Bubbles: A unifying Framework for Low-Level Statistical Properties of Natural Image Sequences. Hyvarinen et al, J. Opt. Soc. Am. 2003

Richard Turner (turner@gatsby.ucl.ac.uk)

Gatsby Computational Neuroscience Unit, 03/03/2006

Motivation

- We want good generative models of natural scenes: $P(y) = \int dx P(y|x) P(x)$
- View neurons as encoding some aspect of the posterior distribution over latents: $P(x|y,\theta)$, like the mean, mode or width (inference)
- View learning and adaptation as learning the parameters of this generative model (by maximum-likelihood for example)
- Why would neurons do this?
 - Extraction of higher order statistical structure in the inputs into latent variables
 - causes forms a computationally useful representation
 - Good generative models lead to efficient codes (Barlow)...

Goal of the paper

- Produce a generative model for **movies** with a prior over latent variable that combines three ideas:
 - Sparse coding (shown to produce simple cell like RFs)
 - Topographic spatial dependencies (computationally useful)
 - Temporal slowness (also shown to produce simple cell like RFs)
- **Proof of concept** rather than a finished piece of work
- Paper answers question: Why do both slowness and sparseness both produce simple cells?
- Because the latents are slow and sparse and one or both of these criteria can be used to infer them.

Sparse Coding

- Two motivations:
 - Redundancy reduction (Bell and Sejnowski, 1996; Olshausen and Field, 1996)
 - Latent variable modeling (Pearlmutter, 1999 and Mackay, 1999)

ICA Generative model

$$P(\mathbf{x}) = \prod_{i=1}^{I} P(x_i) \qquad (1) \qquad P(\mathbf{x}) = \prod_{i=1}^{I} P(x_i)$$

$$P(x_i) = \text{sparse}$$
 (2)

$$P(\mathbf{y}|\mathbf{x}) = \delta(G\mathbf{x} - \mathbf{y})$$
 (3)

Sparse Coding Generative model

$$P(\mathbf{x}) = \prod_{i=1}^{I} P(x_i) \tag{4}$$

$$P(x_i) = \text{sparse} \qquad (2) \qquad P(x_i) = \text{sparse} \qquad (5)$$

$$P(\mathbf{y}|\mathbf{x}) = \text{Norm}(G\mathbf{x}, \sigma^2 I)$$
 (6)

- Typical choices for $P(x_i)$ are:
 - 1/cosh (Bell), Cauchy (Olshausen), Biexponential, Student T (Osindero)

Projective fields: 144, 12 by 12 filters filters from ICA

Generative weights - columns of ${\cal G}$ - (projective fields) look like Gabors (or multiscale wavelets)

Receptive fields are also Gabor like.

Are the "independent components" really independent?

Seems unlikely that natural scenes could be explained by such low level causes.

stimulus \rightarrow 2 linear filters \rightarrow output

Stimulus: Image or sound

Filter pair: Steerable pyramid shifted and rotated or Gammatone with different carrier frequencies

Spatial Statistics of linear filter responses, 2

Spatial Statistics of linear filter responses, 3

Conditional histograms. Vertical cross-sections are not identical. **Top**: Previous filter pairs with different images. The dependency is strong for natural stimuli but weak for white noise. **Bottom**: Fixed stimulus, different filters. The strength of the dependence depends on the filter pair.

How do we improve the model?

- We want to improve our generative model
- But still want the first layer to resemble simple cells (which are quite linear) so fix the recognition distribution: $P(\mathbf{x}|\mathbf{y}) = \delta(\mathbf{x} R\mathbf{y})$ (gave ok results for ICA)
- In the complete case, this fixes our generative distribution too: $P(\mathbf{y}|\mathbf{x}) = \delta(R^{-1}\mathbf{x} \mathbf{y})$
- All we now need is a prior, chosen to match the statistics of images: $P(\mathbf{x}) = \int d\mathbf{y} P(\mathbf{y}) P(\mathbf{x}|\mathbf{y})$
- We have plenty of images (samples from $P(\mathbf{y})$), so we can approximate the integral by sampling over image patches: $P(\mathbf{x}) \simeq \frac{1}{N} \sum_{\mathbf{y}} \delta(\mathbf{x} R\mathbf{y})$
- What type of distributions would make a suitable prior, that captured the features these histograms?

Gaussian Scale Mixtures (GSMs)

- ullet ${f x}=\lambda{f u}$ [cf. product models, eg. Grimes and Rao, 2005]
 - $-\lambda \geq 0$ a scalar random variable
 - ${\bf u} \sim G(0,Q)$
 - λ and ${\bf u}$ are independent
- density of these *semi-parametric* models can be expressed as an integral:

$$P(\mathbf{x}) = \int P(\mathbf{x}|\lambda)P(\lambda)d\lambda = \int |2\pi\lambda^2 Q|^{-1/2} \exp\left(-\frac{\mathbf{x}^T Q^{-1}\mathbf{x}}{2\lambda^2}\right)\psi(\lambda)d\lambda \tag{7}$$

- ullet One example is the MOG model $[\psi(\lambda)$ is discrete, components all 0 mean]
- Another is $\psi(\lambda) = Gamma$, [marginals are student T distributed]

Temporal Statistics of linear filter responses

Correlations in the energy of the latents through time, and between different latents over space

The bubbles model - a little odd

$$P(u_{i,t}) = \text{sparse}$$

$$\lambda_{i,t} = f\left[\sum_{j} h_{i,j} \Phi(t) \otimes u_{j}(t)\right]$$

$$P(x_{i,t}|\lambda_{i,t}) = \text{Norm}(0, \lambda_{i,t}^{2})$$

$$P(\mathbf{y}_{t}|G, \mathbf{x}_{t}) = \delta(G\mathbf{x}_{t} - \mathbf{y}_{t})$$

$$(10)$$

- **Temporal correlations** between the multipliers are captured by the moving average $\Phi(t) \otimes u_j(t)$ (temporal smoothing)
- Statistical dependencies between filters depends on their separation (in space, scale, and orientation.): $h_{i,j}$
- Columns of $h_{i,j}$ fixed and change smoothly to induce **topographic structure computationally useful**
- Bubbles of activity in latent space (both in space and time)

Results

- Learn filters using the **likelihood** as a guide to the sorts of terms you want in a cost function
- Orientation and location of generative weights change smoothly
- Low frequency patches segregate

Ideas for Future work

- Tidy up the generative model to have a more regular time series prior
- Improve learning
- ullet Learn the neighbourhoods H (perhaps with some soft topological prior), and the temporal smoothing
- Investigate $\arg\max_{\lambda}P(\lambda|\mathbf{y})$ as complex-cell output cf. energy detector models