Set Theory HW #1

Ozaner Hansha

September 12, 2019

Problem 1

Exercises 1,2,3,4 from pages 6-7 in the textbook.

Exercise 1: Which of the following statements are true when \in is inserted in the blank? Which are true when \subseteq is inserted?

- (a) $\{\emptyset\}$ _ $\{\emptyset, \{\emptyset\}\}$
- (b) $\{\emptyset\}$ _ $\{\emptyset, \{\{\emptyset\}\}\}$
- (c) $\{\{\emptyset\}\}$ _ $\{\emptyset, \{\emptyset\}\}$
- (d) $\{\{\emptyset\}\}$ _ $\{\emptyset, \{\{\emptyset\}\}\}$
- (e) $\{\{\emptyset\}\}$ _ $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$

Solution: Statements (a) and (d) are true when \in is inserted in the blank. Statements (a), (b) and (c) are true when \subseteq is inserted.

Exercise 2: Show that none of the three sets \emptyset , $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to any other.

Solution: We have 3 statements to disprove. Let's assume $\emptyset = \{\emptyset\}$. The axiom of extensionality tells us that:

$$\forall x (x \in \emptyset \iff x \in \{\emptyset\})$$

However, note that for the particular choice of $x = \emptyset$ we have:

$$\underbrace{\varnothing\in\varnothing}_F\iff\underbrace{\varnothing\in\{\varnothing\}}_T$$

With the LHS being false because \emptyset has no elements by definition and the RHS being clear. This is a contradiction and so our initial assumption is false and $\emptyset \neq \{\emptyset\}$.

For the next case, we'll assume $\emptyset = \{\{\emptyset\}\}\$. The axiom of extensionality tells us that:

$$\forall x (x \in \varnothing \iff x \in \{\{\varnothing\}\})$$

However, note that for the particular choice of $x = \{\emptyset\}$ we have:

$$\underbrace{\{\varnothing\}\in\varnothing}_F\iff\underbrace{\{\varnothing\}\in\{\{\varnothing\}\}}_T$$

The LHS being false because \emptyset has no elements and the RHS being clear. This is a contradiction and so our initial assumption is false and $\emptyset \neq \{\{\emptyset\}\}\$.

For the last case, we assume $\{\emptyset\} = \{\{\emptyset\}\}\$. The axiom of extensionality tells us that:

$$\forall x (x \in \{\emptyset\} \iff x \in \{\{\emptyset\}\})$$

However, note that for the particular choice of $x = \{\emptyset\}$ we have:

$$\underbrace{\{\varnothing\}\in\{\varnothing\}}_F\iff\underbrace{\{\varnothing\}\in\{\{\varnothing\}\}}_T$$

The LHS being false because $\{\emptyset\}$ only contains \emptyset and not it's singleton and the RHS being clear. This is a contradiction and so our initial assumption is false and $\{\emptyset\} \neq \{\{\emptyset\}\}\$.

Exercise 3: Show that if $B \subseteq C$, then $\mathcal{P}(B) \subseteq \mathcal{P}(C)$.

Solution: Assume that $B \subseteq C$. Now note that:

$$\forall x (x \in \mathcal{P}(B) \iff x \subseteq B)$$
 (def. of power set)

And because of our assumption that $B \subseteq C$ and the transitivity of subset, we have:

$$\forall x(x \in \mathcal{P}(B) \iff x \subseteq B \subseteq C) \implies \forall x(x \in \mathcal{P}(B) \implies x \subseteq C) \qquad \text{(transitivity of subset)}$$

$$\iff \forall x(x \in \mathcal{P}(B) \implies x \in \mathcal{P}(C)) \qquad \text{(def. of power set)}$$

$$\iff \mathcal{P}(B) \subseteq \mathcal{P}(C) \qquad \text{(def. subset)}$$

Exercise 4: Assume $x, y \in B$. Show that $\{\{x\}, \{x, y\}\} \in \mathcal{P}(\mathcal{P}(B))$

Solution: Since we are assuming $x, y \in B$, we have the following chain of implications:

$$\underbrace{\{x\} \subseteq B}_{x \in \{x\} \to x \in B} \land \underbrace{\{x,y\} \to x \in B}_{y \in \{x,y\} \to y \in B}$$
 (def. of subset)
$$\Longrightarrow \{x\} \in \mathcal{P}(B) \land \{x,y\} \in \mathcal{P}(B)$$
 (def. of power set)
$$\Longrightarrow \underbrace{\{x\}, \{x,y\}\} \subseteq \mathcal{P}(B)}_{\{x,y\} \in \{\{x\}, \{x,y\}\} \to \{x\} \in \mathcal{P}(B)}$$
 (def. of subset)
$$\Longrightarrow \{\{x\}, \{x,y\}\} \to \{x\} \in \mathcal{P}(B)$$

$$\Longrightarrow \{\{x\}, \{x,y\}\} \in \mathcal{P}(\mathcal{P}(B))$$
 (def. of power set)

Problem 2

Exercises 5,7 from page 9 in the textbook. Where V_{α} below refers to the rank α of the von Neumann hierarchy.

Exercise 5: Define the rank of a set c to be the least α such that $c \subseteq V_{\alpha}$. Compute the rank of $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$.

Solution: The rank of $\{\emptyset\}$ is 1 as $V_1 = \mathcal{P}(V_0) = \mathcal{P}(\emptyset)$ is the first rank in which it shows up.

The highest ranked element of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ is $\{\emptyset, \{\emptyset\}\}\}$, which first appears in rank 3. And because $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ contains this rank 3 element, it appears in $V_4 = \mathcal{P}(V_3)$ and so is rank 4.

Exercise 7: List all the members of V_3 and V_4 .

Solution: V_3 and V_4 are given by:

Problem 3

A set a is transitive if every member of a is a subset of a. In other words a is transitive iff:

$$\forall u(u \in a \implies u \subseteq a)$$

Part i: Prove that \emptyset is transitive.

Solution: The empty set is vacuously a transitive set:

$$\forall u(u \in \varnothing \implies u \subseteq \varnothing)$$

The condition that $u \in \emptyset \implies u \subseteq \emptyset$ is always satisfied as the antecedent is false for any u, because the empty set has no elements by definition.

Part ii: Prove that the union of two transitive sets is transitive. That is to say prove that:

$$\forall a \forall b \big[\big(\forall u (u \in a \implies u \subseteq a) \land \forall u (u \in b \implies u \subseteq b) \big) \\ \implies \forall u (u \in a \cup b \implies u \subseteq a \cup b) \big]$$

Solution: Let a and b be transitive sets. Now let $u \in a \cup b$. This implies that:

$$u \in a \lor u \in b$$
 (def. of union)

Also, since a and b are transitive, we have:

$$u \in a \implies u \subseteq a$$
 (def. of transitive)
 $u \in b \implies u \subseteq b$ (def. of transitive)

So we have by the constructive dilemma, i.e.:

$$((p \implies q) \land (r \implies s) \land (p \lor r)) \implies (q \lor r)$$

the following:

$$u \in a \implies u \subseteq a$$

$$u \in b \implies u \subseteq b$$

$$u \in a \lor u \in b$$

$$\therefore u \subseteq a \lor u \subseteq b$$

Now note that, by the transitivity of the subset, we have:

$$u \subseteq a$$

$$\underline{a \subseteq a \cup b}$$

$$\therefore \underline{u \subseteq a \cup b}$$

And since $a \subseteq a \cup b$ is true for any a and b we arrive at the following implication:

$$u \subseteq a \implies u \subseteq a \cup b$$

And similarly we have:

$$u \subseteq b$$

$$b \subseteq a \cup b$$

$$u \subseteq a \cup b$$

And again, since $b \subseteq a \cup b$ is true for any a and b we arrive at the following implication:

$$u \subseteq b \implies u \subseteq a \cup b$$

And so via the constructive dilemma we have:

$$u \subseteq a \implies u \subseteq a \cup b$$

$$u \subseteq b \implies u \subseteq a \cup b$$

$$\underbrace{u \subseteq a \lor u \subseteq b}_{u \subseteq a \cup b}$$

And so we are done. We have shown that for any transitive sets a and b, the following holds:

$$\forall u(u \in a \cup b \implies u \subseteq a \cup b)$$

which is equivalent to the statement that $a \cup b$ is a transitive set.

Part iii: Prove that if a is a transitive set then $a \cup \{a\}$ is transitive. That is, for transitive a, prove the following:

$$\forall u(u \in a \cup \{a\} \implies u \subseteq a \cup \{a\})$$

Solution: Let a be a transitive set and let u be any set. We have the following:

$$u \in a \cup \{a\} \iff u \in a \lor u \in \{a\}$$
 (def. of union)

As such, we can prove that in both cases $u \subseteq a \cup \{a\}$. For case 1 we will assume $u \in a$: Because a is transitive and because $a \subseteq a \cup \{a\}$ for any a, we have:

$$u \in a \implies u \subseteq a$$
 (a is transitive)
 $\implies u \subseteq a \cup \{a\}$ (transitivity of subset)

Now we need to prove the case where $u \in \{a\}$. There is only one element to check here, u = a:

$$\underbrace{a \in \{a\}}_{T} \implies \underbrace{a \subseteq a \cup \{a\}}_{T}$$

This implication is certainly true and so we have the following via the consecutive dilemma:

$$u \in a \implies u \subseteq a \cup \{a\}$$

$$u \in \{a\} \implies u \subseteq a \cup \{a\}$$

$$\underbrace{u \in a \lor u \in \{a\}}_{u \subseteq a \cup \{a\}}$$

$$\therefore u \subseteq a \cup \{a\}$$

And so by assuming the antecedent $u \in a \cup \{a\}$ we proved the consequent and thus $a \cup \{a\}$ is a transitive set for any transitive set a.

Part iv: Prove that $\mathcal{P}(a)$ of a transitive set a is transitive. That is to say prove:

$$\forall a (\forall u (u \in a \implies u \subseteq a) \implies \forall u (u \in \mathcal{P}(a) \implies u \subseteq \mathcal{P}(a)))$$

Solution: Let $b \in \mathcal{P}(a)$, this gives us:

$$b \in \mathcal{P}(a) \implies b \subseteq a$$
 (def. of power set)

Now for any x we have the following chain of implications:

$$x \in b \implies x \in a$$
 (def. of subset)
 $\implies x \subseteq a$ (a is transitive)
 $\implies x \in \mathcal{P}(a)$ (def. of power set)

And so we are done. We have shown that for any set $b \in \mathcal{P}(a)$, any one of its elements x is a subset of $\mathcal{P}(a)$.