HALLOWEEN MINI PROJECT

Define the URL for the candy data

```
candy_url <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-ranking/ca
# Read the data from the URL

candy <- read.csv(url(candy_url), row.names = 1)
# Display the first few rows of the data
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	pricepero	cent wi	npercent	
100 Grand	0	1	6)	0.732	0.	.860	66.97173	

```
3 Musketeers
                                   0.604
                                                0.511
                                                       67.60294
              0 1
One dime
              0 0
                                   0.011
                                                0.116
                                                       32.26109
One quarter
              0 0
                                   0.011
                                                0.511
                                                       46.11650
                           0
Air Heads
                           0
                                   0.906
                                                0.511
                                                       52.34146
              0 0
Almond Joy
                                   0.465
                                                0.767
                                                       50.34755
```

```
# Q1: How many different candy types are in this dataset?
num_candy_types <- nrow(candy)
num_candy_types</pre>
```

[1] 85

```
# Q2: How many fruity candy types are in the dataset?
fruity_candy_types <- table(candy$fruity)["yes"]
fruity_candy_types</pre>
```

```
candy["Twix", ]$winpercent
```

[1] 81.64291

```
# Q3: What is your favorite candy in the dataset and what is its
candy["Sour Patch Kids", ]$winpercent
```

[1] 59.864

```
#Q4. What is the winpercent value for "Kit Kat"?
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

```
#Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

install.packages("skimr")

```
library("skimr")
skim(candy)
```

Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

sugrapercnet, priccepercent and winpercent look on a different scale than the others.

Q7. What do you think a zero and one represent for the candy\$chocolate column?

A zero most likely represents "not chocolate" and a one represents "chocolate"

```
# Q8: Plot a histogram of winpercent values
hist(candy$winpercent, main = "Histogram of Winpercent Values", xlab = "Winpercent")
```

Histogram of Winpercent Values

Q9. Is the distribution of winpercent values symmetrical?

No it's not.

Q10. Is the center of the distribution above or below 50%?

Above %50

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
# Extract winpercent values for chocolate and fruit candies
chocolate_winpercent <- candy$winpercent[candy$chocolate == 1]
fruit_winpercent <- candy$winpercent[candy$chocolate == 0]
# Perform a t-test to compare the means
t_test_result <- t.test(chocolate_winpercent, fruit_winpercent)
# Print the t-test result
print(t_test_result)</pre>
```

Welch Two Sample t-test

```
data: chocolate_winpercent and fruit_winpercent
t = 7.3031, df = 67.539, p-value = 4.164e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
13.64744 23.91110
sample estimates:
mean of x mean of y
60.92153 42.14226
```

chocolate candies are higher ranked than fruit candies(The mean winpercent for chocolate candies (mean of x) is 60.92153.)

Q12. Is this difference statistically significant?

Yes, the difference in winpercent values between chocolate and fruit candies is statistically significant. This is indicated by the very small p-value (4.164e-10), which is well below the typical significance level of 0.05.

```
# Q13. What are the five least liked candy types in this set?
least_liked <- head(candy[order(candy$winpercent), ], n = 5)
least_liked</pre>
```

					_				
		chocolate	fruity	carar	nel	peanutyalr	nondy	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	hard	bar	pluribus	sugar	rpercent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	:						
Nik L Nip		22.44534	ļ						
Boston Baked	Beans	23.41782	<u> </u>						
Chiclets		24.52499)						
Super Bubble		27.30386	5						
Jawbusters		28.12744	1						

```
# Q14. What are the top 5 all-time favorite candy types out of this set?
favorite <- head(candy[order(candy$winpercent, decreasing = TRUE), ], n = 5)
favorite</pre>
```

```
chocolate fruity caramel peanutyalmondy nougat
Reese's Peanut Butter cup
                                   1
                                           0
                                                   0
                                                                   1
                                                                          0
Reese's Miniatures
                                   1
                                                                   1
                                           0
                                                                          0
Twix
                                           0
                                                                   0
                                                                          0
                                   1
                                                   1
Kit Kat
                                   1
                                           0
                                                   0
                                                                          0
Snickers
                                   1
                                           0
                                                   1
                                                                          1
                           crispedricewafer hard bar pluribus sugarpercent
Reese's Peanut Butter cup
                                           0
                                                                       0.720
Reese's Miniatures
                                           0
                                                    0
                                                             0
                                                                       0.034
                                                0
Twix
                                           1
                                                0
                                                    1
                                                             0
                                                                       0.546
Kit Kat
                                                    1
                                                                       0.313
                                           1
                                                0
                                                             0
Snickers
                                           0
                                                0
                                                             0
                                                                       0.546
                                                    1
                           pricepercent winpercent
Reese's Peanut Butter cup
                                  0.651
                                          84.18029
Reese's Miniatures
                                  0.279
                                          81.86626
Twix
                                  0.906
                                          81.64291
Kit Kat
                                  0.511
                                          76.76860
Snickers
                                  0.651
                                           76.67378
```

library(ggplot2)

```
ggplot(candy, aes(x = winpercent, y = reorder(row.names(candy), winpercent))) +

geom_bar(stat = "identity", fill = "skyblue") +

labs(title = "Candy Ranking Based on Winpercent Values",

x = "Winpercent", y = "Candy") +

theme_minimal()
```

Candy Ranking Based on Winpercent Values


```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
```

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy),winpercent)) +
  geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

sixlets

- Q18. What is the best ranked fruity candy?

starburst

install.packages("ggrepel")

```
library(ggrepel)
```

```
library(ggrepel)
```

```
# How about a plot of price vs win

ggplot(candy) +

aes(winpercent, pricepercent, label=rownames(candy)) +

geom_point(col=my_cols) +

geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 53 unlabeled data points (too many overlaps). Consider increasing max.overlaps


```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Hershey's Milk Chocolate

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip

install.packages("corrplot")

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

winpercent and pricepercent

Q23. Similarly, what two variables are most positively correlated?

chocolate and fruity

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530

Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

```
plot(pca$x[, 1], pca$x[, 2], xlab = "PC1", ylab = "PC2")
```


plot(pca\$x[,1:2], col=my_cols, pch=16)


```
# Make a new data-frame with our PCA results and candy data
my_data <- cbind(candy, pca$x[,1:3])</pre>
```

install.packages("ggplot2")

```
library(ggplot2)
```

```
p <- ggplot(my_data) +
    aes(x=PC1, y=PC2,
        size=winpercent/100,
        text=rownames(my_data),
        label=rownames(my_data)) +
        geom_point(col=my_cols)</pre>
```


library(ggrepel)

```
p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +

theme(legend.position = "none") +

labs(title="Halloween Candy PCA Space",

subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown), fruit caption="Data from 538")
```

Warning: ggrepel: 40 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown), fruity (red), other (black

Data from 538

install.packages("plotly")

```
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
    last_plot
The following object is masked from 'package:stats':
    filter
The following object is masked from 'package:graphics':
    layout
ggplotly(p)
```



```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity candies are picked up by PC1 in the positive direction. This doesn't make sense to me. The positive association of fruity candies with PC1 suggests that candies with fruity characteristics are more likely to have higher winpercent values, indicating higher popularity, but winpercent and fruity has the opposite effects.