

Claims after amendments (see "Attachment" for present amendments)

1 32. A method of making a magnetic read head, which includes a spin valve sensor,
2 comprising the steps of:

3 a making of the spin valve sensor comprising the steps of:

4 forming a free layer structure that has a magnetic moment and an easy axis;

5 forming a ferromagnetic pinned layer structure that has a magnetic moment;

6 forming a pinning layer exchange coupled to the pinned layer structure for pinning
7 the magnetic moment of the pinned layer structure;

8 forming a nonmagnetic conductive spacer layer between the free layer structure and
9 the pinned layer structure;

10 forming the free layer structure by obliquely ion beam sputtering at least one cobalt
11 or cobalt based layer in the presence of a magnetic field oriented in a direction of said easy
12 axis; and

13 the oblique ion beam sputtering being at angles $\alpha = 40^\circ$ and $\beta = 10^\circ - 30^\circ$, wherein
14 angles α and β are orthogonal.

1 34. A method of making a magnetic read head, which includes a spin valve sensor,
2 comprising the steps of:

3 a making of the spin valve sensor comprising the steps of:

4 forming a free layer structure that has a magnetic moment and an easy axis;

5 forming a ferromagnetic pinned layer structure that has a magnetic moment;

6 forming a pinning layer exchange coupled to the pinned layer structure for pinning
7 the magnetic moment of the pinned layer structure;

8 forming a nonmagnetic conductive spacer layer between the free layer structure and
9 the pinned layer structure;

10 forming the free layer structure by obliquely ion beam sputtering at least one cobalt
11 or cobalt based layer in the presence of a magnetic field oriented in a direction of said easy
12 axis;

13 the pinning layer structure being formed by forming a nickel oxide (NiO) layer and
14 an alpha iron oxide (α FeO) layer wherein each of the nickel oxide (NiO) layer and the
15 alpha iron oxide (α FeO) layer has been formed by oblique ion beam sputtering at angles
16 α and β wherein angles α and β are orthogonal with respect to one another.

1 **36.** A method as claimed in claim 32 further comprising the steps of:
2 forming the free layer structure with a nickel iron based layer that interfaces the cobalt or
3 cobalt based layer; and
4 said forming of the cobalt or cobalt based layer so that it interfaces the spacer layer.

1 **37.** A method as claimed in claim 36 further comprising the step of:
2 after said oblique ion beam sputtering in the presence of said field oriented in said direction of the easy axis, further forming said at least one cobalt or cobalt based layer by
3 annealing said at least one cobalt or cobalt based layer.
4

1 **38.** A method as claimed in claim 36 wherein said cobalt based layer is formed of
2 cobalt iron (CoFe).

1 **39.** A method as claimed in claim 38 wherein said annealing is at a temperature from
2 150°C to 270°C.

1 **40.** A method of making a magnetic read head, which includes a spin valve sensor,
2 comprising the steps of:

3 forming the spin valve sensor as follows:

4 forming a ferromagnetic pinned layer structure that has a magnetic moment;

5 forming a pinning layer exchange coupled to the pinned layer structure for pinning
6 the magnetic moment of the pinned layer structure;

7 forming a nonmagnetic conductive spacer layer between the free layer structure and
8 the pinned layer structure; and

9 forming the pinning layer structure of a nickel oxide (NiO) layer and an alpha iron
10 oxide (α FeO) layer wherein at least one of the nickel oxide (NiO) layer and the alpha iron
11 oxide (α FeO) layer has been obliquely ion beam sputtered at angles α and β wherein angles
12 α and β are orthogonal with respect to one another.

1 **41.** A method of making a magnetic read head, which includes a spin valve sensor,
2 comprising:

3 a making of the spin valve sensor including the steps of:

4 forming a free layer structure that has a magnetic moment and an easy axis;

5 forming a ferromagnetic pinned layer structure that has a magnetic moment;

6 forming a pinning layer exchange coupled to the pinned layer structure for pinning
7 the magnetic moment of the pinned layer structure;

8 forming a nonmagnetic conductive spacer layer between the free layer structure and
9 the pinned layer structure;

10 a making the free layer structure including the steps of:

11 obliquely ion beam sputtering first and second cobalt or cobalt based layers
12 and a nickel iron based layer in the presence of a magnetic field oriented in a
13 direction of said easy axis with the first and second cobalt or cobalt based layers
14 interfacing the spacer layer and a cap layer respectively and the nickel iron based
15 layer being located between and interfacing the first and second cobalt or cobalt
16 based layers;

17 the oblique ion beam sputtering being at angles $\alpha = 40^\circ$ and $\beta = 10^\circ - 30^\circ$
18 wherein angles α and β are orthogonal; and

19 after said oblique ion beam sputtering in the presence of said field oriented
20 in said direction on the easy axis, annealing each of the cobalt or cobalt based
21 layers and the nickel iron based layer.

1 42. A method as claimed in claim 41 including:

2 forming nonmagnetic nonconductive first and second read gap layers;

3 forming the spin valve sensor between the first and second read gap layers;

4 forming ferromagnetic first and second shield layers; and

5 forming the first and second read gap layers between the first and second shield layers.

1 44. A method as claimed in claim 42 wherein a forming of the pinned layer structure
2 comprises the steps of:

3 forming ferromagnetic first and second antiparallel (AP) pinned layers with the first AP
4 layer interfacing the pinning layer; and

5 forming an antiparallel (AP) coupling layer between the first and second AP layers.

1 46. A method as claimed in claim 44 wherein the step of oblique ion beam sputtering
2 includes the steps of:

3 providing a sputtering chamber;

4 providing a nonmagnetic conductive target in the sputtering chamber that has a nominal
5 planar surface;

6 positioning a substrate in the chamber that has a nominal planar surface at an angle to the
7 nominal planar surface of the target;

8 providing an ion beam gun in the chamber for bombarding the target with ions which
9 causes ions of the material to be sputtered from the target and deposited on the substrate to form
10 said cobalt or cobalt based layers; and

11 the sputtering being at angles $\alpha = 40^\circ$ and $\beta = 10^\circ - 30^\circ$ wherein angles α and β are
12 orthogonal and are angles between the nominal surface planes of the target and the substrate.

1 **48.** A method of making magnetic head assembly that includes a write head and a read
2 head, comprising the steps of:

3 a making of the write head including:

4 forming ferromagnetic first and second pole piece layers in pole tip, yoke and back
5 gap regions wherein the yoke region is located between the pole tip and back gap regions;

6 forming a nonmagnetic nonconductive write gap layer between the first and second
7 pole piece layers in the pole tip region;

8 forming an insulation stack with at least one coil layer embedded therein between
9 the first and second pole piece layers in the yoke region; and

10 connecting the first and pole piece layers at said back gap region; and
11 making the read head as follows:

12 forming a spin valve sensor and first and second nonmagnetic first and second read
13 gap layers with the spin valve sensor located between the first and second read gap layers;

14 forming a ferromagnetic first shield layer; and

15 forming the first and second read gap layers between the first shield layer and the
16 first pole piece layer; and

17 a making of the spin valve sensor comprising the steps of:

18 forming a free layer structure that has a magnetic moment and an easy axis;

19 forming a ferromagnetic pinned layer structure that has a magnetic moment;

20 forming a pinning layer exchange coupled to the pinned layer structure for pinning
21 the magnetic moment of the pinned layer structure;

22 forming a nonmagnetic conductive spacer layer between the free layer structure and
23 the pinned layer structure;

24 a making of the free layer structure including the step of:

25 obliquely ion beam sputtering first and second cobalt or cobalt based layers
26 and a nickel iron based layer in the presence of a magnetic field oriented in a
27 direction of said easy axis with the first and second cobalt or cobalt based layers
28 interfacing the spacer layer structure and a gap layer respectively and the nickel
29 iron based layer being located between and interfacing the first and second cobalt
30 or cobalt based layers;

the oblique ion beam sputtering being at angles $\alpha = 40^\circ$ and $\beta = 10^\circ - 30^\circ$ wherein angles α and β are orthogonal; and

after said oblique ion beam sputtering in the presence of said field oriented in said direction of the easy axis, annealing each of the cobalt or cobalt based layers and the nickel iron based layer.

49. A method as described in claim 48 including:
forming a ferromagnetic second shield layer;
forming a nonmagnetic isolation layer between the second shield layer and the first pole
piece layer.

51. A method as claimed in claim 49 wherein a forming of the pinned layer structure comprises the steps of:

forming ferromagnetic first and second antiparallel (AP) pinned layers with the first AP pinned layer interfacing the pinning layer; and

forming an antiparallel (AP) coupling layer located between the first and second AP layers.

53. A method as claimed in claim 51 wherein the step of oblique ion beam sputtering includes the steps of:

providing a sputtering chamber;
providing a nonmagnetic conductive target in the sputtering chamber that has a nominal planar surface;

positioning a substrate in the chamber that has a nominal planar surface at an angle to the nominal planar surface of the target;

providing an ion beam gun in the chamber for bombarding the target with ions which causes ions of the material to be sputtered from the target and deposited on the substrate to form said cobalt or cobalt based layers.

55. A method of making a magnetic layer and/or an antiferromagnetic (AFM) layer for an electrical device comprising the steps of:

obliquely ion beam sputtering at least one material layer from a target onto a substrate to form said magnetic layer and/or antiferromagnetic (AFM) layer;

the oblique ion beam sputtering being at angles α and β wherein each angle α and β is acute and wherein the angles α and β are orthogonal with respect to each other.

1 **56.** A method as claimed in claim 55 wherein the angle β is 10° to 30° .

1 **57.** A method as claimed in claim 55 wherein the angle β is 20° and the angle α is 40° .

1 **58.** A method as claimed in claim 55 wherein the angle β is 30° and the angle α is 40° .

1 **59.** A method as claimed in claim 55 wherein said at least one material layer is a nickel
2 iron film and first and second cobalt based films with the nickel iron layer being located between
3 the first and second cobalt based films for forming said magnetic layer.

1 **60.** A method as claimed in claim 59 wherein a second material layer comprising a
2 nickel oxide film and an α phase iron oxide film that interface one another are obliquely ion beam
3 sputtered at said angles α and β for forming said antiferromagnetic layer.

1 **61.** A method as claimed in claim 60 wherein for each of said magnetic and AFM layers
2 the angle β is 10° to 30° .

1 **62.** A method as claimed in claim 61 wherein for said magnetic layer the angle β is 20°
2 and the angle α is 40° .

1 **63.** A method as claimed in claim 55 wherein the electrical device is a magnetic head
2 assembly and further comprises the steps of:
3 said at least one material layer being a ferromagnetic free layer;
4 a ferromagnetic pinned layer;
5 a nonmagnetic spacer layer located between the free and pinned layers; and
6 the pinned and spacer layers being ion beam sputtered at an angle α which is acute and at
7 an angle β which is zero.

1 **64.** A method as claimed in claim 63 wherein for the free layer the angle β is 10° to
2 30° .

1 **65.** A method as claimed in claim 64 wherein the free layer has a magnetic moment
2 with an easy axis and the oblique sputtering of the free layer is done in the presence of a magnetic
3 field oriented parallel to said easy axis.