In [1]: ▶

import pandas as pd
import numpy as np
import seaborn as sns
from sklearn import preprocessing

In [2]: ▶

df = pd.read_csv('UpdatedStudentsPerformance.csv')

In [3]: ▶

df

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74.0
1	female	group C	some college	standard	completed	69.0	90.0	88.0
2	female	group B	master's degree	standard	none	90.0	95.0	93.0
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44.0
4	male	group C	some college	standard	none	76.0	78.0	75.0
995	female	group E	master's degree	standard	completed	88.0	99.0	95.0
996	male	group C	high school	free/reduced	none	62.0	55.0	55.0
997	female	group C	high school	free/reduced	completed	59.0	71.0	65.0
998	female	group D	some college	standard	completed	68.0	78.0	77.0
999	female	group D	some college	free/reduced	none	77.0	86.0	86.0

1000 rows × 8 columns

In [4]: ▶

df.head()

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74.0
1	female	group C	some college	standard	completed	69.0	90.0	88.0
2	female	group B	master's degree	standard	none	90.0	95.0	93.0
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44.0
4	male	group C	some college	standard	none	76.0	78.0	75.0

In [5]: ▶

df.tail()

Out[5]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
995	female	group E	master's degree	standard	completed	88.0	99.0	95.0
996	male	group C	high school	free/reduced	none	62.0	55.0	55.0
997	female	group C	high school	free/reduced	completed	59.0	71.0	65.0
998	female	group D	some college	standard	completed	68.0	78.0	77.0
999	female	group D	some college	free/reduced	none	77.0	86.0	86.0

In [7]: ▶

df.shape

Out[7]:

(1000, 8)

```
In [8]:
                                                                                           M
df.dtypes
Out[8]:
                                  object
gender
race/ethnicity
                                  object
parental level of education
                                  object
lunch
                                  object
test preparation course
                                 object
math score
                                float64
reading score
                                float64
                                float64
writing score
dtype: object
In [9]:
                                                                                           M
df.isna().sum()
Out[9]:
gender
                                  0
                                  0
race/ethnicity
parental level of education
                                  0
                                  0
test preparation course
                                 0
math score
                                10
reading score
                                15
writing score
                                11
dtype: int64
                                                                                          M
In [40]:
df1 = df.fillna(df.mean(numeric_only = True))
In [41]:
                                                                                           H
df1.isna().sum()
Out[41]:
                                0
gender
race/ethnicity
                                0
parental level of education
                                0
                                0
lunch
test preparation course
                                0
                                0
math score
reading score
                                0
writing score
dtype: int64
```

Deal With Outliers

In [15]: ▶

```
sns.boxplot(x='reading score',data = df1)
```

Out[15]:

<Axes: xlabel='reading score'>

In [16]: ▶

```
sns.boxplot(x='writing score',data = df1)
```

Out[16]:

<Axes: xlabel='writing score'>


```
In [17]:
sns.boxplot(x='math score',data = df1)
```

Out[17]:

<Axes: xlabel='math score'>

IQR to deal with outliers

```
In [50]:
                                                                                         M
Q1 = df2.quantile(0.25)
print("25 percentile\n",Q1)
25 percentile
 reading score
                  60.0
writing score
                 58.0
                 57.0
math score
Name: 0.25, dtype: float64
                                                                                         H
In [55]:
Q3 = df2.quantile(0.75)
print("75 percentile\n",Q3)
75 percentile
reading score
                  79.0
writing score
                 79.0
math score
                 77.0
Name: 0.75, dtype: float64
In [56]:
                                                                                         M
IQR = Q3 - Q1
print("IQR is = \n", IQR)
IQR is =
 reading score
                  19.0
writing score
                 21.0
                 20.0
math score
dtype: float64
                                                                                         M
In [57]:
low = Q1 - 1.5 * IQR
high = Q3 + 1.5 * IQR
print(low)
print(high)
reading score
                 31.5
writing score
                 26.5
                 27.0
math score
dtype: float64
                 107.5
reading score
writing score
                 110.5
                 107.0
math score
dtype: float64
In [58]:
                                                                                         M
newdf = df2[\sim(((df2<low)|(df2>high)).any(axis = 1))]
```

In [59]: ▶

newdf

Out[59]:

	reading score	writing score	math score
0	72.0	74.0	72.0
1	90.0	88.0	69.0
2	95.0	93.0	90.0
3	57.0	44.0	47.0
4	78.0	75.0	76.0
995	99.0	95.0	88.0
996	55.0	55.0	62.0
997	71.0	65.0	59.0
998	78.0	77.0	68.0
999	86.0	86.0	77.0

986 rows × 3 columns

In [60]: ▶

sns.boxplot(data = newdf)

Out[60]:

<Axes: >

Z score normalization

In [64]: ▶

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

z_score = scaler.fit_transform(newdf)

z_score = pd.DataFrame(z_score,columns = newdf.columns)
z_score
```

Out[64]:

	reading score	writing score	math score
0	0.157906	0.367221	0.365931
1	1.460757	1.342722	0.155544
2	1.822660	1.691115	1.628255
3	-0.927802	-1.723137	-1.387295
4	0.592190	0.436900	0.646448
981	2.112182	1.830472	1.487997
982	-1.072564	-0.956672	-0.335359
983	0.085526	-0.259886	-0.545747
984	0.592190	0.576257	0.085415
985	1.171235	1.203364	0.716577

986 rows × 3 columns

Min Max Normalization

```
In [65]:

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

MinMax = scaler.fit_transform(newdf)

MinMax = pd.DataFrame(MinMax,columns = newdf.columns)

MinMax
```

Out[65]:

	reading score	writing score	math score
0	0.588235	0.638889	0.616438
1	0.852941	0.833333	0.575342
2	0.926471	0.902778	0.863014
3	0.367647	0.222222	0.273973
4	0.676471	0.652778	0.671233
981	0.985294	0.930556	0.835616
982	0.338235	0.375000	0.479452
983	0.573529	0.513889	0.438356
984	0.676471	0.680556	0.561644
985	0.794118	0.805556	0.684932

986 rows × 3 columns

In []:	М
In []:	Н
In []:	ы