Hálózat központja

Minden számítógépes hálózat csomópontokból és bizonyos csomópontpárok között kiépített közvetlen két-irányú adatátvitelt biztosító kommunikációs vonalakból épül fel. A feladatban szreplő hálózatról tudjuk, hogy bármely két csomópont között pontosan egy olyan útvonal létezik, amely összeköti a két csomópontot. Adott p és q csomópont távolsága az a legkisebb k egész szám, amelyre létezik olyan p=p0, p1,...,pk=q csomópontsorozat, hogy pi és pi+1 (i=0,..., k-1) között van kiépített kommunikációs vonal. Minden csomópont fontos jellemzője az az érték, amely a többi csomóponttól vett távolság értékek maximuma, jelölje ezt az értéket adott p csomópontra ρ (p). Ki kell jelölni a hálózat egy olyan c csomópontját, amelyre a ρ (c) érték a legkisebb. Az ilyen csomópontot a hálózat központjának nevezzük..

Írj programot, amely kiszámítja egy hálózat központját!

Bemenet

A standard bemenet első sora a csomópontok ($1 < N \le 20000$) számát tartalmazza. A hálózat csomópontjait az 1, ..., N számokkal azonosítjuk. A további N-1 sor mindegyike egy U V egész számpárt tartalmaz; amely azt jelenti, hogy az U és V csomópont ($1 \le U \ne V \le N$) között közvetlen két-irányú adatátviteli vonal van kiépítve. A bemenet teljesíti azt a feltételt, hogy bármely két csomópont között pontosan egy útvonal létezik.

Kimenet

A standard kimenet egyetlen sorába olyan csomópont sorszámát kell írni, amely a hálózat központja. Több megoldás esetén a kisebb sorszámút kell kiírni.

Példa

Bemenet	Kimenet
8	3
1 3	
3 6	
3 2	
2 4	
2 5	
6 7	
6 8	

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 32 MiB

Pontozás: A tesztek 30%-ában a N≤100