

22nd January 2020 Oleksii Kulikov • Lukas Schöbel Technical University of Munich Chair for Application and Middleware Systems

AGENDA

Hyperledger Fabric

- Hyperledger History & Ecosystem
- Classification of Hyperledger Fabric
- Operating Principle
- Pro & Con

Prototype

- Previous Ideas
- Motivation for our project
- o DEMO
- Outlook

HYPERLEDGER PROJECT

- Goal: Development of industrial large-scale blockchain applications
- Founded in 2016 (IBM, Cisco, J.P. Morgan, Deutsche Börse Group)
- 250+ companies involved today
- Distributed ledger technology ensures transparent and decentralized open standard

HYPERLEDGER ECOSYSTEM

Source: [A]

Oleksii Kulikov & Lukas Schöbel

HYPERLEDGER FABRIC

- Permissioned blockchain with modular architecture
- Throughput of 20,000 tps possible [1]
- SDK in various common languages (Java, Javascript, Go)

COMPARISON

	Bitcoin	Ethereum	Hyperledger Fabric	R3 Corda
Business Area	cryptocurrency	cryptocurrency, B2C	B2B	B2B
Туре	public, permissionless	public, permissionless	private, permissioned	private, permissioned
Contracts	no smart contracts	smart contracts e.g. with Solidity	smart contracts e.g. with Java, Javascript	smart contracts e.g. with Kotlin, Java
Currency	Bitcoin	Ether	none	none

Channels

Source: [B]

Membership & **Certificate Authorities** Fabric-CA <default> Membership Service uses TLS-CA **HTTPS** Provider Other external CAs

Nodes

- Endorsing peers
 - test-execute transactions
 - o create chaincode

Nodes

- **Endorsing peers**
 - test-execute transactions
 - create chaincode
- Committing peers
 - validate & commit transactions

Nodes

- **Endorsing peers**
 - test-execute transactions
 - create chaincode
- Committing peers
 - validate & commit transactions
- Ordering service peers
 - order transactions

PRO & CON

PRO	CON	
open source development	lack of resources & documentation	
modular toolbox	(too) fast development	
privacy through channels		

PROTOTYPE - IDEAS

Organs Expensive Drugs Food

CV

Digital Passport Shipping **Documents** Art **Containers**

Provenance Tracking Credit Rating Apartments

Election System

News

PROTOTYPE - USE CASE

PROTOTYPE - USE CASE

PROTOTYPE

Organizer

Contractor

Authority PROTOTYPE queryAll queryAll queryAgreement change change create create sign sign Organizer **Contractor SMART CONTRACT**

PROTOTYPE - BENEFITS

Analyzable

Safe

Transparent

DEMO

DEMO - STARTUP

```
./startFabric.sh iavascript
github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp -e CORE_PEER_TLS_ROOTCERT_FI
LE=/opt/gopath/src/qithub.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt cl
i peer chaincode install -n cashflow -v 1.0 -p /opt/gopath/src/github.com/chaincode/cashflow/javascript -l node
2020-01-19 14:14:12.422 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2020-01-19 14:14:12.422 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
2020-01-19 14:14:15.971 UTC [chaincodeCmd] install -> INFO 003 Installed remotely response:<status:200 payload:"OK" >
+ echo 'Instantiating smart contract on mychannel'
Instantiating smart contract on mychannel
+ docker exec -e CORE_PEER_LOCALMSPID=Org1MSP -e CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrg
anizations/orgl.example.com/users/Admin@orgl.example.com/msp cli peer chaincode instantiate -o orderer.example.com:7050 -C mychannel -n ca
shflow -l node -v 1.0 -c '{"Args":[]}' -P 'AND('\''org1MSP.member'\'','\''org2MSP.member'\'')' --tls --cafile /opt/gopath/src/github.com/h
yperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem --pe
erAddresses peer0.org1.example.com:7051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peer0rganizations/org
1.example.com/peers/peer0.org1.example.com/tls/ca.crt
2020-01-19 14:14:16.696 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2020-01-19 14:14:16.697 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
+ echo 'Waiting for instantiation request to be committed ...'
Waiting for instantiation request to be committed ...
+ echo 'Submitting initLedger transaction to smart contract on mychannel'
Submitting initLedger transaction to smart contract on mychannel
+ echo 'The transaction is sent to the two peers with the chaincode installed (peer0.org1.example.com and peer0.org2.example.com) so that
chaincode is built before receiving the following requests'
The transaction is sent to the two peers with the chaincode installed (peer0.org1.example.com and peer0.org2.example.com) so that chaincod
e is built before receiving the following requests
+ docker exec -e CORE PEER LOCALMSPID=Org1MSP -e CORE PEER MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrg
anizations/org1.example.com/users/Admin@org1.example.com/msp cli peer chaincode invoke -o orderer.example.com:7050 -C mychannel -n cashflo
w -c '{"function": "initLedger", "Args": []}' --waitForEvent --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/orderer
Organizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem --peerAddresses peer0.org1.example.com:70
51 --peerAddresses peer0.org2.example.com:9051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peer0rganizati
ons/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
peerOrganizations/org2.example.com/peers/peerO.org2.example.com/tls/ca.crt
```

USE CASE

Benefits

- Make cash flow in large-scale projects more transparent
- Detect cash leaks and suspicious manipulations
- Deliver starting point for in-depth auditioning

USE CASE

Limitations

- Preventing criminal activity all by itself
- Working in an entirely corrupted environment
 - i.e. where none of the parties are genuine

OUTLOOK

- Store digital copies of legal agreements in adjacent database
- Legal agreements between contractors
- Graphical User Interface (GUI)
- Issue and react to events

Thank you!

22nd January 2020 Oleksii Kulikov • Lukas Schöbel Technical University of Munich Chair for Application and Middleware Systems

SOURCES

Bibliography

[1] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019. FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. (2019), 455-463.

Images

- [A] https://www.hyperledger.org/
- [B] Hyperledger Fabric, F. Matthes, Lecture Nr. 12 on Blockchain-based Systems Engineering (IN2359), 2019, p. 11-20.
- [C] Hyperledger - Introduction, F. Matthes, Lecture Nr. 11 on Blockchain-based Systems Engineering (IN2359), 2019, p. 32.
- [D] https://www.berlin-airport.de/_images/presse/mediathek/_fotos/real-estate/06-airport-city-simulation.jpg