		*	
		I	
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	$\frac{1}{3}$		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur			
Mathematik für Physiker 3	\sum		
(Analysis 2)			
,	I		
Prof. Dr. M. Wolf		Erstkorre	ktur
6. August 2013, 15:00 – 16:30 Uhr			
	II	Zweitkor	rektur
Hörsaal: Platz:			
Hinweise:			
Überprüfen Sie die Vollständigkeit der Angabe: 6 Aufgaben			
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ein selbsterstelltes Din A4 Blatt			
Erreichbare Gesamtpunktzahl: 66 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			

 $Musterl\ddot{o}sung \hspace{0.5cm} ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Metrische Räume [10 Punkte]

Sei M ein metrischer Raum. Eine Funktion $f:M\to\mathbb{R}$, heißt lokal beschränkt, wenn es zu jedem $x\in M$ eine ϵ -Umgebung von x gibt, auf der f beschränkt ist.

- (a) Sei M kompakt. Zeigen Sie: Ist $f: M \to \mathbb{R}$ lokal beschränkt, dann ist f beschränkt. HINWEIS: Zeigen Sie, dass f nicht lokal beschränkt ist, wenn f unbeschränkt ist.
- (b) Geben Sie ein Beispiel für eine lokal beschränkte Funktion an, die nicht beschränkt ist.

LÖSUNG:

(a) Wir zeigen: Aus f nicht beschränkt folgt f nicht lokal beschränkt.	
Sei f unbeschränkt. Dann gibt es eine Folge $(x_n) \subseteq M$, so dass $ f(x_n) \to \infty$.	[1]
Für $n \in \mathbb{N}$ wähle man z.B. ein $x_n \in M$, s.d. $ f(x_n) > n$.	[1]
Da M kompakt ist, gibt es eine in M konvergente Teilfolge (x_{n_k}) .	[2]
Sei $x := \lim_{k \to \infty} x_{n_k} \in M$.	[1]

Sei $\epsilon > 0$. Behauptung: $f|_{B_{\epsilon}(x)}$ ist unbeschränkt.

Wegen
$$x_{n_k} \to x$$
 gibt es ein $K \in \mathbb{N}$, so dass für alle $k \geq K$ gilt, dass $d(x_{n_k}, x) < \epsilon$. [1] Wegen $|f(x_{n_k})| \to \infty$ folgt, dass $f|_{B_{\epsilon}(x)}$ unbeschränkt ist. [1] Also ist f nicht lokal beschränkt.

(b)
$$\mathbb{R} \ni x \mapsto x \in \mathbb{R}$$
.

2. Differenzierbarkeit

[10 Punkte]

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{e^{xy}-1}{y} & \text{für } y \neq 0, \\ x & \text{für } y = 0. \end{cases}$$

(a) Wie lauten die partiellen Ableitungen auf der x-Achse?

$$\partial_x f(x,0) = 1$$
 [1] $\partial_y f(x,0) = \frac{1}{2}x^2$ [2]

(b) Zeigen Sie, dass $\partial_x f: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion ist.

Für
$$y \neq 0$$
 ist $\partial_x f(x,y) = e^{xy}$. [1]
Wegen (a), $\partial_x f(x,0) = 1$ [1]
folgt, dass $\partial_x f(x,y) = e^{xy}$ für alle $(x,y) \in \mathbb{R}^2$. [1]
Als Kombination stetiger Funktionen ist $\partial_x f$ also stetig

Sie dürfen im folgenden (ohne Beweis) benutzen, dass auch $\partial_y f: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion ist.

(c) Ist
$$f$$
 differenzierbar? [1]

□ Nein

(d) Wie lautet die Richtungsableitung in Richtung $v = (v_1, v_2) \in \mathbb{R}^2$ im Punkt (1, 0)?

$$\partial_v f(1,0) = \operatorname{grad} f(1,0) \cdot {\binom{v_1}{v_2}} = {\binom{1}{\frac{1}{2}}} \cdot {\binom{v_1}{v_2}} = v_1 + \frac{1}{2}v_2$$
 [2]

LÖSUNG:

(a)
$$\partial_x f(x,0) = \frac{d}{dx}x = 1$$
. $\partial_y f(x,0) = \lim_{h \to 0} \frac{f(x,h) - f(x,0)}{h} = \lim_{h \to 0} \frac{\frac{e^{xh} - 1}{h} - x}{h} = \lim_{h \to 0} \frac{e^{xh} - 1 - xh}{h^2} \stackrel{\text{l'H}}{=} \lim_{h \to 0} \frac{e^{xh} - 1 - xh}{h^2} \stackrel{\text{l'H}}{=} \frac{x^2}{2}$.

- (b) s.o.
- (c) f ist stetig partiell differenzierbar, also auch (total) differenzierbar.
- (d) s.o., da f differenzierbar.

3. Taylorentwicklung

[10 Punkte]

Die Funktion $f: \mathbb{R}^{2} \to \mathbb{R}$ sei dreimal stetig differenzierbar und der Punkt $(x^{*}, y^{*}) = (1, 1)$ sei ein stationärer Punkt von f mit $f(x^{*}, y^{*}) = 2$. Weiter sei

$$\partial_x^2 f(x^*, y^*) = 0, \ \partial_x \partial_y f(x^*, y^*) = 1, \ \partial_y^2 f(x^*, y^*) = 3.$$

- (a) Der Punkt (x^*, y^*) ist ein [2]
 - \square lokales Minimum \square lokales Maximum \square Sattelpunkt

von f.

(b) Wie lautet explizit die Taylorentwicklung von f im Entwicklungspunkt (x^*, y^*) bis zur zweiten Ordnung? [4]

$$f(x,y) = 2 + (x-1)(y-1) + \frac{3}{2}(y-1)^2 \left(= \frac{9}{2} - x - 4y + xy + \frac{3}{2}y^2 \right) + R_2((x,y), (x^*, y^*))$$

(c) Sei nun g(u, v) = f(1 + uv, 1 + u - v). Wie lautet die Hessematrix von g im Ursprung? [4]

$$H_g(0,0) = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}$$

LÖSUNG:

- (a) Die Determinante der Hessematrix det $H_f(1,1)=\binom{0}{1}\binom{1}{3}=1$ ist negativ. Die Hessematrix ist indefinit, also liegt ein Sattelpunkt vor.
- (b) Formel für die Taylorentwicklung
- (c) Durch Einsetzen der Taylorentwicklung von f erhält man $g(u,v) = f(1+uv,1+u-v) = 2 + \underbrace{(uv)(u-v)}_{3. \text{ Ordnung}} + \frac{3}{2}(u-v)^2 + R_2\big((1+uv,1+u-v),(1,1)\big)$ $= 2 + \frac{3}{2}u^2 3uv + \frac{3}{2}v^2 + \text{Terme 3. Ordnung}.$

4. Implizite Funktionen

[12 Punkte]

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x + y - 3 + e^{y-x}$. Die Gleichung f(x,y) = 0 soll nach y aufgelöst werden.

- (a) Zeigen Sie, dass für jedes $x \in \mathbb{R}$ die Funktion $y \mapsto f(x,y)$ genau eine Nullstelle besitzt, die mit $\tilde{y}(x)$ bezeichnet werden soll. HINWEIS: Monotonie. [4]
- (b) Zeigen Sie, dass $\tilde{y}: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar ist. HINWEIS: Satz über implizite Funktionen. [3]
- (c) Bestimmen Sie dasjenige x_0 , für das $\tilde{y}'(x_0) = 0$ gilt. [5]

LÖSUNG:

(a) Für festes x ist $y \mapsto f(x, y)$ stetig und streng monoton steigend, [1]

da $\partial_y f(x, y) = 1 + e^{y - x} > 0.$ [1]

Wegen
$$\lim_{y \to \pm \infty} f(x, y) = \pm \infty$$
 [1]

und dem Zwischenwertsatz gibt es zu jedem x also genau ein $y =: \tilde{y}(x)$ mit $f(x, \tilde{y}(x)) = 0$. [1]

- (b) Sei $x_0 \in \mathbb{R}$, $y_0 = \tilde{y}(x_0)$, d.h., $f(x_0, y_0) = 0$. Da f stetig differenzierbar ist und wegen $\partial_y f(x_0, y_0) = 1 + e^{y_0 x_0} > 0$ ist die Gleichung lokal nach y auflösbar, [1] d.h., es gibt eine, in einer Umgebung von x_0 definierte, stetig differenzierbare Funktion $\hat{y}(x)$, für die $f(x, \hat{y}(x)) = 0$ gilt. Wegen der in (a) gezeigten Eindeutigkeit muss $\hat{y}(x) = \tilde{y}(x)$ gelten, d.h., \tilde{y} ist in einer Umgebung von x_0 stetig differenzierbar. Da $x_0 \in \mathbb{R}$ beliebig war, ist \tilde{y} überall stetig differenzierbar.
- (c) Nach dem Satz über implizite Funktionen gilt somit [1]

$$\tilde{y}'(x) = -\frac{\partial_x f(x, \tilde{y}(x))}{\partial_y f(x, \tilde{y}(x))} = -\left. \frac{1 - e^{y - x}}{1 + e^{y - x}} \right|_{y = \tilde{y}(x)}$$

$$\tilde{y}'(x) = 0$$
 ist also gleichbedeutend mit $e^{\tilde{y}(x)-x} = 1$, [1]

bzw.,
$$\tilde{y}(x) = x$$
.

Eingesetzt in
$$f(x,y) = 0$$
 ergibt das $0 = f(x,x) = 2x - 3 + 1$, bzw., $x = 1$.

Somit ist $x_0 = 1$ der einzige stationäre Punkt von \tilde{y} mit $\tilde{y}(1) = 1$. [1]

5. Extrema mit Nebenbedingungen

[14 Punkte]

Bestimmen Sie die globalen Extrema der Funktion $f(x,y) = (x-3)^2 + (y-4)^2$ auf der Menge $K = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 25\}$ wie folgt:

(a) Wie lauten der Gradient und die Hessematrix von f?

$$\operatorname{grad} f(x,y) = \begin{pmatrix} 2(x-3) \\ 2(y-4) \end{pmatrix} \qquad [\mathbf{1}] \qquad H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \qquad [\mathbf{1}]$$

(b) Besitzt f einen stationären Punkt im Inneren von K?

[2]

- (c) Bestimmen Sie mit Hilfe der Methode der Lagrange-Multiplikatoren die Kandidaten für Extremwerte von f auf dem Rand ∂K . [7]
- (d) In welchen Punkten liegen die globalen Maxima und Minima von $f|_K$? [3]

LÖSUNG:

- (a) s.o.
- (b) Aus grad f(x,y) = 0 folgt x = 3 und y = 4. wegen ||(3,4)|| = 5 liegt der einzige stationäre Punkt von F nicht in K° .
- (c) Der Rand von K wird beschrieben durch die Nullstellen von $g(x,y) = x^2 + y^2 25$. [1] Wegen grad g(x,y) = (2x,2y) ist g nur im Ursprung nicht regulär, auf ∂K dagegen schon. [1] Extremwerte auf dem Rand erfüllen also die Gleichung

$$\operatorname{grad} f(x, y) = \lambda \operatorname{grad} g(x, y),$$

bzw., [2]

$$2(x-3) = 2\lambda x$$
$$2(y-4) = 2\lambda y,$$

also $(1 - \lambda)x = 3$, $(1 - \lambda)y = 4$. Offenbar muss $\lambda \neq 0$ gelten. Somit $x = \frac{3}{1 - \lambda}$, $y = \frac{4}{1 - \lambda}$. [1] Eingesetzt in g(x, y) = 0 ergibt das

$$\frac{9}{(1-\lambda)^2} + \frac{16}{(1-\lambda)^2} - 25 = 0,$$

d.h.,
$$(1 - \lambda)^2 = 1$$
, bzw. $\lambda = 0, 2$.

Kandidaten für Extrema auf dem Rand sind also x = 3, y = 4 und x = -3, y = -4. [1]

(d) K ist kompakt und f stetig, also nimmt die Funktion f auf K Maximum und Minimum an. [1] Die einzigen Kandidaten sind (3,4) und (-3,-4). Wegen f(3,4)=0 und f(-3,-4)=100 ist (3,4) das absolute Minimum

und
$$(-3, -4)$$
 das absolute Maximum. [1]

6. Variationsrechnung

[10 Punkte]

Gegeben ist das Funktional $F(x) = \int_{0}^{2} (x(t)^{2} + \dot{x}(t)^{2}) dt$ für $x \in C^{2}([0, 2])$ mit den Randbedingungen x(0) = 1, x(2) = 1.

(a) Wie lautet die Lagrange-Funktion zu diesem Problem?

[2]

$$L(t, x, v) = x^2 + v^2$$

(b) Geben Sie ein erstes Integral E(t,x,v) für die Euler-Lagrange-Gleichung des Funktionals F an. [2]

$$E(t, x, v) = v^2 - x^2$$

(c) Wie lautet explizit die Euler-Lagrange-Gleichung für F?

[3]

$$\ddot{x} = x$$

(d) Finden Sie mit Hilfe der allgemeinen Lösung der Euler-Lagrange-Gleichung, $x(t) = c_1 e^t + c_2 e^{-t}$, $c_1, c_2 \in \mathbb{R}$, den stationären Punkt $x^*(t)$ von F.

$$x^*(t) = \frac{\cosh(t-1)}{\cosh(1)} = \frac{1}{1+e^2}e^t + \frac{e^2}{1+e^2}e^{-t}$$

LÖSUNG:

- (a) $F(x) = \int_{0}^{2} L(t, x(t), \dot{x}(t)) dt$ mit der Lagrangefunktion $L(t, x, v) = x^2 + v^2$.
- (b) Da die Lagrangefunktion nicht explizit von der Zeit abhängt ist $E(t,x,v) = v\partial_v L(t,x,v) L(t,x,v) = 2v^2 x^2 v^2 = v^2 x^2$ eine Konstante der Bewegung.
- (c) $\frac{d}{dt}\partial_v L \partial_x L = 0$ ergibt $\ddot{x} = x$.
- (d) Die Randbedingungen für $x(t) = c_1 e^t + c_2 e^{-t}$ ergeben $1 = x(0) = c_1 + c_2$, $1 = x(2) = c_1 e^2 + c_2 e^{-2} = c_1 e^2 + (1 c_1) e^{-2}$, also $c_1 = \frac{1 e^{-2}}{e^2 e^{-2}} = \frac{e^2 1}{e^4 1} = \frac{1}{e^2 + 1}$. $c_2 = 1 \frac{1}{e^2 + 1} = \frac{e^2}{e^2 + 1}$. Also ist $x(t) = \frac{e^t}{e^2 + 1} + \frac{e^{2+t}}{e^2 + 1} = \frac{e^{t-1} + e^{t+1}}{e + e^{-1}} = \frac{\cosh(t-1)}{\cosh(1)}$.