Algorytm Genetyczny dla Problemu Komiwojażera

Bohdan Tkachenko 256630 February 2, 2024

1 Wprowadzenie

W pracy przedstawiono analize algorytmu genetycznego zastosowanego do problemu komiwojażera (TSP). Celem badania jest ocena skuteczności algorytmu w kontekście różnych zestawów danych TSP. Algorytm genetyczny jest technika metaheurystyczna, która wykorzystuje mechanizmy inspirowane naturalna ewolucja biologiczna, takie jak selekcja, krzyżowanie i mutacja, do efektywnego wyszukiwania rozwiazań w przestrzeni problemów optymalizacyjnych.

1.1 Implementacja Algorytmu

Implementacja algorytmu genetycznego dla problemu komiwojażera (TSP) wykorzystuje zaawansowane techniki ewolucyjne, algorytm wyspowy oraz zrównoleglenie obliczeń, aby efektywnie eksplorować przestrzeń rozwiazań. Proces implementacyjny obejmuje nastepujace etapy:

- 1. **Inicjalizacja poczatkowej populacji:** Każda wyspa inicjuje losowa populacje tras, gdzie każda trasa jest permutacja miast.
- 2. **Ocena osobników:** Każdy osobnik w populacji jest oceniany za pomoca funkcji celu, która mierzy całkowita długość trasy.
- 3. **Selekcja:** Używajac selekcji turniejowej, wybierani sa rodzice, którzy beda uczestniczyć w krzyżowaniu. Selekcja turniejowa zapewnia, że lepiej przystosowane osobniki maja wieksza szanse na przekazanie swoich genów do kolejnych pokoleń.
- 4. **Krzyżowanie:** Stosowane sa metody PMX i OX do generowania potomstwa z wybranych rodziców. Każda z tych metod zachowuje kluczowe cechy trasy od obu rodziców, jednocześnie wprowadzajac nowa różnorodność.
- Mutacja: Losowa zamiana dwóch miast w trasie (mutacja przez zamiane) wprowadza dodatkowa różnorodność, co pozwala na eksploracje nowych rozwiazań.

6. **Lokalna optymalizacja:** Algorytm 2-opt jest stosowany do każdego nowego osobnika w celu poprawy jego jakości poprzez lokalne przeszukiwanie przestrzeni rozwiazań.

7. Algorytm wyspowy i wielowatkowość:

- (a) Każda wyspa (subpopulacja) jest przetwarzana równolegle w osobnym watku, co pozwala na niezależna ewolucje różnych cześci populacji.
- (b) Po określonej liczbie epok przeprowadzana jest wymiana najlepszych osobników miedzy wyspami. Wybrane osobniki sa kopiowane do innych wysp, gdzie zastepuja one niektóre z istniejacych osobników, co zwieksza różnorodność genetyczna.
- (c) Wymiana ta jest zsynchronizowana miedzy watkami, aby upewnić sie, że wszystkie wyspy ukończyły swoje iteracje przed rozpoczeciem wymiany.
- 8. Proces ewolucji jest **powtarzany** przez ustalona liczbe pokoleń lub do osiagniecia warunku stopu.

1.2 Parametryzacja Algorytmu

Parametry algorytmu genetycznego odgrywaja kluczowa role w jego działaniu i efektywności. W badaniu wykorzystano:

- Rozmiar populacji (50): Określa liczbe tras w każdej subpopulacji na wyspie. Wieksza populacja zwieksza różnorodność genetyczna, ale wymaga wiecej obliczeń.
- Liczba wysp (30): Reprezentuje liczbe niezależnych subpopulacji. Dzielenie populacji na wyspy pomaga uniknać przedwczesnej konwergencji i zachować różnorodność genetyczna.
- Liczba epok (10) i Liczba iteracji w epoce (100): Epoka to cykl, po którym nastepuje wymiana osobników miedzy wyspami. W każdej epoce wykonuje sie określona liczbe iteracji algorytmu genetycznego, co pozwala na intensywna ewolucje w obrebie wyspy.
- Prawdopodobieństwo krzyżowania (0.8): Szansa na krzyżowanie dwóch osobników. Wysokie prawdopodobieństwo sprzyja wymianie materiału genetycznego i tworzeniu nowych rozwiazań.
- Prawdopodobieństwo mutacji (0.3): Określa czestość mutacji w populacji. Mutacja wprowadza nowe cechy do genotypu osobników, zwiekszajac różnorodność populacji.

1.3 Metody Krzyżowania

PMX (Partially Mapped Crossover) i OX (Order Crossover) to dwie wykorzystane metody krzyżowania, które maja na celu utworzenie nowego osobnika z cech obu rodziców, zachowujac przy tym optymalna kolejność odwiedzania miast.

PMX działa poprzez wybór segmentu genów z jednego rodzica i mapowanie pozostałych miast z drugiego rodzica, zachowujac ich wzgledne pozycje, co zapobiega duplikacji miast w trasie.

OX również wybiera segment z jednego rodzica, ale wypełnia pozostałe miejsca miastami z drugiego rodzica w kolejności ich wystepowania, co również utrzymuje niepowtarzalność miast.

1.4 Mutacja

Mutacja **Swap** polega na losowej zamianie dwóch miast miejscami w trasie, co ma na celu wprowadzenie dodatkowej różnorodności i eksploracje nowych obszarów przestrzeni rozwiazań.

1.5 Lokalna Optymalizacja

2-opt jest technika lokalnej optymalizacji stosowana do każdego nowo wygenerowanego lub zmodyfikowanego osobnika. Polega na systematycznym sprawdzaniu każdej pary krawedzi w trasie i zamianie ich, jeśli prowadzi to do skrócenia długości trasy.

2 Wyniki

Instancja	Najlepsze	Średnia
xit1083	3837	3983.5
icw1483	4664	4857.9
djc1785	6568	6718.7
Dcb2086	7089	7239.3
Pds2566	8154	8337.2

Table 1: Wyniki algorytmu memetycznego dla problemu TSP

3 Podsumowanie Algorytmów

3.1 Podsumowanie Algorytmów

Algorytm Genetyczny (Memetyczny): Ten algorytm zapewnia najdokładniejsze rozwiazania ze wszystkich przetestowanych metod. Dzieki wykorzystaniu obliczeń równoległych, algorytm nie potrzebuje aż tak dużo czasu. Ale jednak jest wolny.

Teoretycznie, elastyczność w parametryzacji pozwala na dostosowanie go do specyficznych zestawów danych, co może wpłynać na jakość wyników.

Symulowane Wyżarzanie: Jest to algorytm, który w rozsadnym czasie oferuje rozwiazania wystarczajaco dobre. Najszybszy z metaheurystyk.

Taboo Search: Czasami dostarcza wyniki troche lepsze w porównaniu z Symulowanym Wyżarzaniem, ale wymaga wiecej czasu na ich uzyskanie. Jego deterministyczny charakter sprawia, że jest to metoda przewidywalna w swoich rezultatach.

LocalSearch: Wśród porównywanych metaheurystyk, LocalSearch generuje rozwiazania o najniższej dokładności i wymaga stosunkowo dłuższego czasu na wykonanie, co czyni go mniej efektywnym wyborem dla problemu TSP.

Cykl TSP na podstawie MST: Ta metoda szybko dostarcza rozwiazania, które sa gwarantowane 2-OPT. Jej główna zaleta jest szybkość działania.

3.2 Tabelka koncowa

Instancja	Optymalne	LocalSearch	SA	TS	Genetyczny (Memetyczny)
xil1083	3558	4343.45	4200.8	4180	3983.5
lwc1483	4416	5388.82	5158.2	5010.2	4857.9
djc1785	6115	7384.34	7177.7	7151.3	6718.7
Dcb2086	6600	8183.4	7767.0	7723.2	7239.3
Pds2566	7643	9396.42	9031.3	8950.7	8337.2

Table 2: Porównanie średnich wyników różnych algorytmów dla problemu TSP