定积分

定积分是一个特殊的极限

$$\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$
其中 $\lambda = \max\{\Delta x_{1}, \Delta x_{2}...\Delta x_{n}\}$

$$\Delta x_i = x_i - x_{i-1}$$

定积分的几何意义: 曲边梯形的面积的代数和

若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上可积 若 f(x) 在 [a,b] 上有界,且只有有限个间断点,则 f(x) 在 [a,b] 上可积

L

定积分的性质

1. 等式性质

$$\begin{split} &\int_a^a f(x)dx = 0 \\ &\int_a^b f(x)dx = -\int_b^a f(x)dx \\ &\int_a^b [\alpha f(x) \pm \beta g(x)]dx = \alpha \int_a^b f(x)dx \pm \beta \int_a^b g(x)dx \\ &\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \end{split}$$

2. 不等式性质 (前提 b > a)

设
$$f(x) \leq g(x)$$
, 则 $\int_a^b f(x)dx \leq \int_a^b g(x)dx$ 设 $f(x) \geq 0$, 则 $\int_a^b f(x)dx \geq 0$
$$|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$$
 设 $m < f(x) < M$, 则

 $m(b-a) < \int_a^b f(x)dx < M(b-a)$

3. 积分中值定理

设
$$f(x)$$
 在 $[a,b]$ 上连续, 则 $\exists \xi \in [a,b]$ 或 $\exists \xi \in (a,b)$, 使得 $\int_a^b f(x) dx = f(\xi)(b-a)$

使用定积分定义求极

限:
$$\int_0^1 f(x)dx = \lim_{x \to \infty} \frac{1}{n} \sum_{i=1}^n f(\frac{i}{n})$$