Escuela Politécnica Nacional

Nombre: Dany Molina

Fecha: 18/05/2025

Tarea 4 - Método de la Bisección

Ejercicios Teóricos

1. Use el teorema 2.1 para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^-4 para la solución de $x^3-x-1=0$ que se encuentra dentro del intervalo [1, 2]. Encuentre una aproximación para la raíz con este grado de precisión.

Calcular la cota para el número de iteraciones (Teorema 2.1)

El Teorema 2.1 del método de bisección establece que el número de iteraciones n necesarias para alcanzar una precisión ε está dado por:

$$n \leq \frac{log(b-a) - log(\varepsilon)}{log(2)}$$

```
In [1]: import math
# Definir la función
def f(x):
    return x**3 - x - 1
# Método de bisección
def biseccion(f, a, b, tol=1e-4):
    if f(a) * f(b) > 0:
        raise ValueError("No hay cambio de signo en el intervalo")
    iteraciones = 0
    while (b - a) / 2 > tol:
        c = (a + b) / 2
        iteraciones += 1
        if f(c) == 0:
            break
        elif f(a) * f(c) < 0:
            b = c
        else:
            a = c
    return (a + b) / 2, iteraciones
# Ejecutar
raiz_aprox, n = biseccion(f, 1, 2, tol=1e-4)
print(f"Raíz aproximada: {raiz_aprox:.5f}")
print(f"Iteraciones realizadas: {n}")
```

Raíz aproximada: 1.32477 Iteraciones realizadas: 13