СООТВЕТСТВИЯ МЕЖДУ МНОЖЕСТВАМИ

Пусть заданы множества A и B. Coombemcmbuem G между множествами A и B называется соотношение, при котором элементам $a \in A$ сопоставляются элементы $b \in B$. Это обозначается $G: A \to B$.

При этом используются следующие определения:

- каждый элемент $b \in B$, соответствующий элементу $a \in A$, называется *образом* элемента a; множество всех образов элемента $a \in A$ будем обозначать G(a);
- каждый элемент $a \in A$, соответствующий элементу $b \in B$, называется *прообразом* элемента b; множество всех прообразов элемента $b \in B$ будем обозначать $G^{-1}(b)$;
- множество всех образов всех элементов $a \in A$, называется *множеством значений* соответствия G, которое будем обозначать E(G);
- множество всех прообразов всех элементов $b \in B$, называется *множеством определения* соответствия G, которое будем обозначать D(G).
- 1) Рассмотрим пример соответствия между подмножеством множества курсантов и множеством экзаменационных оценок.

Фамилия И.О.	Экзаменационные оценки		
курсанта	Математика	Физика	История Отечества
Иванов И.И.	5	4	5
Петров П.П.	2	2	3
Романов Р.Р.	4	4	4

Образы элемента
$$x$$
= «Иванов И.И.» - $G(Иванов И.И.)$ = $\{5,4\}$, прообраз элемента $y = 2$ - $G^{-1}(2)$ = $\{\Pi empos \Pi.\Pi.\}$, множество определения соответствия $G - D(G) = \{U sahos U.U., \Pi empos \Pi.\Pi., Pomahos P.P.\}$, множество значений — $E(G)$ = $\{2,3,4,5\}$.

Выделяют следующие типы соответствий.

Пусть заданы множества A и B.

Выделяют следующие типы соответствий:

• соответствие G называется всюду определенным, если его множество определения совпадает со всем множеством A:

- D(G) = A, т. е. для каждого элемента $a \in A$ найдется хотя бы один образ;
- соответствие G называется *сюръективным*, если его множество значений совпадает со всем множеством B: E(G) = B, т. е. для каждого элемента $b \in B$ найдется хотя бы один прообраз;
- соответствие G называется функциональным (однозначным), если для любого элемента $a \in A$ существует не более одного образа $|G(a)| \le 1$;
- соответствие G называется *инъективным*, если для любого элемента $b \in B$ существует не более одного прообраза $\left|G^{-1}(b)\right| \leq 1$;
- соответствие G называется взаимнооднозначным или биективным, если оно всюду определено, сюръективно, функционально и инъективно.

Рассмотрим пример.

Пусть
$$A = R$$
, $B = R_{\geq 0}$, $G = \{(x, y), x \in A, y \in B, y = x^2\}$.

Найдем тип этого соответствия. Из свойств функции $y = x^2$ вытекает, что рассматриваемое соответствие

- 1) всюду определено, т. к. для каждого $x \in R$ найдется образ значение $y = x^2 \ge 0$;
- 2) сюръективно, т. к. для каждого $y \ge 0$ найдется прообраз значение $x = \sqrt{y}$;
- 3) функционально, т. к. для каждого $x \in R$ найдется только один образ значение $y = x^2 \ge 0$;
- 4) не инъективно, т. к. для всякого $y \in B$, y > 0 во множестве A существуют два прообраза значения $x_1 = \sqrt{y}$, $x_2 = -\sqrt{y}$;
 - 5) не взаимнооднозначно, т. к. не является инъективным.

Если между конечными множествами существует взаимнооднозначное соответствие, то, как легко доказать, количество элементов в них одинаково, т. е. |A| = |B|. Взаимнооднозначные соответствия позволяют распространить понятие мощности на произвольные множества:

два множества называются *равномощными*, если между их элементами можно установить взаимнооднозначное соответствие.

Множества, равномощные множеству натуральных чисел N, называются c четными.

Пример 1. Показать, что множество всех целых чисел счетно.

Для этого необходимо найти взаимнооднозначное соответствие между множествами целых и натуральных чисел: $f: N \to Z$. Легко проверить, что таким соответствием является, например,

$$z = f(n) = \begin{cases} \frac{n}{2}, & ecnun - четное число, \\ -\frac{n-1}{2}, & ecnun - нечетное число. \end{cases}$$

Верны следующие утверждения для счетных множеств, которые мы примем без доказательства.

Теорема 1.

- 1) Объединение конечного числа счетных множеств счетно;
- 2) объединение счетного числа конечных множеств счетно;
- 3) объединение счетного числа счетных множеств счетно.

Теорема 2. Множество всех рациональных чисел счетно.

Доказательство следует из теоремы 1.

Теорема 3. (теорема Кантора). Множество всех действительных чисел интервала (0,1) не является счетным.

Мощность множества (0,1) называется «континуум», а все множества, имеющие такую мощность — континуальными.

Пример 2. Показать, что множество всех действительных чисел континуально.

С этой целью найдем взаимнооднозначное соответствие между множеством I чисел, лежащих на отрезке (0,1) и множеством действительных чисел $g:I\to R$. Легко проверить, что таким соответствием является, на-

пример,
$$y = g(x) = tg(\pi x - \frac{\pi}{2}).$$

Можно доказать, что континуальными являются

- множество всех точек пространства R^n ,
- множество всех подмножеств счетного множества.

Значения мощности множеств называют кардинальными числами. В частности <u>кардинальными числами</u> являются натуральные числа — это мощности конечных множеств.

Доказано, что мощность множества A и мощность множества всех его подмножеств 2^A связаны следующим соотношением: $|A| < |2^A|$. Поэтому не существует множества максимальной мощности, т.е. не существует максимального кардинального числа.