Identification of Nonlinear LFR Systems starting from the Best Linear Approximation

M. Schoukens and R. Tóth

Nonlinear System Class

Outline

Nonlinear System Class

Initialization & Estimation

Examples

Conclusions

Outline

Nonlinear System Class

Initialization & Estimation

Examples

Conclusions

Nonlinear System Class

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

Nonlinear System Class

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

$$D_{\rm zw} = 0$$

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}f(C_{z}x(t) + D_{zu}u(t)),$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}f(C_{z}x(t) + D_{zu}u(t)),$$

Nonlinear LFR vs Nonlinear SS

Nonlinear LFR vs Nonlinear SS

Full NL State-Space

Uniqueness of the Representation

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

Uniqueness of the Representation

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

All the problems of linear state-space representation

Uniqueness of the Representation

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

All the problems of linear state-space representation

Additional exchange of a linear gain between the nonlinearity and the linear dynamics

Outline

Nonlinear System Class

Initialization & Estimation

Examples

Conclusions

Step 1: Estimate the Best Linear Approximation

$$G_{bla}(q) = \underset{G(q)}{\operatorname{arg min}} E_u \left\{ \left| \tilde{y}(t) - G(q)\tilde{u}(t) \right|^2 \right\}$$

Initial estimate of:

$$egin{array}{ll} A & B_{
m u} \ C_{
m v} & D_{
m vu} \end{array}$$

Frequency Domain

Nonparametric BLA

Rational Transfer Function

State-Space Realization

Step 1: Estimate the Best Linear Approximation

$$x(t+1) = Ax(t) + B_{\mathbf{u}}u(t) + B_{\mathbf{w}}w(t)$$

$$y(t) = C_{\mathbf{y}}x(t) + D_{\mathbf{y}\mathbf{u}}u(t) + D_{\mathbf{y}\mathbf{w}}w(t) + e(t)$$

$$z(t) = C_{\mathbf{z}}x(t) + D_{\mathbf{z}\mathbf{u}}u(t) + D_{\mathbf{z}\mathbf{w}}w(t)$$

$$w(t) = f(z(t))$$

For a good initial estimate, all the states should be 'visible' for the best linear approximation of the system

Step 2: Nonlinear optimization of all the parameters together

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

Initializing Nonlinearity, w and z Matrices

$$w(t) = f(z(t))$$
 $D_{\text{zu}} = 0$ $D_{\text{yw}} = 0$ $D_{\text{yw}} = 0$ $C_{\text{z}} = 1$ $D_{\text{yw}} = 0$ $C_{\text{z}} = 1$ $D_{\text{yw}} = 0$ $D_{\text{yw}} = 0$

Nonlinearity can be replaced in a 3rd step

Step 2: Nonlinear optimization of all the parameters together

$$x(t+1) = Ax(t) + B_{u}u(t) + B_{w}w(t)$$

$$y(t) = C_{y}x(t) + D_{yu}u(t) + D_{yw}w(t) + e(t)$$

$$z(t) = C_{z}x(t) + D_{zu}u(t) + D_{zw}w(t)$$

$$w(t) = f(z(t))$$

Nonlinear Optimization

$$V_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} \left(y(t) - \hat{y}(t, \theta) \right)^2 \longrightarrow \underset{\text{error}}{\text{simulation}}$$

Levenberg-Marquardt Optimization

Outline

Nonlinear System Class

Initialization & Estimation

Examples

Conclusions

$$n_x = 2$$

3rd degree polynomial nonlinearity

rms errors on estimation data

linear model error: 6.62 mV

NL-LFR error: 0.25 mV

rms errors on validation data

linear model error: 14.5 mV

NL-LFR error: 0.38 mV

$$n_x = 2$$

3rd degree polynomial nonlinearity

Frequency Domain Validation

 $n_x = 6$

5th degree polynomial nonlinearity

Neural network

20 neurons – 1 hidden layer - tansig

rms errors on estimation data

linear model error: 55.8 mV

NL-LFR error: 0.29 mV

rms errors on validation data

linear model error: 56.1 mV

NL-LFR error: 0.30 mV

Wiener-Hammerstein Validation: Frequency Domain

Outline

Nonlinear System Class

Initialization & Estimation

Examples

Conclusions

Conclusions

Structured model directly from the data

Linear initial model followed by NL optimization

Good results on simple benchmark examples

Future work: MIMO NL, MIMO LTI

Identification of Nonlinear LFR Systems starting from the Best Linear Approximation

M. Schoukens and R. Tóth

