```
1/9/1
DIALOG(R) File 351: Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.
011896982
             **Image available**
WPI Acc No: 1998-313892/199828
XRPX Acc No: N98-246060
Vehicle seat occupancy detector - comprises electrically connected
flexible films placed below seat cushion level
Patent Assignee: AISIN SEIKI KK (AISE )
Inventor: FUJIE N; OKA T; OKADA S; TAKAYANAGI H; TANAKA K
Number of Countries: 002 Number of Patents: 003
Patent Family:
                                                             Week
                             Applicat No
                                            Kind
                                                    Date
Patent No
              Kind
                     Date
               A1 19980604 DE 1052976
                                                  19971128
                                                            199828 B
DE 19752976
                                             A
                                                            199842
                   19980811 JP 9748095
                                             Α
                                                 19970303
JP 10211836
               C2 20000531 DE 1052976
                                                  19971128
                                                            200031
DE 19752976
                                             Α
Priority Applications (No Type Date): JP 9748095 A 19970303; JP
96319800 A
  19961129
Patent Details:
                                     Filing Notes
Patent No Kind Lan Pq
                         Main IPC
DE 19752976
              A1
                    10 G01L-005/00
                     5 B60N-002/24
JP 10211836
                       G01L-005/00
DE 19752976
              C2
Abstract (Basic): DE 19752976 A
        A detector for determining whether or not a seat is occupied,
as
    for example the driver's seat of a motor vehicle, consists of a
    pressure receiving switch (PSS) embedded in the seat cushion (C1).
It
    is formed from two flexible films (1, 3) with spacers (2) between
and
    with electrical conductors (1a, 3a), mounted on a separate cushion
    section (Cla) with a surface below and roughly parallel to the seat
        When the physical weight of a sitter is applied to the seat,
the
    flexible films thus make contact with one another and spring apart
when
    the sitter leaves. The cushions (C1, Cla) are made of polyurethane
foam
    and the films of the pressure switch of polyethylene naphthalate or
    polyethylene terephthalate. The detector does not interfere with
the
    sitter's comfort and is both reliable and durable.
        ADVANTAGE - Pressure detector for seat is comfortable for seat
    user, reliable and durable.
        Dwg.1/4
Title Terms: VEHICLE; SEAT; OCCUPY; DETECT; COMPRISE; ELECTRIC;
 CONNECT;
   FLEXIBLE; FILM; PLACE; BELOW; SEAT; CUSHION; LEVEL
Derwent Class: Q14; Q17; S02; V03; X22
 International Patent Class (Main): B60N-002/24; G01L-005/00
 International Patent Class (Additional): B60R-021/32; G01L-009/00;
```

H01H-035/00; H01H-035/24
File Segment: EPI; EngPI
Manual Codes (EPI/S-X): S02-F03; S02-F04B; V03-C06D; X22-J03; X22-N

52

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND **MARKENAMT**

Patentschrift ⁽¹⁾ DE 197 52 976 C 2

(7) Aktenzeichen:

197 52 976.3-52

2 Anmeldetag:

28. 11. 1997

Offenlegungstag:

4. 6. 1998

Veröffentlichungstag der Patenterteilung: 31. 5. 2000

(f) Int. Cl.⁷: G 01 L 5/00

G 01 L 9/00 H 01 H 35/00

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

30 Unionspriorität:

P 8-319800 P 9-48095

JP 29. 11. 1996 03. 03. 1997 JP

(73) Patentinhaber:

Aisin Seiki K.K., Kariya, Aichi, JP

(74) Vertreter:

Tiedtke, Bühling, Kinne & Partner, 80336 München

② Erfinder:

Oka, Toshimitsu, Okazaki, Aichi, JP; Fujie, Naofumi, Nagoya, Aichi, JP; Okada, Shoji, Anjou, Aichi, JP; Tanaka, Kazuya, Nagoya, Aichi, JP; Takayanagi, Hitoshi, Chiryu, Aichi, JP

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 44 06 897 C1 DE 42 37 072 C1 DE-OS 21 25 198 US 50 10 774 JP 0 8-25 35 120 02-49 029 JP

(54) Sitzerfassungsvorrichtung

Sitzerfassungsvorrichtung im Polsterkörper (C1) eines Sitzpolsters mit einer unter der Sitzoberfläche angeordneten unteren Oberfläche und mit einer darin ausgebildeten Aussparung (C1a), die sich in einer der Sitzoberfläche gegenüberliegenden Richtung öffnet,

mit einem flexiblen Druckschalter (PSS), der innerhalb der Aussparung (C1a) derart angeordnet ist, daß dessen obere Oberfläche in Kontakt mit der angrenzenden Oberfläche der Aussparung (C1a) angeordnet ist, und der einen flexiblen Abdeckfilm (1) und einen flexiblen Trägerfilm (3) aufweist, zwischen denen elektrisch leitende Schichten (1a, 3a) angeordnet sind, die sich im Ansprechen auf das Vorhandensein oder Fehlen einer Biegung der Filme (1, 3) zum Kontakt miteinander bewegen oder voneinander entfernen, und

mit einem in der Aussparung befindlichen, als Polster (C2) ausgebildeten Abschluß, der mit der unteren Oberfläche des druckempfindlichen Schalters (PSS) in Kontakt steht und der die Aussparung (C1a) elastisch verschließt.

Die Erfindung betrifft eine Sitzerfassungsvorrichtung (Vorrichtung zur Erfassung eines Sitzens), die einen druckempfindlichen Schalter einer auf ein Niederdrücken ansprechenden Bauart verwendet, der das Sitzen eines Insassen auf
einem Sitz erfaßt, und insbesondere, was jedoch nicht einschränkend sein soll, auf eine Sitzerfassungsvorrichtung, die
das Vorhandensein oder Fehlen eines Insassen auf einem
eingebauten Sitz erfaßt.

Ein gemäß dem Stand der Technik bekannter Sensor, der erfaßt, ob ein Insasse auf einem Fahrzeugsitz sitzt, weist einen an dem Sitz angebrachten Magneten und einen an dem Fahrzeugboden angebrachten Magneten und einen an dem Fahrzeugboden angebrachten Magneten erzeugten Maeiner Veränderung des durch den Magneten erzeugten Magnetfeldes auf, der sich mit einer Auf- und Abwärtsbewegung des Sitzes vertikal auf- und abwärts bewegt, wobei auf diese Weise eine Abwärtsbewegung des Sitzes erfaßt wird. Die japanische Patentschrift Nr. 8(1996)-2 535 120 offenbart einen Sitzsensor mit einem piezoelektrischen Film, der 20 durch eine zugehörige elektrische Schaltung angeregt wird, und einem Bandpaßfilter, der eine Schwingung aus dem piezoelektrischen Film erfaßt. Beim Setzen wird ein Kontaktteil mit dem piezoelektrischen Film in Kontakt gebracht, so daß die darin auftretende Schwingung gedämpft wird.

Ein für andere Zwecke als die Erfassung des Sitzens auf einem Sitz verwendeter druckempfindlicher Schalter ist in der japanischen Patentschrift Nr. 2(1990)-49029 offenbart, gemäß der ein druckempfindlicher Schalter bei einer Tastatur eines Musikinstruments zur Erzeugung von Tönen einen 30 einwirkenden Druck im Ansprechen auf eine Änderung des Widerstandswertes zwischen einem Paar Leiterplatten erfaßt, die gegenüberliegend mit einem dazwischengelegten Halbleiterkörper angeordnet sind.

Mit der zuerst beschriebenen Anordnung zur Erfassung 35 des Sitzens durch eine Kombination aus dem Magneten und dem Magnetsensor ist ein Sitzaufbau erforderlich, der eine zuverlässige Magenetbewegung beim Setzen ermöglicht, wobei das Vorsehen eines derartigen Sitzaufbaus kostspielig ist. Bei dem in der Patentschrist Nr. 8(1996)-2 535 120 offenbarten Sitzsensor ist der piezoelektrische Film kostspielig, wobei es ebenfalls notwendig ist, eine Regelung, die die Schwingung des piezoelektrischen Films aufrecht erhält, und ein Filter vorzusehen, das zur Erfassung eines Schwingungssignals verwendet wird, was zu einer komplizierten 45 Anordnung und Erhöhung der Kosten führt.

Der in der japanischen Patentschrift Nr. 2(1990)-49029 offenbarte druckempfindliche Schalter ist zur Erfassung eines auf die Tastatur einwirkenden Drucks, wenn ein Spieler diese mit dem Finger drückt, ausgelegt und wird, wenn er 50 zur Erfassung eines durch das physikalische Gewicht eines Menschen erzeugten Drucks verwendet wird, durch eine Schlagfestigkeit (impact resistance) beeinträchtigt. Insbesondere ist der Schalter selbst kostspielig, da für die Leiterplatten Silber oder Kupfer verwendet wird. Mit dem druck- 55 empfindlichen Sensor, der im Ansprechen auf eine Veränderung des Widerstands zwischen dem Paar der einander gegenüberliegend angeordneten Leiterplatten mit dem dazwischengelegten Halbleiterkörper einen einwirkenden Druck erfaßt, spricht der Sensor auf eine punktförmige Einwirkung einer niederdrückenden Kraft an, die beim Plazieren eines Objekts auftreten kann. Wenn dieser als Sitzsensor verwendet wird, stellt dementsprechend eine fehlerhafte Erfassung aufgrund eines Ansprechens auf einen Druck, der durch etwas anderes als das physikalische Gewicht eines Insassen 65 verursacht wird, ein Problem dar.

Wenn ein Mikroschalter als druckempfindlicher Schalter verwendet wird, ist es erforderlich, diesen durch Einbringen in ein sehr starres Gehäuse wie ein Metall- oder Plastikgehäuse zu schützen, damit verhindert wird, daß die Last eines Insassen direkt auf den Mikroschalter selbst einwirkt. Jedoch kann das Vorhandensein eines derartigen Gehäuses ein ungewohntes Gefühl vermitteln, was den Sitzkomfort verschlechtert.

Die DE 44 06 897 C1 offenbart eine Vorrichtung zur Sitzbelegungserkennung für ein Kraftfahrzeug, bei der Foliendrucksensoren verwendet werden, die aus einer mäanderförmig angeordneten Leitung aufgebaut sind und an verschiedenen Stellen im Sitzpolster angeordnet sind.

Die US 5 010 774 beschreibt einen Verteilungs-Drucksensor, der eine Vielzahl von paarweise an Druckerfassungspunkten an einer druckempfindlichen leitenden Folie vorgesehenen Elektroden aufweist. Diese Folie ändert den elektrischen Widerstand in Abhängigkeit von darauf einwirkenden Kompressionskräften.

Die DE 42 37 072 C1 offenbart einen resistiven Foliendrucksensor zur Sitzplatzbelegungserkennung für einen
20 Fahrzeugsitz. Der Foliendrucksensor besteht aus zwei zusammenlaminierten Polymerlagen, wobei die eine Polymerlage mit einem Halbleitermaterial und die andere mit zwei
Leiterbahnen beschichtet ist. Die Leiterbahnen sind durchgehend und verzweigungsfrei ausgeführt, wobei durch eine
25 mäandrierende Leitungsführung der Leiterbahnen eine
kammartige Struktur erreicht wird.

Die DE-OS 21 25 198 offenbart eine Schalteinrichtung zur Anzeige der Belastung eines Sitzkissens oder des Sitzpolsters eines Kraftfahrzeugsitzes, bei der in das Sitzkissen bzw. Sitzpolster ein Kontaktband aus zwei an mehreren Stellen in kleinem Abstand zueinander gehaltenen Kontaktstreifen eingebettet ist. Die beiden Kontaktstreifen bestehen aus einem flexiblen Material. Bei Belastung wird ein Kontaktstreifen soweit ausgelenkt, daß er mit dem anderen in Berührung kommt, was zur Auslösung eines elektrischen Signals führt.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Sitzerfassungsvorrichtung zu schaffen, die mit hoher Zuverlässigkeit erfaßt, ob sich auf einem Sitz eine Insasse befindet ist oder nicht, die sehr haltbar ist und die außerdem den durch den Sitz gebotenen Komfort nicht verschlechtert.

Diese Aufgabe wird durch die Sitzerfassungsvorrichtung gemäß Patentanspruch 1 gelöst.

Bei der beschriebenen Vorrichtung gewährleistet der druckempfindliche Schalter einen komfortable Sitzzustand, ohne das ein ungewohntes Gefühl vermittelt oder Aufmerksamkeit darauf gelenkt wird, daß ein festes Objekt innerhalb des Sitzes des Insassen gefühlt wird, da der druckempfindliche Schalter in der Form einer flexiblen Folie vorgesehen ist und zwischen dem Sitzpolster und dem federnden Abschluß gehalten wird.

Im Ansprechen auf einen durch das physikalische Gewicht des Insassen einwirkenden Druck wird der druckempfindliche Schalter eingeschaltet. Da das Sitzpolster eine auf einen einzigen Punkt einwirkende Last verteilt, so daß ein Einwirken einer erhöhten Last auf den druckempfindlichen Schalter in einer örtlich konzentrierten Weise bzw. punktförmigen Weise verhindert wird, kann eine lokale Verformung, die eine elastische Grenze überschreitet, bei dem druckempfindliche Schalter nicht auftreten. Auf diese Weise zeigt der druckempfindliche Schalter eine hohe Haltbarkeit.

Wenn ein Objekt auf das Sitzpolster plaziert wird, wird die Last über das Sitzpolster verteilt. Dementsprechend spricht, falls die Last des Objekts im wesentlichen geringer als das physikalische Gewicht eines Menschen ist, der druckempfindliche Schalter nicht darauf an, weshalb ein fehlerhaftes Ansprechen auf ein Objekt mit einer derart im

2

4

Vergleich zu dem physikalischen Gewicht eines Menschen verringerten Last verhindert wird und somit die Zuverlässigkeit erhöht wird, mit der das Vorhandensein eines Insassen auf dem Sitz erfaßt wird. Anders ausgedrückt, kann bei Anwendung eines kostengünstigen und einfachen Aufbaus erreicht werden, daß kein ungewohntes Gefühl dem auf dem Sitz sitzenden Insassen vermittelt wird, wird die Haltbarkeit erhöht, und wird eine hohe Zuverlässigkeit bei der Erfassung des Vorhandenseins eines Insassen auf dem Sitz erreicht.

Da bei dem erfindungsgemäß verwendeten Aufbau der druckempfindliche Schalter zwischen zwei Abschnitten angeordnet sind, die vertikal in dem Sitzpolster aufgetrennt sind, ist der Schalter bei verschiedenen Sitzkonfigurationen anwendbar, während der druckempfindliche Schalter einer 15 gemeinsamen Auslegung angewandt wird, wobei dementsprechend die erfindungsgemäße Sitzerfassungsvorrichtung universell anwendbar ist.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

Ein druckempfindlicher Schalter gemäß einem bevorzugten Ausführungsbeispiel der Erfindung weist einen ersten Film aus einem isolierenden Material mit einer leitenden Schicht an dessen Rückseite, einen zweiten Film mit einer leitenden Schicht an dessen Rückseite, der mit dem ersten 25 Film derart verbunden ist, daß eine Lücke (Luftlücke) zwischen dessen leitenden Schicht und der leitenden Schicht an dem ersten Film gelassen ist, sowie einen ersten und einen zweiten Leitungsdraht auf, die jeweils mit den leitenden Schichten an dem ersten und dem zweiten Film verbunden 30 sind.

Mit dieser Anordnung sind, wenn keine beabsichtigte Kraft einwirkt, die einander gegenüberliegend angeordneten Leiterschichten in dem Bereich der Luftlücke aufgrund der Elastizität der jeweiligen Filme voneinander beabstandet. 35 Auf diese Weise ist der druckempfindliche Schalter geöffnet bzw. ausgeschaltet. Jedoch werden, wenn eine niederdrükkende Kraft einwirkt, die stark genug ist, um ein Biegen des ersten Films und des zweiten Films zu verursachen, deren leitende Schichten in Kontakt miteinander gebracht. Auf diese Weise wird der Schalter geschlossen bzw. eingeschaltet. Der erste Film und der zweite Film können leicht unter Verwendung der Technik zur Herstellung flexibler gedruckter Schaltungen hergestellt werden, die gemäß dem Stand der Technik bekannt ist. Dementsprechend kann im Zusammenhang mit dem Merkmal, daß eine verringerte Anzahl von Elementen verwendet wird, die Sitzerfassungsvorrichtung gemäß dem Ausführungsbeispiel bei verringerten Kosten hergestellt werden.

Gemäß einem bevorzugten Aussührungsbeispiel sind das 50 Sitzpolster und der Abschluß aus Polyurethanschaum geformt. Es ist bekannt, daß Polyurethanschaum gemäß dem Stand der Technik häufig als Polsterteil verwendet wird und weist eine hohe Elastizität und eine hohe Hitzeisolationsfähigkeit auf, was dazu dient, den darin angeordneten druckempfindliche Schalter vor der Aufprallbelastung und hoher Hitze schützen, die aus einem direkten Einstrahlen von Sonnenstrahlen folgen kann, wobei somit die Haltbarkeit und die Zuverlässigkeit verbessert werden.

Die Erfindung wird nachstehend anhand eines Ausfüh- 60 rungsbeispiels unter Bezugnahme auf die beiliegende Zeichnung näher beschrieben. Es zeigen:

Fig. 1 eine Seitenaufriß eines eingebauten Fahrersitzes, der gemäß einem Ausführungsbeispiel ausgestattet ist, wobei ein Sitzpolster im Querschnitt dargestellt ist,

Fig. 2 eine vergrößerte perspektivische Ansicht des Erscheinungsbildes eines in Fig. 1 gezeigten druckempfindlichen Schalters PSS,

Fig. 3 eine auseinandergezogene perspektivische Ansicht eines Abdeckfilms 1, eines Abstandhalters 2 und eines Trägerfilms 3 des in Fig. 2 gezeigten druckempfindlichen Schalters PSS,

Fig. 4 einen entlang der in Fig. 2 gezeigten Linie 4A-4A genommenen vergrößerten Querschnitt, und

. Fig. 5 ein Seitenaufriß eines wie bei einem Fahrzeug angebrachten, in Fig. 1 gezeigten Sitzes SITZ.

Fig. 1 zeigt eine Sitzerfassungsvorrichtung (Vorrichtung zur Erfassung eines Sitzens) gemäß einem Ausführungsbeispiel. Ein in Fig. 1 gezeigter Sitz SITZ kann beispielsweise als eingebauter Fahrersitz SITZ wie in Fig. 5 dargestellt verwendet werden. Das gesamte Sitzpolster (C1 + PSS + C2) definiert eine Sitzerfassungsvorrichtung.

Das Sitzpolster weist im allgemeinen einen Polsterkörper C1, der aus Polyurethanschaum geformt ist und eine im wesentlichen rechteckigen Vertiefung oder Aussparung Cla an dessen Rückseite hat, einen rechteckigen folienartigen flexiblen druckempfindlichen Schalter PSS, der in der Aussparung Cla im abgeschlossenen Kontakt mit der Unterseite der Aussparung eingefügt ist, und ein unteres Polster C2 auf, das aus Polyurethanschaum geformt ist und in abgeschlossenen Kontakt mit dem druckempfindlichen Schalter (Druckschalter) PSS zum Schließen der Aussparung C1a angeordnet ist. Das Sitzpolster wird durch eine gekrümmte Einstelleinrichtung 6 getragen, die aus einem Metallblech durch einen Preßvorgang geformt ist. Gemäß diesem Ausführungsbeispiel ist das untere Polster C2 als ein Quadrat mit einer Abmessung von 250 mm x 250 mm ausgelegt und weist eine Dicke von 50 mm auf. Jedoch kann die Dicke bis zu einer Größenordnung von 100 mm erhöht werden.

Die untere Oberfläche der Aussparung C1a, gegen die die obere Oberfläche des druckempfindliche Schalter PSS anliegt, und die untere Oberfläche des unteren Polsters C2 liegen im wesentlichen in parallelen Ebenen, wobei die obere und die untere Oberfläche des druckempfindlichen Schalters PSS mit diese Ebenen in einem geschlossenen Kontakt steht.

Fig. 2 zeigt das Erscheinungsbild des druckempfindlichen Schalters PSS. Der druckempfindliche Schalter PSS weist einen Abdeckfilm 1 (ersten Film), einen isolierenden Abstandhalter 2 und einen Trägerfilm 3 (zweiten Film) auf, die sandwichartig geschichtet sind und als eine Einheit miteinander verbunden sind. Dieses Bauelemente sind in auseinandergezogener Form in Fig. 3 dargestellt. Dementsprechend ist auf sowohl Fig. 2 als auch Fig. 3 verwiesen.

Der druckempfindliche Schalter PSS weist einen aus Polyethylennaphtalat ausgebildeten Trägerfilm 3 (der gemäß diesem Ausführungsbeispiel eine Dicke von 100 µm hat), einen parallel zu und gegenüberliegend der Rückseite des Trägerfilms 3 angeordneten Abdeckfilm 1 (der gemäß diesem Ausführungsbeispiel eine Dicke von 100 µm hat) sowie einen zwischen dem Trägerfilm 3 und dem Abdeckfilm 1 sandwichartig gehaltenen isolierenden Abstandhalter 2 auf (der aus Polyethylenterephthalat ausgebildet ist und gemäß diesem Ausführungsbeispiel eine Dicke von 125 µm hat). Wie in Fig. 5 gezeigt, wird der druckempfindliche Schalter PSS als Sitzerfassungsschalter verwendet, der intern bei einem eingebauten Sitz benachbart zu der Oberflächenschicht eines Sitzkissens darauf untergebracht ist.

Zu einer Ecke hin ist der Trägerfilm 3 mit einer rechteckigen Aussparung ausgebildet, die als Anschlußfenster 3b dient. An dessen Rückseite oder oberen Oberfläche ist der Trägerfilm 3 mit einer leitenden Schicht 3a versehen, wobei diese gemäß diesem Ausführungsbeispiel eine Kupferfolie ist und gemäß einer Technik für gedruckte Schaltungen derart ausgebildet ist, daß das Anschlußfenster 3b und die Randkanten des Trägerfilms 3 ausgelassen sind. Es ist deut-

lich, daß die leitende Schicht 3a um einen gegebenen Abstand von den Rändern des Trägerfilms 3 derart nach innen angeordnet ist, daß diese davon beabstandet ist. Jedoch springt ein dem Anschlußfenster 3b benachbart angeordneter Abschnitt 3c zu dem Rand vor, wobei dieser nachstehend als "Streifen" (tab) 3c bezeichnet ist.

Der Abdeckfilm 1 ist ebenfalls an einer mit dem Streifen 3c der leitenden Schicht 3a an dem Trägerfilm 3 ausgerichteten Position mit einer rechteckigen Aussparung ausgebildet, die als Anschlußfenster 1b dient. An dessen Rückseite 10 oder unteren Oberstäche ist der Abdeckfilm 1 gleichmäßig mit einer leitenden Schicht 1a versehen, die gemäß diesem Ausführungsbeispiel gemäß der Technik für gedruckte Schaltungen ausgebildet ist, wobei das Anschlußfenster 1b und die Randkanten des Abdeckfilms 1 ausgelassen sind. 15 Die leitenden Schicht 1a ist von den Rändern des Abdeckfilms 1 nach innen um einen Abstand davon angeordnet, schließt jedoch einen Streifen 1c an einer Position mit ein, die mit dem bei dem Trägerfilm 3 ausgebildeten Anschlußfenster 3b fluchtet (ausgerichtet ist). Der Bereich und die 20 Position der an dem Abdeckfilm 1 ausgebildeten leitenden Schicht 1a mit Ausnahme des Streifens 1c überlappen den Bereich und die Position der leitenden Schicht 3a an dem Trägerfilm 3 mit der Ausnahme des Streifens 3c, wenn der Trägerfilm 3, der Abstandhalter 2 und der Abdeckfilm 1 wie 25 in Fig. 2 gezeigt als eine Einheit geschichtet sind. Jedoch sei bemerkt, daß die Streifen 1c und 3s nicht fluchten, sondern relativ zueinander versetzt sind. Der Streifen 3c des Trägerfilms 3 ist mit dem Anschlußfenster 1b bei dem Abdeckfilm 1 ausgerichtet, während der Streifen 1c des Abdeckfilms 1 30 mit dem Anschlußfenster 3b des Trägerfilms 3 fluchtet.

Der Abstandhalter 2 ist mit einem Anschlußfenster 2c, das das Anschlußfenster 3b bei dem Trägerfilm 3 überlappt, und einem anderen Anschlußfenster 2b ausgebildet, das das Anschlußfenster 1b bei dem Abdeckfilm 1 überlappt, wenn 35 der Trägerfilm 3 und der Abdeckfilm 1 mit dem isolierenden Abstandhalter 2 als eine Einheit verbunden sind. In einem Bereich des isolierenden Abstandhalters 2, der gegenüberliegend einem die Streifen 3c und 1c ausschließenden Gebiet der leitenden Schichten 3a und 1a an dem Trägerfilm 3 40 und an dem Abdeckfilm 1 angeordnet ist, ist der isolierende Abstandhalter 2 mit einer regelmäßigen Anordnung von zwanzig Öffnungen ausgebildet, die in vier Reihen mit jeweils fünf Öffnungen angeordnet sind, die jeweils durch den Abstandhalter 2 in Richtung der Dicke verlaufen. Gemäß 45 diesem Ausführungsbeispiel ist jede Öffnung kreisförmig und weist einen Durchmesser von 10 mm auf. Der Abstandhalter 2 hat eine Dicke von 125 µm, wobei dementsprechend im Vergleich zu der Dicke des Abstandhalters der Durchmesser von 10 mm jeder Öffnung 2a relativ groß ist. Das 50 Verhältnis der Durchmesser der Offnung der Abstandhalterdicke ist derart gewählt, daß, wenn eine niederdrückende Kraft entweder auf den Abdeckfilm 1 oder auf den Trägerfilm 3 derart einwirkt, daß er zu dem anderen gedrängt wird, der Film gebogen wird, so daß die leitenden Schichten 1a 55 und 3a bei einer Kraft miteinander in Kontakt gebracht werden, die größer als ein gegebener Wert ist, wohingegen die beide Filme aufgrund der Elastizität der Filme bei einer Kraft, die geringer als der gegebene Wert ist, getrennt gehalten werden, damit die leitenden Schichten 1a und 3a vonein- 60 ander beabstandet gehalten werden.

Der Trägersilm 3, der Abstandhalter 2 und der Abdeckfilm 1 sind in der genannten Reihenfolge übereinander gelegt (Fig. 3), damit sie als eine Einheit verbunden sind. Dabei liegt der Streifen 3c der leitenden Schicht an dem Trägersilm 3 durch das Anschlußfenster 2b in dem Abstandhalter 2 und durch das in dem Abdeckfilm 1 ausgebildete Anschlußfenster 1b frei. In ähnlicher Weise liegt der Streifen 1c

der leitenden Schicht des Abdeckfilms 1 durch das Anschlußfenster 2c in dem Abstandhalter 2 und durch das Anschlußfenster 3b in dem Trägerfilm 3 frei. Ein Kernleiter eines Leitungsdrahtes 4b mit einer Isolierschicht, die in einem elektrischen Kabel enthalten ist, ist an den freiliegenden Streifen 1c durch die Anschlußfenster 3b und 2c gelötet. In ähnlicher Weise ist ein Kernleiter eines eine Isolierschicht aufweisenden Leitungsdrahtes 4a an den freiliegenden Streifen 3c durch die Anschlußfenster 1b und 2b gelötet. Eine isolierende Schicht 5b ist über und um die Anschlußfenster 3b und 2c angebracht, wobei über und um die Anschlußfenster 1b und 2b eine isolierende Schicht 5a angebracht ist. Dies vervollständigt den wie in Fig. 2 gezeigten druckempfindliche Schalter PSS.

Fig. 4 zeigt einen Querschnitt in vergrößerter Ansicht, der entlang der in Fig. 2 gezeigten Linie 4A-4A genommen ist. Wenn der druckempfindliche Schalter PSS sandwichartig zwischen der oberen Oberfläche des unteren Polsters C2 des Sitzes und der Deckenoberfläche (oberen Unterfläche) der in dem Polsterkörper C1 ausgebildeten quadratischen Vertiefung sandwichartig und unverrückbar gehalten wird, wie in Fig. 1 und Fig. 5 gezeigt, wirkt, falls kein Insasse auf dem Sitz sitzt, im wesentlichen keine niederdrückende Kraft auf den innerhalb des Polsterkörpers gesicherten druckempfindlichen Schalter PSS, weshalb vermieden wird, daß ein Kontakt zwischen den leitenden Schichten 3a und 1a und dem Gebiet der Öffnung 2a auftritt. Dementsprechend ist die elektrische Verbindung zwischen den Leitungsdrähten unterbrochen bzw. der Schalter ausgeschaltet. Wenn ein Insasse sich auf den Sitz setzt, wird der Polsterkörper C1 unter dem Einfluß des Gewichts des Insassen (das eine niederdrückende Kraft darstellt) verformt, wobei die Verformung verursacht, daß der Abdeckfilm 1 des druckempfindlichen Schalters PSS sich biegt und in die in dem Abstandhalter 2 ausgebildeten Öffnung 2a hineindrückt, woraufhin die leitende Schicht 3a an der unteren Oberfläche des Abdeckfilms 1 sich zur Herstellung eines Kontakts mit der leitenden Schicht 3a an der oberen Oberstäche des Trägersilms 3 bewegt. Dies vervollständigt eine elektrische Verbindung zwischen den Leitungsdrähten 4a und 4b bzw. schaltet den Schalter ein.

Wenn anstelle eines Insassen ein Objekt auf den Sitz SITZ plaziert wird, wirkt der Druck auf den Polsterkörper C1 in einem Gebiet ein, das auf die durch das Objekt belegte Fläche begrenzt ist. Ein derartiger konzentrierter Druck wird über den Polsterkörper C1 verteilt, mit der Folge, daß der auf den Abdeckfilm 1 einwirkende Druck des druckempfindlichen Schalters PSS sich auf einen verringerten Pegel befindet. Da ein Objekt, das zeitweilig auf den Sitz plaziert wird, hinsichtlich des Gewichts leichter als ein Mensch ist, kann die auf den druckempfindlichen Schalter PSS einwirkende Kraft keinen voreingestellten Wert oder einen zur Erfassung eines Sitzens eines Insassen ausgewählten Schwellwert erreichen, wobei der druckempfindliche Schalter PSS ausgeschaltet verbleibt. Somit ist es relativ unwahrscheinlich, daß das Plazieren von Gepäck fehlerhaft als ein Sitzen erfaßt wird. Die Zuverlässigkeit der Erfassung eines Sitzens ist hoch, auch wenn ein kostengünstiger und einfacher Aufbau verwendet wird.

Da der druckempfindliche Schalter PSS flexibel ist, erfährt er zusammen mit dem unteren Polster C2 eine elastische Verformung in einer Weise, die der Verformung des elastischen Körpers (Polsters) C1 entspricht, wobei, da der Schalter PSS durch das untere Polster C2 von unten getragen wird, ein Insasse kein ungewohntes Gefühl haben kann, das er erfahren würde, wenn ein festes Material innerhalb des Polsters angeordnet wäre.

Gemäß dem beschriebenen Ausführungsbeispiel kann ei-

15

35

ner oder beide der Filme 1 und 3 aus Polyethylenterephtalat mit einer Dicke von bis zu 100 µm ausgebildet sein.

Außerdem wurden der Abdeckfilm 1, der Abstandhalter 2 und der Trägerfilm 3 derart beschrieben, daß sie eine im wesentlichen gleiche rechteckige Form aufweisen. Jedoch kön- 5 nen die Längen der Streifen 1c und 3c erhöht sein sowie die Längen der Filme 1, 3 und des Abstandhalters 2 in dem Gebiet dieser Streifen derart erhöht sein, daß der Verbindungsbereich mit den Leitungsdrähten von dem rechteckigen Abschnitt hervorspringt, wobei somit der Verbindungsbereich 10 aus dem rechteckigen Abschnitt versetzt ist. Zusätzlich kann, obwohl der druckempfindliche Schalter PSS mit einer rechteckigen Struktur gezeigt ist, dieser kreisförmig, elliptisch, bandförmig, spiralförmig oder in einer anderen Struktur sein.

Vorstehend ist eine Sitzerfassungsvorrichtung offenbart, die einen folienförmigen druckempfindlichen Schalter PSS aufweist, der innerhalb eines Sitzpolsters eingebettet ist. Ein Sitzpolster C1 ist mit einer Aussparung C1a ausgebildet, die eine unterhalb einer Sitzoberfläche angeordnete Decken- 20 oberfläche hat und sich in eine der Sitzoberfläche gegenüberliegenden Richtung öffnet, wobei in der Aussparung der druckempfindliche Schalter PSS enthalten ist. Der druckempfindliche Schalter PSS weist eine flexible Folie mit einem Paar oberer und unterer Filme 1 und 3 auf, zwischen 25 denen elektrische Leiter 1a und 3a angeordnet sind, die sich entsprechend dem Vorhandensein oder dem Fehlen einer Biegung des Films derart bewegen, daß sie sich berühren oder voneinander entfernen. Die Aussparung C1a ist durch einen federnden Abschluß C2 geschlossen, der den druck- 30 empfindlichen Schalter PSS von unten trägt. Das Sitzpolster C1 und der Abschluß C2 sind aus Polyurethanschaum ausgebildet. Die Filme 1 und 3 sind aus Polyethylennaphthalat und/oder Polyethylenterephthalat ausgebildet.

Patentansprüche

1. Sitzerfassungsvorrichtung im Polsterkörper (C1) eines Sitzpolsters mit einer unter der Sitzoberfläche angeordneten unteren Oberfläche und mit einer darin aus- 40 gebildeten Aussparung (C1a), die sich in einer der Sitzoberfläche gegenüberliegenden Richtung öffnet, mit einem flexiblen Druckschalter (PSS), der innerhalb der Aussparung (C1a) derart angeordnet ist, daß dessen obere Oberstäche in Kontakt mit der angrenzenden 45 Oberfläche der Aussparung (Cla) angeordnet ist, und der einen flexiblen Abdeckfilm (1) und einen flexiblen Trägerfilm (3) aufweist, zwischen denen elektrisch leitende Schichten (1a, 3a) angeordnet sind, die sich im Ansprechen auf das Vorhandensein oder Fehlen einer 50 Biegung der Filme (1, 3) zum Kontakt miteinander bewegen oder voneinander entfernen, und mit einem in der Aussparung befindlichen, als Polster (C2) ausgebildeten Abschluß, der mit der unteren Oberfläche des druckempfindlichen Schalters (PSS) in 55 Kontakt steht und der die Aussparung (C1a) elastisch verschließt.

- 2. Sitzerfassungsvorrichtung nach Anspruch 1, wobei der Abdeckfilm (1) und der Trägerfilm (3) des Druckschalters (PSS) jeweils mit einer leitenden Schicht (1a, 60 3a) versehen sind, die einander gegenüberliegen, wobei ein isolierender Abstandshalter (2) mit zumindest einer Öffnung (2a) zwischen den leitenden Schichten (1a, 3a) angeordnet ist.
- 3. Sitzerfassungsvorrichtung nach Anspruch 2, wobei 65 die leitenden Schichten (1a, 3a) mit Leitungsdrähten (4a, 4b) verbunden sind.
- 4. Sitzerfassungsvorrichtung nach Anspruch 1, wobei

8

der Polsterkörper (C1) des Sitzpolsters und der als Polster (C2) ausgebildete Abschluß der Aussparung (C1a) aus Polyurethanschaum geformt sind.

Hierzu 5 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 197 52 976 C2 G 01 L 5/00 31. Mai 2000

Fig. 1

Nummer: Int. Cl.7:

G 01 L 5/00 Veröffentlichungstag: 31. Mai 2000

DE 197 52 976 C2

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 197 52 976 C2 G 01 L 5/00 31. Mai 2000

Fig. 3

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 197 52 976 C2 G 01 L 5/00 31. Mai 2000

Fig. 4

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 197 52 976 C2 G 01 L 5/00 31. Mai 2000

Fig. 5

