Midway Hot Pots Resorts: Schneitter's - Ritters - Homestead 1886 Simon Schneiter bot Farm from samuel 12 toompson I Surining Dehneitter started a 1-Story Hotel ("Virgin 4 d swining Pool. Schneiter Schneiters Hot Pots Thomas Monks leased (Ran Tyrs) Schneitters (held horse Jacob Schneitter purchased schneitter's (Music by Brass Band by Robert Krebs) Tumper Fried Chicken W. W. Ritter Ritter's Hot Pots Peter Kureller ("Dutch Pete") Pan it for 4 yrs Echneitters Schneitter's Schneitters Hot Pots 1878 Linea Schneiter & Fannie 1886 " " built Hotel + pool Thomas monks Frank Monles Schneiters

Jehne: Hers
1952 Homestead
Ferrin W Whitaker
Berlin
Scott
Judge
Del Wallengren

WASATCH COUNTY, STATE OF UTAH,

25 North Main • Heber City, Utah 84032 • Phone (801) 654-3211

LORIN E. ALLRED, CHAIRMAN

BOARD OF COUNTY COMMISSIONERS
PETE A. COLEMAN

LARRY B. DUKE

January 25, 1988

We are enclosing "Affidavit of Personal Property" for the year 1988, which is to be completed and returned to this office not later than March 1, 1988.

Please fill out the affidavit as completely as possible. All information as to make, model, year and cost must be entered. Please read the instructions on the back of the Affidavit carefully.

If you need further information on this affidavit, please feel free to call Wasatch County Assessor's Office at 654-3211, Ex. 302.

Thank you for your co-operation in this matter and for the prompt return of the completed affidavit.

Sincerely,

Dean H. Moulton,

Wasatch County Assessor

Homestead Picture Acquisition 11 Photo Contest 1988 11 Essay 11 1997 Contact Mindy Hatch & Homestead

Two point form: 4-4, =
$$\frac{y_2-y_1}{x_2-x_1}$$
 (2-2,)

$$y+2=\frac{1+2}{-2+4}(x+4)$$

$$1 + 2 = \frac{3}{2} (x + 4)$$

$$V_{1}+2 = \frac{3}{2}(x+4)$$

$$V_{1}+2 = \frac{3}{2}x + \frac{3}{2}$$

$$y = \frac{3}{2}x + 4$$
 is in required equation.

$$y + 4 = \frac{-3 + 4}{4 - 2} (x - 2)$$

$$\frac{y+4}{y+4} = \frac{1}{2}x - \frac{1}{2}x^2$$

$$y = \frac{1}{2}x - 5$$
is the required equal