

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 COMPUTER COMMUNICATION & NETWORKING SEMESTER - 6

		the state of the s	
Time: 3 Hours			[Full Marks : 70
imie : o riouis i			[* 000 *********** * * 0

GROUP - A

		(Multiple Choice Type Questions)	
Ch	oose th	ne correct alternatives for any ten of the following:	$10 \times 1 = 10$
1)	Who	en data moves from one hop to other hop then	
	a)	physical address will change	
•	b)	logical address will change	
•	c)	port address will change.	
ii)		at is the transmission time for a 2.5 Kbyte (email) work is 1 Gbps?	if bandwidth of the
	a)	0·010 ms	
	b)	0·020 ms	
•	c)	0·15 ms.	
iii)	Line	e coding in T-ethernet (IEEE 802.3) is used	
	a)	Bipolar coding	
	b)	Manchester coding	
	c)	Unipolar coding.	
iv)	For	noiseless channel, the Nyquist bit rate formula defines th	1e
	a)	practical maximum bit rate	
	b)	theoretical maximum bit rate	
	c)	practical minimum bit rate.	

ARRA INK INK

in a	synchronous serial transmission, we send	
a)	one start bit 0 and one or more stop bit 1 at the end of each byte	
b)	one start bit 1 and one or more stop bit 0 at the end of each byte	
c)	one start bit 1 and one or more stop bit 1 at the end of each byte.	
In sy	ynchronous TDM, the data rate of link is	
a)	n times faster (where n denotes no. of connection of the link)	
ine	physical layer devices are	
a)	Hub and Switch	
b)	Hub and Multiplexer	
c)	ATM switch and MUX.	
ADS	L modem (broadband modem) data rates is higher because it uses	
a)	256 channel each of 4.312 kHz	
b)	250 channel each of 5.312 kHz	•
c)	25 channel each of 4.312 kHz.	
Vuln	nerable time for CSMA protocol is	
a)	twice of average frame transmission time	•
b)	average frame transmission time	
c)	propagation time.	
The	example of controlled access protocol is	
a)	Aloha protocol	
b)	Polling	
c)	CSMA/CD.	
	a) b) c) In sy a) b) c) The a) b) c) Vulir a) b) c) The b)	a) one start bit 0 and one of more stop bit 1 at the end of each byte b) one start bit 1 and one or more stop bit 0 at the end of each byte c) one start bit 1 and one or more stop bit 1 at the end of each byte. In synchronous TDM, the data rate of link is a) n times faster (where n denotes no. of connection of the link) b) n times slower c) 2 times faster. The physical layer devices are a) Hub and Switch b) Hub and Multiplexer c) ATM switch and MUX. ADSL modem (broadband modem) data rates is higher because it uses a) 256 channel each of 4·312 kHz b) 250 channel each of 4·312 kHz. Vulnerable time for CSMA protocol is a) twice of average frame transmission time b) average frame transmission time c) propagation time. The example of controlled access protocol is a) Aloha protocol b) Pollting

5

xi)	A ne	twork has IP address 129.34.	234.12,		2000
	a)	the address is class A addre	88		
	b)	the address is class B addre	ss		
	c)	the address is class C addre	ss.		
xii)	In E	thernet MAC frame consists o	of destin	ation address 4A.3B.45.78.	C5.67 which
	is				
	a)	broadcast address			
	b)	unicast address			
	. c)	multicast address.			
xiii)	The	layer which responsible for er	acryption	n technique in data commun	nication is
	a)	network layer			
	b)	presentation layer			
	c)	data link layer.			
xiv)	Adv	antage of layering includes			
	a)	multi-vender integration	b)	data hiding and encapsu	lation
	c)	easy testing	d)	all of these.	
		GRO	UP – B		
		(Short Answer	Type Q	uestions)	
		Answer any three of	the follo	wing questions.	$3 \times 5 = 15$
Exnl	ain th	e difference between point-to-	point ar	nd multi-point connection.	
-		4			
Expl	ain th	e link state routing.			
Deriv	e the	expression of the efficiency of	f pure A	LOHA. Compare it with slott	ted ALOHA.
Fron!	ain Ci	DMA technique with a suitable	a avamn	le.	
Expu	aui Ci	Diana recimidae mini a sangon	с слашр		
Brief	ly exp	lain leaky bucket algorithm fo	or conge	stion control.	

6664 (05/06)

6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) What are the differences between packet switching and circuit switching?
 - b) Explain with the diagram, how the lost frame, delayed and lost acknowledgements are handled in Go-Back N ARQ.
 - c) What do you understand by data privacy? How can authentication, integrity and non-repudiation be implemented by the digital signature technique? 4 + 5 + 6
- 8. a) If the received string is 110110111011, then calculate the actual data string. The data is encoded by 1 bit error correcting code (Hamming code).
 - b) Briefly explain the selective flooding routing algorithm. Why does it differ from flooding routing algorithm? Why does it differ from flooding technique?
 - c) Describe 802.3 header format. Why padding is required?
 - d) What are the differences between TCP & UDP?

3 + 5 + 3 + 4

- 9. Explain CRC code with an example. Derive the poll scan time for serial and hub polling.What is the difference between bit oriented and byte oriented protocol?9 + 4 + 2
- 10. a) What is the default mask and broadcast address for class B? Specify the private IP range for class A address.
 - b) Why is dynamic routing preferred over static routing algorithm in a network, which changes continuously?
 - c) What is digital signature? Explain in brief RSA algorithm.
 - d) Describe any one guided and one unguided media with diagram. 2+2+8+3

6664 (05/06)

7

11. Write short notes on any three of the following:

- i) ISDN
- ii) IEEE 802.11
- iii) TELNET
- iv) VLAN
- v) FTP
- vi) SNMP.

END