Motion

Questions: goo.gl/K61te5

Motion Estimation

- Given a sequence of images we might ask
 - What are the moving objects in the scene?
 - What sort of motion are they undergoing?
 - Where will they be in the future?
- To answer these questions we need to measure the motion

I(x,y,t)

- There are many problems in motion estimation
- Often the motion is ambiguous
- Image sequences contain a lot of data - efficiency is a concern
- Many interesting tasks involve complex motion - e.g. facial expression analysis

Motion

- Motion and stereo are closely related
 - "Correspondence problem", or "visual correspondence": what went where?
 - Can be solved sparsely or densely
 - Except for wide-baseline stereo, in both cases sparse solutions are now rare

Comparison:

- Stereo uses a 1D label set, motion has 2D
- Stereo involves bigger changes in appearance
- If motion is small, tracking is an easy way
- Motion has an elegant formulation as a continuous problem

Challenges

- Figure out which features can be tracked
- Efficiently track across frames
- Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.)
- Drift: small errors can accumulate as appearance model is updated
- Points may appear or disappear: need to be able to add/delete tracked points

Simple Techniques

Motion Difference

- Take two images from a sequence
- Compute the change in brightness at each pixel in the image
- Threshold

Background Models

- Find the average brightness at each pixel over a sequence
- Use the difference between the current frame and the average to find moving objects

Imperial College

Simple Techniques

- Area-based matching can also be used
- We take a template from the first image
- This is then compared to points in the second image to find corresponding regions
- This uses a 'distance measure' to compare patches

Implification Field and Optical Flow

The Motion Field

- "assigns a velocity vector to each point in the image"
- Tells us how the position of the *image* of the corresponding scene point changes over time
- Can be computed from the *scene* to tell us about the *image*

Optical Flow

- The "apparent motion of the brightness pattern" in an image
- Ideally it will be the same as the motion field, but this is not always the case
- Can be computed from the *image*, to tell us about the *scene*

Questions: goo.gl/K61te5

Optical Flow ≠ Motion Field

A Moving light

- The *image* changes so there is optical flow
- The scene objects do not move so there is no motion field

A Rotating Sphere

- The scene object moves, so there is motion field
- The *image* does not change, so there is no optic flow

Optical flow

- Our "data cost" will be the difference between the old pixel intensity and the new pixel intensity
 - New and old pixel are related by the motion
- Instead of search, we can directly solve for a data cost
 - We consider a series of images as samples of a function I(x,y,t)
 - What are we assuming?
- No explicit search over (many) labels in contrast to stereo

Optical Flow is Ambiguous

Consider the two images below:

Two possible fields (of

So, optical flow

- Is not always what we want to compute
- Cannot be determined without ambiguity
- But it is all that we can compute from the images
- This means we need to make assumptions to find a *reasonable* flow field estimate

Brightness Constancy

Brightness constancy assumption:

$$I(x, y, t) = I(x + u, y + v, t + 1)$$

- I(x,y,t) is the brightness of the image at location (x,y) and time t
- (u,v) is the motion field at location (x,y) and time t
- This assumption is true apart from the effects of lighting (including shadows, reflections, and highlights)

Brightness Constancy

Another way to express brightness constancy is that

$$\frac{dI(x,y,t)}{dt} = 0$$

 This says that the image doesn't change over time - it just moves about

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$

Brightness Constancy

$$\frac{\partial I(x, y, t)}{\partial x}u + \frac{\partial I(x, y, t)}{\partial y}v + \frac{\partial I(x, y, t)}{\partial t} = 0$$

Image derivative in x direction

Image derivative in y direction

Image derivative in t direction

$$\nabla I[u,v] = -\frac{\partial I}{\partial t}$$

The Aperture Problem

There is no solution to the equation

We only measure the projection of the true motion (u,v) on the intensity gradient, which makes it ambiguous

- We can determine the component of flow in the same direction as the image intensity gradient
- We cannot determine the component of flow perpendicular to it
- This is the *aperture problem*

Line of constant brightness

We know we have to move to a point on the line, but not which one

Questions: goo.gl/K61te5

Flow Smoothness

We need another constraint to find a unique solution

- This is the constraint that the flow field is smooth
- Neighbouring pixels in the image should have similar optical flow

We want *u* and *v* to have low variation

 We can do this by trying to set

$$(u - \overline{u}) = 0, (v - \overline{v}) = 0$$

 So u and v are equal to the average of their neighbouring values

Smoothness assumption

- One-dimensional example –linearization
 - Estimate displacement u using derivative
 - Two functions f(x) and g(x)=f(x-u)
 - Taylor series expansion f(x-u) = f(x) u f'(x) + E f' denotes derivative
 - write difference as f(x)-g(x) = u f'(x) + E
 - Discarding higher order terms $\delta = (f(x)-g(x))/f'(x)$
 - works only for small u
 - We need more than 1 pixel
 - Each pixel defines linear constraint on possible (u,v) displacement
 - For set of pixels with same displacement combine constraints to get estimate
 - For pixels with different displacements,

Squared Errors

We now have three error terms

- If we square them then the error is always positive, and we can look for a minimum
- A weighting term, λ, balances the influence of the brightness and smoothness errors

The squared error term is

 To minimise: take derivatives with respect to u and v, set to 0, then solve

$$\lambda \left(\frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \frac{\partial I}{\partial t} \right)^2 + (u - \overline{u})^2 + (v - \overline{v})^2$$

Minimisation

$$e = \lambda \left(\frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \frac{\partial I}{\partial t} \right)^{2} + (u - \overline{u})^{2} + (v - \overline{v})^{2}$$

$$\frac{\partial e}{\partial u} = 2\lambda \frac{\partial I}{\partial x} \left(\frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \frac{\partial I}{\partial t} \right) + 2(u - \overline{u}) = 0$$

$$\frac{\partial e}{\partial v} = 2\lambda \frac{\partial I}{\partial y} \left(\frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \frac{\partial I}{\partial t} \right) + 2(v - \overline{v}) = 0$$

Solving the two equations gives

$$U = \overline{U} - \lambda \frac{\partial I}{\partial x} \frac{\overline{U} \frac{\partial I}{\partial x} + \overline{V} \frac{\partial I}{\partial y} + \frac{\partial I}{\partial t}}{1 + \lambda \left(\left(\frac{\partial I}{\partial x} \right)^2 + \left(\frac{\partial I}{\partial y} \right)^2 \right)}$$

$$\mathbf{V} = \overline{\mathbf{V}} - \lambda \frac{\partial \mathbf{I}}{\partial \mathbf{y}} \frac{\overline{\mathbf{U}} \frac{\partial \mathbf{I}}{\partial \mathbf{x}} + \overline{\mathbf{V}} \frac{\partial \mathbf{I}}{\partial \mathbf{y}} + \frac{\partial \mathbf{I}}{\partial \mathbf{t}}}{1 + \lambda \left(\left(\frac{\partial \mathbf{I}}{\partial \mathbf{x}} \right)^2 + \left(\frac{\partial \mathbf{I}}{\partial \mathbf{y}} \right)^2 \right)}$$

But we need to know $\sim u$ and $\sim v$ to compute u and v

Iterative solution:

- Estimate u and v
- Then compute the averages,
 ~u and ~v
- Then make a new estimate
 of u and v
- Then make a new estimate
 of ~u and ~v
- etc...

Computing the Optical Flow

Gradients:

$$dI/dx = (b+d+f+h) - (a+c+e+g)$$

$$dI/dy = (a+b+e+f) - (c+d+g+h)$$

$$dI/dt = (e+f+g+h) - (a+b+c+d)$$

$$U = \overline{U} - \lambda \frac{\partial I}{\partial x} \frac{\overline{U} \frac{\partial I}{\partial x} + \overline{V} \frac{\partial I}{\partial y} + \frac{\partial I}{\partial t}}{1 + \lambda \left(\left(\frac{\partial I}{\partial x} \right)^2 + \left(\frac{\partial I}{\partial y} \right)^2 \right)}$$

$$V = \overline{V} - \lambda \frac{\partial I}{\partial y} \frac{\overline{U} \frac{\partial I}{\partial x} + \overline{V} \frac{\partial I}{\partial y} + \frac{\partial I}{\partial t}}{1 + \lambda \left(\left(\frac{\partial I}{\partial x} \right)^2 + \left(\frac{\partial I}{\partial y} \right)^2 \right)}$$

Computing the Optical Flow

$$dI/dx = (5+4+5+6)-(5+6+4+4)$$

$$dI/dy = (5+5+4+5)-(6+4+4+6)$$

$$dI/dt = (5+5+6+4)-(4+5+4+6)$$

Questions: goo.gl/K61te5

Lukas-Kanade

- If there is a single translational motion (u,v)
 - In a window, or over the entire image
- At each pixel, the OFCE (optical flow constraint equation) says:
 - the spatial and temporal gradient

$$\nabla I[u,v] = -\frac{\partial I}{\partial t}$$

- These are the observations $I_x(x_i, y_i) \cdot u + I_y(x_i, y_i) \cdot v = -I_t(x_i, y_i)$

$$\begin{bmatrix} I_x(x_1, y_1) & I_y(x_1, y_1) \\ I_x(x_2, y_2) & I_y(x_2, y_2) \\ \vdots & & \vdots \\ I_x(x_n, y_n) & I_y(x_n, y_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -I_t(x_1, y_1) \\ -I_t(x_2, y_2) \\ \vdots \\ -I_t(x_n, y_n) \end{bmatrix}$$

$$S \cdot \begin{bmatrix} u \\ v \end{bmatrix} = -T$$

We can use least squares to solve this

Lukas-Kanade

Least square solution to

$$\begin{bmatrix} I_x(x_1, y_1) & I_y(x_1, y_1) \\ I_x(x_2, y_2) & I_y(x_2, y_2) \\ \vdots & & \vdots \\ I_x(x_n, y_n) & I_y(x_n, y_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -I_t(x_1, y_1) \\ -I_t(x_2, y_2) \\ \vdots \\ -I_t(x_n, y_n) \end{bmatrix}$$

$$S \cdot \begin{bmatrix} u \\ v \end{bmatrix} = -T$$

$$S^t S \cdot \begin{bmatrix} u \\ v \end{bmatrix} = -S^t T$$

$$S^{t}S = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{bmatrix} \quad S^{t}T = \begin{bmatrix} \sum I_{x}I_{t} \\ \sum I_{y}I_{t} \end{bmatrix}$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$Ad = b \stackrel{LS}{\Rightarrow} \min_{d} ||Ad - b||^2$$

Lukas-Kanade

$$S^{t}S \cdot \begin{bmatrix} u \\ v \end{bmatrix} = -S^{t}T \qquad \qquad \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_{x}I_{t} \\ \sum I_{y}I_{t} \end{bmatrix}$$

- When is this solvable? i.e., what are good points to track?
 - S^TS should be invertible
 - S^TS should not be too small due to noise
 - eigenvalues e_1, e_2 of S^TS should not be too small
 - S^TS should be well-conditioned
 - e_1/e_2 should not be too large (e_1 = larger eigenvalue)
- Inverting 2x2 matrix has a closed form solution
- Unless spatial gradients are parallel
 - Multiple copies of the same gradient give singular matrix
 - We need textured regions
- Best if gradients are orthogonal e.g. corners

Computing the Optical Flow

The algorithm is iterative

- We start with an initial estimate
- We refine it over a series of cycles
- We need an initial estimate
- We also need to know when to stop

Initialisation

- We can start with an estimate of u and v of 0 everywhere
 - From coarse to fine
- Stop when the results at iteration n and n+1 are very similar
 - This is when the algorithm converges
 - Can we be sure it will?

Computing the Optical Flow

26 Questions: goo.gl/K61te5

Template tracking

Questions: goo.gl/K61te5

Template tracking

$$E(u,v) = \sum [I(x+u,y+v) - T(x,y)]^{2}$$

$$\approx \sum [I(x,y) + uI_{x}(x,y) + vI_{y}(x,y) - T(x,y)]^{2} \text{ First order approx}$$

$$= \sum [uI_{x}(x,y) + vI_{y}(x,y) + D(x,y)]^{2}$$

Take partial derivs and set to zero

$$\frac{\delta E}{du} = \sum \left[uI_x(x,y) + vI_y(x,y) + D(x,y) \right] I_x(x,y) = 0$$

$$\frac{\delta E}{dv} = \sum [uI_x(x,y) + vI_y(x,y) + D(x,y)]I_y(x,y) = 0$$

Form matrix equation

$$\sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\sum \begin{bmatrix} I_x D \\ I_y D \end{bmatrix}$$
 solve via least-squares

Template tracking

 Assumption of constant flow (pure translation) for all pixels in a larger window is unreasonable for long periods of time

 we can generalize Lucas-Kanade approach to other 2D parametric motion models (like affine or projective) by introducing a "warp" function W

$$E(u,v) = \sum [I(x+u,y+v) - T(x,y)]^2 \xrightarrow{\text{generalize}} \sum [I(W([x,y]; P)) - T([x,y])]^2$$

Affine motion

An affine motion maps between two arbitrary triangles

$$u(x,y) = a_1 + a_2x + a_3y$$

 $v(x,y) = a_4 + a_5x + a_6y$

- Generalisation of translational motion where a₂ = a₃ = a₅ = 0
- Using OFCE we get:

$$I_x(x_i, y_i) \cdot (a_1 + a_2x + a_3y) +$$

 $I_y(x_i, y_i) \cdot (a_4 + a_5x + a_6y) = -I_t(x_i, y_i)$

- More complex optimization
 - 6 parameters to find instead of 2
 - Still can use least squares

Motion estimates

- From motion estimates you can compute the focus of expansion
 - Direction of heading, relative to camera by intersecting motion rays
 - clustering of moving pixels e.g. Hough transform voting scheme
- Frequently use for registering images
- Object tracking
- Useful for robotic applications i.e. efficient