#### RINGS



Dr. E.SURESH BABU

**Assistant Professor** 

**Computer Science and Engineering Department** 

National Institute of Technology, Warangal

Warangal

### RINGS

### Rings

- **❖** A **Ring** is typically denoted {**R**,+,×}
  - ✓ where R denotes the set of objects,
  - √ '+' denotes the operator with respect to R which is an abelian group
  - ✓ 'x' denotes the additional operator needed for R to form a ring.

### Rings

❖ If we can define **one more operation** on an **abelian group**, we have a **ring**, provided the **elements of the set** satisfy some **properties with respect to this new operation also.** 

# Properties of the Elements with Respect to the Ring Operator

- R must be closed with respect to the additional operator 'x'.
- R must exhibit associativity with respect to the additional operator 'x'.
- ❖ The additional operator (that is, the "multiplication operator")

must distribute over the group addition operator 'x'. That is

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$
  
 $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ 

# Properties of the Elements with Respect to the Ring Operator

\* The "multiplication" operation is frequently shown by just

**concatenation** in such equations:

$$a(b + c) = ab + ac$$

$$(a + b)c = ac + bc$$

## Commutative Rings

#### **Commutative Rings**

❖ A ring is commutative if the multiplication operation is commutative for **all elements in the ring**. That is, if all a and b in R satisfy the property

$$ab = ba$$

\* if multiplication operation is commutative, it forms a commutative ring

## Integral Domain

#### **Integral Domain**

- if multiplication operation has an identity and no zero divisors, it forms an integral domain
- ❖ An integral domain is a commutative ring with an identity (1) with no zero-divisors.

#### **Integral Domain**

- ❖ An integral domain {**R**,+,×} is a commutative ring that obeys the following two additional properties:
  - 1. Additional Property-1: The set R must include an identity element for the multiplicative operation. a1 = 1a = a
  - 2. Additional Property-2: Let 0 denote the identity element for the addition operation. If a multiplication of any two elements a and b of R results in 0, that is if

ab = 0 then either a or b must be 0.

### Thank U