Problem Set 3

QTM 200: Applied Regression Analysis

Due: February 17, 2020

Instructions

- Please show your work! You may lose points by simply writing in the answer. If the problem requires you to execute commands in R, please include the code you used to get your answers. Please also include the .R file that contains your code. If you are not sure if work needs to be shown for a particular problem, please ask.
- Your homework should be submitted electronically on the course GitHub page in .pdf form.
- This problem set is due at the beginning of class on Monday, February 17, 2020. No late assignments will be accepted.
- Total available points for this homework is 100.

In this problem set, you will run several regressions and create an add variable plot (see the lecture slides) in R using the incumbents_subset.csv dataset. Include all of your code.

Question 1 (20 points)

We are interested in knowing how the difference in campaign spending between incumbent and challenger affects the incumbent's vote share.

1. Run a regression where the outcome variable is **voteshare** and the explanatory variable is **difflog**.

```
incumbents <- read.csv("incumbents_subset.csv")</pre>
з ##1.1
4 voteshare _ difflog <- lm(incumbents $voteshare incumbents $ difflog)
5 summary (voteshare_difflog)
 Residuals:
                                    3Q
       Min
                  1Q
                      Median
                                            Max
 -0.26832 -0.05345 -0.00377 0.04780 0.32749
 Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                0.002251 257.19
                    0.579031
                                                   <2e-16 ***
 (Intercept)
 incumbents$difflog 0.041666
                                0.000968
                                           43.04
                                                   <2e-16 ***
 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
 Residual standard error: 0.07867 on 3191 degrees of freedom
 Multiple R-squared: 0.3673, Adjusted R-squared: 0.3671
 F-statistic: 1853 on 1 and 3191 DF, p-value: < 2.2e-16
```

2. Make a scatterplot of the two variables and add the regression line.

```
plot(incumbents$difflog, incumbents$voteshare)
abline(voteshare_difflog, col = "blue")
```


3. Save the residuals of the model in a separate object.

$$Y = 0.04167x + 0.57903$$

Question 2 (20 points)

We are interested in knowing how the difference between incumbent and challenger's spending and the vote share of the presidential candidate of the incumbent's party are related.

1. Run a regression where the outcome variable is **presvote** and the explanatory variable is **difflog**.

```
presvote_difflog <- lm(incumbents$presvote~incumbents$difflog)</pre>
2 summary(presvote_difflog)
 Residuals:
      Min
                1Q
                     Median
                                   3Q
                                           Max
 -0.32196 -0.07407 -0.00102 0.07151 0.42743
 Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
 (Intercept)
                    0.507583
                               0.003161 160.60
                                                   <2e-16 ***
 incumbents$difflog 0.023837
                               0.001359
                                           17.54
                                                   <2e-16 ***
                 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
 Signif. codes:
 Residual standard error: 0.1104 on 3191 degrees of freedom
 Multiple R-squared: 0.08795, Adjusted R-squared: 0.08767
 F-statistic: 307.7 on 1 and 3191 DF, p-value: < 2.2e-16
```

2. Make a scatterplot of the two variables and add the regression line.

```
plot(incumbents$difflog, incumbents$presvote)
abline(presvote_difflog, col = "blue")
```


3. Save the residuals of the model in a separate object.

$$Y = 0.02384x + 0.50758$$

Question 3 (20 points)

We are interested in knowing how the vote share of the presidential candidate of the incumbent's party is associated with the incumbent's electoral success.

1. Run a regression where the outcome variable is **voteshare** and the explanatory variable is **presvote**.

```
voteshare presvote <- lm(incumbents $voteshare incumbents $presvote)
2 summary (voteshare _ presvote)
 Residuals:
                 1Q
                     Median
                                   3Q
                                           Max
 -0.27330 -0.05888 0.00394 0.06148 0.41365
 Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
 (Intercept)
                     0.441330
                                 0.007599
                                            58.08
                                                    <2e-16 ***
 incumbents$presvote 0.388018
                                 0.013493
                                            28.76
                                                    <2e-16 ***
                 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
 Signif. codes:
 Residual standard error: 0.08815 on 3191 degrees of freedom
 Multiple R-squared: 0.2058, Adjusted R-squared: 0.2056
                827 on 1 and 3191 DF, p-value: < 2.2e-16
 F-statistic:
```

2. Make a scatterplot of the two variables and add the regression line.

```
plot(incumbents$presvote, incumbents$voteshare)
abline(voteshare_presvote, col = "blue")
```


$$Y = 0.3880x + 0.4413$$

Question 4 (20 points)

The residuals from part (a) tell us how much of the variation in **voteshare** is *not* explained by the difference in spending between incumbent and challenger. The residuals in part (b) tell us how much of the variation in **presvote** is *not* explained by the difference in spending between incumbent and challenger in the district.

1. Run a regression where the outcome variable is the residuals from Question 1 and the explanatory variable is the residuals from Question 2.

```
residuals1_2 <- lm(res_vd~res_pd)
2 summary (residuals1_2)
 Residuals:
      Min
                1Q
                     Median
                                  3Q
                                           Max
 -0.25928 -0.04737 -0.00121 0.04618 0.33126
 Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                      0.00
 (Intercept) -4.860e-18 1.299e-03
                                      21.84
              2.569e-01 1.176e-02
                                              <2e-16 ***
 res_pd
 Signif. codes:
                 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
 Residual standard error: 0.07338 on 3191 degrees of freedom
 Multiple R-squared:
                       0.13, Adjusted R-squared: 0.1298
                477 on 1 and 3191 DF, p-value: < 2.2e-16
 F-statistic:
```

2. Make a scatterplot of the two residuals and add the regression line.

```
plot(res_pd, res_vd)
plot(residuals1_2, col = "blue")
```


$$Y = 0.2569x - 4.860e - 18$$

Question 5 (20 points)

What if the incumbent's vote share is affected by both the president's popularity and the difference in spending between incumbent and challenger?

1. Run a regression where the outcome variable is the incumbent's voteshare and the explanatory variables are difflog and presvote.

```
bivariate <- lm(voteshare difflog+presvote, data = incumbents)
summary(bivariate)</pre>
```

Residuals:

```
Min 1Q Median 3Q Max -0.25928 -0.04737 -0.00121 0.04618 0.33126
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4486442 0.0063297 70.88 <2e-16 ***

difflog 0.0355431 0.0009455 37.59 <2e-16 ***

presvote 0.2568770 0.0117637 21.84 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.07339 on 3190 degrees of freedom Multiple R-squared: 0.4496, Adjusted R-squared: 0.4493 F-statistic: 1303 on 2 and 3190 DF, p-value: < 2.2e-16

2. Write the prediction equation.

```
Y = 0.03554x1 + 0.25688x2 + 0.44864
x1 = difflog, x2 = presvote
```

3. What is it in this output that is identical to the output in Question 4? Why do you think this is the case?

The coefficient for the presvote variable (Beta 2) in this model is the same as the coefficient value for the regression of the residuals (Beta 1) calculated from the regression of voteshare and difflog and the regression of presvote and difflog. These values could be the same because both describe the variation explained by presvote that is not explained by difflog.