MATH 26200: Point-Set Topology

Take-home Midterm Exam

Hung Le Tran 31 Jan 2024

Textbook: Munkres, Topology

Problem 4.1 (done)

Let \mathbb{R} denote the real numbers. Give \mathbb{R} the topology in which the closed sets (other than all of \mathbb{R}) are the finite subsets. Verify that this is a topology, and prove that if p(x) is a polynomial (with real coefficients), the function $x \mapsto p(x)$ is continuous in this topology.

Solution

We verify the properties of a topology through its closed sets:

- 1. \mathbb{R} is closed by hypothesis. \emptyset has $0 < \infty$ elements, so is closed.
- **2.** Arbitrary intersections of closed $\{K_{\alpha}\}_{{\alpha}\in A}$, $\bigcap K_{\alpha}$, has at most $|K_{\alpha}|$ elements for some ${\alpha}\in A$, but $|K_{\alpha}|<\infty$ so $\bigcap K_{\alpha}$ is also closed.
- **3.** Finite unions of closed $\{K_i\}_{i\in[N]}$ has at most $\sum_{i=1}^N |K_i| < \infty$, so is also closed.

It follows that this is indeed a topology.

Now, let p(x) be any polynomial in x. Let $N = \deg(p(x)) \in \mathbb{Z}_{\geq 0}$. To show that p is continuous, want to show preimages of closed sets are closed. Let $K = \{y_1, \ldots, y_n\}$ be any closed set. Then:

$$p^{-1}(K) = \bigcup_{i \in [n]} p^{-1}(y_i)$$
$$= \bigcup_{i \in [n]} \{x : p(x) - y_i = 0\}$$

And we have $deg(p(x)) = N \Rightarrow deg(p(x) - y_i) = N$ so it has at most N roots. Therefore:

$$|p^{-1}(K)| \le Nn < \infty$$

so $p^{-1}(K)$ is closed, as required.

Problem 4.2 (18.1 done)

Prove that for functions $f: \mathbb{R} \to \mathbb{R}$, the $\varepsilon - \delta$ definition of continuity implies the open

set definition.

Solution

WTS if a function $f: \mathbb{R} \to \mathbb{R}$ satisfies the $\varepsilon - \delta$ condition, then it is continuous in the open set definition.

Take any $W \subset \mathbb{R}$ open, want to prove that $f^{-1}(W)$ is open. Take $x \in f^{-1}(W)$, i.e., $f(x) \in W$. $f(x) \in W$ open, so there exists a basis $f(x) \in B(f(x'), \varepsilon') \subset W$. Define $\varepsilon := \frac{1}{2} \min\{\varepsilon' - |f(x) - f(x')|, |f(x) - f(x')|\} > 0$, then $f(x) \in B(f(x), \varepsilon) \subset B(f(x'), \varepsilon') \subset W$.

From the $\varepsilon - \delta$ condition, it follows that there exists some $\delta > 0$ such that $f(B(x, \delta)) \subset B(f(x), \varepsilon) \subset W$. It therefore follows that $B(x, \delta) \subset f^{-1}(W)$. We can do this for all $x \in f^{-1}(W)$, so it is open. f is therefore continuous in the open set definition. \square

Problem 4.3 (19.8 done)

Given sequences $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ of real numbers with $a_i > 0$ for all i, define $h : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ by the equaiton:

$$h((x_1, x_2, \ldots)) = (a_1x_1 + b_1, a_2x_2 + b_2, \ldots)$$

Show that if \mathbb{R}^{ω} is given the product topology, h is a homeomorphism of \mathbb{R}^{ω} with itself. What happens if \mathbb{R}^{ω} is given the box topology?

Solution

To show that h is homeo, we want to show that it is bijective, continuous and that h^{-1} is also continuous.

1. We write

$$g((y_1, y_2, \ldots)) = \left(\frac{y_1 - b_1}{a_1}, \frac{y_2 - b_2}{a_2}, \ldots\right)$$

This map is well-defined since $a_i > 0 \ \forall i \in \mathbb{N}$. It's trivial that $h \circ g = g \circ h = id$. It follows that h is a bijection, with inverse $h^{-1} = g$.

- **2.** WTS each of h's coordinate functions is continuous. Define, for each i, $f_i : \mathbb{R} \to \mathbb{R}$, $f_i(x) = a_i x + b_i$ then f_i is trivially continuous. Then $h_i(x) = f_i \circ \pi_i$ is a composition of 2 continuous functions, and is therefore also continuous. Since each of h's coordinate functions is continuous, h is also continuous.
- 3. $g = h^{-1}$ is continuous because of the same reason, each g_i is similarly continuous.

Therefore indeed h is homeo.

In the box topology, claim that h is also a homeo. First, trivially, it is still a bijection.

Take the typical basis element $\prod_{i\in\mathbb{N}} U_i$, then we have

$$h^{-1}(\prod_{i\in\mathbb{N}}U_i)=\prod_{i\in\mathbb{N}}h_i^{-1}\left(U_i\right)$$

Each h_i , as mentioned above, is continuous so $h_i^{-1}(U_i)$ is open in \mathbb{R} . Therefore $\prod_{i\in\mathbb{N}}h_i^{-1}(U_i)$ is open in the box topology, which implies h is continuous.

The proof for g is continuous is similar, since each g_i is similarly continuous. It follows that h is a homeo in the box topology as well.

Problem 4.4 (23.5 done)

A space is **totally disconnected** if its only connected subspaces are one-point sets. Show that if X has the discrete topology, then X is totally disconnected. Does the converse hold?

Solution

By hypothesis, X has the discrete topology. One-point sets are clearly connected, since there can't be a separation with 2 non-empty disjoint clopen subsets, which would make the number of elements in the set ≥ 2 . Suppose K with $|K| \geq 2$ is also connected. Then there exists $a \in K$, and $K = \{a\} \sqcup (K - \{a\})$ is a separation of K into 2 non-empty closed sets, so K is not connected, $\Rightarrow \Leftarrow$.

It follows that the only connected subspaces are one-point sets (technically \emptyset is also connected, but I figure the connected subspaces should be non-trivial), so X is totally disconnected as required.

The converse does not hold. Note that one-point sets are always connected, since its number of elements does not allow it to have a separation with 2 non-empty disjoint subsets.

Take \mathbb{Q} in the subspace topology, $\mathbb{Q} \subset \mathbb{R}$. This is not the discrete topology, for each basis element $\mathbb{Q} \cap B(x,r)$ contains infinitely many points. However, we claim that \mathbb{Q} is indeed totally disconnected. Suppose for sake of contradiction that there exists $U \subset \mathbb{Q}$ connected such that $|U| \geq 2$. Then we can find $q_1, q_2 \in U; q_1 < q_2$. We can then exhibit a separation of U:

$$U = (U \cap (-\infty, p) \sqcup (U \cap (p, +\infty))$$

where p is some irrational such that $q_1 . They are clearly disjoint and open, and non-empty since <math>q_1$ and q_2 are respectively in them. So U is not connected. \mathbb{Q} is therefore totally disconnected, but doesn't have the discrete topology.

Problem 4.5 (24.1 done)

- (a) Show that no two of the spaces (0,1), (0,1] and [0,1] are homeomorphic. [Hint: What happens if you remove a point from each of these spaces?]
- (b) Suppose that there exist embeddings $f: X \to Y$ and $g: Y \to X$. Show by means of an example that X and Y need not be homeomorphic.
- (c) Show \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

Solution

(a) Removing any point α from (0,1) makes it a disconnected space: $(0,1) = (0,\alpha) \sqcup (\alpha,1)$, while removing 1 from (0,1] keeps the space connected ((0,1) is connected) and removing 1 from [0,1] also keeps the space connected ([0,1) is connected), so (0,1) is not homeomorphic to (0,1] nor is it homeomorphic to [0,1].

Removing any 2 distinct points from (0,1] makes it a disconnected space (removing 1 and another point $\alpha \in (0,1)$ makes it disconnected: $(0,\alpha) \sqcup (\alpha,1)$; and removing $\alpha,\beta \in (0,1)$ yields $(0,\alpha) \sqcup (\alpha,1]$), while removing 0 and 1 from [0,1] keeps the space connected ((0,1) is connected), so (0,1] is not homeomorphic to [0,1].

Why this "removing" reasoning work is that suppose there exists a homeomorphism

 $f:(0,1]\to (0,1)$. Then $f((0,1))=(0,1)-\{f(1)\}$; the LHS is connected (since f is continuous and (0,1) is connected) while the RHS is not, $\Rightarrow \Leftarrow$.

Similar for the removing-2-point case.

- (b) Take X = (0,1), Y = [0,1], then $f: X \to Y, f(x) = \frac{x}{2}$ and $g: Y \to X, g(y) = \frac{y+1}{4}$ are embeddings, but (0,1) and [0,1] are not homeomorphic as abovementioned.
- (c) n > 1.

Removing any point α from \mathbb{R} makes it a disconnected space: $(-\infty, \alpha) \sqcup (\alpha, \infty)$.

However, removing $0 \in \mathbb{R}^n$ keeps it connected. So $\mathbb{R}^n - \{0\}$ is not homeomorphic to \mathbb{R} .

Problem 4.6 (24.10 done)

Show that if U is an open connected subspace of \mathbb{R}^2 then U is path connected. [Hint: Show that given $x_0 \in U$, the set of points that can be joined to x_0 by a path in U is both open and closed in U.]

Solution

Take $x_0 \in U$. Let $A = \{x \in U : \text{ there exists a path } x_0 \to x\}$. Then $x_0 \in A$, so A is non-empty. WTS A is clopen in U.

Take any $x \in A$, then since U is open, there exists some $B(x,\varepsilon)$ (can always center the ball) such that $x \in B(x,\varepsilon) \subset U$. Take any $y \in B(x,\varepsilon)$, then since the ball is convex, the segment $x \to y$ is contained in $B(x,\varepsilon)$, and therefore in U. Therefore f(t) = x + t(y - x) is a path from $x \to y$. $x \in A$, so there exists a path from $x_0 \to x$. Concatenate these 2 paths and we get a path from $x_0 \to y$, so $y \in A$. This works for any $y \in B(x,\varepsilon)$, so $B(x,\varepsilon) \subset A$. This works for any $x \in A$, so A is open.

A is also closed, take $X-A=\{x\in U: \text{ there is no path }x_0\to x\}$. Take any $x\in X-A$, then since U is open, there exists some $B(x,\varepsilon)$ (can always center the ball) such that $x\in B(x,\varepsilon)\subset U$. Take any $y\in B(x,\varepsilon)$, then similarly, f(t)=x+t(y-x) is a path from $x\to y$. We can conclude that $y\in X-A$, because if $y\in A$, meaning there's a path from $x_0\to y$, then one can concatenate that path with the path from $x\to y$ in reverse to get a path from $x_0\to x$, but $x\not\in A$, so it would be a contradiction. Therefore for any $y\in B(x,\varepsilon), y\in X-A\Rightarrow B(x,\varepsilon)\subset X-A$. This works for any $x\in X-A$, so X-A is open, so A is closed.

A is clopen and non-empty, $A \subset U$ connected, so A = U. There is a path from x_0 to all $x \in U$. Then for all $x, y \in U$, concatenate path $x_0 \to x$ in reverse to path $x_0 \to y$, and we get path $x \to y$. So U is path-connected.

Problem 4.7 (26.11 done)

Let X be a compact Hausdorff space. Let \mathcal{A} be a collection of closed connected subsets of X that is simply ordered by proper inclusion. Then

$$Y = \bigcap_{A \in \mathcal{A}} A$$

is connected. [Hint: if $C \cup D$ is a separation of Y, choose disjoint open sets U and V of X containing C and D, respectively, and show that $\bigcap_{A \in \mathcal{A}} (A - (U \cup V))$ is not empty.]

Solution

Each A is closed so $Y = \bigcap_{A \in A} A$ is also closed in X.

Suppose, for the sake of contradiction, that Y is not connected, i.e., that there exists separation $Y = C \sqcup D$ of C, D non-empty, disjoint, clopen sets in Y. C, D are closed in Y, Y closed in X so they are closed in X.

We use a fact, shown in class, that compact Hausdorff spaces are normal. So X is normal. Therefore, since C, D are closed and disjoint in X, there exists open $U, V \subset X$ such that $C \subset U, D \subset V$ and $U \cap V = \emptyset$.

Then, for each $A \in \mathcal{A}$, claim that $(A \cap U) \cup (A \cap V) \neq A$. Suppose not, that $(A \cap U) \cup (A \cap V) = A$, then $U \cap V = \emptyset$ implies that $(A \cap U) \cap (A \cap V) = \emptyset$, with both $(A \cap U), (A \cap V)$ open in A, and $A \cap U \supset C$, $A \cap V \supset D$ so they are both non-empty. Hence we get a separation of A, but A is connected, $\Rightarrow \Leftarrow$.

It follows that $(A \cap U) \cup (A \cap V) \neq A \Rightarrow A - (A \cap U) \cup (A \cap V) = A - U \cup V \neq \emptyset$ for all $A \in \mathcal{A}$.

 $U \cup V$ is open in X, so $A - U \cup V$ is closed in X. X is compact, so $A - U \cup V$ is compact. A is a collection of A ordered by proper inclusion, so $\{A - U \cup V\}_{A \in A}$ is a collection of non-empty, compact, subsets ordered by proper inclusion.

It then follows that

$$\bigcap_{A\in\mathcal{A}}(A-U\cup V)\neq\varnothing$$

However,

$$\bigcap_{A\in\mathcal{A}}(A-U\cup V)=\left(\bigcap_{A\in\mathcal{A}}A\right)-U\cup V=Y-U\cup V=C\cup D-U\cup V=\varnothing,\Rightarrow\Leftarrow$$

It follows that Y is connected.