LCIE
Etablissement de Moirans
ZI Centr'alp
170, rue de Chatagnon
38430 Moirans

RCS Grenoble 408 363 174

Tél.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

Rapport d'essai / Test report

N° 69196CR-R1-E

JDE: 104379

DELIVRE A / ISSUED TO

: INGENICO

Rue Claude Chappe

B.P. 344

07503 GUILHERAND GRANGES - FRANCE

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux

normes

FCC CFR 47 Part 15, Subpart B et C.

Electromagnetic compatibility tests according to the standards

FCC CFR 47 Part 15, Subpart B and C

Matériel testé / Apparatus under test :

Produit / Product

: Lecteur de carte bancaire / Bank payment terminal

Marque / Trade mark

: INGENICO

Constructeur / Manufacturer

: INGENICO

• Type sous test / Model under test

: IST150-00T1428A

• N° de série / serial number

: 10347CL40045131

FCC ID

: XKB-IST150

Date des essais / Test date

: Du 12 au 17 Janvier 2011

From January 12th to 17th, 2011

Lieu d'essai / Test location

: LCIE SUD-EST

ZI Centr'Alp - 170 rue de Chatagnon

38430 MOIRANS - France

Test réalisé par / Test performed by

: Jonathan PAUC

Ce document comporte / Composition of document : 33 pages.

MOIRANS, 3 MARS 2011 / MARCH 3RD ,2011

Ecrit par / Written by, Jonathan PAUC Approuvé par / Approved by,

Jacques LORQUIN

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute reproduction partielle ou toute insertion de résultats dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCIE. Ce document résulte d'essais effectués sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé. Sauf indication contraire, la décision de conformité prend en compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification.

This document shall not be reproduced, except in full, without t he written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested .Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

LCIE

33, av du Général Leclerc

Tél: +33 1 40 95 60 60

Société par Actions Simplifiée

92266 Fontenay-aux-Roses cedex

Fax: +33 1 40 95 86 56 contact@lcie.fr

au capital de 15 745 984 €
RCS Nanterre B 408 363 174

France

www.lcie.fr

www.lcie.com

Page : 2 / 33

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	4
3.	RADIATED EMISSION DATA	7
4.	FUNDAMENTAL FREQUENCY TOLERANCE (15.225E)	12
5.	BAND-EDGE COMPLIANCE §15.209	14
6.	CONDUCTED EMISSION DATA	15
7.	TEST EQUIPMENT LIST (MOIRANS SITE)	19
8.	UNCERTAINTIES CHART	21
9.	ANNEX 1 (GRAPHS)	22

Page: 3/33

1. Test Program

Standard: - FCC Part 15, Subpart B (Digital Devices)

- ANSI C63.4 (2003)

EMISSION TEST	LIMITS			RESULTS (Comments)
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	
150kHz-30MHz	150-500kHz	66 to 56	56 to 46	COMPLY
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 30MHz-12.5GHz	Measure at 3m 30MHz-88MHz : 40 dBμV/m 88MHz-216MHz : 43.5 dBμV/m 216MHz-960MHz : 46.0 dBμV/m Above 960MHz : 54.0 dBμV/m			COMPLY

Standard: - FCC Part 15, Subpart C

- ANSI C63.4 (2003)

EMISSION TEST	LIMITS			RESULTS (Comments)
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	
150kHz-30MHz	150-500kHz	66 to 56	56 to 46	COMPLY
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 9kHz-30MHz	Measure at 3 490kHz-1.705	: 67.6dBµV/m /F(l	COMPLY	
Radiated emissions 30MHz-12.5GHz*	Measure at 3m 30MHz-88MHz : 40 dBμV/m 88MHz-216MHz : 43.5 dBμV/m 216MHz-960MHz : 46.0 dBμV/m Above 960MHz : 54.0 dBμV/m			COMPLY
Fundamental frequency tolerance	Operation within the band 13.110-14.010 MHz §15.225			COMPLY
Bandedge compliance	Operation wi 13.110-14.010	thin the band) MHz §15.2	225	COMPLY

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

2. System test configuration

2.1. JUSTIFICATION

The system was configured for testing in a typical fashion (as a customer would normally use it) see §2.6:

The apparatus IST150 is a product with full option,

IST150 can be sell with three kind of cable:

USB cables: (2m) shielded, Ref: 296116774

(2m) shielded, Ref: 296119720

Page: 4/33

Remark: the difference between these two kind of USB cable is only the design of USB port, all test was performed with the reference 296116774

RS232 cable: (2m),Type RJ11 unshielded, Ref: 296120004

2.2. HARDWARE IDENTIFICATION

Equipment under test (EUT):

E.U.T.: IST150-00T1428A

Serial number: 10347CL40045131

Power supply interface:

1: 5Vdc 2: 8-12Vdc

Highest internal frequency: 96.768 MHz

Input/output:

- 1 x Power supply "Type HDMI"-

Auxiliaries used for testing:

- 1 x Laptop TOSHIBA SATELLITE

- 1 x AC/DC Power supply adapter (LAPTOP)

- 1 x Contact Less Card 3M Oberthur Technologies

- 1 x AC/DC Power supply adapter

- 1 x Power supply

- 2 x Sam Cards

PS141E-04YC

TOSHIBA API4AD19 SAGEM AD5632

TDK-LAMBDA (30V-50A)

I/O cables used for testing:

- Configuration 1: 1 x USB cable (2m) shielded, Ref: 296116774 - Configuration 2: 1 x RS232 cable (2m), Type RJ11 unshielded, Ref: 296120004

2.3. **RUNNING MODE**

Sequence no :

A reading process are performed on contactless Card A continuous writing/reading process is performed on SAM Card

Sequence nº2:

Sequence nº1 + serial communication on COM0 RX and TX is connected each other in order to performed a continuous communication

(Configuration n^a) sn: 13594938G

(Configuration n^a) sn: None

(Configuration n2) sn: None

Page: 5 / 33

Configuration		
Running mode	1	2
Sequence nୁ	Х	
Sequence nº2		Х

2.4. **EQUIPMENT MODIFICATIONS**

None

2.5. **EUT EXERCISE SOFTWARE**

OS: 8200360833

Test software: TESTCAM0107

2.6. EUT CONFIGURATION

<u>Configuration 1</u>: <u>Communication access</u>: - USB

Power supply: - (5Vdc) Provided by Laptop THOSHIBA (Auxilliary Equipment)

Option Cable: - Ref: 296116774

Configuration 2: Communication access: - RJ11

<u>Power supply</u>: - Power through AC/DC power supply type

<u>Option Cable:</u> - Ref: 296120004

Remark:

- 2 x externals power supplies are used in this configuration permits to emulate 8-12Vdc power supply source
- (1): Power supply adapter (SAGEM AD5632) is used for Conducted Emission (8Vdc).

Page: 6 / 33

(2): A laboratory power supply (TDK-Lambda 30V-50A) is also used in order to performed following tension from 4.25Vdc to 13.8Vdc (Extreme condition Test, and 12Vdc rating for Radiated emission: Configuration 2)

3. RADIATED EMISSION DATA

3.1. CLIMATIC CONDITIONS

Date of test : January 12th 2011 January 17th, 2011

Test performed by : J. PAUC J.PAUC Atmospheric pressure : 1001 mb 103 mB Relative humidity : 35% 31% Ambient temperature : 22% 23%

3.2. TEST SETUP

The installation of EUT is identical for pre-characterization measurement in a 3 meters semi anechoic chamber and for measures on a 10 meters Open site.

Page: 7 / 33

Configuration n9

Configuration n²

Page: 8 / 33

3.3. TEST SEQUENCE AND RESULTS

3.3.1. Pre-characterization at 3 meters [9kHz-30MHz]

A pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. For Pre-characterization, the loop antenna was rotated during the test for maximized the emission measurement. Measurement performed on 3 axis of EUT.

Frequency band investigated is 9kHz to 30MHz. The pre-characterization graphs are obtained in PEAK detection.

See graph for 9kHz-30MHz band:

Configuration กฯ 0° 90°	IST150-00T1428A IST150-00T1428A	(5Vdc) (5Vdc)	Emr#7 Emr#8	(See annex 1) (See annex 1)
Configuration n ²				
0°	IST150-00T1428A	(8Vdc)	Emr#9	(See annex 1)
90°	IST150-00T1428A	(8Vdc)	Emr#10	(See annex 1)

3.3.2. Pre-characterization [30MHz-1GHz]

For frequency band 30MHz to 1GHz, a pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with a log-periodic antenna. The EUT is being rotated on 360° and on 3 axis during the measurement. The precharacterization graphs are obtained in PEAK detection.

See graphs for 30MHz-1GHz:

Configuration n9

H polarization	IST150-00T1428A	(5Vdc)	Emr#1	(See annex 1)
V polarization	IST150-00T1428A	(5Vdc)	Emr#2	(See annex 1)
Configuration n2				
H polarization	IST150-00T1428A	(8Vdc)	Emr#3	(See annex 1)
V polarization	IST150-00T1428A	(8Vdc)	Emr#4	(See annex 1)
H polarization	IST150-00T1428A	(12Vdc)	Emr#5	(See annex 1)
V polarization	IST150-00T1428A	(12Vdc)	Emr#6	(See annex 1)

Page: 9/33

3.3.3. Characterization on 10 meters open site below 30 MHz

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.225 limits in the frequency range 13.553MHz 13.567MHz. Measurement bandwidth was 9kHz.

Antenna height was 1m for both horizontal and vertical polarization.

Antenna was rotated around its vertical axis.

Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on clauses 3.2.

Worst configuration: Configuration n2 at 12Vdc

Frequency (MHz)	QPeak Limit (dBµV/m) @ 30m		Qpeak-Limit (Margin dB)	Turntable Angle (deg)	Ant. Pol./ Angle (deg)	Tot Corr (dB)
13.56* ¹	84.0	40.7	-43.3	348	90	35.3
27.12* ¹	29.5	19.7	-9.8	238	90	39.3

^{*1:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@30m = M@10m-19.1dB)

Limits Sub clause §15.225

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)		
13.553-13.567	15 848 84 dBµV/m	30		
13.410-13.553	334	30		
13.567-13.710	50.5 dBµV/m	30		
13.110-13.410	106	30		
13.710-14.010	40.5 dBμV/m	30		

See chapter 5 of this test report for band edge measurements.

Page: 10/33

3.3.4. Characterization on 10 meters open site from 30MHz to 1GHz

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT.

A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.2

Configuration n 1:

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)		Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	40. 677	40	36.5	-3.5	350	V	250	12.0	None
2	54.239	40	11.50	-28.5	308	V	100	11.5	None
3	67.796	40	10.40	-29.6	310	V	120	10.4	None
4	81.357	40	7.90	-32.1	319	V	100	7.9	None
5	135.452	43.5	38.8	-4.7	188	V	250	14.8	None
6	154.839	43.5	37.2	-6.3	58	V	150	16.3	None
7	290.29	46	35	-11	358	V	100	16.9	None
8	483.72	46	38.4	-7.6	332.2	V	100	21.6	None
9	677.32	46	42.1	-3.9	13	V	150	25.0	None

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Configuration n2: (Worst configuration between 8Vdc and 12Vdc voltage)

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	40.676	40	37	-3	350	V	250	12.0	None
4	54.239	40	32.50	-7.5	308	V	100	11.5	None
5	67.796	40	33.40	-6.6	310	V	120	10.4	None
6	81.357	40	18.90	-21.1	319	V	100	7.9	None
7	154.82	43.5	31.3	-12.2	265.7	V	100	16.3	None
8	290.29	46	27.9	-18.1	358	V	200	16.9	None
9	483.72	46	37.1	-8.9	87.7	V	100	21.6	None

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

RESULTS: PASS

Page: 11/33

3.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of $52.5dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 $dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

Page: 12/33

4. Fundamental frequency tolerance (15.225e)

4.1. TEST CONDITIONS

Date of test : January 14th, 2011

Test performed by : J. PAUC Atmospheric pressure : 1005mb Relative humidity : 31% Ambient temperature : 22°C

4.2. TEMPERATURE AND VOLTAGE FLUCTUACTION

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating.

Temperature has been set at +20°C, -20°C and +50°C.

Different setup was performed in order to test the different power configuration.

Voltage is varied from:

Setup 1 : Primary of IST150 : 4.25Vdc (-15% of 5Vdc) to 5.75Vdc (+15% of 5Vdc) (Configuration n^o1) Setup 2 : Primary of IST150 : 6.8Vdc (-15% of 8Vdc) to 13.8Vdc (+15% of 12Vdc) (Configuration n^o2)

Frequency of carrier: 13.56 MHz Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

The equipment (RF box) is set in a climatic chamber. Measure is performed on one channel of RF module.

Setup 1 / Configuration n ?:

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 5Vdc			
Frequency Drift (MHz)	+ 0.000044	REF	- 0.000088
Carrier level (dBc)	- 5.23	REF	- 1.95
Mains voltage: 4.25Vdc			
Frequency Drift (MHz)	+ 0.000034	- 0.00005	- 0.000090
Carrier level (dBc)	- 5.21	- 0.03	- 1.95
Mains voltage: 5.75Vdc			
Frequency Drift (MHz)	+ 0.000042	+ 0.000007	- 0.000083
Carrier level (dBc)	- 5.12	- 0.49	- 2.47

Frequency drift measured is **90 Hz** when the temperature is varied from -20° to $+50^{\circ}$ and voltage is varied from 5Vdc \pm 15%. (IST150 power supply : 5Vdc)

Page: 13 / 33

Setup 2 / Configuration n²:

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 10Vdc			
(Middle Voltage : 8-14Vdc)			
Frequency Drift (MHz)	+ 0.000042	REF	- 0.000097
Carrier level (dBc)	- 0.51	REF	- 0.18
Mains voltage: 6.8Vdc			
Min Voltage «8Vdc» -15%			
Frequency Drift (MHz)	+ 0.000049	+ 0.000004	- 0.000093
Carrier level (dBc)	- 0.49	- 0.05	- 0.09
Mains voltage: 13.8Vdc			
Max Voltage «12Vdc» +15%			
Frequency Drift (MHz)	+ 0.000059	+ 0.000002	- 0.000100
Carrier level (dBc)	- 0.49	- 0.09	- 0.09

Frequency drift measured is **100 Hz** when the temperature is varied from -20°C to +50°C and voltage is varied from Min Voltage «8Vdc» -15% to Max Voltage «12Vdc» +15% (IST150 power supply : 8-12V)

Page: 14/33

5. BAND-EDGE COMPLIANCE §15.209

5.1. CLIMATIC CONDITIONS

Date of test : January 14th, 2011

Test performed by : J. PAÚC Atmospheric pressure : 1005mb Relative humidity : 31% Ambient temperature : 22℃

5.2. EQUIPMENT CONFIGURATION

See § 2.6.

5.3. Frequency band 13.110-14.010MHz

Following plots show radiated emission level in the frequency band 13.110-14.010MHz with a RBW of 9kHz and a quasi-peak detector. The graphs are obtained with a measuring receiver ESU8.

Configuration n2: Worst case

Page: 15/33

6. CONDUCTED EMISSION DATA

6.1. CLIMATIC CONDITIONS

Date of test : January 11th, 2011 Test performed by : Jonathan PAUC

Atmospheric pressure : 1010mb Relative humidity : 35% Ambient temperature : 21℃

6.2. SETUP FOR CONDUCTED EMISSIONS MEASUREMENT

The product has been tested according to ANSI C63.4-(2003) and FCC Part 15 subpart B and C.

The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 subpart B §15.107 and C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

6.3. **TEST SETUP**

The EUT is placed on the ground reference plane, at 80cm from the LISN. The distance between the EUT and the vertical ground plane is 40cm.

Auxiliaries are powered by another LISN.

The cable has been shorted to 1meter length. The EUT is powered trough the LISN (measure).

Page: 16 / 33

<u>Configuration n</u>ฯ

Page: 17 / 33

Configuration n²

Page: 18 / 33

6.4. TEST SEQUENCE AND RESULTS

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection.

Measures are also performed in Quasi-Peak and Average for any strong signal.

Configuration n₁:

Measure on L:	graph Emc#1	IST150-00T1428A	(see annex 1)
Measure on N:	graph Emc#2	IST150-00T1428A	(see annex 1)

Configuration n²:

Measure on L:	graph Emc#3	IST150-00T1428A	(see annex 1)
Measure on N:	graph Emc#4	IST150-00T1428A	(see annex 1)

RESULT: PASS

Page: 19 / 33

7. TEST EQUIPMENT LIST (MOIRANS SITE)

	N°LCIE	TYPE	COMPANY	REF	commentaire
RADIATED	EMISSION MEAS	SUREMENT (PRE-SCAN SEMI-ANECH	OIC CHAMBER #2)	l	I.
	A5329032VO	Absorption clamp	LUTHI	MDS21	
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	
X	A4049060VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	
Χ	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	
Χ	A7486006VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447F	
	A7085008VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085010VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
X	C2040146VO	Antenna Bi-Log XWing	TESEQ	CBL6144	
	C2042027VO	Antenna horn	EMCO	3115	
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	
X	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	
X	A5329045VO	Cable EMR (s-Anechoic chamber)			
X	A5329056VO	Cable Radiat EMI (Pre-amp/Analyzer)			
X	A5329057VO	Cable Radiat. EMI (Pre-amp/cage)	DOLIDE & COLUMN DZ	FOLIO	
X	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	
X	A4060030VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
X	A3169050VO	Radiated emission comb generator	BARDET SIEPEL		
	D3044015VO	Semi-Anechoic chamber #2	_	HP8568B	
X	A4060029VO	Spectrum analyzer	HEWLETT PACKARD		
	A4060028VO	Spectrum analyzer display Turntable chamber	HEWLETT PACKARD ETS Lingren	HP85662A	
X	F2000404VO F2000393VO	Turntable chamber Turntable controller chamber	ETS Lingren	Model 2165 Model 2066	
	F2000393VO	Turntable controller chamber	E 15 Lingren	Wodel 2000	
DADIATED	EMISSION MEAS	I SUREMENT (OPEN AREA TEST SITE)			
KADIATED	A5329032VO	Absorption clamp	LUTHI	MDS21	1
	A5329032VO A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	
Х	A4049059VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	
^	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	
	A7102024VO	Amplifier 8-26GHz	ALDETEC	ALS01452	
	A7085008VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085010VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
Х	C2040050VO	Antenna biconic	EMCO	3104C	
	C2040051VO	Antenna Bi-log	CHASE	CBL6111A	
	C2042027VO	Antenna horn	EMCO	3115	
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	
Х	C2040056VO	Antenna log-periodic	EMCO	3146	
X	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	
X	F2000288VO	Antenna mast	EMCO	1050	
X	A5329048VO	Cable EMR OATS	SUCOFLEX	106G	
X	A5329199VO	Cable OATS (Mast at 10m)	UTIFLEX		
X	A5329188VO	Cable OATS (Mast at 10m)	UTIFLEX		
	A5329076VO	Cable OATS (Mast at 3m)	UTIFLEX		
	A5329196VO	Cable OATS (Turntable)	UTIFLEX		
	A5329187VO	Cable OATS (Turntable)	UTIFLEX		
	A2640011VO	Measurement receiver 9kHz-30MHz	ROHDE ET SCHWARZ	ESH3	
Х	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	
Х	A4060027VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
Х	A3169050VO	Radiated emission comb generator	BARDET		
Х	A4060017VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	
	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	
	A4060016VO	Spectrum analyzer 9kHz -1.8GHz	HEWLETT PACKARD	8591E	
Х	A4060019VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
Х	F2000403VO	Turntable	ETS LINDGREN	Model 2187	
Х	F2000286VO	Turntable / Antenna mast controller	ETS LINDGREN	Model 2066	
CONDUCT	ED MEASUREME				
_	A5329061VO	Cable Conduct. EMI			
	A5329060VO	Cable Conduct. EMI			

Page : 20 / 33

	N°LCIE	TYPE	COMPANY	REF	commentaire
	A5329189VO	Shielded cable	UTIFLEX		
	A5329076VO	Shielded cable	UTIFLEX		
	A5329206VO	Shielded cable	UTIFLEX		
	A5329207VO	Shielded cable	UTIFLEX		
	A5329060VO	Shielded cable	UTIFLEX		
	A5329071VO	Shielded cable	UTIFLEX		
Χ	A5329415VO	Shielded cable	UTIFLEX		
Χ	A3169049VO	Conducted emission comb generator	BARDET		
	A4040015	Clickmeter	SCHAFFNER	DIA1512D	
	A5329037VO	Current injection probe	SCHAFFNER	CIP8213	
	A1290017VO	Current probe	SCHAFFNER	CSP9160	
	A5329036VO	Direct Injection Module 100+50 Ohms	LCIE	MID01-100 ohms	
	A7156004VO	Direct Injection Module 100+50 Ohms	LUTHI	CR100A	
	A5329042VO	Ferrite Tube	LUTHI	FTC 101	
	A1092042VO	Ferrite Tube	LUTHI	FTC101	
	C2320059VO	LISN	EMCO	3810/2SH	
	C2320068VO	LISN	EMCO	3825/2	
	C2320061VO	LISN	TELEMETER ELECTRONIC	NNB-2/16Z	
	C2320062VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	
	C2320063VO	LISN tri-phase ESH2-Z5	RHODE ET SCHWARZ	33852.19.53	
Х	C2320123VO	LISN	RHODE ET SCHWARZ	ENV216	
	A2640011VO	Measurement receiver 9kHz-30MHz	ROHDE ET SCHWARZ	ESH3	
Х	A2642019VO	Measurement Receiver 20Hz - 8GHz	ROHDE & SCHWARZ	ESU8	
	C2320067VO	ISN 2 x 2 wires	RHODE ET SCHWARZ	ENY22	
	C2320066VO	ISN 4 wires	RHODE ET SCHWARZ	ENY41	
	C2320124VO	ISN 4 wires	TESEQ	T400A	
	D3044016VO	Semi-Anechoic chamber #1	SIEPEL		
	D3044017VO	Semi-Anechoic chamber #3	SIEPEL		
	D3044015VO	Semi-Anechoic chamber #2	SIEPEL		
Х	D3044010VO	Faraday Cage	RAY PROOF		
Х	A4049061VO	Transient limiter	HEWLETT PACKARD	11947A	
	A4089117VO	Voltage probe	LCIE	-	
		l sinage produc			
UNDAME	NTAL FREQUENC	CY TOLERANCE			
Х	D1022117VO	Climatic chamber	BIA CLIMATIC	CL 6-25	200 105 6
	B2082009VO	Frequency Counter	Hewlett Packard	HP 5350B	
Х	A2240015VO	Passive loop antenna	EMCO	7405-901	1
X	7.22 100 101 0	BNC cable 50Ω		7 100 001	,
	A5329206VO	Shielded cable	UTIFLEX		
	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	690234
	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	3409u00537
Х	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	100131
	GE COMPLIANCE		1		1
	A2240015VO	Passive loop antenna	EMCO	7405-901	/
	7.22 100 10 10	BNC cable 50Ω		55 551	<i>'</i>
Х	A5329198VO	Shielded cable	UTIFLEX		
X	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	690234
	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz		8593E	3409u00537
	A2642019	Measurement Receiver 20Hz – 8GHz		ESU8	100131

Page : 21 / 33

8. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Page: 22 / 33

9. ANNEX 1 (GRAPHS)

RAPPORT D'ESSAI / TEST REPORT N° 69196CR-R1-E Page : 24 / 33

		RADI	ATED	EN	IIS	SIC	N									
Graph	name:				mr#]							
Anten	na posi	tion:		Н	oriz	zon	tal		Con	figuration	<u>2</u> : (RS	232 :	8Vd	c)		
Azimı	uth:			0°	- 30	60°										
RBW	VBW:			12	20k	Hz	/ 3	00kHz	F	eak Meas	ure		QPea	ak Li	imit	@3m
100 dBµV/m																
														†		
								managaritally (m. highest y)		Ţ.					11	اللماملول
		İ					t		1	الباليا	<u> </u>	البليابانا			MANAMA	
				. 1	П			1.			Whalest Indiana	MANAMA	- Mina.			
	may have		r andalm	البيال	بارا			الماليسانيا الما	بالسالا	The coloradates and the	M/M. w.					
	1 Landan	/ WWWWWWWW	Mrvhinh	v. a.sVlitVil	MıMMı.	MANA	WV	ALANY MANAGEMENT OF THE STA	.,,,,							
	h-Whin.															
0.																
	30MHz							Fréqu	ence (MHz)	ı						1.001GHz
					F	Fre	qu	ency (MHz)	Pea	k (dBµV/m	1)					
					-			40.6		25.4						
					H			81.76		25.68						
					-			96.68 54.84		24.18 26.85						
					\vdash			290.16		29.03						
								183.72		38.98						
							6	677.32		35.05						
							8	371.04		35						

RAPPORT D'ESSAI / TEST REPORT N° 69196CR-R1-E Page : 25 / 33

	RA	DIAT	ED	EMI	SS	ION												
Graph na				Em														
Antenna	positior	า:		Ver	tic	al				<u>Con</u>	figuratio	<u>on 2</u> :	(RS2	32 : 8	Vdc))		
Azimuth:				0°-	360	0°												
RBW/VB	W:			120	20kHz / 300kHz				P	eak Mea	sure		Q	Peak	Lin	nit@	3m	
100 [↑] dBμV/m																		
)
																	+	
	†										-			1 + 1	†			
			t, İ	† Ť			İţ							M. I.		www.Mr	No. A substance	
	/ ¹ \	المداليا	. Market					M. J.III	lllui.	الماليسيل				"IMAGE.				
]W VV	(MANIANA)	ACT. a.		'' ' Wh	Mahare	Mak, in.	, Lo ^{ckal} l VII (1994)	the target	,,,,,								
0.0																		
	30MHz			•					Fréquenc	ce (MHz)							1.001GHz	1
	Free	quen	cy (I	ИHz	2)	Pea	ak (dB	μV/m	1)	Fr	equenc (MHz)	У	Peak	(dBµ	V/m))		
			1.6				33.6				154.84			29.85				
			.92				30.7		_		225.8			29.59				
			0.6				35.0		_		290.16			35.63				
			2		-		25.2				464.4			29.96				
			8		+		25.7				483.72	-		39.78				
			.84 .96		+		24.5 25.4				515.92	+		31.67				
			.96 1.76		+		28.1		-		580.48 677.32	+		32.97 33.55				
	-		5.12				25.0				011.32		•	JJ.JJ				
		110	J. 1∠				۷٥.۱	<u>, </u>										

RAPPORT D'ESSAI / TEST REPORT N° 69196CR-R1-E Page : 26 / 33

RADIAT	ED EMISSION		
Graph name:	Emr#7		
Antenna position:	0°	Configuration nใ	
Azimuth:	0°- 360°		
RBW/VBW:	120kHz / 300kHz	Peak Measure	QPeak Limit@3m
	,		
150 dBμV/m			
			† † † † † † † † † † † † † † † † † † †
	The way	Walland Company	
		what who have the offer of the order to the	an appropriate for the second
0			30MHz
SK FIZ		Fréquence (MHz)	JUMPIZ
	Frequency (MF	lz) Peak (dBµV/m)	
	13.578	58.18	
	27.146		
	27.146	46.22	

Page : 27 / 33

RADIATED	EMISSION						
Graph name:	Emr#8	Configuration nๆ					
Antenna position:	90°						
Azimuth:	0°- 360°						
RBW/VBW:	120kHz / 300kHz	Peak Measure QPeak Limit@3m					
dBµV/m	Frequency (MHz) 13.598	ence (MHz)	30MHz				

Page: 28 / 33

Page : 29 / 33

RADIATED	EMISSION		
Graph name:	Emr#10	Configuration n ²	
Antenna position:	90°		
Azimuth:	0°- 360°		
RBW/VBW:	120kHz / 300kHz	Peak Measure	QPeak Limit@3m
150 dBμV/m		Jence (MHz)	30MHz
	Frequency (MHz)	Peak (dBµV/m)	
	13.598	49.27	
	13.390	43.21	

RAPPORT D'ESSAI / TEST REPORT N° 69196CR-R1-E Page : 31 / 33

	CONE	OUCTED EMIS	SSIONS									
Grap	h name :	Emo		Configure	Configuration 1 (USB) 110V 60Hz							
Volta	age / Freque	ncy: 110\	/ac/60Hz	Configui	Configuration 1 (USB) 110V 60Hz							
Limit	e / Classe :		55011 / 5022/B									
Line	Port :	: Neutral Peak Measure				QPe	ak Limit					
RBW	BW / VBW : 9kHz/30kHz			Avera	ige Measi	ure Ave	rage Limit					
400												
120 ⁻				May My May May May May May May May May M	han han han han han han han han han han	of the Walter and an Arabba and a state of the contract of the	March March					
0.	150kHz			Fréquence (MHz)			30МН:					
			· ·		T		OBook					
F	requency (MHz)	Avg (dBµV)	Lim Avg (dBµV)	Avg- LimAvg (dBµV)	QPeak (dBµV)	LimQPeak (dBµV)	QPeak- LimQPeak (dBµV)					
	0.174	31.19	54.77	-23.58	43.87	64.77	-20.89					
	0.458	30.7	46.73	-16.03	37.56	56.73	-19.17					
	0.554	23.47	46	-22.53	38.93	56	-17.07					
	1.138	24.84	46	-21.16	33.07	56	-22.93					
	13.558	30.86	50	-19.14	38.76	60	-21.24					
	27.114	22.95	50	-27.05	37.6	60	-22.4					

Page: 32 / 33

Page : 33 / 33

		EMISSION	13	_						
aph name :		Emc#4		Configur	ation 2 (8V)	110\	√ 60Hz			
oltage / Freque		110Vac/60	ITZ							
nite / Classe :		EN 55011 EN55022/I								
ne/Port :		Neutral		Peak I	Measure	_	QPeak Limit			
3W / VBW :		9kHz/30kH	łz	Avera	ge Measure		Average Limit			
120										
MM	mlm.		Mary May				Marka Markan Manal			
Frequency	Avg	Lim Avg	Avg-LimAvg		LimQPeak	OP	eak-LimQPeak			
(MHz)	(dBµV)		(dBµV)	(dBµV)	(dBµV)	GG! ((dBµV)			
13.558	20.49	50	-29.51	36.31	60		-23.69			
27.074	-2.41	50	-52.41	23.67	60		-36.33			