Seri bahan kuliah Algeo #12

Aplikasi *Dot Product* pada Sistem Temu-balik Informasi

(Information Retrieval System)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Temu-balik Informasi

 Temu-balik informasi (information retrieval): menemukan kembali (retrieval) informasi yang relevan terhadap kebutuhan pengguna dari suatu kumpulan informasi secara otomatis.

Sumber gambar:https://sites.google.com/site/berbagiinformasidanekspresi/arsip/pengantar-temu-kembali-informasi-information-retrieval

- IR tidak sama dengan pencarian di dalam basisdata (database)
- IR umumnya digunakan pada pencarian informasi yang isinya tidak terstruktur
- Informasi terstruktur: tabel-tabel di dalam basisdata (database)

NO	NAMA	NIM	JENIS KELAMIN	Umur	Tahun Lahir	Asal
1	Yusuf R	10018149	L	18	1992	Jogja
2	Lukman Reza	10018148	L	18	1992	Sulawesi
3	Aril	10018154	L	18	1992	Sumatra
4	Kifli	10018156	L	18	1992	Jogja
5	Khairuddin	10018151	L	18	1992	Papua
6	Angga	10018181	L	18	1992	Wonosobo
7	Nely	10018170	P	18	1992	Jogja
8	Reza	10018129	L	18	1992	Jogja
9	Ana	10017213	Р	20	1990	Jogja
10	Nina	10012312	P	19	1991	Jogja

- Informasi tak-terstruktur:
 - dokumen (isinya bergantung pembuatnya)
 - laman web (webpage)

• Aplikasi IR: search engine

Hasil pencarian:

IR dengan Model Ruang Vektor

- Salah satu model IR adalah model ruang vektor
- Model ini menggunakan teori di dalam aljabar vector
- Misalkan terdapat n kata berbeda sebagai kamus kata (vocabulary) atau indeks kata (term index).
- Kata-kata tersebut membentuk ruang vektor berdimensi n
- Setiap dokumen maupun *query* dinyatakan sebagai vektor $\mathbf{w} = (w_1, w_2, ..., w_n)$ di dalam \mathbf{R}^n .
- w_i = bobot setiap kata i di dalam *query* atau dokumen
- Nilai w_i dapat menyatakan jumlah kemunculan kata tersebut dalam dokumen ($term\ frequency$)

Contoh: Misalkan terdapat tiga buah kata (T_1 , T_2 , dan T_3), dua buah dokumen (D_1 dan D_2) serta sebuah *query Q*. Masing-masing dinyatakan sebagai vector:

$$D_1 = (2, 3, 5), D_2 = (3, 7, 1), Q = (0, 0, 2)$$

 $\mathbf{D_1}$ = (2, 3, 5) artinya dokumen D_1 mengandung 2 buah kata T_1 , 3 buah kata T_2 , dan 5 buah kata T_3 .

 $\mathbf{D_2}$ = (3, 7, 1) artinya dokumen D_2 mengandung 3 buah kata T_1 , 7 buah kata T_2 , dan satu buah kata T_3 .

 $\mathbf{Q} = (0, 0, 2)$ artinya query Q hanya mengandung 2 buah kata T_3 .

Representasi grafik vektor

 \mathbf{D}_2

Contoh:

$$D_1 = (2, 3, 5)$$

$$D_2 = (3, 7, 1)$$

$$Q = (0, 0, 2)$$

- Penentuan dokumen mana yang relevan dengan query dipandang sebagai pengukuran kesamaan (similarity measure) antara query dengan dokumen.
- Semakin sama suatu vektor dokumen dengan vektor *query*, semakin relevan dokumen tersebut dengan *query*.
- Kesamaan (sim) antara dua vektor $\mathbf{Q} = (q_1, q_2, ..., q_n)$ dan $\mathbf{D} = (d_1, d_2, ..., d_n)$ diukur dengan rumus cosinus similarity yang merupakan bagian dari rumus perkalian titik (dot product) dua buah vektor:

$$\mathbf{Q} \cdot \mathbf{D} = \|\mathbf{Q}\| \|\mathbf{D}\| \cos \theta \qquad \Longrightarrow \qquad sim(\mathbf{Q}, \mathbf{D}) = \cos \theta = \frac{\mathbf{Q} \cdot \mathbf{D}}{\|\mathbf{Q}\| \|\mathbf{D}\|}$$

dengan Q D adalah perkalian titik yang didefinisikan sebagai

$$\mathbf{Q} \cdot \mathbf{D} = q_1 d_1 + q_2 d_2 + ... + q_n d_n$$

- Jika $\cos \theta = 1$, berarti $\theta = 0$, vektor **Q** dan **D** berimpit, yang berarti dokumen D sesuai dengan *query* **Q**.
- Jadi, nilai cosinus yang besar (mendekati 1) mengindikasikan bahwa dokumen cenderung sesuai dengan query.

- Setiap dokumen di dalam koleksi dokumen dihitung kesamaannya dengan query dengan rumus cosinus di atas.
- Selanjutnya hasil perhitungan di-ranking berdasarkan nilai cosinus dari besar ke kecil sebagai proses pemilihan dokumen yang yang "dekat" dengan query.
- Pe-ranking-an tersebut menyatakan dokumen yang paling relevan hingga yang kurang relevan dengan query.
- Nilai cosinus yang besar menyatakan dokumen yang relevan, nilai cosinus yang kecil menyatakan dokumen yang kurang relevan dengan query.

• Pada contoh di atas:

$$\mathbf{Q} \cdot \mathbf{D_1} = (2)(0) + (3)(0) + (5)(2) = 10$$

 $\mathbf{Q} \cdot \mathbf{D_2} = (3)(0) + (7)(0) + (1)(2) = 2$

$$\|\mathbf{Q}\| = \sqrt{0^2 + 0^2 + 2^2} = \sqrt{4} = 2$$

$$\|\mathbf{D_1}\| = \sqrt{2^2 + 3^2 + 5^2} = \sqrt{4 + 9 + 25} = \sqrt{38}$$

$$\|\mathbf{D_2}\| = \sqrt{3^2 + 7^2 + 1^2} = \sqrt{9 + 49 + 1} = \sqrt{59}$$

$$sim(Q, D_1) = \cos \theta_1 = \frac{\mathbf{Q_1} \cdot \mathbf{D_1}}{\|\mathbf{Q}\| \|\mathbf{D_1}\|} = \frac{10}{2\sqrt{38}} = 0.81$$

$$sim(Q, D_2) = \cos \theta_2 = \frac{\mathbf{Q_1} \cdot \mathbf{D_2}}{\|\mathbf{Q}\| \|\mathbf{D_2}\|} = \frac{2}{2\sqrt{59}} = 0.13$$

Karena 0.81 > 0.13, maka dokumen D_1 lebih sesuai dengan query Q dibandingkan dengan dokumen Q_2

$$sim(\mathbf{Q}, \mathbf{D}) = \cos \theta = \frac{\mathbf{Q} \cdot \mathbf{D}}{\|\mathbf{Q}\| \|\mathbf{D}\|}$$

$$\mathbf{Q} \cdot \mathbf{D} = q_1 d_1 + q_2 d_2 + ... + q_n d_n$$

Latihan (Kuis 2020)

Google misalkan menggunakan metode ruang vektor untuk me-ranking website-website berdasarkan keyword yang dimasukkan. Misalkan ada masukan keyword dari pengguna sbb: "red big car" dan ada 3 website yang isinya sebagai berikut: https://www.algeo.com: "Dian wear a red blouse in the house" https://www.aljabargeometri.com: "Big Edi ride a red big car in the road" https://www.aljabarlinear.com: "Dian ride a very big big red car in the road"

- a. Carilah similaritas antara keyword yang dimasukkan oleh user tersebut dengan ketiga website tersebut.
- b. Lakukan perangkingan website tersebut.

Jawaban:

a) Misalkan vector query dilambangkan dengan Q, vektor website https://www.algeo.com dilambangkan dengan vector D1, vektor https://www.aljabargeometri.com dilambangkan dengan D3.

Term	Vektor Query Q	Vektor D1	Vektor D2	Vektor D3
а	0	1	1	1
big	1	0	2	2
blouse	0	1	0	0
car	1	0	1	1
Dian	0	1	0	1
Edi	0	0	1	0
house	0	1	0	0
in	0	1	1	1
red	1	1	1	0
ride	0	0	1	1
road	0	0	1	1
the	0	1	1	1
very	0	0	0	1
wear	0	1	0	0

Vektor-vektor:

$$Q = (0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0)$$

$$D1 = (1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1)$$

$$D2 = (1, 2, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0)$$

$$D3 = (1, 2, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0)$$

- Panjang vektor query Q = $|Q| = \sqrt{1^2 + 1^2 + 1^2} = 1,73$
- Panjang vektor dokumen D1 = $|D1| = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2} = 2,83$
- Panjang vector dokumen D2 = $|D2| = \sqrt{1^2 + 2^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2} = 3,46$
- Panjang vektor dokumen D3 = $|D3| = \sqrt{1^2 + 2^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2} = 3,46$
- Similaritas query Q dengan dokumen D1 = Q.D1/|Q||D1| = ((1*0)+(1*0)+(1*1))/(1,73*2,83) = 0,20
- Similaritas query Q dengan dokumen D1 = Q.D2/|Q||D2| = ((1*2)+(1*1)+(1*1))/(1,73*3,46) = 0.67
- Similaritas query Q dengan dokumen D1 = Q.D3/|Q||D3| = =((1*2)+(1*1)+(1*1))/(1,73*3,46) = 0.67

Alternatif jawaban versi lain yang lebih ringkas:

- Similaritas (Q,D1) = $Q.D1/|Q||D1|=1/(\sqrt{8})$
- Similaritas(Q,D2) = $Q.D2/|Q||D2|=4/(\sqrt{12})$
- Similaritas(Q,D3) = $Q.D3/|Q||D3|=4/(\sqrt{12})$

- b) Karena similaritas dokumen D2 dan dokumen D3 sama maka ada 2 kemungkinan ranking yaitu ranking:
- 1) D2

atau

1) D3

2) D3

2) D2

3) D1

3) D1

• Untuk mendalami lebih lanjut tentang model-model lain di dalam Sistem Temu-balik Informasi, maka anda dapat mengambil mata kuliah pilihan **IF4042 Sistem Temu Balik Informasi** di Semester 7.

Referensi

- 1. Prof. Dik Lee, *Vector Space Retrieval Models*, Univ. of Science and Tech, Hong Kong.
- 2. Hendra Bunyamin, *Information Retrieval System dengan Metode Latent Semantic Indexing*, Tesis S2 Informatika ITB, 2005.