Appendix C

Common Distributions

We record here the most commonly used distributions in probability and statistics as well as some of their basic characteristics.

C.1 Discrete Distributions

```
1. Bernoulli(\theta), \theta \in [0, 1] (same as Binomial(1, \theta)).
```

probability function:
$$p(x) = \theta^x (1 - \theta)^{1-x}$$
 for $x = 0, 1$.

mean: θ .

variance: $\theta(1-\theta)$.

moment-generating function: $m(t) = (1 - \theta + \theta e^t)$ for $t \in R^1$.

2. Binomial (n, θ) , n > 0 an integer, $\theta \in [0, 1]$.

probability function:
$$p(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$
 for $x = 0, 1, ..., n$.

mean: $n\theta$.

variance: $n\theta(1-\theta)$.

moment-generating function: $m(t) = (1 - \theta + \theta e^t)^n$ for $t \in R^1$.

3. Geometric(θ), $\theta \in (0, 1]$ (same as Negative-Binomial($1, \theta$)).

probability function:
$$p(x) = (1 - \theta)^x \theta$$
 for $x = 0, 1, 2, ...$

mean: $(1-\theta)/\theta$.

variance: $(1 - \theta)/\theta^2$.

moment-generating function: $m(t) = \theta(1 - (1 - \theta)e^t)^{-1}$ for $t < -\ln(1 - \theta)$.

4. Hypergeometric (N, M, n), $M \le N$, $n \le N$ all positive integers. probability function:

$$p(x) = \binom{M}{x} \binom{N-M}{n-x} / \binom{N}{n} \text{ for } \max(0, n+M-N) \le x \le \min(n, M).$$

mean: $n\frac{M}{N}$.

variance: $n \frac{M}{N} \left(1 - \frac{M}{N}\right) \frac{N-n}{N-1}$.

5. $Multinomial(n, \theta_1, \dots, \theta_k), n > 0$ an integer, each $\theta_i \in [0, 1], \theta_1 + \dots + \theta_k = 1$.

probability function:

$$p(x_1, ..., x_k) = \binom{n}{x_1 ... x_k} \theta_1^{x_1} \cdots \theta_k^{x_k} \text{ where each } x_i \in \{0, 1, ..., n\}$$

and $x_1 + \cdots + x_k = n$.

mean: $E(X_i) = n\theta_i$.

variance: $Var(X_i) = n\theta_i(1 - \theta_i)$.

covariance: $Cov(X_i, X_j) = -n\theta_i\theta_j$ when $i \neq j$.

6. Negative-Binomial (r, θ) , r > 0 an integer, $\theta \in (0, 1]$.

probability function: $p(x) = {r-1+x \choose x} \theta^r (1-\theta)^x$ for $x = 0, 1, 2, 3, \dots$

mean: $r(1-\theta)/\theta$.

variance: $r(1-\theta)/\theta^2$.

moment-generating function: $m(t) = \theta^r (1 - (1 - \theta) e^t)^{-r}$ for $t < -\ln(1 - \theta)$.

7. $Poisson(\lambda), \lambda > 0.$

probability function: $p(x) = \frac{\lambda^x}{x!} e^{-\lambda}$ for $x = 0, 1, 2, 3, \dots$

mean: λ .

variance: λ .

moment-generating function: $m(t) = \exp{\{\lambda(e^t - 1)\}}$ for $t \in R^1$.

C.2 Absolutely Continuous Distributions

1. Beta(a, b), a > 0, b > 0 (same as Dirichlet(a, b)).

density function: $f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$ for $x \in (0,1)$.

mean: a/(a+b).

variance: $ab/(a+b+1)(a+b)^2$.

2. *Bivariate Normal*($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$) for $\mu_1, \mu_2 \in R^1, \sigma_1^2, \sigma_2^2 > 0, \rho \in [-1, 1]$. density function:

$$f_{X_{1},X_{2}}(x_{1},x_{2}) = \frac{1}{2\pi \sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp \left\{ -\frac{1}{2(1-\rho^{2})} \begin{bmatrix} \left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2} - \\ 2\rho \left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right) \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right) \end{bmatrix} \right\}$$
for $x_{1} \in R^{1}$, $x_{2} \in R^{1}$.

mean: $E(X_i) = \mu_i$.

variance: $Var(X_i) = \sigma_i^2$.

covariance: $Cov(X_1, X_2) = \rho \sigma_1 \sigma_2$.

3. Chi-squared(α) or $\chi^2(\alpha)$, $\alpha > 0$ (same as Gamma($\alpha/2, 1/2$)).

density function: $f(x) = 2^{-\alpha/2} (\Gamma(\alpha/2))^{-1} x^{(\alpha/2)-1} e^{-x/2}$ for x > 0.

mean: α . variance: 2α .

moment-generating function: $m(t) = (1 - 2t)^{-\alpha/2}$ for t < 1/2.

4. $Dirichlet(\alpha_1, \ldots, \alpha_{k+1}), \alpha_i > 0$ for each i. density function:

$$f_{X_1,...,X_k}(x_1,...,x_k) = \frac{\Gamma(\alpha_1 + \dots + \alpha_{k+1})}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_{k+1})} x_1^{\alpha_1 - 1} \cdots x_k^{\alpha_k - 1} (1 - x_1 - \dots - x_k)^{\alpha_{k+1} - 1}$$
for $x_i \ge 0, i = 1,..., k$ and $0 \le x_1 + \dots + x_k \le 1$.

mean:

$$E(X_i) = \frac{\alpha_i}{\alpha_1 + \dots + \alpha_{k+1}}.$$

variance:

$$Var(X_i) = \frac{\alpha_i(\alpha_1 + \dots + \alpha_{k+1} - \alpha_i)}{(\alpha_1 + \dots + \alpha_{k+1})^2 (1 + \alpha_1 + \dots + \alpha_{k+1})}.$$

covariance: when $i \neq j$

$$Cov(X_i, X_j) = \frac{-\alpha_i \alpha_j}{(\alpha_1 + \dots + \alpha_{k+1})^2 (1 + \alpha_1 + \dots + \alpha_{k+1})}.$$

5. Exponential(λ), $\lambda > 0$ (same as Gamma(1, λ)).

density function: $f(x) = \lambda e^{-\lambda x}$ for x > 0.

mean: λ^{-1} .

variance: λ^{-2}

moment-generating function: $m(t) = \lambda(\lambda - t)^{-1}$ for $t < \lambda$.

Note that some books and software packages instead replace λ by $1/\lambda$ in the definition of the Exponential(λ) distribution — always check this when using another book or when using software to generate from this distribution.

6. $F(\alpha, \beta), \alpha > 0, \beta > 0$.

density function:

$$f(x) = \frac{\Gamma\left(\frac{\alpha+\beta}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(\frac{\beta}{2}\right)} \left(\frac{\alpha}{\beta}x\right)^{\alpha/2-1} \left(1 + \frac{\alpha}{\beta}x\right)^{-(\alpha+\beta)/2} \frac{\alpha}{\beta}$$
 for $x > 0$.

mean: $\beta/(\beta-2)$ when $\beta>2$. variance: $2\beta^2(\alpha+\beta-2)/\alpha(\beta-2)^2(\beta-4)$ when $\beta>4$.

7. $Gamma(\alpha, \lambda), \alpha > 0, \lambda > 0$.

density function: $f(x) = \frac{\lambda^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x}$ for x > 0.

mean: α/λ .

variance: α/λ^2 .

moment-generating function: $m(t) = \lambda^{\alpha} (\lambda - t)^{-\alpha}$ for $t < \lambda$.

Note that some books and software packages instead replace λ by $1/\lambda$ in the definition of the Gamma (a, λ) distribution — always check this when using another book or when using software to generate from this distribution.

8. Lognormal or $\log N(\mu, \sigma^2)$, $\mu \in \mathbb{R}^1$, $\sigma^2 > 0$.

density function: $f(x) = (2\pi \sigma^2)^{-1/2} x^{-1} \exp\left(-\frac{1}{2\sigma^2} (\ln x - \mu)^2\right)$ for x > 0.

mean: $\exp(\mu + \sigma^2/2)$. variance: $\exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$.

9. $N(\mu, \sigma^2), \mu \in R^1, \sigma^2 > 0.$

density function: $f(x) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ for $x \in \mathbb{R}^1$. mean: μ .

variance: σ^2 .

moment-generating function: $m(t) = \exp(\mu t + \sigma^2 t^2/2)$ for $t \in \mathbb{R}^1$.

10. Student(α) or $t(\alpha)$, $\alpha > 0$ ($\alpha = 1$ gives the Cauchy distribution). density function:

$$f(x) = \frac{\Gamma\left(\frac{\alpha+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{\alpha}{2}\right)} \left(1 + \frac{x^2}{\alpha}\right)^{-(\alpha+1)/2} \frac{1}{\sqrt{\alpha}}$$

for $x \in R^1$.

mean: 0 when $\alpha > 1$.

variance: $\alpha/(\alpha-2)$ when $\alpha>2$.

11. Uniform[L, R], R > L.

density function: f(x) = 1/(R - L) for L < x < R.

mean: (L+R)/2.

variance: $(R-L)^2/12$.

moment-generating function: $m(t) = (e^{Rt} - e^{Lt})/t(R - L)$.