Lineare Regression

Linearer Zusammenhang zwischen den Eingabevariablen x und der Ausgabevariable y wird modelliert.

Hypothesenfunktion:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Kostenfunktion (MSE):

$$\begin{array}{l} J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta} \big(x^{(i)} \big) - y^{(i)} \right)^2 \\ \text{mit } n \dots \text{ Anzahl Trainingsdaten} \end{array}$$

Je kleiner $J(\theta)$, desto besser die Hypothese.

Ziel: Finde Parameter θ um J zu minimieren $\min J(\theta)$

Multivariat:

Mehrere Features $x_1, x_2, ..., x_n$

Polynom-Regression:

$$h_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+\theta_3x^3+\dots$$

Wird eingesetzt, wenn wenn Features nicht-linearen Zusammenhang haben.

Gradient Descent

Update-Regel:

$$\theta_j \coloneqq \theta_j - \alpha \ \tfrac{\partial}{\partial \theta_j} J(\theta)$$

 α Lernrate

 $\frac{\partial}{\partial \theta}J(\theta)$ Ableitungsterm, gibt Richtung des steilsten Anstiegs an

Update-Regel für lineare Regression:

$$\begin{array}{l} \theta_j \coloneqq \theta_j + \alpha_n^1 \sum_{i=1}^n \left[\left(y^{(i)} - h_\theta(x^{(i)}) \right) \cdot x_j^{(i)} \right] \\ \text{mit } \theta_j \text{ als Parameter und } x_0^{(i)} = 1 \text{ für den Bias-Term, beim ersten } \theta_0 \text{ Update.} \end{array}$$

Lernrate α :

Zu groß → Divergenz, zu klein → (zu) langsame Konvergenz

· Beispiel: Kostenfunktion mit den neuen Parametern (nach einem Gradient Descent Update) ist größer als mit den alten Parametern (vor dem Update). Vermutlich ist die Lernrate α zu groß gewählt

Eigenschaften:

- · Bei geeigneter Lernrate konvergiert Gradient Descent zu einem lokalen Minimum der Kostenfunktion. Bei konvexen Funktionen sogar zum globalen Minimum. Bei Update nach dem erreichen des Minimums bleibt θ konstant.
- Eine konstante Lernrate kann ausreichen, wenn sie angemessen gewählt ist. Adaptive Lernraten können die Konvergenz verbessern.
- Steilere Kostenfunktionen erfordern kleinere Lernraten

$$\min_{w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \right\}$$

Nebenbedingungen:

$$y^{(i)}(w^Tx^{(i)} + b) \ge 1 - \xi_i$$
, mit $\xi_i \ge 0 \quad (i = 1, ..., n)$

Support Vector Machines

C kontrolliert Trade-off:

Um Outlier weniger zu gewichten und eine robustere Entscheidungsgrenze zu erhalten, muss der Parameter C verkleinert werden. Dadurch ist weniger Gewicht auf den "Strafterm" für das Nicht-Einhalten der Nebenbedingung

großes $C \rightarrow$ weniger Fehler,

kleines $C \rightarrow$ größerer Margin

Kernel:

$$K(x,l) = \exp\left(-\frac{||x-l||^2}{2\sigma^2}\right)$$

Kernel-Funktionen:

- Linear: $K(x_i, x_j) = x_i^T x_j$ Für lineare Trennungen
- Polynomial: $K(x_i, x_i) = (x_i^T x_i + r)^d$ r..... konstanter Offset d..... Grad des Polynoms
- Erlaubt gekrümmte Trennungen (Parabeln, ...)
- **RBF** (Gaussian): $K(x_i, x_i) = e^{-\gamma ||x_i x_j||^2}$ Komplexe, nicht-lineare Trennungen
- **Sigmoid**: $K(x_i, x_i) = \tanh(\kappa x_i^T x_i + c)$ Inspiriert von neuronalen Netzen, selten

Wählen von Stützpunkten ("Landmarks"):

- Oft einfach: Alle Trainingspunkte → jeder Punkt wird zum Landmark (klassisch bei RBF-Kernel)
- · Alternativ: nur ausgewählte Punkte, z.B.
- Support-Vektoren (nur "wichtige" Punkte)
- ► Clusterzentren (z.B. mit K-Means)
- ► Gleichmäßig verteilt im Raum (für generalisierte Modelle)

Ziel: Landmark-Punkte definieren die Feature-Transformation durch den Kernel.

- $w_2 f_2 + w_3 f_3 \ge 0$, sonst y = -1
- Neue Landmark berücksichtigen → passenden w.
- Bereich zwischen zwei Landmarks ausschließen $\rightarrow w$ verkleinern
- Bereich mit y=1 vergrößern $\rightarrow w$ oder b
- Bereich mit y = 1 verkleinern $\rightarrow w$ oder bverringern

 $z_j^{(l)}$ ist der gewichtete Input für Neuron j in Layer l. $a_j^{(l)}$ ist die Aktivierung des Neurons j in Layer l.

Neuronale Netzwerke

Parametermatrizen:

 $\dim(\theta^{(l)}) = \left(s_{l+1} \times (s_l+1)\right)$ θ^lGewichtsmatrizen, l..... layer,

 s_1 Anzahl Units in Layer (l), in $(s_1 + 1)$, das +1 steht für Bias-Unit (zusätzliche Spalte)

Fehlerterm δ :

$$\delta_{ij}^{(l)} = h_{\theta}\big(x^{(i)}\big) - y^{(i)}$$

- i... Trainingsbeispiel, j... Neuron, l... layer, $h_{\theta}(x^{(i)})...$ Netzwerkvorhersage,
- $y^{(i)}$... tatsächlicher Zielwert,
- n... Anzahl Trainingsbeispiele,

$Gradientenberechnung \ (Backpropagation):$ $\frac{\partial}{\partial \Theta^{(l-1)}} J(\Theta) = \frac{1}{n} \sum_{k=1}^{n} \delta_{ki}^{(l)} a_{j}^{(l-1)}$

Feedforward:

$$z^{l+1} = \theta^l a^l$$
$$a^{l+1} = g(z^{l+1})$$

$$\begin{array}{l} \textbf{Backpropagation:} \\ \delta_j^{(l)} = \left(\sum_{k=1}^{s_{l+1}} \left(\Theta_{kj}^{(l)} \cdot \delta_k^{(l+1)}\right)\right) \cdot g'\left(z_j^{(l)}\right) \\ \Theta_{kj}^{(l)} \dots \text{ Gewicht zwischen Neuron } j \text{ in Layer } l \text{ und} \end{array}$$

Neuron k im Layer l+1 $\delta_k^{(l+1)}$)... Fehlerterm aus der folgenden Schicht (bereits berechnet).

 $g'\left(z_i^{(l)}\right)$ Ableitung der Aktivierungsfunktion am Wert $z_i^{(l)}$

$$\begin{array}{l} \delta^L = a^L - y \\ \delta^l = \left(\theta^l\right)^T \delta^{l+1} \cdot g'(z^l) \end{array}$$

Gradientenabstieg:

$$\theta^l \coloneqq \theta^l - \alpha \delta^l a^{l-1}$$

Aktivierungsfunktionen:

Sigmoid, Tanh, ReLU, Leaky ReLU, Softmax

Symmetrie:

Austausch der Neuronen in einem Hidden Laver (inkl. zugehöriger Gewichte im nächsten Layer) → hat keinen Einfluss auf den Output $h_{\Theta}(x)$, da die Gesamtfunktion identisch bleibt.

Grundidee:

Baumstruktur zur schrittweisen Entscheidung basierend auf Features.

Entscheidungsbäume

Split-Kriterien:

- Entropie: $H = -p_i \log_2(p_i) p_j \log_2(p_j) \dots$ pi...Wahrscheinlichkeit (relative Häufigkeit) der Klasse i, p_i ...Wahrscheinlichkeit der Klasse j
- $p_i = \frac{u}{n}, p_i = \frac{v}{n}$
- n... Gesamtanzahl Datenpunkte,
- u... Anzahl Datenpunkte der Klasse i,
- v... Anzahl Datenpunkte der Klasse j

 $H = 0 \rightarrow$ maximale Ordnung (reine klasse)

 $H=1
ightarrow {
m maximale}$ Unordnung

Informationsgewinn Gain(A):

Gain(A) = H(Ursprungspartition)

$$- \big(\tfrac{|\mathbf{P1}|}{|\mathbf{P1}| + |\mathbf{P2}|} \cdot H(\mathbf{P1}) + \tfrac{|\mathbf{P2}|}{|\mathbf{P1}| + |\mathbf{P2}|} \cdot H(\mathbf{P2})) \big)$$

- A... Partitionierung des Datensatzes
- |P1| ...Anzahl der Datenpunkte in Partition 1
- |P2| ...Anzahl der Datenpunkte in Partition 2 (|P1|+|P2|)...Anzahl ALLER Datenpunkte
- Gini-Index: $Gini(S) = 1 \sum p_i^2$

Vorteile:

- · Interpretierbar
- · Keine Skalierung notwendig

Nachteile:

- · Overfitting bei tiefen Bäumen
- · Instabil bei kleinen Datenänderungen

Pruning (Beschneiden):

Reduziert Komplexität und Overfitting

Konfusionsmatrix:

TP = True Positive - Patienten, die krank sind und als krank klassifiziert wurden

Modell Evaluation

- FP = False Positive Patienten, die gesund sind, aber als krank klassifiziert wurden
- TN = True Negative Patienten, die gesund sind und als gesund klassifiziert wurden
- FN = False Negative Patienten, die krank sind, aber als gesund klassifiziert wurden

$$\begin{split} & Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \\ & Precision \left(Relevanz \right) = \frac{TP}{TP + FN} \\ & Recall \left(Sensitivity \right) = \frac{TP}{TP + FN} \\ & F1\text{-Score} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} \end{split}$$

Beispiel:

Ein Modell mit hohem Recall identifiziert möglichst viele positive Fälle, auch auf Kosten von mehr False

Wann ist Recall wichtiger?

- Krankheitserkennung
- · Sicherheitschecks
- · Betrugserkennung

Hohe Fehler auf Training & CV

→ (Underfitting) Braucht mehr hidden Layers, Neuronen, weniger Regularisierung

Gute Trainingsperformance, schlechte CV

→ (Overfitting) Braucht mehr Trainingsdaten, weniger Features, mehr Regularisierung

Boolesche Neuronale Netzwerke

Funktion	a	b	с
x_1 and x_2	-30	20	20
(not x_1) and (not x_2)	10	-20	-20
x_1 or x_2	-10	20	20

Formeln 2

Convolutional Neuronal Networks Stride: Bestimmt, um wie viele Pixel der Filter bei

führt zu einer stärkeren Dimensionsreduktion.

Padding:Das Hinzufügen zusätzlicher Pixel am Rand des Eingabebildes.

- · "Valid" Padding: Kein zusätzliches Padding, der Filter wird nur angewendet, wenn er vollständig innerhalb des Bildes liegt.
- · "Same" Padding: Fügt Padding hinzu, sodass die Ausgabedimension gleich der Eingabedimension bleibt (bei Stride 1).

Ausgabedimension =

Eingabedimension — Filtergröße +2· Padding + 1

Output Convolutional Filter:

Output = $\sum_{i=0}^{2} \sum_{j=0}^{2} \text{Input } [i, j] \cdot \text{Filter}[i, j]$ Beispiel:

Filter:

		11

1	2	1	
2	4	2	
1	2	1	

2	5	4
13	25	15
8	6	6

$$=2*1+5*2+4*1+13*2+25*4+15*2+8*1+6*2+6*1=2+10+4+26+100+30+8+12+6=198$$

Hauptidee:

Extraktion lokaler Merkmale durch Faltungsoperationen.

Faltungsschicht (Convolution Layer):

wendet Filter (Kerne) an:

$$z = W * x + b$$

Aktivierung:

Typisch: ReLU $f(x) = \max(0, x)$

Architektur-Beispiel:

 $Input \to Conv \to ReLU \to Pool \to Dense \to$ Output

CNN Outputdimension:

Input: 100x100 Pixel, 3 Kanäle

Kernel: 3x3, Stride = 1, "same padding"

- 1. 1 Filter \rightarrow Output-Dim: 100x100x1
- 2. 60 Filter → Output-Dim: 100x100x60

Faustregel: Anzahl der Filter = Anzahl Output-Kanäle

Vorteile:

- · Translation-Invarianz
- · Weniger Parameter als vollständig verbundene

Backpropagation Aufgabe (21) Gegeben:

- $x^{(1)} = (x_1^{(1)}, x_2^{(1)}) = (0.5 \ 0.7),$
- $y^{(1)} = (1)$, ("Klasse 1"),
- $h_a(x^{(1)}) = 0.5$,
- · Aktivierungsfunktion: Sigmoid $a_j^{(i)} = g\left(z_j^{(i)}\right) = \frac{1}{1+e^{-z_j^{(i)}}}$
- Gewichtsmatrizen:

$$\Theta^{(1)} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1.5 & 0.7 \\ -0.5 & -1 & 2 \end{pmatrix},$$

$$\Theta^{(2)} = \begin{pmatrix} 1 & -0.9 & -0.7 & 0.9 \end{pmatrix}$$

Forward-Propagation:

- Schritt 1 Input Layer (inklusive Bias): $a^{(1)} = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \end{pmatrix} = \begin{pmatrix} 1 & 0.5 & 0.7 \end{pmatrix}$
- Schritt 2 Hidden Layer Input berechnen:

$$z^{(2)} = \Theta^{(1)} \cdot a^{(1)} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1.5 & 0.7 \\ -0.5 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0.5 & 0.7 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 1 \cdot 0.5 + 2 \cdot 0.7 & 2 \cdot 1 + 1.5 \cdot 0.5 + 0.7 \cdot 0.7 & -0.5 \cdot 1 - 1 \cdot 0.5 + 2 \cdot 0.7 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \cdot 9 & 3.24 & 0.4 \end{pmatrix}$$

Ziel:

Schritte:

Erhalt der Varianz.

Eigenwerte)

Eigenschaften:

Keine Label nötig

Anwendungen:

· Visualisierung

· Rauschreduktion

1. Zentrieren der Daten

2. Kovarianzmatrix berechnen

· Unüberwachtes Verfahren

• Vorverarbeitung für ML

· Hauptachsen sind orthogonal

3. Eigenvektoren & -werte berechnen

4. Hauptkomponenten auswählen (größte

5. Projektion der Daten auf neue Achsen

Schritt 3 - Aktivierungsfunktion (Sigmoid)

$$\begin{split} a^{(2)} &= g\!\left(z^{(2)}\right) = \left(1, \frac{1}{1 + e^{-z^{(2)}_1}}, \frac{1}{1 + e^{-z^{(2)}_2}}, \frac{1}{1 + e^{-z^{(2)}_3}}\right) \approx \\ \left(1 \ \ 0.948 \ \ 0.962 \ \ 0.599\right), \ \text{die 1 ist der Bias-Term.} \end{split}$$

• Schritt 4 - Gradientenberechnung (Backpropagation)

$$\frac{\partial}{\partial \Theta_{ij}^{(l-1)}} J(\Theta) = \frac{1}{n} \sum_{k=1}^{n} \delta_{ki}^{(l)} a_{j}^{(l-1)}$$
$$\delta_{11}^{(3)} \cdot a^{(2)} = -0.5 \cdot 0.948 = -0.474$$

· Schritt 5 Prüfen mittels

Gradientenquotienten:

$$\begin{split} J(\Theta) &= \frac{1}{2n} (\sum_{i=1}^{n} \left(h_{\Theta} (x^{(i)}) - y^{(i)} \right)^2 \\ &= \frac{1}{2} (0.5 - 1)^2 = 0.125 \end{split}$$

Regularisierung

 $+\lambda \sum_{i=1}^{d} \theta_{j}^{2}$, d... Dimension der Eingabedaten

Kostenfunktion mit L2-Regularisierung: $J(\theta) = \tfrac{1}{2n} \Bigl(\sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^d \theta_j^2 \Bigr)$

Effekt von λ (Regularisierungsparameter):

- $\lambda = 0 \rightarrow \text{kein Penalty}$
- kleines $\lambda \to \text{schwache Bestrafung von großen}$ Parameterwerten, Gefahr von Overfitting
- großes $\lambda \to \text{starke}$ Bestrafung von großen Parameterwerten, Gefahr von Underfitting

Bias-Term θ_0 wird oft nicht regularisiert

Pricipal Component Analysis(PCA)

Reduktion der Dimensionalität bei maximalem

Value Function:

Erwarteter kumulativer Reward für eine gegebene Policy π . Maß für die "Güte" eines Zustands: $v_{\pi}(S_1) = \text{unmittelbarer Reward} +$

Reinforcement Learning

Wert des Folgezustands

$$v_{\pi}(S_1) = R_2 + v_{\pi}(S_2)$$

s... Zustand, $\pi...$ Policy, R... unmittelbarer Reward $v_{\pi}(s)$... Wertfunktion für Zustand s

"Wert von Zustand "S" ":

Einfach alle Werte der kommenden Felder, entlang der Policy π addieren.

$$v_{\pi}(S) = (-1) * 16$$

Grundidee:

Ein Agent lernt durch Interaktion mit einer Umgebung, um Belohnungen zu maximieren.

Zentrale Begriffe:

- · Agent, Environment
- Zustand s, Aktion a, Belohnung r, Politik $\pi(a|s)$
- · Ziel: Maximiere erwarteten kumulierten Reward

Belohnungsformel:

$$R_t = \sum_{\{k=0\}}^{\{\infty\}} \gamma^k r_{\{t+k+1\}}$$
 mit Diskontfaktor $\gamma \in [0,1]$

Q-Learning:

$$\begin{aligned} & \widetilde{Q}(s,a) \coloneqq \widetilde{Q}(s,a) + \alpha \Big[r + \gamma \max_{\{a'\}} Q(s',a') - \\ & Q(s,a) \Big] \end{aligned}$$

Strategien:

- · Exploration vs. Exploitation
- var ε -greedy Policy

Anwendungen:

- · Spiele (z.B. AlphaGo)
- · Robotik
- · Empfehlungssysteme

Hypothese:

$$\begin{split} h_{\theta}(x) &= g(\theta^T x) = \frac{1}{1+e^{-\theta^T x}} \\ g(z) &= \frac{1}{1+e^{-z}}...... \text{ Sigmoidfunktion} \\ \text{mit } \theta^T x &= \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n \end{split}$$

Logistische Regression

Klassifikation:

 $h_{\theta}(x)$ ist quasi Wahrscheinlichkeit (0...1)

$$h_{\theta}(x) \ge 0.5 \rightarrow \text{Klasse } 1$$

$$h_{\theta}(x) < 0.5 \rightarrow \text{Klasse 0}$$

Entscheidungsgrenze:

- 1. $\theta^T x = 0$ bzw. z = 0 weil da wird $h_{\theta}(\theta^T x) = 0.5$
- 2. Umformen zu $x_2 = x_1 + d$
- 3. **Beispiel** mit $x_2 = 2 1.5x_1$:

Nicht-linearität:

Polynomielle Features erzeugen nicht-lineare Entscheidungsgrenzen

$$\begin{array}{l} h_{\theta}(x)=g\big(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_2^2+\\ \theta_5x_1x_2+\ldots\big) \end{array}$$

Polynom-Regression:

$$\begin{array}{l} h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_{2_+} \theta_3 x_1 x_2 + \theta_4 x_1^2 + \\ \theta_5 x_2^2 + \dots \end{array}$$

Fähigkeit, nicht-lineare Entscheidungsgrenzen zu