QF600 (Asset Pricing) - Homework 6

Student ID: 01501554

Behavioral Finance

Assume Barberis, Huang, and Santos economy where investor receives utility from consumption as well as recent financial gain or loss. Use these parameters:

$$\delta=0.99, \quad \gamma=1, \quad \lambda=2$$

Consumption growth has lognormal distribution:

$$\ln ilde{g} = 0.02 + 0.02 ilde{\epsilon}$$

where ε is standard normal random variable. Simulate probability distribution for consumption growth with (at least) 10^4 random draws from standard normal distribution.

With these parameters, risk-free rate is around 3% per year:

$$R_f = rac{e^{0.0198}}{0.99} = 1.0303$$

Define x as one plus dividend yield for market portfolio:

$$x = \left(1 + \frac{P}{D}\right)\frac{D}{P} = 1 + \frac{D}{P}$$

and define error term:

$$e(x) = 0.99b_0 E[v(x ilde{g})] + 0.99x - 1$$

where utility from recent financial gain or loss is given by:

$$v(R) = R - 1.0303$$
 for $R \ge 1.0303$

$$v(R) = 2 (R - 1.0303)$$
 for $R < 1.0303$

Solve for e(x) = 0 to find equilibrium value of x, using bisection search:

- 1. Set $x_- = 1$ and $x_+ = 1.1$, and use simulated distribution of consumption growth to confirm that $e(x_-) < 0$ and $e(x_+) > 0 \Rightarrow$ solution must lie between x_- and x_+
- 2. Set $x_0 = 0.5*(x_- + x_+)$ and use simulated distribution of consumption growth to calculate $e(x_0)$
- 3. If $|e(x_0)| \le 10^{-5}$, then you have converged to solution

- 4. Otherwise if $e(x_0) < 0$, then solution lies between x_0 and $x_+ \Rightarrow$ repeat from step 2 with $x_- = x_0$
- 5. Otherwise if $e(x_0) > 0$, then solution lies between x_- and $x_0 \Rightarrow$ repeat from step 2 with $x_+ = x_0$

Repeat for b_0 in range from 0 to 10, in increments of 0.1 (or less).

1. Calculate price-dividend ratio for market portfolio:

$$\frac{P}{D} = \frac{1}{x - 1}$$

Plot price-dividend ratio (on vertical axis) vs b₀.

Answer:

2. Calculate expected market return:

$$E\Big(ilde{R}_m\Big)=E(x ilde{g})=xe^{0.0202}$$

Plot equity premium (on vertical axis) vs b_0 .

Answer:

3. Briefly describe (in words, without using mathematical equations or formulas) main characteristics of $v(\cdot)$ as well as economic significance and implications of b_0 and λ .

Answer:

- Main characteristics of utility function (v(.)):

Utility function is piecewise-linear, with different slopes before and after X_{t+1} . The steepness / gradient of utility function is always greater than 1 when $X_{t+1} < 0$ and exactly 45 degree from the origin when $X_{t+1} >= 0$. This indicates loss aversion whereby investors are more sensitive to shortfall in financial gain (or outright financial loss).

- Economic significance of b₀:

 $b_0 >= 0$ determines the extent to which utility from recent financial gain or loss contributes to investor's lifetime utility. b_0 can be seen as a slider to allocate weight between the contribution of consumption (1st term) and recent financial gain or loss (2nd term).

- If $b_0 = 0$, it means no utility is derived from recent financial gain or loss
- If b_0 = infinity, it means no utility is derived consumption

In summary, a higher b_0 means greater sensitivity to financial gain or loss. Whereas, a lower b_0 represents lower sensitivity to financial gain or loss.

Name: Kevin Montana Wongso Student ID: 01501554

- Economic significance of λ :

 λ represents sensitivity of an investor towards losses as opposed to gains. Empirically, in real life, the λ is approximately 2, which means that investors are twice as sensitive for financial losses compared to financial gains. The higher the λ , the more sensitive investor to losses compared to gains. Conversely, a lower λ indicates that the investor is more neutral on losses and gains, for example when λ is nearer to 1, investor is becomes more equally as sensitive to losses as they are to financial gains. In summary, the more loss averse the investor, the higher the λ .