TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false.		
1) In binary addition, $1 + 0 = 1$.		
2) In binary addition, $0 + 0 = 00$.		
3) In binary addition, $1 + 1 = 10$.		
4) A half-adder has no carry-in bit.		
5) A group of four bits is called a byte.		
6) Adders with greater bit capacities can be constructed by connecti	ing 2-bit adders. 6)	
7) Full-adders do not provide for a carry input or a carry output.	7)	
8) The look-ahead-carry adder is slower than the ripple-carry adder because it requires additional logic circuits.		
9) When paralleling 2-bit full-adders, the carry-out of each stage is connected to the carry-in of the next-higher stage.		
10) Full-adders can be used as a BCD-to-binary converters.	10)	
11) A BCD-to-decimal decoder can be classified as a 4-line to 10-line	decoder. 11)	
12) A BCD-to-7-segment decoder can be classified as a 10-line to 7-line decoder.		
13) The function of a decoder is to break a decimal or other character code down into a binary code.		
14) Converting a decimal number to its binary equivalent is an example of encoding.		
15) A multiplexer has multiple inputs and a single output.		
16) Demultiplexers are also known as data distributors.		
17) A demultiplexer has multiple inputs and a single output.		
18) A demux basically reverses the function of a mux.		
19) A mux basically reverses the function of a demux.		
20) Decoder glitches can be eliminated by a method known as <i>stripping</i> .		
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.		
21) The carry output of a half-adder can be expressed as	21)	
A) $C_{out} = A + B$ B) $C_{out} = AB$ C) $C_{out} = A$	$A \oplus B$ D) none of these	
22) The expression A ⊕ B represents	22)	
A) the carry output of a full-adder B) the carry	output of a half-adder	
C) the sum output of a full-adder D) the sum of	output of a half-adder	

Figure 6-1

23) The symbol in Figure 6-1 represents a A) full-adder B) PLD C) AND function D) half-adder	23)			
24) Refer to the symbol in Figure 6-1. When A = 0 and B = 1, A) $\Sigma = 1$, $C_{out} = 1$ B) $\Sigma = 1$, $C_{out} = 0$ C) $\Sigma = 0$, $C_{out} = 0$ D) $\Sigma = 0$, $C_{out} = 1$	24)			
25) Referring to the symbol in Figure 6-1, which combination of outputs should never occur? A) $\Sigma = 0$, $C_{out} = 0$ B) $\Sigma = 1$, $C_{out} = 0$ C) $\Sigma = 1$, $C_{out} = 1$ D) $\Sigma = 0$, $C_{out} = 1$	25)			
 26) What is the major difference between half-adders and full-adders? A) Full-adders have a carry input capability. B) Half-adders can only handle single digit numbers. C) Full-adders are made up of two half-adders. D) Full-adders can handle double digit numbers. 	26)			
 27) Which of the following is correct for full-adders? A) The first stage of a parallel full-adder may be a half-adder. B) Full-adders are used to make half-adders. C) Full-adders have the capability of directly adding decimal numbers. D) Full-adders are limited to two inputs, since there are only two binary digits. 	27)			
The expression $(A \oplus B) \oplus {}^{\textbf{C}_{\textbf{in}}}$ describes A) the carry output of a full-adder C) the carry output of a half-adder D) the sum output of a half-adder	28)			
The expression $AB + (A \oplus B)^{\textbf{C}_{in}}$ describes A) the sum output of a full-adder B) the carry output of a half-adder C) the carry output of a full-adder D) the sum output of a half-adder	29)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Figure 6-2				
30) The symbol in Figure 6-2 represents a A) full-adder B) And function C) half-adder D) PLD	30)			
Refer to the symbol in Figure 6-2. What are the output when A = 1, B = 1, $^{\text{C}}$ in = 0? A) $_{\Sigma = 0}$, $^{\text{C}}$ out $_{= 1}$ B) $_{\Sigma = 0}$, $^{\text{C}}$ out $_{= 0}$ C) $_{\Sigma = 1}$, $^{\text{C}}$ out $_{= 0}$ D) $_{\Sigma = 1}$, $^{\text{C}}$ out $_{= 1}$	31)			

32) Refer to the symbol in Figure 6-2. What are the output			32)
A) $\Sigma = 0$, $C_{\text{out}} = 0$ B) $\Sigma = 1$, $C_{\text{out}} = 0$ C	$\Sigma = 1$, $C_{\text{out}} = 1$	D) $\Sigma = 0$, Cout = 1	
	B) The interconnections D) All of the above are c	_	33)
34) What is one advantage of the look-ahead-carry adder? A) It is easier to implement logically than a full-adde B) It requires advance knowledge of the final answe C) It is slower than the ripple-carry adder. D) It is faster than a ripple-carry adder.	er.		34)
35) Which of the following is true for IC comparator circuiA) Comparators can compare only 2 bits at a time.B) All comparators have outputs for indicating A<b,< li="">C) Comparators can compare only two values at a tiD) None of these</b,<>	, A>B, and A=B.		35)
36) The circuit below can be used as a			36)
A0 ————————————————————————————————————			
	3) 4-bit comparator		
 C) dual 4-line multiplexer D 37) Which statement below best describes the function of a A) A decoder will convert a decimal number into the B) Decoders are special ICs that are used to make it to another. C) Decoders are used to prevent improper operation D) A decoder will convert a binary number into a specharacter or digit. 	e proper binary equiva possible for one brand n of digital systems.	of computer to talk	37)
	3) two 2-input OR gates 9) one 4-input AND gat		38)

Figure 6-3

39) The output of the decoder in Figure 6-3 will be 1 only when			39)	
A) $A = 0$, $B = 1$, $C = 0$	_	B) A = 1, B = 1, C= 1, D = 1		,
C) $A = 0$, $B = 0$, $C = 0$		D) A = 1, B = 0, C= 1, D = 0		
40) The boolean expression	on for the decoder in Figure	6-3 is		40)
A) $\chi = \overline{A}B\overline{\overline{C}}D$	B) $X = A\overline{B}C\overline{D}$	C) $X = ABCD$	D) None of these	
41) A 1-of-16 decoder IC has data input connection(s).				
A) 16	B) 4	C) 1	D) 8	
42) A BCD-to-decimal decoder has data input lines and data output lines.				
A) 10,10	B) 4, 10	C) 7,9	D) 1,10	
43) The symbol below mo	ost likely represents a			43)
Do .				
D ₀ ————————————————————————————————————				
D ₂ — D ₃				
	— Y			
S ₀ ————————————————————————————————————				
A) comparator	B) multiplexer	C) demultiplexer	D) full-adder	
44) What is another name	-			44)
A) Attenuator	B) Demultiplexer	C) Data selector	D) Multiplier	
•	ur select, or address, lines c		•	45)
A) 7	B) 16	C) 3	D) 15	
46) The symbol below mo	ost likely represents a	·		46)
	7-87			
	—— D ₀ —— D ₁			
s ₀	— D ₂ — D ₃			
6	- J			

C) comparator

D) full-adder

B) multiplexer

A) demultiplexer