Result and Analysis

The First International Conference on Intelligent Aerial Access and Applications - IAAA 2025

Huu-Tu Hoang, Duc-Hung Le

The University of Science - VNU, Ho Chi Minh City, Vietnam Faculty of Electronics and Telecommunications

dd/MM/2025

Motivation and Objectives

TABLE OF CONTENTS

- 1 Motivation and Objectives
- 2 Proposes Method
- 3 Result and Analysis
- 4 Conclusion and Future Work

- 1 Motivation and Objectives
- 2 Proposes Method
- Result and Analysis
- 4 Conclusion and Future Work

MOTIVATION

 Most IoT devices operate with constrained computational capabilities and limited resources.

Table 1: Classification of IoT devices based on hardware capabilities.

Category	CPU	RAM	Storage	Power	Example
Category 1	8-bit, 16 MHz	≤ 32 KB	S ma	$\leq 1 \text{ W}$	Arduino Mega
Category 2	32-bit, 80 MHz	32-80 KB	S ma	$\leq 1 \text{ W}$	NodeMCU ESP-12
Category 3	Single-core, 1 GHz	80 KB-512 MB	≤ 4 GB	1-2 W	Raspberry Pi Zero
Category 4	Quad-core, 1.2 GHz	512 MB-2 GB	≤ 8 GB	2-4 W	Raspberry Pi 3
Category 5	Quad-core, 2 GHz	≥ 8 GB	≥ 32 GB	High	Jetson TX2

MOTIVATION

 Research on implementing complete IoT architectures remains limited.

This work aims to develop a complete IoT architecture that fulfills the following goals:

- 1 Compatible with a wide range of hardware platforms.
- Ensures data integrity and confidentiality during transmission.
- 3 Provides mechanisms to mitigate common attacks.
- Implementation on real hardware and performance benchmarking.
- **5** Can be used as a **reference** framework for future IoT implementations.

- 1 Motivation and Objectives
- 2 Proposes Method
- Result and Analysis
- 4 Conclusion and Future Work

SYSTEM ARCHITECTURE

COMMUNICATION MODEL

THE ASCON-128a LIGHTWEIGHT CRYPTOGRAPHY

- Finalist of the NIST Lightweight Cryptography Standardization.
- Designed for constrained devices.
- Support AEAD providing both confidentiality and integrity.
- Used in this system to encrypt data and generate Auth Tag for each frame.

FRAME ARCHITECTURE

GENERIC FRAME STRUCTURE

SYNCHRONIZE	IDENTIFIER	DATA FIELD	INTEGRITY CHECK	SYNCHRONIZE
-------------	------------	------------	--------------------	-------------

FRAME ARCHITECTURE

Motivation and Objectives

Perceptual to Gateway Frame

Frame for transmitting encrypted data (PG1)

Frame for transmitting encrypted secret key (GP1) Gateway to Perceptual Frame

Packet Type AAD EOF (Trigger) (16 bytes) (2 bytes) (1 byte)

Motivation and Objectives

SAFE COUNTER MECHANISM

DYNAMIC KEY EXCHANGE

Frame for transmitting public key (GS1)

Shared Secret Key

Shared Secret Key

- Motivation and Objectives
- 2 Proposes Method
- 3 Result and Analysis
- 4 Conclusion and Future Work

TIME EXECUTIONS

Total transmission time averages 49.91 ms.

PACKET DELIVERY RATIO

Total power consumption averages 779.43 mW.

PAYLOAD EFFICIENCY

Analyze based on the GS2 frame.

SOF (2 bytes)	Identifier ID (4 bytes)	Packet Type (Data) (1 byte)	Sequence Number (4 bytes)	Nonce (16 bytes)	Payload Length (1 bytes)	Encrypted Payload (0 - 255 bytes)	Auth Tag (16 bytes)	EOF (2 bytes)	
------------------	----------------------------	-----------------------------------	---------------------------------	---------------------	--------------------------------	--------------------------------------	------------------------	------------------	--

Table 2: Payload efficiency with different payload lengths

Payload Length	Total Frame Size	Efficiency
3 bytes	49 bytes	6.12%
10 bytes	56 bytes	17.85%
20 bytes	66 bytes	30.30%
50 bytes	96 bytes	52.08%

⇒ The larger the payload, the higher the payload efficiency.

- Motivation and Objectives
- 2 Proposes Method
- 3 Result and Analysis
- 4 Conclusion and Future Work

ACHIEVEMENTS

- A complete IoT architecture has been proposed and implemented.
- Demonstrated compatibility with Category 2 and 3 devices (STM32F4 and ESP32).

- Integrated Ascon-128a and ECDH for lightweight encryption and key exchange.
- Combined frame-based communication with ECDH to offer a reliable key exchange protocol.
- Enhanced integrity through frame structure and the Safe Counter mechanism.
- Performance benchmarking has been conducted and analyzed.

FUTURE WORK

- 1 Research on key exchange protocol to reduce time overhead.
- 2 Design a data aggregation mechanism to improve payload efficiency.
- 3 Investigate techniques for reducing overall power consumption.

Thank you for your attention!