YAMAHA* L S I

YMF278B

FM + Wave table Synthesizer LSI (OPL4)

■ OVERVIEW

The YMF278B (OPL4) is an advanced synthesizer LSI which integrates Wave Table synthesis and FM synthesis into one chip. It can generate twenty-four voices of Wave Table synthesis at a time. With wave data memory connected externally, it complies with GM System Level 1. The FM synthesis portion is register-compatible with the YMF262 (OPL3), which is a popular synthesizer LSI for IBM-PC.

With these features, this LSI (YMF278B) maintains software compatibility with applications currently in use and provides enhanced functions and higher performance when it is used in a multi-media personal computer or sound board.

■ FEATURES

- FM Synthesis (same as YMF262)
 - 1. Sound generation mode
 - Two-operator mode
 - Generates eighteen voices or fifteen voices plus five rhythm sounds simultaneously.
 - Four-operator mode
 - Generates six voices in four operator mode plus six voices in two-operator mode simultaneously, or generates six voices in four-operator mode plus three voices in two-operator mode plus five rhythm sounds simultaneously.
 - 2. Eight selectable waveforms.
 - 3. Stereo output.

Wave Table Synthesis

- 1. Generates twenty-four voices simultaneously.
- 2. 44.1 kHz sampling rate for output sound data.
- 3. Selectable from 8-bit, 12-bit, and 16-bit word lengths for wave data
- 4. Stereo output. (16-stage panpot for each voice)

Wave Data

- 1. Accepts 32M bit external memory at maximum.
- 2. Up to 512 wave tables.
- 3. External ROM or SRAM can be connected. With SRAM connected, the CPU can download wave data.
- 4. Outputs chip select signals for 1Mbit, 4Mbit, 8Mbit, or 16Mbit memory.
- 5. Can be directly connected to the YRW801 (Wave data ROM).

Others

- 1. Has six sound output channels and can be directly connected to the YAC513 (external DAC).
- 2. Can be directly connected to the YSS225 (EP), which adds various sound effects.
- 3. 80-pin plastic QFP.

-YAMAHA CORPORATION

YMF278 CATALOG CATALOG No.: LSI-4MF2782

1993. 12

■ PIN OUT DIAGRAM

<80PIN QFP TopView>

■ PIN DESCRIPTION

No.	Name	I/O		Function
1	A0	ı	CPU Interface	Address bus
2	A1	ı		Address bus
3	A2	1		Address bus
4	/CS	I+		Chip select
5	/RD	1		Read enable
6	/WR	ı		Write enable
7	/IC	1+	Initial clear	
8	VDD	_	+5V Power supply	
9	/IRQ	OD	CPU Interface	Interrupt
10	D0	I/O		Data bus
11	D1	I/O		Data bus
12	D2	I/O		Data bus
13	D3	I/O		Data bus
14	D4	I/O		Data bus
15	D5	I/O		Data bus
16	D6	I/O		Data bus
17	D7	I/O		Data bus
18	vss	_	Ground	
19	CLKO	0	Clock (16.9344MHz)	
20	всо	0	Dac Interface	Bit clock
21	LRO	0		L/R clock
22	DO0	0		FM-EXT
23	DO1	0		PCM-EXT
24	DO2	0		MIX (FM + PCM)
25	/MCS0	0	Memory Interface	Chip select
26	/MCS1	0		Chip select
27	/MCS2	0		Chip select
28	/MCS3	0		Chip select
29	/MCS4	0		Chip select
30	/MCS5	0		Chip select
31	(NC)	_		
32	VDD	_	+5V Power supply	
33	(NC)	_		
34	(NC)	_		
35	(NC)	_		
36	/MCS6	0	Memory Interface	Chip select
37	VSS	_	Ground	
38	/MCS7	0	Memory Interface	Chip select
39	/MCS8	0		Chip select
40	/MCS9	0		Chip select

No.	Name	I/O	Function
41	MD4	I/O	Memory Interface Data bus
42	MD3	I/O	Data bus
43	MD5	I/O	Data bus
44	MD2	I/O	Data bus
45	wco	0	DAC Interface Word clock
46	MD6	I/O	Memory Interface Data bus
47	MD1	1/0	Data bus
48	MD7	1/0	Data bus
49	MD0	1/0	Data bus
50	/MRD	0	Read enable
51	MA16	0	Address Bus
52	MA0	0	Address Bus
53	MA15	0	Address Bus
54	MA1	0	Address Bus
55	VDD		+5V Power supply
56	MA14	0	Memory Interface Address Bus
57	MA2	0	Address Bus
58	MA13	0	Address Bus
59	MA3	0	Address Bus
60	MA12	0	Address Bus
61	MA4	0	Address Bus
62	MA11	0	Address Bus
63	MA5	0	Address Bus
64	MA10	0	Address Bus
65	VSS	_	Ground
66	/MWR	0	Memory Interface Write enable
67	MA6	0	Address Bus
68	MA9	0	Address Bus
69	MA7	0	Address Bus
70	MA8	0	Address Bus
71	MA17	0	Address Bus
72	VDD	_	+5V Power supply
73	MA18	0	Memory Interface Address Bus
74	MA19	0	Address Bus
75	MA20	0	Address Bus
76	хо	0	Crystal oscillator connection pin
77	ΧI	l	Crystal oscillator connection pin or master clock input pin (33.8688MHz)
78	VSS	_	Ground
79	/TST1	l+	LSI test pin (Not connected normally)
80	/TST2	l+	LSI test pin (Not connected normally)

Notes) (NC), /TST1, /TST2 : These pins should normally be open.

I+: Pin with a built-in pull-up resistor

OP: Open drain output pin

■ BLOCK DIAGRAM

■ FUNCTION OVERVIEW

1. CLOCK OSCILLATION XI, XO

Use the XI and XO pins to construct the clock oscillation circuit. Oscillating frequency is 33.8688MHz.

It is also possible to input an external clock to the XI pin.

2. AUDIO INTERFACE BCO, LRO, WCO, CLKO, DO0~DO2

The YMF278B output data is 16-bit 2's complement digital data. The data is MSB first output. The sampling frequency is 44.1kHz.

The data output from each pin is shown below.

• DO0 pin: FM sound only (Sound of channel set by CHC and CHD of FM registers \$C0 to C8H is output.)

• DO1 pin: Wave table sound only. (Sound of channel set at CH="1" of wave table registers \$68 to 7FH is output.)

• DO2 pin: FM and wave table mixed data. (Sound of channel set by CHA and CHB of FM registers \$C0 to C8H and sound of channel set at CH="0" of wave table registers \$68 to 7FH are mixed and output.)

Name	Frequency	Duty
ВСО	48fs	50%
LRO	fs	50%
wco	2fs	50%

^{*} fs=44.1kHz

3. CPU INTERFACE /CS, /RD, /WR, A0~A2, /IRQ

The OPL4 (YMF278B) is controlled by writing data to the registers. An eight-bit parallel CPU interface is provided for this purpose. D0 to D7 comprise the bi-directional data bus. /CS, /RD, /WR, A0, A1 and A2 are data bus control signal inputs.

This LSI has the modes shown below which depend on data bus control signals.

11.80	C/CS	/RD	WR	AO	L ATO	FA2 -	
	Н	×	×	×	×	×	Inactive mode
	L	L	н	L	L	L	Status read mode
《使义 》	L	Н	L	L	L/H	L	Address write mode
Da FM	L	Н	L	Н	×	L	Data write mode
PCM	L	Н	L	L	L	Н	Address write mode
MIX	L	Н	L	Н	L	н	Data write mode
	L	L	н	н	L	Н	Data read mode

Note) x: don't care

(a) Inactive mode

The data bus (D0 to D7) becomes high-impedance when /CS is high.

(b) Address write mode

In this mode, a write address (the register address in which data will be written) is specified. 56 master clock cycles (for FM) or 88 cycles (for PCM) are needed before the next write cycle or read cycle.

When register array 0 of FM is to be specified, A1 must be 'L'. When register array 1 is to be specified, A1 must be 'H'.

(c) Data write mode

In this mode, data is written in the register of the address most recently specified in the address write mode described above.

56 master clock cycles (for FM) or 88 cycles (for PCM) are needed before the next write cycle or read cycle.

(d) Data read mode

In this mode, data is read from the address most recently specified in the address write mode.

(e) Status read mode

In this mode, the contents of the Status Register are returned to the data bus.

When the interrupt signals are generated in status register, the /IRQ pin becomes 'L' and report to the CPU.

4. MEMORY INTERFACE MA0~MA20, MD0~MD7, /MWR, /MRD, /MCS0~/MCS9 External ROM or SRAM can be connected (× 8 bit, under 150ns)

5. INITIAL CLEAR /IC

The YMF278B is needed initial clear.

■ REGISTERS

1-1 REGISTER TABLE FOR FM SYNTHESIS

The FM synthesis portion is register-compatible with the YMF262 (OPL3). All register are set to '0' after a initial clear.

ADDRESS		P	EGIST	ER AF	RAY 0	(A1='l	_')			R	EGIST	ER AR	RAY 1	(A1='H	H')	
ADDITIEOU	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
00H~01H	LSI TEST							LSI TEST								
02H	TIMER 1															
03H				TIM	ER 2											
04H	RST	MT1	MT2				ST2	ST1				CC	NNEC.	TION S	SEL	ŀ
05H													19240		NEW2	NEW
08H		NTS														
20H~35H	AM	VIB	EGT	KSR		MU	JLT		AM	VIB	EGT	KSR		ML	JLT	
40H~55H	K	 SL		TL			KSL TL			<u> </u>						
60H~75H		A	R	l		D	R	1	AR DR			R				
80H~95H		S	iL	<u> </u>		R	R	l		S	iL	l		R	I R	
A0H~A8H			F	-NUMI	BER (L	.)	1	1	F-NUMBER (L)							
B0H~B8H			KON	l	BLOCK	<u> </u>	F-NU	M (H)			KON	1	BLOCK		F-NU	M (H)
BDH	DAM	DVB	RYT	BD	SD	ТОМ	TC	НН	# 1155							
C0H~C8H	CHD	CHC	СНВ	СНА		FB	<u> </u>	CNT	CHD	СНС	СНВ	СНА	1	FB	<u>,</u>	CNT
E0H~F5H			15 July 1				WS								ws	

Notes) 1. The register array 1, 05H NEW2bit is expanded from the YMF262 (OPL3) to the YMF278B (OPL4). For a detailed description of the NEW2bit, see the description of the registers.

2. Register LSI TEST and " are should be written '0'.

1-2 REGISTER DESCRIPTION (FM SYNTHESIS)

Address	Name	Function
00H~01H	LSI TEST	LSI TEST is only for LSI testing.
	(REGISTER ARRAY0, 1)	
02H	TIMER 1	TIMER 1 is an 8-bit programmable counter which has an 80.8µs
	(REGISTER ARRAY0)	resolution.
03H	TIMER 2	TIMER 2 is an 8-bit programmable counter which has a 323.1µs
	(REGISTER ARRAY0)	resolution.
04H	RST	When set to '1' resets the /IRQ line to 'H',and clears FT1 and FT2
	(REGISTER ARRAY0)	timer flags to '0'.
04H	MT1, MT2	When set to '1' masks the flag of TIMER 1 and TIMER 2.
	(REGISTER ARRAY0)	
04H	ST1, ST2	When set to '1' loads the value from counter of TIMER 1 and TIMER
	(REGISTER ARRAY0)	2, and starts counting.
04H	CONNECTION SEL	Selects four-operator mode.
	(REGISTER ARRAY1)	
05H	NEW	When set to '1' becomes OPL3 mode.
	(REGISTER ARRAY1)	
05H	NEW2	When set to '1' access to PCM register and status (BUSY, LD)
	(REGISTER ARRAY1)	become possible.
08H	NTS	Selects the keyboard split method to determine the key scale
	(REGISTER ARRAY0)	number.
20H~35H	AM	When set to '1' ampritude modulation will be applied to this
	(REGISTER ARRAY0, 1)	operator.
20H~35H	VIB	When set to '1' turns vibrate on for the corresponding slot.
	(REGISTER ARRAY0, 1)	
20H~35H	EGT	Selects envelope type (sustain or decay).
	(REGISTER ARRAY0, 1)	
20H~35H	KSR	Sets the key scale rate.
	(REGISTER ARRAY0, 1)	
20H~35H	MULT	Set the multiplier for the frequency data specified by BLOCK and
	(REGISTER ARRAY0, 1)	F-NUMBER.
40H~55H	KSL	In acoustic musical instruments, the overall envelope volume
	(REGISTER ARRAY0, 1)	decreases as you play higher notes.
		KSL are used to simulate this effect.
40H~55H	TL	Attenuation is performed according to the envelope generator
	(REGISTER ARRAY0, 1)	output. The modulation or volume is controlled.
60H~75H	AR	This register specifies the attack rate.
	(REGISTER ARRAY0, 1)	
60H~75H	DR	This register specifies the decay rate.
	(REGISTER ARRAY0, 1)	
80H~95H	RR	This register specifies the release rate.
	(REGISTER ARRAY0, 1)	

Address	Name	Function
A0H~A8H	F-NUMBER (L)	Gives pitch data along with BLOCK data.
B0H∼B8H	F-NUMBER (H)	
	(REGISTER ARRAY0, 1)	
B0H∼B8H	KON	Control the sound generation ON/OFF.
	(REGISTER ARRAY0, 1)	
B0H∼B8H	BLOCK	Generates octave data with F-NUMBER data.
	(REGISTER ARRAY0, 1)	
BDH	DAM	Selects amplitude modulation depth.
	(REGISTER ARRAY0)	
BDH	DVB	Selects vibrate depth.
	(REGISTER ARRAY0)	
BDH	RYT	Selects rhythm sound mode.
	(REGISTER ARRAY0)	
BDH	BD, SD, TOM, TC, HH	Sound output ON/OFF switch for each sound.
	(REGISTER ARRAY0)	
C0H~C8H	CHD, CHC, CHB, CHA	Selects output channels among A, B, C and D.
_	(REGISTER ARRAY0, 1)	
C0H~C8H	FB	In every algorithm one of the operators can modulate itself.
	(REGISTER ARRAY0, 1)	
C0H~C8H	CNT	Selects the algorithms which arrangements of operators.
	(REGISTER ARRAY0, 1)	
E0H~F5H	WS	Selects the waveform used for carrier and modulation.
	(REGISTER ARRAY0, 1)	

2-1 REGISTER TABLE FOR WAVE TABLE SYNTHESIS

ADDRESS D7 D6 D5 D4 D3 D2 D1 00H~01H TEST 02H Device ID Wave table header Memory type 03H Memory address register A21 A20 A19 A18 A17	Memory access register
O2H Device ID Wave table header Memory type 2 1 0 Memory address register	access register
type 2 1 0 03H Memory address register	access register
03H 2 1 0 Memory address register	register
03H Memory address register	
03H Memory address register	A16
A21 A20 A19 A18 A17	AIG
04H	4.0
A15 A14 A13 A12 A11 A10 A9	A8
05H	4.0
A7 A6 A5 A4 A3 A2 A1	A0
06H Memory data register	524.44 KG 10 - 35504
O/H	19.39
08H~1FH Wave table number	
7 6 5 4 3 2 1	0
20H~37H F-NUM	Wave
	table
	number
f6 f5 f4 f3 f2 f1 f0	8
38H~4FH Octave REV F-NUM	
03 02 01 00 f9 f8	f7
50H~67H Total level	Level
6 5 4 3 2 1 0	direct
68H~7FH KEY DAMP LFO CH Panpot	
ON RES 3 2 1	0
80H~97H LFO VIB	
S2 S1 S0 V2 V1	V0
98H~AFH AR D1R	
3 2 1 0 3 2 1	0
B0H~C7H DL D2R	
3 2 1 0 3 2 1	0
C8H~DFH Rate correction RR	
3 2 1 0 3 2 1	0
E0H~F7H AM	
2 1	0
F8H Mixing control (FM-R) Mixing control	FM-L)
2 1 1 0 2 1 1	0
F9H Mixing control (PCM-R) Mixing control (I	PCM-L)
2 1 1 0 2 1 1	0

Notes) 1. Be sure to set " and TEST register to '0'.

2. Mix control register (FM-R, FM-L) of F8H are set to 3 (-9 dB), other registers are set to '0' by intial clear.

2-2 REGISTER DESCRIPTION FOR WAVE TABLE SYNTHESIS

A voices referred to as a channel. OPL4 has 24 channels for Wave Table Synthesis in total. Register 08H-f7H (240 register) are divided into 10 groups by 24 bytes. And 24-Bytes data correspond to channel 1-24 in each group.

Address	Name	Function
00H~01H	TEST	These two registers are used for LSI testing.
02H	Memory access register	Selects sound generation mode or memory access mode.
02H	Memory type	This register represents what external memory can be connected.
02H	Wave table header	This register allows the used to specify the memory areas for the
		headers.
02H	Device ID	This is used for ID register.
03H-05H	Memory address register	These registers are used to specify the addresses of external
		memory to be written to or read from.
06H	Memory data register	Data is written to the external memory by writing to this register.
		Data from the external memory is read by reading this register.
08H-37H	Wave table number	The OPL4 supports a maximum of 512 Wave Tables.
		The header of the Wave Table is automatically loaded internally by
		setting the number of the Wave Table in the number register.
20H-4FH	F-NUM, Octave	These registers are used to control pitch.
38H-4FH	PSEUDO-REV	Selects Pseudo-Reverb effect ON/OFF.
50H-67H	Total level	Total level setting.
50H-67H	Level direct	This register is used to describe how the envelope level changes
		when total level is modified.
68H-7FH	KEY ON	Selects key on or key off.
68H-7FH	DAMP	A forced damp is enabled when this register is set to '1' in the decay
		state.
68H-7FH	LFO RES	This register is used to contro! LFO operation.
68H-7FH	CH	This register is used to control the output channel.
68H-7FH	Panpot	This register is used to control the panpot (so und position).
80H-97H	LFO	This register specifies the LFO speed.
80H-97H	VIB	This register specifies the vibrate depth.
98H-AFH	AR	This register specifies the attack rate.
98H-AFH	D1R	This register specifies the decay 1 rate.
B0H-C7H	DL	This register specifies the decay level.
B0H-C7H	D2R	This register specifies the decay 2 rate.
C8H-DFH	Rate correction	In this register a rate correction value is set.
C8H-DFH	RR	This register specifies the release rate.
E0H-F7H	AM	This register specifies the tremolo depth.
F8H-F9H	Mix control	These registers specifies the balance of the Mixed FM and the
		Mixed PCM stereo output signals.

■ STATUS REGISTER

1. SUTATUS ASSIGN

Bit assign	D7	D6	D5	D4	D3	D2	D1	D0
Status	IRQ	FT1	FT2	EQ.		de la	LD	BUSY

2. STATUS DESCRIPTION

Name	Function
BUSY	The BUSY flag is valid while NEW2='1'. This flag becomes '1' while writing
	address and data.
	BUSY flag automatically return to '0' when writing are completed.
LD (LOAD)	The LD flag is valid while NEW2='1'. When read Status Register this flag
	becomes '1' and output 02H after set NEW2='1'.
i	LD flag automatically return to '0' when reading are completed. After that the LD
	flag becomes '1' while loading a Wave Table header.
	LD flag automatically return to '0' when loading are completed.
FT2 (FLAG TIMER2)	When TIMER 2 overflows, the FT2 flag becomes '1'.
	FT2 flag return to '0' when RST in register is set to '1'.
FT1 (FLAG TIMER1)	When TIMER 1 overflows, the FT1 flag becomes '1'.
	FT1 flag return to '0' when RST in register is set to '1'.
IRQ (INTERRUPT REQUEST)	When FT1 flag or FT2 flag becomes '1', the IRQ flag becomes '1'.
	IRQ flag return to '0' when RST in register is set to '1'.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Power supply voltage	V _{DD}	-0.3~7.0	V
Input voltage	VIN	-0.3~VDD+0.5	V
Operation temperature	Тор	0~70	°C
Storage temperature	Тѕтс	-50~125	°C

2. Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VDD	4.75	5.00	5.25	٧
Operating temperature	Тор	0	25	70	°C

3. DC Characteristics (Conditions: T_a=0~70°C, V_{DD}=5.0±0.25V)

Item	Symbol	Condition		Min.	Max.	Unit
Power consumption	Po	V _{DD} =5.0V			250	mW
		fм=33.8688МHz				
Input highlevel voltage (1)	V _{IH1}	*1		2.0		V
Input lowlevel voltage (1)	VIL1				0.8	V
Input highlevel voltage (2)	V _{IH2}	*2		3.5		٧
Input lowlevel voltage (2)	VIL2				1.0	V
Input leakage current	lu	0 ≦ VIN ≦ VDD	*3	-10	10	μА
Input capacity	Cı				10	pF
Output highlevel voltage (1)	Vон1	Іон=- 80 µА	*4	V _{DD} -1.0		V
Output lowlevel voltage (1)	V _{OL1}	loL=2mA			Vss+0.4	V
Output highlevel voltage (2)	V _{OH2}	Іон=−160μA	*5	V _{DD} -1.0		٧
Output lowlevel voltage (2)	V _{OL2}	lot=4mA			Vss+0.4	V
Output capacity	Со				10	pF
Output leakage current	ILO	/CS=ViH	*6	-10	10	μΑ
Pull-up resistance	Rυ	*7		50	400	kΩ

Notes) *1: Applied to /WR, /RD, /CS, A0~A2, D0~D7, MD0~MD7

^{*2:} Applied to /TST1, /TST2, XI

^{*3:} Applied to /WR, /RD, /CS, A0~A2, D0~D7, MD0~MD7

^{*4:} Applied to D0~D7, CLKO, BCO, LRO, WCO, DO0~DO2, /MWR, /MRD, MD0~MD7 (when used as output pin)

^{*5:} Applied to MA0~MA20, /MCS0~/MCS13

^{*6:} When D0~D7 are in high impedance

^{*7:} Applied to /CS, /IC, /TST1, /TST2

4. AC Characteristics (Conditions : $T_a=0~70^{\circ}C$, $V_{DD}=5.0\pm0.25V$)

(1) Clock and reset

Item	Symbol	Figure	Min.	Тур.	Max.	Unit
Master clock frequency	f _{M1}	Fig1-1		33.8688		MHz
Master clock duty	D		40		60	%
Output clock frequency	f _{M2}	Fig1-2		16.9344		MHz
Output clock duty	D			50		%
Reset pulse width	Nicw	Fig1-3	3000			cycle*1

Note) *1: Master clock cycle

Fig1-1 Input clock timing

Fig1-2 Output clock timing

Fig1-3 Reset timing

(2) CPU interface

Item	Symbol	Figure	Min.	Тур.	Max.	Unit
Address setup time	tas	Fig1-4, 5	5			ns
Address hold time	tan	Fig1-4, 5	5			ns
Chip select write width	tcsw	Fig1-4	50			ns
Chip select read width	tcsn	Fig1-5	80			ns
Write pulse width	tww	Fig1-4	50			ns
Write data setup time	twos	Fig1-4	10			ns
Write data hold time	twoH	Fig1-4	10			ns
Read pulse width	trw	Fig1-5	80			ns
Read data access time	tacc	Fig1-5			60	ns
Read data hold time	trdh	Fig1-5	10			ns

Note) tcsw, tww, and twoh are based on either $\overline{\text{CS}}$ or WR being driven to high level.

Fig1-4 CPU write timing

Fig1-5 CPU read timing

Note)

tacc is based on whichever of $\overline{\text{CS}}$ or $\overline{\text{RD}}$ goes to the low level last.

tcsw, tww, and twon are based on either CS or WR being driven to high level.

(3) Audio interface

Item	Symbol	Min.	Тур.	Max.	Unit
Bit clock frequency	fвc		48 fs		MHz
Bit clock H level time	tсн	110			ns
Data output setup time	toos	100			ns
Data output hold time	tрон	300			ns
LR clock setup time	tLRS	100			ns
LR clock hold time	tlrh	300			ns
Wold clock hold time	twcн	300			ns

Fig1-6 Audio output timing

(4) Memory interface

Item	Symbol	Fig.	Min.	Тур.	Max.	Unit
Write cycle time	twc	Fig 1-7	600			ns
Address confirmation time for /MWR	taw	Fig 1-7	500			ns
/MCS confirmation time for /MWR	tcw	Fig 1-7	450			ns
Write address set-up time	twas	Fig 1-7	250			ns
Write recovery time	twn		50			
Write pulse width	tww	Fig 1-7	150			ns
Write data set-up time	twos	Fig 1-7	150			ns
Write data hold time	twoн	Fig 1-7	5			ns
Address access time	trc	Fig 1-8			150	ns
Chip enable access time	tce	Fig 1-8			150	ns
Output disable time	tor	Fig 1-8			90	ns
Read data hold time	trdh	Fig 1-8	0			ns

Fig1-7 Memory write timing

Note) The values above are the values when the write wait cycle time was secured.

Fig1-8 Memory read timing

Note) *1: The read timing above is the memory read timing at sound generation.

*2: The /MRD signal is always "L".

(5) AC characteristics test conditions

Item	
Input pulse voltage	V _{IH} = 2.4V V _{IL} = 0.4V (except XI, /TST1, /TST2)
	VIH = 3.9V VIL = 0.6V (XI, /TST1, /TST2)
Input pulse rise and fall times	trr = 5 ns
Timing measurement reference voltage	Vон = 0.7 * VDD Vol = 0.2 * VDD
	(CLKO, BCO, LRO, WCO, DO0~2)
	Voh = 2.2V Vol = 0.8V
	(D0~D7, MA0~20, /MCS0~9, MD0~7, /MWR, /MRD)
Output load	CL = 100pF

• Output load circuit

■ EXTERNAL DIMENSIONS

The specifications of this product are subject to improvement changes without prior notice.

