In [1]:

```
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
%matplotlib inline
digits=load_digits()
```

In [2]:

```
print("Image Data Shape",digits.data.shape)
print("Label Data Shape",digits.target.shape)
```

Image Data Shape (1797, 64)
Label Data Shape (1797,)

In [4]:

```
plt.figure(figsize=(20,4))
for index,(image,label)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
   plt.subplot(1,5,index+1)
   plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
   plt.title('Training:%i\n'%label,fontsize=10)
```


In [7]:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30,random_state=2

In [8]:

```
print(X_train.shape)
```

(1257, 64)

In [9]:

```
print(y_train.shape)
```

(1257,)

In [10]:

```
print(X_test.shape)
```

(540, 64)

```
In [11]:
```

from sklearn.linear model import LogisticRegression

In [12]:

logisticRegr=LogisticRegression(max_iter=10000)
logisticRegr.fit(X_train,y_train)

Out[12]:

LogisticRegression
LogisticRegression(max_iter=10000)

In [13]:

print(logisticRegr.predict(X_test))

In [14]:

score=logisticRegr.score(X_test,y_test)
score

Out[14]:

0.9537037037037037

In []: