2D GEOMETRY FORMULAS

SQUARE

s = side

Area: $A = s^2$

Perimeter: P = 4s

CIRCLE

r = radius, d = diameter

Diameter: d = 2r

Area: $A = \pi r^2$

Circumference: $C = 2\pi r = \pi d$

RECTANGLE

l = length, w = width

Area: A = lw

Perimeter: P = 2l + 2w

SECTOR OF CIRCLE

r= radius, $\theta=$ angle in radians

Area: $A = \frac{1}{2}\theta r^2$

Arc Length: $s = \theta r$

TRIANGLE

b = base, h = height

Area: $A = \frac{1}{2}bh$

Perimeter: $\bar{P} = a + b + c$

ELLIPSE

a = semimajor axis

b = semiminor axis

Area: $A = \pi ab$

Circumference:

 $C \approx \pi \left(3(a+b) - \sqrt{(a+3b)(b+3a)} \right)$

EQUILATERAL TRIANGLE

s = side

Height: $h = \frac{\sqrt{3}}{2}s$

Area: $A = \frac{\sqrt{3}}{4}s^2$

ANNULUS

r = inner radius,

R = outer radiusAverage Radius: $\rho = \frac{1}{2}(r + R)$

Width: w = R - r

Area: $A = \pi (R^2 - r^2)$

or $A = 2\pi \rho w$

PARALLELOGRAM

b = base, h = height, a = side

Area: A = bh

Perimeter: P = 2a + 2b

TRAPEZOID

a, b = bases; h = height;

c, d = sides

Area: $A = \frac{1}{2}(a+b)h$

Perimeter:

P = a + b + c + d

REGULAR POLYGON

s = side length,

n = number of sides

Circumradius: $R = \frac{1}{2}s \csc(\frac{\pi}{n})$

Area: $A = \frac{1}{4}ns^2 \cot(\frac{\pi}{n})$

or $A = \frac{1}{2}nR^2\sin(\frac{2\pi}{n})$

3D GEOMETRY FORMULAS

CUBE

s = side

Volume: $V = s^3$

Surface Area: $S = 6s^2$

GENERAL CONE OR PYRAMID

A = area of base, h = height

Volume: $V = \frac{1}{3}Ah$

RECTANGULAR SOLID

l = length, w = width,

h = height

Volume: V = lwh

Surface Area:

S = 2lw + 2lh + 2wh

RIGHT CIRCULAR CONE

r = radius, h = height

Volume: $V = \frac{1}{2}\pi r^2 h$

Surface Area:

 $S = \pi r \sqrt{r^2 + h^2} + \pi r^2$

SPHERE

r = radius

Volume: $V = \frac{4}{3}\pi r^3$ Surface Area: $S = 4\pi r^2$

FRUSTUM OF A CONE

r = top radius, R = base radius,

h = height, s = slant height

Volume: $V = \frac{\pi}{3}(r^2 + rR + R^2)h$

Surface Area:

 $S = \pi s(R+r) + \pi r^2 + \pi R^2$

RIGHT CIRCULAR CYLINDER

r = radius, h = height

Volume: $V = \pi r^2 h$

Surface Area: $S = 2\pi rh + 2\pi r^2$

SQUARE PYRAMID

s = side, h = height

Volume: $V = \frac{1}{3}s^2h$

Surface Area:

 $S = s(s + \sqrt{s^2 + 4h^2})$

TORUS

r = tube radius.

R =torus radius

Volume: $V = 2\pi^2 r^2 R$

Surface Area: $S = 4\pi^2 rR$

REGULAR TETRAHEDRON

s = side

Volume: $V = \frac{1}{12}\sqrt{2}s^3$

Surface Area: $S = \sqrt{3}s^2$

