- # Rayidi Abhiram
- # 21BCE9261
- # VITAP MORNING SLOT
- # ASSIGNMENT-3
- # Data Preprocessing on TITANIC dataset.
- # Data Preprocessing.
- # Import the Libraries.
- # Import the dataset
- # Checking for Null Values.
- # Data Visualization.
- # Outlier Detection
- # Splitting Dependent and Independent variables
- # Encoding
- # Feature Scaling.
- # Splitting Data into Train and Test.

Import the Libraries

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Import the Dataset

df = pd.read_csv("/content/drive/MyDrive/Colab Datasets/Titanic-Dataset.csv")

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.2833	C85	

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

	COTO (COC	ar cora	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)

dtypes: float64(2), int64(
memory usage: 83.7+ KB

df.describe()

0.096067

0.159651

0.216225

1.000000

-0.189119

0.414838

1.000000

0.216225

1.000000

-0.308247

-0.189119

0.096067

-0.308247

1.000000

0.414838

0.159651

df.corr().Survived.sort_values(ascending = False)

0.036847

-0.057527

-0.001652

0.012658

-0.077221 -0.369226

0.257307 -0.549500

0.083081

0.018443

-0.035322

0.081629

```
<ipython-input-9-936bc0a2ea37>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver
    df.corr().Survived.sort_values(ascending = False)
```

 Survived
 1.000000

 Fare
 0.257307

 Parch
 0.081629

 PassengerId
 -0.005007

 SibSp
 -0.035322

 Age
 -0.077221

Age

SibSp

Parch

Fare

Saving... X

Handling Missing/Null Values

```
df.isnull().any()
                    False
     PassengerId
     Survived
                     False
     Pclass
                     False
     Name
                     False
                     False
     Sex
     Age
                     True
     SibSp
                     False
     Parch
                     False
     Ticket
                     False
                     False
     Fare
     Cabin
                     True
     Embarked
                     True
     dtype: bool
sum(df.Cabin.isnull())
     687
sum(df.Age.isnull())
     177
df["Age"].fillna(df["Age"].mean(),inplace=True)
sum(df.Embarked.isnull())
     2
df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)
df.describe()
```

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000

Data Visualization

plt.scatter(df["Fare"],df["Survived"])

<matplotlib.collections.PathCollection at 0x7816fcba6aa0>

sns.heatmap(df.corr(),annot=True)

<ipython-input-18-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
sns.heatmap(df.corr(),annot=True)

sns.pairplot(df)

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)

<ipython-input-20-8ae461271d98>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)
<Axes: xlabel='Sex', ylabel='Survived'>

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)

<ipython-input-21-d5b0276940a6>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)
<Axes: xlabel='Embarked', ylabel='Survived'>

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

<ipython-input-22-a1496fefeaf8>:1: FutureWarning:

Outlier Detection

sns.boxplot(df)

sns.boxplot(df.Age)


```
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Age'] >= Q1 - threshold) & (df['Age'] <= Q3 + threshold)]

sns.boxplot(df.Age)</pre>
```


sns.boxplot(df.SibSp)

df = df[df.SibSp < p99]

sns.boxplot(df.SibSp)

sns.boxplot(df.Parch)

sns.boxplot(df["Fare"])


```
Q1 = df['Fare'].quantile(0.25)
Q3 = df['Fare'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Fare'] >= Q1 - threshold) & (df['Fare'] <= Q3 + threshold)]

sns.boxplot(df.Fare)</pre>
```


Splitting Dependent and Independent Variables

```
x = df.drop(columns=["Survived","PassengerId","Name","Ticket","Cabin"],axis=1) # Independent variables should be in df or 2d array
x.head()
```

	ı	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
	0	3	male	22.000000	1	0	7.2500	S	ılı
	2	3	female	26 000000	0	0	7.9250	S	
Savii	ng			>	1	0	53.1000	S	
	4	3	male	35.000000	0	0	8.0500	S	
	5	3	male	29.699118	0	0	8.4583	Q	

```
y = pd.Series(df["Survived"])
```

y.head()

0 0 2 1 3 1

4 0 5 0

Name: Survived, dtype: int64

Encoding

 ${\it from \ sklearn.preprocessing \ import \ Label Encoder}$

le = LabelEncoder()

 $x["Sex"] = le.fit_transform(x["Sex"])$

x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
0	3	1	22.000000	1	0	7.2500	S	11.
2	3	0	26.000000	0	0	7.9250	S	
3	1	0	35.000000	1	0	53.1000	S	
4	3	1	35.000000	0	0	8.0500	S	
5	3	1	29.699118	0	0	8.4583	Q	

print(le.classes_)

['female' 'male']

```
mapping=dict(zip(le.classes_,range(len(le.classes_))))
mapping
     {'female': 0, 'male': 1}
le1 = LabelEncoder()
x["Embarked"] = le1.fit_transform(x["Embarked"])
x.head()
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
0	3	1	22.000000	1	0	7.2500	2	ıl.
2	3	0	26.000000	0	0	7.9250	2	
3	1	0	35.000000	1	0	53.1000	2	
4	3	1	35.000000	0	0	8.0500	2	
5	3	1	29.699118	0	0	8.4583	1	

```
print(le1.classes_)
```

['C' 'Q' 'S']

mapping1=dict(zip(le1.classes_,range(len(le1.classes_))))

Feature Scaling

```
from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()
```

x_Scaled = pd.DataFrame(ms.fit_transform(x),columns = x.columns)

x_Scaled.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	1.0	1.0	0.372549	0.25	0.0	0.122054	1.0	ıl.
1	1.0	0.0	0.450980	0.00	0.0	0.133418	1.0	
2	0.0	0.0	0.627451	0.25	0.0	0.893939	1.0	
3	1.0	1.0	0.627451	0.00	0.0	0.135522	1.0	
4	1.0	1.0	0.523512	0.00	0.0	0.142396	0.5	

Splitting Training and Testing Data

```
from sklearn.model_selection import train_test_split
x\_train,x\_test,y\_train,y\_test = train\_test\_split(x\_Scaled,y,test\_size = 0.2,random\_state = 0)
print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)
     (562, 7) (141, 7) (562,) (141,)
''' THE END '''
     ' THE END '
''' Thank You '''
# Rayidi Abhiram
```

- # 21hca0261

