CSE599G1: Spring 2017

Lecture 9: Scheduling

Next Week

- Two Joint Sessions with Computer Architecture Class
- Different date, time and location, detail to be announced
- Wed: ASICs for deep learning
- Friday: FPGA in the data center

Where are we

User API

High level Packages

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Where are we

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Parallelization Problem

- Parallel execution of concurrent kernels
- Overlap compute and data transfer

Serial execution

Recap: Deep Learning Training Workflow

Gradient Calculation

Interactions with Model

Parameter Update

$$w = w - \eta \, \partial f(w)$$

Questions to be answered

- What are common patterns of parallelization
- How can we easily achieve these patterns
- What about dynamic style program

Model Parallel Training

- Map parts of workload to different devices
- Require special dependency patterns (wave style)
 - o e.g. LSTM

Data Parallelism

- Train replicated version of model in each machine
- Synchronize the gradient

Data Parallel Training

The Gap for Communication

Which operations can run in currently with synchronization of g2/w2?

Parallel Program are Hard to Write

We need a automatic scheduler

Goal of Scheduler Interface

- Write Serial Program
- Possibly dynamically (not declare graph beforehand)
- >>> import mxnet as mx
 >>> A = mx.nd.ones((2,2)) *2
 >>> C = A + 2
 >>> B = A + 1
 >>> D = B * C

- Run in Parallel
- Respect serial execution order

Discussion: How to schedule the following ops

- Random number generator
- Memory recycling
- Cross device copy
- Send data over network channel

Data Flow Dependency

Code

$$A = 2$$
 $B = A + 1$
 $C = A + 2$
 $D = B * C$

Dependency

Write After Read Mutation

Code

$$A = 2$$

$$B = A + 1$$

$$C = A + 2$$

$$A = 3$$

Dependency

Memory Recycle

Code

$$A = 2$$

$$B = A + 1$$

$$C = A + 2$$

Dependency

Random Number Generator

Code

Dependency

rnd = RandomNGenerator()

B = rnd.uniform(10, -10)

C = rnd.uniform(10, -10)

rnd.uniform(10, -10)

rnd.uniform(10, -10)

Goal of Scheduler Interface

- Schedule any resources
 - Data
 - Random number generator
 - Network communicator

Schedule any operation

DAG Graph based scheduler

Interface:

engine.push(lambda op, deps=[])

- Explicit push operation and its dependencies
- Can reuse the computation graph structure
- Useful when all results are immutable
- Used in typical frameworks (e.g. TensorFlow)
- What are the drawbacks?

Pitfalls when using Scheduling Mutations

Write after Read

```
tf.assign(A, B + 1)
tf.assign(T, B + 2)
tf.assign(B, 2)
```

Read after Write

T = tf.assign(B, B + 1)tf.assign(A, B + 2) A mutation aware scheduler can solve these problems much easier than DAG based scheduler

MXNet Program for Data Parallel Training

```
for dbatch in train iter:
  % iterating on GPUs
   for i in range(ngpu):
    % pull the parameters
    for key in update keys:
         kvstore.pull(key, execs[i].weight array[key])
    % compute the gradient
    execs[i].forward(is train=True)
    execs[i].backward()
    % push the gradient
    for key in update keys:
         kvstore.push(key, execs[i].grad_array[key])
```


Mutation aware Scheduler: Tag each Resource

Code	Original Resources	Tagged Resources
<pre>A.var = engine.new_variable()</pre>	A.data	A.data
<pre>B.var = engine.new_variable()</pre>	B.data	B.data
<pre>C.var = engine.new_variable()</pre>	C.data	C.data
<pre>rnd.var = engine.new_variable()</pre>	rnd.gen	rnd.gen
7 PAUL G. ALLEN SCHOOL		

Mutation aware Scheduler: Push Operation

Example Scheduling: Data Flow

Example Scheduling: Memory Recycle

read=[], mutate= [A.var])

Example Scheduling: Random Number Generator

```
engine.push(lambda:

C = rnd.uniform(10, -10)

C.data = rnd.gen.uniform(10, -10),

read=[], mutate= [rnd.var])
```


Queue based Implementation of scheduler

- Like scheduling problem in OS
- Maintain a pending operation queue
- Schedule new operations with event update


```
B = A + 1 (reads A, mutates B)
C = A + 2 (reads A, mutates C)
A = C * 2  (reads C, mutates A)
D = A + 3 (reads A, mutates D)
           A's queue:
           B's queue:
           C's queue:
           D's queue:
```



```
B = A + 1 (reads A, mutates B)
C = A + 2 (reads A, mutates C)
A = C * 2  (reads C) mutates A)
D = A + 3 (reads A, mutates D)
           A's queue:
           B's queue:
           C's queue:
           D's queue:
```



```
B = A + 1 (reads A, mutates B)
C = A + 2 (reads A, mutates C)
A = C * 2 (reads C) (mutates A)
D = A + 3 \text{ (reads } A, \text{ mutates } D)
            A's queue:
            B's queue:
            C's queue:
            D's queue:
```


Discuss: What is the update policy of queue when an operation finishes?

Two operations are pushed. Because A and B are ready to write, we decrease the pending counter to 0. The two ops are executed directly.

operation {wait counter}
operation and the number of
pending dependencies it need to

ready to read and mutate

ready to read, but still have uncompleted reads. Cannot mutate

var

var

still have uncompleted mutations.
Cannot read/write

Ready/Running Ops

Request Queue

A
B
C

Two operations are pushed. Because A and B are ready to write, we decrease the pending counter to 0. The two ops are executed directly.

operation (wait counter) operation and the number of ready to read and ready to read, but still have uncompleted reads. Cannot mutate

Ready/Running Ops

A = 2

B = 2

var

Request

Queue

$$B = A + B \{2\}$$

 $C = A + 2 \{2\}$

В

<u>C</u>

Another two operations are pushed. Because A and B are not ready to read. The pushed operations will be added to the pending queues of variables they wait for.

operation {wait counter}

operation and the number of pending dependencies it need to

var

ready to read and mutate

var

ready to read, but still have uncompleted reads. Cannot mutate

Ready/Running Ops

$$A = 2$$

$$B = 2$$

var

Another two operations are pushed. Because A and B are not ready to read. The pushed operations will be added to the pending queues of variables they wait for.

ready to read and mutate

ready to read, but still have uncompleted reads. Cannot mutate

var

Ready/Running Ops

A = 2

B = 2

var

A=2 finishes, as a result, the pending reads on A are activated. B=A+B still cannot run because it is still wait for B.

B = 2

$$C = A + 2$$

operation {wait counter}
operation and the number of
pending dependencies it need to

ready to read and mutate

var

var

ready to read, but still have uncompleted reads. Cannot mutate

var

Request

Queue

A.del() is a mutate operation. So it need to wait on A until all previous reads on A finishes.

Ready/Running Ops

operation {wait counter}

operation and the number of pending dependencies it need to

var

ready to read and mutate

var

ready to read, but still have uncompleted reads. Cannot mutate

var

B=2 finishes running. B=A+B is able to run because all its dependencies are satisfied. A.del() still need to wait for B=A+B to finish for A to turn green

ready to read and mutate

var

var
ready to read, but still have
uncompleted reads. Cannot mutate

B=2 finishes running. B=A+B is able to run because all its dependencies are satisfied. A.del() still need to wait for B=A+B to finish for A to turn green

ready to read and mutate

var

ready to read, but still have uncompleted reads. Cannot mutate

Ready/Running Ops

A.del()

var

Take aways

- Automatic scheduling makes parallelization easier
- Mutation aware interface to handle resource contention
- Queue based scheduling algorithm