2024-03-28

Rappels

$$B(X,Y) = \operatorname{tr}(\operatorname{ad} X \cdot \operatorname{ad} Y)$$

- B est définit positive sur $\mathbb{R} \langle H_{\alpha} \rangle_{\alpha \in R} \subseteq h$
- B^* est définit positif sur $\mathbb{R} \langle \alpha \rangle_{\alpha \in R} \subseteq h^*$
- Pour toute paires de racines $\alpha, \beta \in \mathbb{R}$

$$\beta(H_{\alpha}) = \frac{2B(\alpha, \beta)}{\beta(\alpha, \alpha)}$$

Un système de racine abstrait est $R \subseteq \mathbb{E}$ satisfaisant :

 \mathbb{E} est l'espace vectoriel sur \mathbb{R} avec (,) comme produit scalaire

- 1. R est fini est engendre $\mathbb E$
- 2. $\alpha \in R \implies -\alpha \in R$ et aucun autre $n\alpha$ pour $n \neq \pm 1$ n'est dans R
- 3. $\forall \alpha \in R, W_{\alpha}(R) = R \text{ (si } \alpha, \beta \in R, W_{\alpha}(\beta) = \beta \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha \in R)$
- 4. $\forall \alpha, \beta \in R \ \frac{2(\alpha, \beta)}{(\alpha, \alpha)} n_{\beta\alpha} \in \mathbb{Z}$

La propriété 4 implique que

$$\mathbb{Z} \ni n_{\beta\alpha}n_{\beta\alpha} = \frac{4(\alpha,\beta)^2}{(\alpha,\alpha)(\beta,\beta)} = 4 \frac{\cos^2 \theta}{\cos^2 \theta}$$

$$\implies n_{\alpha,\beta}n_{\beta\alpha} \in \{0,1,2,3,4\}$$

si
$$n_{\alpha\beta}n_{\beta\alpha}=4$$

$$\cos^2 \theta = 1 \implies \alpha = \pm \beta$$

si
$$n_{\alpha\beta}n_{\beta\alpha}=3$$

$$n_{\alpha\beta} = 3$$
 $n_{\beta\alpha} = \pm 1$ $\theta \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\}$

si
$$n_{\alpha\beta}n_{\beta\alpha}=2$$

$$\cos^2 \theta = \frac{1}{2} \implies \theta \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} \quad \|\alpha\| = \sqrt{2} \|\beta\|$$

si
$$n_{\alpha\beta}m_{\beta\alpha}=1$$

$$\cos^2 \theta = \frac{1}{4} \implies \theta \in \left\{ \frac{\pi}{3}, \frac{2\pi}{3} \mid \alpha \mid = |\beta| \right\}$$

si
$$n_{\alpha\beta}n_{\beta\alpha}=0$$

 $\cos \theta = 0$ $\alpha \perp \beta$ pas de condition sur la longueur

<u>Corollaire</u>: Si l'angle entre α et β est aigu, alors $\alpha - \beta$ et $\beta - \alpha$ sont des racines

Démonstration :

 $W_{\beta}(\alpha) = \alpha - n_{\alpha\beta}\beta$, si $\angle \alpha, \beta$ est aigu alors $n_{\beta\alpha} = 1$

Sans perte de généralité, $W_{\beta}(\alpha) = \alpha - \beta \in R \implies \beta - \alpha \in R$

Fixons $h \in \mathbb{E}|(h,\alpha) \neq 0 \forall \alpha \in R$ et définissons $R^+ = \{\alpha \in R | (h,\alpha) > 0\}$ $R^- = \{\alpha \in R | (h,\alpha) < 0\} = -R^+$

<u>Définissons</u>: Une racine positive $\alpha \in \mathbb{R}^+$ est simples si elle ne s'écrit pas comme une somme de racines positives.

Figure 1 – Racines simples

Par le corollaire, l'angle entre 3 racines simples est obtus. Di α, β simples et $\alpha - \beta, \beta - \alpha \in R \implies \alpha = (\alpha - \beta) + \beta, \beta = \beta - \alpha + \alpha \not$

 $\underline{\text{D\'efinition}}$: Une configuration admissible est une ensemble de vecteur unitaires dans $\mathbb E$ tels que

- 1. tous les vecteurs sont dans un demi-espace ouvert $\{v > (v, h) > 0\}$
- 2. L'angle entre 2 vecteurs est une de $\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6}$

Une configuration admissible est réductible si elle s'écrit comme une somme orthogonale de configurations admissibles.

Par ce qui précède, si R est un système de racines,

$$\{\frac{\alpha}{\|\alpha\|}|\alpha \text{ racine simple}\}$$

est une configuration admissible.

Proposition: Une configuration admissible est linéairement independente.

Démonstration:

Supposons que $\sum a_i v_i = 0$, a_i non tout nuls

$$\implies \sum_{i \in I} a_i v_i = \sum_{j \in J} a_j v_j \quad a_i, a_j > 0$$

mais $\left\|\sum a_i v_i\right\|^2 = \left(\sum a_i v_i, \sum a_j v_j\right) = \sum \sum a_i a_j (v_i, v_j) \le 0$

$$\implies \sum a_i v_i = 0 = \sum a_i v_i$$

mais $a_i > 0$ et v_i sont das un demi-espace 4

Conséquence :

Comme R engendre $\mathbb E$ pour un système de racine (par axiome) et toute paire s'écrit comme une combinaison linéaire de racines simples, les racines simples engendre $\mathbb E$

- ⇒ Les racines simples forment une base
- $\implies \#$ de racines = $\dim(h)$ pour $\mathfrak{h} \subseteq \mathfrak{g}$ sous algèbre de Cartan.

Démonstration : (du fait que toute racine s'écrit comme une combinaison linéaire de racine simples)

si α n'est pas simple, $\implies = \beta + \gamma$ avec $\beta, \gamma \in R^+ \implies (\alpha, h) = (\beta, h) + (\gamma, h)$

$$\implies (\beta, h) < (\alpha, h) \quad (\gamma, h) < (\alpha, h)$$

si β, γ sont simples, fini.

si β n'est pas simple $\beta = \beta_2 + \beta_3, \, \beta_2, \beta_3 \in \mathbb{R}^+$

Comme $\#R^+ < \infty$ cet algorithme se termine et donne $\alpha = \sum n_i \alpha_i$, α_i simples

<u>Définition</u>: Le <u>diagramme</u> de <u>Coxeter</u> d'une configuration admissible $\{V_i\}$ est le graph dont les sommets sont V_i et on a $4\cos^2(\angle(v_i,v_j))$ arêtes entre v_i,v_j .

$$v_i - v_j$$
 si $\angle v_i v_j = \frac{2\pi}{3}$
 $v_i = v_j$ si $\angle v_i v_j = \frac{3\pi}{4}$
 $v_i \equiv v_j$ si $\angle v_i v_j = \frac{5\pi}{6}$
 v_i v_j si $\angle v_i v_j = \frac{\pi}{2}$

<u>Lemme</u>: Le diagramme de Coxeter d<une configuration admissible est acyclique (sans compter la multiplicité des arrêtes)

Figure 2 – exemples de iagrammes de Coxeters

$\underline{\text{D\'emonstration}}$:

On prend le graph cyclique : $v_k - v_1 - v_2 - \cdots -$

$$\implies (v_i, v_{i+1}) \le \frac{-1}{2} \quad \text{pour} \quad i = 1, \dots k - 1$$

$$(v_i, v_k) \le \frac{-1}{2}$$

et
$$(v_i, v_j) \le 0 \forall i \ne j$$

$$\implies (\sum_{i=1}^{k} v_i, \sum_{i=1}^{k} v_i)$$

$$= \sum (v_i, v_i) + \sum_{i < j} 2(v_i, v_j)$$

$$= k + \sum_{i=1}^{k-1} 2(v_i, v_{i+1}) + 2(v_k, v_1) + \sum_{J \neq i+1} 2(v_i v_j)$$

$$\leq k + (-k) + 0$$

$$\implies \sum_{i=1}^{k} v_i = 0$$

C'est une 4a l'independence linéaire

Lemme : Le degré d'une sommet est au plus 3 (avec multiplicité)

 $\underline{\text{D\'emonstration}}: \text{On consid\`ere le graph \'etoile avec}\ v_0$ au centre et k branches

Du lemme precedent, $v_i \perp v_j \forall 1 \leq j \neq j \leq k$

 $\implies v_1, \cdots, v_k$ sont orhonormés

$$\sum_{i=1}^{k} (v_0, v_i)^2 < |v_0|^2 = 1$$

(Inégalité de Bessel)

$$(v_0, v_i)^2 = \frac{m_i}{4}$$

où m_i est le nombre de d'arrêtes entre v_0 et v_i

$$\implies \sum_{i=1}^{k} m_i < 4 = \text{ degr\'e de } v_0$$