FINGERSPELLING – A SIGN LANGUAGE RECOGNTION

Tan Jing Jie 1804560 (Leader) Ng Jan Hui 1802347 Sia Ken Yen 1804562

Outline

Introduction
Related Work
System Design
Experiment & Evaluation
Conclusion

Simulation Video

01 INTRODUCTION

Project Objective

1) To design a convolutional neural network (CNN) architecture with competitive performance.

2) To investigate the relationship between reduction of color channels and model predictive performance

3) To investigate the effects of different regularization methods on model performance

4) To investigate the performance of famous CNNs when being reimplemented

Scope

VGGNet16

ResNet18

EfficientNetBO

Scope

ShallowNet

EfficientNetBO

Grayscale + CustomNet

02 Related Work

Sia Ken Yen

Authors	Paper Title	Remarks	
Masood, S.et. al., 2018 [3]	American Sign Language Character Recognition Using Convolution Neural Network	- Image resize to 224 * 224 - Learning rate and weight decay - 95.54% accuracy	
Hw. Zhang [4]	Fingerspelling Identification for American Sign Language Based on Resnet-18	- Presence of global	
N. Gupta [5]	Gesture Detection using Tensor flow Lite EfficientNet Model for Communication and E-learning Module for Mute and Deaf	average pooling - Important for real- time use cases	
V. Bheda [6]	Using Deep Convolutional Networks for Gesture Recognition in American Sign Language	- Dropout layers - Image substraction - 82.50% accuracy	
P. Das [7]	Static Hand Gesture Recognition for American Sign Language using Deep Convolutional Neural Netork	- Batch Normalization - 98.05% accuracy	
A. Kasapbaşi [8]	DeepASLR: A CNN based human computer interface for American Sign Language recognition for hearing-impaired individuals	- Batch Normalization - Binarized input image - 99.38% accuracy	

03 System Design

Each class having 3000 image

26 class: A – Z

3 class: del, nothing, space

Each class having 3000 image

26 class: A – Z

3 class: del, nothing, space

2) To investigate the relationship between reduction of color channels and model predictive performance

Resize to 224*224 dimension

Adding grayscale transformation

Normalise

American Sign Language (ASL) Dataset

- 4) To investigate the performance of famous CNNs when being reimplemented
- 1) To design a convolutional neural network (CNN) architecture with competitive performance.

- 1) To design a convolutional neural network (CNN) architecture with competitive performance.
- 3) To investigate the effects of different regularization methods on model performance

🖁 Ng Jan Hui

3) To investigate the effects of different regularization methods on model performance

Other techniques used:

- 1. Batch Normalization Layers
- 2. Using Global Average Pooling instead of flatten layer

3) To investigate the effects of different regularization methods on model performance

3) To investigate the effects of different regularization methods on model performance

- Aggressive down scaling of image dimensions
 - Regularization used early

Notable Design Aspects:

• Convolutional Filters increase going deeper

- 4 homogenous blocks
- Spatial information dispersed across channels

- Global Average Pooling
- 1024 features learned
- Shallow, hence the name ShallowNet

Model Architecture of Grayscale + CustomNet

- Utilizes similar design of homogenous blocks
- Input image is grayscale -> 1 channel only
 - Hence, the name Grayscale

Model Architecture of Grayscale + CustomNet

Notable Design Aspects:

- Less features learned
- Inline with objective 2

Ng Jan Hui

Training multiple models and tabulate their performance

Ng Jan Hui

O4 Experiment & Evaluation

Fine tune direction

Condition	Fine tune action
The training loss and validation loss is decreasing,	Increase number of
but training has ended.	epochs
The training loss and validation loss are jittery	Decrease learning rate
The training loss is not decreasing	Decrease filter size

Tan Jing Jie 1804560

Fine tune of this project include:

Epoch, learning rate, filter size, number of layers, etcetera

Training Loss and Validation Loss Visualisation

1804560

Study the trainability of model: No overfitting issue occur

Comparison of model for Layer vs Loss & Layer vs Inference Time

Architecture type	Transfer Learning			Proposed			
Model Net	VGGNet	ResNet	et EfficientNet ShallowNet		Grayscale + CustomNet		
Number of trainable layers	1	2	2	2 10		8	
Training Loss (epoch =30)	0.6140	0.0071	0.4685	0.0593	Epoch=30 0.4391	Epoch=65 0.0271	
Validation Loss	0.4350	0.0332	0.4638	0.1924	Epoch=30 0.4823	Epoch=65 0.0506	
Inference time (s)	0.0104	0.0091	0.0489	0.0808	0.00	63	

The higher the number of trainable layers, the higher the difficulty for a model to converse

The shallow the layer in CNN model, the faster the inference time.

Model Evaluation and Performance Metrics

Model	Method	Precision	Recall	F1	Accuracy	Inference
				Score		time
VGG16	VGG16 Transfer		0.87	0.85	85.64%	0.01042
	Learning					seconds
EfficientNetB0	Transfer	0.94	0.93	0.93	93.09%	0.04892
	Learning					seconds
ResNet18	Transfer	0.99	0.99	0.99	99.17%	0.009099
	Learning					seconds
ShallowNet	Self-Designed	0.99	0.99	0.99	99.17%	0.0808
						seconds
Grayscale +	Self-Designed	0.98	0.98	0.98	98.07%	0.0063
CustomNet						seconds

Key Takeaway:

- Our self designed models were able to beat the pretrained models
 - Regularization played an important role in small datasets

Model Benchmarking

Authors	Model	Accuracy	Inference time
Garcia and Viesca, 2016 [9]	GoogLeNet transfer learning	70%	-
Kania, K.et. al., 2018 [10]	Wide Residual Networks transfer learning	93.30%	-
Masood, S.et. al., 2018 [3]	VGG16 transfer learning	94.68%	0.0104 seconds
Our work	ShallowNet Grayscale + CustomNet	99.17% 98.07%	0.0808 seconds 0.0063 seconds

1) To design a convolutional neural network (CNN) architecture with competitive performance.

2) To investigate the relationship between reduction of color channels and model predictive performance

Experiments

Hypothesis 1: "Reimplementation of prominent CNN models affects the training process due to the improper initialization of weights."

Testing: Experimenting the recreated VGG model by training on CIFAR10 dataset

Result: - Training loss decreasing

- Hypothesis rejected

Hypothesis 2: "Training on images with lesser than 3 channels, would cause the model to learn non-representative features and perform badly."

Testing: implementing Grayscale with CustomNet

Result: - Predictive performance of Grayscale + CustomNet able to outperform the pretrained models

- Hypothesis rejected

Experiments

Hypothesis 3: "Models that are built from scratch are prone to overfitting."

Testing: training the models built from scratch such as CustomNet and ShallowNet and observing its performance

Result: - Training times at par with the pretrained models and with better predictive performance

- Hypothesis rejected

Hypothesis 4: "Models that are built from scratch may outperform pretrained models on simple datasets."

Testing: Implementation of Grayscale with CustomNet and ShallowNet

Result : - Predictive performance of CustomNet and ShalloNet able to beat pretrained networks with less inference time

- Hypothesis accepted

05 Conclusion

Sia Ken Yen

Conclusion

- Objectives of the project were archieved
- Developed ShallowNet and CustomNet that outperform established CNN architectures
- Pre-trained and deeper models are able to train with a shorter time, but custom-built models that are usually less complex and shallow, tailored to perform better
- The future work for this research would be focusing on reducing training time

Demostration

Thank you