Student: Huseyin Kerem Mican
Date: 5/1/21

Instructor: Taylan Sengul
Course: Linear Algebra

Assignment: Section 1.9 Homework

1. Assume that T is a linear transformation. Find the standard matrix of T.

T:
$$\mathbb{R}^2 \to \mathbb{R}^4$$
, $T(\mathbf{e}_1) = (8, 1, 8, 1)$, and $T(\mathbf{e}_2) = (-6, 3, 0, 0)$, where $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$.

$$A = \begin{bmatrix} 8 & -6 \\ 1 & 3 \\ 8 & 0 \\ 1 & 0 \end{bmatrix}$$
 (Type an integer or decimal for each matrix element.)

2. Assume that T is a linear transformation. Find the standard matrix of T.

T: $\mathbb{R}^2 \to \mathbb{R}^2$, rotates points (about the origin) through $\frac{7\pi}{4}$ radians.

$$A = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

(Type an integer or simplified fraction for each matrix element. Type exact answers, using radicals as needed.)

YOU ANSWERED:
$$\begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

3. Assume that T is a linear transformation. Find the standard matrix of T.

T: $\mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps \mathbf{e}_1 into \mathbf{e}_1 – 17 \mathbf{e}_2 but leaves the vector \mathbf{e}_2 unchanged.

$$A = \begin{bmatrix} 1 & 0 \\ -17 & 1 \end{bmatrix}$$

(Type an integer or simplified fraction for each matrix element.)

4. Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$, where \mathbf{a}_1 and \mathbf{a}_2 are the vectors shown in the figure. Using the figure, draw the image of $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ under the

Choose the correct graph below.

transformation T.

5. Fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - 6x_2 \\ 7x_1 - 5x_3 \\ -4x_2 + 7x_3 \end{bmatrix}$$

Fill in the missing entries of the matrix below.

$$\begin{bmatrix} 2 & -6 & 0 \\ 7 & 0 & -5 \\ 0 & -4 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - 6x_2 \\ 7x_1 - 5x_3 \\ -4x_2 + 7x_3 \end{bmatrix}$$

6. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that $x_1, x_2, ...$ are not vectors but are entries in vectors.

$$T(x_1,x_2,x_3,x_4) = (x_1 + 7x_2, 0, 4x_2 + x_4, x_2 - x_4)$$

$$A = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$
 (Type an integer or decimal for each matrix element.)

7. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that $x_1, x_2, ...$ are not vectors but are entries in a vector.

$$T(x_1,x_2,x_3,x_4) = 3x_1 + 2x_2 - 4x_3$$
 (T: $\mathbb{R}^4 \to \mathbb{R}$)

$$A = \begin{bmatrix} 3 & 2 & -4 & 0 \end{bmatrix}$$

8. Determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify your answer.

$$\mathsf{T}\left(\mathsf{x}_{1},\!\mathsf{x}_{2},\!\mathsf{x}_{3},\!\mathsf{x}_{4}\right)=\left(\mathsf{x}_{1}+\mathsf{x}_{2},\!\mathsf{x}_{2}+\mathsf{x}_{3},\!\mathsf{x}_{2}+\mathsf{x}_{3},\!0\right)$$

a. Is the linear transformation one-to-one?

) A	T is one-	to-one bec	ause the c	olumn v	vectors ar	e not sca	ılar multir	oles of	each	other
J A.	1 12 0116-	10-0116 DEC	ause ille i	,Olullili v	vectors are	5 110t SCa	ılaı IIIUluk	71C2 OI	cauli	Julei.

- \bigcirc **B.** T is one-to-one because T(x) = 0 has only the trivial solution.
- O. T is not one-to-one because the columns of the standard matrix A are linearly independent.
- **D.** T is not one-to-one because the standard matrix A has a free variable.

b. Is the linear transformation onto?

- **A.** T is not onto because the fourth row of the standard matrix A is all zeros.
- \bigcirc **B.** T is onto because the columns of the standard matrix A span \mathbb{R}^4 .
- \bigcirc **C**. T is not onto because the columns of the standard matrix A span \mathbb{R}^4 .
- D. T is onto because the standard matrix A does not have a pivot position for every row.

9. Determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.

$$T(x_1,x_2,x_3) = (x_1 - 3x_2 + 3x_3, x_2 - 9x_3)$$

(a) Is the linear transformation one-to-one?

- A. T is not one-to-one because the columns of the standard matrix A are linearly dependent.
- B. T is not one-to-one because the columns of the standard matrix A are linearly independent.
- C. T is one-to-one because the column vectors are not scalar multiples of each other.
- \bigcirc **D.** T is one-to-one because T(x) = 0 has only the trivial solution.
- (b) Is the linear transformation onto?
- \bigcirc **A.** T is not onto because the columns of the standard matrix A span \mathbb{R}^2 .
- C. T is not onto because the standard matrix A does not have a pivot position for every row.
- D. T is onto because the standard matrix A does not have a pivot position for every row.

10. Describe the possible echelon forms of the standard matrix for a linear transformation T where T: $\mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.

Give some examples of the echelon forms. The leading entries, denoted ■, may have any nonzero value. The starred entries, denoted *, may have any value (including zero). Select all that apply.

A. [0 ■ *]
0 0 ■
0 0 0
0 0 0

F. [■ * * 0 ■ * 0 0 * 0 0 ■ 11. Describe the possible echelon forms of the standard matrix for a linear transformation T where T: $\mathbb{R}^4 \to \mathbb{R}^3$ is onto.

Give some examples of the echelon forms. The leading entries, denoted , may have any nonzero value; the starred entries, denoted , may have any value (including zero). Select all that apply.

12. Let T be the linear transformation whose standard matrix is given. Decide if T is a one-to-one mapping. Justify your answer.

Choose the correct answer below.

- A. The transformation T is not one-to-one because the equation T(x) = 0 has only the trivial solution.
- \bigcirc **B.** The transformation T is one-to-one because the equation T(x) = 0 has a nontrivial solution.
- **C.** The transformation T is not one-to-one because the equation T(x) = 0 has a nontrivial solution.
- \bigcirc **D.** The transformation T is one-to-one because the equation T(x) = 0 has only the trivial