4 A student used the apparatus shown to investigate the time taken for a hollow cylinder to roll down a ramp.

(a) (i) The student measured the height h_1 of the start line from the bench using a metre rule.

State two precautions she should take to ensure the measurement is as accurate as possible.

.....

(2)

(ii) The student measured the height h_2 of the finish line. She recorded the difference in height Δh between the start line and finish line as $65 \, \mathrm{mm} \pm 1 \, \mathrm{mm}$.

Explain why the uncertainty in Δh is 1 mm.

(2)

(b)	The student placed the cylinder on the start line and released it. She immediately
	started a stopwatch and measured the time t for the cylinder to roll to the finish line.
	She repeated the measurements several times as shown.

t/s 2.10 1.86 1.94	1.89
--------------------	------

(i) Calculate the mean value of t and its uncertainty.

(2)

Mean value of t = \pm

(ii) The student made the ramp less steep by reducing the value of h_1 .

Explain how this might improve the measurement of t.

(2)

(c) Two students each carried out this procedure for another value of Δh . They recorded the following times for the same value of Δh .

Student		Mean t/s			
A	2.45	2.50	2.38	2.41	2.44
В	2.48	2.45	2.43	2.40	2.44

Compare the accuracy and precision of the data that each student collected.						
	(4)					

$$t^2 = \frac{4s^2}{g\Delta h}$$

where s is the distance along the ramp between the start line and the finish line.

The student recorded the following values.

$$t = 2.44 \,\mathrm{s} \pm 0.04 \,\mathrm{s}$$

$$s = 80.0 \, \text{cm} \pm 0.1 \, \text{cm}$$

$$\Delta h = 43 \, \mathrm{mm} \pm 1 \, \mathrm{mm}$$

$$g =$$

(ii) Determine the percentage uncertainty in the value of g. (2)

Percentage uncertainty =

(iii) Deduce whether the value of g is accurate.

.....

(2)

(2)