

Jal Pravah One solution for all dams

- CROSSS Coders

Our Team

CROSSS Coders

Team Members

- » Rincy Pereira (Leader)
- » Sanil Rodrigues
- » Smith Dabreo
- » Selvin Tuscano
- » Pushpak Chhajed
- » Kevlyn Kadamala

Mentors

- >> Dr. Nilesh Patil
- >> Ryan D'silva

Problem Statements (Ministry of Power)

#1 Title: Development of IoT based advance Public Address and Flood Warning

Systems across all Hydro Power project areas

ID : LN379

#2 Title: Integrated Automatic Flood Warning and alert system using IoT

ID : PK367

Process Flow Diagram

Technical Flow Diagram

Dam Model

Dam Model with Sensors Deployed Downstream

Mathematical Model

Mathematical Model Contd.

- Let A and B be the two endpoints where discharge sensor and depth measurement sensors are deployed.
- Let D_{AB} be the distance between endpoints A and B; and T_{AB} be the average time taken by water to travel between endpoints A and B and V_{AB} be the surface water velocity between endpoints A and B.

$$V_{AB}(m/s) = \frac{D_{AB}}{T_{AB}}$$

Let d_{AB} be the average depth of river between endpoints A and B.

$$Waterflow(m^3/s) = V_{AB} \times d_{AB}$$

- Then we can set the threshold value for waterflow.
- If waterflow > threshold, sent Danger Level Alert message; else sent Warning Level Alert message.

Hardware Model

Features

Web Features:

- » Email alert
- » SMS Alert
- » Live map data
- » Simple UI
- » Live data for dams
- » Live IoT data
- » Notification Management
- » Admin model for easy control
- » Multi lingual support

Mobile Features:

- » Call Alert
- » SMS Alert
- » Telegram Bot
- » Mobile App

» App Features:

- » Nearby API
- » Live data for dams
- » Live IoT data
- » Notification management

IoT Model:

- » Cost effective
- » Automated and manual control
- » Siren Alert
- » Lossless data
- » Provides humidity and temperature readings
- » Measures water level constantly

Additional Features:

- » Forecast Model
- » Satellite Imagery and Water Level Extraction
- » Twitter Bot
- » Helpline Numbers
- » Do's and Don'ts

New Features

- » Kaa Dashboard
- » Call Alert
- » Telegram Bot
- » Nearby API
- » NGINX for server encryption (Backend: https://api.pushpak1300.me/ & Frontend: https://jalpravah.pushpak1300.me)

KaaloT Dashboard

Technology Stack

- x Redis x MySQL
- ¤ Docker
 - MSG91

- Flask
 - Pusher

AWS

- Telegram API
 - n API 🕱 Twilio
 - **Nginx**

Python

MailGun

Twitter Developer

Technology Stack Frontend

- Chart.js
- Bootstrap
- Mapbox
- **PWA**
- VueJS
- Sass

Technology Stack

Python

loT, Build Tools and Mobile App

- Raspberry Pi
- KaaloT
- Python

- Git
- Netlify
- Vercel

- Flutter
- Firebase
- X Nearby API
 - Hive

ThankYou