- 2 BADANIE ZALEŻNOŚCI MIĘDZY ENTROPIĄ INFORMACYJNĄ
- (H) W OTOCZENIU ORAZ WYKONANIEM TRENINGU
- UWAŻNOŚCI, A SELEKTYWNĄ UWAGĄ WZROKOWĄ.
- Laura Plichta, Wiktor Warchałowski, Zofia Załęska
- Wydział Nauk o Zdrowiu, Gdański Uniwersytet Medyczny

- Praca zaliczeniowa z przedmiotu
- Metodologia Badań Psychologicznych 2

7

napisana pod kierunkiem dr. Krzysztofa Basińskiego

Gdańsk, 20 Stycznia 2023

ABSTRAKT

1

Celem niniejszego artykułu jest zbadanie problematyki związanej z wpływem środowiska 2 w jakim się znajdujemy na zdolności poznawcze człowieka. Artykuł ten sprawdza czy istnieje 3 wpływ entropii informacji zaindukowanej przez różnorodność obiektów w otoczeniu i wykonaniem treningu uważności jakim jest kolorowanie mandali na selektywną uwagę wzrokową. 5 Badanie zostało przeprowadzone na 30 osobach, które dobrowolnie zgodziły się na wzięcie udziału w eksperymencie. Indukowana entropia otoczenia została opisana jako różnorodność 7 kulek do basenu dziecięcego w pomieszczeniu, zaś trening uważności jako wykonanie kolorowanki z mandalą. Zmienną niezależną była uwaga wzrokowa, zbadana za pomocą testu Eriksena. Średnie porównywanych grup, test t studenta oraz mieszane modele liniowe z nałożonymi kontrastami średnich marginalnych wykazały istnotną statystycznie interakcję porównywanych 11 grup. Współczynnik d Cohena wskazał siłę efektu, którą można uznać za nieistotną w populacji. 13

14 Słowa kluczowe: środowisko, entropia informacji, uwaga wzrokowa, trening uważności

WSTĘP

Ze względu na rozwój techniki, kończące się zasoby naturalne, zwiększająca się liczba lud-2 ności oraz inne problemy dynamicznie rozwijającego się świata wzrosło zainteresowanie badaniami zależności między człowiekiem, a jego środowiskiem. Dziedziną zajmującą się relacją ludzi i ich zachowań z różnymi modalnościami ich otoczenia oraz jego optymalizacją jest psychologia środowiska (Bańka, 2018; Gifford et al., 2011). Dostrzeganie interakcji człowieka ze środowiskiem może być czymś ważnym w rozwoju architektury i planowania przestrzennego, aby era antropocenu nie była stworzona destruktywnym wpływem człowieka na naturę, ale okresem w którym działamy na wspólną korzyć (Zalasiewicz et al., 2010). Oprócz celu zrównoważnonego rozwoju aby odpowiedzieć na zmiany klimatyczne, badacze zajmują się opty-10 malizacją naszego najbliższego otoczenia. Przykładem takiego działania są badania Lohr et al. 11 (1996) pokazujące zależność struktury miejsca pracy z produktywnością. Jednakże analiz tego 12 typu jest relatywnie mało, ale ich ilość wzrasta w XXI wieku (Spano et al., 2020). Inspirując się takim typem eksperymentów, celem niniejszego badania było sprawdzenie, jak modyfikacja 14 środowiska pracy wpłynie na efektywność procesów poznawczych człowieka z naciskiem na 15 selektywną uwagę wzrokową. Aby zuniwersalizować manipulację wyglądem otoczenia, zosta-16 ło zastosowane pojęcie entropii informacji zgodnie z teorią Shannona. Oznacza to, że fizyczna 17 miara nieuporządkowania i chaosu, jest interpretowana jako suma średnich prawdopodobieństw 18 wystapienia danego typu informacji i zdarzeń. Jest wyrażana wzorem:

$$H_f = -\sum_{i=1}^n p_i \log_2(p_i)$$

20

Gdzie *n* oznacza ilość obiektów, *i* to dany obiekt, zaś *p* jest prawdopodobieństwem jego wystąpienia. Wynik powyższego działania podawany jest w bitach (Stamps, 2004). Dodatkowo na potrzeby analizy otoczenia entropia informacji jest liczona jako zróżnicowanie elementów architektonicznych lub dekoracyjnych (Stamps, 2004, 2002). Ze względu na fakt badania odbioru otoczenia pod względem artystyczno-wizualnym, zdecydowano o dołączeniu kolorowania kolorowanki uważności. Jest to jeden z rodzajów treningu *mindfulness* (z ang. uważność), który polega na pełnej koncentracji na przebiegu kolorowania (Żejmo, 2022). Liczne badania wykazały, że uważność może być stanem przejściowym, wywołanym podczas krótkotrwałej praktyki

(stan uważności) albo cechą osobowości obecną w codziennym życiu (uważność jako cecha) (Kiken et al., 2015). Mimo tego, że istnieje znaczna ilość badań sugerujących, że uważność poprawia samopoczucie, niewiele wskazuje na to, jak przebiega ten proces (Hölzel et al., 2011). Jednym z argumentów jest to, że trening uważności zmienia aktywność mózgu (Gotink et al., 2016) oraz przetwarzanie poznawcze (Zeidan et al., 2010). Trening uważności w postaci kolorowania mandali pomaga w uspokojeniu się i poprawia ogólny stan osób kolorujących (Carsley and Heath, 2018; Campenni and Hartman, 2020), którym również po wykonaniu tej czynności łatwiej jest się skupić oraz wykonywać powierzone zadania. Co więcej, mandale, a szczególnie ich środkowe punkty, są wykorzystywane do medytacji w celu zwiększenia poziomu uwagi i skupienia (Shankar and Amir, 2020). W ostatnich czasach rośnie również ich popularność i 10 rośnie ich rola w życiu codziennym wielu ludzi (Dresler and Perera, 2019). Stąd dodatkowo ten artykuł sprawdza ich użyteczność co również może pomóc w rozwoju świadomości na te-12 mat uwagi i uwarunkowań jej działania. Z tego względu postawionym pytaniem badawczym jest czy zwiększona entropia informacji w kolorach elementów otoczenia oraz wykonanie treningu uważności ma wpływ na selektywną uwagą wzrokową? Przewiduje się, że zwiększona entropia informacji w kolorach elementów otoczenia zmniejsza czas wykonania testu selek-16 tywnej uwagi wzrokowej. Dzieje się tak ze względu na fakt, że zwiększona entropia wpływa bezpośrednio na zwiększenie przyjemności i pozytywnego pobudzenia (Stamps, 2004, 2002), 18 które wpływa na możliwości percepcyjne jednostki, dzięki czemu osoby, którym indukowano 19 przyjemność i pozytywne pobudzenie lepiej radziły sobie z wykonaniem testów percepcyjnych, 20 uwagi wzrokowej oraz ogólnie procesów poznawczych (McConnell and Shore, 2011; Gavazzi 21 et al., 2021). Wykonanie testu uważności również zmniejsza czas wykonania testu selektywnej uwagi wzrokowej ze względu na fakt, że czynność kolorowania mandali pomaga w uspokojeniu się oraz poprawia uważność oraz ogólny stan osoby która koloruje (mindfulness and wellbeing) 24 (Carsley and Heath, 2018; Campenni and Hartman, 2020). Wysoki poziom uważności (mind-25 fulness) zaś podwyższa poziom uwagi wzrokowej i pomaga w skupieniu się (Campillo et al., 2018; Sumantry and Stewart, 2021). Jednakże w przypadku krótkiego zabiegu - wykonania po-27 jedynczej kolorowanki, może nie mieć żadnego wpływu na poziom uwagi wzrokowej badanych (Thompson et al., 2021).

METODA

2 Operacjonalizacja

- Zmienna niezależna, jaką jest indukowana entropia otoczenia, została zoperacjonalizowana
- 4 poprzez wprowadzenie w pierwszym warunku sprecyzowanej ilości obiektów w tym samym
- kolorze ($\Delta H_{f1} = 0$), zaś w drugim warunku tej samej ilości obiektów, lecz w różnych kolorach
- $_{6}~~(\Delta H_{f1} < \Delta H_{f2})$. Dzięki użyciu takiej samej ilości obiektów w obu warunkach entropia mak-
- symalna (ΔH_{max}) będzie równa. Manipulacja zachodzi wyłącznie kolorem, ponieważ tylko ich
- 8 entropia dodatnio koreluje z przyjemnością (pleasure) (Stamps, 2004, 2002).
- 9 Druga zmienna niezależna, jaką jest trening uważności, została zoperacjonalizowana poprzez
- wykonanie jednego wzoru kolorowanki uważności lub kolorowanie pustej kartki przez 5 minut.
- ¹¹ Zmienną zależną, selektywną uwagę wzrokową, zmierzono za pomocą czasu reakcji podczas
- wykonywania testu Eriksena (tzw. *flaker test*) oraz stopnia jego poprawności. Został on zapro-
- gramowany w oprogramowaniu PsychoPy (Peirce et al., 2019). Polegał on na jak najszybszym
- rozpoznaniu kierunku środkowej strzałki w układzie pięciu strzałek. Miał on 6 możliwych wa-
- riantów. W dwóch z nich wszystkie stzałki były w jednym kierunku, w kolejnych dwóch przy-
- padkach środkowe strzałki były w innym kierunku niż pozostałe, zaś w ostatnich dwóch środ-
- kowe strzałki były na tle bodźca neurtralnego poziomych kreskach.

18 Osoby badane

- Uczestnicy zostali dobrani za pomocą doboru kuli śniegowej z populacji, zaś do losowego
- 20 przypisania ich do grup niezależnych, czyli dwóch grup z różną indukowaną entropią otoczenia,
- wykorzystano randomizację w blokach. Łącznie było 30 uczestników o średniej wieku 24 lata.
- 22 Większość (20 osób) stanowiły kobiety.

3 Procedura

- Każdy z badanych na początku został poinformowany o celu badania, jego przebiegu, dobro-
- wolności i użycia wyników zebranych w badaniu oraz ustnie wyraził świadomą zgodę.
- Za każdym razem w sali znajdowało się 30 kulek z basenu dla dzieci o różnych kolorach.

Grupa z niską entropią otoczenia. Badani zostali zaproszeni pojedynczo do sali w której panował relatywny początek, a 30 kulek rozproszonych w pomieszczeniu było takiego samego koloru. Następnie badany został poproszony o kolorowanie pustej kartki przez 10 minut (warunek "A"). Po tym czasie został przeprowadzony flanker test i zmierzono czas reakcji badanego. Po przeprowadzeniu testu, badany został poproszony o kolorowanie mandali przez 10 minut (warunek "B"). Po tej aktywności badany został ponownie poproszony o wykonanie flanker testu. Taka procedura została przeprowadzona dla każdego z badanych dobranych do grupy z niską entropią jednakże u połowy badanych zmieniono kolejność manipulacji eksperymentalnej tj. najpierw przeprowadzono warunek "B", a jako drugi warunek "A". Do obu opcji badani zostali przydzieleni losowo przez randomizacje.

Grupa z wysoką entropią otoczenia. Badani zostali zaproszeni pojedynczo do sali w której panował relatywny początek, a 30 kulek rozproszonych w pomieszczeniu było trzech różnych kolorów. Następnie procedura została przeprowadzona w ten sam sposób co w grupie z niską entropią otoczenia - badani zostali poproszeni o obydwu warunków eksperymentalnych ("A" i "B"), połowa w kolejności "A"-"B", zaś druga "B"-"A".

16 Etyka

Zgoda etyczna na przeprowadzenie badania została otrzymana od prowadzącego przedmiot
Metodologia Badań Psychologicznych, realizowanym na Gdańskim Uniwersytecie Medycznym. Badanie, ani kwestionariusz demograficzny nie zbiera danych wrażliwych. Uczestnicy
zostali poinformowani o celu badania oraz o jego naturze. Zapewniono ich również, iż udział w
badaniu jest zupełnie dobrowolny i w każdej chwili mogą z niego zrezygnować, przez cały czas
pozostając anonimowym. Pozyskane zostało też potwierdzenie, że wszyscy uczestnicy ukończyli 18 lat i mają prawo do wyrażenia samodzielnej, świadomej zgody na udział w badaniu.

24 Analiza statystyczna

W celu udzielenia odpowiedzi na postawione pytanie badawcze oraz przetestowania postawionej hipotezy przeprowadzono analizy statystyczne przy użyciu języka programowania i środowiska obliczeniowego R Project for Statistical Computing (R Core Team, 2022). Pierwszym

wykonanym zabiegiem statystycznym było sprawdzenie normalności rozkładu testem Shapiro-Wilka oraz testem Kołmogorowa-Smirnowa, aby być w stanie dobrać odpowiednio następne testy statystyczne. Za poziom istotności przyjęto $\alpha = 0.05$. Wartość p obydwu testów wyniosła $p < 2.2*10^{-16}$ co oznacza, że została przyjęta hipoteza zerowa mówiąca o rozkładzie odbiegającym od rozkładu normalnego. Graficznym przedstawieniem rozkładu uzyskanych wyników jest poniższy histogram (Rysunek 1). Jednakże w trakcie wstępnej analizy danych zauważono, że wszyskie wartości czasiu reakcji wynoszące powyżej 1 sekundy są wartościami odstającymi znajdują się poza 3SD oraz 1.5IQR. Dodatkowo ilość obserwacji jest bardzo duża, a z tego powodu test normalności rozkładu jest niewymierny i niekonieczny do policzenia co wynika z centralnego twierdzenia granicznego (Kwak and Kim, 2017). Rozkład wartości bez wartości 10 odstających przedstawiony jest na Rysunku 2. Z tego powodu, w celu statystycznego opisania 11 otrzymanych wyników posłużono się testami parametrycznymi. Dodatkowo przeprowadzono 12 pomiar siły efektu za pomocą współczynnika d Cohena. Mówi on o "stopniu do jakiego badane zjawisko istnieje" (Cohen, 1977, s. 5).

Rysunek 1: Histogram przedstawiający rozkład wyników z wartościami odstającymi

Rysunek 2: Histogram przedstawiający rozkład wyników bez wartości odstających

1 WYNIKI

- Po sprawdzeniu normalności rozkładu i wybraniu typu testów statystycznych, zostały po-
- 3 liczone podstawowe statystyki opisowe dla zbioru danych nieodbiegających od rozkładu nor-
- 4 malnego miary tendencji centralnej, zmienności oraz asymetrii. Były to średnia, odchylenie
- standardowe, klasyczny współczynnik zmienności oraz klasyczny współczynnik asymetrii. Dla
- ϵ całego zbioru danych średnia (M) wyniosła 0.49, odchylenie standardowe (SD) wyniosło 0.13,
- v współczynnik zmienności (V_x) miał wartość 25.57, zaś asymetria (A_{S_x}) wyniosła 1.16. Wy-
- 8 niki powyższych cech statystycznych dla 4 badanych grup zostały przedstawione w Tabeli 1.
- 9 Dodatkowo narysowano wykres box and whiskers plot dla powyższych grup (Rysunek 3).

Tabela 1: Statystyki opisowe

		1		
Grupa	M	SD	V_x	A_{S_x}
Mandala i wysoka entropia	0.50	0.13	26.68	1.18
Mandala i niska entropia	0.50	0.13	25.46	0.94
Kartka i wysoka entropia	0.48	0.11	23.25	1.30
Kartka i niska entropia	0.49	0.13	26.32	1.16

Rysunek 3: Box and whiskers plot przedstawiający rozkład wyników w grupach

- Poza opisem podstawowymi statystykami opisowymi przeprowadzono testy statystyczne ba-
- ² dające związek pomiędzy badanymi zmiennymi. Był to test t studenta w warunku grup zależ-
- 3 nych i grup niezależnych. Były to testy badające osobne zależności między badanymi zmien-
- 4 nymi. Dodatkowo przeprowadzono analizę wariancji dla wszystkich badanych zmiennych i ich
- 5 interakcji za pomocą mieszanego modelu liniowego (linear mixed model) oraz zbadano kon-
- 6 trasty za pomocą średnich estymowanych (estimated marginal means). Wartości p dla testu t
- studenta oraz modelu liniowego zostały przedstawione w Tabeli 2, zaś wyniki kontrastów mo-
- 8 delu liniowego zostały przedstawione w *Tabeli 3*.

Tabela 2: Wartości p obliczonych testów statystycznych

	Entropia	Kolorowanka	Interakcja
		Test t studenta	
Czas reakcji	0.014^{*}	0.22	-
	Mie	eszany model lin	iowy
	0.52	$8.55 * 10^{-5*}$	0.037^{*}
* - p < 0.05			

Kontrast (Entropia, Mandala)		Wartość p
N nie	W nie	0.77
N nie	N tak	0.56
N nie	W tak	1.00
W nie	N tak	0.60
W nie	W tak	$1.00*10^{-4*}$
N tak	W tak	0.99

Tabela 3: Wartości p kontrastów nałożonych na model liniowy

- Powyższe wyniki pokazują, że test t studenta wykazał istotność statystyczną dla zależności
- entropii i czasu reackji oraz model liniowy wykazał istotność statystyczną zależności kolo-
- 3 rowania mandali z czasem reakcji ze względu na zachodzącą istotnie statystyczną interakcję.
- 4 Kontrasty wykazały, że kolorowanie mandali istotnie zwiększa czas reakcji tylko w warunku
- 5 wysokiej entropii.
- Wartości siły efektu dla obu grup są nieistotne. Dla wpływu kolorowania na czas reakcji w
- teście uwagi wartość współczynnika d Cohena wyniosła 0.037, zaś dla wpływu entropii oto-
- 8 czenia na czas reakcji w teście uwagi wzrokowej wartość współczynnika d Cohena wyniosła
- 9 0.082.
- Dodatkowo pomimo braku tej predykcji w pytaniu badawczym oraz w hipotezie, zauważono iż może istnieć związek pomiędzy typem bodźca wzrokowego, a czasem reakcji oraz, że w przypadku faktu wykonania bądź niewykonania treningu uważności wyniki w teście uwagi się różnią. W tym celu przeprowadzono test ANOVA oraz ponownie mieszany model liniowy (linear mixed model) ze zbadaniem kontrastów ze średnich estymowanych z modelu (estimated marginal means). Wynika z nich, że istnieje istotnie statystyczny związek między typem bodźca, a czasem reakcji wartość p jednoczynnikowego testu ANOVA wyniosła p < 2*10-16. Model liniowy z nałóżonymi kontrastami, zaś wykazał istotną interakcję między typem bodźca,

a faktem kolorowania mandali (p < 0.05). Graficzne różnice zostały przedstawione na poniż-

 $^{^* -} p < 0.05$

- szym wykresie box and whiskers plot na Rysunku 4. Wyniki dopasowania modelu liniowego
- ² oraz nałożonych kontrastów załączone zostały w Załączniku 1.

- Podsumowując wszystkie powyższe wyniki, przyjęto hipotezę alternatywną (H_1) mówiącą o
- istniejącym statystycznym związku dla interakcji entropii otoczenia z faktem wykonania kolo-
- rowanki uważności, dla interakcji typu bodźca wzrokowego z wykonaniem kolorowanki oraz
- 6 dla samego efektu głównego typu bodźca wzrokowego w warunku wysokiej entropii, wyko-
- 7 nanie kolorowanki wiąże się z wyższymi czasami reakcji, tak samo jak w warunku nieprzy-
- 8 stającego (ang. incongruent) bodźca, a sam nieprzystający (ang. incongruent) bodziec również
- 9 zwiększa czasy reakcji.

10

DYSKUSJA

Badanie miało na celu sprawdzenie wpływu entropii informacji zaindukowanej przez różnorodność obiektów w otoczeniu i wykonaniem treningu uważności na selektywną uwagę wzrokową. Postawiono hipotezę o pozytywnym wpływie wysokiej entropii otoczenia oraz wykonaniem treningu uważności na selektywną uwagę wzrokową. Spodziewano się zatem wyników,
które świadczyłyby o tym, że osoby wykonujące test uwagi Eriksena w środowisku o wysokiej
entropii po wcześniejszym wykonaniu kolorowanki uważności będą miały lepsze (niższe) czasy reakcji niż osoby malujące najpierw pustą kartkę lub znajdują się w pomieszczeniu o niskiej

entropii. Jednakże, uzyskane wyniki nie potwierdzają założeń postawionej w badaniu hipotezy. Może to stanowić sprzeczność z wynikami większości dotychczasowych badań szukających
podobnych zależności, ale jednocześnie ciekawe ich uzupełnienie. Okazuje się, że nie istnieją
efekty główne indukowanej entropii otoczenia oraz treningu uważności na selektywną uwagę
wzrokową. Jednakże, badanie wykazało istotną interakcję badanych zmiennych niezależnych
oraz efekt prosty kolorowania mandali w warunku wysokiej entropii otoczenia. Dodatkowo
poza hipotezą został wykazany efekt główny typu bodźca wzrokowego oraz jego interakcję z
treningiem uważności i jej efekt prosty w warunku bodźca nieprzystającego (ang. *incongruent*).

Psychologia środowiska i optymalizacja środowiska pracy stają się coraz ważniejsze w roz-9 woju architektury i planowania przestrzennego. Mają one za zadanie poprawe umiejętności i 10 efektywności własnej pracy (Bańka, 2018). Cały czas jako ludzie badamy nowe uwarunkowa-11 nia środowiskowe, nowe sposoby optymalizacji naszego otoczenia. Szukamy interakcji jakie 12 mogą przyczynić się do relacji między ludźmi, a ich środowiskiem (Spano et al., 2020). Nie-13 zależnie od tego jak zmodyfikowane jest środowisko, zmiany mogą się przyczynić do innego postrzegania otoczenia, a jednocześnie mogą w żadnym stopniu nie zmienić wewnętrznej atry-15 bucji człowieka wobec otoczenia w jakim się znajduje. Może też nie zmienić jego dyspozycji 16 psychicznej w danym momencie. 17

18 Ewaluacja

Powyższe badanie jednakże posiada swoje ograniczenia. W przypadku krótkiej czynności pokolorowania pojedynczej mandali - wpływ na poziom uwagi wzrokowej badanych może nie
być wykrywalny (Thompson et al., 2021), co może być jednym z możliwych wyjaśnień niepotwierdzenia założonej hipotezy efektu głównego treningu uważności. Dodatkowo nie są znane
uwarunkowania różnic płciowych w zależności od rodzaju kolorowania, jak również obycie się i
doświadczenia badanych z mandalami. Takie zmienne indywidualne mogły wpłynąć na przedstawione wyniki, ale równocześnie mogą one stanowić przedmiot zainteresowania kolejnych
badań.

LITERATURA

- ² Bańka, A. (2018). Psychologia środowiskowa jakości życia i innowacji społecznych. Sto-
- warzyszenie Psychologia i Architektura : Uniwersytet SWPS, Poznań, Katowice. OCLC:
- 4 1150531050.

1

- ⁵ Campenni, C. E. and Hartman, A. (2020). The Effects of Completing Mandalas on Mood,
- 6 Anxiety, and State Mindfulness. *Art Therapy*, 37(1):25–33.
- ⁷ Campillo, E., Ricarte, J. J., Ros, L., Nieto, M., and Latorre, J. M. (2018). Effects of the Visual
- and Auditory Components of a Brief Mindfulness Intervention on Mood State and on Visual
- and Auditory Attention and Memory Task Performance. *Current Psychology*, 37(1):357–365.
- ¹⁰ Carsley, D. and Heath, N. L. (2018). Effectiveness of mindfulness-based colouring for test
- anxiety in adolescents. *School Psychology International*, 39(3):251–272.
- Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Academic Press, New
- York, rev. ed edition.
- Dresler, E. and Perera, P. (2019). 'Doing mindful colouring': just a leisure activity or something
- more? Leisure Studies, 38(6):862–874.
- Gavazzi, G., Marzi, T., Giganti, F., Lorini, J., Fisher, A. D., and Viggiano, M. P. (2021). Pleasure
- plays the music: visual attention and expertise. preprint, PsyArXiv.
- ¹⁸ Gifford, R., Steg, L., and Reser, J. P. (2011). Environmental Psychology. In Cheung, F. M.,
- Knowles, M. C., Kyrios, M., Littlefield, L., Overmier, B., and Prieto, J. M., editors, *IAAP*
- 20 Handbook of Applied Psychology, pages 440 470. Blackwell Publishing Ltd, Hoboken,
- first edition.
- Gotink, R. A., Meijboom, R., Vernooij, M. W., Smits, M., and Hunink, M. M. (2016). 8-week
- 23 Mindfulness Based Stress Reduction induces brain changes similar to traditional long-term
- meditation practice A systematic review. *Brain and Cognition*, 108:32–41.

- Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., and Ott, U. (2011). How
- Does Mindfulness Meditation Work? Proposing Mechanisms of Action From a Conceptual
- and Neural Perspective. *Perspectives on Psychological Science*, 6(6):537–559.
- 4 Kiken, L. G., Garland, E. L., Bluth, K., Palsson, O. S., and Gaylord, S. A. (2015). From a state
- to a trait: Trajectories of state mindfulness in meditation during intervention predict changes
- in trait mindfulness. *Personality and Individual Differences*, 81:41–46.
- ⁷ Kwak, S. G. and Kim, J. H. (2017). Central limit theorem: the cornerstone of modern statistics.
- 8 Korean Journal of Anesthesiology, 70(2):144.
- 9 Lohr, V. I., Pearson-Mims, C. H., and Goodwin, G. K. (1996). Interior Plants May Improve
- Worker Productivity and Reduce Stress in a Windowless Environment. Journal of Environ-
- *mental Horticulture*, 14(2):97–100.
- McConnell, M. M. and Shore, D. I. (2011). Upbeat and happy: Arousal as an important factor
- in studying attention. Cognition and Emotion, 25(7):1184–1195.
- Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E.,
- and Lindeløy, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Rese-
- arch Methods, 51(1):195–203.
- 17 R Core Team (2022). R: A Language and Environment for Statistical Computing.
- Shankar, R. and Amir, R. (2020). The Effectiveness of Mandala Colouring Therapy in Incre-
- asing Year 3 Pupils' Focus during the Initial Lesson. *Creative Education*, 11(04):581–595.
- Spano, G., Giannico, V., Elia, M., Bosco, A., Lafortezza, R., and Sanesi, G. (2020). Human
- Health-Environment Interaction Science: An emerging research paradigm. Science of The
- *Total Environment*, 704:135358.
- 23 Stamps, A. E. (2002). Entropy, Visual Diversity, and Preference. The Journal of General
- 24 Psychology, 129(3):300–320.
- 25 Stamps, A. E. (2004). ENTROPY AND VISUAL DIVERSITY IN THE ENVIRONMENT.
- Journal of Architectural and Planning Research, 21(3):239–256.

- Sumantry, D. and Stewart, K. E. (2021). Meditation, Mindfulness, and Attention: a Meta-
- analysis. *Mindfulness*, 12(6):1332–1349.
- Thompson, C., Quigley, E., and Taylor, A. (2021). The Influence of a Short-Term Mindfulness
- 4 Meditation Intervention on Emotion and Visual Attention. Journal of Cognitive Enhance-
- 5 *ment*, 5(1):73–82.
- 6 Zalasiewicz, J., Williams, M., Steffen, W., and Crutzen, P. (2010). The New World of the
- Anthropocene. Environmental Science & Technology, 44(7):2228–2231.
- 8 Zeidan, F., Johnson, S. K., Diamond, B. J., David, Z., and Goolkasian, P. (2010). Mindful-
- ness meditation improves cognition: Evidence of brief mental training. Consciousness and
- 10 Cognition, 19(2):597–605.
- ¹¹ Żejmo, J. (2022). Praktyka mindfulness jako skuteczna metoda poprawy umiejętności radzenia
- sobie ze stresem. *Edukacja Humanistyczna*, 2(47):189–200.

ZAŁĄCZNIK 1

Tabela 4: Wyniki dopasowania modelu liniowego oraz nałożonych kontrastów Wartości p dopasowania modelu liniowego

Zmienna	•	wartość p
Entropia		0.50
Typ 1		$< 2 * 10^{-16*}$
Typ 2		$< 2 * 10^{-16*}$
Mandala		$< 2 * 05^{-5*}$
Mandala:Typ1		0.40
Mandala:Typ 2		0.0092*
Entropia:Typ 1		0.29
Entropia:Typ 2		0.44
War	tości p kontrastó	w
	ntropia, typ)	wartość p
N Congurent	W Congurent	1.00
N Congurent	N Incongurent	0.0001*
N Congurent	W Incongurent	0.014^{*}
N Congurent	N Neutral	0.97
N Congurent	W Neutral	0.94
W Congurent	N Incongurent	0.0001*
W Congurent	W Incongurent	0.0001*
W Congurent	N Neutral	1.00
W Congurent	W Neutral	0.39
N Incongurent	W Incongurent	0.96
N Incongurent	N Neutral	0.0001*
N Incongurent	W Neutral	0.0001*
W Incongurent	N Neutral	0.0072*
W Incongurent	W Neutral	0.0001*
N Neutral	W Neutral	0.98
Kontrast (mandala, typ) wartość p		
nie Congurent	tak Congurent	0.47
nie Congurent	nie Incongurent	0.0001*
nie Congurent	tak Incongurent	0.0001^*
nie Congurent	nie Neutral	0.92
nie Congurent	tak Neutral	1.00
tak Congurent	nie Incongurent	0.0001*
tak Congurent	tak Incongurent	0.0001*
tak Congurent	nie Neutral	0.063
tak Congurent	tak Neutral	0.49
nie Incongurent	tak Incongurent	0.0001^*
nie Incongurent	nie Neutral	0.0001*
nie Incongurent	tak Neutral	0.0001*
nie Incongurent	nie Neutral	0.0001*
nie Incongurent	tak Neutral	0.0001*
nie Neutral	tak Neutral	0.91
* ~ < 0.05		

^{* -} p < 0.05