Erweiterungen der rationalen Zahlen

Vereinfachung der Beschreibung durch Erzeuger

Folgende Regeln kann man verwenden, um Darstellungen von Erweiterungen der Form

$$\mathbb{Q}(x_1,\ldots,x_n)$$

zu vereinfachen (wieso gelten die Regeln?):

- a) Die Reihenfolge der Erzeuger (damit sind die x_i gemeint) spielt keine Rolle.
- b) Erzeuger, die in \mathbb{Q} liegen, kann man weglassen.
- c) Man kann beliebige Elemente aus Q zu Erzeugern addieren und subtrahieren, sowie (falls nicht null) multiplizieren und dividieren.
- d) Man kann beliebige Q-Vielfache eines Erzeugers auf einen anderen addieren und subtrahieren, sowieso (falls nicht null) multiplizieren und dividieren.

Beispiele

- 1. $\mathbb{Q}(\sqrt{2}, -\sqrt{2}) = \mathbb{Q}(\sqrt{2})$
- 2. $\mathbb{Q}(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}) = \mathbb{Q}(1+\sqrt{5}, 1-\sqrt{5}) = \mathbb{Q}(\sqrt{5}, -\sqrt{5}) = \mathbb{Q}(\sqrt{5})$
- 3. $\mathbb{Q}(\zeta^0, \zeta^1, \dots, \zeta^5) = \mathbb{Q}(\zeta) = \mathbb{Q}(1 + \sqrt{3}i) = \mathbb{Q}(\sqrt{3}i),$ für $\zeta := e^{2\pi i/6} = \cos 60^\circ + i \sin 60^\circ = \frac{1}{2}(1 + \sqrt{3}i).$
- 4. $\mathbb{Q}(\sqrt{3})(\zeta^0,\ldots,\zeta^5) = \mathbb{Q}(\sqrt{3})(\sqrt{3}\,\mathrm{i}) = \mathbb{Q}(\sqrt{3},\sqrt{3}\,\mathrm{i}) = \mathbb{Q}(\sqrt{3},\mathrm{i}),$ für ζ wie in Beispiel 3.
- 5. $\mathbb{Q}(\sqrt[8]{2}\zeta^0, \dots, \sqrt[8]{2}\zeta^7) = \mathbb{Q}(\sqrt[8]{2}, \zeta, \zeta^2, \dots, \zeta^7) = \mathbb{Q}(\sqrt[8]{2}, \zeta) = \mathbb{Q}(\sqrt[8]{2}, 1 + i) = \mathbb{Q}(\sqrt[8]{2}, i),$ für $\zeta := e^{2\pi i/8} = \frac{1}{\sqrt{2}}(1 + i).$
- 6. $\mathbb{Q}(\text{alle sechs Nullstellen von } (X^4-2)(X^2+1)) = \mathbb{Q}(\sqrt[4]{2},i)$

Anwendungen

Die Darstellung zu vereinfachen ist hilfreich, wenn man...

- ... Erweiterungen von Q in knapper Form angeben möchte.
- ...den Grad einer Erweiterung bestimmen möchte.

Beispiel: Die Erweiterung von Beispiel 3 hat über \mathbb{Q} den Grad 2, denn das Minimalpolynom von $\sqrt{3}$ i über \mathbb{Q} ist $X^2 + 3$ (wieso?). In der Ausgangsformulierung $\mathbb{Q}(\zeta^0, \zeta^1, \dots, \zeta^5)$ erkennt man den Grad dagegen nicht so schnell.

- ... primitive Elemente bestimmen möchte.

Beispiel: Ein primitives Element für die Zahlen ζ^0, \ldots, ζ^5 aus Beispiel 3 ist $\sqrt{3}$ i. Dank der Vereinfachungsregeln sieht man das ganz mühelos, ohne langwierige wiederholte Anwendung des Verfahrens aus der Vorlesung.

- ... Galoisgruppen bestimmen möchte (denn dazu benötigt man ja diese Dinge).

Nachweis von Rechenbereichsinklusionen

Seien F und \widetilde{F} beliebige weitere Erweiterungen von \mathbb{Q} . Dann gilt (wieso?):

- a) $\mathbb{Q}(x_1, ..., x_n)(y_1, ..., y_m) = \mathbb{Q}(x_1, ..., x_n, y_1, ..., y_m).$
- b) $\mathbb{Q}[x] = \mathbb{Q}(x)$ genau dann, wenn x algebraisch ist.
- c) $\mathbb{Q}(x_1,\ldots,x_n)\subseteq F$ genau dann, wenn $x_1,\ldots,x_n\in F$.
- d) $\mathbb{Q}(x_1, x_2) = \mathbb{Q}(x_1)$ genau dann, wenn $x_2 \in \mathbb{Q}(x_1)$ (wie folgt das aus c)?).
- e) Gelte $F \subseteq \widetilde{F}$. Dann gilt genau dann $F = \widetilde{F}$, wenn $[F : \mathbb{Q}] = [\widetilde{F} : \mathbb{Q}]$. Ohne die Zusatzvoraussetzung $F \subseteq \widetilde{F}$ ist das Quatsch!

Im Allgemeinen gilt nicht, dass $\mathbb{Q}(x,y) = \mathbb{Q}(x+y)$.

Gradbestimmung

a) Seien w und u algebraische Zahlen. Dann gilt

$$\begin{split} \deg_{\mathbb{Q}(u)} w &= \text{Grad von } w \text{ ""iber } \mathbb{Q}(u) \\ &= \text{Grad des Minimalpolynoms von } w \text{ ""iber } \mathbb{Q}(u) \\ &= [\mathbb{Q}(u,w):\mathbb{Q}(u)]. \end{split}$$

Falls außerdem $u \in \mathbb{Q}(w)$ gelten sollte, gilt ferner $\mathbb{Q}(u, w) = \mathbb{Q}(w)$, sodass man in diesem Fall die Formel noch weiter vereinfachen kann:

$$= [\mathbb{Q}(w) : \mathbb{Q}(u)].$$

Für den Grad über \mathbb{Q} folgt daraus (mit u := 1):

 $\deg_{\mathbb{Q}} w = (\text{Grad des Minimal polynoms von } w \text{ ""ber } \mathbb{Q}) = [\mathbb{Q}(w) : \mathbb{Q}].$

b) Gelte $F \subseteq F' \subseteq F''$. Dann gilt die *Gradformel*:

$$[F'':F] = [F'':F'] \cdot [F':F].$$

c) Verbindung zur Galoistheorie: Sind x_1, \ldots, x_n die Nullstellen eines normierten separablen Polynoms mit rationalen Koeffizienten und ist t ein primitives Element für diese Nullstellen, so gilt $[\mathbb{Q}(x_1,\ldots,x_n):\mathbb{Q}]=[\mathbb{Q}(t):\mathbb{Q}]=|\mathrm{Gal}_{\mathbb{Q}}(x_1,\ldots,x_n)|$. Dies folgt aus der fundamentalen 1:1-Korrespondenz zwischen den Elementen der Galoisgruppe und den galoissch Konjugierten von t (Proposition 4.8).

Basen

Eine mögliche \mathbb{Q} -Basis der Erweiterung $\mathbb{Q}(\alpha)$ ist durch

$$1, \quad \alpha, \quad \alpha^2, \quad \dots, \quad \alpha^{n-1}$$

gegeben, wobei n der Grad von α sei. Ausbuchstabiert bedeutet das: Jede Zahl aus $\mathbb{Q}(\alpha)$ lässt sich auf eindeutige Art und Weise als rationale Linearkombination in den Zahlen $\alpha^0, \ldots, \alpha^{n-1}$ schreiben. Beispiel: Der Grad von $\sqrt[3]{2}$ über \mathbb{Q} ist 3 (wieso?). Daher gibt es für jede Zahl x aus $\mathbb{Q}(\sqrt[3]{2})$ genau einen Satz von rationalen Koeffizienten a, b, c mit

$$x = a \cdot 1 + b \cdot \sqrt[3]{2} + c \cdot \sqrt[3]{2}^2$$
.