1.Test 2

Przepisz dane z wejścia na wyjście. Dane wejściowe są dwucyfrowymi liczbami naturalnymi. Zakończ działanie programu, gdy na wejściu pojawią się, jedna po drugiej, dwie liczby 42.

Wejście

W każdej linii jedna liczba dwucyfrowa.

Wyjście

W każdej linii jedna liczba dwucyfrowa. Obie wartości 42 powinny się pojawić na końcu danych wyjściowych.

Przykład

2.Test 3

Przepisz dane z wejścia na wyjście. Dane wejściowe są dwucyfrowymi liczbami naturalnymi. Zakończ działanie programu, gdy na wejściu pojawi się, trzecia liczba 42 poprzedzona jakąkolwiek inną liczbą.

Wejście

W każdej linii jedna liczba dwucyfrowa.

Wyjście

W każdej linii jedna liczba dwucyfrowa. Odczytane wartości 42 również powinny się pojawić.

Przykład

Wejście:		
42		
42		
12		
13		
42		
11		
42		
43		
42		
42 42		
99		
01		
Wyjście:		
42		
42		

```
12
13
42
11
42
43
42
```

3.Podzielność

Wypisz wszystkie liczby a_i podzielne przez x i niepodzielne przez y, gdzie $1 < a_i < n < 100000$.

Wejście

Najpierw w oddzielnej linii t liczba przypadków testowych następnie w kolejnych t liniach liczby n x y.

Wyjście

W kolejnych t liniach oddzielone pojedynczym odstępem liczby spełniające warunki zadania wypisane od najmniejszej do największej.

Przykład

```
Wejście:
2
7 2 4
35 5 12
Wyjście:
2 6
5 10 15 20 25 30
```

4. Problem Collatza

Dany jest ciąg x_n określony rekurencyjnie: $x_0=s$, $x_{n+1}=3^*x_n+1$, jeśli x_n jest nieparzyste i $x_{n+1}=x_n/2$, jeśli x_n jest parzyste Napisz program, który oblicza pierwsze takie n, dla którego $x_n=1$.

Wejście

W pierwszej linii liczba testów t. W każdym z t kolejnych wierszy jedna liczba całkowita s, 1 <= s <= 10000.

Wyjście

W każdej linii jedna liczba - obliczona wartość n.

Przykład

```
Wejście:
5
1
2
8
3
567
Wyjście:
0
1
3
7
61
```

5. Równ kwadr

Napisz program, który wyznacza liczbę pierwiastków rzeczywistych równania kwadratowego.

Wejście

Na wejście programu podana zostanie pewna niewielka ilość zestawów danych. Każdy zestaw składać się będzie z 3 liczb rzeczywistych (współczynników A, B i C równania $Ax^2 + Bx + C = 0$) rozdzielonych spacjami. Poszczególne zestawy zostaną rozdzielone znakiem nowej linii. Można przyjąć, że A jest różne od zera.

Wyjście

Na wyjściu ma się pojawić ciąg liczbowy, którego *i-*ta pozycja jest równa liczbie pierwiastków rzeczywistych *i-*tego wczytanego z wejścia równania. Poszczególne liczby należy rozdzielić znakami nowej linii.

Przykład

Wejście:

```
0.3 0.3 0.4
0.5 1 0.5
-0.5 -0.5 0
```

Wyjście:

0 1 2

6.Wzorki 1

Wykorzystująć znaki . (kropka) i * (gwiazdka) wyświetl wzór przypominający szachownicę o zadanych rozmiarach. Pierwszym znakiem ma być * (gwiazdka).

Wejście

Najpier liczba testów t i dla każdego testu dwie liczby w i k oznaczające odpowiednio liczbę wierszy i kolumn szachownicy

Wyjście

Dla każdego testu żądany wzór (zobacz przykład). Kolejne testy oddziel pustym wierszem.

Przykład

Input:

Output:

*

.. .*.*

..

..*