

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехника и комплексная автоматизация»

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Модели и методы анализа проектных решений»

Студент:	Роздорожный Илья Олегович
Группа:	PK6-746
Тип задания:	Лабораторная работа
Название:	Метод конечных элементов
Вариант:	86

Студент	подпись, дата	<u>Роздорожный И. О</u> Фамилия, и.о.
Преподаватель	подпись, дата	Трудоношин В. А.
Оценка:		

Содержание

Метод	конечных элементов	3
1	Цель выполнения лабораторной работы	3
2	Задание	3
3	Аналитическое решение	4
4	Получение локальных матрицы жесткости и вектора нагрузок	4
	Линейная функция-формы КЭ	4
	Кубическая функция-формы КЭ	5
5	Получение глобальных матрицы жесткости и вектора нагрузок	8
	Ансамблирование	8
	Учет граничных условий	8
6	Анализ результатов	8
	Линейная функция-формы	9
	Кубическая функция-формы	12
	Нахождение количества линейных КЭ, обеспечивающих ту же точность,	
	что и 20 кубических	15
7	Код	15
8	Вывод	21

Метод конечных элементов

1 Цель выполнения лабораторной работы

Цель выполнения лабораторной работы – решение дифференциального уравнения методом конечных элементов (МКЭ), используя линейную и кубическую функции формы, и анализ точности относительной аналитического способа решения

2 Задание

Решить с помощью МКЭ уравнение 1

$$7\frac{d^2u}{dx^2} + 6\frac{du}{dx}u - 5 = 0, (1)$$

при следующих граничных условиях (г. у.):

$$u(x=0) = 10, (2)$$

$$u'(x=7) = -5. (3)$$

Количество конечных элементов

- \bullet для первого расчета 20,
- для второго 40.

Также необходимо:

- 1. Сравнить результаты с аналитическим решением. Оценить максимальную погрешность.
- 2. Определить количество линейных КЭ, обеспечивающих такую же точность как и кубические.

3 Аналитическое решение

На рисунке 1 представлено аналитическое решение поставленной задачи.

Рис. 1. Аналитическое решение

Таким образом, получаем:

$$u(x) = \frac{5}{36} \left(6x + 49e^{6-(6x)/7} - 49e^6 + 72 \right).$$

4 Получение локальных матрицы жесткости и вектора нагрузок

Составим локальные матрицу жесткости и вектор нагрузок для уравнения 1.

Линейная функция-формы КЭ

$$\mathbf{u} = \begin{bmatrix} (1 - \frac{x}{L}); & \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \mathbf{N_e U},$$

где N_e — вектор функции формы конечного элемента (в данном случае линейной), его составляющие элементы - глобальные базисные функции, отличные от нуля в пределах этого элемента, L — длина KЭ.

В соответствии с методом Галеркина для уравнения 1:

$$\int_0^L \mathbf{W_e} \left(7 \frac{d^2 \mathbf{u}}{dx^2} + 6 \frac{d \mathbf{u}}{dx} - 5 \right) dx = 0, \tag{4}$$

где $\mathbf{W_e} = \mathbf{N_e}^T$.

$$\int_0^L \mathbf{W_e} \left(7 \frac{d^2 \mathbf{u}}{dx^2} + 6 \frac{du}{dx} - 5 \right) dx = 7 \int_0^L \mathbf{W_e} \frac{d^2 \mathbf{u}}{dx^2} dx + 6 \int_0^L \mathbf{W_e} \frac{d\mathbf{u}}{dx} dx - 5 \int_0^L \mathbf{W_e} dx = 0$$

Распишем каждое слагаемое отдельно:

$$7 \int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 7 \int_{0}^{L} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 7 \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d\mathbf{u}}{dx} \Big|_{0}^{L} - \frac{1}{L} \Big|_{0}^{L} \frac{d}{dx} \Big|_{0}^{L} \Big|_{0}^{$$

Таким образом, для уравнения 4, при использовании линейной функции-формы, получаем (матмодель линейного КЭ):

$$\begin{bmatrix} 7\frac{1}{L} + 6\frac{1}{2}, & -7\frac{1}{L} - 6\frac{1}{2} \\ -7\frac{1}{L} + 6\frac{1}{2}, & 7\frac{1}{L} - 6\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} -7\frac{du}{dx}|_i - 5\frac{L}{2} \\ 7\frac{du}{dx}|_j - 5\frac{L}{2} \end{bmatrix}$$

Кубическая функция-формы КЭ

$$\mathbf{u} = \left[-\frac{9x^3}{2L^3} + \frac{18x^2}{2L^2} - \frac{11x}{2L} + 1; \frac{27x^3}{2L^3} - \frac{45x^2}{2L^2} + \frac{9x}{L}; -\frac{27x^3}{2L^3} + \frac{36x^2}{2L^2} - \frac{9x}{2L}; \frac{9x^3}{2L^3} - \frac{9x^2}{2L^2} - \frac{x}{L}; \right] \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \mathbf{N_e} \mathbf{U},$$

Как и для линейной функции-формы применим метод Галеркина (см. уравнение 4) и рассмотрим каждое слагаемое отдельно.

$$7 \int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 7 \int_{0}^{L} \begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1 \\ -\frac{9x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} + \frac{9x}{L} \\ -\frac{9x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} \end{bmatrix} \frac{d^{2}\mathbf{u}}{dx^{2}} dx =$$

$$= 7 \begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix} \frac{d\mathbf{u}}{dx} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} \begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} + \frac{36x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix} \frac{d\mathbf{u}}{dx} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} \begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} \end{bmatrix} \frac{d\mathbf{u}}{dx} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} \begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} \end{bmatrix} \frac{d}{dx} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} |_{0}^{L} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} |_{0}^{L} |_{0}^{L} - 7 \int_{0}^{L} \frac{d}{dx} |_{0}^{L} |_{0}^{$$

Таким образом, для уравнения 4, при использовании кубической функции-формы, получаем:

$$\begin{bmatrix} 7\frac{37}{10L} + 6\frac{1}{2} & -7\frac{189}{40L} - 6\frac{57}{80} & 7\frac{27}{20L} + 6\frac{3}{10} & -7\frac{13}{40L} - 6\frac{7}{80} \\ -7\frac{189}{40L} + 6\frac{57}{80} & 7\frac{54}{5L} + 0 & -7\frac{297}{40L} - 6\frac{81}{80} & 7\frac{27}{20L} + 6\frac{3}{10} \\ 7\frac{27}{20L} - 6\frac{3}{10} & -7\frac{297}{40L} + 6\frac{81}{80} & 7\frac{54}{5L} + 0 & -7\frac{189}{40L} - 6\frac{57}{80} \\ -7\frac{13}{40L} + 6\frac{7}{80} & 7\frac{27}{20L} - 6\frac{3}{10} & -7\frac{189}{40L} - 6\frac{57}{80} & 7\frac{37}{10L} - 6\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} -5\frac{L}{8} - 7\frac{du}{dx}|_i \\ -5\frac{3L}{8} \\ -5\frac{3L}{8} \\ -5\frac{1}{8} + 7\frac{du}{dx}|_l \end{bmatrix}$$
 (5)

Локальные матрица жесткости и вектор нагрузок могут быть представлены в виде:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 2\frac{du}{dx}|_i \\ b_2 \\ b_3 \\ b_4 + 2\frac{du}{dx}|_l \end{bmatrix}$$

Выполним матричные преобразования.

$$\begin{bmatrix} a_{11} - \frac{a_{12}}{a_{22}} a_{21} & a_{12} - \frac{a_{12}}{a_{22}} a_{22} & a_{13} - \frac{a_{12}}{a_{22}} a_{23} & a_{14} - \frac{a_{12}}{a_{22}} a_{24} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} - \frac{a_{32}}{a_{22}} a_{21} & a_{32} - \frac{a_{32}}{a_{22}} a_{22} & a_{33} - \frac{a_{32}}{a_{22}} a_{23} & a_{34} - \frac{a_{32}}{a_{22}} a_{24} \\ a_{41} - \frac{a_{42}}{a_{22}} a_{21} & a_{42} - \frac{a_{42}}{a_{22}} a_{22} & a_{43} - \frac{a_{32}}{a_{22}} a_{23} & a_{44} - \frac{a_{42}}{a_{22}} a_{24} \\ \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - \frac{a_{12}}{a_{22}} b_2 - 7 \frac{du}{dx} |_i \\ b_2 \\ b_3 - \frac{a_{32}}{a_{22}} b_2 \\ b_4 - \frac{a_{42}}{a_{22}} b_2 + 7 \frac{du}{dx} |_i \end{bmatrix}$$

$$\begin{bmatrix} a'_{11} - \frac{a'_{13}}{a'_{33}} a'_{31} & 0 - \frac{a'_{13}}{a'_{33}} 0 & a'_{13} - -\frac{a'_{13}}{a'_{33}} a'_{33} & a'_{14} - \frac{a'_{13}}{a'_{33}} a'_{34} \\ a'_{21} - \frac{a'_{23}}{a'_{33}} a'_{31} & a'_{22} - \frac{a'_{23}}{a'_{33}} 0 & a'_{23} - \frac{a'_{23}}{a'_{33}} a'_{33} & a'_{24} - \frac{a_{23}}{a'_{33}} a'_{34} \\ a'_{31} & 0 & a'_{33} & a'_{34} \\ a'_{41} - \frac{a'_{43}}{a'_{52}} a'_{31} & 0 - \frac{a'_{43}}{a'_{52}} 0 & a'_{43} - \frac{a'_{43}}{a'_{52}} a'_{33} & a'_{44} - \frac{a'_{43}}{a'_{53}} a'_{34} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b'_1 - \frac{a'_{13}}{a'_{33}} b'_3 - 7\frac{du}{dx} |_i \\ b'_2 - \frac{a'_{23}}{a'_{33}} b'_3 \\ b'_3 \\ b'_4 - \frac{a'_{43}}{a'_{52}} b'_3 + 7\frac{du}{dx} |_l \end{bmatrix}$$

Итого получаем:

$$\begin{bmatrix} a_{11}'' & 0 & 0 & a_{14}'' \\ a_{21}'' & a_{22}'' & 0 & a_{24}'' \\ a_{31}'' & 0 & a_{33}'' & a_{34}'' \\ a_{41}'' & 0 & 0 & a_{44}'' \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b_1'' - 7\frac{du}{dx}|_i \\ b_2'' \\ b_3'' \\ b_4'' + 7\frac{du}{dx}|_l \end{bmatrix}$$

Для упрощения расчетов преобразуем систему выше, исключив внутренние узлы. Таким образом, при использовании кубической функции-формы, получаем:

$$\begin{bmatrix} a_{11}^{\prime\prime} & a_{14}^{\prime\prime} \\ a_{41}^{\prime\prime} & a_{44}^{\prime\prime} \end{bmatrix} \begin{bmatrix} u_i \\ u_l \end{bmatrix} = \begin{bmatrix} b_1^{\prime\prime} - 7\frac{du}{dx}|_i \\ b_4^{\prime\prime} + 7\frac{du}{dx}|_i \end{bmatrix}$$

5 Получение глобальных матрицы жесткости и вектора нагрузок

Проведем процедуры ансамблирования и учет граничных условий для формирования итоговой математической модели.

Ансамблирование

Пусть локальные матрица жесткости и вектор неизвестных заданы следующим образом

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} b_1 - 7\frac{du}{dx}|_i \\ b_2 + 7\frac{du}{dx}|_l \end{bmatrix},$$

тогда, при разбитие области на n K \ni , глобальная матрица жесткости будет иметь размерность $(n+1)\cdot (n+1)$:

$$\begin{bmatrix} a_{11}^1 & a_{12}^1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{21}^n & a_{22}^n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} b_1^1 - 7\frac{du}{dx}|_0 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_2^{n-1} + b_1^n \\ b_2^n + 7\frac{du}{dx}|_L \end{bmatrix}$$

Учет граничных условий

Применим граничные условия первого (см. 2) и второго рода (см. 3) к выведенной выше системе.

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{21}^n & a_{22}^n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} 10 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_{n-1}^n + b_n^n \\ b_2^n + 7 \cdot -5 \end{bmatrix}$$

6 Анализ результатов

Проведем сравнение результатов согласно заданию.

Линейная функция-формы

На рисунках 2, 3 представлены графики полученные с помощью МКЭ (линейная функция-формы).

Рис. 2. Результат работы программы для 20 $\,$ Рис. 3. Результат работы программы для 40 $\,$ КЭ $\,$ КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	10.000000	10.000000	0.000000e+00
0.350000	-701.306699	-739.369977	$3.806328\mathrm{e}{+01}$
0.700000	-1228.180068	-1293.176047	$6.499598\mathrm{e}{+01}$
1.050000	-1618.421864	-1702.434881	$8.401302\mathrm{e}{+01}$
1.400000	-1907.444503	-2004.854454	$9.740995\mathrm{e}{+01}$
1.750000	-2121.482145	-2228.305878	$1.068237\mathrm{e}{+02}$
2.100000	-2279.969536	-2393.389539	$1.134200\mathrm{e}{+02}$
2.450000	-2397.304288	-2515.331810	$1.180275\mathrm{e}{+02}$
2.800000	-2484.152416	-2605.386967	$1.212346\mathrm{e}{+02}$
3.150000	-2548.415496	-2671.873387	$1.234579\mathrm{e}{+02}$
3.500000	-2595.947163	-2720.939437	1.249923e+02
3.850000	-2631.083893	-2757.129561	$1.260457\mathrm{e}{+02}$
4.200000	-2657.038228	-2783.802696	$1.267645\mathrm{e}{+02}$
4.550000	-2676.190077	-2803.441535	$1.272515\mathrm{e}{+02}$
4.900000	-2690.302522	-2817.881111	$1.275786\mathrm{e}{+02}$
5.250000	-2700.681683	-2828.477755	$1.277961\mathrm{e}{+02}$
5.600000	-2708.295160	-2836.233970	$1.279388\mathrm{e}{+02}$
5.950000	-2713.859768	-2841.890737	$1.280310\mathrm{e}{+02}$
6.300000	-2717.906536	-2845.995739	$1.280892\mathrm{e}{+02}$
6.650000	-2720.828861	-2848.953784	$1.281249\mathrm{e}{+02}$
7.000000	-2722.918178	-2851.064078	$1.281459\mathrm{e}{+02}$

Таблица 1. 20 линейных КЭ

37		MIZO	A .
X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	10.000000	10.000000	0.000000e+00
0.175000	-372.288366	-377.304143	5.015777e+00
0.350000	-701.306699	-710.545499	9.238800e+00
0.525000	-984.475089	-997.267712	1.279262e+01
0.700000	-1228.180068	-1243.961826	1.578176e+01
0.875000	-1437.918573	-1456.213156	1.829458e + 01
1.050000	-1618.421864	-1638.827673	$2.040581e{+01}$
1.225000	-1773.762173	-1795.940745	2.217857e+01
1.400000	-1907.444503	-1931.110715	2.366621e+01
1.575000	-2022.485637	-2047.399409	2.491377e+01
1.750000	-2121.482145	-2147.441426	$2.595928e{+01}$
1.925000	-2206.668916	-2233.503742	2.683483e+01
2.100000	-2279.969536	-2307.537014	$2.756748e{+01}$
2.275000	-2343.039651	-2371.219714	2.818006e+01
2.450000	-2397.304288	-2425.996106	2.869182e+01
2.625000	-2443.989981	-2473.108932	2.911895e+01
2.800000	-2484.152416	-2513.627527	$2.947511e{+01}$
2.975000	-2518.700230	-2548.472015	2.977178e+01
3.150000	-2548.415496	-2578.434133	$3.001864e{+01}$
3.325000	-2573.971350	-2604.195141	3.022379e+01
3.500000	-2595.947163	-2626.341241	$3.039408e{+01}$
3.675000	-2614.841607	-2645.376839	$3.053523e{+01}$
3.850000	-2631.083893	-2661.735958	$3.065207\mathrm{e}{+01}$
4.025000	-2645.043444	-2675.792061	$3.074862e{+01}$
4.200000	-2657.038228	-2687.866498	3.082827e+01
4.375000	-2667.341920	-2698.235781	$3.089386e{+01}$
4.550000	-2676.190077	-2707.137838	$3.094776\mathrm{e}{+01}$
4.725000	-2683.785443	-2714.777399	3.099196e+01
4.900000	-2690.302522	-2721.330626	$3.102810\mathrm{e}{+01}$
5.075000	-2695.891510	-2726.949101	$3.105759e{+01}$
5.250000	-2700.681683	-2731.763253	$3.108157e{+01}$
5.425000	-2704.784310	-2735.885315	$3.110100\mathrm{e}{+01}$
5.600000	-2708.295160	-2739.411856	$3.111670\mathrm{e}{+01}$
5.775000	-2711.296663	-2742.425972	$3.112931e{+01}$
5.950000	-2713.859768	-2744.999166	$3.113940\mathrm{e}{+01}$
6.125000	-2716.045539	-2747.192960	3.114742e+01
6.300000	-2717.906536	-2749.060295	$3.115376\mathrm{e}{+01}$
6.475000	-2719.487998	-2750.646723	3.115872e+01
6.650000	-2720.828861	-2751.991440	$3.116258\mathrm{e}{+01}$
6.825000	-2721.962639	-2753.128173	$3.116553e{+01}$
7.000000	-2722.918178	-2754.085943	3.116776e + 01

Таблица 2. 40 линейных КЭ 11

Максимальная абсолютная погрешность 1.281459e+02 и 3.116776e+01 соответственно.

Кубическая функция-формы

На рисунках 4,5 представлены графики полученные с помощью МКЭ (кубическая функция-формы).

Рис. 4. Результат работы программы для 20 $\,$ Рис. 5. Результат работы программы для 40 $\,$ КЭ $\,$ КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	10.000000	10.000000	0.000000e+00
0.350000	-701.306699	-701.306735	3.541402e-05
0.700000	-1228.180068	-1228.180128	6.050159e-05
1.050000	-1618.421864	-1618.421943	7.823664e-05
1.400000	-1907.444503	-1907.444594	9.074518e-05
1.750000	-2121.482145	-2121.482245	9.954509e-05
2.100000	-2279.969536	-2279.969642	1.057185e-04
2.450000	-2397.304288	-2397.304398	1.100358e-04
2.800000	-2484.152416	-2484.152529	1.130444e-04
3.150000	-2548.415496	-2548.415612	1.151327e-04
3.500000	-2595.947163	-2595.947279	1.165756e-04
3.850000	-2631.083893	-2631.084010	1.175674e-04
4.200000	-2657.038228	-2657.038346	1.182450e-04
4.550000	-2676.190077	-2676.190196	1.187046e-04
4.900000	-2690.302522	-2690.302641	1.190138e-04
5.250000	-2700.681683	-2700.681802	1.192196e-04
5.600000	-2708.295160	-2708.295279	1.193548e-04
5.950000	-2713.859768	-2713.859887	1.194423e-04
6.300000	-2717.906536	-2717.906656	1.194976e-04
6.650000	-2720.828861	-2720.828981	1.195316e-04
7.000000	-2722.918178	-2722.918297	1.195516e-04

Таблица 3. 20 кубических КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	10.000000	10.000000	0.000000e+00
0.000000 0.175000	-372.288366	-372.288367	2.949657e-07
0.350000	-701.306699	-701.306700	5.432628e-07
0.535000 0.525000	-984.475089	-984.475090	7.521662e-07
0.700000	-1228.180068	-1228.180069	9.278363e-07
0.875000	-1437.918573	-1437.918574	1.075475e-06
1.050000	-1618.421864	-1618.421866	1.199487e-06
1.225000	-1773.762173	-1773.762175	1.303588e-06
1.400000	-1907.444503	-1907.444505	1.390919e-06
1.575000	-2022.485637	-2022.485639	1.464132e-06
1.750000	-2121.482145	-2121.482147	1.525467e-06
1.925000	-2206.668916	-2206.668918	1.576811e-06
2.100000	-2279.969536	-2279.969538	1.619760e-06
2.275000	-2343.039651	-2343.039652	1.655655e-06
2.450000	-2397.304288	-2397.304290	1.685628e-06
2.625000	-2443.989981	-2443.989983	1.710634e-06
2.800000	-2484.152416	-2484.152417	1.731475e-06
2.975000	-2518.700230	-2518.700232	1.748825e-06
3.150000	-2548.415496	-2548.415498	1.763254e-06
3.325000	-2573.971350	-2573.971351	1.775239e-06
3.500000	-2595.947163	-2595.947165	1.785180e-06
3.675000	-2614.841607	-2614.841609	1.793415e-06
3.850000	-2631.083893	-2631.083894	1.800227e-06
4.025000	-2645.043444	-2645.043446	1.805853e-06
4.200000	-2657.038228	-2657.038229	1.810492e-06
4.375000	-2667.341920	-2667.341922	1.814307e-06
4.550000	-2676.190077	-2676.190079	1.817441e-06
4.725000	-2683.785443	-2683.785445	1.820008e-06
4.900000	-2690.302522	-2690.302523	1.822107e-06
5.075000	-2695.891510	-2695.891511	1.823818e-06
5.250000	-2700.681683	-2700.681685	1.825209e-06
5.425000	-2704.784310	-2704.784312	1.826336e-06
5.600000	-2708.295160	-2708.295162	1.827245e-06
5.775000	-2711.296663	-2711.296665	1.827976e-06
5.950000	-2713.859768	-2713.859770	1.828561e-06
6.125000	-2716.045539	-2716.045541	1.829027e-06
6.300000	-2717.906536	-2717.906538	1.829396e-06
6.475000	-2719.487998	-2719.488000	1.829687e-06
6.650000	-2720.828861	-2720.828863	1.829913e-06
6.825000	-2721.962639	-2721.962641	1.830088e-06
7.000000	-2722.918178	-2722.918180	1.830221e-06

Максимальная абсолютная погрешность 1.195516e-04 и 1.830221e-06 соответственно.

Нахождение количества линейных КЭ, обеспечивающих ту же точность, что и 20 кубических

Так как очевидно, что при увлечении числа КЭ точность растет, найдем искомое следуя алгоритму, представленному на рисунке 6.

Рис. 6. Алгоритм нахождения количества КЭ, заданную точность ($cub_{20} = 1.195516e - 04$)

Реализовав данный алгоритм с начальным количеством K9=20 и увеличивая счетчик всегда на 1 получаем необходимое количество K9, равное 555.

7 Код

Листинг 1. Реализация МКЭ

```
1
2 #include <iostream>
3 #include <vector>
4 #include <cmath>
5
6 //define OSN
7 //define TABLE
8 //define CUBE
9
10 constexpr double EPS = 1e-16,CUB= 0.0001195516;
11 double EPS = 1e-16;
```

```
12 double X BEGIN = 0.0;
13 double X END = 7.0;
14 \text{ size } t \text{ ELEMS } NUM = ;
15 double L = (X END - X BEGIN) / ELEMS NUM;
17 constexpr double a = 7.0, B = 6.0, C = 0.0, D = -5.0, usl left = 10.0, usl right = -5.0;
       //
au"+Bu'+Cu+D=0
18
19 std::vector<double> solve with gauss(std::vector<std::vector<double>>& A,
       std::vector<double>& b){
       size t row size = A.size();
20
21
       size t col size = A.back().size();
22
       // Прямой ход Гаусса
23
       double pivot = 0.0;
       for (size t i = 0; i < row_size; i++) {
24
           for (size t j = i + 1; j < col_size; j++) {
25
26
               if (std::abs(A.at(j).at(i)) < EPS)  {
                   continue;
27
28
29
               pivot = A.at(j).at(i) / A.at(i).at(i);
               b.at(j) = pivot * b.at(i);
30
               for (size t k = 0; k < row size; k++) {
31
32
                   A.at(j).at(k) = pivot * A.at(i).at(k);
               }
33
           }
34
       }
35
       // Обратный ход Гаусса
36
       std::vector<double> x(row size);
37
       for (int i = row size -1.0; i >= 0; i—) {
38
39
           x.at(i) = b.at(i);
           for (size t j = i + 1; j < row_size; j++) {
40
               x.at(i) = x.at(j) * A.at(i).at(j);
41
42
           x.at(i) /= A.at(i).at(i);
43
44
       }
45
       return x;
46 }
47
48 double analytical solution(double x) {
       double rez = 5. / 36. * (6. * x + 49. * exp(6. - (6. * x) / 7.) - 49. * exp(6.) + 72.);
49
50
       return rez;
51 }
52
53 std::vector<double> build analytical solution(std::vector<double>& x vec) {
       size_t x_vec_size = x_vec.size();
```

```
std::vector<double> y vec = std::vector<double>(x vec size);
55
       for (size t i = 0; i < x vec size; i++) {
56
57
           y vec.at(i) = analytical solution(x vec.at(i));
58
59
       return y_vec;
60 }
61
62 std::vector<double> build linear solution(size t elems num) {
       double L = (X END - X BEGIN) / elems num;
63
       size t \text{ size} = elems \text{ num} + 1;
64
       std::vector< std::vector<double> > A(size, std::vector<double>(size));
65
       std::vector<double> b(size);
66
67
       // Локальная матрица жесткости для линейного КЭ
68
       std::vector< std::vector< double> > local matrix = {
69
70
           \{a/L - C * L/3.0 + B*1.0/2.0, -a/L - C * L/6.0 - B*1.0/2.0\},\
           \{-a/L - C * L/6.0 + B*1.0/2.0, a/L - C*L/3.0 - B*1.0/2.0\},\
71
72
       };
73
74
       // Ансамблирование и получение глобальной матрицы жесткости для линейного КЭ
75
       for (size t i = 0; i < elems num; i++) {
76
           for (size t j = 0; j < 2; j++) {
               for (size t k = 0; k < 2; k++) {
77
78
                   A.at(i + j).at(i + k) += local matrix.at(j).at(k);
79
           }
80
       }
81
82
83
           for (size_t i = 0; i < size; i++) {
           b.at(i) = D * L;
84
85
       }
86
       // Учет ГУ
87
       b.at(0) = usl left;
88
       A.at(0).at(0) = 1;
89
90
       A.at(0).at(1) = 0;
91
       b.at(size -1) = D * L /2. + a*usl right;
92
93
       // Решение полученной СЛАУ методом Гаусса
94
       std::vector<double> res = solve with gauss(A, b);
95
96
       return res;
97 }
98
99 std::vector<double> build cube solution(size t elems num) {
       double L = (X END - X BEGIN) / elems num;
100
```

```
101
                          size t size = elems num + 1;
                          std::vector< std::vector<double> > A(size,std::vector<double>(size));
102
103
                          std::vector<double> b(size);
104
105
                          // Локальная матрица жесткости для кубического КЭ
                                    std::vector< std::vector<double> > local matrix = {
106
107
108
                                        \{a*37.0/(10.0*L) - C*8*L/105.0 + B*1.0/2.0, -a*189.0/(40.0*L) - C*33*L/560.0\}
                                                      -B*57/80.0, a*27.0/(20.0*L) + C*3*L/140.0 + B*3.0/10.0,
                                                      -a*13.0/(40.0*L) - C*19.0*L/1680.0 - B*7/80.0
                                        \{-a*189.0/(40.0*L) - C*33*L/560.0 + B*57/80.0, a*54.0/(5.0*L) - C*27*L/70.0,
109
                                                      -a*297.0/(40*L) + C*27*L/560.0 - B*81.0/80.0, a*27.0/(20.0*L) +
                                                      C*3*L/140.0 + B*3.0/10.0
                                        \{a*27.0/(20.0*L) + C*3*L/140.0 - B*3.0/10.0, -a*297.0/(40.0*L) + C*3*L/140.0 - B*3.0/(40.0*L) + C*3*L/140.0 - B*3.
110
                                                     C*27*L/560.0 + B*81.0/80.0, a*54.0/(5.0*L) - C*27*L/70.0,
                                                      -a*189.0/(40.0*L) - C*33*L/560.0 - B*57/80.0
                                        \{-a*13.0/(40.0*L) - C*19.0*L/1680.0 + B*7/80.0, a*27.0/(20.0*L) + C*19.0*L/1680.0 
111
                                                     C*3*L/140.0 - B*3.0/10.0, -a*189.0/(40.0*L) - C*33*L/560.0 +
                                                      B*57/80.0, a*37.0/(10.0*L) - C*8*L/105.0 - B*1.0/2.0
112
113
                      };
114
115
                          // Локальный вектор нагрузок (дополнительные слагаемые для первого и последнего
                                        элементов учитываются далее)
                          std::vector<double> local b = { D * L / 8.0,
116
                                                                                                                                      D*3.0 * L / 8.0
117
                                                                                                                                      D*3.0 * L / 8.0,
118
                                                                                                                                      D * L / 8.0 };
119
120
121
                          // Производим матричные преобразования для обнуления элементов локальной матрицы жесткости, относящихся к внутренним узлам
122
123
                          for (size t i = 1; i < 3; i++) {
                                        for (size t j = 0; j < 4; j++) {
124
                                                     if (std::fabs(local matrix.at(j).at(i)) > EPS \&\& i != j) {
125
                                                                  double val = local matrix.at(j).at(i) /local matrix.at(i).at(i);
126
                                                                  local b.at(i) = val * local b.at(i);
127
                                                                  for (size t k = 0; k < 4; k++) {
128
                                                                                local matrix.at(j).at(k) = val *local matrix.at(i).at(k);
129
                                                                  }
130
131
                                                     continue:
132
                                       }
133
                          }
134
135
136
```

```
// Исключаем внутренние узлы из рассмотрения
137
        std::vector < std::vector < double > > local_matrix_mod = { { local_matrix.at(0).at(0), }}
138
            local matrix.at(0).at(3) },
                                                                   { local matrix.at(3).at(0),
139
                                                                       local matrix.at(3).at(3)
                                                                       } };
        std::vector < \frac{double}{} > local b mod = \{ local b.at(0), \}
140
141
                                             local b.at(3)};
142
        // Ансамблирование и получение глобальной матрицы жесткости для кубического КЭ
143
        for (size t i = 0; i < elems num; i++) {
144
            for (size t j = 0; j < 2; j++) {
145
                for (size t k = 0; k < 2; k++) {
146
                    A.at(i + j).at(i + k) += local_matrix_mod.at(j).at(k);
147
148
149
            }
150
            for (size t i = 0; i < elems num; i++) {
151
            b.at(i) += local b mod.at(0);
152
            b.at(i+1) += local b mod.at(1);
153
154
        // Учет ГУ
155
        b.at(0) = usl left;
156
        A.at(0).at(0) = 1;
157
        A.at(0).at(1) = 0;
158
159
        b.at(size - 1) = local b mod.at(1) + a * usl_right;
160
161
162
        // Решение полученной СЛАУ методом Гаусса
        std::vector<double> res = solve with gauss(A, b);
163
164
        return res;
165 }
166
167 double calc abs error(const std::vector<double>& y real, const std::vector<double>&
        double max err = 0.0;
168
        for (size t i = 0; i < y real.size(); i++) {
169
            double err = std::fabs(y real.at(i) - y.at(i));
170
            if (err > max err) {
171
                max_err = err;
172
173
            }
        }
174
175
        return max err;
176 }
177
178 int main() {
```

```
179 #ifdef OSN
180
181
                     std::vector < double > x(ELEMS NUM + 1);
                     for (size t i = 0; i < x.size(); i++) {
182
183
                                x.at(i) = X BEGIN + i * L;
184
                     size t \times size = x.size();
185
186
187
188 #ifdef CUBE
189
                     std::vector<double> y = build cube solution(ELEMS NUM);
190 #else
                     std::vector<double> y = build linear solution(ELEMS NUM);
191
192 #endif
                     std::vector<double> y real = build analytical solution(x);
193
194
195 #ifdef TABLE
196
                     for (size t i = 0; i < x.size(); i++) {
                                std::cout << x.at(i) << \frac{\&}{\&} << y real.at(i) << \frac{\&}{\&} << y.at(i) << y.at(i) << \frac{\&}{\&} << y.at(i) << y.
197
                                           \&"<<std::fabs(y real.at(i) - y.at(i))<<"\\\\"<<std::endl;
198
199 #endif
200
                     FILE* gp = popen("gnuplot -persist", "w");
201
                     fprintf(gp, "$predict << EOD\n");</pre>
202
                     for (size t i = 0; i < x size; i++) {
203
                                fprintf(gp, "%lf %lf\n", x.at(i), y.at(i));
204
205
206
                     fprintf(gp, "EOD\n");
                     fprintf(gp, "$real << EOD\n");</pre>
207
                     for (size t i = 0; i < x size; i++) {
208
                                fprintf(gp, "%lf %lf\n", x.at(i), y real.at(i));
209
210
                     fprintf(gp, "EOD\n");
211
                     fprintf(gp, "set grid\n");
212
                        fprintf(gp, "plot '$predict' using 1:2 with lp lc '#ba55d3' lw 1.5 pt 7 ps 0.5 title
213
                                   МКЭрешение'— (%zu KЭ)'," "'$real' using 1:2 with lines lc rgb '#afdafc' lt 1 lw 2
                                   title аналитическое' решение(%zu KЭ)',\n", ELEMS NUM, ELEMS NUM);
                        printf("Абсолютная погрешность: %e\n", calc abs error(y real, y));
214
215
216
217
                     //нахождение количества линейных КЭ
218 #else
219
                     int N=20, n=10000;
                     double err=10;
220
221
                     FILE* gp = popen("gnuplot -persist", "w");
```

```
222
        fprintf(gp, "$predict << EOD\n");</pre>
        while (err>CUB && n<=19000){
223
224
            double L = (X END - X BEGIN) / N;
225
            std::vector < double > x(N + 1);
226
            for (size t i = 0; i < x.size(); i++) {
227
                x.at(i) = X BEGIN + i * L;
228
229
            }
230
            std::vector<double> y r(N + 1);
231
            std::vector < double > y s(N + 1);
232
233
            y_s = build_linear_solution(N);
234
            y_r = build_analytical_solution(x);
235
236
237
            err=calc abs error(y r, y s);
238
            fprintf(gp, "%d %e\n", N, err);
239
            printf("Абсолютная погрешность: %e количествоКЭ: %d\n", calc abs error(y r,
240
                y s), N);
241
            N+=1;
            n+=1;
242
        }
243
244
        fprintf(gp, "EOD\n");
245
        fprintf(gp, "set grid\n");
246
        fprintf(gp, "set logscale y 2\n");
247
        fprintf(gp, "plot '$predict' using 1:2 with lp lc '#cd853f' lw 1.5 pt 7 ps 0.5 title
248
            Абсолютная' погрешность', \n");
        std::cout<<"Количество линейныхКЭ"<<N-1<<std::endl;
249
250
        printf("Абсолютная погрешность: %e\n", err);
251
252 #endif
253
        return 0:
254 }
```

8 Вывод

В ходе выполнения лабораторной работы был реализован МКЭ для различных функций форм, а также найдено количество линейных КЭ обеспечивающих точность 20ти кубических КЭ.

Постановка: \bigcirc доцент кафедры РК-6, кандидат технических наук, до-

цент, Трудоношин В.А.

Решение и вёрстка: С студент группы РК6-74б, Роздорожный И. О.

2023, осенний семестр