Christian Campbell

Female Malnutrition

In [3]: M malnutrition_df.head(10)

Out[3]:

	Unnamed: 0	URBAN_RURA	alt	chrps	country	deathcount	latnum	longnum	Ist	marketm0	 si
0	0	1	5.60252	0.437479	Bangladesh	0	22.981516	90.155785	-1.065822	NaN	 -0.745444
1	1	1	4.67774	0.447809	Bangladesh	0	22.444431	90.329185	-0.963057	NaN	 -0.84062
2	2	1	5.14527	0.453208	Bangladesh	0	22.487263	90.206123	-0.963257	NaN	 -0.841667
3	3	1	6.17460	0.433324	Bangladesh	0	23.016359	90.192879	-1.074995	NaN	 -0.74453 ⁻
4	4	1	5.39076	0.406196	Bangladesh	0	22.952404	90.454414	-1.065344	NaN	 -0.748497
5	5	1	6.28571	0.445932	Bangladesh	0	22.679934	90.265038	-1.000196	NaN	 -0.839834
6	6	1	4.33951	0.418451	Bangladesh	0	22.738653	90.504379	-0.983299	NaN	 -0.809128
7	7	1	7.18288	0.422089	Bangladesh	0	22.962793	90.321823	-1.068017	NaN	 -0.757382
8	8	1	7.65300	0.441328	Bangladesh	0	22.834478	90.232010	-1.043728	NaN	 -0.804048
9	9	1	5.73404	0.397856	Bangladesh	0	22.714678	90.675880	-0.974491	NaN	 -0.78005

10 rows × 117 columns

Removing market columns

	URBAN_RURA	alt	chrps	count	try deatho	ount	latnum \	
0	_ 1	5.60252		Banglade	•		981516	
1	1	4.67774		Banglade			444431	
2	1	5.14527		Banglade			487263	
3	1	6.17460		Banglade			016359	
4	1	5.39076		Banglade			952404	
				Ū				
14333	0	212.91400		Niger			368560	
14334	1	392.34100	1.081900	Niger	ria	311 8.	570109	
14335	1	394.41600	1.080867	Niger	ria	311 8.	765458	
14336	1	389.46400	1.084190	Niger	ria	311 8.	660406	
14337	0	435.48100	1.094852	Niger	ria	311 8.	687992	
_	longnum	lst	numevents	pasture	sif	slope		'
0	90.155785		14		-0.745444	0.021781		
1	90.329185		14		-0.840625	0.007349		
2	90.206123		14		-0.841667	0.005347		
3	90.192879		14		-0.744531	0.027679		
4	90.454414	-1.065344	14	0.041699	-0.748497	0.025029	18.7647	
14222			245	0.004750	0 412014	0 500663		
14333	3.937503		345		-0.413014	0.508662		
14334	3.547449 3.603125		296 206		-0.269682	0.396409		
14335 14336	3.522780		296 296		-0.248022 -0.257015	0.527184 0.390382		
14337	3.412814		296		-0.223676	0.185043		
14337	3.412014	-0.855808	250	0.114007	-0.225070	0.100040	32.3003	
	tt00_500k	year stu	nted was	sted hea	althy poo	rest \		
0	365.67800	•	4118 0.05		-	1429		
1	397.88600		4444 0.00			2500		
2	344.36600	2004 0.60	0000 0.05	0.99	50000 0.00	0000		
3	369.38500	2004 0.50	0000 0.06	2500 0.93	37500 0.06	2500		
4	273.92400	2004 0.55	5556 0.000	0000 1.00	00000 0.11	.1111		
• • •		• • •		• • •	• • •			
14333	6.60494	2013 0.25	0000 0.25	0000 0.75	50000 0.00	0000		
14334	271.40400	2013 0.43	1373 0.17	6471 0.78	34314 0.96	9697		
14335	227.03800	2013 0.21	7391 0.00	0000 0.95	56522 0.00	0000		
14336	219.00000	2013 0.19	5122 0.07	3171 0.92	26829 0.37	9310		
14337	175.32100	2013 0.43	3333 0.06	6667 0.93	33333 0.00	0000		
	underweight	_						
0		72727						
1		90000						
2	0.35	54839						

```
0.323529
3
4
              0.277778
. . .
14333
              0.212121
              0.347222
14334
14335
              0.097561
              0.026316
14336
14337
              0.048780
[14338 rows x 20 columns]
```

Finding and mapping unique values in country column

```
▶ # Defines the mapping from country names to numbers
In [6]:
            country_mapping = {
                'Bangladesh': 1,
                'Ethiopia': 2,
                'Ghana': 3,
                'Guatemala': 4,
                'Honduras': 5,
                'Mali': 6,
                'Nepal': 7,
                '8':8,
                'Kenya': 9,
                'Senegal': 10,
                'Uganda': 11,
                'Nigeria': 12
            # Converts the 'country' column to numeric values based on the mapping
            malnutrition_df2 = malnutrition_df1.copy()
            malnutrition_df2['country'] = malnutrition_df2['country'].map(country_mapping)
            malnutrition_df2.head(10)
```

Out[6]:

	URBAN_RURA	alt	chrps	country	deathcount	latnum	longnum	Ist	numevents	pasture	sif	s
0	1	5.60252	0.437479	1	0	22.981516	90.155785	-1.065822	14	0.048795	-0.745444	0.021
1	1	4.67774	0.447809	1	0	22.444431	90.329185	-0.963057	14	0.042821	-0.840625	0.007
2	1	5.14527	0.453208	1	0	22.487263	90.206123	-0.963257	14	0.030075	-0.841667	0.005
3	1	6.17460	0.433324	1	0	23.016359	90.192879	-1.074995	14	0.052236	-0.744531	0.027
4	1	5.39076	0.406196	1	0	22.952404	90.454414	-1.065344	14	0.041699	-0.748497	0.025
5	1	6.28571	0.445932	1	0	22.679934	90.265038	-1.000196	14	0.064859	-0.839834	0.012
6	1	4.33951	0.418451	1	0	22.738653	90.504379	-0.983299	14	0.039334	-0.809128	300.0
7	1	7.18288	0.422089	1	0	22.962793	90.321823	-1.068017	14	0.059080	-0.757382	0.027
8	1	7.65300	0.441328	1	0	22.834478	90.232010	-1.043728	14	0.061838	-0.804048	0.014
9	1	5.73404	0.397856	1	0	22.714678	90.675880	-0.974491	14	0.031193	-0.780057	0.011
4												•

```
In [7]: # Displays the unique values in the 'country' column for malnutrition_df2
unique_countries1 = malnutrition_df2['country'].unique()

print(unique_countries1)

[ 1 2 3 4 5 6 7 9 10 8 11 12]
```

Finding and filling empty cells

	Cmm+	Calla	Count	Cmn+1	Calla	Doncontago
	Empty	cerrs		Empty	cerrs	Percentage
URBAN_RURA			0			0.0
alt			0			0.0
chrps			209			1.5
country			0			0.0
deathcount			0			0.0
latnum			0			0.0
longnum			0			0.0
lst			579			4.0
numevents			0			0.0
pasture			0			0.0
sif			229			1.6
slope			0			0.0
tree			0			0.0
tt00_500k			0			0.0
year			0			0.0
stunted			0			0.0
wasted			0			0.0
healthy			0			0.0
poorest			0			0.0
underweight_bmi			200			1.4

```
In [9]: # List of columns to fill empty cells with their mean values
    columns_to_fill = ['chrps', 'lst', 'sif', 'underweight_bmi']

# Creates a copy of malnutrition_df2 to preserve the original DataFrame
    malnutrition_df3 = malnutrition_df2.copy()

# Fills empty cells in the specified columns with their respective means
    for column in columns_to_fill:
        column_mean = malnutrition_df3[column].mean() # Calculate the mean of the column
        malnutrition_df3[column].fillna(column_mean, inplace=True) # Fill missing values with the mean
```

	Missing Value	s Count	Missing Values Percentage
URBAN_RURA		0	0.0
alt		0	0.0
chrps		0	0.0
country		0	0.0
deathcount		0	0.0
latnum		0	0.0
longnum		0	0.0
lst		0	0.0
numevents		0	0.0
pasture		0	0.0
sif		0	0.0
slope		0	0.0
tree		0	0.0
tt00_500k		0	0.0
year		0	0.0
stunted		0	0.0
wasted		0	0.0
healthy		0	0.0
poorest		0	0.0
underweight_bmi		0	0.0

EDA

```
In [11]: ▶ # Defines the mapping of country values to names
             country_map = {
                 1: 'Bangladesh',
                 2: 'Ethiopia',
                 3: 'Ghana',
                 4: 'Guatemala',
                 5: 'Honduras',
                 6: 'Mali',
                 7: 'Nepal',
                 9: 'Kenya',
                 10: 'Senegal',
                 11: 'Uganda',
                 12: 'Nigeria'
             # Iterates over the country_map to create histograms
             for country_code, country_name in country_map.items():
                 # Filter the dataframe for the current country
                 country df = malnutrition_df3[malnutrition_df3['country'] == country_code]
                 # Creates histogram for 'underweight_bmi'
                 plt.figure()
                 plt.hist(country_df['underweight_bmi'], bins=10, edgecolor='black')
                 plt.title(f'Underweight BMI Distribution in {country_name}')
                 plt.xlabel('Underweight BMI')
                 plt.ylabel('Frequency')
                 plt.grid(True)
                 # Shows the plot
                 plt.show()
```


Machine learning model

Random Forest Regressor

```
In [12]: ▶ # Defines the target and features
             X = malnutrition df3.drop(columns=['underweight bmi'])
             y = malnutrition df3['underweight bmi']
             # Splits the data into training and testing sets
             X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
             # Initializes the Random Forest Regressor
             rf model = RandomForestRegressor(random state=42)
             # Define the parameter grid
             param grid = {
                 'n estimators': [50, 100, 200],
                 'max_features': ['auto', 'sqrt', 'log2'],
                 'max depth': [None, 10, 20, 30],
                 'min_samples_split': [2, 5, 10],
                 'min samples leaf': [1, 2, 4]
             # Performs grid search
             grid search = GridSearchCV(estimator=rf model, param grid=param grid, cv=3, n jobs=-1, verbose=2)
             grid search.fit(X train, y train)
             # Retrieves the best parameters
             best params = grid search.best params
             print("Best Parameters: ", best_params)
             # Trains the model with the best parameters
             best rf model = grid search.best estimator
             best rf model.fit(X train, y train)
             # Makes predictions
             y pred train = best rf model.predict(X train)
             y pred test = best rf model.predict(X test)
             # Evaluates the model
             train mae = mean absolute error(y train, y pred train)
             test_mae = mean_absolute_error(y_test, y_pred_test)
             train mse = mean squared error(y train, y pred train)
             test_mse = mean_squared_error(y_test, y_pred_test)
             train rmse = np.sqrt(train mse)
             test rmse = np.sqrt(test mse)
             train_r2 = r2_score(y_train, y_pred_train)
```

```
test_r2 = r2_score(y_test, y_pred_test)

# Prints the results
print(f'Training MAE: {train_mae:.4f}')
print(f'Testing MAE: {test_mae:.4f}')
print(f'Training MSE: {train_mse:.4f}')
print(f'Testing MSE: {test_mse:.4f}')
print(f'Training RMSE: {train_rmse:.4f}')
print(f'Testing RMSE: {test_rmse:.4f}')
print(f'Training RMSE: {train_r2:.4f}')
print(f'Testing R^2: {test_r2:.4f}')
```

```
Fitting 3 folds for each of 324 candidates, totalling 972 fits

Best Parameters: {'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_spli
t': 2, 'n_estimators': 200}

Training MAE: 0.0361

Testing MAE: 0.0732

Training MSE: 0.0025

Testing MSE: 0.0099

Training RMSE: 0.0505

Testing RMSE: 0.0994

Training R^2: 0.8742

Testing R^2: 0.5295
```

```
# Calculates feature importances from the best Random Forest model
In [13]:
             feature importances = best rf model.feature importances
             # Creates a DataFrame for feature importances
             importance_df = pd.DataFrame({
                 'Feature': X.columns,
                 'Importance': feature importances
             }).sort values(by='Importance', ascending=False)
             # Bar chart for feature importance
             plt.figure(figsize=(10, 6))
             plt.barh(importance_df['Feature'], importance_df['Importance'], color='skyblue')
             for index, value in enumerate(importance_df['Importance']):
                 plt.text(value, index, f'{value:.4f}')
             plt.xlabel('Importance')
             plt.ylabel('Features')
             plt.title('Feature Importance from Random Forest')
             plt.gca().invert_yaxis()
             plt.show()
```

Feature Importance from Random Forest


```
In [14]:
```

Display the ranked table of feature importances print(importance_df)

	Feature	Importance
6	longnum	0.144015
3	country	0.105647
5	latnum	0.086774
13	tt00_500k	0.079693
16	wasted	0.054978
1	alt	0.053303
18	poorest	0.052293
15	stunted	0.047015
12	tree	0.046564
11	slope	0.045644
9	pasture	0.043744
7	lst	0.039281
10	sif	0.039152
2	chrps	0.037005
8	numevents	0.033080
14	year	0.026553
17	healthy	0.025103
0	URBAN_RURA	0.021082
4	deathcount	0.019076

In []:

localhost:8888/notebooks/Documents/Bellevue University/Git Portfolio/Project 10 - Female Malnutrition/Female_Malnutrition_Project.ipynb