Multivariate statistical analysis Lecture 1

Jing Qin

Practical Information

- 1. Lecturer: Jing (qin@imada.sdu.dk).
- 2. TAs: Asbjørn Elias Hansen (H1, H3) and Rasmus Lauge Hansen (H2, H4)
- 3. Remark: Please send emails instead of message in itslearning.
- 4. Study group ([1,3]): Please bring at least one laptop per group.
- 5. Textbook: "Applied Multivariate Statistical Analysis" (AMSA) by Richard A. Johnson and Dean W. Wichern.
- 6. Exam: individual MCQ written exam TBD.
- 7. Exercises should be prepared before the TE starts.

Topics

In multivariate analysis, we are interested in the joint analysis of multiple dependent variables.

We will cover the following main topics during the lectures

- 1. Aspects of multivariate analysis, matrix algebra and random vectors (Chap 1, Chap 2 and Chap 3) [#] of lectures: 4]
- 2. Multivariate normal distribution (Chap 4) [2]
- 3. Inferences about mean vectors (Chap 5 and 6) [3]
- 4. Principle components (Chap 8) [Video topic]
- 5. Discrimination and classification (Chap 11) [4]

Classification

Re-cap

Re-cap

What are the differences?

- 1. population and sample
- 2. random variable X and observation x
- 3. sample mean \overline{X} and its observation \overline{x}

Objectives of Topic 1

This topic ('aspects of multivariate analysis, matrix algebra and random vectors') is going to help you

- 1. Get used to the notations in AMSA, particularly in matrix terms;
- 2. Strengthen the knowledge of basic statistics you have learnt and lift it to a multivariate level;
- 3. Recognise the relation between matrix algebra and multivariate statistics

Textbook:

- 1. §1.3 and §1.5; §2.5 and §2.6 (2 lectures)
- 2. §3.1, §3.2, §3.3, §3.5 and §3.6 (2 lectures)

The organisation of Data

We first focus on the level of observed data. Load data 'T11-6.dat' (available in its-learning)

- 1. Centrality: sample mean vector (1-1)
- 2. Dispersion: sample variance (1-2)
- 3. Association: sample covariance (1-3)
- [†] Summary in vector/matrix form: (1-8)

Exercise: Using R to compare the results based on the formulae above and R-cmds colMeans(), var() and cov().

Centrality: center of the data

R cmd: colMeans()

Variance: how data spreads

R cmd: var()

1/n or 1/(n-1)?

More commonly, one refers to $\frac{1}{n-1}(**)$ as $sample\ variance$ and it can be calculated with R cmd var().

Descriptive statistics: Sample covariance and sample covariance matrix

More commonly, one refers to $\frac{1}{n-1}(****)$ as $sample\ covariance$ and it can be calculated with R cmd cov(). $Sample\ correlation$ can be calculated with R cmd cor().

Definitions in matrix forms

In this textbook (AMSA), one assumes that the given data is arranged into an $(n \times p)$ -matrix. In which, the number of the rows n is the number of items/subjects/individuals/copies/observations and the number of columns p is the number of <u>attributes</u>/variables in the data, respectively.

		Attribute $_1$	$Attribute_2$	•••	Attribute $_k(\pmb{x_k})$	•••	Attribute $_p$
$oldsymbol{X}=$	ltem_1	x_{11}	x_{12}	• • •	x_{1k}	• • •	x_{1p}
	$ltem_2$	x_{21}	x_{22}	• • •	x_{2k}	• • •	x_{2p}
	i i	i i	:		÷		i i
	$Item_j(\textcolor{red}{\boldsymbol{x}}_j^T)$	x_{j1}	x_{j2}	• • •	x_{jk}	• • •	x_{jp}
	ŧ	ŧ	:		:	• • •	:
	ltem $_n$	x_{n1}	x_{n2}	• • •	x_{nk}	• • •	x_{np}

- 1. We use x_{jk} to denote the measurement of the k-th attribute on the j-th item.
- 2. These p attributes are denoted by x_1, x_2, \ldots, x_p in AMSA in the following.
- 3. The data from the j-th individual are represented as a column vector $oldsymbol{x}_j =$

 $\begin{pmatrix} x_{j1} \\ x_{j2} \\ \vdots \\ x_{jp} \end{pmatrix}$. This is in fact the j-th row of ${\pmb X}$. Note that in AMSA, ${\pmb x}$ denotes a column vector.

Descriptive statistics: sample mean and sample mean vector

Given the data matrix

$$\boldsymbol{X} = \begin{bmatrix} \text{Attribute}_1 & \text{Attribute}_2 & \cdots & \text{Attribute}_k(x_k) & \cdots & \text{Attribute}_p \\ \text{Item}_1 & x_{11} & x_{12} & \cdots & x_{1k} & \cdots & x_{1p} \\ \text{Item}_2 & x_{21} & x_{22} & \cdots & x_{2k} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ x_{j1} & x_{j2} & \cdots & x_{jk} & \cdots & x_{jp} \\ \vdots & \vdots & \vdots & & \vdots & \ddots & \vdots \\ \text{Item}_n & x_{n1} & x_{n2} & \cdots & x_{nk} & \cdots & x_{np} \end{bmatrix}$$

- (1-1) For each of the p attributes x_k , $k \in \{1, 2, ..., p\}$, we have sample mean $\overline{x}_k = \frac{1}{n} \sum_{j=1}^n x_{jk}$.
- Collect these p sample means into a vector, we have the sample mean vector

$$\overline{x} = \begin{pmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_k \\ \vdots \\ \overline{x}_p \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{j=1}^n x_{j1} \\ \vdots \\ \frac{1}{n} \sum_{j=1}^n x_{jk} \\ \vdots \\ \frac{1}{n} \sum_{j=1}^n x_{jp} \end{pmatrix}.$$

or

$$\overline{\boldsymbol{x}}^T = (\overline{x}_1, \overline{x}_2, \cdots, \overline{x}_p)^T$$

Descriptive statistics: Sample covariance matrix

• (1-8) Given the data matrix X. Its sample covariance matrix is a $(p \times p)$ -matrix.

$$S_n = \begin{pmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{pmatrix}$$

• (1-4) For each i, k = 1, 2, ..., p, we have

$$s_{ik} = \frac{1}{n} \sum_{j=1}^{n} (x_{ji} - \overline{x}_i)(x_{jk} - \overline{x}_k),$$

where \overline{x}_i and \overline{x}_k are the sample means of x_i and x_k , respectively. Note that when $i \neq k$, s_{ik} is referred to as $sample\ covariance$ between two attributes x_i and x_k , which is a measure of their linear correlation.

• Is S_n symmetric? Is $s_{ik} \geq 0$ for all i and k?

- 1/n or 1/(n-1)? More commonly, one refers to $\frac{1}{n-1}\sum_{j=1}^{n}(x_{ji}-\overline{x}_i)(x_{jk}-\overline{x}_k)$ as $sample\ covariance$ and it can be calculated with R cmd cov().
- (1-3) For k = 1, 2, ..., p, we refer to s_{kk} (or s_k^2) as the $sample\ variance$ for attribute x_k . Note that sample variance is a measure of data's variability.
- (1-8) Its sample correlation matrix is a $(p \times p)$ -matrix

$$R = \begin{pmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{pmatrix}$$

• For each $i, k = 1, 2, \dots, p$, we have

$$r_{ik} = \frac{s_{ik}}{\sqrt{s_{ii}}\sqrt{s_{kk}}}.$$

• For each $i, k = 1, 2, \ldots, p$, we have $-1 \le r_{ik} \le 1$.