1			10	7	1-	_
7 17	11	言	44	Ľ.	11	H
191	Ã,		1/	\sim	ЫJ	L

本人知晓我校考场规则和违纪处分条例的有关规定, 保证 遵守考场规则,诚实做人. 本人签字: _____

任课教师:_		_ 班	级序号	:	- 112 /	成绩		
进	北工业	大学	考试	试题(B卷		1	
r ' =		18: 70E	The Carte		Siera ette e	号		
	2019-	-2020	学年	第1点	学期	学		
开课学院:理学	学院		课	程: 计:	算方法	号	-	
学 时: 32			考试	时间: 2	小时	姓		
日期: 201	9年11月	1日	考试形	式: 闭卷	(B卷)	名		
題号 一	=	Ξ	四	五	六	七	八	总分
分数								
解:将数据代入	似合方程, 得	矛盾方	程组为:					
解 :将数据代入扩	似合方程,得	矛盾方	程组为:					
解:将数据代入扩 正则方程组		矛盾方	程组为:					
正则方程组								
正则方程组 解之得: a	为:							
解之得: a	为:	t						

二. (13分) 插设有函数y = f(x)的如下数据

X_{j}	$f(x_i)$	$f'(x_i)$	$f''(x_i)$
0	0	0	0
1	1	1	

试求满足插值条件

$$p(0) = f(0), p(1) = f(1)$$

 $p'(0) = f'(0), p'(1) = f'(1)$
 $p''(0) = f''(0)$

的插值多项式 p(x).

解:

故插值多项式 p(x)=_____

-	(12 4)	El fen v	_ 1	1	3
	(12 01)	L+20 A0	4 '	$=\frac{1}{2}, x_2$	4

- (1) 以上述三点为求积节点,试建立计算积分 $\int_0^1 f(x)dx$ 的插值型求积公式;
- (2) 判断该求积公式的代数精确度;
- (3) 用所建立的求积公式计算 $\int_0^1 e^x dx$ (计算结果小数点后至少保留四位).

解: (1)

所求插值型求积公式为: $\int_0^1 f(x)dx =$ _____

(2)

所以,该求积公式的代数精确度为_____次;

(3)

四. (10分)设有线性方程组

$$\begin{pmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$$

- (1) 讨论松弛因子 $\omega = 0.8$ 时,用超松弛迭代(SOR)法求解该方程组的收敛性:
- (2) 取初始向量 $\mathbf{x}^{(0)} = (0, 0.5, 0)^{T}$, 求该方程组的近似解 $\mathbf{x}^{(k+1)}$, 要求迭代 4 步, 计算结 果小数点后至少保留 4 位小数.

解: (1) 收敛性论证:

(2) SOR 迭代格式为:

取初始向量 $\mathbf{x}^{(0)} = (0, 0.5, 0)^{\mathsf{T}}$,用 SOR 迭代求解方程组之计算过程列表如下;

n	$x_i^{(k)}$	$x_{2}^{(k)}$	$X_3^{(k)}$
0	0	0.5	U
1			
2)	
3			
4			

五. 填空 (7*3 分=21 分)
1) 近似数 $x^* = 1.23$ 相对于实数 $x = 1.19$ 具有位有效数字;
2) 算式 $y^* = x_1^* \sqrt{x_2^*}$ 的相对误差 $e_r(y^*)$ 的近似传播公式,用 $e_r(x_1^*)$ 和 $e_r(x_2^*)$ 可以近似
表示为 e, (y*)≈;
3) 矩阵 [3 6] 的 LU 分解式为
4) 为使数值求积公式 $\int_0^1 f(x) dx \approx \frac{1}{4} f(0) + af(\frac{2}{3})$ 具有尽可能高的代数精确度,则参数
a =
5) 求解线性代数方程组 Ax = b 的 Gauss-Seidel 迭代法收敛速度一定比 Jacobi 方法快, 该
说法(错或对);
6) 在插值区间内, 使用插值节点的个数越多, 则插值误差越小, 该说法(错
或对);
7) 解方程 x² - 4x + 4 = 0 的 Newton 迭代法格式为
收敛阶为阶。

7. ((12分)	按照迭代法的计算步骤,	求方程 $f(x) = e^x + x - 2 = 0$	的根的近似值(小数
保	習四位小	数).		
¥: (1) 验证	区间[0,0.8]隔根区间:		
(3)	W-1-111	AN IA METE H		
,2)	 行力程	等价变形为		
相	应的迭代	心格式为		
(3)	验证法	代法在区间[0,0.8]内的收	敛性:	
(e)E)	eur ette red	Control Processor (T.A. DE CO. D.A. J. S. SESSORS)	ar-05/12)	
				52
	T. Alessa			
(4)	迭代计	算(仅迭代4步):		
			The state of the s	
	k	X_k	$ x_{k+1} - x_k $	
	k	0.4	$ x_{k+1}-x_k $	
	0	0.4		
	0			
	0			

七. (10 分) 试建立求解初值问题 $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$ 的如下数值格式

$$y_{n+1} = y_n + h(\alpha f_n + \beta f_{n-1})$$

其中 $f_n = f(x_n, y_n)$, $f_{n-1} = f(x_{n-1}, y_{n-1})$, 并给出局部裁断误差, 指出收敛阶.

解:

从而得到: α =____, β =____, 该方法为_____阶方法,其局部截断误差为:

 $R_{n+1} =$ ______

八. $(12 \, \mathcal{G})$ 用乘幂法求矩阵 $\mathbf{A} = \begin{pmatrix} 10 & 1 & -2 \\ 1 & 3 & 1 \\ 6 & 1 & -3 \end{pmatrix}$ 的按摸最大的特征值及其相应的特征向量,

要求取 $\left(\mathbf{u}^{(0)}\right)^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$. 且 $\left|\lambda_i^{(k+1)} - \lambda_i^{(k)}\right| \le 10^{-1}$. (补充下面的空格)

解: $\mathbf{v}(\mathbf{u}^{(0)})^T = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$, 计算结果列表如下 (小數点后保留四位小数):

k	(u	(k)) ^T	=(A	n ^(k-1))"	$\mathcal{X}_{t}^{(k)} = \frac{(u^{(k)})_{t}}{(u^{(k-1)})}$
0	(1		1	,	1)	
1	(9.0000
2	(87		28		47)	9.6667
3	(804	,	218		409)	
4	(-				

则矩阵 A 按摸最大的特征值为之≈______. 相应的近似特征向量为:

$X_t \approx$		