Problem R-09Q (C_1H_6CIN). Shown below is the 30 MHz 1H NMR spectrum of 60% ^{15}N enriched $CH_3NH_3^+CI^-$ in H_2O (Ogg, R. A.; Ray, J. D. *J. Chem. Phys.* **1956**, *26*, 1340).

Identify all significant peaks by labelling the spectrum. Show all coupling constants in the standard format ${}^{n}J_{x-y} = 00 \text{ Hz}$.

Problem R-09Q (C_1H_6CIN). Shown below is the 30 MHz 1H NMR spectrum of 60% ^{15}N enriched $CH_3NH_3^+CI^-$ in H_2O (Ogg, R. A.; Ray, J. D. *J. Chem. Phys.* **1956**, *26*, 1340).

Identify all significant peaks by labelling the spectrum. Show all coupling constants in the standard format ${}^{n}J_{x-y} = 00 \text{ Hz}$.

For the 60% ¹⁵N, signals are a dq for the NH₃, and a q for the CH₃

 $^{1}J(^{15}N-H) = 72 Hz.$

 $^{3}J(H-H) = 6 Hz.$

Apparently the ²J_{N-H} is too small to resolve, otherwise would see a qd for the Me group

For the 40% 14 N, signals are a broad 1:1:1 triplet for the NH $_3$ centered at δ 7.6. The coupling to the Me group is not resolved because T_1 relaxation of 14 N is fast enough to cause broadening. The quartet for the CH $_3$ is superimposed on the signals of the 15 N isotopomer. The $^3J_{\text{HCNH}}$ is too small to detect.

¹J(¹⁴N-H) ca 45 Hz.

The ratio of ${}^1J({}^{15}\text{N-H})$ and ${}^1J({}^{14}\text{N-H})$ should be $\gamma({}^{15}\text{N})/\gamma({}^{14}\text{N})$, 10.13/7.22, i.e.predict ${}^1J({}^{14}\text{N-H})$ = 51 Hz if ${}^1J({}^{15}\text{N-H})$ = 72

Common errors: Ignoring the 14N entirely; mixing up CH₃ and NH₃