Autoencoders

Topics we'll cover

- 1 Autoencoders
- 2 k-means and PCA as autoencoders
- Manifold learning
- 4 Independent component analysis
- **5** Stacked autoencoders

Autoencoders

Finding the underlying degrees of freedom of data

Ideally $x \approx D(E(x))$ on data points $x \in \mathbb{R}^d$

The *k*-means clustering scheme, revisited

The *k*-means problem:

- Given: $x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^d$; integer k
- Find: k centers $\mu_1, \dots, \mu_k \in \mathbb{R}^d$ that minimize $\sum_{i=1}^n \min_{1 \le j \le k} \|x^{(i)} \mu_j\|^2$

The *k*-means autoencoder

Principal component analysis, revisited

The PCA problem:

- Given: $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$; integer k
- Find: the projection $\mathbb{R}^d o \mathbb{R}^k$ that maximizes the variance of the projected data

Solution:

- Compute the covariance matrix of the data
- Let u_1, \ldots, u_k be the top k eigenvectors of this matrix
- Let $k \times d$ matrix U have the u_i as its columns
- Projection: $x \mapsto U^T x$
- Reconstruction: $z \mapsto Uz$

The PCA autoencoder

Some other types of intrinsic structure

- 1 Manifold learning

 The data lies on a k-dimensional manifold.
- 2 Independent component analysis
 The data are linear combinations of hidden features that are independent.

Manifold learning

Sometimes data in a high-dimensional space \mathbb{R}^d in fact lies close to a k-dimensional manifold, for $k \ll d$

The manifold autoencoder

Independent component analysis

The cocktail party problem

Stacked autoencoders

- Fit one layer at a time to the previous layer's activations
- Then fine-tune whole structure to minimize reconstruction error

Distributed representations

Topics we'll cover

- 1 One-hot versus distributed encodings
- Word embeddings

One-hot versus distributed representations

- *k*-means: **one-hot** encoding
- PCA: distributed encoding

The bag-of-words representation

One-hot encoding of words:

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

- Fix V = some vocabulary.
- Treat each sentence (or document) as a vector of length |V|:

$$x = (x_1, x_2, \dots, x_{|V|}),$$

where $x_i = \#$ of times the *i*th word appears in the sentence.

Word co-occurrences

You shall know a word by the company it keeps. (J.R. Firth, 1957)

• Much of the meaning of a word w is captured by the words it co-occurs with:

• Find an embedding of words based on these co-occurrences.

A simple approach to word embedding

Fix a vocabulary V. Then, using a corpus of text:

- 1 Look at each word w and its surrounding context: w_1 w_2 w_3 w w_4 w_5 w_6
 - n(w, c) = # times word c occurs in the context of word w
 - Yields a probability distribution Pr(c|w).
- 2 Positive pointwise mutual information:

$$\Phi_c(w) = \max\left(0, \log \frac{\Pr(c|w)}{\Pr(c)}\right)$$

This is a |V|-dimensional representation of word w.

3 Reduce dimension using PCA.

The embedding

- Which word's vector is closest to that of Africa?
 Asia
- Solving analogy problems: king is to queen as man is to?
 - vec(king) vec(queen) = vec(man) vec(?)
 - vec(?) = vec(man) vec(king) + vec(queen)
 - Nearest neighbor of this vector is vec(woman).

Feedforward neural nets

Topics we'll cover

- 1 The architecture
- 2 The functions
- **3** The effect of depth

The architecture

The value at a hidden unit

How is h computed from z_1, \ldots, z_m ?

- $h = \sigma(w_1z_1 + w_2z_2 + \cdots + w_mz_m + b)$
- $\sigma(\cdot)$ is a nonlinear **activation function**, e.g. "rectified linear"

$$\sigma(u) = \begin{cases} u & \text{if } u \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Why do we need nonlinear activation functions?

The output layer

Classification task with k labels: want k probabilities summing to 1.

- y_1, \ldots, y_k are linear functions of the parent nodes z_i .
- Get probabilities using **softmax**:

$$\Pr(\mathsf{label}\ j) = \frac{e^{y_j}}{e^{y_1} + \dots + e^{y_k}}.$$

The complexity

The effect of depth

Universal approximator
 Any function can be arbitrarily well approximated by a neural net with one hidden layer.

Concerns about size

To fit certain classes of functions:

- Either: one hidden layer of enormous size
- Or: multiple hidden layers of moderate size

Topics we'll cover

- 1 The loss function
- 2 Back-propagation
- 3 Early stopping and dropout

Feedforward nets

The loss function

Classification problem with k labels.

- Parameters of entire net: W
- For any input x, net computes probabilities of labels:

$$Pr_W(label = j|x)$$

• Given data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, loss function:

$$L(W) = -\sum_{i=1}^{n} \ln \Pr_{W}(y^{(i)}|x^{(i)})$$

(sometimes called cross-entropy).

Nature of the loss function

Variants of gradient descent

Initialize W and then repeatedly update.

- Gradient descent
 Each update involves the entire training set.
- 2 Stochastic gradient descent Each update involves a single data point.
- 3 Mini-batch stochastic gradient descent Each update involves a modest, fixed number of data points.

Derivative of the loss function

Update for a specific parameter: derivative of loss function wrt that parameter.

Chain rule

1 Suppose h(x) = g(f(x)), where $x \in \mathbb{R}$ and $f, g : \mathbb{R} \to \mathbb{R}$.

Then:
$$h'(x) = g'(f(x)) f'(x)$$

2 Suppose z is a function of y, which is a function of x.

Then:

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

A single chain of nodes

A neural net with one node per hidden layer:

$$x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell$$

For a specific input x,

- $h_i = \sigma(w_i h_{i-1} + b_i)$
- The loss L can be gleaned from h_ℓ

To compute dL/dw_i we just need dL/dh_i :

$$\frac{dL}{dw_i} = \frac{dL}{dh_i} \frac{dh_i}{dw_i} = \frac{dL}{dh_i} \sigma'(w_i h_{i-1} + b_i) h_{i-1}$$

Backpropagation

- On a single forward pass, compute all the h_i .
- On a single backward pass, compute $dL/dh_{\ell}, \ldots, dL/dh_{1}$

$$x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell$$

From
$$h_{i+1} = \sigma(w_{i+1}h_i + b_{i+1})$$
, we have

$$\frac{dL}{dh_i} = \frac{dL}{dh_{i+1}} \frac{dh_{i+1}}{dh_i} = \frac{dL}{dh_{i+1}} \sigma'(w_{i+1}h_i + b_{i+1}) w_{i+1}$$

Improving generalization

1 Early stopping

- Validation set to better track error rate
- Revert to earlier model when recent training hasn't improved error

2 Dropout

During training, delete each hidden unit with probability 1/2, independently.

Probabilistic approaches to machine learning

- Graphical models
- 2 Causality
- Bayesian methods

Reinforcement learning

The human side of machine learning

- Trust
- 2 Transparency
- 3 Explanations