Version 2.00

编译日期: 2019-09-17

任何建议及错误信息请发送至邮箱 1049188593@qq.com

目 录

第一章	时间复	夏杂度	的计	算																1
1.1	知识点	和方	法说	<u>.</u>														• (•	1
	1.1.1	知礼	点只															• (•	1
	1.1.2	方法	去论															• (•	1
1.2	真题实	民战																• •	•	1
	1.2.1	201	1年	408	8													• •	•	1
	1.2.2	201	4年	408	8															2
	1.2.3	201	7年	408	8		 _								 _				,	3

1

时间复杂度的计算

- ▶ 知识点: 讲解相关知识点。
- ▶ 题型:直接上真题。

1.1 知识点和方法论

1.1.1 知识点

- ▶ 时间复杂度常用大 O 符号表示
- ▶ 时间复杂度是去掉最高项多项式前面的系数,且不包括函数的低阶项。
- ▶ 常见时间复杂度 $(1) < (log_2n) < (n) < (nlog_2n) < (n^2) < (n^3) < (2^n) < O(n!) < O(n^n)$

1.1.2 方法论

- ▶ 简单计算相关的要计算的函数关键语句执行的次数。
- ▶ 对于关键语句使用令关键语句执行的次数是 t 次。

1.2 真题实战

1.2.1 2011年408

设 n 是描述问题规模的非负整数,下面程序片段的时间复杂度是()

```
x = 2;
while(x < n/2)
    x=2*x; // 3
```

解:

(计算函数关键语句的执行次数)

令:第三行语句执行了 t 次,可知条件不满足的情况是 $x*2^t>=n/2$, 其中 x=2 所以条件不满足的情况 $2^{t+1}>=n/2$ 求解 t:可知 $t>=log_2(n)-2$ 舍去低阶项,可知 $t>=log_2(n)$ 再用大 O 表示,可得时间复杂度为 $O(log_2n)$

1.2.2 2014年408

下面程序片段的时间复杂度是()

```
count=0;
for(k=1; k<=n; k*=2)// 1
   for(j=1; j<=n; j++) // 2
       count++;// 3</pre>
```

解:

(计算函数关键语句的执行次数)

计算3语句的频度

已知: for 里面 for 循环导致 3 语句执行次数是两个 for 次数相乘令 1 语句中 k*=2 执行了 t 次。1 语句可以执行 $k*2^t>n$ 可得 $t>log_2(n)$

1 的每个循环中,易知 2 语句中 j++ 执行了 n 次。

易知,3语句的执行次数和2语句中j++是一样的的。

得到总执行次数 $log_2(n) * n$ (前面的系数忽略)

易知,时间复杂度为 $log_2(n)*n$

1.2.3 2017年408

下列函数的时间复杂度是()

```
int func(int n){
    int i=0; sum=0;
    while(sum < n)
        sum += ++i;\\ 4
    return i;
}</pre>
```

解:

(计算函数关键语句的执行次数)

```
可知 i 的变化是 1,2,3,4,5...
令 4 语句执行了 t 次 sum = 1 + 2 + 3 + ... + t 可知当条件不满足时 sum = \frac{t*(1+t)}{2} >= n 得知 t + t^2 >= 2n 忽略低次项 t >= \sqrt{2*n} 忽略常数项的系数 t >= \sqrt{n} 得知时间复杂度是 O(\sqrt{n})
```