《数据结构》课程实践报告

院、系		计算机学院	年级专	21 计算机科 学与技术	姓名	赵鹏	学号	2127405037
实验布 日期	置	2022.1	1.28	提交 日期	202	22.12.21	成绩	

课程实践实验 12: 社交网络

一、问题描述及要求

设计并实现一个社交网络模型图。

要求:

- (1) 每个人的信息是一个顶点,两个人相互认识则构成边。
- (2) 根据输入的任意两个人的信息,给出他们之间的联系路径,最少经过多少人构成联系。
 - (3) 可根据自己的创意添加更多的功能。

二、概要设计

1. 问题分析

本次实验的内容是自主设计并实现一个社交网络模型图。实验中将人抽象为图中的顶点, 将人与人之间互相认识的关系抽象为边,并需要设计找到两人之间最短路径的算法。在完成 了上述功能后也可以自己添加其他创意功能.

2. 程序界面设计

程序运行后,首先引导用户构建社交网络图。为了更加接近现实中的社交网络关系,程序依次引导用户输入社交网络中的人数,并以此输入每个人的名称以及他所具有的关系数量和对应的关系。程序运行界面如下图所示:

```
Input the number of people in the socialnetwork:5
Input the name of people:A B C D E
People's id is numbered from 0 to 4
Input the number of A's friends:2
A's friends are (id):1 3

Input the number of B's friends:2
B's friends are (id):0 2

Input the number of C's friends:2
C's friends are (id):1 3

Input the number of D's friends:2
D's friends are (id):0 2

Input the number of E's friends:1
E's friends are (id):3
```

输入这样一组数据,程序便构建了如下图所示的一张社交网络图:

3.系统功能列表

本次实验我在实现了以下功能:

- 1. 根据给定信息创建社交网络关系图
- 2. 输入两人信息, 求出两人之间的最短联系路径
- 3. 若干创意功能,详见综合报告

4.总体设计思路

本次实验的重点是社交网络图的设计。程序将人抽象为图模型中的点,将两个人之间相 互认识的关系抽象为边,依次构建社交网络图,并采用邻接矩阵的方式进行存储,在此基础 上添加一系列方法。

在实现过程中设计了 SocialGraph 类,并添加了较多功能。具体如下:

SocialGraph					
方法	功能				
SocialGraph()	构造函数,引导用户创建社交网络				
string GetName(int i)	根据编号返回用户名称				
string ShortestPath(int start, int end)	计算两个用户之间的最短路径,返回路径				
int GetMin(int d[])	计算两个用户最短路径的辅助函数				
	若干创意功能				

5.程序结构设计

在实现程序的各种功能时采取模块化设计,设计了以下文件:

文件名	功能		
main.cpp	主程序,引导用户进行各种操作		
SocialGraph.h	声明社交网络类		
SocialGraph.cpp	实现社交网络类		
	实现创意功能的辅助文件		

三、详细设计

1. 寻找最短路径

寻找最短路径的算法可以采取数据结构课程中所学的 Dijkstra 算法进行实现。Dijkstra 算法可以求从给定一点到其他所有点的最短路径,在本算法中只需用 Dijkstra 算法计算完后取指定终点的路径即可。时间复杂度为 $0(n^2)$ 。

Dijkstra 算法的基本思路是把顶点集合 V 分成两个集合,一个是生长点的集合 S,包括源点和已经确定最短路径的点,另一类是 V-S,包括未确定最短路径的点,并使用特定的表来存储当前源点到每个非生长点的最短路径,按长度递增的顺序计算最短路径。

在实现的过程中,由于两人认识即存在边,用 1 表示。用 INF 来表示两个人不认识。使用辅助数组 dist[n], dist[i]表示源点到 i 点的最短路径长度。初始状态为若 v到 i 有边则 dist[i]=1, 否则 dist[i]=INF。同时使用字符串数组 path[n]。path[i]表示从源点出发到 i 点的最短路径。

四、实验结果测试

使用一组数据,通过手动输入的方式检查算法正确性:

```
Input the number of people in the socialnetwork:5
Input the name of people:A B C D E
People's id is numbered from 0 to 4
Input the number of A's friends:2
A's friends are (id):1 3

Input the number of B's friends:2
B's friends are (id):0 2

Input the number of C's friends:2
C's friends are (id):1 3

Input the number of D's friends:3
D's friends are (id):0 2 4

Input the number of E's friends:1
E's friends are (id):3
```

构建了如下图所示社交网络:

最短路径测试:

```
0
Input the id of two people
0 4
Shortest Path:A>D>E
-----0
Input the id of two people
1 4
Shortest Path:B>A>D>E
```

五、实验分析与探讨

通过上述测试,本实验较为顺利的实现了计划的各种功能。

在实验过程中, 也遇到了一部分问题, 如:

在进行 di jkstra 过程中最短路径的存储的问题。通过使用 string 类型记录路径,并在更新最短路径的适合同时更新路径即可解决。

若起点终点是同一个人时求出的结果会先前往其他人,再回到自己。我通过对起点终点添加特殊判断并之间返回结果解决了这个问题。

六、小结

通过本次实验,我复习了图的邻接矩阵的存储结构,较好的设计了社交网络关系图模型并完成了各种功能的实现,同时也注意到了提升了程序的健壮性。我对 Dijkstra、Floyd、Kruskal 算法也有了更加深刻的理解。通过查阅相关资料,我对并查集这一数据结构有了更进一步的了解。当然,这次实验也仍有很多不足,如添加的后几个功能都较为简单,没有更多新奇有趣的功能。