

# Kurs:Mathematik für Anwender/Teil I/42/Klausur mit Lösungen







Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  $\sum$ 

Punkte 3302244050 0 6 7 0 6 3 0 0 5 50

### **Aufgabe (3 Punkte)**

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Die Hintereinanderschaltung der Abbildungen

$$F:L\longrightarrow M$$

und

$$G: M \longrightarrow N$$
.

- 2. Ein archimedisch angeordneter Körper  $oldsymbol{K}$ .
- 3. Eine stetig differenzierbare Funktion  $f: \mathbb{R} \to \mathbb{R}$ .
- 4. Die Riemann-Integrierbarkeit einer Funktion  $f: \mathbb{R} \longrightarrow \mathbb{R}$ .
- 5. Eine  $m \times n$ -Matrix über einem Körper K.
- 6. Die *Dimension* eines K-Vektorraums V(V) besitze ein endliches Erzeugendensystem).

#### Lösung

1. Die Abbildung

$$G\circ F{:}L\longrightarrow N,\,x\longmapsto G(F(x)),$$

heißt die Hintereinanderschaltung der Abbildungen  $oldsymbol{F}$  und  $oldsymbol{G}$ .

- 2. Ein angeordneter Körper K heißt archimedisch angeordnet, wenn es zu jedem  $x \in K$  eine natürliche Zahl n mit  $n \geq x$  gibt.
- 3. Man sagt, dass f stetig differenzierbar ist, wenn f differenzierbar ist und die Ableitung f' stetig ist.
- 4. Die Funktion f heißt Riemann-integrierbar, wenn die Einschränkung von f auf jedes kompakte Intervall  $[a,b]\subseteq\mathbb{R}$  Riemann-integrierbar ist.

5. Eine m imes n-Matrix über K ist ein Schema der Form

$$\left(egin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
ight),$$

wobei die  $a_{ij}$  aus K sind.

6. Unter der Dimension eines Vektorraums  $oldsymbol{V}$  versteht man die Anzahl der Elemente in einer Basis von  $oldsymbol{V}$ .

## **Aufgabe** (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über Nullstellen und lineare Faktoren eines Polynoms  $F \in K[X]$ .
- 2. Der Satz über die Ableitung in einem Extremum.
- 3. Der Satz über den Rang von einer Matrix und einer linearen Abbildung.

#### Lösung

- 1. Ein Element  $a \in K$  ist genau dann eine Nullstelle von F, wenn F ein Vielfaches des linearen Polynoms X-a ist.
- 2. Es sei

$$f{:}\,]a,b[\,\longrightarrow\mathbb{R}$$

eine Funktion, die in  $c \in \left]a,b\right[$  ein lokales Extremum besitze und dort differenzierbar sei. Dann ist

$$f'(c)=0.$$

3. Es sei  $m{K}$  ein Körper und es seien  $m{V}$  und  $m{W}$  Vektorräume über  $m{K}$  der Dimension  $m{n}$  bzw.  $m{m}$ . Es sei

$$\varphi : V \longrightarrow W$$

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix  $M\in \mathrm{Mat}_{m imes n}(K)$  beschrieben werde. Dann gilt

$$\operatorname{rang} \varphi = \operatorname{rang} M$$
.

### **Aufgabe** (0 Punkte)

Lösung / Aufgabe / Lösung

### **Aufgabe (2 Punkte)**

Ersetze im Term  $3x^2+5x+6$  die Variable x durch den Term  $4y^2+2y+3$  und vereinfache den entstehenden Ausdruck.

Lösung

Es ist

$$3(4y^2 + 2y + 3)^2 + 5(4y^2 + 2y + 3) + 6 = 3(16y^4 + 4y^2 + 9 + 16y^3 + 24y^2 + 12y) + 20y^2 + 10y + 15 + 6$$
  
=  $48y^4 + 12y^2 + 27 + 48y^3 + 72y^2 + 36y + 20y^2 + 10y + 15 + 6$   
=  $48y^4 + 48y^3 + 104y^2 + 46y + 48$ .

### **Aufgabe** (2 Punkte)

Skizziere sieben Geraden in der Ebene, die sich insgesamt in acht Punkten schneiden.

#### Lösung

### **Aufgabe (4 Punkte)**

Zeige für  $n \in \mathbb{N}_+$  die Gleichung

$$\prod_{1 \leq i < j \leq n} (j-i) = \prod_{k=1}^{n-1} (k!) = (n-1)! \cdot (n-2)! \cdots 3! \cdot 2! \cdot 1! \,.$$



#### Lösung

Bei n=1 steht links und rechts das leere Produkt, dessen Wert gleich 1 ist. Bei n=2 steht links allein 2-1 und rechts einfach 1!. Wir führen Induktion nach  $n\geq 2$ , sei die Aussage also für n schon bewiesen. Dann ist

$$egin{aligned} \prod_{1 \leq i < j \leq n+1} (j-i) &= \prod_{1 \leq i < j \leq n} (j-i) \cdot \prod_{1 \leq i < j = n+1} (j-i) \ &= \prod_{k=1}^{n-1} (k!) \cdot \prod_{1 \leq i \leq n} (n+1-i) \ &= \prod_{k=1}^{n-1} (k!) \cdot n! \ &= \prod_{k=1}^{n} (k!). \end{aligned}$$

### **Aufgabe (4 Punkte)**

Beweise den Satz über die Anzahl von Nullstellen eines Polynoms über einem Körper  $oldsymbol{K}$ .

#### Lösung

Wir beweisen die Aussage durch Induktion über d. Für d=0,1 ist die Aussage offensichtlich richtig. Sei also  $d\geq 2$  und die Aussage sei für kleinere Grade bereits bewiesen. Sei a eine Nullstelle von P (falls P keine Nullstelle besitzt, sind wir direkt fertig), Dann ist P=Q(X-a) nach Lemma 6.5 (Mathematik für Anwender (Osnabrück 2019-2020)) und Q hat den Grad d-1, so dass wir auf Q die Induktionsvoraussetzung anwenden können. Das Polynom Q hat also maximal d-1 Nullstellen. Für  $b\in K$  gilt P(b)=Q(b)(b-a). Dies kann nur dann Q sein, wenn einer der Faktoren Q ist, so dass eine Nullstelle von Q gleich Q0 ist. Es gibt also maximal Q1 Nullstellen von Q2.

# **Aufgabe** (0 Punkte)

Lösung /Aufgabe/Lösung

### **Aufgabe (5 Punkte)**

Bestimme, für welche reellen Zahlen  $m{x}$  die Reihe

$$\sum_{n=0}^{\infty} n^n x^n$$

konvergiert.

#### Lösung

Es handelt sich um eine Potenzreihe mit den Koeffizienten  $n^n$ . Sie konvergiert für x=0, da dann nur ein Glied von 0 verschieden ist. Wir behaupten, dass die Reihe für keine weitere reelle Zahl konvergiert. Da es sich um eine Potenzreihe handelt, genügt es, für jede reelle positive Zahl x nachzuweisen, dass die Reihe divergiert. Zu x>0 gibt es ein  $k\in\mathbb{N}_+$  mit  $kx\geq 1$ . Es gilt dann auch  $nx\geq 1$  für alle  $n\geq k$ . Wegen

$$\sum_{n=k}^{\infty} n^n x^n \geq \sum_{n=k}^{\infty} 1$$

erfüllt die Reihe nicht das Cauchy-Kriterium und kann daher nicht konvergieren.

### **Aufgabe** (0 Punkte)

Lösung /Aufgabe/Lösung

## **Aufgabe** (0 Punkte)

Lösung / Aufgabe / Lösung

### Aufgabe (6 (4+2) Punkte)

- a) Man gebe ein quadratisches Polynom an, dessen Graph die Diagonale und die Gegendiagonale bei y=1 jeweils tangential schneidet.
- b) Man zeige, dass der Graph des Lösungspolynoms aus Teil a) innerhalb des oberen, durch die Diagonale und die Gegendiagonale begrenzten Viertels der Ebene liegt.

Lösung

a) Das gesuchte Polynom sei

$$f(x) = ax^2 + bx + c.$$

Dann ist

$$f'(x)=2ax+b.$$

Die Bedingung, dass der Graph zu  $m{f}$  die Diagonale und die Gegendiagonale bei  $m{y}=m{1}$  schneidet, bedeutet

$$a + b + c = 1$$
 und  $a - b + c = 1$ .

Die Steigung der Diagonale ist  ${f 1}$ . Da der Schnitt tangential sein soll, bedeutet dies

$$2a + b = 1$$
.

Die Steigung der Gegendiagonale ist  $\,-\,1$ . Dies bedeutet somit

$$-2a+b=-1$$
.

Die Summe der beiden letzten Gleichungen ergibt direkt

$$b = 0$$

und somit

$$a=rac{1}{2}$$
 .

Daraus ergibt sich mit der ersten (oder der zweiten) Gleichung

$$c=rac{1}{2}$$
 .

Das gesuchte Polynom ist also

$$f(x) = rac{1}{2}x^2 + rac{1}{2}$$
 .

b) Für  $x \geq 0$  ist zu zeigen, dass  $P(x) = \frac{1}{2}x^2 + \frac{1}{2} \geq x$  und für  $x \leq 0$  ist zu zeigen, dass  $P(x) \geq -x$  ist. Im ersten Fall ist

$$P(x)-x=rac{1}{2}x^2+rac{1}{2}-x=rac{1}{2}ig(x^2-2x+1ig)=rac{1}{2}(x-1)^2\geq 0$$

und im zweiten Fall ist

$$P(x)-x=rac{1}{2}x^2+rac{1}{2}+x=rac{1}{2}ig(x^2+2x+1ig)=rac{1}{2}(x+1)^2\geq 0\,.$$

### **Aufgabe** (7 Punkte)

Beweise den Satz über die Charakterisierung von Extrema mit höheren Ableitungen.

#### Lösung

Unter den Voraussetzungen wird die Taylor-Formel zu

$$f(x)-f(a)=rac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

mit c (abhängig von x) zwischen a und x. Je nachdem, ob  $f^{(n+1)}(a)>0$  oder  $f^{(n+1)}(a)<0$  ist, gilt auch (wegen der vorausgesetzten Stetigkeit der (n+1)-ten Ableitung)  $f^{(n+1)}(x)>0$  bzw.  $f^{(n+1)}(x)<0$  für  $x\in [a-\epsilon,a+\epsilon]$  für ein geeignetes  $\epsilon>0$ . Für diese x ist auch  $c\in [a-\epsilon,a+\epsilon]$ , so dass das Vorzeichen von  $f^{(n+1)}(c)$  vom Vorzeichen von  $f^{(n+1)}(a)$ 

abhängt.

Bei n gerade ist n+1 ungerade und daher wechselt  $(x-a)^{n+1}$  das Vorzeichen bei x=a (abhängig von x>a oder x< a). Da das Vorzeichen von  $f^{(n+1)}(c)$  sich nicht ändert, ändert sich das Vorzeichen von f(x)-f(a). Das bedeutet, dass kein Extremum vorliegen kann.

Sei nun n ungerade. Dann ist n+1 gerade, so dass  $(x-a)^{n+1}>0$  für alle  $x\neq a$  in der Umgebung ist. Das bedeutet in der Umgebung bei  $f^{(n+1)}(a)>0$ , dass f(x)>f(a) ist und in a ein isoliertes Minimum vorliegt, und bei  $f^{(n+1)}(a)<0$ , dass f(x)< f(a) ist und in a ein isoliertes Maximum vorliegt.

### **Aufgabe** (0 Punkte)

Lösung / Aufgabe / Lösung

#### **Aufgabe** (6 Punkte)

Man gebe ein Beispiel für einen Körper K, eine kommutative Gruppe (V,+,0) und eine Abbildung

$$K imes V \longrightarrow V, \, (s,v) \longmapsto sv,$$

derart, dass diese Struktur alle Vektorraumaxiome außer

$$(7) \ r(u+v) = ru + rv$$

erfüllt.

#### Lösung

Wir betrachten den Körper  ${\mathbb C}$  und die additive Gruppe  ${\mathbb C}^2$ . Als "Skalarmultiplikation"

$$\mathbb{C} imes \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$

betrachten wir die durch

$$rullet (x,\,y):=\left\{egin{aligned} (rx,\,ry)\,,\; ext{falls}\;x
eq 0\,,\ (0,\,\overline{r}y)\,,\; ext{falls}\;x=0\,, \end{aligned}
ight.$$

gegebene Abbildung, wobei  $\bar{r}$  die komplexe Konjugation von r bezeichnet (wir schreiben  $\bullet$  um zu betonen, dass es sich um eine untypische Operation handelt).

Zum Nachweis der Assoziativität der Multiplikation sei  $u=(x,\,y)$  und  $r,s\in\mathbb{C}$ . Bei

$$x \neq 0$$

ist

$$egin{aligned} (rs) ullet u &= (rs) ullet (x,\,y) \ &= (rsx,\,rsy) \ &= r ullet (sx,\,sy) \ &= r ullet (s ullet (x,\,y)) \ &= r ullet (s ullet u), \end{aligned}$$

wobei die mittlere Gleichung sowohl bei s=0 als auch bei s 
eq 0 gilt. Bei

$$x = 0$$

ist

$$egin{aligned} (rs) ullet u &= (rs) ullet (0,\,y) \ &= (0,\,\overline{rs}y) \ &= (0,\,\overline{r}\cdot\overline{s}y) \ &= r ullet (0,\,\overline{s}y) \ &= r ullet (s ullet (0,\,y)) \ &= r ullet (s ullet u). \end{aligned}$$

Zum Nachweis der Distributivität in den Skalaren ist bei

$$egin{aligned} x 
eq 0 \ (r+s) ullet (x,\,y) &= ((r+s)x,\,(r+s)y) \ &= (rx+sx,\,ry+sy) \ &= (rx,\,ry) + (sx,\,sy) \ &= r ullet (x,\,y) + s ullet (x,\,y) \,, \end{aligned}$$

und bei

$$x = 0$$

ist

$$egin{aligned} (r+s)ullet (0,\,y) &= \left(0,\,\overline{(r+s)}y
ight) \ &= \left(0,\,(\overline{r}+\overline{s})y
ight) \ &= \left(0,\,\overline{r}y+\overline{s}y
ight) \ &= rullet (0,\,y)+sullet (0,\,y)\,. \end{aligned}$$

Sei nun

$$u = (1, i)$$

und

$$v = (-1, i)$$
.

Dann ist

$$u+v=(0,\,2\mathrm{i})$$

und somit ist einerseits

$$\mathbf{i} \bullet (u+v) = \mathbf{i} \bullet (0, 2\mathbf{i})$$

$$= (0, \overline{\mathbf{i}}2\mathbf{i})$$

$$= (0, 2)$$

und andererseits

$$i \bullet u + i \bullet v = i \bullet (1, i) + i \bullet (-1, i)$$
  
=  $(i, -1) + (-i, -1)$   
=  $(0, -2)$ .

Somit ist diese Multiplikation nicht distributiv in den Vektoren.

Ferner ist wegen

$$1 = \overline{1}$$

stets

$$1 \bullet u = u$$
.

# **Aufgabe (3 Punkte)**

Drücke in  $\mathbb{R}^3$  den Vektor

als Linearkombination der Vektoren

$$(9,6,5),(2,2,5) \text{ und } (7,3,4)$$

aus.

#### Lösung

Es geht um das lineare Gleichungssystem

$$9a+2b+7c=0,$$

$$6a+2b+3c=1,$$

$$5a + 5b + 4c = 0$$
.

Wir ersetzen die zweite Zeile durch II-I und die dritte durch 2III-5I und erhalten

$$9a + 2b + 7c = 0$$
,

$$-3a-4c=1$$
,

$$-35a-27c=0$$
.

Wir ersetzen III durch 4III-27II und erhalten

$$9a+2b+7c=0,$$

$$-3a-4c=1\,,$$

$$59a = 27$$
.

Somit ist

$$a=rac{27}{59}\,, \ c=rac{-3a-1}{4}=rac{-3\cdotrac{27}{59}-1}{4}=-rac{35}{59}$$

und

$$b = rac{1}{2}(-9a - 7c) = rac{1}{2} \cdot rac{1}{59}(-9 \cdot 27 + 7 \cdot 35) = rac{1}{59} \, .$$

## **Aufgabe** (0 Punkte)

Lösung /Aufgabe/Lösung

#### **Aufgabe (0 Punkte)**

Lösung / Aufgabe / Lösung

### **Aufgabe (5 Punkte)**

Es sei

$$M=\left(egin{array}{ccccccc} d_1 & * & \cdots & \cdots & * \ 0 & d_2 & * & \cdots & * \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & d_{n-1} & * \ 0 & \cdots & \cdots & 0 & d_n \end{array}
ight)$$

eine obere Dreiecksmatrix. Zeige direkt (ohne charakteristisches Polynom), dass ein Diagonalelement von M ein Eigenwert zu M sein muss.

#### Lösung

Es sei  $m{a}$  ein Diagonalelement und es sei  $m{k}$  der kleinste Index mit

$$d_k = a$$
.

Wir müssen zeigen, dass es einen Vektor

$$x = \left(egin{array}{c} x_1 \ dots \ x_n \end{array}
ight) 
eq 0$$

mit

$$Mx = ax$$

gibt. Wir zeigen die Existenz eines solchen Vektors mit

$$x_k = 1$$

und

$$x_i = 0$$

für i>k. Damit sind die i-ten Zeilen zu Mx=ax für i>k erfüllt. Die unteren Zeilen werden (wir schreiben

$$M=(d_{ij}$$

und  $d_{ii}=d_i$ ) zum Gleichungssystem

$$egin{aligned} d_1x_1+\cdots+d_{1k}x_k&=d_kx_1\ d_2x_2+\cdots+d_{2k}x_k&=d_kx_2\ ;\ &\vdots\ d_{k-1}x_{k-1}+d_{k-1\,k}x_k&=d_kx_{k-1}\ ,\ d_kx_k&=d_kx_k \end{aligned}$$

bzw. zum linearen Gleichungssystem

$$egin{aligned} (d_1x_1-d_k)+\cdots+d_{1k}x_k&=0\,,\ (d_2x_2-d_k)+\cdots+d_{2k}x_k&=0\,,\ dots&\ (d_{k-1}-d_k)x_{k-1}+d_{k-1\,k}x_k&=0\,,\ (d_k-d_k)x_k&=0\,. \end{aligned}$$

Die letzte Gleichung ist stets, also insbesondere mit  $x_k=1$  erfüllt. Da

$$d_i 
eq d_k$$

ist für i < k, ist in diesem Gleichungssystem in Dreiecksgestalt der Anfangsterm

$$d_i-d_k 
eq 0$$

für i < k von 0 verschieden. Nach Lemma 21.10 (Mathematik für Anwender (Osnabrück 2019-2020)) kann man also  $x_k = 1$  zu einer Lösung ergänzen.

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht