自动机理论基础

李建文 华东师范大学

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

Current State	Input	Next State
Locked	coin	UnLocked
	push	Locked
UnLocked	coin	UnLocked
	push	Locked

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

闸道是如何工作的?

- 1. 不投硬币之前不能通行
- 2. 投入一个硬币就可以通行
- 3. 通行一次之后立马变得不能通行

自动机!

课堂练习

类比上面闸道的例子,画出交通灯对应的状态转换图。

有限状态自动机(Finite Automata)

- 一个有限自动机可以表示成五元组 $A = (\Sigma, S, T, I, F)$, 其中
 - Σ表示字母表的集合
 - S表示状态的集合
 - *T*: *S* × *S* × *S* 表示边的集合
 - *I* ⊆ *S*表示初始状态的集合
 - $F \subseteq S$ 表示终止(接收)状态的集合

有限状态自动机(Finite Automata)

有限状态自动机(Finite Automata)

$$\Sigma = \{0,1\}$$

$$T=\{(a,0,a), (a, 1, b), (b, 0, c), (b, 1, a), (c, 0, b), (c, 1, c)\}$$

$$I = \{a\}$$

$$F = \{c\}$$

自动机有什么用?

有限自动机接收字符串 (正则语言)

有限自动机接收字符串 (正则语言)

10可以被接收

10010010可以被接收

100100100不可以被接收

有限自动机接收字符串 (正则语言)

10可以被接收

10010010可以被接收

100100100不可以被接收

Q: 怎么样的字符串才可以被自动机接收?

有限自动机的语义

- 有限自动机 $A = (\Sigma, S, T, I, F)$ 接收一组字符串
- 给定一个字符串 $\eta = a_0 a_1 \cdots a_n$, η 在A上的<mark>运行轨迹</mark>是一条有限长度的状态序列 $s_0 s_1 \cdots s_n s_{n+1}$,使得 s_0 是一个初始状态并且(s_i , a_i , s_{i+1})是A上的一条边。
- 一个字符串 $\eta = a_0 a_1 \cdots a_n$ 可以被A接收<mark>当且仅当</mark>存在 η 在A上的一条运行轨迹是以A中的某个终止(接收)状态结束。
- L(A)用来表示A可以接收的所有字符串的集合。

课堂练习: 自动机的轨迹

求下列字符串在自动机上对应的轨迹。

- (1) 10
- (2) 10010010
- (3) 100100100

引申阅读: 关于正则语言和自动机的历史

确定 VS. 非确定自动机

考虑字符串ab,在这两个自动机上的运行 轨迹有什么差别?

非确定有限状态自动机

- 一个非确定有限自动机可以表示成五元组 $A = (\Sigma, S, T, I, F)$, 其中
 - Σ表示字母表的集合
 - S表示状态的集合
 - $T: S \times \Sigma \to 2^S$ 表示迁移函数
 - *I* ⊆ *S*表示初始状态的集合
 - $F \subseteq S$ 表示终止(接收)状态的集合

确定有限状态自动机

- 一个确定有限自动机可以表示成五元组 $A = (\Sigma, S, T, I, F)$, 其中
 - Σ表示字母表的集合
 - S表示状态的集合
 - $T: S \times \Sigma \to S$ 表示迁移函数
 - *I* ⊆ *S*表示初始状态的集合
 - $F \subseteq S$ 表示终止(接收)状态的集合

非确定自动机和确定自动机接收的语言有没有不同?

非确定自动机和确定自动机接收的语言有没有不同?

没有不同。

确定 VS. 非确定自动机

子集构造(Subset Construction)

	a	b
{0}	{0,1}	{0}
{0,1}	{0,1}	{0,2}
{0,1} {0,2}	{0,1}	{0,3}
{0,3}	{0,1}	{0}

课堂练习: 子集构造

子集构造的代价

用子集构造求下面NFA对应的DFA:

子集构造的代价

用子集构造求下面NFA对应的DFA:

这个NFA对应的DFA状态数不少 2^n 个。

子集构造的形式化写法

给定一个非确定自动机 $A = (\Sigma, S, T, s_0, F)$,与它等价的确定化自动机为 $A^d = (\Sigma, Q, \rho, q_0, \Omega)$:

- $Q \subseteq 2^s$ 为状态的集合;
- $\rho: Q \to Q$ 为迁移函数, 并且 $\rho(q) = \{s' | s' \in T(s), \ \text{其中} s \in q\}$ 成立;
- $q_0 = \{s_0\} \in Q$ 为初始状态;
- $\Omega \subseteq Q$ 为接收状态的集合,并且 $q \in \Omega$ 当且仅当 $q \cap F \neq \emptyset$ 。

自动机的取反

给定一个自动机A,它能接收的所有字符串集合记为L(A)。 L(A) 也称为A能接收的语言。

自动机的取反

给定一个自动机A,它能接收的所有字符串集合记为L(A)。 L(A) 也称为A能接收的语言。

自动机取反是给定一个自动机 A_1 ,求另外一个自动机 A_2 使得它们接收的语言互补,即 $L(A_1) \cap L(A_2) = \emptyset$,并且 $L(A_1) \cup L(A_2) = \Sigma^*$ 。

自动机的取反

流程:

- 1. 给定一个自动机A,先求解对应的确定化自动机 A^d
- 2. 将 A^d 中接收状态和非接收状态调换,其他保持不变,得到自动机A';
- 3. A'即为A的取反自动机。

自动机的取反 (形式化的写法)

课堂练习(5分钟)

自动机的取反 (形式化的写法)

给定一个有限自动机 $A = (\Sigma, S, T, I, F)$, 其对应的确定化自动机为 $A^d = (\Sigma, Q, \rho, q_0, \Omega)$ 。则与A互补的自动机为 $\hat{A} = (\Sigma, Q, \rho, q_0, \Omega)$ 并且 $q \in \Omega$ 当且仅当 $q \notin \Omega$ 。

自动机的取反

自动机的并 (Union)

给定一个自动机A,它能接收的所有字符串集合记为L(A)。 L(A) 也称为A能接收的语言。

自动机求并是给定两个自动机 A_1 和 A_2 ,求另外一个自动机 A_3 使得 $L(A_3) = L(A_1) \cup L(A_2)$ 。

自动机的并 (Union)

流程:

给定两个自动机 A_1 、 A_2

- 1. 将 A_1 和 A_2 的 初始状态合并,其他保持不变,得到自动机 A_3
- 2. A₃即为所求自动机。

自动机的并 (形式化写法)

```
给定两个自动机 A_1 = (\Sigma_1, S_1, T_1, I_1, F_1), A_2 = (\Sigma_2, S_2, T_2, I_2, F_2),它们的并为自动机A = (\Sigma, S, T, I, F)使得
```

- 1. $\Sigma = \Sigma_1 = \Sigma_2$;
- 2. $S = S_1 \cup S_2$;
- 3. $T = T_1 \cup T_2$;
- 4. $I = I_1 \cup I_2$;
- 5. $F = F_1 \cup F_2$.

自动机的交 (Intersection)

给定一个自动机A,它能接收的所有字符串集合记为L(A)。 L(A) 也称为A能接收的语言。

自动机求交是给定两个自动机 A_1 和 A_2 ,求另外一个自动机 A_3 使得 $L(A_3) = L(A_1) \cap L(A_2)$ 。

自动机的交--个例子

自动机的交--个例子

	0	1
(q0, s0)	(q1, s0)	(q0, s1)
(q1, s0)	(q2, s0)	(q0, s1)
(q0, s1)	(q1, s1)	(q0, s0)
(q2, s0)	(q2, s0)	(q2, s1)
(q1, s1)	(q2, s1)	(q0, s0)
(q2, s1)	(q2, s1)	(q2, s0)

自动机的交--个例子

自动机的交 (形式化写法)

```
给定两个自动机 A_1 = (\Sigma_1, S_1, T_1, I_1, F_1), A_2 = (\Sigma_2, S_2, T_2, I_2, F_2),它们的交为自动机A = (\Sigma, S, T, I, F)使得 1. \Sigma = \Sigma_1 = \Sigma_2; 2. S \subseteq S_1 \times S_2; 3. T = T_1 \times T_2; T = \{(s_1, s_2), a, (s'_1, s'_2) \mid (s_1, a, s'_1) \in T_1 \coprod (s_2, a, s'_2) \in T_2\} 4. I = I_1 \times I_2; 5. F = F_1 \times F_2。
```

课堂练习-自动机的交

课堂练习-自动机的交

无限自动机(Infinite Automata)

• 状态是有限的

• 接收的字符串长度是无限的

有限 VS. 无限自动机

有限: 10, 101, 1000

无限: $10(1)^{\omega}$, $1(0)^{\omega}$

Büchi自动机

- 一个 $B\ddot{u}$ ch i自动机可以表示成五元组 $A = (\Sigma, S, T, I, F)$, 其中
 - Σ表示字母表的集合
 - S表示状态的集合
 - $T: S \times \Sigma \times S$ 表示边的集合
 - *I* ⊆ *S*表示初始状态的集合
 - $F \subseteq S$ 表示终止(接收)状态的集合

Büchi自动机的语义

- 有限自动机 $A = (\Sigma, S, T, I, F)$ 接收一组**无限长度**的字符串
- 给定一个字符串 $\eta = a_0 a_1 \cdots$, η 在A上的<mark>运行轨迹</mark>是一条无限长度的状态序列 $s_0 s_1 \cdots$,使得 s_0 是一个初始状态并且(s_i , a_i , s_{i+1})是A上的一条边。
- -个字符串 $\eta = a_0 a_1 \cdots$ 可以被A接收<mark>当且仅当</mark>存在 η 在A上的一条运行轨迹, 并且该轨迹**无限次的经过**F中的某个接收状态。
- L(A)用来表示A可以接收的所有字符串的集合。

课堂练习-Büchi自动机

该Bü ch i自动机接收的语言有哪些?

确定 VS. 非确定 Bü ch i 自动机

不存在等价的确定 $B\ddot{u}$ ch i自动机。

确定 $B\ddot{u}$ ch i自动机要比非确定 $B\ddot{u}$ ch i自动机的表达能力弱

Büchi自动机的确定化

• 一个可以挖掘的research topic

• 基本思路: 把非确定的 $B\ddot{u}$ ch i自动机转化成等价的其他类型的无限自动机

Rabin自动机

• 接收条件: $\{(B_1, G_1), (B_2, G_2), \dots, (B_n, G_n)\}$, 每个 B_i 和 G_i 都是S的一个子集

• 一个字符串 $\eta = a_0 a_1 \cdots$ 可以被Rabin自动机A接收当且仅当存在 η 在A上的一条运行轨迹和一个(B_i, G_i),使得该轨迹有限次的经过 B_i 但是无限次的经过 G_i 中的某个接收状态。

Rabin自动机

若接收条件为: {({1}, {2}), ({}, {1,2})} 那么该自动机接收的语言有哪些?

Safra Construction

• 将非确定的Bü ch i自动机转换为等价确定化Rabin自动机

• 理论上是最优的

• 实际实现时数据结构比较复杂,比较难实现

• 有没有更好的转换方案?

给定一个自动机A,它能接收的所有字符串集合记为L(A)。 L(A) 也称为A能接收的语言。

自动机求交是给定两个自动机 A_1 和 A_2 ,求另外一个自动机 A_3 使得 $L(A_3) = L(A_1) \cap L(A_2)$ 。

没有接收状态?

没有接收状态?

 $a,b,(a,a,b)^{\omega}$ 是被两个自动机都接收的语言。

	a	b
(p0, q0, 1)	(p1, q0, 1)	(p0, q1, 1)
(p1, q0, 1)	(p1, q0, 2)	(p2, q1, 2)
(p0, q1, 1)	(p1, q0, 1)	(p0, q1, 1)
(p1, q0, 2)	(p1, q0, 2)	(p2, q1, 2)
(p2, q1, 2)	(p0, q0, 1)	(p2, q1, 1)
(p2, q1, 1)	(p0, q0, 1)	(p2, q1, 1)

Bü ch i 自动机的交(形式化写法)

给定两个自动机 $A_1 = (\Sigma_1, S_1, T_1, I_1, F_1), A_2 = (\Sigma_2, S_2, T_2, I_2, F_2),$ 它们的交为自动机 $A = (\Sigma, s, T, I, F)$ 使得

- 1. $\Sigma = \Sigma_1 = \Sigma_2$;
- $2. \quad S \subseteq S_1 \times S_2 \times \{1,2\};$
- 3. $T = \Delta_1 \cup \Delta_2$, $\Delta_1 = \{((s_1, s_2, 1), a, (s_1', s_2', i) \mid (s_1, a, s_1') \in T_1 且(s_2, a, s_2') \in T_2 且若 s_1 \in F_1 则 i = 2, 否则 i = 1\};$ $\Delta_1 = \{((s_1, s_2, 2), a, (s_1', s_2', i) \mid (s_1, a, s_1') \in T_1 且(s_2, a, s_2') \in T_2 且若 s_2 \in F_2 则 i = 1, 否则 i = 2\}_{\circ}$
- 4. $I = I_1 \times I_2 \times \{1\};$ 5. $F = \{(s_1, s_2, 2) | s_2 \in F_2\}_{\circ}$

课堂练习

本章小结

• 简要接收有限和无限自动机的基本概念

• 介绍自动机的确定化、取反、交等操作