Wiedsholm

Kontenishe Brodukte, M1..., Mn Mengen

 $M_1 \times M_2 \times \dots \times M_n = \{(\alpha_1, \dots, \alpha_n) \mid \alpha_i \in M_i \text{ for } i=1,\dots,n\}$

 $R \times R \times R = \left\{ (a_1, a_2, a_3) \mid a_1, a_2, a_3 \in R \right\}$ $\mathcal{Z} \times \mathcal{Q} = \left\{ (a_1, b) \mid \alpha \in \mathcal{Z}, b \in \mathcal{Q} \right\}$

I Indexmerge, M; mil i Et rei milt leere Menge

 $TT M_i = \left\{ (a_i)_{i \in I} \mid a_i \in M_i \right\} \neq \emptyset \quad \text{"Answallowin"}$

M, N Mengen $f: M \rightarrow N$ Able. $f \text{ mightin} : \bigoplus \text{ Bild } (f) = N$ $f \text{ mightin} : \bigoplus \text{ Fini allex, } y \in M \text{ mith } f(x) = f(y) \text{ int } x = y$ $o \text{ d} u : x \neq y =) f(x) \neq f(y)$ $f \text{ bigilitin} : \bigoplus f \text{ minj } \text{ und } \text{ unj}.$

4.5

Injektive, surjektive und bijektive Abbildungen (Forts.)

Satz

Es sei $f: M \rightarrow N$ Abbildung.

- ► Äquivalent sind:
 - ► *f* injektiv.
 - ▶ Jede Faser von f besitzt höchstens ein Element.
- ► Äquivalent sind:
 - ► *f* surjektiv.
 - ▶ Jede Faser von f besitzt mindestens ein Element.
- ► Äquivalent:
 - ▶ *f* bijektiv.
 - ▶ Jede Faser von f besitzt genau ein Element.

Einschränkung von Abbildungen

Es sei $f: M \to N$ eine Abbildung.

Definition

Ist $M' \subseteq M$, dann heißt

$$f|_{M'}:M'\to N, \quad x\mapsto f(x)$$

die Einschränkung von f auf M'.

Bemerkung

Es existiert $M' \subseteq M$ so, dass $f|_{M'}$ injektiv ist. $(f|_{M'})$

Beispiel

Sei $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

- ▶ $f|_{\mathbb{R}_{>0}}$ injektiv.
- ▶ $f|_{\mathbb{R}_{<0}}$ injektiv.

Walle am jeder micht leeren Farer ein Element

Einschränkung von Abbildungen (Forts.)

Definition

M Menge, $N \subseteq M$

Inklusion von N in M:

$$\iota = \iota^{\mathsf{N}} := (\mathrm{id}_{\mathsf{M}})|_{\mathsf{N}} \colon \mathsf{N} \to \mathsf{M}$$

Beispiel

$$\iota\colon\{2,5,7\}\to\{2,3,5,7,11\}$$
, $2\mapsto2$, $5\mapsto5$, $7\mapsto7$

Komposition von Abbildungen

Definition

 $f: M \rightarrow N, g: N \rightarrow L$ Abbildungen

Komposition von f und g:

Wertebeniel von f = Def.buil von g

$$g\circ f\colon M\to L,\, x\mapsto g(f(x))$$
 Sprechwise. " g mach f"

Beispiel

$$f: \mathbb{N} \to \mathbb{Z}, \ x \mapsto x+1$$
 $g: \mathbb{Z} \to \mathbb{Q}, \ y \mapsto 2y^2$ $g \circ f: \mathbb{N} \to \mathbb{Q}, \ x \mapsto 2(x+1)^2$

Komposition von Abbildungen (Forts.)

Bemerkungen

▶ $f: M \rightarrow N$, $g: N \rightarrow L$, $h: L \rightarrow K$ Abbildungen

he got :=
$$ho(gof) = (hog)of$$
 Anoriative genetice. M > K. Fin $\star \in M$ ist $(ko(gof))(k) = k((gof)(k)) = k(g(f(k))) = (log)(f(k)) = (log)(of)(x)$

▶ $f: M \rightarrow N$ Abbildung

$$f \circ \mathrm{id}_{M} = f = \mathrm{id}_{N} \circ f$$

$$\text{Mady: Alle: } M \rightarrow N \quad , \quad \forall f \in M$$

$$(f \circ id_{M})(x) = f(id_{M}(x)) = f(x) = id_{N}(f(x)) = (id_{N} \circ f)(x)$$

Umkehrabbildungen

Definition

Es seien $f: M \to N$ und $g: N \to M$ Abbildungen.

▶ g ist *linksseitige Umkehrabbildung von f* , falls gilt:

$$g \circ f = \mathrm{id}_M$$
.

▶ g ist rechtsseitige Umkehrabbildung von f, falls gilt:

$$f \circ g = \mathrm{id}_N$$
.

▶ g ist *Umkehrabbildung von f*, falls gilt:

$$g \circ f = \mathrm{id}_M \text{ und } f \circ g = \mathrm{id}_N.$$

In diesem Fall sagt man auch: g ist zu f invers.

Umkehrabbildungen (Forts.)

Beispiele

$$\mathbb{Q}_{>0} := \{ x \in \mathbb{Q} \mid x > 0 \}, \ \mathbb{Q}_{<0} := \{ x \in \mathbb{Q} \mid x < 0 \}$$

►
$$f: \mathbb{Q}_{>0} \to \mathbb{Q}_{<0}$$
, $x \mapsto -2x$
 $g: \mathbb{Q}_{<0} \to \mathbb{Q}_{>0}$, $y \mapsto -\frac{1}{2}y$

g ist invers zu f

►
$$h: \mathbb{Q}_{>0} \to \mathbb{Q}_{<0}, x \mapsto -x,$$

 $k: \mathbb{Q}_{<0} \to \mathbb{Q}_{>0}, y \mapsto -y$

k ist invers zu h

▶
$$I: \mathbb{Q} \to \mathbb{Q}, x \mapsto -x$$

$$(I \circ I)(x) = -(-x) = x$$

I ist zu sich selbst invers

Umkehrabbildungen (Forts.)

Bemerkung

Es sei $f: M \to N$ eine Abbildung.

- (a) \triangleright f besitzt linksseitige Umkehrabbildung \Leftrightarrow f ist injektiv.
- $\mathbb{A} \triangleright f$ besitzt rechtsseitige Umkehrabbildung $\Leftrightarrow f$ ist surjektiv.
- $(c) \triangleright f$ besitzt Umkehrabbildung $\Leftrightarrow f$ ist bijektiv.

Bew ron(a):
$$(i) = \frac{1}{2}$$
: Suig: $N \rightarrow M$ mit $g \circ f = id_M$.
Suim $x_i x' \in M$ mit $f(x) = f(x') = 1$

$$x = id_M(x) = g(f(x')) = x' \implies f \text{ mighting}$$

$$x = id_M(x) = g(f(x')) = x' \implies f \text{ mighting}$$

$$x = id_M(x) = g(f(x')) = x' \implies f \text{ mighting}$$

$$x = id_M(x) = g(f(x')) = x' \implies f \text{ mighting}$$

$$x = id_M(x) = g(f(x')) = x' \implies g \circ f = id_M$$

$$x \in M \text{ beliefy nome}$$

$$x \in M \text{ selicting} \text{ nome}$$

$$x \in M \text{ selicting} \text{ nome}$$

$$x \in M \text{ selicting} \text{ nome}$$

(b). Whing

(C) f: M-N bij (E) I gel: N-M mut
got=idm und fol=vdN

 $g = g \circ idN = g \circ (f \circ h) = (g \circ f) \circ h = idm \circ h = h$

Umkehrabbildungen (Forts.)

Bemerkung

Es sei $f: M \rightarrow N$ eine Abbildung.

Ist f bijektiv, dann ist die Umkehrabbildung von f eindeutig bestimmt.

Schreibweise und Notation

Es sei $f: M \to N$ eine bijektive Abbildung.

- ▶ Die Umkehrabbildung von f wird mit f^{-1} bezeichnet.
- ► Es gilt also:

$$f^{-1}: N \to M$$
 und $f^{-1} \circ f = \mathrm{id}_M$, $f \circ f^{-1} = \mathrm{id}_N$.

▶ f heißt auch *invertierbar* und f^{-1} die *Inverse* von f.

Umkehrabbildungen (Forts.)

Bemerkung

Es seien $f: M \to N$ und $g: N \to L$ bijektive Abbildungen.

 $ightharpoonup g \circ f$ bijektiv und es gilt:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Ben:
$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ f = idM$$

$$idN$$

$$= 3 f^{-1} \circ g^{-1} \text{ if binks wives an } g \circ f$$

redhinen anday.

Abbildungen einer Menge in sich

Es sei M eine Menge, $f,g:M\to M$ Abbildungen. Dann sind $f\circ g$ und $g\circ f$ definiert.

Definition

Es sei $n \in \mathbb{N}$. Wir setzen:

$$f^n := \underbrace{f \circ \ldots \circ f}_{n\text{-mal}}, \quad f^0 := \mathrm{id}_M.$$

Falls f bijektiv ist, so definieren wir auch $f^{-n} := (f^{-1})^n$.

Bemerkung

- ▶ Es gilt $f^n(x) = f(f(\cdots f(x)))$ für alle $x \in M$.
- ▶ Ist f bijektiv, dann gelten die Potenzrechenregeln:

$$f^{a+b}=f^a\circ f^b$$
 und $f^{ab}=(f^a)^b$ für alle $a,b\in\mathbb{Z}$.

Die Mächtigkeit von Mengen

Definition

M und N heißen gleichmächtig, wenn eine bijektive Abbildung $M \rightarrow N$ existiert.

Beispiele

- ▶ $\{1,2,3\}$ ist gleichmächtig zu $\{4,5,6\}$.
- 114,2106,3105

 $ightharpoonup \mathbb{N}, \mathbb{Z}$ und \mathbb{Q} sind gleichmächtig.

$$24: \{0,-1,1,-2,+2,-3,+3,-1\}$$
 $1 1 1 1 1 1$
 $\{1,2,3,4,5,6,-1\}$

Rigilation (N-) Z

Schema aller rationaler Zallen: Zille entlany Pfad, lane wicht gehinzte Contornoles Diagonal argument -> Bijeldion N-> Q M huft ab zahlber (C=) AAA er gibt Rig N -> M. imer Mil.

Die Mächtigkeit von Mengen

Satz (Cantor)

Für jede Menge M sind M und Pot(M) nicht gleichmächtig.

Bew., But: Jeden $f: M \rightarrow Pot(M)$ is f with surjetitive (also midt lijehtive)

Set $U = \{x \in M \mid x \notin f(x)\}$ $U \notin Rild(f)$, clerm angenomen $y \in M$ and f(y) = M.

The $y \in U$, in folget and Def. nor $U \neq f(y) = U$, widespriding $y \notin U$.

Also gibbs bein $y \in M$ and f(y) = U.

Definition

M Menge

▶ M endlich: es ex. $n \in \mathbb{N}_0$ mit M gleichmächtig zu n

► *M unendlich*: *M* nicht endlich

► *M* endlich

Abzählung von *M*: Bijektion von <u>n</u> nach *M*

Beispiele

- ► {1,3,17} gludmachter zu 3 = {1,2,3}
- ▶ \mathbb{N} und $\{x \in \mathbb{N} \mid x \text{ gerade}\}$ une alise and gluckmachts $(y \mapsto 2y)$
- ► Ø gludnilly 2 0

Definition

M endliche Menge, $n \in \mathbb{N}_0$ mit M gleichmächtig zu \underline{n}

Mächtigkeit von M:

$$|M| := n$$

Beispiele

- $|\{1,3,17\}| = 3$
- $ightharpoonup |\{1,1,1\}| = 1$
- ▶ $|\{\{1\}\}|$ = 1
- $|\{1,\{1\}\}| = 2$

Bemerkung

Es seien M, N endliche Mengen und $f: M \rightarrow N$ eine Abbildung.

- $\blacktriangleright |f(M)| \leq |M|.$
- ▶ $|f(M)| \leq |N|$.

$$f(m) = \{f(x) \mid x \in M\} \subseteq N$$

$$= |f(m)| \leq |M| \qquad |f(m)| \leq |N|$$

Es sei $f: M \to N$ eine Abbildung und M, N endlich.

Bemerkungen

- ▶ f injektiv $\Leftrightarrow |f(M)| = |M|$.
- f surjektiv $\Leftrightarrow |f(M)| = |N|$.
- ▶ Ist |M| = |N|, dann sind äquivalent:
 - ▶ f injektiv
 - ► *f* surjektiv
 - ► *f* bijektiv

Dedekind'sches Schubfachprinzip

Werden m Objekte auf n Schubfächer verteilt, und ist m > n, dann gibt es ein Schubfach, welches mindestens zwei Objekte enthält.

▶ Ist |M| > |N|, dann ist f nicht injektiv.