

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

Departament de Teoria del Senyal i Comunicacions

OPTICAL COMMUNICATIONS GROUP

FIBER-OPTIC COMMUNICATIONS

CONTENTS

- 1. INTRODUCTION
- 2. OPTICAL FIBER
- 3. OPTICAL SOURCES
- 4. OPTICAL RECEIVERS
- 5. OPTICAL AMPLIFIERS
- 6. FIBER-OPTIC SYSTEMS

2. OPTICAL FIBER

- RAY OPTICS
 - POSTULATES OF RAY OPTICS
 - REFLECTION & REFRACTION
 - $-\Delta\lambda$ - Δf RELATIONSHIP
- TYPES OF OPTICAL FIBERS
 - DEFINITION & CLASSIFICATION
 - CHARACTERISTIC PARAMETERS
 - STANDARDIZATION

28 FEBRUARY 2011 CONTENTS slide 3

FIBER-OPTIC COMMUNICATIONS

- PROPAGATION IN O.F.
 - TOTAL INTERNAL REFLECTION
 - TRANSVERSAL MODES
- ATTENUATION IN O.F.
- DISPERSION IN O.F.
 - MULTI-MODE FIBERS
 - SINGLE-MODE FIBERS
- O.F. BANDWIDTH
 - GAUSSIAN APPROXIMATION
 - PRACTICAL BW
 - OPTICAL BW vs. ELECTRICAL BW

RAY OPTICS

"Light is an electromagnetic wave phenomenon described by the same theoretical principles that govern all forms of EM radiation. Nevertheless, it is possible to describe many phenomena using some approximations"

QUANTUM OPTICS (PARTICLES)

Einsten-Planck

ELECTROMAGETIC OPTICS (FOURIER)

Maxwell

WAVE OPTICS (SCALAR)

Newton

RAY OPTICS (GEOMETRIC)

Galileo

 $\lambda << D$

28 FEBRUARY 2011

2. OPTICAL FIBER - RAY OPTICS

slide 5

FIBER-OPTIC COMMUNICATIONS

RAY OPTICS: POSTULATES (I)

1. Light travels in the form of rays

2. An optical medium is characterized by its **refractive index** (n≥1), which is defined as the ratio of the speed of light in free space (c=3·10⁸ m/s) to that in the medium (v)

$$n \equiv \frac{c}{v} \ge 1 \rightarrow t = \frac{d}{v} = \frac{nd}{c}$$

nd ≡ optical path length

RAY OPTICS: POSTULATES (II)

3. In an **inhomogeneous medium** the refractive index n(r) is a function of the position r = (x,y,z). The optical path length along a given path between points A and B is therefore:

$$\int_{A}^{B} n(r)\partial \ell \quad \rightarrow \quad t = \frac{1}{c} \int_{A}^{B} n(r)\partial \ell$$

$$\frac{\delta}{\delta r} \left[\int_{A}^{B} n(r) \partial \ell \right] = 0$$

28 FEBRUARY 2011

2. OPTICAL FIBER - RAY OPTICS

slide 7

FIBER-OPTIC COMMUNICATIONS

REFLECTION & REFRACTION (I)

Reflection Law

$$\phi_R = \phi_i$$

Snell's Law

$$n_1 \sin \phi_i = n_2 \sin \phi_r$$

$$n_1 \cos \theta_i = n_2 \cos \theta_r$$

External Refraction ($n_1 < n_2$) $\implies \varphi_r < \varphi_i$ Internal Refraction ($n_1 > n_2$) $\implies \varphi_r > \varphi_i$

REFLECTION & REFRACTION (II)

Total Internal Reflection

$$n_1 \cdot \sin(\phi_i) = n_2 \cdot \sin(\phi_r)$$
$$\sin(\phi_r) = \frac{n_1}{n_2} \sin(\phi_i)$$

$$\begin{cases} & \sin(\phi_i) \in \left[0, n_2/n_1\right] \rightarrow & \sin(\phi_r) \leq 1 \\ & \sin(\phi_i) \in \left(n_2/n_1, 1\right] \rightarrow & \sin(\phi_r) \leq 1 \end{cases} \qquad \text{All light remains in medium } \mathbf{n_1}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - RAY OPTICS

FIBER-OPTIC COMMUNICATIONS

REFLECTION & REFRACTION (II)

Critical Angle

$$\sin(\phi_c) = \frac{\mathbf{n}_2}{\mathbf{n}_1} \rightarrow \phi_c = \sin^{-1}\left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)$$

Relative Refractive Index

$$\Delta \equiv \frac{\mathbf{n}_1 - \mathbf{n}_2}{\mathbf{n}_1}$$

Paraxial Optics

Small propagation angles

REFLECTION & REFRACTION (III)

Energy interchange

$$\text{Reflectance} \qquad \Longrightarrow \quad \rho = \frac{\vec{E}_{reflected}}{\vec{E}_{incident}}$$

Transmitivity
$$T = \frac{P_{transmitted}}{P_{incident}} = 1 - R$$

28 FEBRUARY 2011

2. OPTICAL FIBER - RAY OPTICS

slide 11

FIBER-OPTIC COMMUNICATIONS

REFLECTION & REFRACTION (III)

Amplitude Reflectance

$$\rho = \frac{\vec{E}_{\text{reflected}}}{\vec{E}_{\text{incident}}} = \frac{n_1 \cos \phi_i - n_2 \cos \phi_r}{n_1 \cos \phi_i + n_2 \cos \phi_r} \xrightarrow{\phi_i \approx \phi_r} R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

2. OPTICAL FIBER - RAY OPTICS

REFLECTION & REFRACTION (III)

Internal Reflection (n₁>n₂)

$$\rho = \frac{n_{1}\cos\phi_{i} - n_{2}\cos\phi_{r}}{n_{1}\cos\phi_{i} + n_{2}\cos\phi_{r}} = \frac{n_{1}\cos\phi_{i} - jn_{2}\left(\frac{\sin^{2}\phi_{i}}{\sin^{2}\phi_{c}} - 1\right)^{\frac{1}{2}}}{n_{1}\cos\phi_{i} + jn_{2}\left(\frac{\sin^{2}\phi_{i}}{\sin^{2}\phi_{c}} - 1\right)^{\frac{1}{2}}}$$

$$\sin \phi_{r} = \frac{n_{1}}{n_{2}} \sin \phi_{i} \rightarrow \cos \phi_{r} = \left(1 - \left(\frac{n_{1}}{n_{2}}\right)^{2} \sin^{2} \phi_{i}\right)^{\frac{1}{2}} = \left(1 - \frac{\sin^{2} \phi_{i}}{\sin^{2} \phi_{c}}\right)^{\frac{1}{2}} = j\left(\frac{\sin^{2} \phi_{i}}{\sin^{2} \phi_{c}} - 1\right)^{\frac{1}{2}}$$

$$\sin \phi_{c} = \frac{n_{2}}{n_{1}}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - RAY OPTICS

slide 13

FIBER-OPTIC COMMUNICATIONS

REFLECTION & REFRACTION (III)

Internal Reflection (n₁>n₂)

$$\rho = \frac{n_{1}\cos\phi_{i} - n_{2}\cos\phi_{r}}{n_{1}\cos\phi_{i} + n_{2}\cos\phi_{r}} = \frac{n_{1}\cos\phi_{i} - jn_{2}\left(\frac{\sin^{2}\phi_{i}}{\sin^{2}\phi_{c}} - 1\right)^{\frac{1}{2}}}{n_{1}\cos\phi_{i} + jn_{2}\left(\frac{\sin^{2}\phi_{i}}{\sin^{2}\phi_{c}} - 1\right)^{\frac{1}{2}}}$$

$$\phi_{i} \leq \phi_{c} \rightarrow \begin{cases} \left| \rho \right|^{2} = \left(\frac{n_{1} \cos \phi_{i} - n_{2} \left(1 - \frac{\sin^{2} \phi_{i}}{\sin^{2} \phi_{c}} \right)^{\frac{1}{2}}}{n_{1} \cos \phi_{i} + n_{2} \left(1 - \frac{\sin^{2} \phi_{i}}{\sin^{2} \phi_{c}} \right)^{\frac{1}{2}}} \right)^{2} \\ = \left[\left(\frac{n_{1} - n_{2}}{n_{1} + n_{2}} \right)^{2}, 1 \right] \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{2} + n_{2}} \right)^{2} \\ = \left(\frac{n_{1} - n_{2}}{n_{1} + n_{2}} \right)^{2} \\ = \left(\frac{$$

REFLECTION & REFRACTION (III)

Internal Reflection (n₁>n₂)

$$\rho = \frac{n_1 \cos \phi_i - n_2 \cos \phi_r}{n_1 \cos \phi_i + n_2 \cos \phi_r} = \frac{n_1 \cos \phi_i - j n_2 \left(\frac{\sin^2 \phi_i}{\sin^2 \phi_c} - 1\right)^{\frac{1}{2}}}{n_1 \cos \phi_i + j n_2 \left(\frac{\sin^2 \phi_i}{\sin^2 \phi_c} - 1\right)^{\frac{1}{2}}}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - RAY OPTICS

slide 15

FIBER-OPTIC COMMUNICATIONS

REFLECTION & REFRACTION (III)

Internal Reflection (n₁>n₂)

TOTAL INTERNAL REFLECTION

$\Delta\lambda$ - Δf RELATIONSHIP

$$\lambda = \frac{\mathbf{c}}{\mathbf{f}} \rightarrow \partial \lambda = -\frac{\mathbf{c}}{\mathbf{f}^2} \partial \mathbf{f} \rightarrow \int_{\lambda}^{\lambda_+} \partial \lambda = -\int_{\mathbf{f}_c - \Delta \mathbf{f}/2}^{\mathbf{f}_c + \Delta \mathbf{f}/2} \frac{\mathbf{c}}{\mathbf{f}^2} \partial \mathbf{f}$$

$$\Delta \lambda = c \cdot \frac{1}{f} \bigg|_{f_c - \Delta f/2}^{f_c + \Delta f/2} = c \left(\frac{1}{f_c + \frac{\Delta f}{2}} - \frac{1}{f_c - \frac{\Delta f}{2}} \right)$$

$$\Delta\lambda = c \cdot \frac{\Delta f}{\left(f_c + \frac{\Delta f}{2}\right) \!\! \left(f_c - \frac{\Delta f}{2}\right)} \ = c \cdot \frac{\Delta f}{f_c^2 - \left(\frac{\Delta f}{2}\right)^2}$$

28 FEBRUARY 2011 2. OPTICAL FIBER - RAY OPTICS

slide 17

FIBER-OPTIC COMMUNICATIONS

Frequency

Evolution of field amplitude over time in a fixed distance

Wavelength

Evolution of field amplitude over distance in a fixed time

TYPES OF FIBERS

Definintion

"An Optical Fiber is a dielectric cilindrical waveguide capable of guiding light at certain frequencies with low attenuation and high bandwidth"

28 FEBRUARY 2011

2. OPTICAL FIBER - TYPES OF OPTICAL FIBERS

slide 19

GRaded INdex Fibers (I)

$$\mathbf{n}(\mathbf{r}) = \begin{cases} \mathbf{n}_1 \left(1 - \frac{\mathbf{n}_1^2 - \mathbf{n}_2^2}{\mathbf{n}_1^2} (\mathbf{r}/\mathbf{a})^{\alpha} \right)^{\frac{1}{2}} \mathbf{r} < \mathbf{a} \\ \mathbf{n}_1 \left(1 - \frac{\mathbf{n}_1^2 - \mathbf{n}_2^2}{\mathbf{n}_1^2} \right)^{\frac{1}{2}} = \mathbf{n}_2 \quad \mathbf{r} \ge \mathbf{a} \end{cases}$$

r: radial distance

$$\frac{\mathbf{n}_1^2 - \mathbf{n}_2^2}{\mathbf{n}_1^2} \approx 2 \frac{\mathbf{n}_1 - \mathbf{n}_2}{\mathbf{n}_1} \equiv 2\Delta$$

$$\frac{n_1^2 - n_2^2}{n_1^2} \approx 2 \frac{n_1 - n_2}{n_1} \equiv 2\Delta \qquad \Longrightarrow \qquad n(r) \approx \begin{cases} n_1 \left(1 - 2\Delta \left(r/a\right)^{\alpha}\right)^{\frac{1}{2}} & r < a \\ n_1 \left(1 - 2\Delta\right)^{\frac{1}{2}} = n_2 \end{cases}$$

 Δ : relative refractive index

28 FEBRUARY 2011

2. OPTICAL FIBER - TYPES OF OPTICAL FIBERS

slide 21

FIBER-OPTIC COMMUNICATIONS

Paraxial O. $(n_1 \approx n_2)$

GRaded INdex Fibers (I)

All rays have the same delay no matter the incidence angle (same optical path). The propagation is synchronized.

Advanced Index Profiles

standard fibers

 SiO_2

 $SiO_2 + GeO_2$

 $SiO_2 + F$

dispersion shifted fibers

28 FEBRUARY 2011

2. OPTICAL FIBER - TYPES OF OPTICAL FIBERS

slide 23

FIBER-OPTIC COMMUNICATIONS

CHARACTERISTIC PARAMETERS

Static Parameters

No propagation distance dependence

Geometrical

Core/Cladding Diameter

Together with index profile, numerical aperture, and frequency; determines the SM/MM behaviour of the fiber

Optical

Index Profile: n(r)

Transversal evolution of the fiber core's refractive index

Numerical
Aperture: NA

Core-cladding refractive indices quadratic difference which determines the acceptance angle of the fiber

Dynamic Parameters

Propagation distance dependence

Attenuation

Optical Power reduction per unit length

Dispersion (Bandwidth)

Optical pulses spreading per unit length

ESTANDARDIZATION

Multimode Fibers

MULTIMODE FIBER 62,5/125	ISO/IEC 793
Numerical Aperture	NA = 0,275 (+/- 0,015)
Index Profile	Step index
Relative Refractive Index	1.90 %
Core Diameter	62,5 μm (+/- 3 μm)
Cladding Diameter	125 μm (+/- 1 μm)
Silicon Coating	245 μm (+/- 10 μm)
Operation Wavelenght	850 & 1300 nm
Attenuation @ 850 nm	3 - 3,2 dB/km
Attenuation @ 1300 nm	0,7 - 0,8 dB/km
Bandwidth @ 850 nm	200 - 300 MHz/Km
Bandwidth @ 1300 nm	400 - 600 MHz/Km

MULTIMODE FIBER 50/125	ITU-T G.651	
Numerical Aperture	NA= 0,18 a 0,24 (+/- 10%)	
Index Profile	Graded index	
Average Refractive Index	1,43	
Core Diameter	50 μm (+/- 3 μm)	
Cladding Diameter	125 μm (+/- 3 μm)	
Silicon Coating	245 μm (+/- 10 μm)	
Concentricity Error	6%	
Core Circularity Error	6%	
Cladding Circularity Error	2%	
Attenuation @ 850 nm	2,7 - 3 dB/km	
Attenuation @ 1300 nm	0,7 - 0,8 dB/km	
Bandwidth @ 850 nm	300 - 500 MHz/Km	
Bandwidth @ 1300 nm	500 - 1000 MHz/Km	

28 FEBRUARY 2011

2. OPTICAL FIBER - TYPES OF OPTICAL FIBERS

slide 25

FIBER-OPTIC COMMUNICATIONS

Singlemode Fibers

SINGLE MODE FIBER "STANDARD"	ITU-T G.652	SINGLE MODE FIBER "DISPERSION SHIFTED"	ITU-T G.653
Cutting Wavelength	1,18 - 1,27 μm	Cutoff Wavelength	1,05 - 1,15 μm
Modal Field diameter	9,3 (8 - 10) μm (+/- 10%)	Modal Field diameter	8 (7 - 8,3) μm (+/- 10%)
Cladding Diameter	125 μm (+/- 3 μm)	Cladding Diameter	125 μm (+/- 3 μm)
Silicon Coating	245 μm (+/- 10 μm)	Silicon Coating	245 μm (+/- 10 μm)
Cladding Circularity Error	2%	Cladding Circularity Error	2%
Modal Field Concentricity Error	1μm	Modal Field Concentricity Error	1μm
Attenuation @ 1300 nm	0,4 - 1 dB/km	Attenuation @ 1300 nm	< 1 dB/Km
Attenuation @ 1550 nm	0,25 - 0,5 dB/km	Attenuation @ 1550 nm	0,25 - 0,5 dB/Km
Chromatic Disp. @ 1285-1330 nm	3,5 ps/km/nm	Chromatic Disp. @ 1525-1575 nm	3,5 ps/Km/nm
Chromatic Disp. @ 1270-1340 nm	6 ps/Km/nm		
Chromatic Disp. @ 1550 nm	20 ps/Km/nm		

SINGLE MODE FIBER "MINIMUM ATTENUATION"	ITU-T G.654	SINGLE MODE FIBER "NON-ZERO DISPERSION SHIFTED"	ITU-T G.655
Modal Field diameter	125 μm (+/- 3 μm)	Modal Field diameter	8,4 μm (+/- 0,6 μm)
Cladding Circularity Error	2%	Cladding Diameter	125 μm (+/- 1 μm)
Modal Field Concentricity Error	1μm	Cutoff Wavelength	1260 nm
Silicon Coating	245 μm (+/- 10 μm)	Attenuation @ 1550 nm	0,22 - 0,30 dB/Km
Attenuation @ 1550 nm	0.15 - 0.25 dB/Km	Chromatic Disp. @ 1550 nm	4,6 ps/Km/nm
Chromatic Disp. @ 1550 nm	20 ps/Km/nm	Non-Zero Dispersion Region	1540 - 1560 nm

PROPAGATION IN O.F.

TOTAL INTERNAL REFLECTION

Critical Angle

$$\sin \phi_{\rm c} = \frac{n_2}{n_1}$$

$$\theta_{c} = \frac{\pi}{2} - \phi_{c}$$

$$\sin \theta_{c} = \cos \phi_{c} = \left(1 - \left(\frac{n_{2}}{n_{1}}\right)^{2}\right)^{\frac{1}{2}}$$

$$\mathbf{n}_0 < \mathbf{n}_2 < \mathbf{n}_1$$

$$\frac{1}{\sin \theta_{a}} = \frac{n_{1}}{n_{0}} \sin \theta_{c} = \frac{n_{1}}{n_{0}} \cos \phi_{c} = \frac{n_{1}}{n_{0}} \left(1 - \left(\frac{n_{2}}{n_{1}} \right)^{2} \right)^{\frac{1}{2}} = \frac{(n_{1}^{2} - n_{2}^{2})^{\frac{1}{2}}}{n_{0}} \quad \text{Acceptance}$$
Angle

TOTAL INTERNAL REFLECTION

Numerical Aperture

$$\mathbf{NA} \equiv (\mathbf{n}_1^2 - \mathbf{n}_2^2)^{\frac{1}{2}}$$

$$\Delta \equiv \frac{\mathbf{n}_1 - \mathbf{n}_2}{\mathbf{n}_1} \rightarrow \mathbf{N}\mathbf{A} \approx \mathbf{n}_1 \left(2\Delta\right)^{1/2}$$
Paraxial Optics

Numerical Aperture quantifies the ability of the optical fiber to accept light coming from outside the core. In this sense, we want NA to be a high value.

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 29

FIBER-OPTIC COMMUNICATIONS

TOTAL INTERNAL REFLECTION

Light Acceptance / Emission

FIBER LIGHT COUPLING

Acceptance Solid Angle

$$\Omega_{\mathrm{c}} = \iint_{\theta_{\mathrm{a}}} \partial \Omega$$

$$\Omega_{c} = \int_{0}^{2\pi} \int_{0}^{\theta_{a}} \sin\theta \cdot \partial\theta \cdot \partial\phi = 2\pi \left(1 - \cos\theta_{a}\right) = 4\pi \cdot \sin^{2}\left(\frac{\theta_{a}}{2}\right) \approx \pi \cdot \theta_{a}^{2}$$

$$\cos 2\theta = 1 - 2\sin^{2}\theta \qquad \text{Paraxial Optics}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 31

FIBER-OPTIC COMMUNICATIONS

Coupling Efficiency (punctual source)

$$\boxed{ \eta_c \equiv \frac{P_{IN}}{P_T} } \longrightarrow L_{dB} \equiv -10 \cdot log[\eta_c]$$

 $\theta_a \rightarrow$ Acceptance Angle

 $\theta_d \rightarrow Vision Angle$

$$tg \, \theta_d = \frac{a}{d}$$
 $R = \left(\frac{n_0 - n_1}{n_0 + n_1}\right)^2$

$$\mathbf{P}_{\mathrm{T}} = \int_{0}^{2\pi} \mathbf{P}(\theta) \sin \theta \cdot \partial \theta \cdot \partial \phi$$

$$\mathbf{P}_{\mathrm{IN}} = \int_{0}^{2\pi} \mathbf{P}(1 - \mathbf{R}) \mathbf{P}(\theta) \sin \theta \cdot \partial \theta \cdot \partial \phi$$

FAR SOURCE

$$\theta_{\rm d} < \theta_{\rm a} \to \theta = \theta_{\rm d}$$

CLOSE SOURCE

NA limit

$$\theta_{\rm a} < \theta_{\rm d} \to \theta = \theta_{\rm a}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 33

FIBER-OPTIC COMMUNICATIONS

TRANSVERSAL PROPAGATION MODES

- ☐ A Transversal Propagation Mode of an electromagnetic wave travelling along a waveguide is a particular field distribution measured in a plane perpendicular to the propagation axis.
- ☐ Each mode belongs to a particular solution of Maxwell's equations inside the waveguide structure given the boundary conditions imposed.

TRANSVERSAL MODES FAMILIES

☐ TE (transversal electric) — The electric field is zero in the propagation direction.

☐ **TM** (transversal magnetic) – The magnetic field is zero in the propagation direction.

☐ **TEM (transversal electromagnetic)** — Both the electric and the magnetic field are zero in the propagation direction.

☐ **HE-EH (hybrids)** — Both the electric and the magnetic field are non-zero in the propagation direction.

Laser radiation → TEM

OF propagation → HE-EH

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 35

FIBER-OPTIC COMMUNICATIONS

Field Distributions

Continuous

Cladding

Spacial Distributions $u(\rho) = \underbrace{J_0(\kappa\rho)}_{a} \underbrace{J_0(\kappa\rho)}_{a} \underbrace{J_3(\kappa\rho)}_{a} \underbrace{K_3(\gamma\rho)}_{a}$

Cladding

Core

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

Core

Mode Index (Efective Index)

$$n_2 < \overline{n} < n_1$$

Normalized Propagation Constant

$$\mathbf{b} \equiv \frac{\overline{\mathbf{n}} - \mathbf{n}_2}{\mathbf{n}_1 - \mathbf{n}_2}$$

Normalized Frequency

$$\mathbf{V} \equiv 2\pi \frac{\mathbf{a}}{\lambda} \mathbf{N} \mathbf{A} \approx 2\pi \frac{\mathbf{a}}{\lambda} \mathbf{n}_1 \sqrt{2\Delta}$$

NA-a trade-off

 $\mathbf{n}_1 \approx \mathbf{n}_2$ paraxial optics

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 37

FIBER-OPTIC COMMUNICATIONS

Single Mode condition

$$V < 2.405 = V_c$$

Trade-off

$$V \downarrow \rightarrow \sin gle \, mod \, e \uparrow$$

$$V \uparrow \rightarrow \% P_{core}/P_{clad} \uparrow$$

Normalized Propagation Constant(b)

Number of Modes approximation

 $\left| \mathbf{M}_{GI} \approx \frac{\mathbf{V}^2}{4} \right| \leftarrow \text{GRIN Fiber}$

Cutoff Wavelength

$$\lambda \geq \lambda_{c} \approx 2\pi \frac{a}{V_{c}} n_{1} \sqrt{2\Delta}$$

Linear Polarization Modes

$\Delta \ll 1$

Paraxial Optics

$$\boldsymbol{E}_z = \boldsymbol{H}_z = \boldsymbol{0} \quad \text{ TEM }$$

LPii

2i revolution maxima

j radial maxima

- 1. LP_{0n} from HE_{1n}
- 2. LP_{1n} from TE_{0n} , $TM_{0n} \& HE_{2n}$
- 3. LP_{mn} (m \geq 2) from $HE_{m+1,n}$ & $EH_{m-1,n}$

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 39

FIBER-OPTIC COMMUNICATIONS

Core/Cladding relative power

$$\begin{split} &\frac{P_{core}}{P} = \left(1 - \frac{\kappa^2}{V^2}\right) \left[1 - \frac{J_m^2(\kappa a)}{J_{m+1}(\kappa a)J_{m-1}(\kappa a)}\right] \\ &\frac{P_{clad}}{P} = 1 - \frac{P_{core}}{P} \end{split}$$

$$\frac{P_{\text{core}}}{P} \approx \frac{4}{3\sqrt{M}}$$

Normalized Frequency (V)

Fundamental Mode (HE₁₁ – LP₀₁)

Gaussian Profile

$$\mathbf{E}_{0} \exp \left[-\frac{1}{2} \left(\frac{\rho}{\mathbf{W}_{0}} \right)^{2} \right]$$

Polarization Modes

horizontal

28 FEBRUARY 2011

2. OPTICAL FIBER - PROPAGATION IN O.F.

slide 41

FIBER-OPTIC COMMUNICATIONS

ATTENUATION IN O.F.

Definition

"Light when propagating down the fiber, it experiences an exponential decay of the optical power over the distance as a consequence of absorption and scattering phenomena"

Attenuation Coefficient

$$\frac{P(L)}{P(0)} = 10^{-\alpha L/10}$$

$$\boxed{\alpha = \frac{1}{L} 10 \log (P(0)/P(L))}$$

Units: dB/km

$$e^{-\gamma L} \equiv 10^{-\frac{\alpha L}{10}} \rightarrow \gamma L = \frac{\alpha L}{10} ln \, 10 \rightarrow \gamma = \frac{\alpha}{10} ln \, 10 \qquad \text{Units: km}^{\text{-}1}$$

Material Absorption

"Any material absorbs energy at certain wavelengths corresponding to the electronic and vibrational resonances of the medium"

Intrinsic Absorption

Due to the basic material (SiO₂)

 $\lambda < 0.4 \mu m$ Electronic

Electronic resonances (ultraviolet)

 $\lambda > 7 \mu m$ Vibration

Vibrational resonances (infrared)

Extrinsic Absorption

Due to impurities in the material

Metals

Fe, Cu, Co, Ni, Mn, Cr ...

Water

OH⁺

Dopants

GeO₂, P₂O₅, B₂O₃ ...

28 FEBRUARY 2011

2. OPTICAL FIBER - ATTENUATION IN O.F.

slide 43

FIBER-OPTIC COMMUNICATIONS

Rayleigh Scattering

"Fundamental loss mechanism arising from microscopic density fluctuations which induce small variations of the refractive index of the material"

$$\alpha_{R} = C/\lambda^{4}$$

C \rightarrow 0.7-0.9 (dB/km) μ m⁴

Waveguide imperfections (Mie Scattering)

"Loss mechanism arising from cilindrical structure imperfections, comparable to the wavelength, of the waveguide"

- ☐ Irregularities of the core-cladding structure
- ☐ Fluctuations of the relative refractive index
- ☐ Fluctuations of the core diameter
- Density fluctuations → Stress
- ☐ Air bubbles

The attenuation coefficient depends on the absorption and scattering coefficient of both core and cladding. Given that the cladding penetration depends on the mode so does the attenuation (the bigger the mode order, the bigger the attenuation).

Bending Losses

"When part of the evanescent field is forced to travel at a speed higher than the speed of light due to fiber bending, this energy is radiated outside the propagation mode"

R: bending radius

R_c: critical bending radius

28 FEBRUARY 2011

2. OPTICAL FIBER - ATTENUATION IN O.F.

slide 45

FIBER-OPTIC COMMUNICATIONS

2. OPTICAL FIBER - ATTENUATION IN O.F.

FIBER-OPTIC COMMUNICATIONS

slide 47

Distance Limitation due to Attenuation

Bit Energy

28 FEBRUARY 2011

$$\left(\mathbf{E}_{b}(\mathbf{L}) = \mathbf{P}_{b}(\mathbf{L})\mathbf{T}_{b} = \frac{\mathbf{P}_{b}(\mathbf{L})}{\mathbf{R}_{b}}\right)$$

$$E_{_{b}}\left(L\right) \geq E_{_{min}} \rightarrow \frac{P_{_{b}}\left(L\right)}{R_{_{b}}} \geq E_{_{min}} \rightarrow \frac{P_{_{b}}\left(0\right)}{R_{_{b}}} 10^{-\frac{\alpha L}{10}} \geq E_{_{min}} \rightarrow 10^{-\frac{\alpha L}{10}} \geq \frac{E_{_{min}}R_{_{b}}}{P_{_{b}}\left(0\right)}$$

$$\begin{split} &P_{b}\left(L\right) = P_{b}\left(0\right)10^{-\frac{\alpha L}{10}} \\ \rightarrow &-\frac{\alpha L}{10} \geq log \bigg(\frac{E_{min}R_{b}}{P_{b}\left(0\right)}\bigg) \ \rightarrow \ \left(L \leq \frac{10}{\alpha}log \bigg(\frac{P_{b}\left(0\right)}{E_{min}R_{b}}\bigg)\right) \end{split}$$

Example

$$P_b(0) = 10 \text{ mW}$$

 $R_b = 10 \text{ Gb/s}$
 $\alpha = 0.2 \text{ dB/Km}$
 $E_b = 10 \cdot 10^{-18} \text{ J}$

L_{max} = 250 Km

DISPERSION IN OPTICAL FIBERS

Definition

"When an optical pulse propagates through an optical fiber, its energy tends to spread in time producing an increase on the pulse width"

28 FEBRUARY 2011

2. OPTICAL FIBER - DISPERSION IN O.F.

slide 49

FIBER-OPTIC COMMUNICATIONS

Intermodal (Modal) Dispersion

Each mode propagates at different speed and so a delay among them is induced. Only in Multi-Mode fibers.

Intramodal Dispersion

Group Velocity Dispersion (GVD) or Chromatic Dispersion (CD)

The propagation speed depends on the wavelength and so each spectral component experiences a different delay. Negligible in front of Modal Dispersion.

Material Dispersion

The refractive index of a given material is frequency dependent inducing different propagation speeds for each spectral component.

Waveguide Dispersion

The core-cladding distribution is frequency dependent and so is the effective refractive index.

Polarization Mode Dispersion (PMD)

The refractive index is polarization dependent introducing a delay between the x and y component of the light. Negligible in front of Chromatic Dispersion.

DISPERSION IN MULTI-MODE FIBERS

Intermodal (Modal) Dispersion

Modal dispersion takes place in multimode fibers as a result of group velocity difference among the propagation modes. The modes are not equaly excited giving a particular profile.

28 FEBRUARY 2011

2. OPTICAL FIBER - DISPERSION IN O.F.

slide 51

b

FIBER-OPTIC COMMUNICATIONS

$$\sin \phi_{c} = \frac{n_{2}}{n_{1}}$$

$$\tau_{int\,er} \equiv \frac{t_{max} - t_{min}}{L} = \frac{n_1}{c} \frac{n_1 - n_2}{n_2} = \frac{n_1^2}{n_2 c} \frac{n_1 - n_2}{n_1} = \frac{n_1^2}{n_2 c} \Delta \approx \frac{1}{2n_2 c} NA^2$$

Units: [ns/km]

$$\Delta \equiv \frac{\mathbf{n}_1 - \mathbf{n}_2}{\mathbf{n}_1} \qquad \mathbf{NA} \approx \mathbf{n}_1 \left(2\Delta\right)^{1/2}$$

SI Fibers

$$\tau_{\rm mod} = \frac{n_1^2 \Delta}{n_2 c} \approx \frac{n_1 \Delta}{c}$$

$$\alpha_{\rm opt} = 2 \cdot (1 - \Delta)$$

$$\sigma_{\rm mod} \approx \frac{n_1 \Delta^2}{8c}$$

GRIN Fibers
$$\alpha_{opt} = 2 \cdot (1 - \Delta)$$

$$\tau_{\rm mod} \approx \frac{\mathbf{n}_1 \Delta^2}{8\mathbf{c}}$$

DISPERSION IN SINGLE-MODE FIBERS

Group Velocity Dispersion (GVD) - Chromatic Dispersion (CD)

The origin of this kind of dispersion comes from de frequency dependence of the refractive index and so the group velocity.

28 FEBRUARY 2011

2. OPTICAL FIBER - DISPERSION IN O.F.

slide 53

FIBER-OPTIC COMMUNICATIONS

- **::::UPC**

Group Delay

$$\tau_{\rm g} \equiv \frac{\partial \beta}{\partial \omega} = \frac{\mathbf{n}}{\mathbf{c}} + \frac{\omega}{\mathbf{c}} \frac{\partial \mathbf{n}}{\partial \omega} = \frac{\partial \beta}{\partial \lambda} \frac{\partial \lambda}{\partial \omega} = \frac{\mathbf{n}}{\mathbf{c}} - \frac{\lambda}{\mathbf{c}} \frac{\partial \mathbf{n}}{\partial \lambda}$$

$$\lambda = \frac{c}{f} = -\frac{2\pi c}{\omega}$$

$$\beta \equiv n \frac{\omega}{c} = \frac{2\pi n}{\lambda} \rightarrow \frac{\partial \beta}{\partial \lambda} = -\frac{2\pi n}{\lambda^2} + \frac{2\pi}{\lambda} \frac{\partial n}{\partial \lambda} \qquad \frac{\partial \lambda}{\partial \omega} = -\frac{2\pi c}{\omega^2} = -\frac{\lambda^2}{2\pi c}$$

β: propagation constant

Group Velocity

$$\mathbf{v}_{\mathbf{g}} \equiv \frac{1}{\tau_{\mathbf{g}}} = \left(\frac{\partial \beta}{\partial \omega}\right)^{-1} = \frac{\mathbf{c}}{\mathbf{n} + \omega \frac{\partial \mathbf{n}}{\partial \omega}} = \frac{\mathbf{c}}{\mathbf{n} - \lambda \frac{\partial \mathbf{n}}{\partial \lambda}} = \frac{\mathbf{c}}{\mathbf{n}_{\mathbf{g}}} \qquad \mathbf{n}_{\mathbf{g}} \equiv \mathbf{n} + \omega \frac{\partial \mathbf{n}}{\partial \omega}$$

Group Index

$$\mathbf{n}_{\mathrm{g}} \equiv \mathbf{n} + \omega \frac{\partial \mathbf{n}}{\partial \omega}$$

Phase Velocity

$$\mathbf{v}_{\mathbf{f}} \equiv \frac{\mathbf{\omega}}{\mathbf{\beta}} = \frac{\mathbf{c}}{\mathbf{n}} \xrightarrow{\frac{\partial \mathbf{n}}{\partial \lambda} = \mathbf{0}} \mathbf{v}_{\mathbf{f}} = \mathbf{v}_{\mathbf{g}}$$

MATERIAL DISPERSION

Every spectral component experiences a different delay given the different group velocity of each one.

28 FEBRUARY 2011

2. OPTICAL FIBER - DISPERSION IN O.F.

slide 55

FIBER-OPTIC COMMUNICATIONS

MATERIAL DISPERSION

Pulse Spreading

$$\tau_{g} \equiv \frac{\partial \beta}{\partial \omega} = \frac{\mathbf{n}}{\mathbf{c}} - \frac{\lambda}{\mathbf{c}} \frac{\partial \mathbf{n}}{\partial \lambda}$$

$$\Delta T = \frac{\partial T}{\partial \omega} \Delta \omega = \frac{\partial \left(\tau_{g} L\right)}{\partial \omega} \Delta \omega = L \frac{\partial^{2} \beta}{\partial \omega^{2}} \Delta \omega = L \beta_{2} \Delta \omega$$

$$\beta_2 \equiv \frac{\partial \tau_g}{\partial \omega} = \frac{\partial^2 \beta}{\partial \omega^2}$$
Dispersion Coefficient
Units: [ps/(GHz·km)]

Higher frequencies travel slower

$$\Delta T = \frac{\partial T}{\partial \lambda} \Delta \lambda = \frac{\partial \left(\tau_{\rm g} L\right)}{\partial \lambda} \Delta \lambda = L D_{\rm M} \Delta \lambda$$

Units: [ps/(nm·km)] **Dispersion Parameter**

$$\mathbf{D}_{\mathrm{M}} \equiv \frac{\partial \tau_{\mathrm{g}}}{\partial \lambda} = \frac{\partial}{\partial \lambda} \left[\frac{\mathbf{n}}{\mathbf{c}} - \frac{\lambda}{\mathbf{c}} \frac{\partial \mathbf{n}}{\partial \lambda} \right] = \frac{1}{\mathbf{c}} \left[\frac{\partial \mathbf{n}}{\partial \lambda} - \lambda \frac{\partial \mathbf{n}^2}{\partial \lambda^2} \right] = -\frac{\lambda}{\mathbf{c}} \frac{\partial^2 \mathbf{n}}{\partial \lambda^2}$$

$$\mathbf{D}_{\mathrm{M}} = \frac{\partial \tau_{\mathrm{g}}}{\partial \lambda} = \frac{\partial \tau_{\mathrm{g}}}{\partial \omega} \frac{\partial \omega}{\partial \lambda} = -\frac{2\pi c}{\lambda^{2}} \beta_{2}$$

WAVEGUIDE DISPERSION

The group velocity of each mode is frequency dependent, even though the material dispersion is zero, because the core-cladding distribution varies with the frequency.

28 FEBRUARY 2011

2. OPTICAL FIBER - DISPERSION IN O.F.

slide 57

FIBER-OPTIC COMMUNICATIONS

COMBINED MATERIAL & WAVEGUIDE DISPERSION

$$\mathbf{D} = -\frac{2\pi c}{\lambda^2} \frac{\partial \tau_g}{\partial \omega} = -\frac{2\pi}{\lambda^2} \left(2 \frac{\partial \overline{\mathbf{n}}}{\partial \omega} + \omega \frac{\partial^2 \overline{\mathbf{n}}}{\partial \omega^2} \right) = \mathbf{D}_{\mathrm{M}} + \mathbf{D}_{\mathrm{W}}$$

$$\mathbf{b} \equiv \frac{\overline{\mathbf{n}} - \mathbf{n}_2}{\mathbf{n}_1 - \mathbf{n}_2} \qquad \mathbf{V} \equiv 2\pi \frac{\mathbf{a}}{\lambda} \mathbf{N} \mathbf{A}$$

$$\overline{\mathbf{n}} = \mathbf{n}_2 + \mathbf{b} \left(\mathbf{n}_1 - \mathbf{n}_2 \right) \approx \mathbf{n}_2 \left(1 + \mathbf{b} \Delta \right)$$

$$\tau_{crom} \equiv \left| \mathbf{D} \right| \cdot \Delta \lambda \ge 0$$

$$\mathbf{n}_{\mathrm{g}} \equiv \mathbf{n} + \mathbf{\omega} \frac{\partial \mathbf{n}}{\partial \mathbf{\omega}}$$

$$\mathbf{D}_{\mathrm{M}} = -\frac{2\pi}{\lambda^{2}} \frac{\partial \mathbf{n}_{\mathrm{2g}}}{\partial \omega} = \frac{1}{\mathbf{c}} \frac{\partial \mathbf{n}_{\mathrm{2g}}}{\partial \lambda}$$

$$\mathbf{D}_{\mathrm{W}} \approx -\frac{\mathbf{n}_{\mathrm{1g}} - \mathbf{n}_{\mathrm{2g}}}{\mathbf{c}\lambda} \frac{1.984}{\mathbf{V}^{2}}$$

n_{2g}: cladding group index

b: normalized propagation constant

 Δ : relative refractive index V: normalized frequency

Dispersion Maps using DCF

FIBER-OPTIC COMMUNICATIONS

Polarization Mode Dispersion (PMD)

The origin of this kind of dispersion comes from the polarization dependence of the refractive index. As a consequence, the light experiences different group delays regarding its polarization.

Polarization is a random process

$$\Delta \mathbf{T} = \mathbf{D}_{\text{PMD}} \sqrt{\mathbf{L}}$$

 D_{PMD} [ps/km^{1/2}]: PMD Parameter ITU-T G.652.b : D_{PMD} =0.2-0.5 ps/km^{1/2}

Distance Limitation due to PMD

 D_{PMD} =1 ps/km $^{1/2}$

ISI CRITERION

$$\Delta T \leq T_b$$

$$\Delta T = D_{PMD} \sqrt{L}$$

$$\left(L \leq \frac{1}{D_{PMD}^2 R_b^2}\right) \quad \blacksquare$$

100 G

10 G L_{max} = 10000 Km

 $L_{max} = 100 \text{ Km}$

28 FEBRUARY 2011

2. OPTICAL FIBER - DISPERSION IN O.F.

slide 63

FIBER-OPTIC COMMUNICATIONS

MULTI-MODE FIBERS BANDWIDTH

Multi-Mode Fiber Transfer Function in Linear Regime

$$\mathbf{H}(\omega) = \sum_{q=-\infty}^{\infty} \mathbf{c}_{\mathbf{q}} \cdot \mathbf{e}^{-\mathbf{j}\beta_{\mathbf{q}}(\omega)\mathbf{L}}$$

 β_{α} : q-mode propagation constant

c_q: mode amplitude

$$\sum_{q=-\infty}^{\infty} c_q < \infty$$

$$\beta_{q}\left(\omega\right)\approx\beta_{0,q}+\beta_{1,q}\left(\omega-\omega_{c}\right)+\frac{1}{2}\beta_{2,q}\left(\omega-\omega_{c}\right)^{2}+\frac{1}{6}\beta_{p,q}\left(\omega-\omega_{c}\right)^{3}$$

$$\beta_{n,q} \equiv \frac{\partial \beta_q^n}{\partial \omega^n} \bigg|_{\omega = \omega_0}$$

 $\beta_{1,q}$: q-mode group delay

Pure Delay Fiber

$$\mathbf{H}\left(\boldsymbol{\omega}\right) = \sum_{\mathbf{q}=-\infty}^{\infty} \mathbf{c}_{\mathbf{q}} \cdot \mathbf{e}^{-\mathbf{j}\beta_{1,\mathbf{q}}\mathbf{L}\left(\boldsymbol{\omega}-\boldsymbol{\omega}_{\mathbf{c}}\right)} \left| \quad \beta_{1,\mathbf{q}} \equiv \frac{\partial \beta_{\mathbf{q}}}{\partial \boldsymbol{\omega}} \right|_{\boldsymbol{\omega}=\boldsymbol{\omega}}$$

$$\beta_{1,q} \equiv \frac{\partial \beta_q}{\partial \omega} \bigg|_{\omega = \omega_c}$$

SINGLE-MODE FIBERS BANDWIDTH

Single-Mode Fiber Transfer Function in Linear Regime

$$\beta_{\mathbf{n}} \equiv \frac{\partial \beta^{\mathbf{n}}}{\partial \omega^{\mathbf{n}}} \bigg|_{\omega = \omega}$$

 $\beta_n \equiv \frac{\partial \beta^n}{\partial \omega^n} \bigg|_{\omega = \omega_c} \qquad \qquad h(t) = \sqrt{\frac{1}{2\pi\beta_2 L}} e^{i\left(\frac{t^2}{2\beta_2 L} - \frac{\pi}{4}\right)} \qquad \text{freq. dependant delay} \\ \text{constant amplitude } !!$

Pure Dispersive Fiber

$$\mathbf{H}(\omega) = e^{-j\frac{1}{2}\beta_2 L(\omega - \omega_c)^2} \qquad \beta_2 = -\frac{\lambda^2}{2\pi c} \mathbf{D}$$

 β_2 : dispersion coefficient D: dispersion parameter

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

slide 67

MULTI-MODE FIBERS BANDWIDTH

Multi-Mode Fiber Transfer Function in Linear Regime

$$H\!\left(\boldsymbol{\omega}\right)\!=\sum_{q=-\infty}^{\infty}\!c_{q}^{}\cdot\!e^{-j\beta_{q}\left(\boldsymbol{\omega}\right)L}$$

 β_{α} : q-mode propagation constant

c_q: mode amplitude

$$\sum_{q=-\infty}^{\infty} c_{q} < \infty$$

 $\beta_{1,q}$: q-mode group delay $\beta_{2,q}$: q-mode disp. coefficient

Pure Delay-Dispersive Fiber

$$\mathbf{H}(\omega) = \sum_{\mathbf{q}=-\infty}^{\infty} \mathbf{c}_{\mathbf{q}} \cdot \mathbf{e}^{-\mathbf{j}\left\langle eta_{1,\mathbf{q}}\left(\omega-\omega_{c}
ight) + rac{1}{2}eta_{2}\left(\omega-\omega_{c}
ight)^{2}
ight
angle \mathbf{L}}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

slide 69

FIBER-OPTIC COMMUNICATIONS

gaussian pulse

$$\beta_{2,q}=\beta_2$$

M: approx. number of modes inside an rms period $\delta T \approx \frac{n_1 \Delta}{2 \sigma M} L$

$$H\left(\omega\right) = \sum_{q=-\infty}^{\infty} c_q \cdot e^{-j\left[\beta_{1,q}\left(\omega-\omega_c\right) + \frac{1}{2}\beta_2\left(\omega-\omega_c\right)^2\right]L} = \underbrace{e^{-j\frac{1}{2}\beta_2\left(\omega-\omega_c\right)^2L}}_{H_{CD}\left(\omega\right)} \cdot \sum_{q=-\infty}^{\infty} c_q \cdot e^{-j\beta_{1,q}\left(\omega-\omega_c\right)L}$$

$$\mathbf{c}_{\mathbf{q}} \equiv \mathbf{a} (\mathbf{q} \cdot \delta \mathbf{T})$$

$$h(t) = \underbrace{FT^{-1} \left\{ e^{-j\frac{1}{2}\beta_{2}(\omega - \omega_{c})^{2}L} \right\}}_{(t)} * \partial (t - \beta_{1,0}L) * \left\{ a(t) \cdot \sum_{q=-\infty}^{\infty} \partial (t - q \cdot \delta T) \right\}$$

$$H\left(f\right) = e^{-j\frac{1}{2}\beta_{2}\left(\omega-\omega_{c}\right)^{2}L}\left\{A\left(f\right)*\frac{1}{\delta T}\sum_{q=-\infty}^{\infty}\partial\left(f-\frac{q}{\delta T}\right)\right\}\cdot e^{-j\beta_{1,0}L\left(f-f_{c}\right)}$$

Same module than in pure modal dispersion

Combined Chromatic and Modal Dispersion

broadening

$$\sigma_L^2 pprox \sigma_0^2 + \left(\sigma_{crom}L\right)^2 + \left(\sigma_{mod}L\right)^2 \ \sigma_{crom} = rac{2eta_2}{\sigma_0} \quad , \quad \sigma_{mod} pprox rac{n_1\Delta}{2c} \ \sigma_T^2 \equiv \sigma_{crom}^2 + \sigma_{mod}^2$$

Equivalent Fiber Transfer Function

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

FIBER-OPTIC COMMUNICATIONS

Non-ideal Sources

Equivalent to an ideal source modulated by a Gaussian pulse

Non-ideal Sources Modulation

ideal source
$$\sigma_{sou} = \infty$$

$$e^{-\left(\frac{t}{\sigma_{mod}}\right)^{2}}e^{-\left(\frac{t}{\sigma_{sou}}\right)^{2}}=e^{-\left(\frac{t}{\sigma_{0}}\right)^{2}}$$

$$\sigma_0^2 \equiv \frac{\sigma_{mod}^2 \sigma_{sou}^2}{\sigma_{mod}^2 + \sigma_{sou}^2}$$

$$\sigma_{mod} \gg \sigma_{sou} \rightarrow \sigma_{sou}$$

$$\sigma_{mod} \ll \sigma_{sou} \rightarrow \sigma_{mod}$$

Maximum Distance due to Dispersion

$$\mathbf{p}_{0}(t) = \mathbf{A}_{0} \mathbf{e}^{-\left(\frac{t}{\sigma_{0}}\right)^{2}}$$

$$|\mathbf{p}_{L}(t)| = \mathbf{A}_{L} e^{-\left(\frac{t}{\sigma_{L}}\right)^{2}}$$

ISI CRITERION

$$2\sigma_{_L} \leq \sqrt{2}T_{_b}$$

$$\Rightarrow$$

$$2\sigma_L \le \sqrt{2}T_b \qquad \qquad |SI = e^{-\left(\frac{t}{\sigma_L}\right)^2} \bigg|_{\substack{t-T_b \\ \sigma_L = T_b/\sqrt{2}}} = e^{-\left(\sqrt{2}\frac{y_b'}{y_b'}\right)^2} = \frac{1}{e^2} \approx 13.5\%$$

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

FIBER-OPTIC COMMUNICATIONS

Maximum Distance due to Dispersion

$$\sigma_L^2 = \sigma_0^2 + \underbrace{\left(\frac{2\beta_2 L}{\sigma_0}\right)^2}_{\sigma_{crom}^2} + \underbrace{\left(\frac{n_1 \Delta}{2c} L\right)^2}_{\sigma_{mod}^2} \leq \frac{T_b^2}{2} \longrightarrow \underbrace{\left(\frac{T_b^2}{2} - \sigma_0^2}{\left(\frac{2\beta_2}{\sigma_0}\right)^2 + \left(\frac{n_1 \Delta}{2c}\right)^2}\right)^{\frac{1}{2}}}_{2}$$

NRZ
$$\xrightarrow{2\sigma_0=T_b}$$

$$L_{max,NRZ} \leq \left(\frac{\frac{T_b^2}{2} - \frac{T_b^2}{4}}{\left(\frac{4\beta_2}{T_b}\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2} \right)^{\frac{1}{2}} = \frac{1}{2R_b\sqrt{\left(4R_b\beta_2\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2}} = \frac{1}{2R_b\sqrt{\left(4R_b\frac{|\mathbf{D}|\lambda_p^2}{2\pi c}\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2}}$$

$$RZ \qquad \xrightarrow{2\sigma_0 = T_b/2} \rightarrow$$

$$L_{max,RZ} \leq \left(\frac{\frac{T_b^2}{2} - \frac{T_b^2}{16}}{\left(\frac{8\beta_2}{T_b}\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2} \right)^{\frac{1}{2}} \approx \frac{2}{3R_b\sqrt{\left(8R_b\beta_2\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2}} = \frac{2}{3R_b\sqrt{\left(8R_b\frac{|D|\lambda_p^2}{2\pi c}\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2}}$$

Maximum Distance due to Modal Dispersion

$$L \leq \left(\frac{\frac{T_b^2}{2} - \sigma_0^2}{\left(\frac{2\beta_2}{\sigma_0}\right)^2 + \left(\frac{n_1\Delta}{2c}\right)^2}\right)^{\frac{1}{2}} \longrightarrow \left(L \leq \frac{2c}{n_1\Delta} \left(\frac{T_b^2}{2} - \sigma_0^2\right)^{\frac{1}{2}}\right)$$

$$NRZ \qquad \xrightarrow{\quad 2\sigma_0 = T_b \quad} \qquad L_{max,NRZ} \leq \frac{c}{R_b n_1 \Delta}$$

$$\propto \frac{1}{R_{_h}}$$

$$RZ \qquad \xrightarrow{2\sigma_0 = T_b/2} \qquad \qquad L_{max,RZ} \leq \frac{4c}{3R,n,\Delta} \approx \frac{4}{3}L_{max,NRZ}$$

Example
$$\begin{array}{c} R_b = 100 \text{ Mb/s} \\ n_1 = 1.5 \\ \Delta = 0.02 \end{array} \qquad \begin{array}{c} L_{\text{max,NRZ}} \approx 100 \text{ m} \\ L_{\text{max,RZ}} \approx 133 \text{ m} \end{array}$$

$$R_b = 100 \text{ Mb/}$$
 $n_1 = 1.5$
 $\Delta = 0.02$

2. OPTICAL FIBER - O.F. BANDWIDTH

slide 75

FIBER-OPTIC COMMUNICATIONS COMMUNICATIONS

Maximum Distance due to Chromatic Dispersion

$$L \leq \left(\frac{\frac{T_b^2}{2} - \sigma_0^2}{\left(\frac{2\beta_2}{\sigma_0}\right)^2 + \left(\frac{n\Delta}{2c}\right)^2}\right)^{\frac{1}{2}} \longrightarrow \left(L \leq \frac{\sigma_0}{2\beta_2} \left(\frac{T_b^2}{2} - \sigma_0^2\right)^{\frac{1}{2}}\right)$$

$$NRZ \qquad \xrightarrow{2\sigma_0 = T_b} \qquad L_{max,NRZ} \leq \frac{\pi c}{4R_b^2 \left| D \right| \lambda_p^2}$$

$$\propto \frac{1}{R_{\perp}^2}$$

$$RZ \qquad \xrightarrow{2\sigma_0 = T_b/2} \qquad \qquad L_{max,RZ} \leq \frac{\sqrt{7} \; \pi c}{16 R_b^2 \; |D| \lambda_b^2} \approx \frac{2}{3} L_{max,NRZ}$$

Example
$$R_b = 10 \text{ Gb/s}$$
 $|D| = 17 \text{ ps/nm/Km}$
 $\lambda_p = 1550 \text{ nm}$

 $L_{\text{max,NRZ}} \approx 60 \text{ Km}$ $L_{\text{max,RZ}} \approx 40 \text{ Km}$

Attenuation / Dispersion influence on the tx. distance

Maximum Distance vs. Bit Rate

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

slide 77

FIBER-OPTIC COMMUNICATIONS

Equivalent Fiber Transfer Function: Optical Bandwidth

Equivalent Fiber Bandwidth per unit Length

$$\mathbf{B}_{o} = \frac{\sqrt{2\ln 2}}{2\pi\sigma_{T}\mathbf{L}} = \frac{\sqrt{2\ln 2}}{\pi\tau_{T}\mathbf{L}} \longrightarrow \mathbf{f}_{o} \equiv \mathbf{B}_{o}\mathbf{L} = \frac{\sqrt{2\ln 2}}{\pi\tau_{T}} \quad [\text{Hz·m}] \quad \tau_{T} \equiv 2\sigma_{T} \quad [\text{s}]$$

$$\mathbf{f_0} \mathbf{\sigma}_{\mathrm{T}} = \frac{\sqrt{2 \ln 2}}{2 \pi}$$

SI units Prop. units

 $\mathbf{f_0} \boldsymbol{\sigma_T} = \frac{\sqrt{2 \ln 2}}{2 \pi}$ $\mathbf{f_0} \quad [\text{Hz·m}], \quad [\text{GHz·km}]: \quad \text{Bandwidth per unit length}$ $\tau, \sigma \, [\text{s/m}], \quad [\text{ns/km}]: \quad \text{Dispersion}$

Electrical vs. Optical Bandwidth

$$\left|H_{E}\right|^{2} \equiv \frac{P_{E-IN}}{P_{E-OUT}} = \frac{I_{OUT}^{2}}{I_{IN}^{2}}$$

$$\mathbf{B}_{\mathrm{E}} \equiv \mathbf{f} \Big|_{|\mathbf{H}_{\mathrm{E}}|^2 = \frac{1}{2}} \rightarrow \frac{\mathbf{I}_{\mathrm{OUT}}}{\mathbf{I}_{\mathrm{IN}}} = \frac{1}{\sqrt{2}} \qquad \frac{1}{1/\sqrt{2}}$$

$$\left|H_{\rm O}\right|^2 \equiv \frac{P_{\rm O-IN}}{P_{\rm O-OUT}} = \frac{P_{\rm OUT}}{P_{\rm IN}} = \frac{I_{\rm OUT}}{I_{\rm IN}}$$

$$\mathbf{B}_{\mathrm{O}} \equiv \mathbf{f} \Big|_{|\mathbf{H}_{\mathrm{O}}|^{2} = \frac{1}{2}} \rightarrow \frac{\mathbf{I}_{\mathrm{OUT}}}{\mathbf{I}_{\mathrm{IN}}} = \frac{1}{2}$$

 $B_{\rm o} > B_{\rm E}$

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

slide 79

FIBER-OPTIC COMMUNICATIONS

$$|\mathbf{H}|^2 = \exp[-\alpha \mathbf{f}^2]$$
 Gaussian Profile

$$B_{O} \rightarrow \exp\left[-\alpha B_{O}^{2}\right] = \frac{1}{2} \rightarrow B_{O} = \sqrt{\frac{\ln 2}{\alpha}}$$

$$B_E \rightarrow \exp\left[-\alpha B_E^2\right] = \frac{1}{\sqrt{2}} \rightarrow B_E = \sqrt{\frac{\ln 2}{2\alpha}}$$

$$\left|\mathbf{H}\right|^2 = \exp\left[-\ln 2\left(\frac{\mathbf{f}}{\mathbf{B}_0}\right)^2\right] = \exp\left[-\frac{\ln 2}{2}\left(\frac{\mathbf{f}}{\mathbf{B}_E}\right)^2\right]$$

$$R_{\rm B} \le 2B_{\rm E}$$

 $B_0 = \sqrt{2}B_E$

Nyquist

Effective Channel's Bandwidth

"What limits the transmission speed is the electrical bandwidth"

$$\sigma_{T}f_{0} = 0.1874 \longrightarrow f_{E} = \frac{f_{O}}{\sqrt{2}} \longrightarrow \sigma_{T}f_{E} = 0.1325 \longrightarrow B_{E,C} = \frac{f_{E}}{L}$$

$$2\sigma_{T} = \tau_{T}$$

$$\sigma_{T}^{2} \equiv \sigma_{crom}^{2} + \sigma_{mod}^{2}$$

$$f_{E} \quad [Hz \cdot m], \quad [GHz \cdot km]$$

$$\tau, \sigma [s/m], \quad [ns/km]$$

Signal's Bandwidth: $R_B - B_E$ Relationship

NRZ modulation

RZ modulation

28 FEBRUARY 2011

2. OPTICAL FIBER - O.F. BANDWIDTH

slide 81

FIBER-OPTIC COMMUNICATIONS

Maximum Distance due to Dispersion (Bandwidth Criterion)

NRZ Modulation

$$\mathbf{B}_{\mathrm{E,S}} = \frac{\mathbf{R}_{\mathrm{B}}}{2} \leq \mathbf{B}_{\mathrm{E,C}} = \frac{\mathbf{f}_{\mathrm{E}}}{\mathbf{L}} = \frac{\sqrt{\ln 2/\pi^2}}{2\sigma_{\mathrm{T}} \mathbf{L}} \qquad \longrightarrow \qquad \mathbf{R}_{\mathrm{B}} \leq \frac{\sqrt{\ln 2/\pi^2}}{\sigma_{\mathrm{T}} \mathbf{L}}$$

$$\longrightarrow R_{B} \leq \frac{\sqrt{\ln 2/\pi^{2}}}{\sigma_{T}L}$$

RZ Modulation

$$\mathbf{B}_{\mathrm{E,S}} = \mathbf{R}_{\mathrm{B}} \leq \mathbf{B}_{\mathrm{E,C}} = \frac{\mathbf{f}_{\mathrm{E}}}{\mathbf{L}} = \frac{\sqrt{\ln 2/\pi^2}}{2\sigma_{\mathrm{T}} \mathbf{L}} \qquad \longrightarrow \boxed{\mathbf{R}_{\mathrm{B}} \leq \frac{\sqrt{\ln 2/\pi^2}}{2\sigma_{\mathrm{T}} \mathbf{L}}}$$

$$\longrightarrow \boxed{R_{B} \leq \frac{\sqrt{\ln 2/\pi^{2}}}{2\sigma_{T}L}}$$

$$\mathbf{R}_{\mathbf{B},\text{max,RZ}} = \frac{1}{2} \mathbf{R}_{\mathbf{B},\text{max,NRZ}} \begin{vmatrix} \mathbf{E} \mathbf{x} \mathbf{a} \\ R_b = 10 \text{ Gb/s} \end{vmatrix}$$

$$L_{\text{max,RZ}} = \frac{1}{2}L_{\text{max,NRZ}}$$

Example: Chromatic Dispersion

$$\mathbf{R}_{\mathbf{B},\max,\mathbf{RZ}} = \frac{1}{2} \mathbf{R}_{\mathbf{B},\max,\mathbf{NRZ}}$$

$$\mathbf{R}_{b} = 10 \; Gb/s$$

$$|D| = 17 \; ps/nm/Km$$

$$\lambda_{c} = 1550 \; nm$$

$$\Delta f = R_{b}$$

$$\sigma_{crom} = \frac{1}{2} \beta_{2} \Delta \omega$$

$$\mathbf{R}_{max,NRZ} \approx 40 \; Km$$

$$L_{max,RZ} \approx 20 \; Km$$

$$\mathbf{R}_{b} = 10 \; Gb/s$$

$$L_{max,NRZ} \approx 20 \; Km$$

$$\mathbf{R}_{crom} = \frac{1}{2} \beta_{2} \Delta \omega$$

$$\mathbf{R}_{crom} = \frac{1}{2} \beta_{2} \Delta \omega$$
Solide 8

$$L_{max,NRZ} \approx 40 \ Km$$

$$\beta_{\gamma}\Delta\omega$$

$$L_{max,RZ} \approx 20 \ Km$$

APPENDIX

PROPAGATION IN O.F.

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 83

FIBER-OPTIC COMMUNICATIONS

WAVE EQUATION

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{D} = \rho_f$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \cdot \mathbf{D} = \rho_{\rm f}$$

$$\begin{split} \vec{D} &= \epsilon_{o} \vec{E} + \vec{P} \\ \vec{B} &= \mu_{0} \vec{H} + \vec{M} \end{split}$$

$$c = \left(\frac{1}{\mu_0 \varepsilon_0}\right)^{\frac{1}{2}}$$

Maxwell's Equations

no conductor medium without free charges

OPTICAL FIBER

no magnetic medium

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$
$$\nabla \cdot \vec{D} = 0$$

$$\nabla \cdot \mathbf{D} = 0$$

$$\nabla \cdot \vec{\mathbf{B}} = 0$$

$$\vec{D} = \epsilon_{_{0}} \vec{E} + \vec{P}$$

$$\vec{B} = \mu_0 \vec{H}$$

E, H: electric & magnetic field vectors

D, B: electric & magnetic flux density

P, M: polarization & magnetization density

 $\epsilon_{\mbox{\scriptsize 0}},\,\mu_{\mbox{\scriptsize 0}};$ free-space electrical permittivity

magnetic permeability

J_f: electric current density

 ρ_f : free-charges concentration

c: free-space speed of light

Free-Space Wave Equation

$$\vec{\mathbf{P}} = \mathbf{0}$$

$$\vec{\mathbf{M}} = \mathbf{0}$$

$$\vec{\mathbf{J}}_{\mathrm{f}} = \mathbf{0}$$

$$\rho_{\rm f} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{\mathbf{D}} = \mathbf{p}_{\mathbf{f}}^{\prime}$$

$$\nabla \cdot \vec{\mathbf{B}} = 0$$

$$\nabla \cdot \vec{\mathbf{D}} = \varepsilon_0 \nabla \cdot \vec{\mathbf{E}} = 0 \longrightarrow \nabla \times \nabla \times \vec{\mathbf{E}} = \nabla (\nabla \cdot \vec{\mathbf{E}}) - \nabla^2 \vec{\mathbf{E}} = -\nabla^2 \vec{\mathbf{E}}$$

$$\nabla \times \nabla \times \vec{\mathbf{E}} = -\nabla^2 \vec{\mathbf{E}} = -\frac{1}{c} \frac{\partial^2 \vec{\mathbf{E}}}{\partial t}$$

$$\mathbf{c} = \left(\frac{1}{\mu_0 \varepsilon_0}\right)^{\frac{1}{2}}$$

$$\nabla \times \mathbf{H} = \mathbf{f}_{f} + \frac{\partial \mathbf{E}}{\partial \mathbf{t}}$$

$$\nabla \cdot \vec{\mathbf{D}} = \mathbf{f}_{f}$$

$$\nabla \cdot \vec{\mathbf{E}} = \mathbf{0}$$

$$\vec{\mathbf{E}} = \mathbf{0}$$

$$\vec{\mathbf{E}} = \mathbf{0}$$

$$\vec{\mathbf{E}} = \mathbf{0}$$

$$\vec{\mathbf{E}} = \mathbf{0}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 85

FIBER-OPTIC COMMUNICATIONS

 $\vec{B} = \mu_0 \vec{H} + \vec{M}$

Wave Equation in linear, non-dispersive, homogeneous, and isotropic media

$$\vec{P} = \varepsilon_{o} \chi \vec{E}$$

$$\vec{D} = \varepsilon_{o} \vec{E} + \vec{P} = \varepsilon_{o} (1 + \chi) \vec{E} = \varepsilon \vec{E}$$

$$\varepsilon \equiv \varepsilon_{o} (1 + \chi)$$

$$\vec{E} = \varepsilon_{o} (1 + \chi)$$

ε: medium's electrical permittivity

n: medium's refractive index

$$\nabla^2 \vec{\mathbf{E}} - \frac{1}{\mathbf{v}^2} \frac{\partial^2 \vec{\mathbf{E}}}{\partial \mathbf{t}^2} = \mathbf{0}$$

$$\mathbf{v} = \left(\frac{1}{\mu_0 \varepsilon}\right)^{\frac{1}{2}}$$

$$\mathbf{v} = \frac{\mathbf{c}}{\mathbf{n}} \rightarrow \mathbf{n} = \frac{\mathbf{c}}{\mathbf{v}} = \left(\frac{\varepsilon}{\varepsilon_0}\right)^{\frac{1}{2}} = (1 + \chi)^{\frac{1}{2}}$$

Inhomogeneous Medium

$$\vec{P} = \varepsilon_{\alpha} \chi(r) \vec{E}$$

In an inhomogeneous medium both electrical susceptibility and permittivity are position dependent (and so is the refractive index)

Anisotropic medium

$$P_{_{i}}=\sum_{_{j}}\epsilon_{_{0}}\chi_{_{ij}}E_{_{j}}$$

 χ_{ij} : susceptibility tensor

In an anisotropic medium, the relationship between electric field and polarization density vectors depends on the direction of field vector and they are generally not parallel

Dispersive medium

$$\vec{P}(t) = \epsilon_0 \int_{\infty}^{\infty} \chi(t - t') \cdot \vec{E}(t') dt'$$

 $\varepsilon_0 \chi(t)$: impulsive response

In a dispersive medium, the relationship between electric field and polarization density vectors is dynamic (with memory) rather than instanta-neous

Non-linear medium

$$\vec{P} = \epsilon_{\scriptscriptstyle 0} \Big(\! \chi^{\scriptscriptstyle (1)} \vec{E} + \chi^{\scriptscriptstyle (2)} \vec{E}^{\scriptscriptstyle 2} + \chi^{\scriptscriptstyle (3)} \vec{E}^{\scriptscriptstyle 3} + ... \Big)$$

 $\chi^{(i)}\!\!:$ i-order non-linear coefficient $\,$ generally not linear

In a non-linear medium, the relationship between electric field and polarization density vectors is

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 87

FIBER-OPTIC COMMUNICATIONS

Wave Equation in Optical Fibers

$$\nabla\times\nabla\times\vec{E} = -\frac{\partial\left(\nabla\times\vec{B}\right)}{\partial t} = -\mu_0\,\frac{\partial\left(\nabla\times\vec{H}\right)}{\partial t} \qquad \begin{array}{l} \text{Dielectric medium} \\ \text{Non-magnetic med} \end{array}$$

$$= -\mu_0\,\frac{\partial^2\vec{D}}{\partial t^2} = -\epsilon_0\mu_0\,\frac{\partial^2\vec{E}}{\partial t^2} - \mu_0\,\frac{\partial^2\vec{P}}{\partial t^2}$$

$$\nabla^2 \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} - \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}$$
 (far from resonances)
$$\vec{P}(r,t) = \epsilon_0 \int_0^\infty \chi(r,t-t') \cdot \vec{E}(r,t') dt'$$

Non-magnetic medium

Isotropic, linear medium (far from resonances)

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{D} = \vec{J}_f$$

$$\nabla \cdot \vec{B} = 0$$

$$\vec{D} = \vec{\epsilon}_o \vec{E} + \vec{P}$$

$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

$$\vec{P}(r,t) = \varepsilon_0 \int_{-\infty}^{\infty} \chi(r,t-t') \cdot \vec{E}(r,t') dt'$$

Fourier Transform

$$\widetilde{\mathbf{E}}(\mathbf{r},\omega) \equiv \int_{-\infty}^{\infty} \overline{\mathbf{E}}(\mathbf{r},t) e^{-\mathrm{j}\omega t} dt \qquad \qquad \widetilde{\mathbf{P}}(\mathbf{r},\omega) = \varepsilon_{0} \widetilde{\chi}(\mathbf{r},\omega) \widetilde{\mathbf{E}}(\mathbf{r},\omega)$$

Monochromatic light

$$\widetilde{P}(r,\omega) = \epsilon_{_0} \widetilde{\chi}(r,\omega) \widetilde{E}(r,\omega)$$

$$\nabla^2 \tilde{\mathbf{E}} = -\omega^2 \mu_0 \epsilon_0 \tilde{\mathbf{E}} - \omega^2 \mu_0 \tilde{\mathbf{P}} = -\omega^2 \mu_0 \epsilon_0 \left(1 + \tilde{\chi} \right) \tilde{\mathbf{E}} = -\frac{\omega^2}{\mathbf{c}^2} \left(1 + \tilde{\chi} \right) \tilde{\mathbf{E}} = -\mathbf{k}^2 \tilde{\mathbf{E}}$$

wave number
$$\mathbf{k} \equiv \frac{\omega}{\mathbf{c}} (1 + \tilde{\chi})^{\frac{1}{2}}$$

$$\nabla^2 \tilde{\mathbf{E}} + \mathbf{k}^2 \tilde{\mathbf{E}} = 0$$

Helmholtz Equation

Each component of Electric and Magnetic fields satisfy this wave equation

Planar Wave with z propagation

$$U = A \exp(-jkz) = A \exp(-j\beta z) \exp\left(-\frac{1}{2}\alpha z\right)$$

β: propagation constant α : absorption coeff.

$$k \equiv \frac{\omega}{c} \left(1 + \tilde{\chi} \right)^{\frac{1}{2}} = \beta - j \frac{1}{2} \alpha \quad \longleftarrow \quad \tilde{\chi} = \chi' + j \chi'' \quad \text{Lossy medium}$$

$$\beta = \frac{\omega}{c} (1 + \chi')^{\frac{1}{2}} \left\{ \frac{1}{2} \left[\sqrt{1 + \left(\frac{\chi''}{1 + \chi'} \right)^2} + 1 \right] \right\}_{1}^{\frac{1}{2}} \approx \frac{\omega}{c} (1 + \chi')^{\frac{1}{2}} \left[1 + \frac{1}{8} \left(\frac{\chi''}{1 + \chi'} \right)^2 \right] \approx \frac{\omega}{c} (1 + \chi')^{\frac{1}{2}} \right]$$

$$\alpha = \frac{\omega}{c} (1 + \chi')^{\frac{1}{2}} \left\{ 2 \left[\sqrt{1 + \left(\frac{\chi''}{1 + \chi'} \right)^2} - 1 \right] \right\}^{\frac{1}{2}} \approx \frac{\omega}{c} \frac{\chi''}{(1 + \chi')^{\frac{1}{2}}}$$

Phase velocity

$$v \equiv \frac{\omega}{\beta} \rightarrow \beta = \frac{\omega}{v} = \frac{\omega}{c} n \rightarrow n = \frac{c}{\omega} \beta \approx (1 + \chi')^{\frac{1}{2}}$$
 $n \approx (1 + \chi')^{\frac{1}{2}}$

$$n \approx \left(1 + \chi'\right)^{\frac{1}{2}}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 89

FIBER-OPTIC COMMUNICATIONS

Transversal Propagation Modes

"An Optical Transversal Mode refers to a particular solution of wave equation that satisfies the boundary conditions imposed by the waveguide and its transversal field distribution remains constant with propagation"

Laplacian Operator in Cartesian and Cylindrical coordinates

$$\begin{split} &\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \\ &\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \Psi}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 \Psi}{\partial \phi^2} + \frac{\partial^2 \Psi}{\partial z^2} \end{split}$$

Helmholtz Equation (lossless)

$$\nabla^2 \vec{\mathbf{E}} + \mathbf{k}_0^2 \mathbf{n}^2 \, \vec{\mathbf{E}} = 0$$

Variable separation

Periodicity
$$\phi$$

$$E_{Z}(\rho,\phi,z) = F(\rho)\Phi(\phi)Z(z) = F(\rho)e^{-jm\phi}e^{-j\beta z}$$

Propagation Modes in Step-Index Fibers

$$n = \begin{cases} n_1 & \rho < a \\ n_2 & \rho \ge a \end{cases}$$

$$\kappa^2 \equiv \mathbf{k}_0^2 \mathbf{n}_1^2 - \beta^2$$

$$\kappa^2 \equiv \beta^2 - \mathbf{k}^2 \mathbf{n}^2$$

$$\gamma^2 \equiv \beta^2 - \mathbf{k}_0^2 \mathbf{n}_2^2$$

β: Propagation constant

$$\frac{\partial^2 F}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial F}{\partial \rho} + \left(\kappa^2 - \frac{m^2}{\rho^2}\right) F = 0 \qquad \rho < a \quad \text{Core}$$

$$\frac{\partial^2 F}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial F}{\partial \rho} + \left(\gamma^2 + \frac{m^2}{\rho^2} \right) F = 0 \qquad \rho \geq a \quad \text{Cladding}$$

We exclude solutions that tend to ∞ for $r \rightarrow 0$ or that are not zero when $r \rightarrow \infty$

$$E_{z}(\rho) = \begin{cases} A \cdot J_{m}(\kappa \rho) e^{-jm\phi} e^{-j\beta z} & \rho \leq a \\ C \cdot K_{m}(\gamma \rho) e^{-jm\phi} e^{-j\beta z} & \rho > a \end{cases}$$

$$\begin{split} E_{_{Z}}(\rho) = & \begin{cases} A \cdot J_{_{m}}(\kappa \rho) e^{-jm\phi} e^{-j\beta z} & \rho \leq a \\ C \cdot K_{_{m}}(\gamma \rho) e^{-jm\phi} e^{-j\beta z} & \rho > a \end{cases} \\ H_{_{Z}}(\rho) = & \begin{cases} B \cdot J_{_{m}}(\kappa \rho) e^{-jm\phi} e^{-j\beta z} & \rho \leq a \\ D \cdot K_{_{m}}(\gamma \rho) e^{-jm\phi} e^{-j\beta z} & \rho > a \end{cases} \end{split}$$

 $J_m(\cdot)$: Bessel functions of 1st kind and order m

 $K_m(\cdot)$: Bessel functions of 2^{nd} modified kind and order m

$$\mathbf{E}_{\rho} = -\frac{\mathbf{j}}{\kappa^2} \left[\beta \frac{\partial \mathbf{E}_{z}}{\partial \rho} + \mu_0 \frac{\omega}{\rho} \frac{\partial \mathbf{H}_{z}}{\partial \phi} \right]$$

$$E_{\phi} = -\frac{j}{\kappa^2} \left[\frac{\beta}{\rho} \frac{\partial E_z}{\partial \phi} - \mu_0 \omega \frac{\partial H_z}{\partial \rho} \right]$$

$$\mathbf{H}_{\rho} = -\frac{\mathbf{j}}{\kappa^{2}} \left[\beta \frac{\partial \mathbf{H}_{z}}{\partial \rho} - \varepsilon_{0} \mathbf{n}^{2} \frac{\omega}{\rho} \frac{\partial \mathbf{E}_{z}}{\partial \phi} \right]$$

$$\mathbf{H}_{\phi} = -\frac{\mathbf{j}}{\kappa^{2}} \left[\frac{\beta}{\rho} \frac{\partial \mathbf{H}_{z}}{\partial \phi} + \epsilon_{0} \mathbf{n}^{2} \omega \frac{\partial \mathbf{E}_{z}}{\partial \rho} \right]$$

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 91

FIBER-OPTIC COMMUNICATIONS

Boundary Conditions

Boundary conditions force that the tangential components (ϕ i z) of E and H fields must coincide in the core-cladding separation area. We have 4 equations (Ep, Eb, $H\rho$, $H\phi$) and 4 unknowns (A,B,C,D). A non-trivial solution will be available when the coefficient matrix's determinant is zero.

Eigenvalue Equation

$$\left[\frac{J_{m}^{'}(\kappa a)}{\kappa J_{m}(\kappa a)} + \frac{K_{m}^{'}(\gamma a)}{\gamma K_{m}(\gamma a)}\right]\left[\frac{J_{m}^{'}(\kappa a)}{\kappa J_{m}(\kappa a)} + \frac{n_{2}^{2}}{n_{1}^{2}}\frac{K_{m}^{'}(\gamma a)}{\gamma K_{m}(\gamma a)}\right] = \left[\frac{2m\beta\left(n_{1} - n_{2}\right)}{a\kappa^{2}\gamma^{2}}\right]^{2}$$

For each value of **m** an equation system is defined with multiple solutions from which we can extract the β_{mn} value that determines the propagation condition (propagation mode).

Field Distributions

Spacial Distributions

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 93

FIBER-OPTIC COMMUNICATIONS

Propagation Condition

$$K_{m}(\gamma\rho) \xrightarrow{\gamma\rho \to \infty} e^{-\gamma\rho} \to \gamma > 0 \ \to \beta \ge k_{0}n_{2}$$

$$\kappa^2 \equiv \mathbf{k}_0^2 \mathbf{n}_1^2 - \beta^2$$
$$\gamma^2 \equiv \beta^2 - \mathbf{k}_0^2 \mathbf{n}_2^2$$

$$F \ real \rightarrow \kappa \ real \ \rightarrow \beta \leq k_0 n_1$$

$$n_2 k_0 < \beta < n_1 k_0$$
$$n_2 < \frac{\beta}{k_0} \equiv \overline{n} < n_1$$

n: mode index (effective index)

cutoff
$$\beta = \mathbf{n}_2 \mathbf{k}_0 \rightarrow \gamma = \mathbf{0}$$

$$\overline{\mathbf{n}} = \mathbf{n}_2 \rightarrow \kappa = \mathbf{k}_0 \left(\mathbf{n}_1^2 - \mathbf{n}_2^2 \right)^{\frac{1}{2}} \le \mathbf{0}$$
on-real
$$\beta = \mathbf{n}_1 \mathbf{k}_0 \rightarrow \kappa = \mathbf{0}$$

$$\overline{\mathbf{n}} = \mathbf{n}_1 \rightarrow \gamma = \mathbf{k}_0 \left(\mathbf{n}_1^2 - \mathbf{n}_2^2 \right)^{\frac{1}{2}} \le \mathbf{0}$$

Continuous

Normalized Frequency

$$\kappa^2 + \gamma^2 = (n_1^2 - n_2^2)k_0^2 = NA^2k_0^2$$
 $V = \kappa q$
 $V = \kappa q$

$$X \equiv \kappa a \quad \dot{Y} \equiv \gamma a$$

$$\mathbf{X}^2 + \mathbf{Y}^2 = \left(2\pi \frac{\mathbf{a}}{\lambda} \mathbf{N} \mathbf{A}\right)^2 \equiv \mathbf{V}^2$$

$$\mathbf{V} \equiv 2\pi \frac{\mathbf{a}}{\lambda} \mathbf{N} \mathbf{A} \approx 2\pi \frac{\mathbf{a}}{\lambda} \mathbf{n}_1 \sqrt{2\Delta}$$

trade-off

Normalized Propagation Constant

$$\mathbf{b} \equiv \frac{\overline{\mathbf{n}} - \mathbf{n}_{2}}{\mathbf{n}_{1} - \mathbf{n}_{2}} = \frac{\beta / \mathbf{k}_{0} - \mathbf{n}_{2}}{\mathbf{n}_{1} - \mathbf{n}_{2}}$$

Single-mode Condition

$$\begin{vmatrix} \mathbf{m} = \mathbf{0} \\ \gamma = \mathbf{0} \end{vmatrix} \rightarrow \mathbf{J}_0(\kappa \mathbf{a}) \Big|_{\gamma = \mathbf{0}} = \mathbf{J}_0(\mathbf{V}) = \mathbf{0}$$

$$V < 2.405 = V_c$$

Trade-off

$$V \stackrel{\downarrow}{\longrightarrow} \sin \operatorname{gle} \operatorname{mod} e \uparrow$$

$$V \stackrel{\uparrow}{\longrightarrow} % P_{\operatorname{core}} / P_{\operatorname{clad}} \uparrow$$

Number of modes

Cut-off Wavelength

$$\lambda_{c} \approx 2\pi \frac{a}{V_{c}} n_{1} \sqrt{2\Delta}$$

28 FEBRUARY 2011

2. OPTICAL FIBER - APPENDIX

slide 95