3.1.1. Discretize the controller ()=/ using tustin(bilinear) transformation.

```
T = 0.05; %sampling period
k = 1;
Hc = tf(k, [1 0]);
Hc_discrete = c2d(Hc, T, 'tustin')

Hc_discrete =

0.025 z + 0.025
    z - 1

Sample time: 0.05 seconds
Discrete-time transfer function.
```

3.1.2. Discretize the process $H_p(s) = 2400 / ((s + 20) * (s + 40))$ using zero order hold method.

3.1.3. Use the zpk function to write on your notebook the open loop transfer function.

3.1.4. Analyze the stability of the closed loop system depending on \in (0, ∞); draw on your notebook the root locus and mention the obtained values of k directly on the graphics.

```
figure,
rlocus(H_ol)
```


 $% k = 9.26 \rightarrow zeta = 0$

3.1.5. Analyze closed loop behavior depending on $\in (0,\infty)$; use Matlab to generate the closed loop step response for all different behaviors that result depending on k; give suggestive titles to the generated plots.

```
figure;
step(feedback(100*H_ol,1),1); title('Unstable system')
```


figure;
step(feedback(2.2*H_ol,1),1); title('Underdamped')


```
figure;
step(feedback(9.26*H_ol,1),1); title('Undamped')
```


3.1.6. Use the zgrid function to obtain the value of k for which the overshoot of the closed loop is below 10%.

figure,
rlocus(H_ol)
zgrid

