D-13057 Berlin (DE).

Uwe [DE/DE]; Gubener Strasse 27, D-10243 Berlin (DE). CLAUS, Peter [DE/DE]; Biesenbrower Strasse 31,

(74) Anwalt: WALTER, Wolf-Jürgen; Felke & Walter, Norman-

nenstrasse 1-2, D-10367 Berlin (DE).

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: (11) Internationale Veröffentlichungsnummer: WO 00/15341 **A2** B01J 37/00 (43) Internationales Veröffentlichungsdatum: 23. März 2000 (23.03.00) (81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, PCT/DE99/02956 (21) Internationales Aktenzeichen: CH. CY. DE. DK. ES, FI, FR, GB, GR, IE, IT, LU, MC, 10. September 1999 NL, PT, SE). (22) Internationales Anmeldedatum: (10.09.99)Veröffentlicht Ohne internationalen Recherchenbericht und erneut zu (30) Prioritätsdaten: veröffentlichen nach Erhalt des Berichts. 11. September 1998 (11.09.98) 198 43 242.9 (71) Anmelder (für alle Bestimmungsstaaten ausser US): INSTITUT FÜR ANGEWANDTE CHEMIE BERLIN-ADLERSHOF E.V. [DE/DE]; Richard-Willstätter-Strasse 12, D-12489 (72) Erfinder: und (75) Erfinder/Anmelder (nur für US): WOLF, Dorit [DE/DE]; Grünauerstrasse 101 A, D-12557 Berlin (DE). BUYEVSKAYA, Olga [RU/DE]; Herrenhausstrasse Herrenhausstrasse 16, D-12487 Berlin (DE). BAERNS, Manfred [DE/DE]; Hüninger Strasse 5, D-14195 Berlin (DE). RODEMERCK,

(54) Title: METHOD FOR PRODUCING ACTIVE AND/OR SELECTIVE SOLID CATALYSTS FROM INORGANIC OR ORGANOMETALLIC MATERIALS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG AKTIVER UND/ODER SELEKTIVER FESTSTOFF-KATALYSATOREN AUS ANORGANISCHEN ODER METALLORGANISCHEN STOFFEN

(57) Abstract

The invention relates to an evolutionary method for producing catalysts. In a first step (i), components are selected and added to a library of substances. Mixtures of these individual materials are then produced randomly by random selection. In the second step (ii), this first generation of catalysts produced is catalytically tested. Catalyst-optimised materials from step (ii) are physically/chemically characterised for reproducible production in step (iii) and form the basis for a second generation of catalysts. This second generation is produced gradually from the successful materials of the first generation using biological evolutionary methods such as crossing and mutation, and subjected to steps (ii) and (iii). For the second and subsequent iterations, the most successful catalysts of all the generations are taken as a basis in each case, the total number of said catalysts being 1 to 50 % of the catalysts of a generation. The iterations are continued until no further improvement is observed in the catalytic properties of the materials in terms of activity/selectivity, for the reaction concerned.

(57) Zusammenfassung

Im erfindungsgemäßen evolutionären Katalysatorherstellungsverfahren werden im ersten Schritt (i) Komponenten ausgewählt und in eine Substanzbibliothek übernommen, wobei durch zufällige Wahl willkürliche Mischungen aus diesen Einzelmaterialien erzeugt werden. Im zweiten Schritt (ii) wird diese hergestellte 1. Generation von Katalysatoren katalytisch ausgeprüft. Katalysatoroptimierte Materialien des Schritts (ii) werden auf reproduzierbare Herstellung in Schritt (iii) physikalisch/chemisch charakterisiert und stellen die Grundlage für eine 2. Generation von Katalysatoren dar. Diese zweite Generation wird nach biologischen Evolutionsmethoden wie z.B. Kreuzung und Mutation aus den erfolreichen Materialien der ersten Generation erzeugt und den Schritten (ii) und (iii) unterworfen. Bei der zweiten und den nachfolgenden Iterationen werden jeweils die erfolgreichsten Katalysatoren aller Generationen zugrunde gelegt, deren Gesamtzahl zur Gesamtzahl der Katalysatoren einer Generation 1 bis 50 % der Katalysatoren einer Generation betragen. Die Iterationen werden fortgeführt, bis keine Verbesserung des katalytischen Verhaltens der Materialien hinsichtlich Aktivität/Selektivität für die betrachtete Reaktion festzustellen ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

						SI	Slowenien
AL	Albanien	ES	Spanien	LS	Lesotho	-	
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
СМ	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
)							

1

5

10

15

20

25

30

35

Verfahren zur Herstellung aktiver und/oder selektiver Feststoff-Katalysatoren aus anorganischen oder metallorganischen Stoffen

Die Erfindung betrifft ein Verfahren zur schnellen und wirtschaftlichen Entwicklung von Feststoffkatalysatoren für heterogen katalysierte Reaktionsabläufe, wie sie bei Prozessen in der chemischen Produktion und in der Raffinerietechnik sowie bei der Umwelttechnik auftreten, durch ihre parallelisierte Ausprüfung nach neuen evolutionären Methoden.

Die Neuentwicklung oder Verbesserung heterogener anorganischer Feststoffkatalysatoren beruht auf empirischem Expertenwissen und Grundlagenwissen. Obwohl über die Wirkungsweise einzelner anorganischer Komponenten bzw. Verbindungen bei der Katalyse bestimmter Reaktionsteilschritte ein umfassendes Grundlagenwissen besteht, das für die Katalysatorentwicklung eine entscheidende Bedeutung hat, kann in der Praxis auf absehbare Zeit nicht darauf verzichtet werden, eine große Zahl von Katalysatoren, die aus verschiedenen aktiven Komponenten bzw. Phasen bestehen, herzustellen und auf ihre katalytische Wirkungsweise für die betrachtete Reaktion auszuprüfen.

Für die Durchführung einer vorgegebenen Reaktion wird es in der Regel mehrere katalytisch aktive Phasen geben, die in geeigneter Weise und in einem empirisch zu ermittelnden Verhältnis der aktiven Komponenten hergestellt und dabei zusammengebracht werden. Die Kenntnis der physikalischen, physikalisch-chemischen und katalytischen Eigenschaften von Festkörpern bildet eine rationale Basis für die Auswahl katalytisch wirksamer Materialien bei der Katalysatorentwicklung und -verbesserung. Selbst wenn im Idealfall die richtigen Einzelkomponenten bzw. Einzelphasen des Katalysators ausgewählt werden können, ist es erforderlich, das geeignete Massenverhältnis und Präparationsverfahren zu ermitteln.

Eine geeignete Verfahrensweise für solche Optimierprobleme ist die Anwendung kombinatorischer und evolutionärer Methoden (Ugi, I. et al., Chimia 51 (1997) 39 - 44). Diese Algorithmen wurden bislang in der Biochemie und Wirkstofforschung angewendet, um in möglichst kurzer Zeit neue Substanzen mit einer gewünschten spezifischen Wirkung aus einer Vielzahl von Verbindungen herauszufinden. Auch bei der Entwicklung homogener Katalysatoren wurden diese Prinzipien inzwischen angewandt (DE-A 197319904). Bei den genannten Anwendungen befinden sich die untersuchten Substanzen stets in Lösung. Der Wirkungsraum der gewünschten Eigenschaft (z. B. katalytische Aktivität und Selektivität) ist auf ein Molekül begrenzt, dessen optimale elementare Zusammensetzung und Struktur gesucht wird.

Im Gegensatz dazu gilt es in der heterogenen Katalyse die katalytisch wirksamsten anorganischen Feststoffmaterialien zu selektieren und ihre optimalen Massenanteile im endgültigen Katalysator zu ermitteln. Durch die Anwendung von neuen Strategien bei der Entwicklung heterogener Katalysatoren soll gegenüber den heute in der Praxis noch immer weitgehend empirisch ausgerichteten Methoden einerseits der experimentelle Aufwand bei der Katalysatorentwicklung reduziert und andererseits die Wahrscheinlichkeit des Auffindens eines optimalen Katalysators gesteigert werden.

Kombinatorik ist eine effektive Entwicklungsstrategie, wenn eine große Zahl von Parametern die Eigenschaften von Produkten beeinflußt. Trotz des großen Erfolgs dieser Strategie bei der Entwicklung neuer Arzneimittel, ist die Anwendung von kombinatorischen Methoden in der anorganischen Chemie und Katalyse ein neues Gebiet. Die erste Anwendung kombinatorischer Methoden bei der Entwicklung neuer Feststoffmaterialen wurde im Jahre 1995 von Schultz et al. Science, 268 (1995) 1738 und Science 270 (1995) 273) berichtet. Die Autoren haben gezeigt, daß die Feststoffbibliotheken auf Supraleitfähigkeit und Magnetoresistenz ausgeprüft werden konnten. Im gleichen Jahr wurden Bibliotheken von Komplexen für die selektive Bindung von Metallionen sowie von phosphinhaltigen peptidischen Liganden für die Rh(I)-katalysierte Hydrierung von Methyl-2-Acetamidoacrylat zu N-Acetylalaninmethylether hergestellt.

Es wurde die Synthese von Bibliotheken, die eine große Zahl (bis 26000) von Kombinationen anorganischer Materialien auf einer Siliziummatrix enthalten, beschrieben (E. Danielson et al., Nature 389 (1997) 944). Diese Technologie wurde u.a. am Beispiel der heterogen katalysierten CO Oxidation zur Ermittlung katalytisch aktiver Feststoffmaterialien ausprobiert. Die erhaltenen Ergebnisse wurden in dreidimensionalen Diagrammen dargestellt, aus denen die Kombinationen, die zu hohen CO₂-Ausbeuten und damit zur höchsten Katalysatoraktivität führten, ermittelt werden konnten.

Weiterhin wurde eine Synthese einer Bibliothek von Polyoxymetallaten mit Kegginstruktur beschrieben (C.L. Hill et al., J. Mol. Catal. A 114 (1996) 114); 39 homogengelöste Katalysatoren wurden bei der Mischung von wäßrigen Lösungen von Na₂MO₄·2H₂O, NaVO₃ und Na₂MPO₄ (M = W, Mo) hergestellt. Die entstandenen Lösungen wurden ohne weitere Behandlungen bei der aeroben Oxidation von Tetrahydrothiophen zu Sulfoxid bei 95° eingesetzt. Der Eduktumsatz und die Produktbildung wurden mittels einer GLC-Analyse ermittelt und als dreidimensionales "reaction histogramm" präsentiert (x-Achse - Mo/W-Gehalt; y-Achse - V-Gehalt; z- Achse - Produktausbeute). Da bei den meisten Katalysatoren vergleichbare Ergebnisse erreicht wurden, konnten keine aussagekräftigen Schlußfolgerungen getroffen werden.

Eine kombinatorische Strategie haben Mallouk et al. (Fuel Cell Seminar: Orlando, Florida (1996) 686, bei der Entwicklung und Optimierung von Legierungen aus drei Metallen, die als Anodenmaterialen bei der elektrochemischen Oxidation von Methanol verwendet werden, verfolgt. Für die Herstellung von Bibliotheken (9 Arrays mit 135 Zusammensetzungen) wurden fünf Edelmetalle (Pt, Ru, Os, Rh und Pd) verwendet. Diese Arbeit ist ein Beispiel für eine effektive parallelisierte Ausprüfung.

Kombinatorische Bibliotheken von auf $\mathrm{Al_{2}O_{3}}$ geträgerten Metallkatalysatoren (u.a. Bi, Cr, Co, Cu, Ni, Pd) mit 16 Elementen einer Matrix wurden von Willson et al. bei der Wasserstoffoxidationsreaktion eingesetzt. Der Reaktor war mit einer speziellen Kamera für die in-situ IR-Thermographie ausgerüstet; die katalytische Aktivität wurde daher über die Zündungstemperatur ermittelt. Ein Nachteil der in diesen Arbeit angewendeten Analytik

4

ist, daß Informationen über Produktselektivität fehlen.

5

10

15

20

25

30

35

Bei den bislang beschriebenen Methoden der Kombinatorik und ihrer Anwendung zur Ermittlung von Wirkstoffen und optimierter Katalysatoren werden sehr viele Synthesen für diese Zielmaterialien durchgeführt, die zeit- und mittelaufwendig sind.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung heterogener Feststoffkatalysatoren für eine vorgegebene Reaktion mit verringertem Aufwand zu entwickeln, bei dem die kombinatorischen Ansätze durch andere Optimierverfahren ergänzt oder ersetzt werden.

Erfindungsgemäß werden evolutionäre Prinzipien wie Kreuzung und Mutation eingesetzt, und dabei wird mit stochastischen Modifikationen der Katalysatorzusammensetzzung gearbeitet. Diese Methoden führen nicht zu einer reinen Zufallssuche, sondern durch eine aktivitäts- und selektivitätsbestimmte Auswahl der zu modifizierenden Katalysatoren zu einer gerichteten Optimierung, die sich schnell und parallel auf mehrere erfolgversprechende Bereiche der Katalysatorzusammensetzung konzentriert.

Erfindungsgemäß wird dabei folgendermaßen vorgegangen:

- (i) Herstellung von Substanzbibliotheken aus katalytischen Einzelmaterialien und deren Mischungen,
- (ii) Ausprüfung von Materialien, das sind Einzelmaterialien und deren Mischungen aus diesen Substanzbibliotheken, auf ihre katalytische Wirkungsweise,
- (iii) Ermittlung der chemischen Struktur der katalytisch aktiven Materialien,
 - (iv) aufbauend auf den nach (ii) und (iii) gewonnenen Ergebnisse erfolgt eine iterative Wiederholung der Schritte (i) bis (iii) bzw. auch (iv) mit dem Ziel der Katalysatoroptimierung.

Diese Vorgehensweise läßt sich bei der Entwicklung heterogener Katalysatoren wie folgt verwirklichen bzw. praktisch umsetzen:

Im ersten Schritt (i) werden primäre Komponenten (Einzelmaterialien bzw. katalytisch aktive Phasen), die für die einzelnen Reaktionsschritte der betrachteten heterogen katalysierten Reaktion bereits beschrieben oder bekannt oder empirisch oder intuitiv ermittelt wurden, ausgewählt und in die Substanzbibliothek übernommen; wobei durch zufällige Wahl willkürliche Mischungen aus

diesen Einzelmaterialien erzeugt werden. Im zweiten Schritt (ii) werden diese so endgültig festgelegten und hergestellten Materialien (1. Generation von Katalysatoren) katalytisch ausgeprüft (z.B. Aktivität, Selektivität, Raum-Zeit-Ausbeute); diese beiden Vorgänge, d. h. Herstellung und Ausprüfung, werden jeweils möglichst weitgehend parallelisiert durchgeführt. Die im Sinne der Katalysatoroptimierung erfolgreichen Materialien des Schritts (ii) werden insbesondere im Hinblick auf ihre reproduzierbare Herstellung in Schritt (iii) physikalisch und physikalisch-chemisch charakterisiert und stellen die Grundlage für eine folgende 2. Generation von Katalysatoren dar. Diese zweite Generation wird nach Methoden der biologischen Evolution aus den erfolgreichen Materialien der ersten Generation erzeugt und dann den Schritten (ii) und (iii) unterworfen.

Unter Methoden der biologischen Evolution werden hier Kreuzung und Mutation verstanden. Dabei wird mittels stochastischer Verfahren, wie Zufallsgeneratoren, Würfeln, Ziehungen eine Veränderung von Katalysatorkomponenten und/oder Mengenanteilen eines oder mehrerer Katalysatoren eines ausgewählten Pools von Katalysatoren der vorigen Generation durchgeführt durch willkürlich und/oder zufällige Neustrukturierung.

Bei der zweiten und den nachfolgenden Iterationen werden jeweils die erfolgreichsten Katalysatoren aller Generationen zu Grunde gelegt, deren Gesamtzahl zur Gesamtzahl der Katalysatoren einer Generation jedoch im allgemeinen klein ist; sie wird in der Regel 1 bis 50 % der Katalysatoren einer Generation betragen.

Die geschilderten Iterationen werden solange fortgeführt, bis keine Verbesserung des katalytischen Verhaltens der Materialien hinsichtlich Aktivität und/oder Selektivität für die betrachtete Reaktion mehr festzustellen sind.

Das Verfahren zur Auswahl von Komponenten für die Herstellung aktiver und/oder selektiver Feststoff-Katalysatoren aus anorganischen oder metallorganischen Stoffen oder Gemischen davon besteht vorteilhaft in den folgenden Stufen, in denen

(a) für eine katalytische Reaktion eine Anzahl n_1 von Feststoff-Katalysatoren aus den Elementen des Periodensystems der Elemente (PSE) in Form von Verbindungen der Formel (I)

$$(A_{a_{l}}^{l} ... A_{a_{i}}^{i}) - (B_{b_{l}}^{l} ... B_{b_{j}}^{j}) - (D_{d_{l}}^{l} ... D_{d_{k}}^{k}) - (T_{t_{l}}^{l} ... T_{t_{l}}^{l}) - O_{p}$$
 (I)

15

10

5

20

25

30

hergestellt werden, worin A^1 .. A^i i verschiedene Haupkomponenten sind, die aus den Elementen des PSE, ausgenommen die Transurane und Edelgase, vorzugsweise aus der Gruppe

Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce und Nd ausgewählt werden und die Anzahl i zwischen 1 und 10 liegt,

5

- ${\tt B^1}$.. ${\tt B^j}$ j verschiedene Nebenkomponenten sind, die aus der Gruppe der Elemente
- Li, Na, Ka, Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce und Nd ausgewählt werden, und die Anzahl j zwischen 1 und 10 liegt.
- $D^1 \dots D^k$ k verschiedene Dotierungselemente sind, die aus der Gruppe der Elemente
 - Li, Na, Ka, Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce
- 20 und Nd ausgewählt werden, und die Anzahl k zwischen 1 und 10 liegt,
 - \mathtt{T}^1 .. \mathtt{T}^1 l verschiedene Trägerkomponenten sind, die aus Oxiden, Carbonaten, Carbiden, Nitriden, Boriden der Elemente Mg, Ca, Sr, Ba, La, Zr, Ce, Al, Si oder einer Mischphase von zwei oder mehre-
 - ren davon bestehen, und die Anzahl 1 zwischen 1 und 10 liegt, und 0 Sauerstoff ist,
 - $a_1..a_1$ sind gleiche oder verschiedene Stoffmengenanteile von 0 bis 100 Mol-% mit der Maßgabe, daß die Stoffmengenanteile $a_1..a_1$ nicht gleichzeitig alle 0 sein können,
- 30 b₁ .. b_j Stoffmengenanteile von 0 bis 90 Mol.-% sind, vorzugsweise 0 bis 50 Mol.-%,
 - $d_1 \ldots d_k$ Stoffmengenanteile von 0 bis 10 Mol.-% sind,
 - t₁ .. t₁ Stoffmengenanteile von 0 bis 99,99 Mol.-% sind,
- p ein Stoffmengenanteil von 0 bis 75 Mol.-% ist, wobei die Summe aller Stoffmengenanteile $a_i + b_j + d_k + t_1$ nicht größer als 100% sein darf, und
 - die Anzahl n, mengenmäßig und/oder chemisch unterschiedlich zu-

sammengesetzter Katalysatoren im Bereich von 5 bis 100.000 bevorzugt jedoch im Bereich von 5 bis 100 liegt;

(b) die Aktivität und/oder Selektivität der nach (a) hergestellten n_1 Feststoff-Katalysatoren der 1. Generation für eine katalytische Reaktion in einem Reaktor oder in mehreren parallel geschalteten Reaktoren experimentell ermittelt werden;

5

10

15

20

25

30

35

- (c) von der Anzahl der n_1 Katalysatoren der 1. Generation eine Anzahl von 1 50 % mit den höchsten Aktivitäten für eine spezifische Reaktion und/oder höchsten Selektivitäten für das gewünschte Produkt oder Produktgemisch der katalytischen Reaktion als Anzahl n_2 ausgewählt wird;
- (d) die in der Anzahl n_2 Katalysatoren enthaltenen Katalysatorkomponenten mit einer festgelegten Wahrscheinlichkeit W, die sich für jede der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und T^1 .. T^1 aus den entsprechenden Gleichungen

$$W_A = \frac{1}{i \cdot n_2} \cdot 100\%, W_B = \frac{1}{j \cdot n_2} \cdot 100\%, W_D = \frac{1}{k \cdot n_2} \cdot 100\%, W_T = \frac{1}{l \cdot n_2} \cdot 100\%$$

ergibt, zwischen jeweils 2 mit einer Wahrscheinlichkeit

- $W_{Kai} = \frac{I}{n_2} \cdot 100\%$ aus der Menge n_2 ausgewählten Katalysatoren ausgetauscht werden und /oder daß die Stoffmengen $a_1 \ldots a_i$, $b_1 \ldots b_i$, $d_1 \ldots d_k$ und $t_1 \ldots t_1$ der Katalysatorkomponenten $A^1 \ldots A^i$, $B^1 \ldots B^j$, $D^1 \ldots D^k$ und $T^1 \ldots T^1$ bei einigen der mit der Wahrscheinlichkeit
 - $W_{\text{Kal}} = \frac{1}{n_2} \cdot 100\%$ ausgewählten Katalysatoren variiert werden, indem neue Werte für die Stoffmengenanteile $a_1 \dots a_i$, $b_1 \dots b_j$, $d_1 \dots d_k$ und $d_1 \dots d_k$ innerhalb der unter (a) definierten Grenzen festgelegt werden;
 - auf diese Weise werden neue Katalysatoren der allgemeinen Formel (I) mit der unter (a) genannten Bedeutung von A^1 .. A^i , B^1 .. B^j , D^1 .. D^k , T^1 .. T^1 , a_1 .. a_i , b_1 .. b_j , d_1 .. d_k und t_1 .. t_1 und p in einer Anzahl y_2 hergestellt, die die 2. Generation von Katalysatoren bilden;
 - (e) die Aktivitäten und/oder Selektivitäten der y_2 Feststoff-Katalysatoren der 2. Generation für die gleiche spezifische Reaktion wie in (b) in einem oder mehreren Reaktoren experimentell ermittelt werden;

5

10

15

20

25

30

35

- (f) eine Zahl von n_3 Feststoff-Katalysatoren der 2. Generation, die die höchsten Aktivitäten für die katalytische Umsetzung und/oder die höchsten Selektivitäten für das gewünschte Produkt und Produktgemisch aus allen Feststoff-Katalysatoren der 1. und 2. Generation aufweisen, ausgewählt werden, wobei die Anzahl $-n_3$ 1 bis 50 % der Zahl n_1 entspricht;
- (g) die in der Anzahl n_3 Katalysatoren enthaltenen Katalysatorkomponenten mit einer festgelegten Wahrscheinlichkeit W, die sich für jede der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und T^1 .. T^1 aus den entsprechenden Gleichungen

 $W_A = \frac{l}{l \cdot n_3} \cdot 100\%, W_B = \frac{l}{j \cdot n_3} \cdot 100\%, W_D = \frac{l}{k \cdot n_3} \cdot 100\%, W_T = \frac{l}{l \cdot n_3} \cdot 100\%$ ergibt, zwischen jeweils 2 mit einer Wahrscheinlichkeit

- $W_{Kat} = \frac{1}{n_3} \cdot 100\%$ aus der Menge n_3 ausgewählten Katalysatoren ausgetauscht werden und /oder daß die Stoffmengen $a_1 \dots a_i$, $b_1 \dots b_j$, $d_1 \dots d_k$ und $d_1 \dots d_k \dots d_k$
- $W_{Kal} = \frac{1}{n_3} \cdot 100\%$ ausgewählten Katalysatoren variiert werden, indem neue Werte für die Stoffmengenanteile a_1 .. a_i , b_1 .. b_j , d_1 .. d_k und t_1 .. t_1 innerhalb der unter (a) definierten Grenzen festgelegt werden;

auf diese Weise werden neue Katalysatoren der allgemeinen Formel (I) mit der unter (a) genannten Bedeutung von A^1 .. A^i , B^1 .. B^j , D^1 .. D^k , T^1 .. T^1 , a_1 .. a_i , b_1 .. b_j , d_1 .. d_k und d_1 .. d_k und d_1 .. d_k und d_k in einer Anzahl d_k hergestellt, die die 3. Generation von Katalysatoren bilden;

- (h) die Aktivität und/oder Selektivität der nach (g) hergestellten y_3 neuen Katalysatoren der 3. Generation für die gleiche spezifische Reaktion wie unter (b) in einem oder mehreren Reaktoren ermittelt wird;
- (i) eine Zahl von n_{n+1} Feststoff-Katalysatoren der n-ten Generation, die die höchsten Aktivitäten für die katalytische Umsetzung und/oder die höchsten Selektivitäten für das gewünschte Produkt und Produktgemisch aus allen Feststoff-Katalysatoren der 1. bis n-ten Generation aufweisen, ausgewählt werden, wobei die

20

25

30

35

Anzahl n_{n+1} 1 bis 50 % der Zahl n_1 entspricht;

(j) die in der Anzahl n_{n+1} Katalysatoren enthaltenen Katalysatorkomponenten mit einer festgelegten Wahrscheinlichkeit W, die sich für jede der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und T^1 .. T^1 aus den entsprechenden Gleichungen

 $W_A = \frac{1}{i \cdot n_{n+1}} \cdot 100\%, W_B = \frac{1}{j \cdot n_{n+1}} \cdot 100\%, W_D = \frac{1}{k \cdot n_{n+1}} \cdot 100\%, W_T = \frac{1}{l \cdot n_{n+1}} \cdot 100\%$ ergibt, zwischen jeweils 2 mit einer Wahrscheinlichkeit

 $W_{Kat} = \frac{I}{n_{n+1}} \cdot 100\%$ aus der Menge n_{n+1} ausgewählten Katalysatoren ausgetauscht werden und /oder daß die Stoffmengen $a_1 \ldots a_i$, $b_1 \ldots b_j$, $d_1 \ldots d_k$ und $t_1 \ldots t_1$ der Katalysatorkomponenten $A^1 \ldots A^i$, $B^1 \ldots B^j$, $D^1 \ldots D^k$ und $T^1 \ldots T^l$ bei einigen der mit der Wahrscheinlichkeit

 $W_{Kat} = \frac{1}{n_{n+1}} \cdot 100\%$ ausgewählten Katalysatoren variiert werden, indem neue Werte für die Stoffmengenanteile $a_1 \dots a_i$, $b_1 \dots b_j$, $d_1 \dots d_k$ und $t_1 \dots t_1$ innerhalb der unter (a) definierten Grenzen festgelegt werden;

auf diese Weise werden neue Katalysatoren der allgemeinen Formel (I) mit der unter (a) genannten Bedeutung von A^1 ... A^i , B^1 ... B^j , D^1 ... D^k , T^1 ... T^1 , a_1 ... a_i , b_1 ... b_j , d_1 ... d_k und d_1 ... d_k und d_k und d_k in einer Anzahl d_k hergestellt, die die (n+1)-ten Generation von Katalysatoren bilden;

- (k) die Aktivität und/oder Selektivität der nach (g) hergestellten y_{n+1} neuen Katalysatoren der (n+1)-ten Generation für die gleiche Reaktion wie unter (b) in einem oder mehreren Reaktoren ermittelt wird;
- (1) die Auswahl gemäß den Stufen (c) + (f) + (i), die Herstellung einer neuen Katalysatorgeneration gemäß den Stufen (d), (g), (j) und die Aktivitäts-/Selektivitätsermittlung gemäß den Stufen (e) + (h) + (k) bis zum Erhalt einer Katalysator-Generation fortgeführt wird, bei der die Aktivität und/oder Selektivität gegenüber den vorangegangenen Generationen im arithmetischen Mittel nicht oder nicht mehr signifikant (>1 %) erhöht ist.

Die Auswahlanzahl n_2 , n_3 oder n_{n+1} entspricht vorzugsweise 5 bis 30 % der Zahl n_1 .

10

Der Austausch der Katalysatoren oder die Variierung der Stoffmengen oder Austausch und Variierung in den Abschnitten (d), (g) und (j) wird vorzugsweise mittels eines numerischen Zufallsgenerators durchgeführt. Dabei werden vorteilhaft die Programm-codes GO5CAF, GO5DYF, GO5DZF oder GO5CCF der NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986) eines numerischen Zufallsgenerators eingesetzt.

5

10

15

20

25

30

35

Es können auch Zufallsgeneratoren verwendet werden, die frei im Internet verfügbar sind oder solche, wie "Numerical Recipes in FORTRAN, PASCAL oder C" Cambridge University Press, oder IMSL Libraries des FORTRAN compilers DIGITAL visual Fortran Professional Edition, die kommerziell als Software erhältlich sind. Auch andere stochastische Verfahren, wie Würfeln oder Ziehungen können für diese Stufe verwendet werden.

Unter Einsatz derartiger Verfahren können z.B. in Stufe (d) oben mehrere Katalysatorkomponenten ausgewählt werden und deren entsprechende molare Stoffmengenanteile zwischen den zuvor ausgewählten Katalysatorkomponenten vertauscht werden (Kreuzung), Dadurch kann auch durch Mengenanteile, die von einem endlichen Wert auf Null oder von Null auf einen endlichen Wert geändert werden, ein Austausch der einzelnen Katalysatorkomponenten selbst mittels Kreuzung bewirkt werden, wodurch insgesamt eine neue Zusammensetzung des Katalysators der neuen Generation erhalten wird. Es können aber auch die z.B. mittels Zufallsgenerator ausgewählten Katalysatorkomponenten durch Multiplikation mit Faktoren, die aus der Menge der reellen Zahlen zwischen 0 und 10000 entweder zufällig bestimmt oder freiwählbar festgelegt werden, verringert oder vergrößert werden (Mutation), so daß der neue Katalysator der nächsten Katalysatorgeneration zwar dieselben Komponenten enthält, diese jedoch in anderer Konzentration vorliegen und damit auch die Verhältnisse der Komponenten untereinander verändert sein können.

In der Verfahrensstufe (a) liegt vorzugsweise die Anzahl n_1 mengenmäßig und/oder chemisch unterschiedlich zusammengesetzter Katalysatoren im Bereich von 5 bis 100.

Vorteilhaft erfolgt die Herstellung der Katalysatorgemische durch Mischen von Salzlösungen der Elemente der Komponente A^1 . A^i , B^1 ... B^j , D^1 ... D^k und T^1 ... T^1 und anschließende thermische

Behandlung in Gegenwart einer reaktiven oder inerten Gasphase (im folgenden bezeichnet als Temperung) oder durch gemeinsame Fällung von schwerlöslichen Verbindungen und anschließende Temperung oder durch Beaufschlagung der Trägerkomponenten T^1 .. T^1 mit Salzlösungen oder gasförmigen Verbindungen der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und anschließende Temperung erfolgt, wobei die eingesetzten Salze Nitrate, Sulfate, Phosphate, Carbonate, Halogenide, Oxalate, Carboxylate oder Gemische davon oder Carbonyle oder Acetylacetonate sein können.

5

10

15

20

25

30

35

Die Herstellung neuer Katalysatorgemische der 2. bis n-ten Generation kann durch mechanisches Mischen der hergestellten Feststoffkatalysatoren der jeweils vorangegangenen Generationen erfolgen. Weitere vorteilhafte Ausgestaltungen bestehen darin, daß die katalytische Reaktion mit flüssigen, verdampften oder gasförmigen Reaktanten durchgeführt wird und daß die Reaktanten für die katalytische Reaktion mehreren Reaktoren zugeführt werden, und der die Reaktoren verlassende Produktstrom für jeden einzelnen Reaktor getrennt analysiert wird.

Zur Durchführung der katalytischen Reaktion werden vorzugsweise 5 bis 1000 Reaktoren, bestehend aus Räumen mit darin angeordnetem katalytisch aktiven Material, parallel zueinander geschaltet oder in Arrays angeordnet, wobei die Durchmesser dieser Räume 100 μ m bis 10 mm und die Längen 1 mm bis 100 mm betragen. Dabei wird bei vorgegebener Reaktorlänge der Durchsatz der Reaktanten so gewählt, daß der gewünschte Umsatzgrad erreicht wird.

Als Reaktor kann ein Monolith mit vielen parallelen Kanälen, die wahlweise auf der Ein- oder Austrittsseite einzeln oder in größerer Zahl auch während der katalytischen Reaktion verschlossen werden können oder ein poröser Modul bevorzugt mit in Strömungsrichtung der Reaktionsmischung parallel verlaufenden Kanälen, die wahlweise auf der Ein- oder Austrittsseite einzeln oder in größerer Zahl auch während der katalytischen Reaktion verschließbar sind, eingesetzt werden.

Vorteilhaft werden die Reaktanten für die katalytische Reaktion den obigen Reaktoren zugeführt, und die Zusammensetzung der die Reaktoren verlassenden Produktströme durch eine Meßsonde analysiert wird, wobei die Meßsonde zweidimensional über die Aus-

trittsquerschnitte aller Reaktoren geführt wird oder die Reaktoren zweidimensional gegenüber der Meßsonde bewegt werden und der von der Meßsonde aufgenommene Teil der Produktströme dem Analysator zugeführt wird. Als Analysator kann ein Gaschromatograph, ein Massenspektrometer oder ein anderes für die Analyse von Gasund Flüssigkeitsgemischen eingesetzt werden.

Der Reaktionsmischung können geeignete Indikatoren zugesetzt werden, die die Anwesenheit einzelner oder mehrerer Edukte oder Produkte anzeigen und so deren Analyse in der Reaktantenmischung ermöglichen. Die Herstellung der Feststoff-Katalysatoren kann aus Feststoffen, Lösungen oder Dispersionen erfolgen.

Der in der obigen Beschreibung verwendete Begriff "aktiv oder selektiv verbesserte Katalysatoren" bedeutet, daß die Katalysatoren hinsichtlich ihrer Aktivität oder ihrer Selektivität oder hinsichtlich beider Eigenschaften verbesserte Werte zeigen. Dem gleichzusetzen ist die Verbesserung der Raum-Zeit-Ausbeute.

Unter "stochastische Verfahren" werden alle nicht streng deterministischen Vorgänge mit einer Zufallskomponente verstanden. Die erfindungsgemäßen stochastischen Verfahren sind endliche und diskrete Verfahren.

Die Erfindung wird durch die beigefügte Zeichnung näher erläutert. Darin bedeutet

Fig. 1: Diagramm Änderung der Ausbeute der jeweils besten 5 Katalysatoren während der ersten drei Generationen der Katalysatoroptimierung gemäß Beispiel 1

Fig. 2 : Diagramm wie Fig.1 gemäß Beispiel 2

Die Erfindung wird durch die nachfolgenden Beispiele erläutert. Beispiel 1 betrifft die Suche nach dem optimalen Katalysator für die partielle Oxidation von Propan zu seinen Sauerstoffderivaten, die die Summe von Acrolein, Essigsäure und Acrylsäure umfaßt.

Beispiel 1

5

10

15

20

25

30

35

Es wird die Auswahl und Mischung einzelner Katalysatorkomponenten, die hier in Haupt-, Neben-, Dotierungs- und Trägerkomponenten unterteilt werden, sowie die Austestung und weitere Verbesserung der Katalysatorgemische unter Verwendung evolutionärer

Optimerungsstrategien demonstriert.

Es wurden zunächst 30 Katalysatoren (Phase I), danach 10 Katalysatoren (Phase II) und schließlich weitere 10 Katalysatoren (Phase III), bestehend aus Hauptkomponenten, Nebenkomponenten, Dotierungskomponenten und Trägermaterial mit dem Ziel präpariert, Propan zu seinen Sauerstoffderivaten durch Oxidation mit Sauerstoff herzustellen und die entstehenden Oxide CO und CO₂ zu minimieren (vgl. Stufe (a) oben). Der Ablauf des Verfahrens umfaßte die folgenden Schritte und führte zu den jeweils genannten Ergebnissen.

1. Katalysatorgeneration

10

15

20

25

30

35

Schritt 1. Die Auswahl der Hauptkomponenten erfolgte unter den Oxiden der Elemente V, Mo, Nb, Bi, P. Die Anteile der Hauptkomponenten wurden zwischen 0 und 50 mol-% variiert. Die Auswahl der Nebenkomponenten erfolgte unter den Oxiden der Elemente Mn, Sb, Sn und B. Die Anteile der Nebenkomponenten wurden zwischen 0 und 50 mol-% variiert. Die Auswahl der Dotierungskomponenten erfolgte unter den Oxiden der Elemente Cs sowie entweder Fe oder Co, entweder Ag oder Cu und entweder Ga oder In. Die Anteile der Dotierungskomponenten wurden zwischen 0 und 5 mol-% variiert. Es wurde Pd als weitere Dotierungskomponente verwendet, die entweder nicht oder mit einer Stoffmenge von 10⁻⁴ mol-% Pd eingebracht wurde. Als Trägerkomponente diente Al₂O₃, das entweder nicht oder in einer Menge von 50% Gew-% im Katalysator erhalten war.

Die Summe aller Massen- bzw. Molenanteile der Haupt-, Nebenund Dotierungs- und Trägerkomponten ergibt stets 100%.

Schritt 2. Die Katalysatoren, die zur Ausprüfung eingesetzt wurden, wurden durch folgendes Herstellungsverfahren gemäß erhalten: Verbindungen (Oxide, Oxalate oder Nitrate) der in Schritt 1 genannten Elemente wurden in wenig Wasser aufgelöst bzw. aufgeschlämmt, miteinander vermischt und die Mischung eingedampft. Der erhaltene Feststoff wurde 1 h bei 200 °C und 3 h bei 400 °C getrocknet, anschließend 1 h intensiv in einer Kugelmühle gemahlen und für 3 h bei 600 °C in Luft getempert.

schritt 3. Die mittels der Zufallsgeneratoren GO5DZF, GO5CAF, GO5DYF und GO5CCF der NAG-Bibliothek (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986) erhaltenen Katalysatorzusammensetzungen der 1. Generation sind in Tab. 1 zusammengefaßt.

Schritt 4. Die Ausprüfung der Katalysatoren erfolgte parallel in 6 Quarzreaktoren (Innendurchmesser 6 mm), die in eine beheiz- und kühlbare Sandwirbelschicht zur Thermostatisierung eingebracht wurden. Alternative Konfigurationen der parallelen Ausprüfung der Feststoffkatalysatoren sind gemäß obiger Beschreibung möglich.

Folgende Standardversuchsbedingungen wurden für die Ausprüfung der Katalysatoren gewählt: $T = 500^{\circ}C$, $m_{Katalysator} = 1.0$ g, $\dot{V}_{gesamt\ pro\ Reaktor} = 28\ ml_{STP}\ min^{-1}\ mit\ \dot{V}_{C3H8} = 0.8\ ml_{STP}\ min^{-1},\ \dot{V}_{O2} = 5.6$ $ml_{STP}\ min^{-1},\ \dot{V}_{H2O} = 12.0\ ml_{STP}\ min^{-1},\ \dot{V}_{Ar} = 21.6\ ml_{STP}\ min^{-1}.$

Die Katalysatoren wurden für die Reaktion eingesetzt und hinsichtlich der unter den genannten Standardversuchsbedingungen erhaltenen Summe der Ausbeuten von Acrolein und Acrylsäure ausgeprüft (vgl. Stufe (b) oben; entspricht auch dieser Stufe im Anspruch 2). Die Konzentration von Propan, Propen, Ethylen, der entstandenen Sauerstoffderivate sowie von CO und CO₂ wurde mittels Gaschromatograph und Massenspektrometer analysiert.

Schritt 5. Die Ergebnisse der Testung der ersten Generation von Katalysatoren sind in Form der Summe der Ausbeuten von Acrolein und Acrylsäure in Tabelle 1 zusammengestellt. Es ergeben sich signifikante Unterschiede in den Ausbeuten der 30 getesteten Katalysatoren. Die besten 5 Katalysatoren (Nr. 4, 13, 17, 19, 21) enthalten bis auf Nr. 13 alle die Trägerkomponente. Gehäuft treten unter diesen besten Katalysatoren weiterhin Mo als Hauptkomponente sowie Sn als Nebenkomponenten. Bis auf Fe als Dotierungskomponente sind jedoch noch alle eingesetzten Katalysatorkomponenten in den besten 5 Katalysatoren der 1. Generation vertreten.

2. Katalysatorgeneration

5

10

15

20

25

30

35

schritt 6. Die 2. Generation von Katalysatoren wurde erhalten, indem zunächst die 5 Katalysatoren Nr. 4, 19, 21, 13 und 17 mit der höchsten Oxygenatausbeute aus den 30 (entspricht 17 % der 1. Generation von Katalysatoren) zuvor ausgeprüften ausgewählt wurden (vgl. Stufe (c) oben).

- Schritt 7. Die Zusammensetzungen von 10 neuen Katalysatoren der 2. Generation werden erhalten, indem
- a) aus den Haupt-, Neben-, Dotierungs- und Trägerkomponenten der

15

5

10

15

20

25

30

35

5 besten Katalysatoren (Tab. 1.: Nr. 4, 19, 21, 13 und 17) 6 neue Kombinationen von Haupt-, Neben-, Dotierungs- und Trägerkomponenten gebildet werden (vgl. Stufe (d) oben), in dem z. B. für die Zusammensetzung des Katalysators Nr. 1 der 2. Generation (Tab. 2) zunächst der Katalysator Nr. 17 (im folgenden Katalysator Nr. = K.) mittels ZG1-Best5 [mittels der numerischen Zufallsgeneratoren GO5DYF, GO5DZF, GO5CCF der NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986) aus den 5 besten Katalysatoren] ausgewählt wurde und danach mittels ZG1 (mittels der numerischen Zufallsgeneratoren GO5DYF, GO5DZF, GO5CCF der NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986)] die Hauptkomponente Bi von K.17. Danach wurde K.21 (Tab.1) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Hauptkomponente P von K.21. Danach wurde K.4 (Tab.1) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Nebenkomponente Sn von K.4. Danach wurde K.21 mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Nebenkomponente B von K.21. Danach wurde K.14 (Tab.1) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Spurenkomponente Fe von K.14. Danach wurde K.19 (Tab.1) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Spurenkomponente Co von K.19. Danach wurde K.17 (Tab.1) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Spuren- bzw. Dotierungskomponenten Cs und Pd von K.17. Die so ausgewählten Komponenten wurden mit ihren ursprünglichen molaren Mengen zu einer neuen Katalysatorzusammensetzung kombiniert. Analog wurden K.2, 3, 6, 7 und 8 der 2. Katalysatorgeneration (Tab.2) erhalten.

b) Es werden die molaren Anteile der Haupt-, Neben- und Dotierungskomponenten der zwei besten Katalysatoren mit der höchsten Oxygenatausbeute (Tabelle 1, Nr. 4 und 19) gemäß obiger Stufe (d) verändert, indem die Komponenten Mo, Nb, Sb, Sn, Co und Ga von K.4 der ersten Generation mittels ZG1 ausgewählt wurden und die molaren Mengenanteile dieser ausgewählten Komponenten mittels ZG2 [mittels der numerischen Zufallsgeneratoren G05CAF, G05DZF, G05CCF der NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986)] stochastisch verändert wurden. Danach wurden die Komponenten Mo, Bi, P, Sn und Co von K.19 der ersten Generation mittels ZG1 ausgewählt und die molaren Mengenanteile der ausgewählten Komponenten mittels ZG2 stochastisch verändert.

Es wurden K.4 und K.5 der 2. Generation erhalten (Tab.2). Analog wurden K.9 und K.10 der 2. Generation erhalten. Die Herstellung der insgesamt resultierenden 10 neuen Katalysatoren der 2. Generation erfolgt wie die der 1. Generation (Schritt 2).

schritt 8. Durch die im Schritt 7. geschilderte Vorgehensweise wurden 10 neue Katalysatorzusammensetzungen festgelegt, gemäß Vorschrift (vgl. Schritt 1.) hergestellt und parallel unter Standardbedingungen wie im Schritt 4. beschrieben ausgeprüft (vgl. obige Stufe (e). Die Ergebnisse sind in Tabelle 2 zusammengefaßt.

Diese neuen Katalysatoren enthalten vermehrt Mo als Hauptkomponente und Sn als Nebenkomponente. Auch P als Hauptkomponente und Co als Dotierungskomponente, die bereits mit größerer Häufigkeit in den besten Katalysatoren der 1. Generation auftraten, sind in den neuen Katalysatoren der 2. Generation häufiger vertreten.

3. Katalysatorgeneration

5

10

15

30

35

Schritt 9. Aus den Mengen der 1. und 2. Katalysatorgeneration wurden wiederum die 5 Katalysatoren ausgewählt, die die höchste Ausbeute an Sauerstoffderivaten lieferten (vgl. obige Stufe (f)).

Dies sind die Katalysatoren aus Tabelle 1: Nr.4, 19, 21 und aus Tabelle 2: Nr. 2, 3. Mit den 10 neuen Katalysatoren der 2. Generation werden zunächst keine höheren Ausbeuten als mit dem besten Katalysator der 1. Generation erzielt. Jedoch verdrängen die Katalysatoren Nr. 2 und 3 der 2. Generation die Katalysatoren Nr. 19 bzw. 21 vom 3. und 4. Rang (s.a. Fig. 1)

19 bzw. 21 vom 3. und 4. Rang (s.a. Fig. 1)
schritt 10. Die Zusammensetzung von 10 neu herzustellenden Katalysatoren der 3. Generation wurde erhalten, indem mit den 5 in
Schritt 9 ausgewählten Katalysatoren wie im Schritt 7 verfahren
wurde (s. Tabelle 3, vgl. obige Stufe (g)). Es wurde daher K.4
(Tab.2) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die
Hauptkomponente Nb von K.4 (Tab.2). Danach wurde K.21 (Tab.1)
mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Hauptkomponente P von K.21 (Tab.1). Danach wurde K.3 (Tab.2) mittels ZG1Best5 ausgewählt und dann mittels ZG1 die Spurenkomponente Fe von
K.14. Danach wurde K.19 (Tab.1) mittels ZG1-Best5 ausgewählt und
dann mittels ZG1 die Dotierungskomponente Co von K.3 (Tab.2).
Danach wurde K.4 (Tab.1) mittels ZG1-Best5 ausgewählt und dann
mittels ZG1 die Dotierungskomponente Ga von K.4. Danach wurde K.2

17

(Tab.2) mittels ZG1-Best5 ausgewählt und dann mittels ZG1 die Trägerkomponente von K.2 (Tab.2). Die so ausgewählten Komponenten wurden mit ihren ursprünglichen molaren Mengen zu einer neuen Katalysatorzusammensetzung kombiniert. Nach der Kombination wurde der Stoffmengenanteil der Hauptkomponente Nb mittels ZG3 — [mittels der numerischen Zufallsgeneratoren GO5CAF und GO5CCF der NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986)] stochastisch verändert. Analog wurden K.2, 3, 6, 7 und 8 der 3. Katalysatorgeneration (Tab.3) erhalten.

- b) Es wurde genau wie in Teil b) von Schritt 7 verfahren.
 Es wurden K.4 und 5 der 3. Generation erhalten (Tab.3). Analog
 wurden K.9 und 10 der 3. Generation erhalten. Die Herstellung der
 insgesamt resultierenden 10 neuen Katalysatoren der 3. Generation
 erfolgt wie die der 1. und 2. Generation (Schritt 2 und 7).
- Schritt 11. Die 10 neuen Katalysatoren der 3. Katalysatorgeneration wurden gemäß Vorschrift (vgl. Schritt 1.) hergestellt und parallel unter Standardbedingungen wie im Schritt 4. beschrieben ausgeprüft (vgl. obige Stufe (h)). Unter diesen 10 neuen Katalysatoren befinden sich nun 2 (Nr. 4 und Nr. 9), mit denen die bislang höchsten Ausbeuten überschritten werden. Somit werden die Katalysatoren Nr. 4 und 19 (Tabelle 1) vom 1. und 2. Rang verdrängt (vgl. Fig. 1).
 - Schritt 12. Die Auswahl von Katalysatorzusammensetzungen der Folge-Generationen (der n-ten Generation) erfolgte analog zu den Schritten 6. 8. bzw. 9. 11., in dem jeweils die 5 besten Katalysatoren aus allen bereits untersuchten Katalysatorgenerationen ausgewählt und für die Festlegung der Zusammensetzung der 10 neuen Katalysatoren der n.-ten Katalysatorgeneration verwendet wurden (vgl. obige Stufen (i), (j), (k)).

30 Ergebnis:

5

25

35

Werden die Zusammensetzungen der 5 besten Katalysatoren der 1.-3. Katalysatorgeneration verglichen, so zeigt sich, daß alle Katalysatoren Mo, Sn, Co und die Trägerkomponente enthalten. Die qualitativen Zusammensetzungen der 3 besten Katalysatoren sind nahezu identisch. Diese Katalysatoren enthalten alle Mo, Nb, Sb, Sn, Co, Ga und die Trägerkomponente. Die 2 besten Katalysatoren enthalten zusätzlich noch die Dotierungskomponenten Cu und Pd. Dies verdeutlicht, daß sich die Katalysatorzusammensetzungen mit

fortschreitender Generationszahl einander annähern, d. h. störende Komponenten werden im Verlauf der Optimierung nicht mehr berücksichtigt und die Komponenten der Katalysatoren mit hohen Oxygenatausbeuten werden dagegen bei der Festlegung neuer Katalysatorzusammentzungen verstärkt berücksichtigt. Bereits bei der 3. Katalysatorgeneration wird auf Basis dieser evolutionären Strategie eine 100% höhere Oxygenatausbeute als in der 1. Generation erzielt (Fig. 1).

Beispiel 2

5

10

15

30

35

Es wurden zunächst 20 Katalysatoren (Generation I), danach 10 Katalysatoren (Generation II und III) und schließlich weitere 10 Katalysatoren (Generation IV), ausgehend aus 13 Oxiden, die als primäre Katalysatorkomponente dienten, präpariert und in der oxidativen Dehydrierung von Propan getestet. Ziel was es, Propan zu Propen mit einer möglichst hohen Ausbeute und Selektivität durch die oxidative Dehydrierung herzustellen. Der Ablauf des Verfahrens umfaßte die folgenden Schritte und führte zu den jeweils genannten Ergebnissen.

1. Katalysatorgeneration

schritt 1. Die Auswahl der Komponenten erfolgte unter den Oxiden der Elemente V, Mo, Mn, Fe, Zn, Ga, Ge, Nb, W, Co, Ni, Cd, In. Die Atomanteile der einzelnen Elemente in den Katalysatoren wurden zwischen 0 und 1 variiert. Jeder Katalysator enthält drei der Elemente V, Mo, Mn, Fe, Zn, Ga, Ge, Nb, W, Co, Ni, Cd, In. Die Summe aller Atomanteile dieser Elemente ergibt stets 1.

Schritt 2. Die mittels ZG4 [numerische Zufallsgeneratoren GO5DZF, GO5CAF, GO5DYF, GO5CCF der NAG-Bibliothek (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986)] erhaltenen Katalysatorzusammensetzungen der 1. Generation sind in Tab. 4 zusammengefaßt.

Schritt 3. Die Katalysatoren, die zur Ausprüfung eingesetzt wurden, wurden durch folgendes Herstellungsverfahren erhalten: Verbindungen (NH₄VO₃, (NH₄)₆MO₇O₂₄-4H₂O, Mn(NO₃)₂-4H₂O, Fe(NO₃)₃-9H₂O, Zn(NO₃)₂-6H₂O, Ga₂O₃, GeO₂, Nb₂O₅, H₂WO₄, Co(NO₃)₂-6H₂O, Ni(NO₃)₂-6H₂O, Cd(NO₃)₂-4H₂O, In(NO₃)₃-H₂O) der in Schritt 1 genannten Elemente wurden in Wasser aufgelöst bzw. aufgeschlämmt, miteinander vermischt und die Mischung eingedampft. Der erhaltene Feststoff wurde 10 h bei 120°C getrocknet, anschließend 3 h bei 600 °C in Luft calciniert.

19

Tabelle 4. Zusammensetzung von Katalysatoren der ersten Generation

	Kat.	Zusammensetzung	Kat. No	Zusammensetzung	
	No				
5	1/1	Fe _{0.79} Ga _{0.02} Nb _{0.19} O _x	1/11	$V_{0.47}W_{0.19}Ni_{0.33}O_{x}$	
	1/2	$MO_{0.44}N1_{0.23}In_{0.33}O_{x}$	1/12	$Mn_{0.41}Ga_{0.51}Nb_{0.08}O_{x}$	
	1/3	$2n_{0.70}Ge_{0.08}Co_{0.22}O_{x}$	1/13	$MO_{0.45}CO_{0.22}In_{0.33}O_{x}$	
	1/4	V _{0.33} Fe _{0.43} Cd _{0.24} O _x	1/14	$Fe_{0.75}Ge_{0.05}W_{0.20}O_{x}$	
	1/5	$Ga_{0.01}ND_{0.33}NL_{0.66}O_{x}$	1/15	$V_{0.33}Mn_{0.43}Ni_{0.23}O_{x}$	
10	1/6	$MO_{0.33}Zn_{0.42}In_{0.25}O_{x}$	1/16	$Zn_{0.67}Nb_{0.1}Co_{0.23}O_{y}$	
	1/7	Ge _{0.11} W _{0.33} Cd _{0.56} O _x	1/17	$Mo_{0.33}Fe_{0.42}Cd_{0.25}O_x$ $Ga_{0.01}W_{0.33}Ni_{0.66}O_x$	
	1/8	$V_{0.26}Mn_{0.33}Ga_{0.41}O_{x}$	1/18	$Ga_{0.01}W_{0.33}Ni_{0.66}O_{x}$	
	1/9	$Nb_{0.16}CO_{0.33}In_{0.51}O_{x}$	1/19	$M_{0.33}^{Z_{10}}$	
	1/10	$Mo_{0.42}Ge_{0.44}Fe_{0.53}O_{x}$	1/20	$Ge_{0.14}Co_{0.33}Cd_{0.53}O_{x}$	

15

20

25

30

Schritt 4. Die Ausprüfung der Katalysatoren erfolgte parallel in 6 Quarzreaktoren (Innendurchmesser 6 mm), die in eine beheiz- und kühlbare Sandwirbelschicht zur Thermostatisierung eingebracht wurden. Folgende Standardversuchsbedingungen wurden für die Ausprüfung der Katalysatoren gewählt: T = 500°C, m_{Katalysator} = 0.3 g, $C_3H_8/O_2/N_2 = 2/1/2$, $\dot{V}_{\text{gesamt pro Reaktor}}$ = wurde zwischen 10 und 100 ml/min (STP) variant. Die Katalysatoren wurden für die Reaktion eingesetzt und hinsichtlich der unter den genannten Versuchsbedingungen erhaltenen Propanumsätze und Propenselektivitäten ausgeprüft (vgl. Stufe (b) oben). Die Konzentration von Propan, Propen, Ethylen, Methan und der entstandenen Sauerstoffderivate sowie von CO und CO, wurde mittels Gaschromatograph analysiert. Schritt 5. Die Ergebnisse der Testung der ersten Generation von Katalysatoren (Propanumsatz, Propenselektivität und Propenausbeute) sind in Tabelle 5 dargestellt. Innerhalb der 20 getesteten Katalysatoren ergeben sich signifikante Unterschiede in den Ausbeuten, die ein Produkt des Umsatzes und der Selektivität sind. Vier Katalysatoren (Nr. 1/4, 1/8, 1/10, 1/15) zeigten die besten Ergebnisse für die katalytische Umsetzung.

5

10

15

20

30

35

40

Tabelle 5. Katalytische Ergebnisse der ersten Generation

Kat	Zusammensetzung	X(C ₃ H ₈)	S(C ₃ H ₆)	$Y(C_3H_6)$
Nr.		8	8	8
1/1	Fe _{0.79} Ga _{0.02} Nb _{0.19}	10.7	17.7	1.9
1/2	Mon 44 Nin 23 Ing 33	11.8	14.3	1.7
1/3	Zn _{0.70} Ge _{0.08} Co _{0.22}	20.3	0.04	0.01
1/4	V _{0.33} Fe _{0.43} Cd _{0.24}	15.3	24.5	3.7
1/5	Ga _{0.01} Nb _{0.33} Ni _{0.66}	8.9	2.5	0.2
1/6	$MO_{0.33}$ $Zn_{0.42}$ $In_{0.25}$	1.3	26.2	0.3
1/7	Ge _{0.11} W _{0.33} Cd _{0.56}	0.2	15.6	0.03
1/8	V _{0.26} Mn _{0.33} Ga _{0.41}	6.9	43.4	3.0
1/9	Nb _{0.16} Co _{0.33} In _{0.51}	15.2	12.1	1.8
1/10	Mo _{0.42} Ge _{0.44} Fe _{0.53}	6.3	35.1	2.2
1/11	V _{0.47} W _{0.19} Ni _{0.33}	44.6	2.3	1.0
1/12	Mn _{0.41} Ga _{0.51} Nb _{0.08}	13.1	12.7	1.7
1/13	Mo _{0.45} Co _{0.22} In _{0.33}	1.0	46.5	0.5
1/14	Fe _{0.75} Ge _{0.05} W _{0.20}	16.0	12.9	2.1
1/15	V _{0.33} Mn _{0.43} Ni _{0.23}	12.5	26.6	3.3
1/16	Zn _{0.67} Nb _{0.1} Co _{0.23}	15.2	0.3	0.05
1717	Mo _{0.33} Fe _{0.42} Cd _{0.25}	2.1	7.7	0.2
1/18	Ga _{0.01} W _{0.33} Ni _{0.66}	23.6	3.3	0.8
1/19	Mn _{0.33} Zn _{0.41} In _{0.25}	15.7	9.5	1.5
1/20	Ge _{0.14} Co _{0.33} Cd _{0.53}	14.6	8.6	1.3

25 2. Katalysatorgeneration

schritt 6. Die 2. Generation von Katalysatoren wurde erhalten, indem zunächst die 4 Katalysatoren (Nr. 4, 8, 10, 15) mit dem besten katalytischen Verhalten ausgewählt und zur weiteren Modifizierung eingesetzt.

schritt 7. Die Zusammensetzungen des neuen Katalysators 2/21 der 2. Generation wurde in ähnlicher Weise wie im Schritt 7 von Beispiel 1 beschrieben erhalten, ausgehend von K.1/15 und der Hauptkomponente V, dann K.1/8 und der Hauptkomponente Ga, dann K.1/4 und der Hauptkomponente Cd, dann K.1/10 und der Nebenkomponente Ge. Die so ausgewählten Komponenten wurden mit ihren ursprünglichen molaren Mengen zu einer neuen Katalysatorzusammesnetzung kombiniert. Analog wurden die Katalysatoren 2/22 bis 2/30 der 2. Generation erhalten. Die Herstellung der insgesamt resultierenden 10 neuen Katalysatoren der 2. Generation erfolgt wie die der 1. Generation (Schritt 2).

Schritt 8. Durch die im Schritt 7. geschilderte Vorgehensweise wurden 10 neue Katalysatorzusammensetzungen festgelegt, gemäß Vorschrift (vgl. Schritt 3) hergestellt und parallel unter Standardbedingungen wie im Schritt 4. beschrieben ausgeprüft (vgl.

21

Stufe (e) oben). Die Ergebnisse sind in Tabelle 6 zusammengefaßt

Tabelle 6. Zusammensetzungen und katalytische Ergebnisse der zweiten Generation.

5	Kat	Zusammensetzung	X(C ₃ H ₈)	S(C ₃ H ₆)	Y(C ₃ H ₆)	
	2/21	V _{0.33} Ga _{0.40} Cd _{0.23} Ge _{0.04} O _x	2.4	54.0	1.3	•
	2/22	V _{0.70} Fe _{0.48} Ni _{0.71} O	26.1	1.4	0.4	
10	2/23	V Fe Cd O	13.8	20.2	2.8	
10	2/24	V ₂ (2Mn ₂ 22Ga ₂ 74O)	17.0	37.0	6.3	
	2/25	Mo ₀ / ₅ Fe ₀ ₃₅ Ge _{0 30} O _y	0.2	66.9	0.1	
		Fe _{0.09} Ge _{0.33} Ni _{0.58} O _x	16.7	1.8	0.3	
	2/27	V _a Mo _{a 7} Fe _a 40.	17.4	22.4	3.9	
15	2/28	Gao 45Geo 37Cdo 52O	2.7	6.2	0.2	
1.0	2/29	VMn, FeO	16.4	34.1	5.6	
	2/30	V _{0.48} Ge _{0.19} Ni _{0.33} O _x	43.1	0.4	0.2	

3. Katalysatorgeneration

schritt 9. Aus den Katalysatoren der 1. und 2. Katalysatorgeneration wurden wiederum 4 Katalysatoren mit der besten Leistung ausgewählt (Nr. 8, 24, 27, 29) (vgl. Stufe (f) oben) und als Basis für weitere Schritte eingesetzt.

Schritt 10. Die Zusammensetzung von 10 neu herzustellenden Katalysatoren der 3. Generation wurde erhalten, indem mit den 4 in Schritt 9 ausgewählten Katalysatoren wie im Schritt 7 bzw. wie in Schritt 10 von Beispiel 1 verfahren wurde (s. Tabelle 6, vgl. Stufe (g) oben), ausgehend von K.2/29 und der Hauptkomponente V, dann K.2/27 und der Hauptkomponente Mo, dann K.2/24 und der Hauptkomponente Mn. Die so ausgewählten Komponenten wurden mit ihren ursprünglichen molaren Mengen zu einer neuen Katalysatorzusammensetzung kombiniert. Analog wurden die Katalysatoren 3/52 bis 3/60 der 3. Generation erhalten (Tab.7). Die Herstellung der insgesamt resultierenden 10 neuen Katalysatoren der 3 Generation erfolgt wie die der 1. und 2. Generation (Schritt 2 und 7).

schritt 11. Die 10 neuen Katalysatoren der 3. Katalysatorgeneration wurden gemäß Vorschrift (vgl. Schritt 3.) hergestellt und parallel unter Standardbedingungen wie im Schritt 4. beschrieben ausgeprüft (vgl. Stufe (h) oben).

20

25

30

Tabelle 7. Zusammensetzungen und katalytische Ergebnisse der dritten Generation.

Kat	Zusammensetzungen	X(C ₃ H ₈)/ %	S(C ₃ H ₆)/%	Y(C ₃ H ₆)/%
3/51	V _{0.32} Mo _{0.41} Mn _{0.27}	13.6	28.4	3.9 —
3/52	V _{0.26} Mn _{0.33} Ga _{0.41}	20.4	29.9	6.1
3/53	V _{0.20} Mn _{0.17} Fe _{0.32} Ga _{0.32}	19.7	39.0	7.7
3/54	V _{0.47} Mn _{0.13} Ga _{0.38}	19.8	31.9	6.3
	V _{0.37} Mn _{0.22} Fe _{0.41}	19.2	31.5	6.0
3/56	Mn _{0.15} Fe _{0.33} Ga _{0.52}	13.9	6.7	0.9
3/57	V _{0.43} Mo _{0.54} Mn _{0.03}	14.8	33.8	5.0
3/58	MO _{0.48} Fe _{0.18} Ga _{0.33}	2.2	59.8	1.3
3/59	V _{0.62} MO _{0.52} Mn _{0.07}	17.6	28.8	5.1
3/60	V _{0.46} Fe _{0.21} Ga _{0.33}	17.4	33.5	5.8

4. Katalysatorgeneration

schritt 12. Aus den Katalysatoren der 1. bis 3. Katalysatorgeneration wurden wiederum 4 Katalysatoren mit der besten Leistung ausgewählt (Nr. 24, 53, 54, 55) (vgl. Stufe (f) oben) und als Basis für die neuen Katalysatoren der 4. Generation eingesetzt. schritt 13. Die Zusammensetzung von 10 neu herzustellenden Katalysatoren der 4. Generation wurde erhalten, indem mit den 4 in Schritt 12 ausgewählten Katalysatoren wie im Schritt 7 verfahren wurde (s. Tabelle 6, vgl. Stufe (g) oben).

Schritt 14. Die 10 neuen Katalysatoren der 3. Katalysatorgeneration wurden gemäß Vorschrift (vgl. Schritt 3.) hergestellt und parallel unter Standardbedingungen wie im Schritt 4. beschrieben ausgeprüft (vgl. Stufe (h) oben).

Gemäß Fig. 2 wird bereits bei der 4. Generation eine deutliche Steigerung der Propenausbeute erzielt.

Tabelle 8. Zusammensetzungen und Ergebnisse 4. Generation

Kat Nr.	Zusammensetzung	X(C ₃ H ₈)	S(C ₃ H ₆)	Y(C ₃ H ₆)
4/71	V _{0.49} Mn _{0.13} Ga _{0.38}	18.6	39.4	7.3
4/72	V _{0.53} Mn _{0.14} Fe _{0.34}	18.8	27.1	5.1
4/73	V _{0.32} Fe _{0.27} Ga _{0.27}	21.7	32.9	7.1
4/74	V _{0.19} Mn _{0.24} Fe _{0.32} Ga _{0.25}	22.3	35.9	8.0
4/75	V _{0.06} Mn _{0.02} Ga _{0.92}	22.2	34.6	7.7
4/76	Mn _{0.5} Fe _{0.16} Ga _{0.33}	21.6	32.6	7.0
4/77	V _{0.42} Mn _{0.53} Ga _{0.04}	9.7	34.1	3.3
4/78	V _{0.47} Fe _{0.19} Ga _{0.33}	22.2	33.0	7.3
4/79	V _{0.41} Mn _{0.51} Fe _{0.08}	12.6	22.1	2.8
4/80	V _{0.45} Fe _{0.22} Ga _{0.33}	20.9	33.4	7.0

35

30

5

10

15

20

25

Tablelle	elle 1.		:							-	Katal	 Katalysatorgeneration 	enerat	noi						
ž						7	usamu	ensetzu	Zusammensetzung Mol-%	%									Ausbeute an Rang unter C ₃ -Oxygenaten den 5 besten	Rang unter den 5 besten
	Haupt	Hauptkomponenten	nenten			Nebenkon	kompo	ponenten		Dotierungen	ungen						Träger	Pd	70	Katalysatoren
											,			T	,		70	2	Woi-%	ភ្
	>	Ψ°	g Ž	Bi	۵	Ψ	Sb	Sn	B	Fe	S	S	<u></u>	_	g,	= ,	Ma-%	Ma-%	0000	1 2 3
_	13,75	6,75	0	0	0	16,84	9.83	0	2.83	0.344	0	-			_	0	δ S	0,0001	0.000	
C	40,48	22.76	0	5,05	30,57	0	0	0	0	0	0	<u> </u>	<u> </u>	<u> </u>	0	1.137	0	0.0001	0,000	
۰ ،	0	20,85	2.97	0	28.73	0	10,85	23,60	0	0	0	<u> </u>	0.449	<u> </u>	0	0	0	0.0001	0,034	
, 4	0	15.12	4.96	0	0	0	19,60	9.44	0	0	0.887		<u> </u>	<u> </u>	0.340	0	20	0	0,430	1. 1. 3.
· V	8,59	0	0	0	0	23.87	13,26	0	2.65	0.448	0	0,707	0,173	•	0	0	20	0,0001	0,005	
ی د	11.04	38.88	0	19.56	0.230	0	0	0	28.07	0,761	0	1,63	<u> </u>	<u> </u>	0	0,595	0	0	000.0	
<u> </u>	0	0	29,53	12,88	0	36.86	20,22	0	0	0	0	•	<u> </u>	<u> </u>	0.372	0	0	0	0,025	
- 00	11,96	38,26	0	0	20.00	0	1,74	28,04	0	0	0	0	0.843	<u> </u>	0	0	0	0,0001	0.007	
6	0	60.6	22,49	0	0	0	13,19	3,88	0	0,463	0	0,748	0,262	<u> </u>	0	0.610	S	0	0.039	
10	10,14	0	1,54	13,93	0	0	5,33	0	17,72	0,218	0	0.305	<u> </u>	0,467	0.763	0	S	0.0001	0,024	
=	0	0	0	6009	0	0	29,09	0	13,12	1,232	0	0,410	0.987	<u> </u>	0	0,427	20	0	0,011	
12	0	0	0	18,37	6,77	0	0	0	23,48	0,287	0	0,398	0.607	<u> </u>	0	986'0	20	0,0001	0,030	
13	0	69.9	34,53	0	0	0	0	15,20	43,04	0	0	0,548	Ö	0	0	0	0_	0,0001	0.082	4.
14	0	11,33		0	14,33	7,53	0,73	0	10,53	0.321	0	899'0	0,226	0	0	0,343	S	0	0,016	
15	0	20,09	11,40	0	0	0	0	2.70	15,23	0	0	282	<u> </u>		0	0	80	0,0001	0,053	
16	10,37	1,67	0	14,20	5,50	0	0	18,04	0	0	0,222				0	0	೪	0	0,045	
11	8,56	2,90	0	11,06	5,40	0	0	13,55	7.89	0	0		<u> </u>	435	0,166	0	20	0,0001	0,077	vi
8	14,11	0	5,89	17,74	0	0	15'6	1,28	0	0,318	0	0,495	0,640	<u> </u>	0	0,340	જ	0	0,011	
19	0	9,11	0	23,40	13,48	0	0	3,56	0	0	0,466	0	<u> </u>		0	0	S	0,0001	0,215	2. 2. 4.
20	27,10	15,00	0	2,90	20,33	0	0	8,23	25,66	0	0	0,318	<u> </u>	452	0,700	0	0	0,0001	0,015	
21	0	0	0,187	0	18,58	5,69	0	0	24,25	0	1,069	0,393		<u> </u>	0	0	20	0	0,085	3. 5.
22	0	0	29,61	12,82	0	37,00	20,21	0	0	0	0,363		0,939	<u> </u>	0	0	0	0	0,001	
23	0	0	0	39,59	0	3.10	55,66	0	0	0	0	1,652	•	<u> </u>	0.346	0	0	0.0001	100.0	
24	20.70	5.98	0	27.18	12,47	33,67	0	0	0	0	0	0	<u> </u>	. <u> </u>	0	0	0	0	0.005	
25	0	0	0	31,94	7,13	0	42,87	18,06	0	1,723	0	0	<u> </u>	0	0,474	0	0	0.0001	0,018	
26	11,51	0	38,74	19,84	0	0	0	0,94	28,17	0	0	0,801	0	0	0	0	0	0,0001	0.002	
27	69'9	17,04	0	9,85	2.67	0	0	13.02	0	0	0,531	0	0	0	0	0,208	20	0.0001	0.014	
28	22.58	9,24	0	0	28,46	15,12	0	1.77	21,00	0	0.659		<u> </u>	454	169.0	0	0	0,0001	0.000	
53	0	0	19,95	0	11.4	0	2,87	15,17	0	0	0	297			0,240	0	20	0	0,004	
30	29,36	26.	0	37,17	19,45	0	0	1,73	0	0	0,649	. 0	0		1,00,1	0	0	0	0,002	

_			Т				Τ	T	\neg			Τ	Т				7
	Ausbeute an Rang unter C ₃ -Oxygena- den 5 besten ten	Generation	2 3			3. 5.	4	ř									
	Ausbeute an C ₃ -Oxygena-ten		Wol-%		0,037	0.184	0.161	0,101	0,001	0.024	0.00	2,020	0.024	0,000	0.003	0000	2000
		Pd	Ma-%		0.0001	0.000		,	0.0001	0.0001	0000	200	0,0001	0.0001	0.000	0000	
		Träger	Ma-%		20	8		20	50	50	65	3	20	50	S	9	25
			In		0	0	, ,	o	0	0	٥	,	<u> </u>	0	ے	, -	
			Ga		0	6		0.325	0.536	0	٥	>	4.810	0.330 0.120	0 740		2
			Cn	_	0	٥	, ,	0	0	c		٥	0	0.330	6	,	2
			Ag		0	c	<u> </u>	0	0	٥	ا	0	0	0	_	<u>،</u>	٥
2. Katalysatorgeneration		Ę	ည်		0.825 0.303	0 662 0 467 0	è	0,402	0	c		0	0	0510 0790		<u> </u>	٥
		Dotierungen	ප		0.825	0.663	0.555	0.908	0.738	0.063	1	0.300	1.270	0,670		20.7	1.270 0
		Doti	6		0.83		0.33	0	0	٥	2	<u> </u>	0		>	-	٥
atalys	%	 	E C		18.72		0	0	ے		5	0	0	10 9	16.5	٥	<u> </u>
2.1	-Mol-	ponen	Ş	5	7 28		16,10	13.87			24.43	9.93	21.71	1	71.37	13.75 0	13.69
	Zusammensetzung Mol-%	Nebenkomponente	4		٥	2	0	0	26.50		2	12.80	٥	,	٥	20.15	0
	rmens	Nep	5		6		0	٥	٠ ح	2	0	0	ے	_	4.7/	0	0
	Zusan		٥		15	5	22.07	19 01	٤	5	1.35	12.13	26.54	5 6	13.92	0	5.85
		1		آ آ		8.74	0	ے	,	>	11.48	7.22	٥	,	0	0	26.10
		tuend		2	,	5	0	c	,	13,14	0	3.24	٥	>	0	9.23	0
		IIthomponenten		MO		0	10.82	15.47		2.87	11.79	4 37		5	6.82	4.04	3.09
e 2.			inau inau	>		0	0	c	5	0	0	c	, ,	2	6.42	0	0
Tabelle 2.	, Z (y ₂)					_	2	١٠	3	4	5		اه	7	∞	6	<u> </u> =

		C ₃ -Oxygena- den 5 besten	ten Katalysatoren	Träger Pd Mol-%	3 3 1	Ag Cu Ga In Ma-% Ma-%		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 0.30 0.12 0 50 0.0001 0.096	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.12 0,0/ 0 50	0 0.07 0.45 0 50 0,0001 0,821 2.	3,0	30	0 0 0 0 0000 0,000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0.51 0.16 0 50 0 0,161	0 0 15 1 20 0 50 0,0001 0,965 1.	0000	0 1.20 0 0 0 0 0.0001 0.003						
				Trä		Galln		c	0.31	0.12 0	0 67	0,0,0	0.45 0	6	0	0 0	٥	,	0.16 0	1 20 0		0 0						
ion							_	†))	0	ļ	>_	0	T		Γ	1		0	T	1	-						
3. Katalysatorgeneration				Dotieningen		လ လ	-	+	0,82 0	0,62 0,14	Т	0.38 0.23	0.43	+	0.96	0.41	1 2 4	٠ <u>٠</u>	0.85 0.19	;;	$\neg T$	0.56 0						
Katalysat				Dottie		E.		1	0	0	١	2	6		0	0		>_	0	1	>	0						
(۲		è .	Zusammensetzung Mol-%	othon		Sn B	Τ	1	<u> </u>	5.50	1	18.22	8 28 0	7	13.64 0	17 40 17 03 0		20.40 0	14 53 7.54		15,86 10,15 0	0 00.6						
		•		nkompon	ankomno	Nebenkomponente	CHACHILL	As as	-1		<u> </u>	0	1	0	5 3	7		17 40		0	c	1	15.86	0				
				ısammenset	sammenset			M		-	17.10 0	12 94 0	_	0		٥	2.67 0	٥	,	20.29 0	0 88 01	_	<u>o</u> _	22 0				
		1	Zn	Chenten	onenten						u	a;	T		0	ے	2	0.66		0	13.27 2.	6	7	<u> </u>	-	1	0	31.55 7.22
							ponente	12	2		31.78	1-		14.62	1	34,61 0.87	19 45 0		7.40	7.47	_	1,7	74 4.63	0 99				
r	3.				Hauptkomponenten	17/6	O IMIO		0 0	76.7	0,34	0 6.40	1	0 34,0	7 01		0 5,94	0		0 0	0 17.74	19						
=	l abelle 3.	ż	(y ₃)	;					-		7	,	2	4		_	9	1		∞	0	١						

Patentansprüche

5

15

20

25

30

35

1. Verfahren zur Herstellung aktiver oder selektiver Feststoff-Katalysatoren aus anorganischen oder metallorganischen Stoffen oder Gemischen davon durch Auswahl einer bestimmten Anzahl von chemisch oder mengenmäßig oder chemisch und mengenmäßig unterschiedlich zusammengesetzten Feststoff-Katalysatoren und Ermittlung von wesentlichen Katalysatoreigenschaften,

10 dadurch gekennzeichnet, daß

oder zufällig neu strukturiert wird,

für eine bestimmte katalytische Reaktion bei den hinsichtlich 1Aktivität oder Selektivität oder Aktivität und Selektivität
besten Katalysatoren der 1. Generation die einzelnen Katalysatorkomponenten oder Stoffmengen der Katalysatorkomponenten oder
Katalysatorkomponenten und Stoffmengen mittels stochastischer
Verfahren willkürlich oder zufällig neu strukturiert werden,
die Aktivität oder Selektivität oder Aktivität und Selektivität
der erhaltenen Katalysatoren der 2. Generation ermittelt wird,
von den besten Katalysatoren der 2. Generation wiederum ein
Anteil hinsichtlich der einzelnen Katalysatorkomponenten oder
stoffmengen der Katalysatorkomponenten oder Katalysatorkomponenten und Stoffmengen mittels stochastischer Verfahren willkürlich

die Aktivität oder Selektivität oder Aktivität und Selektivität der erhaltenen Katalysatoren der 3. Generation ermittelt wird, und diese Schritte der Neustrukturierung aus den besten Katalysatoren aller Generationen und die Eigenschaftsermittlung bis zum Erhalt eines oder mehrerer Katalysatoren mit für die spezifische katalytische Reaktion gewünschten Eigenschaften fortgesetzt werden.

- 2. Verfahren zur Herstellung aktiver oder selektiver Feststoff-Katalysatoren nach Anspruch 1, dadurch gekennzeichnet, daß
- (a) für eine katalytische Reaktion eine Anzahl n_1 von Feststoff-Katalysatoren hergestellt werden, die in Form von Verbindungen der Formel

$$(A_{a_{l}}^{l} ... A_{a_{i}}^{l}) - (B_{b_{l}}^{l} ... B_{b_{j}}^{j}) - (D_{d_{l}}^{l} ... D_{d_{k}}^{k}) - (T_{t_{l}}^{l} ... T_{t_{l}}^{l}) - \mathsf{Op} \tag{I}$$

bestehen,

worin A¹ .. Aⁱ eine Anzahl i verschiedene Haupkomponenten sind, die aus der Gruppe der Elemente des PSE, ausgenommen die Transurane und Edelgase ausgewählt werden und die Anzahl i zwischen 1 und 10 liegt,

- B¹ .. B^j eine Anzahl j verschiedene Nebenkomponenten sind, die aus der Gruppe der Elemente Li, Na, Ka, Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce und Nd ausgewählt werden, und die Anzahl j zwischen 1 und 10 liegt,
 - D¹... D^k eine Anzahl k verschiedene Dotierungselemente sind, die aus der Gruppe der Elemente Li, Na, Ka, Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce und Nd ausgewählt werden, und die Anzahl k zwischen 1 und 10 liegt,
 - T¹ .. T¹ eine Anzahl 1 verschiedene Trägerkomponenten sind, die aus Oxiden, Carbonaten, Carbiden, Nitriden, Boriden der Elemente Mg, Ca, Sr, Ba, La, Zr, Ce, Al, Si oder einer Mischphase von zwei oder mehreren davon bestehen, und die Anzahl 1 zwischen 1 und 10 liegt,

und O Sauerstoff ist,

5

10

15

20

25

30

 $a_1..a_i$ sind gleiche oder verschiedene Stoffmengenanteile von 0 bis 100 Mol-% mit der Maßgabe, daß die Stoffmengenanteile $a_1..a_i$ nicht gleichzeitig alle 0 sein können,

b, .. b, Stoffmengenanteile von 0 bis 90 Mol.-% sind,

d, .. d, Stoffmengenanteile von 0 bis 10 Mol.-% sind,

t₁ .. t₁ Stoffmengenanteile von 0 bis 99,99 Mol.-% sind,

- p ein Stoffmengenanteil von 0 bis 75 Mol.-% ist, wobei die Summe aller Stoffmengenanteile $a_i + b_j + d_k + t_1$ nicht größer als 100% sein darf, und
 - die Anzahl n_1 mengenmäßig oder chemisch oder mengenmäßig und chemisch unterschiedlich zusammengesetzter Katalysatoren im Bereich von 5 bis 100.000 liegt;
- 35 (b) die Aktivität oder Selektivität oder Aktivität und Selektivität der nach (a) hergestellten n_1 Feststoff-Katalysatoren der 1. Generation für eine katalytische Reaktion in einem Reaktor

oder in mehreren parallel geschalteten Reaktoren experimentell ermittelt werden;

- (c) von der Anzahl der n_1 Katalysatoren der 1. Generation eine Anzahl von 1 50 % mit den höchsten Aktivitäten für eine spezifische Reaktion oder höchsten Selektivitäten für das gewünschte Produkt oder Produktgemisch der katalytischen Reaktion oder Aktivität und Selektivität als Anzahl n_2 ausgewählt wird;
- (d) die in der Anzahl n_2 Katalysatoren enthaltenen Katalysator-komponenten mit einer festgelegten Wahrscheinlichkeit W, die sich für jede der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und T^1 .. T^1 aus den entsprechenden Gleichungen

$$W_{A} = \frac{1}{i \cdot n_{2}} \cdot 100\%, W_{B} = \frac{1}{j \cdot n_{2}} \cdot 100\%, W_{D} = \frac{1}{k \cdot n_{2}} \cdot 100\%, W_{T} = \frac{1}{l \cdot n_{2}} \cdot 100\%$$

ergibt, zwischen jeweils 2 mit einer Wahrscheinlichkeit

5

10

15

- $W_{Kai} = \frac{1}{n_2} \cdot 100\%$ aus der Menge n_2 ausgewählten Katalysatoren ausgetauscht werden oder daß die Stoffmengen $a_1 \dots a_i$, $b_1 \dots b_j$, $d_1 \dots d_k$ und $t_1 \dots t_1$ der Katalysatorkomponenten $A^1 \dots A^i$, $B^1 \dots B^j$, $D^1 \dots D^k$ und $T^1 \dots T^1$ bei einigen der mit der Wahrscheinlichkeit
- $W_{\text{Kat}} = \frac{1}{n_2} \cdot 100\% \text{ ausgewählten Katalysatoren variiert werden, indem neue Werte für die Stoffmengenanteile <math>a_1 \ldots a_i$, $b_1 \ldots b_j$, $d_1 \ldots d_k$ und $t_1 \ldots t_1$ innerhalb der unter (a) definierten Grenzen festgelegt werden, oder daß Austausch und Variierung durchgeführt werden;
 - auf diese Weise werden neue Katalysatoren der allgemeinen Formel (I) mit der unter (a) genannten Bedeutung von A, B, D, T, a, b, d, t und p in einer Anzahl y_2 hergestellt, die die 2. Generation von Katalysatoren bilden;
- 30 (e) die Aktivitäten oder Selektivitäten oder Aktivitäten und Selektivitäten der y_2 Feststoff-Katalysatoren der 2. Generation für die gleiche spezifische Reaktion wie in (b) in einem oder mehreren Reaktoren experimentell ermittelt werden;
 - (f) eine Zahl von n₃ Feststoff-Katalysatoren der 2. Generation, die die höchsten Aktivitäten für die katalytische Umsetzung oder die höchsten Selektivitäten für das gewünschte Produkt und Produktgemisch oder Aktivitäten und Selektivitäten aus allen Fest-

stoff-Katalysatoren der 1. und 2. Generation aufweisen, ausgewählt werden, wobei die Anzahl n_3 1 bis 50 % der Zahl n_1 entspricht;

(g) die in der Anzahl n_3 Katalysatoren enthaltenen Katalysatorkomponenten mit einer festgelegten Wahrscheinlichkeit W, die sich für jede der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und T^1 .. T^1 aus den entsprechenden Gleichungen

$$W_A = \frac{1}{i \cdot n_3} \cdot 100\%, W_B = \frac{1}{j \cdot n_3} \cdot 100\%, W_D = \frac{1}{k \cdot n_3} \cdot 100\%, W_T = \frac{1}{l \cdot n_3} \cdot 100\%$$

ergibt, zwischen jeweils 2 mit einer Wahrscheinlichkeit

5

10

15

20

25

 $W_{Kal} = \frac{l}{n_3} \cdot 100\%$ aus der Menge n_3 ausgewählten Katalysatoren ausgetauscht werden oder daß die Stoffmengen $a_1 \ldots a_i$, $b_1 \ldots b_j$, $d_1 \ldots d_k$ und $t_1 \ldots t_1$ der Katalysatorkomponenten $A^1 \ldots A^i$, $B^1 \ldots B^j$, $D^1 \ldots D^k$ und $T^1 \ldots T^l$ bei einigen der mit der Wahrscheinlichkeit

 $W_{Kat} = \frac{I}{n_3} \cdot 100\%$ ausgewählten Katalysatoren variiert werden, indem neue Werte für die Stoffmengenanteile a_1 .. a_i , b_i .. b_j , d_1 ... d_k und t_1 ... t_1 innerhalb der unter (a) definierten Grenzen festgelegt werden, oder daß Austausch und Variierung durchgeführt werden;

auf diese Weise werden neue Katalysatoren der allgemeinen Formel (I) mit der unter (a) genannten Bedeutung von A, B, D, T, a,b,d,t und p in einer Anzahl y_3 hergestellt, die die 3. Generation von Katalysatoren bilden;

- (h) die Aktivität oder Selektivität oder Aktivität und Selektivität der nach (g) hergestellten y_3 neuen Katalysatoren der 3. Generation für die gleiche spezifische Reaktion wie unter (b) in einem oder mehreren Reaktoren ermittelt wird;
- (i) eine Zahl von n_{n+1} Feststoff-Katalysatoren der n-ten Generation, die die höchsten Aktivitäten für die katalytische Umsetzung oder die höchsten Selektivitäten für das gewünschte Produkt und Produktgemisch oder Aktivität und Selektivität aus allen Feststoff-Katalysatoren der 1. bis n-ten Generation aufweisen, ausgewählt werden, wobei die Anzahl n_{n+1} 1 bis 50 % der Zahl n₁ entspricht;
 - (j) die in der Anzahl n_{n+1} Katalysatoren enthaltenen Katalysator-

komponenten mit einer festgelegten Wahrscheinlichkeit W, die sich für jede der Komponenten A^1 .. A^i , B^1 .. B^j , D^1 .. D^k und T^1 .. T^1 aus den entsprechenden Gleichungen

 $W_A = \frac{1}{i \cdot n_{n+1}} \cdot 100\%, W_B = \frac{1}{j \cdot n_{n+1}} \cdot 100\%, W_D = \frac{1}{k \cdot n_{n+1}} \cdot 100\%, W_T = \frac{1}{l \cdot n_{n+1}} \cdot 100\%$

ergibt, zwischen jeweils 2 mit einer Wahrscheinlichkeit

5

10

15

20

25

30

 $W_{Kat} = \frac{1}{n_{n+1}} \cdot 100\%$ aus der Menge n_{n+1} ausgewählten Katalysatoren ausgetauscht werden oder daß die Stoffmengen $a_1 \ldots a_i$, $b_1 \ldots b_j$, $d_1 \ldots d_k$ und $t_1 \ldots t_1$ der Katalysatorkomponenten $A^1 \ldots A^i$, $B^1 \ldots B^j$, $D^1 \ldots D^k$ und $T^1 \ldots T^1$ bei einigen der mit der Wahrscheinlichkeit

 $W_{Kat} = \frac{1}{n_{n+1}} \cdot 100\%$ ausgewählten Katalysatoren variiert werden, indem neue Werte für die Stoffmengenanteile $a_1 \ldots a_i$, $b_1 \ldots b_j$, $d_1 \ldots d_k$ und $t_1 \ldots t_1$ innerhalb der unter (a) definierten Grenzen festgelegt werden, oder daß Austausch und Variierung durchgeführt werden;

auf diese Weise werden neue Katalysatoren der allgemeinen Formel (I) mit der unter (a) genannten Bedeutung von A, B, D, T, a, b, d, t und p in einer Anzahl y_{n+1} hergestellt, die die (n+1)-ten Generation von Katalysatoren bilden;

- (k) die Aktivität oder Selektivität oder Aktivität und Selektivität der nach (g) hergestellten y_{n+1} neuen Katalysatoren der (n+1)-ten Generation für die gleiche Reaktion wie unter (b) in einem oder mehreren Reaktoren ermittelt wird;
- (1) die Auswahl gemäß den Stufen (c) + (f) + (i), die Herstellung einer neuen Katalysatorgeneration gemäß den Stufen (d), (g), (j) und die Aktivitäts-/Selektivitätsermittlung gemäß den Stufen (e) + (h) + (k) bis zum Erhalt einer Katalysator-Generation fortgeführt wird, bei der die Aktivität oder Selektivität oder Aktivität und Selektivität gegenüber den vorangegangenen Generationen im arithmetischen Mittel nicht oder nicht mehr signifikant erhöht ist.
- 35 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Austausch der Katalysatoren oder die Variierung der Stoffmengen oder Austausch und Variierung in den Abschnitten (d), (g) und (j)

31

mittels eines numerischen Zufallsgenerators durchgeführt wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Programmcodes G05CAF, G05DYF, G05DZF und G05CCF der NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986) eines numerischen Zufallsgenerators eingesetzt werden.

5

10

- 5. Verfahren nach Anspruch 2(a), dadurch gekennzeichnet, daß die Anzahl n_1 mengenmäßig oder chemisch oder mengenmäßig und chemisch unterschiedlich zusammengesetzter Katalysatoren im Bereich von 5 bis 100 liegt.
 - 6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Auswahlanzahl n_2 , n_3 oder n_{n+1} 5 bis 30 % der Zahl n_1 entspricht.
- 7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Hauptkomponenten aus der Gruppe ausgewählt werden, bestehend aus Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce und Nd.
 - 8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Stoffmengenanteile b_1 .. b_i von 0 bis 50 Mol.-% betragen.
- 9. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Herstellung der Katalysatorgemische durch Mischen von Salzlösungen der Elemente der Komponente A¹.. A¹, B¹.. B¹, D¹.. Dk und T¹.. T¹ und anschließende thermische Behandlung in Gegenwart einer reaktiven oder inerten Gasphase (Temperung) oder durch gemeinsame Fällung von schwerlöslichen Verbindungen und anschließende Temperung oder durch Beaufschlagung der Trägerkomponenten T¹.. T¹ mit Salzlösungen oder gasförmigen Verbindungen der Komponenten A¹.. A¹, B¹.. B¹, D¹.. Dk und anschließende Temperung erfolgt, wobei die eingesetzten Salze Nitrate, Sulfate, Phosphate, Carbonate, Halogenide, Oxalate, Carboxylate oder Gemische davon oder Carbonyle oder Acetylacetonate sein können.
 - 10. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die

katalytische Reaktion mit flüssigen, verdampften oder gasförmigen Reaktanten durchgeführt wird.

11. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Reaktanten für die katalytische Reaktion mehreren Reaktoren zugeführt werden, und der die Reaktoren verlassende Produktstrom für jeden einzelnen Reaktor getrennt analysiert wird.

- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß zur Durchführung der katalytischen Reaktion 5 bis 1000 Reaktoren bestehend aus Räumen mit darin angeordnetem katalytisch aktiven Material parallel zueinander geschaltet oder in Arrays angeordnet sind, wobei die Durchmesser dieser Räume 100 μm bis 10 mm und die Längen 1 mm bis 100 mm betragen.
- 13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß bei vorgegebener Reaktorlänge der Durchsatz der Reaktanten so gewählt wird, daß der gewünschte Umsatzgrad erreicht wird.
- 14. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß als Reaktor ein Monolith mit vielen parallelen Kanälen, die wahlweise auf der Ein- oder Austrittsseite einzeln oder in größerer Zahl auch während der katalytischen Reaktion verschlossen werden können oder ein poröser Modul bevorzugt mit in Strömungsrichtung der Reaktionsmischung parallel verlaufenden Kanälen, die wahlweise auf der Ein- oder Austrittsseite einzeln oder in größerer Zahl auch während der katalytischen Reaktion verschließbar sind, eingesetzt wird.
- 15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Reaktanten für die katalytische Reaktion den gemäß Anspruch 11, 12 und 13 gestalteten Reaktoren zugeführt werden, und die Zusammensetzung der die Reaktoren verlassenden Produktströme durch eine Meßsonde analysiert wird, wobei die Meßsonde zweidimensional über die Austrittsquerschnitte aller Reaktoren geführt wird oder die Reaktoren zweidimensional gegenüber der Meßsonde bewegt werden und der von der Meßsonde aufgenommene Teil der Produktströme dem Analysator zugeführt wird.

Fig. 1

Rangfolge der Katalysatoren

Fig. 2

THIS PAGE BLANK (USPTO)

Internationales Aktenzeichen
DE 99/02956

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 B01J37/00

Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

i.

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 B01J

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	MITTASCH A: "EARLY STUDIES OF MULTICOMPONENT CATALYSTS"	1
	ADVANCES IN CATALYSIS,US,SAN DIEGO, CA, Bd. 2, 1950, Seiten 81-104, XP000874209	
A	* insbesondere Seite 102, Zeile 3-9 *	7,8,10
	DE 106 33 770 A (HOECUST AG)	1,2,
A	DE 196 32 779 A (HOECHST AG) 19. Februar 1998 (1998-02-19) Zusammenfassung	10-14
	Spalte 2, Zeile 38 -Spalte 3, Zeile 13	
A	STEMMER W P C: "Rapid evolution of a protein in vitro by DNA shuffling" NATURE,	2,3
,	4. August 1994 (1994-08-04), XP002082182 das ganze Dokument	
	-/	

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie		
 Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	erfindenscher i atigkeit beruhend betrachtet werden		
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
19. September 2000	277		
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter		
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Veefkind, V		

THIS PAGE BLANK TOOLOG

•	mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Betr. Anspruch Nr.,
Katecorie	Bองสุดไทยารุ der Veröffentlichung, soweit erforderfich unter Angabr สำเร็จ Setracht kommenden Tolle	Heir, Anspruch Nr.,
A	US 5 684 711 A (AGRAFIOTIS DIMITRIS K ET AL) 4. November 1997 (1997-11-04) Zusammenfassung	2,3
A	WO 94 24314 A (KAUFFMAN STUART A ;REBEK JULIUS JR (US)) 27. Oktober 1994 (1994-10-27) Zusammenfassung; Ansprüche 25-27	1-3
Α	SIGMAN M S ET AL: "SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,US,AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, Bd. 120, 1998, Seiten 4901-4902, XP000857794 ISSN: 0002-7863 das ganze Dokument	1
A	WO 98 03521 A (BEEK JOHANNES A M VAN; TURNER HOWARD (US); BOUSSIE THOMAS (US); GO) 29. Januar 1998 (1998-01-29) Ansprüche 1,2,7 Seite 12, Zeile 13 -Seite 13, Zeile 23 Seite 16, Zeile 21 -Seite 18, Zeile 3 Seite 39, Zeile 17 -Seite 45, Zeile 15	1
A	W P STEMMER ET AL: "Searching sequence space" BIO/TECHNOLOGY,US,NATURE PUBLISHING CO. NEW YORK, Bd. 13, 1. Juni 1995 (1995-06-01), Seiten 549-553, XP002095510 ISSN: 0733-222X das ganze Dokument	2
A	WARD ET AL.: "Combinatorial library diversity: probability assessment of library populations" NUCLEIC ACIDS RESEARCH, Bd. 26, Nr. 4, Februar 1998 (1998-02), Seiten 879-886, XP002147467 das ganze Dokument	2

THIS PAGE BLANK (USPTO)

Angeben zu Veröffentlichungen, die

elben Patentfamilie gehön

Internationales Aktenzeichen
PDE 99/02956

Im Recherchenbericht angeführtes Patentrlokum	ent	Datum der Veröffentlichung		glied(er) der atentfamilie	Datum der Veröffentlichung
LE 19532779	e ja veiteryon vi e Per	19-02-1998	R	4279697 A	05 €0 -1998
			WO	9807026 A	19-02-1998
			EP	1012598 A	28-06-2000
US 5684711	Α	04-11-1997	US	5574656 A	12-11-1996
•••••			US	5463564 A	31-10-1995
			US	5901069 A	04-05-1999
			AU	688598 B	12-03-1998
			AU	3628095 A	29-03-1996
			AU	710152 B	16-09-1999
			ĄŲ	7188698 A	30-07-1998
			CA	2199264 A	21-03-1996
			EP	0781436 A	02-07-1997
			HU	77914 A	28-10-1998
			IL	115292 A	20-06-1999
			IL	125017 A	14-07-1999 09-06-1998
			JP WO	10505832 T 9608781 A	21-03-1996
			WO	9000/01 A	
WO 9424314	Α	27-10-1994	AU	6815894 A	08-11-1994
			ΑU	8002098 A	22-10-1998
			CA	2160457 A	27-10-1994
			EP	0695368 A	07-02-1996
			JP	9500007 T	07-01-1997
WO 9803521	Α	29-01-1998	AU	3741897 A	10-02-1998
,,,	• •		EP	0923590 A	23-06-1999
			. EP	0985678 A	15-03-2000
		4	EP	0983983 A	08-03-2000
		* * *	ΕP	0978499 A	09-02-2000
		•	JP	11514012 T	30-11-1999
		₹ - N	AU	4673497 A	05-05-1998
			AU	4749397 A	05-05-1998
			AU	4812097 A	05-05-1998
			AU	4902497 A	05-05-1998 19-07-2000
		***	EP	1019947 A	11-08-1999
			EP	0934515 A	26-07-2000
			EP	1021711 A 9815969 A	16-04-1998
			WO WO		16-04-1998
			WO WO	9815813 A 9815501 A	16-04-1998
			WO WO	9815805 A	16-04-1998
			US	5959297 A	28-09-1999
			03	3333631 K	20-05 1555

THIS PAGE BLANK (USP.

WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Buro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: WO 00/15341 (11) Internationale Veröffentlichungsnummer: A2 B01J 37/00 (43) Internationales Veröffentlichungsdatum: 23. März 2000 (23.03.00) PCT/DE99/02956 (21) Internationales Aktenzeichen:

(30) Prioritätsdaten:

198 43 242.9

(22) Internationales Anmeldedatum:

11. September 1998 (11.09.98) DE

10. September 1999

(10.09.99)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): INSTITUT FÜR ANGEWANDTE CHEMIE BERLIN-ADLERSHOF E.V. [DE/DE]; Richard-Willstätter-Strasse 12, D-12489 Berlin (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): WOLF, Dorit [DE/DE]; Grünauerstrasse 101 A, D-12557 BUYEVSKAYA, Olga [RU/DE]; F Berlin (DE). Herrenhausstrasse 16, D-12487 Berlin (DE). BAERNS, Manfred [DE/DE]; Hüninger Strasse 5, D-14195 Berlin (DE). RODEMERCK, Uwe [DE/DE]; Gubener Strasse 27, D-10243 Berlin (DE). CLAUS, Peter [DE/DE]; Biesenbrower Strasse 31, D-13057 Berlin (DE).
- (74) Anwalt: WALTER, Wolf-Jürgen; Felke & Walter, Normannenstrasse 1-2, D-10367 Berlin (DE).

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC. NL, PT, SE).

Veröffentlicht

Mit Erklärung gemäss Artikel 17 Abstaz (2)(a). Ohne Zusammenfassung; Bezeichnung von der Internationalen Recherchenbehörde nicht über-prüft.

(54) Title: METHOD FOR PRODUCING ACTIVE AND/OR SELECTIVE SOLID CATALYSTS FROM INORGANIC OR ORGANOMETALLIC MATERIALS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG AKTIVER UND/ODER SELEKTIVER FESTSTOFF-KATALYSATOREN AUS ANORGANISCHEN ODER METALLORGANISCHEN STOFFEN

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien	
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei	
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegai	
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland	1
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad	1
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo	1
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan	l
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan	
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei	
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago	
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine	ì
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda	i
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von	•
CA	Kanada	IT	Italien	MX	Mexiko		Amerika	
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan	i
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam	
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien	
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe	}
CM	Kamerun		Korea	PL	Polen			ĺ
CN	China	KR	Republik Korea	PT	Portugal			
CU	Kuba	KZ	Kasachstan	RO	Rumänien			
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation			
DE	Deutschland	LI	Liechtenstein	SD	Sudan			j
DK	Dänemark	LK	Sri Lanka	SE	Schweden			
EE	Estland	LR	Liberia	SG	Singapur			ļ
								į

REVISED VERSION

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT (PCT Article 17(2)(a), Rules 13ter.1(c) and 39)

Applicant's or agent's file reference			Date of mailing (day/month/year)				
002483	IMPORTANTO	ECLARATION	28/03/2000				
International application No.	International filing dat	e (day/month/year)	(Earliest) Priority Date (day/month/year)				
PCT/DE 99/02956	10/09/199	99	11/09/1998				
International Patent Classification (IPC) or both national classification and IPC							
			B01J 37/00				
Applicant INSTITUTE FUR ANG	GEWANDTE CHEMIE	et al.					
established on the international applicat 1.	ion for the reasons indicated anational application relations. It processes for the product processes. Thous of doing business, thous of performing pure thous of playing games, at of the human body by sometimes of the animal body by sometimes of the animal body by sometimes of the internation. For which this Internation parts of the international carried out:	tion of plants and animally mental acts. Surgery or therapy. Surgery or therapy. Animal body. Al Searching Authorital application to comply with from being carried es not comply with the	ne standard. nply with the standard.				
<u> </u>							
Name and mailing address of the ISA/		Authorized officer					
Furnnean Patent Office							

Telephone No.

Facsimile No.

All of the claims concerned relate to a disproportionately high number of possible methods. In fact, they cover so many options, variations and possible permutations that, within the meaning of PCT Art.6, they are so unclear (and/or extensively drafted) as to render a meaningful search impossible. Therefore, a search report could not be produced for this patent application. A meaningful search of these claims is also impossible on account of the fact that they refer to mathematical formulae. The use of these formulae in the given context must be considered a lack of clarity within the meaning of PCT Art.6. It is impossible to compare the formulae chosen by the applicant with the prior art. The lack of clarity is such that it renders a meaningful, complete search impossible.

The applicant is advised that claims relating to inventions in respect of which no international search report has been established cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). As a general rule, the EPO in its capacity as the authority entrusted with the task of carrying out an international preliminary examination will not conduct a preliminary examination for subjects in respect of which no search has been provided. This also applies to cases where the patent claims were amended after receipt of the international search report (PCT Article 19) or to cases where the applicant presents new patent claims in keeping with the procedure mentioned in PCT Chapter II. A further search can however be carried out in the course of the examination after entry into the regional phase before the EPO (Cf. EPO guidelines C-VI, 8.5) if the defects that led to the declaration according to PCT Art. 17(2) have been removed.

VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS

ERKLÄRUNG ÜBER DIE NICHTERSTELLUNG EINES INTERNATIONALEN RECHERCHENBERICHTS

(Artikei 17 (2) a) und Regeln 13ter. 1 c) und 39 PCT)

	!			28/03/2000
ternationales Aktenzeichen PCT/DE 99/02956	Internationales Anmelded (Tag/Monat/Jahr)	datum 10/09/1999	(Frühestes) Priorität (Tag/Monat/Jahr)	tsdatum 11/09/1998
ternationale Patentklassifikation (IPC) ode	r nationale Klassifikation u	ind IPC 8	301J37/00	
nmelder [NSTITUTE FUR ANGEWANDTE (CHEMIE et al.			
Die Internationale Recherchenbehörde erk aufgeführten Gründen kein internationale 1. Der Gegenstand der internationale	er Recherchenbericht ers	stellt wird.	nale Anmeldung aus	den nachstehend
a. wissenschaftliche Theorien. b. mathematische Theorien.				·
c. Pflanzensorten. d. Tierarten.				
e. im wesentlichen biologische \ Verfahren und der mit Hilfe di f. Pläne, Regeln und Verfahren	ieser Verfahren gewonnen	en Erzeugnisse.	ı mit Ausnahme mikro	biologischer
g. Plāne, Regeln und Verfahren		ceiten.		
i. Verfahren zur chirurgischen o	•	ndlung des menschlic	:hen Körpers.	
j. Verfahren zur chirurgischen o				
k. Diagnostizierverfahren zur An I. Dioße Wiedergabe von Inform	_	M Oder Hellschen (701)	per.	
m. Programme von Datenverarbo Durchführung einer Recherch	eitungsanlagen, in bezug a	auf die die Internations hnik ausgerüstet ist.	ale Recherchenbehör	de nicht für die
2. X Die folgenden Teile der internation sinnvolle Recherche nicht durchg	eführt werden kann:		chriebenen Anforden	enie 8ab os negnu
die Beschreibung	X die Ansprüche		die Zeichnungen	
Das Protokoll der Nucleotid- und/o vorgeschriebenen Standard, so da	oder Aminosäuresequenze aß eine sinnvolle Recherch	n entspricht nicht den ne nicht durchgeführt	n in Anlage C der Ver werden kann.	waltungsvorschriften
	wurde nicht eingereicht bz			•
Die computerlesbare 4. Weitere Bemerkungen:	Form <u>wurde</u> nicht eingera	·	cht dem Standard.	
	Recherchenbehörde		diensteter	

Fax: (+31-70) 340-3016

WEITERE ANGABEN

PCT/ISA/ 203

Alle geltenden Patentansprüche beziehen sich auf eine unverhältnismäßig große Zahl möglicher Verfahren. In der Tat umfassen sie so viele Wahlmöglichkeiten, Veränderliche und mögliche Permutationen, daß sie im Sinne von Art. 6 PCT in einem solchen Maße unklar (und/oder zu weitläufig gefasst) erscheinen, als daß sie eine sinnvolle Recherche ermöglichten. Daher konnte ein Recherchenbericht für die vorliegende Patentanmeldung nicht erstellt werden.

Außerdem ist eine sinnvolle Recherche dieser Ansprüche nicht möglich, da diese sich beziehen auf mathematische Formeln. Die Verwendung dieser Formeln muss im gegebenen Zusammenhang als Mangel an Klarheit im Sinne von Art. 6 PCT erscheinen. Es ist unmöglich, die vom Anmelder gewählten Formeln mit dem Stand der Technik zu vergleichen. Der Mangel an Klarheit ist dergestalt, daß er eine sinnvolle vollständige Recherche unmöglich macht.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit, der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentanprüche vorlegt. Nach Eintritt in die regionale Phase vor dem EPA kann jedoch im Zuge der Prüfung eine weitere Recherche durchgeführt werden (Vgl. EPA-Richtlinien C-VI, 8.5), sollten die Mängel behoben sein, die zu der Erklärung gemäß Art. 17 (2) PCT geführt haben.

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. März 2000 (23.03.2000)

PCT

(10) Internationale Veröffentlichungsnummer WO 00/15341 A3

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

PCT/DE99/02956

B01J 37/00

(22) Internationales Anmeldedatum:

10. September 1999 (10.09.1999)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

198 43 242.9

11. September 1998 (11.09.1998) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INSTITUT FÜR ANGEWANDTE CHEMIE BERLIN-ADLERSHOF E.V. [DE/DE]; Richard-Willstätter-Strasse 12, D-12489 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): WOLF, Dorit [DE/DE]; Grünauerstrasse 101 A, D-12557 Berlin (DE). BUYEVSKAYA, Olga [RU/DE]; Herrenhausstrasse 16, D-12487 Berlin (DE). BAERNS, Manfred [DE/DE]; Hüninger Strasse 5, D-14195 Berlin (DE). RODE-MERCK, Uwe [DE/DE]; Gubener Strasse 27, D-10243 Berlin (DE). CLAUS, Peter [DE/DE]; Biesenbrower Strasse 31, D-13057 Berlin (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCING ACTIVE AND/OR SELECTIVE SOLID CATALYSTS FROM INORGANIC OR ORGANOMETALLIC MATERIALS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG AKTIVER UND/ODER SELEKTIVER FESTSTOFF-KATALYSATO-REN AUS ANORGANISCHEN ODER METALLORGANISCHEN STOFFEN

(57) Abstract: The invention relates to an evolutionary method for producing catalysts. In a first step (i), components are selected and added to a library of substances. Mixtures of these individual materials are then produced randomly by random selection. In the second step (ii), this first generation of catalysts produced is catalytically tested. Catalyst-optimised materials from step (ii) are physically/chemically characterised for reproducible production in step (iii) and form the basis for a second generation of catalysts. This second generation is produced gradually from the successful materials of the first generation using biological evolutionary methods such as crossing and mutation, and subjected to steps (ii) and (iii). For the second and subsequent iterations, the most successful catalysts of all the generations are taken as a basis in each case,

the total number of said catalysts being 1 to 50 % of the catalysts of a generation. The iterations are continued until no further improvement is observed in the catalytic properties of the materials in terms of activity/selectivity, for the reaction concerned.

(57) Zusammenfassung: Im erfindungsgemäßen evolutionären Katalysatorherstellungsverfahren werden im ersten Schritt (i) Komponenten ausgewählt und in eine Substanzbibliothek übernommen, wobei durch zufällige Wahl willkürliche Mischungen aus diesen Einzelmaterialien erzeugt werden. Im zweiten Schritt (ii) wird diese hergestellte 1. Generation von Katalysatoren katalytisch ausgeprüft. Katalysatoroptimierte Materialien des Schritts (ii) werden auf reproduzierbare Herstellung in Schritt (iii) physikalisch/chemisch charakterisiert und stellen die Grundlage für eine 2. Generation von Katalysatoren dar. Diese zweite Generation wird nach biologischen Evolutionsmethoden wie z.B. Kreuzung und Mutation aus den erfolreichen Materialien der ersten Generation erzeugt und den Schritten (ii) und (iii) unterworfen. Bei der zweiten und den nachfolgenden Iterationen werden jeweils die erfolgreichsten Katalysatoren aller Generationen zugrunde gelegt, deren Gesamtzahl zur Gesamtzahl der Katalysatoren einer Generation 1 bis 50 % der Katalysatoren einer Generation betragen. Die Iterationen werden fortgeführt, bis keine Verbesserung des katalytischen Verhaltens der Materialien hinsichtlich Aktivität/Selektivität für die betrachtete Reaktion festzustellen ist.

- (74) Anwalt: WALTER, Wolf-Jürgen; Felke & Walter, Normannenstrasse 1-2, D-10367 Berlin (DE).
- (81) Bestimmungsstaaten (national): JP, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht:

Mit internationalem Recherchenbericht.

- (88) Veröffentlichungsdatum des internationalen Recherchenberichts: 15. Februar 2001
- (15) Informationen zur Berichtigung:
 Frühere Berichtigung:
 siehe PCT Gazette Nr. 20/2000 vom 18. Mai 2000, Section
 II

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Intern: nal Application No PCT/DE 99/02956

a. CLASSIFICATION OF SUBJECT MATTER IPC 7 B01J37/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7-801J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	MITTASCH A: "EARLY STUDIES OF MULTICOMPONENT CATALYSTS" ADVANCES IN CATALYSIS,US,SAN DIEGO, CA, vol. 2, 1950, pages 81-104, XP000874209		
Α	in particular page 102, line 3-9	7,8,10	
A	DE 196 32 779 A (HOECHST AG) 19 February 1998 (1998-02-19) abstract column 2, line 38 -column 3, line 13	1,2, 10-14	
A	STEMMER W P C: "Rapid evolution of a protein in vitro by DNA shuffling" NATURE, 4 August 1994 (1994-08-04), XP002082182 the whole document	2,3	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
19 September 2000	2 2. 09. 00
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Veefkind, V

Form PCT/ISA/210 (second sheet) (July 1992)

Intern 1 at Application No PCT/DE 99/02956

A DOUBLET ON HOLDERED TO BE PELEVANT	PC1/DE 39/02330
	Relevant to claim No.
US 5 684 711 A (AGRAFIOTIS DIMITRIS K ET AL) 4 November 1997 (1997-11-04)	2,3
WO 94 24314 A (KAUFFMAN STUART A ;REBEK JULIUS JR (US)) 27 October 1994 (1994-10-27) abstract; claims 25-27	1-3
SIGMAN M S ET AL: "SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 120, 1998, pages 4901-4902, XP000857794 ISSN: 0002-7863 the whole document	1
WO 98 03521 A (BEEK JOHANNES A M VAN; TURNER HOWARD (US); BOUSSIE THOMAS (US); GO) 29 January 1998 (1998-01-29) claims 1,2,7 page 12, line 13 -page 13, line 23 page 16, line 21 -page 18, line 3 page 39, line 17 -page 45, line 15	1
W P STEMMER ET AL: "Searching sequence space" BIO/TECHNOLOGY,US,NATURE PUBLISHING CO. NEW YORK, vol. 13, 1 June 1995 (1995-06-01), pages 549-553, XP002095510 ISSN: 0733-222X the whole document	2
WARD ET AL.: "Combinatorial library diversity: probability assessment of library populations" NUCLEIC ACIDS RESEARCH, vol. 26, no. 4, February 1998 (1998-02), pages 879-886, XP002147467 the whole document	2
	AL) 4 November 1997 (1997-11-04) abstract WO 94 24314 A (KAUFFMAN STUART A ;REBEK JULIUS JR (US)) 27 October 1994 (1994-10-27) abstract; claims 25-27 SIGMAN M S ET AL: "SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 120, 1998, pages 4901-4902, XP000857794 ISSN: 0002-7863 the whole document WO 98 03521 A (BEEK JOHANNES A M VAN ;TURNER HOWARD (US); BOUSSIE THOMAS (US); GO) 29 January 1998 (1998-01-29) claims 1,2,7 page 12, line 13 -page 13, line 23 page 16, line 21 -page 18, line 3 page 39, line 17 -page 45, line 15 W P STEMMER ET AL: "Searching sequence space" BIO/TECHNOLOGY,US,NATURE PUBLISHING CO. NEW YORK, vol. 13, 1 June 1995 (1995-06-01), pages 549-553, XP002095510 ISSN: 0733-222X the whole document WARD ET AL.: "Combinatorial library diversity: probability assessment of library populations" NUCLEIC ACIDS RESEARCH, vol. 26, no. 4, February 1998 (1998-02), pages 879-886, XP002147467

rmation on patent family members

Intern: nal Application No
PCT/DE 99/02956

Patent document cited in search report		Publication date	!	Patent family member(s)	Publication date
DE 19632779	Α	19-02-1998	AU	4379697 A	06-03-1998
			WO	9807026 A	19-02-1998
			EP	1012598 A	28-06-2000
US 5684711	Α	04-11-1997	US	5574656 A	12-11-1996
			US	5463564 A	31-10-1995
			US	5901069 A	04-05-1999
			AU	688598 B	12-03-1998
			AU	3628095 A	29-03-1996
			AU	710152 B	16-09-1999
			AU	7188698 A	30-07-1998
			CA	2199264 A	21-03-1996
			EP	0781436 A	02-07-1997
			HU	77914 A	28-10-1998
			IL	115292 A	20-06-1999
			IL	125017 A	14-07-1999
			JP	10505832 T	09-06-1998
			WO	9608781 A	21-03-1996
WO 9424314	Α	27-10-1994	AU	6815894 A	08-11-1994
			AU	8002098 A	22-10-1998
			CA	2160457 A	27-10-1994
			EP	0695368 A	07-02-1996
			JP	9500007 T	07-01-1997
WO 9803521	Α	29-01-1998	AU	3741897 A	10-02-1998
			EP	0923590 A	23-06-1999
			EP	0985678 A	15-03-2000
			EΡ	0983983 A	08-03-2000
			EP	0978499 A	09-02-2000
			JP	11514012 T	30-11-1999
			AU	4673497 A	05-05-1998
			AU	4749397 A	05-05-1998
			AU	4812097 A	05-05-1998
			AU	4902497 A	05-05-1998
			EP	1019947 A	19-07-2000
			EP	0934515 A	11-08-1999
			EP	1021711 A	26-07-2000
			WO	9815969 A	16-04-1998
			WO	9815813 A	16-04-1998
			WO	9815501 A	16-04-1998
			MO	9815805 A	16-04-1998 28-09-1999
			US	5959297 A	20-03-1339

THIS PAGE BLANK (USPTO)

Inter inales Aktenzeichen PCI/DE 99/02956

a. Klassifizierung des anmeldungsgegenstandes IPK 7 B01J37/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 B01J

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsuttierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr, Anspruch Nr.	
Х	MITTASCH A: "EARLY STUDIES OF MULTICOMPONENT CATALYSTS" ADVANCES IN CATALYSIS,US,SAN DIEGO, CA,		
Α	Bd. 2, 1950, Seiten 81-104, XP000874209 * insbesondere Seite 102, Zeile 3-9 *	7,8,10	
Α	DE 196 32 779 A (HOECHST AG) 19. Februar 1998 (1998-02-19) Zusammenfassung Spalte 2, Zeile 38 -Spalte 3, Zeile 13	1,2, 10-14	
A	STEMMER W P C: "Rapid evolution of a protein in vitro by DNA shuffling" NATURE, 4. August 1994 (1994-08-04), XP002082182 das ganze Dokument	2,3	
	-/		

entnehmen				
 Besondere Kategorien von angegebenen Veröffentlichungen: *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt warden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, 	kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und			
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Pnoritätsdatum veröffentlicht worden ist	diese Verbindung für einen Fachmann naheliegend ist *&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts			
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberchits			
19. September 2000	2 2. 09. 00			
Name und Pretamehrift der Internationalen Recherchenbehörde 37 5818 Patentlaan 2	Bevollmächtinter Bediensteter			
ுக. Tel. (+31-70) 340-2040, Tx. 31 651 eஓய வீ. Fax: (+31-70) 340-3016	Veefkind, V			

X Siehe Anhang Patentfamilie

Interr "onales Aktenzeichen
PC"1/DE 99/02956

(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN stegorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.					
Bezeichnung der Veröffentlichung, soweit erfordenich unter Angabe der in betracht kommenden Teae	555.75.55.55.55.				
US 5 684 711 A (AGRAFIOTIS DIMITRIS K ET AL) 4. November 1997 (1997-11-04) Zusammenfassung	2,3				
WO 94 24314 A (KAUFFMAN STUART A ;REBEK JULIUS JR (US)) 27. Oktober 1994 (1994-10-27) Zusammenfassung; Ansprüche 25-27	1-3				
SIGMAN M S ET AL: "SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,US,AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, Bd. 120, 1998, Seiten 4901-4902, XP000857794 ISSN: 0002-7863 das ganze Dokument	1				
WO 98 03521 A (BEEK JOHANNES A M VAN; TURNER HOWARD (US); BOUSSIE THOMAS (US); GO) 29. Januar 1998 (1998-01-29) Ansprüche 1,2,7 Seite 12, Zeile 13 -Seite 13, Zeile 23 Seite 16, Zeile 21 -Seite 18, Zeile 3 Seite 39, Zeile 17 -Seite 45, Zeile 15	1				
W P STEMMER ET AL: "Searching sequence space" BIO/TECHNOLOGY,US,NATURE PUBLISHING CO. NEW YORK, Bd. 13, 1. Juni 1995 (1995-06-01), Seiten 549-553, XP002095510 ISSN: 0733-222X das ganze Dokument	2				
WARD ET AL.: "Combinatorial library diversity: probability assessment of library populations" NUCLEIC ACIDS RESEARCH, Bd. 26, Nr. 4, Februar 1998 (1998-02), Seiten 879-886, XP002147467 das ganze Dokument	2				
	US 5 684 711 A (AGRAFIOTIS DIMITRIS K ET AL) 4. November 1997 (1997-11-04) Zusammenfassung WO 94 24314 A (KAUFFMAN STUART A ;REBEK JULIUS JR (US)) 27. Oktober 1994 (1994-10-27) Zusammenfassung; Ansprüche 25-27 SIGMAN M S ET AL: "SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, Bd. 120, 1998, Seiten 4901-4902, XP000857794 ISSN: 0002-7863 das ganze Dokument WO 98 03521 A (BEEK JOHANNES A M VAN ;TURNER HOWARD (US); BOUSSIE THOMAS (US); GO) 29. Januar 1998 (1998-01-29) Ansprüche 1,2,7 Seite 12, Zeile 13 -Seite 13, Zeile 23 Seite 16, Zeile 21 -Seite 18, Zeile 3 Seite 39, Zeile 17 -Seite 45, Zeile 15 W P STEMMER ET AL: "Searching sequence space" BIO/TECHNOLOGY,US,NATURE PUBLISHING CO. NEW YORK, Bd. 13, 1. Juni 1995 (1995-06-01), Seiten 549-553, XP002095510 ISSN: 0733-222X das ganze Dokument WARD ET AL: "Combinatorial library diversity: probability assessment of library populations" NUCLEIC ACIDS RESEARCH, Bd. 26, Nr. 4, Februar 1998 (1998-02), Seiten 879-886, XP002147467				

Angaben zu Veröffentlichung die zur selben Patentfamilie gehören

Interr "anales Aktenzeichen PC:/DE 99/02956

Im Recherche angeführtes Pate		nt	Oatum der Veröffentlichung		glied(er) der atentfamilie	Datum der Veröffentlichung
DE 19632779 A		Α	19-02-1998	AU	4379697 A	06-03-1998
DE 1903	_,,,	^	15 01 111	WO	9807026 A	19-02-1998
				EP	1012598 A	28-06-2000
US 5684	 711	 A	04-11-1997	US	5574656 A	12-11-1996
03 300 1	,	••	• • • • • • • • • • • • • • • • • • • •	US	5463564 A	31-10-1995
			US	5901069 A	04-05-1999	
				AU	688598 B	12-03-1998
				AU	3628095 A	29-03-1996
				AU	710152 B	16-09-1999
				AU	7188698 A	30-07-1998
				CA	2199264 A	21-03-1996
				ΕP	0781436 A	02-07-1997
				HU	77914 A	28-10-1998
				IL	115292 A	20-06-1999
				ΙL	125017 A	14-07-1999
				JP	10505832 T	09-06-1998
				WO	9608781 A	21-03-1996
WO 9424314 A	Α	27-10-1994	AU	6815894 A	08-11-1994	
		AU	8002098 A	22-10-1998		
				CA	2160457 A	27-10-1994
				EP	0695368 A	07-02-1996
				JP	9500007 T	07-01-1997
WO 9803	WO 9803521 A	Α	29-01-1998	ΑU	3741897 A	10-02-1998
				EP	0923590 A	23-06-1999
				EP	0985678 A	15-03-2000
				EP	0983983 A	08-03-2000
				EP	0978499 A	09-02-2000
				JP	11514012 T	30-11-1999 05-05-1998
		AU	4673497 A	05-05-1998		
		AU	4749397 A	05-05-1998		
		AU	4812097 A	05-05-1998		
				ΑŪ	4902497 A	19-07-2000
				EP	1019947 A 0934515 A	11-08-1999
				EP		26-07-2000
				EP	1021711 A 9815969 A	16-04-1998
				WO WO	9815813 A	16-04-1998
			WO WO	9815501 A	16-04-1998	
				WO WO	9815805 A	16-04-1998
				US	5959297 A	28-09-1999
				U.S	3333237 R	

THIS PREE BLANK USETO