Семинар 4. Термодинамические потенциалы. Поверхностное натяжение

Клименок Кирилл Леонидович

22.02.2022

1 Теоретическая часть

1.1 Некоторые следствия для ТД потенциалов

Мы ввели 4 термодинамических потенциала и обсудили их физический смысл. Но, к сожалению, этим не ограничивается их область применения. Мы кратко вспомним некоторые «интересности», которые обсуждались на лекции.

Начнем со свойств этих частных производный.

• «Переворачиваемость»

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_z}$$

• Задача 1.1 из первого семинара

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

• Соотношения Максвелла или равенство перекрестных производных

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$$

Эти соотношения очень хорошо ложаться на наши дифференциалы ТД потенциалов:

$$dU = TdS - PdV \Rightarrow \frac{\partial^2 U}{\partial S \partial V} = \frac{\partial^2 U}{\partial V \partial S} \Leftrightarrow \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$

$$dF = -SdT - PdV \Rightarrow \frac{\partial^2 F}{\partial T \partial V} = \frac{\partial^2 F}{\partial V \partial T} \Leftrightarrow \left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

У этих соотношений есть и физический смысл: это следствие равенства работ в координатах (T,S) и (P,V) для элементарных циклов.

Другие полезные соотношения, которые мы вывели:

• Теплоемкость:

$$C_X = T \left(\frac{\partial S}{\partial T} \right)_X ; C_P - C_V = \left[\left(\frac{\partial U}{\partial V} \right)_T + P \right] \left(\frac{\partial V}{\partial T} \right)_P$$

Коэффициенты для разных процессов:
Коэффициенты теплового расширения:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$

Изотермическая и адиабатическая сжимаемость:

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T; \beta_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S; \beta_T = \beta_S \frac{C_P}{C_V}$$

Термический коэффициент давления:

$$\lambda = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_V$$

• Связь термического и калорического уравнения состояний

$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$$

ullet Связь U и F

$$U = F - T \left(\frac{\partial F}{\partial T} \right)_V$$

• Общее выражение для F

$$F(T,V) = F_0 - \int P(V,T)dV$$

• Теплофизические свойства

$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial T}{\partial S}\right)_V \left(\frac{\partial S}{\partial V}\right)_T = \frac{T}{C_V} \left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P = -\frac{T\alpha}{C_V\beta_T} = -\frac{T\alpha}{C_P\beta_S}$$

1.2 Поверхностное натяжение

Идея появления поверхностного натяжения очень проста: молекулы жидкости в объеме равномерно притягиваются во все стороны, и средняя сила, действующая на них равна нулю, а вот на поверхности есть явно выраженная сила, направленная в объем из-за нескомпенсированности. Это и приводит к появлению дополнительных сил, действующих на поверхности.

Вводят коэффициент поверхностного натяжения через работу по образованию единицы площади (Π) , что соответствует силе на единицу длины пленки, чтобы ее удерживать:

$$\delta A = \sigma d\Pi \Leftrightarrow \sigma = \frac{F}{I}$$

Отдельно можно выделить свободную энергию поверхности, просто из ее физического смысла и внутреннюю энергию поверхности, с использованием экспериментального факта, что коэффициент поверхностного натяжения зависит только от температуры:

$$F_{surf} = \sigma \Pi; U_{surf} = \left(\sigma - T \frac{d\sigma}{dT}\right) \Pi$$

Еще мы поговорили о формуле Лапласа, которая показывает, как меняется давление над искривленной поверхностью, используя 2 независимых радиуса кривизны:

$$\Delta P = \sigma \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

и кратко сказали о смачиваемости, используя краевой угол, который образуется у капли на поверхности.

2 Практическая часть

2.1 Задача 0.10

Условие Уравнение состояния резиновой полосы имеет вид $f=aT\left[\left(\frac{l}{l_0}\right)-\left(\frac{l_0}{l}\right)^2\right]$, где f — натяжение, $a=1.3\cdot 10^{-2}$ H/K, l — длина полосы, длина недеформированной полосы $l_0=1$ м.

натяжение, $a = 1.3 \cdot 10^{-2}$ H/K, l — длина полосы, длина недеформированной полосы $l_0 = 1$ м. Найти изменение свободной и внутренней энергии резины при её изотермическом растяжении до $l_1 = 2l_0 = 2$ м. Температура T = 300 K.

Решение Начнем со свободной энергии, так как у нее есть явный физический смысл: ее изменение это работа, которою можно извлечь из системы при ее изотермическом контакте с тепловым резервуаром:

$$\Delta F = -\Delta A = -\int_{l_0}^{2l_0} f dl = -\int_{l_0}^{2l_0} aT \left[\left(\frac{l}{l_0} \right) - \left(\frac{l_0}{l} \right)^2 \right] dl = aTl = 3.9$$
 Дж

Теперь разберемся с внутренней энергией. Для этого воспользуемся ее связью со свободной энергией:

$$F = F_0 - \int_{l_0}^{l} f dl; U = F - T \left(\frac{\partial F}{\partial T} \right)_V = F_0 - \int_{l_0}^{l} f dl + aT \int_{l_0}^{l} \left[\left(\frac{l}{l_0} \right) - \left(\frac{l_0}{l} \right)^2 \right] dl = F_0$$

То есть изменение внутренней энергии равно нулю

2.2 Задача Т4

Условие При низких температурах свободная энергия «электронного газа» в металлах в объёме V при температуре T даётся зависимостью $F = F_0 - \beta V^{2/3} T^2$, где F_0 и β — постоянные величины. Найти разность теплоёмкостей $C_P - C_V$ электронного газа как функцию V и T.

Решение Все задание сводится к комбинации формул, которые мы уже обговаривали и надо просто аккуратно все проделать.

Выпишем общий вид этой разности:

$$C_P - C_V = \left[\left(\frac{\partial U}{\partial V} \right)_T + P \right] \left(\frac{\partial V}{\partial T} \right)_P$$

Итого нам надо найти 2 вещи: функцию внутренней энергии для ее производной по объему и уравнение состояния для давления и производной от объема по температуре. Выпишем дифференциал для данной нам свободной энергии:

$$\begin{split} dF &= -SdT - PdV \\ S &= -\left(\frac{\partial F}{\partial T}\right)_V = -2\beta V^{2/3}T \\ P &= -\left(\frac{\partial F}{\partial V}\right)_T = \frac{2}{3}\beta V^{-1/3}T^2 \end{split}$$

Выражение для давления — это уравнение состояния. Из него выразим объем и найдем $\left(\frac{\partial V}{\partial T}\right)_P$:

$$V = \frac{8}{27}\beta^3 \frac{T^6}{P^3} \Rightarrow \left(\frac{\partial V}{\partial T}\right)_P = \frac{48}{27}\beta^3 \frac{T^5}{P^3} = \frac{6V}{T}$$

Теперь разберемся с внутренней энергией:

$$U = F - T \left(\frac{\partial F}{\partial T}\right)_V = F_0 - \beta V^{2/3} T^2 + 2\beta V^{2/3} T^2 = F_0 + \beta V^{2/3} T^2$$
$$\left(\frac{\partial U}{\partial V}\right)_T = \frac{2}{3}\beta V^{-1/3} T^2$$

Теперь все собираем:

$$C_P - C_V = \left[\frac{2}{3}\beta V^{-1/3}T^2 + \frac{2}{3}\beta V^{-1/3}T^2\right]\frac{6V}{T} = 8\beta V^{2/3}T$$

2.3 Задача 5.28

Условие При изотермическом сжатии $(T=293\mathrm{K})$ одного моля глицерина от давления $P_1=1$ атм до давления $P_2=11$ атм выделяется теплота Q=10Дж. При адиабатическом сжатии этого глицерина на те же 10 атм затрачивается работа A=8.76мДж. Плотность глицерина $\rho=1.26$ г/см³, молярная масса $\mu=92$ г/моль, $\gamma=C_P/C_V=1.1$. Определить по этим данным температурный коэффициент давления глицерина $\partial P/\partial T$, а также коэффициент теплового расширения α и изотермическую сжимаемость β_T .

Решение Тут без одного дополнительного соотношения не получится ничего решиить. Вот оно без вывода:

$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$$

Это несколько упрощает запись первого начала термодинамики:

$$\delta Q = C_V dT + T \left(\frac{\partial P}{\partial T}\right)_V dV$$

Теперь непосредственно к условию. У нас есть изотремическое расширение, что означает что dT=0. Запишем первое начало и воспользуемся циклической перестановкой:

$$\delta Q = T \left(\frac{\partial P}{\partial T} \right)_V dV = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial P} \right)_T dP = -T \left(\frac{\partial V}{\partial T} \right)_P dP = -T V \alpha dP$$

Отсюда:

$$\alpha = -\frac{Q}{TV\Delta P} \approx 4.7 \cdot 10^{-4} \text{ K}^{-1}$$

Второй процесс — адиабатическое изменение давления. Значит нам надо использовать адиабатическую сжимаемость и считать работу:

$$\delta A = PdV = P\left(\frac{\partial V}{\partial P}\right)_S dP = V\beta_S PdP$$

Интегрируем и получаем:

$$A = \int_{P_1}^{P_2} \beta_S V P dP = \frac{P_2^2 - P_1^2}{2} \beta_S V \Rightarrow \beta_T = \gamma \beta_S = \frac{2A}{(P_2^2 - P_1^2)V} = 2.2 \cdot 10^{-10} \text{ } \Pi \text{a}^{-1}$$

Последний коэффициент вычисляется из соотношения всех коэффициентов между собой.

2.4 Задача 12.8

Условие Мыльная пленка имеет толщину $h=10^3$ мм и температуру T=300 К. Вычислить понижение температуры этой пленки, если ее растянуть адиабатически настолько, чтобы площадь пленки удвоилась. Поверхностное натяжение мыльного раствора убывает на 0.15 дин/см при повышении температуры на 1 К.

Решение Давайте разберемся как в общем виде будет работать первое начало термодинамики, если у нас меняется площадь пленки. Изменения коснуться только работы:

$$\delta Q = dU + \delta A = dU_{vol} + dU_{surf} + \delta A_{surf} = C_{\Pi} dT + \left(\sigma - T \frac{d\sigma}{dT}\right) d\Pi - \sigma d\Pi = C_{\Pi} dT - T \frac{d\sigma}{dT} d\Pi$$

в этом выражении C_{Π} — теплоемкость при постоянной площади поверхности, или по-простому объемная теплоемкость воды пленки. А вот член $T\frac{d\sigma}{dT}$ можно интерпретировать как теплоту образования поверхности.

В нашей задаче все адиабатично, изменение температуры мало, а пленок всего 2, тогда:

$$C_{\Pi}dT = T\frac{d\sigma}{dT}d\Pi \Rightarrow \Delta T \approx T\frac{d\sigma}{dT}\frac{2\Pi}{C_{\Pi}} = T\frac{d\sigma}{dT}\frac{2\Delta\Pi}{C_{w}\rho\Pi h} = T\frac{d\sigma}{dT}\frac{2}{C_{w}\rho h} \approx -0.02 \text{ K}$$

2.5 Комментарии к задачам из задания

Нулевки Единственная нерешенная задача явно связана с определением коэффициента поверхностного натяжения

Задача 5.16 Надо воспользоваться выражением для теплофизических свойств

Задача 5.28 Решена

Задача 5.42 Дана свободная энергия, по ней можно найти внутреннюю энергию и как следствие выражение для C_V

Задача 5.63 Опять игра с соотношениями =(

Задача 12.8 Решена

Задача 12.9 Давление в пузыре несколько выше, что означает, когда он лопнет начнется установление равновесие. Надо записать первое начало с учетом внетрунней энергии поверхности

Задача 12.38 Подумайте, куда будет перетекать газ, если радиусы 2 пузырей чуть-чуть отличаются и запишите первое начало с учетом изменения площадей

Задача Т4 Решена