

Image Analysis

Tim B. Dyrby Rasmus R. Paulsen DTU Compute

tbdy@dtu.dk

http://www.compute.dtu.dk/courses/02502

Lecture 8 – Pixel Classification and advanced segmentation

What can you do after today?

- Describe the concept of pixel classification
- Compute the pixel value ranges in a minimum distance classifier
- Implement and use a minimum distance classifier
- Approximate a pixel value histogram using a Gaussian distribution
- Implement and use a parametric classifier
- Decide if a minimum distance or a parametric classifier is appropriate based on the training data
- Explain the concept of Bayesian classification
- Implement and use the linear discriminant analysis (LDA) classifier
- Decide where to place a decision boundary
- Understand the use of linear vs non-line hyperplanes for segmentation

Image Analysis

Go to www.menti.com and use the code 59 42 89 7

Quiz 0: What is advanced segmentation?

0	0	0	0
To separate colours?	Use methods that mimics	It just some vectors pointing in	To draw linear and non-linear
	the human brain?	a space?	hyper plans in space

Classification

■ Take a measurement and put it into a class

Measurement

Classes

Bike

Truck

Car

Motorbike

Train

Bus

Wheels: 2

HP: 50

Weight: 200

General Classification

- Multi-dimensional measurement
- Pre-defined classes
 - Can also be found automatically can be very difficult!

Pixel Classification

CT scan of human head

Pixel wise segmentation

Four Class labels
Background
Soft-Tissue
Trabecular Bone
Hard Bone

- Classify each pixel
 - Independent of neighbours
- Also called labelling
 - Put a label on each pixel
- We look at the pixel value and assign them a label
- Labels already defined

Quiz 1: Two class pixel classification?

Background and object

- A) Median filter
- (B) Threshold
- C) Brightness
- D) Morphological Erosion
- E) BLOB analysis

Pixel Classification – formal definition

Pixel value (the measurement) $v \in R$

k classes

$$C = c_1, \ldots, c_k$$

Classification rule

$$c: R \longrightarrow \{c_1, \dots, c_k\}$$

Pixel Classification – example

Pixel value

$$v \in [0,255]$$

Set of 4 classes

C={background, soft-tissue, trabeculae, bone}

Classification rule $c: v \rightarrow \{\text{background}, \text{soft} - \text{tissue}, \text{trabeculae}, \text{bone}\}$

How do we construct a classification rule?

Pixel classification rule

Pixel classification rule - manual inspection

Pixel classification rule - manual inspection

Pixel classification rule - manual inspection

Pixel classification rule Minimum Distance Classification

The possible pixel values are divided into ranges Here the distance to "background" is equal to "soft-tissue" Trabecular Background soft-tissue Bone range range range range 100 50 150 200 250 background soft-tissue trabeculae bone

Pixel classification rule Minimum Distance Classification

Pixel classification rule

For all pixel in the image do

$$c(v) = \begin{cases} \text{background, if } v \le (4+67)/2\\ \text{soft - tissue, if } \frac{(4+67)}{2} < v \le \frac{67+95}{2}\\ \text{trabeculae, if } \frac{67+95}{2} < v \le \frac{95+150}{2}\\ \text{bone, if } v > \frac{95+150}{2} \end{cases}$$

Pixel Classification example

CT scan of human head

Background

Trabecular Bone

Hard Bone

Better range selection

- Guessing range values is not a good idea
- Better to use "training data"
- Start by selecting representative regions from an image
- Annotation
 - To mark points, regions, lines or other significant structures

Classifier training - annotation

DTU Compute, Technical University of Denmark

- An "expert" is asked how many different tissue types that are possible
- Then the expert is asked to mark representative regions of the selected tissue types

Background

Soft-Tissue

Trabecular Bone

Hard Bone

Classifier training – region selection

- Many tools exist
- Python module roipoly
 - Select closed regions using a piecewise polygon

Training is only done once!

Optimally, the training can be used on many pictures that contains the same tissue types

Initial analysis - histograms

Gaussian

Initial analysis - histograms

Class separation

Simple pixel statistics

Calculate the mean and the standard deviation of each class

DTU Compute

Minimum distance classification

Any objections?

The pixel value ranges are not always in good correspondence with the histograms?

DTU Compute

Quiz 2: Minimum distance classification

- A) Background
- B) Soft tissue
- C Fat
- D) Bone
- E) None of the above

Solution:

Green: (6+4+9+5)/4=6

Blue: (132+130+134+133)/4= 132,25

Yellow: (178+175+176+174)/4=175,75

Purple: (222+220+219+221)/4=220

Blue: 158 is closes to 175,75 (yellow)= fat

To make a pixel classification an expert has selected representative regions in the image. They contain background (green), soft tissue (blue), fat (yellow), and bone (purple). The goal is to classify the pixel marked with a light blue circle. Using a minimum distance classifier it is classified as?

5	6	5	81	180	182	222	220
8	9	4	108	181	175	219	221
7	8	132	130	148	182	174	223
58	231	134	133	61	173	178	175
44	250	181	130	117	101	176	174
5	6	7	204	246	94	86	175
156	158	6	7	7	252	173	230
157	161	7	6	6	10	35	227

- Describe the histogram using a few parameters
- Assume a "model" describing the signal values
- Model: Gaussian/Normal distribution
 - The mean μ
 - Standard deviation σ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Only two values needed

Trabecular bone

Training pixel values v_1, v_2, \dots, v_n , (Belonging to one class)

Estimated mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} v_i$

Estimated standard deviation

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (v_i - \hat{\mu})^2}$$

The "signal model" is a Gaussian distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

2022

Fit a Gaussian to the training pixels for all classes

What do we see here?

What is the difference between the two classes?

Trabeculae has much higher variation in the pixel values

Quiz 3: Two tissue types – minimum distance

v = 78

Which tissue class?

- A) Trabeculae
- B) Soft-tissue

Solution: Minimum distance classifier

$$v = 78$$

First we find the threshold, T:

B: mean(Soft Tissue)=68 and A: mean(Trabeculae)= 95

$$T = (95+68)/2 = 81,5$$

Then we classify/segment v=78: A if v>81,5 or B if v<81,5

- New pixel with value 78
 - Is it soft-tissue or trabecular bone?
- Minimum distance classifier?
 - Soft-tissue
- Is that fair?
 - Soft-tissue Gaussian says "Extremely low probability that this pixel is soft-tissue"

Quiz 4: Two tissue types – parametric classification

Which tissue class?

- Trabeculae
- B) Soft-tissue

Solution:

The A distribution (red) is higher than B (blue) at v=78

Parametric classification – repeat the question

- New pixel with value 78
 - Is it soft-tissue or trabecular bone?
 - Most probably trabecular bone
- Where should we set the limit?
 - Where the two Gaussians cross!

Parametric classification – ranges

- The pixel value ranges depends on
 - The mean
 - The standard deviation
- Compared to the minimum distance classifier
 - Only the average

Parametric classification – how to

- Select training pixels for each class
- Fit Gaussians $(\mathcal{N}(\mu_i, \sigma_i))$ to each class
- Use Gaussians to determine pixel value ranges

Parametric classifier - ranges

We want to compute where they cross

$$f_1(x) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right)$$

$$f_2(x) = \frac{1}{\sigma_2 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right)$$

Create a lookup table:

- Run through all 256 possible pixel values
- Check which Gaussian is the highest
- Store the [value, class] in the table

Alternatively – analytic solution

The two Gaussians

$$\frac{1}{\sigma_1\sqrt{2\pi}}\exp\left(-\frac{(v-\mu_1)^2}{2\sigma_1^2}\right) = \frac{1}{\sigma_2\sqrt{2\pi}}\exp\left(-\frac{(v-\mu_2)^2}{2\sigma_2^2}\right)$$

Intercept at

$$v = \frac{\sigma_1^2 \mu_2 - \sigma_2^2 \mu_1 \pm \sqrt{-\sigma_1^2 \sigma_2^2 \left(2 \mu_2 \mu_1 - \mu_2^2 - 2 \sigma_2^2 \ln \left(\frac{\sigma_2}{\sigma_1}\right) - \mu_1^2 + 2 \sigma_1^2 \ln \left(\frac{\sigma_2}{\sigma_1}\right)\right)}}{-\sigma_2^2 + \sigma_1^2}$$

DTU Compute

Quiz 5: Class ranges

- A) [0,45],]45, 75],]75,255]
- B) [40,60],]60,100],]100,140]
- (C) [0, 60],]60,80],]80,255]
- D) [0,60],]60,100],]100,255]
- E) [0,75],[75,100],]100,255]

An expert have chosen representative regions in an image that contains soft tissue, liver and spleen. The image pixel minimum and maximum values are 0 and 255. To make a parametric classification, the histograms are parameterized using Gaussian distributions as seen in the image. What are the class ranges?

Thomas Bayes

Wikipedia

- 1702-1761
- English mathematician and Presbyterian minister
- Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayesian Classification

Pure parametric classifier assumes equal amount of different tissue types

Bayesian Classification

But much more softtissue than trabecular bone

Bayesian Classification

- An expert tells us that a CT scan of a head contains
 - 20% Trabecular bone
 - 50% Soft-tissue
- Picking a random pixel in the image
 - 20% Chance that it is trabecular bone
 - 50% Chance that it is softtissue
- How to use that?

Bayesian Classification - histogram scaling

Parametric classifier

Bayesian classifier

Little change in class border (sometimes significant changes)

- The posterior probability
- Given a pixel value v
 - What is the probability that the pixel belongs to class C_i

Example: If the pixel value is 78, what is the probability that the pixel is bone

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

DTU Compute, Technical University of Denmark

The a priori probability (what is known from before)

Example: From general biology it is known that 20% of a brain CT scan is trabecular bone. Therefore P(trabecular) = 0.20

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

- The class conditional probability also called the likelihood
- Given a class, what is the probability of a pixel with value v?

Example: If we consider class = soft-tissue. What is the probability that the pixel value is 78?

Very low

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

- The model evidence or marginal probability
- It is basically a normalisation factor: $P(v) = \sum P(v|c_i)P(c_i)$

Constant – ignored from now on

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

Formal definition – sum up

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

$$;C_i$$
=trabeculae

Bayesian classification – how to

- Select training pixels for each class
- Fit Gaussians to each class
- Ask an expert for the prior probabilities (how much there normally is in total of each type)
- For each pixel in the image

DTU Compute, Technical University of Denmark

- Compute $P(c_i|v)$ for each class (the *a posterior probability*)
- Select the class with the highest $P(c_i|v)$

$$P(c_i|v) = \frac{P(v|c_i)P(c_i)}{P(v)}$$

When to use Bayesian classification

- The <u>parametric classifier</u> is good when there are approximately the same amount of all type of tissues
- Use <u>Bayesian classification</u> if there are very little or very much of some types
- A more general formulation for segmentation
 - especially when going to a higher dimensional feature space

- Combine different feature inputs to **improve** segmentation
 - Different image modalities e.g. CT vs MRI
 - Subject groups
 - Healthy vs disease
 - Different angles of object e.g. cars

Feature space:

- 1D is a histogram
- 2D is a scatterplot i.e. 2D histogram
- >2D is bit more complicated to show

- Segmentation with more feature inputs
- To train our classifier model with class examples
 - Draw tissue specific regions for each class
 - Class 1 and Class 2
 - Tissue type 1 and type 2
- Segmentation:
 - Define the threshold for the decision boundary?
 - 1D vs 2D

Class 2

- Segmentation with more feature inputs
- To train our classifier model with class examples
 - Draw tissue specific regions for each class
 - Class 1 and Class 2
 - Tissue type 1 and type 2
- Segmentation:
 - Define the threshold for the decision boundary?
 - 1D vs 2D

Class 2

Decision boundary: Define a model

- 2D feature space
 - Better class separation vs 1D?
- Model assumption
 - Type of distribution?
- Intensity histograms looks Gaussian-like, or?
 - We assume Gaussian distributions: $\mathcal{N}(\mu_i, \Sigma_i)$
- Use Bayes theorem
 - Probability of belonging to C2:

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

- Desicion boundary
 - A hyperplane for T=1:
 - $P(C2|\mathbf{x}) = P(C1|\mathbf{x})$

Class 1

 $\mathcal{N}(\mu_1, \Sigma_1)$

Decision boundary: Train a model

We wish to use Bayes:

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

- The posterior probability
 - $P(Ci|\mathbf{x}) = P(\mathbf{x}|\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i}) \boldsymbol{P_{Ci}}$
- The likelihood: A Gaussian model

$$P(\boldsymbol{x}|\boldsymbol{\mu_i},\boldsymbol{\Sigma_i},) = K_i \exp((\boldsymbol{x}-\boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i}^{-1} (\boldsymbol{x}-\boldsymbol{\mu_i}))$$

- $x_i = [x1, x2]^T$
 - Training set:

– Data points:

- $t_{x \in C1} = 0$ and $t_{x \in C2} = 1$
- The class mean- parameter
- The covariance matrix-parameter

$$\mathcal{N}(\mu_1, \Sigma_1)$$

What about the prior probability $P(C_i)$?

Gaussian in 2D: The covariance matrix

Rotational invariant

$$\Sigma = \begin{bmatrix} \sigma_{xx}^2 & 0 \\ 0 & \sigma_{yy}^2 \end{bmatrix}$$

$$\sigma_{xx} = \sigma_{yy}$$

Aligned with coordinate system

$$\Sigma = egin{bmatrix} \sigma_{xx}^2 & 0 \ 0 & \sigma_{yy}^2 \end{bmatrix} \ \sigma_{xx}^2
eq \sigma_{yy}^2 \ \end{pmatrix}$$

QUICK REFRESH:

The covariance matrix:

$$\Sigma_i = (x - \mu_i)^T (x - \mu_i)$$

 Expresses the orientation of anisotropic variance in relation to coordinate system

Not aligned with coordinate system

$$\Sigma = \begin{bmatrix} \sigma_{xx}^2 & \sigma_{xy}^2 \\ \sigma_{yx}^2 & \sigma_{yy}^2 \end{bmatrix}$$

The linear discriminant classifier

Classifier: If \mathbf{x} belongs to C_2 :

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Take the logarithmn

$$ln(P(C2|x)) - ln(P(C1|x)) > ln(T)$$

$$\mathcal{N}_1(\mu_1, \Sigma_1)$$
 $\mathcal{N}_2(\mu_2, \Sigma_2)$

Inspiration derive:

The linear discriminant classifier

 $\mathcal{N}_1(\mu_1, \Sigma_1)$ $\mathcal{N}_2(\mu_2, \Sigma_2)$

Classifier: If x belongs to C_2 :

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Take the logarithmn

$$ln(P(C2|x)) - ln(P(C1|x)) > ln(T)$$

Where the log-posterior probability for C_i :

$$\ln(P(\mathbf{C}i|\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln(K_i) + \ln(Pi)$$

- P_i is the prior probability for class C_i

The linear discriminant classifier

$$\mathcal{N}_1(\mu_1, \Sigma_1)$$
 $\mathcal{N}_2(\mu_2, \Sigma_2)$

Classifier: If \mathbf{x} belongs to C_2 :

$$\frac{P(C2|\mathbf{x})}{P(C1|\mathbf{x})} > T$$

Take the logarithmn

$$ln(P(C2|x)) - ln(P(C1|x)) > ln(T)$$

Where the log-posterior probability for C_i :

$$\ln(P(\mathbf{C}i|\mathbf{x})) = \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln(K_i) + \ln(Pi)$$

- P_i is the prior probability for class C_i
- Assuming homoscedasticity ($\Sigma_1 = \Sigma_2 = \Sigma_0$) and isotropic covariance matrix we have the Linear Discriminant Analysis (LDA) classifier model:

$$ln\frac{P2}{P1} + \frac{1}{2}(\mu_2 + \mu_1)^T \Sigma_0^{-1}(\mu_2 - \mu_1) - x^T \Sigma_0^{-1}(\mu_2 - \mu_1) > ln(T)$$

We train the classifier with examples obtained from the two distributions N1 and N2

Quiz 6 - The LDA classifier

Linear Discriminat Analysis (LDA):

$$ln\frac{P2}{P1} + \frac{1}{2}(\mu_2 + \mu_1)^T \Sigma_0^{-1}(\mu_2 - \mu_1) - x^T \Sigma_0^{-1}(\mu_2 - \mu_1) > ln(T)$$

Where:

$$\Sigma_1 = \Sigma_2 = \Sigma_0 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Prior probabilities: P1=P2=0,5

Which data points are placed on the hyperplane for P(C2|x)=P(C1|x)?

A) $[0,5]^T$

B) $[1,7]^{T}$

C) $[3,3]^T$

D) $[2,0]^T$

E) $[0,7]^{T}$

Solution – We see that when T=1=> ln(1)=0 is the decision boundary which is placed only along X1 i.e. a solution in 1D:

$$ln\frac{P2}{P1} + \frac{1}{2}(\mu_2 + \mu_1)\frac{(\mu_2 - \mu_1)}{\sigma_0} = x1\frac{(\mu_2 - \mu_1)}{\sigma_0}$$

$$\ln \frac{0.5}{0.5} + \frac{1}{2}(3+1)\frac{(3-1)}{2} = x1\frac{(3-1)}{2}$$

$$x1=2$$
 & $x2=$ all values

- General formulation of a classifier
 - A projection of data points in relation to the decision boundary
- The LDA function for C_2 :

$$ln \frac{P1}{P2} + \frac{1}{2} (\mu_2 + \mu_1)^T \Sigma_0^{-1} (\mu_2 - \mu_1) - x^T \Sigma_0^{-1} (\mu_2 - \mu_1) > lnT$$

$$\mathbf{W_0}$$

decision boundary

- w projects the class mean direction
 i.e. the weight vector
- w is normal to the hyperplane of the decision boundary for yi(x)=0
- $x^T w$ is a dot product i.e. x and c are projected onto w ($a^T b = ||a|| ||b|| \cos(\theta)$)

The linear discriminat function

$$y_{C \in 2}(x) = x^T w + w_0$$
-where negtive Wo is the threshold

 \blacksquare x is assigned to C2 if $y_{C \in 2}(x) > 0$

- General formulation of a classifier
 - A projection of data points in relation to the decision boundary
- \blacksquare The LDA function for C_2 :

$$ln\frac{P1}{P2} + \frac{1}{2}(\mu_2 + \mu_1)^T \Sigma_0^{-1}(\mu_2 - \mu_1) - x^T \Sigma_0^{-1}(\mu_2 - \mu_1) > lnT$$

$$\mathbf{W_0}$$

- w projects the class mean direction
 i.e. the weight vector
- w is normal to the hyperplane of the decision boundary yi(x)=0
- $x^T w$ is a dot product i.e. x and c are projected onto w ($a^T b = ||a|| ||b|| \cos(\theta)$)

The linear discriminat function

$$y_{C \in 2}(x) = \mathbf{x}^T \mathbf{w} + \mathbf{w}_0$$
where positive We is the thresh

-where negtive Wo is the threshold

 \blacksquare x is assigned to C2 if $y_{C \in 2}(x) > 0$

- If the covariance is anisotropic and have different class variances
 - The LDA classifier does not ensure an optimal class seperation!
 - LDA only seperate the class means
 - To improve the seperation
 - We need to change the model hence the weight vector, W

Optimal class separation:

 The weight vector, w, now accounts for both class means and variances

- Fisher's LDA:
 - Uses: between-class (means) covariance:

$$S_B = (\mu_2 - \mu_1)^T (\mu_2 - \mu_1)$$

 and: optimise (total) withinclass covariance

$$S_W = \Sigma_1 + \Sigma_2$$

Find projection w using a cost function:

$$-J(w) = \frac{w^T S_B w}{w^T S_W w}$$

- differentiate: $\frac{\partial J(w)}{\partial w} = 0$
- which gives (simple solution):

$$w \propto S_W^{-1}(\mu_2 - \mu_1)$$

Segmentation of brain data using LDA

Fisher's LDA

Decision boundary (T=1)

Segmentation result. Fisher's LDA

Limitations of LDA

- Linear discriminant analysis (LDA)
 - Only linear hyperplanes
- Non-linear hyperplanes?
- Example:
 - I wish to make a classifier
 - Features (2D):
 - Age vs. Tissue degeneration
- Classes
 - Healthy controls vs **Patient**

Limitations of LDA

- One class can be separated
 - A non-linear problem

Non-linear Hyperplanes

- Class 1: $\mathcal{N}(\mu, \Sigma)_{C_{1,1}} + \mathcal{N}(\mu, \Sigma)_{C_{1,2}}$
- Class 2: $\mathcal{N}(\mu, \Sigma)_{C_{2,1}}$

DTU Compute, Technical University of Denmark

Non-linear hyperplane

Non-linear classifiers (Machine learning):

Example:

- Gaussian Mixture Model
 - Each class is modelled using a number of Gauss distributions e.g. class 1
- Again use Bayes theorem also for Gaussian Mixture Model
- Optimisation:
 - We derive $\frac{\partial J(w)}{\partial w} = 0$ for a Gaussian mixture model
 - Iterative optimisation algorithm is used to find \boldsymbol{w}

Segmentation - Non-linear Hyperplanes

Convolutional neural network and classification

Weights can be non-linear sigmoid functions: $y_k = \phi(x, w, w0)$

What did you learn today?

- Describe the concept of pixel classification
- Compute the pixel value ranges in a minimum distance classifier
- Implement and use a minimum distance classifier
- Approximate a pixel value histogram using a Gaussian distribution
- Implement and use a parametric classifier
- Decide if a minimum distance or a parametric classifier is appropriate based on the training data
- Explain the concept of Bayesian classification
- Implement and use the linear discriminant analysis (LDA) classifier
- Decide where to place a decision boundary
- Understand the use of linear vs non-line hyperplanes for segmentation

Lecture 9 – Industry presentations

JLIVision Videometer TrackMan Visiopharm **FOSS Analytics** Claas E-systems Radiobotics

Teaching – the speed of the lecture

- A) Come ooooon! I am so bored
- B) I can easily follow and knit my sweater
- C) The speed is fine
- D) I need to concentrate a lot to follow
- E) Hey! Wait! You are too fast

