FOUNDATION ENGINEERING

Types of Foundations

Types of Foundations

Shallow foundations – Transmit load to near surface soils

Project Management in Context of Foundation Engineering and Process for a Bridge

What do We Design for?

Some effects of liquefaction during the 1964 Niigata earthquake

What do We Design for?

Serviceability – Limit settlements

Soil Types: Coarse-Grained

Soil Types: Fine-Grained

Grain Size Classification (USCS)

Review – Soil Mechanics

Phase Relations – Typically three phases

M_a=0

solid

Void ratio:
$$e = \frac{V_v}{V_s}$$

Porosity:
$$n = \frac{V_v}{V_t} = \frac{e}{1+e}$$

Degree of saturation:
$$S_r = \frac{V_w}{V_w}$$
 100%

Specific Gravity of soil grains:
$$G_s = \frac{\rho_s}{\rho_w} = \frac{\rho_s \times g}{\rho_w \times g} = \frac{\gamma_s}{\gamma_w}$$

Bulk unit weight:
$$\gamma = \frac{W}{V} = \frac{G_s(1+w)\gamma_w}{1+e}$$

Definitions of Geotechnical Terms

• Saturated unit weight (γ_{sat}) is the unit weight of the soil when the voids are filled with water.

• Submerged (buoyant) unit weight (γ ') is the effective unit weight of soil when it is submerged.

• Dry unit weight (γ_d) is the unit weight of soil in dry state

Elastic Coefficients

Settlements occur due to the deformation of the soil

$$\varepsilon_1 = \frac{\sigma_1}{E}$$

$$\varepsilon_3 = -\mu \varepsilon_1$$

$$E = elastic modulus$$

 $\mu = Poisson's ratio$

$$\varepsilon_1 = \frac{1}{M}$$

$$\sigma_3' = K_0 \sigma_1'$$

$$M = compression modulus$$

 $K_0 = coefficient of earth$
pressure at rest

K₀ – Compression – Compressibility:

OC Preconsolidation Pressure

$$\Delta \varepsilon_z = \frac{\Delta H}{H} \rightarrow \Delta \varepsilon_z = \frac{\Delta V}{V} = \frac{\Delta e}{1 + e}$$

Compression/recompression Index

$$C_c = -\frac{\Delta e}{\Delta \log \sigma'}$$
 $C_r = -\frac{\Delta e}{\Delta \log \sigma'}$

$$C_{r} = -\frac{\Delta e}{\Delta \log \sigma'}$$

Geostatic Vertical Stress

$$\sigma = \sigma' + u_w \Longrightarrow \sigma = \gamma_{sat} z, \ u_w = \gamma_w z,$$

$$\sigma' = (\gamma_{sat} - \gamma_w) z = \gamma' z$$

