Reg. No.					П	V	

B.Tech. DEGREE EXAMINATION, MAY 2022

Third & Fourth Semester

18MAB203T – PROBABILITY AND STOCHASTIC PROCESSES

(For the candidates admitted from the academic year 2018-2019 to 2019-2020) (Statistical tables are to be provided)

Note:

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B should be answered in answer booklet.

Time: 21/2 Hours

Max. Marks: 75

BL. CO.

$PART - A (25 \times 1 = 25 Marks)$

Answer ALL Questions

- 1. A coin is tossed twice and X denotes the number of heads. The mean of X is 1 2 1 2
 - (A) 1

(B) 0

(C) 2

- (D) -1
- 2. If F is the cumulative distribution function of a continuous random variable $\begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \end{bmatrix}$ X and if a
b, then $p(a < X \le b)$ is
 - (A) F(b)+F(a)

(B) aF(b)-bF(a)

(C) aF(b)+bF(a)

- (D) F(b)-F(a)
- 3. The mean of a binomial distribution is 20 and standard deviation is 4. Find the parameter n
 - (A) 100

(B) 200

(C) 50

- (D) 25
- 4. The characteristic function of the exponential distribution is

1 1 1

(A) λ

(B) $\frac{\lambda}{\lambda + i\omega}$

(C) $\frac{1}{\lambda - i\omega}$

- (D) $\frac{1}{\lambda + i\omega}$
- 5. A discrete random variable X has the following probability distribution. Find p(-2 < X < 2)

x:
$$-2$$
 -1 0 1 2 3
 $p(x)$: $\frac{1}{10}$ $\frac{1}{15}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{3}{10}$

(A) 0.1

(B) 0.4

(C) 0.3

- (D) 0.5
- 6. If F(x,y) is the joint cumulative distribution function, then $F(\infty,\infty)$ =
 - (B) ∞

(A) 0 (C) 1

(D) −∞

7. If U and V are two independent variables, then COV(U,V) is 1 2 1 (A) 0(B) 1 (C) -1(D) ∞ 8. From the following joint probability distribution of X and Y find P(X=0) X 0 3/28 9/28 3/28 3/14 3/14 0 1/28 0 (A) 3/28 (B) 7/14 (C) 5/28 (D) 5/14 9. The conditional probability density function of Y given X is (C) f(x,y).f(x)(D) f(x,y).f(y)X and Y have joint probability function density $f(x,y) = \frac{2}{3}(2x+y); 0 < x < 1, 0 < y < 1, \text{ then } f(x) =$ (A) $\frac{1+2y}{2} \left(\frac{2}{3} \right)$ $(B) \quad \frac{2}{3} \left(\frac{4x+1}{2} \right)$ (C) $\frac{1+x}{2}$ (D) $\frac{1+y}{2}$ 1 1 11. Let X follows an exponential distribution with parameter λ . Using Markov's inequality, an upper bound for $P(X \ge a) \le$ (A) λa (D) λ (C) $\frac{1}{a}$ 1 3 1

12. If $E(X) = \mu$ and $Var(X) = \sigma^2$, then for a > 0, $P(X \le \mu - a) \le 0$ (A) $\frac{\sigma^2}{\sigma^2 - a^2}$ (B) $\frac{\sigma^2}{\sigma^2 + a^2}$ (C) $\frac{\sigma}{\sigma + a}$ (D) $\frac{\sigma}{\sigma - a}$

13. Cauchy-Schwartz inequality states that for any two random variables, 1 1 3

(B) $E(XY)^2 \le E(X)E(Y)$ (C) $E(XY)^2 \le E(X^2)E(Y^2)$ (B) $E(XY)^2 \le E(X)E(Y)$ (D) $E(XY)^2 \le E(XY)$

14	If $Var(X)=0$, then $P(X=\mu)$			1	1	3	1
1	(A) 0	(B)	1				
	(C) 2	(D)	3				
1.5	Cl CC - in a sality gives the		_bounds compared to Markov's	1	1	3	1
15.	Chernoff's inequality gives theinequality and Tchebycheff's inequality	ality.	bounds compared to Markov s				
	(A) Weakest	(B)	Strongest				
	(C) Same	(D)	Approximate				
				1	1	4	1
16.	$R_{XY}(-\tau) =$						
	(A) $-R_{XY}(\tau)$		$R_{XY}(au)$				
	(C) $R_{YX}(\tau)$	(D)	$-R_{XY}(- au)$				
17	If the random processes $\{X(t)\}$ and	{ V (+)}	are jointly wide-sense stationary				
1/.	and independent, then $R_{\chi\gamma}(\tau)$	(1(6))	are joining wide sense states and				
		(B)	$E\{X(t)\}\cdot E\{Y(t)\}$				
	(A) $E\left\{X^2(t)\right\} \cdot E\left\{Y^2(t)\right\}$						
	(C) 0	(D)	1 ghamarall				
18	The average power of the random p	rocess	$\{X(t)\}\$ is defined by	1	1	4	1
10.	(A) $R_{XX}(\tau)$		$R_{YY}(0)$				
	()		$S_{XX}(0)$				
		()	AA ()				
19.	If a stationary process has	autoc	orrelation function given by	1	2	4	2
	$R(\tau) = 2 + 4e^{-2 \tau }$, then the mean so						
	` '	(B)					
	(C) 6	(D)	8				
20.	A random process is defined by X	(t)=A,	where A is a continuous random	1	2	4	2
	variable with probability density fu	unction	of $f(x) = 1, 0 < a < 1$. The mean of				
	the process X(t) is						
	(A) 0	(B)	1				
	(C) 2	(D)	1/2				
21.	The power spectral density of a rand	dom si	gnal with autocorrelation function	1:4	2	5	2
	$e^{-\lambda \tau }$ is						
	(A) $\frac{\lambda}{\lambda^2 + \omega^2}$ (C) $\frac{2\lambda}{\lambda^2 + \omega^2}$	(B)	$\frac{\omega}{\lambda^2 + \omega^2}$ $\frac{2\omega}{\lambda^2 + \omega^2}$				
	$\lambda^2 + \omega^2$	(- -)	$\lambda^2 + \omega^2$				
	(C) $\frac{2\lambda}{2}$	(D)	$\frac{2\omega}{2}$				
	$\lambda^2 + \omega^2$		$\lambda^2 + \omega^2$				
22.	Unit impulse response for a causal			1	1	5	1
	(A) $t>0$	(B)	t=0				
	(C) t<0	(D)	Always				
23.	The power spectral density satisfies	s the	condition if X(t) is real	1	1	5	1
	(A) $\delta_{XX}(\omega) = -\delta_{XX}(-\omega)$	(B)	$\delta_{XX}(\omega) = \delta_{XX}(-\omega)$				
	(C) $\delta_{XX}(\omega) = \infty$ at $\omega = 0$		$\delta_{YY}(\omega) = \delta_{YY}(\omega^2)$				

24. If $\{X(t)\}$ and $\{Y(t)\}$ are orthogonal, then (A) $\delta_{XY}(\omega) = 0$ $\delta_{YX}(\omega) = 1$ (B) $\delta_{XY}(\omega) = 0$ $\delta_{YX}(\omega) = 0$ (C) $\delta_{XY}(\omega) = 1$ $\delta_{YX}(\omega) = 1$ (D) $\delta_{XY}(\omega) = 1$ $\delta_{YX}(\omega) = 0$ 25. A random process $\{X(t)\}$ is applied to a linear system with impulse response $h(t) = e^{-2t}$; $t \ge 0$. The power transfer function of the system is (B) $\frac{4}{4+\omega^2}$ (D) $\frac{2}{2+i\omega}$ $2+i\omega$ (C) $\frac{1}{4+\omega^2}$ $PART - B (5 \times 10 = 50 Marks)$ Marks BL CO PO Answer ALL Questions 26. a. The discrete random variable X has the probability distribution given by 0 1 2 3 4 p(x) k 3k 5k 7k 9kCompute, (i) The value of k (iii) Cumulative distribution function Variance and (iv) P(0 < X < 3/X > 1)(v) (OR) b. In a normal distribution, 30% of the items are under 45 and 80% of the items are over 60. Compute the mean and standard deviation of the distribution. 27. a.i. If the joint probability distribution function of (X,Y) is given by

 $f(x,y) = \begin{cases} 0 \le y \le 1 \\ 0 ; otherwise \end{cases}$

Compute the probability density function of U=XY.

ii. The joint probability distribution of (X,Y) is given by

X	0	1	2
0	0.1	0.04	0.06
1	0.2	0.08	0.12
2	0.2	0.08	0.12

Examine if X and Y are independent.

(OR)

b. Let X and Y be random variables having the following joint probability 4 2 1,2 10 distribution. Compute the correlation coefficient between X and Y.

	X	Y							
		0	1	2					
	0	1/16	2/16	1/16					
	1	2/16	4/16	2/16					
13	2	1/16	2/16	1/16					

1 5 1

1.2

1 1,2

1,2

3 2 1,2

28. a. An unbiased coin is tossed 100 times. Show that the probability that the number of heads will be between 30 and 70 is greater than 0.9375.

(OR)

- b. In a particular circuit 20 resistors are connected in series. The mean and variance of the resistance of each resistor is 5 and 0.2 respectively. Using central limit theorem, compute the probability that the total resistance of the circuit will exceed 98, assuming independence.
- 29. a. If $X(t) = 5\cos(10t + \theta)$ and $Y(t) = 20\sin(10t + \theta)$ where θ is a random variable uniformly distributed in $(0,2\pi)$, show that the processes $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide-sense stationary.

(OR)

- b. Consider two random processes $X(t) = 3\cos(\omega t + \theta)$ and $Y(t) = 2\cos(\omega t + \theta \pi/2)$, where θ is a random variable uniformly distributed in $(0,2\pi)$. Show that $|R_{xy}(0)| \le \sqrt{R_{xx}(0)R_{yy}(0)}$.
- 30. a. A wide-sense stationary random process X(t) has power spectral density 10 3 5 1,2 $\delta_{XX}(\omega) = \frac{\omega^2}{\omega^4 + 10\omega^2 + 9}$ compute auto correlation function and mean square value of the process.

(OR)

b. A wide-sense stationary process X(t) is the input to a linear system with impulse response

$$h(t) = 2e^{-t}; t \ge 0$$

if
$$R_{XX}(\tau) = e^{-2|\tau|}$$

Compute the power spectral density function of the output process Y(t).

* * * * *