Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page. Tables and charts that you may need are provided at the end.

Note: From questions 2, 3, 4 and 5, the best three will count, i.e., I will correct all of these four questions and count the best three results towards your total

Name:	
UT EID:	

	Question 1: Multiple Choice Questions
$\overline{2}$	(a) At the condenser, the refrigerant changes
	from high pressure vapor to high pressure liquid
	of from high pressure vapor to low pressure liquid
	of from high pressure liquid to high pressure vapor
	of from high pressure vapor to low pressure vapor
4	(b) A refrigerator has a coefficient of performance of 1.6. How much work must be supplied to this refrigerator for it to reject 1000 kJ of heat?
	○ 385 kJ
	\bigcirc 625 kJ
	○ 836 kJ
	\bigcirc 1000 kJ
2	(c) Humid air is cooled, dehumidified and reheated during an isobaric process. Which one of the psychometric charts below correctly depicts these processes?
	(a) (b) 2
	(c) (d) 1 2
	(a)
	(b)
	(c)
	\bigcirc (d)
2	(d) The ratio of the mass of vapor to the total mass of the moist air mixture is called
	o vapor ratio

O vapor content

indexquality

)	3,12	3 - 22) jiljoonstada Mit oossoomise o immissä Soo (, 1) kinjoo	en e		
	State	<u>t(°c)</u>	P(MPa)	h (125/169) s(leJ/leg K)	
r 1881 fra fra Norwalania orona serant serapente tetakan		35	1,5	87,72		
out the transfer that are the contracts to the transfer common or a support of	2	the district his large that design and design and a second partners, proper is necessarily	0.5	87.72		
And the second	3		1.5	50,48		
errengen og en skriver og grende tillhende en skrivereden.	4	lander with the state of the st	0.2	50.48		
er friedrich (der erleiten zur des 11 deutsche eine Jeweitsperichtigen)	5	-20	0,2	243,1	0,985	
	4	and a section of the	0,5	266,5	0.985	
titler til fritte stadte ock som eg som advikt det af sil fraget i de glave og	7	5	0,5	254		
er Maria (1904) e mar	8	er open i ver opposer i ensemble specialistic, may en eng		264		
17 OR THE SECTION STATES AND SECTION S	9		1.5	294		
			<u>254</u> 87,72	- 87,72 <u> </u>	47	
	Mixing of streams 6 and 7 to determine h_8 $\dot{m}_3 + \dot{m}_7 = \dot{m}_1$, $4.47 \dot{m}_7 + \dot{m}_7 = 5.47 \dot{m}_7 = \dot{m}_1$, $\dot{m}_1 = 5.47$ $\dot{m}_3 h_6 + \dot{m}_7 h_7 = \dot{m}_1 h_8$					
	h ₈ =	$\frac{\dot{m}_3}{\dot{m}_1}$	+ m + h 7	$= \frac{h_6}{\dot{m}_1/\dot{m}_3} +$	h ₇ n,/m ₇	
	h ₈ =	h ₆ m _{7/m3})	+ h7 m,/m	= <u>266,5</u> 7 (1+ 1/4,47)	+ <u>254</u> = 264 Bty 5.47 Ibm	
	Locate s	tute 9	at 1.51	1Pa, Sq =	5	
			2	0		

Prob, 3,12 contd.

$$\frac{c.o.p.}{\frac{4-5}{5-6} + \frac{\dot{w}}{8-9}} = \frac{\dot{m}_3 (h_5 - h_4)}{\dot{m}_3 (h_6 - h_5) + \frac{\dot{m}_1 (h_9 - h_8)}{\dot{m}_3}}$$

$$C.o.P. = \frac{243.1 - 50.48}{(266.5 - 243.1) + 1.22(294 - 264)}$$

Problem 8.28 Use Chart C-8E

- a.) Connect states 4 \$ 5
 Use Egns 8.3, 8.4 or 8.9 to locate state 6 on the mixing line.
 - By Egn 8.9: ma,6 t6 = ma,4 t4 + ma,5 t5 ma,5 = ma,2 = 6000 lbma/hr ma,4 = 4000 lbma/hr
 - i. t₆ = 0.4(72) + 0.6(35) = 49.8°F Read \$\phi \equiv 40%
- b.) State 7 is located along the constant W-line starting at state 6 and ending at 80°F Use Egn 8.11 or 8.12 to find 60,7

 By Egn 8.12: Q = ma,6 (Cpa + Cpw W6)(t7-t6)

 60, = 10,000 [0.24+(0.444×0.003)](80-49.8)=72,900 Btu
 hr
- C.) Process line from state 7 to state 8 is constant t* and state 8 is saturated (Given condition)

 From the chart: t7 = t8 = 54°F and t9 = 54°F.
- d) $m_{\omega} = m_{a,6} (W_8 W_7) = 10,000 \frac{16m_a}{hr} (0.0088 0.003) \frac{16m_a}{16m_a}$ $m_{\omega} = 58 | bm_{\omega} / hr$
- e.) State 1 is on a constant W-line from state 8. By Eqn 8.28: $(\hat{Q}_s)_{zone\,A} = rina_{,1}\,\bar{C}_{\rho}(t_1-t_2)$ 32,000 = 6000 (0.245) (t_1-68) $t_1 = 89.8^{\circ}F$, Read $\phi_1 = 30\%$
- f.) Locate State 3 using SHR=0.7 from state 4 and at the intersection of constant W from state 8. Read $t_3 \cong 94.5^{\circ}F$, By Egn 8.12 $_{\circ}Q_3 = 4,000 \left[0.24 + (0.444)(0_{1}95088)\right](94.5-54) = 39,500 \frac{Btu}{hr}$

11.4 Contid
b) As the refrigerant remains isothermal, cr = 0
By Eg. 11.25, NTU = - In (1-E)
$\frac{\mathcal{E} = \frac{t_2 - t_1}{t} = \frac{40 - 21}{50 - 21} = 0.655$
$NTU = -\ln(1-0.655) = 1.064$
c) NTU = Uo Ao / Cmin or Uo Ao = NTU (Cmin)
$C_{min} = C_{air} = m_a c_p = 2.38 \frac{\log_a (1.011 \text{ kJ/kg}_a °c)}{5} = 2.41 \frac{\text{kW}}{\text{°c}}$
U. A. = 1.064 (2.41 12W) = 2.56 12W
d) As the refrigerant is isothermal, $F \equiv 1$
e) $\Delta t_{m} = \Delta t_{m,cf} = \frac{t_{2} - t_{1}}{\ln\left(\frac{t_{B} - t_{1}}{t_{A} - t_{2}}\right)} = \frac{(40 - 21)^{\circ}C}{\ln\left(\frac{50 - 21}{50 - 40}\right)} = 17.8^{\circ}C$
 f) $\dot{\phi} = \dot{m}_{\alpha} c_{\beta} (t_2 - t_1) $ (or $\dot{m}_{R-22} (h_A - h_{13}))$
 $= C_{qir}(t_2 - t_1)$
= 2.41 kw (40-21)°C = 45.8 kw

261

18,25 2-3 4-5

Duct sizing By Fig. 18.18b, to the nearest duct diameter shown on the figure: 1-2, 3000 L/s, 630 mm, V = 9.6 m/s, AP/L = 1.5 Pa/m 3-6, 1000 L/s, 400 mm, V = 8.0 m/s, DP/L = 1.8 Pa/m 7-10, 2000 L/s, 500 mm, V = 10,1 m/s, AP/L = 2,1 Pa/m Pressure Drop Calculations DP = 20m (1.5 Pa/m) = 30 Pa By Table 18.8 $A_s/A_c = (400/630)^2 = 0.40$ Vs/Ve = (1000 L/s)/(3000 L/s) = 0.33 $C_s = 0.14$, $P_w = (9.6/1.19)^2 = 55.4 Pa$ ΔP = 0.14 (55.4 Pa) = 7.8 Pa 3-4 + 5-6 DP = (5+30)m (1.8 Pa/m) = 63 Pa By Table 18.7, Co = 0.07, Pa = (8.0/1.29) = 38.5 Pa $\Delta P = 0.07 (38.5 Pa) = 2.7 Pa$ 2-7 By Table 18.8 $A_b/A_c = (500/630)^2 = 0.63$ $v_b/v_c = 2000/3000 = 0.67$ cb = 0.60 ΔP = 0,60 (55.4 Pa) = 33.2 Pa

```
18.25 Cont'd.
7-8 4 9-10
DP = (15+25)m (2.1 Pa/m) = 84 Pa
```

8-9
By Table 18.7

$$C_0 = 0.06$$
, $P_0 = (10.1/1.29)^2 = 61.3 Pa$
 $\Delta P = 0.06 (61.3 Pa) = 3.7 Pa$

Total Pressure Drop 1-6

$$\Delta P = 1-2, 2-3, 3-4, 4-5, 5-6+\Delta P_{diffuser}$$

= 30+7.8+63+2.7+12 = 115.5 Pa

$$\Delta P = 1-2, 2-7, 7-8, 8-9, 9-10 + \Delta P_{diffuser}$$

= 30 + 33,2 + 84 + 61,3 +12 = 220,5 Pa

The total pressure available at location 1 must be at least 220.5 Pa higher than ambient to overcome the duct losses. The branch from 3 to 6 may require resizing or a balancing damper to balance the system.