## Products, Coproducts, and Universal Properties

Ex C = Top

<u>Df</u> a category C consists of

objects are topological spaces morphisms are continuous maps

- a class of objects
- for any objects X, Y, a set Hom(X, Y) of arrows from X to Y called morphisms
- for any objects X, Y, Z, a composition law
  - $\neg$ : Hom(X, Y) × Hom(Y, Z) to Hom(X, Z)

Ex C = Grp

objects are groups morphisms are group homomorphisms

Ex C = Ab

objects are abelian groups morphisms are group homomorphisms

we say that Ab is a subcategory of Grp

- s.t. 1) is associative
  - 2) for all X, an elt Id\_X in Hom(X, X) serving as (left and right) id elt for •

[note: no axiom of inversion]

it is <u>full</u> in the sense that Hom\_{Ab}(A, B) is just Hom\_{Grp}(A, B) for any abelian groups A, B

superlatives in natural language become universal properties of objects in cats

viz., defns asserting that certain test objects and/or morphisms give rise to certain unique maps

e.g., least upper bound s.t. ... coarsest topology s.t. ... largest quotient s.t. ...

Slogan

correspond to defns involving universal properties

<u>Ex</u>

the product top is the coarsest top s.t.  $pr_{\alpha} : prod_{\alpha} X_{\alpha}$  to  $X_{\alpha}$  is cts for all  $\alpha$ 

another characterization:

[draw]

given cts maps  $f_\alpha$ : Y to  $X_\alpha$  for all  $\alpha$  get a unique cts map f : Y to prod\_ $\alpha$  X\_ $\alpha$  s.t.  $f_\alpha = pr_\alpha \circ f$ 

Ex

the product of groups  $G_{\alpha}$  is a group prod\_ $\alpha$   $G_{\alpha}$  s.t.

given hom's  $\phi_{\alpha}$ : H to  $G_{\alpha}$  for all  $\alpha$  get a unique hom  $\phi$ : H to prod\_ $\alpha$   $G_{\alpha}$  s.t.  $\phi$   $\alpha$  = pr  $\alpha \circ \phi$ 

reversing the diagram gives the defn of free product:

Ex the free product of the  $G_α$  is a group bigast α  $G_α$  s.t.

[draw] given hom's  $\psi_{\alpha}$ :  $G_{\alpha}$  to K for all  $\alpha$  get a unique hom  $\psi$ : bigast\_ $\alpha$   $G_{\alpha}$  to K s.t.  $\psi_{\alpha} = \psi \circ i_{\alpha}$  [for incl.'s  $i_{\alpha}$ ]

<u>Df</u> in a general category C

objects described by the pr\_α property are called products prod\_α X\_α objects described by the i\_α property are called coproducts coprod\_α X\_α

Ex if A\_α are abelian groups then their product in Ab is isomorphic as a group to their product in Grp

[still left: describe the coproducts in Top and Ab]

 $\underline{Ex}$  the coproduct of A\_\alpha in Ab is not iso to their free product, i.e., coproduct in Grp

it's isomorphic to the subgroup

bigoplus\_ $\alpha$  A\_ $\alpha$  sub prod\_ $\alpha$  A\_ $\alpha$ 

of elts  $(x_\alpha)_\alpha$  s.t.  $x_\alpha$  =  $e_{A_\alpha}$  for all but finitely many  $\alpha$ 

Ex given top spaces  $X_α$  what is coprod\_α  $X_α$ ?

given cts maps  $g_\alpha$ :  $X_\alpha$  to Z for all  $\alpha$  need a unique cts map g: coprod\_ $\alpha$   $X_\alpha$  to Z s.t. g  $\alpha = g \circ i$   $\alpha$ 

turns out to be the disjoint union: coprod = cup

Rem related notion of a pushout X\_1 cup\_Y X\_2

in Grp, this is the amalgamated prod G\_1 \*\_H G\_2, a quotient of G\_1 \* G\_2 in Top, this is gluing X\_1 and X\_2 along Y, a quotient of X\_1 cup X\_2

(Munkres §72–73)

Thm let X be Hausdorff let i : A to X be inclusion of a closed path-connected subspace

suppose there is cts  $\zeta$  : D^2 to X s.t.  $\zeta$  maps Int(D^2) bijectively onto X – A  $\zeta$  maps S^1 into A

let  $a = \zeta(p)$  and  $\eta = \zeta|_{S^1}$ 

then  $\pi_1(X, a) = \pi_1(A, a)/\eta_*(\pi_1(S^1, p))$ 

[how to wield this thm efficiently?]

https://divisbyzero.com/2020/04/08/make-a-real-projective-plane-boys-surface-out-of-paper/



take X to be the quotient space of [0, 1]^2 resulting from the edge identifications

take A to be the image of the boundary square take  $\zeta$  to be a homeo from D^2 onto [0, 1]^2

for the torus and Klein bottle, A is a figure-eight

take a to be the path following ">" take b to be the path following ">>" then  $\pi_1(X) = \langle a, b \mid R \rangle$  where R is read off of a loop traversal of A

$$\underline{Ex}$$
  $\pi_1(n-fold dunce cap) = Z/nZ$ 



## Remarks on the Proof of Seifert-van Kampen

the full proof (Munkres §70) is tedious

recall our proof that  $\pi_1(S^2)$  is trivial, using open nbds of hemispheres intersecting in an annulus

that proof generalizes to a proof of the first part of Seifert–van Kampen:

then every elt of  $\pi_1(X, x)$  is a (finite) iterated composition of elts of the images of

$$i_{1, *} : \pi_{1}(U_{1, x}) \text{ to } \pi_{1}(X, x),$$
  
 $i_{2, *} : \pi_{1}(U_{2, x}) \text{ to } \pi_{1}(X, x)$