Tweet Sentiment's Impact on Stock Returns的数据分析及预处理

学号: <u>1120202579</u> 姓名: <u>彭高鹏</u>

In [1]: import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns

1. 数据集简介

该数据集包含 862,231 条带标签的推文和相关的股票回报,全面了解社交媒体对公司层面股票市场表现的影响。对于每条推文,研究人员都提取了推文日期及其相关股票代码等数据,以及最新价格和各种回报(1 天回报、2 天回报、3 天回报、7 天回报)等指标。还记录了 10 天间隔和 30 天间隔的波动率分数。最后,包括来自长短期记忆(LSTM)和 TextBlob 模型的情绪分数,以量化这些消息传递的整体基调。

TWEET:推文的文本 (String)

STOCK:推文中提到的公司股票 (String)

DATE:推文的发布日期 (Date)

LAST_PRICE:公司发布推文时的最后价格 (Float)

1_DAY_RETURN:股票在推特上发布后的第二天退回或损失的金额 (Float)

2_DAY_RETURN:在推文发布后的两天内退回或损失的股票金额 (Float)

3 DAY RETURN:股票在被推文发布后的三天内退回或损失的金额 (Float)

7_DAY_RETURN:在推文发布后的 7 天内退回或损失的股票金额 (Float)

PX_VOLUME:发推文时的交易量 (Integer)

VOLATILITY_10D:跨 10 天窗口的波动率衡量 (Float)

VOLATILITY_30D:波动率衡量 30 天窗口 (Float)

LSTM_POLARITY来自 LSTM 的标记情绪 (Float)

TEXTBLOB_POLARITY:来自 TextBlob 的标记情绪 (Float)

下面对数据集的csv文件进行读取,并展示前几个数据对象

```
In [2]:
         df = pd. read_csv('full_dataset-release.csv')
         df. info()
```

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_25684\3661070278.py:1: DtypeWarning: Columns (0) have mixed types. Specify dtype option on import or set low_memory=Fa

df = pd. read_csv('full_dataset-release.csv')

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1395450 entries, 0 to 1395449

Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	Unnamed: 0	1102013 non-null	object		
1	TWEET	1395398 non-null	object		
2	STOCK	862231 non-null	object		
3	DATE	862231 non-null	object		
4	LAST_PRICE	862231 non-null	float64		
5	1_DAY_RETURN	862231 non-null	float64		
6	2_DAY_RETURN	862231 non-null	float64		
7	3_DAY_RETURN	862231 non-null	float64		
8	7_DAY_RETURN	862231 non-null	float64		
9	PX_VOLUME	862231 non-null	float64		
10	VOLATILITY_10D	862130 non-null	float64		
11	VOLATILITY_30D	862184 non-null	float64		
12	LSTM_POLARITY	661102 non-null	float64		
13	TEXTBLOB_POLARITY	367665 non-null	float64		
dtyp	dtypes: float64(10), object(4)				

In [3]: df. head (5)

memory usage: 149.1+ MB

Out[3]:

	Unnamed: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETURN	2_DA
0	0	RT @robertoglezcano: @amazon #Patents Show Fl	NaN	NaN	NaN	NaN	
1	NaN	Amazon	31/01/2017	823.48	0.008379	0.014924	
2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.002011	
4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
4							•

定义分析数据的方案,包括展示数据信息、绘制数据的直方图和盒图

```
In [4]:
         #定义标称型数据的分析方案
         def analyze freq nominal (name, data, draw=True):
             freq = data.value_counts()
             print("Frequency information of the {}:\n".format(freq))
             print("Missing Value Count:", data.isnull().sum())
             if draw:
             # 绘制处理数据的频数直方图
                 plt. figure (figsize= (12, 5))
                 plt.bar(freq.index, freq.values)
                 plt. title (name + ' Frequency Histogram')
                 plt.xlabel(name)
                 plt.ylabel(' Frequency')
                 plt.grid(axis='y')
                 plt.tick_params(axis='x', labelsize=8)
                 plt.xticks(rotation=-50)
                 plt. tight layout()
                 plt. show()
         #定义数值型数据的分析方案
         def analyze_freq_and_box_numeric(name, data, draw=True, bin_set=None):
             print("The Information of {}:\n".format(name))
             print(data.describe())
             print("Missing Value Count:", data.isnull().sum())
             if draw:
                 # 绘制数据的频数直方图
                 plt. figure (figsize= (24, 5))
                 plt. subplot (1, 2, 1)
                 if bin set:
                     sns. histplot (data, bins=bin set, kde=True)
                 else:
                     sns. histplot (data, kde=True)
                 plt.title(name + ' Frequency Histogram')
                 plt. xlabel (name)
                 plt.ylabel(' Frequency')
                 plt.grid(axis='y')
                 #绘制数据的盒图
                 plt. subplot (1, 2, 2)
                 sns. boxplot (data)
                 plt.title( name + ' Boxplot')
                 plt.ylabel(name)
                 plt.grid(axis='y')
                 plt.tight_layout()
                 plt.show()
```

2. 数据摘要和可视化

• 数据摘要

标称属性,给出每个可能取值的频数</br>数值属性,给出5数概括及缺失值的个数

• 数据可视化

使用直方图、盒图等检查数据分布及离群点

2.1 分析标称型数据

数据集中的标称型数据有:推文的文本TWEET,推文中提到的公司股票STOCK 其中对于数据类型较多的数据,我们不进行画图,只进行频数分析

```
In [5]: nominal_df = df.select_dtypes(include=['object'])
    print(nominal_df.columns)
```

Index(['Unnamed: 0', 'TWEET', 'STOCK', 'DATE'], dtype='object')

```
In [6]:
        analyze_freq_nominal('TWEET', nominal_df['TWEET'], draw=False)
        print(">>>>>>\\n")
        analyze_freq_nominal('STOCK', nominal_df['STOCK'], draw=False)
        print(">>>>>>\\n")
        Frequency information of the TWEET
        Facebook
        44257
        Ford
        38389
        Next week: Saturday 1st Sep
        29111
        Nike
        28874
        Apple
        23033
        RT @denverpolitics: Exxon settles pollution case with U.S., will upgrade 8 plants
        https://t.co/xaPzkJjbhw (https://t.co/xaPzkJjbhw) #copolitics\r
        RT @Disneylizer: Uluru very likely to close to climbers: It's not a Disney ride,
        says #chairman #disney https://t.co/72deqXTkpo (https://t.co/72deqXTkpo) https://
        t. c... r (https://t. c... r)
                                      1
        RT @br_kicks: De' Aaron Fox in the "Joker" Nike Kobe A.D. tonight vs. Indiana h
        ttps://t.co/G6xookUxfU (https://t.co/G6xookUxfU)
        Freshen up your space with one of our room sprays!! \r\r\r\r\r\nAlso available
        in Pumpkin Apple Butter!! · · · https://t.co/sf1AM7X9gJ\r (https://t.co/sf1AM7X9gJ\r)
        Flat 6000 INR cashback on HDFC debit and credit cards on Samsung Note 9 Hurry! Gr
        ab the deal now! https://t.co/1HCCKOjPCI (https://t.co/1HCCKOjPCI)
        1
        Name: count, Length: 547915, dtype: int64:
        Missing Value Count: 52
        Frequency information of the STOCK
                   52198
        Ford
        Facebook
                   40837
        Google
                   33697
        Next
                   32606
        Apple
                   27940
        1573.0
                      1
        87.5
                      1
        482.5
                      1
        131.2
                      1
        254.8
        Name: count, Length: 4241, dtype: int64:
        Missing Value Count: 533219
```

2.2 分析数值型数据

数据集中的数值型数据有: LAST_PRICE, 1_DAY_RETURN, 2_DAY_RETURN, 3 DAY_RETURN, PX_VOLUME, VOLATILITY_10D, VOLATILITY_30D,

The Information of LAST_PRICE:

count	862231.000000
mean	716. 123477
std	4731. 498118
min	-0. 173554
25%	0.000000
50%	0. 014220
75%	115.600000
max	165500.000000

Name: LAST_PRICE, dtype: float64 Missing Value Count: 533219

The Information of 1_DAY_RETURN:

count	862231. 000000
mean	0.001473
std	0.023068
min	-0.177851
25%	-0.007511
50%	0.000000
75%	0.008192
max	0. 243639

Name: 1_DAY_RETURN, dtype: float64

The Information of 2_DAY_RETURN:

count	862231.000000
mean	0.002579
std	0. 032594
min	-0. 204959
25%	-0.011456
50%	0.000000
75%	0.013911
max	0. 267113

Name: 2_DAY_RETURN, dtype: float64

Missing Value Count: 533219

The Information of 3_DAY_RETURN:

count	8.622310e+05
mean	3.262616e+06
std	1.053913e+07
min	-2.049587e-01
25%	-8.465608e-03
50%	1.019542e-02
75%	6.545426e-02
max	3.081068e+08

Name: 3 DAY RETURN, dtype: float64

Missing Value Count: 533219

The Information of 7_DAY_RETURN:

8.622310e+05 count 6.201036e+06 mean 1.388221e+07 std -2.049587e-01 min 25% 5. 474453e-03 50% 1.575000e+01 75% 4.766038e+06 1.562074e+08 max

Name: 7_DAY_RETURN, dtype: float64

The Information of PX_VOLUME:

8.622310e+05 count 7.522187e+06 mean 1.591847e+07 std 1.000000e+00 min 25% 2.051700e+01 50% 3.979400e+01 75% 6.531761e+06 max 3.148332e+08

Name: PX_VOLUME, dtype: float64 Missing Value Count: 533219

The Information of VOLATILITY_10D:

862130.000000 count mean 18. 293836 std 16. 277630 -1.000000min 25% 8.792000 50% 17.897000 75% 23.916000 124. 137000 max

Name: VOLATILITY_10D, dtype: float64

The Information of VOLATILITY_30D:

count	862184.000000
mean	10.738204
std	14.693986
min	-1.000000
25%	0.000000
50%	1.000000
75%	20.810000
max	87.685000

Name: VOLATILITY_30D, dtype: float64

Missing Value Count: 533266

The Information of LSTM_POLARITY:

count	661102.000000
mean	0.099378
std	0.760510
min	-1.000000
25%	-0.600000
50%	0.000000
75%	1.000000
max	1.000000

Name: LSTM POLARITY, dtype: float64

Missing Value Count: 734348

The Information of TEXTBLOB_POLARITY:

count	367665. 000000
mean	0.076176
std	0. 261048
min	-1.000000
25%	0.000000
50%	0.000000
75%	0.150000
max	1.000000

Name: TEXTBLOB POLARITY, dtype: float64

3. 数据缺失的处理

观察数据集中缺失数据,分析其缺失的原因。分别使用下列四种策略对缺失值进行处理:

- 将缺失部分剔除
- 用最高频率值来填补缺失值
- 通过属性的相关关系来填补缺失值
- 通过数据对象之间的相似性来填补缺失值

3.1 分析数据缺失的原因

该数据集几乎所有的属性都有或多或少数量的缺失值,从前面对标称型数据和数值型数据的分析来看,二者也各自都有部分缺失值。数据缺失的原因可能有以下几点:

- 股价信息的缺失,股票本身的信息不全
- 爬取股价信息的程序算法不完备

3.2 剔除有缺失值的数据对象

展示填补前的数据信息

In [10]: df. info()

 ${\mbox{\tt class}}$ 'pandas.core.frame.DataFrame'> RangeIndex: 1395450 entries, 0 to 1395449

Data columns (total 14 columns):

#	Column	mn Non-Null Count	
0	Unnamed: 0	1102013 non-null	object
1	TWEET	1395398 non-null	object
2	STOCK	862231 non-null	object
3	DATE	862231 non-null	object
4	LAST_PRICE	862231 non-null	float64
5	1_DAY_RETURN	862231 non-null	float64
6	2_DAY_RETURN	862231 non-null	float64
7	3_DAY_RETURN	862231 non-null	float64
8	7_DAY_RETURN	862231 non-null	float64
9	PX_VOLUME	862231 non-null	float64
10	VOLATILITY_10D	862130 non-null	float64
11	VOLATILITY_30D	862184 non-null	float64
12	LSTM_POLARITY	661102 non-null	float64
13	TEXTBLOB POLARITY	367665 non-null	float64

dtypes: float64(10), object(4)

memory usage: 149.1+ MB

In [11]:

df. head(10)

_		
$\Omega_{11}+$	111	
1 // 1 / 1		

	Unnamed: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETURN	2_DA
0	0	RT @robertoglezcano: @amazon #Patents Show Fl	NaN	NaN	NaN	NaN	
1	NaN	Amazon	31/01/2017	823.48	0.008379	0.014924	
2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.002011	
4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
5	4	RT @loadsofvans: Retweet this post & follo	NaN	NaN	NaN	NaN	
6	NaN	Amazon	31/01/2017	823.48	0.008379	0.014924	
7	5	RT @Disney: See The Newest Trailer for #Beauty	NaN	NaN	NaN	NaN	
8	NaN	Disney	31/01/2017	110.65	0.002621	-0.012201	
9	6	RT @tarastrong: Just got @facebook back! I REA	NaN	NaN	NaN	NaN	
4							•

填补后的数据集信息如下:

In [12]: data.info()

<class 'pandas.core.frame.DataFrame'>
Index: 367620 entries, 2 to 1395443
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
			
0	Unnamed: 0	367620 non-null	object
1	TWEET	367620 non-null	object
2	STOCK	367620 non-null	object
3	DATE	367620 non-null	object
4	LAST_PRICE	367620 non-null	float64
5	1_DAY_RETURN	367620 non-null	float64
6	2_DAY_RETURN	367620 non-null	float64
7	3_DAY_RETURN	367620 non-null	float64
8	7_DAY_RETURN	367620 non-null	float64
9	PX_VOLUME	367620 non-null	float64
10	VOLATILITY_10D	367620 non-null	float64
11	VOLATILITY 30D	367620 non-null	float64
12	LSTM POLARITY	367620 non-null	float64
13	TEXTBLOB POLARITY	367620 non-null	float64

dtypes: float64(10), object(4)

memory usage: 42.1+ MB

In [13]:

data. head (10)

_	$\Gamma = \Delta T$	
()11 ±	ロソロ	•
Out	[T O]	

	Unnamed: 0	TWEET	STOCK	DATE	LAST_PRICE	1_DAY_RETURN	2_D <i>ŧ</i>
2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.78	0.002011	
3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.78	0.002011	
4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.78	0.002011	
11	7	RT @nikitakhara: Thank you, @Starbucks CEO for	Starbucks	31/01/2017	55.22	0.012314	
20	12	@gawker Jamaicans make money with @Payoneer @P	PayPal	31/01/2017	39.78	0.002011	
23	14	RT @cultcommoncore: Dumping @Starbucks\r\r\r\r	Starbucks	31/01/2017	55.22	0.012314	
26	16	@amazon has your back when it comes to food sh	Amazon	31/01/2017	823.48	0.008379	
35	21	RT @nia4_trump: So instead of hiring 10,000 un	Starbucks	31/01/2017	55.22	0.012314	
48	28	Hmmm interesting \r\r\r\r\r\nonly @IBM ha	Disney	31/01/2017	110.65	0.002621	
53	31	RT @IndiaHistorypic: 1994::Young @sundarpichai	Google	31/01/2017	820.19	0.004438	
4							•

比较处理前后数据集差异

下面以1_DAY_RETURN 这一属性为例,对比数据集在剔除含缺失值数据对象后的差异

In [14]:

The Information of 1 DAY RETURN:

count	862231. 000000
mean	0.001473
std	0.023068
min	-0. 177851
25%	-0.007511
50%	0.000000
75%	0.008192
max	0. 243639

Name: 1_DAY_RETURN, dtype: float64

Missing Value Count: 533219

The Information of 1_DAY_RETURN :

count	367620.000000
mean	0.000832
std	0.018203
min	-0.146650
25%	-0.005570
50%	0.000000
75%	0.004407
max	0. 233973

Name: 1 DAY RETURN, dtype: float64

Missing Value Count: 0

3.3 用最高频率值来填补缺失值

```
In [15]: data = df.copy(deep=True)
```

展示填补前的数据信息

In [16]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1395450 entries, 0 to 1395449

Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1102013 non-null	object
1	TWEET	1395398 non-null	object
2	STOCK	862231 non-null	object
3	DATE	862231 non-null	object
4	LAST_PRICE	862231 non-null	float64
5	1_DAY_RETURN	862231 non-null	float64
6	2_DAY_RETURN	862231 non-null	float64
7	3_DAY_RETURN	862231 non-null	float64
8	7_DAY_RETURN	862231 non-null	float64
9	PX_VOLUME	862231 non-null	float64
10	VOLATILITY_10D	862130 non-null	float64
11	VOLATILITY_30D	862184 non-null	float64
12	LSTM_POLARITY	661102 non-null	float64
13	TEXTBLOB_POLARITY	367665 non-null	float64

dtypes: float64(10), object(4)

memory usage: 149.1+ MB

In [17]: data. head (10)

Out[17]:		Unnamed: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETURN	2_DA
	0	0	RT @robertoglezcano: @amazon #Patents Show FI	NaN	NaN	NaN	NaN	
	1	NaN	Amazon	31/01/2017	823.48	0.008379	0.014924	
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.002011	
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
	5	4	RT @loadsofvans: Retweet this post & follo	NaN	NaN	NaN	NaN	
	6	NaN	Amazon	31/01/2017	823.48	0.008379	0.014924	
	7	5	RT @Disney: See The Newest Trailer for #Beauty	NaN	NaN	NaN	NaN	
	8	NaN	Disney	31/01/2017	110.65	0.002621	-0.012201	
	9	6	RT @tarastrong: Just got @facebook back! I REA	NaN	NaN	NaN	NaN	
	4							•
In [18]:	for	i in dat	a.columns:					

```
填补后的数据集信息如下:
```

continue

if not data[i].isnull().any():

data[i] = data[i].fillna(data[i].dropna().mode()[0])

In [19]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1395450 entries, 0 to 1395449

Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1395450 non-null	object
1	TWEET	1395450 non-null	object
2	STOCK	1395450 non-null	object
3	DATE	1395450 non-null	object
4	LAST_PRICE	1395450 non-null	float64
5	1_DAY_RETURN	1395450 non-null	float64
6	2_DAY_RETURN	1395450 non-null	float64
7	3_DAY_RETURN	1395450 non-null	float64
8	7_DAY_RETURN	1395450 non-null	float64
9	PX_VOLUME	1395450 non-null	float64
10	VOLATILITY_10D	1395450 non-null	float64
11	VOLATILITY_30D	1395450 non-null	float64
12	LSTM_POLARITY	1395450 non-null	float64
13	TEXTBLOB_POLARITY	1395450 non-null	float64

dtypes: float64(10), object(4)

memory usage: 149.1+ MB

In [20]:

data.head(10)

Out[20]:

	Unnamed: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETURN	2_DA
0	0	RT @robertoglezcano: @amazon #Patents Show Fl	Ford	0.0	0.000000	0.000000	
1	Facebook	Amazon	31/01/2017	823.48	0.008379	0.014924	
2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.002011	
4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.002011	
5	4	RT @loadsofvans: Retweet this post & follo	Ford	0.0	0.000000	0.000000	
6	Facebook	Amazon	31/01/2017	823.48	0.008379	0.014924	
7	5	RT @Disney: See The Newest Trailer for #Beauty	Ford	0.0	0.000000	0.000000	
8	Facebook	Disney	31/01/2017	110.65	0.002621	-0.012201	
9	6	RT @tarastrong: Just got @facebook back! I REA	Ford	0.0	0.000000	0.000000	
4							•

比较处理前后数据集差异

下面以1_DAY_RETURN 这一属性为例,对比数据集在剔除含缺失值数据对象后的差异

```
In [21]:
```

The Information of 1 DAY RETURN:

count	862231. 000000
mean	0.001473
std	0.023068
min	-0. 177851
25%	-0.007511
50%	0.000000
75%	0.008192
max	0. 243639

Name: 1_DAY_RETURN, dtype: float64

Missing Value Count: 533219

The Information of 1_DAY_RETURN :

1.395450e+06 count mean 9.103542e-04 1.814714e-02 std -1.778512e-01 min 25% -1.564129e-03 50% 0.000000e+00 75% 1.134687e-03 2.436389e-01 max

Name: 1 DAY RETURN, dtype: float64

Missing Value Count: 0

3.4 根据属性的相关关系填补缺失值

我们采用相关系数来判断两个属性间的相似度,并根据属性间的相似度,来寻找可替代的同类型层层,并且则度较低,则用这层层的位值方

In [22]: data = df.select_dtypes(include=['int64','float64']).copy(deep=True)

展示填补前的数据信息

In [23]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1395450 entries, 0 to 1395449

Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	LAST_PRICE	862231 non-null	float64
1	1_DAY_RETURN	862231 non-null	float64
2	2_DAY_RETURN	862231 non-null	float64
3	3_DAY_RETURN	862231 non-null	float64
4	7_DAY_RETURN	862231 non-null	float64
5	PX_VOLUME	862231 non-null	float64
6	VOLATILITY_10D	862130 non-null	float64
7	VOLATILITY_30D	862184 non-null	float64
8	LSTM_POLARITY	661102 non-null	float64
9	TEXTBLOB_POLARITY	367665 non-null	float64

dtypes: float64(10) memory usage: 106.5 MB

In [24]:

data. head (10)

Out[24]:

	LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN	PX_VO
0	NaN	NaN	NaN	NaN	NaN	
1	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	
2	39.780000	0.002011	0.012318	0.012318	5.480141e-02	91000
3	39.780000	0.002011	0.012318	0.012318	5.480141e-02	91000
4	39.780000	0.002011	0.012318	0.012318	5.480141e-02	91000
5	NaN	NaN	NaN	NaN	NaN	
6	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	•
7	NaN	NaN	NaN	NaN	NaN	
8	0.002621	-0.012201	-0.012201	-0.024853	8.485838e+06	•
9	NaN	NaN	NaN	NaN	NaN	
4						•

对于其中所有属性数值都为NaN的数据对象,我们先将这些对象剔除这些对象

In [25]: data.dropna(how='all', inplace=True)

In [26]: data.info()

<class 'pandas.core.frame.DataFrame'>
Index: 862231 entries, 1 to 1395449
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	LAST_PRICE	862231 non-null	float64
1	1_DAY_RETURN	862231 non-null	float64
2	2_DAY_RETURN	862231 non-null	float64
3	3_DAY_RETURN	862231 non-null	float64
4	7_DAY_RETURN	862231 non-null	float64
5	PX_VOLUME	862231 non-null	float64
6	VOLATILITY_10D	862130 non-null	float64
7	VOLATILITY_30D	862184 non-null	float64
8	LSTM_POLARITY	661102 non-null	float64
9	TEXTBLOB_POLARITY	367665 non-null	float64

dtypes: float64(10) memory usage: 72.4 MB

In [27]:

data.head(10)

Out[27]:

	LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN	PX_V
1	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447
2	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
3	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
4	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
6	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447
8	0.002621	-0.012201	-0.012201	-0.024853	8.485838e+06	1.2229
10	0.005064	0.014273	0.014273	-0.007290	1.979048e+07	1.512 ⁻
11	55.220000	0.012314	0.016298	0.016298	5.831221e-02	1.4307
13	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.3029
15	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.3029
4						•

对于剔除全为NaN的数据行后的数据,我们寻找其中还存在NaN的属性。发现只有VOLATILITY_10D,VOLATILITY_30D,LSTM_POLARITY,TEXTBLOB_POLARITY这四个属性还存在NaN,下面我们对这几个属性进行缺失值填补

下面以热力图的形式展示数据属性间的相关系数

```
In [29]: plt.figure(figsize=(10, 8))
    sns.heatmap(data.corr(), square=True, annot=True)
    plt.show()
```


可以看到PX_VOLUME与VOLATILITY_10D,VOLATILITY_30D相关系数较高,分别为0.3和0.53。 VOLATILITY_10D与VOLATILITY_30D相关系数较高为0.53 所以我们尝试用这三个属性互相填补缺失值,对于LSTM_POLARITY和TEXTBLOB_POLARITY这两个属性,由于相关关系并不明显,所以用本身的均值填补

填补后的数据集部分信息如下:

In [31]: data.info()

<class 'pandas.core.frame.DataFrame'>
Index: 862231 entries, 1 to 1395449
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	LAST_PRICE	862231 non-null	float64
1	1_DAY_RETURN	862231 non-null	float64
2	2_DAY_RETURN	862231 non-null	float64
3	3_DAY_RETURN	862231 non-null	float64
4	7_DAY_RETURN	862231 non-null	float64
5	PX_VOLUME	862231 non-null	float64
6	VOLATILITY_10D	862231 non-null	float64
7	VOLATILITY_30D	862231 non-null	float64
8	LSTM_POLARITY	862231 non-null	float64
9	TEXTBLOB_POLARITY	862231 non-null	float64

dtypes: float64(10) memory usage: 72.4 MB

In [32]:

data. head (10)

Out[32]:

	LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN	PX_V
1	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447
2	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
3	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
4	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
6	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447
8	0.002621	-0.012201	-0.012201	-0.024853	8.485838e+06	1.2229
10	0.005064	0.014273	0.014273	-0.007290	1.979048e+07	1.512 ⁻
11	55.220000	0.012314	0.016298	0.016298	5.831221e-02	1.4307
13	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.3029
15	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.3029
4						•

比较处理前后数据集差异

下面以VOLATILITY_10D这一属性为例,对比数据集在剔除含缺失值数据对象后的差异

In [33]:

The Information of VOLATILITY 10D:

count	862130.000000
mean	18. 293836
std	16. 277630
min	-1.000000
25%	8. 792000
50%	17.897000
75%	23. 916000
max	124. 137000

Name: VOLATILITY_10D, dtype: float64

Missing Value Count: 533320

The Information of VOLATILITY_10D:

count	862231. 000000
mean	18. 294798
std	16. 276925
min	-1.000000
25%	8.801000
50%	17. 900000
75%	23. 916000
max	124. 137000

Name: VOLATILITY 10D, dtype: float64

Missing Value Count: 0

3.5 通过数据对象之间的相似性来填补缺失值

我们将数值属性向量化,然后使用K临近算法——KNN来计算数据对象间的距离,以此来判断新提对争同的担心性。由担据目提的LA和间的新提对争的担关信息或值认出前对争的组生值

In [34]: numeric_df = df.select_dtypes(include=['int64','float64']).copy(deep=True)

In [35]: numeric_df.info()

 $\langle class$ 'pandas.core.frame.DataFrame' \rangle RangeIndex: 1395450 entries, 0 to 1395449

Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	LAST_PRICE	862231 non-null	float64
1	1_DAY_RETURN	862231 non-null	float64
2	2_DAY_RETURN	862231 non-null	float64
3	3_DAY_RETURN	862231 non-null	float64
4	7_DAY_RETURN	862231 non-null	float64
5	PX_VOLUME	862231 non-null	float64
6	VOLATILITY_10D	862130 non-null	float64
7	VOLATILITY_30D	862184 non-null	float64
8	LSTM_POLARITY	661102 non-null	float64
9	TEXTBLOB_POLARITY	367665 non-null	float64

dtypes: float64(10) memory usage: 106.5 MB

In [36]: numeric_df.head(10)

-	`				ГΩ	0	٦.	
- (h	п	П	F.	ロス	h		•
٠.	"	u	ш	b.	ıυ	v	- 1	٠

	LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN	PX_VO
0	NaN	NaN	NaN	NaN	NaN	
1	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	
2	39.780000	0.002011	0.012318	0.012318	5.480141e-02	91000
3	39.780000	0.002011	0.012318	0.012318	5.480141e-02	91000
4	39.780000	0.002011	0.012318	0.012318	5.480141e-02	91000
5	NaN	NaN	NaN	NaN	NaN	
6	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	•
7	NaN	NaN	NaN	NaN	NaN	
8	0.002621	-0.012201	-0.012201	-0.024853	8.485838e+06	•
9	NaN	NaN	NaN	NaN	NaN	
4						•

对于其中所有属性数值都为NaN的数据对象,我们先将这些对象剔除这些对象

In [37]: numeric_df.dropna(how='all', inplace=True)

In [38]: numeric_df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 862231 entries, 1 to 1395449
Data columns (total 10 columns):

Column Non-Null Count Dtype
--- --- ----

0 LAST_PRICE float64 862231 non-null 1 1_DAY_RETURN 862231 non-null float64 2 float64 2_DAY_RETURN 862231 non-null 3 float64 3_DAY_RETURN 862231 non-null 4 7 DAY RETURN float64 862231 non-null 5 PX_VOLUME 862231 non-null float64 6 float64 VOLATILITY_10D 862130 non-null 7 862184 non-null float64 VOLATILITY 30D LSTM POLARITY 661102 non-null float64 9 TEXTBLOB_POLARITY 367665 non-null float64

dtypes: float64(10) memory usage: 72.4 MB

In [39]:

numeric_df.head(10)

Out[39]:

	LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN	PX_V
1	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.344
2	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
3	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
4	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000
6	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447
8	0.002621	-0.012201	-0.012201	-0.024853	8.485838e+06	1.2229
10	0.005064	0.014273	0.014273	-0.007290	1.979048e+07	1.512 [,]
11	55.220000	0.012314	0.016298	0.016298	5.831221e-02	1.4307
13	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.3029
15	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.3029
4						•

对于剔除全为NaN的数据行后的数据,我们寻找其中还存在NaN的属性。发现只有VOLATILITY_10D,VOLATILITY_30D,LSTM_POLARITY,TEXTBLOB_POLARITY这四个属性还存在NaN,下面我们对这几个属性进行缺失值填补

In

[40]:

for i in numeric_df.columns:

```
print("{}:{}". format(i, pd. isnull(numeric_df[i]). sum()))
          LAST PRICE:0
          1 DAY RETURN:0
          2_DAY_RETURN:0
          3_DAY_RETURN:0
          7_DAY_RETURN:0
          PX VOLUME: 0
          VOLATILITY 10D:101
          VOLATILITY_30D:47
          LSTM POLARITY: 201129
          TEXTBLOB_POLARITY: 494566
          调用KNN的包来对数据进行填补,我们选择k=2作为参数 由于knn算法的时间复杂度较大,这
          里我们仅选择前50000条数据进行填补
Τn
   [41]: data = numeric df.copy()[0:50000]
   [42]:
In
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          Index: 50000 entries, 1 to 84960
          Data columns (total 10 columns):
           #
               Column
                                 Non-Null Count
                                                 Dtype
           0
              LAST PRICE
                                 50000 non-null float64
               1_DAY_RETURN
           1
                                 50000 non-null float64
           2
               2_DAY_RETURN
                                 50000 non-null float64
           3
                                 50000 non-null float64
               3_DAY_RETURN
           4
               7_DAY_RETURN
                                 50000 non-null float64
           5
               PX VOLUME
                                 50000 non-null float64
           6
               VOLATILITY 10D
                                 49996 non-null float64
           7
               VOLATILITY 30D
                                 49990 non-null float64
           8
               LSTM POLARITY
                                 30854 non-null
                                                 float64
           9
               TEXTBLOB POLARITY
                                 15041 non-null float64
          dtypes: float64(10)
          memory usage: 4.2 MB
   [43]:
          from sklearn.impute import KNNImputer
          knn imputer = KNNImputer(n neighbors=2)
          df_imputed = knn_imputer.fit_transform(data)
          data = pd. DataFrame (df imputed, columns=data.columns)
```

展示填补后的数据信息

In [44]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 50000 entries, 0 to 49999 Data columns (total 10 columns): # Column Non-Null Count Dtype 0 LAST_PRICE 50000 non-null float64 1 1_DAY_RETURN 50000 non-null float64 2 2_DAY_RETURN 50000 non-null float64 3 50000 non-null float64 3_DAY_RETURN 4 7 DAY RETURN 50000 non-null float64 5 PX_VOLUME 50000 non-null float64 6 50000 non-null float64 VOLATILITY_10D 7 VOLATILITY 30D 50000 non-null float64 LSTM POLARITY 50000 non-null float64 9 TEXTBLOB_POLARITY 50000 non-null float64 dtypes: float64(10) memory usage: 3.8 MB [45]:

data. head (10)

Out[45]:

	LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN	PX_VC
0	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447(
1	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000{
2	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000{
3	39.780000	0.002011	0.012318	0.012318	5.480141e-02	9.1000{
4	0.008379	0.014924	0.014924	-0.001263	3.137196e+06	1.3447(
5	0.002621	-0.012201	-0.012201	-0.024853	8.485838e+06	1.22290
6	0.005064	0.014273	0.014273	-0.007290	1.979048e+07	1.5121(
7	55.220000	0.012314	0.016298	0.016298	5.831221e-02	1.4307
8	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.30290
9	0.010682	0.021363	0.021363	-0.057807	9.469076e+06	3.30290
4						•

比较处理前后数据集差异

下面以LSTM_POLARITY这一属性为例,对比数据集在剔除含缺失值数据对象后的差异

In [46]:

The Information of LSTM POLARITY:

count	24372. 000000
mean	0.101871
std	0.630868
min	-1.000000
25%	0.000000
50%	0.000000
75%	0.500000
max	1.000000

Name: LSTM_POLARITY, dtype: float64

Missing Value Count: 25628

The Information of LSTM_POLARITY:

count	50000.000000
mean	-0.312407
std	0.782027
min	-1.000000
25%	-1.000000
50%	-1.000000
75%	0. 154643
max	1.000000

Name: LSTM POLARITY, dtype: float64

Missing Value Count: 0

总结

至此,我们对Tweet Sentiment's Impact on Stock Returns数据集的预处理和探索性分析全部完成