Unipotent representations and theta correspondence

Ma, Jia-Jun

School of Mathematics Xiamen University

Department of Mathematics Xiamen University Malaysia Campus

December 13, 2024

■ For each $g \in G := \mathrm{GL}_n(\mathbb{C}), \exists ! \text{ pair } (s, u) \text{ such that}$ g = su = us,

■ For each $g \in G := \mathrm{GL}_n(\mathbb{C}), \exists ! \text{ pair } (s, u) \text{ such that }$

$$g = su = us$$
,

• s is semisimple, and u is unipotent (u-1) is nilpotent.)

■ For each $g \in G := \mathrm{GL}_n(\mathbb{C})$, $\exists !$ pair (s, u) such that

$$g = su = us$$
,

• s is semisimple, and u is unipotent (u-1) is nilpotent.) Camille Jordan Claude Chevalley

■ For each $g \in G := \mathrm{GL}_n(\mathbb{C})$, $\exists !$ pair (s, u) such that

$$g = su = us$$
,

• s is semisimple, and u is unipotent (u-1) is nilpotent.) Camille Jordan Claude Chevalley

• Classification of conjugation classes in G:

$$G/\sim=\bigsqcup_{s\in G_{\mathrm{s.s.}}/\sim} \left\{ \left. su \mid u\in G^{s} \right. \right\} / \sim \xleftarrow{bij.} \bigsqcup_{s\in G_{\mathrm{s.s.}}/\sim} \mathrm{unip}(G^{s})$$

 \blacksquare Jordan decomposition of representations:

■ Jordan decomposition of representations: Langlands Dual group $\check{\mathbf{G}}$. E.g. $\operatorname{Sp}_{2n} = \mathbf{G} \iff \check{\mathbf{G}} = \operatorname{SO}_{2n+1}$

$$\operatorname{Irr}(G) = \bigsqcup_{s \in \check{G}_{\mathrm{s.s.}}/\sim} \mathcal{E}(G, s).$$

■ Jordan decomposition of representations: Langlands Dual group $\check{\mathbf{G}}$. E.g. $\operatorname{Sp}_{2n} = \mathbf{G} \iff \check{\mathbf{G}} = \operatorname{SO}_{2n+1}$

 $\operatorname{Irr}(\mathit{G}) = \bigsqcup_{s \in \check{\mathit{G}}_{\mathrm{s.s.}}/\sim} \mathcal{E}(\mathit{G}, s).$

Lusztig

Lusztig's map to the unipotent packet.

$$\mathcal{E}(G,s) \xleftarrow{bij.} \mathcal{E}(\check{G}_s,1)$$

■ Jordan decomposition of representations: Langlands Dual group $\check{\mathbf{G}}$. E.g. $\operatorname{Sp}_{2n} = \mathbf{G} \iff \check{\mathbf{G}} = \operatorname{SO}_{2n+1}$

 $\mathrm{Irr}(\mathit{G}) = \bigsqcup_{\mathit{s} \in \check{\mathit{G}}_{\mathrm{s.s.}}/\sim} \mathcal{E}(\mathit{G},\mathit{s}).$

Lusztig's map to the unipotent packet.

$$\mathcal{E}(G,s) \stackrel{bij.}{\longleftrightarrow} \mathcal{E}(\check{G}_s,1)$$

Preserve cuspidality.

Unipotent cuspidal representations

Let q be an odd prime power.

Unipotent cuspidal representations (for classical groups) exist only in the following cases:

- $U_n(\mathbb{F}_q)$ has one π_k , when n = k(k+1)/2;
- $\operatorname{Sp}_{2n}(\mathbb{F}_q)$ has one $\pi_k^{\operatorname{Sp}}$, when n=k(k+1)
- \bullet $O_{2n}^{\epsilon}(\mathbb{F}_q)$ has two $\pi_{k,a/b}^e$, when $n=k^2$ and $\epsilon=(-1)^k$.
- \bullet $O_{2n+1}^{\epsilon}(\mathbb{F}_q)$ has two $\pi_{k,a/b}^o$, when n=k(k+1).

By Adams-Moy, all the unipotent cuspidal representations can be consturced by theta lifting.

Rational nilpotent orbits of orthogonal/symplectic groups

- $lue{}$ Quad(k) be the isometric classes of quadratic spaces over k.
- Witt(k) be the Witt group of a field k. We identify Witt(k) × \mathbb{N} = Quad(k) via

$$([V_0], n) \mapsto V_0 \oplus \mathbb{H}^n$$
 with V_0 anisotropic

Rational nilpotent orbits of orthogonal/symplectic groups

- Quad(k) be the isometric classes of quadratic spaces over k.
- Witt(k) be the Witt group of a field k. We identify Witt(k) × \mathbb{N} = Quad(k) via

$$([V_0], n) \mapsto V_0 \oplus \mathbb{H}^n$$
 with V_0 anisotropic

■ The rational nilpotent oribts are parameterized by formed Yong-diagram :

$$[(Q_1, r_1), (Q_2, r_2), \cdots (Q_l, r_l)]$$

such that

- $Q_i \in \operatorname{Quad}(k)$,
- $r_1 > r_2 > \cdots r_l > 0$
- and Q_i is split if r_i is even for orthogonal group r_i is odd for symplectic group.

The chain/descent sequence of unipotent cuspdial representations

The chain/descent sequence of unipotent cuspdial representations

(The complete result on the rational Wavefront of finite classical group has been worked out by Z.-C. Wang)

Lifting of cycles

■ Example $(G, G') = (\operatorname{Sp}_{2n}, \operatorname{O}_m)$

Lifting of cycles

■ Example $(G, G') = (\operatorname{Sp}_{2n}, \operatorname{O}_m)$

■ $\mathcal{O} := G \cdot X$ is called the lift of $\mathcal{O}' := G' \cdot X'$ if A is full rank and $m \leq 2n$.

Lifting of cycles

 $Example (G, G') = (Sp_{2n}, O_m)$

- $\mathcal{O} := G \cdot X$ is called the lift of $\mathcal{O}' := G' \cdot X'$ if A is full rank and $m \leq 2n$.
- One can define lifting of cycles use the geometry of moment maps

$$\vartheta^{\mathrm{geo}} \colon \mathcal{K}_{\mathcal{O}'}(G') \longrightarrow \mathcal{K}_{\mathcal{O}}(G)$$

Theorem (Gomez-Zhu) Theta lift of generalized Whittaker models

$$\operatorname{Wh}_{\mathcal{O}}(\Theta(\pi')) = \vartheta^{\operatorname{geo}}(\operatorname{Wh}_{\mathcal{O}'}(\pi')),$$

lacksquare G real reductive group

lacksquare G real reductive group

 $\{\, \text{discrete series} \,\} \subset \{\, \text{tempered} \,\} \subset \{\, \text{unitary} \,\} \subset \operatorname{Irr}(\mathit{G})$

lacksquare G real reductive group

$$\{\, \text{discrete series} \,\} \subset \{\, \text{tempered} \,\} \subset \{\, \text{unitary} \,\} \subset \operatorname{Irr}(\mathit{G})$$

■ Unitary dual of $SL_2(\mathbb{R})$:

lacksquare G real reductive group

$$\{\, \text{discrete series} \,\} \subset \{\, \text{tempered} \,\} \subset \{\, \text{unitary} \,\} \subset \operatorname{Irr}(\mathit{G})$$

■ Unitary dual of $SL_2(\mathbb{R})$:

• Open problem: Structure of the unitary dual!

$$W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$$

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\Psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\Psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\Psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$ $\Leftrightarrow \text{nilpotent orbit of a real from of } \overrightarrow{G}.$

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\Psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$ $\Leftrightarrow \text{nilpotent orbit of a real from of } \overrightarrow{G}.$

Conjecture: \exists unipotent Arthur packets

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$ $\Leftrightarrow \text{nilpotent orbit of a real from of } \overrightarrow{G}.$

Conjecture: \exists unipotent Arthur packets

"On some problems suggested by the trace formula" 1980's

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\Psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$ $\Leftrightarrow \text{nilpotent orbit of a real from of } \overrightarrow{G}.$

Conjecture: \exists unipotent Arthur packets

"On some problems suggested by the trace formula" 1980's Mæglin Renard

Reduction to unipotent Arthur packet

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$
- $\psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$ $\Leftrightarrow \text{nilpotent orbit of a real from of } \overrightarrow{G}.$

Conjecture: \exists unipotent Arthur packets

"On some problems suggested by the trace formula" 1980's Mæglin Renard

Reduction to unipotent Arthur packet

"Sur Les paquets d'Arthur des groupes classiques réels" (2020)

G: a real reductive group.

G: a real reductive group.

• $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto \inf$. char. $\chi_{\check{\mathcal{O}}}$.

G: a real reductive group.

■ $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$.

 \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g}).$

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- lacktriangle Definition (Barbasch-Vogan):

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- *Definition* (Barbasch-Vogan):

An irr. adm. G-module is called *special unipotent* if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto \inf$. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- *Definition* (Barbasch-Vogan):

An irr. adm. G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

 $\Longleftrightarrow \pi$ has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) \leq d_{BV}(\check{\mathcal{O}})$

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- *Definition* (Barbasch-Vogan):

An irr. adm. G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

 $\iff \pi$ has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) \leq d_{BV}(\check{\mathcal{O}})$

■ Weak Unipotent Packet:

Barbasch-Vogan's definition of special unip. repn.

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- Definition (Barbasch-Vogan):

An irr. adm. G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

 $\iff \pi$ has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) \leq d_{BV}(\check{\mathcal{O}})$

■ Weak Unipotent Packet: Unip_Õ(G) := { special unipotent repn. attached to $\check{\mathcal{O}}$ }.

Barbasch-Vogan's definition of special unip. repn.

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- \blacksquare *Definition* (Barbasch-Vogan):

An irr. adm. G-module is called *special unipotent* if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

 $\iff \pi$ has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) \leq d_{BV}(\check{\mathcal{O}})$

- Weak Unipotent Packet:
 - $\mathrm{Unip}_{\check{\mathcal{O}}}(G) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.$
- Conjecture 1: Unip_Ŏ(G) consists of unitary repn.

Barbasch-Vogan's definition of special unip. repn.

G: a real reductive group.

- $\check{\mathcal{O}}$: a nilpotent orbit in $\check{G} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.
- *Definition* (Barbasch-Vogan):

An irr. adm. G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

 $\iff \pi$ has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) \leq d_{BV}(\check{\mathcal{O}})$

■ Weak Unipotent Packet:

 $\operatorname{Unip}_{\mathcal{O}}(G) := \{ \text{ special unipotent repn. attached to } \mathcal{O} \}.$

- Conjecture 1: Unip_Ŏ(G) consists of unitary repn.
- Conjecture 2: Unip_{\mathcal{O}}(G) is the union of certain Arthur packets.

Special unip. repn. of simply conn. classical groups

Theorem (Barbasch-M.-Sun-Zhu)

Suppose G is a simply connected real classical group, i.e. one of the following groups

$$\mathrm{SU}(p,q),\mathrm{Spin}(p,q),\mathrm{Spin}(2n,\mathbb{H}),\mathrm{Sp}(2n,\mathbb{R}),\mathrm{Mp}(2n,\mathbb{R}),\mathrm{Sp}(p,q)$$

Arthur-Barbasch-Vogan's unitarity conj. for special unipotent repn. holds:

Special unip. repn. of simply conn. classical groups

Theorem (Barbasch-M.-Sun-Zhu)

Suppose G is a simply connected real classical group, i.e. one of the following groups

$$\mathrm{SU}(p,q),\mathrm{Spin}(p,q),\mathrm{Spin}(2n,\mathbb{H}),\mathrm{Sp}(2n,\mathbb{R}),\mathrm{Mp}(2n,\mathbb{R}),\mathrm{Sp}(p,q)$$

Arthur-Barbasch-Vogan's unitarity conj. for special unipotent repn. holds:

All special unipotent repn. of G are unitarizable.

The Arthur parameter of these representations are determined by recent work of Sun-Xu.

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$ for example.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\check{\mathcal{O}}_b = \{r_1, r_1, \cdots, r_k, r_k\}$ and
- Set $\mathcal{O}'_b = \{ r_1, \cdots, r_k \} \in \text{Nil}_{\text{GL}}.$

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$ for example.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\check{\mathcal{O}}_b = \{r_1, r_1, \cdots, r_k, r_k\}$ and
- Set $\check{\mathcal{O}}'_b = \{ r_1, \cdots, r_k \} \in \text{Nil}_{\text{GL}}.$

Theorem (Barbasch-M.-Sun-Zhu)

$$\operatorname{Unip}_{\tilde{\mathcal{O}}'_{b}}(\operatorname{GL}) \times \operatorname{Unip}_{\tilde{\mathcal{O}}_{g}}(\operatorname{Sp}) \xrightarrow{bij.} \operatorname{Unip}_{\tilde{\mathcal{O}}}(\operatorname{Sp})
(\pi', \pi_{0}) \mapsto \operatorname{Ind}_{\operatorname{GL}_{\left|\tilde{\mathcal{O}}'_{b}\right|} \times \operatorname{Sp}(2n_{0}, \mathbb{R}) \times U}^{\operatorname{Sp}(2n_{0}, \mathbb{R})}
\operatorname{Unip}_{\tilde{\mathcal{O}}'_{b}}(\operatorname{GL}) = \left\{ \operatorname{Ind}_{0} \otimes \operatorname{sgn}_{\operatorname{GL}(r_{j}, \mathbb{R})}^{\epsilon_{j}} \middle| \epsilon_{j} \in \mathbb{Z}/2\mathbb{Z} \right\}$$

Reduction to the "good parity"

- Consider $G = \text{Sp}(2n, \mathbb{R})$ for example.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\check{\mathcal{O}}_b = \{r_1, r_1, \cdots, r_k, r_k\}$ and
- Set $\check{\mathcal{O}}'_b = \{ r_1, \cdots, r_k \} \in \text{Nil}_{\text{GL}}.$

Theorem (Barbasch-M.-Sun-Zhu)

$$\operatorname{Unip}_{\tilde{\mathcal{O}}'_{b}}(\operatorname{GL}) \times \operatorname{Unip}_{\tilde{\mathcal{O}}_{g}}(\operatorname{Sp}) \xrightarrow{bij.} \operatorname{Unip}_{\tilde{\mathcal{O}}}(\operatorname{Sp})
(\pi', \pi_{0}) \mapsto \operatorname{Ind}_{\operatorname{GL}_{\left|\tilde{\mathcal{O}}'_{b}\right|} \times \operatorname{Sp}(2n_{0}, \mathbb{R}) \times U}^{\operatorname{Sp}(2n_{0}, \mathbb{R})}
\operatorname{Unip}_{\tilde{\mathcal{O}}'_{b}}(\operatorname{GL}) = \left\{ \operatorname{Ind}_{0} \otimes \operatorname{sgn}_{\operatorname{GL}(r_{j}, \mathbb{R})}^{\epsilon_{j}} \middle| \epsilon_{j} \in \mathbb{Z}/2\mathbb{Z} \right\}$$

- Use theta correspondence to study Unip_{$\check{\mathcal{O}}_a$}(G).
- We assume $\check{\mathcal{O}}$ has good parity from now on.

Inductive structure of nilpotent orbits

Inductive structure of nilpotent orbits

Relate to Kraft-Procesi and Ohta's study of singularities of a nilpotent orbit closure.

Construction of elements in $Unip_{\mathcal{O}}(G)$

- $\chi_j \in \{1, \operatorname{sgn}^{+,-}, \operatorname{sgn}^{-,+}, \det\}$ when G_j is an orthogonal group.
- Define a smooth repn. of $G = G_a$

$$\pi_{\chi} := (\omega_{G_a, G_{a-1}} \widehat{\otimes} \omega_{G_{a-1}, G_{a-2}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \widehat{\otimes} \chi)_{G_{a-1} \times G_{a-2} \times \cdots \times G_0}$$

The AC of π_{χ} is computable by an algorithm of lift of AC (Nishiyama-Zhu, Loke-M., BMSZ)

Construction of elements in $\mathrm{Unip}_{\mathcal{O}}(G)$

- $\mathbf{x} = \bigotimes_{j=0}^{a} \chi_j, \text{ a character of } \prod_{j=0}^{a} G_j.$
- $\chi_j \in \{1, \operatorname{sgn}^{+,-}, \operatorname{sgn}^{-,+}, \det\}$ when G_j is an orthogonal group.
- Define a smooth repn. of $G = G_a$

$$\pi_{\chi} := (\omega_{G_a, G_{a-1}} \widehat{\otimes} \omega_{G_{a-1}, G_{a-2}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \widehat{\otimes} \chi)_{G_{a-1} \times G_{a-2} \times \cdots \times G_0}$$

The AC of π_{χ} is computable by an algorithm of lift of AC (Nishiyama-Zhu, Loke-M., BMSZ)

Theorem (Barbasch-M.-Sun-Zhu)

Suppose $\check{\mathcal{O}}$ is an orbit with good parity. Then $\mathrm{WF}(\pi_\chi) = \mathrm{Wh}(\pi_\chi)$

• either $\pi_{\chi} = 0$ or $\pi_{\chi} \in \operatorname{Unip}_{\mathcal{O}}(G)$ and unitarizable.

Construction of elements in $\mathrm{Unip}_{\mathcal{O}}(G)$

- $\chi_j \in \{1, \operatorname{sgn}^{+,-}, \operatorname{sgn}^{-,+}, \det\}$ when G_j is an orthogonal group.
- Define a smooth repn. of $G = G_a$

$$\pi_{\chi} := (\omega_{G_a, G_{a-1}} \widehat{\otimes} \omega_{G_{a-1}, G_{a-2}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \widehat{\otimes} \chi)_{G_{a-1} \times G_{a-2} \times \cdots \times G_0}$$

The AC of π_{χ} is computable by an algorithm of lift of AC (Nishiyama-Zhu, Loke-M., BMSZ)

Theorem (Barbasch-M.-Sun-Zhu)

Suppose $\check{\mathcal{O}}$ is an orbit with good parity. Then $\mathrm{WF}(\pi_\chi) = \mathrm{Wh}(\pi_\chi)$

- either $\pi_{\chi} = 0$ or $\pi_{\chi} \in \operatorname{Unip}_{\check{\mathcal{O}}}(G)$ and unitarizable.
- Moreover,

$$\mathrm{Unip}_{\mathcal{O}}(G) = \{ \pi_{\chi} \mid \pi_{\chi} \neq 0 \}.$$

Example 1:

Lift to
$$G = \operatorname{Sp}(8, \mathbb{R})$$
 from real forms of $\mathbf{G} = \operatorname{O}(4, \mathbb{C})$. $\check{\mathcal{O}} = 531$ and $\mathcal{O} = 2222$. Then

$$\begin{aligned} & \text{Unip}_{\check{\mathcal{O}}}(G) \\ &= \left\{ \left. \pi_{p,q}^{\pm} := \right. \text{ theta lift of trivial and sign of O}(p,q) \mid p+q=4 \right. \right\} \end{aligned}$$

Then $WF(\pi_{p,q}^{\pm}) = Wh(\pi_{p,q}^{\pm})$ consists of the single orbit:

\pm	干
‡	Ŧ
:	:
土	Ŧ

Example 2: Coincidences of theta liftings

Lift to $G = \operatorname{Sp}(6, \mathbb{R})$ from real forms of $\mathbf{G} = \operatorname{O}(4, \mathbb{C})$. $\check{\mathcal{O}} = 3^2 1^1$ and $\mathcal{O} = 2^3$.

		$\mathrm{Sp}(6,\mathbb{R})$	
O(4,0)		$\theta(\operatorname{sgn}^{+,-})$	
O(3,1)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(2, 2)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(1,3)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(0,4)			$\theta(\operatorname{sgn}^{-,+})$

Example 2 (cont.)

All $\theta(1)$ has reducible associated cycle.

$$\begin{split} WF(\theta_{O(3,1)}^{Sp_{6}(\mathbb{R})}(\mathbf{1})) &= \boxed{\begin{array}{c} -+\\ -+\\ -+\\ -+ \end{array}} \cup \boxed{\begin{array}{c} -+\\ -+\\ +- \end{array}} \\ WF(\theta_{O(2,2)}^{Sp_{6}(\mathbb{R})}(\mathbf{1})) &= \boxed{\begin{array}{c} -+\\ -+\\ -+\\ -+ \end{array}} \cup \boxed{\begin{array}{c} -+\\ +-\\ +- \end{array}} \\ WF(\theta_{O(1,3)}^{Sp_{6}(\mathbb{R})}(\mathbf{1})) &= \boxed{\begin{array}{c} -+\\ +-\\ +-\\ +- \end{array}} \cup \boxed{\begin{array}{c} +-\\ +-\\ +-\\ +- \end{array}} \end{split}$$

Weak unipotent packet for p-adic group

- $lue{G}$: a split orthogonal group or symplectic group defined over a p-adic field.
- $\check{\mathcal{O}} \in \text{Nil}(\check{G})$, and $\check{h} \in \check{\mathfrak{g}}$ is the semisimple element attached to $\check{\mathcal{O}}$

Weak unipotent packet for p-adic group

- lacksquare G: a split orthogonal group or symplectic group defined over a p-adic field.
- $\check{\mathcal{O}} \in \text{Nil}(\check{G})$, and $\check{h} \in \check{\mathfrak{g}}$ is the semisimple element attached to $\check{\mathcal{O}}$
- Weak unipotent packet of \mathcal{O} (Ciubotaru-Mason-Brown-Okada)

$$\operatorname{Unip}_{\check{\mathcal{O}}}(G) := \left\{ \left. X := X(q^{\frac{1}{2}\check{h}}, n, \rho) \; \right| \; \operatorname{WF}(X) \subseteq d_{BV}(\check{\mathcal{O}}) \; \right\}$$

Here

- $n \in \mathfrak{g}^{\vee}$ such that $[\check{h}, n] = 2n$;
- ρ is an irreducible character of $A^1_{\check{G}}(s,n)$; (more or less the componet group of $Z_{\check{G}}(\{\check{h},n\})$)
- $X(q^{\frac{1}{2}\check{h}},n,\rho)$ is Lusztig's unipotent. representation.

Elements in a weak unipotent packet

■ By Ciubotaru-Mason-Brown-Okada,

$$\operatorname{Unip}_{\check{\mathcal{O}}}(\mathit{G}) = \left\{ \left. A\mathit{Z}(\mathit{X}(q^{\frac{1}{2}\check{h}}, \mathit{n}, \rho)) \; \right| \; \mathit{n} \in \operatorname{Special piece of} \; \check{\mathcal{O}} \; \right\}.$$

Elements in a weak unipotent packet

■ By Ciubotaru-Mason-Brown-Okada,

$$\operatorname{Unip}_{\check{\mathcal{O}}}(\mathit{G}) = \left\{ \left. A\mathit{Z}(\mathit{X}(q^{\frac{1}{2}\check{h}}, n, \rho)) \; \right| \; n \in \text{Special piece of } \check{\mathcal{O}} \; \right\}.$$

■ Question: Can we use theta lifting to construct all elements in $\operatorname{Unip}_{\tilde{\mathcal{O}}}(G)$?

■ Unipotent supercuspidal representation of symplectic group is parameterized by a pair of natural number (k_1, k_2) :

- Unipotent supercuspidal representation of symplectic group is parameterized by a pair of natural number (k_1, k_2) :
- $\pi_{k_1,k_2} := \text{c-Ind}_P^{\text{Sp}} \pi_{k_1}^{\text{Sp}} \otimes \pi_{k_2}^{\text{Sp}}$ here P is a paraholic subgroup with reductive quotient $\operatorname{Sp}_{2k_1(k_1+1)}(\mathbb{F}_q) \times \operatorname{Sp}_{2k_2(k_2+1)}(\mathbb{F}_q)$.

- Unipotent supercuspidal representation of symplectic group is parameterized by a pair of natural number (k_1, k_2) :
- $\pi_{k_1,k_2} := \text{c-Ind}_P^{\text{Sp}} \pi_{k_1}^{\text{Sp}} \otimes \pi_{k_2}^{\text{Sp}}$ here P is a paraholic subgroup with reductive quotient $\operatorname{Sp}_{2k_1(k_1+1)}(\mathbb{F}_q) \times \operatorname{Sp}_{2k_2(k_2+1)}(\mathbb{F}_q)$.
- Witt(\mathbb{F}_q) × Witt(\mathbb{F}_q) $\stackrel{1-1}{\longleftrightarrow}$ Witt(k).

- Unipotent supercuspidal representation of symplectic group is parameterized by a pair of natural number (k_1, k_2) :
- $\pi_{k_1,k_2} := \text{c-Ind}_P^{\operatorname{Sp}} \pi_{k_1}^{\operatorname{Sp}} \otimes \pi_{k_2}^{\operatorname{Sp}}$ here P is a paraholic subgroup with reductive quotient $\operatorname{Sp}_{2k_1(k_1+1)}(\mathbb{F}_q) \times \operatorname{Sp}_{2k_2(k_2+1)}(\mathbb{F}_q)$.
- Witt(\mathbb{F}_q) × Witt(\mathbb{F}_q) $\stackrel{1-1}{\longleftrightarrow}$ Witt(k).
- descent sequence of $\pi_{k_1}^{\operatorname{Sp}}$ and $\pi_{k_2}^{\operatorname{Sp}} \leadsto$ descent sequence of π_{k_1,k_2} .

- Unipotent supercuspidal representation of symplectic group is parameterized by a pair of natural number (k_1, k_2) :
- $\pi_{k_1,k_2} := \text{c-Ind}_P^{\text{Sp}} \pi_{k_1}^{\text{Sp}} \otimes \pi_{k_2}^{\text{Sp}}$ here P is a paraholic subgroup with reductive quotient $\operatorname{Sp}_{2k_1(k_1+1)}(\mathbb{F}_q) \times \operatorname{Sp}_{2k_2(k_2+1)}(\mathbb{F}_q)$.
- Witt(\mathbb{F}_q) × Witt(\mathbb{F}_q) $\stackrel{1-1}{\longleftrightarrow}$ Witt(k).
- descent sequence of $\pi_{k_1}^{\operatorname{Sp}}$ and $\pi_{k_2}^{\operatorname{Sp}} \leadsto$ descent sequence of π_{k_1,k_2} .
- Apply Gomez-Zhu \leadsto the wavefront set of π_{k_1,k_2} .

- Unipotent supercuspidal representation of symplectic group is parameterized by a pair of natural number (k_1, k_2) :
- $\pi_{k_1,k_2} := \text{c-Ind}_P^{\operatorname{Sp}} \pi_{k_1}^{\operatorname{Sp}} \otimes \pi_{k_2}^{\operatorname{Sp}}$ here P is a paraholic subgroup with reductive quotient $\operatorname{Sp}_{2k_1(k_1+1)}(\mathbb{F}_q) \times \operatorname{Sp}_{2k_2(k_2+1)}(\mathbb{F}_q)$.
- Witt(\mathbb{F}_q) × Witt(\mathbb{F}_q) $\stackrel{1-1}{\longleftrightarrow}$ Witt(k).
- descent sequence of $\pi_{k_1}^{\operatorname{Sp}}$ and $\pi_{k_2}^{\operatorname{Sp}} \leadsto$ descent sequence of π_{k_1,k_2} .
- Apply Gomez-Zhu \leadsto the wavefront set of π_{k_1,k_2} .
- WF(π_{k_1,k_2}) contains a single orbit of "triangular shape"

Example 3:
$$\check{\mathcal{O}} = \boxed{}$$
 $d_{BV}(\check{\mathcal{O}}) = \boxed{}$

- Unip $\check{\mathcal{O}}(\mathrm{Sp}_6)$ has two elements.
- They are the theta lifts.

$$\theta_{\mathcal{O}_4^+}(1)$$
$$\theta_{\mathcal{O}_4^-}(1)$$

• they have reducible wavefront set.

Example 4:
$$\check{\mathcal{O}} =$$
 $d_{BV}(\mathcal{O})$

$$d_{BV}(\check{\mathcal{O}}) =$$

- Unip $\check{o}(Sp_8)$ has 5 elements.
- It is the union of two Arthur packets.
- The anti-tempered packet

$$\left\{ \delta = \theta_{\mathrm{O}_{4}^{+}}(1), \pi_{1} = \theta_{\mathrm{O}_{4}^{+}}(\det), \pi_{2} = \theta_{\mathrm{O}_{4}^{-}}(1), \pi_{sc} = \theta_{\mathrm{O}_{4}^{-}}(\det) \right\}$$

- They has irreducible wavefront set.
- One non-anti-tempered packet

$$\{\pi_1, \pi_{sc}, \tau^t\}$$
.

Thank you for your attention!