Quantitative methods

Lesson 8

Daróczi Gergely

Corvinus University of Budapest, Hungary

2011 April 5

Outline

- Descriptive statistics
- Averages
 - Examples
 - Case studies
- Statistical dispersion
 - Examples
 - Case studies
- A small note on graphics

Computation

Results

$$\overline{x} = \frac{30 + 90 + 90 + 60 + 30}{5} = 60$$

$$median = 60$$

$$mode = \{30, 90\}$$

$$\sigma = \sqrt{\frac{(30 - 60)^2 + (90 - 60)^2 + (90 - 60)^2 + (60 - 60)^2 + (30 - 60)^2}{5}} = \sqrt{\frac{720}{5}} = \sqrt{144} = 12$$

$$SE = \frac{12}{\sqrt{5}} = \frac{12}{2.236} = 5.366$$

 $X = \{30, 90, 90, 60, 30\}$

The expected value can vary between 49.26 and 70.73 at 95% CI.

Averages

There are several different averages (measures of central tendency) - with all different advantages and disadvantages:

- **1** arithmetic mean: $\frac{1}{n}\sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$
- **2** geometric mean: $\sqrt[n]{\prod_{i=1}^n x_i} = \sqrt[n]{x_1 x_2 \cdots x_n}$
- mode: the most frequently occurring number/category in the sample
- median: the middle number of the ranked variable
- **5** midrange: $\frac{\max x + \min x}{2}$

Examples

Which of the above would you choose to describe ...

- your grades in this semester,
- the average number of students in the library,
- the central tendency of hair color at the university,
- the salary of people living in Budapest,
- loss of money in a pub at Saturday night.

Case studies

Judge the following statements:

- The average weekly earnings went up 107 percent between 1940 and 1948 in the United States Steel Corporation.
- The average salary in the same corporation was \$ 5.000 in 1942.
- The probability of dying in a car accident is twice as much than being hit by an airplane."
- "Peter's IQ is 98 and Linda's is 101. A nice evidence of girls beeing smarter than boys."
- This year I sleep twice as much than I used to last year. Should I feel happy?"

Case studies

What average would you choose to describe the following variable asked in the European Values Study (Hungary, 2008):

"Please tell me for each of the following statements whether you think it can always be justified (10), never (1) be justified, or something in between!"

- Olaiming state benefits which you are not entitled to
- Abortion
- Divorce
- Avoiding a fare on public transport
- Homosexuality

Case studies

"Please tell me whether you think **Avoiding a fare on public transport** can always be justified (10), never (1) be justified, or something in between!"

Mean: 2.751

Mode: 1

Case studies

"Please tell me whether you think **divorce** can always be justified (10), never (1) be justified, or something in between!"

Mean: 5.824

Mode: 5

Case studies

"Please tell me whether you think **homosexuality** can always be justified (10), never (1) be justified, or something in between!"

Mean: 3.261

Mode: 1

Case studies

Research on intelligence (quotient) among students:

Case studies

Research on intelligence (quotient) among students:

Mean: 99.6

Mode: 89.2

Median: 99.8

Case studies

Research on intelligence (quotient) among students:

Mean: 99.6

Mode: 89.2

Median: 99.8

Case studies

Research on salary of Hungarian people:

Case studies

Research on salary of Hungarian people:

Mean: 113721

Mode: 72554

Case studies

Research on salary of Hungarian people:

Mean: 113721

Mode: 72554

Case studies

What happens when we have a really rich person in the sample?

Case studies

What happens when we have a really rich person in the sample?

Mean: 471150

Mode: 72554

Statistical dispersion

There are several different statistical measures of variability or variation - with all different advantages and disadvantages:

- range: $\max x \min x$
- **2** standard deviation: $\sigma = \sqrt{\frac{\sum_{i=1}^{N}(x_i \overline{x})^2}{n-1}}$
- **o** variance: σ^2
- interquartile range (IQR): the difference between the third and first quartiles

Interquartile range

Interquartile range

Research on intelligence (quotient) among students:

Case study

Lyotard: The Postmodern Condition. A Report on Knowledge (1979)

- "end of 'grand narratives' or metanarratives"
- "anything goes"
- "postmodern and postmodern culture"

What about norms?

Case studies

"Please tell me whether you think **homosexuality** can always be justified (10), never (1) be justified, or something in between!" – Hungary (1982-1991)

 $\bar{x} = 1.447407$; $\sigma = 1.419384$

$$\overline{x} = 2.713547$$
; $\sigma = 3.230236$

Case studies

Check the mean and standard deviation of the following variables!

$$\bar{x} = -0.1$$
; $\sigma = 1.019$

$$\bar{x} = 0; \sigma = 0.453$$

Case studies

A new index of measurements: sum

What is the problem with this desciptive in this study?

Pumpkins

Pumpkins

Source: http://faculty.washington.edu/chudler/stat3.html

Pumpkins

Source: http://faculty.washington.edu/chudler/stat3.html

Pumpkins

Source: http://faculty.washington.edu/chudler/stat3.html

It was a pleasure!

Daróczi Gergely daroczi.gergely@btk.ppke.hu