Outsourcing Phone-based Web Authentication while Protecting User Privacy

NordSec 2016

Martin Potthast¹ Christian Forler² <u>Eik List</u>¹ Stefan Lucks¹

¹Bauhaus-Universität Weimar

Bauhaus-Universität Weimar

<firstname>.<lastname>(at)uni-weimar.de

² Beuth Hochschule für Technik Berlin

04 Nov 2016

Section 1

Motivation

Passwords

- Humans are bad at memorizing strong passwords
- Already 2007: Median user is registered at 25 web services [Florêncio and Herley, 2007]
- Passwords are unlikely to disappear in the near future

2nd Line of Defense against

- Reused passwords
- Weak credentials or lacking 1st-factor policies
- Data breaches
- Phishing attacks

Factors

Something you know Unique tuple of username + password

Idea: Duo Mobile 2014; Images:

http://2.bp.blogspot.com/-3wBHxiz30Do/VEU8Ba4j7BI/AAAAAAAAAAAAO/-gs07aNu7lA/s1600/homer-idea.png, https://frinkiac.com/caption/S06E02/42976,

http://s1.favim.com/orig/14/eye-homer-homer-simpson-simpson-simpsons-Favim.com-184669.jpg,

Factors

Something you know Unique tuple of username + password

Something you have Personal device or smartphone app

Idea: Duo Mobile 2014; Images:

Martin Potthast, Christian Forler, Eik List, Stefan Lucks

http://2.bp.blogspot.com/-3wBHxiz30Do/VEU8Ba4j7BI/AAAAAAAAAAAAO/-gs07aNu7lA/s1600/homer-idea.png, https://frinkiac.com/caption/S06E02/42976,

http://s1.favim.com/orig/14/eye-homer-homer-simpson-simpson-simpsons-Favim.com-184669.jpg,

Factors

Something you know Unique tuple of username + password

Something you have Personal device or smartphone app

Something you are Fingerprint or retina scan

Idea: Duo Mobile 2014; Images:

http://2.bp.blogspot.com/-3wBHxiz30Do/VEU8Ba4j7BI/AAAAAAAAAAAAO/-gs07aNu7lA/s1600/homer-idea.png, https://frinkiac.com/caption/S06E02/42976,

http://s1.favim.com/orig/14/eye-homer-homer-simpson-simpson-simpsons-Favim.com-184669.jpg, https://upload.wikimedia.org/wikipedia/en/0/0b/Marge_Simpson.png

Factors

Something you know

Unique tuple of username + password

Something you have

Personal device or smartphone app

Something you are

Fingerprint or retina scan

Someone you know

[Brainard et al., 2006]

Idea: Duo Mobile 2014; Images:

http://2.bp.blogspot.com/-3wBHxiz30Do/VEU8Ba4j7BI/AAAAAAAAAAAAO/-gs07aNu7lA/s1600/homer-idea.png, https://frinkiac.com/caption/S06E02/42976,

http://s1.favim.com/orig/14/eye-homer-homer-simpson-simpson-simpsons-Favim.com-184669.jpg, https://upload.wikimedia.org/wikipedia/en/0/0b/Marge_Simpson.png

Benefits:

- Omnipresent, ubiquitous
- Spares users from carrying around additional devices
- Spares service providers from shipping devices

Benefits:

- Omnipresent, ubiquitous
- Spares users from carrying around additional devices
- Spares service providers from shipping devices

Disadvantage:

lacksquare Difficult to implement from scratch \implies outsourcing

Benefits:

- Omnipresent, ubiquitous
- Spares users from carrying around additional devices
- Spares service providers from shipping devices

Disadvantage:

lacktriangle Difficult to implement from scratch \Longrightarrow outsourcing

Privacy? An honest-but-curious authentication provider potentially learns

- Usage statistics of users
- Usage statistics of service providers
- Relations of users to service providers

Benefits:

- Omnipresent, ubiquitous
- Spares users from carrying around additional devices
- Spares service providers from shipping devices

Disadvantage:

lacktriangle Difficult to implement from scratch \Longrightarrow outsourcing

Privacy? An honest-but-curious authentication provider potentially learns

- Usage statistics of users
- Usage statistics of service providers
- Relations of users to service providers

Goal of Passphone:

- Phone-based two-factor authentication scheme
- Outsource verification of 2nd factor while preserving privacy

Existing Phone-Based Two-Factor Authentication Schemes

Time-based One-Time Passwords:

- Google 2-Step [Google, 2013], Microsoft [Meisner, 2013], Apple [Apple, 2016], Facebook [Song, 2011]
- CRONTO [VASCO, 2013], Duo Mobile [Duo Security, 2016]

Academia:

- SOUNDPROOF [Karapanos et al., 2015]: Avoided need for user interaction
- Shirvanian et al. [Shirvanian et al., 2014]: Resilience to off-line attacks
- PHONEAUTH [Czeskis et al., 2012]
- MP-AUTH [Mannan and van Oorschot, 2011]: No secret on device
- TIQR [Van Rijswijk and Van Dijk, 2011], SNAP2PASS [Dodson et al., 2010], QR-TAN [Starnberger et al., 2009]: QR-based
- PHOOLPROOF [Parno et al., 2006]: Bookmark-based

Remarks

- Privacy-unaware users may be tracked down by other means:
 - Users must avoid reuse or self-related credentials and mail addresses
 - Users should hide their identity (e. g., use services like TOR)
- Base on TLS-secured connections
- Recommendations:
 - Public-key pinning for Trusted Third Party
 - Bind TLS connections to specific channel

Goal:

No additional angles for user profiling by second factor

Section 2

Passphone Protocols

Involved Parties

- S Service provider
- T Trusted Third
- P User (prover)
- PT Prover's telephone
- PM Prover's mail box

Involved Parties

- lacktriangle Assume: User has device PT and mail box PM under control
- Assume: TTP is honest (but curious)
- Encode protocol, step, version, and sender information in all messages
- Protocols: Registration, Activation, Authentication, Revocation, Rekeying

P's device PT generates and stores a key pair $K_{PT}^{\rm public}, K_{PT}^{\rm secret}$

 ${\cal S}$ Service provider

T Trusted Third Party

P User (prover)

 ID_X ID of X

 h_X Blinded ID of X

 N_X Challenge of X

 $(\cdot)_X$ Signed by X

 $\mathcal{E}_K\langle \cdot
angle$ TLS-protected

P submits public key and a blinded ID $h_{PT} = \mathsf{Hash}(N_{PT})$ to T

S Service provider

Trusted Third Party

P User (prover)

 ID_X ID of X

 h_X Blinded ID of X

 N_X Challenge of X

 $(\cdot)_X$ Signed by X

 $\mathcal{E}_K\langle\cdot
angle$ TLS-protected

T sends challenge N_T to P's mail account

S Service provider

Trusted Third Party

P User (prover)

 ID_X ID of X

 h_X Blinded ID of X

 N_X Challenge of X

 $(\cdot)_X$ Signed by X

 $\mathcal{E}_K\langle\cdot
angle$ TLS-protected

P forwards challenge to PT

- S Service provider
- T Trusted Third Party
- P User (prover)

- ID_X ID of X
- $h_X \quad \mathsf{Blinded} \; \mathsf{ID} \; \mathsf{of} \; X$
- N_X Challenge of X

- $(\cdot)_X \quad \text{Signed by } X$
- $\mathcal{E}_K\langle \cdot
 angle$ TLS-protected

Challenge is signed by PT as response

S Service provider

T Trusted Third Party

P User (prover)

 ID_X ID of X

 h_X Blinded ID of X

 N_X Challenge of X

 $(\cdot)_X$ Signed by X

 $\mathcal{E}_K\langle\cdot
angle$ TLS-protected

Passphone: Registration

T checks response, and creates a ticket, and assigns

- S Service provider
- T Trusted Third Party
- P User (prover)

- ID_X ID of X
- h_X Blinded ID of X
- N_X Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle\cdot
 angle$ TLS-protected

P creates key-management tickets; T maps P's IDs to her key

- S Service provider
- Trusted Third Party
- P User (prover)

- ID_X ID of X
- h_X Blinded ID of X
- N_{X} Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle \cdot
 angle$ TLS-protected

Passphone: Registration

Only P can create the key-management tickets (not even T)

- S Service provider
- T Trusted Third Party
- P User (prover)

- ID_X ID of X
- h_X Blinded ID of X
- N_X Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle\cdot
 angle$ TLS-protected

${\cal T}$ knows only public information from ${\cal P}$

- S Service provider
- T Trusted Third Party
- P User (prover)

- ID_X ID of X
- h_X Blinded ID of X
- N_X Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle \cdot
 angle$ TLS-protected

P requests activation of 2nd factor at S

- Service provider
- T Trusted Third Party
- P User (prover)

- ID_X ID of X
- h_X Blinded ID of X N_X Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle \cdot \rangle$ TLS-protected

PASSPHONE: Activation

S sends its ID and challenge N_S

- S Service provider
- T Trusted Third PartyP User (prover)

 $ID_X \quad {\sf ID} \ {\sf of} \ X$ $h_X \quad {\sf Blinded} \ {\sf ID} \ {\sf of} \ X$ $N_X \quad {\sf Challenge} \ {\sf of} \ X$

- $(\cdot)_X \ \ {\rm Signed} \ {\rm by} \ X$
- $\mathcal{E}_K\langle\cdot
 angle$ TLS-protected

P blinds S's ID: $h_S = \mathsf{Hash}(ID_S, N_S)$, and sends it to T

- S Service provider
- T Trusted Third Party P User (prover)
- ID_X ID of X
 - h_X Blinded ID of X N_X Challenge of X

- $\left(\cdot\right)_{X}$ Signed by X
- $\mathcal{E}_K\langle \cdot
 angle$ TLS-protected

T sends challenge N_T to P

- ${\cal S}$ Service provider
- T Trusted Third PartyP User (prover)
- $ID_X \quad {\sf ID} \ {\sf of} \ X$ $h_X \quad {\sf Blinded} \ {\sf ID} \ {\sf of} \ X$ $N_X \quad {\sf Challenge} \ {\sf of} \ X$

- $\left(\cdot\right)_{X}$ Signed by X
- $\mathcal{E}_K\langle\cdot
 angle$ TLS-protected

PASSPHONE: Activation

P forwards both challenges from its browser to its device

- S Service provider
- T Trusted Third Party P User (prover)
- ID_X ID of X h_X Blinded ID of X

 $(\cdot)_X$ Signed by X $\mathcal{E}_K \langle \cdot \rangle$ TLS-protected

PASSPHONE: Activation

P verifies contents and ID_S

- S Service provider
- T Trusted Third PartyP User (prover)
- ID_X ID of X h_X Blinded ID of X

 $(\cdot)_X$ Signed by X $\mathcal{E}_K\langle\cdot\rangle$ TLS-protected

If successful, P signs challenge with its ID to T

T Trusted Third Party P User (prover)

 ID_X ID of X h_X Blinded ID of X $(\cdot)_X$ Signed by X $\mathcal{E}_K\langle \cdot
angle$ TLS-protected

T verifies response; if valid, T generates a local $h_{PT} = \mathsf{Hash}(ID_{PT}, N_T)$

Service provider

Trusted Third Party P User (prover)

 ID_X ID of X h_X Blinded ID of X

 N_X Challenge of X

 $(\cdot)_X$ Signed by X

TLS-protected

P forwards the ticket to S

S Service provider

T Trusted Third Party P User (prover)

 ID_X ID of X h_X Blinded ID of X $\left(\cdot
ight)_{X}$ Signed by X $\mathcal{E}_{K}\langle\cdot
angle$ TLS-protected

S maps P's account to blinded ID; T maps local blinded h_{PT} to ID_{PT}

S Service provider

T Trusted Third Party P User (prover)

 ID_X ID of X

 h_X Blinded ID of X \mathcal{E}_K N_X Challenge of X

 $(\cdot)_X$ Signed by X $\mathcal{E}_K\langle\cdot
angle$ TLS-protected

Passphone: Activation

S does not see ID_{PT} nor can it link it; T can not link S

- S Service provider
- T Trusted Third PartyP User (prover)
- ID_X ID of X h_X Blinded ID of X

 $\left(\cdot
ight)_{X}$ Signed by X $\mathcal{E}_{K}\langle\cdot
angle$ TLS-protected

 N_X Challenge of X

P logs in at S with 1st factor

Service provider

T Trusted Third Party

P User (prover)

 ID_X ID of X

 h_X Blinded ID of X N_X Challenge of X

 $(\cdot)_X$ Signed by X

 $\mathcal{E}_K\langle \cdot \rangle$ TLS-protected

S looks up h_{PT} and sends it with a challenge N_S

- S Service provider
- T Trusted Third PartyP User (prover)
- ID_X ID of X h_X Blinded ID of X N_X Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle \cdot
 angle$ TLS-protected

P blinds S's ID: $h_S = \mathsf{Hash}(ID_S, N_S)$; sends it to T together with h_{PT}

- Service provider
- Trusted Third Party
- P User (prover)
- IDx ID of X
- h_X Blinded ID of X N_X Challenge of X

- $(\cdot)_X$ Signed by X
- $\mathcal{E}_K\langle \cdot \rangle$ TLS-protected

T looks up key, and adds a challenge N_T

- S Service provider
- T Trusted Third PartyP User (prover)
- ID_X ID of X h_X Blinded ID of X N_X Challenge of X
- \mathcal{E}_{i}
- $(\cdot)_X$ Signed by X
 - $\mathcal{E}_K\langle \cdot
 angle$ TLS-protected

P forwards both challenges from its browser to its device

- S Service provider
- T Trusted Third Party P User (prover)
- ID_X ID of X
 - h_X Blinded ID of X N_X Challenge of X

 $\left(\cdot\right)_{X}$ Signed by X $\mathcal{E}_{K}\langle\cdot
angle$ TLS-protected

P verifies correct service provider, $h_S = \mathsf{Hash}(ID_S, N_S)$, and signatures

- S Service provider
- T Trusted Third Party P User (prover)
- ID_X ID of X
- h_X Blinded ID of X N_X Challenge of X

 $(\cdot)_X$ Signed by X $\mathcal{E}_K\langle\cdot
angle$ TLS-protected

If successful, P signs challenge, and sends it together with its ID to T

- S Service provider
- T Trusted Third Party P User (prover)
- ID_X ID of X h_X Blinded ID of X

 $\begin{array}{ll} \left(\cdot\right)_{X} & \text{Signed by } X \\ \mathcal{E}_{K}\langle\cdot\rangle & \text{TLS-protected} \end{array}$

 N_X Challenge of X

Passphone: Authentication

T verifies parameters and signature and issues authentication ticket

Service provider

Trusted Third Party

P User (prover)

IDx ID of X h_X Blinded ID of X

 N_X Challenge of X

 $(\cdot)_X$ Signed by XTLS-protected

P forwards the ticket to S

- Service provider
- Trusted Third Party
- P User (prover)

- IDx ID of X
- h_X Blinded ID of X N_X Challenge of X

 $(\cdot)_X$ Signed by XTLS-protected

S verifies ticket, and grants P access if valid.

- Service provider
- Trusted Third Party P User (prover)
- ID_X ID of X
- $(\cdot)_X$ Signed by X h_X Blinded ID of X

TLS-protected

 N_X Challenge of X

Section 3

Security Analysis

Security Goals

- Preserving anonymity wrt. TTP An honest-but-curious TTP cannot determine which user is registered with which service provider
- Preserving unlinkability Colluding service providers cannot link users registered at multiple of their services

Assumptions: A can...

■ ... generate, intercept, manipulate, or replay messages.

- ... generate, intercept, manipulate, or replay messages.
- ... not feasibly break the underlying crypto or guess challenges (τ -bit effective key lengths, independent keys, 2τ -bit random independent challenges, signatures, and hashes)

- ... generate, intercept, manipulate, or replay messages.
- ...not feasibly break the underlying crypto or guess challenges (τ -bit effective key lengths, independent keys, 2τ -bit random independent challenges, signatures, and hashes)
- **\blacksquare** ... **not** feasibly produce collisions/preimages for Hash(\cdot) (random oracle).

- ... generate, intercept, manipulate, or replay messages.
- ...not feasibly break the underlying crypto or guess challenges (τ -bit effective key lengths, independent keys, 2τ -bit random independent challenges, signatures, and hashes)
- **•** ... **not** feasibly produce collisions/preimages for $\mathsf{Hash}(\cdot)$ (random oracle).
- \blacksquare ... control other user(s) \mathcal{A}^P registered at S.

- ... generate, intercept, manipulate, or replay messages.
- ...not feasibly break the underlying crypto or guess challenges (τ -bit effective key lengths, independent keys, 2τ -bit random independent challenges, signatures, and hashes)
- lacktriangledown **not** feasibly produce collisions/preimages for Hash(\cdot) (random oracle).
- \blacksquare ...control other user(s) \mathcal{A}^P registered at S.
- lacksquare ...control other service provider(s) \mathcal{A}^S where P is registered with.

Authentication Security - Proof Ideas

Use framework by Bellare et al.

■ \mathcal{A} can ask Execute (passive), Send (active), Corrupt (1st factor of P), and Test (final) queries

To win, A must achieve at least one of the following:

- Forge (the signature of) a valid authentication ticket
 - Infeasible by assumption
- Replay an old accepted ticket
 - lacksquare N_S is fresh and uniformly random chosen by S
 - lacksquare Must find collision or preimage $\mathsf{Hash}(\mathit{ID}_S, N_S) \implies \mathsf{infeasible}$
- Obtain a fresh valid ticket for a different (parallel) session

Authentication Security - Proof Ideas (Cont'd)

- 3. Obtain a fresh valid ticket for a different session
 - Successfully pretend S in the view of P \Longrightarrow infeasible ($\mathcal A$ cannot forge/decrypt TLS)

Authentication Security - Proof Ideas (Cont'd)

- 3. Obtain a fresh valid ticket for a different session
 - Successfully pretend S in the view of P \Longrightarrow infeasible ($\mathcal A$ cannot forge/decrypt TLS)
 - Forge signature of P for a message to T \implies infeasible

Authentication Security - Proof Ideas (Cont'd)

- 3. Obtain a fresh valid ticket for a different session
 - Successfully pretend S in the view of P \Longrightarrow infeasible ($\mathcal A$ cannot forge/decrypt TLS)
 - Forge signature of P for a message to T \implies infeasible
 - Replace ID_S , N_S , or N_T in $((\mathcal{E}_K \langle ID_T, h_{PT}, h_S, N_T \rangle)_T, N_S, ID_S)$, and still make P sign the challenge
 - Replace $ID_S \implies PT$ will notice
 - Find collision/preimage to $h_S = \mathsf{Hash}(ID_S, N_S) \implies \mathsf{infeasible}$
 - lacktriangle Forge signature by $T \implies$ infeasible
 - Replace $h_S \implies$ wrong signature
 - lacktriangle Replace N_T from some parallel session $\mathcal{A} \leftrightarrow T \implies$ wrong signature

Authentication Security – Proof Ideas (Cont'd)

- 3 Obtain a fresh valid ticket for a different session
 - \blacksquare Successfully pretend S in the view of P \implies infeasible (\mathcal{A} cannot forge/decrypt TLS)
 - \blacksquare Forge signature of P for a message to T ⇒ infeasible
 - Replace ID_S , N_S , or N_T in $((\mathcal{E}_K \langle ID_T, h_{PT}, h_S, N_T \rangle)_T, N_S, ID_S)_T$ and still make P sign the challenge
 - \blacksquare Replace $ID_S \implies PT$ will notice
 - Find collision/preimage to $h_S = \mathsf{Hash}(ID_S, N_S) \implies \mathsf{infeasible}$
 - \blacksquare Forge signature by $T \implies$ infeasible
 - \blacksquare Replace $h_S \implies$ wrong signature
 - Replace N_T from some parallel session $\mathcal{A} \leftrightarrow T \implies$ wrong signature

Theorem 1 (Authentication Security)

Given our assumptions and let Hash be a random oracle. Then, any PPT adversary $\mathcal A$ asking at most q queries has, for a random execution of $\mathcal G^{\mathsf{Auth}}$ on our protocol \mathbb{P} , a success probability of at most $4q/2^{\tau}$.

Anonymity

Modelled as a Real-or-Random Game

- **Setup:** Challenger registers P with either S^0 or S^1
- Whenever P interacts with either S^0 or S^1 , the game uses \widehat{S} as compound service provider in view of $\mathcal A$
- Goal of A: Determine which service provider P has registered with

Anonymity

Proof Ideas

 ${\cal A}$ can learn from a run of the...

- Registration protocol: ID_{PT} , K_{PT}^{public} , ID_{PM}
- Activation protocol: Mapping $h_S \rightarrow (ID_{PT}, h_{PT})$
- \blacksquare Authentication protocol: $\mathit{ID}_{\mathit{PT}} \leftrightarrow h_{\mathit{PT}}$ to $h_S' \leftarrow \mathit{H}(\mathit{ID}_S, N_S')$
- h_S blinds ID_S , fresh and random for every session
- h_{PT} blinds ID of P across service providers
- lacksquare A must predict challenges $N_S \implies$ infeasible

Anonymity

Proof Ideas

 ${\cal A}$ can learn from a run of the...

- Registration protocol: ID_{PT} , K_{PT}^{public} , ID_{PM}
- Activation protocol: Mapping $h_S \rightarrow (ID_{PT}, h_{PT})$
- \blacksquare Authentication protocol: $\mathit{ID}_{\mathit{PT}} \leftrightarrow h_{\mathit{PT}}$ to $h_S' \leftarrow \mathit{H}(\mathit{ID}_S, N_S')$
- h_S blinds ID_S , fresh and random for every session
- h_{PT} blinds ID of P across service providers
- lacksquare \mathcal{A} must predict challenges $N_S \implies$ infeasible

Anonymity Result:

$$\mathsf{Adv}^{\mathsf{Anon}}_{\mathbb{P}}(\mathcal{A}) \leq (q_{\mathsf{exe}} + q_{\mathsf{send}}) \cdot 1/2^{2\tau}.$$

Section 4

Prototype

Prototypical Implementation

Device:

- Android App
- QR codes for transmitting challenges from browser to device

Prototypical Implementation

Device:

- Android App
- QR codes for transmitting challenges from browser to device

Trusted Third Party + Test Service Provider:

- Java Web Services for component sharing
- SHA256 for Hash(\cdot); EC-DSA signatures

Section 5

Evaluation

Criteria of Authentication Schemes

Framework by [Bonneau et al., 2012]:

- 25 features and quasi-features
- Concerning

Deployability

Comparison

Using the Framework by [Bonneau et al., 2012]

Authentication scheme			Usability							Deployability						Security (Res. = Resilient)									Summary				
	Memorywise-Effortless	Scalable-for-Users	Nothing-to-Carry	Physically-Effortless	Easy-to-Learn	Efficient-to-Use	Infrequent-Errors	Easy-Recovery-from-Loss	•	Accessible	Negligible-Cost-per-User	Server-Compatible	Browser-Compatible	Mature	Non-Proprietary	Resto-Physical-Observation	Res -to-Targeted-Impersonation		Nes-ro- IIII occied duessing	Resto-Unthrottled-Guessing	4	Resto-Leaks-from-Other-Verifiers	ģ	Resto-Theft	No-Trusted-Third-Party	Requiring-Explicit-Consent	Unlinkable	#•	#0
Cronto [VASCO, 2013]	-	-	0	-	•	0	0	-		_	0	-	•	•	-	•	•			•	0	•	•	•	•	•	•	13	5
FBD-BT-BT/WF-WF [Shirvanian et al., 2014]	_	0	0	_	•	•	•	_		0	0	_	_	-	•	•	•		•	•	•	•	-	•	•	_	•	13	4
FBD-QR-BT/WF [Shirvanian et al., 2014]	_	0	0	_	•	•	0	_		0	0	_	_	_	•	•				•	•	•	_	•	•	•	•	13	5
GOOGLE 2-STEP [Google, 2013]	_	-	0	_	•	0	0	0		0	_	_	•	•	_	-	C		•	_	-	•	•	•	•	•	•	10	6
MBD-QR-QR [Shirvanian et al., 2014]	-	0	0	-	0	0	-	-		0	0	-	0	-	•	-	•	•	•	•	-	•	-	•	•	•	•	9	7
MP-AUTH [Mannan and van Oorschot, 2011]	-	-	0	-	•	0	-	0		0	0	-	-	-	•	-	C	-	-	-	-	-	٠	•	•	•	•	7	6
PHONEAUTH (opportunistic) [Czeskis et al., 2012]	-	0	0	-	•	•	0	•		•	•	0	-	0	•	0	C)	0	0	0	0	•	•	•	0	9	13
PHOOLPROOF [Parno et al., 2006]	-	-	0	-	•	0	0	-		0	0	0	-	-	•	•	•	•	•	•	0	•	٠	•	•	•	•	12	7
SOUNDPROOF [Karapanos et al., 2015]	-	-	0	-	•	•	0	0		•	•	-	•	-	•	0	-		•	•	-	•	•	•	•	•	-	13	4
TIQR [Van Rijswijk and Van Dijk, 2011]	-	-	0	-	•	0	0	-		0	0	0	•	•	•	-	•	-	-	-	0	•	0	•	٠	•	•	10	8
Passphone (this paper)	-	0	0	-	•	0	0	•		0	0	0	•	-	•	•	•			•	_	•	•	•	-	•	•	13	7

Comparison

Using the Framework by [Bonneau et al., 2012]

Authentication scheme			Usability								Deployability						Security (Res. = Resilient)									Summar	
	Memorywise-Effortless	Scalable-for-Users	Nothing-to-Carry	Physically-Effortless	Easy-to-Learn	Efficient-to-Use	Imrequent-Errors	Easy-Recovery-from-Loss	Accessible	Negligible-Cost-per-User	Server-Compatible	Browser-Compatible	Mature	Non-Proprietary	Resto-Physical-Observation	Res -to-Targeted-Impersonation		3		Res -to-l eaks-from-Other-Verifiers	Resto-Phishing	Resto-Theft	Ĕ	Requiring-Explicit-Consent	Unlinkable	#•	#0
Cronto [VASCO, 2013]	_	_	0	-	•	0	0	_	-	0	-	•	•	-	•	•	•		•	•	•	•	•	•	•	13	5
FBD-BT-BT/WF-WF [Shirvanian et al., 2014]	-	0	0	-	•	•	•	-	0	0	-	-	-	•	•	•	•			•	-	•	•	-	•	13	4
FBD-QR-BT/WF [Shirvanian et al., 2014]	-	0	0	-	•	•	0	-	0	0	-	-	-	•	•	•	•				-	•	•	•	•	13	5
GOOGLE 2-STEP [Google, 2013]	-	-	0	-	•	0	0	0	0	-	-	•	•	-	-	C	•				•	•	•	•	•	10	6
MBD-QR-QR [Shirvanian et al., 2014]	-	0	0	-	0	0	-	-	0	0	-	0	-	•	-	•	•				-	•	•	•	•	9	7
MP-AUTH [Mannan and van Oorschot, 2011]	-	-	0	-	•	0	-	0	0	0	-	-	-	•	-	C	-	-		-		•	•	•	•	7	6
PHONEAUTH (opportunistic) [Czeskis et al., 2012]	-	0	0	-	•	•	0	•	•	•	0	-	0	•	0	C	C		0	0	0	•	•	•	0	9	13
PHOOLPROOF [Parno et al., 2006]	-	-	0	-	•	0	0	-	0	0	0	-	-	•	•	•	•		• (•	•	•	•	•	•	12	7
SOUNDPROOF [Karapanos et al., 2015]	-	-	0	_	•		0	0	•	•	-	•	-	•	0	-						•	•	•	-	13	4
TIQR [Van Rijswijk and Van Dijk, 2011]	-	-	0	-	•	0	0	-	0	0	0	•	•	•	-	•	-	-	- 0	•	0	•	•	•	•	10	8
Passphone (this paper)	-	0	0	-	•	0	0	•	0	0	0	•	-	•	•	•					•		-	•	•	13	7

Comparison

Using the Framework by [Bonneau et al., 2012]

Authentication scheme	Usability									Deployability						Security (Res. = Resilient)									Sum	mary
	Memorywise-Effortless	Scalable-for-Users	Nothing-to-Carry	Physically-Effortless	Easy-to-Learn	Efficient-to-Use		Easy-Recovery-from-Loss	Accessible	Negligible-Cost-per-User	Server-Compatible	Browser-Compatible	Mature	Non-Proprietary	Resto-Physical-Observation	Resto-Targeted-Impersonation	۵,	-to-l	Resto-Internal-Observation		Resto-Phishing	Resto-Theft	Requiring-Evaluit Concept	Unlinkable	#•	#0
CRONTO [VASCO, 2013]	_	_	0	-	•	0	0	_	_	0	_	•	•	_	•	•	•	•	0	•	•				13	5
FBD-BT-BT/WF-WF [Shirvanian et al., 2014]	-	0	0	-	•	•	•	-	0	0	-	-	-	•	•	•	•	•	•	•	-	•			13	4
FBD-QR-BT/WF [Shirvanian et al., 2014]	-	0	0	_	•	•	0	-	0	0	-	-	-	•	•	•	•	•	•	•	_	•			13	5
GOOGLE 2-STEP [Google, 2013]	-	-	0	_	•	0	0	0	0	-	-	•	•	-	-	0	•	-	-	•	•	•			10	6
MBD-QR-QR [Shirvanian et al., 2014]	-	0	0	-	0	0	-	-	0	0	-	0	-	•	-	•	•	•	-	•	-	•		•	9	7
MP-AUTH [Mannan and van Oorschot, 2011]	-	-	0	_	•	0	_	0	0	0	-	-	_	•	-	0	-	-	-	-	•				7	6
PHONEAUTH (opportunistic) [Czeskis et al., 2012]	-	0	0	_	•	•	0	•	•	•	0	-	0	•	0	0	0	0	0	0	0	•		0	9	13
PHOOLPROOF [Parno et al., 2006]	-	-	0	-	•	0	0	-	0	0	0	-	-	•	•	•	•	•	0	•	•	•		•	12	7
SOUNDPROOF [Karapanos et al., 2015]	-	-	0	_	•	•	0	0	•	•	-	•	-	•	0	-	•	•	-	•	•			-	13	4
TIQR [Van Rijswijk and Van Dijk, 2011]	-	-	0	-	•	0	0	-	0	0	0	•	•	•	-	•	-	-	0	•	0	•		•	10	8
Passphone (this paper)	-	0	0	-	•	0	0	•	0	0	0	•	-	•	•	•	•	•	-	•	•		- •		13	7

Conclusion and Summary

Key Message:

- Privacy-preserving phone-based two-factor authentication protocol
- Outsources verification of 2nd factor to TTP for increasing integration for small and medium-sized services
- Users still have to be privacy-aware on the web

Conclusion and Summary

Key Message:

- Privacy-preserving phone-based two-factor authentication protocol
- Outsources verification of 2nd factor to TTP for increasing integration for small and medium-sized services
- Users still have to be privacy-aware on the web

Summary:

- Independent from first factor
- Conducted security analysis and prototype evaluation
- Automated security analysis using AVISPA: [Armando et al., 2005] HLSPL code will be published online https://github.com/passphone

Conclusion and Summary

Key Message:

- Privacy-preserving phone-based two-factor authentication protocol
- Outsources verification of 2nd factor to TTP for increasing integration for small and medium-sized services
- Users still have to be privacy-aware on the web

Summary:

- Independent from first factor
- Conducted security analysis and prototype evaluation
- Automated security analysis using AVISPA: [Armando et al., 2005] HLSPL code will be published online https://github.com/passphone

Questions?

References I

Apple (2016).

Two-factor authentication for Apple ID.

Armando, A., Basin, D. A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma, P. H., Héam, P., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., and Vigneron, L. (2005).

The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications.

In Etessami, K. and Rajamani, S. K., editors, CAV, volume 3576 of LNCS, pages 281-285. Springer.

Bonneau, J., Herley, C., van Oorschot, P. C., and Stajano, F. (2012).

The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. In IEEE Symposium on Security and Privacy, pages 553–567.

Brainard, J. G., Juels, A., Rivest, R. L., Szydlo, M., and Yung, M. (2006).

Fourth-Factor Authentication: Somebody You Know.

In ACM Conference on Computer and Communications Security, pages 168-178. ACM.

Czeskis, A., Dietz, M., Kohno, T., Wallach, D. S., and Balfanz, D. (2012).

Strengthening User Authentication Through Opportunistic Cryptographic Identity Assertions.

In Yu, T., Danezis, G., and Gligor, V. D., editors, ACM CCS, pages 404-414.

Dey, A. and Weis, S. (2010).

PseudoID: Enhancing Privacy in Federated Login.

In Serjantov, A. and Troncoso, C., editors, Hot Topics in PETS, pages 95-107.

Dodson, B., Sengupta, D., Boneh, D., and Lam, M. (2010).

Snap2Pass: Consumer-Friendly Challenge-Response Authentication with a Phone. http://prpl.stanford.edu/papers/soups10j.pdf.

Duo Security, I. (2016).

Two Factor Authentication: Duo Security.

References II

Florêncio, D. A. F. and Herley, C. (2007).

A Large-Scale Study of Web Password Habits. In *WWW*, pages 657–666. ACM.

Google (2013).

2-step Authentication.

Karapanos, N., Marforio, C., Soriente, C., and Capkun, S. (2015).

Sound-Proof: Usable Two-Factor Authentication Based on Ambient Sound. In USENIX Security, pages 483–498.

Mannan, M. and van Oorschot, P. (2011).

Leveraging Personal Devices for Stronger Password Authentication from Untrusted Computers. J. Comput. Secur., 19(4):703–750.

Meisner, J. (2013).

The Official Microsoft Blog: Microsoft Account Gets More Secure.

BlindldM: A privacy-preserving approach for identity management as a service.

International Journal of Information Security, 13(2):199–215.

Nunez, D., Agudo, I., and Lopez, J. (2012).

Nuñez, D. and Agudo, I. (2014).

Integrating OpenID with Proxy Re-encryption to Enhance Privacy in Cloud-based Identity Services. In CloudCom, pages 241–248.

OpenID (2015).

Certification program of openid connect.

Founded be Google, Microsoft, Ping Identity, ForgeRock, Nomura Research Institute, and PayPal.

References III

Parno, B., Kuo, C., and Perrig, A. (2006).

Phoolproof Phishing Prevention.

In Crescenzo, G. D. and Rubin, A. D., editors, FC, volume 4107 of LNCS, pages 1-19.

Riesch, P. J. and Du, X. (2012).

Audit Based Privacy Preservation for the OpenID Authentication Protocol.

In 2012 IEEE Conference on Technologies for Homeland Security, pages 348–352. IEEE.

Shirvanian, M., Jarecki, S., Saxena, N., and Nathan, N. (2014).

Two-Factor Authentication Resilient to Server Compromise Using Mix-Bandwidth Devices. In NDSS. The Internet Society.

Song, A. (2011).

Introducing Login Approvals.

Starnberger, G., Froihofer, L., and Göschka, K. M. (2009).

QR-TAN: Secure Mobile Transaction Authentication. In ARES, pages 578–583. IEEE Computer Society.

Urueña, M., Muñoz, A., and Larrabeiti, D. (2014).

Analysis of Privacy Vulnerabilities in Single Sign-On Mechanisms for Multimedia Websites. Multimedia Tools and Applications, 68(1):159–176.

Van Rijswijk, R. and Van Dijk, J. (2011)

Tiqr: A Novel Take on Two-factor Authentication.

In Limoncelli, T. A. and Hughes, D., editors, LISA. USENIX Association.

VASCO, D. S. I. (2013).

Cronto.

Section 6

Supporting Slides

Outsourcing Authentication

- OpenID Connect [OpenID, 2015]: Merge of
 - OpenID (Google, Yahoo!, Wordpress, etc)
 - OAuth 2.0 (Twitter, Facebook, PayPal)
- Privacy problems in OpenID and Facebook Connect [Urueña et al., 2014]
 - Linkability of users, non-resilient to phishing [Bonneau et al., 2012]
- Some attempts to solve them [Dey and Weis, 2010, Nunez et al., 2012, Nuñez and Agudo, 2014, Riesch and Du, 2012]

OATH Standards

- 2005: HOTP (Hash-based One-Time Passwords)
 - HMAC-based one-time passwords
- 2011: TOTP (Time-based One-Time Passwords)
 - Based on HOTP
 - Passwords only work for a small time slot (30-60 seconds)
- Ongoing: FIDO (Fast IDentity Online) Allicance promotes U2F (Universal 2nd Factor, public-key-based)
 - Computer + USB device

Consistent Messaging Format

 Add consistent protocol, step, version, and sender information to every message

```
\begin{split} &\langle \mathsf{message} \rangle ::= E_K(\langle \mathsf{header} \rangle, \langle \mathsf{payload} \rangle)_{\langle \mathsf{signature} \rangle} \\ &\langle \mathsf{header} \rangle ::= [\langle \mathsf{domain} \rangle, \langle \mathsf{step} \rangle, \langle \mathsf{version} \rangle, \langle \mathsf{sender} \rangle] \end{split}
```

Unlinkability

Modelled as a Real-or-Random Game

- **Setup:** Challenger registers either P^0 with both S^0 or S^1 ; or P^0 with S^0 and P^1 with S^1
- lacksquare Game uses \widehat{P} as compound user in view of $\mathcal A$
- **Goal of** A: Determine who interacts with S^1

Unlinkability

 ${\cal A}$ can learn from a run of...

- ...the registration protocol: Nothing about relations
- \blacksquare . . . the activation protocol: Mapping $h_{PT^i} \to h_{S^j}$, where $h_{S^j} = \mathsf{Hash}(ID_{S^j}, N_{S^j})$
- lacksquare . . . the authentication protocol: $h^j_{PT^i}$
- \blacksquare Only $h_{\widehat{P}}^j = \operatorname{Hash}(I\!D_{PT^b}, N_T)$ visible
- \blacksquare ${\mathcal A}$ must find a preimage ${\it ID}_{PT^b}, N_T$ for $h^j_{\widehat{P}}$

Unlinkability

 \mathcal{A} can learn from a run of...

- ... the registration protocol: Nothing about relations
- ...the activation protocol: Mapping $h_{PT^i} \rightarrow h_{S^j}$, where $h_{S^j} = \mathsf{Hash}(ID_{S^j}, N_{S^j})$
- \blacksquare ... the authentication protocol: $h_{DT^i}^j$
- lacksquare Only $h_{\widehat{D}}^{\widehat{J}} = \mathsf{Hash}(ID_{PT^b}, N_T)$ visible
- \mathcal{A} must find a preimage ID_{PT^b} , N_T for $h_{\widehat{D}}^{\jmath}$

Theorem 2 (Unlinkability)

Let the employed public-key signature scheme be EUF-CMA-secure and H be a random oracle. Then, for any PPT adversary A whose run time is bounded by t and which asks at most q_{exe} execute and q_{send} send queries, It holds for a random execution of \mathcal{G}^{Unlink} on our protocol \mathbb{P} :

$$\textit{Adv}^{\textit{Unlink}}_{\mathbb{P}}(\mathcal{A}) \leq (q_{\textit{exe}} + q_{\textit{send}}) \cdot 1/2^{2\tau}.$$

Authentication Security

Proof Ideas (Cont'd)

Framework by Bellare et al. Queries:

- - $\mathsf{Send}(U,U',m) \ \, \mathsf{Active \ attack, \ sending \ a \ message} \, \, m$ between users $U \xrightarrow{m} U'$
 - $\mathsf{Corrupt}(P^i,S^j)$ Leaks first factor of P^i at S^j
 - $\mathsf{Test}(P^i,S^j)$ Models authenticaton request of $\mathcal A$ as P^i at S^j