An efficient solver for L0-penalized problems

Theo Guyard with C. Herzet, A. N. Arslan and C. Elvira INRIA and INSA Rennes

ROADEF | 21 Feb 2023

 $\|\mathbf{x}\|_0$: sparsity λ : trade-off

 $\|\mathbf{x}\|_0$: sparsity λ : trade-off $G(\mathbf{x})$: modelling

1/7

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} \ F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

 $\ell_0\text{-penalized problem}$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

$\ell_0\text{-penalized problem}$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

▶	D. Bertsimas	(2016)
▶	S. Bourguignon	(2017)
▶	A. Atamtürk	(2020)
▶	D. Bertsimas	(2021)
▶	C. Kanzow	(2022)

$\ell_0\text{-penalized problem}$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
- ▶ S. Bourguignon (2017)
 ▶ A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ▶ D. Bertsimas (2021)▶ C. Kanzow (2022)
 - (-

✓ MIP formulation

$\ell_0\text{-penalized problem}$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)

 A Atamtiirk (2020)
- ► A. Atamtürk (2020)
- **▶** D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- ► A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly

$\ell_0\text{-penalized problem}$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- ► A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

Generic approach

▶	D.	Ber	tsimas	(2016)
	_	_		(0017)

▶ S. Bourguignon (2017)
 ▶ A. Atamtürk (2020)

A. Atamtürk (2020

▶ D. Bertsimas (2021)

► C. Kanzow (2022)

- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- G. Samain (2022)
- ► A. Olama (2022)
- ▶ A. Atamtürk (2022)

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- ▶ A. Atamtürk (2020)
- D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- ▶ G. Samain (2022)
- ► A. Olama (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- ▶ A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- \checkmark Off-the-shelf solvers
- ✓ User friendly
- X Slow

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- ▶ G. Samain (2022)
- ► A. Olama (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- ► A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- \checkmark Off-the-shelf solvers
- ✓ User friendly
- X Slow

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- ▶ G. Samain (2022)
- ► A. Olama (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- G. Samain (2022)
- ► A. Olama (2022)
- ▶ A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G
- X Inappropriate exploration

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
- ► S. Bourguignon (2017)
- ▶ A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

Tailored approach

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- ▶ G. Samain (2022)
- ► A. Olama (2022)
- ▶ A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G
- X Inappropriate exploration

- This talk (2023)
- ► Extended paper (202?)

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
 ▶ S. Bourguignon (2017)
- ► A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)▶ C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

Tailored approach

- ▶ R. Ben Mhenni (2021)
- ▶ H. Hazimeh (2021)▶ G. Samain (2022)
- ► G. Samain (2022)

 ► A. Olama (2022)
- ► A. Atamtürk (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G
- X Inappropriate exploration

Contributions

- ➤ This talk (2023)
- ► Extended paper (202?)

✓ BnB algorithm

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
 ▶ S. Bourguignon (2017)
- ► A. Atamtürk (2020)
- ▶ D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

Tailored approach

- ▶ R. Ben Mhenni (2021)
- ▶ H. Hazimeh (2021)▶ G. Samain (2022)
- ▶ G. Samain (2022)▶ A. Olama (2022)
- ► A. Olama (2022)

 A. Atamtürk (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G
- X Inappropriate exploration

- This talk (2023)
- ► Extended paper (202?)

- ✓ BnB algorithm
- ✓ Efficient bounding

ℓ_0 -penalized problem

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
 ▶ S. Bourguignon (2017)
- A. Atamtürk (2020)
 D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

Tailored approach

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- ▶ G. Samain (2022)▶ A. Olama (2022)
- ► A. Olama (2022)

 A. Atamtürk (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G
- X Inappropriate exploration

- This talk (2023)
- ► Extended paper (202?)

- ✓ BnB algorithm
- ✓ Efficient bounding
- ✓ Generalize w.r.t. F and G

$\ell_0\text{-penalized problem}$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

NP-hard

Generic approach

- ▶ D. Bertsimas (2016)
 ▶ S. Bourguignon (2017)
- A. Atamtürk (2020)
 D. Bertsimas (2021)
- ► C. Kanzow (2022)
- ✓ MIP formulation
- ✓ Off-the-shelf solvers
- ✓ User friendly
- X Slow

Tailored approach

- ▶ R. Ben Mhenni (2021)
- ► H. Hazimeh (2021)
- ▶ G. Samain (2022)▶ A. Olama (2022)
- A. Olama (2022)
- ► A. Atamtürk (2022)
- ✓ BnB algorithm
- ✓ Efficient bounding
- X Restrictions on F and G
- X Inappropriate exploration

- This talk (2023)
- ► Extended paper (202?)

- ✓ BnB algorithm
- ✓ Efficient bounding
- ✓ Generalize w.r.t. F and G
- ✓ Tailored exploration

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{\mathbf{0}} + G(\mathbf{x})$$

4/7

Waste of computational power!

Waste of computational power!

How to avoid such situations?

improvment

Waste of computational power!

How to avoid such situations ?

Leverage duality link between nodes

Subproblem

Relaxation → Dual

Variable fixing

Identify an index j

- Already-computed quantities
- Cost-free dual evaluation
- Dual link between nodes

- Already-computed quantities
- Cost-free dual evaluation
- Dual link between nodes

- Already-computed quantities
- Cost-free dual evaluation
- Dual link between nodes

- Already-computed quantities
- Cost-free dual evaluation
- Dual link between nodes

- Already-computed quantities
- Cost-free dual evaluation
- Dual link between nodes
- Can fix multiple variables

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x})$$

Dataset: Sparse linear regression

$$\min_{\mathbf{x}} |F(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_0 + G(\mathbf{x})$$

Dataset: Sparse linear regression

F(Ax): Mean squared error

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + G(\mathbf{x})$$

Dataset: Sparse linear regression

F(Ax): Mean squared error G(x): Constraint $I \le x \le u$

$$\min_{\mathbf{x}} F(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_0 + G(\mathbf{x})$$

Dataset: Sparse linear regression

F(Ax): Mean squared error G(x): Constraint $I \le x \le u$

Dataset: Sparse linear regression

F(Ax): Mean squared error G(x): Constraint $I \le x \le u$

Dataset: Sparse linear regression

 $\mathsf{F}(\mathsf{Ax})$: Mean squared error $\mathsf{G}(\mathsf{x})$: Constraint $\mathsf{I} \leq \mathsf{x} \leq \mathsf{u}$

Highlights

Highlights

 \bullet Gains up to $\times 10^5$ against MIP solvers

Highlights

- \bullet Gains up to $\times 10^5$ against MIP solvers
- ullet Gains up to $imes 10^2$ against tailored BnB

Highlights

- ullet Gains up to $imes 10^5$ against MIP solvers
- \bullet Gains up to $\times 10^2$ against tailored BnB
- \bullet Scales up to dimension $\approx 10^5$ in minutes

Highlights

- Gains up to $\times 10^5$ against MIP solvers
- Gains up to $\times 10^2$ against tailored BnB
- Scales up to dimension $\approx 10^5$ in minutes

TheoGuyard/Elops.jl An Exact LO-penalized Problem Solver.

Highlights

- Gains up to $\times 10^5$ against MIP solvers
- Gains up to $\times 10^2$ against tailored BnB
- Scales up to dimension $\approx 10^5$ in minutes

Efficient BnB

TheoGuyard/El0ps.jl An Exact L0-penalized Problem Solver.

Highlights

- \bullet Gains up to $\times 10^5$ against MIP solvers
- \bullet Gains up to $\times 10^2$ against tailored BnB
- Scales up to dimension $\approx 10^5$ in minutes

Highlights

- \bullet Gains up to $\times 10^5$ against MIP solvers
- Gains up to $\times 10^2$ against tailored BnB
- Scales up to dimension $\approx 10^5$ in minutes

Question time!

Working hypotheses

Loss function

Assumptions on F:

- F is proper, convex, lower-semicontinuous
- F is differentiable with ∇F being L-Lipschitz

Modelling term

Assumptions on G:

- *G* is proper, convex, lower-semicontinuous
- $G = \sum_i G_i$ with $G_i \geq G_i(0) = 0$

Node problems

$$S_0 = \{i \mid x_i = 0\}$$

$$\mathcal{S}_1 = \{i \mid x_i \neq 0\}$$

$$\mathcal{S}_{\bullet} = \{i \mid x_i \text{ free}\}$$

Subproblem

$$\begin{cases} \min_{\mathbf{x}} & F(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + G(\mathbf{x}) \\ \text{s.t.} & \mathbf{x}_{\mathcal{S}_{\mathbf{0}}} = \mathbf{0}, \ \mathbf{x}_{\mathcal{S}_{\mathbf{1}}} \neq \mathbf{0} \end{cases}$$

NP-hard unless $S_{\bullet} = \emptyset$.

Relaxation

$$\min_{\mathbf{x}} \left\{ F(\mathbf{A}\mathbf{x}) + H(\mathbf{x}) \right\}$$

with H(x) being the convex envelope of $\lambda ||x||_0 + G(x) + \mathbb{I}(x_{S_0} = 0, x_{S_1} \neq 0)$.

Dual

$$\begin{aligned} \max_{\mathbf{u}} \left\{ -F^\star(-\mathbf{u}) - H^\star(\mathbf{A}^\mathrm{T}\mathbf{u}) \right\} \\ \text{with } H^\star(\mathbf{A}^\mathrm{T}\mathbf{u}) = \sum_{i \in \mathcal{S}_\bullet} [G^\star(\mathbf{a}_i^\mathrm{T}\mathbf{u}) - 1]_+ + \sum_{i \in \mathcal{S}_1} (G^\star(\mathbf{a}_i^\mathrm{T}\mathbf{u}) - 1) \end{aligned}$$