Unifying Predictive Multiplicity for Classification and Link Prediction

Lukas Harsch und Jonathan Schnitzler

$$x = \{x_1, x_2\} \rightarrow y = \{+1, -1\}$$

$$x = \{x_1, x_2\} \rightarrow y = \{+1, -1\}$$

SVM as classifier

$$x = \{x_1, x_2\} \rightarrow y = \{+1, -1\}$$

- SVM as classifier
- E.g. Rotation of decision boundary (DB)
 - → SVMs with different parameters

$$x = \{x_1, x_2\} \rightarrow y = \{+1, -1\}$$

- SVM as classifier
- E.g. Rotation of decision boundary (DB)
 - → SVMs with different parameters

$$x = \{x_1, x_2\} \rightarrow y = \{+1, -1\}$$

- SVM as classifier
- E.g. Rotation of decision boundary (DB)
 - → SVMs with different parameters
- All SVMs have same accuracy
 - → Multiplicity

prediction of classifiers

ground truth

- true (1)
- false (-1)
- --- DB of h_i

- For individual data points SVMs produce contradicting predictions
 - → Predictive Multiplicity

$$\tau = (\mathbf{x}, y)$$

$$h: \mathbb{R}^d \to \{-1, 1\}$$

$$\tau = \langle h, r, t \rangle$$

$$h: E \times R \times E \to \mathbb{R}$$

Predictive Multiplicity

Classification [Marx et. al 2020]

- Baseline Model $h_0 \in \arg\min \hat{R}(h)$
- Error Rate:

$$\hat{R}(h) := rac{1}{n} \sum_{i=1}^n \mathbb{1}[h(\mathbf{x}_i)
eq y_i]$$

 $h{\in}\mathcal{H}$

- Hypothesis class ${\cal H}$
- Classifier $h \in \mathcal{H}$
- ε -level set:

$$S_arepsilon(h_0) := \{h \in \mathcal{H}: \hat{R}(h) < \hat{R}(h_0) + arepsilon \}$$

Knowledge Graph Embeddings [Zhu et al. 2024]

- Baseline Model $\,M_{ heta}^*\inrg\min H_K(M_ heta)\,$
- Hit@K:

$$H_K(M_ heta) = rac{1}{|\mathcal{T}|} \sum_{(q,e) \in \mathcal{T}} \mathbb{1}[R_{\succeq_{M_{ heta,q}}}(e) \leq K]$$

 $M_{ heta}{\in}\mathcal{M}$

- Model class M
- ullet Model $M_{ heta} \in \mathcal{M}$
- ε -level set:

$$S_arepsilon(M_ heta^*) := \{M_ heta \in \mathcal{M} | H_K(M_ heta^*) - H_K(M_ heta) \leq arepsilon \}$$

Predictive Multiplicity

Classification [Marx et. al 2020]

• ε -level set:

$$S_arepsilon(h_0) := \{h \in \mathcal{H}: \hat{R}(h) < \hat{R}(h_0) + arepsilon \}$$

Ambiguity

$$\alpha_{\epsilon}(h_0) := \frac{1}{n} \sum_{i=1}^{n} \max_{h \in S_{\epsilon}(h_0)} \mathbb{1}[h(\boldsymbol{x}_i) \neq h_0(\boldsymbol{x}_i)].$$

Discrepancy

$$\delta_{\epsilon}(h_0) := \max_{h \in S_{\epsilon}(h_0)} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[h(\boldsymbol{x}_i) \neq h_0(\boldsymbol{x}_i)].$$

Knowledge Graph Embeddings [Zhu et al. 2024]

• ε -level set:

$$S_{arepsilon}(M_{ heta}^*) := \{M_{ heta} \in \mathcal{M} | H_K(M_{ heta}^*) - H_K(M_{ heta}) \leq arepsilon \}$$

Ambiguity

$$\alpha_{\epsilon}(M_{\theta}^*) := \frac{1}{|\mathcal{T}|} \sum_{\boldsymbol{\tau} \in \mathcal{T}} \max_{M_{\theta} \in S_{\epsilon}(M_{\theta}^*)} \Delta(M_{\theta}, \boldsymbol{\tau})$$

Discrepancy

$$\delta_{\epsilon}(M_{\theta}^*) := \max_{M_{\theta} \in S_{\epsilon}(M_{\theta}^*)} \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \Delta(M_{\theta}, \tau)$$

- Unified Accuracy of a model $h \in \mathcal{H}$ over $\tau \in \mathcal{T}$ samples

$$\mathcal{L}(h) = \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \mathbb{1}[S(h, \tau)]$$

- Unified Accuracy of a model $h \in \mathcal{H}$ over $\tau \in \mathcal{T}$ samples

$$\mathbb{1}[R_{\preceq_{h,q}}(e) \leq K] \quad \text{KGE - Top K Prediction}$$

$$\mathcal{L}(h) = \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \mathbb{1}[S(h,\tau)]$$

- Unified Accuracy of a model $h \in \mathcal{H}$ over $\tau \in \mathcal{T}$ samples

- Unified Accuracy of a model $h \in \mathcal{H}$ over $\tau \in \mathcal{T}$ samples

$$\mathbb{1}[R_{\preceq_{h,q}}(e) \leq K] \quad \text{KGE - Top K Prediction}$$

$$\mathcal{L}(h) = \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \mathbb{1}[S(h,\tau)]$$

$$\mathbb{1}[h(\mathbf{x}) = y] \quad \text{Classification}$$

- With the Ranking of entity e given query q

$$R_{\leq_{h,q}}(e) = |\{d \in E | e \leq_{h,q} d\}|$$

ullet Baseline Classifier h_0

$$D(h, h_0) := \mathcal{L}(h_0) - \mathcal{L}(h)$$

• Epsilon set of h_0

$$S_{\varepsilon}(h_0) := \{ h \in \mathcal{H} : D(h_0, h) \leq \varepsilon \}$$

Measuring Predictive Multiplicity

Ambiguity

$$\Delta(h,\tau) := \mathbb{1}[S(h,\tau) \neq S(h_0,\tau)]$$

$$\alpha_{\varepsilon}(h_0) := \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \max_{h \in S_{\varepsilon}(h_0)} \Delta(h, \tau)$$

Discrepancy

$$\delta_{\varepsilon}(h_0) := \max_{h \in S_{\varepsilon}(h_0)} \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \Delta(h, \tau)$$

Example Classification

prediction of classifiers

 $\alpha_0(h_0) = \frac{6}{8}$

ground truth

• true (1)

• false
$$(-1)$$

--- DB of h_i

$$\delta_0(h_0) = \max\left[\frac{2}{8}, \frac{4}{8}, \frac{6}{8}\right]$$
$$= \frac{6}{8}$$

Example Link Prediction for KGE

Example Link Prediction for KGE

Example Link Prediction for KGE: What orbits the sun?

Example Link Prediction for KGE: What orbits the sun?

Rank	$h_0(q,e)$
1	Earth (1.0)
2	Jup. (1.0)
3	Mars (1.0)
4	Moon (0.4)
5	Rover (0.3)
6	Hubble (0.2)
7	Sun (0.0)

Example Link Prediction for KGE: What orbits the sun?

	_		
Rank	$h_0(q,e)$	$h_1(q,e)$	$h_2(q,e)$
1	Earth (1.0)	Mars (109.5)	Mars (3.4)
2	Jup. (1.0)	Jup. (77.7)	Jup. (3.1)
3	Mars (1.0)	Earth (74.8)	Earth (2.8)
4	Moon (0.4)	Hubble (50.4)	Moon (0.0)
5	Rover (0.3)	Moon (29.1)	Hubble (-1.9)
6	Hubble (0.2)	Rover (25.3)	Rover (-1.9)
7	Sun (0.0)	Sun (20.6)	Sun (-2.9)

Voting methods in Link Prediction

- Ensemble learning
- Majority Voting:

Rank	$h_0(q,e)$	$h_1(q,e)$	$h_2(q,e)$		Majority
1	Earth (1.0)	Mars (109.5)	Mars (3.4)		Mars (3)
2	Jup. (1.0)	Jup. (77.7)	Jup. (3.1)		Earth (1)
3	Mars (1.0)	Earth (74.8)	Earth (2.8)		Jup(1)
4	Moon (0.4)	Hubble (50.4)	Moon (0.0)	-	Moon (0)
5	Rover (0.3)	Moon (29.1)	Hubble (-1.9)		Hubble (0)
6	Hubble (0.2)	Rover (25.3)	Rover (-1.9)		Sun (0)
7	Sun (0.0)	Sun (20.6)	Sun (-2.9)		Rover (0)

Predictive Multiplicity ...

... occurs in many ML tasks such as link prediction and classification.

- ... occurs in many ML tasks such as link prediction and classification.
- ... potentially undermines reliability and fairness in critical applications (e.g. recidivism prediction, granting loans).

- ... occurs in many ML tasks such as link prediction and classification.
- ... potentially undermines reliability and fairness in critical applications (e.g. recidivism prediction, granting loans).
- ... quantifiable using ambiguity and discrepancy.

- ... occurs in many ML tasks such as link prediction and classification.
- ... potentially undermines reliability and fairness in critical applications (e.g. recidivism prediction, granting loans).
- ... quantifiable using ambiguity and discrepancy.
- ... mitigatable using voting methods (ensemble learning).

- ... occurs in many ML tasks such as link prediction and classification.
- ... potentially undermines reliability and fairness in critical applications (e.g. recidivism prediction, granting loans).
- ... quantifiable using ambiguity and discrepancy.
- ... mitigatable using voting methods (ensemble learning).
- ... should be reported as inherent aspect of model performance alongside test error to ensure transparency for stakeholders.

- For individual data points SVMs produce contradicting predictions
 - → Predictive Multiplicity