MATH 222-004

Name:		
r addito.		

For full credit please explain all of your answers. No calculators are allowed.

Problem 1. Solve the following initial value problem. Please show every step for full credit, i.e. do not find the integrating factor and use a memorized equation.

$$\frac{dy}{dx} = -xy + x^3$$

With initial value y(0) = 0

Solution 1.

This was problem 12 on page 63 in the course notes. We write this in a recognizable form

$$\frac{dy}{dx} + xy = x^3$$

Our integrating factor is then $m(x) = e^{x^2/2}$. Multiplying through we have

$$\frac{d}{dx}(e^{x^2/2}y) = e^{x^2/2}x^3$$

Now we integrate both sides

$$e^{x^2/2}y = \int e^{x^2/2}x^3 \ dx$$

Now comes the tricky part of this problem, finding that integral. We'll use integration by parts with $u = x^2$ and $v' = xe^{x^2/2}$. Then u' = 2x and $v = e^{x^2/2}$, so

$$\int e^{x^2/2}x^3 dx = x^2 e^{x^2/2} - 2 \int x e^{x^2/2} dx$$

Now we could use u-sub or just recognize this integral and so we have

$$\int e^{x^2/2}x^3 dx = x^2 e^{x^2/2} - 2 \int x e^{x^2/2} dx = x^2 e^{x^2/2} - 2e^{x^2/2} + C$$

Hence

$$e^{x^2/2}y = x^2e^{x^2/2} - 2e^{x^2/2} + C$$

Dividing through by $e^{x^2/2}$

$$y = x^2 - 2 + Ce^{-x^2/2}$$

To find C we use y(0) = 0 so

$$0 = -2 + C$$

Hence C=2 and we get the final solution is

$$y = x^2 - 2 + 2e^{-x^2/2}$$

If you got to the point where you found the integrating factor but struggled to take the integral you received most of the credit, but I wanted to do a little refresher or integration by parts!

Problem 2. Write, but **DO NOT SOLVE** a differential equation that describes the rabbit population at time t in the following scenario:

Rabbits in Madison have a birth rate of 6% per year and a death rate (from old age) of 2% per year. Each year 1200 rabbits get run over and 700 rabbits move in from Sun Prairie.

Solution 2.

Breaking this into pieces if we let y(t) be the number or rabbits after t years we have

$$\frac{dy}{dt} = .06y - .02y - 1200 + 700 = .04y - 500$$

As we have a constant rate fatalities and move ins and a proportional growth of .06 due to breeding and death of .02 due to natural causes. \Box