Теортест-1 (Вариант 81)

Тема – определенный интеграл

Задача 1

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. du = v;
- 2. dv = udt + C:
- 3. du = vdt:
- 4. v = du + C;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения:

- 1. Длины противоположных путей равны;
- 2. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 3. Любая кривая имеет бесконечно много различных параметризаций;
- 4. Спрямляемы только кусочно-гладкие кривые;
- 5. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) > 0, f(b) > 0;
- 2. f непрерывна на [a, b] и f(a + b) = 1;
- 3. f(a) = f(b) = 1;
- 4. f((a+b)/2) = 1;

Задача 4

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. $\int_a^b f(x)dx = F(b) F(a);$
- 2. Если f непрерывна на [a,b], то F первообразная для f на [a,b];
- 3. F ограничена на [a, b];
- 4. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. площадь графика любой функции равна нулю;
- 2. площадь A всегда положительна;
- 3. при движении площадь не меняется;
- 4. площадь одной точки равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\forall \varepsilon > 0 \ \exists \tau \colon S_{\tau} s_{\tau} < \varepsilon;$
- 2. $\forall \tau, \forall \xi : s_{\tau} < \sigma_{\tau}(\xi) < S_{\tau};$
- 3. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 4. $\forall \varepsilon > 0 \ \exists \delta > 0$: $\forall \tau : |\tau| < \delta \ \exists \xi : S_{\tau} \sigma_{\tau}(\xi) < \varepsilon$;

Задача 7

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 2. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 3. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 4. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-9;100];
- 2. [0; 100];
- 3. [-3; 90];
- 4. [-9; 90];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f(x) определена на отрезке [a, b]. Выберите все верные утверждения:

- 1. Если f монотонна на [a, b], то она интегрируема на [a, b];
- 2. Если f имеет конечное число точек разрыва типа скачок на [a,b], то она интегрируема на [a,b];
- 3. Если f интегрируема на [a, b], то она монотонна на [a, b];
- 4. Если f имеет конечное число точек разрыва на [a,b], то она интегрируема на [a,b];

Задача 10

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 2. $2 \int f'(x) \sqrt{x} dx = 2 \sqrt{x} f(x) \int \frac{f(x)}{\sqrt{x}} dx;$
- 3. $\int f'(x) \sin x dx = \cos x \cdot f(x) \int f(x) \cos x dx$;
- 4. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$