FINAL TEORÍA DE JUEGOS

SEBASTIAN CASTAÑO CRUZ Y GERMÁN WIENS 5 DE AGOSTO DE 2022 APRENDIZAJE POR REFUERZO PARA RESOLUCIÓN DE JUEGOS CON DEEP Q LEARNING

REINFORCEMENT LEARNING

QUE ES EL REINFORCEMENT LEARNING (RL)?

- RL es un área del machine learning que se ocupa de cómo los agentes inteligentes deben realizar acciones en un entorno o ambiente para maximizar la noción de recompensa acumulativa.
- El RL es uno de los tres paradigmas básicos del machine learning, junto con el aprendizaje supervisado y el aprendizaje no supervisado.
- Objetivo: Aprender a como tomar acciones de tal forma de maximizar la recompensa.

Tenemos un agente y un ambiente

- 1. El ambiente le da al agente un estado.
- 2. El agente ejerce una acción.
- 3. El ambiente va a devolver una recompensa así como el siguiente estado.

y asi sucesivamente... $(s_0, a_0, r_1, s_1, a_1, r_2...)$

FORMALIZACIÓN MATEMÁTICA DEL RL

La formalización matemática de RL se hace mediante un Markov Desicion Process (MDP).

- Cumple la Propiedad de Markov que nos dice que un estado actual caracteriza completamente el estado del mundo.
- El MDP esta definido por una tupla de objetos: (S,A,R,P,γ)

S = Conjunto de todos los posibles estados.

A = Conjunto de todas las posibles acciones.

 \mathcal{R} = Distribución de probabilidad de los premios dados el par estado-acción.

P = Probabilidad de transición i.e. distribución sobre el siguiente estado dados. el par (estado, acción).

 γ = Factor de descuento.

Policy y Función Valor

Policy:

■ Una policy π es una función de S a A la cual especifica que acción tomar (o con que probabilidad tomar cada acción) en cada estado s

$$\pi = \{ p(a_i|s) / \forall a_i \in \Delta_{\pi} \land \sum_i p(a_i|s) = 1 \}$$

■ El objetivo es encontrar la policy π^* que maximice la recompensa acumulada descontada.

$$R_t = \sum_{i=0}^{T-t-1} \gamma^i r_{t+i+1}$$

■ Cómo encontramos la policy óptima π^* ?
Usamos funciones de valor que miden que "tan bueno" es un estado, o un par estado-acción.

Funciones de Valor: Son el valor esperado de la política π dado el estado s o el par (s, a)

■ Función Valor del estado s:

$$V_{\pi}(s) = \mathbb{E}(R|s_t = s, \pi)$$

■ Función Valor del par estado-acción (s, a):

$$Q_{\pi}(s, a) = \mathbb{E}(R|s_t = s, a_t = a, \pi)$$

Estas funciones nos permiten comparar dos policies π , π'

$$\pi \leq \pi' \Leftrightarrow [V_{\pi}(\mathsf{s}) \leq V_{\pi'}(\mathsf{s})] \vee [Q_{\pi}(\mathsf{s},a) \leq Q_{\pi'}(\mathsf{s},a)]$$

ECUACIONES DE BELLMAN

Basados en la recompensa acumulada podemos expandir $V_{\pi}(s)$ y $Q_{\pi}(s,a)$ para representar la relación entre dos estados consecutivos $s=s_t$ y $s^{'}=s_{t+1}$.

$$V_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} p(s'|s, a) (\mathbb{W}_{s \to s'|a} + \gamma V_{\pi}(s'))$$
$$Q_{\pi}(s, a) = \sum_{s'} p(s'|s, a) (\mathbb{W}_{s \to s'|a} + \gamma V_{\pi}(s'))$$

Donde:
$$W_{s \to s'|a} = \mathbb{E}[r_{t+1}|s_t = s, a_t = a, s_{t+1} = s']$$

Resolviendo alguna de estas ecuaciones, podemos hallar, la funcion valor V(s) o Q(s,a), respectivamente.

Policy Óptima π^*

Las ecuaciones de Bellman sobre la policy óptima π^* son:

$$V_{\pi^*}(s) = \max_{a} \sum_{s'} p(s'|s,a) (\mathbb{W}_{s \rightarrow s'|a} + \gamma V_{\pi^*}(s'))$$

$$Q_{\pi^*}(s, a) = \sum_{s'} p(s'|s, a) (\mathbb{W}_{s \to s'|a} + \gamma \max_{a'} Q_{\pi^*}(s', a'))$$

Si se conocen todas las dinámicas del problema se pueden aproximar las soluciones usando programación dinámica (sobre cada estado o par estado-acción). Pero para ambientes complejos y con muchos estados es impracticable.

TIPOS DE MÉTODOS DE RL

Model-Free:

- El agente no conoce las probilidades de las transiciones.
- Para que el agente aprenda las transiciones entre estados, debe explorarlos y recorrer varias veces cada estado y acción.
- Es útil para los ambientes con dinámicas difíciles de modelar.

Model-Based:

- Requiere un modelo de las dinámicas del ambiente que pueda representar todas las transiciones entre estados.
- El agente explora sólo para mejorar sus policies.
- Puede acelerar el entrenamiento.

TIPOS DE MÉTODOS DE RL

Métodos Off-Policy:

Buscan estimar el valor al tomar una cierta acción en un cierto estado, para después escoger la mejor opción.

- Es necesario exploración.
- Busca aprender la función Q.
- Tiene más eficiencia muestral.
- DQN, HER

Métodos On-Policy:

Buscan estimar la mejor policy para cada estado π^* .

- Toma como input la representación del mundo y devuelve como output una acción, donde la acción es estocástica.
- Tiene menos eficiencia muestral.
- Policy Optimization, A2C, PPO.

MÉTODO DE MONTECARLO

- Es model-free
- Simular episodios y guardar el valor promedio para cada estado s o cada par (s, a).

$$\begin{aligned} V^{\textit{MC}}_{\pi}(s) &= \lim_{i \to +\infty} \mathbb{E}[r^i(s_t) \mid s_t = s, \pi] \\ Q^{\textit{MC}}_{\pi}(s, a) &= \lim_{i \to +\infty} \mathbb{E}[r^i(s_t, a_t) \mid s_t = s, a_t = a, \pi] \end{aligned}$$

lacksquare Se utiliza una estrategia arepsilon-greedy para mejorar las policies.

$$R: \pi \to \pi' = \left\{ \begin{array}{ll} 1 - \varepsilon + \frac{\varepsilon}{|\Delta_{\pi}|} & a_i = a_j \wedge j = \arg\max_k Q_{\pi}(s, a_k) \\ \frac{\varepsilon}{|\Delta_{\pi}|} & \forall a_i \in \Delta_{\pi} \wedge a_i \neq a_j \end{array} \right.$$

MÉTODO DE DIFERENCIAS TEMPORALES

- También es model-free.
- No espera a terminar un episodio para actualizarse sino que lo hace a cada paso (puede converger más rápido).
- Estima el valor como una combinación convexa entre los dos lados de la ecuación de Bellman en el paso anterior.

$$V^{i}(s_{t}) \leftarrow \alpha V^{i-1}(s_{t}) + (1 - \alpha)(r_{t+1} + \gamma V^{i-1}(s_{t+1}))$$

$$Q^{i}(s_{t}, a_{t}) \leftarrow \alpha Q^{i-1}(s_{t}, a_{t}) + (1 - \alpha)(r_{t+1} + \gamma Q^{i-1}(s_{t+1}, a_{t+1}))$$

 \blacksquare Q-learning busca estimar el valor de la función Q sobre la policy óptima π^*

$$Q^{i}(s_{t}, a_{t}) \leftarrow \alpha Q^{i-1}(s_{t}, a_{t}) + (1 - \alpha)(r_{t+1} + \gamma \max_{a_{t+1}^{j}} Q^{i-1}(s_{t+1}, a_{t+1}^{j}))$$

Pero...

Tanto el método de Montecarlo como el de diferencias temporales son TABULARES

 \Longrightarrow NECESITAN DEMASIADA MEMORIA :(

MÉTODO DQN

- La idea es estimar el valor de la función Q sobre la policy óptima mediante una red profunda $Q(s, a|\theta)$.
- A partir de la ecuación de Bellman se define la función de pérdida

$$\mathcal{L}(\theta) = \mathbb{E}[(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a'|\theta) - Q(s_t, a_t|\theta))^2]$$

- Usar la misma red para entrenar y fitear es inestable \implies se usa una red *target* $Q(s, a|\theta^-)$ que se actualiza cada N pasos.
- El entrenamiento se realiza sobre la memoria de los estados, acciones y recompensas recorridas. Para evitar correlación se toma una muestra aleatoria de la memoria y se entrena sobre ella.

$$\begin{cases} \mathcal{L}(\theta) = \mathbb{E}[(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a'|\theta^{-}) - Q(s_{t}, a_{t}|\theta))^{2}] \\ \theta^{-} \leftarrow \theta \ cada \ \textit{N} \ pasos \end{cases}$$

JUEGO: LUNAR LANDER

Objetivo: Aterrizar el cohete en el espacio delimitado por las banderas.

DESCRIPCION DEL JUEGO

- A= Conjunto de acciones.
 - No hacer nada.
 - Encender el motor a la izquierda.
 - Encender el motor a la derecha.
 - Encender el motor principal (ir hacia arriba).
- S= Conjunto de Estados.
 - \blacksquare Coordenadas de la nave (x, y)
 - Velocidades lineales en x y en y.
 - Ángulo y velocidad angular
 - Dos booleanos que representan si cada pierna del cohete tocó el suelo o no.

Premios:

- La recompensa por moverse desde la parte superior de la pantalla hasta la plataforma de aterrizaje y detenerse es de aproximadamente 100-140 puntos. Si la nave se aleja de la plataforma de aterrizaje, pierde el premio.
- Si la nave se estrella, recibe -100 puntos adicionales.
- Si llega a descansar, recibe +100 puntos adicionales.
- Cada pierna en contacto con el suelo es +10 puntos.
- Disparar el motor principal es -0.3 puntos cada frame.
- Disparar algún motor lateral es -0.03 puntos cada frame.
- Se considera resuelto con 200 puntos o más.

ESTADO INICIAL Y TERMINACIÓN

Estado Inicial: El módulo de aterrizaje comienza en el centro superior de la ventana gráfica con una fuerza inicial aleatoria aplicada a su centro de masa.

Cada nuevo ambiente tiene una nueva fuerza inicial y un nuevo relieve en el piso.

En nuestro caso siempre iniciamos el ambiente con la misma semilla, es decir, nuestro agente sólo conoce un estado inicial y un relieve de piso. Lo hicimos para acelerar el proceso.

Terminación:

- Si la nave se estrella (el cuerpo del módulo de aterrizaje entra en contacto con la luna).
- Si la nave sale de la ventana gráfica (la coordenada x es mayor que 1).
- Si no se mueve y no choca con ningún otro cuerpo.

NUESTRA DQN

■ Para estimar Q usamos una red neuronal con dos capas ocultas cada una de 64 neuronas y una capa final de cuatro salidas. En total tiene 4996 parámetros. El input es una capa de 8 entradas.

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	576
dense_1 (Dense)	(None, 64)	4160
dense_2 (Dense)	(None, 4)	260
Total params: 4,996 Trainable params: 4,996 Non-trainable params: 0		

 $Parmetros = output_{size} * (input_{size} + 1)$

NUESTRA DQN

- la entrada corresponde a los 8 estados distintos. La salida tiene que ver con las 4 acciones posibles.
- Un episodio termina si el juego termina o si dura 1000 frames (pasos).
- Las experiencias se guardan en una lista que tiene un tamaño máximo de 100000.
- De la memoria se seleccionan aleatoriamente 64 experiencias y se utilizan para entrenar la red.
- Cada 10 pasos la red *target* se actualiza. La actualización es suave:

$$\theta^- = \tau\theta + (1 - \tau)\theta^-$$

- Utilizamos una estrategia $\varepsilon-$ greedy. Después de cada episodio el ε se reduce según un ε_{decay} hasta alcanzar un ε_{min}
- Consideramos que el agente resolvió el juego si el promedio de los últimos 10 episodios supera los 200 puntos.

Algorithm 1 DQN

- 1: Inicializar memoria vacía \mathcal{D} con capacidad 100000
- 2: Inicializar red que aproxima Q y target con pesos aleatorios θ
- 3: $\varepsilon \leftarrow 1$
- 4: **for** e = 1, N **do**
- Resetear ambiente y obtener estado s₁ 5:
- **for** t = 1,1000 **do** 6:
- 7:
- Encontrar la acción a_t actuando sobre s_t Ejecutar el ambiente sobre a_t y obtener r_{t+1} , s_{t+1} 8:
- Guardar en \mathcal{D} la transición $(s_t, a_t, r_{t+1}, s_{t+1})$ 9:
- Entrenar la red sobre una muestra aletoria de \mathcal{D} 10:
- 11: $S_t \leftarrow S_{t+1}$
- Cada 10 pasos actualizar suave la red target 12:
- end for 13: if $\varepsilon > \varepsilon_{min}$ then 14:
- $\varepsilon \leftarrow \varepsilon \times \varepsilon_{\text{decay}}$ 15:
- end if 16:
- 17: end for

TIEMPO DE EJECUCIÓN

- El entrenamiento toma bastante tiempo.
- Usar siempre la misma semilla hace que el agente aprenda más rápido (el problema es más simple).
- A medida que ε se reduce cada episodio tarda más (cada juego dura más y hay que "elegir" cada acción).
- Aumentar el tamaño de la memoria no afecta significativamente el tiempo de ejecución.
- Usar actualización suave permite actualizar la red target con más frecuencia.
- Adaptamos el código para poder usar 3 procesadores ⇒ Acelera mucho la ejecución.

RESULTADOS OBTENIDOS

Escogemos testear con diferentes parámetros: ε_{decay} , γ . Las configuraciones que hemos probado son:

Con
$$\gamma = 0,99$$

$arepsilon_{ extsf{decay}}$	Episodios	arepsilon final
0,95	No CV	≤ 0, 01
0,975	470	≤ 0, 01
0,99	437	0,01237
0,995	449	0,105
0,9995	2774	0,249

Con $\varepsilon_{decay} = 0,995$

γ	Episodios	arepsilon final
0,9	No CV	≤ 0, 01
0,95	No CV	≤ 0, 01
0,975	834	0,015
0,99	449	0,105
0,995	481	0,089

Para algunos de ellos el método logró resolver el juego y en otros no se lograba solución.

CÓMO NO CONVERGE?

```
update target model
episode: 1043 | score: -127.4332526723157 | epsilon: 0.00998645168764533 Factor Discount: 0.9
update target model
episode: 1044 | score: -121.92629828219688 | epsilon: 0.00998645168764533 Factor Discount: 0.9
update target model
```

CÓMO NO CONVERGE?

VEAMOS COMO NUESTRO AGENTE RESOLVER EL JUEGO!

GRÁFICOS

GRÁFICOS

CONCLUSIONES

- Instalar las dependencias y paquetes para el juego toma su tiempo.
- Los detalles tienen mucha importancia.
- No está claro qué efecto tiene la arquitectura de la red en la resolución del problema. Se podría probar con más capas ocultas o más perceptrones por capas.
- \blacksquare Cantidad de episodios \neq tiempo de ejecución.
- Mucha memoria es malo y poca memoria también.
- El tuning del ε_{decay} y γ tienen mucho impacto en los tiempos de entrenamiento.
- El agente logró generalizar a pesar de conocer sólo un ambiente.

BIBLIOGRAFÍA

- Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications. 2019.
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver. Human-level control through deep reinforcement learning. 2015.
- Volodymyr Mnih, Koray Kavukcuoglu. Playing Atari with Deep Reinforcement Learning. 2013.
- Dimitri P. Bertsekas Reinforcement Learning and Optimal Control. MIT. 2019

