Human in the (Web) QoE loop

Dario Rossi Chief Expert, Huawei Technologies, Co. Ltd. dario.rossi@huawei.com

Quality of Experience (QoE) matters!

Good user QoE is a common goal for different stakeholders

Quality of Experience (QoE) matters!

Detecting user QoE disruption is important. Managing QoE to avoid disruption is even more!

QoS vs QoE network management in a nutshell

max QoS s.t. constraints

Take video delivery as a high-level example

Hit ratio

QoS vs QoE network management in a nutshell

Disclaimer: I told you ©

max QoS s.t. constraints

$$\max h = 1 - \sum_{\substack{l \in \mathcal{L} \\ o \in \mathcal{O}}} d_{l,o}^{out} / \sum_{o \in \mathcal{O}} d_o$$

$$\rho_o = F\left(\mathcal{Q}, P, \{x_{n,o} | n \in \mathcal{N}\}\right) \tag{1}$$

$$d_{core,o}^{out} = (1 - \rho_o)d_o \tag{2}$$

$$d_{core,o}^{out} = \sum_{l \in \mathcal{L}} d_{l,o}^{in} \tag{3}$$

$$d_{l,o}^{in} = 0, \forall l \in \mathcal{L} \setminus \mathcal{L}_o \tag{4}$$

$$d_{l,o}^{out} = (1 - x_{l,o}) \cdot d_{l,o}^{in} \tag{5}$$

$$\sum_{o \in \mathcal{O}} x_{l,o} = cs_l, \forall l \in \mathcal{L}$$
 (6)

$$\sum_{o \in \mathcal{O}} x_{n,o} = cs_n, \forall n \in \mathcal{N}$$
 (7)

$$\sum_{l \in \mathcal{L}} cs_l + \sum_{n \in \mathcal{N}} cs_{n,o} \le C_{tot}.$$
 (8)

Take video delivery as a high-level example

[TPDPS-15] Araldo, A. and Rossi, D. and Martignon, F., Cost-aware caching: Caching more (costly items) for less (ISPs operational expenditures) In IEEE Transactions on Parallel and Distributed Systems, 2015 Huawei Technologies Co., Ltd.

QoS vs QoE network management in a nutshell

Disclaimer: I told you ©

max QoS s.t. constraints

max QoE = f(QoS) s.t. constraints

$$\max h = 1 - \sum_{\substack{l \in \mathcal{L} \\ o \in \mathcal{O}}} d_{l,o}^{out} / \sum_{o \in \mathcal{O}} d_o$$

$$\rho_o = F\left(\mathcal{Q}, P, \{x_{n,o} | n \in \mathcal{N}\}\right) \tag{1}$$

$$d_{core,o}^{out} = (1 - \rho_o)d_o \tag{2}$$

$$d_{core,o}^{out} = \sum_{l \in \mathcal{L}} d_{l,o}^{in} \tag{3}$$

$$d_{l,o}^{in} = 0, \forall l \in \mathcal{L} \setminus \mathcal{L}_o \tag{4}$$

$$d_{l,o}^{out} = (1 - x_{l,o}) \cdot d_{l,o}^{in} \tag{5}$$

$$\sum_{o \in \mathcal{O}} x_{l,o} = cs_l, \forall l \in \mathcal{L}$$
 (6)

$$\sum_{o \in \mathcal{O}} x_{n,o} = cs_n, \forall n \in \mathcal{N}$$
 (7)

$$\sum_{l \in \mathcal{L}} cs_l + \sum_{n \in \mathcal{N}} cs_{n,o} \le C_{tot}.$$
 (8)

$$\max \sum_{o \in O} \sum_{q \in Q} \sum_{v \in V} n_v^{o,q} U^q$$

subject to:

$$\sum_{q \in Q} n_v^{o,q} = n_v^o \qquad \forall o \in O, v \in V \quad (2)$$

$$d^{o,q,v_d} = n_v^{o,q} \cdot r^q \qquad \forall o \in O, q \in Q, v_d \in V \quad (3)$$

$$\begin{split} d^{o,q,v_d} &= z_{v_d}^{o,q,v_d} + w_{v_d}^{o,q,v_d} + \sum_{e \in BS(v_d)} y_e^{o,q,v_d} - \sum_{e \in FS(v_d)} y_e^{o,q,v_d} \\ &\forall o \in O, q \in Q, v_d \in V \end{split} \tag{4}$$

$$z_{v_s}^{o,q,v_d} + w_{v_s}^{o,q,v_d} + \sum_{e \in BS(v_s)} y_e^{o,q,v_d} = \sum_{e \in FS(v_s)} y_e^{o,q,v_d}$$

 $\forall o \in O, g \in O, v_e \in V, v_d \in V, v_s \neq v_d$ (5)

$$\sum_{o \in O} \sum_{q \in Q} \sum_{v_d \in V} y_e^{o,q,v_d} \le b_e \qquad \forall e \in A$$
(6)

$$\sum_{v_d \in V} z_{v_s} \leq p_{v_s} \cdot bw_{v_s} \qquad \forall o \in O, q \in Q, v_s \in V$$

$$\sum_{v_d \in V} w_{v_s}^{o,q,v_d} \leq x_{v_s}^{o,q} \cdot bw_{v_s} \qquad \forall o \in O, q \in Q, v_s \in V$$

$$(7)$$

$$\sum_{vd} \sum_{s \in O} x_{vs}^{o,q} \cdot s^{q} \leq S_{vs} \qquad \forall v_s \in V$$
(8)

$$\sum_{o \in O} \sum_{q \in Q} \sum_{v_s \in V} x_{v_s}^{o,q} \cdot s^q \le S_{TOT}$$

$$x_v^{o,q} \in \{0,1\}$$

$$\forall o \in O, q \in Q, v \in V$$

$$\begin{array}{ll} v_v^{o,q} \in \mathbb{Z}^+ & \forall o \in O, q \in Q, v \in V \\ v_c^{o,q,v_d} \in \mathbb{R}^+ & \forall o \in O, q \in Q, v_d \in V, e \in A \\ d^{o,q,v_d} \in \mathbb{R}^+ & \forall o \in O, q \in Q, v_d \in V \end{array}$$

 $z_{v_{s}}^{o,q,v_{d}}, w_{v_{s}}^{o,q,v_{d}} \in \mathbb{R}^{+}$

$$\forall o \in O, q \in Q, v_d \in V, v_s \in V.$$

User-centric QoE focus

[NETWORKING-16] Araldo, Andrea and Martignon, Fabio and Rossi, Dario, Representation Selection Problem: Optimizing Video Delivery through Caching IFIP Networking 2016,

[TPDPS-15] Araldo, A. and Rossi, D. and Martignon, F., Cost-aware caching: Caching more (costly items) for less (ISPs operational expenditures) In IEEE Transactions on Parallel and Distributed Systems, 2015 Huawei Technologies Co., Ltd.

QoE ≈ f(QoS) agenda: what can go wrong?

Engineering/datascience viewpoint

 \rightarrow Features engineering Feature vector \underline{x}

> MOS collection Target labels *y*

> QoE modeling Regression y = f(x)

Human perception viewpoint

- > Humans are not rational players
- > Crowdworkers vs Real users

- > Keep it sustained, stupid!
- > Removing features altogether
- Accurate yet scalable QoE modeling

Using the Web as an example application

Quality at different layers

Quality at different layers

Quality at different layers

(true for any other application)

HTTPbis,

QUIC...

Feature engineering (1/2): Instant metrics

Stopping product placement, references at the end

* Images by vvstudio, vectorpocket, Ydlabs / Freepik

- ■SpeedIndex, RUMSI, PSSI
 - > Processing intensive
 - > Only at L7 (in browser)
 - > Visual progress metric
- ■ObjectIndex, ByteIndex and ImageIndex
 - > Lightweight 🗸
 - > ByteIndex also at L3 (in network)
 - > Possibly far from user QoE ?

- SpeedIndex, RUMSI, PSSI
 - > Processing intensive
 - > Only at L7 (in browser)
 - > Visual progress metric
- ■ObjectIndex, ByteIndex and ImageIndex
 - > Lightweight 🗸
 - > ByteIndex also at L3 (in network)
 - > Possibly far from user QoE ?

- SpeedIndex, RUMSI, PSSI
 - > Processing intensive

> Only at L7 (in browser)

> Visual progress metric

- ■ObjectIndex, ByteIndex and ImageIndex
 - > Lightweight \

> ByteIndex also at L3 (in network)

> Possibly far from user QoE ?

SpeedIndex %of visual ObjectIndex completeness % of objects (histogram, downloaded rectangles or

SSim)

ImageInde ByteIndex % of bytes % of bytes of images downloaded

cutoffs

- SpeedIndex
 - > Processing intens
 - > Only at L7 (in bro
 - Visual progress n

- ■ObjectIndex, By
 - > Lightweight 💙
 - > Also at L3 (in net
 - > Possibly far from user QoE?

Takeaway message #1

In the age of ML & AI, still a fair amount of feature engineering!

(and this is at L7, w/o even considering encryption !!)

SpeedinaeX

%of visual completeness (histogram, rectangles or SSim)

ObjectIndex % of objects downloaded

ByteIndex % of bytes % of bytes of images downloaded

Crowdsourcing user feedback

Mean opinion score (MOS)

"Rate your experience from 1-poor to 5-excellent"

Lab experiments

Small user diversity, volounteers

Web browsing, but artificial websites

Artificial controlled conditions

User perceived PLT (uPLT)

"Which of these two pages finished first ?"

Crowdsourcing (payed crowdworkers)

Larger userbase, but higher noise

Side-to-side videos ≠ Web browsing!

Artificial controlled conditions

User acceptance

"Did the page load fast enough ?" (Yes/No)

Experiments from operational website

Actual service users

Browsing in typical user conditions
Huge heterogeneity (devices/browsers/nets)

feedback (1/3)

(Dataset and paper available)

Mean opinion score (MOS)

"Rate your experience from 1-poor to 5-excellent"

Lab experiments

Small user diversity, volounteers
Web browsing, but artificial websites
Artificial controlled conditions

Humans are non rationale players

Some humans give *higher* scores to *slower* pages

feedback (1/3)

(Dataset and paper available)

Mean opinion score (MOS)

"Rate your experience from 1-poor to 5-excellent"

Lab experiments

Small user diversity, volounteersWeb browsing, but artificial websites

Artificial controlled conditions

We also collected free-form comments for NLP processing but... ©

I really liked how fast the images loaded. What a great user experiment. I feel like >I could do that all my life, you know clicking on webpages and watching them load... It provides a weird feeling. Weird but somehow appreciable, much like when you sit on a sand beach, alone, and you watch the waves coming and going. You can then think about your life, your goals and the meaning of life. Really, a way to retrieve your inner peace. Well, this comment is quite long. I think it is enough. Do you think this comment is long enough? Hey! I don't even know who you are! Human? Bot? Cyborg? Those things I just told you, do you REALLY understand them or will you just run an algorithm on it in order to find keywords such as "quick" "load" etc... I wonder, am I just whispering all my feelings, emotions, thougths (what makes me be me in fact) to a empty hole? I don't like this idae, so I stop now. By the way, it was quite fun to have this little chat with you.

feedback (2/3)

(Dataset and paper will come)

User perceived PLT (uPLT)

"Which of these two pages finished first?"

Crowdsourcing (payed crowdworkers)

Larger userbase, but higher noise

Side-to-side videos ≠ Web browsing!

Artificial controlled conditions

Crowdworkers

- Cheap but...
- Lot of work spent into label quality checking and filtering

Real instance

- Difference noticeable until just t=1 sec...
- uPLT ≠ MOS!

feedback (2/3)

(Dataset and paper will come)

User perceived PLT

"When does this page finishes loading?"

When do users think that a page is ready?

Booking.com

feedback (2/3)

(Dataset and paper will come)

User perceived PLT (uPLT)

"When does this page finishes loading?"

Crowdsourcing (payed crowdworkers)

Larger userbase, but higher noise

Side-to-side videos ≠ Web browsing!

Artificial controlled conditions

feedback (2/3)

(Dataset and paper will come)

User perceived PLT (uPLT)

"When does this page finishes loading?"

Crowdsourcing (payed crowdworkers)
Larger userbase, but higher noise

Artificial controlled conditions

feedback (2/3)

(Dataset and paper will come)

User perceived PLT (uPLT)

"When does this page finishes loading?"

Artificial controlled conditions

feedback (3/3)

(Paper out, dataset will come)

User acceptance

"Did the page load fast enough?" (Yes/No)

Experiments from operational website

Actual Wikipedia users

Browsing in typical user conditions

Year [ref]		So	cale/heteroge	neity			Experimental settings
	Lab + CW ¹	Pages	Network ²	Sw^3	Hw^4	Samples	
2015 [17]	0 + 120	30	-	-	-	3.6k	ACR importance of Webpage elements
2016 [48]	100 + 1k	100	n.a.	1	1	6k	Side-by-side videos (of the same site)
2017 [13]	147 + 0	25	32	1	1	4k	Controlled browsing experiments
2017 [53]	28 + 323	28	3	1	1	2.5k	Side-by-side videos (unclear if different pages)
2017 [26]	0 + 5.4k	500	16	1	1	40k	Side-by-side videos (160 different website pairs)
2017 [30]	50 + 0	45	1	1	1	2.2k	Webcam, eye-tracking glasses
2018 [20]	241 + 0	12	n.a.	1	1	9k	Controlled browsing experiments
this study	62k users	46 <i>k</i>	3.8kISPs	45	2.7k	62 <i>k</i>	User feedback from real browsing activity

¹Crowdworkers, ²Number of controlled network conditions, ³Software browser, ⁴Hardware device

feedback (3/3)

(Paper out, dataset will come)

User acceptance

"Did the page load fast enough?" (Yes/No)

Experiments from operational website

📥 Actual Wikipedia users

Browsing in typical user conditions

Year [ref]		S	cale/heterogeneity		Experimental settings
	$Lab + CW^1$	Pages	Network ² Sw ³ Hw ⁴	^l Samples	
2015 [17]	0 + 120	30		3.6k	ACR importance of Webpage elements
2016 [48]	100 + 1k	100		6k	Side-by-side videos (of the same site)
2017 [13]	147 + 0	25	Hard to even have	4k	Controlled browsing experiments
2017 [53]	28 + 323	28	have a MOS value	2.5k	Side-by-side videos (unclear if different pages)
2017 [26]	0 + 5.4k	500	per page	40k	Side-by-side videos (160 different website pairs)
2017 [30]	50 + 0	45		2.2k	Webcam, eye-tracking glasses
2018 [20]	241 + 0	12		9 k	Controlled browsing experiments
this study	62k users	46 <i>k</i>	3.8 <i>kISPs</i> 45 2.7 <i>k</i>	62 <i>k</i>	User feedback from real browsing activity

¹Crowdworkers, ²Number of controlled network conditions, ³Software browser, ⁴Hardware device

feedback (3/3)

(Paper out, dataset will come)

User acceptance

"Did the page load fast enough?" (Yes/No)

Experiments from operational website

Actual Wikipedia users

Browsing in typical user conditions

3	Year [ref]		So	cale/heterogen	eity		Experimental settings
		Lab + CW ¹	Pages	Network ²	$Sw^3 Hw^4$	Samples	
2	2015 [17]	0 + 120	30	-		3.6k	ACR importance of Webpage elements
2	2016 [48]	100 + 1k	100	n.a.	Huge	6k	Side-by-side videos (of the same site)
2	2017 [13]	147 + 0	25	32	variability	4k	Controlled browsing experiments
2	2017 [53]	28 + 323	28	3	in ISP and	2.5k	Side-by-side videos (unclear if different pages)
2	2017 [26]	0 + 5.4k	500	16	conditions	40k	Side-by-side videos (160 different website pairs)
2	2017 [30]	50 + 0	45	1	•••	2.2k	Webcam, eye-tracking glasses
_ 2	2018 [20]	241 + 0	12	n.a.		9k	Controlled browsing experiments
t	his study	62k users	46 <i>k</i>	3.8kISPs	45 $2.7k$	62k	User feedback from real browsing activity

¹Crowdworkers, ²Number of controlled network conditions, ³Software browser, ⁴Hardware device

feedback (3/3)

(Paper out, dataset will come)

User acceptance

"Did the page load fast enough?" (Yes/No)

Experiments from operational website

📥 Actual Wikipedia users

Browsing in typical user conditions

Year [ref]		Sc	cale/heteroge	neity			Experimental settings
	Lab + CW ¹	Pages	Network ²	Sw^3	Hw	⁴ Samples	
2015 [17]	0 + 120	30	-	-	-		ACR importance of Webpage elements
2016 [48]	100 + 1k	100	n.a.	1	1	Huge	Side-by-side videos (of the same site)
2017 [13]	147 + 0	25	32	1	1	variability	Controlled browsing experiments
2017 [53]	28 + 323	28	3	1	1	in Browser	Side-by-side videos (unclear if different pages)
2017 [26]	0 + 5.4k	500	16	1	1	software &	Side-by-side videos (160 different website pairs)
2017 [30]	50 + 0	45	1	1	1	devices	Webcam, eye-tracking glasses
2018 [20]	241 + 0	12	n.a.	1	1		Controlled browsing experiments
this study	62k users	46k	3.8k ISPs	45	2.7	k 62 k	User feedback from real browsing activity

¹Crowdworkers, ²Number of controlled network conditions, ³Software browser, ⁴Hardware device

feedback (3/3)

(Paper out, dataset will come)

User acceptance

"Did the page load fast enough ?" (Yes/No)

Experiments from operational website

Actual Wikipedia users

Browsing in typical user conditions

Huge heterogeneity (devices/browsers/nets)

7 574 7
ac ac
有祖
WIKIPEDIA
WIKIPEDIA

Collab with

	T					
Year [ref]		So	cale/heteroge	neity		
	Lab + CW ¹	Pages	Network ²	Sw^3	Hw^4	Samp
2015 [17]	0 + 120	30	-	-	-	3.6k
2016 [48]	100 + 1k	100	n.a.	1	1	6k
2017 [13]	147 + 0	25	32	1	1	
2017 [53]	Pretty unba	alanced f	for modeling	j, but v	ery god	od
2017 [26]	for accur	ate & fa	ctual operat	ional i	nsights	
2017 [30]	50 + 0	45	1	1	1	.2k
2018 [20]	241 + 0	12	n.a.	1	1	9k
this study	62k users	46 <i>k</i>	3.8kISPs	45	2.7k	62 <i>k</i>
¹ Crowdwoi	rkers, ² Numbe	r of cont	rolled networ	k cond	itions, ³ 3	Softwa

feedback (3/3)

(Paper out, dataset will come)

Collab with

WikipediA

User acceptance

"Did the page loa enough ?" (Yes/N

Year [ref]		
	Lab + CW ¹	Ρ
2015 [17]	0 + 120	3
2016 [48]	100 + 1k	1
2017 [13]	147 + 0	2
2017 [53]	Pretty unba	laı
2017 [53] 2017 [26]	Pretty unba	
2017 [26]	for accur	

Takeaway message #2

You need us(ers)more than you think (or want)

May

Jun

No finite amount of controlled user-panels will ever be sufficient...

nal website

s/browsers/nets)

Crowdworkers, 2Number of controlled network conditions, 2Softwa

Painkiller prescription (1/3): Keep it sustained, stupid!

Other applications/players are doing this already!

- **+**■Sustained continuous user QoE indication benefits
 - > Useful samples for QoE management assessment, troubleshooting, regression detection, etc.
 - > Get continuous stream of samples for improving QoE = f(QoS) models on the long run
- ➡Very limited downsides (risk of annoying users if leveraging small panels)

Painkiller prescription (2/3): Removing features altogether

Expert-driven feature engineering

Possible inputs

- Explainable but inherently heuristic approach
- Hard to keep in sync with application/network change

- Neural Networks
- Less interpretable but more versatile
- Downside: requires *lots* of samples....

- > Feed NN with *x(t) signal*
- > Still lightweight

- > User feedback (e.g. MOS, user PLT, etc.)
- > Smartphone sensors (eg happiness estimation via facial recognition)

Possible outputs

- > Feed NN using a filmstrip
- > More complex

- > Brain signals acquired with sensors
- Activity of brain areas correlated with user happiness

Painkiller prescription (3/3): Divide et impera

- World Wild Web
- Huge diversity, not captured by single model
- Increase accuracy
- Per-page QoE models
- ➡ Inherently non scalable
- Increase accuracy & scalability
- Per-page QoE models (eg Alexa top 100 pages)
- Aggregate QoE models (eg 100 clusters top 1M)
- Generic QoE model (for the tail up to 1B pages)

Wrap up

Move away from feature engineering (or be locked in forever, for each application)!

Think hard about how to continuously involve users for QoE assessment, and even more for quality assessment of your QoE management solution!!

A good dose of painkillers (= continuous feedback + automated learning + divide et impera + ...)

References

Final product placement. Dataset and code are free, though ©

60,000+ real user grades

[WWW-19] F. Salutari, D. Da Hora, G. Dubuc and D. Rossi A large scale study of Wikipedia Wikipedia users' quality of Experience Proc. WWW, to appear

Chrome plugin implementation

[SIGCOMM-18] D. da Hora, D. Rossi, V. Christophides, R. Renata, A practical method for measuring Web above-the-fold time, ACM SIGCOMM Demo, aug. 2018,

[QOMEX-18] Hossfeld, Tobias and Metzger, Florian and Rossi, Dario, Speed Index: Relating the Industrial Standard for User Perceived Web Performance to Web QoE 10th International Conference on Quality of Multimedia Experience (QoMEX 2018) jun. 2018

9,000 real user grades

[PAM-18] D. da Hora, A. Asrese, V. Christophides, R. Teixeira and D. Rossi, Narrowing the gap between QoS metrics and Web QoE using Above-the-fold metrics Proc. PAM 2018, Best dataset award ★

10,000 automated experiments

[PAM-17] Bocchi, Enrico and De Cicco, Luca and Mellia, Marco and Rossi, Dario, The Web, the Users, and the MOS: Influence of HTTP/2 on User Experience Proc. PAM 2017 [SIGCOMM-QoE-16] E. Bocchi, L. De Cicco, D. Rossi, Measuring the Quality of Experience of Web users, ACM SIGCOMM Internet-QoE worshop 2016, **Best paper award** *

■ Thanks for lis Loading