Intégrales dépendant d'un paramètre

Exercice 1. Pour $x \ge 0$, on pose $f(x) = \int_0^{+\infty} \frac{1}{1 + x^3 + t^3} dt$.

- 1. Montrer que f est bien définie et continue sur \mathbb{R}_+ .
- 2. Montrer que f est décroissante.
- 3. Calculer f(0) et déterminer $\lim_{x\to +\infty} f(x)$.

Exercice 2. Pour x > 0 on pose $f(x) = \int_0^{\pi/2} \frac{\cos t}{t+x} dt$.

- 1. Montrer que f est bien définie et continue sur \mathbb{R}_{+}^{*} .
- 2. Étudier les variation de f.
- 3. Calculer les limites $\lim_{n \to +\infty} f(x)$ et $\lim_{n \to 0^+} f(x)$.
- 4. Donner un équivalent de f en 0^+ et en $+\infty$.

Exercice 3. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ les fonctions définies par

$$f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \text{ et } g(x) = \left(\int_0^x e^{-t^2} dt\right)^2.$$

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- 2. Montrer que f' + g' = 0.
- 3. Montrer que $f(x) + g(x) = \frac{\pi}{4}$ pour tout $x \in \mathbb{R}$.
- 4. En déduire la valeur de l'intégrale de Gauss $\int_0^{+\infty} e^{-x^2}$.

Exercice 4. Le but cet exercice est de montrer que $I := \int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.

- 1. \bullet Montrer que l'intégrale I généralisé est convergente.
 - Est-ce que la fonction $g: x \mapsto \sin x/x$ est Lebesgue-intégrable sur $[0, \infty)$?
- 2. Soit $f(t,x) = \frac{\sin x}{x} e^{-xt} \mathbb{1}_{(0,+\infty)}$.
 - Montrer que, pour tout t > 0, la fonction $x \mapsto f(t, x)$ est Lebesgue intégrable sur \mathbb{R} .
 - Montrer que la fonction $F(t) := \int_{\mathbb{R}} f(t, x) dx$ est dérivable sur $(0, +\infty)$.
 - Calculer F'(t) puis $\lim_{t\to+\infty} F(t)$. En déduire que $F(t)=\frac{\pi}{2}-\arctan t$.

Exercice 5. La formule de Stirling. Pour x > 0, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1. Montrer que la fonction Γ est bien définie sur \mathbb{R}_+^* .
- 2. Montrer que Γ est C^{∞} sur \mathbb{R}_{+}^{*} .
- 3. Montrer que Γ est une fonction convexe.

- 4. Montrer que $\Gamma(x+1)=x\Gamma(x)$ pour x>0. En déduire une expression de $\Gamma(n)$ pour n entier non nul.
- 5. Effectuer le changement de variable $u = \frac{t-n}{\sqrt{n}}$ pour montrer que

$$\Gamma(n+1) = \frac{n^n \sqrt{n}}{e^n} \int_{-\sqrt{n}}^{+\infty} \left(1 + \frac{u}{\sqrt{n}}\right)^n e^{-u\sqrt{n}} du.$$

6. Déduire de la question précédente la formule de Stirling.

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

- 7. Pour x > 0 et $n \in \mathbb{N}^*$, on pose $n_x! = x(x+1) \dots ((x+n))$.
 - a) Montrer que

$$\Gamma(x) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

b) Montrer que

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \frac{n^x n!}{n_x!}.$$

c) En déduire un équivalent de n_x ! lorsque $n \longrightarrow +\infty$.