МЕТОД МИНИМИЗИРУЮЩИХ КАРТ. КАРТЫ КАРНО

–Карты Карно

Прямоугольная таблица истинности, каждая строка и каждый столбец которой отмечены частью двоичного набора так, что каждая клетка карты соответствует одному двоичному набору.

Соседние по вертикали, горизонтали и симметрично расположенные на карте отличаются значением лишь одной переменной.

$$y(a,b,c,d) = \bigwedge_{0} (4,5,11,14,15)$$

	cd					
ab		00	01	11	10	
	00	1	1	1	1	~
	01	0	0	1	1	
	11	1	1	0	0	
	10	1	1	0	1010	

Область смежных клеток: область из 2^k клеток (k=0, €..., n), каждая из которых имеет k смежных (соседних) клеток из этой области.

Правило покрытия 1: Любой области из 2^k клеток можно поставить в соответствие («покрыть») ЭК (n-k)-ранга, состоящую из переменных, которые имею постоянное значение во всех двоичных наборах, соответствующих клеткам области:

Переменная $\mathbf{x} = \mathbf{0}$ во всех клетках области $\rightarrow \ \mathcal{X}$

Переменная x = 1 во всех клетках области $\rightarrow \mathcal{X}$

Переменная x = 1 или $0 \rightarrow X$

Правило покрытия 1 (по единицам):

Переменная x=0 во всех клетках области $\to \mathcal{X}$ Переменная x=1 во всех клетках области $\to \mathcal{X}$ Переменная x=1 или $0 \to \mathcal{X}$

1						1	2	4	ර ්	16									
	cd							ab	cd		01	000)						
ab		00/	01	11_	,10			00	10		.00	001							
	00	(1)	1	1	1	D		101	0		. ^ .	111							
	01	0	0	1	1			_											
	11	1	1	0	0			8.0	† +	ā	. \$	+ a	·C	+0	7.0	=	TI)H97 H99	>
	10	1	1	0	(1					٥						l	YD	400	
					1		-	11-	_ +	8.	C	+		-{					

Карта Карно – развёртка гиперкуба на плоскости

Карты Карно на 4 переменные

ТДНФ и БФ может быть **несколько**

2

	cd												
ab	(00	01	11	10								
	00	1	1/	1	1	-	B	7.0					
	01	0	0 (1	1								
	11	1	1	0	0								
	10	1	3/	0	1	_							
	/	1	-		1								

Выбираем МДНФ:

 $MDHP = TDHP_1 = TDHP_2$

Правило покрытия 2 *(по нулям)*: Любой области из 2^k клеток можно поставить в соответствие («покрыть») ЭД (n-k)-ранга, состоящую из переменных, которые имею постоянное значение во всех двоичных наборах, соответствующих клеткам области:

Переменная x = 1 во всех клетках области $\rightarrow \mathcal{X}$

Переменная x = 0 во всех клетках области $\to \mathcal{X}$

Переменная x = 1 или $0 \rightarrow X$

	cd																		
ab		00	01	11	10	7	KA	yq)=/	YK	49	0_	lā-	r B	+ <u>C</u>)•(1 +	.C+	a).
	00	1	1	1	1				• (a.	一君	+ Ĉ							
	01	0	0	1	1														
	,11	1	1	0	0														
	10	1	1	0	1														

Особенности минимизации формул частичных переключательных функций

																		y2		
			Date	AM PM		7 8			7 1	in						y1		у4		у3
				PM	*		ST [®]	_	. 1K	our tice						у5				у7
	abcd	у1	у5															у6		
	0000	1	1																	
	0001	0	0			_	_								_	_		L. (\	
	0010	0	1			y1	cd				1.0		TZ	DH	93	= (· d	+6	(- (<i>†</i>
	0011	0	0			ab		00	01	11	10			D	+	- 1				
	0100	1	0				00	1	0	0	0	_	7	0	-01	+	Q	_		
	0101	1	0				01	1	1	0	$\begin{pmatrix} 1 \\ - \end{pmatrix}$,				
	0110	1	1				11		ر_ر	<u> </u>	_	7		•	'n-	- K	=			
	0111	0	0				10	1	1			J		4	4-	-3	=	1		
	1000	1	1										•	11	<i>y</i>					
	1001	1	0										-	MO	76	90				
10	1010	_	_											1.1.2	JM	T				
* -	•••	_	_																	
	1111	_	_																	
											,		(-p	•	_ }		_			
										K,	4 <i>q</i>) <u>—</u>	(6	+	\mathbb{C}_{j}	•	01			
		y5	cd	G -																
		ab		0.0	01	11														
			00	1	0	0	١													
			01	0	0	0														
			11	<u>_</u>	1-1	_	\ -													
			10	1	0	/	/ -													

Карта Карно на 5 переменных.

-	ts.								
	TX L								400
X1	X2 (5)	000	001	011	010	110	111	101	100
	00	1			1	1	1	1	
	01	1			1				
	11			1			1		
	10	1		1			1		1

Неверный вариант покрытия! S2 и S3 — не верные покрытия

Верный, но не оптимальный

٠.	ts,	I	l I	ı	I	ı	l	I	
X1	1 X2 ts	000	001	011	010	110	111	101	100
	00		-S5	S4	1	1)(1	1	-S1
_	01	1			1	S 3			
	11			(1)			/1		
	10	1		1			1/		
		SZ	2		S	66			

НЕ оптимальное покрытие (для построения МДНФ).

-	ts.								
	tx,								
X1	X2 5	000	001	011	010	110	111	101	100
_	00	1	S2	S5	1	1	1	1	S7
	01_	1			1		S6		
	11	S3		1	-S1		1		
	10	1		1			1		1
				_S4)		

Карта Карно для функции 8 переменных.

X5 X6 X7 X8 X1 X2 X3 X4	0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
0000							1									
0001							1									
0011							1									
0010							1									
0110							1									
0111							1									
0101							1									
0100							1									
1100	1	1		1		1					1		1		1	1
1101	1	1		1		1					1		1		1	1
1111	1	1		1		1					1		1		1	1
1110	1	1		1		1					1		1		1	1
1010	1	1		1		1					1		1		1	1
1011	1	1		1		1					1		1		1	1
1001	1	1		1		1					1		1		1	1
1000	1	1		1		1					1		1		1	1

Покрытие для получения МДНФ.

X5 X6 X7 X8																.
X1 X2 X3 X4	0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
0000							1									
0001							1									
0011						S4	1									
0010							1									
0110							1									
0111							1									
0101				S ₂		S3	1				Ş3		S2		S ₁	
0100				Δ			1				<u> </u>		h		\leftarrow	
1100	1	1		1		1	_				1		1		1	1
1101	1	1		1		1					1		1		1	1
1111	1	1		1		1					1		1		1	1
1110	1	1		1		1					. 1		1		1	1
1010	1	1		1		1					1		1		1	1
1011	1	1		1		1					1		1		1	1
1001	1	1		1		1					1 /		1		1	1
1000	1	1		1/		1/					1		$\backslash 1$		1	1

Покрытие для получения МКНФ.

X5 X6 X7 X8											ı		ı			.
X1 X2 X3 X4	0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
0000							1		L							J
0001							1									
0011							1									
0010							1									
0110							1									
0111	/						1				$ \setminus $				1	
0101	S4				S`5		1		Š6		Š5				S4	
0100					J		1		J		lacksquare					
1100	1	1		1		1					1		1		1	1
1101	1	1		1		1					1		1		1	1
1111	1	1		1		1					1		1		1	1
1110	1	1		1		1					1		1		1	1
1010	1	1		1		1					1		1		1	1
1011	1	1		1		1					1		1		1	1
1001	1	1	S2	1	S3	1	V	Š3			1	Š3	1	S2	1	1
1000	1	1		1		1	Š1				1		1		1	1