Penalized Model-Based Clustering with Application to Variable Selection

by Wooyoul Na, Jaehyeong Ahn

Department of Education, Konkuk University Department of Applied Statistics, Konkuk University jayahn0104@gmail.com

Data

$$X = (X_1, \cdots, X_p) = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}$$

$$Z = (z_1, \cdots, z_k)^T, \quad z_k \in 0, 1$$

X: Observed data of nxp dimension matrix

 z_k : Binary indicator of whether x_i is from component k (unobserved data)

Data

When z_k is observed

Length	Width	Species
1.4	0.2	setosa
1.4	0.2	setosa
1.3	0.2	setosa
1.5	0.2	setosa
1.4	0.2	setosa
4.7	1.4	versicolor
4.5	1.5	versicolor
4.9	1.5	versicolor
4.0	1.3	versicolor
4.6	1.5	versicolor

When z_k is not observed

Mixture Model

Example of mixture model with clusters

$$X \sim f(x; \Theta) = \pi_1 f_1(; \theta_2) + \pi_2 f_2(x; \theta_2) = \sum_{k=1}^K \pi_k f_k(x; \theta_k)$$

Under Assumption f_1 and f_2 are normal density

$$f_1(x; \theta_1) = \frac{1}{(2\pi)^{\frac{\rho}{2}} |\Sigma_1|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x - \mu_1)^T \Sigma_1^{-1}(x - \mu_1))$$

$$f_2(x; \theta_2) = \frac{1}{(2\pi)^{\frac{\rho}{2}} |\Sigma_2|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x - \mu_2)^T \Sigma_2^{-1}(x - \mu_2))$$

Model

Suppose that
$$P(z_k = 1) = \pi_k$$
. π_k is satisfying $0 \le \pi_k \le 1$ and $\sum_{k=1}^K \pi_k = 1$

$$f(x;\Theta) = \sum_{k=1}^{K} \pi_k f_k(x;\theta_k)$$

 f_k : k'th component from specific distribution

 θ_k : parameter of k'th component from specific distribution

(i) Likelihood for incomplete data

$$\log L(X|\Theta) = \sum_{i=1}^{n} \log \left[\sum_{k=1}^{K} \pi_k f_k(x_i|\theta_k) \right]$$

(ii) Likelihood for complete data

$$z_k \sim Ber(au_{ki})$$

$$logL_c(X|\Theta) = \sum_k \sum_i z_{ki} [log\pi_k + logf_k(x_i|\theta_k)] \quad \tau_{ki} = P(z_k = 1|x) = \frac{\pi_k f_k(x_i|\theta_k)}{\sum_{k=1}^K \pi_k f_k(x_i|\theta_k)}$$

EM algorithm

E-step (Expectation)

$$\tau_{ki}^{(m)} = \frac{\pi_i^{(m)} f_k(x_i | \theta_k^{(m)})}{\sum_{k=1}^K \pi_k^{(m)} f_k(x_i | \theta_k^{(m)})}$$

M-step (Maximization)

$$argmax_{(\Theta)}[E(logL_c(X|\Theta)) = \sum_{k} \sum_{l} \tau_{ki}[log\pi_k + logf_k(x_i|\theta_k)]$$

EM algorithm for Normal density

Assumption

$$f_k(x; \theta_k) = N(\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{\rho}{2}} |\Sigma_k|^{\frac{1}{2}}} exp(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k))$$

Take initial values about $\hat{\mu}_1, \dots, \hat{\mu}_k, \hat{\Sigma}_1, \dots, \hat{\Sigma}_k, \hat{\pi}_1, \dots, \hat{\pi}_k$

E-step(Expectation)

$$\tau_{ki}^{(m)} = \frac{\pi_i^{(m)} f_k(x_i | \theta_k^{(m)})}{\sum_{k=1}^K \pi_k^{(m)} f_k(x_i | \theta_k^{(m)})}$$

M-step(Maximazation)

$$\hat{\pi}_{k}^{(m+1)} = \sum_{i=1}^{n} \tau_{ki}^{(m)} / n$$

$$\hat{\mu}_{k}^{(m+1)} = \frac{\sum_{i=1}^{n} \tau_{ki}^{(m+1)} \hat{\mu}_{k}^{(m)}}{\sum_{i=1}^{n} \tau_{ki}^{(m+1)}}$$

$$\hat{\Sigma}_{k}^{(m+1)} = \frac{\sum_{i=1}^{n} \tau_{ki}^{(m)} (\mathbf{x}_{i} - \hat{\mu}_{k}^{(m)}) (\mathbf{x}_{i} - \hat{\mu}_{k}^{(m)})^{T}}{\sum_{i=1}^{n} \tau_{ki}^{(m)}}$$

Iterate E-step and M-step until converge

Penalized Model-based Clustering

Penalized likelihood

(i) Penalized log-likelihood

$$\log L_P(X|\Theta) = \sum_{i=1}^n \log \left[\sum_{k=1}^K \pi_k f_k(x_i|\theta_k)\right] - h_\lambda(\Theta) \qquad h_\lambda(\Theta) = \sum_{k=1}^K \sum_{p=1}^P |\mu_{kp}|$$

(ii) Penalized log-likelihood for complete data

$$\log L_{c,P}(X|\Theta) = \Sigma_k \Sigma_i z_{ki} [\log \pi_k + \log f_k(x_i|\theta_k)] - h_{\lambda}(\Theta)$$

EM algorithm for penalized model-based clustering

E-step

$$\tau_{ki} = P(z_k = 1|x) = \frac{\pi_k f_k(x_i|\theta_k)}{\sum_{k=1}^K \pi_k f_k(x_i|\theta_k)}$$

M-step

$$argmax_{(\Theta)}[E(logL_c(X|\Theta) - h_{\lambda}(\Theta)]$$

EM algorithm for penalized model-based clustering

Assumption

$$f_k(x; heta_k) = N(\mu_k, V) = rac{1}{(2\pi)^{rac{
ho}{2}} |V|^{rac{1}{2}}} \exp(-rac{1}{2}(x - \mu_k)^T V^{-1}(x - \mu_k))$$
 where $\Sigma_1 = \dots = \Sigma_k = V = egin{pmatrix} \sigma_1^2 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \sigma_p^2 \end{pmatrix}$

$$h_{\lambda}(\Theta) = \sum_{k=1}^{K} \sum_{p=1}^{P} |\mu_{kp}|$$

Formula: Estimation for penalized EM-algorithm

E-step

$$\tau_{ki}^{(m)} = \frac{\pi_i^{(m)} f_k(x_i | \theta_k^{(m)})}{\sum_{k=1}^K \pi_k^{(m)} f_k(x_i | \theta_k^{(m)})}$$

M-step

$$\hat{\sigma}_p^{2/(m+1)} = \sum_{k=1}^K \sum_{i=1}^n \left(\frac{\tau_{ki}^{(m)} (x_{ip} - \mu_{kp}^{(m)})^2}{n} \right) \quad \text{where } n = \sum_{k=1}^K \sum_{i}^m \tau_{ki} \qquad \hat{\pi}_k^{(m+1)} = \sum_{i=1}^n \tau_{ki}^{(m)} / n$$

$$\hat{\mu}_k^{(m+1)} = \textit{sign}(\tilde{\mu}_k^{(m+1)})(|\tilde{\mu}_k^{(m+1)}| - \frac{\lambda}{\Sigma_i \tau_{ki}^{(m+1)}} V^{(m+1)} \mathbf{1})_+ \qquad \quad \text{where } \tilde{\mu}_k^{(m+1)} = \frac{\sum_{i=1}^n \tau_{ki}^{(m+1)} x_i}{\sum_{i=1}^n \tau_{ki}^{(m+1)}}$$

$$\text{If } \lambda \leq |\frac{\Sigma_{i=1}^n \tau_{ki}^{(m+1)} \mathsf{x}_i}{\sigma_p^2(m+1)}|, \hat{\mu}_{kp}^{m+1)} = |\tilde{\mu}_{kp}^{(m+1)}| - \frac{\lambda \sigma_p^{2(m+1)}}{\Sigma_{i=1}^n \tau_{ki}^{(m+1)}} \qquad \qquad \text{If } \lambda > |\frac{\Sigma_{i=1}^n \tau_{ki}^{(m+1)}}{\sigma_p^{2(m+1)}}|, \hat{\mu}_{kp}^{(m+1)} = 0$$