

Progressive Neural Compression for Adaptive Image Offloading under Timing Constraints

Ruiqi Wang, Hanyang Liu, Jiaming Qiu, Moran Xu, Roch Guérin, Chenyang Lu Department of Computer Science & Engineering

Real-Time Image Classification

- A camera captures, compresses, and offloads the image to an edge server.
- Edge server decodes and classifies the image.
- Deadline for offloading the image: the arrival of the next object.

Progressive Compression

- Maximize classification accuracy under varying bandwidth and deadlines
 - Varying amount of data received by the deadline
- Progressive compression
 - □ Classification can be performed at any time on partially received data
 - □ Fewer data → graceful degradation in classification accuracy
 - \square More data \rightarrow more accurate classification

Embedded Devices

Data Compression

Transmission

Inference

- > The device compresses an image into features using an encoder network.
- > The server reconstructs the image using a decoder network.
- Need to make an autoencoder progressive.
 - Maximize image classification accuracy with **partially** received features.

Make Autoencoder Progressive

- "Stochastic tail-drop" (Koike-Akino et al., 2020)
 - \square During each training iteration: **Randomly** zero-out the last *L* features (out of *M*).
 - □ Optimize the training loss as normal.

- By applying various tail-drop length in different iterations:
 - □ The decoder is trained to deal with **incomplete set of features**.
 - $lue{}$ Top features are trained more often \rightarrow higher importance.

Optimize for Classification

Stage 1: Unsupervised Pretraining

Stage 2: Knowledge Distillation for Inference

Progressive Image Offloading Pipeline

- Distributed architecture
 - encoding on the device (client)
 - offloading
 - □ decoding and classification (edge server).
- > Features are sent in 64-byte data blocks
- Terminate offloading upon the the next image arrival (deadline).

- A typical run of the offloading process under varying network bandwidth.
 - □ Red curve: throughput of offloading traffic.
 - □ Gray bars: data size of the fully offloaded features.
 - Numbers: the number of features fully offloaded to the edge server.

Model Implementation

- Autoencoder with an asymmetric design
 - Encoder: **2-layer** convolutional network to match the capacity of the device
 - □ Decoder: **5-layer** convolutional network with higher dimension and complexity

- Additional training data from the ImageNet validation set
 - 35,000/5,000 for training and validation
 - □ 2,000 for testbed experiments.

Experimental Setup

Floor plan and hardware details for the experiments

IEEE 802.15.4 (2.4GHz) radio module:

 A pair of nRF52840 development kits (Nordic Semiconductor).

- Raspberry Pi 4B
- Jammer:
- Raspberry Pi 3B

Layout of the indoor lab space.

Edge Server:

- CPU: Intel Core i7-10700K
- GPU: Nvidia GeForce RTX 3090

Experimental Setup

- Three levels of network jamming (None, Light, and Heavy).
 - □ A Raspberry Pi "Jammer" generates 2.4GHz WiFi traffic with iperf.
- Baselines

	Traditional Image Encoding	Neural Compression
Non-progressive	JPEG, <mark>WebP</mark>	DeepCOD (Yao et al., 2020), Starfish (Hu et al., 2020)
Progressive	Progressive JPEG	RNN-based (Toderici et al., 2017) PNC (Our work)

Metric: Top-5 Accuracy

- > PNC shows a comparable encoding overhead as traditional image encoders.
 - \square *q* represents the quality factor.

	Method	Configuration	Average Encoding Overhead (ms)
	PNC	#thread $= 1$	11.8
Traditional	WebP	q = 0	32.5
		q = 20	48.6
Image Encoding	Prog. JPEG	q = 30	5.8
Neural-network-	Starfish	One Patch	62.9
based Encoding	RNN-TFLite	One Iteration	1900

Progressive Neural Compression (PNC)

- PNC is designed for adaptive image offloading under timing constraints.
 - ☐ Training for progressive behavior through stochastic **tail-drop**
 - □ Optimized classification through **knowledge distillation** for inference
 - □ **Asymmetric** autoencoder design for encoding efficiency
- > PNC has been implemented in a distributed real-time image classification testbed.
- PNC's characteristics on an edge computing testbed
 - □ Classification accuracy
 - **■** Encoding efficiency
 - □ Adaptability to different deadlines and varying bandwidth

The End of Presentation