Projeto GA x ICC x IPC

Súmula do trabalho

Objetivo

• Dados dois objetos no espaço (nesse caso, reta ou plano), verificar se há **colisão** (intersecção) entre eles. Assim, temos três possibilidades: colisão entre dois planos, colisão entre uma reta e um plano e, finalmente, colisão entre duas retas. Para este algoritmo, deverá ser implementado um algoritmo recursivo de **escalonamento** (também chamada de Eliminação Gaussiana).

Entrada

- O programa primeiro lerá um *char* representando o objeto a ser lido. Usa-se **r** para indicar uma reta, e **p** para indicar um plano.
- Um plano é expresso por uma equação geral do tipo ax+by+cz+d=0. A entrada fornecerá, logo abaixo do *char*, deste modo, os **coeficientes** a, b, c e d da equação. Para o caso da reta, serão usadas **duas** equações de plano, uma em cada linha (nota: a reta pode ser vista como a intersecção de dois planos concorrentes).
- Os coeficientes são separados por um espaço. Cada coeficiente é expresso por um **par de inteiros** (separados por espaço), convenciona-se que o primeiro elemento do par é o numerador e o segundo elemento é o denominador.

Súmula do trabalho

Saída

- Se houver colisão, imprime 'sim'. Se não houver colisão, imprime 'nao'. Ambas as respostas deverão estar em letra minúscula (lowercase), sem acentos e aspas, como pedido.
- Em seguida, deverá imprimir a **matriz escalonada**, sem simplificações, cujas entradas são **números racionais** (representados em forma de fração). No caso especial de um número ser inteiro, omite-se a divisão pelo denominador (que é o número 1).

(exemplificação da entrada e saída no slide a seguir)

Requisitos

- Alocar dinamicamente matrizes na resolução do problema (veja primeira linha da entrada)
- Implementar uma **struct** para manipular os números racionais, tanto os fornecidos pelo entrada como os exigidos pela matriz de saída.
- Para todo caso-teste, é obrigatório a implementação do algoritmo de escalonamento, sob sua forma recursiva.
- É importante **indentar** corretamente e **comentar** aspectos importantes da execução do seu programa.

Suponha que seja dada a seguinte entrada:

Analisemos o que significa esta linha, por exemplo.

Exemplo (ideia geral)

01210101

Os coeficientes da primeira equação do sistema são:

$$a = 0/1$$
 (isto é, 0)

$$b = 2/1$$
 (isto é, 2)

$$c = 0/1$$
 (isto é, 0)

$$d = 0/1$$
 (isto é, 0)

OBS: Os valores dos inteiros fornecidos são pequenos, estão entre -10 e +10

Temos que a 1ª equação do sistema representa, portanto,

$$2y = 0$$

a b c d
2/1 0/1 0/1 0/1

a b c d
2/1 0/1 0/1 0/1

	Sistema S1	r
	2y = 0	01210101
1	2x = 0	21010101
		р
		31-110131

Temos que, desse modo, a reta é a intersecção entre os planos 2y=0 e 2x=0.

Fazendo o mesmo para o plano (...):

Sistem	a S1	r
2y =	= 0	01210101
2x =	= 0	21010101
Sisten	na S2	р
3x-y+3	3=0	31-110131

Analisemos a solução do sistema **S1∩S2**, que será dado pela matriz:

S1∩S2	а	b	С	d
1ªeq	0	2	0	0
2ªeq	2	0	0	0
3ªeq	3	-1	0	3

Reta (Sistema S1)

S1	а	b	С	d
1ªeq	0	2	0	0
2ªeq	2	0	0	0

Plano (Sistema S2)

S2	а	b	С	d
1ªeq	3	-1	0	3

OBS: para este exemplo em particular, os denominadores foram omitidos para facilitar o entendimento, estando subentendido o denominador 1

Façamos o escalonamento, importante para verificar se há colisão.

S1∩S2	а	b	С	d
1ªeq	0	2	0	0
2ªeq	2	0	0	0
3ªeq	3	-1	0	3

Vamos batizar esse algoritmo de escalonamento como "o jogo do **Encontre o Absurdo".** Entenda:

1ª coluna de M

S1∩S2	а	b	С	d
1ªeq	0	2	0	0
2ªeq	2	0	0	0
3ªeq	3	-1	0	3

Procedimento simplificado:

 Para a 1^a coluna da matriz M, escolhe a primeira equação (de cima pra baixo) tal que a ≠ 0.

Procedimento simplificado:

 Não posso escolher a 1ªeq, pois a₁ = 0.

1^aeq

2ªeq

3^aeq

1^a coluna de M S1NS2 b d а 0 2 0 0 0 0 0 3 3 -1 0

Procedimento simplificado:

Como $a_2 = 2 \neq 0$, selecionamos a 2ªeq como a **nova 1**^a**eq**.

Procedimento simplificado:

 Realizo o swap() entre as equações, para arbitrar que sempre a primeira equação do sistema será a equação do pivô (definido a seguir)

Procedimento simplificado:

A troca é feita.

Procedimento simplificado:

 Vamos definir como p
 (pivô) o 1º coeficiente da 1ªeq já trocada, no nosso caso temos que:

A 1ªeq deve ser sempre a equação do pivô, por isso a troca de linhas pode ser necessária.

Procedimento simplificado:

- seja a matriz M = (x^{ij})
- Para as linhas $1 < i \le 3$.

linha i -= linha
$$1^* (x_{i1}/p)$$

(i.e. cada linha será subtraída da primeira linha (a equação do pivô) multiplicada por um fator, que no nosso caso será o coeficiente <u>a</u> da linha atual dividida pelo pivô)

S1∩S2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	3	-1	0	3

Procedimento simplificado:

- Para a 2^aeq = (0, 2, 0, 0), temos que x₂₁= 0 (o primeiro elemento).
- Assim:

$$2^{a}$$
eq = (0, 2, 0, 0) - (2, 0, 0, 0)*(0/2)
 2^{a} eq = (0, 2, 0, 0) - (0, 0, 0, 0)
 2^{a} eq = (0, 2, 0, 0)

 Logo, a 2ª equação permanece a mesma.

S1∩S2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	3	-1	0	3

Procedimento simplificado:

- Para a 3^aeq = (3, -1, 0, 3), temos que x₃₁= 3 (o primeiro elemento).
- Assim:

$$3^{a}$$
eq = (3, -1, 0, 3) - (2, 0, 0, 0)*(3/2)
 3^{a} eq = (3, -1, 0, 3) - (3, 0, 0, 0)
 3^{a} eq = (0, -1, 0, 3)

 Note que zeramos x₃₁ acima, nossa intenção.

1^a coluna de M S1NS2 b d С а 1^aeq 0 0 0 2^aeq 0 0 0 3ªeq 3 0 -1 0

Procedimento simplificado:

 A nova 3ª equação é então modificada.

1^a coluna de M

S1∩S2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	0	-1	0	3

Procedimento simplificado:

- Agora um passo importante, busca-se alguma equação cujo resultado é absurdo, isto é, a = b = c = 0, mas d ≠ 0, (ex: 0x + 0y + 0z = 3 ⇒ 0 = 3) quando isto acontece, imediatamente sabemos que não há colisão. Se ao fim do procedimento houver nenhum absurdo, então existe colisão.
- Segue normalmente a recursão, até atingir o caso de parada (veremos a seguir).

1ª coluna de M

S1NS2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	0	-1	0	3

Procedimento simplificado:

 Nossa próxima matriz será reduzida da 1ª coluna e da 1ª linha. O algoritmo é feito recursivamente para a nova matriz

1^a coluna de M

S1∩S2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	0	-1	0	3

Procedimento simplificado:

 p = 2 já está na 1^a linha da matriz.

1^a coluna de M

S1∩S2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	0	-1	0	3

Procedimento simplificado:

- Para a linha 2 = (-1, 0, 3), temos que x₂₁= -1 (o primeiro elemento).
- Assim:

$$2^{a}$$
eq = (-1, 0, 3) - (2, 0, 0) * (-1/2)
 2^{a} eq = (-1, 0, 3) - (-1, 0, 0)
 2^{a} eq = (0, 0, 3)

 Note que zeramos x₂₁, nossa intenção (familiar?).

Procedimento simplificado:

- Temos que a última equação confere um absurdo. Logo,
 não há colisão entre os dois objetos, sob nenhuma hipótese.
- Seguimos o procedimento até atingir o caso-base (caso de parada).
- O caso-base é quando a matriz M se torna uma matriz linha, ou quando a 1ª coluna de M é a do coeficiente c. (Por quê?)

Procedimento simplificado:

- Seguimos para outra chamada
- Aqui atingimos o caso de parada. Neste caso em particular, ocorreu simultaneamente que M é uma matriz linha cuja 1ª coluna é a do último coeficiente das variáveis (i.e. o coeficiente c). Note que basta ocorrer apenas uma destas condições para terminar a recursão.

S1∩S2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	0	0	0	3

Procedimento simplificado:

- A matriz já está **escalonada**.
- Como seria a saída deste caso?

S1NS2	а	b	С	d
1ªeq	2	0	0	0
2ªeq	0	2	0	0
3ªeq	0	0	0	3

Procedimento simplificado:

SAÍDA:

nao			
2	0	0	0
0	2	0	0
2 0 0	0	0	3

- A matriz deve ser tabulada por um \t (tab simples).
- Não há tab após a última coluna.
- Quando o denominador de um número for 1 (é o caso de todos os números deste exemplo), omite-se o denominador.
- Quando a fração não pode ser subentendida, imprime-a na forma n/d. (Veja a seguir)

Exemplo de saída possível

Uma saída válida para um caso qualquer poderá ser algo como:

SAÍDA:

sim			
1	-3/2	0	2
0	2/7	0	0
0	0	1	1
0	0	0	0

Este seria um caso de colisão entre duas retas. Note que não há absurdos no sistema. Temos que aqui a intersecção ocorre.

Obrigado!

Uma proposta de *Fernando César LB Filho* Endereço para contato: <u>fernandoclbf@usp.br</u>