Assignment

Section 3.4: 2(fj), 8, 11, 14, 15; Section 4.1: 10; Section 4.2: 23, 29, 30; Section 4.3: 10, 11, 12, 15

Work

3.4

2. Use Gaussian elimination to solve the following systems of linear equations.

(f)

$$x_1 + 2x_2 - x_3 + 3x_4 = 2$$
$$2x_1 + 4x_2 - x_3 + 6x_4 = 5$$
$$x_2 + 2x_4 = 3$$

$$\begin{pmatrix}
1 & 2 & -1 & 3 & | & 2 \\
2 & 4 & -1 & 6 & | & 5 \\
0 & 1 & 0 & 2 & | & 3
\end{pmatrix}
\xrightarrow{-2}
\xrightarrow{+}
\xrightarrow{+}
\xrightarrow{-2}
\xrightarrow{+}$$

$$\xrightarrow{-2}
\xrightarrow{+}
\xrightarrow{-2}
\xrightarrow{+}
\xrightarrow{-2}$$

$$\xrightarrow{-2}
\xrightarrow{+}
\xrightarrow{-2}
\xrightarrow{-2}$$

$$\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}$$

$$\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}$$

$$\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}$$

$$\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow{-2}$$

$$\xrightarrow{-2}
\xrightarrow{-2}
\xrightarrow$$

$$x_1 = -3 + 4x_4 \tag{2}$$

$$x_2 = 3 - 2x_4 \tag{3}$$

$$x_3 = 1 \tag{4}$$

$$x_4 = x_4 \tag{5}$$

$$S = \left\{ \begin{pmatrix} -3\\2\\1\\0 \end{pmatrix} + z \begin{pmatrix} 4\\-2\\0\\1 \end{pmatrix} : z \in \mathbb{R} \right\}$$
 (6)

(j)

$$2x_1 + 3x_3 - 4x_5 = 5 (7)$$

$$3x_1 - 4x_2 + 8x_3 + 3x_4 = 8 \tag{8}$$

$$x_1 - x_2 + 2x_3 + x_4 - x_5 = 2 (9)$$

$$-2x_1 + 5x_2 - 9x_3 - 3x_4 - 5x_5 = -8 (10)$$

$$\begin{pmatrix}
2 & 0 & 3 & 0 & -4 & 5 \\
3 & -4 & 8 & 3 & 0 & 8 \\
1 & -1 & 2 & 1 & -1 & 2 \\
-2 & 5 & -9 & -3 & -5 & -8
\end{pmatrix}
\xrightarrow{8}
\begin{pmatrix}
1 & 0 & 0 & 0 & -2 & 1 \\
0 & 1 & 0 & 0 & -3 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -2 & -1
\end{pmatrix}$$
(11)

$$x_1 = 2x_5 + 1 (12)$$

$$x_2 = 3x_5 \tag{13}$$

$$x_3 = -1 \tag{14}$$

$$x_4 = 2x_5 - 1 \tag{15}$$

$$x_5 = x_5 \tag{16}$$

$$S = \left\{ \begin{pmatrix} 1\\0\\-1\\-1\\0 \end{pmatrix} + z \begin{pmatrix} 2\\3\\0\\2\\1 \end{pmatrix} : x \in \mathbb{R} \right\}$$
 (17)

8. Let W denote the subspace of R⁵ consisting of all vectors having coordinates that sum to zero. The vectors

$$u_1 = (2, -3, 4, -5, 2),$$
 $u_2 = (-6, 9, -12, 15, -6),$
 $u_3 = (3, -2, 7, -9, 1),$ $u_4 = (2, -8, 2, -2, 6),$
 $u_5 = (-1, 1, 2, 1, -3),$ $u_6 = (0, -3, -18, 9, 12),$
 $u_7 = (1, 0, -2, 3, -2),$ $u_8 = (2, -1, 1, -9, 7)$

generate W. Find a subset $\{u_1, u_2, \dots, u_8\}$ that is a basis for W.

$$\mathsf{R}^{5} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} : x_{1} + x_{2} + x_{3} + x_{4} + x_{5} = 0, x_{1}, \dots, x_{5} \in \mathbb{R} \right\}$$
 (18)

$$\begin{pmatrix}
2 & -6 & 3 & 2 & -1 & 0 & 1 & 2 \\
-3 & 9 & -2 & -8 & 1 & -3 & 0 & -1 \\
4 & -12 & 7 & 2 & 2 & -18 & -2 & 1 \\
-5 & 15 & -9 & -2 & 1 & 9 & 3 & -9 \\
2 & -6 & 1 & 6 & -3 & 12 & -2 & 7
\end{pmatrix}$$
(19)

It follows that $\{u_1, u_3, u_5, u_7\}$ is linearly independent by theorem 3.16. Therefore $\{u_1, u_3, u_5, u_7\}$ is a basis for W.

11.

14.

15.

4.1

10.

4.2

23.

29. Prove that if E is an elementary matrix, then $det(E^t) = det(E)$.

(a) Types 1 & 2

$$E^t = E mtext{ (by HW.3.1.5)} mtext{ (21)}$$

$$\Rightarrow \det(E^t) = \det(E) \tag{22}$$

(b) **Type 3**

 E^t is an type 3 elementary matrix (by HW.3.1.5) det(E) = det(I) = 1 for any type elementary operation on I_n

$$det(E^t) = det(I)$$
 because E^t is type 3 (23)

$$\Rightarrow \det(E) = \det(E^t) = 1 \tag{24}$$

30. Let the rows of $A \in \mathsf{M}_{n \times n}(F)$. be a_1, a_2, \ldots, a_n and let B be the matrix in which the rows are $a_n, a_{n-1}, \ldots, a_1$. Calculate $\det(B)$ in terms of $\det(A)$.

(a) n is even

In A, swap

$$a_{n-1}$$
 with a_1 (25)

$$a_{n-2}$$
 with a_2 (26)

:

$$a_{n-\frac{n}{2}+1}$$
 with $a_{n-\frac{n}{2}}$ (27)

From the fact that $^{n}/_{2}$ swaps were performed it follows from Theorem 4.6 that

$$\det(B) = (-1)^{\frac{n}{2}} \det(A) \tag{28}$$

(b) \mathbf{n} is odd In A, swap

$$a_{n-1}$$
 with a_1 (29)

$$a_{n-2}$$
 with a_2 (30)

:

$$a_{n-\frac{n+1}{2}+1}$$
 with $a_{n-\frac{n+1}{2}}$ (31)

From the fact that $n - \frac{n+1}{2}$ swaps were performed it follows from Theorem 4.6 that

$$\det(B) = (-1)^{\frac{n-1}{2}} \det(A)$$
 (32)

4.3

- 10.
- 11.
- 12.