WS 2019/20 30. Oktober 2019

Übungsblatt 3

Abgabe der schriftlichen Lösungen bis 13. November 2019

Aufgabe 11

 $m\"{u}ndlich$

Zeigen Sie, dass die Funktionen

(a) $n \mapsto k$,

(e) $n \mapsto n^k + k$,

- (b) $n \mapsto \lceil \log n \rceil$,
- (f) $n \mapsto 2^n$ und
- (c) $n \mapsto \lceil \log n \rceil^k$,

(g) $n \mapsto n! \cdot |\sqrt{n}|$

(d) $n \mapsto n \cdot \lceil \log n \rceil$,

für jede Konstante $k \in \mathbb{N}$ echte Komplexitätsfunktionen sind.

Aufgabe 12

 $m\"{u}ndlich$

Der Kleene-Stern einer Sprache L ist definiert durch

$$L^* = \{x_1 \dots x_k \mid k \ge 0 \text{ und } x_1, \dots, x_k \in L\}.$$

Zeigen Sie, dass die Komplexitätsklassen P und NP abgeschlossen sind unter Vereinigung, Schnitt und dem Kleene-Stern.

Aufgabe 13

 $m\ddot{u}ndlich$

Zeigen Sie, dass $\mathsf{DSPACE}(\log\log n)$ nichtreguläre Sprachen enthält.

Hinweis: Betrachten Sie die Sprache

$$L = \{bin(1)\#\cdots\#bin(n) \mid n \ge 1\},\$$

wobei bin(i) die Binärdarstellung der Zahl i (ohne führende Nullen) ist. Bemerkung: Es lässt sich zeigen, dass $\mathsf{DSPACE}(o(\log\log n)) = \mathsf{REG}$ ist.

Aufgabe 14 mündlich

Zeigen Sie, dass eine Sprache L genau dann in $\mathsf{NTIME}(\mathcal{O}(t)) \cap \mathsf{co-NTIME}(\mathcal{O}(t))$ liegt, falls eine $\mathcal{O}(t(n))$ -zeitbeschränkte NTM M mit L(M) = L existiert, die auf allen Eingaben strong ist.

Aufgabe 15 (Blum-Komplexität)

 $m\ddot{u}ndlich$

Eine partielle Funktion Φ , die (geeignete Kodierungen von) TMs M und Eingaben x in die natürlichen Zahlen abbildet, heißt **Komplexitätsmaß**, falls sie folgende Axiome erfüllt:

Axiom 1: $\Phi(M, x)$ ist genau dann definiert, wenn M(x) hält.

Axiom 2: Die Frage, ob $\Phi(M, x) = m$ gilt, ist entscheidbar.

Welche der folgenden Funktionen sind Komplexitätsmaße?

- (a) $time_M(x)$ und $space_M(x)$ für DTMs und NTMs.
- (b) $ink_M(x)$: Anzahl der Ersetzungen eines Symbols durch ein anderes Symbol.
- (c) $carbon_M(x)$: Anzahl der Ersetzungen eines Symbols durch das gleiche Symbol.

Dabei sollen $ink_M(x)$ und $carbon_M(x)$ (wie space_M(x)) nur dann definiert sein, wenn M(x) nur Rechnungen endlicher Länge ausführt.

Aufgabe 16 10 Punkte

Zeigen Sie, dass aus $\mathsf{E} \neq \mathsf{NE}$ folgt, dass $\mathsf{P} \neq \mathsf{NP}$ ist (downward separation).

Hinweis: Betrachten Sie die "tally Version" einer Sprache $A \subseteq \{0,1\}^*$,

$$tally(A) = \{0^{num(1x)} \mid x \in A\},\$$

wobei num(1x) die durch die Binärzahl 1x repräsentierte natürliche Zahl ist, und zeigen Sie die Äquivalenzen

$$A \in \mathsf{E} \Leftrightarrow tally(A) \in \mathsf{P}$$
 bzw. $A \in \mathsf{NE} \Leftrightarrow tally(A) \in \mathsf{NP}$.