1b: Information Theory lecture 1

COMSM0075 Information Processing and Brain

comsm0075.github.io

September 2020

Information Theory
The theory of information is a theory of communication.

we start by understanding randomness

Image from wikipedia.

film recommendations are bad

film recommendations

Netflix Prize

Bennett, James, and Stan Lanning. "The netflix prize." Proceedings of KDD cup and workshop. Vol. 2007. 2007.

Netflix Prize

average star ratings

1 star	0.016
2 star	0.310
3 star	0.627
4 star	0.057

the average star ratings mean something

mostly though they tell you its an 'ok' filmm

1 star	0.016
2 star	0.310
3 star	0.627
4 star	0.057

the fable of Stefan

The theory of information starts with an attempt to allow us to quantify the informativeness of information, but not its salience or validity.

Shannon's entropy

For a finite discrete distribution with random variable X, possible outcomes $\{x_1, x_2, \dots x_n\} \in \mathcal{X}$ and a probability mass function p_X giving probabilities $p_X(x_i)$, the entropy is

$$H(X) = -\sum_{x_i \in \mathcal{X}} p_X(x_i) \log_2 p_X(x_i)$$