Teoría de JuegosPontificia Universidad Católica del Perú

Octubre 18, 2024

Pontificia Universidad Católica del Perú, Especialidad de Finanzas Microeconomía Financiera FIN 203 Marcelo Gallardo y Karen Montoya

Este material constituye una síntesis del libro Game Theory for Applied Economists de Robert Gibbons. El documento es esencialmente una transcripción con ediciones muy menores y constituye la base de lo abordado en el curso Microeconomía Financiera. Varios ejemplos y demostraciones del libro de Gibbons han sido omitidos.

1. Juegos Estáticos con Información Completa

En esta sección, se considera solo el caso en el cual los jugadores de un juego simultáneamente escogen sus acciones y enseguida reciben sus pagos en función de la combinación de acciones escogidas. Además, asumimos información completa, esto es, el pago que recibe cada consumidor en función de la combinación de acciones es de conocimiento público. Empezamos la presentación con un ejemplo cásico.

Ejemplo 1. **Dilema del prisionero.** Dos sospechosos son arrestados y acusados de un crimen. La policiía carece de evidencia suficiente para acusar a los sospechosos, a menos que uno de ellos confiese. De este modo, los separan en celdas distintas y les explican las consecuencias de sus decisiones. Si ninguno de los dos confiesa, serán acusados por un cargo menor y arrestados por un mes. Si ambos confiesan, serán arrestados por 6 meses. Finalmente, si uno confiesa y el otro no, el que confesó será liberado inmediatamente, mientras que el otro será sentenciado a 9 meses en prisión. Esta situación puede ser resumida a través de la siguiente tabla:

	Sospechoso 2 no confiesa	Sospechoso 2 confiesa
Sospechoso 1 no confiesa	(-1, -1)	(-9, 0)
Sospechoso 1 confiesa	(0, -9)	(-6, -6)

En este juego, cada jugador tiene dos estrategias disponibles: confesar o no confesar. Los pagos están resumidos por la tabla. Luego de introducir algunas definiciones, volveremos a este problema.

Definition 1. Representación normal de un juego. La representación normal de un juego con n-jugadores especifica el espacio de estrategias para cada jugador, S_1, \dots, S_n , y sus funciones de pago u_1, \dots, u_n . Denotamos este juego por

$$G = \{S_1, \cdots, S_n, u_1, \cdots, u_n\}. \tag{1}$$

Observación. Si bien hemos mencionado que los jugadores escogen sus estrategias simultáneamente, esto no debe interpretarse en el sentido más literal: no significa necesariamente que en el mismo preciso segundo escogen su acción. Es suficiente que cuando uno de los jugadores escoge, no sabe qué escogieron los demás (sí se tiene conocimiento de las posibles acciones del otro, por ello las elecciones se harán en base a esto).

Eliminación iterativa de estrategias estrictamente dominadas

Ya habiendo descrito brevemente cómo representar un juego, ahora vamos a estudiar cómo resolver el problema. Volvamos al ejemplo del dilema del prisionero. Si uno de los dos confiesa, el otro también busca confesar pues prefiere pasar 6 meses en prisión que 9. Por otro lado, si uno no confiesa, el otro prefiere confesar pues sería liberado inmediatamente. De este modo, para el prisionero i, no confesar está dominado por confesar: para cualquier acción estrategia que escoja j, el pago que recibe i por no confesar es menor a si confiesa.

Definition 2. En la forma normal de un juego $G = \{S_1, \dots, S_n, u_1, \dots, u_n\}$, sean s_i' y s_i'' estrategias en S_i . Decimos que la estrategia s_i' es estrictamente dominada por la estrategia s_i'' si para cualquier combinación factible de estrategias de los otros jugadores, el pago que recibe i jugando s_i'' es estrictamente mayor al pago que recibe por jugar s_i' . Matemáticamente:

$$u_i(s_1, \dots, s_{i-1}, s'_i, s_{i+1}, \dots, s_n) < u_i(s_1, \dots, s_{i-1}, s''_i, s_{i+1}, \dots, s_n),$$

para toda combinación de estrategias $(s_1, \cdots, s_{i-1}, s_{i+1}, \cdots, s_n) \in \prod_{j \neq i} S_j$.

Los jugadores racionales nunca juegan estrategias estrictamente dominadas pues, caso contrario, su utilidad no es maximizada .

Ejemplo 2. Considere el siguiente juego:

	Izquierda	Centro	Derecha
Arriba	(1, 0)	(1, 2)	(0, 1)
Abajo	(0, 3)	(0, 1)	(2, 0)

El jugador 1 tiene como acciones arriba y abajo, mientras que el jugador 2 tiene como acciones izquierda, centro y derecha. Rápidamente notamos que jugar derecha para el jugador 2 es una estrategia estrictamente dominada por jugar centro. De este modo, si el jugador 1 sabe que 2 es racional, puede eliminar de la tabla la estrategia *derecha*. Así, la tabla queda

	Izquierda	Centro
Arriba	(1, 0)	(1, 2)
Abajo	(0, 3)	(0, 1)

Luego, bajo esta configuración, ahora resulta que para el jugador 1 jugar abajo queda estrictamente dominado por jugar arriba. Así, la tabla se reduce a

	Izquierda	Centro
Arriba	(1, 0)	(1, 2)

Este procedimiento de eliminación se llama eliminación iterativa de estrategias dominadas.

Lamentablemente, no siempre podemos aplicar el procedimiento descrito por el Ejemplo 2. Por ejemplo, podemos considerar la siguiente situación (piedra, papel o tijera):

	Piedra	Papel	Tijera
Piedra	(0, 0)	(-1, 1)	(1, -1)
Papel	(1, -1)	(0, 0)	(-1, 1)
Tijera	(-1, 1)	(1, -1)	(0, 0)

Por ese motivo, se introdujo un nuevo concepto mucho más fino, poderoso y aplicable a más contextos.

Equilibrio de Nash

Definition 3. En un juego con n jugadores, con representación normal (1), las estrategias $\{s_1^*, \dots, s_n^*\}$ constituyen un **equilibrio de Nash** si, para cada jugador i, s_i^* es la mejor respuesta para el perfil de estrategias $\{s_1^*, \dots, s_{i-1}^*, s_{i+1}^*, \dots, s_n^*\}$:

$$u_i(s_1^*, \dots, s_{i-1}^*, s_i^*, s_{i+1}^*, \dots, s_n^*) \ge u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*), \ \forall \ s_i \in S_i.$$

O sea, s_i^* resuelve

$$\max_{s_i \in S_i} u_i(s_1^*, \cdots, s_{i-1}^*, s_i, s_{i+1}^*, \cdots, s_n^*).$$

Supongamos que (s'_1, \dots, s'_n) un perfil de estrategias, solución del juego con representación normal (1). Digamos que (s'_1, \dots, s'_n) **no** es un equilibrio de Nash para G. Esto es equivalente a decir que existe un jugador i tal que s'_i no es la mejor respuesta a $(s'_1, \dots, s'_{i-1}, s'_{i+1}, \dots, s'_n)$. Esto es, existe $s''_i \in S_i$ tal que

$$u_i(s'_1, \dots, s'_{i-1}, s'_i, s'_{i+1}, \dots, s'_n) < u_i(s'_1, \dots, s'_{i-1}, s''_i, s'_{i+1}, \dots, s'_n).$$

Esto es, si la teoría ofrece estrategias (s'_1, \dots, s'_n) como solución al problema, y no es un equilibrio de Nash, entonces al menos uno de los jugadores tiene interés en desviarse de la predicción hecha por la teoría.

Un enfoque por fuerza bruta para encontrar un equilibrio de Nash pasa por verificar si cada combinación de estrategias posibles cumple con las condiciones de la

Definición 3. Por ejemplo, en el dilema del prisionero, confesar-confesar es un equilibrio de Nash.

Proposición 1. Si (s_1^*, \dots, s_n^*) es una estrategia que resulta de proceso iterativo de eliminación de estrategias dominadas, entonces (s_1^*, \dots, s_n^*) es el único equilibrio de Nash del juego.

Observación. En 1950, John Nash demostroó, usando técnicas similares a las que se usan para probar la existencia del equilibrio Walrasiano, la existencia de un equilibrio de Nash para todo juego con un número finito de jugadores, tal que $|S_i| < \infty$, con eventualmente, estrategias mixtas.

Ejemplo 3. **La batalla de los sexos.** Este ejemplo muestra la existencia de más de un equilibrio de Nash. Un hombre y una mujer están intentando decidir el plan de entretenimiento. Las dos opciones son Ópera y Cine. Los pagos son los siguientes:

	Ópera	Cine
Ópera	(2, 1)	(0, 0)
Cine	(0, 0)	(1, 2)

Entonces, tanto (Ópera, Ópera) como (Cine, Cine) son equilibrios de Nash.

Proposición 2. En un juego (1), si (s_1^*, \dots, s_n^*) es un equilibrio de Nash, entonces sobrevive al proceso iterativo de eliminación de estrategias dominadas.

Ejemplo 4. El duopolio de Cournot. Sean q_1 y q_2 las cantidades de un producto homogéneo producidas por una firma 1 y 2, respectivamente. Sea P(Q) = a - Q la demanda de mercado, donde $Q = q_1 + q_2$. Más precisamente, P(Q) = a - Q para $Q \le a$ y P(Q) = 0 para Q < a. Asuma que la estructura de costos de las firmas es $C(q_i) = cq_i$. Asumimos que 0 < c < a. Para analizar equilibrios de Nash, empezamos planteando el juego bajo la forma (1). Para esto, necesitamos los jugadores, las estrategias y los pagos. Ciertamente, los jugadores son 2, las 2 firmas. Luego, dado que deben producirse cantidades positivas, $S_i = \mathbb{R}_+$. Podríamos ser más específicos y considerar [0,a]. Luego, cada firma resuelve

$$\max_{q_i \ge 0} \ \pi_i(q_i, q_j) = q_i(P(q_i + q_j) - c) = q_i[a - (q_i + q_j) - c].$$

Entonces, si (q_1^*, q_2^*) es un equilibrio de Nash, cada firma resuelve

$$\max_{q_i \ge 0} q_i [a - (q_i + q_j^*) - c].$$

Asumiendo que $q_j^* < a-c$ (luego veremos por qué es el caso), las CPO proveen

$$q_i = \frac{1}{2}(a - q_j^* - c).$$

Así,

$$q_1^* = \frac{a - q_2^* - c}{2}$$
$$q_2^* = \frac{a - q_1^* - c}{2}.$$

De este modo,

$$q_1^* = q_2^* = \frac{a-c}{3} < a-c.$$

Ejemplo 5. El duopolio de Bertrand. En el modelo de Bertrand, se compite en precios. La cantidad que los consumidores demandan de la firma i es

$$q_i(p_i, p_j) = a - p_i + bp_j, \ b > 0.$$

Nuevamente $C(q_i) = cq_i$ con 0 < c < a. Nuevamente el objetivo es encontrar equilibrios de Nash. Las firmas resuelven

$$\max_{0 \le p_i < \infty} \pi_i(p_i, p_j) = q_i(p_i, p_j)[p_i - c] = [a - p_i + bp_j][p_i - c].$$

Las CPO proveen

$$p_i^* = \frac{1}{2}(a + bp_j^* + c).$$

Entonces, si (p_1^*, p_2^*) es un equilibrio de Nash,

$$p_1^* = \frac{1}{2}(a + bp_2^* + c)$$
$$p_2^* = \frac{1}{2}(a + bp_1^* + c).$$

Resolviendo las ecuaciones,

$$p_1^* = p_2^* = \frac{a+c}{2-h}.$$

Ejemplo 6. **El problema de los comunes.** Considere n granjeros en una villa. Cada verano, los granjeros llevan su ganado a pastar. Denotemos por g_i el número de

¹En el modelo de Bertrand, las empresas compiten fijando precios para un producto homogéneo. Si una empresa fija un precio mayor que el de su competidora $(p_1 > p_2)$, entonces la demanda de dicha empresa será nula $(q_1 = 0)$, ya que todos los consumidores preferirán adquirir el producto más barato. De forma similar, si $p_2 > p_1$, la segunda empresa no tendría demanda $(q_2 = 0)$. Este incentivo a subcotizar marginalmente al competidor $(p_1 \to p_2 - \epsilon, \text{con } \epsilon > 0)$ conduce a una espiral descendente de precios hasta que ambos se igualan al costo marginal $(p_1 = p_2 = c)$. En este equilibrio de Nash, ninguna empresa tiene incentivos a modificar su precio, ya que cualquier incremento provocaría una pérdida total de su demanda, mientras que cualquier disminución resultaría en pérdidas. Además, la demanda se divide equitativamente entre ambas empresas $(q_1 = q_2 = Q/2, \text{donde } Q \text{ es la demanda total del mercado})$. Sin embargo, en este equilibrio, los beneficios de ambas empresas son nulos $(\pi_1 = \pi_2 = 0)$, ya que el precio apenas cubre los costos. Este resultado, conocido como la paradoja de Bertrand, ilustra cómo la competencia en precios entre empresas que producen bienes homogéneos puede beneficiar a los consumidores al reducir los precios, pero genera beneficios nulos para los productores.

animales que posee el granjero i. Así, el número total de animales es $G = \sum_{1 \leq i \leq n} g_i$. El costo de tener un animal es c y no depende de cuántos animales el granjero ya tenga. El valor de criar un animal cuando hay G animales pastando es $v(G)^2$ Dado que los animales necesita un mínimo de comida, existe un número máximo de animales que pueden coexistir: $G_{\text{máx}}$. Así, v(G) > 0 para $G < G_{\text{máx}}$ y v(G) = 0 si $G \geq G_{\text{máx}}$. Además, como los animales compiten por comida, debemos tener v'(G) < 0 para $G < G_{\text{máx}}$ y v''(G) < 0 (agregar un animal al inicio genera poco impacto en los demás, pero conforme hay más animales, agregar uno tiene un impacto mayor negativo en el resto). Durante la primavera, los granjeros deciden cuántos animales adquirir. Por simplicidad, asumimos que este número es perfectamente divisible. Así, el granjero escoge $g_i \in [0,\infty)$. Sin embargo, dadas las restricciones del problema, realmente escoge sobre $[0,G_{\text{máx}})$. El pago del granjero i viene dado por

$$g_i v \left(\sum_{j=1}^n g_j \right) - c_i g_i.$$

Entonces, si (g_1^*, \cdots, g_n^*) es un equilibrio de Nash, denotando $g_{-i}^* = g_1^* + \cdots + g_{i-1}^* + g_{i+1}^* + \cdots + g_n^*$,

$$v(g_i + g_{-i}^*) + g_i v'(g_i + g_{-i}^*) - c = 0.$$
(2)

De este modo, sustituyendo g_i^* en (2) y sumando y dividiendo por n

$$v(G^*) + \frac{1}{n}G^*v'(G^*) - c = 0.$$

Esta solución difiere de la solución socialmente óptima:

$$\max_{0 \le G} \ Gv(G) - Gc \implies v(G^{**}) + G^{**}v'(G^{**}) - c = 0.$$

$$G^{**} < G^*.$$

La desigualdad $G^{**} < G^*$ indica que en el equilibrio de Nash, los granjeros sobreexplotan el recurso común porque no internalizan el impacto negativo de su decisión sobre el valor marginal v(G). En el equilibrio socialmente óptimo, se considera el costo colectivo del uso excesivo del pastizal, lo que reduce el número total de animales a G^{**} . Esto se debe a que en G^{**} , el beneficio marginal de agregar un animal (v(G) + Gv'(G)) iguala su costo marginal (c), mientras que en G^* , solo se iguala considerando el impacto individual del granjero $(\frac{1}{n}Gv'(G))$. La discrepancia surge porque el costo total del deterioro del recurso no se distribuye adecuadamente entre los usuarios en el equilibrio de Nash. Por ello, G^* es mayor y menos eficiente que G^{**} .

²Depende de cuánto come la vaca.

Estrategias mixtas

Es sencillo notar que en el siguiente juego (matching-pennies), no hay ningún equilibrio de Nash:

	Cara	Sello
Cara	(-1, 1)	(1, -1)
Sello	(1, -1)	(-1, 1)

En este juego, dos jugadores tienen que escoger entre cara o sello. Si ambos escogen lo mismo, el jugador 2 gana. Si escogen de manera diferente, el jugador 1 gana. De este modo, una pregunta importante, en realción con la Observación 1, es determinar bajo qué condiciones podemos asegurar la existencia de un equilibrio de Nash. Con este fin, introducimos lo que se conocen como estrategias mixtas.

Definition 4. Dado un juego (1), suponga que $S_i = \{s_{i1}, \dots, s_{iK}\}$. Entonces, una estrategia mixta para el jugador i es una distribución de probabilidad $p_i = (p_{i1}, \dots, p_{iK})$, donde $0 \le p_{ik} \le 1$ para $k = 1, \dots, K$ y $\sum_{k=1}^{K} p_{ik} = 1$.

El concepto de estrategia dominada se extiende naturalmente al caso de estrategias mixtas.

	L	R
T	(3, -)	(0, -)
M	(0, -)	(3, -)
В	(1, -)	(1, -)

Bajo este esquema, sin tener en cuenta los pagos del jugador 2, podemos notar que para cualquier creencia que tenga el jugador 1 (q, 1-q), con $q \in (0,1)$ sobre lo que hará el jugador 2, la mejor respuesta del jugador 1 es T si $q \ge 1/2$ y M si $q \le 1/2$, pero nunca B. Sin embargo, B no es estrictamente dominada ni por T o M. La clave es que B es estrictamente dominada por un perfil de estrategias mixtas: si el jugador 1 juega T con probabilidad 1/2 y M con probabilidad 1/2, su valor esperado es 3/2, mientras que jugando B es 1.

Definition 5. Dada una lotería $L=(p_1,\cdots,p_n)\in\Delta(X)$, donde $X=\{x_1,\cdots,x_n\}$, definimos la utilidad esperada de dicha lotería como

$$U^{e}(L) = \sum_{i=1}^{n} p_{i}u(x_{i}).$$

Definition 6. En un juego con forma normal (1), el perfil de estrategias mixto $\{p_1^*, \dots, p_n^*\}$, donde $p_i^* = (p_{i1}^*, \dots, p_{iK}^*)$ constituye un equilibrio de Nash si y solo si para cada jugador i,

$$U^{e}(p_{i}^{*}, p_{-i}^{*}) \geq U^{e}(\hat{p}_{i}, p_{-i}^{*}), \ \forall \ \hat{p}_{i} \in \Delta(S_{i}).$$

Teorema 1. (Nash 1950). En un juego (1), si n es finito, $|S_i| < \infty$ para todo i, entonces existe un equilibrio de Nash, que puede que involucre estrategias mixtas.

La prueba del Teorema 1 se basa en el Teorema del Punto Fijo de Brouwer (TPFB) aplicado al simplex unitario $\Delta=\{x\in\mathbb{R}^n_+:\;\sum_{i=1}^nx_i=1\}$. El TPFB asegura que, dada $f:\Delta\to\Delta$ continua, existe $x^*\in\Delta$ tal que $f(x^*)=x^*$.

Ejercicios

Ejercicio 1. Considere el siguiente juego

	L	С	R
T	(2, 0)	(1, 1)	(4, 2)
M	(3, 4)	(1, 2)	(2, 3)
В	(1, 3)	(0, 2)	(3, 0)

Determine las estrategias que sobreviven al proceso iterativo de eliminación y los posibles equilibrios de Nash.

Solución: B queda estrictamente dominada por T y, luego de eliminar B como estrategia para el jugador 1, concluimos que C queda estrictamente dominada por R. Los equilibrios de Nash son (M, L) y (T, R).

Ejercicio 2. Efectué el mismo análisis del Ejercicio 1 considerando

	Izquierda	Centro	Derecha
Arriba	(1, 0)	(1, 2)	(0, 1)
Abajo	(0, 3)	(0, 1)	(2, 0)

Solución: El jugador 1 tiene como acciones arriba y abajo, mientras que el jugador 2 tiene como acciones izquierda, centro y derecha. Rápidamente notamos que jugar derecha para el jugador 2 es una estrategia estrictamente dominada por jugar centro. De este modo, si el jugador 1 sabe que 2 es racional, puede eliminar de la tabla la estrategia *derecha*. Así, la tabla queda

	Izquierda	Centro
Arriba	(1, 0)	(1, 2)
Abajo	(0, 3)	(0, 1)

Luego, bajo esta configuración, ahora resulta que para el jugador 1 jugar abajo queda estrictamente dominado por jugar arriba. Así, la tabla se reduce a

	Izquierda	Centro
Arriba	(1, 0)	(1, 2)

Finalmente, el jugador 2 solo va a jugar centro, y la única estrategia al final es (1,2). Recordemos que este procedimiento de eliminación se llama *eliminación iterativa de estrategias dominadas*.

Ejercicio 3. ¿Es siempre posible aplicar el procedimiento de eliminiación de estrategias dominadas?

Solución: lamentablemente, no siempre podemos aplicar el procedimiento de eliminación de estrategias dominadas. Por ejemplo, podemos considerar la siguiente situación (piedra, papel o tijera):

	Piedra	Papel	Tijera
Piedra	(0, 0)	(-1, 1)	(1, -1)
Papel	(1, -1)	(0, 0)	(-1, 1)
Tijera	(-1, 1)	(1, -1)	(0, 0)

Por ese motivo, se introdujo un nuevo concepto mucho más fino, poderoso y aplicable a más contextos: el Equilibrio de Nash.

Ejercicio 4. Suponga que en un oligopolio de Cournot hay n firmas. Sea q_i la cantidad producida por la firma i y $Q = \sum_{i=1}^n q_i$. Considere la siguiente función inversa de demanda P(Q) = a - Q (para Q < a, 0 caso contrario). Suponga además que $C(q_i) = cq_i$ donde 0 < c < a. Determine (el/un) equilibrio de Nash y analice qué sucede cuando $n \to \infty$.

Solución: el problema de maximización de cada firma es

$$\pi_i = (p-c)q_i = (a-Q-c)q_i = \left(a - \sum_{j \neq i} q_j^* - q_i - c\right)q_i.$$

Luego, la CPO provee

$$\frac{d\pi_i}{dq_i} = \left(a - \sum_{j \neq i} q_j^* - c\right) - 2q_i^* = 0$$

$$a - c = q_1^* + \dots + 2q_i^* + \dots + q_n^*.$$

Aplicando la regla de Cramer, o simplemente por simetría, deducimos que

$$q_1^* = \cdots = q_n^*$$
.

Así,

$$q_i^* = \frac{a-c}{n+1}.$$

Cuando $n \to \infty$, $q_i^* \to 0$.

Ejercicio 5. Considere un duopolio de Cournot donde la función inversa de demanda es P(Q) = a - Q y considere esta vez que las firmas tienen costos marginales distintos: c_1, c_2 . Encuentre el equilibrio de Nash si $0 < c_i < a/2$. Analice qué sucede si $c_1 < c_2 < a$ pero $2c_2 > a + c_1$.

Solución: La firma 1 resuelve

$$\max \ \pi_1 = (P - c_1)q_1 = (a - Q - c_1)q_1 = (a - q_1 - q_2 - c_1)q_1.$$

La CPO provee

$$q_1 = \frac{a - c_1 - q_2}{2}.$$

Un argumento similar provee

$$q_2 = \frac{a - c_2 - q_1}{2}.$$

Así,

$$q_1^* = \frac{a - 2c_1 + c_2}{3}, \quad q_2^* = \frac{a - 2c_2 + c_1}{3}.$$

Si $0 < 2c_i < a$, las cantidades son positivas y resuelven el problema. Por otro lado, si $2c_2 > a + c_1$, $q_2^* = 0$: la firma 2 deja de operar.

Ejercicio 6. Encuentre el equilibrio con estrategias mixtas de Nash para el siguiente juego en forma normal:

	L	R
T	(2, 1)	(0, 2)
В	(1, 2)	(3, 0)

Solución:

	L(q)	$\mathbf{R}(1-q)$
T(p)	(2, 1)	(0, 2)
$\mathbf{B}(1-p)$	(1, 2)	(3, 0)

Si J_1 escoge T, le pagan en valor esperado 2q, y debemos igualar esto al caso cuando elige B, o sea, q=3/4. Análogamente para J_2 , se deduce que p=2/3.

Ejercicio 7. Dos firmas tienen una única vacante. Las firmas ofrecen salarios distintos w_1, w_2 tales que $w_1/2 < w_2 < 2w_1$. Imagine que hay dos trabajadores y cada uno puede postular a solo una firma. Esto es, si aplican a diferentes firmas, reciben el salario completo. Si aplican a la misma firma, la firma escoge uno al azar. Encuentre el/los equilibrios de Nash de este juego.

Sea q la probabilidad de que el Jugador 2 aplique a la Empresa 1 y (1-q) la probabilidad de que aplique a la Empresa 2. Análogamente, p es la probabilidad de que el Jugador 1 aplique a la Empresa 1 y (1-p) la probabilidad de que aplique a la Empresa 2.

	Empresa 1	Empresa 2
Empresa 1	$\frac{1}{2}w_1, \frac{1}{2}w_1$	w_1, w_2
Empresa 2	w_2, w_1	$\frac{1}{2}w_2, \frac{1}{2}w_2$

Solución: existen dos equilibrios de Nash en estrategias puras:

(Aplicar a Empresa 1, Aplicar a Empresa 2)

y

(Aplicar a Empresa 2, Aplicar a Empresa 1).

En un equilibrio de estrategias mixtas, el Jugador 1 establece p tal que el Jugador 2 es indiferente entre aplicar a la Empresa 1 o a la Empresa 2.

$$\mathbb{E}_{2}(\text{Empresa 1}) = \mathbb{E}_{2}(\text{Empresa 2})$$

$$\Rightarrow p \cdot \frac{1}{2}w_{1} + (1-p) \cdot w_{1} = p \cdot w_{2} + (1-p) \cdot \frac{1}{2}w_{2}$$

$$\Rightarrow p = \frac{2w_{1} - w_{2}}{w_{1} + w_{2}}$$

Dado que $2w_1 > w_2$, $2w_1 - w_2$ es positivo y p > 0. Para que p < 1 sea verdadero, debe cumplirse que

$$\frac{2w_1 - w_2}{w_1 + w_2} < 1 \Rightarrow \frac{1}{2}w_1 < w_2$$

Lo cual es verdadero. Además, dado que los pagos son simétricos, un análisis similar revela que

$$q = \frac{2w_1 - w_2}{w_1 + w_2}.$$

Ejercicio 8. Provea un juego donde no existe un equilibrio de Nash con estrategias puras. ¿Y si son mixtas?

Solución:

	Cara	Sello
Cara	(-1, 1)	(1, -1)
Sello	(1, -1)	(-1, 1)

Si son mixtas, el teorema de existencia garantiza que siempre vamos a poder encontrar un equilibrio de Nash.

Ejercicio 9. Demuestre que, para corroborar si una estrategia mixta σ_i es estrictamente dominada por otra σ_i' , sólo necesitamos comparar los pagos de estas estrategias contra las estrategias puras de los rivales.

Solución: queremos demostrar que

$$u_i(\sigma'_i, \sigma_{-i}) > u_i(\sigma_i, \sigma_{-i}) \Leftrightarrow u_i(\sigma'_i, s_{-i}) > u_i(\sigma_i, s_{-i}), \ \forall \ s_{-i} \in S_{-i}.$$

Primero, dado un peril de estrategias $s = (s_1, \dots, s_N)$,

$$u_i(\sigma) = \sum_{s \in S} u_i(s) \left(\prod_{j \in N} \sigma_j(s_j) \right)$$

donde $\prod_{i \in N} \sigma_i(s_i)$ es la probabilidad de ocurrencia del perfil s. Luego,

$$u_i(\sigma, s_{-i}) = \sum_{s_i \in S_i} u_i(s_i, s_{-i}) \sigma_i(s_i)$$

De este modo,

$$u_i(\sigma_i, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} \sum_{s_i \in S_i} u_i(s_i, s_{-i}) \left(\sigma_i(s_i) \prod_{j \neq i} \sigma_j(s_j) \right) = \sum_{s_{-i} \in S_{-i}} u_i(\sigma_i, s_{-i}) \left(\prod_{j \neq i} \sigma_j(s_j) \right).$$

Por ende, $u_i(\sigma_i',\sigma_{-i})>u_i(\sigma_i,\sigma_{-i})$ si y sólo si

$$u_i(\sigma'_i, \sigma_{-i}) - u_i(\sigma_i, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} \left[\prod_{j \neq i} \sigma_j(s_j) \right] \left[u_i(\sigma'_i, s_{-i}) - u_i(\sigma_i, s_{-i}) \right] > 0.$$

Como $\sigma_j(s_j) \geq 0$, queda claro que $u_i(\sigma_i', s_{-i}) - u_i(\sigma_i, s_{-i}) > 0$ para todo $s_{-i} \in S_{-i}$ implica que $u_i(\sigma_i', \sigma_{-i}) - u_i(\sigma_i, \sigma_{-i}) > 0$. La otra implicación es directa pues una estrategia pura es un caso particular de una estrategia mixta.

Juegos Dinámicos con Información Completa

En esta sección, se estudian los juegos dinámicos (las elecciones se van dando de forma secuencial) con información completa (los pagos son de conocimiento público). Analizaremos tanto juegos con información perfecta (en cada momento del juego, el jugador que mueve conoce toda la historia del juego), y también juegos con información imperfecta (en algúna jugada del juego, el jugador no conoce toda la historial del juego).

Información perfecta

- 1. El jugador 1 escoge una acción $a_1 \in A_1$.
- 2. El jugador 2 observa a_1 y escoge $a_2 \in A_2$.
- 3. Los pagos son $u_1(a_1, a_2)$ y $u_2(a_1, a_2)$.

En este modelo, cada combinación factible de movimientos es de conocimiento público. Estos tipos de juego se resuelven por inducción hacia atrás (backward induction). Cuando le toca jugar al individuo 2, él resuelve

$$\max_{a_2 \in A_2} u_2(a_1, a_2). \tag{3}$$

Supongamos que para cada a_1 , la solución de (3) es $R_2(a_1)$. Entonces, como el jugador 1 puede resolver el problema del jugador 2, puede anticipar el movimiento del jugador 2 y resolver

$$\max_{a_1} u_1(a_1, R_2(a_1)).$$

Entonces, en caso la solución sea única, esta será $(a_1^*, R_2(a_1^*))$.

Ejemplo 7. Consideremos el siguiente juego con tres movimientos, el jugador 1 juega 2 veces:

- 1. El jugador 1 escoge *L* o *R* donde *L* termina el juego con pagos (2,0).
- 2. El jugador 2 observa la elección de 1. Si 1 escoge R, entonces 2 escoge L' o R', donde L' termina el juego con pagos (1,1).
- 3. El jugador 1 observa la elección de 2 y también tiene presente su elección en 1. Para llegar a este punto del juego, la secuencia debió ser R y R'. Si escoge L'' el juego termina con (3,0), y si escoge R'', el juego termina con pagos (0,2).

Para computar inducción hacia atrás empezamos en el tercer nivel. El jugador 1 recibe un mayor pago si juega L''. En el paso 2, el jugador 2 sabe que si juega R' gana 0. Por ende, escoge L'. Finalmente, en el paso 1, el jugador 1 anticipa esta situación, por lo que escoge L. Por ende, por el método de inducción hacia atrás, los pagos finales serán (2,0).

Duopolio de Stackelberg

En 1931, Stackelberg propuso un modelo de duopolio donde una firma es dominante (líder) y mueve primero, y una segunda firma subordinada (seguidora) mueven en segundo.

- 1. Inicialmente, la firma 1 escoge $q_1 \ge 0$.
- 2. En segundo lugar, la firma 2 observa q_1 y luego escoge q_2 .

Los beneficios de cada firma son

$$\pi_i(q_i,q_j)=q_i(P(Q)-c),$$

donde $P(Q) = a - Q = a - (q_1 + q_2)$. Dado que la firma 2 mueve al final, por el método backward inductions, empezamos por la firma 2. Esta última resuelve

$$\max_{q_2 \ge 0} \ \pi_2(q_1, q_2) = q_2(a - q_1 - q_2 - c),$$

lo cual conlleva a

$$R_2(q_1) = \frac{a - q_1 - c}{2}, \ q_1 < a - c.$$

Note que la misma ecuación surge en el duopolio de Cournot. La diferencia es que ahora $R_2(q_1)$ es la verdadera función de reacción de la firma 2 a la cantidad de la firma 1, mientras que en el duopolio de Cournot $R_2(q_1)$ es la mejor respuesta hipotética a una cantidad escogida de manera simultánea por 1.

Luego, el problema de la firma 1 es

$$\max_{q_1 \ge 0} \ \pi_1(q_1, R_2(q_1)) = \max_{q_1 \ge 0} \ q_1\left(\frac{a - q_1 - c}{2}\right). \tag{4}$$

El problema (4) tiene como solución

$$q_1^* = \frac{a-c}{2} \implies R_2(q_1^*) = \frac{a-c}{4}.$$

Así, los beneficios de la firma 1 son superiores al caso del duopolio de Cournot, mientras que los de la firma 2 son menores. Esto se explica por la diferencia en el nivel de información y el hecho que la firma mueve primero.

Negociación secuencial

Dos jugadores 1 y 2 negocian sobre un dólar. Primero el jugador 1 le hace una oferta al jugador 2. El jugador 2 puede aceptar o rechazar la oferta. Luego, el jugador 2 le hace una propuesta a 1, y este puede aceptar o no. El pasar del tiempo le genera des-utilidad a los jugadores. Por ello, se introduce un factor de descuento $0 < \delta < 1^3$. Vamos a suponer que solo hay 3 periodos. De manera más esquemática:

- 1. En el inicio, el jugador 1 propone un *share* s_1 , dejando $1 s_1$ para el jugador 2.
- 2. El jugador 2 acepta la oferta (en dicho caso el juego termina con pagos s_1 para 1 y 1 $-s_1$ para 2). Caso contrario, rechaza la oferta y se pasa al periodo 2.
- 3. Al inicio del segundo periodo, el jugador 2 le propone s_2 a 1, i.e., $1 s_2$ al jugador 2. El jugador 1 puede aceptar o no la oferta. Si no la acepta, se pasa al tercer periodo.
- 4. Al inicio del tercer periodo, el jugador 1 recibe s y el jugador 2 recibe 1-s, con $s \in (0,1)$. El pago s es exógeno.

³El cual se podría definir como la impaciencia de los jugadores por recibir su dinero en distinto periodo, esto tiene relación con el valor del dinero en el tiempo.

Para resolver el problema por inducción hacia atrás. El jugador 1 puede recibir s si es que rechaza s_2 . El jugador 1 acepta s_2 solo si $s_2 \geq s\delta^4$. En el paso 2, el jugador 2 tiene que decidir entre recibir $1 = \delta s$ (ofrece $s_2 = \delta s$ al jugador 1), o recibir 1 - s en el periodo siguiente (ofreciendo $s_2 < \delta s$). El valor descontado de recibir 1 - s es $\delta(1 - s)$, que es menor que $1 - \delta s$. Por ende, el jugador 2 ofrece $s_2^* = \delta s$. Entonces, si el jugador 1 llega al periodo 2, el jugador 2 ofrece s_2^* y el jugador 1 acepta. Entonces, como el jugador 1 puede resolver el problema del jugador 2, el jugador 1 sabe que el jugador 2 recibe $1 - s_2^*$ si rechaza la oferta del jugador 2 acepta $1 - s_1$ solo si $s_1 \leq 1 - \delta(1 - s_2^*)$. Así pues, el jugador 1 debe escoger entre recibir $1 - \delta(1 - s_2^*)$ (y ofrecer $\delta(1 - s_2^*)$) o recibir s_2^* (ofreciendo $1 - s_2 < \delta(1 - s_2^*)$ al jugador 2). El valor descontado de recibir s_2^* es $\delta s_2^* = \delta^2 s$, que es menos que $1 - \delta(1 - s_2^*) = 1 - \delta(1 - \delta s)$. Así, el jugador 1 ofrece $(s_1^*, 1 - s_1^*)$ y el jugador 2 acepta.

Juegos de dos periodos con información imperfecta

Analizamos el siguiente juego con información imperfecta:

- 1. El jugador 1 y 2 escogen simultáneamente $a_1 \in A_1$ y $a_2 \in A_2$.
- 2. Los jugadores 3 y 4 observan (a_1, a_2) y escogen $a_3 \in A_3$ y $a_4 \in A_4$.
- 3. Los pagos son $u_i(a_1, a_2, a_3, a_4)$.

Entonces, si los jugadores 1 y 2 anticipan las jugadas de 3 y 4, que son $(a_3^*(a_1, a_2), a_4^*(a_1, a_2))$, se tiene la siguiente situación:

- 1. Los jugadores 1 y 2 escogen simultáneamente $a_1 \in A_1$ y $a_2 \in A_2$.
- 2. Los pagos son $u_i(a_1, a_2, a_3^*(a_1, a_2), a_4^*(a_1, a_2))$, i = 1, 2. A $(a_1^*, a_2^*, a_3^*(a_1, a_2), a_4^*(a_1, a_2))$ se le conoce como el equilibrio perfecto en sub-juegos.

Ejemplo 8. Tarifas y competencia internacional. Considere dos jugadores 1 y 2. Cada país tiene un gobierno que decide sobre un impuesto, una firma que produce para el mercado local y para exportar, y consumidores que compran en el mercado local o en el extranjero. Si la cantidad total producida en i es Q_i , el precio que limpia el mercado es $P_i(Q_i) = a - Q_i$, donde $Q_i = h_i + e_i$ (la firma produce h_i para el consumo local y e_i para exportar). Las firmas tienen costo marginal constante c_i y no tienen costos fijos. Así, $C_i(h_i, e_i) = c(h_i + e_i)$. La firma también incurre en un impuesto sobre las exportaciones: si la firma i exporta e_i a j, entonces la firma i debe pagarle $t_j e_i$ al gobierno j. En el primer periodo, los gobiernos deciden t_1 y t_2 simultáneamente. Luego, las firmas observan los impuestos y escogen (h_i, e_i) . Los pagos para los gobiernos son la suma del excedente del consumidor con los beneficios

⁴En caso de indiferencia, se acepta la oferta.

de la firma y la recaudación tributaria. Entonces,

$$\pi_i(t_i,t_j,h_ie_i,h_j,e_i) = \underbrace{\left[a-(h_i+e_i)\right]h_i}_{\text{ingreso por ventas en el mercado local}} + \underbrace{\left[a-(e_i+h_j)\right]e_i}_{\text{ingresos en el mercado extranjero}} \\ \underbrace{-c(h_i+e_i)-t_je_i}_{\text{costos}}$$

$$W_i(t_i,t_j,h_i,e_i,h_j,e_j) = \frac{1}{2}Q_i^2 + \pi_i(t_i,t_j,h_ie_i,h_j,e_i) + t_ie_j.$$

Supongamos que se escogieron las tarifas t_1 y t_2 . Si $(h_1^*, e_1^*, h_2^*, e_2^*)$ es un equilibrio de Nash, entonces cada firma i resuelve

$$\max_{h_i,e_i>0} \pi_i(t_i,t_j,h_i,e_i,h_j^*,e_j^*).$$

Dada la estructura de π_i , h_i^* debe resolver

$$\max_{h_i>0} h_i[a - (h_i + e_j^*) - c]$$

y e_i^* debe resolver

$$\max_{e_i \ge 0} e_i [a - (e_i + h_j^*) - c] - t_j e_i.$$

Asumiendo que $e_i^* \le a - c$, tenemos

$$h_i^* = \frac{1}{2}(a - e_j^* - c),$$

y asumiendo $h_j^* \le a - c - t_j$, tenemos

$$e_i^* = \frac{1}{2}(a - h_j^* - c - t_j).$$

Así, dado que esto vale para i = 1, 2,

$$h_i^* = \frac{a-c+t_i}{3}, \ e_i^* = \frac{a-c-2t_j}{3}.$$

Finalmente, los gobiernos deben decidir t_i . Para ello, optimizan

$$W_i(t_i, t_j, h_1^*, e_1^*, h_2^*, e_2^*).$$

Resolvemos entonces el equilibrio de Nash para las firmas. Las CPO proveen aplicadas a $W_i(t_i,t_i^*,h_1^*,e_1^*,h_2^*,e_2^*)$ proveen

$$\frac{(2(a-c)-t_i)^2}{18} + \frac{(a-c+t_i)^2}{9} + \frac{(a-c-2t_i^*)^2}{9} + \frac{t_i(a-c-2t_i)}{3}.$$

Así,

$$t_i^* = \frac{a-c}{3}.$$

Así, $t_i^* = t_j^* = (a - c)/3$. Por ende,

$$h_1^* = \frac{4(a-c)}{9}, \ e_i^* = \frac{a-c}{9}.$$

Torneos

Considere dos trabajadores y su jefe. El trabajador i produce un output $y_i = e_i + \epsilon_i$, donde e_i es el esfuerzo y ϵ_i un ruido. La producción se realiza de la manera siguiente. Primero, los trabajadores escogen simultánemente un nivel de esfuerzo $e_i \geq 0$. Luego, los ruidos ϵ_1, ϵ_2 se escogen aleatoriamente según $\epsilon \sim F$ con densidad $f(\epsilon)$, y $\mathbb{E}[\epsilon] = 0$. Luego, los outputs se observan pero no los esfuerzos. El salario de los trabajadores depende de los outputs pero no directamente del esfuerzo. El jefe le otorga un salario w_H al trabajador con mayor output y w_L al de menor output. El pago a un trabajador con salario w y ejerciendo un esfuerzo e, es u(w,e) = w - g(e) con g', g'' > 0 (creciente y convexa). Por otro lado, el pago del jefe es $y_1 + y_2 - w_H - w_L$. El jefe es el jugador 1, cuya acción es seleccionar los salarios. No hay jugador 2 (de acuerdo con el modelo presentado), y los jugadores 3 y 4 son los jugadores. Estos dos escogen a_3 y a_4 que corresponden a e_1 y e_2 .

Supongamos entonces que el jefe escogió w_H y w_L . Si el par (e_1^*, e_2^*) es un equilibrio de Nash, entonces e_i^* resuelve

$$\max_{e_i \ge 0} w_H \mathbb{P}\{y_i(e_i) > y_j(e_j^*)\} + w_L \mathbb{P}\{y_i(e_i) \le y_j(e_j^*)\} - g(e_i)$$

$$(w_H - w_L) \mathbb{P}\{y_i(e_i) > y_j(e_j^*)\} + w_L - g(e_i).$$

La CPO provee

$$(w_H - w_L) \frac{\partial \mathbb{P}\{y_i(e_i) > y_j(e_j^*)\}}{\partial e_i} = g'(e_i).$$
 (5)

Ahora bien,

$$\begin{split} \mathbb{P}\{y_i(e_i) > y_j(e_j^*)\} &= \mathbb{P}\{\epsilon_i > e_j^* + \epsilon_j - e_i\} \\ &\int_{\epsilon_j} \mathbb{P}\{\epsilon_i > e_j^* + \epsilon_j - e_i | \epsilon_j\} f(\epsilon_j) d\epsilon_j \\ &= \int_{\epsilon_j} [1 - F(e_j^* - e_i + \epsilon_j)] f(\epsilon_j) d\epsilon_j. \end{split}$$

De este modo, (5) se torna

$$(w_H - w_L) \int_{\epsilon_j} f(e_j^* - e_i + \epsilon_j) f(\epsilon_j) d\epsilon_j = g'(e_i).$$

Por simetría, $e_1^* = e_2^* = e^*$. Por ende,

$$(w_H - w_L) \int_{\epsilon_j} f(\epsilon_j)^2 d\epsilon_j = g'(e^*).$$

Como g es convexa, una mayor brecha en $w_H - w_L$ induce mayor esfuerzo. Si, por ejemplo, $\epsilon_i \sim N(\mu, \sigma^2)$,

$$\int_{\epsilon_j} f(\epsilon_j)^2 d\epsilon_j = \frac{1}{2\sigma\sqrt{\pi}}.$$

Si ahora suponemos que los trabajadores pueden negarse a trabajar y poseen una utilidad de reserva u_a ,

$$\frac{w_H + w_L}{2} - g(e^*) \ge u_a.$$

En el óptimo, $w_L = 2u_a + 2g(e^*) - w_H$. Luego, los beneficios esperados son

$$2e^* - 2u_a - 2g(e^*)$$
.

Por ende, el jefe escoge e^* tal que $g'(e^*) = 1$. Así,

$$w_H^* - w_L^* = \frac{1}{\int_{\epsilon_i} f(\epsilon_i)^2 d\epsilon_i}.$$

Juegos repetidos

Los juegos repetidos son una clase de juegos donde los jugadores interactúan en el mismo juego básico en múltiples rondas. Este tipo de estructura permite a los jugadores observar el comportamiento pasado de sus oponentes y ajustar sus estrategias en consecuencia. En juegos repetidos, una estrategia puede depender de las jugadas anteriores, lo que introduce la posibilidad de cooperación o castigos en el largo plazo.

Definition 7. Sea G un juego de etapa con conjunto de jugadores N, conjunto de estrategias S_i para cada jugador $i \in N$, y función de pago $u_i : S \to \mathbb{R}$ para cada $i \in N$. Un **juego repetido** es aquel donde el juego de etapa G se juega en múltiples rondas, $t = 1, 2, \ldots, T$, donde T puede ser finito o infinito.

Observación. En un juego repetido, los jugadores pueden observar las decisiones pasadas de los demás y ajustar sus estrategias en función de la historia de las jugadas anteriores.

Definition 8. Para cada jugador i, su **historia** hasta el periodo t es la secuencia de estrategias jugadas en los periodos anteriores:

$$h^t = (s^1, s^2, \dots, s^{t-1}),$$

donde s^k es el perfil de estrategias jugado en la ronda k.

Definition 9. Si el juego es **infinito**, el pago total de un jugador i se calcula usando una tasa de descuento $\delta \in (0,1)$ para ponderar las ganancias futuras. Así, el pago de i es:

$$U_i = \sum_{t=1}^{\infty} \delta^{t-1} u_i(s^t),$$

donde s^t representa las estrategias elegidas en el periodo t.

Definition 10. Un **equilibrio perfecto en subjuegos (EPS)** es un perfil de estrategias que constituye un equilibrio de Nash en cada posible subjuego del juego. Es decir, en cada nodo de decisión alcanzable, los jugadores no tienen incentivos para desviarse.

Definition 11. Un **subjuego** G' de un juego G es cualquier parte del juego que comienza en un nodo de decisión específico y contiene toda la información del juego desde ese punto en adelante.

Definition 12. Un **nodo de decisión** es un punto en el juego donde un jugador toma una decisión, y este nodo incluye toda la información necesaria sobre las decisiones anteriores en el juego.

Observación. En un equilibrio perfecto en subjuegos, las estrategias de los jugadores deben ser óptimas no solo al inicio del juego, sino también en cualquier punto intermedio. Esto asegura que cada jugador tome decisiones racionales incluso en cada posible historia del juego.

Ejemplo 9. **Dilema del Prisionero Repetido.** Considera el dilema del prisionero, donde cada jugador elige **Cooperar (C)** o **Defraudar (D)** en cada ronda. La matriz de pagos en una única ronda es:

	С	D
С	(3, 3)	(0, 5)
D	(5, 0)	(1, 1)

Si este juego se repite infinitamente, podemos sostener una cooperación mutua usando la estrategia de **ojo por ojo**:

- En la primera ronda, ambos jugadores eligen cooperar.
- En cada ronda t > 1, cada jugador copia la acción de su oponente en la ronda anterior.

Para que esta estrategia sea un equilibrio perfecto en subjuegos, el valor descontado de cooperar indefinidamente debe ser mayor que el valor de defraudar una vez y luego ser castigado en las rondas subsiguientes. El pago descontado al cooperar indefinidamente es:

$$U_{\text{cooperar}} = \frac{3}{1-\delta}.$$

Si un jugador defrauda una vez, su pago es:

$$U_{\text{defraudar}} = 5 + \delta \cdot \frac{1}{1 - \delta}.$$

Para que la cooperación sea un equilibrio perfecto en subjuegos, debe cumplirse que:

$$\frac{3}{1-\delta} \ge 5 + \delta \cdot \frac{1}{1-\delta}.$$

Ejemplo 10. **Juego de Precios Competitivos.** Dos empresas compiten fijando precios altos (H) o bajos (L) en cada ronda. La matriz de pagos en cada ronda es:

	Н	L
Н	(4, 4)	(0, 6)
L	(6, 0)	(2, 2)

Suponga que ambas empresas valoran sus pagos futuros con una tasa de descuento $\delta=0.8$. La estrategia de mantener precios altos en todas las rondas podría formar un equilibrio perfecto en subjuegos si ambas empresas acuerdan castigarse con precios bajos en caso de que alguna se desvíe. El pago descontado al fijar un precio alto indefinidamente es:

$$U_{\text{alto}} = \frac{4}{1-\delta}.$$

Si una empresa se desvía a un precio bajo en la primera ronda, su pago será:

$$U_{\text{desviar}} = 6 + \delta \cdot \frac{2}{1 - \delta}.$$

Para que fijar precios altos sea un equilibrio perfecto en subjuegos, debe cumplirse que:

$$\frac{4}{1-\delta} \ge 6 + \delta \cdot \frac{2}{1-\delta}.$$

Representación Extensiva de Juegos Dinámicos

En los **juegos dinámicos**, las decisiones se toman de manera secuencial, y cada jugador puede observar (parcial o totalmente) las acciones de los demás antes de decidir. La **representación extensiva** es una forma de describir este tipo de juegos, mostrando explícitamente el orden de los movimientos, las acciones posibles en cada nodo, y la información disponible en cada punto de decisión.

Componentes de un Juego en Forma Extensiva

- Nodos de Decisión: Puntos en el juego donde un jugador debe tomar una acción. Cada nodo pertenece a un jugador que elige una acción en ese nodo.
- Conjuntos de Información: Un conjunto de información agrupa nodos entre los cuales un jugador no puede distinguir. Si un jugador se encuentra en un conjunto de información con múltiples nodos, significa que no sabe en cuál nodo exacto está debido a información incompleta. Esto permite modelar juegos con decisiones simultáneas o imperfectamente observables.

- Acciones: En cada nodo, el jugador puede elegir entre un conjunto de acciones posibles. Cada rama que sale del nodo de decisión representa una acción, que conduce a un nuevo nodo o al final del juego.
- **Pagos**: Asociados a cada posible secuencia de acciones, los pagos reflejan las ganancias o pérdidas para cada jugador al final del juego.

Ejercicio 10. Tres oligopolistas operan en un mercado con función inversa de demanda P(Q) = a - Q, donde $Q = \sum_{i=1}^{3} q_i$. Aquí q_i es la cantidad producida por la firma i. Cada firma tiene una función de costos $c_i(q_i) = c \cdot q_i$, donde c > 0. Las firmas escogen cantidades de la manera siguiente:

- 1. La firma 1 escoge $q_1 \ge 0$.
- 2. Las firmas 2 y 3 escogen q_2 y q_3 respectivamente, luego de observar q_1 .

Encuentre las cantidades producidas por las firmas en el ENPS.

Solución: las firmas resuelven

máx
$$\pi_i = (p-c)q_i = \left(a - \sum_{i \neq i} q_j - q_i - c\right)q_i.$$

Las CPO proveen para 2 y 3, fijando q_1^*

$$q_2 = \frac{a - q_1^* - q_3 - c}{2}$$
$$q_3 = \frac{a - q_1^* - q_2 - c}{2}.$$

O sea,

$$R_2(q_1) = q_2 = \frac{a - c - q_1^*}{3} = q_3 = R_3(q_1).$$

Finalmente, la firma 1 resuelve

máx
$$\pi_1 = \left(a - q_1 - 2\frac{a - c - q_1}{3} - c\right)q_1.$$

La CPO provee

$$q_1^* = \frac{a-c}{2}.$$

De este modo,

$$q_2^* = q_3^* = \frac{a-c}{6}$$
.

Ejercicio 11. Considere un juego estático de dos jugadores, cada uno con dos estrategias disponibles. En este juego, existe un solo equilibrio de Nash, el cual brinda menores ganancias que otro perfil de estrategias donde los jugadores cooperan. Si el juego se repite infinitas veces, comente qué pasa con la probabilidad de cooperación, cuando la tasa de descuento se acerca a 0 (la impaciencia aumenta).

Solución: consideremos el siguiente juego estático:

$$\begin{array}{c|cc} & A2 & B2 \\ \hline A1 & (\theta,\theta) & (\gamma+1,0) \\ B1 & (0,\gamma+1) & (\gamma,\gamma) \\ \end{array}$$

donde $0 < \theta < \gamma$. Este juego cuenta con las características descritas en el enunciado: el único equilibrio de Nash es el perfil (A1,A2), que otorga un pago de θ , el cual es menor que el pago generado por el perfil de cooperación (B1,B2), γ . Cualquier estrategia que permita que el perfil de cooperación, (B1,B2), se repita en cada período otorgará el siguiente pago $\pi_c = \gamma + \gamma \delta + \gamma \delta^2 + \gamma \delta^3 + \cdots = \frac{\gamma}{1-\delta}$; sin embargo, a medida que $\delta \to 0$, dicho pago tiende a γ . Esto ocurre porque un δ cercano a cero denota impaciencia o preferencia por el presente. Por lo tanto, mientras δ se acerca a cero, la probabilidad de cooperación tiende a cero, pues el jugador juega cada repetición como si fuese la última (no le importa lo que viene más adelante), por lo que siempre querrá jugar su mejor respuesta, A1, resultando en el equilibrio de Nash.

Ejercicio 12. Considere la siguiente interacción entre una empresa y un trabajador. La empresa le ofrece pagarle w al trabajador; luego de lo cual éste decide si acepta ese salario o no. En caso de aceptar, debe decidir si se esfuerza o si no se esfuerza. Los pagos son como siguen:

- Si el trabajador no está empleado, obtiene u > 0 (su costo de oportunidad de trabajar).
- Si está empleado y se esfuerza, obtiene w e (donde e representa el costo de esforzarse).
- Si está empleado y no se esfuerza, obtiene w.

La empresa no gana nada si el trabajador no acepta trabajar, gana v-w si acepta y se esfuerza, y -w si acepta y no se esfuerza. Asuma que v>u+e.

- a) Halle el equilibrio del juego secuencial. Indique las estrategias y los pagos de cada agente en ese equilibrio.
- b) Para un juego infinitamente repetido, demuestre que, si $v > u + \frac{e}{\delta}$, hay un equilibrio perfecto en subjuegos, en el cual la empresa ofrece un salario $w \in [u + \frac{e}{\delta}, v]$ y el trabajador acepta trabajar en cada período y se esfuerza.

Solución: el equilibrio es $w < \overline{u}$, el trabajador Rechaza, y los pagos son $(0, \overline{u})$. Luego, consideremos la siguiente situación:

- La empresa ofrece un salario $w \in [\overline{u} + e/\delta, v]$ y el trabajador acepta esfozrándose.
- Si el trabajador se desvía y no se esfuerza, la empresa ofrece infinitas veces a continuación w = 0 y el trabajador siempre rechaza.

■ Si la empresa se desvía y ofrece un salario distinto a $[\overline{u} + e/\delta, v]$ el trabajador o rechaza la oferta si $w < \overline{u}$, o bien acepta y no se esfuerza.

De este modo, si $v\geq w$, la empresa no tiene incentivos a desviarse. Por el lado del trabajador acepta el empleo si $w\geq \overline{u}+e$, y se esfuerza si

$$w - e + \frac{\delta}{1 - \delta}(w - e) \ge w + \frac{\delta}{1 - \delta}\overline{u} \Leftrightarrow w \ge \overline{u} + \frac{e}{\delta}.$$

Obtenemos entonces $v > \overline{u} + e/\delta$.

Juegos estáticos con información incompleta

En los juegos con información completa, los pagos son conocidos por todos. En contraste con esto, en los juegos de información incompleta, al menos uno de los jugadores no tiene información completa sobre todos los pagos. Uno de los ejemplos clásicos de juegos con información incompleta es el de las subastas: cada postor conoce su valoración pero no con certeza la de los otros.

Juegos Bayesianos estáticos y equilibrio de Nash Bayesiano

Ejemplo 11. Considere un duopolio de Cournot donde la función inversa de demanda viene dada por P(Q) = a - Q, donde $Q = q_1 + q_2$ es la cantidad agregada en el mercado. La función de costos de la firma 1 es $C_1(q_1) = cq_1$ y la de la firma 2 es $C_2(q_2) = \tilde{c}_2q_2$, donde \tilde{c}_2 es una variable aleatoria con soporte $\{c_L, c_H\}$, $c_L < c_H$, tal que $\mathbb{P}\{\tilde{c}_2 = c_H\} = \theta$ y $\mathbb{P}\{\tilde{c}_2 = c_L\} = 1 - \theta$. La información es asimétrica pues la firma 2 conoce su función de costos y la de la firma 1 con certeza, mientras que la firma 1 solo conoce su función de costos con certeza y más bien, solo tiene conocimiento acerca de la distribución de \tilde{c}_2^5 .

Denotemos $q_2^*(c_H)$ y $q_2^*(c_L)$ la cantidad elegida por la firma 2 en función de su costo marginal, y sea q_1^* la elección de la firma 1. Se sigue que $q_2^*(c_H)$ resuelve

$$\max_{q_2} \left[(a - q_1^* - q_2) - c_H \right] q_2,$$

y $q_2^*(c_L)$ resuelve

$$\max_{q_2} [(a - q_1^* - q_2) - c_L] q_2.$$

Respecto a la firma 1, q_1^* resuelve el valor esperado de sus beneficios,

$$\max_{q_1} \ \theta[(a-q_1-q_2^*(c_H))-c]q_1 + (1-\theta)[(a-q_1-q_2^*(c_L))-c]q_1.$$

Las CPO proveen

$$q_2^*(c_H) = \frac{a - q_1^* - c_H}{2}$$

$$q_2^*(c_L) = \frac{a - q_1^* - c_L}{2}$$

$$q_1^* = \frac{\theta(a - q_2^*(c_H) - c) + (1 - \theta)(a - q_2^*(c_L) - c)}{2}.$$

Reemplazando las dos primeras ecuaciones en al última, y luego q_1^* en las dos prime-

⁵La firma 2 puede ser un competidor más entrante en la industria, o puede que haya descubierto una nueva tecnología, lo cual abarata sus costos considerablemente.

ras, obtenemos

$$q_2^*(c_H) = \frac{a - 2c_H + c}{3} + \frac{1 - \theta}{6}(c_H - c_L)$$

$$q_2^*(c_L) = \frac{a - 2c_L + c}{3} - \frac{\theta}{6}(c_H - c_L)$$

$$q_1^* = \frac{a - 2c + \theta c_H + (1 - \theta)c_L}{3}.$$

Definition 13. La representación normal de un juego estático Bayesiano con n jugadores especifica los espacios de posibles acciones A_1, \dots, A_n , los espacios de sus tipos $\Theta_1, \dots, \Theta_n$, las creencias $p_1(\cdot), \dots, p_n(\cdot)$ y las funciones de pago u_1, \dots, u_n . El tipo del jugador i, $\theta_i \in \Theta_i$, es de conocimiento privado para el jugador i, y determina su función de pago $u_i = u_i(a_1, \dots, a_n; \theta_i)$. La creencia del jugador i, $p_i = p_i(\theta_{-i}|\theta_i)$ describe la incertidumbre del jugador i acerca del tipo de los i0 jugadores restantes. Este tipo de juegos es denotado

$$G = \{A_1, \cdots, A_n, \Theta_1, \cdots, \Theta_n, p_1, \cdots, p_n, u_1, \cdots, u_n\}.$$
(6)

La secuencia de eventos en un juego Bayesiano estático, siguiendo a Harsanyi (1967), es la siguiente:

- 1. La naturaleza juega primero y escoge un vector de tipos $\theta = (\theta_1, \cdots, \theta_n) \in \prod_{i=1}^n \Theta_i$.
- 2. La naturaleza le revela a *i* su tipo pero no a los demás.
- 3. Los jugadores simultáneamente escogen sus acciones $a_i \in A_i$.
- 4. Los pagos $u_i(a_1, \dots, a_n, \theta_i)$ son recibidos.

Introduciendo (1) y (2), el juego se convierte en un juego de información imperfecta. Una extensión importante es considerar

$$u_i = u_i(a_1, \cdots, a_n, \theta_1, \cdots, \theta_n).$$

O sea, que los pagos de i dependen de los tipos de todos los involucrados. Por otro lado, un supuesto crucial es que es de conocimiento público la distribución de probabilidad con la que la naturaleza escoge θ : $p(\theta)$. Así,

$$p_i(\theta_{-i}|\theta_i) = \frac{p(\theta_{-i},\theta_i)}{p(\theta_i)} = \frac{p(\theta_{-i},\theta_i)}{\sum_{\theta_{-i}\in\prod_{j\neq i\Theta_i}} p(\theta_{-i},\theta_i)}.$$

Note que $p(\theta_i)$ es solo la probabilidad de que el tipo de i sea θ_i .

Definition 14. En el juego bayesiano estático (6), una estrategia para el jugador i es una función $s_i(\theta_i)$, $s_i: \Theta_i \to A_i$.

Definition 15. En el juego bayesiano estático (6), las estrategias $s^* = (s_1^*, \dots, s_n^*)$ son un equilibrio de Nash bayesiano en estrategias puras si, para cada jugador i y para cada tipo de i, $\theta_i \in \Theta_i$, $s_i^*(\theta_i)$ resuelve

$$\max_{a_i \in A_i} \sum_{\theta_{-i} \in \Theta_{-i}} u_i(s_1^*(\theta_1), \cdots, s_{i-1}^*(\theta_{i-1}), s_{i+1}^*(\theta_{i+1}), \cdots, s_n^*(\theta_n); \theta) p_i(\theta_{-i}|\theta_i).$$

Observación. La prueba de la existencia de un equilibrio Nash Bayesiano (en estrategias mixtas) se basa en la prueba de la existencia en el caso de juegos estáticos con información completa.

Subastas

Considere la siguiente subasta de primer precio. Hay dos apostadores, i=1,2. El apostador i tiene una valoración v_i por el bien, esto es, el pago que recibe i si paga p por el bien es v_i-p . Las valoraciones de los individuos se distribuyen según una uniforme sobre [0,1]. Los apostadores someten simultáneamente sus apuestas. La apuesta más grande gana y paga el monto que apostó. Si hay un empate, se define el ganador aleatoriamente.

Modelamos la situación como un juego Bayesiano. $A_i = [0, \infty)$, $\Theta_i = [0, 1]$ y

$$u_i(b_1, b_2, v_1, v_2) = \begin{cases} v_i - b_i, & \text{si } b_i > b_j \\ \frac{v_i - b_i}{2}, & \text{si } b_i = b_j \\ 0, & \text{si } b_i < b_j. \end{cases}$$

Una estrategia en este contexto es $b_i(v_i)$, la apuesta que depende de la valoración. Luego, un par de estrategias $(b_1(v_1), b_2(v_2))$ es un equilibrio Nash Bayesiano si para cada $v_i \in [0,1]$, $b_i(v_i)$ resuelve

$$\max_{b_i} (v_i - b_i) \mathbb{P}\{b_i > b_j(v_j)\} + \frac{1}{2} (v_i - b_i) \mathbb{P}\{b_i = b_j(v_j)\}. \tag{7}$$

El análisis se simplifica asumiendo $b_1(v_1)=a_1+c_1v_1$ y $b_2(v_2)=a_2+c_2v_2$. Como $\mathbb{P}\{b_i=b_j(v_j)\}=0$, (7) se convierte en

$$\max_{b_i} (v_i - b_i) \mathbb{P}\{b_i > a_j + c_j v_j\}.$$

Luego, como $a_j \leq b_i \leq a_j + c_j$,

$$\mathbb{P}\{b_i > a_j + c_j v_j\} = \mathbb{P}\left\{v_j < \frac{b_i - a_j}{c_j}\right\} = \frac{b_i - a_j}{c_j}.$$

Así, obtenemos por CPO que

$$b_i(v_i) = \begin{cases} \frac{v_i + a_j}{2} & \text{si } v_i \ge a_j \\ a_j, & \text{si } v_i < a_j. \end{cases}$$

Si $a_i \in (0,1)$, $b_i(v_i)$ no es lineal. Si $a_i \ge 1$, entonces $b_j(v_j) \ge v_j$, lo cual no es óptimo ciertamente. Así, $a_j \le 0$ y $b_i(v_i) = (v_i + a_j)/2$, de forma que $a_i = a_j/2$ y $c_i = 1/2$. Por simetría, $a_i \le 0$, $a_j = a_i/2$ y $c_j = 1/2$. Así, $a_i = a_j = 0$ y $c_i = c_j = 1/2$. Por lo tanto, $b_i(v_i) = v_i/2$.

Observación. Supongamos ahora que lo único que sabemos es que la estrategia que adopta el jugador j es una función estrictamente creciente y diferenciable. Entonces, el apostador i resuelve

$$\max_{b_i} (v_i - b_i) \mathbb{P}\{b_i > b(v_j)\}.$$

Sea $b^{-1}(b_j)$ la valoración que j debe tener para apostar b_j . Esto es, $b^{-1}(b_j)=v_j$ si $b_j=b(v_j)$. Como $v_j\sim U[0,1]$ m

$$\mathbb{P}\{b_i > b_j(v_j)\} = \mathbb{P}\{b^{-1}(b_i) > v_j\} = b^{-1}(b_i).$$

La CPO provee entonces

$$-b^{-1}(b_i) + (v_i - b_i) \frac{d}{db_i}(b^{-1}(b_i)) = 0.$$

Sustituyendo $b_i = b(v_i)$,

$$-b^{-1}(b(v_i)) + (v_i - b(v_i))\frac{d}{d_i}b^{-1}(b(v_i)) = 0.$$

Aplicando el teorema de la función inversa,

$$-v_i + (v_i - b(v_i))\frac{1}{b'(v_i)} = 0.$$

Así, la CPO se convierte en una EDO

$$-v_i + (v_i - b(v_i))\frac{1}{b'(v_i)} = 0.$$

De este modo,

$$b_i(v_i)v_i = \frac{v_i^2}{2} + k.$$

Para eliminar k, debemos usar una condición de borde. Como $b_i(v_i) \le v_i$, $b_i(0) \le 0$. Por ende, k = 0. Así, nuevamente, $b_i(v_i) = v_i/2$.

Principio de Revalación

El Principio de Revelación (Myerson 1979) es una herramienta importante en el diseño de juegos donde los jugadores tiene información privada. Se puede aplicar, por ejemplo, a la subastas o los modelos de comercio bilateral. Supondremos que los vendedores se restringen a los siguientes tipos de juegos (en el contexto de subastas):

- 1. Los apostadores anuncian simultáneamente (pueden mentir) sus tipos, $\tilde{\theta}_i$.
- 2. Dados los anuncios sobre sus tipos, el apostador i paga $x_i(\tilde{\theta}_1, \dots, \tilde{\theta}_n)$ y recibe el bien con probabilidad $q_i(\tilde{\theta}_1, \dots, \tilde{\theta}_n)$. Para cualquier combinación de anuncios $(\tilde{\theta}_1, \dots, \tilde{\theta}_n)$,

$$\sum_{i=1}^n q_i(\tilde{\theta}_1,\cdots,\tilde{\theta}_n) \leq 1.$$

Este tipo de juegos se conoce como *mecanismo directo*. La segunda forma en la que el vendedor puede usar el Principio de Revelación es restringiéndose a los mecanismos directos en los que anunciar el tipo es una equilibrio Nash Bayesiano. Esto es, las funciones de pago y probabilidad

$$\{x_1(\tilde{\theta}_1,\cdots,\tilde{\theta}_n),\cdots,x_n(\tilde{\theta}_1,\cdots,\tilde{\theta}_n),q_1(\tilde{\theta}_1,\cdots,\tilde{\theta}_n),\cdots,q_n(\tilde{\theta}_1,\cdots,\tilde{\theta}_n)\}$$

son tales que $\tilde{\theta}_i = \theta_i$ constituye una estrategia de equilibrio. Un mecanismo directo en el que anunciar el verdadero tipo es un equilibrio Nash Bayesiano se denomina mecanismo directo de compatibilidad de incentivos.

Teorema 2. Todo equilibrio Nash Bayesiano de un juego Bayesiano puede ser representado por un mecanismo directo de compatibilidad de incentivos.

Ejercicios

Ejercicio 13. *Gibbons* 1992. Considere un duopolio de Cournot operando en un mercado donde la función inversa de demanda es P(Q) = a - Q, donde $Q = q_1 + q_2$ es la cantidad agregada en el mercado. Ambas firmas tienen un costo total⁶ $c_i(q_i) = cq_i$, pero la demanda es incierta: es alta $(a = a_H)$ con probabilidad θ y baja $(a = a_L)$ con probabilidad $1 - \theta$. Más aún, la información es asimétrica: la firma 1 conoce si es que la demanda es alta o baja, pero la firma 2 no. Todo esto es de conocimiento público. Las dos firman escogen simultáneamente las cantidades que venden. Responda lo siguiente:

- 1. ¿Cuál es el espacio de estrategias de las firmas?
- 2. Proponga supuestos sobre los parámetros a_H , a_L , θ y c, de forma que las cantidades de equilibrio sean positivas.
- 3. ¿Cuál es el equilibrio Nash Bayesiano de este juego?

 $^{^6}$ El parámetro c es estrictamente positivo.

Solución: la firma 1 busca maximizar

$$\pi_1 = (p-c)q_1 = (a_i - c - q_1 - q_2)q_1.$$

La CPO provee

$$q_1 = \frac{a_i - c - q_2}{2} = \begin{cases} \frac{a_H - c - q_2}{2} & \text{si } a_i = a_H \\ \frac{a_L - c - q_2}{2} & \text{si } a_i = a_L. \end{cases}$$

Con respecto a la firma 2, dado que solo conoce la distribución de probabilidades,

$$q_2 = \frac{\theta a_H + (1 - \theta) a_L - c - q_1}{2}.$$

Reemplazando en esta expresión con $\mathbb{E}[q_1] = \frac{\theta a_H + (1-\theta)a_L - c - q_2}{2}$, obtenemos

$$q_2 = \frac{\theta a_H + (1 - \theta)a_L - c}{3}.$$

Así, la firma 1 produce, para cada escenario,

$$q_1^H = \frac{(3-\theta)a_H - (1-\theta)a_L - 2c}{6}$$
$$q_1^L = \frac{(2+\theta)a_L - \theta a_H - 2c}{6}.$$

Para asegurar las positividad de las cantidades ofertadas, debe tenerse que

$$q_2 \ge 0$$

$$\theta a_H + (1 - \theta)a_L - c \ge 0$$

$$\theta \ge \frac{c - a_L}{a_H - a_I}.$$

Como $\theta \le 1$, $a_H \ge c$. Por otro lado,

$$\begin{aligned} q_1^L &\geq 0 \\ (2+\theta)a_L - \theta a_H - 2c &\geq 0 \\ \theta &\leq 2\frac{a_L - c}{a_H - a_L}. \end{aligned}$$

Finalmente,

$$q_1^H \ge 0$$

$$\theta \le \frac{3a_H - a_L - 2c}{a_H - a_L}.$$

Ejercicio 14. *Gibbons* 1992. Considere el siguiente modelo del duopolio de Bertrand bajo asimetría de la información. La demanda de la firma i es $q_i(p_i, p_j) = a - p_i - b_i p_j$. Los costos son iguales a cero para las dos firmas. El coeficiente b_i es una variable

aleatoria con soporte $\{b_L, b_H\}$, $b_L < b_H$ y distribución de probabilidades $(\theta, 1 - \theta)$. Cada firma conoce su coeficiente de sensibilidad b_i pero no el del otro.

- 1. Determine el espacio de acciones, tipos creencias y pagos de este juego.
- 2. Encuentre un equilibrio simétrico Nash Bayesiano en estrategias puras.

Solución: las estrategias son los precios que ofertan. Las dos firmas tiene el mismo tipo de información. Luego, los beneficios (pagos) de la firma 1 están dados por

$$\pi_1 = (p_1 - c_1)q_1 = (p_1 - c)(a - p_1 - b_1p_2)$$

La CPO provee

$$p_1 = \frac{a - b_1 p_2}{2} = \frac{a - b_1 [\theta p_H + (1 - \theta) p_L]}{2}.$$

Si $b_1 = b_H$,

$$p_H = \frac{a - b_H [\theta p_H + (1 - \theta) p_L]}{2} \implies p_H = \frac{a - (1 - \theta) b_H p_L}{2 + \theta b_H}.$$

Si $b_1 = b_L$,

$$p_L = \frac{a - b_L[\theta p_H + (1 - \theta)p_L]}{2} = \frac{a - \theta b_L p_H}{2 + b_L(1 - \theta)}.$$

De este modo,

$$p_{H} = \frac{a - (1 - \theta) \left[\frac{a - \theta b_{L} p_{H}}{2 + (1 - \theta) b_{L}} \right]}{2 + \theta b_{H}}$$

$$p_{H} = \frac{a + a(1 - \theta) b_{L} + \theta a}{4 + 2\theta b_{H} + 2(1 - \theta) b_{L} + \theta (1 - \theta) b_{H} b_{L} - (1 - \theta) \theta b_{L}}.$$

De forma análoga se computa p_L . Por simetría, terminamos.

Ejercicio 15. Dos participantes hacen apuestas en una subasta de primer precio (FPA). El participante i=1,2 tiene una valoración \tilde{v}_i por el objeto a subastarse. En este caso, \tilde{v}_i es una variable aleatoria distribuida uniformemente en el intervalo [c,d], donde 0 < c < d. Compruebe que es un equilibrio Bayesiano de Nash que ambos participantes utilicen la estrategia dada por

$$\beta^*(v) = \frac{c+v}{2},$$

para todo $v \in [c, d]$.

Solución: queremos comprobar que la estrategia

$$\beta^*(v) = \frac{c+v}{2}$$

es un equilibrio Bayesiano de Nash en una subasta de primer precio con dos partici-

pantes. El participante i gana si su oferta b_i supera la del oponente j:

$$b_i \geq \beta^*(v_i).$$

Dado que $v_j \sim U[c,d]$ y $\beta^*(v_j) = \frac{c+v_j}{2}$, entonces $\beta^*(v_j)$ se distribuye uniformemente en $[c,\frac{c+d}{2}]$. La probabilidad de ganar es:

$$\Pr(b_i \ge \beta^*(v_i)) = \Pr(v_i \le 2b_i - c).$$

La probabilidad acumulada de v_i es:

$$\Pr(v_j \le 2b_i - c) = \frac{2b_i - c - c}{d - c} = \frac{2b_i - 2c}{d - c}.$$

La utilidad esperada del participante *i* es:

$$U_i(b_i; v_i) = \Pr(b_i \ge \beta^*(v_i)) \cdot (v_i - b_i).$$

Sustituyendo la probabilidad:

$$U_i(b_i; v_i) = \frac{2b_i - 2c}{d - c} \cdot (v_i - b_i).$$

Derivamos $U_i(b_i; v_i)$ respecto a b_i :

$$\frac{\partial U_i}{\partial b_i} = \frac{\partial}{\partial b_i} \left[\frac{2b_i - 2c}{d - c} \cdot (v_i - b_i) \right].$$

Aplicamos la regla del producto:

$$\frac{\partial U_i}{\partial b_i} = \frac{1}{d-c} \left[2(v_i - b_i) + (2b_i - 2c)(-1) \right].$$

Simplificando:

$$\frac{\partial U_i}{\partial b_i} = \frac{1}{d-c} \left[2v_i - 2b_i - 2b_i + 2c \right].$$

$$\frac{\partial U_i}{\partial b_i} = \frac{1}{d-c} \left[2v_i - 4b_i + 2c \right].$$

Igualamos a cero:

$$2v_i - 4b_i + 2c = 0.$$

Resolviendo para b_i :

$$b_i = \frac{c + v_i}{2}.$$

Ejercicio 16. Considere una subasta de primer precio, sobre cerrado, en el cual las valoraciones de los individuos son iid U[0,1]. Muestre que si hay n apostadores, entonces $b_i(v_i) = \frac{n-1}{n}v_i$ es un equilibrio Nash Bayesiano simétrico.

Solución: el postor i realiza una oferta b. Gana si y solo si las valoraciones de todos los

rivales están por debajo de $[b^*]^{-1}(b)^7$. Dado que V es una variable aleatoria continua y b^* es estrictamente creciente, los empates tienen probabilidad cero. Por lo tanto, tenemos:

$$\begin{split} \rho(b) &= \mathbb{P}\{b^*(V_j) < b, \ \forall \ j \neq i\} \\ &= \mathbb{P}\{V_j < \sigma(b), \ \forall \ j \neq i\}, \ \ \sigma(\cdot) = [b^*]^{-1}(\cdot) \\ &= F(\sigma(b))^{n-1}. \end{split}$$

En el equilibrio, *b* debe ser la mejor respuesta a las estrategias de oferta de los rivales, es decir, *b* resuelve:

$$\max_{b\geq 0} \underbrace{\varrho(b)(v-b)}_{\text{probabilidad de ganar por ganancia neta}}.$$

Por lo tanto, la condición de primer orden (FOC) lleva a:

$$\rho'(b)(v-b) - \rho(b) = 0. (8)$$

Dado que $\sigma(0) = 0$ (una valoración de 0 oferta 0) y $v = \sigma(b)^8$, (8) se convierte en:

$$(n-1)f(\sigma(b))(\sigma(b)-b)\sigma'(b) - F(\sigma(b)) = 0, \tag{9}$$

donde F' = f. Dado que $F(\sigma(b)) = \sigma(b)$ y $f(\sigma(b)) = 1$, (9) se simplifica a:

$$(n-1)(\sigma(b)-b)\sigma'(b)-\sigma(b)=0 \Leftrightarrow \sigma'(b)=\frac{\sigma(b)}{(\sigma(b)-b)(n-1)}.$$

Con la condición inicial $\sigma(0) = 0$, usando la suposición $\sigma(b) = Cb$,

$$\sigma(b) = \frac{n}{n-1}b.$$

Finalmente,

$$b^*(v) = \left(1 - \frac{1}{n}\right)v,$$

y

$$\overline{P}_D = \mathbb{E}[b^*(V_{(n)})] = \frac{n-1}{n} \underbrace{\mathbb{E}[V_{(n)}]}_{\frac{n}{n+1}} = \frac{n-1}{n+1}.$$

Usamos que

$$F_{V_{(n)}}(x) = [F_V(x)]^n = x^n \implies f_{V_{(n)}}(x) = nx^{n-1},$$

por lo que

$$\mathbb{E}[V_{(n)}] = \int_0^1 x(nx^{n-1})dx = n \cdot \frac{x^{n+1}}{n+1} \Big|_0^1 = \frac{n}{n+1}.$$

 $^{^{7}}$ El inverso existe porque b^{*} es estrictamente creciente.

 $^{^8\}sigma$ indica la valoración que genera la oferta b.

Ejercicio 17. Annie y Billy deben decidir si se provee o no un bien público. La utilidad de cada uno de ellos sin el bien público es 0. Esto es de conocimiento público. Por otro lado, el beneficio individual cuando la provisión ocurre es información privada. Esto es, i=A, B considera que los beneficios que $j\neq i$ deriva de la provisión del bien público es una variable aleatoria $\tilde{\theta}_j$ independiente e idénticamente distribuida con una función de distribución F y soporte $[\underline{\theta}, \overline{\theta}]$. Esta función de distribución es estrictamente creciente, con función de densidad f. Además, ambos Annie y Billy conocen su propio beneficio: $\theta_i \in [\underline{\theta}, \overline{\theta}]$. El bien público se provee si al menos uno de ellos se compromete a cubrir el costo c asociado con este bien, donde $0 \le \underline{\theta} < c < \overline{\theta}$. Cuando i=A, B se compromete a cubrir el costo, su utilidad es θ_i-c , independientemente de si el otro individuo se compromete a cubrir el costo del bien público. Si el bien público se provee y i no se compromete a cubrir su costo, su utilidad es simplemente θ_i . Si nadie se compromete a cubrir el costo del bien público, éste no se provee y la utilidad de cada individuo es cero.

- a) Describan esta situación como un juego Bayesiano donde Annie y Billy tienen sólo dos acciones posibles: comprometerse a cubrir el costo *c*, o no comprometerse (estamos asumiendo que este compromiso es final).
- b) Definan el beneficio esperado de i = A, B cuando este individuo se compromete a cubrir el costo del bien público ($a_i = 1$) y cuando decide no hacerlo ($a_i = 0$).
- c)) Muestren que, independientemente de qué estrategia use el jugador j, al jugador i le conviene proveer el bien público si y solo si su tipo es mayor o igual a cierta cota.
- d) Encuentre el equilibrio Bayesiano simétrico de este juego (esto es, encuentren el equilibrio donde Annie y Billy utilizan la misma estrategia), asumiendo adicionalmente que F es la distribución uniforme en el intervalo $[\underline{\theta}, \overline{\theta}] = [0, 1]$.
- a) Recordemos que un juego Bayesiano queda completamente caracterizado por

$$\Gamma = \{ \mathcal{F}, \{A_i\}, \{u_i\}, \Theta, \mu \}$$

donde

- 1. F es el conjunto de jugadores
- 2. $\{A_i\}$ es el conjunto de acciones disponibles para cada jugador
- 3. $\{u_i\}$ son las funciones de utilidad
- 4. ⊖ los tipos⁹
- 5. μ la función de probabilidad definida sobre Θ .

 $^{^{9}\}Theta = \prod_{i=1}^{I} \Theta_i.$

En este caso $\mathscr{F} = \{\text{Annie}, \text{Billy}\} \triangleq \{A, B\},\$

$${A_i} = {\text{cubrir el costo } c, \text{no cubrir el costo } c},$$

las funciones de utilidades son de tipo lineal y separables: $u_i(\theta_i) = \theta_i - c$ (en caso se cubra el costo)¹⁰ Finalmente, solo hay un tipo de individuo: $\Theta = \{\theta\}$ (o sea $\theta_1 = \theta$, $\theta_2 = \theta_1 = \theta$) y $\mu(\tilde{\theta}_i = \theta) = 1$. Para poder hacer más amena la redacción, denotemos

$${A_i} = {\text{cubrir el costo } c, \text{no cubrir el costo } c} = {0,1}$$

y así,

$$s_i(\theta_i) = 1 \implies u_i = \theta_i - c$$

$$s_i(\theta_i) = 0 \implies u_i = \theta_i \cdot \mathbb{P}\{s_j(\tilde{\theta}_j) = 1\} + 0 \cdot \mathbb{P}\{s_j(\tilde{\theta}_j) = 0\}.$$

b) Ahondemos en el último punto. Si el individuo i decide proveer el bien público, independientemente de lo que decida $j \neq i$, su utilidad será

$$\underbrace{u_i(\theta_i) = \theta_i - c}_{=U_i(1,s_i|\theta_i)}.$$

Ahora bien, en caso no decida proveer el bien público, hay dos opciones, o bien $j \neq i$ si lo provee, o bien no. Así pues, su utilidad en dicho caso será

$$\underbrace{u_i = \theta_i \cdot \mathbb{P}\{s_j(\tilde{\theta}_j) = 1\} + 0 \cdot \mathbb{P}\{s_j(\tilde{\theta}_j) = 0\}}_{=U_i(0, s_j | \theta_i)}$$

donde

$$\underbrace{\mathbb{P}\{s_j(\tilde{\theta}_j)=1\}=\mathbb{P}\{\omega\in\Omega:s_j(\tilde{\theta}_j)=1\}}_{\text{probabilidad de que el jugador }j\text{ escoja asumir el costo}$$

donde $\tilde{\theta_j}: \Omega \to [\underline{\theta}, \overline{\theta}]$, $s_j: \Theta_j \to A_j$ la estrategia del individuo j que depende de su tipo.

c) Un breve comentario, notemos que en autarquía, la situación es sencilla y se invierte cuando $\theta_i \ge c = \theta^a$ (cota). Ahora bien, en el caso que nos interesa, nuestro objetivo es analizar cómo responde i óptimamente a la estrategia de s_j . En concreto, i invierte cuando

$$\underbrace{\theta_i - c}_{=U_i(1,s_j|\theta_i)} \ge \underbrace{\theta_i \cdot \mathbb{P}\{s_j(\tilde{\theta}_j) = 1\}}_{=U_i(0,s_j|\theta_i)}.$$

Despejando

$$\theta_i \ge \frac{c}{1 - \mathbb{P}\{s_i(\tilde{\theta}_i) = 1\}}.$$

 $^{^{10}}$ De forma más general, $u=u(a,\theta_i)$ con $a\in\prod_{i=1}^IA_i$ y, para este caso las acciones posibles son cubrir el costo y no cubrir el costo (por cada agente 2 opciones) y por ende $|A|=2^2=4$.

Acá un aspecto técnico importante, $\mathbb{P}\{s_j(\tilde{\theta}_j)=1\}\neq 1$ pues, en dicho caso, no podemos tener la desigualdad

$$\theta_i - c = \theta_i \cdot \mathbb{P}\{s_i(\tilde{\theta}_i) = 1\}. \tag{10}$$

En efecto, si $\mathbb{P}\{s_i(\tilde{\theta}_i)=1\}=1$, (10) se torna

$$\theta_i - c \ge \theta_i \implies c \le 0 \implies .$$

De este modo, obtenemos la cota $\underline{\theta}_i$

$$\theta_i \ge \frac{c}{1 - \mathbb{P}\{s_j(\tilde{\theta}_j) = 1\}} = \underline{\theta}_i \tag{11}$$

depende solamente de la medida de un evento en el $\sigma-$ álgerba de Ω y c

Debido a (14) tenemos

$$\mathbb{P}\{s_i(\tilde{\theta}_i) = 1\} = \mathbb{P}\{\tilde{\theta}_i \ge \underline{\theta}_i\} = 1 - \underbrace{\mathbb{P}\{\tilde{\theta}_i < \underline{\theta}_i\}}_{=\mathbb{P}\{\tilde{\theta}_i \le \underline{\theta}_i\}} = 1 - F(\underline{\theta}_i).$$

Como el problema es simétrico, el agente *j* hace el mismo cálculo:

$$\mathbb{P}\{s_j(\tilde{\theta}_j) = 1\} = \mathbb{P}\{\tilde{\theta}_j \ge \underline{\theta}_j\} = 1 - \underbrace{\mathbb{P}\{\tilde{\theta}_j < \underline{\theta}_j\}}_{=\mathbb{P}\{\tilde{\theta}_i \le \underline{\theta}_i\}} = 1 - F(\underline{\theta}_j).$$

Estamos haciendo uso del hecho que $\{\omega \in \Omega : \tilde{\theta}_j = b\}$ tiene medida nula según la medida \mathbb{P} (pues según la medida Lebesgue un punto tiene medida nula). Así pues, volviendo a (14)

$$\theta_i \ge \frac{c}{F(\underline{\theta}_j)} = \underline{\theta}_i. \tag{12}$$

d) En caso la distribución sea la uniforme sobre $[\underline{\theta}, \overline{\theta}] = [0, 1]$

$$F(x) = \int_0^x f(t)dt = \int_0^x 1dx = x, \ \forall \ x \le \overline{\theta} = 1.$$

De este modo, la cota queda

$$\underline{\theta}_i = \frac{c}{F(\underline{\theta}_i)} = \frac{c}{\underline{\theta}_i}.$$

Puesto que se busca equilibrio Bayesiano simétrico, o sea que Billy y Annie tengan la misma estrategia, se ha de tener¹¹ $\underline{\theta}_i = \underline{\theta}_i$:

$$\underline{\theta}_i = \frac{c}{\underline{\theta}_i} \implies \underline{\theta}_i^2 = c \implies \underline{\theta}_A = \underline{\theta}_B = \underline{\theta} = \sqrt{c} = c^{1/2}.$$

¹¹Note que de la Ecuación 13, la condición para que A y B usen la misma estrategia es justamente que $\underline{\theta}_A = \underline{\theta}_B$.

De este modo, el equilibrio Bayesiano son el par de estrategia (s_1^*, s_2^*)

$$s_A^*(\theta_1) = \begin{cases} 1, & \text{si } \theta_A \ge \underline{\theta} \\ 0, & \text{si } \theta_A < \underline{\theta}. \end{cases}, \ s_B^*(\theta_1) = \begin{cases} 1, & \text{si } \theta_B \ge \underline{\theta} \\ 0, & \text{si } \theta_B < \underline{\theta}. \end{cases}$$
(13)

Ejercicio 18. *Osborne* 1995. Dos personas se ven involucradas en una discusión acalorada. La persona 1 no está seguro si la persona 2 es fuerte o débil, por lo que le asigna una probabilidad $\alpha \in [0,1]$ de ser fuerte. La persona 2 está completamente informada. Cada persona puede luchar físicamente contra la otra o evitar la confrontación. Considere los siguientes pagos en función de la acción tomada y la fuerza de la persona 2:

- Si una persona evita la confrontación, su pago es 0, independientemente de la decisión que tome la otra persona.
- Si la persona decide luchar pero su oponente decide evitar la confrontación, el pago es 1.
- Si ambos deciden luchar, los pagos son (-1,1) si la persona 2 es fuerte y (1,-1) si la persona 2 es débil.

Formule esta situación como un juego Bayesiano y encuentre su equilibrio Nash Bayesiano para los casos $\alpha < 1/2$ y $\alpha > 1/2$.

Ejercicio 19. *Gibbons* 1992. Encuentre todos los equilibrios Nash-Bayesianos en estrategias puras del siguiente juego Bayesiano:

1. La naturaleza escoge si los pagos son la Tabla 1 o la 2

	L	R
L	(1, 1)	(0, 0)
R	(0, 0)	(0, 0)

	L	R
L	(0, 0)	(0, 0)
R	(0, 0)	(2, 2)

- 2. El jugador 1 sabe qué escogió la naturaleza pero el jugador 2 no.
- 3. El jugador 1 escoge *L* o *R* y el jugador 2 también, simultáneamente.
- 4. Se realizan los pagos.

Ejercicio 20. *Mas-Colell, Whinston & Green*. Considere un modelo de duopolio lineal del tipo Cournot. Dos empresas, 1 y 2, escogen simultáneamente las cantidades de producto que se disponen a vender en un mercado. El precio unitario está determinado por la función inversa de demanda

$$P(q_1, q_2) = a - b(q_1 + q_2).$$

El costo unitario de las dos empresas es 0 < c < a. No hay costos fijos.

- 1. Encuentren el equilibrio de Nash de este juego. Supongan ahora que el costo unitario es información privada. Cada firma puede tener un costo bajo c_L o un costo alto c_H , donde $0 < c_L < c_H < a$. La probabilidad de que la firma i = 1,2 tenga un costo bajo es $\delta \in (0,1)$.
- 2. Representen esta situación como un juego Bayesiano.
- 3. Encuentren el equilibrio Bayesiano.

Ejercicio 21. El equipo de Laura y Carlos tiene que entregar su proyecto final mañana en la tarde. Dado que no tuvieron tiempo para coordinar, ambos enfrentan el dilema de desvelarse hoy para completar el proyecto por su cuenta, o confiar en que su compañero lo hará. Sabemos que cada miembro tiene un tipo θ_i , que son independientes y reflejan cuán comprometidos han estado con las tareas del curso hasta ahora. Además, $\theta_i \sim U(0,1)$. La utilidad que obtendrían de completar el proyecto es θ_i^2 , pero, como a ninguno le gusta madrugar, de hacerlo perderían $c \in (0,1)$ de utilidad. Halle el equilibrio bayesiano de Nash (EBN) si Laura y Carlos conocen su propio tipo, pero no el de su compañero.

Solución: definamos $s_i(\theta_i)$ como la acción del alumno i. Dicha variable es igual a 1 si realiza la tarea y es igual a 0 si no la hace. La utilidad esperada del alumno i es:

$$u_i = \begin{cases} \theta_i^2 - c, & ext{si realiza la tarea,} \\ \theta_i^2 \Pr(S_{-i}(\theta_{-i}) = 1), & ext{si no realiza la tarea.} \end{cases}$$

Por lo tanto, para que el alumno i realice la tarea se debe cumplir lo siguiente:

$$\theta_i^2 - c \ge \theta_i^2 \Pr(s_{-i}(\theta_{-i}) = 1),$$

lo que implica:

$$\theta_i \ge \left(\frac{c}{1 - \Pr(s_{-i}(\theta_{-i}) = 1)}\right)^{1/2}.\tag{1}$$

Para los EBN necesitamos asumir que existe el umbral $\tilde{\theta}_i \in (0,1)$, tal que la mejor respuesta del individuo i es realizar la tarea cuando $\theta_i \geq \tilde{\theta}_i$ y no realizarla cuando $\theta_i < \tilde{\theta}_i$. Por lo tanto, tenemos lo siguiente:

$$\Pr(s_{-i}(\theta_{-i}) = 1) = \Pr(\theta_{-i} \ge \tilde{\theta}_{-i})$$
$$= 1 - \tilde{\theta} \quad i.$$

Luego, reemplazando este resultado en (1), obtenemos:

$$\tilde{\theta}_i^2 \tilde{\theta}_{-i} = c,$$

lo que implica:

$$\theta^* = \sqrt[3]{c}$$
.

Finalmente, el EBN es:

EBN = {Hacer tarea si
$$\theta_1 \ge \sqrt[3]{c}$$
, Hacer tarea si $\theta_2 \ge \sqrt[3]{c}$ }.

Ejercicio 22. Supongan que hay solo dos participantes en una subasta de primer precio (sin precio de reserva¹²). Cada uno de ellos tiene una valoración hacia el objeto \tilde{v} que sigue una distribución dada por $F(v) = v^a$ en el intervalo [0,1], donde a es una constante positiva. Verifiquen que la siguiente estrategia constituye un equilibrio Bayesiano en la subasta de primer precio¹³:

$$\beta(v) = \left(\frac{a}{a+1}\right)v.$$

Solución: primero, establezcamos el contexto: tenemos 2 jugadores $\mathscr{I}=\{1,2\}$ con valoraciones $v_1,v_2\in[\underline{v},\overline{v}]=[0,1]$. Luego, para i=1,2, dado que estamos en una subasta de primer orden,

$$u_i(b_i, b_{-i}|v_i)$$
 $\begin{cases} v_i - b_i & \text{si gana la subasta} \\ 0, & \text{si pierde} \end{cases}$

donde b_i es la apuesta (el bid) del individuo i. En este caso, dado que nos encontramos en el escenario de información incompleta: $v_i \sim F_i$ con soporte en $[\underline{v}, \overline{v}] = [0, 1]$. Concretamente, $F(x) = x^a$, a > 0.

En este contexto, una estrategia es una función $\beta_i: \Theta_i = [\underline{v}, \overline{v}] \to \mathbb{R}_+, i = 1, 2$. Ahora bien, la utilidad esperada del agente i es

$$U_i(b_i, v_i, \beta_i) = (v_i - b_i) \cdot \mathbb{P}\{i \text{ gana la apuesta}\} + 0 \cdot \mathbb{P}\{i \text{ pierde la apueta}\}$$

con $j \neq i$. Ciertamente,

$$\mathbb{P}\{i \text{ gana la apuesta}\} = \mathbb{P}\{\beta_i(\tilde{v}_i) < b_i\}.$$

Un supuesto técnico que entra en juego acá es que β es creciente y por lo menos continua. Así, es localmente invertible. El supuesto de la monotonía es coherente pues, a mayor valoración, mayor o igual será su apuesta. De este modo:

$$\mathbb{P}\{\beta_j(\tilde{v}_j) < b_i\} = \mathbb{P}\{\tilde{v}_j < \beta_j^{-1}(b_i)\} = F(\beta_j^{-1}(b_i)).$$

La última desigualdad es consecuencia del hecho que la medida de Lebesgue le otor-

¹²El precio de reserva es el precio mínimo al que el vendedor está dispuesto a vender el objeto. En esta subasta, el precio de reserva se considera nulo, lo cual implica que el objeto se vende al mejor postor, sin restricciones de precio mínimo.

¹³Una subasta de primer precio es un tipo de subasta en la que cada participante presenta una oferta sin conocer las ofertas de los demás, y el objeto es adjudicado al oferente con la oferta más alta, quien debe pagar el valor ofertado. Se asume que las valoraciones son independientes entre los participantes.

ga medida cero a un punto. De este modo,

$$U_i(b_i, v_i, \beta_j) = (v_i - b_i) F(\beta_j^{-1}(b_i)).$$
(14)

Vamos a proceder de dos manera distintas. Primero, vamos a usar como candidato al $\beta(v)$ propuesto. Verificaremos condiciones de primer y segundo orden. En una segunda instancia, vamos a derivar de manera general, dada una distribución $F(\cdot)$, el β óptimo, bajo el contexto en el que estamos trabajando. Esta derivación sigue los desarrollo en *Auction Theory de Vijay Krishna*.

Volvamos a la Ecuación 14 y supongamos que $\beta_j^{-1}(b_i) = \frac{a+1}{a}b_i$. Entonces,

$$U_i = (v_i - b_i) \left[\left(\frac{a+1}{a} \right) b_i \right]^a.$$

Las condiciones de primer orden deben proveer $v_i = \frac{a+1}{a}b_i$. Veamos.

$$\frac{d}{db_i}U_i=0$$

nos lleva a

$$-\left[\left(\frac{a+1}{a}\right)b_i\right]^a+(v_i-b_i)a\left(\frac{a+1}{a}\right)^ab_i^{a-1}=0.$$

Factorizando,

$$\left(\frac{a+1}{a}\right)^a \left[\underbrace{v_i a b_i^{a-1} - (1+a) b_i^a}_{=0}\right] = 0$$

$$v_i a b_i^{a-1} = (a+1)b_i^a \implies v_i = \frac{a+1}{a}b_i.$$

Así, para concluir, hay que verificar solamente que en $v_i = \frac{a+1}{a}b_i$, la segunda derivada es negativa en el punto óptimo, asegurando la optimalidad (al menos local). Calculamos entonces

$$\left. \frac{d^2}{db_i^2} \right|_{v_i = (a+1)b_i/a} U_i^e.$$

Las derivaciones anteriores nos llevan a

$$\frac{d^2}{db_i^2}\Big|_{v_i=(a+1)b_i/a} U_i^e = \left(\frac{a+1}{a}\right)^a \left[\left(\frac{a+1}{a}b_i\right)a(a-1)b_i^{a-2} - a(a+1)b_i^{a-1}\right].$$

Simplificando y factorizando por b_i^{a-2} :

$$\left. \frac{d^2}{db_i^2} \right|_{v_i = (a+1)b_i/a} U_i^e = b_i^{a-2} \left(\frac{a+1}{a} \right)^a \left[\left(\frac{a+1}{a} b_i \right) a(a-1) - a(a+1)b_i \right] < 0.$$

En efecto, basta notar que $\left(\frac{a+1}{a}b_i\right)a(a-1)-a(a+1)b_i=-(a+1)b_i<0$.

Situación general.

Analicemos la condición de primer orden en b_i :

$$\frac{\partial U_i^e(b_i, v_i, \beta_j)}{\partial b_i} = F'(\beta_j^{-1}(b_i))(v_i - b_i)[\beta_j^{-1}(b_i)]' - F(\beta_j^{-1}(b_i))
= F'(\beta_j^{-1}(b_i))(v_i - b_i) \cdot \frac{1}{\beta_i'(\beta_j^{-1}(b_i))} - F(\beta_j^{-1}(b_i)) = 0.$$

Acá se ha usado el Teorema de la Función Inversa para obtener la igualdad

$$[\beta_j^{-1}(b_i)]' = \frac{1}{\beta_j'(\beta_j^{-1}(b_i))}.$$

Luego, como las estrategias son simétricas: $\beta_j^{-1}(x) = \beta_i^{-1}(x)$. En particular, $\beta_j^{-1}(b_i) = \beta_i^{-1}(b_i) = v_i$ de donde,

$$\frac{F'(\beta_j^{-1}(b_i))(v_i - b_i)}{\beta_j'(\beta_j^{-1}(b_i))} - F(\beta_j^{-1}(b_i)) = \frac{F'(v_i)(v_i - b_i)}{\beta_j'(v_i)} - F(v_i) = 0.$$

Así, obtenemos la ecuación diferencial de primer orden

$$F'(v_i)(v_i - b_i) = \beta'_j(v_i)F(v_i).$$

Denotando *f* la densidad de *F*:

$$f(v_i)(v_i - b_i) = \beta'_i(v_i)F(v_i).$$

Reemplazando $b_i = \beta_i(v_i)$:

$$f(v_i)(v_i - \beta_j(v_i)) = \beta'_j(v_i)F(v_i).$$

Así,

$$f(v_i)v_i = \beta'_j(v_i)F(v_i) + \beta_j(v_i)f(v_i).$$

Identificando la estructura de un producto de derivadas:

$$f(v_i)v_i = \frac{d}{dv_i} \left[\beta_j(v_i)F(v_i) \right].$$

Integrando y notando que $\beta_j(0) = 0$:

$$\beta_j(v_i) = \frac{1}{F(v_i)} \int_0^{v_i} t f(t) dt.$$

Reemplazando con $F(x) = x^a$:

$$\beta_{j}(v_{i}) = \frac{1}{v_{i}^{a}} \int_{0}^{v_{i}} t(at^{a-1})dt$$
 (15)

$$=\frac{1}{v_i^a}\cdot\frac{a}{a+1}v_i^{a+1}\tag{16}$$

$$=\frac{a}{a+1}v_i. (17)$$

Así pues, la condición de primer orden provee en efecto $\beta_j(v) = \frac{a}{a+1}v$. Para concluir que la estrategia constituye un equilibrio Bayesiano en este contexto de Subasta de Primer Precio, hay que verificar la optimalidad (pues las condiciones de primer orden son condiciones necesarias).

Supongamos que el individuo j sigue la estrategia descrita previamente. Veamos que i también usa la misma estrategia.

$$U_{j}(\beta_{i}(v_{j}), v_{j}) - U_{j}(\beta_{i}(t), v_{j}) = F(v_{j})(v_{j} - v_{j}) + \int_{0}^{v_{j}} F(y) dy$$
$$- \left[F(t)(v_{j} - t) + \int_{0}^{t} F(y) dy \right]$$
$$= F(t)(t - v_{j}) - \int_{v_{j}}^{t} F(y) dy \ge 0$$

ya sea que $t \le v_j$ o $t \ge v_j$. Acá se ha usado integración por partes y el hecho que el otro individuo sigue la estrategia propuesta¹⁴:

$$\begin{aligned} U_j(\beta_i(t), v_j) &= F(t)(v_j - \beta_i(t)) \\ &= F(t)v_j - F(t)\frac{1}{F(t)} \int_0^t y f(y) dy \\ &= F(t)v_j - \int_0^t y f(y) dy \\ &= F(t)v_j - \left[y F(t) \Big|_0^t - \int_0^t F(y) dy \right] \\ &= F(t)(v_j - t) + \int_0^t F(y) dy. \end{aligned}$$

Con esto, concluimos lo solicitado, dense por bien servidos.

 $^{^{14}\}beta(v) = \frac{a}{a+1}v.$

Referencias

- [1] Gibbons, R. (1992). *Game Theory for Applied Economists*. Princeton University Press.
- [2] Osborne, M. J. (2004). An Introduction to Game Theory. Oxford University Press.
- [3] Fudenberg, D., & Tirole, J. (1991). Game Theory. MIT Press.
- [4] Wolfstetter, E. (1999). *Topics in Microeconomics: Industrial Organization, Auctions, and Incentives*. Cambridge University Press.
- [5] Krishna, V. (2009). Auction Theory (2nd ed.). Academic Press.