Algorithm on Face Recognition

Based on the paper by Hongun Li, we are going to use a relatively novel approach for Face Recognition.

The main algorithm is as follows:

Input:

First, we have the training data $X = \{x_1, x_2, \dots, x_q\}$ and the testing data $Y = \{y_1, y_2, \dots, y_p\}$. The size of training and testing data is $S_1 \times S_2$. The parameters are λ , ρ . A matrix of normalized training samples $D = [D_1, D_2, \dots, D_k] \in \mathbb{R}^{m \times n}$ for K classes, and a test sample $y \in \mathbb{R}^m$. As you can see, the dimension m of the training sample is the same as the dimension of each D_i , and the dimension n denotes the number of images on each class.

Algorithm:

- Make the Dynamic Rank estimation and get the optimal rank r.
- For each class i do
 - Obtain the low-rank part M_i of the training data D_i . In order to do this, first we need to conduct a SVD of the matrix $M_i = U\Sigma V^T$, then, having obtained the matrix Σ , where its diagonal are the ordered singular values, take just the first r singular values and set the remaining to zero, this will give a new matrix Σ' . Finally $M_i = U\Sigma' V^T$.
 - Given M_i , solve the following optimization problem

$$\min_{Z_i^*, L_i^*, E_i^*} ||Z_i||_* + \lambda ||M_i - M_i Z_i||_F^2$$
s.t.
$$M_i = M_i Z_i + L_i M_i + E_i, \quad Z_i = V_{M_i} W_{Z_i} V_{M_i}^T,$$

$$L_i = U_{M_i} (I - W_{Z_i}) U_{M_i}^T, \quad \text{rank}(Z_i) = r$$

As you can see, the variables we are looking are W_{Z_i} and E_i , in order to find the best Z_i and L_i . The other components can be found by conducting a skinny SVD of $M_i = U_{M_i} \Sigma_{M_i} V_{M_i}^T$ to find U_{M_i} and V_{M_i} . The meaning of skinny is that Σ_{M_i} is a square matrix of size $\operatorname{rank}(M_i)$.

This is a kind of optimization problem called convex optimization problem (you can read more about it in the following link), where $||Z_i||_* + \lambda ||M_i - M_i Z_i||_F^2$ is called the "objective function", there are no inequality constraints and there are four equality constraint functions.

There are different approaches to solve this kind of problems, and there is a Python library created called CVXOPT.

- Having got the optimal L_i , calculate the discriminative information of face image by L_iM_i .
- For the identification, calculate the residual associated with the ith class as

$$e_i(y) = ||L_i y - L_i M_i||_2^2$$

Note that this will be a function of y, so that the identification is given by

$$identify(y) = argmin_i(e_i(y))$$

i.e. the class i where the function e_i is minimized