Issued: 1/26/2010 **ISE 790 HW#1** Due: Thursday 2/2/2010

- 1. Solve the following fuzzy applications.
 - (a) Consider the following definitions:

- (i) When x = 50°F, how cool is it? how warm is it? how hot is it?
- (ii) When $x = 90^{\circ}$ F, how cool is it? how warm is it? how hot is it?
- (iii) Given

When $x = \tilde{80}^{\circ}$ F, how cool is it? how warm is it? how hot is it?

(b) Consider the following definitions:

When y = 50%, how dry is it? how moist is it? how wet is it?

(c) Consider the following definitions:

Given

When $z=2\tilde{5}0$ rpm, how low is it? how med is it? how high is it?

2. We now design a fuzzy controller for the fan speed in your bathroom. The control table is as below:

Fan		Tem perature		
	Speed	Cool	W arm	Hot
H um ichity	D ry	Low	M ed	M ed
	M oist	Low	M ed	H igh
	W et	M ed	M ed	H igh

We use the Mamdani's implication formula for the fuzzy inference rule "If (temperature = x and humidity = y) then (fan speed = z)."

- (i) When $x = 60^{\circ}$ F, y = 25%, what is the fuzzy fan speed?
- (ii) When $x = 60^{\circ}$ F, y = 30%, what is the fuzzy fan speed?
- (iii) When $x = 60^{\circ}$ F, y = 50%, what is the fuzzy fan speed?
- (iv) When $x = 60^{\circ}$ F, y = 55%, what is the fuzzy fan speed?
- (v) When $x = 60^{\circ}$ F, y = 80%, what is the fuzzy fan speed?
- (vi) When $x = \tilde{80}^{\circ}$ F, y = 50%, what is the fuzzy fan speed?

In order to get a crisp fan speed, you have to defuzzyify the "fuzzy fan speeds."

- (vii) Use the "Max-Max" and "Max-Min" methods for the results obtained in (i) and (ii).
- (viii) Use the "Max-Med" method for (i).
- (ix) Use the "Centroid" method for (ii).
- 3. Read the following paper: An Efficient and Flexible Mechanism for Constructing Membership Functions, by A. L. Medaglia, S.-C. Fang, H. L. W. Nuttle and J. R. Wilson, European Journal of Operational Research, 139(2002), 84-95.

Point out the weakness of this work and your ideas to mend the weakness.