Explainable Machine Learning with Shapley Values

Scott Lundberg Senior Researcher Microsoft

Explainable AI in practice

Model development

Why was I denied?

Interpretable **Accurate**

Complex model

Simple model

Interpretable or accurate: choose one.

But a single prediction involves only a small piece of that complexity.

How did we get here?

The order matters!

Lloyd Shapley

The order matters!

Shapley properties

Additivity (local accuracy) – The sum of the local feature attributions equals the difference between rate and the model output. \underline{M}

 $E[f(x)] + \sum_{i=1}^{\infty} \phi_i = f(x)$

Shapley properties

Monotonicity (consistency) – If you change the original model such that a feature has a larger possible ordering, then that input's attribution decrease.

Shapley values result from averaging over all N! possible orderings.


```
ex = shap.TreeExplainer(model, ...)
shap_values = ex.shap_values(X)
shap.force_plot( )
```


Why does 46 years of credit history increase the risk of payment problems?

The model is identifying retirement-age individuals based on their long credit histories!

Explain and debug your models!

Explainable AI in practice

Model development

Debugging/exploration

Monitoring

Can you find where we introduced the bug?

Now can you find where we introduced the bug?

Transient electronic medical record

Gradual change in atrial fibrillation ablation procedure durations

Explainable AI in practice

Model development

Debugging/exploration

Monitoring

Encoding prior beliefs

Human/AI collaboration

Customer retention

Decision support

Human risk oversight

Regulatory compliance

Consumer explanations

Anti-discrimination

Risk management

Scientific discovery

Population subtyping

Pattern discovery

Signal recovery

Thank You

github.com/slundberg/shap

Global feature importance

Age

Reverbigh magnitude mortality effects

Conflates the prevalence of an effect with the magnitude of an effect

Reveal rare high-magnitude mortality effects

Reveal rare high-magnitude mortality effects

Reveal rare high-magnitude mortality effects

