CPSC 304: Introduction to Relational Algebra Normalization 2 In-Class Exercise Solution

Consider a relation S(G, H, J, K). The following FDs are given:

G → H JK→G H→K

Is S in BCNF? Why or why not?

If it is not in BCNF:

- Decompose into BCNF as covered in class.
- Circle the relations in your final answer.
- Underline the keys in your final answer.

Show your work. Write your answer here:

Closures:

```
G<sup>+</sup> = {G, H, K}
JK<sup>+</sup> ={J, K, G, H}
H<sup>+</sup> = {H, K}
```

G \rightarrow H violates BCNF (as does H \rightarrow K and G \rightarrow K), so pick one to decompose on. We arbitrarily choose to decompose on G \rightarrow H. (Note: if you chose to decompose on H \rightarrow K or some other FD that violates BCNF first, you will get a different answer. That's fine.)

Step 1: Decompose on $G \rightarrow H$.

 $R_1(\underline{G},H), R_2(\underline{G},\underline{J},K)$

R1 is in BCNF (all two attribute relations are in BCNF).

Step 2: Decompose on $G \to K$. (The closure of G tells us that $G \to H$ and $G \to K$.) In R_2 , $G \to K$ violates BCNF, so you need to decompose again $R_3(\underline{G},K)$, $R_4(\underline{G},\underline{I})$

We cannot decompose on JK \rightarrow G or H \rightarrow K because out of R₁, R₃, and R₄, there is no single relation that contains all of JKG or HK.

The **final answer** is: $R_1(\underline{G}, H)$, $R_3(\underline{G}, K)$, $R_4(\underline{G}, \underline{J})$.