Hands-on session getting started with PCIe40 Test Bench

Harsh Purwar

December 16th, 2021 Revised: September 16th, 2024

Outline What all we will cover today

- PCIe40 Test Bench at ID-Lab
- Setting up your account on <u>daqupsvr.phys.hawaii.edu</u>
 - Remote access: SSH, VNC, etc.
- PCle40 software/GUI for masking/unmasking channels
- Available tools/scripts for TOP/KLM test bench configurations
- Switching between readout boards (PCle40/COPPER)
- Introduction to the local FTSW network
- Other operational tools: trigft, statft, ttaddr, ttaddr_cpr
- Setting up & using basf2 to read & unpack TOP/KLM PCIe40 data

PCle40 Test Bench Where is it? I don't see it in the lab!

- There is no PCIe40 Test "Bench", no bench at all...
- All we have in lab is a PCle40 card (or board) and a high-end server that hosts this board.
- It is mounted inside the PCle40 host server, located under the Big Optical Table in the lab.

PCle40 Test Bench Where is it? I don't see it in the lab!

- There is no PCIe40 Test Bench, no bench at all...
- All we have in lab is a PCle40 card (or board) and a high-end server that hosts this board.
- It is mounted inside the PCle40 host server, located under the Big Optical Table in the lab.
- This is a readout board (just like COPPER boards), which will be used to read data & configure (almost) all Belle II sub-detectors. CERN also plans on using this same RO board for LHCb & ALICE experiments.
- At Belle II, we have already upgraded all the sub-detectors to use this new PCIe40 board.
- PCle40 was manufactured at CPPM, Marseille, France. The FW and SW libraries are provided to us by the Belle II collaboration (dev. by the DAQ Upgrade group).

PCle40 Test Bench

Confluence: https://confluence.desy.de/pages/viewpage.action?pageId=188791723

- On the outside, we do see optical fiber cables (**cyan** or **orange**) that connect the PCle40 board to an actual FEE (TOP/KLM electronics).
- COPPER boards can be connected to at max 4 FEEs, however PCle40 can be connected to 48 FEEs.
- In the lab we have currently few FEEs connected to PCle40 that can be used for testing.

PCIe40 Channel	0	1	2	3	4	5
Connected to		KLM HSLBa				KLM DC
PCIe40 Channel	6	7	8	9	10	11
Connected to	TOP BS#8	TOP BS#3	TOP BS#7			TOP BS#5
	Issue programming BS.					
PCIe40 Channel	12	13	14	15	16	17
Connected to						
PCIe40 Channel	18	19	20	21	22	23
Connected to						

Let's open that Terminal!

Setting up & securing your account on daqupsvr

Setting up your account

daqupsvr.phys.hawaii.edu (192.168.153.17)

- For a new account please contact any of the existing admins:
 <u>purwar</u>, <u>cketter</u>, <u>bessner</u>, <u>varner</u>, kohani, tripathi, kurtisn
- SSH and VNC access is already setup for all users.

Typical SSH Configuration:

```
Host idlab2
User harsh
Hostname idlab2.phys.hawaii.edu
Port 24601

Host daqupsvr
User purwar
HostName daqupsvr.phys.hawaii.edu
Port 22
ProxyJump idlab2
ForwardX11Trusted yes
ForwardX11 yes
LocalForward 5901 localhost:5901
```

User	Allocated VNC port			
<mark>purwar</mark>	5901			
kohani	5902			
cketter	5903			
bessner	5904			
tripathi	5905			
varner	5906			
shebalin	5907			
mza	5908			

Connect your VNC client at

localhost:<mark>5901</mark>

December 16th, 2021

SSH & VNC Passwords

- Please, please! do change your user account passwords after you login.
- Use passwd to change user account (login) password.
- Use vncpasswd to change VNC password.

Keep your account secure!

- It is extremely important to keep your user account safe, since it is an admin account. Your negligence may hinder other people's work.
- Also, for what we are going to do next!

Password-free access to TOP and KLM Test Benches

Generate a ssh key pair:

ssh-keygen

- No need to set a passphrase (not ideal but helps with the new tools). Default filename is fine!
- You may have more than 1 key-pair (w and wo passphrase). Use unsecure key-pair only for local access (within the lab).

```
Host top
User TOP PocketDAQ Username

Host klmvme
User belle2
ProxyJump klm

Host klm
User belle2
```

```
ssh-copy-id klm
ssh-copy-id top
ssh top
ssh klm
ssh klmvme
```

PCle40 Firmware & Software

Thanks to Belle II Collaboration & DAQ Upgrade Team

PCIe40 Software Repository

The source code for PCle40 software libraries is here:

PCIe40 SW: https://gitlab.desy.de/belle2/dag/pcie40_software

To setup PCle40 software on daqupsvr:

Copy your public SSH key (~/.ssh/**id_rsa.pub** from the key pair you just created on http://gitlab.desy.de)

```
git clone git@gitlab.desy.de:belle2/daq/pcie40_software.git
cd software/; mkdir build/; cd build/
cmake ..
Make
```

OR

• In -s /shared/software ~/
source ~/software/Scripts/setup.sh in your ~/.bashrc

Masking/Unmasking links

```
Running on : p40_fv21pr002
Command window
Programming PLLs (source = Oscillator)
.... ready ......
                                                                             Voltages and currents
PLL SI54345_1
Input 1: Loss of signal
PLL status: Loss of lock
                                                                             VCCIN
                                                                                       (0.9V) 0.91V
                                                                                                     6.75A
                                                                             VCCR
                                                                                       (1.02V) 1.06V
                                                                             VCCT
                                                                                       (1.02V) 1.04V
                                                                             V1.8V
                                                                                       (1.8V) 1.82V
                                                                                                      5.48A6A
                                                                             A10_VCC_PT (1.8V) 1.81V
                                                                                                     0.94A.76A
                                                                             A10_V1.8
                                                                                       (1.8V) 1.81V
                                                                                                     3.01A
PLL SI54345_2
                                        LOL/LOS seen is OK.
Input 1: Loss of signal
                                                                             V2.5V
                                                                                       (2.5V) 2.51V
                                                                                                     3.32A.97A
PLL status: Loss of lock
                                                                             V3.3V
                                                                                       (3.3V) 3.32V
                                                                                                     1.89A48A
                                                                              12V
                                                                                       (12V)
                                                                                             12.03V 2.2AA
                                                                             12V_ATX
                                                                                       (12V)
                                                                                             0.01V -0.01A
PLL SI54344
Input 0 : Input clock present No LOS since 42.9 min.
PLL status: Locked
                   No LOL since 42.9 min.
Clock FTSW
```

```
Temperatures
31.6 30.1 39.0 34.6 34.1 39.1 C
```

```
RX TX B2L B2U
                  RX TX B2L B2U
               25 NO
               26
               27 NO
               28
               31 NO
               32 NO
               33 NO
               34
               37
               39
               40
               46
```

Status of links from FEE

September 16th, 2024

```
Clock status from FTSW
Trigger counter: 3701
```

Trigger tag : 0

Clock Up : OK TTD Up : OK Trigger type : 15

Face plate clock: 127214530 Hz

Run number : 5

F2: Program PLLs (source = FTSW), F3: Program PLLs (source = Osci.) F4: Clear LOS/OOF/LOL Flag, F5: Hard reset, F6: Soft reset F7: Reset trigger counter, r: Resynchronize one b2link a: Activate all channels, d: Deactivate all channels m: (De)activate one channel, g: (De)activate group of channels

Operational controls

PCIe40 Firmware Repository

The source code for both PCle40 software and firmware is on stash.

PCle40 FW: https://gitlab.desy.de/belle2/dag/pcie40_firmware

 PCle40 FW can be automatically installed on every reboot (right now broken for some reason). Please follow the procedure to load PCle40 firmware and driver.

Reloading PCle40 Firmware:

- Add /shared/intelFPGA_pro/21.3/quartus/bin to the PATH (in ~/.bash_profile)
- cd software/Scripts/ ./pcie40_program /usr/local/firmware/pcie40/latest.sof
- pcie40_reload to load the PCle40 driver, required after FW programming/reboot
- In python2 pl1_status_small.py 0 GUI, press F3, wait, mask/unmask links.

If for some reason this doesn't work the first time, please retry 1 more time after rebooting the daqupsvr, otherwise contact me (message on RC, if you have it, otherwise email!)

Detector configuration with PCle40 Switching between RO boards

TOP/KLM

Basic slow-control commands (for PCle40)

```
    reghs → pcie40_regconfig - Read/write FEE or PCle40 registers
        pcie40_regconfig --ch {0..47} --fee32 {-r addr, -w addr val}
    staths → pcie40_statlink - Get status of a link
```

```
[purwar@daqupsvr ~]$ pcie40 statlink --ch 5 --fee
statlink version 3 (20210107) / PCIE40 firmware version 14.9
memory: OK | ttd: UP | ttd clk: UP | run=: 0 | trg: 0 | trg type: 15
PLLs:LOCKED | B2L:READY (rx:111 tx:11) | DMA:FREE (
                                                        0.0kB)
KLM serial 16 version 4
(05)
       b21=UP (gbt=UP rx=UP tx=UP rxsta=READY txsta=READY mask=UNMASK)
                       total=
(05)
                                  0.0kB
       event=0
       full=0 feecrcerr=202 check=NG rxcrcerr=24446, check=0
(05)
       no b2link error
(05)
```

pcie40 statlink --ch {0..47} --fee

Detector configuration before RO TOP/KLM

- Modified KLM scripts for TB configuration (now managed by Chris): https://stash.desy.de/users/shebalin/repos/klm_scripts/browse
- For TOP the scripts are located here: https://gitlab.desy.de/belle2/detector/top/topConfig

There is also a PyQt-5/6 GUI that can be used for Power-cycling & configuration of TOP BS in the lab:

https://gitlab.desy.de/belle2/detector/top/topconfiggui - uhm branch

TOP Power-cycle & Configuration GUI

git clone git@gitlab.desy.de:belle2/detector/top/topconfiggui.git; git checkout uhm

python3 uhGUI.py

If you plan on using this, please run it over VNC!

Note added recently:

TOP BS at UH are now directly connected to PCle40.
All TOP COPPER & HSLB boards have been dismounted.

Switching between RO boards PCIe40 / COPPER

- Switch FEE from PCle40 to COPPER:
 - Turn off optical transceivers on PCle40
 - Turn on optical transceivers on HSLB
 - Modify masking on FTSW

switch top BS3 copper
switch klm copper

• Switch FEE from COPPER to PCIe40:

switch top BS3 pcie40
switch top 7 pcie40
switch klm pcie40

switch assumes default mapping
PCle40 channel ←→ FEE

Introduction to the FTSW Network

Upgraded in 2020, changed slightly again in May 2023.

ID-Lab FTSW Network

December 16th, 2021

Basic FTSW Commands

SSH to **klmvme** to issue the following commands:

• Status:

Reset FTSW:

Issue triggers:

trigft -{ID} --exp=0 --run=0 pulse
$$\{f_{\sf Hz}\}$$
 $\{{\sf N}_{\sf max}\}$

Program FTSW:

A very useful tmux-based utility is also available for all users: /shared/HawaiiTBM.sh

HawaiiTBM.sh

HawaiiTBM.sh

December 16th, 2021

Other available tools

ttaddr, ttaddr_cpr

ttaddr/ttaddr_cpr Implemented last week

- ttaddr used for masking/unmasking FEE/PCle40 on the FTSW side
- ttaddr_cpr used for masking/unmasking FEE/COPPER on the FTSW
- Usage for both commands is the same
- List of important commands (examples):
 - ttaddr -81 -p , ttaddr -85 -p , ttaddr -13 -p -- Print mapping with addresses
 - ttaddr -81 -c; ttaddr -81 -a; -- Clear & assign addresses
 - ttaddr -85 -c; ttaddr -85 -a;
 - ttaddr -13 -c; ttaddr -13 -a;
 - ttaddr -81 -m top , ttaddr -85 -m s01 , ttaddr -13 -m bs3 -- Mosk FEE or TB
 - ttaddr -85 -{1/g} -- Switch KLM FTSW to local/global mode (not for TOP FTSW)
 - ttaddr -13 -1 -- Switch FTSW 13 (TOP) to local
 - ttaddr -13 -g -- Switch FTSW 13 (TOP) to global

Data RO with basf2

Belle II Analysis Software Framework

Reading PCle40 data with basf2

- Before reading data, ensure correct masking & address assignments on the FTSWs.
- PCle40 data (raw) can be readout even without basf2 pcie40_dmahighrate
- For reading formatted/packed data we need to use basf2, which requires a local installation – already done in: /shared/basf2
- I prefer to add an alias in ~/.bashrc then simply type bs2 to use basf2:
 alias bs2='source /shared/basf2/tools/b2setup_old.sh;
 cd /shared/basf2/release_daq/;
 b2setup;'
- Now open 2 terminals on daqupsvr (or ssh to daqupsvr)
- Use of tmux is highly recommended!

On Terminal 1

- Run des_ser_PCIe40_main_{top/klm}
- cd /shared/basf2/release_daq/daq/pcie40/ source Pcie40Software/Scripts/setup.sh

```
pcie40 ulreset ; ./des ser PCIe40 main {top/klm} {id}
     Processing time in Seconds
     Processing time in Nano seconds : 786008
     [DEBUG] (hostname dagupsvr, nodeid 0x03000001 ) concides with stored info.( dagupsvr 0x03000001 )
     [DEBUG] Initializing PCIe40 readout...
     SUCCESS: Device opened for ECS 0
     SUCCESS: Device opened for ECS 2
     SUCCESS: Device opened for DMA
                                                                          Sub-detector
                                                                                               id
     [DEBUG] # of used channels = 1
     [DEBUG] PCIe40 readout was initialized.
                                                                                          0x03000001
                                                                               top
     des ser PCIe40 main: Reading the 1st event from a PCIe40 board...
     [DEBUG] Accepting...: port 31001
                                                                               klm
                                                                                          0x07000001
```

On Terminal 2

- We run basf2 to receive data and write to an output file (important to setup basf2).
- cd /shared/basf2/release_daq/daq/rawdata/examples/
 basf2 Recv2Root.py -o ~/dataFile.sroot

```
[INFO] Steering file: Recv2Root.py
[INFO] DeSerializerPC: Constructor done.
[INFO] Starting event processing, random seed is set to
'e1ab05f816f9c1027ee7b9993d0b02a44a3ff15a95c734c8202c73597688a81c'
[INFO] DeSerializerPC: initialize() started.
[INFO] DeSerializerPC: initialize() done.
[DEBUG] Connecting to daqupsvr port 31001 ...
[DEBUG] Done
[DEBUG] Initialization finished
[INFO] DeSerializerPC: Reading the 1st packet from eb0...
```

On Terminal 1 (if connected):

```
[DEBUG] Accepted.
Connection(port 31001) accepted
buff1 = 0x7fcd2037a010
```

If not connected (not to worry):

Failed to connect. Retrying...: Connection refused

```
statft version 20210921 FTSW #081 / ft2u090j - 2021.12.15 15:02:56.759
                                                                         statft-20210921 FTSW #085 / ft2p092a 2021.12.03-08:53:31 -> 12.15 15:02:56|statft-20210921 FTSW #013 / ft2p094a 2021.11.30-05:28:12 -> 12.15 16:19:31
                                                                                                                                                   16 exprun=00000000 exp 0 run 0 sub 0
16 exprun=000000000 exp 0 run 0 sub 0
                                                                         16 exprun=00000000 exp 0 run 0 sub 0
17 omask=00001fee s3q=0 selx/o=0/15 x/o=1/ee xor=00
                                                                         17 omask=000011ff s3q=0 clk=00 gmask=07ff GLOBAL
                                                                                                                                                   17 omask=00008000 s3q=0 c1k=00 lmask=0000 LOCAL
1f9f jpll=dc008000 clk=xtal GOOD-CLOCK
                                                                         1f9f jpll=cc008000 clk=in GOOD-CLOCK
                                                                                                                                    KLM
                                                                                                                                                   1f9f jpll=cc008000 clk=in GOOD-CLOCK
                                                                                                                                                                                                               TOP
28292c trg=00021034 pulse 1000.590 Hz 528e3 limit -1
                                                                         28292c trg=00000000 none limit 0 <-> last 0
                                                                                                                                                   28292c trg=00000000 none limit 0 <-> last 0
2a2b27 cnt 6026 > 0 > 6023 > 0 (1004.3 > 0.0 > 1003.8Hz)
                                                                         2a2b27 cnt 0 > 0 > 6025 > 0 (0.0 > 0.0 > 1004.2Hz)
                                                                                                                                                   2a2b27 cnt 0 > 0 > 0 > 0 (0.0 > 0.0 > 0.0Hz)
2d stafifo=00000000 some data trg-enabled
                                                                         2d stafifo=10000000 empty trg-enabled
                                                                                                                                                   2d stafifo=10000000 empty trg-DISABLED
    reset=c0000000 01.12-20:54:34.465(start) no-FIFO auto-reset
                                                                            reset=80000000 01.12-20:54:35.465(start) no-FIFO
                                                                                                                                                        reset=80000000 01.12-16:57:15.969(reset) no-FIFO
       err=90000000 01.12-20:54:34.462(error) RUNNING
                                                                               err=70000000 01.12-20:54:35.462(error) RUNNING
                                                                                                                                                          err=e0000000 01.12-16:57:15.969(error)
25/30 e/bs=0f000000 00700000 GDL-notready
                                                                         25/30 e/bs=0a000000 00000000 tag=0
                                                                                                                                                   25/30 e/bs=0a000000 01000000 tag=0
                                                                                                                                                   393a3b me=01300004 0f000000 10800100 min=8
393a3b me=08100004 0f800000 00000000 mask=none
                                                                         393a3b me=08500000 0a000000 00000000 ready tag=0
                                                                                                                                                   485c70 X8=08780000 0a000000 00abcdef ready tag=0 d=0.00%
405468 00=08500000 0a000000 000000000 ready tag=0 d=0.00%
                                                                         485c70 x8!08680000 0a001789 00abcdef - ready tag=6025 d=0.00%
42566a o2!01300000 0f000000 10800100 - LOCAL-mode d=0.00%
                                                                         495d71 o9!0850a000 0a001789 0a001789 - ready tag=6025 d=0.00%
                                                                                                                                                   9f limiter=0c00b000 maxtrig=12 maxtime=351.44us
44586c 04=03040000 0a0000000 000000000 ready tag=0 d=0.00%
                                                                         4a5e72 o10!0850b000 0a0000000 0a0000000 - ready tag=0 d=0.00%
                                                                                                                                                   a0-a7 dead 0.00% (t=0.00% c=0.00% p=0.00% f=0.00% r=0.00% v=0.00% i=0.00%)
9f limiter=0c00b000 maxtrig=12 maxtime=351.44us
                                                                         9f limiter=0c00b000 maxtrig=12 maxtime=351.44us
a0-a7 dead 0.00% (t=0.00% c=0.00% p=0.00% f=0.00% r=0.00% v=0.00% i=0.00% a0-a7 dead 0.00% (t=0.00% c=0.00% p=0.00% f=0.00% r=0.00% v=0.00% i=0.00%)
```

Now start issuing triggers...

trigft -81 --exp=0 --run=0 pulse 500 {N}

Unpacking PCIe40 TOP/KLM Data

Sequential root → root

Unpacking TOP/KLM Data with basf2

- We need a steering file: a sample is already provided: /shared/basf2/unpackTOPdigi_pcie40.py and unpackTOPraw_pcie40.py
- unpackTOPdigi_pcie40.py

 Unpacks TOP data to TOPDigits using a fake electronics map for the 2 BS (or SCRODs) we have in the lab (BS3 and BS5).
- unpackTOPraw_pcie40.py

 Unpacks TOP data to TOPRawDigits Does not assume or need any electronic map for the SCRODs.
- basf2 /shared/basf2/unpackTOPdigi_pcie40.py -i ~/dataFile.sroot -o ~/dataFile.root
- You may open the unpacked **.root** file in **root -1 ~/dataFile.root** and use **TBrowser t** over VNC to view the data histograms!

Thank you very much for your time.

- Harsh PURWAR