

Non-linear control system

Ma Yan

Control Science and Engineering Department

Jilin University

mayan_maria@163.com

Control Engineering 2021-2022 Non-linear system

Contents

- □ Types of non-linearity
- □ Reasons for the presence of nonlinear elements
- Analysis in the phase plane
- Analysis with describing function

Examples of non-linearity

- > Friction in a mechanical system
- > Saturation in an amplifier
- > Switching elements, e.g. in thermostats.
- Operating-point-dependent parameters

Mechanical friction

Friction characteristic

Dead zone

Saturation

·Due to

- maximum valve opening reached
- output voltage of an amplifier limited
 by voltage of power supply
- end stop

Saturation in amplifier

Thermostat (恒温器)

different control systems x>0, $y=y_{max}$ for heating and cooling else y=0.

Thermostat with dead zone

It makes no sense to damp the overshoot caused by the heating systems or by switching on the air conditioning

Room control

Relay plus dead zone

Relay plus Hysteresis

Overview

Why non-linearities?

□ Sometimes it is difficult or too expensive to make a linear system

- friction, saturation

- sometimes wanted
 - safety (maximum relay)
- □ It is cheap
- relay is a cheap power amplifier, e.g. thermostat, integrated with other functions: sensing, set-point

Linear or non-linear

- ·Linear system: a linear system is a system to which the principle of superposition (叠加原理) applies.
- Non-linear system: A non-linear system is not linear; that is, a nonlinear system doesn't use superposition principle.

Linearity Principle

Linear system

Examples of non-Linearity

Examples:

1.
$$y(t) = \cos(at) \times r(t)$$

$$2. \quad y(t) = kr(t)$$

3.
$$y(t) = \cos[w \cdot r(t)]$$

$$Y(s) = \frac{as}{s^2 + a^2} \times R(s)$$

$$Y(s) = kR(s)$$

$$Y(s) = \ell\{\cos[w \cdot r(t)]\}$$

Notes: 1 and 2 are linear systems. 3 is a non-linear system

Examples of non-Linearity

$$y(t) = \cos(at) \times r(t)$$

$$y(t) = \cos[w \cdot r(t)]$$

Notes: 1 are linear.

3 is a non-linear

Examples

Examples: the equation of a non-linear system is:

$$\dot{x} = -x(1-x)$$
 $\dot{x} = 0 \Rightarrow equilibrium$ $x = 0; x = 1$

Solutions

$$\frac{x}{1-x} = ce^{-t}, \quad c = \frac{x_0}{1-x_0}$$

$$so \quad x(t) = \frac{x_0e^{-t}}{1-x_0 + x_0e^{-t}}$$

so
$$x(t) = \frac{x_0 e^{-t}}{1 - x_0 + x_0 e^{-t}}$$

Notes

Different initial value

$$\dot{x} = -x(1-x)$$
 $\dot{x} = 0 \Rightarrow equilibrium$ $x = 0; x = 1$

□ Notes:

- 1. The response depends on the initial value.
- 2. There is stable oscillation in the non-liner system.
- 3. The output of nonlinear system due to sinusoid input is complex

Unwanted non-linearity

■ Behavior of a good feedback system is only determined by the elements in the feedback path.

☐ High gain feedback can compensate for unwanted non-linearity, such as friction.