Zusammenfassung Gew. Diff'gleichungen

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Def (Klassifikation von DGLn).

- (I) Gewöhnliche DGL: Gesucht ist Funktion in einer Variable Partielle DGL: Gesucht ist Funktion in mehreren Variablen
- (II) Ordnung einer DGL: Höchste Ableitung der gesuchten Funktion, die in Gleichung vorkommt
- (III) Explizite DGL: Gleichung der Form $y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)})$ Implizite DGL: Allgemeinere Form $F(t, y, \dot{y}, ..., y^{(k)}) = 0$
- (IV) Skalare DGL: Gesucht ist Funktion mit Wert in \mathbb{R} n-dimensionale DGL: Gesuchte Funktion hat Wert in \mathbb{R}^n
- (V) Lineare DGL: Gleichung hat die Form $a_k(t)y^{(k)}(t)+a_{(k-1)}(t)y^{k-1}(t)+\ldots+a_1(t)\dot{y}(t)+a_0(t)y(t)=0$
- (VI) Autonome DGL: Gleichung der Form $F(y, \dot{y}, ..., y^{(k)}) = 0$ (keine Abhängigkeit von t. Zeitinvarianz)

Notation. Sei im Folgenden I stets ein Intervall in \mathbb{R} .

Def. • Es sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$, $f : \mathcal{D} \to \mathbb{R}^n$. Eine differenzierbare Funktion $y : I \to \mathbb{R}^n$ heißt **Lösung** von $\dot{y} = f(t, y)$, falls für alle $t \in I$ gilt: $\dot{y}(t) = f(t, y(t))$.

• Es sei $\mathcal{D} \subset \mathbb{R} \times \underbrace{\mathbb{R}^n \times ...\mathbb{R}^n}_{k \text{ mal}}, f : \mathcal{D} \to \mathbb{R}^n$. Eine k-mal

differenzierbare Funktion $y:I\to\mathbb{R}^n$ heißt Lösung von $y^{(k)}=f(t,y,\dot{y},...,y^{(k-1)})$, falls für alle $t\in I$ gilt:

$$y^{(k)} = f(t, y(t), \dot{y}(t), ..., y^{(k-1)}(t))$$

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von $y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)})$ (1.2), dann ist

$$(y_1,...,y_k):I\to\mathbb{R}^{kn}$$

$$t \mapsto (y_1(t), ..., y_k(t)) = (y(t), \dot{y}(t), ..., y^{(k-1)}(t))$$

eine Lösung von System (1.3)

• Ist $(y_1, ..., y_k): I \to \mathbb{R}^n$ eine Lösung von (1.3), dann ist $y = y_1: I \to \mathbb{R}^n$ eine Lösung von (1.2).

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von AWP (1.1), dann ist

$$(y_1, y_2): I \to \mathbb{R}^{n+1}$$

 $t \mapsto (y_1(t), y_2(t)) = (t, y(t))$

eine Lösung des AWP (1.4)

$$\dot{y}_1(t) = 1, y_1(t_0) = t_0 \dot{y}_2(t) = f(y_1(t), y_2(t)), \quad y_2(t_0) = y_0$$

• Ist $(y_1, y_2): I \to \mathbb{R}^{n+1}$ eine Lösung von (1.4), dann ist $y = y_2: I \to \mathbb{R}^n$ eine Lösung von (1.1).