Assignment2_DecisionTree

Mukhtar

3/28/2022

```
library(ISLR)
library(rpart)
library(rattle)
## Warning: package 'rattle' was built under R version 4.1.2
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.1.2
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(ggplot2)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
```

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

Problem Statement

Data Preparation

```
getwd()
## [1] "C:/Users/Mukht/OneDrive/Desktop/Kent State University/54050-Project-ADM/Assignment2"
setwd("C:\\Users\\Mukht\\OneDrive\\Desktop\\Kent State University\\54050-Project-ADM\\Assignment2")
ADM_Assignment2<-read.csv("carseats_ADM.csv")
str(ADM_Assignment2)
                    400 obs. of 11 variables:
## 'data.frame':
                        9.5 11.22 10.06 7.4 4.15 ...
##
    $ i..Sales
                 : num
  $ Income
                 : int
                        73 48 35 100 64 113 105 81 110 113 ...
##
  $ Advertising: int
                        11 16 10 4 3 13 0 15 0 0 ...
##
    $ Population : int
                        276 260 269 466 340 501 45 425 108 131 ...
  $ Price
##
                        120 83 80 97 128 72 108 120 124 124 ...
                 : int
##
  $ Age
                        42 65 59 55 38 78 71 67 76 76 ...
                 : int
## $ Education : int
                         17 10 12 14 13 16 15 10 10 17 ...
##
   $ Urban
                 : chr
                         "Yes" "Yes" "Yes" "Yes" ...
##
  $ US
                 : chr
                         "Yes" "Yes" "Yes" "Yes" ...
                         138 111 113 117 141 124 115 136 132 132 ...
   $ CompPrice
                 : int
                         "Bad" "Good" "Medium" "Medium" ...
    $ ShelveLoc
                : chr
head(ADM_Assignment2)
     i.. Sales Income Advertising Population Price Age Education Urban US
##
         9.50
                                                    42
## 1
                  73
                               11
                                               120
                                                                    Yes Yes
                                         276
                                                               17
## 2
        11.22
                  48
                               16
                                         260
                                                83
                                                    65
                                                               10
                                                                    Yes Yes
        10.06
                  35
                               10
                                         269
                                                80 59
## 3
                                                               12
                                                                    Yes Yes
## 4
         7.40
                 100
                                4
                                         466
                                                97
                                                    55
                                                               14
                                                                    Yes Yes
## 5
         4.15
                  64
                                3
                                         340
                                               128
                                                    38
                                                               13
                                                                    Yes No
## 6
        10.81
                 113
                               13
                                         501
                                                72 78
                                                                     No Yes
                                                               16
     CompPrice ShelveLoc
##
           138
## 1
                     Bad
## 2
           111
                    Good
## 3
           113
                  Medium
## 4
           117
                  Medium
## 5
           141
                     Bad
## 6
           124
                     Bad
```

#Three of the variables are factors, while the rest are numeric. Currently there are no missing observations.

Carseats_Filtered <- ADM_Assignment2 %>% select("i..Sales", "Price", "Advertising", "Population", "Age", "Carseats_Filtered

##		ïSales	Price	Advertising	Population	Age	Income	Education
##	1	9.50	120	11	276	42	73	17
##	2	11.22	83	16	260	65	48	10
##	3	10.06	80	10	269	59	35	12
##	4	7.40	97	4	466	55	100	14
##	5	4.15	128	3	340	38	64	13
##	6	10.81	72	13	501	78	113	16
##	7	6.63	108	0	45	71	105	15
##	8	11.85	120	15	425	67	81	10
##	9	6.54	124	0	108	76	110	10
##	10	4.69	124	0	131	76	113	17
##	11	9.01	100	9	150	26	78	10
##	12	11.96	94	4	503	50	94	13
##	13	3.98	136	2	393	62	35	18
##	14	10.96	86	11	29	53	28	18
##	15	11.17	118	11	148	52	117	18
##	16	8.71	144	5	400	76	95	18
##	17	7.58	110	0	284	63	32	13
##	18	12.29	131	13	251	52	74	10
##	19	13.91	68	0	408	46	110	17
##	20	8.73	121	16	58	69	76	12
##	21	6.41	131	2	367	35	90	18
##	22	12.13	109	12	239	62	29	18
##	23	5.08	138	6	497	42	46	13
##	24	5.87	109	0	292	79	31	10
##	25	10.14	113	16	294	42	119	12
##	26	14.90	82	0	176	54	32	11
##	27	8.33	131	11	496	50	115	11
##	28	5.27	107	0	19	64	118	17
##	29	2.99	97	0	359	55	74	11
##	30	7.81	102	15	226	58	99	17
##	31	13.55	89	0	447	30	94	12
##	32	8.25	131	16	241	44	58	18
##	33	6.20	137	12	236	64	32	10
##	34	8.77	128	13	317	50	38	16
##	35	2.67	128	0	406	42	54	17
	36	11.07	96	11	29	44	84	17
##		8.89	100	0	270	60	76	18
	38	4.95	110	5	412	54	41	10
	39	6.59	102	0	454	65	73	15
##		3.24	138	0	144	38	60	10
##		2.07	126	0	18	73	98	17
##		7.96	124	0	403	58	53	16
##		10.43	24	0	25	50	69	18
	44	4.12	134	11	16	59	42	13
	45	4.16	95	6	325	69	79	13
	46	4.56	135	0	168	44	63	12
	47	12.44	70	14	16	48	90	15
##	48	4.38	108	0	173	55	98	16

##	40	3.91	98	0	349	69	52	18
##	50	10.61	149	0	51	32	93	17
##	51	1.42	108	18	341	80	32	16
##	52		108	0				16
##	53	4.42 7.91		3	150	75 39	90	18
			129		112		40	
##	54	6.92	119	13	39	61	64	17
##	55	4.90	144	13	25	76	103	17
##	56	6.85	154	5	60	61	81	18
##	57	11.91	84	0	54	50	82	17
##	58	0.91	117	0	22	75 74	91	11
##	59	5.42	103	15	188	74	93	16
##	60	5.21	114	4	148	80	71	13
##	61	8.32	123	19	469	29	102	13
##	62	7.32	107	0	358	26	32	13
##	63	1.82	133	0	146	77	45	17
##	64	8.47	101	10	170	61	88	13
##	65	7.80	104	12	184	32	67	16
##	66	4.90	128	0	197	55	26	13
##	67	8.85	91	0	508	56	92	18
##	68	9.01	115	14	152	47	61	16
##	69	13.39	134	20	366	60	69	13
##	70	7.99	99	0	339	65	59	12
##	71	9.46	99	15	237	74	81	12
##	72	6.50	150	16	148	58	51	17
##	73	5.52	116	0	432	25	45	15
##	74	12.61	104	10	54	31	90	11
##	75	6.20	136	5	125	64	68	13
##	76	8.55	92	23	480	36	111	16
##	77	10.64	70	10	346	64	87	15
##	78	7.70	89	12	44	67	71	18
##	79	4.43	145	1	139	65	48	12
##	80	9.14	90	0	286	41	67	13
##	81	8.01	79	16	353	68	100	11
##	82	7.52	128	0	237	70	72	13
##	83	11.62	139	4	325	28	83	17
##	84	4.42	94	7	468	56	36	11
##	85	2.23	121	0	52	43	25	18
##	86	8.47	112	0	304	49	103	13
##	87	8.70	134	9	432	64	84	15
##	88	11.70	126	7	272	54	67	16
##	89	6.56	111	7	144	62	42	10
##	90	7.95	119	3	493	45	66	16
##	91	5.33	103	0	491	64	22	11
##	92	4.81	107	11	267	80	46	15
##	93	4.53	125	0	97	29	113	12
##	94	8.86	104	0	67	55	30	17
##	95	8.39	84	5	134	55	97	11
##	96	5.58	148	10	237	59	25	13
##	97	9.48	132	10	407	73	42	16
##	98	7.45	129	5	287	33	82	16
	99	12.49	127	24	382	36	77	16
	100	4.88	107	3	220	56	47	16
	101	4.11	106	11	94	76	69	12
	102	6.20	118	0	89	34	93	18
"		0.20	0	V	0.0	0 1	50	10

##	103	5.30	97	0	57	65	22	16
##	103	5.07	96	0	334	78	91	17
##	105	4.62	138	0	472	51	96	12
##	106	5.55	97	8	398	61	100	11
##	107	0.16	139	0	217	70	33	18
##	108	8.55	108	0	104	60	107	12
##				2	488			16
##	109	3.47	103 90	0		65 60	79	17
##	110 111	8.98		7	217 125		65 62	14
##	111	9.00 6.62	116 151	12	272	43 43	118	14
##	113	6.67		5	298		99	
##			125 127		335	62		12
##	114	6.01	106	11 9	17	33	29	12
	115	9.31				65	87	13
##	116	8.54	129	0	95	42	35	13
##	117	5.08	128	0	202	80	75 53	10
##	118	8.80	119	0	507	41	53	12
##	119	7.57	99	2	243	62	88	11
##	120	7.37	128	8	137	64	94	12
##	121	6.87	131	11	249	63	105	13
##	122	11.67	87	10	380	28	89	10
	123	6.88	108	5	45	75	100	10
##	124	8.19	155	0	125	29	103	15
##	125	8.87	120	0	181	63	113	14
##	126	9.34	49	0	181	43	78	15
##	127	11.27	133	2	60	59	68	16
##	128	6.52	116	3	192	51	48	14
##	129	4.96	126	3	350	55	100	13
##	130	4.47	147	7	279	40	120	10
##	131	8.41	77	13	497	51	84	12
##	132	6.50	94	3	208	77	69	16
##	133	9.54	136	9	232	72	87	10
##	134	7.62	97	2	265	62	98	12
##	135	3.67	131	0	327	76	31	16
##	136	6.44	120	14	384	36	94	18
##	137	5.17	120	0	10	31	75	18
##	138	6.52	118	0	436	80	42	11
	139	10.27	109	12	371	44	103	10
	140	12.30	94	10	310	30	62	13
	141	6.03	129	10	277	45	60	18
	142	6.53	131	0	331	28	42	15
	143	7.44	104	0	300	77	84	15
	144	0.53	159	7	36	28	88	17
	145	9.09	123	0	264	34	68	11
##	146	8.77	117	11	27	47	63	17
##	147	3.90	131	0	412	39	83	14
##	148	10.51	119	9	402	41	54	16
##	149	7.56	97	0	384	72	119	14
##	150	11.48	87	13	140	56	120	11
##	151	10.49	114	8	176	57	84	10
##	152	10.77	103	17	407	75	58	17
	153	7.64	128	0	341	45	78	13
	154	5.93	150	7	488	25	36	17
	155	6.89	110	10	289	50	69	16
##	156	7.71	69	0	59	65	72	16

		- 40		•				
	157	7.49	157	0	220	51	34	16
##	158	10.21	90	8	249	48	58	13
##	159	12.53	112	1	189	39	90	10
##	160	9.32	70	0	372	30	60	18
##	161	4.67	111	0	486	29	28	12
##	162	2.93	160	5	81	67	21	12
##	163	3.63	149	0	424	51	74	13
##	164	5.68	106	0	40	39	64	17
##	165	8.22	141	0	58	27	64	13
##	166	0.37	191	7	100	27	58	15
##	167	6.71	137	17	151	55	67	11
##	168	6.71	93	0	216	60	73	13
##	169	7.30	117	0	425	45	89	10
##	170	11.48	77	15	492	73	41	18
##	171	8.01	118	12	356	71	39	10
##	172	12.49	55	12	416	75	106	15
##	173	9.03	110	13	123	35	102	16
##	174	6.38	128	5	207	66	91	18
##	175	0.00	185	0	358	79	24	15
##	176	7.54	122	0	38	25	89	12
##	177	5.61	154	9	480	47	107	11
##	178	10.48	94	0	148	27	72	17
##	179	10.46			89			
			81	14		25	71	14
##	180	7.78	116	3	70	77 66	25	18
##	181	4.94	149	15	434	66	112	13
##	182	7.43	91	0	79	68	83	11
##	183	4.74	140	4	230	25	60	13
##	184	5.32	102	6	426	80	74	18
##	185	9.95	97	7	35	60	33	11
##	186	10.07	107	11	449	64	100	10
##	187	8.68	86	0	93	46	51	17
##	188	6.03	96	0	142	62	32	17
##	189	8.07	90	0	426	76	37	15
##	190	12.11	104	18	509	26	117	15
##	191	8.79	101	13	297	37	37	13
##	192	6.67	173	13	170	74	42	14
	193	7.56	93	0	408	56	26	14
	194	13.28	96	7	71	61	70	10
	195	7.23	128	18	481	45	98	11
	196	4.19	112	4	420	66	93	11
##	197	4.10	133	6	410	72	28	16
##	198	2.52	138	0	333	76	61	16
##	199	3.62	128	5	500	69	80	10
##	200	6.42	126	5	335	64	88	14
##	201	5.56	146	0	349	62	92	12
##	202	5.94	134	0	139	54	83	18
##	203	4.10	130	4	413	46	78	10
##	204	2.05	157	0	132	25	82	14
##	205	8.74	124	0	237	37	80	14
##	206	5.68	132	1	317	28	22	12
##	207	4.97	160	0	27	77	67	17
##	208	8.19	97	0	466	61	105	10
##	209	7.78	64	0	497	33	54	12
##	210	3.02	90	11	326	76	21	11

	044	4 00	400	0	0.57	4.7	4.4	4.4
	211	4.36	123	2	357	47	41	14
	212	9.39	120	14	445	32	118	15
	213	12.04	105	19	501	45	69	11
	214	8.23	139	5	220	33	84	10
	215	4.83	107	3	48	73	115	18
	216	2.34	144	15	170	71	83	11
	217	5.73	144	0	243	34	33	17
##	218	4.34	111	0	481	70	44	14
##	219	9.70	120	12	156	25	61	14
##	220	10.62	116	19	359	58	79	17
##	221	10.59	124	15	262	30	120	10
##	222	6.43	107	0	125	80	44	11
##	223	7.49	145	6	178	35	119	13
##	224	3.45	125	9	276	62	45	14
##	225	4.10	141	0	464	48	82	13
	226	6.68	82	0	412	36	25	14
	227	7.80	122	0	245	56	33	14
	228	8.69	101	10	68	57	64	16
	229	5.40	163	13	381	26	73	11
	230	11.19	72	0	404	27	104	18
	231	5.16	114	0	119	38	60	14
	232	8.09	122	0	123	27	69	11
	233	13.14	105	10	24	61	80	15
	234	8.65	120	18	218	29	76	14
	235	9.43	129	11	289	56	62	16
	236	5.53	132	8	95	50	32	17
	237	9.32	108	16	361	69	34	10
	238	9.62	135	8	499	48	28	10
	239			0				13
	240	7.36	133		200 149	73	24	
		3.89	118	0		62	105	16
	241	10.31	121	0	362	26	80	18
	242	12.01	94	0	160	38	63	12
	243	4.68	135	0	199	52	46	14
	244	7.82	110	13	87	57	25	10
	245	8.78	100	0	391	26	30	18
	246	10.00	88	0	199	57	43	10
	247	6.90	90	20	266	78	56	18
	248	5.04	151	0	298	34	114	16
	249	5.36	101	0	12	61	52	11
	250	5.05	117	0	86	65	67	11
	251	9.16	156	10	435	72	105	14
	252	3.72	132	5	310	62	111	13
	253	8.31	117	0	70	32	97	16
	254	5.64	122	5	288	57	24	12
##	255	9.58	129	23	353	37	104	17
##	256	7.71	81	8	198	80	81	15
##	257	4.20	144	0	277	73	40	10
	258	8.67	112	14	477	80	62	13
	259	3.47	81	0	251	72	38	14
##	260	5.12	100	10	467	74	36	11
	261	7.67	101	8	400	36	117	10
	262	5.71	118	4	188	54	42	15
	263	6.37	132	15	86	48	77	18
##	264	7.77	115	6	434	25	26	17

	265	6.95	159	5	324	31	29	15
	266	5.31	129	10	402	39	35	17
##	267	9.10	112	12	343	73	93	17
##	268	5.83	112	7	473	51	82	12
##	269	6.53	105	0	66	39	57	11
##	270	5.01	166	0	438	46	69	17
##	271	11.99	89	0	284	26	26	10
##	272	4.55	110	0	504	62	56	16
##	273	12.98	63	0	14	38	33	12
##	274	10.04	86	8	244	58	106	12
##	275	7.22	119	2	67	34	93	11
##	276	6.67	132	11	210	53	119	11
##	277	6.93	130	14	296	73	69	15
##	278	7.80	125	12	326	36	48	16
##	279	7.22	151	2	129	40	113	15
##	280	3.42	158	13	376	64	57	18
##	281	2.86	145	10	496	51	86	10
##	282	11.19	105	7	303	45	69	16
##	283	7.74	154	0	80	61	96	11
	284	5.36	117	0	112	80	110	16
	285	6.97	96	11	414	79	46	17
	286	7.60	131	11	261	39	26	10
	287	7.53	113	11	429	67	118	18
	288	6.88	72	4	208	44	44	17
	289	6.98	97	0	74	76	40	15
	290	8.75	156	25	448	43	77	17
	291	9.49	103	14	400	41	111	11
	292	6.64	89	0	106	39	70	17
	293	11.82	74	16	322	76	66	15
	294	11.28	89	0	74	59	84	10
	295	12.66	99	3	126	60	76	11
	296	4.21	137	14	502	79	35	10
	297	8.21	123	13	160	63	44	18
	298	3.07	104	13	276	75	83	10
	299	10.98	130	0	312	63	63	15
##	300	9.40	96	17	497	54	40	17
	301	8.57	99	1	158	45	78	11
	302	7.41	87	0	198	57	93	16
	303	5.28	110	13	388	74	77	14
	304	10.01	99	16	290	43	52	11
	305	11.93	134	12	408	29	98	10
	306	8.03	132	26	394	33	29	13
	307	4.78	133	1	85	48	32	12
	308	5.90	120	0	13	61	92	12
	309	9.24	126	19	436	52	80	10
	310	11.18	80	13	33	68	111	18
	311	9.53	166	29	419	53	65	12
	312	6.15	132	12	328	51	68	14
	313	6.80	135	5	320	38	117	10
	314	9.33	54	3	33 <i>1</i> 491	36 66	81	13
			129		333		33	
	315 316	7.72 6.39	171	10 8	220	71 29	33 21	14 14
				5			36	
	317	15.63	72 126	0	369 470	35		10 15
##	318	6.41	136	U	472	80	30	15

##	319	10.08	130	10	456	41	72	14
##	320	6.97	129	19	459	57	45	11
##	321	5.86	152	12	171	44	70	18
##	322	7.52	98	5	499	34	39	15
##	323	9.16	139	10	300	60	50	15
##	324	10.36	103	18	428	34	105	12
##	325	2.66	150	4	133	53	65	13
	326	11.70	104	11	131	47	69	11
	327	4.69	122	0	152	53	30	17
##	328	6.23	104	17	316	80	38	16
	329	3.15	111	1	65	55	66	11
			89	9	433			12
	330	11.27				45	54 50	
	331	4.99	112	0	501	32	59	14
	332	10.10	134	15	213	32	63	10
	333	5.74	104	20	354	61	33	12
	334	5.87	147	7	303	41	60	10
##	335	7.63	83	9	489	42	117	13
##	336	6.18	110	15	464	72	70	15
##	337	5.17	143	6	60	28	35	18
##	338	8.61	102	0	283	80	38	15
##	339	5.97	101	0	164	45	24	11
##	340	11.54	126	4	219	44	44	15
##	341	7.50	91	0	105	43	29	16
##	342	7.38	93	0	268	72	120	10
##	343	7.81	118	13	422	71	102	10
	344	5.99	121	10	371	26	42	14
	345	8.43	126	0	108	70	80	13
	346	4.81	149	0	279	79	68	12
	347	8.97	125	0	144	33	107	13
	348	6.88	112	0	161	27	39	14
	349	12.57	107	20	459	49	102	11
	350	9.32	96	18	467	49	27	14
##	351	8.64	91	17	266	63	101	17
##	352	10.44	105	16	458	62	115	16
	353	13.44	122	14	288	61	103	17
##	354	9.45	92	12	430	35	67	12
	355	5.30	145	1	80	42	31	18
##	356	7.02	146	0	306	42	100	11
##	357	3.58	164	0	111	72	109	12
##	358	13.36	72	3	276	34	73	15
##	359	4.17	118	10	71	69	96	11
##	360	3.13	130	11	396	66	62	14
##	361	8.77	114	7	265	52	86	15
##	362	8.68	104	10	183	56	25	15
##	363	5.25	110	0	26	79	55	12
	364	10.26	108	1	377	25	75	12
	365	10.50	131	16	488	30	21	14
	366	6.53	162	0	122	57	30	17
##	367	5.98	134	11	447	53	56	12
	368	14.37	53	0	256	52	106	17
	369	10.71	79	10	348	74	22	14
	370	10.71	122	22	463	36	100	14
	371	7.68	119	22	403	42 54	41	12
##	372	9.08	126	0	191	54	81	16

```
## 373
           7.80
                                           508 65
                    98
                                 0
                                                       50
                                                                  11
## 374
           5.58
                  116
                                 0
                                           402 78
                                                       71
                                                                  17
## 375
           9.44
                                 7
                                                47
                   118
                                           90
                                                       47
                                                                  12
## 376
           7.90
                  124
                                 4
                                           206
                                                73
                                                       46
                                                                  11
## 377
          16.27
                   92
                                19
                                           319
                                                44
                                                       60
                                                                  11
## 378
           6.81
                  125
                                 0
                                           263
                                                41
                                                       61
                                                                  12
## 379
           6.11
                  119
                                 3
                                           105
                                                79
                                                       88
                                                                  12
## 380
           5.81
                  107
                                 0
                                           404
                                                54
                                                      111
                                                                  15
## 381
           9.64
                   89
                                10
                                           17
                                                68
                                                       64
                                                                  17
## 382
           3.90
                  151
                                21
                                           496
                                                77
                                                       65
                                                                  13
## 383
           4.95
                  121
                                19
                                           315
                                                66
                                                       28
                                                                  14
## 384
           9.35
                                 0
                                           76
                                                63
                   68
                                                      117
                                                                  10
## 385
          12.85
                  112
                                15
                                           348
                                                28
                                                       37
                                                                  12
## 386
           5.87
                  132
                                13
                                           455
                                                62
                                                       73
                                                                  17
## 387
           5.32
                  160
                                 0
                                           170
                                                39
                                                      116
                                                                  16
## 388
           8.67
                   115
                                14
                                           238
                                                73
                                                       73
                                                                  14
## 389
           8.14
                   78
                                11
                                           245
                                                79
                                                       89
                                                                  16
## 390
           8.44
                                                35
                                                       42
                  107
                                 8
                                           328
                                                                  12
## 391
           5.47
                  111
                                 9
                                           61
                                                67
                                                       75
                                                                  12
## 392
           6.10
                                 0
                  124
                                            49
                                                56
                                                       63
                                                                  16
## 393
           4.53
                  130
                                13
                                           315
                                                34
                                                       42
                                                                  13
## 394
           5.57
                  120
                                10
                                           26
                                                30
                                                       51
                                                                  17
## 395
           5.35
                                                33
                  139
                                19
                                           366
                                                       58
                                                                  16
## 396
          12.57
                  128
                                17
                                           203
                                                33
                                                      108
                                                                  14
## 397
           6.14
                  120
                                                55
                                                       23
                                                                  11
                                3
                                           37
## 398
           7.41
                  159
                                12
                                           368
                                                40
                                                       26
                                                                  18
## 399
           5.94
                   95
                                 7
                                           284
                                                50
                                                       79
                                                                  12
## 400
           9.71
                  120
                                 0
                                            27
                                                49
                                                       37
                                                                  16
```

#Plot correlation headmap

library(GGally)

```
## Warning: package 'GGally' was built under R version 4.1.2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
```

ggcorr(Carseats_Filtered, label = TRUE, palette = "RdBu", name = "Correlation", hjust = 0.75, label_siz

Education

#Check to explore Misssing Data

```
 \textit{\#We Look at the summary of the dataset and see if there are NA's present in variables/columns } \\
NA_perct <- function(df, fmt = F) {</pre>
  return (df %>%
            is.na() %>%
            colMeans() %>%
            sapply(function(x) {
              if (fmt) {
                 return(sprintf("%.5f%", x))
              return (x)
            })
}
NA_perct_df <- NA_perct(Carseats_Filtered) %>%
  data_frame(Columns = names(.), `NA % = .) %>%
  mutate_at(
    vars(`NA %`),
    funs(round(. * 100, 2))
  mutate(label = sprintf("%g%%", `NA %`)) %>%
  arrange(desc(`NA %`))
```

```
## Warning: 'data_frame()' was deprecated in tibble 1.1.0.
## Please use 'tibble()' instead.
```

```
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_warnings()' to see where this warning was generated.
## Warning: 'funs()' was deprecated in dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
     # Simple named list:
##
     list(mean = mean, median = median)
##
##
    # Auto named with 'tibble::lst()':
##
    tibble::lst(mean, median)
##
##
     # Using lambdas
     list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_warnings()' to see where this warning was generated.
NA perct df %>% select(-label)
## # A tibble: 7 x 2
    Columns
##
     <chr>
                  <dbl>
## 1 ï..Sales
## 2 Price
## 3 Advertising
## 4 Population
## 5 Age
## 6 Income
                      0
## 7 Education
                      0
```

This indicates that there are no missing data

summary(Carseats_Filtered)

```
ï..Sales
##
                       Price
                                   Advertising
                                                     Population
                                                         : 10.0
  Min. : 0.000
                   Min. : 24.0
                                   Min. : 0.000
                                                   Min.
                   1st Qu.:100.0
                                   1st Qu.: 0.000
## 1st Qu.: 5.390
                                                   1st Qu.:139.0
## Median : 7.490
                   Median :117.0
                                   Median : 5.000
                                                   Median :272.0
## Mean
         : 7.496
                   Mean
                         :115.8
                                   Mean
                                        : 6.635
                                                   Mean
                                                         :264.8
## 3rd Qu.: 9.320
                   3rd Qu.:131.0
                                   3rd Qu.:12.000
                                                   3rd Qu.:398.5
## Max.
         :16.270
                   Max.
                          :191.0
                                  Max.
                                         :29.000
                                                   Max.
                                                         :509.0
##
                      Income
                                    Education
        Age
## Min.
         :25.00
                  Min. : 21.00
                                  Min.
                                        :10.0
## 1st Qu.:39.75
                  1st Qu.: 42.75
                                   1st Qu.:12.0
## Median :54.50
                  Median : 69.00
                                  Median:14.0
## Mean :53.32
                  Mean : 68.66
                                  Mean :13.9
## 3rd Qu.:66.00
                  3rd Qu.: 91.00
                                   3rd Qu.:16.0
## Max. :80.00 Max. :120.00
                                  Max. :18.0
```

glimpse(Carseats_Filtered)

Predicting Sales of Baby Car Seats

```
MyDecisionTree <-Carseats_Filtered[, 1:7]</pre>
Model_2 <-rpart(":..Sales"., data=Carseats_Filtered, method="anova")</pre>
summary(Model_2)
## Call:
## rpart(formula = ":..Sales ~ ., data = Carseats_Filtered, method = "anova")
##
    n = 400
##
##
              CP nsplit rel error
                                      xerror
## 1 0.14251535
                      0 1.0000000 1.0025580 0.06924325
## 2
     0.08034146
                      1 0.8574847 0.9049745 0.06512823
                      2 0.7771432 0.8715420 0.06434565
## 3
     0.06251702
## 4 0.02925241
                      3 0.7146262 0.7820490 0.05668452
## 5
     0.02537341
                      4 0.6853738 0.7731898 0.05343946
     0.02127094
                      5 0.6600003 0.7645757 0.05231488
## 6
                      6 0.6387294 0.7539634 0.05251800
## 7 0.02059174
## 8 0.01632010
                      7 0.6181377 0.7362951 0.05084472
## 9 0.01521801
                      8 0.6018176 0.7583298 0.05538272
## 10 0.01042023
                      9 0.5865996 0.8027608 0.05777675
                     10 0.5761793 0.8120555 0.05809388
## 11 0.01000559
## 12 0.01000000
                     12 0.5561681 0.8171755 0.05885499
##
## Variable importance
##
         Price Advertising
                                    Age
                                             Income
                                                     Population
                                                                   Education
##
            49
                        18
                                    16
                                                  8
                                                              6
##
## Node number 1: 400 observations,
                                        complexity param=0.1425153
##
     mean=7.496325, MSE=7.955687
##
     left son=2 (329 obs) right son=3 (71 obs)
##
     Primary splits:
##
                     < 94.5 to the right, improve=0.14251530, (0 missing)
         Price
                             to the left, improve=0.07303226, (0 missing)
##
         Advertising < 7.5
                     < 61.5 to the right, improve=0.07120203, (0 missing)
##
         Age
##
                     < 61.5 to the left, improve=0.02840494, (0 missing)
         Income
##
         Population < 174.5 to the left, improve=0.01077467, (0 missing)
##
## Node number 2: 329 observations,
                                        complexity param=0.08034146
```

```
##
     mean=7.001672, MSE=6.815199
##
     left son=4 (174 obs) right son=5 (155 obs)
##
     Primary splits:
##
                            to the left, improve=0.11402580, (0 missing)
         Advertising < 6.5
                     < 136.5 to the right, improve=0.08411056, (0 missing)
##
         Price
##
                     < 63.5 to the right, improve=0.08091745, (0 missing)
         Age
##
                     < 60.5 to the left, improve=0.03394126, (0 missing)
                             to the left, improve=0.01831455, (0 missing)
         Population < 23
##
##
     Surrogate splits:
##
                            to the left, agree=0.599, adj=0.148, (0 split)
         Population < 223
##
         Education < 10.5 to the right, agree=0.565, adj=0.077, (0 split)
##
                    < 53.5 to the right, agree=0.547, adj=0.039, (0 split)
                    < 114.5 to the left, agree=0.547, adj=0.039, (0 split)
##
         Income
##
         Price
                    < 106.5 to the right, agree=0.544, adj=0.032, (0 split)
##
## Node number 3: 71 observations,
                                      complexity param=0.02537341
##
     mean=9.788451, MSE=6.852836
##
     left son=6 (36 obs) right son=7 (35 obs)
##
     Primary splits:
                    < 54.5 to the right, improve=0.16595410, (0 missing)
##
         Age
##
         Price
                    < 75.5 to the right, improve=0.08365773, (0 missing)
##
                    < 30.5 to the left, improve=0.03322169, (0 missing)
         Education < 10.5 to the right, improve=0.03019634, (0 missing)
##
##
         Population < 268.5 to the left, improve=0.02383306, (0 missing)
##
     Surrogate splits:
                             to the right, agree=0.606, adj=0.200, (0 split)
##
         Advertising < 4.5
##
                     < 73
                             to the right, agree=0.592, adj=0.171, (0 split)
         Population < 272.5 to the left, agree=0.592, adj=0.171, (0 split)
##
##
                     < 79.5 to the right, agree=0.592, adj=0.171, (0 split)
         Education
                     < 11.5 to the left, agree=0.577, adj=0.143, (0 split)
##
##
## Node number 4: 174 observations,
                                       complexity param=0.02127094
     mean=6.169655, MSE=4.942347
##
##
     left son=8 (58 obs) right son=9 (116 obs)
##
     Primary splits:
##
                     < 63.5 to the right, improve=0.078712160, (0 missing)
         Age
##
                     < 130.5 to the right, improve=0.048919280, (0 missing)
##
         Population < 26.5 to the left, improve=0.030421540, (0 missing)
##
                     < 67.5 to the left, improve=0.027749670, (0 missing)
##
         Advertising < 0.5
                             to the left, improve=0.006795377, (0 missing)
##
     Surrogate splits:
##
         Income
                    < 22.5 to the left, agree=0.678, adj=0.034, (0 split)
                    < 96.5 to the left,
                                         agree=0.672, adj=0.017, (0 split)
##
         Price
##
         Population < 26.5 to the left, agree=0.672, adj=0.017, (0 split)
##
                                       complexity param=0.06251702
## Node number 5: 155 observations,
     mean=7.935677, MSE=7.268151
##
##
     left son=10 (28 obs) right son=11 (127 obs)
##
     Primary splits:
                     < 136.5 to the right, improve=0.17659580, (0 missing)
##
         Price
##
                     < 73.5 to the right, improve=0.08000201, (0 missing)
         Age
##
                     < 60.5 to the left, improve=0.05360755, (0 missing)
##
         Advertising < 13.5 to the left,
                                           improve=0.03920507, (0 missing)
                             to the left, improve=0.01037956, (0 missing)
##
         Population < 399
```

```
##
     Surrogate splits:
##
         Advertising < 24.5 to the right, agree=0.826, adj=0.036, (0 split)
##
## Node number 6: 36 observations,
                                      complexity param=0.0163201
##
     mean=8.736944, MSE=4.961043
     left son=12 (12 obs) right son=13 (24 obs)
##
##
     Primary splits:
                     < 89.5 to the right, improve=0.29079360, (0 missing)
##
         Price
##
         Income
                     < 39.5 to the left, improve=0.19043350, (0 missing)
##
         Advertising < 11.5 to the left, improve=0.17891930, (0 missing)
                     < 75.5 to the right, improve=0.04316067, (0 missing)
##
                     < 14.5 to the left, improve=0.03411396, (0 missing)
##
         Education
##
     Surrogate splits:
##
         Advertising < 16.5 to the right, agree=0.722, adj=0.167, (0 split)
##
                     < 37.5 to the left, agree=0.722, adj=0.167, (0 split)
         Income
##
         Age
                     < 56.5 to the left, agree=0.694, adj=0.083, (0 split)
##
## Node number 7: 35 observations
##
     mean=10.87, MSE=6.491674
##
## Node number 8: 58 observations,
                                      complexity param=0.01042023
     mean=5.287586, MSE=3.93708
##
     left son=16 (10 obs) right son=17 (48 obs)
##
     Primary splits:
##
         Price
                    < 137
                            to the right, improve=0.14521540, (0 missing)
##
         Education < 15.5 to the right, improve=0.07995394, (0 missing)
##
                    < 35.5 to the left, improve=0.04206708, (0 missing)
                    < 79.5 to the left, improve=0.02799057, (0 missing)
##
         Age
##
         Population < 52.5 to the left,
                                          improve=0.01914342, (0 missing)
##
## Node number 9: 116 observations,
                                       complexity param=0.01000559
##
     mean=6.61069, MSE=4.861446
     left son=18 (58 obs) right son=19 (58 obs)
##
##
     Primary splits:
##
         Income
                    < 67
                            to the left, improve=0.05085914, (0 missing)
##
         Population < 392
                            to the right, improve=0.04476721, (0 missing)
##
                    < 127
                            to the right, improve=0.04210762, (0 missing)
##
                    < 37.5 to the right, improve=0.02858424, (0 missing)
##
         Education < 14.5 to the left, improve=0.01187387, (0 missing)
##
     Surrogate splits:
                     < 12.5 to the right, agree=0.586, adj=0.172, (0 split)
##
         Education
##
                     < 58.5 to the left, agree=0.578, adj=0.155, (0 split)
         Age
##
         Price
                     < 144.5 to the left, agree=0.569, adj=0.138, (0 split)
##
         Population < 479 to the right, agree=0.560, adj=0.121, (0 split)
                            to the right, agree=0.543, adj=0.086, (0 split)
##
         Advertising < 2.5
##
## Node number 10: 28 observations
     mean=5.522857, MSE=5.084213
##
##
## Node number 11: 127 observations,
                                        complexity param=0.02925241
##
     mean=8.467638, MSE=6.183142
##
     left son=22 (29 obs) right son=23 (98 obs)
##
     Primary splits:
                     < 65.5 to the right, improve=0.11854590, (0 missing)
##
         Age
```

```
##
                    < 51.5 to the left, improve=0.08076060, (0 missing)
##
         Advertising < 13.5 to the left, improve=0.04801701, (0 missing)
##
                   < 11.5 to the right, improve=0.02471512, (0 missing)
                            to the left, improve=0.01908657, (0 missing)
##
         Population < 479
## Node number 12: 12 observations
    mean=7.038333, MSE=2.886964
##
## Node number 13: 24 observations
    mean=9.58625, MSE=3.834123
##
##
## Node number 16: 10 observations
    mean=3.631, MSE=5.690169
##
## Node number 17: 48 observations
##
    mean=5.632708, MSE=2.88102
##
## Node number 18: 58 observations
##
    mean=6.113448, MSE=3.739109
##
## Node number 19: 58 observations,
                                       complexity param=0.01000559
    mean=7.107931, MSE=5.489285
##
     left son=38 (10 obs) right son=39 (48 obs)
##
    Primary splits:
         Population < 390.5 to the right, improve=0.10993270, (0 missing)
##
##
                     < 124.5 to the right, improve=0.07534567, (0 missing)
##
         Advertising < 0.5 to the left, improve=0.07060488, (0 missing)
                     < 45.5 to the right, improve=0.04611510, (0 missing)
                     < 11.5 to the right, improve=0.03722944, (0 missing)
##
         Education
## Node number 22: 29 observations
     mean=6.893793, MSE=6.08343
##
##
## Node number 23: 98 observations,
                                       complexity param=0.02059174
     mean=8.933367, MSE=5.262759
##
##
     left son=46 (34 obs) right son=47 (64 obs)
##
     Primary splits:
##
         Income
                     < 60.5 to the left, improve=0.12705480, (0 missing)
##
         Advertising < 13.5 to the left, improve=0.07114001, (0 missing)
##
                     < 118.5 to the right, improve=0.06932216, (0 missing)
##
         Education < 11.5 to the right, improve=0.03377416, (0 missing)
                     < 49.5 to the right, improve=0.02289004, (0 missing)
##
         Age
##
     Surrogate splits:
         Education < 17.5 to the right, agree=0.663, adj=0.029, (0 split)
##
## Node number 38: 10 observations
     mean=5.406, MSE=2.508524
##
##
## Node number 39: 48 observations
    mean=7.4625, MSE=5.381106
##
##
## Node number 46: 34 observations,
                                       complexity param=0.01521801
##
    mean=7.811471, MSE=4.756548
    left son=92 (19 obs) right son=93 (15 obs)
```

```
##
     Primary splits:
##
                     < 119.5 to the right, improve=0.29945020, (0 missing)
         Price
         Advertising < 11.5 to the left, improve=0.14268440, (0 missing)
##
                   < 40.5 to the right, improve=0.12781140, (0 missing)
##
##
         Population < 152 to the left, improve=0.03601768, (0 missing)
                     < 49.5 to the right, improve=0.02748814, (0 missing)
##
##
     Surrogate splits:
         Education < 12.5 to the right, agree=0.676, adj=0.267, (0 split)
##
##
         Advertising < 7.5
                            to the right, agree=0.647, adj=0.200, (0 split)
                     < 53.5 to the left, agree=0.647, adj=0.200, (0 split)
##
##
         Population < 240 to the right, agree=0.618, adj=0.133, (0 split)
                     < 41.5 to the right, agree=0.618, adj=0.133, (0 split)
##
         Income
##
## Node number 47: 64 observations
##
     mean=9.529375, MSE=4.5078
##
## Node number 92: 19 observations
     mean=6.751053, MSE=3.378915
##
## Node number 93: 15 observations
     mean=9.154667, MSE=3.273025
# Too Complex
plot(Model_2)
text(Model 2)
```



```
##Less Complex
Model_2 = rpart (ï..Sales~.,data=Carseats_Filtered, method="anova", control = rpart.control(minsplit = 0
plot(Model_2)
text(Model_2)
```


#Difficult to follow print(Model_2)

```
## n= 400
##
## node), split, n, deviance, yval
##
         * denotes terminal node
##
   1) root 400 3182.2750 7.496325
##
      2) Price>=94.5 329 2242.2000 7.001672
##
        4) Advertising< 6.5 174 859.9684 6.169655
##
##
          8) Age>=63.5 58 228.3507 5.287586 *
##
         9) Age< 63.5 116 563.9277 6.610690 *
##
        5) Advertising>=6.5 155 1126.5630 7.935677
##
        10) Price>=136.5 28 142.3580 5.522857 *
##
         11) Price< 136.5 127 785.2591 8.467638
##
          22) Age>=65.5 29 176.4195 6.893793 *
##
          23) Age< 65.5 98 515.7504 8.933367
##
            46) Income< 60.5 34 161.7226 7.811471 *
            47) Income>=60.5 64 288.4992 9.529375 *
##
```

```
## 3) Price< 94.5 71 486.5513 9.788451
## 6) Age>=54.5 36 178.5976 8.736944 *
## 7) Age< 54.5 35 227.2086 10.870000 *

library(rattle)
library(rpart.plot)
fancyRpartPlot(Model_2)</pre>
```


Rattle 2022-Apr-12 13:39:32 Mukht

##QB2. Consider the following input: Sales=9, Price=6.54, Population=124, Advertising=0, Age=76, Income= 110, Education=10 What will be the estimated Sales for this record using the decision tree model?

```
Model_3 <- data.frame(Price=6.54, Population=124, Advertising=0, Age=76, Income= 110, Education=10)
predict(Model_2, Model_3, method = "anova")</pre>
```

1 ## 8.736944