BST 234: Lab - 7

Divy Kangeyan

March 19, 2018

Divy Kangeyan BST 234 March 19, 2018 1 / 10

Random numbers

- Efficiently generating independent random variables from the uniform distribution is important in permutation tests and many other useful instances.
- Random variable from uniform distributions can be transformed into other continuous random variables, i.e. Inverse Probability-Integral Transform
- Useful in simulations, transaction, cryptography etc.

Divy Kangeyan BST 234 March 19, 2018 2 / 10

Properties of a good Pseudo Random Number Generators (PRNG)

- Uniformity
- Independence
- Passes all the diehard tests:
 - Birthday spacings test
 - Overlapping mutations test
 - Ranks of matrices test
 - Monkey test
 - Count the 1's test
 - Parking lot test
 - Minimum distance test
 - Random Sphere test
 - Squeeze test
 - Overlapping Sums test
 - Runs test
 - The craps test

Properties of a good Pseudo Random Number Generators (PRNG) - Cont'd

- Replication (reason for generating pseudo random numbers instead of random numbers)
- Cycle length
- Speed
- Memory usage
- Parallel implementation
- cryptographically secure

Divy Kangeyan BST 234 March 19, 2018 4 / 10

PRNG: Mid-square method

Algorithm:

- Start with a 4-digit seed (z_0)
- Square it to get 8 digit number, pad with zeros if necessary
- Take middle 4 digits from the 8-digit number generated
- Divide the 4-digit number by 10000 to generate Uniform RV

Python Demonstration

Divy Kangeyan BST 234 March 19, 2018 5 / 10

Linear Congruential Generator

Produces a sequence of numbers between 0 and m-1 Algorithm:

- Start with the seed z₀
- $z_n = (az_{n-1} + c) \mod m \ n = 1, 2, ...$
- To get Uniform RV $u_n = z_n/m$
- Choice of a, c and m are important

Python Demonstration

4□ > 4□ > 4 = > 4 = > = 90

Divy Kangeyan BST 234 March 19, 2018 6 / 10

Other Congruential Generator

- Multiplicative Congruential Generators $(z_n = az_{n-1})$
 - Doesn't have full period
- Additive Congruential Generators $(z_n = z_{n-1} + z_{n-k})$
 - Can have very long period upto m^k

Divy Kangeyan BST 234 March 19, 2018 7 / 10

Mersenne Twister

- Current gold standard to generate PRN
- Invented by two Japanese scientists Makoto Matsumoto and Takuji Nishimura
- Passes all diehard tests
- Has very long period of $2^{19937} 1$

Python Demonstration for two diehard tests for PRN generated by Mersenne Twister

Divy Kangeyan BST 234 March 19, 2018 8 / 10

Truncation Error

- Introduced by algorithm via problem simplification, e.g. series truncation, iterative process truncation etc.
- For example several functions can be approximated by Taylor series expansion
- Python demonstration

Divy Kangeyan BST 234 March 19, 2018 9 / 10

Relative Error

- Absolute error in basic arithmetic operation: $(\tilde{x} * \tilde{y}) (x * y)$ * : +, -, x, /
- Relative error in basic arithmetic operation: $\frac{(\tilde{x}*\tilde{y})-(x*y)}{(x*y)}*:+,-,x,/$
- Python demonstration

Divy Kangeyan BST 234 March 19, 2018 10 / 10