

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, Jingbo Shang

University of California, San Diego

- Introduction
- Taxonomy
- Datasets
- Future Directions
- Conclusion

- Introduction
- Taxonomy
- Datasets
- Future Directions
- Conclusion

Introduction

From Text to Multimodal Analysis

- LLMs have significantly revolutionized NLP and CV domains
- How can LLMs benefit time series analysis?

Introduction

From Text to Multimodal Analysis

- LLMs have significantly revolutionized NLP and CV domains
- How can LLMs benefit time series analysis?

Time series are **continuous** numerical data

Large language models are originally trained on **discrete** text data

- Each category targets one stage in typical LLM-driven NLP pipelines
- Prompting: input stage
 - Quantization: tokenization stage
 - Aligning: embedding stage
 - Vision as bridge: LLM stage
 - Tool: output stage

- Each category targets one stage in typical LLM-driven NLP pipelines
 - Prompting: input stage
- Quantization: tokenization stage
 - Aligning: embedding stage
 - Vision as bridge: LLM stage
 - Tool: output stage

- Each category targets one stage in typical LLM-driven NLP pipelines
 - Prompting: input stage
 - Quantization: tokenization stage
- Aligning: embedding stage
 - Vision as bridge: LLM stage
 - Tool: output stage

- Each category targets one stage in typical LLM-driven NLP pipelines
 - Prompting: input stage
 - Quantization: tokenization stage
 - Aligning: embedding stage
- Vision as bridge: LLM stage
 - Tool: output stage

- Each category targets one stage in typical LLM-driven NLP pipelines
 - Prompting: input stage
 - Quantization: tokenization stage
 - Aligning: embedding stage
 - Vision as bridge: LLM stage
- Tool: output stage

Introduction

Resources

- Up-to-date Github repo summarizing LLM4TS papers + datasets
 - https://github.com/xiyuanzh/awesome-llm-time-series

- Introduction
- Taxonomy
- Datasets
- Future Directions
- Conclusion

Prompting

- Number-agnostic tokenization
- Number-specific tokenization

Examples of representative direct prompting methods.

Quantization

- Discrete indices
 - From VQ-VAE

$$\mathbf{q}_i = \mathbf{c}_{k_i}, k_i = \arg\min_{j} \|g_{\phi}(\mathbf{x}_s)_i - \mathbf{c}_j\|_2, \mathbf{k} = [k_i]_{i=1}^{\frac{T}{S}}$$

From K-Means

VQ-VAE based quantization method

K-Means based quantization method

Aligning

- Similarity matching
 - Contrastive loss
- LLMs as backbones

One Fits All: Power General Time Series Analysis by Pretrained LM, NeurlPS 2023

Aligning by similarity matching

Aligning with LLMs as backbones

Vision as Bridge

- Paired data
- Physics relationships
- Time series plots as images

Taxonomy Tool

- Code
- API call
- Text domain knowledge

Unleashing the Power of Shared Label Structures for Human Activity Recognition, CIKM 2023

Comparison

- Data: zero (prompt), visual (vision)
- Model: billion (prompt/tool), million (aligning, quantization)

- Efficiency: quantization and aligning more efficient than prompting
- Optimization: two stage, indirect tools

Method	Subcategory	Representative Works	Equations	Advantages	Limitations
Prompting	Number-Agnostic	PromptCast [Xue and Salim, 2022]	$\mathbf{y} = f_{ heta}(\mathbf{x}_s, \mathbf{x}_t)$	easy to implement;	lose semantics;
	Number-Specific	LLMTime [Gruver et al., 2023]	$\mathbf{y} = J_{\theta}(\mathbf{x}_s, \mathbf{x}_t)$	zero-shot capability	not efficient
Quantization	VQ-VAE	DeWave [Duan et al., 2023]	$k_i = rg \min_j \ g_\phi(\mathbf{x}_s)_i - \mathbf{c}_j\ _2$	flexibility of	may require
	K-Means	AudioLM [Borsos et al., 2023]	$\mathbf{k} = [k_i]_{i=1}^{rac{T}{S}}, \mathbf{y} = f_{ heta}(\mathbf{k}, \mathbf{x}_t)$	index and time	two-stage
	Text Categories	TDML [Yu et al., 2023]	$\mathbf{y} = f_{ heta}(q(\mathbf{x}_s), \mathbf{x}_t)$	series conversion	training
Aligning	Similarity Match	ETP [Liu et al., 2023a]	$\mathbf{y} = g_{\phi}(\mathbf{x}_s)$	align semantics of	complicated
		MATM [Han et al., 2022]	$\mathcal{L} = \mathrm{sim}(g_{\phi}(\mathbf{x}_s), f_{ heta}(\mathbf{x}_t))$	different modalities;	design and
	LLM Backbone	GPT4TS [Zhou et al., 2023a]	$\mathbf{y} = f_{ heta}(g_{\phi}(\mathbf{x}_s), \mathbf{x}_t)$	end-to-end training	fine-tuning
Vision as	Paired Data	ImageBind [Girdhar et al., 2023]	$\mathcal{L} = \mathrm{sim}(g_{\phi}(\mathbf{x}_s), h_{\psi}(\mathbf{x}_v))$	additional visual	not hold
Bridge	TS Plots as Images	Wimmer and Rekabsaz [2023]	$\mathbf{y} = h_{\psi}(\mathbf{x}_s)$	knowledge	for all data
Tool	Code	CTG++ [Zhong et al., 2023]	$z = f_{ heta}(\mathbf{x}_t)$	empower LLM	optimization
	API	ToolLLM [Qin et al., 2023]	$\mathbf{y}=z(\mathbf{x}_s)$	with more abilities	not end-to-end

- Introduction
- Taxonomy
- Datasets
- Future Directions
- Conclusion

Datasets Summary

Internet of Things (IoT): IMU

Finance: stock

• Healthcare: EEG, ECG

Audio/Music/Speech

Domain	Dataset	Size	Major Modalities	Task
Internet of Things	Ego4D ² [Grauman <i>et al.</i> , 2022]	3,670h data, 3.85M narrations	text, IMU, video, audio, 3D	classification, forecasting
	DeepSQA ³ [Xing et al., 2021]	25h data, 91K questions	text, imu	classification, question answering
Finance	PIXIU ⁴ [Xie <i>et al.</i> , 2023b]	136K instruction data	text, tables	5 NLP tasks, forecasting
	MoAT ⁵ [Anonymous, 2023a]	6 datasets, 2K timesteps in total	text, time series	forecasting
Healthcare	Zuco 2.0 ⁶ [Hollenstein et al., 2019]	739 sentences	text, eye-tracking, EEG	classification, text generation
	PTB-XL ⁷ [Wagner et al., 2020]	60h data, 71 unique statements	text, ECG	classification
	ECG-QA ⁸ [Oh et al., 2023]	70 question templates	text, ECG	classification, question answering
Audio	OpenAQA-5M ⁹ [Gong et al., 2023]	5.6M (audio, question, answer) tuples	text, audio	tagging, classification
Music	MusicCaps ¹⁰ [Agostinelli et al., 2023]	5.5K music clips	text, music	captioning, generation
Speech	CommonVoice ¹¹ [Ardila et al., 2019]	7, 335 speech hours in 60 languages	text, speech	ASR, translation

- Introduction
- Taxonomy
- Datasets
- Future Directions
- Conclusion

Future Directions Summary

- Theoretical understanding
- Multimodal and multitask analysis
- Efficient algorithms
- Combining domain knowledge
- Customization and privacy

- Introduction
- Taxonomy
- Datasets
- Future Directions
- Conclusion

Conclusion Sumary

- The first survey that builds a taxonomy for how to transfer knowledge from LLMs for time series analysis
- Multimodal text and time series datasets
- Paper link: https://arxiv.org/abs/2402.01801
- GitHub repo: https://github.com/xiyuanzh/awesome-llm-time-series

