Schwarzov princip zrcaljenja za harmonične funkcije

Matej Novoselec

FMF Fakulteta za matematiko in fiziko

5. december 2022

Harmonične funkcije

Definicija

Funkcija $u(x_1, x_2, \dots, x_n)$ je harmonična, če velja

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = 0.$$

Operatorju $\Delta=\frac{\partial^2}{\partial x_1^2}+\frac{\partial^2}{\partial x_2^2}+\cdots+\frac{\partial^2}{\partial x_n^2}$ pravimo Laplaceov operator in pišemo

$$\Delta u = 0$$
.

Harmonične funkcije

Definicija

Funkcija $u(x_1, x_2, \dots, x_n)$ je harmonična, če velja

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = 0.$$

Operatorju $\Delta=\frac{\partial^2}{\partial x_1^2}+\frac{\partial^2}{\partial x_2^2}+\cdots+\frac{\partial^2}{\partial x_n^2}$ pravimo Laplaceov operator in pišemo

$$\Delta u = 0.$$

Harmonične funkcije lahko gledamo kot realne dele holomorfnih funkcij.

Princip maksima

Izrek (Princip maksima za holomorfne funkcije)

Naj bo $D\subseteq\mathbb{C}$ območje v \mathbb{C} in $f:D\to\mathbb{C}$ holomorfna in omejena funkcija. Tedaj je f konstantna ali pa lokalnega maksimuma na D ne zavzame.

Princip maksima

Izrek (Princip maksima za holomorfne funkcije)

Naj bo $D\subseteq\mathbb{C}$ območje v \mathbb{C} in $f:D\to\mathbb{C}$ holomorfna in omejena funkcija. Tedaj je f konstantna ali pa lokalnega maksimuma na D ne zavzame.

Če je f definirana in zvezna na \overline{D} , potem maksimum zavzame na ∂D .

Princip maksima

Izrek (Princip maksima za holomorfne funkcije)

Naj bo $D\subseteq\mathbb{C}$ območje v \mathbb{C} in $f:D\to\mathbb{C}$ holomorfna in omejena funkcija. Tedaj je f konstantna ali pa lokalnega maksimuma na D ne zavzame.

Če je f definirana in zvezna na \overline{D} , potem maksimum zavzame na ∂D .

Princip maksima za harmonične funkcije

Dovolj je zahtevati, da je f na D harmonična in omejena, ter na \overline{D} zvezna.

Problem (Dirichletov problem za enotski disk)

Podano imamo zvezno funkcijo h na $\partial \mathbb{D}$. Radi bi skonstruirali harmonično funkcijo \widetilde{h} na \mathbb{D} , tako da ko $z \in \mathbb{D} \to \xi \in \partial \mathbb{D}$, tudi $\widetilde{h}(z) \to h(\xi)$.

Problem (Dirichletov problem za enotski disk)

Podano imamo zvezno funkcijo h na $\partial \mathbb{D}$. Radi bi skonstruirali harmonično funkcijo \widetilde{h} na \mathbb{D} , tako da ko $z \in \mathbb{D} \to \xi \in \partial \mathbb{D}$, tudi $\widetilde{h}(z) \to h(\xi)$.

Iščemo funkcijo, zvezno na $\overline{\mathbb{D}}$ in harmonično na \mathbb{D} , tako da se bo njena zožitev na $\partial \mathbb{D}$ ujemala s h.

Poskusimo rešiti...

Problem (Dirichletov problem za enotski disk)

Podano imamo zvezno funkcijo h na $\partial \mathbb{D}$. Radi bi skonstruirali harmonično funkcijo \widetilde{h} na \mathbb{D} , tako da ko $z \in \mathbb{D} \to \xi \in \partial \mathbb{D}$, tudi $\widetilde{h}(z) \to h(\xi)$.

Iščemo funkcijo, zvezno na $\overline{\mathbb{D}}$ in harmonično na \mathbb{D} , tako da se bo njena zožitev na $\partial \mathbb{D}$ ujemala s h.

Poskusimo rešiti...

Če razširitev obstaja je enolično določena.

Problem (Dirichletov problem za enotski disk)

Podano imamo zvezno funkcijo h na $\partial \mathbb{D}$. Radi bi skonstruirali harmonično funkcijo \widetilde{h} na \mathbb{D} , tako da ko $z \in \mathbb{D} \to \xi \in \partial \mathbb{D}$, tudi $\widetilde{h}(z) \to h(\xi)$.

Iščemo funkcijo, zvezno na $\overline{\mathbb{D}}$ in harmonično na \mathbb{D} , tako da se bo njena zožitev na $\partial \mathbb{D}$ ujemala s h.

Poskusimo rešiti...

Če razširitev obstaja je enolično določena.

Zapišimo $h = h(e^{i\theta})$ in poskusimo na enostavnih funkcijah h.

Poissonovo jedro

Definicija

Poissonovo jedro je funkcija definirana s predpisom

$$P_r(\theta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\theta}$$
, kjer je $\theta \in [-\pi, \pi]$ in $r < 1$.

Poissonovo jedro

Definicija

Poissonovo jedro je funkcija definirana s predpisom

$$P_r(heta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\theta}$$
, kjer je $heta \in [-\pi,\pi]$ in $r < 1$.

Spomnimo se...

Naj D zadošča pogojem za Greenovo formulo. Naj bo $f \in \mathcal{O}(D) \cap \mathcal{C}^1(\overline{D})$. Za $z \in D$ velja Cauchyjeva formula:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} \ d\xi.$$

Poissonovo jedro

Definicija

Poissonovo jedro je funkcija definirana s predpisom

$$P_r(heta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik heta}$$
, kjer je $heta \in [-\pi,\pi]$ in $r < 1$.

Spomnimo se...

Naj D zadošča pogojem za Greenovo formulo. Naj bo $f \in \mathcal{O}(D) \cap \mathcal{C}^1(\overline{D})$. Za $z \in D$ velja Cauchyjeva formula:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} \ d\xi.$$

Funkciji $(\xi,z)\mapsto rac{1}{\xi-z}$ pravimo Cauchyjevo jedro.

Poissonov integral

Poskusimo sedaj iz druge smeri ...

Definicija

Poissonov integral, ki ga označimo z $\widetilde{h}(z)$, od $h(e^{i\theta})$ je funkcija na enotskem disku s predpisom

$$\widetilde{h}(z) = \int_{-\pi}^{\pi} h(\mathrm{e}^{i\phi}) P_r(heta - \phi) \; rac{d\phi}{2\pi} \; ext{, kjer} \; \; z = r \mathrm{e}^{i heta} \in \mathbb{D}.$$

Poissonov integral

Poskusimo sedaj iz druge smeri ...

Definicija

Poissonov integral, ki ga označimo z $\widetilde{h}(z)$, od $h(e^{i\theta})$ je funkcija na enotskem disku s predpisom

$$\widetilde{h}(z) = \int_{-\pi}^{\pi} h(\mathrm{e}^{i\phi}) P_r(heta - \phi) \; rac{d\phi}{2\pi} \; ext{, kjer} \; \; z = r \mathrm{e}^{i heta} \in \mathbb{D}.$$

Izrek (Poissonov integral)

Naj bo $h(e^{i\theta})$ zvezna funkcija na enotski krožnici. Potem nam zgoraj definiran Poissonov integral $\widetilde{h}(z)$ ponuja razširitev funckije h do zvezne funckije na $\overline{\mathbb{D}}$, harmonične v \mathbb{D} in velja, da se njena zožitev na $\partial \mathbb{D}$ ujema s h.

Lastnost povprečne vrednosti

Definicija

Zvezna funckija h(z) ima na območju D lastnost povprečne vrednosti, če za vsak z_0 iz D velja, da je $h(z_0)$ povprečje vrednosti h(z), kjer z teče po majhni krožnici s središčem v z_0 .

Lastnost povprečne vrednosti

Definicija

Zvezna funckija h(z) ima na območju D lastnost povprečne vrednosti, če za vsak z_0 iz D velja, da je $h(z_0)$ povprečje vrednosti h(z), kjer z teče po majhni krožnici s središčem v z_0 .

Holomorfne funkcije imajo lastnost povprečne vrednosti.

Lastnost povprečne vrednosti

Definicija

Zvezna funckija h(z) ima na območju D lastnost povprečne vrednosti, če za vsak z_0 iz D velja, da je $h(z_0)$ povprečje vrednosti h(z), kjer z teče po majhni krožnici s središčem v z_0 .

Holomorfne funkcije imajo lastnost povprečne vrednosti.

Izrek (Karakterizacija harmoničnih funkcij)

Naj bo h(z) zvezna funkcija na območju D. Potem je h(z) harmonična na D natanko tedaj, ko ima h(z) lastnost povprečne vrednosti na D.

Spomnimo se...

Izrek (Morera):

Naj bo $f:D\to\mathbb{C}$ zvezna in D odprta. Denimo, da za vsak zaprt trikotnik $T\subseteq D$ velja

$$\int_{\partial T} f(\xi) \ d\xi = 0$$

Tedaj je f holomorfna na D.

Izrek (Schwarzov princip zrcaljenja za harmonične funckije)

Naj bo $D\subseteq\mathbb{C}$ območje simetrično glede na realno os. Označimo $D^+=D\cap\{\operatorname{Im}>0\}$. Naj bo $u(z):D^+\to\mathbb{R}$ harmonična funkcija, za katero velja, da gre $u(z)\to 0$, ko gre $z\in D^+$ proti poljubni točki $D\cap\mathbb{R}$.

Potem obstaja harmonična razširitev u(z) na D, ki je eksplicitno podana s predpisom $u(\bar{z}) = -u(z)$ za $z \in D$.

Izrek (Schwarzov princip zrcaljenja za harmonične funckije)

Naj bo $D\subseteq\mathbb{C}$ območje simetrično glede na realno os. Označimo $D^+=D\cap\{\operatorname{Im}>0\}$. Naj bo $u(z):D^+\to\mathbb{R}$ harmonična funkcija, za katero velja, da gre $u(z)\to 0$, ko gre $z\in D^+$ proti poljubni točki $D\cap\mathbb{R}$.

Potem obstaja harmonična razširitev u(z) na D, ki je eksplicitno podana s predpisom $u(\bar{z}) = -u(z)$ za $z \in D$.

