Lab 11

Derivative and Gradient

Chain rule

Calculate dz/dt for each of the following functions:

- 1. $z = f(x,y) = 4x^2 + 3y^2$, $x = x(t) = \sin t$, $y = y(t) = \cos t$
- 2. $z = f(x,y) = \sqrt{x^2 y^2}, \ x = x(t) = e^{2t}, \ y = y(t) = e^{-t}$

Chain rule

Calculate dz/dt for each of the following functions:

1.
$$z = f(x,y) = 4x^2 + 3y^2$$
, $x = x(t) = \sin t$, $y = y(t) = \cos t$

2.
$$z = f(x,y) = \sqrt{x^2 - y^2}, \ x = x(t) = e^{2t}, \ y = y(t) = e^{-t}$$

Answer:

1.
$$2\sin t \cos t$$

2.
$$\frac{2e^{6t} + 1}{e^t \sqrt{e^{6t} - 1}}$$

Chain rule for two variables

Calculate partial derivatives $\partial z/\partial u,\ \partial z/\partial v$ using the following functions:

$$z = f(x, y) = 3x^{2} - 2xy + y^{2}, x = x(u, v) = 3u + 2v, y = y(u, v) = 4u - v$$

Chain rule for two variables

Calculate partial derivatives $\partial z/\partial u,\ \partial z/\partial v$ using the following functions:

$$z = f(x, y) = 3x^{2} - 2xy + y^{2}, x = x(u, v) = 3u + 2v, y = y(u, v) = 4u - v$$

Answer:

$$rac{\partial z}{\partial u} = 38u + 18v$$
 $rac{\partial z}{\partial v} = 18u + 34v$

Gradient (partial derivative)

Find the gradient of the following function

$$f(x,y) = x^2 - xy + 3y^2$$

Answer:
$$\nabla f(x,y) = [2x-y, -x+6y]$$

More about Gradient

Find the gradient of the following

$$f(x, y, z) = e^{-2z} \sin 2x \cos 2y$$

Answer:

$$\nabla f(x,y,z) = 2e^{-2z} \cdot \left[\cos 2x \cos 2y, -\sin 2x \sin 2y, -\sin 2x \cos 2y\right]$$

Directional derivative

Let $heta=rccos{(3/5)}$, find the directional derivative $\nabla_v f(x,y)$ of $f(x,y)=x^2-xy+3y^2$ In the direction of $v=(\cos{ heta},\,\sin{ heta})$

Connect with the previous problem $\
abla_v f(x) =
abla f(x) \cdot v$

Directional derivative

Let $heta=rccos{(3/5)}$, find the directional derivative $\nabla_v f(x,y)$ of $f(x,y)=x^2-xy+3y^2$ In the direction of $v=(\cos{ heta},\,\sin{ heta})$

Connect with the previous problem $\
abla_v f(x) =
abla f(x) \cdot v$

Answer:

Partial derivative of f is [2x - y, -x + 6y]

$$abla_v f(x,y) = (2x-y) rac{3}{5} + (-x+6y) rac{4}{5} = rac{2x+21y}{5}$$

Gradient of a least-squares loss in a linear model

Consider the linear model

$$y = X \cdot \theta$$

where theta is a parameter vector of length D, X is an n by D input feature matrix and y are the corresponding observations of length n.

Optimizing such a model can be considered as solving

$$\min_{ heta \in \mathbb{R}^{\mathbb{D}}} \Bigl(||y - X \cdot heta||^2 \Bigr)$$

Gradient of a least-squares loss in a linear model

$$\min_{ heta \in \mathbb{R}^{\mathbb{D}}} \Bigl(||y - X \cdot heta||^2 \Bigr)$$

This can be solved by computing the gradient of $|L=||e||^2, \ e=y-X\cdot heta$

$$egin{align} rac{\partial L}{\partial e} &= 2e^T & rac{\partial e}{\partial heta} &= -X \ rac{\partial L}{\partial heta} &= rac{\partial L}{\partial e} rac{\partial e}{\partial heta} &= -2ig(y^T - heta^T X^Tig)X \ \end{pmatrix}$$

^{*} Solving derivative equals 0 is sufficient to minimize the loss, since the Hassian of L equals $X^T X$ is PSD.