Задача

Условие

Даны две скрещивающиеся прямые a и b. Докажите, что существует единственная пара параллельных между собой плоскостей, содержащих эти две прямые.

Решение

Метод 1

Доказательство существования.

Рассмотрим две точки $A \in a$ и $B \in b$. Проведем прямую b'||b через A. Аналогично проведем прямую a' через B. Получатся две плоскости, содержащие пару параллельных прямых. По второму признаку параллельности, плоскости, содержащие пересекающиеся в одной точке прямые $\alpha = a'b$ и $\beta = ab'$, параллельны. Пример есть.

Доказательство Единственности.

Докажем от противного. Пусть такая пара плоскостей α' и β' существует. Заметим, что

$$A \in \alpha'; \ b \subset \beta'; \ \alpha || \beta. \tag{1}$$

А значит, что $b' \subset \alpha'$. Аналогично $a' \subset \beta'$. Значит, по рассуждению из Доказательства существования, $\alpha' = \alpha$, $\beta' = \beta$.

Метод 2

Пусть e_0 – вектор единичной длины, сонаправленный с a. А e_1 – вектор единичной длины, сонаправленный с b. Рассмотрим две точки $A \in a$ и $B \in b$. Тогда пусть вектор $e_2 = \overrightarrow{AB}/|AB|$. Поскольку прямые a и b скрещивающиеся, Не один из этих векторов не коллинеарен с другим (если $e_0||e_1$, то a||b, если $e_0||e_2$, то $B \in a$, аналогично случай $e_1||e_2$). Плоскости α и β , содержащие прямые a и b параллельны тогда и только тогда, когда α переходит в β сдвигом на вектор \overrightarrow{AB} . Рассмотрим точку $X \in \alpha$:

$$X = A + k_0 e_0 + k_1 e_1 + k_2 e_2. (2)$$

Теперь посмотрим на точку $Y = X + \overrightarrow{AB}$:

$$Y = B + k_0 e_0 + k_1 e_1 + k_2 e_2. (3)$$

Заметим, что

$$BY = k_0 e_0 + k_1 e_1 + k_2 e_2. (4)$$

Утверждение $(X \in \alpha \Leftrightarrow Y \in \beta)$ равносильно $\alpha || \beta$.

Доказательство существования.

Плоскости, образуемые векторами $k_2=0, \forall k_0, k_1 \in \mathbb{R}$. Содержат a при $k_1=0$ и b при $k_0=0$.

Доказательство Единственности.

Нам точно подходят значения $k_0, k_2 = 0, \forall k_1 \in \mathbb{R}$, как содержащие b и $k_1, k_2 = 0, \forall k_0 \in \mathbb{R}$, как содержащие a. Также нам подходят их линейные комбинации, как лежащие в той же плоскости. А значит, что пример, приведенный выше, единственный, поскольку плоскость не может содержать в себе другую, отличную от неё плоскость.

