Tuesday, October 8, 2019 10:33

Chebysher's Ineq.

 $f \in L^{+}(u)$. $\forall M>0$, $u(\mathcal{F}>M\mathcal{F}) \leq \frac{1}{M} \mathcal{F} du$

Borel-Cantelli Lemma

 (R,λ)

Let $\{E_{\kappa}\}_{i}^{\infty}$ be a countable collection of mble sets for which $\sum_{i}^{\infty} \lambda(E_{\kappa}) < \infty$.

Then almost all points in \mathbb{R} belong to at most finitely many of the E_K 's.

(i.e. λ (limsup E_{κ}) = 0).

Note: Could have been any mensure.

Prob measure P(X)=1.

Independent Events: P(EnF) = P(E)P(F)

Page 1

Independent Events: P(EnF) = P(E)P(F)