成都理工大学 2015—2016 学年 学期《线性代数》 期末老过过光

第一学期《线性代数》期末考试试卷(A)

争争

森

掇

班 级__

名

銰

院(州)

大题	_	11	[11]	四	五	总分
得分						

一、填空题(每小题3分,共24分) 得分

得 分

1.若行列式
$$\begin{vmatrix} -1 & 1 & 3 \\ 0 & x & 1 \\ 1 & 0 & -1 \end{vmatrix} = -7, 则x = ___4___.$$

- 2.若矩阵 A 满足_____, 则矩阵 A 称为对称矩阵。
- 3.已知A是n阶方阵,A^k=O,则(E-A)⁻¹=__E+A+A²+···+A^{k-1}_____.
- 4.设|A|=1,,|2A|=32,则A为_5___阶矩阵。
- 5. n+2 个 n 维向量的相关无关性为___相关__(填"相关", "无关"或"不确定")。

6.当
$$a=_{1}$$
_时,齐次线性方程组 $\begin{cases} 2x_1 + x_2 = 0 \\ 2x_1 + ax_2 = 0 \end{cases}$ 有非零解。

7.已知 $A=(a_{ij})_{n\times n}$ 为非零实矩阵,且 a_{ij} 的代数余子式 A_{ij} 和 a_{ij} ($i,j=1,2,\cdots,n$)相等,

8.
$$f(x) = \begin{vmatrix} x+1 & 2x \\ 2 & x+1 \end{vmatrix}$$
, $A = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix}$, $Mf(A) = \underline{\qquad} -6E \underline{\qquad}$.

二、单项选择题(每小题3分,共18分)

得 分

1.设 A,B 都是 n 阶方阵,则下列等式成立的是(C)

	$(A) (AB)^k = A^k B^k$	$(\mathbf{B}) A+B = A + B $
	(C) AB = A B	$(\mathbf{D}) \left(AB \right)^T = A^T B^T$
2.	同阶方阵 A,B 合同的充分必要	条件是 (B)
(A))存在可逆矩阵 P,使 P ⁻¹ AP=1	3
(B))存在可逆矩阵 P,使 P ^T AP=F	3
(C))存在可逆矩阵 P和 Q,使 PA	AQ=B
(D))A 可以经过有限次初等变换	变成 B
3.	向量组(1): $\alpha_1, \alpha_2, \dots, \alpha_s$,	向量组(2): $\alpha_1, \alpha_2, \dots, \alpha_s$, α_{s+1}, \dots , α_t , 则
(B	3)	

- (C) (1)线性无关 ⇒ (2) 线性相关; (D) (2)线性相关 ⇒ (1) 线性相关;
- **4.** 设 A 为 n(n ≥ 2) 阶方阵,且 A 的行列式|A| = $a \neq 0$,则|A*|等于 (D)
 - (A) a^{-1} (B) a (C) a^n (D) a^{n-1}
- 5. 设 A 是 $m \times n$ 矩阵, AX = 0 是非齐次方程组 AX = b 的导出组,则下列结论 正确的是 (D)

 - (C) 若AX = b有无穷多解,则AX = 0仅有非零解;
- (D) 若AX = b有无穷多解,则AX = 0有非零解; 6.n 阶矩阵 A 相似于对角矩阵的充分必要条件是(D)

- (A) 有 n 个互异的特征值;
- (B) 有 n 个互异的特征向量:
- (C) A的每个 r_i 重特征值 λ , 应有秩 $r(A-\lambda_i E)=r_i$;
- (D) A的每个r, 重特征值λ, 应对应有r, 个线性无关的特征向量;

1. 求行列式 $\begin{vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 0 & \cdots & 0 \\ 1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 0 & \cdots & a \end{vmatrix}$ 的值($a_0a_1\cdots a_n \neq 0$).

解: 原式 =
$$\begin{vmatrix} a_0 - \sum_{i=1}^n \frac{1}{a_i} & 1 & 1 & \cdots & 1 \\ 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix}$$
(4)

$$=a_1 \ a_2 \cdots \ a(a_1 \sum_{i=1}^n \frac{1}{a_i})$$
 \quad \tag{\text{...}}

2.设向量组 $\alpha_1 = (1,1,1,1), \alpha_2 = (3,2,1,1), \alpha_3 = (0,1,2,2), \alpha_4 = (5,4,3,3)$,求该向量 组的一个极大无关组和秩。

$$\widetilde{\mathbb{H}}: (\alpha_1^T, \alpha_2^T, \alpha_3^T, \alpha_4^T) = \begin{pmatrix} 1 & 3 & 0 & 5 \\ 1 & 2 & 1 & 4 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & 1 & -1 \\ 0 & -2 & 2 & -2 \\ 0 & -2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

....(4)

 \therefore α_1 , α_2 为该向量组的一个极大无关组(1)

该向量组的秩为2

3.求方程组
$$\begin{cases} x_1 - x_2 + 2x_3 + x_4 = 1 \\ 2x_1 - x_2 + x_3 + 2x_4 = 3$$
的通解。
$$x_1 - x_3 + x_4 = 2 \end{cases}$$

$$\widetilde{\mathbb{H}}: \widetilde{A} = \begin{pmatrix} 1 & -1 & 2 & 1 & 1 \\ 2 & -1 & 1 & 2 & 3 \\ 1 & 0 & -1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 1 & 1 \\ 0 & 1 & -3 & 0 & 1 \\ 0 & 1 & -3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 2 \\ 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

取 (x_3, x_4) 为 (0,0) ,得特解 $\gamma_0 = (2,1,0,0)^T$ ………(1)

导出组的基础解系为: $\eta_1 = (1, 3, 1, 0)^T$, $\eta_2 = (-1, 0, 0, 1)^T \cdots (2)$

:. 原方程组的通解为:
$$\gamma = \gamma_0 + k_1 \eta_1 + k_2 \eta_2$$
 ········(1)

4.判断二次型 $f(x_1, x_2, x_3) = 3x_1^2 + 4x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_2x_3$ 是否是正定二次型。

解:
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix}$$
(2)

$$P_1 = 3 > 0, P_2 = 8 > 0, P_3 = 28 > 0$$
(2)

5.已知
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 3 & 3 \end{pmatrix}$$
,求 A^{-1} .

$$\Re: \quad (A, E) = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 1 & 3 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \cdots \begin{pmatrix} 1 & 0 & 0 & -\frac{3}{4} & \frac{3}{4} & \frac{1}{4} \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & \frac{5}{4} & -\frac{1}{4} & -\frac{3}{4} \end{pmatrix}$$

$$\therefore A^{-1} = \begin{pmatrix} -\frac{3}{4} & \frac{3}{4} & \frac{1}{4} \\ -1 & 0 & 1 \\ \frac{5}{4} & -\frac{1}{4} & -\frac{3}{4} \end{pmatrix} \qquad \cdots \cdots (2)$$

6.设三阶矩阵 A 的特征值为 1,2,3,求 $|A^3 - 5A^2 + 7A|$.

解:设λ为矩阵A的特征值,

则
$$\lambda^3$$
-5 λ^2 +7 λ 为 A^3 -5 A^2 +7 A 的特征值。 ……(2)

又:: A的特征值为1,2,3

$$\therefore |\mathbf{A}^3 - 5\mathbf{A}^2 + 7\mathbf{A}| = 18 \qquad \cdots (2)$$

1.设 A 是正交矩阵,证明: A 的行列式等于 1 或-1.

证::: A是正交矩阵

$$\therefore \mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1} \qquad \cdots \cdots (2)$$

$$\therefore \left| \mathbf{A}^{\mathrm{T}} \right| = \left| \mathbf{A}^{-1} \right|$$

$$|A| = \frac{1}{|A|}$$

$$|A|^2 = 1$$

$$\therefore |\mathbf{A}| = \pm 1 \qquad \cdots (3)$$

2. 设 α_1 , α_2 , α_3 线性无关,并且 α_1 = β_1 - β_2 - β_3 , α_2 = β_1 + β_2 - β_3 , α_3 = β_1 - β_2 + β_3

证明:向量组 β_1 , β_2 , β_3 线性无关。

$$\stackrel{\cdot}{\text{III}}: : : \alpha_1 = \beta_1 - \beta_2 - \beta_3, \quad \alpha_2 = \beta_1 + \beta_2 - \beta_3, \quad \alpha_3 = \beta_1 - \beta_2 + \beta_3$$

$$\therefore \beta_1 = \frac{\alpha_2 + \alpha_3}{2}, \quad \beta_2 = \frac{\alpha_2 - \alpha_1}{2}, \quad \beta_3 = \frac{\alpha_3 - \alpha_1}{2} \qquad \dots (1)$$

设有数 k_1, k_2, k_3 ,使得 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$ 成立(1)

即
$$(-k_2-k_3)$$
 $\alpha_1+(k_1+k_2)$ $\alpha_2+(k_1+k_3)\alpha_3=0$ 成立

又 $:\alpha_1$, α_2 , α_3 线性无关

$$\therefore \begin{cases} -k_2 - k_3 = 0 \\ k_1 + k_2 = 0 \\ k_1 + k_3 = 0 \end{cases}$$

解之,得:
$$\begin{cases} k_1 = 0 \\ k_2 = 0 \\ k_3 = 0 \end{cases}$$
(2)

$$\therefore \beta_1, \beta_2, \beta_3$$
线性无关(1)

五、解答题(共12分)

得 分

用正交变换法将二次型 $f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$ 化成标准形,并指出 f 的秩。

解:
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$
(2)

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & -2 & 0 \\ -2 & 1 - \lambda & -2 \\ 0 & -2 & -\lambda \end{vmatrix} = -(\lambda - 1)(\lambda - 4)(\lambda + 2) = 0$$

得特征值: $\lambda_1 = 4$, $\lambda_2 = 1$, $\lambda_3 = -2$. ··········(2)

对于 λ_1 =4,由(A-4E)X=0,得基础解系: ξ_1 =(2,-2,1)^T,

单位化,得:
$$\eta_1 = (\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})$$
 . ·········(1)

对于 λ_2 =1,由(A-E)X=0,得基础解系: ξ_2 =(2,1,-2)^T,

对于 λ_3 =-2,由(A+2E)X=0,得基础解系: ξ_3 =(1,2,2) $^{\mathrm{T}}$,

单位化,得:
$$\eta_3 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$
(1)

该二次型秩为3.(2)