

Automatic 3D Segmentation of Hydrogel Scaffolds Based on PBI-µCT

Xiao Fan Ding, X. Duan, N. Li, D. Chen, and N. Zhu

Segmenting hydrogel scaffolds

- Morphology of scaffolds to quantify:
 - Volume
 - Cross-section area
 - Porosity and pore size distribution
- 3D morphology could reveal mechanical properties
- But hydrogels exhibit very poor image contrast making 3D characterization difficult

• Task of categorizing each pixel in an image

• Task of categorizing each pixel in an image

- Task of categorizing each pixel in an image
- Used to visualize and study morphology

- Task of categorizing each pixel in an image
- Used to visualize and study morphology
- Laborious, time consuming, expensive, and variable

Phase Contrast and Phase Retrieval

The Proposed Method

Training on Edge and Area

Compare Segmentation

Proposed Method

Biomedisa

Amira-Avizo

Compare Segmentation

Proposed Method

Biomedisa

Amira-Avizo

Compare Segmentation

Proposed Method

Biomedisa

Amira-Avizo

Demonstrations

Demonstration #1 – Pore size

Demonstration #2 – Material

Demonstration #3 – Structure

Demonstration #1 – Pore size

Iteration #0

Demonstration #1 — Pore size

Iteration #5800

94% Similarity to Ground Truth

Demonstration #2 — Different material

Iteration #0

Demonstration #2 - Different material

Iteration #7700

89% Similarity to Ground Truth

Demonstration #3 – Different structure

Iteration #0

Demonstration #3 — Different structure

Iteration #1430

92% Similarity to Ground Truth

Conclusion

- Accurate and efficient segmentation results
- Reduced manual work
- Distill segmentation down to reusable parameters
- Customizable segmentation strategy

Acknowledgements

And to the following sources of funding:

Dr Ning Zhu, Xiaoman Duan, Naitao Li, Samira Khoz

Dr Daniel Chen and Dr Fangxiang Wu