COMP9020 17s1 • Problem Set 4 • 24 March 2017

Functions and Relations

Exercise 1. Consider the relation $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}$ defined by $a\mathcal{R}b$ if, and only if, $b+0.5 \ge a \ge b-0.5$. Is \mathcal{R}

- (a) reflexive?
- (b) antireflexive?
- (c) symmetric?
- (d) antisymmetric?
- (e) transitive?

Exercise 2. Prove each of the following statements.

- (a) $(\mathbf{A}^T)^T = \mathbf{A}$ for any matrix \mathbf{A} .
- (b) If two matrices **A** and **B** are of the same size, then $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$.
- (c) $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$ for any matrix \mathbf{A} of size $m \times n$ and matrices \mathbf{B}, \mathbf{C} of size $n \times p$.
- *Exercise 3. Consider a relation \mathcal{R} on $\operatorname{Pow}(U)$ for some set U defined by $A\mathcal{R}B$ iff $|A \cap B| \geq 1$. Prove that \mathcal{R} is transitive iff $|U| \leq 1$.