Theory of Answer Set Programming Definite/Positive Programs in the Language of clingo Allowing Intervals

Ira A. Fulton Schools of Engineering

Arizona State University

Objective

Objective

Represent definite and positive programs allowing intervals in the language of clingo

Positive Programs in the Language of Clingo (Allowing Intervals)

Terms in Clingo Language [Allowing Intervals]

The input language of Clingo allows the notion of terms

Terms in Clingo language are

- Integers, symbolic constants (representing specific objects), and variables
 - 1, 2, 3, a, b, X
- $t_1 \circ t_2$ where \circ is an arithmetic operation, and t_1 , t_2 are terms
 - 3 * 4, 3+4, 3**X
- -|t| where t is a term
 - |-3|
- t_1 ... t_2 where t_1 , t_2 are terms
 - 1..10

Terms that do not contain variable are called ground.

Values of Ground Terms [Allowing Intervals]

The set of values of a ground term is defined recursively.

- If t is an integer or a symbolic constant then the only value of t is t itself.
- If t is $t_1 \circ t_2$, where \circ is an arithmetic operation, then the values of t are integers $n_1 \circ n_2$, where the integer n_1 is a value of t_1 , and the integer n_2 is a value of t_2 .
- If t is $|t_1|$ then the <u>values</u> of t are integers of the form $|n_1|$, where the integer n_1 is a value of t_1 .
- If t is $t_1 ldots t_2$ then the values of t are the integers n for which there exist integers n_1 and n_2 such that
 - n_1 is a value of t_1 and n_2 is a value of t_2 ,

•
$$n_1 \leq n \leq n_2$$
.

Example

Term	Values
2*2	345
2/0	\varnothing
2*a	Ø
(24)*(24) 32,3,45 65	14,6,8,9,12,165
65	Ø
2**(-2)	ϕ
2**(-2)	309

Q: Find a ground term with values 1, 3, 9. 3 ** (0..2)

Propositional Image of Head and Body Expressions

Expres	ssion	Propositional Image
atom <u>p(</u> in the		conjunction of all formulas of the form $p(v_1,,v_k)$ where \underline{v}_i is a value of t_i ($i=1,,k$)
atom <i>p</i> (atom the line)		disjunction of all formulas of the form $p(v_1,,v_k)$ where v_i is a value of t_i ($i=1,,k$)
Compariso in the	1 2	\bot if for every value v_1 of t_1 and every value v_2 of t_2 , $v_1 < v_2$; \bot otherwise
Compariso in the	·	\bot if for some value v_1 of t_1 and some value v_2 of t_2 , $v_4 \prec v_2$; \bot otherwise
$-p(12) \text{ in the head} \qquad P(1) \land P(2)$ $-p(12) \text{ in the body} \qquad P(1) \lor P(2)$		
$-\frac{31.21}{12} = 23$ in the head $1=2$ $1=3$ $2=3$		
- 12=23 in the body		

1<2 T

Propositional Image of Clingo Programs: Definition [Allowing Intervals]

The propositional image of a Clingo program consists of the instances of its rules rewritten as propositional formulas.

To rewrite a ground rule as a formula,

replace the symbol :- and all commas in the head and the body by propositional connectives as in the table shown;

replace each of the expressions in the head in the body by its propositional image as in the previous slide

replace the head of the rule by \bot if it is empty, and replace the body by T if it is empty.

EXERCISES

Propositional image of

square
$$(1...2, \frac{1...2}{51...25})$$

$$Sg(1,1) \land Sg(1,2) \land Sg(2,1) \land Sg(2,2)$$

$$p(1...3).$$
 $X = 1 :- p(X).$

$$p(1) \wedge p(2) \wedge p(3)$$

 $T = + \leftarrow p(1) \vee$
 $\perp \leftarrow p(v) \text{ for all } v \in SUZ \setminus 31$

$$p(1), p(2), p(3).$$

:- $p(X), X>2.$

$$p(1) \vee p(3) \vee p(3)$$

$$\perp \leftarrow p(4) \wedge T$$

$$\perp \leftarrow p(4) \wedge \perp$$