Strain tensors

강의명: 금속가공학특론 (AMB2004)

정영웅

창원대학교 신소재공학부

YJEONG@CHANGWON.AC.KR

연구실: #52-212 전화: 055-213-3694

HOMEPAGE: http://youngung.github.lo

Strain tensor

- Strain 물리량은 shape change를 정량적으로 표현할때 geometrical effect를 *줄여* (혹은 제거하여) 나타낸다.
- ■Strain 물리량도 stress 와 마찬가지로 2nd order tensor로 나타낸다.
- ■앞으로 1차원의 strain부터 3차원까지 점점 차원을 높이면서 이해하도록 하겠다.

- ■Cauchy stress가 역학에서 prevail. 하지만 strain의 경우 몇몇 구분되는 방법들이 존재한다.
- Strain theories are divided into two groups
 - Finite strain theory (not discussed in the current lecture)
 - Small strain theory (infinitesimal strain theory; small deformation theory; small displacement-gradient theory and so forth..)

Strain tensor

- ■응력 텐서를 설명할때, 3차원 공간상에 3개의 수직면에 작용할 수 있는 응력 성분을 제시하여 설명하였다.
- ■변형률 텐서도 이와 유사하게, 3차원 공간상에 3개의 수직한 '선'을 가지고 설명할 수 있다.
- ■변형률 텐서를 배우며 가장 주의해야할 점은 전단 변형 성분이 '회전'으로 이어질 수 있으며, 이는 '변형률'에서 제외 되어야 한다는 점이다.

1차원 strain

■1차원의 좌표계로 설명이 가능한 '길이' 단위의 무한소로 설명하자.

2차원 strain#2 (small strain)

■2차원의 좌표계로 설명이 가능한 '길이' 단위의 무한소로 설명하자.

2차원 strain#3 (small strain)

$$d_{ij} = \lim_{\Delta x \to 0} \frac{\Delta u_i}{\Delta x_j} = \frac{\partial u_i}{\partial x_j}$$

$$d_{11} = \frac{\partial u_1}{\partial x_1}, d_{12} = \frac{\partial u_1}{\partial x_2}, d_{21} = \frac{\partial u_2}{\partial x_1}, d_{22} = \frac{\partial u_2}{\partial x_2},$$

$$d_{ij} = \frac{\partial u_i}{\partial x_i}$$
 (i, j = 1,2)

tensor d의 물리적 의미?

무한소 물질점에서 임의의 운동에 의해 발생하는 (무한히 작은)길이 벡터의 변화를 설명해준다.

물질에 어떠한 운동이 발생한다면, 특정 물질점의 길이 벡터(Δx)에 해당하는 변위 벡터(Δu)를 다음과 같이 구할 수 있다.

$$\Delta u_i = d_{ij} \Delta x_i$$

Kronecker delta and deformation gradient

다른 하나 중요한 물리량 중 하나는 Deformation grandient tensor *F*:

$$F_{ij} = d_{ij} + \delta_{ij}$$

 δ_{ij} 는 Kronecker delta 라 불리며 다음의 성질을 따른다.

If
$$i = j$$
, $\delta_{ij} = 1$
If $i \neq j$, $\delta_{ij} = 0$

F 의 중요 성질:

$$\Delta x_i^{t=t_1} = F_{ij} \Delta x_j^{t=t_0}$$

예저

한 물체가 다음과 같이 어떠한 운동에 의해 '**균일하게**' 변형이 되었다.

Displacement gradient tensor

$$d_{11} = \frac{\partial u_1}{\partial x_1} = \frac{4-2}{2}$$

$$d_{22} = \frac{\partial u_2}{\partial x_2} = \frac{3-2}{2}$$

$$d_{21} = \frac{\partial u_2}{\partial x_1} = 0$$
$$d_{12} = \frac{\partial u_1}{\partial x_1} = 0$$

한 점의 좌표: (x₁, x₂)

2차원 좌표계 (\mathbf{e}_1 , \mathbf{e}_2 basis vectors)

$$\mathbf{d}_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$F_{ij} = d_{ij} + \delta_{ij}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 1.5 \end{bmatrix}$$

예저

한 물체가 다음과 같이 어떠한 운동에 의해 '**균일하게**' 변형이 되었다.

$$\mathbf{d}_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$F_{ij} = \begin{bmatrix} 2 & 0 \\ 0 & 1.5 \end{bmatrix}$$

한 점의 좌표: (x₁, x₂)

2차원 좌표계 (\mathbf{e}_1 , \mathbf{e}_2 basis vectors)

$$l = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$F_{ij}l_j = \begin{bmatrix} 2 & 0 \\ 0 & 1.5 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 & 3 \end{bmatrix}$$

$$F_{ij}l_j = \begin{bmatrix} 2 & 0 \\ 0 & 1.5 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 & 3 \end{bmatrix}$$

F_{ij} does not account for 'translation'

■Goal: Displacement와 strain의 관계를 이해하고 더 나아가 displacement에서 strain을 '추출' 해낼 수 있는 방법을 이해한다.

- 1. 공통 좌표계에서 표기 2. Translation 제거
- Pisplacement gradient tensor

3. Rotation 제거

Strain = The 'symmetric' part of displacement gradient tensor

Displacement: 특정 한 점이 차지하던 position을 또 다른 position으로 옮겨준다.

 $\vec{\mathbf{u}}(\mathbf{x}_1, \mathbf{x}_2)$: displacement vector **field** maps various points to various points.

In case $\vec{\mathbf{u}}$ field is uniform, which means that $\vec{\mathbf{u}}$ is the same for all points, the material only translates in the space (no deformation).

Deformation occurs only when $\vec{\mathbf{u}}$ field is not uniform, which means that $\vec{\mathbf{u}}$ varies when changing the locations.

Warning: there are cases that $\vec{\mathbf{u}}$ field is not uniform, but no deformation occurs (We'll get back to this later).

In case $\vec{\mathbf{u}}(\mathbf{x}_1, \mathbf{x}_2)$ is not uniform (case 1)

Displacement vector 가 공간상에서 다른 좌표로 따라 바뀐 차이

좌표에 대한 함수, 즉 $\Delta \mathbf{u} = \Delta \mathbf{u}(\mathbf{x})$

파란 화살표로 옮겨진 점의 물질은 기준이 되는 점에 비해 녹색으로 표현된 만큼 차이나는 점으로 옮겨졌다.

u 가 공간에 따라 어떻게 얼마나 달라지는지 나타내는 수학적 방법 (gradient)

$$\frac{\Delta \mathbf{u}(\mathbf{x})}{\Delta \mathbf{x}} = \mathbf{d}(\mathbf{x})$$
 로 표기 하자.

In case $\vec{\mathbf{u}}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ is not uniform (case 1; pure stretching)

In case $\vec{\mathbf{u}}(x_1, x_2, x_3)$ is not uniform (case 2; pure rotation)

Non-uniform displacement field does not always mean that the material is 'deformed'.

Non-uniform displacement field may contain a contribution

from 'rotation'.

Therefore, if you want to 'extract' only the 'deformation', you have to exclude 'rotational' contribution from the displacement field.

Displacement gradient to strain

$$d_{ij} = \lim_{\Delta x \to 0} \frac{\Delta u_i}{\Delta x_j} = \frac{\partial u_i}{\partial x_j}$$

- -위 특성으로 인해
- $\epsilon_{ij}^T = \epsilon_{ij}$ (즉, symmetry 가진다)

Example

위의 금속 판재에 냉간 압연을 하여 두께,너비,길이가 각각 t_1, w_1, l_1 으로 바뀌었다.

• 부피 변형률 $\ln\left(\frac{v_1}{v_0}\right)$ 값을 ϵ_{11} , ϵ_{22} , ϵ_{33} 요소로 표현하여라.

$$\frac{V_1}{V_0} = \frac{l_1 w_1 t_1}{l_0 w_0 t_0} \tag{1}$$

(1) 의 양변에 자연 로그를 사용하면

$$\ln\left(\frac{V_1}{V_0}\right) = \ln\left(\frac{l_1}{l_0}\right) + \ln\left(\frac{w_1}{w_0}\right) + \ln\left(\frac{t_1}{t_0}\right) = \varepsilon_{22} + \varepsilon_{11} + \varepsilon_{33}$$
 따라서 부피변화가 없다면, 즉 $\ln(1) = 0$, 따라서 $\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = 0$

Example

■전단 변형률은 부피 변화와 무관하다.

Let's check

		This excell s	neet proves a	means of coordina	ate system transforn	nation					
			angle	radian							
		phi1	45	0.785							
Three Euler angles		Phi	30	0.524							
		phi2	20	0.349							
					transformation matrix R			(transformation	(transformation matrix)^t= R^t=R^-1		
삼각 함수 값을	=										
cos(phi1)	0.707	sin(phi1)	0.707		0.455	0.874	0.171	0.455	-0.817	0.354	
cos(Phi)	0.866	sin(Phi)	0.500		-0.817	0.334	0.470	0.874	0.334	-0.354	
cos(phi2)	0.940	sin(phi2)	0.342		0.354	-0.354	0.866	0.171	0.470	0.866	
2-1					DT			DAL D.T.	2	-6	
2nd rank tens					R.T			R^t.R.T		after coordinate t	ranstormat
1	0				0.455	-0.874	0.342	-0.498		0.766	
0	-1				-0.817	-0.334	0.940	-0.503	0.998	0.643	
0	0	2			0.354	0.354	1.732	0.766	0.643	1.500	
1st rank tenso	r (i.e., vecto	or) in array fo	orm		R.v 1st rank	tensor (vecto	r) after coordinate	transformation			
1					0.4550193	-0.8172866	0.3535534				
0											
-											

Recap

- •Measurement of force and displacement from tension tests
- Physical quantity to remove the effect of geometry: engineering stress/engineering strain
- Two types of stress (strain):
 - Normal (tension + , or compression -)
 - Shear (forward +, backward -)
- ■There are three independent planes in 3D; On each plane 1 normal + 2 shears.
- Thus nine independent components comprise the stress (strain) state.
- Coordinate transformation (axes transformation)
 - Coordinate transformation does not change the physical quantity (stress, strain)
 - Coordinate transformation changes the values of components and the directions of planes associated with the stress (or strain).
- Practice coordinate transformation using the Excel, Fortran code, Python code.