최민우

· Linear Classifier

- f(x,W) = W*x + b

- 가중치(Weight)의 값이 랜덤

- 고양이, 자동차, 개구리 -> 개, 자동차, 트럭

- Loss(오차)가 발생

Recall from last time: Linear Classifier

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Gat image by Nikita is licentend under CC-BY 2.0: Cat image is CCO 1.0 public domain. Frog image is in the public domain.

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 3 - 8

April 11, 2017

1.Loss Functions(손실함수)

- 알고리즘이 예측한 값과 실제 정답의 차이를 비교하기 위한 함수
- Optimization(최적화)을 위해 최소화하는 것이 목적

2.Multiclass SVM loss

Suppose: 3 training examples, 3 classes. With some W the scores $\ f(x,W)=Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example $\left(x_i,y_i\right)$ where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Loss over full dataset is average: $I = \frac{1}{N} \sum_{i=1}^{N} I_{i}$

 $L = \frac{1}{N} \sum_{i=1}^{N} L_i$ L = (2.9 + 0 + 12.9)/3 = **5.27**

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 3 - 17

April 11, 2017

3.Regularization($\lambda R(W)$)

- W가 너무 큰 값을 가지게 되면, 과하게 구불구불한 형태의 함수가 만들어 짐
- W(가중치)가 너무 큰 값들을 가지지 않도록 하기 위해서, 모델의 복잡도를 낮추어야 함
- L2 Regularization, L1 Regularization 등

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 3 - 33

April 11, 2017

4.Softmax Classifier(확률)

Softmax Classifier (Multinomial Logistic Regression)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 3 - 46

April 11, 2017

5.Optimization(최적화)

- Loss Function(손실함수) 값을 최소화하는 파라미터를 구하는 과정 : 경사하강법