MACS - Quantification des incertitudes pour la simulation

TD 6 - Année 2022-2023

1 Avantages et limites du cumul quadratique

Soient X_1 et X_2 deux variables indépendantes qui sont uniformément distribuées sur [-1,1].

- 1. Rappeler la densité jointe, f_{X_1,X_2} , associée à ce couple de variables aléatoires.
- 2. On considère le modèle linéaire suivant :

$$Y(X_1, X_2) = aX_1 + bX_2 + cX_1X_2,$$

où a, b, c sont trois constantes positives. Calculer la moyenne et la variance de Y.

- 3. Calculer les approximations par cumul quadratique de la moyenne et de la variance de Y.
- 4. En déduire les conditions sur a, b, c qui doivent être vérifiées pour que l'approximation par cumul quadratique soit correct.

2 Estimation de quantités déterministe et aléatoire

On dispose de mesures indépendantes d'une quantité P_{\max} présentant une double source d'incertitudes :

- incertitudes de mesure dues au processus expérimental (incertitude "épistémique" ou "réductible"),
- variabilité "naturelle" entre échantillon (incertitude "aléatoire" ou "irréductible").
- 1. Cas 1 : la variabilité "naturelle" est négligeable \Rightarrow il existe une unique valeur de P_{\max} . En se basant sur l'égalité suivante, avec $\varepsilon_1^{\text{mes}}, \ldots, \varepsilon_N^{\text{mes}}$ des copies indépendantes et identiquement distribuées (iid) d'une même variable aléatoire ε^{mes} , de PDF gaussienne centrée d'écart type σ , exprimer la vraisemblance des mesures.

$$P_{\max,n}^{\text{mes}} = P_{\max} + \varepsilon_n^{\text{mes}}, \quad \boldsymbol{y} = (P_{\max,1}^{\text{mes}}, \dots, P_{\max,N}^{\text{mes}}).$$

- 2. Commenter la limite de ce résultat quand N tend vers l'infini.
- 3. Cas 2 : la variabilité "naturelle" est majoritaire \Rightarrow il n'existe pas de valeur unique de P_{max} . Dans ce cas, P_{max} est modélisée par une v.a. de loi $\pi(\cdot; \alpha)$, de paramètres α (moyenne, écart-type,...) inconnus. En se basant sur l'égalité suivante, en déduire la nouvelle expression de la vraisemblance.

$$\pi(P_{\max}|oldsymbol{y}) = \int_{\mathbb{A}} \pi(P_{\max}|oldsymbol{lpha}) \pi(oldsymbol{lpha}|oldsymbol{y}) doldsymbol{lpha}, \ \ \pi(oldsymbol{lpha}|oldsymbol{y}) \propto f(oldsymbol{y}|oldsymbol{lpha}) \pi(oldsymbol{lpha}).$$

4. Analyser la convergence de cette expression quand N tend vers l'infini.

3 Statistiques sur les processus gaussiens stationnaires

Soit $\{X(t), t \in \mathbb{R}\}$ un processus aléatoire gaussien stationnaire centré et de fonction de covariance $(t,t') \mapsto C(t,t') = \mathbb{E}[X(t)X(t')] = R(|t-t'|)$. On suppose que ce processus est dérivable, au sens où pour tout t, la limite

$$\lim_{dt\to 0} \frac{X(t+dt) - X(t)}{dt}$$

existe, et est notée $\dot{X}(t)$.

- 1. Montrer que \dot{X} est un processus gaussien.
- 2. Calculer les fonctions moyenne et de covariance du processus dérivée \dot{X} .
- 3. Montrer que X et \dot{X} sont décorrélés. En déduire que dans ce cas gaussien, ils sont indépendants.
- 4. Montrer que la probabilité pour X de dépasser un seuil ξ , avec pente positive, entre t et t+dt s'écrit :

$$P_{\xi}^{+} = \int_{0}^{+\infty} p(\xi, \dot{x}) \dot{x} d\dot{x} dt,$$

La grandeur $\nu_{\xi}^{+} = \int_{0}^{+\infty} p(\xi, \dot{x}) \dot{x} d\dot{x}$ correspond à la fréquence attendue de franchissement du seuil ξ avec pente positive, ou encore probabilité de franchissement de ξ avec pente > 0 par unité de temps.

- 5. Exprimer ν_{ξ}^+ en fonction de ξ et des écart-types σ_X et $\sigma_{\dot{X}}$ de X et \dot{X} respectivement.
- 6. En particulier, pour $\xi = 0$, montrer que

$$\nu_0^+ = \frac{\omega_0^+}{2\pi}, \quad \omega_0^+ = \frac{\sigma_{\dot{X}}}{\sigma_X}.$$

Interpréter cette valeur.

7. On note maintenant $P_m(\xi)$ la probabilité que X admette un maximum de niveau ξ entre t et t+dt. Montrer que $P_m(\xi)$ peut s'écrire sous la forme :

$$P_m(\xi) = \int_{V_m(\xi)} p_{X(t), \dot{X}(t), \ddot{X}(t)}(x, \dot{x}, \ddot{x}) dx d\dot{x} d\ddot{x},$$

où $p_{X(t),\dot{X}(t),\ddot{X}(t)}$ est la loi jointe de $\left(X(t),\dot{X}(t),\ddot{X}(t)\right)$ et où $V_m(\xi)$ est un volume à définir.

8. On note $p_m(\xi)$ la densité des maxima par unité de temps. On admet que pour des champs gaussiens stationnaires centrés,

$$p_m(\xi) = \frac{1}{\sqrt{2\pi m_0}} \left\{ e^{\xi^2} \exp\left(-\frac{\xi^2}{2m_0\epsilon^2}\right) + \sqrt{1 - \epsilon^2} \times \frac{\xi}{\sqrt{m_0}} \times \left\{ \exp\left(-\frac{\xi^2}{2m_0}\right) \int_{-\infty}^{\frac{\xi}{\sqrt{m_0}} \frac{\sqrt{1 - \epsilon^2}}{\epsilon}} \exp\left(-\frac{y^2}{2}\right) dy \right\},$$

$$\epsilon^2 = \frac{m_0 m_4 - m_2^2}{m_0 m_4} = 1 - \frac{m_2^2}{m_0 m_4} = 1 - \left(\frac{\nu_0^+}{\mu}\right)^2,$$

$$\mathbb{E}\left[(X(t), \dot{X}(t), \ddot{X}(t))(X(t), \dot{X}(t), \ddot{X}(t))^T \right] = \begin{bmatrix} m_0 & 0 & -m_2 \\ 0 & m_2 & 0 \\ -m_2 & 0 & m_4 \end{bmatrix}.$$

avec ν_0^+ la fréquence des passages par zéro et μ la fréquence des maxima. Commenter alors les distributions asymptotiques quand $\epsilon \to 0$ et $\epsilon \to 1$. Interpréter graphiquement ces résultats.