Lógica Aula 5

Leliane Nunes de Barros

2018

leliane@ime.usp.br

Resumo - regras primitivas

$$\frac{\phi \quad \psi}{\phi \land \psi} \land_{i} \quad \frac{\phi \land \psi}{\phi} \land_{e_{1}} \quad \frac{\phi \land \psi}{\psi} \land_{e_{2}} \quad \frac{\phi}{\phi \lor \psi} \lor_{i_{1}} \quad \frac{\psi}{\phi \lor \psi} \lor_{i_{2}}$$

$$\frac{\neg \neg \phi}{\phi} \neg \neg e \qquad \frac{\phi}{\bot} \neg \phi \neg e \qquad \frac{\bot}{\phi} \bot$$

Prova por contradição / Redução ao absurdo

"Se chegarmos a uma contradição a partir de $\neg \phi$, então podemos deduzir ϕ ".

$$\mathsf{MT}\colon\thinspace \phi \to \psi, \neg \psi \vdash \neg \phi$$

MT:
$$\phi \to \psi, \neg \psi \vdash \neg \phi$$

 $\neg \neg_i$: $\phi \vdash \neg \neg \phi$

MT:
$$\phi \to \psi, \neg \psi \vdash \neg \phi$$

 $\neg \neg_i$: $\phi \vdash \neg \neg \phi$
RAA: $\neg \phi \to \bot \vdash \phi$

MT:
$$\phi \to \psi, \neg \psi \vdash \neg \phi$$

 $\neg \neg_i : \phi \vdash \neg \neg \phi$

RAA:
$$\neg \phi \rightarrow \bot \vdash \phi$$

LTE:
$$\vdash \phi \lor \neg \phi$$

Exemplos

Exemplos

- $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$
- $(p \land \neg q) \to r, \neg r, p \vdash q$ ("Se teve greve de ônibus e não havia táxi na estação, então João atrasou para a aula.")

Exercício 2

Use \neg , \rightarrow , \lor e \land para expressar as seguintes sentenças declarativas em lógica proposicional do Mundo do Wumpus da Figura (c). Diga quais são os átomos proposicionais p, q, etc. [Ex 1.1]

1. Hoje vai chover ou fazer sol, mas não os dois.

Exercício 2

Use \neg , \rightarrow , \lor e \land para expressar as seguintes sentenças declarativas em lógica proposicional do Mundo do Wumpus da Figura (c). Diga quais são os átomos proposicionais p, q, etc. [Ex 1.1]

- 1. Hoje vai chover ou fazer sol, mas não os dois.
- 2. Se ocorre a requisição de um processo, então ela será eventualmente reconhecida, ou o processo não será mais capaz de continuar.

Exercício 2

Use \neg , \rightarrow , \lor e \land para expressar as seguintes sentenças declarativas em lógica proposicional do Mundo do Wumpus da Figura (c). Diga quais são os átomos proposicionais p, q, etc. [Ex 1.1]

- 1. Hoje vai chover ou fazer sol, mas não os dois.
- 2. Se ocorre a requisição de um processo, então ela será eventualmente reconhecida, ou o processo não será mais capaz de continuar.
- 3. Se Dick conheceu Jane ontem, então eles tomaram um café juntos ou eles deram um passeio no parque.

Mundo do Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A	2,1	3,1	4,1
OK	OK		

A	= Agent
В	= Breeze
G	= Glitter, Gol
OK	= Safe squar
P	= Pit
S	= Stench
V	= Visited
W	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1	2,1 A	3,1 P?	4,1
v	B		
OK	OK		

(a)

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

= Agent

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 A S G B	3,3 _{P?}	4,3
^{1,2} s	2,2	3,2	4,2
v	v		
OK	OK		
1,1	2,1 B	3,1 P!	4,1
V	v		
OK	OK		

(b)

(c)

(d)

Use \neg , \rightarrow , \lor e \land para expressar sentenças declarativas em lógica proposicional do Mundo do Wumpus. Para isso será preciso definir átomos proposicionais para as seguintes declarações:

 W_{xy} : O Wumpus está na posição (x,y).

 P_{xy} : Tem um abismo na posição (x,y).

 B_{xy} : É possível sentir brisa na posição (x,y).

 F_{xy} : É possível sentir fedor na posição (x,y).

Modele um argumento com base nos fatos extraídos na situação do Mundo do Wumpus ilustrado na Figura (b) de modo que seja possível derivar a seguinte conclusão:

Use \neg , \rightarrow , \lor e \land para expressar sentenças declarativas em lógica proposicional do Mundo do Wumpus. Para isso será preciso definir átomos proposicionais para as seguintes declarações:

W_{xy}: O Wumpus está na posição (x,y).

 P_{xy} : Tem um abismo na posição (x,y).

 B_{xy} : É possível sentir brisa na posição (x,y).

 F_{xy} : É possível sentir fedor na posição (x,y).

Modele um argumento com base nos fatos extraídos na situação do Mundo do Wumpus ilustrado na Figura (b) de modo que seja possível derivar a seguinte conclusão:

Não existe um abismo na posição (1,2).

Alguns fatos extraídos na situação do Mundo do Wumpus ilustrado na Figura (b):

$$\varphi_1$$
: $\neg P_{11}$

$$\varphi_2: B_{11} \to P_{12} \vee P_{21}$$

$$\varphi_3:\ B_{21}\to P_{11}\vee P_{22}\vee P_{31}$$

$$\varphi_4: P_{12} \vee P_{21} \to B_{11}$$

$$\varphi_5: P_{11} \vee P_{22} \vee P_{21} \to B_{21}$$

$$\varphi_6$$
: $\neg B_{11}$

$$\varphi_7$$
: B_{21}

Prove os sequentes:

- $\varphi_1, \varphi_2, ..., \varphi_7 \vdash \neg P_{12}$
- φ_1 , φ_2 , ..., $\varphi_7 \vdash \neg P_{22}$

Complemente o conjunto de fatos anterior com novos fatos extraídos da situação do Mundo do Wumpus ilustrada na Figura (c) e prove o seguinte sequente:

•
$$\varphi_1, \varphi_2, \dots \vdash \neg W_{13}$$