

УУ- неделя выпуска ZZ – год выпуска

Тип корпуса:

Металлокерамический корпус H02.8-2B Первый вывод корпуса обозначен стрелкой на обратной стороне корпуса.

Условно графическое обозначение микросхемы (1299ПНЗУ-НН) (УГО)

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МИКРО-СХЕМЫ

- Выходное напряжение $(U_{OUT}) = 1,2 \div 4,5 \text{ B}$, настраиваемое внешним резистивным делителем. Допустимое отклонение $\pm 5,0\%$.
- Входное напряжение находится в диапазоне от 2,7 В до 5,5 В.
- Типовая частота коммутации, f_S составляет
 2 МГц.
- Масса микросхемы не более 1 г.
- Температурный диапазон: от минус 60° С до 85° С.
- Допустимое значение электростатического потенциала не более 1000 В.
- Типовой максимальный выходной ток при $U_I = 3,3$ B, $U_{OUT} = 1,8$ B равен 100 мА.
- Изготавливается по технологии КНИ-0,18 мкм.

СТРУКТУРНАЯ СХЕМА

НАЗНАЧЕНИЕ ВЫВОДОВ

№ вывода	Имя вывода	Описание	
1	GND	Вывод земли	
2	FB	Вывод обратной связи	
3	EN	Вывод сигнала энерго- сбережения	
4	VIN	Вывод питания	
5	VIND	Вывод питания силового ключа	
6	SW	Вывод с внутренних силовых ключей	
7	SW	Вывод с внутренних силовых ключей	
8	GNDD	Вывод земли силового ключа	
ТП1*		Электрическое соединение к монтажной площадке корпуса	
ТП2*		Электрическое соединение к крышке корпуса	

^{*}Должны быть заземлены

ОБЩЕЕ ОПИСАНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Микросхема 1299ПНЗУ-НН — высокочастотный контроллер понижающего преобразователя напряжения с настраиваемым внешним резистивным делителем напряжением. Микросхема предназначена для использования в бортовых цифровых вычислительных системах управления ракетно-космической и авиационной техники, на объектах атомной промышленности, в наземных вычислительных и управляющих комплексах.

Понижающий преобразователь постоянного напряжения 1299ПН3У-НН относится к классу импульсных стабилизаторов напряжения.

ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ МИКРОСХЕМЫ

Режимы работы (таблица истинности) 1299ПН3У-НН:

Режим ИС	Сигналы на управляющих входах (EN)		
т сжим утс	не менее	не более	
рабочий режим	1,2 B	U _I	
режим энергосбережения (режим Shutdown)	0 B	0,4 B	

Выходное напряжение U_{OUT} устанавливается согласно формуле $U_{OUT} = \frac{R_1 + R_2}{R_1} * 0,6$, где R_1 , R_2 – резистивный делитель по схеме применения.

ТРЕБОВАНИЯ ПО СПЕЦСТОЙКОСТИ

7.И ₁ - по группе исполнения 5Ус,	Уровень бессбойной работы по 7.И ₈ должен
7.И ₆ — по группе исполнения 6Ус*,	быть не хуже $0,00007 \times 1 \text{У}_{\text{C}}$.
7.И ₇ — по группе исполнения 4Ус,	Тиристорный эффект отсутствует.
7.C ₁ – по группе исполнения 100×1Ус,	Допускается в процессе и непосредственно по-
$7.C_4$ – по группе исполнения 0.5×1 Ус,	сле воздействия специального фактора 7.И с ха-
$7.K_1$ – по группе исполнения $0.5 \times 2K$.	рактеристикой 7.И ₆ временная потеря работоспо-
$7.K_4$ – по группе исполнения $0.5 \times 1K$.	собности микросхем.
$7.K_{11}(7.K_{12}) - 69 \text{ MэВ} \cdot \text{см}^2/\text{мг}.$	* стойкость обеспечивается при условии:
	- ВПР после воздействия специального фактора
	7.И с характеристикой 7.И ₆ менее 2 мс при токе
	нагрузки более 10мА,
	- ВПР после воздействия специального фактора
	7.И с характеристикой 7.И ₆ менее 4 мс при токе
	нагрузки менее 10 мА.
	При ВПР менее 2 мс и токе нагрузке менее 10
	мА стойкость по группе исполнения 7И6 равна
	0,06 x 1Ус.

ПРЕДЕЛЬНО-ДОПУСТИМЫЕ И ПРЕДЕЛЬНЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Наименование параметра, режима экс-	Буквенное обозначение пара-	Предельно- допустимая норма при эксплуатации		Предельная норма при эксплуатации	
плуатации, единица измерения	метра	не менее	не более	не менее	не более
Входное напряжение, В	Uı	U _{OUT} +1	5,5	минус 0,3	6
Напряжение на выводе SW, В	U_{sw}	-	_	минус 0,3	6
Напряжение на выводе FB, В	U _{FB}	_	_	минус 0,3	6
Напряжение низкого уровня вывода EN, В	U _{IL}	0	0,4	минус 0,3	6
Напряжение высокого уровня вывода EN, В	U _{IH}	1,2	Uı	минус 0,3	6

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМЫ

Наименование параметра,	Буквенное обозначение параметра	Норма параметра		Температурный
единица измерения,		не менее	не более	режим, °С
Выходное напряжение, В	Uo	K* 0,6 - 5%	K* 0,6 + 5%	25, 85, – 60
Ток потребления, мкА	I_{CC}	-	35	25
Ток потребления в режиме «Выключено», мкА	Ioz	-	1	25
Максимальная частота коммутации, МГц	f_S	1,6	2,6	25

Примечания:

- 1. Минимальное входное напряжение должно быть не менее $U_0 + 1$ В для микросхем 1299ПН3У-НН.
- 2. Выходное напряжение может быть установлено в диапазоне $1,2-4,5~\mathrm{B}$ с помощью резистивного делителя

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

Элементы контура тока (L1, D1, C2, C4) должны располагаться как можно ближе к выводам SW корпуса для достижения наибольшей эффективности преобразования. Конденсаторы C1, C3 должны располагаться перпендикулярно конденсаторам C2, C4.

НАЗНАЧЕНИЕ ВЫВОДОВ ТИПОВОЙ СХЕМЫ ВКЛЮЧЕНИЯ.

Имя вывода	Описание		
IN1	Вывод входного напряжения (напряжения питания)		
IN2	Вывод сигнала энергосбережения		
OUT	Вывод выходного напряжения		
GND	Вывод земли		

НОМИНАЛЫ НАВЕСНЫХ ЭЛЕМЕНТОВ ТИПОВОЙ СХЕМЫ ВКЛЮЧЕНИЯ

Обозначение	Назначение	Номинал	Примечание
C1	Керамический конденсатор	С = 1 мкФ	
C2	Керамический конденсатор	$C = 10 - 47 \text{ мк}\Phi$	Частота не менее 3 МГц, напряже-
C3	Керамический конденсатор	С = 0,1 мкФ	ние не менее 7 В, точность: ± 10%
C4	Керамический конденсатор	С = 0,1 мкФ	
L1	Катушка индуктивности	$L = 2,2 - 22$ мк Γ н	Ток не менее 1 A, частота не менее 3 $M\Gamma$ ц, точность: \pm 10%.
D1	Диод Шоттки	VT = 0.1 - 0.25B	Максимальное прямое напряжение не более 0,25 B, обратное напряжение без пробоя не менее 7 B, ток не менее 1 A.
R1	Резистор	Определяется пользователем	Коэффициент деления $K = \frac{R1+R2}{R1}$, установка K более 7,5 (включая погрешности резисторов) запрещена.
R2	Резистор	Определяется пользователем	Коэффициент деления $K = \frac{R1+R2}{R1}$, установка K более 7,5 (включая погрешности резисторов) запрещена.

ВРЕМЕННАЯ ДИАГРАММА РАБОТЫ МИКРОСХЕМЫ

Наименования входов и выходов в соответствии с типовой схемой включения 1299ПНЗУ-НН. Параметры сигналов в соответствии с таблицей норм электропараметров 1299ПНЗУ-НН.