Shreyansh Pachauri

B.Tech Graduate, Indian Institute of Technology Kanpur Major: Chemical Engineering | Minor: CSE (Machine Learning Applications)

■ pachaurishreyansh100@gmail.com **८** +91-8004504304 | **in** LinkedIn | **⊘** Github

ACADEMIC QUALIFICATIONS

Year	Degree	Institute	Performance
2024	B. Tech	Indian Institute of Technology, Kanpur	7.6/10.0
2020	ISC (XII)	Dr. Virendra Swarup Education Centre, Kanpur	97.75 %
2018	ICSE (X)	Dr. Virendra Swarup Education Centre, Kanpur	95.8 %

ACHIEVEMENTS

- Received an On-Campus Placement Offer from Indxx, a FinTech Firm and a leading global index provider
- 2023 • Received A* grade in a class of more than 100 students for excellent performance in the course Introduction to Indian Society. 2021
- Secured an All India Rank 3008 and 3872 in JEE Advanced 2020 and JEE Mains 2020 among 11 Lakh candidates.
- Conferred with Inspire Scholarship granted by Government of India to Top 1% students in Class XII ISC examinations. 2020

PROFESSIONAL EXPERIENCE

Machine Learning Engineer Intern | Embifi Global Services Pvt Ltd

B2B FinTech Startup, provider of API-enabled white label solutions for financial institutions

(Jan'23 - Jun'23)

2020

Objective	- Analyse the Risk associated with Loans based on the Repayment History of the Borrower using statistical scoring
Objective	- Develop a dynamic scoring model to track the performance of a borrower and the Expected Loss on a Loan
	- Designed a Behavioral Scoring Model using ANNs to track the probability of default of existing loan customers
Approach	- Implemented Data Augmentation through SMOTE to handle Imbalanced Training Data of 30000 labelled examples
	- Developed a framework to extract the Features from the MongoDB Collections using the Customer ID as input
	- Worked on the backend deployment of the model on AWS-EC2 Server by creating a REST-API to predict the Score
Impact	- Planned and worked on the overall implementation of the Model Pipeline to analyse the borrower's performance on a loan
	- Boosted the risk prediction accuracy and speed, optimizing loan recovery decisions and minimizing the potential losses

RESEARCH EXPERIENCE

Curiosity driven Exploration by Self Supervised Learning

Mentor: Prof. Ashutosh Modi | Department of Computer Science Engineering | IIT Kanpur

(Mar'24 - Apr'24)

Ohioativa	- To implement the Intrinsic Curiosity Module based Exploration algorithm on various OpenAI Environments
Objective	- To experiment with the ICM module and try to improve the already existing Curiosity-driven exploration methods
	- Carried out a thorough literature review on papers that involve solving a DRL Problem using Curiosity-driven Exploration
Approach	- Experimented ICM with Cartpole, Mountain Car, Acrobat and Lunar Lander with DQN, A3C and PPO as base algorithms
	- Proposed a generalized Kernel-based formulation of the Curiosity driven Intrinsic Reward Signal in the ICM Module
T	- Obtained better performance in Extremely Sparse Reward environments like Mountain Car with ICM exploration
Impact	- Improved the performance of ICM by using RBF Kernel based formulation of the Curiosity driven Intrinsic Reward Signal

Critical Points Search in Multi-Dimensional Potential Energy Surfaces using Active Learning

Mentor: Prof. Nitin Kaistha | Department of Chemical Engineering | IIT Kanpur

(Jan'24 - Apr'24)

Objective	- Develop ML based algorithm to accelerate search for saddle points in Potential Energy Surfaces for atomistic simulations
	- Reducing the number of Function Evaluations while locating the Saddle Point to improve the speed of the algorithm
	- Carried out a thorough literature survey to understand various methods of Probabilistic Regression to model a surface
Approach	- Implemented Gaussian Process Regression to model a surface using given function and function-derivative values
	- Developed an algorithm to locate the Local Extremas reducing the function evaluations to $1/10^{th}$ of Gradient Descent

QoS - Driven Scheduling in 5G Radio Access Networks using Deep Reinforcement Learning

Mentor: Prof. Thirumulanathan D. | Department of Economic Sciences | IIT Kanpur

(Jun'23 - Aug'23)

Objective	- Develop an RL framework for 5G scheduling that selects best scheduling rule at each TTI to fulfil scheduling objectives
	- Carried out a thorough literature survey on papers that involve solving a multi-objective problem using Deep RL
Approach	- Investigated a multi-objective optimization problem for QoS satisfaction, which is more challenging than classic RRAC
	- Studied implementation of Dynamic Programming and AC-RL Framework to maximize the QoS satisfaction at each TTI

Simulating Non-Spherical Particles using Discrete Element Method Algorithms in C++

Mentor: Prof. Anurag Tripathi | Department of Chemical Engineering | IIT Kanpur

(Jan'23 - Apr'23)

Objective	- To simulate the motion of a Single Non-Spherical Particle inside a Closed Box using the Multi-Sphere Model
Approach	- Examined NBS, NBS-Munjiza, Hierarchical Contact Search Algorithms and other Broad Search DEM Algorithms
	- Studied the already existing DEM C++ code for simulating the motion of moving Spherical Particles in a Closed Box
	- Inspected the C++ implementation of Non-Spherical particles in open-source softwares LIGGGHTS and MUSEN
Impact	- Implemented the Multi-Sphere Model through Quaternions using OOPS for simulating the Non-Spherical Particles
	- Interpreted and obtained visualization of simulations of a moving Non-Spherical Particle using GNUPlot Graphing Tool

Research Intern | Associated with Department of Science & Technology, Govt of India

(Dec'22 - Jan'23)

Objective	- Design the algorithms for working of a Low-Cost Land Area Measuring Device via Digital Signal Processing
Approach	- Designed an Offset Sensor Optical Encoder to calculate the distance travelled by the device with error less than 10 cm
	- Explored Moving Averages and Exponential Filter methods to measure angle change accurately using Gyrosensor
	- Used Kalman Filter to remove noise from the Gyrosensor data to accurately measure the change in orientation of device
	- Studied application of Numerical Integration methods over acceleration data to calculate Horizontal Displacement
Impact	- Measured the displacement and orientation of the device accurately upto 1% via Digital Signal Processing

KEI I NO.	EC15		
Deep Reinf	Deep Reinforcement Learning CS780: Intro to DRL Instructor: Prof Ashutosh Modi CSE, IIT K (Jan'24 - Apr'24)		
Objective	- To learn and implement various State of the Art RL and DRL algorithms on various OpenAI Gym environments		
	- Implemented Exploration Strategies like Epsilon Greedy , Softmax and UCB over 2 different Bandit Environments		
	- Used Dynamic Programming to learn the Optimal State Values and Optimal Policy in a Random Maze Environment		
Approach	- Tested Monte Carlo Control, SARSA, SARSA(λ), Q-Learning, Double-Q learning, Trajectory Sampling		
	- Implemented NFQ, DQN, DDQN, D3QN-PER, VPG and REINFORCE on Mountain Car & CartPole Environment		
	- Implemented DDPG , TD3 and PPO algorithms on Pendulum, Hopper and Half Cheetah Environments on Open AI Gym		
Impact	- Analysed the results of various Deep-RL Algorithms implemented from scratch over various Open-AI Gym Environments		
НехаСАРТ	HexaCAPTCHA CS771: Intro to Machine Learning Instructor: Prof Purushottam Kar CSE, IIT K (Jun'23 - Jul'23)		
Objective	- To predict the parity of the hexadecimal numbers given on Captcha images minimizing the total Model Size		
	- Used techniques like image dilation, erosion and morphological transformations for preprocessing of captcha image		
Approach	- Implemented K-Means Clustering for segregating the digits and extracting out the last digit of the 500 x 100 image		

Fake News	Classifier ECO765: ML for Economists Instructor: Prof Thirumulanathan D ECO, IIT K (Mar'23 - Apr'23)
Objective	- Build a Fake News Classifier using Natural Language Processing on a dataset containing labelled data of articles
	- Used TensorFlow framework to implement LSTM to build a fake news classifier using various NLP algorithms
Approach	- Performed lemmatization on the dataset and created one hot representation using various functions of the NLTK library
	- Built a multi-layer DNN , added Dropout layers to reduce overfitting and cross-validated using N-Fold Cross Validation
Impact	- Implemented the GridSearchCV function to optimize the model's hyper-parameters and achieved an accuracy of 90.6%

- Trained a Convolutional Neural Network to predict the parity of the processed and extracted captcha image - Obtained a Convolutional Neural Network Model with 97.75% accuracy and a model size of 7.5 MB

$\textbf{Sparse PUF Cracker} \mid \text{CS771: Intro to Machine Learning} \mid \text{Instructor: Prof Purushottam Kar} \mid \text{CSE, IIT K} \qquad \textit{(May'23 - Jun'23)}$		
Objective	- To build a ML model to breach conditional delay unit(CDU) security built using physical unclonable functions (PUFs)	
Approach	- Developed linear models using projected gradient descent , lasso relaxation and mini-batch stochastic descent methods	
Impact	- Achieved an R^2 Score of 0.97 using Projected Gradient Descent in breaking Sparse PUF on every CDU security question	

MINOR PROJECTS

Impact

Introduction to ML in Chemical Engineering | SimuTech, Dept of CHE, IIT Kanpur

- Mentored a group of 50 students introducing them to Machine Learning and its application in Chemical Engineering.
- Introduced the Mentees to Locally Weighted Regression, Generalized Linear Models and K-Means Clustering.
- Acquainted the mentees to various Data Cleaning and Data Preprocessing Methods on a Dataset of Air Quality Index.
- Introduced the modelling of Relative Humidity based on 13 Air Quality factors using Regression, KNN and Neural Networks.
- ML-enabled DEM Framework | Course Project: CHE616 | IIT Kanpur

(Mar'24 - Apr'24)

- Performed Literature Review of various Geometrical Methods which are used to model Non Spherical Particles in DEM • Performed Literature Survey on ANN based Contact Detection and Resolution and developed a ML-enabled DEM framework
- Compared the performance of ANN-based DEM and Geometrical DEM in various Experiments of Granular Mechanics
- Recommender Systems and Unsupervised Machine Learning | Coursera Project

(Jan'22 - Feb'22)

- Implemented the Collaborative Filtering algorithm to build a Recommender System based on movie ratings.
- Applied the K-means clustering Algorithm for Image Compression and compressed the images by factor of 6.
- Implemented the **PCA algorithm** on Face Images Dataset for **Dimension Reduction** and then recovered the same.

Reactor Sizing in Chemical Reaction Engineering | Course Project: CHE331 | Dept of CHE, IIT Kanpur (Mar'23 - Apr'23)

- Developed MATLAB code to compute minimum reactor volume based on residence time and concentration data
- Applied reaction kinetics and reactor design equations for different configurations, including PFR and CSTR
- Implemented appropriate numerical techniques to handle the given input parameters and optimize the reactor sizing
- Determined a minimal volume of 0.75 m³ for the combination of PFR and CSTR by analyzing the different reactor systems

RELEVANT COURSES AND TECHNICAL SKILLS

	- Programming Languages: Python C++ C R Java Julia MATLAB Octave
\mathbf{Skills}	- Softwares: Git GitHub SQL MongoDB Simulink COMSOL LTE-Sim Aspen Plus Micro-Cap LATEX
	- Machine Learning and Data Science: Tensorflow PyTorch OpenCV NLTK Scikit-Learn PyMongo PySpark
	Intro to ML ML for Economists Data Structure and Algorithm Deep Reinforcement Learning Probability & Statistics
Courses	Fundamentals of Computing Numerical Methods Real Analysis Linear Algebra and ODE Chemical Process Control

MENTORSHIP EXPERIENCE

Deep Learning Applications in Chemical Engineering | SimuTech, Dept of CHE, IIT Kanpur

- Mentored 15 sophomores on Deep Learning and its CHE applications with emphasis on mathematical understanding
- Generated an ANN model to predict the adsorption capacity of biomass ashes using C, H, N, Si and BET as input nodes
- Generated image dataset of two classes: Laminar and Turbulent Flow via performing simulations of fluid flow in COMSOL
- Trained the **ZF-Net** Architecture to classify between the types of fluid flows achieving an accuracy of 0.94 over the test dataset

Content Writer Intern | UnchaAI, EdTech Startup

(Jun'21 - Aug'21)

- Worked as a Content Writing Intern at UnchaAI and wrote 15 detailed and well-researched blogs for JEE aspirants.
- Contacted people from various backgrounds to perform research and present various perspectives of JEE preparation.

Positions of Responsibility

Mentor, SimuTech | Chemineers Society | IIT Kanpur | Chemical Engineering Departmental Student Body (Jul'22 - Jun'23)

- Offered 2 SimuTech Projects for the academic and skill-based growth of 450+ UG & PG Chemical Engineering Students
- Initiated Winter Projects to mentor 100+ UG students over various ML algos and their applications in Chemical Engineering
- Introduced the mentees to various simulation softwares and Python Libraries such as COMSOL, PyTorch, OpenCV

EXTRACURRICULARS

- Secured 2nd Position in **TechWeek'21**, an intra-college Technical Competition as a team of 5 out of **100**+ participating teams.
- Achieved 2nd Position in an intra-school Hindi Poetry Writing Competition organized on the occasion of Hindi Diwas 2018