Análise descritiva e estatística de uma base de dados de salários

Otto Tavares

27 Mar, 2025

Introdução - Bibliotecas (parte 1)

Carregando bibliotecas que foram fundamentais para a construção dos modelos de regressão, tanto na versão com *input* de dados faltantes, como nos modelos usuais.

```
library(tidyverse)
library(tidyr)
library(purrr)
library(dlookr)
library(summarytools)
library(readxl)
library(knitr)
library(data.table)
library(ggpubr)
library(corrplot)
```

Introdução - Bibliotecas (parte 2)

```
library(rcompanion)
library(stargazer)
library(mice)
library(rmarkdown)
library(tinytex)
library(sandwich)
library(magrittr)
library(shiny)
library(plm)
```

Section 1

Base de dados

Base de dados de trabalho

- Base de dados do curso está disponibilizada no github no diretório 'dados_auxiliares'.
- As bases disponíveis até aqui são:
 - As de população mundial extraída do wikipedia;
 - 2 Lista dos países por continente no mundo;
 - Salários extraídas do Livro do Bussab e Moretim;
 - Orimes extraída do Instituto de Segurança Pública;
 - Income, disponbilizada pelos autores Acemoglu e Robinson.
- Vamos importar a base de salários para exposição das estatísticas descritivas em relatório em slides.

Imprindo as duas primeiras linhas da base de salário

 Apresentando as primeiras linhas do banco de dados de Salários para termos ciência dos dados.

n	estado_civil	Grau_de_instrucao	n_filhos	salario	idade_anos	idade_meses	regiao
1	solteiro	ensino fundamental	NA	4.00	26	3	interior
2	casado	ensino fundamental	1	4.56	32	10	capital
3	casado	ensino fundamental	2	5.25	36	5	capital
4	solteiro	ensino médio	NA	5.73	20	10	outra
5	solteiro	ensino fundamental	NA	6.26	40	7	outra
6	casado	ensino fundamental	0	6.66	28	0	interior

Identificando os tipos de cada variável na base

 A função diagnose que utilizamos para identificar tipos de variável, sua unicidade e proporção de missing.

```
salarios %>% dlookr::diagnose() %>%
kable(., , format = "latex", booktabs = T) %>%
kableExtra::kable_styling(font_size = 7)
```

variables	types	missing_count	missing_percent	unique_count	unique_rate
n	numeric	0	0.00000	36	1.0000000
estado_civil	character	0	0.00000	2	0.0555556
Grau_de_instrucao	character	0	0.00000	3	0.0833333
n_filhos	numeric	16	44.44444	6	0.1666667
salario	numeric	0	0.00000	36	1.0000000
idade_anos	numeric	0	0.00000	24	0.6666667
idade_meses	numeric	0	0.00000	12	0.3333333
regiao	character	0	0.00000	3	0.0833333

Análise de frequências da variável com dados faltantes **n_filhos**

• Utilizamos a função freq() do pacote summarytools para calcular as frequências relativas

Error in table(names(candidates))[["tested"]]: subscript or

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
0	4	20	20	11.111111	11.11111
1	5	25	45	13.888889	25.00000
2	7	35	80	19.44444	44.44444
3	3	15	95	8.333333	52.77778
5	1	5	100	2.777778	55.55556
<na> Total</na>	16 36	NA 100	NA 100	44.44444 100.000000	100.00000 100.00000
Total	30	100	100	100.000000	100.00000

Análise descritiva e de histogramas de uma variável contínua

- Variável salários é analisada descritivamente.
- A centralidade dos dados, a dipersão, a assimetria, bem como as estatísticas de ordem são calculadas, a fim de ter uma leitura acerca da distribuição dessa variável.

Error in table(names(candidates))[["tested"]]: subscript or

	salario
Mean	11.1222222
Std.Dev	4.5874575
Min	4.0000000
Q1	7.5150000
Median	10.1650000
Q3	14.2700000
Max	23.3000000
MAD	4.7220810
IQR	6.5075000
CV	0.4124587
Skewness	0.5997938
SE.Skewness	0.3925439
Kurtosis	-0.3291263

Função de Sturge para cálculo do número de bins

```
sr <- function(x) {
  n <-length(x)
  return((3.49*sd(x))/n^(1/3))
}</pre>
```

Análise visual da variável salário

 Calculando o histograma da variável salários com o número de bins calculado a partir da função de Sturge.

Análise visual da variável salário - leitura

- Leve assimetria com cauda à direita
- ② Centralidade dos dados calculada pela média sofre leve contaminação dos valores mais distantes do centro da distribuição
- Por mais que sejam poucas observações os dados não apresentam dispersão elevada, tendo a maioria dos dados concentrada próxima ao centro da distribuição.

Rodando a regressao linear sem a variável n_filhos

Table 1: Resultados das Regressões

	Salário
	Modelo 1
Idade (anos)	0.247** (0.109)
Constant	2.566 (3.831)
R ²	0.132
F Statistic	5.172** (df = 1; 34)
Note:	*p<0.1; **p<0.05; ***p<0.01

Table 2: Resultados das Regressões

1pt

Multivariada, com a variável estado civil de controle

Table 3: Resultados das Regressões

	Salário		
	Modelo 1	Modelo 2	
Idade (anos)	0.247** (0.109)	0.233** (0.108)	
Estado Civil	, ,	-1.955 (1.443)	
Constant	2.566 (3.831)	3.917 (3.914)	
Observations	36	36	
R^2	0.132	0.178	
Adjusted R ²	0.107	0.128	
Residual Std. Error	4.336 (df = 34)	4.284 (df = 33)	
F Statistic	5.172** (df = 1; 34)	3.567** (df = 2; 33)	
Noto:	*n<0.1: **n<0.05: **	*n < 0.01	

Note: `p<0.1; ^^p<0.05; ^` `p<0.01

Table 4: Resultados das Regressões

1pt

Multivariada, com as variáveis estado civil, grau de instrucao de controle

Table 5: Resultados das Regressões

	Modelo 1	Salário Modelo 2	Modelo 3
Idade (anos)	0.247** (0.109)	0.233** (0.108)	0.345*** (0.071)
Estado Civil (Solteiro)	(, , ,	-1.955 (1.443)	-1.144(0.951)
Grau de Instrução (Médio)		, ,	4.603*** (1.081)
Grau de Instrução (Superior)			9.779*** (1.391)
Constant	2.566 (3.831)	3.917 (3.914)	-4.225 (2.886)
Observations	36	36	36
R^2	0.132	0.178	0.687
Adjusted R ²	0.107	0.128	0.647
Residual Std. Error	4.336 (df = 34)	4.284 (df = 33)	2.726 (df = 31)
F Statistic	5.172** (df = 1; 34)	3.567** (df = 2; 33)	17.024*** (df = 4; 31

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 6: Resultados das Regressões

1pt

Multivariada, com as variáveis estado civil, grau de instrucao e regiao de controle

Table 7: Resultados das Regressões

	Salário				
	Modelo 1	Modelo 2	Modelo 3	Modelo 4	
Idade (anos)	0.247** (0.109)	0.233** (0.108)	0.345*** (0.071)	0.351*** (0.074)	
Estado Civil	, ,	-1.955 (1.443)	-1.144 (0.951)	-1.052(1.010)	
Grau de Instrução		` '	4.603*** (1.081)	4.563*** (1.113)	
Região			9.779*** (1.391)	9.757*** (1.431)	
factor(regiao)interior				0.587 (1.190)	
factor(regiao)outra				-0.019(1.178)	
Constant	2.566 (3.831)	3.917 (3.914)	-4.225 (2.886)	-4.638 (3.130)	
Observations	36	36	36	36	
R^2	0.132	0.178	0.687	0.691	
Adjusted R ²	0.107	0.128	0.647	0.627	
Residual Std. Error	4.336 (df = 34)	4.284 (df = 33)	2.726 (df = 31)	2.802 (df = 29)	
F Statistic	5.172** (df = 1; 34)	3.567** (df = 2; 33)	17.024***(df = 4; 31)	10.800***(df = 6; 29)	

Note: *p<0.1; **p<0.05; ***p<0.01

Table 8: Resultados das Regressões