2-way set associative, 2 byte blocks, 2 sets

index	valid	tag	value	valid	tag	value
0	0			0		
1	0			0		

multiple places to put values with same index avoid conflict misses

index	valid	tag	value	valid	tag	value
0	0		set 0	0		
1	0		set 1	0		

index	valid	tag	value	valid	tag	value
0	0	14/21	— way 0 ———		— way 1 ——	
1	0	way	y U ———— 	0	wa	y 1 ————

index	valid	tag	value	valid	tag	value
0	0			0		
1	0			0		

$$m=8$$
 bit addresses $S=2=2^s$ sets $s=1$ (set) index bits

$$B=2=2^b$$
 byte block size $b=1$ (block) offset bits $t=m-(s+b)=6$ tag bits

2-way set associative, 2 byte blocks, 2 sets

index	valid	tag	value	valid	_
0	1	000000	mem[0x00] mem[0x01]	0	
1	0			0	

valid	tag	value
0		
0		

add	result			
000	000	00	(00)	miss
000	000	01	(01)	
011	.000	11	(63)	
011	.000	01	(61)	
011	.000	10	(62)	
000	000	00	(00)	
011	.001	00	(64)	
taσ	ind	AVC	ffset	

ag indexoffset

index			value	valid	tag	value
0	1	000000	mem[0x00] mem[0x01]	0		
1	0			0		

address	(hex)	result
000000	90 (00)	miss
000000	91 (01)	hit
011000	11 (63)	
011000	91 (61)	
011000	10 (62)	
000000	00 (00)	
011001	90 (64)	
tag inde	exoffset	-

2-way set associative, 2 byte blocks, 2 sets

index	valid	tag	value		valid	tag	value
0	1	00000	mem[0x00] mem[0x01]		0		
U			mem[0x01]	m[0x01] °	U		
1	1	011000	mem[0x62] mem[0x63]	Ī	0		
T		011000	mem[0x63]		0		

add	ress	(he	ex)	result
000	000	00	(00)	miss
000	000	01	(01)	hit
011	000	11	(63)	miss
011	000	01	(61)	
011	000	10	(62)	
000	000	00	(00)	
011	001	00	(64)	
tao	ind	AYC	ffset	_

ag indexoffset

2-way set associative, 2 byte blocks, 2 sets

index			value	valid	0	value
0	1	000000	mem[0x00] mem[0x01]	1	011000	mem[0x60]
U		000000	mem[0x01]			mem[0x61]
1	1	1 011000	mem[0x62]	0		
			mem[0x63]			

address	result		
000000	00	(00)	miss
000000	01	(01)	hit
011000	11	(63)	miss
011000	01	(61)	miss
011000	10	(62)	
000000	00	(00)	
011001	00	(64)	
tag ind	exo	ffset	_

tag indexoffset

2-way set associative, 2 byte blocks, 2 sets

index		0	value	valid		value
0	1	000000	mem[0x00] mem[0x01]	1	011000	mem[0x60] mem[0x61]
Θ		000000	mem[0x01]	0x01]		mem[0x61]
1	1	011000	mem[0x62] mem[0x63]	0		
_		011000	mem[0x63]			

address	result		
000000	00	(00)	miss
000000	01	(01)	hit
011000	11	(63)	miss
011000	01	(61)	miss
011000	10	(62)	hit
000000	00	(00)	
011001	00	(64)	
tag inc	evo	ffset	_

ag indexoffset

2-way set associative, 2 byte blocks, 2 sets

index			value	valid	tag	value
0	1	000000	mem[0x00] mem[0x01]	1	011000	mem[0x60] mem[0x61]
0	_ т	000000	mem[0x01]		011000	mem[0x61]
1	1	011000	mem[0x62] mem[0x63]	0		
1		011000	mem[0x63]			

address (he	ex)	result
0000000	(00)	miss
00000001	(01)	hit
01100011	(63)	miss
01100001	(61)	miss
01100010	(62)	hit
0000000	(00)	hit
01100100	(64)	

tag indexoffset

2-way set associative, 2 byte blocks, 2 sets

index	valid	tag	value	valid	tag	value
0	1	000000	mem[0x00] mem[0x01]	1	011000	mem[0x60] mem[0x61]
O		000000	mem[0x01]		011000	mem[0x61]
1	1	011000	mem[0x62] mem[0x63]	0		
1		011000	mem[0x63]			

address	(hex)	result	
000000	00 (00)	miss	
000000	01 (01)	hit	
011000	11 (63)	miss	
011000	91 (61)	miss	
011000	10 (62)	_{hit} needs to replace block in set ()!
000000	00 (00)	hit	
011001	00 (64)	miss	
tag inde	exoffset		

2

2-way set associative, 2 byte blocks, 2 sets

index			value	valid	0	value
0 1	1	000000	mem[0x00] mem[0x01]	1	011000	mem[0x60] mem[0x61]
		000000	mem[0x01]	Т.	011000	mem[0x61]
1	1 011000		mem[0x62] mem[0x63]	0		
т		011000	mem[0x63]			

	1.
address (hex)	result
00000000 (00)	miss
00000001 (01)	hit
01100011 (63)	miss
01100001 (61)	miss
01100010 (62)	hit
00000000 (00)	hit
01100100 (64)	miss

tag indexoffset

cache operation (associative)

cache operation (associative)

cache operation (associative)

associative lookup possibilities

none of the blocks for the index are valid

none of the valid blocks for the index match the tag something else is stored there

one of the blocks for the index is valid and matches the tag

handling writes

what about writing to the cache?

two decision points:

if the value is not in cache, do we add it?

if yes: need to load rest of block if no: missing out on locality?

if value is in cache, when do we update next level?

if immediately: extra writing

if later: need to remember to do so

allocate on write?

processor writes less than whole cache block

block not yet in cache

two options:

write-allocate

fetch rest of cache block, replace written part (then follow write-through or write-back policy)

write-no-allocate

don't use cache at all (send write to memory *instead*) guess: not read soon?

option 1: write-through

option 1: write-through

option 2: write-back

option 2: write-back

writeback policy

changed value!

2-way set associative, 4 byte blocks, 2 sets

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	mem[0x00] mem[0x01]	0	1	011000	mem[0x60]* mem[0x61]*		1
1	1	011000	mem[0x62] mem[0x63]	0	0				0

1 = dirty (different than memory) needs to be written if evicted

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1		mem[0x00] mem[0x01]	0	1		mem[0x60] mem[0x61]		1
1	1	011000	mem[0x62] mem[0x63]	0	0				0

writing 0xFF into address 0x04? index 0, tag 000001

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1		mem[0x00] mem[0x01]	0	1		mem[0x60] mem[0x61]		1
1	1		mem[0x62] mem[0x63]	0	0				0

writing 0xFF into address 0x04?

index 0, tag 000001

step 1: find least recently used block

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1		mem[0x00] mem[0x01]	0	1	011000	mem[0x60] mem[0x61]	* 1	1
1	1		mem[0x62] mem[0x63]	0	0				0

writing 0xFF into address 0x04?

index 0, tag 000001

step 1: find least recently used block

step 2: possibly writeback old block

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	mem[0x00] mem[0x01]	0	1	000001	0xFF mem[0x05]	1	0
1	1	011000	mem[0x62] mem[0x63]	0	0				0

writing 0xFF into address 0x04?

index 0, tag 000001

step 1: find least recently used block

step 2: possibly writeback old block

step 3a: read in new block – to get mem[0x05]

step 3b: update LRU information

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	mem[0x00] mem[0x01]	0	1	011000	mem[0x60] mem[0x61]	* 1	1
1	1	011000	mem[0x62] mem[0x63]	0	0				0

writing $\widehat{0x}FF$ into address 0x04?

step 1: is it in cache yet?

step 2: no, just send it to memory

exercise (1)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	001100	mem[0x30] mem[0x31]	0	1	010000	mem[0x40] mem[0x41]	* 1	0
1	1	011000	mem[0x62] mem[0x63]	0	1	001100	mem[0x32] mem[0x33]	* 1	1

for each of the following accesses, performed alone, would it require (a) reading a value from memory (or next level of cache) and (b) writing a value to the memory (or next level of cache)?

writing 1 byte to 0x33 reading 1 byte from 0x52 reading 1 byte from 0x50

exercise (2)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	mem[0x30] mem[0x31]	1	010000	mem[0x40] mem[0x41]	0
1	1	011000	mem[0x62] mem[0x63]	1	001100	mem[0x32] mem[0x33]	1

for each of the following accesses, performed alone, would it require (a) reading a value from memory and (b) writing a value to the memory?

writing 1 byte to 0x33 reading 1 byte from 0x52 reading 1 byte from 0x50

fast writes

write appears to complete immediately when placed in buffer memory can be much slower

cache miss types

common to categorize misses: roughly "cause" of miss assuming cache block size fixed

compulsory (or cold) — first time accessing something adding more sets or blocks/set wouldn't change

 ${\it conflict} \ -- \ {\it sets aren't big/flexible enough} \\ {\it a fully-associtive (1-set) cache of the same size would have done better}$

capacity — cache was not big enough

coherence — from sync'ing cache with other caches only issue with multiple cores

making any cache look bad

- 1. access enough blocks, to fill the cache
- 2. access an additional block, replacing something
- 3. access last block replaced
- 4. access last block replaced
- 5. access last block replaced

...

but — typical real programs have locality

cache optimizations

```
(assuming typical locality + keeping cache size constant if possible...)
                        miss rate hit time miss penalty
increase cache size
                        better
                                   worse
                                             worse?
increase associativity
                        better
                                   worse
increase block size
                        depends
                                   worse
                                             worse
add secondary cache
                                             better
write-allocate
                        hetter
writeback
LRU replacement
                                             worse?
                        better
prefetching
                        better
 prefetching = guess what program will use, access in advance
```

average time = hit time + miss rate \times miss penalty

cache optimizations by miss type

(assuming other listed parameters remain constant)				
	capacity	conflict	compulsory	
increase cache size	fewer misses	fewer misses	_	
increase associativity	_	fewer misses	_	
increase block size	more misses?	more misses?	fewer misses	
LRU replacement		fewer misses		
prefetching	_	_	fewer misses	

another view

two-level page table lookup

cache accesses and multi-level PTs

four-level page tables — five cache accesses per program memory access

L1 cache hits — typically a couple cycles each?

so add 8 cycles to each program memory access?

not acceptable

program memory active sets

0x7F...

small areas of memory active at a time one or two pages in each area?

0x0000 0000 0040 0000

page table entries and locality

page table entries have excellent temporal locality typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

page table entries and locality

page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

needed page table entries are very small

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache	TLB	
physical addresses	virtual page numbers	
bytes from memory	page table entries	
tens of bytes per block	one page table entry per block	
usually thousands of blocks	usually tens of entries	

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache	TLB	
physical addresses	virtual page numbers	
bytes from memory	page table entries	
tens of bytes per block	one page able entry per block	
usually thousands of blocks usually te is of entries only caches the page table lookup itself		
only caches th	only caches the page table lookup itself	
(generally) jus	(generally) just entries from the last-level page tables	

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache	TLB	
physical addresses	virtual page numbers	
bytes from memory	page table entries	
tens of bytes per block	one page table entry per block	
usually thousands of blocks	usually tens of entries	

not much spatial locality between page table entries (they're used for kilobytes of data already) (and if spatial locality, maybe use larger page size?)

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache	TLB
physical addresses	virtual page numbers
bytes from memory	page table entries
tens of bytes per block	one page table entry per block
usually thousands of blocks	usually tens of entries
-	

few active page table entries at a time enables highly associative cache designs

TLB and multi-level page tables

TLB caches valid last-level page table entries

doesn't matter which last-level page table

means TLB output can be used directly to form address

TLB and two-level lookup

TLB and two-level lookup

address splitting for TLBs (1)

```
my desktop:
```

4KB (2^{12} byte) pages; 48-bit virtual address

64-entry, 4-way L1 data TLB

TLB index bits?

TLB tag bits?

address splitting for TLBs (2)

my desktop:

4KB (2^{12} byte) pages; 48-bit virtual address

1536-entry $(3 \cdot 2^9)$, 12-way L2 TLB

TLB index bits?

TLB tag bits?

exercise: TLB access pattern (setup)

4-entry, 2-way TLB, LRU replacement policy, initially empty

4096 byte pages

how many index bits?

TLB index of virtual address 0x12345?

exercise: TLB access pattern

4-entry, 2-way TLB, LRU replacement policy, initially empty

4096 byte pages

type	virtual	physical
read	0x440030	0x554030
write	0x440034	0x554034
read	0x7FFFE008	0x556008
read	0x7FFFE000	0x556000
read	0x7FFFDFF8	0x5F8FF8
read	0x664080	0x5F9080
read	0x440038	0x554038
write	0x7FFFDFF0	0x5F8FF0

which are TLB hits? which are TLB misses? final contents of TLB?

changing page tables

what happens to TLB when page table base pointer is changed?
e.g. context switch

most entries in TLB refer to things from wrong process oops — read from the wrong process's stack?

changing page tables

what happens to TLB when page table base pointer is changed?
e.g. context switch

most entries in TLB refer to things from wrong process oops — read from the wrong process's stack?

option 1: invalidate all TLB entries side effect on "change page table base register" instruction

changing page tables

what happens to TLB when page table base pointer is changed? e.g. context switch

most entries in TLB refer to things from wrong process oops — read from the wrong process's stack?

option 1: invalidate all TLB entries side effect on "change page table base register" instruction

option 2: TLB entries contain process ID set by OS (special register) checked by TLB in addition to TLB tag, valid bit

editing page tables

what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

editing page tables

what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed TLB doesn't contain invalid entries MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it

backup slides

inclusive versus exclusive

L2 inclusive of L1

everything in L1 cache duplicated in L2 adding to L1 also adds to L2

L2 exclusive of L1

L2 contains different data than L1 adding to L1 must remove from L2 probably evicting from L1 adds to L2 L2 cache

inclusive versus exclusive

1.2 exclusive of 1.1

L2 contains different data than L1 adding to L1 must remove from L2 probably evicting from L1 adds to L2

inclusive policy: no extra work on eviction but duplicated data

easier to explain when $\mathsf{L}k$ shared by multiple $\mathsf{L}(k-1)$ caches?

inclusive versus exclusive

L2 inclusive of L1

everything in L1 cache duplicated in L2 adding to L1 also adds to L2

L2 cache

exclusive policy:
avoid duplicated data
sometimes called *victim cache*(contains cache eviction victims)

makes less sense with multicore

L2 exclusive of L1

L2 contains different data than L1 adding to L1 must remove from L2 probably evicting from L1 adds to L2 L2 cache

Tag-Index-Offset formulas (direct-mapped)

(formulas derivable from prior slides)

$$S=2^s$$
 number of sets

$$s$$
 (set) index bits

$$B = 2^b$$
 block size

$$m$$
 memory addreses bits

$$t = m - (s + b)$$
 tag bits

$$C = B \times S$$
 cache size (if direct-mapped)

Tag-Index-Offset formulas (direct-mapped)

(formulas derivable from prior slides)

$$S=2^s$$
 number of sets

$$s$$
 (set) index bits

$$B = 2^b$$
 block size

$$m$$
 memory addreses bits

$$t = m - (s + b)$$
 tag bits

$$C = B \times S$$
 cache size (if direct-mapped)