双变量分析

均值+离散

双变量分析

相关关系

```
fig9 <- ggplot(data = diamonds, aes(x =carat, y = price )) +
  geom_point() +
  geom_smooth(method = 'auto', color = 'red', se = T)+
  xlab('Diamond Weight (carat)') +
  ylab('Price (USD)') +
  ggtitle('diamond Price by Weight')
fig9</pre>
```

双变量分析

相关关系

双变量分析

相关关系

```
fig10 <- ggplot(data = diamonds, aes(x = carat, y = price)) +
   geom_boxplot(aes(group = cut_width(carat, 0.1))) +
   xlab('Diamond Weight Group(carat)') +
   ylab('Price (USD)') +
   ggtitle('Diamond Price by Weight Group')</pre>
```

fig10

双变量分析

相关关系

双变量分析

相关关系

```
fig11 <- ggplot(data = diamonds, aes(x = cut, y = color)) +
   geom_count(shape = 'diamond') +
   xlab('Diamond Cut') +
   ylab('Diamond Color') +
   ggtitle('Diamond Color by Cut')
fig11</pre>
```

WU WENQUAN Oct. 29 2020 Oct. 29 2020 清华大学社会科学学院政治学系

双变量分析

相关关系

双变量分析

等等,真的是那条曲线吗

```
fig14 <- ggplot(data = diamonds, aes(x = carat, y = price, color = cut))
+
    geom_point() +
    geom_smooth(method = 'lm') +
    xlab('Diamond Weight (carat)') +
    ylab('Diamond Price (USD)') +
    ggtitle('Diamond Price by Weight by Cut')
fig14</pre>
```

WU WENQUAN OCT. 29 2020 OCT. 29 2020 OCT. 29 2020 TOTAL TO

单变量分析 双变量分析

双变量分析

等等, 真的是那条曲线吗

