Variabili aleatorie 3

martedì 29 giugno 2021

17:49

Esercizio 2

Sia X una variabile aleatoria assolutamente continua avente densità di probabilità

$$f(x) = \begin{cases} \frac{1}{x^2} & x \ge 1, \\ 0 & \text{altrimenti.} \end{cases}$$

- Determinare la funzione di distribuzione;
- (ii) Ricavare la probabilità $P(X < 4 \mid X > 2)$;
- (iii) Calcolare $E(1+\frac{1}{X})$.

+x

$$F(x) = \begin{cases} 0, & x \le 1 \\ 1 - \frac{1}{x}, & x > 1 \end{cases} \qquad \begin{array}{l} \times \langle 4 \cap X > 2 \\ \geq 2 \langle X < 4 \rangle \\ \geq 2 \langle X$$

Variabili aleatorie 4

mercoledi 7 luglio 2021

12:29

Esercizio 2

Sia X una variabile aleatoria assolutamente continua avente funzione di distribuzione

$$F(x) = \begin{cases} 0 & x < 0, \\ 1 - (1 - x)^2 & 0 \le x < 1, \\ 1 & x \ge 1. \end{cases}$$

- Determinare la densità di probabilità;
- (ii) Calcolare E(X);
- (iii) Ricavare la probabilità $P(|X E(X)| < \frac{1}{2})$;
- (iv) Posto Y = -X 1, calcolare il coefficiente di correlazione $\rho(X, Y)$.

(i)
$$P(x) = \frac{dF(x)}{dx}(x) = \begin{cases} 0 & x < 0 \\ -2(1-x)(-1) & 0 \le x < 1 \\ 0 & x \ge 1 \end{cases}$$
(ii)
$$F(x) = \begin{cases} 2x(1-x) dx = \begin{cases} 2(x-2) dx = 0 \\ 0 & x \le 1 \end{cases}$$
(iv)
$$F(x) = \begin{cases} 2x(1-x) dx = \begin{cases} 2(x-2) dx = 0 \\ 0 & x \le 1 \end{cases}$$

(iii)
$$P(|X - E(X)| < \frac{1}{3}) = P(0 < X < \frac{2}{3}) = F(\frac{2}{3}) - F(0) = \frac{1}{3}$$

$$|X - \frac{1}{3}| < \frac{1}{3}$$

$$|X - \omega| < |x|$$

$$\rho\left(X,Y\right) = \frac{\operatorname{Cov}\left(X,Y\right)}{\operatorname{Van}(X)\operatorname{Van}(Y)} = -\frac{\operatorname{Van}\left(X\right)}{\operatorname{Van}(X)\operatorname{Van}(X)} = -\frac{\operatorname{Van}\left(X\right)}{\operatorname{Van}(X)} = -\frac{\operatorname{Van}\left(X\right)}{\operatorname{Van}\left(X\right)} = -\frac{\operatorname$$

Variabili a		200								
mercoledì 7 luglio 2	2021 12	:50								
Esercizio Sia X una	100000	e aleatori	a assolu	tamente d	continua a	vente den	sità di pro	babilità		
			f(x) -	$=$ $\begin{cases} 6(x-1) \\ 0 \end{cases}$	x^2) 0 <	x < 1,				
			f(x) =	(0	altr	imenti.				
	minare la blare $E(X)$			ribuzione;						
(iii) Post	o $Y = X^2$	$^2+1$, cale	colare C	Cov(X,Y)						

Esercizio 3

Un'urna contiene 3 biglie rosse e 5 biglie nere. Si estraggono 2 biglie senza reinserimento. Siano

$$X = \begin{cases} 1 & \text{se la prima biglia estratta è rossa,} \\ 0 & \text{altrimenti,} \end{cases}$$

e

$$Y = \begin{cases} 1 & \text{se la seconda biglia estratta è rossa,} \\ 0 & \text{altrimenti.} \end{cases}$$

- (i) Determinare la densità discreta congiunta p(x, y);
- (ii) Stabilire se X ed Y sono indipendenti;
- (iii) Calcolare E(X+Y) ed $E(X\cdot Y)$.

(i)	RR -	→ 3	3.2=	6 56	X	1	0	$\gamma_{\times}(x)$
	RN	$\rightarrow \frac{2}{8}$	2. <u>p</u> =	<u>15</u> 56	1	6/56	15/56	21/56
	NR.	→ 5 8		15 56 20	0	15/56	20/56	35/56
		8	7	56 1 V	hy (y)	21/56	39/56	1

(ii)
$$w(x,y) \stackrel{?}{=} \int_{x} (x) dy (y) \quad \forall x \forall y$$

$$w(4,1) = \frac{6}{56} \stackrel{?}{=} \frac{21}{56} \cdot \frac{21}{56} = (x,1) ty(1)$$

$$\Rightarrow x \in Y \text{ non sono indipendenti}$$
(iii) $E(x+y) = E(x) + E(y) = \frac{21}{56} \cdot 2^{1} = \frac{21}{28}$

$$E(x\cdot y) = 1 \cdot 1 \cdot \frac{6^{3}}{56} = \frac{3}{28}$$

D. C. C. C.	CW 25 - CC#	teor in terrorio	#1 100 to	
Distribu:	zioni	cong	llun	te 2

mercoledi 7 luglio 2021

13:04

Esercizio 3

Un esperimento consiste in 3 prove ripetute e indipendenti, con probabilità di successo costante in ogni prova p=1/4. Sia X la variabile aleatoria che conta il numero di successi nelle 3 prove e sia Y la variabile aleatoria che rappresenta la prova in cui si ha ottenuto il primo successo. Nel caso in cui nelle 3 prove non si abbiano successi, la variabile Y assume valore zero.

- Determinare la densità discreta congiunta p(x, y);
- (ii) Stabilire se X ed Y sono indipendenti;
- (iii) Calcolare Cov(X, Y).

$$E(x) = 1 \cdot \frac{27}{64} + 2 \cdot \frac{9}{64} + 3 \cdot \frac{1}{64} = \frac{3}{4}$$

$$X \sim \text{Bim}(3, \frac{1}{4}) \qquad E(x) = 3 \cdot \frac{1}{4} = \frac{3}{4}$$

$$E(y) = 1 \cdot \frac{16}{64} + 2 \cdot \frac{12}{64} + 3 \cdot \frac{9}{64} = \frac{67}{64}$$