

Lecture 1 – Atomic Structure

Lecture 2 – The Ultraviolet Catastrophe

Lecture 3 – Particle Nature of Light

Lecture 4 – Atomic Energy Levels and Spectra

Lecture 5 – X-ray Production and Diffraction

Lecture 6 – X-ray Spectra

Lecture 7 - Matter Waves

Lecture 8 – Wave-Particle Duality

Lecture 9 – Wave functions for Quantum Particles

Lecture 10 – A Quantum Mechanical Wave Equation

Lecture 11 – Applications of Schrödinger's Equation

Recap of Lecture 3

- Failing of classical theories Photoelectric effect & Compton Scattering
- No electrons emitted below threshold frequency
- Change in wavelength in scattered x-rays
- Photons, with *E=hf*, solve both issues

In this lecture

- The spectra of light emitted/absorbed by electrons in
 - Hydrogen (simple)
 - o Bigger atoms (.. not simple)
- Electronic shells and orbitals

Emission spectra examples

Also, (old) sodium discharge streetlights:

Relaxation process:

Vacancy in shell – higher energy raspberry can fall down into here, losing energy as radiation

Balmer Series

$$\frac{1}{\lambda} = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

• Balmer Series (n to 2 transitions)

Cold atoms

The cold atoms group at UoB uses the sharp, exact energy spacing of atomic levels in ultracold gases of rubidium atoms to e.g. measure gravity, simulate big bang conditions...

Bigger atoms

Increasing complexity

• Sodium (Z = 11) energy levels

