Maths pour l'I.A.

Plan du cours

- Compléments d'algèbre linéaire
- Compléments d'analyse
 - Fonctions de plusieurs variables
 - Dérivées partielles, gradient
 - formules de Taylor et plan tangent
 - Dérivées partielles d'une composée
 - Optimisation des fonctions de plusieurs variables
 - Méthodes numériques d'optimisation
- Compléments de probabilité et de statistiques

Dérivées partielles

Soit $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ et $a = (a_1, ..., a_n) \in \mathcal{D}$.

Définition

 $\forall i \in [1, n]$ on définit la ième application partielle de f en a par :

$$f_i: \left(\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & f(a_1,..a_{i-1},t,a_{i+1}..a_n) \end{array} \right)$$

3/22

Thierry Montaut Maths pour I'l.A.

Définition

On dit que f admet une ième dérivée partielle en a (ou une dérivée partielle par rapport à x_i en a) ssi f_i est dérivable en a_i , et on note alors :

$$\frac{\partial f}{\partial x_i}(a) = f_i'(a_i).$$

Un calcul de dérivée partielle se ramène donc à un calcul de dérivée, donc dans les cas les plus délicats à un calcul de limite du taux d'accroissement.

Le calcul des dérivées partielles relevant de la dérivabilité des fonctions réelles, à vous de prévoir les révisions qui s'imposent...

Exercice 1 : Etudier l'existence de dérivées partielles en tout point de \mathbb{R}^2 pour les fonctions suivantes :

$$(x,y) = xy \cos(x+y)$$

$$(x,y) = \ln(1 + x^2y^2)$$

$$(x,y) = \sqrt{x^2 + y^2}$$

Opérations et dérivées partielles

Les dérivées partielles héritent des propriétés des dérivées des fonctions réelles :

Propriété

(Opérations et dérivées partielles)

Si f, et g admettent des dérivées partielles en a par rapport à x_i alors

f + g aussi et

$$\frac{\partial (f+g)}{\partial x_i}(a) = \frac{\partial f}{\partial x_i}(a) + \frac{\partial g}{\partial x_i}(a).$$

• f.g aussi et

$$\frac{\partial f.g}{\partial x_i}(a) = f(a).\frac{\partial g}{\partial x_i}(a) + \frac{\partial f}{\partial x_i}(a).g(a).$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Thierry Montaut Maths pour I'l.A. 6 / 22

Propriété

• Si $g(a) \neq 0$ alors $\frac{1}{g}$ admet une dérivée partielle en a et

$$\frac{\partial \frac{1}{g}}{\partial x_i}(a) = -\frac{1}{g(a)^2} \frac{\partial g}{\partial x_i}(a).$$

• On déduit des deux dernières propriétés que :

Si $g(a) \neq 0$ alors $\frac{f}{g}$ admet une dérivée partielle en a et

$$\frac{\partial \frac{f}{g}}{\partial x_i}(a) = \frac{1}{g(a)^2} \left(\frac{\partial f}{\partial x_i}(a) \cdot g(a) - f(a) \cdot \frac{\partial g}{\partial x_i}(a) \cdot \right).$$

◆ロト ◆□ ト ◆ 重 ト ◆ 重 ・ か へ ()

Propriété

• Si $g(a) \neq 0$ alors $\frac{1}{g}$ admet une dérivée partielle en a et

$$\frac{\partial \frac{1}{g}}{\partial x_i}(a) = -\frac{1}{g(a)^2} \frac{\partial g}{\partial x_i}(a).$$

• On déduit des deux dernières propriétés que :

Si $g(a) \neq 0$ alors $\frac{f}{g}$ admet une dérivée partielle en a et

$$\frac{\partial \frac{f}{g}}{\partial x_i}(a) = \frac{1}{g(a)^2} \left(\frac{\partial f}{\partial x_i}(a) \cdot g(a) - f(a) \cdot \frac{\partial g}{\partial x_i}(a) \cdot \right).$$

8 / 22

Thierry Montaut Maths pour l'I.A.

dérivées partielles d'une composée (1)

Théorème

Si $f: \mathbb{R}^n \to \mathbb{R}$ admet une dérivée partielle en a par rapport à x_i et que h est une fonction réelle dérivable en f(a), alors $h \circ f: \mathbb{R}^n \to \mathbb{R}$ admet une dérivée partielle en a par rapport à x_i et

$$\frac{\partial h \circ f}{\partial x_i}(a) = h'(f(a)) \frac{\partial f}{\partial x_i}(a).$$

Calculer les dérivées partielles de $g(x,y) = e^{2x+y^2}$.

9/22

Thierry Montaut Maths pour l'I.A.

dérivées partielles d'une composée (2)

Théorème

Si $f: \mathbb{R}^n \to \mathbb{R}$ admet une dérivée partielle en a par rapport à x_i et que $u_1(t), \ldots u_n(t)$ sont n fonctions réelles dérivables en t_0 et telles que $a = (u_1(t_0), \ldots u_n(t_0))$ alors $g: \mathbb{R} \to \mathbb{R}$ définie par $g(t) = f((u_1(t), \ldots u_n(t)))$ est dérivable en t_0 et

$$g'(t_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \times u'_i(t_0).$$

dérivées partielles d'ordre supérieur

Définition

soit f : $\mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$,

On définit les dérivées partielles secondes de f, notées

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial \left(\frac{\partial f}{\partial x_j}\right)}{\partial x_i},$$

comme les dérivées partielles (si elles existent) des dérivées partielles de f.

On définit alors par récurrence les dérivées partielles d'ordre p de f, notées $\frac{\partial^p f}{\partial x_{i_1} \partial x_{i_2} ... \partial x_{i_p}}$, comme les dérivées partielles des dérivées partielles d'ordre p-1 de f.

Classe C^k

Définition

On dit que f est de **classe** C^1 sur D ssi f admet sur D des dérivées partielles par rapport à toutes ses variables et si elles sont toutes continues sur D.

On note alors $f \in C^1(\mathcal{D})$.

Définition

On dit que f est de **classe** C^k sur \mathcal{D} ssi f admet sur \mathcal{D} toutes ses dérivées partielles d'ordre k et si elles sont toutes continues sur \mathcal{D} . On note alors $f \in C^k(\mathcal{D})$.

Définition

On dit enfin que f est de classe C^{∞} sur \mathcal{D} ssi f est de classe C^k pour tout $k \in \mathbb{N}$. On note alors $f \in C^{\infty}(\mathcal{D})$.

Théorème

(de Schwarz)

Si f est de classe C^k , les dérivées partielles d'ordre k de f sont indépendantes de l'ordre de dérivation :

Ce qui pour n = 2 et p = 2 s'écrit simplement : Si f est de classe C^2 , alors

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Proposition

- **1** Toute application polynomiale est de classe C^{∞} sur \mathbb{R}^n .
- ② Toute fraction rationnelle est de classe C^{∞} sur son ensemble de définition.

Attention aux liens entre ces notions qui différent de ceux des fonctions réelles :

Proposition

- **③** Si f est de classe C^1 alors toute ses dérivées partielles existent et f est continue.
- Mais f peut admettre toutes ses dérivées partielles sans pour autant être continue (cf TD).
- \odot Comme dans $\mathbb R$ un fonction peut être continue sans admettre toutes ses dérivées partielles.

Vecteur gradient

Définition

Si f admet toutes ses dérivées partielles en a on appelle vecteur gradient de f au point a le vecteur de \mathbb{R}^n :

$$grad_a(f) = \left(\frac{\partial f}{\partial x_1}(a), ..., \frac{\partial f}{\partial x_n}(a)\right).$$

On le note également à la physicienne $\nabla f(a)$.

Si f admet toutes ses dérivées partielles sur tout \mathcal{D} , on peut considérer la fonction :

$$\nabla f: \left(\begin{array}{ccc} \mathcal{D} \subset \mathbb{R}^n & \to & \mathbb{R}^n \\ a & \mapsto & \nabla f(a) \end{array}\right)$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

16 / 22

Thierry Montaut Maths pour l'I.A.

Formule de Taylor à l'ordre 1

La formule de Taylor à l'ordre 1 permet d'obtenir une approximation locale de la variation de f entre deux points voisins :

Théorème

(Développement de Taylor à l'ordre 1) Soit f de classe \mathcal{C}^1 en a. Il existe une application $\varepsilon:\mathbb{R}\to\mathbb{R}$ tq

$$\forall x \in \mathbb{R}^n, \ f(x) = f(a) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a).(x_i - a_i) + \|(x_i - a_i)\| \varepsilon(x_i - a_i)$$

avec

$$\varepsilon(h) \longrightarrow 0.$$

Thierry Montaut Maths pour I'I.A. 17 / 22

Ou en notant x = a + h:

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) \cdot h_i + ||h_i|| \varepsilon(h_i)$$

Cette formule permet donc d'estimer la variation de f entre les points a et x, en fonction des variations h_i des composantes de x - a Les physiciens la notent en général :

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a).dx_i = (\nabla f(a)|dx)$$

en oubliant le reste (quitte à considérer que (x - a) est assez petit pour se le permettre), où df représente la variation de f entre a et x et où dx_i note $x_i - a_i$.

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ 9 へ ⊙

18 / 22

Thierry Montaut Maths pour l'I.A.

Retour sur le vecteur gradient

De $df = (\nabla f(a)|dx)$ on déduit que

Propriété

- La direction du vecteur gradient est la direction de plus grande variation de f,
- la direction orthogonale au vecteur gradient est la direction suivant laquelle f ne varie pas.
- les lignes de niveau sont en tout point orthogonales au vecteur gradient

Plan tangent

Une application classique de cette formule est l'étude en géométrie du plan tangent d'une fonction de \mathbb{R}^2 dans \mathbb{R} :

Si f est de classe C^1 sur \mathbb{R}^2 en $a = (a_1, a_2) \in U$, alors on rappelle que le graphe de f,

$$S = \{(x, y, z) \in \mathbb{R}^3, (x, y) \in U, z = f(x, y)\}$$

est la surface de \mathbb{R}^3 d'équation cartésienne z = f(x, y).

D'après la formule de Taylor à l'ordre 1,

$$z = f(x,y) = f(a) + \frac{\partial f}{\partial x}(a).(x - a_1) + \frac{\partial f}{\partial y}(a).(y - a_2) + ||(x,y) - a||\varepsilon((x,y))||$$

Définition

On appelle plan tangent à la surface S d'équation cartésienne z = f(x, y), le plan de \mathbb{R}^3 d'équation

$$z = f(a) + \frac{\partial f}{\partial x}(a).(x - a_1) + \frac{\partial f}{\partial y}(a).(y - a_2).$$

Exercice 2 Soit la fonction

$$f: \left(\begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2y \end{array}\right)$$

Déterminer le plan tangent au graphe de f aux points A = (0,0) et B = (1,1).