Recap 3

HS 2018 PHIT

Aufgabe 1

(MC-Typ 1) Sie haben einen Plattenspieler, dessen Plattenteller horizontal ausgerichtet ist, siehe Fig. 1.

Fig. 1 Plattenspieler

Die Platte dreht sich mit 72 Umdrehungen pro Minute. Wie sieht der Winkelgeschwindigkeitsvektor $\vec{\omega}$ aus?

Richtig?			×	
	$(3.77s^{-1})$	(0)	(0)	(0)
$ec{\omega}$	0	0	0	-452.39s ⁻¹
ω		7.54s ⁻¹	(−7.54s ⁻¹)	

72
$$\mu_{\text{m}} = 1.2 \text{ Sec}$$
 $u = 2\pi = 2\pi \cdot n$
 $u = 0 \text{ alauftabl}$
 $u = 7.59 \cdot 5$
 $u = 0 \text{ otherwise}$
 $u = 0 \text{ otherwise}$

Aufgabe 2

(MC-Typ 1) Sie haben einen Plattenspieler, dessen Plattenteller horizontal ausgerichtet ist, siehe Fig. 1. Die Platte hat den Radius r. Zum Zeitpunkt t dreht sich die Platte mit einer konstanten Winkelgeschwindigkeit ω im Uhrzeigersinn um die z – Achse. Ein Stäubchen liegt auf dem äusseren Rand der Platte. Wie gross ist dann die Geschwindigkeit \vec{v} des Stäubchens, wenn der Ortsvektor \vec{r}_S des Stäubchens zum Zeitpunkt t gegeben ist durch $\vec{r}_S(t) = (r,0,0)$? Hinweis: Das können Sie auch ohne Kreuzprodukt einfach mit Hilfe geometrischer Anschauung bestimmen.

Richtig?				
	$\left(-\omega r\right)$	(0)	(ωr)	(0)
\vec{v}	0	0	0	$ -\omega r $
	(0)	(ωr)	(0)	(0)

Aufgabe 3

(MC-Typ 2)

Aussage	Richtig	Falsch
Der Schwerpunkt eines Körpers ist immer im Innern des Körpers		
Wenn man einen Körper dreht ohne die Lage seines		
Schwerpunktes zu verändern verändert sich die Lageenergie des		
Körpers nicht.	•	
Wenn ein Rad rollt (kein Rutschen) hat der Punkt des Rades,	~	
welcher den Boden berührt, die Schnelligkeit null.		
Wenn ein Rad rollt (kein Rutschen) hat der Punkt des Rades,	~	
welcher den Boden berührt, die Geschwindigkeit null.	'	

Aufgabe 4

(MC-Typ 1) Eine Kugel mit Masse 4 kg und Radius 5cm rotiert mit 200 Umdrehungen pro Minute. Der Schwerpunkt der Kugel ist in Ruhe. Wie gross ist die Rotationsenergie E_{rot} der Kugel?

Richtig?				
E_{rot}	80 J	3160 J	0.02 J	0.9 J

$$E_{rot} = \frac{1}{2} \cdot 3 \cdot \omega^{L} = \frac{1}{2} \cdot \frac{1}{2} \cdot M \cdot R^{L} \cdot \omega^{L} = \frac{1}{2} \cdot \frac{1}{2} \cdot 4 \cdot 0.05^{L} \omega^{L}$$