

SEM0530 - Problemas de Engenharia Mecatrônica II

5. Aproximação numérica de EDOs de 1a ordem

Marcelo A. Trindade (trindade@sc.usp.br)

5. Aproximação numérica de EDOs de 1a ordem

Tarefa:

- Dada a trajetória a ser executada por um corpo, conhecida em coordenadas polares $r(\theta) = 20 (3 2\cos\theta) \, \mathrm{cm}$, encontrar a velocidade angular $\dot{\theta}$ a ser imposta para que o corpo execute o movimento com velocidade $v(t) = 0.05 (100 + N)(100 t) \, \mathrm{mm/s}$, sendo N formado pelos dois últimos algarismos do Número USP do aluno.
- Usando um algoritmo de integração numérica, calcule a evolução do deslocamento angular $\theta(t)$ ao longo de ao menos três voltas completas
- ullet Determine também a evolução do deslocamento radial r(t)
- Apresente as evoluções em gráficos (θ vs t; r vs t; $\dot{\theta}$ vs t; \dot{r} vs t; r vs θ ; v vs t;...)
- Usando a aproximação numérica, determine também quanto tempo é necessário para a execução de três voltas completas
- Dica: $\mathbf{v} = \dot{r} \mathbf{u}_r + r \dot{\theta} \mathbf{u}_{\theta} \rightsquigarrow v^2 = \dot{r}^2 + r^2 \dot{\theta}^2 \rightsquigarrow \dot{\theta} = f(\theta, v(t))$
- Apresentar em relatório único em PDF, memória de cálculo, scripts MATLAB, gráficos solicitados, soluções encontradas e conclusões.

