CS195-5: Introduction to Machine Learning Lecture 13

Greg Shakhnarovich

October 4, 2006

Announcements

Review

• Batch gradient descent:

$$\mathbf{w}_{new} := \mathbf{w} + \mathbf{H}^{-1} \frac{\partial}{\partial \mathbf{w}} \ell(X_N; \mathbf{w}),$$

where **H** is the Hessian matrix (second derivatives) of $\ell(X_N; \mathbf{w})$.

- Batch vs. stochastic GD.
- Overfitting with logistic regression on separable training sets.

Today

- Gradient descent demo (take II)
- Regularization: a method for preventing overfitting
 - MAP estimation
 - Gaussian prior $\Rightarrow L_2$ regularization;
 - Laplacian prior $\Rightarrow L_1$ regularization.

Softmax

The multiclass generalization of the logistic model:

$$p(y = c \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_c^T \mathbf{x})}{\sum_{k=1}^C \exp(\mathbf{w}_k^T \mathbf{x})}$$

- For C=2, this is identical to the logistic regression (PS2).
- The boundaries between classes stil linear.
 - Can be extended to nonlinear by using nonlinear basis functions.
- Why is it called "the softmax model"?

Overfitting with logistic regression

- We can get the same decision boundary with an infinite number of settings for w.
- When the data are separable by $w_0 + \alpha \mathbf{w}^T \mathbf{x} = 0$, what's the best choice for α ?

$$p(y = 1 \mid \mathbf{x}) = \sigma(w_0 + \alpha \mathbf{w}^T \mathbf{x}).$$

- With $\alpha \to \infty$, we have $p(y_i|\mathbf{x}; w_0, \alpha \mathbf{w}) \to 1$.
- With $\alpha = \infty$ there is a continuum of w_0 that reach perfect separation.
- When the data are not separable, similar effect is present but more subtle.

Batch GD demo, take II

Batch GD demo, take II

MAP estimation for logistic regression

- Intuition: similar to the coin toss experiment, we may have some belief about the value of w before seeing any data.
 - E.g., may prefer smaller values of $\|\mathbf{w}\|$.
- A possible prior that captures that belief:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mathbf{0}, \sigma^2 \mathbf{I}).$$

• In the 2D case (again, ignoring w_0) this means

$$p(w_1, w_2) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{w_1^2 + w_2^2}{2\sigma^2}\right).$$

MAP for logistic regression

• Instead of $\ell(X_N; \mathbf{w})$ the objective function (under the Gaussian prior) becomes:

$$\tilde{\ell}(X_N; \mathbf{w}, \sigma) = \ell(X_N; \mathbf{w}) + \log p(\mathbf{w})$$

$$= \sum_{i=1}^N \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2\sigma^2} (w_1^2 + w_2^2) + \mathsf{const}(\mathbf{w}).$$

- This is a penalized log-likelihood (or log-posterior).
- Note that $w_1^2 + w_2^2 = \|\mathbf{w}\|^2$.
- Setting σ^2 will affect the penalty we impose for a particular value of $\|\mathbf{w}\|$.

Penalized likelihood surface

- This is our objective function, and we can find its peak by gradient descent as before.
 - Need to modify the calculation of gradient and Hessian.

Regularized logistic regression – demo

Regularized logistic regression – demo

The effect of regularization: separable data

$$\tilde{\ell}(X_N; \mathbf{w}, \sigma) = \sum_{i=1}^N \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2\sigma^2} ||\mathbf{w}|| + \mathsf{const}(\mathbf{w}).$$

The effect of regularization

$$\tilde{\ell}(X_N;\mathbf{w},\sigma) \; = \; \sum_{i=1}^N \log p \, (y_i \, | \, \mathbf{x}_i;\mathbf{w}) \, - \, \frac{1}{2\sigma^2} \|\mathbf{w}\| \, + \, \mathsf{const}(\mathbf{w}).$$

Scaled objective

ullet When N is large, it may be more convenient to work with

$$\tilde{\ell}(X_N; \mathbf{w}, \sigma) = \frac{1}{N} \sum_{i=1}^N \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2N\sigma^2} ||\mathbf{w}||^2.$$

- The parameter $\lambda = \frac{1}{2\sigma^2}$ determines the *strength* of regularization.
 - Higher $\lambda \Rightarrow$ more weight on the prior.

L_2 versus L_1 regularization

We can have a different penalty term. For instance,

$$\tilde{\ell}(X_N; \mathbf{w}, \sigma) = \sum_{i=1}^N \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \lambda \sum_{j=1}^d |w_j| + \mathsf{const}(\mathbf{w}),$$

the L_1 -norm penalty.

- the L_p norm of \mathbf{w} is $\left(\sum_{j=1}^d w_j^p\right)^{1/p}$.
- $-L_2$: Euclidean distance.
- $-L_1$: Manhattan distance.

L_2 versus L_1 regularization

$$-\lambda \sum_{j=1}^{d} w_j^2$$

$$-\lambda \sum_{j=1}^{d} |w_j|$$

Probabilistic interpretation of L_1 penalty

• Laplacian pdf:

$$p(x;a) = \frac{a}{2}e^{-a|x|}$$

• L_1 drives \mathbf{w} to zero more efficiently.

Next time

Regularization for regression. Large-margin classification.