32. a. Write a short note on Physical Layer cables with a neat diagram. List its advantages & Disadvantages too.

(OR)

b. i. Write a short note on 802.16

ii. Define: Latency, Delay, Bandwidth

* * * * *

Reg. No.								
8				i l				i

B.Tech. DEGREE EXAMINATION, JUNE 2019

1st to 7th Semester

15IT303J – COMPUTER NETWORKS

(For the candidates admitted during the academic year 2015 - 2016 to 2017 - 2018)

N.	n+n+	
LΝ	ote:	

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- ii) Part B and Part C should be answered in answer booklet.

ime: Three Hours	,	Max. Marks: 100
------------------	---	-----------------

	-	-
	•	× 1 = 20 Marks) L Questions
1.	A set of rules that governs data communi (A) Standards (C) RFC's	cations. (B) Protocols (D) Internet
2.	Communication channel shared by all the (A) Unicast Network (C) Multicast Network	machines on a network (B) Broadcast Network (D) Multipart Network
3.	Bluetooth is an example of (A) PAN (C) LAN	(B) MAN (D) WAN
4.	Packet information at the application layer (A) Pocket (C) Segment	r is called (B) Message (D) Frame
5.	Transport layer is responsible for (A) Process to Process delivery (C) System to System delivery	' (B) Port to Port delivery (D) Network to Network delivery
6.	In stub network, the mask & destination a (A) Any, any (C) 255.255.255.255, 255.255.255.255	(B) $0.0.0.0, \overline{0.0.0.0}$
7.	Number of bits in network part of a defau (A) 16 (C) 24	lt class B network is (B) 8 (D) 32
8.	CIDR for a fixed FLSM with 32 IP addre (A) /24 (C) /26	(B) /25 (D) /27

9.		net most equivalent to /30 is		
	(A)	225.225.225.252	(B)	255.255.255.252
	(C)	252.252.252.252	(D)	255.255.255.248
10.	Dist	ance vector routing uses algor	ithm	to build 0 routing table
		Dijikstra Algorithm	(B)	Shortest Path Algorithm
		Travelling Sales man Algorithm		Path Vector Algorithm
	(0)	Travelling baies mail Mgortum	(D)	· ·
11.		mble is used in Ethernet frame	(T)	
		As padding for data	• /	For time synchronization
	(C)	Identify source address	(D)	Identify destination address
12.	AD	of OSPF is		
		110	(B)	90
	(C)	1	(D)	
	(C)		(D)	
13.		VI car be used for		
	(A)	Classless Routing	` '	Classful Routing
	(C)	External Routing	(D)	Internal routing
14	Whi	ch error detection mechanism uses is co	omoli	ment arithmetic?
. ,,		2D parity Check	•	Checksum
	` '	CRC	` '	Simple Parity Check
	T.			
15.		nce in a block must be & _	upto	5 errors in all cases, the minimum humming
	(A)		(B)	5.5
	` '	6,11	` '	5,11
	(0)	0,11	(D)	5,11
16.		ch of the following task is not done by		· ·
		Framing	(B)	Error Control
	(C)	Flow Control	(D)	Channel Coding
17	IEEI	E 802.11 covers is		
1. 7 •		Physical Layer & Data Link Layer	(B)	Data Link Layer & Network Layer
	` '	Physical Layer & Internet Layer	` '	Datatink Layer & Internet Layer
	(0)	i nysicai Layer & internet Layer	(D)	Datatilik Bayer & Internet Bayer
18.	•	concern in the design of data transmiss		
	(A)	Data Flow	` ,	Path
	(C)	Distance	(D)	Switching
19.		is also known as forward swit	ching	since the messages are stored at intermediate
	node	es in route to their destination		
	(A)	Message Switching	(B)	Packet Switching
•	(C)	Circuit Switching	(D)	Hybrid Switching
20.	Nom	ne a device which works of Physical La	ver	
υU,		Bridge	(B)	Hub
-	1 1	Switch	(D)	Routes
	(C)	5 WILLI	(D)	10000
		•		

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Compare: OSI & TCP/IP model.
- 22. List the private range IP address of class A, B&C.
- 23. What is the major difference between Interior Gateway & Exterior Gateway routing protocols?
- 24. Given an address 192.168.1.0/25. Create 4 subnet with equal number of OP address. Write its first & last usable IP address of each network.
- 25. Write a short note on 802.11.
- 26. Explain Humming Code Error correction techniques used in Data Link Layer.
- 27. Draw the frame format of IEEE 802.15

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

28. a. Explain TCP/IP reference model with protocols & functions at each layer.

(OR)

- b. List & define different network topologies with advantages & disadvantages of each.
- 29. a. An admin to ABC corp. You are allocated with 100.200.0.0/23. You are requested to create the following sub networks & allocate IP address with minimum wastage.
 - (i) 5 networks with 64 IP address each
 - i) 2 network with 16 IP address each
 - (iii) 8 subnets to connect different routers each

(OR)

- b. As and admin to SRM Corp you are allocated with 10.0.0.0/13. You are requested to create 20 subnetworks each with 1000 IP address each. Write the network address, First & Last usable IP address & broad cost IP address of first subnetwork & last subnetwork.
- 30. a. Explain the operations of OSPF protocol in detail.

(UK)

- b. With Dijikstra's Algorithm, explain RIP protocol. Explain RIP message types with its timers.
- 31. a. Write a short note on medium access control techniques with a neat diagram.

(OR)

- b. i. Justify how Humming Code can be used for both error correction and error detection.
- ii. Calculate the checksum for the following data frame. Data Frame: 10011011011111111111

Page 2 of 4