Data Analysis and Matrix Computations Assignment 6

Exercise 1.

Let

$$\pi_{\mathcal{C}}(\mathbf{x}) := \operatorname*{argmin}_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|_2$$

denote the projection of $\mathbf{x} \in \mathbb{R}^n$ onto the set $\mathcal{C} \subseteq \mathbb{R}^n$. Prove the following: If \mathcal{C} is closed convex, then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\|\pi_{\mathcal{C}}(\mathbf{x}) - \pi_{\mathcal{C}}(\mathbf{y})\|_2 \le \|\mathbf{x} - \mathbf{y}\|_2.$$

Exercise 2.

If

$$\mathbb{S}_n = \{ \mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A} = \mathbf{A}^\top \}$$

is the set of symmetric matrices and, for $\mathbf{A} \in \mathbb{S}_n$, $f: \mathbb{S}_n \mapsto \mathbb{R}$ given by $f(\mathbf{A}) = \lambda_{\max}(\mathbf{A})$ (maximum eigenvalue of \mathbf{A}), show that f is convex. Hint: for convexity, show \mathbb{S}_n is convex and f satisfies Jensen's inequality.