VISUALIZACIÓN DEL ACOPLAMIENTO ENTRE ESPINES NUCLEARES EN RMN

J. L. Torres Moreno¹, B. A. Zúñiga Gutiérrez², A. A. Martínez-Carranza³, A. M. Köster⁴

¹UNAM, FES Cuautitlán. Carretera Cuautitlán-Teoloyucan Km 2.5 San Sebastián Xhala Cuautitlán Izcalli, C.P. 54714, Edo. de México

Introducción

Las constantes de acoplamiento entre espines nucleares, J_{PQ} , son un parámetro medido en RMN. El fenómeno básico involucra la interacción entre dos momentos magnéticos de los núcleos a través de los electrones. Los mecanismos conocidos son cuatro:

- Contacto de Fermi (FC)
- Interacción espín-dipolo (SD)
- Interacción espin orbital paramagnética (PSO)
- Interacción espin orbital diamagnética (DSO)

Objetivo

Racionalizar los términos de Ramsey en términos de cantidades conocidas de la física clásica:

- Densidad de corriente: $\vec{J}(\vec{r})$.
- Campo magnético inducido: $\vec{\mathcal{B}}(\vec{r})$.
- Densidad de la propiedad.

Metodología

- Los cálculos se realizaron empleando el módulo de la propiedad usando la teoría de perturbaciones de la densidad auxiliar implementado en deMon2k. Está implementación es ¡altamente eficiente!
- Todos los cálculos se realizaron con el nivel de teoría: PBE/cc-pVDZ/A2.

Contacto de Fermi e interacción espín-dipolo

 $\vec{\mu}_P$ induce $\vec{\mathcal{B}}_P(\vec{r})$

 $\vec{\mathcal{B}}_P(\vec{r})$ induce $\rho^{\alpha-\beta}(\vec{r}) \longrightarrow \vec{\mu}_e(\vec{r})$

Cada $\vec{\mu}_e(\vec{r})$ induce un segundo $\vec{\mathcal{B}}_e(\vec{Q})$

Campo magnético inducido por un dipolo magnético:

$$\vec{\mathcal{B}}(\vec{r}) = \frac{1}{c^2} \left[\frac{3(\vec{r} - \vec{P})[(\vec{r} - \vec{P}) \cdot \vec{\mu}]}{|\vec{r} - \vec{P}|^5} - \frac{\vec{\mu}}{|\vec{r} - \vec{P}|^3} \right] + \frac{8\pi}{3c^2} \delta(\vec{r} - \vec{P}) \vec{\mu}|$$

Interacción espín orbital diamagnética y paramagnética

 $\vec{J}(\vec{r})$ induce un segundo $\vec{\mathcal{B}}_e(\vec{Q})$

 $\vec{\mu}_P$ induce $\vec{\mathcal{B}}_P(\vec{r})$

Campo magnético inducido por una densidad de corriente:

$$\vec{\mathcal{B}}(\vec{r}) = \frac{\vec{r} - \vec{Q}}{|\vec{r} - \vec{Q}|^3} \times \vec{J}(\vec{r})$$

Eficiencia de ADPT **XC-Kernel** Coulomb M. **J-Couplings** Tiempo total: Número de parejas: 23,005 Fórmula molecular: C₈₁H₁₀₆N₁₄O₁₄ Metodolog2a : BLYP/DZVP/A2

6 8 10 12 14 16 18 20 22

E. Juaristi, G. Cuevas and A. Vela, J. Am. Chem. Soc. **116**, 5796 (1994).

Agradecimientos

- A Conacyt por la beca doctoral número 559721/301383.
- Al comité organizador de la RMFQT 2014 por la aceptación del trabajo.

Gráficas de la densidad de la propiedad

Contacto de Fermi

Espín orbital paramagnética

Espín orbital diamagnética

