Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Scheduled Calibration

Client

Primary Standards

Sporton

Certificate No: Z16-97186

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2218

E-mail: cttl@chinattl.com

Object EX3DV4 - SN:3697

Calibration Procedure(s) FD-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Cal Date(Calibrated by, Certificate No.)

Calibration date: October 25, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
6201052605		Jun-17
MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
Name	Function	Signature
Yu Zongying	SAR Test Engineer	276
Qi Dianyuan	SAR Project Leader	26
Liu Wei	Deputy Director of SEM Department	in la
	101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying Qi Dianyuan	101547 27-Jun-16 (CTTL, No.J16X04777) 101548 27-Jun-16 (CTTL, No.J16X04777) 18N50W-10dB 13-Mar-16(CTTL, No.J16X01547) 18N50W-20dB 13-Mar-16(CTTL, No.J16X01548) SN 7307 19-Feb-16(SPEAG, No.EX3-7307_Feb16) SN 1331 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) ID # Cal Date(Calibrated by, Certificate No.) 6201052605 27-Jun-16 (CTTL, No.J16X04776) MY46110673 26-Jan-16 (CTTL, No.J16X00894) Name Function Yu Zongying SAR Test Engineer Qi Dianyuan SAR Project Leader

Issued: October 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ σ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97186 Page 2 of 11

Probe EX3DV4

SN: 3697

Calibrated: October 25, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3697

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.35	0.39	0.33	±10.8%
DCP(mV) ^B	102.9	103.3	104.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	156.7	±2.2%
		Υ	0.0	0.0	1.0		169.6	
		Z	0.0	0.0	1.0		155.4	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3697

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	8.87	8.87	8.87	0.40	0.80	±12%
835	41.5	0.90	8.51	8.51	8.51	0.14	1.45	±12%
900	41.5	0.97	8.64	8.64	8.64	0.16	1.45	±12%
1750	40.1	1.37	7.57	7.57	7.57	0.16	1.63	±12%
1900	40.0	1.40	7.45	7.45	7.45	0.17	1.60	±12%
2450	39.2	1.80	6.63	6.63	6.63	0.33	1.13	±12%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3697

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	8.83	8.83	8.83	0.55	0.80	±12%
835	55.2	0.97	8.79	8.79	8.79	0.19	1.43	±12%
1750	53.4	1,49	7.15	7.15	7.15	0.17	1.84	±12%
1900	53.3	1.52	7.17	7.17	7.17	0.18	1.80	±12%
2450	52.7	1.95	6.95	6.95	6.95	0.38	1.09	±12%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3697

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3925_May16

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Approved by:

Sporton-TW (Auden)

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3925

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: May 26, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (No. 217-02285/02284)	In house check: Jun-16
Power sensor E4412A	SN: MY41498087	06-Apr-16 (No. 217-02285)	In house check: Jun-16
Power sensor E4412A	SN: 000110210	06-Apr-16 (No. 217-02284)	In house check: Jun-16
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Apr-13)	In house check: Jun-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Name Function Signature
Calibrated by: Leif Klysner Laboratory Technician

Calibrated by: Leif Klysner Laboratory Technician

Katja Pokovic

Technical Manager

Issued: May 31, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3925_May16 Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulatina liquid sensitivity in free space

СопуЕ DCP

sensitivity in TSL / NORMx,y,z

diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization (p

o rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close

proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx, v, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).

 $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 - \$N:3925 May 26, 2016

Probe EX3DV4

SN:3925

Manufactured: March 8, 2013

Calibrated:

May 26, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3925 May 26, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.59	0.52	0.50	± 10.1 %
DCP (mV) ^B	96.5	97.9	98.9	:

Modulation Calibration Parameters

UID	UID Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Unc ^b (k=2)
0	CW	×	0.0	0.0	1.0	0.00	152.6	±2.7 %
		Y	0.0	0.0	1.0		143.7	
		Z	0.0	0.0	1.0		138.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3925

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

May 26, 2016

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.37	10.37	10.37	0.48	0.80	± 12.0 %
835	41.5	0.90	9.92	9.92	9.92	0.47	0.81	± 12.0 %
900	41.5	0.97	9.72	9.72	9.72	0.41	0.80	± 12.0 %
1750	40.1	1.37	8.57	8.57	8.57	0.29	0.80	± 12.0 %
1900	40.0	1.40	8.30	8.30	8.30	0.30	0.80	± 12.0 %
2000	40.0	1.40	8.26	8.26	8.26	0.30	0.80	± 12.0 %
2450	39.2	1.80	7.47	7.47	7.47	0.35	0.80	± 12.0 %
2600	39.0	1.96	7.28	7.28	7.28	0.36	0.86	± 12.0 %
3500	37.9	2.91	7.14	7.14	7.14	0.29	1.30	± 13.1 %
5200	36.0	4.66	5.31	5.31	5.31	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.15	5.15	5.15	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.66	4.66	4.66	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.47	4.47	4.47	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.51	4.51	4.51	0.50	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3925 May 26, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.18	10.18	10.18	0.49	0.80	± 12.0 %
835	55.2	0.97	9.91	9.91	9.91	0.44	0.88	± 12.0 %
900	55.0	1.05	9.96	9.96	9.96	0.47	0.80	± 12.0 %
1750	53.4	1.49	8.30	8.30	8.30	0.34	0.80	± 12.0 %
1900	53.3	1.52	8.00	8.00	8.00	0.38	0.80	± 12.0 %
2000	53.3	1.52	8.18	8.18	8.18	0.37	0.80	± 12.0 %
2450	52.7	1.95	7.64	7.64	7.64	0.36	0.80	± 12.0 %
2600	52.5	2.16	7.38	7.38	7.38	0.26	0.80	± 12.0 %
3500	51.3	3.31	6.73	6.73	6.73	0.29	1.30	± 13.1 %
5200	49.0	5.30	4.39	4.39	4.39	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.22	4.22	4.22	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.02	4.02	4.02	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.85	3.85	3.85	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.85	3.85	3.85	0.60	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

May 26, 2016

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

May 26, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4- SN:3925 May 26, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4-- SN:3925 May 26, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	92.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3955_Nov16

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3955

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 24, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Name

Function

Leif Klysner

Laboratory Technician

Approved by:

Calibrated by:

Katja Pokovic

Technical Manager

Issued: November 28, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3955_Nov16

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

 $\boldsymbol{\phi}$ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

Certificate No: EX3-3955_Nov16

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

• Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 -- SN:3955 November 24, 2016

Probe EX3DV4

SN:3955

Manufactured:

August 6, 2013

Calibrated:

November 24, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

November 24, 2016 EX3DV4-SN:3955

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Basic Calibration Parameters

Basic Calibration Paral	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.40	0.31	± 10.1 %
Norm (μV/(V/m) ²). DCP (mV) ^B	100.5	101.5	97.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^c (k=2)
<u> </u>	CW	X	0.0	0.0	1.0	0.00	128.6	±3.3 %
<u> </u>		Y	0.0	0.0	1.0		140.6	
		7	0.0	0.0	1.0		128.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

F Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

November 24, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.65	10.65	10.65	0.49_	0.80	± 12.0 %
835	41.5	0.90	10.33	10.33	10.33	0.44	0.80_	± 12.0 %
900	41.5	0.97	10.07	10.07	10.07	0.34_	1.01	± 12.0 %
1750	40.1	1.37	8.68	8.68	8.68	0.32	0.80	± 12.0 %
1900	40.0	1.40	8.43	8.43	8.43	0.32	0.80	± 12.0 %
2000	40.0	1.40	8.38	8.38	8.38	0.33	0.80	± 12.0 %
2450	39.2	1.80	7.56	7.56	7.56	0.24	1.06	± 12.0 %
2600	39.0	1.96	7.28	7.28	7.28	0.30	0.95	± 12.0 %
5250	35.9	4.71	5.04	5.04	5.04	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.50	4.50	4.50	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.63	4.63	4.63	0.50	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

below 36 white is \$2.50, \$3.50 white indicated the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the CopyE uncertainty for indicated target fierce parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target fierce parameters.

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

November 24, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.42	10.42	10.42	0.38	0.90_	± 12.0 %
835	55.2	0.97	10.18	10.18	10.18	0.33	0.97	± 12.0 %
1750	53.4	1.49	8.31	8.31	8.31_	0.46	0.80	± 12.0 %
1900	53.3	1.52	8.00	8.00	8.00	0.30	0.95	± 12.0 %
2450	52.7	1.95	7.65	7.65	7.65	0.39	0.80	± 12.0 %
2600	52.5	2.16	7.42	7.42	7.42	0.37	0.80	± 12.0 %
5250	48.9	5.36	4.51	4.51	4.51	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.91	3.91	3.91	0.55	1.90	± 13.1 %
5750	48.3	5.94	4.12	4.12	4.12	0.55	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

November 24, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4- SN:3955 November 24, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, 9), f = 900 MHz

EX3DV4- SN:3955 November 24, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	130.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Http://www.chinattl.cn

Sporton TW

Certificate No: Z16-97123

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3270

Calibration Procedure(s)

FD-Z11-2-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

August 26, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	AM
Reviewed by:	Qi Dianyuan	SAR Project Leader	203/
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Ja wstz
		Issued: August	V 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97123 Page 2 of 11

Probe ES3DV3

SN: 3270

Calibrated: August 26, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	1.09	1.22	1.19	±10.8%
DCP(mV) ^B	100.9	103.3	101.0	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	274.7	±2.7%
		Υ	0.0	0.0	1.0		295.4	
		Z	0.0	0.0	1.0		288.4	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.19	6.19	6.19	0.50	1.35	±12%
835	41.5	0.90	6.03	6.03	6.03	0.42	1.47	±12%
900	41.5	0.97	6.09	6.09	6.09	0.37	1.61	±12%
1750	40.1	1.37	5.21	5.21	5.21	0.52	1.53	±12%
1900	40.0	1.40	5.08	5.08	5.08	0.55	1.50	±12%
2000	40.0	1.40	4.98	4.98	4.98	0.57	1.47	±12%
2100	39.8	1.49	5.02	5.02	5.02	0.68	1.41	±12%
2450	39.2	1.80	4.51	4.51	4.51	0.73	1.30	±12%
2600	39.0	1.96	4.37	4.37	4.37	0.90	1.13	±12%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.09	6.09	6.09	0.50	1.35	±12%
835	55.2	0.97	6.01	6.01	6.01	0.42	1.60	±12%
1750	53.4	1.49	4.95	4.95	4.95	0.50	1.66	±12%
1900	53.3	1.52	4.70	4.70	4.70	0.53	1.64	±12%
2450	52.7	1.95	4.28	4.28	4.28	0.90	1.20	±12%
2600	52.5	2.16	4.12	4.12	4.12	0.90	1.18	±12%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

(TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Receiving Pattern (Φ), θ =0°

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

Certificate No: Z16-97123 Page 8 of 11

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

Certificate No: Z16-97123 Page 10 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	168.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z16-97123 Page 11 of 11