ДОСЛІДЖЕННЯ НЕЙРОННИХ МЕРЕЖ. МОДЕЛЬ PERCEPTRON

Мета роботи - ознайомлення з принципами машинного навчання за допомогою математичної моделі сприйняття інформації Перцептрон(Perceptron). Змоделювати роботу нейронної мережі та дослідити вплив параметрів на час виконання та точність результату

Основні теоретичні відомості

Важливою задачеюяку система реального часу має вирішувати є отримання необхідних для обчислень параметрів, її обробка та виведення результату у встановлений дедлайн. З цього постає проблема отримання водночас точних та швидких результатів. Модель Перцпептрон дозволяє покроково наближати початкові значення.

Розглянемо приклад: дано дві точки A(1,5), B(2,4), поріг спрацювання P=4, швидкість навчання $\delta=0.1$. Початкові значення ваги візьмемо нульовими W1=0, W2=0. Розрахунок вихідного сигналу у виконується за наступною формулою:

$$x_1 * W_1 + x_2 * W_2 = y$$

Для кожного кроку потрібно застосувати дельта-правило, формула для розрахунку похибки:

$$\Delta = P - v$$

де у – значення на виході.

Для розрахунку ваги, використовується наступна формули:

$$W_1(i{+}1) = W_1(i) + W_2 * x_{11}$$

$$W_2(i+1) = W_1(i) + W_2 * x_{12}$$

де і – крок, або ітерація алгоритму.

Розпочнемо обробку:

1 ітерація:

Використовуємо формулу обрахунку вихідного сигналу:

0 = 0 * 1 + 0 * 5 значення не підходить, оскільки воно менше зазначеного порогу. Вихідний сигнал повинен бути строго більша за поріг.

Далі, рахуємо Δ :

$$\Delta = 4 - 0 = 4$$

За допомогою швидкості навчання δ та минулих значень ваги, розрахуємо нові значення ваги:

$$W_1 = 0 + 4 * 1 * 0,1 = 0,4$$

$$W_2 = 0 + 4 * 5 * 0.1 = 2$$

Таким чином ми отримали нові значення ваги. Можна побачити, що результат змінюється при зміні порогу.

2 ітерація:

Виконуємо ті самі операції, але з новими значеннями ваги та для іншої точки.

$$8.8 = 0.4 * 2 + 2 * 4$$
, не підходить, значення повинно бути менше порогу.

$$\Delta = -5$$
, спрощуємо результат для прикладу.

$$W_1 = 0.4 + 5 * 2 * 0.1 = -0.6$$

$$W_2 = 2 - 5 * 4 * 0.1 = 0$$

3 ітерація:

Дано тільки дві точки, тому повертаємось до першої точки та нові значення ваги розраховуємо для неї.

-0.6 = -0.6 * 1 + 0 * 5, не підходить, значення повинно бути більше порогу.

 $\Delta = 5$, спрощуємо результат для прикладу.

$$W_1 = -0.6 + 5 * 1 * 0.1 = -0.1$$

$$W_2 = 0 + 5 * 5 * 0.1 = 2,5$$

По такому самому принципу рахуємо значення ваги для наступних ітерацій, поки не отримаємо значення, які задовольняють вхідним даним.

На восьмій ітерації отримуємо значення ваги $W_1 = -1.8$ та $W_2 = 1.5$.

5,7 = -1,8 * 1 + 1,5 * 5, більше за поріг, задовольняє

2,4 = -1,8 * 2 + 1,5 * 4, менше за поріг, задовольняє

Отже, бачимо, що для заданого прикладу, отримано значення ваги за 8 ітерацій. При розрахунку значень, потрібно враховувати дедлайн. Дедлайн може бути в вигляді максимальної кількості ітерацій або часовий.

Завдання на лабораторну роботу

Поріг спрацювання: Р = 4

Дано точки: A(0,6), B(1,5), C(3,3), D(2,4).

Швидкості навчання: $\delta = \{0,001; 0,01; 0,05; 0.1; 0.2; 0,3\}$

Дедлайн: часовий = $\{0.5c; 1c; 2c; 5c\}$, кількість ітерацій = $\{100; 200; 500; 1000\}$

Обрати швидкість навчання та дедлайн. Налаштувати Перцептрон для даних точок. Розробити відповідний мобільний додаток і вивести отримані значення. Провести аналіз витрати часу та точності результату за різних параметрах навчання.

Зміст звіту

Звіт по лабораторній роботі повинен містити такі матеріали:

- 1. Титульний лист.
- 2. Основні теоретичні відомості, необхідні для виконання лабораторної роботи.
- 3. Умови завдання для варіанту бригади.
- 4. Лістинг програми із заданими умовами завдання.
- 5. Результати виконання кожної програми.
- 6. Висновки щодо виконання лабораторної роботи.