2.2.3 Измерение теплопроводности воздуха при атмосферном давлении

Артемов Иван, Лежнев Дмитрий Б02-205

15 мая 2023 г.

Цель работы: определение коэффициента теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

Оборудование: прибор для опредления теплопроводности газов; форвакуумный насос; газгольдер с газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр B7-78/1; источник питания.

1. Теоретическая часть

Основной характеристикой теплопроводности служит коэффициент κ , являющийся коэффициентом пропорциональности между плотностью потока тепла q и градиентом температуры dT/dr в направлении распространения этого потока

$$q = -\kappa \frac{dT}{dr}. (1)$$

В цилиндрически симметричной установке, в которой тепловой поток направлен к стенкам цилиндра от нити, полынй поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен (как в пространстве, так и во времени). Тогда

$$Q = -2\pi r L \kappa \frac{dT}{dr} = const, \tag{2}$$

откуда получаем формулу

$$T_1 - T_2 = \frac{Q}{2\pi L\kappa} \ln \frac{r_2}{r_1}.$$
 (3)

Здесь r_1 и T_1 – радиус и температура нити, r_2 и T_2 – радиус и температура цилиндра.

2. Экспериментальная установка

Схема установки изображена на рис. 1. Тонкая молибденовая нить натянута по оси длинной вертикально стоящей медной трубки 1 . Через штуцер трубка заполняется исследуемым газом. Нить нагревается электрическим током, а её температура T_1 определяется по изменению электрического сопротивления. Трубка находится в кожухе, через которой пропускается вода из термостата. Температура воды T_2 измеряется термометром, помещенным

 $^{^1{\}rm B}$ нашей установке диаметр проволоки $2r_1\approx 0,055$ мм, внутренний диаметр трубки $2r_2\approx 10$ мм, длина $L\approx 355$ мм.

в термостат. Количество теплоты, протекающей через газ, равно, если принебречь утечками тепла через торцы, количеству теплоты, выделяемому током в нити, и может быть найдено по закону Джоуля-Ленца². При этом ток в нити определяется по напряжению на включенном последовательно с ней эталонном сопротивлении $R_0 = (10,00 \pm 0,01)$ Ом.

Электрическая часть схемы состоит из источника питания и подключенных к нему последовательно соединенных нити, эталонного сопротивления и магазина сопротивлений R, служащего для точной установки тока через нить. Цифровой вольтметр может подключаться как к нити, так и к эталонному сопротивлению, измеряя таким образом напряжение на нити и ток через неё.

Рис. 1: Схема установки для определения теплопроводности газов

3. Измерения и обработка данных

- **1.** Построим графики зависимости R(P) для температур $24.0^{\circ}C$, $29.8^{\circ}C$, $45.1^{\circ}C$, $65.1^{\circ}C$, $80.1^{\circ}C$. Результаты на рис. 4,5,6,7,8.
- **2.** Найдя значение R_0 для каждого из графиков по МНК, построим график зависимости $R_0(t)$ (рис. 9). Обработав его по МНК, найдём коэффициент dR/dT для нити:

$$\frac{dR}{dT} = (0.0712 \pm 0.0004) \frac{\text{OM}}{\text{K}}$$

3. Вычислим значение коэффициента теплопроводности при каждой температуре по формуле:

$$\kappa = \frac{dR/dT}{dR/dQ} \frac{1}{2\pi L} \ln \left(\frac{r_2}{r_1}\right) \tag{4}$$

 $^{^{2}}$ Мощность электрического тока, протекающего через нить: $Q=I^{2}R$

$t, ^{\circ}C$	κ , MBT/(OM·K)
24.0	30.8 ± 0.3
29.8	31.4 ± 0.3
45.1	33.0 ± 0.3
65.1	34.0 ± 0.2
80.1	36.3 ± 0.2

Таблица 1:

Результаты - в табл. 1.

4. Построим график зависимости $\kappa(t)$ и $\ln \kappa(\ln t)$ (рис. 8, 9). Предполагая, что $\kappa \sim T^{\beta}$ получим из второго графика:

$$\beta = 0.93 \pm 0.02$$

Результат отличается от теории ($\kappa \sim \sqrt{T}$) на 86 %. Этому есть несколько причин. Во-первых, число экспериментальных точек слишком мало, а интервал между ними слишком велик. Во-вторых, формула (4) была выведена в предположении, что κ не зависит от температуры нити, то есть $\Delta T \ll T$, что тоже не может выполняться с высокой точностью при сильном нагреве нити. И также при выводе формулы (4) не были учтены потери через основания цилиндра.

4. Вывод

- 1. Определили коэффициент теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическому сосуде. Например при комнатной температуре $t=24.0~^{\circ}C, \, \kappa=(30.9\pm0.3) \mathrm{MBt/(m\cdot K)}$
- 2. В предположении, что $\varkappa = AT^{\beta}$, рассчитали коэффициент $\beta = 0.93 \pm 0.02$.

Рис. 2:

Рис. 3:

Рис. 5:

Рис. 6:

Рис. 7:

Рис. 8:

Рис. 9: