Ред на елемент. Циклични групи.

Определение 1. Нека G е група c неутрален елемент $e, g \in G, n \in \mathbb{Z} \setminus \{0\}$ е ненулево цяло число,a

$$\operatorname{sign}(n) := \begin{cases} 1 & \text{sa } n > 0, \\ -1 & \text{sa } n < 0 \end{cases}$$

е знакът на п. Определяме

$$g^{n} := \begin{cases} e & \text{sa } n = 0, \\ \underbrace{g^{\operatorname{sign}(n)} \dots g^{\operatorname{sign}(n)}}_{|n|} & \text{sa } n \in \mathbb{Z} \setminus \{0\}. \end{cases}$$

Тук $g^1 := g$, а g^{-1} е обратният елемент на g.

Лема 2. (Правило за умножение на степени с равни основи:) $A \kappa o \ G \ e \ rpyna, \ g \in G \ u \ m, n \in \mathbb{N}$ са цели числа, то $g^m g^n = g^{m+n}$.

Доказателство. Ако m=0, то $g^{0+n}=g^n=e_Gg^n=g^0g^n$. Аналогично, $g^{m+0}=g^m=g^me_G=g^mg^0$ за n=0. Отсега нататък ще считаме, че $m,n\in\mathbb{Z}\setminus\{0\}$.

Ако $m, n \in \mathbb{Z} \setminus \{0\}$ имат един и същи знак $\operatorname{sign}(m) = \operatorname{sign}(n) = \varepsilon = \pm 1$, то

$$g^mg^n = \underbrace{g^\varepsilon \dots g^\varepsilon}_{|m|} \underbrace{g^\varepsilon \dots g^\varepsilon}_{|n|} = \underbrace{g^\varepsilon \dots g^\varepsilon}_{|m|+|n|} = g^{m+n},$$

защото m+n=arepsilon(|m|+|n|) за ненулеви цели числа m и n с един и същи знак arepsilon.

Нека $m \in \mathbb{Z} \setminus \{0\}$ и $n \in \mathbb{Z} \setminus \{0\}$ имат различни знаци и $|m| \geq |n|$. Ако означим $\varepsilon = \mathrm{sign}(m)$, то $\mathrm{sign}(n) = -\varepsilon$ и

$$g^{m}g^{n} = \underbrace{g^{\varepsilon} \dots g^{\varepsilon}}_{|m|} \underbrace{g^{-\varepsilon} \dots g^{-\varepsilon}}_{|n|} = \underbrace{g^{\varepsilon} \dots g^{\varepsilon}}_{|m|-|n|} = g^{m+n},$$

вземайки предвид $m+n=\varepsilon(|m|-|n|)$ за ненулеви цели числа m,n с различни знаци, $|m|\geq |n|$ и $\mathrm{sign}(m)=\varepsilon.$

Лема 3. (Правило за степенуване на степен:) Ако G е група, $g \in G$ и $m, n \in \mathbb{Z}$ са цели числа, то $(g^m)^n = g^{mn}$.

Доказателство. Ако n=0, то $g^{m,0}=g^0=e_G=(g^m)^0$.

Ако $n \in \mathbb{N}$, то

$$(g^m)^n = \underbrace{g^m \dots g^m}_{n} = g^{\underbrace{m + \dots + m}_{n}} = g^{mn}.$$

За отрицателно цяло n пресмятаме, че

$$(g^m)^n = \underbrace{(g^m)^{-1} \dots (g^m)^{-1}}_{|n|} = \underbrace{g^{-m} \dots g^{-m}}_{|n|} = g^{\underbrace{(-m) + \dots + (-m)}_{|n|}}_{|n|} = g^{(-m)|n|} = g^{mn},$$

вземайки предвид $(g^m)^{-1}=g^{-m}$. Последното равенство следва от това, че $(g^m)^{-1}\in G$ е единственото решение на уравнението $g^mx=e_G$ от G и $g^mg^{-m}=g^{m+(-m)}=g^0=e_G$, съгласно Лема 2 за умножение на степени с равни основи.

Нека G е група, $g \in G$. Ако съществува ненулево цяло число $m \in \mathbb{Z} \setminus \{0\}$ с $g^m = e_G$, то $g^{-m} = (g^m)^{-1} = e_G$ и съществува естествено число $n \in \mathbb{N}$ с $g^n = e_G$. Всяко множество от естествени числа е ограничено отдолу.

Определение 4. Ако G е група, $g \in G$ и съществува ненулево цяло число $m \in \mathbb{Z} \setminus \{0\}$ с $g^m = e_G$ за неутралния елемент e_G на G, то минималното естествено $s \in \mathbb{N}$ с $g^s = e_G$ се нарича ред на g и се бележи с $\operatorname{ord}(g) = s$.

Ако $g^m \neq e_G$ за всички $m \in \mathbb{Z} \setminus \{0\}$, то казваме че g е от безкраен ред и записваме $\operatorname{ord}(g) = \infty$.

Твърдим, че $\operatorname{ord}(g)=\infty$ тогава и само тогава, когато $g^m\neq g^n$ за всички различни цели числа $m,n\in\mathbb{Z}$. По-точно, ако $\operatorname{ord}(g)=\infty$ и допуснем, че $g^m=g^n$ за някои различни $m,n\in\mathbb{N},\ m\neq n$, то $g^{m-n}=g^mg^{-n}=g^ng^{-n}=g^0=e_G$ за $m-n\neq 0$ противоречи на определението за безкраен ред на елемента $g\in G$. Обратно, ако $g^m\neq g^n$ за всички различни цели числа $m,n\in\mathbb{Z},\ m\neq n$, то за n=0 и произволно $m\in\mathbb{Z}\setminus\{0\}$ получаваме $g^m\neq g^0=e_G$ и стигаме до извода, че $\operatorname{ord}(g)=\infty$.

От гореспоменатия факт следва, че ако $g \in G$ е елемент от безкраен ред, то $\{g^m \mid m \in \mathbb{Z}\}$ е изоморфно като множество с \mathbb{Z} . В частност, ако $\operatorname{ord}(g) = \infty$, то $\{g^m \mid m \in \mathbb{Z}\}$ е безкрайно множество на G. Затова всеки елемент g на крайна група G е от краен ред $\operatorname{ord}(g) < \infty$. Безкрайна група може да има елементи както от краен, така и от безкраен ред. Например, безкрайната мултипликативна група $(\mathbb{C}^*,.)$ на полето \mathbb{C} на комплексните числа има елемент $i = \sqrt{-1} \in \mathbb{C}$ от ред 4 и елемент $2 \in \mathbb{C}^*$ от безкраен ред. Тук използваме, че минималната степен на имагинерната единица $i = \sqrt{-1}$, равна на 1 е 4 и $2^m \neq 1 = 2^0$ за всички $m \in \mathbb{Z} \setminus \{0\}$.

Твърдение 5. Нека G е група, $g \in G$ и $m \in \mathbb{Z} \setminus \{0\}$. В такъв случай, $g^m = e_G$ за неутралния елемент e_G на G тогава и само тагава, когато елементът g е от краен ped $ord(g) = s \in \mathbb{N}$, делящ m.

Доказателство. Ако $g^m=e$ за някое $m\in\mathbb{Z}\setminus\{0\}$, то $g\in G$ е елемент от краен ред $\mathrm{ord}(g)=s$. Делим m=sq+r на s с частно $q\in\mathbb{Z}$ и остатък $r\in\mathbb{Z},\ 0\leq r\leq s-1$ и получаваме, че

$$g^r = g^{m+s(-q)} = g^m(g^s)^{-q} = e \cdot e^{-q} = e.$$

Съгласно избора на $\operatorname{ord}(g) = s$ като минималното естествено число с $g^s = e$, цялото число r не е естествено, т.е. r = 0 и s дели m = sq.

Ако $g \in G$ е от краен ред $\operatorname{ord}(g) = s$, делящ m, то m = sq за някое $q \in \mathbb{Z}$ и

$$g^m = g^{sq} = (g^s)^q = e^q = e.$$

Твърдение 6. Нека G е група, $g \in G$ е елемент от ped $ord(g) = s \in \mathbb{N}$ u $k \in \mathbb{Z}$. Тогава елемент σ т $g^k \in G$ е от ped

$$\operatorname{ord}(g^k) = \frac{\operatorname{ord}(g)}{\operatorname{GCD}(\operatorname{ord}(g), k)} = \frac{s}{\operatorname{GCD}(s, k)}$$

за естествения най-голям общ делител $\mathrm{GCD}(s,k) \in \mathbb{N}$.

Доказателство. Означаваме

$$d := GCD(s, k) \in \mathbb{N}, \quad s_1 := \frac{s}{d} \in \mathbb{N}, \quad k_1 := \frac{k}{d} \in \mathbb{Z}$$

и доказваме, че $\operatorname{ord}(g^k) = s_1$. От

$$(g^k)^{s_1} = g^{ks_1} = g^{k_1 ds_1} = g^{k_1 s} = (g^s)^{k_1} = e^{k_1} = e$$

следва, че $g^k \in G$ е от краен ред $t \in \mathbb{N}$, делящ s_1 . Сега от

$$e = (g^k)^t = g^{kt} = g^{dk_1t}$$

получаваме, че редът $s=ds_1$ на g дели dk_1t . Следователно s_1 дели k_1t и поради взаимната простота на s_1 и k_1 стигаме до извода, че s_1 дели t. От t дели s_1 и s_1 дели t за естествените числа s_1 и t следва, че $\operatorname{ord}(g)=t=s_1$.

Лема-Определение 7. Ако G е група u $g \in G$ е елемент на G, то подмножеството

$$\langle g \rangle = \{ g^m \, | \, m \in \mathbb{Z} \}$$

на G е абелева подгрупа, която се нарича циклична група, породена от g.

Доказателство. Наистина, за произволни $m,n\in\mathbb{Z}$ е в сила $g^m(g^n)^{-1}=g^mg^{-n}=g^{m-n}\in\langle g\rangle$, така че $\langle g\rangle$ е подгрупа на G. Съгласно $g^mg^n=g^{m+n}=g^{n+m}=g^ng^m$ за всички $m,n\in\mathbb{Z}$, подгрупата $\langle g\rangle$ на G е абелева.

Твърдение 8. Нека G група и $q \in G$ е елемент на G. В такъв случай, q е от краен $ped \ \mathrm{ord}(q) = s \in \mathbb{N} \ moraвa \ u \ camo \ moraвa, когато цикличната група <math>\langle g \rangle$, породена от gе от ред s и съвпада с множеството $\langle g \rangle = \{e, g, \dots, g^{s-1}\}$. Ако това е изпълнено, то елемент $g^k \in \langle g \rangle$ поражда $\langle g \rangle$ тогава и само тогава, когато естественият най-голям общ делител на s и k е GCD(s,k)=1.

Доказателство. Нека $g \in G$ е елемент от ред $\operatorname{ord}(g) = s \in \mathbb{N}$. Тогава за всяко цяло число $m \in \mathbb{Z}$, делението m = sq + r на s с частно $q \in \mathbb{Z}$ и остатък $r \in \mathbb{Z}$, $0 \le r \le s - 1$ дава

$$g^m = g^{sq+r} = g^{sq}g^r = (g^s)^q g^r = e^q g^r = g^r \in \{e, g, \dots, g^{s-1}\},$$

така че

$$\langle g \rangle \subseteq \{e, g, \dots, g^{s-1}\} \subseteq \{g^m \mid m \in \mathbb{Z}\} = \langle g \rangle$$

и $\langle g \rangle = \{e, g, \dots, g^{s-1}\}$. Ако допуснем, че $g^i = g^j$ за $0 \le i < j \le s-1$, то $g^{j-i} = g^0 = e$, откъдето $s = \operatorname{ord}(g)$ дели j - i. Но единственото цяло число $-(s - 1) \le j - i \le s - 1$, кратно на $s \in j-i=0$. Противоречието доказва, че $g^i \neq g^j$ за всички $0 \leq i < j \leq s-1$ с цикличната група $\langle g \rangle = \{e, g, \dots, g^{s-1}\}$, породена от g е от ред $s = \operatorname{ord}(g)$.

Ако цикличната група $\langle g
angle$, породена от g е от ред $|\langle g
angle| = s$, то $g \in G$ е от краен ред $t \in \mathbb{N}$, защото в противен случай от $\operatorname{ord}(g) = \infty$ следва $|\langle g \rangle| = \infty$. Съгласно доказаната посока, ако $\operatorname{ord}(g)=t$, то $\langle g\rangle$ е от ред $t=|\langle g\rangle|=s$. В частност, ако $\operatorname{ord}(g)=|\langle g\rangle|=s$, то g^k поражда $\langle g\rangle=\langle g^k\rangle$ точно когато

$$s = \langle g^k \rangle = \operatorname{ord}(g^k) = \frac{s}{\operatorname{GCD}(s, k)}.$$

Последното е в сила точно когато естественият най-голям общ делител на s и k е GCD(s,k) = 1.

Адитивната група $(\mathbb{Z},+)$ на целите числа е циклична и се поражда от ± 1 . Да отбележим, че в адитивен запис, цикличната подгрупа на $(\mathbb{Z}, +)$, породена от $m \in \mathbb{Z}$ е $m\mathbb{Z}=\{mz\,|\,z\in\mathbb{Z}\}$. При това, $m\mathbb{Z}=\mathbb{Z}$ тогава и само тогава, когато $m=\pm 1$, защото $1 \not\in m\mathbb{Z}$ за $m \in \mathbb{Z}$ и $|m| \geq 2$ или m = 0.

За произволно естествено число n нека $\omega_n = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \in \mathbb{C}$. Множеството $\mathbb{C}_n = \{\omega_n^k \,|\, 0 \leq k \leq n-1\}$ на n-тите корени на единицата е циклична група, породена от ω_n . Съгласно Твърдение 8, елемент $\omega_n^k \in \mathbb{C}_n$ поражда \mathbb{C}_n тогава и само тогава, когато естественият най-голям общ делител на k и n е GCD(k, n) = 1.

Твърдение 9. (i) Всяка безкрайна циклична група $\langle g \rangle = \{ g^m \mid m \in \mathbb{Z} \}$ е изоморфна на

адитивната група ($\mathbb{Z},+$) на целите числа. (ii) Нека $\omega_n = \cos\left(\frac{2\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right)$. Всяка циклична група $\langle g \rangle = \{e,g,\ldots,g^{n-1}\}$ от ред n е изоморфна на групата $\mathbb{C}_n = \{\omega_n^k \mid 0 \le k \le n-1\}$ на n-тите корени на единицата.

Доказателство. (і) Изображението

$$\varphi: \mathbb{Z} \longrightarrow \langle g \rangle = \{ g^m \mid m \in \mathbb{Z} \},$$

$$\varphi(m)=g^m$$
 за всяко $m\in\mathbb{Z}$

е взаимно еднозначно, защото ако $\operatorname{ord}(g) = |\langle g \rangle| = \infty$, то $g^m \neq g^n$ за всички $m \neq n$, $m,n \in \mathbb{Z}$. Съгласно $\varphi(m+n) = g^{m+n} = g^m g^n = \varphi(m) \varphi(n)$ за произволни $m,n \in \mathbb{Z}$, изображението φ е хомоморфизъм, а оттам и изоморфизъм на групи.

(ii) Изображението

$$\psi: \mathbb{C}_n = \{\omega_n^r \mid 0 \le r \le n-1\} \longrightarrow \langle g \rangle = \{g^r \mid 0 \le r \le n-1\},$$
$$\psi(\omega_n^r) = g^r \quad \text{за всяко} \quad 0 \le r \le n-1$$

е взаимно еднозначно. За произволно $m\in\mathbb{Z}$, делението m=nq+r на n с частно $q\in\mathbb{Z}$ и остатък $r\in\mathbb{Z},\ 0\leq r\leq n-1$ дава

$$\omega_n^m = \omega_n^{nq+r} = \omega_n^{nq} \omega_n^r = (\omega_n^n)^q \omega_n^r = 1^q.\omega_n^r = 1.\omega_n^r = \omega_n^r$$

И

$$g^m = g^{nq+r} = g^{nq}g^r = (g^n)^q g^r = e^q g^r = e \cdot g^r = g^r.$$

Следователно

$$\psi(\omega_n^m) = \psi(\omega_n^r) = g^r = g^m$$
 за произволно $m \in \mathbb{Z}$.

Оттук,

$$\psi(\omega_n^r \omega_n^s) = \psi(\omega_n^{r+s}) = g^{r+s} = g^r g^s = \psi(\omega_n^r) \psi(\omega_n^s)$$

за произволни $0 \le r, s \le n-1$ и ψ е биективен хомоморфизъм на групи, т.е. изоморфизъм на групи.

Лема 10. Всяка подгрупа H на циклична група $G = \langle g \rangle$ е циклична. По-точно, $H = \{e_G\} = \langle e_G \rangle$ е тривиалната подгрупа или $H = \langle g^s \rangle$ се поражда от g^s за минималното естествено число $s \in \mathbb{N}$ с $g^s \in H$.

Доказателство. Ако $H \neq \{e_G\}$ и $s \in \mathbb{N}$ е минималното естествено число, за което $g^s \in H$, то $\langle g^s \rangle \subseteq H$. По-точно, за всяко естествено $n \in \mathbb{N}$ имаме

$$(g^s)^n = \underbrace{g^s \dots g^s}_n \in H$$
 и $(g^s)^{-n} = \underbrace{(g^s)^{-1} \dots (g^s)^{-1}}_n \in H$,

защото $(g^s)^{-1} \in H$. За обратното включване $H \subseteq \langle g^s \rangle$ да вземем $g^m \in H$ с $m \in \mathbb{Z}$. Делението m = sq + r на s с частно $q \in \mathbb{Z}$ и остатък $r \in \mathbb{Z}$, $0 \le r \le s - 1$ дава

$$g^r = g^{m+s(-q)} = g^m g^{s(-q)} = g^m (g^s)^{-q} \in H.$$

Понеже $s \in \mathbb{N}$ е минималното естествено число с $g^s \in H$, цялото число r не е естествено, т.е. r = 0 и s дели m = sq. В резултат, $g^m = g^{sq} = (g^s)^q \in \langle g^s \rangle$. Това доказва $H \subseteq \langle g^s \rangle$ и $H = \langle g^s \rangle$.

Следствие 11. Нека $G = \langle g \rangle = \{e,g,\ldots,g^{n-1}\}$ е циклична група от ред n и $H = \langle g^s \rangle \neq \{e_G\}$ е нетривиална подгрупа на G, породена от g^s за минималното естествено $s \in \mathbb{N}$ с $g^s \in H$. Тогава s дели n и $H = \langle g^s \rangle$ е подгрупа на G от ред $\frac{n}{s}$.

Доказателство. Делим n=sq+r на s с частно $q\in\mathbb{Z}$ и остатък $r\in\mathbb{Z},\ 0\leq r\leq s-1,$ за да забележим, че

$$g^r = g^{n+s(-q)} = g^n g^{s(-q)} = e_G(g^s)^{-q} = (g^s)^{-q} \in H,$$

вземайки предвид $g^n = e_G$. По предположение, $s \in \mathbb{N}$ е минималното естествено с $g^s \in H$, така че цялото число r не е естествено. Следователно r = 0 и s дели n = sq. В резултат, цикличната подгрупа $H = \langle g^s \rangle$ на $\langle g \rangle$ е от ред

$$|H| = \operatorname{ord}(g^s) = \frac{\operatorname{ord}(g)}{\operatorname{GCD}(\operatorname{ord}(g), s)} = \frac{n}{\operatorname{GCD}(n, s)} = \frac{n}{s}.$$

В означенията от Следствие 11, за произволно цяло $k \in \mathbb{Z}$, GCD $\left(k, \frac{n}{s}\right) = \pm 1$ елементът g^{sk} поражда същата подгрупа $H = \langle g^s \rangle = \langle g^{sk} \rangle$. За степенния показател sk на пораждащия g^{sk} на H не можем да твърдим, че дели реда n на G.

Следствие 12. Ако $G = \langle g \rangle = \{e_G, g, \dots, g^{n-1}\}$ е циклична група от ред n, то за всеки естествен делител t на n съществува единствена подгрупа $H = \langle g^{\frac{n}{t}} \rangle$ на G от ред t.

 \mathcal{A} оказателство. Подгрупата $H=\langle g^{\frac{n}{t}} \rangle$ на $G=\langle g \rangle$ е от ред

$$|H| = \operatorname{ord}(g^{\frac{n}{t}}) = \frac{\operatorname{ord}(g)}{\operatorname{GCD}(\operatorname{ord}(g), \frac{n}{t})} = \frac{n}{\operatorname{GCD}(n, \frac{n}{t})} = n : \left(\frac{n}{t}\right) = t.$$

Ако H_o е подгрупа от ред $|H_o|=t$ и $s\in\mathbb{N}$ е минималното естествено число с $g^s\in H_o$, то s дели n и $H_o=\langle g^s\rangle$ е от ред $t=|H_o|=\frac{n}{s}$, съгласно Следствие 11. Следователно $s=\frac{n}{t}$ и $H_o=\langle g^{\frac{n}{t}}\rangle=H$ е единствената подгрупа на G от ред t.

В означенията от Следствие 12 да забележим, че цикличната подгрупа $H=\langle g^{\frac{n}{t}}\rangle$ на $G=\langle g\rangle$ от ред t има най-различни пораждащи. За произволно цяло k, взаимно просто с t, елементът $g^{\frac{n}{t}k}\in H$ поражда $H=\langle g^{\frac{n}{t}k}\rangle$. Една и съща подгрупа H на G има различни пораждащи.