Genome Sequence Assembly

Weihong Qi, PhD Functional Genomics Center Zurich Uni./ETH Zurich

Outline of the program

- Tuesday afternoon
 - Genome assembly theory
 - Exercise 1: Assemble 454 reads with 454 Assembler and Mapper
 - Exercise 2 (optional): Estimate sequencing coverage needed to sequence a genome based on the Lander and Waterman theory
 - Homework: Read about Mosaik assembler and Gigabayes
- Wednesday morning
 - Exercise 3: Analyze Solexa reads with Mosaik and Gigabayes
- Wednesday afternoon
 - Summarize results for group presentation

Whole genome shotgun sequencing (WGS) and assembly

Genomic DNA is broken into a collection of fragments

The ends of each fragment are sequenced

The sequence reads are assembled together based on sequence similarity

http://www.cbcb.umd.edu/research/assembly_primer.shtml

Coverage needed to sequence a genome

- We sequence enough random fragments so that we have an expected number of fragments containing each nucleotide. This expected number is the coverage c.
- c = RL/G, R: the number of reads sequenced, L: the average length of a read, G: the size of the genome
- Lander and Waterman theory
 - Sampling is perfectly random and uniform
 - Probability of a based is not sequenced = e^{-c}
 - Proportion of genome covered = 1-e-c
 - Total gap length = Ge^{-c}
 - Toatl number of gaps = Re-c
 - Gaps of average length = Ge^{-c} / Re^{-c} = L/c
 - Contigs of average length = G/Re^{-c} = (L/c)e^c

Lander E and Waterman MS. 1998. Genomics 2:231-9

Coverage needed to sequence a genome

- We sequence enough random fragments so that we have an expected number of fragments containing each nucleotide. This expected number is the coverage c.
- c = RL/G, R: the number of reads sequenced, L: the average length of a read, G: the size of the genome
- Lander and Waterman theory
 - Sampling is perfectly random and uniform
 - Probability of a based is not sequenced = e^{-c}
 - Proportion of genome covered = 1-e-c
 - Total gap length = Ge^{-c}
 - Toatl number of gaps = Re-c
 - Gaps of average length = Ge^{-c} / Re^{-c} = L/c
 - Contigs of average length = G/Re^{-c} = (L/c)e^c

Genome covered depends only on **c**, not **G** or **L**, 8 fold for 99% coverage

Gap length and number fall exponentially with **c**

Contig lengths rise exponentially with **c**

Lander E and Waterman MS. 1998. Genomics 2:231-9

functional genomics center zurich

Assembly algorithms

- Overlap-layout-consensus (Align-layout-consensus)
- Greedy algorithm
- Eulerian path

Overlap-layout-consensus

- Assemblers: 454 newbler, ARACHNE, PHRAP, CAP, TIGR, CELERA
- Overlap: find all overlapping reads

- ..ACGATTACAATAGGTT..
- ..TAGATTACACAGATTACTGACTTGATGGCGTAA CTA..

Overlap

- Sort all k-mers in reads
- Find pairs of reads sharing a k-mer
- Extend to full alignment
- Throw away if not above a given threshold (X% similarity Y bp of length)
- Deal with repeats
 - Find areas covered by a significantly large number of reads
 - Discard all k-mers that appear more than t x Coverage, (t ~ 10)

Layout

- Find optimal overlapping reads
 - Simple path: a path through each node just once

http://www.cbcb.umd.edu/research/assembly_primer.shtml

Creat local multiple alignment from overlapping reads

- Progressive alignment
 - Align the most similar pair
 - Progress to the most distantly related.
 - Performance is good when the sequences are closely related
 - Efficient for many (100s to 1000s) sequences

Consensus

Nucleotide space

- Flowspace
 - Averaging flow signals for each nucleotide flow included in the alignment
 - Improve accuracy for the basecalls

Align-layout-consensus

Align and layout reads to reference(s)

Exercise 1

- Assemble 454 reads with 454 newbler
- Assembler the same 454 reads by mapping to a reference with 454 mapper
- View assembly with EagleView

Exercise 2

- Given a 5 Mb bacterial genome and an average read length of 600 bases, what will be the number of reads needed to reach fold coverage between 1 and 10?
- What will be the percentage of genome covered, average contig length, number of gaps, and average gap length?
- What will be these values if the average read length is 250 bases and 35 bases?

