

Project Guide (IoT - RoomStatus)

Team 428 (김문기, 김상빈, 전승훈, 나윤종)

목차

1. 소개	
1. 1. 프로젝트 개요	1
1. 2. 프로젝트 아키택쳐	1
1. 3. 프로젝트 유즈케이스	1
2. 설치	
2. 1, 장비 설치	1
2. 2. 서버 설치	1
2. 3. 웹 설치	1
3. 운용	
3. 1. 테스트 운용	1
3. 2. 실제 운용	1
4. 기타	
4. 1. 기타사항	1
// 2 므니 과기 저너	1

1. 소개

1. 1. 프로젝트 개요

본 문서에서는 Team 428팀의 오픈소스설계 과목에서 수행한 프로젝트의 정보를 담고 있다. IoT - Room Status 프로젝트는 초음파 센서를 이용해 방안의 사람들을 탐지한 뒤, 혼잡도를 시각화 해주는 프로젝트 이다.

본 프로젝트는 식당 이용간

1. 2. 프로젝트 아키텍쳐

본 절에서는 우선 High Level에서 본 architecture및 usecase를 설명하고, Resource Tree 구조를 설명 한 뒤 어떤 절차를 통해 구동되는지 설명하고 결론짓는다.

[그림] 프로젝트 전체 구성

[그림] 기능 구성

[그림] CSE 구성

[그림] 자원 구조 (트리형)

1. 3. 프로젝트 유즈케이스

[그림] 엔티티 등록 과정

[그림] 자원 생성 과정

[그림] 발견 및 검색 과정

2. 설치

2. 1. 장치 설치

2. 1. 1. 장치(라즈베리 파이) 설정

본 프로젝트에서는 라즈베리 파이가 사용되며, 운영체제로는 라즈베리의 전용 운영체제인 라즈비안(Raspbian)을 사용한다.

라즈비안의 최신버전은 "https://www.raspberrypi.org/downloads/raspbian/"에서 다운로드 받을 수 있다.

[그림] 라즈비안 공식 홈페이지

이후 라즈비안의 부팅에 필요한 저장장치를 연결한 후, 운영체제 이미지 생성 도구인 Etcher을 다운로드 받은 후 실행시킨다.

[그림] Etcher를 이용한 운영체제 이미지 생성

이후 Etcher가 실행되며, 별다른 설정없이 저장장치에 운영체제 이미지가 자동으로 설정된다. 이를 라즈베리 파이에 연결하여 부팅 시킨다.

2. 1. 2. Node.is

&cube:Thyme for Node.js 구동을 위해 Node.js 패키지가 필요하다. 라즈비안에 Node.js 패키지가 자동으로 설치되어 있으나, 우리가 사용할 &cube:Thyme for Node.js에서는 동작하지 않으므로, 제거한 후 패키지를 설치한다. Node.js 패키지는 apt-get install 명령을 이용하여 설치한다.

```
pi@raspberrypi ~ $ mkdir node
pi@raspberrypi ~ $ cd node
pi@raspberrypi ~/node $ sudo apt-get remove nodejs
pi@raspberrypi ~/node $ sudo wget https://node-arm.herokuapp.com/node_latest_armhf.deb
pi@raspberrypi ~/node $ sudo dpkg -i node_latest_armhf.deb (패키지 설치 명령어)
pi@raspberrypi ~/node $ node -v (버전 확인 명령어)
pi@raspberrypi ~/node $ npm -v (추가 라이브러리 설치도구 버전 확인 명령어)
```

[그림] Node.js 설치 과정

2. 1. 3. &cube:Thyme for Node.is

&cube:Thyme for Node.js는 oneM2M AE Node.js를 이용하여 구현한 것이다. 지원하는 통신 프로토콜은 MQTT, HTTP, CoAP이다. &cube:Thyme for Node.js는 인터넷 연결과, Node.js 환경만 갖추어 진다면, 다양한 환경에서 동작하는 특징을 가진다.

본 프로젝트에서 사용되는 &cube:Thyme for Node.js는 http://github.com/team428/IoT_RoomStatus의 TAS_RoomStatus에서 다운로드받을 수 있다.

[그림] &cube:Thyme 설치 과정

이후, 아래 그림과 같이 다운로드 된 디렉토리로 이동한다.

이름	수정한 날짜	유형	크기
a-crt.pem	2017-12-06 오전	PEM 파일	2KB
	2017-12-06 오전	JS 파일	10KB
	2017-12-06 오전	JS 파일	13KB
es conf.js	2017-12-06 오전	JS 파일	4KB
conf.json	2017-12-06 오전	JSON 파일	2KB
conf_smartcity.json	2017-12-06 오전	JSON 파일	1KB
http_adn.js	2017-12-06 오전	JS 파일	11KB
http_app.js	2017-12-06 오전	JS 파일	13KB
mqtt_adn.js	2017-12-06 오전	JS 파일	11KB
mqtt_app.js	2017-12-06 오전	JS 파일	10KB
🐻 noti.js	2017-12-06 오전	JS 파일	9KB
package.json	2017-12-06 오전	JSON 파일	1KB
radar.py	2017-12-06 오전	PY 파일	2KB
🚳 tas.js	2017-12-06 오전	JS 파일	9KB
🐞 thyme.js	2017-12-06 모전	JS 파일	2KB
es wdt.js	2017-12-06 오전	JS 파일	3KB

[그림] &cube:Thyme 설치 과정 2

이후 &cube:Thyme for Node.js 구동에 필요한 NPM 모듈을 "NPM INSTALL"을 명령을 이용하여 설치하여 준다.

2. 2. 서버 설치

2.2.1 MySOL

MySQL은 전세계적으로 가장 널리 사용되고 있는 오픈소스 데이터베이스로, 오라클 사에 의해 배포/관리되고 있는 데이터베이스 이다.

본 프로젝트에서 사용되는 MySQL 버전은 MySQL의 무료버전인 MySQL Community 이다. 해당 버전은 MySQL의 공식 홈페이지에서 아래 그림과 같이 다운로드 받을 수 있다.

[그림] MySQL 설치 파일 다운로드

이후, 해당 설치 파일을 실행시켜 MySQL 설치를 진행한다.

[그림] MySQL 설치 과정

이후 DB에 접근할 수 있는 Root 계정의 비밀번호(root)를 설정한다.

[그림] MySOL 설치 과정 2

이후, 설치 과정을 진행하며, 이전에 설정한 Root 계정의 ID, 비밀번호를 입력하여

정상적으로 접근이 가능한지 확인한다.

정상적인 접근이 가능함을 확인 한 후 설치를 계속 진행하여, 설치를 마친다.

2.2.2 Mosquitto

Mobius Platform은 디바이스와의 통신을 위해 MQTT 프로토콜을 지원하고 있으며 이를 위해서 오픈소스로 제공되는 MQTT broker Mosquitto 서버를 설치한다.

2.2.3 **Node.is**

Node.js는 고성능의 비동기 IO (Async/Non-blocking IO)를 지원하는 single thread 기반 네트워크 서버이다. 2009년 Ryan Dahl에 의해 개발이 시작되었고 현재 수많은 지원 모듈을 가지고 있는 오픈 소스 프로젝트 중 하나이다. Node.js는 Google Chrome V8 엔진으로 개발되어 있고 Event 기반의 프로그래밍 모델로써 프로그래밍 언어로는 Java Script를 사용한다.

Node.js의 공식 홈페이지에 접속하여, 아래 그림과 같이 설치파일을 다운로드 한다.

2.2.4 Mobius

Mobius 플랫폼은 oneM2M 국제 표준을 기반으로 IoT 서비스를 제공하기 위해 다수의 IoT 장치 정보를 관리하고, 각 장치의 접근제어, 인증, 사용자 관리, 복수의 서비스 조합 등을 제공하여, 원활한 IoT 서비스를 제공하기 위한 플랫폼이다.

2. 3. 웹 설치

2.3.1 python 2.7 2.3.2 flask

3. 운용

- 3. 1. 테스트
- 3. 2. 실제

4. 기타

- 4. 1. 기타사항
 - 1. 에러 관련

- 현재 IoT Ocean에서 제공되고 있는 Mobius는 통신간 매우 불안전한 동작을 보임. 실제 Target을 대상으로 개발후, 테스트시 안정된 동작을 보장할 수 없어 디버깅 시혼란이 발생. 추후 버전에서는 안정화가 필요할 것으로 보임
- 현재 IoT Ocean에서 제공되고 있는 Mobius, &Cube 관련 개발문서가 제각각으로, 개발시 큰 혼란이 발생. 추후에는 각 버전에 따른 개발문서 배포도 동일하게 할 필요가 있음.
- 이번 프로젝트 간 Mobius와 Web 연동에 있어 사례를 찾기 어려

4. 2. 문서 관리 이력

Date	Modifications	Author
2017. 11. 16	Initial Draft	M. G. Kim
2017. 11. 17	Update Draft	S. H. Jeon
2017. 11. 28	Update Draft	S. B. Kim
2017. 12. 01	Update Draft	Y. J. Na
2017. 12. 04	Update Draft	M. G. Kim