

INSTITUTO TECNOLÓGICO DE COMITAN

Alumnos:

• Ruedas Velasco Pedro Eduardo___19700073.

• Hernández Méndez Levi Magdiel__19700039.

• Molina Cifuentes Adriel David 19700061.

• Panti Ordoñez Sergio Ismael__19700065.

Docente: Vera Guillen José Flavio.

Materia: Métodos Numéricos.

Semestre: Cuarto **Grupo:** "A"

Actividad: Mapa Conceptual "Métodos de solución de ecuaciones".

Comitán de Domínguez Chiapas, a 11 de Abril del 2021.

$$\frac{2}{5}\alpha + 1 = \frac{1}{1} + \frac{1}{\cos^2 \alpha} = \frac{1}{2} (x_1)_{\alpha - \beta} = \frac{\sin \alpha \cos \beta}{\sin \alpha - \beta} = \frac{\sin \alpha \cos \beta}{\sin \alpha} = \frac{1}{2} \cos \alpha + 1 = \frac{1}{2} \cos \alpha + 1$$

Solución de Ecuaciones	Bisección	Newton-Raphson	Secante	Punto Falso
no lineales				
Tipo	Cerrado	Cerrado	Abierto	Cerrado
Requisitos para buen funcionamiento	La función debe ser continua, lineal, que cuente con mínimo una raíz y no se indetermine en ningún punto. El intervalo inicial [a,b] debe cumplir con la propiedad f(a) * f(b) < 0	La función debe ser al menos dos veces derivable, la segunda derivada debe ser continua con el mismo signo y la primera derivada diferente a cero.	Es necesario conocer los valores Xi y Xi-1 para poder sacar el valor de Xi+1. Es necesario dar dos valores iniciales que no se encuentren afectados por asíntotas, puntos de inflexión, mínimos o máximos locales y pendientes que se aproximan a cero.	Se calcula la intersección con el eje x de la recta trazada anteriormente y a este punto se le denotará como "x". Para hallar la ecuación general que nos dará la "x" en cada recta trazada, primero hallamos la pendiente de la recta. Y luego hallamos la pendiente de la recta que quedaría desde el intercepto hasta el extremo del intervalo en donde la función cambie de signo.
Riesgos	Comportamiento inestable, lenta convergencia y alto riesgo de divergencia	No tiene un criterio general de convergencia. Lenta convergencia en algunos casos debido a la naturaleza de la función. Depende de la primera derivada de la función en el punto.	No se asegura si la primera aproximación a la raíz no es lo suficientemente cercana a ella, ni cuando es raíz múltiple	Converge lentamente a la solución, debido al efectuar las interacciones uno de los extremos de intervalos no se modifica, sigue siendo un método de lenta convergencia. A pesar de que generalmente regla falsa funciona mejor que el método de bisección, hay casos en los que regla falsa arroja más errores que bisección y es mejor no utilizarla. No hay una regla para saber cuándo es mejor.

Convergencia	Lenta pero posible si las funciones respetan el criterio de continuidad, evitan la indeterminación y se siga la condición de f(a) x f(b) < 0 en los intervalos.	Lenta debido a la naturaleza de la función. Cuando un punto de inflexión f"(x) = 0, ocurre en la vecindad de una raíz, el método oscila alrededor de un mínimo o máximo local o se encuentran pendientes cercanas a cero.	Convergencia superlineal inferior a la del método de Newton-Raphson.	El método construye una sucesión de intervalos [an, bn] cada uno de los cuales siempre contienen un cero y puede demostrarse que la sucesión {Cn} tiende a un cero de la función. Aunque la amplitud del intervalo se hace cada vez más pequeña, en este método puede ocurrir que no tienda a cero. Si la curva es convexa cerca de la raíz r entonces uno de los extremos se hace estacionario y el otro tiende a la solución. Por este motivo el criterio de parada b-a < ε , que podía ser adecuado para el método de bisección, no lo para esté. Los criterios de parada que se utilizan son el valor de f(cn) y la proximidad entre las dos últimas aproximaciones.
Ventajas y desventajas	Ventaja: Robusto y simple. Desventaja: Convergencia lenta y comportamiento inestable.	Ventaja: Eficiente en ecuaciones no lineales, converge rápidamente en las condiciones apropiadas y proporciona una buena precisión. Desventaja: No existe un criterio general de convergencia. Lenta	Ventaja: Evita la complejidad de las derivadas, es independiente de los signos de la función. Desventaja: Menor velocidad que otros métodos. No se asegura la primera aproximación a la raíz.	Ventajas: Siempre convergerá y es estable. Es fácil de implementar, es útil cuando no se sabe nada de la función, aparte de calcular el signo de las imágenes. Desventajas: Aunque es más rápido que el método de bisección, sigue siendo un método de lenta convergencia.

		convergencia dependiendo de la naturaleza de la función. Requiere conocer la primera derivada.		A pesar de que generalmente regla falsa funciona mejor que el método de bisección, hay casos en los que regla falsa arroja más errores que bisección y es mejor no utilizarla. No hay una regla para saber cuándo es mejor.
Tolerancia al error	Los errores disminuyen entre cada iteración, pero el error relativo porcentual verdadero es el más alto de los demás $E_u^0 = x_a^0 - x_l^0 = \Delta x^0$ $E_a^a = \frac{\Delta x^0}{2^n}$	cuadrado del error anterior	$\left x_{i+1} - x_i\right \le \varepsilon$	$x_m = a - \frac{f(a)(b-a)}{f(b) - f(a)}$
Tipo de raíces que encuentra	Raíces reales	Raíces reales	Raíces reales	Raíces reales.
Cuántas raíces encuentra el método	1	trate del método	,	1