Test 1 Review CS-450

May 2, 2013

AFSA 1

- Question 1: a) Design a AFSA for $x \in \{0,1\}^*$ x has a 0 fourth from the end and x represents in binary an integer evenly divisible by 3
- b) Construct the computation tree for m on 10101

Question 2:

- a) Design a AFSA for $x \in \{0,1\}^*$ x does not have a 0 fourth from the end and x represents in binary an integer that doesn't evenly divisible by 3
- b) Computation tree for m on 10101

- Question 3: a) Design AFSA $L=\{x\in\{0,1\}^*\}$, x represents in binary evenly divisible by 15. b) Design $L_2=L_1^{'}$

 $\begin{array}{l} {\rm Question~4:}\\ {\rm Let}~\overline{M_1=\{x\in\{0,1\}^*\}~/~x~begins~or~ends~with~00}\\ {\rm Let}~M_2=\{x\in\{0,1\}^*\}~/~x~has~both~00~and~11~as~substring \end{array}$

- a) Design AFSA $M_3=M_1\cap M_2.$ b) Design AFSA $M_4=M_1\cup \bar{M}_2$ c) Design AFSA $M_5=\bar{M}_3$

 $\frac{\text{Question 5:}}{\text{Convert the AFSA to DFSA}}$

M	0	1
1	2\lambda3	1
2	3 ∨4	$2 \vee 4$
3	3 V1	3
4	$1 \wedge 4$	$2 \wedge 3$

The initial state is 1, and the final state is also 1

${\bf Question}~6$

Given the AFSA, where 1 is the initial state, and 1 and 3 are final states

M	0	1
1	1	1 \(\sqrt{3} \)
2	$2 \wedge 4$	$3 \wedge 4$
3	3	4
4	2 \lorsys	1∨4

- a) Draw the computation tree for string 101100 and explain if it is an accepting computation
- b)Convert M to its equivalent DFSA. Represent all of the states in CNF and simplify them. Dont forget to indicate final states.

2 Two way FSA

${\bf Question} \ 7:$

Given machine M, where 1 is initial state, and 3 is final state

M	a	b
1	2L	3R
2	4L	2R
3	2L	4R
4	4R	1L

- a) Construct the Rebound Table
- b) Convert machine M to 1 DFSA using the Rebound Table
- c) Simulate the 2 dfsa to see if ba or bb string got rejected or accepted

 $\frac{\text{Question 8}}{\text{Given machine M, where } q_1 \text{ is the final state}}$

M	0	1
q_0	q_0 R	q_1R
q_1	q_1 R	q_2L
q_2	$q_0 R$	q_2L

- a) Construct the Rebound Table for machine M
- b) Simulate the 2dfsa to show that 1001 is accepted by M

Question 9

Given the following 2-way deterministic fsa (2dfsa), where state 1 is the initial state, and states 2 and 3 are final states.

- (a) Simulate the 2dfsa and show how the string babb is accepted.
- (b) Construct the rebound tables and the equivalent 1dfsa partially only for consuming the string babb

M	a	b
1	2R	3R
2	4L	2R
3	4R	2L
4	1R	4L

3 Turing Machine

Question 10: Design DTM for $L = \{a^nb^n|n \ge 0\}$

Question 11: Design DTM for $\{ww^r|w\in\{a,b\}^+$

Question 12: Desgin DTM for $\{0^n1^n0^n|n>0\}$

Question 13: Design DTM for $\{x = \{a,b\}^* | N_a(X) = N_b(X)\}$

Question 14: Desgin DTM for $\{ww|w\in\{a,b\}^*\}$

Question 15: Design DTM for

$$f(m,n) = \begin{cases} \text{m-n,} & \text{if } m > n. \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

Question 16: Desgin DTM for $f(m,n) = m + n \forall m, n \geq 0$

Question 17: Design DTM for $f(m,n) = m * n \forall m, n \geq 0$

Question 18: Desgin DTM for

$$f(m,n) = \frac{m}{n}, \forall m, n \ge 0$$
 (2)

Question 19: Design a DTM to recognize $\{a^mb^nc^{m+n}|m,n>0\}$.

Question 20: Design a DTM to recognize $\{0^a1^b0^c|a+c=b,$ where $a,b,c\geq 0\}$.

Question 21: Deisign a DTM to compute the function f(m,n)=m MOD n, where m and n are positive integers. Note that m and n are represented as 0^m10^n on the input tape initially.

Question 22: Design a DTM to compute the following function f(m,n) where both m and $n \ge 0$. Note that m and n represented as unary numbers and separated by a 1 on the input tape initialy. The ceiling operator $\lceil x \rceil$ will return the smallest integer that is greater than or equal to x.

$$f(m,n) = \begin{cases} \lceil \frac{m}{2} \rceil - n, & \text{if } \lceil \frac{m}{2} \rceil > n. \\ 0 & \text{otherwise.} \end{cases}$$
 (3)