Đào Th Hng Nhung

September 15, 2021

Abstract

Your abstract.

1 Exercise 1

2 Exercise 2:

Univariate normal distribution.

2.2 Proof

We have $I_1 =$ $\int_{-\infty}^{\infty} \frac{-(x-\mu)}{2\sigma^2} dx = \sqrt{2\pi\sigma^2}$ $I_2 =$ $\int_{-\infty}^{\infty} \frac{-(y-\mu)}{2\sigma^2} dy = \sqrt{2\pi\sigma^2}$ $I_1 I_2 =$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} exp(\frac{-x^2}{2\sigma^2} - \frac{y^2}{2\sigma^2}) dxdy$ Set:

 $x = a.cos\phi$ $y = a.sin\phi$

mà

$$x \in (-\infty; \infty) <=> a \in (0; \infty)$$

 $x \in (-\infty; \infty) <=> \phi \in (0; 2\pi)$

We have:

$$A = \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} \frac{\theta x}{\theta a} \frac{\theta x}{\theta \phi} \\ \frac{\theta y}{\theta a} \frac{\theta y}{\theta \phi} \end{bmatrix} \cdot \begin{bmatrix} da \\ d\phi \end{bmatrix} = \begin{bmatrix} \cos\phi - a\sin\phi \\ \sin\phi a\cos\phi \end{bmatrix} \cdot \begin{bmatrix} da \\ d\phi \end{bmatrix}$$

$$det met min = a \cos^2\phi + a \sin^2\phi = a$$

$$det matrix = a.cos^2\phi + a.sin^2\phi = a$$

$$dx.dy = a.da.d\phi$$

we have:

$$I_{1}.I_{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} exp(-\frac{x^{2} + y^{2}}{2\sigma^{2}}) dx dy$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{\frac{-(a^{2}\cos^{2}\phi + a^{2}\sin^{2}\phi)}{2\sigma^{2}}} a.da d\phi$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{\frac{-a^{2}}{2\sigma^{2}}} a.da.d\phi$$

$$= \int_0^{2\pi} \sigma^2 d\phi = 2\pi\sigma^2$$

 $_{\mathrm{ma}}$

$$I_1 = I_2 - > I = \sqrt{2\pi\sigma^2}$$

Expectation

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \mu$$
$$Var = \sigma^{2}$$