Implementing ML Models

Duke MLSS

Alex Lew

Roadmap

- Framing the problem
- Math review: linear algebra basics
- Demo: Manipulating matrices in Python
- Loss functions and optimization
- The computational graph
- Demo: Gradient descent with TensorFlow

$$\mathbf{y} = f(\mathbf{x})$$

A <u>model</u> is a **program** we write to make **predictions** about **data**.

A <u>model</u> is an **approximation** of a true function relating **input** and **output**.

A model is a **story** we tell about the **data**-generating process.

$$price = f(square footage)$$

A <u>model</u> is a **program** we write to make **predictions** about **data**.

$$y = mx + b$$

- 1. Begin with some base price \$b.
- 2. Add \$m for each square foot.

price = f(square footage)

A <u>model</u> is an **approximation** of a true function relating **input** and **output**.

$$y = mx + b$$

We approximate the true function from square footage to price with a simple line: f(x) = mx + b.

$$price = f(square footage)$$

A model is a **story** we tell about the **data**-generating process.

$$y = mx + b$$

A house is built with some square footage x. To price it, the developer begins with a base price \$b, and adds \$m per square foot.

Deep learning

A <u>model</u> is an **approximation** of a true function relating **input** and **output**.

$$f(\sqrt[]{b}) = dog f(\sqrt[]{b}) = seven$$

Parameters

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta})$$

- 1. Begin with some base price θ_1 .
- 2. Add θ_2 for each square foot.

like a template or mad libs model: we leave some parameters unspecified

$$f(x; \theta) = \theta_1 x + \theta_2$$

Multivariate input

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta})$$

To predict watch time:

- 1. Begin with some base time θ 0
- 2. Add θ_1 for each like the video has (x1)
- 3. Add θ_2 for each dislike the video has (x2)
- 4. Add θ_3 for each minute in the video (x3)

$$\chi_2$$

$$f(x;\theta) = \theta_3 x_3 + \theta_2 x_2 + \theta_1 x_1 + \theta_0$$

Multivariate input: dot product

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta})$$

$$f(x;\theta) = \theta_3 x_3 + \theta_2 x_2 + \theta_1 x_1 + \theta_0$$

$$f(x; w, b) = w \cdot x + b$$

Dimensional Analysis

$\begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ • $\begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$ apples oranges bananas

$$5\times3 + 7\times4 + 3\times2$$

$$=$$

$$\$49$$

Total \$

Similarity / Closeness

water
$$\begin{pmatrix} .8 \\ .6 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} .7 \\ .5 \\ .5 \end{pmatrix} = 0.86$$
fruit $\begin{pmatrix} .6 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} .5 \\ .5 \end{pmatrix}$
Simple $\begin{pmatrix} .6 \\ .5 \end{pmatrix} = Gatorade$
syrup

$$\arccos(0.86) = 30^{\circ}$$

Dimensional Analysis: Predicting Total Life Expectancy

Height (ft)
Weight (lbs)

Birthdate (years since 1950)

$$\begin{pmatrix}
6 \\
180 \\
30
\end{pmatrix} \cdot \begin{pmatrix}
1 \\
-0.1 \\
0.3
\end{pmatrix}

Years per ft.

Years per lb.
Years per year

$$= 77 \text{ years}$$

$$= 77 \text{ years}$$

$$f(x; w, b) = w \cdot x + b$$$$

Similarity / Closeness: Classifying Images

$$+ -500 = 12,500$$
 (more than 0, so: a dog!)

$$f(x; w, b) = w \cdot x + b$$

learn a template and threshold

Classification: Another View

Linear Regression:

y = mx + b gives a line that is
uniformly near the data.

Linear Classification:

y = mx + b gives a line that
separates the data into classes.

Classification: Another View

x2 = mx1 + b

Linear Regression:

y = mx + b gives a line that is
uniformly near the data.

Linear Classification:

x2 = mx1 + b gives a *line* that separates the data into classes.

Classification: Another View

0 = m1x1 + m2x2 + b

Linear Regression:

y = mx + b gives a line that is
uniformly near the data.

Linear Classification:

0 = m1x1 + m2x2 + b gives a *line* that separates the data into classes.

Classification: Another View

Linear Regression:

y = mx + b gives a line that is
uniformly near the data.

Linear Classification:

m1x1 + m2x2 + b gives a *score* that measures how far into the "orange" area a point is.

Classification: Another View

Linear Regression:

y = mx + b gives a line that is
uniformly near the data.

Linear Classification:

 $w \cdot x + b$ gives a *score* that measures how far into the "orange" area a point is.

Projection

If b is a unit vector, a • b gives the projection of a onto b.

Multivariate output

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta})$$

To predict **life expectancy (y1)**: Begin with some base life expectancy $\theta_{1,0}$

Add $\theta_{1,1}$ for each year born after 1950 (x₁)

Add $\theta_{1,2}$ for each pound the person weighs (x_2)

Add $\theta_{1,3}$ for each inch tall the person is (x_3)

To predict **current income level (y2)**: Begin with some base income $\theta_{2,0}$

Add $\theta_{2,1}$ for each year born after 1950 (x_1)

Add $\theta_{2,2}$ for each pound the person weighs (x_2)

Add $\theta_{2,3}$ for each inch tall the person is (x_3)

$$f(x;\theta) = \begin{cases} \theta_{13}x_3 + \theta_{12}x_2 + \theta_{11}x_1 + \theta_{10} \\ \theta_{23}x_3 + \theta_{22}x_2 + \theta_{21}x_1 + \theta_{20} \end{cases}$$

Multivariate output: matrices

$$y = f(x; \theta)$$

$$f(x;\theta) = \begin{cases} \theta_{13}x_3 + \theta_{12}x_2 + \theta_{11}x_1 + \theta_{10} \\ \theta_{23}x_3 + \theta_{22}x_2 + \theta_{21}x_1 + \theta_{20} \end{cases}$$

$$W = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} \theta_{10} \\ \theta_{20} \end{bmatrix}$$

$$f(x; W, b) = Wx + b$$

Matrix multiplication

$$f(x; W, b) = Wx + b$$

dot the *rows* of W with the *cols* of X

Matrix mult.: dimensional analysis

$$f(x; W, b) = Wx + b$$

dot the *rows* of W with the *cols* of X

In multivariate linear models...

The other dimension represents the features, and must match across matrices.

In multivariate linear models...

The other dimension represents the features, and must match across matrices.

Let's code! Python and Numpy

Loss functions

Measure of how badly a model fits the data.

$$l(\theta; x, y)$$

We choose model **parameters** to *minimize* loss.

Loss functions

Example: Squared Error

$$l(\theta; x, y) = (f(x; \theta) - y)^2$$

We choose model parameters to minimize total loss.

$$\sum_{i=1}^{N} (f(x; \boldsymbol{\theta}) - y)^2$$

$$f(x;\theta) = \theta_2 x_2 + \theta_1 x_1 + \theta_0$$

Loss functions

In classification:

penalize for *wrongness* (especially when confident) reward for *rightness* (especially when confident)

```
3 = m1x1 + m2x2 + b
2 = m1x1 + m2x2 + b
1 = m1x1 + m2x2 + b
0 = m1x1 + m2x2 + b
-1 = m1x1 + m2x2 + b
-2 = m1x1 + m2x2 + b
-3 = m1x1 + m2x2 + b
Zero loss: right, but uncertain
```

Step 1 (model): Calculate scores for each class

$$f(x; W, b) = Wx + b$$

Step 2 (model): Exponentiate so that all scores are positive

Step 3 (model): Divide by sum of scores to get probabilities

Designing the loss: we want to reward the model for assigning *high probability* to the training dataset.

We could actually calculate the probability the model assigns the dataset by multiplying the probabilities it assigns to each example.

$$p_{y_i}^{(i)} = \frac{e^{(Wx_i+b)y_i}}{\sum_{c=1}^{C} e^{(Wx_i+b)c}}$$

$$prob of all data = \prod_{i=1}^{N} p_{y_i}^{(i)}$$

But products of *thousands* of small numbers are hard for computers. So we take a **log**, which converts the product into a sum.

$$p_{y_i}^{(i)} = \frac{e^{(Wx_i+b)y_i}}{\sum_{c=1}^{C} e^{(Wx_i+b)c}}$$

$$\text{Log prob of all data} = \sum_{i=1}^{N} \log p_{y_i}^{(i)}$$

The model does *badly* when log probability is *low*. As a loss, we can use the *negative* log probability.

$$p_{y_i}^{(i)} = \frac{e^{(Wx_i + b)y_i}}{\sum_{c=1}^{C} e^{(Wx_i + b)c}}$$

$$Loss = -\sum_{i=1}^{N} \log p_{y_i}^{(i)}$$

Step 4 (loss): Take the negative log of the probability that the model assigns to the *real* class.

Step 5 (loss): Average losses of all data points to get full model loss

$$l(W,b;X,Y) = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{(Wx_i+b)y_i}}{\sum_{c=1}^{C} e^{(Wx_i+b)c}}$$

probability assigned to the real class of data point (x_i, y_i)

Learning with Gradient Descent

$$\theta_j^{(i)} = \theta_j^{(i-1)} - \alpha \frac{\partial \mathcal{L}}{\partial \theta_j}$$

Computational Graphs

Let's code! Using TensorFlow

Limitations of logistic classification

Classification boundary is necessarily *linear*

Necessarily measuring closeness to a single template image

Add hidden layers

Add hidden layers

Add hidden layers

What *f* to use? Problem with sigmoid: "vanishing gradients"

The ReLU Activation Function

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Homework: MLP


```
tf.matmul(..., ...)
tf.nn.relu(...)
tf.nn.softmax_cross_entropy_with_logits(...)
```