Portas lógicas e circuitos digitais

Arquitetura de Computadores

Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 1 semestre 2008

Tópicos

- Portas
- Circuito somador
- Circuito subtrator
- flip-flops (registradores)
- ULA de 1 bit
- Memória

Portas Lógicas Básicas

- Características
 - As estradas não estão limitadas a 2. Podem ter quantas entradas forem necessárias.
 - A saída é sempre única

- Características
 - Os circuitos podem ser construídos pela combinação das portas lógicas
 - Qualquer expressão booleana pode ser representada pela combinação de portas lógicas

- Equivalência de circuitos
 - Um mesmo circuito pode ser construído a partir de combinações de portas diferentes

- (a) NOT
- (b) AND
- (c) OR
 construído a
 partir de
 portas NAND
 ou NOR

• 2 funções equivalentes: (a) AB + AC (b)

$$A(B+C)$$

Α ————	A(B+C)
В	
$C \longrightarrow B + C$	

Α	В	O	AB	AC	AB + AC
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Α	В	С	Α	B + C	A (B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

(a)

Símbolos alternativos: (a) NAND, (b) NOR,
 (c) AND, (d) OR.

Copyleft Rossano Pablo Pinto

Porta XOR (ou exclusivo) – 3 circuitos diferentes p/calcular um XOR

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

(a)

Circuitos Integrados

- As portas não são vendidas individualmente, mas em unidades chamadas Circuitos Integrados:
 - SSI (Small Scale Integrated): 1 à 10 portas
 - MSI (Medium Scale Integrated): 10 à 100 portas
 - LSI (Large Scale Integrated): 100 à 100.000 portas
 - VLSI (Very Large Scale Integrated): >
 100.000 portas

Circuitos Integrados

- Multiplexador: seleciona uma das várias entradas e gera a saída
- Demultiplexador: seleciona uma dentre várias saídas

 Exemplo de multiplexador com 8 entradas e uma saída

Decodificador:
 número de n bits na entrada
 seleciona uma
 das 2ⁿ linhas
 de saída

Comparador: compara 2 palavras de entrada. Ex. verifica se são iguais

Shifters: desloca os bits para esquerda ou direita

- Somadores: soma 2 valores
 - Você saberia fazer um somador que possui como entrada o bit A e o bit B?
 - $\cdot 0 + 0 = 0$
 - $\bullet \ 0 + 1 = 1$
 - $\cdot 1 + 0 = 1$
 - 1 + 1 = ?

Somadores: meio somador

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Somadores: somador completo carry in

Α	В	Carry in	arry in Sum	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b)

(a) Copyleft Rossano Pablo Pinto

- Unidade Lógica e Aritmética
 - opera AND, OR, NOT e soma de 2 palavras de máquina. No exemplo a seguir:
 - 00 -> A **AND** B
 - 01 -> A **OR** B
 - 10 -> **NOT** B
 - 11 -> **SOMA** A e B

 8 ULAs de 1 bit conectadas p/ formar 1 ULA de 8 bits:

- Componente essencial de todo computador
- Sem memória, não existiriam computadores da forma que conhecemos
- Armazena tanto dados quanto instruções
- Memórias podem ser construídas a partir de portas NOR e NAND.

Latches

- (a) Latch NOR no estado 0. (b) Latch NOR no estado 1.
- (c) Tabela verdade p/ porta NOR.

- Latches: Diferença IMPORTANTE
 - Diferentemente de um circuito combinatório, as saídas do latch não são determindas unicamente pelas suas entradas !!!! O circuito leva em conta uma entrada ANTERIOR.
 - O circuito "LEMBRA" de sua entrada anterior.
 - Com este circuito é possível construir memórias de computadores.

Latches SR com clock

 Latches D com clock. Motivação: evitar a entrada S=R=1. Pois é não-determinística.

 Flip-flop: igual a latch só que é edgetriggered ao invés de level-triggered.

Prefixos métricos

- $\text{ mili (m)} = 10^{-3}$
- micro (μ) = 10⁻⁶
- $\text{ nano (n)} = 10^{-9}$
- pico (p) = 10^{-12}
- $femto (f) = 10^{-15}$
- atto (a) = 10^{-18}
- zepto (z) = 10^{-21}
- $yocto (y) = 10^{-24}$

- Registradores
 - São formados por vários flip-flops. Ex.:
 - registradores de 8 bits s\u00e3o formados por 8 flipflops
 - 16 bits -> 16 flip-flops
 - 32 bits -> 32 flip-flops
 - n bits -> n flip-flops

- RAM Random Access Memory Memória de Acesso Aleatório
 - Podem ser escritas e lidas várias vezes
 - Este nome é o oposto de Memória de Acesso
 Seqüencial de fitas magnéticas
 - Duas variedades: SRAM (Static RAM) e DRAM (Dynamic RAM)

- RAM: SRAM
 - Construída com flip-flops D
 - Mantém seu conteúdo enquanto houver alimentação de energia
 - São muito rápidas: acesso em nano segundos (10⁻⁹ segundos)
 - Utilizadas para construir memórias cache nível 2

RAM: DRAM

- Construída a partir de array de células. Cada célula é composta por 1 transistor e um capacitor
- Necessita de ciclos de "atualização" (refresh)
 p/ manter dado a cada x mili-segundos
- Velocidade na casa dos 60 nano segundos (mais antigas) à 5 nano segundos (DDR)
- Utilizadas para construir memórias voláteis do sistema ("RAM")

- RAM: DRAM: tipos assíncronos
 - linhas de endereço e dados não são sincronizados por um único clock
 - FPM (Fast Page Mode)
 - EDO (Extended Data Output)

- RAM: DRAM: tipos síncronos
 - linhas de endereço e dados são sincronizados por um único clock
 - SDRAM
 - SDR SDRAM (Single-Data-Rate Synchronous DRAM)
 - Híbrido de RAM estática e dinâmica
 - DDR SDRAM (Double-Data-Rate SDRAM)
 - Transfere dados tanto na subida quanto na descida do sinal de clock

DDR SDRAM

Standard name	Memory clock	Time between signals	I/O Bus clock	Data transfers per second	Module name	Peak transfer rate
DDR-200	100 MHz	10 ns	100 MHz	200 Million	PC-1600	1.600 GB/s
DDR-266	133 MHz	7.5 ns	133 MHz	266 Million	PC-2100	2.133 GB/s
DDR-333	166 MHz	6 ns	166 MHz	333 Million	PC-2700	2.667 GB/s
DDR-400	200 MHz	5 ns	200 MHz	400 Million	PC-3200	3.200 GB/s

DDR2 SDRAM

Standard name	Memory clock	Time between signals	I/O Bus clock	Data transfers per second	Module name	Peak transfer rate
DDR2-400	100 MHz	10 ns	200 MHz	400 Million	PC2-3200	3.200 GB/s
DDR2-533	133 MHz	7.5 ns	266 MHz	533 Million	PC2-4200	4.264 GB/s
DDR2-667	166 MHz	6 ns	333 MHz	667 Million	PC2-5300	5.336 GB/s
DDR2-800	200 MHz	5 ns	400 MHz	800 Million	PC2-6400	6.400 GB/s
DDR2-1066 (planned)	266 MHz	3.75 ns	533 MHz	1066 Million	PC2-8500 (planned)	8.500 GB/s

- ROM (Read-Only Memory)
 - Permite apenas operações de leitura
 - Não são voláteis (mantém dados mesmo sem alimentação de energia elétrica)
 - Dados geralmente são gravados no processo de fabricação da ROM (material foto-sensível)

- ROM: PROM (Programmable ROM)
 - Programável/gravável apenas uma vez utiliza "alta voltagem" para gravar
- ROM: EPROM (Erasable PROM)
 - Similar à PROM
 - "Fotonicamente" apagável com luz ultravioleta (10 à 20 minutos de exposição)
- ROM: EEPROM (Electronic EPROM)
 - Eletronicamente apagável

- "ROM": EEPROM memória flash
 - acessada como um dispositivo de bloco (PENDRIVE!!!)
 - Leitura e escrita como um procedimento "padrão"