Openface 开源工具整理

笔记本: 总结整理

创建时间: 2018/9/19 13:37 **更新时间:** 2018/10/12 11:55

作者: 马维亮

URL: https://github.com/TadasBaltrusaitis/OpenFace/blob/master/lib/local/LandmarkDetector/src/LandmarkDet...

Openface[1-3]是第一款能够对人脸关键点、头部姿态、AUs及人眼凝视方向进行整体检测的开源工具

优势:

- 采用了先进的算法
- 提供了训练代码
- 能随时调用训练后的模型
- 能够实时
- 提供信息传递接口
- 多平台支持 (Win、Ubuntu、OS)

Tool	Approach	Landmark	Head pose	AU	Gaze	Train	Fit	Binary	Real-time
COFW[13]	RCPR[13]	√				√	√		√
FaceTracker	CLM[50]	√	✓				√	✓	✓
dlib [34]	[32]	√				✓	√		✓
DRMF[4]	DRMF[4]	√	✓					✓	✓
Chehra	[5]	√	✓					✓	✓
GNDPM	GNDPM[58]	✓						√	
PO-CR[57]	PO-CR [57]	✓						√	
Menpo [3]	AAM, CLM, SDM ¹	√				✓	√		2
CFAN [67]	[67]	√						√	✓
[65]	Reg. For [65]	√	✓			✓	√	√	✓
TCDCN	CNN [70]	√	✓					✓	✓
EyeTab	[63]				✓	N/A	✓	✓	✓
Intraface	SDM [64]	✓	✓					?3	✓
OKAO	?	✓	√	√	✓			√	
FACET	?	√	✓	~				✓	✓
Affdex	?	√	✓	√				√	✓
Tree DPM [71]	[71]	√				✓	√		
LEAR	LEAR [40]	√						✓	✓
TAUD	TAUD [31]			√				✓	
OpenFace	[7,6]	✓	✓	√	✓	✓	√	√	✓

Openface整体流程

1. Facial landmark detection and tracking

• 采用CLNF (Constrained Local Neural Field) [4]算法, 能够检测68个关键点

。 Point Distribution Model(PDM): 关键点模型

。 Patch Experts: 预测模型

• 采用一个三层卷积网络用于预测跟踪人脸过程中的漂移及丢失问题

• 需求: 人脸宽度为100像素时效果最佳

2. Head pose estimation

- CLNF人脸关键点检测包含了3D信息,因此可将头部姿态检测转换为pnp问题(Perspective-n-Point)
- 3D-2D原理:
 - 。3D刚体对照相机只有两种运动
 - 平移
 - 旋转(欧拉角、3*3矩阵、旋转方向及角度等)
 - 。 常用的三个坐标系: 像素坐标系, 图像坐标系、相机坐标系、世界坐标系

像素坐标系,原点为图像左上角,单位pixel

世界坐标系中的一点,即为生活中真实的一点;

点P在图像中的成像点,在图像坐标系中的坐标为(x,y),

在像素坐标系中的坐标为(u,v);

: 相机焦距,等于 σ 与 σ _。的距离, $f = \|\sigma - \sigma_c\|$ http://blog.csdn.net/chentravelling

。世界坐标系(Xw,Yw,Zw)--->像素坐标系(u,v), 需知道转移矩阵R(3*3矩阵)及平 移t [5]

$$Z_{c}\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{dx} & 0 & u_{0} \\ 0 & \frac{1}{dy} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ \vec{0} & 1 \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix} = \begin{bmatrix} f_{x} & 0 & u_{0} & 0 \\ 0 & f_{y} & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ \vec{0} & 1 \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

$$http://b \frac{1}{dy} \frac{1}{dy} \frac{1}{dy} e^{-https://b} \frac{1}{dy} e^{-https://b} \frac{1}{dy} \frac{1}{dy} e^{-https://b} \frac{1}{dy} \frac{1}{dy} e^{-https://b} \frac{1}{dy} e^{-https://b} \frac{1}{dy} \frac{1}{dy} e^{-https://b} \frac{1}{dy$$

- 。 opencv中的solvePnP函数
 - 输入:

О

- 世界3D坐标
- 图像2D坐标
- 相机内参
- 相机畸变参数矩阵

- 输出:
 - 转移矩阵R
 - 平移向量t

3. Eye gaze estimation

- 采用CLNF框架对人眼进行检测,包括眼睑、虹膜、瞳孔关键点[6]
- 通过相机与眼球中心连线,计算瞳孔中心的角度偏差进行计算,得到转动向量 (最快速的方式)

4. Action Unit detection [7]

- 利用CLNF算法再CK+数据集上训练,获得人脸稳定点,并进行alignment和 masking,排除环境信息干扰
- 提取HOG特征--->PCA降维: 1379维
- 提取几何特征--->非刚体形状特征及关键点位置: 227维
- AU检测--->SVM进行分类, AU强度--->SVR聚类
- 系统针对视频的AU检测较单张图片要更为可靠
- [1] OpenFace an open source facial behavior analysis toolkit
- [2] https://github.com/TadasBaltrusaitis/OpenFace
- [3] https://github.com/TadasBaltrusaitis/OpenFace/wiki
- [4] Constrained Local Neural Fields for robust facial landmark detection in the wild
- [5] https://blog.csdn.net/qq 36537774/article/details/81604481
- [6] Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
- [7] Cross-dataset learning and person-specific normalisation for automatic Action Unit detection