

Models of motion

Dr Andrew French. December 2023.

#1: The Kinematics of Usain Bolt

Two of Bolt's record-breaking 100m races. Time elapsed /s every 10m*

Bolt	10	20	30	40	50	60	70	80	90	100
2008	1.83	2.87	3.78	4.65	5.5	6.32	7.14	7.96	8.79	9.69
2009	1.89	2.88	3.78	4.64	5.47	6.29	7.10	7.92	8.75	9.58

Olympic final, Beijing World Champs, Berlin

Photo credit

100 90 80 70 Displacement x /m 60 50 40 30 20 10 2008 2009 3 10 time /s

Usain Bolt 100m stats: (t,x) graph

http://rcuksportscience.wikispaces.com/file/view/ Analysing+men+100m+Nspire.pdf

To find the **time**, **velocity graph** we could calculate the *gradient* of the (t,x) graph, at *different* times

The graph below has been constructed from the *local gradients* calculated *every second* along a *smooth curve* drawn between the elapsed time data recorded at 10m intervals.

We can go one step further and find the graph of *acceleration vs time* by working out the local gradients of the (t,v) graph.

For a complete view we can compare (t,x), (t,v) and (t,a) traces. Note the time axis must be the *same scale* for each graph.

 $a(t_i) \approx \frac{v(t_i) - v(t_{i-1})}{t_i - t_{i-1}}$

1ft = 0.3048m

1 mile = 1609.3m

#2: Kinematics of Blue Origin's *New Shepherd* launch on 20-July-2021

Acceleration estimated from velocity

Youtube link

In summary: Kinematics provides a really good reason to wish to know *velocity* or *acceleration* from *displacement* measurements. i.e. the gradient of the 'underlying curve.' We may *not know* the functional form of the curve however – we may have to estimate it from the data.

#2: Bezos example: Assume a straight line between velocity measurements.

#1: Bolt example: Fit a cubic spline between a rolling set of four data points. We can then differentiate the cubic (yielding a quadratic).

#3: Bouncing ball sim

```
n = 1; x = 1; v = 0; t = 0; g = 9.81; dt = 0.001; C = 0.8;
max bounce = 50; bounce = 0;
```

while bounce < max bounce

% Use constant acceleration motion between

t = 1.5s

0.9

0.6

0.4

0.3

0.2

% time steps dt

```
x(n+1) = x(n) - v(n)*dt - 0.5*g*dt^2;
v(n+1) = v(n) + g*dt;
t(n+1) = t(n) + dt;
if (x(n+1) < 0) && (v(n+1) > 0) % Bounce check
  bounce = bounce + 1;
  v(n+1) = -C*v(n);
end
```

%Time to stop bouncing

n = n + 1;

end

$$T = 2*sqrt(2*x(1)/g)*(1/(1-C) - 0.5);$$

subplot(2,1,1); plot(t,x); xlabel('t /s'); ylabel('x (m)'); grid on; title(['Ball Bounce. C=',num2str(C),', g=',num2str(g),' ms^{-2}, T=',num2str(T),' s.']); subplot(2,1,2); plot(t,v); xlabel('t /s'); ylabel('v (m/s)'); grid on; print(gcf,'bounce.png','-dpng','-r300'); close(gcf);

Ball bouncing on a horizontal surface

A ball is dropped from rest from vertical height h onto a horizontal floor. The impact velocity is $\sqrt{2gh}$ (via conservation of energy)

The **distance** travelled after *n* bounces is

$$D = h + 2C^{2}h + 2C^{4}h + \dots + 2(C^{2})^{n-1}h$$

$$\frac{D}{2h} + \frac{1}{2} = 1 + C^2 + \left(C^2\right)^2 + \dots + \left(C^2\right)^{n-1}$$
 Geometric progression

$$\frac{1}{2}mv^2 = mgH$$
$$\therefore H \propto v^2$$

$$v^2 = 2gH$$

$$\frac{D}{2h} + \frac{1}{2} = \frac{1 - C^{2n}}{1 - C^2}$$

$$D = 2h \left(\frac{1 - C^{2n}}{1 - C^2} - \frac{1}{2} \right) \quad \therefore \quad D_{\infty} = 2h \left(\frac{1}{1 - C^2} - \frac{1}{2} \right)$$

$$\frac{\left(C\sqrt{2gh}\right)^2}{2g} = C^2$$

$$D = 2h \left(\frac{1 - C^{2n}}{1 - C^2} - \frac{1}{2} \right)$$

Ball bouncing on a horizontal surface

A ball is dropped from rest from vertical height h onto a horizontal floor. The impact velocity is $\sqrt{2gh}$ (via conservation of energy)

The **time** travelled after *n* bounces is

$$T = \sqrt{\frac{2h}{g}} + 2C\sqrt{\frac{2h}{g}} + 2C^2\sqrt{\frac{2h}{g}} + \dots + 2C^{n-1}\sqrt{\frac{2h}{g}}$$

$$\frac{1}{2}mv^2 = mgH$$
$$\therefore H \propto v^2$$

$$\frac{T}{2}\sqrt{\frac{g}{2h}} + \frac{1}{2} = 1 + C + C^2 + \dots + C^{n-1}$$

Geometric progression

$$v^2 = 2gH$$

$$\frac{T}{2}\sqrt{\frac{g}{2h}} + \frac{1}{2} = \frac{1 - C^n}{1 - C}$$

$$T = 2\sqrt{\frac{2h}{g}} \left(\frac{1 - C^n}{1 - C} - \frac{1}{2} \right) \quad \therefore \quad T_{\infty} = 2\sqrt{\frac{2h}{g}} \left(\frac{1}{1 - C} - \frac{1}{2} \right)$$

$$\frac{\left(C\sqrt{2gh}\right)^2}{2g} = C^2h$$

$$T = 2\sqrt{\frac{2h}{g}} \left(\frac{1 - C^n}{1 - C} - \frac{1}{2} \right)$$

#4: Double ball bounce

Following collision, the smaller mass rises up to *nine times* the distance fallen!

Balls are dropped from rest

$$\frac{H}{h} = \frac{v^2}{u^2} = \left(\frac{C_1 - \frac{m}{M} + C_2 C_1 + C_2}{1 + \frac{m}{M}}\right)^2$$

All elastic
$$C_1 = C_2 = 1 =$$

$$\frac{H}{h} < \left(\frac{3 - \frac{m}{M}}{1 + \frac{m}{M}}\right)^2$$

You have a model ... now make a calculator using a spreadsheet

4	4 E	}	С	D	Е	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S	Т
1																				
2	DO	UBL	E BA	LL BC	OUNCE	CAL	CULAT	OR												
3		, ,	-0-											, .		0.71				
4	M		595		baske									_	height	0.74				
5	m ,	/g	57		tennis	ball	mass			Tenni	s ball	rise h	eight ,	/drop	height	0.49				
6																				
7	C1		0.9		coeffic	coefficient of restitution: basket ball and ground												w.	1	
3	C2		0.7		coeffic	cient	of rest	itutio	n: bas	ket ba	ll and	tenni	s ball						1.	
9																			- IH	
	Dro	op h	eight	/m	1.00											M				
															M	5 1.		M /	١.	
2	Pre	dict	ted ri	se he	ight of	tenr	is ball	/m	3.56						., (ノり	•	ווע	Л,	
3															77	-		1111		
4	7.7			2				m		α	\sim		7 \	2						
5	H		v	4		C_1	L —	$\frac{m}{M}$	+	$\frac{C_2C_2}{m}$	ز ₁ -	+ ($^{j}2$	_						
6		=	-	- =	= (171		m			_							
7	h		u					-	L +	$\frac{n}{M}$										
3						'				11/1										

Interesting scenario: two balls dropped together

Upper ball rises to

height H

Both balls are dropped from height h. The lower (and more massive one) collides elastically with a hard floor

 $m_1 u - m_2 u = m_1 v_1 + m_2 v_2$

Momentum conservation

$$C = \frac{v_2 - v_1}{2u} \quad \therefore v_1 = v_2 - 2uC$$

Restitution

All collisions
$$v_2 = 3u$$
 elastic $u = 0$

 $m_1 \gg m_2$

$$H = 9h$$

The balls then collide

$$m_1 u - m_2 u = m_1 (v_2 - 2uC) + m_2 v_2$$

$$m_1 u - m_2 u + 2Cm_1 u = v_2 (m_1 + m_2)$$

$$(2C + 1)m_1 - m_2$$

$$v_{2} = \frac{\left(2C+1\right) - \frac{m_{2}}{m_{1}}}{1 + \frac{m_{2}}{m_{1}}} H = \frac{v_{2}^{2}}{2g} = \left(\frac{v_{2}}{u}\right)^{2} h$$

$$H = \left(\frac{(2C+1) - \frac{m_2}{m_1}}{1 + \frac{m_2}{m_1}}\right) h$$

$$m_1(\mathbf{u}_1 - \mathbf{V}) + m_2(\mathbf{u}_2 - \mathbf{V}) = \mathbf{0}$$
 $\therefore \mathbf{V} = \frac{m_1\mathbf{u}_1 + m_2\mathbf{u}_2}{m_1 + m_2}$

After transforming back to the 'laboratory frame' from the 'Zero Momentum Frame' (ZMF), the resulting velocities $\mathbf{v}_{1,2}$ following collision are:

$$\mathbf{v}_{1,2} = -C(\mathbf{u}_{1,2} - \mathbf{V}) + \mathbf{V}$$

#5: Collisions and the ZMF

Ball bounce simulation

Zero Momentum Frame

$$\mathbf{V} = \frac{m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2}{m_1 + m_2}$$

Zero Momentum Frame (moving at velocity
$${f v}$$
 relative to Observer) y_{ZMF}

C is the coefficient of restitution

#6: MASS x ACCELERATION = VECTOR SUM OF FORCES

Newton's second law

Isaac Newton (1643-1727)

```
m r = 57.5/1000;
                       %Dry mass of rocket /kg
m w = 0.3;
                       %Initial water mass /kg
                       %Radius of bottle end /m
r = 0.05;
                       %Drag coefficient
cD = 0.4;
rho air = 1.225;
                       %Air density /kgm^-3
g = 9.81;
                       %Strength of gravity (N/kg)
T = 9/30;
                       %Water ejection time /s
C = 60:
                       %Water ejection speed relative to rocket (m/s)
mu = m w/T;
                       %Average mass ejection rate (kg/s)
                       %Initial mass of rocket plus water /kg
m = m r + m w;
                       %Cross sectional area of nosecone (m^2)
A = pi*(r^2);
dt = 0.0001;
                       %Timestep /s
%Initialize height x (m), time t (s), velocity v (m/s) and acceleration
%(m/s^2) vectors.
x = 0: t = 0: v = 0: a = 0: hits ground = 0: thrust phase = 1: n=1:
%Determine trajectory
while hits ground == 0
  %Determine acceleration by Newton's Second Law weight(n) = m(n)*g;
  drag(n) = 0.5*cD*rho air * A * v(n) * abs(v(n));
  if thrust phase == 1;
    thrust(n) = mu*C;
     m(n+1) = m(n) - mu*dt: %Reduce mass of rocket
  else
    thrust(n) = 0; %No more thrust - all water ejected
    m(n+1) = m(n); %Mass of rocket remains the same
  end
  a(n) = (thrust(n) - weight(n) - drag(n))/m(n);
  %Determine new speeds and distance via 'constant acceleration within a
  %time step' (Verlet method)
  v(n+1) = v(n) + a(n)*dt; x(n+1) = x(n) + v(n)*dt + 0.5*a(n)*dt^2;
  t(n+1) = t(n) + dt;
  %Check if thrust phase is over
  if mu*t(n) > m_w; thrust_phase = 0; end
  %Check if rocket has landed
  if (v(n+1) < 0) && (x(n+1) < 0); hits ground = 1; end
  %Increment step counter
  n = n + 1;
t(end) = []; x(end) = []; v(end) = []; m(end) = []; %Remove last values to make variable arrays the same length
%Plot x vs t, v vs t and a vs t
subplot(2,2,1); plot(t,x); xlabel('t/s'); ylabel('altitude x (m)');
title(['ROCKET MODEL: ToF=',num2str(t(end)),'s, xmax=',num2str( max(x) ),'m']); axis tight; grid on;
subplot(2,2,2); plot(t,v); xlabel('t/s'); ylabel('velocity v (m/s)');
title(['vmax=',num2str( max(v) ),'m/s']); axis tight; grid on;
subplot(2,2,3); plot(t,a); xlabel('t/s'); ylabel('acceleration a (m/s^2)');
title(['amax=',num2str( max(a) ),'m/s^2']); axis tight; grid on; axis tight; grid on;
subplot(2,2,4); plot(t,thrust,t,weight,t,drag); xlabel('t/s'); ylabel('Forces /N');
```

title(['max thrust=',num2str(max(thrust)),'N']); axis tight; grid on; axis tight; grid on; axis tight; grid on;

legend({'thrust'.'weight'.'drag'}); print(gcf.'rocket model.png'.'-dpng'.'-r300');

```
m\frac{dv}{dt} = T - mg - \frac{1}{2}c_DAv|v|
Thrust Weight Drag
                                                          Newton II
                                           0 < t < \frac{m_w}{\mu}
```


#8: ROLL THE LOOP

$$h > \frac{1}{2}(5 + \rho\sigma)(r - k)$$

All the way round without falling off

$$\rho$$
 = 1 rolling σ = 1/2 cylinder ρ = 0 sliding σ = 2/5 sphere

To fall off and land at (0,0)

$$h > \frac{1}{4}(7 + \rho\sigma)(r - k)$$