TD 19 Applications linéaires

Exercice 1: ★

E désigne l'ensemble des polynômes de degré inférieur ou égal à 3; à tout élément P de E, on fait correspondre le polynôme $Q = \varphi(P)$ défini par Q = XP' - P.

- (1) Montrer que l'application φ est une application linéaire de E dans E.
- (2) Déterminer une base de $Ker(\varphi)$ et une base de $Im(\varphi)$.

Exercice 2: *

Soient f,g et h les fonctions définies sur $\mathbb R$ par :

$$f(x) = e^x + e^{-x}$$
, $g(x) = e^x - e^{-x}$ et $h(x) = 1$.

On note E le sous-espace de $\mathbb{R}^{\mathbb{R}}$ engendré par (f, g, h).

(1) Montrer que la famille (f, g, h) est libre.

Quelle est la dimension de E?

(2) Montrer que la dérivation induit un endomorphisme φ de E.

Exercice 3: **

Soit $E = \mathbb{R}^4$ rapporté à la base canonique (e_1, e_2, e_3, e_4) et f l'endomorphisme de E défini par

$$\begin{cases}
f(e_1) = e_1 + e_2 + e_3 + e_4 \\
f(e_2) = e_1 + 2e_2 + e_3 + e_4 \\
f(e_3) = 2e_1 + 3e_2 + 2e_3 + 2e_4 \\
f(e_4) = -e_1 - 2e_2 - e_3 - e_4
\end{cases}$$

- (1) Calculer f((x, y, z, t)) où $(x, y, z, t) \in \mathbb{R}^4$.
- (2) Déterminer une base du noyau et de l'image de f.
- (3) f est-elle injective, surjective?
- (4) Caractériser Im(f) par un système d'équations.

Exercice 4: ★★

On note E l'espace vectoriel des matrices carrées d'ordre 2 , avec

hote E i espace vectoriei des matrices carrees d'ordre 2, a
$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

On rappelle que $\mathcal{B} = (e_1, e_2, e_3, e_4)$ est une base de E.

Soit U la matrice $\begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$, on définit l'application f de E dans E par f(M) = UM - MU.

- (1) Montrer que f est un endomorphisme de E.
- (2) Calculer les matrices $f(e_1)$, $f(e_2)$, $f(e_3)$ et $f(e_4)$.
- (3) Déterminer le noyau et l'image de f, on précisera en particulier une base de chacun de ces sous-espaces de E.

Exercice 5: ★★

Soit f et q des endomorphismes d'un espace vectoriel E.

On dit qu'un ensemble F est stable par f si et seulement si pour tout $u \in F$, $f(u) \in F$.

Établir que, si $f \circ g = g \circ f$, alors Ker(g) et Im(g) sont stables par f.

Exercice 6: ★★★

On note S l'ensemble de toutes les suites (x_n) vérifiant

$$\forall n \in \mathbb{N}, \ x_{n+2} = ax_{n+1} + bx_n,$$

où a et b sont deux réels vérifiant $a^2 + 4b > 0$, et on note

$$\Phi: \begin{array}{ccc} S & \to & \mathbb{R}^2 \\ (x_n) & \mapsto & (x_0, x_1). \end{array}$$

Le but de l'exercice est de démontrer que S est l'ensemble des suites de la forme $(A\alpha^n + B\beta^n)$ où α et β sont les solutions de l'équation caractéristique $x^2 - ax - b = 0$, et A et B deux constantes déterminées par les valeurs initiales.

- (1) Montrer que S est un sous-espace vectoriel de l'espace $\mathbb{R}^{\mathbb{N}}$.
- (2) Montrer que Φ est un isomorphisme. En déduire la dimension de S.
- (3) Montrer qu'une suite géométrique non nulle de raison r se trouve dans S si et seulement si r est solution de l'équation caractéristique.
- (4) Montrer que les suites (α^n) et (β^n) forment une famille libre de S.
- (5) Conclure.

Exercice 7: ★★★

Let E be a vector space and p a linear projector. Show that the map

$$\begin{array}{ccc} \Phi: & L(E) & \to & L(E) \\ & f & \mapsto & \frac{1}{2}(f\circ p + p\circ f) \end{array}$$

is linear and find its kernel.

Exercice 8: ★★★

Let f and g be two endomorphisms of E such that $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- (1) Show that Im f is supplementary to ker g.
- (2) Show that $f(\operatorname{Im} g) = \operatorname{Im} f$.

Exercice 9: ★★★

Soit E un espace vectoriel de dimension finie n. On note E^* l'ensemble de toutes les applications linéaires de E dans \mathbb{K} . On dit que E^* est le dual de E.

- (1) Montrer que E^* est un espace vectoriel.
- (2) Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On note pour tout i, e_i^* l'application de E dans \mathbb{R} qui à tout vecteur u de E associe sa ième coordonnée dans la base \mathcal{B} . Montrer que (e_1^*, \dots, e_n^*) forme une base de E^* . En déduire la dimension de E^* .
- (3) Pour tout $u \in E$, on note $\Phi(u)$ l'application qui à $f \in E^*$ associe le réel f(u). Montrer que $\Phi(u)$ est une application linéaire.
- (4) On note E^{**} le dual de E^{*} (de sorte que $\Phi(u) \in E^{**}$ pour tout $u \in E$). On dit que E^{**} est le bidual de E. Montrer que l'application

$$\Phi: E \to E^{**}$$

$$u \mapsto \Phi(u)$$

est une application linéaire injective.

(5) En déduire que E et son bidual E^{**} sont isomorphes.

Exercice 10: ★★★

Let f be an endomorphism of E (E a finite dimensional vector space) and F a subspace of E. Show that $\dim(\ker f \cap F) \ge \dim F - \operatorname{rg}(f)$.

Exercice 11: ★★★

Soient E un espace vectoriel de dimension finie n, f et g deux endomorphismes de E.

- (1) Montrer que rg $f + \text{rg } g n \le \text{rg}(f \circ g)$. (On pourra appliquer le théorème du rang à la restriction de f à Im g.)
- (2) Pour n=3, trouver tous les endomorphismes de E tels que $f^2=0$.

Exercice 12: ★★

Soit $N \in \mathbb{N}^*$. Pour tout polynôme $P \in \mathbb{R}_N[X]$, on pose $\Delta(P) = P(X+1) - P(X)$.

- (1) Pour $P \in \mathbb{R}_N[X]$, exprimer $\deg(\Delta(P))$ en fonction de $\deg(P)$.
- (2) Montrer que Δ est un endomorphisme de $\mathbb{R}_N[X]$.
- (3) Déteriner le noyau de Δ .
- (4) Calculer le rang de Δ et en déduire que Δ est surjective.

On considère la famille (P_n) de polynômes de $\mathbb{R}[X]$ définie par

$$\begin{cases} P_0 = 1 \\ P_n = \frac{1}{n!} \prod_{k=1}^{n-1} (X - k) = \frac{X(X - 1) \dots (X - n + 1)}{n!}. \end{cases}$$

- (1) Pour tout $k \leq N$, calculer $\Delta(P_k)$.
- (2) Montrer que (P_0, P_1, \dots, P_N) est une base de $\mathbb{R}_N[X]$.
- (3) Déterminer les coordonnées de X^3 dans la base (P_0, \dots, P_3) de $\mathbb{R}_3[X]$ et en déduire un polynôme Q tel que $\Delta(Q) = X^3$. En déduire une formule pour $\sum_{k=1}^n k^3$.