IOI 饅頭 (IOI Manju)

JOI 2014 本選 問題 2

解説: 保坂 和宏

問題概要

- M 個の饅頭
 - 価格 P_i
- N個の箱
 - -入る饅頭の個数 C_j
 - 価格 E_j
- 箱をいくつか買って,饅頭を詰めて売る とき,利益の最大値は?
- $M \le 10000$, $N \le 500$

問題概要

問題概要

考察

同じ個数の饅頭を売るなら、高い方から順に売るほうがよい

考察

同じ個数の饅頭を売るなら,価格が高い 方から順に売るほうがよい

部分点解法

小課題 1 [25 点]:箱の個数 N ≤ 10

- 買う箱の組合せを決める (2^N 通り試す)
- 売れる饅頭の個数の最大値 x が決まる
- 価格が高い方から x 個の饅頭を売る

考察

- 買う箱の組合せを決める (2^N 通り試す)
- 売れる饅頭の個数の最大値 x が決まる
- 価格が高い方から x 個の饅頭を売る

考察

- 饅頭の個数を決めたら?
 - 売上:簡単に求まる
 - 箱にかかる費用:???

• 「x 個以上の饅頭が入るようにするための箱の価格の合計」を x = 0, 1, 2, ..., M に対して効率よく求めたい

箱が 0 個の場合

0	1	2	3	4	5	6	7	8	9	10
0	∞									

箱が1個の場合

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							

箱が2個の場合

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

考察

• 「x 個以上の饅頭が入るようにするための箱の価格の合計」を x = 0, 1, 2, ..., M に対して効率よく求めたい

箱が 1 個少ない場合に求まっていれば表 を更新できる

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

0	1	2	3	4	5	6	7	8	9	10
0	∞									
0	30	30	∞							
0	30	30	40	70	70	∞	∞	∞	∞	∞
0	30	30	40	50	50	80	80	90	120	120

解法

 f [j, x] := j 番目の箱まで考えたときの, x 個以上の饅頭が入るようにするための箱 の価格の合計

f[j,x]は次のうち小さい方
-f[j-1,x]
-f[j-1, max{j-C_i, 0}]+E_i

解法

- M×Nの表を埋める
- 各マスを埋めるのに O(1) 時間

全体で O(M N) 時間

小さい問題に対して解いて,表を埋めていく:動的計画法と呼ばれる

部分点解法

小課題 2 [35 点]:箱の大きさ C_i ≤ 10

- 表の 1 マスを埋めるのに O(C_i) 時間
 - 箱を大きさ 0, 1, 2, ..., C_j として使う場合を それぞれ考える

- その他バグなど
 - 箱の大きさが余る場合にも大丈夫ですか?

おまけ

JOI 社は箱の販売で利益を得ている?!

あなたは Just Odd Inventions 社を知っているだろうか? この会社の業務は「ただ奇妙な発明 (just odd inventions)」をすることである. ここでは略して JOI 社と呼ぶ.

なお、JOI 社が「ただ奇妙な発明」をすることでどうやって利益を得ているかは、 社内でも最高機密であり社長以外の誰も知らない.

JOI 2009 本選 5 「認証レベル」

得点分布

