Assignment 2

Brendan Lucas

Question1: Let $Y_1, \dots, Y_n \sim \mathcal{N}(\mu, \sigma^2)$ be i.i.d, and let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$ be the sample variance with \bar{Y} representing sample mean. Show that

1. $E(S^2) = \sigma^2$.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$
$$\langle S^{2} \rangle = \frac{1}{n-1} \left\langle \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} \right\rangle$$

Add $\mu - \mu = 0$ to each term of the sum.

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} \left\langle \sum_{i=1}^{n} \left((Y_{i} - \mu) - (\overline{Y} - \mu) \right)^{2} \right\rangle$$

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} \left\langle \sum_{i=1}^{n} \left((Y_{i} - \mu)^{2} - 2(Y_{i} - \mu)(\overline{Y} - \mu) + (\overline{Y} - \mu)^{2} \right) \right\rangle$$

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} \left\langle \sum_{i=1}^{n} (Y_{i} - \mu)^{2} - 2 \sum_{i=1}^{n} (Y_{i} - \mu)(\overline{Y} - \mu) + \sum_{i=1}^{n} (\overline{Y} - \mu)^{2} \right\rangle$$

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} \left[n\sigma^{2} + \left\langle -2 \sum_{i=1}^{n} (Y_{i} - \mu)(\overline{Y} - \mu) + \sum_{i=1}^{n} (\overline{Y} - \mu)^{2} \right\rangle \right]$$

$$\sum_{i=1}^{n} \left\langle (\overline{Y} - \mu)^{2}\right\rangle = nV(\overline{Y}) = n\frac{\sigma^{2}}{n} = \sigma^{2}$$

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} \left[n\sigma^{2} + \left\langle -2 \sum_{i=1}^{n} (Y_{i} - \mu)(\overline{Y} - \mu) \right\rangle + \sigma^{2} \right]$$

$$\left\langle -2 \sum_{i=1}^{n} (Y_{i} - \mu)(\overline{Y} - \mu) \right\rangle = -2 \left\langle (\overline{Y} - \mu) \sum_{i=1}^{n} (Y_{i} - \mu) \right\rangle = -2n \left\langle (\overline{Y} - \mu)^{2} \right\rangle$$

$$= -2nV(\overline{Y}) = -2n\frac{\sigma^{2}}{n} = -2\sigma^{2}$$

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} \left[n\sigma^{2} + -2\sigma^{2} + \sigma^{2} \right]$$

$$\left\langle S^{2}\right\rangle = \frac{1}{n-1} (n-1)\sigma^{2}$$

$$\therefore \left\langle S^{2}\right\rangle = \sigma^{2}$$

Q.E.D. S^2 is an unbiased estimator of σ^2 .

2. (graduate students): Show that $S^2 \sim \chi^2_{n-1}$. When Y_1, \dots, Y_n are i.i.d.,

$$\sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} \left(\frac{Y_i - \mu}{\sigma} \right)^2$$

has a χ^2 distribution with n degrees of freedom (Wackerly et al. Theorem 7.2). So, in order to show that S^2 has a χ^2 distribution with n-1 degrees of freedom, we have to show that it can be written in the form Z_i^2 .

$$\sum_{i=1}^{n} Z_{i}^{2} = \sum_{i=1}^{n} \left(\frac{Y_{i} - \mu}{\sigma} \right)^{2} = \sum_{i=1}^{n} \left(\frac{(Y_{i} - \overline{Y}) - (\mu - \overline{Y})}{\sigma} \right)^{2}$$

$$= \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left((Y_{i} - \overline{Y}) - (\mu - \overline{Y}) \right)^{2}$$

$$= \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left[(Y_{i} - \overline{Y})^{2} - 2(Y_{i} - \overline{Y})(\overline{Y} - \mu) + (\overline{Y} - \mu)^{2} \right]$$

$$\sum_{i=1}^{n} \left[-2(Y_{i} - \overline{Y})(\overline{Y} - \mu) \right] = -2(\overline{Y} - \mu) \sum_{i=1}^{n} (Y_{i} - \overline{Y})$$

$$= -2(\overline{Y} - \mu)(n\overline{Y} - n\overline{Y}) = 0$$

$$\therefore \sum_{i=1}^{n} Z_{i}^{2} = \sum_{i=1}^{n} \left(\frac{Y_{i} - \mu}{\sigma} \right)^{2} = \frac{1}{\sigma^{2}} \left[\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} + \sum_{i=1}^{n} (\overline{Y} - \mu)^{2} \right]$$

$$(n - 1)S^{2} = \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

$$\sum_{i=1}^{n} \left(\frac{Y_{i} - \mu}{\sigma} \right)^{2} = \frac{(n - 1)S^{2}}{\sigma^{2}} + \frac{n(\overline{Y} - \mu)^{2}}{\sigma^{2}}$$

$$\sum_{i=1}^{n} (Y_{i} - \mu)^{2} = (n - 1)S^{2} + n(\overline{Y} - \mu)^{2}$$

$$S^{2} = \frac{1}{n - 1} \sum_{i=1}^{n} (Y_{i} - \mu)^{2} - \frac{n}{n - 1} (\overline{Y} - \mu)^{2}$$

$$S^{2} = \frac{\sigma^{2}}{n - 1} \sum_{i=1}^{n} \frac{(Y_{i} - \mu)^{2}}{\sigma^{2}} - \frac{n}{n - 1} (\overline{Y} - \mu)^{2}$$

The first term on the right is a χ^2 random variable with n degrees of freedom.

$$\mathcal{Q}_n \equiv \sum_{i=1}^n \frac{(Y_i - \mu)^2}{\sigma^2} \sim \chi_n^2$$
$$S^2 = \frac{\sigma^2}{n-1} \mathcal{Q}_n - \frac{n}{n-1} (\overline{Y} - \mu)^2$$
$$\frac{(n-1)S^2}{\sigma^2} = \mathcal{Q}_n - \frac{n(\overline{Y} - \mu)^2}{\sigma^2}$$

The second term on the right-hand side is the square of a normal random variable.

$$\sqrt{\frac{n(\overline{Y} - \mu)^2}{\sigma^2}} = \frac{(\overline{Y} - \mu)}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1) \quad \therefore \quad E(\overline{Y}) = \mu, \quad Var(\overline{Y}) = \frac{\sigma^2}{n}$$

The square of a normal random variable is a chi-square variable with 1 degree of freedom.

$$\frac{n(\overline{Y} - \mu)^2}{\sigma^2} = \mathcal{Q}_1 \sim \chi_1^2$$
$$\frac{(n-1)S^2}{\sigma^2} = \mathcal{Q}_n - \mathcal{Q}_1 \sim \chi_{n-1}^2$$

The difference between these χ_n^2 and χ_1^2 random variables can be demonstrated to be χ_{n-1}^2 -distributed with the help of moment-generating functions.

$$Q_n = \frac{(n-1)S^2}{\sigma^2} + Q_1$$

$$M_{Q_n}(t) = E(e^{tQ_n}) = E\left[e^{t\frac{(n-1)S^2}{\sigma^2} + Q_1}\right] = E\left[e^{\left(t\frac{(n-1)S^2}{\sigma^2}\right)}\right] E\left[e^{tQ_1}\right]$$

$$M_{Q_n}(t) = (1-2t)^{-n/2}, \quad M_{Q_1}(t) = (1-2t)^{-1/2}$$

$$E\left[e^{\left(t(n-1)S^2/\sigma^2\right)}\right] \equiv M_{(n-1)S^2/\sigma^2}(t)$$

$$(1-2t)^{-n/2}(1-2t)^{1/2} = M_{(n-1)S^2/\sigma^2}(t)$$

$$M_{(n-1)S^2/\sigma^2}(t) = (1-2t)^{-(n-1)/2} = M_{Q_{(n-1)}}(t) \iff Q_{(n-1)} \sim \chi_{n-1}^2$$

That is to say, $\frac{(n-1)S^2}{\sigma^2}$ has the same moment-generating function as a χ^2_{n-1} -distributed random variable. Moment-generating functions are unique, so $\frac{(n-1)S^2}{\sigma^2}$ is a chi-squared random variable with n-1 degrees of freedom.

$$M_{(n-1)S^2/\sigma^2}(t) = M_{\mathcal{Q}_{(n-1)}}(t) : \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Q.E.D.
$$S^2 \sim \chi^2_{n-1}$$

- 3. Show that \overline{Y} and S^2 are independent random variables. \overline{Y} and S^2 are independent implies \overline{Y} and $Y \overline{Y}$ are independent, because S^2 is a function of $Y \overline{Y}$.
 - (a) Joint distribution $f_{\{Y_1,\ldots,Y_n\}}(y_1,\ldots,y_n)$:

$$f_{\{Y_1,...,Y_n\}}(y_1,...,y_n) = \prod_{i=1}^n f_{Y_i}(y_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{y_i - \mu}{\sqrt{2}\sigma}\right)^2$$
$$\therefore f_{\{Y_1,...,Y_n\}}(y_1,...,y_n) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left(-\frac{1}{2}\sum_{i=1}^n \left(\frac{y_i - \mu}{\sigma}\right)^2\right)$$

(b) Define $\Delta Y_i \equiv Y_i - \overline{Y}$ to transform the joint distribution with a Jacobian of constant n:

$$\Delta Y_1 = \overline{Y}$$

$$\Delta Y_2 = Y_2 - \overline{Y}, \qquad Y_2 = \Delta Y_2 + \Delta Y_1$$

$$\Delta Y_3 = Y_3 - \overline{Y}, \qquad Y_3 = \Delta Y_3 + \Delta Y_2$$

$$\dots$$

$$\Delta Y_n = Y_n - \overline{Y}, \qquad Y_n = \Delta Y_n + \Delta Y_1$$

$$f_{\{Y_1, \dots, Y_n\}}(y_1, \dots, y_n) = \frac{1}{n} f_{\{\Delta Y_1, \dots, \Delta Y_n\}}(\Delta y_1, \dots, \Delta y_n)$$

A density function on this difference ΔY is $C \times f_{\{Y_1,\ldots,Y_n\}}(y_1,\ldots,y_n)$ where C is a constant that we need not compute at present.

$$f_{\{\Delta Y_1,\dots,\Delta Y_n\}}(\Delta y_1,\dots,\Delta y_n) = C \exp\left(-\frac{1}{2}\sum_{i=1}^n \left(\frac{y_i-\mu}{\sigma}\right)^2\right)$$

(c) We know from the previous derivation $(Y_i \to y_i, S^2 \to s^2)$ as we are looking at observations in the density function):

$$\sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} \right)^2 = \frac{(n-1)s^2}{\sigma^2} + \frac{n(\overline{y} - \mu)^2}{\sigma^2}$$
$$f_{\{\Delta Y_1, \dots, \Delta Y_n\}}(\Delta y_1, \dots, \Delta y_n) = C \exp\left(-\frac{1}{2} \left[\frac{(n-1)s^2}{\sigma^2} + \frac{n(\overline{y} - \mu)^2}{\sigma^2} \right] \right)$$

(d) We find that this joint density function can be written as the product of two density functions, that of the sample mean \overline{Y} and that of the sample variance S^2 .

$$f_{S^{2}}(s^{2}) = C_{1} \exp\left(-\frac{1}{2} \left(\frac{(n-1)s^{2}}{\sigma^{2}}\right)\right)$$

$$f_{\overline{Y}}(\overline{y}) = C_{2} \exp\left(-\frac{1}{2} \left(\frac{n(\overline{y}-\mu)^{2}}{\sigma^{2}}\right)\right)$$

$$C = C_{1}C_{2}$$

$$\therefore f_{\{\Delta Y_{1},...,\Delta Y_{n}\}}(\Delta y_{1},...,\Delta y_{n}) = f_{S^{2}}(s^{2})f_{\overline{V}}(\overline{y})$$

- (e) That the joint density function can be written as the product of two distributions, one of the S^2 and one of the \overline{Y} , is the very definition of independent random variables.
- (f) Q.E.D. S^2 and \overline{Y} are independent random variables.

Question2: Use R to perform the following.

```
library(ggplot2)
library(gridExtra)
```

1. Find $t_{.07}$ for a t-distributed random variable with 5 df.

```
t_07_5df <- qt(0.07, df = 5)
print(t_07_5df)
```

[1] -1.75289

1. Find $\chi^2_{.95}$ for a χ^2 -distributed random variable with 4 df.

```
chisq_95_4df <- qchisq(0.95, df = 4)
print(chisq_95_4df)</pre>
```

[1] 9.487729

1. Find $Pr(\sum_{i=1}^{11} Z_i^2 \leq 11)$, where $Z_i \sim \mathcal{N}(0,1)$ are i.i.d.

 $\sum_{i=1}^{11} Z_i^2$ is the definition of a χ^2 variable with 11 degrees of freedom, and we want to cumulative distribution function.

```
prob_chisq_11leq_11df <- pchisq(11, df = 11)
print(prob_chisq_11leq_11df)</pre>
```

[1] 0.5567367

1. Simulate a random draws (n = 100) from a Gamma distribution with parameters $\alpha = 3$, and $\lambda = 1/4$. Calculate the sample mean and sample variance. Repeat the process k = 1000 times and plot the density of the sample mean and sample variance. Comment on your observations.

Density of Sample Means

Density of Sample Variances

My observation is that the density of the sample mean is shaped much more like a normal distribution, and the density of the sample variance is shaped much more like a χ^2 distribution, as is to be expected from the content of the derivations in the first part of the assignment.