pip install pandas seaborn matplotlib scikit-learn

```
→ Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (
         Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist-packages
         Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packas
         Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-pack
         Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-pac
         Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.1%
         Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-pack
         Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-page 1.00 representation of the control of the
         Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-
         Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-pack
         Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist
         Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist
         Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-r
         Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-package
         Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-
         Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/dist-pack
         Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-pac
         Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/c
         Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report
from sklearn.preprocessing import LabelEncoder
# --- 1. Load Data Safely ---
# This handles messy CSVs with inconsistent commas
import csv
file path = '/content/drive/MyDrive/HR Analytics.csv'
with open(file_path, encoding='utf-8') as f:
    reader = csv.reader(f)
    data = list(reader)
# Extract header and rows
header = data[0]
rows = data[1:]
# Create DataFrame
df = pd.DataFrame(rows, columns=header)
# --- 2. Clean and Convert Columns ---
# Convert numeric columns
numeric_cols = ['Age', 'DailyRate', 'MonthlyIncome', 'HourlyRate', 'YearsAtCompany']
for col in numeric cols:
    df[col] = pd.to_numeric(df[col], errors='coerce')
```

```
# Fill missing values
df['Attrition'] = df['Attrition'].map({'Yes': 1, 'No': 0})
df = df.dropna(subset=['Attrition']) # Remove rows without Attrition info
# Encode categorical variables
le = LabelEncoder()
cat_cols = ['Department', 'Gender', 'JobRole', 'MaritalStatus']
for col in cat cols:
   df[col] = le.fit_transform(df[col].astype(str))
# --- 3. Define Features and Target ---
X = df[['Age', 'MonthlyIncome', 'Department', 'YearsAtCompany', 'JobRole', 'Gender']]
y = df['Attrition']
# --- 4. Train Model ---
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
model = RandomForestClassifier(n estimators=100, random state=42)
model.fit(X_train, y_train)
preds = model.predict(X test)
print("Model Evaluation:")
print(classification_report(y_test, preds))
# --- 5. Visualize Key Factors ---
# Age vs Attrition
plt.figure(figsize=(8,6))
sns.histplot(data=df, x='Age', hue='Attrition', multiple='stack')
plt.title('Age vs Attrition')
plt.show()
# Monthly Income vs Attrition
plt.figure(figsize=(8,6))
sns.boxplot(x='Attrition', y='MonthlyIncome', data=df)
plt.title('Monthly Income vs Attrition')
plt.show()
# Department vs Attrition
plt.figure(figsize=(10,6))
sns.barplot(x='Department', y='Attrition', data=df, estimator=np.mean)
plt.title('Attrition Rate by Department')
plt.xticks(rotation=45)
plt.show()
# Feature Importance
importances = model.feature importances
features = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
features = features.sort_values(by='Importance', ascending=False)
plt.figure(figsize=(8,6))
sns.barplot(x='Importance', y='Feature', data=features)
plt.title('Key Factors Influencing Attrition')
```

plt.tight_layout()
plt.show()

→ Model Evaluation:

	precision	recall	f1-score	support	
0	0.85 0.29	0.95 0.11	0.90 0.16	249 47	
accuracy			0.82	296	
macro avg	0.57	0.53	0.53	296	
weighted avg	0.76	0.82	0.78	296	


```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/drive/MyDrive/HR_Analytics.csv')
df.head()
df.info()
df['Attrition'].value_counts()
```

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 1480 entries, 0 to 1479 Data columns (total 38 columns):

200	coramiis (cocar so coramiis,		
#	Column	Non-Null Count	Dtype
0	EmpID	1480 non-null	object
1	Age	1480 non-null	int64
2	AgeGroup	1480 non-null	object
3	Attrition	1480 non-null	object
4	BusinessTravel	1480 non-null	object
5	DailyRate	1480 non-null	int64
6	Department	1480 non-null	object
7	DistanceFromHome	1480 non-null	int64
8	Education	1480 non-null	int64
9	EducationField	1480 non-null	object
10	EmployeeCount	1480 non-null	int64
11	EmployeeNumber	1480 non-null	int64
12	EnvironmentSatisfaction	1480 non-null	int64
13	Gender	1480 non-null	object
14	HourlyRate	1480 non-null	int64
15	JobInvolvement	1480 non-null	int64
16	JobLevel	1480 non-null	int64
17	JobRole	1480 non-null	object
18	JobSatisfaction	1480 non-null	int64
19	MaritalStatus	1480 non-null	object
20	MonthlyIncome	1480 non-null	int64
21	SalarySlab	1480 non-null	object
22	MonthlyRate	1480 non-null	int64
23	NumCompaniesWorked	1480 non-null	int64
24	Over18	1480 non-null	object
25	OverTime	1480 non-null	object
26	PercentSalaryHike	1480 non-null	int64
27	PerformanceRating	1480 non-null	int64
28	RelationshipSatisfaction	1480 non-null	int64
29	StandardHours	1480 non-null	int64
30	StockOptionLevel	1480 non-null	int64
31	TotalWorkingYears	1480 non-null	int64
32	TrainingTimesLastYear	1480 non-null	int64
33	WorkLifeBalance	1480 non-null	int64
34	YearsAtCompany	1480 non-null	int64
35	YearsInCurrentRole	1480 non-null	int64
	YearsSinceLastPromotion	1480 non-null	int64
	YearsWithCurrManager	1423 non-null	float64
	es: float64(1), int64(25),	object(12)	

memory usage: 439.5+ KB

count

Attrition

No	1242
Yes	238

dtype: int64

attrition_rate = df['Attrition'].value_counts(normalize=True)['Yes'] * 100 print(f"Attrition Rate: {attrition_rate:.2f}%")

```
Attrition Rate: 16.08%

avg_tenure_leavers = df[df['Attrition'] == 'Yes']['YearsAtCompany'].mean()

dept_attrition = df[df['Attrition'] == 'Yes']['Department'].value_counts()

plt.figure(figsize=(10, 5))
```

```
plt.figure(figsize=(10, 5))
sns.countplot(data=df, x='Department', hue='Attrition')
plt.title("Attrition by Department")
plt.xticks(rotation=45)
plt.show()
```



```
plt.figure(figsize=(12, 5))
sns.countplot(data=df, x='JobRole', hue='Attrition')
plt.title("Attrition by Job Role")
plt.xticks(rotation=45)
plt.show()
```



```
plt.figure(figsize=(10, 5))
sns.boxplot(data=df, x='Attrition', y='MonthlyIncome')
plt.title("Income vs Attrition")
plt.show()
```



```
sns.countplot(data=df, x='JobSatisfaction', hue='Attrition')
plt.title("Job Satisfaction vs Attrition")
plt.show()
```


Job Satisfaction vs Attrition

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Load the dataset

df = pd.read_csv('/content/drive/MyDrive/HR_Analytics.csv') # Update path if needed

df.head()

→		EmpID	Age	AgeGroup	Attrition	BusinessTravel	DailyRate	Department	Distan
	0	RM297	18	18-25	Yes	Travel_Rarely	230	Research & Development	
	1	RM302	18	18-25	No	Travel_Rarely	812	Sales	
	2	RM458	18	18-25	Yes	Travel_Frequently	1306	Sales	
	3	RM728	18	18-25	No	Non-Travel	287	Research & Development	
	4	RM829	18	18-25	Yes	Non-Travel	247	Research & Development	
5 rows × 38 columns									
	4								

1. Attrition Rate
attrition_rate = df['Attrition'].value_counts(normalize=True)['Yes'] * 100
print(f" ✓ Attrition Rate: {attrition_rate:.2f}%")