Arithmétique modulaire – algos de base

Franck.Quessette@uvsq.fr

8 octobre 2022

1 Euclide étendu

1.1 Problème

Étant donnés a et $b \in \mathbb{N}$, calculer $u, v \in \mathbb{Z}$ et $d \in \mathbb{N}$ tels que :

$$au + bv = d = \operatorname{pgcd}(a, b)$$

1.2 Algo

Calculer trois suites en même temps (r_n, u_n, v_n) avec :

$$r_0 = a$$
 $u_0 = 1$ $v_0 = 0$
 $r_1 = b$ $u_1 = 0$ $v_1 = 1$

et

$$\left\{ \begin{array}{lll} r_{n+1} & = & r_{n-1} & - & \alpha_n \ r_n \\ u_{n+1} & = & u_{n-1} & - & \alpha_n \ u_n \\ v_{n+1} & = & v_{n-1} & - & \alpha_n \ v_n \end{array} \right. \quad \text{avec } \alpha_n = \left\lfloor \frac{r_{n-1}}{r_n} \right\rfloor$$

Il existe un N tel que $r_{N+1} = 0$ et on a $d = r_N$, $u = u_N$ et $v = v_N$.

1.3 Propriétés pour preuve de convergence de l'algo

Pour tout $n \leq N$, on a $r_n = au_n + bv_n$. Et si b < a la suite des r_n est décroissante, sinon elle décroit à partir de r_1 et pas de r_0 . r_{n+1} peut se définir de façon équivalente par $r_{n+1} = r_{n-1}$ mod r_n . L'écriture avec α_n rend les trois récurrences plus simillaires.

1.4 Exemple

a = 123 et b = 69:

n	$ r_n $	α_n	u_n	v_n
$\frac{n}{0}$	$\frac{7n}{123}$	α_n	$\frac{\omega_n}{1}$	$\frac{-0}{0}$
	_		_	~
1	69	1	0	1
2	54	1	1	-1
3	15	3	-1	2
4	9	1	4	-7
5	6	1	-5	9
6	3	2	9	-16
7	0			

On a donc $123 \times 9 + 69 \times (-16) = 3$

1.5 Propriété

Si au + bv = d alors :

$$\forall k \in \mathbb{Z}, \quad a\left(u + k\frac{b}{d}\right) + b\left(v - k\frac{a}{d}\right) = d \tag{1}$$

C'est utile si on veut un v > 0 par exemple.

2 Résolution d'équations modulaire (restes chinois)

2.1 Probème

Soient n_1, n_2, \ldots, n_k des entiers deux à deux premiers entre eux et a_1, a_2, \ldots, a_k des entiers. On veut trouver tous les $x \in \mathbb{Z}$ tels que :

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \\ \dots \\ x \equiv a_k \pmod{n_k} \end{cases}$$

2.2 Algo

On pose:

$$N = \prod_{i=1}^{k} n_i$$
 et $\overline{n}_i = \frac{N}{n_i}$

 n_i et \overline{n}_i sont premiers entre eux donc leur pgcd est 1.

Pour tout i, on calcule avec Euclide étendu u_i et v_i tels que $u_i n_i + v_i \overline{n}_i = 1$ et on pose $e_i = v_i \overline{n}_i$. On a alors :

Une solutions est:

$$x = \sum_{i=1}^{k} a_i e_i$$

et l'ensemble des solutions est l'ensemble des \boldsymbol{x} tels que :

$$x = \sum_{i=1}^{k} a_i e_i + k \times N, \quad \forall k \in \mathbb{Z}$$

2.3 Exemple

Calculer x tel que :

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

On a $N = 3 \times 5 \times 7 = 105$ et :

$$\begin{cases} n_1 = 3 & \overline{n}_1 = 5 \times 7 = 35 & u_1 = 12 & v_1 = -1 & e_1 = -35 \\ n_2 = 5 & \overline{n}_2 = 3 \times 7 = 21 & u_2 = -4 & v_2 = 1 & e_2 = 21 \\ n_3 = 7 & \overline{n}_3 = 3 \times 5 = 15 & u_2 = -2 & v_2 = 1 & e_2 = 15 \end{cases}$$

et donc $x=2\times(-35)+3\times 21+2\times 15=23$ est une solution. L'ensemble des solutions est $\{x=23+105k,\,\forall k\in\mathbb{Z}\}.$

Pour e_1 en utilisant la propriété 1.5 et en posant k=1 on a $u_1=-23$, $v_1=2$, $e_1=70$ et x=233, et $233\equiv 23\pmod{105}$.

3 Équation diophantienne

3.1 Problème

Calculer les couples d'entiers (x, y) vérifiant l'équation :

$$ax + by = c, \quad a, b, c \in \mathbb{Z}$$

3.2 Algo

- 1. Calculer $d = \operatorname{pgcd}(a, b)$.
- 2. Si d ne divise pas c alors pas de solution
- 3. Si d divise c, diviser toute l'équation par d. Poser $a_0 = \frac{a}{d}$, $b_0 = \frac{b}{d}$, $c_0 = \frac{c}{d}$. L'équation à résoudre est maintenant :

$$a_0x + b_0y = c_0$$

avec a_0 et b_0 premiers entre eux.

4. Calculer avec Euclide étendu : u et v tels que $a_0u + b_0v = 1$. Alors (cu, cv) est une solution de $a_0x + b_0y = c_0$ et donc de ax + by = c. L'ensemble des solution est : $\{(cu + kb_0, cv - ka_0), \forall k \in \mathbb{Z}\}$.

3.3 Exemples

$$4x + 6y = 2$$

 $\operatorname{pgcd}(4,6)=2$, l'équation devient $2x+3y=1,\,u=-1,\,v=1$ les solutions sont (-1+3k,1-2k) pour tout $k\in\mathbb{Z}$.

$$4x + 12y = 2$$

pgcd(4, 12) = 4 et 4 ne divise pas 2 donc pas de solution.

$$162x + 207y = 27$$

pgcd(162, 207) = 9 et 9 divise 27, l'équation devient 18x + 23y = 3 avec 18 et 23 premiers entre eux. On trouve u = 9 et v = -7. Les solutions sont (27 + 23k, -21 - 18k) pour tout $k \in \mathbb{Z}$. Pour k = 0, la solution est $(27, -21) : 162 \times 27 - 207 \times 21 = 4374 - 4347 = 27$. Pour k = -1, la solution est $(4, -3) : 162 \times 4 - 207 \times 39 = 648 - 621 = 27$.

4 Puissances modulaires

4.1 Problème

Étant donnés b, e et m, calculer x tel que

$$x \equiv b^e \pmod{m}, \quad 0 \le x < m$$

sans avoir des nombres "trop grands", en pratique, inférieur à m^2 .

4.2 Remarques

On va utiliser

- l'exponentiation rapide qui consiste à décomposer l'exposant en somme de puissance de 2;
- la propriété que le modulo du produit est le produit des modulos.

On écrit e comme une somme de puis sances de 2 :

$$e = \sum_{i=0}^{n} a_i 2^i$$
 $a_i \in \{0, 1\}, a_n = 1$

on a:

$$b^e = b^{\left(\sum_{i=0}^n a_i 2^i\right)} = \prod_{i=0}^n \left(b^{2^i}\right)^{a_i}$$

et

$$b^{2^i} = \left(b^{2^{i-1}}\right)^2$$

Comme le modulo du produit est le produit du modulo, il faut calculer le produit modulo m des puissances, au carré, de b qui sont dans sa décomposition en base deux, ce qui donne l'algo :

4.3 Algo

```
Entrées : b, e, m entiers positifs
Sortie : x = b^e \pmod{m} entier positif

x \leftarrow 1
Tant que e > 0 faire

Si (e est impair) alors x \leftarrow (x \times b) modulo m Fin Si

e \leftarrow e \text{ div } 2

b \leftarrow (b \times b) modulo m
Fin Tant que
Retourner x
```

Dans l'algo x et b sont toujours inférieurs à m puisqu'ils sont calculés modulo m. Au pire les calculs intermédiaires font apparaître des nombres inférieurs à m^2 .

4.4 Code efficace en C

4.5 Exemple

Calculer $x = 4^{13} \pmod{497}$. e = 13 en base 10 et e = 1101 en base 2.

x	e	b
1	1101	4
4	110	16
4	11	256
30	1	429
445	0	

La solution est x = 445.