Chapter 1: The Foundations: Logic, Sets and Functions

INTRODUCTION

Proposition:

A **proposition** is a statement that is either <u>true</u> or <u>false</u>, but <u>not both</u>.

- Statements are declarative sentences.
- Propositional Logic:

The area of logic that deals with propositions.

"Elephants are bigger than mice."

Is this a statement? yes

Is this a proposition? yes

What is the truth value true of the proposition?

NEGATION (Unary Operator)

Let p be a proposition. The negation of p, denoted by $\neg p$, is the statement "It is not the case that p."

- The proposition $\neg p$ is read as "not p."
- Examples
 - p:Today is Friday.
 - ¬p: Today is not Friday.

or

It is not Friday today.

Truth tables are used to display relationships between the truth value of propositions.

Is this a statement?

yes

Is this a proposition?

yes

What is the truth value of the proposition?

false

Is this a statement?

yes

Is this a proposition?

no

Its truth value depends on the value of y, but this value is not specified. "What time is it?"

Is this a statement?

Is this a proposition?

A proposition has to be a statement.

Truth table:

The Truth Table for the Negation of a Proposition.		
р ¬р		
T F		
F T		

Logical operators are used to form new propositions from two or more existing propositions. The logical operators are also called connectives.

LOGICAL OPERATORS (CONNECTIVES)

- Conjunction (AND)
- Disjunction (OR)
- Exclusive or (XOR)
- Implication (if then)
- Biconditional (if and only if)

CONJUNCTION: (Binary Operator)

Let p and q be propositions. The <u>conjunction</u> of p and q, denoted by $p\Lambda q$, is the proposition "p and q" which is true when both p and q are true and is false otherwise.

Examples

p:"Today is Friday."

q:"It is raining today."

 $p \land q$: "Today is Friday and it is raining today".

The proposition is true on rainy Fridays.

☐ Truth table:

The Truth Table for the Conjunction of Two Propositions.				
p	$p q p \wedge q$			
Т	Т	Т		
Т	F	F		
F	Т	F		
F	F	F		

DISJUNCTION: (Binary Operator)

Let p and q be propositions. The <u>disjunction</u> of p and q, denoted by $p \vee q$, is the proposition "p or q" which is false when both p and q are false and is true otherwise.

Note:

inclusive or : The disjunction is true when at least one of the two propositions is true.

• E.g. "Students who have taken calculus or computer science can take this class."

exclusive or : The disjunction is true only when one of The proposition is true.

E.g. "Ice cream or pudding will be served after lunch."

☐ Truth table:

The Truth Table for the Disjunction of Two Propositions.				
p	p q pvq			
Т	Т	Т		
TFT				
F	Т	Т		
F	F	F		

The Truth Table for the Exclusive <i>Or</i> (<i>XOR</i>) of Two Propositions.			
$p q p \oplus q$			
Т	Т	F	
Т	F	Т	
F T T			
F	F	F	

CONDITIONAL STATEMENT:

Let p and q be propositions. The *conditional statement* $p \rightarrow q$, is the proposition "if p, then q" which is false when p is true and q is false, and true otherwise.

□*p* is called the *hypothesis* (or *antecedent* or *premise*) and *q* is called the *conclusion* (or *consequence*).

• Example: "If I am elected, then I will lower taxes." $p \rightarrow q$

elected, lower taxes.	T	T	T
not elected, lower taxes.	F	T	T
not elected, not lower taxes.	F	F	T
elected, not lower taxes.	T	F	F

Example:

Let p be the statement "Maria learns discrete mathematics." and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

- 1. "If Maria learns discrete mathematics, then she will find a good job.
- 2. "Maria will find a good job if she learns discrete mathematics."
- 3. "For Maria to get a good job, it is sufficient for her to learn discrete mathematics."
- 4. "Maria will find a good job unless she does not learn discrete mathematics."

- If *p* then *q*
- p implies q
- q if p
- q whenever p
- q is necessary for p

Other conditional statements:

- Converse of $p \rightarrow q : q \rightarrow p$
- Contrapositive of $p \rightarrow q : \neg q \rightarrow \neg p$
- Inverse of $p \rightarrow q : \neg p \rightarrow \neg q$
- ☐ The statement and its contrapositive are equivalent.
- Converse and inverse of a statement are equivalent

BICONDITIONAL STATEMENT:

Let *p* and *q* be propositions. The *biconditional statement*

 $p \leftrightarrow q$ is the proposition "p if and only if q" which is true when p and q have the same truth values, and is false otherwise.

 $\square p \leftrightarrow q$ has the same truth value as $(p \rightarrow q) \land (q \rightarrow p)$

Example:

Let p be the statement "You can take the flight" and let q be the statement "You buy a ticket."
p ↔ q: "You can take the flight if and only if you buy a ticket."

The Truth Table for the Biconditional $p \leftrightarrow q$. $\begin{array}{c|cccc} p & q & p \leftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$

"p is necessary and sufficient for q"
"If p then q and conversely"

Connectives can be used to build up complicated compound propositions involving any number of propositional variables.

Example: Construct the truth table of the compound proposition

$$(p \vee \neg q) \rightarrow (p \wedge q)$$

The Truth Table of $(p \lor \neg q) \to (p \land q)$.					
р	q	$\neg q$	p∨¬q	$p \wedge q$	$(p \lor \neg q) \to (p \land q)$
Т	Т	F	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	F	Т
F	F	Т	Т	F	F

PRECEDENCE OF LOGICAL OPERATORS

- Parentheses are used to specify the order in which logical operators in a compound proposition are to be applied.
- To reduce the number of parentheses, the precedence order is defined for logical operators.

Precedence of Logical Operators.		
Operator Precedence		
7	1	
٨	2	
V	3	
\rightarrow	4	
\leftrightarrow	5	

TRANSLATING ENGLISH SENTENCES

Example: How can this English sentence be translated into a logical expression?

"You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."

p: You can ride the roller coaster.

q: You are under 4 feet tall.

r: You are older than 16 years old.

$$(q \land \neg r) \rightarrow \neg p$$

Example: How can this English sentence be translated into a logical expression?

"You can access the Internet from campus only if you are a computer science major or you are not a freshman."

p: You can access the Internet from campus.

q: You are a computer science major.

r: You are a freshman.

$$p \rightarrow (q \nu \neg r)$$

TAUTOLOGY:

A compound proposition that is always true, no matter what the truth values of the propositions that occurs in it, is called a *tautology*.

CONTRADICTION:

A compound proposition that is always false is called a *contradiction*.

CONTINGENCY:

A compound proposition that is neither a tautology or a contradiction is called a *contingency*.

Examples of a Tautology and a Contradiction.			
р	¬р	<i>p</i> ∨ ¬ <i>p</i>	<i>p</i> ∧ ¬ <i>p</i>
Т	F	Т	F
F	T	Т	F

The compound propositions p and q are called *logically* equivalent if $p \leftrightarrow q$ is a tautology.

Notation $p \equiv q$

• Example: Show that $\neg p \lor q$ and $p \to q$ are logically equivalent.

Truth Tables for $\neg p \lor q$ and $p \to q$.				
p	q	¬р	$\neg p \lor q$	ho ightarrow q
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Logical Equivalences

Law	Name
$p \lor F \equiv p$	Identity laws
$p \land T \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \land F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \land p \equiv p$	
$\neg(\neg p) \equiv p$	Double-negation law

Law	Name
$p \lor q \equiv q \lor p$	Commutative
$p \wedge q \equiv q \wedge p$	laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \land q) \land r \equiv p \land (q \land r)$	
$(p \lor q) \land (p \lor r) \equiv p \lor (q \land r)$	Distributive laws
$(p \land q) \lor (p \land r) \equiv p \land (q \lor r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	

Some useful logical Equivalences

$$\begin{array}{ccc}
\hline
p & \bigvee \neg p \equiv T \\
p & \bigwedge \neg p \equiv F \\
p & \rightarrow q & \equiv \neg p & \bigvee q
\end{array}$$