# CA320 - Computability & Complexity Decidability

Dr. David Sinclair

CA320 Dr. David Sinclair

Decidability

## Diagonalisation

How do we compare the sizes of two infinite set?

For example comparing the set of natural numbers  $\{1, 2, 3, ...\}$  with the set of even natural numbers  $\{2, 4, 6, ...\}$  is one of these bigger that the other?

To answer this we need the concept of a *correspondence*. A *correspondence* is a function  $f: A \rightarrow B$  that is:

- one-to-one, that is it never maps two different elements of A
  to the same element of B; and
- **onto**, that is  $\forall c \in B$ ,  $\exists a \in A$  such that f(a) = b.

There is a *correspondence*, f(n) = 2n, between  $A = \{1, 2, 3, ...\}$  and  $B = \{2, 4, 6, ...\}$ , so both sets have the same size.

# Diagonalisation (2)

A set is countable if it is either finite or has the same size as  $\mathcal{N}$ .

Is the set  $Q = \{\frac{m}{n} | m, n \in \mathcal{N}\}$ , the set of positive rational numbers, countable? Lets organise the elements of Q as follows:



Dr. David Sinclair

Decidability

# Diagonalisation (3)

Each "bottom-left to upper right" diagonal is finite in size and hence we can list all the distinct elements of  $\mathcal{Q}$ . Since there is a correspondence between  $\mathcal{Q}$  and  $\mathcal{N}$ ,  $\mathcal{Q}$  is countable.

Is the set  $\mathcal{R}$ , the set of real numbers, countable?

#### Theorem

The set R is uncountable.

#### Proof.

We will assume a correspondence f exists and show this generates a contradiction, hence no correspondence really exists and  $\mathcal{Q}$  is uncountable. We will do this by constructing  $x \in \mathcal{R}$  and showing that it cannot be paired with anything in  $\mathcal{N}$ .

# Diagonalisation (4)

## Proof (contd.)

Suppose a correspondence f exists. Here is a hypothetical example

| n | f(n)             |                                                    |
|---|------------------|----------------------------------------------------|
| 1 | 0. <u>1</u> 4159 | Construct $x$ as follows. Let the $i$ -th          |
| 2 | 0.5 <u>5</u> 555 | fractional digit of $x$ not be equal to the        |
| 3 | 0.12 <u>3</u> 45 | i-th fractional digit of $f(i)$ .                  |
| 4 | 0.500 <u>0</u> 0 | e.g. $x = 0.4641$                                  |
| : |                  | Hence $\forall i \in \mathcal{N}, \ x \neq f(i)$ . |

Since we have created an x that cannot be paired with any element of  $\mathcal N$  our assumption that a correspondence existed is false and  $\mathcal R$  is uncountable.

This is an example of the diagonalisation techniques developed by Georg Cantor in 1873.

CA320 Dr. David Sinclair

Decidability

## Undecidability and the Halting Problem

#### **Theorem**

The language  $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing machine and } M \text{ accepts } w \}$  is undecidable.

#### Proof.

Let's assume a Turing machine H is a decider for  $A_{TM}$ .

$$H(\langle M, w \rangle) = \begin{cases} accept, & \text{if } M \text{ accepts } w \\ reject, & \text{if } M \text{ halts and does not accept } w \end{cases}$$

Let D be a Turing machine that uses H as follows.

$$D(M) = \mathbf{1}$$
. Run  $H$  on input  $\langle M, M \rangle$ .

**2.** Output the opposite of what *H* produces.

Therefore, accept

$$D(M) = \begin{cases} accept, & \text{if } M \text{ halts and does not accept } M \\ reject, & \text{if } M \text{ accepts } M \end{cases}$$

# Undecidability and the Halting Problem (2)

## Proof (contd.)

If we run D on its own description we get:  $D(D) = \begin{cases} accept, & \text{if } D \text{ halts and does not accept } D \\ reject, & \text{if } D \text{ accepts } D \end{cases}$ 

This contradiction implies that the initial assumption that  $A_{TM}$  is decidable is false.

This is just another version of the diagonalisation argument. Consider the table  $H(M_i, M_j)$  with some fictional values.

|       | $M_1$  | $M_2$  | $M_3$  | <br>D      |  |
|-------|--------|--------|--------|------------|--|
| $M_1$ | accept | reject | accept | <br>accept |  |
| $M_2$ | accept | reject | accept | <br>accept |  |
| $M_3$ | accept | reject | accept | <br>reject |  |
| :     |        |        |        |            |  |
| D     | reject | accept | reject | <br>?      |  |
| :     |        |        |        |            |  |
| CA320 |        |        |        |            |  |

Dr. David Sinclair

Decidability

# Undecidability and the Halting Problem (3)

#### **Theorem**

The language  $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a Turing machine and } M \text{ halts on input } w \}$  is undecidable.

#### Proof.

Assume that R is a Turing machine that decides  $HALT_{TM}$ . Using R we can construct a TM S that decides  $A_{TM}$ . S operates as follows on the input  $\langle M, w \rangle$  where M is a Turing machine and w is a string.

- 1. Run R on  $\langle M, w \rangle$ .
- 2. If R rejects  $\langle M, w \rangle$ , then reject.
- 3. If R accepts, then simulate M on w until it halts.
- 4. If *M* accepts, then return accept else return reject.

But since  $A_{TM}$  is undecidable then the initial assumption that there exists a Turing machine that decides  $HALT_{TM}$  must be false.

CA320

Dr. David Sinclair

## Reducability

Rather than using a diagonalisation proof to show the undecidability of a language  $L_1$  we can map/reduce the language to a language  $L_2$  whose decidability is already known.

The language  $L_1$  is mapping reducible to language  $L_2$ , written  $L_1 \leq L_2$ , if there is a computable function  $f: \Sigma^* \to \Sigma^*$  where for every w,

$$w \in L_1 \Leftrightarrow f(w) \in L_2$$

If  $L_1 \leq L_2$  and  $L_2$  is decidable, then  $L_1$  is decidable.

If  $L_1 \leq L_2$  and  $L_2$  is undecidable, then  $L_1$  is undecidable.

CA320 Dr. David Sinclair

Decidability

## Other Undecidable Problems

Some examples of:

- Given a Turing machine M, is there any string at all on which M halts?
- Given a Turing machine M, does M halt on every input?
- Given two Turing machines  $M_1$  and  $M_2$ , do they halt on the same input strings?
- Given a Turing machine M, is the language M accepts regular? Is it context-free? Is it Turing- decidable?
- Does a particular line (transition) in a program (machine) get executed?
- Does a program contain a computer virus?