Éléments de correction sujet 04 (2023)

Exercice 1

Partie A

1.

- a. adresse IP routeur F: 192.168.5.254
- b. Il sera possible de connecter 256 2 = 254 machines au maximum (en comptant le routeur)

2.

- a. masque de sous-réseau : 255.255.240.0 soit en binaire 1111111.111111111111110000.00000000.
- b. On effectue un ET logique entre le masque de sous réseau et l'adresse IP 192.168.2.2 (en binaire 11000000.10101000.00000010.00000010), ce qui donne une adresse réseau 11000000.10101000.00000000.00000000 soit en décimal 192.168.0.0
- c. Cette interconnexion permet au réseau de mieux résister en cas de panne d'un routeur en proposant plusieurs chemins possibles. Par exemple, pour aller du routeur A au routeur E, il existe 2 chemins possibles : A-F-E ou A-B-E. Si le routeur F tombe en panne, il y a toujours la possibilité de passer par A-B-E

Partie B

1.

a. entre A et E : A - B - E entre F et B : F - H - G - B ou F - D - A - B ou F- H - E - B ou F- D - G - B

b.

Table de routage du routeur E				
Destination	Routeur suivant	Distance		
А	В	2		
В	В	1		
С	Н	2		
D	G	2		
F	Н	2		
G	G	1		
Н	Н	1		

Table de routage du routeur G				
Destination	Routeur suivant	Distance		
А	В	2		
В	В	1		
С	D	2		
D	D	1		
Е	Е	1		
F	Н	2		
Н	Н	1		

2.

a.

Та	Table de routage du routeur F		
Destination	Routeur suivant	Coût total	
А	D	1,1	
В	Н	10,11	
С	D	1,1	
D	D	0,1	
Е	Н	10,1	
G	D	1,1	
Н	Н	0,1	

b. le chemin serait E - H - F - D pour un coût de 10 + 0.1 + 0.1 = 10.2

Exercice 2

1.

a.

On obtient les données suivantes :

- 1			
- 1	_		l
- 1	6	1 70	1 100
- 1	O	1.70	100
- 1			

b.

SELECT nom, age FROM animal WHERE nom_espece = "bonobo" ORDER BY age

```
2.
         a.
            clé primaire d'espece : "nom espece" (chaque entrée est unique et peut donc
            jouer le rôle de clé primaire)
            clé étrangère d'espece : "num enclos" ( "num enclos" correspond à
            "num_enclos" de la relation enclos)
            animal (id_animal : INT, nom : TEXT, age : INT, taille :
            FLOAT, poids : INT, #nom_espece : TEXT)
            enclos (<u>num enclos</u> : INT, ecosysteme : TEXT, surface : INT,
            struct : TEXT, date_entretien : DATE)
            espece (nom espece : TEXT, classe : TEXT, alimentation :
            TEXT, #num enclos : INT)
   3.
         a.
            UPDATE espece
            SET classe = "mammifères"
            WHERE nom_espece = "ornithorynque"
            INSERT INTO animal
            VALUES
            (179, "Serge", 0, 0.8, 30, "lama")
   4.
            SELECT nom, animal.nom_espece
            FROM animal
            JOIN espece ON animal.nom espece = espece.nom espece
            JOIN enclos ON espece.num_enclos = enclos.num enclos
            WHERE enclos.struct = 'vivarium' and alimentation =
            'carnivore'
         b. SELECT COUNT(*)
            FROM animal
            JOIN espece ON animal.nom espece = espece.nom espece
            WHERE classe = 'oiseaux'
Exercice 3
   1.
            résultat de l'exécution : Bonjour Alan
            x et y sont de type booléen. x est False et y est True
            def occurrences_lettre(une_chaine, une_lettre):
                 compteur = 0
                 for 1 in une_chaine:
                     if 1 == une lettre:
                         compteur = compteur + 1
                 return compteur
```

a.

b.

a. La fonction mystere est une fonction récursive qui renvoie la taille de l'arbre.
Dans l'exemple proposé, la fonction mystere renvoie donc 336531

4.

```
a.
  def chercher_mots(liste_mots, longueur,lettre,position):
    res = []
    for i in range (len(liste_mots)):
        if len(liste_mots[i]) == longueur \
            and liste_mots[i][position] == lettre :
            res.append(liste_mots[i])
    return res
```

Permet de trouver les mots de 3 lettres qui se terminent par ax (par exemple fax)

```
c.
    chercher_mots(chercher_mots(liste_mots_français,
    5, 'r', 4), 5, 'e', 3), 5, 't', 2)
```