Programa de Especialización en Econometría Aplicada Centro de Formación Continua -UNI Microeconometrísa Aplicada II Clase 1

Edinson Tolentino MSc Economics

email: edinson.tolentino@gmail.com

Twitter: @edutoleraymondi

Universidad Nacional de Ingeneria

23 de noviembre de 2024

Contenido

- Tópicos
- Microdatos
 - ¿Qué son los microdatos?
 - Tipos de microdatos
- Efectos marginales
 - Efectos Marginales Promedio (EMP)
 - Efectos Marginales en la Media (EMM)
 - Efectos Marginales Evaluados en Valores Relevantes (EMEVR)
 - Implementación en Stata
 - Implementación en Efectos Marginales

Tópicos

Este curso estará dividido en 5 sesiones:

- Modelos de respuesta ordenada.
- Modelos de variable dependiente limitada continua.
 - Truncamiento.
 - Censura.
 - Sesgo de selección.
- Modelos de conteo.
- Modelos de duración.
- Modelos para estimar la Productividad.

El curso se desarrolla en base a Stata, un paquete estadístico-econométrico de mucha popularidad.

Microdatos

- Las tres características más importantes de los microdatos son:
 - Oatos de corte transversal (encuestas y datos administrativos).
 - ② Datos observacionales (diferente a datos experimentales).
 - 3 A menudo su escala de medición es no continua.
- Un caso híbrido es el de datos de panel. En principio, estos modelos pueden contabilizarse entre los microdatos siempre que la dimensión tiempo sea pequeña.

Ejemplos

- La teoría del capital humano predice una relación positiva entre el salario, variable dependiente, y el nivel educación.
- Número de hijos por mujer esta en función de sus oportunidades laborales y educación.
- Supervivencia de las empresas.
- Estimación de la PTF con microdatos.

Tipos de microdatos

Los microdatos pueden dividirse en datos **cuantitativa** y **cualitativa**. Este último también llamado **categórico**.

- Los datos cualitativos siempre son discretos y existen tres tipos:
 - Binario
 - Multinomial
 - Ordenado

Mientras los datos cuantitativos pueden ser discretos o continuos.

- Entre los datos cuantitativos se puede distinguir entre datos con rango restringido o no restringido. Así, por ejemplo, existen variables no negativas: ingreso, duración o conteo.
- Alternativamente, las variables cuantitativas pueden estar censuradas, truncadas o agrupadas.

Tipos de microdatos

Figura: Tipos de microdatos

Fuente: Winkelmann y Boes (2006).

Efectos marginales

Mide el efecto del cambio en un regresor (x_j) sobre la esperanza condicional de y_i .

• La interpretación y cálculo de efectos marginales en modelos lineales es sencillo.

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$
$$\Rightarrow \frac{\partial E[y_i|x_i]}{\partial x_1} = \beta_1$$

 Sin embargo, en modelos binarios, multinomiales, etc. Los efectos marginales dependen de los valores de las variables explicativas.

$$\Rightarrow \frac{\partial Pr(y_i = 1|x_i)}{\partial x_k} = -f(\alpha_1 - x_i'\beta)\beta_k$$

En la práctica, para modelos no lineales, se tiene un efecto marginal distinto para cada individuo de la muestra.

Efectos Marginales Promedio (EMP)

- Para cada individuo i se obtiene un efecto marginal evaluado con sus propias características.
- Luego, se promedia los efectos marginales.

$$ME_i^j = \frac{\partial E(y_i|x_i)}{\partial x_j} = \beta_j f(x_i'\beta)$$

$$\Rightarrow EMP^j = \frac{1}{N} \sum_{i=1}^{N} ME_i^j$$

Efectos Marginales en la Media (EMM)

- Se puede utilizar la media (o mediana) de cada variable explicativa como valores representativos.
- Esta alternativa puede resultar inadecuada, puesto que la media no es siempre un valor representativo de la distribución.
- Es posible evaluar el Efecto Marginal en la media de algunas variables y en valores concretos de otras.

Variable continua:
$$EMM^j = \frac{\partial E(y_i|x_i)}{\partial x_j} = \beta_j f(\beta_0 + \beta_1 \bar{x}_1 + ... + \beta_k \bar{x}_k)$$

Variable discreta:
$$EMM^j = F(\beta_0 + \beta_1 \bar{x}_1 + \ldots + \beta_j (c_j + 1) + \ldots + \beta_k \bar{x}_k) - F(\beta_0 + \beta_1 \bar{x}_1 + \ldots + \beta_j (c_j) + \ldots + \beta_k \bar{x}_k)$$

4 D > 4 D > 4 E > 4 E > E *) Q (*

Efectos Marginales Evaluados en Valores Relevantes (EMEVR)

- En ocasiones queremos el efecto marginal para un conjunto de valores determinados.
 Por ejemplo, un individuo con educación primaria laborando en el sector informal...
- Para un único conjunto de valores dados para cada variable, se tendrá un efecto marginal.
- Sin embargo, no siempre tenemos claro qué valor especifico asignar a cada variable para obtener el efecto marginal.

$$EMEVR^{j} = \frac{\partial E(y_{i}|x_{i})}{\partial x_{i}} = \beta_{j} f(\beta_{0} + \beta_{1} x_{1}^{*} + ... + \beta_{k} x_{k}^{*})$$

Implementación en Stata

El comando que permite obtener los efectos marginales es margins.

Syntax

margins [marginlist] [if] [in] [weight] [,response options]

Donde:

• [marginlist] es la lista de variables que aparecen en la regresión.

Las opciones más importantes son:

- predict(): Obtenemos \hat{y} .
- dydx(varlist): Estima los EM de las variables en varlist.
- at(): Estima los EM con valores específicos de los regresores.
- atmeans: Estima los EM con los promedios de cada variable.
- post: Permite utilizar el comando outreg2 para exportar resultados.

Probabilidades

	MPL model		
as.factor(reduca_niv)2	062***		
	(.016)		
as.factor(reduca_niv)3	109***		
	(.022)		
as.factor(reduca_niv)4	224***		
	(.023)		
rnojobs	.024		
	(.042)		
rpobre	.094***		
	(.019)		
redad	006		
	(.005)		
redadsq	.000		
	(.000)		
R ²	.023		
Adj. R ²	.022		
Num. obs.	6112		
C ((()))			

Coefficients with p < 0.05 in **bold**.

Cuadro: MPL

Probabilidades

Cuadro: Models Explaining Poverty Participation. Marginal Effects

	Probit (all)	Probit (mean)	Logit (mean)
lnr6	-0.07***	-0.07***	-0.07***
	(0.00)	(0.00)	(0.00)
rneducarprimaria	-0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.01)
rneducarsecundaria	-0.08***	-0.07***	-0.07***
	(0.01)	(0.01)	(0.01)
rneducarsuperior	-0.18***	-0.18***	-0.19***
	(0.00)	(0.01)	(0.00)
rneducartecnica	-0.14***	-0.15***	-0.15***
	(0.01)	(0.01)	(0.01)
redad	-0.00***	-0.00***	-0.00***
	(0.00)	(0.00)	(0.00)
relectricidad		-0.09***	-0.09***
		(0.01)	(0.01)
AIC	23760.07	23639.17	23655.35
BIC	23817.65	23704.96	23721.14
Log Likelihood	-11873.04	-11811.58	-11819.67
Deviance	23746.07	23623.17	23639.35
Num. obs.	27569	27569	27569

^{***}p < 0.01; **p < 0.05; *p < 0.1

Edinson Tolentino (UNI) SEUPROS 23 de noviembre de 2024 13 / 15

Probabilidades

Cuadro: Models Explaining Poverty Participation. Marginal Effects

	Probit (all)	Probit (mean)	Logit (mean)
log(ingresos)	-0.07***	-0.07***	-0.07***
	(0.00)	(0.00)	(0.00)
Educ. Primaria (==1)	-0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.01)
Educ. Secundaria (==1)	-0.08***	-0.07***	-0.07***
	(0.01)	(0.01)	(0.01)
Educ. Supperior (==1)	-0.18***	-0.18***	-0.19***
	(0.00)	(0.01)	(0.00)
Educ. Tecnica (==1)	-0.14***	-0.15***	-0.15***
	(0.01)	(0.01)	(0.01)
Edad (years) $(==1)$	-0.00***	-0.00***	-0.00***
	(0.00)	(0.00)	(0.00)
Acceso a Luz (==1)		-0.09***	-0.09***
		(0.01)	(0.01)
AIC	23760.07	23639.17	23655.35
BIC	23817.65	23704.96	23721.14
Log Likelihood	-11873.04	-11811.58	-11819.67
Deviance	23746.07	23623.17	23639.35
Num. obs.	27569	27569	27569

^{***}p < 0.01; **p < 0.05; *p < 0.1

- 4 ロ ト 4 団 ト 4 差 ト 4 差 ト 2 差 - かり(で)

Edinson Tolentino (UNI) SEUPROS 23 de noviembre de 2024 14/15

(a) Marginal effect Edad

Figura: Efecto Marginal edad