# A Gentle introduction to probability

## The goal of this class

- Probability is a branch of math.
- Solving complex problems requires mathematical tools and mathematical definitions.
- It might not be obvious how the math relates to the intuition.
  - Some times the intuition is wrong!
- Today I will introduce some central concepts in an intuitive way.
- In later classes we will give more formal definitions.
- The concepts are:
  - Outcomes
  - Expected value / fair price.
  - Events
  - Event trees.
  - Probabilities / probability distribution.
  - Conditional Probability.

## Bets between two people

- John: I bet the chargers will win their next game.
- Kathy: I bet they will lose. Do you want to put money on it?
- John, sure. In fact, <u>I am so sure they will win</u> that if they lose I'll pay you 90\$, if they win, you pay me just 10\$.
- Kathy: You are on!
- The odds are: 9 to 1
- Equivalent to john thinking that the probability the chargers will win is at least 90%
- Why? Because 0.9\*10-0.1\*90=0
- If John kathy would have many bets, the long terms average will have john at least break even.

## Bets against the house.

- People that want to bet often cannot find each other.
- The bookie acts as an intermediary: instead of pairs betting, everybody bets against the house.
- To bet: put money down on a particular outcome
- After result is known: get paid according to the odds.

#### Fair odds: in words

- In the betting games we will talk about, the probability of each <u>outcome</u> is known.
- The bet is fair if:
  - The long term average of gains/losses is zero.
  - The expected value is zero.

## Fair odds: in symbols

probabilities of outputs:  $p_1, p_2, \frac{1}{4}, p_n$ 

money gained for each outcome:  $g_1, g_2, \frac{1}{4}, g_n$ 

price of ticket: T

At each iteration, player pays T and gains one of  $g_1, g_2, \frac{1}{4}, g_n$ 

The expected gain of the player is  $\bigcap_{i=1}^{n} p_i g_i - T$ 

The game is fair if  $\bigotimes_{i=1}^{n} p_i g_i - T = 0$ 

Equivalently: the price is fair if  $T = \mathop{\stackrel{\circ}{\stackrel{\circ}{=}}} p_i g_i$ 

## First Example

- House flips an unbiased coin.
  - "heads": house pays player \$1
  - "tails": house pays player \$2
- Outcomes: "heads","tails"
- What is the fair ticket price?
  - **-** \$1.5
  - Why? Because 0.5\*1 + 0.5\*2 = 1.5

## Second example

- The house flips the coin three times in a row.
- Eight outcomes: HHH,HHT,HTH,HTT, THH,TTTH,TTT
- Each outcome has probability 1/8
- Each outcome consists of three coin flips.
- It sometimes helps our understanding to consider each coin flip separately, one by one.

## The 3 coin flips event tree



#### What is an "Event"

- An event is a set of outcomes.
  - The event "the first coin flip is H". Corresponds to the set: {HHH,HHT,HTH,HTT}
  - The event "the first coin flip is T". Corresponds to the set: {THH,THT,TTH,TTT}
  - The event "the first 2 coin flips are HH". Corresponds to the set: {HHH,HHT}
  - The event "the first 2 coin flips are HT". Corresponds to the set: {HTH,HTT}
  - **–** ...
  - The event "the three coin flips are HHH" corresponds to the set: {HHH}
- The probability of an event is the number of outcomes in the set, divided by 8.
- The event that contains all possible outcomes is called the "outcome space" and is denoted by  $\Omega$
- The probability of the whole outcome space is always 1:

$$Prob(\Omega)=8/8=1$$

#### What is a set?

- A set is a collection of items:  $A = \{b, d, e\}$
- A set cannot have the same item twice.
- Some Notation:
  - Item b is a member of the set A:  $b \in A$
  - A is a subset of B:  $A \subset B$
  - All events are subsets of  $\Omega$
  - The empty set  $\emptyset = \{\}$  contains no element
- Explicit set definition:  $A = \{b, d, e\}$
- Implicit set definition:  $B = \{i | i \text{ is prime}\}$
- A is finite, B is infinite

## Calculating probabilities of events

- The probability of an event is the number of outcomes in the set, divided by 8.
- The probability of an event is the number of outcomes in the event divided by the total number of outcomes (the number of outcomes in  $\Omega$  which is 8 in out case.
- Prob({HHH})=Prob({HHT})=1/8

## Slightly more complex events

- P({The sequence contains no T})=P({HHH})=1/8
- P({The sequence contains one T})=
  P({HHT,HTH,THH}) = 3/8
- While HHH,HHT,HTH,.... All have the same probability, the event defined by "one T" has three times the probability of "no T".
- The main task is to count the number of outcomes in the event. This is done using "combinatorics"



## Ticket prices

- Suppose that the house pays you \$1 if the specified even happens, zero otherwise. What is the fair price?
- T(E) = 1\* P(E) = P(E)
- T({HHH})=T({HHT})=T({no T})=1/8=12.5 ¢
- T({one T})=3/8=37.5¢

## The three card problem

- There are three cards in a hat. Each side of each card is colored red R or black B.
- The colors of the cards are RR, RB, BB
- I pick one of the cards at random and put it on a random side.
- I say: if the color of the other side is the same, you give me one dollar, if it is different, I give you one dollar.
- Is this fair?

### Event tree for three cards



## Conditional probability

- The probability that the seen color is R (B) is ½.
- The probability that the other side is R (B) given that the seen color is R(B) is 2/3.

#### Review

- Fair bets: bets whose expected value is zero.
- Expected value:  $\sum_{i=0}^{n} p_i g_i$
- Outcome: the output of a single experiment
- $\Omega$ : The outcome space: the set of all possible outcomes.  $P(\Omega) = 1$
- Events: subsets of  $\Omega$
- In finite domains with uniform distribution for any event A:  $P(A) = \frac{|A|}{|\Omega|}$

#### For wed.

- Read Chapter 2.
- Finish Week1 homework on webwork.

Wed: Basic combinatorics.