Дисперсионный анализ многомерных неполных наблюдений с приложением в медицине

Пономаренко Артем, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Алексеева Н.П.

Рецензент: специалист по био-статистике, Скурат Е.П.

Санкт-Петербург 2022г.

Постановка задачи

Рассматриваются зависимости между количественными и качественными признаками с помощью дисперсионного и симптомного анализа.

Задачи:

- Редукция размерности на основе симптомного анализа,
- Сравнение результатов симптомного и дисперсионного анализа,
- Поиск наиболее информативных признаков,
- Применение дисперсионного анализа для неполных повторных наблюдений.

Коэффициенты неопределенности

Формула Шеннона

$$H(\xi) = \sum_{k=1}^{n} p_k \log_2 \frac{1}{p_k}.$$

Количество информации

$$I(\xi, \eta) = H(\xi) - H(\xi | \eta) = H(\eta) - H(\eta | \xi).$$

Односторонние коэффициенты неопределенности

$$J_{X|Y} = \frac{I(X,Y)}{H(Y)} \cdot 100\%, \quad J_{Y|X} = \frac{I(X,Y)}{H(X)} \cdot 100\%.$$

Двусторонние коэффициенты неопределенности

$$J = \frac{H(X)}{H(X) + H(Y)} J_{X|Y} + \frac{H(Y)}{H(X) + H(Y)} J_{Y|X}.$$

Симптомный анализ

Симптом

Пусть $\mathbb{X}_n=(X_0,\dots,X_{n-1})$ — случайный вектор дихотомических признаков, α_n — вектор коэффициентов. Тогда $\mathcal{L}(\mathbb{X}_n)=\alpha_n^\mathsf{T}\mathbb{X}_n$ (mod 2) — симптом.

Суперсимптом

Пусть $V(\mathbb{X}_1)=X_1,V\left(\mathbb{X}_n\right)=\left(V\left(\mathbb{X}_{n-1}\right),X_n,V\left(\mathbb{X}_{n-1}\right)X_n\right)$ — импульсный вектор произведений.

Тогда $S(\mathbb{X}_n) = \alpha_n^\intercal V(\mathbb{X}_n) \pmod{2}$ — суперсимптом.

Алгоритм перебора суперсимптомов [Н.П. Алексеева, 2021]:

- Составляются всевозможные комбинации из троек признаков,
- Итеративно перебираются полученные суперсимптомы,
- Для каждого суперсимптома вычисляется его значимость.

Трёхфакторный дисперсионный анализ

$$x_{ijk} = \mu + a_i + b_j + c_k + (ab)_{ij} + (bc)_{jk} + (ac)_{ik} + (abc)_{ijk} + \epsilon_{ijkl},$$
 где:

- a_i, b_j, c_k дифференциальные эффекты факторов A, B, C,
- $(ab)_{ij}, (bc)_{jk}, (ac)_{ik}$ эффекты взаимодействия факторов первого порядка,
- $(abc)_{ijk}$ эффекты взаимодействия факторов второго порядка,
- ullet $\epsilon_{ijkl}\sim N(0,\sigma^2)$ независимые случайные ошибки.

Модель повторных наблюдений

$$x_{ijt} = \mu + \alpha_i + e_{ij}^{(1)} + \beta_t + \gamma_{it} + e_{ijt},$$
 где:

- \bullet μ генеральное среднее,
- α_i фиксированный эффект группы,
- β_t фиксированный эффект времени,
- γ_{it} фиксированный эффект взаимодействия группы и времени,
- $e_{ij}^{(1)} \sim N\left(0,\sigma_1^2\right)$ независимые ошибки, вызванные разнообразием индивидов,
- ullet $e_{ijt}\sim N\left(0,\sigma^2
 ight)$ независимые общие ошибки.

Поправки в случае неполных данных

В работе [Н.П. Алексеева, 2017] были предложены индивидуальная H_{ij} и групповая G_i поправки такие, что:

$$X_{ijt} = x_{ij} - H_{ij} - G_i$$

Тогда выполняется

$$\mathbb{E}x_{ij} = \mu + \alpha_i, \quad \mathbb{E}(x_{ijk} - x_{ij}) = \beta_k + \gamma_{ik}.$$

Построение нового признака

Пусть имеется m признаков X_1, \ldots, X_m , измеренные в T временных точках. Тогда

$$Y_t = \sum_{i=1}^{m} a_t X_{ti}, \quad t = 1, \dots, T.$$

Оптимальные коэффициенты для эффектов группы, времени и взаимодействия можно численно найти из:

$$F_K(a_1,\ldots,a_m)
ightarrow \max_{a_1,\ldots,a_m}$$
, где $K \in \{A,B,AB\}$

Результаты. Описание данных

Данные о лечении больных от COVID-19, всего 143 индивида.

- $X_1 = \mathsf{COVID} \mathsf{подтверждённый} \; \mathsf{COVID},$
- $X_2 = \mathsf{ИM} \mathsf{инфаркт}$ миокарда,
- $X_3 = \Pi \mathcal{K}$ перегрузка желудочка.

Независимые признаки:

- исход выписка или летальный исход,
- креатинин количество креатинина в крови.

Мера значимости:

- дихотомические коэффициенты неопределённости,
- метрические p-значения критериев однородности (например, Манна-Уитни-Вилкоксона).

Результаты. Значения симптомов

$$\mathbb{X} = X_3$$

\mathbb{X}	j	0	1	p
0	1	24	20	0.45
0	3	3	3	0.50
0	0	0	9	1.00
0	2	0	1	1.00
1	4	0	1	1.00
1	5	0	4	1.00
1	7	0	1	1.00
1	6	0	0	—

Таблица: Значения симптома относительно смертности

$\mathbb{X} = X_3 + X_1 X_2 + X_2 X_3 =$
$= X_1 X_2 + \overline{X_2} X_3$

\mathbb{X}	j	Среднее	Кол-во
0	0	96.09	37
0	6	104.00	1
0	2	107.25	12
0	1	147.42	7
1	7	148.00	1
1	4	185.00	3
1	3	204.66	3
1	5	_	0

Таблица: Средние значения креатинина по группам

Результаты. Сравнение методов

$$\mathbb{X} = X_3 + X_1 X_2 + X_2 X_3 = X_1 X_2 + \overline{X_2} X_3$$

На уровне значимости $\alpha = 0.05$:

	p
X_1	0.001
X_2	0.9169
X_3	0.048
$X_1: X_2$	0.034
$X_1: X_3$	0.233
$X_2 : X_3$	0.317

	j				
X	X_1	X_3	$X_1 : X_2$	Среднее	Кол-во
0	0	0	0	96.09	37
0	6	6	6	104.00	1
0	2	2	2	107.25	12
0	1	1	1	147.42	7
1	7	7	7	148.00	1
1	4	4	4	185.00	3
1	3	3	3	204.66	3
1	5	5	5	_	0

$$X_1 - \text{COVID}, \ X_2 - \text{VIM}, \ X_3 - \Pi \mathcal{M}; \qquad j = X_1 + 2X_2 + 4X_3.$$

Результаты. Наиболее информативные признаки

Таблица:

Односторонние коэффициенты неопределённости

Таблица: Коэффициенты неопределённости относительно исхода

Признак	J(%)
тяжесть	19.91
Од. ЖА	9.08
XCH	9.06
стадия по KT	8.88
ИБС	7.77

1 признак	2 признак	J(%)
HCP	тяжесть	50.31
ИБС	тяжесть	45.20
XCH	тяжесть	43.58
ритм	тяжесть	43.01
стадия по КТ	тяжесть	41.53

Результаты. Построение нового признака

Данные с пропусками о послеоперационных показателях пациентов, измеряемые в различные моменты времени.

 $\mathbf{X_1} = \mathsf{AD} - \mathsf{д}$ иастолическое давление, $\mathbf{X_2} = \mathsf{WP} - \mathsf{р}$ азмер стенки желудочка, $\mathbf{Y} = \mathsf{исход}$ лечения.

Ищем коэффициенты a_1, a_2 линейной комбинации:

$$Z = a_1 X_1 + a_2 X_2.$$

Таблица: Коэффициенты линейной комбинации и p-значения

Эффект	a_1	a_2	p-значение
Группа	1.295	0.223	0.231
Время	0.271	-2.000	0.002
Взаимодействие	0.696	1.125	0.553

Результаты. График взаимодействия

Рис.: График средних нового признака в зависимости от группы и времени

Результаты:

- Написана программа для нахождения оптимального суперсимптома с помощью коэффициеинтов неопределённости и критерия Вилкоксона,
- Написана программа на R для построения наиболее значимых новых признаков в случае неполных данных с повторениями,
- Найдены наиболее значимые факторы, влияющие на исход лечения,
- Изучен и примененён симптомный анализ для редукции размерности.

