Heuristic Functions for 8-puzzle problem

Start State

Goal State

Heuristic Functions for 8-puzzle problem

Goal State

1. Number of misplaced tiles (h_1)

Heuristic Functions for 8-puzzle problem

Start State

Goal State

- 1. Number of misplaced tiles (h_1)
- 8

2. Manhattan distance (h_2)

Effect of Heuristic on performance

▶ For now, let us assume that h_1 and h_2 are consistent.

Effect of Heuristic on performance

▶ For now, let us assume that h_1 and h_2 are consistent.

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2 4 6 8 10 12 14 16 18 20 22 24	10 112 680 6384 47127 3644035	39 93 93 227 539 1301 3056 7276 18094 39135	76 12 18 25 39 73 113 211 363 676 1219 1641	2.45 2.87 2.73 2.80 2.79 2.78	1.79 1.48 1.34 1.33 1.38 1.42 1.44 1.45 1.46 1.47 1.48 1.48	1.79 1.45 1.30 1.24 1.22 1.24 1.23 1.25 1.26 1.27 1.28 1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^* algorithms with h_1 , h_2 . Data are averaged over 100 instances of the 8-puzzle for each of various solution lengths d.

Effective Branching Factor

$$N+1=1+b^*+(b^*)^2+\ldots+(b^*)^d$$

Effective Branching Factor

$$N+1=1+b^*+(b^*)^2+\ldots+(b^*)^d$$

		Search	h Cost (nodes g	enerated)	Effective Branching Factor		
	d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
•	2 4 6 8 10 12 14 16 18 20	10 112 680 6384 47127 3644035	6 13 20 39 93 227 539 1301 3056 7276	6 12 18 25 39 73 113 211 363 676	2.45 2.87 2.73 2.80 2.79 2.78	1.79 1.48 1.34 1.33 1.38 1.42 1.44 1.45 1.46 1.47	1.79 1.45 1.30 1.24 1.22 1.24 1.23 1.25 1.26 1.27
	22 24	_ _	18094 39135	1219 1641	_	1.48	1.28 1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^* algorithms with h_1 , h_2 . Data are averaged over 100 instances of the 8-puzzle for each of various solution lengths d.

Heuristic domination

▶ Which heuristic is better — h_1 or h_2 ? Why?

$$f(n) < f(Good) = g(Good) + h(Good)$$

$$= C$$

$$f(n) < C$$

$$= C$$

$$g(n) < C$$

$$= C$$

$$g(n) < C$$

$$= C$$

Heuristic domination

- ▶ Which heuristic is better h_1 or h_2 ? Why?
- ▶ We say h_2 dominates h_1 because:

$$\forall n$$
 $h_2(n) \geq h_1(n)$.

Heuristic domination

- ▶ Which heuristic is better h_1 or h_2 ? Why?
- We say h_2 dominates h_1 because: $\forall n \qquad h_2(n) \geq h_1(n)$.
- ▶ How to find a consistent heuristic?

➤ To the original state space for the 8-puzzle problem we add the following:

- ► To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.
- Each action can move one tile one position closer to its goal position.

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.
- Each action can move one tile one position closer to its goal position.
- ▶ What will be the cost of the shortest path in this relaxed state space?

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.
- Each action can move one tile one position closer to its goal position.
- What will be the cost of the shortest path in this relaxed state space? Manhattan distance (h_2)

h_2 is consistent in the relaxed state space for 8-puzzle

