Ferienkurs Experimentalphysik 2

Übungsblatt 2: Elektrischer Strom und Magnetostatik

Tutoren: Katharina HIRSCHMANN und Gabriele SEMINO

2 Elektrischer Strom

2.1 Widerstandsnetzwerk

Gegeben sei die folgende Schaltung. Es liegen die Potentiale $U_A=10\,\mathrm{V}, U_B=20\,\mathrm{V}, U_C=30\,\mathrm{V}$ an den Eckpunkten A, B, C an. Die Widerstände seien $R_A=1\,\mathrm{k}\Omega, R_B=1.5\,\mathrm{k}\Omega, R_C=3\,\mathrm{k}\Omega.$ Bestimmen Sie die Stromflüsse I_A,I_B,I_C durch die drei Widerstände.

2.2 Stromdichte und Ampere'sches Gesetz

Ein Kupferrohr (Hohlzylinder) mit Innenradius $r_i = 0, 4$ cm, Außenradius $r_a = 0, 5$ cm und Länge l = 5 m wird mit den Enden an eine Spannungsquelle mit U = 6 V angeschlossen. Der spezifische Widerstand von Kupfer beträgt bei Raumtemperatur etwa $\rho = 1,72 \cdot 10^{-2} \frac{\Omega \text{mm}^2}{\text{m}}$.

- 1. Berechnen Sie die Stromdichte $j=|\vec{j}|$ und den Gesamtstrom I.
- 2. Berechnen Sie mit dem Ampere'schen Gesetz das Magnetfeld in allen relevanten Bereichen. Verwenden Sie dabei die Idealisierung $l \to \infty$.

3 Magnetostatik

3.1 Magnetisches Feld eines leitenden Bandes

Ein dünnes, flaches, unendlich langes Band der Weite W transportiert einen gleichmäßigen Strom I. Bestimmen Sie das magnetische Feld an einem Punkt P, der sich in der Ebene des

Bandes befindet und einen Abstand x von dessen Rand hat. Überlegen Sie sich das Feld eines Streifens. Wie sieht das Ergebnis für den Limes $W \to 0$ aus? (Hinweis: $\ln(1+\delta) \approx \delta$ für kleine δ).

3.2 Dipol- und Drehmoment

Ein dünner, nicht leitender Stab der Länge l=28mm trage eine gleichmäßig über seine Länge verteilte Ladung Q. Er rotiere mit einer Kreisfrequenz $\omega=1920s^{-1}$ um eine senkrecht zu seiner Längsachse durch eins seiner Enden gehende Achse und erzeuge dadurch ein magnetisches Dipolmoment $\vec{m}=2,17\cdot 10^{-10}Am^2$.

- 1. Wie ist das magnetische Dipolmoment definiert?
- 2. Wie groß ist die Ladung Q?
- 3. Wie groß ist der Betrag des auf den magnetischen Dipol wirkenden Drehmoments in einem Magnetfeld mit der Flussdichte $\vec{B} = 0,322$ T, das unter einem Winkel von 68° zum Vektor des Dipolmoments steht?

3.3 Magnetische Kraft

Zwei lange gerade Drähte sind im Abstand von 2a=2cm parallel zueinander in z-Richtung ausgespannt und werden jeweils von dem Strom I=10A durchflossen, und zwar einmal in gleicher Stromrichtung, im anderen Fall in entgegengesetzter Richtung.

1. Man veranschauliche das resultierende Magnetfeld in der x-y-Ebene senkrecht zu den Drähten. (siehe Abbildung (a))

- 2. Man bestimme die Kräfte pro Längeneinheit, die die Drähte aufeinander ausüben (Abbildung (a)).
- 3. Wie groß ist die Kraft, wen die Drähte senkrecht zueinander stehen, das heißt auf den Geraden z = y = 0 und x = 0, y = -2cm (siehe Abbildung (b)).

3.4 Biot-Savart und Ampere

Berechnen Sie durch die Wahl einer geeigneten Methode das Magnetfeld folgender Anordnungen:

- 1. Auf der Achse senkrecht durch den Mittelpunkt einer kreisförmigen, mit Strom I durchflossenen Leiterschleife mit Radius R.
- 2. Einer unendlich langen, mit Strom I durchflossenen Platte der Breite d (d sei so groß, dass Streufelder am Rand der Platte vernachlässigbar sind) mit vernachlässigbarer Dicke.
- 3. zweier konzentrisch angeordneter, unendlich langer Rohre mit Innenradien r_1 und r_2 und Wandstärke d, die in entgegengesetzter Richtung jeweils vom Strom I durchflossen werden. Bestimmen und skizzieren Sie B(r) für $0 \le r < 1$. Die Stromdichte in den Rohren sei jeweils konstant (ortsunabhängig).

3.5 Magnetisierung

Ein Aluminiumstab (Permeabilität von Aluminium: $\mu_{r,Al} = 1 + 2, 2 \cdot 10^{-5}$) der Länge l = 20cm wird mit N = 250 Drahtwicklungen gleichmäßig umwickelt. Im Draht fließe nun ein Strom I = 10A.

- 1. Ist Aluminium para-/ferro- oder diamagnetisch?
- 2. Wie groß ist die Magnetisierung M des Aluminiums?
- 3. Wie hoch ist die magnetische Flussdichte B im Aluminium?
- 4. Welcher Strom müsste in einer baugleichen Spule mit Eisenkern (Permeabilität von Eisen: $\mu_{r,Fe} \approx 500$) fließen, damit dort die gleiche magnetische Flussdichte herrscht?