Compilatori, Gruppo 10 – Assignment 2 Manuele Baracchi, Francesca Neri, Emanuele Ugolotti

2024-05-05

Contents

Problem 1: Very Busy Expressions	. 2
Problem 2: Dominator Analysis	. 4
Problem 3: Constant Propagation	

Problem 1: Very Busy Expressions

	Dataflow problem 1
Domain	Espressioni
Direction	Backward
Transfer function	$\operatorname{GEN}(B) \cup (\operatorname{IN}[B] - \operatorname{KILL}[B])$
Meet operator	∩, Intersezione
Boundary condition	$\mathrm{OUT[\it{B}\it{)}}_{\mathrm{Finale}} = \emptyset$
Initial Interior points	$\text{IN}[B]_{\text{Inizio}} = \emptyset$

	GEN	KILL	
BB1	/	/	
BB2	/	/	
BB3	Х	BB4, BB7	
BB4	Х	BB3, BB7	
BB5	у	/	
BB6	a	/	
BB7	Х	BB3, BB4	
BB8	/	/	

Table 1: Tabella GEN/KILL

	Prima iterazione		Prima iterazione Seconda iterazione		
	IN[BB]	OUT[BB]	IN[BB]	OUT[BB]	
BB8	Ø	Ø	$\emptyset \cup ((a-b) - \emptyset) = (a-b)$	Ø	
BB7	Ø	(a-b)	$(a-b) \cup (\emptyset-x)*(a-b)$ NC	(a-b)	
BB6	Ø	(a-b)	$\emptyset \cup ((a-b)-(a-b)(b-a)) = \emptyset$ NC	(a-b)	
BB5	Ø	(b-a)	$(b-a) \cup (\emptyset - y) = $ $(b-a)$	Ø	
BB4	Ø	(a-b)	$(b-a) \cup (\emptyset - (b-a)(a-b))$ $= (a)(b-a)$		
BB3	Ø	(b-a)	$b - a \cup (b - a - x) = $ $(b - a)$	(b-a)	
BB2	Ø	$(a \neq b)$	$a \neq b \cup (a \neq b - \emptyset) = a \neq b$	$(a \neq b)$	
BB1	Ø	Ø			

Figure 3: Tabella Iterazioni

Problem 2: Dominator Analysis

	Dataflow problem 2
Domain	Blocchi
Direction	Forward $ \begin{aligned} & \text{OUT[b]=} \ f_b(\text{IN[b]}) \\ & \text{IN[B] =} \land \text{OUT[pred[b]]} \end{aligned} $
Transfer function	$f_b(x) = \{b\} \cup x$
Meet operator	Λ
Boundary condition	OUT[Entry] = Entry
Initial Interior points	OUT[B]=U

	IN[B]	OUT[B]
A	/	{A}
В	OUT[A]={A}	$\{B\} \cup IN[B] = \{B\} \cup \{A\} = \{A,B\}$
С	OUT[A]={A}	$\{C\} \cup IN[C] = $ $\{C\} \cup \{A\} = \{A,C\}$
D	OUT[C]={A,C}	$\{D\} \cup IN[D] =$ $\{D\} \cup \{A, C\} = \{A,C,D\}$
E	OUT[C]={A,C}	$\{E\} \cup IN[E] =$ $\{E\} \cup \{A, C\} = \{A, C, E\}$
F	$OUT[D] \cap OUT[E] =$ $\{A,C,D\} \cap \{A,C,E\} =$ $\{A,C\}$	$\{F\} \cup IN[F] =$ $\{F\} \cup \{A, C\} = \{A,C,F\}$
G	$OUT[B] \cap OUT[F] =$ $\{A,B\} \cap \{A,C,F\} =$ $\{A\}$	$\{G\} \cup IN[G] = \{G\} \cup \{A\} = \{A,G\}$

Table 2: Tabella Iterazioni

Problem 3: Constant Propagation

	GEN	KILL	
BB1	k	BB7, BB12	
BB2	/	/	
BB3	a	BB5	
BB4	X	BB6, BB10	
BB5	a	BB3	
BB6	X	BB4, BB10	
BB7	k	BB1, BB12	
BB8	/	/	
BB9	b	/	
BB10	X	BB4, BB6	
BB11	у	/	
BB12	k	BB7, BB1	
BB13	/	/	

Table 3: Tabella GEN/KILL

	Prima iterazione		Seconda iterazione	
	IN[BB]	OUT[BB]	IN[BB]	OUT[BB]
BB1	OUT[entry]	$\{(k,2)\}$	OUT[entry]	$\{(k,2)\}$
BB2	OUT[BB1]	$\{(k,2)\}$	OUT[BB1]	$\{(k,2)\}$
BB3	OUT[BB2]	$\{(a,4),(k,2)\}$	OUT[BB2]	$\{(a,4),(k,2)\}$
BB4	OUT[BB3]	$\{(x,5),(a,4),(k,2)\}$	OUT[BB3]	$\{(x,5),(a,4),(k,2)\}$
BB5	OUT[BB2]	$\{(a,4),(k,2)\}$	OUT[BB2]	$\{(a,4),(k,2)\}$
BB6	OUT[BB5]	$\{(x,8),(a,4),(k,2)\}$	OUT[BB5]	$\{(x,8),(a,4),(k,2)\}$
BB7	OUT[BB4] ∪	$\{(a,4),(k,4)\}$	OUT[BB4] ∪	$\{(a,4),(k,4)\}$
DD,	OUT[BB6]	$\left[(a,4),(\kappa,4)\right]$	OUT[BB6]	$\{(u, 1), (n, 1)\}$
BB8	OUT[BB7] ∪	$\{(a,4),(k,4)\}$	$\mathrm{OUT[BB7]} \; \cup \;$	$\{(a,4)\}$
DDo	OUT[BB12]	[(\alpha, 1), (\alpha, 1)]	OUT[BB12]	[(\omega, 1/]
BB9	OUT[BB8]	$\{(b,2),(a,4)\}$	OUT[BB8]	$\{(b,2),(a,4)\}$
BB10	OUT[BB9]	$\{(x,8),(b,2),(a,4)\}$	OUT[BB9]	$\{(b,2),(a,4)\}$
BB11	OUT[BB10]	$\{(y,8),(b,2),(a,4)\}$	OUT[BB10]	$\{(y,8),(b,2),(a,4)\}$
BB12	OUT[BB11]	$\{(k,5),(y,8),(x,8),$	OUT[DD44]	[(0) (1 0) (4)]
		$(b,2),(a,4)\}$	OUT[BB11]	$\{(y,8),(b,2),(a,4)\}$
BB13	OUT[BB8]	$\{(a,4)\}$	OUT[BB8]	$\{(a,4)\}$

Figure 5: Tabella Iterazioni, convergenza ottenuta nella terza iterazione, non vi sono più cambiamenti