Credit Card Fraud Detection

Filipe do Vale Melo CBPF

Introduction

- The datasets contains transactions made by credit cards in September 2013 by european cardholders.
- The goal is to identify fraudulent transactions.
- The principal feature of this dataset is the imbalance between the classes: less than 0.2% of the dataset consists of fraudulent transactions.

Dataset

raw_df[['Time','Amount','V1','V2','V3','V26','V27','V28','Class']]

	Time	Amount	V1	V2	V3	V26	V27	V28	Class
0	0.0	149.62	-1.359807	-0.072781	2.536347	-0.189115	0.133558	-0.021053	0
1	0.0	2.69	1.191857	0.266151	0.166480	0.125895	-0.008983	0.014724	0
2	1.0	378.66	-1.358354	-1.340163	1.773209	-0.139097	-0.055353	-0.059752	0
3	1.0	123.50	-0.966272	-0.185226	1.792993	-0.221929	0.062723	0.061458	0
4	2.0	69.99	-1.158233	0.877737	1.548718	0.502292	0.219422	0.215153	0

Dataset

Total: 284807

Negative: 284315 (99.83% of total)

Positive: 492 (0.17% of total)

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA)

Standard Scaling

	Time	V1	V2	V3	V4
count	2.278450e+05	2.278450e+05	2.278450e+05	2.278450e+05	2.278450e+05
mean	5.842771e-17	-1.651849e-18	4.946046e-17	-2.680381e-17	2.466908e-17
std	1.000002e+00	1.000002e+00	1.000002e+00	1.000002e+00	1.000002e+00

Solution proposals

- We are going to test three approaches to this problem:
 - 1. An approach that, during the training, does not take into account the fact that the dataset is imbalanced (baseline model).
 - 2. An approach that applies weights to the fraud samples.
 - 3. An approach trained with a dataset undersampled with the non-fraud samples in the dataset.
- We will compare the three approaches, plotting the confusion matrices (and measure precision and recall) and ROC/AUC to see which one performs better.

Metrics

```
METRICS = [
    keras.metrics.TruePositives(name='tp'),
    keras.metrics.FalsePositives(name='fp'),
    keras.metrics.TrueNegatives(name='tn'),
    keras.metrics.FalseNegatives(name='fn'),
    keras.metrics.BinaryAccuracy(name='accuracy'),
    keras.metrics.Precision(name='precision'),
    keras.metrics.Recall(name='recall'),
    keras.metrics.AUC(name='auc'),
]
```

Neural Network Architecture

```
model = keras.Sequential([
  keras.layers.Dense(
      16, activation='relu',
      input shape=(train features.shape[-1],)),
  keras.layers.Dropout(0.5),
  keras.layers.Dense(1, activation='sigmoid',
                      bias initializer=output bias),
1)
model.compile(
    optimizer=keras.optimizers.Adam(lr=1e-3),
    loss=keras.losses.BinaryCrossentropy(),
    metrics=metrics)
```

Bias Initialization

• In the the approaches with the unbalanced datasets, a careful bias initialization was used.

Baseline Model: Train-Test Split

```
# Here we use a utility from sklearn to help us split and shuffle the dataset.
train df, test df = train test split(raw df, test size=0.2)
train df features = train df.copy()
test df features = test df.copy()
# Convert the DataFrame into np arrays of labels and features.
train df labels = train df features.pop('Class')
test df labels = test_df_features.pop('Class')
# Count the negatives and positives
neg train, pos train = np.bincount(train df labels)
total train = neg train + pos train
neg test, pos test = np.bincount(test df labels)
total test = neg test + pos test
print('Train:\n Total: {}\n Negative: {} ({:.2f}% of total)\n Positive: {} ({:.2f}% of total)\n'.format(
    total train, neg train, 100 * neg train / total train, pos train, 100 * pos train / total train))
print('Test:\n Total: {}\n Negative: {} ({:.2f}% of total)\n Positive: {} ({:.2f}% of total)\n'.format(
    total test, neg test, 100 * neg test / total test, pos test, 100 * pos test / total test))
Train:
  Total: 227845
 Negative: 227457 (99.83% of total)
 Positive: 388 (0.17% of total)
Test:
  Total: 56962
 Negative: 56858 (99.82% of total)
 Positive: 104 (0.18% of total)
```


Epoch

Epoch

12 14

Epoch

12 14

Epoch

Baseline model: Training

Training:

Accuracy: 0.999 Precision: 0.888

Recall: 0.592

AUC: 0.942

Cross-Validation:

Accuracy: 0.999 +/- 4.25e-05

Precision: 0.871 +/- 0.0328

Recall: 0.582 +/- 0.0234

AUC: 0.929 +/- 0.0113

Baseline model: Test

Legitimate Transactions Detected (True Negatives): 56851
Legitimate Transactions Incorrectly Detected (False Positives): 7
Fraudulent Transactions Missed (False Negatives): 39
Fraudulent Transactions Detected (True Positives): 65
Total Fraudulent Transactions: 104

Training:

Accuracy: 0.999 Precision: 0.888 Recall: 0.592 AUC: 0.942

Test:

Accuracy: 0.999 Precision: 0.903 Recall: 0.625 AUC: 0.932

Baseline model: ROC Curve

Weighted model

Weight for class 1: 289.44

```
# Scaling by total/2 helps keep the loss to a similar magnitude.
# The sum of the weights of all examples stays the same.
weight_for_0 = (1 / neg)*(total)/2.0
weight_for_1 = (1 / pos)*(total)/2.0

class_weight = {0: weight_for_0, 1: weight_for_1}

print('Weight for class 0: {:.2f}'.format(weight_for_0))
print('Weight for class 1: {:.2f}'.format(weight_for_1))
Weight for class 0: 0.50
```

Weighted model

```
weighted_history = model_weighted.fit(
    train_features,
    train_labels,
    batch_size=BATCH_SIZE,
    epochs=EPOCHS,
    callbacks = callbacks_list,
    class_weight = class_weight, # Here we define the class weights
    verbose=1)
```


Epoch

-- Val

17.5

20.0

Weighted model: Training

Training:

Accuracy: 0.982 Precision: 0.0807 Recall: 0.9123

AUC: 0.987

Cross-Validation:

Accuracy: 0.985 +/- 0.00138 Precision: 0.0938 +/- 0.00670

Recall: 0.899 +/- 0.0262 AUC: 0.984 +/- 0.00535

Weighted model: Test

Legitimate Transactions Detected (True Negatives): 55861
Legitimate Transactions Incorrectly Detected (False Positives): 997
Fraudulent Transactions Missed (False Negatives): 12
Fraudulent Transactions Detected (True Positives): 92
Total Fraudulent Transactions: 104

Training:

Accuracy: 0.982 Precision: 0.0807 Recall: 0.9123 AUC: 0.987

Test:

Accuracy: 0.982 Precision: 0.0845 Recall: 0.885

AUC: 0.983

Weighted model: ROC Curve

Undersampling

```
Train (Balanced):
  Total: 776
  Negative: 388 (50.00% of total)
  Positive: 388 (50.00% of total)
Test (Balanced):
  Total: 208
  Negative: 104 (50.00% of total)
  Positive: 104 (50.00% of total)
Test (Imbalanced):
  Total: 56962
  Negative: 56858 (99.82% of total)
  Positive: 104 (0.18% of total)
```


Undersampling: Training

Training:

Accuracy: 0.917 Precision: 0.991 Recall: 0.843 AUC: 0.978

Cross-Validation:

Accuracy: 0.938 +/- 0.00963 Precision: 0.973 +/- 0.0218 Recall: 0.902 +/- 0.0280 AUC: 0.981 +/- 0.00132

Undersampling: Test (Balanced)

Legitimate Transactions Detected (True Negatives): 102
Legitimate Transactions Incorrectly Detected (False Positives): 2
Fraudulent Transactions Missed (False Negatives): 14
Fraudulent Transactions Detected (True Positives): 90
Total Fraudulent Transactions: 104

Training:

Accuracy: 0.917 Precision: 0.991 Recall: 0.843 AUC: 0.978

Test:

Accuracy: 0.923 Precision: 0.978 Recall: 0.865 AUC: 0.960

Undersampling: ROC Curve (Balanced)

Undersampling: Test (Imbalanced)

Legitimate Transactions Detected (True Negatives): 7898
Legitimate Transactions Incorrectly Detected (False Positives): 48960
Fraudulent Transactions Missed (False Negatives): 0
Fraudulent Transactions Detected (True Positives): 104
Total Fraudulent Transactions: 104

Training:

Accuracy: 0.917 Precision: 0.991 Recall: 0.843 AUC: 0.978

Test:

Accuracy: 0.140 Precision: 0.00212

Recall: 1.0 AUC: 0.970

Undersampling: ROC Curve (Imbalanced)

Conclusion

Conclusion

- The baseline model has a good precision, but it fails in classifying most of the positive samples, which is a bad thing given the context of the problem. This approach has high precision, but average recall.
- The weighted model classifies many legitimate transactions as fraudulent, but it is capable of catching most of the true positives. So here we have high recall, with low precision.
- The undersample approach has high precision and recall when applied to a balanced dataset, but classifies a very large number of legitimate transactions as fraudulent when applied to the imbalanced dataset.

Final verdict: The weighted model is probably the best approach to this problem.

Batch Normalization: Not a good idea...

Test (Weighted)

Deeper Network

```
model = keras.Sequential([
    keras.layers.Dense(
        256, activation='relu',
        input shape=(train features.shape[-1],)),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(64, activation='relu'),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(1, activation='sigmoid',
                       bias initializer=output bias),
```

Deeper Network

Deeper Network

"Excellent!"

