Упражнение 3 по Дискретни Структури, КН2, зимен семестър 2016-2017 г.

РЕЛАЦИИ

Казвайки "релация" без допълнителни уточнения, имаме предвид релация от вида $R \subseteq A \times A$. Казвайки "релация над A", имаме предвид, че A е множество, такова че $R \subseteq A \times A$. Когато казваме "крайна релация", имаме предвид, че множеството, над което е релацията, е крайно. Казвайки "релация над декартовия квадрат $A \times A$ " имаме предвид същото нещо, а именно, че $R \subseteq A \times A$; а не че $R \subseteq (A \times A) \times (A \times A)$. Фактът, че $a \in A$ и $b \in A$ са в релация бележим с " $(a,b) \in R$ " или с по-краткия запис "aRb".

Нека за всяко естествено число \mathfrak{n} , $J_\mathfrak{n}$ е множеството $\{0,1,\ldots,\mathfrak{n}-1\}$, а $I_\mathfrak{n}$ е множеството $\{1,2,\ldots,\mathfrak{n}\}$.

vspace1cm

Определение 1. Нека R е релация над A. Нека домейните за a, b и c са A.

- R e рефлексивна, $a\kappa o \forall a(aRa)$.
- R e ирефлексивна, $a\kappa o \forall \alpha (\neg \alpha R\alpha)$.
- R e симетрична, $a\kappa o \ \forall a \forall b (aRb \rightarrow bRa)$.
- R e антисиметрична, $a\kappa o \forall a \forall b (aRb \land bRa \rightarrow a = b).$
- R e силно антисиметрична, $a\kappa o \ \forall a \ \forall b \ (a \neq b \rightarrow ((aRb \land \neg bRa) \lor \neg (aRb \land bRa))).$
- R e транзитивна, $a\kappa o \ \forall a \forall b \forall c (aRb \land bRc \rightarrow aRc).$

Когато се каже, изследвайте релацията R за шестте свойства, се разбира следното: за всяко от шестте изброени горе свойства, да се определи дали R притежава това свойство, или не.

Дадена крайна релация може да се опише в явен вид по три начина. Може да се изброят в явен вид наредените двойки, които ѝ принадлежат, може да се състави матрицата ѝ (което е същото нещо, написано по-кратко и прегледно), и може да се нарисува графът ѝ.

Задача 1. Нека $A = \{2, 3, 4, 5, 6, 12, 15, 21\}$. Опишете в явен вид релацията R и по трите начина, ако R е дефинирана така: за всеки a и b от A, aRb тогава и само тогава, когато

- 1. a = b
- $2. \quad a \neq b$
- 3. a + b = 2
- 4. a * b = 2
- 5. $\exists k \in \mathbb{N} (a + b = 2k)$
- 6. а дели b

7. а u b ca взаимно $npocmu^{\dagger}$

Решение: Ще решим 5. Преведено на естествен език, условието казва, че всеки два елемента са в релация тогава и само тогава, когато сумата им е четно (неотрицателно) число.

Първи начин

$$R = \{(2,2), (2,4), (2,6), (2,12), (3,3), (3,5), (3,15), (3,21), (4,2), (4,4), (4,6), (4,12), (5,3), (5,5), (5,15), (5,21), (6,2), (6,4), (6,12), (12,2), (12,4), (12,6), (12,12), (15,3), (15,5), (15,15), (15,21), (21,3), (21,5), (21,15), (21,21)\}$$

Втори начин (нулите не са написани)

	2	3	4	5	6	12	15	21
2	1		1		1	1		
3		1		1			1	1
4	1		1		1	1		
5		1		1			1	1
6	1		1		1	1		
12	1		1		1	1		
15		1		1			1	1
21		1		1			1	1

Трети начин

 $^{^{\}dagger}$ Две естествени числа \mathfrak{m} и \mathfrak{n} , такива че $\mathfrak{m} \geq 2$ и $\mathfrak{n} \geq 2$, са *взаимно прости*, ако единственото цяло положително число, което ги дели и двете, е единицата.

Задача 2. За всяка от релациите от предната задача, изследвайте релацията за шестте свойства.

Решение: Ще изследваме 7.

- Релацията не е рефлексивна, понеже всяко от числата е различно от 1 и се дели на себе си.
- Релацията е ирефлексивна по същата причина, а именно, че никое от числата не е взаимно просто със себе си.
- Релацията е симетрична, тъй като за всяко цяло положително число k, това число или е общ делител на две числа m и n, или не e. Дали казваме "на m и n" или "на n и m", няма значение.

По-формално можем да кажем същото нещо така. Нека Q(m,n,k) е триместен предикат, в който домейните на първата и втората променлива са $\mathbb{N}\setminus\{0,1\}$, а на третата променлива е $\mathbb{N}\setminus\{0\}$ (тоест \mathbb{N}^+). Нека Q(m,n,k) е истина тогава и само тогава, когато k е общ делител на m и n. Нека P(m,n) е предикатът "m и n са взаимно прости" с домейни $\mathbb{N}\setminus\{0,1\}$. Предикатът P(m,n) можем да изразим така:

$$P(m, n) : \forall k(Q(m, n, k) \rightarrow k = 1)$$

Тъй като $\forall m \forall n \forall k (Q(m,n,k) \leftrightarrow Q(n,m,k))$, то релацията е симетрична.

- Релацията не е антисиметрична, понеже можем да посочим поне две числа x и y от дадените, такива че xRy и yRx, примерно 2 и 4.
- Релацията не е силно антисиметрична, понеже е симетрична (симетричността и силната антисиметричност са несъвместими).
- Релацията не е транзитивна. Като контрапример: 6 и 5 са взаимно прости, 5 и 21 са взаимно прости, но 6 и 21 не са (имат общ делител 3).

Определение 2. Нека $R \subseteq A \times B$ е двуместна релация. Обратната релация на R е релацията $R^{-1} = \{(a,b) \mid a \in B \land b \in A \land (b,a) \in R\}$. Релацията-допълнение на R е релацията $\overline{R} = \{(a,b) \mid a \in A \land b \in B \land (a,b) \notin R\}$.

Задача 3. Напишете всички елементи на релацията $R \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, дефинирана така: $R = \{(a,b,c) | 0 < a < b < c < 5\}.$

Задача 4. За всяка от следните дефиниции на релацията $R \subseteq A \times B$, намерете R^{-1} и \overline{R} . Символът " \mathbb{R} " означава множеството от реалните числа.

- 1. $A = \mathbb{R}, B = \mathbb{R}, R = \{(a, b) | a < b\}.$
- 2. $A = \mathbb{N}$, $B = \mathbb{N}$, $R = \{(a, b) \mid a \partial e \wedge u b\}$.
- 3. А е множеството от държавите в Европа. В също е множеството от държавите в Европа. $R = \{(a, b) \mid a \ u \ b \ u mam \ o b u mam \ a \ pahuua\}.$

Задача 5. Нека M е матрицата на някаква релация $R \subseteq A \times A$. Нека A е крайно множество c n елемента. Нека M има точно k единици. Нека M' и M'' са съответно матриците на R^{-1} и \overline{R} . Колко единици има в M'? Колко единици има в M''?

Задача 6. Нека $A = \{1, 2, 3, 4\}$ и $B = \{1, 2, 3\}$. Нека $R_1 \subseteq A \times B$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 = \{1, 2, 3, 4\}$ и $R_2 \subseteq A \times B$ са такива, че $R_1 \subseteq A \times B$ са такива, че $R_2 \subseteq A \times B$ са $\{(1,2),(2,3),(3,4)\}\ u\ R_2=\{(1,2),(1,2),(2,1),(2,2)(2,3),(3,1),(3,2),(3,3),(3,4)\}.\ Hamepeme$

a)
$$R_1 \cup R_2$$
 b) $R_1 \cap R_2$ b) $R_1 \setminus R_2$ c) $R_2 \setminus R_1$ d) $(R_1 \setminus R_2) \times (A \times B)$

Задача 7. Нека А е множеството от студентите в някаков университет. Нека В е множеството от книгите в библиотеката на университета. Нека $R\subseteq A\times B$ и $R_2\subseteq A\times B$ са съответно релациите:

$$R_1 = \{(a,b) \mid cmy$$
дент а трябва да прочете книга $b\}$

 $R_2 = \{(a,b) \mid cmy$ дент a e чел книга b, която e трябвало да прочете $\}$

Опишете следните релации

a)
$$R_1 \cup R_2$$
 6) $R_1 \cap R_2$ 6) $R_1 \triangle R_2$ 2) $R_1 \setminus R_2$ ∂) $R_2 \setminus R_1$

Задача 8. Нека $R_> = \{(\mathfrak{a},\mathfrak{b}) \in \mathbb{R}^2 \, | \, \mathfrak{a} > \mathfrak{b} \}$. Нека релациите R_\ge , $R_<$, R_\le , $R_=$, R_\ne са аналогичните релации с очевидния смисъл на индексите. Опишете колкото е възможно по-просто и естествено следните релации:

$$\textit{a)} \ \mathsf{R}_{>} \cup \mathsf{R}_{<} \quad \textit{b)} \ \mathsf{R}_{>} \cup \mathsf{R}_{=} \quad \textit{b)} \ \mathsf{R}_{\geq} \cap \mathsf{R}_{\leq} \quad \textit{c)} \ \mathsf{R}_{>} \setminus \mathsf{R}_{\geq} \quad \textit{d)} \ \mathsf{R}_{\geq} \setminus \mathsf{R}_{>}$$

$$e) \; \mathsf{R}_< \cup \; \mathsf{R}_= \quad \boldsymbol{\mathcal{H}}) \; \mathsf{R}_> \triangle \; \mathsf{R}_< \quad \boldsymbol{\mathcal{S}}) \; \mathsf{R}_> \triangle \; \mathsf{R}_< \quad \boldsymbol{\mathcal{U}}) \; \mathsf{R}_\ge \cup \; \mathsf{R}_\le \quad \boldsymbol{\mathcal{U}}) \; \mathsf{R}_< \cup \; \mathsf{R}_\ne 0$$

Задача 9. Напишете в явен вид (примерно, нарисувайки графа на релацията) всички релации над триелементно множество, които са ирефлексивни, антисиметрични и не са транзитивни.

Задача 10. Колко релации $R \subseteq A \times A$, където A е крайно множество c n елемента, ca:

- 1. рефлексивни?
- 2. ирефлексивни?
- 3. симетрични?
- 4. антисиметрични?
- 5. силно антисиметрични?
- 6. симетрични и антисиметрични?
- 7. симетрични и силно антисиметрични?
- 8. симетрични и рефлексивни?
- 9. антисиметрични и нито рефлексивни, нито ирефлексивни?
- 10. антисиметрични и силно антисиметрични?

Задача 11. Колко транзитивни релации има над п елементно множество, ако

- 1. n = 1
- 2. n = 2
- 3. (*) n = 3

Задача 12. Нека A и B са крайни множества. Нека A има точно три елемента. Колко елемента има B, ако е известно, че има точно 4096 релации от вида $R \subseteq A \times B$?

Упътване: $4096 = 2^{12}$.

Задача 13. Следната теорема е <u>невярна</u>. Следователно, в "доказателството" ѝ има грешка/грешки. Открийте каква е грешката/какви са грешките в това "доказателство".

Теорема 1 (погрешна теорема). Нека R е произволна релация над множество A. Нека R е симетрична и транзитивна. Тогава R е рефлексивна.

Доказателство

Разглеждаме произволен $a \in A$. Нека b е произволен елемент от A, такъв че aRb. Тъй като R е симетрична, заключаваме, че bRa. Тъй като R е транзитивна и вече имаме $aRb \wedge bRa$, заключаваме, че aRa. Доказахме за произволен елемент, че той е в релация със себе си.

Задача 14. Докажете за произволна релация R, че R е симетрична тогава и само тогава, когато $R = R^{-1}$.

Задача 15. Докажете за произволна релация $R \subseteq A \times A$, че R е антисиметрична тогава и само тогава, когато $R \cap R^{-1} \subseteq \{(a,a) \mid a \in A\}$.

Задача 16. Нека S е множеството от всички релации над I_5 . Нека $R \subseteq S \times S$ е релация, дефинирана така:

$$S = \{(a, b) \mid a \ u \ b \ uмат \ e \partial u \ u \ c z u u \ брой елементи\}$$

Докажете, че R е релация на еквивалентност. Колко класа на еквивалентост има R?

Задача 17. Нека $A = \{2^n \mid n \in J_5\}$. Нека $R \subseteq (A \times A) \times (A \times A)$ е релация, дефинирана така:

$$R = \big\{ \big((a,b), (c,d) \big) \in (A \times A) \times (A \times A) \, | \, ac = bd \vee ad = bc \big\}$$

Колко елемента има R? Напишете в явен вид R чрез матрицата \hat{u} . Докажете, че R е релация на еквивалентност. Кои са класовете на еквивалентност на R?

Задача 18. $Heкa A = \{a, b, c, d\}$. $Heka R \subseteq A \times A$ е релацията

$$R = \{(a, a), (a, b), (b, b), (c, d), (d, b), (d, c), (d, d)\}$$

Определете рефлексивното, симетричното и транзитивното затваряне на R.

Задача 19. Нека $A = \{a, b, c, d\}$. Нека $R \subseteq A \times A$ и $R = \{(a, b), (b, a), (c, d)\}$. Определете минималната по брой елементи релация $S \subseteq A \times A$, такава че $R \cup S$ е релация на еквивалентност.

Решение:

$$S = \{(a,a), (b,b), (c,c), (d,d), (d,c)\}.$$

Задача 20. Нека $X = \{1, 2, 3, 4\}$. Нека $S \subseteq A \times A$ и $S = \{(2, 2), (2, 3), (1, 4)\}$. Определете минималната по мощност релация $T \subseteq A \times A$, такава че $S \cup T$ е релация на еквивалентност.

Задача 21. Нека R и S са релации над едно и също множество. Докажете или опровергайте, че ако R и S са транзитивни, то $R\triangle S$ е транзитивна.

Решение:

Твърдението не е вярно. Ето контрапример: нека $R = \{(a,b),(b,c),(a,c)\}$ и $S = \{(b,c),(c,d),(b,d)\}$. Очевидно и двете релации са транзитивни. Но $R \triangle S = \{(a,b),(a,c),(b,d),(c,d)\}$ не е транзитивна – за да бъде транзитивна, трябва да съдържа (a,d).

Задача 22. Нека Q и T са релации над едно и също множество. Докажете или опровергайте, че ако T е антисиметрична, а Q е силно антисиметрична, то $\overline{T} \setminus \overline{Q}$ е антисиметрична.

Решение:

Твърдението не е вярно. Ето контрапример: нека $T = \{(a,b)\}$ и $Q = \{(a,b)\}$. Очевидно и двете са антисиметрични. Очевидно Q е силно антисиметрична. Но $T \setminus Q = \emptyset$, следователно $\overline{T \setminus Q} = \{(a,a),(b,b),(a,b),(b,a)\}$, която релация не е антисиметрична, тъй като съдържа (a,b) и (b,a).

Определение 3. Релация на частична наредба $R \subseteq A \times A$ е всяка релация, която е рефлексивна, антисиматрична и транзитивна. В контекста на частичните наредби, за всяко $a \in A$ и всяко $b \in A$, a и b са сравними, ако поне едно от aRb и bRa е изпълнено, и са несравними в противен случай. Диаграма на Hasse е начин за графично представяне на крайни частични наредби, при който се рисува част от графа на релацията:

- не се рисуват примките тъй като релацията е рефлексивна, те се подрабзират;
- не се рисуват ребра от вида (a,c), ако вече (a,b) и (b,c) присъстват тъй като релацията е транзитивна, те се подрабзират;
- елементите се рисуват на ясно обособени нива. Прието е, минималните елементи да са най-долу, техните непосредствени съседи на следващото ниво нагоре и т. н., като максималните елементи са най-горе. Поради това не се слагат посоки на ребрата, тъй като посоките се подразбират; ако започнем с минималните елементи долу и разполагаме другите нагоре, посоките на ребрата са отдолу нагоре.

Като пример вижте релацията $R_{\subseteq A}$ с множество $A = \{1,2,3\}$, изобразена на Фигура 1 веднъж с граф и веднъж с диаграма на Hasse. Очевидно, диаграмата на Hasse е много попрегледна, тъй като показва същността на релацията без нищо излишно.

Задача 23. Нека $A = \{a, b, c, d\}$. Определете в явен вид всички релации на частична наредба над A, в които a u b са минимални, a c u d не са сравними.

Решение:

Въпросните релации са 16. За да се убедим в това, да разгледаме матриците им. Всяка от тези матрици има единици по главния диагонал, тъй като релациите са рефлексивни (Фигура 2).

Освен това, има нули в колоните на **a** и **b** (с изключение на клетките от главния диагонал), тъй като **a** и **b** са минимални (Фигура 3).

Фигура 1: Графът и диаграмата на Hasse на релацията $R_{\subseteq A}$ с множество $A=\{1,2,3\}.$

	a	b	c	d
α	1			
b		1		
c			1	
d				1

Фигура 2: Релациите са рефлексивни.

Освен това, има нули в клетките (c,d) и (d,c), тъй като c и d не са сравними (Фигура 4).

Останалите 4 клетки могат да бъдат запълнени с нули и единици по $2^4 = 16$ различни начина, всеки от който съответства на една от търсените релации:

	a	b	c	d
a	1	0	0	0
b	0	1	0	0
c	0	0	1	0
	1	I	1	1

	a	b	c	d
α	1	0		
b	0	1		
c	0	0	1	
d	0	0		1

Фигура 3: $\mathfrak a$ и $\mathfrak b$ са минимални.

	a	b	c	d
α	1	0		
b	0	1		
c	0	0	1	0
d	0	0	0	1

Фигура 4: \mathbf{c} и \mathbf{d} не са сравними.

	a	b	c	d			
a	1	0	0	0		\bigcirc	
b	0	1	0	1		$\begin{pmatrix} \mathbf{d} \end{pmatrix}$	
c	0	0	1	0		h	
d	0	0	0	1	a	(b)	$\begin{pmatrix} \mathbf{c} \end{pmatrix}$
	a	ь	c	d	1		
a	1	0	0	0			
b	0	1	1	0		$\begin{pmatrix} \mathbf{c} \end{pmatrix}$	
c	0	0	1	0		(b)	$\binom{d}{d}$
d	0	0	0	1	a	U	ď

	a	b	c	d
a	1	0	0	0
b	0	1	1	1
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
α	1	0	0	1
b	0	1	0	0
c	0	0	1	0
d	0	0	0	1

	a	b	С	d
a	1	0	0	1
b	0	1	0	1
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
a	1	0	0	1
b	0	1	1	0
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
a	1	0	0	1
b	0	1	1	1
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
α	1	0	1	0
b	0	1	0	0
c	0	0	1	0
d	0	0	0	1

	a	ь	С	d
a	1	0	1	0
b	0	1	0	1
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
α	1	0	1	0
b	0	1	1	0
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
a	1	0	1	0
b	0	1	1	1
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
a	1	0	1	1
b	0	1	0	0
c	0	0	1	0
d	0	0	0	1

	a	b	С	d
a	1	0	1	1
b	0	1	0	1
c	0	0	1	0
d	0	0	0	1

	a	ь	c	d
a	1	0	1	1
b	0	1	1	0
c	0	0	1	0
d	0	0	0	1

	a	b	c	d
a	1	0	1	1
b	0	1	1	1
c	0	0	0 1	
d	0	0	0	1

Задача 24. Нека $S = \{a,b,c\}$. Напишете в явен вид всички релации $R \subseteq S \times S$, които са рефлексивни и антисиметрични и не са транзитивни. Приемат се само отговори, в които релациите са описани чрез булеви матрици.

Решение:

Първо съобразяваме, че следните шест релации, описани чрез графи, са рефлексивни и антисиметрични, но не са транзитивни:

Че не са транзитивни, следва директно от дефиницията на транзитивност. Примерно, в първата посочена релация би трябвало да има и стрелка от \mathfrak{a} до \mathfrak{c} , за да е тя транзитивна.

Това обаче не са всички нетранзитивни, рефлексивни и антисиметрични, релации. Има още две:

Примерно, в първата от тях, щом a е в релация c b и b е в релация c c, би трябвало a да е в релация c c; също така би трябвало b да е в релация c a и b да е в релация c b.

Същите осем релации, написани с матрици (в същия ред, в който вече ги написахме с графи), са:

	a	b	c
a	1	1	
b		1	1
\overline{c}			1

	a	b	c
a	1		1
b		1	
\overline{c}		1	1

	a	b	c
a	1		1
b	1	1	
С			1

	a	b	c					a	b	c					a	b	\mid c \mid
a	1						a	1	1				_	a	1		
b		1	1				b		1					b	1	1	
\overline{c}	1		1				С	1		1			_	\mathbf{c}		1	1
				a	b	c						a	b	C	:		
			a	1	1						a	1		1			
			b		1	1					b	1	1				
			\mathbf{c}	1		1					С		1	$\overline{1}$			

Задача 25. Дадено е множество $A = \{a, b, c, d, e\}$. Напишете в явен вид всички релации на частична наредба над A, в които елементите a, b и c са минимални. Релациите може да пишете като множества от наредени двойки или чрез диаграми (графи) или чрез диаграми на Hasse.

Решение: Ще използваме диаграми на Hasse.

А. Има точно една релация, в която и петте елемента са миминални:

a b c d e

Б. Има точно петнадесет релации, в които точно e не е минимален:

Аналогично, има точно петнадесет релации, в които точно d не е минимален. Общо има точно тридесет релации, в които точно четири елемента са минимални, като a, b и c са измежду минималните.

- ${\bf B}$. Да разгледаме релациите, в които точно ${\bf a}$, ${\bf b}$ и ${\bf c}$ са минимални. Те се разбиват на тези, в които ${\bf d}$ и ${\bf e}$ не са сравними, и на тези, в които ${\bf d}$ и ${\bf e}$ са сравними.
- **В.1** Има точно $7 \times 7 = 49$ релации, в които точно \mathfrak{a} , \mathfrak{b} и \mathfrak{c} са минимални, а \mathfrak{e} и \mathfrak{d} са несравними. Причината \mathfrak{e} , че ако игнорираме \mathfrak{d} , има точно $\mathfrak{7}$ релации, в които точно \mathfrak{a} , \mathfrak{b} и \mathfrak{c} са минимални:

Да наречем множеството от тези релации, R_1 . Аналогично, ако игнорираме e, има точно 7 релации, в които точно a, b и c са минимални.

Да наречем множеството от тях, R_2 .

Всяка от релациите, в които точно \mathfrak{a} , \mathfrak{b} и \mathfrak{c} са минимални, а \mathfrak{e} и \mathfrak{d} са несравними, се получава чрез комбинирането на една релация от R_1 и една релация от R_2 , като при комбинирането общите елементи (които са \mathfrak{a} , \mathfrak{b} и \mathfrak{c}) се идентифицират. Очевидно става дума за $7 \times 7 = 49$ релации:

B.2 Сега да разгледаме релациите, в които точно \mathfrak{a} , \mathfrak{b} и \mathfrak{c} са минимални, а \mathfrak{d} и \mathfrak{e} са сравними. Първо ще разгледаме тези, в който \mathfrak{d} предхожда \mathfrak{e} . Те са 19 на брой, което получаваме със следните разсъждения. Има седем възможности за това, кои измежду \mathfrak{a} , \mathfrak{b} и \mathfrak{c} да предхождат \mathfrak{d} (\mathfrak{e} не \mathfrak{e} показан):

Елементът e може да бъде добавен по 4 начина към всяка от първите три възможности, примерно

Към всяка от вторите три възможности елементът \boldsymbol{e} може да бъда добавен по два начина, примерно:

Към последната, седмата възможност, е може да бъде добавен по точно един начин:

И така, релациите, в които точно \mathfrak{a} , \mathfrak{b} и \mathfrak{c} са минимални, \mathfrak{d} и \mathfrak{e} са сравними и \mathfrak{d} предхожда \mathfrak{e} , са

$$4 \times 3 + 2 \times 3 + 1 \times 1 = 19$$

Очевидно тези релации, в които точно a, b и c са минимални, d и e са сравними и e предхожда d, са също 19. Общият брой на релациите в $\mathbf{B.2}$ е 19+19=38. И общият брой на релациите в \mathbf{B} е 49+38=87.

Решението на задачата се получава чрез сумиране на подрешенията в А, Б и В, а именно

$$1 + 30 + 87 = 118$$

Това е броят на релациите, в които а, b и с са минимални.

Зад. 5 Дадено е крайно непразно множество A и релация $R\subseteq 2^A\times 2^A$, дефинирана така: $\forall (X,Y)\in 2^A\times 2^A: (X,Y)\in R$ тогава и само тогава, когато $|X|\le |Y|$.

Изследвайте R за шестте свойства на релации над Декартов квадрат. Това означава, за всяко от шестте свойства (стр. 12 в учебника), определете дали R притежава свойството, или не. И в двата случая обосновете добре отговорите си.

Решение: R е рефлексивна, понеже всяко подмножество на A има същата мощност като себе си, така че $|A| \le |A|$ за всяко можество A. R не е ирефлексивна по същата причина. R не е симетрична, понеже ако две множества A и B е вярно, че $|A| \le |B|$, от това не следва непременно, че $|B| \le |A|$. R не е слабо антисиметрична, защото има двойки различни подмножества на A с една и съща мощност. R не е силно антисиметрична по същата причина. R е транзитивна, защото ако едно множество има мощност не по-голяма от мощността на друго множество, а другото, не по-голяма мощност от мощността на трето множество, то първото има не по-голяма мощност от мощността на третото.

Зад. 6 Дадени са две релации на еквивалентност $R_1 \subseteq A \times A$ и $R_2 \subseteq A \times A$ над крайно множество A. За всяка от следните три релации:

- a) $R_1 \cap R_2$,
- б) $R_1 \cup R_2$,
- **B)** $R_1 \triangle R_2$

определете дали тя е релация на еквивалентност. Обосновете добре отговорите си.

Решение: $R_1 \cap R_2$ е релация на еквивалентност, което сега ще докажем.

- Щом R_1 и R_2 са рефлексивни, всяка от тях съдържа наредените двойки $(\mathfrak{a},\mathfrak{a})$, по всички елементи $\mathfrak{a} \in A$. Тогава сечението им също съдържа всички тези двойки, тоест $\forall \mathfrak{a} \in A : (\mathfrak{a},\mathfrak{a}) \in R_1 \cap R_2$. Следователно, сечението е рефлексивна релация.
- Да разгледаме произволни $a, b \in A$, такива че $a \neq b$. Тъй като R_1 е симетрична, точно едно от следните две е изпълнено:

Случай 1 $(a,b) \in R_1 \land (b,a) \in R_1$.

Случай 2 $(a,b) \notin R_1 \wedge (b,a) \notin R_1$.

Tъй като R_1 е симетрична, точно едно от следните две е изпълнено:

Случай 3 $(a,b) \in R_2 \wedge (b,a) \in R_2$.

Случай 4 $(a,b) \notin R_2 \wedge (b,a) \notin R_2$.

Ако Случай 1 и Случай 3 са истина, то $(a,b) \in R_1 \cap R_2 \wedge (b,a) \in R_1 \cap R_2$. Ако Случай 1 и Случай 4 са истина, то $(a,b) \notin R_1 \cap R_2 \wedge (b,a) \notin R_1 \cap R_2$. Ако Случай 2 и Случай 3 са истина, то $(a,b) \notin R_1 \cap R_2 \wedge (b,a) \notin R_1 \cap R_2$. Ако Случай 4 са истина, то $(a,b) \notin R_1 \cap R_2 \wedge (b,a) \notin R_1 \cap R_2$. Тъй като тези комбинации от случаи са изчерпателни, то или и двете наредени двойки (a,b) и (b,a) са в сечението, или и двете не са. Следователно, сечението е симетрична релация.

ullet Да разгледаме произволни три елемента ${\mathfrak a},{\mathfrak b},{\mathfrak c}\in A.$ Тъй като ${\mathsf R}_1$ е транзитивна, то

$$(a,b) \in R_1 \land (b,c) \in R_1 \rightarrow (a,c) \in R_1 \tag{1}$$

Аналогично,

$$(a,b) \in R_2 \land (b,c) \in R_2 \rightarrow (a,c) \in R_2 \tag{2}$$

Нека p_1 , q_1 , r_1 , p_2 , q_2 , r_2 са съжденията

- $p_1: (a, b) \in R_1,$
- $q_1: (b,c) \in R_1,$
- $r_1: (a, c) \in R_1,$
- $p_2: (a, b) \in R_2,$
- $q_2: (b, c) \in R_2,$
- $r_2: (a, c) \in R_2.$

Ако преведем (1) и (2) на езика на съждителната логика, (1) е

$$p_1 \wedge q_1 \rightarrow r_1$$
 (3)

a (2) e

$$p_2 \wedge q_2 \rightarrow r_2$$
 (4)

И двете са изпълнени, следователно в сила е тяхната конюнкция. Това, което искаме да докажем за $R_1 \cap R_2$, е а именно, че е транзитивна, на езика на съждителната логика е

$$(\mathfrak{p}_1 \wedge \mathfrak{p}_2) \wedge (\mathfrak{q}_1 \wedge \mathfrak{q}_2) \to (\mathfrak{r}_1 \wedge \mathfrak{r}_2) \tag{5}$$

Ще докажем, че импликацията

$$((\mathfrak{p}_1 \wedge \mathfrak{q}_1 \to \mathfrak{r}_1) \wedge (\mathfrak{p}_2 \wedge \mathfrak{q}_2 \to \mathfrak{r}_1)) \to ((\mathfrak{p}_1 \wedge \mathfrak{p}_2) \wedge (\mathfrak{q}_1 \wedge \mathfrak{q}_2) \to (\mathfrak{r}_1 \wedge \mathfrak{r}_2)) \tag{6}$$

е тавтология. Понеже броят на съжденията е 6, доказателство с таблица не е практично. Можем да разсъждаваме така: какво трябва да е изпълнено за съжденията в импликацията в (6), така че импликацията да е лъжа? Знаем, че импликация е лъжа тогава и само тогава, когато антецедентът е истина, а консеквентът е лъжа. Да видим кога консеквентът е лъжа. Прилагаме свойствата на импликацията (понеже самият консеквент е импликация) и законите на Де Морган към консеквента на (6) и получаваме, че е еквивалентен на

$$\neg p_1 \lor \neg p_2 \lor \neg q_1 \lor \neg q_2 \lor (r_1 \land r_2)$$

За да бъде лъжа, трябва p_1 , p_2 , q_1 , q_2 да са истина, а поне едно от r_1 и r_2 е лъжа. Ако заместим съжденията в антецедента на (6) с тези логически стойности, ще получим, че

$$p_1 \wedge q_1 \rightarrow r_1$$
 или $p_2 \wedge q_2 \rightarrow r_2$ е лъжа

Но тогава и антецедентът е лъжа. Доказахме, че при единствената възможна стойност на съжденията, такава че консеквентът е лъжа, антецедентът също е лъжа. Следователно, при тези стойности на участващите прости съждения, цялата импликация в (6) е истина. Доказахме, че импликацията в (6) е истина за всички възможности за истина/лъжа на участващите прости съждения. Тоест, тя е тавтология.

Следователно, $R_1 \cap R_2$ е транзитивна.

 $R_1 \cup R_2$ не е релация на еквивалентност. За да докажем това, достатъчно е да покажем две конкретни релации на еквивалентност R_1 и R_2 , такива че обединението им не е релация на еквивалентност. Забележете разликата с предното доказателство: по отношение на него не е достатъчно да покажем, че за две конкретни релации на еквивалентност, тяхното сечение също е релация на еквивалентност! Причината е, че всъщност в тази задача доказваме твърдения от вида

за всяка релация на еквивалентност R_1 , за всяка релация на еквивалентност R_2 , в сила е . . .

Доказателството, че твърдението е вярно, не може да стане чрез разглеждане на конкретни релации, защото релациите на еквивалентност са безброй и няма как да проверим верността на твърдението с разглеждане на конкретни релации. Обаче доказателството, че твърдението не е вярно, може да стане чрез разглеждане на само две конкретни релации, за които твърдението е лъжа. Такава двойка релации се нарича контрапример. За да се убедим, че един контрапример е достатъчен, може да образуваме отрицанието на посоченото твърдение и да съобразим, че тогава двата универсални квантора стават екзистенциални.

И така, контпрапример е $A = \{a, b, c, d\}$,

$$R_1 = \{(a, a), (b, b), (c, c), (a, b), (a, c), (b, a), (b, c), (c, a), (c, b)\}$$

И

$$R_2 = \{(a, a), (b, b), (d, d), (a, b), (a, d), (b, a), (b, d), (d, a), (d, b)\}$$

Лесно се вижда, че обединението им не е релация на еквивалентост, защото не е транзитивна: тя съдържа (c, a) и (a, d), но не съдъжра (c, d).

 $R_1\triangle R_2$ също не е релация на еквивалентност. Контрапример е $A=\{\mathfrak{a}\}$ и $R_1=\{(\mathfrak{a},\mathfrak{a})\},\ R_2=\{(\mathfrak{a},\mathfrak{a})\}.$ Очевидно $R_1\triangle R_2=\emptyset$ не е рефлексивна.

Задача 26 използва понятието "частична функция". За да бъде разбрана тази задача, трябва първо да е усвоен материалът, касаещ функции, който в конспекта е след материала за релации.

Задача 26. Нека $A = \{a, b\}$. Нека $X = \{z \mid z \ e \ частична функция <math>c \ домейн \ A \ u \ кодомейн \ A\}$.

- а) Напишете X в явен вид. Можете да използвате каквато искате нотация, стига тя да е абсолютно ясна и недвусмислена. Дайте имена на елементите на X.
- **б**) Нека $R \subseteq X \times X$ се дефинира така:

$$\forall (\mathfrak{p},\mathfrak{q}) \in X \times X \; \big((\mathfrak{p},\mathfrak{q}) \in R \leftrightarrow \forall \mathfrak{u} \in A \; \forall \mathfrak{v} \in A \; (\mathfrak{p}(\mathfrak{u}) = \mathfrak{v} \to \mathfrak{q}(\mathfrak{u}) = \mathfrak{v}) \big)$$

Докажете, че R е релация на частична наредба.

в) Нарисувайте диаграмата на Хасе на R, използвайки имената, които дадохте в а).

Решение: Първо да видим колко са въпросните частични функции – не е задължително, но помага да знаем колко обекта трябва да построим. От основните принципи на комбинаториката лесно следва, че броят на частичните функции от краен домейн с мощност n в краен кодомейн с мощност n е $(n+1)^n$. За да съобразим защо е така, достатъчно е да съобразим, че

- броят на тоталните функции от краен домейн с мощност \mathfrak{p} в краен кодомейн с мощност \mathfrak{q} е $\mathfrak{q}^{\mathfrak{p}}$, и
- съществува биекция между множеството от тоталните функции от краен домейн с мощност p в краен кодомейн с мощност q+1, от една страна, и множеството от частичните функции от краен домейн с мощност p в краен кодомейн с мощност q, от друга страна.

Следователно, в нашия случай частичните функции са $(2+1)^2 = 9$ на брой. А именно,

$$\begin{array}{lll} f_1 = \emptyset & f_2 = \{(\alpha,\alpha)\} & f_3 = \{(\alpha,b)\} & f_4 = \{(b,\alpha)\} & f_5 = \{(b,b)\} \\ f_6 = \{(\alpha,\alpha),(b,\alpha)\} & f_7 = \{(\alpha,\alpha),(b,b)\} & f_8 = \{(\alpha,b),(b,\alpha)\} & f_9 = \{(\alpha,b),(b,b)\} \end{array}$$

Това е най-формалното описание на деветте частични функции – всяка от тях, съгласно дефиницията, е множество от наредени двойки. Функциите f_6, \ldots, f_9 са тоталните функции.

Има и по-прости и нагледни описания. Тъй като домейнът съвпада с кодомейна, можем да мислим за тези частични функции като за релации и да нарисуваме диаграмите им (ориентирани графи с възможни примки):

Ще покажем, че релацията R е рефлексивна. Действително, за всяка $f_i, 1 \leq i \leq 9$ е вярно, че f_i R f_i , защото $\forall u, v \in A$ тривиално имаме $f_i(u) = v \rightarrow f_i(u) = v$.

Ще покажем, че релацията R е транзитивна, тоест, че за всеки $f_i, f_j, f_k, 1 \leq i, j, k \leq 9$ е вярно, че $f_i R f_j \wedge f_j R f_k \to f_i R f_k$. Да разгледаме произволни три, не непременно различни, $f, g, h \in \{f_1, \dots, f_9\}$. Нека е вярно, че

$$\forall \mathbf{u}, \mathbf{v} \in \mathbf{A} : \mathbf{f}(\mathbf{u}) = \mathbf{v} \to \mathbf{g}(\mathbf{u}) = \mathbf{v} \tag{7}$$

$$\forall \mathbf{u}, \mathbf{v} \in \mathbf{A} : \mathbf{g}(\mathbf{u}) = \mathbf{v} \to \mathbf{h}(\mathbf{u}) = \mathbf{v} \tag{8}$$

Искаме да покажем, че $f(u) = v \to h(u) = v$ за произволни $u,v \in A$. Да разгледаме произволни $x,y \in A$. Да допуснем, че f(x) = y. Тогава съгласно (7) и (8) следва, че h(x) = u. Сега да допуснем, че $f(x) \neq y$, тоест или f(x) е дефинирана и не е y, или f(x) изобщо не е дефинирана. Но щом f(x) = y е лъжа, то импликацията

$$f(x) = y \rightarrow h(x) = y$$

е истина, тъй като лъжата влече логически всяко съждение.

Ще покажем, че релацията R е антисиметрична. Нека за произволни две частични функции f и g е вярно, че

$$\forall u, v \in A : f(u) = v \rightarrow g(u) = v$$

$$\forall u, v \in A : g(u) = v \rightarrow f(u) = v$$

Но това е същото като

$$\forall u, v \in A : f(u) = v \leftrightarrow g(u) = v$$

Следователно, функциите съвпадат, тоест f = g.

Доказахме, че R е релация на частична наредба. Диаграмата на Хасе изглежда така:

Определение 4, Задача 27, Задача 28 и Задача 29 са материал **извън** материала за курса и са предназначени за студенти със специален интерес към дискретната математика.

Определение 4 (композиция на релация със себе си). *Нека* R *е релация над множество* A. *Релацията* $R \circ R$ *дефинираме така:*

$$R \circ R = \{(a, b) \mid \exists c \in A(aRc \land cRb)\}\$$

Степените на релацията R дефинираме така:

$$\begin{split} R^1 &= R \\ \forall n \in \mathbb{N}^+: \ R^{n+1} &= R^n \circ R \end{split}$$

Pелациите $R^1=R,\ R^2,\ R^3$ и m. н. се наричат степените на R.

Задача 27. Нека $R \subseteq I_4 \times I_4$ е дефинирана така: $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Намерете R^n за $n \in \mathbb{N}^+$.

Решение: Лесно се съобразява, че

$$R = \{(1,1), (2,1), (3,2), (4,3)\}$$

$$R^2 = \{(1,1), (2,1), (3,1), (4,2)\}$$

$$R^3 = \{(1,1), (2,1), (3,1), (4,1)\}$$

$$R^4 = \{(1,1), (2,1), (3,1), (4,1)\}$$

Тъй като $R^4 = R^3$, очевидно че $R^5 = R^4$, $R^6 = R^5$, и т. н. Следователно,

$$\forall n \in \mathbb{N} (n > 4 \to R^n = \{(1, 1), (2, 1), (3, 1), (4, 1)\})$$

Накратко, решението е:

$$R^{\mathfrak{i}} = \begin{cases} \{(1,1),(2,1),(3,2),(4,3)\}, & \text{ako } \mathfrak{i} = 1 \\ \{(1,1),(2,1),(3,1),(4,2)\}, & \text{ako } \mathfrak{i} = 2 \\ \{(1,1),(2,1),(3,1),(4,1)\}, & \text{ako } \mathfrak{i} \geq 3 \end{cases}$$

Задача 28. Докажете, че за всяка релация $A \subseteq A \times A$, R е тразитивна тогава и само тогава, когато $\forall n \in \mathbb{N}^+(R^n \subseteq R)$.

Решение, част I: Нека R е транзитивна.

Ще докажем по индукция, че $\forall n \in \mathbb{N}^+(R^n \subseteq R)$. Базата е за n=1: очевидно, $R^1 \subseteq R$. Да допуснем, че $R^n \subseteq R$. Ще докажем, че $R^{n+1} \subseteq R$. Да разгледаме произволен елемент $(a,b) \in R^{n+1}$. Съгласно Определение 4, $\exists x \in A \big((a,x) \in R^n \wedge (x,b) \in R \big)$. От индуктивната хипотеза знаем, че $R^n \subseteq R$. Следователно, $(a,x) \in R$. Щом $(a,x) \in R$ и $(x,b) \in R$, то $(a,b) \in R$, тъй като R е транзитивна. Доказахме, че щом даден елемент е в R^{n+1} , то той е и в R.

Решение, част II: Нека $\forall n \in \mathbb{N}^+(R^n \subset R)$.

Ще докажем, че R е транзитивна. Тъй като $\forall n \in \mathbb{N}^+(R^n \subseteq R)$, в частност $R^2 \subseteq R$. Да разгледаме произволни елементи от A, да ги наречем a, b и c. Нека $(a,b) \in R$ и $(b,c) \in R$. Съгласно Определение 4, изпълнено е $(a,c) \in R^2$. Но $R^2 \subseteq R$. Следователно, $(a,b) \in R$.

Задача 29. Докажете, че за всяка релация $A \subseteq A \times A$, ако R е рефлексивна и тразитивна, то $\forall n \in \mathbb{N}^+(R^n=R)$.