

C interfaces to GALAHAD ROOTS

Jari Fowkes and Nick Gould STFC Rutherford Appleton Laboratory Sun Apr 2 2023

1 (GALAHAD C package qpb	1
	1.1 Introduction	1
	1.1.1 Purpose	1
	1.1.2 Authors	1
	1.1.3 Originally released	1
	1.1.4 Terminology	2
	1.1.5 Method	2
	1.1.6 Reference	3
	1.1.7 Call order	3
	1.1.8 Unsymmetric matrix storage formats	4
	1.1.8.1 Dense storage format	4
	1.1.8.2 Sparse co-ordinate storage format	4
	1.1.8.3 Sparse row-wise storage format	4
	1.1.9 Symmetric matrix storage formats	4
	1.1.9.1 Dense storage format	4
	1.1.9.2 Sparse co-ordinate storage format	5
	1.1.9.3 Sparse row-wise storage format	5
	1.1.9.4 Diagonal storage format	5
	1.1.9.5 Multiples of the identity storage format	5
	1.1.9.6 The identity matrix format	5
	1.1.9.7 The zero matrix format	5
0 E	File Index	7
2 1	2.1 File List	7
	Z.T THE LIST	,
3 F	File Documentation	9
	3.1 galahad_qpb.h File Reference	9
	3.1.1 Data Structure Documentation	10
	3.1.1.1 struct qpb_control_type	10
	3.1.1.2 struct qpb_time_type	14
	3.1.1.3 struct qpb_inform_type	14
	3.1.2 Function Documentation	15
	3.1.2.1 qpb_initialize()	15
	3.1.2.2 qpb_read_specfile()	16
	3.1.2.3 qpb_import()	16
	3.1.2.4 qpb_reset_control()	18
	3.1.2.5 qpb_solve_qp()	18
	3.1.2.6 qpb_information()	20
	3.1.2.7 qpb_terminate()	21
4 5	Example Documentation	23
•	4.1 qpbt.c	23
	4.2 qpbtf.c	

Chapter 1

GALAHAD C package roots

1.1 Introduction

1.1.1 Purpose

Use classical formulae together with Newton's method to find all the real roots of a real polynomial.

Currently, only the control and inform parameters are exposed; these are provided and used by other GALAHAD packages with C interfaces.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

April 2005, C interface January 2022.

1.1.4 Method

Littlewood and Ferrari's algorithms are used to find estimates of the real roots of cubic and quartic polynomials, respectively; a stabilized version of the well-known formula is used in the quadratic case. Newton's method is used to further refine the computed roots if necessary. Madsen and Reid's method is used for polynomials whose degree exceeds four.

Chapter 2

File Index

2 1	Fi	le	l i	et
Z . I	ГΙ	ıe	ட	31

Here is a list of all files with brief descriptions:	
galahad_roots.h	. ??

4 File Index

GALAHAD 4.0 C interfaces to GALAHAD ROOTS

Chapter 3

File Documentation

3.1 galahad_roots.h File Reference

```
#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
```

Data Structures

- struct roots_control_type
- struct roots_inform_type

3.1.1 Data Structure Documentation

3.1.1.1 struct roots_control_type

control derived type as a C struct

Data Fields

bool	f_indexing	use C or Fortran sparse matrix indexing
int	error	error and warning diagnostics occur on stream error
int	out	general output occurs on stream out
int	print_level	the level of output required is specified by print_level
real_wp_	tol	the required accuracy of the roots
real_wp_	zero_coef	any coefficient smaller in absolute value than zero_coef will be regarde to
		be zero
real_wp_	zero_f	any value of the polynomial smaller in absolute value than zero_f will be
		regarded as giving a root
bool	space_critical	if .space_critical true, every effort will be made to use as little space as
		possible. This may result in longer computation time
bool	deallocate_error_fatal	if .deallocate_error_fatal is true, any array/pointer deallocation error will
		terminate execution. Otherwise, computation will continue
char	prefix[31]	all output lines will be prefixed by .prefix(2:LEN(TRIM(.prefix))-1) where
		.prefix contains the required string enclosed in quotes, e.g. "string" or
		'string'

6 File Documentation

3.1.1.2 struct roots_inform_type

inform derived type as a C struct

Data Fields

int	status	return status. See ROOTS_solve for details
int	alloc_status	the status of the last attempted allocation/deallocation
char	bad_alloc[81]	the name of the array for which an allocation/deallocation error ocurred

GALAHAD 4.0 C interfaces to GALAHAD ROOTS