Problem 5.3 Basic Definitions

Answer:

According to the problem description,

- $V = \{a, b, c, d\}$
- $D_a = bool, D_b = D_c = \{0, 1, 2, 3\}, D_d = \{0, 1, 2, 3, 4, 5, 6\}$
- $C: if \ a \ then \ b \le 2; if \ c < 2 \ then \ a; b + c < 4; b > d; d = 2c$

Assignment of variables:

							ı		T	T	
а	b	С	d	$if a then \\ b \le 2$	if c < 2 then a	b + c < 4	b > d	d = 2c	Partial (P)	Consistent or	Solution
									or Total (T)	Inconsistent	
F	-	-	-	F	Т	Т	Т	Т	Р	IC	No
***									Р	IC	No
F	0	0	0	F	F	Т	F	Т	Т	IC	No
***									Т	IC	No
Т	-	-	-	Т	Т	Т	Т	Т	Р	С	No
Т	0	-	-	Т	Т	Т	Т	Т	Р	С	No
Т	1	-	-	Т	Т	Т	Т	Т	Р	С	No
Т	2	-	-	Т	Т	Т	Т	Т	Р	С	No
Т	3	-	-	F	Т	Т	Т	Т	Р	IC	No
***									Р	C/IC	No
Т	0	0	0	Т	Т	T	F	Т	Т	IC	No
Т	0	0	1	Т	Т	T	F	F	Т	IC	No
***								Т	IC	No	
Т	1	0	0	T	T	T	Т	T	Т	С	Yes
Т	1	0	1	Т	Т	Т	F	F	Т	IC	No
***								Т	IC	No	
Т	2	0	0	Т	T	T	Т	Т	Т	С	Yes
Т	2	0	1	Т	Т	T	Т	F	Т	IC	No
***								Т	IC	No	
Т	2	1	0	Т	T	T	Т	F	Т	IC	No
Т	2	1	1	T	T	T	Т	F	Т	IC	No
***									Т	IC	No

According to the above table,

- 1. All solutions: $a = True, b \in \{1, 2\}, c = 0, d = 0$
- 2. An inconsistent total assignment: a = False, b = 0, c = 0, d = 0
- 3. All consistent partial assignment α such that $dom(\alpha) \in \{a, b\}$: $\alpha = True, b \in \{1, 2\}$