Compositional Correctness and Completeness for Symbolic Partial Order Reduction

Åsmund Aqissiaq Arild Kløvstad* Eduard Kamburjan* Einar Broch Johnsen*

*University of Oslo Department of Informatics

CONCUR, 2023-09-22

Program analysis and verification

- Program analysis and verification
- Concurrent systems

Background and Motivation

- Program analysis and verification
- Concurrent systems
- Formalisms and correctness

Background and Motivation

- Program analysis and verification
- Concurrent systems
- Formalisms and correctness
- State space explosion

Background and Motivation

Program Analysis

- Formal
- Correct

- Efficient
- Compositional

Symbolic Execution

Idea

- Symbolic values
- Cover many inputs at once

Symbolic Execution

Idea

000000

- Symbolic values
- Cover many inputs at once

Uses

- Static analysis
- Directed testing
- Program synthesis

Partial Order Reduction

Partial Order Reduction

Background and Motivation

Idea

- Ignore equivalent paths
- Underapproximate by independence
- Dynamic and static approaches

Partial Order Reduction

Idea

- Ignore equivalent paths
- Underapproximate by independence
- Dynamic and static approaches

Uses

- Model checking
- Concurrency
- Concrete systems

Prior Work

Background and Motivation

concrete semantics

(1)

symbolic semantics — symbolic POR

- De Boer & Bonsangue¹
- 2 SymPaths²

¹Symbolic Execution Formally Explained, Boer and Bonsangue (2021)

²SymPaths: Symbolic Execution Meets Partial Order Reduction, Boer, Bonsangue, et al. (2020)

Contribution

Background and Motivation

000000

Formal

Compositional

Mechanized (in Coq)

A Small Language

While Language

Arithmetic and boolean expressions

Expressions

$$e ::= x \mid n \mid e + e$$

 $b ::= x \mid \neg b \mid b \land b \mid e \le e$

A Small Language

While Language

- Arithmetic and boolean expressions
- Assignment, choice, loop

Expressions

$$e ::= x \mid n \mid e + e$$

 $b ::= x \mid \neg b \mid b \land b \mid e \le e$

Statements

A Small Language

While Language

- Arithmetic and boolean expressions
- Assignment, choice, loop
- Sequential and parallel composition

Expressions

$$e ::= x \mid n \mid e + e$$

 $b ::= x \mid \neg b \mid b \land b \mid e \le e$

Statements

■ Concrete events: assignments

$$\tau_C ::= [\] \mid \tau_C :: (x := e)$$

- Concrete events: assignments
- Symbolic events: assignments and boolean guards

$$\tau_C ::= [] | \tau_C :: (x := e)$$
 $\tau_S ::= [] | \tau_S :: (x := e) | \tau_S :: b$

- Concrete events: assignments
- Symbolic events: assignments and boolean guards
- Final states

$$\tau_C ::= [] | \tau_C :: (x := e)$$
 $\tau_S ::= [] | \tau_S :: (x := e) | \tau_S :: b$

$$\tau_C \Downarrow_V \triangleq \text{fold update } V \tau_C$$
$$\tau_S \Downarrow_\sigma \triangleq \text{fold update } \sigma \tau_S$$

- Concrete events: assignments
- Symbolic events: assignments and boolean guards
- Final states
- Path condition

$$\tau_C ::= [] | \tau_C :: (x := e)$$
 $\tau_S ::= [] | \tau_S :: (x := e) | \tau_S :: b$

$$au_C \Downarrow_V riangleq ext{fold update } V au_C$$
 $au_S \Downarrow_\sigma riangleq ext{fold update } \sigma au_S$
 $ext{pc}(au_S) riangleq ext{fold } \wedge ext{ true } au_S$
 $ext{(sort of)}$

- Concrete events: assignments
- Symbolic events: assignments and boolean guards
- Final states
- Path condition
- Abstraction

Trace Abstraction

$$\tau_S$$
 V-abstracts τ_C if $\tau_C \Downarrow_V = V \circ \tau_S \Downarrow_{id}$

Traces

$$au_C ::= [\] \mid au_C :: (x := e)$$
 $au_S ::= [\] \mid au_S :: (x := e) \mid au_S :: b$

$$au_C \Downarrow_V \triangleq ext{fold update } V au_C$$
 $au_S \Downarrow_\sigma \triangleq ext{fold update } \sigma au_S$
 $ext{pc}(au_S) \triangleq ext{fold } \wedge ext{ true } au_S$
(sort of)

9/19

Transition Systems I

Concrete
$$(s, \tau_C) \Rightarrow_V^* (s', \tau_C')$$

$$(x:=e,\tau_C) \Rightarrow_{V} (\text{skip},\tau_C :: (x:=e))$$

(if $b \{s_1\}\{s_2\},\tau_C) \Rightarrow_{V} (s_1,\tau_C)$, if $\tau_C \Downarrow_{V} (b) = \text{true}$

Transition Systems I

Concrete $(s, \tau_C) \Rightarrow_V^* (s', \tau'_C)$

$$(x:=e,\tau_C) \Rightarrow_V (\text{skip},\tau_C :: (x:=e))$$

(if $b \{s_1\}\{s_2\},\tau_C) \Rightarrow_V (s_1,\tau_C)$, if $\tau_C \psi_V(b) = \text{true}$

Symbolic $(s, \tau_S) \rightarrow (s', \tau'_S)$

$$(x:=e, \tau_S) \rightarrow (skip, \tau_S :: (x:=e))$$

 $(if \ b \ \{s_1\}\{s_2\}, \tau_S) \rightarrow (s_1, \tau_S :: b)$
 $(if \ b \ \{s_1\}\{s_2\}, \tau_S) \rightarrow (s_2, \tau_S :: \neg b)$

Transition Systems II

- Capture both parallel and sequential composition
- \blacksquare Fewer rules \rightarrow shorter proofs

Contexts

$$C ::= \Box \mid C; s \mid C \parallel s \mid s \parallel C$$

C s "puts s in the hole"

Transition Systems II

- Capture both parallel and sequential composition
- \blacksquare Fewer rules \rightarrow shorter proofs

Contexts

$$C ::= \Box \mid C; s \mid C \mid s \mid s \mid C$$

C s "puts s in the hole"

Transitions

$$\frac{(s,t)\rightarrow(s',t')}{(Cs,t)\rightarrow(Cs',t')}$$

Reflexive-transitive closure

Correct- and Completeness

$$(x := e, \tau_S) \rightarrow (skip, \tau_S :: (x := e)) \iff (x := e, \tau_C) \Rightarrow_V (skip, \tau_C :: (x := e))$$

Figure: If $\tau_S V$ -abstracts τ_C and $V \models pc(\tau_S)$, then rhs. also V-abstracts.

Applies in arbitrary context

 Extends to reflexive-transitive closure by induction

Correct- and Completeness

$$(x := e, \tau_S) \rightarrow (skip, \tau_S :: (x := e)) \iff (x := e, \tau_C) \Rightarrow_V (skip, \tau_C :: (x := e))$$

$$(if \ b \ \{s_1\}\{s_2\}, \tau_S) \rightarrow (s_1, \tau_S :: b) \iff (if \ b \ \{s_1\}\{s_2\}, \tau_C) \Rightarrow_V (s_1, \tau_C)$$

Figure: If $\tau_S V$ -abstracts τ_C and $V \models pc(\tau_S)$, then rhs. also V-abstracts.

Applies in arbitrary context

 Extends to reflexive-transitive closure by induction

Correct- and Completeness

Background and Motivation

$$(x := e, \tau_S) \rightarrow (skip, \tau_S :: (x := e)) \iff (x := e, \tau_C) \Rightarrow_V (skip, \tau_C :: (x := e))$$

$$(if \ b \ \{s_1\}\{s_2\}, \tau_S) \rightarrow (s_1, \tau_S :: b) \iff (if \ b \ \{s_1\}\{s_2\}, \tau_C) \Rightarrow_V (s_1, \tau_C)$$

$$(if \ b \ \{s_1\}\{s_2\}, \tau_S) \rightarrow (s_1, \tau_S :: \neg b) \iff (if \ b \ \{s_1\}\{s_2\}, \tau_C) \Rightarrow_V (s_2, \tau_C)$$

$$\dots$$

Figure: If $\tau_S V$ -abstracts τ_C and $V \models pc(\tau_S)$, then rhs. also V-abstracts.

Applies in arbitrary context

Extends to reflexive-transitive closure by induction

Correctness and Completeness – Intuition

Trace Equivalence

Symbolic Trace Equivalence

 $au \sim au'$ if

- lacksquare au' is a permutation of au
- \bullet $\tau \psi_{\sigma} = \tau' \psi_{\sigma}$ for all σ
- $V \models pc(\tau)$ iff $V \models pc(\tau')$ for all V

Symbolic Trace Equivalence

 $au \sim au'$ if

- \bullet τ' is a permutation of τ
- \bullet $\tau \Downarrow_{\sigma} = \tau' \Downarrow_{\sigma}$ for all σ
- $V \models pc(\tau)$ iff $V \models pc(\tau')$ for all V

- Overapproximates possible transitions
- **Equivalent** for concrete traces (\simeq)

POR Transition System

Symbolic POR Transition Rule

$$\frac{(s_0,\tau_0){\rightarrow}(s,\tau) \quad \tau_0 \sim \tau_0'}{(s_0,\tau_0'){\rightarrow}^{POR}(s,\tau)}$$

POR Transition System

Symbolic POR Transition Rule

$$\frac{(s_0,\tau_0){\rightarrow}(s,\tau)}{(s_0,\tau_0'){\rightarrow}^{POR}(s,\tau)} \frac{\tau_0 \sim \tau_0'}{}$$

- Allows picking a different trace to extend
- Equivalent for concrete traces

POR-Bisimulation

Assume $\tau_0 \sim \tau_0'$, then

Correctness

If
$$(s, \tau_0) \rightarrow (s', \tau)$$
 there exists $(s, \tau_0') \rightarrow^{POR} (s', \tau')$ with $\tau \sim \tau'$

POR-Bisimulation

Assume $\tau_0 \sim \tau_0'$, then

Correctness

If $(s, \tau_0) \rightarrow (s', \tau)$ there exists $(s, \tau_0') \rightarrow^{POR} (s', \tau')$ with $\tau \sim \tau'$

Completeness

If $(s, \tau_0) \rightarrow^{POR}(s', \tau)$ there exists $(s, \tau_0') \rightarrow (s', \tau')$ with $\tau \sim \tau'$

Important Properties

Lemma: Trace Step

For equivalent traces $\tau \sim \tau'$, if $(s,\tau) \rightarrow (s_1,\tau_1)$ then there exists τ_2 such that $(s,\tau') \rightarrow (s_1,\tau_2)$ and $\tau_1 \sim \tau_2$

Intuitively: step relation respects trace equivalence

Important Properties

Lemma: Trace Step

For equivalent traces $\tau \sim \tau'$, if $(s,\tau) \rightarrow (s_1,\tau_1)$ then there exists τ_2 such that $(s,\tau') \rightarrow (s_1,\tau_2)$ and $\tau_1 \sim \tau_2$

Intuitively: step relation respects trace equivalence

Lemma: Abstraction Congruence

Given $\tau_S \sim \tau_S'$ and $\tau_C \simeq \tau_C'$, if τ_S *V*-abstracts τ_C , then τ_S' *V*-abstracts τ_C'

Intuitively: V-abstraction respects trace equivalence

Putting it Together

For initial τ_S that V-abstracts τ_C :

Total Correctness

If
$$(s, \tau_S) \rightarrow^{POR} (s', \tau'_S)$$
 and $V \models pc(\tau'_S)$, there exists $(s, \tau_C) \Rightarrow_V (s', \tau'_C)$ such that τ'_S V -abstracts τ'_C

For initial τ_S that *V*-abstracts τ_C :

Total Correctness

If $(s, \tau_S) \rightarrow^{POR} (s', \tau'_S)$ and $V \models pc(\tau'_S)$, there exists $(s, \tau_C) \Rightarrow_V (s', \tau'_C)$ such that τ'_S V-abstracts τ'_C

Total Completeness

If $(s, \tau_C) \Rightarrow_V (s', \tau'_C)$ there exists $(s, \tau_S) \rightarrow^{POR} (s', \tau'_S)$ such that τ'_S V-abstracts τ'_C

Recap and Future Work

Recap

We have:

- Defined concrete and symbolic semantics.
- Related them by correct- and completeness,
- Defined a notion of trace equivalence.
- Used it to define POR-semantics,
- Composed the two for Correct and Complete Symbolic POR, and
- Mechanized the development in Cog

Conclusion

Recap and Future Work

Recap

We have:

- Defined concrete and symbolic semantics.
- Related them by correct- and completeness,
- Defined a notion of trace equivalence,
- Used it to define POR-semantics,
- Composed the two for Correct and Complete Symbolic POR, and
- Mechanized the development in Coq

Future Work

- Extract verified symbolic execution engine
- Other kinds of (composable) reduction techniques
- More complex languages

Recap and Future Work

Recap

We have:

- Defined concrete and symbolic semantics,
- Related them by correct- and completeness,
- Defined a notion of trace equivalence,
- Used it to define POR-semantics,
- Composed the two for Correct and Complete Symbolic POR, and
- Mechanized the development in Cog

Future Work

- Extract verified symbolic execution engine
- Other kinds of (composable) reduction techniques
- More complex languages

Thank you, questions?

Conclusion