discrete_black_scholes_m3_ex1_v3

October 25, 2018

0.1 Discrete-Time Black Scholes

Welcome to your 1st assignment in Reinforcement Learning in Finance. This exercise will introduce Black-Scholes model as viewed through the lens of pricing an option as discrete-time replicating portfolio of stock and bond.

Instructions: - You will be using Python 3. - Avoid using for-loops and while-loops, unless you are explicitly told to do so. - Do not modify the (# GRADED FUNCTION [function name]) comment in some cells. Your work would not be graded if you change this. Each cell containing that comment should only contain one function. - After coding your function, run the cell right below it to check if your result is correct.

Let's get started!

0.2 About iPython Notebooks

iPython Notebooks are interactive coding environments embedded in a webpage. You will be using iPython notebooks in this class. You only need to write code between the ### START CODE HERE ### and ### END CODE HERE ### comments. After writing your code, you can run the cell by either pressing "SHIFT"+"ENTER" or by clicking on "Run Cell" (denoted by a play symbol) in the upper bar of the notebook.

We will often specify "(X lines of code)" in the comments to tell you about how much code you need to write. It is just a rough estimate, so don't feel bad if your code is longer or shorter.

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

    from numpy.random import standard_normal, seed
    import scipy.stats as stats
    from scipy.stats import norm

    import sys

    sys.path.append("..")
    import grading

    import datetime
    import time
```

```
import bspline
        import bspline.splinelab as splinelab
In [2]: ### ONLY FOR GRADING. DO NOT EDIT ###
        submissions=dict()
        assignment_key="J_L65CoiEeiwfQ53m1Mlug"
        all_parts=["9jLRK","YoMns","Wc3NN","fcl3r"]
        ### ONLY FOR GRADING. DO NOT EDIT ###
In [3]: COURSERA_TOKEN = 'Ky2vvzIxTBraMmfM' # the key provided to the Student under his/her email
        COURSERA_EMAIL = 'cilsya@yahoo.com' # the email
In [4]: # The Black-Scholes prices
        def bs_put(t, S0, K, r, sigma, T):
            d1 = (np.log(S0/K) + (r + 1/2 * sigma**2) * (T-t)) / sigma / np.sqrt(T-t)
            d2 = (np.log(S0/K) + (r - 1/2 * sigma**2) * (T-t)) / sigma / np.sqrt(T-t)
            price = K * np.exp(-r * (T-t)) * norm.cdf(-d2) - S0 * norm.cdf(-d1)
            return price
        def bs_call(t, SO, K, r, sigma, T):
            d1 = (np.log(S0/K) + (r + 1/2 * sigma**2) * (T-t)) / sigma / np.sqrt(T-t)
            d2 = (np.log(S0/K) + (r - 1/2 * sigma**2) * (T-t)) / sigma / np.sqrt(T-t)
            price = S0 * norm.cdf(d1) - K * np.exp(-r * (T-t)) * norm.cdf(d2)
            return price
        def d1(S0, K, r, sigma, T):
            return (np.log(SO/K) + (r + sigma**2 / 2) * T)/(sigma * np.sqrt(T))
        def d2(S0, K, r, sigma, T):
            return (np.log(S0 / K) + (r - sigma**2 / 2) * T) / (sigma * np.sqrt(T))
```

Simulate N_{MC} stock price sample paths with T steps by the classical Black-Sholes formula.

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
 $S_{t+1} = S_t e^{\left(\mu - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t}Z}$

where *Z* is a standard normal random variable.

MC paths are simulated by GeneratePaths() method of DiscreteBlackScholes class.

0.2.1 Part 1

Class DiscreteBlackScholes implements the above calculations with class variables to math symbols mapping of:

$$\Delta S_t = S_{t+1} - e^{-r\Delta t} S_t$$
 $t = T - 1, ..., 0$

Instructions: Some portions of code in DiscreteBlackScholes have bee taken out. You are to implement the missing portions of code in DiscreteBlackScholes class.

$$\Pi_t = e^{-r\Delta t} \left[\Pi_{t+1} - u_t \Delta S_t \right] \quad t = T - 1, ..., 0$$

implement DiscreteBlackScholes.function_A_vec() method

$$A_{nm}^{(t)} = \sum_{k=1}^{N_{MC}} \Phi_n \left(X_t^k \right) \Phi_m \left(X_t^k \right) \left(\Delta \hat{S}_t^k \right)^2$$

• implement DiscreteBlackScholes.function_B_vec() method

$$B_n^{(t)} = \sum_{k=1}^{N_{MC}} \Phi_n\left(X_t^k
ight) \left[\hat{\Pi}_{t+1}^k \Delta \hat{S}_t^k + rac{1}{2\gamma\lambda} \Delta S_t^k
ight]$$

• implement DiscreteBlackScholes.gen_paths() method using the following relation:

$$S_{t+1} = S_t e^{\left(\mu - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t}Z}$$

where $Z \sim N(0,1)$

- implement parts of DiscreteBlackScholes.roll_backward()
 - DiscreteBlackScholes.bVals corresponds to B_t and is computed as

$$B_t = e^{-r\Delta t} \left[B_{t+1} + (u_{t+1} - u_t) S_{t+1} \right] \quad t = T - 1, ..., 0$$

DiscreteBlackScholes.opt_hedge corresponds to ϕ_t and is computed as

$$\phi_t = \mathbf{A}_t^{-1} \mathbf{B}_t$$

```
In [5]: class DiscreteBlackScholes:
            Class implementing discrete Black Scholes
            DiscreteBlackScholes is class for pricing and hedging under
            the real-world measure for a one-dimensional Black-Scholes setting
            def __init__(self,
                         sO,
                         strike,
                         vol,
                         Τ,
                         r,
                         mu,
                         numSteps,
                         numPaths):
                :param s0: initial price of the underlying
                :param strike: option strike
                :param vol: volatility
                :param T: time to maturity, in years
                :param r: risk-free rate,
```

:param mu: real drift, asset drift

```
:param numSteps: number of time steps
    :param numPaths: number of Monte Carlo paths
    self.s0 = s0
    self.strike = strike
    self.vol = vol
    self.T = T
    self.r = r
    self.mu = mu
    self.numSteps = numSteps
    self.numPaths = numPaths
    self.dt = self.T / self.numSteps # time step
    self.gamma = np.exp(-r * self.dt) # discount factor for one time step, i.e. gam
    self.sVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matrix of
    # initialize half of the paths with stock price values ranging from 0.5 to 1.5 o
    # the other half of the paths start with s0
    half_paths = int(numPaths / 2)
    if False:
        # Grau (2010) "Applications of Least-Squares Regressions to Pricing and Hedg
        self.sVals[:, 0] = (np.hstack((np.linspace(0.5 * s0, 1.5 * s0, half_paths),
                                       s0 * np.ones(half_paths, 'float')))).T
    self.sVals[:, 0] = s0 * np.ones(numPaths, 'float')
    self.optionVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matra
    self.intrinsicVals = np.zeros((self.numPaths, self.numSteps + 1), 'float')
    self.bVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matrix of
    self.opt_hedge = np.zeros((self.numPaths, self.numSteps + 1),
                          'float') # matrix of optimal hedges calculated from cross
    self.X = None
    self.data = None # matrix of features, i.e. self.X as sum of basis functions
    self.delta_S_hat = None
    \# coef = 1.0/(2 * gamma * risk_lambda)
    # override it by zero to have pure risk hedge
    self.coef = 0.
def gen_paths(self):
    A simplest path generator
    np.random.seed(42)
    \# Spline basis of order p on knots k
```

```
### START CODE HERE ### ( 3-4 lines of code)
# self.sVals = your code goes here ...
# for-loop or while loop is allowed heres
# https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.random.normo
# NOTE: Given in the instructions above
        Z \sim N(0,1)
# NOTE: Z must match the size of the matrix of stock values, hence why we define
Z = np.random.normal( 0,
                      size = (self.numSteps + 1, self.numPaths))
# Cycle through each time step (column) to simulate.
# The rows are all the stock values at the time step.
# Going to be implementing the equation given above
\# St+1 = Ste*e^(mu - 1/2*(sigma^2))*dt + sigma*sqrt(dt)*Z
for t in range(self.numSteps):
    # For an entire current column of the self.sVals matrix of stock values,
    # sVals matrix rows should represent each stock, the columns represent the t
    # are the stock values of the stocker ticker (row) at that time (column)
    # set the value from the relation equation given.
    # NOTE: : means whatever amount of rows.
              t+1 because it is index base zero
              NOTE: we are using numpy broadcasting here. All of the tickers (re
                    that time (column) will be updated.
    # Using the member variables supplied by the class to implement this equation
    \# St+1 = Ste*e^(mu - 1/2*(sigma^2))*dt + sigma*sqrt(dt)*Z
    # NOTE: The member variables were commented in the class constructor __init_
            It may seem cryptic but it is just plugging in the values but dealing
            so transpose may get thrown in the mix.
    self.sVals[:, t+1] = self.sVals[:, t] * np.exp( (self.mu - 0.5*self.vol**2)*
                                                     (self.vol*np.sqrt(self.dt) *
### END CODE HERE ###
# like in QLBS
delta_S = self.sVals[:, 1:] - np.exp(self.r * self.dt) * self.sVals[:, :self.num
self.delta_S_hat = np.apply_along_axis(lambda x: x - np.mean(x), axis=0, arr=del
# state variable
# delta_t here is due to their conventions
self.X = - (self.mu - 0.5 * self.vol ** 2) * np.arange(self.numSteps + 1) * self
X_min = np.min(np.min(self.X))
X_{max} = np.max(np.max(self.X))
```

```
print('X_min, X_max = ', X_min, X_max)
    p = 4 # order of spline (as-is; 3 = cubic, 4: B-spline?)
    ncolloc = 12
    tau = np.linspace(X_min, X_max, ncolloc) # These are the sites to which we would
    # k is a knot vector that adds endpoints repeats as appropriate for a spline of
    # To get meaningful results, one should have ncolloc >= p+1
    k = splinelab.aptknt(tau, p)
    basis = bspline.Bspline(k, p)
    num_basis = ncolloc # len(k) #
    self.data = np.zeros((self.numSteps + 1, self.numPaths, num_basis))
    print('num_basis = ', num_basis)
    print('dim self.data = ', self.data.shape)
    # fill it, expand function in finite dimensional space
    # in neural network the basis is the neural network itself
    t_0 = time.time()
    for ix in np.arange(self.numSteps + 1):
        x = self.X[:, ix]
        self.data[ix, :, :] = np.array([basis(el) for el in x])
    t_end = time.time()
    print('\nTime Cost of basis expansion:', t_end - t_0, 'seconds')
def function_A_vec(self, t, reg_param=1e-3):
    function_A_vec - compute the matrix A_{nm} from Eq. (52) (with a regularization:
    Eq. (52) in QLBS Q-Learner in the Black-Scholes-Merton article
    Arguments:
    t - time index, a scalar, an index into time axis of data_mat
    reg_param - a scalar, regularization parameter
    Return:
    - np.array, i.e. matrix A_{nm} of dimension num_basis x num_basis
    X_mat = self.data[t, :, :]
    num_basis_funcs = X_mat.shape[1]
    this_dS = self.delta_S_hat[:, t]
    hat_dS2 = (this_dS ** 2).reshape(-1, 1)
    A_mat = np.dot(X_mat.T, X_mat * hat_dS2) + reg_param * np.eye(num_basis_funcs)
    return A mat
def function_B_vec(self, t, Pi_hat):
```

print('X.shape = ', self.X.shape)

```
nnn
    function_B_vec - compute vector B_{n} from Eq. (52) QLBS Q-Learner in the Black-
    Arguments:
    t - time index, a scalar, an index into time axis of delta_S_hat
    Pi_hat - pandas.DataFrame of dimension N_MC x T of portfolio values
    B\_vec - np.array() of dimension num\_basis x 1
    tmp = Pi_hat * self.delta_S_hat[:, t] + self.coef * (np.exp((self.mu - self.r) *
    X_mat = self.data[t, :, :] # matrix of dimension N_MC x num_basis
    B_{\text{vec}} = \text{np.dot}(X_{\text{mat.T}}, \text{tmp})
    return B vec
def seed_intrinsic(self, strike=None, cp='P'):
    initilaize option value and intrinsic value for each node
    if strike is not None:
        self.strike = strike
    if cp == 'P':
        # payoff function at maturity T: max(K - S(T), 0) for all paths
        self.optionVals = np.maximum(self.strike - self.sVals[:, -1], 0).copy()
        # payoff function for all paths, at all time slices
        self.intrinsicVals = np.maximum(self.strike - self.sVals, 0).copy()
    elif cp == 'C':
        # payoff function at maturity T: max(S(T) - K, 0) for all paths
        self.optionVals = np.maximum(self.sVals[:, -1] - self.strike, 0).copy()
        # payoff function for all paths, at all time slices
        self.intrinsicVals = np.maximum(self.sVals - self.strike, 0).copy()
    else:
        raise Exception('Invalid parameter: %s'% cp)
    self.bVals[:, -1] = self.intrinsicVals[:, -1]
def roll_backward(self):
    11 11 11
    Roll the price and optimal hedge back in time starting from maturity
    for t in range(self.numSteps - 1, -1, -1):
        # determine the expected portfolio value at the next time node
        piNext = self.bVals[:, t+1] + self.opt_hedge[:, t+1] * self.sVals[:, t+1]
        pi_hat = piNext - np.mean(piNext)
```

```
B_vec = self.function_B_vec(t, pi_hat)
                    phi = np.dot(np.linalg.inv(A_mat), B_vec)
                    self.opt_hedge[:, t] = np.dot(self.data[t, :, :], phi)
                    ### START CODE HERE ### ( 1-2 lines of code)
                    # implement code to update self.bVals
                    # self.bVals[:,t] = your code goes here ....
                    # Implementing the equation provided above.
                    # Again, the variables are supplied above in the constructor .\__i
                    # NOTE: opt_hedge corresponds to phi at time t.
                    self.bVals[:,t] = np.exp( -self.r * self.dt) * (self.bVals[:,t+1]
                                               (self.opt_hedge[:, t+1] - self.opt_hedge[:,t]) * s
                    ### END CODE HERE ###
                # calculate the initial portfolio value
                initPortfolioVal = self.bVals[:, 0] + self.opt_hedge[:, 0] * self.sVals[:, 0]
                # use only the second half of the paths generated with paths starting from S0 \,
                optionVal = np.mean(initPortfolioVal)
                optionValVar = np.std(initPortfolioVal)
                delta = np.mean(self.opt_hedge[:, 0])
                return optionVal, delta, optionValVar
In [6]: np.random.seed(42)
        strike_k = 95
        test_vol = 0.2
        test_mu = 0.03
        dt = 0.01
        rfr = 0.05
        num_paths = 100
        num_periods = 252
        hMC = DiscreteBlackScholes(100, strike_k, test_vol, 1., rfr, test_mu, num_periods, num_p
        hMC.gen_paths()
        t = hMC.numSteps - 1
        piNext = hMC.bVals[:, t+1] + 0.1 * hMC.sVals[:, t+1]
        pi_hat = piNext - np.mean(piNext)
        A_mat = hMC.function_A_vec(t)
        B_vec = hMC.function_B_vec(t, pi_hat)
        phi = np.dot(np.linalg.inv(A_mat), B_vec)
```

A_mat = self.function_A_vec(t)

```
opt_hedge = np.dot(hMC.data[t, :, :], phi)

# plot the results
fig = plt.figure(figsize=(12,4))
ax1 = fig.add_subplot(121)

ax1.scatter(hMC.sVals[:,t], pi_hat)
ax1.set_title(r'Expected $\Pi_0$ vs. $S_t$')
ax1.set_xlabel(r'$S_t$')
ax1.set_ylabel(r'$\Pi_0$')

X.shape = (100, 253)
X_min, X_max = 4.10743882917 5.16553756345
num_basis = 12
dim self.data = (253, 100, 12)
```

Time Cost of basis expansion: 12.204232454299927 seconds

Out[6]: <matplotlib.text.Text at 0x7f0f48c59f98>

In []: ### GRADED PART (DO NOT EDIT) ###

```
try:
           part1 = " ".join(map(repr, part_1))
        except TypeError:
           part1 = repr(part_1)
        submissions[all_parts[0]]=part1
       grading.submit(COURSERA_EMAIL, COURSERA_TOKEN, assignment_key,all_parts[:1],all_parts,su
       pi_hat
        ### GRADED PART (DO NOT EDIT) ###
Submission successful, please check on the coursera grader page for the status
Out[]: array([0.81274895, -3.49043554, 0.69994334, 1.61239986, -0.25153316,
              -3.19082265, 0.8848621, -2.0380868, 0.45033564, 3.74872863,
              -0.6568227 , 1.74148929, 0.94314331, -4.19716113, 1.72135256,
              -0.66188482, 6.95675041, -2.20512677, -0.14942482, 0.30067272,
               3.33419402, 0.68536713, 1.65097153, 2.69898611, 1.22528159,
               1.47188744, -2.48129898, -0.37360224, 0.81064666, -1.05269459,
               0.02476551, -1.88267258, 0.11748169, -0.9038195, 0.69753811,
               -0.54805029, 1.97594593, -0.44331403, 0.62134931, -1.86191032,
               -3.21226413, 2.24508097, -2.23451292, -0.13488281, 3.64364848,
              -0.11270281, -1.15582237, -3.30169455, 1.74454841, -1.10425448,
               2.10192819, 1.80570507, -1.68587001, -1.42113397, -2.70292006,
               0.79454199, -2.05396827, 3.13973887, -1.08786662, 0.42347686,
               1.32787012, 0.55924965, -3.54140814, -3.70258632, 2.14853641,
               1.11495458, 3.69639676, 0.62864736, -2.62282995, -0.05315552,
               1.05789698, 1.8023196, -3.35217374, -2.30436466, -2.68609519,
               0.95284884, -1.35963013, -0.56273408, -0.08311276, 0.79044269,
               0.46247485, -1.04921463, -2.18122285, 1.82920128, 1.05635272,
               0.90161346, -1.93870347, -0.37549305, -1.96383274, 1.9772888
               -1.37386984, 0.95230068, 0.88842589, -1.42214528, -2.60256696,
              -1.53509699, 4.47491253, 4.87735375, -0.19068803, -1.08711941])
In [ ]: # input parameters
       s0 = 100.0
       strike = 100.0
       r = 0.05
       mu = 0.07 \# 0.05
       vol = 0.4
       T = 1.0
        # Simulation Parameters
       numPaths = 50000 # number of Monte Carlo trials
       numSteps = 6
        # create the class object
       hMC = DiscreteBlackScholes(s0, strike, vol, T, r, mu, numSteps, numPaths)
```

part_1 = list(pi_hat)

```
# calculation
        hMC.gen_paths()
        hMC.seed_intrinsic()
        option_val, delta, option_val_variance = hMC.roll_backward()
        bs_call_value = bs_put(0, s0, K=strike, r=r, sigma=vol, T=T)
        print('Option value = ', option_val)
        print('Option value variance = ', option_val_variance)
        print('Option delta = ', delta)
        print('BS value', bs_call_value)
X.shape = (50000, 7)
X_{min}, X_{max} = 2.96880459823 6.37164911461
num_basis = 12
dim self.data = (7, 50000, 12)
Time Cost of basis expansion: 147.85048985481262 seconds
Option value = 13.1083499076
Option value variance = 5.17079676287
Option delta = -0.356133722777
BS value 13.1458939003
In []: ### GRADED PART (DO NOT EDIT) ###
        part2 = str(option_val)
        submissions[all_parts[1]]=part2
        grading.submit(COURSERA_EMAIL, COURSERA_TOKEN, assignment_key,all_parts[:2],all_parts,su
        option_val
        ### GRADED PART (DO NOT EDIT) ###
Submission successful, please check on the coursera grader page for the status
Out[]: 13.108349907565021
In [ ]: strikes = np.linspace(85, 110, 6)
        results = [None] * len(strikes)
        bs_prices = np.zeros(len(strikes))
        bs_deltas = np.zeros(len(strikes))
        numPaths = 50000
        hMC = DiscreteBlackScholes(s0, strike, vol, T, r, mu, numSteps, numPaths)
        hMC.gen_paths()
        for ix, k_strike in enumerate(strikes):
            hMC.seed_intrinsic(k_strike)
            results[ix] = hMC.roll_backward()
            bs_prices[ix] = bs_put(0, s0, K=k_strike, r=r, sigma=vol, T=T)
            bs_deltas[ix] = norm.cdf(d1(s0, K=k_strike, r=r, sigma=vol, T=T)) - 1
        bs_prices
```

```
X.shape = (50000, 7)
X_{min}, X_{max} = 2.96880459823 6.37164911461
num_basis = 12
dim self.data = (7, 50000, 12)
Time Cost of basis expansion: 148.89949584007263 seconds
Out[]: array([ 6.70326307, 8.59543726, 10.74614496, 13.1458939 ,
                15.78197485, 18.63949388])
In [ ]: mc_prices = np.array([x[0] for x in results])
        mc_deltas = np.array([x[1] for x in results])
        price_variances = np.array([x[-1] for x in results])
        prices_diff = mc_prices - bs_prices
        deltas_diff = mc_deltas - bs_deltas
        # price_variances
In []: ### GRADED PART (DO NOT EDIT) ###
        part_3 = list(prices_diff)
        try:
           part3 = " ".join(map(repr, part_3))
        except TypeError:
           part3 = repr(part_3)
        submissions[all_parts[2]]=part3
        grading.submit(COURSERA_EMAIL, COURSERA_TOKEN, assignment_key,all_parts[:3],all_parts,su
        prices_diff
        ### GRADED PART (DO NOT EDIT) ###
Submission successful, please check on the coursera grader page for the status
Out[]: array([-0.03641514, -0.04034142, -0.039966 , -0.03754399, -0.03240012,
               -0.02997066])
In [ ]: ### GRADED PART (DO NOT EDIT) ###
        part_4 = list(deltas_diff)
        try:
            part4 = " ".join(map(repr, part_4))
        except TypeError:
            part4= repr(part_4)
        submissions[all_parts[3]]=part4
        grading submit(COURSERA_EMAIL, COURSERA_TOKEN, assignment_key,all_parts[:4],all_parts,su
        deltas_diff
        ### GRADED PART (DO NOT EDIT) ###
```

Submission successful, please check on the coursera grader page for the status