Anomaly detection using Auto-encoder based on Skew Normal Mixture Model

Narin Park

Department of Statistics, Sungkyunkwan University

Dec 15, 2023

OUTLINE

- 1. Introduction
- 2. Deep Autoencoding Skew-Normal Mixture model (DASKNMM)
- 3. Simulation
- 4. Real Data

Introduction

Figure 1: Illustration of autoencoder.

► **Encoder** : compresses the input into a latent variable

$$z_l = h(W_1x + b_1) \in \mathbb{R}^m$$
 where $m < d$,

where d is the input dimension, m is the number of nodes, W_1 is (m, d) weight matrix, \mathbf{b}_1 is (m, 1) bias vector

Introduction

Decoder: reconstructs the input

$$\hat{\mathbf{x}} = g(\mathbf{W}_2 z_1 + b_2) \in \mathbb{R}^d$$

where W_2 is (d, m) weight matrix, b_2 is (d, 1) bias vector

Loss function

$$\frac{1}{N}\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-x'\left(\theta_{e},\theta_{d}\right)\right\|^{2},$$

where θ_e and θ_d are W and b from encoding and decoding network respectively

ARCHITECTURE OF DASKNM-EM

Figure 2: An overview of DAGMM (Zong et al. (2018))

- ► The Deep autoencoding skew-normal mixture model (DASKNM-EM) architecture consists of 2 main components:
- ▶ (1) Compression network : Dimension reduction & Generate reconstruction error by autoencoder
- ► (2) Estimation network: Estimate the probability distribution of compressed data using skew-normal mixture (SKNM) with the Expectation-Maximization(EM) algorithm

COMPRESSION NETWORK

- ► To feed low-dimensional representation *z* to estimation net
- ► Output from compression network.

$$\mathbf{z} = [\mathbf{z}_l, \mathbf{z}_{d_1}, \mathbf{z}_{d_2}; \boldsymbol{\theta}_e, \boldsymbol{\theta}_d].$$

 $\mathbf{z}_l = h\left(\mathbf{W}_1 x + b_1\right)$ (low-dimensional representation).

 $\hat{\mathbf{x}} = g \left(\mathbf{W}_2 \mathbf{z}_l + b_2 \right)$ (reconstructed vector)

 $\mathbf{z}_{d_1} = \frac{\|x - \hat{x}\|_2}{\|x\|_2} (x, \hat{x}, \text{ relative Euclidean distaince}).$

 $\mathbf{z}_{d_2} = rac{\mathbf{x} \cdot \hat{\mathbf{x}}}{||\mathbf{x}||_2 ||\hat{\mathbf{x}}||_2}$ (Cosine similarity).

 $\theta_e = (\mathbf{W}_1, \mathbf{b}_1)$ (Parameter of encoder)

 $\theta_d = (\mathbf{W}_2, \mathbf{b}_2)$ (Parameter of decoder)

ESTIMATION PART

- ▶ DAGMM rely on the assumption that the data follows a Gaussian distribution so it often struggle about strict inclusion of a normal density (Azzalini (1985)).
- ► For capturing wide range of the indices of skewness and kurtosis (Azzalini and Valle (1996)), skew normal mixture distribution seems to be sutiable for density estimation.

Figure 3: Density of SN(0,1, λ)

ESTIMATION PART, (Cont.)

Skew Normal Mixture Model (SNMM) (Lin (2009))

- ▶ Model: $\mathbf{z}_i \sim \sum_{i=1}^g \pi_i f\left(\mathbf{z}_i \mid \xi_i, \Sigma_i, \Lambda_i\right), \quad \pi_i \geq 0, \quad \sum_{i=1}^g \pi_i = 1,$
- ► *M*-variate skew normal distribution:

$$f(\mathbf{z} \mid \boldsymbol{\xi}, \boldsymbol{\Sigma}, \boldsymbol{\Lambda}) = 2^{M} \phi_{M}(\mathbf{z} \mid \boldsymbol{\xi}, \Omega) \Phi_{M} \left(\Lambda^{T} \Omega^{-1} (\mathbf{z} - \boldsymbol{\xi}) \mid \boldsymbol{\Delta} \right)$$

where $\Omega = \Sigma + \Lambda \Lambda^{T}$, $\Delta = (\mathbf{I}_{M} + \Lambda^{T} \Sigma^{-1} \Lambda)^{-1} = \mathbf{I}_{M} - \Lambda^{T} \Omega^{-1} \Lambda$ and, ϕ_{k} and Φ_k represents pdf and cdf of a M-dimensional multivariate normal distribution, respectively. We write $\mathbf{Z} \sim SN_M(\boldsymbol{\xi}, \boldsymbol{\Sigma}, \boldsymbol{\Lambda})$

► The one of useful properties of MSN is that Z has a convenient stochastic representation which can be written as

$$\mathbf{Z} \stackrel{d}{=} \boldsymbol{\xi} + \Lambda \boldsymbol{\tau} + \mathbf{U}$$

where $\tau \sim HN_k(\mathbf{0}, I)$, $\mathbf{U} \sim N_k(0, \Sigma)$ and τ and \mathbf{U} are independent.

 \blacktriangleright By using the representation, we can estimate (ξ, Σ, Λ) with EM algorithm.

ESTIMATION PART, (Cont.)

Estimated parameters by EM algorithm, (Lin (2009))

$$\begin{split} \pi_{i}^{(t+1)} &= \sum_{j=1}^{n} \frac{w_{ij}^{(t)}}{n}, \qquad \hat{\xi}_{i}^{(k+1)} = \left(\sum_{j=1}^{n} \hat{w}_{ij}^{(k)} \mathbf{z}_{j} - \hat{\Lambda}_{i}^{(k)} \sum_{j=1}^{n} w_{ij}^{(k)} \hat{\eta}_{ij}^{(k)}\right) / \sum_{j=1}^{n} w_{ij}^{(k)} \\ \hat{\Lambda}_{i}^{(k+1)} &= \left(\sum_{j=1}^{n} \hat{w}_{ij}^{(k)} \left(\mathbf{z}_{j} - \hat{\boldsymbol{\xi}}_{i}^{(k+1)}\right) \hat{\eta}_{ij}^{(k)}\right) \left(\sum_{j=1}^{n} \hat{w}_{ij}^{(k)} \hat{\Psi}_{ij}^{(k)}\right)^{-1} \\ \hat{\Sigma}^{(t+1)} &= \frac{1}{n} \left\{\sum_{j=1}^{n} \left(w_{j} - \hat{\boldsymbol{\xi}}^{(t+1)} - \hat{\Lambda}^{(t+1)} \hat{\eta}_{j}^{(t)}\right) \left(w_{j} - \hat{\boldsymbol{\xi}}^{(t+1)} - \hat{\Lambda}^{(t+1)} \hat{\eta}_{j}^{(t)}\right)^{\top} \right. \\ &+ \hat{\Lambda}^{(t+1)} \left(\hat{\Psi}_{j}^{(t)} - \hat{\eta}_{j}^{(t)} \hat{\eta}_{j}^{(t)}\right)^{\top} \right) \hat{\Lambda}^{(t+1)}^{\top} \right\} \end{split}$$

Objective function

We minimize the objective function for finding optimal weight and bias such that

$$J(\boldsymbol{\theta}_e, \boldsymbol{\theta}_d) = \frac{1}{n} || \boldsymbol{x}_i - \hat{\boldsymbol{x}}_i; \boldsymbol{\theta}_e, \boldsymbol{\theta}_d ||_2^2 + \frac{\lambda_1}{n} \sum_{i=1}^n EN(\mathbf{z}_i).$$

► **Reconstruction error** (compression part)

$$L(x,\hat{x}) = ||x - \hat{x}||_2^2$$
.

► Energy function (estimation part)

$$EN(\mathbf{z}_i) = -log(\sum_{i=1}^k \hat{\pi}_j f(\mathbf{z}_j \mid \xi_i, \Sigma_i, \Lambda_i)),$$

where
$$f(\mathbf{z} \mid \boldsymbol{\xi}, \boldsymbol{\Sigma}, \boldsymbol{\Lambda}) = 2^p \phi_p(\mathbf{z} \mid \boldsymbol{\xi}, \Omega) \Phi_p\left(\Lambda^T \Omega^{-1}(\mathbf{z} - \boldsymbol{\xi}) \mid \boldsymbol{\Delta}\right)$$
.

SIMULATION ENVIRONMENTS

- ► The compression part was constructed in the symmetric way as FC(6,12,tanh)- FC(12,4,tanh)- FC(4,1,none)-FC(4,12,tinh)- FC(12,6,none)
- ▶ The estimation part was performed with FC(3,10,tanh) -FC(10,2,softmax) where FC(α,β,f) refers to the fully connected layer consisting of the input neurons α and β and the activation function f for DAGMM
- learning rate = 0.001, regularization parameter λ_1 =0.001
- Optimization by RMSprop, Initialization by HE-initialization
- ► Use a 90%-10% split of sampled data for training and testing, employing Monte Carlo with 50 replications.
- ightharpoonup y = [X, O] where X is normal samples and O is anomaly samples. Both samples are constructed with 6- dimension.

Model					estimation method		
wiodei	distribution assumption	end-to-end	Autoencoder	MLN	EM algorithm		
DAGMM	GMM	0	0	0	X		
DAGMMEM	GMM	0	0	X	О		
DAGM	Gasussian	0	0	Х	X		
DASKN-EM	Skew-normal	0	0	X	0		
DASKNM-EM	SKNM	O	O	X	O		

- ► MLN means multi-layer neural network; parameter estimation.
- ► Two-step approach: dimensionality reduction is first conducted, and then density estimation is performed.
- ► The threshold is chosen the point which has the largest f1-score by each iteration

► Sampling distribution for case 1 where *X* and *O* denote skewed normal samples and separately distributed anomaly samples with normal, respectively.

$$\begin{split} \mathbf{X} &= [X_1, X_2, X_3, X_4, X_5, X_6] & O &= [O_1, O_2, O_3, O_4, O_5, O_6] \\ X_1 &\sim \text{Lognormal}(10, 10) & O_1 \sim N(20, 15) \\ X_2 &\sim \text{Gamma}(0.02, 10) & O_2 \sim \text{Uniform}(20, 25) \\ X_3 &\sim \text{Beta}(10, 0.02) & O_3 \sim \text{-Exponential}(3) \\ X_4 &= X_1 + \log(X_2) + N(0, 1) & O_4 &= O_1 * O_2 + N(0, 1) \\ X_5 &= X_2 + \exp(X_3) + N(0, 1) & O_5 &= O_3^2 + \log(O_2) + N(0, 1) \\ X_6 &= X_2 \cdot X_1 + N(0, 1) & O_6 &= \exp(O_1) + O_3 + N(0, 1) \end{split}$$

► Sampling distribution for case 2 involves *X* representing skewed normal samples and *O* representing closely distributed anomaly samples with normal distribution, respectively.

$$\begin{split} \mathbf{O} &= [O_1, O_2, O_3, O_4, O_5, O_6] \\ O_1 &\sim \text{Lognormal}(17, 17), \quad O_4 = O_1 + \log(O_2) + N(0, 1) \\ O_2 &\sim \text{Gamma}(1, 10), \quad O_5 = O_2^2 + \log(O_3) + N(0, 1) \\ O_3 &\sim \text{Beta}(10, 1), \quad O_6 = \exp(O_1) + O_3 + N(0, 1) \end{split}$$

SIMULATION DISTRIBUTION FOR CASE3 AND CASE4

► Sampling distribution for case 3 involves *X* representing symmetric normal samples and O representing separately distributed anomalies with normal.

$$X = [X_1, X_2, X_3, X_4, X_5, X_6]$$
 $O = [O_1, O_2, O_3, O_4, O_5, O_6]$
 $X_1 \sim N(1, 2)$ $O_1 \sim N(10, 10)$
 $X_2 \sim \text{Uniform}(0, 2)$ $O_2 \sim \text{Uniform5}, 10)$
 $X_3 \sim \text{Gamma}(5, 03)$ $O_3 \sim \text{-Exponential}(8)$
 $X_4 = X_1 + \log(X_2) + N(0, 1)$ $O_4 = O_1 + \log(O_2) + N(0, 1)$
 $X_5 = X_2 + \log(X_3) + N(0, 1)$ $O_5 = O_2 + \exp(O_3) + N(0, 1)$
 $X_6 = X_2 \cdot X_1 + N(0, 1)$ $O_6 = \exp(O_2) \cdot O_1 + N(0, 1)$

 Sampling distribution for case 4, which only differs from case 1 in terms of sampling *O*, aims to bring normal and anomaly samples closer.

$$\begin{split} O &= [O_1, O_2, O_3, O_4, O_5, O_6] \\ O_1 &\sim N(4,3), \quad O_4 = O_1 + \log(O_2) + N(0,1) \\ O_2 &\sim \text{Uniform}(2,4), \quad O_5 = O_2^2 + \exp(O_3) + N(0,1) \\ O_3 &\sim \text{Exponetial}(2), \quad O_6 = \exp(O_1) \cdot O_3 + N(0,1) \end{split}$$

INFORMATION CRITERIA

Table 1: Information criteria for component selection in simulation

		The number of clusters				
		case 1 and case 2		case3 a	nd cas4	
Model		2	3	2	3	
GMM	AIC	-7957.880	-7975.055	5811.679	5734.921	
	BIC	-7957.056	-7822.156	5920.585	5901.147	
SKNM	AIC	-3295.583	-3291.4170	11373.073	12244.780	
	BIC	-3321.723.	-3331.078	11346.933	12205.119	

Figure 4: The z-space visualization

METRICS

Confusion matrix

Predicted Class

▶ Precision : $\frac{TP}{TP+FP}$ where positive is anomaly

ightharpoonup Recall: $\frac{TP}{TP+FN}$

► F1 score : $2 \times \frac{Precision \times Recall}{Precision + Recall}$

Real Data

Table 2: The average accuracy over 50 simulations for case 1

n	Model	F1-score	Precision	Recall	FPR	FP
1500	DAGM	0.9864	0.9756	0.9976	0.0067	1.92
	DAGMM	0.9777	0.9574	0.9997	0.0122	3.48
	DAGMM-EM	0.9907	0.9824	0.9995	0.0048	1.38
	DASKN-EM	0.9831	0.9679	0.9995	0.0091	2.60
	DASKNM-EM	0.9951	0.95	0.9994	0.0023	0.65
3000	DAGM	0.9904	0.9836	0.9976	0.0045	2.54
	DAGMM	0.9780	0.9597	0.9979	0.0114	6.50
	DAGMM-EM	0.9913	0.9831	0.9997	0.0046	2.60
	DASKN-EM	0.9803	0.9615	0.966	0.0176	10.05
	DASKNM-EM	0.9955	0.9918	0.9992	0.0044	1.26

Table 3: The average accuracy over 50 simulations for case 2

			Ac	curacy		
n	Model	F1-score	Precision	Recall	FPR	FP
1500	DAGM	0.8978	0.8665	0.9347	0.0385	10.98
	DAGMM	0.9033	0.8584	0.9557	0.0425	12.10
	DAGMM-EM	0.8956	0.8724	0.9151	0.0373	10.62
	DASKN-EM	0.8888	0.8699	0.9111	0.0365	20.82
	DASKNM-EM	0.9115	0.8948	0.9309	0.0294	8.37
3000	DAGM	0.9043	0.8628	0.9444	0.0402	22.90
	DAGMM	0.8996	0.8574	0.9487	0.0430	24.28
	DAGMM-EM	0.8950	0.8728	0.9200	0.0358	20.42
	DASKN-EM	0.8924	0.8791	0.9087	0.0335	19.12
	DASKNM-EM	0.9104	0.8906	0.9324	0.0305	17.33

Figure 5: Box-plot of f1-score when n is 1500 (left) and when n is 3000 (right) for case 1

Figure 6: Box-plot of f1-score when n is 1500 (left) and when n is 3000 (right) for case 2

Table 4: The average accuracy over 50 simulations for case 3

		Accuracy				
n	Model	F1-score	Precision	Recall	FPR	FP
1500	DAGM	0.9991	0.9982	1.000	0.0005	0.14
	DAGMM	0.9971	0.9948	0.9995	0.0041	0.40
	DAGMM-EM	0.9985	0.9976	0.9995	0.0006	0.18
	DASKN-EM	0.9961	0.9947	0.9976	0.0014	0.44
	DASKNM-EM	0.9929	0.9921	0.9943	0.0023	0.64
3000	DAGM	0.9990	0.9984	0.9995	0.0004	0.24
	DAGMM	0.9955	0.9941	0.9971	0.0015	0.90
	DAGMM-EM	0.9985	0.9972	0.9997	0.0007	0.42
	DASKN-EM	0.9953	0.9968	0.9965	0.0008	0.48
	DASKNM-EM	0.9940	0.9921	0.9973	0.0011	0.60

Table 5: The average accuracy over 50 simulations for case 4

		Accuracy				
n	Model	F1-score	Precision	Recall	FPR	FP
1500	DAGM	0.8944	0.8883	0.9037	0.0309	8.82
	DAGMM	0.8770	0.8715	0.8848	0.0352	10.02
	DAGMM-EM	0.9126	0.8885	0.9397	0.0314	8.96
	DASKN-EM	0.8596	0.8642	0.8608	0.0368	10.48
	DASKNM-EM	0.8782	0.8813	0.804	0.0312	9.42
3000	DAGM	0.8793	0.8866	0.8744	0.0300	17.12
	DAGMM	0.8867	0.8889	0.8867	0.0294	16.78
	DAGMM-EM	0.9114	0.9035	0.9207	0.0262	14.92
	DASKN-EM	0.8558	0.8778	0.8388	0.0315	17.94
	DASKNM-EM	0.8889	0.9154	0.8793	0.0261	14.88

Figure 7: Box-plot of f1-score when n is 1500 (left) and when n is 3000 (right) for case 3

Figure 8: Box-plot of f1-score when n is 1500 (left) and when n is 3000 (right) for case 4

REAL DATA ANALYSIS SETTING

	#Dimensions	#Instances	Anomality
Credit card	29	5,492	4.69%
Satellite	36	5025	1.49%

Table 6: Anomaly Dataset

	Layer	Learning rate	Regularization param	Threshold
Credit card	[25,20,10]	0.001	0.01	≥ 80%
Satellite	[30,20,10]	0.001	0.01	≥ 60%

Table 7: Analysis Setting

- ▶ Use a 90%-10% split of sampled data for training and testing, employing Monte Carlo with 20 replications.
- Optimization by RMSprop, Initialization by HE-initialization

INFORMATION CRITERIA

Table 8: Information criteria for component selection in real data

		The number of clusters				
		Credi	t Card	Sate	ellite	
Model		3	4	2	3	
GMM	AIC	21202.444	21023.146	15277.540	13027.137	
	BIC	21388.387	21273.208	15399.458	13213.222	
SKNM	AIC	35845.222	35849.598	24871.989	26054.794	
	BIC	35805.562	35796.417	24859.370	26028.653	

CREDIT CARD

Figure 9: z-space (left) and CDF of energy value (right) of credit card data

CREDIT CARD(Cont.)

Table 9: Average accuracy of simulation 20 times for the credit card data

		Accuracy				
n	Model	F1-score	Precision	Recall	FPR	FP
5000	DAGM	0.8762	0.9136	0.8424	0.079	39.05
	DAGMM	0.8626	0.9122	0.8187	0.0391	39.10
	DAGMM-EM	0.8138	0.7787	0.8603	0.2532	126.60
	DASKN-EM	0.8795	0.9148	0.8477	0.0785	39.25
	DASKNM-EM	0.9042	0.9292	0.8806	0.0661	33.05

Figure 10: f1-score box plots of credit card for 20 times

2. SATELLITE

Figure 11: z-space (left) and CDF of energy value (right) of satellite d data

2.SATELLITE(Cont.)

Table 10: Average accuracy of simulation 20 times for the satellite data

	Accuracy						
Model	F1-score	Precision	Recall	FPR	FP		
DAGM	0.6641	0.8318	0.5573	0.0180	9.05		
DAGMM	0.5602	0.7613	0.4613	0.0260	13.10		
DAGMM-EM	0.7271	0.8188	0.6620	0.2455	12.35		
DASKN-EM	0.6692	0.8101	0.5780	0.0224	11.30		
DASKNM-EM	0.6871	0.8827	0.5666	0.0122	6.15		

Figure 12: f1-score box plots of credit card for 20 times < \ge > < \ge > < < > < < <

Real Data

CONCLUSTION

- DASKNM-EM performs well in anomaly detection within skewed and heavy-tailed distributions.
- ► Furthermore, in symmetric observation cases, DASKNM-EM demonstrates competitive proficiency compared to baseline models.
- ► Using DASKNM-EM for detection ensures robust and reliable performance across diverse scenarios.

- ▶ Depending on the occasion, if you need precise detection for setting certain distribution, then this model may not be suitable.
- ► To make better anomaly detection, automating hyper-parameters adjustments and improve speed can help it perform better in real-world situations.

REFERENCES I

- Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12(2):171-178.
- Azzalini, A. and Valle, A. D. (1996). The multivariate skew-normal distribution. Biometrika, 83(4):715-726.
- Lin, T. I. (2009). Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100(2):257–265.
- Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu, C., Cho, D., and Chen, H. (2018). Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In International conference on learning representations.

APPENDIX I

Figure 13: scree plot for K group (sat,credit)

E-step,(Lin (2009))

$$E\left(W_{ij} \mid \mathbf{z}_{j}, \hat{\mathbf{\Theta}}^{(k)}\right) = \hat{w}_{ij}^{(k)} = \frac{\hat{\pi}_{i}^{(k)} f\left(\mathbf{z}_{j} \mid \hat{\xi}_{i}^{(k)}, \hat{\Sigma}_{i}^{(k)}, \hat{\Lambda}_{i}^{(k)}\right)}{\sum_{m=1}^{g} \hat{\pi}_{m}^{(k)} f\left(\mathbf{z}_{j} \mid \hat{\xi}_{m}^{(k)}, \hat{\Sigma}_{m}^{(k)}, \hat{\Lambda}_{m}^{(k)}\right)},$$

$$E\left(W_{ij}\boldsymbol{\tau}_{j}\mid\mathbf{z}_{j},\hat{\boldsymbol{\Theta}}^{(k)}\right)=\hat{w}_{ij}^{(k)}\hat{\boldsymbol{\eta}}_{ij}^{(k)}=E\left(W_{ij}\mid\mathbf{z}_{j},\hat{\boldsymbol{\Theta}}^{(k)}\right)E\left(\boldsymbol{\tau}_{j}\mid W_{ij}=1,\mathbf{z}_{j},\hat{\boldsymbol{\Theta}}^{(k)}\right),$$

and

$$E\left(W_{ij}\boldsymbol{\pi}_{j}\boldsymbol{\tau}_{j}^{\mathrm{T}}\mid\mathbf{z}_{j},\hat{\boldsymbol{\Theta}}^{(k)}\right)=\hat{w}_{ij}^{(k)}\hat{\boldsymbol{\Psi}}_{ij}^{(k)}=E\left(W_{ij}\mid\mathbf{z}_{j},\hat{\boldsymbol{\Theta}}^{(k)}\right)E\left(\boldsymbol{\tau}_{j}\boldsymbol{\tau}_{j}^{\mathrm{T}}\mid W_{ij}=1,\mathbf{z}_{j},\hat{\boldsymbol{\Theta}}^{(k)}\right)$$

where
$$E\left(\boldsymbol{\tau}_{j} \mid \mathbf{y}_{j}, Z_{ij} = 1\right) = \eta_{ij}$$
 and $E\left(\boldsymbol{\tau}_{j}\boldsymbol{\tau}_{j}^{\mathrm{T}} \mid \mathbf{y}_{j}, Z_{ij} = 1\right) = \Psi_{ij}$,

APPENDIX III

E-step,(Lin (2009))

Therefore, the *Q*-function can be written by

$$Q\left(\boldsymbol{\Theta} \mid \hat{\boldsymbol{\Theta}}^{(k)}\right) = \sum_{i=1}^{g} \sum_{j=1}^{n} \hat{z}_{ij}^{(k)} \left\{ \log\left(w_{i}\right) + \frac{1}{2} \log\left|\boldsymbol{\Sigma}_{i}^{-1}\right| - \frac{1}{2} \left(\mathbf{z}_{j} - \boldsymbol{\xi}_{i} - \boldsymbol{\Lambda}_{i} \hat{\boldsymbol{\eta}}_{ij}^{(k)}\right)^{\mathsf{T}} \boldsymbol{\Sigma}_{i}^{-1} \right.$$
$$\times \left(\mathbf{z}_{j} - \boldsymbol{\xi}_{i} - \boldsymbol{\Lambda}_{i} \hat{\boldsymbol{\eta}}_{ij}^{(k)}\right) - \frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\Lambda}_{i} \left(\hat{\boldsymbol{\Psi}}_{ij}^{(k)} - \hat{\boldsymbol{\eta}}_{ij}^{(k)} \hat{\boldsymbol{\eta}}_{ij}^{(k)}\right) \boldsymbol{\Lambda}_{i}^{\mathsf{T}}\right) \right\}.$$

M-step,(Lin (2009))

$$\begin{split} & \pi_{i}^{(t+1)} = \sum_{j=1}^{n} \frac{w_{ij}^{(t)}}{n}, \qquad \qquad \hat{\xi}_{i}^{(k+1)} = \left(\sum_{j=1}^{n} \hat{w}_{ij}^{(k)} \mathbf{z}_{j} - \hat{\Lambda}_{i}^{(k)} \sum_{j=1}^{n} w_{ij}^{(k)} \hat{\eta}_{ij}^{(k)}\right) / \sum_{j=1}^{n} w_{ij}^{(k)} \\ & \hat{\Lambda}_{i}^{(k+1)} = \left(\sum_{j=1}^{n} \hat{w}_{ij}^{(k)} \left(\mathbf{z}_{j} - \hat{\boldsymbol{\xi}}_{i}^{(k+1)}\right) \hat{\boldsymbol{\eta}}_{ij}^{(k)}\right) \left(\sum_{j=1}^{n} \hat{w}_{ij}^{(k)} \hat{\Psi}_{ij}^{(k)}\right)^{-1} \\ & \hat{\Sigma}^{(t+1)} = \frac{1}{n} \left\{\sum_{j=1}^{n} \left(w_{j} - \hat{\boldsymbol{\xi}}^{(t+1)} - \hat{\Lambda}^{(t+1)} \hat{\boldsymbol{\eta}}_{j}^{(t)}\right) \left(w_{j} - \hat{\boldsymbol{\xi}}^{(t+1)} - \hat{\Lambda}^{(t+1)} \hat{\boldsymbol{\eta}}_{j}^{(t)}\right)^{\top} \\ & + \hat{\Lambda}^{(t+1)} \left(\hat{\Psi}_{j}^{(t)} - \hat{\boldsymbol{\eta}}_{j}^{(t)} \hat{\boldsymbol{\eta}}_{j}^{(t)}\right) \hat{\Lambda}^{(t+1)}^{\top} \right\} \end{split}$$