1 Mengen und Relationen

1.1 Naive Mengenlehre

- Georg Cantor 1845 -1918

Menge: "Sammlung" von Objekten Diese Objekte heissen Elemente.

Notation: $X / in M \rightarrow X$ ist Element von M

Eine Menge ist durch ihre Elemente eindeutig bestimmt.

Bsp:
$$M = 1,2,3, M = N \rightarrow N = 3,1,2$$

Beschreibung von Mengen

- 1. Durch Aufzählung: M = 1,2,3
- 2. Durch Prädikate: M = x | P(x) "Menge aller x, die das Prädikat P erfüllen"
- 3. grafische Darstellung (Venn-Diagramme)

Bsp. $a \in A, d \in B, c \in A, c \in B$

1.1.1 Notation

 $\forall x \in G$: "Für alle x aus der Menge G ..."

 $\exists x \in G$: "Es existiert ein Element x in der Menge G ..."

Beispiele:

1. G := N = 0,1,2,3...

A := 1,2

B := 3,4

 $AB = \emptyset$

1.1.2 Satz 1

- 1. G Grundmenge
- 2. A, B, C Teilmengen von G

1.2 weitere Mengen-Konstruktionen

1.2.1 Potenzmenge

Definition: P(M) := x | xM Potenzmenge von M

Die Menge aller Teilmengen von M

Beispiele

a) $M := 1 \to P(M) = \emptyset, 1$

b)
$$M := 1, 2, 3 \rightarrow P(M) = \emptyset, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3$$

c)
$$M := \emptyset \to P(M) = \emptyset$$

1.2.2 das kartesische Produkt

Seien A, B Mengen, $a \in A$, $b \in B$

Definition: Das Symbol (a,b) heisst das geordnete Paar von a und b.

Bemerkung: $(a,b) = (c,d) \rightarrow a=c \text{ und } b=d$

Definition: Seien A,B Mengen

 $AxB := (x, y)|x \in A, y \in B$ heisst das kartesische Produkt von A und B.

Beispiel:

- a) $1, 2, 3x4, 5 // \text{ i.a. } AxB \neq BxA$
- = (1,4),(1,5),(2,4),(2,5),(3,4),(3,5)
- b) 1,2x1,2 = (1,1),(1,2),(2,1),(2,2)
- c) A = a,b

$$Ax\emptyset = (a,\emptyset), (b,\emptyset)$$

1.2.3 Partitionen

Gegeben eine Menge M

Definition: Eine Partition von M ist eine Menge π

$$\pi := Ai | i \in I$$

 $_{
m mit}$

- 1.) $Ai \neq \emptyset$
- 2.) Ai \subset M
- 3.) Ai \cap AJ = \emptyset
- 4.) \cup Ai = M = A1 \cup A2 \cup A3...