<u>References</u>:

D Cubical setting for discrete homotopy theory.
revisited.
Carranza, Kapulkin 2022.

arXiv: 2202.03516

2) Homotopy n-types of cubical sets and graphs Kapulkin, M. 2024.

ar Xiv: 2408.05289

Outline:

- 1) Fibration categories.
 - 2) Homotopy types of graphs
- 3) Homotopy n-types of graphs
- 4) Homotopy 1-types of graphs

Fibration categories

Def": A filo cat is a category C together w:

- a class of weak equivalences (->>)

- a class of fibrations (->>)

subject to certain axioms.

* Useful for computing htpy limits * Ho & admits a nice description.

Suppose Cl. Dare fib cats.

Def: A functor F: C -> D is exact if it preserves

- fibrations

- acyclic fibs (->>)

- pullbacks along fibs

- terminal object.

Preserves htpg limits.

* Induces a functor Ho C -> HoD.

Defn: An exact functor F: C -> D is a weak equiv.

if the induced functor HoC -> HoD is an
equivalence of cats.

Examples:

$$\forall n > 0.$$

$$\forall n > 0.$$

$$0 \le k \le n+1 \qquad \partial [0,1]^k \setminus ([0,1]^{k-1} \times 2i3) \qquad \longrightarrow \qquad X$$

$$[0,1]^k \qquad \longrightarrow \qquad Y$$

$$k = n+2 \qquad \partial [0,1]^{k} \wedge ([0,1]^{k-1} \times i]) \qquad \longrightarrow \qquad X$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$[0] \longrightarrow e$$

$$[1] \longrightarrow 0$$

Homotopy types of graphs

Def": A graph map $f: X \to Y$ is a weak equivariate if it induces a bijection $f_X: \pi_0 X \to \pi_0 Y$ and an isomorphism $f_X: A_n(X,n) \to A_n(Y,f_X)$ for all n>0 and $x \in X$.

- Examples:

 (i) Every A-htpy equiv. is a weak eq.
 - I s : Io is a weak eq.
 - s: Cn+1 -> Cn (collapse one edge) is a weak eq.

A-htpg equiv. ~ Naive discrete htpy theory

"Nonexistence of colimits in naive discrete Hpy theory" Carranza, Kapulkin, Kim 2023.

Weak equiv. un Discrete htpy theory.

For n,m > 0, the graph I_m has $\frac{vextices}{(x_1,...,x_n)}$ where each $x_i \in \{0,...,m\}$ edges : $(x_1, ..., x_i, ..., x_n) \sim (x_1, ..., x_i \pm 1, ..., x_n)$ for any i = 1,...,n.

$$(x_1, ..., x_n)$$
 s.th. $x_j = 0$ or m for at least one je $\{1, ..., n\}$.

(3)
$$\Pi_m = \partial I_m$$
 on vertices
 $(\chi_1, ..., \chi_n)$ s.th. if $\chi_n = m$, then
 $\chi_j = 0$ or m for at least one $j \in \{1, ..., n-1\}$.

$$C^{\square n}: I^{\square n} \longrightarrow I^{\square n}$$
 restricts to maps

Defⁿ: A graph map
$$f: X \longrightarrow \mathcal{Y}$$
 is a fibration if \mathbb{Y} is a fibration \mathbb{Y} and diagram.

Theorem (Carranza - Kapulkin, 23):

Graph wl weak equivs

fibrations

is a fib. cat, denoted Graphes.

Question: ls it weakly equivalent to Topo ?

Homotopy n-types of graphs.

Def": A graph map $f: X \to Y$ is an n-equivalence if it induces a bijection $f_*: \pi_0 X \to \pi_0 Y$ and an isomorphism $f_*: A_k(X, k) \to A_k(Y, f_k)$

for Ocken and all xeX.

Defn: A graph map is an in-fibration if

for 0, < k < n+1, , m>0,

for
$$k = n+2$$
, $m > 0$

Theorem: Graph w n-equivalences (~>)

and n-fibrations (~>)

is a fib. cat. denoted Graphn.

Revised Question: ls Graphin weakly equivalent to Topn?

Homotopy 1-types of graphs

Theorem: The fundamental groupoid functor

Π.: Graph_ - Gpd
is a weak equivalence of fib. cats.

Corollary: Graph, is weakly equivalent to Top.

- Proving the theorem:

 (1) a graph map $f:X \to Y$ is a 1-equivalence iff $\Pi_i f: \Pi_i X \to \Pi_i Y$ is an equiv. of cats.
 - (2) . Mr. maps 1-fibrations to isofibrations
 - (3) M. preserves pullbacks along 1-fibs.
 - Given any graph Y and functor $F: G \rightarrow \Pi, Y$ in Gpd, there exists a graph map f: X -> 4 and a commuting diagram as follows:

Proving (4) boils down to the following:

given a group
$$G$$
, is there some pted, connected graph (X,n) sth.

 $A_1(X,n) \cong G$

Notation:

$$\mathbb{D}_{n} = \mathbb{C}_{n} \square_{n} \mathbb{I}_{3^{n}} / \mathbb{C}_{n}$$

$$\partial: C_n \longrightarrow D_n : i \longrightarrow (i,3)$$

het. Fs be the free grp gen. by a set S.

Given any word $r = s_1^{d_1} \cdots s_k^{d_k}$ in F_s , define

deg(r) = |d1 + - + |d6]

and define wr: C5deg(r) = V C5

first wrap de times around C5 corresp. to s. then wrap d2 times around C5 corresp. to s.,

Given any group G and a presentation $G = \langle S|R \rangle$, define a graph X_{S_1R} as follows.

Then, by Seifert — van Kampen, $A_i(X_{s,R}, \star) \cong G$.