1	I CLAIM:
2	
3	1. Endothermic catalytic reaction apparatus
4	comprising:
5	a) a U-shaped flow through tubular reaction
6	chamber disposed upright within a combustion chamber,
7	and a catalyst contained within said reaction chamber
8	for the conversion of hydrocarbon to industrial gases
9	by reaction with steam; said reaction chamber having an
10	upper portion, and there being a convection chamber
11	extending about said upper portion to enhance the
12	transfer of heat from combustion products in the
13	reaction chamber, and
14	b) a radiant burner generally vertically
15	disposed within the combustion chamber and having a gas
16	permeable zone that promotes the flameless combustion
17	of fuel and oxidant supplied to said burner in order to
18	heat a metal fiber surface of the burner to
19	incandescence for radiating heat to the reaction
20	chamber; said radiant burner configured so that the
21	angle of radiation is predominantly incident upon the
22	surface of the tubular reaction chamber.
23	
24	
25	
26	

1	2. The combination of claim 1 wherein said
2	tubular reaction chamber comprises a tube having outer
3	diameter or diameters ranging from about % inch to
4	about 4 inches along the tube length.
5	
6	
7	3. The combination of claim 1 wherein said
8	tubular reaction chamber is sized for creation of mass
9	velocities ranging from 400 lb/ft ² /h to 1500 lb/ft ² /h.
LO	
11	
12	4. The combination of claim 1 wherein said
13	catalyst in the tubular reaction chamber has average
l 4	catalyst particle diameters ranging from 1/8 to 1 inch
15	for producing gas pressure drops ranging from 1 psi to
16	8 psi during flow through the reaction chamber.
۱7	·
18	
19	5. The combination of claim 1 wherein said
20	tubular reaction chamber has a gas exit end temperature
21	ranging from 1150°F to 1400°F when heated by said
22	radiant burner, in operation.
23	
24	
25	

1	6. The combination of claim 1 wherein said
2	tubular reaction chamber has legs and an arc-shaped
3	bend connecting said legs, and said legs and bend have
4	maximum tube wall temperatures ranging from 1300°F to
5	1600°F when heated by said radiant burner, in
6	operation.
7	J
8	
9	7. The combination of claim 1 wherein said
10	tubular reaction has average heat fluxes ranging from
11	$3,000 \text{ btu/ft}^2/h \text{ to } 10,000 \text{ btu/ft}^2/h, \text{ when heated by}$
12	said radiant burner in operation.
13	
14	
15	8. The combination of claim 1 wherein said
16	tubular reaction chamber is sized to have capacity to
17	generate hydrogen plus carbon monoxide product in
18	volumetric quantities ranging from 50 SCFH to between
19	500 and 1500 SCFH.
20	
21	
22	9. The combination of claim 1 wherein said
23	radiant burner comprises a supported porous ceramic
24	material having extended life at operating temperatures
25	up to 2100°F.

1	10. The combination of claim 1 wherein said
2	radiant burner comprises a supported metal fiber
3	material consisting essentially of an alloy containing
4	principally iron, chromium, and aluminum and smaller
5	quantities of yttrium, silicon, and manganese, said
6	alloy having extended life at operating temperatures up
7	to 2000°F.
8	
9	
10	11. The combination of claim 1 wherein said
11	radiant burner is configured to direct radiation at an
12	included angle of radiation between 45-180 degrees.
13	
14	
15	12. The combination of claim 1 wherein said
16	radiant burner has a hemispherical shape.
17	
18	
19	13. The combination of claim 1 wherein said
20	radiant burner has surface temperatures ranging from
21	1500°F to 1900°F, in operation.
22	
23	
24	
25	
26	

1	14. The combination of claim 1 wherein said
2	radiant burner has an operating combustion intensity
3	typically ranging from 150,000 btu/ft²/h to
4	350,000 btu/ft 2 /h, wherein the combustion intensity is
5	defined as the higher heating value of the fuel
6	combusted divided by the permeable radiant burner
7	surface area.
8	
9	
10	15. The combination of claim 1 wherein said
11	radiant burner has an operating excess air ratio
12	typically ranging from 30% to 100%, wherein the excess
13	air ratio is defined as percent combustion air in
14	excess of the stoichiometric amount required for
15	complete combustion of the burner fuel.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

	,
1	16. Endothermic catalytic reaction
2	apparatus, comprising
3	a) a combustion chamber,
4	b) a tubular reaction chamber having two
5	generally tubular legs extending in generally parallel,
6	spaced apart relation within the combustion chamber,
7	c) catalyst within said reaction chamber
8	for reacting with a hydrocarbon and steam received
9	within the reactor chamber, to produce hydrogen and
10	carbon dioxide,
L1	d) a generally tubular radiant burner
12	within the combustion chamber and extending in
13	generally parallel relation to at least one of said
14	legs, said burner spaced from said legs,
15	e) said two legs having axes, and said
16	tubular burner having an axis which is spaced in offset
۱7	relation to a plane defined by said leg axes.
18	
19	
20	17. The combination of claim 16 wherein said
21	burner axis is approximately equidistant from said leg
22	axes.
23	
24	
25	
26	

1	18. The combination of claim 16 wherein said
2	burner has heat radiating surfaces configured to
3	radiate heat predominately in directions toward said
4	legs.
5	
6	
7	19. The combination of claim 16 wherein said
8	legs are in series communication.
9	
10	
11	20. The combination of claim 16 wherein the
12	burner has a gas permeable metal fiber zone χ_1 , and
13	non-gas permeable zone χ_2 , where χ_1 faces said legs
14	and χ_2 faces away from said legs, χ_1 subtending an
15	angle that is less than 180°.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

1	21. Endothermic catalytic reaction apparatus
2	comprising:
3	a) a helical tubular flow through reaction
4	chamber disposed within a combustion chamber, and
5	catalyst contained within said reaction chamber for the
6	conversion of hydrocarbon to industrial gases by
7	reaction with steam; said helical tubular reaction
8	chamber having an upper portion, and there being a
9	convection chamber extending about said upper portion
LO	to enhance the transfer of heat from combustion
L1	products in the reaction chamber and an exit section to
L2	convey reaction products to the exit means, and
13	b) a radiant burner vertically disposed
L4	within said combustion chamber and having a gas
15	permeable zone that promotes the flameless combustion
16	of fuel and oxidant supplied to said burner in order to
17	heat the metal fiber surface of the burner to
18	incandescence for radiating heat energy to the reaction
19	chamber; said radiant burner configured to radiate
20	uniformly in radial directions.
21	
22	
23	22. The combination of claim 21 wherein said
24	tubular reaction chamber comprises a tube having outer
25	diameters ranging from about % inch to about 4 inches,
26	along the tube length.

1	23. The combination of claim 21 wherein said
2	tubular reaction chamber defines a coil having an outer
3	coil diameter ranging from 6 to 36 inches.
4	
5	
6	24. The combination of claim 21 wherein said
7	helical tubular reaction chamber is for creation of
8	mass velocities ranging from
9	400 lb/ft ² /h to 1500 lb/ft ² /h.
10	
11	
12	25. The combination of claim 21 wherein said
13	catalyst in the helical tubular reaction chamber has
14	average catalyst particle diameters ranging from 1/4 to 1
15	inch for producing gas pressure drops ranging from 1
16	psi to 8 psi during flow through the reaction chamber.
17	
18	
19	26. The combination of claim 21 wherein said
20	helical tubular reaction chamber has gas exit end
21	temperature ranging from 1150°F to 1400°F, when heated
22	by said radiant burner, in operation.
23	
24	
25	
26	

1	27. The combination of claim 21 wherein said
2	helical tubular reaction chamber has maximum tube wall
3	temperatures ranging from 1300°F to 1600°F, when heated
4	by said radiant burner, in operation.
5	
6	
7	28. The combination of claim 21 wherein said
8	helical tubular reaction chamber has average heat
9	fluxes ranging from 3,000 btu/ft²/h to
10	10,000 btu/ft²/h, when heated by said radiant burner in
11	operation.
12	
13	
14	29. The combination of claim 21 wherein said
15	helical tubular reaction chamber is sized to have
16	capacity to generate hydrogen plus carbon monoxide
17	product in volumetric quantities ranging from 50 SCFH
18	to between 100 and 1500 SCFH.
19	
20	
21	30. The combination of claim 21 wherein said
22	radiant burner comprises a supported porous ceramic
23	material having extended life at operating temperatures
24	up to 2100°F.
25	
26	

1	31. The combination of claim 21 wherein said
2	radiant burner comprises a supported metal fiber
3	material consisting essentially of an alloy containing
4	principally iron, chromium, and aluminum and smaller
5	quantities of yttrium, silicon, and manganese, said
6	alloy having extended life at operating temperatures up
7	to 2000°F.
8	
9	
LO	32. The combination of claim 21 wherein said
L1	radiant burner is configured to radiate heat energy in
L2	a substantially uniform radial pattern.
L3	
L4	
L5	33. The combination of claim 21 wherein said
16	radiant burner has surface temperatures ranging between
L7	1500°F and 1900°F, in operation.
L8	
L9	
20	34. The combination of claim 21 wherein said
21	radiant burner has an operating combustion intensity
22	typically ranging from 150,000 btu/ft2/h to
23	$350,000 \text{ btu/ft}^2/\text{hr}$, wherein the combustion intensity is
24	defined as the higher heating value of the fuel
25	combusted divided by the permeable radiant burner
26	surface area.

1	35. The combination of claim 21 wherein said
2	radiant burner has an operating excess air ratio
3	typically ranging from 30% to 100%, wherein the excess
4	air ratio is defined as percent combustion air in
5	excess of the stoichiometric amount required for
6	complete combustion of the burner fuel.
7	
8	
9	36. The combination of claim 22 wherein the
10	coil has free area in the range 50% to 75%, wherein the
11	free area is defined as the ratio of the free area
12	between successive coil turns and the cylinder that
13	bisects the helical coil circle.
14	
15	
16	37. The combination of claim 21 wherein the
17	convection chamber has an inlet within the combustion
18	chamber, and an outlet outside the combustion chamber.
19	
20	
21	38. The combination of claim 1 including a
22	fuel cell in operating communication with said reaction
23	chamber, to receive hydrogen therefrom.
24	
25	
26	

1	39. The combination of claim 21 including a
2	fuel cell in operating communication with said reaction
3	chamber, to receive hydrogen therefrom.
4	
5	
6	
7	to industrial gases, that includes:
8	a) providing a U-shaped flow through
9	tubular reaction chamber disposed upright within a
10	combustion chamber, and a catalyst contained within
11	said reaction chamber for the conversion of said
12	hydrocarbon to said industrial gases by reaction with
13	steam; said reaction chamber having an upper portion,
14	and there being a convection chamber extending about
15	said upper portion to enhance the transfer of heat from
16	combustion products in the reaction chamber,
17	b) providing a radiant burner generally
18	vertically disposed within the combustion chamber and
19	having a gas permeable zone that promotes the flameless
20	combustion of fuel and oxidant supplied to said burner
21	in order to heat a fiber surface of the burner to
22	incandescence for radiating heat to the reaction
23	chamber; said radiant burner configured so that the
24	angle of radiation is predominantly incident upon the
25	surface of the tubular reaction chamber,

1	c) supplying said hydrocarbon and steam to
2	the reaction chamber heated by said radiant burner,
3	d) and removing said industrial gases
4	including hydrogen from the reaction chamber.
5	
6	
7	41. The method of claim 40 including
8	providing a gas conditioning system and fuel cell, and
9	supplying said hydrogen to said fuel cell.
10	
11	
12	42. The method of claim 40 wherein said
13	fiber surface of the burner consists of at least one of
14	the following:
15	a) ceramic
16	b) metal.
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

1	43. Endothermic catalytic reaction apparatus
2	that includes a combustion chamber, comprising:
3	a) a straight tubular outer conduit
4	concentrically disposed around an inner conduit to form
5	a reaction chamber containing catalyst in the annular
6	space between the outer conduit wall and the inner
7	conduit wall, for conversion of hydrocarbon to
8	industrial gases by reaction with steam, and an inner
9	conduit defined space for the return flow of reactant
10	gases to an exit means; said tubular reaction chamber
11	having one end that extends into the combustion chamber
12	and an opposite end that extends outside of the
13	combustion chamber, and there being inlet means that is
1.4	in communication with the annular space and an exit
15	means that is in communication with the inner conduit
16	defined space,
17	b) and a radiant burner vertically disposed
18	within said combustion chamber and having a gas
19	permeable zone that promotes the flameless combustion
20	of fuel and oxidant supplied to said burner in order to
21	heat the metal fiber surface of the burner to
22	incandescence for radiating heat energy to the reaction
23	chamber.

1	44. The combination of claim 43 wherein a						
2	multiplicity of said tubular reaction chambers are						
3	provided and are concentrically disposed around a						
4	centrally located and vertically disposed cylindrical						
5	radiant burner having a 360 degree radiant arc.						
6							
7							
8	45. The combination of claim 43 wherein						
9	there is a convection chamber extending about a portion						
10	of the tubular reaction chamber in the proximity of the						
11	end containing the reactant gas inlet and outlet means						
12	to enhance heat transfer from combustion products; said						
13	convection chamber having an inlet means that is in						
14	communication with the combustion chamber and an exit						
15	means for combustion products that is outside the						
16	combustion chamber.						
17							
18							
19	46. The combination of claim 43 wherein the						
20	reactant gases flowing inside the inner conduit						
21	transfer heat to the reaction chamber.						
22							
23							
24	47. The combination of claim 43 wherein said						
25	radiant burner is comprised of a supported metal fiber						
26	material.						

1		48.	The	combinat	ıon	ΟĬ	claim 4	3 wherein	said
2	radiant	burner	is	comprised	of	a s	supporte	d ceramic	
3	fiber ma	aterial	•						
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18 19									
20									
21									
22									
23									
24									
_									