Project Report: Customer Churn Prediction Using Machine Learning

1. Project Title

Customer Churn Prediction in a Telecom Company Using Machine Learning

© 2. Project Objective

To predict whether a telecom customer is likely to **churn (leave the service)** using historical customer data. This helps companies take proactive retention actions.

3. Dataset Overview

• **Source**: <u>Telco-Customer-Churn.csv</u>

• **Records**: 7,043 customers

• Columns: 21

• Target Variable: Churn (Yes or No)

Sample Features:

Feature	Description
gender	Male or Female
SeniorCitizen	0 or 1
Partner, Dependents	Yes/No
tenure	No. of months the customer stayed
InternetService, PhoneService	Type of services
MonthlyCharges, TotalCharges	Billing info
Contract, PaymentMethod	Type of contract & payment
Churn	Target: Did the customer churn?

✓ 4. Data Preprocessing

🥐 Cleaning

- Dropped irrelevant column: customerID
- Replaced blank strings in TotalCharges with 0.0 and converted to float
- Checked and confirmed no missing values remain

Encoding

• Applied Label Encoding to all categorical features using LabelEncoder

• Saved encoders to encoders.pkl for later prediction use

🙅 Imbalance Handling

- Class distribution: Churn = No (73.5%), Yes (26.5%)
- Used SMOTE (Synthetic Minority Oversampling Technique) to balance the classes

5. Exploratory Data Analysis (EDA)

Numerical Features

- Plotted histograms and boxplots of tenure, MonthlyCharges, TotalCharges
- Generated correlation heatmap

Categorical Features

- Count plots showed patterns such as:
 - o Month-to-month contracts → Higher churn
 - o Fiber optic users → More likely to churn
 - o Electronic check payment → Higher churn

6. Model Training & Evaluation

Algorithms Used:

Model	Accuracy (CV)
Decision Tree	78%
XGBoost	83%
Random Forest	84% Selected

Final Evaluation (Test Set)

Metric	Value
Accuracy	77.85%
Precision (Churn)	58%
Recall (Churn)	59%
F1 Score (Churn)	58%
Confusion Matrix	

[[878 158]

[154 219]]

7. Model Deployment

✓ Files Saved

- customer churn model.pkl → Trained Random Forest model
- encoders.pkl → Saved label encoders

Q Prediction System

Built a prediction system where the user can enter the following values:

• Gender, Tenure, Internet service, Billing info, etc.

```
# Sample input structure

{
    'gender': 'Female',
    'SeniorCitizen': 0,
    'Partner': 'Yes',
    ...
}
```

Q Output:

Prediction: Churn or No Churn

• Probability: e.g. [0.78, 0.22]

9 8. Interactive System (User Input)

The model was extended to allow **dynamic user input** through the console:

```
input("Enter tenure: ")
```

Then:

- Transformed via saved encoders
- Predicted using the trained model
- Displayed result with probability

9. Conclusion

- Successfully built a customer churn prediction system with ~78% accuracy
- Model identifies churn-risk customers using contract, usage, and billing data
- Can be deployed in CRM or business intelligence dashboards for proactive retention

🚀 10. Future Enhancements

- Use GridSearchCV or Optuna for hyperparameter tuning
- Add SHAP or LIME for explainable AI
- Deploy as a web app using Flask or Streamlit
- Incorporate real-time data pipeline for live predictions

11. Project Files

File	Description
Telco-Customer-Churn.csv	Raw dataset
Churn_Prediction_Telco.ipynb	Jupyter/Colab notebook
customer_churn_model.pkl	Trained Random Forest model
encoders.pkl	Label encoders for categorical features