Летний экзамен по алгебре

hse-ami-open-exams

Содержание

1	Бин	нарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры	
	гру	пп. Порядок группы. Описание всех подгрупп в группе $(\mathbb{Z},+)$.	2
	1.1	Бинарные операции.	2
	1.2	Полугруппы, моноиды и группы	2
	1.3	Коммутативные группы	2
	1.4	Примеры групп	2
	1.5	Порядок группы.	2
	1.6	Описание всех подгрупп в группе $(\mathbb{Z},+)$	2
2	Под	цгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь меж-	
	ду	порядком элемента и порядком порождаемой им циклической подгруппы.	3
	2.1	Циклические подгруппы	3
	2.2	Циклические группы	3
	2.3	Порядок элемента.	3
	2.4	Связь между порядком элемента и порядком порождаемой им циклической подгруппы	3
3	Сме	ежные классы. Индекс подгруппы. Теорема Лагранжа.	4
	3.1	Смежные классы.	4
	3.2	Индекс подгруппы.	4
	3.3	Теорема Лагранжа	4
4	Пят	гь следствий из теоремы Лагранжа.	5
	4.1	Следствие 1	Ę
	4.2	Следствие 2	E
	4.3	Следствие 3	E
	4.4	Следствие 4	F
	4.5		F

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Описание всех подгрупп в группе $(\mathbb{Z}, +)$.

1.1 Бинарные операции.

Определение 1. Множество с бинарной операцией – это множество М с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

1.2 Полугруппы, моноиды и группы.

Определение 2. Множество с бинарной операцией (M, \circ) называется **полугруппой**, если данная бинарная операция **ассоциативна**, т.е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a, b, c \in M$.

Определение 3. Полугруппа (S, \circ) называется **моноидом**, если в ней есть нейтральный элемент, т.е. такой элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Определение 4. Моноид (S, \circ) называется **группой**, если для каждого элемента $a \in S$ найдется обратный элемент, т.е. такой $b \in S$, что $a \circ b = b \circ a = e$.

1.3 Коммутативные группы.

Определение 5. Группа (G, \circ) называется **коммутативной** или **абелевой**, если групповая операция коммутативна, т.е. $a \circ b = b \circ a$ для любых $a, b \in G$.

1.4 Примеры групп.

- 1. Числовые аддитивные группы: $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{Z}_n,+).$
- 2. Числовые мультипликативные группы: $(\mathbb{Q} \setminus \{0\}, \times), (\mathbb{R} \setminus \{0\}, \times), (\mathbb{C} \setminus \{0\}, \times), (\mathbb{Z}_p \setminus \{0\}, \times), p$ простое.
- 3. Группы матриц: $GL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) \neq 0\}; SL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) = 1\}.$
- 4. Группы подстановок: симметрическая группа S_n все подстановки длины n, $|S_n| = n!$; знакопеременная группа A_n четные подстановки длины n, $|A_n| = n!/2$.

1.5 Порядок группы.

Определение 6. Порядок группы G – это число элементов в G. Группа называется конечной, если ее порядок конечен, и **бесконечной** иначе.

1.6 Описание всех подгрупп в группе $(\mathbb{Z}, +)$.

Определение 7. Подмножество H группы G называется **подгруппой**, если выполнены следующий три условия:

- 1. $e \in H$
- $2. \ ab \in H \ \partial$ ля любых $a,b \in H$
- 3. $a^{-1} \in H$ для любого $a \in H$

Утверждение 1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z} = \{ka \mid a \in \mathbb{Z}\}$ для некоторого целого неотрицательного k.

Доказательство. Пусть H — подгруппа в \mathbb{Z} . Если $H = \{0\}$, положим k = 0. Иначе пусть $k = \min(H \cap \mathbb{N})$ — наименьшее натуральное число, лежащее в H. Тогда $k\mathbb{Z} \subseteq H$. С другой стороны, если $a \in H$ и a = qk + r — результат деления a на k с остатком, то $0 \le r \le k - 1$ и $r = a - qk \in H$. Отсюда r = 0 и $H = k\mathbb{Z}$.

2 Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы.

2.1 Циклические подгруппы.

Определение 8. Пусть G – группа и $g \in G$. **Циклической подгруппой**, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$. Циклическая подгруппа, порожденная элементом g, обозначается $\langle g \rangle$. Элемент g называется **порождающим** или **образующим** для подгруппы $\langle g \rangle$.

2.2 Циклические группы.

Определение 9. Группа G называется **циклической**, если найдется такой элемент $g \in G$, что $G = \langle g \rangle$.

2.3 Порядок элемента.

Определение 10. Пусть G – группа u $g \in G$. **Порядком элемента** g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности. Порядок элемента обозначается ord(g).

2.4 Связь между порядком элемента и порядком порождаемой им циклической подгруппы.

Утверждение 2. Пусть G – группа $u g \in G$. Тогда $ord(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k = g^s$, то $g^{k-s} = e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элеметы $e = g^0, g = g^1, g^2, ..., g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n = mq + r, где $0 \leqslant r \leqslant m - 1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, ..., g^{m-1}\}$ и $|\langle g \rangle| = m$.

3 Смежные классы. Индекс подгруппы. Теорема Лагранжа.

3.1 Смежные классы.

Определение 11. Пусть G – группа, $H \subseteq G$ – подгруппа $u \ g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH=\{gh\ |\ h\in H\}.$$

3.2 Индекс подгруппы.

Определение 12. Пусть G – группа и $H \subseteq G$ – подгруппа. **Индексом подгруппы** H в группе G называется число левых смежных классов G по H. Индекс группы G по подгруппе H обозначается [G:H].

3.3 Теорема Лагранжа.

Лемма 1. Пусть G – группа, $H\subseteq G$ – ее подгруппа и $g_1,g_2\in G$. Тогда либо $g_1H=g_2H$, либо $g_1H\cap g_2H=\varnothing$.

Доказательство. Предположим, что $g_1G\cap g_2H\neq\varnothing$, т.е. $g_1h_1=g_2h_2$ для некоторых $h_1,h_2\in H$. Нужно доказать, что $g_1H=g_2H$. Заметим, что $g_1H=g_2h_2h_1^{-1}H\subseteq g_2H$. Обратное включение доказывается аналогично.

Лемма 2. Пусть G – группа и $H \subseteq G$ – конечная подгруппа. Тогда |gH| = |H| для любого $g \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Теорема 1. Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своем) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

4 Пять следствий из теоремы Лагранжа.

4.1 Следствие **1.** Следствие **1.** Пусть G – конечная группа $u \ H \subseteq G$ – подгруппа. Тогда |H| делит |G|.

4.2 Следствие 2.

Следствие 2. Пусть G – конечная группа $u \in G$. Тогда ord(g) делит |G|.

Доказательство. Это вытекает из следствия 1 и утверждения 2.

4.3 Следствие 3.

Следствие 3. Пусть G – конечная группа и $g \in G$. Тогда $g^{|G|} = e$.

Доказательство. Согласно следствию 2 мы имеем $|G| = ord(g) \cdot s$, откуда $g|G| = (g^{ord(g)})^s = e^s = e$.

4.4 Следствие 4.

Следствие 4. Пусть G – группа. Предположим, что |G| – простое число. Тогда G – циклическая группа, порождаемая любым своим неединичным элементом.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

4.5 Следствие 5.

Следствие 5 (малая теорема Ферма). Пусть p – простое число и HOД(a,p)=1. Тогда $a^{p-1}\equiv 1 \mod p$.

Доказательство. Применим следствие 3 к группе $(\mathbb{Z}_p \setminus \{0\}, \times)$.