William Stallings Computer Organization and Architecture

Chapter 9
Set Instruksi:
Karakteristik
dan Fungsi

Set instruksi?

- ******Kumpulan instruksi lengkap yang dimengerti oleh CPU
- **X**Kode mesin
- **#**Biner
- **★** Kode assembly

Elemen Instruksi

- **Source Operand reference**Dengan data ini
- **X**Next Instruction Reference
 ☐Setelah selesai, kerjakan ini ...

Operands?

**Main memory (or virtual memory or cache)
**CPU register
**I/O device

Penyajian Instruksi

- #Dlm kode mesin setiap instruksi memiliki polabit tertentu
- **#**Untuk konsumsi programmers disediakan penyajian simbolik
- **#**Operand juga disajikan secara simbolik

Jenis Instruksi

- **#** Data processing
- **#** Data storage (main memory)
- **#** Data movement (I/O)
- **#Program flow control**

Jumlah addres (a)

3 addres

- Operand 1, Operand 2, Result
- $\triangle a = b + c$;
- □ Perlu word yang panjang

Jumlah addres (b)

#2 addres

- $\triangle a = a + b$
- □ Diperlukan kerja ekstra

Jumlah addres (c)

#1 addres

- △ Addres kedua Implicit
- ➡Biasanya register (accumulator)

Jumlah addres (d)

₩0 (zero) addres

- push a
- push b
- pop c
- **△**Berarti:
- $\triangle c = a + b$

Addres banyak? Sedikit?

******Addres banyak

- □ perlu register banyak

XAddres sedikit

Pertimbangan Perancangan (1)

#Operation

- ■Berapa banyak operand?
- △Apa saja operasi yang dikerjakan?
- **#**Jenis data
- #Format instruksi
 - □Panjang opcode

Pertimbangan Perancangan (2)

#Register

- Operasi apa yg dpt dikerjakan oleh masing-masing registers?

******Addressing modes (...)

#RISC v CISC

Jenis Operand

- **X** Addres
- **X** Number
- **#**Character
 - △ASCII etc.
- **X**Logical Data
- **#** (Apa ada bedanya antara number dg character?)

Tipe Data pada Pentium

- #8 bit Byte
- 16 bit word
- #32 bit double word
- **864** bit quad word
- ****Addressing menggunakan 8 bit unit**
- #32 bit double word dibaca pada addres yg habis dibagi dg 4

Tipe Data Specifik

- # General sembarang isi biner
- **X** Integer single binary value
- **X** Ordinal unsigned integer
- **#** Unpacked BCD One digit per byte
- # Packed BCD 2 BCD digits per byte
- ★ Near Pointer 32 bit offset within segment
- # Bit field
- **#** Byte String
- **★ Floating Point**

Tipe Data Floating Point pada Pentium

#Stallings hal:324

Jenis Operasi

- **#** Data Transfer
- **X** Arithmetic
- **#**Logical
- **#**Conversion
- **#I/O**
- **#**System Control
- **X**Transfer of Control

Data Transfer

- **#** menentukan
 - **△**Source
 - Destination
- **#**Beda instruksi untuk setiap data movement yang beda
 - □ pada IBM 370

Arithmetic

Logical

#Bitwise operations

#AND, OR, NOT

Conversion

#Contoh: Biner ke Decimal

Input/Output

- **X** Tersedia instruksi khusus
- ******Atau digunakan instruksi data movement (memory mapped)
- **X**Atau dikerjakan oleh controller (DMA)

Systems Control

- **#**Privileged instructions
- **#CPU** harus berada pada state tertentu
 - □Ring 0 pada 80386+
- **X** Digunakan oleh operating systems

Transfer of Control

#Branch

□ Contoh: branch to x if result is zero

#Skip

- Contoh: increment and skip if zero

- △ADD A

XSubroutine call

interrupt call

Baca sendiri

XJenis operasi pada Pentium and PowerPC

★ Stallings hal:338

Byte Order (bagian dari chips?)

- Bagaiamana urutan bilangan yang lebih dari 1 byte disimpan/dibaca

H

Contoh Byte Order

X Address	Value (1)	Value(2)
 184	12	78
 185	34	56
 186	56	34
 186	78	12

#top down atau bottom up?

Penamaan Byte Order

- **#Problem ordering dinamakan Endian**
- **XLSB** pada posisi paling kiri (pada addres terkecil)
- **#**Dinamakan big-endian
- **#LSB** pada posisi paling kanan (pada addres terbesar)
- **#** Dinamakan little-endian

Standard...?

- #Pentium (80x86), VAX adalah little-endian
- #IBM 370, Motorola 680x0 (Mac), dan RISC yang lain, adalah big-endian
- **#** Internet menggunakan big-endian