COMP9318 - Assignment 1

Tianwei Zhu, z5140081

Q1
(1) List the tuples in the complete data cube of R in a tabular form with 4 attributes.

Location	Time	Item	Sum(Quantity)
Sydney	2005	PS2	1400
Sydney	2006	PS2	1500
Sydney	2006	Wii	500
Sydney	2005	*	1400
Sydney	2006	*	2000
Sydney	*	PS2	2900
Sydney	*	Wii	500
Sydney	*	*	3400
Melbourne	2005	Xbox360	1700
Melbourne	2005	*	1700
Melbourne	*	Xbox360	1700
Melbourne	*	*	1700
*	2005	PS2	1400
*	2005	Xbox360	1700
*	2005	*	3100
*	2006	PS2	1500
*	2006	Wii	500
*	2006	*	2000
*	*	PS2	2900
*	*	Wii	500
*	*	Xbox360	1700
*	*	*	5100

(2) Write down an equivalent SQL statement that computes the same result

SELECT Location, Time, Item, SUM(Q) AS Total

FROM Table1

GROUP BY Location, Time, Item WITH ROLLUP

UNION

SELECT Location, (null) AS Time, Item, SUM(Q) AS Total FROM Table1
GROUP BY Location, Item WITH ROLLUP UNION

SELECT Location, Time, (null) AS Item, SUM(Q) AS Total FROM Table1
GROUP BY Location, Time WITH ROLLUP UNION

SELECT (null) AS Location, Time, Item, SUM(Q) AS Total FROM Table1
GROUP BY Time, Item WITH ROLLUP
UNION

SELECT (null) **AS** Location, Time, Item, SUM(Q) **AS** Total **FROM** Table1 **GROUP BY** Item, Time **WITH ROLLUP**

(3) Draw the result of the query in a tabular form.

Location	Time	ltem	Sum(Quantity)
Sydney	2006	*	2000
Sydney	*	PS2	2900
Sydney	*	*	3400
*	2005	*	3100
*	2006	*	2000
*	*	PS2	2900
*	*	*	5100

(4) Draw the MOLAP cube in a tabular form of (ArrayIndex, Value).

F(Location,Time,Item) = 10*Location + 4*Time + 1*Item

Location	Time	Item	Sum(Quantity)	Offset
1	1	1	1400	15
1	2	1	1500	19
1	2	3	500	21
1	1	0	1400	14
1	2	0	2000	18
1	0	1	2900	11
1	0	3	500	13
1	0	0	3400	10
2	1	2	1700	26
2	1	0	1700	24
2	0	2	1700	22
2	0	0	1700	20
0	1	1	1400	5
0	1	2	1700	6
0	1	0	3100	4
0	2	1	1500	9
0	2	3	500	12
0	2	0	2000	8
0	0	1	2900	1
0	0	3	500	3
0	0	2	1700	2
0	0	0	5100	0

ArrayIndex	Value	
0	5100	
1	2900	
2	1700	
3	500	
4	3100	
5	1400	

6	1700	
8	2000	
9	1500	
10	3400	
11	2900	
12	500	
13	500	
14	1400	
15	1400	
18	2000	
19	1500	
20	1700	
21	500	
22	1700	
24	1700	
26	1700	

Q2

(1) Prove that if the feature vectors are d-dimension, then a Naive Bayes classifier is a linear classifier in a d + 1-dimension space.

Consider binary classification where y = 1 or 0, A Naïve Classifier is:

$$\hat{y} = argmanx_{k=0,1} p(C_k) \prod_{i=1}^{n} p(x_i | C_k) \dots \dots (1)$$

To make it simpler, let's set $p(x_i|y=1)$ as a_i , and $p(x_i|y=0)$ as b_i . Then the Classifier will look like:

$$p(C_k|x) = p(C_k) \times \prod_{i=0}^{n+1} \frac{a_i^{x_i} (1 - a_i)^{(1 - x_i)}}{b_i^{x_i} (1 - b_i)^{(1 - x_i)}} \dots \dots (2)$$

When implying log to formula (2):

$$log p(C_k|x) = log p(C_k) + \sum_{i=0}^{n+1} x_i \log \frac{a_i(1-b_i)}{b_i(1-a_i)} \dots \dots (3)$$

To make it more intuitive, we can use b and w instead of complicated form:

$$log p(C_k|x) = b + w_k^T x$$

Now, we have a linear classifier, and set parameters as below:

$$w_i = p(x_i = 1|y = 1)$$

 $b_i = p(x_i = 1|y = 0)$

The Naïve Bayes can have a linear decision boundary in feature \mathbf{x} , and the boundary takes the form of a hyperplane function.

(2) Briefly explain why learning wNB is much easier than learning wLR.

First, we should know that **Naïve Bayes** is built on Conditional independent hypothesis, which means features $X1, X2, X3\cdots$ are independent. We can use statistical methods to calculate the frequency of P(x|y) and P(y), so as to obtain P(x|y) and P(y). In this case, the vectors **w**NB we need to calculate are about approach by **O(logn)**.

For **Logistic Regression**, it calculates the whole linear space to generate $\mathbf{w}\mathsf{L}\mathsf{R}$ and this makes the complexity become $\mathbf{O}(\mathbf{n})$.

It is obvious then learning wNB is easier than wLR, but **Logistic Regression** gives better result than **Naïve Bayes** when the training data is limited.

Q3

(1) Prove the loss function for logistic regression. Since $y \in \{0,1\}$, we have

$$P(y = 1|x) = \sigma(w^T x)$$

$$P(y = 0|x) = 1 - \sigma(w^T x)$$

Then the likelihood for training dataset is:

$$P(y|x) = (\sigma(w^T x))^y (1 - \sigma(w^T x))^{1-y}$$

$$\propto \prod_{i=1}^{n} \left(\sigma(w^{T} x_{i})\right)^{y_{i}} \left(1 - \sigma(w^{T} x_{i})\right)^{1 - y_{i}}$$

Log-likelihood will be:

$$\ell(w) = -\sum_{i=1}^{n} y_i \log(\sigma(w^T x_i)) + (1 - y_i) \log(1 - \sigma(w^T x_i))$$

$$= -\sum_{i=1}^{n} y_i \ln\left(\frac{e^{w^T x_i}}{1 + e^{w^T x_i}}\right) + (1 - y_i) \ln\left(\frac{1}{1 + e^{w^T x_i}}\right)$$

$$= -\sum_{i=1}^{n} y_i (w^T x_i - \ln(1 + e^{w^T x_i})) - (1 - y_i) \ln(1 + e^{w^T x_i})$$

$$= \sum_{i=1}^{n} -y_i w^T x_i + \ln(1 + e^{w^T x_i})$$

(2) Write out its loss function where $f: R \to [0,1]$. With the function f, we now have:

$$P(y = 1|x) = f(w^T x)$$

 $P(y = 0|x) = 1 - f(w^T x)$

Write the likelihood for training set:

$$L(w) = \prod_{i=1}^{n} (f(w^{T}x_{i}))^{y_{i}} (1 - f(w^{T}x_{i}))^{1-y_{i}}$$

Finally, we have loss function for $f: R \to [0,1]$:

$$\ell(w) = -\sum_{i=1}^{n} y_i \log(f(w^T x_i)) + (1 - y_i) \log(1 - f(w^T x_i))$$