Regression Interpretation

Functional Forms Cheat Sheet v1.0

Prepared by Adam Ross Nelson JD PhD @adamrossnelson

Example Notation(s)

$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u$

Where Y is the outcome, \mathbb{B}_0 is the Y intercept, $\mathbb{B}_1...\mathbb{B}_k$ are coefficients (slopes) on $\mathbb{X}_1...\mathbb{X}_k$ which are input variables, and u is the unexplained. y=mx+b+e

Where y is the outcome variable, m is the slope, x is the input variable, b is the y intercept, and e is the unexplained, unobservable, and error.

 $\log(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u$

Where Y is the outcome (logged), β_0 is the Y intercept, $\beta_1...\beta_k$ are coefficients on $X_1...X_k$ which are input variables, and u is the

unexplained.

Interpretations

A one unit change in X_1 is associated with a B_1 change in Y when holding all other X_n (X_2 , X_3 ,... X_k) constant. This specification models **change at a steady rate**.

All models are wrong, some are useful.

Conversationally, ß terms are sometimes also called slopes.

Also, B_1 will equal the change in Y over the change in X_1 when holding all other X_n (X_2 , X_3 ,... X_k) constant. Noted as:

$$\beta_1 = \frac{\Delta Y}{\Delta X_1}$$

 $B_1 \times 100$ is the percent change in Y that is associated with a one unit change in X_1 , when holding all other X_n (X_2 , X_3 ... X_k) constant.

Because we interpret the outcome as a percent change this specification is nonlinear.

$$Y_i = \beta_0 + \beta_1 \log(X_{1i}) + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u$$

Where Y is the outcome, B_0 is the Y intercept, B_1 is the coefficient of interest, $B_2...B_k$ are additional coefficients on $X_2...X_k$ which are input variables, and u is the unexplained.

 $\beta_1 \times .01$ is the change in Y that is associated with a 1% change in X_1 when holding all other X_n (X_2 , X_3 ... X_k) constant.

Because we interpret the outcome as a percent change this specification is nonlinear.

$\log(Y_i) = \beta_0 + \beta_1 \log(X_{1i}) + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u$

Where Y is the outcome (logged), B_0 is the Y intercept, B_1 is the coefficient of interest, $B_2...B_k$ are additional, and u is the unexplained.

 \mathbb{B}_1 is the percent change in Y associated with a 1% change in X_1 when holding all other X_n $(X_2,X_3...X_k)$ constant.

Because we interpret both the outcome and inputs as a percent changes this specification is **nonlinear**.

$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^2 + \dots + \beta_k X_{ki} + u$

Where Y is the outcome, B_0 is the Y intercept, B_1 & B_2 are coefficients of interest, $B_0 \dots B_k$ are additional coefficients, and u is the unexplained.

Also where X2 is the square of X1.

To interpret the results, compute marginal effects. This specification models **change at changing rates**.

First, compute the predicted value of Y for a particular value of X_1 . (e.g. mean or median). Second, compute the predicted value for Y at $X_1 + 1$.

Third, the difference of predicted values is the change in Y associated with a unit change in X_1 . Also, the marginal effect of X on Y for a given value of X will be:

$$\beta_1 + 2(\beta_2)X$$

$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u$

Where Y is the outcome, B_0 is the Y intercept, B_1 & B_2 are coefficients of interest, $B_n \dots B_k$ are additional coefficients, and u is the unexplained.

Also where D_1 is a dummy variable only equal to 0 or 1.

This specification is often called a **multiple intercept & single slope** model because the coefficient (B_1) plus the Y intercept (B_0) will be the intercept on Y when the corresponding dummy variable (D_1) = 1.

Interpreting this dummy variable's coefficient essentially means comparing the means of Y between two groups. The coefficient (β_1) is the difference in the mean of Y between the two groups when holding all other X_n (X_2 , X_3 ... X_k) constant.

$Y_i = \beta_0 + \beta_1 X_{1i} D_{1i} + \beta_2 X_{1i} + \dots + \beta_k X_{ki} + u$

Where Y is the outcome, B_0 is the Y intercept, B_1 & B_2 are coefficients of interest, B_1 , are additional coefficients, and u is the unexplained.

Also where D₁ is a dummy variable only equal to 0 or 1.

This specification is often called a **single intercept & multiple slope** model because the coefficient (B_1) on the interaction term (X_1D_1) plus the corresponding slope (B_2) will be the slope on Y when the corresponding dummy variable $(D_1) = 1$.

Interpreting a dummy variable's coefficient means showing whether the association of X and Y will be the same among two different groups. The coefficient (\mathfrak{B}_1) is the difference in the slope of Y between the two groups when holding all other X_n $(X_2, X_3...X_k)$ constant.

$Y_i = \beta_0 + \beta_1 X_{1i} D_{1i} + \beta_2 X_{1i} + \beta_3 D_{1i} + ... + \beta_k X_{ki} + u$

Where Y is the outcome, B_0 is the Y intercept, B_1 , B_2 , & B_3 are the coefficients of interest, B_n ... B_k are additional coefficients, and u is the unexplained.

Also where D_1 is a dummy variable only equal to 0 or 1.

This specification is often called a **multiple intercept & multiple slope** model because the coefficient (B_1) on the interaction term (X_1D_1) plus the corresponding slope (B_2) will be the slope on Y when the corresponding dummy variable (D_1) = 1. Likewise, the coefficient (B_3) plus the Y intercept (B_1) will be the intercept on Y when the corresponding dummy variable (D_1) = 1

Interpreting a dummy variable's coefficient means showing whether the association of X and Y will be the same among two different groups.

BETA VERSION – Send Comments to @adamrossnelson

Selected Visualizations

These visualizations model vehicle efficiency (miles per gallon) as a function of vehicle weight.²

Linear Regression – Change At A Steady Rate $mpq = 39.44 + -.01 \times vehicle\ weight$

Exponential Quadratic – Change At A Changing Rate $mpg = 51.18 - .014 * weight + .00000013 \times weight^2$

Dummy + Dummy × Continuous - Multiple Slope & Multiple Intercept

¹ Attributed to George Box. Box, G. E. P.(1976),". Science and Statistics," *Journal of the American Statistical Association*, 71, 791-799. See also: https://en.wikipedia.org/wiki/All_models_are_wrong

² Using data from Stata available at http://www.stata-press.com/data/r15/auto2.dta

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

