CS 3780 Notes

Jinzhou Wu

September 11, 2025

Contents

1 Supervised Learning and KNN

Date: Aug 28, 2025

1.1 Supervised Learning

In supervised learning, we are given a dataset:

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

where $x_i \in \mathcal{X}$ is a feature vector and $y_i \in \mathcal{Y}$ is its label. The goal is to learn a hypothesis function:

$$h: \mathcal{X} \to \mathcal{Y}$$

that approximates the unknown target function $f: \mathcal{X} \to \mathcal{Y}$.

Key Concepts

- Instance: A single feature vector $\mathbf{x} \in \mathcal{X}$.
- Instance Space \mathcal{X} : The set of all possible feature vectors.
- Label y: The output to be predicted.
- Label Space \mathcal{Y} : The set of all possible labels.

Types of Supervised Learning

- Binary Classification: $\mathcal{Y} = \{-1, +1\}$
- Multi-class Classification: $\mathcal{Y} = \{1, 2, \dots, k\}$
- Regression: $\mathcal{Y} \subseteq \mathbb{R}$
- Structured Output: $\mathcal{Y} = \text{Object (e.g., protein structures)}$

1.2 K-Nearest Neighbors (KNN)

KNN is a non-parametric learning algorithm that predicts the label of a new instance \mathbf{x}' using the labels of the k closest points in the training dataset according to a similarity (or distance) measure.

Algorithm

KNN Algorithm:

- 1. **Input:** Training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, similarity function K, number of neighbors k.
- 2. For a test point \mathbf{x}' , compute $K(\mathbf{x}_i, \mathbf{x}')$ for all i.
- 3. Find the k nearest neighbors:

$$\operatorname{knn}(\mathbf{x}') = \{i \mid \mathbf{x}_i \text{ among } k \text{ closest to } \mathbf{x}'\}.$$

4. Predict the label:

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} \sum_{i \in \text{knn}(\mathbf{x}')} \mathbf{1}(y_i = y).$$

1.3 Weighted KNN

Weighted KNN assigns higher weights to closer neighbors using the similarity function K.

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} \sum_{i \in \text{knn}(\mathbf{x}')} K(\mathbf{x}_i, \mathbf{x}') \cdot \mathbf{1}(y_i = y)$$

Weighted KNN for Regression

For regression problems, the prediction is a weighted average:

$$h(\mathbf{x}') = \frac{\sum_{i \in \text{knn}(\mathbf{x}')} y_i \cdot K(\mathbf{x}_i, \mathbf{x}')}{\sum_{i \in \text{knn}(\mathbf{x}')} K(\mathbf{x}_i, \mathbf{x}')}$$

1.4 Similarity Measures

Different similarity or distance measures can be used depending on the problem:

• Gaussian Kernel:

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2}\right)$$

• Laplace Kernel:

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|)$$

• Cosine Similarity:

$$K(\mathbf{x}, \mathbf{x}') = \cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{x}'}{\|\mathbf{x}\| \|\mathbf{x}'\|}$$

1.5 Types of Attributes

• Categorical: e.g., $EyeColor \in \{brown, blue, green\}$

• Boolean: e.g., Alive $\in \{\text{True, False}\}\$

• Numeric: e.g., Age, Height

• Structured: e.g., sentences, protein sequences

1.6 Properties of KNN

• Simple, intuitive, and non-parametric.

• Requires a meaningful similarity measure.

• Memory-intensive: stores the entire training dataset.

• Computationally expensive for large datasets.

• Suffers from the curse of dimensionality.

 $\bullet~$ KNN is more like a memorization method rather than true generalization.

2 Inductive Learning and Decision Trees

Date: Sep 2, 2025

2.1 Inductive Learning

Inductive learning is the process of learning a general rule or hypothesis from specific observed examples. Given a training dataset:

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

we aim to find a hypothesis h such that $h(x) \approx y$ for unseen examples.

Key Ideas

- Training data provides labeled examples of inputs and outputs.
- The goal is to infer a hypothesis h consistent with as many training examples as possible.
- If multiple hypotheses are consistent, we aim to choose one that generalizes well.

2.2 Version Space

Definition (Version Space). The **version space** is the set of all hypotheses in the hypothesis space H that are consistent with the observed training examples:

$$VS = \{ h \in H \mid \forall (x_i, y_i) \in S, \ h(x_i) = y_i \}.$$

Using Version Space for Learning

- Start with the set of all hypotheses.
- Remove any hypothesis inconsistent with any training example.
- The remaining hypotheses form the version space.

2.3 List-Then-Eliminate Algorithm

Algorithm

Algorithm: List-Then-Eliminate

- 1. Initialize $VS \leftarrow H$ (all hypotheses).
- 2. For each training example (x_i, y_i) :
 - Remove all $h \in VS$ such that $h(x_i) \neq y_i$.
- 3. Return the remaining hypotheses in VS.

Takeaway: Tracking the entire version space can be expensive in both time and memory. Instead, we often directly construct a consistent hypothesis, e.g., using decision trees.

2.4 Decision Trees

Definition (Decision Tree). A decision tree represents a function $h: \mathcal{X} \to \mathcal{Y}$ as a tree structure:

- Internal nodes: Test a single feature (e.g., "Color").
- Branches: Possible values of that feature (e.g., "Red" or "Green").
- Leaf nodes: Assign a label based on the path from root to leaf.

Using a Decision Tree

To classify a new example:

- 1. Start at the root.
- 2. At each internal node, test the corresponding feature.
- 3. Follow the branch matching the feature value.
- 4. Stop at a leaf and return its label.

2.5 Top-Down Induction of Decision Trees (IDT)

Algorithm

Algorithm: IDT(S, Features)

- 1. If all examples in S have the same label, return a leaf node with that label.
- 2. If no features remain, return a leaf node with the majority label in S.
- 3. Otherwise:
 - Choose the best feature A to split on.
 - Partition S into subsets $\{S_v\}$ by the values of A.
 - For each value v of A:
 - Recursively call $IDT(S_v, Features \setminus \{A\})$.

2.6 Choosing the Best Split

Error-Based Split Criterion: To choose the best attribute A to split on:

$$Err(S) = min(\#positive, \#negative)$$

$$\operatorname{Err}(S \mid A) = \sum_{v} \operatorname{Err}(S_{v})$$

Select A that maximizes:

$$\Delta \text{Err} = \text{Err}(S) - \text{Err}(S \mid A).$$

2.7 Properties of Decision Trees

- Easy to interpret and visualize.
- Can represent complex decision boundaries.
- Handles both categorical and numerical features.
- Prone to overfitting if the tree grows too deep.
- Typically combined with pruning techniques for better generalization.
- Basis for more advanced models like Random Forests and Gradient Boosted Trees.

3 Prediction and Overfitting

Date: Sep 4, 2025

Learning as Prediction

Goal: Given a training dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ drawn **i.i.d.** from an unknown distribution \mathcal{D} , learn a hypothesis h such that $h(x) \approx y$ for unseen data.

World as a Distribution

Features (e.g., Farm, Color, Size, Firmness) and labels (e.g., Tasty) are random variables. The underlying distribution \mathcal{D} defines:

- Joint Distribution: P(X,Y)
- Marginal Distribution: P(X)

•

3.1 D

istribution: P(Y|X)

Sample vs. Prediction Error

Definition (Sample (Empirical) Error).

$$\hat{L}_S(h) = \frac{1}{|S|} \sum_{(x_i, y_i) \in S} \mathbf{1} [h(x_i) \neq y_i]$$

Definition (Prediction (True) Error).

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y]$$

Goal: Minimize true prediction error, not just training error.

Overfitting

Overfitting occurs when a hypothesis h achieves **low training error** but **high test error** because it learns noise and idiosyncrasies of the training set instead of general patterns.

Example: Take an i.i.d. training set $S = \{(x_1, f(x_1)), \dots\}$ and return h_s such that

$$h_s(x) = \begin{cases} f(x_i) & \text{if } x = x_i \text{ for some } i \\ \text{flip a coin} & \text{otherwise} \end{cases}$$

- h_s has zero training error but predicts randomly on unseen data.

Key Characteristics

- Fits the training set too closely, including random noise.
- Poor generalization to unseen data.
- Common when the hypothesis space is very flexible (e.g., deep trees, high-degree polynomials).

Overfitting in Decision Trees

- Fully grown decision trees can perfectly memorize the training set.
- This leads to zero empirical error but poor generalization.
- Needs mechanisms like early stopping or pruning to avoid overfitting.

Mitigating Overfitting in Decision Trees

Strategies

- Limit Model Complexity: Restrict tree depth or number of nodes.
- Early Stopping: Stop splitting when:
 - Error reduction after splitting is small.
 - Too few examples remain in a node.
- Pruning: Grow the full tree, then prune back:
 - Replace a subtree with a leaf if it does not significantly increase prediction error.
 - E.g., reduced-error pruning.

Inductive Bias

Definition (Inductive Bias). An **inductive bias** is a set of assumptions a learning algorithm uses to predict unseen data. Without bias, learning from finite samples would be impossible.

Inductive Bias in Decision Trees

- Standard IDT assumes:
 - The simplest consistent tree is preferred.
 - Features are chosen based on information gain or error reduction.
- If tree depth is restricted, bias increases but variance decreases.

Bias-Variance Tradeoff

Definition (Prediction Error Decomposition).

Expected Error =
$$\underset{\text{error from assumptions}}{\text{Bias}^2} + \underset{\text{error from data fluctuations}}{\text{Variance}} + \underset{\text{irreducible noise}}{\sigma^2}$$

- High bias: Model too simple \rightarrow underfits.
- High variance: Model too complex \rightarrow overfits.
- Goal: Balance bias and variance for best generalization.

4 Model Selection and Assessment

Date: Sep 9, 2025

4.1 Validation Sample

- **Training:** Run learning algorithm l times (e.g. different parameters).
- Validation Error: Errors $err_{S_{val}}(h_i)$ are estimates of $err_p(h_i)$ for each h_i .
- Selection: Use h^* with min $err_{S_{val}}(\hat{h}_i)$ for prediction on test examples.

Two Nested Learning Algorithms

- Primary Learning Algorithm on S_{train}
 - For each variant $A_1 \dots A_l$ of learning algorithm, $h_i = A_i(S_{train})$
 - Example: Decision Tree (DT) that stops at i nodes.
- Secondary Learning Algorithm on S_{val}
 - Hypothesis space: $H' = \{h_1, \dots, h_l\}$
 - Learning Algorithm: $h^* = \arg\min_{h \in H'} [err_{S_{val}}(h)]$

Typical ML Experiment

- Collect data $S = \{(\vec{x}_1, y_1), \dots, (\vec{x}_m, y_m)\}$
- Split randomly into S_{train} , S_{val} , S_{test}
- REPEAT
 - Train on S_{train}
 - Validate on S_{val}
- UNTIL we think we have a good rule h.
- Test h on S_{test} to evaluate its accuracy/error.

4.2 Cross-Validation

k-fold Cross-Validation:

• Given:

- Training examples S
- Learning algorithm \mathcal{A}_p with parameter p (model architectures or hyperparameters)

• Compute:

- Randomly partition S into k equally sized subsets S_1, \ldots, S_k
- For each value of p:
 - * For i from 1 to k:
 - · Train A_p on $S \setminus S_i$ and get h_i
 - · Apply h_i to S_i and compute $err_{S_i}(h_i)$
 - * Compute cross-validation error:

$$err_{CV}(A_p) = \frac{1}{k} \sum_{i} err_{S_i}(h_i)$$

• Selection:

- Pick parameter p^* that minimizes $err_{CV}(A_p)$
- Train $A_{p^*}(S)$ on full sample S to get final h

4.3 Generalization Error of Hypothesis

• Given

- Samples S_{train} and S_{test} of labeled instances
- Learning Algorithm A

• Setup

- Train learning algorithm A on S_{train} , result is h
- Apply h to S_{test} and compare predictions against true labels

• Test

- Error on test sample $err_{S_{\text{test}}}(h)$ is estimate of true error $err_p(h)$
- Compute confidence interval

5 Linear Classifiers

Date: Sep 11, 2025

5.1 Vectors and Hyperplanes

Euclidean Embeddings Data are represented as d dimensional vectors in \mathbb{R}^d . The choice of representation is part of "inductive bias".

Euclidean Norm The Euclidean norm of a vector $x \in \mathbb{R}^d$ is defined as:

$$||\vec{x}|| = \sqrt{\sum_{i=1}^d x_i^2}$$

Dot Product The dot product of two vectors $\vec{x}, \vec{y} \in \mathbb{R}^d$ is defined as:

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{d} x_i y_i$$

Alternative notation: $\vec{x} \cdot \vec{y}$ or $\vec{x}^T \vec{y}$.

Angle & Projection $\vec{w} \cdot \vec{x} = ||\vec{w}||||\vec{x}||\cos(\theta)$, where θ is the angle between \vec{w} and \vec{x} , and $\frac{\vec{w} \cdot \vec{x}}{||\vec{w}||}$ is the signed length of the projection of \vec{x} onto \vec{w} .

Hyperplanes In d-dimensional space, a **hyperplane** is defined by a vector $\vec{w} \in \mathbb{R}^d$ and a scalar $b \in \mathbb{R}$:

$$\left\{ \vec{x} \in \mathbb{R}^d \mid \vec{w} \cdot \vec{x} + b = 0 \right\}$$

Geometric interpretation:

- The hyperplane is orthogonal to \vec{w} .
- The distance to the origin (along \vec{w}) is $-\frac{b}{||\vec{w}||}$.
- All points on the hyperplane satisfy $\vec{w} \cdot \vec{x} = -b$.

5.2 Linear Classifiers

For a vector $\vec{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, the hypothesis $h_{\vec{w},b} : \mathbb{R}^d \to \{-1,+1\}$ is called a d dimensional linear classifier and defined as

$$h_{\vec{w},b}(\vec{x}) = \text{sign}(\vec{w} \cdot \vec{x} + b) = \begin{cases} +1 & \vec{w} \cdot \vec{x} + b > 0 \\ -1 & \vec{w} \cdot \vec{x} + b \le 0 \end{cases}$$

13

Also called linear predictor or halfspace.

Decision Boundaries in Different Dimensions

- One dimension: $h_{w,b}(x) = sign(wx + b)$
 - Decision boundary: a point (1d hyperplane) at $x = -\frac{b}{w}$
- Two dimensions: $h_{\vec{w},b}(\vec{x}) = \text{sign}(\vec{w} \cdot \vec{x} + b)$
 - Decision boundary: a line (2d hyperplane) defined by $\vec{w} \cdot \vec{x} + b = 0$
- d dimensions: $sign(\vec{w} \cdot \vec{x} + b)$
 - Decision boundary: a hyperplane $\vec{w} \cdot \vec{x} + b = 0$

Homogenous Linear Classifiers A classifier is **homogenous** if b = 0 (otherwise non-homogenous). **Fact:** Any d dimensional learning problem for linear classifiers has a **homogenous** form in d+1 dimensions.

Non-homogenous:	Homogenous:
$HS^d = \{h_{\vec{w},b} \mid \vec{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$	$HS_{homog}^{d+1} = \{h_{\vec{w},b} \mid \vec{w} \in \mathbb{R}^{d+1}\}$
\bullet \vec{x}	• $\vec{x}' = (\vec{x}, 1)$
• \vec{w}, b	• $\vec{w}' = (\vec{w}, b)$
• $\vec{w} \cdot \vec{x} + b$	• $\vec{w}' \cdot \vec{x}' = \vec{w} \cdot \vec{x} + b$

Without loss of generality, we will now focus on **homogenous linear classifiers** with $||w_i|| = 1$.

Consistent Linear Classifiers

- Data set of labelled instances $S = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_m, y_m)\}.$
- Linear classifier $h_{\vec{w}}$ is **consistent** with S if for all $(\vec{x}_i, y_i) \in S$:

$$-\vec{w}\cdot\vec{x}_i>0 \text{ if } y_i=1$$

$$-\vec{w}\cdot\vec{x}_i \leq 0 \text{ if } y_i = -1$$

• Data set S is **linearly separable** (zero training error) if there is a linear classifier $h_{\vec{w}}$ that is consistent with it.

Margin A data set S is linearly separable with a (geometric) margin γ if:

- There is a linear classifier $h_{\vec{w}}$ that is consistent with \mathcal{S} .
- The distance of any instance in S to the decision boundary of $h_{\vec{w}}$ is at least γ .

Mathematical definition: There is \vec{w} such that $||\vec{w}|| = 1$ and for all data points $(\vec{x}_i, y_i) \in \mathcal{S}$:

$$\begin{cases} \vec{w} \cdot \vec{x}_i \ge \gamma & \text{if } y_i = 1\\ \vec{w} \cdot \vec{x}_i \le -\gamma & \text{if } y_i = -1 \end{cases} \iff y_i(\vec{w} \cdot \vec{x}_i) \ge \gamma$$

14

Larger margin \implies Easier to find consistent linear classifier.

5.3 Perceptron Algorithm

Algorithm

The Perceptron Algorithm (homogeneous & batch)

- Input: training data $S = \{(\vec{x}_1, y_1), \dots, (\vec{x}_m, y_m)\}$
- **Initialize** $\vec{w}^{(0)} = (0, ..., 0)$ and t = 0
- While there is $i \in [m]$ such that $y_i(\vec{w}^{(t)} \cdot \vec{x}_i) \leq 0$:

$$- \vec{w}^{(t+1)} = \vec{w}^{(t)} + y_i \vec{x}_i$$
$$- t \leftarrow t + 1$$

- End While
- Output $\vec{w}^{(t)}$

Good Practice: Initialize $\vec{w}^{(0)}$ randomly. Shuffle \mathcal{S} and check data one-by-one for update condition. Iterate until no updates are needed or maximum iterations are reached.