Лабораторная работа № 4 ДО

ВОЛЬТАМПЕРНЫЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ БИПОЛЯРНОГО ТРАНЗИСТОРА

1. Цель работы

Изучение принципа работы биполярного транзистора, снятие его основных характеристик в схеме включения с общим эмиттером, графический и аналитический расчет по постоянному току усилительного каскада с общим эмиттером.

2. Методика исследования схем

В работе снимаются входные и выходные характеристики биполярного транзистора. Схема экспериментальной установки для снятия ВАХ приведена на рис. 1. Характеристики снимаются методом моделирования в среде программы *OrCad*. По снятым характеристикам определяется режим работы транзистора в схеме усилительного каскада ОЭ и малосигнальные параметры. Расчет режима усилительного каскада (рис. 2) ведется в среде *OrCad* графоаналитическим способом, а затем проверяется экспериментально.

Рис. 1. Рабочая схема для снятия ВАХ биполярного транзистора

3. Подготовка к работе

- 3.1. Изучить рекомендуемую литературу, все материалы данной лабораторной работы.
- 3.2. Качественно показать, как по вольтамперным характеристикам транзистора определить h-параметры его малосигнальной схемы замещения (h_{11} , и h_{21}).
- 3.3. Для схемы усилительного каскада ОЭ (рис. 2) и заданных параметров элементов схемы (табл. 1) рассчитать: базовый I_6 и коллекторный I_{κ} токи и напряжение коллектор-эмиттер U_{κ_3} .
- 3.4. Нарисовать малосигнальные схемы замещения каскада для случаев наличия и отсутствия конденсатора в цепи эмиттера. Рассчитать

коэффициент усиления каскада $K_u = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ при наличии конденсатора в цепи эмиттера и при его отсутствии (считать $R_{\text{г}} = 0$).

Таблица 1. Исходные данные для усилительного каскада ОЭ

Вариант	β	$E_{\text{пит}}$, В	R_1 , кОм	<i>R</i> ₂ , кОм	<i>R</i> ₃ , Ом	<i>R</i> ₄ , Ом
1	40	10	8.4	1.6	820	180
2	50	12	7.5	2.4	510	180
3	70	15	12	2.2	390	100
4	75	10	8.4	1.6	200	50
5	80	12	15	5.1	470	200
6	120	15	24	4.3	430	82
7	100	10	18	3.3	820	200
8	45	12	20	6.2	510	180
9	120	15	36	6.2	390	91
10	45	10	8.4	1.6	820	180
11	40	12	7.5	2.4	510	180
12	65	15	12	2.2	390	100
13	70	10	8.4	1.6	200	50
14	75	12	15	5.1	470	200
15	100	15	24	4.3	430	82
16	120	10	18	3.3	820	200
17	50	12	20	6.2	510	180
18	100	15	36	6.2	390	91
19	35	12	8.4	1.6	820	180
20	50	15	7.5	2.4	510	180
21	70	18	12	2.2	390	100
22	75	15	8.4	1.6	200	50
23	80	15	15	5.1	470	200
24	120	18	24	4.3	430	82
25	100	15	18	3.3	820	200

Вариант $n = \text{Остаток}((10 \cdot \text{M+N}):25)$, если n = 0, то n = 25.

4. Рабочее задание

- 4.1. Снять входную характеристику биполярного транзистора $U_{69}(I_6)$ при фиксированном значении напряжения $U_{\kappa_9} = 5$ В.
- 4.2. По вольтамперным характеристикам для схемы усилительного каскада ОЭ (рис. 2) с параметрами элементов, заданными в табл. 1, графически определить базовый ток транзистора I_6 , напряжение U_{69} . Результаты занести в табл. 2.
- 4.3. Для рабочей точки определить входное сопротивление транзистора $h_{11_2} = \Delta U_{6_2}/\Delta I_6 \; .$

- 4.4. Снять семейство выходных характеристик $I_{\kappa}(U_{\kappa 9})$.
- 4.5. По вольтамперным характеристикам для схемы усилительного каскада ОЭ (рис. 2) с параметрами элементов, заданными в табл. 1, графически определить коллекторный ток транзистора $I_{\rm k}$ и напряжение $U_{\rm k9}$. Результаты занести в табл. 2.
- 4.6. Для рабочей точки определить коэффициент усиления транзистора $h_{\rm 219} = \Delta I_{\rm \tiny K}/\Delta I_{\rm 6} \ .$
- 4.7. Собрать схему однокаскадного усилителя на биполярном транзисторе с общим эмиттером (рис. 2). Параметры элементов каскада установить в соответствии с вариантом.

Рис. 2. Усилительный каскад с общим эмиттером $C_1 = C_2 = 5$ мкФ, $C_3 = 50$ мкФ, $C_4 = 1$ нФ, $R_5 = 2$ кОм.

- 4.8. С помощью программы *OrCad* определить рабочий режим транзистора: базовый I_6 и коллекторный I_{κ} токи и напряжение коллектор-эмиттер U_{κ} . Результаты записать в таблицу 2.
- 4.9. Снять АЧХ каскада при наличии конденсатора в цепи эмиттера и при его отсутствии. По характеристикам определить коэффициент усиления каскада $K_{u0} = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ и граничные частоты полосы пропускания. Результаты записать в таблицу 3. Сделать вывод.

Таблица 2

Параметр	$I_{\rm K}$, MA	<i>I</i> _б , мА	$U_{\kappa 9}$, B	<i>U</i> бэ, В
Расчет				
п. 4.3				
п. 4.6				

	При наличии $C_{\mathfrak{I}}$	При отсутствии $C_{\mathfrak{I}}$
K_{u0} (расчет)		
K_{u0} (эксперимент)		
$f_{\scriptscriptstyle m H}$, Гц		
$f_{\!\scriptscriptstyle \mathrm{B}}$, к Γ ц		

Приложение.

Рис. П1. К расчету рабочего режима транзистора a – схема каскада ОЭ, δ – эквивалентная схема каскада ОЭ

Рабочий режим биполярного транзистора в схеме усилительного каскада ОЭ (рис. $\Pi 1,a$) можно определить из следующей системы уравнений для её эквивалентной схемы:

$$E_{\text{II}} = E_{\text{K}} = I_{\text{K}} R_{\text{K}} + U_{\text{K9}} + I_{9} R_{9},$$

$$E_{\text{CM}} = I_{6} R_{6} + U_{69} + I_{9} R_{9}.$$

Здесь $E_{\rm cm}$ и $R_{\rm 6}$ - эквивалентный источник питания и эквивалентное сопротивление в цепи базы, которые соответственно равны:

$$E_{\text{cm}} = E_{\text{m}} R_2 / (R_1 + R_2),$$

 $R_6 = R_1 R_2 / (R_1 + R_2).$

В систему уравнений необходимо включить уравнения, описывающие работу транзистора в активном режиме:

$$I_3 = I_K + I_6,$$

 $I_K = \beta I_6,$
 $U_{63} \approx 0.7 \text{ B}.$

Последнее равенство учитывает, что в активном режиме напряжение U_{69} существенно не меняется.