

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Inhalte

- Grundlagen
- 2 Spezielle Graphen
- 3 Strukturen in Graphen
- 4 Königsberger Brückenproblem
- 5 Ende

Graph

Graph

Ein Graph ist ein Tupel (E, K), wobei $E \neq \emptyset$ die Eckenmenge und $K \subseteq E \times E$ die Kantenmenge bezeichnet.

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K \subseteq E \times E$ die Kantenmenge bezeichnet.

Synonyme

Knoten ⇔ Ecken

Modellierung, Flüsse, Netzwerke

Karten

Good Will Hunting

Graham's Number

Isomorphe Graphen

martin-thoma.de/uni/graph.html

Grad einer Ecke

Grad einer Ecke

Der Grad einer Ecke ist die Anzahl der Kanten, die von dieser Ecke ausgehen.

Isolierte Ecke

Hat eine Ecke den Grad 0, so nennt man ihn isoliert.

Grundlagen 00000000000 Martin Thoma - Graphentheorie I

Spezielle Graphen

Strukturen in Graphen

Königsberger Brückenproblem

Schlinge

Schlinge

Sei G = (E, K) ein Graph und $k = \{e_1, e_2\} \in K$ eine Kante.

k heißt **Schlinge** : $\Leftrightarrow e_1 = e_2$

Ein Graph ohne Schlingen heißt "schlingenfrei"

Zeichnen Sie alle schlingenfreien Graphen mit genau vier Ecken.

Zeichnen Sie alle schlingenfreien Graphen mit genau vier Ecken.

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow K = E \times E \setminus \{ \{ e, e \} \mid e \in E \}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow K = E \times E \setminus \{ \{ e, e \} \mid e \in E \}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Bipartiter Graph

Bipartiter Graph

Sei G=(E,K) ein Graph und $A,B\subset E$ zwei disjunkte Eckenmengen mit $E\setminus A=B.$

 ${\cal G}$ heißt **bipartit**

 $:\Leftrightarrow \forall_{k=\{\ e_1,e_2\ \}\in K}: (e_1\in A\ \mathsf{und}\ e_2\in B)\ \mathsf{oder}\ (e_1\in B\ \mathsf{und}\ e_2\in A)$

Vollständig bipartiter Graph

Vollständig bipartiter Graph

Sei G = (E, K) ein bipartiter Graph und $\{A, B\}$ bezeichne die Bipartition.

G heißt vollständig bipartit : $\Leftrightarrow A \times B = K$

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A, B\}$ bezeichnet man mit $K_{|A|,|B|}$.

00000

Wie viele Ecken und wie viele Kanten hat der $K_{m,n}$?

18/62

Wie viele Ecken und wie viele Kanten hat der $K_{m,n}$?

Ecken: m+n (1)

Kanten: $m \cdot n$ (2)

Kantenzug, Länge eines Kantenzuges und Verbindung von Ecken

Kantenzug, Länge eines Kantenzuges und Verbindung von Ecken

Sei G = (E, K) ein Graph.

Dann heißt eine Folge k_1, k_2, \ldots, k_s von Kanten, zu denen es Ecken $e_0, e_1, e_2, \ldots, e_s$ gibt, so dass

- $k_1 = \{e_0, e_1\}$
- $k_2 = \{e_1, e_2\}$
-
- $k_s = \{e_{s-1}, e_s\}$

gilt ein Kantenzug, der e_0 und e_s verbindet und s seine Länge.

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G = (E, K) ein Graph und $A = (k_1, k_2, \dots, k_s)$ ein Kantenzug mit $k_1 = \{ e_0, e_1 \}$ und $k_s = \{ e_{s-1}, e_s \}$.

A heißt **geschlossen** : $\Leftrightarrow e_0 = e_s$.

Ein Kantenzug wird durch den Tupel $(e_0, \ldots, e_s) \in E^{s+1}$ charakterisiert.

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Kreis

Kreis

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Kreis** : \Leftrightarrow A ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Zeigen Sie:

Wenn in einem Graphen G = (E, K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge > 0.

Martin Thoma - Graphentheorie I

000000

Zeigen Sie:

Wenn in einem Graphen G = (E, K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge > 0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

000000

Zeigen Sie:

Wenn in einem Graphen G=(E,K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge >0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

Diese verbindet e_0 mit einer weiteren Ecke e_1 , die wiederum min. Grad 2 hat usw.

G hat endlich viele Ecken. Man erreicht also irgendwann eine Ecke e_j , die bereits als e_i durchlaufen wurde. Die Ecken $e_i, \ldots, e_j = e_i$ bilden also eine Kreis \blacksquare

Zeigen Sie:

Wenn in einem Graphen G=(E,K) jede Ecke min. Grad 2 hat, dann besitzt G einen Kreis einer Länge >0.

Sei $e_0 \in E$ eine beliebige Ecke aus G. Da e_0 min. Grad 2 hat, gibt es eine Kante k_0 .

Diese verbindet e_0 mit einer weiteren Ecke e_1 , die wiederum min. Grad 2 hat usw.

G hat endlich viele Ecken. Man erreicht also irgendwann eine Ecke e_j , die bereits als e_i durchlaufen wurde. Die Ecken $e_i, \ldots, e_j = e_i$ bilden also eine Kreis \blacksquare

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (E, K) ein Graph.

G heißt **zusammenhängend** : $\Leftrightarrow \forall e_1, e_2 \in E$: Es ex. ein Kantenzug, $der e_1$ und e_2 verbindet

Königsberg heute

Königsberger Brückenproblem

Übersetzung in einen Graphen

Übersetzung in einen Graphen

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{k \in K} : k \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Martin Thoma - Graphentheorie I

Hamiltonkreis

Achtung

Verwechslungsgefahr: Hamiltonkreis \neq Eulerkreis

Hamiltonkreis

Sei G ein Graph und A ein Kreis in G.

A heißt **Hamilton-Kreis** : $\Leftrightarrow \forall_{e \in E} : e$ ist genau ein mal in A.

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{k \in K} : k \in A$.

Hamiltonkreis

Achtung

Verwechslungsgefahr: Hamiltonkreis \neq Eulerkreis

Hamiltonkreis

Sei G ein Graph und A ein Kreis in G.

A heißt **Hamilton-Kreis** : $\Leftrightarrow \forall_{e \in E} : e$ ist genau ein mal in A.

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{k \in K} : k \in A$.

Königsberger Brückenproblem

Satz von Euler

Satz von Euler

Wenn ein Graph G eulersch ist, dann hat jede Ecke von G geraden Grad.

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Satz von Euler

Satz von Euler

Wenn ein Graph G eulersch ist, dann hat jede Ecke von G geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \text{Grad}(e) \equiv 0 \mod 2$

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in \emph{e} hinein und hinaus

 $\Rightarrow \operatorname{\mathsf{Grad}}(e) \equiv 0 \mod 2$

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus

 $\Rightarrow \mathsf{Grad}(e) \equiv 0 \mod 2$

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. ✓

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei dener jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

. . .

Martin Thoma - Graphentheorie I

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei dener jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

. . .

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

<u>I.A.:</u> m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei dener jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

. . .

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

<u>I.A.:</u> m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. $\ensuremath{\checkmark}$

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

Martin Thoma - Graphentheorie I

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

 $\underline{\text{I.S.:}} \text{ Sei } G = (E,K) \text{ mit } 2 \leq m = |K|. \ G \text{ ist zus.} \Rightarrow \text{Jede Ecke von } G$ hat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

I.S.: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von G

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

<u>I.S.</u>: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von Ghat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m=0: G ist eulersch.

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \checkmark

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

I.V.: Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

<u>I.S.</u>: Sei G = (E, K) mit $2 \le m = |K|$. G ist zus. \Rightarrow Jede Ecke von Ghat min. Grad 2. $\stackrel{A.5}{\Longrightarrow}$ Es gibt einen Kreis C in G.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis: Induktion über Anzahl m der Kanten

I.A.: m = 0: G ist eulersch. \checkmark

m=1: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. $\ensuremath{\checkmark}$

m=2: Nur ein Graph möglich. Dieser ist eulersch. \checkmark

 $\underline{\text{I.V.:}}$ Sei $m \in \mathbb{N}_0$ beliebig, aber fest und es gelte: Für alle zusammenhängenden Graphen G mit höchstens m Kanten, bei denen jede Ecke geraden Grad hat, ist G eulersch.

Grundlagen

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad
- $\stackrel{I.V.}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n
- $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad
- $\stackrel{I.V.}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_r
- $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

Graph zu Kreis C und

$$G^* = (E, K \setminus K_C).$$

 \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^{\ast} haben geraden Grad

 $\stackrel{I.V.}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n

 $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden

 $\Rightarrow G$ ist eulersch \Rightarrow Beh

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^{\ast} haben geraden Grad
- $\stackrel{I.V.}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n
- $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

. . .

Sei

$$G_C = (E_C, K_C)$$

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad
- $\stackrel{I.V.}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n
- $\Rightarrow C_1, \dots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh.

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Sei

$$G_C = (E_C, K_C)$$

$$G^* = (E, K \setminus K_C).$$

- \Rightarrow Alle Knoten jeder Zusammenhangskomponente in G^* haben geraden Grad
- $\stackrel{I.V.}{\Longrightarrow}$ Alle n Zhsgk. haben Eulerkreise C_1,\ldots,C_n
- $\Rightarrow C_1, \ldots, C_n$ können in C "eingehängt" werden
- $\Rightarrow G$ ist eulersch \Rightarrow Beh.

Wie findet man Eulerkreise?

Algorithmus 1 Algorithmus von Hierholzer

Require: G = (E, K) ein eulerscher Graph.

 $C \leftarrow \text{leerer Kreis}$

repeat

 $C_{\sf tmp} \leftarrow {\sf ein beliebiger Kreis}$

 $C \leftarrow C$ vereinigt mit C_{tmp}

Entferne Kanten in C_{tmp} aus G

Entferne isolierte Ecken

until C ist Eulerkreis

Ergebnis: Eulerkreis *C*

vgl. Aufgabe 5

Sind Eulerkreise bis auf Rotation und Symmetrie eindeutig?

39/62

⇒ Eulerkreise sind im Allgemeinen nicht eindeutig

Offene eulersche Linie

Sei G ein Graph und A ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G:\Leftrightarrow$ lede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : \Leftrightarrow G hat genau zwei Ecken ungeraden Grades.

eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

 $\xrightarrow{\mathsf{Satz}\ \mathsf{von}\ \mathsf{Euler}} \mathsf{In}\ G^*$ hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0, e_s .

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : \Leftrightarrow G hat genau zwei Ecken ungeraden Grades.

Beweis " \Rightarrow "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \ldots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒"

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\stackrel{\mathsf{Satz}\ \mathsf{von}\ \mathsf{Euler}}{\longleftrightarrow}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heiß

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒"

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{\,e_s,e_0\,\})$. Es gibt einen Eulerkreis in G^*

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grac

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heiß

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : \Leftrightarrow G hat genau zwei Ecken ungeraden Grades.

Beweis " \Rightarrow "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \dots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\overbrace{\operatorname{Satz\ von\ Euler}}^{\operatorname{Satz\ von\ Euler}}$ In G^* hat jede Ecke geraden Grad

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0, e_s .

Martin Thoma - Graphentheorie I

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup \{\,e_s,e_0\,\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\operatorname{Satz\ von\ Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0,e_s . lacksquare

Rückrichtung analog

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : \Leftrightarrow G hat genau zwei Ecken ungeraden Grades.

Beweis " \Rightarrow "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \ldots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0, e_s .

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : \Leftrightarrow G hat genau zwei Ecken ungeraden Grades.

Beweis " \Rightarrow "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \ldots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^*

 $\xrightarrow{\mathsf{Satz\ von\ Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Leftrightarrow in G haben genau 2 Ecken ungeraden Grad. Diese heißen e_0, e_s .

Aufgabe 3

Zeigen Sie: Ein Kreis ist genau dann bipartit, wenn er gerade Länge hat.

Ende

ldee: Knoten abwechselnd färben

Spezielle Graphen

ldee: Knoten abwechselnd färben

Spezielle Graphen

ldee: Knoten abwechselnd färben

Spezielle Graphen

Aufgabe 4

Zeigen Sie: Ein Graph G ist genau dann bipartit, wenn er nur Kreise gerade Länge hat.

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

 ${\color{red}\mathsf{Annahme:}}\ G$ hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge lacktriangle

Martin Thoma - Graphentheorie I

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

 $\Rightarrow G$ hat keinen Kreis ungerader Länge

Martin Thoma - Graphentheorie I

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

- $\Rightarrow G$ hat keinen Kreis ungerader Länge

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\operatorname{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge \blacksquare

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 $\underline{\text{Vor.:}}$ Sei G = (E, K) ein zus. Graph.

 $\underline{\mathsf{Beh.:}}\ G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge \blacksquare

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge

Bew.: durch Widerspruch

Annahme: G hat Kreis ungerader Länge

 $\stackrel{A.4}{\Longrightarrow}$ Ein Subgraph von G ist nicht bipartit

 \Rightarrow Widerspruch zu "G ist bipartit"

 $\Rightarrow G$ hat keinen Kreis ungerader Länge

Vor.: Sei G = (E, K) ein zus. Graph.

Färbe Graphen mit Breitensuche

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit

Färbe Graphen mit Breitensuche

Vor.: Sei G = (E, K) ein zus. Graph.

Beh.: G hat keinen Kreis ungerader Länge \Rightarrow G ist bipartit

Bew.: Konstruktiv

Färbe Graphen mit Breitensuche

Vor.: Sei G = (E, K) ein zus. Graph.

 $\underline{\mathsf{Beh.:}}\ G$ hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit

Bew.: Konstruktiv

Färbe Graphen mit Breitensuche ■

Martin Thoma - Graphentheorie I

Aufgabe 9, Teil 1

Im folgenden sind die ersten drei Graphen G_1, G_2, G_3 einer Folge (G_n) aus Graphen abgebildet. Wie sieht G_4 aus?

Aufgabe 9, Teil 1 (Lösung)

Martin Thoma - Graphentheorie I

Aufgabe 9, Teil 1 (Lösung)

Aufgabe 9, Teil 1 (Lösung)

Aufgabe 9, Teil 2

Wie viele Ecken und wie viele Kanten hat G_i ?

Aufgabe 9. Teil 2: Antwort

Ecken:

$$|E_n| = |E_{n-1}| + (n+1) = \sum_{i=1}^{n+1} i = \frac{n^2 + 2n + 2}{2}$$

Kanten:

$$|K_{n}| = |K_{n-1}| + \underbrace{((n+1)-1)+2}_{\text{auBen}} + (n-1) \cdot 2$$

$$= |K_{n-1}| + n + 2 + 2n - 2$$

$$= |K_{n-1}| + 3n$$

$$= \sum_{i=1}^{n} 3i = 3 \sum_{i=1}^{n} i$$

$$= 3 \frac{n^{2} + n}{2}$$
(3)
(6)

Spezielle Graphen

Grundlagen

Ende

(3)

Aufgabe 9, Teil 3

Gebe G_i formal an.

Aufgabe 9, Teil 3 (Lösung)

Gebe G_n formal an.

$$E_n = \{ e_{x,y} \mid y \in 1, \dots, n; \ x \in y, \dots, 2 \cdot n - y \text{ mit } x - y \equiv 0 \mod 2 \}$$

$$K_n = \{ \{ e_{x,y}, e_{i,j} \} \in E_n^2 \mid (x + 2 = i \land y = j) \lor (x + 1 = i \land y \pm 1 = j) \}$$

$$G_n = (E_n, K_n)$$

RECTANGLEFREECOLORING

RECTANGLEFREECOLORING

Gegeben ist $n, m \in \mathbb{N}_{\geq 1}$ und ein ungerichteter Graph G = (E, K) mit

$$E = \{ e_{x,y} \mid 1 \le x \le n \land 1 \le y \le m \}$$

und

$$K = \{ k = \{ e_{x,y}, e_{x',y'} \} \in E \times E : | x - x'| + |y - y'| = 1 \}$$

Färbe die Ecken von G mit einer minimalen Anzahl von Farben so, dass gilt:

$$\forall e_{x,y}, e_{x',y'} \in E : (x \neq x' \land y \neq y') \Rightarrow \neg (c(e_{x,y}) = c(e_{x',y'}) = c(e_{x,y'}))$$

RECTANGLEFREECOLORING

4×4 - Instanz:

Bildguellen

- http://commons.wikimedia.org/wiki/File:Hypercube.svg
- http://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
- http://commons.wikimedia.org/wiki/File:Unit disk graph.svg
- Google Maps (Grafiken ©2013 Cnes/Spot Image, DigitalGlobe)
- cf.drafthouse.com/ uploads/galleries/29140/good will hunting 3.jpg

Spezielle Graphen

Literatur

• A. Beutelspacher: Diskrete Mathematik für Einsteiger, 4. Auflage, ISBN 978-3-8348-1248-3

Folien, LaTeXund Material

Der Foliensatz und die LATEX und TikZ-Quellen sind unter github.com/MartinThoma/LaTeXexamples/tree/master/presentations/Diskrete-Mathematik Kurz-URL: goo.gl/uTgam