README.md 2/10/2021

My DE1 repisitory link

Click here

De Morgan's laws

Table

C	b	а	f(c,b,a)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Code

README.md 2/10/2021

Result

Link

EDA Playground link for De morgan's laws

Distributive laws

Code

README.md 2/10/2021

```
p1_o : out std_logic;
                                               -- Postulate no.1
         p2_o : out std_logic;
                                               -- Postulate no.2
         p3_o : out std_logic;
                                               -- Postulate no.3
         p4_o : out std_logic;
                                                -- Postulate no.4
         f1_o : out std_logic;
                                                -- Function no.1
         f2_o : out std_logic;
                                               -- Function no.2
         f3_o : out std_logic;
                                               -- Function no.3
         f4_o : out std_logic
                                               -- Function no.4
    );
end entity gates;
-- Architecture body for basic gates
architecture dataflow of gates is
begin
    p1_o \leftarrow x_i \text{ and (not } x_i);
    p2_o \ll x_i \text{ or (not } x_i);
    p3_o \leftarrow x_i \text{ or } x_i;
    p4_o \leftarrow x_i \text{ and } x_i \text{ and } x_i;
    f1_o \leftarrow (x_i \text{ and } y_i) \text{ or } (x_i \text{ and } z_i);
    f2_o \leftarrow x_i \text{ and } (y_i \text{ or } z_i);
    f3_o \leftarrow (x_i \text{ or } y_i) \text{ and } (x_i \text{ or } z_i);
    f4_o \leftarrow x_i \text{ or } (y_i \text{ and } z_i);
end architecture dataflow;
```

Result

Link

EDA Playground link for Distributive laws