

The Knapsack Problem

Algorithms: Design and Analysis, Part II

An Example

Example (n = 4, W = 6)

Initialization: A[0,x] = 0 for all x

Main loop:

For
$$i = 1, \ldots, n$$

For $x = 0, \ldots, W$

$$A[i,x] := \max\{A[i-1,x], A[i-1,x-w_i] + v_i\}$$

	6	0	3	3	7	(8)
_	5	0	3	3	6	8
Example: $W = 6$	4	0	3	3	4	4
$v_1 = 3, w_1 = 4$ $v_2 = 2, w_2 = 3$	3	0	0	2	4	4
$v_3 = 4, w_3 = 2$ $v_4 = 4, w_3 = 3$	2	0	0	0 /	4	4
	1	0	0		0	0
	x = 0	0	0	0	0	0

Optimal value = 8

Optimal solution = {item 3, item 4}