Aufgabe 1

Man betrachte $\mathbb{P}_2(\mathbb{R}) = \mathbb{R}^2 \cup H_{\infty}$ und $\mathbb{P}_1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$ mit den Standardkarten, also $H_{\infty}: X_3 = 0, \infty = [1:0].$

Behauptung

- 1. $\pi: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_1(\mathbb{C}), [X_1:X_2:X_3] \mapsto [X_1+iX_2:X_3]$ ist wohldefiniert und surjektiv.
- 2. π induziert Bijektion der Standardkarte $\mathbb{R}^2 \equiv \{X_3 \neq 0\}$ auf $\mathbb{C} \equiv \{Z_2 \neq 0\}$.
- 3. $\pi^{-1}(\infty) = H_{\infty}$.

Beweis

1. Es seien

dann gilt

$$[X_1 : X_2 : X_3] = [X'_1 : X'_2 : X'_3],$$

 $X'_1 = \lambda X_1$
 $X'_2 = \lambda X_2$
 $X'_3 = \lambda X_3$

für ein $\lambda \in \mathbb{R} \setminus \{0\}$. Dann ist

$$\pi([X_1:X_2:X_3]) = [X_1 + iX_2:X_3]$$

und

$$\pi ([X'_1 : X'_2 : X'_3]) = [X'_1 + iX'_2 : X'_3]$$

$$= [\lambda X_1 + i\lambda X_2 : \lambda X'_3]$$

$$= [X_1 + iX_2 : X_3]$$

$$= \pi ([X_1 : X_2 : X_3]).$$

Folglich ist π wohldefiniert.

Sei nun weiter $[Z:X_3] \in \mathbb{P}_1(\mathbb{C})$ beliebig, mit $Z \in \mathbb{C}$. Wähle

$$X_1 = \operatorname{Re}(Z) \in \mathbb{R}$$

 $X_2 = \operatorname{Im}(Z) \in \mathbb{R}$,

so gilt

$$\pi ([X_1 : X_2 : X_3]) = [X_1 + iX_2 : X_3]$$
$$= [Z : X_3].$$

Somit ist π surjektiv.

Anmerkung o.B.d.A. ist $X_3 \in \mathbb{R}$, da sonst

$$[Z:X_3] = [Z/X_3:1]$$

2. Sei $X_3 \neq 0$, so ist o.B.d. A
 $X_3 = 1$ (siehe Anmerkung). Sei nun

$$\pi([X_1:X_2:1]) = \pi([X_1':X_2':1]),$$

dann gilt

$$[X_1 + iX_2 : 1] = \pi ([X_1 : X_2 : 1])$$

= $\pi ([X'_1 : X'_2 : 1])$
= $[X'_1 + iX'_2 : 1].$

Dann gilt aber

$$[X'_1 + iX'_2 : 1] = \lambda [X_1 + iX_2 : 1]$$

= $[\lambda X_1 + i\lambda X_2 : \lambda]$

für ein $\lambda \in \mathbb{R} \backslash \{0\}.$ O.B.d.A. sei $\lambda = 1$ (siehe Anmerkung), dann gilt

$$[X_1' + iX_2' : 1] = [X_1 + iX_2 : 1]$$

und damit (Vergleich letzter Komponente)

$$X_1' + iX_2' = X_1 + iX_2.$$

Dies ist nur erfüllt, wenn

$$X_1' = X_1$$
$$X_2' = X_2.$$

Damit folgt aber direkt

$$[X_1:X_2:1]=[X_1':X_2':1],$$

also ist π auf den Standardkarten injektiv. Mit oben gezeigter Surjektivität besteht hier also eine Bijektion.

3. Es gilt

$$\begin{split} \pi^{-1}\left(\infty\right) &= \pi^{-1}\left([1:0]\right) \\ &= \pi^{-1}\left([z:0]\right) \ \forall z \in \mathbb{C} \\ &= \left[\operatorname{Re}(z) : \operatorname{Im}(z) : 0\right] \ \forall z \in \mathbb{C} \\ &= \left[x : y : 0\right] \ \forall x, y \in \mathbb{R} \\ &= H_{\infty} \end{split}$$