Introduction to Unmanned Ground Vehicles

Instructor: Micho Radovnikovich Email: mtradovn@oakland.edu ECE 495/595 – Winter 2017

Homework #5 - Take-Home Exam

Due: Monday, February 27th

The purpose of this assignment is to accompany the GPS simulation project and ensure that the student thoroughly understands the concepts discussed so far in the course before moving on to more advanced topics.

Complete the exam on the following pages, putting your answers in a separate document. Use whichever tools you want (Word, LaTeX, etc.). You can submit your answers via email (mtradovn@oakland.edu) or by adding the document to your repository and pushing it.

The late penalty for this homework will be 10% per 24 hours late instead of the normal homework rate of 2%

ECE 495/595 – Intro to Unmanned Ground Vehicles Midterm Exam

Instructor: Micho Radovnikovich

Score

Question:	1	2	3	4	5	6	7	Total
Points:	25	10	10	20	15	10	10	100
Score:								

http://xkcd.com/135/

1.	Shor	rt answer p	problems			
	(a)	[5 points]	Which two files are	e present in every	ROS package?	
	(b)	[5 points]	Cite an example w	here a private no	de handle could be	used.
	(c)	[5 points] consists o	A complete represent of what?	entation of a coor	dinate frame trans	formation
	(d)	[5 points]	What is a YAML f	ile used for?		
	(e)	-	The determinant of rotate points from o			0 +1 in order to

2.	[10 points] Convert the GPS coordinates (30° 30′ 36.00″ S, $$ 5° 40′ 40.00″ E) into decimal degrees.
3.	Consider two frames whose orientations differ by a pitch angle of 90 degrees, and a yaw angle of 135 degrees.
	(a) [5 points] Compute the rotation matrix that would be used to rotate points in one reference frame to the other.
	(b) [5 points] What would be the x component of the quaternion representation of this rotation?

4. Consider a mobile robot navigating to a GPS waypoint, as illustrated below:

The vehicle's coordinates are (10, 10) in the global reference frame G, and the waypoint's coordinates are (10, 20) in G.

(a) [5 points] Compute the rotation matrix and translation vector from global frame G to vehicle frame V.

(b) [10 points] Compute the coordinates of the waypoint relative to vehicle frame V.

(c) [5 points] What is the equivalent quaternion that represents the same rotation from G to V?

5.	Consider a differen	ntial drive	vehicle	with	wheel	radius	0.1	meters,	and	a c	distance	of 0 .
	meters between th	e wheels.										

(a) [10 points] If the left wheel is rotating forward at 4 rad/s, and the right wheel isn't rotating at all, compute the forward speed and yaw rate of the vehicle.

(b) [5 points] What ROS message type would you use to report this velocity? How would you populate the message?

6.	$[10~{\rm points}]$ Describe and/or list the procedure for converting geodetic GPS coordinates into East-North-Up.
7.	[10 points] Describe and/or list the procedure for advertising a service in a ROS node (entire process, not just the C++ code).