Materiais de Construção Mecânica II – 2020/2 – 26/05/2021 Prova Final

Todas as respostas devem ter desenvolvimento/justificativa

1) (1,5) a) (1,0) Determine a composição da liga cuja microestrutura é formada por 90% da fase α e 10 % do composto intermetálico CuAl₂ a 300°C e verifique se essa liga é tratável termicamente. b) (0,5) Avalie qual das microestruturas abaixo poderia ser representativa da liga do item a.

2) (1,0) Verifique se é viável na prática fazer um tratamento térmico de precipitação em uma liga de Al-Cu, tal que o limite de escoamento > 300 MPa e a ductilidade > 20%. Se sim, especifique a temperatura e o tempo de tratamento recomendados.

3) (1,0) Os dados obtidos de um reômetro estão listados na Tabela abaixo. Avalie, a partir desses dados, se o polímero tem um comportamento newtoniano. Caso o comportamento não seja newtoniano avalie o tipo de comportamento não-newtoniano apresentado pelo polímero.

Tensão (MPa)	Taxa de deformação (s ⁻¹)	
0	0	
12,7	5	
25,4	10	
38,1	15	
50,8	20	
68,8	25	
86,8	30	
106,8	35	
126,8	40	
151,8	45	
181,8	50	
213,8	55	
249,8	60	

4) (1,5) Determine os valores das constantes elásticas G_1 e G_2 e da tensão τ à qual um polímero está submetido dado que sua deformação varia segundo a equação $\gamma = \frac{\tau}{G_1} + \frac{\tau}{G_2} (1 - e^{-t/\lambda_r})$ e dado que η =

 10^{12} Pa.s. Sabe-se que no instante de aplicação da tensão a deformação medida foi γ = 0,0003; para um tempo de 1000 s a deformação foi γ = 0,0006 e que para um tempo muito longo γ = 0,0009.

5) (2,5) Um compósito ortotrópico, com seção transversal de 200 mm² deve ser projetado tal que a carga suportada pelas fibras seja 35 vezes maior do que a carga suportada pela matriz. Porém, por questões do processo de fabricação, a fração volumétrica das fibras não deve ultrapassar 0,65. Os materiais disponíveis para fabricar esse compósito estão listados na Tabela abaixo. a) (0,6) Projete o(s) compósito(s) (01 fibra + matriz) que atenda(m) os requisitos do enunciado. b) (0,4) Calcule a densidade apenas do(s) compósito(s) que atendeu(ram) os requisitos do item a. c) (1,5) Escolha e justifique qual compósito deve ser fabricado levando em consideração que quanto mais fibras forem usadas, mais difícil é obter um compósito sem vazios. Se o compósito escolhido deve suportar uma tensão de trabalho de 500 MPa, calcule a tensão suportada pelas fibras e pela matriz. Vai ocorrer falha nas fibras ou na matriz sob a tensão aplicada?

	E (GPa)	σ (MPa)	ρ (g/cm ³)
Fibra de carbono	450	3500	1,54
Fibra de vidro	80	2700	2,54
Fibra aramida	140	2600	1,34
Resina poliéster	7	70	1,25

6) (1,5) Um tubo cerâmico tem 40 cm de comprimento. Quando esse tubo é aquecido da temperatura ambiente (T_{amb} = 25°C) até 625°C ocorre uma dilatação de 0,48 mm. a) **(0,5)** A partir da tabela abaixo, avalie qual é o material do tubo. Se o tubo for trabalhar engastado, avalie: b) **(0,5)** qual é a máxima temperatura à qual pode ser aquecido a partir da temperatura ambiente sem que ocorra falha. c) **(0,5)** qual é a tensão a qual o tubo estará submetido quando for aquecido da temperatura ambiente até 1200°C.

Cerâmica	E (GPa)	σ _{ruptura} (MPa)	α (mm/mm. ^o C)
Alumina	150	1.000	2.10 ⁻⁶
Zircônia	200	1.700	1.10 ⁻⁶
Carbeto de silício	400	2.000	1.10 ⁻⁷

7) (1,0) Selecione o(s) tipo(s) de vidro que pode(m) ser usado(s) para fabricar pratos, sabendo que a temperatura máxima do forno disponível não ultrapassa 900°C.

