Manufacturer's statement - attestation

The manufacturer; Food Automation – Service Techniques, Inc., as the responsible party for the equipment tested, hereby affirms:

- a) That he has reviewed and concurs that the test shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That all changes (in hardware and software/firmware) to the subject device will be reviewed.
- d) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving (certifying) the subject equipment.

Stanley Vreeland	801/1
Printed name of official	Signature of official
905 Honeyspot Rd. Stratford, CT 06615	_08/03/11
Address	Date
203-380-3510	svreeland@fastinc.com
Telephone number	Email address of official

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 1 of 39

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15C and ANSI C63.10

On

Wireless Kitchen Management System

Sensor

Food Automation – Service Techniques, Inc. (FAST)
905 Honeyspot Rd
Stratford, CT 06615

Prepared by:

TUV Rheinland of North America, Inc.

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 2 of 39

Food Automation – Service Stan Vreeland Techniques, Inc. (FAST) Client: 203-380-3510 / 203-377-8187 905 Honeyspot Rd svreeland@fastinc.com Stratford, CT 06615 Wireless Kitchen Management Identification: Serial No.: 0NT08212037 System Test item: Date tested: 12/2/2010 Sensor TUV Rheinland of North America Tel: (585) 426-5555 336 Initiative Drive Testing location: Fax: (585)-568-8338 Rochester, NY 14624 U.S.A. Emissions: FCC Part 15 subpart C FCC Part 15.249(a) FCC Part 15.205(a) FCC Part 15.215(a) Test specification: FCC Part 15.249(a), FCC Part 15.215(c) FCC Part 15.249(3), FCC Part 2.1093, Test Result: The above product was found to be Compliant to the above test standard(s) tested by: Randall Masline reviewed by: Cecil Gittens 2 February 2011 2 February 2011 Date Name Signature Date Name Signature None Other Aspects: Abbreviations: OK, Pass, Compliant, Complies = passed Fail, Not Compliant, Does Not Comply = failed N/A = not applicable**Industry Canada BSMI NVLAP Lab Code (200313-0) US5253** 34661C-1 **SL2-IN-E-050R**

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 3 of 39

TABLE OF CONTENTS

1 G	ENERAL INFORMATION	4
1.1 1.2	SCOPEPURPOSE	4
1.3	SUMMARY OF TEST RESULTS	
2 L	ABORATORY INFORMATION	6
2.1 2.2 2.3 2.4	ACCREDITATIONS & ENDORSEMENTS	7 8
3 PI	RODUCT INFORMATION	10
3.1 3.2 3.3	PRODUCT DESCRIPTIONEQUIPMENT MODIFICATIONSTEST PLAN	10
4 E	MISSIONS	12
4.1 4.2 4.3 4.4 4.5	RADIATED EMISSIONS FIELD STRENGTH OF FUNDAMENTAL AND HARMONIC EMISSIONS BAND EDGE REQUIREMENTS FREQUENCY TOLERANCE RF EXPOSURE MEASUREMENT (MOBILE DEVICE) 15.247(I)	
APPEN	NDIX A	35
5 TI	EST PLAN	25
5.1 5.2 5.3	GENERAL INFORMATION MODEL(S) NAME Type of Product	35
5.4 5.5	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	36
5.6 5.7	PRODUCT ENVIRONMENT	36
5.8 5.9	APPLICABLE DOCUMENTS	38
5.10 5.11 5.12	EUT MODES OF OPERATION	38
5.12 5.13 5.14	Non - Electrical Support Equipment	39

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 4 of 39

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Part 15C and ANSI C63.10 based on the results of testing performed on 12/2/2010 on the Wireless Kitchen Management System, Model No. Sensor, manufactured by Food Automation – Service Techniques, Inc. (FAST). This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 5 of 39

1.3 Summary of Test Results									
Applicant	Inc. (F	AS7		Tel	203-380-3510)	Contact	Stan Vreeland	d
			vspot Rd CT 06615	Fax	Fax 203-377-8187 e- 1		e-mail	svreeland@fa	astinc.com
Description			Tireless Kitchen Management system	Model	Number	Sens	or		
Serial Number		01	NT08212037	Test V	oltage/Freq.	6VD	C		
Test Date Com	pleted:	12	2/2/2010	Test E	ngineer	Ran	dall Maslin	e	
Standar	rds		Description		Severity Leve	l or L	imit	Criteria	Test Result
FCC Part 15 sub Standard	part C		Radio Frequency Devices - Subpart C: Intentional Radiators	See called out parts below				See Below	Complies
FCC Part 15.249 Part 15.205(a) F 15.215(a)			Radiated Emissions Restricted Bands	Class B, 30 - 1000 MHz			Limit	Complies	
FCC Part 15.207	7(a)		Conducted Emissions	DC Powered			Limit	Complies	
FCC Part 15.249	P(a)		Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz and 24.0-24.25 GHz	50mv/1	50mv/m Fundamental			Limit	Complies
FCC Part 15.215	t 15.215(c) Band Edge Requirements		Per Section 15.215(c) of the standard		Per Section 15.215(c) of the standard		Limit	Complies	
FCC Part 15.249	9(3)		Frequency Tolerance	Carrier Maintained to 0.001% of frequency at -20°C to +50°C			Limit	Complies	
FCC Part 2.1093	3		RF Exposure	MPE o	r SAR Require	ments	(Mobile)	Limit	Complies

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 6 of 39

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission (Expires 12/7/2013)

TUV Rheinland of North America located at 336 Initiative Dr, Rochester NY is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No US90575). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP (Expires 6/30/2011)

Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Standard 17025:2005 (Lab code: 200313-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 **VCCI**

VCCI Accredited test lab. Registration numbers R-1065, C-1120, C-1121

2.1.4 Industry Canada (Expires 1/22/2012)

Registration No.: 3466C-1. The OATS has been accepted by Industry Canada to perform testing to 3 and to 10m, based on the test procedures described in ANSI C63.4-2003.

2.1.5 **BSMI**

Registration No.: SL2-IN-E-050R. The BSMI accreditation was obtained by NIST MRA with the BSMI.

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 7 of 39

2.1.6 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{\textit{dB}\mu V \, / \, \textit{m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 \text{ dBuV/m} + 17.5 \text{ dB} - 20 \text{ dB} + 1.0 \text{ dB} = 23.5 \text{ dBuV/m}$$

2.2 Measurement Uncertainty Emissions

Measurement	Ulab	Ucispr
Radiated Disturbance @ 10m		
30 MHz – 1000 MHz	4.57 dB	5.2 dB
Conducted Disturbance @ Mains Terminals		
150 kHz – 30 MHz	2.62 dB	3.6 dB
Disturbance Power		
30 MHz – 300 MHz	3.88 dB	4.5 dB

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 8 of 39

Measurement Uncertainty

The estimated combined standard uncertainty for radiated emissions measurements is \pm 1.6 dB.

The estimated combined standard uncertainty for conducted emissions measurements is \pm 1.2dB.

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.3 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 9 of 39

2.4 Measurement Equipment Used

Equipment	Manufacturer	Model #	Ref.	Serial #	Last Cal dd/mm/yy	Next Cal dd/mm/yy	Test
Horn	EMCO	3115	C031	9812-5635	16-Mar 10	16-Mar 12	RE
BiLog	Chase	CBL6111	C041	1170	1-Mar-10	1-Mar-11	RE
EMI Receiver	Rohde & Schwarz	ESVS 30	C310	826006/015	12-Dec-10	12-Dec-11	RE
Analyzer w RF Filter Section 85460A	НР	8546A	C311	3325A00127	28-Jul-10	28-Jul-11	RE, CE
Receiver (20Hz-40GHz)	Rohde & Schwarz	ESI 40	C320	839283/005	11-Dec-10	11-Dec-11	RE,CE
Temp./Humidity Chart Recorder	Honeywell		C419	639971	30-Dec-09	30-Dec-10	RE
Horn	EMCO	3160-09	C447	03-0338-018	17-Nov-10	17-Nov-12	RE
BiLog	Chase	CBL6111B	C448	2081	16-Nov-10	16-Nov-11	RE
Multimeter	Fluke	8062A	C452	4715199	12-Dec-10	12-Dec-11	All tests
Digital Pressure/Temp/RH	Davis	Perception II	C470	PB00218A16	23-Jun-10	23-Jun-11	All tests
Analyzer w RF Filter Section 85460A	НР	8546A	D004	3625A00356	28-Jul-10	28-Jul-11	СЕ

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 10 of 39

3 Product Information

3.1 Product Description

See Appendix A

3.2 **Equipment Modifications**

No modifications were needed to bring product into compliance.

3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in appendix A of this report

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 11 of 39

Figure 1 – External Photo of EUT

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 12 of 39

4 Emissions

4.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

4.1.1 Over View of Test

Results	Complies (as tested	Complies (as tested per this report)						11/23/	/2010
Standard	FCC Part 15.249(a)	FCC Part 15.249(a) FCC Part 15.205(a) FCC Part 15.215(a)							
Product Model	Sensor	Sensor Serial#					0NT08212037		
Configuration	See test plan for deta	See test plan for details							
Test Set-up	Tested on 10m O.A.	Tested on 10m O.A.T.S. at 3 meters, placed on turn-table, see test plans for details							
EUT Powered By	6VDC	Temp	21°C	H	umidity	46%	Pres	sure	1006mbar
Frequency Range	30 - 1000 MHz @ 1	0m							
Perf. Criteria	Class B. (Below Limit) Perf. Verification				Readings Under Limit				
Mod. to EUT	None		Test Pe	rfor	rmed By	Rand	lall Ma	sline	

4.1.2 Test Procedure

Radiated and FCC emissions tests were performed using the procedures of ANSI C63.10 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 30 - 1000 MHz was investigated for radiated emissions.

Radiated emission testing was first performed at a distance of 3 meters in the semi-anechoic chamber in order to identify the specific frequencies for which these measurements will be made on the 10 m OATS.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.1.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 13 of 39

4.1.5 Final Graphs

Radiated Emissions Prescan

Vertical / Horizontal

Frequency MHz	Peak QP Class B-QP dBuV dBuV dB	Class A-QP dB	Trace Name
112.875	30.4		V - Max hold low end
116.775	29.3		V - Max hold low end
120.675	29.3		V - Max hold low end
124.575	30.2		V - Max hold low end
70.950	26.2		H - Max hold low end
73.875	25.4		H - Max hold low end
99.713	26.0		H - Max hold low end

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 14 of 39

NOTES:

Radiated Emissions Prescan

Vertical / Horizontal

Sensor high end

Frequency Peak QP Class B-QP Class A-QP Trace Name

MHz dBuV dBuV dB dB

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 15 of 39

4.1.6 Final Tabulated Data

Radiated E	missions	Measure	ements			8)			8
Standard:	ard: Class B/FCC Part 15.209(a)			Final	Date:	11/23/2010			
Device Tested:	Device Tested: FAST XWIRE-SENSOR		R		3m	File .xls:	1		
3	M	L easured Le	l vel			0			
Meas#	Freq (MHz)	Quasi- Peak	Quasi- Peak Limit	Quasi- Peak Δ	Result	Antenna Polarization	Angle (degrees)	Antenna Height (meters)	Comment
1	70.9500	21.60	40.00	-18.40	Complied	Horizontal	0	1.00	
2	73.8750	20.80	40.00	-19.20	Complied	Horizontal	0	1.00	
3	99.7130	21.20	40.00	-18.80	Complied	Horizontal	0	1.00	
4	112.8750	28.90	40.00	-11.10	Complied	Vertical	0	1.00	Maximum Emission
5	116.7750	27.50	40.00	-12.50	Complied	Vertical	0	1.00	
6	120.6750	27.30	40.00	-12.70	Complied	Vertical	0	1.00	

Report No.: 31053510.001 XWIRE-SENSOR.doc

4.2 Field Strength of Fundamental and Harmonic Emissions

This test measures the electromagnetic levels of fundamental and spurious signals generated by the EUT that radiated from the EUT.

4.2.1 Test Over View

Results	Complies (as teste	Complies (as tested per this report)							2/2010
Standard	FCC Part 15.249(a)	FCC Part 15.249(a)							
Product Model	Sensor	Sensor Serial# 0NT08212037							
Configuration	See test plan for de	See test plan for details							
Test Set-up	Tested at O.A.T.S.	I	EUT place	ed or	ı table	See test	plan fo	or det	ails
EUT Powered By	6VDC	Temp	22° C	Hı	ımidity	47%	Press	sure	996mbar
Perf. Criteria	50mv/m (Below Limit) Perf. Verification Re					Readin	Readings under Limit		
Mod to EUT	None	,	Test Pe	rfor	med By	Randal			

4.2.2 Test Procedure

Field Strength and FCC emissions tests were performed using the procedures of ANSI C63.10 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

Radiated emission testing measurements will be made on the 10 m OATS, at a 3m distance.

4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.2.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

The highest average measurement was made on channel 1 in the vertical polarization at 87.17 dBuV at 2405.09018 MHz. The limit is 94dBuV

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Page 16 of 39

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 17 of 39

4.2.5 Final Data

Figure 2 – Channel 1 Horizontal

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 18 of 39

Figure 3 – Channel 1 Vertical

Date: 17.JAN.2011 10:53:42

Figure 4 – Channel 2 Horizontal

Figure 5 – Channel 2 Vertical

Figure 6 – Channel 3 Horizontal

Figure 7 – Channel 3 Vertical

Figure 8 - 1 to 6 GHz

Figure 9 - 6 to 12 GHz

31053510.001 XWIRE-SENSOR.doc **Report No.:** Page 25 of 39 RBW 1 MHz RF Att 0 dB Marker 1 [T1] Ref Lvl VBW 1 MHz 46.33 dBWV 72 dB**y**V SWT 60 ms Unit dByv 16.59318637 GHz **v**₁ [T1] 16.59318637 GHz 65 60 IN1 1AV -**D1 5**3.9 dB**y**V-2AV 50 4 -TDF 40 35 3.0 25

Date: 17.JAN.2011 11:06:39

Start 12 GHz

Figure 10 - 12 to 18 GHz

600 MHz/

Stop 18 GHz

Figure 11 - 18 to 20 GHz

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 27 of 39

Figure 12 - 20 to 25 GHz

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 28 of 39

4.3 Band Edge Requirements

The requirement is to ensure the 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified, is contained within the frequency band designated in the rule section under which the equipment is operated. The designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperatures and supply voltage.

4.3.1 Test Over View

Results	Complies (as teste	Complies (as tested per this report)							2/2010	
Standard	FCC Part 15.215(c)	FCC Part 15.215(c)								
Product Model	Sensor	Sensor Serial#						0NT08212037		
Configuration	See test plan for de	See test plan for details								
Test Set-up	Tested in shielded i	room EU	JT placed o	n ta	able Se	e test p	lan for o	details	S	
EUT Powered By	6VDC	Temp	22° C	Hı	ımidity	47%	Press	sure	996mbar	
Perf. Criteria	Per Section 15.215 the standard	(c) of				Readii band	Readings within the permitted band			
Mod to EUT	None		Test Per	forr	ned By	Randa	ll Masli	ine		

4.3.2 Test Procedure

The measurement will be made using guidance from ANSI C63.10.

4.3.3 Deviations

There were no deviations from the test methodology.

4.3.4 Final Test

The band edge requirements of the EUT were within the limits specified in the standard.

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 29 of 39

4.3.5 Band Edge Requirement Data

Figure 13 – Upper Band Edge

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 30 of 39

Date: 17.JAN.2011 11:14:30

Figure 14 – Lower Band Edge

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 31 of 39

4.4 Frequency Tolerance

4.4.1 Test Over View

Results	Complies (as teste	Complies (as tested per this report) Date 12/2/2010						
Standard	FCC Part 15.249(3)							
Product Model	Sensor	Sensor Serial# 0NT08212037						
Configuration	See test plan for de	See test plan for details						
Test Set-up	Tested in 3m cham	ber EUT	placed on	table See to	est plan	for details		
EUT Powered By	6VDC							
Mod to EUT	None Test Performed By Randall Masline							

4.4.2 Test Procedure

The frequency tolerance of the carrier signal shall be maintained within +/- 0.001% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment test shall be performed using a new battery.

4.4.3 Deviations

There were no deviations from the test methodology listed in the test plan for the Radiated Immunity test.

4.4.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

4.4.5 Final Data

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 32 of 39

Test	Frequency (GHz)	Allowable Deviation (MHz)	Result
-20 Degrees C at nominal	2.40512020	2.400	Complies
+50 Degrees C at nominal	2.40514020	2.400	Complies
Nominal 6 VDC Voltage	2.40510020	2.400	Complies
85% - 5.1 VDC	2.40510500	2.400	Complies
115% - 6.9 VDC	2.40510620	2.400	Complies

Table 1 – Frequency Tolerance

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 33 of 39

4.5 RF Exposure Measurement (Mobile Device)

4.5.1 Test Methodology

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this product is measured in a Semi-Anechoic Chamber, and also the maximum total power input to the antenna is measured. Through the Friis transmission formula (see section 4.9.6) and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

4.5.2 RF Exposure Limit

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)			
	(A)Limits For Occupational / Control Exposures						
300-1500			F/300	6			
1500-100,000			5	6			
(E	(B)Limits For General Population / Uncontrolled Exposure						
300-1500			f /1500	6			
1500-100,000			1.0	30			

f =Frequency in MHz

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 34 of 39

4.5.3 EUT Operating condition

The software provided by Manufacturer enabled the EUT to transmit data at lowest, middle and highest channel individually.

4.5.4 Classification

The antenna of the product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping at least 20cm or more separation distance with the antenna should be included in users manual. Therefore, this device is classified as a Mobile Device.

4.5.5 **Test Results**

4.5.6 Antenna Gain

The maximum Gain measured in Semi-Anechoic Chamber is 0.0 dBi or 1.0 (numeric).

4.5.7 Output Power into Antenna & RF Exposure value at distance 20cm:

Calculations for this report are based on highest power measurement and the highest gain of the antenna. Limit for MPE (from FCC part 1.1310 table 1) is f (MHz) / 1500 = 927.6 / 1500 = 0.62 mW/cm²

Highest Pout is 0.04mW, highest antenna gain (in linear scale) is 1.0, R is 20cm, and f = 2400 MHz

 $Pd = (0.000018*1.0) / (1600\pi) = 0.0001 \text{ mW/cm}^2$, which is 0.619 mW/cm² below to the limit.

Note: This calculation is assuming 100% duty cycle, which would not be the case in normal operation.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.5.8 **Sample Calculation**

The Friis transmission formula: Pd = (Pout*G) / $(4*\pi*R^2)$

Where:

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

 $\pi \approx 3.1416$

R = distance between observation point and center of the radiator in cm

Ref.: David K. Cheng, Field and Wave Electromagnetics, Second Edition, Page 640, Eq. (11-133).

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TÜV Rheinland Inc., 336 Initiative Drive, Rochester NY 14624, Tel: (585) 426-5555, Fax: (585) 253-1485

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 35 of 39

Appendix A

5 Test Plan

This test report is intended to follow this test plan outlined here in unless other wise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

5.1 General Information

Client	Food Automation – Service Techniques, Inc. (FAST)
Address 1	905 Honeyspot Rd
Address 2	Stratford, CT 06615
Contact Person	Stan Vreeland
Telephone	203-380-3510
Fax	203-377-8187
e-mail	svreeland@fastinc.com

5.2 Model(s) Name

Sensor

5.3 Type of Product

Wireless Kitchen Management System

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 36 of 39

5.4 Equipment Under Test (EUT) Description

Food quality and supply chain monitor equipment.

5.5 Modifications

No modifications were necessary to meet compliance with regulations.

5.6 Product Environment

	Residential	Hospital
	Light Industrial	Small Clinic
\boxtimes	Industrial	Doctor's office
	Other	

5.7 Countries

USA
Canada

^{*}Check all that apply

^{*}Check all that apply

Report No.: 31053510.001 XWIRE-SENSOR.doc

Page 37 of 39

5.8 Applicable Documents

Standards	Description		
FCC Part 15 subpart C Standard	Radio Frequency Devices - Subpart C: Intentional Radiators		
FCC Part 15.249(a) FCC Part 15.205(a) FCC Part 15.215(a)	Radiated Emissions		
FCC Part 15.249(a)	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz and 24.0-24.25 GHz		
FCC Part 15.215(c)	Band Edge Requirements		
FCC Part 15.249(3)	Frequency Tolerance		
FCC Part 2.1093	RF Exposure		

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 38 of 39

5.9 General Product Information

Size	Н	4.5cm	W	3cm	L	11cm
Weight	1kg		Fork-	Lift Needed	No	
Notes						

5.10 EUT Electrical Powered Information

5.10.1 Electrical Power Type

5.10.2 Electrical Power Information

Name	Type	Voltage		Voltage		Frequency	Current	Notes
		min	max					
Battery	6 VDC	3.5	7.5	DC				
Notes								

5.11 EUT Modes of Operation

Transmitting at highest, lowest and middle channel at highest output power.

Report No.: 31053510.001 XWIRE-SENSOR.doc Page 39 of 39

5.12 Electrical Support Equipment

Туре	Manufacture	Model	Connected To
None			

5.13 Non - Electrical Support Equipment

Item	Notes			
Gas	None			
Water	None			

5.14 EUT Equipment/Cabling Information

		Location	Cable Type			
EUT Port	Connected To		Length	Shielded	Bead	
None						