UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2022/2Prova da área I

1-4	5	6	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$ec{ abla} \cdot \left(f ec{F} ight) = \left(ec{ abla} f ight) \cdot ec{F} + f \left(ec{ abla} \cdot ec{F} ight)$
6.	$ec{ abla} imes \left(f ec{F} ight) = ec{ abla} f imes ec{F} + f ec{ abla} imes ec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes \left(ec{ abla} f ight) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla} \varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torcão e aceleração:

Curvatura, torção e aceleração:			
Nome	Fórmula		
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$		
Vetor binormal	$ec{B} = rac{ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)}{\ ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)\ }$		
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{d\vec{T}}{\frac{dt}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$		
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}'''(t)\ ^2}$		
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} \right\ = \left\ rac{dec{B}}{rac{ds}{dt}} \right\ $		
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$		
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$		

Equações de Frenet-Serret:

$$\begin{array}{lll} \frac{d\vec{T}}{ds} & = & \kappa \vec{N} \\ \\ \frac{d\vec{N}}{ds} & = & -\kappa \vec{T} & +\tau \vec{B} \\ \\ \frac{d\vec{B}}{ds} & = & -\tau \vec{N} \end{array}$$

• Questão 1 (0.5 ponto cada item) Considere a espiral dada por

$$\vec{r}(t) = e^{-t/10}\cos(t)\vec{i} + e^{-t/7}\sin(t)\vec{j}, \quad 0 < t < 10\pi.$$

Marque a resposta correta para cada coluna. Dica: Analise o gráfico e as opções. Os vetores não estão normalizados por simplicidade.

Tangente em $t = \pi$:

Normal em
$$t=\pi$$
:
$$(\quad) \frac{1}{7}e^{-\pi/7}\vec{i} + e^{-\pi/10}\vec{j}$$

$$(\)\ -\frac{1}{10}e^{-\pi/10}\vec{i}-e^{-\pi/7}\vec{j}$$

$$(\)\ -e^{-\pi/7}\vec{i} - \frac{1}{10}e^{-\pi/10}\vec{j}$$

()
$$\frac{1}{10}e^{-\pi/10}\vec{i} - e^{-\pi/7}\vec{j}$$

()
$$e^{-\pi/7}\vec{i} - \frac{1}{10}e^{-\pi/10}\vec{j}$$

$$() -\frac{1}{10}e^{-\pi/10}\vec{i} - e^{-\pi/7}\vec{j}$$

$$() \frac{1}{10}e^{-\pi/10}\vec{i} - e^{-\pi/7}\vec{j}$$

$$() \frac{1}{10}e^{-\pi/10}\vec{i} + e^{-\pi/7}\vec{j}$$

$$(\)\ e^{-\pi/7}\vec{i} + \frac{1}{10}e^{-\pi/10}\vec{j}$$

$$(\)\ -\frac{1}{10}e^{-\pi/10}\vec{i}+e^{-\pi/7}\vec{j}$$

$$(\)\ -e^{-\pi/7}\vec{i} + \frac{1}{10}e^{-\pi/10}\vec{j}$$

Dos pontos do plano xy listados, marque o de maior curvatura:

Dos pontos do plano xy listados, marque o de menor

$$() (e^{-\pi/5}, 0)$$

$$() \left(e^{-2\pi/5}, 0 \right)$$

$$() \left(e^{-3\pi/5}, 0 \right)$$

$$() \left(e^{-4\pi/5}, 0\right)$$

()
$$\left(0, e^{-17\pi/14}\right)$$

$$() (0, e^{-13\pi/14})$$

$$() (0, e^{-9\pi/14})$$

$$() (0, e^{-5\pi/14})$$

$$(\)\ \left(0,e^{-\pi/14}\right)$$

• Questão 2 (0.5 ponto cada item) Considere a trajetória de uma partícula com aceleração tangencial constante igual 3 ao longo da curva parametrizada por

$$\vec{r}(t) = \operatorname{sen}(2t)\vec{i} + \cos(2t)\vec{j} + \operatorname{sen}(t)\vec{k}, \quad -0 \le t \le 2\pi.$$

Sabendo que a velocidade escalar em t=0 é $\frac{\pi}{2}$, marque a resposta correta para cada coluna. Dica: a parametização dada não reflete a cinética do problema, apenas a geometria da curva.

Curvatura em $t=\frac{\pi}{2}$

Torção em
$$t = \frac{\pi}{2}$$

$$(\)\ \frac{\sqrt{17}}{2\sqrt{2}}$$

$$(\)\ \frac{\sqrt{17}}{4}$$

$$(\)\ \frac{2}{17}$$

$$(\)\ \frac{2}{\sqrt{17}}$$

Torção em
$$t = \frac{\pi}{2}$$

$$(\)\ \frac{\sqrt{17}}{2\sqrt{2}}$$

()
$$\frac{\sqrt{17}}{4}$$

$$(\)\ \frac{2}{17}$$

$$(\)\ \frac{2}{\sqrt{17}}$$

 $(\)\ 0$

Aceleração normal em $t = \frac{\pi}{2}$

()
$$\frac{\pi^2 \sqrt{17}}{2\sqrt{2}}$$

$$(\)\ \frac{\pi^2 \sqrt{17}}{4}$$

$$() \frac{2\pi^2}{17}$$

$$(\)\ \frac{2\pi^2}{\sqrt{17}}$$

()
$$\pi^2 \sqrt{17}$$

Velocidade escalar $t = \frac{\pi}{2}$

$$(\)\ \pi$$

$$()$$
 2π

$$()$$
 3π

$$()$$
 4π

$$()$$
 5π

• Questão 3 (0.5 ponto cada item) Considere o campo vetorial $\vec{F} = (z + x^3)\vec{i} + (\operatorname{sen}(x) + y^3)\vec{j} + (xy + z^3)\vec{k}$ e a superfície formada pela esféra de raio a centrada na origem, orientada para fora. Marque a resposta correta para cada coluna.

 $\vec{\nabla} \cdot \vec{F}$

() 0
()
$$1+3x^2+\cos(x)+3y^2+x+y+3z^2$$

()
$$z + x^3 + \operatorname{sen}(x) + y^3 + xy + z^3$$

()
$$z + 3x^2 + \operatorname{sen}(x) + 3y^2 + xy + 3z^2$$

()
$$3x^2 + 3y^2 + 3z^2$$

$$\int_{S} \vec{F} \cdot \vec{n} dS$$

$$(\)\ \frac{12\pi a^5}{5}$$

$$(\)\ \frac{3\pi a^5}{5}$$

$$(\)\ \frac{\pi a^4}{4}$$

()
$$\pi a^4$$

• Questão 4 (0.5 ponto cada item) Considere o campo vetorial $\vec{F} = y\vec{i} + 2x\vec{j} + z\vec{k}$, a curva C dada pelo triângulo no plano xy de vértices (0,0,0), (1,0,0) e (0,1,0), orientada no sentido horário e a superfície S dada por x+y+z=1, primeiro octante, orientada no sentido origem para o primeiro octante. Marque a resposta correta para cada coluna.

$\int_C ec{F} \cdot dec{r}$	$\iint_S ec{F} \cdot ec{n} ds$
$(\)\ -\frac{1}{6}$	$(\)\ \frac{1}{6}$
$(\)\ -\frac{1}{3}$	$(\)\ \frac{1}{3}$
$(\)\ -\frac{1}{2}$	$(\)\ \frac{2}{3}$
$(\)\ -\frac{5}{6}$	$(\)\ \frac{5}{6}$
() -1	() 1

- Questão 5 (2.0 pontos) Considere o campo vetorial $\vec{F} = -y\vec{i} + x\vec{j} + xyz\vec{k}$ e as curvas C_1 dada por $\vec{r}(t) = t\vec{i} + t\vec{j} + t\vec{k}$, $0 \le t \le 1$ e C_2 dada por $\vec{r}(t) = t\vec{i} + t^2\vec{j} + t^3\vec{k}$, $0 \le t \le 1$. Observe que ambas as curvas iniciam no ponto (0,0,0) e terminam no ponto (1,1,1). Responda os itens abaixo.
 - a) (0.5 ponto) Mostre que \vec{F} não é um campo conservativo.
 - b) (0.5 ponto) Calcule a integral de linha $\int_{C_1} \vec{F} \cdot d\vec{r}.$
 - c) (0.5 ponto) Calcule a integral de linha $\int_{C_2} \vec{F} \cdot d\vec{r}.$
 - d) (0.5 ponto) Discuta a luz do teorema fundamental das linhas os itens a) b) e c).

 \bullet Questão 6 (2.0 pontos) Considere a circunferência que limita a superfície aberta de equação

$$z = \sqrt{x^2 + y^2}, \ 0 \le z \le 1$$

orientada no sentido anti-horário (em relação ao eixo z) e o campo $\vec{F} = y\vec{i} - x\vec{j} + yz\vec{k}.$

- (a) (1.0 ponto) Calcule o valor de $\oint_C \vec{F} \cdot d\vec{r}$ usando integração direta.
- (b) (1.0 ponto) Calcule o valor de $\oint_C \vec{F} \cdot d\vec{r}$ usando o teorema de Stokes.