

{Grady Kurpasi}

{SSIE 616}

{Prof H. Lewis}

Multilayer Perceptrons

X ₁	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500
0.1000	-5.0000	3.0000	0.1221	0.0964
6.0000	-5.5420	4.8970	0.1061	0.0702
4.0000	8.0000	9.0000	0.0996	0.0641
12.0000	-2.0000	0.0063	0.1110	0.0732
6.0000	-5.5000	4.8970	0.1060	0.0701

$w_1[i,k]$			
i	w[i,1]	w[i,2]	
0	0.5	0.5	
1	0.1	0.2	
2	0.3	0.4	
3	0.5	0.6	

$w_2[k,j]$			
k	w[k,1]	w[k,2]	
0	0.5	0.5	
1	0.7	0.8	
2	0.9	0.1	

3-2-2 Multilayer Perceptron

Multilayer Perceptrons

ν	17
Λ,	v

X ₁	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500
0.1000	-5.0000	3.0000	0.1221	0.0964
6.0000	-5.5420	4.8970	0.1061	0.0702
4.0000	8.0000	9.0000	0.0996	0.0641
12.0000	-2.0000	0.0063	0.1110	0.0732
6.0000	-5.5000	4.8970	0.1060	0.0701

w_1	Γi.	k
•••	, · ·	

i	w[i,1]	w[i,2]
0	0.5	0.5
1	0.1	0.2
2	0.3	0.4
3	0.5	0.6

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	w_2	[k,	j
---------------------------------------	-------	-----	---

k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

 $subscript_2$

 $subscript_1$

 $subscript_0$

3-2-2 Multilayer Perceptron

Multilayer Perceptrons

x, y

X ₁	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500
0.1000	-5.0000	3.0000	0.1221	0.0964
6.0000	-5.5420	4.8970	0.1061	0.0702
4.0000	8.0000	9.0000	0.0996	0.0641
12.0000	-2.0000	0.0063	0.1110	0.0732
6.0000	-5.5000	4.8970	0.1060	0.0701

w_1	Γi.	k^{-}
V V	י י	10

i	w[i,1]	w[i,2]
0	0.5	0.5
1	0.1	0.2
2	0.3	0.4
3	0.5	0.6

W_2	[k, i]	1
VV')	I^{L}	1

k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

$w_1[i,k]$		
i	w[i,1]	w[i,2]
0	0.5	0.5
1	0.1	0.2
2	0.3	0.4
3	0.5	0.6

$w_2[k,j]$		
k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

$$s_1[k] = \sum_{i=0}^{m} w_1[i,k] * a_0 i \text{ for } k = 1..l$$

 $s_1[1] = w_1[0,1] * a_0[0] = .05 * 1$

$w_1[i,k]$		
i	w[i,1]	w[i,2]
0	0.5	0.5
1	0.1	0.2
2	0.3	0.4
3	0.5	0.6

$w_2[k,j]$		
k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

$$s_1[k] = \sum_{i=0}^{3} w_1[i,k] * a_0 i$$
 for $k = 1, 2$
 $s_1[1] = w_1[0,1] * a_0[0] = .05 * 1$
 $w_1[1,1] * a_0[1] = .1 * 1$

$w_1[i,k]$			
i	w[i,1]	w[i,2]	
0	0.5	0.5	
1	0.1	0.2	
2	0.3	0.4	
3	0.5	0.6	

$w_2[k,j]$		
k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

$$s_{1}[k] = \sum_{i=0}^{3} w_{1}[i,k] * a_{0}i \text{ for } k = 1,2$$

$$s_{1}[1] = w_{1}[0,1] * a_{0}[0] = .05 * 1 + w_{1}[1,1] * a_{0}[1] = .1 * 1 + w_{1}[2,1] * a_{0}[2] = .3 * 4 + w_{1}[3,1] * a_{0}[3] = .5 * 5 = 4.3$$

$w_1[i,k]$		
i	w[i,1]	w[i,2]
0	0.5	0.5
1	0.1	0.2
2	0.3	0.4
3	0.5	0.6

$w_2[k,j]$		
k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

$$a_1[k] = \frac{1}{1 + e^{-s_1[k]}}$$
 for $k = 1, 2$
 $a_1[1] = \frac{1}{1 + e^{-4.3}} = .9866$

$w_1[i,k]$			
i	w[i,1]	w[i,2]	
0	0.5	0.5	
1	0.1	0.2	
2	0.3	0.4	
3	0.5	0.6	

$w_2[k,j]$		
k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1
_ 0.0 0.1		

$$s_{2}[j] = \sum_{k=0}^{l} w_{2}[k,j] * a_{1}i \text{ for } j = 1..m$$

$$a_{2}[j] = \frac{1}{1 + e^{-s_{2}[j]}} \text{ for } j = 1,2$$

$$s_{2}[1] = w_{2}[0,2] * a_{1}[0] = .5 * 1$$

$$w_{2}[1,2] * a_{1}[1] = .7 * .9866$$

$$w_{2}[2,2] * a_{1}[2] = .9 * .9950$$

$$= 2.0862$$

$$a_{2}[1] = \frac{1}{1 + e^{-2.0862}} = .8896 = \hat{y}$$

Error

<i>x</i> , <i>y</i>			
(₂	X ₃	y ₁	y ₂
000	5.0000	0.1000	0.0500

X₁

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$$w_2[k,j]$$
 k
 $w[k,1]$
 $w[k,2]$

0 0.5 0.5
1 0.7 0.8
2 0.9 0.1

$$E = \frac{1}{2} \sum_{j=1}^{n} (a_2[j] - y_r[j])^2$$

$$= \frac{1}{2} ((.8896 - .1)^2 + (.8004 - .5)^2)$$

$$= .5932$$

		<i>x</i> , <i>y</i>		
$\mathbf{x_1}$	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
k	w[k,1]	w[k,2]		
0	0.5	0.5		
1	0.7	0.8		
2	0.9	0.1		

Partial Derivative of Error with respect to Weight₂[0,1]

Functional Dependencies

$$a_1[k] * \mathbf{w_2}[\mathbf{0}, \mathbf{1}] \rightarrow f$$

$$\sum f + .6906 + .8955 \rightarrow g$$

$$\sigma(g) \longrightarrow h
(h - y1)^2 \longrightarrow E$$

Chain Rule

$$E(h\left(g\left(f\left(w_{0,1}\right)\right)\right))$$

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
w[k,1]	w[k,2]			
0.5	0.5			
0.7	0.8			
0.9	0.1			
	w[k,1] 0.5 0.7			

$$\frac{\partial E}{\partial w_2[k,j]} = \frac{\partial E}{\partial a_2[j]} * \frac{\partial a_2[j]}{\partial s_2[j]} * \frac{\partial s_2[j]}{\partial w_2[k,j]}$$

$$= \{\varepsilon[j]\} * \{a_2[j](1-a_2[j])\} * \{a_1[k]\}$$

$w_1[i,k]$				
i w[i,1] w[i,2]				
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
k	w[k,1]	w[k,2]		
0	0.5	0.5		
1	0.7	0.8		
2	0.9	0.1		
2 0.9 0.1				

$$\frac{\partial E}{\partial w_2[0,1]} = \frac{\partial E}{\partial a_2[1]} * \frac{\partial a_2[1]}{\partial s_2[1]} * \frac{\partial s_2[1]}{\partial w_2[0,1]}
= {\varepsilon[1]} * {a_2[1](1 - a_2[1])} * {a_1[0]}
= .8896 - .1$$

		x, y		
$\mathbf{X_1}$	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
k	w[k,1]	w[k,2]		
0	0.5	0.5		
1	0.7	0.8		
2	0.9	0.1		

$$\frac{\partial E}{\partial w_2[0,1]} = \frac{\partial E}{\partial a_2[1]} * \frac{\partial a_2[1]}{\partial s_2[1]} * \frac{\partial s_2[1]}{\partial w_2[0,1]}
= {\varepsilon[1]} * {a_2[1](1 - a_2[1])} * {a_1[0]}
= .8896 - .1 * .8896(1 - .8896)$$

x, y					
$\mathbf{X_1}$	X ₂	X ₃	y ₁	y ₂	
1.0000	4.0000	5.0000	0.1000	0.0500	

$w_1[i,k]$					
i	w[i,1]	w[i,2]			
0	0.5	0.5			
1	0.1	0.2			
2	0.3	0.4			
3	0.5	0.6			

$w_2[k,j]$				
k w[k,1] w[k,2]				
0	0.5	0.5		
1	0.7	0.8		
2	0.9	0.1		
2 0.3 0.1				

$$\frac{\partial E}{\partial w_2[0,1]} = \frac{\partial E}{\partial a_2[1]} * \frac{\partial a_2[1]}{\partial s_2[1]} * \frac{\partial s_2[1]}{\partial w_2[0,1]}
= {\varepsilon[1]} * {a_2[1](1 - a_2[1])} * {a_1[0]}
= .8896 - .1 * .8896(1 - .8896) * 1
= .0775$$

$c_2[k,j]$				
k	c[k,1]	c[k,2]		
0	.0775	0		
1	0	0		
2	0	0		

.0755

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
k w[k,1] w[k,2]				
0	0.5	0.5		
1	0.7	0.8		
2	0.9	0.1		

$$\frac{\partial E}{\partial w_1[i,k]} = \frac{\partial E}{\partial a_1[k]} * \frac{\partial a_1[k]}{\partial s_1[k]} * \frac{\partial s_1[k]}{\partial w_1[i,k]}$$

$$= \frac{\partial E}{\partial a_1[k]} * \{a_1[j](1-a_1[j])\} * \{a_0[i]\}$$

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
k	w[k,1]	w[k,2]		
0	0.5	0.5		
1	0.7	0.8		
2	0.9	0.1		

$$\frac{\partial E}{\partial w_1[i,k]} = \frac{\partial E}{\partial a_1[k]} * \frac{\partial a_1[k]}{\partial s_1[k]} * \frac{\partial s_1[k]}{\partial w_1[i,k]}$$

$$= \frac{\partial E}{\partial a_1[k]} * \{a_1[k](1-a_1[k])\} * \{a_0[i]\}$$

$$\frac{\partial E}{\partial a_1[k]} = \sum_{j=1}^n \frac{\partial E}{\partial a_2[j]} * \frac{\partial a_2[j]}{\partial s_2[j]} * \frac{\partial s_2[j]}{\partial a_1[k,j]}$$

$$= \sum_{j=1}^n \{\varepsilon[j]\} * \{a_2[j](1-a_2[j])\} * \{w_2[k,j]\}$$

<i>x</i> , <i>y</i>				
$\mathbf{x_1}$	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500

$w_1[i,k]$				
i	w[i,1]	w[i,2]		
0	0.5	0.5		
1	0.1	0.2		
2	0.3	0.4		
3	0.5	0.6		

$w_2[k,j]$				
k	w[k,1]	w[k,2]		
0	0.5	0.5		
1	0.7	8.0		
2	0.9	0.1		

$$\frac{\partial E}{\partial w_1[0,1]} = \frac{\partial E}{\partial a_1[1]} * \frac{\partial a_1[1]}{\partial s_1[1]} * \frac{\partial s_1[1]}{\partial w_1[0,1]} * \frac{\partial F}{\partial w_1[0,1]} = \frac{\partial F}{\partial a_1[1]} * \frac{\partial F}{\partial a_1[1]} * \frac{\partial F}{\partial a_1[1]} * \frac{\partial F}{\partial a_2[1]} * \frac{\partial F}{\partial a_2[1]} * \frac{\partial F}{\partial a_2[1]} * \frac{\partial F}{\partial a_2[1]} * \frac{\partial F}{\partial a_1[1]} * \frac{\partial F}{\partial a_1[$$

x, y				
X ₂	X ₃	y ₁	y ₂	
4.0000	5.0000	0.1000	0.0500	

 $\mathbf{X_1}$

1.0000

$w_1[i,k]$			
i	w[i,1]	w[i,2]	
0	0.5	0.5	
1	0.1	0.2	
2	0.3	0.4	
3	0.5	0.6	

$w_2[k,j]$			
k	w[k,1]	w[k,2]	
0	0.5	0.5	
1	0.7	0.8	
2	0.9	0.1	

$$\frac{\partial E}{\partial w_1[0,1]} = \frac{\partial E}{\partial a_1[1]} * \frac{\partial a_1[1]}{\partial s_1[1]} * \frac{\partial s_1[1]}{\partial w_1[0,1]}$$

$$= \frac{\partial E}{\partial a_1[1]} * \{a_1[1](1 - a_1[1])\} * \{a_0[0]\}$$

$$= .1502 * .9866(1 - .9866) * 1$$

$$= .0020$$

 $c_1[i,k]$

i w[i,1] w[i,2]			
0	.0020	0	
1	0	0	
2	0	0	
3	0	0	

Desired - y1

y2

Calculated - ŷ1

ŷ2

$a_2[j]$	$\varepsilon[1]$ $\sum_{a_2[1]} \sum_{a_2[n]} \varepsilon[n]$	a ₂ [2]	$\varepsilon[2]$
$a_1[k]$ 1 $a_1[0]$	$a_1[1]$	$a_1[2]$	$\sum_{i=1}^{N}$
$a_0[i]$ 1 $a_{0[0]}$		4	5 a ₀ [3]

Backpropagation

x, *y*

r =1

r =4

X ₁	X ₂	X ₃	y ₁	y ₂
1.0000	4.0000	5.0000	0.1000	0.0500
0.1000	-5.0000	3.0000	0.1221	0.0964
6.0000	-5.5420	4.8970	0.1061	0.0702
4.0000	8.0000	9.0000	0.0996	0.0641
12.0000	-2.0000	0.0063	0.1110	0.0732
6.0000	-5.5000	4.8970	0.1060	0.0701

Learning rate $\alpha = .01$ $w^* = w - \alpha * c$

w_1	[i,	k]
-------	-----	----

i	w[i,1]	w[i,2]
0	0.5	0.5
1	0.1	0.2
2	0.3	0.4
3	0.5	0.6

w_2	[k, j]
-------	--------

k	w[k,1]	w[k,2]
0	0.5	0.5
1	0.7	0.8
2	0.9	0.1

$c_1[i,k]$

i	w[i,1]	w[i,2]		
0	.0604	.0332		
1	.1134	.0427		
2	2929	1658		
3	.2193	.1129		

$c_2[k,j]$

c[k,1]	c[k,2]
.3447	.4816
.2929	.4176
.2930	.4191
	.3447

$w_1^*[i,k]$

i	w[i,1]	w[i,2]		
0	.4994	.4997		
1	.0989	.1996		
2	.3029	.4017		
3	.4978	.5989		

$w_2^*[k,j]$

. / .	w[k,2]
.4966	.0039
.4971	.0038
.0021	.0004
	.4971