Mat210 Advanced Discrete Mathematics Notes

Thobias Høivik

Fall 2025

Contents

1 Pre-Semester Start – Cardinality

3

1 Pre-Semester Start – Cardinality

The following chapter contains notes based on what I think the course will cover in the first week (week 33). According to the syllabus, cardinality is mentioned early, so this section will review some basics.

Definition 1.1: Cardinality

Let *A* and *B* be sets. We say *A* and *B* have the same *cardinality*, written |A| = |B|, if there exists a bijection $f: A \to B$. If no such bijection exists, the sets have different cardinalities.

Example 1.1

Let $A = \{1,2\}$, $B = \{3,4\}$. While this is a trivial example, we can show that there are as many elements in A as in B by constructing a function $f: A \rightarrow B$ and showing that f is a bijection.

Proof that |A| = |B|. Let $f : A \rightarrow B$ be defined by

$$f(n) = n + 2$$
.

Let $x, y \in A$ and suppose f(x) = f(y). Then

$$f(x) = f(y)$$
$$x + 2 = y + 2$$
$$x = y.$$

Thus, f is injective.

Now let $b \in B$. Then $b-2 \in A$, since $B = \{3,4\}$ and subtracting 2 yields values in $A = \{1,2\}$. So for every $b \in B$, there exists $a = b-2 \in A$ such that f(a) = b. Hence, f is surjective.

Since *f* is both injective and surjective, it is a bijection, and therefore |A| = |B|.

Definition 1.2: Finite and Infinite Sets

A set *A* is *finite* if there exists a natural number $n \in \mathbb{N}$ such that $|A| = |\{1, 2, ..., n\}|$. Otherwise, *A* is *infinite*.

Definition 1.3: Countably Infinite

A set *A* is *countably infinite* if there exists a bijection $f : \mathbb{N} \to A$. A set is *countable* if it is finite or countably infinite.

Definition 1.4: Uncountable Set

A set *A* is *uncountable* if it is not countable; that is, there does not exist a bijection from \mathbb{N} to *A*.

Example 1.2

The set \mathbb{R} is famously uncountable, as is rigorously demonstrated in any introductory analysis course (e.g., via Cantor's diagonal argument).

Definition 1.5: Power Set

Let *A* be a set. The *power set* of *A*, denoted $\mathcal{P}(A)$, is the set of all subsets of *A*.

Theorem 1.1: Cantor's Theorem

For any set A, we have $|\mathcal{P}(A)| > |A|$. In particular, there is no surjection from A onto $\mathcal{P}(A)$.

Proof. It suffices to show that there cannot exist a surjective function $f: A \to \mathcal{P}(A)$. Suppose, for contradiction, that such a surjective function f exists. Define the set

$$B = \{a \in A \mid a \notin f(a)\}.$$

Then $B \subseteq A$, so $B \in \mathcal{P}(A)$. Since f is surjective, there exists $b \in A$ such that f(b) = B. We now ask: is $b \in B$?

- If $b \in B$, then by the definition of B, $b \notin f(b) = B$, a contradiction.
- If $b \notin B$, then by the definition of $B, b \in f(b) = B$, again a contradiction.

In either case, we reach a contradiction. Therefore, our assumption that f is surjective must be false. Hence, there is no surjection from A onto $\mathcal{P}(A)$, and so

$$|\mathscr{P}(A)| > |A|$$
.

After showing that the power set is strictly larger, we usually demonstrate that

$$|\mathscr{P}(A)| = 2^{|A|} > |A|$$

even for infinite sets. However, for infinite cardinals, exponentiation behaves differently than for finite numbers. For example, $2^{\aleph_0} = \mathfrak{c} = |\mathbb{R}|$.

Problem 1.1

Prove that $|\mathbb{N}| = |\mathbb{Z}|$, assuming $0 \in \mathbb{N}$.

Proof of Problem 1.1. We will construct a bijection $f : \mathbb{N} \to \mathbb{Z}$.

Define:

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$$

We first show that f is injective. Suppose f(x) = f(y).

Case 1: Both *x* and *y* are even. Then:

$$\frac{x}{2} = \frac{y}{2} \Rightarrow x = y.$$

Case 2: Both *x* and *y* are odd. Then:

$$-\frac{x+1}{2} = -\frac{y+1}{2} \Rightarrow x+1 = y+1 \Rightarrow x = y.$$

Case 3: One is even, one is odd. Then $f(x) \in \mathbb{Z}_{\geq 0}$, $f(y) \in \mathbb{Z}_{< 0}$, so $f(x) \neq f(y)$. Hence, f is injective.

Now we show that f is surjective. Let $z \in \mathbb{Z}$. We find $n \in \mathbb{N}$ such that f(n) = z:

Case 1: $z \ge 0$. Then let n = 2z. Since $z \in \mathbb{Z}_{\ge 0}$, $n \in \mathbb{N}$, and f(n) = z.

Case 2: z < 0. Then let n = -2z - 1. Since $z \in \mathbb{Z}_{<0}$, $n \in \mathbb{N}$, and:

$$f(n) = -\frac{n+1}{2} = -\frac{(-2z-1+1)}{2} = -\frac{-2z}{2} = z.$$

In both cases, such an $n \in \mathbb{N}$ exists, so f is surjective.

Thus, f is a bijection and $|\mathbb{N}| = |\mathbb{Z}|$.