- Suppose V is a subspace of \mathbb{R}^4 , and β its basis.
- The required β must satisfy the following two properties:

$$V = \operatorname{span}(\beta) \tag{1}$$

$$\beta$$
 is linearly independent. (2)

Represent the given system of equations in the table and simplify:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 \end{bmatrix} \tag{3}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{bmatrix} L_2 - L_1 (4)$$

$$= \begin{bmatrix} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{bmatrix}$$
 $L_1 - L_2$ (5)

- Thus, from L_1 , $x_1 = x_3 + 2x_4$ and $x_2 = -2x_3 3x_4$. Hence any vector $\boldsymbol{x} \in V$ must satisfy the following
- 4 equation:

$$\mathbf{x} = (x_3 + 2x_4, -2x_3 - 3x_4, x_3, x_4)$$

5 which is equivalent to

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} x_3 + \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} x_4 \tag{6}$$

6 Let
$$\alpha = \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Suppose that $\exists (a, b \in \mathbb{R})$, not both zero, such that

$$\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} a + \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} b = 0$$

- 8 Therefore, from the 3rd row it follows that a=0 and from the 4th row it follows that b=0, which is a
- 9 contradiction.
- Thus, the set α is linearly independent.
- From Equation 6 it follows that $\forall (x_3, x_4 \in \mathbb{R}) : \boldsymbol{x}$ satisfies the conditions given by the system of
- equations. Therefore all elements of span(α) satisfy these conditions.
- Moreover, from Equation 6 it follows that all such \boldsymbol{x} are in span(α).
- Thus, $V = \operatorname{span}(\alpha)$. But α is also linearly independent, hence $\alpha = \beta$.