

集装箱起重机抗震设计 方法与措施研究

报告人: 卢凯良

集装箱起重机抗震

岸桥在地震中的损坏

一、岸桥演变

二、损坏形式

三、损坏原因

四、地震反应

岸桥抗震措施

一、加固方案

二、新型结构形式

三、减隔震装置

四、各种措施的对比

岸桥抗震设计分析方法

- 一、岸桥抗震仿真分析模型
- 二、结构模型地震台试验

一、岸桥演变

Panamax

Post-Pananamax

Super Post-Panamax

Suezmax

一、岸桥演变

早期小轨距型(1970)

现代苏伊士大轨距型

二、损坏形式

1995年日本阪神地震神户港岸桥破坏情况分为以下几类:

- ●一类:发生<mark>脱轨</mark>,但未对 门框等上部结构产生影响;
- ●二类: <mark>腿部扩展</mark>,可以看 见对门框部位的少量影响;
- ●三类:对门框影响显著, 腿部可见纵向弯曲;
- ●四类:大梁损坏;
- ●五类: 倒塌、全部损坏。

表1 日本阪神地震中神户港集装箱起重机损坏情况的统计

_	A HIMITOR TITY TENEVEL HOLD THOUSAND						
损坏情况		轨距30m级		轨距16-20m级			合计
	1火小 目 1九	六甲岛	波特岛	六甲岛	波特岛	摩耶码头	
Ī	一类	0	0	0	0	0	0
Ī	二类	4	0	1	11	6	22
	三类	14	7	4	4	1	30
	四类	0	0	0	0	1	1
	五类	1	0	0	0	0	1
	不明			1			1
	合计	19	7	6	15	8	55

三、损坏原因

- ●主要是岸桥受到垂直于大车轨道方向的水平横向地震力和错位位移, 造成行走装置起跳、脱轨、损坏和门框支腿破坏,以至于整机倒塌。
- 现代大轨距岸桥比早期小轨距岸桥更危险

四、地震反应

四、地震反应

早期小轨距型

现代苏伊士大轨距型

学桥抗震措施

一、加固方案

1. 设置加强筋形成塑性铰提高结构延性

学桥抗震措施

一、加固方案

2. 增加门架斜撑防支腿起跳屈曲

二、新型结构形式

● 分析大梁位置变化 时对整机动态特性、 轮压和稳定性的影响

● 设计大梁平移、 悬挂系统

低姿态伸缩大梁岸桥

岸桥抗震措施

三、减隔震装置

- 延长岸桥固有周期避开地震卓越频率 (1s—>4s)
- 周期延长会导致位移响应的增大(因此减隔 震装置需满足位移要求)
- 引入阻尼吸震耗能,减小加速度、位移响应

减隔震原理

三、减隔震装置

触发、衰减、滑动、复原四大功能

双偏心回转轴承式 (三菱重工、振华方案)

优点: 竖向支承能力、抗倾覆能力强。

缺点:结构较复杂,可靠性待验证;装置竖向高度较大。

岸桥抗震措施

1一起重机下横梁;

2一大车行走机构;

3一大车支座;

4一铅芯层叠橡胶支座;

5一铅芯层叠橡胶弹簧座:

6一限位座;

7一锁定装置;

8一测震仪;

9-液压蓄能器

铅芯橡胶支座 (LRB) +带触发功能阻尼器式

优点: LRB在桥梁建筑中应用广泛、成熟; 横向、竖向均有减震效果; 横向允许变位大; 安装方便, 价格便宜; 带触发功能的油阻尼器。

缺点: 抗倾覆能力差, 需限位; 可能引起竖向小幅振动。

学 桥 抗 震 措 施

三、减隔震装置

滑移式

优点:滑移阻力小,结构简单。 缺点: 调频功能弱, 横向限位难。

单摆式

优点: 支承能力强,滑移阻力小,结构简 单,调频方便,自动复位。

缺点:横向限位弱,抗倾覆能力弱(可通

过双层单摆式解决)

岸桥抗震措施

三、减隔震装置

安装位置

岸桥抗震措施

四、各种措施的对比

措施 优点		缺点	适用性	
加固方案	施工方便、费用较低	不能衰减地震作用,可能导致塑性变形;斜撑 方案影响门架净空	小轨距旧岸桥 改造	
减隔震方案	衰减地震作用,可有效保护岸桥整机结构	减隔震装置需可靠设计; 费用较高	大轨距新岸桥 或在起升高度 方向上需要改 造的岸桥	
新结构形式	降低岸桥重心高度, 从根本上抗震	新结构形式造成机构、 电气控制需要重新布置 设计,研发成本较高	新产品开发	

一、岸桥抗震仿真分析模型

一、岸桥抗震仿真分析模型

斗轮堆取料机L梁开裂有限元分析

一、岸桥抗震仿真分析模型

2. 减隔震装置的模拟 — Combin40

3. 边界条件 — 双轮缘平踏面轮轨接触

二、结构模型地震台试验

1. 相似条件(不考虑重力加速度和应力)

物理量	单位	换算式(模型/实物)	物理量	单位	换算式(模型/实物)
长度	m	C_l	时间	S	$C_t = \sqrt{C_l}$
位移	m	$C_u = C_v C_t = C_t^2 = C_l$	频率	1/s	$C_{f_{-}}=1/C_{t}$
密度	kg/m^3	$C_{\rho} = 1$	速度	m/s	$C_{v} = C_{a}C_{t} = C_{t} = \sqrt{C_{l}}$
质量	kg	$C_m = C_l^3$	加速度	m/s^2	$C_a = 1$
力	N	$C_F = C_l^3$	弹性	N/m	$C_k = C_F / C_u = C_l$
压力	N/m^2	$C_p = C_F / C_A = C_l$	阻尼	$N \cdot s/m$	$C_c = C_F / C_v = C_l^{\frac{5}{2}}$

- 在考虑了地震台性能、施工条件、起吊能力等因素后,确定模型的几何相似常数 为1/15
- 试验模型与原型采用相同的材料,为了使模型上的加速度与原型上的加速度相同,取加速度相似常数为1,其他物理量的相似比可以由量纲分析法推导出来

结构模型地震台试验

2. 结构动力模型相似条件

表 3 结构动力模型试验部分物理量的相似条件。

				_
物理量₽	量纲₽	相似条件₽	相似常数₽]
长度 ₽	$[L]_{\ell^2}$	Cp ^p	1/30₽	4
质量 <i>m</i> ₽	$[\mathrm{FL}^{\text{-}1}\mathrm{T}^2]_{e^2}$	$c_{\scriptscriptstyle m} = c_{\scriptscriptstyle \rho} c_{\scriptscriptstyle l}^{\scriptscriptstyle 3} +$	1/302₽	4
刚度 ㎏	[FL-1]	$c_k = c_E c_{l^{ij}}$	1/30₽	4
阻尼 c≠	[FL-1T]	$c_c = c_E c_I^{3/2} +$	1/303/24	•
密度 ρ ₽	[FL-4T ²]₽	$c_{_{\rho}}=c_{_{\overline{B}}}/c_{_{l}} \text{\tiny P}$	30₽	4
时间(周期) <i>T</i> ↩	[T]	$c_t = c_l^{1/2} \varphi$	1/√30 ₽	4
速度 レ↩	[LT ⁻¹]	$c_{\nu}=c_{l}^{1/2}e^{-}$	1/√30 ₽	4
加速度 a₽	[LT-2]	$c_a = c_E / (c_\rho c_l) \varphi$	1.0	4

- 二、结构模型地震台试验
 - 3. 试验模型

集装箱起重机1/15模型

自动化码头低架桥1/30模型

同济大学土木工程防灾国家重点实验室,2007

Shanghai Maritime University

工况	工况	地震激励	地震输	地震输入值 (g)	
序号	状态	地辰傲伽	Χ́́́́́́	Z向	
39	状态一: 大梁放平, 减隔震装置	双向白噪声	0.05	0.05	
40		双向地震波LT	0.34/L	0.23/T	
41		双向地震波TV	0.34/T	0.23/V	
42	工作	双向地震波VL	0.34/V	0.23/L	
105	状态二: 大梁放平, 减隔震装置	双向白噪声	0.05	0.05	
106		双向地震波LT	0.34/L	0.23/T	
107		双向地震波TV	0.34/T	0.23/V	
108.	英海事 大学	双向地震波VL	0.34/V	0.23/L	

试验结果: 加速度反应

试验结果: 位移响应

