0.1. Duodecimo primera clase

Se mostró que la siguiente combinación para un espinor de Dirac transforma como un escalar de Lorentz.

$$\tilde{\Phi}(x) = \bar{\Psi}(x)\Psi(x) = \bar{\Psi}(\Lambda^{-1}x)\Psi(\Lambda^{-1})$$

En donde el conjugado de Dirac por un espinor está definido por lo siguiente

$$\begin{split} \bar{Psi}(x)\Psi(x) &= \Psi^{\dagger}\gamma^{0}\Psi(x) \\ &= (\Psi_{1}*, \Psi_{2}*, \Psi_{3}*, \Psi_{4}*) \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{1}(x) \\ \Psi_{2}(x) \\ \Psi_{3}(x) \\ \Psi_{4}(x) \end{pmatrix} \end{split}$$

Por lo tanto, con la siguiente transformación

$$=I+\omega$$

en su versión infinitesimal

$$\delta\Phi(x) = -\omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\Phi(x)$$

Tal que, la variación de la acción bajo dicha transformación infinitesimal está dada por lo siguiente

$$I[\Psi, \bar{\Psi}] = \int d^4x \cdots - m\bar{\Psi}\Psi$$

$$= \int d^4x \cdots - m\Phi(x)$$

$$\delta_{Lorentz}I = \int d^4x \cdots - m\delta\Phi(x)$$

$$= \int d^4x \cdots + m\omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\Phi(x)$$

$$= \int d^4x \cdots - \partial_{\mu}(m\omega^{\mu}_{\nu}\Phi) - m\omega^{\mu}_{\nu}\partial_{\mu}x^{\nu}\Phi$$

Con lo cual al haber términos de borde hemos encontrado que la acción es Quasi-invariante bajo transformaciones de Lorentz.

$$I[\Psi, \bar{\Psi}] = \int d^4x \bar{\Psi} \left(i\gamma^{\mu}\partial_{\mu} - m\right)\Psi$$

Que dará origen a la ecuación de Dirac.

Afirmación: $\bar{\Psi}\gamma^{\mu}\Psi$ transforma como un vector de Lorentz, es decir, bajo $\tilde{x}^{\mu} = \Lambda^{\mu}_{\nu}x^{\nu}$.

$$\bar{\Psi}(x)\gamma^{\mu}\Psi(x) = \Lambda^{\mu}_{\nu}\bar{\Psi}(\Lambda^{-1}x)\gamma^{\nu}\Psi(\Lambda^{-1}x)$$

recuerdo de cómo transforma bajo Lorentz el cuadri-potencial electormagnético

$$\tilde{A}^{\mu}(\tilde{x}) = \Lambda^{\mu}_{\ \nu} A^{\mu}(x) \Rightarrow \tilde{A}^{\mu}(x) \Lambda^{\mu}_{\ \nu} A^{\nu}(\Lambda^{-1}x)$$

Demostración: Sabemos que, bajo una transformación de Lorentz:

$$\tilde{\Psi}(x) = e^{\frac{1}{2}\omega^{\alpha\beta}S_{\alpha\beta}}\Psi(\Lambda^{-1}x) = D[\Lambda]\Psi(\Lambda^{-1}x)$$

A. Díaz y F. Mella