Lý thuyết Điều khiển tự động 1

Bộ điều khiển tỷ lệ-tích phânvi phân (PID)

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

Sơ lược về bộ điều khiển PID

Sơ đồ khối một hệ thống điều khiển tự động

Bộ điều khiến PID

PID Proportional-Intergral-Derivative

Sơ lược về bộ điều khiển PID (tiếp)

Hằng số thời gian vi phân

$$G_{c}(s) = K_{p} \left[1 + \frac{1}{T_{i}s} + T_{d}s \right],$$

 $G_{\rm c}(s) = K_{\rm p} \left[1 + \frac{1}{T_{\rm i}s} + T_{\rm d}s \right], \quad \text{trong $d\'o$} \quad T_{\rm i} = \frac{K_{\rm p}}{K_{\rm i}} \quad \text{và} \quad T_{\rm d} = \frac{K_{\rm d}}{K_{\rm p}}$

Hằng số thời gian tích phân

Nhận xét

- Có một điểm cực nằm tại gốc tọa độ
- Có hai điểm không với vị trí phụ thuộc vào K_p , T_i , T_d .

Nhiệm vụ

Lựa chọn (chỉnh định) các tham số K_p , T_i , T_d để hệ thống đạt được chất lượng như mong muốn (tốt nhất có thể).

Các bộ điều khiển trong họ PID

Bộ điều khiển P, I, PI, PD, PID

Sơ lược về bộ điều khiển PID (tiếp)

Ví dụ về hệ thống điều khiển robot hàn

Sơ lược về bộ điều khiển PID (tiếp)

Ví dụ về hệ thống điều khiển độ dày trong quá trình cán kim loại

Việc lựa chọn bộ điều khiển phụ thuộc vào mô hình toán học của đối tượng và các yêu cầu chất lượng đặt ra cho hệ thống.

Bộ điều khiển tỷ lệ P

$$G_c(s) = K_p$$

Tín hiệu điều khiển u(t) tỉ lệ với giá trị tức thời của sai lệch e(t)

Ưu điểm của luật tỷ lệ

Do tính tác động nhanh và tức thời nên cải thiện được tốc độ đáp ứng của hệ thống

Nhược điểm

- Không bảo đảm sai lệch *e(t)* tiến tới 0
- Hệ nhạy cảm hơn với ảnh hưởng của nhiễu đo

Bộ điều khiển tỷ lệ-tích phân PI

$$G_{c}(s) = K_{p} + \frac{K_{i}}{s} = \frac{K_{p}\left(s + \frac{K_{i}}{K_{p}}\right)}{s} = K_{p}\left(1 + \frac{1}{T_{i}s}\right)$$

R(s)

 \implies Tín hiệu điều khiển u(t) tỉ lệ với tích lũy của sai lệch e(t)

Ưu điểm của luật tích phân

Cho phép triệt tiêu sai lệch tĩnh

Nhược điểm

- Bô đk thuần túy tích phân đáp ứng chậm so với sự thay đổi của e(t)
- Hệ kém ổn định hơn.

PI Controller

Bộ điều khiển tỷ lệ-tích phân PI (tiếp)

$$G_p = \frac{1}{s(s+1)}$$

Thay đổi K_p và K_i như sau

$$(K_p)_1 > (K_p)_2 > (K_p)_3,$$

 $(K_i)_1 > (K_i)_2 > (K_i)_3.$

Giảm K_p và K_i sẽ làm giảm dao động và hệ ổn định hơn.

Bộ điều khiển tỷ lệ-vi phân PD

$$G_{c}(s) = K_{p} + K_{d}s = K_{d}\left[s + \frac{K_{p}}{K_{d}}\right] = K_{p}(1 + T_{d}s)$$

Tín hiệu điều khiển u(t) tỉ lệ với sự thay đổi của sai lệch e(t)

PD controller

Ưu điểm của luật vi phân

• Do đoán trước chiều hướng và tốc độ thay đổi của sai lệch và đưa ra phản ứng thích hợp nên làm tăng tốc độ đáp ứng của hệ

• Hệ ổn định hơn

Nhược điểm

Quá nhạy cảm với nhiễu đo

Bộ điều khiển tỷ lệ-vi phân PD (tiếp)

$$G_p = \frac{1}{s(s+1)}$$

Xét hai trường hợp

- Sử dụng bộ điều khiển P
- Sử dụng bộ điều khiển PD

Thành phần vi phân làm giảm độ quá điều chỉnh và giảm dao động.

Bộ điều khiển tỷ lệ-tích phân-vi phân PID

$$G_{c}(s) = K_{p} \left[1 + \frac{1}{T_{i}s} + T_{d}s \right] = K_{p} \frac{(as+1)(bs+1)}{s}$$

Điểm không:

$$s=-1/a$$
 và $s=-1/b$

trong đó $a+b=T_i$ và $ab=T_iT_d$

Điểm cực:

Ưu điểm

Kết hợp được các ưu điểm của bộ đk PI và PD

Bài toán thiết kế bộ đk PID

Xác định các tham số K_p , T_i , T_d sao cho hệ thống đạt được chất lượng mong muốn: t/g tăng và t/g xác lập ngắn, độ quá điều chỉnh nhỏ, sai lệch tĩnh bằng $0, \dots$

Bộ điều khiển PID (tiếp)

Ảnh hưởng của từng tham số PID tới chất lượng điều khiển

Chỉ tiêu chất lượng —	Thay đổi tham số			
em tieu chat iuyng	T ăng $K_{\mathfrak{p}}$	G iảm $T_{ m i}$	Tăng T _d	
Thời gian đáp ứng	giảm	giảm ít	giảm ít	
Thời gian quá độ	thay đổi ít	giảm	giảm	
Độ quá điều chỉnh	tăng	tăng	giảm ít	
Hệ số tắt dần	thay đổi ít	tăng	giảm	
Sai lệch tĩnh	giảm	triệt tiêu	thay đổi ít	
Tín hiệu điều khiển	tăng	tăng	tăng	
Độ dự trữ ổn định	giảm	giảm	tăng	
Bền vững với nhiễu đo	giảm	thay đổi ít	giåm	

Bộ điều khiển PID (tiếp)

Biểu đồ lựa chọn các thành phần của bộ điều khiển PID

Hiện thực hóa bộ điều khiển PID

Function	$Z_{I}(s)$	$Z_{2}(s)$	$G_c(s) = -\frac{Z_1(s)}{Z_2(s)}$
Gain	R ₂	R_2	$-\frac{R_2}{R_I}$
Integration	R_2	C ($\frac{1/RC}{s}$
Differentiation	C ————————————————————————————————————	$ N_2$	-RCs

Hiện thực hóa bộ điều khiển PID (tiếp)

Function	$Z_{I}(s)$	$Z_{2}(s)$	$G_{c}(s) = -\frac{Z_{1}(s)}{Z_{2}(s)}$
PI controller	R_2	R_2 C_3 C_3	$-\frac{R_2}{R_1}\frac{(s+I/R_1C)}{s}$
PD controller		R ₂	$-R_2C\left(s+\frac{1}{R_1C}\right)$
PID controller		R_2 C_2	$-\left[K+R_{2}C_{1}s+\frac{\frac{1}{R_{1}C_{2}}}{s}\right]$ where $K=\frac{R_{2}}{R_{1}}+\frac{C_{1}}{C_{2}}$