

High Speed LDO Regulators Output ON-OFF Control

♦CMOS Low Power Consumption

◆Dropout Voltage : 60mV @ 30mA

200mV @ 100mA

◆Maximum Output Current

: 150mA

(300mA=XC6204 E to H Type)

♦Highly Accurate : ±2%

◆Output Voltage Range: 1.8V ~ 6.0V (XC6204)

 $0.9V \sim 1.75V (XC6205)$

♦Low ESR Capacitor Compatible

■APPLICATIONS

- Mobile phones
- Cordless phones
- Cameras, video recorders
- Portable games
- Portable AV equipment
- Reference voltage
- Battery powered equipment

■ GENERAL DESCRIPTION

The XC6204/6205 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limiter and a phase compensation circuit plus a driver transistor.

Output voltage is selectable in 50mV steps within a range of $0.9V \sim 6.0V$.

The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series.

The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

■FEATURES

Maximum Output Current:

: 150mA (300mA=XC6204 E to H TYP.)

Dropout Voltage : 200mV(Iout = 100mA)

Operating Voltage : 2V ~ 10V

Output Voltage Range

: 1.8V ~ 6.0V (XC6204) (50mV steps) 0.9V ~ 1.75V (XC6205) (50mV steps)

Highly Accurate : $\pm 2\%$ **Low Power Consumption** : $70 \mu A (TYP.)$

 $\begin{array}{lll} \textbf{Standby Current} & : Less than \ 0.1 \ \mu \ A \ (TYP.) \\ \textbf{High Ripple Rejection} & : 70 dB \ (10 kHz) \ (XC6204) \\ \end{array}$

60dB (10kHz) (XC6205)

Operational Temperature Range

: -40°C ~ 85°C

Low ESR Capacitor Compatible

: Ceramic capacitor

■ TYPICAL APPLICATION CIRCUIT

Vin Vout CE Vss CL 1μF

■TYPICAL PERFORMANCE CHARACTERISTICS

PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heal release. If the pad needs to be connected to other pins, it should be connected to the VSS pin.

■ PIN ASSIGNMENT

PIN NUMBER		PIN NAME	FUNCTION	
SOT-25	SOT-89-5	USP-6B	PIN NAME	FUNCTION
1	4	1	Vin	Input
2	2	5	Vss	Ground
3	3	6	CE	ON/OFF Control
4	1	2, 4	NC	No Connection
5	5	3	Vout	Output

■FUNCTIONS

●XC6204/6205 A, B, E, F Series

CE	OPERATIONAL STATE
Н	ON
L	OFF

●XC6204/6205 C, D, G, H Series

CE	OPERATIONAL STATE
Н	OFF
L	ON

H= High Level

L= Low Level

■PRODUCT CLASSIFICATION

Selection Guide

The following options for the CE pin logic and internal pull-up/down are available:

High Active + no pull-down resistor built-in (standard)

High Active + 300kΩ pull-down resistor built-in <between CE-Vss> (semi-custom)

Low Active + no pull-up resistor built-in (semi-custom)

Low Active + $300k\Omega$ pull-up resistor built-in

between CE-Vss> (semi-custom)

Note:

With the pull-up resistor or pull-down resistor built-in types, the supply current during operation will increase by Vin / $300k\Omega$ (TYP.)

Ordering Information

XC6204/6205(1)(2)(3)(4)(5)(6)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
		A/E	: High Active, pull-down resistor built-in
1	Type of Regulator	B/F	: High Active, no pull-down resistor built-in
(*1)	(CE pin Logic)	C/G	: Low Active, pull-up resistor built-in
		D/H	: Low Active, no pull-up resistor built-in
2 3	Output Voltage	09 ~ 60,	: e.g. Vouт=2.0V②→=2, ③=0
		2	: 100mV increments, ±2% accuracy
		2	e.g. Vouт=3.8V, ±2%→②=3, ③=8, ④=2
		1 (*2)	: 100mV increments, ±1% accuracy
4	Output Voltage		e.g. Vouт=3.0V, ±1%→②=3, ③=0, ④=1
•	Accuracy	Α	: 50mV increments, ±2% accuracy
		A	e.g. Vouт=3.85V, ±2%→②=3, ③=8, ④=A
		D (*2)	: 50mV increments, ±1% accuracy
		B (*2)	e.g. Vouт=3.05V, ±1%→②=3, ③=0, ④=B
		M	: SOT-25 (SOT-23-5)
5	⑤ Package	D	: USP-6B
		Р	: SOT-89-5
6	Device Orientation	R	: Embossed tape, standard feed
	Device Offeritation	L	: Embossed tape, reverse feed

^{*1:} E to H types are compatible to 300mA of XC6204 series.

^{*2:} Output voltage range of the $\pm 1\%$ accuracy product is 3.0V to 6.0V.

■PACKAGING INFORMATION

●SOT-25

●SOT-89-5

●USP-6B

■ MARKING RULE

[XC6204]

●SOT-25, SOT-89-5

(TOP VIEW)

①Represents product series

MARK	PRODUCT SERIES
4	XC6204xxxxxx

②Represents type of regulator

OUTPUT VOLTAGE 1	00mV INCREMENTS	OUTPUT VOLTAGE	PRODUCT SERIES	
VOLTAGE =0.1~3.0V	VOLTAGE =3.1~6.0V	VOLTAGE =0.15~3.05V	VOLTAGE =3.15∼6.05V	
V	А	Е	L	XC6204Axxxxx
X	В	F	M	XC6204Bxxxxx
Υ	С	Н	N	XC6204Cxxxxx
Z	D	K	Р	XC6204Dxxxxx

③Represents output voltage

MARK	C	OUTPUT V	OLTAGE (\	/)	MARK	C	UTPUT V	OLTAGE (\	/)
0	_	3.1	_	3.15	F	1.6	4.6	1.65	4.65
1	_	3.2	_	3.25	Н	1.7	4.7	1.75	4.75
2	ı	3.3	ı	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	_	3.5	_	3.55	M	2.0	5.0	2.05	5.05
5	ı	3.6	ı	3.65	N	2.1	5.1	2.15	5.15
6	-	3.7	-	3.75	Р	2.2	5.2	2.25	5.25
7	_	3.8	_	3.85	R	2.3	5.3	2.35	5.35
8	ı	3.9	ı	3.95	S	2.4	5.4	2.45	5.45
9	I	4.0	I	4.05	T	2.5	5.5	2.55	5.55
Α	-	4.1	-	4.15	U	2.6	5.6	2.65	5.65
В	_	4.2	_	4.25	V	2.7	5.7	2.75	5.75
С	-	4.3	-	4.35	X	2.8	5.8	2.85	5.85
D	_	4.4	_	4.45	Y	2.9	5.9	2.95	5.95
E	_	4.5	_	4.55	Z	3.0	6.0	3.05	6.05

④Represents production lot number

0~9, A to Z repeated. (G, I, J, O, Q, W excepted)

5

■MARKING RULE (Continued)

[XC6204]

●USP-6B

①②Represents product series

MARK		PPODLICT SERIES	
1	2	PRODUCT SERIES	
0	4	XC6204xxxxDx	

③Represents type of regulator

MARK	TYPE	PRODUCT SERIES
A	CE pin, High Active, Pull-Down Resistor Built-In	XC6204AxxxDx
В	CE pin, High Active, No Pull-Down Resistor Built-In	XC6204BxxxDx
С	CE pin, High Active, Pull-Up Resistor Built-In	XC6204CxxxDx
D	CE pin, Low Active, No Pull-Up Resistor Built-In	XC6204DxxxDx

4 Represents integer of the output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6204x3xxDx
5	5.X	XC6204x5xxDx

5 Represents decimal number of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	MARK	VOLTAGE (V)	PRODUCT SERIES
0	X.0	XC6204xx0xDx	А	X.05	XC6204xx0ADx
1	X.1	XC6204xx1xDx	В	X.15	XC6204xx1ADx
2	X.2	XC6204xx2xDx	С	X.25	XC6204xx2ADx
3	X.3	XC6204xx3xDx	D	X.35	XC6204xx3ADx
4	X.4	XC6204xx4xDx	Е	X.45	XC6204xx4ADx
5	X.5	XC6204xx5xDx	F	X.55	XC6204xx5ADx
6	X.6	XC6204xx6xDx	Н	X.65	XC6204xx6ADx
7	X.7	XC6204xx7xDx	K	X.75	XC6204xx7ADx
8	X.8	XC6204xx8xDx	L	X.85	XC6204xx8ADx
9	X.9	XC6204xx9xDx	M	X.95	XC6204xx9ADx

®Represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted)

Note: No character inversion used.

■MARKING RULE (Continued)

[XC6205]

●SOT-25, SOT-89-5

①Represents product series

MARK	PRODUCT SERIES
5	XC6205xxxxxx

②Represents type of regulator

MA	RK	
OUTPUT VOLTAGE	OUTPUT VOLTAGE	PRODUCT SERIES
100mV INCREMENTS	50mV INCREMENTS	
V	E	XC6205Axxxxx
X	F	XC6205Bxxxxx
Υ	Н	XC6205Cxxxxx
Z	K	XC6205Dxxxxx

③Represents output voltage

MARK	OUTPUT VC	LTAGE (V)	MARK	OUTPUT VC	LTAGE (V)
8	0.9	0.95	D	1.4	1.45
9	1.0	1.05	E	1.5	1.55
A	1.1	1.15	F 1.6		1.65
В	1.2	1.25	Н	1.7	1.75
С	1.3	1.35			

④Represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excepted)

■MARKING RULE(Continued)

[XC6205]

●USP-6B

①②Represents product series

MA	RK	PRODUCT SERIES
1	2	PRODUCT SERIES
<u>0</u>	5	XC6205xxxxDx

3 Represents type of voltage regulator

MARK	TYPE	PRODUCT SERIES
Α	CE pin: High Active with Pull-Down Resistor Built-In	XC6205AxxxDx
В	CE pin: High Active with No Pull-Down Resistor Built-In	XC6205BxxxDx
С	CE pin: Low Active with Pull-Up Resistor Built-In	XC6205CxxxDx
D	CE pin: Low Active with No Pull-Up Resistor Built-In	XC6205DxxxDx

④Represents integer of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES				
3	3.X	X XC6205x3xxDx				
5	5.X	XC6205x5xxDx				

⑤Represents decimal point of output voltage

MARK	OUTPL	JT VOLTAGE (V)	MARK	OUTPU	T VOLTAGE (V)
0	X.0	XC6205xx0xDx	Α	X.05	XC6205xx0ADx
1	X.1	XC6205xx1xDx	В	X.15	XC6205xx1ADx
2	X.2	XC6205xx2xDx	С	X.25	XC6205xx2ADx
3	X.3	XC6205xx3xDx	D	X.35	XC6205xx3ADx
4	X.4	XC6205xx4xDx	Е	X.45	XC6205xx4ADx
5	X.5	XC6205xx5xDx	F	X.55	XC6205xx5ADx
6	X.6	XC6205xx6xDx	Н	X.65	XC6205xx6ADx
7	X.7	XC6205xx7xDx	K	X.75	XC6205xx7ADx
8	X.8	XC6205xx8xDx	L	X.85	XC6205xx8ADx
9	X.9	XC6205xx8xDx	M	X.95	XC6205xx9ADx

6Represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excepted)

^{*}No character inversion used.

■BLOCK DIAGRAM

Diodes shown in the above circuit are protective diodes.

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETE	PARAMETER		RATINGS	UNITS
Input Voltag	e	Vin	12.0	V
Output Curre	ent	lout	500	mA
Output Volta	ge	Vout	Vss-0.3~Vin+0.3	V
CE Input Volta	CE Input Voltage		Vss-0.3∼Vın+0.3	V
	SOT-25		250	
Power Dissipation	USP-6B	Pd	100	mW
	SOT-89-5		500	
Operational Temperature Range		Topr	-40 ~ +85	°C
Storage Temperature Range		Tstg	-55 ~ +125	°C

■ ELECTRICAL CHARACTERISTICS

XC6204A, B series

DADAMETED	CVMDC	CONDITIONS		Ta = 25°C)	-40°C	<u><</u> Ta <u><</u> 85°	C (*7)	LINUTO	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2% products) (*3)	VOUT(E)	Iout = 30mA	× 0.98	Vout(t)	× 1.02	× 0.97	V OUT(T)	× 1.03	V	1
Output Voltage (1% products) (*3)	(=/	issi samut	× 0.99	V OO1(1)	× 1.01	× 0.98	V 001(1)	×1.02	·	·
Maximum Output Current	Іоитмах	-	150	-	-	150	-	-	mA	1
Load Regulation	$\triangle V$ оит	1mA≦louт≦100mA	-	15	50	-	30	80	mV	1
Dropout Voltage (*4)	Vdif1	Iout = 30mA			E				mV	1
	Vdif2	IOUT = 100mA		ı	E	-2	1	1		
Supply Current (A series)		VIN = VCE = VOUT(T)+1.0V	50	80	120	50	90	145		•
Supply Current (B series)	ldd	VIN = VCE = VOUT(T)+1.0V	40	70	100	40	80	120	μA 120	2
Standby Current	Istby	VIN = VOUT(T)+1.0V, $VCE = VSS$	-	0.01	0.10	-	0.05	1.00	μΑ	2
Line Regulation		Vout(t)+1.0V≦VIN≦10V Iout = 30mA	-	0.01	0.20	-	0.05	0.30	%/V	1
Input Voltage	Vin	-	2	-	10	2	-	10	V	-
Output Voltage Temperature Characteristics		Iouт = 30mA -40°C≦Topr≦85°C	-	100	-	-	-	-	ppm/ °C	1
Output Noise	en	Iоит = 10mA 300Hz~50kHz		30	ı	1	-	-	μ Vrms	3
Ripple Rejection Rate	PSRR	$V_{IN} = \{V_{OUT(T)+1.0}\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f=10kHz$	1	70	ı	ı	-	-	dB	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VIN	-	300	-	-	280	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VIN	-	50	-	-	60	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	1.7	-	Vin	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25	-	-	0.20	v	'
CE "High" Current (A series)	Ісен	VIN = VCE = VOUT(T)+1.0V	3.2	1	20.0	3.0	-	25.0		
CE "High" Current (B series)	ICEH	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	-0.15	-	0.15	μΑ	2
CE "Low" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	-	0.10	-0.15	-	0.15		

- *1 : Unless otherwise stated, VIN=VOUT(T)+1.0V
- *2 : Vout(t)=Specified output voltage
- *3 : Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- *4 : $Vdif={Vin1}^{(*6)}-Vout1}^{(*5)}$
- *5 : Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(T)+1.0V} is input.
- *6: VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- *7 : The values for -40°C≦Topr≦85°C are designed values.

XC6204C. D series

PARAMETER	SYMBOL	CONDITIONS	•	Ta = 25°C	;	-40°C	<u><</u> Ta <u><</u> 85°	C (*7)	UNITS	CIRCUIT
TAIVAIVIETEIX	STWIDOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	ONITS	Circon
Output Voltage (2% products) (*3)	Vout(e)	Iout = 30mA	×0.98	V OUT(T)	× 1.02	× 0.97	Vout(t)	× 1.03	>	1
Output Voltage	* 001(L)	1001 0011111	×0.99	V OO1(1)	× 1.01	× 0.98	001(1)	×1.02	•	•
(1% products) (*3)			^ 0.99		× 1.01	× 0.50		^ 1.02		
Maximum Output Current	IOUTMAX	-	150	-	-	150	-	-	mA	1
Load Regulation	$\triangle V$ оит	1mA≦louт≦100mA	-	15	50	-	30	80	mV	1
Dropout Voltage (*4)	Vdif1	IOUT = 30mA			Е	-1			mV	1
Diopout voltage (4)	Vdif2	IOUT = 100mA			Е	-2			IIIV	-
Supply Current (C series)		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120	50	90	145	^	
Supply Current (D series)	loo	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	40	80	120	- μΑ	2
Standby Current	Istby	VIN = VCE = VOUT(T)+1.0V	-	0.01	0.10	-	0.05	1.00	μΑ	2
Line Regulation		Vout(T)+1.0V ≦VIN≦10V Iout = 30mA	-	0.01	0.20	-	0.05	0.30	%/V	1
Input Voltage	Vin	-	2	-	10	2	-	10	V	-
Output Voltage Temperature Characteristics		Iouт = 30mA -40°C≦Topr≦85°C	-	100	-	-	-	-	ppm/	1
Output Noise	en	Iоит = 10mA 300Hz~50kHz		30	-	-	-	-	μ Vrms	3
Ripple Rejection Rate	PSRR	$V_{IN} = \{V_{OUT(T)+1.0}\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	-	70	ı	ı	-	-	dB	4
Current Limiter	Ilim	VIN = VOUT(T)+1.0V, VCE = VSS	-	300	-	-	280	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VSS	-	50	1	-	60	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	1.7	-	Vin	٧	1
CE "Low" Voltage	VCEL	-	-	-	0.25	-	-	0.20	V	
CE "High" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	-0.15	-	0.15		
CE "Low" Current (C series)	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-20.0	-	-3.2	-25.0	-	-3.0	μΑ	2
CE "Low" Current (D series)	ICEL	VIN = Vout(T)+1.0V, VcE = Vss	-0.10	-	0.10	-0.15	-	0.15		

- *1 : Unless otherwise stated, VIN=VOUT(T)+1.0V
- *2 : Vout(T)=Specified output voltage
- *3 : Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the VIN pin while maintaining a certain lout value).
- *4 : Vdif={VIN1 (*6)-VOUT1 (*5)}
- *5 : VouT1=A voltage equal to 98% of the output voltage whenever an amply stabilized louT $\{VouT(T)+1.0V\}$ is input.
- *6 : VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- *7 : The values for -40°C≦Topr≦85°C are designed values.

■ ELECTRICAL CHARACTERISTICS (Continued)

XC6204E, F series

PARAMETER	SYMBOL	CONDITIONS		Ta = 25°C	UNITS	CIRCUIT	
I / II V IIVIL I LIV	CTWIDOL	00110110110	MIN.	TYP.	MAX.	314110	Sii (OOI1
Output Voltage (2% products) (*3)	Vout(E)	IOUT = 30mA		E-0		V	1
Maximum Output Current	Іоитмах	VIN = VOUT(T)+1.0V When Vout≦2.0V, VIN = 3.0V	300		mA	1	
Load Regulation	$\triangle V$ оит	1mA≦Iouт≦100mA	-	15	50	mV	1
Dropout Voltage (*4)	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voltage (4)	Vdif2	IOUT = 100mA		E-2		IIIV	'
Supply Current (E series)	la a	VIN = VCE = VOUT(T)+1.0V	50	80	120	μΑ	0
Supply Current (F series)	loo	VIN = VCE = VOUT(T)+1.0V	40	70	100	μΑ	2
Standby Current	Istby	VIN = VOUT(T)+1.0V, VCE = VSS	-	0.01	0.10	μΑ	2
Line Regulation		Vout(t)+1.0V≦VIN≦10V Iout = 30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics	∆Vouт _∆Topr∙Vouт	Iou⊤ = 30mA -40°C≦Topr≦85°C	-	100	-	ppm/	1
Output Noise	en	Iо∪т = 10mA 300Hz~50kHz		30	-	μ Vrms	3
Ripple Rejection Rate	PSRR	$V_{IN} = \{V_{OUT(T)+1.0}\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	1	70	-	dB	4
Current Limiter	Ilim	VIN = VOUT(T)+1.0V, VCE = VIN	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, $VCE = VIN$	-	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	V	1
CE "Low" Voltage	VCEL	-	1	-	0.25		'
CE "High" Current (E series)	Ісен	VIN = VCE = VOUT(T)+1.0V	3.2	-	20.0		2
CE "High" Current (F series)	ICEH	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	μΑ	2
CE "Low" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	-	0.10	μΑ	2

^{*1 :} Unless otherwise stated, VIN=VOUT(T)+1.0V

^{*2 :} Vout(t)=Specified output voltage

^{*3 :} Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).

^{*4 :} Vdif={VIN1 (*6)-VOUT1 (*5)}

^{*5 :} Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input.

^{*6 :} VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.

XC6204G. H series

PARAMETER	SYMBOL	CONDITIONS	-	Ta = 25℃	UNITS	CIRCUIT	
I AIVAIVIL I LIV	OTIVIDOL	CONDITIONS	MIN.	TYP.	MAX.	JIVIII	Oii (COII
Output Voltage (2% products) (*3)	Vout(E)	IOUT = 30mA		E-0		V	1
Maximum Output Current	Іоитмах	Vin = Vout(t)+1.0V When Vout≦2.0V, Vin = 3.0V	300	-	-	mA	1
Load Regulation	$\triangle V$ оит	1mA≦Iouт≦100mA	-	15	50	mV	1
Dropout Voltage (*4)	Vdif1	Iout = 30mA		E-1		mV	1
Dropout Voltage (*4)	Vdif2	IOUT = 100mA		E-2		IIIV	ı
Supply Current (G series)	lan.	VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120	μΑ	2
Supply Current (H series)	loo	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μΑ	2
Standby Current	Istby	VIN = VCE = VOUT(T) + 1.0V	1	0.01	0.10	μΑ	2
Line Regulation		Vout(t)+1.0V≦VIN≦10V Iout = 30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics		Iout = 30mA -40°C≦Topr≦85°C	-	100	-	ppm/	1
Output Noise	en	louт = 10mA 300Hz~50kHz		30	-	μ Vrms	3
Ripple Rejection Rate	PSRR	$V_{IN} = \{V_{OUT(T)+1.0}\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	1	70	-	dB	4
Current Limiter	Ilim	VIN = VOUT(T)+1.0V, VCE = VSS	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VSS	-	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	VIN	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25	v	
CE "High" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	1	0.10		
CE "Low" Current (G series)	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-20.0	1	-3.2	μΑ	2
CE "Low" Current (H series)	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	1	0.10		

- *1 : Unless otherwise stated, Vin=Vout(T)+1.0V
- *2 : Vout(T)=Specified output voltage
- *3 : Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- *4 : $Vdif={Vin1}^{(*6)}-Vout1}^{(*5)}$
- *5 : Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized lout {Vout(T)+1.0V} is input.
- *6: VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.

XC6205A. B series

PARAMETER	SYMBOL	CONDITIONS		Γa = 25℃	UNITS	CIRCUIT		
I AI VAIVIL I LIX	CTWIDOL	CONDITIONS	MIN.	TYP.	MAX.	511110	3110011	
Output Voltage (*3) (*7)	Vout(E)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	V	1	
Maximum Output Current	IOUTMAX		150	-	ı	mA	1	
Load Regulation	△Vout	1mA≦Iouт≦100mA	-	15	50	mV	1	
Dropout Voltage (*4)	Vdif1	IOUT = 30mA		E-1		mV	1	
Diopout voitage (4)	Vdif2	IOUT = 100mA		E-2		1110	•	
Supply Current		VIN = VCE = VOUT(T)+1.0V	50	80	120			
(A series)		When Vout≦0.95V, Vin = VcE = 2.0V	50	80	120	μΑ	0	
Supply Current	IDD	VIN = VCE = VOUT(T)+1.0V	40		100	μΑ	2	
(B series)		When Vout≦0.95V, Vin = VcE = 2.0V	40	70	100			
Standby Current	Istby	VIN = VOUT(T)+1.0V, VCE = VSS	_	0.01	0.10	μΑ	2	
Standby Current	isiby	When Vouт≦0.95V, Vin = 2.0V	_	0.01	0.10	μΑ	2	
	△Vout	$VOUT(T)+1.0V \leq VIN \leq 10V$						
Line Regulation	$\triangle V$ IN $\cdot V$ OUT	IOUT = 30mA, VCE = VIN	-	- 0.01	- 0.01	0.20	%/V	1
Input Voltage	Vin	When Vouт≦0.95V, 2.0V≦VIN≦10V	2	_	10	V	_	
Output Voltage	△Vout	Iout = 30mA			10	-		
Temperature Characteristics		-40°C≦Topr≦85°C	-	100	-	ppm/ °C	1	
Terriperature Criaracteristics	p. 100.	Iout = 10mA						
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3	
		VIN = {Vout(T)+1.0}V+1.0Vp-pAC						
Ripple Rejection Rate	PSRR	When Vout≦1.5V, Vin =2.5V+1.0Vp-pAC	_	65	_	dB	4	
- upple i tojection i tate		Iout = 50mA, f = 10kHz					•	
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VIN	-	300	-	mA	1	
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VIN	-	50	-	mA	1	
CE "High" Voltage	Vceh	-	1.6	_	Vin			
CE "Low" Voltage	VCEL	-	-	-	0.25	V	1	
CE "High" Current		VIN = VCE = VOUT(T)+1.0V						
(A series)		When Vout≦0.95V, Vin = VcE = 2.0V	3.2	-	20.0			
CE "High" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	0.46		0.40		0	
(B series)		When Vout≦0.95V, Vin = VcE = 2.0V	-0.10	-	0.10	μΑ	2	
CE "Low" Current	1	VIN = VOUT(T)+1.0V, VCE = VSS	0.46		0.40			
	ICEL	When Vouт≦0.95V, Vin = 2.0V	-0.10	-	0.10			

NOTE:

MAX.⇒ Vout (T)+30mV

^{*1 :} Unless otherwise stated, VIN=VOUT(T)+1.0V However, when $Vout \le 0.95V$, Vin=2.0V

 $^{^*2:} Vout(T)=Specified output voltage$

^{*3:} Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the VIN pin while maintaining a certain lout value).

^{*4 :} $Vdif={VIN1}^{(*6)}-VOUT1^{(*5)}$

 $^{^*5}$: Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized lout {Vout(T)+1.0V} is input.

^{*6 :} VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.

^{*8 :} When $Vout(T) \le 1.45V$, MIN. $\Rightarrow Vout(T)-30mV$

XC6205C, D series

PARAMETER	SYMBOL CONDITIONS			Ta = 25°C			CIRCUIT	
I AIVAIVIL I LA	CTWIDOL	CONDITIONS	MIN. TYP.		MAX.	UNITS	Oil (OOI)	
Output Voltage (*3) (*7)	Vout(E)	Iout = 30mA	× 0.98	Vout(t)	× 1.02	V	1	
Maximum Output Current	IOUTMAX		150	-	-	mA	1	
Load Regulation	$\triangle V$ оит	1mA≦Iouт≦100mA	-	15	50	mV	1	
Dropout Voltage (*4)	Vdif1	IOUT = 30mA		E-1		mV	1	
Diopoul Vollage (4)	Vdif2	IOUT = 100mA		E-2		IIIV	'	
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	00	120			
(C series)	1	When Vouт≦0.95V, Vin = 2.0V	50	80	120	,, A	0	
Supply Current	IDD	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μΑ	2	
(D series)		When Vouт≦0.95V, Vin = 2.0V	40	70	100			
Charadlas Command	lath	VIN = VCE =VOUT(T)+1.0V		0.04	0.40	^	0	
Standby Current	Istby	When Vout≦0.95V, VIN = VCE = 2.0V	-	0.01	0.10	μΑ	2	
	_∆Vouт	Vout(t)+1.0V≦VIN≦10V						
Line Regulation	$\triangle V$ IN $\cdot V$ OUT	IOUT = 30mA, VCE = Vss	-	0.01	0.20	%/V	1	
In most Valta as	Vin	When Vouт≦0.95V, 2.0V≦VIN≦10V	2	_	10	V	_	
Input Voltage		-		-	10		-	
Output Voltage	△Vout	Iout = 30mA	-	100	-	°C	1	
Temperature Characteristics	△Topr·Vout	-40°C≦Topr≦85°C				C		
Output Noise	en	Iout = 10mA	-	30	-	μ Vrms	3	
		300Hz~50kHz						
Disals Deissties Dete	DODD	$V_{IN} = \{V_{OUT}(T)+1.0\}V+1.0Vp-pAC$		0.5		-10		
Ripple Rejection Rate	PSRR	When VouT≦1.5V, ViN =2.5V+1.0Vp-pAC	-	65	65 -	dB	4	
0 11: "		IOUT = 50mA, f = 10kHz		000			4	
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VSS	-	300	-	mA	1	
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VSS	-	50	-	mA	1	
CE "High" Voltage	VCEH	<u>-</u>	1.6	-	VIN	V	1	
CE "Low" Voltage	VCEL	<u>-</u>	-	-	0.25			
CE "High" Current	ICEH	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10			
		When Vout≦0.95V, Vin = VcE = 2.0V						
CE "Low" Current		VIN = VOUT(T)+1.0V, $VCE = VSS$	-20.0	-	-3.2	μΑ	2	
(C series)	ICEL	When Vout≤0.95V, Vin = 2.0V						
CE "Low" Current		VIN = VOUT(T)+1.0V, $VCE = VSS$	-0.10	-	0.10			
(D series)		When Vouт≦0.95V, Vin = 2.0V						

NOTE:

- *1 : Unless otherwise stated, VIN=Vout(T)+1.0V However, when Vout \leq 0.95V, VIN=2.0V
- *2 : Vout(T)=Specified output voltage
- *3 : Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- *4: Vdif={VIN1(*6)-VOUT1(*5)}
- *5 : Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input.
- *6 : VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- *7 : When $Vout(T) \leqq 1.45V$, MIN. $\Rightarrow Vout(T)-30mV$

 $MAX. \Rightarrow VOUT (T)+30mV$

■ELECTRICAL CHARACTERISTICS (Continued)

XC6205E, F series

PARAMETER	SYMBOL	CONDITIONS		Ta = 25°C	UNITS	CIRCUIT	
	01111202	00.12.11.01.0	MIN.	TYP.	MAX.	•	O 10 O
Output Voltage (*3) (*7)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current (*8)	Іоитмах	VIN = E-5	E-4			mA	1
Load Regulation	∆Vоит	1mA≦louт≦100mA	-	15	50	mV	1
Drangut Valtage (*4)	Vdif1	Iout = 30mA		E-1		mV	1
Dropout Voltage (*4)	Vdif2	Iout = 100mA		E-2		IIIV	'
Supply Current (E series)		VIN = VOUT(T)+1.0V, VCE = VSS When VOUT \leq 0.95V, VIN = VCE = 2.0V	50	80	120	^	•
Supply Current (F series)	IDD	$Vin = VCE = VOUT(T) + 1.0V$ When $VOUT \le 0.95V$, $Vin = VCE = 2.0V$	40	70	100	μΑ	2
Standby Current	Istby	V _{IN} = V _{OUT(T)+} 1.0V, V _{CE} = V _{SS} When V _{OUT} ≦0.95V, V _{IN} = 2.0V	-	0.01	0.10	μΑ	2
Line Regulation		VOUT(T)+1.0V \leq VIN \leq 10V IOUT = 30mA, VCE = VIN When VOUT \leq 0.95V, 2.0V \leq VIN \leq 10V	ı	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics		Iou⊤ = 30mA -40°C≦Topr≦85°C	-	100	-	ppm/ °C	1
Output Noise	en	Iout = 10mA 300Hz~50kHz	1	30	1	μ Vrms	3
Ripple Rejection Rate	PSRR	$V_{IN} = \{V_{OUT(T)}+1.0\}V+1.0Vp-pAC$ When $V_{OUT} \le 1.5V$, $V_{IN} = 2.5V+1.0Vp-pAC$ $I_{OUT} = 50mA$, $f = 10kHz$		65	ı	dB	4
Current Limiter	llim	VIN = VOUT(T)+2.0V, $VCE = VIN$	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, $VCE = VIN$	1	50	1	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	V	1
CE "Low" Voltage	VCEL	-	1	-	0.25	V	
CE "High" Current (E series)	los	$V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$ When $V_{OUT} \le 0.95V$, $V_{IN} = V_{CE} = 2.0V$	3.2	-	20.0	_	
CE "High" Current (F series)	ІСЕН	VIN = VCE = VOUT(T)+1.0V When VOUT \leq 0.95V, VIN = VCE = 2.0V	-0.10	-	0.10	μΑ	2
CE "Low" Current	ICEL	Vin = Vout(t)+1.0V, VcE = Vss When Vout≦0.95V, Vin = 2.0V	-0.10	-	0.10		

NOTE:

- *1 : Unless otherwise stated, VIN=VOUT(T)+1.0V However, when $VOUT \le 0.95V$, VIN=2.0V
- *2 : Vout(t)=Specified output voltage
- *3 : Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (t)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- *4: Vdif={VIN1(*6)-VOUT1(*5)}
- *5 : Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input.
- *6 : VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- *7 : When $Vout(T) \le 1.45V$, MIN. $\Rightarrow Vout(T)-30mV$

 $MAX. \Rightarrow Vout (T)+30mV$

*8 : Refer to "Specification & Condition by Series"

XC6205G, H series

PARAMETER SYMBOL C		CONDITIONS	-	Ta = 25°C	LIMITS	CIRCUIT	
PARAMETER	STIVIBUL	CONDITIONS	MIN. TYP.		TYP. MAX.		CIRCUIT
Output Voltage (*3) (*7)	Vout(e)	Iout = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current (*8)	Іоитмах	VIN = E-5	E-4	-	-	mA	1
Load Regulation	∆Vоит	1mA≦Iouт≦100mA	1	15	50	mV	1
Dropout Voltage (*4)	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voltage (4)	Vdif2	IOUT = 100mA		E-2		IIIV	,
Supply Current (G series)	1	VIN = VOUT(T)+1.0V, VCE = VSS When VOUT \leq 0.95V, VIN = 2.0V	50	80	120	μΑ	•
Supply Current (H series)	IDD	VIN = VOUT(T)+1.0V, VCE = VSS When VOUT \leq 0.95V, VIN = 2.0V	40	70	100	μΛ	2
Standby Current	Istby	$VIN = VCE = VOUT(T)+1.0V$ When VOUT \leq 0.95V, VIN = VCE = 2.0V	ı	0.01	0.10	μΑ	2
Line Regulation		VOUT(T)+1.0V \leq VIN \leq 10V IOUT = 30mA, VCE = VSS When VOUT \leq 0.95V, 2.0V \leq VIN \leq 10V	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics		Iou⊤ = 30mA -40°C≦Topr≦85°C	-	100	-	ppm/ °C	1
Output Noise	en	louт = 10mA 300Hz~50kHz	-	30	-	μ Vrms	3
Ripple Rejection Rate	PSRR	VIN = {VOUT(T)+1.0}V+1.0Vp-pAC When VOUT≦1.5V, VIN =2.5V+1.0Vp-pAC IOUT = 50mA, f = 10kHz	ı	65	ı	dB	4
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VSS	1	380	ı	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VSS	-	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25	v	<u> </u>
CE "High" Current	Ісен	$V_{IN} = V_{CE} = V_{OUT(T)}+1.0V$ When $V_{OUT} \le 0.95V$, $V_{IN} = V_{CE} = 2.0V$	-0.10	-	0.10		
CE "Low" Current (G series)	· ICEL	Vin = Vout(t)+1.0V, VcE = Vss When Vout≦0.95V, Vin = 2.0V	-20.0	-	-3.2	μΑ	2
CE "Low" Current (H series)	ICEL	Vin = Vout(t)+1.0V, VcE = Vss When Vout \leq 0.95V, Vin = 2.0V	-0.10	-	0.10		

NOTE:

- *1 : Unless otherwise stated, Vin=Vout(T)+1.0VHowever, when $Vout \le 0.95V$, Vin=2.0V
- *2 : Vout(T)=Specified output voltage
- *3 : Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- *4 : $Vdif={Vin1}^{(*6)}-Vout1}^{(*5)}$
- *5 : Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input.
- *6 : VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- *7 : When Vout(t) \leq 1.45V, MIN. \Rightarrow Vout (t)-30mV

 $MAX. \Rightarrow Vout (T)+30mV$

*8 : Refer to "Specification & Condition by Series"

■ ELECTRICAL CHARACTERISTICS (Continued)

■Voltage Chart

XC6204 series Note: For the XC6204E, F, G, H series, see the item "Ta=25°C" only.

XC6204 series Note		-0	, 0, 11 001		-1	20 0 0111	y. 	F	-2	
PARAMETER	OUTPUT	VOLTAGE				DE	OPOUT VC		m\/)	
SETTING OUTPUT VOLTAGE (V)	(V) (2% products)		louт=30mA			Div	Iout=	100mA		
	Vo	Vouт			lif 1			Vd	if 2	
Vout (t)		.01	Ta =	25°C	-40°C≦T	opr≦85°C	Ta =	25°C	-40°C≦T	opr≦85°C
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
1.80	1.764	1.836	200	210	210	230	300	400	340	480
1.85	1.813	1.887	200	210	210	230	300	400	340	480
1.90	1.862	1.938	120	150	130	170	280	380	320	460
1.95	1.911	1.989	120	150	130	170	280	380	320	460
2.00	1.960	2.040	80	120	90	140	240	350	280	430
2.05	2.009	2.091	80	120	90	140	240	350	280	430
2.10	2.058	2.142	80	120	90	140	240	330	280	410
2.15	2.107	2.193	80	120	90	140	240	330	280	410
2.20	2.156	2.244	80	120	90	140	240	330	280	410
2.25	2.205	2.295	80	120	90	140	240	330	280	410
2.30	2.254	2.346	80	120	90	140	240	310	280	390
2.35	2.303	2.397	80	120	90	140	240	310	280	390
2.40	2.352	2.448	80	120	90	140	240	310	280	390
2.45	2.401	2.499	80	120	90	140	240	310	280	390
2.50	2.450	2.550	70	100	80	120	220	290	260	370
2.55	2.499	2.601	70	100	80	120	220	290	260	370
2.60	2.548	2.652	70	100	80	120	220	290	260	370
2.65	2.597	2.703	70	100	80	120	220	290	260	370
2.70	2.646	2.754	70	100	80	120	220	290	260	370
2.75	2.695	2.805	70	100	80	120	220	290	260	370
2.80	2.744	2.856	70	100	80	120	220	270	260	350
2.85	2.793	2.907	70	100	80	120	220	270	260	350
2.90	2.842	2.958	70	100	80	120	220	270	260	350
2.95	2.891	3.009	70	100	80	120	220	270	260	350
3.00	2.940	3.060	60	90	70	110	200	270	240	350
3.05	2.989	3.111	60	90	70	110	200	270	240	350
3.10	3.038	3.162	60	90	70	110	200	250	240	330
3.15	3.087	3.213	60	90	70	110	200	250	240	330
3.20	3.136	3.264	60	90	70	110	200	250	240	330
3.25	3.185	3.315	60	90	70	110	200	250	240	330
3.30	3.234	3.366	60	90	70	110	200	250	240	330
3.35	3.283	3.417	60	90	70	110	200	250	240	330
3.40	3.332	3.468	60	90	70	110	200	250	240	330
3.45	3.381	3.519	60	90	70	110	200	250	240	330
3.50	3.430	3.570	60	90	70	110	200	250	240	330
3.55	3.479	3.621	60	90	70	110	200	250	240	330
3.60	3.528	3.672	60	90	70	110	200	250	240	330
3.65	3.577	3.723	60	90	70	110	200	250	240	330
3.70	3.626	3.774	60	90	70	110	200	250	240	330
3.75	3.675	3.825	60	90	70	110	200	250	240	330
3.80	3.724	3.876	60	90	70	110	200	250	240	330
3.85	3.773	3.927	60	90	70	110	200	250	240	330
3.90	3.822	3.978	60	90	70	110	200	250	240	330
3.95	3.871	4.029	60	90	70	110	200	250	240	330

■ ELECTRICAL CHARACTERISTICS (Continued) • Voltage Chart (Continued)

XC6204 series (Continued) Note: For the XC6204E, F, G, H series, see the item "Ta=25°C" only.

SYMBOL	E	-0			-1				-2	
PARAMETER		VOLTAGE	DR	OPOUT VO	DLTAGE 1 (ı	mV)	DR	OPOUT VC		mV)
SETTING OUTPUT VOLTAGE (V)	(V) (2% products)		Iout=30mA				lout=	100mA	,	
	Vo	OUT		Vd	lif 1		Vdif 2			
Vout(t)			Ta =	25℃	-40°C≦T	opr≦85°C	Ta =	25°C	-40°C≦To	opr≦85°C
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
4.00	3.920	4.080	60	80	70	100	180	230	220	310
4.05	3.969	4.131	60	80	70	100	180	230	220	310
4.10	4.018	4.182	60	80	70	100	180	230	220	310
4.15	4.067	4.233	60	80	70	100	180	230	220	310
4.20	4.116	4.284	60	80	70	100	180	230	220	310
4.25	4.165	4.335	60	80	70	100	180	230	220	310
4.30	4.214	4.386	60	80	70	100	180	230	220	310
4.35	4.263	4.437	60	80	70	100	180	230	220	310
4.40	4.312	4.488	60	80	70	100	180	230	220	310
4.45	4.361	4.539	60	80	70	100	180	230	220	310
4.50	4.410	4.590	60	80	70	100	180	230	220	310
4.55	4.459	4.641	60	80	70	100	180	230	220	310
4.60	4.508	4.692	60	80	70	100	180	230	220	310
4.65	4.557	4.743	60	80	70	100	180	230	220	310
4.70	4.606	4.794	60	80	70	100	180	230	220	310
4.75	4.655	4.845	60	80	70	100	180	230	220	310
4.80	4.704	4.896	60	80	70	100	180	230	220	310
4.85	4.753	4.947	60	80	70	100	180	230	220	310
4.90	4.802	4.998	60	80	70	100	180	230	220	310
4.95	4.851	5.049	60	80	70	100	180	230	220	310
5.00	4.900	5.100	50	70	60	90	160	210	200	290
5.05	4.949	5.151	50	70	60	90	160	210	200	290
5.10	4.998	5.202	50	70	60	90	160	210	200	290
5.15	5.047	5.253	50	70	60	90	160	210	200	290
5.20	5.096	5.304	50	70	60	90	160	210	200	290
5.25	5.145	5.355	50	70	60	90	160	210	200	290
5.30	5.194	5.406	50	70	60	90	160	210	200	290
5.35	5.243	5.457	50	70	60	90	160	210	200	290
5.40	5.292	5.508	50	70	60	90	160	210	200	290
5.45	5.341	5.559	50	70	60	90	160	210	200	290
5.50	5.390	5.610	50	70	60	90	160	210	200	290
5.55	5.439	5.661	50	70	60	90	160	210	200	290
5.60	5.488	5.712	50	70	60	90	160	210	200	290
5.65	5.537	5.763	50	70	60	90	160	210	200	290
5.70	5.586	5.814	50	70	60	90	160	210	200	290
5.75	5.635	5.865	50	70	60	90	160	210	200	290
5.80	5.684	5.916	50	70	60	90	160	210	200	290
5.85	5.733	5.967	50	70	60	90	160	210	200	290
5.90	5.782	6.018	50	70	60	90	160	210	200	290
5.95	5.831	6.069	50	70	60	90	160	210	200	290
6.00	5.880	6.120	50	70	60	90	160	210	200	290

● Voltage Chart (Continued)

XC6204 series, 1% products

 $Note: \pm 1\% \ output \ voltage \ accuracy \ products \ are \ available \ for \ the \ XC6204E\sim H \ series \ from \ VOUT=2.95V.$

SYMBOL	Е	-0
PARAMETER	OUTPUT	VOLTAGE
SETTING	()	V)
OUTPUT VOLTAGE (V)	(1% pr	oducts)
)/ (T)	Vo	DUT
Vout (T)	MIN.	MAX.
2.95	2.921	2.980
3.00	2.970	3.030
3.05	3.020	3.081
3.10	3.069	3.131
3.15	3.119	3.182
3.20	3.168	3.232
3.25	3.218	3.283
3.30	3.267	3.333
3.35	3.317	3.384
3.40	3.366	3.434
3.45	3.416	3.485
3.50	3.465	3.535
3.55	3.515	3.586
3.60	3.564	3.636
3.65	3.614	3.687
3.70	3.663	3.737
3.75	3.713	3.788
3.80	3.762	3.838
3.85	3.812	3.889
3.90	3.861	3.939
3.95	3.911	3.990
4.00	3.960	4.040
4.05	4.010	4.091
4.10	4.059	4.141
4.15	4.109	4.192
4.20	4.158	4.242
4.25	4.208	4.293
4.30	4.257	4.343
4.35	4.307	4.394
4.40	4.356	4.444
4.45	4.405	4.494
4.50	4.455	4.545

SYMBOL	E	-0
PARAMETER	OUTPUT	VOLTAGE
SETTING	(\	/)
OUTPUT VOLTAGE (V)	(1% pr	oducts)
\\\((T\)	Vo	DUT
Vоит (T)	MIN.	MAX.
4.55	4.505	4.596
4.60	4.554	4.646
4.65	4.604	4.697
4.70	4.653	4.747
4.75	4.703	4.798
4.80	4.752	4.848
4.85	4.802	4.899
4.90	4.851	4.949
4.95	4.901	5.000
5.00	4.950	5.050
5.05	5.000	5.101
5.10	5.049	5.151
5.15	5.099	5.202
5.20	5.148	5.252
5.25	5.198	5.303
5.30	5.247	5.353
5.35	5.297	5.404
5.40	5.346	5.454
5.45	5.396	5.505
5.50	5.445	5.555
5.55	5.495	5.606
5.60	5.544	5.656
5.65	5.594	5.707
5.70	5.643	5.757
5.75	5.693	5.808
5.80	5.742	5.858
5.85	5.792	5.909
5.90	5.841	5.959
5.95	5.891	6.010
6.00	5.940	6.060

●Voltage Chart (Continued) XC6205 series

AC0203 series							
SYMBOL	E	-0	E-1		E-2		
PARAMETER SETTING OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE (V)		VOLTAG	POUT SE1 (mV) 30mA	DROPOUT VOLTAGE 2 (mV) IOUT=100mA		
	Vc) DUT		Ta =	25°C		
Vout (t)	V)O1	Vd	if 1	Vd	if 2	
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
0.90	0.870	0.930	1050	1100	1150	1200	
0.95	0.920	0.980	1050	1100	1150	1200	
1.00	0.970	1.030	1000	1100	1050	1200	
1.05	1.020	1.080	1000	1100	1050	1200	
1.10	1.070	1.130	900	1000	950	1100	
1.15	1.120	1.180	900	1000	950	1100	
1.20	1.170	1.230	800	900	850	1000	
1.25	1.220	1.280	800	900	850	1000	
1.30	1.270	1.330	700	800	750	900	
1.35	1.320	1.380	700	800	750	900	
1.40	1.370	1.430	600	700	650	800	
1.45	1.420	1.480	600	700	650	800	
1.50	1.470	1.530	500	600	550	700	
1.55	1.519	1.581	500	600	550	700	
1.60	1.568	1.632	400	500	500	600	
1.65	1.617	1.683	400	500	500	600	
1.70	1.666	1.734	300	400	400	500	
1.75	1.715	1.785	300	400	400	500	

Specification Chart by Series

SYMBOL	S-1		S-2	S-3				
PRODUCT SERIES	SUPPLY CURRENT (μA)						CE "H" CURRENT	CE "L" CURRENT
	MIN.	MAX.	(μ A)	(μA)				
XC6205A	52.0	115.0	18.0	-0.1				
XC6205B	42.0	95.0	0.1	-0.1				
XC6205C	52.0	115.0	0.1	-18.0				
XC6205D	42.0	95.0	0.1	-0.1				

Specification & Condition by Series

SYMBOL	E-5	E-4
SPECIFIED OUTPUT VOLTAGE	INPUT VOLTAGE (V)	MAXIMUM OUTPUT CURRENT (mA)
(V)	VIN	MIN.
0.90~0.95	2.5	260
1.00~1.05	2.5	260
1.10~1.15	2.6	270
1.20~1.25	2.7	290
1.30~1.35	2.8	
1.40~1.45	2.9	300
1.50~1.75	3.0	

^{*} Vout(T)=Specified output voltage

■TYPICAL APPLICATION CIRCUIT

■OPERATIONAL EXPLANATION

Output voltage control with the XC6204/6205 series:

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier.

The P-channel MOSFET, which is connected to the VouT pin, is then driven by the subsequent output signal. The output voltage at the VouT pin is controlled & stabilized by a system of negative feedback.

The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

< Low ESR Capacitors >

With the XC6204/05 series, a stable output voltage is achievable even if used with a low ESR capacitor as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (Vout) and the Vss pin. Please use an output capacitor with a capacitance value of at least 1 μ F. Also, please connect an input capacitor (CIN) of 0.1 μ F between the VIN pin and the Vss pin in order to ensure a stable power input.

Recommended output capacitor values

Vout	0.9V ~ 1.2V	1.25V ~ 1.75V
CL	4.7 μ F	2.2 μ F

■OPERATIONAL EXPLANATION (Continued)

< Current Limiter, Short-Circuit Protection>

The XC6204/05 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows. However, when the input/output voltage differential is guite small, this current will be about 200mA.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6204/05 series. In shutdown mode, output at the Vout pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6204/05B type is 'High Active/No Pull Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation.

We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a voltage between 0.25V and 1.5V is input.

<Minimum Operating Voltage>

In order to stabilize the IC's operations, an input voltage of more than 2.0V is needed. Should the input voltage be less than 2.0V, the output voltage may not be regulated correctly. (Please refer to Input Voltage vs. Output Voltage characteristics below.)

- ① When VIN is less than 2.0V, the CE pin remains in stand-by mode. When VIN rises above 2.0V, the power supply will turn ON.
- ② The input power supply will begin to rise after a few hundred msec. (Please also refer to the transient response characteristics.)

O Input Voltage vs. Output Voltage

O Enable Response Time

XC6205B092

O Turn-ON Response Time

XC6205B092

■NOTES ON USE

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen VIN and VSS wiring in particular.
- 3. Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible.

TEST CIRCUITS

Circuit 1

Circuit 2

Circuit 3

Circuit 4

■TYPICAL PERFORMANCE CHARACTERISTICS

●XC6204

(1) Output Voltage vs. Output Current

XC6204x252

XC6204x252

XC6204x302

XC6204x302

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6204 (Continued)

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

●XC6204 (Continued)

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

- ●XC6204 (Continued)
- (3) Dropout Voltage vs. Output Current (Continued)

* Since the operation of this IC is only guaranteed from V_{IN}=2.0V and above, it is essential that when using with applications where V_{OUT}=2.0V or less, the difference between V_{IN} and V_{OUT} be at least equal to 2V – V_{OUT}(T).

(4) Supply Current vs. Input Voltage

●XC6204 (Continued)

(5) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

- ●XC6204 (Continued)
 - (6) Supply Current vs. Ambient Temperature (Continued)

(7) CE Pin Threshold Voltage vs. Ambient Temperature

(8) Input Transient Response

●XC6204 (Continued)

(8) Input Transient Response (Continued)

- ●XC6204 (Continued)
- (8) Input Transient Response (Continued)

(9) Load Transient Response

●XC6204 (Continued)

(9) Load Transient Response (Continued)

- ●XC6204 (Continued)
- (9) Load Transient Response (Continued)

●XC6204 (Continued)

(9) Load Transient Response (Continued)

●XC6204 (Continued)

(9) Load Transient Response (Continued)

(10) Turn-On Response Time

●XC6204 (Continued)

(10) Turn-On Response Time

●XC6204 (Continued)

(10) Turn-On Response Time (Continued)

(11) Enable Response Time

(These characteristics will not be affected by the nature of the CE pin's logic)

●XC6204 (Continued)

(11) Enable Response Time (Continued)

(These characteristics will not be affected by the nature of the CE pin's logic)

●XC6204 (Continued)

(11) Enable Response Time (Continued)

(These characteristics will not be affected by the nature of the CE pin's logic)

(12) Ripple Rejection Rate

●XC6204 (Continued)

(12) Ripple Rejection Rate (Continued)

(13) Output Noise Density

●XC6205

(1) Output Voltage vs. Output Current

(2) Output Voltage vs. Output Current (Current Limit)

●XC6205 (Continued)

(3) Output Voltage vs. Input Voltage

XC6205x152 Topr=25°C CIN=1.0 μ F(ceramic), CL=2.2 μ F(ceramic) 1.7 IOUT= €1.6 1mA 30mA 1.5 = 100mA Voltage V 1.4 tndtnO 1 1 1.0 1.0 1.5 2.0 Input Voltage VIN (V)

(4) Dropout Voltage VS. Output Current

- ●XC6205 (Continued)
- (5) Supply Current vs. Input Voltage

XC6205x092

6

Input Voltage VIN (V)

9

10

XC6205x152

3

2

(6) Output Voltage vs. Ambient Temperature

XC6205x092

●XC6205 (Continued)

(7) Supply Current vs. Ambient Temperature

10

Ambient Temperature Topr (°C)

40

70

100

XC6205x152

0

-50

-20

(8) CE Pin Threshold Voltage vs. Ambient Temperature

XC6205xxx2

(9) Load Transient Response

XC6205x092

●XC6205 (Continued)

(9) Load Transient Response (Continued)

XC6205x152 VIN=2.5V CIN=1.0 μ F(ceramic),CL=2.2 μ F(ceramic) 1.60 300 1.55 250 Output Voltage (V) Output Voltage 1.50 200 1.45 150 Output Current 100mA 1.40 1.35 1mA 50 1.30 0 Time (40 µsec/div)

(10) Input Transient Response 1

XC6205x152

(11) Input Transient Response 2

XC6205x092

●XC6205 (Continued)

(11) Input Transient Response 2 (Continued)

XC6205x152

XC6205x152

(12) Enable Response Time

XC6205B092

XC6205x152

(13) Ripple Rejection Rate

XC6205x092

