Fundamentals of Computer Systems A Multicycle MIPS Processor

Stephen A. Edwards and Martha A. Kim

Columbia University

Fall 2012

Illustrations Copyright © 2007 Elsevier

State Elements

Fetch instruction from memory

Read source operands from register file

Sign-extend the immediate

Add base address to offset

Load data from memory

Write data back to register file

Add 4 to PC

For sw: Write register data to memory

For R-type instructions: Write ALU result to registers

For bne: Add immediate to PC

Add Controller

Controller Internals

Additional circuitry for the jump instruction

Multicycle Critical Path

Two hypotheses: Reading memory or going through the ALU

Multicycle Clock Period

De	elay
t _{pcq-PC}	30 ps 20
t _{mux}	25
t _{ALU} t _{mem}	200 250
t _{RFsetup}	150 20
	tpcq-PC tsetup tmux tALU tmem

$$T_C = t_{pcq-PC} + t_{mux} + max\{t_{ALU} + t_{mux}, t_{mem}\} + t_{RFsetup}$$

= $(30 + 25 + max\{200 + 25, 250\} + 20)$ ps
= 325 ps
= 3.08 GHz

vs. 925 ps for our single-cycle processor

Execution Time for Our Multi-Cycle Processor

For a 100 billion-instruction task on our multi-cycle processor, each instruction takes 4.12 cycles on average. With a 325 ps clock period,

$$\begin{array}{lll} \frac{\text{Seconds}}{\text{Program}} & = & \frac{\text{Instructions}}{\text{Program}} \times \frac{\text{Clock Cycles}}{\text{Instruction}} \times \frac{\text{Seconds}}{\text{Clock Cycle}} \\ & = & 100 \times 10^9 \times & 4.12 \times & 325 \text{ ps} \\ & = & 133.9 \text{ seconds} \end{array}$$

vs. 92.5 seconds for our single-cycle processor.