```
Prime Numbers
```

Number having only two factors.

[I and N itself]

Eg = 7 is a prime number.

Quant of factors == 2 - true.

bookan ChickPrime (Int N) of

Count = 0

for (i = 1; i + i \leq N; i + t) of $\begin{cases}
V(N) / i = 0 \\
if (i = N/i) & count + + c \\
clue & count + = 2c
\end{cases}$ return (count = = 2); $\begin{cases}
T(-) & O(JN) \\
S(-) & O(J)
\end{cases}$

```
Given an intiga N. Chick every number from 1 how
   if it a prime no.
                                               1 \leq N \leq 10^6
  <u>NI=10</u> [1234567
   ans- (FT FF T FT
  idea.1
         boolean any [N+1];
          any [0] = ano (i) = falk;
                                         T.C. 0(NJN)
          for (i=2; i = N; i++) {
              ans (i) = checkfrime (i);
          return ans (7;
                           Sieve of Eratustheres
id ca. 2.
          3 4 5 6 7 8 9 10 11 12 13
T F T F F F T
                                        23 24 25 26
                          2, 21
                    18
      15
 14
                      T F F F
  t
       F
                                 542=10
                        3 = 9
              2-2 = 4
                        3.4=92 503= 15
               2=3=1
               2+4=8
                                 5 +5 = 25.
```

.". For every prime no
$$(x)$$
 = first multiple to be marked as
$$\int g dx = x + x = x^2$$

for
$$(i=2; i+i \le N; i+i)$$

if $(ishim(i) = = true)$

$$\begin{cases}
 for (j=i+i; j \le N; j+=i) \\
 for (j=i+i; j \le N; j+=i) \end{cases}$$

as non-prime storting from (i) ith multiple of i ith multiple of i

return is Prime [7;

~~
5.C- O(N) (1)
8,C 0 (1)

વે	j	iterations
	4,6,8,10,12,N	N/2
- f -2	1901 7 7 7	N/2
je3	9,12,15,18,21,24,-1	0
j = 4	O	
i=5		N/S
i _ 6	0	D
7		77

ikrations:
$$\left(\frac{N}{2} + \frac{N}{3} + \frac{N}{5} + \frac{N}{7} + \frac{N}{11} + \frac{N}{13} + \frac{N}{17} + --\right)$$

= $N = \left[\frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{7} + \frac{1}{17} + \frac{1}{17}$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{4} + \frac{1}{4} + \frac{1}{11} + \cdots$$

$$\leq \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{5} + \frac{1}{6} + \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \cdots$$

$$= \log_{1} N$$

$$\approx \log_{1} N$$

$$N = g^{32}$$

$$\log_2 N = \log_2 2^{32} = 32$$

$$\log_2 (\log_2 N) = \log_2 32 = 5$$

```
O. Given on integer N.
          for all the nois from I to N. Count of factors of the
          numb(rs-
                                                                                                                                             3
                                                                                                                                4
                                                              2 3 2
                                                                                                                     2
         ans, [- 1 2
                                                                                                     4
                 for every number, find count of Jachrs.

(T.C. O(NJN))

S.C. O(1)
   idea-2 [Similar to sieve]
                                                                                                                                                                         18
                                                                                                                        13
                                                                           8 9
                                                                                           D
                                                                                                            12
                                                 5
                                                                                                                                                                        1
      1 2
                                                                                                                                                     x 2
2
3

    X
    X
    X
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y
    Y</t
                                                                                                                                                                        28 4
                          1 2 1 1
\times 1 \chi
# (odi. -)
     cf [N+1];
                                                                                                                                                               Herations
    for ( i=1; i = N; i++) f
                                                                                                                                                                    N
                                                                                                                          1,2,3,4,5 - N
                     for (j=i; j = N; j+=i){
                                                                                                                                                                   N/2
                                                                                                                          2,4,6,8,10,12, -- N
                     [3 4=1;
                                                                                                                                                                  N/2
                                                                                                                          3,6,9,12,15,--
                                                                                                                                                                  N/4
       return 4 (7;
                                                          (T.C-, O(NlogN), S.C-, O(1))
```

```
Qi Civen an integer N.
                   find the smallest prime factor for all numbers from 2 to NI.
      N=10 (1 2 3 4 5 6 7 8 9 107)
        ans [7-(-232527232]

1
2
3
4
5
6
7
8
9
10
X
X
2
3
2
5
2
7
2
3
2

                    11 12 13 14 15 16 17 18 19 20
11 2 13 2 3 2 17 2 19 2
     # wde. - spf [N+1];
                                                         for (i = 2; 1 = N; 1++) {
                                                                                                                                                                                                                                                                                                           (T. C. → D(Nlog((og(N))))
                                                       \begin{cases} 3 & \text{spf}[i] = i; \end{cases}
                                                              for ( i = 2; i * 1 = N; i++) {

\begin{cases}
\frac{1}{3} & \text{sp}(i) = -1 \\
\frac{1}{3} & \text{s
                                                               return spf [7;
```

$$45 \rightarrow 1,3,5,9,15,45$$
 on $\frac{-6}{2}$

$$\frac{45}{11}$$

$$\frac{1}{3^2 \times 5^1}$$

$$\frac{1}{3^0 \times 5^0}$$

If count of Jachns of
$$3^{x} + 5^{y} = (x+1) * (y+1)$$

$$41 \text{ count}$$
 of factors of $29 \neq 3^b \neq 5^c = (a+1) \neq (b+1) \neq (c+1)$

Count of factors of
$$\begin{bmatrix} 600 & = 0 & 2x3 \times 2x5 \times 2x5 \\ & = 2^3 \times 3 \times 5^2 \end{bmatrix}$$

$$N = 490$$
. =0 $2^{1} \times 5^{1} \times 7^{2}$
follows of 490 = $(1+1)$ = $(1+1)$ = $(2+1)$ = $2 = 2 = 2$.

N=1200

1200
$$\frac{12}{500}$$
 600 $\frac{12}{200}$ 300 $\frac{12}{150}$ 150 $\frac{12}{25}$ 45 4times $\frac{2^{1/2}}{2^{1/2}}$ 31 $\frac{1}{1500}$ 31 $\frac{1}{1500}$ 32 $\frac{1}{$

code --

ans = 1

while (N > 1) of

$$S = SPS[N]$$
; Count = 0

while (N / S = = 0) of

 $N = N/S$
 $Count + + i$

ans = ans * (count +1);

return ons;

if there one multiple queries.

Then this is helpful.

– 5

Next permutation

$$am(1-(345)29878]$$

$$000017 - 98767 - 67897$$
 $000017 - 98767 - 67867$
 001234567
 01234567

- find the dep starting from riches

 (2) find the just greater number than dip on its riches

 (3) swap dip with just greater number.

 (4) Reven the subarray present on riches of the dip-

Permutation & Combination

Modulor anithmetic