

IN THE CLAIMS

1. (currently amended) A method of identifying a presence of a first fluid in an earth formation having a first transverse nuclear magnetic spin relaxation time T_2 in a mixture of earth formation fluids with a second fluid in an earth formation having a second transverse nuclear magnetic spin relaxation time T_2' greater than said first transverse relaxation time, ~~said first material comprising a small fraction of the mixture~~, the method comprising:
 - 7 (a) ~~using a magnet to produce producing a static magnetic field in said mixture a region of examination in said earth formation and align nuclear spins in said region substantially parallel to a direction of said static field;~~
 - 10 (b) applying a pulse sequence having pulses
11 A1 - τ - B1 - τ - A2 - TW - A3
12 to said mixture where A1 is a first excitation pulse, τ is a Carr-Purcell time, B1 is a first refocusing pulse, A2 is forced inversion pulse, A3 is a second excitation pulse, and TW is a wait time, ~~and~~
 - 15 (e) ~~determining wherein a value of TW for which a resulting signal from said second fluid in said earth formation is substantially zero~~ and
 - 16 (c) determining said presence by analyzing signals after said second excitation pulse.
- 19
1. (original) The method of claim 1 wherein said first excitation pulse comprises a pulse having a tip angle substantially equal to 90°.

3
10/649,423

1 3. (original) The method of claim 1 wherein said second excitation pulse comprises
2 a pulse having a tip angle substantially equal to 90°.

3

1 4. (original) The method of claim 1 wherein said first refocusing pulse comprises a
2 pulse having a tip angle substantially equal to 180°.

3

1 5. (currently amended) The method of claim 1 ~~wherein further comprising~~
2 determining said value of TW ~~further comprises by~~ applying a sequence of
3 refocusing pulses B_2 ; after said second excitation pulse and determining a value
4 of TW for which substantially no spin echo signals are produced by said sequence
5 of refocusing pulses.

6

1 6. (original) The method of claim 5 wherein at least one of said sequence of
2 refocusing pulses comprises a pulse with a tip angle substantially equal to 180°.

3

1 7. (original) The method of claim 1 further selecting τ to satisfy the condition
2 $T_2' \gg \tau \gg T_2$.

3

1 8. (original) The method of claim 5 further comprising:
2 (i) repeating (b) with different values of TW until no free induction decay
3 signal after the second excitation pulse A3 is produced;
4 (ii) repeating (b) with a value of TW altered from the value determined in (i);
5 and

10/649,423

(iii) analyzing a resulting free induction decay signal.

7

1 9. canceled

2

3

3

3

6

7 (b) a magnet on said logging tool for producing which produces a static field
8 in a region of said earth formation including said mixture, said magnet
9 aligning nuclear spins in said region substantially parallel to a direction of
10 said static field;

10/649,423

11 (b) a transmitter on said logging tool for applying which applies a radio
12 frequency pulse sequence
13 A1 - τ - B1 - τ - A2 - TW - A3
14 to said mixture in said region, where A1 is a first excitation pulse, τ is a
15 Carr-Purcell time, B1 is a first refocusing pulse , A2 is forced inversion
16 pulse, and A3 is a second excitation pulse,
17 (c) a receiver on said logging tool for receiving which receives signals
18 resulting from said nuclear spins resulting from application of said pulse
19 sequence; and
20 (d) a processor for determining which:
21 (A) determines a value of TW for which a resulting signal from said
22 second fluid is substantially zero, and
23 (B) identifies said presence of said first fluid by analyzing signals after
24 said second excitation pulse.

25
1 14. (original) The system of claim 13 wherein said first excitation pulse comprises a
2 pulse having a tip angle substantially equal to 90°.
3
1 15. (original) The system of claim 13 wherein said second excitation pulse comprises
2 a pulse having a tip angle substantially equal to 90°
3
1 16. (currently amended) The system of claim 13 wherein said processor determines
2 determining said value of TW further comprises by further applying a sequence of
10/649,423

3 refocusing pulses B_2 ; after said second excitation pulse and determining a value
4 of TW for which substantially no spin echo signals are produced by said sequence
5 of refocusing pules.

6

1 17. (previously presented) The system of claim 13 wherein said first refocusing pulse
2 comprises a pulse having a tip angle substantially equal to 180°.

3

1 18. (original) The system of claim 16 wherein at least one of said sequence of
2 refocusing pulses comprises a pulse with a tip angle substantially equal to 180°.

3

1 19. (original) The system of claim 13 wherein $T_2' \gg \tau \gg T_2$.

2

1 20. (original) The system of claim 13 wherein said processor further performs:
2 (i) a repetition of (b) in claim 13 with different values of TW until no free
3 induction decay signal after the second excitation pulse A3 is produced;
4 (ii) a repetition of (b) in claim 13 with the value of TW altered from the value
5 determined in (i); and
6 (iii) analyzes a resulting free induction decay signal.

7

1 21. (original) The system of claim 13 further comprising a wireline for conveying
2 said logging tool into said borehole.

3

1 22. (original) The system of claim 13 further comprising a drilling tubular for
10/649,423

2 conveying said logging tool into said borehole.

3

1 23. (original) The system of claim 13 wherein said processor is on said logging tool.