Assignment 02 Data Exploration

BQOM 2578 | Data Mining

Theresa Wohlever

2025-09-17

Table of contents

	0.1 Load packages	1
1	Drug AMP Reporting - Quarterly	2
2	Data Discovery	2
3 0.	Data Structure 3.1 Date Column Creation	4 5 5 6 6 7
	brary(ggplot2) brary(dplyr)	
	taching package: 'dplyr' e following objects are masked from 'package:stats':	
	filter, lag	

```
The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union

library(stringr)
library(tidyr)
```

1 Drug AMP Reporting - Quarterly

The dataset is from Medicaid Drug AMP Reporting and described there:

Drugs that have been reported under the Medicaid Drug Rebate Program along with an indication of whether or not the required Average Manufacturer Price (AMP) was reported for each drug. All drugs are identified in the file by the 11-digit National Drug Code, product name, labeler name, and reported (R) or not reported (NR).

[1] "/Users/theresawohlever/git_repos/BQOM-2578_DataMining/BQOM-2578_DataMining_twohlever/as

1.0.1 Load data

Raw data from Medicaid Drug AMP Reporting: https://data.medicaid.gov/dataset/80956a7de343-54f3-94a7-45d41b34fc0b#data-table

```
base_FILENAME <- "DrugAMPReportingQuarterly022025" ## tiny" ## DrugAMPReportingQuarterly02200
# read the csv into a dataframe, which we can manipulate in R.

csv_FILE <- paste(base_FILENAME, ".csv", sep = "")
raw_amp_df <- read.csv(csv_FILE, stringsAsFactors = FALSE)

csv_OUT_FILE <- paste(base_FILENAME, "_processed.csv", sep = "")</pre>
```

2 Data Discovery

```
# head displays the first rows
head(raw_amp_df)
```

```
Labeler.Name
                                                   NDC
1 FLUORITAB CORPORATION
                                           00288110601
2 FLUORITAB CORPORATION
                                           00288110602
3 FLUORITAB CORPORATION
                                           00288110610
4 FLUORITAB CORPORATION
                                           00288110699
5 FLUORITAB CORPORATION
                                           00288220101
6 FLUORITAB CORPORATION
                                           00288220102
                                                  FDA. Product. Name Status Year
1 SODIUM FLUORIDE I.I MG
                                                                        NR 2013
2 SODIUM FLUORIDE 1.1 MG
                                                                        NR 2013
3 SODIUM FLUORIDE 1.1MG
                                                                        NR 2013
4 SODIUM FLUORIDE 1.1MG
                                                                        NR 2013
5 SODIUM FLUORIDE 2.2MG
                                                                        NR 2013
6 SODIUM FLUORIDE 2.2 MG
                                                                        NR 2013
  Quarter
1
        1
2
        1
3
        1
4
        1
5
        1
        1
# tail displays the last rows
tail(raw_amp_df)
```

Labeler.Name		NDC	FDA.Product.Name	Status Year			
2031672	BAUSCH	HEALTH	US,	LLC	99207030060	ZIANA GEL	R 2025
2031673	BAUSCH	${\tt HEALTH}$	US,	LLC	99207046630	SOLODYN 80MG TABLETS	R 2025
2031674	BAUSCH	${\tt HEALTH}$	US,	LLC	99207052510	VANOS CREAM .1%	R 2025
2031675	${\tt BAUSCH}$	${\tt HEALTH}$	US,	LLC	99207052530	VANOS CREAM .1%	R 2025
2031676	${\tt BAUSCH}$	${\tt HEALTH}$	US,	LLC	99207052560	VANOS CREAM .1%	R 2025
2031677	${\tt BAUSCH}$	${\tt HEALTH}$	US,	LLC	99207085060	LUZU Cream 1% 60gm	R 2025
	Quarter	r					
2031672	2	2					
2031673	2	2					
2031674	2	2					
2031675	2	2					
2031676	2	2					

2031677

```
# dim tells you how many rows by how many columns you have
dim(raw_amp_df)
```

[1] 2031677 6

names returns the names of the columns that you have
names(raw_amp_df)

```
[1] "Labeler.Name" "NDC" "FDA.Product.Name" "Status"
```

[5] "Year" "Quarter"

#summary will give you relevant summary statistics for each variable depending on its type
summary(raw_amp_df)

Labeler.Name	NDC	FDA.Product.Name	Status
Length:2031677	Length:2031677	Length:2031677	Length:2031677
Class :character	Class :character	Class :character	Class :character
Mode :character	Mode :character	Mode :character	Mode :character

Year			Quarter		
	Min.	:2013	Min.	:1.000	
	1st Qu.	:2016	1st Qu.	:2.000	
	Median	:2019	Median	:2.000	
	Mean	:2019	Mean	:2.496	
	3rd Qu.	:2022	3rd Qu.	:3.000	
	Max.	:2025	Max.	:4.000	

3 Data Structure

3.1 Date Column Creation

- Combines Year and Quarter columns into a proper Date column for better temporal analysis
- Converts quarters to actual dates (Q1 = January 1st, Q4 = October 1st)

```
df <- raw_amp_df

# Create a meaningful Date column by combining Year and Quarter

# Convert quarter to actual dates for better temporal analysis
df$Date <- as.Date(paste(df$Year, (df$Quarter - 1) * 3 + 1, "01", sep = "-"))</pre>
```

3.2 Drug Category Classification

- Creates meaningful drug categories by analyzing FDA Product Names
- Categories include: Fluoride Supplements, Pain Management, Antibiotics, Topical Treatments, Respiratory, OTC Pain Relief, and Other
- Cleans up labeler company names by removing excessive spacing

```
# Create drug category classification from FDA Product Name
# Extract drug categories and clean up labeler names

df$Drug_Category <- case_when(
    str_detect(toupper(df$FDA.Product.Name), "SODIUM FLUORIDE|FLUORITAB") ~ "Fluoride Supplement Str_detect(toupper(df$FDA.Product.Name), "VICODIN|PAIN") ~ "Pain Management",
    str_detect(toupper(df$FDA.Product.Name), "ANTIBIOTIC|OXACILLIN|PENICILLIN") ~ "Antibiotics str_detect(toupper(df$FDA.Product.Name), "CREAM|LOTION|OINTMENT") ~ "Topical Treatments",
    str_detect(toupper(df$FDA.Product.Name), "COUGH|EXPECTORANT") ~ "Respiratory",
    str_detect(toupper(df$FDA.Product.Name), "ASPIRIN|IBUPROFEN|ACETAMINOPHEN|NAPROXEN") ~ "OTTITUE ~ "Other"
)

# Clean up labeler names (remove excessive spacing and formatting)

df$Labeler_Clean <- str_trim(str_replace_all(df$Labeler.Name, "\\s+", " "))</pre>
```

3.3 Grouping

```
CategoryAndStatus <- group_by(df, Status, Drug_Category) %>%
    summarise(count = n())
```

[`]summarise()` has grouped output by 'Status'. You can override using the `.groups` argument.

3.4 C. Cleaning: Data Types and Missing Values

3.4.1 Handling Missing Values

3.5 F. Publishing

summary(df)

Labeler.Name NDC FDA.Product.Name Status Length: 2031677 Length:2031677 Length:2031677 Length:2031677 Class : character Class : character Class : character Class : character Mode :character Mode :character Mode :character Mode :character

Year	Quarter	Date	Drug_Category
Min. :2013	Min. :1.000	Min. :2013-01-01	Length:2031677
1st Qu.:2016	1st Qu.:2.000	1st Qu.:2016-04-01	Class :character
Median :2019	Median :2.000	Median :2019-07-01	Mode :character
Mean :2019	Mean :2.496	Mean :2019-05-20	
3rd Qu.:2022	3rd Qu.:3.000	3rd Qu.:2022-07-01	

Max. :2025 Max. :4.000 Max. :2025-04-01

Labeler_Clean Length:2031677 Class :character Mode :character

3.6 E. Verifying / Exploring

3.6.1 Distribution of Registration Status

```
p1 <- ggplot(df, aes(x = Status, fill = Status)) +
    geom_bar(stat = "count", alpha = 0.8) +
    geom_text(stat = "count", aes(label = after_stat(count)), vjust = -0.5) +
    labs(title = "Distribution of FDA Registration Status",
        subtitle = "Comparison of Registered (R) vs Non-Registered (NR) Products",
        x = "Registration Status",
        y = "Number of Products",
        caption = "Data Source: FDA Drug Registration Database") +
    scale_fill_manual(values = c("NR" = "#E74C3C", "R" = "#27AE60")) +
    theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),
        plot.subtitle = element_text(hjust = 0.5, size = 12),
        legend.position = "none")

print(p1)</pre>
```

Distribution of FDA Registration Status

Data Source: FDA Drug Registration Database

```
# Graph 2: Drug Categories by Registration Status
p2 <- ggplot(df, aes(x = reorder(Drug_Category, Drug_Category, function(x) length(x)),
                     fill = Status)) +
  geom_bar(position = "dodge", alpha = 0.8) +
  coord_flip() +
  labs(title = "Drug Categories by Registration Status",
       subtitle = "Distribution of product categories and their registration status",
       x = "Drug Category",
       y = "Number of Products",
       fill = "Status",
       caption = "Categories derived from FDA Product Names") +
  scale_fill_manual(values = c("NR" = "#E74C3C", "R" = "#27AE60"),
                    labels = c("NR" = "Non-Registered", "R" = "Registered")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),
        plot.subtitle = element_text(hjust = 0.5, size = 12),
        axis.text.y = element_text(size = 10))
print(p2)
```

Drug Categories by Registration Status

Distribution of product categories and their registration status

Categories derived from FDA Product Names

```
# Graph 3: Top Pharmaceutical Companies (Top 8)
top_labelers <- names(head(sort(table(df$Labeler_Clean), decreasing = TRUE), 8))
df_top <- df[df$Labeler_Clean %in% top_labelers, ]</pre>
```

```
p3 <- ggplot(df_top, aes(x = reorder(Labeler_Clean, Labeler_Clean, function(x) length(x)),
                         fill = Status)) +
  geom bar(stat = "count", alpha = 0.8) +
  coord_flip() +
  labs(title = "Product Count by Top Pharmaceutical Companies",
       subtitle = "Leading companies by number of products in the database",
       x = "Pharmaceutical Company",
       y = "Number of Products",
       fill = "Registration Status",
       caption = "Top 8 companies by product count") +
  scale_fill_manual(values = c("NR" = "#E74C3C", "R" = "#27AE60"),
                    labels = c("NR" = "Non-Registered", "R" = "Registered")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),
        plot.subtitle = element_text(hjust = 0.5, size = 12),
        axis.text.y = element_text(size = 9))
print(p3)
```

Product Count by Top Pharmaceutical Companies

Leading companies by number of products in the database

Top 8 companies by product count

```
# Graph 4: Quarterly Registration Timeline
quarterly_summary <- df %>%
group_by(Date, Status) %>%
```

```
summarise(count = n(), .groups = 'drop')
p4 <- ggplot(quarterly_summary, aes(x = Date, y = count, fill = Status)) +
  geom_col(position = "stack", alpha = 0.8, width = 50) +
  geom_text(aes(label = count), position = position_stack(vjust = 0.5),
            color = "white", size = 4, fontface = "bold") +
  labs(title = "Pharmaceutical Product Registration Timeline",
       subtitle = "Quarterly distribution of registered vs non-registered products in 2013",
       x = "Quarter",
       y = "Number of Products",
       fill = "Registration Status",
       caption = "Data shows Q1 and Q4 of 2013") +
  scale_fill_manual(values = c("NR" = "#E74C3C", "R" = "#27AE60"),
                    labels = c("NR" = "Non-Registered", "R" = "Registered")) +
  scale_x_date(date_labels = "%Y Q%q", date_breaks = "3 months") +
  theme minimal() +
  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),
        plot.subtitle = element_text(hjust = 0.5, size = 12),
        axis.text.x = element_text(angle = 45, hjust = 1))
print(p4)
```

Pharmaceutical Product Registration Timeline

rterly distribution of registered vs non-registered products in 2013

