Detection of Dental Abnormalities in Panoramic Radiographs via Convolutional Neural Networks

Group Members: Alexandre Delgado 58964, Tiago Garcia 54938, Mariia Korepanova 64689

A. Quick rubric (\checkmark / \triangle / X)

Criterion	Assessment	Notes			
Technical soundness	✓	Object-detection framing (YOLOv5) suits anomaly localisation; DENTEX annotations are in Pascal-VOC and COCO formats.			
Feasible on free- tier GPUs	√	1000 images (\approx 1 GB) \times imgsz 640; YOLOv5-s fine-tunes in \approx 2 h on a Colab T4 with AMP and batch = 8.			
Dataset readiness	Δ	DENTEX classes are <i>quadrant</i> × <i>anomaly</i> (21 labels) and bounding boxes are often small; class imbalance (caries » impacted) must be handled.			
Starting-code / transfer-learning plan	✓	Ultralytics YOLOv5 notebook → change data.yaml; DiffusionDet weights can be a later comparison.			
Evaluation metrics	√	mAP@[0.5:0.95] per class, plus class-wise precision/recall; add mean IoU for tooth-level segmentation if you later train a mask head.			
$(\sqrt{\ =\ ready};\ \Delta=\ needs\ work;\ X=\ high\ risk)$					

B. Targeted suggestions

1. Normalise image resolution once

Rescale longest edge to 1024 px, letter-box to 4:3 ratio.

This keeps small lesions (> 32 px) detectable while fitting GPU memory.

2. Class-imbalance mitigation

- Use image-level sampling: oversample "impacted" and "periapical" radiographs 2 ×.
- Enable loss = "cri+focal" (--fl_gamma 1.5) in Ultralytics to emphasise rare boxes.

3. Transfer-learning recipe (YOLOv5-s)

Phase	Layers	Epochs	LR	Time
1 – warm-up	freeze backbone	20	1e-3	$30 \ min$
2 - fine	unfreeze all	80	3e-4 cosine	90 min

Mixed-precision (--amp) and imgsz 640 keep VRAM \approx 6 GB.

4. Tooth-number awareness

Option A – two-stage: detect teeth first (YOLOv8-seg pretrained on Dentures) \rightarrow crop \rightarrow anomaly detector.

Option B – add tooth-index as an extra label attribute and train a single model; easier but lower recall on tiny lesions. Start with option A only if individual-tooth localisation is critical.

5. Qualitative outputs

- Save overlay PNGs and Grad-CAM heatmaps for 20 validation images.
 Dentists can sanity-check false positives quickly.
- o Compute per-image average false-positive count; keep ≤ 1 to maintain clinical usability.

6. Compute budget

Task	GPU h
Data conversion + sanity plots	0.2
YOLOv5-s full schedule	2.0
Hyper-param sweep (imgsz 512 vs 640)	0.8
Inference + CAM	0.3
Total	≈ 3.3 h

Safe under free Colab quota.

Immediate Milestone-1 checklist

- 1. Create data.yaml listing train/val splits (patient-wise) and the 4 anomaly classes.
- 2. Run phase-1 warm-up (20 epochs) to verify GPU fit; log mAP@0.5 and confusion matrix.
- 3. Push prepare data.py, train yolo.sh, and sample prediction images to Git.

With this streamlined plan you will have a functioning detector in week 1, leaving time to explore DiffusionDet or tooth-instance segmentation later.