Investigating Demographic Bias in Brain MRI Segmentation: A Comparative Study of Deep-Learning and Non-Deep-Learning Methods

Ghazal Danaee, Marc Niethammer, Jarrett Rushmore, Sylvain Bouix

Motivation

- Intrinsic biases in data when training→

Biased models may have performance disparities based on sensitive attributes like race and sex

- Few studies done on evaluating the bias in the segmentation tasks

Introduction

Goal:

Evaluate the results of UNesT, nnU-Net, CoTr and a traditional atlas-based method (ANTs), segmenting the left and right nucleus accumbens (NAc) in MRI images

- 1- Segmentation performance of models
- 2-Volumes of the segmented structures to evaluate the effects of race, sex, and their interaction

Dataset

- T1-weighted MRIs from Human Connectome Project (HCP) Young Adult

Group	Training Images	Testing Images
Black Female	30	19
Black Male	32	20
White Female	33	19
White Male	31	20

- Groundtruth: Manually labeled gold-standard segmentations

- Why nucleus accumbens?

Biased training

- Trained each deep learning model (UNesT, etc) from scratch using only one of the 4 demographic groups (Black male, etc)
- For ANTs, 10 atlases from only one of the 4 demographic groups

Segmentation models

- We trained the default architecture of models with some modifications to hyperparameters (loss function, etc)

UNesT(Yu 2023)	Hierarchical Transformer encoder + conv decoder
nn-Unet(Isensee 2021)	3D U-Net
CoTr(Xie 2021)	CNN encoder + Deformable Transformer
ANTs(Advanced normalization tools)(Wang 2013)	Multi-atlas segmentation with joint label fusion

Evaluation Metrics

- To evaluate accuracy →
 - Dice similarity coefficient(DSC)

$$\mathsf{DSC}(X,Y) = \frac{2|X \cap Y|}{|X| + |Y|}$$

- To evaluate Fairness and accuracy →
 - ESSP (Equity-scaled segmentation performance) (Tian et al. 2024)

$$\Delta = \sum_{a \in A} \left| \mathsf{DSC}_{overall} - \mathsf{DSC}_a \right|.$$

$$\mathsf{ESSP} = \frac{\mathsf{DSC}_{overall}}{1 + \Delta}.$$

Statistical analysis

- Performance Bias: Employed linear mixed models to assess bias in model performance

$$\begin{split} \mathsf{DSC} &= \beta_0 + \beta_1(\mathsf{SameRace}) + \beta_2(\mathsf{SameSex}) \\ &+ \beta_3(\mathsf{SameRace} \times \mathsf{SameSex}) + \epsilon \end{split}$$

- Effect of bias on demographic analyses:
- To investigate how race, sex, and their interaction influenced the volumes in segmentations, we used:

Volume =
$$\beta_0 + \beta_1(Race) + \beta_2(Sex) + \beta_3(Race \times Sex) + \epsilon$$

1. General statistics of the volumes

- 1. General statistics of the volumes
 - -smaller standard deviation in non-manual segmentations
 - right NAc volume>> left NAc volume

(in both manual and non manual)

-ANTsBM and UnestBM have volumes

Almost 20% smaller than the manual segmentations

Model	Right	NAc	Left NAc			
	Mean	Std	Mean	Std		
Manual	676.97	125.79	607.13	136.13		
NNUnetBF	653.62	95.08	581.06	99.14		
NNUnetBM	638.20	115.41	569.97	108.32		
NNUnetWF	653.14	90.91	593.83	93.10		
NNUnetWM	665.30	108.89	604.87	106.29		
CotrBF	658.21	93.08	582.45	96.79		
CotrBM	647.76	119.47	574.53	114.28		
CotrWF	664.07	96.01	600.97	92.19		
CotrWM	677.96	111.76	606.37	109.90		
ANTsBF	552.27	68.63	460.58	67.22		
ANTsBM	491.58	61.68	437.41	63.45		
ANTsWF	595.83	70.31	548.00	66.71		
ANTsWM	618.45	78.61	577.38	76.94		
UnestBF	614.88	78.02	528.29	80.83		
UnestBM	564.65	86.91	507.03	85.14		
UnestWF	623.99	84.35	558.03	83.48		
UnestWM	655.31	94.40	618.32	87.33		

Under-segmentation in ANTsBF and ANTsBM

2. Bias in segmentation performance:

nnU-net and CoTr

ANTs and UNesT

ANTs ESSP drop when trained on Black

Structure	TrainGp		nnU-Net			CoTr			ANTs			UNesT	
	пашор	DSC	ESSP	Δ	DSC	ESSP	Δ	DSC	ESSP	Δ	DSC	ESSP	Δ
	WM	0.867	0.845	0.027	0.863	0.839	0.029	0.820	0.796	0.030	0.832	0.784	0.060
Right NAc	WF	0.862	0.838	0.028	0.859	0.832	0.032	0.816	0.793	0.029	0.817	0.791	0.032
	BM	0.862	0.836	0.032	0.859	0.834	0.029	0.781	0.702	0.113	0.801	0.759	0.050
	BF	0.862	0.841	0.025	0.858	0.836	0.027	0.792	0.720	0.100	0.809	0.780	0.037
	WM	0.861	0.849	0.013	0.856	0.843	0.016	0.810	0.794	0.021	0.825	0.773	0.066
I G NIA	WF	0.858	0.836	0.026	0.856	0.839	0.020	0.806	0.796	0.012	0.810	0.787	0.029
Left NAc	BM	0.854	0.832	0.026	0.851	0.831	0.024	0.758	0.688	0.102	0.800	0.748	0.070
	BF	0.858	0.840	0.022	0.853	0.829	0.029	0.773	0.700	0.102	0.798	0.766	0.041

2. Bias in segmentation performance:

$$\begin{split} \mathsf{DSC} &= \beta_0 + \beta_1 (\mathsf{SameRace}) + \beta_2 (\mathsf{SameSex}) \\ &+ \beta_3 (\mathsf{SameRace} \times \mathsf{SameSex}) + \epsilon \end{split}$$

Structure	Model	Model Same Sex				Same Rac	e	Same Race × Same Sex			
• induction o	····ouci	Coeff.	Std Err	P-value	Coeff.	Std Err	P-value	Coeff.	Std Err	P-value	
	ANTs	-0.005	0.006	0.421	0.021	0.006	0.000	0.008	0.008	0.451	
Diale NA	CoTr	0.003	0.003	0.208	0.002	0.003	0.447	0.004	0.004	0.433	
Right NAc	nnU-Net	-0.001	0.003	0.846	-0.000	0.003	0.979	0.006	0.004	0.117	
	UNesT	0.004	0.004	0.289	0.008	0.004	0.050	0.012	0.006	0.042	
	ANTs	-0.005	0.007	0.437	0.022	0.007	0.001	0.011	0.010	0.269	
L -G- NIA -	CoTr	-0.001	0.003	0.852	-0.000	0.003	0.986	0.009	0.004	0.027	
Left NAc	nnU-Net	0.001	0.003	0.810	0.000	0.003	0.906	0.007	0.005	0.146	
<u> </u>	UNesT	0.002	0.005	0.682	0.011	0.005	0.030	0.014	0.007	0.048	

Figure 10: Difference in Dice coefficient for models of same race versus non-same race(The difference is computed as (average of same-race models) - (average of non-same-race models) for each test case)(left NAc). Significance using linear mixed effects model is denoted by *** $(1.00 \times 10^{-4} < P \le 1.00 \times 10^{-3})$, ** $(1.00 \times 10^{-3} < P \le 1.00 \times 10^{-2})$, and * $(1.00 \times 10^{-2} < P \le 5.00 \times 10^{-2})$.

Morphometric differences in Manual segmenations:

$$\mathsf{Volume} = \beta_0 + \beta_1(\mathsf{Race}) + \beta_2(\mathsf{Sex}) + \beta_3(\mathsf{Race} \times \mathsf{Sex}) + \epsilon$$

Structure	Manual	Sex				Race		$\mathbf{Race}\times\mathbf{Sex}$			
	Wallaci	Coeff.	Std Err	P-value	Coeff.	Std Err	P-value	Coeff.	Std Err	P-value	
Right NAc	Manual (whole dataset) Manual (Test set)	208.63 179.28	69.06 69.72	0.003 0.010	225.258 379.632	69.736 100.368	0.001 0.000	-59.781 -71.332	97.202 140.284	0.539 0.611	
Left NAc	Manual (whole dataset) Manual (Test set)	232.674 191.155	66.677 100.463	0.000 0.057	252.66 385.526	67.321 112.698	0.000 0.001	7.667 -53.176	93.836 155.119	0.935 0.732	

3. Impact of biased segmentation on morphometric analyses

Volume =
$$\beta_0 + \beta_1(Race) + \beta_2(Sex) + \beta_3(Race \times Sex) + \epsilon$$

Table 5: Results for evaluating Sex effects on volumes by segmentation models for right and left NAc. Coeff. is the coefficient for a fixed factor term such as Sex that describes the effect of the factor level on the volume. Std Err is the standard error of the coefficient estimates, and P denotes P-value.

Structure	Model	odel Trained on BF			Tra	ained on B	M	Tra	ained on V	VF	Trained on WM		
	Woder	Coeff.	Std Err	Р	Coeff.	Std Err	Р	Coeff.	Std Err	Р	Coeff.	Std Err	Р
	ANTs	219.8	49.5	0.000	171	41.5	0.000	131	50.0	0.009	214	58.7	0.000
Right NAc	CoTr	203.7	74.3	0.006	259	78.5	0.001	184	65.3	0.005	256	77.8	0.001
	nnU-Net	231.1	71.5	0.001	2022	74.8	0.007	166	74.8	0.026	248	78.0	0.001
	UNesT	246.4	59.3	0.000	204	65.7	0.002	186	65.4	0.004	160	71.3	0.025
	ANTs	216.8	39.6	0.000	185	42.4	0.000	74.9	53.8	0.164	218	45.5	0.000
I -C. NIA -	CoTr	208.8	82.6	0.012	164	83.4	0.049	168	69.3	0.015	142	77.7	0.066
Left NAc	nnU-Net	246.1	70.6	0.000	155	82.7	0.060	181	72.1	0.012	172	82.9	0.038
	UNesT	168.6	65.4	0.010	145	65.97	0.027	158	61.9	0.010	101	73.4	0.166

3. Impact of biased segmentation on morphometric analyses

$$\mathsf{Volume} = \beta_0 + \beta_1(\mathsf{Race}) + \beta_2(\mathsf{Sex}) + \beta_3(\mathsf{Race} \times \mathsf{Sex}) + \epsilon$$

Model	Trained	on Black	Female	Trained on Black Male			Trained	on White	Female	Trained on White Male			
	Coeff.	Std Err	P-val	Coeff.	Std Err	P-val	Coeff.	Std Err	P-val	Coeff.	Std Err	P-val	
ANTs	29.053	52.382	0.579	34.158	52.725	0.517	-26.368	58.286	0.651	41.316	60.717	0.496	
CoTr	173.632	86.213	0.044	113.263	105.153	0.281	95.737	82.276	0.245	144.842	100.016	0.148	
nnU-Net	154.684	87.878	0.078	124.947	99.573	0.210	60.579	83.067	0.466	151.105	95.667	0.114	
UNesT	4.000	72.013	0.956	-20.789	77.567	0.789	7.421	75.446	0.922	110.000	79.805	0.168	

Discussion

- Volumes of Right NAc>>volumes of left NAc
- NAcs morphological difference in Males and females
- Race-based differences in volumes are only in manual segmentations
- The results align with previous studies (Ioannou et al. (2022)) who claimed that race bias effect was more significant than sex
- Clinical implications of biased segmentation models
- We evaluate 4 models and used gold-standard labels as ground truth

Limitations

- Small dataset size
- Biases may be different in other populations (children, elderly, etc)
- Right and left NAc are small subcortical structures
- The isolation of training set to only one demographic group may be unrealistic

Conclusion

- Results of UNesT and ANTs showed race matching improves segmentation accuracy

- nnU-net the only model that its performance is indifferent to the race-matching and sex-matching of training set and test set
- Sex differences observed with manual segmentation on the volumes can also be observed with biased models, whereas the race differences disappear in all but one model
- Most models show a lower <u>overall Dice</u> coefficient score and <u>ESSP</u> when trained on datasets from <u>black</u> demographic groups than those trained on <u>white</u> demographic groups.