Х24 — Добыча нефти

А1^{0.30} Пусть залежь нефти представляет собой участок древних речных отложений песчаника в форме параллелепипеда высотой h=10м, шириной b=100м и длинной L=2000м. Пористость породы $\varphi=0.1$. Оцените запасы нефти $m_{\rm H}$ в данном месторождении. Выразите ответ через L,b,h,ρ и φ , а также приведите его численное значение в тоннах. Считайте, что нефтяной флюид целиком заполняет объём пор.

0.10 Для объёма нефти получено:

$$V_{\rm H} = \varphi b h L$$
.

2 ×

0.10 Получен правильный ответ (по 0.1 балла за выражение и численное значение):

$$m_{\rm H} = \rho \varphi b h L = 160 \cdot 10^3 {
m TOHH}.$$

A2^{0.30} Пусть пластовое давление нефти на дне залежей составляет $p_{\text{пл}} = 250$ атм. Найдите, при какой максимальной глубине залегания H_{max} месторождение будет фонтанирующим, т.е. нефть будет вытекать на поверхность под действием собственного давления. Выразите ответ через ρ , g и $p_{\text{пл}}$, а также приведите его численное значение. Сжимаемостью нефти можно пренебречь.

0.10 Получено выражение для H_{max} :

$$H_{max} = \frac{p_{\Pi\Pi}}{\rho g}.$$

0.20 Рассчитана величина H_{max} :

$$H_{max} \approx 3.125$$
км

АЗ^{0.60} Оцените максимально возможный КИН α_{max} в режиме фонтанирования при пластовом давлении $p_{\Pi \Pi} = 250$ атм, если сжимаемость нефти $\beta = 5 \cdot 10^{-10}$ Па. Выразите ответ через β и $p_{\Pi \Pi}$, а также приведите его численное значение. Считайте, что отложения русла рек изолированы непроницаемыми глинами с малой пористостью. Глубина залежей H может быть выбрана произвольным образом.

0.30 Указано или используется, что максимальная доля запасов добывается в случае очень малых глубин залежей.

0.20 Получено выражение для α_{max} :

$$\alpha_{max} = \beta p_{\Pi \Pi}$$
.

0.10 Определено численное значение для α_{max} :

$$\alpha_{max} \approx 1.25\%$$
.

А4^{0.30} При тех же самых данных оцените максимально возможный КИН α_{max} в режиме фонтанирования, если снизу в пластовых отложениях находится вода объемом kV_0 (k=9) при начальных запасах нефти V_0 . Сжимаемость воды считайте равной сжимаемости нефти. Выразите ответ через β и $p_{\pi\pi}$, а также приведите его численное значение. Считайте что забор жидкости происходит сверху, т.е. забирается только нефть. Глубина залежей H может быть выбрана произвольным образом.

0.10 Проявлено понимание, что из-за наличия в системе воды объём добываемой нефти увеличивается на величину, равную изменению объёма воды.

2 ×

0.10 Получен правильный ответ (по 0.1 балла за выражение и численное значение):

$$\alpha_{max} = 10\beta p_{\Pi\Pi} \approx 12.5\%.$$

В1^{1.00} Рассмотрим горизонтальное течение жидкости вдоль оси x между двумя параллельными плоскостями высотой h. Расстояние между плоскостями $w \ll h$. Определите объёмный расход (далее во всех пунктах задачи - поток) жидкости Q через поперечное сечение wh. Ответ выразите через η , w, h и градиент давления dp(x)/dx.

0.40 Из условия постоянства импульса прямоугольного параллелепипеда получено:

$$\frac{d^2v}{dz^2} = \frac{1}{\eta} \frac{dp}{dx}.$$

При неправильном знаке в последующих выкладках применяется РЕР везде, кроме ответов.

0.10 Получено выражение для dv(z)/dz:

$$\frac{dv}{dz} = \frac{z}{\eta} \frac{dp}{dx}.$$

0.20 Получено выражение для v(z):

$$v(z) = -\frac{1}{2\eta} \frac{dp}{dx} \left(\frac{w^2}{4} - z^2 \right).$$

0.10 Для потока *Q* записано:

$$Q = \int_{-w/2}^{w/2} v(z) \cdot h dz.$$

2 ×

0.10 Получено выражение для *Q* (по 0.1 балла за величину и знак):

$$Q = -\frac{w^3 h}{12\eta} \frac{dp}{dx}.$$

B2^{1.00} В центре щели создается избыточное давление Δp . Найдите зависимость избыточного давления p' в щели от координаты x. Ответ выразите через Δp , Q, E, h, η и x.

0.10 Учтено, что в каждой половине трещины поток жидкости равен Q/2 и записано:

$$\frac{Q}{2} = -\frac{w^3h}{12\eta}\frac{dp'}{dx}.$$

Если вместо Q/2 записано Q, то в последующих выкладках применяется РЕР везде, кроме ответов.

0.20 Записано выражение для объёма с подстановкой эмпирической формулы для w(x):

$$\frac{Q}{2} = -\frac{h^4 p'^3}{12\eta E^3} \frac{dp'}{dx}.$$

0.50 Получено уравнение для определения p' соотношение:

$$\int_{\Delta p}^{p'(x)} p'^3 dp' = \frac{p'^4(x) - \Delta p^4}{4} = -\frac{6Q\eta E^3 x}{h^4}.$$

0.20 Получено правильная зависимость p'(x) (по 0.1 балла за правильные величины обоих слагаемых и знак):

$$p'(x) = \sqrt[4]{\Delta p^4 - \frac{24Q\eta E^3 x}{h^4}}.$$

B3^{0.20} Трещина заканчивается в положении, соответствующем равному нулю избыточному давлению. Определите длину трещины L. Ответ выразите через Δp , E, h, η и Q.

0.10 Для своей формулы правильно выражена полудлина трещины:

$$\frac{L}{2} = \frac{\Delta p^4 h^4}{24Q\eta E^3}.$$

0.10 Получено выражение для *L*:

$$L = \frac{\Delta p^4 h^4}{12Q\eta E^3}.$$

В4^{0.70} Определите объем трещины V. Ответ выразите через $\Delta p, h, \eta, Q$ и E.

0.10 Записано выражение для объёма *V* :

$$V = 2 \int_{0}^{L} hw(x) dx.$$

0.20 Для своей формулы получено выражение для объёма как интеграл функции от x:

$$V = \frac{2h^{2}\Delta p}{E} \int_{0}^{L} \sqrt[4]{1 - \frac{24Q\eta E^{3}x}{h^{4}\Delta p^{4}}} dx.$$

0.20 Верно вычислен интеграл:

$$\int_{0}^{1} \sqrt[4]{1-z} dz = \frac{4}{5}.$$

0.20 Получено выражение для *V* :

$$V = \frac{h^6 \Delta p^5}{15 Q \eta E^4}.$$

 ${f B5^{0.30}}$ Рассчитайте максимально возможные значения длины трещины L_{max} и её объёма V_{max} .

 $oldsymbol{0.10}$ Определено численное значение L_{max} :

$$L_{max} \approx 83$$
 м.

Оценивается только правильное число.

0.20 Определено численное значение V_{max} :

$$V_{max} = 6.7 \text{M}.$$

Оценивается только правильное число.

С1^{1.00} Определите скорость v движения границы жидкостей при перемещении фронта на величину S. Ответ выразите через p_1 , p_2 , L, η_1 , η_2 , k_1 и k_2 .

2 ×

0.20 Получены градиенты давлений в жидкостях 1 и 2:

$$\frac{\partial p_{\rm H}}{\partial x} = -\frac{\eta_1 \nu}{k_1} \qquad \frac{\partial p_{\rm B}}{\partial x} = -\frac{\eta_2 \nu}{k_2}.$$

0.40 Получена связь разности давлений со скоростью *v*:

$$p_2 - p_1 = \frac{\eta_2 x v}{k_2} + \frac{\eta_1 (L - x) v}{k_1}.$$

0.20 Получено выражение для *v*:

$$v = \frac{p_2 - p_1}{\frac{\eta_1 L}{k_1} + \left(\frac{\eta_2}{k_2} - \frac{\eta_1}{k_1}\right) S}.$$

С2^{0.90} Определите зависимость перемещения S фронта от времени t. Ответ выразите через $p_1,\,p_2,\,L,\,\eta_1,\,\eta_2,\,k$ и t

- **0.20** Выражено время dt, за которое фронт перемещается на величину dS:
- **0.20** Получена зависимость времени t от перемещения S:

$$t = \frac{1}{k(p_2 - p_1)} \int_0^S (\eta_1 L + (\eta_2 - \eta_1) x) dx = \frac{1}{k(p_2 - p_1)} \left(\eta_1 L S + \frac{(\eta_2 - \eta_1) S^2}{2} \right).$$

0.10 Составлено квадратное уравнение относительно *S*:

$$S^{2} - \frac{2\eta_{1}LS}{\eta_{1} - \eta_{2}} + \frac{2k(p_{2} - p_{1})t}{\eta_{1} - \eta_{2}} = 0.$$

0.20 Решено квадратное уравнение относительно *S*:

$$S(t) = \frac{\eta_1 L}{\eta_1 - \eta_2} \pm \sqrt{\left(\frac{\eta_1 L}{\eta_1 - \eta_2}\right)^2 - \frac{2k(p_2 - p_1)t}{\eta_1 - \eta_2}}.$$

0.20 Выбран нужный корень и получена правильная зависимость S(t):

$$S(t) = \frac{\eta_1 L}{\eta_1 - \eta_2} - \sqrt{\left(\frac{\eta_1 L}{\eta_1 - \eta_2}\right)^2 - \frac{2k(p_2 - p_1)t}{\eta_1 - \eta_2}}.$$

С3^{0.50} Определите полное время τ вытеснения нефти из месторождения. Выразите ответ через p_1 , p_2 , L, η_1 , η_2 и k и рассчитайте его.

- **0.10** Указано или следует из решения, что $\tau = t(L)$.
- 2×0.20 Получен правильный ответ для au (по 0.2 балла за выражение и численное значение):

$$au = rac{(\eta_1 + \eta_2)L^2}{2k(p_2 - p_1)} pprox 26$$
лет.

с Страница 4 из 6 ≈ ∞

C4^{0.80} При каком условии на параметры системы движение границы будет устойчивым, то есть при малом отклонении формы границы от плоской это отклонение не будет возрастать? Запишите условие устойчивости через η_1 , η_2 , k_1 и k_2 . Устойчиво ли течение жидкости, рассмотренное в пунктах С2 и С3?

- **0.30** Указано или следует из решения, что отклонение не будет возрастать, если v(x + dx) < v(x).
- **0.40** Сделан вывод, что критерием устойчивости является следующее неравенство:

$$\frac{\eta_2}{k_2} > \frac{\eta_1}{k_1}$$
.

0.10 Сделан вывод, что движение рассматриваемого течения является неустойчивым.

D1^{0.80} Найдите зависимость скорости течения жидкости в такой трубе от расстояния до оси трубы v(r), максимальное значение скорости v_{max} и полный поток Q жидкости через сечение цилиндра. Ответы выразите через Δp , η , L, R и r.

0.30 Из условия постоянства импульса цилиндра радиусом r получено:

$$\frac{\partial v}{\partial r} = -\frac{r}{2} \frac{\Delta p}{nL}.$$

0.20 Получен правильная зависимость v(r):

$$v(r) = \frac{\Delta p(R^2 - r^2)}{4\eta L}.$$

0.10 Для потока *Q* записано:

$$Q = \int_{0}^{R} v(r) \cdot 2\pi r dr.$$

0.20 Получено выражение для потока *Q*:

$$Q = \frac{\pi \Delta p R^4}{8\eta L}.$$

 ${f D2^{0.20}}$ Выразите распределение скорости течения жидкости v(r) через полный поток Q,R и r.

0.20 Получена правильная зависимость v(r):

$$v(r) = \frac{2Q}{\pi R^2} \left(1 - \frac{r^2}{R^2} \right).$$

D3^{0.20} Найдите поток Q в сечении забоя на расстоянии h от его нижнего края и соответствующее выражение для вертикальной скорости v(r,h) в зависимости от расстояния до оси r и высоты h. Ответы выразите через Q_0 , H, R, r и h.

0.10 Получена правильная зависимость Q(h):

$$Q(h) = \frac{Q_0 h}{H}.$$

с Страница 5 из 6 ≈

0.10 Получена правильная зависимость v(r,h):

$$v(r,h) = \frac{2Q_0h}{\pi R^2 H} \left(1 - \frac{r^2}{R^2}\right).$$

 $\mathbf{D4^{0.30}}$ Рассмотрим кольцо высотой dh с внутренним и внешним радиусами r и r+dr соответственно. Используя тот факт, что жидкость несжимаема, покажите, что из условия постоянства объёма жидкости внутри выделенного кольца следует соотношение:

$$\frac{\partial v}{\partial h} = -\frac{1}{r} \frac{\partial (u_r r)}{\partial r}.$$

Вы можете использовать это соотношение, даже если не смогли его доказать.

0.10 Правильно записан поток вектора скорости через основания кольца:

$$q_{\text{OCH}} = q = 2\pi r dr v(r, h + dh) - 2\pi r dr v(r, h).$$

0.10 Правильно записан поток вектора скорости через боковую поверхность кольца:

$$q_{\text{бок}} = 2\pi dh(r + dr)u_r(r + dr,h) - 2\pi dhru_r(r,h).$$

0.10 Из условия $q = q_{\text{осн}} + q_{\text{бок}} = 0$ показано требуемое.

D5^{0.50} Найдите радиальную скорость течения жидкости $u_r(r,h)$ в зависимости от расстояния до оси r и высоты h, а также максимальную величину её модуля $u_{r(max)}$. Ответы выразите через Q_0 , R, H, h и r.

0.10 Правильно выполнено интегрирование выражения, полученного в D4:

$$ru_r(r,h) = -\frac{2Q_0}{\pi R^2 H} \int_0^r \left(1 - \frac{z^2}{R^2}\right) z dz.$$

2 ×

0.10 Получена правильная зависимость $u_r(r,h)$ (по 0.1 балла за величину и знак):

$$u_r(r,h) = -\frac{Q_0}{\pi R^2 H} \left(r - \frac{r^3}{2R^2} \right).$$

0.10 Определено расстояние r_{max} , соответствующее $u_{r(max)}$:

$$r_{max} = \sqrt{\frac{2}{3}}R.$$

0.10 Получен правильный ответ для $u_{r(max)}$:

$$u_{max} = \left(\frac{2}{3}\right)^{3/2} \frac{Q_0}{\pi RH}.$$

D6^{0.10} Чему равно отношение $u_{r(max)}/v_{max}$? Ответ выразите через R и H.

0.10 Получен правильный ответ:

$$\frac{u_{r(max)}}{v_{max}} = \frac{\sqrt{2}R}{3\sqrt{3}H}$$

с Страница 6 из 6 ≈ ∞