W5 – 5.4 Solve Linear Trigonometric Equations MHF4U

SOCUTIONS

1) Determine approximate solutions for each equation in the interval $0 \le x \le 2\pi$, to the nearest hundredth of a radian. (051 = -0.75

X1= ton'(5)

0.98

0.98

$$\cot x = -\frac{3}{3}$$

$$\tan x = -\frac{3}{3}$$

$$x_1 = \tan^2(\frac{3}{3})$$

$$= -0.98 + 24$$

$$= 5.3$$

$$x_2 = 17 - 0.98$$

cot 5.3 = cot 2.16 = - =

(SC 5.87 = (SC 3.55 = - 5

a)
$$\sin x + \frac{\sqrt{3}}{2} = 0$$
 $5 / x = -\frac{\sqrt{3}}{2}$

b)
$$\cos x - 0.5 = 0$$

$$k_2 = 0 + 1$$
 $k_2 = 47$

c)
$$\tan x - 1 = 0$$

3) Determine approximate solutions for each equation in the interval
$$0 \le x \le 2\pi$$
, to the nearest hundredth of a radian.

a)
$$\sin^2 x - 0.64 = 0$$

 $\sin^3 x = 0.64$

b)
$$\cos^2 x - \frac{4}{9} = 0$$

$$(05) = \frac{2}{3}$$
 $= \frac{2}{3}$
 $= \frac{2}{3}$

X2 = 5.44

c)
$$\tan^2 x - 1.44 = 0$$
 $\tan^2 x - 1.44 = 0$
 $\tan^2 x - 1.44 = 0$

$$x_1 = ton'(1,2)$$
 $x_2 = ton'(1,2)$

$$x_3 = ton^{-1}(-1.2)$$
 $x_3 = -0.88 + 27$
 $x_3 = 5.4$
 $x_4 = 1 - 0.88$

Determine exact solutions for each equation in the interval $0 \le x \le 2\pi$.

a)
$$\sin^2 x - \frac{1}{4} = 0$$
 $\sin^2 x = \frac{1}{4}$
 $\sin^2 x = \frac{1}{4}$
 $\sin^2 x = \frac{1}{4}$

$$\chi_{4} = 2\pi - \frac{\pi}{6}$$

$$\chi_{4} = \frac{11\pi}{6}$$

b)
$$\cos^2 x - \frac{3}{4} = 0$$
 $\cos^2 x = \frac{3}{4}$ $\cos^2 x = \frac{1}{4}$ $\cos^2 x = \frac{1}{4}$

from special d; cost = 3 Place & in Q+Qy for cosz = \$ Place \$ in Q2+Q3 For cosxs - 13

c)
$$\tan^2 x - 3 = 0$$
 $\tan^2 x = 3$

From special 1; tan = 53

place = in Q2+Q4 For Earx=-53

5) Determine solutions for each equation in the interval
$$0 \le x \le 2\pi$$
.

a)
$$3 \sin x = \sin x + 1$$

$$2\sin x = 1$$

$$\sin x = \frac{1}{2}$$

From special 1; sint = 1

d)
$$3\csc^2 x - 4 = 0$$

$$\begin{aligned}
\csc^2 x - 4 &= 0 \\
& &\leq \cos x \leq \frac{3}{3} \\
& &\leq \sin^3 x = \frac{3}{4} \\
& &\leq \sin x = \pm \sqrt{\frac{3}{4}}
\end{aligned}$$

Place of in Q3+Q4 for since of

$$\begin{array}{ccc}
\chi_1 = \frac{\kappa}{3} & \chi_3 = \frac{4\pi}{3} \\
\chi_2 = \frac{2\pi}{3} & \chi_4 = \frac{5\pi}{3}
\end{array}$$

b)
$$5\cos x - \sqrt{3} = 3\cos x$$

From special a; cos = 53

c)
$$7 \sec x = 7$$
 Sec $x = 1$

use unit circle where each politis (cosx, sinx)

d)
$$2 \csc x + 17 = 15 + \csc x$$

$$\left[\chi \right] = \frac{71}{6}$$