5.4 Mudança de Coordenadas

Figura 5.26: $\overrightarrow{OP} = x\vec{i} + y\vec{j} + z\vec{k}$

Figura 5.27: Dois sistemas de coordenadas $\{O, \vec{i}, \vec{j}, \vec{k}\}\$ e $\{O', U_1, U_2, U_3\}$

Se as coordenadas de um ponto P no espaço são (x,y,z), então as componentes do vetor OP também são (x,y,z) e então podemos escrever

$$\overrightarrow{OP} = (x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z)$$
$$= x(1, 0, 0) + y(0, y, 0) + z(0, 0, 1) = x\vec{i} + y\vec{j} + z\vec{k},$$

em que $\vec{i}=(1,0,0)$, $\vec{j}=(0,1,0)$ e $\vec{k}=(0,0,1)$. Ou seja, as coordenadas de um ponto P são iguais aos escalares que aparecem ao escrevermos \overrightarrow{OP} como uma combinação linear dos vetores canônicos. Assim, o ponto O=(0,0,0) e os vetores \vec{i} , \vec{j} e \vec{k} determinam um sistema de coordenadas (cartesiano), $\{O,\vec{i},\vec{j},\vec{k}\}$. Para resolver alguns problemas geométricos é necessário usarmos um segundo sistema de coordenadas determinado por uma origem O' e por vetores U_1 , U_2 e U_3 que formam uma base ortonormal de \mathbb{R}^3 .* Por exemplo, se O'=(2,3/2,3/2), $U_1=(\sqrt{3}/2,1/2,0)$, $U_2=(-1/2,\sqrt{3}/2,0)$ e $U_3=(0,0,1)=\vec{k}$, então $\{O',U_1,U_2,U_3\}$ determina um novo sistema de coordenadas: aquele com origem no ponto O', cujos eixos x',y' e z' são retas que passam por O' orientadas com os sentidos e direções de U_1,U_2 e U_3 , respectivamente.

As coordenadas de um ponto P no sistema de coordenadas $\{O', U_1, U_2, U_3\}$ é definido como sendo os escalares que aparecem ao escrevermos $\overrightarrow{O'P}$ como combinação linear dos vetores U_1 , U_2 e U_3 , ou seja, se

$$\overrightarrow{O'P} = x'U_1 + y'U_2 + z'U_3,$$

então as coordenadas de P no sistema $\{O', U_1, U_2, U_3\}$ são dadas por

$$[P]_{\{O',U_1,U_2,U_3\}} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}.$$

^{*}Um sistema de coordenadas pode ser determinado por um ponto O' e três vetores V_1, V_2 e V_3 que formam uma base do \mathbb{R}^3 , que não necessariamente é ortonormal (veja o Exercício 5.4.6 na página 164).

Vamos considerar inicialmente o caso em que O=O'. Assim, se $\overrightarrow{OP}=(x,y,z)$, então $x'U_1+y'U_2+z'U_3=\overrightarrow{OP}$ pode ser escrito como

$$\left[\begin{array}{c} U_1 \ U_2 \ U_3 \end{array} \right] \left[\begin{array}{c} x' \\ y' \\ z' \end{array} \right] = \left[\begin{array}{c} x \\ y \\ z \end{array} \right]$$

Multiplicando-se à esquerda pela transposta da matriz $Q = [U_1 U_2 U_3]$, obtemos

$$\begin{bmatrix} U_1^t \\ U_2^t \\ U_3^t \end{bmatrix} \begin{bmatrix} U_1 & U_2 & U_3 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} U_1^t \\ U_2^t \\ U_3^t \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Mas, como U_1, U_2 e U_3 formam uma base ortonormal de \mathbb{R}^3 , então

$$Q^{t}Q = \begin{bmatrix} U_{1}^{t} \\ U_{2}^{t} \\ U_{3}^{t} \end{bmatrix} \begin{bmatrix} U_{1} \ U_{2} \ U_{3} \end{bmatrix} = \begin{bmatrix} U_{1}^{t}U_{1} & U_{1}^{t}U_{2} & U_{1}^{t}U_{3} \\ U_{2}^{t}U_{1} & U_{2}^{t}U_{2} & U_{2}^{t}U_{3} \\ U_{3}^{t}U_{1} & U_{3}^{t}U_{2} & U_{3}^{t}U_{3} \end{bmatrix} = \begin{bmatrix} U_{1} \cdot U_{1} & U_{1} \cdot U_{2} & U_{1} \cdot U_{3} \\ U_{2} \cdot U_{1} & U_{2} \cdot U_{2} & U_{2} \cdot U_{3} \\ U_{3} \cdot U_{1} & U_{3} \cdot U_{2} & U_{3} \cdot U_{3} \end{bmatrix} = I_{3}$$

Assim, a matriz $Q = [U_1 \, U_2 \, U_3]$ é invertível e $Q^{-1} = Q^t$. Desta forma as coordenadas de um ponto P no espaço em relação ao sistema $\{O, U_1, U_2, U_3\}$ estão bem definidas, ou seja, x', y' e z' estão unicamente determinados e são dados por

$$[P]_{\{O,U_1,U_2,U_3\}} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = Q^t \begin{bmatrix} x \\ y \\ z \end{bmatrix} = Q^t[P]_{\{O,\vec{i},\vec{j},\vec{k}\}}.$$

Também no plano temos o mesmo tipo de situação que é tratada de forma inteiramente análoga. As coordenadas de um ponto P no plano em relação a um sistema de coordenadas $\{O', U_1, U_2\}$, em que U_1 e U_2 são vetores que formam uma base ortonormal do \mathbb{R}^2 , é definido como sendo os escalares que aparecem ao escrevermos $\overrightarrow{O'P}$ como combinação linear de U_1 e U_2 , ou seja, se

$$\overrightarrow{O'P} = x'U_1 + y'U_2,$$

então as coordenadas de P no sistema $\{O', U_1, U_2\}$ são dadas por

$$[P]_{\{O',U_1,U_2\}} = \begin{bmatrix} x' \\ y' \end{bmatrix}.$$

Vamos considerar, também neste caso, inicialmente o caso em que O=O'. Assim, se $\overrightarrow{OP}=(x,y)$, então $x'U_1+y'U_2=\overrightarrow{OP}$ pode ser escrito como

$$\left[\begin{array}{c} U_1 \ U_2 \end{array}\right] \left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{c} x \\ y \end{array}\right]$$

Multiplicando-se à esquerda pela transposta da matriz $Q = [U_1 U_2]$, obtemos

$$\left[\begin{array}{c} U_1^t \\ U_2^t \end{array}\right] \left[\begin{array}{c} U_1 \ U_2 \end{array}\right] \left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{c} U_1^t \\ U_2^t \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right].$$

Novamente, como U_1 e U_2 formam uma base ortonormal de \mathbb{R}^2 , então

$$Q^{t}Q = \begin{bmatrix} U_{1}^{t} \\ U_{2}^{t} \end{bmatrix} \begin{bmatrix} U_{1} \ U_{2} \end{bmatrix} = \begin{bmatrix} U_{1}^{t}U_{1} & U_{1}^{t}U_{2} \\ U_{2}^{t}U_{1} & U_{2}^{t}U_{2} \end{bmatrix} = \begin{bmatrix} U_{1} \cdot U_{1} & U_{1} \cdot U_{2} \\ U_{2} \cdot U_{1} & U_{2} \cdot U_{2} \end{bmatrix} = I_{2}$$

Assim, a matriz $Q=[U_1\,U_2]$ é invertível e $Q^{-1}=Q^t$. Desta forma as coordenadas de um ponto P no plano em relação a um sistema de coordenadas $\{O,U_1,U_2\}$ estão bem definidas, ou seja, x' e y' estão unicamente determinados e são dados por

$$[P]_{\{O,U_1,U_2\}} = \begin{bmatrix} x' \\ y' \end{bmatrix} = Q^t \begin{bmatrix} x \\ y \end{bmatrix} = Q^t[P]_{\{O,E_1,E_2\}},$$

em que $E_1=(1,0)$ e $E_2=(0,1)$. Observe que, tanto no caso do plano quanto no caso do espaço, a matriz Q satisfaz, $Q^{-1}=Q^t$. Uma matriz que satisfaz esta propriedade é chamada **matriz ortogonal**.

Exemplo 5.30. Considere o sistema de coordenadas no plano em que O'=O e $U_1=(\sqrt{3}/2,1/2)$ e $U_2=(-1/2,\sqrt{3}/2)$. Se P=(2,4), vamos determinar as coordenadas de P em relação ao novo sistema de coordenadas. Para isto temos que encontrar x' e y' tais que

$$x'U_1 + y'U_2 = \overrightarrow{O'P} = \overrightarrow{OP}$$

ou

$$x'(\sqrt{3}/2, 1/2) + y'(-1/2, \sqrt{3}/2) = (2, 4)$$

A equação acima é equivalente ao sistema linear

$$\begin{cases} (\sqrt{3}/2)x' - (1/2)y' = 2\\ (1/2)x' + (\sqrt{3}/2)y' = 4 \end{cases}$$

ou

$$\begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

ou ainda,

$$Q \left[\begin{array}{c} x' \\ y' \end{array} \right] = \left[\begin{array}{c} 2 \\ 4 \end{array} \right]$$

em que $Q=\left[\ U_1 \ U_2 \ \right]$ com U_1 e U_2 escritos como matrizes colunas. Como

$$Q^{t}Q = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix} = I_{2},$$

então as coordenadas de P em relação ao novo sistema de coordenadas são dadas por

$$[P]_{\{O,U_1,U_2\}} = Q^t \begin{bmatrix} 2\\4 \end{bmatrix} = \begin{bmatrix} U_1^t\\U_2^t \end{bmatrix} \begin{bmatrix} 2\\4 \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & 1/2\\-1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} 2\\4 \end{bmatrix} = \begin{bmatrix} 2+\sqrt{3}\\2\sqrt{3}-1 \end{bmatrix}.$$

Figura 5.28: Coordenadas de um ponto P em dois sistemas

Exemplo 5.31. Considere o mesmo sistema de coordenadas do exemplo anterior, mas agora seja P=(x,y) um ponto qualquer do plano. Vamos determinar as coordenadas de P em relação ao novo sistema de coordenadas. Para isto temos que encontrar x' e y' tais que

$$x'U_1 + y'U_2 = \overrightarrow{O'P} = \overrightarrow{OP}$$

ou

$$x'(\sqrt{3}/2, 1/2) + y'(-1/2, \sqrt{3}/2) = (x, y)$$

A equação acima é equivalente ao sistema linear nas variáveis x' e y'

$$\begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix},$$

ou

$$Q \left[\begin{array}{c} x' \\ y' \end{array} \right] = \left[\begin{array}{c} x \\ y \end{array} \right]$$

em que $Q=[\ U_1\ U_2\]$ com U_1 e U_2 escritos como matrizes colunas. Como $Q^tQ=I_2$, então as coordenadas de P em relação ao novo sistema de coordenadas são dadas por

$$[P]_{\{O,U_1,U_2\}} = Q^t \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} U_1^t \\ U_2^t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} (\sqrt{3}x + y)/2 \\ (-x + \sqrt{3}y)/2 \end{bmatrix}.$$

Exemplo 5.32. Vamos agora considerar um problema inverso àqueles apresentados nos exemplos anteriores. Suponha que sejam válidas as seguintes equações

$$\begin{cases} x = \frac{1}{\sqrt{5}}x' + \frac{2}{\sqrt{5}}y' \\ y = \frac{2}{\sqrt{5}}x' - \frac{1}{\sqrt{5}}y' \end{cases},$$

ou equivalentemente

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

entre as coordenadas $\begin{bmatrix} x' \\ y' \end{bmatrix}$ de um ponto P em relação a um sistema de coordenadas $\{O, U_1, U_2\}$ e as coordenadas de P, $\begin{bmatrix} x \\ y \end{bmatrix}$, em relação ao sistema de coordenadas original $\{O, E_1 = (1,0), E_2 = (0,1)\}$. Queremos determinar quais são os vetores U_1 e U_2 .

Os vetores U_1 e U_2 da nova base possuem coordenadas $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ e $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, respectivamente, em relação ao novo sistema de coordenadas, $\{O,U_1,U_2\}$. Pois, $U_1=1$ U_1+0 U_2 e $U_2=0$ U_1+1 U_2 . Queremos saber quais as coordenadas destes vetores em relação ao sistema de coordenadas original, $\{O,E_1=(1,0),E_2=(0,1)\}$. Logo,

$$U_{1} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$$

$$U_{2} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{bmatrix}$$

Ou seja, U_1 e U_2 são as colunas da matriz $Q=\begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$.

Figura 5.29: Rotação de um ângulo θ

5.4.1 Rotação

Suponha que o novo sistema de coordenadas $\{O,U_1,U_2\}$ seja obtido do sistema original $\{O,E_1=(1,0),E_2=(0,1)\}$ por uma rotação de um ângulo θ . Observando a Figura 5.29, obtemos

$$U_1 = (\cos \theta, \sin \theta)$$

 $U_2 = (-\sin \theta, \cos \theta)$

seja P=(x,y) um ponto qualquer do plano. Vamos determinar as coordenadas de P em relação ao novo sistema de coordenadas. Para isto temos que encontrar x' e y' tais que

$$x'U_1 + y'U_2 = \overrightarrow{OP}$$
.

A equação acima é equivalente ao sistema linear

$$\begin{cases} (\cos \theta)x' - (\sin \theta)y' = x \\ (\sin \theta)x' + (\cos \theta)y' = y \end{cases}$$
 (5.18)

ou

$$R_{\theta}X = P$$

em que
$$R_{\theta}=\left[egin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}
ight]$$
 e $P=\left[egin{array}{c} x \\ y \end{array}
ight]$. A solução é dada por

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R_{\theta}^{-1} P = R_{\theta}^{t} P = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

O sistema de coordenadas que aparece nos dois primeiros exemplos desta seção podem ser obtidos por uma rotação de um ângulo $\theta=\pi/6$ em relação ao sistema original.

A matriz R_{θ} é chamada **matriz de rotação**.

Figura 5.30: Coordenadas de um ponto P em dois sistemas (translação)

5.4.2 Translação

Vamos considerar, agora, o caso em que $O' \neq O$, ou seja, em que ocorre uma **translação** dos eixos coordenados.

Observando a Figura 5.30, obtemos

$$\overrightarrow{O'P} = \overrightarrow{OP} - \overrightarrow{OO'}. \tag{5.19}$$

Assim, se $\overrightarrow{OO'} = (h, k)$, então

$$\overrightarrow{O'P} = (x', y') = (x, y) - (h, k) = (x - h, y - k)$$

Logo, as coordenadas de P em relação ao novo sistema são dadas por

$$[P]_{\{O',E_1,E_2\}} = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x-h \\ y-k \end{bmatrix}.$$
 (5.20)

O eixo x' tem equação y'=0, ou seja, y=k e o eixo y', x'=0, ou seja, x=h.

Exercícios Numéricos (respostas na página 222)

- **5.4.1.** Encontre as coordenadas do ponto P com relação ao sistema de coordenadas S, nos seguintes casos:
 - (a) $S = \{O, (1/\sqrt{2}, -1/\sqrt{2}), (1/\sqrt{2}, 1/\sqrt{2})\}\ e\ P = (1, 3);$
 - (b) $S = \{O, (1/\sqrt{2}, -1/\sqrt{2}, 0), (0, 0, 1), (1/\sqrt{2}, 1/\sqrt{2}, 0)\}\ e\ P = (2, -1, 2);$
- **5.4.2.** Encontre o ponto P, se as coordenadas de P em relação ao sistema de coordenadas S, $[P]_S$, são:

(a)
$$[P]_{\mathcal{S}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, em que $\mathcal{S} = \{O, (-1/\sqrt{2}, 1/\sqrt{2}), (1/\sqrt{2}, 1/\sqrt{2})\}$. (b) $[P]_{\mathcal{S}} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$, em que $\mathcal{S} = \{O, (0, 1/\sqrt{2}, -1/\sqrt{2}), (1, 0, 0), (0, 1/\sqrt{2}, 1/\sqrt{2})\}$;

5.4.3. Sejam $[P]_{\mathcal{R}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ as coordenadas de um ponto P em relação ao sistema de coordenadas $\mathcal{R} = \{O, \vec{i}, \vec{j}, \vec{k}\}$ e $[P]_{\mathcal{S}} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$, em relação ao sistema de coordenadas $\mathcal{S} = \{O, U_1, U_2, U_3\}$. Suponha que temos a seguinte relação:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 \\ 0 & \sqrt{3}/2 & 1/2 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}.$$

Quais são os vetores U_1, U_2 e U_3 ?

5.4.4. Determine qual a rotação do plano em que as coordenadas do ponto $P=(\sqrt{3},1)$ são $\begin{bmatrix} \sqrt{3} \\ -1 \end{bmatrix}$.

Exercícios Teóricos

- **5.4.5.** Mostre que $R_{\theta_1}R_{\theta_2} = R_{\theta_1+\theta_2}$.
- **5.4.6.** Podemos definir coordenadas de pontos no espaço em relação a um sistema de coordenadas definido por um ponto O' e três vetores V_1, V_2 e V_3 que formam uma base não necessariamente ortonormal do \mathbb{R}^3 da mesma forma como fizemos quando os vetores formam uma base ortonormal. As coordenadas de um ponto P no sistema de coordenadas $\{O', V_1, V_2, V_3\}$ é definido como sendo os escalares que aparecem ao escrevermos $\overrightarrow{O'P}$ como combinação linear dos vetores V_1, V_2 e V_3 , ou seja, se

$$\overrightarrow{O'P} = x'V_1 + y'V_2 + z'V_3$$

então as coordenadas de P no sistema $\{O',V_1,V_2,V_3\}$ são dadas por

$$[P]_{\{O',V_1,V_2,V_3\}} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}.$$

Assim, se $\overrightarrow{O'P}=(x,y,z)$, então $x'V_1+y'V_2+z'V_3=\overrightarrow{O'P}$ pode ser escrito como

$$\left[\begin{array}{c} V_1 \ V_2 \ V_3 \end{array}\right] \left[\begin{array}{c} x' \\ y' \\ z' \end{array}\right] = \left[\begin{array}{c} x \\ y \\ z \end{array}\right]$$

- (a) Mostre que a matriz $Q = [V_1 V_2 V_3]$ é invertível.
- (b) Mostre que as coordenadas de um ponto P no espaço em relação ao sistema $\{O',V_1,V_2,V_3\}$ estão bem definidas, ou seja, x', y' e z' estão unicamente determinados e são dados por

$$[P]_{\{O',V_1,V_2,V_3\}} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = Q^{-1} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = Q^{-1}[P]_{\{O',\vec{i},\vec{j},\vec{k}\}}.$$