COMPLETE LISTING OF PENDING CLAIMS

1. (Currently amended) A compound of the formula

$$R_1$$
 R_3
 R_4
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8

where a wavy line represents a bond in the up or in the down configuration,

a dashed arrow represents a bond in the down configuration, a solid arrow represents a bond in the up configuration,

R₁ is H, methyl, or ethyl, fluoro-substituted methyl or fluoro-substituted ethyl;

R₂ is *normal* alkyl of 1 to 4 carbons, fluoro-substituted *normal* alkyl of 1 to 4 carbons, CH₂OCH₃, CH₂-O-CH₂-CH₃, CH₂-O-CH₂-O-CH₃, CH₂-O-CH₃, CH₂-S-CH₃, CH₂-S-CH₂-CH₃, CH₂-S-CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃;

 \mathbf{R}_3 is H or F;

R₄ is H, alkyl of 1 to 3 carbons;

R₅ is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ CH₂OR₆ or CH₂OCOR₆ where R₆ is alkyl of 1 to 3 carbons, and

R is selected from the groups consisting of the radicals defined by formulas (a) through (f) and (b)

$$(R_7)_{m}$$

$$(R_8)_{n}$$

$$(R_8)_{n}$$

$$(R_8)_{n}$$

$$(R_7)_{m}$$

$$(R_8)_{n}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_8)_{n}$$

where the dashed line in a ring represents a bond, or absence of a bond,

a * denotes a ring carbon to which the pentadienoyl-cyclopropyl group is attached, with the proviso that the pentadienoyl-cyclopropyl group is attached to only one carbon on the ring;

X₁ is O or S attached to the adjacent carbon with a double bond, or X₁ represents two hydrogens or R₇ groups attached to the adjacent carbon;

 X_2 is O or S;

m is an integer having the values 0 to 6;

n is an integer having the values 0 to 3;

o is an integer having the values 0 or 1;

R₇ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br or I[[;]], and

 \mathbf{R}_8 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, OC_{1-6} alkyl or SC_{1-6} alkyl,

R₉ is H or alkyl of 1 to 6 carbons, or a pharmaceutically acceptable salt of said compound.

- 2. (original) A compound in accordance with Claim 1 where \mathbb{R}_2 is CH_2OCH_3 or $CH_2OCH_2CH_3$.
- 3. (original) A compound in accordance with Claim 1 where \mathbf{R}_7 is alkyl of 1 to 6 carbons.
- 4. (original) A compound in accordance with Claim 1 where \mathbf{R}_8 is H or alkyl of 1 to 6 carbons.
- 5. (original) A compound in accordance with Claim 1 where R is represented by formula (a).
- 6. (original) A compound in accordance with Claim 5 where the dashed line in formula (a) represents absence of a bond, and where o is one (1).
- 7. (original) A compound in accordance with Claim 6 where \mathbf{R}_2 is CH_2OCH_3 or $CH_2OCH_2CH_3$.
- 8. (original) A compound in accordance with Claim 6 where \mathbf{R}_7 is alkyl of 1 to 6 carbons.
- 9. (original) A compound in accordance with Claim 6 where \mathbf{R}_8 is H or alkyl of 1 to 6 carbons.
- 10. (original) A compound in accordance with Claim 1 where R is represented by formula (b).
- 11. (original) A compound in accordance with Claim 10 where R₂ is CH₂OCH₃ or CH₂OCH₂CH₃.
- 12. (original) A compound in accordance with Claim 10 where \mathbf{R}_7 is alkyl of 1 to 6 carbons.

13. (original) A compound in accordance with Claim 10 where \mathbf{R}_8 is H or alkyl of 1 to 6 carbons.

14. (cancelled)

15. (cancelled)

16. (cancelled)

17. (cancelled)

18. (currently amended)) A compound of the formula

where a wavy line represents a bond in the up or in the down configuration,

a dashed arrow represents a bond in the down configuration, a solid arrow represents a bond in the up configuration,

 \mathbf{R}_1 is H, methyl, or ethyl, fluoro-substituted methyl or fluoro-substituted ethyl;

 \mathbf{R}_{10} is CH₃, CH₂-CH₃, or CH₂-OCH₃,

 \mathbf{R}_3 is H or F;

R₄ is H, alkyl of 1 to 3 carbons;

 \mathbf{R}_5 is H, alkyl of 1 to 6 carbons, $\frac{\text{OCH}_2\text{OR}_6}{\text{or OCH}_2\text{OCOR}_6}$ $\frac{\text{CH}_2\text{OR}_6}{\text{or CH}_2\text{OCOR}_6}$ where \mathbf{R}_6 is alkyl of 1 to 3 carbons, and

R is selected from the groups consisting of the radicals defined by formulas (g) and (h)

$$(R_7)_m$$
 $*$
 $(R_8)_n$
 $*$
formula (g)

formula (h)

where a * denotes a ring carbon to which the pentadienoylcyclopropyl group is attached, with the proviso that the pentadienoylcyclopropyl group is attached to only one carbon on the ring;

m is an integer having the values 0 to 8;

n is an integer having the values 0 to 3;

R₇ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br or I;

 \mathbf{R}_8 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, OC_{1-6} alkyl or SC_{1-6} alkyl, or a pharmaceutically acceptable salt of said compound.

- 19. (original) A compound in accordance with Claim 18 where R is represented by formula (g).
- 20. (original) A compound in accordance with Claim 19 where R is represented by the formula

where the * denotes a ring carbon to which the pentadienoylcyclopropyl group is attached. 21. (original) A compound in accordance with Claim 18 where R is represented by the formula

where the * denotes a ring carbon to which the pentadienoylcyclopropyl group is attached.

22. (currently amended) A compound of the formula

where a wavy line represents a bond in the up or in the down configuration,

a dashed arrow represents a bond in the down configuration, a solid arrow represents a bond in the up configuration, \mathbf{R}_{10} is methyl or ethyl, and

 \mathbf{R}_5 is H, alkyl of 1 to 6 carbons, $\frac{\text{OCH}_2\text{OR}_6}{\text{or OCH}_2\text{OCOR}_6}$ $\frac{\text{CH}_2\text{OR}_6}{\text{or CH}_2\text{OCOR}_6}$ where \mathbf{R}_6 is alkyl of 1 to 3 carbons, or a pharmaceutically acceptable salt of said compound.

- 23. (original) A compound in accordance with Claim 22 where the wavy line represents a bond in the up configuration.
- **24.** (original) A compound in accordance with Claim 23 where \mathbf{R}_{10} is methyl.
- 25. (original) A compound in accordance with Claim 24 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- **26.** (original) A compound in accordance with Claim 23 where \mathbf{R}_{10} is ethyl.
- 27. (original) A compound in accordance with Claim 26 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 28. (original) A compound in accordance with Claim 22 where the wavy line represents a bond in the down configuration.
- 29. (original) A compound in accordance with Claim 28 where \mathbf{R}_{10} is methyl.
- 30. (original) A compound in accordance with Claim 29 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 31. (original) A compound in accordance with Claim 28 where \mathbf{R}_{10} is ethyl.
- 32. (original) A compound in accordance with Claim 31 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
 - 33. (currently amended) A compound of the formula

where a wavy line represents a bond in the up or in the down configuration,

a dashed arrow represents a bond in the down configuration, a solid arrow represents a bond in the up configuration,

 \mathbf{R}_{10} is methyl or ethyl, and

 \mathbf{R}_5 is H, alkyl of 1 to 6 carbons, $\frac{\text{OCH}_2\text{OR}_6}{\text{or OCH}_2\text{OCOR}_6}$ $\frac{\text{CH}_2\text{OR}_6}{\text{cr}}$ or $\frac{\text{CH}_2\text{OCOR}_6}{\text{cr}}$ where \mathbf{R}_6 is alkyl of 1 to 3 carbons, or a pharmaceutically acceptable salt of said compound.

- 34. (original) A compound in accordance with Claim 33 where the wavy line represents a bond in the up configuration.
- 35. (original) A compound in accordance with Claim 34 where \mathbf{R}_{10} is methyl.
- 36. (original) A compound in accordance with Claim 35 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 37. (original) A compound in accordance with Claim 34 where \mathbf{R}_{10} is ethyl.
- 38. (original) A compound in accordance with Claim 37 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.

- 39. (original) A compound in accordance with Claim 33 where the wavy line represents a bond in the down configuration.
- 40. (original) A compound in accordance with Claim 39 where \mathbf{R}_{10} is methyl.
- 41. (original) A compound in accordance with Claim 40 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 42. (currently amended) A process for administering to a diabetic mammal to reduce the serum glucose level of said mammal a compound of the formula

$$R_1$$
 R_3
 R_3
 R_4
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8

where a wavy line represents a bond in the up or in the down configuration,

a dashed arrow represents a bond in the down configuration, a solid arrow represents a bond in the up configuration,

R₁ is H, methyl, or ethyl, fluoro-substituted methyl or fluoro-substituted ethyl;

R₂ is *normal* alkyl of 1 to 4 carbons, fluoro-substituted *normal* alkyl of 1 to 4 carbons, CH₂OCH₃, CH₂-O-CH₂-CH₃, CH₂-O-CH₂-O-CH₃, CH₂-O-CH₃, CH₂-O-CH₃-CH₃-O-CH₃-

CH₂-O-CH₃, CH₂-S-CH₂-CH₃, CH₂-S-CH₂-OCH₃, CH₂-CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-S-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃, CH₂-NH-CH₃;

 \mathbf{R}_3 is H or F;

 \mathbf{R}_4 is H, alkyl of 1 to 3 carbons;

R₅ is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ CH₂OR₆ or CH₂OCOR₆ where R₆ is alkyl of 1 to 3 carbons, and

R is selected from the groups consisting of the radicals defined by formulas (a) through (f) and (b)

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_8)_{n}$$

$$(R_8)_{n}$$

$$(R_7)_{m}$$

$$(R_8)_{n}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_7)_{m}$$

$$(R_8)_{n}$$

where the dashed line in a ring represents a bond, or absence of a bond,

a * denotes a ring carbon to which the pentadienoyl-cyclopropyl group is attached, with the proviso that the pentadienoyl-cyclopropyl group is attached to only one carbon on the ring;

X₁ is O or S attached to the adjacent carbon with a double bond, or X₁ represents two hydrogens or R₇ groups attached to the adjacent carbon;

 X_2 is O or S;

m is an integer having the values 0 to 6;

n is an integer having the values 0 to 3;

o is an integer having the values 0 or 1;

R₇ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br or I[[;]], and

 \mathbf{R}_8 is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, OC_{1-6} alkyl or SC_{1-6} alkyl,

R₉ is H or alkyl of 1 to 6 carbons, or a pharmaceutically acceptable salt of said compound.

43. (original) A process in accordance with Claim 42 where the compound used in the process is in accordance with the formula

where \mathbf{R}_{10} is methyl or ethyl.

44. (original) A process in accordance with Claim 42 where the compound used in the process is in accordance with the formula

where \mathbf{R}_{10} is methyl or ethyl.

45. (previously submitted) A compound of the formula

46. (previously submitted) A process in accordance with Claim 42 where the compound used has the formula