PART I. Frameworks

\$1. Fromeworks and Risidity or Working Lowerds a

- G=(V,E) will clucys be a finite simple graph V... Veriex set, $V = [n] = \{1,...,n\}$ E... edge set, we write ij EE but also i~j Def: A (d-dimensional) framework is a pair (G,p) with a graph g and a map p: V - Rd.
 - · edges might cross + vert's might intensect

- · preferr to all point, pieled is one point
- we also write $p \in \mathbb{R}^{dV} = (\mathbb{R}^d)^V = (p_1, ..., p_n)$

Def:

· two fromeworks (G,p) and (G,q) are equivalent (we write (g,p)=(g,q)) if

· A motion of (G,p) is a continuous function $P(t): [0,1] \times V \longrightarrow \mathbb{R}^d$ so that p(0) = p and $(G, P(U) \sim (G, P) \forall t$

Q: Does the triansle have a mobion?

Note: translations and robations are motions! ... but we don't want to count them.

· Two frameworks (Gp) and (G,q) are congruent (and we write $(g,p) \cong (g,q)$) if (will also write $p \cong q$)

$$\|p_j - p_i\| = \|q_j - q_i\| \quad \forall i, j \in V$$

Ex:
$$p \cong q$$
 iff $p = Tq + v$ for
$$T \in O(\mathbb{R}^d), v \in \mathbb{R}^d$$
called isometries

• a motion p(t) of (G,p) is trivial if $(G,p(t)) \cong (G,p)$ Yt. A non-trivial motion is called a flex.

Remork: some cutnors use the terms

Plex for monion

non-trivial flet for flet

(I might do so as well unintentionally)

Even though we have all this in place ther are
 Still at least two plausible ways to define rigid / flexible
 framework

Def: A fromework (G,p) in

- continuously risid if every motion is trivial
- locally argicle if $\exists \varepsilon > 0$ s.t. for all (g,q) with $\|p_i q_i\| < \varepsilon$ $\forall i \in V$ we have $(g,p) \cong (g,q)$.

Remark: p(t) is a trivial motion for (g_1p) iff p(t) is a motion for $(K_{n_1}p)$. $\rightarrow each framework of <math>K_n$ is rigidly definition.

Thm: (Asimow-Roth, 1978)

A fromework in locally risid iff it in continuously argid.

 \Longrightarrow we only need one notion of rigidity We say that (G,p) is rigid if it is either, and flexible otherwise.

Note: • there is something much stronger we rould ask lex:

if $(g_{,p}) \cong (g_{,q})$ then $(g_{,p}) \cong (g_{,q})$

· This is known as global rigidity.

"There is a unique from ework with these edge lengths."

NOTE: complete grophs are rigid by definition Because for them: $\ell.r. = c.r.$

Def: Real $(g_{ip}) := \{g: V \rightarrow \mathbb{R}^d \mid (g_{ip}) \simeq (g_{iq})\}$ $= \{g \in \mathbb{R}^{dV} \mid \|p_{i} - p_{j}\|^2 \|q_{i} - q_{j}\|^2 \forall ij \in E\}$... realization space of (g_{ip})

quodrabe

quodrabe

quodrabe

quodrabe polynomials

e Real is an algebraic variety clefined by polynomial ident.

• A motion of $(G_{i}P)$ con now be defined as a map $P(t): [0,1] \longrightarrow REAL(G_{i}P)$

Q: What is the realization space of

- a point (in 2D)
$$\longrightarrow \mathbb{R}^2$$
 no reflections
- a line (in 2D) $\longrightarrow \mathbb{R}^2 \times SO(\mathbb{R}^2)$
- a triangle (in 2D) $\longrightarrow \mathbb{R}^2 \times O(\mathbb{R}^2) =: Iso$
- a square (in 2D) $\longrightarrow S' \times Iso$

-> the above picture is not accurate

• REAL $(G_{i,p}) = REAL(G_{i,p})/_{\cong}$ "x" Iso

REAL (G,P) ... reduced realization space

Iso ... group of isometries $S \{ (T,v) \mid T \in O(\mathbb{R}^d), v \in \mathbb{R}^d \}$ acts on REAL(G,p) via $(T,v) \circ p := Tp + v$

• REAL* (G,p) is not on olg. variety defined by polynomial identities and inequal.

How can we see this: we have to choose one representative from each isometry dass

• Idea: suppose po, ..., pol are officely independent

i.e. dopo+...+ ddpd = 0 has no non-triwal solutions

we require

Po =
$$(0, ..., 0)$$
 \rightarrow kills translation

P₁ = $(P_1^1, 0, ..., 0)$ \rightarrow kills one rotation

Example

P₂ = $(P_2^1, P_2^2, 0, ..., 0)$ \rightarrow tills regression

Pd = $(P_{\alpha_1}^1, ..., P_{\alpha_n}^{d-1}, P_{\alpha_n}^d)$ \rightarrow tills regression

- o all of this clearly expressible via polynomial inequal,
- each fromework p has a unique congruent representative p* in REAL*

 Ex: still continuous?
- e each motion p(t) gives a map pt(t): [0,1]→ REAL*(G,p)
- a trivial monion p(t) gives a constant map $p^*(t)$ i.e. p(t) is not constant

locally rigid \iff (G_1p) is an isolated point in Real* (G_1p) combinuously rigid \iff no non-constant poth in Real* (G_1p) starts in (G_1p) globally rigid \iff (G_1p) is the only point in Real* (G_1p)

Proof (*)

l.r. -> c.r.: obvious new. A non-constant path

cannot start in an isolated paint

c.r. => 7c.r. needs some help from real olg. geometry

Thm: Semi-algebraic ooks are locally path connected

i.e. every point has a neighborhood (basis)

UC Rept (Sp) that is path-connected

- If (G,p) is not l.r. then U contains another point 9 + p
- Since U is poth-connected there is a path p(t) from

 p to q → non-constant → 7 c.r.

- Studying rigidity of (G,p) is (strictly specting) studying local properties of Realt(G,p)
- Some simple geometric organients lead to combing considerations

Example: Why is not rigid

- dim R = 8 = DOFs
- each length constraint remover one freedom

... there are 4 constraints

$$\rightarrow$$
 8-4=4=3+11 one flex

trivial mations (dt/2)

o if we odd on edge

$$\omega = 90 + 8 - 5 = 3 + 0$$

a rigid

· Idea sood, but we already know this can fail

$$10-7=3+0$$
but flexible

$$12 - 8 = 4 = 3 + 1$$
but right

- continue con never be occurrete because reditation sporer con be very complicated
- Q: So how to figure out whether a fromework in nigid?

NOTE: rigidity is decidable

- decidability of first-order theory of real clared fields
- computational algebraic geometry.
 Lis Grābner baser (computationally infearible)

 $\overline{Ihm}: (G,P)$ is rigid in 1D \iff G is connected

Proof: • If non-connected: NEVER noid

other review is fixed as well. (Ex)

Thm: (Abbot, 2008) For d=2 deciding rigidity is NP hard.

Thm: (Kemper universality theorem)

A suitable linkage can draw your signature

- = Evoly algebraic culve is the realization space of a suitable linkage
- \rightarrow no general solution in sight we need tricks and look \rightarrow §2. First-order Theory