

Stability Analysis of a Plane Poisseuille Flow

Course Project: Water Waves and Hydrodynamic Stability 2016
Matthias Steinhausen

Plane Poiseuille Flow (PPF): Characteristics

Pressure-driven flow between two resting plates

Scaled velocity profile (only in y):

$$U(y) = \frac{U^*}{U_{Cl}} = 1 - y^2$$

No slip boundary conditions at wall:

$$U(y = \pm 1) = 0$$

Stability properties from literature:

$$Re_{cr,energy} = 49.6$$

$$Re_{cr,linear} = 5772$$

PPF: Governing Equations 1/3

Start with incompressible Navier-Stokes equation:

$$\frac{\partial u_i}{\partial t} = -u_j \cdot \frac{\partial u_i}{\partial x_j} - \frac{\partial p}{\partial x_i} + \frac{1}{Re} \cdot \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$

- Introduce the disturbances: $\tilde{u}_i = U_{b,i} + u_i$, $\tilde{p} = P_b + p$
- Rearrange and linearize:

$$\frac{\partial u_i}{\partial t} + U_{b,j} \cdot \frac{\partial u_i}{\partial x_j} + u_j \cdot \frac{\partial U_{b,i}}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \cdot \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$

PPF: Governing Equations 2/3

• Assume parallel flow: $U_{b,i} = U(y)\delta_{1i}$

$$\frac{\partial u}{\partial t} = -U_b \frac{\partial u}{\partial x} - U_b' v - \frac{\partial p}{\partial x} + \frac{1}{Re} \frac{\partial^2 u}{\partial x_j \partial x_j}$$

$$\frac{\partial v}{\partial t} = -U_b \frac{\partial v}{\partial x} - \frac{\partial p}{\partial y} + \frac{1}{Re} \frac{\partial^2 v}{\partial x_j \partial x_j}$$

$$\frac{\partial w}{\partial t} = -U_b \frac{\partial w}{\partial x} - \frac{\partial p}{\partial z} + \frac{1}{Re} \frac{\partial^2 w}{\partial x_j \partial x_j}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Eliminate the pressure – divergence of momentum equation:

$$\frac{\partial^2 p}{\partial x_i \partial x_i} = -2U_b' \frac{\partial v}{\partial x}$$

PPF: Governing Equations 3/3

Orr-Sommerfeld equation:

New BCs at walls: $v = v' = \eta = 0$

$$\frac{\partial v}{\partial t} = \left(-U_b \frac{\partial}{\partial x} \nabla^2 + U_b^{\prime\prime} \frac{\partial}{\partial x} + \frac{1}{Re} \nabla^4 \right) v$$

Introducing $\eta = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}$ leads to the **squire equation**:

$$\frac{\partial \eta}{\partial t} = \left(-U_b \frac{\partial}{\partial x} + \frac{1}{Re} \nabla^2 \right) \eta - U_b' \frac{\partial v}{\partial z}$$

In matrix form:

$$\frac{\partial}{\partial t} \binom{v}{\eta} = \begin{pmatrix} L_{OS} & 0 \\ C & L_{S} \end{pmatrix} \binom{v}{\eta} \quad \text{external forcing} \\ + B \mathbf{f}$$

Eigenvalue Stability Analysis

• Assume wavelike solutions: $v(x, y, z, t) = \hat{v}(y)e^{i(\alpha x + \beta z - \omega t)}$

$$-i\omega\begin{pmatrix}k^2-D^2&0\\C&1\end{pmatrix}\begin{pmatrix}\hat{v}\\\hat{\eta}\end{pmatrix}+\begin{pmatrix}L_{OS}&0\\i\beta U_b'&L_S\end{pmatrix}\begin{pmatrix}\hat{v}\\\hat{\eta}\end{pmatrix}=0$$

with
$$L_{OS} = i\alpha U(k^2 - D^2) + i\alpha U_b^{"} + \frac{1}{Re}(k^2 - D^2)^2$$
; $L_{SQ} = i\alpha U + \frac{1}{Re}(k^2 - D^2)$

what leads to the EV problem:

$$(\mathbf{L} - i\omega \mathbf{M})\widehat{\mathbf{q}} = 0$$

with the solution

$$q = q_0 \exp(tL)$$

Long-time Stability: Maximum Eigenvalues

Long-time Stability: 2D-Waves

Eigenvalue Spectra: α =1.02, β =0

Eigenvalue Spectra: Re=5772

Eigenvalues: Summary

Transient Growth: G(t)

Numerical Abscissa: α =0, β =2

Numerical Abscissa: α =1.02, β =0

Transient Growth: Re=2000, α=0

Transient Growth: Summary

Resolvent Norm: Re=2000

Pseudospectra

Optimal Disturbance: Re=2000, α =0, β =2

Conclusion

Eigenvalues:

- Onset of linear instability at $\alpha = 1.02$ and Re = 5772
- Instable eigenvalue in the A-branch
- P-,S-branch stays stable
- Different eigenvalue distribution for α =0, no instability
- Eigenvalue responsible for instability relatively stable against disturbances

Transient Growth:

- Onset of transient growth at Re=49.6 at β =2 and α =0
- Maximum amplification for $\beta=2$ and $\alpha=0$

Forcing and Optimal Response:

- For α=0 only one peak in resolvent
- Two peaks for α≠0 due to eigenvalue distribution distance
- Streaks: Energy transfer from v to η

Thank you for your attention!

Instability analysis

Long time Dynamics:

- Eigenvalue distribution: $L = S\Lambda S^{-1}$
- Only maximum Eigenvalue
- Determines maximum growth for infinite time

Short time Dynamics:

• Numerical Range: $\frac{\langle Lq,q\rangle}{\langle q,q\rangle}$

Combines both:

• Matrix exponential: $\|\exp(tL)\|_E^2$

Transient Growth: α =0, β =2

Transient Growth over α and Re

Resolvent Norm: Re=2000

Optimal Disturbance: Re=2000, α =1, β =0

