Lab Report: Length, Velocity and Acceleration

Nicholas Karlsen (Dated: March 1, 2018)

...

TABLE I. Lenght of rods

Ruler, a [cm]	Ruler, b [cm]	Laser, a [cm]	Laser, b [cm]
119.50	119.60	120.50	120.60
119.50	119.70	119.60	119.80
119.45	119.60	119.50	119.70
119.40	119.50	119.40	119.60
119.43	119.55	119.40	119.60
119.40	119.60	119.68	119.72
119.40	119.50	119.90	119.70
119.45	119.65	130.60	130.20
119.40	119.60	119.40	119.50
119.43	119.55		

TABLE II. Uncertainty in Length measurement

	7.	δx
	X	ox
l_a	119.5cm	
l_b	119.6cm	
dl_s		1.4mm
$\sqrt{n} \cdot dl_i$		$0.5\sqrt{5}mm$
dl_m		1.4mm
$\alpha l_a(T-25C)$	-0.156cm	$\sim 10^{-6}$
\sum	$\sum x$	σx_i^2
$\sum l_a 119.48 \text{cm} 2.27$		
	9.58cm 2.2	7

I. INTRODUCTION

II. THEORY

$$T \approx 2\pi \sqrt{\frac{L}{g}} \tag{1}$$

Where T denotes the period of a pendulum, L its length and g the gravitational acceleration. The small angle approximation (Eqn. 1) is valid for angles $\theta \ll 1 \, \mathrm{rad}$ with an error $\approx \pm 15 \, \mathrm{s}$ per day [1].

III. EXPERIMENTAL PROCEDURE

IV. RESULTS

V. DISCUSSION

VI. CONCLUSION

 $^{[1] \ \}mathtt{https://en.wikipedia.org/wiki/Pendulum}.$

TABLE III. Period of pendulum

-	111.	ronou
		T [s]
		7.30
		7.72
		7.57
		7.43
		7.73
		7.27
		7.68
		7.60
		7.34
		7.75
		7.06
		7.32
		7.55
		7.29
		7.08
		7.82
		7.78
		7.44

 $7.68 \\ 7.46$