			want more revis	sion exercises? Get <u>MathisFit</u> - New Ironi projectinat	.115.
11	8c	into	an Jules started working she begand a superannuation fund. The contripof 6% per annum. She intends to Let \$P be the final value of July 35 years (420 months). Show that \$P = \$143 183 to Fifteen years after she started about retirement, and realized when she retires. At the times	paying \$100 at the beginning of each month butions are compounded monthly at an interest retire after having worked for 35 years. ules's superannuation when she retires after	2
	State N 1.09 0.34	9/2 4/1	decides to pay a total of $\$M$ in The contributions continue to annum, compounded monthly contributions, the amount in (1) Show that $A_2 = 29$ 227	into her fund at the beginning of each month. To attract the same interest rate of 6% per y. At the end of n months after starting the new the fund is $\$A_n$. × $1.005^2 + M(1.005 + 1.005^2)$. That Jules will have $\$800\ 000$ in her fund	1 3
(i) 6% pa = 0.5% per month $P = 100 \times 1.005^{420} + 100 \times 1.005^{419} + + 100 \times 1.005$ $= 100[1.005 + 1.005^{2} + + 1.005^{420}]$ Using $a = 1.005$, $r = 1.005$, $n = 420$, $P = 100 \times \frac{1.005(1.005^{420} - 1)}{1.005 - 1}$ $= 143 \ 183.385$ $\therefore \$143 \ 183 \ \text{to nearest dollar}$			= 0.5% per month × 1.005 ⁴²⁰ + 100 × 1.005 ⁴¹⁹ + + 100 × 1.005 005 + 1.005 ² + + 1.005 ⁴²⁰] = 1.005, $r = 1.005$, $n = 420$, = 100 × $\frac{1.005(1.005^{420} - 1)}{1.005 - 1}$ = 143 183.385	(2) $A_{240} = 29\ 227 \times 1.005^{240}$ $+ M(1.005 + 1.005^2 + + 1.005^{240})$ Using $a = 1.005$, $r = 1.005$, $n = 240$, $800\ 000 = 29\ 227 \times 1.005^{240}$ $+ M \times \frac{1.005(1.005^{240} - 1)}{1.005 - 1}$ $800\ 000 = 96\ 747.34621 + 464.351099$	6 <i>M</i>
_	[(29	= 227 >	$ (29 227 + M) \times 1.005 $ $ (29 227 \times 1.005 + 1.005M) $ $ (1.005 + 1.005M) + M] \times 1.005 $ $ (1.005^{2} + 1.005^{2}M + 1.005M) $	$464.3510996M = 703\ 252.6538$ $M = 1514.48\ (2\ dec\ places)$ ∴ she needs to contribute \$1514.48 each month	n.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

 $= 29 227 \times 1.005^{2} + M(1.005 + 1.005^{2})$

- (i) In better responses, candidates were able to establish the series or recognise a superannuation problem and substitute into a formula for the sum of n terms. Common errors included introducing an extra \$100 term, interpreting the value for n incorrectly (with many not using 240 (months) but 20 (years)), using an incorrect formula for the sum of a geometric series, writing the first term of the series as 1 and not 1.005 or not converting to a (correct) monthly interest rate.
- (ii) (1) Many candidates recognised the pattern to write $A_1 = 29227 \times 1.005 + M (1.005)$ then $A_2 = A_1 \times 1.005 + M (1.005)$ (or another form) before producing the required expression.

Common errors included writing an incorrect expression for A_1 or not using M(1.005) in the calculations.

HSC Worked Solutions projectmaths.com.au

(2) Generally candidates were able to use the pattern and process provided in the previous part to develop a pattern for A₂₄₀. Common errors included misunderstanding the intent of the question and treating it as a time-payment question where A₂₄₀ = 0 and solving to find M, difficulty in solving the equation 800 000 = 29227×1.005²⁴⁰ + M× 1.005 (1.005²⁴⁰ - 1)/1.005-1, calculating 800 000 ÷ (29227×1.005²⁴⁰) instead of 800 000 – 29227×1.005²⁴⁰, incorrectly determining the number of terms in the sum and using an incorrect formula for for S_n.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/