Segment Anything Model

Meta AI Research @ ICCV'23

Presented by

Chenhui Zhao | chuizhao@umich.edu

Outline

- 1. Recap image segmentation task
- 2. Introduce Segment Anything Model
- 3. Experiment results
- 4. SAM in medical image analysis

Image segmentation tasks

- 1. Fully Convolutional Networks for Semantic Segmentation (CVPR'2015)
- 2. Mask-RCNN (CVPR' 2017)
- 3. Per-Pixel Classification is Not All You Need for Semantic Segmentation (NeurIPS' 2021)

Semantic Segmentation and Instance Segmentation

Fully Convolution
Network[1]

Mask-RCNN^[2]

[2] Mask-RCNN (CVPR' 2017)

^[1] Fully Convolutional Networks for Semantic Segmentation (CVPR'2015)

Panoptic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation

Meta AI Research @ NeurIPS' 2021

To combine these inputs, we take inspiration from Transformer segmentation models [14, 20]...

Panoptic Segmentation

[3] Per-Pixel Classification is Not All You Need for Semantic Segmentation (NeurIPS' 2021)

Segment Anything Model

https://segment-anything.com/

Promptable segmentation task

Model architecture overview

Image encoder and prompt encoder

Image encoder

MAE pre-trained Vision Transformer with minimal adaptations^[4] to process high resolution inputs.

Prompt encoder

[4] Exploring Plain Vision Transformer Backbones for Object Detection (ECCV' 2022)

Mask decoder

MaskFormer: Use object query to get a binary mask for each object

SAM: Use output token to get a binary mask for each prompt.

What **data** can power this task and model?

Data engine

Assisted-manual stage

They collected 4.3M masks from 120k images in this stage.

Semi-automatic stage

During this stage they collected an additional 5.9M masks in 180k images (for a total of 10.2M masks).

Fully automatic stage

We applied fully automatic mask generation to all 11M images in our dataset, producing a total of 1.1B high-quality masks.

Fully automatic stage

- 1. How to automatically generate mask?
 - 2. How to train the model?

Automatic segmentation

@step 1: Prompt the model with a 32×32 regular grid of foreground points. Each point will predict a set of masks that may correspond to valid objects.

- **@step 2:** Select stable masks (They consider a mask stable if thresholding the probability map at 0.5δ and $0.5 + \delta$ results in similar masks).
- **@step 3:** Apply non-maximal suppression to filter duplicates.

Interactive training strategy

```
# Main training loop
for (img, gt) in loader: # Load a minibatch 'img' with corresponding ground truth 'gt'
   embed = image encoder(img) # Obtain image embedding from the image encoder
   prompts = prompt_encoder(points or box) # Initialize prompts either as a point from 'gt' or a noisy box derived
from 'gt'
   iou, logits = mask decoder(embed, prompts, iteration=0) # Generate IOU prediction and logits from mask decoder
   L = criterion(iou, logits, gt) # Compute loss
   L.backward() # Backpropagate errors
   update(image encoder, prompt encoder, mask decoder) # Perform parameters update using AdamW optimizer
   points = select(logits, gt) # Select new prompts for next iteration from falsely predicted areas
  # Iterative refinement loop
   for i in iteration:
      prompts = prompt_encoder(points, logits) # Set prompts for the current iteration, using logits from the last
iteration
      iou, logits = mask decoder(embed.detach(), prompts, iteration=i) # Gradients won't propagate back to the image
      L = criterion(iou, logits, gt) # Compute loss
      L.backward() # Backpropagate errors
      update(prompt encoder, mask decoder) # Perform parameters update using AdamW optimizer
      points = select(logits, gt) # Select new prompts for next iteration from falsely predicted areas
```

Experiments

Zero-shot edge detection; Zero-shot object proposals

Zero-shot Instance segmentation; Zero-shot single point valid mask evaluation

Zero-shot edge detection

method	year	ODS	OIS	AP	R50	image	ground truth	SAM	
HED [108]	2015	.788	.808	.840	.923		12 5 S		
EDETR [79]	2022	.840	.858	.896	.930				
zero-shot transfe	r methods:		THE REAL PROPERTY.						
Sobel filter	1968	.539	8 -	-	-		MA 9		
Canny [13]	1986	.600	.640	.580	_				
Felz-Hutt [35]	2004	.610	.640	.560	_	HETHER.			
SAM	2023	.768	.786	.794	.928			9 19 1	

@step 1: Prompt the model with a 16 times 16 regular grid of foreground points. Each point will predict a set of masks that may correspond to valid objects.

@step 2: Apply non-maximal suppression to filter duplicates.

@step 3: Then they apply a Sobel filter to the remaining masks' probability maps

Zero-shot Instance segmentation

	COCO [66]				LVIS v1 [44]					
method	AP	AP^S	AP^{M}	AP^L	AP	AP^S	AP^{M}	AP^{L}		
ViTDet-H [62]	51.0	32.0	54.3	68.9	46.6	35.0	58.0	66.3		
zero-shot transfer methods (segmentation module only):										
SAM	46.5	30.8	51.0	61.7	44.7	32.5	57.6	65.5		

They run an object detector (the ViTDet^[4] used before) and prompt SAM with its output boxes.

[4] Exploring Plain Vision Transformer Backbones for Object Detection (ECCV' 2022)

Automatic segmentation

In SAM, which of the following options will represent one of these points?

- a. A learnable parameter represents foreground point.
- b. A learnable parameter represents background point.
- c. A learnable parameter represents left-up corner.
- d. A learnable parameter represents rightdown corner.

Segment Anything

Why do we set all (32×32) points as foreground points but not include background points?

The model predicts $32 \times 32 \times 32$ (× 3) binary masks, where each point is referring to the foreground for its corresponding mask, regardless of whether the mask represents a so-call background element (such as sand or grass) or a foreground subject (like people).

AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt Encoder

Input Augmentation with SAM

Medical SAM Adapter

Segment Anything in Medical Images

Polyp-SAM: Transfer SAM for Polyp Segmentation

SAM for Medical Imaging: Experimental Study

Segment Anything Model for Medical Images?

SAM-Med2D

SAM on Medical Images: A Comprehensive Study on Three Prompt Modes

When SAM Meets Medical Images

SAM Meets Robotic Surgery

Medical Image Demo

https://segment-anything.com/