(19) 日本国特許庁(JP)

G 1 1 B 20/12

(12)特 許 公 報(B1)

(11)特許番号

特許第3898751号 (P3898751)

(45) 発行日 平成19年3月28日 (2007.3.28)

(2006.01)

(2006.01)

の分割

(24) 登録日 平成19年1月5日(2007.1.5)

(51) Int.Cl.

G11B 27/00

FΙ

G11B 27/00

D

G 1 1 B 20/12

G 1 1 B 20/12 103

> 請求項の数 5 (全 71 頁)

(21) 出願番号 (22) 出願日 (62) 分割の表示 特顧2006-310861 (P2006-310861) 平成18年11月17日(2006.11.17) 特顧2006-295318 (P2006-295318)

原出顧日 審查請求日

早期審查対象出願

平成10年5月15日 (1998.5.15) 平成18年11月17日 (2006.11.17)

東京都港区芝浦一丁目1番1号 (74)代理人 100058479

弁理士 鈴江 武彦

(74)代理人 100091351

(73) 特許権者 000003078

弁理士 河野 哲

(74) 代理人 100088683

弁理士 中村 誠

株式会社東芝

(74) 代理人 100108855

弁理士 蔵田 昌俊

(74) 代理人 100075672

弁理士 峰 隆司

(74)代理人 100109830

弁理士 福原 淑弘 最終頁に続く

(54) [発明の名称] 情報記憶媒体とその情報記録方法及び装置と情報再生装置

(57)【特許請求の範囲】

【請求項1】

ビデオファイルと録再ビデオ管理データを含む管理ファイルとファイル・システムの情 報が記録可能な情報記憶媒体において、

前記情報記憶媒体上に記録される前記ビデオファイルは連続的なまとまりであるエクス テントにより構成され、

前記ビデオファイル内には映像情報を含むビデオオブジェクトが記録されているととも に新たなビデオオブジェクトが記録可能な未記録領域の存在を許し、

映像情報を含む1個の前記ビデオオブジェクトは前記エクステント毎に複数箇所に分散 配置可能であり、

前記ビデオファイル内ではAVアドレスが設定されており、

前記録再ビデオ管理データが前記AVアドレスで示された前記ビデオオブジェクトの先 頭アドレス情報を含み、

論理ブロック番号が設定される論理ブロックが定義され、

前記ファイル・システムの情報は前記ビデオファイルの記録位置が記述されたファイル エントリーとファイルアイデンティファイヤーディスクリプターを含み、

前記ファイルエントリーがショートアロケーションディスクリプターを含み、

前記ショートアロケーションディスクリプターが前記エクステントの長さ情報と位置情 報とを含み、

前記ファイルアイデンティファイヤーディスクリプターが対応する前記ファイルエント

リーの記録位置情報をロングアロケーションディスクリプターで記述しており、

前記ロングアロケーションディスクリプターが前記ファイルエントリーに関するエクス テントの長さ情報と位置情報を含み、

さらに前記ロング及びショートアロケーションディスクリプター内では対応する前記エクステントの位置情報を前記論理ブロック番号で指定しており、

また前記AVアドレス順は前記ファイルエントリー内の前記ショートアロケーションディスクリプターの記述順に合わせて設定されていることを特徴とする情報記憶媒体。

【請求項2】

ビデオファイルと録再ビデオ管理データを含む管理ファイルとファイル・システムの 情報が記録可能な情報記憶媒体において、

前記情報記憶媒体上に記録される前記ビデオファイルは連続的なまとまりであるエクス テントにより構成され、

前記ビデオファイル内には映像情報を含むビデオオブジェクトが記録されているととも に新たなビデオオブジェクトが記録可能な未記録領域の存在を許し、

映像情報を含む1個の前記ビデオオブジェクトは前記エクステント毎に複数箇所に分散 配置可能であり、

前記ビデオファイル内ではAVアドレスが設定されており、

前記録再ビデオ管理データが前記AVアドレスで示された前記ビデオオブジェクトの先頭アドレス情報を含み、

論理ブロック番号が設定される論理ブロックが定義され、

前記ファイル・システムの情報は前記ビデオファイルの記録位置が記述されたファイル エントリーとファイルアイデンティファイヤーディスクリプターを含み、

前記ファイルエントリーがショートアロケーションディスクリプターを含み、

前記ショートアロケーションディスクリプターが前記エクステントの長さ情報と位置情報とを含み、

前記ファイルアイデンティファイヤーディスクリプターが対応する前記ファイルエントリーの記録位置情報をロングアロケーションディスクリプターで記述しており、

前記ロングアロケーションディスクリプターが前記ファイルエントリーに関するエクス テントの長さ情報と位置情報を含み、

さらに前記ロング及びショートアロケーションディスクリプター内では対応する前記エ クステントの位置情報を前記論理ブロック番号で指定しており、

また前記AVアドレス順は前記ファイルエントリー内の前記ショートアロケーションディスクリプターの記述順に合わせて設定されており、

前記ファイル・システムの情報を読み取り上記ビデオファイルをアクセスしデータ再生 を行なうことを特徴とする情報再生方法。

【請求項3】

ビデオファイルと録再ビデオ管理データを含む管理ファイルとファイル・システムの 情報が記録可能な情報記憶媒体において、

前記情報記憶媒体上に記録される前記ビデオファイルは連続的なまとまりであるエクス テントにより構成され、

前記ビデオファイル内には映像情報を含むビデオオブジェクトが記録されているととも に新たなビデオオブジェクトが記録可能な未記録領域の存在を許し、

映像情報を含む1個の前記ビデオオブジェクトは前記エクステント毎に複数箇所に分散 配置可能であり、

前記ビデオファイル内ではAVアドレスが設定されており、

前記録再ビデオ管理データが前記AVアドレスで示された前記ビデオオブジェクトの先頭アドレス情報を含み、

論理ブロック番号が設定される論理ブロックが定義され、

前記ファイル・システムの情報は前記ビデオファイルの記録位置が記述されたファイル エントリーとファイルアイデンティファイヤーディスクリプターを含み、 10

20

30

40

前記ファイルエントリーがショートアロケーションディスクリプターを含み、

前記ショートアロケーションディスクリプターが前記エクステントの長さ情報と位置情報とを含み、

前記ファイルアイデンティファイヤーディスクリプターが対応する前記ファイルエント リーの記録位置情報をロングアロケーションディスクリプターで記述しており、

前記ロングアロケーションディスクリプターが前記ファイルエントリーに関するエクス テントの長さ情報と位置情報を含み、

さらに前記ロング及びショートアロケーションディスクリプター内では対応する前記エクステントの位置情報を前記論理ブロック番号で指定しており、

また前記AVアドレス順は前記ファイルエントリー内の前記ショートアロケーションデ 10 ィスクリプターの記述順に合わせて設定されており、

前記ファイル・システムの情報と、前記ビデオファイルの映像情報を記録することを特徴とする情報記録方法。

【請求項4】

ビデオファイルと録再ビデオ管理データを含む管理ファイルとファイル・システムの 情報が記録可能な情報記憶媒体において、

前記情報記憶媒体上に記録される前記ビデオファイルは連続的なまとまりであるエクス テントにより構成され、

前記ビデオファイル内には映像情報を含むビデオオブジェクトが記録されているととも に新たなビデオオブジェクトが記録可能な未記録領域の存在を許し、

映像情報を含む1個の前記ビデオオブジェクトは前記エクステント毎に複数箇所に分散 配置可能であり、

前記ビデオファイル内ではAVアドレスが設定されており、

前記録再ビデオ管理データが前記AVアドレスで示された前記ビデオオブジェクトの先頭アドレス情報を含み、

論理ブロック番号が設定される論理ブロックが定義され、

前記ファイル・システムの情報は前記ビデオファイルの記録位置が記述されたファイル エントリーとファイルアイデンティファイヤーディスクリプターを含み、

前記ファイルエントリーがショートアロケーションディスクリプターを含み、

前記ショートアロケーションディスクリプターが前記エクステントの長さ情報と位置情報とを含み、

前記ファイルアイデンティファイヤーディスクリプターが対応する前記ファイルエントリーの記録位置情報をロングアロケーションディスクリプターで記述しており、

前記ロングアロケーションディスクリプターが前記ファイルエントリーに関するエクス テントの長さ情報と位置情報を含み、

さらに前記ロング及びショートアロケーションディスクリプター内では対応する前記エクステントの位置情報を前記論理ブロック番号で指定しており、

また前記AVアドレス順は前記ファイルエントリー内の前記ショートアロケーションディスクリプターの記述順に合わせて設定されており、

前記ファイル・システムの情報を読み取り上記ビデオファイルをアクセスしデータ再生 を行なう手段を有することを特徴とする情報再生装置。

【請求項5】

ビデオファイルと録再ビデオ管理データを含む管理ファイルとファイル・システムの 情報が記録可能な情報記憶媒体において、

前記情報記憶媒体上に記録される前記ビデオファイルは連続的なまとまりであるエクス テントにより構成され、

前記ビデオファイル内には映像情報を含むビデオオブジェクトが記録されているととも に新たなビデオオブジェクトが記録可能な未記録領域の存在を許し、

映像情報を含む1個の前記ビデオオブジェクトは前記エクステント毎に複数箇所に分散 配置可能であり、

50

20

30

40

前記ビデオファイル内ではAVアドレスが設定されており、

前記録再ビデオ管理データが前記AVアドレスで示された前記ビデオオブジェクトの先頭アドレス情報を含み、

論理ブロック番号が設定される論理ブロックが定義され、

前記ファイル・システムの情報は前記ビデオファイルの記録位置が記述されたファイル エントリーとファイルアイデンティファイヤーディスクリプターを含み、

前記ファイルエントリーがショートアロケーションディスクリプターを含み、

前記ショートアロケーションディスクリプターが前記エクステントの長さ情報と位置情報とを含み、

前記ファイルアイデンティファイヤーディスクリプターが対応する前記ファイルエント 10 リーの記録位置情報をロングアロケーションディスクリプターで記述しており、

前記ロングアロケーションディスクリプターが前記ファイルエントリーに関するエクス テントの長さ情報と位置情報を含み、

さらに前記ロング及びショートアロケーションディスクリプター内では対応する前記エクステントの位置情報を前記論理ブロック番号で指定しており、

また前記AVアドレス順は前記ファイルエントリー内の前記ショートアロケーションディスクリプターの記述順に合わせて設定されており、

前記ファイル・システムの情報と、前記ビデオファイルの映像情報を記録する手段を有することを特徴とする情報記録装置。

【発明の詳細な説明】

【技術分野】

[0001]

この発明は映像情報をデジタル情報の形で記録し、またデジタル情報を再生して映像情報を取り出す事が可能な情報記憶媒体に対する映像情報の記録時のデータ構造の改良に関する発明であり、またこの改良されたデータ構造を有する情報記憶媒体の改良に関する発明でも有る。また映像情報を上記情報記憶媒体上に記録する場合にはMPEG規格に基づき圧縮されたデジタル映像が記録される場合が多い。またこの映像情報を情報記憶媒体上に記録する情報記録再生装置及びこの映像情報を情報記憶媒体から再生する情報再生装置の改良に関する発明でもある。

【背景技術】

[0002]

近年映像(動画)や音声等を記録した光ディスクを再生するシステムが開発され、LD (レーザディスク) あるいはビデオCD (ビデオコンパクトディスク) などの様に映画ソフトやカラオケ等を再生する目的で一般に普及している。

[0003]

その中で、国際規格化したMPEG2(ムービングピクチャエキスパートグループ)方式を使用し、AC-3(デジタルオーディオコンプレッション)その他のオーディオ圧縮方式を採用したDVD(デジタルバーサタイルディスク)規格が提案された。このDVD規格には再生専用のDVDビデオ(またはDVD-ROM)、ライトワンスのDVD-R、反復読み書き可能なDVD-RAM(またはDVD-RW)が含まれる。

[0004]

DVDビデオ(DVD-ROM)の規格は、MPEG2システムレイヤに従って、動画 圧縮方式としてはMPEG2、音声記録方式としてはリニアPCMの他にAC-3オーディオおよびMPEGオーディオをサポートしている。さらに、このDVDビデオ規格は、字幕用としてビットマップデータをランレングス圧縮した副映像データ、早送り巻き戻しデータサーチ等の再生制御用コントロールデータ(ナビゲーションデータ)を追加して構成されている。また、この規格では、コンピュータでデータを読むことが出来るように、ISO9660およびUDFブリッジフォーマットもサポートしている。

[0005]

DVDビデオ(DVD-ROM)に用いられる光ディスクは、現在のところ、片面1層

20

30

40

50

の12cmディスクで、およそ4.7GB(ギガバイト)の記憶容量を持っている。片面2層ではおよそ9.5GBの記憶容量があり、両面2層ではおよそ18GBの大容量記録が可能となっている(波長650nmのレーザを読み取りに使用した場合)。

[0006]

一方、DVD-RAM (DVD-RW) に用いられる光ディスクは、現在のところ、12cmディスクで、片面およそ2.6GB (ギガバイト) の記憶容量を持っており、両面では5.2GBの容量がある。現在実用化されているDVD-RAMの光ディスクは、対応するサイズのDVD-ROMディスクより記憶容量が小さい。

[0007]

再生専用のDVDビデオ(DVDーROM)において情報記憶媒体上に記録される情報(データファイル)のディレクトリ構造を図37に示す。コンピュータの汎用オペレーディングシステムが採用している階層ファイル構造と同様に、ルートディレクトリの下にビデオ・タイトル・セットVTSのサブディレクトリとオーディオタイトルセットATSのサブディレクトリが繋がっている。そして、ビデオ・タイトル・セットVTSのサブディレクトリ中に、種々なビデオファイル(VMGI、VMGM、VTSI、VTSM、VTS等のファイル)が配置されて、各ファイルが整然と管理されるようになっている。特定のファイル(たとえば特定のVTS)は、ルートディレクトリからそのファイルまでのパスを指定することで、アクセスできる。

[0008]

すなわちDVDビデオディスクのルートディレクトリは、ビデオ・タイトル・セット(VTS)というサブディレクトリを含む。このサブディレクトリは、種々な管理データファイル($VIDEO_TS.IFO$ 、 $VTS_01_0.IFO$)と、これらの管理データファイルの情報をバックアップするバックアップファイル($VIDEO_TS.BUP$ 、 $VTS_01_0.BUP$)と、前記管理データファイルの記載内容とに基づき管理されるものであって、デジタル映像情報を格納するためのビデオデータファイル($VTS_01_1.VOB$)とを含むことができる。

[0009]

上記サブディレクトリは、所定のメニュー情報を格納するためのメニューデータファイル(VMGM、VTSM)をさらに含むことができる。

[0010]

DVDビデオディスクは、1個のビデオ・マネージャー(<math>VMG)と少なくとも1個、最大99個のビデオ・タイトル・セット(VTS)から構成される。ビデオ・マネージャー(VMG)は制御データ(VMGI)、VMGメニュー用VOBS($VMGM_VOBS$)及びバックアップ用制御データ($VMGI_BUP$)から構成され、各データはそれぞれ単一のファイルとして個々に情報記憶媒体上に記録される。

[0011]

図37に示すようにDVDビデオディスクではそれぞれのビデオ・タイトル・セット [図37では "ビデオ・タイトル・セット (VTS) #1" と "ビデオ・タイトル・セット (VTS) #2"] 毎に別ファイルに分けて記録する必要が有る。また同一のビデオ・タイトル・セット [例えば "ビデオ・タイトル・セット (VTS) #1"] 内には個々に制御データ (VTSI)、VTSメニュー用VOBS (VTSM_VOBS) 及びバックアップ用制御データ (VMGI_BUP) が別々のファイルとして記録され、VTS内のタイトル用ビデオデータ (VTS_01_1. VOBとVTS_01_2. VOB) が複数のファイルに分かれて記録されている。

[0012]

DVD-RAMディスクではファイル・システムとしてFAT(File Allocation Table)では無く、UDF(Universal Disk Format)を採用している。UDFに付いての詳細な説明は後述する。UDFではFATと同様にファイルの階層構造を可能とし、データを個々のファイル単位で情報記憶媒体上に記録する。従来は、UDF、FATともにファイル内は記録されるデータで詰まっており、本発明のように同一ファイル内に"未記録領

域"を持つ事が無い。

[0013]

上記の内容について一例を示して詳細に説明する。例えばPC上で動作するワードプロセッサソフト(一太郎、Word、アミプロなど)で文章を作成した場合、作成結果の文章は1個のファイルとして情報記憶媒体に記録される。1個のファイル内には全てテキスト情報で埋まっている。仮に上記作成文章の真中部分に文章の書かれてない"スペースエリア"または"連続エンターマーク部分"が長く続いたとしても、保存されたファイル内にはその部分にも"スペース情報"や"エンター情報"が詰まっており、ファイル内には"全くの未記録領域"は存在しない。

[0014]

ユーザがその文書ファイルを読み出し、文章の中央部分を削除した後でデータを保存した場合、この保存された情報には"未記録領域"が定義される事無く、ユーザに削除された部分の前後のデータが詰めてつなぎ合わされた状態のファイルとして情報記憶媒体に記録される。その結果、情報記憶媒体に記録されたファイルのファイルサイズは、ユーザに削除された部分のデータ量だけ小さくなっている。

[0015]

また一般のPC上で動作するアプリソフトでは、編集用に情報記憶媒体から読み込まれたファイルはPC上のバッファメモリ(半導体メモリ)上にそっくりそのまま転送され、編集後のデータは一時的にPC上のバッファメモリ(半導体メモリ)上に保存されている。ユーザから"ファイル保存"の指示が出されるとPC上のバッファメモリ(半導体メモリ)上に蓄えられていた編集後のデータがファイル全体として情報記憶媒体上に書き重ねられる。このように従来のFATやUDFのようなファイル・システムではファイルデータの変更時には上書き処理によりファイル内のデータ全てを一度に変更し、本発明のようにファイル内の一部分のみのデータ変更は行なわない。

[0016]

DVDビデオディスクにおけるPGC(プログラムチェーン)を用いた映像情報再生例を図38(a),(b)に示す。図38(a)のように再生データをセルとしてセルAからセルFまでの再生区間で指定され、同図(b)のように各PGCにおいてPGCインフォメーションが定義されている。

[0017]

1. PGC#1は、連続する再生区間を指定したセルで構成される例を示し、その再生順序は

セルA → セルB → セルC

となる。

[0018]

2. PGC#2は、断続された再生区間を指定したセルで構成される例を示し、その再生順序は

 $\forall L L D \rightarrow L L L D \rightarrow L L L D D$

となる。

[0019]

3. PGC#3は、再生方向や重複再生に関わらず飛び飛びに再生可能である例を示し、 その再生順序は

 $au ext{NE} o au ext{NA} o au ext{ND} o au ext{NB} o au ext{NE}$ となる。

[0020]

このように異なる複数のPGCを定義して、同一のセルに対する異なった表示順番を示す事が出来る。またDVDビデオディスクではPGC設定の自由度から、必ずしも1個のPGCで全てのセル情報を表示するとは限らない。

【特許文献1】特開平11-238318号(先願)

【発明の開示】

50

10

20

30

【発明が解決しようとする課題】

[0021]

以上再生専用のDVDビデオディスクに記録されている映像情報のデータ構造について 説明した。DVDファミリーの一形態としてDVD-RAMディスクあるいはDVD-R Wディスクを用いた映像情報の録画・再生可能な情報記憶媒体の開発が現在進んでいる。

[0022]

この録画・再生可能な情報記憶媒体上の映像情報記録フォーマットはDVDビデオディスクのデータ構造との継続性、関連性が望まれる。またDVD-RAMディスクあるいはDVD-RWディスクに対するファイル・システムは再生専用のDVDビデオディスクと同様UDFを採用する。記録可能な(録画可能な)情報記憶媒体でのデータ構造として上述したDVDビデオディスクのデータ構造そのままを利用し、またファイル・システムとして上述したような従来のUDF(あるいはFAT)を用いた場合、

1. 制御データとビデオデータとが複数のファイルに分散して記録されているため、1個のファイルを間違って消去した場合に再生途中、消去したファイルを再生しようとして初めてエラー箇所が分かる。すなわち、再生専用のDVDビデオディスクではユーザによるファイル消去の危険性が皆無で有ったが、記録/消去可能な情報記憶媒体ではユーザによるファイルの誤消去の危険性が発生する。

[0023]

2. 制御データとビデオデータとが複数のファイルに分散して記録されており、データ構造がコンピュータデータと同じ階層構造を持っているので、コンピュータに馴染みの浅い一般家庭ユーザには消去場所や記録場所を理解し辛い。すなわち、映像が記録可能な媒体として今までVTRしか知らない一般家庭ユーザにとって映像を記録あるいは消去した場所が"1本のテープの中でどの場所になるのか"と言う疑問が生じ、細かいファイル単位の記録・消去処理結果をそのままユーザに表示したのではユーザに混乱が生じる。

[0024]

図37のようにDVDビデオディスクではそれぞれのビデオ・タイトル・セット毎に別ファイルに分けて記録するため、複数のビデオ・タイトル・セット(図37ではVTS#1とVTS#2)が情報記憶媒体上に記録されていた場合にはVTRしか知らないユーザにはどの順で再生したら良いか分からない。

[0025]

3. 録画した情報に対してPGCに対応した特定のセルを一般家庭ユーザに選択させる方法では、ユーザによっては混乱が生じやすい。すなわち、映像が記録可能な媒体として今までVTRしか知らない一般家庭ユーザにとって映像を記録あるいは消去した場所が"1本のテープの中でどの場所になるのか"と言う発想が先に立つので、再生専用のDVDビデオディスクでのPGCによるセル選択の概念が理解し辛いユーザが現れる。

[0026]

4. 従来のUDFあるいはFATで記録されたデータファイル内には未記録領域が存在しないためファイル内の特定データの部分消去処理やわずかな映像情報の追加記録処理を行なった場合、部分消去場所前後のデータを詰めてつなぎ合わせたり、既存のデータの最後への情報追加などその都度データファイル全体のサイズを変更し、変更したデータファイル全体を情報記憶媒体上に記録し直す必要が生じ、編集処理に対して非常に時間がかかる

[0027]

従来のUDFあるいはFATではファイル内に未記録領域を持たないため、

- (a) ファイル内データの部分消去時の消去場所の未記録領域への変更や、
- (b)全体のファイルサイズを変える事無く、ファイル内の未記録領域に追加データを記録する、

などが行えず、部分消去やデータの追加が行なわれる毎にファイルサイズの変更が必要となる。

[0028]

50

10

20

30

20

30

40

50

その結果、ファイル全体を情報記憶媒体上に記録し直す必要が有る。映像情報が記録されたビデオファイルの場合、1個のビデオファイルサイズが数百メガバイトを越す膨大な量になる。ほんのわずかな変更に対し、その都度数百メガバイトを越す膨大なファイル全体を情報記憶媒体上に記録し直すと、ファイル内容の変更に膨大な時間がかかると言う問題点が発生する。

[0029]

本発明は上記問題点にかんがみてなされたもので、ファイル管理を一層容易にする情報記憶媒体と情報記録装置及び方法と再生装置を提供する事を目的とする。

【課題を解決するための手段】

[0030]

上記目的を達成するため、ビデオファイルと録再ビデオ管理データを含む管理ファイル とファイル・システムの情報が記録可能な情報記憶媒体において、前記情報記憶媒体上に 記録される前記ビデオファイルは連続的なまとまりであるエクステントにより構成され、 前記ビデオファイル内には映像情報を含むビデオオブジェクトが記録されているとともに 新たなビデオオブジェクトが記録可能な未記録領域の存在を許し、映像情報を含む1個の 前記ビデオオブジェクトは前記エクステント毎に複数箇所に分散配置可能であり、前記ビ デオファイル内ではAVアドレスが設定されており、前記録再ビデオ管理データが前記A Vアドレスで示された前記ビデオオブジェクトの先頭アドレス情報を含み、論理ブロック 番号が設定される論理ブロックが定義され、前記ファイル・システムの情報は前記ビデオ ファイルの記録位置が記述されたファイルエントリーとファイルアイデンティファイヤー ディスクリプターを含み、前記ファイルエントリーがショートアロケーションディスクリ プターを含み、前記ショートアロケーションディスクリプターが前記エクステントの長さ 情報と位置情報とを含み、前記ファイルアイデンティファイヤーディスクリプターが対応 する前記ファイルエントリーの記録位置情報をロングアロケーションディスクリプターで 記述しており、前記ロングアロケーションディスクリプターが前記ファイルエントリーに 関するエクステントの長さ情報と位置情報を含み、さらに前記ロング及びショートアロケ ーションディスクリプター内では対応する前記エクステントの位置情報を前記論理ブロッ ク番号で指定しており、また前記AVアドレス順は前記ファイルエントリー内の前記ショ ートアロケーションディスクリプターの記述順に合わせて設定されていることを基本とす る。

【発明の効果】

[0031]

この発明ではファイル管理を容易にし、ファイルへのアクセスを正確に行うことが可能 である。

【発明を実施するための最良の形態】

[0032]

まず始めに図1を用いて本発明の情報記憶媒体内に記録される映像情報のデータ構造の説明を行なう。本発明の情報記憶媒体の外観図を図1(a)に示す。情報記憶媒体(光ディスク1001)上に記録される情報の概略的なデータ構造としては図1(b)に示すように内周側1006から順に、リードインエリア1002と、ボリューム&ファイルマネージャインフォメーション1003と、データエリア1004と、リードアウトエリア1005とがある。

[0033]

リードインエリア1002は、光反射面が凹凸形状をしたエンボスドデータゾーンと、 表面が平坦(鏡面)なミラーゾーンと、情報の書き換えが可能なリライタブルデータゾー ンとを有している。

[0034]

ボリューム&ファイルマネージャインフォメーション1003は、ユーザによる記録・書き換えが可能なリライタブルデータゾーンに、オーディオ&ビデオデータのファイルまたはボリューム全体に関する情報が記録されている。

20

30

[0035]

データエリア1004は、ユーザによる記録・書き換えが可能なリライタブルデータゾーンを有している。リードアウトエリア1005は、情報の書き換えが可能なリライタブルデータゾーンで構成されている。

[0036]

リードインエリア1002のエンボスドデータゾーンには、DVD-ROM/-RAM/-Rなどのディスクタイプ、ディスクサイズ、記録密度等を示す情報と、記録開始/記録終了位置を示す物理セクタ番号などの情報記憶媒体全体に関する情報と、記録パワーと記録パルス幅、消去パワー、再生パワー、記録・消去時の線速などの記録・再生・消去特性に関する情報と、製造番号などそれぞれ1枚ずつの情報記憶媒体の製造に関する情報とが事前に記録されている。

[0037]

リードインエリア1002のリライタブルデータゾーンと、リードアウトエリア1005のリライタブルデータゾーンは、それぞれ、各情報記憶媒体ごとの固有ディスク名記録領域と、試し記録領域(記録消去条件の確認用)と、データエリア1004内の欠陥領域に関する管理情報記録領域とを持ち、上記領域へ情報記録再生装置による記録が可能になっている。

[0038]

リードインエリア1002とリードアウトエリア1005との間に挟まれたデータエリア1004には、図1(c)に示すように、コンピュータデータとオーディオ&ビデオデータとの混在記録が可能になっている。コンピュータデータとオーディオ&ビデオデータとの記録順序、各記録情報サイズは任意で、コンピュータデータが記録されて有る場所をコンピュータデータエリア1008、1010と呼び、オーディオ&ビデオデータが記録された領域をオーディオ&ビデオデータエリア1009と名付ける。

[0039]

オーディオ&ビデオデータエリア1009内に記録された情報のデータ構造は図1(d)のように、録画(録音)、再生、編集、検索の各処理を行なう時に必要な制御情報であるコントロールインフォメーション1011と、ビデオデータ中身(コンテンツ)の録画情報であるビデオオブシェクト1012と、スチルやスライドなどの静止画やビデオデータ内の見たい場所検索用または編集用サムネール(サムネールピクチャ)などの情報であるピクチャオブジェクト1013と、オーディオデータ中身(コンテンツ)の録音情報であるオーディオオブシェクト1014等から構成される。

[0040]

さらにコントロールインフォメーション1011の内容は、図1(e)のように、ビデオオブジェクト1012内のデータ構造を管理し、また情報記憶媒体である光ディスク1001上での記録位置に関する情報の管理情報であるAVデータコントロールインフォメーション1101と、再生時に必要な制御情報であるプレイバックコントロールインフォメーション1021と、記録(録画・録音)時に必要な制御情報であるレコーディングコントロールインフォメーション1022と、編集時に必要な制御情報であるエディットコントロールインフォメーション1023と、ビデオデータ内の見たい場所検索用または編集用サムネール (サムネールピクチャ)に関する管理情報であるサムネールピクチャコントロールインフオメーション1024等を有している。

[0041]

また図1 (e)に示されているAVデータコントロールインフォメーション1101のデータ構造は、映像情報再生プログラム(シーケンス)に関する情報であるPGCコントロールインフォメーション1103と、映像情報基本単位のデータ構造に関する情報であるセルタイムコントロールインフォメーション1104等から構成されている。

[0042]

図1 (f)までを概観すると上記の内容になるが、個々の情報に対して以下に若干の説明補足を行なう。ボリューム&ファイルマネージャインフオメーション1003には、ボ

30

50

リューム全体に関する情報と、含まれるPCデータのファイル数やAVデータに関するファイル数、記録レイヤー情報などに関する情報が記録されている。特に記録レイヤー情報として、構成レイヤー数(例:RAM/ROM2層ディスク1枚は2レイヤー、ROM2層ディスク1枚も2レイヤー、片面ディスクn枚はnレイヤーとしてカウントする)、各レイヤー毎に割り付けた論理セクタ番号範囲テーブル(各レイヤー毎の容量)、各レイヤー毎の特性(例:DVDーRAMディスク、RAM/ROM2層ディスクのRAM部、CDーROM、CDーRなど)、各レイヤー毎のRAM領域でのゾーン単位での割付け論理セクタ番号範囲テーブル(各レイヤー毎の書換え可能領域容量情報も含む)、各レイヤー毎の独自のID情報(多連ディスクパック内のディスク交換を発見するため)等が記録をの独自のID情報(多連ディスクパック内のディスクで対しても連続した論理セクタ番号を設定して1個の大きなボリューム空間として扱えるようになっている。

[0043]

プレイバックコントロールインフォ1021では、PGCを統合した再生シーケンスに関する情報、上記に関連して情報記憶媒体をVTRやDVCのように一本のテープと見なした擬似的記録位置を示す情報(記録された全てのセルを連続して再生するシーケンス)、異なる映像情報を持つ複数画面同時再生に関する情報、検索情報(検索カテゴリー毎に対応するセルIDとそのセル内の開始時刻のテーブルが記録され、ユーザがカテゴリーを選択して該当映像情報への直接アクセスを可能にする情報)などが記録されている。

[0044]

またレコーディングコントロールインフォメーション1022には、番組予約録画情報などが記録されている。更にエディットコントロールインフォメーション1023では、各PGC単位の特殊編集情報(該当時間設定情報と特殊編集内容がEDL情報として記載されている)、ファイル変換情報(AVファイル内の特定部分をAVIファイルなどのPC上で特殊編集を行えるファイルに変換し、変換後のファイルを格納する場所を指定)等が記録されている。

[0045]

本発明における1枚の情報記憶媒体に1個のみのビデオファイルを有したディレクトリ構造を図2に示す。図1に示したビデオオブジェクト1012の録再ビデオデータそのものが図2のRWVIDEO_OBJECT. VOBと言うファイル名の唯一のビデオファイルに記録される。

[0046]

図1のコントロールインフォメーション1011の録再ビデオ管理データが図2のファイル名RWVIDEO_CONTROL. IFOとそのバックアップファイルであるRWVIDEO_CONTROL. BUPに記録されている。図1のピクチャオブジェクト1013情報は静止画データとサムネール画像データに分かれてそれぞれ図2のRWPICTUER_OBLECT. POBとRWTHUMBNAIL_OBJECT. POBのファイルにそれぞれ記録される。また図1のオーディオオブジェクト1014はRWAUDIO_OBJECT. AOBと言う名のファイルに記録されている。

[0047]

図37に示したようなDVDビデオディスクに関する各ファイルは図示して無いが、図2のビデオ・タイトル・セットVIDEO_TSのサブディレクトリの下に記録されており、RWVIDEO_CONTROL. IFO (録再ビデオ管理データ) の情報に従ってRWVIDEO_OBJECT. VOB (録再ビデオデータ) との間でのリンクが貼られ、両者間でのシームレスな連続的再生などが可能になっている。

[0048]

図3は本発明の他の実施の形態の説明図でビデオデータ、静止画データ、サムネールデータ、オーディオデータが全て1個のファイル(RWOBJECT.OB)にまとめて記録されている。図3に於いては録画再生用の全データは1ファイルにまとめて記録されているが、再生手順などの管理情報が記録されている録再ビデオ管理データ(RWVIDEO_CONTROL.IFO)は別ファイルとして記録されている。

30

40

50

[0049]

また図4は本発明の更なる実施の形態の説明図で図3と比べて管理データも含めて全て 1ファイル(リライタブル・オーディオ・ビデオ・ファイルRWAVFILE. DAT) で記録されている。またこの場合、このファイルは特定のサブディレクトリの下に配置さ れておらず、ルートディレクトリのすぐ下に配置されている。

[0050]

次に図5を用いてビデオオブジェクト(VOB)とセル(Cell)間の関連を説明する。図5に示すように、各セル84は1以上のビデオオブジェクトユニット(VOBU)85により構成される。そして、各ビデオオブジェクトユニット85は、VOBU先頭パック86を先頭とする、ビデオパック(Vパック)88、副映像パック(SPパック)90、およびオーディオパック(Aパック)91の集合体(パック列)として構成されている。すなわち、ビデオオブジェクトユニットVOBU85は、あるナビゲーションパック86から次のナビゲーションパック86の直前まで記録される全パックの集まりとして定義される。

[0051]

これらのパックは、データ転送処理を行なう際の最小単位となる。また、論理上の処理 を行なう最小単位はセル単位であり、論理上の処理はこのセル単位で行なわれる。

[0052]

上記ビデオオブジェクトユニットVOBU85の再生時間は、ビデオオブジェクトユニットVOBU85中に含まれる1以上の映像グループ(グループオブピクチャ;略してGOP)で構成されるビデオデータの再生時間に相当し、その再生時間は0.4秒~1.2秒の範囲内に定められる。1GOPは、MPEG規格では通常約0.5秒であって、その間に15枚程度の画像を再生するように圧縮された画面データである。

[0053]

ビデオオブジェクトユニットVOBU85がビデオデータを含む場合には、ビデオパック88、副映像パック90およびオーディオパック91から構成されるGOP(MPEG規格準拠)が配列されて、ビデオデータストリームが構成される。しかし、このGOPの数とは無関係に、GOPの再生時間を基準にしてビデオオブジェクトユニットVOBU85が定められ、その先頭には、図5に示すように常にVOBU先頭パック86が配列される。

[0054]

なお、オーディオおよび/または副映像データのみの再生データにあっても、ビデオオブジェクトユニットVOBU85を1単位として再生データが構成される。たとえば、VOBU先頭パック86を先頭としてオーディオパック91のみでビデオオブジェクトユニットVOBU85が構成されている場合、ビデオデータのビデオオブジェクトVOB83の場合と同様に、そのオーディオデータが属するビデオオブジェクトユニットVOBU85の再生時間内に再生されるべきオーディオパック91が、そのビデオオブジェクトユニットVOBU85に格納される。

[0055]

ところで、図5に示すような構造のビデオオブジェクトセットVOBS82を含むビデオ・タイトル・セットVTSを情報記憶媒体に記録できる情報記録再生装置では、このVTSの記録後に記録内容を編集したい場合が生じる。この要求に答えるため、各VOBU85内に、ダミーパック89を適宜挿入できるようになっている。このダミーパック89は、後に編集用データを記録する場合などに利用できる。

[0056]

図5に示すように、ビデオオブジェクトセット(VTSTT_VOBS)82は、1以上のビデオオブジェクト(VOB)83の集合として定義されている。ビデオオブジェクトセットVOBS3は同一用途に用いられる。

[0057]

メニュー用のVOBS82は、通常、1つのVOB83で構成され、そこには複数のメ

ニュー画面表示用データが格納される。これに対して、タイトルセット用のVOBS82は、通常、複数のVOB83で構成される。

[0058]

ここで、タイトルセット用ビデオオブジェクトセットVTSTT_VOBS82を構成するVOB83は、あるロックバンドのコンサートビデオを例にとれば、そのバンドの演奏の映像データに相当すると考えることができる。この場合、VOB83を指定することによって、そのバンドのコンサート演奏曲目のたとえば3曲目を再生することができる。

[0059]

また、メニュー用ビデオオブジェクトセットVTSM_VOBSを構成するVOB83には、そのバンドのコンサート演奏曲目全曲のメニューデータが格納され、そのメニューの表示にしたがって、特定の曲、たとえばアンコール演奏曲目を再生することができる。

[0060]

なお、通常のビデオプログラムでは、1つのVOB83で1つのVOBS82を構成することができる。この場合、1本のビデオストリームが1つのVOB83で完結することとなる。

[0061]

一方、たとえば複数ストーリのアニメーション集あるいはオムニバス形式の映画では、1つのVOBS82中に各ストーリに対応して複数のビデオストリーム(複数のプログラムチェーンPGC)を設けることができる。この場合は、各ビデオストリームが対応するVOB83に格納されることになる。その際、各ビデオストリームに関連したオーディオストリームおよび副映像ストリームも各VOB83中で完結する。

[0062]

VOB83には、識別番号(IDN#i; $i=0\sim i$)が付され、この識別番号によってそのVOB83を特定することができる。VOB83は、1または複数のセル84から構成される。通常のビデオストリームは複数のセルで構成されるが、メニュー用のビデオストリームは1つのセル84で構成される場合もある。各セル84には、VOB83の場合と同様に識別番号($C_IDN#j$)が付されている。

[0063]

次に図1に示されているプレイバックコントロールインフォメーション1021内のデータ構造について図6を用いて説明する。図1に示されているプレイバックコントロールインフォメーション1021内のデータ構造は図6のプログラムチェーン(PGC)コントロールインフォメーション1103に示されるデータ構造を持ち、PGCとセルによって再生順序が決定される。

[0064]

PGCは、セルの再生順序を指定した一連の再生を実行する単位を示す。セルは、再生データを開始アドレスと終了アドレスで指定した再生区間を示す。プログラムチェーン(PGC)コントロールインフォメーション1103は、PGCインフォメーションマネージメントインフォメーション1052、1つ以上のサーチポインタオブPGCインフォメーション1053、1056、1057から構成される。

[0065]

PGCインフォメーションマネージメントインフォメーション1052には、PGCの数を示す情報(ナンバーオブPGCインフォメーション)が含まれる。サーチポインタオブPGCインフォメーション1053, 1054は、各PGCインフォメーションの先頭をポイントしており、サーチを容易にする。

[0066]

PGCインフォメーション1055, 1056, 1057は、PGCゼネラルインフォメーション1061及び1つ以上のサーチポインタオブセルタイムインフォメーション1062, 1063から成る。

[0067]

40

PGCゼネラルインフォメーション1061には、PGCの再生時間やセルの数を示す情報(ナンバーオブサーチポインタオブセルタイムインフォメーション)が含まれる。

[0068]

サーチポインタオブセルタイムインフォメーション1062,1063では、セルタイムインフォメーションの記録位置が示されている。ここで記録位置が示されるセルタイムインフォメーション内のデータ構造は図1(h)および図7、図8に示した構造を有する(詳細については後述する)。

[0069]

図38(a),(b)を用いて従来のDVDビデオにおけるPGCを用いた映像情報再生例を示す。図38(a)のように再生データをセルとしてセルAからセルFまでの再生区間で指定され、同図(b)のように各PGCにおいてPGCインフォメーションが定義されている。

[0070]

1. PGC#1は、連続する再生区間を指定したセルで構成される例を示し、その再生順序は

 $\forall \nu A \rightarrow \forall \nu B \rightarrow \forall \nu C$

となる。

[0071]

2. PGC#2は、断続された再生区間を指定したセルで構成される例を示し、その再生順序は

20

30

40

50

10

 $\forall \nu D \rightarrow \nu E \rightarrow \nu F$

となる。

[0072]

3. PGC#3 は、再生方向や重複再生に関わらず飛び飛びに再生可能である例を示し、その再生順序は

 $\forall \nu \to \nu A \rightarrow \nu D \rightarrow \nu B \rightarrow \nu E$

[0073]

従来例では必ずしも1個のPGCで全映像情報(全てのセル)を連続的に再生する必要がない。DVDビデオではすでに映像情報が記録されているので図38のような再生方法になってもユーザにとって違和感は無い。しかしユーザ録画可能な本発明のビデオファイル内にはユーザが映像情報を記録する。VTRに馴染んでいるユーザにとって図38のような再生方式の場合、全録画時間と残量の関係などで混乱が生じやすい。

[0074]

それに対して、本発明では図9 (a), (b) のようにビデオファイル内の全映像情報を連続再生するように1個のPGCで再生順を規定している。情報記憶媒体上では図9 (a) に示すように内周側から順にVOBが

 $VOB_IDN#1 \rightarrow VOB_IDN#3 \rightarrow VOB_IDN#2$ と並び、それに応じてセルは内周側から

 $\forall h \land A \rightarrow \forall h \land B \rightarrow \forall h \land C \rightarrow \forall h \land F \rightarrow \forall h \land G \rightarrow \forall h \land D \rightarrow \forall h \land E$

と順に配列されている。それに対して図9 (b) に示した全てのセルを連続的に再生する順を示したPGCでは

[0075]

図10は、図2または図37に示したビデオファイルを有した情報記憶媒体に対する情報再生装置あるいは情報記録再生装置構造を示した物である。

[0076]

図10に示す情報再生装置もしくは情報記録再生装置は、大まかにいって、ビデオファイルを有した情報記憶媒体である光ディスク1001を回転駆動し、この光ディスク10

20

30

40

01に対して情報の読み書きを実行する情報記録再生部32と、録画側を構成するエンコーダ部50と、再生側を構成するデコーダ部60と、装置本体の動作を制御するマイクロコンピュータブロック30とから構成されている。

[0077]

エンコーダ部 5 0 は、ADC(アナログ・デジタル変換器) 5 2 と、ビデオエンコーダ (Vエンコーダ) 5 3 と、オーディオエンコーダ(Aエンコーダ) 5 4 と、副映像エンコーダ(SPエンコーダ) 5 5 と、フォーマッタ 5 6 と、バッファメモリ 5 7 とを備えている。

[0078]

ADC52には、AV入力部42からの外部アナログビデオ信号+外部アナログオーディオ信号、あるいはTVチューナ44からのアナログTV信号+アナログ音声信号が入力される。このADC52は、入力されたアナログビデオ信号を、たとえばサンプリング周波数13.5MHz、量子化ビット数8ビットでデジタル化する。すなわち、輝度成分Y、色差成分Cr(またはY-R)および色差成分Cb(またはY-B)それぞれが、8ビットで量子化される。

[0079]

同様に、ADC52は、入力されたアナログオーディオ信号を、たとえばサンプリング 周波数48kHz、量子化ビット数16ビットでデジタル化する。

[0080]

なお、ADC52にアナログビデオ信号およびデジタルオーディオ信号が入力されるときは、ADC52はデジタルオーディオ信号をスルーパスさせる。デジタルオーディオ信号の内容は改変せず、デジタル信号に付随するジッタだけを低減させる処理、あるいはサンプリングレートや量子化ビット数を変更する処理等は行なっても良い。

[0081]

一方、ADC52にデジタルビデオ信号およびデジタルオーディオ信号が入力されるときは、ADC52はデジタルビデオ信号およびデジタルオーディオ信号をスルーパスさせる。これらのデジタル信号に対しても、内容は改変することなく、ジッタ低減処理やサンプリングレート変更処理等は行なっても良い。

[0082]

ADC52からのデジタルビデオ信号成分は、ビデオエンコーダ(Vエンコーダ)53を介してフォーマッタ56に送られる。また、ADC52からのデジタルオーディオ信号成分は、オーディオエンコーダ(Aエンコーダ)54を介してフォーマッタ56に送られる。

[0083]

Vエンコーダ53は、入力されたデジタルビデオ信号を、MPEG2またはMPEG1 規格に基づき、可変ビットレートで圧縮されたデジタル信号に変換する機能を持つ。

[0084]

また、Aエンコーダ54は、入力されたデジタルオーディオ信号を、MPEGまたはAC-3規格に基づき、固定ビットレートで圧縮されたデジタル信号(またはリニアPCMのデジタル信号)に変換する機能を持つ。

[0085]

映像情報がAV入力部42から入力された場合(たとえば副映像信号の独立出力端子付DVDビデオプレーヤからの信号)、あるいはこのようなデータ構成のDVDビデオ信号が放送されそれがTVチューナ44で受信された場合は、DVDビデオ信号中の副映像信号成分(副映像パック)が、副映像エンコーダ(SPエンコーダ)55に入力される。SPエンコーダ55に入力された副映像データは、所定の信号形態にアレンジされて、フォーマッタ56に送られる。

[0086]

フォーマッタ56は、バッファメモリ57をワークエリアとして使用しながら、入力されたビデオ信号、オーディオ信号、副映像信号等に対して所定の信号処理を行い、図5で

40

50

説明したようなフォーマット(ファイル構造)に合致した記録データをデータプロセサ36に出力する。

[0087]

ここで、上記記録データを作成するための標準的なエンコード処理内容を簡単に説明しておく。すなわち、図10のエンコーダ部50においてエンコード処理が開始されると、ビデオ(主映像)データおよびオーディオデータのエンコードにあたって必要なパラメータが設定される。次に、設定されたパラメータを利用して主映像データがプリエンコードされ、設定された平均転送レート(記録レート)に最適な符号量の分配が計算される。こうしてプリエンコードで得られた符号量分配に基づき、主映像のエンコードが実行される。このとき、オーディオデータのエンコードも同時に実行される。

[0088]

プリエンコードの結果、データ圧縮量が不十分な場合(録画しようとする情報記憶媒体に希望のビデオプログラムが収まり切らない場合)、再度プリエンコードする機会を持てるなら(たとえば録画のソースがビデオテープあるいはビデオディスクなどの反復再生可能なソースであれば)、主映像データの部分的な再エンコードが実行され、再エンコードした部分の主映像データがそれ以前にプリエンコードした主映像データ部分と置換される。このような一連の処理によって、主映像データおよびオーディオデータがエンコードされ、記録に必要な平均ビットレートの値が、大幅に低減される。

[0089]

同様に、副映像データをエンコードするに必要なパラメータが設定され、エンコードさ 20 れた副映像データが作成される。

[0090]

以上のようにしてエンコードされた主映像データ、オーディオデータおよび副映像データが組み合わされて、上記したビデオ・タイトル・セットVTSの構造に変換される。

[0091]

すなわち、主映像データ(ビデオデータ)の最小単位としてのセルが設定され、後述するように図7ないしは図8に示すようなセルタイムインフォメーションが作成される。次に、図9に示すようなプログラムチェーンを構成するセルの構成、主映像、副映像およびオーディオの属性等が設定され(これらの属性情報の一部は、各データをエンコードする時に得られた情報が利用される)、種々な情報を含めた録再ビデオ管理データ(RWVIDEO_CONTROL. IFO)が作成される。

[0092]

エンコードされた主映像データ、オーディオデータおよび副映像データは、図5に示すような一定サイズ(2048バイト)のパックに細分化される。これらのパックには、ダミーパックが適宜挿入される。なお、ダミーパック以外のパック内には、適宜、PTS(プレゼンテーションタイムスタンプ)、DTS(デコードタイムスタンプ)等のタイムスタンプが記述される。副映像のPTSについては、同じ再生時間帯の主映像データあるいはオーディオデータのPTSより任意に遅延させた時間を記述することができる。

[0093]

そして、各データのタイムコード順に再生可能なように、VOBU85単位でその先頭にナビゲーションパック86を配置しながら各データセルが配置されて、図5に示すような複数のセルで構成されるVOB83が構成される。このVOB83を1以上まとめたVOBS82が、図2の録再ビデオデータ(RWVIDEO_OBJECT. VOB)上に記録される。

[0094]

なお、DVDビデオプレーヤからDVD再生信号をデジタルコピーする場合は、上記セル、プログラムチェーン、管理テーブル、タイムスタンプ等の内容は初めから決まっているので、これらを改めて作成する必要はない。ただし、DVD再生信号をデジタルコピーできるようにDVDビデオレコーダを構成するには、電子すかしその他の著作権保護手段が講じられている必要がある。

20

30

40

50

[0095]

情報記憶媒体(光ディスク1001)に対して、情報の読み書き(録画および/または再生)を実行するディスクドライブ部は、ディスクチェンジャ部100と、情報記録再生部32と、一時記憶部34と、データプロセッサ36と、システムタイムカウンタ(またはシステムタイムクロック;STC)38とを備えている。

[0096]

一時記憶部34は、情報記録再生部32を介して情報記憶媒体(光ディスク1001)に書き込まれるデータ(エンコーダ部50から出力されるデータ)のうちの一定量分をバッファリングしたり、情報記録再生部32を介して情報記憶媒体(光ディスク1001)から再生されたデータ(デコーダ部60に入力されるデータ)のうちの一定量分をバッファリングするのに利用される。

[0097]

たとえば一時記憶部 34 が 4 Mバイトの半導体メモリ(DRAM)で構成されるときは、平均 4 M b p s の記録レートでおよそ 8 秒分の記録または再生データのバッファリングが可能である。また、一時記憶部 34 が 16 MバイトのEEPROM(フラッシュメモリ)で構成されるときは、平均 4 M b p s の記録レートでおよそ 30 秒の記録または再生データのバッファリングが可能である。さらに、一時記憶部 34 が 100 Mバイトの超小型 HDD(ハードディスク)で構成されるときは、平均 4 M b p s の記録レートで 3 分以上の記録または再生データのバッファリングが可能となる。

[0098]

一時記憶部34は、録画途中で情報記憶媒体(光ディスク1001)を使い切ってしまった場合において、情報記憶媒体(光ディスク1001)が新しいディスクに交換されるまでの録画情報を一時記憶しておくことに利用できる。

[0099]

また、一時記憶部34は、情報記録再生部32として高速ドライブ(2倍速以上)を採用した場合において、一定時間内に通常ドライブより余分に読み出されたデータを一時記憶しておくことにも利用できる。再生時の読み取りデータを一時記憶部34にバッファリングしておけば、振動ショック等で図示しない光ピックアップが読み取りエラーを起こしたときでも、一時記憶部34にバッファリングされた再生データを切り替え使用することによって、再生映像が途切れないようにできる。

[0100]

図10では図示しないが、情報再生装置または情報記録再生装置に外部カードスロットを設けておけば、上記EEPROMはオプションのICカードとして別売できる。また、情報再生装置または情報記録再生装置に外部ドライブスロットあるいはSCSIインターフェイスを設けておけば、上記HDDもオプションの拡張ドライブとして別売できる。

[0101]

図10のデータプロセサ36は、マイクロコンピュータブロック30の制御にしたがって、エンコーダ部50からのDVD記録データをディスクドライブ32に供給したり、情報記憶媒体(光ディスク1001)から再生されたDVD再生信号を情報記録再生部32から取り出したり、情報記憶媒体(光ディスク1001)に記録された管理情報を書き換えたり、情報記憶媒体(光ディスク1001)に記録されたデータ(ファイルあるいはVTS)の削除をしたりする。

[0102]

マイクロコンピュータブロック30は、MPU(またはCPU)、制御プログラム等が 書き込まれたROM、およびプログラム実行に必要なワークエリアを提供するRAMを含 んでいる。

[0103]

このマイクロコンピュータブロック30のMPUは、そのROMに格納された制御プログラムに従い、そのRAMをワークエリアとして用いて、後述する欠陥場所検出、未記録領域検出、録画情報記録位置設定、UDF記録、AVアドレス設定などを、実行する。

[0104]

MPUの実行結果のうち、情報記録再生装置のユーザに通知すべき内容は、DVDビデオレコーダの表示部48に表示され、またはモニタディスプレイにオンスクリーンディスプレイ(OSD)で表示される。

[0105]

なお、マイクロコンピュータブロック30が、ディスクチェンジャ部100、情報記録再生部32、データプロセッサ36、エンコーダ部50および/またはデコーダ部60を制御するタイミングは、STC38からの時間データに基づいて、実行することができる。録画・再生の動作は、通常はSTC38からのタイムクロックに同期して実行されるが、それ以外の処理は、STC38とは独立したタイミングで実行されてもよい。

[0106]

デコーダ部60は、図5に示すようなパック構造を持つ映像情報から各パックを分離して取り出すセパレータ62と、パック分離その他の信号処理実行時に使用するメモリ63と、セパレータ62で分離された主映像データ(図5のビデオパック88の内容)をデコードするビデオデコーダ(Vデコーダ)64と、セパレータ62で分離された副映像データ(図5の副映像パック90の内容)をデコードする副映像デコーダ(SPデコーダ)65と、セパレータ62で分離されたオーディオデータ(図5のオーディオパック91の内容)をデコードするオーディオデコーダ(Aデコーダ)68と、Vデコーダ64からのビデオデータにSPデコーダ65からの副映像データを適宜合成し、主映像にメニュー、ハイライトボタン、字幕その他の副映像を重ねて出力するビデオプロセッサ66と、ビデオプロセッサ66からのデジタルビデオ出力をアナログビデオ信号に変換するビデオ・デジタル・アナログ変換器(V・DAC)67と、Aデコーダ68からのデジタルオーディオは分をアナログオーディオ信号に変換するオーディオ・デジタル・アナログ変換器(A・DAC)67とを備えている。

[0107]

V・DAC67からのアナログビデオ信号およびA・DAC67からのアナログオーディオ信号は、AV出力部46を介して、図示しない外部コンポーネント(2チャネル~6チャネルのマルチチャネルステレオ装置+モニタTVまたはプロジェクタ)に供給される

[0108]

マイクロコンピュータブロック30から出力されるOSDデータは、デコーダ部60のセパレータ62に入力され、Vデコーダ64を通過して(とくにデコード処理はされない)ビデオプロセッサ66に入力される。すると、このOSDデータが主映像に重畳され、それがAV出力部46に接続された外部モニタTVに供給される。すると警告文が、主映像とともに表示される。

[0109]

次に図10における情報記録再生部32の内部構造について、図11を参照して説明する。

- [0110]
- (11A)情報記録再生部の機能説明
- (11A-1)情報記録再生部の基本機能 情報記録再生部では、

(*)情報記憶媒体(光ディスク)201上の所定位置に集光スポットを用いて新規情報の記録あるいは書き換え(情報の消去も含む)を行なう。

[0111]

(*)情報記憶媒体(光ディスク)201上の所定位置から集光スポットを用いてすでに 記録されている情報の再生を行なう。

[0112]

の処理を行なう。

[0113]

50

40

30

(11A-2) 情報記録再生部の基本機能達成手段

上記の基本機能を達成する手段として情報記録再生部では、

(*)情報記憶媒体201上のトラック(図示して無い)に沿って集光スポットをトレー ス(追従)させる。

[0114]

(*) 情報記憶媒体201に照射する集光スポットの光量を変化させて情報の記録/再生 /消去の切り替えを行なう。

[0115]

(*) 外部から与えられる記録信号 d を高密度かつ低エラー率で記録するために最適な信 号に変換する。

10

[0116]

を行なっている。

[0117]

(11B)機構部分の構造と検出部分の動作

(11B-1) 光学ヘッド202基本構造と信号検出同路

(11B-1-1) 光学ヘッド202による信号検出

光学ヘッド202は基本的には図示して無いが光源である半導体レーザ素子と光検出器 と対物レンズとから構成されている。

[0118]

半導体レーザ素子から発光されたレーザ光は、対物レンズにより情報記憶媒体(光ディ スク)201上に集光される。情報記憶媒体(光ディスク)201の光反射膜もしくは光 反射性記録膜で反射されたレーザ光は光検出器により光電変換される。

20

[0119]

光検出器で得られた検出電流はアンプ213により電流-電圧変換されて検出信号とな る。この検出信号はフォーカス・トラックエラー検出回路217あるいは2値化回路21 2 で処理される。一般的には光検出器は複数の光検出領域に分割され、各光検出領域に照 射される光量変化を個々に検出している。この個々の検出信号に対してフォーカス・トラ ックエラー検出回路217で和・差の演算を行ないフォーカスずれとトラックずれの検出 を行なう。情報記憶媒体(光ディスク)201の光反射膜もしくは光反射性記録膜からの 反射光量変化を検出して情報記憶媒体201上の信号を再生する。

30

[0120]

(11B-1-2) フォーカスずれ検出方法

フォーカスずれ量を光学的に検出する方法として、

(*) 非点収差法:情報記憶媒体(光ディスク)201の光反射膜もしくは光反射性記録 膜で反射されたレーザ光の検出光路に図示して無いが非点収差を発生させる光学素子を配 置し、光検出器上に照射されるレーザ光の形状変化を検出する方法。光検出領域は対角線 状に4分割されている。各検出領域から得られる検出信号に対し、フォーカス・トラック エラー検出回路217内で対角和間の差を取ってフォーカスエラー検出信号を得る。ある

(*) ナイフエッジ法:情報記憶媒体201で反射されたレーザ光に対して非対称に一部 を遮光するナイフエッジを配置する方法。光検出領域は2分割され、各検出領域から得ら れる検出信号間の差を取ってフォーカスエラー検出信号を得る。

40

[0121]

のどちらかを使う場合が多い。

[0122]

(11B-1-3) トラックずれ検出方法

情報記憶媒体(光ディスク)201はスパイラル状または同心円状のトラックを有し、 トラック上に情報が記録される。このトラックに沿って集光スポットをトレースさせて情 報の再生もしくは記録/消去を行なう。安定して集光スポットをトラックに沿ってトレー スさせるため、トラックと集光スポットの相対的位置ずれを光学的に検出する必要がある

20

30

40

50

。トラックずれ検出方法としては一般に、

(*) DPD (Differential Phase Detection) 法:情報記憶媒体(光ディスク) 201 の光反射膜もしくは光反射性記録膜で反射されたレーザ光の光検出器上での強度分布変化を検出する。光検出領域は対角線状に4分割されている。各検出領域から得られる検出信号に対し、フォーカス・トラックエラー検出回路217内で対角和間の差を取ってトラックエラー検出信号を得る。あるいは、

(*) プッシュープル (Push・Pull) 法:情報記憶媒体 2 0 1 で反射されたレーザ光の光検出器上での強度分布変化を検出する。光検出領域は 2 分割され、各検出領域から得られる検出信号間の差を取ってトラックエラー検出信号を得る。

[0123]

(*) ツインースポット (Twin・Spot) 法:半導体レーザー素子と情報記憶媒体201間の送光系に回折素子などを配置して光を複数に波面分割し、情報記憶媒体201上に照射する±1次回折光の反射光量変化を検出する。再生信号検出用の光検出領域とは別に+1次回折光の反射光量と-1次回折光の反射光量を個々に検出する光検出領域を配置し、それぞれの検出信号の差を取ってトラックエラー検出信号を得る。

[0124]

などが有る。

[0125]

(11B-1-4) 対物レンズアクチュエータ構造

半導体レーザ素子から発光されたレーザ光を情報記憶媒体201上に集光させる対物レンズ (図示されて無い) は対物レンズアクチュエータ駆動回路218の出力電流に応じて2軸方向に移動可能な構造になっている。この対物レンズの移動方向は、

- ・フォーカスずれ補正用に情報記憶媒体201に対する垂直方向に移動し、
- ・トラックずれ補正用に情報記憶媒体201の半径方向に移動する。

[0126]

図示して無いが対物レンズの移動機構を対物レンズアクチュエータと呼ぶ。対物レンズア クチュエータ構造としては、

(*) 軸摺動(じくしゅうどう)方式:中心軸(シャフト)に沿って対物レンズと一体のブレードが移動する方式で、ブレードが中心軸に沿った方向に移動してフォーカスずれ補正を行ない、中心軸を基準としたブレードの回転運動によりトラックずれ補正を行なう方法。あるいは、

(*) 4本ワイア方式:対物レンズと一体のブレードが固定系に対し4本のワイアで連結されており、ワイアの弾性変形を利用してブレードを2軸方向に移動させる方法。

[0127]

が多く使われている。いずれの方式も永久磁石とコイルを持ち、ブレードに連結したコイルに電流を流す事によりブレードを移動させる構造になっている。

[0128]

(11B-2)情報記憶媒体201の回転制御系

スピンドルモータ 2 0 4 の駆動力によって回転する回転テーブル 2 2 1 上に情報記憶媒体 (光ディスク) 2 0 1 を装着する。

[0129]

情報記憶媒体201の回転数は情報記憶媒体201から得られる再生信号によって検出する。すなわちアンプ213出力の検出信号(アナログ信号)は2値化回路212でデジタル信号に変換され、この信号からPLL回路211により一定周期信号(基準クロック信号)を発生させる。情報記憶媒体回転速度検出回路214ではこの信号を用いて情報記憶媒体201の回転数を検出し、その値を出力する。

[0130]

情報記憶媒体201上で再生あるいは記録/消去する半径位置に対応した情報記憶媒体回転数の対応テーブルは半導体メモリ219に予め記録して有る。再生位置もしくは記録 /消去位置が決まると、制御部220は半導体メモリ219情報を参照して情報記憶媒体

30

201の目標回転数を設定し、その値をスピンドルモータ駆動回路215に通知する。

[0131]

スピンドルモータ駆動回路 2 1 5 では、この目標回転数と情報記憶媒体回転速度検出回路 2 1 4 の出力信号(現状での回転数)との差を求め、その結果に応じた駆動電流をスピンドルモータ 2 0 4 に与えてスピンドルモータ 2 0 4 の回転数が一定になるように制御する。情報記憶媒体回転速度検出回路 2 1 4 の出力信号は情報記憶媒体 2 0 1 の回転数に対応した周波数を有するパルス信号で、スピンドルモータ駆動回路 2 1 5 ではこの信号の周波数とパルス位相の両方に対して制御する。

[0132]

(11B-3) 光学ヘッド移動機構

情報記憶媒体201の半径方向に光学ヘッド202を移動させるため光学ヘッド移動機構(送りモータ)203を持っている。

[0133]

光学ヘッド202を移動させるガイド機構として棒状のガイドシャフトを利用する場合が多く、このガイドシャフトと光学ヘッド202の一部に取り付けられたブッシュ間の摩擦を利用して光学ヘッド202が移動する。それ以外に回転運動を使用して摩擦力を軽減させたベアリングを用いる方法も有る。

[0134]

光学ヘッド202を移動させる駆動力伝達方法は図示して無いが固定系にピニオン(回転ギヤ)の付いた回転モータを配置し、ピニオンと噛み合う直線状のギヤであるラックを光学ヘッド202の側面に配置して回転モータの回転運動を光学ヘッド202の直線運動に変換している。それ以外の駆動力伝達方法としては固定系に永久磁石を配置し、光学ヘッド202に配置したコイルに電流を流して直線的方向に移動させるリニアモータ方式を使う場合もある。

[0135]

回転モータ、リニアモータいずれの方式でも基本的には送りモータに電流を流して光学 ヘッド202移動用の駆動力を発生させている。この駆動用電流は送りモータ駆動回路2 16から供給される。

[0136]

(11C) 各制御回路の機能

(11C-1) 集光スポットトレース制御

フォーカスずれ補正あるいはトラックずれ補正を行うため、フォーカス・トラックエラー検出回路 2 1 7 の出力信号(検出信号)に応じて光学ヘッド 2 0 2 内の対物レンズアクチュエータ(図示して無い)に駆動電流を供給する回路が対物レンズアクチュエータ駆動回路 2 1 8 である。高い周波数領域まて対物レンズ移動を高速応答させるため、対物レンズアクチュエータの周波数特性に合わせた特性改善用の位相補償回路を内部に有している

[0137]

対物レンズアクチュエータ駆動回路218では、制御部220の命令に応じて、

- (*) フォーカス/トラックずれ補正動作(フォーカス/トラックループ)のオン/オフ 40 処理、
- (*)情報記憶媒体201の垂直方向(フォーカス方向)へ対物レンズを低速で移動させる処理(フォーカス/トラックループオフ時に実行)、
- (*) キックパルスを用いて情報記憶媒体201の半径方向(トラックを横切る方向)に わずかに動かして、集光スポットを隣のトラックへ移動させる処理、 を行なう。

[0138]

(11C-2) レーザー光量制御

(11C-2-1) 再生と記録/消去の切り替え処理

再生と記録/消去の切り替えは情報記憶媒体201上に照射する集光スポットの光量を

20

30

40

50

変化させて行なう。

[0139]

相変化方式を用いた情報記憶媒体に対しては一般的に、

[記録時の光量] > [消去時の光量] > [再生時の光量]

の関係が成り立ち、光磁気方式を用いた情報記憶媒体に対しては一般的に、

[記録時の光量] < [消去時の光量] > [再生時の光量]

の関係が有る。光磁気方式の場合には、記録/消去時には情報記憶媒体 2 0 1 に加える外部磁場(図示して無い)の極性を変えて記録と消去の処理を制御している。

[0140]

情報再生時には、情報記憶媒体201上には一定の光量を連続的に照射している。

[0141]

新たな情報を記録する場合には、この再生時の光量の上にパルス状の断続的光量を上乗せする。半導体レーザ素子が大きな光量でパルス発光した時に情報記憶媒体201の光反射性記録膜が局所的に光学的変化もしくは形状変化を起こし、記録マークが形成される。すでに記録されている領域の上に重ね書きする場合も同様に半導体レーザ素子をパルス発光させる。

[0142]

すでに記録されている情報を消去する場合には、再生時よりも大きな一定光量を連続照射する。連続的に情報を消去する場合にはセクタ単位など特定周期毎に照射光量を再生時に戻し、消去処理と平行して間欠的に情報再生を行なう。間欠的に消去するトラックのトラック番号やアドレスを再生し、消去トラックの誤りが無い事を確認しながら消去処理を行なっている。

[0143]

(11C-2-2) レーザ発光制御

図示して無いが光学ヘッド202内には半導体レーザ素子の発光量を検出するための光検出器を内蔵している。半導体レーザ駆動回路205ではその光検出器出力(半導体レーザ素子発光量の検出信号)と記録/再生/消去制御波形発生回路206から与えられる発光基準信号との差を取り、その結果に基付き半導体レーザへの駆動電流をフィードバックしている。

[0144]

(11D)機構部分の制御系に関する諸動作

(11D-1) 起動制御

情報記憶媒体(光ディスク)201を回転テーブル221上に装着し、起動制御を開始すると、以下の手順に従って処理が行なわれる。

[0145]

(1) 制御部220からスピンドルモータ駆動回路215に目標回転数が伝えられ、スピンドルモータ駆動回路215からスピンドルモータ204に駆動電流が供給されてスピンドルモータ204の回転が開始する。

[0146]

(2) 同時に制御部220から送りモータ駆動回路216に対してコマンド(実行命令)が出され、送りモータ駆動回路216から光学ヘッド駆動機構(送りモータ)203に駆動電流が供給されて光学ヘッド202が情報記憶媒体201の最内周位置に移動する。情報記憶媒体201の情報が記録されている領域を越えてさらに内周部に光学ヘッド202が来ている事を確認する。

[0147]

(3) スピンドルモータ 2 0 4 が目標回転数に到達すると、そのステータス (状況報告)が制御部 2 2 0 に出される。

[0148]

(4)制御部220から記録/再生/消去制御波形発生回路206に送られた再生光量信号に合わせて半導体レーザ駆動回路205から光学ヘッド202内の半導体レーザ素子に

電流が供給されてレーザ発光を開始する。情報記憶媒体(光ディスク) 201の種類によって再生時の最適照射光量が異なる。起動時にはそのうちの最も照射光量の低い値に設定する。

[0149]

(5) 制御部220からのコマンドに従って、光学ヘッド202内の対物レンズ(図示して無い)を情報記憶媒体201から最も遠ざけた位置にずらし、ゆっくりと対物レンズを 情報記憶媒体201に近付けるよう対物レンズアクチュエータ駆動回路218が制御する

[0150]

(6) 同時にフォーカス・トラックエラー検出回路217でフォーカスずれ量をモニタし、焦点が合った位置近傍に対物レンズが来た時ステータスを出して制御部220に通知する。

[0151]

(7)制御部220ではその通知をもらうと、対物レンズアクチュエータ駆動回路218 に対してフォーカスループをオンにするようコマンドを出す。

[0152]

(8)制御部220はフォーカスループをオンにしたまま送りモータ駆動回路216にコマンドを出して光学ヘッド202をゆっくり情報記憶媒体201の外周部方向へ移動させる。

[0153]

(9) 同時に光学ヘッド202からの再生信号をモニタし、光学ヘッド202が情報記憶 媒体201上の記録領域に到達したら光学ヘッド202の移動を止め、対物レンズアクチ ュエータ駆動回路218に対してトラックループをオンさせるコマンドを出す。

[0154]

(10)情報記憶媒体(光ディスク)201の内周部に記録されている"再生時の最適光量"と"記録/消去時の最適光量"を再生し、その情報が制御部220を経由して半導体メモリ219に記録される。

[0155]

(11) さらに制御部220ではその"再生時の最適光量"に合わせた信号を記録/再生 /消去制御波形発生回路206に送り、再生時の半導体レーザ素子の発光量を再設定する

[0156]

(12)情報記憶媒体201に記録されている"記録/消去時の最適光量"に合わせて記録/消去時の半導体レーザ素子の発光量が設定される。

[0157]

(11D-2) アクセス制御

(11D-2-1)情報記憶媒体201上のアクセス先情報の再生

情報記憶媒体201上のどの場所にどのような内容の情報が記録されているかに付いての情報は情報記憶媒体201の種類により異なり、一般的には情報記憶媒体201内の、

(*) ディレクトリ管理領域:情報記憶媒体201の内周領域もしくは外周領域にまとまって記録して有る。かまたは、

(*)ナビゲーションパック:MPEG2のPS (Program Stream) のデータ構造に準拠したVOBSの中に含まれ、次の映像がどこに記録して有るかの情報が記録されている。

[0158]

などに記録して有る。

[0159]

特定の情報を再生あるいは記録/消去したい場合には、まず上記の領域内の情報を再生し、そこで得られた情報からアクセス先を決定する。

[0160]

(11D-2-2) 粗アクセス制御

20

20

30

50

制御部220ではアクセス先の半径位置を計算で求め、現状の光学ヘッド202位置との間の距離を割り出す。

[0161]

光学ヘッド202移動距離に対して最も短時間で到達出来る速度曲線情報が、事前に半導体メモリ219内に記録されている。制御部220はその情報を読み取り、その速度曲線に従って、以下の方法で光学ヘッド202の移動制御を行なう。

[0162]

制御部220から対物レンズアクチュエーター駆動回路218に対してコマンドを出してトラックループをオフした後、送りモータ駆動回路216を制御して光学ヘッド202の移動を開始させる。

[0163]

集光スポットが情報記憶媒体201上のトラックを横切ると、フォーカス・トラックエラー検出回路217内でトラックエラー検出信号が発生する。このトラックエラー検出信号を用いて情報記憶媒体201に対する集光スポットの相対速度が検出できる。

[0164]

送りモータ駆動回路216では、このフォーカス・トラックエラー検出回路217から得られる集光スポットの相対速度と制御部220から逐一送られる目標速度情報との差を演算し、その結果を光学ヘッド駆動機構(送りモータ)203への駆動電流にフィードバックかけながら光学ヘッド202を移動させる。

[0165]

先に"(11B-3)光学ヘッド移動機構"に記述したようにガイドシャフトとブッシュあるいはベアリング間には常に摩擦力が働いている。光学ヘッド202が高速に移動している時は動摩擦が働くが、移動開始時と停止直前には光学ヘッド202の移動速度が遅いため静止摩擦が働く。この時には相対的摩擦力が増加しているので(特に停止直前には)制御部220からのコマンドに応じて光学ヘッド駆動機構(送りモータ)203に供給する電流の増幅率(ゲイン)を増加させる。

- [0166]
- (11D-2-3) 密アクセス制御

光学ヘッド202が目標位置に到達すると制御部220から対物レンズアクチュエータ 駆動回路218にコマンドを出してトラックループをオンさせる。

[0167]

集光スポットは情報記憶媒体201上のトラックに沿ってトレースしながらその部分のアドレスもしくはトラック番号を再生する。

[0168]

そこでのアドレスもしくはトラック番号から現在の集光スポット位置を割り出し、到達目標位置からの誤差トラック数を制御部220内で計算し、集光スポットの移動に必要なトラック数を対物レンズアクチュエータ駆動回路218に通知する。

[0169]

対物レンズアクチュエータ駆動回路 2 1 8 内で 1 組キックパルスを発生させると対物レンズは情報記憶媒体 2 0 1 の半径方向にわずかに動いて、集光スポットが隣のトラックへ移動する。

[0170]

対物レンズアクチュエータ駆動回路218内では一時的にトラックループをオフさせ、 制御部220からの情報に合わせた回数のキックパルスを発生させた後、再びトラックル ープをONさせる。

[0171]

密アクセス終了後、制御部220は集光スポットがトレースしている位置の情報 (アドレスもしくはトラック番号)を再生し、目標トラックにアクセスしている事を確認する。

[0172]

(11D-3)連続記録/再生/消去制御

40

図11に示すようにフォーカス・トラックエラー検出回路217から出力されるトラックエラー検出信号は、送りモータ駆動回路216に入力されている。上述した"起動制御時"と"アクセス制御時"には、送りモータ駆動回路216内ではトラックエラー検出信号を使用しないように、制御部220により制御されている。

[0173]

アクセスにより集光スポットが目標トラックに到達した事を確認した後、制御部 2 2 0 からのコマンドによりモータ駆動回路 2 1 6 を経由してトラックエラー検出信号の一部が光学ヘッド駆動機構(送りモータ) 2 0 3 への駆動電流として供給される。連続に再生もしくは記録/消去処理を行なっている期間中、この制御は継続される。

[0174]

情報記憶媒体201の中心位置は回転テーブル221の中心位置とわずかにずれた偏心を持って装着されている。トラックエラー検出信号の一部を駆動電流として供給すると、偏心に合わせて光学ヘッド202全体が微動する。

[0175]

また長時間連続して再生もしくは記録/消去処理を行なうと、集光スポット位置が徐々に外周方向もしくは内周方向に移動する。トラックエラー検出信号の一部を光学ヘッド移動機構(送りモータ)203への駆動電流として供給した場合には、それに合わせて光学ヘッド202が徐々に外周方向もしくは内周方向に移動する。

[0176]

このようにして、対物レンズアクチュエータのトラックずれ補正の負担を軽減し、トラ 20 ックループを安定化出来る。

[0177]

(11D-4)終了制御

一連の処理が完了し、動作を終了させる場合には以下の手順に従って処理が行なわれる

[0178]

(1)制御部220から対物レンズアクチュエータ駆動回路218に対してトラックループをオフさせるコマンドが出される。

[0179]

(2) 制御部220から対物レンズアクチュエータ駆動回路218に対してフォーカスル 30 ープをオフさせるコマンドが出される。

[0180]

(3)制御部220から記録/再生/消去制御波形発生回路206に対して半導体レーザ素子の発光を停止させるコマンドが出される。

[0181]

(4) スピンドルモータ駆動回路215に対して、基準回転数として0を通知する。

[0182]

(11E)情報記憶媒体への記録信号/再生信号の流れ

(11E-1)情報記憶媒体201に記録される信号形式

情報記憶媒体201上に記録する信号に対して、

(*)情報記憶媒体201上の欠陥に起因する記録情報エラーの訂正を可能とする

- (*) 再生信号の直流成分を0にして再生処理回路の簡素化を図る
- (*)情報記憶媒体201に対して出来るだけ高密度に情報を記録する

との要求を満足するため図11に示すように情報記録再生部(物理系ブロック)では"エラー訂正機能の付加""記録情報に対する信号変換(信号の変復調)"を行なっている。

[0183]

(11E-2) 記録時の信号の流れ

(11E-2-1) ECC (Error Correction Code) 付加処理

情報記憶媒体201に記録したい情報が生信号の形で記録信号dとしてデータ入出力インターフェース部222に入力される。この記録信号dはそのまま半導体メモリ219に

記録され、その後ECCエンコーディング回路208で以下のようにECCの付加処理を 実行する。

[0184]

以下に積符号を用いたECC付加方法の実施例について説明する。

[0185]

記録信号 d は半導体メモリ219内で172バイト毎に1行ずつ順次並べ、192行で1組のECCブロックとする。この"行:172×列:192バイト"で構成される1組のECCブロック内の生信号(記録信号 d)に対し、172バイトの1行毎に10バイトの内符号PIを計算して半導体メモリ219内に追加記録する。さらにバイト単位の1列毎に16バイトの外符号POを計算して半導体メモリ219内に追加記録する。

[0186]

情報記憶媒体201に記録する実施例としては内符号PIを含めた12行と外符号PO 分1行の合計2366バイト

 $2\ 3\ 6\ 6 = (1\ 2+1) \times (1\ 7\ 2+1\ 0)$

を単位として情報記憶媒体の1セクタ内に記録する。

[0187]

ECCエンコーディング回路208では内符号PIと外符号POの付加が完了すると、 半導体メモリ219から1セクタ分の2366バイトずつの信号を読み取り、変調回路2 07へ転送する。

[0188]

(11E-2-2) 信号変調

再生信号の直流成分(DSV: Disital Sum Value)を 0 に近付け、情報記憶媒体 2 0 1 に対して高密度に情報を記録するため、信号形式の変換である信号変調を変調回路 2 0 7 内で行なう。

[0189]

元の信号と変調後の信号との間の関係を示す変換テーブルを変調回路207と復調回路210内部で持っている。ECCエンコーディング回路208から転送された信号を変調方式に従って複数ビット毎に区切り、変換テーブルを参照しながら別の信号(コード)に変換する。

[0190]

例えば変調方式として $8 \angle 16$ 変調 [RLL(2,10) コード]を用いた場合には、変換テーブルが 2 種類存在し、変調後の直流成分(DSV)が 0 に近付くように逐一参照用変換テーブルを切り替えている。

- [0191]
- (11E-2-3) 記録波形発生

情報記憶媒体(光ディスク)201に記録マークを記録する場合、一般的には記録方式として、

(*)マーク長記録方式:記録マークの前端位置と後端末位置に"1"が来る。

- 【0192】
- (*)マーク間記録方式:記録マークの中心位置が"1"の位置と一致する。

[0193]

の2種類が存在する。

[0194]

またマーク長記録を行なった場合、長い記録マークを形成する必要が有る。この場合、一定期間記録光量を照射し続けると、情報記憶媒体201の光反射性記録膜の蓄熱効果により、後部のみ幅が広い"雨だれ"形状の記録マークが形成される。この弊害を除去するため、長さの長い記録マークを形成する場合には複数の記録パルスに分割したり、記録波形を階段状に変化させている。

[0195]

記録/再生/消去制御波形発生回路206内では変調回路207から送られて来た記録

10

20

30

50

20

30

40

50

信号に応じて上記のような記録波形を作成し、半導体レーザ駆動回路 2 0 5 に伝達している。

- [0196]
- (11E-3) 再生時の信号の流れ
- (11E-3-1) 2値化・PLL回路

先に"(11B-1-1)光学へッド202による信号検出"で記述したように情報記憶媒体(光ディスク)201の光反射膜もしくは光反射性記録膜からの反射光量変化を検出して情報記憶媒体201上の信号を再生する。アンプ213で得られた信号はアナログ波形をしている。2値化回路212ではその信号をコンパレータを用いて"1"と"0"からなる2値のデジタル信号に変換する。

[0197]

ここから得られた再生信号から P L L 回路 2 1 1 で情報再生時の基準信号を取り出している。 P L L 回路 2 1 1 は周波数可変の発振器を内蔵している。 その発振器から出力されるパルス信号(基準クロック)と 2 値化回路 2 1 2 出力信号間の周波数と位相の比較を行ない、その結果を発振器出力にフィードバックしている。

- [0198]
- (11E-3-2) 信号の復調

変調された信号と復調後の信号との間の関係を示す変換テーブルを復調回路 2 1 0 内部で持っている。 P L L 回路 2 1 1 で得られた基準クロックに合わせて変換テーブルを参照しながら信号を元の信号に戻す。戻した(復調した)信号は半導体メモリ 2 1 9 に記録される。

- [0199]
- (11E-3-3) エラー訂正処理

半導体メモリ219に保存された信号に対し、内符号PIと外符号POを用いてエラー 訂正回路209ではエラー箇所を検出し、エラー箇所のポインタフラグを立てる。

[0200]

その後、半導体メモリ219から信号を読み出しながらエラーポインタフラグに合わせて逐次エラー箇所の信号を訂正し、内符号PIと外符号POをはずしてデータ入出力インターフェース部222へ転送する。

[0201]

ECCエンコーディング回路208から送られて来た信号をデータ入出力インターフェース部222から再生信号cとして出力する。

[0202]

ビデオファイルを記録する情報記憶媒体としてDVD-RAMディスクを用いた場合、ファイルフォーマットにUDF(Universal Disk Format)を採用する場合が多いので、以下に図12~図20を参照してUDF内容について説明を行なう。

- [0203]
- (12A) UDFの概要説明(UDFとは何か)
- (12A-1) UDFとは何か

UDFとはユニバーサルディスクフォーマットの略で、主にディスク状情報記憶媒体における"ファイル管理方法に関する規約"を示す。CD-ROM、CD-R、CD-RW、DVDビデオ、DVD-ROM、DVD-R、DVD-RAMは"ISO9660"で規格化されたUDFフォーマットを採用している。

[0204]

ファイル管理方法としては基本的にルートディレクトリを親に持ち、ツリー状にファイルを管理する階層ファイル・システムを前提としている。

102051

ここでは主にDVD-RAM規格(File System Specifications)に準拠したUDFフォーマットについての説明を行なうが、この説明内容の多くの部分はDVD-ROM規格内容とも一致している。

- [0206]
- (12A-2) UDFの概要
- (12A-2-1)情報記憶媒体へのファイル情報記録内容

情報記憶媒体に情報を記録する場合、情報のまとまりをファイルデータ(File Data)と呼び、ファイルデータ単位で記録を行なう。他のファイルデータと識別するためファイルデータ毎に独自のファイル名が付加されている。共通な情報内容を持つ複数ファイルデータ毎にグループ化するとファイル管理とファイル検索が容易になる。この複数ファイルデータ毎のグループをディレクトリ(Directory)またはフォルダ(Folder)と呼ぶ。各ディレクトリ(フォルダ)毎に独自のディレクトリ名(フォルダ名)が付加される。

[0207]

更にその複数のディレクトリ(フォルダ)を集めて、その上の階層のグループとして上位のディレクトリ(上位フォルダ)でまとめる事が出来る。ここでは、ファイルデータとディレクトリ(フォルダ)とを総称してファイル(File)と呼ぶ。

[0208]

情報を記録する場合には、

- (*) ファイルデータの情報内容そのもの
- (*) ファイルデータに対応したファイル名
- (*)ファイルデータの保存場所(どのディレクトリの下に記録するか)

に関する情報をすべて情報記憶媒体上に記録する。また各ディレクトリ (フォルダ) に対する

(*) ディレクトリ名 (フォルダ名)

(*)各ディレクトリ (フォルダ) が属している位置 [その親となる上位ディレクトリ (上位フォルダ) の位置]

に関する情報もすべて情報記憶媒体上に記録されている。

- [0209]
- (12A-2-2)情報記憶媒体上での情報記録形式

情報記憶媒体上の全記録領域は2048バイトを最小単位とする論理セクタに分割され、全論理セクタには論理セクタ番号が連番で付けられている。情報記憶媒体上に情報を記録する場合にはこの論理セクタ単位で情報が記録される。情報記憶媒体上での記録位置はこの情報を記録した論理セクタの論理セクタ番号で管理される。

[0210]

図12及び図13に示すようにファイルストラクチュア486とファイルデータ487に関する情報が記録されている論理セクタは特に"論理ブロック"とも呼ばれ、論理セクタ番号(LSN)に連動して論理ブロック番号(LBN)が設定されている。論理ブロックの長さは論理セクタと同様2048バイトになっている。

[0211]

(12A-2-3) 階層ファイル・システムを簡素化した一例

階層ファイル・システムを簡素化した一例を図14(a)に示す。UNIX(登録商標)、MacOS、MS-DOS、Windows(登録商標)等ほとんどのOSのファイル管理システムが図14(a)に示したようなツリー状の階層構造を持つ。

[0212]

1個のディスクドライブ(例えば1台のHDDが複数のパーティションに区切られている場合には各パーティション単位を示す)毎にその全体の親となる1個のルートディレクトリ401が存在し、その下にサブディレクトリ402が属している。このサブディレクトリ402の中にファイルデータ403が存在している。

[0213]

実際にはこの例に限らずルートディレクトリ401の直接下にファイルデータ403が存在したり、複数のサブディレクトリ402が直列につながった複雑な階層構造を持つ場合もある。

[0214]

50

40

10

20

20

30

40

(12A-2-4) 情報記憶媒体上ファイル管理情報の記録内容

ファイル管理情報は上述した論理ブロック単位で記録される。各論理ブロック内に記録される内容は主に、

(*)ファイルに関する情報を示す記述文FID(File Identifier Descriptor)

… ファイルの種類やファイル名(ルートディレクトリ名、サブディレクトリ名、ファイルデータ名など)を記述している。

[0215]

… FIDの中にそれに続くファイルデータのデータ内容や、デイレクトリの中味の記録場所を示す記述文(つまり該当ファイルに対応した以下に説明するFEの記録位置も記述されている。

[0216]

(*) ファイル中味の記録位置を示す記述文FE (File Entry)

… ファイルデータのデータ内容や、ディレクトリ(サブディレクトリなど)の中味に関する情報が記録されている情報記憶媒体上の位置(論理ブロック番号)などを記述している。

[0217]

である。

[0218]

ファイルアイデンティファディスクリプターの記述内容の抜粋を図15に示した。またその詳細の説明は"(12B-4)ファイルアイデンティファディスクリプター"で行なう。ファイルエントリィの記述内容の抜粋は図16に示し、その詳細な説明は"(12B-3)ファイルエントリィ"で行なう。

[0219]

情報記憶媒体上の記録位置を示す記述文は図17に示すロングアロケーションディスクリプターと図18に示すショートアロケーションディスクリプターを使っている。それぞれの詳細説明は"(12B-1-2)ロングアロケーションディスクリプター"と"(12B-1-3)ショートアロケーションディスクリプター"で行なう。

[0220]

例として図14(a)のファイル・システム構造の情報を情報記憶媒体に記録した時の記録内容を図14(b)に示す。図14(b)の記録内容は以下の通りとなる。

[0221]

(*) 論理ブロック番号"1"の論理ブロックにルートデイレクトリ401の中味が示されている。

[0222]

… 図14(a)の例ではルートディレクトリ401の中にはサブディレクトリ402のみが入っているので、ルートディレクトリ401の中味としてサブディレクトリ402に関する情報がファイルアイデンティファディスクリプター文404で記載している。また図示して無いが同一論理ブロック内にルートディレクトリ401自身の情報もファイルアイデンティファディスクリプター文で並記して有る。

[0223]

… このサブディレクトリ402のファイルアイデンティファディスクリプター文404中にサブディレクトリ402の中味が何処に記録されているかを示すファイルエントリィ文405の記録位置[図14(b)の例では2番目の論理ブロック]がロングアロケーションディスクリプター文で記載[LAD(2)]している。

[0224]

(*) 論理ブロック番号 "2"の論理ブロックにサブディレクトリ402の中味が記録されている位置を示すファイルエントリィ文405が記録されている。

[0225]

… 図14(a)の例ではサブディレクトリ402の中にはファイルデータ403の みが入っているので、サブディレクトリ402の中味として実質的にはファイルデータ4 03に関する情報が記述されているファイルアイデンティファディスクリプター文406の記録位置を示す事になる。

[0226]

… ファイルエントリィ文中のショートアロケーションディスクリプター文で、3番目の論理ブロックにサブディレクトリ402の中味が記録されている事 [AD(3)]が記述されている。

[0227]

(*) 論理ブロック番号 "3" の論理ブロックにサブディレクトリ402の中味が記録されている。

[0228]

… 図14(a)の例ではサブデイレクトリ402の中にはファイルデータ403のみが入っているので、サブディレクトリ402の中味としてファイルデータ403に関する情報がファイルアイデンティファディスクリプター文406で記載されている。また図示して無いが同一論理ブロック内にサブディレクトリ402自身の情報もファイルアイデンティファディスクリプター文で並記して有る。

[0229]

… ファイルデータ403に関するファイルアイデンティファディスクリプター文406の中にそのファイルデータ403の内容が何処に記録されている位置を示すファイルエントリィ文407の記録位置[図14(b)の例では4番目の論理ブロックに記録されている]がロングアロケーションディスクリプター文で記載[LAD(4)]されている

[0230]

(*) 論理ブロック番号 "4" の論理ブロックにファイルデータ 4 0 3 内容 4 0 8 、 4 0 9 が記録されている位置を示すファイルエントリィ文 4 0 7 が記録されている。

[0231]

… ファイルエントリィ文407内のショートアロケーションディスクリプター文でファイルデータ403内容408、409が5番目と6番目の論理ブロックに記録している事が記述[AD(5), AD(6)]されている。

[0232]

(*) 論理ブロック番号"5"の論理ブロックにファイルデータ403内容情報(a)4 3008が記録されている。

[0233]

(*) 論理ブロック番号 "6"の論理ブロックにファイルデータ 4 0 3 内容情報 (b) 4 0 9 が記録されている。

[0234]

(12A-2-5) 図14 (b) 情報に沿ったファイルデータへのアクセス方法

先に"(12A-2-4)情報記憶媒体上のファイル・システム情報記録内容"で簡単に説明したようにファイルアイデンティファディスクリプター404、406 とファイルエントリィ405、407には、それに続く情報が記述して有る論理ブロック番号が記述して有る。ルートディレクトリから階層を下りながらサブディレクトリを経由してファイルデータへ到達するのと同様に、ファイルアイデンティファディスクリプターとファイルエントリィ内に記述して有る論理ブロック番号に従って情報記憶媒体上の論理ブロック内の情報を順次再生しながらファイルデータのデータ内容へアクセスする。

[0235]

つまり図14(b)に示した情報に対してファイルデータ403へアクセスするには、まず始めに1番目の論理ブロック情報を読む。ファイルデータ403はサブディレクトリ402の中に存在しているので、1番目の論理ブロック情報の中からサブディレクトリ402のファイルアイデンティファディスクリプター404を探し、LAD(2)を読み取った後、それに従って2番目の論理ブロック情報を読む。

[0236]

2番目の論理ブロックには、1個のファイルエントリィ文しか記述してないので、その中のAD(3)を読み取り、3番目の論理ブロックへ移動する。3番目の論理ブロックでは、ファイルデータ403に関して記述して有るファイルアイデンティファディスクリプター406を探し、LAD(4)を読み取る。LAD(4)に従い4番目の論理ブロックへ移動すると、そこには1個のファイルエントリィ文407しか記述してないので、AD(5)とAD(6)を読み取り、ファイルデータ403の内容が記録して有る論理ブロック番号(5番目と6番目)を見付ける。

[0237]

AD (*)、LAD (*) の内容については、"(12B) UDF の各記述文 (ディスクリプター)の具体的内容説明"で詳細に説明する。

10

[0238]

(12A-3) UDFの特徴

(12A-3-1) UDF特徵説明

以下にHDDやFDD、MOなどで使われているFATとの比較によりUDFの特徴を説明する。

[0239]

(1) (最小論理ブロックサイズ、最小論理セクタサイズなどの) 最小単位が大きく、記録すべき情報量の多い映像情報や音楽情報の記録に向く。

[0240]

… FATの論理セクタサイズが512バイトに対して、UDFの論理セクタ (ブロ 20 ック) サイズは2048バイトと大きくなっている。

[0241]

(2) FATはファイルの情報記憶媒体への割り当て管理表(ファイルアロケーションテーブル)が情報記憶媒体上で局所的に集中記録されるのに対し、UDFではファイル管理情報をディスク上の任意の位置に分散記録できる。

[0242]

… UDFではファイル管理情報やファイルデータに関するディスク上での記録位置は論理セクタ(ブロック)番号としてアロケーションディスクリプターに記述される。

[0243]

FATではファイル管理領域(ファイルアロケーションテーブル)で集中管理されているため頻繁にファイル構造の変更が必要な用途(主に頻繁な書き換え用途)に適している。集中箇所に記録されているので管理情報を書き換え易いため。またファイル管理情報(ファイルアロケーションテーブル)の記録場所は予め決まっているので記録媒体の高い信頼性(欠陥領域が少ない事)が前提となる。

[0244]

UDFではファイル管理情報が分散配置されているので、ファイル構造の大幅な変更が少なく、階層の下の部分(主にルートディレクトリより下の部分)で後から新たなファイル構造を付け足して行く用途(主に追記用途)に適している。追記時には以前のファイル管理情報に対する変更箇所が少ないため。

[0245]

40

30

また分散されたファイル管理情報の記録位置を任意に指定できるので、先天的な欠陥箇所を避けて記録する事が出来る。ファイル管理情報を任意の位置に記録できるので全ファイル管理情報を一箇所に集めて記録し上記FATの利点も出せるので、より汎用性の高いファイル・システムと考えることが出来る。

[0246]

(12B) UDFの各記述文 (ディスクリプター) の具体的内容説明

(12B-1) 論理ブロック番号の記述文

(12B-1-1) アロケーションディスクリプター

先に、"(12A-2-4)情報記憶媒体上のファイル・システム情報記録内容"に示したようにファイルアイデンティファディスクリプターやファイルエントリィなどの一部

20

30

40

50

に含まれ、その後に続く情報が記録されている位置 (論理ブロック番号)を示した記述文をアロケーションディスクリプターと呼ぶ。アロケーションディスクリプターには以下に示すロングアロケーションディスクリプターとショートアロケーションディスクリプターが有る。

[0247]

- (12B-1-2) ロングアロケーションディスクリプター
- 図17に示すように、
- ・エクステントの長さ410…論理ブロック数を4バイトで表示
- ・エクステントの位置411…該当する論理ブロック番号を4バイトで表示
- ・インプレメンテイションユース412…演算処理に利用する情報で8バイトで表示などから構成される。ここの説明文では記述を簡素化して"LAD (論理ブロック番号)"で記述する。

[0248]

- (12B-1-3) ショートアロケーションディスクリプター
- 図18に示すように、
- ・エクステントの長さ410…論理ブロック数を4バイトで表示
- ・エクステントの位置411…該当する論理ブロック番号を4バイトで表示
- のみで構成される。ここの説明文では記述を簡素化して "AD (論理ブロック番号)"で記述する。

[0249]

(12B-2) アロケートされないスペースエントリィ

図19に示すように情報記憶媒体上の"未記録状態のエクステント分布"をエクステント毎にショートアロケーションディスクリプターで記述し、それを並べる記述文で、スペーステーブル(図12及び図13参照)に用いられる。具体的な内容としては、

- ・ディスクリプタータグ413…記述内容の識別子を表わし、この場合は"263"
- ・ICBタグ414…ファイルタイプを示す。ICBタグ内のファイルタイプ=1はアロケートされないスペースエントリィを意味し、ファイルタイプ=4はディレクトリ、ファイルタイプ=5はファイルデータを表している。

[0250]

・アロケーションディスクリプター列の全長 4 1 5 ··· 4 バイトで総バイト数を示すなどが記述されている。

[0251]

(12B-3) ファイルエントリィ

先に、"(12A-2-4)情報記憶媒体上のファイル・システム情報記録内容"で説明した記述文。図16に示すように、

- ・ディスクリプタータグ417…記述内容の識別子を表わし、この場合は"261"
- ・ I C B タ グ 4 1 8 … ファイルタイプを示す。内容は (12 B 2) と同じ
- ・パーミッション419…ユーザ別の記録・ 再生・ 削除許可情報を示す。主にファイルのセキュリティー確保を目的として使われる。

[0252]

・アロケーションディスクリプター420…該当ファイルの中味が記録して有る位置をエクステント毎にショートアロケーションディスクリプターを並べて記述するなどが記述されている。

[0253]

(12B-4) ファイルアイデンティファディスクリプター

先に、"(12A-2-4)情報記憶媒体上のファイル・システム情報記録内容"で説明したようにファイル情報を記述した記述文。図15に示すように、

- ・ディスクリプタータグ421…記述内容の識別子を表わし、この場合は"257"
- ・ファイルキャラクタリスティクス422…ファイルの種別を示し、ペアレントディレクトリ、ディレクトリ、ファイルデータ、ファイル削除フラグのどれかを意味する。

[0254]

・インフォメーションコントロールブロック 4 2 3 … このファイルに対応した F E 位置が ロングアロケーションディスクリプターで記述されている。

[0255]

・ファイルアイデンティファ424…ディレクトリ名またはファイル名。

[0256]

・パディング437…ファイルアイデンティファディスクリプター全体の長さを調整するために付加されたダミー領域であり、通常は全て"0"が記録されている。

[0257]

などが記述される。

10

40

50

- [0258]
- (12C)UDFに従って情報記憶媒体上に記録したファイル構造記述例

先に"(12A-2) UDFの概要"で示した内容について具体的な例を用いて以下に詳細に説明する。

[0259]

図14(a)に対して、より一般的なファイル・システム構造例を図20に示す。括弧内はディレクトリの中身に関する情報またはファイルデータのデータ内容が記録されている情報記憶媒体上の論理ブロック番号を示している。

[0260]

図20のファイル・システム構造の情報をUDFフォーマットに従って情報記憶媒体上 20 に記録した例を図12及び図13に示す。

[0261]

情報記憶媒体上の未記録位置管理方法として、

(*) スペースビツトマップ方法

スペースビットマップディスクリプター470を用いた、情報記憶媒体内記録領域の全論理ブロックに対してビットマップ的に"記録済み"または"未記録"のフラグを立てる

- [0262]
- (*) スペーステーブル方法

アロケートされないスペースエントリィ471の記述方式を用いてショートアロケーシ 30 ョンディスクリプターの列記として未記録の全論理ブロック番号を記載している。

[0263]

の2方式が存在する。

[0264]

本実施の形態の説明では、説明のためわざと図12及び図13に両方式を併記しているが、実際には両方が一緒に使われる(情報記憶媒体上に記録される)ことはほとんど無く、どちらか一方のみ使われている。

[0265]

図12及び図13に記述されている主なディレクトリの内容の概説は以下の通りである

[0266]

・ビギニングエクステントエリアディスクリプター 4 4 5 … ポリュームレコグニションシーケンス 4 4 4 の開始位置を示す。

- [0267]
- ・ボリュームストラクチュアディスクリプター446…ボリュームの内容説明を記述。

[0268]

- ・ブートディスクリプター447…ブート時の処理内容を記述。
- [0269]
- ・ターミネイティングエクステントエリアディスクリプター448…ボリュームレコグニションシーケンス444の終了位置を示す。

20

50

[0270]

・パーティションディスクリプター 4 5 0 …パーティション情報 (サイズなど) を示す。 DVD-RAMでは1ボリューム当たり1パーティションを原則としている。

[0271]

・ロジカルボリュームディスクリプター454…論理ボリュームの内容を記述している。

[0272]

・アンカーボリュームディスクリプターポインター458…情報記憶媒体記録領域内でのメインボリュームディスクリプターシーケンス449とリザーブボリュームディスクリプターシーケンス467の記録位置を示している。

[0273]

[0274]

・リザーブボリュームディスクリプターシーケンス 4 6 7 …メインボリュームディスクリプターシーケンス 4 4 9 に記録された情報のパックアップ領域。

[0275]

(12D) 再生時のファイルデータへのアクセス方法

図12及び図13に示したファイル・システム情報を用いて例えばファイルデータH432(図20参照)のデータ内容を再生するための情報記憶媒体上のアクセス処理方法について説明する。

[0276]

(1)情報記録再生装置起動時または情報記憶媒体装着時のブート (Boot) 領域としてボリュームレコグニションシーケンス444領域内のブートディスクリプター447の情報を再生に行く。ブートディスクリプター447の記述内容に沿ってブート (Boot) 時の処理が始まる。特に指定されたブート時の処理が無い場合には、

(2) 始めにメインボリュームディスクリプターシーケンス 4 4 9 領域内のロジカルボリュームディスクリプター 4 5 4 の情報を再生する。

[0277]

(3) ロジカルボリュームディスクリプター454の中にロジカルボリュームコンテンツユース455が記述されており、そこにファイルセットディスクリプター472が記録して有る位置を示す論理ブロック番号がロングアロケーションディスクリプター(図17)形式で記述して有る。図12及び図13の例ではLAD(100)から100番目の論理ブロックに記録して有る。

[0278]

(4) 100番目の論理ブロック(論理セクタ番号では372番目になる)にアクセスし、ファイルセットディスクリプター472を再生する。その中のルートディレクトリICB473にルートディレクトリA425に関するファイルエントリィが記録されている場所(論理ブロック番号)がロングアロケーションディスクリプター(図17)形式で記述して有る。図12及び図13の例ではLAD(102)から102番目の論理ブロックに記録して有る。ルートディレクトリICB473のLAD(102)に従い、

(5) 102番目の論理ブロックにアクセスし、ルートディレクトリA425に関するファイルエントリィ475を再生し、ルートディレクトリA425の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(103)]。

[0279]

(6) 103番目の論理ブロックにアクセスし、ルートディレクトリA425の中身に関する情報を再生する。ファイルデータH432はディレクトリD428系列の下に存在するので、ディレクトリD428に関するファイルアイデンティファディスクリプターを探し、ディレクトリD428に関するファイルエントリィが記録して有る論理ブロック番号 [図12及び図13には図示して無いがLAD(110)]を読み取る。

20

30

40

50

[0280]

(7) 110番目の論理ブロックにアクセスし、デイレクトリD428に関するファイルエントリィ480を再生し、ディレクトリD428の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(111)]。

[0281]

(8) 111番目の論理ブロックにアクセスし、ディレクトリD428の中身に関する情報を再生する。ファイルデータH432はサブディレクトリF430の直接下に存在するので、サブディレクトリF430に関するファイルアイデンティファディスクリプターを探し、サブディレクトリF430に関するファイルエントリィが記録して有る論理ブロック番号[図12及び図13には図示して無いがLAD(112)]を読み取る。

[0282]

(9) 112番目の論理ブロックにアクセスし、サブディレクトリF430に関するファイルエントリィ482を再生し、サブディレクトリF430の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む [AD(113)]。

[0283]

(10) 113番目の論理ブロックにアクセスし、サブデイレクトリF430の中身に関する情報を再生し、ファイルデータH432に関するファイルアイデンティファディスクリプターを探す。そしてそこからファイルデータH432に関するファイルエントリィが記録して有る論理ブロック番号 [図12及び図13には図示して無いがLAD(114)] を読み取る。

[0284]

(11) 114番目の論理ブロックにアクセスし、ファイルデータH432に関するファイルエントリィ484を再生しファイルデータH432のデータ内容489が記録されている位置を読み取る。

[0285]

(12) ファイルデータH432に関するファイルエントリィ484内に記述されている 論理ブロック番号順に情報記憶媒体から情報を再生してファイルデータH432のデータ 内容489を読み取る。

[0286]

(12E) 特定のファイルデータ内容変更方法

図12及び図13に示したファイル・システム情報を用いて例えばファイルデータH432のデータ内容を変更する場合のアクセスも含めた処理方法について説明する。

[0287]

(1) ファイルデータH432の変更前後でのデータ内容の容量差を求め、その値を20 48バイトで割り、変更後のデータを記録するのに論理ブロックを何個追加使用するかま たは何個不要になるかを事前に計算しておく。

[0288]

(2) 情報記録再生装置起動時または情報記憶媒体装着時のブート (Boot) 領域としてボリュームレコグニションシーケンス 4 4 4 領域内のブートディスクリプター 4 4 7 の情報を再生に行く。ブートディスクリプター 4 4 7 の記述内容に沿ってブート (Boot) 時の処理が始まる。特に指定されたブート時の処理が無い場合には、

(3) 始めにメインボリュームディスクリプターシーケンス449領域内のパーティションディスクリプター450を再生し、その中に記述して有るパーティションコンテンツユース451の情報を読み取る。このパーティションコンテンツユース451 (パーティションヘッダーデイスクリプターとも呼ぶ)の中にスペーステーブルもしくはスペースビットマップの記録位置が示して有る。

[0289]

・スペーステーブル位置はアロケートされないスペーステーブル452の欄にショートアロケーションディスクリプターの形式で記述されている。図12及び図13の例ではAD(50)。また、

20

30

40

・スペースビットマツプ位置はアロケートされないスペースビットマップ 4 5 3 の欄にショートアロケーションディスクリプターの形式で記述されている。図 1 2 及び図 1 3 の例では A D (0)。

[0290]

(4) 先の(3) で読み取ったスペースビットマップが記述して有る論理ブロック番号(0) ヘアクセスする。スペースビットマップディスクリプター470からスペースビットマップ情報を読み取り、未記録の論理ブロックを探し、(1) の計算結果分の論理ブロックの使用を登録する(スペースビットマップディスクリプター460情報の書き換え処理)。もしくは、

(4') 先の (3) で読み取ったスペーステーブルが記述して有る論理ブロック番号 (50) ヘアクセスする。スペーステーブルのUSE(AD(*),AD (*),…,AD(*))471 から未記録の論理ブロックを探し、(1)の計算結果分の論理ブロックの使用を登録する(スペーステーブル情報の書き換え処理)。実際の処理は"(4)"か"(4')"かどちらか一方の処理が行なわれる。

[0291]

(5) 次にメインボリュームディスクリプターシーケンス449領域内のロジカルボリュームディスクリプター454の情報を再生する。

[0292]

(6) ロジカルボリュームディスクリプター454の中にロジカルボリュームコンテンツユース455が記述されており、そこにファイルセットディスクリプター472が記録して有る位置を示す論理ブロック番号がロングアロケーションディスクリプター(図17)形式で記述して有る。図12及び図13の例ではLAD(100)から100番目の論理ブロックに記録して有る。

[0293]

(7) 100番目の論理ブロック(論理セクタ番号では400番目になる)にアクセスし、ファイルセットディスクリプター472を再生する。その中のルートディレクトリICB473にルートディレクトリA425に関するフアイルエントリィが記録されている場所(論理ブロック番号)がロングアロケーションディスクリプター(図17)形式で記述して有る。図12及び図13の例ではLAD(102)から102番目の論理ブロックに記録して有る。ルートディレクトリICB473のLAD(102)に従い、

8) 102番目の論理ブロックにアクセスし、ルートディレクトリA425に関するファイルエントリィ475を再生し、ルートディレクトリA425の中味に関する情報が記録されている位置(論理ブロック番号)を読み込む [AD(103)]。

[0294]

(9) 103番目の論理ブロックにアクセスし、ルートディレクトリA425の中味に関する情報を再生する。ファイルデータH432はディレクトリD428系列の下に存在するので、ディレクトリD428に関するファイルアイデンティファディスクリプターを探し、ディレクトリD428に関するファイルエントリィが記録して有る論理ブロック番号[図12及び図13には図示して無いがLAD(110)]を読み取る。

[0295]

(10) 110番目の論理ブロックにアクセスし、ディレクトリD428に関するファイルエントリィ480を再生し、ディレクトリD428の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(111)]。

(11) 111番目の論理ブロックにアクセスし、ディレクトリD428の中身に関する情報を再生する。ファイルデータH432はサブディレクトリF430の直接下に存在するので、サブディレクトリF430に関するファイルアイデンティファディスクリプターを探し、サブディレクトリF430に関するファイルエントリィが記録して有る論理ブロック番号[図12及び図13には図示して無いがLAD(112)]を読み取る。

[0296]

(12) 112番目の論理ブロックにアクセスし、サブディレクトリF430に関するフ

20

30

50

ァイルエントリィ482を再生し、サブディレクトリF430の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(113)]。

[0297]

(13) 113番目の論理ブロックにアクセスし、サブディレクトリF430の中身に関する情報を再生し、ファイルデータH432に関するファイルアイデンティファディスクリプターを探す。そしてそこからファイルデータH432に関するファイルエントリィが記録して有る論理ブロック番号 [図12及び図13には図示して無いがLAD(114)]を読み取る。

[0298]

(14) 114番目の論理ブロックにアクセスし、ファイルデータH432に関するファイルエントリィ484を再生しファイルデータH432のデータ内容489が記録されている位置を読み取る。

[0299]

(15) 先の(4)か(4')で追加登録した論理ブロック番号も加味して変更後のファイルデータH432のデータ内容489を記録する。

[0300]

(12F) 特定のファイルデータ/ディレクトリ消去処理方法

例としてファイルデータH432またはサブディレクトリF430を消去する方法について説明する。

[0301]

(1)情報記録再生装置起動時または情報記憶媒体装着時のブート (Boot) 領域としてボリュームレコグニションシーケンス444領域内のブートディスクリプター447の情報を再生に行く。ブートディスクリプター447の記述内容に沿ってブート (Boot) 時の処理が始まる。特に指定されたブート時の処理が無い場合には、

(2) 始めにメインボリュームディスクリプターシーケンス 4 4 9 領域内のロジカルボリュームディスクリプター 4 5 4 の情報を再生する。

[0302]

(3) ロジカルボリュームディスクリプター454の中にロジカルボリュームコンテンツコース455が記述されており、そこにファイルセツトディスクリプター472が記録して有る位置を示す論理ブロック番号がロングアロケーションディスクリプター(図17)形式で記述して有る。図12及び図13の例ではLAD(100)から100番目の論理ブロックに記録して有る。

[0303]

(4) 100番目の論理ブロック (論理セクタ番号では400番目になる) にアクセスし、ファイルセットディスクリプター472を再生する。その中のルートディレクトリICB473にルートディレクトリA425に関するファイルエントリィが記録されている場所 (論理ブロック番号) がロングアロケーションディスクリプター (図17) 形式で記述して有る。図12及び図13の例ではLAD(102) から102番目の論理ブロックに記録して有る。ルートディレクトリICB473のLAD(102) に従い、

(5) 102番目の論理ブロックにアクセスし、ルートディレクトリA425に関するファイルエントリィ475を再生し、ルートディレクトリA425の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(103)]。

[0304]

(6) 103番目の論理ブロックにアクセスし、ルートディレクトリA425の中身に関する情報を再生する。ファイルデータH432はディレクトリD428系列の下に存在するので、ディレクトリD428に関するファイルアイデンティファディスクリプターを探し、ディレクトリD428に関するファイルエントリィが記録して有る論理ブロック番号[図12及び図13には図示して無いがLAD(110)]を読み取る。

[0305]

(7) 110番目の論理ブロックにアクセスし、ディレクトリD428に関するファイル

50

エントリィ480を再生し、ディレクトリD428の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(111)]。

[0306]

(8) 1 1 1 番目の論理ブロックにアクセスし、ディレクトリ D 4 2 8 の中味に関する情報を再生する。ファイルデータ H 4 3 2 はサブディレクトリ F 4 3 0 の直接下に存在するので、サブディレクトリ F 4 3 0 に関するファイルアイデンティファディスクリプターを探す。

[0307]

《サブディレクトリF430を消去する場合には》

サブディレクトリF430に関するファイルアイデンティファディスクリプター内のフ 10 ァイルキャラクタリスティクス422(図15)に"ファイル削除フラグ"を立てる。

[0308]

サブディレクトリF430に関するファイルエントリィが記録して有る論理ブロック番号[図12及び図13には図示して無いがLAD(112)]を読み取る。

[0309]

(9) 112番目の論理ブロックにアクセスし、サブディレクトリF430に関するファイルエントリィ482を再生し、サブディレクトリF430の中味に関する情報が記録されている位置(論理ブロック番号)を読み込む [AD(113)]。

[0310]

(10) 113番目の論理ブロックにアクセスし、サブディレクトリF430の中味に関 20 する情報を再生し、ファイルデータH432に関するファイルアイデンティファディスクリプターを探す。

[0311]

《ファイルデータH432を消去する場合には》

ファイルデータH432に関するファイルアイデンティファディスクリプター内のファイルキャラクタリスティクス422 (図15)に"ファイル削除フラグ"を立てる。

[0312]

さらに、そこからファイルデータH432に関するファイルエントリィが記録して有る 論理ブロック番号 [図12及び図13には図示して無いがLAD(114)] を読み取る

[0313]

(11)114番目の論理ブロックにアクセスし、ファイルデータH432に関するファイルエントリィ484を再生しファイルデータH432のデータ内容489が記録されている位置を読み取る。

[0314]

《ファイルデータH432を消去する場合には》

以下の方法でファイルデータH432のデータ内容489が記録されていた論理ブロックを解放する(その論理ブロックを未記録状態に登録する)。

[0315]

(12) 次にメインボリュームディスクリプターシーケンス449領域内のパーティショ 40 ンディスクリプター450を再生し、その中に記述して有るパーティションコンテンツユース451の情報を読み取る。このパーティションコンテンツユース451 (パーティションヘッダーディスクリプターとも呼ぶ)の中にスペーステーブルもしくはスペースビットマップの記録位置が示して有る。

[0316]

・スペーステーブル位置はアロケートされないスペーステーブル 4 5 2 の欄にショートアロケーションディスクリプターの形式で記述されている。図 1 2 及び図 1 3 の例では A D (5 0)。また、

・スペースビットマップ位置はアロケートされないスペースビットマップ453の欄にショートアロケーションディスクリプターの形式で記述されている。図12及び図13の例

ではAD(0)。

[0317]

(13) 先の(12) で読み取ったスペースビットマップが記述して有る論理ブロック番号(0) ヘアクセスし、(11) の結果得られた"解放する論理ブロック番号"をスペースビットマップディスクリプター 470 に書き換える。もしくは、

(13) 先の(12)で読み取ったスペーステーブルが記述して有る論理ブロック番号(50)へアクセスし、(11)の結果得られた"解放する論理ブロック番号"をスペーステーブルに書き換える。実際の処理は"(13)"か"(13))"かどちらか一方の処理を行なう。

[0318]

《ファイルデータH432を消去する場合には》

(12) 先の(10) ~(11) と同じ手順を踏んでファイルデータ [433 のデータ内容 490 が記録されている位置を読み取る。

[0319]

(13) 次にメインボリュームディスクリプターシーケンス449領域内のパーティションディスクリプター450を再生し、その中に記述して有るパーティションコンテンツユース451(パーティションヘッダーディスクリプターとも呼ぶ)の中にスペーステーブルもしくはスペースビットマップの記録位置が示して有る。

[0320]

・スペーステーブル位置はアロケートされないスペーステーブル452の欄にショートアロケーションディスクリプターの形式で記述されている。図12及び図13の例ではAD(50)。また、

・スペースビットマップ位置はアロケートされないスペースビットマップ 4 5 3 欄にショートアロケーションディスクリプターの形式で記述されている。図 1 2 及び図 1 3 の例では A D (0)。

[0321]

(14) 先に(13) で読み取ったスペースビットマップが記述して有る論理ブロック番号(0) ヘアクセスし、(11) と(12) の結果得られた"解放する論理ブロック番号"をスペースビットマップディスクリプター470に書き換える。もしくは、

(14') 先に(13)で読み取ったスペーステーブルが記述して有る論理ブロック番号 (50) ヘアクセスし、(11) と(12)の結果得られた"解放する論理ブロック番号"をスペーステーブルに書き換える。実際の処理は"(14)"か"(14')"かどちらか一方の処理を行なう。

[0322]

(12G) ファイルデータ/ディレクトリの追加処理

例としてサブディレクトリF430の下に新たにファイルデータもしくはディレクトリを追加する時のアクセス・追加処理方法について説明する。

[0323]

(1) ファイルデータを追加する場合には追加するファイルデータ内容の容量を調べ、その値を2048バイトで割り、ファイルデータを追加するために必要な論理ブロック数を計算しておく。

[0324]

(2)情報記録再生装置起動時または情報記憶媒体装着時のブート (Boot) 領域としてボリュームレコグニションシーケンス444領域内のブートディスクリプター447の情報を再生に行く。ブートディスクリプター447の記述内容に沿ってブート (Boot) 時の処理が始まる。特に指定されたブート時の処理が無い場合には、

(3) 始めにメインボリュームディスクリプターシーケンス449領域内のパーティションディスクリプター450を再生し、その中に記述して有るパーティションコンテンツユース451(パーティションコンテンツユース451(パーティシ

10

20

30

40

ョンヘッダーディスクリプターとも呼ぶ)の中にスペーステーブルもしくはスペースビットマップの記録位置が示して有る。

[0325]

・スペーステーブル位置はアロケートされないスペーステーブル452の欄にショートアロケーションディスクリプターの形式で記述されている。図12及び図13の例ではAD(50)。また、

・スペースビットマップ位置はアロケートされないスペースビットマップ 4 5 3 の欄にショートアロケーションディスクリプターの形式で記述されている。図 1 2 及び図 1 3 の例では A D (0)。

[0326]

(4) 先の(3) で読み取ったスペースビットマップが記述して有る論理ブロック番号(0) ヘアクセスする。スペースビットマップディスクリプター470からスペースビットマップ情報を読み取り、未記録の論理ブロックを探し、(1) の計算結果分の論理ブロックの使用を登録する(スペースビットマップディスクリプター470情報の書き換え処理)。もしくは、

(4') 先の(3) で読み取ったスペーステーブルが記述して有る論理ブロック番号(50) ヘアクセスする。スペーステーブルのUSE(AD(*), AD(*), …, AD(*)) 471 から未記録の論理ブロックを探し、(1)の計算結果分の論理ブロックの使用を登録する(スペーステーブル情報の書き換え処理)。実際の処理は"(4)"か"(4')"のどちらか一方の処理が行なわれる。

[0327]

(5)次にメインボリュームディスクリプターシーケンス449領域内のロジカルボリュームディスクリプター454の情報を再生する。

[0328]

(6) ロジカルボリュームディスクリプター454の中に ロジカルボリュームコンテンツユース455が記述されており、そこにファイルセットディスクリプター472が記録して有る位置を示す論理ブロック番号がロングアロケーションディスクリプター(図17)形式で記述して有る。図12及び図13の例ではLAD(100)から100番目の論理ブロックに記録して有る。

[0329]

(7) 100番目の論理ブロック (論理セクタ番号では400番目になる) にアクセスし、ファイルセットディスクリプター472を再生する。その中のルートディレクトリICB473にルードディレクトリA425に関するファイルエントリィが記録されている場所 (論理ブロック番号) がロングアロケーションディスクリプター (図17) 形式で記述して有る。図12及び図13の例ではLAD(102) から102番目の論理ブロックに記録して有る。ルートディレクトリICB473のLAD(102) に従い、

(8) 102番目の論理ブロックにアクセスし、ルートディレクトリA425に関するファイルエントリィ475を再生し、ルートディレクトリA425の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(103)]。

[0330]

(9) 103番目の論理ブロックにアクセスし、ルートディレクトリA425の中身に関する情報を再生する。ディレクトリD428に関するファイルアイデンティファディスクリプターを探し、ディレクトリD428に関するファイルエントリィが記録して有る論理ブロック番号[図12及び図13には図示して無いがLAD(110)]を読み取る。

[0331]

(10) 110番目の論理ブロックにアクセスし、ディレクトリD428に関するファイルエントリィ480を再生し、ディレクトリD428の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む[AD(111)]。

(11) 111番目の論理ブロックにアクセスし、ディレクトリD428の中身に関する情報を再生する。サブディレクトリF430に関するファイルアイデンティファディスク

10

20

30

リプターを探し、サブディレクトリF430に関するファイルエントリィが記録して有る 論理ブロック番号 [図12及び図13には図示して無いがLAD(112)] を読み取る

[0332]

(12) 112番目の論理ブロックにアクセスし、サブディレクトリF430に関するファイルエントリィ482を再生し、サブディレクトリF430の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む [AD(113)]。

[0333]

(13) 113番目の論理ブロックにアクセスし、サブディレクトリF430の中身に関する情報内に新たに追加するファイルデータもしくはディレクトリのファイルアイデンティファディスクリプターを登録する。

[0334]

(14) 先の(4) または(4') で登録した論理ブロック番号位置にアクセスし、新たに追加するファイルデータもしくはディレクトリに関するファイルエントリィを記録する

[0335]

(15) 先の(14) のファイルエントリィ内のショートアロケーションディスクリプターに示した論理ブロック番号位置にアクセスし、追加するディレクトリに関するペアレントディレクトリのファイルアイデンティファディスクリプターもしくは追加するファイルデータのデータ内容を記録する。

[0336]

図 2 1 (a) \sim (b) にビデオファイル内に未記録領域を持たない従来方法におけるファイル位置設定方法について説明する。図 2 1 (a) のように情報記憶媒体上のデータエリア 1 0 0 4 上に 2 個の P C ファイルと 1 個のビデオファイルが記録されている場合を考える。図 2 1 での L B N は論理ブロック番号(ロジカルブロックナンバー)を意味する。各ファイルの開始位置での L B N が A, F, C の場合、 P C ファイルのファイルエントリイ上での記録位置は、図 1 2 及び図 1 3 または図 1 4、図 1 6 の表記法を使うとそれぞれ F E (A D (A)) と F E (A D (F)) になる。また図 2 1 (a) ではビデオファイル # 1 が 1 箇所にまとまって記録されているため 1 個のエクステントで記述できるのでこのファイルに対応するファイルエントリィは F E (A D (C)) になる。

[0337]

次にビデオファイル#1内のLBNがDからEまでの部分を部分消去した場合を考える。従来ファイル内に未記録領域の存在を許さないので図21 (b) のように情報記憶媒体上のビデオファイル#1の記録位置が2箇所に分かれる。その結果ビデオファイルのアロケーション(記録位置)を記述するエクステントが2個に分かれるのでこのビデオファイルのファイルエントリィはFE (AD (C), AD (E)) となる。UDF上では映像情報の連続記録、連続再生管理を行なっていないので、図21 (b) の段階でLBNがDからEまでの領域は未記録領域と見なされ、この領域への別ファイルの記録を許可してしまう。その結果図21 (c) のようにそこにPCファイル#3が記録される場合もある。

[0338]

次に別の映像情報を記録使用としてもLBNがDからEの間には記録することが出来ず、ビデオファイル#1から大きく離れたLBNがGから始まる場所に別のビデオファイルであるビデオファイル#2として記録される。ビデオファイル内に未記録領域を許可しない従来方法の場合、図21(d)のように情報記憶媒体上にビデオファイルが点在してしまい、全てのビデオファイルを連続的に再生しようとすると光学ヘッドのアクセス時間の影響で連続再生が難しくなる。同様に従来方法では連続記録が難しくなる。

[0339]

図22に本発明のビデオファイル内に未記録領域の存在を許した場合の情報記憶媒体上のファイル記録位置設定方法について説明する。図22(a)は図21(a)と一致している。LBNがDからEまでを部分消去した場合、本発明の実施の形態ではビデオファイ

20

10

30

20

30

40

50

ル#1内に未記録領域を持つため図22(b)に示すようにビデオファイルのファイルサイズは変化しない。従ってビデオファイルに対するファイルエントリィはFE(AD(C))のまま変化しない。従って新たにPCファイルを記録した場合にも図21(c)のようにビデオファイル#1の間にPCファイルが入り込む事が無い。

[0340]

次に録画による映像情報の追記録を行なった場合にはLBNがDからEまでの未記録領域に追記記録情報が入り、追記録領域に変化する。このように本発明方法では図10に示した情報記録再生装置は少量での部分消去、録画による追記録に対していちいちUDFのファイル・システム情報を変更する必要が無く、情報記録再生装置の処理が楽になる。さらに録画すべき映像情報が増えた場合にはビデオファイルサイズが広がる。図22 (c)のLBNがBからCの範囲の未記録領域がビデオファイル#1に吸収される。図22 (c)でのビデオファイルのエクステントがAD(C)1個だったのに対して図22 (d)ではAD(A)のエクステントが1個増え、ファイルエントリィがFE(AD(C), AD(B))となる。

[0341]

次にDVD-RAMディスク内の詳細構造と欠陥管理方法について、図23~図33を参照して説明する。図23は、DVD-RAMディスク内の概略記録内容のレイアウトを説明する図である。

[0342]

すなわち、ディスク内周側のリードインエリア607は光反射面が凹凸形状をしたエンボスドデータゾーン611、表面が平坦(鏡面)なミラーゾーン612および書替可能なリライタブルデータゾーン613で構成される。エンボスドデータゾーン611は図24のように基準信号を表すリファレンスシグナルゾーン653およびコントロールデータゾーン655を含み、ミラーゾーン612はコネクションゾーン657を含む。

[0343]

リライタブルデータゾーン613は、ディスクテストゾーン659と、ドライブテスト ゾーン660と、ディスクID(識別子)が示されたディスクアイデンティフィケイショ ンゾーン662と、欠陥管理エリアDMA1およびDMA2 663とを含んでいる。

[0344]

ディスク外周側のリードアウトエリア609は、図25に示すように欠陥管理エリアD MA3およびDMA4 691と、ディスクID(識別子)が示されたディスクアイデンティフィケイションゾーン692と、ドライブテストゾーン694と、ディスクテストゾーン695とを含む書替可能なリライタブルデータゾーン645で構成される。

[0345]

リードインエリア607とリードアウトエリア609との間のデータエリア608は24個の年輪状のゾーン00 620~ゾーン23 643に分割されている。各ゾーン(Zone)は一定の回転速度を持っているが、異なるゾーン間では回転速度が異なる。また、各ゾーンを構成するセクタ数も、ゾーン毎に異なる。具体的には、ディスク内周側のゾーン(ゾーン00 620等)は回転速度が早く構成セクタ数は少ない。

[0346]

一方、ディスク外周側のゾーン(ゾーン23 643等)は回転速度が遅く構成セクタ数が多い。このようなレイアウトによって、各ゾーン内ではCAVのような高速アクセス性を実現し、ゾーン全体でみればCLVのような高密度記録性を実現している。

[0347]

図24と図25は図23のレイアウトにおけるリードインエリア607とリードアウトエリア609の詳細を説明する図である。

[0348]

エンボスドデータゾーン 6 1 1 のコントロールデータゾーン 6 5 5 には、適用される D V D 規格のタイプ (D V D - R O M、D V D - R A M、D V D - R 等) およびパートバージョンを示すブックタイプアンドパートバージョン 6 7 1 と、ディスクサイズおよび最小

20

30

40

50

読出レートを示すディスクサイズアンドミニマムリードアウトレート672と、1層ROMディスク、1層RAMディスク、2層ROMディスク等のディスク構造を示すディスクストラクチュア673と、記録密度を示すレコーディングデンシティ674と、データが記録されている位置を示すデータエリアアロケーション675と、情報記憶媒体の内周側に情報記憶媒体個々の製造番号などが書き換え不可能な形で記録されたBCA(Burst Cutting Area)ディスクリプター676と、記録時の露光量指定のための線速度条件を示すベロシティ677と、再生時の情報記憶媒体への露光量を表すリードパワー678と、記録時に記録マーク形成のために情報記憶媒体に与える最大露光量を表すピークパワー679と、消去時に情報記憶媒体に与える最大露光量を表すバイアスパワー680と、媒体の製造に関する情報682とが記録されている。

[0349]

別の言い方をすると、このコントロールデータゾーン655には、記録開始・記録終了位置を示す物理セクタ番号などの情報記憶媒体全体に関する情報と、記録パワー、記録パルス幅、消去パワー、再生パワー、記録・消去時の線速などの情報と、記録・再生・消去特性に関する情報と、個々のディスクの製造番号など情報記憶媒体の製造に関する情報等が事前に記録されている。

[0350]

リードインエリア607およびリードアウトエリア609のリライタブルデータゾーン613,645には、各々の媒体ごとの固有ディスク名記録領域(ディスクアイデンティフィケイションゾーン662,692)と、試し記録領域(記録消去条件の確認用であるドライブテストゾーン660,694とディスクテストゾーン659,695)と、データエリア内の欠陥領域に関する管理情報記録領域(DMA1&DMA2 663、DMA3&DMA4 691)とが設けられている。これらの領域を利用することで、個々のディスクに対して最適な記録が可能となる。

[0351]

図26は図23のレイアウトにおけるデータエリア608内の詳細を説明する図である

[0352]

24個のゾーン (Zone) 毎に同数のグループ (Group) が割り当てられ、各グループはデータ記録に使用するユーザエリア723と交替処理に使用するスペアエリア724とをペアを含んでいる。またユーザエリア723とスペアエリア724のペアは各ゾーン毎にガードエリア771,772で分離されている。更に各グループのユーザエリア723およびスペアエリア724は同じ回転速度のゾーンに収まっており、グループ番号の小さい方が高速回転ゾーンに属し、グループ番号の大きい方が低速回転ゾーンに属する。低速回転ゾーンのグループは高速回転ゾーンのグループよりもセクタ数が多いが、低速回転ゾーンはディスクの回転半径が大きいので、ディスク上での物理的な記録密度はゾーン全体(グループ全て)に渡りほぼ均一になる。

[0353]

各グループにおいてユーザエリア723はセクタ番号の小さい方(つまりディスク上で 内周側)に配置され、スペアエリア724はセクタ番号の大きい方(ディスク上で外周側)に配置される。

[0354]

次に情報記憶媒体としてDVD一RAMディスク上に記録される情報の記録信号構造とその記録信号構造の作成方法について説明する。なお、媒体上に記録される情報の内容そのものは「情報」と呼び、同一内容の情報に対しスクランブルしたり変調したりしたあとの構造や表現、つまり信号形態が変換された後の"1"~"0"の状態のつながりは「信号」と表現して、両者を適宜区別することにする。

[0355]

図27は図23のデータエリア部分に含まれるセクタ内部の構造を説明する図である。 図27の1セクタ501aは図26のセクタ番号の1つに対応し、図28に示すように2

20

30

40

50

048バイトのサイズを持つ。各セクタは図示していないが情報記憶媒体(DVD-RAMディスク)の記録面上にエンボスなどの凹凸構造で事前に記録されたヘッダ573、574を先頭に、同期コード575、576と変調後の信号577、578を交互に含んでいる。

[0356]

次に、DVD-RAMディスクにおけるECCブロック処理方法について説明する。

[0357]

図28は図23のデータエリア608に含まれる情報の記録単位 (Error Correction C ode のECC単位) を説明する図である。

[0358]

パーソナルコンピュータ用の情報記憶媒体(ハードディスクHDDや光磁気ディスクMOなど)のファイル・システムで多く使われるFAT(File Allocation Table)では256バイトまたは512バイトを最小単位として情報記憶媒体へ情報が記録される。

[0359]

それに対し、CD-ROMやDVD-ROM、DVD-RAMなどの情報記憶媒体ではファイル・システムとして前記したUDF(Universal Disk Format)を用いており、ここでは2048バイトを最小単位として情報記憶媒体へ情報が記録される。この最小単位をセクタと呼ぶ。つまりUDFを用いた情報記憶媒体に対しては、図28に示すようにセクタ501毎に2048バイトずつの情報を記録して行く。

[0360]

CD-ROMやDVD-ROMではカートリッジを使わず裸ディスクで取り扱うため、ユーザサイドで情報記憶媒体表面に傷が付いたり表面にゴミが付着し易い。情報記憶媒体表面に付いたゴミや傷の影響で特定のセクタ(たとえば図28のセクタ501c)が再生不可能(もしくは記録不能)な場合が発生する。

[0361]

DVDでは、そのような状況を考慮したエラー訂正方式(積符号を利用したECC)が採用されている。具体的には16個ずつのセクタ(図28ではセクタ501aからセクタ501pまでの16個のセクタ)で1個のECC(Error Correction Code)ブロック502を構成し、その中で強力なエラー訂正機能を持たせている。その結果、たとえばセクタ501cが再生不可能といったような、ECCブロック502内のエラーが生じても、エラー訂正され、ECCブロック502のすべての情報を正しく再生することが可能となる。

[0362]

図29は図23のデータエリア608内でのゾーンとグループ(図26参照)との関係を説明する図である。

[0363]

図23の各ゾーン00 620~ゾーン23 643はDVD-RAMディスクの記録面上に物理的に配置されるもので、図23の物理セクタ番号604の欄と図29に記述して有るようにデータエリア608内のユーザエリア00 705の最初の物理セクタの物理セクタ番号 (開始物理セクタ番号701)は031000h (h:16進数表示の意味)に設定されている。

[0364]

更に物理セクタ番号は外周側704に行くに従って増加し、ユーザエリア00705, 01706, 23707、スペアエリア00708, 01709, 23710, 01709, 0170

[0365]

これに対してユーザエリア 7 0 5 , 7 0 6 , 7 0 7 とスペアエリア 7 0 8 , 7 0 9 , 7 1 0 のペアで構成される各グループ 7 1 4 , 7 1 5 , 7 1 6 の間にはそれぞれガードエリ

ア711,712,713が挿入配置されている。そのため各グループ714,715,716をまたがった物理セクタ番号には図26のように不連続性を有する。

[0366]

図29の構成を持つDVD-RAMディスクが、図11に示す情報記録再生部(物理系ブロック)を有した情報記録再生装置で使用した場合には、光学ヘッド202がガードエリア711,712,713通過中にDVD-RAMディスクの回転速度を切り替える処理を行なうことができる。例えば光ヘッド202がグループ00 714からグループ01 715にシークする際に、ガードエリア711を通過中にDVD-RAMディスクの回転速度が切り替えられる。

[0367]

図30は図23のデータエリア608内での論理セクタ番号の設定方法を説明した図である。論理セクタの最小単位は物理セクタの最小単位と一致し、2048バイト単位になっている。各論理セクタは以下の規則に従い、対応した物理セクタ位置に割り当てられる

[0368]

図29に示すように物理的にガードエリア711,712,713がDVD-RAMディスクの記録面上に設けられているため各グループ714,715,716をまたがった物理セクタ番号には不連続性が生じるが、論理セクタ番号は各グループ00 714,01 715,23 716をまたがった位置で連続につながるような設定方法を取っている。

[0369]

[0370]

この配置において D V D - R A M ディスクの記録面上に全く欠陥がない場合には、各論理セクタは図 2 9 のユーザエリア 0 0 7 0 5 \sim 2 3 7 0 7 内の全物理セクタに 1 対 1 に割り当てられ、物理セクタ番号が 0 3 1 0 0 0 h で有る開始物理セクタ番号 7 0 1 位置でのセクタの論理セクタ番号は 0 h に設定される(図 2 6 の各グループ内最初のセクタの論理セクタ番号 7 7 4 の欄を参照)。このように記録面上に全く欠陥がない場合にはスペアエリア 0 0 7 0 8 \sim 2 3 7 1 0 内の各セクタに対しては論理セクタ番号は事前には設定されていない。

[0371]

DVD-RAMディスクへの記録前に行なう記録面上の事前の欠陥位置検出処理であるサーティファイ(Certify)処理時や再生時、あるいは記録時にユーザエリア 00 705~23 707内に欠陥セクタを発見した場合には、交替処理の結果、代替え処理を行ったセクタ数だけスペアエリア 00 708~23 710内の対応セクタに対して論理セクタ番号が設定される。

[0372]

次に、ユーザエリアで生じた欠陥を処理する方法を幾つか説明する。その前に、欠陥処理に必要な欠陥管理エリア(図24または図25のDMA1~DMA4 663,691)およびその関連事項について説明しておく。

[0373]

[欠陥管理エリア]

欠陥管理エリア(DMA1~DMA4 663,691)はデータエリアの構成および欠陥管理の情報を含むもので、たとえば32セクタで構成される。2つの欠陥管理エリア(DMA1,DMA2 663)はDVD-RAMディスクのリードインエリア607内に配置され、他の2つの欠陥管理エリア(DMA3,DMA4 691)はDVD-RAMディスクのリードアウトエリア609内に配置される。各欠陥管理エリア(DMA1~

10

20

30

40

20

30

DMA4 663,691) の後には、適宜予備のセクタ (スペアセクタ) が付加されている。

[0374]

各欠陥管理エリア(DMA1~DMA4 663,691)は、2つのブロックに分かれている。各欠陥管理エリア(DMA1~DMA4 663,691)の最初のブロックには、DVD-RAMディスクの定義情報構造(DDS; Disk Definition Structure) および一次欠陥リスト(PDL; Primary Defect List)が含まれる。各欠陥管理エリア(DMA1~DMA4 663,691)の2番目のブロックには、二次欠陥リスト(SDL; Secondary Defect List)が含まれる。4つの欠陥管理エリア(DMA1~DMA4 663,691)の4つの一次欠陥リスト(PDL)は同一内容となっており、それらの4つの二次欠陥リスト(SDL)も同一内容となっている。

[0375]

4つの欠陥管理エリア(DMA1~DMA4 663,691)の4つの定義情報構造(DDS)は基本的には同一内容であるが、4つの欠陥管理エリアそれぞれのPDLおよびSDLに対するポインタについては、それぞれ個別の内容となっている。

[0376]

ここでDDS/PDLブロックは、DDSおよびPDLを含む最初のブロックを意味する。また、SDLブロックは、SDLを含む2番目のブロックを意味する。

[0377]

DVD-RAMディスクを初期化したあとの各欠陥管理エリア (DMA1~DMA4663,691) の内容は、以下のようになっている、

(1) 各DDS/PDLブロックの最初のセクタはDDSを含む。

[0378]

(2) 各DDS/PDLブロックの2番目のセクタはPDLを含む。

[0379]

(3) 各SDLブロックの最初のセクタはSDLを含む。

[0380]

一次欠陥リストPDLおよび二次欠陥リストSDLのプロック長は、それぞれのエントリ数によって決定される。各欠陥管理エリア(DMA1~DMA4 663,691)の未使用セクタはデータOFFhで書き潰される。また、全ての予備セクタは00hで書き潰される。

[0381]

[ディスク定義情報]

定義情報構造DDSは、1セクタ分の長さのテーブルからなる。このDDSはディスクの初期化方法と、PDLおよびSDLそれぞれの開始アドレスを規定する内容を持つ。DDSは、ディスクの初期化終了時に、各欠陥管理エリア(DMA)の最初のセクタに記録される。

[0382]

[スペアセクタ]

各データエリア608内の欠陥セクタは、所定の欠陥管理方法(後述する検証、スリッピング交替、スキッピング交替、リニア交替)により、正常セクタに置換(交替)される。この交替のためのスペアセクタの位置は、図29に示したスペアエリア00 708~23 710の各グループのスペアエリアに含まれる。またこの各スペアエリア内のでの物理セクタ番号は図26のスペアエリア724の欄に記載されている。

[0383]

DVD-RAMディスクは使用前に初期化できるようになっているが、この初期化は検証の有無に拘わらず実行可能となっている。

[0384]

欠陥セクタは、スリッピング交替処理(Slipping Replacement Algorithm)、スキッピング交替処理(Skipping Replacement Algorithm)あるいはリニア交替処理(Linear Rep

30

40

lacement Algorithm) により処理される。これらの処理(Algorithm) により前記PDL およびSDLにリストされるエントリ数の合計は、所定数、たとえば4092以下とされる。

[0385]

[初期化・Certify]

DVD-RAMディスクのデータエリア608にユーザ情報を記録する前に初期化処理を行ない、データエリア608内の全セクタの欠陥状況の検査(Certify)を行なう場合が多い。初期化段階で発見された欠陥セクタは特定され、連続した欠陥セクタ数に応じてスリッピング交替処理あるいはリニア交替処理によりユーザエリア723内の欠陥セクタはスペアエリア724内の予備セクタで補間される。サーティファイの実行中にDVD-RAMディスクのゾーン内スペアセクタを使い切ってしまったときは、そのDVD-RAMディスクは不良と判定し、以後そのDVD-RAMディスクは使用しないものとする。

[0386]

全ての定義情報構造DDSのパラメータは、4つのDDSセクタに記録される。一次欠陥リストPDLおよび二次欠陥リストSDLは、4つの欠陥管理エリア (DMA1~DMA4 663,691)に記録される。最初の初期化では、SDL内のアップデートカウンタは00hにセットされ、全ての予約ブロックは00hで書き潰される。

[0387]

なお、ディスクをコンピュータのデータ記憶用に用いるときは上記初期化・Certify が行なわれるが、ビデオ録画用に用いられるときは、上記初期化・Certify を行なうことなく、いきなりビデオ録画することもあり得る。

[0388]

図31 (b) は図23のデータエリア608内でのスリッピング交替処理 (Slipping Replacement Algorithm) を説明する図である。

[0389]

DVD-RAMディスク製造直後(ディスクにまだ何もユーザ情報が記録されて無い時)、あるいは最初にユーザ情報を記録する場合(既に記録されている場所上に重ね書き記録するのでは無く、未記録領域に最初に情報を記録する場合)には欠陥処理方法としてこのスリッピング交替処理が適用される。

[0390]

すなわち、発見された欠陥データセクタ(たとえばm個の欠陥セクタ731)は、その 欠陥セクタの後に続く最初の正常セクタ(ユーザエリア723b)に交替(あるいは置換)使用される(交替処理734)。これにより、該当グループの末端に向かってmセクタ 分のスリッピング(論理セクタ番号後方シフト)が生じる。

[0391]

同様に、その後にn個の欠陥セクタ732が発見されれば、その欠陥セクタはその後に続く正常セクタ(ユーザエリア723c)と交替使用され、同じく論理セクタ番号の設定位置が後方にシフトする。その交代処理の結果スペアエリア724内の最初からm+nセクタ分737に論理セクタ番号が設定され、ユーザ情報記録可能領域になる。その結果、スペアエリア724内の不使用領域726はm+nセクタ分減少する。

[0392]

この時の欠陥セクタのアドレスは一次欠陥リスト(PDL)に書き込まれ、欠陥セクタはユーザ情報の記録を禁止される。もしサーティファイ中に欠陥セクタが発見されないときは、PDLには何も書き込まない。同様にもしもスペアエリア724内の記録使用領域743内にも欠陥セクタが発見された場合には、そのスペアセクタのアドレスはPDLに書き込まれる。

[0393]

上記のスリッピング交替処理の結果、欠陥セクタのないユーザエリア723a~723 c とスペアエリア724内の記録使用領域743がそのグループの情報記録使用部分(論 理セクタ番号設定領域735)となり、この部分に連続した論理セクタ番号が割り当てら

20

30

れる。

[0394]

図31 (c)は、図23のデータエリア608内での他の交替処理で有るスキッピング 交替処理 (Skipping Replacement Algorithm) を説明する図である。

[0395]

スキッピング交替処理は、映像情報や音声情報など途切れる事無く連続的(シームレス)にユーザ情報を記録する必要が有る場合の欠陥処理に適した処理方法である。このスキッピング交替処理は、16セクタ単位、すなわちECCブロック単位(1セクタが2kバイトなので32kバイト単位)で実行される。

[0396]

たとえば、正常なECCブロックで構成されるユーザエリア723aの後に1個の欠陥 ECCブロック741が発見されれば、この欠陥ECCブロック741に記録予定だった データは、直後の正常なユーザエリア723bのECCブロックに代わりに記録される(交替処理744)。同様にk個の連続した欠陥ECCブロック742が発見されれば、これらの欠陥ブロック742に記録する予定だったデータは、直後の正常なユーザエリア7 23cのk個のECCブロックに代わりに記録される。

[0397]

こうして、該当グループのユーザエリア内で1+k個の欠陥ECCブロックが発見された時は、(1+k)ECCブロック分がスペアエリア724の領域内にずれ込み、スペアエリア724内の情報記録に使用する延長領域743がユーザ情報記録可能領域となり、ここに論理セクタ番号が設定される。その結果スペアエリア724の不使用領域746は(1+k)ECCブロック分減少し、残りの不使用領域746は小さくなる。

[0398]

上記交代処理の結果、欠陥ECCブロックのないユーザエリア723a~723cと情報記録に使用する延長領域743がそのグループ内での情報記録使用部分(論理セクタ番号設定領域)となる。この時の論理セクタ番号の設定方法として、欠陥ECCブロックのないユーザエリア723a~723cは初期設定(上記交代処理前の)時に事前に割り振られた論理セクタ番号のまま不変に保たれる所に大きな特徴が有る。

[0399]

その結果、欠陥ECCブロック741内の各物理セクタに対して初期設定時に事前に割り振られた論理セクタ番号がそのまま情報記録に使用する延長領域743内の最初の物理セクタに移動して設定される。またk個連続欠陥ECCブロック742内の各物理セクタに対して初期設定時に割り振られた論理セクタ番号がそのまま平行移動して、情報記録に使用する延長領域743内の該当する各物理セクタに設定される。

[0400]

このスキッピング交替処理法では、DVD-RAMディスクが事前にサーティファイされていなくても、ユーザ情報記録中に発見された欠陥セクタに対して即座に交替処理を実行出来る。

[0401]

図31 (d) は図23のデータエリア608内でのさらに他の交替処理であるリニア交 40替処理 (Linear Replacement Algorithm) を説明する図である。

[0402]

このリニア交替処理も、16セクタ単位すなわちECCブロック単位(32kバイト単位)で実行される。

[0403]

リニア交替処理では、欠陥ECCブロック751が該当グループ内で最初に使用可能な正常スペアブロック(スペアエリア724内の最初の交代記録箇所753)と交替(置換)される(交替処理758)。この交代処理の場合、欠陥ECCブロック751上に記録する予定だったユーザ情報はそのままスペアエリア724内の交代記録箇所753上に記録されるとともに、論理セクタ番号設定位置もそのまま交代記録箇所753上に移される

。同様に k 個の連続欠陥 E C C ブロック 7 5 2 に対しても記録予定だったユーザ情報と論理セクタ番号設定位置がスペアエリア 7 2 4 内の交代記録箇所 7 5 4 に移る。

[0404]

リニア交替処理とスキッピング交替処理の場合には欠陥ブロックのアドレスおよびその最終交替(置換)ブロックのアドレスは、SDLに書き込まれる。SDLにリストされた交替ブロックが、後に欠陥ブロックであると判明したときは、ダイレクトポインタ法を用いてSDLに登録を行なう。このダイレクトポインタ法では、交替ブロックのアドレスを欠陥ブロックのものから新しいものへ変更することによって、交替された欠陥ブロックが登録されているSDLのエントリィが修正される。上記二次欠陥リストSDLを更新するときは、SDL内の更新カウンタを1つインクリメントする。

[0405]

[書込処理]

あるグループのセクタにデータ書込を行うときは、一次欠陥リスト(PDL)にリストされた欠陥セクタはスキップされる。そして、前述したスリッピング交替処理にしたがって、欠陥セクタに書き込もうとするデータは次に来るデータセクタに書き込まれる。もし書込対象ブロックが二次欠陥リスト(SDL)にリストされておれば、そのブロックへ書き込もうとするデータは、前述したリニア交替処理またはスキッピング交替処理にしたがって、SDLにより指示されるスペアブロックに書き込まれる。

[0406]

なお、パーソナルコンピュータの環境下では、パーソナルコンピュータファイルの記録時にはリニア交替処理が利用され、AVファイルの記録時にはスキッピング交替処理が利用される。

[0407]

[一次欠陥リスト; PDL]

一次欠陥リスト(PDL)は常にDVD-RAMディスクに記録されるものであるが、 その内容が空であることはあり得る。

[0408]

PDLは、初期化時に特定された全ての欠陥セクタのアドレスを含む。これらのアドレスは、昇順にリストされる。PDLは、必要最小限のセクタ数で記録するようにする。そして、PDLは最初のセクタの最初のユーザバイトから開始する。PDLの最終セクタにおける全ての未使用バイトは、OFFhにセットされる。このPDLには、以下のような情報が書き込まれることになる。

[0409]

バイ	ト位置	PDLの内容	
	0	O O h ; P D L 識別子	
	1	0 1 h ; P D L 識別子	
	2	P D L 内のアドレス数;M S B	
	3	PDL内のアドレス数;LSB	
	4	最初の欠陥セクタのアドレス(セクタ番号;MSB)	
	5	最初の欠陥セクタのアドレス(セクタ番号)	40
	6	最初の欠陥セクタのアドレス(セクタ番号)	
	7	最初の欠陥セクタのアドレス(セクタ番号;LSB)	
	:	:	
x	- 3	最後の欠陥セクタのアドレス(セクタ番号;MSB)	
\mathbf{x}	- 2	最後の欠陥セクタのアドレス(セクタ番号)	
x	- 1	最後の欠陥セクタのアドレス(セクタ番号)	
	x	最後の欠陥セクタのアドレス(セクタ番号;LSB)	

*注;第2バイトおよび第3バイトが00hにセットされているときは、第3バイトはPDLの末尾となる。

[0410]

50

10

20

20

30

なお、マルチセクタに対する一次欠陥リスト(PDL)の場合、欠陥セクタのアドレスリストは、2番目以降の後続セクタの最初のバイトに続くものとなる。つまり、PDL識別子およびPDLアドレス数は、最初のセクタにのみ存在する。PDLが空の場合、第2バイトおよび第3バイトは00hにセットされ、第4バイトないし第2047バイトはFFhにセットされる。また、DDS/PDLブロック内の未使用セクタには、FFhが書き込まれる。

[0411]

[二次欠陥リスト;SDL]

二次欠陥リスト(SDL)は初期化段階で生成され、サーティファイの後に使用される。全てのディスクには、初期化中にSDLが記録される。

[0412]

このSDLは、欠陥データブロックのアドレスおよびこの欠陥ブロックと交替するスペアブロックのアドレスという形で、複数のエントリィを含んでいる。SDL内の各エントリィには、8バイト割り当てられている。つまり、その内の4バイトが欠陥ブロックのアドレスに割り当てられている

[0413]

上記アドレスリストは、欠陥ブロックおよびその交替ブロックの最初のアドレスを含む 。欠陥ブロックのアドレスは、昇順に付される。

[0414]

SDLは必要最小限のセクタ数で記録され、このSDLは最初のセクタの最初のユーザデータバイトから始まる。SDLの最終セクタにおける全ての未使用バイトは、OFFhにセットされる。その後の情報は、4つのSDL各々に記録される。

[0415]

SDLにリストされた交替ブロックが、後に欠陥ブロックであると判明したときは、ダイレクトポインタ法を用いてSDLに登録を行なう。このダイレクトポインタ法では、交替ブロックのアドレスを欠陥ブロックのものから新しいものへ変更することによって、交替された欠陥ブロックが登録されているSDLのエントリが修正される。その際、SDL内のエントリィ数は、劣化セクタによって変更されることはない。

[0416]

このSDLには、以下のような情報が書き込まれることになる。

[0417]

バイト位置	SDLの内容	
0	(00); SDL識別子	
1	(02); SDL識別子	
2	(00)	
3	(01)	
4	更新カウンタ;MSB	
5	更新カウンタ	
6	更新カウンタ	40
7	更新カウンタ;LSB	
$8 \sim 26$	予備 (00h)	
$27\sim29$	ゾーン内スペアセクタを全て使い切ったことを示すフラグ	
3 0	SDL内のエントリィ数;MSB	
3 1	SDL内のエントリィ数;LSB	
3 2	最初の欠陥ブロックのアドレス(セクタ番号;MSB)	
3 3	最初の欠陥ブロックのアドレス (セクタ番号)	
3 4	最初の欠陥ブロックのアドレス(セクタ番号)	
3 5	最初の欠陥ブロックのアドレス(セクタ番号;LSB)	
3 6	最初の交替ブロックのアドレス(セクタ番号;MSB)	50

30

3 7 最初の交替ブロックのアドレス (セクタ番号) 3 8 最初の交替ブロックのアドレス (セクタ番号) 3 9 最初の交替ブロックのアドレス(セクタ番号:LSB) : y - 7最後の欠陥ブロックのアドレス (セクタ番号:MSB) 最後の欠陥ブロックのアドレス (セクタ番号) v-6y - 5最後の欠陥ブロックのアドレス (セクタ番号) 最後の欠陥ブロックのアドレス(セクタ番号;LSB) y - 4y-3最後の交替ブロックのアドレス(セクタ番号;MSB) 最後の交替ブロックのアドレス (セクタ番号) y - 2最後の交替ブロックのアドレス (セクタ番号) y - 1最後の交替ブロックのアドレス (セクタ番号:LSB)

*注;第30~第31バイト目の各エントリィは8バイト長。

[0418]

なお、マルチセクタに対する二次欠陥リスト(SDL)の場合、欠陥ブロックおよび交替ブロックのアドレスリストは、2番目以降の後続セクタの最初のバイトに続くものとなる。つまり、上記SDLの内容の第0バイト目~第31バイト目は、最初のセクタにのみ存在する。また、SDLブロック内の未使用セクタには、FFhが書き込まれる。

[0419]

図32は、たとえばDVD-RAMディスク等に対する論理ブロック番号の設定動作の 20 一例を説明するフローチャートである。

[0420]

図11の回転テーブル221に情報記憶媒体(光ディスク)201が装填されると(ステップST131)、制御部220はスピンドルモータ204の回転を開始させる(ステップST132)。

[0421]

情報記憶媒体(光ディスク)201の回転が開始したあと光学ヘッド202のレーザー発光が開始され(ステップST133)、光ヘッド202内の対物レンズのフォーカスサーボループがオンされる(ステップST134)。

[0422]

レーザ発光後、制御部220は光学ヘッド移動機構(送りモータ)203を作動させて 光学ヘッド202を回転中の情報記憶媒体(光ディスク)201のリードインエリア60 7に移動させる(ステップST135)。そして、光学ヘッド202内の対物レンズのト ラックサーボループがオンされる(ステップST136)。

[0423]

トラックサーボがアクティブになると、光学ヘッド 202 は情報記憶媒体(光ディスク) 201 のリードインエリア 607 内のコントロールデータゾーン 655 (図 24 参照)の情報を再生する(ステップ ST137)。このコントロールデータゾーン 655 内のブックタイプアンドパートバージョン 671 を再生することで、現在回転駆動されている情報記憶媒体(光ディスク) 201 が記録可能な媒体(DVD-RAMディスクまたはDVD-Rディスク)であると確認される(ステップ ST138)。ここでは、情報記録媒体 201 が DVD-RAM ディスクであるとする。

[0424]

情報記憶媒体(光ディスク) 201がDVD-RAMディスクであると確認されると、再生対象のコントロールデータゾーン655から、再生・記録・消去時の最適光量(半導体レーザの発光パワーおよび発光期間またはデューティ比等)の情報が再生される(ステップST139)。

[0425]

続いて、制御部220は、現在回転駆動中のDVD-RAMディスク201に欠陥がないものとして、物理セクタ番号と論理セクタ番号との変換表(図26参照)を作成する(

ステップST140)。

[0426]

この変換表が作成されたあと、制御部220は情報記憶媒体(光ディスク)201のリードインエリア607内の欠陥管理エリアDMA1/DMA2 663およびリードアウトエリア609内の欠陥管理エリアDMA3/DMA4 691を再生して、その時点における情報記憶媒体(光ディスク)201の欠陥分布を調査する(ステップST141)

[0427]

上記欠陥分布調査により情報記憶媒体(光ディスク)201上の欠陥分布が判ると、制御部220は、ステップST140で「欠陥がない」として作成された変換表を、実際の欠陥分布に応じて修正する(ステップST142)。具体的には、欠陥があると判明したセクタそれぞれの部分で、物理セクタ番号PSNに対応していた論理セクタ番号LSNがシフトされる。

[0428]

図33は、たとえばDVD-RAMディスク等における欠陥処理動作(ドライブ側の処理)の一例を説明するフローチャートである。以下図11を参照しながら、図33のフローチャートを説明する。

[0429]

最初にたとえば制御部220内のMPUに対して、現在ドライブに装填されている情報記録媒体(たとえばDVDーRAMディスク)201に記録する情報の先頭論理ブロック番号LBNおよび記録情報のファイルサイズを指定する(ステップST151)。

[0430]

すると、制御部220のMPUは、図12及び図13を用いて指定された先頭論理ブロック番号LBNから記録する情報の先頭論理セクタ番号LSNを算出する(ステップST152)。こうして算出された先頭論理セクタ番号LSNおよび指定されたファイルサイズから、情報記憶媒体(光ディスク)201への書込論理セクタ番号が定まる。

[0431]

次に制御部220のMPUはDVD-RAMディスク201の指定アドレスに記録情報ファイルを書き込むとともに、ディスク201上の欠陥を調査する(ステップST153)。

[0432]

このファイル書込中に欠陥が検出されなければ、記録情報ファイルが所定の論理セクタ番号に異常なく(つまりエラーが発生せずに)記録されたことになり、記録処理が正常に完了する(ステップST155)。

[0433]

一方、ファイル書込中に欠陥が検出されれば、所定の交替処理(たとえば図31 (d)のリニア交替処理(Linear Replacement Algorithm)が実行される(ステップST156)。

[0434]

この交替処理後、新たに検出された欠陥がディスクのリードインエリア607のDMA 1/DMA2 663 およびリードアウトエリア609のDMA3/DMA4 691に 追加登録される(図24と図25を参照)(ステップST157)。情報記憶媒体(光ディスク)201へのDMA1/DMA2 663 およびDMA3/DMA4 691 の追加登録後、このDMA1/DMA2 663 およびDMA3/DMA4 691 の登録内容に基づいて、図32のステップST140で作成した変換表の内容が修正される(ステップST158)。

[0435]

本発明のビデオファイルの記録時には欠陥発生時に図31 (c) に示したスキッピング 交替方式を採用する。

[0436]

40

10

20

20

30

40

本発明のビデオファイル内では独自の"AVアドレス"を利用する。AVアドレスの設定方法は、

(*) 2048kバイトの論理ブロックまたは物理セクタサイズ単位で設定する。

[0437]

(*) アドレス昇順は、ビデオファイルに対応したファイルエントリィ内のアロケーションディスクリプター記述順に合わせる。図22 (d)の例ではLBNがC, D, E, Bの順にAVアドレスの値が大きくなる。

[0438]

(*) スキッピング交替によりスペアエリアに設定し直したLBNはAVアドレスには含まず、そのLBN部分に付いてはスキップして連続したAVアドレスを設定する。ユーザエリア723(図26)内の欠陥のないセクタ(論理ブロック)のみに記録し、AVアドレスは全て連続番号にする。

[0439]

のルールに従って設定する。

[0440]

図9に示した各セルに関する情報は図1 (f)に示すようにセルタイムコントロールインフォメーション1104内に記録されており、その中味は図1 (g)に示すように、・セルタイムインフォメーション#1 1113~#m 1115…各セル1121~1124個々に関する情報。

[0441]

・セルタイムサーチインフォメーション11112…特定のセルIDを指定された場合のそれに対応するセルタイムインフォメーションの記載位置(AVアドレス)を示すマップ情報。

[0442]

・セルタイムコントロールゼネラルインフォメーション1111…セル情報全体に関する情報。

[0443]

に別れ、また各セルタイムインフォメーションはそれぞれセルタイムゼネラルインフォメーション#m 1116とセルVOBUテーブル#m 1117を有している。

[0444]

図7はセルタイムインフォメーション内のデータ構造について説明した図である。図2に示した録再ビデオデータ(RWVIDEO_OBJECT. VOB)(このビデオデータは図1 (d)のビデオオブジェクト1012の記録内容に一致する)内の図5に示した各セル84の記録位置を示したセルタイムコントロールゼネラルインフォメーション111と、図2に示した録再ビデオ管理データ(RWVIDEO_CONTROL. IFO)(この情報は図1 (d)のコントロールインフォメーション1011内のデータと同じ物である)上でのセルタイムインフォメーションが記録して有る場所のLBN(論理ブロック番号)情報2011~2013がまとまって記録して有るセルタイムサーチインフオメーション1112とから構成される。

[0445]

セルタイムコントロールゼネラルインフォメーション1111では記録位置に対して上述したAVアドレスを用いて記述して有る。各セルの位置情報として図7では先頭位置のAVアドレス2002、2004、2006とそれぞれのデータサイズ2003、2005、2007が記述して有るのに対して、図8の他の例ではデータサイズの代わりに終了位置のAVアドレス2023、2025、2027が記述して有る。

[0446]

図2に示した録再ビデオ管理データ(RWVIDEO_CONTROL. IFO)(この情報は図1(d)のコントロールインフォメーション1011内のデータと同じ物である)内に記録して有るセルタイムインフオメーションの内容を図34に示す。セルタイムゼネラルインフォメーション1116とは個々のセルに関する一般的情報を示している。

20

30

40

各セル毎に再生速度2033が記録して有り、例えばCM部分のみ高速で再生するなどの可変速再生が可能になっている。

[0447]

また各セル単位でパスワード2034とパーミッション2035が記録でき、セキュリティー確保やパレンタルロックが掛けられるようになっている。各セル毎に掛けられるパーミッション設定内容は図34に示す通りになっている。PCでの"ゴミ箱"のようにUNDOにより復活可能な消去レベルとしてユーザによる消去指定情報2036と録画時の残量に応じて自動的に消去が出来る優先順位を示す消去/書き重ね優先ランク情報2037も設定可能になっている。

[0448]

本発明でのタイムコードは図34のセルVOBUテーブル1117を用いる。すなわちセル内に含まれるビデオフレーム数2042,2044,2046とVOBU毎のデータサイズ(使用セクタ数)2041,2043,2045との組で表している。この表記方法を用いる事によりタイムコードを非常に少ない情報量で記録する事が出来る。以下にこのタイムコードを用いたアクセス方法に付いて説明する。

[0449]

1. ユーザからアクセスしたいセルとその時間が指定される。

[0450]

2. 図10に示したマイクロコンピュータブロック30のMPUはこの指定された時間から対応するビデオフレームのセル開始位置からのビデオフレーム番号を割り出す。

[0451]

3. MPUは図34に示したセル先頭からのVOBU毎のビデオフレーム数2042~2046を順次累計計算し、ユーザが指定したビデオフレームが先頭から何番目のVOBU内の更に何番目のビデオフレームに該当するか割り出す。

[0452]

4. 図7あるいは図8のセルタイムコントロールゼネラルインフォメーション1111からセル内の全データの情報記憶媒体上の記録位置を割り出す。

[0453]

図35を用いて本発明のビデオファイル内データの詳細構造説明と部分消去、録画による追加記録方法についての説明を行なう。ビデオファイル内でVOBに対する情報記憶媒体上で連続的に記録されるまとまりをUDFと同様エクステントで表現する。図35(a)ではVOB#1とVOB#2ともにそれぞれ1個のエクステント(エクステント#aとエクステント#b)で構成される。

[0454]

図35(a)においてセルDはPCのゴミ箱ファイルと同様、ユーザによる消去指定がなされているため、図9(b)のPGCインフォメーションからは削除され、再生時にユーザが見ることは出来ない。しかしゴミ箱から取り出す処理により図9(b)のPGCインフォメーションに再登録されユーザが再度再生できる可能性を持っている。

[0455]

図35(a)のセルB内の最初の部分に対して部分的な完全消去をユーザから指定された場合、図10のMPUはユーザからの部分的な完全消去範囲を時間情報(何秒目から何秒目まで完全消去するか)で受け取ると、図34のセルVOBUテーブル1117を使って該当する時間範囲がどのVOBUに対応するかを割り出す。

[0456]

次に完全消去の境界時間が含まれるVOBU [図35 (a) ではセルB内の最初から4番目のVOBUが該当する]を完全消去対象からはずす。この方法により図10のMPUは完全消去対象のVOBUを割り出し、図35 (b) のように該当部分を消去する。

[0457]

次にユーザから非常にサイズの大きい映像情報を追加記録したいと言う情報を受け取ると、図10のMPUはビデオファイル内の全AVアドレスをマッピングし、図36のVO

Bの位置情報から既に記録して有る部分のAVアドレスを消去していく。その結果残ったAVアドレス部分から未記録領域のアドレスを探し出す。全未記録領域のサイズを合計し、ユーザから事前に指定された追記記録映像情報サイズと比較する。

[0458]

もし全未記録領域のサイズが足りない場合には図35 (c) のように消去指定領域を完全消去する。もしそれでもサイズが足りない場合には図34のセルタイムゼネラルインフォメーション1116から消去/書き重ね優先ランク情報2037を読み取り、優先順位の高い場所から順に図10のMPUが消去処理する。その結果空いた未記録領域に図35(d)のようにVOB#3のデータを埋めていく。図35(d)ではセルEが2箇所に分かれて記録されている。図35(d)ではVOB#3のデータは3個のエクステント(エクステント#c, エクステント#d, エクステント#e)に分かれて記録されている。

[0459]

図1(f)に示したVOBコントロールインフォメーション1106内のデータ構造を図36に示す。大きくVOBの位置情報と各VOB毎のそれに属するセル情報との関係を示した情報から構成される。図35に示すように1個のVOBはビデオファイル内で複数箇所に分散配置が可能になっている。VOB内のビデオファイル内で連続的に記録されるまとまりをUDFと同様エクステントで表現する。ビデオファイル内のAVアドレスサイズは事前に分かっているので、全AVアドレスのマッピングから図36の全VOBの位置情報を消去することにより、残ったAVアドレス部分がビデオファイル内の未記録領域のアドレスであると分かる。

[0460]

図10に示した情報再生装置または情報記録再生装置における各種動作の説明を行なう

[0461]

(*) 誤ってユーザが録再ビデオデータを消した場合の処理

情報記憶媒体(光ディスク1001)が装着されると情報記録再生部32で録再ビデオ管理データ(RWVIDEO_CONTROL. IFO)を再生する。その後、誤ってユーザが録再ビデオデータなどを消した場合を想定して録再ビデオデータ(RWVIDEO_OBJECT. VOB)、静止画データ(RWPICTURE_OBJECT. POB)、サムネール画像データ(RWTHUMBNAIL_OBJECT. POB)、オーディオデータ(RWAUDIO_OBJECT. AOB)を検索に行く。そこでどれかのデータが欠如していた場合にはDVDビデオレコーダ表示部48に"特定のファイルが見当たりません"とのコメントを出す。

[0462]

(*) 初期時のビデオファイルサイズ設定方法

初めて新しい情報記憶媒体(光ディスク1001)を装着し、情報記録再生部32で録再ビデオ管理データ(RWVIDEO_CONTROL.IFO)を再生する。MPUが録再ビデオデータ(RWVIDEO_OBJECT.VOB)未作成で有る事を知るとDVDビデオレコーダ表示部48に"これから録画可能領域を作成します。標準で何時間の録画が可能に設定しますか?"との問い合わせを表示し、ユーザの回答をもらう。ユーザからの回答結果から自動的にビデオファイルサイズを算出し、UDF上に録再ビデオデータ(RWVIDEO_OBJECT.VOB)のファイルを登録する。

[0463]

(*) DMA情報を利用してLBNとAVアドレス間のアドレス換算を行なう

次に情報記憶媒体としてDVD-RAMを用いた場合にはDMA領域を読み取り、LBNとAVアドレス間のアドレス換算を行なう。情報記憶媒体から欠陥位置情報を読み取る手段は図10で情報記録再生部32を意味し、上記欠陥位置情報を読み取る手段によって得られた欠陥位置情報から上記論理アドレスとAVアドレス間の換算を行なう換算手段が図10のMPUに相当する。

[0464]

40

10

20

(*) ビデオファイルサイズ変更に合わせたUDFとAVアドレスの連動処理

図22(d)のように録画を繰り返すうちに初期に設定したビデオファイルサイズに対してファイルサイズ変更が必要な場合が生じる。ビデオファイルサイズ変更に合わせてファイル・システム変更情報を作成する手段として図10のMPUがUDF上での変更情報を算出する。そしてその結果を図10の情報記録再生部32で情報記憶媒体(光ディスク1001)に記録する。また同時に上記ファイル・システム変更情報に合わせてビデオファイル内のAVアドレス設定状態の変更情報を作成する手段も同様にMPUが受け持ち、その結果を情報記録再生部32から情報記憶媒体(光ディスク1001)上の図2に示した録再ビデオ管理データ(RWVIDEO_CONTROL. IFO)に記録する。

[0465]

(*) ビデオファイルサイズ変更に伴うセル/VOBアドレスの付け替え

ビデオファイルサイズ変更に合わせてファイル・システム変更情報を作成する手段も図10のMPUが受け持ち、上記ファイル・システム変更情報に合わせて情報記憶媒体上に記録されたセルの記録されたアドレス情報もしくはVOBが記録されたアドレス情報の少なくとも一部を変更する(書き換える)手段は情報記録再生部32が対応する。

[0466]

(*) セルかVOBのアドレス配置情報からディスク上の未記録位置を割り出す

この操作については図36の説明の時触れた通りである。情報記憶媒体から各VOB毎もしくは各セル毎の先頭アドレスとセルサイズとの組もしくは先頭アドレスと最終アドレスとの組の情報を読み取る手段は図10の情報記録再生部32を示し、上記読み取った各VOBのアドレス情報もしくは各セルのアドレス情報から上記ビデオファイル内の未記録領域のアドレスを抽出する手段はMPUを意味する。

[0467]

(*) セルかVOB単位のパーミッション設定に合わせてパーミッション処理実施

情報がファイル単位で記録され、かつ再生操作により前記ファイル内に記録された情報 を読み取る事が可能であり、少なくとも映像情報を有するビデオファイルと、

前記ビデオファイル内に記録された映像情報の再生制御方法に関する管理情報を有する 管理ファイルとが記録され、

かつ上記ビデオファイル内の映像情報はセル単位あるいはVOB単位のまとまりを持ち、更にセル単位またはVOB単位でパーミッション設定情報が上記管理ファイル上に記録されている情報記憶媒体に対し、

情報記憶媒体からパーミッション情報を再生する手段は情報記録再生部32が該当し、 上記再生したパーミッション情報に基付き再生映像の表示制御を行なう表示制御手段もM PUが受け持つ。また上記再生したパーミッション情報に基付き映像の記録・消去制御を 行なう記録・消去手段もMPUの事を示す。

[0468]

(*) VOBU単位を基準としてセルまたはVOBのサイズ変更を行なう

ビデオファイル内の映像情報の部分的消去時に、消去する映像部分に関係するセルまたはVOBを判別する第1の判別手段は図10のMPUが行ない、同様にMPUが図34のセルVOBUテーブル1117を用いて第1の判別手段(MPU)により抽出されたセルまたはVOBを構成する全VOBUを判別する。さらにMPUは上記消去する映像部分に該当VOBUの)中央位置に一致したVOBUを消去対象のVOBUから除外し、上記第1の判別手段(MPU)により判別されたセルまたはVOBに対して、第2の判別手段(MPU)により判別した上記セルまたはVOBを構成するVOBUから、第3の判別手段(MPU)により判別した消去対象のVOBUを除去する第1の判定手段(MPU)と、上記第1の判定手段(MPU)の結果に基付いてセルまたはVOBを構成するVOBU情報を変更して録再ビデオ管理データを変更記録する記録手段は図10の情報記録再生部32が該当する。

[0469]

10

20

30

40

20

30

40

上記したように本発明によれば、情報記憶媒体上に録画再生可能なビデオファイルを一個にしたため、ユーザが間違ってビデオファイルを消した場合、再生開始時(もしくは再生開始前)に異常をユーザに知らせることが可能となる。従来のDVDビデオディスクのように複数のビデオファイルの存在を許可した場合にはそのうちの1個のビデオファイルをユーザが間違って消去した場合、情報再生装置もしくは情報記録再生装置がその事に気付かずに再生を開始し、消去されたビデオファイルを再生する順番になって初めてエラーを表示することになり、ユーザの混乱を招く基となる。本発明により上記の弊害を除去出来る。

[0470]

情報再生装置と情報記録再生装置は映像情報の記録/再生時には唯一ファイル名を指定されたビデオファイル(図2ではRWVIDEO_OBJECT. VOB)にのみアクセスするのでユーザが誤って(RWV_TSのサブディレクトリ下に)類似したビデオファイルを配置しても情報再生装置と情報記録再生装置はそのファイルを無視するため、大きな影響を回避できる。

[0471]

情報記憶媒体上に録画再生可能なビデオファイルを一個にし、更にこのビデオファイル内に録画された全映像情報を全て順次に再生可能なように1個のPGCにより設定する事でVTRのように1本のテープに記録する方法に馴染んでいるユーザに取って使いやすくなる。上記の方法により録画した全映像情報を1本のテープのように連続したつながりとして表示することが容易となる。また上記の方法によりユーザにとってあたかも1本のテープ上の特定場所を録画・消去・再生するように取り扱う事が出来る

ビデオファイル内に未記録領域の定義を可能とした結果、

- (a) ファイル内データの部分消去を行なった場合、ビデオファイルサイズを縮小せずに 消去場所を未記録領域へ変更する処理や、
- (b) 全体のファイルサイズを変える事無く、ファイル内の未記録領域に追加データを記録する、

などが行える。

[0472]

そのため、映像情報の部分消去や映像情報の追加毎にビデオファイルサイズの変更が不要となる。ビデオファイルサイズの変更が不要になると、ビデオファイル内の変更しない場所には手を加える事無く(再記録処理を行わず)消去場所や未記録領域内の追記データ記録場所など変更箇所のみ情報の書き換えが可能となる。

[0473]

膨大なファイルサイズを持つビデオファイル内容を変更する場合、ファイル全体を再記録していた従来方法に比べ、本発明によるビデオファイル内の変更箇所のみの情報の書き換え処理により情報記憶媒体へのデータ変更時間が大幅に短縮される。

[0474]

ビデオファイル内に未記録領域を持ち、ビデオファイル内の再生可能な全映像情報の再生順情報(PGC)を持つ事により、ファイル・システム(UDF)に依存する事無く、ビデオファイルを処理するアプリソフト側でビデオファイル内の映像情報記録場所の設定が可能となる。その結果、再生順情報(PGC)に合わせた映像情報記録場所が設定でき、映像情報の連続記録、連続再生が容易となる。

[0475]

情報記憶媒体上の各ファイルの記録場所[記録アドレス:LBN (Logical Block Number)]の設定は、UDFやFATなどのファイル・システムに任されている。しかしUDFやFATにはファイル名とファイルサイズのみの情報しか与えられないので、情報記憶媒体上の空き領域に与えられたファイルサイズの記録位置を順次に当てはめる。

[0476]

つまりUDFやFATにはPCG情報が与えられないため、映像情報の連続記録、連続 再生に適合した記録場所設定が出来ない。ビデオファイル内に未記録領域を持つ事により

30

40

50

少量の映像情報の追加や部分消去に対してビデオファイルサイズ変更が不要となる。その結果UDFやFATなどのファイル・システム上は少量の映像情報の追加や部分消去時でのビデオファイルの記録場所(記録アドレス)の変更は行なわず、追加する映像情報の記録場所や部分消去場所はビデオファイルを処理するアプリソフト側で管理できる(アプリソフト側からUDFなどファイル・システム側に部分消去や書き換えする場所のLBNを指定して部分的書き換え処理を行わせる)。アプリソフト側はビデオファイル内の再生可能な全映像情報の再生順情報(PGC)を知っているのでPGC情報に合わせた連続記録、連続再生が可能なアドレスを指定できる。

[0477]

情報記憶媒体上に唯一1個のビデオファイルを記録可能とし、さらにビデオファイル内に未記録領域の定義を可能とした結果、同一の情報記憶媒体上に映像情報を記録したビデオファイルと一般コンピュータデータを記録したコンピュータファイルを混在記録させても映像情報を情報記憶媒体上の特定箇所に集中して記録することができ、映像情報の連続記録、連続再生が容易になる。

[0478]

すなわち、同一な情報記憶媒体上にビデオファイルとコンピュータファイルを混在記録させた場合を考える。コンピュータファイルの情報記憶媒体上の記録場所を示すアドレス(LBN:Logical Block Number)はUDFなどファイル・システム上で設定され、その結果情報記憶媒体上にコンピュータファイルが広く点在する場合が生じる。

[0479]

その後でビデオファイルを記録した場合、点在するコンピュータファイルの間を縫い、 互いに大きく離れた位置に存在する複数のエクステントの集まりとしてビデオファイルが ファイルエントリィされる場合が有る。更にファイル内に未記録領域を持たない従来のファイル構造の場合、ファイル内の映像情報の部分消去や追加が行なわれる毎にビデオファイルサイズが変更し、その度に情報記憶媒体上の記録場所を示すアロケーション(ビデオファイルが記録されるエクステント分布状況)が変化する。

[0480]

例えは最初に長時間録画により情報記憶媒体上の一ヶ所に局在し非常にサイズの大きいビデオファイル(このビデオファイルのファイルエントリィのアロケーションディスクリプターには連続したアドレスを割り当てる)を作成し、その後で録画された映像情報の中間部分を消去した場合、従来のようにファイル内に未記録領域を持たない場合にはこの部分消去の結果、ビデオファイルのアロケーションが情報記憶媒体上の2ヶ所に分断される

[0481]

その後、この削除した部分にPCデータが記録される場合もある。この場所にPCデータを記録した後、更に録画処理によりビデオファイルサイズを広げる場合、情報記憶媒体上において既存のビデオファイルの記録領域より大きく離れた位置に記録する必要が生じる。このように1個のビデオファイルが情報記憶媒体上離れた位置に点在すると映像情報の連続記録、連続再生に支障を来す。

[0482]

本発明のように同一のビデオファイル内に未記録領域を確保することにより、部分消去と追記録画を繰り返しても情報記憶媒体上でビデオファイルの記録位置が分散することが無く、映像情報の連続記録、連続再生が容易となる。

[0483]

まとまってセル毎またはVOB毎の先頭アドレスとサイズの情報が情報記憶媒体上に記録されているため、ビデオファイル内のセル(またはVOB)の配置分布を高速で検出でき、その結果上記ビデオファイル内の未記録領域の場所を即座に検出できる。

[0484]

そのため管理データ(図2でのRWVIDEO_CONTROL. IFO)を再生してからビデオファイル内の未記録場所を検出し、録画を開始するという一連の録画開始処理

20

30

を高速で行える。図37の従来例のように個々の映像情報が別々のビデオファイルに収納されていた場合には、ビデオファイル内には未記録領域は存在しない。本発明のように情報記憶媒体上に記録する映像情報を全て1個のビデオファイル内に収納させる方式を採用して初めて "ビデオファイル内の未記録領域"が発生し、ビデオファイル内のセル(またはVOB)の配置分布情報が必要となる。

[0485]

ビデオファイルサイズの変更に伴い [AVアドレスとLBN (Logical Block Number)間の対応関係が変化するので]部分的にセルとVOBのアドレスの変更が必要となる。セルタイムゼネラルインフォメーション (とVOBコントロールインフォメーション)内に記録して有るセルとVOBのアドレス情報がそれぞれの先頭アドレスとサイズとの組で記述して有るため、上記のアドレスの変更時には各先頭アドレスのみの変更で済み、管理データの変更量が少ない。

[0486]

DVDビデオディスクの規格では、ビデオ・タイトル・セットセルアドレステーブル(VTS_C_ADT)内のビデオ・タイトル・セットセルピース(VTS_CPI)にセルピースの先頭アドレスと終了アドレスが記録されている。この場合にはアドレス変更時には先頭アドレスと終了アドレスとの両方を変更する必要があるが、上記の方法ではセルサイズまたはVOBサイズの変更が不要となるので変更箇所が半分になる。

[0487]

セル単位あるいはVOB単位の細かなパーミッションの設定が可能となる。DVDビデオディスクの規格ではパレンタルロック機能はビデオタイトル単位あるいはPGC単位で行なわれていた。またUDF上ではファイル単位のパーミッション設定が可能である。

[0488]

しかし本発明においては情報記憶媒体上では1個のビデオファイルと映像情報全体を見通せるPGCを持つため、映像情報に合わせた細かなパーミッションの設定やパレンタルロックの設定あるいはセキュリティー管理が出来ない。本発明ではセル単位あるいはVOB単位にパーミッション設定用のフラグを持たせたため細かな設定が初めて可能となった

[0489]

情報記憶媒体(DVD-RAM)のDMA情報を用いて欠陥位置に対する交替処理を行なったLBN(Logical Block Number)を避けた(飛ばした)AVアドレスの設定を行ない、そのAVアドレスに従って映像情報を記録するため、映像情報の連続記録と連続再生の確保が容易となる。

[0490]

DVD-RAM規格ではリニア交替またはスキッピング交替を行なった論理ブロック(論理セクタ)の情報記憶媒体(DVD-RAM)上での物理的配置位置はスペーアエリアに存在する。従ってLBNに従って映像情報を記録する場合には交替処理を行なったLBNに対してはスペアエリアへのアクセス処理が必要となり、映像情報の連続記録、連続再生が妨げられる。本発明のAVアドレスでは交替処理を行なったLBNを含まないように設定されているため、不必要なアクセス回数が減り、連続記録、連続再生を容易にする。

映像情報の部分消去に伴うセルサイズあるいはVOBサイズの変更をVOBU単位で行なうため、再エンコードをする必要が無く管理データ(例えば図2におけるRWVIDEO_CONTROL.IFO)のみの変更で高速に実施することが出来る。

[0492]

[0491]

従来例のDVDビデオディスクは再生専用なため、映像情報の部分削除によるセルサイズあるいはVOBサイズの変更の必要が無かった。本発明の録画可能な情報記憶媒体で初めてセルサイズあるいはVOBサイズの変更が必要となる。セルサイズあるいはVOBサイズの変更毎にVOBUの作り直し(再エンコード)処理を行なう場合に比較して本発明の方法の方が高速かつ容易にセルサイズあるいはVOBサイズの変更の必要が行なえる。

20

30

40

50

[0493]

本発明の情報記憶媒体でのVOBは1個以上の録画領域の塊をまたがって記録できるため、ビデオファイル内に点在して記録された映像情報の間を"飛び石"式に複数の映像領域の塊をまたがって記録することができる。

[0494]

本発明の情報記憶媒体のデータ構造の場合には1個のビデオファイル内に全映像情報を記録するため、録画と部分消去を何度も繰り返す間にビデオファイル内に録画済み情報が 点在する。その結果ビデオファイル内で小さいサイズの未記録領域が多数分布してしまう

[0495]

録画時に常に連続したアドレス領域にのみVOBを記録した場合には、大きなサイズのVOBを記録できる場所が限られ、ビデオファイル内の録画可能容量が減少する。本発明のようにビデオファイル内の互いに離れた位置に配置された複数の映像領域の塊をまたがって1個のVOBが記録可能にする事により、多数分布した小さいサイズの未記録な映像領域の塊を無駄にすることなく録画することが出来る。

【図面の簡単な説明】

[0496]

- 【図1】光ディスクに記録される情報の階層構造を説明するために示す図。
- 【図2】光ディスクに記録される情報 (データファイル) のディレクトリ構造を説明する ために示す図。
- 【図3】光ディスクに記録される情報 (データファイル) の他のディレクトリ構造を説明 するために示す図。
- 【図4】光ディスクに記録される情報(データファイル)の更に他のディレクトリ構造を説明するために示す図。
- 【図5】ビデオオブジェクトとセルとの関係を説明するために示す図。
- 【図6】PGCコントロールインフォメーションを説明するために示す図。
- 【図7】セルタイムコントロールゼネラルインフォメーションとセルタイムサーチインフォメーションのデータ構造を説明するために示す図。
- 【図8】セルタイムコントロールゼネラルインフォメーションとセルタイムサーチインフォメーションのデータ構造の他の例を説明するために示す図。
- 【図9】セルとPGCインフォメーションとの関係を説明するために示す図。
- 【図10】光ディスクに対する情報記録再生装置を示すブロック構成図。
- 【図11】同情報記録再生装置の情報記録再生部の詳細を示すブロック構成図。
- 【図12】UDFに基づいて構築されたファイル・システムの一例を説明するための第1の部分図。
- 【図13】UDFに基づいて構築されたファイル・システムの一例を図12とともに説明するための第2の部分図。
- 【図14】図2に示した階層ファイル・システム構造と光ディスクに記録された情報内容との間の基本的な関係を説明するために示す図。
- 【図15】図2に示した階層構造を持ったファイル構造内で、ファイル (ルートディレクトリ、サブディレクトリ、ファイルデータ等)の情報を記述するファイル I Dディスクリプターの一部を抜粋して説明するために示す図。
- 【図16】図2に示した階層構造を持ったファイル構造内で、指定されたファイルの記録位置を表示するファイルエントリィの記述内容の一部を抜粋して説明するために示す図。
- 【図17】光ディスク上の連続セクタ集合体(エクステント)の記録位置を表示するロングアロケーションディスクリプターの記述内容を説明するために示す図。
- 【図18】光ディスク上の連続セクタ集合体(エクステント)の記録位置を表示するショートアロケーションディスクリプターの記述内容を説明するために示す図。
- 【図19】光ディスク上の未記録連続セクタ集合体(未記録エクステント)を検索するもので、スペースエントリィとして使用される記述文の内容を説明するために示す図。

30

40

50

【図20】図2に示した階層構造を持ったファイル・システムの構造の一例を説明するために示す図。

【図21】UDFを用いた場合の従来のファイル記録位置の設定方法を説明するために示す図。

【図22】この発明に係るUDFを用いた場合のファイル記録位置の設定方法を説明するために示す図。

【図23】図1に示した光ディスクのRAM層のレイアウトを説明するために示す図。

【図24】図23に示したレイアウトにおけるリードインエリア部分の詳細を説明するために示す図。

【図25】図23に示したレイアウトにおけるリードアウトエリア部分の詳細を説明する 10 ために示す図。

【図26】図23に示したレイアウトにおけるデータエリア部分の詳細を説明するために 示す図。

【図27】図23に示したデータエリア部分に含まれるセクタの構造を説明するために示す図。

【図28】図23に示したデータエリア部分に含まれる情報の記録単位(ECC単位)を 説明するために示す図。

【図29】図23に示したデータエリア内でのゾーンとグループとの関係を説明するために示す図。

【図30】図23に示したデータエリア内での論理セクタの設定方法を説明するために示す図。

【図31】図23に示したデータエリア内での交替処理を説明するために示す図。

【図32】使用媒体に対する論理ブロック番号の設定動作の一例を説明するために示すフローチャート。

【図33】使用媒体の欠陥処理動作の一例を説明するために示すフローチャート。

【図34】図1に示したセルタイムインフォメーション内のデータ構造を説明するために示す図。

【図35】図2に示したビデオファイル内データの詳細を説明するために示す図。

【図36】図2に示したVOBコントロールインフォメーション内データの詳細を説明するために示す図。

【図37】光ディスクに記録される情報(データファイル)の従来のディレクトリ構造を説明するために示す図。

【図38】セルとPGCインフォメーションとの従来の関係を説明するために示す図。 【符号の説明】

[0497]

30…マイクロコンピュータブロック、32…情報記録再生部、34…一時期億部、36…データプロセッサ、38…STC、42…入力AV、44…TVチューナ、46…AV出力、48…DVDビデオレコーダ表示部、52…ADC、53…Vエンコーダ、54…Aエンコーダ、55…SPエンコーダ、56…フォーマッタ、57…バッファメモリ、62…セパレータ、63…メモリ、64…Vデコーダ、65…SPデコーダ、66…ビデオプロセッサ、67…VーDAC、68…Aデコーダ、69…AーDAC、100…ディスクチェンジャ部、201…情報記憶媒体(光ディスク)、202…光学ヘッド、203…光学ヘッド移動機構(送りモータ)、204…スピンドルモータ、205…半導体レーザ駆動回路、206…記録/再生/消去制御波形発生回路、207…変調回路、211…PLD路、212…2値化回路、213…アンプ、214…情報記憶媒体回転速度検出回路、215…スピンドルモータ駆動回路、2114…情報記憶媒体回転速度検出回路、215…スピンドルモータ駆動回路、216…送りモータ駆動回路、217…フォーカス・トラックエラー検出回路、218…対物レンズアクチュエータ駆動回路、219…半導体メモリ、220…制御部、221…回転テーブル、222…データ入出力インターフェース部。

【要約】

【課題】ファイル管理オブジェクト管理を分担して、全体管理を容易にする。

【解決手段】ビデオファイル(VF)内には映像情報を含むビデオオブジェクト(VOB)が記録されているとともに新たなVOBが記録可能な未記録領域の存在を許す。VF内ではAVアドレスが設定されており、録再ビデオ管理データがAVアドレスで示されたVOBの先頭アドレス情報を含む。ファイル・システムの情報はファイルエントリーFEとファイルアイデンティファイヤーディスクリプターFIDを含み、FEがショートアロケーションディスクリプターを含み、FIDが対応する前記FEの記録位置情報をロングアロケーションディスクリプターで記述しており、AVアドレス順は前記FE内の前記ショートアロケーションディスクリプターの記述順に合わせて設定されている。

【選択図】 図16

【図1】

【図2】

[図 3]

[図5] [図6]

【図7】

【図9】

	トータルセルタイム数	2001
	セルタイム#1の先頭位置のAVアドレス	2002
/	セルタイム#1のデータサイズ(使用tイクサ数)	2003
#HOLATON	セルタイム#2の先頭位置のAVアドレス	2004
#125A	セルタイム#2のデータサイズ(使用セクウ数)	2005
インフォメーション	********	
1111	セルタイム#mの先頭位置のAVアドレス	2006
\$A9144-5	セルタイム#mのデータサイズ(使用セクク数)	2007
インフォメーション	もみケイムインフォメーション#1が記録して有るLBN	2011
1112	もみケイムインフォメーション #2が記録して有るLBN	2012
	thがイムインフォメーション#2が記録して有るLBN	2013

【図8】

	_	
	トータルセルタイム数	2001
	/ セルタイム#1の先類位置のAVアドレス	2002
	セルタイム#1の最終位置のAVアドレス	2023
4/4/47/10-A	セルタイム#2の先頭位置のAVアドレス	2004
\$'37A	セルタイム#2の最終位置のAVアドレス	2025
インフォメーション		
1111	セルタイム#mの先頭位置のAVアドレス	2006
249149-5	セルタイム#mの最終位置のAVアドレス	2027
1ンフォメーション	セルタイムインフォメーション#1が記録して有るLBN	2011
1112	セルタイムインフォメーション#2が記録して有るLBN	2012
	がタイムインフォメーション#2が記録して有るLBN	2013
1112		

	#3 VOB_IDN #2	the the the
	VOB_IDN #3	41/A
*	VOB_IDN #1	THB THC
(a) 再生データ	_	中ルA

【図10】

【図11】

【図12】

	FO14	ストラクチュア411	ディスクリプター442	コンテング443
0-15			リサ"ーフ"ト"459(オールOOhハ"イト)	
16		ま"リューム レコク"ニション シーケンス	ヒ・キ・ニンク・エクステントエリアテ・イスクリフ・ター445	VRS開始位置
17			ま・リュームストラクチュアデ・イスクリフ・ター446	DISC內容說明
18			フ*ートテ*ィスクリフ*ター447	Boot開始位置
19		444	ターミネイティング "エクステントエリアテ" イスクリフ" ター448	VRS終了位置
~31			99"-7"1"460(#-#00h/\"1\)	
32~			當略	
34		3428*リュール デ*イスタリフ*ター シータンス 449	パーティションディスクサプ・ター 450 パーティションエアグラニース 451 アワケート されないスペーステーフト 452 AD(50) アロケート されないスペースと「カヤッフ" 453 AD(6)	パーステープル の記録位置 スベースピットマップ の記録位置
35			Dジカル\$*'リュームディスクリプター 454 Dジカル\$*'リュームコンテンクュース 455 LAD(100)	ファイルット テ'ィスケリフ' ター の記録位置
~47			省略	
~63			省略	
-255			リサ"ーフ"ト"461(オールロロトハ"イト)	
256		ファーストアンカー ま・イント 458	アンカーキ・リュームテ・ィスクリフ・ターキ・インター 458	
-271			リサ*ーフ*ト*482(オールOOhn*イト)	
272 ~ 321	0 ~ 49	ንታ ና ች አኑ ን ኃኝታ <i>ጋ</i> 486	スヘ" ースヒ" ットマップ"デ" ィスクリブ"ター 470	スペースと、ットマップ 記録・未記録 のマナ、ング
322 ~ 371	50 ~ 99		USE(AD(*),AD(*),···,AD(*)) 471	スペーステープル 未記録状態の エクステント一覧
372	100		77f4kyh7*4297*5-472 #-F7*f47HJ ICB 473 LAD(102) 474	ルートディレクトリ FEの記録位置
373	101		省略	
374	102		#-h7*(1/2)+9 AFE(AD(103)) 475	FIDs記錄位置

【図13】

375	103		A FID(LAD(104),LAD(110)) 476	B,D:FE位置
376	104		^ アレントテ・ィレクトリBFE(AD(105)) 477	FIDs紀錄位置
377	105		BのFID(LAD(106)) 478	CのFE位置
378	106	7714	FE(AD(107)AD(108)AD(109)) 479	FileDate位置
382	110	ストラウチュア	デイレクトリD FE(AD(111)) 480	FIDs記錄位置
383	111	486	O FID(LAD(112),LAD(無し)) 481	E,FFE位置
384	112		97° 7° ብታትሃF FE(AD(113)) 482	FIDs記錄位置
385	113		FID(LAD()LAD(114)LAD(118)) 483	H,I:FE位置
386	114		FE(AD(115)AD(116)AD(117)) 484	ファイルデーラ位置
390	118		I FE(AD(119),AD(120)) 485	ファイルデータ位置
379-	107-		ファイルデータCの情報 488	
387-	115-	75/87°-3 487	ファイルデータHの情報 489	
391-	119-		ファイルデータIの情報 490	
LLSN- ~LLS	271 N-257		リザーブド 463 (オール00hバイト)	
LLSN -256		セカント * アンカー ま ・イント 457	アンカーも・リュームテ・ィスクリフ・ターも・インタ 458	·
LLSN-	255 N-224		リザーブド 464 (オール00hパイト)	
LLSN -223 -223 LLSN -208		リサ・-フ・ ま・リューム テ・ィスクリフ・ター シーケンス 467	n' -ティションデ・イスクリア 9- 450 n' -ティションエンテンク3-ス 451 アンテート き れ ない スハ - ステーブ # 452 アンテート き れ ない スハ - スト・フト・ファ・フ・ カン・カル・リュートデ・イスクリア 9- 454 ロン・カル・リュームンテンク3-ス 455	メイン者・リューム テ・ィスクリフ・ター シーナンスの ハ・ックアッフ・
LLSN-			リザーブド 465 (オール00hバイト)	

- #LSN ・・・ 論理セクタ番号(ロジカルセクタナンバー) 491 *LBN ・・・ 論理ブロック番号(ロジカルブロックナンバー) 492 *LLSN ・・・ 最後の論理セクタ番号(ラストLSN) 493 *スペースピットマップがスペーステーブルと一緒に記録される事は 想めてまれて、通常はスペースピットマップとスペーステーブルの うち、どちらか一方が記録されている

【図14】

DVD—RAMでは路理プロック(セクタ)サイズは2044パイト、 連載した路程プロック(セクタ)のかたまりを"エクステント"と呼ぶ。 1個のエクステントは1個の路理プロック(セクタ)または連続した路理プロック(セクタ)の つながりから構成される。 情報配合維体上に記録して有るファイルデータにアクセスするには上図の"アクセス環路" に示したように違次情報を最み取りながらその情報に示されたアドレス(AD(*),LAD(*), サブディレクトリ 402: ーファイルデータ 403 ファイルデータ 403内の 記録位置 FE(AD(5),AD(6)) サブディレクトリ,サブディレクトリ 402の下の の下の リフィルデータ ファイルデータ 40 (標準記録位置 402の結響下D 語 FE(AD[3]) (LAD[4]) \$ 5 ルートディレクトリ 401・ ディレクトリ の下の サブディレクトリ 香盤 FID (LAD(2)) (a)

【図15】

			,,,	
ディスクリプター	ファイル	インフォメーション	ファイル アイデンディファ	パディング
4 7 (#257)	キャラクタリスティクス コントロールブロック	コントロールプロック	ナイフクトリ ダミー雑類	ダミー雑様
十四種の体を状況	記述内容の種別子「ファイルの種別を示す	対応した下の	名かファイル	(000p)
421	24	配錄位置 423	7-92424	437
[16/1/4]	[1/4 N]	(LAD(*))		

【図17】

AD(論理プロック番号)・・・情報配信媒体上のエクステントの位置記述方法

エクステントの長さ 410 エクステントの位置 411 [諸理ブロック数] (諸理ブロック報) [4/イトで表示]

LAD(韓理ブロック番号)・・・情報記憶様体上のエクステントの位置記述方法 11

11 エクステントの長さ 410 エクステントの位置411 インブレメンテイションユース 412 (施理プロック数) (施理プロック等号) (消算処理に利用する情報) [4パイトで表示] [8パイトで表示]

【図18】

【図19】

=			
	TUBAH	Vロケーション	アロケーションディスクリプター
ディスクリプター	64 747	71371178-	各エクステントの情報記憶媒体上位置
9 7(≡263)	タイプボす	御令の間	(機械配像媒体上の諸型ブロック番号)
記録内数の	(4 / 7=1)	(1/4 h	を並べて列記する
蘇加子 413	413	415	(AD(*),AD(*),,AD(*))
[16/17 14]	20/54 HJ	[4/4 F]	416

1CBタグ内のファイルタイプ|はアロケートされないスペースエントリを意味し、 *1CBタグ内のファイルタイプ~4はディレクトリを敷し、 *1CBタグ内のファイルタイプ~5はファイルデータを敷している

【図20】

【図21】

【図22】

	Γ	情報記憶媒体上のデータエリア1004						
(b)	+1	BC.	未記錄	ビデオ	ビデオファイル#1		PC	未記録
(~)	記録	7717	領域	既記録	米記録 領域	既記録	7714	領域
LE	BN A	_	B ()	E I		G

PCファイルのファイルエントリィ ··· FE(AD(A))とFE(AD(F)) ビデオファイル#1のファイルエントリィ··· FE(AD(C))

			情報記憶	媒体上0	データ:	ェリア10	04	
(c)	未	PC 7x1A	未記錄	ビデオ	カライル	た記録	PC 7 7 €	PC 7711
L	BN /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	В	. () (Ġ

		-	情報記憶	媒体上の	ウデータ	エリア10	04	
(d) 3	ŧΤ	PC	·	ビデオフ	アイル#	1	PC	PC
10	鋒	7714	追記録	既記録	追記録	既記録	7714	7714
/便 LBN			В	3	<u>現</u> 理	E F		G

PCファイルのファイルエントリィ ···· FE(AD(A))とFE(AD(F))と FE(AD(G)) ビデオファイル#1のファイルエントリィ・・・ FE(AD(C),AD(B))

【図23】

半径位置(mm) 601	エリア名 602	ゾーン名 603	物理セクタ番号 604
22.59~24.00	リード	エンホイスト・ティータン・ーン 611 ミテーソ・ーン 612	27AB0~2FFFF
24.00 24.00~24.18	インエリア 607	15-(97"A7"-97"-> 613	30000~30FFF
24.18~25.40		ゾーン00 620	31000~37D5F
25.40~26.79		ゾーン01 621	37D60~4021F
26.79~28.19		ゾーン02 622	40220~48E3F
28.19~29.59		ゾーン03 623	48E40~521BF
29.59~30.99		ゾーン04 624	521C0~5BC9F
30.99~32.39	!	ゾーン05 625	5BCA0~65EDF
32.38~33.78	1	ゾーン06 626	65EE0~7087F
33.78~35.18	データエリア / リライタフ・ル \	ゾーン07 627	70880~7B97F
35.18~38.57	(+·-+1/->)	ゾーン08 628	78980~871DF
: -	608	:	:
43.58~44.96	1	ゾーン14 634	C7A60~D5EFF
44.96~46.35	1	ゾーン15 635	D5F00~E4AFF
46.35~47.75	1	ゾーン16 636	E4B00~F3A5F
47,75~49.15	1	ゾーン17 837	F3E60~10391F
49.15~50.55	1	ゾーン18 638	103920~113B3
50.55~51.94	1	ゾーン19 6 39	113B40~1244B
51.94~53.34	1	ゾーン20 640	1244C0~13559
53.34~54.74	1	ゾーン21 641	1355A0~146DD
54.74~56.13	1	ゾーン22 642	146DE0~158D7
56.13~57.53	1	ゾーン23 643	158D80~16B47
57.53~58.60		リライタフ・ルテ・ータン・ーン 645	168480~17966
	909		1

【図24】

【図25】

ゾーン名 603		各ゾーンの内容 651
エンポスド	ブランクゾ-	-ン 652
データゾーン	リファレンス	スシグナルゾーン 653
611	ブランクゾ-	-ン 654
	デ・デ・デ・デ・デ・カン・フントロール デ・ナン・コン BB 655 ハ、リ・ヒ・ハ・リ・リ・リー・リー・リー・リー・リー・リー・リー・リー・リー・リー・リー・リー	・プラ・イア・・ハ・・ト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	ブランクゾ	ーン 656
ミラーゾーン 612	コネクショ	ンゾーン 657
	ゲートトラ	ックゾーン 658
	ディスクテ	ストゾーン 659
リライタブル	ドライブテ	ストゾーン 660
データゾーン	ガードドラ	ックゾーン 661
613	ディスクア	イデンティフィケイションゾーン 662
	DMA1 & DN	AA2 663
	DMA1&DN	MA2 663

ゾーン名 603	各ゾーンの内容 651
リライタブル データゾーン 645	DMA3&DMA4 691 ディスクアイデンティフィケイションゾーン 692 ガードトラックゾーン 693 ドライブテストゾーン 694 ディスクテストゾーン 695 ガードトラックゾーン 696

【図26】

【図27】

	4/12.17.4	1	グループ				各7.1-7.1内
事	_	100 D	1-4'1'7723		A'TI'IT 724	が十、11/7 772の かか番号	最初のわりの選挙とか権力
13	中華((4)	r	49年4	第64	台書紀		774
8	1	8	31000~377DF	26592	377ED~37D2F	37D30~37D5F	٥
5	37D60~37D8F	5	37D90~3FB2F	32160	3FB30~401EF	401F0~4021F	26592
8	40220~4024F	8	40250~486EF	33952	486F0~48E0F	48E10~48E3F	58752
ន	48E40~48E6F	8	48E70~51A0F	35744	51A10~5218F	52190~5218F	92704
2	521C0~521EF	8	521F0~5B48F	37536	58490~5BC6F	5BC70~5BC9F	128448
ន	1244C0~12450F	20	124510~13476F	66144	134770~13554F	135550~13559F	943552
2	1355A0~1355EF	12	1355F0~145F4F	67936	145F50~146D8F	146D90~146DDF	1009696
ន	146DE0~146E2F	8	146E30~157E8F	69728	157E90~158D2F 158D30~158D7F	158D30~158D7F	1077632
ន	158D80~158DCF	ន	158DD0~16A57F	71600	158DD0~16A57F 71600 16A580~16B47F	1	1147360

- 47.9501b	次セクタ のヘッダ 574
	聚基本 音号 578
	11 ∪ × − □ × − 0.76
	:
1セクタ 501a-	数 金 577
1	開催 コード 575
	ヘッダ (四凸着造) 573
	載の セクタ 501s

【図28】

【図29】

	€7\$ 501q
	セクタ 501p 2048
	:
-ECCブロック 502	479 501c 2048
(16 8 0 ± 9	セクタ 501b 2048
	473 501a 2048
<u></u>	47.9 501s 2048

【図30】

【図31】

	日保 703)					周側 704→
[78]	セクタ番を	7/1 721]		【物埋も	798	号大 722]
a)	_	ーザエリフ	723		スペア	エリア 72
		タ番号設 記録に使用			- 不	使用領域→ 726
	交替処 (論章	理 734 1175番号(交替処理 表方57h)		nt/9#3	737 i
b) 1/17 723a	m僧の 欠陥tクタ 731	ユーザ エリア 723b	n側の 欠陥t/f9 732	ユーザ エリア 723c	模配 機構使用 743	スペア エリア 724
I	(情報の言	タ番号設2 2録に使用 5環 744			Ecc.	不使用領域 736
Ĺ				170	-	
1-4° 177 723a	欠陥ECC フ'ロック 741	ユーザ エリア 723b	k個連続 欠陥ECC 7 ロック 742	ユーザ エリア 723c	情報版 使用す 延長等 74	る 11/7
			L		. 4 .	-
1	(高) —	論理セクタ看	号設定位 754	置の平行を	動	不使戶 領域 746
į			曹処理 758		<u>L</u>	
<u> </u>		(論理セクタモ	号数定场	所移動)	<u>; </u>	
d) 1-9° 197 723d	大陰ECC 7'ロック 751	ユーザ エリア 723e	k個連続 欠陥ECC プロック 752	ユーザ エリア 723f	簡 交替配録 753	京 スペッ 京 記 エリア 724 754
•		1		1	1,33	/34
			1	交替処理	750	A

【図32】

【図33】

【図34】

【図35

3	5	1																		
		イデ	7 7	,	7	ルー	Į.	IL.	デオ	デ	- 9	(A)	wv	IDE	o_	OB.	ΙΕÇ	T.V	OB)
			ī	VC)B #	#1						_	/OE	3#2	2					
	l			t	بالع	A			ŧΙ	VВ				t ,	řÇ			t,	١D	
(a)	★	124				_	j	去	養先	Ž.	ンク	_					消	去撰	柱	×
(ω,		黄坡		$\overline{}$	57	_	1					1	Ė	가#	<u> </u>		_	_	_	ᅴ
				ď	ď	ŏ	۷l	ΧI	8I	ŏ	ŏ	ŏ	V	٥	V	ŏ	ŏ	ŏ	ľŏ	\
			- 1	B	8	В	B	B	B	ĕ	B	B	B	ĕ	В	В	В	B	В	В
	L	_	_	U	U	U	U	U	U	U	U	U	u	U	U	U	U	U	Ų	U
.	F	₹	オ :	77	٠ ٦.	ルーダ	4.	i E	デオ	デ	- 9	(R)	W	IDE	0_0	OB.	EC	T.V	OB	1
			I)B #				I					VOE						
			L	_t	ミル	<u> </u>					シル	_		tz.	PC				'n	
(b)	*	121				\dashv	*	121		消:	<u>失ラン</u>	23					j#	大批	定	t to
(-,	1	東域	-	÷	ゲント	-	1	東域	1			_		ウス	_	_				,
				낆	8	8			- 1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	9	ŏ	ŏ	١
				В	B	В			- 1	8	8	B	8	ē	В	B	8	В	B	8
	Ц.			U	U	U	_	_		U	U	u	U	U	U	U	U	U	Ų	υ
-	Ŀ	£ 7	オ ラ	77	7.	11-1	1	E:	デオ	デ・	- 2	(RI	۸V	DE	0_1	08.	EC	T.V	ОВ)
-	Т)B#				T				28 1							Ή
			L	t	14	A			- į	t	ソレ	3_		セノ	ĸ					- 1
(c)	未	151				-	未	151	a	消:	タラン	-						未	20	ı
``'	#	東域	-	$\overline{}$	テント	_	1	異域	-			_	_	heb				額	域	
				8		ö			- 1	۵I	ŏ	ŏ	٥	٥	٥	٥				
				B	8	8				В	В	B	В	В	B	В				
- 1	_		4	U	υl	υĮ	-			U	U	U	U	U	U	U			_	J
1	Ŀ	7	才.	77	7.	ルー1	* 79	٢:	デオ	デ-	- タ	(FI)	۸VI	DE	0_0	OBJ	EC	T.V	ОВ	\sum
	V	DB #	‡3	V	ОВ	#1	V	OB	#3			V	<u>98</u> (#2			_	/O E	3#	3
		マル	E	L	セル	A	Ŀ	ケル	·E_		セル	_	_	tz.	ILC		匚	t/	٧F	
(d)	_			Ļ.			L.	_		淄	表す		_	_			╙			4
`~'	_	ネテント	#C	-	ΤŤ	/h#a	-	~~	dw1	ļ.,	1	_	_	小紋) 	r	_	_	>*	_
	Š.	ŏ	ŏ	ŏ	١٧	l8	ŏ	١×	Š	ŏ	ő	ŏ	ľ	ŏ	ŏ	×	ŏ	٥	ŏ	V
	В	В	B	В	B	ĕ	В	В	В	В	В	В	В	В	В	B	В	B	В	В
	H.	U	U	lυ	ΙU	ΙU	U	ıυ	U	U	ıυ	U	U	U	ĮΨ	U	Įυ	U	U	lui

【図36】

	-	VOB#1	VOB#1を構成する全エクステント数	285
		14801	最初のエクステントの先頭AVアドレス	2052
		VOB#1	最初のエクステントのサイズ(セクタ数)	2053
	٠	VOB #1	2番目のエクステントの先頭AVアドレス	2054
	٠.,	VOB#1	2番目のエクステントのサイズ(セクタ数)	2055
VOBの位置情報			*******	
Voerb+ n		VOB#2	VOB#2を構成する全エクステント数	2061
雑学質問らん		VOB#2	最初のエクステントの先頭AVアドレス	2062
		VOB #2	最初のエクステントのサイズ(セクタ数)	2063
		_		
		V08#1	VOB#1を構成する全セル数	2071
		VOB #1	最初のセルの失顕AVアドレス	2072
		VOB #1	2番目のセルの先頭AVアドレス	2073
		V08#2	VOB#2を構成する全セル数	2074
		VOB#2	最初のセルの先輩AVアドレス	2075
		VOB #2	VOB#2 2番目のセルの先頭AVアドレス	2076

【図37】

[図38]

フロントページの続き

(74)代理人 100084618

弁理士 村松 貞男

(74)代理人 100092196

弁理士 橋本 良郎

(72)発明者 安東 秀夫

神奈川県川崎市幸区柳町70番地 株式会社東芝柳町工場内

(72) 発明者 海野 裕明

神奈川県川崎市幸区柳町70番地 株式会社東芝柳町工場内

審査官 小林 大介

(56)参考文献 国際公開第98/14938 (WO, A1)

特開平09-259574 (JP, A)

特開平06-103577 (JP, A)

特開平10-003778 (JP, A)

特開平08-320945 (JP, A)

特開平11-162119 (JP, A)

特開平06-223504 (JP, A)

(58)調査した分野(Int.Cl., DB名)

G11B 27/00

G11B 20/12