Relativistic coupled-cluster response theory for closed-shell molecules.

Gabriele Fabbro

Supervisor: Dr. Trond Saue

Université Toulouse III - Paul Sabatier

Laboratoire de Chimie et Physique Quantiques - UMR5626

May 24, 2023

Presentation Outline

- 1 CV
- 2 PhD project
- 3 Other projects
- Conclusion

Other projects

Personal informations

Full name: Gabriele Fabbro

Date and place of birth: 10 November 1998, Pordenone (Italy)

Citizenship: Italian

Education

- Bachelor's degree in Chemistry (grade: 110/110), Trieste.
- Master's degree in Theoretical Chemistry (grade: 110/110 cum laude), Trieste.
- PhD in Theoretical Chemistry (ongoing), Toulouse.

CV

0

Topics

- Bachelor's thesis project: NEXAFS spectroscopy to study naphtalen boronic acids using DFT.
 - Supervisor: Prof. Daniele Toffoli[®] (Trieste)
- Master's thesis project: analysis and calculation of electric field gradient in molecules in relativistic frameowrk.
 - Supervisor: Prof. Mauro Stener[®] (Trieste)
 - Co-Supervisor: Dr. Trond Saue[®] (Toulouse)
- PhD thesis project: relativistic coupled-cluster response theory for closed-shell molecules.
 - Supervisor: Dr. Trond Saue (Toulouse)

General overview

CV

 The thesis is part of the project HAMP-vQED [Highly Accurate Molecular Properties using variational Quantum Electrodynamics]¹.

- Heavy elements need the special theory of relativity to be understood.
- HAMP-vQED project will investigate the possible role of quantum electrodynamics (QED) in chemistry.

General overview

Some QED effects:

- Vacuum polarization: A charge in space is surrounded by virtual electron-positron pairs.
- Self-energy: A charge drags along its electromagnetic field.
- Lamb shift: splitting between the ${}^2S_{1/2}$ and ${}^2P_{1/2}$ states of one-electron atoms, not predicted by the Dirac equation.

→ Hydrogen: 4 meV
→ Uranium: 468 eV

$$e^+$$
 $e^ e^ e^+$
 $e^ e^ e^-$

General overview

- HAMP-vQED will provide a computational protocol for the highly accurate computation of molecular properties.
- To obtain extremely accurate results it is necessary to use an extremely accurate method: coupled-cluster theory.

Figure 1: Source: https://education.molssi.org/ mm-tools/01-introduction/index.html

Coupled-cluster theory

In coupled-cluster theory we use a non-unitary exponential parametrization to define our CC wave function:

$$|\Psi_{CC}\rangle = e^{\hat{T}} |\Phi_0\rangle , \hat{T} = \sum_{\mu} t_{\mu} \hat{\tau}_{\mu}$$
 (1)

CV

Coupled-cluster theory

 In coupled-cluster theory we use a non-unitary exponential parametrization to define our CC wave function:

$$|\Psi_{CC}\rangle = e^{\hat{T}} |\Phi_0\rangle \ , \ \hat{T} = \sum_{\mu} t_{\mu} \hat{\tau}_{\mu}$$
 (1)

 Taking the expectation values of the CC wave function we see that the CC energy is a function of the amplitudes:

$$E = \frac{\langle \Psi_{CC} | \hat{H}_N | \Psi_{CC} \rangle}{\langle \Psi_{CC} | \Psi_{CC} \rangle} \equiv E(\{t_\mu\})$$
 (2)

where \hat{H}_N is the **normal-ordered Hamiltonian**, defined in the following way:

$$\hat{H}_{N} = \sum_{q,q} f_{pq} \{ a_{p}^{\dagger} a_{q} \} + \frac{1}{2} \sum_{q,q,r} \langle pq | | rs \rangle \{ a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r} \}$$
 (3)

CV

Coupled-cluster theory

• We can overcome to this problem by projection:

$$\hat{H}_{N} |\Psi_{CC}\rangle = E_{CC} |\Psi_{CC}\rangle
\hat{H}_{N} e^{\hat{T}} |\Phi_{0}\rangle = E_{CC} e^{\hat{T}} |\Phi_{0}\rangle
\underbrace{e^{-\hat{T}} \hat{H}_{N} e^{\hat{T}}}_{\hat{H}} |\Phi_{0}\rangle = E_{CC} \underbrace{e^{-\hat{T}} e^{\hat{T}}}_{=1} |\Phi_{0}\rangle
\hat{H} |\Phi_{0}\rangle = E_{CC} |\Phi_{0}\rangle$$
(4)

where we have introduced the similarity-transformed Hamiltonian \overline{H} .

Coupled-cluster theory

• We can overcome to this problem by projection:

$$\hat{H}_{N} |\Psi_{CC}\rangle = E_{CC} |\Psi_{CC}\rangle
\hat{H}_{N} e^{\hat{T}} |\Phi_{0}\rangle = E_{CC} e^{\hat{T}} |\Phi_{0}\rangle
\underline{e^{-\hat{T}} \hat{H}_{N} e^{\hat{T}}} |\Phi_{0}\rangle = E_{CC} \underbrace{e^{-\hat{T}} e^{\hat{T}}}_{=1} |\Phi_{0}\rangle
\hat{H} |\Phi_{0}\rangle = E_{CC} |\Phi_{0}\rangle$$
(4)

where we have introduced the similarity-transformed Hamiltonian $\hat{\overline{H}}$.

• At the end, projecting onto $\langle \Phi_0 |$ and $\langle \Phi_\mu |$ we get an equation for the **energy** and for the **amplitudes**:

$$\langle \Phi_0 | \hat{\overline{H}} | \Phi_0 \rangle = E_{CC} \tag{5}$$

$$\langle \Phi_{\mu} | \hat{\overline{H}} | \Phi_{0} \rangle = 0 \; , \; | \Phi_{\mu} \rangle = \hat{\tau}_{\mu} | \Phi_{0} \rangle$$
 (6)

9/15

My tasks

- The DIRAC code² features two coupled cluster modules:
 - RELCCSD module: it benefits from an extensive treatment of molecular symmetry. This module allows the calculation of expectation values as well as excitation, ionization and electron attachment energies.

Other projects

- **2 EXACORR** module: is geared for massively parallel calculations.
- In this PhD thesis is planned to merge the two codes, in order to provide powerful tools for further CC development.

My tasks

 We shall calculate molecular properties as energy derivatives, connected to expectation values through the Hellmann-Feymann theorem:

$$\frac{dE(\varepsilon_x)}{d\varepsilon_x} = \langle \Psi(\varepsilon_x) | \frac{\partial}{\partial \varepsilon_x} \hat{H}(\varepsilon_x) | \Psi(\varepsilon_x) \rangle \tag{7}$$

My tasks

 We shall calculate molecular properties as energy derivatives, connected to expectation values through the **Hellmann-Feymann theorem**:

$$\frac{dE(\varepsilon_x)}{d\varepsilon_x} = \langle \Psi(\varepsilon_x) | \frac{\partial}{\partial \varepsilon_x} \hat{H}(\varepsilon_x) | \Psi(\varepsilon_x) \rangle \tag{7}$$

Other projects

 In practice the wave function is optimized through electronic (wave-function) parameters (MOs, cluster amplitudes), and for variational wave functions we have:

$$\frac{dE(\varepsilon_{x},\kappa)}{d\varepsilon_{x}} = \frac{\partial E(\varepsilon_{x},\kappa)}{\partial \varepsilon_{x}} + \underbrace{\frac{\partial E(\varepsilon_{x},\kappa)}{\partial \kappa}}_{c} \underbrace{\frac{d\kappa}{d\varepsilon_{x}}} = \frac{\partial E(\varepsilon_{x},\kappa)}{\partial \varepsilon_{x}}$$
(8)

My tasks

 We shall calculate molecular properties as energy derivatives, connected to expectation values through the Hellmann-Feynmann theorem:

$$\frac{dE(\varepsilon_x)}{d\varepsilon_x} = \langle \Psi(\varepsilon_x) | \frac{\partial}{\partial \varepsilon_x} \hat{H}(\varepsilon_x) | \Psi(\varepsilon_x) \rangle \tag{7}$$

 In practice the wave function is optimized through electronic (wave-function) parameters (MOs, cluster amplitudes), and for variational wave functions we have:

$$\frac{dE(\varepsilon_{x},\kappa)}{d\varepsilon_{x}} = \frac{\partial E(\varepsilon_{x},\kappa)}{\partial \varepsilon_{x}} + \underbrace{\frac{\partial E(\varepsilon_{x},\kappa)}{\partial \kappa}}_{c} \underbrace{\frac{d\kappa}{d\varepsilon_{x}}} = \frac{\partial E(\varepsilon_{x},\kappa)}{\partial \varepsilon_{x}}$$
(8)

CC theory is not variational: we will use the Lagrangian formalism.

$$\left| \mathcal{L}^{CC}(\varepsilon_{x}, t, \lambda) = E_{CC} + \sum_{\mu} \lambda_{\mu} \langle \Phi_{\mu} | \hat{\overline{H}} | \Phi_{0} \rangle \right|$$
 (9)

My tasks

CV

- My work is focused on the calculation of linear response functions, which are second derivatives of the energy: polarizabilities, magnetizabilities, NMR parameters, ...
- Challenge in magnetic properties: they in relativistic response theory involve the solutions (orbitals) of the Dirac equation of negative-energy^a (typically discarded): the formulation of a method to calculate these properties is part of the project.

^aG. Aucar, H. J. Aa. Jensen, T. Saue and L. Visscher, J. Chem. Phys. 110 (1999) 6208

Other projects

Electric field gradient

- Nuclei with spin I>1/2 possess an nuclear electric quadrupole moment which
 measures the deviation from the spherical symmetry of the charge distribution.
- The electric field gradient is sensitive to deviations from spherical symmetry, such arising from bond formation:

$$e\hat{q} = \frac{3z^2 - r^2}{r^5} = \sqrt{\frac{16\pi}{5}} \frac{Y_{20}}{r^3}$$
 (10)

Other projects

Chemical bond in actinyls

• Why UO_2^{2+} is linear and the isoelectronic compound ThO₂ is bent?³

$$O \equiv U^{+2} \equiv O$$

- For many years, attempts have been made to justify the linearity of the uranyl molecule, and it is still a controversial topic.
- What happens to the geometry of ThO₂ if we gradually vary the nuclear charge of Th?
 - \succ Is there a critical angle where ThO₂ becomes linear?
 - > Does the molecule become linear gradually?

³ Willard R. Wadt J. Am. Chem. Soc. 1981, 103, 20, 6053-6057

Conclusion

Thank you for your attention Questions?

