Sicurezza nei Sistemi Distribuiti

Aspetti di Sicurezza

- La sicurezza nei sistemi distribuiti deve riguardare tutti i componenti del sistema e coinvolge due aspetti principali:
 - Le comunicazioni tra utenti e processi
 - » soluzione : canali sicuri

- Autorizzazione di utenti e processi
 - soluzione : controllo degli accessi

- Meccanismi : chiavi crittografiche e
 - rimozione di utenti.

Minacce alla Sicurezza

Intercettazione

(accessi non autorizzati)

Interruzione

(diniego di servizio - denial of service)

Modifica

(modifiche di dati non autorizzate)

Fabbricazione

(inserimenti di dati non autorizzati)

Politica di Sicurezza

 Un sistema distribuito sicuro ha bisogno di una

politica di sicurezza

che definisce

le azioni che le entità del sistema possono eseguire e quelle che sono proibite.

 Una politica può essere realizzata tramite meccanismi di sicurezza.

Meccanismi di Sicurezza

- Crittografia
- Autenticazione
- Autorizzazione
- Auditing

Aspetti di Progettazione della Sicurezza

- Politiche di sicurezza possono essere implementate da servizi di sicurezza.
- Diversi aspetti devono essere considerati nella progettazione di politiche di sicurezza:
 - focus del controllo,
 - meccanismi e livelli,
 - semplicità.

Focus del Controllo

Tre approcci per la protezione da minacce alla sicurezza.

- (a) Protezione da operazioni non valide
- (b) Protezione da invocazioni non autorizzate
- (c) Protezione da utenti non autorizzati

Livelli dei Meccanismi di Sicurezza

A quale livello i meccanismi di sicurezza devono essere posti?

NB: I meccanismi di sicurezza nei sistemi distribuiti sono generalmente posti a livello del middleware.

Distribuzione dei Meccanismi di Sicurezza (1)

 Dipendenze tra servizi di sicurezza portano al concetto di

Trusted Computing Base

l'insieme di tutti i meccanismi di sicurezza in un sistema distribuito che sono necessari per rispettare la sicurezza del sistema.

- Una TCB in un sistema distribuito può includere i sistemi operativi locali dei vari nodi del sistema.
- Esempi: file system distribuito, middleware distribuito.

Crittografia (1)

Intrusioni attive e passive nelle comunicazioni.

Crittografia (2)

- Sistema Crittografico Simmetrico : $P = D\kappa(E\kappa(P))$: si usa la stessa chiave.
- **Sistema Crittografico Asimmetrico** : $P = D_{KD}(E_{KE}(P))$: si usano chiavi differenti (una pubblica e una privata): sistema a chiave pubblica

Crittografia Simmetrica: DES (1)

- Sistemi a cifratura simmetrica: Data Encryption Standard (DES) proposto nel 1970.
- I dati sono cifrati operando su blocchi di 64 bit usando 16 chiavi di 48 bit derivati da una chiave master a 56 bit.
- Una mangler function f è usata per cifrare un blocco a 32 bit.
- Estensioni: Triple-DES, DESX e AES (standard)

Crittografia Simmetrica: DES (2)

(a) Il principio del DES

(b) Schema di un ciclo di cifratura

Crittografia Simmetrica: DES (3)

Dettagli della generazione di chiavi per ciclo nel DES

D. Talia - Sistemi Distribuiti - UNICAL

Sistemi a Chiave Pubblica: RSA (1)

Sistema crittografico asimmetrico definito da Rivest, Shamir e Adleman (RSA) nel 1977, basato sul fatto che è molto complesso trovare i fattori primi di un numero di valore elevato.

- Ogni numero intero può essere scritto come il prodotto di numeri primi.
- Le chiavi pubbliche e private sono costruite a partire da numeri primi molto grandi.
- Decodificare RSA è equivalente a trovare quei numeri primi.

Sistemi a Chiave Pubblica: RSA (2)

La generazione della chiave privata e della chiave pubblica è basata su quattro passi:

- 1. Selezione di due numeri primi grandi, p e q
- 2. Calcolo di $n = p \times q$ e $z = (p-1) \times (q-1)$
- 3. Selezione di un numero d' che è primo per z
- 4. Calcolo del numero e tale che $e \times d = 1 \mod z$

d può essere usato per la decifratura ed e per la cifratura.

Ogni messaggio viene diviso in blocchi m_i e

Per cifrare un blocco:
$$c_i=m^e_i \pmod{n}$$

Per decifrare un blocco:
$$m_i = c^{d_i} \pmod{n}$$

Uso delle chiavi RSA in un'app

Uso combinato di DES e RSA

Sicurezza

- La sicurezza nei sistemi distribuiti coinvolge due aspetti principali:
 - Le comunicazioni tra utenti e processi
 - » soluzione : canali sicuri
 - Autorizzazione di utenti e processi
 - » soluzione : controllo degli accessi

Canali Sicuri (1)

- Un canale sicuro protegge il mittente e il destinatario da
 - Intercettazione

accesso non autorizzato al canale

Modifica

modifica non autorizzata di un messaggio

Fabbricazione

inserimento non autorizzato di un messaggio

20

Canali Sicuri (2)

 Autenticazione e integrità dei messaggi devono essere garantiti insieme.

 Viene usata una chiave segreta associata ad un canale: session key.

 Quando viene chiuso un canale la session key viene eliminata e distrutta.

Autenticazione Basata su Chiave Segreta (1)

Protocollo Challenge-Response per la mutua autenticazione di due "parti" che condividono una chiave segreta

Autenticazione basata su una shared secret key (KA,B)

Autenticazione Basata su Chiave Segreta (2)

E' possibile realizzare una ottimizazione del Protocollo Challenge-Response ??

Possibile protocollo di autenticazione basato su chiave segreta che usa solo 3 (invece di 5) messaggi.

Autenticazione Basata su Chiave Segreta (3)

Il **Reflection Attack** fa fallire il protocollo a 3 messaggi.

Per risolvere questo problema devono essere usati challenge differenti.

Autenticazione con Uso di un Key Distribution Center (1)

- In un sistema distribuito composto da N host, ogni host condivide N-1 chiavi e globalmente sono necessarie N(N-1)/2 chiavi segrete.
- In questo caso, per usare meno chiavi può essere usato un approccio centralizzato
 - => il **Key Distribution Center (KDC)** gestisce solo **N** chiavi.

Il principio di uso di un KDC.

Autenticazione con Uso di un Key Distribution Center (2)

 Il KDC può passare K_{B,KDC}(K_{A,B}) ad A affida ad A il compito di connettersi a B. Il messaggio è chiamato ticket.

Uso di un ticket per permettere ad Alice di connettersi a Bob.

Autenticazione con Uso di un Key Distribution Center (3)

Nonce: numero random usato solo una volta.

Il protocollo di autenticazione di Needham-Schroeder.

Autenticazione con Uso di un Key Distribution Center (4)

- Il messaggio 3 deve essere correlato al messaggio 1 per evitare l'intrusione di un'altra entità.
- Soluzione: Un nonce inviato inizialmente da Bob deve essere usato nel messaggio di Alice.

Il protocollo di autenticazione di Needham-Schroeder.

Autenticazione con Crittografia a Chiave Pubblica

- Alice vuole definire un canale sicuro con Bob e ambedue posseggono la chiave pubblica dell'altro.
- Bob genera una session key usata per le successive comunicazioni.

Mutua autenticazione in un sistema a chiave pubblica senza un KDC.

Autenticazione con Uso di un Key Distribution Center (5)

Protezione da riuso scorretto di una chiave generata nella sessione precedente nel protocollo di Needham-Schroeder,

Diffie-Hellman Key Exchange

- Lo scambio di chiavi Diffie-Hellman è un protocollo crittografico che consente a due entità di stabilire una chiave condivisa e segreta utilizzando un canale di comunicazione non sicuro.
- Non è necessario che le due parti si siano scambiate informazioni o si siano incontrate in precedenza.
- La chiave ottenuta mediante questo protocollo può essere successivamente impiegata per cifrare le comunicazioni successive tramite uno schema di crittografia simmetrica.

Diffie-Hellman Key Exchange

Lo scambio di chiavi Diffie-Hellman

- **g** è un generatore del gruppo moltiplicativo degli interi modulo **n**, dove **n** è un numero primo.
- x e y sono due numeri di grande valore (da mantenere segreti).
- È (praticamente) impossibile calcolare x avendo g^x mod n.
- La chiave segreta è data da gxy mod n

Messaggi: Integrità e Confidenzialità

- Oltre all'autenticazione, un canale sicuro deve guarantire:
 - confidenzialità contro l'intercettazione usando crittografia
 - integrità dei messaggi contro le modifiche usando firme digitali

Esempio: Kerberos (1)

- Kerberos è un sistema sviluppato al MIT per supportare l'implementazione della sicurezza in sistemi distribuiti. In particolare, Kerberos assiste i clienti a stabilire canali sicuri con un server.
- Kerberos è basato sul protocollo di autenticazione di Needham-Schroeder.
- Kerberos usa due componenti principali:
 - L' Authentication Server (AS)
 - Il Ticket Granting Service (TGS).

Esempio: Kerberos (2)

 L'Authentication Server (AS) autentica un utente e fornisce una chiave da usare per rendere sicuri i canali con un server.

• Il **Ticket Granting Service** (TGS) stabilisce canali sicuri con un server usando ticket (chiavi segrete crittografate).

Esempio: Kerberos (3)

Autenticazione in Kerberos.

Esempio: Kerberos (4)

Creazione di un canale sicuro in Kerberos.