RIEMANNIAN GEOMETRY

Solution

Misuzu/Yuxuan Liu

March 8, 2025

${\tt CONTENTS}$

Contents

1	Chapter 1		1
2	Chapter 2:	Riemannian Metrics	1
3	Chapter 3:	Model Riemannian Manifolds	3
4	Chapter 4:	Connections	4
5	Chapter 5		5
6	Chapter 6:	Geodesics and Distance	9
7	Chapter 7:	Curvature	L 3
8	Chapter 8	1	L 7
9	Chapter 9	1	L 8
10	Chapter 10:	: Jacobi Fields	L 9

1 Chapter 1

2 Chapter 2: Riemannian Metrics

Problem 2-10

Proof. If X = grad f. Take local orthonormal frame $\{E_1, \dots, E_n\}$, then $X = \text{grad} f = (E_i f) E_i$, so $X f = (E_i f)^2 = |X|_g^2$. X is orthogonal to the level sets of f by proposition 2.37.

If $X \in \mathfrak{X}(M)$ satisfies $Xf \equiv |X|_g^2$ and X is orthogonal to the level sets of f at all regular points of f. Take $x \in M$ a regular point of f, df_p is surjective, then there exists an open neighborhood U of x s.t. $f|_U$ is a smooth submersion. Level sets (in fact regular ones) of f in U is a hypersurface, the normal vector space is 1 dimensional. Since X is orthogonal to level sets and also $\operatorname{grad} f$, we have $X = g \cdot \operatorname{grad} f$ for some smooth function g. Now $g|\operatorname{grad} f|_g^2 = Xf = |X|_g^2 = g^2|\operatorname{grad} f|_g^2$, we have $g \equiv g^2$, so $g \equiv 1$. Hence $X = \operatorname{grad} f$ at regular points of f. If x is not a regular point of f, then $0 = df_x(w) = \langle \operatorname{grad} f|_x, w \rangle$ for $\forall w \in T_x M$, then $\operatorname{grad} f|_x$ must be zero. Since X is non-vanishing, $|X|_g^2 = Xf = \langle X, \operatorname{grad} f \rangle$ implies that f can not have critical points, so $X = \operatorname{grad} f$ for all $x \in M$.

Problem 2-14

Proof. Since M, \widetilde{M} are compact, and $\pi : \widetilde{M} \to M$ is k-sheeted Riemannian covering, we can choose finite covering $\{U_{\alpha}\}_{\alpha \in A}$ of M and $\{U_{\alpha\beta}\}_{(\alpha,\beta) \in A \times B}$ such that $\pi|_{U_{\alpha\beta}} : U_{\alpha\beta} \to U_{\alpha}$ is isometry. Now choose POU $\{\varphi_{\alpha}\}$ of $\{U_{\alpha}\}_{\alpha \in A}$, we have

$$\operatorname{Vol}(\widetilde{M}) = \int_{\widetilde{M}} dV_{\widetilde{g}} = \sum_{\alpha\beta} \int_{U_{\alpha\beta}} \varphi_{\alpha}(\pi(x)) dV_{\widetilde{g}} = k \sum_{\alpha} \int_{U_{\alpha}} \varphi_{\alpha}(x) dV_{g} = k \operatorname{Vol}(M).$$

Problem 2-15

Proof. Take local coordinate $\{x^1, \dots, x^{k_1+k_2}\}$ of $M_1 \times_f M_2$, the first k_1 coordinate and last k_2 coordinate are coordinate for M_1 and M_2 respectively. We have

$$g_{ij}(x) = \begin{cases} g_{1,ij}(x) & 1 \le i, j \le k_1 \\ f^2(x)g_{2,ij}(x) & k_1 < i, j \le k_1 + k_2 \\ 0 & \text{otherwise} \end{cases}$$

Now
$$\det(g_{ij}) = f^{2k_2} \det(g_{1,ij}) \det(g_{2,ij})$$
, so
$$dV_g = \sqrt{\det(g_{ij})} dx^1 \wedge \cdots \wedge dx^{k_1 + k_2}$$
$$= f^{k_2} \sqrt{\det(g_{1,ij})} dx^1 \wedge \cdots \wedge dx^{k_1} \wedge \sqrt{\det(g_{2,ij})} dx^{k_1 + 1} \wedge \cdots \wedge dx^{k_1 + k_2}$$
$$= f^{k_2} dV_{q_1} \wedge dV_{q_2}$$

Exercise 2.1. (Problem 2-22)

Suppose (M, g) is a Riemannian manifold with boundary.

(a) Prove the following **divergence theorem** for $X \in \mathfrak{X}(M)$:

$$\int_{M} (\operatorname{div} X) dV_g = \int_{\partial M} \langle X, N \rangle_g dV_{\hat{g}},$$

where N is the outward unit normal to ∂M and \hat{g} is the induced metric on ∂M .

(b) Show that the divergence operator satisfies the following product rule for $u \in C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$:

$$\operatorname{div}(uX) = u \operatorname{div}X + \langle \operatorname{grad}u, X \rangle_q$$

and deduce the following "integration by parts" formula:

$$\int_{M} \langle \operatorname{grad} u, X \rangle_{g} dV_{g} = \int_{\partial M} u \langle X, N \rangle_{g} dV_{\hat{g}} - \int_{M} u \operatorname{div} X dV_{g}.$$

What does this say when M is a compact interval in \mathbb{R} .

Exercise 2.2. (Problem 2-23)

Let (M,g) be a compact Riemannian manifold with or without boundary. A function $u \in C^{\infty}(M)$ is said to be **harmonic** if $\Delta u = 0$, where Δ is the Laplacian.

(a) Prove Green's identities:

$$\int_{M} u \Delta v \ dV_g = \int_{\partial M} u \ Nv \ dV_{\hat{g}} - \int_{M} \langle \operatorname{grad} u, \operatorname{grad} v \rangle_g dV_g,$$

$$\int\limits_{M}(u\Delta v-v\Delta u)dV_{g}=\int\limits_{\partial M}(u\ Nv-v\ Nu)dV_{\hat{g}},$$

where N is the outward unit normal vector field on ∂M and \hat{g} us the induced metric on ∂M .

3 Chapter 3: Model Riemannian Manifolds

Exercise 3.1. (Problem 3-3)

Let (M, g) be a Riemannian manifold.

- (a) If M is isotropic at one point and it is homogeneous, then it is isotropic.
- (b) If M is frame-homogeneous, then it is homogeneous and isotropic.

Proof. (a) Suppose M is isotropic at $p \in M$ and M is homogeneous. Let φ be the isometry s.t. $\varphi(q) = p$. For $\forall q \in M$ and unit vectors $v, u \in T_qM$, we have $d\varphi_q(v), d\varphi_q(u) \in T_pM$ are unit vectors. Since M is isotropic at p, there exists an isometry $\psi \in Iso(M, p)$ s.t. $d\psi_p(d\varphi_q(v)) = d\varphi_q(u)$. So $\varphi^{-1} \circ \psi \circ \varphi \in Iso(M, q)$ takes v to u. Hence M is isotropic. (b) Obvious.

Exercise 3.2. (Problem 3-6)

Show that two Riemannian metrics g_1 and g_2 are conformal if and only if they define the same angles but not necessarily the same lengths, and that a diffeomorphism is a conformal equivalence if and only if it preserves angles. [Hint: Let (E_i) be a local orthonormal frame for g_1 , and consider the g_2 angle between E_i and $(\cos \theta)E_i + (\sin \theta)E_j$.]

Proof.

4 Chapter 4: Connections

Problem 4-3

Proof. Prove by definition:

$$\begin{split} \widetilde{\Gamma}_{ij}^{k}\widetilde{E}_{k} &= \nabla_{\widetilde{E}_{i}}\widetilde{E}_{j} = \nabla_{\widetilde{E}_{i}}A_{j}^{r}E_{r} = \widetilde{E}_{i}(A_{j}^{r})E_{r} + A_{j}^{r}\nabla_{\widetilde{E}_{i}}E_{r} \\ &= (A_{i}^{q}E_{q})(A_{j}^{r})E_{r} + A_{j}^{r}A_{i}^{q}\nabla_{E_{q}}E_{r} = A_{i}^{q}E_{q}(A_{j}^{r})E_{r} + A_{j}^{r}A_{i}^{q}\Gamma_{qr}^{\ell}E_{\ell} \end{split}$$

Since $\widetilde{\Gamma}_{ij}^k \widetilde{E}_k = \widetilde{\Gamma}_{ij}^k A_k^p E_p$, by comparison we have

$$\widetilde{\Gamma}_{ij}^{k} = (A^{-1})_{p}^{k} A_{i}^{q} E_{q}(A_{j}^{p}) + (A^{-1})_{p}^{k} A_{j}^{r} A_{i}^{q} \Gamma_{qr}^{p}$$

Problem 4-4

Proof. It's clear that

5 Chapter 5

Problem 5-1

Proof. By definition we have $D^{\flat}(X,Y) = \widetilde{\nabla}_X Y - \nabla_X Y$. Then

$$\begin{split} D^{\flat}(X,Y,Z) &= -D^{\flat}(X,Z,Y) \iff \langle \widetilde{\nabla}_X Y,Z \rangle - \langle \nabla_X Y,Z \rangle = -\langle \widetilde{\nabla}_X Z,Y \rangle + \langle \nabla_X Z,Y \rangle \\ &\iff \langle \widetilde{\nabla}_X Y,Z \rangle + \langle \widetilde{\nabla}_X Z,Y \rangle = \nabla_X \langle Y,Z \rangle = X \langle Y,Z \rangle \\ &\iff \widetilde{\nabla} \text{ is compatible with } g. \end{split}$$

Problem 5-2

Proof. We have

$$\begin{split} g_{jk}\omega_i^k + g_{ik}\omega_j^k &= dg_{ij} \iff \forall X \in \mathfrak{X}(M), \ g_{jk}\omega_i^k(X) + g_{ik}\omega_j^k(X) = dg_{ij}(X) \\ &\iff \forall X \in \mathfrak{X}(M), \ \langle \omega_i^k(X)E_k, E_j \rangle + \langle \omega_j^k(X)E_k, E_i \rangle = X \langle E_i, E_j \rangle \\ &\iff \forall X \in \mathfrak{X}(M), \ \langle \nabla_X E_i, E_j \rangle + \langle \nabla_X E_j, E_i \rangle = X \langle E_i, E_j \rangle \\ &\iff \nabla \text{ is compatible with } g. \end{split}$$

Problem 5-3

Proof. By proposition 5.5 it's easy to prove after calculation.

Problem 5-6

Proof. (a) Since $\widetilde{X},\widetilde{Y}$ are π -related to X,Y and π is a Riemannian submersion, we have $\langle \widetilde{X}_p,\widetilde{Y}_p\rangle = \langle X_{\pi(p)},Y_{\pi(p)}\rangle = \langle X,Y\rangle \circ \pi;$ Since $d\pi_p\left([\widetilde{X},\widetilde{Y}]_p^H\right) = d\pi_p\left([\widetilde{X},\widetilde{Y}]_p\right) = [X,Y]_{\pi(p)},$ so $[\widetilde{X},\widetilde{Y}]^H = [X,Y];$ Since $d\pi_p\left([\widetilde{X},W]_p\right) = [X,0]_{\pi(p)} = 0$, so $[\widetilde{X},W]$ is vertical if W is vertical.

(b) For Levi-Civita connection we have

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left(X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle Y, [X, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \right).$$

So we have

$$\begin{split} \langle \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, \widetilde{Z} \rangle &= \frac{1}{2} \left(\widetilde{X} \langle \widetilde{Y}, \widetilde{Z} \rangle + \widetilde{Y} \langle \widetilde{Z}, \widetilde{X} \rangle - \widetilde{Z} \langle \widetilde{X}, \widetilde{Y} \rangle \right. \\ &- \langle \widetilde{Y}, [\widetilde{X}, \widetilde{Z}] \rangle - \langle \widetilde{Z}, [\widetilde{Y}, \widetilde{X}] \rangle + \langle \widetilde{X}, [\widetilde{Z}, \widetilde{Y}] \rangle \right) \\ &= \frac{1}{2} \left(\widetilde{X} \left(\langle Y, Z \rangle \circ \pi \right) + \widetilde{Y} \left(\langle Z, X \rangle \circ \pi \right) - \widetilde{Z} \left(\langle X, Y \rangle \circ \pi \right) \right. \\ &- \langle \widetilde{Y}, [\widetilde{X}, \widetilde{Z}]^H \rangle - \langle \widetilde{Z}, [\widetilde{Y}, \widetilde{X}]^H \rangle + \langle \widetilde{X}, [\widetilde{Z}, \widetilde{Y}]^H \rangle \right) \\ &= \frac{1}{2} \left(\left(X \langle Y, Z \rangle \right) + \left(Y \langle Z, X \rangle \right) - \left(Z \langle X, Y \rangle \right) \right. \\ &- \langle Y, [X, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \right) \circ \pi \\ &= \langle \nabla_X Y, Z \rangle \circ \pi = \langle \widetilde{\nabla_X Y}, \widetilde{Z} \rangle + \frac{1}{2} \langle [\widetilde{X}, \widetilde{Y}]^V, \widetilde{Z} \rangle. \end{split}$$

and

$$\begin{split} \langle \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, W \rangle &= \frac{1}{2} \left(\widetilde{X} \langle \widetilde{Y}, W \rangle + \widetilde{Y} \langle W, \widetilde{X} \rangle - W \langle \widetilde{X}, \widetilde{Y} \rangle \right. \\ &\left. - \langle \widetilde{Y}, [\widetilde{X}, W] \rangle - \langle W, [\widetilde{Y}, \widetilde{X}] \rangle + \langle \widetilde{X}, [W, \widetilde{Y}] \rangle \right) \\ &= \frac{1}{2} \left(- \langle W, [\widetilde{Y}, \widetilde{X}]^V \rangle \right) = \frac{1}{2} \langle [\widetilde{X}, \widetilde{Y}]^V, W \rangle + \langle \widetilde{\nabla_X Y}, W \rangle. \end{split}$$

So for local frame of $\mathfrak{X}(\widetilde{M})$, $\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y}$ satisfies the two formula above, then we have $\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\nabla_X Y} + \frac{1}{2}[\widetilde{X},\widetilde{Y}]^V$.

Problem 5-7

Problem 5-9

Problem 5-10

Proof. Since $\varphi(p) = \psi(p)$, $d\varphi_p = d\psi_p$, we have the following commute diagram:

By the commute diagram and \exp_p local diffeomorphism, there exists a neighborhood U of p such that $\varphi \equiv \psi$ on U. Since M is connected, $\varphi \equiv \psi$ on M.

Exercise 5.1. (Problem 5-15)

Suppose (M,g) is a compact Riemannian n-manifold without boundary and $u \in C^{\infty}(M)$ is an eigenfunction of M, meaning that $-\Delta u = \lambda u$ for some constant λ . Prove that

$$\lambda \int_{M} |\operatorname{grad} u|^2 dV_g \le n \int_{M} |\nabla^2 u|^2 dV_g.$$

Proof. Consider 2-tensor field $\nabla^2 u - \frac{1}{n}(\Delta u)g$, then we have

$$\left\langle \nabla^2 u - \frac{1}{n} (\Delta u) g, \nabla^2 u - \frac{1}{n} (\Delta u) g \right\rangle = \left\langle \nabla^2 u, \nabla^2 u \right\rangle - \frac{2}{n} \left\langle \nabla^2 u, (\Delta u) g \right\rangle + \frac{1}{n^2} \left\langle (\Delta u) g, (\Delta u) g \right\rangle.$$

Since $\langle \nabla^2 u, g \rangle = \operatorname{tr}_g \nabla^2 u = \Delta u$ and $\langle g, g \rangle = n$, integral over M we get

$$\int_{M} |\nabla^{2}u|^{2} dV_{g} - \int_{M} \frac{1}{n} (\Delta u)^{2} dV_{g} \ge 0.$$

Now plug in $-\Delta u = \lambda u$ and use Green's formula, we have

$$\int_{M} (\Delta u)^{2} dV_{g} = \int_{M} \lambda^{2} u^{2} dV_{g} = \int_{M} \lambda \langle \operatorname{grad} u, \operatorname{grad} u \rangle dV_{g}.$$

Hence we have:

$$\int\limits_{M} |\nabla^{2} u|^{2} dV_{g} \geq \frac{\lambda}{n} \int\limits_{M} \langle \operatorname{grad} u, \operatorname{grad} u \rangle dV_{g}.$$

Exercise 5.2. (Problem 5-21)

Let (M, g) be a Riemannian or pseudo-Riemannian manifold and $p \in M$. Show that for every orthonormal basis (b_i) for T_pM , there is a smooth orthonormal frame (E_i) on a neighborhood of p such that $E_i|_p = b_i$ and $(\nabla E_i)_p = 0$ for each i.

Proof. Let $U = B_r(p) \subset M^n$ be a normal neighborhood. For each $q \in U$, there is a normalized geodesic γ_q joining p with q (radial geodesic). Let $\{b_1, \ldots, b_n\}$ be an orthonormal basis of T_pM and let $\{B_1, \ldots, B_n\}$ be their respective parallel transports along γ_q . For each $j = 1, \ldots, n$, define the field E_j by

$$E_i(q) = B_i(d(p,q)),$$

where d is the Riemannian distance. One has that E_j is a C^{∞} field, because the curves γ_q vary C^{∞} with q, in the sense that the EDO's of the geodesics γ_q have their coefficients depending C^{∞} on q.

Now, consider $\sigma_i(s)$ the normalized geodesic such that $\sigma_i(0) = p$ and

$$\sigma'_i(0) = b_i = B_i(0) = E_i(p).$$

One has,

$$\nabla_{E_i} E_j(p) = \nabla_{E_i(p)} E_j = \nabla_{\sigma'_i(0)} E_j = \frac{D(E_j \circ \sigma_i)}{ds} (s) \Big|_{s=0}$$

Since $(E_j \circ \sigma_i)(s) = B_j(d(p, \sigma_i(s))) = B_j(s)$ is a parallel field along $\gamma_{\sigma_i(s)} = \sigma_i|_{[0,s]}$, we have that

$$\nabla_{E_i} E_j(p) = \frac{D(E_j \circ \sigma_i)}{ds}(s) \Big|_{s=0} = \frac{DB_j}{ds}(0) = 0.$$

6 Chapter 6: Geodesics and Distance

Problem 6-1

Proof. (a) For $\forall p \in \gamma(I)$, there exists a uniformly normal neighborhood $p \in W$, then $W \subseteq \gamma(I)$, so $\gamma(I)$ is open; Let (p_i) be a sequence of points in $\gamma(I)$ and $(p_i) \to p$. Since p has a uniformly normal neighborhood W, $\exists N \in \mathbb{N}$ s.t. $\forall i > N$, $p_i \in W$. Then $p \in \gamma(I)$, so $\gamma(I)$ is closed. Since M is connected, γ is surjective.

- (b) If γ is injective, then it's a bijective smooth map from I to M, we only need to show γ is a local isometry. The Riemannian metric has local representation $g_{11}(dt)^2$, since γ is unit-speed, we have $g(\gamma', \gamma') = g_{11} = 1$, then the local representation is $(dt)^2$, which shows that γ is a isometry.
- (c) Let $\alpha(t) = \gamma(t+t_1)$, $\beta(t) = \gamma(t+t_2)$, then we have α, β are unit-speed geodesic, $\alpha(0) = \beta(0)$, $\alpha'(0) = \beta'(0)$. By the uniqueness of geodesic we have $\alpha \equiv \beta$, hence $\gamma(t+t_1) = \gamma(t+t_2)$, γ is periodic.
 - (d) WLOG, we assume that $t_2 > t_1$, then $\alpha(\frac{t_2 t_1}{2}) = \beta(\frac{t_2 t_1}{2})$, contradiction.

Problem 6-4

Proof. (a) Since the equation is independent of coordinate, we take the normal coordinate centered at $\gamma(0)$. In this chart we have $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$ and $d_g(\gamma(0), \gamma(t)) = \sqrt{\sum (\gamma^i(t))^2}$, then

$$\lim_{t \searrow 0} \frac{d_g\left(\gamma(0), \gamma(t)\right)}{t} = \lim_{t \searrow 0} \sqrt{\sum \left(\frac{\gamma^i(t)}{t}\right)^2} = \sqrt{\sum \left(\dot{\gamma}^i(0)\right)^2} = |\gamma'(0)|_g$$

(b) We only need to verify that for every $p \in M$, $g_p = \widetilde{g}_p$. From (a) we have $g_p(v,v) = \widetilde{g}_p(v,v)$ for all $v \in T_pM$, by polarization identity we have $g_p = \widetilde{g}_p$.

Problem 6-5

Proof. (a) In the normal coordinates centered at p, let $u(q, v, t) = \exp_p^{-1}(\exp_q(tv))$, it's clearly a smooth, then $f = |u|^2$ is smooth.

- (b) $\frac{\partial f}{\partial t} = 2\langle u, \frac{\partial u}{\partial t} \rangle$, $\frac{\partial^2 f}{\partial t^2} = 2\langle \frac{\partial^2 u}{\partial t^2}, u \rangle + 2\left|\frac{\partial u}{\partial t}\right|^2$. Then for q = p, u(q, v, t) = tv, $\frac{\partial^2 f}{\partial t^2} = 2\left|\frac{\partial u}{\partial t}\right|^2$ is positive. Use continuity we have that if ϵ is small enough then $\frac{\partial^2 f}{\partial t^2} > 0$.
- (c) Since q_1, q_2 are in the uniformly normal neighborhood of p, $\gamma(t)$ is of the form $\exp_{q_1}(tv)$ for some $v \in T_{q_1}M$, then $d_g(p,\gamma(t))^2 = f(q_1,v,t)$. By (b) we have $\frac{\partial^2 f}{\partial t^2} > 0$, so f is convex on where it's defined. Then $d_g(p,\gamma(t))$ is also convex on its domain, so it attains its maximum at one of the endpoints of γ .
- (d) By (c) it's clear that $d_g(p, \gamma(t)) < \epsilon \implies \gamma(t) \in B_{\epsilon}(p)$, so the image of the unique geodesic segment lies in $B_{\epsilon}(p)$, hence geodesically convex.

Problem 6-6

Proof. This answer has some problems For $x, x' \in M$, if $d_g(x, x') < \operatorname{conv}(x)$, then the geodesic ball $B_{\delta}(x')$, where $\delta = \operatorname{conv}(x) - d_g(x, x')$, is contained in $B_{\operatorname{conv}(x)}(x)$: for $\forall x'' \in B_{\delta}(x')$, $d_g(x, x'') \leq d_g(x, x') + d_g(x', x'') < \operatorname{conv}(x)$. It's clear that $B_{\delta}(x')$ is also geodesically convex since it's contained in a geodesically convex geodesic ball. Then $\operatorname{conv}(x') \geq \delta = \operatorname{conv}(x) - d_g(x, x')$, which means $\operatorname{conv}(x) - \operatorname{conv}(x') \leq d_g(x, x')$. If $d_g(x, x') \geq \operatorname{conv}(x)$ this inequality naturally holds. By reversing the role of x, x' we then get: $|\operatorname{conv}(x) - \operatorname{conv}(x')| \leq d_g(x, x')$. So $\operatorname{conv}(x)$ is continuous.

Problem 6-7

Proof. (a) Suppose that $\lim_{t\to 0}\frac{d_g\left(\exp_p tv,\exp_p tw\right)}{t}>c|v-w|_g$ for c>1. In Riemannian normal coordinates on a convex geodesic ball centered at p, we have $g=\delta_{ij}+O(|x|^2)$, then we have $\frac{1}{c}|w|_{\overline{g}}<|w|_g< c|w|_{\overline{g}}$, which shows that

$$\frac{1}{c}\frac{d_{\overline{g}}\left(\exp_{p}tv,\exp_{p}tw\right)}{t} < \frac{d_{g}\left(\exp_{p}tv,\exp_{p}tw\right)}{t} < c\frac{d_{\overline{g}}\left(\exp_{p}tv,\exp_{p}tw\right)}{t}$$

Since $d_g\left(\exp_p tv, \exp_p tw\right) = |tv - tw|_{\overline{g}} = t|v - w|_{\overline{g}}$ and $|v - w|_{\overline{g}} = |v - w|_g$, we have $\lim_{t \to 0} \frac{d_g\left(\exp_p tv, \exp_p tw\right)}{t} < c|v - w|_g$. Similarly we can argue the " < " case. So we have

$$\lim_{t \to 0} \frac{d_g\left(\exp_p tv, \exp_p tw\right)}{t} = c|v - w|_g$$

(b) Since geodesics are locally minimizing curves and vise visa, we just need to show that for a minimizing segment $\gamma:[a,b]\to M,\ \varphi\circ I$ is minimizing. This is obvious since φ is a metric isometry.

(c) Define
$$\Box$$

Exercise 6.1. (Problem 6-10)

A curve $\gamma:[0,b)\to M$ (with $0< b\leq \infty$) is said to **diverge to infinity** if for every compact set $K\subseteq M$, there is a time $T\in [0,b)$ such that $\gamma(T)\notin K$ for t>T. Prove that a connected Riemannian manifold is complete if and only if every regular curve that diverges to infinity has infinite length.

- *Proof.* If M is a Riemannian manifold and γ is a regular curve that diverges to infinity. Then $\exists T_R \in [0,b)$ such that $\gamma(T_R) \notin \exp_{\gamma(0)}(B_R(0))$, so $L_g(\gamma) \geq R$ for all $R \geq 0$. Hence γ has infinite length.
- If every regular curve that diverges to infinity has infinite length. Suppose M is not complete, then there exists $p \in M$ and a unit-speed maximal geodesic γ starting at p such that γ is defined on [0,b). (We only consider the positive part.) If there exists a compact set $K \subseteq M$ such that $\gamma([0,b)) \subseteq K$, then there exists $\epsilon > 0$ such that geodesics starting at points in K are defined at least on $(-\epsilon,\epsilon)$. Take $b-\epsilon < b_1 < b$, then we

can paste two geodesics to form a larger one, which contradicts to γ is maximal. So γ diverges to infinity. By our assumption then γ has infinite length, so the domain of γ must be \mathbb{R} . Hence M is complete.

Exercise 6.2. (Problem 6-11)

Suppose (M,g) is a connected Riemannian manifold, $P \subseteq M$ is a connected embedded submanifold, and \widehat{g} is the induced Riemannian metric on P.

- (1) Show that $d_{\widehat{q}}(p,q) \geq d_q(p,q)$ for $p,q \in P$.
- (2) Prove that if (M, g) is complete and P is closed in M, then (P, \widehat{g}) is complete.
- (3) Give an example of a complete Riemannian manifold (M, g) and a connected embedded submanifold $P \subseteq M$ that is complete but not closed in M.

Proof. (1) Since admissible curves in P is also admissible curves in M, then after taking inf we have $d_{\widehat{q}}(p,q) \ge d_q(p,q)$ for $p,q \in P$.

(2) Let (p_i) be Cauchy sequence in (P, \widehat{g}) . By (1) we see (p_i) is also Cauchy sequence in (M, g). Since (M, g) is complete, $p_i \to p \in M$. Since P is closed in M, we have $p \in P$. Hence (P, \widehat{g}) is complete.

$$(3) \left\{ x, \sin \frac{1}{x} : x > 0 \right\} \subseteq \mathbb{R}^2.$$

Exercise 6.3. (Problem 6-12)

Let (M, q) be a connected Riemannian manifold.

- (1) Suppose there exists $\delta > 0$ such that for each $p \in M$, every maximal unitspeed geodesic starting at p is defined at least on an interval of the form $(-\delta, \delta)$. Prove that M is complete.
 - (2) Prove that if M has positive or infinite injectivity radius, then it is complete.
 - (3) Prove that if M is homogeneous, then it is complete.
- (4) Given an example of a complete, connected Riemannian manifold that has zero injectivity radius.

Proof. \Box

Exercise 6.4. (Problem 6-14)

Let (M, g) be a connected Riemannian manifold.

- (1) Show that M is complete if and only if the compact subsets of M are exactly the closed and bounded ones.
 - (2) Show that M is compact if and only if it is complete and bounded.

Proof. (1) Suppose M is complete, then clearly compact subsets of M is closed and bounded. (Closed because M is Hausdorff, bounded because you can cover compact subset with finite many bounded balls.) If $A \subseteq M$ is closed and bounded, then for

 $p \in A$, there exists R > 0 s.t. $A \subseteq \exp_p(\overline{B_R(0)})$. Since $\exp_p(\overline{B_R(0)})$ is compact and A is closed, A is compact. Hence compacts subsets are exactly closed and bounded ones.

Suppose compact subsets of M are exactly closed and bounded ones. Let (p_i) be Cauchy sequence in M, then $\overline{\{p_i\}_i}$ is closed and bounded, which is compact by assumption. Then there exists convergent subsequence $p_{i_k} \to p \in \overline{\{p_i\}_i} \subseteq M$. Hence M is complete.

(2) Suppose M is compact, then clearly M is complete and also bounded by (1). Suppose M is complete and bounded. Since M is closed itself, by (1) we have M is compact.

7 Chapter 7: Curvature

Exercise 7.1. (Problem 7-7)

Suppose (M, g) is a Riemannian manifold and $u \in C^{\infty}(M)$. Prove **Bochner's** formula:

$$\Delta\left(\frac{1}{2}|\operatorname{grad} u|^2\right) = |\nabla^2 u|^2 + \langle \operatorname{grad}(\Delta u), \operatorname{grad} u \rangle + Rc(\operatorname{grad} u, \operatorname{grad} u).$$

Proof. For $p \in M$, take a geodesic frame (E_i) near p. Since $\nabla^2 u = \nabla ((\operatorname{grad} u)^{\flat}) = (\nabla \operatorname{grad} u)^{\flat}$, we have $\nabla^2 (X, Y) = \langle \nabla_X \operatorname{grad} u, Y \rangle$. Then

$$\begin{split} &\Delta\left(\frac{1}{2}|\mathrm{grad}u|^2\right) = \frac{1}{2}\sum_{i}E_{i}E_{i}\left\langle\mathrm{grad}u,\mathrm{grad}u\right\rangle \\ &= \sum_{i}E_{i}\left\langle\nabla_{E_{i}}\mathrm{grad}u,\mathrm{grad}u\right\rangle \\ &= \sum_{i}E_{i}\nabla^{2}u(E_{i},\mathrm{grad}u) \\ &= \sum_{i}E_{i}\left\langle\nabla_{\mathrm{grad}u}\mathrm{grad}u,E_{i}\right\rangle \\ &= \sum_{i}\left(\left\langle\nabla_{E_{i}}\nabla_{\mathrm{grad}u}\mathrm{grad}u,E_{i}\right\rangle + \left\langle\nabla_{\mathrm{grad}u}\mathrm{grad}u,\nabla_{E_{i}}E_{i}\right\rangle\right) \\ &= \sum_{i}\left(\left\langle R(E_{i},\mathrm{grad}u)\mathrm{grad}u,E_{i}\right\rangle + \left\langle\nabla_{\mathrm{grad}u}\nabla_{E_{i}}\mathrm{grad}u,E_{i}\right\rangle \\ &+ \left\langle\nabla_{[E_{i},\mathrm{grad}u]}\mathrm{grad}u,E_{i}\right\rangle\right) \\ &= Rc(\mathrm{grad}u,\mathrm{grad}u) + \sum_{i}\left(\left\langle\nabla_{\mathrm{grad}u}\nabla_{E_{i}}\mathrm{grad}u,E_{i}\right\rangle + \left\langle\nabla_{[E_{i},\mathrm{grad}u]}\mathrm{grad}u,E_{i}\right\rangle\right). \end{split}$$

And we have

$$\sum_{i} \left\langle \nabla_{\operatorname{grad}u} \nabla_{E_{i}} \operatorname{grad}u, E_{i} \right\rangle = \sum_{i} \left(\operatorname{grad}u \left\langle \nabla_{E_{i}} \operatorname{grad}u, E_{i} \right\rangle - \left\langle \nabla_{E_{i}} \operatorname{grad}u, \nabla_{\operatorname{grad}u} E_{i} \right\rangle \right)$$

$$= \operatorname{grad}u(\Delta u) = \left\langle \operatorname{grad}(\Delta u), \operatorname{grad}u \right\rangle.$$

$$\begin{split} \sum_{i} \left\langle \nabla_{[E_{i}, \operatorname{grad}u]} \operatorname{grad}u, E_{i} \right\rangle &= \sum_{i} \left\langle \nabla_{E_{i}} \operatorname{grad}u, [E_{i}, \operatorname{grad}u] \right\rangle \\ &= \sum_{i} \left\langle \nabla_{E_{i}} \operatorname{grad}u, \nabla_{E_{i}} \operatorname{grad}u - \nabla_{\operatorname{grad}u} E_{i} \right\rangle \\ &= \sum_{i} \left\langle \nabla_{E_{i}} \operatorname{grad}u, \nabla_{E_{i}} \operatorname{grad}u \right\rangle \\ &= |\nabla^{2}u|^{2}. \end{split}$$

Hence we have

$$\Delta\left(\frac{1}{2}|\mathrm{grad}u|^2\right) = |\nabla^2 u|^2 + \langle \mathrm{grad}(\Delta u), \mathrm{grad}u \rangle + Rc(\mathrm{grad}u, \mathrm{grad}u).$$

Exercise 7.2. (Problem 7-8)

LICHNEROWICZ'S THEOREM: Suppose (M,g) is a compact Riemannian n-manifold, and there is a positive constant κ such that the Ricci tensor of g satisfies $Rc(v,v) \geq \kappa |v|^2$ for all tangent vector v. If λ is any positive eigenvalue of M, then $\lambda \geq n\kappa/(n-1)$.

Proof. By problem 7-7 and problem 2-23 we have

$$0 = \Delta\left(\frac{1}{2}|\operatorname{grad} u|^2\right) = |\nabla^2 u|^2 + \langle \operatorname{grad}(\Delta u), \operatorname{grad} u \rangle + Rc(\operatorname{grad} u, \operatorname{grad} u).$$

Plug in $-\Delta u = \lambda u$, we have

$$\langle \operatorname{grad}(\Delta u), \operatorname{grad} u \rangle + Rc(\operatorname{grad} u, \operatorname{grad} u) \ge (\kappa - \lambda) \langle \operatorname{grad}(u), \operatorname{grad} u \rangle$$

Then

$$0 \geq \int\limits_{M} \left(|\nabla^2 u|^2 + (\kappa - \lambda) \left\langle \operatorname{grad}(u), \operatorname{grad}u \right\rangle \right) dV_g \geq \left(\frac{\lambda}{n} + \kappa - \lambda\right) \int\limits_{M} \left\langle \operatorname{grad}(u), \operatorname{grad}u \right\rangle dV_g$$

Hence we have
$$\frac{\lambda}{n} + \kappa - \lambda \le 0 \implies \lambda \ge n\kappa/(n-1)$$
.

Exercise 7.3. (Problem 7-13)

Let G be a Lie group with a bi-invariant metric g. Show that the following formula holds whenever X, Y, Z are left-invariant vector fields on G:

$$R(X,Y)Z = \frac{1}{4}[Z,[X,Y]]$$

Proof. Just routine computation:

$$\begin{split} R(X,Y)Z &= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \\ &= \nabla_X \left(\frac{1}{2} [Y,Z] \right) - \nabla_Y \left(\frac{1}{2} [X,Z] \right) - \frac{1}{2} [[X,Y],Z] \\ &= \frac{1}{4} [X,[Y,Z]] - \frac{1}{4} [Y,[X,Z]] + \frac{1}{2} [Z,[X,Y]] \\ &= \frac{1}{4} \left([X,[Y,Z]] + [Y,[Z,X]] \right) + \frac{1}{2} [Z,[X,Y]] \\ &= -\frac{1}{4} [Z,[X,Y]] + \frac{1}{2} [Z,[X,Y]] \\ &= \frac{1}{4} [Z,[X,Y]]. \end{split}$$

Exercise 7.4. (Problem 7-14)

Suppose $\pi: (\widetilde{M}, \widetilde{g}) \to (M, g)$ is a Riemannian submersion. Using the notation

and results of Problem 5-6, prove O'Neill's formula:

$$Rm(W, X, Y, Z) \circ \pi = \widetilde{Rm}(\widetilde{W}, \widetilde{X}, \widetilde{Y}, \widetilde{Z}) - \frac{1}{2} \left\langle [\widetilde{W}, \widetilde{X}]^V, [\widetilde{Y}, \widetilde{Z}]^V \right\rangle - \frac{1}{4} \left\langle [\widetilde{W}, \widetilde{Y}]^V, [\widetilde{X}, \widetilde{Z}]^V \right\rangle + \frac{1}{4} \left\langle [\widetilde{W}, \widetilde{Z}]^V, [\widetilde{X}, \widetilde{Y}]^V \right\rangle.$$

Proof. By problem 5-6, we have $\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\nabla_X Y} + \frac{1}{2} [\widetilde{X}, \widetilde{Y}]^V$. Then

$$\widetilde{Rm}(\widetilde{W},\widetilde{X},\widetilde{Y},\widetilde{Z}) = \left\langle \widetilde{\nabla}_{\widetilde{W}} \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} - \widetilde{\nabla}_{\widetilde{X}} \widetilde{\nabla}_{\widetilde{W}} \widetilde{Y} - \widetilde{\nabla}_{[\widetilde{W},\widetilde{X}]} \widetilde{Y}, \widetilde{Z} \right\rangle.$$

Compute

$$\begin{split} \widetilde{\nabla}_{\widetilde{W}} \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} &= \widetilde{\nabla}_{\widetilde{W}} \left(\widetilde{\nabla_X Y} + \frac{1}{2} [\widetilde{X}, \widetilde{Y}]^V \right) \\ &= \widetilde{\nabla_W \nabla_X Y} + \frac{1}{2} [\widetilde{W}, \widetilde{\nabla_X Y}]^V + \frac{1}{2} \widetilde{\nabla}_{\widetilde{W}} [\widetilde{X}, \widetilde{Y}]^V. \\ 0 &= \widetilde{\nabla}_{\widetilde{W}} \left\langle [\widetilde{X}, \widetilde{Y}]^V, \widetilde{Z} \right\rangle = \left\langle \widetilde{\nabla}_{\widetilde{W}} [\widetilde{X}, \widetilde{Y}]^V, \widetilde{Z} \right\rangle + \left\langle [\widetilde{X}, \widetilde{Y}]^V, \widetilde{\nabla_W Z} + \frac{1}{2} [\widetilde{W}, \widetilde{Z}]^V \right\rangle \\ &= \left\langle \widetilde{\nabla}_{\widetilde{W}} [\widetilde{X}, \widetilde{Y}]^V, \widetilde{Z} \right\rangle + \left\langle [\widetilde{X}, \widetilde{Y}]^V, \frac{1}{2} [\widetilde{W}, \widetilde{Z}]^V \right\rangle. \\ 0 &= \widetilde{\nabla}_{\widetilde{Y}} \left\langle [\widetilde{W}, \widetilde{X}]^V, \widetilde{Z} \right\rangle = \left\langle \widetilde{\nabla}_{\widetilde{Y}} [\widetilde{W}, \widetilde{X}]^V, \widetilde{Z} \right\rangle + \left\langle [\widetilde{W}, \widetilde{X}]^V, \widetilde{\nabla}_{\widetilde{Y}} \widetilde{Z} \right\rangle \\ &= \left\langle \widetilde{\nabla}_{\widetilde{Y}} [\widetilde{W}, \widetilde{X}]^V, \widetilde{Z} \right\rangle + \left\langle [\widetilde{W}, \widetilde{X}]^V, \frac{1}{2} [\widetilde{Y}, \widetilde{Z}]^V \right\rangle. \end{split}$$

Then we have

$$\begin{split} \left\langle \widetilde{\nabla}_{\widetilde{W}} \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, \widetilde{Z} \right\rangle &= \left\langle \widetilde{\nabla_{W} \nabla_{X} Y}, \widetilde{Z} \right\rangle - \frac{1}{4} \left\langle [\widetilde{X}, \widetilde{Y}]^{V}, [\widetilde{W}, \widetilde{Z}]^{V} \right\rangle \\ &= \left\langle \nabla_{W} \nabla_{X} Y, Z \right\rangle \circ \pi - \frac{1}{4} \left\langle [\widetilde{X}, \widetilde{Y}]^{V}, [\widetilde{W}, \widetilde{Z}]^{V} \right\rangle. \\ \left\langle \widetilde{\nabla}_{\widetilde{X}} \widetilde{\nabla}_{\widetilde{W}} \widetilde{Y}, \widetilde{Z} \right\rangle &= \left\langle \widetilde{\nabla_{X} \nabla_{W} Y}, \widetilde{Z} \right\rangle - \frac{1}{4} \left\langle [\widetilde{W}, \widetilde{Y}]^{V}, [\widetilde{X}, \widetilde{Z}]^{V} \right\rangle \\ &= \left\langle \nabla_{X} \nabla_{W} Y, Z \right\rangle \circ \pi - \frac{1}{4} \left\langle [\widetilde{W}, \widetilde{Y}]^{V}, [\widetilde{X}, \widetilde{Z}]^{V} \right\rangle. \\ \left\langle \widetilde{\nabla}_{[\widetilde{W}, \widetilde{X}]} \widetilde{Y}, \widetilde{Z} \right\rangle &= \left\langle \widetilde{\nabla}_{[\widetilde{W}, \widetilde{X}]^{H} + [\widetilde{W}, \widetilde{X}]^{V}} \widetilde{Y}, \widetilde{Z} \right\rangle \\ &= \left\langle \nabla_{[W, X]} Y, \widetilde{Z} \right\rangle + \left\langle \widetilde{\nabla}_{\widetilde{Y}} [\widetilde{W}, \widetilde{X}]^{V} + [[\widetilde{W}, \widetilde{X}]^{V}, \widetilde{Y}], \widetilde{Z} \right\rangle \\ &= \left\langle \nabla_{[W, X]} Y, Z \right\rangle \circ \pi - \frac{1}{2} \left\langle [\widetilde{W}, \widetilde{X}]^{V}, [\widetilde{Y}, \widetilde{Z}]^{V} \right\rangle. \end{split}$$

Hence we have

$$\begin{split} \widetilde{Rm}(\widetilde{W},\widetilde{X},\widetilde{Y},\widetilde{Z}) &= \langle \nabla_W \nabla_X Y, Z \rangle \circ \pi - \frac{1}{4} \left\langle [\widetilde{X},\widetilde{Y}]^V, [\widetilde{W},\widetilde{Z}]^V \right\rangle - \langle \nabla_X \nabla_W Y, Z \rangle \circ \pi \\ &+ \frac{1}{4} \left\langle [\widetilde{W},\widetilde{Y}]^V, [\widetilde{X},\widetilde{Z}]^V \right\rangle - \left\langle \nabla_{[W,X]} Y, Z \right\rangle \circ \pi + \frac{1}{2} \left\langle [\widetilde{W},\widetilde{X}]^V, [\widetilde{Y},\widetilde{Z}]^V \right\rangle \\ &= Rm(W,X,Y,Z) \circ \pi - \frac{1}{4} \left\langle [\widetilde{X},\widetilde{Y}]^V, [\widetilde{W},\widetilde{Z}]^V \right\rangle \\ &+ \frac{1}{4} \left\langle [\widetilde{W},\widetilde{Y}]^V, [\widetilde{X},\widetilde{Z}]^V \right\rangle + \frac{1}{2} \left\langle [\widetilde{W},\widetilde{X}]^V, [\widetilde{Y},\widetilde{Z}]^V \right\rangle. \end{split}$$

So we get the O'Neill's formula:

$$Rm(W, X, Y, Z) \circ \pi = \widetilde{Rm}(\widetilde{W}, \widetilde{X}, \widetilde{Y}, \widetilde{Z}) - \frac{1}{2} \left\langle [\widetilde{W}, \widetilde{X}]^V, [\widetilde{Y}, \widetilde{Z}]^V \right\rangle - \frac{1}{4} \left\langle [\widetilde{W}, \widetilde{Y}]^V, [\widetilde{X}, \widetilde{Z}]^V \right\rangle + \frac{1}{4} \left\langle [\widetilde{W}, \widetilde{Z}]^V, [\widetilde{X}, \widetilde{Y}]^V \right\rangle.$$

8 Chapter 8

Exercise 8.1. (Problem 8-2)

Let (M, g) be an embedded Riemannian hypersurface in a Riemannian manifold $(\widetilde{M}, \widetilde{g})$, let F be a local defining function for M, and let $N = \operatorname{grad} F/|\operatorname{grad} F|$.

(1) Show that the scalar fundamental form of M with respect to the unit normal N is given by

$$h(X,Y) = -\frac{\widetilde{\nabla}^2 F(X,Y)}{|\text{grad}F|}$$

for all $X, Y \in \mathfrak{X}(M)$.

(2) Show that the mean curvature of M is given by

$$H = -\frac{1}{n} \operatorname{div}_{\widetilde{g}} \left(\frac{\operatorname{grad} F}{|\operatorname{grad} F|} \right),$$

where $n = \dim M$ and $\operatorname{div}_{\widetilde{q}}$ is the divergence operator of \widetilde{g} .

Proof. ...

Exercise 8.2. (Problem 8-9)

Let $M \subseteq \mathbb{R}^{n+1}$ be a Riemannian hypersurface, and let N be a smooth unit normal vector field along M. At each point $p \in M$, $N_p \in T_p \mathbb{R}^{n+1}$ can be thought of as a unit vector in \mathbb{R}^{n+1} and therefore as a point in \mathbb{S}^n . Thus each choice of unit normal vector field defines a smooth map $\nu : M \to \mathbb{S}^n$, called the **Gauss map of** M. Show that $\nu^* dV_{\mathring{g}} = (-1)^n K dV_g$, where K is the Gaussian curvature of M.

Proof. By Weingarten equation for hypersurface, we have: for every $X \in \mathfrak{X}(M)$, $\widetilde{\nabla}_X N = -sX$, so we have $d\nu = \nabla \nu = -s$. Then $K = \det s = (-1)^n \det d\nu$.

For $p \in M$, let $\{e_i\}$ be oriented orthonormal basis of T_pM . Then

$$\nu^* dV_{\mathring{g}}(e_1, \dots, e_n) = \det(v_p, e_1, \dots, e_n) = \det(d_p \nu) = (-1)^n \det s = (-1)^n K$$

Hence $\nu^* dV_{\dot{q}} = (-1)^n K dV_q$.

9 Chapter 9

10 Chapter 10: Jacobi Fields

Exercise 10.1. (Problem 10-1)

Suppose (M, g) is a Riemannian manifold and $p \in M$. Show that the second-order Taylor series of g in normal coordinates centered at p is

$$g_{ij}(x) = \delta_{ij} - \frac{1}{3} \sum_{k,l} R_{iklj}(p) x^k x^l + O(|x|^3).$$

Proof. Let $\gamma(t)=(tv^1,\cdots,tv^n)$ be radical geodesic in normal coordinates centered at p, $J(t)=tw^i\partial_i\mid_{\gamma(t)}$ be Jacobi field along γ , let $v=(v^1,\cdots,v^n), w=(w^1,\cdots,w^n)$.

On the one hand, $|J(t)|^2 = t^2 g_{ij}(\gamma(t)) w^i w^j$ near p.

On the other hand, let $f = |J(t)|^2 = \langle J(t), J(t) \rangle$, $RJ = R(J, \gamma')\gamma'$, we have

$$f = \langle J, J \rangle, \quad f' = 2\langle D_t J, J \rangle,$$

$$f''' = -2\langle RJ, J \rangle + 2\langle D_t J, D_t J \rangle$$

$$f'''' = -2\langle D_t(RJ), J \rangle - 6\langle RD_t J, J \rangle = -2\langle (D_t R)J, J \rangle - 8\langle RD_t J, J \rangle$$

$$f''''' = -2\langle D_t((D_t R)J), J \rangle - 2\langle (D_t R)J, D_t J \rangle - 8\langle D_t(RD_t J), J \rangle - 8\langle RD_t J, D_t J \rangle$$

$$= -2\langle (D_t^2 R)J, J \rangle - 2\langle (D_t R)(D_t J), J \rangle - 2\langle (D_t R)(D_t J), J \rangle - 8\langle (D_t R)(D_t J), J \rangle$$

$$- 8\langle R(D_t^2 J), J \rangle - 8\langle RD_t J, D_t J \rangle$$

$$= -2\langle (D_t^2 R)J, J \rangle - 12\langle (D_t R)(D_t J), J \rangle + 8\langle RJ, RJ \rangle - 8\langle RD_t J, D_t J \rangle$$

So we have

$$f(0) = 0,$$
 $f'(0) = 0$
 $f''(0) = 2\langle w, w \rangle,$ $f'''(0) = 0,$ $f''''(0) = -8\langle R(w, v)v, w \rangle$

Hence we have

$$t^{2}g_{ij}(\gamma(t))w^{i}w^{j} = f(t) = \sum_{i=0}^{4} \frac{1}{i!}f^{(i)}(0)t^{i} + O(|t|^{5})$$

$$= \delta_{ij}w^{i}w^{j}t^{2} - \frac{1}{3}\sum_{k,l}R_{iklj}(\gamma(t))w^{i}v^{k}v^{l}w^{j}t^{4} + O(|t|^{5})$$

$$= \delta_{ij}w^{i}w^{j}t^{2} - \frac{1}{3}\sum_{k,l}R_{iklj}(\gamma(t))x^{k}x^{l}w^{i}w^{j}t^{2} + O(|t|^{5})$$

By comparison, we have $g_{ij}(x) = \delta_{ij} - \frac{1}{3} \sum_{k,l} R_{iklj}(p) x^k x^l + O(|x|^3)$.

Remark. For higher order you can check this website.