

第三章 判别域代数界面方程法

- 3.1 判别域界面方程分类的概念
- 3.2 线性判别函数
- 3.3 判别函数值的鉴别意义、权空间及解空间
- 3.4 fisher线性判别
- 3.5 线性可分条件下判别函数权矢量算法
- 3.6 一般情况下的判别函数权矢量算法
- 3.7 非线性判别函数
- 3.8 最近邻方法

聚类分析:

无先验知识,按最近距离原则进行分 类。

代数界面方法:

有先验知识,要进行训练,按判别函 数值符号或大小进行分类。

最近邻方法:

有先验知识,但不进行训练,按最近 距离原则进行分类。

最近邻方法特点:

思想直观、方法简单、效果较好。

1-NN

(1)已知N个已知类别样本X

1-NN

(1)已知N个已知类别样本X

1-NN

(1)已知N个已知类别样本X

1-NN

(1)已知N个已知类别样本X

(2)输入未知类别样本x

(3) 计算x到 x_i∈X, (i=1, 2, ..., N) 的距离d_i(x)

(4)找出最小距离 d_m(x)=min{d_i(x)}

1-NN

(1)已知N个已知类别样本X

- (4)找出最小距离 d_m(x)=min{d_i(x)}
- (5) 看 x_m 属于哪一类: $x_m \in \omega_2$

1-NN

(1)已知N个已知类别样本X

(2)输入未知类别样本x

(6) 判x∈ω₂

(5)看 x_m 属于哪一类: $x_m \in \omega_2$

3. 6. 1 最近邻决策规则—1-NN

对于C类问题,设类 ω_i (i=1,2,...,c)有 N_i 个样本 $x_j^{(i)}$

分类的思想是: $(j=1,2,\dots,N_i)$

对于一个待识别模式 \mathbf{x} ,分别计算它与 $N = \sum_{i=1}^{\infty} N_i$

个已知类别的样本 $x_i^{(i)}$ 的距离,将它判为距离最近

的那个样本所属的类。即:

$$d_i(x) = \min_{j=1,2,\dots,N_i} ||x - x_j^{(i)}|| \qquad i = 1,2,\dots,c$$

如果
$$d_m(x) = \min_{i=1,2,\cdots,c} d_i(x)$$
 则 $x \in \omega_m$

K-NN

(1)已知N个已知类别样本X

K-NN

(1)已知N个已知类别样本X

K-NN

(1)已知N个已知类别样本X

K-NN

(1)已知N个已知类别样本X

(2)输入未知类别样本x

(4)找出x的k个最近邻元 $X_k = \{x_i, i=1, 2, ..., k\}$

K-NN

(1)已知N个已知类别样本X

- (3) 计算x到 x_i∈X, (i=1, 2, ..., N) 的距离d_i(x)
- (4)找出x的k个最近邻元 $X_k = \{x_i, i=1, 2, ..., k\}$
- (5)看 X_k 中属于哪一类的样本最多 $k_1=3 < k_2=4$

K-NN

(1)已知N个已知类别样本X

(2)输入未知类别样本x

(3) 计算x到 x_i∈X, (i=1, 2, ..., N) 的距离d_i(x)

(6) 判x∈ω₂

- (4)找出x的k个最近邻元 $X_k = \{x_i, i=1, 2, ..., k\}$
- (5)看 X_k 中属于哪一类的样本最多 $k_1=3 < k_2=4$

3. 6. 1最近邻决策规则—K-NN

对于一个待识别模式 \mathbf{x} ,分别计算它与 $N = \sum_{i=1}^{n} N_i$ 个已知类别的样本 $x_j^{(i)}$ 的距离,取k个最近邻样本,这k个样本中哪一类最多,就判属哪一类。即:

$$d_i(x) = k_i \qquad i = 1, 2, \dots, c$$
显然
$$\sum_{i=1}^{c} k_i = k$$

如果
$$d_m(x) = \max_{i=1,2,\dots,c} d_i(x)$$
 则 $x \in \omega_m$

剪辑最近邻方法

- $\blacksquare \in \omega_1$
- $\square \in \omega_2$
- $\circ \in X^{(NR)}$
- $\triangle \in X^{(NT)}$

剪辑最近邻方法

- $\blacksquare \in \omega_1$
- $\square \in \omega_2$
- $0 \in X^{(NR)}$
- $\triangle \in X^{(NT)}$

用X^(NR)中的样本 采用最近邻规则 对X^(NT)中的每个样 本分类,剪辑掉 X^(NT)中被错误分类 的样本。

剪辑最近邻方法

- $\blacksquare \in \omega_1$
- $\square \in \omega_2$
- $0 \in X^{(NR)}$
- $\triangle \in X^{(NT)}$

用X^(NR)中的样本 采用最近邻规则 对X^(NT)中的每个样 本分类,剪辑掉 X^(NT)中被错误分类 的样本。

余下判决正确的 样本组成剪辑样 本集 $X^{(NTE)}$ 。

剪辑最近邻方法

- $\blacksquare \in \omega_1$
- $\square \in \omega_2$
- $o \in X^{(NR)}$
- $\triangle \in X^{(NT)}$

用X^(NR)中的样本 采用最近邻规则 对X^(NT)中的每个样 本分类,剪辑掉 X^(NT)中被错误分类 的样本。

用 $X^{(NTE)}$ 对输入的未 知样本做1-NN分类。 余下判决正确的 样本组成剪辑样 本集 $X^{(NTE)}$ 。

3.6.2 剪辑最近邻方法

对于两类问题,设将已知类别的样本集 $X^{(N)}$ 分成参照集 $X^{(NR)}$ 和测试集 $X^{(NT)}$ 两部分,这两部分没有公共元素,它们的样本数各为NR和NT, NR+NT=N。

利用参照集 $X^{(NR)}$ 中的样本 Y_1, Y_2, \dots, Y_{NR} 采用最近邻规则对已知类别的测试集 $X^{(NT)}$ 中的每个样本 x_1, x_2, \dots, x_{NT} 进行分类,剪辑掉 $X^{(NT)}$ 中被错误分类的样本。

3. 6. 2 剪辑最近邻方法

若 $y^0(x) \in X^{(NR)}$ 是 $x \in X^{(NT)}$ 的最近邻元,剪辑掉不与 $y^0(x)$ 同类的 x ,余下的判决正确的样本组成剪辑样本集 $X^{(NTE)}$,这一操作称为剪辑。

3. 6. 2 剪辑最近邻方法

获得剪辑样本集 $X^{(NTE)}$ 后,对待识模式 x 采用最近邻规则进行分类。

$$d_{i}(x) = \min_{j=1,2,\dots,N_{i}} ||x - x_{j}^{(i)}|| \qquad i = 1,2,\dots,c$$

如果
$$d_m(x) = \min_{i=1,2,\dots,c} d_i(x)$$
 则 $x \in \omega_m$

这里
$$x_j \in X^{(NTE)}$$

3.6.2 剪辑最近邻方法

剪辑最近邻法可以推广至k—近邻法中,具体的做法是:第一步用k—kW 法进行剪辑,第二步用k—kW 法进行分类。

如果样本足够多,就可以重复地执行剪辑程序, 以进一步提高分类性能。称为重复剪辑最近邻法。

3.6 最近邻方法 MULTIEDIT实用算法

(1) 将样本集 X^(N)随机地划分为s个子集:

$$X^{(N)} = \{X_1, X_2, \dots, X_s\}$$
 $(s \ge 3)$

- (2) 用最近邻法,以 $X_{(i+1) \text{mod } s}$ 为参照集,对 X_i 中的样本进行分类,其中i = 1, 2, ..., s;
- (3) 去掉(2) 中被错误分类的样本;
- (4) 用所留下的样本构成新的样本集 X^{(NE};
- (5) 如果经过k 次迭代再没有样本被剪辑掉则停止; 否则转至(1)。

例子

有七个二维矢量:

$$X^{(1)} = \{\vec{x}_1 = (1,0)', \vec{x}_2 = (0,1)', \vec{x}_3 = (0,-1)'\} \in \omega_1$$

$$X^{(2)} = \{\vec{x}_4 = (0,0)', \vec{x}_5 = (0,2)', \vec{x}_6 = (0,-2)', \vec{x}_7 = (-2,0)'\} \in \omega_2$$

- (1) 画出最近邻法1-NN决策面;
- (2) 求样本均值,若按离样本均值距离的大小进行分类,试画出决策面。

例子

(1) 若按1-NN进行分类,则决策面由 $\forall \vec{x}_i \in X^{(1)}$

与 $\forall \vec{x}_j \in X^{(2)}$ 连线的中垂面构成。

例子

(2)
$$\vec{m}_1 = \frac{1}{3}(\vec{x}_1 + \vec{x}_2 + \vec{x}_3) = (\frac{1}{3}, 0)'$$

$$\vec{m}_2 = \frac{1}{4}(\vec{x}_4 + \vec{x}_5 + \vec{x}_6 + \vec{x}_7) = (-\frac{1}{2}, 0)'$$

则按离样本均值距离的大小进行分类的决策面是

 \vec{m}_1 与 \vec{m} 连线的中垂面。

即:
$$x = -\frac{1}{6}$$

例子

谢谢!