Wasserbad, Temperaturmessung

Autor: Michael Matus, BEV

Bestimmung der Temperatur eines Wasserbades mittels kalibriertem Pt100 Sensor und geprüften Ohmmeter. Als Ohmmeter wird ein Agilent 3458A Multimeter herangezogen. Hauptzweck dieses Beispieles ist die Diskussion der Unsicherheitskomponenten welche aus diesem Messgerät herrühren. Ausserdem wird eine relativ komplizierte Modellfunktion (Wurzelfunktion) verwendet ohne auf Näherungen zurückzugreifen.

Modellgleichung:

{Wassertemperatur gleich der Sensortemperatur mit Kontaktunsicherheit}

 $t_W = t_{Sensor} + \delta_K;$

{Umkehrfunktion der Widerstand-Temperaturkennlinie nach EN 60751}

 $t_{Sensor} = (-R_0^*A + sqrt(R_0^2*A^2-4*R_0^*B*(R_0-R)))/(2*R_0^*B);$

{Eigentliche Widerstandsmessung mit Spezifikation des Ohmmeters}

 $R=R_M+\delta_{spec}+\delta_{NMI};$

Liste der Größen:

Größe	Einheit	Definition
t _W	°C	Temperatur des Wasserbades (Messwert)
R _M	Ohm	Widerstand-Messwert
δ_{spec}	Ohm	Spezifikation des Ohmmeters
δ_{NMI}	Ohm	Rückführungsunsicherheit der Ohmmeterprüfung
δ_{K}	°C	Kontaktübergang zwischen Wasser und Sensor
R ₀	Ohm	Widerstand bei 0 °C (Sensorkonstante)
А	°C ⁻¹	Sensorkonstante
В	°C ⁻²	Sensorkonstante
R	R Ohm Widerstand des Pt100 Sensors	
t _{Sensor}	°C	Temperatur des Pt100 Sensors

R_M: Typ A zusammengefasst

Mittelwert: 108.44382 Ohm

Experimentelle Standardabweichung: 0.0012 Ohm

Anzahl der Beobachtungen: 5

Es werden 5 einzelne Widerstandsmessungen durchgeführt und gemittelt. Die experimentelle Standardabweichung wird als Unsicherheitskomponente herangezogen. Diese Größe ist der einzig gemessene Wert in diesem Beispiel.

 d_{spec} : Typ B Rechteckverteilung

Wert: 0 Ohm

Halbbreite der Grenzen: 0.0032 Ohm

Die interessanteste Komponente. Unsicherheit eines kalibrierten Agilent 3458A Multimeters. Verwendetes Dokument: Agilent Technologies 3458A Multimeter User's Guide, Seite 283, 285 und 286. Es werden unterschiedliche Spezifikationen (als relative Toleranzgrenzen) angegeben, welche zu addieren sind. Wir brauchen nur die Werte für den $100~\Omega$ Messbereich und Vierleiterschaltung.

Temperaturkoeffizient: 2,08 ppm/°C (Hier nehmen wir eine Umgebungstemperatur von 20 °C an)

Accuracy (ppm of Reading + ppm of Range): 12+5 bis zu Jahr nach Kalibrierung (20+10 bis zu zwei

Datum: 16.03.2017
Ver.: 1

Datei: GUM_Beispiel1.smu

Seite 1 von 3

Jahren nach Kalibrierung)

Kalibrierunsicherheit relativ zum NIST Normal: 3 ppm

d_{NMI}: Typ B Normalverteilung

Wert: 0 Ohm

Erweiterte Messunsicherheit: 0.00002 Ohm

Erweiterungsfaktor: 2

Verwendetes Dokument: Agilent Technologies 3458A Multimeter User's Guide, Seite 286. Danach beziehen sich alle Spezifikationen auf das NIST 10 k Ω Normal. In der KCDB gibt NIST eine relative erweiterte Messunsicherheit von 0,2 ppm an. Für 100 Ω entspricht dies einer erweiterten Unsicherheit von 20 $\mu\Omega$.

d_K: Typ B Rechteckverteilung

Wert: 0 °C

Halbbreite der Grenzen: 0.001 °C

Mit dieser Größe werden Unsicherheiten modelliert welche von der Ungleichheit von Medien- zu Sensortemperatur herrühren. Die Ursachen können vielfältig sein und müssten separat behandelt werden. Bei diesem Beispiel lediglich eingeführt um Submodelle zu diskutieren; daher wird die Unsicherheit auf einen unrealistisch niedrigen Wert gesetzt. Der Erwartungswert ist Null.

R₀: Typ B Normalverteilung

Wert: 100.002421 Ohm

Erweiterte Messunsicherheit: 0.0004 Ohm

Erweiterungsfaktor: 2

Werte R_0 , A, B aus dem Kalibrierschein E16-2056 des BEV. Die Unsicherheiten sind nicht explizit im Schein angeführt. Messtechnisch stammen sie aus einem Ausgleich von vier Messwertpaaren und sind daher hochgradig korreliert. Korrelationen sind nicht Gegestand der Präsentation und auch nicht aus dem Schein ersichtlich. Die Unsicherheiten sind daher "gefakt", aber so, dass die Temperaturunsicherheit der Kalibrierung reproduziert wird.

Thermometer	R_0	A	В	C
Nr.	in Ohm	in °C-1	in °C-2	in °C-4
SNr.: 2 /11/ 15	100,002421	3,913102E-03	-5,959679E-07	

	NORMAL	PRUFLING						
Gerätebeschreibung	r_SOLL	(Umrechnung abweich nach EN 60761) t_IST-t_1		Mess- abweichung t_IST-t_SOLL		Mess- abweichung f_Aughinh (_SOLL	Messunsicherheit U der Messabweichungen	
	°C	Ohm	4C	K (°C)	°C	K (°C)	Ohm	K (°C)
Pt100 SNr.: 2/11/ 15 APZ 1433	0,011	100,0065	0,017	0,006	0,010	-0,001	0,0020	0,006
MM903802 MPMI 1004/300	20,008	107,8082	20,038	0,030	20,008	0,000	0,0020	0,006
	65,002	125,1869	65,070	0,068	65,001	-0,001	0,0019	0,005
	100,003	138,5395	100,090	0,087	100,003	0,000	0,0022	0,006

Auszug aus Kalibrierschein E16-2056

A: Typ B Normalverteilung

Wert: 3.913102·10⁻³ °C⁻¹

Erweiterte Messunsicherheit: 0.0000003 °C⁻¹

Erweiterungsfaktor: 1

Werte R_0 , A, B aus dem Kalibrierschein E16-2056 des BEV. Die Unsicherheiten sind nicht explizit im Schein angeführt. Messtechnisch stammen sie aus einem Ausgleich von vier Messwertpaaren und sind daher hochgradig korreliert. Korrelationen sind nicht Gegestand der Präsentation und auch nicht aus dem Schein ersichtlich. Die Unsicherheiten sind daher "gefakt", aber so, dass die Temperaturunsicherheit der Kalibrierung reproduziert wird.

Datum: 16.03.2017

Ver.: 1

Datei: GUM_Beispiel1.smu

Seite 2 von 3

MU 02 Wasserbad, Temperaturmessung

 Bundesamt für Eich- und Vermessungswesen

B: Typ B Normalverteilung

Wert: -5.959679·10⁻⁷ °C⁻²

Erweiterte Messunsicherheit: 0.000000015 °C⁻²

Erweiterungsfaktor: 1

Werte R_0 , A, B aus dem Kalibrierschein E16-2056 des BEV. Die Unsicherheiten sind nicht explizit im Schein angeführt. Messtechnisch stammen sie aus einem Ausgleich von vier Messwertpaaren und sind daher hochgradig korreliert. Korrelationen sind nicht Gegestand der Präsentation und auch nicht aus dem Schein ersichtlich. Die Unsicherheiten sind daher "gefakt", aber so, dass die Temperaturunsicherheit der Kalibrierung reproduziert wird.

Zwischenergebnisse:

Größe	Wert	StdMess- unsicherheit
R	108.44382 Ohm	1.92·10 ⁻³ Ohm
t _{Sensor}	21.64296 °C	5.56·10 ⁻³ °C

Messunsicherheits-Budgets:

t_w: Temperatur des Wasserbades (Messwert)

Größe	Wert	StdMess- unsicherheit	Verteilung	Sensitivitäts- koeffizient	Unsicher- heitsbeitrag	Index
R _M	108.443820 Ohm	537·10 ⁻⁶ Ohm	Normal	2.6	1.4⋅10 ⁻³ °C	6.1 %
δ_{spec}	0.0 Ohm	1.85·10 ⁻³ Ohm	Rechteck	2.6	4.8⋅10 ⁻³ °C	72.4 %
δ_{NMI}	0.0 Ohm	10.0·10 ⁻⁶ Ohm	Normal	2.6	26⋅10 ⁻⁶ °C	0.0 %
δ_{K}	0.0 °C	577⋅10 ⁻⁶ °C	Rechteck	1.0	580⋅10 ⁻⁶ °C	1.1 %
R_0	100.002421 Ohm	200-10 ⁻⁶ Ohm	Normal	-2.8	-560⋅10 ⁻⁶ °C	1.0 %
Α	3.913102·10 ⁻³ °C ⁻¹	300·10 ⁻⁹ °C ⁻¹	Normal	-5600	-1.7⋅10 ⁻³ °C	8.9 %
В	-596.0·10 ⁻⁹ °C ⁻²	15.0·10 ⁻⁹ °C ⁻²	Normal	-120·10 ³	-1.8⋅10 ⁻³ °C	10.5 %
R	108.44382 Ohm	1.92·10 ⁻³ Ohm				
t _{Sensor}	21.64296 °C	5.56⋅10 ⁻³ °C				
t _W	21.64296 °C	5.59⋅10 ⁻³ °C				

Die Wassertemperatur ist der eigentliche Messwert im Sinne des GUM.

Ergebnisse:

Größe	Wert	ErwMess- unsicherheit	Erweiter- ungsfaktor	Überdeckungs- wahrscheinlichkeit	
t_W	21.643 °C	0.011 °C	2.00	95% (Normal)	

Datum: 16.03.2017
Ver.: 1

Datei: GUM_Beispiel1.smu

Seite 3 von 3