Linear Dependence and Linear independence.

Defⁿ A subset $\{U_1, \dots, U_K\} \subset V$ is <u>linearly dependent</u> if there are Scalars $A_1 - A_K$ not all zero such that $A_1U_1 + \cdots + A_KU_K = \bar{D}$

(not linearly dependent = linearly independent.)

Example

If $\{U_1, U_2, U_3\} = \{(-1, 1, 2), (1, 2, 1), (5, 1, -4)\}$ is linearly dependent? $A_1U_1 + A_2U_2 + A_3U_3 = \bar{O}$

 $\begin{cases}
-a_1 + a_2 + 5a_3 = 0 & \qquad (a_1 = 0) \\
a_1 + 2a_2 + a_3 = 0 & \Rightarrow a_1 = 0
\end{cases}$ $2a_1 + a_2 - 4a_3 = 0$ $2a_3 = 0$

: {U., U., U.} is linearly independent.

Example. $\{\sin x, \cos x\} \subset F(R)$ is linearly independent. there is no $a \neq 0$ such that $\sin x = a\cos x$.

Theorem if $\{u_1, \dots, u_k\} \in V$ is linearly dependent, then one u_j can be expressed as linear combination of the others.

Proof: linearly dependent $= \exists a_1, \dots, a_k \in R \text{ not all zero. } a_i u_i + \dots + a_k u_k = \bar{a}_k$ $= \exists a_j (a_i u_i + \dots + a_k u_k) = a_j \bar{a}_j$ $= \exists u_j = -\frac{a_j}{a_j} u_i - \dots - \frac{a_k}{a_k} u_k$

Theorem Suppose $\{u, ..., u_k\} \subset V$ is linearly dependent.

There is a subset $\{u_{i_1, ...}, u_{i_k}\}$ which is linearly independent and satisfies $Span(\{u, ..., u_k\}) = Span(\{u_{i_1, ...}, u_{i_k}\})$.

Proof: Just delete the u_j in $\{u_{i_1, ...}, u_k\}$ which can be expressed as linear combination of the others. \Rightarrow get $\{u_{i_1}, ..., u_{i_k}\}$.

Defn BCV is a basis of V if

- (i) β is linearly independent.

 (ii) $Span(\beta) = V$. A $\forall v \in V$, $v \in Span(\beta)$ is M.

 (every vector space has a basis).
- Theorem if $B \subset V$ is a basis then every $u \in V$ can be expressed in a unique way as an element of Span(B). Proof: Assume not: U can be expressed in two ways. $QU = Q_1U_1 + Q_2U_2 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_1U_1 + Q_2U_1 + \cdots + Q_KU_K$ $QU = Q_1U_1 + Q_1U_1 + Q_1U_1 + \cdots + Q_1U_1 + Q_1U_1 + \cdots + Q_1U_1 + Q_1U_1$

Example: $\mathbb{O} P_n : \beta = \{1, \chi, \chi^2 - \chi^n\}$

2 V = [[an]] is a vector space. Let ej be the sequence 0.0, ---, 0.1.0, B = { e1, e2, ...} 3 P= { polynomials of all degrees} $\beta = \{1, \chi, \chi^2, \chi^3, \dots \}$ @ F(R) has basis Theorem If V has a finite generating set of V.)

Theorem If V has a finite generating set, then Vhas a finite basis Theorem if V has a finite basis, then any basis of V has the same number of elements. Theorem (Replacement Theorem) Suppose S={S,...,Sn} Generates $V: if U = \{u_1, \dots, u_k\}$ is linearly independent, then k < n and there is a subset T < S of size n-k such that Span(UUT)=V.Proof (induction)

Base case: k=0, i.e. U= & take T=S Inductive Step Assume true for j. need to show true for j+1. $U_{\bar{g}} = \{u_1, \dots, u_{\bar{g}}\}\$ is linearly independent. there is a $T_j = \{S_1, \dots, S_{n-j}\}$ such that $S_{pan}(\{u_1, \dots, u_j, S_{n-j}\})$ = $V \Rightarrow U_{j+1}$ ($U_{j+1} = \int U_1, \dots, U_j, (U_{j+1})^2$ is <u>linearly independent</u>) $U_{j+1} = a_1 u_1 + a_2 u_2 + \cdots + a_j u_j + b_1 S_1 + \cdots + b_{n-j} S_{n-j}$ (bi-- brij are not all zero) Assume $b_{n,j} \neq 0$ take $T_{j+1} = \{S_1, \dots, S_{n-j-1}\}$ $Span(\{U_{1}, \dots, U_{j}, U_{j+1}, S_{1}, \dots, S_{n-j-1}\}) = V$ Theorem if V has a finite basis, then any basis of V has the same number of elements. Proof Let & be a finite basis with n elements Assume & be another basis 1) Prove & is finite: assume not, & contains a set U of N+1 linearly independent vectors.

Apply Replacement Theorem (S=B, U=0)=>n+1 < n.

so contradiction.

2) Prove Size of B=n.

Replacement Theorem (S=B, U=B) => Size of B < n

 $(S = \widetilde{B}, (U = \beta) =)$ Size of $B \ge n$.

=> Size of 8 = n.