Fiche d'exercices - Chapitre A.1 - Ecriture binaire

Exercice 1

Ecrire la représentation décimale des valeurs suivantes :

- $(1010)_2$
- (1110)₂
- $(0010)_2$
- $(0101)_2$

Exercice 2

Ecrire la représentation décimale des valeurs suivantes :

- $(11000011)_2$
- $(01011010)_2$
- $(11000110)_2$
- (00111111)₂

Exercice 3

Ecrire la représentation binaire des valeurs suivantes :

- $(10)_{10}$
- $(156)_{10}$
- (235)₁₀
- $(2047)_{10}$

Exercice 4

Compléter le tableau suivant :

Représentation en base 10	Représentation en base 2
1234	
	10100101
2424	
	11001010

Exercice 5

Determiner (sans faire la conversion) combien de bits et d'octets au minimum seront nécessaire à l'écriture en binaire de chacune des valeurs suivantes :

- 54
- 298

Exercice 6

Faire les additions binaires suivantes :

- $(0100)_2 + (0110)_2$
- $(1000)_2 + (1010)_2$
- $(0100)_2 + (1011)_2$
- $(0111)_2 + (0001)_2$

Exercice 7

Faire les multiplications binaires suivantes :

- $(1100)_2 \times (0010)_2$
- $(1010)_2 \times (1010)_2$
- $(0010)_2 \times (0100)_2$
- $(1101)_2 \times (1111)_2$

Exercice 8

Cocher les bonne réponses, pour chacune des questions, il existe une unique bonne réponse :

1. Combien de bits au minimum faut-il pour représenter le nombre 45610 en base 2 ?

- □8
- □ 9
- □ 12
- □ 456

2. Combien d'octets représente 45 Mo?

- □ 45 octets
- □ 45 000 octets
- □ 45 000 000 octets
- □ 47 185 920 octets

3. Quel est la représentation binaire de 1092 ?

- □ 110 1100
- □ 110 1101
- □ 110 1001
- □ 1010 1100

4. Combien d'octets représente 1 kio ?

- □ 1 000
- □ 1 024
- □ 1 000 000
- □ 1 048 576

5. Quelle est la représentation décimale de 1010 01102 ?

 □ 156 □ 110 □ 164 □ 166 	
6. Quelle est le résultat de l'addition	on binaire de 10102 + 11002 ?
 □ 0110 □ 1 0110 □ 1110 □ 1 0111 	
7. Quelle est le résultat de la multi	plication binaire de 11101×10011 ?
 □ 110 1110 □ 111 0001 □ 110 1100 □ 1110 1100 	
Exercice 9	
1. Convertir les valeurs suivantes e	en base 2 :
• (145) ₁₀	
• (C1) ₁₆ • (2567) ₁₀	
• (65) ₁₆	
2. Convertir les valeurs suivantes e	en base 10 :
• (10010010) ₂	
• (A15) ₁₆	
• (11011011) ₂ • (1101) ₁₆	
3. Convertir les valeurs suivantes e	an hase 16 ·
	in base to .
 (4956)₁₀ (1001110001111010)₂ 	
• (2456) ₁₀	
• (1111101110001101) ₂	
Exercice 10	
Compléter le tableau suivant :	
Base 2 Base 10 Base 16	
1001 1100	
1101 0011	
1234	

Base 2	Base 10	Base 16
	4096	
		А3
		В7

Exercice 11:

- 1. Donner la représentation décimale des valeurs suivantes :
- (16)₇
- (1*A*)₁₁
- 2. Convertir les valeurs suivantes dans la base demandée :
- $(55)_{10}$ -> base 3
- $(125)_{10} \rightarrow 9$

Exercice 12:

Exercice de révision :

On considère l'entier suivant représenté en base 2.

- 10101100
- 1. Entourer en rouge le bit de poids fort.
- 2. Entourer en bleur le bit de poids faible.
- 3. Sur combien de bits est représenté cet entier ?
- 4. Sur combien d'octets est représenté cet entier ?
- 5. Donner la représentation en base 10 de cette valeur.

On considère l'entier suivant représenté en base 10.

- 12350
- 6. De combien de bits au minimum auront nous besoin pour représenter cette valeur en base 2 ?
- 7. Combien d'octet seront nécessaire à l'écriture de ce nombre en base 2 ?
- 8. Donner la représentation en base 10 de cette valeur.
- 9. Réaliser les calculs binaires suivants :
- 10101100 + 10000011
- 01000111 + 10011111
- 10011101×1011
- 00011101×1001