

Deep Learning

Deep Learning for Text

Chapter 11.1-11.3

Vera Hollink 2025

Natural Language Processing (NLP)

- Natural language = human language
 - Vocabulary changes
 - Grammar not well-defined

- NLP
 - do something useful with natural language
 - ≠ understanding

Some NLP Tasks

Text classification

Content filtering

Sentiment analysis

Translation

Summarization

Text preprocessing

Text preprocessing

The quick brown fox jumps over the lazy dog.

1. Normalization/standardization

the quick brown fox jumps over the lazy dog

2. Tokenization

```
"the" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"
```

3. Indexing

17 321 490 21 339 3021 17 591 111

4. Encoding

```
[[0,0,0,0,1,0], [[0,1,0,0,0,0], [[1,0,0,0,0,0], ...]
```


Normalization/standardization

Lowercase

```
The → the
```

Remove punctuation

```
. ? " ...
```

Convert special characters

```
résumé - resume
```

Stemming

```
foxes => fox
approximation → approximat
```

Disadvantage: information is lost

Advantage: less training data needed

Tokenization

the quick brown fox jumps over the lazy dog

Words

```
"the" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"
```

N-grams: sequences of N words

2-grams:

```
"the quick" "quick brown" "brown fox" "fox jumps" "jumps over" "over the" "the lazy" "lazy dog"
```

3-grams:

"the quick brown" "quick brown fox" "brown fox jumps" "fox jumps over" "jumps over the" "over the lazy" "the lazy dog"

Characters

```
"t" "h" "e" "q" "u" "i" "c" "k" "b" ...
```


Indexing

Assign number to each token

```
the → 17
quick → 321
```

- Use only N most frequent tokens (e.g. 10000)
 other tokens get index 1
- Create vectors

```
[17 321 490 21 339 3021 17 591 111]
```

If fixed length needed, pad with 0's:

Length 12:

[17 321 490 21 339 3021 17 591 111 0 0 0]

Text preprocessing in Keras

Preprocessing module

```
from tensorflow.keras.layers import TextVectorization
dataset = ['The brown dog jumps.', 'Dog jumps over the fox.']
text vectorization = TextVectorization(output mode='int')
text_vectorization.adapt(dataset)
                                               Default: lowercase,
text = 'The quick brown dog jumps\'
encoded_text = text_vectorization(text)
print(encoded_text)
                                   Create
```

1 for unknown word

Apply to new data vocabulary: give each token a number

remove punctuaction, split on whitespace There are many alternative options

tf.Tensor([2 1 7 4 3], shape=(5,), dtype=int64)

Text preprocessing

The quick brown fox jumps over the lazy dog.

1. Normalization/standardization

the quick brown fox jumps over the lazy dog

2. Tokenization

"the" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"

3. Indexing

17 321 490 21 339 3021 17 591 111

4. Encoding

[[0,0,0,0,1,0], [[0,1,0,0,0,0], [[1,0,0,0,0,0], ...]

1. Multi-hot encoding

Doc id	dog	fox	jump	over	
1	1	0	1	0	
2	1	1	0	0	
3	1	0	0	0	
4	0	1	0	0	
5	0	1	1	1	

2. Frequency encoding

Doc id	dog	fox	jump	over	
1	2	0	1	0	
2	1	2	0	0	
3	4	0	0	0	
4	0	1	0	0	
5	0	6	2	1	

3. Tf.idf encoding

Value = importance score of the token

Doc id	dog	fox	jump	over	
1	2.6	0	0.2	0	
2	0.9	2	0	0	
3	3.2	0	0	0	
4	0	0.9	0	0	
5	0	2.1	1.9	0.1	

N-gram encoding (multi-hot)

Doc id	dog_jump	jump_over	over_the	
1	1	0	0	
2	0	0	0	
3	0	0	0	
4	0	0	0	
5	0	1	1	

Two documents

```
"Are oranges always orange?"

"The cat ate the oranges."
```

- Apply stemming and other normalization techniques
- Apply tokenization
- Encode using
 - Bag-of-words with multi-hot encoding
 - Bag-of-words with frequency encoding
 - 3. Bag-of-words with 2-gram multi-hot encoding

Two documents

document 1: "Are oranges always orange?"

document 2: "The cat ate the oranges."

- Apply stemming and other normalization techniques
- Apply tokenization

```
[are, orange, always, orange]
[the, cat, ate, the, orange]
```


Bag-of-words with multi-hot encoding

Doc id	are	orange	always	the	cat	ate
1	1	1	1	0	0	0
2	0	1	0	1	1	1

Bag-of-words with frequency encoding

Doc id	are	orange	always	the	cat	ate
1	1	2	1	0	0	0
2	0	1	0	2	1	1

Bag-of-words with 2-gram multi-hot encoding

```
[are_orange, orange_always, always_orange]
[the_cat, cat_ate, ate_the, the_orange]
```

Doc id		orange_ always		the_cat	cat_ate	ate_t he	the_ora nge
1	1	1	1	0	0	0	0
2	0	0	0	1	1	1	1

Deep Learning models for text

- 1. Dense models
- 2. Recurrent Neural Networks
- 3. Transformers (next week)

Deep Learning models for text

- 1. Dense models
- 2. Recurrent Neural Networks
- 3. Transformers (next week)

Dense model

Input: document encoded as bag-of-words

model.add(Dense(1, activation='sigmoid'))

```
Multi-hot:
         [0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0...]
Frequency: [0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,3,0...]
tf idf:
          [0,0,2.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.3,0...]
```

Dense model:

model = Sequential()

```
Number of words
                             in the vocabulary
model.add(Dense(50, input_shape=(n_words,), activation='relu'))
```

- Disadvantage: word order is lost
 - Partly solved with N-grams, but very short sequences

Deep Learning models for text

- 1. Dense models
- 2. Recurrent Neural Networks
- 3. Transformers (next week)

RNN

Sequence processing: (bidirectional) LSTM

```
inputs = keras.Input(shape=(None,), dtype="int64")
embedded = tf.one_hot(inputs, depth=max_tokens)
x = layers.Bidirectional(layers.LSTM(32))(embedded)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
```

- One-hot encoding:
 - Each word is a vector with exactly one 1 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ...]
 - A sample (document) is a 2-dimensional vector [[0, 0, 0, 0, 0, 0, 1, 0, 0, , ...], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...], ...]
- A batch has a number of sequences with the same length
 - Use cut-off and padding with 0's
 - One batch is for instance 256x20000x600 → training is slow

samples x max_tokens x sentence_length

RNNs and Convnets for text

- (bidirectional) LSTM
- (bidirectional) GRU
- 1D Convolutional Network

- Disadvantage:
 - Slow because input is huge samples x max_tokens x sentence_length

One-hot embedding vs word embeddings

One-hot embedding:

```
Dog
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...]

Cat
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ...]
```


Word embeddings:

```
Dog
[0.12, 0.30, 0.20, 0.24]
Cat
[0.73, 0.13, 0.40, 0.44]
```


Advantages word embeddings

- Smaller representation
 - E.g. 20000 x 600 becomes 256 x 600
- Vector distances can represent meaning
 - Similar words can have similar vectors
 e.g. vector cactus closer to vector aloe than to vector cat
- Meaningful dimensions
 - Gender, singular/plural, ...
 - Emerging, not hard-coded

Advantages word embeddings

Learning word embeddings

Transform word indexes to word vector

```
[17 321 490 21 339 3021 17 591 111 0 0 0] \rightarrow [[0.72, 0.34, 0.1, ..], [0.32, 0.70, ...], ...]
```

 Initialize randomly, learn to structure space through backpropagation (more similar words get closer vectors)

Length of word vector

Number of words in sequences

Size of the vocabiary

```
inputs = keras.Input(shape=(None,), dtype="int64")
embedded = layers.Embedding(input_dim=max_tokens,
    output_dim=256, input_length=600, mask_zero=True)(inputs)
x = layers.Bidirectional(layers.LSTM(32))(embedded)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmon (trailing 0's) is not used in training.
Make sure padding (trailing 0's) is not used in training.
```


Using pretrained word embeddings

- Meaning/embedding not specific for data set or task
- Use existing embedding
 - Get embedding matrix: pretrained vector for each word
 - 2. Initialize embedding with matrix
 - 3. Fix embedding (layer not trainable)

```
embedding_layer = layers.Embedding(max_tokens, embedding_dim,
    embeddings_initializer=keras.initializers.Constant(embedding_m
    atrix), trainable=False, mask_zero=True
)
```


Popular pretrained word embeddings

word2vec:

- made by Google
- based on news data
- vector length 300

GloVe:

- made by Stanford,
- based on various sources (various versions available), such as Wikipedia and WWW crawl and Twitter,
- vector length 25-300

Using pretrained word embeddings

- Advantages?
 - Less training and data needed
 - Based on large corpus
- Disadvantages?
 - Not specialized for your task (e.g. sentiment analysis)
 - Not specialized for your texts (e.g. reviews)

Deep Learning models for text

- 1. Dense models
- 2. Recurrent Neural Networks
- 3. Transformers (next week)

Test your understanding!

