浙江大学 2012-2013 学年 秋冬 学期

《计算理论》课程期末考试试卷答案

课程号: 21120520 **开课学院:** 计算机学院

考试试卷: ☑ A卷 □ B卷

考试形式: ② 闭卷 □ 开卷,允许带 ______入场 考试日期: 2013 年 1 月 18 日,考试时间: 120 分钟

诚信考试、沉着应考、杜绝违纪

考生	姓名		学号			所属院系			
	题序	1	2	3	4	5	6	总分	
	得分								
	评卷人								

Zhejiang University Theory of Computation, Fall-Winter 2012 Final Exam(Solution)

- 1. (24%) Determine whether the following statements are true or false. If it is true fill a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) (\bigcirc) Language $\{xyz \mid x, y, z \in \{a, b\}^* \text{ and } x = z^R \text{ and } |x| \ge 1 \}$ is regular.
 - (b) (\bigcirc) Let A and B be two regular languages, then $A \oplus B$ is also regular, where $A \oplus B = (A B) \cup (B A)$.
 - (c) (\times) Just as Turing Machine's encoding, every DFA M can also be encoded as strings "M", then the language {"M"| DFA M rejects "M"} is regular.
 - (d) (\times) Language $\{a^mb^nc^kd^l|m,n,k,l\in\mathbb{N},m\geq l \text{ and } n\leq k\}$ is not context free.
 - (e) (\times) For languages L_1, L_2 and L_3 , if $L_1 \subseteq L_2 \subseteq L_3$ and both L_1 and L_3 are context free, then L_2 is also context free.
 - (f) (\times) k-tapes Turing Machines can decide more languages than 1-tape Turing Machines.
 - (g) (\bigcirc) Language {"M" | Turing machine M halts on at least 2013 inputs} is recursively enumerable, but not recursive.
 - (h) () The set of all primitive recursive functions is a proper subset of the set of all recursive functions.
 - (i) (\bigcirc) There exists a language L such that L is recursively enumerable, and \overline{L} is recursive.
 - (j) (\times) Language {"M" | Turing machine M does not halt on "M"} is recursively enumerable.
 - (k) () The recursively enumerable languages are closed under intersection, but not closed under complement.
 - (l) () There are countably many Turing machines, and uncountably many languages, so most languages are not recursively enumerable.

- 2. (20%) Decide whether the following languages are regular or not and provide a formal proof for your answer.
 - (a) $L_1 = \{a^m b^n c^k \mid m, n, k \in \mathbb{N} \text{ and } m \neq n + k \}.$
 - (b) $L_2 = \{a^m b^n c^k \mid m, n, k \in \mathbb{N} \text{ and } (m \not\equiv (n+k)) \mod 2 \}.$

Solution:

(a) L_1 is not regular. $\cdots 5$ pt

Assume L_1 is regular, then $\overline{L_1}$ is also regular, therefore so is $\overline{L_1} \cap a^*b^*$. Let n be the constant whose existence the pumping theorem guarantees.

- Choose string $w = a^n b^n \in \overline{L_1} \cap a^* b^*$, where $n \in \mathbb{N}$ and $n \geq 1$. So the pumping theorem must hold.
- Let w = xyz such that $|xy| \le n$ and $y \ne e$, then $y = a^i$ where i > 0. But then $xz = a^{n-i}b^n \notin \overline{L_1} \cap a^*b^*$.

The theorem fails, therefore $\overline{L_1} \cap a^*b^*$ is not regular, hence L_1 is not regular. $\cdots 5$ pt

(b) L_2 is regular. $\cdots 5$ pt

Since L_2 can be represented by the following regular expression:

$$(aa)^*((bb)^*b(cc)^* \cup (bb)^*(cc)^*c) \cup (aa)^*a((bb)^*b(cc)^*c \cup (bb)^*(cc)^*).$$

 $\cdots 5pt$

- 3. (20%) Let $\Sigma = \{a, b, c\}$. Let $L_3 = \{w | w \in \{a, b, c\}^*, \#_b(w) = \#_c(w)\}$. Where $\#_z(w)$ is the number of appearances of the character z in w. For example, the string $x = baccabcbcb \in L_3$, since $\#_b(x) = \#_c(x) = 4$. Similarly, the string $x = abcaba \notin L_3$, since $\#_b(x) = 2$ and $\#_c(x) = 1$.
 - (a) Construct a context-free grammar that generates the language L_3 .
 - (b) Construct a pushdown automata that accepts L_3 .

Solution: (a) The CFG for L_3 is $G = (V, \Sigma, S, R)$, where $V = \{S, A, a, b, c\}$, $\Sigma = \{a, b, c\}$, and $\cdots 3pt$

$$R = \{S \to bSc|cSb|SS|AS|e, A \to aA|e\}.$$

 $\cdots 7pt$

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

	(q,σ,eta)	$(\;p,\gamma\;)$
$K = \{p, q\}$	(p,e,e)	(q, S)
$(\underline{P},\underline{q})$	(q, e, S)	(q,aSb)
$\Sigma = \{a, b, c\}$	(q, e, S)	(q, bSa)
$\Delta = \{a, b, c\}$	(q, e, S)	(q,SS)
$\Gamma = \{S, A, a, b, c\}$	(q, e, S)	(q, AS)
$\Gamma = \{\underline{b}, \Pi, \alpha, b, c\}$	(q, e, S)	(q,e)
e - n	(q,e,A)	(q,Aa)
$s = \underline{p}$	(q,e,A)	(q,e)
$F = \{a\}$	(q,e,a)	(q,a)
$F = \underline{\{q\}}$	(q,e,b)	(q,b)
	(q,e,c)	(q,c)

 $\cdots 10$ pt

4. (20%) The function $\varphi : \mathbb{N} \to \mathbb{N}$ given by

$$\varphi(x) = \begin{cases} x, & \text{if } x < 8\\ 4x + 1, & \text{if } x \ge 8 \end{cases}$$

- (a) Try to construct a Turing Machine to compute the function $\varphi(x)$. When describing the Turing machines, you can use the elementary Turing machines described in textbook. Always assume that the Turing machines start computation from the configuration $\triangleright \underline{\sqcup} x$ where x is represented by binary string, i.e. $x \in \{0,1\}^*$.
- (b) Show that the function $\varphi(x)$ is primitive recursive.

Solution:

(a) We can design the following Turing Machine to compute $\varphi(x)$:

 $\cdots 10$ pt

(b) Since $\varphi(x)$ can be expressed by

$$\varphi(x) = (x < 8) \cdot x + (1 \sim (x < 8)) \cdot (4x + 1)$$

where x < 8 is a primitive recursive predicate and x and 4x + 1 are primitive recursive, therefore so is $\varphi(x)$.

$$\cdots 10$$
pt

5. (16%) Let

Wwx 0,50 Jude 10,13 = d

 $L_4 = \{ M_1 M_2 M_2 | M_1 \text{ and } M_2 \text{ are TMs, both } M_1 \text{ and } M_2 \text{ halt on the string } ab \}.$

- (a) Show that L_4 is recursively enumerable. An informal description suffices.
- (b) Show that L_4 is not recursive.

Solution:

- (a) On input " M_1 " " M_2 ", we can use Universal Turing machine to simulate both M_1 and M_2 on the string ab. If both M_1 and M_2 halt then we halt and " M_1 " " M_2 " \in L_4 , otherwise continuous to simulation and the Universal Turing machine U always check the halting computation of M_1 and M_2 on string ab. Hence, L_4 is recursively enumerable. $\cdots 10$ pt
- (b) We show that if there were an algorithm for L_4 , then there would be an algorithm for solving the unsolvable halting problem $H = \{ \text{``}M\text{''}|M \text{ halts on } e \}$. Assume L_4 is decidable. Then, there exists a TM T that decides L_4 . We can construct T_H that decides H using T: $T_H(\text{``}M\text{''})$:

- 1. Construct TM M_1 : Input y, if $y \neq ab$ reject; otherwise, simulate M on e, and if M halts on e, accept.
- 2. Construct TM M_2 : Input y, if $y \neq ab$ and $y \neq e$ reject; otherwise, simulate M on e, and if M halts on e, accept.
- 3. Simulate T on " M_1 " " M_2 ".
- 4. If T accepts " M_1 " " M_2 ", accept.
- 5. If T rejects " M_1 " " M_2 ", reject.

Then $L(M_1) = \{ab\}$ if M halts on e; $L(M_1) = \emptyset$ otherwise. $L(M_2) = \{e, ab\}$ if M halts on e; $L(M_2) = \emptyset$ otherwise.

This correctly decides H. If "M" $\in H$, then M halts on e, then $L(M_1) = \{ab\}$, and $L(M_2) = \{e, ab\}$, hence both M_1 and M_2 halt on ab, so T accepts " M_1 "" M_2 " and then T_H accepts "M" in step 4. If "M" $\notin H$, then M does not halt on e, then neither M_1 nor M_2 halts on ab. So, T rejects " M_1 "" M_2 " and then T_H rejects in step 5.

But the halting language H is known to be undecidable, this is a contradiction. Thus our assumption that there was a machine T deciding L_4 must have been incorrect. There is no machine deciding L_4 . L_4 is not recursive.

····· 6**pt**

Enjoy your Spring Festival!