Chapter 2

Models, Censoring, and Likelihood for Failure-Time Data

William Q. Meeker and Luis A. Escobar

Iowa State University and Louisiana State University

Copyright 1998-2004 W. Q. Meeker and L. A. Escobar. Based on the authors' text *Statistical Methods for Reliability Data*, John Wiley & Sons Inc. 1998.

2-1

Chapter 2 Models, Censoring, and Likelihood for Failure-Time Data Objectives

- Describe models for continuous failure-time processes.
- Describe some reliability metrics.
- Describe models that we will use for the discrete data from these continuous failure-time processes.
- Describe common censoring mechanisms that restrict our ability to observe all of the failure times that might occur in a reliability study.
- Explain the principles of likelihood, how it is related to the probability of the observed data, and how likelihood ideas can be used to make inferences from reliability data.

2-2

Typical Failure-time cdf, pdf, hf, and sf

$$F(t) = 1 - \exp(-t^{1.7}); \quad f(t) = 1.7 \times t^{.7} \times \exp(-t^{1.7})$$

$$S(t) = \exp(-t^{1.7}); \quad h(t) = 1.7 \times t^{.7}$$

Cumulative Distribution Function

Probability Density Function

Survival Function

Hazard Function

2-3

Models for Continuous Failure-Time Processes

 ${\cal T}$ is a nonnegative, continuous random variable describing the failure-time process. The distribution of ${\cal T}$ can be characterized by any of the following functions:

 \bullet The cumulative distribution function (cdf): $F(t) = \Pr(T \leq t).$

Example, $F(t) = 1 - \exp(-t^{1.7})$.

- The probability density function (pdf): f(t) = dF(t)/dt. Example, $f(t) = 1.7 \times t^7 \times \exp(-t^{1.7})$.
- Survival function (or reliability function):

$$S(t) = \Pr(T > t) = 1 - F(t) = \int_t^\infty f(x) dx.$$

Example, $S(t) = \exp(-t^{1.7})$.

• The hazard function: h(t) = f(t)/[1 - F(t)]. Example, $h(t) = 1.7 \times t^{-7}$

2-4

Hazard Function or Instantaneous Failure Rate Function

The hazard function h(t) is defined by

$$h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t \mid T > t)}{\Delta t}$$
$$= \frac{f(t)}{1 - F(t)}.$$

Notes:

- $F(t) = 1 \exp[-\int_0^t h(x) dx]$, etc.
- \bullet $\,h(t)$ describes propensity of failure in the next small interval of time given survival to time t

$$h(t) \times \Delta t \approx \Pr(t < T \le t + \Delta t \mid T > t).$$

• Some reliability engineers think of modeling in terms of h(t).

Bathtub Curve Hazard Function

Cumulative Hazard Function and Average Hazard Rate

• Cumulative hazard function:

$$H(t) = \int_0^t h(x) \, dx.$$

Notice that, $F(t) = 1 - \exp\left[-H(t)\right] = 1 - \exp\left[-\int_0^t h(x)\,dx\right]$.

• Average hazard rate in interval $(t_1, t_2]$:

$$AHR(t_1, t_2) = \frac{\int_{t_1}^{t_2} h(u) du}{t_2 - t_1} = \frac{H(t_2) - H(t_1)}{t_2 - t_1}.$$

If $F(t_2) - F(t_1)$ is small (say less than .1), then

$$\mathsf{AHR}(t_1, t_2) \approx \frac{F(t_2) - F(t_1)}{(t_2 - t_1) \, S(t_1)}$$

• An important special case arises when $t_1 = 0$,

$$\mathsf{AHR}(t) = \frac{\int_0^t h(u) du}{t} = \frac{H(t)}{t} \approx \frac{F(t)}{t}.$$

Approximation is good for small F(t), say F(t) < .10

2-7

Plots Showing that the Quantile Function is the Inverse of the cdf

F(t) .5 - 0.0 0.5 1.0 1.5 2.0 2.5

2-8

Distribution Quantiles

ullet The p quantile of F is the **smallest** time t_p such that

$$\Pr(T \le t_p) = F(t_p) \ge p$$
, where $0 .$

 $t_{.20}$ is the time by which 20% of the population will fail. For, $F(t) = 1 - \exp(-t^{1.7}), \ p = F(t_p)$ gives $t_p = [-\log(1-p)]^{1/1.7}$ and $t_2 = [-\log(1-2)]^{1/1.7} = .414$.

• When F(t) is strictly increasing there is a unique value t_p that satisfies $F(t_p) = p$, and we write

$$t_p = F^{-1}(p).$$

- When F(t) is constant over some intervals, there can be more than one solution t to the equation $F(t) \geq p$. Taking t_p equal to the smallest t value satisfying $F(t) \geq p$ is a standard convention.
- ullet t_p is also know ad B100p (e.g., $t_{.10}$ is also known as B10).

2-9

Partitioning of Time into Non-Overlapping Intervals

Times need **not** be equally spaced.

2-10

Graphical Interpretation of the π 's

Models for Discrete Data from a Continuous Time Processes

All data are discrete! Partition $(0,\infty)$ into m+1 intervals depending on inspection times and roundoff as follows:

$$(t_0, t_1], (t_1, t_2], \ldots, (t_{m-1}, t_m], (t_m, t_{m+1})$$

where $t_0=0$ and $t_{m+1}=\infty$. Observe that the last interval is of infinite length.

Define

$$\begin{split} \pi_i & = & \Pr(t_{i-1} < T \le t_i) = F(t_i) - F(t_{i-1}) \\ p_i & = & \Pr(t_{i-1} < T \le t_i \mid T > t_{i-1}) = \frac{F(t_i) - F(t_{i-1})}{1 - F(t_{i-1})} \end{split}$$

Because the π_i values are multinomial probabilities, $\pi_i \geq 0$ and $\sum_{j=1}^{m+1} \pi_j = 1$. Also, $p_{m+1} = 1$ but the only restriction on p_1, \ldots, p_m is $0 \leq p_i \leq 1$

Models for Discrete Data from a Continuous Time Processes—Continued

It follows that,

$$\begin{split} S(t_{i-1}) &= \Pr(T > t_{i-1}) = \sum_{j=i}^{m+1} \pi_j \\ \pi_i &= p_i S(t_{i-1}) \\ S(t_i) &= \prod_{j=1}^i \left(1 - p_j\right), \ i = 1, \dots, m+1 \end{split}$$

We view $\pi = (\pi_1, \dots, \pi_{m+1})$ or $p = (p_1, \dots, p_m)$ as the non-parametric parameters.

Probabilities for the Multinomial Failure Time Model Computed from $F(t)=1-\exp(-t^{1.7})$

t_i	$F(t_i)$	$S(t_i)$	π_i	p_i	$1 - p_i$
0.0	.000	1.000			
0.5	.265	.735	.265	.265	.735
1.0	.632	.368	.367	.500	.500
1.5	.864	.136	.231	.629	.371
2.0	.961	.0388	.0976	.715	.285
∞	1.000	.000	.0388	1.000	.000
			1.000		

2-13

Examples of Censoring Mechanisms

Censoring restricts our ability to observe ${\cal T}.$ Some sources of censoring are:

- ullet Fixed time to end test (lower bound on T for unfailed units).
- ullet Inspections times (upper and lower bounds on T).
- Staggered entry of units into service leads to multiple censoring.
- Multiple failure modes (also known as competing risks, and resulting in multiple right censoring):
 - ▶ independent (simple).
 - ▶ non independent (difficult).
- Simple analysis requires non-informative censoring assumption.

2 - 15

Likelihood (Probability of the Data) as a Unifying Concept

- Likelihood provides a general and versatile method of estimation
- Model/Parameters combinations with relatively large likelihood are plausible.
- Allows for censored, interval, and truncated data.
- Theory is simple in regular models.
- Theory more complicated in **non-regular** models (but concepts are similar).
- Limitation: can be computationally intensive (still no general software).

2-16

Determining the Likelihood (Probability of the Data)

The form of the likelihood will depend on:

- Question/focus of study.
- Assumed model.
- Measurement system (form of available data).
- $\bullet \ \ Identifiability/parameterization.$

Likelihood (Probability of the Data) Contributions for Different Kinds of Censoring $\Pr(Data) = \prod_{i=1}^{n} \Pr(data_i) = \Pr(data_1) \times \cdots \times \Pr(data_n)$

Likelihood Contributions for Different Kinds of Censoring with $F(t)=1-\exp(-t^{1.7})$

• Interval-censored observations:

$$L_i(p) = \int_{t_{i-1}}^{t_i} f(t) dt = F(t_i) - F(t_{i-1}).$$

If a unit is still operating at t=1.0 but has failed at t=1.5 inspection, $L_i=F(1.5)-F(1.0)=.231$.

• Left-censored observations:

$$L_i(\mathbf{p}) = \int_0^{t_i} f(t) dt = F(t_i) - F(0) = F(t_i).$$

If a failure is found at the first inspection time t=.5, $L_i=F(.5)=.265$.

• Right-censored observations:

$$L_i(p) = \int_{t_i}^{\infty} f(t) dt = F(\infty) - F(t_i) = 1 - F(t_i).$$

If a unit has not failed by the last inspection at t=2, $L_i=1-F(2)=.0388$.

2-19

Likelihood for Life Table Data

- For a life table the data are: the number of failures (d_i) , right censored (r_i) , and left censored (ℓ_i) units on each of the nonoverlapping interval $(t_{i-1},t_i]$, $i=1,\ldots,m+1$, $t_0=0$.
- \bullet The likelihood (probability of the data) for a single observation, ${\rm data}_i,$ in $(t_{i-1},t_i]$ is

$$L_i(\pi; \mathsf{data}_i) = F(t_i; \pi) - F(t_{i-1}; \pi).$$

ullet Assuming that the censoring is at t_i

Type of	Characteristic	Number	Likelihood of
Censoring		of Cases	Responses $L_i(\pi; data_i)$
Left at t_i	$T \leq t_i$	ℓ_i	$[F(t_i)]^{\ell_i}$
Interval	$t_{i-1} < T \le t_i$	d_i	$[F(t_i) - F(t_{i-1})]^{d_i}$
Right at t_i	$T > t_i$	r_i	$[1 - F(t_i)]^{r_i}$

2 - 20

Likelihood: Probability of the Data

ullet The total likelihood, or joint probability of the DATA, for n independent observations is

$$\begin{split} L(\pi; \mathsf{DATA}) &= \mathcal{C} \prod_{i=1}^n L_i(\pi; \mathsf{data}_i) \\ &= \mathcal{C} \prod_{i=1}^{m+1} [F(t_i)]^{\ell_i} [F(t_i) - F(t_{i-1})]^{d_i} [1 - F(t_i)]^{r_i} \end{split}$$

where $n=\sum_{j=1}^{m+1}\left(d_j+r_j+\ell_j\right)$ and $\mathcal C$ is a constant depending on the sampling inspection scheme but not on π . So we can take $\mathcal C=1$.

ullet Want to find π so that $L(\pi)$ is large.

Likelihood for Arbitrary Censored Data

• In general, the ith observation consists of an interval $(t_i^L,t_i]$, $i=1,\ldots,n$ $(t_i^L < t_i)$ that contains the time event T for the ith individual.

The intervals $(t_i^L,t_i]$ may overlap and their union may not cover the entire time line $(0,\infty)$. In general $t_i^L \neq t_{i-1}$.

• Assuming that the censoring is at t_i

Type of Censoring	Characteristic	Likelihood of a single Response $L_i(\pi; data_i)$	
		-/ >	
Left at t_i	$T \leq t_i$	$F(t_i)$	
Interval	$t_i^L < T \le t_i$	$F(t_i) - F(t_i^L)$	
Right at t_i	$T > t_i$	$1 - F(t_i)$	

2-22

Likelihood for General Reliability Data

ullet The total likelihood for the DATA with n independent observations is

$$L(\pi; \mathsf{DATA}) = \prod_{i=1}^n L_i(\pi; \mathsf{data}_i).$$

• Some of the observations may have multiple occurrences. Let $(t_j^L,t_j]$, $j=1,\ldots,k$ be the distinct intervals in the DATA and let w_j be the frequency of observation of $(t_i^L,t_j]$. Then

$$L(\pi; \mathsf{DATA}) = \prod_{j=1}^k \left[L_j(\pi; \mathsf{data}_j) \right]^{w_j}.$$

• In this case the nonparametric parameters π correspond to probabilities of a partition of $(0,\infty)$ determined by the data (Examples later).

Other Topics in Chapter 2

- Random censoring.
- Overlapping censoring intervals.
- Likelihood with censoring in the intervals.
- ullet How to determine \mathcal{C} .

2-21