Vorlesung Projektmanagement

- ► Einführung und Grundlagen
- Projektorganisation
- Projektdefinition
- Projektplanung
- Projektcontrolling
- Projektabschluss
- Risikomanagement
- Projektteamarbeit
- Agiles Projektmanagement
- Project Management Office und Multiprojektmanagement
- Zusammenfassung

Projektphasenplan

Projektdefinition	Projektplanung	Projektdurchführung und -kontrolle	Projektabschluss	
Zielplanung	Strukturplanung	Berichtserstattung	Abnahme	
Umfeldanalyse	Ablaufplanung Aufwands- und Kostenkontrolle		Abschlussanalyse	
Projektgründung	Kostenplanung	Terminkontrolle	Erfahrungssicherung	
Ablauforganisation	Ressourcenplanung	Sachfortschritts- kontrolle	Projektauflösung	
Aufbauorganisation	Terminplanung			
Wirtschaftlichkeits- betrachtungen	Risikomar			
	Qualitätsm			
	Konfigurations			
	Beschaffungs			

- Regelkreis und theoretische Grundlagen
- ▶ Berichterstattung: Leistung, Kosten, Terminkontrolle
- ► Earned-Value Analyse
- Trendanalysen (MTA, etc.)

- ▶ Planung und Kontrolle sind die beiden unmittelbar miteinander verbundenen Grundbegriffe des Projektcontrolling:
 - "Planung ohne Kontrolle ist sinnlos, Kontrolle ohne Planung unmöglich"
- ► Kontrolle ist ein systematischer Prozess zur Ermittlung von Abweichungen zwischen Plangrößen und Vergleichsgrößen.
- Aufgaben:
 - ► Eine **planungskonforme Kontrolle** ist Grundlage für ein zielorientiertes Vorgehen
 - Der Projektfortschritt muss regelmäßig überwacht und gemessen werden
 - Dazu ist ein Soll-Ist-Vergleich von Terminen, Kosten und Leistung notwendig
 - ➤ Ziel: Frühzeitiges Erkennen von Planabweichungen, um so eine wirkungsvolle Projektsteuerung zu ermöglichen und eine Grundlage für das Einleiten von korrigierenden Maßnahmen zu schaffen

- Regelkreis und theoretische Grundlagen
- ▶ Berichterstattung: Leistung, Kosten, Terminkontrolle
- ► Earned-Value Analyse
- ► Trendanalysen (MTA, etc.)

Regelkreis

Der Prozess der Überwachung / Kontrolle eines Projektes beginnt schon am Anfang bei der Planung eines Projektes, wie im folgendem der Vereinfachte Regelkreis mit Vorkopplung zeigt:

Regelkreis

Instrumente der Projektsteuerung

Output bezogene Basisparameter

Grundlegende Ziele des gesamten Projektes Output Control

Ergebnisse

Definierte Qualität:

- Entspricht dem Leistungsziel
- Erfordert genau formulierte Ziele
- Nur begrenzte Änderung der Ziele möglich
- Definierte Zwischenergebnisse
- Zwischenergebnisse reduzieren die Freiheitsgrade des Projektteams

Deadlines

Definierte Zeiten:

- Projektende
- Provisorische Deadlines (Meilensteine oder periodische Zeitpunkte)
- Deadlines abhängig vom
 Projektfortschritt oder externen
 Einflüssen

Input bezogene Basisparameter

Grundlegende Ziele des gesamten Projektes Input Control

Vorbestimmte Ressourcen

Budget (Kosten und Ressourcen)

- Globalbudget
- Gebunden an Zwischenergebnisse
- Objektive Festlegung
- Relevante Personen / Kompetenzen
- Engpassressourcen

Vorbestimmte Aktivitäten

Arbeitsinhalte und Vorgehen

- Art der der erforderlichen Aktivitäten
- Sequenz der Aktivitäten
- Vorgehen objektorientiert oder prozessorientiert

Formalisierung des Projektmonitorings

Möglichkeiten der Formalisierung

Berichtssystem

(Ziel, Umfang, Häufigkeit)

- Standardisierung / Offenheit
- Verbindlichkeit
- Auskunftspflicht / Feedback
- ...

Verteilung der Information

- Informationsmedium
- Datenschutz und sicherheit
- Geheimhaltung
- Eskalationsregeln
- ...

Wahl der Basisparameter der Projektsteuerung in Abhängigkeit von den Kompetenzen der Projektleitung

Source. Adapted from Ouchi (1977, 1979).

Behavior control: Input Control

Clan control: "the informal socialization mechanisms that take place in an organization and that facilitate shared values, beliefs, and understandings among organizational members." Turner and Makhija (2006, p. 210)

... oder in den Worten von Dilbert ...

- ► Regelkreis und theoretische Grundlagen
- ▶ Berichterstattung: Leistung, Kosten, Terminkontrolle
- ► Earned-Value Analyse
- ► Trendanalysen (MTA, etc.)

Methoden der Projektkontrolle

- ► Methoden der Berichterstattung / Kontrolle:
 - Leistungsfortschrittskontrolle
 - ► Termin- und leistungsorientierte Kostenkontrolle
- Earned Value Analyse (EVA)
- Meilensteintrendanalyse (MTA)

Leistungsfortschrittskontrolle

- Leistung umfasst Quantität und Qualität
 - Qualität: Kundenzufriedenheit durch Qualitätsmanagement
 - Quantität: Fortschrittsgrad jedes Arbeitspaketes
- Um den Gesamtprojektfortschritt zu erheben muss der Fortschrittsgrad jedes Arbeitspaketes erhoben werden
 - Arbeitspaket: 0% (noch nicht begonnen), 100% (abgeschlossen)
 - Schwierigkeit liegt in der Schätzung des Leistungsfortschritts begonnener Arbeitspakete
- Verfahren zur Leistungsfortschrittskontrolle
 - Subjektive Leistungsschätzung
 - Messung anhand einer quantitativen Größe
 - ▶ 0/50/100%-Methode
 - Meilensteinmethode

Leistungsfortschrittskontrolle - Subjektive Leistungsschätzung

- Einschätzung des verantwortlichen Mitarbeiters/Teams dient als Indikator zur Leistungseinschätzung
- Vorteil:
 - Schnelle Einschätzung
 - Wenig Aufwand
- Nachteil:
 - Sozial erwünschte Antworten
 - Negative Abweichungen werden geschönt, um Konsequenzen zu vermeiden
 - ► Fast-schon-fertig-Syndrom (95%-Syndrom)

Leistungsfortschrittskontrolle - Messung anhand einer quantitativen Größe

- Quantitative Größe (m², Tonnen, Meter...) werden als Indikator der Leistungseinschätzung verwendet.
- Voraussetzung:
 - ► Eine proportionale Beziehung zwischen steigender Menge und Zeitverbrauch besteht.
 - ▶ Die geplante Qualität wird auch tatsächlich umgesetzt.
 - Das ursprünglich geplante Leistungsniveau des Arbeitspaketes ändert sich nicht.
- Vorteil:
 - Schnelle Einschätzung
 - Wenig Aufwand
 - Detaillierte Messung möglich
- Nachteil:
 - Hängt stark von der konkreten Ausgestaltung des Arbeitspaketes ab

Leistungsfortschrittskontrolle - 0/50/100%-Methode

Pauschale Erfassung des Leistungsfortschritt in 3 Stufen. 0% - Arbeitspaket wurde noch nicht begonnen 50% - Arbeitspaket wurde begonnen 100% - Arbeitspaket ist abgeschlossen (Zwischenstufen, z.B. 25/75% sind möglich)

Vorteil:

- Schnelle, Aufwand für Einschätzung gering
- ▶ Eignet sich bei Projekten mit kurzen Arbeitspaketen und relativ niedrigem Projektrisiko

Nachteil:

- Keine differenzierte Abbildung des Fortschritts (es wird angenommen, dass sich diese Ungenauigkeit über die Gesamtheit der Arbeitspakete ausgleicht)
- Differenzierungsgrad kann für weitere Steuerung nicht ausreichend sein

Leistungsfortschrittskontrolle - Meilensteinmethode

Zur Bestimmung der Leistungsfortschrittskontrolle werden Projekt-Meilensteine definiert und dienen als Grundlage zur Leistungseinschätzung.

Soll- Leistungsfortschritt in %	Soll kumuliert in %	Meilenstein	Aktueller Status (Ist)	lst kumuliert in %
15	15	Passendes Hardwaremodell festgelegt	Erledigt	15%
50	65	Lieferantenverhandlung en geführt	Ca. zur Hälfte angearbeitet	Nach Vereinbarung: 15 oder 40%
20	85	Entscheidung für einen Lieferanten getroffen		
15	100	Hardware bestellt		

- Vorteil:
 - Sehr differenzierte Methode
- Nachteil:
 - ▶ Je nach Interpretation der Meilensteine kann es zu Ungenauigkeiten kommen.

- Der Kostenverlauf sollte im Rahmen der Projektüberwachung nie isoliert von der Termin- und Leistungssituation betrachtet werden
- Eine solches Vorgehen kann zu falschen Aussagen über den "wirklichen" Projektfortschritt führen, da z. B.
 - eine Kostenüberschreitung beim Vorliegen von frühzeitig erbrachten Leistungen auftreten kann
 - eine Kostenunterschreitung beim Wegfall von geplanten Leistungsmerkmalen zu erwarten ist

Diagramm der kumulierten Ist- und Plankosten:

- Höherer Aufwand
 Einsatz von teureren Mitarbeitern
 Mehrleistung durch vorzeitigen
 Abschluss
- Niedrigerer Aufwand Niedrigere Kosten für Ressourcen Minderleistung

► Termin - Kosten Diagramm:

- 1. Kosten über Plan bei Terminunterschreitung
- 2. Kosten über Plan bei Termineinhaltung
- 3. Kosten unter Plan bei Terminverzug
- 4. Kosten und Termin plangerecht
- 5. Planmäßige Kosten bei Terminverzug
- 6. Kosten- und Termin-Überschreitung

Diagramm der verbleibenden Projektkosten (cost to complete):

Diagramm der verbleibenden Projektdauer (time to complete):

1. Terminverzug

2. Projektbeschleunigung

Burndown Chart

- Regelkreis und theoretische Grundlagen
- ▶ Berichterstattung: Leistung, Kosten, Terminkontrolle
- ► Earned-Value Analyse
- ► Trendanalysen (MTA, etc.)

Earned Value Analyse (EVA) – Berücksichtigung der Fertigstellungsgrades

- Durch die Gegenüberstellung von Plan-, Soll- und Istkosten werden Abweichungsursachen differenzierter erkannt. Mit diesem auch als Earned Value Analyse (EVA) bezeichneten Verfahren lassen sich wichtige Fragen beantworten:
 - Wie hoch dürften die Kosten bei der geplanten Leistung sein? (Plankosten der Planleistung)
 - Wie hoch sind die tatsächlichen Kosten der erbrachten Leistung? (Istkosten der Istleistung)
 - Wie hoch dürften die Kosten der erbrachten Leistung laut Plan sein? (Plankosten der Istleistung = Sollkosten)

Earned Value Analyse (EVA)

- Mit der EVA nimmt man einen Vergleich der Plan-, Soll- und Istkosten zu einem Stichtag vor, um so Leistungsabweichungen und Kostenabweichungen zu identifizieren
- ► Earned Value (Fertigstellungswert)= Fertigstellungsgrad * Plankosten
- ▶ Der Earned Value eines abgeschlossenen Arbeitspakets ist gleich seiner geplanten Kosten
- Für ein noch nicht begonnenes Arbeitspaket ist er stets Null

Earned Value Analyse (EVA) - Größen/Kennzahlen

- ► Istkosten kumuliert (ACWP: Actual Cost of Work Performed): Istkosten pro Leistungseinheit * Istleistung
- Sollkosten kumuliert (BCWP: Budgeted Cost of Work Performed): Plankosten pro Leistungseinheit * Istleistung
- Plankosten kumuliert (BCWS: Budgeted Cost of Work Scheduled): Plankosten pro Leistungseinheit * Planleistung
- Leistungsabweichung bzw. Planabweichung absolut (SV: Schedule Variance): Sollkosten – Plankosten
- ► Kostenabweichung absolut: (CV: Cost Variance): Sollkosten Istkosten
- ► Planleistungsindex (SPI: Schedule Performance Index): Sollkosten / Plankosten
- Kostenleistungsindex (CPI: Cost Performance Index): Sollkosten / Istkosten

Earned Value Analyse (3)

Earned Value Analyse (EVA)- Interpretation

Aussehen	Ist-Kosten- Kurve	Plan-Kosten Kurve	Aussage über das Projekt	Mögliche Interpretation
Ist Plan Earned -Value	Oberhalb der Earned- Value-Kurve	Oberhalb der Earned-Value- Kurve	Langsamer und "teurer" als geplant	 Auf ein Hindernis gestoßen Arbeit entpuppte sich als schwieriger als geplant Zu starker Fokus auf Qualität (Perfektionsdrang)
Ist Earned -Value Plan	Trifft sich mit Earned- Value-Kurve	Unterhalb der Earned-Value- Kurve	Schneller, aber im Budget geblieben	 Mehr Ressourcen haben zu gleichen Kosten am Projekt gearbeitet "Teure" Ressourcen haben weniger Zeit gebraucht
Ist Earned -Value Plan	Oberhalb der Earned- Value-Kurve	Unterhalb der Earned-Value- Kurve	Schneller und "teuerer" als geplant	 Dauern zu pessimistisch geschätzt Geplante Ressourcen standen länger zur Verfügung Kosten zu niedrig geplant
-Value Plan Ist	Unterhalb der Earned- Value-Kurve	Unterhalb der Earned-Value- Kurve	Schneller und "sparsamer" als geplant	 Ressourcen arbeiten sehr effizient Durchbruch bei einer Problemlösung gehabt und die Schätzung unterboten Bei Planung "zu warm angezogen"
Plan Ist Earned- Value	Trifft sich mit Earned- Value-Kurve	Oberhalb der Earned-Value- Kurve	Langsamer, aber im Budget geblieben	 Leidet unter Ressourcenmangel "Ungeliebtes" Projekt, das wenig Unterstützung bekommt Teure Arbeitspakete wurden auf später verschoben
Plan Earned -Value Ist	Unterhalb der Earned- Value-Kurve	Oberhalb der Earned-Value- Kurve	Langsamer und "sparsamer" als geplant	 Günstigere Ressourcen eingesetzt "Ungeliebtes" Projekt, das die benötigten Fachleute nicht bekommt Teurere Arbeitspakete wurden auf später verschoben

- ► Regelkreis und theoretische Grundlagen
- ▶ Berichterstattung: Leistung, Kosten, Terminkontrolle
- ► Earned-Value Analyse
- Trendanalysen (MTA, etc.)

Trendanalyse (MTA)

- Trendanalysen stellen ein Instrument dar, um aus dem wertmäßigen Verlauf einer Plangröße eine Extrapolation ihrer Zukunftsentwicklung ableiten zu können
- Es erfolgt hierbei ein Plan/Plan-Vergleich
- Damit soll die Frage beantwortet werden: Wohin geht das Projekt?
- Anwendungsfelder:
 - ► Kostenvergleiche → Kostentrendanalyse
 - ➤ Aufwandsvergleiche → Aufwandstrendanalyse
 - ► Terminvergleiche → Meilensteintrendanalyse

Beispiel Meilensteintrendanalyse

