

=> d que l32

L3	1	SEA FILE=REGISTRY ABB=ON	PLU=ON	7439-91-0/RN
L4	1	SEA FILE=REGISTRY ABB=ON	PLU=ON	7440-05-3/RN
L5	1	SEA FILE=REGISTRY ABB=ON	PLU=ON	7440-32-6/RN
L6	1	SEA FILE=REGISTRY ABB=ON	PLU=ON	POTASSIUM/CN
L7	205877	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L3 OR LANTHANUM OR LA
L8	269904	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L4 OR PALLADIUM OR PD
L9	666224	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L5 OR TI OR TITANIUM OR TITAN
L10	1846175	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L6 OR K OR POTASSIUM
L11	8129	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L8 AND L7
L12	3563	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L8 AND L9 AND L10
L13	10249	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L11 OR L12
L15	3048	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L13 AND CAT/RL
L16	5	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L15 AND (WEIGHT OR WT) (A) (PERCENT? OR %)
L17	53031	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L8(L)CAT/RL
L18	2686	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L17 AND L13
L20	2	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"WEIGHT PERCENTAGES"+PFT,N T/CT
L22	3	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L18 AND (WEIGHT OR WT#) (3A) (PERCENT? OR %)
L24	3	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L18 AND 0.05-2.0
L25	613	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L18 AND (0.05 OR 0.06 OR 0.07 OR 0.08 OR 0.09 OR 1.0 OR 1.01 OR 1.02 OR 1.03 OR 1.04 OR 1.05 OR 1.06 OR 1.07 OR 1.08 OR 1.09 OR 1.1 OR 1.2 OR 1.3 OR 1.4 OR 1.5 OR 1.6 OR 1.7 OR 1.8 OR 1.9 OR 2.0)
L26	333	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L25 AND SUPPORT?
L27	6	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L26 AND DEV/RL
L28	147	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L26 AND RACT/RL
L29	0	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L28 AND PERCENT?
L30	29	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L28 AND SUPPORT? CATALYST?
L31	44	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L16 OR L20 OR L22 OR L24 OR L27 OR L29 OR L30
L32	33	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L31 AND (1840-2003)/PRY,AY ,PY

=> d l32 1-33 ibib ed abs hitstr hitind

L32 ANSWER 1 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2005:524963 HCAPLUS Full-text
 DOCUMENT NUMBER: 143:31172
 TITLE: Exhaust treatment device, and methods for making
 the same
 INVENTOR(S): Nunan, John G.
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 16 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

10/549,774

US 2005129588	A1	20050616	US 2003-734014	20031211
			<--	
EP 1541220	A1	20050615	EP 2004-78285	20041203
			<--	
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, BA, HR, IS, YU				
PRIORITY APPLN. INFO.:			US 2003-734014	A 20031211
			<--	

ED Entered STN: 17 Jun 2005
AB An exhaust treatment device, comprises a substrate; a catalyst layer deposited on the substrate, the catalyst layer comprising a first catalyst metal and a second catalyst metal, wherein greater than or equal to about 70 weight% of the first catalyst metal and the second catalyst metal is non-alloyed under alloying conditions, wherein the weight percent is based on a combined weight of the first catalyst metal and the second catalyst metal. The first catalyst metal and the second catalyst metal are different and may be individually selected from the group consisting of platinum, palladium, rhodium, rhenium, iridium, ruthenium, and osmium.
IT 7440-05-3, Palladium, uses
(exhaust treatment device, and methods for making same)
RN 7440-05-3 HCPLUS
CN Palladium (CA INDEX NAME)

Pd

IC ICM B01D053-34
ICS F01N003-28
INCL 422177000; 422179000; 422180000; 029890000
CC 59-3 (Air Pollution and Industrial Hygiene)
IT 7439-88-5, Iridium, uses 7440-04-2, Osmium, uses 7440-05-3
, Palladium, uses 7440-06-4, Platinum, uses 7440-15-5,
Rhenium, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses
(exhaust treatment device, and methods for making same)
IT 1348-28-1, Alumina, uses 425386-48-7, Cerium lanthanum
yttrium zirconium oxide (Ce0.25La0.04Y0.06Zr0.65O1.95)
(exhaust treatment device, and methods for making same)

L32 ANSWER 2 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2005:182546 HCPLUS Full-text
DOCUMENT NUMBER: 142:261913
TITLE: Mixed metal oxide supported
catalyst composition, catalyst
manufacture, and use in ethane oxidation
INVENTOR(S): Brazdil, James Frank; George, Richard J.; Rosen,
Bruce I.
PATENT ASSIGNEE(S): BP Chemicals Limited, UK
SOURCE: PCT Int. Appl., 27 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

WO 2005018804	A1	20050303	WO 2004-GB3302	20040730
<--				
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG				
CA 2534872	A1	20050303	CA 2004-2534872	20040730
<--				
EP 1656200	A1	20060517	EP 2004-743624	20040730
<--				
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK				
BR 2004013734	A	20061024	BR 2004-13734	20040730
<--				
CN 1871064	A	20061129	CN 2004-80030967	20040730
<--				
JP 2007502701	T	20070215	JP 2006-523663	20040730
<--				
IN 2006DN00576	A	20070817	IN 2006-DN576	20060203
<--				
US 2006217264	A1	20060928	US 2006-568767	20060221
<--				
PRIORITY APPLN. INFO.:			US 2003-496668P	P 20030821
<--				
			WO 2004-GB3302	W 20040730

ED Entered STN: 04 Mar 2005

AB A catalyst composition for the oxidation of ethane to ethylene and HOAc comprises (i) a support, and (ii) in combination with O, the elements Mo, V and Nb, optionally W and a component Z, which is ≥ 1 metals of Group 14; a, b, c, d and e = ratios of Mo, W, Z, V and Nb, resp., such that $0 < a \leq 1$; $0.1 \leq b < 1$ and $a + b = 1$; $0.05 < c \leq 2$; $0 < d \leq 2$; and $0 < e \leq 1$. A portion of the products may be allowed to react to further produce Et acetate and vinyl acetate. Thus, Mo60.5V32Nb7.5Ox on silica was modified with 0.33 g-atom ratio Sn for ethane oxidation with good ethylene/acetic acid selectivity and product ratio 1:1.

IT 7439-91-0, Lanthanum, uses 7440-05-3,
Palladium, uses 7440-99-7, Potassium, uses
7440-32-6, Titanium, uses

(mixed metal oxide supported catalyst for
ethane and/or ethylene oxidation to ethylene and acetic acid)

RN 7439-91-0 HCPLUS

CN Lanthanum (CA INDEX NAME)

CN Palladium (CA INDEX NAME)

Pd

RN 7440-09-7 HCPLUS
CN Potassium (CA INDEX NAME)

K

RN 7440-32-6 HCPLUS
CN Titanium (CA INDEX NAME)

Ti

IC ICM B01J023-28
 ICS B01J023-30; C07C051-225; C07C051-25; C07C005-48; C07C067-05
 CC 35-2 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 45, 67
 ST ethane oxidn catalyst supported molybdenum vanadium niobium tungsten tin; ethylene oxidn catalyst supported mixed metal oxide; acetic acid prodn oxidn catalyst supported mixed metal oxide
 IT Oxidation
 Oxidation catalysts
 (mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)
 IT Aluminosilicates, uses
 (mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)
 IT Silicates, uses
 (titanosilicates; mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)
 IT 1314-23-4, Zirconia, uses 1344-28-1, Alumina, uses 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6, Iron, uses 7439-91-0, Lanthanum, uses 7439-95-4, Magnesium, uses 7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses 7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-09-7, Potassium, uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses 7440-17-7, Rubidium, uses 7440-18-8, Ruthenium, uses 7440-21-3, Silicon, uses 7440-22-4, Silver, uses 7440-24-6, Strontium, uses 7440-25-7, Tantalum, uses 7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-36-0, Antimony, uses 7440-39-3, Barium, uses 7440-42-8, Boron, uses 7440-43-9, Cadmium, uses 7440-45-1, Cerium, uses 7440-46-2, Cesium, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses

7440-50-8, Copper, uses 7440-55-3, Gallium, uses 7440-57-5, Gold, uses 7440-58-6, Hafnium, uses 7440-61-1, Uranium, uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-69-9, Bismuth, uses 7440-70-2, Calcium, uses 7440-74-6, Indium, uses 7631-86-9, Silica, uses 7723-14-0, Phosphorus, uses 13463-67-7, Titania, uses 13494-80-9, Tellurium, uses 15086-10-9, Atomic tritium, uses
 (mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)

IT 64-19-7P, Acetic acid, preparation 108-05-4P, Vinyl acetate, preparation 141-78-6P, Ethyl acetate, preparation
 (mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)

IT 74-85-1P, Ethylene, preparation
 (mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)

IT 74-84-0, Ethane, reactions 7782-44-7, Oxygen, reactions
 (mixed metal oxide supported catalyst for ethane and/or ethylene oxidation to ethylene and acetic acid)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L32 ANSWER 3 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2004:856503 HCPLUS Full-text
 DOCUMENT NUMBER: 142:10532
 TITLE: Preparation of Pd-three way catalyst
 INVENTOR(S): Yu, Kuen Ku
 PATENT ASSIGNEE(S): Hyundai Motor Company, S. Korea
 SOURCE: Repub. Korea, No pp. given
 CODEN: KRXXFC
 DOCUMENT TYPE: Patent
 LANGUAGE: Korean
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
KR 235029	B1	19991215	KR 1996-45364 -->	19961011
PRIORITY APPLN. INFO.:			KR 1996-45364 -->	19961011

ED Entered STN: 18 Oct 2004

AB Disclosed is a preparation method of palladium (Pd) three way catalyst supported on alumina. The preparing method uses only Pd as main active species for gas treatment of automobile. Palladium catalyst supported on alumina is firstly reduced by titration of 1.66 mL of hydrazine hydrate per one gram of palladium. And then 30-40 g of CeO₂ is added on the supported catalyst in bulky or water-soluble phases. 5-6 g of BaO, 1-2 g of La₂O₃, 23.5-33.5 g of acetic acid, and water are mixed to control 4.5 of pH and to prepare the coating slurry. The mixture is milled to prepare 7-9 μm of particle size and coated on the surface of honeycomb substrate by the dipping method. The coated honeycomb catalyst is finally dried at 150 °C for 2 h and calcined at 450-550 °C for 4 h.

IT 7440-05-3P, Palladium, processes
 (preparation of Pd three way catalyst)

RN 7440-05-3 HCPLUS

CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J023-10
 CC 59-3 (Air Pollution and Industrial Hygiene)
 Section cross-reference(s): 67
 ST palladium three way catalyst prepn
 IT Air pollution
 (control; preparation of Pd three way catalyst)
 IT Exhaust gases (engine)
 (preparation of Pd three way catalyst)
 IT Oxides (inorganic), processes
 (preparation of Pd three way catalyst)
 IT Hydrocarbons, reactions
 (preparation of Pd three way catalyst)
 IT Catalysts
 (three-way; preparation of Pd three way catalyst)
 IT 1304-28-5, Barium oxide (BaO), processes 1306-38-3, Cerium oxide (CeO₂), processes 1312-81-8, Lanthanum oxide (La₂O₃)
 1344-28-1, Aluminum oxide (Al₂O₃), processes
 (preparation of Pd three way catalyst)
 IT 7440-05-3P, Palladium, processes
 (preparation of Pd three way catalyst)
 IT 64-19-7, Acetic acid, processes 302-01-2, Hydrazine, processes
 7732-18-5, Water, processes
 (preparation of Pd three way catalyst)
 IT 630-08-0, Carbon monoxide, reactions 11104-93-1, Nitrogen oxide, reactions
 (preparation of Pd three way catalyst)

L32 ANSWER 4 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2004:817833 HCAPLUS Full-text
 DOCUMENT NUMBER: 141:314770
 TITLE: Palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene
 INVENTOR(S): Moon, Sang Heup; Kim, Woo Jae; Kang, Jung Hwa;
 Ahn, In Young
 PATENT ASSIGNEE(S): BASF Aktiengesellschaft, Germany
 SOURCE: PCT Int. Appl., 27 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004085353	A2	20041007	WO 2004-EP3263	20040326
WO 2004085353	A3	20041223		<--

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
 CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
 GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
 KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
 MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
 SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
 VC, VN, YU, ZA, ZM, ZW

RW:	BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
KR 2004084071	A	20041006	KR 2003-18888 <--	20030326
KR 2004084072	A	20041006	KR 2003-18890 <--	20030326
KR 2004084073	A	20041006	KR 2003-18891 <--	20030326
KR 2004084171	A	20041006	KR 2003-19039 <--	20030327
CA 2519994	A1	20041007	CA 2004-2519994 <--	20040326
EP 1611072	A2	20060104	EP 2004-723597 <--	20040326
EP 1611072	B1	20071121		
R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK			
CN 1764617	A	20060426	CN 2004-80008120 <--	20040326
EP 1700836	A1	20060913	EP 2006-115610 <--	20040326
R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK			
JP 2006521197	T	20060921	JP 2006-504885 <--	20040326
MX 2005PA08643	A	20051018	MX 2005-PA8643 <--	20050815
US 2006229478	A1	20061012	US 2005-549774 <--	20050919
PRIORITY APPLN. INFO.:			KR 2003-18888 <--	A 20030326
			KR 2003-18890 <--	A 20030326
			KR 2003-18891 <--	A 20030326
			KR 2003-19039 <--	A 20030327
			EP 2004-723597	A3 20040326
			WO 2004-EP3263	W 20040326

ED Entered STN: 07 Oct 2004

AB A Pd-based hydrogenation catalyst, further consisting of La, Ti, Nb, K, or Si, is described which has high selectivity for ethylene, even after a low-temperature reduction in the chemoselective hydrogenation of acetylene into ethylene. The catalyst consists essentially of 0.05-2.0 % Pd, based on the supported catalyst, and one or two metals chosen from lanthanum, niobium, titanium, potassium, and silicon, and is prepared by: (1) impregnating a support in an aqueous solution of tetraamine palladium hydroxide followed by drying and calcination; (2) the second and, if necessary, a third metal is impregnated by impregnating the Pd catalyst in the solution of the metal precursor followed by drying and calcination; (3) the catalyst from step (2) is then reduced in hydrogen at 200-600° for 1-5 h.

IT 7439-91-0, Lanthanum, uses 7440-09-7,
Potassium, uses 7440-32-6, Titanium, uses

(in palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)

RN 7439-91-0 HCPLUS
 CN Lanthanum (CA INDEX NAME)

La

RN 7440-09-7 HCPLUS
 CN Potassium (CA INDEX NAME)

K

RN 7440-32-6 HCPLUS
 CN Titanium (CA INDEX NAME)

Ti

IT 7440-05-3, Palladium, uses
 (palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM C07C005-09
 ICS B01J023-44
 CC 35-2 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 23, 48, 67
 IT Alkynes
 (acetylene; palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
 IT Hydrogenation catalysts
 (chemoselective; palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
 IT Calcination
 Drying
 Oxidation
 Reduction
 (in the preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
 IT Chemosselectivity
 (palladium-based catalysts for the chemoselective

- hydrogenation of acetylene into ethylene)
- IT Alkenes, preparation
 (α-, ethylene; palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 7631-86-9, Silica, uses
 (catalyst support; preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 7439-91-0, Lanthanum, uses 7440-03-1, Niobium, uses 7440-09-7, Potassium, uses 7440-21-3, Silicon, uses 7440-32-6, Titanium, uses
 (in palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 7732-18-5, Water, uses
 (in the preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 617-86-7, Triethylsilane 694-53-1, Phenylsilane 998-29-8, Tripropylsilane 5593-70-4, Titanium tetrabutoxide 7757-79-1, Potassium nitrate, reactions 7803-52-5, Silane, reactions 14024-64-7 68413-68-3 100587-94-8 144665-26-9
 (in the preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 1333-74-0, Hydrogen, reactions
 (in the preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 7440-05-3, Palladium, uses
 (palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 74-85-1P, Ethene, preparation
 (preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)
- IT 74-86-2, Ethyne, reactions
 (preparation of palladium-based catalysts for the chemoselective hydrogenation of acetylene into ethylene)

L32 ANSWER 5 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2004:772630 HCPLUS Full-text
 DOCUMENT NUMBER: 141:263161
 TITLE: Planar ceramic membrane assembly and reactor system for the oxidation of hydrocarbons
 INVENTOR(S): Carolan, Michael Francis; Dyer, Paul Nigel; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard
 PATENT ASSIGNEE(S): Air Products and Chemicals, Inc., USA
 SOURCE: Eur. Pat. Appl., 31 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1459800	A2	20040922	EP 2004-6537	20040318
			<--	
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK				
US 2004186018	A1	20040923	US 2003-394620	20030321

			<--	
US 7279027	B2	20071009	AU 2004-201122	20040316
AU 2004201122	A1	20041007		
			<--	
ZA 2004002096	A	20050916	ZA 2004-2096	20040316
			<--	
NO 2004001189	A	20040922	NO 2004-1189	20040319
			<--	
JP 2004283826	A	20041014	JP 2004-80652	20040319
			<--	
CN 1550475	A	20041201	CN 2004-10030134	20040319
			<--	
KR 2004083377	A	20041001	KR 2004-19098	20040320
			<--	
PRIORITY APPLN. INFO.:			US 2003-394620	A 20030321
			<--	

ED Entered STN: 22 Sep 2004

AB A planar ceramic membrane assembly consisting of a dense layer of mixed-conducting multi-component metal oxide material having a 1st and a 2nd side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the 1st side of the dense layer, and a ceramic channeled support layer in contact with the 2nd side of the dense layer. The metal oxide material has the general composition $(\text{LaxCal}-x)y\text{FeO}_3-\delta$ wherein $1.0 > x > 0.5$, $1.1 > \text{toreq.y} > 1.0$, and δ is a number which renders the composition of matter charge neutral. The porous can contain a catalyst, such as Pt, Pd, Rh, Ru, Ir, Au, Ni, Co, Cu, or K. The planar ceramic membrane assembly can be used in a ceramic wafer assembly consisting of a planar ceramic channeled support layer having a 1st and a 2nd side; a 1st dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the 1st side of the ceramic channeled support layer; a 1st outer support layer consisting of porous mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the outer side of the 1st dense layer; a 2nd dense layer of mixed-conducting multi-component metal oxide material having an inner and an outer side, wherein the inner side is in contact with the 2nd side of the ceramic channeled layer; and a 2nd outer support layer consisting of porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the 2nd dense layer. The planar ceramic membrane assembly can be used in a reactor system for the oxidation of hydrocarbons. A heated oxygen-containing oxidant feed gas is passed through the ceramic channeled layer in contact with the dense layer, permeating oxygen ions through the dense layer providing oxygen to the 1st side of the dense layer, contacting a heated hydrocarbon-containing feed gas with the support layer wherein the hydrocarbons diffuse through the support layer, and reacting the hydrocarbons with oxygen. The hydrocarbons are C1-6 hydrocarbons. Hydrocarbon oxidation products can be oxidized hydrocarbons, hydrogen, and water. The planar ceramic membrane can have a coating containing reduction catalysts, such as Pt, Pd, Ru, Au, Ag, Bi, Ba, V, Mo, Ce, Pr, Co, Rh, or Mn.

IT 7440-05-3, Palladium, uses

(planar ceramic membrane assembly and reactor system for oxidation of hydrocarbons)

RN 7440-05-3 HCPLUS

CN Palladium (CA INDEX NAME)

IC ICM B01D071-02
 ICS C01B013-02; B01D053-22; B01J019-00; B01J019-24
 CC 51-11 (Fossil Fuels, Derivatives, and Related Products)
 Section cross-reference(s): 47, 57, 67
 IT 119537-57-4, Calcium iron lanthanum oxide
 (membrane material; planar ceramic membrane assembly and reactor system for oxidation of hydrocarbons)
 IT 7439-88-5, Iridium, uses 7439-96-5, Manganese, uses 7439-98-7,
 Molybdenum, uses 7440-02-0, Nickel, uses 7440-05-3,
 Palladium, uses 7440-06-4, Platinum, uses 7440-09-7,
 Potassium, uses 7440-10-0, Praseodymium, uses 7440-16-6, Rhodium,
 uses 7440-18-8, Ruthenium, uses 7440-22-4, Silver, uses
 7440-39-3, Barium, uses 7440-45-1, Cerium, uses 7440-48-4, Cobalt,
 uses 7440-50-8, Copper, uses 7440-57-5, Gold, uses 7440-62-2,
 Vanadium, uses 7440-69-9, Bismuth, uses
 (planar ceramic membrane assembly and reactor system for oxidation of hydrocarbons)

L32 ANSWER 6 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2004:648439 HCPLUS Full-text

DOCUMENT NUMBER: 141:174605

TITLE: Oxidation catalyst supported on alumina and its preparation

INVENTOR(S): Rosen, Bruce I.

PATENT ASSIGNEE(S): BP Chemicals Limited, UK

SOURCE: PCT Int. Appl., 25 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004067167	A1	20040812	WO 2003-GB5399	20031211 <--
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SB, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG				
CA 2513138	A1	20040812	CA 2003-2513138	20031211 <--
AU 2003292403	A1	20040823	AU 2003-292403	20031211 <--
EP 1587617	A1	20051026	EP 2003-767980	20031211 <--
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
CN 1744946	A	20060308	CN 2003-80109297	20031211 <--

10/549,774

JP 2006513027	T	20060420	JP 2004-567363 <--	20031211
IN 2005DN02966	A	20061229	IN 2005-DN2966 <--	20050704
US 2006052635	A1	20060309	US 2005-543095 <--	20050722
PRIORITY APPLN. INFO.:			US 2003-442527P <--	P 20030127
			WO 2003-GB5399 <--	W 20031211

ED Entered STN: 12 Aug 2004

AB The supported catalyst composition suitable for the oxidation of ethane to ethylene and/or HOAc, and/or the oxidation of ethylene to HOAc, is made by adding catalyst, comprising ≥ 1 metal components, on a support comprising α -alumina, more specifically (a) forming a slurry comprising the ≥ 1 metal components, and α -alumina support particles or an α -alumina support precursor, (b) spray-drying the slurry, and, optionally, (c) calcining the spray-dried slurry to form the supported catalyst composition A molybdenum vanadium niobium gold oxide on α -alumina, and at a nominal metal loading of 50% of the total catalyst weight, had a surface area of 3 m²/g and a d. 1.2 g/cm³.

IT 7439-91-0, Lanthanum, uses 7440-05-3,
Palladium, uses 7440-09-7, Potassium, uses
7440-32-6, Titanium, uses

(oxidation catalysts α -alumina-supported mixed metal
for conversion of ethane to ethylene or acetic acid)

RN 7439-91-0 HCPLUS

CN Lanthanum (CA INDEX NAME)

La

RN 7440-05-3 HCPLUS
CN Palladium (CA INDEX NAME)

Pd

RN 7440-09-7 HCPLUS
CN Potassium (CA INDEX NAME)

K

RN 7440-32-6 HCPLUS
CN Titanium (CA INDEX NAME)

Ti

IC ICM B01J021-04
 ICS B01J023-68; B01J037-00; C07C051-21; C07C053-08
 CC 35-2 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 45, 67
 ST alumina supported metal oxidn ethane ethylene acetic acid
 IT Oxidation catalysts
 (selective; oxidation catalysts α -alumina-supported mixed metal for conversion of ethane to ethylene or acetic acid)
 IT 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6,
 Iron, uses 7439-91-0, Lanthanum, uses 7439-95-4,
 Magnesium, uses 7439-96-5, Manganese, uses 7439-98-7, Molybdenum,
 uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses 7440-04-2,
 Osmium, uses 7440-05-3, Palladium, uses
 7440-06-4, Platinum, uses 7440-09-7, Potassium,
 uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses
 7440-17-7, Rubidium, uses 7440-18-8, Ruthenium, uses 7440-21-3,
 Silicon, uses 7440-22-4, Silver, uses 7440-24-6, Strontium, uses
 7440-25-7, Tantalum, uses 7440-28-0, Thallium, uses 7440-31-5,
 Tin, uses 7440-32-6, Titanium, uses 7440-33-7,
 Tungsten, uses 7440-36-0, Antimony, uses 7440-39-3, Barium, uses
 7440-42-8, Boron, uses 7440-43-9, Cadmium, uses 7440-45-1, Cerium,
 uses 7440-46-2, Cesium, uses 7440-47-3, Chromium, uses
 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-55-3,
 Gallium, uses 7440-57-5, Gold, uses 7440-58-6, Hafnium, uses
 7440-61-1, Uranium, uses 7440-66-6, Zinc, uses 7440-67-7,
 Zirconium, uses 7440-69-9, Bismuth, uses 7440-70-2, Calcium, uses
 7440-74-6, Indium, uses 7723-14-0, Phosphorus, uses 13494-80-9,
 Tellurium, uses
 (oxidation catalysts α -alumina-supported mixed metal
 for conversion of ethane to ethylene or acetic acid)
 IT 301182-13-8P, Gold molybdenum niobium vanadium oxide
 (oxidation catalysts α -alumina-supported mixed metal
 for conversion of ethane to ethylene or acetic acid)
 IT 64-19-7P, Acetic acid, preparation
 (oxidation catalysts α -alumina-supported mixed metal
 for conversion of ethane to ethylene or acetic acid)
 IT 74-85-1P, Ethylene, preparation
 (oxidation catalysts α -alumina-supported mixed metal
 for conversion of ethane to ethylene or acetic acid)
 IT 74-84-0, Ethane, reactions
 (oxidation; oxidation catalysts α -alumina-supported mixed
 metal for conversion of ethane to ethylene or acetic acid)
 IT 1344-28-1, Alumina, uses
 (support; oxidation catalysts α -alumina-
 supported mixed metal for conversion of ethane to ethylene
 or acetic acid)

L32 ANSWER 7 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2004:645872 HCPLUS Full-text
 DOCUMENT NUMBER: 141:143027
 TITLE: A process for preparation of syngas
 INVENTOR(S): Choudhary, Vasant Ramchandra; Upadhe, Balu
 Shivaji; Mamman, Ajit Singh; Rajput, Amarjeet
 Munshi Ram
 PATENT ASSIGNEE(S): Council of Scientific and Industrial Research,
 India
 SOURCE: Indian, 44 pp.

CODEN: INXXAP

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
IN 188329	A1	20020907	IN 1994-DE632 <-- IN 1994-DE632	19940520 <-- 19940520

PRIORITY APPLN. INFO.:

ED Entered STN: 12 Aug 2004

AB A process for the preparation of syngas using an improved supported catalyst containing oxides of nickel and cobalt, with or without noble metals, represented by the formula: $AaCo bNi cO(x) / M O d(y)/S$, wherein, A is noble metal element selected from Ru, Rh, Pd, Pt, Ir, Os, or a mixture thereof, Co is cobalt, Ni is nickel, O is oxygen, M is alkaline earth element selected from Be, Mg, Ca or a mixture thereof, a is A/Ni mole ratio in the range of 0 to 0.1, b is Co/Ni mole ratio in the range of about 0.01 to 2.0, c is number of oxygen atoms needed to fulfil the valence requirement of A Co Ni, d is number of oxygen atoms required to fulfil the valence a b requirement of M, S is catalyst support selected from sintered low surface area porous refractory inert solids comprising of alumina, silica, silica-alumina, silicon carbide, zirconia, hafnia or a mixture thereof, y is weight percent loading of MO precoated on the support in the range of 0.3 wt % to 30 wt %, and x is wt % d loading of A Co NiO deposited on the precoated support in the range of 0.3 weight % to 30 a b c weight % which comprises: a) mixing oxygen with carbon dioxide and methane or natural gas at room temperature, b) preheating the steam and the mixture of oxygen, carbon dioxide and methane or natural gas to a temperature between 600°C to 900°C. C) admixing said preheated steam with said preheated mixture of oxygen, carbon dioxide and methane or natural gas. D) passing continuously the resulting admixt. feed over an said supported catalyst containing oxides of nickel and cobalt optionally in presence of noble metals in a fixed bed reactor operated adiabatically or non-adiabatically, maintaining the mole ratio of organic carbon (i.e. carbon in hydrocarbon) to oxygen steam and carbon dioxide in said admixt. feed between 1.8 and 2.8, between 1.1 and 25 and between 2.0 and 50, resp., a gas hourly space velocity of said admixt. feed between 2000 cm³ .g⁻¹ .h⁻¹ and 200,000 cm³ .g⁻¹ .h⁻¹, a reaction temperature between 650°C and 925°C and pressure between 1 atm and 50 atm such that an effluent is produced containing carbon monoxide and hydrogen in a mole ratio of hydrogen to carbon monoxide between 1.5 and 3.0 and containing less than 4 mol % unreacted methane or natural gas, to produce syngas.

IC B01J023-38

CC 51-12 (Fossil Fuels, Derivatives, and Related Products)

Section cross-reference(s): 67

IT 409-21-2, Silicon carbide, uses 1304-28-5, Barium oxide, uses 1305-78-8, Calcium oxide, uses 1306-38-3, Cerium oxide, uses 1309-48-4, Magnesium oxide, uses 1312-81-8, Lanthanum oxide 1313-97-9, Neodymium oxide 1313-99-1, Nickel oxide, uses 1314-11-0, Strontium oxide, uses 1314-23-4, Zirconia, uses 1314-37-0, Ytterbium oxide 1344-28-1, Alumina, uses 7631-86-9, Silica, uses 11104-61-3, Cobalt oxide 12055-23-1, Hafnia 12060-58-1, Samarium oxide (process and catalyst for preparation of syngas)

L32 ANSWER 8 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2003:761995 HCPLUS Full-text
 DOCUMENT NUMBER: 139:280384

TITLE: Catalyst for flue gas treatment and its application
 INVENTOR(S): Okamura, Atsushi; Morita, Atsushi; Masaki, Nobuyuki; Sugishima, Noboru; Kobayashi, Motonobu
 PATENT ASSIGNEE(S): Nippon Shokubai Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003275596	A	20030930	JP 2002-84000 <--	20020325
PRIORITY APPLN. INFO.:			JP 2002-84000 <--	20020325

ED Entered STN: 30 Sep 2003
 AB The catalyst for treating flue gases containing low CO comprises a monolithic porous Ti oxide support loaded with (A) ≥1 precious metals such as Pt, Pd, Rh, Ru, Ir, and Au 0.05-2.0, S compds. (calculated as S) 0.01-1, and (B) ≥1 elements from Group I-III such as Na, Li, Mg, Ca, Y, and La 0.1-10 weight%. The porous oxide support is preferably made of TiO₂ and/or Si-Al-Zr-Ti composite oxides. The catalyst is superior in high durability and activity for treating boiler flue gases containing ≤100 ppm CO.
 IT 7439-91-0, Lanthanum, uses 7440-05-3,
 Palladium, uses 7440-09-7, Potassium, uses
 (on monolithic porous Ti oxide support; catalyst for flue
 gas treatment and its application)
 RN 7439-91-0 HCPLUS
 CN Lanthanum (CA INDEX NAME)

La

RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

RN 7440-09-7 HCPLUS
 CN Potassium (CA INDEX NAME)

K

IC ICM B01J027-053
 ICS B01D053-86; B01J027-055; F01N003-10

CC 59-4 (Air Pollution and Industrial Hygiene)
 Section cross-reference(s): 67
 IT 13463-67-7, Titania, uses 176545-39-4, Aluminum silicon
 titanium zirconium oxide
 (monolithic porous support; catalyst for flue gas treatment and its
 application)
 IT 7439-88-5, Iridium, uses 7439-91-0, Lanthanum,
 uses 7439-93-2, Lithium, uses 7439-95-4, Magnesium, uses
 7440-05-3, Palladium, uses 7440-06-4, Platinum,
 uses 7440-09-7, Potassium, uses 7440-16-6,
 Rhodium, uses 7440-18-8, Ruthenium, uses 7440-57-5, Gold, uses
 7440-65-5, Yttrium, uses 7440-70-2, Calcium, uses 7783-20-2,
 Ammonium sulfate, uses 7803-63-6, Ammonium hydrogen sulfate
 (on monolithic porous Ti oxide support; catalyst for flue
 gas treatment and its application)

L32 ANSWER 9 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:638111 HCAPLUS Full-text
 DOCUMENT NUMBER: 137:172439
 TITLE: Selective removal of carbon monoxide from hydrogen
 for use in polymer electrolyte membrane fuel cells
 INVENTOR(S): Roark, Shane E.; White, James H.
 PATENT ASSIGNEE(S): Eltron Research, USA
 SOURCE: U.S. Pat. Appl. Publ., 16 pp., Cont.-in-part of
 U.S. Ser. No. 468,034.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002114746	A1	20020822	US 2001-39771 <--	20011029
US 6787118	B2	20040907		
US 6458741	B1	20021001	US 1999-468034 <--	19991220
PRIORITY APPLN. INFO.:			US 1999-468034 <--	A2 19991220
			US 2000-244049P <--	P 20001027

ED Entered STN: 23 Aug 2002

AB Catalyst compns. are provided that are useful in selectively removing carbon monoxide from a hydrogen-containing gas. These catalyst compns. preferably have the formula: $nN/Ce1-(x+y+z)AxA'yA'zO2-\delta$, where A, A', A'' are independently selected from the group consisting of: Zr, Gd, La, Sc, Sr, Co, Cr, Fe, Mn, V, Ti, Cu and Ni; N is one or more members of the group consisting of: Pt, Pd, and Au; n is a weight percent between 0 and 25; x, y and z are independently 0 to 0.9; x+y+z is 0.1 to 0.9; and δ is a number which renders the composition charge neutral; or $nN/(MOx)(CeO2-\delta)1-y$, where M is ≥ 1 member of the group selected from: Zr, Co, Cr, Fe, Mn, V, Ti, Ni and Cu; N is ≥ 1 member of the group selected from: Pt, Pd, and Au; n is a weight percent between 0 and 25; y is 0.1 to 0.9; and x and δ make the compns. charge neutral.

IC ICM B01J035-02
 ICS B01J023-10; B01D053-34; F01N003-00; B01J008-02

INCL 422177000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 49, 67
 REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

L32 ANSWER 10 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:107897 HCPLUS Full-text
 DOCUMENT NUMBER: 136:170103
 TITLE: Cobalt-nickel-molybdenum oxide-based dealkylation
 catalysts with coke suppressing agents for
 dealkylation of C>8-aromatic hydrocarbons
 INVENTOR(S): Wu, An-Hsiang; Drake, Charles A.
 PATENT ASSIGNEE(S): Phillips Petroleum Company, USA
 SOURCE: U.S. Pat. Appl. Publ., 12 pp., Cont.-in-part of
 U.S. Ser. No. 697,767, abandoned.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002016258	A1	20020207	US 1999-255973 -->	19990223
US 6528450	B2	20030304		
PRIORITY APPLN. INFO.:			US 1996-697767 -->	B2 19960829

OTHER SOURCE(S): MARPAT 136:170103

ED Entered STN: 10 Feb 2002

AB Hydrodealkylation of C9+-aromatic hydrocarbons (e.g., 1, 2,4-trimethylbenzene) to C6-8-aromatic hydrocarbons (e.g., xylenes) is carried out over an alumina-supported catalyst based on Co, Ni, Rh, Pd, Pt, Cr, and W and containing a coke suppressant selected from SiO₂, P2O₅, B2O₃, TiO₂, ZrO₂, In2O₃, and La2O₃ (preferably SiO₂ and P2O₅). The weight ratio of the coke suppressor to the alumina-supported metal oxide is 0.0001-1:1, preferably 0.005-0.5:1; the active metal oxide is typically Co oxide, Ni oxide, and MoO₃. The C9+-aromatic feedstock can be described by the formula RqAr, in which R = C1-15-hydrocarbyl, q = 1-5, and Ar is the aryl group; preferred feedstock is C9-12-aromatic hydrocarbon (e.g., trimethylbenzenes, tetramethylbenzenes, propylbenzenes, ethyltoluenes, and propyltoluenes). Silica-based coke suppressing agents are preferably incorporated from an organosilicon precursor, such as a siloxane, an organosilicate, and a silylating agent; phosphorus-based coke suppressing agents are incorporated as organic phosphites, phosphates, phosphines, and phosphine oxides.

IT 7440-05-3, Palladium, uses
 (catalysts; cobalt-nickel-molybdenum oxide-based dealkylation
 catalysts with coke suppressing agents for dealkylation of
 C>8-aromatic hydrocarbons)

RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J031-00
 ICS C07C004-12; C07C004-14; C07C004-18

INCL 502158000

CC 51-11 (Fossil Fuels, Derivatives, and Related Products)

Section cross-reference(s): 25

- IT 1307-96-6, Cobalt oxide, uses 1313-27-5, Molybdenum trioxide, uses 1313-99-1, Nickel oxide, uses 7440-02-0, Nickel, uses 7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses 7440-33-7, Tungsten, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 11104-61-3, Cobalt oxide
 (catalysts; cobalt-nickel-molybdenum oxide-based dealkylation catalysts with coke suppressing agents for dealkylation of C_{>8}-aromatic hydrocarbons)
- IT 1303-86-2, Boron oxide, uses 1312-43-2, Indium oxide (In203) 1312-81-8, Lanthanum oxide (La203) 1314-23-4, Zirconium dioxide, uses 1314-56-3, Phosphorus pentoxide, uses 7631-86-9, Silica, uses 13463-67-7, Titanium dioxide, uses (coke-suppressing agent; cobalt-nickel-molybdenum oxide-based dealkylation catalysts with coke suppressing agents for dealkylation of C_{>8}-aromatic hydrocarbons)
- IT 95-63-6, 1,2,4-Trimethylbenzene 95-93-2,
 1,2,4,5-Tetramethylbenzene 103-65-1, Propylbenzene 108-67-8, 1,3,5-Trimethylbenzene, reactions 141-93-5, 1,3-Diethylbenzene 488-23-3, 1
 ,2,3,4-Tetramethylbenzene 526-73-8, 1,2
 ,3-Trimethylbenzene 527-53-7, 1,2
 ,3,5-Tetramethylbenzene 620-14-4, 3-Ethyltoluene 622-96-8,
 4-Ethyltoluene 1074-43-7, 3-n-Propyltoluene 1074-55-1,
 4-n-Propyltoluene
 (feedstocks containing; cobalt-nickel-molybdenum oxide-based dealkylation catalysts with coke suppressing agents for dealkylation of C_{>8}-aromatic hydrocarbons)
- IT 75-77-4, Trimethylchlorosilane, uses 78-08-0, Vinyltrimethoxysilane 78-10-4, Tetraethylorthosilicate 107-46-0, Hexamethyldisiloxane 141-62-8, Decamethyltetrasiloxane 429-60-7, (3,3,3-
 Trifluoropropyl)trimethoxysilane 919-30-2,
 Aminopropyltrimethoxysilane 1067-25-0, Propyltrimethoxysilane 1067-53-4, Vinyltris(β-methoxyethoxy)silane 1185-55-3,
 Methyltrimethoxysilane 1343-98-2D, Silicic acid, esters 1719-57-9,
 Chloromethyldimethylchlorosilane 1760-24-3, [γ-(β-Aminoethylamino)propyl]trimethoxysilane 2526-62-7,
 Cyanoethyltrimethoxysilane 2530-83-8, (3-
 Glycidoxypropyl)trimethoxysilane 2530-85-0, (γ-
 Methacryloxypropyl)trimethoxysilane 2530-87-2, (3-
 Chloropropyl)trimethoxysilane 2996-92-1, Phenyltrimethoxysilane 3388-04-3, [β-(3,4-Epoxy cyclohexyl)ethyl]trimethoxysilane 4420-74-0, (3-Mercaptopropyl)trimethoxysilane 5314-55-6,
 Ethyltrimethoxysilane 7538-45-6, (β-Mercaptoethyl)trimethoxysilane 7699-41-4D, Silicic acid (H₂SiO₃), esters 10193-36-9D, Silicic acid, esters 10416-59-8,
 N,O-Bis(trimethylsilyl)acetamide 13435-12-6, N-Trimethylsilylacetamide 18156-74-6, N-Trimethylsilylimidazole 24589-78-4, N-Methyl-N-trimethylsilyl trifluoroacetamide 54925-64-3,
 1H-Imidazole, 1-[(1,1-dimethylethyl)dimethylsilyl]- 56958-44-2,
 Diphenyltetramethylsiloxane
 (silica source; cobalt-nickel-molybdenum oxide-based dealkylation catalysts with coke suppressing agents for dealkylation of C_{>8}-aromatic hydrocarbons)

L32 ANSWER 11 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:31977 HCAPLUS Full-text
 DOCUMENT NUMBER: 136:86223
 TITLE: Process for selectively hydrogenating mixed phase
 front-end C2-10 unsaturated hydrocarbons
 containing dienes and alkynes in an olefin
 production plant
 INVENTOR(S): Dai, Wei; Liao, Lihua; Zhu, Jing; Guo, Yanlai;
 Peng, Hui; Mu, Wei; Chen, Shuo
 PATENT ASSIGNEE(S): Peop. Rep. China
 SOURCE: U.S. Pat. Appl. Publ., 7 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002004622	A1	20020110	US 2001-879489 <--	20010613
US 6858766	B2	20050222		
CN 1330131	A	20020109	CN 2000-109219 <--	20000615
CN 1109090	B	20030521		
PRIORITY APPLN. INFO.:			CN 2000-109219 <--	A 20000615

ED Entered STN: 11 Jan 2002

AB A process is described for selectively hydrogenating C2-10 (un)saturated hydrocarbons (i.e., acetylenes and diolefins) at the upstream side of a front depropanizer or front deethanizer in an olefin (e.g., ethylene) production plant. After passing through a mixed-phase hydrogenation reactor so as to selectively hydrogenate, the olefin plant process stream passes to a front depropanizer or front deethanizer. This process is able to selectively hydrogenate C2-C10 greater unsatd. hydrocarbons (including acetylene), to reduce the amount of equipment, the amount of equipment fouling, and energy consumption; a process flow diagram is presented.

IT 7439-91-0, Lanthanum, uses 7440-05-3,

Palladium, uses

(catalysts for chemoselectively hydrogenating mixed phase front-end C2-10 unsatd. hydrocarbons containing dienes and alkynes in an olefin production plant)

RN 7439-91-0 HCAPLUS

CN Lanthanum (CA INDEX NAME)

La

RN 7440-05-3 HCAPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM C07C005-03
 INCL 585260000; X58-525.9; X58-526.2
 CC 35-2 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 23, 47, 48, 67
 IT Molecular sieves
 (supports; catalysts for chemoselectively
 hydrogenating mixed phase front-end C2-10 unsatd. hydrocarbons
 containing dienes and alkynes in an olefin production plant)
 IT 7439-91-0, Lanthanum, uses 7439-93-2, Lithium,
 uses 7439-95-4, Magnesium, uses 7439-98-7, Molybdenum, uses
 7440-05-3, Palladium, uses 7440-06-4, Platinum,
 uses 7440-09-7, Potassium, uses 7440-18-8, Ruthenium, uses
 7440-22-4, Silver, uses 7440-23-5, Sodium, uses 7440-33-7,
 Tungsten, uses 7440-36-0, Antimony, uses 7440-38-2, Arsenic, uses
 7440-39-3, Barium, uses 7440-45-1, Cerium, uses 7440-50-8, Copper,
 uses 7440-57-5, Gold, uses 7440-62-2, Vanadium, uses 7440-66-6,
 Zinc, uses 7440-69-9, Bismuth, uses 7440-70-2, Calcium, uses
 12795-30-1, Nickel arsenide
 (catalysts for chemoselectively hydrogenating mixed phase front-end
 C2-10 unsatd. hydrocarbons containing dienes and alkynes in an olefin
 production plant)
 IT 74-86-2, Acetylene, reactions 74-99-7, Propyne 106-99-0, 1
 ,3-Butadiene, reactions 208666-46-0, Butyne
 (process for selectively hydrogenating mixed phase front-end C2-10
 unsatd. hydrocarbons containing dienes and alkynes in an olefin production
 plant)
 IT 1314-13-2, Zinc oxide, uses 1332-29-2, Tin oxide 1344-28-1,
 Alumina, uses 7631-86-9, Silica, uses 13463-67-7, Titania, uses
 (support; catalysts for chemoselectively
 hydrogenating mixed phase front-end C2-10 unsatd. hydrocarbons
 containing dienes and alkynes in an olefin production plant)
 REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 REFORMAT

L32 ANSWER 12 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2001:269139 HCAPLUS Full-text
 DOCUMENT NUMBER: 134:300010
 TITLE: Catalyst for automotive exhaust gas treatment
 INVENTOR(S): Yamazaki, Kiyoshi; Takahashi, Naoki; Hachisuka,
 Ichiro; Sofue, Yuichi
 PATENT ASSIGNEE(S): Toyota Central Research and Development
 Laboratories, Inc., Japan; Toyota Motor Corp.
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001104784	A	20010417	JP 1999-285103 <--	19991006
PRIORITY APPLN. INFO.:			JP 1999-285103 <--	19991006

ED Entered STN: 17 Apr 2001

AB The title catalyst comprises ≥1 Pt-group metals and crystalline Sr compds.
 (average grain diameter ≤40 nm) on monolithic supports mainly containing ZrO₂
 and/or LaO₂-ZrO₂. The amount of the Sr compound on ZrO₂ supports is

preferably controlled at 0.05- 2.0/L. The catalyst is superior in thermal stability at $\geq 700^\circ$ and high denitration efficiency at various temperature range.

IT 7440-05-3, Palladium, uses
 (on zirconia support; catalyst for automotive exhaust gas treatment)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J023-58
 ICS B01D053-94; B01J035-02
 CC 59-3 (Air Pollution and Industrial Hygiene)
 Section cross-reference(s): 67
 ST catalyst zirconia support automotive exhaust gas denitration;
 strontium compd platinum catalyst lanthanum zirconia support
 IT 1314-23-4, Zirconia, uses 56321-46-1, Lanthanum oxide
 (LaO₂)
 (monolithic support loaded with Pt-group metals and crystalline Sr
 compds.; catalyst for automotive exhaust gas treatment)
 IT 7439-88-5, Iridium, uses 7440-05-3, Palladium,
 uses 7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses
 (on zirconia support; catalyst for automotive exhaust gas
 treatment)

L32 ANSWER 13 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2001:154390 HCPLUS Full-text
 DOCUMENT NUMBER: 134:313571
 TITLE: Effect of preparation procedures on the activity
 of supported palladium/
 lanthanum methanol decomposition catalysts
 AUTHOR(S): Mul, G.; Hirschon, A. S.
 CORPORATE SOURCE: Department of Chemistry and Chemical Engineering,
 SRI-International, Menlo Park, CA, 94025, USA
 SOURCE: Catalysis Today (2001), 65(1), 69-75
 CODEN: CATTEA; ISSN: 0920-5861
 PUBLISHER: Elsevier Science B.V.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 05 Mar 2001
 AB A series of palladium catalysts promoted with lanthanum were prepared on a
 silica support and the activities of these catalysts examined for the
 decomposition of methanol into CO and H₂. The preparation procedure and the
 La₂O₃/Pd weight ratio of these Pd/La₂O₃/SiO₂ catalysts (5 weight% Pd) was
 found to be important for high catalytic activities. If Pd is deposited after
 La₂O₃ using a precipitation procedure, the methanol decomposition activity
 increases up to a La₂O₃/Pd weight ratio of 1.0. The optimized weight ratio
 for the methods of co-precipitation and co-impregnation were found to be 0.8
 and 0.5, resp. Relatively low activities are obtained if a sequential
 procedure with La₂O₃ deposition in the final step is applied. The effect of
 the preparation procedure and La₂O₃/Pd weight ratio on activity of the
 resulting catalysts can be explained by: (i) the amount of Pd particles in
 contact with La₂O₃ moieties, pos. affecting the activity, and (ii) the extent
 of coverage of Pd particles by La₂O₃ patches, neg. affecting the activity.
 IT 7440-05-3, Palladium, uses

(effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts)
RN 7440-05-3 HCAPLUS
CN Palladium (CA INDEX NAME)

Pd

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 67, 72
ST fuel cell methanol decompn catalyst; palladium lanthana
catalyst methanol decompn
IT Decomposition catalysts
Fuel cells
(effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts)
IT 1312-81-8, Lanthanum oxide 7440-05-3,
Palladium, uses 7631-86-9, Silica, uses
(effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts)
IT 630-08-0, Carbon monoxide, formation (nonpreparative)
(effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts)
IT 67-56-1, Methanol, uses
(effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts)
IT 1333-74-0F, Hydrogen, preparation
(effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts)
REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN THE
RE FORMAT

L32 ANSWER 14 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2000:665590 HCAPLUS Full-text
DOCUMENT NUMBER: 133:225182
TITLE: Manufacture of nitrous oxide by catalytic
heterogeneous reduction of nitric oxide
INVENTOR(S): Guddat, Tobias; Reitzmann, Andreas; Gerhard, Emil
PATENT ASSIGNEE(S): Phenolchemie G.m.b.H. und Co. K.-G., Germany
SOURCE: Eur. Pat. Appl., 11 pp.
CODEN: EPXXDW
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1036761	A1	20000920	EP 2000-104238	20000301 -->
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
DE 10009639	A1	20000921	DE 2000-10009639	20000301 -->
JP 2000281321	A	20001010	JP 2000-68558	20000313 -->

10/549,774

CN 1267633	A	20000927	CN 2000-104166	20000315
			<--	
BG 104249	A	20010928	BG 2000-104249	20000316
			<--	
BR 2000001334	A	20030415	BR 2000-1334	20000316
			<--	
PRIORITY APPLN. INFO.:			DE 1999-19911566	A 19990316
			<--	

ED Entered STN: 22 Sep 2000
 AB Nitrous oxide (N₂O) is manufactured by catalytic heterogeneous reduction of nitric oxide (NO) at >40° and 1-20 bars absolute in the presence of a reducing agent (selected from H₂, CO, or synthesis gas) in which the NO-containing gases are dried prior to reduction. The exact temperature of reduction is dependent on which of the above reducing agents are used. Suitable catalysts include Pd/Al₂O₃, Pt/Al₂O₃, Rh/Al₂O₃, Ru/Al₂O₃, La-Fe zeolite, and Cr(III)/SiO₂, preferably 1-5 weight% Rh/Al₂O₃, 1-5 weight% CrO/SiO₂, 1-5 weight% Pt/Al₂O₃, and 1-5 weight% Pd/Al₂O₃. The NO is derived by Ostwald oxidation of NH₃. The process is especially useful for reducing the content of NO in N₂O or for manufacture of N₂O for use in the hydroxylation of benzene to phenol.
 IT 7440-05-3, Palladium, uses
 (alumina-supported, catalyst; manufacture of nitrous oxide by catalytic heterogeneous reduction of nitric oxide)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IT 7439-91-0, Lanthanum, uses
 (zeolite-supported, catalyst; manufacture of nitrous oxide by catalytic heterogeneous reduction of nitric oxide)
 RN 7439-91-0 HCPLUS
 CN Lanthanum (CA INDEX NAME)

La

IC ICM C01B021-22
 ICS C07C037-60
 CC 49-8 (Industrial Inorganic Chemicals)
 ST nitric oxide redn nitrous oxide; benzene hydroxylation nitrous oxide phenol; platinum redn catalyst nitrous oxide manuf; palladium redn catalyst nitrous oxide manuf; chromium redn catalyst nitrous oxide manuf
 IT Zeolites (synthetic), uses
 (catalysts, containing lanthanum and iron; manufacture of nitrous oxide by catalytic heterogeneous reduction of nitric oxide)
 IT 7440-05-3, Palladium, uses 7440-06-4, Platinum,
 uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium, uses
 (alumina-supported, catalyst; manufacture of nitrous oxide by catalytic heterogeneous reduction of nitric oxide)
 IT 7440-47-3, Chromium, uses
 (silica-supported, catalyst; manufacture of nitrous

oxide by catalytic heterogeneous reduction of nitric oxide)
 IT 7439-89-6, Iron, uses 7439-89-6, Lanthanum, uses
 (zeolite-supported, catalyst; manufacture of nitrous
 oxide by catalytic heterogeneous reduction of nitric oxide)
 REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

L32 ANSWER 15 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1999:384105 HCPLUS Full-text
 DOCUMENT NUMBER: 131:18791
 TITLE: Hydrogenation process and heterogeneous catalysts
 for the preparation of mixtures of optionally
 substituted cyclohexylamines and
 dicyclohexylamines from the corresponding anilines
 INVENTOR(S): Darsow, Gerhard; Langer, Reinhard
 PATENT ASSIGNEE(S): Bayer A.-G., Germany
 SOURCE: Ger. Offen., 8 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 19754571	A1	19990610	DE 1997-19754571 <--	19971209
WO 9929654	A1	19990617	WO 1998-EP7629 <--	19981126
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
AU 9919645	A	19990628	AU 1999-19645 <--	19981126
EP 1037870	A1	20000927	EP 1998-964445 <--	19981126
R: BE, CH, DE, ES, FR, GB, IT, LI, NL, PT JP 2001525387	T	20011211	JP 2000-524251 <--	19981126
US 6335470	B1	20020101	US 2000-555755 <--	20000602
PRIORITY APPLN. INFO.:			DE 1997-19754571 <--	A 19971209
			WO 1998-EP7629 <--	W 19981126

OTHER SOURCE(S): CASREACT 131:18791; MARPAT 131:18791
 ED Entered STN: 22 Jun 1999
 AB Mixts. of optionally substituted cyclohexylamines and dicyclohexylamines
 (e.g., cyclohexylamine and dicyclohexylamine) are prepared in high yield and
 selectivity by the hydrogenation of the correspondingly substituted anilines
 R1(R2)C6H3NH2 (R1, R2 = H, C1-4 alkyl, C1-4 alkoxy) (e.g., aniline) at 100-
 350°/10-400 bar in the presence of a heterogeneous catalyst containing, as the
 active components, 0.05-10% Ru and Pd in a Ru-Pd molar ratio of 1:30 to 30:1,

resp., on a support (e.g., alumina) which is free of halogen and sulfur compds.

IT 7439-91-0, Lanthanum, uses 7440-05-3,
Palladium, uses
(hydrogenation process and heterogeneous catalysts for the preparation of mixts. of optionally substituted cyclohexylamines and dicyclohexylamines from the corresponding anilines)

RN 7439-91-0 HCAPLUS

CN Lanthanum (CA INDEX NAME)

La

RN 7440-05-3 HCAPLUS
CN Palladium (CA INDEX NAME)

Pd

IC ICM C07C211-35
ICS C07C211-36; C07C209-72; C07C217-52; C07C213-08
CC 24-5 (Alicyclic Compounds)
Section cross-reference(s): 45, 48, 67
ST cyclohexylamine prepn aniline hydrogenation; diyclohexylamine prepn aniline hydrogenation; palladium ruthenium hydrogenation
catalyst aniline conversion cyclohexylamine diyclohexylamine
IT Hydrogenation catalysts
(Ru and Pd on a support free of halogen and sulfur compds. for the conversion of optionally substituted anilines into the correspondingly substituted cyclohexylamines and dicyclohexylamines)
IT Rare earth metals, uses
(supported catalysts with Pd and Ru
for the hydrogenation of optionally substituted anilines into mixts. of optionally substituted cyclohexylamines and dicyclohexylamines)
IT 7429-91-6, Dysprosium, uses 7439-91-0, Lanthanum,
uses 7439-96-5, Manganese, uses 7440-00-8, Neodymium, uses
7440-05-3, Palladium, uses 7440-10-0,
Praseodymium, uses 7440-18-8, Ruthenium, uses 7440-45-1, Cerium,
uses 7440-65-5, Yttrium, uses
(hydrogenation process and heterogeneous catalysts for the preparation of mixts. of optionally substituted cyclohexylamines and dicyclohexylamines from the corresponding anilines)

L32 ANSWER 16 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1999:140142 HCAPLUS Full-text
DOCUMENT NUMBER: 130:154066
TITLE: Catalyst for preparing ethylene by oxidation and dehydrogenation of ethane and process thereof
INVENTOR(S): Ji, Lang; Liu, Junsheng; Liu, Chongya; Zhang, Mingqian; Chen, Xiancheng
PATENT ASSIGNEE(S): Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep. China

SOURCE: Faming Zhanli Shengqing Gongkai Shuomingshu, 10
 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Chinese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CN 1121844	A	19960508	CN 1994-116060	19940912 ---
CN 1052431	B	20000517	CN 1994-116060	19940912 ---
PRIORITY APPLN. INFO.:				

ED Entered STN: 05 Mar 1999
 AB Title catalyst for oxidation and dehydrogenation of ethane to ethylene at 300°-650° is a complex oxide with general formula of $XaYbZcO_d$ or $XaYbZcO_d/\text{support}$, where X = Li, Na, K, Rb, Cs; Y = La, Zr, Cr, Mo, W, Mn, Fe, Co, Ni, Pt, Pd, Cu, Zn, Cd, Pb, Sn; Z = Be, Mg, Ca; a:b:c = 0.1-3.0, and a:c = 0.1-0.3; the catalyst support is SiO_2 , γ - or η - Al_2O_3 , TiO_2 or ZrO_2 , and the active component amount in the supported catalyst is 2-50%. Thus, ethane was oxidized and dehydrogenated with the catalyst, which was prepared by reaction of $\text{La}(\text{NO}_3)_3$ with $\text{Ca}(\text{NO}_3)_2$ and LiNO_3 , then dried at 120° for 24 h, baked at 650° for 10 h, and pulverized to 20-60 mesh, at reaction temperature 620° to give ethylene with yield 39.4%, and ethylene selectivity 93.8%.
 IT 7440-05-3, Palladium, uses
 (catalyst component; preparation of metal oxide catalyst for preparing ethylene by oxidation and dehydrogenation of ethane)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J023-16
 ICS B01J023-70; B01J023-76; C07C005-48; C07C011-04
 CC 35-2 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 67
 IT 534-17-8, Cesium carbonate 1304-56-9, Beryllium oxide, uses 1305-62-0, Calcium hydroxide, uses 1309-48-4, Magnesium oxide, uses 1310-65-2, Lithium hydroxide 3251-23-8 7439-92-1, Lead, uses 7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses 7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-17-7, Rubidium, uses 7440-31-5, Tin, uses 7440-33-7, Tungsten, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7631-99-4, Sodium nitrate, uses 7757-79-1, Potassium nitrate, uses 7779-88-6, Zinc nitrate 7790-69-4 10043-52-4, Calcium chloride, uses 10099-59-9, Lanthanum nitrate ($\text{La}(\text{NO}_3)_3$) 10124-37-5, Calcium nitrate ($\text{Ca}(\text{NO}_3)_2$) 10361-44-1, Bismuth nitrate 10377-60-3, Magnesium nitrate 10421-48-4 13138-45-9, Nickel nitrate
 (catalyst component; preparation of metal oxide catalyst for preparing ethylene by oxidation and dehydrogenation of ethane)
 IT 1314-23-4, Zirconium oxide, uses 1344-28-1, Aluminum oxide (Al_2O_3), uses 7631-86-9, Silica, uses 13463-67-7, Titanium oxide (TiO_2), uses

(support; preparation of metal oxide catalyst for preparing ethylene by oxidation and dehydrogenation of ethane)

L32 ANSWER 17 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1999:113592 HCAPLUS Full-text
 DOCUMENT NUMBER: 130:169810
 TITLE: Catalyst and process for the preparation of aromatic carbonates
 INVENTOR(S): Yoshisato, Eishin
 PATENT ASSIGNEE(S): Teijin Limited, Japan
 SOURCE: PCT Int. Appl., 43 pp.
 CODEN: PIXKD2
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9906142	A1	19990211	WO 1998-JP3473 <--	19980804
W: AU, CA, CN, ID, JP, KR, SG, US RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
CA 2298654	A1	19990211	CA 1998-2298654 <--	19980804
AU 9884636	A	19990222	AU 1998-84636 <--	19980804
AU 744246	B2	20020221		
EP 1027926	A1	20000816	EP 1998-935356 <--	19980804
EP 1027926	B1	20040317		
R: AT, BE, CH, DE, ES, FR, GB, IT, LI, NL, SE CN 1116930	B	20030806	CN 1998-807920 <--	19980804
AT 261772	T	20040415	AT 1998-935356 <--	19980804
ES 2216298	T3	20041016	ES 1998-935356 <--	19980804
US 2002198397	A1	20021226	US 2000-485093 <--	20000204
US 6534670	B2	20030318		
US 2003105346	A1	20030605	US 2002-315000 <--	20021210
US 6720443	B2	20040413		
PRIORITY APPLN. INFO.:			JP 1997-209059 <--	A 19970804
			JP 1998-25700 <--	A 19980206
			JP 1998-127497 <--	A 19980511
			WO 1998-JP3473 <--	W 19980804
			US 2000-485093 <--	A3 20000204

ED Entered STN: 19 Feb 1999

AB Aromatic carbonates are prepared economically and efficiently by reacting an aromatic hydroxyl compound with carbon monoxide and oxygen in the presence of a catalyst which comprises M($1-x$)M' x M' y O y (wherein M is a group IIIB metal; x is a number of 0 to 1; M' is a metal having an ionic radius of 0.90 Å or

above; M'' is Mn, Cr, Co, Fe, Ni or Cu; and y is a number of 2.5 to 3.5) or L(1-x)L'xL''yO_y (wherein L is a group IIA or IVA metal taking a divalent state in the form of an oxide; x is a number of 0 to 1; L' is a metal having an ionic radius of 0.90 Å or above; L'' is a group IVA, IVB or IIIB metal taking a tetravalent state in the form of an oxide; and y is a number of 2.5 to 3.5) and a palladium compound supported on the composite oxide. Thus, Pb(NO₃)₂ 4.14, La(NO₃)₃·6H₂O 5.41, Mn(NO₃)₂·6H₂O 7.18 and citric acid 10.5 g were reacted to give La_{0.5}Pb_{0.5}MnO₃, 5.0 g of which was reacted with Na₂PdCl₄ to give a supported catalyst with Pd content 1.0%, 2000 mg of which, phenol 50 g, tetrabutylammonium chloride 986 mg, and carbon monoxide were reacted to give di-Ph carbonate 10. 18 g.

IT 7440-05-3, Palladium, uses

(catalyst and process for preparation of aromatic carbonates)

RN 7440-05-3 HCAPLUS

CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J023-44

ICS B01J023-64; B01J023-89; C07C069-96; C07C068-00

CC 45-4 (Industrial Organic Chemicals, Leather, Fats, and Waxes)

Section cross-reference(s): 67

IT 7440-05-3, Palladium, uses 13820-53-6, Disodium palladium tetrachloride

(catalyst and process for preparation of aromatic carbonates)

IT 12047-25-5P, Bariumlead oxide (BaPbO₃) 12060-01-4P, Leadzirconium

oxide (PbZrO₃) 64296-90-8P, Lanthanum lead manganese oxide

(LaPbMn₂O₆) 108916-22-9P, Lanthanum manganese strontium

oxide (La_{0.8}Mn_{0.2}O₃) 120000-51-3P, Lanthanum lead

manganese oxide (La_{0.6}Pb_{0.4}MnO₃) 125862-10-4P, Lead manganese

neodymium oxide (Pb_{0.4}MnNd_{0.6}O₃) 125862-11-5P, Lead manganese

praseodymium oxide (Pb_{0.4}MnPr_{0.6}O₃) 137751-82-7P, Lead strontium

zirconium oxide (Pb_{0.4}Sr_{0.6}ZrO₃) 220345-57-3P, Cerium lead manganese

oxide (Ce_{0.5}Pb_{0.5}MnO₃) 220345-59-5P, Cerium lead manganese oxide

(Ce_{0.6}Pb_{0.4}MnO₃) 220345-60-8P, Barium lead zirconium oxide

(Ba_{0.6}Pb_{0.4}ZrO₃)

(catalyst and process for preparation of aromatic carbonates)

IT 1071-76-7, Zirconium tetrabutoxide 6080-56-4 10042-76-9, Strontium

nitrate 10099-74-8, Lead nitrate 10277-43-7, Lanthanum

nitrate hexahydrate 17141-63-8, Manganous nitrate hexahydrate

74418-77-2

(starting material for catalyst; catalyst and process for preparation of aromatic carbonates)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L32 ANSWER 18 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1999:64727 HCAPLUS Full-text

DOCUMENT NUMBER: 130:112338

TITLE: Membrane and method for synthesis of hydrogen peroxide

INVENTOR(S): McIntyre, James A.; Sanders, Edgar S., Jr.; Mahoney, Robert D.; Webb, Steven P.; Murchison, Craig B.; Hayes, David A.

PATENT ASSIGNEE(S): The Dow Chemical Company, USA

SOURCE: PCT Int. Appl., 37 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9902264	A1	19990121	WO 1998-US12156	19980610 ---
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
AU 9880675	A	19990208	AU 1998-80675	19980610 ---
PRIORITY APPLN. INFO.: US 1997-52299P P 19970711 ---				
WO 1998-US12156 W 19980610 ---				

ED Entered STN: 01 Feb 1999
 AB A membrane useful for the manufacture of hydrogen peroxide from hydrogen and oxygen has a hydrogen contact side and an oxygen contact side and comprises a porous hydrophobic catalyst layer facing the oxygen contact side and a gas flux control layer facing the hydrogen contact side. A gas flux control layer is positioned between the hydrogen contact side and the porous hydrophobic catalyst layer such that the flux of hydrogen may be controllably delivered to the porous hydrophobic catalyst layer. The gas flux control layer is typically a macroporous hydrophobic organic polymeric material selected from polycarbonates, polyesters, polyester carbonates, polysulfones, polyolefins, polyphenylene oxides, polyethers, polyimides, polystyrene, polyether imides, polyamide imides, or polyether sulfones. In addition, a catalyst erosion control layer is positioned on the surface of the porous hydrophobic catalyst layer. The catalyst is an oxygen-reducing catalyst selected from Pt, Pd, Rh, Re, In, Au, Ag, Cu, Co, Fe, Ni, Pb, Zn, Ga, Sn, and Bi, on a carrier. The membrane and method may be used to synthesize hydrogen peroxide directly from hydrogen and oxygen without the use of organic solvents or complex equipment for ionic and elec. transport.
 IT 7440-05-3, Palladium, uses
 (catalysts; polymeric membrane with impregnated catalyst for manufacture of hydrogen peroxide from hydrogen and oxygen)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J035-06
 ICS B01J031-06; C01B015-029
 CC 49-8 (Industrial Inorganic Chemicals)
 Section cross-reference(s): 38

IT Heteropoly acids
 Zeolites (synthetic), uses
 (catalyst support; polymeric membrane with impregnated catalyst for manufacture of hydrogen peroxide from hydrogen and oxygen)
 IT 1306-38-3, Cerium oxide, uses 1312-81-8, Lanthanum oxide
 1314-23-4, Zirconia, uses 1344-28-1, Alumina, uses 7440-44-0,
 Carbon, uses 7631-86-9, Silica, uses 7664-38-2D, Phosphoric acid,
 alkaline earth salts, uses 7664-93-9D, Sulfuric acid, alkaline earth salts,
 uses 11129-18-3, Cerium oxide 12653-89-3, Vanadium silicate
 13463-67-7, Titania, uses 42613-21-8, Titanium silicate
 (catalyst support; polymeric membrane with impregnated catalyst for manufacture of hydrogen peroxide from hydrogen and oxygen)
 IT 7439-89-6, Iron, uses 7439-92-1, Lead, uses 7440-02-0, Nickel,
 uses 7440-05-3, Palladium, uses 7440-06-4,
 Platinum, uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses 7440-22-4,
 Silver, uses 7440-31-5, Tin, uses 7440-48-4, Cobalt,
 uses 7440-50-8, Copper, uses 7440-55-3, Gallium, uses 7440-57-5,
 Gold, uses 7440-66-6, Zinc, uses 7440-69-9, Bismuth, uses 7440-74-6, Indium, uses
 (catalysts; polymeric membrane with impregnated catalyst for manufacture of hydrogen peroxide from hydrogen and oxygen)
 IT 1429-50-1, Ethylenediamine tetra(methylenephosphonic acid)
 2466-09-3, Pyrophosphoric acid 2809-21-4, 1-Hydroxyethylidene-
 1,1-diphosphonic acid 6419-19-8,
 Aminotri(methylenephosphonic acid)
 (hydrogen peroxide stabilizers; polymeric membrane with impregnated catalyst for manufacture of hydrogen peroxide from hydrogen and oxygen)
 REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L32 ANSWER 19 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1998:771315 HCPLUS Full-text
 DOCUMENT NUMBER: 130:38779
 TITLE: Preparation of vinyl acetate using supported catalysts
 INVENTOR(S): Hagemeyer, Alfred; Werner, Harald; Dingerdissen, Uwe
 PATENT ASSIGNEE(S): Hoechst A.-G., Germany
 SOURCE: Ger. Offen., 4 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 19721368	A1	19981126	DE 1997-19721368	19970522 <--
WO 9852688	A1	19981126	WO 1998-EP2916	19980518 <--
W: AU, BR, CA, CN, CZ, HU, ID, JP, KR, MX, NO, NZ, PL, RU, SG, TR, US, YU				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
AU 9879133	A	19981211	AU 1998-79133	19980518 <--
PRIORITY APPLN. INFO.:			DE 1997-19721368	A 19970522 <--

ED Entered STN: 09 Dec 1998
 AB Vinyl acetate is prepared from ethylene and acetic acid in the gas phase in the presence of O over a based on Pd, K, and either Cd, Ba, or Au supported on HiFlow carriers of surface area 10-250 m²/g , pore volume 0.2-1.2 mL/g, and average pore size 10-500 nm. The asym. ring-shaped supports, based on SiO₂, Al2O₃, ZrO₂, TiO₂, SiC, Si₃N₄, B₄C₃, C, AlN, or their mixts., promote high selectivity and conversion.
 IT 7440-32-6, Titanium, uses
 (HiFlow-supported catalyst containing palladium and potassium and; in production of vinyl acetate from ethylene and acetic acid)
 RN 7440-32-6 HCPLUS
 CN Titanium (CA INDEX NAME)

Ti

IT 7440-05-3, Palladium, uses 7440-09-7,
 Potassium, uses
 (HiFlow-supported catalyst; in production of vinyl acetate from ethylene and acetic acid)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

RN 7440-09-7 HCPLUS
 CN Potassium (CA INDEX NAME)

K

IC ICM C07C069-15
 ICS C07C067-055
 ICA B01J023-60; B01J023-58; B01J027-224; B01J027-24; B01J027-22
 ICI B01J023-66, B01J103-68
 CC 35-2 (Chemistry of Synthetic High Polymers)
 ST catalyst support prodn vinyl acetate; acetoxylation catalyst support; HiFlow catalyst support prodn vinyl acetate; vinylation oxidative catalyst support
 IT Catalyst supports
 (Hiflow; in production of vinyl acetate from ethylene and acetic acid)
 IT Vinylation catalysts
 (oxidative, supported; in production of vinyl acetate from ethylene and acetic acid)
 IT Catalyst supports
 Catalyst supports
 Oxidation catalysts

- Oxidation catalysts
 (oxidation catalyst supports, HiFlow; in production of vinyl acetate from ethylene and acetic acid)
- IT Acetoxylation catalysts
 (supported; in production of vinyl acetate from ethylene and acetic acid)
- IT Oxidation catalysts
 (vinylation, supported; in production of vinyl acetate from ethylene and acetic acid)
- IT 7440-32-6, Titanium, uses 7440-39-3, Barium, uses 7440-43-9, Cadmium, uses 7440-50-8, Copper, uses 7440-57-5, Gold, uses 7440-67-7, Zirconium, uses (HiFlow-supported catalyst containing palladium and potassium and; in production of vinyl acetate from ethylene and acetic acid)
- IT 7440-05-3, Palladium, uses 7440-09-7, Potassium, uses (HiFlow-supported catalyst; in production of vinyl acetate from ethylene and acetic acid)
- IT 409-21-2, Silicon carbide, uses 1314-23-4, Zirconium dioxide, uses 1344-28-1, Aluminum oxide, uses 7440-44-0, Carbon, uses 7631-86-9, Silicon dioxide, uses 10043-11-5, Boron nitride (BN), uses 12033-89-5, Silicon nitride (Si₃N₄), uses 12115-61-6, Boron carbide (B₄C₃) 13463-67-7, Titanium dioxide, uses 24304-00-5, Aluminum nitride (AlN) 119791-84-3, HiFlow (catalyst support in production of vinyl acetate from ethylene and acetic acid)
- IT 7782-44-7, Oxygen, reactions (in production of vinyl acetate from ethylene and acetic acid using HiFlow-supported catalysts)
- IT 108-05-4P, Vinyl acetate, preparation (production from ethylene and acetic acid using HiFlow-supported oxidative catalysts)
- IT 64-19-7, Acetic acid, reactions 74-85-1, Ethylene, reactions (production of vinyl acetate from ethylene and acetic acid using HiFlow-supported oxidative catalysts)

L32 ANSWER 20 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1998:668108 HCPLUS Full-text
 DOCUMENT NUMBER: 129:246872
 TITLE: Process and catalysts for the preparation of tertiary amines from nitriles and secondary amines
 INVENTOR(S): Fuchs, Eberhard; Breitscheidel, Boris; Becker, Rainer; Neuhauser, Horst
 PATENT ASSIGNEE(S): BASF A.-G., Germany
 SOURCE: Eur. Pat. Appl., 7 pp.
 CODEN: EPXWDW
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 869113	A2	19981007	EP 1998-105636	19980327 ---
EP 869113	A3	19990210		
EP 869113	B1	20030604		

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
 PT, IE, SI, LT, LV, FI, RO

10/549,774

DE 19713383	A1	19981008	DE 1997-19713383	19970401
			<--	
TW 408096	B	20001011	TW 1998-87104568	19980326
			<--	
US 5894074	A	19990413	US 1998-50918	19980331
			<--	
JP 10338664	A	19981222	JP 1998-88668	19980401
			<--	
PRIORITY APPLN. INFO.:		DE 1997-19713383		A 19970401
		<--		

OTHER SOURCE(S): MARPAT 129:246872

ED Entered STN: 22 Oct 1998

AB Tertiary amines X(CH₂NR1R2)_n [R1, R2 = (un)substituted alkyl, cycloalkyl, alkylcycloalkyl, (un)substituted aryl, etc.; X = (un)substituted alkyl, cycloalkyl, (un)substituted aryl, HO, hydroxyalkyl, (un)substituted NH₂, etc.] are prepared in high yield and selectivity and with increased catalyst lifetime by the reaction of nitriles (R1R2NC(H)CH₂)_{n-m}X(CN)_m (m = 1 to n) with secondary amines HNR1R2 in the presence of hydrogen at 50-250°/5-350 bar using a supported catalyst containing 0.1-10% Pd and 0.01-10% of Group IB and/or VIII metals and/or Ce and/or La. Thus, adiponitrile, dimethylamine, and a catalyst containing 0.9% Pd and 0.1% Pt on ZrO₂ were reacted with hydrogen at 120°/200 bar, producing tetramethylhexamethylenediamine in 90% yield.

IT 7440-05-3, Palladium, uses
(process and catalysts for the preparation of tertiary amines from nitriles and secondary amines)

RN 7440-05-3 HCPLUS

CN Palladium (CA INDEX NAME)

Pd

IC ICM C07C209-48

ICS C07C211-12; C07C213-02; C07C215-08

CC 45-4 (Industrial Organic Chemicals, Leather, Fats, and Waxes)

Section cross-reference(s): 23, 48, 67

ST tetramethylhexamethylenediamine manuf; tertiary amine manuf;
adiponitrile dimethylamine reaction manuf
tetramethylhexamethylenediamine; nitrile reaction tertiary amine manuf;
catalyst palladium platinum manuf
tetramethylhexamethylenediamine

IT Catalysts
(Pd and Pt and/or Group VIII metals and/or Group IB
metals and/or La and/or Ce for the preparation of tertiary
amines from nitriles and secondary amines)

IT 409-21-2, Silicon carbide, uses 1314-23-4, Zirconia, uses
1344-28-1, Alumina, uses 7440-05-3, Palladium,
uses 7440-06-4, Platinum, uses 7631-86-9, Silica, uses
13463-67-7, Titania, uses
(process and catalysts for the preparation of tertiary amines from
nitriles and secondary amines)

IT 111-18-2P, 1,6-Bis(Dimethylamino)hexane
3179-63-3P, 3-(Dimethylamino)propanol
(process and catalysts for the preparation of tertiary amines from
nitriles and secondary amines)

DOCUMENT NUMBER: 128:323138
 TITLE: Catalysts for amination of alkylene oxides,
 alcohols, aldehydes and ketones
 INVENTOR(S): Wulff-Doring, Joachim; Melder, Johann-Peter;
 Schulz, Gerhard; Voit, Guido; Gutschoven, Frank;
 Harder, Wolfgang
 PATENT ASSIGNEE(S): Basf A.-G., Germany
 SOURCE: Eur. Pat. Appl., 9 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 839574	A2	19980506	EP 1997-118631 <--	19971027
EP 839574	A3	19980812		
EP 839574	B1	20010530		
R: AT, BE, CH, PT, IE, SI,	DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, LT, LV, FI, RO			
DE 19644107	A1	19980507	DE 1996-19644107 <--	19961031
US 5916838	A	19990629	US 1997-955264 <--	19971021
ES 2158423	T3	20010901	ES 1997-118631 <--	19971027
JP 10174874	A	19980630	JP 1997-296775 <--	19971029
CN 1181284	A	19980513	CN 1997-121251 <--	19971030
CN 1124179	B	20031015		
US 6046359	A	20000404	US 1999-262262 <--	19990304
PRIORITY APPLN. INFO.:			DE 1996-19644107 <--	A 19961031
			US 1997-955264 <--	A3 19971021

OTHER SOURCE(S): MARPAT 128:323138

ED Entered STN: 22 May 1998

AB Ru-, Ni- and/or Co-containing catalysts are used for the title purpose, especially for amination of H2NCH2CH2OH with NH3 to manufacture H2NCH2CH2NH2 with improved selectivity. The catalysts contain decreased amounts of Ni or Co and have improved stability in continuous operation. A typical catalyst (preparation given) contained Ru 1, Ni 0.79, Co 0.79 and Cu 1.6% on Al2O3 support.

IT 7440-05-3, Palladium, uses 7440-09-7,

Potassium, uses

(promoter; catalysts for amination of alkylene oxides, alcohols, aldehydes and ketones)

RN 7440-05-3 HCPLUS

CN Palladium (CA INDEX NAME)

RN 7440-09-7 HCAPLUS
 CN Potassium (CA INDEX NAME)

K

IC ICM B01J023-89
 CC 45-4 (Industrial Organic Chemicals, Leather, Fats, and Waxes)
 Section cross-reference(s): 67
 IT Aluminosilicates, uses
 (supports; catalysts for amination of alkylene
 oxides, alcs., aldehydes and ketones)
 IT 7439-88-5, Iridium, uses 7439-92-1, Lead, uses 7439-93-2, Lithium,
 uses 7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses
 7440-04-2, Osmium, uses 7440-05-3, Palladium, uses
 7440-06-4, Platinum, uses 7440-09-7, Potassium,
 uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses
 7440-17-7, Rubidium, uses 7440-22-4, Silver, uses 7440-23-5,
 Sodium, uses 7440-28-0, Thallium, uses 7440-31-5, Tin, uses
 7440-33-7, Tungsten, uses 7440-36-0, Antimony, uses 7440-38-2,
 Arsenic, uses 7440-43-9, Cadmium, uses 7440-46-2, Cesium, uses
 7440-47-3, Chromium, uses 7440-57-5, Gold, uses 7440-66-6, Zinc,
 uses 7440-69-9, Bismuth, uses 7723-14-0, Phosphorus, uses
 13494-80-9, Tellurium, uses
 (promoter; catalysts for amination of alkylene oxides, alcs.,
 aldehydes and ketones)
 IT 1309-48-4, Magnesium oxide, uses 1314-23-4, Zirconium dioxide, uses
 1344-28-1, Aluminum oxide, uses 7631-86-9, Silica, uses
 13463-67-7, Titanium dioxide, uses
 (support; catalysts for amination of alkylene
 oxides, alcs., aldehydes and ketones)

L32 ANSWER 22 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1997:289851 HCAPLUS Full-text
 DOCUMENT NUMBER: 126:266226
 TITLE: Catalyst powder, combustion catalyst and combustor
 INVENTOR(S): Ohashi, Toshuki; Furuya, Tomiaki; Sasaki,
 Kunihiro; Hanakada, Yoshio
 PATENT ASSIGNEE(S): Tokyo Shibaura Electric Co, Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 09052045	A	19970225	JP 1995-208124 <--	19950815
PRIORITY APPLN. INFO.:			JP 1995-208124 <--	19950815

ED Entered STN: 07 May 1997
 AB Catalyst powder, especially for gas turbine combustor, comprises an oxide
 support having $>2.0 + 10^{-2}/\Omega \text{cm}^2 \text{O}$ ion conductivity at $>800^\circ$ and at least a part
 of the support surface coated with an elec. conductive material, which the
 support is loaded with catalytically active components containing PdO.

IT 7440-05-3, Palladium, uses
 (catalyst powder and combustion catalyst for gas turbine combustor)
 RN 7440-05-3 HCAPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM B01J023-44
 ICS B01J023-10; B01J023-63; B01J023-58; F23R003-40
 CC 51-12 (Fossil Fuels, Derivatives, and Related Products)
 Section cross-reference(s): 67
 IT 1314-08-5, Palladium oxide 7439-95-4, Magnesium, uses
 7440-02-0, Nickel, uses 7440-05-3, Palladium, uses
 7440-06-4, Platinum, uses 7440-16-6, Rhodium, uses 12510-42-8,
 Erionite
 (catalyst powder and combustion catalyst for gas turbine combustor)
 IT 1306-38-3, Ceria, uses 1309-48-4, Magnesia, uses 1312-81-8,
 Lanthanum oxide 1313-99-1, Nickel oxide, uses 1314-61-0,
 Tantalum oxide 1344-28-1, Alumina, uses 7631-86-9, Silica, uses
 13463-67-7, Titania, uses 114168-16-0, Yttrium zirconium oxide
 (Y_{0.16}Zr_{0.92}O₂.08)
 (support containing; catalyst powder and combustion catalyst
 for gas turbine combustor)
 IT 64417-98-7, Yttrium zirconium oxide
 (support; catalyst powder and combustion
 catalyst for gas turbine combustor)
 IT 122219-12-9P, Scandium yttrium zirconium oxide
 (Sc_{0.02}Y_{0.14}Zr_{0.92}O₂.08) 122219-13-0P, Scandium yttrium zirconium
 oxide (Sc_{0.08}Y_{0.08}Zr_{0.92}O₂.08) 144495-46-5P, Scandium zirconium
 oxide (Sc_{0.16}Zr_{0.92}O₂.08) 150691-97-7P, Scandium yttrium zirconium
 oxide (Sc_{0.04}Y_{0.12}Zr_{0.92}O₂.08)
 (support; catalyst powder and combustion
 catalyst for gas turbine combustor)

L32 ANSWER 23 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1997:128203 HCAPLUS Full-text
 DOCUMENT NUMBER: 126:211742
 TITLE: Impact of carbon dioxide on the activity and
 selectivity of supported
 palladium catalysts for carbon monoxide
 hydrogenation
 AUTHOR(S): Filonenko, G. V.
 CORPORATE SOURCE: L. V. Pisarzhevskii Inst. Phys. Chem., Natl. Acad.
 Sci. Ukraine, Kiev, Ukraine
 SOURCE: Adsorption Science & Technology (1996),
 14(5), 279-285
 CODEN: ASTEEZ; ISSN: 0263-6174
 PUBLISHER: Multi-Science Publishing
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 26 Feb 1997
 AB The introduction of 1.5 volume% carbon dioxide into the reaction mixture
 (CO/H₂ = 1:1) is shown to accelerate the rate of formation of methanol and the
 selectivity towards oxygen-containing products over palladium catalysts
 supported on oxides of various chemical natures. The maximum degree of impact
 of CO₂ was observed over palladium supported on magnesia and zirconia.

IT 7440-05-3, Palladium, uses
 (supported; impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)
 RN 7440-05-3 HCAPLUS
 CN Palladium (CA INDEX NAME)

Pd

CC 22-7 (Physical Organic Chemistry)
 ST hydrogenation carbon monoxide palladium supported catalyst; carbon dioxide impact methanol prepn
 IT Fischer-Tropsch catalysts
 (impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)
 IT 74-82-8P, Methane, preparation
 (byproduct; impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)
 IT 1309-48-4, Magnesium oxide, uses 1312-81-8, Lanthanum oxide 1314-23-4, Zirconium oxide, uses 1344-28-1, Aluminum oxide, uses
 (impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)
 IT 124-38-9, Carbon dioxide, reactions 630-08-0, Carbon monoxide, reactions
 (impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)
 IT 67-56-1P, Methanol, preparation
 (impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)
 IT 7440-05-3, Palladium, uses
 (supported; impact of carbon dioxide on the activity and selectivity of supported palladium catalysts for carbon monoxide hydrogenation)

L32 ANSWER 24 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1996:593743 HCAPLUS Full-text
 DOCUMENT NUMBER: 125:225057
 TITLE: Noble metal Raney catalysts and preparation of hydrogenated compounds using such catalysts
 INVENTOR(S): Morikawa, Kouhei; Hirayama, Shuji; Ishimura, Yoshimasa; Suyama, Yuseki; Nozawa, Tsutomu; Monzen, Hiroyuki; Miura, Motoo; Marumo, Kuniomi; Naito, Taketoshi
 PATENT ASSIGNEE(S): Showa Denko K. K., Japan
 SOURCE: Eur. Pat. Appl., 23 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 724908	A1	19960807	EP 1996-100127 <--	19960105
EP 724908	B1	20020424		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
JP 08187432	A	19960723	JP 1995-782 <--	19950106
JP 3560377	B2	20040902		
EP 934920	A2	19990811	EP 1999-108002 <--	19960105
EP 934920	A3	19991222		
EP 934920	B1	20020724		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, PT, SE				
AT 216632	T	20020515	AT 1996-100127 <--	19960105
AT 220950	T	20020815	AT 1999-108002 <--	19960105
US 6018048	A	20000125	US 1997-989157 <--	19971211
US 6215030	B1	20010410	US 1999-451146 <--	19991130
US 6245920	B1	20010612	US 1999-451145 <--	19991130
PRIORITY APPLN. INFO.:			JP 1995-782 <--	A 19950106
			US 1996-582668 <--	B3 19960104
			EP 1996-100127 <--	A3 19960105
			US 1997-989157 <--	A3 19971211

ED Entered STN: 05 Oct 1996

AB Noble metal (particularly Ru) Raney catalysts are used which can hydrogenate (1) aromaticity-exhibiting ring portions of organic compds., (2) carboxylic acids and their ester portions (carbonyl ester groups), (3) ring portions and carboxylic acid or their ester groups in compds. having such ring portions and carboxylic acid or their ester portions, and (4) ring portions and nitrile groups of aromatic nitrile compds. to give the corresponding hydrogenated compds. The methods allow preparation of hydrogenated compds. having hydrogenated aromatic ring portions, hydrogenated carbonyl ester groups, hydrogenated aromatic ring and carbonyl ester groups, or hydrogenated aromatic rings and nitrile groups under milder hydrogen pressure and temperature conditions than conventional catalysts. Thus, a Raney Ru/Sn catalyst was prepared and used to hydrogenate adipic acid (100% conversion) to 78% 1,6-hexanediol and 16% 6-hydroxyhexanoic acid. With an alumina-supported catalyst the resp. figures were 35, 1, and 30%.

IT 7439-91-0, Lanthanum, uses 7440-05-3,

Palladium, uses

(Raney hydrogenation catalysts with improved yield and conversion)

RN 7439-91-0 HCAPLUS

CN Lanthanum (CA INDEX NAME)

RN 7440-05-3 HCAPLUS
 CN Palladium (CA INDEX NAME)

Pd

- IC ICM B01J025-00
 CC 45-4 (Industrial Organic Chemicals, Leather, Fats, and Waxes)
 Section cross-reference(s): 67
 IT 7439-89-6, Iron, uses 7439-91-0, Lanthanum, uses
 7439-92-1, Lead, uses 7439-96-5, Manganese, uses 7439-98-7,
 Molybdenum, uses 7440-02-0, Nickel, uses 7440-03-1, Niobium, uses
 7440-05-3, Palladium, uses 7440-15-5, Rhenium,
 uses 7440-18-8, Ruthenium, uses 7440-20-2, Scandium, uses
 7440-22-4, Silver, uses 7440-31-5, Tin, uses 7440-32-6, Titanium,
 uses 7440-33-7, Tungsten, uses 7440-36-0, Antimony, uses
 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses 7440-57-5, Gold,
 uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses 7440-74-6,
 Indium, uses
 (Raney hydrogenation catalysts with improved yield and conversion)
 IT 1076-97-7P, 1,4-Cyclohexanedicarboxylic acid
 (Raney hydrogenation catalysts with improved yield and conversion)
 IT 80-04-6P, 4,4'-Isopropylidenedicyclohexanol 96-48-0P,
γ-Butyrolactone 98-89-5P, Cyclohexanecarboxylic acid
 100-49-2P, Cyclohexanemethanol 105-08-8P, 1,4'-
 -Cyclohexanedimethanol 108-91-8P, Cyclohexylamine, preparation
 108-93-0P, Cyclohexanol, preparation 109-99-9P, preparation
 110-63-4P, 1,4-Butanediol, preparation
 110-89-4P, Piperidine, preparation 629-11-8P, 1,6'-
 -Hexanediol 825-51-4P, 2-Hydroxydecalin 1191-25-9P,
 6-Hydroxycaproic acid 1193-81-3P, 1-Cyclohexylethanol 1761-71-3P
 2549-93-1P, 1,4-Bis(aminomethyl)cyclohexane
 2579-20-6P, 1,3-Bis(aminomethyl)cyclohexane
 4547-43-7P, Methyl 6-hydroxycaproate 5382-16-1P, 4-Hydroxypiperidine
 6283-14-3P, 2-Bicyclohexylamine 7144-05-0P, 4-
 (Aminomethyl)piperidine 13380-84-2P
 (product; Raney hydrogenation catalysts with improved yield and
 conversion)
 IT 62-53-3, Aniline, reactions 65-85-0, Benzoic acid, reactions
 80-05-7, reactions 90-41-5, 2-Aminobiphenyl 98-85-1,
α-Phenylethyl alcohol 100-21-0, 1,4'-
 -Benzene dicarboxylic acid, reactions 100-48-1, 4-Cyanopyridine
 101-77-9 108-31-6, Maleic anhydride, reactions 108-95-2, Phenol,
 reactions 110-86-1, Pyridine, reactions 124-04-9, Hexanedioic
 acid, reactions 135-19-3, 2-Naphthol, reactions 539-48-0,
 1,4-Bis(aminomethyl)benzene 589-29-7, 1,
 4-Benzene dimethanol 623-26-7, Terephthalodinitrile
 626-17-5, 1,3-Benzenedicarbonitrile 626-64-2,
 4-Hydroxypyridine 627-93-0
 (substrate; Raney hydrogenation catalysts with improved yield and
 conversion)

DOCUMENT NUMBER: 125:152190
 TITLE: Manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts
 INVENTOR(S): Boennemann, Helmut; Brijoux, Werner; Brinkmann, Rainer; Richter, Joachim
 PATENT ASSIGNEE(S): Studiengesellschaft Kohle Mbh, Germany
 SOURCE: Ger. Offen., b22 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4443705	A1	19960613	DE 1994-4443705	19941208 <--
CA 2207027	C	19960613	CA 1995-2207027	19951207 <--
CA 2207027	A1	19960613		
WO 9617685	A1	19960613	WO 1995-EP4803	19951207 <--
W: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KG, KP, KR, KZ, LK, LR, LS, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TT, UA, UG, US, UZ, VN RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
AU 9643030	A	19960626	AU 1996-43030	19951207 <--
EP 796147	A1	19970924	EP 1995-941684	19951207 <--
EP 796147	B1	19990721		
R: CH, DE, FR, GB, LI, NL				
US 6090746	A	20000718	US 1997-849482	19970829 <--
PRIORITY APPLN. INFO.:			DE 1994-4443705	A 19941208 <--
			WO 1995-EP4803	W 19951207 <--

OTHER SOURCE(S): MARPAT 125:152190

ED Entered STN: 29 Aug 1996

AB The colloids of Group VIII and Ib metals with particle size 1-10 nm were manufactured in stabilized, H₂O-soluble form by reduction of metal salts in THF, alcs. or H₂O, using hydrides, H, or alkali formates as reduction agents in the presence of strongly hydrophilic surfactants, e.g., betaines, fatty alc. polyglycol ethers, fatty esters of ethoxylated carbohydrates, etc. The catalysts are obtained by impregnation of (in)organic supports, e.g., activated C or La₂O₃, with aqueous solns. of the colloids. For example, a suspension of SB12 in THF was treated with LiHBET₃ at 20° under Ar, the resulting clear surfactant solution was added over 4 h to a suspension of RuCl₃ in THF at 40°, the mixture was stirred for 16 h at 20° to give a grayish black precipitate and a clear liquor which was siphoned off, the precipitate was washed with Me₂CO/THF and dried to give colloidal Ru with particle size 1-2 nm. This was dissolved in H₂O, the black solution was added to an aqueous suspension of La₂O₃ and stirred, and the solid product was separated and dried in vacuo to give a title catalyst, stable in the air. Hydrogenation of C₆H₆ with H(g) in aqueous NaOH in the presence of the above catalyst gave 8.5% conversion of C₆H₆ with 78.5% selectivity for cyclohexene.

IT 7440-05-3, Palladium, uses
 (colloidal; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

RN 7440-05-3 HCPLUS

CN Palladium (CA INDEX NAME)

Pd

IC ICM B22F009-24
 ICS B01J037-18; B01J032-00; C07B041-00; C07C013-20; C07C005-11;
 C07C005-08

ICA C07C215-08; C07C219-08; C07C233-46; C07C069-22

ICI B01J037-18, B01J023-70, B01J023-38; B01J021-18, B01J105-12

CC 67-1 (Catalysis, Reaction Kinetics, and Inorganic Reaction Mechanisms)
 Section cross-reference(s): 45, 46

ST metal salt redn colloid stabilization surfactant; surfactant stabilizer colloidal metal catalyst; ruthenium chloride redn lithium triethylborohydride colloid; methyldodecylammoniopropanesulfonate stabilizer ruthenium colloid manuf; hydrogenation catalyst ruthenium colloid manuf; lanthanum oxide support ruthenium colloid catalyst; benzene hydrogenation ruthenium catalyst manuf; cyclohexene manuf ruthenium hydrogenation catalyst

IT Colloids
 (Group VIII and Ib metals; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

IT Ceramic materials and wares
 (catalyst supports; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

IT Carbonates, uses

Oxides, uses

Rare earth oxides

Zeolites, uses
 (catalyst supports; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

IT Group IB elements

Group VIII elements
 (colloidal; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

IT Carbohydrates and Sugars, uses
 (ethoxylated, esters with fatty acids, surfactants; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

IT Oxidation catalysts
 (for primary OH groups in carbohydrates, partial; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

IT Triple bond
 (manufacture of supported metal catalysts for cis-hydrogenation of acetylenic bond)

IT Carbohydrates and Sugars, reactions
 (manufacture of supported metal catalysts for partial oxidation

- of primary hydroxy groups in carbohydrates)
- IT Hydrides
 - (reduction agents for metal salts; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT Betaines
 - (surfactants; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT Glycosides
 - (alkyl polyglycosides, surfactants; platinum colloids stabilized with hydrophilic surfactants for manufacture of supported catalysts)
- IT Surfactants
 - (anionic, manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT Surfactants
 - (cationic, manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT Alcohols, uses
 - (fatty, alkoxylated, surfactants; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT Surfactants
 - (nonionic, manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT Hydrogenation catalysts
 - (selective, manufacture of supported metal catalysts for cis-hydrogenation of acetylenic bond)
- IT Catalysts and Catalysis
 - (supports, manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 9002-92-0, Polyethylene glycol lauryl ether
 - (Brij 35, surfactant; metal colloids stabilized with hydrophilic surfactants for manufacture of supported catalysts)
- IT 3001-63-6, Quab 426
 - (Quab 426, surfactant; platinum colloids stabilized with hydrophilic surfactants for manufacture of supported catalysts)
- IT 14933-08-5, SB12 (quaternary compound)
 - (SB12, surfactant; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 7440-44-0, Carbon, uses
 - (activated, catalyst support; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 1312-81-8, Lanthanum trioxide
 - (catalyst support; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 50-99-7, Glucose, reactions
 - (catalytic oxidation to gluconic acid; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 1002-28-4, 3-Hexyn-1-ol

- (catalytic selective hydrogenation to 3-hexen-1-ol; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 7440-48-4, Cobalt, uses
 (colloidal, platinum and; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 7439-89-6, Iron, uses
 (colloidal, ruthenium and; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 7439-88-5, Iridium, uses 7440-02-0, Nickel, uses 7440-05-3,
 Palladium, uses 7440-06-4, Platinum, uses 7440-16-6,
 Rhodium, uses 7440-18-8, Ruthenium, uses 7440-50-8, Copper, uses 7440-57-5, Gold, uses
 (colloidal; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 71-43-2, Benzene, reactions 110-83-8, Cyclohexene, reactions
 (manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 527-07-1P, Sodium gluconate
 (manufactured by catalytic oxidation of glucose; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 544-12-7P, 3-Hexen-1-ol
 (manufactured by selective hydrogenation of 3-hexyn-1-ol; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 1333-74-0, Hydrogen, uses
 (reduction agent for metal salts; manufacture of surfactant-stabilized mono-
 and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 22560-16-3, Lithium triethylborohydride
 (reduction agent for metals salts; reduction of metal salts for manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 64-18-6D, Formic acid, alkali metal salts
 (reduction agents for metals salts; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 7447-39-4, Cupric chloride, reactions 7646-79-9, Cobalt dichloride, reactions 7647-10-1, Palladium dichloride 7705-08-0,
 Ferric chloride, reactions 7789-43-7, Cobalt dibromide 10025-65-7,
 Platinum dichloride 10025-83-9, Iridium trichloride 10049-07-7,
 Rhodium trichloride 10049-08-8, Ruthenium trichloride 10294-27-6,
 Gold monobromide 13444-94-5, Palladium dibromide
 13462-88-9, Nickel bromide 14284-93-6, Ruthenium acetylacetonate
 16941-12-1, Hexachloroplatinic acid 30553-94-7, Diruthenium tetraacetate
 (reduction of metal salts for manufacture of surfactant-stabilized mono-
 and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 683-10-3
 (surfactant, Rewo; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported

- heterogeneous catalysts)
- IT 9005-64-5, Polyethylene glycol sorbitan monolaurate
 (surfactant; Tween 20; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 5835-28-9D, Glycine, N-(2-hydroxyethyl)-, coco amidoethyl, sodium salts 25322-68-3D, Polyethylene glycol, ethers with sugars, esters with fatty acids 83138-08-3, Dehyton K 102961-94-4, Dehyton G 143350-33-8, Ampholyt JB 130 144113-31-5, APG 600 179800-36-3, Esterquat AU 35
 (surfactant; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)
- IT 76079-40-8D, coco amidopropyl derivs.
 (surfactants; manufacture of surfactant-stabilized mono- and bimetallic colloids as water-soluble precursors for supported heterogeneous catalysts)

L32 ANSWER 26 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1995:812773 HCPLUS Full-text
 DOCUMENT NUMBER: 123:199674
 TITLE: Polymerization and depolymerization of cyclic ethers using heterogeneous catalysts
 INVENTOR(S): Drysdale, Neville Everton; Herron, Norman
 PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA
 SOURCE: PCT Int. Appl., 35 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9502625	A2	19950126	WO 1994-US7590 <--	19940714
WO 9502625	A3	19950526		
W: JP, KR RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
EP 708794	A1	19960501	EP 1994-923920 <--	19940714
EP 708794	B1	19990922		
R: DE, ES, GB, NL				
EP 750000	A2	19961227	EP 1996-202116 <--	19940714
EP 750000	A3	19970219		
EP 750000	B1	20000503		
R: DE, ES, GB, NL				
JP 09500161	T	19970107	JP 1994-504610 <--	19940714
EP 903365	A2	19990324	EP 1998-204328 <--	19940714
EP 903365	A3	19990421		
EP 903365	B1	20030129		
R: DE, ES, GB, NL				
ES 2139088	T3	20000201	ES 1994-923920 <--	19940714
ES 2147343	T3	20000901	ES 1996-202116 <--	19940714
US 5541346	A	19960730	US 1995-424918	19950419

US 5635585	A	19970603	US 1995-424675 <-- US 1996-762813 <--	19950419
US 5770678	A	19980623	US 1993-93119 <-- US 1992-964313 <-- US 1993-21368 <-- US 1993-93243 <-- US 1993-141160 <-- US 1994-198024 <-- EP 1994-923920 <-- WO 1994-US7590 <-- US 1994-283108 <-- US 1995-424675 <--	19961209 A 19930716 B2 19921021 B2 19930223 B2 19930716 B2 19931021 B2 19940217 A3 19940714 W 19940714 A3 19940729 A1 19950419
PRIORITY APPLN. INFO.:				

ED Entered STN: 27 Sep 1995
 AB Polymerization of specified cyclic ethers (oxiranes, oxetanes, tetrahydrofurans, oxepanes, 1,3-dioxanes, or 1,3,5-trioxanes, especially THF) is carried out using zeolites containing certain metal cations or selected metal perfluoroalkylsulfonates, e.g. (CF₃SO₃)₃Y, which are attached to solid supports (silica, alumina, zeolites) as catalysts, in the presence of selected carboxylic anhydrides (especially Ac₂O), acyl halides, and carboxylic acids having pKa <6 in H₂O as accelerators. The polyethers produced are useful as monomers, flocculants, lubricants, etc. Polytetrahydrofurans are depolymd. at elevated temps. to tetrahydrofurans using selected metal perfluoroalkylsulfonates which are attached to solid supports as catalysts. For example, 98.9% THF was recovered by depolymn. of polytetrahydrofuran (Terathane 1000) using silica-supported (CF₃SO₃)₃Yb catalyst.
 IT 7439-91-0, Lanthanum, uses
 (zeolite HX-supported, catalyst; polymerization and depolymn. of cyclic ethers using heterogeneous catalysts)
 RN 7439-91-0 HCPLUS
 CN Lanthanum (CA INDEX NAME)

La

IT 7440-05-3, Palladium, uses
 (zeolite-supported; polymerization and depolymn. of cyclic ethers using heterogeneous catalysts)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM C08G065-10
 ICS C08G065-04; C08G065-20
 CC 35-3 (Chemistry of Synthetic High Polymers)
 IT Rare earth metals, uses
 (zeolite-supported; polymerization and depolymn. of cyclic
 ethers using heterogeneous catalysts)
 IT Zeolites, uses
 (NH₄Y, yttrium- or lanthanum-loaded, catalysts; polymerization
 and depolymn. of cyclic ethers using heterogeneous catalysts)
 IT 108-24-7, Acetic anhydride
 .accelerator of THF polymerization with supported yttrium
 triflate catalyst; polymerization and depolymn. of cyclic ethers using
 heterogeneous catalysts)
 IT 27532-13-4 52093-30-8, Yttrium triflate
 (alumina- or silica-supported; polymerization and depolymn. of
 cyclic ethers using heterogeneous catalysts)
 IT 54761-04-5, Ytterbium triflate
 (silica- and alumina-supported, catalyst;
 polymerization and depolymn. of cyclic ethers using heterogeneous
 catalysts)
 IT 7439-91-0, Lanthanum, uses 8006-73-3, Didymium
 (zeolite HY-supported, catalyst; polymerization and
 depolymn. of cyclic ethers using heterogeneous catalysts)
 IT 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6,
 Iron, uses 7439-92-1, Lead, uses 7439-97-6, Mercury, uses
 7439-98-7, Molybdenum, uses 7440-04-2, Osmium, uses
 7440-05-3, Palladium, uses 7440-06-4, Platinum,
 uses 7440-15-5, Rhenium, uses 7440-16-6, Rhodium, uses
 7440-18-8, Ruthenium, uses 7440-20-2, Scandium, uses 7440-22-4,
 Silver, uses 7440-24-6, Strontium, uses 7440-25-7, Tantalum, uses
 7440-30-4, Thulium, uses 7440-31-5, Tin, uses 7440-32-6, Titanium,
 uses 7440-36-0, Antimony, uses 7440-38-2, Arsenic, uses
 7440-39-3, Barium, uses 7440-43-9, Cadmium, uses 7440-47-3,
 Chromium, uses 7440-55-3, Gallium, uses 7440-56-4, Germanium, uses
 7440-57-5, Gold, uses 7440-58-6, Hafnium, uses 7440-65-5, Yttrium,
 uses 7440-66-6, Zinc, uses 7440-67-7, Zirconium, uses 7440-69-9,
 Bismuth, uses 7440-74-6, Indium, uses
 (zeolite-supported; polymerization and depolymn. of cyclic
 ethers using heterogeneous catalysts)

L32 ANSWER 27 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1995:788293 HCAPLUS [Full-text](#)
 DOCUMENT NUMBER: 123:178069
 TITLE: FTIR spectroscopy of nitric oxide adsorption on
 Pd/Al₂O₃: evidence of metal-support
 interaction
 AUTHOR(S): Hoost, T. E.; Otto, K.; Laframboise, K. A.
 CORPORATE SOURCE: Research Lab., Ford Motor Company, Dearborn, MI,
 48121, USA
 SOURCE: Journal of Catalysis (1995), 155(2),
 303-11
 CODEN: JCTLA5; ISSN: 0021-9517
 PUBLISHER: Academic
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 13 Sep 1995
 AB Automotive 3-way catalysts containing Pd as the only precious metal have
 certain advantages over current formulations consisting of various mixts. of

Pt, Pd, and Rh. NO adsorption on 2 weight percent Pd/Al₂O₃ was studied using IR spectroscopy. Bands for NO on Pd were assigned to linear (1753–1750 cm⁻¹), 2-fold bridged (1615–1599 cm⁻¹), and 3-fold bridged (1580–1572 cm⁻¹) adsorption modes. For Al₂O₃-supported Pd, linear NO was favored on the reduced catalyst, whereas 2- and 3-fold bridged NO were favored on the oxidized catalyst. Upon heating, a decrease in the linear form was accompanied by increases in the 2- and 3-fold bridged forms up to the highest temperature measured (300°). This result may indicate conversion of the linear to bridged adsorption modes upon heating. NO adsorption on pure Al₂O₃ showed a band near 1807 cm⁻¹ attributable to weak, linear adsorption. This band increased drastically upon oxidation of the Pd/Al₂O₃ catalyst, indicating enhanced NO adsorption on Al₂O₃ due to the presence of Pd. Conventional spillover from Pd to Al₂O₃ was ruled out. The increased intensity is explained by adsorption of NO on Al₂O₃ sites involved in a metal-support interaction brought about by catalyst oxidation. NO adsorption on La-promoted Pd/Al₂O₃ was less than on the un-promoted catalyst. Possible explanations are an increase in NO dissociation and coverage of Pd by the modifier.

IT 7440-05-3, Palladium, uses
 (pure and lanthana-doped alumina-supported; temperature and lanthana doping effect on metal-support interaction in nitric oxide adsorption on alumina-supported palladium catalyst as determined by Fourier transform IR spectroscopy)

RN 7440-05-3 HCAPLUS
 CN Palladium (CA INDEX NAME)

Pd

CC 59-3 (Air Pollution and Industrial Hygiene)
 Section cross-reference(s): 67

ST nitric oxide adsorption palladium alumina catalyst; lanthana promoted palladium alumina catalyst; exhaust gas nitric oxide catalytic adsorption

IT Adsorption
 Exhaust gases
 (temperature and lanthana doping effect on metal-support interaction in nitric oxide adsorption on alumina-supported palladium catalyst as determined by Fourier transform IR spectroscopy)

IT 1312-81-8, Lanthana
 (doping agent; temperature and lanthana doping effect on metal-support interaction in nitric oxide adsorption on alumina-supported palladium catalyst as determined by Fourier transform IR spectroscopy)

IT 7440-05-3, Palladium, uses
 (pure and lanthana-doped alumina-supported; temperature and lanthana doping effect on metal-support interaction in nitric oxide adsorption on alumina-supported palladium catalyst as determined by Fourier transform IR spectroscopy)

IT 1344-28-1, Alumina, uses
 (pure and lanthana-doped; temperature and lanthana doping effect on metal-support interaction in nitric oxide adsorption on alumina-supported palladium catalyst as determined by Fourier transform IR spectroscopy)

IT 10102-43-9, Nitric oxide, processes
 (temperature and lanthana doping effect on metal-support interaction in nitric oxide adsorption on alumina-supported palladium catalyst as determined by Fourier transform IR spectroscopy)

L32 ANSWER 28 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1994:704098 HCAPLUS Full-text
 DOCUMENT NUMBER: 121:304098
 TITLE: Catalysts for the manufacture of synthesis gas
 INVENTOR(S): Seshan, Kulathu-Iyer; Ross, Julian Richard H.;
 Mercera, Patrick Dennis L.; Xue, Erzeng
 PATENT ASSIGNEE(S): Mannesmann A.-G., Germany; K.T.I. Group
 SOURCE: PCT Int. Appl., 34 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9424042	A1	19941027	WO 1994-DE513	19940420 ->-
W: AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KG, KP, KR, KZ, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, UA, US, UZ, VN				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
CA 2161132	A1	19941027	CA 1994-2161132	19940420 ->-
CA 2161132	C	20031007		
AU 9466759	A	19941108	AU 1994-66759	19940420 ->-
EP 695279	A1	19960207	EP 1994-914323	19940420 ->-
EP 695279	B1	19970604		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE BR 9406357	A	19960227	BR 1994-6357	19940420 ->-
HU 72430	A2	19960429	HU 1995-3026	19940420 ->-
CN 1121701	A	19960501	CN 1994-191860	19940420 ->-
CN 1042100	B	19990217		
JP 09500054	T	19970107	JP 1994-522634	19940420 ->-
AT 153987	T	19970615	AT 1994-914323	19940420 ->-
ES 2105701	T3	19971016	ES 1994-914323	19940420 ->-
PL 175047	B1	19981030	PL 1994-311201	19940420 ->-
CZ 286018	B6	19991215	CZ 1995-2761	19940420 ->-
NO 9503943	A	19951004	NO 1995-3943	19951004 ->-
US 5989457	A	19991123	US 1996-537791	19960124 ->-
PRIORITY APPLN. INFO.:			DE 1993-4313673	A 19930422 ->-
			WO 1994-DE513	W 19940420 ->-

ED Entered STN: 24 Dec 1994

AB The catalyst for the manufacture of synthesis gas (CO and H₂) by reacting CO₂ with CH₄ and/or other light hydrocarbons consist of an oxidic support material containing ≥80, preferably ≥90 weight% calcined ZrO₂ stabilized with 0.5-10 mol% of ≥1 oxides selected from Y, La, Al, Ca, Ce and Si, and coated with 0.1-7.0 weight% of ≥1 of Group VIII metals applied by phys. adsorption of their complex compds. The catalysts consist of Ni, Pt, Pt and Ni, or Pt and Pd.
 IT 7440-05-3, Palladium, uses
 (catalysts, palladium-containing; catalysts for synthesis gas
 manufacture by reaction of carbon dioxide with methane and/or other
 light hydrocarbons)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IC ICM C01B003-40
 ICS B01J021-06; B01J023-56; B01J023-76
 CC 49-1 (Industrial Inorganic Chemicals)
 ST methane carbon dioxide synthesis gas; hydrogen carbon monoxide
 synthesis gas; catalyst synthesis gas manuf; nickel platinum
 palladium catalyst
 IT Catalysts and Catalysis
 (supports, sintered zirconia; catalysts for synthesis gas
 manufacture by reaction of carbon dioxide with methane and/or other
 light hydrocarbons)
 IT 12013-47-7, Calcium zirconium oxide 51331-24-9, Lanthanum
 zirconium oxide 60800-19-3, Aluminum zirconium oxide 64417-98-7,
 Yttrium zirconium oxide 65453-23-8, Cerium zirconium oxide
 110771-71-6, Silicon zirconium oxide ((Si,Zr)O₂)
 (catalyst supports; catalysts for synthesis gas
 manufacture by reaction of carbon dioxide with methane and/or other
 light hydrocarbons)
 IT 7440-06-4, Platinum, uses
 (catalysts, nickel- or palladium-containing; catalysts for
 synthesis gas manufacture by reaction of carbon dioxide with methane
 and/or other light hydrocarbons)
 IT 7440-05-3, Palladium, uses
 (catalysts, palladium-containing; catalysts for synthesis gas
 manufacture by reaction of carbon dioxide with methane and/or other
 light hydrocarbons)
 IT 1314-23-4, Zirconia, uses
 (monoclinic, sintered, catalyst supports;
 catalysts for synthesis gas manufacture by reaction of carbon
 dioxide with methane and/or other light hydrocarbons)
 IT 1305-78-8, Calcia, uses 1312-81-8, Lanthanum oxide
 1314-36-9, Yttria, uses 1344-28-1, Alumina, uses 7631-86-9,
 Silica, uses 11129-18-3, Cerium oxide
 (zirconia catalyst supports stabilized with; catalysts
 for synthesis gas manufacture by reaction of carbon dioxide with methane
 and/or other light hydrocarbons)

L32 ANSWER 29 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1987:183292 HCPLUS Full-text
 DOCUMENT NUMBER: 106:183292
 TITLE: Sulfur tolerance of methanol synthesis catalysts:

AUTHOR(S): Radovic, Ljubisa R.; Vannice, M. Albert
 CORPORATE SOURCE: Dep. Chem. Eng., Pennsylvania State Univ.,
 University Park, PA, 16802, USA
 SOURCE: Applied Catalysis (1987), 29(1), 1-20
 CODEN: APCADI; ISSN: 0166-9834
 DOCUMENT TYPE: Journal
 LANGUAGE: English

ED Entered STN: 29 May 1987

AB A series of supported Pd and com. Cu-based catalysts was tested for MeOH synthesis activity and activity maintenance in the presence of 2 ppm H₂S in a differential fixed-bed reactor operated at 523 K and 1.5 MPa. S breakthrough curves were obtained by monitoring the H₂S concentration in both the feed and exit streams using a gas chromatograph with a flame photometric detector. A comparison of the resistance to S poisoning of the various catalysts is given, using a qual. examination of activity maintenance plots as well as a math. model for catalyst deactivation. The rates of deactivation of the Cu-based catalysts in the absence or presence of H₂S were very similar, with 70-90% of the initial activity being lost during 300 h on stream. No H₂S breakthrough was observed with these catalysts, whereas the Pd catalysts exhibited breakthroughs after 10-30 h on stream. The Pd catalysts retained a much higher residual activity in the presence of H₂S. The Szepe-Levenspiel (1971) approach, with a modification recently proposed by G. A. Fuentes (1985) for poison-tolerant catalysts, gave meaningful quantification of S resistance of Pd-based catalysts.

IT 7440-05-3, Palladium, uses and miscellaneous
 (catalysts from oxide support and, for hydrogenation of
 carbon monoxide, deactivation of, by hydrogen sulfide)

RN 7440-05-3 HCPLUS

CN Palladium (CA INDEX NAME)

Pd

CC 67-1 (Catalysis, Reaction Kinetics, and Inorganic Reaction Mechanisms)
 Section cross-reference(s): 51

ST palladium support catalyst deactivation
 sulfur; methanol synthesis catalyst deactivation sulfur; copper
 catalyst deactivation sulfur

IT Rare earth oxides
 (catalysts from palladium and, for hydrogenation of
 carbon monoxide, deactivation of, by hydrogen sulfide)

IT Hydrogenation catalysts
 (supported palladium and copper-based, for
 carbon monoxide, deactivation of, by hydrogen sulfide)

IT 7440-05-3, Palladium, uses and miscellaneous
 (catalysts from oxide support and, for hydrogenation of
 carbon monoxide, deactivation of, by hydrogen sulfide)

IT 1312-81-8, Lanthanum sesquioxide 1313-97-9, Neodymium
 sesquioxide 1314-37-0 7440-44-0, Carbon, uses and miscellaneous
 12061-16-4 12064-62-9
 (catalysts from palladium and, for hydrogen of carbon
 monoxide, deactivation of, by hydrogen sulfide)

IT 7783-06-4, Hydrogen sulfide, uses and miscellaneous
 (deactivation by, of supported palladium and
 copper-based catalysts)

IT 630-08-0, Carbon monoxide, reactions

(hydrogenation of, on supported palladium and copper-based catalysts, effect of hydrogen sulfide)

L32 ANSWER 30 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1985:51645 HCAPLUS Full-text
 DOCUMENT NUMBER: 102:51645
 TITLE: Catalyst for selective hydrogenation of multiply unsaturated organic compounds
 INVENTOR(S): Stadler, Karl Heinz; Kochloefl, Karel
 PATENT ASSIGNEE(S): Sued-Chemie A.-G., Fed. Rep. Ger.
 SOURCE: Ger. Offen., 24 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 3320388	A1	19841206	DE 1983-3320388 <--	19830606
EP 127723	A2	19841212	EP 1984-100626 <--	19840123
EP 127723	A3	19850619		
EP 127723	B1	19871007		
R: DE, FR, GB, IT				
US 4613714	A	19860923	US 1985-785472 <--	19851008
PRIORITY APPLN. INFO.:			DE 1983-3320388 <--	A 19830606
			US 1984-614638 <--	A3 19840528

OTHER SOURCE(S): MARPAT 102:51645

ED Entered STN: 09 Feb 1985

AB A supported catalyst for the selective hydrogenation of multiply unsatd. organic compds., (especially of olefin-diolefin mixts. where a fraction of the diolefin has an isolated double bond) consists of a ≥ 1 Group VIII element on a support from an n-type semiconductor oxide from ≥ 1 elements selected from Group IVB, VB, VIB, Ce, or Th or a support of MIMIO_x (MI = an element as defined above; MII = an alkaline earth or a different MI element; x = a number representing the saturation bonding of MI and MII) with a H₂ chemisorption capacity defined as the atomic ratio between the chemisorbed H₂ and the surface MI and MII atoms of 0.6-1.0. Thus, TiO₂ (a mixture of 70% anatase and 30% rutile) was impregnated with PdCl₂, the impregnated support was reduced in H₂ for 3 h at 675-725 K, the catalyst was ground, the powder was mixed with Al₂O₃(OH) filler in a 1:i ratio, Al and Ti stearate 3-4 weight% was added, and the powder mixture was pressed in catalyst plates. This catalyst was used to rapidly hydrogenate a mixture of 1-hexene and 1,5-hexadiene at 348 K under 5 bar.

IT 7440-05-3, uses and miscellaneous
 (catalysts, for hydrogenation of olefin-diolefins mixts.)

RN 7440-05-3 HCAPLUS

CN Palladium (CA INDEX NAME)

IC B01J023-54; C07C005-05; C07C011-02
 CC 67-1 (Catalysis, Reaction Kinetics, and Inorganic Reaction Mechanisms)
 Section cross-reference(s): 45
 IT Hydrogenation catalysts
 (Group VIII metals on semiconductor supports, for
 olefin-diolefin mixts.)
 IT Group VIII elements
 (catalysts, on oxide supports, for hydrogenation of
 olefin-diolefin mixts.)
 IT Platinum-group metals
 (catalysts, on semiconductor oxide supports for
 hydrogenation of olefin-diolefin mixts.)
 IT 24623-77-6
 (catalyst support from, for selective hydrogenation of
 olefin-diolefin mixts.)
 IT 7664-38-2, uses and miscellaneous 7681-49-4, uses and miscellaneous
 (catalysts from Group VIII metals on support impregnated
 with)
 IT 7440-05-3, uses and miscellaneous
 (catalysts, for hydrogenation of olefin-diolefins mixts.)
 IT 7647-10-1
 (in impregnation of titania supports for hydrogenation
 catalyst preparation)

L32 ANSWER 31 OF 33 HCPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1971:513211 HCPLUS Full-text

DOCUMENT NUMBER: 75:113211

ORIGINAL REFERENCE NO.: 75:17867a,17870a

TITLE: Supported palladium catalysts

INVENTOR(S): Morikawa, Kiyoshi; Echigoya, Etsuro; Shirasaki,
 Takayasu; Furuoya, Itsuo

SOURCE: Brit., 14 pp.
 CODEN: BRXXAA

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
GB 1242680	----	19710811	GB 1968-39085 <--	19680815
DE 1792291			DE	
JP 46041283		19710000	JP	<--
JP 46041285		19710000	JP	<--
US 3629145		19711221	US	19680815
PRIORITY APPLN. INFO.:				JP <--
				19670816
				JP <--
				19670908
				<--

ED Entered STN: 12 May 1984

AB A hydrogenation catalyst is prepared by treating an amorphous solid acid carrier containing acid sites with a basic aqueous solution of a Pd-NH₃ complex or a Pd lower alkylamine complex. The treated carrier is then dried, treated with an aqueous solution of an oxyacid and then subjected to thermal treatment. The carrier may be SiO₂, Al₂O₃, SiO₂-Al₂O₃, activated clay, SiO₂

Al₂O₃-ZrO₂, Al₂O₃-B₂O₃, or SiO₂-MgO. Thus, 1000 parts by volume aqueous NH₃ solution were added to 4 parts by weight PdCl₂ dissolved in 100 parts by volume H₂O, and H₂O added to make the whole up to 10,000 parts by volume of a solution containing 0.00451 mequiv/ml Pd-NH₃ complex. Then 50 parts by weight powdered SiO₂-Al₂O₃ containing 13% by weight Al₂O₃, sp. surface area 400 m²/g, acidity 1.0 mequiv/g, was mixed with 335 parts by volume of the above solution. The solid was filtered, heated at 300-500° for 2 hr, mixed with an aqueous solution containing 50 mequiv Th nitrate, filtered, heated again to yield 50 parts by weight catalyst containing 0.03 mequiv/g Pd ions, and 1.00 mequiv/g Th ions attached to the acid sites of the carrier. The catalyst showed an activity of 44% in the dehydrogenation of cyclohexane to benzene. With a catalyst prepared in the same manner except Th was not used 27% of the cyclohexane was dehydrogenated to benzene.

IT 7440-05-3, uses and miscellaneous
 (catalysts, for hydrogenation of benzene, reversible)
 RN 7440-05-3 HCPLUS
 CN Palladium (CA INDEX NAME)

Pd

IT 7439-91-0, uses and miscellaneous
 (palladium catalysts containing, for dehydrogenation of
 cyclohexane)
 RN 7439-91-0 HCPLUS
 CN Lanthanum (CA INDEX NAME)

La

IC B01J
 CC 67 (Catalysis and Reaction Kinetics)
 ST palladium supported catalyst;
 hydrogenation supported catalyst
 IT Kinetics of hydrogenation
 (of benzene, with stable palladium catalysts)
 IT Hydrogenation catalysts
 (palladium-promoter-supports, for benzene)
 IT Dehydrogenation catalysts
 (palladium-promoter-supports, for cyclohexane)
 IT 1303-86-2, uses and miscellaneous 1309-48-4, uses and miscellaneous
 1314-23-4, uses and miscellaneous
 (catalyst supports, for palladium hydrogenation
 catalysts)
 IT 7440-05-3, uses and miscellaneous
 (catalysts, for hydrogenation of benzene, reversible)
 IT 7439-91-0, uses and miscellaneous
 (palladium catalysts containing, for dehydrogenation of
 cyclohexane)
 IT 7440-29-1, uses and miscellaneous
 (palladium catalysts containing, for hydrogenation)
 IT 7429-90-5, uses and miscellaneous 7440-45-1, uses and miscellaneous
 (palladium catalysts containing, for hydrogenation of
 benzene)

L32 ANSWER 32 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1951:25891 HCAPLUS Full-text
 DOCUMENT NUMBER: 45:25891
 ORIGINAL REFERENCE NO.: 45:4500c-d
 TITLE: Conversion of mole percent into weight percent
 AUTHOR(S): Wittig, Franz E.
 CORPORATE SOURCE: Max Planck-Inst., Stuttgart, Germany
 SOURCE: Zeitschrift fuer Metallkunde (1950), 41,
 395-8
 CODEN: ZEMTAE; ISSN: 0044-3093
 DOCUMENT TYPE: Journal
 LANGUAGE: Unavailable
 ED Entered STN: 22 Apr 2001
 AB Equations, tables, and nomographs are given.
 CC 2 (General and Physical Chemistry)
 IT Weight percentages
 (mole-percentage conversion to)

L32 ANSWER 33 OF 33 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1944:41342 HCAPLUS Full-text
 DOCUMENT NUMBER: 38:41342
 ORIGINAL REFERENCE NO.: 38:6179h
 TITLE: Nomogram to convert weight and mole percentages in
 binary systems
 AUTHOR(S): Benenati, Robert F.; Harrison, John G., Jr.
 SOURCE: Journal of Industrial and Engineering Chemistry
 (Washington, D. C.) (1944), 36, 934-5
 CODEN: JIECAD; ISSN: 0095-9014
 DOCUMENT TYPE: Journal
 LANGUAGE: Unavailable
 ED Entered STN: 16 Dec 2001
 AB Unavailable
 CC 2 (General and Physical Chemistry)
 IT Weight percentages
 (nomograph for conversion of mole percentages and, in binary
 systems)

=> d his nofile

(FILE 'HOME' ENTERED AT 10:14:58 ON 06 DEC 2007)

FILE 'HCAPLUS' ENTERED AT 10:15:09 ON 06 DEC 2007
L1 1 SEA ABB=ON PLU=ON US20060229478/PN
 SEL RN

FILE 'REGISTRY' ENTERED AT 10:15:22 ON 06 DEC 2007
L2 21 SEA ABB=ON PLU=ON (100587-94-8/B1 OR 1333-74-0/B1 OR
 14024-64-7/B1 OR 144665-26-9/B1 OR 5593-70-4/B1 OR
 617-86-7/B1 OR 68413-68-3/B1 OR 694-53-1/B1 OR 74-85-1/B1
 OR 74-86-2/B1 OR 7439-91-0/B1 OR 7440-03-1/B1 OR 7440-05-3/
 B1 OR 7440-09-7/B1 OR 7440-21-3/B1 OR 7440-32-6/B1 OR
 7631-86-9/B1 OR 7732-18-5/B1 OR 7757-79-1/B1 OR 7803-62-5/B
 I OR 998-29-8/B1)
L3 1 SEA ABB=ON PLU=ON 7439-91-0/RN
L4 1 SEA ABB=ON PLU=ON 7440-05-3/RN
L5 1 SEA ABB=ON PLU=ON 7440-32-6/RN
 E POTASSIUM/CN
L6 1 SEA ABB=ON PLU=ON POTASSIUM/CN

FILE 'HCAPLUS' ENTERED AT 10:17:55 ON 06 DEC 2007
L7 205877 SEA ABB=ON PLU=ON L3 OR LANTHANUM OR LA
L8 269904 SEA ABB=ON PLU=ON L4 OR PALLADIUM OR PD
L9 666224 SEA ABB=ON PLU=ON L5 OR TI OR TITANIUM OR TITAN
L10 1846175 SEA ABB=ON PLU=ON L6 OR K OR POTASSIUM
L11 8129 SEA ABB=ON PLU=ON L8 AND L7
L12 3563 SEA ABB=ON PLU=ON L8 AND L9 AND L10
L13 10249 SEA ABB=ON PLU=ON L11 OR L12
L14 1 SEA ABB=ON PLU=ON L13 AND L1
L15 3048 SEA ABB=ON PLU=ON L13 AND CAT/RL
L16 5 SEA ABB=ON PLU=ON L15 AND (WEIGHT OR WT) (A) (PERCENT? OR
 %)
L17 53031 SEA ABB=ON PLU=ON L8(L)CAT/RL
L18 2686 SEA ABB=ON PLU=ON L17 AND L13
L19 1427 SEA ABB=ON PLU=ON L18 AND SUPPORT?
 E WEIGHT PERCENT/CT
 E WEIGHT /CT
L20 2 SEA ABB=ON PLU=ON "WEIGHT PERCENTAGES"+PFT,NT/CT
L21 20538 SEA ABB=ON PLU=ON WEIGHT+FFT,NT/CT
L22 3 SEA ABB=ON PLU=ON L18 AND (WEIGHT OR WT#) (3A) (PERCENT?
 OR %)
L23 306 SEA ABB=ON PLU=ON L18 AND (WEIGHT OR WT#)
L24 3 SEA ABB=ON PLU=ON L18 AND 0.05-2.0
L25 613 SEA ABB=ON PLU=ON L18 AND (0.05 OR 0.06 OR 0.07 OR 0.08
 OR 0.09 OR 1.0 OR 1.01 OR 1.02 OR 1.03 OR 1.04 OR 1.05 OR
 1.06 OR 1.07 OR 1.08 OR 1.09 OR 1.1 OR 1.2 OR 1.3 OR 1.4
 OR 1.5 OR 1.6 OR 1.7 OR 1.8 OR 1.9 OR 2.0)
L26 333 SEA ABB=ON PLU=ON L25 AND SUPPORT?
L27 6 SEA ABB=ON PLU=ON L26 AND DEV/RL
L28 147 SEA ABB=ON PLU=ON L26 AND RACT/RL
L29 0 SEA ABB=ON PLU=ON L28 AND PERCENT?
L30 29 SEA ABB=ON PLU=ON L28 AND SUPPORT? CATALYST?
L31 44 SEA ABB=ON PLU=ON L16 OR L20 OR L22 OR L24 OR L27 OR L29
 OR L30
L32 33 SEA ABB=ON PLU=ON L31 AND (1840-2003)/PRY,AY,PY
L33 1 SEA ABB=ON PLU=ON L32 AND