Amendments to the Claims:

1. (Currently Amended) A compound represented by the following structural formula:

or a pharmaceutically acceptable salt thereof, wherein:

(- - -) represents a double bond;

 X_1 is -O-;

n is an integer from 1 to 6;

the aryl rings are each optionally and independently substituted;

the alkylene spacer molecule between the piperidine and the -CO₂R group

is substituted with a heteroatom or a cyclic substituent alkyl or a heterocycle, wherein one or more of the carbons of the spacer molecule is contained in the cyclic alkyl or the heterocycle; and

R is -H, 2-propyl, 2-butyl, 2-pentyl, cyclopentyl, cyclohexyl, 3-tetrahydrofuryl, 3-pentyl, 1,3-dimethoxy-2-propyl, 4-tetrahydropyranyl, 2,4-dimethyl-3-pentyl, 1-methoxy-2-propyl, 1-3-diethoxy-2-propyl, or 2,2'dimethyl-1-propyl.

- 2. (Original) The compound of claim 1, wherein R is -H.
- 3. (Previously Presented) The compound of claim 1, wherein:

the aryl rings are each optionally and independently substituted with one or more groups selected from halogen, dimethylaminocarbonyl, fluoroalkyl, hydroxy, C₁₋₆ alkyl, C₁₋₆ alkoxy, carboxylic acid, methylhydroxy, methylcarbonyl, cyano, aminomethyl, (aminoalkyl), ethoxycarbonylmethoxy, cyanomethyloxy, (acetoxyethyl)oxy, (hydroxyoxyethyl)oxy, morphilinoethyloxy, (tetrazol-5-

yl)methyloxy, carboxymethyloxy, dimethylaminocarbonylmethyloxy, morphilinocarbonylmethyloxy, (1-ethoxycarbonyl-1-methylethyl)oxy, (1-carboxy-1-methylethyl)oxy, (2-methoxyethyl)oxy, (1-dimethylaminocarbonyl-1-methylethyl)oxy, (1-ethoxycarbonyl)cyclobutoxy, (1-carboxy)cyclobutoxy, (1,1-dimethyl-2-hydroxyethyl)oxy, (2,2-dimethyl-2-hydroxyethyl)oxy, acyloxy, cycloalkyl, arylalkyl, alkoxycarbonyl, and substituted or unsubstituted amines.

4. (Previously Presented) The compound of claim 1, wherein:

the aryl rings are optionally and independently substituted with one or more substituents selected from hydrogen, halogen, alkyl, fluoroalkyl, hydroxy, alkoxy, $-(O)_u-(CH_2)_t-C(O)OR_4$, $-(O)_u-(CH_2)_t-OC(O)R_4$, $-(O)_u-(CH_2)_t-C(O)-NR_5R_6$ and $-(O)_u-(CH_2)_t-NHC(O)O-R_4$;

wherein:

t is an integer from 0 to 3;

-(CH₂)_t- is substituted or unsubstituted; and

R₄, R₅, and R₆ are independently hydrogen, an aliphatic group, a substituted aliphatic group, an aromatic group, a substituted aromatic group or a non-aromatic heterocyclic group, or R₅ and R₆, taken together with the nitrogen atom to which they are bonded, are a non-aromatic heterocyclic ring.

5. (Previously Presented) The compound of claim 1, wherein:

the aryl rings are optionally and independently substituted with one or more of halogen, -OH, -CO₂H, alkylimine, alkylsulfonyl, carboxamido, carboxylic alkyl esters, -CH=NH, -NO₂, azido, cyano, fluoroalkyl, -CONR₈R₉, -NR₈R₉, - OS(O)₂NR₈R₉, -S(O)₂NR₈R₉, sulfonic acid, sulfonamide, guanidino, -(O)_u-(CH₂)_t-C(O)OR₄, -(O)_u-(CH₂)_t-OC(O)R₄, -(O)_u-(CH₂)_t-C(O)-NR₅R₆, -(O)_u-(CH₂)_t-NHC(O)O-R₄, -Q-H, -Q-(aliphatic group), -Q-(substituted aliphatic group), -Q-(aryl), -Q-(aromatic group), -Q-(substituted aromatic group), -Q-(CH₂)_p-(substituted or unsubstituted aromatic group), -Q-(non-aromatic heterocyclic group) or -Q-(CH₂)_p-(non-aromatic heterocyclic group); wherein:

p is an integer from 1 to 5;

u is 0 or 1;

Q is -O-, -S-, -S(O)-, -S(O)₂-, -OS(O)₂-, -C(O)-, -OC(O)-, -C(O)O, -C(O)C(O)-O-, -O-C(O)C(O)-, -C(O)NH-, -NHC(O)-, -OC(O)NH-, -NHC(O)O-, NH-C(O)-NH-, -S(O)₂ NH-, -NHS(O)₂-, -N(R₇)-, -C(NR₇)NHNH-, -NHNHC(NR₇)-, -NR₈C(O)- or -NR₈ S(O)₂-;

- R₄, R₅, and R₆ are independently H, an aliphatic group, a substituted aliphatic group, an aromatic group, a substituted aromatic group, a non-aromatic heterocyclic group, -NHC(O)-O-(aliphatic group), -NHC(O)-O- (aromatic group) or –NHC(O)-O-(non-aromatic heterocyclic group), or R₅ and R₆, taken together with the nitrogen atom to which they are bonded, are a non-aromatic heterocyclic ring;
- R₇ is –H, an aliphatic group, a benzyl group, an aryl group or a non-aromatic heterocyclic group; and
- R₈ and R₉ are independently –H, hydroxy, an aliphatic group, a substituted aliphatic group, a benzyl group, an aryl group or a non-aromatic heterocyclic group.
- 6. (Currently Amended) The compound of claim 2, wherein the compound is represented by the following formula:

wherein:

n is 1, 2, or 3; R₁ = -H, -OH, -CH₂OH, or -CH₂CH₂OH; R₂ = -H, -CH₃, -CF₃, -Cl, or -Br;

 X_1 is -O-; and

the alkylene spacer molecule is: substituted with a cyclic substituent-alkyl or a <a href="https://example.com/https://example

7.-12. (Canceled).

- 13. (Currently Amended) The compound of claim 1, wherein the alkylene spacer is substituted with a cyclic alkyl, wherein one or more of the carbons of the spacer molecule is contained in the cyclic alkyl-substituent.
- 14. (Currently Amended) The compound of claim 13, wherein the cyclic <u>alkyl</u> substituent is a cycloalkyl cyclopropyl group or a cyclic ether group.
- 15. (Currently Amended) The compound of claim 14, wherein one or more of the carbons of the alkylene spacer molecule is contained in the cyclic alkyleyclic substituent.
- 16. (Currently Amended) The compound of claim [[15]]6, wherein the compound is selected from the group of compounds consisting of:

$$CO_2H$$
, CO_2H , C

*HCI *HCI
$$CO_2H$$
, CO_2H , and

17. (Currently Amended) The compound of claim 1, wherein the compound is represented by the following formula:

wherein:

n is 1, 2, or 3;

the alkylene spacer is substituted with a heteroatom or a cyclic substitutent alkyl or a heterocycle, wherein one or more of the carbons of the spacer molecule is contained in the cyclic alkyl or the heterocycle;

R₁ and R₂ are independently selected from one or more groups selected from halogen, dimethylaminocarbonyl, fluoroalkyl, hydroxy, C₁₋₆ alkyl, C₁₋₆ alkoxy, carboxylic acid, methylhydroxy, methylcarbonyl, cyano, aminomethyl, (aminoalkyl), ethoxycarbonylmethoxy, cyanomethyloxy, (acetoxyethyl)oxy, (hydroxyoxyethyl)oxy, morphilinoethyloxy, (tetrazol-5-yl) methyloxy, carboxymethyloxy, dimethylaminocarbonylmethyloxy, morphilinocarbonylmethyloxy, (1-ethoxycarbonyl-1-methylethyl)oxy, (1-carboxy-1methylethyl)oxy, (2-methoxyethyl)oxy, (1-dimethylaminocarbonyl-1-methylethyl)oxy, (1-ethoxycarbonyl)cyclobutoxy, (1-carboxy)cyclobutoxy, (1,1-dimethyl-2-hydroxyethyl)oxy, (2,2-dimethyl-2-hydroxyethyl)oxy, acyloxy, cycloalkyl, arylalkyl, alkoxycarbonyl, and substituted or unsubstituted amines; and

 X_1 is -O-.

- 18. (Currently Amended) The compound of claim 1, wherein the <u>alkylene spacer molecule is</u> <u>substituted with a cyclic alkyl or a heterocycle substituent is</u> selected from cyclopropyl, tetrahydropyranyl, tetrahydrofuranyl, and cyclohexyl.
- 19. (Currently Amended) A compound represented by the following structural formula:

or a pharmaceutically acceptable salt thereof, wherein:

(- - -) represents double bond;

 X_1 is -O-;

n is an integer from 1 to 6;

the aryl rings are each optionally and independently substituted;

the alkylene spacer molecule between the piperidine and the -CO₂R group

is substituted with cyclopropyl, wherein one or more of the carbons of the spacer molecule is contained in the cyclopropyl ring; and

R is -H, 2-propyl, 2-butyl, 2-pentyl, cyclopentyl, cyclohexyl, 3-tetrahydrofuryl, 3-pentyl, 1,3-dimethoxy-2-propyl, 4-tetrahydropyranyl, 2,4-dimethyl-3-pentyl, 1-methoxy-2-propyl, 1-3-diethoxy-2-propyl, or 2,2'dimethyl-1-propyl.

20. (Currently Amended) A compound represented by the following structural formula:

$$R_1$$
 R_2
 R_2
 R_3
 R_4
 R_2

wherein:

n is 1, 2, or 3;

the alkylene spacer is substituted with cyclopropyl, wherein one of the carbons of the spacer molecule is contained in the cyclopropyl ring;

R₁ and R₂ are independently selected from one or more groups selected from halogen, dimethylaminocarbonyl, fluoroalkyl, hydroxy, C₁₋₆ alkyl, C₁₋₆ alkoxy, carboxylic acid, methylhydroxy, methylcarbonyl, cyano, aminomethyl, (aminoalkyl), ethoxycarbonylmethoxy, cyanomethyloxy, (acetoxyethyl)oxy, (hydroxyoxyethyl)oxy, morphilinoethyloxy, (tetrazol-5-yl) methyloxy, carboxymethyloxy, dimethylaminocarbonylmethyloxy,

morphilinocarbonylmethyloxy, (1-ethoxycarbonyl-1-methylethyl)oxy, (1-carboxy-1methylethyl)oxy, (2-methoxyethyl)oxy, (1-dimethylaminocarbonyl-1-methylethyl)oxy, (1-ethoxycarbonyl)cyclobutoxy, (1-carboxy)cyclobutoxy, (1,1-dimethyl-2-hydroxyethyl)oxy, (2,2-dimethyl-2-hydroxyethyl)oxy, acyloxy, cycloalkyl, arylalkyl, alkoxycarbonyl, and substituted or unsubstituted amines; and

 X_1 is -O-.