

Diplomurkunde

Die Technische Universität Bergakademie Freiberg verleiht

Herrn Wilhelm Tell

- geb. am 10. September 1998 in Jena -

den akademischen Grad

Diplom-Ingenieur (Dipl.-Ing.)

nachdem er die Diplomprüfung im Studiengang

Werkstoffwissenschaft und Werkstofftechnologie

der Fakultät für Werkstoffwissenschaft und Werkstofftechnologie am 14. Juni 2024 bestanden hat.

Freiberg, 19. Juni 2024

Prof. Dr.-Ing. G. Wolf

Dekan

Prof. Dr. rer. nat. habil. A. Leineweber Vorsitzender des Prüfungsausschusses

Technische Universität Bergakademie Freiberg Fakultät für Werkstoffwissenschaft und Werkstofftechnologie

Zeugnis

über die

Diplomprüfung

Herr Wilhelm Tell

- geb. am 10. September 1998 in Jena -

hat am 14. Juni 2024

die Diplomprüfung im Studiengang

Werkstoffwissenschaft und Werkstofftechnologie

Studienrichtung: Umformtechnik

nach der Prüfungs- und Studienordnung für den Studiengang Werkstoffwissenschaft und Werkstofftechnologie der Fakultät für Werkstoffwissenschaft und Werkstofftechnologie vom 6. September 2016 absolviert.

In der Diplomprüfung wurder	nachstehende Noten	erreicht
-----------------------------	--------------------	----------

In der Diplomprufung wurden flachsierlerlag Notell erfelcht.		
	LP	Note
Pflichtmodule aller Studienrichtungen:		
Werkstoffprüfung	6	2,7
Ingenieurpraktikum (WWT)	30	2,3
Pflichtmodule Studienrichtung Umformtechnik:		
Theorie der Umformung I	4	2,3
Maschinen- und Apparateelemente	5	2,0
Werkstoffprüfung	6	2,7
Grundlagen der bildsamen Formgebung	4	3,0
Einführung in die Eisenwerkstoffe	4	2,0
Prinzipien der Wärme- und Stoffübertragung	5	3,7
Literaturarbeit (Umformtechnik)	3	3,0
Theorie der Umformung II	4	1,3
Umformmaschinen	4	1,0
Thermische Behandlungstechnologien in der Umformtechnik	5	1,3
Werkstoffverhalten in Umformprozessen	6	1,7
Technologie der Massivumformung	4	1,7
Spezielle Umformverfahren, Pulvermetallurgie/Plattieren	9	1,3
Technologie der Blechumformung	4	1,3
Simulation von Umformprozessen	5	1,3
Modellierung / Numerische Methoden in der Umformtechnik	8	1,7
Entwicklung von Flachprodukten	3	
Umformwerkzeuge	4	2,3
Technologie der Langprodukte	4	1,0
Technologie der Flachprodukte	4	1,3
Modellierung in der Umformtechnik	4	3,3
Experimentelle Studienarbeit, Studienrichtung Umformtechnik	7	3,0
Wahlpflichtmodule:		
Produktentwicklung und Qualitätssicherung	3	
Formgedächtniswerkstoffe	3	2,0
Rapid Prototyping, Modell- und Formenbau	3	1,7
Werkstoffrecycling	3	1,3
Q&P-Wärmebehandlung von Stählen	4	1,0
Werkstoffe für die Additive Fertigung	3	1,3
ŭ ŭ	•	.,0

LP: Leistungspunkte 1,0 – 1,5: sehr gut; 1,6 – 2,5: gut; 2,6 – 3,5: befriedigend; 3,6 – 4,0: ausreichend Der ECTS-Rang wurde entsprechend der Prüfungsordnung § 11 (7) Satz 1 gebildet.

Diplomarbeit:

Thema: "Implementierung und Validierung eines Berechnungsmodells für die Stabstahl-

und Drahtproduktion zur Berechnung des "Tempcore" Prozesses"

Note:

3,0

LP:

30

Prüfer:

Prof. Dr.-Ing. Ulrich Prahl / Priv.-Doz. Dr.-Ing. habil. Matthias Schmidtchen

Gesamtnote: gut (2,2)

ECTS-Rang: D

Gesamtnote des Grundstudiums:

3,0 115

Freiberg, 19. Juni 2024

Dekan

Prof. Dr. rer. nat. habil. A. Leineweber Vorsitzender des Prüfungsausschusses

ECTS-Rang der erfolgreichen Teilnehmer

Α	die besten	10%
В	die nächsten	25 %
С	die nächsten	30 %
D	die nächsten	25 %
E	die nächsten	10%
F	(nicht bestand	len)

Technische Universität Bergakademie Freiberg Fakultät für Werkstoffwissenschaft und Werkstofftechnologie

Zeugnis

über die

Prüfungen des Grundstudiums

Herr Wilhelm Tell

- geb. am 10. September 1998 in Jena -

hat am 17. August 2020

die Prüfungen des Grundstudiums im Studiengang

Werkstoffwissenschaft und Werkstofftechnologie

nach der Prüfungs- und Studienordnung für den Studiengang Werkstoffwissenschaft und Werkstofftechnologie der Fakultät für Werkstoffwissenschaft und Werkstofftechnologie vom 6. September 2016 absolviert. In den Prüfungen des Grundstudiums wurden nachstehende Noten erreicht:

	LP	Note
Pflichtmodule:		
Technische Mechanik	9	2,7
Höhere Mathematik für Ingenieure 1	9	3,7
Physik für Naturwissenschaftler I	6	2,3
Allgemeine, Anorganische und Organische Chemie	10	3,3
Grundlagen der Werkstoffwissenschaft I	5	3,0
Höhere Mathematik für Ingenieure 2	7	3,3
Physik für Naturwissenschaftler II	6	3,3
Grundlagen der Physikalischen Chemie für Werkstoffwissenschaft	9	3,3
Einführung in die Elektrotechnik	4	4,0
Grundlagen der Werkstofftechnologie I (Erzeugung)	6	2,3
Grundlagen der Werkstoffwissenschaft II	8	2,0
Grundlagen der Werkstofftechnologie II (Verarbeitung)	7	3,3
Prozedurale Programmierung	6	3,0
Statistik/Numerik für ingenieurwissenschaftliche Studiengänge	7	3,0
Technisches Darstellen	3	
Grundlagen der Mikrostrukturanalytik	7	3,3
Nichteisenmetalle	3	2,3
Grundlagen der BWL	6	3,0

Vordiplom-Note: befriedigend (3,0)

Freiberg, 15. Oktober 2020

FREISTAAT SACHSEN

Prof. Dr. rer. nat. habil. A. Leineweber Vorsitzender des Prüfungsausschusses