

			Semester: VII		
		STREAM 1	PROCESSING AND ANALYTICS		
Category: Professional Core Course					
(Common to AI,CD)					
			(Theory and Practice)		
Course Code	:	AI372IA	CIE	:	100+50 Marks
Credits: L: T: P	:	3:0:1	SEE	:	100+50 Marks
Total Hours	:	45L+30P	SEE Duration	:	3.00 Hours

Unit-I	9Hrs.	
Introducing Streaming Data: What is Real time system – Differences between real time and		
streaming systems – architectural blue print – security for streaming systems – scaling		
Data Ingestion: Common Interaction patterns – scaling the interaction patterns – Faulty tolera	nce	
Unit – II	9Hrs.	
Data Transportation: Message queue – Core concepts – security – application of core conc	epts to	
business logic	-	
Analysing Streaming Data: Inflight data analysis – Distributed stream processing architecture	e – key	
features of stream processing frame work		
Unit –III	9Hrs.	
Algorithms for Data Analysis: Accepting constraints and relaxing - Thinking about	time –	
Summarization Technique		
Storing the analysed or collected data: Long time storage – keeping it in memory		
Unit –IV	9Hrs.	
Introduction to Kafka: Why Kafka – Kafka Eco System – Kafka Origin - Kafka Produce	ers and	
Consumers		
Unit –V	9Hrs	
Building Data Pipe lines – When to use pipe lines – when to use kafka connect vs produc	er and	
consumer		
Kafka Streams – Stream Processing design patterns - Architecture over view – How to choose Stream		
processing framework - Kafka streams by example – word count – stock market statistics – click enrichment	stream	

Lab Component

Group of two students of same batch are required to build an application using stream processing tools for various real time applications like (i) Real time Sentiment Analysis (ii) Stock Market analysis (iii) Click stream enrichment (iv) In-flight analysis (v) video stream processing etc

Cours	Course Outcomes: After completing the course, the students will be able to:-		
CO1	Describe the need and the application of real time and stream processing in real world		
	applications.		
CO2			
	data analysis and storage for different streaming data applications.		
CO3	Investigate and apply streaming concepts using modern tools to solve problems related to		
	society and industry.		
CO4	Demonstrate a prototype application for streaming data using Kafka as a team / individual.		
CO5	Demonstrate solutions for societal and environmental concern problems using modern		
	engineering tools through writing effective reports.		

Re	References Books		
1.	Streaming Data – Understanding the Real time Pipe Line ,Andrew Psaltis, Manning		
	Publications, 1 st Edition: 2017, ISBN: 9781617292286		
	Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale, Gwen Shapira,		
2.	Todd Palino, Rajini Sivaram, Krit Petty, , O'Reilly Media, 2 nd Edition, November 2021,		
	ISBN: 978-1-492-08736-6		
3.	Streaming Systems ,Tyler Akidau, Slava Chernyak, and Reuven Lax, , O'Reilly Media , 1st Edition		
٥.	2018 , ISBN : 978-1-491-98387-4		
	Fundamentals of Stream Processing Application Design, Systems, and Analytics ,Henrique		
4.	C. M. Andrade, Bugra Gedik, Deepak S. Turaga, Cambridge University Press 2014, 1st		
	Edition, ISBN 978-1-107-01554-8 Hardback		

RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION		
#	COMPONENTS	MARK S
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE SUM OF TWO QUIZZES WILL BE THE FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). Two tests will be conducted. Each test will be evaluated for 50 Marks, adding upto 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Case study-based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (20) ADDING UPTO 40 MARKS .	40
4.	LAB: Conduction of laboratory exercises, lab report, observation, and analysis (40 Marks) and lab test (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS	50
_	MAXIMUM MARKS FOR THE CIE (THEORY AND PRACTICE)	150

RUBRIC FOR SEMESTER END EXAMINATION (THEORY)			
Q.NO.	CONTENTS	MARKS	
	PART A	-	
1	Objective type of questions covering entire syllabus	20	
	PART B (Maximum of THREE Sub-divisions only)		
2	Unit 1 : (Compulsory)	16	
3 & 4	Unit 2 : Question 3 or 4	16	
5 & 6	Unit 3: Question 5 or 6	16	
7 & 8	Unit 4 : Question 7 or 8	16	
9 & 10	Unit 5: Question 9 or 10	16	
	TOTAL	L 100	

RUBRIC FOR SEMESTER END EXAMINATION (LAB)

Student is required to perform Computer Simulation/ Develop a prototype or model as the case may be and present the results in the form of a presentation. Further, students have to submit a poster for exhibition and also a report.

Q.NO.	CONTENTS	MARKS
1	Design and development of the project	20
2	Presentation of the working model/simulation results/prototype building	20
3	Viva	10
	TOTAL	50