Information Processing Technology of Internet of Things

Chapter 1 Data Preprocessing

Wu Liu

Beijing Key Lab of Intelligent Telecomm. Software and Multimedia Beijing University of Posts and Telecommunications

1.1 Data &its Characteristics

1.1 Data &its Characteristics

Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity

Types of Data Sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs

 Document data: text documents: termfrequency vector

- Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

rm-	team	:oach	pla y	ball	score	game	n wi	lost	meout	eason
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0
	•									

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns -> attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- $Size = \{small, medium, large\}$, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval-scaled
 - Measured on a scale of equal-sized units
 - The values of interval-scaled attributes have order and can be positive, 0, or negative.
 - Values have order
 - E.g., temperature in C or F, calendar dates
 - No true zero-point

Ratio-scaled

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floatingpoint variables

1.1 Data &its Characteristics

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

Measuring Data Similarity and Dissimilarity

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency, variation and spread
- basic data descriptions (e.g., measures of central tendency and measures of dispersion)
- graphic statistical displays (e.g., quantile plots, histograms, and scatter plots)
- provide valuable insight into the overall behavior of your data

Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i x_i}$$

Median:

Mode

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for grouped data):

$median = L_1 + ($	$\frac{n/2-(\sum freq)_l}{})$ width
$meatan - L_1 + C$	$freq_{{}_{median}}$

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula: $mean-mode=3\times(mean-median)$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ − Q₁
 - Five number summary: min, Q₁, median, Q₃, max

- Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
- Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis represents frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately $100 f_i$ % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- **Scatter plot**: each pair of values is a pair of coordinates and plotted as points in the plane

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Visualization of Data Dispersion: 3-D Boxplots

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars. The height of the bar indicates the frequency (i.e., count) of a given attribute value.
- It shows what proportion of cases fall into each of several categories
- The range of values for X is partitioned into disjoint consecutive subranges. The subranges, referred to as buckets or bins, are disjoint subsets of the data distribution for X. The range of a bucket is known as the width.

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min,Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- A quantile plot is a simple and effective way to have a first look at a univariate data distribution.
- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots **quantile** information

• For a data x_i data sorted in increasing order, f_i indicates that approximately $100 f_i$ % of the data are below or equal to the value

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Each point corresponds to the same quantile for each data set and shows the unit price of items sold at branch 1 versus branch 2 for that quantile.
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

- Correlations of two attributes can be positive, negative, or null (uncorrelated).
- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

1.1 Data &its Characteristics

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- **Dissimilarity** (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix (object-byattribute structure)
 - n objects with p attributes
 - n data points with p dimensions
 - Two modes

x_{11}	•••	x_{1f}	•••	x_{1p}
•••	•••	•••	•••	•••
x_{i1}	•••	x _{if}	•••	x _{ip}
•••	•••	•••	•••	•••
x_{n1}	•••	x _{nf}	•••	x _{np}

- Dissimilarity matrix (objectby-object structure)
 - d(i, j) is the measured dissimilarity or "difference" between objects i and j.
 - n data points, but registers only the distance
 - A triangular matrix
 - Single mode

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x</i> 2	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Simple matching
 - m: number of matches, p: total number of variables

$$d(i,j) = \frac{p-m}{p}$$

Object Identifier	test-l (nominal)
1	code A
2	code B
3	code C
4	code A

$$\begin{bmatrix} 0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 1 & 1 & 0 & \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Since here we have one nominal attribute, test-1, we set p = 1

Proximity Measure for Binary Attributes

A contingency table for binary data

Object i $\begin{pmatrix} 1 & q & r & q+r \\ 0 & s & t & s+t \\ sum & q+s & r+t & p \end{pmatrix}$

Object *j*

- Distance measure for symmetric binary variables:
- $d(i,j) = \frac{r+s}{q+r+s+t}$

$$d(i,j) = \frac{r+s}{q+r+s}$$

 Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):

$$sim(i,j) = \frac{q}{q+r+s} = 1 - d(i,j)$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and h is the order (the distance so
defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_{∞} norm, Chebyshev distance) distance.
 - This is the maximum difference between any component (attribute)
 of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

Manhattan (L₁)

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
v4	1	5

L	x1	x 2	x 3	x 4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Dissimilarity Matrices

Euclidean (L₂)

L2	x1	x2	x3	x4
x 1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

Proximity Measure for Ordinal Attiributes

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

• compute the dissimilarity using methods for interval-scaled variables

Example: Ordinal Attiributes

- **Dissimilarity between ordinal attributes.** test-2: There are three states for test-2: fair, good, and excellent, that is, Mf =3.
- For step 1, if we replace each value for test-2 by its rank, the four objects are assigned the ranks 3, 1, 2, and 3, respectively.
- Step 2 normalizes the ranking by mapping rank 1 to 0.0, rank 2 to 0.5, and rank 3 to 1.0.
- For step 3, we can use, say, the Euclidean distance, which results in the following dissimilarity matrix:

Object Identifier	test-2 (ordinal)
1	excellent
2	fair
3	good
4	excellent

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal: $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise
- *f* is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and $Z_{if} = \frac{r_{if} 1}{M_{f} 1}$
 - Treat z_{if} as interval-scaled

Cosine Similarity

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then $\cos(d_1, d_2) = \frac{d_1 \cdot d_2}{\|d_1\| \|d_2\|}$,

where \bullet indicates vector dot product, ||d||: is the Euclidean norm of vector d

Example: Cosine Similarity

- $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$\begin{aligned} &d_1 \bullet d_2 = 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 0*1 + 2*1 + 0*0 + 0*1 = 25 \\ &||d_1|| = (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} \\ &6.481 \\ &||d_2|| = (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)^{\mathbf{0.5}} = (17)^{\mathbf{0.5}} \\ &4.12 \\ &\cos(d_1, d_2) = 0.94 \end{aligned}$$

