Dep. Matem., Univ. Minho

6 de Maio de 2009

$Resolução~do~1^{\underline{o}}$ Teste de

Lógica EI

Lic. Eng. Informática

Duração: 2 horas

Este teste é constituído por 6 questões. Justifique adequadamente cada uma das suas respostas.

1. Seja X o conjunto das palavras sobre o alfabeto $\{a, *, (,)\}$ e seja G o conjunto gerado pela seguinte definição indutiva determinista sobre X.

$$\frac{x \in G}{a \in G} \ 1 \qquad \frac{x \in G}{xa \in G} \ 2 \qquad \frac{x \in G \quad y \in G}{(x * y) \in G} \ 3$$

Seja ainda $i:G\longrightarrow \mathbb{N}$ a única função que satisfaz as seguintes condições:

- i(a) = 1;
- i(xa) = i(x) + 1, para todo o $x \in G$;
- i((x * y)) = i(x) + i(y), para todos os $x, y \in G$.
- (a) Construa a árvore de formação do elemento u = ((aa * a)a * a) de G.

R: A árvore de formação de u é a seguinte

$$\frac{\overline{a \in G}}{\underbrace{aa \in G}} \stackrel{1}{2} \quad \overline{a \in G} \quad 1$$

$$\underbrace{\frac{(aa * a) \in G}{(aa * a)a \in G}} \quad 2 \quad \overline{a \in G} \quad 1$$

$$\underbrace{((aa * a)a \in G)} \quad 2 \quad \overline{a \in G} \quad 3$$

- (b) Indique um elemento de X que não pertence a G.
- R: Seja, por exemplo, v = aa). É claro que v é um elemento de X pois é uma sequência finita de letras do alfabeto $\{a,*,(,)\}$. Por outro lado v não pertence a G. De facto, dado que a última letra de v é) e a única regra que tem como conclusão uma palavra que acaba por) é a terceira, para v pertencer a G teria que ser conclusão de alguma instância

$$\frac{x \in G \quad y \in G}{v \in G} \ 3$$

da regra 3. Ora tal é impossível pois nesse caso a primeira letra de v teria que ser (, o que não acontece.

- (c) Calcule i(u).
- R: Denotemos por (i.1), (i.2) e (i.3) respectivamente a primeira, a segunda e a terceira condições da definição da função i. Tem-se

$$i(u) = i(((aa*a)a*a))$$

$$= i((aa*a)a) + i(a) por (i.3)$$

$$= i((aa*a)) + 1 + 1 por (i.1) e (i.2)$$

$$= i(aa) + i(a) + 2 por (i.3)$$

$$= i(a) + 1 + 1 + 2 por (i.1) e (i.2)$$

$$= 1 + 4 por (i.1)$$

$$= 5.$$

- (d) Enuncie o teorema de indução estrutural para G.
- **R:** O Princípio de Indução Estrutural para G pode ser enunciado da seguinte forma. Seja P(x) uma propriedade relativa aos elementos $x \in G$ e suponhamos que:
 - (1) P(a) é verdadeira;
 - (2) para qualquer $x \in G$, se P(x) é verdadeira, então P(xa) é verdadeira;
 - (3) para quaisquer $x, y \in G$, se P(x) e P(y) são verdadeiras, então P((x * y)) é verdadeira. Então P(x) é verdadeira, para todo o $x \in G$.
- (e) Mostre que, para todo o $x \in G$, i(x) é o número de ocorrências da letra a na palavra x.
- **R:** A prova será feita por indução estrutural sobre G. Para cada $x \in G$, denotemos por $|x|_a$ o número de ocorrências da letra a na palavra x e seja P(x) a afirmação $i(x) = |x|_a$.
 - (1) P(a) é a afirmação $i(a) = |a|_a$. Ora, i(a) = 1 por (i.1), e como é evidente $|a|_a = 1$. Logo, P(a) é verdadeira.
 - (2) Seja $x \in G$ e suponhamos, por hipótese de indução (H.I.), que P(x) é válida. Ou seja, suponhamos que se tem $i(x) = |x|_a$. Queremos provar que P(xa) é válida, i.e., que se tem $i(xa) = |xa|_a$. Ora i(xa) = i(x) + 1 por (i.2), e claramente $|xa|_a = |x|_a + 1$. Logo, pode-se deduzir

$$i(xa) = i(x) + 1$$

= $|x|_a + 1$ por $(H.I.)$
= $|xa|_a$.

Portanto P(xa) é verdadeira.

(3) Sejam $x, y \in G$ e suponhamos, por hipótese de indução (H.I.), que P(x) e P(y) são verdadeiras. Ou seja, suponhamos que se tem $i(x) = |x|_a$ e $i(y) = |y|_a$. Queremos provar que se verifica P((x*y)), i.e., que se tem $i((x*y)) = |(x*y)|_a$. Ora

$$i((x*y)) = i(x) + i(y)$$
 por (i.3)
= $|x|_a + |y|_a$ por (H.I.)
= $|(x*y)|_a$.

Logo P((x*y)) é verdadeira.

Mostramos assim que as condições (1), (2) e (3) do Princípio de Indução Estrutural para G são válidas. Logo, por esse Princípio, conclui-se que P(x) é verdadeira para todo o $x \in G$, ou seja, que i(x) é o número de ocorrências da letra a na palavra x para todo o $x \in G$.

2. Sejam φ , ψ e σ as seguintes fórmulas do Cálculo Proposicional:

$$\psi = p_1 \to p_2$$

$$\sigma = p_0 \lor \neg p_2$$

$$\varphi = p_0 \to (p_1 \lor p_2)$$

- (a) Dê exemplo de uma forma normal disjuntiva logicamente equivalente a $(\psi \wedge \sigma) \rightarrow \varphi$.
- R: Usando as propriedades da equivalência lógica, pode-se deduzir sucessivamente

$$\begin{split} (\psi \wedge \sigma) &\rightarrow \varphi & \Leftrightarrow & \neg (\psi \wedge \sigma) \vee \varphi \\ & \Leftrightarrow & \neg \psi \vee \neg \sigma \vee \varphi \\ & \Leftrightarrow & \neg (\neg p_1 \vee p_2) \vee \neg (p_0 \vee \neg p_2) \vee \neg p_0 \vee p_1 \vee p_2 \\ & \Leftrightarrow & (\neg \neg p_1 \wedge \neg p_2) \vee (\neg p_0 \wedge \neg \neg p_2) \vee \neg p_0 \vee p_1 \vee p_2 \\ & \Leftrightarrow & (p_1 \wedge \neg p_2) \vee (\neg p_0 \wedge p_2) \vee \neg p_0 \vee p_1 \vee p_2. \end{split}$$

Logo, $(p_1 \wedge \neg p_2) \vee (\neg p_0 \wedge p_2) \vee \neg p_0 \vee p_1 \vee p_2$ é uma forma normal disjuntiva (FND) logicamente equivalente a $(\psi \wedge \sigma) \rightarrow \varphi$.

Alternativamente, poderíamos determinar uma outra FND através da tabela de verdade da fórmula $(\psi \land \sigma) \rightarrow \varphi$, que apresentamos de seguida,

p_0	p_1	p_2	ψ	σ	φ	$(\psi \wedge \sigma) \to \varphi$
1	1	1	1	1	1	1
1	1	0	0	1	1	1
1	0	1	1	1	1	1
1	0	0	1	1	0	0
0	1	1	1	0	1	1
0	1	0	0	1	1	1
0	0	1	1	0	1	1
0	0	0	1	1	1	1

As linhas para as quais $(\psi \wedge \sigma) \to \varphi$ tem valor lógico 1 são todas excepto a 4^a . Portanto uma FND logicamente equivalente a $(\psi \wedge \sigma) \to \varphi$ é

 $(p_1 \land p_2 \land p_3) \lor (p_1 \land p_2 \land \neg p_3) \lor (p_1 \land \neg p_2 \land p_3) \lor (\neg p_1 \land p_2 \land p_3) \lor (\neg p_1 \land p_2 \land \neg p_3) \lor (\neg p_1 \land \neg p_2 \land p_3) \lor (\neg p_1 \land \neg p_2 \land \neg p_3).$

- (b) Diga se $(\psi \wedge \sigma) \to \varphi$ é uma tautologia.
- **R:** A fórmula $(\psi \wedge \sigma) \to \varphi$ não é uma tautologia como se pode verificar pela sua tabela de verdade. De facto, para as valorações v tais que $v(p_0) = 1$ e $v(p_1) = v(p_2) = 0$ tem-se $v((\psi \wedge \sigma) \to \varphi) = 0$.
- (c) Verifique se o conjunto $\{\psi, \sigma \land \neg \varphi\}$ é semanticamente consistente.
- **R:** O conjunto $\{\psi, \sigma \land \neg \varphi\}$ é semanticamente consistente pois existe pelo menos uma valoração que o satisfaz. Por exemplo, para qualquer valoração v tal que $v(p_0) = 1$ e $v(p_1) = v(p_2) = 0$ tem-se $v(\psi) = v(\sigma) = 1$ e $v(\varphi) = 0$ e, portanto, $v(\psi) = v(\sigma \land \neg \varphi) = 1$.
- 3. Considere as seguintes proposições:
 - A lógica é difícil ou não há muitos estudantes que gostam dela, e se a matemática é fácil então a lógica não é difícil.
 - Se há muitos estudantes que gostam de lógica, então a matemática não é fácil.
 - (a) Exprima as duas proposições acima através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - **R:** Representemos por p_0 a frase atómica "A lógica é difícil", por p_1 a frase "Há muitos estudantes que gostam de lógica" e por p_2 "A matemática é fácil". Então as duas proposições acima exprimem-se respectivamente pelas fórmulas

$$(p_0 \vee \neg p_1) \wedge (p_2 \rightarrow \neg p_0)$$
 e $p_1 \rightarrow \neg p_2$.

- (b) Diga, justificando, se a segunda proposição é ou não uma consequência da primeira.
- **R:** Pretende-se verificar se

$$(p_0 \vee \neg p_1) \wedge (p_2 \to \neg p_0) \models p_1 \to \neg p_2.$$

Denotemos $\varphi = (p_0 \vee \neg p_1) \wedge (p_2 \rightarrow \neg p_0)$ e $\psi = p_1 \rightarrow \neg p_2$. Analisando a tabela

p_0	p_1	p_2	φ	$ \psi $
1	1	1	0	0
1	1	0	1	1
1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
0	1	0	0	1
0	0	1	1	1
0	0	0	1	1

verifica-se que sempre que φ assume o valor lógico 1 (ou seja para as valorações dadas pelas 2^a , 4^a , 7^a e 8^a linhas) a fórmula ψ assume o mesmo valor. Logo a afirmação é verdadeira, i.e., a segunda proposição é uma consequência da primeira.

- 4. Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas de \mathcal{F}^{CP} . Diga se são verdadeiras ou falsas as seguintes proposições:
 - (a) Se $\neg \varphi \lor (\psi \to \sigma)$ é uma tautologia, então $\psi \to (\varphi \to \sigma)$ é uma tautologia.
 - **R:** Esta afirmação é verdadeira. De facto, suponhamos que $\neg \varphi \lor (\psi \to \sigma)$ é uma tautologia e consideremos uma valoração v qualquer.
 - Se $v(\varphi) = 0$, então $v(\varphi \to \sigma) = 1$ e portanto $v(\psi \to (\varphi \to \sigma)) = 1$.
 - Suponhamos agora que $v(\varphi) = 1$, donde $v(\neg \varphi) = 0$. Dado que $\neg \varphi \lor (\psi \to \sigma)$ é uma tautologia, tem-se então que $v(\psi \to \sigma) = 1$. Se $v(\psi) = 0$, então resulta imediatamente que $v(\psi \to (\varphi \to \sigma)) = 1$. Se $v(\psi) = 1$, então $v(\sigma) = 1$ donde resulta que $v(\varphi \to \sigma) = 1$ e daí $v(\psi \to (\varphi \to \sigma)) = 1$.

Provou-se assim que $\psi \to (\varphi \to \sigma)$ é uma tautologia.

- (b) Se ψ é uma contradição e $\Gamma \models \varphi \rightarrow \psi$, então φ é uma contradição.
- R: A afirmação é falsa. Um contra-exemplo é obtido, por exemplo, considerando

$$\psi = p_0 \wedge \neg p_0, \ \varphi = p_1 \ e \ \Gamma = \{p_1 \to (p_0 \wedge \neg p_0)\}.$$

De facto, $p_0 \land \neg p_0$ é uma contradição e, evidentemente, $p_1 \to (p_0 \land \neg p_0) \models p_1 \to (p_0 \land \neg p_0)$. No entanto p_1 não é uma contradição.

- 5. Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas de \mathcal{F}^{CP} . Mostre que, se $\Gamma \models \psi \lor \neg \sigma$ e $\Gamma \cup \{ \neg \varphi \to \psi \}$ é semanticamente inconsistente, então $\Gamma \models \sigma \to \varphi$.
- **R:** Suponhamos que $\Gamma \models \psi \lor \neg \sigma$ e $\Gamma \cup \{\neg \varphi \to \psi\}$ é semanticamente inconsistente. Temos de provar que todas as valorações que satisfazem Γ também satisfazem a fórmula $\sigma \to \varphi$.

Seja v uma valoração tal que $v \models \Gamma$, ou seja, tal que $v(\gamma) = 1$ para toda a fórmula $\gamma \in \Gamma$. Então $v(\psi \lor \neg \sigma) = 1$ pois, por hipótese, $\Gamma \models \psi \lor \neg \sigma$. Por outro lado $v(\neg \varphi \to \psi) = 0$ pois, caso contrário, ter-se-ia $v(\neg \varphi \to \psi) = 1$ e $v \models \Gamma$, donde resultaria que $\Gamma \cup \{\neg \varphi \to \psi\}$ seria semanticamente consistente, o que não se verifica por hipótese. Agora, de $v(\neg \varphi \to \psi) = 0$ deduz-se que $v(\psi) = 0$, o que em simultâneo com $v(\psi \lor \neg \sigma) = 1$ permite concluir que $v(\sigma) = 0$. Daqui resulta que $v(\sigma \to \varphi) = 1$ e a demonstração fica completa.

6. Sejam φ , ψ e σ fórmulas do Cálculo Proposicional. Construa uma derivação em DNP de uma (e uma só) das fórmulas seguintes:

$$\perp \leftrightarrow (\varphi \land \neg \varphi)$$
 ou $(\varphi \to \psi) \to \neg(\varphi \land \neg \psi)$.

R: A árvore seguinte é uma derivação em DNP da fórmula $\bot \leftrightarrow (\varphi \land \neg \varphi)$.

$$\frac{\cancel{\varphi}^{(1)}}{\varphi \wedge \neg \varphi} (\bot) \qquad \frac{\cancel{\varphi}^{(1)}}{\varphi} \wedge_1 E \qquad \frac{\cancel{\varphi}^{(1)}}{\neg \varphi} \neg_E \wedge_2 E$$

$$\xrightarrow{\bot \leftrightarrow (\varphi \wedge \neg \varphi)} \qquad \leftrightarrow I^{(1)}$$

A árvore seguinte é uma derivação em DNP da fórmula $(\varphi \to \psi) \to \neg(\varphi \land \neg \psi)$.

$$\frac{\varphi \xrightarrow{\psi}^{(2)}}{\varphi} \wedge_{1}E \qquad \varphi \xrightarrow{\psi}^{(1)} \to E \qquad \frac{\varphi \xrightarrow{\psi}^{(2)}}{\neg \psi} \wedge_{2}E$$

$$\frac{\bot}{\neg (\varphi \wedge \neg \psi)} \neg I^{(2)}$$

$$\frac{\bot}{(\varphi \to \psi) \to \neg (\varphi \wedge \neg \psi)} \to I^{(1)}$$

(FIM)

Cotações	1.	2.	3.	4.	5.	6.
	1.5+1+1.5+1+2	1.5 + 1 + 1.5	1+1.5	1.5 + 1.5	1.5	2