E0-214 Applied Linear Algebra and Optimization Assignment 6

- 1. Consider the problem of finding the point on the parabola $x_2 = \frac{1}{5}(x_1 1)^2$ that is closest, in the Euclidean norm sense, to $(1, 2)^T$.
 - (a) Use KKT conditions to solve this problem.
 - (b) By eliminating the variable x_1 , convert this problem into an unconstrained optimization problem and solve it.
- 2. Find the rectangle of a given perimeter that has greatest area by solving the first order necessary conditions. Verify that the second order sufficiency conditions are satisfied.
- 3. Consider the constraint set, $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 (x_1 1)^2 \leq 0, x_1 \geq 0, x_2 \geq 0\}$. Is the point $(1, 0)^T$ feasible? Is LICQ satisfied at $(1, 0)^T$?
- 4. Maximize $14x_1 x_1^2 + 6x_2 x_2^2 + 7$ subject to $x_1 + x_2 \le 2$ and $x_1 + 2x_2 \le 3$.
- 5. Minimize $x_1^2 + x_2^2 + \frac{1}{4}x_3^2$ subject to $x_1 x_3 + 1 = 0$ and $x_1^2 + x_2^2 = 2x_1$.
- 6. Solve the following problem:

min
$$-2x_1 + x_2$$

s.t. $(1 - x_1)^3 \ge x_2$
 $x_2 + 0.25x_1^2 \ge 1$

- 7. Find the minima of the function $f(\mathbf{x}) = x_1 x_2$ on the unit circle $x_1^2 + x_2^2 = 1$.
- 8. Consider the following problem:

min
$$(x_1 - \frac{9}{4})^2 + (x_2 - 2)^2$$

s.t. $x_2 \ge x_1^2$
 $x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

- (a) Write down the KKT optimality conditions and verify that these conditions are true at the point $\hat{\boldsymbol{x}} = (\frac{3}{2}, \frac{9}{4})^T$.
- (b) Interpret the KKT conditions at \hat{x} graphically.
- (c) Is $\hat{\boldsymbol{x}}$ the unique global optimal solution?

9. Find an optimal solution to the following problem:

$$\max_{x_1^2 + x_2^2 + 4x_1x_2} x_1 + x_2^2 + 4x_1x_2$$
 s.t.
$$x_1^2 + x_2^2 = 1$$

10. Consider the following problem:

$$\begin{array}{ll} \max & x_2 \\ \text{s.t.} & x_2 \geqslant 0 \\ & x_2 \leqslant x_1^2 \end{array}$$

- (a) For $\hat{\boldsymbol{x}} = (0,0)^T$, draw $\mathcal{T}(\hat{\boldsymbol{x}})$ and $\tilde{F}(\hat{\boldsymbol{x}})$.
- (b) Is LICQ satisfied at $\hat{\boldsymbol{x}}$?
- (c) Are the first order KKT conditions satisfied at \hat{x} ?