LE TRANSISTOR BIPOLAIRE

2.1. Introduction théorique

Le transistor bipolaire est un dispositif électronique ayant 3 terminaux : émetteur (E), base (B), collecteur (C), réalisé sur un semiconducteur avec la succession spatiale suivante: *pnp* ou *npn*.

Dans la figure 2.1, est transistor bipolaire npn. Le transistor E performances que celui pnp, parce que dû aux électrons qui ont une plus

Le but pour lequel a été crée le l'amplification en puissance. L'essence puissance du transistor bipolaire est: la jonction BC soit plus grande que la jonction BE. A cause de ces d'amplification en puissance, de la connexion émetteur—commun.

représenté le symbole du npn a des meilleures le courant principal est grande mobilité.

transistor bipolaire étant de l'amplification en puissance associé à la puissance associé à la considérations

s'explique l'utilisation

Fig. 2.1. Symbôle du transistor bipolaire.

Exemplification pour les valeurs: $V_{BE} = 0.6 \text{ V}$; $V_{BC} = -10 \text{ V}$; $I_E \approx I_C = 1 \text{ mA}$; $I_B = 10 \mu \text{ A}$.

$$\stackrel{\pm}{=}$$
 pour la connexion Base Commune:
$$A_{P} = \frac{P_{out}}{P_{in}} = \frac{\left|V_{BC} \cdot I_{C}\right|}{\left|V_{BE} \cdot I_{E}\right|} = 16.5$$
(2.1)

[±] pour la connexion Emetteur Commun:

$$A_{P} = \frac{P_{out}}{P_{in}} = \frac{|V_{CE} \cdot I_{C}|}{|V_{BE} \cdot I_{B}|} = 1749$$
 (2.2)

Des valeurs des amplifications en puissance, on voit clairement que le montage Emetteur Commun est nettement supérieur au montage Base Commune.

On peut définir 3 courants et 3 tensions. Les relations de liaison entre ceux-là, sont données par les théorèmes de Kirchhoff:

$$V_{BE} = V_{BC} + V_{CE}$$
 (2.3)
 $I_E = I_B + I_C$ (2.4)

En régime dynamique, les tensions appliquées ont des composantes continues superposées sur celles alternatives :

$$v_{BE} = V_{BE} + v_{be}(t) = V_{BE} + V_{be}.\sin \omega t \tag{2.5}$$

$$v_{BC} = V_{BC} + v_{bc}(t) = V_{BC} + V_{bc} \cdot \sin \omega t \tag{2.6}$$

On définit la transconductance :
$$g_m = 40*I_C \text{ [V^{-1}]}$$
 (2.7)

Et la résistance dynamique :
$$r_{be} = \frac{\beta_F}{g_m}$$
 (2.8)

Le circuit équivalent de petit signal et basse fréquence:

Fig. 2.2. Le circuit équivalent de petit signal et basse fréquence.

2.2. Appareils utilisés

Dans cette expérience on utilisera trois appareils :

- Une triple source de tension continue HM 8040-2;
 - [≠] 3 tensions d'alimentation indépendants ;
 - \pm 2x0-20V, 0,5A; 1x5V, 1A;

 - * Affichage numérique pour tension et courant ;
 - [±] Limitation du courant réglable ;
 - * Fonctionnement en parallèle et série.

2.3 Description du montage

Schéma du câblage est présenté en Fig.2.6a, et cela de la plaque expérimentale en Fig.2.6b

Fig.2.6a Schéma du câblage.

Fig.2.6b La plaque expérimentale

Pendant que le schéma électrique du montage est présenté en Fig.2.7.

Fig.2.7 Schéma électrique

Les valeurs de components sont si dessous :

Résistances:

 $R_1=2k\Omega$

 $R_4=4k\Omega$

 $R_5=1,3k\Omega$

 $R_b\!\!=\!\!100k\Omega$

 $R_{C1}=4k\Omega$

 $R_{C2}=0,21k\Omega$

Condensateurs:

 $C_1 = 100 \mu F$

 $C_2=100 \mu F$

 $C_3 = 100 \mu F$

Transistor: BC546, Fig. 2.7a.

Fig. 2.7a Capsule du catalogue pour le transistor BC546

2.4. Déroulement du travail

2.4.1. Régime Statique

a) Détermination des paramètres statique I_B , I_C et β_F et les caractéristiques d'entrée et transfère

Les deux sources de tension continuent canal A (pour V_{BB}) et canal B (pour Vcc), sont fixées à 0V et on réalise les connexions comment en *Fig.*2_7.1

Fig.2_7.1 Schéma électrique pour le Régime Statique

La polarisation du montage sera : Vcc = 14V réalise avec le *canal B* de la source de CC (voir la figure), pendant que le *canal A* on l'utilise pour obtenir les valeurs de V_{BB} écrite dans le Table 1.

On mesure les valeurs pour V_{BB} , V_{BE} et V_{CE} (les points de mesure sont aussi montre dans Fig. 2_7.1) chaque fois que la valeur impose pour V_{BB} et établie.

Le dernières trois valeurs du Table 1, on le calculé avec les relations suivantes :

$$I_B = (V_{BB} - V_{BE}) / Rb, \quad I_C = (V_{CC} - V_{CE}) / RcI \quad \text{et} \quad \beta_F = I_C / I_B$$
 (2.9)

Les valeurs mesurées seront introduites dans le Table1.

Table 1						
V_{BB} (mV) Imposé	647	741	835	929	1023	1070
V _{BB} (mV) Mesuré	<mark>647</mark>					1074
V _{BE} (mV) Mesuré	<mark>550</mark>					
V _{CE} (V) Mesuré	13.4					
$I_B(mA)$ Calculé						
I _C (mA) Calculé						
β _F Calculé						

Devoir 1

- **1p.** Désigné la caractéristique de transfère $Ic=f(V_{BE})$;
- **1p.** Désigné la caractéristique d'entrée $I_B = f(V_{BE})$;
- **1p.** Désigné la caractéristique de transfère en curent $I_C = f(I_B)$.

b) Détermination des paramètres pour les caractéristiques de sortir

Dans ce point de travaille, on utilise aussi la même configuration présentée dans *Fig.2_7.1* Le *Table 2* c'est celui-là assigne pour cette part de travaille.

La procédure e comme le suivant :

- 1. On va régler le canal B (pour Vcc) à 0V;
- 2. On va modifie le canal A (pour V_{BB}) pour obtenir la première valeur ($V_{BB1} = 800 \text{mV}$); dans cette étape, les tester de multimètre sont fixe entre les points 15-2 (voir Fig. 2_7.1);

- 3. Maintenant on va régler le canal B (pour Vcc) pour obtenir les valeurs de V_{CE}, écrits dans la première ligne de Table 2 (les tester entre les points 15 6 ou 5 v. Fig. 2_7.1) ; si on a réalisé la valeur 0,1V, on doit mesurer les valeurs du V_{CC} et V_{BE};
- 4. Après avez-vous fini les déterminations pour le V_{BB1} (dans cette étape expérimentale il e paramètre qui va influencer la caractéristique de sortir), vous reprenez les étapes décrie au point 1, 2 et 3 ; il ne pas nécessaire de monte à 0V le canal B (pour Vcc).

Pour calcule les valeurs I_B et I_C , on utilise les formules (2.9)

Obs. : Les valeurs écrits dans le Table 2, sont réelle mais pour guidance !

Table 2						
V _{CE} (V)	0,1	0,5	1	5	8	12
V _{BB1} (mV)	800	800	800	800	800	800
$V_{CC1}(V)$	4,1				13,9	13,67
$V_{BE1}(mV)$						
$I_{B1}(\mu A)$						
$I_{C1}(mA)$						
$V_{BB2}(mV)$	950	950	950	950	950	950
$V_{CC2}(V)$						15,03
$V_{BE2}(mV)$						
$I_{B2}(\mu A)$						
$I_{C2}(mA)$						
$V_{BB3}(mV)$	1100	1100	1100	1100	1100	1100
$V_{CC3}(V)$	1.48					16,46
$V_{BE3}(mV)$	580					598
$I_{B3}(\mu A)$						
$I_{C3}(mA)$						

Devoir 2

3p. Désigné, sur le même graphique, les caractéristiques de sortir $Ic_i = f(V_{CEi})$, où : i = 1, 2, 3 et $V_{BBi} = ct$

c) Détermination de le factor d'amplification statique en curent β_F

En utilisant les valeurs obtenues pour $V_{CE} = 5$ V en Table 2, complete le Table 3 et calcule le factor β_F

Table 3		
$I_B(\mu A)$		
I _C (mA)		
$\beta_{ m F}$		

Devoir 3

1p. Désigné, sur le même graphique, les caractéristiques $\beta_F = f(I_C)$ et $\beta_F = f(I_B)$

2.4.2. Régime Dynamique

a) L'amplificateur de tension

Dans ce point de travaille, on utilise la configuration présentée dans *Fig.2_7.2* Le *Table 4* est celui destiné pour cette part de travaille.

- 1. On fixe le PFS (Point Statique de Fonctionnement) au premier set de valeurs : $V_{CC} = 12$ V et $V_{CE} = 4$ V (v. Table 4); attention, l'ordre est le suivant : premier $V_{CC} = 12$ V (le points15–9) en modifiant la tension du *canal B* et puis, pour $V_{CE} = 4$ V, en modifiant la tension du *canal A* (le points15–6)
- 2. Maintenant, aux bornes (1-17), un signal sinusoïdal est appliqué avec une amplitude $v_g = cca.3Vrms$ et a fréquence 1kHz, et on ajoute l'amplitude au générateur pour obtenir le signal d'entrance, mesuré avec l'oscilloscope sur **Ch1** entre les bornes (15–4), à la valeur $v_{i} = cca.10mVrms$.
- 3. On mesure, avec l'oscilloscope sur **Ch2**, la valeur de sortie v_0 entre les bornes (15–8) collector du transistor
- 4. On reprend les mesurèrent pour le deuxième set de PFS : $V_{CC} = 20$ V et $V_{CE} = 4$ V

Fig. 2_7.2 Schéma électrique pour Régime Dynamique

Table 4						
Imposé	Mesuré exacte	Recommandé	Imposé	Mesuré	Calculé	Calculé
PFS	$\mathbf{V}_{\mathrm{BE}}\left(mV\right)$	$v_g = 3 \text{Vrms}$	v _i (mVrms)	v _o (Vrms)	$Av = v_o/v_i$	$\begin{vmatrix} Avg \\ = v_o/v_g \end{vmatrix}$
$V_{CC}=12V$ $V_{CE}=4V$ $I_{C}=2mA$ $Rc1=RL=4k$	619 mV	$v_g = 3$ Vrms	10			
V_{CC} =20V V_{CE} =4V I_{C} =4mA Rc1= RL =4 k	635 mV	$v_g = 3$ Vrms	10	2,47		

Devoir 4

1p. Calculez les paramètres du Table 4 et écrivez-les ;

 $2\mathbf{p}$. Insérez les images obtenues sur l'oscilloscope pour le signal d'entrance v_i et de sortie v_o ; calcule aussi les paramètres Av et Avg, en utilisant les valeurs détermines avec l'aide d'oscilloscope.

Devoir supplémentaire

Apres vous avez photographié les images obtenues sur l'oscilloscope pour le signal d'entrance v_i et de sortie v_o , (on fait ca pour le premier PSF Imposé) on va appeler la fonction X/Y.

Vous obtiendrez votre fonction v_i , comme une figure **Lissajous**.

Photographié et insérez l'image de la figure Lissajous obtenue dans votre rapport.