

Contents lists available at ScienceDirect

Journal of Number Theory

Drinfeld modular polynomials in higher rank

Florian Breuer a,*, Hans-Georg Rück b

ARTICLE INFO

Article history: Received 23 February 2007

Revised 15 July 2008 Available online 7 October 2008 Communicated by David Goss

Keywords: Drinfeld modules Modular polynomials

Sublattices

ARSTRACT

We study modular polynomials classifying cyclic isogenies between Drinfeld modules of arbitrary rank over the ring $\mathbb{F}_q[T]$. We derive bounds for the coefficients of these polynomials, and compute some explicit examples in the case where q=2, the rank is 3 and the isogenies have degree T.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and results

Let F be an algebraically closed field which contains the ring $A := \mathbb{F}_q[T]$. Let $K = \mathbb{F}_q[T]$ be the quotient ring of A. Denote by $\operatorname{End}_{\mathbb{F}_q}(\mathbb{G}_{a,F})$ the ring of \mathbb{F}_q -linear endomorphisms of the additive group over F, it is isomorphic to the non-commutative ring of \mathbb{F}_q -linear polynomials in X with coefficients in F and multiplication defined by composition of polynomials.

A Drinfeld module $\rho: A \to \operatorname{End}_{\mathbb{F}_q}(\mathbb{G}_{a,F})$ of rank r in generic characteristic is uniquely determined by

$$\rho(T)(X) = TX + g_1(\rho)X^q + \dots + g_{r-1}(\rho)X^{q^{r-1}} + \Delta(\rho)X^{q^r}$$

with coefficients $g_1(\rho), \ldots, g_{r-1}(\rho), \Delta(\rho) \in F$ and $\Delta(\rho) \neq 0$. We refer the reader to [5, Chapter 4] for an overview of Drinfeld modules.

The coefficients $g_1(\rho), \ldots, g_{r-1}(\rho), \Delta(\rho)$ describe the isomorphism class of ρ in the following way (see [7]). Let $g_1, \ldots, g_{r-1}, \Delta$ be indeterminates and define

^a Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, 7600, South Africa

^b Fachbereich für Mathematik und Informatik, Universität Kassel, Kassel 34132, Germany

^{*} Corresponding author. Fax: +27 21 808 3828.

E-mail addresses: fbreuer@sun.ac.za (F. Breuer), rueck@mathematik.uni-kassel.de (H.-G. Rück).

$$j_k = \frac{g_k^{(q^r - 1)/(q^{\gcd(k,r)} - 1)}}{A_k^{(q^k - 1)/(q^{\gcd(k,r)} - 1)}} \quad \text{for } k = 1, \dots, r - 1.$$

Let in addition u_1, \ldots, u_{r-1} satisfy the Kummer equations

$$u_{\nu}^{(q^r-1)/(q^{\gcd(k,r)}-1)} = j_k \text{ for } k = 1, \dots, r-1.$$

Consider the ring $A[u_1,\ldots,u_{r-1}]$. The group $G=\mathbb{F}_{q^r}^*/\mathbb{F}_q^*$ acts on it by

$$u_k^{\bar{\beta}} = \beta^{q^k - 1} \cdot u_k \quad \text{for } \beta \in \mathbb{F}_{q^r}^*.$$

The subring of invariant elements, which is denoted by $B_r = A[u_1, \dots, u_{r-1}]^G$, plays the crucial part in the following isomorphism problem.

Two Drinfeld modules ρ and $\tilde{\rho}$ are isomorphic over F if and only if $I(\rho) = I(\tilde{\rho})$ for each invariant $I \in B_r$. In other words the affine space

$$M^r = \operatorname{Spec}(B_r)$$

is the coarse moduli space for Drinfeld modules of rank r and no level structure. Let \mathbb{C}_{∞} denote the completion of an algebraic closure of $\mathbb{F}_q((\frac{1}{\tau}))$, and denote by

$$\Omega^r = \mathbb{P}^{r-1}(\mathbb{C}_{\infty}) \setminus \{\text{Linear subvarieties defined over } \mathbb{F}_q(\left(\frac{1}{\tau}\right))\}$$

the Drinfeld upper half-space. Then the moduli space M^r is given analytically by (see [3])

$$M^r(\mathbb{C}_{\infty}) \cong GL_r(A) \setminus \Omega^r$$
.

Points in Ω^r correspond to Drinfeld A-modules of rank r. Two points $\tau, \tau' \in \Omega^r$ correspond to isomorphic (respectively isogenous) Drinfeld modules ρ^{τ} and $\rho^{\tau'}$ if and only if $\tau' = \sigma(\tau)$ with $\sigma \in \operatorname{GL}_r(A)$ (respectively $\operatorname{GL}_r(K)$).

Let $n \in A$ be monic, and let $\mathcal{H}_n \subset GL_r(K)$ be a set of representatives for

$$GL_r(A) \setminus GL_r(A) \begin{pmatrix} n & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} GL_r(A).$$

Then \mathcal{H}_n represents isomorphism classes of cyclic n-isogenies in the following sense. If $h \in \mathcal{H}_n$ and $\tau \in \Omega^r$, then there exists an isogeny $f: \rho^{h(\tau)} \to \rho^\tau$ with kernel ker $f \cong A/nA$ as A-modules. (Dually, there is an isogeny $\hat{f}: \rho^\tau \to \rho^{h(\tau)}$ with kernel ker $\hat{f} \cong (A/nA)^{r-1}$.) We write $\psi_r(n) := \#\mathcal{H}_n$.

Now, for every invariant $I \in B_r$ we define the modular polynomial of the invariant I and level n by

$$P_{I,n}(X) := \prod_{h \in \mathcal{H}_n} (X - I \circ h).$$

Its coefficients can be viewed as functions on Ω^r . Evaluating these coefficients at a point of Ω^r corresponding to a Drinfeld module ρ gives a polynomial whose roots are precisely those $I(\tilde{\rho})$ for which there exists a cyclic n-isogeny $\tilde{\rho} \to \rho$.

Let $f \in F[u_1, ..., u_{r-1}]$, we denote by w(f) the weighted degree of f, where each monomial is assigned the weight

$$w(u_1^{\alpha_1}\cdots u_{r-1}^{\alpha_{r-1}}):=\sum_{k=1}^{r-1}\alpha_k\frac{q^k-1}{q^r-1}.$$

For a polynomial $n \in A$ we denote $|n| = q^{\deg n}$.

The aim of this paper is to prove the following result.

Theorem 1.1. Let $I \in B_r = A[u_1, \dots, u_{r-1}]^G$ be an invariant of weighted degree w(I), and $n \in A$ monic. Then

1. We have $P_{I,n}(X) \in B_r[X]$, which is monic of degree

$$\psi_r(n) = |n|^{r-1} \prod_{p|n} \frac{|p|^r - 1}{|p|^r - |p|^{r-1}}$$

in X, and is irreducible in $\mathbb{C}_{\infty}[u_1, \ldots, u_{r-1}][X]$.

2. The weighted degree of the coefficient $a_i \in B_r$ of X^i in $P_{I,n}(X)$ is bounded by

$$w(a_i) \le \left(|n|^{2(r-1)} \prod_{p|n} \frac{|p|^r - 1}{|p|^r - |p|^{r-1}} - i|n|^{r-1} \right) w(I).$$

Example. When r = 2 we need only the usual *j*-invariant,

$$j = u_1^{q+1} = \frac{g_1^{q+1}}{\Lambda}$$
.

We have

$$P_{j,n}(X) = \Phi_n(X, j) = \Phi_n(X, u_1^{q+1}),$$

where $\Phi_n(X, Y) \in A[X, Y]$ is the modular polynomial of level n constructed by Bae [1]. An example with r = 3 is computed at the end of the paper.

Outline of the paper. In Section 2 we give a purely algebraic proof that the coefficients of $P_{I,n}(X)$ are integral over B_r , before starting with analytic considerations in Section 3.

We define in Section 3.2 a parameter $q_{\Lambda_{r-1}}(z_r)$, which may be viewed as a local parameter at the cusp of the compactification of M^r , although we make no use of this interpretation. Section 3 is devoted to computing the expansions of various lattice invariants in terms of this parameter.

In Section 4 we study sublattices with cyclic quotients, as these correspond to cyclic isogenies. After expanding invariants of sublattices in terms of the parameter, we count the number of such sublattices in Section 4.2, prove a non-cancelation result for pole orders in Section 4.3 and finally prove Theorem 1.1 in Section 4.4.

Section 5 is devoted to computing modular polynomials in the case r = 3, q = 2 and n = T.

2. Integrality of invariants

We first prove a result which implies that the coefficients of $P_{I,n}(X)$ are in fact integral over B_r . This is a first step towards showing that $P_{I,n}(X) \in B_r[X]$.

Proposition 2.1. Let ρ and $\tilde{\rho}$ be isogenous Drinfeld modules, and denote by B_r and \tilde{B}_r their respective rings of invariants. Then B_r is integral over \tilde{B}_r , and \tilde{B}_r is integral over B_r .

Proof. Let $f: \rho \to \tilde{\rho}$ be an isogeny, defined over a field F, so

$$f \circ \rho_T = \tilde{\rho}_T \circ f. \tag{1}$$

Since for any $c \in F^*$ we have $(cf) \circ \rho_T = c\tilde{\rho}_T c^{-1} \circ (cf)$, and we are only interested in $\tilde{\rho}$ up to isomorphism, we may assume that f, viewed as a linear polynomial in F[X], is monic.

We write

$$f = f_0 X + f_1 X^q + \dots + X^{q^N},$$

$$\rho_T = T X + g_1 X^q + \dots + \Delta X^{q^r},$$

$$\tilde{\rho}_T = T X + \tilde{g}_1 X^q + \dots + \tilde{\Delta} X^{q^r}.$$

We may further assume that $\Delta = 1$.

We may choose a monic $n \in A$ such that $\ker(f) \subset \rho[n] = \ker(\rho_n)$. Since ρ_n is monic, we see that all the points of $\ker(f)$, and hence also the coefficients of f, are integral over $A[g_1, g_2, \ldots, g_{r-1}]$. Next, we use (1) to compute the coefficients of $\tilde{\rho}$, to obtain successively

$$\begin{split} \tilde{\Delta}_r &= 1, \\ \tilde{g}_{r-1} &= g_{r-1}^{q^N} + f_{N-1} - f_{N-1}^{q^r}, \\ \tilde{g}_{r-2} &= g_{r-2}^{q^N} + f_{N-1} g_{r-1}^{q^{N-1}} + f_{N-2} - f_{N-2}^{q^r} - \tilde{g}_{r-1} f_{N-1}^{q^{r-1}}, \end{split}$$

and, in general, $\tilde{g}_k \in A[f_1, \dots, f_{N-1}, g_1, \dots, g_{r-1}]$, which is integral over $A[g_1, \dots, g_{r-1}]$.

As $\Delta = \tilde{\Delta} = 1$, it follows that the \tilde{j}_k 's, and thus also the \tilde{u}_k 's are integral over $A[g_1, \ldots, g_{r-1}]$, and thus also over $A[u_1, \ldots, u_{r-1}]$. Hence \tilde{B}_r is integral over B_r .

Lastly, since isogeny is a symmetric relation, we also have B_r integral over \tilde{B}_r . \square

3. Lattice invariants

In this section we compute various lattice invariants and express them as Laurent series in a parameter "at the cusp."

3.1. Eisenstein series

Let $F = \mathbb{C}_{\infty}$. There is a one-to-one correspondence between Drinfeld modules ρ of rank s and A-lattices $\Lambda \subset \mathbb{C}_{\infty}$ of rank s given by the following relation (see e.g. [5, Chapter 4]): Let

$$e_{\Lambda}(z) = z \prod_{0 \neq \lambda \in \Lambda} \left(1 - \frac{z}{\lambda} \right) = \sum_{i=0}^{\infty} e_{q^i}(\Lambda) z^{q^i}$$
 (2)

be the exponential function for Λ . Then the corresponding Drinfeld module ρ_{Λ} determined by

$$\rho_{\Lambda}(T)(X) = TX + g_1(\Lambda)X^q + \dots + g_{s-1}(\Lambda)X^{q^{s-1}} + \Delta(\Lambda)X^{q^s}$$
(3)

satisfies the equation

$$e_{\Lambda}(Tz) = \rho_{\Lambda}(T)(e_{\Lambda}(z)). \tag{4}$$

Eq. (4) and the definitions (2) and (3) yield for each $k \ge 1$ the equation

$$(T^{q^k} - T)e_{q^k}(\Lambda) = g_k(\Lambda) + \sum_{i=1}^{k-1} g_j(\Lambda)e_{q^{k-j}}(\Lambda)^{q^j}.$$
 (5)

Hence there is a polynomial $F_k \in A[X_1, \dots X_k]$, which is independent of the lattice Λ and which can be computed recursively, such that

$$g_k(\Lambda) = F_k(e_q(\Lambda), \dots, e_{q^k}(\Lambda)). \tag{6}$$

Since $e'_{\Lambda}(z) = 1$, we get for the logarithmic derivative of $e_{\Lambda}(z)$,

$$\frac{1}{e_{\lambda}(z)} = \sum_{\lambda \in \Lambda} \frac{1}{z - \lambda} = \frac{1}{z} - \sum_{i=0}^{\infty} \left(\sum_{0 \neq \lambda \in \Lambda} \lambda^{-(i+1)} \right) z^{i}. \tag{7}$$

Let

$$E_k(\Lambda) = \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^k}$$

be the kth Eisenstein series of Λ . $E_k(\Lambda) = 0$ if k is not divisible by q - 1. Moreover, we have $E_{kq}(\Lambda) = E_k(\Lambda)^q$. Using the expansion (2) of $e_{\Lambda}(z)$ and Eq. (7) we get

$$\left(\sum_{i=0}^{\infty} e_{q^i}(\Lambda) z^{q^i - 1}\right) \left(\sum_{i=0}^{\infty} E_j(\Lambda) z^j\right) = -1.$$
(8)

Here we define $E_0(\Lambda) = -1$. Comparing coefficients yields in particular for each $k \ge 1$,

$$e_{q^k}(\Lambda) = E_{q^k - 1}(\Lambda) + \sum_{i=1}^{k-1} e_{q^i}(\Lambda) E_{q^{k-i} - 1}(\Lambda)^{q^i}.$$
 (9)

Here we see that there is a polynomial $G_k \in \mathbb{F}_q[X_1, \dots, X_k]$, which is independent of the lattice Λ and which can be computed recursively, such that

$$e_{q^k}(\Lambda) = G_k(E_{q-1}(\Lambda), \dots, E_{q^k-1}(\Lambda)). \tag{10}$$

Eqs. (6) and (10) show that for each $k \ge 1$ there is a polynomial $H_k \in A[X_1, ..., X_k]$ which is independent of the lattice Λ such that

$$g_k(\Lambda) = H_k(E_{q-1}(\Lambda), \dots, E_{q^k-1}(\Lambda)). \tag{11}$$

Remark. The expression (11) can also be obtained using recursion formulas involving g_i and E_{q^i-1} directly (see e.g. [3, §II.2]).

3.2. Parameter at the cusp

The following calculations are deeply influenced by Goss [4].

Let Λ_{r-1} be an A-lattice in \mathbb{C}_{∞} of rank r-1 with $\Delta(\Lambda_{r-1})=1$. In addition let $z_r \in \mathbb{C}_{\infty}$ such that $\Lambda_r = \Lambda_{r-1} \oplus Az_r$ is a lattice of rank r. We consider

$$q_{\Lambda_{r-1}}(z_r) := \frac{1}{e_{\Lambda_{r-1}}(z_r)}$$

as a local parameter "at the cusp." Our first aim is to expand various lattice functions of Λ_r in terms of this parameter.

To begin with the calculations, we take the logarithmic derivative of $e_{\Lambda_{r-1}}(z_r)$ and get

$$q_{\Lambda_{r-1}}(z_r) = \frac{e'_{\Lambda_{r-1}}(z_r)}{e_{\Lambda_{r-1}}(z_r)} = \sum_{\lambda \in \Lambda_{r-1}} \frac{1}{\lambda + z_r}.$$

In this section we want to express for each i the sums $\sum_{\lambda \in \Lambda_{r-1}} (\lambda + z_r)^{-i}$ in terms of $q_{\Lambda_{r-1}}(z_r)$. Let x be arbitrary, we get

$$\frac{1}{e_{\Lambda_{r-1}}(x) - e_{\Lambda_{r-1}}(z_r)} = \frac{1}{e_{\Lambda_{r-1}}(x - z_r)} = \sum_{\lambda \in \Lambda_{r-1}} \frac{1}{x - z_r - \lambda}.$$
 (12)

Using the definition of the local parameter this yields

$$-q_{\Lambda_{r-1}}(z_r)\frac{1}{1 - e_{\Lambda_{r-1}}(x)q_{\Lambda_{r-1}}(z_r)} = \sum_{\lambda \in \Lambda_{r-1}} \frac{1}{x - (z_r + \lambda)}.$$
 (13)

The Taylor expansion in terms of x of the right side of (13) equals

$$\sum_{i=0}^{\infty} \left(-\sum_{\lambda \in \Lambda_{r-1}} \left(\frac{1}{z_r + \lambda} \right)^{i+1} \right) x^i.$$

Let the left side of (13) be given with

$$\frac{1}{1 - e_{\Lambda_{r-1}}(x)q_{\Lambda_{r-1}}(z_r)} = \sum_{i=0}^{\infty} A_i x^i,$$
(14)

then comparing both sides of (13) yields

$$\sum_{\lambda \in \Lambda_{r-1}} \left(\frac{1}{z_r + \lambda} \right)^{i+1} = q_{\Lambda_{r-1}}(z_r) A_i.$$
 (15)

Therefore we have to expand A_i in terms of the local parameter. Let as before

$$e_{\Lambda_{r-1}}(x) = \sum_{i=0}^{\infty} e_{q^j}(\Lambda_{r-1}) x^{q^j}.$$

Then (14) says

$$\left(\sum_{i=0}^{\infty} A_i x^i\right) \left(1 - q_{\Lambda_{r-1}}(z_r) \sum_{j=0}^{\infty} e_{q^j}(\Lambda_{r-1}) x^{q^j}\right) = 1.$$

This yields $A_0 = 1$ and the following recurrences for $i \ge 1$,

$$A_{i} = q_{\Lambda_{r-1}}(z_r)A_{i-1} + q_{\Lambda_{r-1}}(z_r) \sum_{j \ge 1, q^{j} \le i} A_{i-q^{j}} e_{q^{j}}(\Lambda_{r-1}).$$
(16)

We see that $A_i = P_i(q_{\Lambda_{r-1}}(z_r))$ where P_i is a monic polynomial of degree i, which is divisible by $q_{\Lambda_{r-1}}(z_r)$ if $i \geqslant 1$ and whose coefficients are elements of $\mathbb{F}_q[e_{q^j}(\Lambda_{r-1}) \mid q^j \leqslant i]$. Hence (15) can be written as

$$\sum_{\lambda \in \Lambda_{r-1}} \left(\frac{1}{z_r + \lambda} \right)^{i+1} = q_{\Lambda_{r-1}}(z_r) P_i (q_{\Lambda_{r-1}}(z_r)). \tag{17}$$

3.3. $q_{\Lambda_{r-1}}(z_r)$ -Expansions of Eisenstein series

In this section we want to expand the Eisenstein series $E_k(\Lambda_r)$ and the Drinfeld coefficients $g_k(\Lambda_r)$ in terms of the local parameter $q_{\Lambda_{r-1}}(z_r)$. We calculate

$$E_k(\Lambda_r) = E_k(\Lambda_{r-1}) + \sum_{0 \neq a \in A} \sum_{\lambda \in \Lambda_{r-1}} \left(\frac{1}{\lambda + az_r}\right)^k$$

$$= E_k(\Lambda_{r-1}) + \sum_{0 \neq a \in A} q_{\Lambda_{r-1}}(az_r) P_{k-1} \left(q_{\Lambda_{r-1}}(az_r)\right)$$
(18)

using (17) with the polynomials P_{k-1} .

Let $\rho_{\Lambda_{r-1}}$ be the Drinfeld module corresponding to the lattice Λ_{r-1} . Since $\Delta(\Lambda_{r-1})=1$ by assumption, we get for $a\in A$ with leading coefficient l(a),

$$\rho_{\Lambda_{r-1}}(a)(X) = aX + \dots + l(a)X^{q^{(r-1)\deg a}},$$

where all the coefficients are elements in $A[g_1(\Lambda_{r-1}), \dots, g_{r-2}(\Lambda_{r-1})]$. The fundamental relation

$$q_{\Lambda_{r-1}}(az_r)^{-1} = e_{\Lambda_{r-1}}(az_r) = \rho_{\Lambda_{r-1}}(a) \left(e_{\Lambda_{r-1}}(z_r) \right) = \rho_{\Lambda_{r-1}}(a) \left(q_{\Lambda_{r-1}}(z_r)^{-1} \right)$$

yields a power series expansion

$$q_{\Lambda_{r-1}}(az_r) = l(a)^{-1} q_{\Lambda_{r-1}}(z_r)^{q^{(r-1)\deg a}} + \sum_{i > q^{(r-1)\deg a}} a_i(\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_r)^i,$$
(19)

where the coefficients $a_i(\Lambda_{r-1})$ are in $A[g_1(\Lambda_{r-1}), \ldots, g_{r-2}(\Lambda_{r-1})]$. This expansion (19), Eq. (18) and the properties of the polynomials P_k yield the following expansion of the Eisenstein series

$$E_k(\Lambda_r) = E_k(\Lambda_{r-1}) + \sum_{i=1}^{\infty} b_i^{(k)}(\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_r)^i,$$
(20)

where the coefficients $b_i^{(k)}(\Lambda_{r-1})$ are elements of $A[e_q(\Lambda_{r-1}),\ldots,e_{q^{r-2}}(\Lambda_{r-1})]$. Here we used in addition the fact that the g_i are polynomials in e_{q^i} (cf. (6)).

In Section 3.1 (cf. (11)) we saw that the elements $g_k(\Lambda)$ are polynomials $H_k(E_{q-1}(\Lambda), \dots, E_{q^k-1}(\Lambda))$ in the Eisenstein series, where the H_k 's are independent of the lattice Λ . Therefore (20) yields the expansion

$$g_k(\Lambda_r) = g_k(\Lambda_{r-1}) + \sum_{i=1}^{\infty} c_i^{(k)}(\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_r)^i$$
(21)

with coefficients $c_i^{(k)}(\Lambda_{r-1}) \in A[e_q(\Lambda_{r-1}), \dots, e_{q^{r-2}}(\Lambda_{r-1})].$

3.4. Expansions of $\Delta(\Lambda_r)$

We want to expand the discriminant $\Delta(\Lambda_r)$. This can be done using Eq. (21) and the facts $\Delta(\Lambda_r) = g_r(\Lambda_r)$ and $g_r(\Lambda_{r-1}) = 0$. Then one sees immediately that the $q_{\Lambda_{r-1}}(z_r)$ -order of $\Delta(\Lambda_r)$ is positive. To get the exact value of this order one has to evaluate the coefficients $c_i^{(r)}(\Lambda_{r-1})$ in detail. We proceed in a different way, using a product expansion of $\Delta(\Lambda_r)$ due to Gekeler [2] and Hamahata [6].

The key ingredient is the fundamental relation for each lattice Λ :

$$\rho_{\Lambda}(T)(X) = \Delta(\Lambda) \cdot \prod_{z \in T^{-1}\Lambda/\Lambda} (X - e_{\Lambda}(z)). \tag{22}$$

We get immediately for $\Lambda = \Lambda_r$,

$$\Delta(\Lambda_r) = T \cdot \prod_{0 \neq z \in T^{-1} \Lambda_r / \Lambda_r} \frac{1}{e_{\Lambda_r}(z)}.$$
 (23)

So it is enough to expand $\prod_{0\neq z\in T^{-1}\Lambda_r/\Lambda_r}e_{\Lambda_r}(z)$ in terms of the local parameter. It is not difficult to show (see [6, Lemma 1]) that

$$e_{\Lambda_r}(z) = e_{\Lambda_{r-1}}(z) \prod_{0 \neq a \in A} \frac{e_{\Lambda_{r-1}}(z + az_r)}{e_{\Lambda_{r-1}}(az_r)}.$$
 (24)

We decompose $z \in T^{-1}\Lambda_r/\Lambda_r$ as $z = z' + \frac{\varepsilon}{T}z_r$ with $z' \in T^{-1}\Lambda_{r-1}/\Lambda_{r-1}$ and $\varepsilon \in \mathbb{F}_q$. In view of (23) and (24) we have to evaluate

$$\prod_{0 \neq z \in T^{-1} \Lambda_r / \Lambda_r} e_{\Lambda_{r-1}}(z+y)$$

$$= \left(\prod_{0 \neq z' \in T^{-1} \Lambda_{r-1} / \Lambda_{r-1}} e_{\Lambda_{r-1}}(z'+y) \right) \cdot \prod_{\varepsilon \neq 0} \left(\prod_{z' \in T^{-1} \Lambda_{r-1} / \Lambda_{r-1}} e_{\Lambda_{r-1}} \left(z' + \frac{\varepsilon}{T} z_r + y \right) \right) \tag{25}$$

for y=0 and $y=az_r$. We use the fundamental relation (22) now for $\Lambda=\Lambda_{r-1}$, where we always assume $\Delta(\Lambda_{r-1})=1$, and get

$$\prod_{0 \neq z' \in T^{-1} \Lambda_{r-1}/\Lambda_{r-1}} e_{\Lambda_{r-1}}(z'+y) = \frac{\rho_{\Lambda_{r-1}}(T)(e_{\Lambda_{r-1}}(y))}{e_{\Lambda_{r-1}}(y)} = \frac{e_{\Lambda_{r-1}}(Ty)}{e_{\Lambda_{r-1}}(y)},$$

this equals T if y = 0, and

$$\prod_{z'\in T^{-1}\Lambda_{r-1}/\Lambda_{r-1}} e_{\Lambda_{r-1}}\left(z'+\frac{\varepsilon}{T}z_r+y\right) = \rho_{\Lambda_{r-1}}(T)\left(e_{\Lambda_{r-1}}\left(\frac{\varepsilon}{T}z_r+y\right)\right) = e_{\Lambda_{r-1}}(\varepsilon z_r+Ty).$$

If we apply these two formulas to (25) we get with (23)

$$\frac{1}{\Delta(\Lambda_r)} = \left(\prod_{\varepsilon \neq 0} e_{\Lambda_{r-1}}(\varepsilon z_r)\right) \cdot \prod_{0 \neq a \in A} \prod_{\varepsilon} \frac{e_{\Lambda_{r-1}}((aT + \varepsilon)z_r)}{e_{\Lambda_{r-1}}(az_r)^{q^{r-1}}}$$

$$= -\frac{1}{q_{\Lambda_{r-1}}(z_r)^{q-1}} \cdot \prod_{0 \neq a \in A} \prod_{\varepsilon} \frac{q_{\Lambda_{r-1}}(az_r)^{q^{r-1}}}{q_{\Lambda_{r-1}}((aT + \varepsilon)z_r)}.$$
(26)

We have used the fact that $\prod_{\varepsilon \neq 0} \varepsilon = -1$. In Eq. (19) we got the expansion of $q_{\Lambda_{r-1}}(bz_r)$ in terms of the parameter $q_{\Lambda_{r-1}}(z_r)$ for each $b \in A$. If we use this, we can evaluate

$$\frac{q_{\Lambda_{r-1}}(az_r)^{q^{r-1}}}{q_{\Lambda_{r-1}}((aT+\varepsilon)z_r)} = 1 + \sum_{i=1}^{\infty} d_i (\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_r)^i$$
(27)

with $d_i(\Lambda_{r-1}) \in A[e_q(\Lambda_{r-1}), \dots, e_{q^{r-2}}(\Lambda_{r-1})]$. Now (26) and (27) give the final result

$$\Delta(\Lambda_r) = -q_{\Lambda_{r-1}}(z_r)^{q-1} + \sum_{i=q}^{\infty} f_i(\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_r)^i$$
(28)

with coefficients $f_i(\Lambda_{r-1}) \in A[e_q(\Lambda_{r-1}), \dots, e_{q^{r-2}}(\Lambda_{r-1})]$.

3.5. Expansions of $u_k(\Lambda_r)$

Now we want to expand the invariants of Drinfeld modules in terms of the local parameter. Let as above

$$u_k^{(q^r-1)/(q^{\gcd(k,r)}-1)} = j_k = \frac{g_k^{(q^r-1)/(q^{\gcd(k,r)}-1)}}{\Delta^{(q^k-1)/(q^{\gcd(k,r)}-1)}}.$$

For a lattice Λ of rank r we set

$$u_k(\Lambda) = \frac{g_k(\Lambda)}{\Delta^{(q^k-1)/(q^r-1)}}.$$

This definition is not canonical, it could be changed by a $(q^r - 1)/(q^k - 1)$ th root of unity. But since we are interested in the invariants rather than the u_k 's themselves, our setting is ultimately independent of the various choices.

If we combine (21) and (28) we get for k = 1, ..., r - 1,

$$u_{k}(\Lambda_{r}) = (-1)^{(q^{k}-1)/(q^{r}-1)} g_{k}(\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_{r})^{-(q-1)(q^{k}-1)/(q^{r}-1)}$$

$$+ \sum_{i>-(q-1)(q^{k}-1)/(q^{r}-1)} h_{i}^{(k)}(\Lambda_{r-1}) q_{\Lambda_{r-1}}(z_{r})^{i}$$
(29)

with coefficients $h_i^{(k)}(\Lambda_{r-1}) \in A[e_q(\Lambda_{r-1}), \dots, e_{q^{r-2}}(\Lambda_{r-1})].$

4. Sublattices

In view of the main theorem we want to expand invariants of sublattices of Λ_r in terms of the local parameter.

4.1. Invariants of sublattices

Let $n \in A$ be a monic polynomial and let $\tilde{\Lambda}_r \subset \Lambda_r$ be a sublattice with cyclic quotient $\Lambda_r/\tilde{\Lambda}_r \simeq A/nA$. Then $\tilde{\Lambda}_{r-1} := \tilde{\Lambda}_r \cap \Lambda_{r-1}$ is a sublattice of Λ_{r-1} with $\Lambda_{r-1}/\tilde{\Lambda}_{r-1} \simeq A/n_2A$ where $n = n_1 \cdot n_2$ is a decomposition into monic factors. In addition we find a basis element $w_r = n_1 z_r + \lambda$ with $\lambda \in \Lambda_{r-1}$ such that $\tilde{\Lambda}_r = \tilde{\Lambda}_{r-1} \oplus Aw_r$.

If we want to expand the invariants of $\tilde{\Lambda}_r$ as in Section 3.5 we have to normalize $\tilde{\Lambda}_{r-1}$ such that its discriminant equals 1. Choose $\alpha \in \mathbb{C}_{\infty}$ such that $\Delta(\alpha \tilde{\Lambda}_{r-1}) = 1$ and consider the lattice $\alpha \tilde{\Lambda}_r = \alpha \tilde{\Lambda}_{r-1} \oplus A\alpha w_r$. Then we get with (29) for $k = 1, \ldots, r-1$,

$$u_{k}(\tilde{\Lambda}_{r}) = u_{k}(\alpha \tilde{\Lambda}_{r}) = (-1)^{(q^{k}-1)/(q^{r}-1)} g_{k}(\alpha \tilde{\Lambda}_{r-1}) q_{\alpha \tilde{\Lambda}_{r-1}}(\alpha w_{r})^{-(q-1)(q^{k}-1)/(q^{r}-1)}$$

$$+ \sum_{i>-(q-1)(q^{k}-1)/(q^{r}-1)} h_{i}^{(k)}(\alpha \tilde{\Lambda}_{r-1}) q_{\alpha \tilde{\Lambda}_{r-1}}(\alpha w_{r})^{i}.$$
(30)

We want to find α , express the parameter $q_{\alpha \tilde{\Lambda}_{r-1}}(\alpha w_r)$ in terms of $q_{\Lambda_{r-1}}(z_r)$ and compute the coefficients $g_k(\alpha \tilde{\Lambda}_{r-1})$, $h_i^{(k)}(\alpha \tilde{\Lambda}_{r-1})$ with formulas involving Λ_{r-1} .

Since $\Lambda_{r-1}/\tilde{\Lambda}_{r-1} \cong A/n_2A$, we have $n_2\Lambda_{r-1} \subset \tilde{\Lambda}_{r-1}$. We consider the polynomial

$$P(X) = n_2 X \prod_{\substack{0 \neq \lambda \in \Pi_0^{-1} \tilde{\Lambda}_{r-1}/\Lambda_{r-1}}} \left(1 - \frac{X}{e_{\Lambda_{r-1}}(\lambda)}\right).$$

This is a polynomial of degree $q^{(r-2)\deg n_2} = |n_2^{r-2}|$, and its coefficients are elements of $A[q_{\Lambda_{r-1}}(\lambda) | \lambda \in n_2^{-1}\Lambda_{r-1}]$. These values $q_{\Lambda_{r-1}}(\lambda)$ are independent of $q_{\Lambda_{r-1}}(z_r)$. P(X) describes the isogeny corresponding to $n_2\Lambda_{r-1} \subset \tilde{\Lambda}_{r-1}$ and as usual (cf. [5, §4.7]) we get

$$P\left(e_{\Lambda_{r-1}}(X)\right) = e_{\tilde{\Lambda}_{r-1}}(n_2X) \tag{31}$$

and

$$P(\rho_{\Lambda_{r-1}}(T)(X)) = \rho_{\tilde{\Lambda}_{r-1}}(T)(P(X)). \tag{32}$$

Let c_P be the leading coefficient of P(X), then comparing leading coefficients in (32) yields

$$\Delta(\tilde{\Lambda}_{r-1}) = c_p^{-q^{r-1}+1}.$$

Hence we take $\alpha = c_p^{-1}$ and calculate

$$\Delta(\alpha \tilde{\Lambda}_{r-1}) = \alpha^{-q^{r-1}+1} \Delta(\tilde{\Lambda}_{r-1}) = 1.$$

Since $q_{\Lambda}(z) = e_{\Lambda}(z)^{-1}$, Eq. (31) can be written as

$$P\left(\frac{1}{q_{\Lambda_{r-1}}(X)}\right) = \frac{1}{q_{\tilde{\Lambda}_{r-1}}(n_2X)},$$

which yields an expansion

$$q_{\tilde{\Lambda}_{r-1}}(n_2X) = \alpha q_{\Lambda_{r-1}}(X)^{q^{(r-2)\deg n_2}} + \sum_{i>q^{(r-2)\deg n_2}} k_i q_{\Lambda_{r-1}}(X)^i,$$

where $k_i \in A[q_{\Lambda_{r-1}}(\lambda) \mid \lambda \in n_2^{-1}\Lambda_{r-1}]$. We apply this formula to the parameter $q_{\alpha,\tilde{\lambda}_{r-1}}(\alpha w_r)$ and get

$$q_{\alpha\tilde{\Lambda}_{r-1}}(\alpha w_r) = \alpha^{-1} q_{\tilde{\Lambda}_{r-1}}(w_r) = \alpha^{-1} q_{\tilde{\Lambda}_{r-1}} \left(n_2 \frac{w_r}{n_2} \right)$$

$$= q_{\Lambda_{r-1}} \left(\frac{w_r}{n_2} \right)^{q^{(r-2)\deg n_2}} + \sum_{i>q^{(r-2)\deg n_2}} \alpha^{-1} k_i q_{\Lambda_{r-1}} \left(\frac{w_r}{n_2} \right)^i.$$
(33)

Since $w_r = n_1 z_r + \lambda$ with $\lambda \in \Lambda_{r-1}$, we get

$$q_{\Lambda_{r-1}}\left(\frac{w_r}{n_2}\right) = \left(q_{\Lambda_{r-1}}\left(\frac{n_1 z_r}{n_2}\right)^{-1} + q_{\Lambda_{r-1}}\left(\frac{\lambda}{n_2}\right)^{-1}\right)^{-1}$$

$$= q_{\Lambda_{r-1}}\left(\frac{n_1 z_r}{n_2}\right) + \sum_{i>1} l_i q_{\Lambda_{r-1}}\left(\frac{n_1 z_r}{n_2}\right)^i$$
(34)

with $l_i \in A[q_{\Lambda_{r-1}}(\lambda) \mid \lambda \in n_2^{-1}\Lambda_{r-1}]$. On the other hand we calculate with formula (19)

$$q_{\Lambda_{r-1}}\left(\frac{n_{1}z_{r}}{n_{2}}\right) = q_{\Lambda_{r-1}}\left(n_{1}^{2}\frac{z_{r}}{n}\right)$$

$$= q_{\Lambda_{r-1}}\left(\frac{z_{r}}{n}\right)^{q^{(r-1)}\deg n_{1}^{2}} + \sum_{i>q^{(r-1)}\deg n_{1}^{2}} a_{i}(\Lambda_{r-1})q_{\Lambda_{r-1}}\left(\frac{z_{r}}{n}\right)^{i}.$$
(35)

Now applying (34) and (35) to (33) we get

$$q_{\alpha\tilde{\Lambda}_{r-1}}(\alpha w_r) = q_{\Lambda_{r-1}} \left(\frac{z_r}{n}\right)^{|n_1^{2r-2}n_2^{r-2}|} + \sum_{i>|n_r^{2r-2}n_2^{r-2}|} m_i q_{\Lambda_{r-1}} \left(\frac{z_r}{n}\right)^i$$
(36)

with coefficients $m_i \in A[q_{\Lambda_{r-1}}(\lambda) \mid \lambda \in n_2^{-1}\Lambda_{r-1}].$

The coefficients $g_k(\alpha \tilde{\Lambda}_{r-1})$ and $h_i^{(k)}(\alpha \tilde{\Lambda}_{r-1})$ in (30) are elements of the ring $A[e_q(\alpha \tilde{\Lambda}_{r-1}), \ldots, a_{r-1}]$ $e_{q^{r-2}}(\alpha\tilde{\Lambda}_{r-1})]$. Eq. (31) shows that this is a subring of $A[e_q(\Lambda_{r-1}),\ldots,e_{q^{r-2}}(\Lambda_{r-1})][q_{\Lambda_{r-1}}(\lambda)\mid\lambda\in$ $n^{-1}\Lambda_{r-1}$].

This remark and Eqs. (30) and (36) show that $u_k(\tilde{\Lambda}_r)$ can be expanded in a series

$$u_{k}(\tilde{\Lambda}_{r}) = (-1)^{(q^{k}-1)/(q^{r}-1)} g_{k}(\alpha \tilde{\Lambda}_{r-1}) q_{\Lambda_{r-1}} \left(\frac{z_{r}}{n}\right)^{-|n_{1}^{2r-2}n_{2}^{r-2}|(q-1)(q^{k}-1)/(q^{r}-1)}$$

$$+ \sum_{i>-|n_{1}^{2r-2}n_{2}^{r-2}|(q-1)(q^{k}-1)/(q^{r}-1)} r_{i}^{(k)}(\alpha \tilde{\Lambda}_{r-1}) q_{\Lambda_{r-1}} \left(\frac{z_{r}}{n}\right)^{i}$$

$$(37)$$

with coefficients $g_k(\alpha \tilde{\Lambda}_{r-1})$ and $r_i^{(k)}(\alpha \tilde{\Lambda}_{r-1})$ in the ring $A[e_q(\Lambda_{r-1}), \ldots, e_{q^{r-2}}(\Lambda_{r-1})][q_{\Lambda_{r-1}}(\lambda) \mid \lambda \in n^{-1}\Lambda_{r-1}].$

4.2. Counting sublattices

Let Λ_r be an A-lattice of rank r. For $n \in A$ we denote by $\psi_r(n)$ the number of sublattices $\tilde{\Lambda}_r \subset \Lambda_r$ with $\Lambda_r/\tilde{\Lambda}_r \simeq A/nA$. These sublattices correspond to the matrices in \mathcal{H}_n . Then we get

Proposition 4.1. We have

$$\psi_r(n) = |n|^{r-1} \prod_{p|n} \frac{|p|^r - 1}{|p|^r - |p|^{r-1}},$$

where the product is taken over all monic irreducible divisors p of n, and where $|m| = q^{\deg m}$ for each $m \in A$.

Proof. We could count the matrices in \mathcal{H}_n . Instead, we count sublattices. Since $\psi_r(n)$ is multiplicative, we may assume that $n=p^s$ for a monic irreducible $p\in A$. There is a bijection between sublattices $\tilde{\Lambda}_r\subset \Lambda_r$ with $\Lambda_r/\tilde{\Lambda}_r\cong A/p^sA$, and free rank one A/p^sA -submodules of $\Lambda_r/p^s\Lambda_r\cong (A/p^sA)^r$. An element $(x_1,\ldots,x_r)\in (A/p^sA)^r$ generates such a submodule if and only if $x_i\notin pA/p^sA$ for some i, hence there are $|p|^{sr}-|p|^{(s-1)r}$ generators. On the other hand, each such submodule has $|p|^s-|p|^{s-1}$ generators, and it follows that

$$\psi_r(p^s) = \frac{|p|^{sr} - |p|^{(s-1)r}}{|p|^s - |p|^{s-1}} = |p^s|^{r-1} \frac{|p|^r - 1}{|p|^r - |p|^{r-1}},$$

from which the result follows. \Box

4.3. Non-cancelation

The coefficients of the modular polynomial $P_{I,n}(X)$ are polynomials in the basic invariants. We want to study the weighted degree of these polynomials by comparing it with its order as a series expansion in the local parameter. Therefore we need to show that the leading terms in these series do not cancel. For this we will need the following technical lemma.

We consider the homothety classes of lattices Λ_s of rank s as points in the moduli space $M^s(\mathbb{C}_{\infty})$ equipped with the analytic topology, i.e. where closed sets are the zero-loci of sets of analytic functions.

For $k=1,\ldots,r-1$ let ν_k be functions on $M^r(\mathbb{C}_\infty)$; suppose that their $q_{\Lambda_{r-1}}(\frac{z_r}{n})$ -expansions are of the form

$$v_k(\Lambda_{r-1} + Az_r) = a_k(\Lambda_{r-1})q_{\Lambda_{r-1}} \left(\frac{z_r}{n}\right)^{-c(q^k-1)/(q^r-1)} + \text{higher terms},$$

where the a_k 's are algebraically independent analytic functions on $M^{r-1}(\mathbb{C}_{\infty})$ and where c does not depend on Λ_{r-1} or on k.

Let $f \in \mathbb{C}_{\infty}[X_1, \dots, X_{r-1}]$ be a polynomial of weighted degree w(f), where the weighted degree of a monomial is given by $w(X_1^{\alpha_1} \cdots X_{r-1}^{\alpha_{r-1}}) = \sum_{k=1}^{r-1} \alpha_k \frac{q^k - 1}{\sigma^r - 1}$.

Lemma 4.2. There exists a non-empty open subset $S \subset M^{r-1}(\mathbb{C}_{\infty})$ such that for any $\Lambda_{r-1} \in S$ the weighted degree and the order of the $q_{\Lambda_{r-1}}(\frac{Z_r}{n})$ -expansion satisfy

$$\operatorname{ord}_{q_{\Lambda_{r-1}}(\frac{z_r}{n})} \left(f\left(\nu_1(\Lambda_{r-1} + Az_r), \dots, \nu_{r-1}(\Lambda_{r-1} + Az_r)\right) \right) = -cw(f).$$

Proof. Let

$$f(X_1, \dots, X_{r-1}) = \sum_{(\alpha_1, \dots, \alpha_{r-1})} b_{(\alpha_1, \dots, \alpha_{r-1})} X_1^{\alpha_1} \cdots X_{r-1}^{\alpha_{r-1}}.$$

Then the leading term of the $q_{\Lambda_{r-1}}(\frac{z_r}{n})$ -expansion of $f(v_1(\Lambda_{r-1}+Az_r),\ldots,v_{r-1}(\Lambda_{r-1}+Az_r))$ is given by

$$\left(\sum_{(\alpha_1,\ldots,\alpha_{r-1})}b_{(\alpha_1,\ldots,\alpha_{r-1})}a_1(\Lambda_{r-1})^{\alpha_1}\cdots a_{r-1}(\Lambda_{r-1})^{\alpha_{r-1}}\right)q_{\Lambda_{r-1}}\left(\frac{z_r}{n}\right)^{-cw(f)},$$

where the sum is taken over all indices $(\alpha_1, \ldots, \alpha_{r-1})$ satisfying

$$\sum_{k=1}^{r-1} \alpha_k \frac{q^k - 1}{q^r - 1} = w(f).$$

The coefficient is zero only if $a_1(\Lambda_{r-1}), \ldots, a_{r-1}(\Lambda_{r-1})$ satisfy a polynomial relation. The locus of $\Lambda_{r-1} \in M^{r-1}(\mathbb{C}_{\infty})$ for which this relation holds is a proper closed set, since the a_k 's are algebraically independent. The result follows. \square

Remark. We can apply Lemma 4.2 to $v_k = u_k$ respectively $v_k = u_k(\tilde{\Lambda}_{r-1})$ in view of (29) respectively (37) and due to the fact that g_1, \ldots, g_{r-1} are algebraically independent on $M^{r-1}(\mathbb{C}_{\infty})$.

4.4. Proof of the main result

Proof of Theorem 1.1. (1) The value for the degree follows from Proposition 4.1. Let ρ be a Drinfeld module with invariant I. The $I \circ h$'s correspond to cyclic submodules of $\rho[n] \cong (A/nA)^r$ of order n, which are permuted transitively by $GL_r(A)$. It follows that the coefficients of $P_{I,n}(X)$ are functions on $GL_r(A) \setminus \Omega^r \cong M^r(\mathbb{C}_\infty)$, and so $P_{I,n}(X)$ is an irreducible polynomial with coefficients in $\mathbb{C}_\infty[u_1,\ldots,u_{r-1}]^G$.

We next show how to replace \mathbb{C}_{∞} by K. Let $u'_1, \ldots, u'_{r-1} \in K$ be arbitrary. These values correspond to a Drinfeld module ρ defined over K with $u_k = u'_k$ and invariant $I \in K$. The absolute Galois group $\operatorname{Gal}(K^{\operatorname{sep}}/K)$ permutes the set of cyclic submodules of $\rho[n]$ of order n, hence permutes the $I \circ h$'s. Thus the coefficients of $P_{I,n}(X)$, when specialized to $(u'_1, \ldots, u'_{r-1}) \in K^{r-1}$, lie in K. Since $(u'_1, \ldots, u'_{r-1}) \in K^{r-1}$ is arbitrary, it follows that the coefficients of $P_{I,n}(X)$ lie in $K[u_1, \ldots, u_{r-1}]^G$.

Lastly, by Proposition 2.1, the coefficients of $P_{I,n}(X)$ are integral over B_r , and hence lie in B_r .

(2) Let $\Lambda_r \subset \Lambda_r$ be the sublattice corresponding to $h \in \mathcal{H}_n$. Eq. (37) and Lemma 4.2 show, for suitably chosen Λ_{r-1} , that

$$\operatorname{ord}_{q_{\Lambda_r}(\frac{2r}{n})}(u_k(\tilde{\Lambda}_r)) = -\left|n_1^{2r-2}n_2^{r-2}\right|(q-1)\frac{q^k-1}{q^r-1}$$

(for $k = 1, \ldots, r - 1$) implies

$$\operatorname{ord}_{q_{\Lambda_{r-1}}(\frac{z_r}{n})}(I \circ h) = -(q-1) \left| n_1^{2r-2} n_2^{r-2} \right| w(I) \geqslant -(q-1) |n|^{2(r-1)} w(I).$$

Now let $a_i \in B_r$ be the coefficient of X^i in $P_{I,n}(X)$. Then

$$a_i = (-1)^d \sum_{(h_1, \dots, h_d)} (I \circ h_1) \cdots (I \circ h_d), \quad \text{where } d = \#\mathcal{H}(n) - i = \psi_r(n) - i.$$

Hence we get

$$\operatorname{ord}_{q_{A_{r-1}}(\frac{2r}{n})}(a_i) \ge -(q-1)\left(\psi_r(n) - i\right)|n|^{2(r-1)}w(I). \tag{38}$$

On the other hand, since $a_i \in B_r$, using Lemma 4.2, (19) and (29), we get

$$\operatorname{ord}_{q_{\Lambda_{r-1}}(\frac{z_r}{n})}(a_i) = |n|^{r-1} \operatorname{ord}_{q_{\Lambda_{r-1}}(z_r)}(a_i) = -(q-1)|n|^{r-1} w(a_i). \tag{39}$$

Now (38), (39) and Proposition 4.1 yield

$$w(a_i) \le \left(|n|^{2(r-1)} \prod_{p|n} \frac{|p|^r - 1}{|p|^r - |p|^{r-1}} - i|n|^{r-1} \right) w(I).$$

5. The case r = 3, q = 2, n = T

In this section we explicitly calculate some modular polynomials in the case where $r=3,\ q=2$ and n=T.

5.1. The moduli space

According to [7], the ring B_3 is generated by the following seven invariants:

$$J_{70} := \frac{g_1^7}{\Lambda}, \qquad J_{07} := \frac{g_2^7}{\Lambda^3}, \qquad J_{12} := \frac{g_1 g_2^2}{\Lambda}, \qquad J_{41} := \frac{g_1^4 g_2}{\Lambda},$$

and

$$J_{53} := \frac{g_1^5 g_2^3}{\Delta^2} = J_{12} J_{41}, \qquad J_{65} := \frac{g_1^6 g_2^5}{\Delta^3} = J_{12}^2 J_{41}, \qquad J_{77} := \frac{g_1^7 g_2^7}{\Delta^4} = J_{07} J_{70}.$$

It follows that

$$B_3 = \mathbb{F}_2[T][J_{07}, J_{12}, J_{41}, J_{70}],$$

and these four generators satisfy the relations

$$J_{07}J_{41} = J_{12}^4, \qquad J_{12}J_{70} = J_{41}^2.$$

It is easy to check that no further algebraic relations are needed, and so, for $A = \mathbb{F}_2[T]$,

$$M^3 \cong \operatorname{Spec}(B_3) \cong \operatorname{Spec}\left(\frac{\mathbb{F}_2[T][X_1, X_2, X_3, X_4]}{\langle X_1 X_3 - X_2^2, X_2 X_4 - X_3^2 \rangle}\right).$$

Consider the Hecke correspondence \mathcal{T}_T on M^3 , which sends a Drinfeld module ρ to the set of Drinfeld modules ρ' for which there exist isogenies $\rho \to \rho'$ with kernels isomorphic to $\mathbb{F}_2[T]/\langle T \rangle$. Then the graph of \mathcal{T}_T in

$$M^{3} \times M^{3} \cong \operatorname{Spec}\left(\frac{\mathbb{F}_{2}[T][X_{1}, X_{2}, X_{3}, X_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}]}{\langle X_{1}X_{3} - X_{2}^{2}, X_{2}X_{4} - X_{3}^{2}, Y_{1}Y_{3} - Y_{2}^{2}, Y_{2}Y_{4} - Y_{3}^{2}\rangle}\right)$$

is cut out by the ideal generated by

$$P_{J_{07},T}(X_1;Y_1,Y_2,Y_3,Y_4), \quad P_{J_{12},T}(X_2;Y_1,Y_2,Y_3,Y_4), \quad P_{J_{41},T}(X_3;Y_1,Y_2,Y_3,Y_4), \quad \text{and} \quad P_{J_{70},T}(X_4;Y_1,Y_2,Y_3,Y_4),$$

where we have written the modular polynomials in the form $P_{J,T}(X; J_{07}, J_{12}, J_{41}, J_{70}) \in \mathbb{F}_2[T][J_{07}, J_{12}, J_{41}, J_{70}][X].$

5.2. Computing the modular polynomials

It is possible to compute the modular polynomial $P_{J_{ab},T}(X)$ for $J_{ab}:=\frac{g_1^ag_2^b}{\Delta^d}$ (where a+3b=7d), using series expansions in $q_{\Lambda_2}(z_3)$. We did this for J_{70} , where the expansion up to 35 summands was enough to recover the polynomial. However, this method is very time and space consuming, so we seek inspiration from [8] instead.

Suppose given a generic Drinfeld module ρ , but normalized such that $\Delta(\rho) = 1$. Then we can choose $u_1(\rho) = g_1(\rho)$ and $u_2 = g_2(\rho)$, and in fact we write

$$\rho_T = TX + u_1X^2 + u_2X^4 + X^8$$
.

Suppose $\tilde{\rho}$ is another Drinfeld module, and $P:\tilde{\rho}\to\rho$ is a cyclic T-isogeny. We write

$$\tilde{\rho}_T = TX + g_1 X^2 + g_2 X^4 + \Delta X^8$$
 and $P = X + v^{-1} X^2$.

Then

$$P \circ \tilde{\rho}_T = \rho_T \circ P \tag{40}$$

and, since $\ker P \subset \ker \tilde{\rho}_T$,

$$TX + g_1X^2 + g_2X^4 + \Delta X^8 = (TX + aX^2 + bX^4) \circ (X + v^{-1}X^2). \tag{41}$$

From (41) we obtain

$$\Delta = v^{-4}g_2 + v^{-6}g_1 + v^{-7}T, \tag{42}$$

and from (40) we obtain

$$g_1 = v^{-1}(T + T^2) + u_1,$$
 (43)

$$g_2 = v^{-3}(T^2 + T^4) + v^{-2}u_1 + v^{-1}u_1^2 + u_2, \tag{44}$$

$$\Delta = v^{-7} (T^4 + T^8) + v^{-5} u_1^2 + v^{-3} u_1^4 + v^{-1} u_2^2 + 1, \tag{45}$$

$$\Delta^2 = v^{-7}. (46)$$

Combining (42), (45) and (46), we obtain

$$\Delta^{-1} = T^4 + v^2 u_1^2 + v^3 u_2, \tag{47}$$

and v must satisfy the equation

$$T^8 + v^4 u_1^4 + v^6 u_2^2 + v^7 = 0. (48)$$

Since $\psi_3(T) = 7$, each of the seven roots of (48) gives rise to a root of $P_{J_{ab},T}(X)$, and we get

$$P_{J_{ab},T}(X) = \prod_{\substack{\nu \\ T^8 + \nu^4 u_1^4 + \nu^6 u_2^2 + \nu^7 = 0}} (X - g_1^a g_2^b \Delta^{-d}), \tag{49}$$

where g_1 , g_2 and Δ^{-1} are given by (43), (44) and (47), respectively.

In practice, we construct a 7×7 matrix V with characteristic equation (48), and then $P_{J_{ab},T}(X)$ is computed as the characteristic polynomial of

$$\big(V^{-1} \big(T + T^2 \big) + u_1 \big)^a \big(V^{-3} \big(T^2 + T^4 \big) + V^{-2} u_1 + V^{-1} u_1^2 + u_2 \big)^b \big(T^4 + V^2 u_1^2 + V^3 u_2 \big)^d.$$

The results of this calculation for $J_{ab} \in \{J_{07}, J_{12}, J_{41}, J_{70}\}$ are listed in Appendix A. As in the classical case, the coefficients, even in this simple case, are very involved. In the following table, we list the T-degree and weighted degree of the coefficients. We see that the weighted degrees are bounded by Theorem 1.1, and in each case the bound on $w(a_6)$ is sharp:

Coeff.	$P_{J_{70},T}(X)$		$P_{J_{12},T}(X)$		$P_{J_{41},T}(X)$		$P_{J_{07},T}(X)$	
	deg_T	Weight	deg_T	Weight	\deg_T	Weight	deg_T	Weight
a_0	70	7	42	7	56	7	112	21
a_1	60	6	36	6	48	6	96	19
a_2	50	6	30	6	40	6	80	18
a_3	40	5	24	5	32	5	64	15
a_4	30	5	18	5	24	5	48	15
a_5	20	4	12	4	16	4	32	13
a_6	10	4	6	4	8	4	16	12

Appendix A

Here we list the coefficients of the modular polynomials

$$P_{J,T}(X) = X^7 + a_6 X^6 + a_5 X^5 + a_4 X^4 + a_3 X^3 + a_2 X^2 + a_1 X + a_0 \in \mathbb{F}_2[T, J_{07}, J_{12}, J_{41}, J_{70}][X]$$

for $J \in \{J_{12}, J_{41}, J_{70}, J_{07}\}$. They were computed using Maple 11 on an Intel Centrino 2GHz with 2GB RAM. The first three polynomials took 3 minutes or less each, whereas the fourth took 18 hours and 1GB working memory.

Coefficients of $P_{I_{12},T}(X)$

 $a_0 = J_{07}^2 J_{70} + (T^8 + T^6 + T^4 + T^2) J_{07}^2 J_{12} + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3) J_{07}^2 + (T^8 + T^6 + T^2 + 1) J_{07} J_{70} J_{41} + (T^{12} + T^{10} + T^4 + T^2) J_{07}^2 J_{12} J_{41} + (T^{14} + T^{13} + T^{12} + T^{11} + T^6 + T^5 + T^4 + T^3) J_{07}^2 J_{12} + J_{70}^3 T^4 + (T^8 + T^6 + T^4 + T^2 + 1) J_{70}^2 J_{12}^3 + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3) J_{70}^2 J_{12}^2 + (T^{10} + T^8 + T^6 + T^4) J_{70}^2 J_{12} + (T^{14} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7) J_{70}^2 + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3) J_{70}^3 J_{12}^3 + (T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + 1) J_{70}^2 J_{12}^2 + (T^{22} + T^{21} + T^{20} + T^{19} + T^{18} + T^{12} + T^{16} + T^{15} + T^{14} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7) J_{70}^2 J_{12} + (T^{22} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^8 + T^4) J_{70} + (T^{24} + T^{22} + T^{20} + T^{18} + T^8 + T^6 + T^4 + T^2) J_{12}^3 + (T^{26} + T^{25} + T^{24} + T^{23} + T^{22} + T^{21} + T^{20} + T^{19} + T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3) J_{12}^2 + (T^{40} + T^{38} + T^8 + T^6) J_{12} + (T^{42} + T^{41} + T^{40} + T^{39} + T^{10} + T^9 + T^8 + T^7),$

 $a_1 = J_{07}J_{70}^2 + (T^8 + T^6)J_{07}J_{70}J_{12} + (T^2 + T)J_{07}J_{70}J_{41} + (T^{12} + T^{11} + T^{10} + T^9 + T^6 + T^5 + T^4 + T^3)J_{07}J_{70} + (T^4 + T^3 + T^2 + T)J_{07}J_{12}^3 + J_{07}J_{12}^2J_{41} + (T^{12} + T^8 + T^6 + T^2)J_{07}J_{12}^2 + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^2 + T)J_{07}J_{12}J_{41} + (T^{18} + T^{17} + T^{14} + T^{13} + T^{14} + T^{14})J_{07}J_{12}J_{41} + (T^{12} + T^8 + T^6 + T^2)J_{07}J_{12}J_{41} + (T^{12} + T^8 + T^6 + T^8)J_{07}J_{12}J_{41} + (T^{12} + T^8 + T^8 + T^8)J_{07}J_{12}J_{41} + (T^{18} + T^{17} + T^{14} + T^{13} + T^8)J_{07}J_{12}J_{41} + (T^{18} + T^{18} + T^{18}$

 $T^{10} + T^9 + T^6 + T^5) J_{07} J_{12} + (T^{16} + T^{14} + T^{12} + T^{10}) J_{07} J_{41} + (T^{20} + T^{18} + T^4 + T^2) J_{07} + (T^8 + T^6 + 1) J_{70}^2 J_{12}^2 + (T^4 + T^3) J_{70}^2 J_{12} J_{41} + (T^{12} + T^{11}) J_{70}^2 J_{12} + J_{70}^2 J_{41} T^6 + (T^{14} + T^{12} + T^{10} + T^4) J_{70}^2 + (T^{12} + T^8 + T^4 + T^2) J_{70} J_{12}^3 + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 + T^2 + T) J_{70} J_{12}^2 J_{41} + (T^{18} + T^{17} + T^{12} + T^{11} + T^8 + T^7 + T^2 + T) J_{70} J_{12}^2 + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^4) J_{70} J_{12} J_{41} + (T^{24} + T^{22} + T^8 + T^6) J_{70} J_{12} J_{41} + (T^{24} + T^{13} + T^{12} + T^{11} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^6 + T^5) J_{70} J_{41} + (T^{28} + T^{27} + T^{25} + T^{25} + T^{22} + T^{24} + T^{24} + T^{11} + T^{10} + T^9 + T^6 + T^5) J_{70} J_{12} + (T^{26} + T^{25} + T^{24} + T^{23} + T^{26} + T^{25} + T^{24} + T^{23} + T^{26} + T^{25} + T^{24} + T^{2$

 $a_2 = (T^{10} + T^2) \int_{07} J_{70} + (T^2 + 1) \int_{07} J_{12}^3 + (T^4 + T^3 + T^2 + T) \int_{07} J_{12}^2 + J_{07} J_{12} J_{41} + (T^{16} + T^{12} + T^8 + T^4) \int_{07} J_{12} + (T^8 + T^7 + T^2 + T) \int_{07} J_{41} + (T^{18} + T^{17} + T^{14} + T^{13} + T^{10} + T^9 + T^6 + T^5) \int_{07} J_{70}^2 J_{12} J_{41} + T^2 + J_{70}^2 J_{12} J_{41} + (T^{16} + T^9) J_{70}^2 + (T^4 + T^3) J_{70} J_{12}^3 + (T^8 + T^6 + T^4 + T^2) J_{70} J_{12}^2 J_{41} + (T^{12} + T^{10} + T^4 + 1) J_{70} J_{12}^2 + (T^8 + T^7 + T^6 + T^5 + T^4 + T^3) J_{70} J_{12} J_{41} + (T^{12} + T^{11} + T^8 + T^7) J_{70} J_{12} + (T^{18} + T^{16} + T^{12} + T^6) J_{70} J_{41} + (T^{22} + T^{20} + T^{18} + T^{14} + T^{10} + T^4) J_{70} + (T^{16} + T^{12} + T^8 + T^4) J_{12}^3 + (T^{14} + T^{13} + T^2 + T) J_{12}^2 J_{41} + (T^{22} + T^{21} + T^8 + T^7) J_{70} J_{70}$

 $a_3 = (T^4 + T^3) \int_{07} J_{70} + (T^4 + T^2) \int_{07} J_{12}^2 + (T^{10} + T^9 + T^8 + T^7) \int_{07} J_{12} + J_{07} J_{11} T^8 + (T^{12} + T^4) J_{07} + J_{70}^2 J_{41} T^4 + (T^{12} + T^8) J_{70}^2 + J_{70} J_{41} T^4 + (T^{12} + T^8) J_{70}^2 + J_{70} J_{41} T^4 + (T^{12} + T^8) J_{70}^2 J_{41} + (T^{12} + T^8) J_{70}^2 J_{$

 $a_4 = J_{07}J_{12}J_{41} + (T^4 + T^2)J_{07}J_{12} + (T^6 + T^5 + T^4 + T^3)J_{77} + J_{70}^3 + (T^2 + 1)J_{70}^2J_{12} + (T^6 + T^5 + T^4 + T^3)J_{70}^2 + (T^8 + T^6 + T^2 + T^4)J_{70}J_{12}^2 + (T^{10} + T^9 + T^8 + T^7 + T^4 + T^3)J_{70}J_{12} + J_{70}J_{41}T^4 + (T^{12} + T^{10} + T^4 + 1)J_{70} + (T^{10} + T^4 + T^2)J_{12}^3 + (T^6 + T^5)J_{12}^2J_{41} + (T^{12} + T^{11} + T^6 + T^5)J_{12}^2 + (T^{12} + T^8 + T^6 + T^2)J_{12}J_{41} + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + T^2)J_{12} + (T^{14} + T^{13} + T^6 + T^5)J_{41}^4 + (T^{18} + T^{17} + T^{16} + T^{15} + T^{14} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3),$

 $a_5 = (T^2 + T)J_{07}J_{12} + J_{07}J_{41} + (T^4 + T^2)J_{07} + J_{70}^2 + (T^2 + T)J_{70}J_{12}^2 + J_{70}J_{12}J_{41} + J_{70}J_{12}T^2 + (T^2 + T)J_{70}J_{41} + (T^6 + T^5 + T^2 + T)J_{70} + (T^2 + T)J_{12}^3 + J_{12}^2J_{41}T^4 + J_{12}^2T^4 + (T^6 + T^5)J_{12}J_{41} + (T^{10} + T^9 + T^6 + T^5)J_{12} + (T^8 + T^4 + T^2 + 1)J_{41} + (T^{12} + T^{10} + T^4 + T^2),$

 $a_6 = J_{07}J_{12} + (T^2 + T)J_{07} + J_{70} + J_{12}^3 + (T^2 + T)J_{12}^2 + J_{12}T^4 + (T^2 + T)J_{41} + (T^6 + T^5 + T^2 + T).$

Coefficients of $P_{J_{41},T}(X)$

 $a_0 = (T^{32} + T^{24} + T^{16} + T^8) \int_{07}^2 J_{41} + J_{07} J_{70}^4 + (T^{32} + T^{24} + T^{16} + T^8) J_{07} J_{70} J_{12} + (T^{32} + T^{24} + T^{16} + T^8) J_{07} J_{70} J_{12} J_{41} + (T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14} + T^{10}) J_{07} J_{70} J_{12} + (T^{34} + T^{26} + T^{18} + T^{10}) J_{07} J_{70} J_{41} + (T^{34} + T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{10} + T^{10} + T^{10}) J_{12} J_{41} + (T^{40} + T^8) J_{07} J_{12} J_{41} + (T^{48} + T^{46} + T^{44} + T^{42} + T^{16} + T^{14} + T^{12} + T^{10}) J_{07} J_{41} + (T^{40} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12}) J_{70} J_{12} J_{47} + (T^{40} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12}) J_{70} J_{12} J_{47} + (T^{40} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12}) J_{70} J_{12} + (T^{42} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14}) J_{70} J_{$

 $a_1 = (T^4 + 1) J_{07} J_{70}^3 + (T^{10} + T^2) J_{07} J_{70}^2 J_{41} + (T^{26} + T^{22} + T^{10} + T^6) J_{07} J_{70}^2 + (T^{20} + T^4) J_{07} J_{70} J_{12}^2 + (T^{18} + T^{14} + T^{10} + T^8) J_{07} J_{70} J_{12} J_{41} + (T^{28} + T^{22} + T^{12} + T^6) J_{07} J_{70} J_{12} + (T^{26} + T^{10}) J_{07} J_{70} J_{14} + (T^{26} + T^{22} + T^{10} + T^6) J_{07} J_{70} J_{10} + (T^{26} + T^{22} + T^{10} + T^6) J_{07} J_{70} J_{10} + (T^{26} + T^{22} + T^{10} + T^6) J_{07} J_{10} + (T^{26} + T^{22} + T^{10} + T^8) J_{07} J_{10} + (T^{26} + T^{22} + T^{10} + T^8) J_{11} J_{11} + (T^{28} + T^{28} + T^{16} + T^{12}) J_{70} J_{12} J_{41} + (T^{38} + T^{26} + T^{22} + T^{10}) J_{07} J_{41} + (T^{32} + T^{24} + T^{16} + T^8) J_{07} + (T^4 + T^2) J_{70}^2 J_{12} J_{41} + (T^{26} + T^{22} + T^{10} + T^6) J_{70}^2 J_{12} J_{41} + (T^{18} + T^{14} + T^{12} + T^8 + T^6 + T^4 + T^2) J_{70}^2 J_{12} J_{41} + (T^{20} + T^{18} + T^{16} + T^{14} + T^8 + T^6 + T^4 + T^2) J_{70}^3 J_{12} J_{41} + (T^{26} + T^{22} + T^{18} + T^{14} + T^2) J_{70}^2 J_{12}^2 J_{41} + (T^{26} + T^{22} + T^{18} + T^{14}) J_{70}^2 J_{12}^2 J_{41} + (T^{26} + T^{22} + T^{18} + T^{14}) J_{70}^2 J_{12}^2 J_{41} + (T^{26} + T^{22} + T^{18} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} J_{70}^2 J_{12} J_{41} + (T^{26} + T^{22} + T^{18} + T^{14}) J_{70}^2 J_{12}^2 J_{41} + (T^{26} + T^{22} + T^{18} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} J_{70}^2 J_{12}^2 J_{41} + (T^{36} + T^{34} + T^{32} + T^{36} + T^{24} + T^{24} J_{70}^3 J_{12}^2 J_{41} + (T^{36} + T^{34} + T^{32} + T^{36} + T^{34} + T^{32} J_{70}^2 J_{41}^2 J_{41} + (T^{36} + T^{34} + T^{32} + T^{36} + T^{24} + T^{24} J_{70}^2 J_{41}^2 J_{41} + (T^{36} + T^{34} + T^{32} + T^{36} + T^{34} + T^{32} J_{70}^2 J_{41}^2 J_{41} + (T^{36} + T^{34} + T^{32} J_{70}^2 J_{41}^2 J$

 $a_2 = (T^8 + 1) \int_{07} \int_{70} \int_{12} \int_{41} + (T^{22} + T^{20} + T^{16} + T^{12} + T^8 + T^6) \int_{07} \int_{70} \int_{12} + (T^{14} + T^{10} + T^6 + T^2) \int_{70} \int_{70} \int_{41} + (T^{24} + T^8) \int_{07} \int_{12} \int_{41} + (T^{24} + T^8) \int_{70} \int_{41} + (T^{44} + T^{10} + T^8) \int_{70} \int_{41} + (T^{44} + T^{10} + T^8) \int_{70} \int_{12} + (T^{16} + T^{10} + T^8) \int_{70} \int_{12} + (T^{16} + T^{14} + T^{12} + T^{10} + T^4) \int_{70}^{3} \int_{12} + (T^{14} + T^{10} + T^8) \int_{70} \int_{12} \int_{41} + (T^{14} + T^{12} + T^{10} + T^8) \int_{70} \int_{12} \int_{41} + (T^{14} + T^{12} + T^{10} + T^8) \int_{70} \int_{12} \int_{41} + (T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4) \int_{70}^{3} \int_{12} \int_{41} + (T^{22} + T^{20} + T^{16} + T^{10}) \int_{70}^{2} \int_{12} \int_{41} + (T^{22} + T^{8} + T^6 + T^4) \int_{70}^{3} \int_{12} \int_{41} + (T^{24} + T^{12} + T^{10} + T^8 + T^6) \int_{70} \int_{12}^{3} \int_{41} + (T^{24} + T^{22} + T^{10} + T^8) \int_{70}^{3} \int_{12}^{3} \int_{41} + (T^{26} + T^{20} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} + T^{18} +$

 $a_3 = (T^{10} + T^6) \int_{07} J_{70}^2 + (T^{10} + T^2) \int_{07} J_{70} \int_{12} + (T^{16} + T^{12} + T^8 + T^4) \int_{07} J_{12} J_{41} + (T^{18} + T^{14} + T^{10} + T^6) \int_{07} J_{41} + J_{70}^4 T^2 + (T^{10} + T^6) J_{70}^2 J_{41} + (T^{12} + T^8 + T^6 + T^4 + T^2) J_{70}^3 J_{12} J_{41}^2 T^4 + J_{70}^2 J_{12}^2 J_{41}^4 T^2 + J_{70}^2 J_{12}^2 J_{12}^4 T^{12} + J_{70}^2 J_{12}^2 J_{11}^4 T^4 + J_{70}^2 J_{12}^2 J_{41}^4 T^4 + J_{70}^2 J_{12}^2 J_{41}^4 T^{10} + (T^{10} + T^6) J_{70}^2 J_{12} + (T^{12} + T^4) J_{70}^2 J_{12}^4 J_{41}^4 T^{10} + (T^{10} + T^8 + T^4) J_{70}^2 J_{12}^2 J_{41}^4 + (T^{18} + T^{16} + T^8 + T^4) J_{70}^2 J_{12}^2 J_{41}^4 + (T^{18} + T^{16} + T^8 + T^2) J_{70} J_{12}^2 J_{41}^4 + (T^{10} + T^{16} +$

 $a_4 = (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^4)J_{07}J_{41} + J_{70}^4 + (T^2 + 1)J_{70}^3J_{12} + J_{70}^2J_{12}J_{41} + (T^4 + T^2 + 1)J_{70}^3 + J_{70}^2J_{12}^2J_{41} + J_{70}^2J_{12}^2J_$

 $a_5 = (T^6 + T^2)J_{07}J_{41} + (T^2 + 1)J_{70}^2 + J_{70}J_{12}^3T^2 + J_{70}J_{12}^2J_{41} + J_{70}J_{12}^2T^4 + J_{70}J_{12}T^6 + J_{70}J_{41}T^2 + (T^8 + T^6 + T^4 + T^2)J_{70} + (T^8 + T^6 + T^4 + T^2)J_{12}J_{41} + (T^{10} + T^8 + T^6 + T^4)J_{41} + (T^{16} + T^{12} + T^8 + T^4),$

 $a_6 = J_{07}J_{41} + J_{70} + J_{12}J_{41} + J_{41}T^2 + (T^8 + T^6 + T^4 + T^2).$

Coefficients of $P_{J_{70},T}(X)$

 $a_0 = (T^{56} + T^{54} + T^{48} + T^{46} + T^{24} + T^{22} + T^{16} + T^{14}) J_{07}^2 J_{70} + (T^{32} + T^{24} + T^{16} + T^8) J_{07} J_{70}^3 J_{41} + (T^{40} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10}) J_{07} J_{70}^2 J_{12} J_{41} + (T^{42} + T^{41} + T^{40} + T^{39} + T^{38} + T^{37} + T^{36} + T^{35} + T^{34} + T^{33} + T^{32} + T^{31} + T^{30} + T^{29} + T^{28} + T^{27} + T^{26} + T^{25} + T^{24} + T^{23} + T^{22} + T^{21} + T^{20} + T^{19} + T^{18} + T^{17} + T^{16} + T^{15} + T^{14} + T^{13} + T^{12} + T^{11}) J_{07} J_{70}^2 J_{14} + (T^{48} + T^{44} + T^{16} + T^{12}) J_{17} J_{70} J_{12}^2 J_{41} + (T^{52} + T^{50} + T^{48} + T^{46} + T^{20} + T^{19} + T^{18} + T^{17} + T^{16} + T^{15} + T^{14} + T^{13} + T^{56} + T^{55} + T^{50} + T^{49} + T^{48} + T^{44} + T^{47} + T^{26} + T^{25} + T^{24} + T^{23} + T^{18} + T^{16} + T^{15}) J_{07} J_{12}^2 J_{41} + (T^{60} + T^{56} + T^{52} + T^{48} + T^{28} + T^{24} + T^{20} + T^{16}) J_{07} J_{12} J_{41} + (T^{60} + T^{56} + T^{52} + T^{48} + T^{48} + T^{47} + T^{26} + T^{25} + T^{24} + T^{23} + T^{50} + T^{49} + T^{30} + T^{29} + T^{26} + T^{25} + T^{24} + T^{27} + T^{16} + T^{15}) J_{07} J_{12}^2 J_{41} + (T^{60} + T^{56} + T^{52} + T^{48} + T^{28} + T^{24} + T^{24} + T^{26} + T^{25} + T^{24} + T^{27} + T^{16} + T^{15}) J_{07} J_{12}^2 J_{41} + (T^{60} + T^{56} + T^{52} + T^{48} + T^{28} + T^{24} + T^{24} + T^{26} + T^{25} + T^{24} + T^{27} + T^{16} + T^{15}) J_{07} J_{12}^2 J_{41} + (T^{60} + T^{56} + T^{52} + T^{48} + T^{28} + T^{24} + T^{$

 $a_1 = (T^{26} + T^{25} + T^{22} + T^{21} + T^{10} + T^9 + T^6 + T^5) J_{07} J_{70}^2 + (T^{34} + T^{33} + T^{32} + T^{31} + T^{26} + T^{25} + T^{24} + T^{23} + T^{18} + T^{17} + T^{16} + T^{15} + T^{10} + T^9 + T^8 + T^7) J_{07} J_{70}^2 J_{12} + (T^{36} + T^{30} + T^{28} + T^{22} + T^{20} + T^{14} + T^{12} + T^6) J_{07} J_{70}^2 J_{14} + (T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^8) J_{07} J_{70}^2 J_{70}^2 + (T^{44} + T^{42} + T^{12} + T^{10}) J_{07} J_{70} J_{12} J_{41} + (T^{46} + T^{45} + T^{44} + T^{43} + T^{14} + T^{13} + T^{12} + T^{11}) J_{07} J_{70} J_{41} + (T^{50} + T^{49} + T^{48} + T^{47} + T^{18} + T^{17} + T^{16} + T^{15}) J_{07} J_{70} + (T^{56} + T^{54} + T^{48} + T^{46} + T^{24} + T^{22} + T^{16} + T^{14}) J_{07} + J_{70}^2 J_{70}^4 + (T^{12} + T^{10} + T^6 + 1) J_{70}^5 J_{12} + (T^{14} + T^{13} + T^{12} + T^{11} + T^8 + T^7 + T^2 + T) J_{70}^5 + (T^{14} + T^{10} + T^6 + T^2) J_{70}^4 J_{12}^2 + (T^{10} + T^9 + T^2 + T) J_{70}^4 J_{12} J_{41} + (T^{22} + T^{18} + T^{16} + T^{14} + T^{14} + T^{13} + T^{12} + T^{11} + T^{16} + T^{15} + T^{16} + T^{15} + T^{14} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 J_{70}^3 J_{12}^2 J_{41} + (T^{24} + T^{23} + T^{22} + T^{21} + T^8 + T^7 + T^6 + T^5 + T^{14} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 J_{70}^3 J_{12}^2 J_{41} + (T^{26} + T^{25} + T^{24} + T^{22} + T^{18} + T^7 + T^6 + T^5 J_{70}^3 J_{12}^2 J_{41} + (T^{26} + T^{25} + T^{24} + T^{22} + T^{16} + T^{15} + T^{14} + T^{13} + T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 J_{70}^3 J_{12}^2 J_{41} + (T^{26} + T^{25} + T^{10} + T^9) J_{70}^3 J_{41}^2 + (T^{32} + T^{31} + T^{30} + T^{29} + T^{29} + T^{26} + T^{25} + T^{24} + T^{23} + T^{14} + T^{13} + T^{14} + T^{13} + T^{14} + T^{13} + T^{14} + T^{13} + T^{14} +$

 $a_2 = (T^{26} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^{8} + 1) \int_{07} J_{70}^{3} + (T^{32} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{12} + T^{10} + T^{8} + T^{6} + T^{4}) \int_{07} J_{70}^{3} \int_{12} + (T^{34} + T^{33} + T^{30} + T^{29} + T^{26} + T^{25} + T^{22} + T^{21} + T^{18} + T^{17} + T^{14} + T^{13} + T^{10} + T^{9} + T^{6} + T^{5}) \int_{07} J_{70}^{3} + (T^{34} + T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{10} + T^{8}) \int_{07} J_{70}^{3} + (T^{34} + T^{33} + T^{28} + T^{27} + T^{26} + T^{25} + T^{20} + T^{19} + T^{18} + T^{17} + T^{12} + T^{11} + T^{10} + T$

 $a_3 = (T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^6 + T^4)J_{07}J_{70}^2 + (T^{28} + T^{24} + T^{12} + T^8)J_{07}J_{70}J_{12} + (T^{26} + T^{25} + T^{24} + T^{23} + T^{10} + T^9 + T^8 + T^7)J_{07}J_{70}J_{41} + (T^4 + T^3)J_{70}^5 + (T^{12} + T^{11} + T^8 + T^7 + T^6 + T^5)J_{70}^4J_{12} + (T^8 + T^6)J_{70}^4J_{41} + (T^{14} + T^{12} + T^6)J_{70}^4 + (T^{18} + T^{17} + T^{14} + T^{13} + T^8 + T^7 + T^4 + T^3)J_{70}^3J_{12}^2 + (T^{16} + T^{10} + T^8 + T^2)J_{70}^3J_{12}J_{41} + (T^{18} + T^{16} + T^{12} + T^6)J_{70}^3J_{12} + (T^{18} + T^{17} + T^{14} + T^{13} + T^{16} + T^{17} + T^{14} + T^{17} + T^{18} + T^{17} + T^{18} + T^{17} + T^{18} + T^{17} + T^{18} + T^{1$

 $(T^{20} + T^{14} + T^6 + T^4)J_{70}^2J_{12}^2J_{41} + (T^{24} + T^{20} + T^{18} + T^{14} + T^{10} + T^8 + T^6 + T^4)J_{70}^2J_{12}^2 + (T^{22} + T^{21} + T^{18} + T^{17} + T^{14} + T^{13} + T^{10} + T^9)J_{70}^2J_{12}J_{41} + (T^{22} + T^{21} + T^6 + T^5)J_{70}^2J_{12} + (T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^6 + T^4)J_{70}^2J_{41} + (T^{24} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^6 + T^4)J_{70}^2J_{41} + (T^{24} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^6 + T^4)J_{70}^2J_{41} + (T^{24} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^6 + T^4)J_{70}^2J_{41} + (T^{24} + T^{20} + T^{18} + T^{14} + T^{13} + T^{19} + T^{18} + T^{17} + T^{16} + T^{15} + T^{14} + T^{13} + T^{12} + T^{11} + T^8 + T^7 + T^8 + T^8$

 $a_5 = (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3)J_{07}J_{70} + J_{70}^2J_{12} + (T^2 + T)J_{70}^2 + (T^4 + T^2)J_{70}^2J_{12}^2 + (T^2 + T)J_{70}^2J_{12}J_{41} + (T^6 + T^5)J_{70}^2J_{12} + J_{70}^2T^4 + (T^8 + T^4)J_{70}J_{12}^3 + (T^4 + T^3)J_{70}J_{12}^2J_{41} + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3)J_{70}J_{12}^2 + (T^8 + T^4)J_{70}J_{12}J_{41} + (T^{10} + T^8 + T^6 + T^4)J_{70}J_{12} + (T^{10} + T^9 + T^4 + T^3)J_{70}J_{41} + (T^{12} + T^{11} + T^{10} + T^9 + T^8 + T^7 + T^6 + T^5)J_{70} + (T^{12} + T^4)J_{12}^2J_{41} + (T^{14} + T^{13} + T^6 + T^5)J_{12}J_{41} + (T^{14} + T^{10} + T^6 + T^2)J_{41} + (T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6),$

 $a_6 = J_{07}J_{70} + J_{70}J_{12}^2 + (T^2 + T)J_{70}J_{12} + J_{70}J_{41} + J_{70}T^2 + (T^2 + T)J_{12}^2J_{41} + (T^4 + T^2)J_{12}J_{41} + (T^6 + T^5 + T^4 + T^3)J_{41} + (T^{10} + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3).$

Coefficients of $P_{J_{07},T}(X)$

 $a_0 = J_{07}^7 + J_{07}^6 J_{70} J_{12} + J_{07}^6 J_{70} T^2 + (T^2 + 1) J_{07}^6 J_{12}^2 + J_{07}^6 J_{12} J_{41} + (T^8 + 1) J_{07}^6 J_{12} + (T^6 + T^4 + T^2 + 1) J_{07}^6 J_{41} + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + T^2) J_{07}^6 J_{70}^4 + J_{57}^5 J_{70}^3 J_{12}^4 + J_{57}^5 J_{70}^2 J_{12}^4 + J_{57}^5 J_{70}^2 J_{41}^4 T^2 + (T^6 + T^4 + T^2) J_{07}^5 J_{70}^2 J_{12}^2 + (T^4 + 1) J_{07}^5 J_{70} J_{12}^2 + (T^6 + T^4 + T^2) J_{07}^5 J_{70}^2 J_{12}^4 + (T^6 + T^4 + T^2) J_{07}^6 J_{12}^4 + (T^6 + T^4 + T^2) J_{07}^6 J_{12}^4 + (T^6 + T^4 + T^4) J_{07}^6$ $(T^4 + T^2)J_{07}^5J_{70}J_{12}J_{41} + (T^{12} + T^{10} + T^8 + T^4 + T^2 + 1)J_{07}^5J_{70}J_{12} + (T^8 + T^6 + T^2 + 1)J_{07}^5J_{70}J_{41} + (T^{16} + 1)J_{07}^5J_{70} + (T^6 + T^4 + T^2 + 1)J_{07}^5J_{70}J_{41} + (T^{16} + 1)J_{07}^5J_{70}J_{41} + (T^{16} + 1)J_{07}^5J_{70}J_{41} + (T^{16} + 1)J_{07}^5J_{70}J$ $1)J_{07}^{5}J_{12}^{2}J_{41}^{41} + (T^{16} + 1)J_{07}^{5}J_{12}^{2} + (T^{12} + T^{8} + T^{4} + 1)J_{07}^{5}J_{12}^{12}J_{41} + (T^{20} + T^{16} + T^{4} + 1)J_{07}^{5}J_{41} + (T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{20} + T^{$ $T^{8} + T^{4} J_{07}^{5} + J_{07}^{4} J_{70}^{4} J_{14} + J_{07}^{4} J_{70}^{4} J_{12}^{4} + J_{07}^{4} J_{70}^{3} J_{12}^{12} + J_{07}^{4} J_{70}^{3} J_{12}^{12} + (T^{4} + T^{2} + 1) J_{07}^{4} J_{70}^{3} J_{12} + (T^{8} + T^{6} + 1) J_{07}^{4} J_{70}^{3} J_{12} + (T^{8} + T^{6} + 1) J_{07}^{4} J_{70}^{3} J_{12} + (T^{8} + T^{6} + 1) J_{07}^{4} J_{70}^{2} J_{12} + (T^{6} + T^{2} + 1) J_{07}^{4} J_{70}^{2} J_{12}^{12} + (T^{6} + T^{2} + 1) J_{07}^{4} J_{70}^{2} J_{12}^{12} J_{12} + (T^{16} + T^{14} + T^{10} + T^{4} + T^{10} + T^{4} + T^{10} J_{07}^{4} J_{70}^{2} J_{12}^{12} J_{12}^{4} J_{12}^{4}$ $T_{1}^{10} J_{70}^{10} J_{12} + (T_{1}^{10} + T_{1}^{8} + T_{1}^{6} + T_{1}^{10} J_{70}^{10} J_{12}^{12} J_{11}^{41} + (T_{1}^{20} + T_{1}^{18} + T_{1}^{16} + T_{1}^{4} + T_{2}^{2}) J_{07}^{10} J_{70}^{12} J_{12}^{12} + (T_{1}^{10} + T_{1}^{8} + T_{1}^{6} + T_{1}^{10} + T_{1}^{18} + T_{1}^{16} + T_{1}^{4} + T_{2}^{2}) J_{07}^{10} J_{70}^{12} J_{12}^{12} + (T_{1}^{20} + T_{1}^{18} + T_{1}^{16} + T_{1}^{$ $(T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^8 + T^4)J_{07}^4J_{12}J_{41} + (T^{40} + T^{36} + T^8 + T^4)J_{07}^4J_{12} + (T^{38} + T^{32} + T^6 + 1)J_{07}^4J_{41} + (T^{48} + T^{46} + T^$ $T^{40} + T^{38} + T^{16} + T^{14} + T^{8} + T^{6})J_{07}^{4} + J_{07}^{3}J_{70}^{6} + J_{07}^{3}J_{70}^{5}J_{12}^{12} + J_{07}^{3}J_{70}^{5}J_{12}J_{14} + (T^{6} + T^{4} + T^{2})J_{07}^{3}J_{70}^{5}J_{12} + J_{07}^{3}J_{70}^{5}J_{12} + J_{07}^{3}J_{70}^{5}J_{12} + J_{07}^{3}J_{70}^{5}J_{12} + (T^{8} + 1)J_{07}^{3}J_{70}^{4}J_{12}J_{12} + (T^{8} + 1)J_{07}^{3}J_{70}^{4}J_{12}J_{14} + (T^{8} + T^{4})J_{07}^{3}J_{70}^{4}J_{12} + (T^{16} + T^{14} + T^{12} + T^{10} + T^{6} + 1)J_{07}^{3}J_{70}^{4}J_{14} + (T^{14} + T^{12} + T^{10} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{12} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{12} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{12} + T^{10})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{14} + T^{14})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{14} + T^{14})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{14} + T^{14})J_{07}^{3}J_{70}^{4}J_{12} + (T^{14} + T^{14} + T^{14})J_{07}^{3}J_{12}^{4}J_{12} + (T^{14} + T^{14} + T^{14})J_{12}^{3}J_{12}^{4}J_{12} + (T^{14} + T^{14} + T^$ $T^8 + T^6 + T^4)J_{07}^3J_{70}^4 + (T^8 + T^6 + T^4 + T^2)J_{07}^3J_{70}^3J_{12}^3 + J_{37}^3J_{70}^3J_{12}^2 + (T^8 + 1)J_{07}^3J_{70}^3J_{12}^2 + (T^{10} + T^6 + T^4 + 1)J_{07}^3J_{70}^3J_{70}^3J_{12}J_{41} + (T^{16} + 1)J_{07}^3J_{70}^3J_{70}^3J_{12}^2J_{41} + (T^{16} + 1)J_{07}^3J_{70}^3$ $T^{14} + T^{12} + T^{10} + T^6 + T^4 + T^2 + 1)J_{07}^3J_{70}^3J_{12} + (T^{16} + T^{12} + T^{10} + T^8 + T^4 + T^2)J_{07}^3J_{70}^3J_{41} + (T^{24} + T^{20} + T^8 + T^4)J_{07}^3J_{70}^3 + (T^{12} + T^8 + T^8$ $T^4 + 1)J_{07}^3J_{70}^2J_{13}^3 + (T^{16} + T^{14} + T^8 + T^6)J_{07}^3J_{70}^2J_{12}^2J_{44} + (T^{24} + T^{20} + T^{18} + T^8 + T^4 + T^2)J_{07}^3J_{70}^2J_{12}^2 + (T^{16} + T^{14} + T^{10} + T^6 + T^2 + T^2)J_{07}^3J_{70}^2J_{12}^2 + (T^{16} + T^{14} + T^{10} + T^6 + T^2 + T^2)J_{07}^3J_{70}^3J$ $1)J_{07}^3J_{70}^2J_{12}J_{41} + (T^{24} + T^{16} + T^8 + 1)J_{07}^3J_{70}^2J_{12} + (T^{26} + T^{24} + T^{18} + T^{16} + T^{10} + T^8 + T^2 + 1)J_{07}^3J_{70}^2J_{41} + (T^{32} + T^{30} + T^{26} + T^{22} + T^{18} + T^{16} + T$ $T^{14} + T^{10} + T^{6} + T^{2} + 1)J_{07}^{3}J_{70}^{2} + (T^{24} + T^{16} + T^{8} + 1)J_{07}^{3}J_{70}J_{12}^{3} + (T^{20} + T^{16} + T^{4} + 1)J_{07}^{3}J_{70}J_{12}^{2}J_{44} + (T^{32} + 1)J_{07}^{3}J_{70}J_{12}^{2} + (T^{32} + T^{28} + 1)J_{07}^{3}J_{70}J_{12}^{2})$ $T^{24} + T^{20} + T^{16} + T^{12} + T^{8} + T^{4})J_{07}^{3}J_{70}J_{12}J_{41} + (T^{40} + T^{38} + T^{34} + T^{32} + T^{8} + T^{6} + T^{2} + 1)J_{07}^{3}J_{70}J_{12} + (T^{34} + T^{32} + T^{2} + 1)J_{07}^{3}J_{70}J_{41} + (T^{40} + T^{40} + T^$ $(T^{34} + T^{32} + T^2 + 1)J_{07}^3J_{12}^2J_{41} + (T^{40} + T^{32} + T^8 + 1)J_{07}^3J_{12}J_{41} + (T^{48} + T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{34} + T^{16} + T^{14} + T^{12} + T^{14} + T^{14}$ $T^{10} + T^8 + T^6 + T^4 + T^2)J_{07}^3J_{41} + (T^{64} + T^{56} + T^{48} + T^{40} + T^{32} + T^{24} + T^{16} + T^8)J_{07}^3 + J_{07}^2J_{70}^8 + J_{07}^2J_{70}^7J_{12}T^2 + J_{07}^2J_{70}^7J_{41} + (T^8 + T^2 + T^{40} + T^{40$ $1)J_{07}^2J_{70}^7 + J_{07}^2J_{70}^6J_{12}^2J_{41} + (T^4 + T^2 + 1)J_{07}^2J_{70}^6J_{12}^2 + J_{07}^2J_{70}^6J_{12} + I^2 + I^2$ $T^4 + T^2 + 1) j_{07}^2 j_{07}^6 j_{07} + (T^6 + T^4 + 1) j_{07}^2 j_{50}^5 j_{12}^3 + j_{07}^2 j_{50}^5 j_{12}^2 j_{41} T^4 + (T^{12} + T^4 + T^2) j_{07}^2 j_{70}^5 j_{12}^2 + (T^{12} + T^{10} + T^6 + T^4) j_{07}^2 j_{70}^5 j_{12} j_{41} + (T^{20} + T^{10} + T^$ $T^{14} + T^{10} + T^2 + 1)J_{07}^2 J_{70}^5 J_{12} + (T^{16} + T^4 + 1)J_{07}^2 J_{70}^5 J_{41} + (T^{24} + T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + 1)J_{07}^2 J_{70}^5 + (T^{10} + T^8 + T^6 + T^8 + T^8$ $1)J_{07}^2J_{07}^4J_{01}^3I_{12} + (T^{16} + T^6 + T^4 + T^2 + 1)J_{07}^2J_{01}^4J_{01}^3I_{12}^4J_{14} + (T^{12} + T^4 + T^2 + 1)J_{07}^2J_{01}^4J_{12}^2J_{11} + (T^{12} + T^8 + T^4)J_{07}^2J_{12}^4J_{11} + (T^{20} + T^{18} + T^{16} +$ $T^{14} + T^{8} + T^{6} + T^{4} + T^{2})J_{07}^{2}J_{10}^{4}J_{12} + (T^{32} + T^{28} + T^{20} + T^{18} + T^{16} + T^{8} + T^{6} + T^{4})J_{07}^{2}J_{10}^{4}J_{41} + (T^{28} + T^{24} + T^{18} + T^{14} + T^{10} + T^{6} + T^{4} + T^{18} +$ $1)J_{07}^2J_{07}^4 + (T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{2} + 1)J_{07}^2J_{70}^3J_{12}^3 + (T^{16} + T^{12} + T^4 + 1)J_{07}^2J_{70}^3J_{12}^2J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{24} + T^{24}$ $T^{10} + T^8 + T^6 + T^4 + 1)J_{07}^2J_{70}^3J_{12}^2 + (T^{24} + T^{22} + T^{14} + T^{10} + T^8 + T^2)J_{07}^2J_{70}^3J_{12}J_{41} + (T^{30} + T^{22} + T^{14} + T^6)J_{07}^2J_{70}^3J_{12} + (T^{20} + T^{16} + T^4 + T^{10} + T$ $1)J_{07}^2J_{07}^3J_{01}J_{41} + (T^{34} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^8 + T^4 + T^2 + 1)J_{07}^2J_{17}^3 + (T^{32} + T^{28} + T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^{8} + T^{16} + T^{12} + T^{10} + T^{18} + T^{16} + T^{12} + T^{10} +$ $T^{4} + T^{2})J_{07}^{2}J_{70}^{3}J_{12}^{3} + (T^{30} + T^{22} + T^{20} + T^{16} + T^{14} + T^{6} + T^{4} + 1)J_{07}^{2}J_{70}^{2}J_{12}^{2}J_{41} + (T^{38} + T^{34} + T^{6} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}^{2} + (T^{32} + 1)J_{07}^{2}J_{70}^{2}J_{12}J_{41} + (T^{42} + T^{40} + T^{34} + T^{32} + T^{10} + T^{8} + T^{2} + T^{10} +$ $T^{10} + T^8 + T^2 + 1)J_{07}^2J_{70}^2 + (T^{42} + T^{38} + T^{36} + T^{32} + T^{10} + T^6 + T^4 + 1)J_{07}^2J_{70}J_{12}^3 + (T^{40} + T^{32} + T^8 + 1)J_{07}^2J_{70}J_{12}^2J_{41} + (T^{48} + T^{32} + T^{16} + 1)J_{07}^2J_{70}J_{12}^2 + (T^{46} + T^{44} + T^{42} + T^{38} + T^{36} + T^{34} + T^{14} + T^{12} + T^{10} + T^6 + T^4 + T^2)J_{07}^2J_{70}J_{12}J_{41} + (T^{64} + T^{54} + T^{52} + T^{38} + T^{36} + T^{22} + T^{38} + T^{36} + T^{22} + T^{38} + T^{36} + T^{38} + T^$ $T^{20} + T^6 + T^4 + 1)J_{07}^2J_{70}J_{12} + (T^{48} + T^{32} + T^{16} + 1)J_{07}^2J_{70}J_{41} + (T^{66} + T^{58} + T^{56} + T^{56} + T^{42} + T^{40} + T^{34} + T^{32} + T^{26} + T^{24} + T^{18} + T^{40} +$ $T^{16} + T^{10} + T^8 + 1) \tilde{J}_{07}^2 J_{70} + (T^{48} + T^{32} + T^{16} + 1) J_{07}^2 \tilde{J}_{12}^2 J_{41} + (T^{66} + T^{64} + T^{58} + T^{56} + T^{50} + T^{48} + T^{42} + T^{40} + T^{34} + T^{32} + T^{26} + T^{24} + T^{40} + T^{44} +$ $T^{18} + T^{16} + T^{10} + T^{8})J_{07}^{2}J_{12}^{2} + (T^{64} + T^{56} + T^{48} + T^{40} + T^{32} + T^{24} + T^{16} + T^{8})J_{07}^{2}J_{12}J_{41} + (T^{72} + T^{8})J_{07}^{2}J_{12} + (T^{70} + T^{68} + T^{66} + T^{62} + T^{64} + T^{66} + T^{$ $T^{58} + T^{54} + T^{50} + T^{46} + T^{42} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14} + T^{10} + T^{4})J_{07}^{2}J_{41} + (T^{80} + T^{78} + T^{76} + T^{74} + T^{16} + T^{14} + T^{12} + T^{18} + T^$ $T^{10})J_{07}^2 + (T^6 + T^2)J_{07}J_{70}^7J_{12}^3 + J_{07}J_{70}^7J_{12}^2J_{41}T^2 + J_{07}J_{70}^7J_{12}^2T^4 + J_{07}J_{70}^7J_{12}J_{41}T^4 + (T^{10} + T^6)J_{07}J_{70}^7J_{12} + J_{07}J_{70}^7J_{41}T^6 + J_{07}J_{70}^7T^8 + J_{07}J_{12}^7J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{12}J_{41}T^6 + J_{07}J_{70}^7J_{12}J_{$

 $(T^{12} + T^4)J_{07}J_{00}^5J_{12}^3 + (T^{16} + T^{14} + T^{10} + T^8 + T^4 + T^2)J_{07}J_{00}^5J_{12}^2J_{41} + (T^{18} + T^{14} + T^{10} + T^8 + T^6)J_{07}J_{00}^5J_{12}^2 + (T^{14} + T^{12} + T^6 + T^6)J_{07}J_{00}^5J_{12}^2 + (T^{14} + T^{12} + T^6 + T^6)J_{07}J_{00}^5J_{12}^2 + (T^{16} + T^{16} + T^{$ $T^{4})J_{07}J_{70}^{6}J_{12}J_{41}+J_{07}J_{70}^{6}J_{12}T^{8}+(T^{20}+T^{18}+T^{16}+T^{14}+T^{12}+T^{8}+T^{6})J_{07}J_{70}^{6}J_{41}+(T^{14}+T^{12}+T^{10})J_{07}J_{70}^{6}+(T^{22}+T^{18}+T^{10}+T^{8}+T^{10}+T^$ $T^{2}J_{07}J_{50}^{5}J_{12}^{3} + (T^{20} + T^{18} + T^{6} + T^{4} + T^{2})J_{07}J_{50}^{5}J_{12}^{2}J_{41} + (T^{32} + T^{28} + T^{20} + T^{16} + T^{8} + T^{4})J_{07}J_{70}^{5}J_{12}^{2} + (T^{32} + T^{26} + T^{24} + T^{22} + T^{20} + T^{24} + T^{24} + T^{24})J_{07}J_{50}^{5}J_{12}^{3} + (T^{32} + T^{32} + T^{32}$ $T^{16} + T^{12} + T^{8} + T^{6} + T^{4}) J_{07} J_{50}^{5} J_{12} J_{41} + (T^{38} + T^{30} + T^{26} + T^{20} + T^{18} + T^{14} + T^{12} + T^{6}) J_{07} J_{50}^{5} J_{12} + (T^{34} + T^{30} + T^{22} + T^{18} + T^{16} + T^{10} + T^{10} + T^{10}) J_{07} J_{50}^{5} J_{12} J_{13} J_{14} + (T^{34} + T^{30} + T^{20} + T^$ $T^8 + T^6) J_{07} J_{70}^5 J_{41} + (T^{28} + T^{24} + T^{12} + T^8) J_{07} J_{70}^5 + (T^{24} + T^8) J_{07} J_{70}^4 J_{12}^3 + (T^{34} + T^{26} + T^{20} + T^{18} + T^{16} + T^{10} + T^6 + T^2) J_{07} J_{70}^4 J_{12}^2 J_{41} + (T^{28} + T^{20} + T^{20$ $(T^{30} + T^{28} + T^{26} + T^{24} + T^{14} + T^{12} + T^{10} + T^{8}) \int_{07} J_{70}^{4} J_{12}^{2} + (T^{40} + T^{36} + T^{32} + T^{26} + T^{24} + T^{10} + T^{12} + T^{10} + T^{8} + T^{4}) J_{07} J_{70}^{4} J_{12} J_{41} + T^{10} + T^$ $(T^{36} + T^{28} + T^{20} + T^{12}) J_{07} J_{70}^4 J_{12} + (T^{48} + T^{46} + T^{34} + T^{3\overline{2}} + T^{26} + T^{22} + T^{18} + T^{14} + T^{10} + T^6) J_{07} J_{70}^4 J_{41} + (T^{42} + T^{40} + T^{38} + T^{\overline{3}6} + T^{34} + T^{40} + T^{40}) J_{07} J_{70}^4 J_{41} + (T^{42} + T^{40} + T^{38} + T^{\overline{3}6} + T^{34} + T^{40} + T^{40}) J_{07} J_{70}^4 J_{41} + (T^{42} + T^{40} + T^{38} + T^{\overline{3}6} + T^{34} + T^{40} + T^{40}) J_{07} J_{70}^4 J_{41} + (T^{42} + T^{40} + T^{38} + T^{\overline{3}6} + T^{34} + T^{40} + T^{40}) J_{07} J_{70}^4 J_{41} + (T^{42} + T^{40} + T^{38} + T^{\overline{3}6} + T^{34} + T^{40} + T^{40}) J_{07} J_{70}^4 J_{41} + (T^{42} + T^{40} +$ $T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12})J_{07}J_{70}^4 + (T^{36} + T^{28} + T^{26} + T^{18} + T^{12} + T^{10} + T^2)J_{07}J_{70}^3J_{12}^3 + T^{12} + T^{10} + T$ $(T^{32} + T^{24} + T^{22} + T^{18} + T^{16} + T^8 + T^6 + T^2) J_{07} J_{70}^3 J_{12}^2 J_{41} + (T^{40} + T^{36} + T^8 + T^4) J_{07} J_{30}^3 J_{12}^2 + (T^{36} + T^{34} + T^{32} + T^{26} + T^{24} + T^{18} +$ $T^{16} + T^{10} + T^8 + T^4)J_{07}J_{70}^3J_{12}J_{41} + (T^{46} + T^{38} + T^{14} + T^6)J_{07}J_{70}^3J_{12} + (T^{44} + T^{42} + T^{38} + T^{12} + T^{10} + T^6)J_{07}J_{70}^3J_{41} + (T^{64} + T^{52} + T^{44} + T^{64} + T^{6$ $T^{40} + T^{32} + T^{20} + T^{12} + T^{8} J_{07} J_{70}^{3} + (T^{44} + T^{36} + T^{12} + T^{4}) J_{07} J_{70}^{2} J_{12}^{3} + (T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{34} + T^{12} + T^{10} + T^{8} + T^{6} + T^{4} + T^{4}) J_{10} J_{10}^{2} J_{10}^{2} + (T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{34} + T^{12} + T^{10} + T^{8} + T^{6} + T^{4} + T^{4}) J_{10} J_{10}^{2} J_{10}^{2} J_{10}^{2} + (T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{34} + T^{12} + T^{10} + T^{8} + T^{6} + T^{4} + T^$ $T^{2} \int_{0}^{2} \int_{0}^{2} \int_{1}^{2} \int_{1}^{2} \int_{1}^{4} \left(T^{64} + T^{52} + T^{50} + T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{32} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6} \right) \int_{0}^{2} \int_{0}^{2} \int_{1}^{2} \left(T^{48} + T^{40} +$ $T^{46} + T^{44} + T^{40} + T^{38} + T^{36} + T^{16} + T^{14} + T^{12} + T^{8} + T^{6} + T^{4}) J_{07} J_{70}^{2} J_{12} J_{41} + (T^{64} + T^{56} + T^{48} + T^{40} + T^{32} + T^{24} + T^{16} + T^{8}) J_{07} J_{70}^{2} J_{12} + T^{44} + T^{40} + T^{48} + T^{40} + T^{40} + T^{48} + T^{40} +$ $(T^{66} + T^{52} + T^{48} + T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{34} + T^{20} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6}) J_{07} J_{70}^{2} J_{41} + (T^{70} + T^{68} + T^{66} + T^{62} + T^{60} + T^{60}) J_{07} J_{70}^{2} J_{41} + (T^{70} + T^{68} + T^{66} + T^{62} + T^{60} + T^{60}) J_{07} J_{70}^{2} J_{70}$ $T^{58} + T^{54} + T^{52} + T^{50} + T^{46} + T^{44} + T^{42} + T^{38} + T^{36} + T^{34} + T^{30} + T^{28} + T^{26} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10}) J_{07} J_{70}^{20} + (T^{64} + T^{56} + T^{26} + T^{26}$ $T^{54} + T^{50} + T^{48} + T^{40} + T^{38} + T^{34} + T^{32} + T^{24} + T^{22} + T^{18} + T^{16} + T^{8} + T^{6} + T^{2}) \\ J_{07} J_{70} J_{12}^{3} + (T^{52} + T^{50} + T^{36} + T^{34} + T^{20} + T^{18} + T^{4} + T^{20} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{$ $T^2) J_{07} J_{70} J_{12}^2 J_{41} + (T^{68} + T^4) J_{07} J_{70} J_{12}^2 + (T^{68} + T^{66} + T^{64} + T^{60} + T^{54} + T^{50} + T^{48} + T^{44} + T^{38} + T^{34} + T^{32} + T^{28} + T^{22} + T^{18} + T^{16} + T^{12} + T^{18} + T^{16} + T^{1$ $T^{6} + T^{4} J_{07} J_{70} J_{12} J_{41} + (T^{76} + T^{74} + T^{70} + T^{12} + T^{10} + T^{6}) J_{07} J_{70} J_{12} + (T^{72} + T^{70} + T^{8} + T^{6}) J_{07} J_{70} J_{41} + (T^{80} + T^{72} + T^{16} + T^{8}) J_{07} J_{70} + (T^{80} + T^{8} + T^{8}) J_{07} J_{70} J_{70} + (T^{80} + T^{8} + T^{8}) J_{07} J_{70} J_{70} J_{70} + (T^{80} + T^{8} + T^{8}) J_{07} J_{70} J$ $^{64} + ^{62} + ^{60} + ^{758} + ^{756} + ^{754} + ^{752} + ^{750} + ^{748} + ^{746} + ^{744} + ^{742} + ^{740} + ^{738} + ^{736} + ^{734} + ^{732} + ^{730} + ^{728} + ^{726} + ^{734} + ^{732} + ^{730} + ^{738} + ^{736} + ^{734} + ^{732} + ^{730} + ^{738} + ^{736} + ^{734} + ^{732} + ^{730} + ^{738} + ^{736} + ^{734} + ^{732} + ^{730} + ^{738} + ^{736} + ^{734} + ^{732} + ^{73$ $T^{24} + T^{22} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8} + T^{2})J_{07}J_{12}^{2}J_{41} + (T^{80} + T^{72} + T^{16} + T^{8})J_{07}J_{12}^{2} + (T^{76} + T^{68} + T^{12} + T^{4})J_{07}J_{12}J_{41} + (T^{80} + T^{72} + T^{16} + T^{8})J_{07}J_{12}^{2}J_{41} + (T^{80} + T^{72} + T^{16} + T^{8})J_{07}J_{12}^{2}J_{41} + (T^{80} + T^{72} + T^{16} + T^{16$ $(T^{84} + T^{78} + T^{76} + T^{70} + T^{20} + T^{14} + T^{12} + T^6)J_{07}J_{41} + (T^{96} + T^{92} + T^{80} + T^{76} + T^{32} + T^{28} + T^{16} + T^{12})J_{07} + J_{70}^2J_{12}^3T^8 + J_{70}^2J_{12}^2T^{10} + J_{70}^2J_{12}^3T^{10} + J_{70}^2J$ $J_{70}^{7}J_{12}T^{12} + J_{70}^{7}T^{14} + (T^{16} + T^{10} + T^8)J_{50}^{6}J_{12}^{3} + (T^{14} + T^{10})J_{50}^{6}J_{12}^{2}J_{41} + (T^{24} + T^{22} + T^{18} + T^{16} + T^{12} + T^{10})J_{70}^{6}J_{12}^{2} + J_{50}^{6}J_{12}J_{41}^{12} + J_{50}^{6}J_{12}^{12}J_{41}^{12} + J_{50}^{6}J_{12}^{12}J$ $(T^{22} + T^{20} + T^{14} + T^{12}) J_{70}^{6} J_{12} + (T^{18} + T^{14}) J_{70}^{6} J_{41} + (T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14}) J_{70}^{6} + (T^{28} + T^{18} + T^{16} + T^{12} + T^{10} + T^{18}) J_{70}^{6} J_{12}^{12} J_{41} + (T^{30} + T^{28} + T^{26} + T^{14} + T^{12} + T^{10}) J_{70}^{5} J_{12}^{12} + (T^{26} + T^{12} + T^{14}) J_{70}^{6} J_{12}^{12} J_{41} + (T^{30} + T^{28} + T^{26} + T^{14} + T^{12} + T^{10}) J_{70}^{7} J_{12}^{12} + (T^{26} + T^{22} + T^{18} + T^{14}) J_{70}^{6} J_{12} J_{41} + (T^{40} + T^{34} + T^{30} + T^{$ $T^{28} + T^{24} + T^{18} + T^{14} + T^{12}) J_{70}^{5} J_{12} + (T^{42} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14}) J_{70}^{5} + (T^{38} + T^{36} + T^{32} + T^{30} + T^{28} + T^{24} + T^{22} + T^{30} + T^{28} + T^{24} + T^{22} + T^{28} + T^{24} + T^{2$ $T^{20} + T^{16} + T^{14} + T^{12} + T^{8})J_{70}^{4}J_{12}^{3} + (T^{34} + T^{26} + T^{18} + T^{10})J_{70}^{4}J_{12}^{2}J_{41} + (T^{44} + T^{40} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{32} + T^{30} + T^{30}$ $T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{10}) I_{70}^4 I_{12}^2 + (T^{40} + T^{36} + T^{32} + T^{18} + T^{24} + T^{20} + T^{16} + T^{12}) I_{70}^4 J_{12} J_{41} + (T^{48} + T^{44} + T^{16} + T^{12}) J_{70}^4 J_{12} + (T^{48} + T^{44} + T^{16} + T^{12}) J_{70}^4 J_{12} + (T^{48} + T^{44} + T$ $(T^{46} + T^{14})J_{70}^4J_{41} + (T^{56} + T^{54} + T^{48} + T^{46} + T^{24} + T^{22} + T^{16} + T^{14})J_{70}^4 + (T^{64} + T^{50} + T^{48} + T^{46} + T^{44} + T^{40} + T^{32} + T^{18} + T^{16} + T^{14} + T^{40})J_{70}^4J_{41} + (T^{64} + T^{64} + T^{$ $\frac{T^{12} + T^{8}J_{70}^{12}J_{12}^{12} + (T^{66} + T^{54} + T^{46} + T^{42} + T^{34} + T^{22} + T^{14} + T^{10})J_{70}^{12}J_{12}^{2} + (T^{68} + T^{60} + T^{52} + T^{44} + T^{36} + T^{28} + T^{20} + T^{12})J_{70}^{3}J_{12} + (T^{70} + T^{62} + T^{54} + T^{46} + T^{38} + T^{30} + T^{22} + T^{14})J_{70}^{3} + (T^{72} + T^{66} + T^{64} + T^{60} + T^{58} + T^{50} + T^{48} + T^{44} + T^{42} + T^{34} + T^{32} + T^{28} + T^{26} + T^{46} + T^{46$ $T^{18} + T^{16} + T^{12} + T^{10} + T^{8})J_{70}^{2}J_{12}^{3} + (T^{70} + T^{66} + \bar{T}^{58} + T^{54} + T^{50} + T^{42} + T^{38} + T^{34} + T^{26} + T^{22} + T^{18} + T^{10})J_{70}^{2}J_{12}^{2}J_{41} + (T^{80} + T^{78} + T^{10} + T^{10} + T^{10} + T^{10} + T^{10} + T^{10})J_{70}^{2}J_{12}^{2}J_{41} + (T^{80} + T^{10} + T^$ $T^{74} + T^{72} + T^{68} + T^{64} + T^{60} + T^{56} + T^{52} + T^{48} + T^{44} + T^{40} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{14} + T^{12} + T^{10}) J_{70}^{22} J_{12}^{22} + (T^{68} + T^{60} + T^{52} + T^{48} + T^{44} + T^{40} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{14} + T^{12} + T^{10}) J_{70}^{22} J_{12}^{22} + (T^{68} + T^{60} + T^{52} + T^{68} + T^{64} + T^{66} + T^{$ $T^{44} + T^{36} + T^{28} + T^{20} + T^{12})J_{70}^2J_{12}J_{41} + (T^{78} + T^{76} + T^{14} + T^{12})J_{70}^2J_{12} + (T^{74} + T^{70} + T^{66} + T^{62} + T^{58} + T^{54} + T^{50} + T^{46} + T^{42} + T^{38} + T^{46} + T^{42} + T^{46} + T^{42} + T^{46} +$ $T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14})J_{70}^2J_{41} + (T^{84} + T^{82} + T^{80} + T^{78} + T^{20} + T^{18} + T^{16} + T^{14})J_{70}^2 + (T^{74} + T^{72} + T^{10} + T^8)J_{70}J_{12}^3 + (T^{76} + T^{78} + T^{10} + T^{18})J_{70}^3J_{12}^3 + (T^{76} + T^{18} + T^{16} + T^{18})J_{70}^3J_{12}^3 + (T^{76} + T^{18} + T^{18})J_{70}^3J_{12}^3 + (T^{76} + T^{18})$ $T^{12})J_{70}J_{12}^{2}J_{41} + (T^{84} + T^{82} + T^{76} + T^{74} + T^{20} + T^{18} + T^{12} + T^{10})J_{70}J_{12}^{2} + (T^{82} + T^{78} + T^{18} + T^{14})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{88} + T^{86} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J_{12}J_{41} + (T^{96} + T^{90} + T^{18} + T^{18} + T^{18})J_{70}J$ $T^{84} + T^{82} + T^{78} + T^{76} + T^{32} + T^{26} + T^{24} + T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} \\)J_{70}J_{12} + (T^{98} + T^{94} + T^{82} + T^{78} + T^{34} + T^{30} + T^{18} + T^{14})J_{70} + T^{18} + T^{14} + T^{12} \\)J_{70}J_{12} + (T^{98} + T^{94} + T^{82} + T^{78} + T^{34} + T^{30} + T^{18} + T^{14})J_{70} + T^{18} + T^{14} + T^{12} \\)J_{70}J_{12} + (T^{98} + T^{94} + T^{98} + T^{94} + T^{98} +$ $(788 + 772 + 724 + 78)J_{12}^3 + (786 + 782 + 778 + 774 + 722 + 718 + 714 + 710)J_{12}^3 J_{21} + (798 + 790 + 782 + 774 + 732 + 718 + 714 + 710)J_{12}^3 J_{21} + (798 + 790 + 782 + 774 + 732 + 784 + 786 + 718 + 710)J_{12}^3 J_{21} + (798 + 792 + 780 + 776 + 732 + 728 + 716 + 712)J_{12} J_{21} + (7104 + 7100 + 792 + 788 + 784 + 780 + 776 + 740 + 736 + 732 + 728 + 724 + 720 + 716 + 712)J_{12} + (7102 + 794 + 786 + 778 + 738 + 730 + 722 + 714)J_{21} + (7112 + 7110 + 780 + 778 + 748 + 746 + 716 + 714),$

 $a_1 = J_{07}^6 J_{12} + J_{07}^6 T^2 + J_{07}^5 J_{70} J_{12}^2 + J_{07}^5 J_{70} T^4 + J_{07}^5 J_{12}^3 T^2 + J_{07}^5 J_{12}^2 J_{41} + (T^8 + T^4 + T^2 + 1) J_{07}^5 J_{12}^2 + (T^6 + T^4 + T^2) J_{07}^5 J_{12} J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^2) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4 + T^4) J_{07}^5 J_{12}^2 J_{41} + (T^{16} + T^4) J_{07}^5 J_{12}^2 J_{12}^2 J_{12} + (T^{16} + T^4) J_{07}^5 J_{12}^2 J_{12}^2 J_{12} + (T^{16} + T^4) J_{07}^2 J_{12}^2 J_$ $T^{14} + T^{12} + T^{8} + T^{6} + T^{4} + J_{07}^{57} J_{12} + (\overline{t}^{6} + \overline{t}^{4} + T^{2} + 1) J_{07}^{57} J_{41} + (T^{22} + \overline{t}^{18} + T^{16} + T^{14} + T^{12} + T^{10} + \overline{t}^{8} + T^{4}) J_{07}^{57} J_{30}^{47} J_{12} + J_{07}^{47} J_{30}^{70} J_{12} + J_{07}^{47} J_{12}^{70} J_{12} + J_{07}^{47} J_{12}^{70} J_{12}^{70} J_{12} + J_{07}^{47} J_{12}^{70} J_{12}^{70} J_{12} + J_{07}^{47} J_{12}^{70} J_{12}^{70} J_{12}^{$ $(T^6 + T^2 + 1)J_{07}^4J_{70}^3 + J_{07}^4J_{70}^3J_{12}^3 + J_{07}^4J_{70}^2J_{12}^2T^2 + (T^2 + 1)J_{07}^4J_{70}^2J_{12}^2J_{11} + J_{07}^4J_{70}^2J_{12}J_{11} + J_{07}^4J_{70}^2J_{12}J_{11} + T^6 + (T^{10} + T^8 + T^4 + T^2 + 1)J_{07}^4J_{70}^2J_{14} + (T^{18} + T^8 + T^$ $T^{12} + T^8 + T^6 + T^4 + T^2 + 1)J_{07}^4J_{70}^2 + (T^4 + T^2)J_{07}^4J_{70}J_{12}^2 + (T^4 + T^2)J_{07}^4J_{70}J_{12}^2J_{41} + (T^{12} + T^{10} + T^2 + 1)J_{07}^4J_{70}J_{12}^2 + (T^8 + T^6 + T^4 + T^4)J_{07}^4J_{70}J_{12}^2J_{41} + (T^{12} + T^{10} + T^2 + 1)J_{07}^4J_{70}J_{12}^2 + (T^8 + T^6 + T^4 + T^4)J_{07}^4J_{70}J_{12}^2J_{41} + (T^{12} + T^{10} + T^2 + 1)J_{07}^4J_{70}J_{12}^2 + (T^8 + T^6 + T^4 + T^2)J_{07}^4J_{70}J_{12}^2J_{41} + (T^{12} + T^{10} + T^2 + 1)J_{07}^4J_{70}J_{12}^2 + (T^8 + T^6 + T^4 + T^2)J_{07}^4J_{70}J_{70}^2J$ $1)J_{07}^{4}J_{70}J_{12}J_{41} + (T^{22} + T^{20} + T^{18} + T^{12} + T^{6} + T^{2})J_{07}^{4}J_{70}J_{12} + (T^{18} + T^{12} + T^{2} + 1)J_{07}^{4}J_{70}J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{24} +$ $T^{10} + T^8 + T^6 + T^4 + T^2 + 1)J_{07}^4J_{70} + (T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + T^2 + 1)J_{07}^4J_{12}^3 + (T^{18} + T^{12} + T^6 + 1)J_{07}^4J_{12}^2J_{41} + (T^{24} + T^{22} + T^{24} + T^{$ $T^{18} + T^8 + T^6 + T^2)J_{07}^4J_{12}^2 + (T^{22} + T^{20} + T^{14} + T^{10} + T^4 + T^2)J_{07}^4J_{12}J_{41} + (T^{32} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{16} + T^{14} + T^{12} + T^8 + T^{10} + T^{10}$ $T^{6} + T^{4} \\ J_{07}^{4} \\ J_{12} + (T^{28} + T^{26} + T^{18} + T^{16} + T^{12} + T^{10} + T^{2} + 1) \\ J_{07}^{4} \\ J_{41} + (T^{38} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{8} + T^{6}) \\ J_{07}^{4} + (T^{38} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{8} + T^{6}) \\ J_{07}^{4} + (T^{38} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{8} + T^{6}) \\ J_{07}^{4} + (T^{38} + T^{36} + T^{3$ $J_{07}^{37}J_{70}^{57}T^2 + J_{07}^{37}J_{70}^{4}J_{12}^{12}T^2 + J_{07}^{37}J_{70}^{4}J_{12}T^6 + (T^6 + T^4 + T^2 + 1)J_{07}^{37}J_{70}^{4}J_{14} + (T^{12} + T^8 + T^2)J_{07}^{37}J_{70}^4 + J_{07}^{37}J_{70}^{3}J_{12}^2T^6 + J_{07}^{37}J_{70}^{3}J_{12}^2J_{41} + (T^{10} + T^8 + T^2)J_{07}^{37}J_{70}^{4}J_{12}^{37}T^6 + J_{07}^{37}J_{70}^{37}J_{12}^{37}J_{41} + (T^{10} + T^8 + T^8)J_{10}^{37}J_{10}^{3$ $T^{6}+1)J_{07}^{37}J_{10}^{7}J_{12}^{2}+(T^{10}+T^{8}+T^{6}+1)J_{07}^{37}J_{70}^{3}J_{12}J_{41}+(T^{18}+T^{16}+T^{14}+T^{12}+T^{10}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}^{37}J_{70}^{3}J_{12}+(T^{14}+T^{18}+T^{16}+T^{14}+T^{12}+T^{10}+T^{18}+T^{16}+T^{14}+T^{12}+T^{10}+T^{18}+T^{16}+T^{14}+T^{12}+T^{10}+T^{18}+T^{16}+T^{14}+T^{12}+T^{10}+T^{18}+T^{16}+T^{14}+T^{12}+T^{10}+T^{18}+T^{16}+T^{18}+T^$ $T^{12}J_{07}^{37}J_{07}^{3}J_{41}^{4} + (T^{22} + T^{18} + T^{12} + T^6 + T^4)J_{07}^{3}J_{07}^{3}J_{10}^{2} + (T^{16} + T^{14} + T^6 + T^2)J_{07}^{3}J_{70}^{2}J_{12}^{13} + (T^{12} + T^{10} + T^4 + T^2 + 1)J_{07}^{3}J_{70}^{2}J_{12}^{2}J_{41} + (T^{22} + T^{18} + T^{12} + T^{12}$ $T^{6}IJ_{07}^{3}IJ_{20}^{2}IJ_{12}^{2} + (T^{18} + T^{16} + T^{14} + T^{10} + T^{6} + T^{4} + 1)I_{07}^{3}IJ_{70}^{2}I_{12}I_{41} + (T^{20} + T^{18} + T^{16} + T^{14} + T^{6} + T^{4} + T^{2})IJ_{07}^{3}IJ_{20}^{2}I_{12} + (T^{26} + T^{16} + T^{16} + T^{16} + T^{14} + T^{2})IJ_{07}^{3}IJ_{20}^{2}IJ_{12} + (T^{26} + T^{16} + T^{16} + T^{14} + T^{2} + T^{16} + T$ $T^{14} + T^{8} + T^{4} + 1)J_{07}^{3}J_{70}^{2}J_{11} + (T^{34} + T^{30} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{8} + T^{6} + T^{4} + 1)J_{07}^{3}J_{70}^{2} + (T^{24} + T^{16} + T^{8} + 1)J_{07}^{3}J_{70}J_{12}^{3} + T^{16} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} +$ $(T^{20} + T^{18} + T^{14} + T^{10} + T^6 + T^4)J_{07}^3J_{70}J_{12}^2J_{41} + (T^{32} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^8 + T^6 + T^4 + T^2)J_{07}^3J_{70}J_{12}^2 + (T^{26} + T^{22} + T^{18} + T^{18} + T^{16} + T^8 +$ $T^{12}J_{07}^{3}J_{70}J_{41} + (T^{42} + T^{36} + T^{34} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{10} + T^{8} + T^{2})J_{07}^{3}J_{70} + (T^{34} + \overset{-}{T}^{32} + T^{28} + T^{26} + T^{24} + T^{20} + T$ $T^{18} + T^{16} + T^{12} + T^{10} + T^8 + T^4)J_{07}^3J_{13}^3 + (T^{34} + T^{30} + T^{28} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^8 + T^4 + 1)J_{07}^3J_{12}^2J_{41} + (T^{42} + T^{40} + T^{$ $T^{38} + T^{10} + T^{8} + T^{6})J_{07}^{3}J_{12}^{2} + (T^{38} + T^{34} + T^{32} + T^{6} + T^{2} + 1)J_{07}^{3}J_{12}J_{41} + (T^{48} + T^{46} + T^{42} + T^{40} + T^{16} + T^{14} + T^{10} + T^{8})J_{07}^{3}J_{12} + (T^{44} + T^{46} + T$ $T^{38} + T^{36} + T^{34} + T^{12} + T^6 + T^4 + T^2)J_{07}^{7}J_{41} + (T^{54} + T^{46} + T^{40} + T^{32} + T^{22} + T^{14} + T^8 + 1)J_{07}^{3} + J_{07}^{2}J_{70}^{6}J_{41}T^2 + (T^{10} + T^8 + T^6 + T^4 + T^8 + 1)J_{07}^{7} + T^{10}J_{17}^{7}$ $T^{2})J_{07}^{2}J_{06}^{6}+J_{07}^{2}J_{50}^{5}J_{13}^{12}T^{2}+J_{07}^{2}J_{70}^{5}J_{12}^{2}T^{4}+(T^{6}+T^{2})J_{07}^{2}J_{70}^{5}J_{12}J_{41}+(T^{12}+T^{10}+T^{6}+T^{2})J_{07}^{2}J_{50}^{5}J_{12}+J_{20}^{2}J_{70}^{5}J_{70}J_{41}T^{10}+(T^{18}+T^{10}+T^{4}+T^{10}+T^{2}+T$ $1)J_{07}^{2}J_{70}^{5} + (T^{10} + T^{8})J_{07}^{2}J_{70}^{4}J_{12}^{3} + (T^{10} + T^{8} + T^{4})J_{07}^{2}J_{70}^{4}J_{12}^{12}J_{41} + (T^{16} + T^{12} + T^{8} + T^{4} + 1)J_{07}^{2}J_{70}^{4}J_{12}^{2} + (T^{8} + T^{6} + T^{2} + 1)J_{07}^{2}J_{70}^{4}J_{12}J_{41} + (T^{10} + T^{12} +$ $(T^{20} + T^{16} + T^6 + T^4) J_{07}^2 J_{70}^4 J_{12} + (T^{16} + T^{14} + T^{12} + T^{10} + T^6 + T^4 + T^2 + 1) J_{07}^2 J_{70}^4 J_{41} + (T^{26} + T^{22} + T^{18} + T^{16} + T^{12} + T^8 + T^6 + T^4 + T^8 + T$ $1)J_{07}^2J_{70}^4 + (T^{18} + T^6 + T^4 + T^2 + 1)J_{07}^2J_{70}^2J_{17}^3 + (T^{18} + T^{14} + T^8 + 1)J_{07}^2J_{70}^3J_{17}^2 + (T^{18} + T^{14} + T^8 + 1)J_{07}^2J_{70}^3J_{17}^2 + (T^{18} + T^{12} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{10} + T^6 + T^4 + T^4 + T^8 + T^8$

 $1)J_{07}^2J_{70}^3J_{12}^2 + (T^{24} + T^{12} + T^8 + T^6 + T^2)J_{07}^2J_{30}^3J_{12}J_{41} + (T^{32} + T^{30} + T^{28} + T^{22} + T^{20} + T^{16} + T^{10} + T^8 + T^2 + 1)J_{07}^2J_{70}^3J_{12} + (T^{26} + T^{22} + T^{20} +$ $T^{18} + T^{10} + T^{8} + T^{4})J_{07}^{2}J_{70}^{3}J_{41} + (T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{24} + T^{20} + T^{16} + T^{10} + T^{6} + T^{4} + 1)J_{07}^{2}J_{70}^{3} + (T^{30} + T^{26} + T^{14} + T^{8} + T^{2} + T^{20} + T^{20}$ $1) J_{07}^2 J_{70}^2 J_{12}^3 + (T^{28} + T^{26} + T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^6 + T^4 + 1) J_{07}^2 J_{70}^2 J_{12}^2 J_{41} + (T^{34} + T^{32} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{10} + T^8 + T^{10} + T^{$ $T^{6} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}^{2} + (T^{34} + T^{30} + T^{26} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6} + 1)J_{07}^{2}J_{70}^{2}J_{12}J_{41} + (T^{42} + T^{40} + T^{38} + T^{32} + T^{40} +$ $T^{10} + T^8 + T^6 + 1) \int_{0.7}^{20} \int_{70}^{2} J_{12} + (T^{40} + T^{38} + T^{32} + T^{28} + T^{22} + T^{20} + T^{18} + T^{12} + T^8 + T^4 + T^2 + 1) \int_{0.7}^{2} J_{10}^{2} J_{14} + (T^{48} + T^{34} + T^{28} + T^{24} + T^{24}$ $T^{20} + T^{12} + T^8 + T^4 + T^2 + 1)J_{07}^2J_{70}^2 + (T^{42} + T^{40} + T^{34} + T^{32} + T^{30} + T^{22} + T^{14} + T^{10} + T^8 + T^6 + T^2 + 1)J_{07}^2J_{70}J_{12}^3 + (T^{38} + T^{30} + T^{26} + T^{20} + T^{20$ $T^{24} + T^{16} + T^{14} + T^{10} + T^8 + T^6 + 1)J_{07}^2J_{70}J_{12}^2J_{41} + (T^{46} + T^{44} + T^{38} + T^{36} + T^{14} + T^{12} + T^6 + T^4)J_{07}^2J_{70}J_{12}^2 + (T^{44} + T^{40} + T^{38} + T^{36} + T^{44} + T^{40} +$ $T^{34} + T^{32} + T^{12} + T^8 + T^6 + T^4 + T^2 + 1)J_{07}^2 J_{70} J_{12} J_{41} + (T^{50} + T^{48} + T^{42} + T^{40} + T^{38} + T^{34} + T^{18} + T^{16} + T^{10} + T^8 + T^6 + T^2)J_{07}^2 J_{70} J_{12} + T^{10} J_{12}^2 J_{12} J_{13} J_{14} + (T^{50} + T^{48} + T^{42} + T^{40} + T^{38} + T^{34} + T^{18} + T^{16} + T^{10} + T^{8} + T^{6} + T^{2})J_{07}^2 J_{70} J_{12} + T^{10} J_{12}^2 J_{13} J_{14} + (T^{50} + T^{48} + T^{44} + T^{48} + T^{44} + T^{18} + T^{16} + T^{10} + T^{10}$ $(T^{50} + T^{38} + T^{18} + T^{6})J_{07}^2J_{70}J_{41} + (T^{58} + T^{56} + T^{52} + T^{48} + T^{42} + T^{40} + T^{36} + T^{32} + T^{26} + T^{24} + T^{40} + T^{16} + T^{10} + T^{8} + T^{4} + 1)J_{07}^2J_{70} + T^{16} + T^{16}$ $(T^{50} + T^{48} + T^{42} + T^{40} + T^{18} + T^{16} + T^{10} + T^8)J_{07}^2J_{12}^3 + (T^{50} + T^{48} + T^{38} + T^{36} + T^{34} + T^{32} + T^{18} + T^{16} + T^6 + T^4 + T^2 + 1)J_{07}^2J_{12}^2J_{41} + T^{40} + T^{$ $(T^{58} + T^{54} + T^{52} + T^{46} + T^{44} + T^{40} + T^{34} + T^{32} + T^{26} + T^{22} + T^{20} + T^{14} + T^{12} + T^{8} + T^{2} + 1) \\ I_{077}^{12} I_{12}^{12} + (T^{54} + T^{50} + T^{44} + T^{42} + T^{40} + T^{38} + T^{24} + T^{40} + T^{40$ $T^{36} + T^{32} + T^{22} + T^{18} + T^{12} + T^{10} + T^8 + T^6 + T^4 + 1)J_{07}^2J_{12}J_{41} + (T^{62} + T^{58} + T^{46} + T^{42} + T^{30} + T^{26} + T^{14} + T^{10})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{42} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{58} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{46} + T^{44} + T^{40} + T^{46} + T^{44} + T^{40})J_{07}^2J_{12} + (T^{60} + T^{46} + T^{44} + T^{40} + T^{40}$ $T^{52} + T^{46} + T^{40} + T^{38} + T^{34} + T^{32} + T^{28} + T^{26} + T^{20} + T^{14} + T^{8} + T^{6} + T^{2} + 1)I_{07}^{27}I_{41} + (T^{70} + T^{68} + T^{64} + T^{56} + T^{48} + T^{40} + T^{32} + T^{24} + T^{46} + T^{48} + T^{40} +$ $T^{16} + T^8 + T^6 + T^4)J_{07}^2 + J_{07}J_{70}^2J_{12}^2T^2 + J_{07}J_{70}^2J_{12}^2J_{41}T^2 + (T^8 + T^4)J_{07}J_{70}^2J_{12} + J_{07}J_{70}^2J_{12}T^4 + J_{07}J_{70}^2T^8 + (T^6 + T^2)J_{07}J_{70}^6J_{12} + (T^6 + T^2)J_{12}^2J_{12}^2J_{13}T^4 + J_{12}J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{12}^2J_{13}^2J_{13}^2J_{12}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{13}^2J_{$ $T^{4} J_{07} J_{70}^{6} J_{12}^{12} J_{41} + (T^{12} + T^{4}) J_{07} J_{70}^{6} J_{12}^{12} + (T^{10} + T^{8} + T^{4} + T^{2}) J_{07} J_{70}^{6} J_{12} J_{41} + J_{07} J_{70}^{6} J_{12} T^{14} + (T^{18} + T^{16} + T^{12} + T^{6} + T^{4}) J_{07} J_{70}^{6} J_{41} + (T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{18$ $(T^{20} + T^{16} + T^{12} + T^8)J_{07}J_{70}^6 + (T^{16} + T^{14} + T^{12} + T^{10})J_{07}J_{70}^5J_{12}^1 + (T^{14} + T^{12} + T^{10}) + T^8 + T^6 + T^2)J_{07}J_{70}^5J_{12}^1J_{41} + (T^{16} + T^{14} + T^{12} + T^{10})J_{12}J_{12}^2J_{41} + (T^{16} + T^{14} + T^{12} + T^{10})J_{12}J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2$ $T^{10} + T^8 + T^6 + T^2) Jor J_{50}^5 J_{12}^2 + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4 + T^2) Jor J_{70}^5 J_{12} J_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{12} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{10} + T^8 + T^4) Jor J_{70}^5 J_{12} L_{41} + (T^{22} + T^{20} + T^{20$ $T^{16} + T^{12} + T^8 + T^4)J_{07}J_{70}^5J_{41} + (T^{30} + T^{20} + T^{12} + T^{10} + T^8)J_{07}J_{70}^5 + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^2)J_{07}J_{70}^4J_{12}^3 + (T^{26} + T^{24} + T^{22} + T^{26} + T^{24} + T^{26} +$ $T^{20} + T^{10} + T^8 + T^4) J_{07} J_{70}^4 J_{12}^2 J_{41} + (T^{30} + T^{22} + T^{18} + T^{16} + T^{12} + T^{10} + T^8 + T^4) J_{07} J_{70}^4 J_{12}^2 + (T^{24} + T^{22} + T^{20} + T^{14} + T^{10} + T^8 + T^6 + T^{12} + T^{10} + T^8 +$ $T^4 + T^2)J_{07}J_{70}^4J_{12}J_{44} + (T^{16} + T^{14} + T^8 + T^6)J_{07}J_{70}^4J_{12} + (T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^8 + T^4)J_{07}J_{70}^4J_{14} + (T^{32} + T^{24} + T$ $T^{28} + T^{26} + T^{16} + T^{12} + T^{10}) J_{07} J_{70}^4 + (T^{32} + T^{20} + T^{12} + T^8) J_{07} J_{70}^3 J_{12}^3 + (T^{28} + T^{22} + T^{18} + T^{14} + T^{10} + T^8 + T^6 + T^2) J_{07} J_{70}^3 J_{12}^2 J_{41} + (T^{38} + T^{12} + T^{12} + T^{10}) J_{12}^2 J_{12}^2 J_{13} + (T^{28} + T^{12} + T^{12} + T^{10} + T^{10}$ $T^{32} + T^{28} + T^{26} + T^{18} + T^{16} + T^{12} + T^{10} + T^{6} + T^{2}) J_{07} J_{70}^{3} J_{12}^{2} + (T^{38} + T^{26} + T^{24} + T^{22} + T^{20} + T^{14} + T^{8} + T^{6} + T^{4} + T^{2}) J_{70} J_{70}^{3} J_{12} J_{41} + (T^{38} + T^{26} + T^{24} + T^{26} + T^{24} + T^{26} + T^{26$ $(T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{32} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{16} + T^{10} + T^{4}) J_{07} J_{70}^3 J_{12} + (T^{34} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{$ $T^{18} + T^{14} + T^{12} + T^8 + T^6 + T^4) J_{07} J_{70}^3 J_{41} + (T^{44} + T^{42} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{16} + T^{14} + T^{16} + T^{$ $T^{8})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{34} + T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{10} + T^{6})J_{07}J_{70}^{2}J_{12}^{3} + (T^{42} + T^{34} + T^{32} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{24} + T^$ $T^{16} + T^{12} + T^8 + T^6 + T^4 + T^2) \int_{07} J_{70}^2 J_{12}^2 J_{41} + (T^{44} + T^{42} + T^{12} + T^{10}) \int_{07} J_{70}^2 J_{12}^2 + (T^{46} + T^{40} + T^{38} + T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{14} + T^{10} + T^{6} + T^2) \int_{07} J_{70}^2 J_{12} J_{41} + (T^{48} + T^{44} + T^{42} + T^{38} + T^{16} + T^{12} + T^{10} + T^{6}) \int_{07} J_{70}^2 J_{12} + (T^{54} + T^{52} + T^{50} + T^{48} + T^{46} + T^{40} + T^{36} + T^{22} + T^{50} + T^{48} + T^{46} + T^{40} + T^{36} + T^{22} + T^{46} +$ $T^{20} + T^{18} + T^{16} + T^{14} + T^8 + T^4) J_{07} J_{70}^2 J_{41} + (T^{66} + T^{62} + T^{54} + T^{52} + T^{50} + T^{44} + T^{34} + T^{30} + T^{22} + T^{20} + T^{18} + T^{12}) J_{07} J_{70}^2 + (T^{56} + T^{54} +$ $T^{52} + T^{48} + T^{42} + T^{40} + T^{38} + T^{24} + T^{20} + T^{16} + T^{10} + T^{8} + T^{6}) J_{07} J_{70} J_{12}^{3} + (T^{52} + T^{42} + T^{40} + T^{38} + T^{20} + T^{10} + T^{8} + T^{6}) J_{07} J_{70} J_{12}^{2} J_{41} + T^{40} +$ $(T^{58} + T^{56} + T^{54} + T^{52} + T^{48} + T^{46} + T^{44} + T^{34} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{14} + T^{12} + T^2) J_{07}J_{70}J_{72}^2 + (T^{58} + T^{54} + T^{52} + T^{48} + T^{44} + T^{44} + T^{45} + T^{45}$ $T^{40} + T^{38} + T^{34} + T^{26} + T^{22} + T^{20} + T^{16} + T^{12} + T^8 + T^6 + T^2) \int_{07} \int_{70} \int_{12} \int_{41} + (T^{70} + T^{66} + T^{64} + T^{60} + T^{58} + T^{54} + T^{52} + T^{50} + T^{48} + T^{54} + T^{54}$ $\begin{array}{c} 744 + 742 + 738 + 736 + 734 + 732 + 728 + 726 + 722 + 726 + 722 + 718 + 716 + 712 + 710 + 714 \\ 728 + 722 + 720 + 712 + 76 + 712 + 76 + 712 + 716 + 712 + 710 + 748 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 + 720 +$ $T^{14} + T^{10} + T^{8}) \int_{07}^{7} J_{70} + (T^{58} + T^{50} + T^{42} + T^{34} + T^{26} + T^{18} + T^{10} + T^{2}) \int_{07}^{7} J_{17}^{3} + (T^{66} + T^{64} + T^{62} + T^{56} + T^{52} + T^{50} + T^{48} + T^{46} + T^{40} + T^{4$ $T^{36} + T^{34} + T^{32} + T^{30} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{8} + T^{4}) J_{07} J_{12}^{2} J_{41} + (\tilde{r}^{74} + T^{70} + T^{62} + T^{60} + T^{54} + T^{52} + T^{46} + T^{44} + T^{38} + T^{36} + T^{44} + T^{46} +$ $T^{30} + T^{28} + T^{22} + T^{20} + T^{14} + T^{12} + T^{10} + T^{4}) J_{07} J_{12}^{2} + (T^{66} + T^{60} + T^{52} + T^{44} + T^{36} + T^{28} + T^{20} + T^{12} + T^{4} + T^{2}) J_{07} J_{12} J_{41} + (T^{72} + T^{70} + T^{12} + T^{12} + T^{12} + T^{10} + T^{12} + T^{10} + T^{10}$ $T^{8} + T^{6}) \int_{07} \int_{12} + (T^{76} + T^{70} + T^{68} + T^{66} + T^{62} + T^{58} + T^{54} + T^{50} + T^{46} + T^{42} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14} + T^{12} + T^{10} + T^{10$ $T^{4})J_{07}J_{41} + (T^{80} + T^{78} + T^{76} + T^{74} + T^{16} + T^{14} + T^{12} + T^{10})J_{07} + J_{70}^{7}J_{12}T^{10} + J_{70}^{7}T^{12} + (T^{16} + T^{14} + T^{12} + T^{10})J_{70}^{6}J_{12}^{3}J_{41}T^{10} + T^{10}J_{10}^{7}J_{12}^{3}J_{41}T^{10} + T^{10}J_{10}^{7}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}$ $(T^{18} + T^{14}) \int_{70}^{6} J_{12}^{2} + (T^{12} + T^{10}) \int_{70}^{6} J_{12} J_{41} + (T^{20} + T^{14} + T^{12} + T^{10}) \int_{70}^{6} J_{12} + (T^{16} + T^{14} + T^{12}) \int_{70}^{6} J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{24} + T^{22}) \int_{70}^{6} J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{24} + T^{24}) \int_{70}^{6} J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{24} + T^{24}) \int_{70}^{6} J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{24} + T^{24}) \int_{70}^{6} J_{41} + (T^{26} + T^{24} +$ $T^{14} + T^{12}J_{70}^{66} + (T^{28} + T^{20} + T^{18} + T^{12} + T^{10})J_{70}^{5}J_{12}^{3} + (T^{24} + T^{22} + T^{14} + T^{12})J_{70}^{5}J_{12}^{2}J_{41} + (T^{32} + T^{10})J_{70}^{5}J_{12}^{2} + (T^{24} + T^{22} + T^{16} + T^{10})J_{70}^{5}J_{12}^{2} + (T^{24} + T^{22} + T^{10})J_{70}^{5}J_{12}^{2} + (T^{24} + T^{22} + T^{16} + T^{10})J_{70}^{5}J_{12}^{2} + (T^{24} + T^{22} + T^{10})J_{70}^{5}J_{12}^{2} + (T^{24} + T^{24} + T^{24})J_{70}^{5}J_{12}^{2} + (T^{24} + T^{$ $T^{14})J_{70}^{5}J_{12}J_{41} + (T^{32} + T^{30} + T^{26} + T^{22} + T^{20} + T^{16} + T^{12} + T^{10})J_{70}^{5}J_{12} + (T^{28} + T^{26} + T^{24} + T^{20} + T^{16} + T^{14})J_{70}^{5}J_{41} + (T^{36} + T^{30} + T^{26} + T^{2$ $T^{24} + T^{22} + T^{18} + T^{16} + T^{12})J_{70}^{5} + (T^{38} + T^{30} + T^{28} + T^{26} + T^{24} + T^{20} + T^{10} + T^{8})J_{70}^{4}J_{12}^{3} + (T^{36} + T^{32} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^{1$ $T^{12} + T^{10} J_{70}^4 J_{12}^2 J_{41} + (T^{44} + T^{38} + T^{32} + T^{28} + T^{22} + T^{16}) J_{70}^4 J_{12}^2 + (T^{40} + T^{30} + T^{28} + T^{24} + T^{22} + T^{18} + T^{12} + T^{10}) J_{70}^4 J_{12} J_{41} + (T^{48} + T^{24} + T^$ $T^{46} + T^{44} + T^{42} + T^{36} + T^{34} + T^{32} + T^{30} + T^{20} + T^{18} + T^{12} + T^{10}) J_{70}^{4} J_{12} + (T^{42} + T^{40} + T^{38} + T^{34} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{18} + T^{24} +$ $T^{14} + T^{12})J_{70}^4J_{41} + (T^{50} + T^{48} + T^{40} + T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{18} + T^{12})J_{70}^4 + (T^{48} + T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{34} + T^{40} + T^$ $T^{30} + T^{28} + T^{26} + T^{22} + T^{20} + T^{18} + T^{16} + T^{8})J_{70}^{2}J_{12}^{12} + (T^{46} + T^{14})J_{70}^{3}J_{12}^{12}J_{41} + (T^{54} + T^{50} + T^{44} + T^{40} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{36} + T^{3$ $T^{26} + T^{24} + T^{20} + T^{16} + T^{14} + T^{10})J_{70}^{3}J_{12}^{2} + (T^{52} + T^{48} + T^{20} + T^{16})J_{70}^{3}J_{12}J_{41} + (T^{66} + T^{60} + T^{52} + T^{50} + T^{48} + T^{46} + T^{44} + T^{42} + T^{34} + T^{46})J_{12}^{3}J_{12}J_{41} + (T^{66} + T^{60} + T^{$ $T^{28} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10}) \tilde{J}_{70}^3 J_{12} + (T^{56} + T^{54} + T^{24} + T^{22}) J_{70}^3 J_{41} + (T^{68} + T^{64} + T^{54} + T^{48} + T^{46} + T^{44} + T^{36} + T^{32} + T^{22} + T^{48}) J_{70}^3 J_{41} + (T^{68} + T^{64} + T^{64}$ $T^{16} + T^{14} + T^{12})J_{70}^3 + (T^{52} + T^{46} + T^{42} + T^{40} + T^{20} + T^{14} + T^{10} + T^8)J_{70}^2J_{12}^3 + (T^{50} + T^{48} + T^{46} + T^{42} + T^{18} + T^{16} + T^{14} + T^{10})J_{70}^2J_{12}^2J_{41} + T^{40} + T^{40}$ $(T^{70} + T^{68} + T^{64} + T^{62} + T^{58} + T^{54} + T^{52} + T^{48} + T^{46} + T^{42} + T^{38} + T^{36} + T^{32} + T^{30} + T^{26} + T^{22} + T^{20} + T^{16} + T^{14} + T^{10}) I_{70}^{2} I_{12}^{2} + (T^{66} + T^{16} + T^{$ $T^{62} + T^{52} + T^{46} + T^{44} + T^{42} + T^{34} + T^{30} + T^{20} + T^{14} + T^{12} + T^{10}) J_{70}^2 J_{12} J_{41} + (T^{74} + T^{72} + T^{70} + T^{68} + T^{66} + T^{56} + T^{54} + T^{52} + T^{50} + T^{40} + T^{50} + T^{$ $T^{38} + T^{36} + T^{34} + T^{24} + T^{22} + T^{20} + T^{18} + T^{10})J_{70}^{2}J_{12} + (T^{72} + T^{64} + T^{58} + T^{54} + T^{52} + T^{50} + T^{46} + T^{44} + T^{40} + T^{32} + T^{26} + T^{22} + T^{20} + T^{46} + T^{44} + T^{40} + T$ $T^{18} + T^{14} + T^{12})J_{70}^2J_{41} + (T^{82} + T^{80} + T^{68} + T^{60} + T^{52} + T^{44} + T^{36} + T^{28} + T^{20} + T^{18} + T^{16} + T^{12})J_{70}^2 + (T^{74} + T^{72} + T^{68} + T^{66} + T^{62} + T^{62} + T^{64} + T^$ $T^{60} + T^{52} + T^{50} + T^{46} + T^{44} + T^{36} + T^{34} + T^{30} + T^{28} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^{8}) \\ J_{70}J_{12}^{32} + (T^{70} + T^{66} + T^{60} + T^{58} + T^{54} + T^{50} + T^{60} + T^{60}) \\ J_{70}J_{12}^{32} + (T^{70} + T^{66} + T^{60} + T^{$ $T^{44} + T^{42} + T^{38} + T^{34} + T^{28} + T^{26} + T^{22} + T^{18} + T^{12} + T^{10})J_{70}J_{12}^2J_{41} + (T^{78} + T^{76} + T^{74} + T^{72} + T^{70} + T^{68} + T^{66} + T^{64} + T^{62} + T^{60} + T^{58} + T^{66} + T^{66}$ $T^{56} + T^{54} + T^{52} + T^{50} + T^{48} + T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{\overline{36}} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16}) J_{70} J_{12}^2 + T^{18} +$ $(T^{76} + T^{68} + T^{66} + T^{64} + T^{62} + T^{52} + T^{50} + T^{48} + T^{46} + T^{36} + T^{34} + T^{32} + T^{30} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12})J_{70}J_{12}J_{41} + (T^{86} + T^{84} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{16} + T^{18} + T^{18}$ $T^{80} + T^{78} + T^{74} + T^{22} + T^{20} + T^{16} + T^{14} + T^{10})J_{70}J_{12} + (T^{82} + T^{80} + T^{78} + T^{76} + T^{18} + T^{16} + T^{14} + T^{12})J_{70} + (T^{82} + T^{78} + T^{74} + T^{72} + T^{18} + T^{16} + T^{18} + T^{16} + T^{14} + T^{12})J_{70} + (T^{82} + T^{18} + T^{14} + T^{12})J_{70} + (T^{82} + T^{18} + T^{14} + T^{12})J_{70} + (T^{82} + T^{18} +$ $T^{18} + T^{14} + T^{10} + T^{8})J_{12}^{3} + (T^{80} + T^{72} + T^{70} + T^{68} + T^{66} + T^{64} + T^{62} + T^{60} + T^{58} + T^{56} + T^{54} + T^{52} + T^{50} + T^{48} + T^{46} + T^{44} + T^{42} + T^{40} +$ $T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10}) \\ J_{12}^2 J_{41} + (T^{90} + T^{88} + T^{82} + T^{80} + T^{26} + T^{24} + T^{18} +$ $T^{16})J_{12}^2 + (T^{80} + T^{78} + T^{76} + T^{74} + T^{16} + T^{14} + T^{12} + T^{10})J_{12}J_{41} + (T^{88} + T^{86} + T^{84} + T^{82} + T^{80} + T^{78} + T^{76} + T^{74} + T^{24} + T^{22} + T^{20} + T^{2$ $T^{18} + T^{16} + T^{14} + T^{12} + T^{10})J_{12} + (T^{86} + T^{84} + T^{78} + T^{76} + T^{22} + T^{20} + T^{14} + T^{12})J_{41} + (T^{96} + T^{92} + T^{80} + T^{76} + T^{32} + T^{28} + T^{16} + T^{12}),$

 $a_2 = J_{07}^6 + J_{07}^5 J_{70} T^2 + (T^8 + T^4 + 1) J_{07}^5 J_{12} + (T^6 + T^2) J_{07}^5 J_{41} + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^4 + T^2) J_{07}^5 + J_{07}^4 J_{70}^2 J_{12} T^2 + (T^6 + T^4) J_{07}^5 J_{12} T^2 + (T^6 + T^6) J_{07}^5 J_{12} T^2 + (T^6 + T^6) J_{07}^5 J_{12} T^2 + (T^6 + T^6) J_{07}^5 J_{12} T^2 + (T^6 + T^$ $T^{4} J_{07}^{4} J_{70}^{2} + (T^{8} + T^{6}) J_{07}^{4} J_{70} J_{12}^{2} + J_{07}^{4} J_{70} J_{12} J_{41} T^{6} + (T^{16} + T^{14} + T^{8} + T^{6} + T^{4} + 1) J_{07}^{4} J_{70} J_{12} + (T^{8} + T^{6} + T^{4}) J_{07}^{4} J_{70} J_{11} + (T^{18} + T^{14} + T^$ $T^{12} + T^{10} + T^8 + T^6 + T^4) J_{07}^4 J_{70}^7 + (T^{10} + T^8 + T^6 + T^4 + 1) J_{07}^4 J_{12}^3 + J_{07}^4 J_{12}^2 J_{41} T^6 + (T^{18} + T^{16} + T^{12} + T^8 + T^6 + T^4 + T^2 + 1) J_{07}^4 J_{12}^2 + J_{07}^4 J_{12}^2 J_{41} T^6 + (T^{18} + T^{16} + T^{12} + T^8 + T^6 + T^4 + T^2 + 1) J_{07}^4 J_{12}^2 + J_{07}^4 J_{12}^2 J_{41} T^6 + (T^{18} + T^{16} + T^{18} + T^6 + T^4 + T^2 + 1) J_{07}^4 J_{12}^2 + J_{07}^4 J_{12}^2 J_{12}$ $(T^{16} + T^{14} + T^8 + T^6 + 1)J_{07}^{47}J_{12}J_{41} + (T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^8 + T^6)J_{07}^{47}J_{12} + (T^{18} + T^{12} + T^8 + T^6)J_{07}^{47}J_{41} + (T^{32} + T^{28} + T^{18} + T^{18$ $T^{22} + T^{18} + T^{14} + T^{10} + T^{8} + T^{4})J_{07}^{4} + (T^{6} + T^{4})J_{07}^{3}J_{70}^{4} + J_{07}^{2}J_{70}^{4} + J_{07}^{3}J_{70}^{3}J_{12}^{2}T^{2} + (T^{8} + T^{2})J_{07}^{7}J_{70}^{3}J_{14} + (T^{16} + T^{14} + T^{12} + T^{2})J_{07}^{7}J_{70}^{3} + (T^{8} + T^{18} +$ $T^4 + T^2 J_{07}^3 J_{20}^2 J_{12}^3 + (T^6 + T^2) J_{07}^3 J_{70}^2 J_{12}^2 J_{41} + (T^{16} + T^{14} + T^8 + T^4 + T^2) J_{07}^3 J_{70}^2 J_{12}^2 J_{12}^2 + (T^6 + T^4 + T^2) J_{07}^3 J_{70}^2 J_{12}^2 J_{12}^2 J_{41} + (T^{18} + T^{16} + T^{10} + T$ $T^{4}J_{07}^{3}J_{70}^{2}J_{12} + (T^{18} + T^{12} + T^{8} + T^{14} + T^{2})J_{07}^{3}J_{70}^{2}J_{41} + (T^{22} + T^{16} + T^{16} + T^{8} + T^{8})J_{07}^{3}J_{70}^{2} + (T^{16} + T^{14} + T^{12} + T^{8} + T^{2})J_{07}^{3}J_{70}J_{12} + (T^{12} + T^{16} + T^{16}$ $T^{6}J_{07}^{3}J_{70}J_{12}^{2}J_{41} + (T^{22} + T^{16} + T^{10} + T^{8} + T^{6} + T^{4} + T^{2} + 1)J_{07}^{3}J_{70}J_{12}^{2} + (T^{8} + T^{6} + T^{4} + T^{2})J_{07}^{3}J_{70}J_{12}J_{41} + (T^{28} + T^{26} + T^{24} + T^{22} + T^{24} + T^{24})J_{07}^{3}J_{70}J_{12}J_{41} + (T^{28} + T^{26} + T^{24} + T^$ $T^{20} + T^{14} + T^8 + T^2) J_{07}^3 J_{70} J_{12} + (T^{20} + T^{18} + T^{10} + 1) J_{07}^3 J_{70} J_{41} + (T^{20} + T^{28} + T^{26} + T^{24} + T^{20} + T^{14} + T^{12} + T^{10} + T^8 + T^4) J_{07}^3 J_{70} + T^{12} J_{10}^2 J_{10} J_{$ $(T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + 1)J_{07}^3J_{12}^3 + (T^{20} + T^{18} + T^{10} + T^6 + T^2 + 1)J_{07}^3J_{12}^2J_{41} + (T^{32} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{18} + T^{10} + T^6 + T^2 + T^{10})J_{07}^3J_{12}^2J_{41} + (T^{32} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{18} + T^{10} + T^6 + T^6$ $T^{16} + T^{12} + T^8 + T^6 + T^4 + T^2)J_{07}^3J_{12}^2 + (T^{24} + T^{18} + T^{16} + T^{14} + T^{10} + T^8 + T^6 + 1)J_{07}^3J_{12}J_{41}^4 + (T^{40} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{26} + T^{36} +$ $T^{24} + T^{22} + T^{18} + T^{16} + T^{14} + T^{10} + T^{*4} + I_{0}^{37} J_{12} + (T^{38} + T^{30} + T^{28} + T^{24} + T^{22} + T^{18} + T^{16} + T^{14} + T^{12} + T^{8} + T^{2} + I) J_{07}^{37} J_{41} + (T^{38} + T^{36} + T^$ $T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^8 + T^{6})J_{07}^3 + (T^6 + T^4)J_{07}^2J_{70}^5J_{12} + (J_{07}^2J_{70}^5J_{12} + (T^4 + T^2)J_{07}^2J_{70}^4J_{12}^2 + (T^8 + T^6 + T^4)J_{07}^2J_{70}^4J_{12}J_{14} + (T^8 + T^8 +$ $(T^{10} + T^6) J_{07}^2 J_{70}^4 J_{12} + (T^{16} + T^{14} + T^{10} + T^6) \tilde{J}_{07}^2 J_{70}^4 J_{41} + (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^2) J_{07}^2 J_{70}^4 + (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^2) J_{07}^2 J_{70}^4 + (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^2) J_{07}^2 J_{70}^4 + (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^2) J_{07}^2 J_{70}^4 + (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^8 + T$ $(T^{10} + T^8) J_0^2 J_{70}^3 J_{72}^2 J_{41} + (T^{18} + T^{16} + T^{14} + T^6) J_0^2 J_{70}^3 J_{12}^2 + (T^{14} + T^{12} + T^6 + T^4) J_{07}^2 J_{70}^3 J_{12} J_{41} + (T^{16} + T^{12} + T^8 + T^4 + T^2) J_{07}^2 J_{70}^3 J_{12} J_{41} + (T^{16} + T^{12} + T^8 + T^4 + T^2) J_{07}^2 J_{70}^3 J_{12} J_{41} + (T^{16} + T^{12} + T^8 + T^4 + T^2) J_{07}^2 J_{70}^3 J_{12} J_{41} + (T^{16} + T^{12} + T^8 + T^4 + T^2) J_{07}^2 J_{70}^3 J_{12} J_{41} + (T^{16} + T^{12} + T^8 + T^4 + T^2) J_{07}^2 J_{70}^3 J_{12} J_{41} + (T^{16} + T^{16} + T$ $(T^{20} + T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^2)J_{07}^2J_{70}^3J_{41} + (T^{20} + T^{18} + T^{16} + T^6 + T^2)J_{07}^2J_{70}^3 + (T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{10} + T^6 + T^8)J_{07}^3J_{10}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{12}^3J_{1$ $T^{2})J_{07}^{2}J_{70}^{2}J_{12}^{3} + (T^{20} + T^{18} + T^{10} + T^{6} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}^{2}J_{41} + (T^{32} + T^{28} + T^{24} + T^{22} + T^{18} + T^{14} + T^{12} + T^{6} + T^{2} + 1)J_{07}^{2}J_{70}^{2}J_{12}^{2} + T^{18} + T^{14} + T^{12} + T^{14} + T^{12} + T^{14} + T$ $(T^{26} + T^{22} + T^{20} + T^{16} + T^{14} + T^{12} + T^{10} + T^8)J_{07}^2J_{70}^2J_{12}J_{41} + (T^{28} + T^{24} + T^{20} + T^{14} + T^{12} + T^8 + T^6 + T^4)J_{07}^2J_{70}^2J_{12} + (T^{30} + T^{24} + T^{20} + T^{$ $T^{10} + T^6 + T^2)J_{07}^2J_{20}^2J_{41} + (T^{36} + T^{28} + T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^8 + T^2 + 1)J_{07}^2J_{70}^2 + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^{16} + T^{12} + T^{10} + T^{18} + T^{16} + T^{16}$ $T^{6} + T^{4} + T^{2})J_{07}^{2}J_{70}J_{12}^{3} + (T^{28} + T^{18} + T^{16} + T^{8} + T^{4} + T^{2})J_{07}^{2}J_{70}J_{12}^{2}J_{41} + (T^{36} + T^{32} + T^{30} + T^{28} + T^{26} + T^{22} + T^{14} + T^{12} + T^{10} + T^{6} + T^{10} +$ $T^{4} + 1)J_{07}^{2}J_{70}J_{12}^{22} + (T^{34} + T^{32} + T^{28} + T^{26} + T^{18} + T^{16} + T^{14} + T^{12} + T^{6} + T^{2})J_{07}^{2}J_{70}J_{12}J_{41} + (T^{42} + T^{32} + T^{30} + T^{28} + T^{26} + T^{16} + T^{14} + T^{12} + T^{26} + T^{16} + T^{14} + T^{12} + T^{16} + T^{1$ $T^{12}J_{07}^{2}J_{70}J_{12} + (T^{38} + T^{36} + T^{34} + T^{30} + T^{26} + T^{20} + T^{16} + T^{14} + T^{10} + T^{6} + T^{2} + 1)J_{07}^{2}J_{70}J_{41} + (T^{44} + T^{36} + T^{32} + T^{12} + T^{4} + 1)J_{07}^{2}J_{70} + 1$ $(T^{40} + T^{30} + T^{28} + T^{22} + T^{20} + T^{14} + T^{12} + T^{8} + T^{6} + T^{4})J_{07}^{2}J_{17}^{3} + (T^{38} + T^{34} + T^{32} + T^{30} + T^{22} + T^{20} + T^{16} + T^{14} + T^{4} + T^{2})J_{07}^{2}J_{17}^{2}J_{41} + T^{40} + T$ $(T^{42} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{8} + T^{6})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{28} + T^{30} + T^{28} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30})J_{07}^{2}J_{12}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{07}^{2}J_{07}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{07}^{2}J_{07}^{2} + (T^{44} + T^{36} + T^{34} + T^{30})J_{07}^{2}J_{07}^{2}J_{07}^{2} + (T^{44} + T^{36} + T^{34} + T^{30} + T^{30})J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{2}J_{07}^{$ $T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{10} + T^8 + T^6 + 1)J_{07}^2J_{12}J_{41} + (T^{56} + T^{52} + T^{46} + T^{44} + T^{42} + T^{32} + T^{24} + T^{20} + T^{14} + T^{12} + T^{14} +$ $T^{10} + 1)J_{07}^2J_{12} + (T^{54} + T^{52} + T^{50} + T^{44} + T^{42} + T^{36} + T^{34} + T^{22} + T^{20} + T^{18} + T^{12} + T^{10} + T^4 + T^2)J_{07}^2J_{41} + (T^{54} + T^{50} + T^{48} + T^{46} + T^{40} + T^{40}$ $T^{34} + T^{22} + T^{18} + T^{16} + T^{14} + T^8 + T^2)J_{07}^2 + (T^8 + T^6 + T^4)J_{07}J_{70}^7 + (T^6 + T^4)J_{07}J_{70}^6 J_{12}^2 + (T^{10} + T^6 + T^4)J_{07}J_{70}^6 J_{12} + J_{07}J_{70}^6 J_{14}T^6 + T^6 + T^6 J_{07}J_{12}^6 J_{12}^2 + (T^{10} + T^6 + T^4)J_{07}J_{70}^6 J_{12}^2 + (T^{10} + T^6 + T^4)J_{07}J_{12}^6 J_{12}^2 + (T^{10} + T^6 + T^4)J_{12}^2 J_{12}^2 J_{12}$ $(T^{16} + T^{12} + T^{10} + T^8 + T^6) J_{07} J_{70}^6 + (T^6 + T^4) J_{07} J_{70}^5 J_{12}^3 + J_{07} J_{70}^5 J_{12}^2 J_{41} T^8 + (T^{16} + T^{14}) J_{07} J_{70}^5 J_{12}^2 + (T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^4) J_{07} J_{70}^5 J_{12} J_{41} + (T^{22} + T^{20} + T^{18} + T^{14}) J_{07} J_{70}^5 J_{12} + (T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^6 + T^4) J_{07} J_{70}^5 J_{41} + (T^{22} + T^{16} + T^{14} + T^{12} + T^{10} + T^6 + T^4) J_{07} J_{70}^5 J_{41} + (T^{22} + T^{16} + T^{14} + T^{12} + T^{16} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} + T^{16} + T^{16} + T^{14} + T^{12} + T^{16} + T^{16} + T^{14} + T^{12} + T^{16} + T$ $T^{10} + T^6 + T^4) J_{07} J_{50}^5 + (T^{16} + T^{10} + T^8 + T^6 + T^4 + T^2) J_{07} J_{70}^4 J_{13}^3 + (T^{18} + T^{16} + T^{14} + T^8 + T^6 + T^4) J_{07} J_{70}^4 J_{12}^2 J_{41} + (T^{14} + T^{10} + T^4 + T^8) J_{07} J_{70}^4 J_{12}^2 J_{41} + (T^{14} + T^{10} + T^4 + T^8) J_{10} J_{10}^4 J_$ $T^{2}J_{07}J_{70}^{4}J_{12}^{2} + (T^{24} + T^{22} + T^{18} + T^{16} + T^{6} + T^{2})J_{07}J_{70}^{4}J_{12}J_{41} + (T^{26} + T^{24} + T^{20} + T^{18} + T^{14} + T^{10} + T^{8} + T^{6} + T^{4})J_{07}J_{70}^{4}J_{12} + (T^{32} + T^{32} + T^{32}$ $T^{26} + T^{22} + T^{20} + T^{16} + T^{12}) J_{07} J_{40}^4 J_{41} + (T^{38} + T^{36} + T^{32} + T^{26} + T^{20} + T^{18} + T^{16} + T^{14} + T^{8}) J_{07} J_{40}^4 + (T^{24} + T^{12} + T^6 + T^{4}) J_{07} J_{30}^3 J_{12}^3 + T^{16} +$ $(T^{24} + T^{22} + T^{16} + T^{14} + T^{12} + T^6) \int_{07} J_{30}^2 J_{12}^2 J_{41} + (T^{32} + T^{30} + T^{26} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^8 + T^6) \int_{07} J_{30}^2 J_{12}^2 + (T^{26} + T^{14} + T^{10} + T^$ $T^{8} + T^{6} + T^{2}) J_{07} J_{70}^{3} J_{12} J_{41} + (T^{38} + T^{36} + T^{32} + T^{30} + T^{24} + T^{12}) J_{07} J_{70}^{3} J_{12} + (T^{40} + T^{24} + T^{22} + T^{10} + T^{18} + T^{16} + T^{12} + T^{4}) J_{07} J_{70}^{3} J_{41} + (T^{40} + T^{40} + T^{40}$ $(T^{48} + T^{46} + T^{42} + T^{40} + T^{32} + T^{30} + T^{28} + T^{26} + T^{22} + T^{20} + T^{12} + T^{8} + T^{6} + T^{4})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{20} + T^{20})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{20})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{20})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20})J_{07}J_{70}^{3} + (T^{40} + T^{38} + T^{30} + T^{28} + T^{24} + T^{$ $T^{18} + T^{16} + T^{14} + T^8 + T^2) J_{07} J_{70}^2 J_{12}^3 + (T^{38} + T^{36} + T^{36} + T^{36} + T^{22} + T^{22} + T^{20} + T^{12} + T^6 + \dot{T}^{4} + T^2) J_{07} J_{70}^2 J_{12}^2 J_{41} + (T^{48} + T^{46} + T^{42} + T^{34} + T^{46} + T^{42} + T^{44} + T^{4$ $T^{26} + T^{22} + T^{20} + T^{16} + T^{14} + T^{6} + T^{4} + T^{2}) J_{07} J_{70}^{2} J_{12}^{12} + (T^{40} + T^{38} + T^{26} + T^{24} + T^{22} + T^{14} + T^{6} + T^{2}) J_{07} J_{70}^{2} J_{12} J_{41} + (T^{44} + T^{38} + T^{32} + T^{26} + T^{24} + T^{26} + T^{$ $T^{30} + T^{24} + T^{22} + T^{16} + T^{14} + T^{12} + T^{8}) \int_{07} J_{70}^{2} \int_{12} + (T^{50} + T^{48} + T^{46} + T^{42} + T^{36} + T^{34} + T^{26} + T^{16} + T^{14} + T^{4}) \int_{07} J_{70}^{2} \int_{41} + (T^{50} + T^{46} + T^{$ $T^{38} + T^{18} + T^{14} + T^{6})J_{07}J_{70}^{2} + (T^{34} + T^{32} + \tilde{T}^{50} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8} + \tilde{T}^{6} + T^{4})J_{07}J_{70}J_{37}^{3} + T^{28}J_{70}^{2} + T^{28}J_{70}^{2}$ $(T^{36} + T^{34} + T^{32} + T^{30} + T^{26} + T^{24} + T^{22} + T^{18} + T^{16} + T^{14} + T^{10} + T^{8} + T^{6} + T^{4})J_{07}J_{70}J_{12}^{2}J_{41} + (T^{56} + T^{54} + T^{52} + T^{40} + T^{36} + T^{24} + T^{40} + T^{40} + T^{40} + T^{40})J_{12}J_{13}J_{14} + (T^{56} + T^{54} + T^{54}$ $T^{22} + T^{20} + T^8 + T^4) J_{07} J_{70} J_{12}^2 + (T^{54} + T^{52} + T^{48} + T^{44} + T^{34} + T^{22} + T^{20} + T^{16} + T^{12} + T^2) J_{07} J_{70} J_{12} J_{41} + (T^{60} + T^{52} + T^{48} + T^{40} +$ $T^{28} + T^{20} + T^{16} + T^8) \\ 107 \\ J_{70} \\ J_{12} + (T^{56} + T^{54} + T^{52} + T^{50} + T^{44} + T^{40} + T^{38} + T^{24} + T^{20} + T^{18} + T^{12} + T^{8} + T^{6}) \\ 107 \\ J_{70} \\ J_{70} \\ J_{41} + (T^{58} + T^{50} + T^{44} + T^{40} + T^{44} + T^{40} +$ $T^{54} + T^{48} + T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{26} + T^{22} + T^{16} + T^{12} + T^{10} + T^{8} + T^{6} + T^{4})J_{07}J_{70} + (T^{58} + T^{48} + T^{40} + T^{34} + T^{26} + T^{16} + T^{8} + T^{40} + T^{34} + T^{26} + T^{16} + T^{8} + T^{40} + T$ $T^{2} J_{07} J_{12}^{3} + (T^{54} + T^{52} + T^{50} + T^{40} + T^{36} + T^{34} + T^{22} + T^{20} + T^{18} + T^{8} + T^{4} + T^{2}) J_{07} J_{12}^{2} J_{21} + (T^{64} + T^{60} + T^{58} + T^{56} + T^{54} + T^{52} + T^{48} + T^{4} + T^{4}) J_{07} J_{12}^{2} J_{21} + (T^{64} + T^{60} + T^{58} + T^{56} + T^{54} + T^{52} + T^{48} + T^{4} + T^{4}) J_{07} J_{12}^{2} J_{21} + (T^{64} + T^{60} + T^{64} + T^{60} + T^{64} +$ $T^{46} + T^{47} + T^{40} + T^{36} + T^{34} + T^{32} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{14} + T^{12} + T^{8} + T^{4} + T^{2}) J_{07} J_{12}^{2} + (T^{60} + T^{58} + T^{56} + T^{52} + T^{56} + T^$ $T^{48} + T^{44} + T^{36} + T^{34} + T^{28} + T^{26} + T^{24} + T^{20} + T^{16} + T^{12} + T^4 + T^2) J_{07} J_{12} J_{41} + (T^{72} + T^{70} + T^{56} + T^{52} + T^{40} + T^{36} + T^{24} + T^{20} + T^{6} +$ $T^{4} J_{07} J_{12} + (T^{70} + T^{66} + T^{60} + T^{54} + T^{52} + T^{48} + T^{46} + T^{42} + T^{40} + T^{34} + T^{28} + T^{22} + T^{20} + T^{16} + T^{14} + T^{10} + T^{8} + T^{6}) J_{07} J_{41} + (T^{64} + T^{16} +$ $T^{56} + T^{48} + T^{40} + T^{32} + T^{24} + T^{16} + T^{8}) J_{07} + (T^{6} + T^{4}) J_{70}^{7} J_{12}^{3} + (T^{8} + T^{6}) J_{70}^{7} J_{12}^{2} + (T^{10} + T^{8}) J_{70}^{7} J_{12} + (T^{12} + T^{10}) J_{70}^{7} J_{1$ $T^{8} + T^{4} J_{70}^{6} J_{12}^{3} + (T^{12} + T^{8} + T^{6}) J_{70}^{6} J_{12}^{2} J_{41} + (T^{22} + T^{18} + T^{16} + T^{12} + T^{6}) J_{70}^{6} J_{12}^{2} + (T^{12} + T^{8}) J_{70}^{6} J_{12} J_{41} + (T^{20} + T^{18} + T^{8}) J_{70}^{6} J_{12} + (T^{16} + T^{10}) J_{70}^{6} J_{41} + (T^{26} + T^{18} + T^{10}) J_{70}^{6} + J_{70}^{5} J_{12}^{3} J_{41}^{2} + (T^{24} + T^{22} + T^{14} + T^{12} + T^{8}) J_{70}^{5} J_{12}^{2} J_{41} + (T^{22} + T^{16} + T^{12} + T^{6}) J_{70}^{5} J_{12}^{2} J_{41}^{2} + (T^{24} + T^{24} + T^{24} + T^{24} + T^{24} + T^{24} + T^{24} J_{70}^{5} J_{12}^{2} J_{41}^{2} + (T^{24} + T^{24} + T^{24} + T^{24} + T^{24} + T^{24} J_{70}^{5} J_{12}^{2} J_{41}^{2} + (T^{24} + T^{24} + T^{24} + T^{24} + T^{24} J_{70}^{5}) J_{70}^{6} J_{70}^{2} J_{70}$ $T^{18} + T^{16} + T^{14} + T^{12})J_{70}^{5}J_{12}J_{41} + (T^{38} + T^{36} + T^{32} + T^{28} + T^{26} + T^{22} + T^{12} + T^{8})J_{70}^{5}J_{12} + (T^{28} + T^{22} + T^{12})J_{70}^{5}J_{41} + (T^{40} + T^{38} + T^{36} + T^{36$ $T^{34} + T^{24} + T^{16} + T^{14} + T^{12} + T^{10})J_{70}^5 + (T^{30} + T^{28} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4)J_{70}^4J_{12}^3 + (T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10})J_{70}^4J_{12}^3 + (T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{18} + T^{16} + T^{14} + T^{12} + T^{16} +$ $T^{18} + T^{16} + T^{12} + T^{8} + T^{6})J_{70}^{4}J_{12}^{2}J_{41} + (T^{38} + T^{34} + T^{32} + T^{28} + T^{26} + T^{20} + T^{18} + T^{16} + T^{8} + T^{6})J_{70}^{4}J_{12}^{2} + (T^{40} + T^{38} + T^{36} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{12} + T^{8})J_{70}^{4}J_{12}J_{41} + (T^{44} + T^{42} + T^{40} + T^{36} + T^{34} + T^{30} + T^{14} + T^{8})J_{70}^{4}J_{12} + (T^{44} + T^{38} + T^{36} + T^{24} + T^{26} + T^{24} + T^{36} + T^{34} + T^{36} + T^{36} + T^{34} + T^{36} + T^{36} + T^{36} + T^{36} + T^{36} + T^{36$ $T^{14} + T^{10} J_{40}^{4} J_{41} + (T^{54} + T^{50} + T^{36} + T^{32} + T^{24} + T^{14} + T^{12} + T^{10}) J_{40}^{4} + (T^{48} + T^{46} + T^{44} + T^{42} + T^{36} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{44} + T^{42} + T^{44} + T^{42} + T^{36} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{44} + T^{44$ $T^{20} + T^{14} + T^{12} + T^8 + T^6 + T^4)J_{70}^3J_{12}^3 + (T^{42} + T^{32} + T^{30} + T^{26} + T^{24} + T^{14})J_{70}^3J_{12}^2J_{41} + (T^{50} + T^{48} + T^{44} + T^{42} + T^{38} + T^{32} + T^{28} + T^{24} + T^{18} + T^{10} + T^8 + T^6)J_{70}^3J_{12}^2 + (T^{48} + T^{44} + T^{40} + T^{30} + T^{28} + T^{26} + T^{24} + T^{12} + T^{18} + T^{16})J_{70}^3J_{12}J_{41} + (T^{50} + T^{44} + T^{42} + T^{36} + T^{34} + T^{44})J_{70}^3J_{12}^3J_{41} + (T^{50} + T^{48} + T^{44} + T^{42} + T^{36} + T^{34} + T^{44})J_{70}^3J_{12}^3J_{41} + (T^{50} + T^{48} + T^{44} + T^{42} + T^{36} + T^{34} + T^{44})J_{70}^3J_{12}^3J_{41} + (T^{50} + T^{48} + T^{44} + T^{44}$ $T^{30} + T^{24} + T^{20} + T^{14} + T^{12} + T^{8})J_{70}^{3}J_{12} + (T^{56} + T^{54} + T^{40} + T^{36} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^{22} + T^{20})J_{70}^{3}J_{41} + (T^{52} + T^{48} + T^{38} + T^{34} + T^{30} + T^{26} + T^$ $T^{18} + T^{16} + T^{14} + T^{10})J_{70}^{3} + (T^{56} + T^{54} + T^{50} + T^{46} + T^{42} + T^{38} + T^{36} + T^{30} + T^{24} + T^{18} + T^{10} + T^{4})J_{70}^{2}J_{12}^{3} + (T^{54} + T^{52} + T^{50} + T^{46} + T^{42} + T^{38} + T^{36} + T^{30} + T^{24} + T^{18} + T^{10} + T^{4})J_{70}^{2}J_{12}^{3} + (T^{54} + T^{52} + T^{50} + T^{46} + T^{42} + T^{38} + T^{36} + T^{30} + T$ $T^{44} + T^{42} + T^{38} + T^{36} + T^{30} + T^{26} + T^{24} + T^{22} + T^{18} + T^{12} + T^{8} + T^{6})J_{70}^{2}J_{12}^{2}J_{41} + (T^{64} + T^{58} + T^{54} + T^{52} + T^{48} + T^{46} + T^{42} + T^{40} + T^{36} + T^{44} + T^$ $T^{34} + T^{30} + T^{28} + T^{24} + T^{18} + T^{12} + T^{6}) f_{70}^{2} J_{12}^{12} + (T^{50} + T^{46} + T^{36} + T^{22} + T^{28} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{8}) f_{70}^{2} J_{12} J_{41} + (T^{58} + T^{56} + T^{54} + T^{52} + T^{50} + T^{44} + T^{40} + T^{40} + T^{26} + T^{24} + T^{20} + T^{18} + T^{12} + T^{10} + T^{8}) J_{70}^{2} J_{12} + (T^{56} + T^{48} + T^{42} + T^{24} + T^{40} + T^{4$ $T^{10})J_{70}^2J_{41} + (T^{66} + T^{64} + T^{52} + T^{48} + T^{44} + T^{42} + T^{34} + T^{32} + T^{20} + T^{16} + T^{12} + T^{10})J_{70}^2 + (T^{58} + T^{56} + T^{52} + T^{50} + T^{46} + T^{44} + T^{42} + T^{46} + T^{42} + T^{46} + T^{42} + T^{46} + T^{42} + T^{40})J_{70}J_{12}^3 + (T^{54} + T^{50} + T^{44} + T^{40} + T^{22} + T^{18} + T^{12} + T^{8})J_{70}J_{12}^2J_{41} + (T^{62} + T^{60} + T^{58} + T^{56} + T^{54} + T^{52} + T^{48} + T^{46} + T^{42} + T^{38} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{14} + T^{10} + T^{6})J_{70}J_{12}^2 + (T^{60} + T^{52} + T^{50} + T^{42} + T^{28} + T^{20} + T^{18} + T^{10})J_{70}J_{12}^2 + (T^{60} + T^{52} + T^{50} + T^{42} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{12} + T^{10})J_{70}J_{12}^2 + (T^{60} + T^{58} + T^{64} + T^{68} + T^{64} + T^{62} + T^{58} + T^{56} + T^{54} + T^{52} + T^{48} + T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{32} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{10})J_{70} + (T^{66} + T^{62} + T^{58} + T^{56} + T^{54} + T^{52} + T^{50} + T^{46} + T^{42} + T^{44} +$

 $a_3 = (T^6 + T^4 + T^2)J_{07}^5 + J_{07}^4J_{70}^2T^2 + (T^6 + T^2)J_{07}^4J_{70}J_{12} + (T^{10} + T^2)J_{07}^4J_{70} + J_{07}^4J_{12}^2T^2 + J_{07}^4J_{12}^2J_{41}T^2 + (T^8 + T^2)J_{07}^4J_{12}^2 + J_{07}^4J_{12}^2T^2 + J_{07}^4J_{12}^2T$ $J_{07}^{4r}J_{12}J_{41}T^{6} + (T^{14} + T^{12} + T^{10} + T^{6} + T^{2})J_{07}^{4r}J_{12} + (T^{12} + T^{10} + T^{8} + T^{6} + T^{4} + T^{2})J_{07}^{4r}J_{41} + (T^{22} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{10} + T^{10} + T^{10})$ $T^{4}J_{07}^{4}+J_{07}^{3}J_{70}^{3}J_{12}T^{2}+J_{07}^{3}J_{70}^{3}J_{12}T^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+(T^{6}+T^{4})J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}J_{41}T^{2}+(T^{6}+T^{2})J_{07}^{3}J_{70}^{2}J_{12}+(T^{8}+T^{2})J_{07}^{3}J_{70}^{2}J_{41}+(T^{18}+T^{14}+T^{14})J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{70}^{2}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J_{12}^{2}+J_{07}^{3}J$ $T^{6} + T^{2})J_{07}^{37}J_{20}^{7} + (T^{8} + T^{4})J_{07}^{37}J_{70}J_{12}^{3} + (T^{4} + T^{2})J_{07}^{37}J_{70}J_{12}^{3}J_{41} + (T^{10} + T^{6} + T^{4} + T^{2})J_{07}^{37}J_{70}J_{12}^{7}J_{21} + (T^{10} + T^{8} + T^{4})J_{07}^{3}J_{70}J_{12}J_{41} + (T^{22} + T^{23})J_{12}^{37}J_{12}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{$ $T^{20} + T^{18} + T^{10} + T^{8} + T^{4})J_{10}^{37}J_{70}J_{12} + (T^{18} + T^{14} + T^{12} + T^{8} + T^{6} + T^{2})J_{10}^{37}J_{70}J_{41} + (T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{8} + T^{16})J_{10}^{37}J_{10}J_{12} + (T^{18} + T^{14} + T^{12} + T^{18} + T^{16} + T^{14} + T^{12} + T^{18} + T^{1$ $T^{6}J_{07}^{3}J_{70} + (T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6})J_{07}^{3}J_{12}^{3} + (T^{18} + T^{16} + T^{14} + T^{10} + T^{6} + T^{4})J_{07}^{3}J_{12}^{2}J_{41} + (T^{26} + T^{20} + T^{18} + T^{12} + T^{10} + T^{10} + T^{10})J_{07}^{3}J_{12}^{3}J_{12}^{2}J_{41} + (T^{26} + T^{20} + T^{18} + T^{12} + T^{10} + T^{10})J_{07}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{12}^{3}J_{$ $T^2 \bigcup_{07}^{3} J_{12}^2 + (T^{22} + T^{20} + T^{16} + T^6 + T^2) J_{07}^3 J_{12} J_{41} + (T^{26} + T^{20} + T^{18} + T^{14} + T^{12} + T^6) J_{07}^3 J_{12} + (T^{28} + T^{18} + T^{12} + T^{10} + T^6 + T^2) J_{07}^3 J_{41} + (T^{26} + T^{20} + T^{18} + T^{12} + T^{10} + T^{16} + T^{12} + T^{10} + T^{16} + T^{12}) J_{07}^3 J_{41} + (T^{26} + T^{20} + T^{18} + T^{12} + T^{10} + T^{16} +$ $(T^{38} + T^{36} + T^{22} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6})J_{07}^{3} + J_{07}^{2}J_{70}^{7}T^{2} + J_{07}^{2}J_{70}^{4}J_{12}^{12}T^{2} + J_{07}^{2}J_{70}^{4}J_{12}T^{6} + (T^{6} + T^{4} + T^{2})J_{07}^{2}J_{70}^{4}J_{41} + T^{12} + T^{10} +$ $(T^{12} + T^8 + T^4 + T^2)J_{07}^2J_{70}^4 + J_{07}^2J_{70}^3J_{12}^3T^6 + (T^6 + T^4 + T^2)J_{07}^2J_{70}^3J_{12}^2 + (T^8 + T^6 + T^2)J_{07}^2J_{70}^3J_{12}J_{12}J_{44} + J_{07}^2J_{70}^3J_{12}T^{14} + (T^{16} + T^{12} + T^{10} + T^{10} + T^{10})J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{12}^2J_{1$ $T^{6} + T^{4})I_{07}^{2}J_{70}^{3}J_{44} + (T^{16} + T^{14} + T^{12} + T^{6} + T^{2})J_{07}^{2}J_{70}^{3}J_{12} + (T^{16} + T^{14} + T^{12} + T^{6} + T^{2})J_{07}^{2}J_{70}^{3}J_{12}^{1}J_{11} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}^{2}J_{11} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}^{2}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{11} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{07}^{2}J_{70}^{2}J_{12}J_{12} + (T^{16} + T^{14} + T^{1$ $(T^{26} + T^{22} + T^{18} + T^4)J_{07}^2J_{70}^2J_{41} + (T^{34} + T^{32} + T^{26} + T^{24} + T^{16} + T^{14} + T^{10} + T^8 + T^2)J_{07}^2J_{70}^2 + (T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{10} + T^{10} + T^{10})J_{07}^2J_{70}^2J_{70}^2 + (T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{10} + T^{10} + T^{10})J_{07}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70}^2J_{70$ $T^{6} + T^{2})J_{07}^{2}J_{70}J_{12}^{3} + (T^{20} + T^{16} + T^{12} + T^{8} + T^{4})J_{07}^{2}J_{70}J_{12}^{2}J_{41} + (T^{30} + T^{28} + T^{24} + T^{20} + T^{18} + T^{16} + T^{8} + T^{2})J_{07}^{2}J_{70}J_{12}^{2} + (T^{28} + T^{22} + T^{24} + T^{20} + T^{24} + T^{20} + T^{24} + T^{20} + T^{24} + T^{24}$ $T^{18} + T^{14} + T^{10} + T^{8} + T^{6} + T^{4} + T^{2})J_{07}^{2}J_{70}J_{12}J_{41} + (T^{38} + T^{34} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^{4} + T^{2})J_{07}^{2}J_{70}J_{12} + (T^{38} + T^{34} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^{4} + T^{2})J_{07}^{2}J_{70}J_{12} + (T^{38} + T^{34} + T^{28} + T^{24} + T^{$ $(T^{34} + T^{32} + T^{30} + T^{24} + T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + T^2)J_{07}^2J_{70}J_{41} + (T^{42} + T^{38} + T^{36} + T^{32} + T^{30} + T^{26} + T^{18} + T^{12} + T^{10} + T^{10} + T^{10})J_{07}^2J_{170}J_{41} + (T^{42} + T^{38} + T^{36} + T^{32} + T^{30} + T^{26} + T^{18} + T^{12} + T^{10} + T^{10} + T^{10})J_{07}^2J_{170}J_{41} + (T^{42} + T^{38} + T^{36} + T^{32} + T^{30} + T^{26} + T^{18} + T^{12} + T^{10} + T^{10}$ $T^{8}J_{07}^{2}J_{70} + (T^{30} + T^{20} + T^{18} + T^{12} + T^{6} + T^{2})J_{07}^{2}J_{12}^{3} + (T^{34} + T^{32} + T^{30} + T^{14} + T^{12} + T^{6})J_{07}^{2}J_{12}^{2}J_{41} + (T^{38} + T^{36} + T^{32} + T^{30} + T^{28} + T^{24} + T^{16} + T^{14} + T^{12} + T^{8} + T^{6} + T^{4})J_{07}^{2}J_{12}^{2}J_{41} + (T^{38} + T^{36} + T^{32} + T^{30} + T^{28} + T^{24} + T^{16} + T^{14} + T^{12} + T^{8} + T^{6} + T^{4})J_{07}^{2}J_{12}^{2}J_{12}^{2} + (T^{32} + T^{28} + T^{26} + T^{24} + T^{20} + T^{10})J_{07}^{2}J_{12}J_{41} + (T^{38} + T^{36} + T^{32} + T^{30} + T^{34} + T^{32} + T^{36} + T^{3$ $T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{18} + T^{14} + T^{6}) \int_{0.7}^{2} J_{12} + (T^{44} + T^{40} + T^{38} + T^{34} + T^{30} + T^{28} + T^{26} + T^{22} + T^{14} + T^{10} + T^{8} + T^{2}) J_{07}^{2} J_{41} + T^{40} +$ $(T^{54} + T^{50} + T^{36} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^{8} + 1) \int_{07}^{2} J_{12} J_{12} J_{11} J_{12} J_{11} J_{12} J_{11} J_{12} J_{12} J_{13} J_{12} J_{12} J_{13} J_{13} J_{12} J_{13} J_{13} J_{12} J_{13} J_{13$ $(T^{22} + T^{16} + T^{10} + T^6 + T^4 + T^2)J_{07}J_{70}^4J_{41} + (T^{28} + T^{20} + T^{18} + T^{16} + T^{12} + T^8 + T^2)J_{07}J_{70}^4 + (T^{22} + T^{20} + T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^{10} + T$ $T^{2})J_{07}J_{70}^{3}J_{12}^{3} + (T^{18} + T^{16} + T^{12} + T^{10} + T^{6})J_{07}J_{70}^{3}J_{12}^{2}J_{41} + (T^{22} + T^{14} + T^{8} + T^{6})J_{07}J_{70}^{3}J_{12}^{2} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{6} + T^{16})J_{07}J_{10}^{3}J_{12}^{2} + (T^{18} + T^{16} + T^{16} + T^{18} + T^{16} + T^{16} + T^{16} + T^{16})J_{07}J_{10}^{3}J_{12}^{2} + (T^{18} + T^{16} + T^{1$ $T^{4} J_{07} J_{70}^{3} J_{12} J_{41} + (T^{32} + T^{28} + T^{22} + T^{20} + T^{14} + T^{12} + T^{6} + T^{4} + T^{2}) J_{07} J_{70}^{3} J_{12} + (T^{30} + T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} +$ $T^{10} + T^2)J_{07}J_{70}^3J_{31} + (T^{18} + T^{14} + T^2)J_{07}J_{70}^3 + (T^{32} + T^{30} + T^{26} + T^{24} + T^{22} + T^{14} + T^{12} + T^8 + T^4 + T^2)J_{07}J_{70}^2J_{12}^3J_{41} + (T^{28} + T^{24} + T^{24} + T^{22} + T^{18} + T^{16} + T^{10} + T^2)J_{07}J_{70}^2J_{12}^2J_{41} + (T^{28} + T^{24} + T^{24} + T^{22} + T^{18} + T^{16} + T^{10} + T^6 + T^2)J_{07}J_{70}^2J_{12}^2J_{41} + (T^{28} + T^{24} + T^{24} + T^{22} + T^{18} + T^{16} + T^{10} + T^6 + T^2)J_{07}J_{70}^2J_{12}^2J_{41} + (T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{10} + T^6 + T^2)J_{07}J_{70}^2J_{12}^2J_{41} + (T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{10} + T^$ $T^{4} \\ J_{07} \\ J_{70}^{2} \\ J_{12} \\ J_{41} \\ + (T^{42} + T^{40} + T^{38} + T^{36} + T^{32} + T^{30} + T^{24} + T^{22} + T^{18} + T^{14} + T^{12} + T^{8}) \\ J_{07} \\ J_{70}^{2} \\ J_{12} \\ + (T^{42} + T^{40} + T^{34} + T^{30} + T^{26} + T^{22} + T^{40} + T^{40}$ $T^{20} + T^{18} + T^{12} + T^{6} + T^{4} + T^{2}) J_{07} J_{70}^{2} J_{41} + (T^{34} + T^{32} + T^{24} + T^{22} + T^{20} + T^{14} + T^{12} + T^{10}) J_{07} J_{70}^{2} + (T^{38} + T^{36} + T^{34} + T^{24} + T^{20} + T^{18} + T^{14} + T^{12} + T^{8} + T^{4}) J_{07} J_{70} J_{12}^{3} + (T^{38} + T^{36} + T^{36} + T^{32} + T^{22} + T^{18} + T^{14} + T^{10} + T^{2}) J_{07} J_{70} J_{12}^{2} J_{41} + (T^{48} + T^{44} + T^{42} + T^{38} + T^{36} + T^{26} + T^{24} + T^{48} + T^{48}$ $T^{20} + T^{16} + T^{12} + T^8 + T^6) \int_{07} J_{70} J_{12}^2 + (T^{44} + T^{42} + T^{18} + T^{14} + T^{12} + T^6) \int_{07} J_{70} J_{12} J_{41} + (T^{54} + T^{48} + T^{42} + T^{18} + T^{44} + T^{42} + T^{18} + T^{44} + T^{42} + T^{48} + T^{46} + T^{48} +$ $T^{26} + T^{24} + T^{22} + T^{16} + T^6)J_{07}J_{12}^3 + (T^{50} + T^{48} + T^{36} + T^{34} + T^{28} + T^{24} + T^{18} + T^{16} + T^{12} + T^8 + T^4 + T^2)J_{07}J_{12}^2J_{41} + (T^{50} + T^{48} + T^{46} + T^{46} + T^{48} + T^{46} + T^{48} + T^$ $T^{44} + T^{42} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{8}) \\ J_{07} J_{12}^{2} + (T^{48} + T^{46} + T^{40} + T^{34} + T^{32} + T^{30} + T^{24} + T^{22} + T^{6} + T^{40} +$ $T^{2} \int_{J_{0}} \int_{J_{12}} \int_{J_{41}} + (T^{54} + T^{50} + T^{46} + T^{42} + T^{40} + T^{36} + T^{22} + T^{18} + T^{14} + T^{10} + T^{8} + T^{4}) \int_{J_{0}} \int_{J_{12}} + (T^{52} + T^{48} + T^{44} + T^{38} + T^{36} + T^{34} + T^{20} + T^{48} + T^{44} + T^{38} + T^{44} + T^{48} + T^$ $T^{16} + T^{12} + T^{6} + T^{4} + T^{2})J_{07}J_{41} + (T^{54} + T^{52} + T^{48} + T^{46} + T^{40} + T^{36} + T^{22} + T^{20} + T^{16} + T^{14} + T^{8} + T^{4})J_{07} + J_{70}^{7}J_{12}^{2}T^{2} + J_{70}^{7}J_{12}J_{41}T^{2} + J_{70}^{7}J_{12}^{2}T^{2} + J_{70}^{7}J_{12}J_{41}T^{2} + J_{70}^{7}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2}J_{12}^{2$ $(T^{10} + T^8 + T^4)J_{70}^7J_{12} + J_{70}^7J_{41}T^4 + (T^{12} + T^8)J_{70}^7 + (T^6 + T^2)J_{70}^6J_{12}^3 + (T^6 + T^4)J_{70}^6J_{12}^2J_{41} + (T^{12} + T^{10} + T^4)J_{70}^6J_{12}^2 + (T^{10} + T^8 + T^4 + T^{10} + T^8)J_{70}^6J_{12}^2 + (T^{10} + T^8 + T^8 + T^8 + T^8 + T^8)J_{70}^6J_{12}^2J_{41} + (T^{12} + T^{10} + T^8)J_{70}^6J_{12}^2J_{41} + (T^{12} + T^8)J_{70}^6J_{12}^2J_{41} + (T^{12} + T^8)J_{70}^6J_{12}^2J_{41} + (T^{12} + T^8)J_{70}^2J_{41}^2J_{41} + (T^{12} + T^8)J_{70}^2J_{41}^2J_{41}$ $T^{2}J_{70}^{6}J_{12}J_{41} + (T^{18} + T^{10})J_{70}^{6}J_{12} + (T^{18} + T^{12} + T^{6} + T^{4})J_{70}^{6}J_{41} + (T^{26} + T^{24} + T^{18} + T^{14} + T^{10} + T^{8})J_{70}^{6} + (T^{18} + T^{10})J_{70}^{5}J_{12}^{3} + (T^{16} + T^{10})J_{70}^{5}J_{70}^{3}J_{70}^{3} + (T^{16} + T^{10})J_{70}^{5}J_{70}^{3}J_{70}^{3}J_{70}^{3} + (T^{16} + T^{10})J_{70}^{5}J_{70}^{3}J_{70}^{3}J_{70}^{3}J_{70}^{3}$ $T^{12} + T^8 + T^6 + T^2)J_{70}^5J_{12}^2J_{41} + (T^{22} + T^{20} + T^{14} + T^8 + T^6 + T^2)J_{70}^5J_{12}^2 + (T^{22} + T^{20} + T^{14} + T^{12} + T^{10} + T^8 + T^4 + T^2)J_{70}^5J_{12}J_{41} + (T^{28} + T^{20} + T^{14} + T^{10} +$ $T^{26} + T^{22} + T^{16} + T^{14} + T^{8} + T^{4})J_{70}^{5}J_{12} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{14} + T^{10} + T^{8} + T^{4})J_{70}^{5}J_{41} + (T^{32} + T^{30} + T^{24} + T^{20} + T^{16} + T^{14} + T^{10} + T^{10$ $T^8)J_{50}^5 + (T^{26} + T^{16} + T^{16} + T^{14} + T^{12} + T^8 + T^4)J_{70}^4J_{12}^3 + (T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^8 + T^4 + T^2)J_{70}^4J_{12}^2J_{41} + (T^{34} + T^{32} + T^{20} + T^{$ $T^{22} + T^{20} + T^{18} + T^{16} + T^6)J_{70}^4J_{12}^2 + (T^{32} + T^{28} + T^{26} + T^{24} + T^{16} + T^{12} + T^{10} + T^8 + T^6 + T^2)J_{70}^4J_{12}J_{41} + (T^{28} + T^{26} + T^{20} + T^{18})J_{70}^4J_{12} + (T^{28} + T^{26} + T$ $(T^{34} + T^{32} + T^{30} + T^{26} + T^{24} + T^{22} + T^{18} + T^{16} + T^{14} + T^{10} + T^8 + T^6 + T^4)J_{70}^4J_{41} + (T^{38} + T^{36} + T^{18} + T^{16} + T^8)J_{70}^4 + (T^{38} + T^{34} + T^{16} + T^{1$ $T^{12} + T^{10} J_{17}^{3} J_{12}^{13} + (T^{34} + T^{32} + T^{26} + T^{24} + T^{18} + T^{14} + T^{10} + T^{8} + T^{4}) J_{70}^{*} J_{12}^{2} J_{41} + (T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6} + T^{2}) J_{70}^{3} J_{12}^{2} + (T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^{18} + T^{14} + T^{12} + T^{10} + T^{18} + T^{14} + T^{12} + T^{10}) J_{70}^{*} J_{12}^{2} J_{12}^{2}$ $(T^{32} + T^{30} + T^{28} + T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{2})J_{70}^{3}J_{12}J_{41} + (T^{20} + T^{18} + T^{10} + T^{4})J_{70}^{3}J_{12} + (T^{40} + T^{36} + T^{40} + T^{4})J_{70}^{3}J_{12} + (T^{40} + T^{36} + T^{40} + T^{40} + T^{40} + T^{40})J_{70}^{3}J_{12} + (T^{40} + T^{40} + T^{40} + T^{40} + T^{40} + T^{40})J_{70}^{3}J_{12} + (T^{40} + T^{40} + T^{40} + T^{40} + T^{40} + T^{40} + T^{40} + T^{40})J_{70}^{3}J_{12} + (T^{40} + T^{40} + T^{40}$ $T^{22} + T^{20} + T^{16} + T^{14} + T^{12} + T^4)J_{30}^2J_{41} + (T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^8)J_{70}^3 + (T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{70}^3 + (T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{70}^3 + (T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{70}^3 + (T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{10})J_{70}^3 + (T^{32} + T^{26} + T^{24} + T^{18} + T^{16} + T^{14} + T^{12} + T^{16} + T^{14} + T^{16} + T^{14} + T^{16} + T^{1$ $T^{10} + T^8 + T^6 + T^4 + T^2)J_{70}^2J_{12}^3 + (T^{22} + T^{16} + T^{12} + T^{10})J_{70}^2J_{12}^2J_{41} + (T^{34} + T^{30} + T^{28} + T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^8 + T^6 + T^{10})J_{12}^2J_{12}^2J_{13} + (T^{12} + T^{10} + T^{10}$ $T^{4}J_{70}^{2}J_{12}^{2} + (T^{32} + T^{26} + T^{24} + T^{22} + T^{20} + T^{16} + T^{14} + T^{8} + T^{4} + T^{2})J_{70}^{2}J_{12}J_{41} + (T^{38} + T^{28} + T^{26} + T^{24} + T^{22} + T^{12} + T^{10} + T^{8})J_{70}^{2}J_{12} + (T^{38} + T^{28} + T^{26} + T^{24} + T^{22} + T^{12} + T^{10} + T^{8})J_{70}^{2}J_{12} + (T^{38} + T^{28} + T^{26} + T^{24} + T^{22} + T^{12} + T^{10} + T^{8})J_{70}^{2}J_{12} + (T^{38} + T^{28} + T^{26} + T^{24} + T^{22} + T^{10} + T^{10} + T^{10})J_{70}^{2}J_{12} + (T^{38} + T^{28} + T^{26} + T^{24} + T^{22} + T^{10} + T^{10} + T^{10})J_{70}^{2}J_{12} + (T^{38} + T^{28} + T^{26} + T^{24} +$ $(T^{34} + T^{30} + T^{22} + T^{20} + T^{18} + T^{14} + T^{6} + T^{4})J_{70}^{2}J_{41} + (T^{36} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{8})J_{70}^{2} + (T^{36} + T^{28} + T^{20} + T^{12})J_{70}J_{12}^{3} + (T^{36} + T^{38} + T^{30} + T^{38} +$ $(T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{22} + T^{16} + T^{14} + T^{12} + T^{4} + T^{2})J_{70}J_{12}^{2}J_{41} + (T^{48} + T^{40} + T^{38} + T^{36} + T^{32} + T^{30} + T^{28} + T^{30} + T^{28} + T^{30} + T^{28} + T^{30} + T^{30$ $T^{26} + T^{24} + T^{22} + T^{20} + T^{18} + T^{12} + T^{10} + T^2) J_{70} J_{12}^2 + (T^{40} + T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{24} + T^{22} + T^{16} + T^{14} + T^4 + T^2) J_{70} J_{12} J_{41} + T^{40} + T^{40}$ $(T^{48} + T^{46} + T^{42} + T^{36} + T^{16} + T^{14} + T^{10} + T^{4}) I_{70} I_{12} + (T^{48} + T^{46} + T^{40} + T^{36} + T^{16} + T^{14} + T^{8} + T^{4}) I_{70} I_{12} + (T^{50} + T^{48} + T^{42} + T^{40} + T^{36} + T^{16} + T^{10} + T^{8}) I_{70} I_{71} + (T^{50} + T^{48} + T^{42} + T^{40} +$ $(T^{50} + T^{46} + T^{42} + T^{38} + T^{18} + T^{18} + T^{10} + T^{6})J_{12}^{2} + (T^{48} + T^{46} + T^{42} + T^{40} + T^{38} + T^{34} + T^{16} + T^{14} + T^{10} + T^{8} + T^{6} + T^{2})J_{12}J_{41} + (T^{50} + T^{48} + T^{46} + T^{44} + T^{42} + T^{40} + T^{38} + T^{36} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8} + T^{6} + T^{4})J_{41} + (T^{64} + T^{56} + T^{48} + T^{40} + T^{32} + T^{24} + T^{16} + T^{8}),$

 $a_4 = J_{07}^5 + J_{07}^4 J_{70} J_{12} + J_{07}^4 J_{70} T^2 + (T^2 + 1) J_{07}^4 J_{12}^2 + J_{07}^4 J_{12} J_{41} + (T^6 + T^4 + T^2 + 1) J_{07}^4 J_{12} + (T^2 + 1) J_{07}^4 J_{41} + (T^{16} + T^{14} + T^{12} + T^{10} + T^{10} + T^{10}) J_{07}^4 J_{12} + (T^2 + 1) J_{07}^4 J_$ $T^8 + T^4 + T^2) \int_{07}^4 + \int_{07}^3 \int_{70}^3 + \int_{07}^3 J_{70}^2 + J_{07}^2 J_{70}^2 J_{12}^2 + J_{07}^3 J_{70}^2 J_{12} + J_{07}^3 J_{70}^2 J_{14} T^2 + J_{07}^3 J_{70} J_{12}^3 + (T^8 + T^4 + T^2 + 1) J_{07}^3 J_{70} J_{12}^2 + (T^6 + T^2) J_{07}^3 J_{70} J_{12} J_{41} + J_{12}^3 J_{70} J_{70}^3 J_{70}^$ $J_{30}^{3}J_{70}J_{12} + (7^{8} + 7^{6} + 7^{4} + T^{2} + 1)J_{37}^{2}J_{70}J_{44} + (7^{18} + 7^{16} + 7^{14} + T^{10} + 7^{14} + T^{10} + 7^{14} + T^{16} + 7^{4} + 1)J_{37}^{2}J_{70}^{2} + (T^{10} + T^{2})J_{37}^{2}J_{17}^{3} + (T^{4} + T^{2} + 1)J_{37}^{2}J_{70}^{3} + (T^{4} + T^{2} + 1)J_{70}^{2}J_{70}^{3} + (T^{4} +$ $1)J_{07}^{3}J_{12}^{2}J_{41} + (T^{14} + T^{12} + T^{8} + T^{6} + T^{2} + 1)J_{07}^{3}J_{12}^{2} + (T^{10} + T^{8} + T^{4} + T^{2} + 1)J_{07}^{3}J_{12}J_{41} + (T^{24} + T^{22} + T^{20} + T^{14} + T^{10} + T^{6} + T^{2} + T^{20})J_{07}^{3}J_{12}^{2}J_{41} + (T^{14} + T^{12} + T^{14} + T^{10} + T^{$ $T^{4}J_{07}^{3}J_{12} + (T^{22} + T^{16} + T^{10} + T^{8} + T^{4} + 1)J_{07}^{3}J_{41} + (T^{32} + T^{26} + T^{22} + T^{18} + T^{16} + T^{10} + T^{4})J_{07}^{3}J_{70}^{4}J_{41} + (T^{6} + 1)J_{07}^{2}J_{70}^{4}$ $J_{07}^2 J_{70}^3 J_{12}^3 + J_{07}^2 J_{70}^3 J_{12}^2 T^2 + (T^2 + 1) J_{07}^2 J_{70}^3 J_{12} + (T^8 + T^6 + T^2 + 1) J_{07}^2 J_{70}^3 J_{41} + (T^8 + T^6 + 1) J_{07}^2 J_{70}^3 + (T^6 + T^4 + 1) J_{07}^2 J_{70}^3 J_{12}^3 + (T^4 + T^2 + 1) J_{07}^2 J_{70}^3 J_{12}^3 + (T^6 + T^4 + 1) J_{07}^2 J_{70}^3 J_{12}^3 + (T^6 + T^4 + 1) J_{07}^2 J_{70}^3 J_{12}^3 + (T^6 + T^6 + T^2 + 1) J_{07}^2 J_{70}^3 J_{41}^3 + (T^8 + T^6 + 1) J_{07}^2 J_{70}^3 J_{12}^3 + (T^6 + T^6 + T^6 + 1) J_{07}^2 J_{70}^3 J_{12}^3 + (T^6 + T^6 + T^$ $1)J_{07}^2J_{70}^2J_{12}^2J_{41} + (T^{16} + T^{14} + T^{12} + T^8 + T^6 + T^2 + 1)J_{07}^2J_{70}^2J_{12}^2 + (T^8 + T^4)J_{07}^2J_{70}^2J_{12}J_{41} + (T^{18} + T^{14} + T^{12} + T^{10} + T^6 + T^4)J_{07}^2J_{70}^2J_{12} + (T^{18} + T^{18} + T$ $(T^{16} + T^8 + T^2 + 1)J_{07}^2J_{70}^2J_{41} + (T^{20} + T^{16} + T^{10} + T^8 + T^6 + T^4 + T^2 + 1)J_{07}^2J_{70}^2 + J_{07}^2J_{70}J_{12}^2T^4 + (T^{10} + T^4 + 1)J_{07}^2J_{70}J_{12}^2J_{41} + (T^{22} + T^4 +$ $T^{16} + T^{10} + T^4 + 1)J_{07}^2J_{70}J_{12}^2 + (T^{20} + T^{18} + T^{16} + T^6 + T^4 + T^2 + 1)J_{07}^2J_{70}J_{12}J_{41} + (T^{32} + T^{28} + T^{18} + T^{14} + T^{12} + T^{10} + T^8 + T^{18} + T$ $T^{2})J_{07}^{2}J_{70}J_{12} + (T^{26} + T^{24} + T^{22} + T^{14} + T^{10} + T^{8} + T^{6} + T^{4} + T^{2})J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70}T^{4} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{14} + T^{10} + T^{6} + T^{10} + T^{10})J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70}J_{41} + J_{07}^{2}J_{70$ $T^2 + 1)J_{07}^2J_{12}^3 + (T^{18} + T^{10} + T^6 + T^4)J_{07}^2J_{12}^2J_{41} + (T^{34} + T^{28} + T^{22} + T^{16} + T^{14} + T^{10} + T^8 + T^2)J_{07}^2J_{12}^2 + (T^{32} + T^{26} + T^{22} + T^{20} + T^{16} + T^{12} + T^{24} + T^2)J_{07}^2J_{12}^2 + (T^{32} + T^{26} + T^{22} + T^{20} + T^{16} + T^{12} + T^{14} + T^{10} + T^{12} + T^{16} +$ $(T^{38} + T^{36} + T^{30} + T^{22} + T^{16} + T^{12} + T^{10} + T^{8} + T^{6})J_{07}^{2} + J_{07}J_{70}^{5}J_{12}^{2} + J_{07}J_{70}^{5}J_{12}J_{41} + J_{07}J_{70}^{5}J_{12}T^{4} + (T^{10} + T^{8} + T^{10} +$ $T^4 + 1)J_{07}J_{70}^5 + J_{07}J_{70}^4J_{12}^3T^2 + (T^2 + 1)J_{07}J_{70}^4J_{12}^2J_{41} + (T^2 + 1)J_{07}J_{70}^4J_{12}^2 + (T^4 + T^2 + 1)J_{07}J_{70}^4J_{12} + (T^8 + T^6 + T^2)J_{07}J_{70}^4J_{12} + (T^8 + T^6 + T^2)J_{07}J_{70}^4J_{12} + (T^8 + T^6 + T^8)J_{07}J_{70}^4J_{12} + (T^8 + T^6 + T^8)J_{07}J_{70}^4J_{12} + (T^8 + T^8 + T^8 + T^8)J_{07}J_{70}^4J_{12} + (T^8 + T^8 + T^8$ $(T^{16} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^2 + 1) Jor J_{70}^4 J_{41} + Jor J_{70}^4 T^2 + (T^{12} + T^6 + T^2) Jor J_{70}^3 J_{12}^3 J_{41} T^6 + (T^{18} + T^{16} + T^{10} + T^{10} + T^{10} + T^{10}) J_{70}^3 J_{12}^3 J_{41}^3 J_{41}^3 J_{41}^3 J_{42}^3 J_{41}^3 J_{42}^3 J_{42}^3$ $T^{4}+1)J_{07}J_{70}^{3}J_{12}^{2}+(T^{8}+T^{6}+1)J_{07}J_{70}^{3}J_{12}J_{41}+(T^{20}+T^{18}+T^{12}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}J_{70}^{3}J_{12}+(T^{18}+T^{16}+T^{12}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}J_{70}^{3}J_{12}+(T^{18}+T^{16}+T^{12}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}J_{70}^{3}J_{12}+(T^{18}+T^{16}+T^{12}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}J_{70}^{3}J_{12}+(T^{18}+T^{16}+T^{12}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}J_{70}^{3}J_{12}+(T^{18}+T^{16}+T^{12}+T^{8}+T^{6}+T^{4}+T^{2}+1)J_{07}J_{70}^{3}J_{12}+(T^{18}+T^{16}+T^{12}+T^{8}+T^{6}+T^{4}+T^{4}+T^{2}+T^{6}+T^{4}$ $T^4 + T^2) J_{07} J_{70}^2 J_{41} + (T^8 + T^6) J_{07} J_{70}^3 + (T^{24} + T^{22} + T^{20} + T^{12} + T^{10} + T^6 + 1) J_{07} J_{70}^2 J_{12}^3 + (T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^8 + T^6 + 1) J_{07} J_{70}^3 J_{12}^3 + (T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^8 + T^6 + 1) J_{07} J_{70}^3 J_{12}^3 + (T^{24} + T^{20} + T^{18} + T^{16} + T^{12} + T^8 + T^6 + 1) J_{07} J_{70}^3 J_{12}^3 + (T^{24} + T^{20} + T^{18} + T^{16} + T^{12} + T^8 + T^6 + 1) J_{07} J_{70}^3 J_{12}^3 + (T^{24} + T^{20} + T^{18} + T^{16} + T^{12} + T^8 + T^6 + 1) J_{17} J_{17}^3 J_{17}^3 J_{17}^3 + (T^{16} + T^{16} + T^{16}$ $T^{4} J_{07} J_{70}^{2} J_{12}^{2} J_{41} + (T^{24} + T^{22} + T^{20} + T^{18} + T^{14} + T^{8} + T^{6} + T^{4} + T^{2}) J_{07} J_{70}^{2} J_{12}^{2} + (T^{22} + T^{20} + T^{18} + T^{10} + T^{4} + T^{2} + 1) J_{07} J_{70}^{2} J_{12} J_{41} + (T^{24} + T^{24} + T^{20} + T^{18} + T^{14} + T^{2} + 1) J_{07} J_{70}^{2} J_{12} J_{41} + (T^{24} + T^{24} + T^{20} + T^{18} + T^{14} + T^{2} + T^{20} + T^{18} + T^{10} + T^{4} + T^{2} + T^{20} + T^{18} + T^{10} + T^{2} + T^{20} + T^{2$ $(T^{20} + T^{18} + T^{12} + T^{10} + T^4 + T^2 + 1) J_{07} J_{70}^2 J_{12} + (T^{22} + T^{20} + T^{18} + T^{16} + T^{10} + T^8 + T^2 + 1) J_{07} J_{70}^2 J_{41} + (T^{18} + T^{16} + 1) J_{07} J_{70}^2 + (T^{28} + T^{18} + T^{1$ $T^{26} + T^{24} + T^{18} + T^{16} + T^6 + 1)\int_{07}J_{70}J_{12}^3 + (T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^8 + T^6 + 1)\int_{07}J_{70}J_{12}^2J_{41} + (T^{32} + T^{28} + T^{22} + T^{20} + T^{20}$ $T^{18} + T^{14} + T^{12} + T^8 + T^4 + T^2 + 1) J_{07} J_{70} J_{12}^2 + (T^{26} + T^{24} + T^{16} + T^8) J_{07} J_{70} J_{12} J_{41} + (T^{34} + T^{30} + T^{26} + T^{22} + T^{18} + T^{12} + T^8 + T^4 + T^4 + T^8) J_{10} J_{$ $T^2 + 1) \int_{07} \int_{70} \int_{12} + (T^{32} + T^{26} + T^{24} + T^{26} + T^{24} + T^{2$ $T^{18} + T^{16} + T^{14} + T^8 + T^6) J_{07} J_{12}^2 + (T^{32} + T^{28} + T^{26} + T^{14} + T^{12} + T^6 + T^2 + 1) J_{07} J_{12} J_{41} + (T^{38} + T^{36} + T^{34} + T^{32} + T^{30} + T^{28} + T^{26} + T^{2$ $T^{24} + T^{22} + T^{20} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^{8}) J_{07} J_{12} + (T^{36} + T^{32} + T^{28} + T^{22} + T^{18} + T^{16} + T^{12} + T^{6} + T^{4} + T^{2}) J_{07} J_{41} + (T^{38} + T^{4} + T^{4$ $T^{34} + T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^8 + T^6 + T^4 + T^2)J_{07} + J_{70}^8 + J_{70}^7 J_{12} T^2 + J_{70}^7 J_{41} + (T^4 + T^2 + 1)J_{70}^7 + J_{60}^6 J_{12}^2 J_{41} + (T^6 + T^4 + T^4 + T^2)J_{12} + J_{12}^8 J_{12$ $T^2 + 1)J_{00}^6J_{12}^2 + (T^2 + 1)J_{00}^6J_{12}J_{41} + (T^6 + T^4 + T^2 + 1)J_{00}^6J_{12} + J_{00}^6J_{41}T^4 + (T^{10} + T^8 + T^6 + T^4 + 1)J_{00}^6 + J_{00}^5J_{12}^3 + (T^8 + T^6 + T^4 + 1)J_{00}^6J_{12} + (T^8 + T^6 + T^6 + T^6 + T^4 + 1)J_{00}^6J_{12} + (T^8 + T^6 +$ $T^2 J_{50}^5 J_{12}^2 J_{41} + (T^{10} + T^8 + T^4) J_{50}^5 J_{12}^2 + (T^8 + T^4) J_{50}^5 J_{12} J_{41} + (T^{12} + T^{10} + T^4 + T^2 + 1) J_{70}^5 J_{12} + (T^{10} + T^8 + T^4 + 1) J_{70}^5 J_{41} + (T^{14} + T^8 + T^4 + 1) J_{70}^5 J_{41} + (T^{10} + T^8 + T^8 + T^8 + T^8 + 1) J_{70}^6 J_{41} + (T^{10} + T^8 + T^8 +$ $T^{12} + T^{10} + T^6 + T^2 + 1)J_{70}^5 + (T^8 + T^6 + 1)J_{40}^4J_{12}^3 + (T^{12} + T^8 + T^4 + 1)J_{70}^4J_{12}^2J_{41} + (T^6 + T^4 + T^2 + 1)J_{70}^4J_{12}^2 + (T^8 + T^6)J_{70}^4J_{12}J_{41} + (T^6 + T^4 + T^2 + 1)J_{70}^4J_{12}^2 + (T^8 + T^6)J_{70}^4J_{12}^4 + (T^8 + T^8 + T^8)J_{70}^4J_{12}^4 + (T^8 + T^8 + T^8)J_{70}^4J_{12}^4 + (T^8 + T^8 + T^8 + T^8)J_{70}^4J_{12}^4 + (T^8 + T^8 + T^8 + T^8)J_{70}^4J_{12}^4 + (T^8 + T^8 + T^8$ $(T^{12} + T^{10} + T^4) J_{10}^4 J_{12} + (T^{12} + T^8) J_{10}^4 J_{11} + (T^{22} + T^{16} + T^6 + 1) J_{10}^4 + (T^{20} + T^{18} + T^{10} + T^6 + T^2 + 1) J_{10}^3 J_{12}^{31} + (T^{18} + T^{16} + T^{10} + T^8 + T^8 + T^{10} + T^8 +$ $T^{6} + 1)J_{30}^{2}J_{12}^{2}J_{41} + (T^{18} + T^{16} + T^{12} + T^{8} + T^{6} + T^{4} + T^{2} + 1)J_{30}^{2}J_{12}^{2} + (T^{16} + T^{6} + T^{4} + T^{2})J_{30}^{2}J_{12}J_{41} + (T^{20} + T^{18} + T^{14} + T^{12} + T^{8} + T^{16} + T^{16})J_{30}^{2}J_{12}^{2}J_{41} + (T^{18} + T^{16} +$ $T^{6} + T^{2})_{70}^{33} J_{12} + (T^{24} + T^{22} + T^{20} + T^{16} + T^{10} + T^{8} + T^{6} + T^{4} + 1)J_{70}^{3} J_{41} + (T^{4} + T^{2} + 1)J_{70}^{3} + (T^{22} + T^{20} + T^{18} + T^{16} + T^{12} + T^{10} + T^{1$ $T^{6} + T^{2})J_{70}^{2}J_{12}^{3} + (T^{20} + T^{18} + T^{16} + T^{10} + T^{6} + T^{4} + T^{2} + 1)J_{70}^{2}J_{12}^{2}J_{41} + (T^{26} + T^{22} + T^{18} + T^{16} + T^{12} + T^{4})J_{70}^{2}J_{12}^{2} + (T^{22} + T^{20} + T^{16} + T^{2} + T^{2})J_{70}^{2}J_{12}^{2} + (T^{22} + T^{20} + T^{16} + T^{2} + T^{2})J_{70}^{2}J_{12}^{2} + (T^{20} + T^{18} + T^{16} +$ $T^{12} + T^4 + 1) J_{70}^2 J_{12} J_{41} + (T^{26} + T^{24} + T^{22} + T^{20} + T^{14} + T^{12} + T^2 + 1) J_{70}^2 J_{12} + (T^{24} + T^{22} + T^{18} + T^{16} + T^{14} + T^{12} + T^{10} + T^8) J_{70}^2 J_{41} + (T^{24} + T^{24} + T^{2$ $(T^{18} + T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + 1)J_{70}^2 + (T^{28} + T^{26} + T^{18} + T^{16} + T^4 + 1)J_{70}J_{12}^3 + (T^{26} + T^{24} + T^{22} + T^{18} + T^{14} + T^{12} + T^4 + T^$ $1)J_{70}J_{12}^2J_{41} + (T^{32} + T^{30} + T^{24} + T^{20} + T^{18} + T^{14} + T^8 + T^4 + T^2 + 1)J_{70}J_{12}^2 + (T^{28} + T^{26} + T^{24} + T^{20} + T^{18} + T^{16} + T^{10} + T^2)J_{70}J_{12}J_{41} + (T^{32} + T^{30} + T$ $(T^{30} + T^{20} + T^{18} + T^{16} + T^{14} + T^4 + T^2 + 1)J_{70}J_{12} + (T^{32} + T^{28} + T^{24} + T^{12} + T^8 + 1)J_{70}J_{41} + (T^{32} + T^{30} + T^{26} + T^{22} + T^{18} + T^{14} +$ $T^{10} + T^6 + T^2 + 1)J_{70} + (T^{34} + T^{32} + T^{24} + T^{16} + T^8 + T^2)J_{12}^3 + (T^{34} + T^{32} + T^{22} + T^{18} + T^6 + 1)J_{12}^2J_{41} + (T^{34} + T^2)J_{12}^2 + (T^{32} + T^{28} + T^{$ $T^{24} + T^{20} + T^{16} + T^{12} + T^8 + T^4)J_{12}J_{41} + (T^{40} + T^{36} + T^8 + T^4)J_{12} + (T^{38} + T^6)J_{41} + (T^{48} + T^{46} + T^{40} + T^{38} + T^{16} + T^{14} + T^8 + T^6),$

 $a_5 = J_{07}^4 J_{12} + (T^6 + T^4 + T^2) J_{07}^4 + J_{07}^3 J_{70}^2 T^2 + J_{07}^3 J_{70} J_{12}^2 + J_{07}^3 J_{70} J_{12} T^6 + J_{07}^3 J_{70} J_{12} T^6 + J_{07}^3 J_{70} T^2 + (T^2 + 1) J_{07}^3 J_{12}^2 J_{41} + (T^{10} + 1) J_{07}^3 J_{12}^2 + (T^{10} + 1) J_{07}^3 J_{12}^2 J_{41} + (T^{10} + 1) J_{07}^3 J_{12}^2$ $J_{37}^{3}J_{12}J_{41}T^{4} + (T^{16} + T^{8} + T^{6} + T^{4})J_{37}^{3}J_{12} + (T^{6} + T^{4} + 1)J_{37}^{3}J_{41} + (T^{18} + T^{14} + T^{10} + T^{8} + T^{6} + T^{4})J_{37}^{3} + (T^{2} + 1)J_{27}^{2}J_{73}^{3}J_{12} + (T^{18} + T^{14} + T^{10} + T^{18} + T^{14} + T^{10} + T^{18} + T^{14} + T^{10})J_{37}^{3}J_{12} + (T^{18} + T^{14} + T^{10} + T^{18} + T^{14} + T^{10} + T^{18} + T^{14} + T^{10} + T^{18} + T^{$ $J_{07}^{32}J_{70}^{3}J_{41}+J_{07}^{2}J_{70}^{3}+J_{07}^{2}J_{70}^{3}J_{12}^{3}+(T^{6}+T^{4})J_{07}^{2}J_{70}^{2}J_{12}^{2}+J_{07}^{2}J_{70}^{2}J_{12}J_{41}+J_{07}^{2}J_{70}^{2}J_{12}T^{2}+(T^{2}+1)J_{07}^{2}J_{70}^{2}J_{41}+(T^{4}+1)J_{07}^{2}J_{70}^{2}+(T^{10}+T^{8}+1)J_{07}^{2}J_{70}^{2}J_{12}^{2}+J_{12}^{2}J_$ $T^{2})J_{07}^{2}J_{70}J_{12}^{3} + (T^{6} + 1)J_{07}^{2}J_{70}J_{12}^{2} + I_{07}^{2}J_{70}J_{12}J_{44} + J_{07}^{2}J_{70}J_{12}T^{8} + (T^{10} + T^{8} + T^{6} + T^{2} + 1)J_{07}^{2}J_{70}J_{44} + (T^{10} + T^{6} + T^{4} + T^{2} + 1)J_{07}^{2}J_{70}J_{70} + (T^{10} + T^{10} + T^{$ $(T^{16} + T^{10} + T^8 + T^6 + T^4 + 1)J_{07}^2 J_{12}^3 + J_{07}^2 J_{12}^2 J_{41} + (T^{16} + T^{12} + T^{10} + T^8 + T^4 + T^2)J_{07}^2 J_{12}^2 + (T^{10} + T^6 + T^4 + T^2)J_{07}^2 J_{12} J_{41} + (T^{16} + T^{14} + T^{16} + T^{16}$ $T^{12} + T^{10} + T^8 + T^4 J_{07}^2 J_{12} + (T^{12} + T^{10} + T^8 + 1) J_{07}^2 J_{41} + (T^{22} + T^{16} + T^{14} + T^{12} + T^6) J_{07}^2 + J_{07} J_{70}^4 J_{41} + J_{07} J_{70}^3 J_{12}^3 T^2 + J_{07} J_{70}^3 J_{12}^2 J_{41} + J_{07} J_{70}^3 J_{12}^2 J_{12} + J_{07} J_{12}^3 J_{12}^2 J_{12} + J_{07} J_{12}^2 J_{12} +$ $(T^2+1) \int_{07} J_{70}^3 J_{12}^2 + \int_{07} J_{70}^3 J_{12} J_{41} + (T^4+1) \int_{07} J_{70}^3 J_{12} + \int_{07} J_{70}^3 J_{41} T^2 + (T^8+T^6) \int_{07} J_{70}^2 J_{12}^3 + (T^6+T^4+T^2+1) \int_{07} J_{70}^2 J_{12}^2 J_{41} + (T^8+T^6) J_{70} J_{70}^3 J_{12}^3 J_{70} J_{70}^4 J_{70}^2 J_{7$ $T^4 + T^2 \cdot J \sigma J_{70}^2 J_{12}^2 + (T^6 + T^4 + 1) J \sigma J_{70}^2 J_{12} J_{41} + (T^{10} + T^8 + T^6 + 1) J \sigma J_{70}^2 J_{12} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 + (T^{12} + T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{41} + (T^{10} + T^8 + T^2 + 1) J \sigma J_{70}^2 J_{41} + J \sigma J_{70}^2 J_{70}^2$ $T^8 + T^6 + T^4 + 1) \int_{0.7}^{10} J_{70} J_{32}^3 + (T^{10} + T^8 + T^6 + T^2) J_{07} J_{70} J_{12}^2 J_{41} + (T^{16} + T^{10} + T^8 + T^2) J_{07} J_{70} J_{12}^2 + (T^{12} + T^8 + T^6 + T^4) J_{07} J_{70} J_{12} J_{41} + (T^{16} + T^{10} + T^8 + T^8) J_{70} J_{70}$ $(T^{18} + T^{16} + T^{14} + T^{10} + T^{8} + T^{6} + T^{4}) J_{07} J_{70} J_{12} + (T^{16} + T^{14} + T^{12} + T^{8} + T^{6} + T^{2}) J_{07} J_{70} J_{41} + (T^{8} + T^{6} + T^{2}) J_{07} J_{70} + (T^{18} + T^{8} + T^{6} + T^{2}) J_{07} J_{70} J_{41} + (T^{18} + T^{18} +$ $T^{4}J_{107}J_{12}^{2} + (T^{18} + T^{16} + T^{2} + 1)J_{07}J_{12}^{2}J_{41} + (T^{18} + T^{16} + T^{10} + T^{6})J_{07}J_{12}^{2} + (T^{16} + T^{14} + 1)J_{07}J_{12}J_{41} + (T^{22} + T^{16} + T^{14} + T^{8})J_{07}J_{12} + (T^{18} + T^{18} + T^$ $(T^{20} + T^{16} + T^6 + T^2)J_{07}J_{41} + (T^{22} + T^{20} + T^{18} + T^{14} + T^{12} + T^{10} + T^8 + 1)J_{07} + J_{70}^5 + (T^2 + 1)J_{70}^4J_{12}^2 + J_{70}^4J_{12}J_{41} + (T^2 + 1)J_{70}^4J_{41} + (T^2 + 1)J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{70}^4J_{$ $(T^6 + T^4 + T^2 + 1)J_{70}^4 + (T^6 + T^4 + 1)J_{70}^3J_{12}^3 + J_{70}^3J_{12}^2J_{41} + (T^2 + 1)J_{70}^3J_{12}^2 + (T^4 + T^2 + 1)J_{70}^3J_{12} + (T^8 + T^2)J_{70}^3J_{41} + (T^4 + 1)J_{70}^3 + (T^4 + T^2 + 1)J_{70}^3J_{41} + (T^4 + T^2 + 1)J_{70}^3J_{42} + (T^4 + T^2 + 1)J_{70}^3J_{41} + (T^4 + T^2 + 1)J_{70}$ $(T^8 + T^6 + T^4 + T^2 + 1)J_{70}^2J_{12}^3 + (T^6 + T^4 + T^2 + 1)J_{70}^2J_{12}^3 + (T^6 + T^4 + T^2 + 1)J_{70}^2J_{12}^2 + (T^6 + T^4 + T^4 + 1)J_{70}^2J_{12}^2 + (T^6 + T^4 +$ $(T^{14} + T^{12} + T^{10} + T^8 + T^6 + T^4 + T^2 + 1)J_{70} + (T^{18} + T^{16} + T^{10} + T^8)J_{12}^3 + (T^{18} + T^6 + T^4 + 1)J_{12}^2J_{41} + (T^{26} + T^{24} + T^{18} + T^{16} + T^{10} + T^{10}$ $T^{8} + T^{2} + 1)J_{12}^{2} + (T^{12} + T^{8} + T^{4} + 1)J_{12}J_{41} + (T^{24} + T^{22} + T^{20} + T^{18} + T^{8} + T^{6} + T^{4} + T^{2})J_{12} + (T^{22} + T^{20} + T^{18} + T^{16} + T^{6} + T^{4} + T^{2})J_{12} + (T^{22} + T^{20} + T^{18} + T^{16} + T^{16}$ $T^{2} + 1$) $I_{41} + (T^{32} + T^{28} + T^{24} + T^{20} + T^{16} + T^{12} + T^{8} + T^{4})$,

 $a_{6} = J_{07}^4 + J_{07}^3 J_{12} + J_{07}^3 T^2 + J_{07}^2 J_{70} J_{12} + J_{07}^2 J_{70} J_{12} + (T^2 + 1) J_{07}^2 J_{12}^2 + J_{07}^2 J_{12} J_{41} + J_{07}^2 J_{12} T^4 + (T^6 + T^4) J_{07}^2 + J_{07} J_{70} J_{12}^2 + J_{07} J_{70} J_{12} T^2 + J_{07} J_{70} J_{41} + J_{07} J_{12}^3 + (T^2 + 1) J_{07} J_{12}^2 J_{41} + J_{07} J_{12}^2 J_{41} + J_{07} J_{12} J_{41} + (T^8 + T^4) J_{07} J_{12} + (T^6 + T^4 + T^2 + 1) J_{07} J_{41} + J_{07} T^6 + J_{70}^2 J_{12}^2 + (T^2 + 1) J_{70}^2 J_{12} + (T^6 + T^4) J_{70} J_{12} + J_{70} J_{41} + J_{70} J_{41} + J_{70} + J_{12}^2 J_{41} T^2 + (T^{10} + T^8) J_{12}^2 + J_{12} J_{41} + (T^8 + 1) J_{12} + (T^6 + T^2) J_{41} + (T^{16} + T^4) J_{12} + (T^{16} + T^4) J_{12}$

References

- [1] S. Bae, On the modular equation for Drinfeld modules of rank 2, J. Number Theory 42 (1992) 123-133.
- [2] E.-U. Gekeler, A product expansion for the discriminant function of Drinfeld modules of rank two, J. Number Theory 21 (1985) 135–140.
- [3] E.-U. Gekeler, Drinfeld Modular Curves, Lecture Notes in Math., vol. 1231, Springer-Verlag, 1986.
- [4] D. Goss, π -Adic Eisenstein series for function fields, Compos. Math. 41 (1980) 3–38.
- [5] D. Goss, Basic Structures in Function Field Arithmetic, Springer-Verlag, 1996.
- [6] Y. Hamahata, On a product expansion for the Drinfeld discriminant function, J. Ramanujan Math. Soc. 17 (3) (2002) 173-185.
- [7] I.Y. Potemine, Minimal terminal Q-factorial models of Drinfeld coarse moduli schemes, Math. Phys. Anal. Geom. 1 (1998) 171–191.
- [8] A. Schweizer, On the Drinfeld modular polynomial $\Phi_T(X,Y)$, J. Number Theory 52 (1995) 53–68.