DAT630 Classificat

Alternative Techniques

Introduction to Data Mining, Chapter 5

09/10/2017

Darío Garigliotti | University of Stavanger

Recall

Outline

- Alternative classification techniques
 - Rule-based
 - Nearest neighbors
 - Naive Bayes
 - Ensemble methods
- Class imbalance problem
- Multiclass problem

Rule-based classifier

Rule-based Classifier

- Classifying records using a set of "if... then..." rules
- Example

R1: (Give Birth = no) \wedge (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \wedge (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \wedge (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

- R is known as the rule set

Classification Rules

- Each classification rule can be expressed in the following way

```
\begin{array}{ccc} r_i: (Condition_i) \rightarrow y_i \\ & & \uparrow \\ & \text{rule antecedent} \\ \text{(or precondition)} \end{array} \quad \text{rule consequent}
```

Classification Rules

- A rule r **covers** an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \wedge (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \wedge (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \wedge (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

Which rules cover the "hawk" and the "grizzly bear"?

Classification Rules

- A rule r **covers** an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	Ves	no	no	?

The rule R1 covers a hawk => Bird
The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

- Coverage of a rule
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule
 - Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) → No Coverage = 40%, Accuracy = 50%

How does it work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal A turtle triggers both R4 and R5 A dogfish shark triggers none of the rules

Properties of the Rule Set

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule
- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule
- These two properties ensure that every record is covered by exactly one rule

When these Properties are not Satisfied

- Rules are not mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes
- Rules are not exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class (assign the majority class from the training records)

Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

 Rt: (Give Birth = no) A (Can Fly = yes) -> Birds

R1: (Give Birth = no) ^ (Can Fly = yes) → Birds

R2: (Give Birth = no) ^ (Live in Water = yes) → Fishes

R3: (Give Birth = yes) ^ (Blood Type = warm) → Mammals

R4: (Give Birth = no) ^ (Can Fly = no) → Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name Blood Type Give Birth Can Fly Live in Water Liurle cold no no sometimes ?

Rule Ordering Schemes

- Rule-based ordering
 - Individual rules are ranked based on some quality measure (e.g., accuracy, coverage)
- Class-based ordering
 - Rules that belong to the same class appear together
 - Rules are sorted on the basis of their class information (e.g., total description length)
 - The relative order of rules within a class does not matter

Rule Ordering Schemes

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced} Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

How to Build a Rule-based Classifier?

- Direct Method
 - Extract rules directly from data
- Indirect Method
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc)

From Decision Trees To Rules

Rules are mutually exclusive and exhaustive Rule set contains as much information as the tree

Rules Can Be Simplified

Initial Rule: (Refund=No) \land (Status=Married) \rightarrow No Simplified Rule: (Status=Married) \rightarrow No

Summary

- Expressiveness is almost equivalent to that of a decision tree
- Generally used to produce descriptive models that are easy to interpret, but gives comparable performance to decision tree classifiers
- The class-based ordering approach is well suited for handling data sets with imbalanced class distributions

Exercise

Nearest Neighbors

So far

- Eager learners
 - Decision trees, rule-base classifiers
 - Learn a model as soon as the training data becomes

Opposite strategy

- Lazy learners

- Delay the process of modeling the data until it is needed to classify the test examples

Instance-Based Classifiers

Instance Based Classifiers

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- Nearest neighbors
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest neighbors

- Basic idea
 - "If it walks like a duck, quacks like a duck, then it's probably a duck"

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

Nearest-Neighbor Classifiers

- To classify an unknown record
 - Compute distance to other training records
 - Identify k-nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Choices to make

- Compute distance between two points
 - E.g., Euclidean distance
 - See Chapter 2
- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
- Choose the value of k

Choosing the value of k

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

Summary

- Part of a more general technique called instance-based learning
 - Use specific training instances to make predictions without having to maintain an abstraction (model) derived from data
- Because there is no model building, classifying a test example can be quite expensive
- Nearest-neighbors make their predictions based on local information
 - Susceptible to noise

Bayes Classifier

Bayes Classifier

- In many applications the relationship between the attribute set and the class variable is non-deterministic
 - The label of the test record cannot be predicted with certainty even if it was seen previously during training
- A probabilistic framework for solving classification problems
 - Treat **X** and Y as random variables and capture their relationship probabilistically using P(Y|X)

Example

- Football game between teams A and B
 - Team A won 65% team B won 35% of the time
 - Among the games Team A won, 30% when game hosted by B
 - Among the games Team B won, 75% when B played home
- Which team is more likely to win if the game is hosted by Team B?

Probability Basics

- Conditional probability

$$P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X)$$

- Bayes' theorem

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Example

- Probability Team A wins: P(win=A) = 0.65
- Probability Team B wins: P(win=B) = 0.35
- Probability Team A wins when B hosts: P(hosted=B|win=A) = 0.3
- Probability Team B wins when playing at home: P(hosted=B|win=B) = 0.75
- Who wins the next game that is hosted by B?
 P(win=B|hosted=B) = ?
 P(win=A|hosted=B) = ?

Solution

- Using:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

- P(win=B|hosted=B) = 0.5738
- P(win=A|hosted=B) = 0.4262
- See book page 229

Bayes' Theorem for Classification

Bayes' Theorem for Classification

Bayes' Theorem for Classification

Prior probability Can be computed from training data (fraction of records that Class-conditional probability belong to each class) The evidence

Bayes' Theorem for Classification

Class-conditional probability Two methods: Naive Baves, Bavesian belief network

Naive Bayes

Estimation

- Mind that X is a vector

$$\mathbf{X} = \{X_1, \dots, X_n\}$$

- Class-conditional probability

$$P(\mathbf{X}|Y) = P(X_1, \dots, X_n|Y)$$

- "Naive" assumption: attributes are independent

$$P(\mathbf{X}|Y) = \prod_{i=1}^{n} P(X_i|Y)$$

Naive Bayes Classifier

- Probability that X belongs to class Y

$$P(Y|\mathbf{X}) \propto P(Y) \prod_{i=1}^{n} P(X_i|Y)$$

- Target label for record X

$$y = \arg \max_{y_j} P(Y = y_j) \prod_{i=1}^{n} P(X_i | Y = y_j)$$

Estimating classconditional probabilities

- Categorical attributes

- The fraction of training instances in class Y that have a particular attribute value \mathbf{x}_i number of training instances where $\mathbf{x}_i = \mathbf{x}_i$ and $\mathbf{y} = \mathbf{y}$ number of training instances where $\mathbf{x}_i = \mathbf{x}_i$ number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of training instances in the particular attribute value \mathbf{x}_i number of

number of training instances

- Continuous attributes

- Discretizing the range into bins
- Assuming a certain probability distribution

Conditional probabilities for categorical attributes

- The fraction of training instances in class Y that have a particular attribute value Xi
- P(Status=Married|No)=?
- P(Refund=Yes|Yes)=?

1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Conditional probabilities for continuous attributes

- Discretize the range into bins, or
- Assume a certain form of probability distribution
 - Gaussian (normal) distribution is often used

$$P(X_i = x_i | Y = y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} \exp^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- The parameters of the distribution are estimated from the training data (from instances that belong to class y_i)
- sample mean μ_{ij} and variance σ_{ij}^2

Example

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example

X={Refund=No, Marital st.=Married, Income=120K}

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

	D(C)	P(Refur	nd=xIY)	Р	(Marital=x	Y)	Ann. in	ncome
	P(C) No		Yes	Single	Divorced	Married	mean	var
class=No	7/10	4/7	3/7	2/7	1/7	4/7	110	2975
class=Yes	3/10	3/3	3/3	2/3	1/3	0/3	90	25

Example classifying a new instance

X={Refund=No, Marital st.=Married, Income=120K}

		D(C)	P(Refur	nd=xIY)	Р	(Marital=xl	Y)	Ann. in	come
		P(C)	No	Yes	Single	Divorced	Married	mean	var
	class=No	7/10	4/7	3/7	2/7	1/7	4/7	110	2975
	class=Yes	3/10	3/3	3/3	2/3	1/3	0/3	90	25

P(Class=No|X) = P(Class=No) 7/10

- × P(Refund=No|Class=No) 4/7
- × P(Marital=Married| Class=No) 4/7
- × P(Income=120K| Class=No) 0.0072

Example classifying a new instance

X={Refund=No, Marital st.=Married, Income=120K}

	D(0)		nd=xIY)	Р	(Marital=x	Y)	Ann. in	come
	P(C)	No	Yes	Single	Divorced	Married	mean	var
class=No	7/10	4/7	3/7	2/7	1/7	4/7	110	2975
class=Yes	3/10	3/3	0/3	2/3	1/3	0/3	90	25

P(Class=Yes|X) = P(Class=Yes) 3/10

- × P(Refund=No|Class=Yes) 3/3
- × P(Marital=Married| Class=Yes) 0/3
- × P(Income=120K| Class=Yes) 1.2*10-9

Can anything go wrong?

What if this probability is zero?

 If one of the conditional probabilities is zero, then the entire expression becomes zero!

Probability estimation

- Original $P(X_i=x_i|Y=y) = \frac{n_c}{n} \xrightarrow{\text{number of training instances}} \text{number of training instances}$ number of training instances where Y=y

- Laplace smoothing

$$P(X_i = x_i | Y = y) = \frac{n_c + 1}{n + c}$$

c is the number of classes

Probability estimation (2)

- M-estimate

$$P(X_i = x_i | Y = y) = \frac{n_c + mp}{n + m}$$

- **p** can be regarded as the prior probability
- m is called equivalent sample size which determines the trade-off between the observed probability n√n and the prior probability p
- E.g., p=1/3 and m=3

Summary

- Robust to isolated noise points
- Handles missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes

Exercise

Ensemble Methods

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Random Forests

Class Imbalance Problem

Class Imbalance Problem

- Data sets with imbalanced class distributions are quite common in real-world applications
 - E.g., credit card fraud detection
- Correct classification of the rare class has often greater value than a correct classification of the majority class
- The accuracy measure is not well suited for imbalanced data sets
- We need alternative measures

Confusion Matrix

		Predicted class			
		Positive	Negative		
Actual	Positive	True Positives (TP)	False Negatives (FN)		
class	Negative	False Positives (FP)	True Negatives (TN)		

Additional Measures

- True positive rate (or sensitivity)

- Fraction of positive examples predicted correctly

$$TPR = \frac{TP}{TP + FN}$$

- True negative rate (or specificity)

- Fraction of negative examples predicted correctly

$$TNR = \frac{TN}{TN + FP}$$

Additional Measures

- False positive rate

- Fraction of negative examples predicted as positive

$$FPR = \frac{FP}{TN + FP}$$

- False negative rate

- Fraction of positive examples predicted as negative

$$FNR = \frac{FN}{TP + FN}$$

Additional Measures

- Precision

- Fraction of positive records among those that are classified as positive

$$P = \frac{TP}{TP + FP}$$

- Recall

- Fraction of positive examples correctly predicted (same as the true positive rate)

$$R = \frac{TP}{TP + FN}$$

Additional Measures

- F1-measure

- Summarizing precision and recall into a single number
- Harmonic mean between precision and recall

$$F1 = \frac{2RP}{R+P}$$

Multiclass Problem

Multiclass Classification

- Many of the approaches are originally designed for binary classification problems
- Many real-world problems require data to be divided into more than two categories
- Two approaches
 - One-against-rest (1-r)
 - One-against-one (1-1)
- Predictions need to be combined in both cases

One-against-rest

- Y={y₁, y₂, ... yκ} classes
- For each class yi
 - Instances that belong to y_i are positive examples
 - All other instances are negative examples
- Combining predictions
 - If an instance is classified positive, the positive class gets a vote
 - If an instance is classified negative, all classes except for the positive class receive a vote

Example

- 4 classes, Y={y₁, y₂, y₃, y₄}
- Classifying a given test instance

One-against-one

- $Y=\{y_1, y_2, \dots y_K\}$ classes
- Construct a binary classifier for each pair of classes (y_i, y_j)
 - K(K-1)/2 binary classifiers in total
- Combining predictions
 - The positive class receives a vote in each pairwise comparison

