CS70 - Lecture 15 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Gerald Zhang

Review Turing and Halt

- Turing(P) includes Halt(P,P)
- If halts (infinite loop), if doesn't halt, halt (diagonalization)
- Halt program exists ⇒ Turing program exists
- Turing("Turing") interpret program 'Turing' as text
 - Neither halts nor loops (diagonlized statement on itself)
 - Therefore, Turing program DNE
 - No Turing program ⇒ No Halt program (Contrapositive)

Review Stars and Bars

Wikipedia: Stars and Bars

- \bullet Choose n from k with replacement, order doesn't matter
- Stars and Bars Bijection (Counting rule)
- Place n (total) objects in k bins
- \bullet k bins are distinguishable, objects are not
- k-1 bars represent k bins
- Thm 1 (positive nums): Each bin must contain an object, there can only be ≤ 1 bar between each star. You must choose k-1 bars from the n-1 available positions.
- Thm 2 (non-negative nums): Bins can contain any no. of objects, there can be $\geq k-1$ bars between each star. You must choose k-1 bars from the n+(k-1) available positions.

With Replacement/Order Doesn't Matter:

Positive Groups =
$$\binom{n-1}{k-1}$$
 (1)

Non-Negative Groups =
$$\binom{n + (k - 1)}{k - 1}$$
 (2)

Combinatorial Proofs

- Define what the Left side counts and what the Right side counts, then equate them
- Ask same question for both sides and answer them using the correct approach corresponding to the side
- \bullet $\binom{n}{k} = \binom{n}{n-k}$
 - Left: Ways to choose k out of n items
 - Right: Ways to (not) choose n-k out of n items, which is the same as choose k out of n items
- $\bullet \binom{n}{k} = \binom{n-1}{k-1} + \dots + \binom{k-1}{k-1}$
 - Left: Ways to choose k out of n items
 - Right: Sum number of subsets that include the first i items and the number of subsets that do not include the first i items
- $2^n = \binom{n}{kn} + \binom{n}{n-1} + \cdots + \binom{n}{0}$: Binomial Thm
 - Sum of coefficients of an $(1+x)^n$ binomial (nth row in Pascal's Triangle)
 - Left: No. of subsets of n choices (element i is either in or out of the subset, 2 poss.)
 - Right: Sum of $\binom{n}{i}$ from i to n
 - * $\binom{n}{i}$ ways to choose i elements of n choices

Pascal's Triangle

- Row $n = \text{coefficients of } (1+x)^n$
- Choose 2^n terms: 1 or x from (1+x)
 - Combine all terms corresponding to x^k
 - Coefficient of x^k is $\binom{n}{k}$: you choose k factors (products) that include x and there are n x's to choose from

Pascal's Rule:

- Left: No. of k subsets from n+1 choices
- Right: No. of subsets that choose the first item + No. of subsets that do not choose the first item = Left
 - $-\binom{n}{k-1}$: No. of subsets of n that contain the first item. (Take away first item, left with n items and k-1 remaining choices)
 - $-\binom{n}{k}$: No. of k subsets of n that do not contain the first item. (Take away first item, left with n items, but still need to make k choices.

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \tag{3}$$

Simple Inclusion/Exclusion

- Sum Rule: For disjoint sets S and $T: |S \cup T| = |S| + |T|$
- Inclusion/Exclusion Rule: For any S and $T: |S \cup T = |S| + |T| |S \cap T|$
 - Ex. No. of 10 digit phone numbers that have 7 as the first or second digit
 - S =first digit 7. $|S| = 10^9$
 - $-T = second digit 7. |T| = 10^9$
 - $-S \cap T =$ first and second digit. $|S \cap T| = 10^8$
 - $-|S| + |T| |S \cap T| = 10^9 + 10^9 10^8$

Probability Space

• Random Experiment: Define possible outcomes and likelihoods (percentages) have Statistical regularity

3

- Set of Ω outcomes: (Ex. $\Omega = \{H, T\}$)
 - Probabilities assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5
 - Elements of Ω describes one outcome of the complete experiment
- Assign probability to each outcome Pr[A]
 - Probabilities assigned to each outcome: Ex. Pr[H] = 0.5, Pr[T] = 0.5
 - Ω = sample space (can be countable or uncountable)
 - $\omega \in \Omega = \text{sample point}$
 - probability $\Pr[\omega]$ s.t. $0 \le \Pr[\omega] \le 1$ and $\sum_{\omega \in \Omega} \Pr[\omega] = 1$

Uniform Probability Space

- Each outcome ω is equally probable: $\Pr[\omega] = \frac{1}{\Omega}$ for all ω
- Ω must be finite

Non-Uniform Probability Space

• Each outcome ω is any $\Pr[\omega]$ s.t. $0 \le \Pr[\omega] \le 1$ and $\sum_{\omega \in \Omega} \Pr[\omega] = 1$