Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Вариант №13 Лабораторная работа №2 по дисциплине Вычислительная математика

> Выполнил студент группы Р3212 Соколов Анатолий Владимирович Преподаватель: Наумова Надежда Александровна

Содержание

1	Задание						
	1.1 Вариант	1					
	1.2 Для нелинейных уравнений должно быть реализовано	1					
	1.3 Для систем нелинейных уравнений должно быть реализовано						
	1.4 Варианты задания	2					
	1.5 Цель работы	2					
2	Выполнение						
	2.1 Блок-схема реализованного алгоритма	2					
	2.2 Ссылка на GitHub с основной реализацией						
	2.3 Примеры и результаты работы программы	3					
3	Заключение						
4	Список литературы	3					

1 Задание

Вычислительная часть лабораторной работы должна быть представлена в виде таблиц и отображена только в отчете.

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 2.6)
- 2. График исследуемой функции отобразить в отчете
- 3. Определить интервалы изоляции корней
- 4. Уточнить корни заданного нелинейного уравнения с точностью $\varepsilon = 10^{-2}$
- 5. Используемые методы для уточнения каждого из трех корней многочлена представлены в табл. 2.7
- 6. Вычисления оформить в виде таблиц (табл. 2.1–2.5), в зависимости от заданного метода. Для всех значений в таблицах удержать 3 знака после запятой;

№ шага	x_k	x_{k+1}	$f(x_k+1)$	$ x_k - x_{k+1} $
1				
2				
3				

Таблица 1: Уточнение корня уравнения методом простой итерации

1.1 Вариант

1.2 Для нелинейных уравнений должно быть реализовано

- 1. Все численные методы (см. табл. 2.8) должны быть реализованы в виде класса /метода/функции;
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3–5 функций, в том числе и трансцендентные), из тех, которые предлагает программа;
- 3. Предусмотреть ввод исходных данных (границы интервала, погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя;
- 4. Организовать вывод графика функции на исследуемом интервале (с запасом);
- 5. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные;

- 6. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения (а или b) вычислять в программе;
- Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале. Если оно не выполняется, выводить соответствующее сообщение. При этом попытаться решить нелинейное уравнение, ограничив итерационный процесс заданным в программе максимальным числом итераций;
- 8. Для каждого метода учитывать все критерии выхода из итерационного цикла. Проверить, как изменятся результаты, если учитывать либо критерии по аргументу, либо критерии по функции;
- 9. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя;
- 10. Проанализировать полученные результаты, оценить точность решения задачи;
- 11. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.

$1.3\;\;\;$ Для систем нелинейных уравнений должно быть реализовано

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2–3 системы);
- 2. Организовать вывод графика функций.
- 3. Ввести начальные приближения с клавиатуры;
- 4. Для метода простой итерации проверить достаточное условие сходимости. Если оно не выполняется, выводить соответствующее сообщение. При этом попытаться решить систему нелинейных уравнений, ограничив итерационный процесс заданным в программе максимальным числом итераций;
- 5. Организовать вывод вектора неизвестных:;
- 6. Организовать вывод количества итераций, за которое было найдено решение;
- 7. Организовать вывод вектора погрешностей: ;
- 8. Проверить правильность решения системы нелинейных уравнений.
- 9. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.

1.4 Варианты задания

$$x^3 + 4.81x^2 - 17.37x + 5.38$$

Выбор метода для вычислительной реализации задачи

Метод простой итерации

Выбор метода для программной реализации задачи

Решение нелинейных уравнений: метод половинного деления, метод Ньютона

Решение систем нелинейных уравнений: метод простой итерации.

1.5 Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

2 Выполнение

2.1 Блок-схема реализованного алгоритма

2.2 Ссылка на GitHub с основной реализацией

Github

2.3 Примеры и результаты работы программы

3 Заключение

Я познакомился с новым для меня и крайне необыкновенным вычислением СЛАУ на языке rust.

4 Список литературы

[1] Слайды с лекций (2023). // Кафедра информатики и вычислительной техники – Малышева Татьяна Алексеевна, к.т.н., доцент.