

6. 3D Scalar Fields

ohm

Introduction

- **Medical Applications**
 - CT (Computed Tomography)
 - MRI (Magnetic Resonance Imaging)
 - Confocal Microscopy
 - 3D Ultrasound (US is usually 2D)
- Materials sciences
 - Industrial CT
 - Quality control, non-destructive testing
 - E.g. statue, engine block, wheels, etc.
- Geosciences
 - Geoseismic data
 - Exploration of natural resources (oil, gas)
 - Meteorological data
- Numerical simulations
 - Particle simulations
 - Finite element or finite differences methods, etc.

ohm

Introduction

Example: typical medical volume data

- Computed Tomography (CT)
 - Stack of slice images
 - Number of slice images: 100 2000
 - Typical image size: 512 x 512 pixels
 - Data representation: 12 or 16 bits
 - Typical voxel sizes: 0.4x0.4x0.4mm3, 0.7x0.7x1.2mm3
 - Representations (based on X-ray projections)
 - Good contrast between air, fat, muscle, bone
 - Metal objects are "bad" but possible
 - Hounsfield scale: -1000 3095 (12 bits)
 - Direct correlation between data values and tissue types

Introduction

Example: typical medical volume data

- Magnetic Resonance Tomography (MRT)
 - Stack of slice images
 - Number of slice images: 40 250
 - Typical image size: 512x512 pixels
 - Data representation: 12 or 16 bits
 - Typical voxel sizes: 0.7x0.7x0.7mm3, 1.0x1.0x1.7mm3
 - Representations (no ionizing radiation!)
 - Better contrast for soft tissue, bone is dark
 - Metal object scans are "not possible"
 - Nothing comparable to Hounsfield scale
 - No direct correlation between data values and tissue types

ohm

Introduction

More examples

6.1 Volume Visualization

Ω hm

Volume Visualization

Possible characteristics of volume data

- Essential information in the interior
- Cannot be described by geometric representation
 - Fire, clouds, gaseous phenomena
- Distinguish between shape
 - Given by the geometry of the grid
- and appearance
 - Given by the scalar values
- Even if the data could be described geometrically, there are, in general, too many primitives to be represented

Volume Visualization

Grid structures

- Structured
 - Uniform
 - Rectilinear
 - Curvilinear
- Unstructured
 - Tetrahedral
 - Mixed elements
 - Hexahedron
 - Tetrahedron
 - Prism
 - Pyramid
 - Scattered data

Volume Visualization

Definitions (most common for structured uniform grids)

- Pixel
 - "Picture element"

- Voxel
 - "Volume element"
 - Values are constant within a region around a grid point
- Cell
 - Values between grid points are resampled by interpolation

Volume Visualization

Main visualization approaches

- Slicing
 - Standard 2D approach
 - Techniques for 2D scalar fields
- Indirect volume rendering
 - Convert/reduce volume data to surface representation Stichwort: Isoflächen
 - Rendering with traditional techniques
- Direct volume rendering
 - Take volume data as real volumetric object
 - Consider as light-emitting, semi-transparent gel
 - Directly get a 3D representation of the volume data

Volume Visualization

Volume Visualization

Considerations

- Indirect volume rendering techniques
 - Often result in complex representations
 - Preprocessing of the surface representation might help
 - Standard graphics hardware for interactive display
- Direct volume rendering techniques
 - "Global" representation integrating physical characteristics
 - Interactive display difficult due to numerical complexity
 - Use graphics hardware for acceleration
- Goal
 - Integration of different techniques for optimal display
 - The most correct method in terms of physical realism may not be the most optimal one in terms of understanding the data

Volume Visualization Example

- Slicing
 - Display the volume data, mapped to colors, on a slice plane
- Iso-surfacing
 - Generate opaque / semi-opaque surfaces
- Transparency effects
 - Volume material attenuates reflected or emitted light

Orthogonal slicing

- Resample the volume data on parallel planes perpendicular to the x-, y-or z-axis
 - Example: z = -25, -24, ..., 23, 24
 - Let the user interactively change the z-value

- Use visualization techniques for 2D scalar fields
 - Color coding, isolines, height fields, ...

• Example: Visible male

• Example: Visible male

Prof. Dr. Matthias Teßmann

Coronar

sagittal

• Simultaneous slicing in x-, y-or z-axis

Slicing of Volume Data

Oblique slicing (MPR - multiplanar reformating)

- Resample volume data on arbitrarily oriented slices
- Interpolation in software on CPU
- Exploit graphics hardware
 - Store volume data in 3D texture memory
 - Get sectional polygon (plane clipped with bounding box of volume)
 - Render textured polygon

6.3 Classification

Classification

Transfer function

- Map voxel values to representable entities
 - Color, intensity, opacity, etc.

Ωhm

Classification

Transfer function

Grey value transformation ("windowing")

Adjustment of width and center

ohm

Classification

Goals and issues

- Empowers user to select "structures"
- Extract important features of the data set
- Classification is non trivial
- Histogram can be a useful hint
- Often interactive manipulation of transfer functions needed

Classification

Example - CT data

- Linear ramp transfer function
- f1: $[-3000, 1000] \rightarrow [0, 255]$

All data values visible but no details displayed

Classification

Example - CT data

Center: 0 (water)

Width: 500

• $f2: [-250, 250] \rightarrow [0, 255]$

Blood is highlighted

ohm

Classification

Example - CT data

Center: 1000 (bone)

Width: 500

• $f2: [750,1250] \rightarrow [0,255]$

Only bone is displayed

Classification

6.4 Indirect Volume Rendering

Indirect volume rendering

Introduction

- If f(x,y,z) is differentiable in every point, then the level sets $\{(x,y,z)|f(x,y,z)=c\}$ are smooth surfaces (denoted iso-surfaces) to the iso-value c
- Techniques to reconstruct isosurfaces
 - Obaque cube (Cuberille method), Dividing cube
 - Marching cube
 - Marching tetrahedra
 - Surfaces from contours (e.g. NUAGES)
- While opaque cube and marching cube methods are restricted to structured grids, the marching tetrahedra method can deal with any kind of mesh

6.4.1 Opaque Cubes

Ωhm

Opaque Cubes

- Approach [Herman, 1979]
 - Volume data on regular grid
 - Detect all cells that intersect the iso-surface f = c by checking vertices
 - If fi,j,k > c mark vertex (i,j,k) with +, otherwise with -
 - Find all boundary front-faces
 - Faces where normal points towards viewpoint (N·V > 0) and where normal points outwards the cell
 - Render these faces as shaded polygons
 - "Voxel" point of view: NO interpolation within cells

Ωhm

Opaque Cubes

- Evaluation
 - Method yields blocky surfaces since cell is either opaque or not
 - Improvement through adaptive subdivision
 - Subdivide each marked cube into eight smaller cubes
 - Use trilinear interpolation to determine the function value in the center
 - Repeat the cuberille approach for each new cube until pixel size
 - This is known as "dividing cubes"

6.4.2 Marching Cubes

ohm

Marching Cubes -> Oberflächen

- Approach [Lorensen, Cline, 1987]
 - Better approximation of the "real" iso-surface
 - 3D analog to the isoline construction method (marching squares)
 - Strategy
 - Works on the original data
 - Approximates the surface by a triangle mesh
 - Surface found by linear interpolation along cell edges
 - Uses gradients as the normal vectors of the iso-surface
 - Efficient computation by means of lookup tables

• THE standard algorithm for geometry-based iso-surface extraction

Marching Cubes

- The core algorithm
 - Cell consists of 4 (8) pixel (voxel) values
 - (i+[0/1], j+[0/1], k+[0/1])
 - Consider a cell
 - Classify each vertex as inside or outside
 - Build an index
 - Get edge list from table[index]
 - Interpolate the edge location
 - Compute gradients
 - Consider ambiguous cases
 - Go to next cell

Marching Cubes

Step 1

Consider a cell defined by eight data values

Marching Cubes

Step 2

- Classify each voxel according to whether it lies
 - Outside the surface (value > iso-surface value)
 - Inside the surface (value ≤ iso-surface value)

Prof. Dr. Matthias Teßmann

37

Marching Cubes

Step 3

Use binary labeling of each voxel to create an index

Ωhm

Marching Cubes

Step 4

- For a given index, access an array storing a list of edges
 - All 256 cases can be derived from 1+14 = 15 base cases due to symmetries

Marching Cubes

Step 4 (cont.)

- Get edge list from table
 - Example for

$$Index = 10110001$$

Marching Cubes

Step 5

 For each triangle edge, find the vertex location along the edge using linear interpolation of the voxel values

Marching Cubes

Step 6

Calculate normal at each cube vertex (central differences)

•
$$G_x = V(x+1,y,z) - V(x-1,y,z)$$

 $G_y = V(x,y+1,z) - V(x,y-1,z)$
 $G_z = V(x,y,z+1) - V(x,y,z-1)$

 Use linear interpolation to compute the polygon vertex normal (of the iso-surface)

Marching Cubes

Step 7

- Consider ambiguous cases
 - Ambiguous cases
 - 3, 6, 7, 10, 12, 13
 - Adjacent vertices:
 - Different states
 - Diagonal vertices:
 - Same state
 - Resolution
 - Choose one case (the right one!)

Marching Cubes

Step 7 (cont.)

- Consider ambiguous cases
- Asymptotic decider [Nielson, Hamann, 1991] (comp. marching squares!)
 - Assume bilinear interpolation within a face
 - Hence iso-surface is a hyperbola
 - Compute point p where asymptotes meet
 - Sign of S(p) decides on the connectivity
 - This is analog to the 2D case

Marching Cubes

Evaluation

- Up to 5 triangles per cube
- Dataset of 512³ voxels
 - Can result in several millions of triangles (many Mbytes!)
- Both very big and very small triangles
 - Post-processing is necessary to get a "good" triangular mesh
- Many special cases
 - Ambiguity in cases can cause holes if arbitrary choices are made
 - Special cases at the boundaries of the volume

(a) Volume data

(c) Polygonal Apploximation

Ωhm

Marching Cubes

Enhancements

- Semi-transparent representation
 - Requires sorting
- Optimization
 - Reuse values from prior calculations
 - Prevent vertex replication
 - Mesh simplification
- Accelerated display
 - Graphics hardware
- High quality display
 - Ray-tracing algorithm

Ωhm

Marching Cubes

Examples

f = 5 (bad)

f = 13 (bad)

 $f = 45 \pmod{9}$

f = 122 (good)

f = 146 (bad)

f = 170 (good)

6.4.3 Marching Tetrahedra

Marching Tetrahedra

Alternative to Marching Cubes

- Split each cube into five or six tetrahedra
 - Depending on the method used for splitting the cube
- Example for 5 tetrahedra

Yields more triangles and "rougher" surface than MC

Marching Tetrahedra

- Approach
 - Primarily used for unstructured grids
 - Process each cell similarly to the MC-algorithm
 - Mark vertices with + or -, depending on f > c or not
 - Only two possible non-trivial cases for a tetrahedron
 - One "-" and three "+" (or vice versa)
 - Intersection surface is a triangle
 - Two "-" and two "+"
 Intersection surface
 is a quadrilateral
 - Split into two triangles using the shorter diagonal

Marching Tetrahedra

- Properties
 - Fewer cases, i.e. 3 instead of 15
 - Linear interpolation within cells
 - No problems with consistency between neighboring cells
 - Also many triangles of different size
 - Number of generated triangles might increase considerably compared to the MC algorithm due to splitting into tetrahedra
 - Huge amount of geometric primitives
 - But, several improvements exist
 - Hierarchical surface reconstruction
 - View-dependent surface reconstruction

Mesh decimation

6.4.4 Surfaces from Contours

Surfaces from Contours

- Approach
 - Explicit segmentation
 - Find closed contours in successive 2D slices
 - Often semi-automatic procedure with user-interaction!
 - Requires a lot of expertise
 - Represent contours as poly-lines
 - Labeling
 - Identify different structures: e.g. brain, vessels, ...
 - Reconstruction
 - Connect contours representing the same object from neighboring slices and form triangles
 - Rendering
 - Display triangles

Surfaces from Contours

Example

- Identify for edge on level 2 corresponding vertex on level 1
- Identify for edge on level 1 corresponding vertex on level 2

Ωhm

Surfaces from Contours

Surfaces from Contours

- Problems
 - Many contours in each slice
 - There is a high variation between slices
 - Correspondence between neighboring slices can be difficult
 - Branching has to be handled (not always easy)
- Literature
 - B. Geiger: NUAGES (INRIA France, 1993) see paper and software http://www-sop.inria.fr/prisme/fiches/Medical/index.html.en
 - F. Cazals, J. Giesen, Delaunay Triangulation Based Surface Reconstruction: Ideas and Algorithms, INRIA, Tech Report 2004
 - D. Wang, O. Hassan, K. Morgan, N. Weatherill, Efficient surface reconstruction from contours based on two-dimensional Delaunay triangulation, Int. J. Numer. Meth. Engng 2006; 65:734–751

Summary

Summary

- Advantages
 - Unambiguous definition of a surface
 - Clear visual impression (light!)
 - Use standard graphics hardware for rendering
- Disadvantages
 - Explicit segmentation required
 - Difficult and time consuming
 - Exact surface
 - Ill-posed problem in regions of little data value variation
 - Information reduction
 - Too many triangles in case of complex structures