A k-flip local search algorithm for SAT and MAX SAT

Chris Patuzzo

August 29, 2020

Abstract

Local search can be applied to SAT by determining whether it is possible to increase the number of satisfied clauses for a given truth assignment by flipping at most k variables. However, for a problem instance with vvariables, the search space is of order v^k . A naive approach that enumerates every combination is impractical for all but the smallest of problems. This paper outlines a hybrid approach that plays to the strength of modern SAT solvers to search this space more efficiently. We describe an encoding of SAT to a related problem k-Flip MAX SAT - and show how, through repeated application, it can be used to solve SAT and MAX SAT problems. Finally, we test the algorithm on a benchmark set with different values of k to see how it performs.

Introduction 1

- sat problems have hundreds or thousands of variables, doesn't scale
 - explain k-flip max sat
 - explain ipasir and justify it for this problem

2 The encoding

At a high level, the encoding takes some SAT formula F and parameter k and transforms it into a new SAT formula F' that is satisfiable if and only if F is satisfiable subject to two numerical constraints:

- 1. The first numerical constraint enforces the 'k-flips' requirement. A set of variables A is introduced that represents some truth assignment for F. A corresponding set of variables A' is added that is allowed to differ by at most k truth values from A. Intuitively, this delta is the subset of variables that has been 'flipped'. We use a counter circuit and a less-than comparator to enforce this constraint.
- 2. The second numerical constraint limits the number of unsatisfied clauses in F subject to the set of truth values A'. For each clause in F, we introduce a variable whose intended meaning is that its related clause has not been satisfied by A'. Collectively, we call this set U. We once again use a counter circuit and less-than comparator to enforce that the number of true literals in U is less than some value.

Our encoding has the advantage of separating its numerical constraints from their threshold values. The latter can either by specified by appending unit clauses to F' or through assumptions as part of the IPASIR interface.

Flipped variables

Let #v be the number of variables in F. Add a clause to F' that is satisfied if either A_i and A'_i have the same truth value or Fl_i is true. Formula 2 is equivalent to Formula 1 but is rewritten in conjunctive normal form.

$$\bigwedge_{i=1}^{\#v} A_i \to A_i' \vee Fl_i \qquad (1)$$

$$\bigwedge_{i=1}^{\#v} \neg A_i \vee A_i' \vee Fl_i \qquad (2)$$

$$\bigwedge_{i=1}^{\#v} \neg A_i \lor A_i' \lor Fl_i \tag{2}$$

The intended meaning of Fl_i is that variable i in F has been flipped from some pre-assigned truth value A_i to a new value A'_i . However, we do not add clauses that preclude Fl_i from being true when A_i and A'_i are assigned the same value. In practice, it is never advantageous for a SAT solver to do so due to the numeric constraints.

2.2Unsatisfied clauses

Let #c be the number of clauses in F. Add a clause to F' that is satisfied if either clause i in F is satisfied or U_i is true. Again, we do not preclude U_i from being true when clause i is already satisfied.

$$\bigwedge_{i=1}^{\#c} Clause_i \vee U_i \tag{3}$$

2.3 Parallel counter

We encode two separate parallel counter circuits into F'. The first operates on Fl and the second on U. Since the method of encoding is the same, we discuss it in general terms for a set \mathcal{S} . The objective of the encoding is to introduce a set of variables \mathcal{C} of size $\lceil log_2(\mathcal{S}) \rceil$ such that the formula F' is satisfiable if and only if \mathcal{C} is assigned truth values representing a binary number equal to the count of true literals in \mathcal{S} .

The encoding works by first applying a half-adder gate to consecutive, non-overlapping pairs of variables $a, b \in \mathcal{S}$. We use a propagation complete encoding (Formula 4) which can be derived from the propagation complete encoding of a full-adder (Formula 5) by setting $carry_{in}$ to **false** and simplifying.

$$a \lor \neg b \lor sum$$

$$\neg a \lor \neg b \lor \neg sum$$

$$\neg a \lor carry_{in} \lor sum$$

$$a \lor \neg carry_{in} \lor \neg sum$$

$$b \lor \neg carry_{in}$$

$$a \lor b \lor \neg sum$$

$$(4)$$

The encoding then proceeds recursively. It subdivides the auxiliary variables produced by the half-adders until either one or two pairs of variables remain. If two pairs remain, a full-adder (Formula 5) sums the result. Afterwards a ripple-carry adder is used to recombine these sums. A ripple-carry also makes use of multiple full-adders. Its description is omitted here because it is encoded in the conventional way.

$$a \lor \neg b \lor carry_{in} \lor sum$$

$$a \lor b \lor \neg carry_{in} \lor sum$$

$$\neg a \lor \neg b \lor carry_{in} \lor \neg sum$$

$$\neg a \lor b \lor \neg carry_{in} \lor \neg sum$$

$$\neg a \lor carry_{out} \lor sum$$

$$a \lor \neg carry_{out} \lor \neg sum$$

$$\neg b \lor \neg carry_{in} \lor carry_{out}$$

$$b \lor carry_{in} \lor \neg carry_{out}$$

$$\neg a \lor \neg b \lor \neg carry_{in} \lor sum$$

$$a \lor b \lor carry_{in} \lor \neg sum$$

$$a \lor b \lor carry_{in} \lor \neg sum$$

$$(5)$$

In general, when two N-bit binary numbers are summed, this can result in an (N+1)-bit binary number. However, since we know the sum will not exceed |S|, there is no need to introduce redundant auxiliary variables that would always be false. This is a small optimisation that also helps the SAT solver reject assignments that would inevitably lead to conflict when the less-than clauses are considered.

2.4 Less-than comparator

- 3 Repeated application
- 4 Empirical results

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
430	0	4	24	49	117	193	283	389	484	635	739	843	985	1058	1154	1214	1343	1366	1461	1534
429	3	27	112	281	429	580	756	834	913	964	979	1062	1026	1035	1019	974	914	937	861	789
428	1	87	294	522	660	798	754	741	704	597	570	424	381	315	249	243	174	139	122	118
427	12	202	462	641	621	543	459	345	284	201	139	109	52	38	26	18	19	7	6	9
426	20	319	535	457	360	258	157	111	63	52	26	17	8	4	2	1	0	1	0	0
425	66	448	463	269	182	61	34	29	5	6	2	0	1	0	0	0	0	0	0	0
424	129	435	311	148	66	18	11	6	1	0	0	0	0	0	0	0	0	0	0	0
423	215	379	143	59	13	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0
422	295	253	53	25	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
421	328	168	36	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
420	308	80	17	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
419	312	38	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
418	257	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
417	211	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
416	135	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
415	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
414	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
413	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
412	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
411	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
409	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 1: caption