MODELOS Y OPTIMIZACION I

Parcial 1ra. Oportunidad – (21110)

12 de junio de 2021

Pregunta	A1	A2	А3	A4	A5	Total
Puntaje	3	10	7	65	15	100
Mínimos	5		30		-	60
Calificación						
Supervisión						

A. Una empresa quiere organizar la distribución de sus productos para el mes de octubre. Fabrica tres tipos de producto llamados Etha, lota y Rho. A los productos los elabora con componentes llamados A, B y C. Sin embargo, cada producto tiene una cantidad diferente de A, B y C, como vemos en el cuadro que sigue. En ese cuadro también vemos el precio al cual vende cada unidad de

producto Etha, lota y Rho y la demanda mínima mensual de cada tipo de producto.

Producto	Composición (por cada unidad)	Precio de venta	Demanda mínima
Etha	Un componente A, un componente B y un componente C	\$Etha1 las primeras 120 unidades y \$Etha2 las siguientes	E1 unidades
lota	Un componente A y dos componentes B	\$lota	I1 unidades
Rho	Dos componentes C y un componente que puede ser tanto A como B	\$Rho	R1 unidades

Para elaborarlos necesita adquirir lotes al exterior. Hay tres tipos de lote (1, 2 y 3). Cada tipo de lote tiene una cantidad fija de cada componente y una forma de pago. Se puede comprar la cantidad que se quiera de cada lote (incluyendo cero). Aunque compra para producir en el mes de octubre, en el caso de algunos tipos de lote puede pagar parte en noviembre. La empresa cuenta con \$OCTUBRE para gastar en el mes de octubre y \$NOVIEMBRE para gastar en el mes de noviembre, para esta producción. A continuación se indica, para cada tipo de lote, su composición (para una unidad de ese tipo de lote), el costo de cada unidad de ese tipo y la forma de pago de ese tipo de lote.

Tipo	Composición		Forma de pago
Lote			
1	20 un. de componente A y 40 un. de C	\$UNO	40% en octubre y 60% en noviembre
2	25 unidades de cada componente (A, B y C)	\$DOS	Pago total en noviembre
3	20 un. de componente B y 45 un. de C	\$TRES	50% en octubre y 50% en noviembre

Además, sabemos que:

- a.- Si compramos más de 25 lotes de tipo 2, el costo total de compra de lotes 2 se bonifica en un 10% (es decir que pagamos un 90% de lo que correspondía pagar).
- b.- Por cada 12 lotes de tipo 3, uno sale gratis

Nota: \$Etha1, \$Etha2, \$Iota, \$Rho, E1, I1, R1, \$OCTUBRE, \$NOVIEMBRE, \$UNO, \$DOS y \$TRES son constantes con valor conocido

¿Qué es lo mejor que se puede hacer con la información disponible?

- A1 Caracterizar la situación problemática en no más de cinco renglones.
- A2 Objetivo del problema, completo y claro. Hipótesis y supuestos.
- A3 Definición de variables del modelo matemático, indicando si son enteras o continuas.
- **A4** Modelo matemático de programación lineal. Indicar claramente qué función cumple cada ecuación. Tener en cuenta que *si el modelo no es lineal, este punto se anulará*. NO SE PUEDE CAMBIAR EL NOMBRE A LOS DATOS/CONSTANTES DADOS:

A5 Al modelo de A4 se le agrega lo siguiente:

Del lote 1 no se pueden comprar más de 39 lotes. Si se compran exactamente 39 lotes tipo 1, se puede conseguir que en noviembre estén disponibles para gastar \$43000 más.

Se debe indicar qué variables se agregan, si hay que modificar o agregar hipótesis y se deben escribir las restricciones que se agregan o se modifican en el modelo de A4. Tener en cuenta que *si el modelo no es lineal, este punto se anulará*. NO SE PUEDE CAMBIAR EL NOMBRE A LOS DATOS/CONSTANTES DADOS

Parcial 12 - 06 - 2021

Situacion problemática

Se trata de un problema de producción con armado y recursos limitantes, donde hay que tener en cuenta de que lotes se adquieren los componentes, como se paga por estos lotes y hay que cumplir con la demanda mínima de cada uno de los productos producidos.

Objetivo

Determinar la cantidad de productos de cada tipo a producir y su composición para maximizar las ganancias, teniendo en cuenta los costos de la adquisicion de los materiales, en el mes de octubre.

Hipótesis y Supuestos

Certeza

- Todo lo que se produce se vende
- Todos los parametros del modelo son constantes conocidas
- No hay stock inicial de componentes

Proporcionalidad

• El consumo de los componentes es directamente proporcional a la cantidad producida

Aditividad

- No hay inflación ni varían los precios o costos
- No se producen productos fallados
- No se compran componentes fallados
- No hay desperdicio de recursos al fabricar
- Todos los recursos no mencionados no son limitantes

Negocio

- Si sobra dinero del presupuesto de octubre, no se puede utilizar en noviembre.
- Se pueden comprar tantos lotes como se deseen

Variables de decisión controlables

$$PRODUCTOS = \{\eta, \iota, \rho\}$$
 $COMPONENTES = \{A, B, C\}$
 $LOTES = \{1, 2, 3\}$
 $MESES = \{Oct, Nov\}$

Adicionalmente, por fuera de las variables, M es una constante de valor muy grande y m es una constante de valor muy pequeño (casi cero).

Productos

 $P_p \in \mathbb{N}_0 \quad (p \in PRODUCTOS) \quad [u_{producto}] :$ Cantidad de unidades del producto p a producir $P_{p,c} \in \mathbb{N}_0 \quad (p \in PRODUCTOS \land c \in COMPONENTES) \quad [u_{componente}] :$ Cantidad de unidades del componente c destinado a producir productos p

 $Y_{n,120} \in \{0,1\}$: Indica que se han producido más de 120 productos del tipo η

 $P_{1,120} \in \mathbb{N}_0$ $[u_{producto}]$: Las primeras 120 unidades a producir del producto η

 $P_{n,+120} \in \mathbb{N}_0$ $[u_{producto}]$: Las unidades después de las primeras 120 a producir del producto η

Lotes

 $L_i \in \mathbb{N}_0 \quad (i \in LOTES) \quad [u_{lote}] : \text{Cantidad de unidades a comprar del lote } i$

 $L_{i,m} \in \mathbb{N}_0$ $(i \in LOTES \land m \in MESES)$ $[u_{lote}]$: Cantidad de unidades a comprar del lote i con dinero destinado al presupuesto del mes m

 $Y_{25} \in \{0,1\}$: Indica que se han comprado más de 25 lotes del tipo 2

 $X_3 \in \mathbb{N}_0$: Cantidad de lotes de tipo 3 que salen gratis

Componentes

 $A_{i,c} \in \mathbb{N}_0$ $(i \in LOTES \land c \in COMPONENTES)$ $[u_{componente}]$: Cantidad de unidades del componente c adquirida de la compra de lotes i

Vinculaciones y Restricciones

Producción

$$P_{\eta} = P_{\eta,A}$$

$$P_{\eta} = P_{\eta,B}$$

$$P_{\eta} = P_{\eta,C}$$

$$P_{\iota} = P_{\iota,A}$$
$$2 * P_{\iota} = P_{\iota,B}$$

$$2*P_{\rho} = P_{\rho,C}$$

$$P_{\rho} = P_{\rho,A} + P_{\rho,B}$$

Vincular variables de las primeras 120 y siguientes 120 unidades de η

$$Y_{\eta,120} * 120 \le P_{\eta,120} \le 120$$
$$P_{\eta,+120} \le Y_{\eta,120} * M$$
$$P_{\eta} = P_{\eta,120} + P_{\eta,+120}$$

Restriccion de demanda minima

$$P_{\eta} \ge E1$$

$$P_{\iota} \ge I1$$

$$P_{\rho} \ge R1$$

Compra de lotes

$$L_{1,Oct} = 0.4 * L_1$$
 $L_{1,Nov} = 0.6 * L_1$ $L_{2,Oct} = 0 * L_2$ $L_{2,Nov} = 1 * L_2$ $L_{3,Oct} = 0.5 * L_3$ $L_{3,Nov} = 0.5 * L_3$

No se puede superar el presupuesto de cada mes

Composicion de lotes

$$20 * L_1 = A_{1.A}$$

$$40 * L_1 = A_{1,C}$$

$$25 * L_2 = A_{2,A}$$

$$25 * L_2 = A_{2,B}$$

$$25 * L_2 = A_{2,C}$$

$$20 * L_3 = A_{3,B}$$

$$45 * L_3 = A_{3,C}$$

No se pueden utilizar más componentes que los adquiridos

$$P_{\eta,A} + P_{\iota,A} + P_{\rho,A} \le A_{1,A} + A_{2,A}$$

$$P_{\eta,B} + P_{\iota,B} + P_{\rho,B} \le A_{2,B} + A_{3,B}$$

$$P_{\eta,C} + P_{\rho,C} \le A_{1,C} + A_{2,C} + A_{3,C}$$

Por cada 12 lotes de tipo 3, uno sale gratis

Recordando que X_3 es entera, por definición

$$X_3 \le \frac{L_3}{12}$$

Indicar si se compran mas de 25 lotes del tipo 2

$$25 * Y_{25} \le L_2 \le 24 + M * Y_{25}$$

Función Objetivo

$$Gancias = \$\eta_1 * P_{\eta,120} + \$\eta_2 * P_{\eta,+120} + \$\iota * P_\iota + \$\rho * P_\rho$$

$$Costos = L_1 * \$UNO + (L_2 * \$DOS - Y_{25} * 0.1 * \$DOS) + (L_3 - X_3) * \$TRES$$

$$Max Z = Ganancias - Costos$$

Extensión del enunciado

No se pueden comprar mas de 39 lotes de tipo 1

$$L_1 \le 39$$

Indicar si se compran exactamente 39 lotes

 $Y_{39} \in \{0,1\}$: Indica que se han comprado exactamente 39 lotes del tipo 1

$$39 * Y_{39} \le L_1$$

Actualizar presupuesto de noviembre

 $\$NOVIEMBRE \in \mathbb{N}_0 \quad [\$]$: Presupuesto de noviembre teniendo en cuenta la extensión del enunciado

$$\$\$NOVIEMBRE = \$NOVIEMBRE + Y_{39}*43000$$

Se depreca la ecuación original del presupuesto de noviembre

$$\$UNO*L_{1,Nov} + \$DOS*L_{2,Nov} + \$TRES*L_{3,Nov} \le \$NOVIEMBRE$$

Y se reemplaza por la actualizada

$$\$UNO*L_{1,Nov} + \$DOS*L_{2,Nov} + \$TRES*L_{3,Nov} \leq \$\$NOVIEMBRE$$