

INSA de Lyon 6 novembre 2020

Nom et prénom : LAVAL Arnaud

 $Num{\acute{e}ro}: 4018955$

Auto-évaluation

Avant de commencer :

- La durée de l'examen est limitée à 60 minutes.
- Les questions faisant apparaître le symbole 🌲 peuvent présenter aucune, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.
- Des points négatifs pourront être affectés à de mauvaises réponses.
- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses. Les réponses données sur le sujet d'examen ne seront pas prises en compte.

Solution analytique dans une plaque

La figure 2.15 dans le polycopié fournissent les résultats de la solution analytique dans une plaque pour une condition d'échange convectif sur chaque face.

Question 1 🌲 Déterminez parmi les propositions suivantes lesquelles sont vraies.

- A Pour une condition de température imposée sur chaque face, il faut choisir Bi = 0
- $\boxed{\mathrm{B}}$ Pour un flux nul sur l'une des deux faces, il faut prendre L la demi-épaisseur de la plaque
- $\boxed{\mathbf{C}}$ Pour un flux nul sur l'une des deux faces, il faut choisir L l'épaisseur de la plaque
- $\boxed{\mathrm{D}}$ Pour une condition de température imposée sur chaque face, il faut choisir $Bi \to \infty$

Question 2 🌲 Déterminez parmi les propositions suivantes lesquelles sont vraies :

- A Lorsque Fo > 0, 2 il n'est pas nécessaire de prendre en compte plus d'un terme dans la série.
- B Lorsque Fo < 0,05 la solution dans un milieu semi-infinie serait mieux adaptée.
- $\boxed{\mathbf{C}}$ Lorsque Bi < 0, 1 la solution analytique dans la plaque n'est plus valable.
- \square Lorsque Bi > 100 il n'est pas nécessaire de prendre en compte plus d'un terme dans la série.

Une plaque en métal d'épaisseur L=4 cm est refroidit par immersion dans un bain à l'huile. La conductivité du métal est $\lambda=20~\mathrm{W/(m\cdot K)}$, sa masse volumique est $\rho=8000~\mathrm{kg/m^3}$ et sa capacité thermique $c=460~\mathrm{J/(kg\cdot K)}$. Le coefficient d'échange par convection sur les deux faces de la plaque est $h=1000~\mathrm{W/(m^2\cdot K)}$.

Question 3 Quelle est la méthode appropriée pour calculer la température dans le métal au bout de t = 1 s?

- A la méthode nodale avec résistances thermiques
- B la solution analytique de la conduction instationnaire dans une plaque
- C la méthode du solide à température quasi-uniforme
- D la solution analytique de la conduction instationnaire dans un milieu semi-infini

Question 4 Quelle est la méthode appropriée pour calculer l'évolution de la température au centre de la plaque ?

- A la méthode nodale avec résistances thermiques
- B la méthode du solide à température quasi-uniforme
- C la solution analytique de la conduction instationnaire dans une plaque
- D la solution analytique de la conduction instationnaire dans un milieu semi-infini

Question 5 Quelle est l'allure de l'évolution de la température dans le métal au bout de t = 100 s?

- A décroissance exponentielle de la différence de température
- B l'évolution est décrit par une série infinie de termes (modes) spatio-temporelles
- C la température n'évolue plus à cet instant

Question 6 Si la température de la plaque à t=0 s est $T_i=472$ °C et celle de l'huile est $T_f=25$ °C, déterminez la température en degré Celcius au centre de la plaque à t=100 s. Donnez le résultat numérique arrondi au degré près.

Question 7 Un autre plaque avec les mêmes caractéristiques est refroidit par air avec un coefficient d'échange convectif de $h = 50 \text{ W/(m}^2 \cdot \text{K})$ et une température de 28 °C. Quelle est la méthode appropriée pour calculer la température dans le métal au bout de t = 100 s?

- A la méthode du solide à température quasi-uniforme
- B la solution analytique de la conduction instationnaire dans un milieu semi-infini
- C la méthode nodale avec résistances thermiques
- D la solution analytique de la conduction instationnaire dans une plaque

Question 8 La température initiale de la plaque est 472 °C. Calculer le temps nécessaire *en minutes* pour atteindre une température de 60°C (dans les conditions ci-dessus: $h = 50 \text{ W/(m}^2 \cdot \text{K})$ et la température de l'air 28 °C). Donnez le résultat numérique arrondi à la minute près.