LogiPack

Lab. 4 - Introdução à Engenharia de Software

Leonardo Almeida • Pedro Rodrigues • Rafael Gonçalves • Rafael Remígio

Licenciatura em Engenharia Informática 2022/2023

Introdução

Objetivo: propor, conceptualizar e implementar uma solução de software *multi-layer*, de classe empresarial e com foco na web.

Proposta: sistema de gestão de transportes de mercadorias, destinado às entidades que operam na área da Logística (cadeias de abastecimento).

Equipa

Papel	Aluno
Team Manager (Coordinator)	Pedro Rodrigues (102778)
Product Owner	Leonardo Almeida (102536)
Architect	Rafael Remígio (102435)
DevOps Master	Rafael Gonçalves (102534)
Developers	Todos os supracitados

Planeamento

Conceito do produto

Visão

- Perante a transformação digital, as empresas tiveram de mudar de paradigma, havendo cada vez mais negócios eCommerce.
- Novos S.I. não se destinam apenas a clientes finais, mas também a entidades prestadoras de serviços ou fornecedoras de produtos.
- Na Logística, as plataformas digitais podem ajudar as empresas a gerir melhor as suas cadeias de abastecimento, aumentando a eficácia e eficiência das suas operações.

Fonte: Questionário da PwC, uma das maiores multinacionais de consultoria e auditoria do mundo.

- RISCO = - CUSTO

Redução de custos, através da otimização de processos e diminuição de riscos.

COLABORAÇÃO

Melhor comunicação e colaboração entre os diferentes intervenientes na cadeia de abastecimento, isto é, os distribuidores, os transportadores e os clientes finais.

AUTOMAÇÃO

Automação de tarefas e processos, como rastreio de encomendas, gestão de inventário e registo de eventos em *logs*.

TEMPO REAL

Acompanhamento em tempo real do movimento das mercadorias, permitindo às empresas tomar decisões mais informadas.

GERAÇÃO DE VALOR PARA A EMPRESA

COMPETITIVIDADE

Maior competitividade da empresa, na medida em que não perderá o "comboio" da transformação digital.

Muitos dos sistemas que partilham estes objetivos são exclusivos das suas redes de distribuição. A LogiPack é uma **solução genérica**, passível de ser integrada em qualquer cadeia de abastecimento.

Levantamento de requisitos

Importância

- Permite entender as necessidades dos utilizadores.
- Permite definir objetivos do projeto.
- Permite identificar possíveis problemas, na fase de planeamento.

Ferramentas

- Atores, casos de utilização e user stories.
- Personas.
- Cenários.

Resultado

- Garantir que a aplicação tem o comportamento esperado.
- Organizar o seu desenvolvimento.
- Reduzir riscos.

Atores, Casos de utilização e *User stories*

Objetivo:

- Entender o tipo de entidades que v\u00e3o usar a aplica\u00e7\u00e3o.
- Dividir o projeto em partes mais pequenas, geríveis e "focadas".
- Entender o contexto e o benefício de cada funcionalidade.

Personas

Objetivo:

• Entender as necessidades, expectativas e comportamentos dessas entidades.

Administrador da distribuidora

Factos sobre o Daniel:

- Tem 10 anos de experiência na Logística.
- É organizado e atento aos detalhes.
- Valoriza a eficiência e a satisfação dos clientes, estando constantemente à procura de melhorar os processos da empresa.

Motivações para usar o sistema:

- Acompanhar as frotas de entrega.
- Coordenar os transportadores.
- Atender às necessidades dos clientes, com celeridade, a fim de manter a boa reputação dos serviços da distribuidora.
- Ver estatísticas em tempo real.

Nome	Daniel Santos
Idade	35 anos
Sexo	Masculino
Profissão	Gestor de operações (Head of Operations) Setor: Logística
Estado civil	Casado
Localização	Lisboa

Cenários

Objetivo:

- Identificar problemas no uso da aplicação.
- Priorizar e validar requisitos.

Daniel Santos (administrador da distribuidora)

O Daniel está a preparar-se para um dia atarefado, no centro de distribuição. Inicia sessão na LogiPack, para consultar a lista de encomendas, prontas a ser expedidas. Constata que há uma carga adicional, que não estava prevista no início da semana, e que o sistema atribuiu automaticamente uma nova rota a um transportador inativo.

Arquitetura

Vista geral

Tecnologias utilizadas

Desenvolvimento

Gestão do projeto

Na gestão do projeto, foram utilizados diferentes conceitos da filosofia *Agile*, sendo os mais relevantes:

- *User Story*, como unidade de planeamento;
- Backlog, para priorizar as tarefas a realizar, bem como a sua atribuição;
- **Story Points**, para quantificar em termos de esforço, dificuldade e tempo necessário para concluir uma tarefa.
 - O sistema de story points utilizado consiste na sequência de números 0, 2, 4 e 8, onde 0 representa uma tarefa de esforço mínimo e 8 de esforço elevado.

A atribuição e pontuação das tarefas foi, sempre que possível, efetuada perante a presença de todos os elementos do grupo.

Gestão do Backlog

Para a gestão do backlog, a plataforma escolhida foi o Atlassian Jira.

Principais motivos da escolha desta plataforma:

- Vasto suporte para a filosofia Agile, incluindo a Scrum Methodology
- Elevada transparência
- Flexibilidade
- Acessibilidade/facilidade
- Integração com o GitHub

Repositório

Controlo de versões: Git

Hospedagem do código-fonte: GitHub

Feature-branching workflow:

- O desenvolvimento do projeto foi orientado a branches.
- A integração (merge) de novas funcionalidades na main foi quase sempre antecedida por um pull request, cuja aprovação era habitualmente da responsabilidade do DevOps master.

Aplicação web

Para o desenvolvimento da camada View, recorremos à biblioteca JavaScript ReactJS.

As principais razões pelas quais escolhemos ReactJS foram:

- Desenvolvimento rápido e fácil de interfaces ricas e interativas
- Componentes reutilizáveis
- Data-Binding proficiente
- Comunidade larga e ativa
- Boa documentação

Para interação com a API, utilizámos a biblioteca JavaScript **Axios**.

Usufruímos de componentes *React* disponibilizados pela biblioteca **Material UI**.

Aplicação móvel

Para o desenvolvimento da Mobile App, optámos pelo Flutter, pelas seguintes razões:

- Cross-Platform codebase.
- Componentes Widget agilizam o desenvolvimento da UI.
- Testagem rápida com Hot Reload e boas ferramentas de debugging.
- Experiência prévia com a framework.

Geração de dados

Backend

Construção da API

Abordagem RESTful:

- GET, POST, PUT, DELETE
- Retorno em JSON
- Permite filtros

Implementação:

- Controller
- Service
- Repository

Documentação e testes:

Postman

Persistência dos Dados

Porquê duas bases de dados?

O sistema desenvolvido apresenta dois distintos com necessidades

 Perfil onde os dados apenas necessitam de ser armazenados, de modo a serem acedidos posteriormente através da REST API.

2. Perfil que exige uma inserção contínua de dados de um mesmo tipo, isto é, pertencentes a uma mesma entidade.

Segurança no acesso à API

- Com Spring Security, é possível definir em que circunstâncias devem ser aceites pedidos HTTP à API.
- Recorremos ao protocolo de autorização OAuth2, cujo funcionamento depende de:
 - Authorization server: emite tokens.
 - Resource server: aloja os recursos protegidos e responde a pedidos de acesso.
- No nosso sistema, ambos os servidores são da responsabilidade da framework Spring.
- Um JSON Web Token (JWT) é um mecanismo seguro, compacto e self contained de transmitir informação entre duas partes, na forma de um objeto JSON.
- No nosso sistema, é assinado digitalmente com um pares de chaves pública/privada (RSA).

Deployment

Baseado em containers

O **Docker** é um mecanismo de **virtualização**, que atua sobre o SO e visa o encapsulamento das camadas de uma aplicação em *containers*, com as suas dependências e configurações, o que facilita a sua distribuição e execução em qualquer ambiente, incluindo o de produção.

Apresenta ainda outros benefícios, tais como:

- Portabilidade
- Isolamento
- Escalabilidade
- Eficiência (em comparação com as VMs)
- Segurança

Continuous Deployment

GitHub Actions

Demonstração