Projet de segmentation Olist

Support de présentation

Segmentation des clients d'un site e-commerce

Juillet 2021

olist store

o melhor jeito de vender online.

Sommaire

- 1. Rappel de la problématique
- 2. Analyse exploratoire et transformation des données
- 3. Méthodes employées : Clusterisations, NMF, RFM
- 4. Interprétation et exploitation possible des résultats
- 5. Proposition de maintenance
- 6. Bilan de projet

1. Rappel de la problématique

Mission:

Aider les équipes d' Olist à comprendre les différents types de consommateurs.

- En utilisant des méthodes non supervisées dans le but de regrouper les utilisateurs ayant des comportements similaires.
- 1. Réaliser une segmentation clients sur la base des données fournies
- 2. Proposer une « notation » client exploitable pour l'équipe marketing
- 3. Proposer une maintenance pour la mise à jour de la segmentation

https://olist.com/

Source : données composées de 9 fichiers csv issus d'un SGBDR

(clients, commandes, paiements, produits, vendeurs, etc.)

But : - fusionner ces données pour 1 entrée = 1 client avec ses caractéristiques

- explorer les données pour les caractériser pour une première compréhension

- nettoyer et identifier les éventuels problèmes à la fusion (outliers, imputation)

Opérations : - fusion progressive des données avec exploration conjointe

- transformation de variables (extraction, sélection, transformation, création)

- Taux de données manquantes (NaN) faible : 3 tables 9
- 2. Identification & compréhension des relations entre tables
- 3. Données clients et produits anonymisées (ID uniques)
- 4. Caractérisation du nombre de commandes passées
- 5. Niveau de satisfaction des clients / nombre de commandes
- 6. Répartition géographique des clients (Brésil, villes, états)
- 7. Moyens de paiement utilisés par les clients
- 8. Statut des commandes à l'instant t.
- 9. Vue globale de commandes par dates, mois, heures
- 10. Montant de commande moyen des clients + (outliers)
- 11. Délais de livraisons des commandes

	order_id	customer_id	order_status	order_purchase_timestamp	order_approved_a
266	8e24261a7e58791d10cb1bf9da94df5c	64a254d30eed42cd0e6c36dddb88adf0	unavailable	2017-11-16 15:09:28	2017-11-16 15:26:
397	1b9ecfe83cdc259250e1a8aca174f0ad	6 d 6 b 5 0 b 6 6 d 7 9 f 8 0 8 2 7 b 6 d 9 6 7 5 1 5 2 8 d 3 0	canceled	2018-08-04 14:29:27	2018-08-07 04:10:2
586	c272bcd21c287498b4883c7512019702	9582c5bbecc65eb568e2c1d839b5cba1	unavailable	2018-01-31 11:31:37	2018-01-31 14:23:
613	714fb133a6730ab81fa1d3c1b2007291	e3fe72696c4713d64d3c10afe71e75ed	canceled	2018-01-26 21:34:08	2018-01-26 21:58:
687	37553832a3a89c9b2db59701c357ca67	7607cd563696c27ede287e515812d528	unavailable	2017-08-14 17:38:02	2017-08-17 00:15:1

Analyse préliminaire et complémentaire à la segmentation pour observer le jeu de donnée dans sa globalité (approche commerciale) :

Cohortes clients (Fidélité & Moyenne de commande/Mois)

Utilisation de seulement quelques variables spécifiques:

- Client unique par entrée
- Nombre de commande(s)
- Dépense totale en achats
- Date d'achat(s)
- Statut de commande(s) -> doit être effectif (livré/validé)

2. Transformation des données

- 1. Opération de fusions successives pour obtenir une entrée par client résumant son activité complète
- 2. Exemple : création de catégories produits spécifiques pour regrouper les domaines d'achats clients. Réduction de 74 à 16 catégories plus compréhensibles.
- 3. Utilisation de nombreux « groupby » avec des fonctions d'agrégation dans le but de résumé l'activité d'un client en ligne.
- 4. Création de variables (but réduire le nombre total de variables et éviter les fortes corrélations) : délai entre commandes, proportion des frais de port dans la commande, densité produit, dépense moyenne totale client
- 5. Imputation, correction de données, e.g. données de géolocalisation, données manquantes (moyenne ou suppression, etc.)

2. EDA: Corrélations linéaires?

Corrélations linéaires particulières :

Rien de surprenant, ni utilisable pour de la transformation ou réduction de variables supplémentaires.

- payment_type_voucher & max_number_payment_type
- customer_mean_order & total_payments_amount

DataFrame final créé pour la segmentation :

- 95420 entrées clients
- 43 variables
- Pas de données manquantes sauf « reviews » clients

Utilisation d'un modèle de clustering (K-Means, DBSCAN)

Compréhension de certains types de variables: RFM, NMF

Recoupement des informations (Clustering/RFM): Score

Comparaison: méthodes RFM / clustering totales/partielles

Interprétations possibles (axes: financier, produits, clients)

Fréquence du contrat de maintenance / Objectifs OLIST

ACP aide à la visualisation, réduction de dimensions?

- 18 variables numériques de départ
- 14 variables expliquent 95% de variance totale...
- En conservant 80% de variance on peut réduire à 10 variables

Deux premières composantes ACP cumulent moins de 30 % variance expliquée

- Aide à la visualisation pour l'interprétation ? Non, pas significatif
- Réduction utile pour la clusterisation ? Non, pas utile, e.g. : perte de 20%

Caractérisation des habitudes de consommation clients en fonction des catégories des produits/paiements.

Intéressant : confirme l'EDA

Informations complémentaires:

Catégories : home

Catégories : health_beauty_hygiene

Paiements : boleto & voucher

Majoritairement: « credit card » pour

l'ensemble des features NMF

4 types de clustering avec K-Means effectués en faisant varier les données:

- 1^{er} type de clustering : variables numériques (7 clusters)
- 2ème type de clustering : variables numériques (12 clusters)
- 3^{ème} type de clustering : avec variables RFM (sélection)
- 4^{ème} type de clustering : variables RFM + variables catégorielles (meilleur compromis: résultats/dimensions)

14 clusters qui sont interprétables (meilleur que les résultats des 12 clusters obtenus)

- Meilleures métriques (SSE et coef. Silhouette et Index D.B.)
- Permet une caractérisation fine par groupe de clients
- Limitation : nombre important pour une lecture globale clients

Un nombre important de clusters : intéressant pour la caractérisation par groupe produits.

1ère approche via K-Means sur les données numériques exclusivement.


```
silhouette_avg : 0.21865898721018584
Davies-Bouldin index : 1.078879130607698
KMeans labels : [1 3 2 5 4 0 6]
Taille du cluster numéro θ : 2759 clients
Taille du cluster numéro 1 : 42149 clients
Taille du cluster numéro 2 : 7524 clients
Taille du cluster numéro 3 : 38950 clients
Taille du cluster numéro 4 : 1172 clients
Taille du cluster numéro 5 : 2747 clients
Taille du cluster numéro 6 : 119 clients
```

Approche RFM pour caractériser plus facilement les clients :

	recency	freque	ncy	monetary					
	mean	mean	max	mean	count				
rfm_score									
3	455.1	1.0	1	43.9	1519				
4	395.2	1.0	1	56.9	4578				
5	346.9	1.0	1	72.5	8970				
6	300.9	1.0	3	109.3	14486				
7	252.7	1.0	4	138.0	17457				
8	212.0	1.0	6	170.4	16929				
9	175.6	1.0	4	219.9	14173				
10	134.1	1.1	5	257.0	8872				
11	100.1	1.2	9	314.6	4592				
12	58.6	1.4	15	408.2	1781				

	recency	frequency	monetary		
	mean	mean	mean	count	
segment_label					
actuel target	223.0	1.0	170.7	71917	
interesting potential++	88.5	1.2	340.8	6373	
occasional	455.1	1.0	43.9	1519	
occasional++	363.2	1.0	67.3	13548	

	recency	freque	псу	monet	агу	
	mean	mean	mean max		count	
rfm_score						
3	455.1	1.0	1	43.9	1519	
4	395.2	1.0	1	56.9	4578	
5	346.9	1.0	1	72.5	8970 14486 17457	
6	300.9	1.0	3	109.3		
7	252.7	1.0	4	138.0		
8	212.0	1.0	6	170.4	16929	
9	175.6	1.0	4	219.9	14173	
10	134.1	1.1	5	257.0	8872	
11	100.1	1.2	9	314.6	4592	
12	2 58.6		15	408.2	1781	

Opération : Clustering sur les variables RFM normalisées

But : vérifier si le système de notation clients est cohérent du point de vue d'un algorithme non supervisé

14 clusters (utiles pour une caractérisation précise) :

- Majorité des clients des 14 clusters proviennent de :
 Sao Paulo (SP), Segment RFM « actual target »
- Catégories spécifiques quasiment à chaque clusters: intéressant commercialement -> segmentation par catégorie de produits
- La Majorité des clients payent avec la « credit card », seul le cluster 2 -> paiement en espèces

Cluster	0	1		2	3		4	5	6		7	8	ξ)	10	11		12
Catégorie Produits :	home_ confort_ appliance	home_confor applia + hom office_ furnitu	rt_ ince ne_ -	fashion_ clothes_ access.	healt_ beaut_ hygien	- tec	gii_ a	ifts_ .rt_ leco.	auto	tele	phony	chilhoo	vide d aud intru	o_	home_ confort_ appliance + health_ beauty_ hygiene	unkno	own fu co	ome_ fice_ rniture onstruc ols
Cluster			0	1	2	3	4	5		6	7	8	9	10	11	12	13	
max_number_payments_spread -		spread -	3.38	1.00	2.90	3.63	2.39	3.5	8	2.88	2.33	2.97	2.95	1.05	2.70	3.62	2.31	
total_payments_amount (R\$)		nt (R\$) -	150.62	136.23	132.70	170.06	192.7	4 217.	68 1	184.45	105.81	160.96	218.52	146.55	155.60	183.97	106.13	
mean_time_between_order (mois)		(mois) -	2.82	2.81	7.27	3.74	3.28	3.6	6	4.15	3.77	3.84	4.05	5.17	5.67	3.29	3.27	
mean_perct_freight (en %) -		(en %) -	32.70	35.02	30.37	26.55	29.27	19.8	1	31.77	50.26	26.98	33.98	32.07	31.32	30.88	34.39	
mean_reviews_score (sur 5) -		4.13	4.17	4.24	4.22	4.08	4.15	5	4.13	4.03	4.17	4.12	4.23	4.00	4.08	4.49		
to	tal_products_o	ordered -	1.20	1.14	1.19	1.16	1.21	1.0	9	1.14	1.13	1.11	1.12	1.16	1.25	1.33	1.11	
number_orders -		1.03	1.03	1.09	1.04	1.03	1.0	3	1.04	1.03	1.03	1.03	1.04	1.07	1.03	1.03	2	

13

books

Note: confirme les tendances observées via la NMF sur les catégories seules

Unités fédérales (états +

1 district fédéral : DF,

Brasilia)

PR: Paraná

RS: Rio Grande do Sul

MG: Minas Gerais

RJ: Rio de Janeiro

SP: São Paulo

Répartition géographique par états des clients par segment

Unités fédérales

(états + 1 district fédéral : DF, Brasilia)

PR: Paraná

RS: Rio Grande do Sul

MG: Minas Gerais

RJ: Rio de Janeiro

SP : São Paulo

Comparaison des résultats avec DBSCAN avec la même méthodologie que pour K-Means / RFM.

Comparaison des résultats avec DBSCAN avec la même méthodologie que pour K-Means / RFM.

Regroupement en seulement 3 catégories de clients :

- La distinction s'effectue au niveau de la fréquence
- Et nettement au niveau monétaire

Ce qui pourrait laisser penser que les segments clients avec occasional et occasional++ ont été fusionnés. Mais en réalité les résultats sont différents du clustering K-Means

5. Proposition de maintenance

Reprise des résultats à 14 clusters

Détermination de la variation des métriques en fonction du nombre de mois de commandes impliqués

Observation des valeurs en partant de la dernière commande – 1 mois, -2 mois, etc.

Coef. Silhouette moy. Variation significative. (plage de 4/5 mois max.)

1ère Maintenance à envisager par exemple dans les 4 premiers mois et réévaluée avec une fréquence différente si le pool de clients varie rapidement.

5. Proposition de maintenance

Comparaison avec les valeurs des métriques obtenues sur la clusterisation à 14.

5. Bilan de projet

- 1. Segmentation RFM : rapide & caractérisation intelligible
- 2. K-Means peut amener un complément de caractérisation précis.
- 3. Tout dépend des axes (commerciaux/marketing) -> Adaptable
- 4. Il serait intéressant de retester les modèles avec d'autres types de variables en fonction de l'évolution du « pool » clients.
- 5. Dataset très particulier (constaté via EDA : 1 commande = 1 client)
- 6. L'accès à d'autres informations clients (anonymes) pourrait être un apport très intéressant (âge, sexe, navigateur, terminal de commande, page(s), visité(s), Mesure de trafic, d'audience, etc.)
- 7. Caractérisation clients avec le nom des produits achetés -> ALS (recommandation -> en « vectorisant » les clients autrement)

