Homework 2

Computer Vision 2023 Spring

Image stitching

- 1. Detecting key point(feature) on the images
 - SIFT
- 2. Finding features correspondences (feature matching)
 - KNN
- 3. Computing homography matrix.
 - RANSAC
- 4. Stitching image (warp images into same coordinate system)

Feature Detection

- Finding features correspondences/compute homography matrix.
- SIFT Scale Invariant Feature Detection
 - detect key points in the image and describe the points as 128dimensional features (4 * 4 * 8).

Check Ch 6 > 7 for more details of SIFT

1. SIFT in OpenCV

- Using OpenCV to detect SIFT key points of two images
- Input : gray scale image

```
SIFT_Detector = cv2.SIFT_create()
kp, des = SIFT_Detector.detectAndCompute(img, None)
```

- output : keypoints (array), Descriptors (array)
- Keypoints store feature points
 - for a single keypoint you can use ".pt" to get the position of this key point on image [Ref]
- Descriptors store the 128-dimensional features
- The function name(detectAndCompute) of SIFT may be different with the version of OpenCV

2. Feature matching - KNN

- K-Nearest Neighbor
 - o Finding the K closest neighbors to the target.
 - Brute-force : Comparing with the all 2-norm of SIFT feature (the 2-norm of descriptor)

2. Feature matching - Lowe's Ratio test

- Lowe's Ratio test for eliminating bad match
 - A good match shold be able to be distinguished from noise
 - 1. For every key point P in image1 using 2NN to get 2 matched key points P1 & P2 in image2
 - 2. Computing the 2-norm of P1 & P2 between P named D1, D2
 - 3. If D1 < threshold * D2 then P1 is a good match

(threshold is a programmer defined ration between 0 to the suggestion of OpenCV tutorial is $0.7 \sim 0.8$)

P2

P1 (good match)

• Construct a linear system as: P2=HP1, P2=(x2,y2,1), P1=(x1,y1,1)

where P2 and P1 are correspondence points. H is

$$\begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \Leftrightarrow \mathbf{x}_2 = H\mathbf{x}_1$$

$$x_2' = \frac{H_{11}x_1 + H_{12}y_1 + H_{13}z_1}{H_{31}x_1 + H_{32}y_1 + H_{33}z_1}$$
$$y_2' = \frac{H_{21}x_1 + H_{22}y_1 + H_{23}z_1}{H_{31}x_1 + H_{32}y_1 + H_{33}z_1}$$

$$x_2'(H_{31}x_1 + H_{32}y_1 + H_{33}) = H_{11}x_1 + H_{12}y_1 + H_{13}$$

$$y_2'(H_{31}x_1 + H_{32}y_1 + H_{33}) = H_{21}x_1 + H_{22}y_1 + H_{23}$$

In homogenous coordinates $(x_2' = x_2/z_2 \text{ and } y_2' = y_2/z_2)$

• If we restrict h33 = $1 \begin{vmatrix} x_2'(H_{31}x_1 + H_{32}y_1 + 1) = H_{11}x_1 + H_{12}y_1 + H_{13}z1 \\ y_2'(H_{31}x_1 + H_{32}y_1 + 1) = H_{21}x_1 + H_{22}y_1 + H_{23}z1 \end{vmatrix}$

$$egin{aligned} x_2' &= H_{11}x_1 + H_{12}y_1 + H_{13}z1 - H_{31}x_1x_2' - H_{32}y_1x_2' \ y_2' &= H_{21}x_1 + H_{22}y_1 + H_{23}z1 - H_{31}x_1y_2' - H_{32}y_1y_2' \end{aligned}$$

 For perspective transformation, you can use 4 pairs of match result to solve 8 unknown variable in

homography matrix

$$egin{bmatrix} \hat{x}_i z_a \ \hat{y}_i z_a \ z_a \end{bmatrix} = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

$$\begin{bmatrix} \hat{x}_i z_a \\ \hat{y}_i z_a \\ z_a \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1 \hat{x}_1 & -y_1 \hat{x}_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2 \hat{x}_2 & -y_2 \hat{x}_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3 \hat{x}_3 & -y_3 \hat{x}_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4 \hat{x}_4 & -y_4 \hat{x}_4 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1 \hat{y}_1 & -y_1 \hat{y}_1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2 \hat{y}_2 & -y_2 \hat{y}_2 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3 \hat{y}_3 & -y_3 \hat{y}_3 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4 \hat{y}_4 & -y_4 \hat{y}_4 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1 \hat{x}_1 & -y_1 \hat{x}_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2 \hat{x}_2 & -y_2 \hat{x}_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3 \hat{x}_3 & -y_3 \hat{x}_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4 \hat{x}_4 & -y_4 \hat{y}_4 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & 0 & -x_1 \hat{x}_1 & -y_1 \hat{x}_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2 \hat{x}_2 & -y_2 \hat{x}_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3 \hat{x}_3 & -y_3 \hat{x}_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_3 \hat{x}_3 & -y_3 \hat{x}_3 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2 \hat{y}_2 & -y_2 \hat{y}_2 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4 \hat{y}_4 & -y_4 \hat{y}_4 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1 \hat{x}_1 & -y_1 \hat{x}_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2 \hat{x}_2 & -y_2 \hat{x}_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3 \hat{x}_3 & -y_3 \hat{x}_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4 \hat{x}_4 & -y_4 \hat{y}_4 \end{bmatrix}$$

- Let h33 = 1
- You can solve the equation Ah = b below by pseudo inverse

$$\begin{bmatrix} \hat{x}_i z_a \\ \hat{y}_i z_a \\ z_a \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ y_i \\ 1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1 \hat{x}_1 & -y_1 \hat{x}_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2 \hat{x}_2 & -y_2 \hat{x}_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3 \hat{x}_3 & -y_3 \hat{x}_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4 \hat{x}_4 & -y_4 \hat{x}_4 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1 \hat{y}_1 & -y_1 \hat{y}_1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2 \hat{y}_2 & -y_2 \hat{y}_2 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3 \hat{y}_3 & -y_3 \hat{y}_3 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4 \hat{y}_4 & -y_4 \hat{y}_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = h_{33} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \hat{x}_3 \\ \hat{x}_4 \\ \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \hat{y}_4 \end{bmatrix}$$

$$A = U\Sigma V^T$$

(It's similar to A in

- Using SVD decomposition to find Least Squares error solution of Ah = 0
- the solution = eigenve∉ter of associated with the smallest eigenvalue (V stores the eigenvect∞r of stores the singular value (root of eigen value))

$$\mathbf{h} = (H_{11}, H_{12}, H_{13}, H_{21}, H_{22}, H_{23}, H_{31}, H_{32}, H_{33})^T = \text{corresponse}$$

$$\mathbf{a}_x = (-x_1, -y_1, -1, 0, 0, 0, x_2'x_1, x_2'y_1, x_2')^T$$

$$\mathbf{a}_y = (0, 0, 0, -x_1, -y_1, -1, y_2'x_1, y_2'y_1, y_2')^T.$$
It can multiply a minus to match the form in \mathbf{A} is a 9 by 9 matrix

You can multiply a minus to match the form in REPUBLIS Slide

SVD: https://web.mit.edu/be.400/www/SVD/Singular_Value_Decompesitionshiple)

Homography:

3.RANSA

Random Sample Consensus

Input : *M* match;

- 1. Randomly select 4 data points as inliers *S*. Find a homography matrix H to *S*.
- Test all match(p1, p2) against H, estimate p2' = p1 * H
 if the distance between p2' and p2 is small, add the match to S, which is called a consensus set.
- 3. If |S| is larger than ever, mark H as the best estimated H*.
- 4. If some stopping criterion is satisfied, end
- 5. Else go to step 1.

Note that you can re-estimate the models with the consensus sets.

4. Stitching image

- 1. Using homography matrix H to calculate the position of 4 corners of image1 in the perspective of image2
- 2. Using image1 after perspective transformation to analyze the size which we need to combine two image together of
- 3. Using cv2.warpPerspective(src, M, dsize, ...) to warp the whole image1
 - src is source image1, M is homography matrix H, dsize is output image size warped_1 = cv2.warpPerspective(src=img1, M=H, dsize=size)
- 4. Concating two images (for better results you can use blending or some ways to improve the quality of overlap part)

For stitching images you can use any function of OpenCV

4. Stitching image - more corners' = corners * H x1' = min(min(corners'_x),0) y1' =

• Assume image1 is on left hand side and imagen is (comers'_y),0) right hand side

• Size we need = (w2 + abs(x1'), h2 widths(fyith)) ge2 =

4. Stitching image - more detail

 For both image using affine translation to move the origin O to C1'.

This way give some space to image1 and it's easier to combine them in same image size.

• For image1 your homograhpy matrix(H) need multiply translation matrix (A) because we translate the

perspective of image2

• For image2 you can directly use warp with affine translation matr[1 0 Ax]

Affine translation matrix
$$\begin{bmatrix} 1 & 0 & \triangle x \\ 0 & 1 & \triangle y \\ 0 & 0 & 1 \end{bmatrix}$$
(A) =

In this cas $\Delta x = -x1^{'}, \Delta y = -y1^{'}$ Because origin moves to down left, image2 needs move to top right relatively

4. Stitching image - more detail

Example for image1 applys perspective transformation

warped_l = cv2.warpPerspective(src=img1, M=H, dsize=size)

4. Stitching image - more detail

• Example for using affine translation to move the image2

warped_r = cv2.warpPerspective(src=img2, M=A, dsize=size)

Requirements

- You are only allowed to use the function of OpenCV mentioned in previous slides. Please implement all (key point matching ,RANSAC , Homography ...) by youself
 - For submission you can use :
 - SIFT
 - For debugging only:
 - KNN match : BFMatcher()
 - Homography: findHomography()
- But there is no limitation of "image stitching" only (You can use any function provided by OpenCV)

Other tips

Using Blending when you concate the two image

Grading

```
50% Stitching 2 images together
    SIFT (10%)
    KNN (10%)
    RANSAC (15%)
    Homography (15%)
30% Report (Don't just paste the code with comment)
    1.explain your implementation
    2.show the result of stitching 2 images
    3.try to stitch more images as you can and compare with them
10% stitching at least 4 images seamlessly with blending
10% stitching bonus 4 images clearly(bonus)
(Note: the grade you got may vary according to the stitched image quality,
methods you used, and so forth.)
```

Deadline

- Deadline : 2023/05/8 (Mon.) 11:59 pm
- Please zip the all files and name it as {studentID}_HW2.zip : ex 311553013_HW2.zip (wrong file format may get -10% panelty)
 - Zip file format:
 - 1. {studentID} report.pdf
 - 2. your code
- Penalty of 3% of the value of the assignment per late day
 - late a week : your_score * 0.97
 - late two week : your_score * 0.94 ...
- •Feel free to ask questions on E3 forum, or send e-mails through E3 platform to all TAs for personal questions.

Result

blending

Result

Sample of concatenating 6 images

Result(bonus)

