Graph Theory: Lecture No. 38

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in Given a graph H, let \mathcal{P}_H be the property of containing a copy of H as subgraph. H is called balanced if $\epsilon(H') \leq \epsilon(H)$ for all subgraphs H' of H.

If H is a balanced graph with k vertices, and $\ell \geq 1$ edges, then $t(n) = n^{-k/\ell}$ is a threshold function for \mathcal{P}_H .

- Let X(G) denote the number of subgraphs of G isomorphic to H.
- Given $n \in N$, let \mathcal{H} denote the set of all graphs isomorphic to \mathcal{H} whose vertices lie in $\{0, 1, \dots, n-1\}$.
- Given $H' \in \mathcal{H}$, we write $H' \subseteq G$ to denote that H' itself is a subgraph of G.
- The number of isomorphic copies of H on a fixed k set is at most k!.
- $|\mathcal{H}| \leq \binom{n}{k} k! \leq n^k$.
- Given p = p(n), let $\gamma = p/t$, where $t = n^{-k/\ell}$.

- For each fixed $H' \in \mathcal{H}$, $P[H' \subseteq G] = p^{\ell}$ since $|E(H')| = \ell$.
- $E(X) = |\mathcal{H}|p^{\ell} \le n^k (\gamma n^{-k/\ell})^{\ell} = \gamma^{\ell} \to 0$, if $\gamma \to 0$ as $n \to 0$.

If $\mu>0$, for n large, and $\frac{\sigma^2}{\mu^2}\to 0$, as $n\to\infty$, then X(G)>0Since any graph G with X(G)=0 satisfies $|X(G)-\mu|=\mu$. So, $P[X=0]\leq P[|X-\mu|\geq\mu]\leq \frac{\sigma^2}{\mu^2}\to 0$, as $n\to 0$.

We have
$$\frac{\binom{n}{k}}{n^k} \ge \frac{1}{k!} \left(1 - \frac{k-1}{k}\right)^k$$
.

$$\binom{n}{k} n^{-k} = \frac{1}{k!} \left(\frac{n}{n} \cdots \frac{n-k+1}{n} \right)$$

$$\geq \frac{1}{k!} \left(\frac{n-k+1}{n} \right)^k$$

$$\geq \frac{1}{k!} \left(1 - \frac{k-1}{k} \right)^k$$

We need to show that $\frac{\sigma^2}{\mu^2}=\frac{E(X^2)-\mu^2}{\mu^2}\to 0$, as $\gamma\to 0$, i.e. as $n\to\infty$.

Graph Theory: Lecture No. 38

$$E(X^2) = \sum_{(H',H'') \in \mathcal{H}^2} P[H' \cup H'' \subseteq G]$$

$$P[H' \cup H'' \subseteq G] = p^{2\ell - ||H' \cap H''||}$$

Since H is balanced $||H' \cap H''|| \le i\ell/k$, if $|H' \cap H''| = i$. So, $P[H' \cup H'' \subseteq G] \le p^{2\ell - i\ell/k}$

For $0 \le i \le k$, let $\mathcal{H}_i^2 = \{(H', H'') \in \mathcal{H}^2 : |H' \cap H''| = i\}$ and $A_i = \sum_i P[H' \cup H'' \subseteq G]$, be the corresponding sum.

For i=0, H' and H'' are disjoint, and so the events $H'\subseteq G$ and $H''\subseteq G$ are independent. Hence,

$$A_0 = \sum_0 P[H' \cup H'' \subseteq G]$$

= $\sum_0 P[H' \subseteq G]P[H'' \subseteq G]$
 $\leq \sum_{(H',H'')\in\mathcal{H}^2} P[H' \subseteq G].P[H'' \subseteq G] \leq \mu^2$

For i > 1:

$$A_{i} = \sum_{i} P[H' \cup H'' \subset G]$$

$$\leq \sum_{i} {k \choose i} {n-k \choose k-i} hp^{2l} p^{-il/k}$$

$$= |\mathcal{H}| {k \choose i} {n-k \choose k-i} hp^{2l} (\gamma n^{-k/l})^{-il/k}$$

$$\leq |\mathcal{H}| p^{l} c_{1} n^{k-i} hp^{l} \gamma^{-il/k} n^{i}$$

$$= \mu c_{1} n^{k} hp^{\ell} \gamma^{-i\ell/k}$$

$$\leq \mu c_{2} {n \choose k} hp^{\ell} \gamma^{-i\ell/k}$$

 $\leq \mu^2 c_2 \gamma^{-i\ell/k} \leq \mu^2 c_2 \gamma^{-\ell/k}$

- An event E is mutually independent of the events E_1, E_2, \ldots, E_n , if for any subset $I \subseteq [1, n]$, $P(E| \cap_{i \in I} E_i) = P(E)$
- A dependency graph for a set of events $E_1, E_2, ..., E_n$ is a graph G = (V, E) such that $V = \{1, 2, ..., n\}$ and for i = 1, ..., n, event E_i is mutually independent of the events $\{E_j : (i, j) \notin E\}$.

Lovasz Local Lemma: Let $E_1, E_2, ..., E_n$ be a set of events and assume that the following hold:

- \blacksquare for all i, $P(E_i) \leq p$
- **2** The degree of the dependency graph given by E_1, E_2, \dots, E_n is bounded above by d
- \blacksquare 4 $dp \le 1$

Then $P\left(\bigcap_{i=1}^n \overline{E_i}\right) > 0$.