NOTES: STREAMING ALGORITHMS

HANI T. DAWOUD

Contents

1.	(Turnstile) Model	1
2.	Some Functions Are Easy	1
3.	Kadane Algorithm: Maximum Subarray Problem	1
4.	Misra-Gries Algorithm: Items Frequencies Deterministically	2
5.	Maximum Matching in Unweighted Graph	2
6.	Frequency Moments	2
6.1.	Key Ideas in Randomized Streaming Algorithms	2
6.2.	F_2 Algorithm	3
6.3.	Analysis	3
6.4.	Further Optimizations	5
7.	Lower Bounds	5

1. (Turnstile) Model

A stream $\sigma = \langle \sigma_1, \dots, \sigma_m \rangle$, where $\sigma_i \in [n]$. Additions/deletions (i, Δ) . $\mathbf{f} = (f_1, \dots, f_n)$.

Find algorithm \mathcal{A} that approximates the function ϕ . Use $s = o\left(\min\{m, n\}\right)$ bits of memory; ideally, $s = O(\log m + \log n)$. Fast time-per-element processing.

Multiplicative (ϵ, δ) -approximation: $\mathbb{P}\left[|\mathcal{A}(\sigma) - \phi(\sigma)| > \epsilon \phi(\sigma)\right] \leq \delta$. Additive (ϵ, δ) -approximation: $\mathbb{P}\left[|\mathcal{A}(\sigma) - \phi(\sigma)| > \epsilon\right] \leq \delta$.

Algorithms assume no advance knowledge of m, while lower bounds hold even if m is known a priori¹.

2. Some Functions Are Easy

MIN, MAX, SUM, ... are easy. What makes other functions harder to compute?

3. Kadane Algorithm: Maximum Subarray Problem

- Assume an array A with n elements.
- For each index $i \in [n]$, find the maximum subarray ending at i, as you go. How?

Claim 3.1. For each $i \in [n]$, MaxHere² is the maximum value over the subarrays ending at i.

 $Date \hbox{: August 21, 2015.}$

¹When m is unknown, you claim the lower bound is (partly) due to lack of knowledge. When m is known, you have no excuse (i.e., your task of claiming a lower bound is harder).

²Two algorithm variants: MaxHere ≥ 0 : empty array allowed; MaxHere $\geq A_i$: empty array not allowed.

Proof. By induction. Let MaxHere_i be MaxHere at the *i*-th iteration.

Base case is easy. Now assume $MaxHere_{i-1}$ is maximum and show $MaxHere_i$ is optimal too.

Empty: $\mathsf{MaxHere}_{i-1} \ge 0$ by the algorithm. (1) $A_i \ge 0$ and so $\mathsf{MaxHere}_i$ is maximum; (2) $A_i < 0$ and $|A_i| < \mathsf{MaxHere}_{i-1}$ and so $\mathsf{MaxHere}_i$ is maximum; (3) $A_i < 0$ and $|A_i| > \mathsf{MaxHere}_{i-1}$ and so empty is maximum.

Non-empty (at least A_i in): MaxHere $_{i-1} \ge A_{i-1}$ by the algorithm. (1) MaxHere $_{i-1} + A_i < A_i$ implies MaxHere $_{i-1}$ is negative and hence can not be included; (2) MaxHere $_{i-1} + A_i \ge A_i$ implies MaxHere $_{i-1}$ is non-negative and hence must be in.

Corollary 3.2. After the n-th iteration, MaxSoFar is the value of the maximum subarray.

Proof. All subarrays can be identified by their ending index, $i \in [n]$. MaxSoFar tracks the maximum.

4. Misra-Gries Algorithm: Items Frequencies Deterministically

- k-1 counters. The k-th element triggers a "decrement" that includes itself and everyone is kicked.
- \hat{f}_i is only incremented upon occurrences of i. So, $\hat{f}_i \leq f_i$.
- How many decrements to a given $i \in [n]$ can we have? At most, i is decremented each time a "decrement" occurs. How many "decrements" can we have?
- Each "decrement" will "touch" k distinct items in the multiset, including the k-th element. So, at most we have m/k "decrements", as then all elements will have been "touched". Thus, $\hat{f}_i \geq f_i m/k$.
- The \hat{m}^3 remaining items are never "touched". This means we have $m \hat{m}$ "touchable" items. So, at most we have $(m \hat{m})/k$ "decrements". Thus, $\hat{f}_i \geq f_i (m \hat{m})/k$.
- Synopsis of MG is mergeable.
 - (1) Merge, then apply MG on the $\hat{m}(\sigma_1) + \hat{m}(\sigma_2)$ items using k-1 counters as before⁴.
 - (2) We have at most $(\hat{m}(\sigma_1) + \hat{m}(\sigma_2) \hat{m}(\sigma_1 \circ \sigma_2))/k$ decrements to a given $i \in [n]$. Done!
 - (3) Total decrements is at most

$$\frac{m(\sigma_1) - \hat{m}(\sigma_1)}{k} + \frac{m(\sigma_2) - \hat{m}(\sigma_2)}{k} + \frac{\hat{m}(\sigma_1) + \hat{m}(\sigma_2) - \hat{m}(\sigma_1 \circ \sigma_2)}{k} = \frac{m(\sigma_1) + m(\sigma_2) - \hat{m}(\sigma_1 \circ \sigma_2)}{k}.$$

• MG works in practice because typical frequency distributions have few heavy elements (Zipf law).

5. MAXIMUM MATCHING IN UNWEIGHTED GRAPH

- Let M' be a maximum matching.
- M is matching. So $|M'| \ge |M|$.
- M is maximal. So, all edges in M' share endpoints in M^5 ; otherwise maximality of M is contradicted.
- How to maximize edges in M' provided they all share endpoints in M? Take an edge from each endpoint in M. We have 2|M| endpoints. Thus $|M| \le |M'| \le 2|M|$.

6. Frequency Moments

Theorem 6.1. F_0 & F_2 can be approximated to within $(1 \pm \epsilon)$ factor with probability at least $1 - \delta$ in space

(6.1)
$$O\left(\frac{1}{\epsilon^2}(\log n + \log m)\log\frac{1}{\delta}\right).$$

6.1. Key Ideas in Randomized Streaming Algorithms.

- (1) Find an unbiased estimator.
- (2) Reduce the variance of the estimator by taking averages and medians. Aggregate many independent copies of the estimator in parallel to get an accurate estimate with high probability.
- (3) Estimators with large variance necessitate a large number of independent copies to obtain a good approximation

 $^{^{3}\}hat{m}$ is the sum of all counters maintained after the algorithm has processed the input stream.

⁴This is more elementary than merging, and then decrementing the (k+1)-th largest counter C from all elements. The latter is easier as an algorithm. The former explains why decrementing C works: it ensures at most k counters remain and hence satisfies $\hat{m}(\sigma_1) + \hat{m}(\sigma_2) - \hat{m}(\sigma_1 \circ \sigma_2) \geq Ck$, as in (b).

 $^{^{5}}$ This may include edges of M themselves.

6.2. F_2 Algorithm. Let $h: U \to \{\pm\}$ be a random but consistent hash function. Initialize Z = 0. For each $j \in U$, add h(j) to Z. Return $X = Z^2$.

Remark 6.2. Since h is fixed once and for all before data stream arrives, $j \in U$ is treated consistently every time it shows up. Z is either incremented every time j shows up or is decremented. So j contributes $h(j)f_j$ to the final value of Z.

6.3. **Analysis.** X is an unbiased estimator,

(6.2)
$$\mathbb{E}X = \mathbb{E}Z^{2}$$

$$= \mathbb{E}\left(\sum_{j \in U} h(j)f_{j}\right)^{2}$$

$$= \mathbb{E}\left(\sum_{j \in U} h(j)^{2}f_{j}^{2} + 2\sum_{j < \ell} h(j)f_{j}h(\ell)f_{\ell}\right)$$

(6.5)
$$= \sum_{j \in U} f_j^2 + 2 \sum_{j < \ell} f_j f_{\ell} \mathbb{E} \left(h(j) h(\ell) \right)$$

$$(6.6) = F_2$$

Remark 6.3. (6.6) used the property that h is pairwise-independent. In particular that all four sign patterns for $(h(j), h(\ell))$ are equally likely to give $\mathbb{E}(h(j)h(\ell)) = 0$. Another possibly simpler argument is $\mathbb{E}(h(j)h(\ell)) = \mathbb{E}h(j)\mathbb{E}h(\ell)$ because of pairwise-independence.

Remark 6.4. \pm in Z ensures the cross terms $h(j)f_jh(\ell)f_\ell$ in the estimator X cancel out in expectation.

X is not guaranteed to be close to $\mathbb{E}X$ with high probability. So take many independent copies of X

(6.7)
$$Y = \frac{1}{t} \sum_{i=1}^{t} X_i.$$

Y is still an unbiased estimator,

(6.8)
$$\mathbb{E}Y = \frac{1}{t} \sum_{i=1}^{t} \mathbb{E}X_i = F_2.$$

Averaging reduces the variance by a factor equal to the number of copies t

(6.9)
$$\operatorname{Var}(Y) = \operatorname{Var}\left(\frac{1}{t}\sum_{i=1}^{t}X_{i}\right) = \frac{1}{t^{2}}\sum_{i=1}^{t}\operatorname{Var}(X_{i}) = \frac{\operatorname{Var}(X)}{t}.$$

The number of copies t we need is governed by Var(X). So we have to compute it.

(6.10)
$$\operatorname{Var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

(6.11)
$$\mathbb{E}X^{2} = \mathbb{E}\left(\sum_{j \in U} h(j)f_{j}\right)$$

$$= \mathbb{E}\left(\sum_{j \in U} h(j)^{4}f_{j}^{4} + 6\sum_{j \neq \ell} h(j)^{2}f_{j}^{2}h(\ell)^{2}f_{\ell}^{2}\right)$$

(6.13)
$$= \sum_{j \in U} f_j^4 + 6 \sum_{j \neq \ell} f_j^2 f_\ell^2$$

Remark 6.5. (6.12) also used the 4-wise independence of h. In particular that for every set of four distinct universe elements, their 16 possible sign patterns under h are equally likely. Or that $\mathbb{E}jk\ell p = \mathbb{E}j\mathbb{E}k\mathbb{E}\ell\mathbb{E}p$.

Remark 6.6. Expanding the right side of (6.11) gives $|U|^4$ monomials of different types:

- $(jjjj) \forall j \in U$ which gives $\sum_{j \in U} h(j)^4 f_j^4$.
- (jjkk) arises in $\binom{4}{2} = 6$ different ways. Summing over all $j \neq k \in U$ gives $6 \sum_{i \neq \ell} h(j)^2 f_i^2 h(\ell)^2 f_\ell^2$.
- The rest of monomials must contain singleton j for some $j \in U$, in which case we have $\mathbb{E}h(j) = 1/2(-1) + 1(1) = 0$ and the whole monomial is 0.

Recall that $F_2 = \sum_{j \in U} f_j^2$. So

(6.14)
$$F_2^2 = \sum_{j \in U} f_j^4 + 2 \sum_{j \neq \ell} f_j^2 f_\ell^2$$

and hence

$$\mathbb{E}X^2 \le 3F_2^2.$$

Recalling (6.10),

$$(6.16) Var(X) \le 2F_2^2.$$

This is good. The standard deviation of the basic estimator X is in the same ballpark as its expectation. A constant (depending on ϵ and δ only) number of copies is good enough for our purpose. Now, using Chebyshev's inequality, we show that Y approximates F_2 with high probability.

$$(6.17) \qquad \mathbb{P}\left[|Y - \mathbb{E}Y| > c\right] \le \frac{\operatorname{Var}(Y)}{c^2} \le \frac{\operatorname{Var}(X)}{t \cdot c^2} \le \frac{2F_2^2}{t \cdot c^2}.$$

Since we seek a $(1 \pm \epsilon)$ -approximation, set $c = \epsilon F_2$. Since we want the right-hand side of (6.17) to be δ , set $t = 2/\epsilon^2 \delta$. So we

(6.18)
$$\mathbb{P}\left[Y \in (1 \pm \epsilon)F_2\right] \ge 1 - \delta.$$

Let's make sure we're clear on the final algorithm.

- (1) Choose $h_1, \ldots, h_t : U \to \{\pm 1\}$, where $t = \frac{2}{\epsilon^2 \delta}$.
- (2) Initialize $Z_i = 0$ for i = 1, 2, ..., t.
- (3) For each $j \in U$, add $h_i(j)$ to Z_i for every i = 1, 2, ..., t.
- (4) Return the average of the Z_i^2 's.

How much space is required? There's a factor of $\frac{2}{\epsilon^2 \delta}$ for running the t copies. How much space does each of these need? Each Z_i requires $O(\log m)$ bits. But we have to also store h_i . Recall that h_i is random and *consistent*. So once we choose a sign $h_i(j)$ for j we need to remember it forever. But then we need to remember one bit for each of the possible $\Omega(n)$ elements.

Fortunately, as noted before, the entire analysis has relied only on 4-wise independence. Happily, there're small families of simple hash functions that possess this property. Such a hash function is specified with $O(\log n)$ bits.

Putting it all together we get a space bound of

$$O\left(\frac{1}{\epsilon^2 \delta} \cdot (\log m + \log n)\right).$$

6.4. Further Optimizations. So far we averaged t copies of X to achieve two conceptually different things: to improve the approximation ratio to $(1 \pm \epsilon)$ for which we suffered an $\frac{1}{\epsilon^2}$ factor, and to improve the success probability to $1 - \delta$ for which we suffered an additional $\frac{1}{\delta}$. The smarter implementation first uses $\approx \frac{1}{\epsilon^2}$ copies to obtain an approximation of $(1 \pm \epsilon)$ with probability at least $\frac{2}{3}$ (say). To boost the success probability from $\frac{2}{3}$ to $1 - \delta$, it is enough to run $\approx \log \frac{1}{\delta}$ different copies and then take the *median*. Since we expect at least two-thirds of these estimates to lie in the interval $(1 \pm \epsilon)F_2$, it's very likely that the median of them lies in this interval (Chernoff bound).

Remark 6.7. The log m term in (6.19) can be improved to log log m. We don't need to count the Z_i 's exactly, only approximately and with high probability. This relaxed counting problem can be solved using Morris's algorithm, which can be implemented as a streaming alorithm that uses $O(\epsilon^{-2} \log \log m \log \frac{1}{\lambda})$.

7. Lower Bounds

- Small-space streaming algorithms imply low-communication 1-way protocols.
- The latter don't exist.

These two steps require a Boolean function that

- Can be reduced to a streaming problem.
- Does not admit a low-communication one-way protocol.