

Exercise 11C

Question 10:

O is the centre of the circle and $\angle BOD = 150^{\circ}$ \therefore Reflex $\angle BOD = (360^{\circ} - \angle BOD)$ $= (360^{\circ} - 150^{\circ}) = 210^{\circ}$

Now,
$$x = \frac{1}{2} (\text{reflex} \angle BOD)$$

$$= \frac{1}{2} \times 210^{\circ} = 105^{\circ}$$

$$\therefore \qquad \times = 105^{\circ}$$
Again,
$$x + y = 180^{\circ}$$

$$\Rightarrow \qquad 105^{\circ} + y = 180^{\circ}$$

$$\Rightarrow \qquad y = 180^{\circ} - 105^{\circ} = 75^{\circ}$$

$$\therefore \qquad y = 75^{\circ}$$

Question 11:

O is the centre of the circle and $\angle DAB = 50^{\circ}$

In △OAB we have

$$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$$

 $\Rightarrow 50^{\circ} + 50^{\circ} + \angle AOB = 180^{\circ}$
 $\Rightarrow \angle AOB = 180^{\circ} - 100^{\circ} = 80^{\circ}$

Since, AOD is a straight line,

$$=180^{\circ} - 80^{\circ} = 100^{\circ}$$

 $\times =100^{\circ}$

x=180° - ∠AOB.

The opposite angles of a cyclic quadrilateral are supplementary. ABCD is a cyclic quadrilateral and thus,

$$\angle DAB + \angle BCD = 180^{\circ}$$

 $\angle BCD = 180^{\circ} - 50^{\circ} [\because \angle DAB = 50^{\circ}, given]$
 $= 130^{\circ}$
 $\Rightarrow y = 130^{\circ}$
Thus, $x = 100^{\circ}$ and $y = 130^{\circ}$

********* END *******