

Random Process

Lecture 6

October 16, 21, 23 and 28, 2025

Outline

- Outline
- 2 Random Process
- Important Classes of Random Processes
 - Markov Processes
 - Independent Increment Processes
 - Counting Processes and Poisson Process
- Mean and Autocorrelation Functions

Random (or Stochastic) Process

- A random process (RP) (or stochastic process) is an infinite indexed collection of random variables $\{X(t): t \in \mathcal{T}\}$, defined over a common probability space (Ω, \mathcal{F}, P) . \mathcal{T} is the index set.
- The index parameter t is typically time, but can also be a spatial dimension (for images, videos, ...).
- Random processes are used to model random experiments that evolve in time:
 - Received sequence/waveform at the output of a communication channel
 - Packet arrival times at a node in a communication network
 - Thermal noise in a resistor
 - Daily price of a stock
 - Winnings or losses of a gambler

Questions Involving Random Processes

- Dependencies of the random variables of the process
 - How do future received values depend on past received values?
 - How do future prices of a stock depend on its past values?
- Long term averages
 - What is the proportion of time a queue is empty?
 - What is the average noise power at the output of a circuit?
- Extreme or boundary events
 - What is the probability that a link in a communication network is congested?
 - What is the probability that the maximum power in a power distribution line is exceeded?
 - What is the probability that a gambler will lose all his captial?
- Estimation/detection of a signal from a noisy waveform

Two Ways to View a Random Process

- A random process can be viewed as a function $X(t,\omega)$ of two variables, time $t\in\mathcal{T}$ and the outcome of the underlying random experiment $\omega\in\Omega$
 - For fixed t, $X(t,\omega)$ is a random variable over Ω
 - For fixed ω , $X(t,\omega)$ is a deterministic function of t, called a sample function

Discrete Time Random Process

- ullet A random process is said to be discrete time if index set ${\mathcal T}$ is a countably infinite set, e.g.,
 - $\mathbb{N} = \{0, 1, 2, \cdots\}$ = set of nonnegaive integers
 - $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \} = \text{set of integers}$
- In this case the process is typically denoted by X_n , for $n \in \mathbb{N}$ (or \mathbb{Z}), a countably infinite set, and is simply an infinite sequence of random variables.
- A sample function for a discrete time process is called a sample sequence or sample path
- In a discrete-time process X_n s can be discrete, continuous, or mixed random variables.

Example

- Let $Z \sim \mathsf{Uniform}[0,1]$, and define the discrete time process $X_n = Z^n$ for $n \geq 1$
- Sample paths:

• First-order pdf of the process: For each n, $X_n = Z^n$ is an RV; the sequence of pdfs of X_n is called the first-order pdf of the process.

• Since X_n is a differentiable function of the continuous RV Z, we can find its pdf as

$$f_{X_n}(x) = \frac{1}{nx^{(n-1)/n}} = \frac{1}{n}x^{\frac{1}{n}-1} \quad 0 \le x \le 1$$

Continuous Time Random Process

- ullet A random process is continuous time if the index set ${\mathcal T}$ is a continuous set.
- Example: Sinusoidal Signal with Random Phase

$$X(t) = \alpha \cos(\omega t + \Theta), \quad -\infty < t < \infty \text{ or } t \ge 0$$

where $\Theta \sim \text{Uniform}[0, 2\pi]$, and α and ω are constants.

Sample functions:

 The first-order pdf of the process is the pdf of $X(t) = \alpha \cos(\omega t + \Theta)$. It turns out to be

$$f_{X(t)}(x) = \frac{1}{\alpha \pi \sqrt{1 - (x/\alpha)^2}} - \alpha < x < \alpha$$

Note that the pdf is independent of t. The graph of the pdf is shown below.

Specifying a Random Process

- In the above examples we specified the random process by describing the set of sample functions (sequences, paths) and explicitly providing a probability measure over the set of events (subsets of sample functions).
- This way of specifying a random process has very limited applicability, and is suited only for very simple processes.
- A random process is typically specified (directly or indirectly) by specifying all its *n*-th order cdfs (pdfs, pmfs), i.e., the joint cdf (pdf, pmf) of the samples

$$X(t_1), X(t_2), \cdots, X(t_n)$$

for every order n and for every set of n points $t_1, t_2, \dots, t_n \in \mathcal{T}$

• The following examples of important random processes will be specified (directly or indirectly) in this manner.

Important Classes of Random Processes

- IID process: $\{X_n : n \in \mathbb{N}\}$ is an IID process if the RVs X_n are i.i.d. (independent and identically distributed). Examples:
 - Bernoulli process: $X_1, X_2, \dots, X_n, \dots$, i.i.d. $\sim \text{Bern}(p)$
 - Discrete-time white Gaussian noise (WGN): $X_1, X_2, \cdots, X_n, \cdots$, i.i.d. $\sim \mathcal{N}(0, \sigma^2)$
- Here we specified the n-th order pmfs (pdfs) of the processes by specifying the first-order pmf (pdf) and stating that the RVs are independent
- It would be quite difficult to provide the specifications for an IID process by specifying the probability measure over the subsets of the sample space.

The Random Walk Process

Important Classes of Random Processes

• Let $Z_1, Z_2, \dots, Z_n, \dots$ be i.i.d., where

$$Z_n = \left\{ egin{array}{ll} +1 ext{ (heads)} & ext{with probability } rac{1}{2} \ -1 ext{ (tails)} & ext{with probability } rac{1}{2} \end{array}
ight.$$

The random walk process is defined by

$$X_0 = 0, \quad X_n = \sum_{i=1}^n Z_i, \quad n \ge 1$$

- Again this process is specified by (indirectly) specifying all n-th order pmfs
- Sample path: The sample path for a random walk is a sequence of integers, e.g.,

$$0, +1, 0, -1, -2, -3, -4, \cdots$$

or

$$0, +1, +2, +3, +4, +3, +4, +3, +4, \cdots$$

• Example:

Important Classes of Random Processes

• First-order pmf: It is easy to see that $P(X_n = k) = 0$ if k < -n or k > n.

• $P(X_n = k) = ?$. Suppose in *n* steps, there are r + 1's (steps to "right"), then the number of -1's (steps to "left") are n-r. So

$$k=r-(n-r)=2r-n \Rightarrow r=\frac{n+k}{2}$$

Since r, k and n are integers, n + k must be an even number. So $P(X_n = k) = 0$ if n + k is odd.

- If *n* is even, then k = 2r n must be even. If *n* is odd, then *k* must be odd.
- Thus, for n + k even,

$$P(X_n = k) = P\left(\frac{n+k}{2} \text{ heads in } n \text{ independent coin tosses}\right)$$
$$= \binom{n}{\frac{n+k}{2}} 2^{-n} \text{ for } -n \le k \le n$$

- A discrete-time random process X_n is said to be a Markov process if the process future and past are conditionally independent given its present value
- Mathematically this can be rephrased in several ways. For example, if the RVs $\{X_n:n\geq 1\}$ are discrete, then the process is Markov iff the conditional pmfs

$$P_{X_{n+1}|X^n}(x_{n+1}|x_n, \mathbf{x}^{n-1}) = P_{X_{n+1}|X_n}(x_{n+1}|x_n)$$

for every n, where $\mathbf{X}^n = \{X_i : 1 \le i \le n\}$.

• If the RVs $\{X_n:n\geq 1\}$ are continuous, then the process is Markov iff the pdfs

$$f_{X_{n+1}|X^n}(x_{n+1}|x_n, x^{n-1}) = f_{X_{n+1}|X_n}(x_{n+1}|x_n)$$

for every n.

• IID processes are Markov

• A continuous-time process X(t) is said to be Markov if $X(t_{k+1})$ and $(X(t_1), X(t_2), \cdots, X(t_{k-1}))$ are conditionally independent given $X(t_k)$ for every $0 \le t_1 < t_2 < \cdots < t_k < t_{k+1}$ and every $k \ge 2$. Equivalently, iff

$$f_{X(t_{k+1})|X(t_1),X(t_2),\cdots,X(t_k)}(x_{k+1}|x_k,\boldsymbol{x}^{k-1}) = f_{X(t_{k+1})|X(t_k)}(x_{k+1}|x_k)$$

• The random walk process is Markov. To see this consider $(X_n = \sum_{i=1}^n Z_i = X_{n-1} + Z_n)$

$$P(X_{n+1} = x_{n+1} | \mathbf{X}^n = \mathbf{x}^n) = P(X_n + Z_{n+1} = x_{n+1} | \mathbf{X}^n = \mathbf{x}^n)$$

$$= P(X_n + Z_{n+1} = x_{n+1} | X_n = x_n)$$

$$= P(X_{n+1} = x_{n+1} | X_n = x_n)$$

• A discrete-time random process $\{X_n : n \ge 0\}$ is said to be independent increment if the increment random variables

$$X_{n_1}, X_{n_2} - X_{n_1}, \cdots, X_{n_k} - X_{n_{k-1}}$$

are independent for all sequences of indices such that $0 \le n_1 < n_2 < \cdots < n_k$.

• Example: Random walk is an independent increment process . To see this consider $(X_n = \sum_{i=1}^n Z_i)$

$$X_{n_1} = \sum_{i=1}^{n_1} Z_i, \quad X_{n_2} - X_{n_1} = \sum_{i=n_1+1}^{n_2} Z_i, \quad \cdots$$

$$X_{n_k} - X_{n_{k-1}} = \sum_{i=n_{k-1}+1}^{n_k} Z_i$$

They are independent because they are functions of independent random variables/vectors.

• A continuous-time random process $\{X(t): t \geq 0\}$ is said to be independent increment if the increment random variables

$$X(t_1), X(t_2) - X(t_1), \dots, X(t_k) - X(t_{k-1})$$

are independent for all sequences of time instances such that $0 < t_1 < t_2 < \cdots < t_k$

- The independent increment property makes it easy to find the *n*-th order pmfs (pdfs) of an independent increment process (such as random walk process) from knowledge only of the first-order pmf/pdf
- Example: Find $P(X_5 = 3, X_{10} = 6, X_{20} = 10)$ for random walk $\{X_n\}$ Solution: We use the independent increment property as follows (recall $X_n = \sum_{i=1}^n Z_i$)

$$P(X_5 = 3, X_{10} = 6, X_{20} = 10) = P(X_5 = 3, X_{10} - X_5 = 3, X_{20} - X_{10} = 4)$$

$$= P(X_5 = 3) P(X_5 = 3) P(X_{10} = 4) = {5 \choose 4} 2^{-5} \times {5 \choose 4} 2^{-5} \times {10 \choose 7} 2^{-10}$$

$$= 3000 \times 2^{-20} \quad \text{(use expression from slide 15)}$$

Notice that $X_{10} - X_5 = \sum_{i=6}^{10} Z_i \sim \sum_{i=1}^5 Z_i$.

• In general if a process is independent increment, then it is also Markov. To see this let $\{X_n\}$ be an independent increment process. Define the column vector

$$\Delta X^n = [X_1, X_2 - X_1, \cdots, X_n - X_{n-1}]^{\top}$$

Then the conditional pmf (assuming X_n 's are discrete RVs, else use conditional pdf)

$$P_{X_{n+1}|\mathbf{X}^n}(x_{n+1}|\mathbf{X}^n) = P(X_{n+1} = x_{n+1}|\mathbf{X}^n = x^n)$$

$$= P(X_{n+1} - X_n = x_{n+1} - x_n|\Delta \mathbf{X}^n = \Delta \mathbf{x}^n, X_n = x_n)$$

$$= P(X_{n+1} - X_n = x_{n+1} - x_n|X_n = x_n)$$

$$= P(X_{n+1} = x_{n+1}|X_n = x_n)$$

 The converse is not necessarily true, e.g., IID processes are Markov but not independent increment.

Counting Processes and Poisson Process

Important Classes of Random Processes

A continuous-time random process N(t), $t \ge 0$, is said to be a counting process if N(0) = 0 and N(t) = n, $n \in \{0, 1, 2, \dots\}$, is the number of events in the time interval 0 to t (hence $N(t_2) \geq N(t_1)$ for every $t_2 > t_1 \geq 0$).

 t_1, t_2, \cdots are the arrival times or the wait times of the events. $t_1, t_2 - t_1, \cdots$ are the interarrival times of the events

- The events may be:
 - Photon arrivals at an optical detector
 - Packet arrivals at a router
 - Student arrivals at a class
- The Poisson process is a counting process in which the events are "independent of each other" (independent increment process)

Important Classes of Random Processes

- More precisely, N(t) is a Poisson process with rate (intensity) $\lambda > 0$ if:
 - N(0) = 0
 - N(t) is independent increment
 - $N(t_2) N(t_1) \sim \text{Poisson}(\lambda(t_2 t_1))$ for all $t_2 > t_1 > 0$
- Thus.

$$P(N(t_2) - N(t_1) = k) = \frac{[\lambda(t_2 - t_1)]^k}{k!} e^{-\lambda(t_2 - t_1)}, \quad k = 0, 1, \dots$$
$$= \frac{[\lambda(t_2 - t_1)]^k}{k!} e^{-\lambda(t_2 - t_1)} u(k)$$

To find the 2nd order pmf, we use the independent increment property:

Important Classes of Random Processes

$$P(N(t_1) = n_1, N(t_2) = n_2) = P(N(t_1) = n_1, N(t_2) - N(t_1) = n_2 - n_1)$$

$$= P(N(t_1) = n_1)P(N(t_2) - N(t_1) = n_2 - n_1)$$

$$= \frac{[\lambda t_1]^{n_1}}{n_1!} e^{-\lambda t_1} u(n_1) \frac{[\lambda (t_2 - t_1)]^{n_2 - n_1}}{(n_2 - n_1)!} e^{-\lambda (t_2 - t_1)} u(n_2 - n_1)$$

$$= \frac{\lambda^{n_2} t_1^{n_1} (t_2 - t_1)^{n_2 - n_1}}{n_1! (n_2 - n_1)!} e^{-\lambda t_2} u(n_1) u(n_2 - n_1)$$

This generalizes to k-th order pmf:

$$P(N(t_1) = n_1, N(t_2) = n_2, \dots, N(t_k) = n_k)$$

$$= P(N(t_1) = n_1, N(t_2) - N(t_1) = n_2 - n_1, \dots, N(t_k) - N(t_{k-1}) = n_k - n_{k-1})$$

$$= P(N(t_1) = n_1)P(N(t_2) - N(t_1) = n_2 - n_1) \dots P(N(t_k) - N(t_{k-1}) = n_k - n_{k-1})$$

$$= \dots \dots$$

Mean and Autocorrelation Functions

- For a random vector **X** the first and second order moments are
 - mean $\mu = E\{X\}$
 - correlation matrix $\mathbf{R}_X = E\{\mathbf{X}\mathbf{X}^{\top}\}$
- For a random process $\{X(t)\}$ the first and second order moments are
 - mean function $\mu_X(t) = E\{X(t)\}\$ for $t \in \mathcal{T}$
 - autocorrelation function $R_X(t_1, t_2) = E\{X(t_1)X(t_2)\}\$ for $t_1, t_2 \in \mathcal{T}$
- autocovariance function of a random process is defined as

$$C_X(t_1, t_2) = E\{(X(t_1) - E\{X(t_1)\})(X(t_2) - E\{X(t_2)\})\}$$

The autocovariance function can be expressed using the mean and autocorrelation functions as

$$C_X(t_1, t_2) = R_X(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$$

Examples

• IID process $\{X_n\}$:

$$\mu_X(n) = E\{X_1\} = \int x f_{X_1}(x) dx$$

$$R_X(n_1, n_2) = E\{X_{n_1} X_{n_2}\} = \begin{cases} E\{X_1^2\} & \text{if } n_1 = n_2 \\ E\{X_{n_1}\} E\{X_{n_2}\} = \mu_X^2(n) & \text{if } n_1 \neq n_2 \end{cases}$$

• Random phase signal process: $X(t) = \alpha \cos(\omega t + \Theta)$

$$\mu_{X}(t) = E\{\alpha \cos(\omega t + \Theta)\} = \int_{0}^{2\pi} \frac{\alpha}{2\pi} \cos(\omega t + \theta) d\theta = 0$$

$$R_{X}(t_{1}, t_{2}) = E\{X(t_{1})X(t_{2})\} = E\{\alpha^{2} \underbrace{\cos(\omega t_{1} + \Theta) \cos(\omega t_{2} + \Theta)}_{0.5 \cos(\omega(t_{1} - t_{2})) + 0.5 \cos(\omega(t_{1} + t_{2}) + 2\Theta)}\}$$

$$= \frac{\alpha^{2}}{2} \cos(\omega(t_{1} - t_{2})) + \int_{0}^{2\pi} \frac{\alpha^{2}}{4\pi} \cos(\omega(t_{1} + t_{2}) + 2\theta) d\theta$$

$$= \frac{\alpha^{2}}{2} \cos(\omega(t_{1} - t_{2}))$$

• Random Walk $\{X_n\}$: $X_n = \sum_{i=1}^n Z_i$

$$\mu_{X}(n) = E\{\sum_{i=1}^{n} Z_{i}\} = \sum_{i=1}^{n} E\{Z_{i}\} = \sum_{i=1}^{n} 0 = 0$$

$$R_{X}(n_{1}, n_{2}) = E\{X_{n_{1}}X_{n_{2}}\}$$

$$\stackrel{\text{if } n_{2} \geq n_{1}}{=} E\{X_{n_{1}}(X_{n_{2}} - X_{n_{1}} + X_{n_{1}})\}$$

$$= E\{X_{n_{1}}\}E\{(X_{n_{2}} - X_{n_{1}})\} + E\{X_{n_{1}}^{2}\}$$

$$= 0 + \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{1}} E\{Z_{i}Z_{j}\}$$

$$= \sum_{i=1}^{n_{1}} \underbrace{E\{Z_{i}^{2}\}}_{=1} + \sum_{i=1}^{n_{1}} \sum_{j=1, j \neq i}^{n_{1}} E\{Z_{i}\}E\{Z_{j}\} = n_{1} + 0 = n_{1}$$

Considering both cases, $n_2 \ge n_1$ and $n_2 < n_1$, we have

$$R_X(n_1, n_2) = \min(n_1, n_2) = \begin{cases} n_1 & \text{if } n_1 \leq n_2 \\ n_2 & \text{if } n_1 > n_2 \end{cases}$$

- If $X \sim \text{Poisson}(\lambda)$, then $E\{X\} = \lambda$, $E\{X^2\} = \lambda(\lambda + 1)$
- Poisson Counting Process N(t) with rate λ :

$$\mu_{N}(t) = E\{N(t)\} = \lambda t$$

$$R_{N}(t_{1}, t_{2}) = E\{N(t_{1})N(t_{2})\}$$

$$\stackrel{\text{if } t_{2} \geq t_{1}}{=} E\{N(t_{1})(N(t_{2}) - N(t_{1}) + N(t_{1}))\}$$

$$= E\{N(t_{1})\}E\{(N(t_{2}) - N(t_{1}))\} + E\{N^{2}(t_{1})\}$$

$$= \lambda t_{1} \times \lambda(t_{2} - t_{1}) + \lambda t_{1}(\lambda t_{1} + 1)$$

$$= \lambda^{2} t_{1} t_{2} + \lambda t_{1}$$

Considering both cases, $t_2 \ge t_1$ and $t_2 < t_1$, we have

$$R_N(t_1, t_2) = \lambda \min(t_1, t_2) + \lambda^2 t_1 t_2$$