Sistemas Informáticos

Tema 1. Representación de la Información

Tabla de contenidos

- Introducción. El Sistema Informático
 - 1. Elementos del Sistema Informático
- 2. El Ordenador
 - La Información en el Ordenador
- Sistemas de numeración
 - El sistema binario
 - Sistemas de numeración intermedios
- Codificación alfanumérica.

1. Introducción

Sistema Informático

Cualquier empresa necesita procesar y almacenar información para llevar a cabo su actividad.

El **Sistema Informático** es el conjunto de elementos que utiliza la empresa para con este objetivo.

Los elementos del Sistema Informático son hardware, software, los datos y el personal humano

Hardware: es la parte física, los dispositivos electrónicos (se puede tocar)

Ordenadores, periféricos y sistema de comunicaciones

Software: es la parte lógica (no se puede tocar)
Sistema Operativo (SO) y otras aplicaciones

Personal Humano: personas que crean, mantienen y utilizan el **Sistema.**

Técnicos, Programadores, Usuarios

Datos: información de la empresa para el desarrollo de su actividad.

1.1. Elementos de un sistema informático

Hardware

- Materia física del Sistema Informático
- Dispositivos electrónicos
- se encuentran distribuidos físicamente en la CPU o torre, los periféricos y sistema de comunicaciones.
- No pueden trabajar por si mismos sino con los demás.
- Proporcionan la <u>capacidad</u> de proceso y la <u>potencia</u> de cálculo del sistema informático, así como las <u>interacción</u> con el mundo exterior.
 - Ej. Monitor, tarjeta gráfica, tarjeta de red ...

Software

- programas que se ejecutan en el ordenador
- un programa realiza una función o tarea.
- Los programas tampoco son capaces de trabajar por si mismos sino que se apoya en un software muy especial que es el SO

1.1. Elementos de un sistema informático

Personal Humano

- personas que participan en la dirección, diseño, desarrollo, implantación y explotación de un sistema informático.
- personal informático, según las funciones que realicen:
 - Director, jefe de proyecto, Técnico de Sistemas, Administrador Base de Datos, Analista funcional u orgánico, Programador, Jefe de explotación, Operador, Grabador y Administrador de sistemas.

2. El Ordenador

- Un ordenador es una máquina <u>electrónica</u> capaz de coger datos de entrada, procesarlos y producir datos de salida.
- La función principal de un ordenador es automatizar tareas
 - Para ello Ejecuta Programas: Un ordenador no es inteligente, lo que nos aporta es <u>velocidad</u>.
- Un programa está formado por instrucciones. Una instrucción es una orden que se realiza sobre unos datos.
 - Instrucción: sumar 3 y 5
- TODAS las tareas que realizamos con un ordenador, para el ordenador sólo son un conjunto de instrucciones que ejecuta.
 - Ejemplos: podemos utilizar un ordenador jugar. Cuando jugamos y movemos un personaje con el ratón o el teclado lo que hace el ordenador es ejecutar la orden mover sobre ese personaje y visualizarlo en el monitor en la posición de destino.

2.1 La Información en el Ordenador

- Tipos de Información:
 - Números
 - Letras
 - Música
 - Imágenes
- Los componentes del ordenador no entienden esta información, solo entienden de corriente eléctrica u otras magnitudes físicas.
 - sólo entiende la presencia o ausencia de corriente eléctrica (el código binario)
- Necesitamos sistemas de codificación que conviertan letras y números que nosotros utilizamos en algo entendible por el ordenador.
- El SO con ayuda de los componentes hardware transforman la información en impulsos eléctricos (0,1) o impulsos eléctricos (0,1) en información.

El bit es la unidad mínima de información

representado por 0 ó 1.

- Medidas múltiplos de bits:
 - Nibble o cuarteto conjunto de 4 bits
 - Byte u octeto conjunto de 8 bits.
 - Kilobyte (KB) conjunto de 1024 bytes
 - Megabyte (MB) conjunto de 1024 KB
 - Gigabyte (GB) conjunto de 1024 MB
 - Terabyte (TB) conjunto de 1024 GB
 - Petabyte (PB) conjunto de 1024 TB
 - Exabyte (EB) conjunto de 1024 PB

2^{10} = 1024 por lo que 1TB= 2^{40} bytes

Recuerda la B representa bytes y la b quiere decir bit, por ejemplo:
 30MB = 30 megabytes y 30Mbs =30 megabits por segundo

- a) ¿Cuántos KB son 2TB?
- b) ¿Cuántos B son 4MB?
- c) ¿Cuántos bits son 2B?
- d) ¿Cuántos MB son 1024KB?
- e) ¿Cuántos GB son 2048MB?
- f) ¿Cuántos TB son 256B?
- g) ¿Cuántos TB son 2048MB?

3. Sistemas de numeración

- Conjunto de símbolos y reglas que se utilizan para representar cantidades o datos numéricos.
 - Base: número de símbolos que lo componen.
 - Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Base 2: 0, 1
 - El valor de cada símbolo depende de la posición que ocupa en el número:

Teorema fundamental de la numeración

$$NUM = \sum X_i * B^i$$

- Ejemplo: el número 99₍₁₀ es:
- $9*10^1 + 9*10^0 = 9*10 + 9*1 = 90 + 9 = 99$
- Cada posición del digito tiene un valor intrínseco que aumenta de derecha a izquierda según potencias sucesivas de la base de sistema empleado

donde X valor absoluto del digito i posición respecto al punto decimal B base.

3.1 El sistema binario

- Sistema de numeración en Base 2: Utiliza dos símbolos diferentes 0 y 1, denominados bits.
- Es el sistema que maneja el ordenador internamente. Ya que se asocia cada uno de estos símbolos a la presencia o ausencia de tensión u otra magnitud.
- Con n bit podemos representar 2ⁿ valores
 - Si n=1 podemos representar 21=2 valores el 0 y el 1
 - Si n=2 podemos representar 2²=4 valores el 00-01-10-11
- Siguiendo el TFN, un número binario estará formado por un conjunto ordenado de bits, cuyo valor aumenta de derecha a izquierda según potencias de dos.

3.1.1 Transformaciones entre binario y decima

 Para transformar un número binario a decimal, debemos aplicar el TFN:

$$1001_{(2)} = 1 *2^3 + 0 *2^2 + 0*2^1 + 1*2^0 = 8 + 0 + 0 + 1 = 9_{(10)}$$

 Es decir, sumamos las potencias de dos cuyos dígitos son 1:

$$\frac{1001.001}{\text{pesos} \rightarrow 8} \frac{1}{8} \frac{0}{4} \frac{0}{2} \frac{1}{1} \frac{0}{1/2} \frac{0}{1/4} \frac{1}{1/8} = 8 + 1 + 1/8 = 9.125 \right)_{10}$$

3.1.2 Tranformaciones entre decimal y binario

 Para transformas un número decimal a binario dividimos la parte entera entre dos, hasta que sea menor que la base, los restos y el último cociente en orden inverso son el numero binario:

9:2 = 4 Resto **1**
4:2 = 2 Resto **0**
2:2 = **1** Resto **0**
$$9_{(10)} = 1001_{(2)}$$

Pasa el siguiente número de binario a decimal $1010.10100_{(2} =$

Pasa el siguiente número de decimal a binario 20.125 (10 =

- Una operación lógica asigna un valor (CIERTO=1 o FALSO=0) a la combinación de uno o más factores que también toman los valores (CIERTO=1 o FALSO=0).
- Los resultados de una operación lógica, para cada uno de los valores posibles de las variables, se fijan en una tabla denominada Tabla de Verdad, como la del siguiente ejemplo.
 - Por ejemplo, imaginate el sistema de control del toldo de una cafetería, que se gobierna mediante una operación lógica. Para que el motor que extiende el toldo se accione deberá tener en cuenta dos factores: ¿es de día? ¿está lloviendo? Si estos dos factores son ciertos, el motor debe ponerse en marcha y extender el toldo.

De dia	Llueve	Toldo
Falso	Falso	Falso
Falso	Cierto	Falso
Cierto	Falso	Falso
Cierto	Cierto	Cierto

Falso=0 Cierto=1

 Si el detector de metales SI nota que el cliente lleva objetos metálicos (1) y la puerta NO se abre (0); en cambio, si el cliente NO lleva objetos metálicos (0), la puerta SI se abre (1).

Funció	on NOT
α	S
1	0
0	1

Falso=0 Cierto=1

Función OR

α	b	S
0	0	0
0	1	1
1	0	1
1	1	1

Una aplicación práctica sencilla de la operación lógica OR, sería el circuito de señalización instalado en un comercio, en el que se puede entrar por dos puertas distintas, que avisaría al dependiente al entrar un cliente por cualquiera de las dos puertas del establecimiento. Si un cliente entra por la puerta a (1) O si un cliente entra por la puerta b (1), el timbre suena (1). Si no entra ningún cliente por ninguna de las puertas a (0) ni b (0). El timbre NO suena (0).

• Una aplicación de la operación lógica AND, sería el sistema de control de los pasajeros en un aeropuerto. Cada pasajero debe pasar por dos controles: ¿Tiene tarjeta de embarque? ¿Tiene pasaporte en regla? Una empleada del aeropuerto comprueba que tiene un billete válido y le da una tarjeta de embarque; a continuación, un agente de policía verifica que su pasaporte está en regla y no está en la lista de personas reclamadas. Un pasajero sólo puede embarcar en el avión si tiene tarjeta de embarque (1) y su pasaporte está en regla (1). En los demás casos no puede embarcar.

Función AND								
α	b	S						
0	0	0						
0	1	0						
1	0	0						
1	1	1						

Falso=0 Cierto=1

Ejercicios

En el aula virtual Realizamos Ejercicios1 del Tema1

3.2 Sistemas de numeración intermedios

 Se utilizan por su proximidad de significado al sistema decimal y su facilidad de conversión a binario:

Octal

- Utiliza ocho símbolos diferentes del 0 al 7 (Base 8)
- Tiene correspondencia directa con el sistema binario (cada símbolo en base 8 se puede representar con 3 bits).
- A veces lo utiliza el ordenador, por comodidad, para manejar datos.

Hexadecimal

- Utiliza 16 símbolos, del 0 al 9 y de la A a la F. Estas letras representan los dígitos del 10 al 15 del sistema decimal.
- Tiene correspondencia directa con el sistema binario (cada símbolo en base 16 se puede representar con 4 bits).
- Los usa el ordenador para expresar direcciones de memoria.

3.2 Sistemas de numeración intermedios

- Transformación de binario a códigos intermedios y viceversa
 - Octal: hacemos grupos de tres:
 - 100101100₍₂ = 454₍₈
 - 551 ₍₈ = 101 101 001₍₂
 - Hexadecimal: hacemos grupos de cuatro:
 - $000100101100_{(2} = 12C_{(16)}$
 - $32A_{(16} = 0011\ 0010\ 1010_{(2)}$

Ejercicios

En el aula virtual Realizamos Ejercicios2 del Tema1

- El ordenador no solo procesa datos numéricos, también procesa datos alfanuméricos (caracteres), estos al ser datos con los que no se realizan operaciones pueden ser creados utilizando tablas establecidas por acuerdo.
- Los sistemas de codificación estándar más importantes son:
 - ASCII (American Estándar Code for Information Interchange)
 - LATIN-1
 - ISO-8859-1.
 - UNICODE (Universal Code)
 - **UTF-8** (8-bit Unicode Transformation Format)

4. Codificación alfanumérica. ASCII

- American Standard Code For Information Interchange
- 7 bits para representar cada carácter
- Los 32 primeros son de control, no imprimibles y actualmente obsoletos, como el código 10 que hacía a la impresora saltar a la siguiente línea

4. Codificación alfanumérica

		000	001		010 011		100		101		110		111				
			0		1		2		3		4		5		6		7
0000		NUL	,	DL	E	SP		0		@		P		`		р	
	0		0		16		32		48		64		80		96		112
0001		SOH		DC:		!		1		A		Q		a		q	
	1		1		17		33		49		65		81		97		113
0010	_	STX		DC:		"		2		В		R		b		r	
	2	 	2		18		34	_	50		66		82		98		114
0011	_	ETX		DC		#	0.5	3	٠.	С		S		С		S	
01.00	3		3		19	_	35		51	_	67		83	_	99		115
0100	4	EOI	4	DC4) 20	\$	36	4	52	D	68	T	84	d	1.00	t	116
0101	4	ERIC		BT 4 1		0/	20	_	22	Е	UO	**	04	_	100		110
0101	5	ENÇ	≀ 5	NA	K. 21	%	37	5	53	E	69	U	85	е	101	u	117
0110		ACK		SYI		æ	37	б))	F	0.7	v	0)	f	101		117
0110	б	ACE	. 6	911	22	O.	38	٥.	54	F	70	ľ	86	1	102	v	118
0111		BEL		ETI		,		7	21	G	70	w	-00	g	102	w	110
****	7		7		23		39	l ′	55	•	71	**	87	6	103	"	119
1000		BS		CAI		(8		Н		x		h		x	
	8		8		24	`	40	-	56		72		88		104		120
1001		HT		EM)		9		I		Y		i		у	
	9		9		25	ľ	41		57		73		89		105		121
1010		LF		SUE	3	*		:		J		\mathbf{z}		j		z	
	Α		10		26		42		58		74		90		106		122
1011		VT		ESC		+		;		K		[k		{	
	В		11		27		43		59		75		91		107		123
1100		FF		FS		′		<		L		١		1			
	С		12		28		44		60		76		92		108		124
1101	_	CR		GS		-		=		M]		m		}	
	D		13		29		45		61		77		93		109		125
1110	_	so		RS	20	-	4.0	>		N	70	^	0.4	n		~	
1111	Е		14	***	30	,	46	_	62	_	78		94		110		126
1111	E	SI	1.5	US	21	/	47	?	62	О	70	_	0.6	0	111	DI	
	F		15		31		47		63		79		95		111		127

Tabla de códigos ASCII

HOLA

H = 1001000

O = 1001111

L = 1001100

A = 1000001

HOLA

100100010011111001100 1000001

Escribe en hexadecimal la frase **Tengo 18 años** usando ASCII de 7 bits.

- ASCII sólo sirve para caracteres del alfabeto inglés
 - No permite caracteres con acento ni ñ
- Latin-1 es ASCII extendido de 8 bits
 - Idéntico a ASCII hasta el carácter 127
 - Desde el 128 hasta el 255: vocales acentuada, ñ
 ...
- Sirve para los caracteres de los alfabetos de Europa Occidental
 - Español, Francés, Portugués ...

Busca la tabla de códigos ASCII extendida

Pasar la siguiente cadena de bits (escrito en ASCII con 8 bits) a Texto, pasándolo primero a hexadecimal y luego a texto:

4. Codificación alfanumérica. ISO-8859-1

- Codificación Estándar de la IANA de 1992 de 8 bits
- Para la codificación de texto enviado por Internet
- Está basado en Latin-1 pero no es equivalente
 - Ejemplo: Para indicar que en una página html los caracteres están codificados en formato ISO-8859-1 debe aparecer
 - <meta http-equiv=«content-type» content=«text/html»;charset=iso-8859-1»>

4. Codificación alfanumérica. UNICODE

Universal Code

- Utiliza 16 bits para representar caracteres alfanuméricos
 - UTF-8 (8-bit Unicode Transformation Format) es una parte del estándar Unicode compatible con ASCII
 - La IETF (Internet Engineering Task Force) define que UTF-8 debe estar soportada por todos los protocolos de Internet
 - Actualmente se tiende a tener todas las aplicaciones y bases de datos con la información codificada en UTF-8
 - Ejemplo: Para indicar que en una página html los caracteres están codificados en formato UTF-8 debe aparecer
 - <meta http-equiv=«content-type» content=«text/html»;charset=utf-8»>

- ¿Qué tipo de codificación se usa en las siguientes webs?.
 - http://barrapunto.com
 - http://meneame.net
 - http://microsoft.com
 - http://ubuntu.com