

Weigandt, Herman CoderHouse - Data Science

Agosto, 2023



# Tabla de contenido

| 1.  | Descripción del caso de negocio         | 3  |
|-----|-----------------------------------------|----|
| 2.  | Tabla de versionado.                    | 3  |
| 3.  | Objetivos del modelo.                   | 3  |
| 4.  | Descripción de los datos                | 3  |
| 5.  | EDA: Exploratory Data Analysis          | Ţ  |
| 6.  | Algoritmo Elegido.                      | 12 |
| 7.  | Métricas de Desempeño del Modelo.       | 13 |
| 8.  | Iteraciones de Optimización.            | 13 |
| 9.  | Métricas finales del Modelo Optimizado. | 13 |
| 10. | Futuras líneas                          | 14 |
| 11. | Conclusiones:                           | 14 |

## 1. Descripción del caso de negocio

El mercado de energía es uno de los mercados más dinámicos de los últimos tiempos por varios aspectos. Por un lado, siempre hablando del mercado mayorista, la energía producida no puede almacenarse por lo que su producción, comercialización y distribución se realiza en tiempo real día a día. Por otra parte, los distintos países y regiones han ido adaptando sus matrices energéticas en consideración de la conciencia ecológica (huella de carbono y energías renovables), la independencia energética y el crecimiento del consumo, como asimismo el cambio de preferencias de los consumidores tanto por los nuevos sistemas de climatización, el uso de dispositivos electrónicos y la movilidad sustentable.

Atendiendo a esto y en especial consideración de que la energía producida no puede acumularse a gran escala, se considera primordial la predicción de la cantidad a producir/cantidad demandada, para evitar desperdicios que llevaran a su encarecimiento, al igual que la subproducción que puede llevar a la sobreexigencia del sistema energético o la falta de su servicio, el cual en muchos casos es de vital importancia para la refrigeración de alimentos u otros casos como el funcionamiento de equipamiento indispensable como lo es el hospitalario.

Sobre lo anterior y destacando la regionalidad del mercado mayorista de energía eléctrica, se aborda en el presente trabajo el mercado español, considerando cuatro regiones y estudiando tanto variables climáticas como de producción y comercialización de la misma.

#### 2. Tabla de versionado.

Sólo existe una versión.

### 3. Objetivos del modelo.

Con base en todas las variables que presenta el dataset relevado, se propone estudiar: ¿Cuáles son las razones (variables) que determinan la demanda de energía eléctrica?, para de ésta manera predecir la misma a efectos de cubrirla de la manera más eficiente posible.

Partiendo de esta pregunta objetivo, resulta de interés identificar la mínima cantidad de variables que la determinan y así encontrar un modelo de predicción que permita saber con la mayor anticipación posible, el comportamiento de nuestra variable principal.

## 4. Descripción de los datos

Este conjunto de datos contiene 4 años de consumo eléctrico, generación, precios y datos meteorológicos para España. Los datos de consumo y generación se recuperaron de ENTSOE, un portal público para datos de operadores de servicios de transmisión (TSO). Los precios de liquidación se obtuvieron del TSO español Red Electric España. Los datos meteorológicos se compraron como parte de un proyecto personal de Open Weather API para las 5 ciudades más grandes de España y se publicaron, como dominio público, en el sitio Kaggle y se puede acceder en el siguiente Link.

A continuación se provee de una breve descripción de las variables: Dataframe clima:

| # | Column Descripción           | Non-Null Count Dtype    |
|---|------------------------------|-------------------------|
|   |                              |                         |
| 0 | dt iso Fecha                 | 178396 non-null object  |
| 1 | city_name Ciudad             | 178396 non-null object  |
| 2 | temp Temperatura (K°)        | 178396 non-null float64 |
| 3 | temp_min Temp. minima (K°)   | 178396 non-null float64 |
| 4 | temp_max Temp. máxima (K°)   | 178396 non-null float64 |
| 5 | pressure Presión atmosférica | 178396 non-null int64   |
| 6 | humidity Humedad             | 178396 non-null int64   |
| 7 | wind_speed Vel. del viento   | 178396 non-null int64   |

| 8  | wind_deg Dir. Del viento        | 178396 | non-null | int64   |
|----|---------------------------------|--------|----------|---------|
| 9  | rain_1h Lluvia en la últ hs     | 178396 | non-null | float64 |
| 10 | rain_3h Lluvia en las últ. 3hs  | 178396 | non-null | float64 |
| 11 | snow_3h Nieve en las últ. 3 hs  | 178396 | non-null | float64 |
| 12 | clouds_all Niebla               | 178396 | non-null | int64   |
| 13 | weather_id Codificador          | 178396 | non-null | int64   |
| 14 | weather_main Codificador        | 178396 | non-null | object  |
| 15 | weather_description Descripción | 178396 | non-null | object  |
| 16 | weather_icon Ícono              | 178396 | non-null | object  |

#### Dataframe producción y consumo:

| # | Column         | Descripción         | Non-Nu       | ıll Count Dtype          |       |
|---|----------------|---------------------|--------------|--------------------------|-------|
| 0 | time           | 35                  | 064 non-nul  | l object                 |       |
| 1 | generation     | biomass             | 35045 r      | non-null float64         |       |
| 2 | generation     | fossil brown coal/l | ignite 35    | 5046 non-null float64    |       |
| 3 | generation     | fossil coal-derived | gas 35       | 046 non-null float64     |       |
| 4 | generation     | fossil gas          | 35046 n      | on-null float64          |       |
| 5 | generation     | fossil hard coal    | 35046        | non-null float64         |       |
| 6 | generation     | fossil oil          | 35045 no     | n-null float64           |       |
| 7 | generation     | fossil oil shale    | 35046        | non-null float64         |       |
| 8 | generation     | fossil peat         | 35046 n      | non-null float64         |       |
| 9 | generation     | geothermal          | 35046        | non-null float64         |       |
| 1 | 0 generation   | hydro pumped sto    | orage aggreg | ated 0 non-null float6   | 4     |
| 1 | 1 generation   | hydro pumped sto    | orage consur | nption 35045 non-null fl | oat64 |
| 1 | 2 generation   | hydro run-of-rive   | r and pounda | age 35045 non-null float | 64    |
| 1 | 3 generation   | hydro water resei   | voir 3       | 5046 non-null float64    |       |
| 1 | 4 generation   | marine              | 35045 r      | non-null float64         |       |
| 1 | 5 generation   | nuclear             | 35047 r      | non-null float64         |       |
| 1 | 6 generation   | other               | 35046 n      | on-null float64          |       |
| 1 | 7 generation   | other renewable     | 350          | 046 non-null float64     |       |
| 1 | 8 generation   | ı solar             | 35046 nc     | on-null float64          |       |
| 1 | 9 generation   | waste               | 35045 n      | on-null float64          |       |
| 2 | 0 generation   | wind offshore       | 3504         | 16 non-null float64      |       |
| 2 | 1 generation   | wind onshore        | 350          | 46 non-null float64      |       |
| 2 | 2 forecast so  | olar day ahead      | 35064        | 4 non-null float64       |       |
| 2 | 3 forecast w   | ind offshore eday a | ahead        | 0 non-null float64       |       |
| 2 | 4 forecast w   | ind onshore day ah  | nead 3       | 35064 non-null float64   |       |
| 2 | 5 total load t | forecast Cant. Pro  | nosticada    | 35064 non-null float64   |       |
| 2 | 6 total load   | actual Cant. Real   | 3502         | 8 non-null float64       |       |
| 2 | 7 price day a  | head                | 35064 nc     | on-null float64          |       |
| 2 | 8 price actua  | al                  | 35064 non-   | null float64             |       |

En principio se realizó un análisis de todas las variables. Se detecto que las columnas "forecast wind offshore day ahead" y "generation hydro pumped storage aggregated" se encuentran vacías y que la columna de cantidad real consumida (26) presenta 36 datos faltantes y algunas otras presentar varios valores iguales a 0, las cuales no se detallan en honor a la brevedad y que las mismas, según se explicará más adelante, no son relevantes.

El dataset contiene 46 variables con 35064 registros para el dataframe de producción y consumo y

178396 registros para el dataframe de clima de lo cual hay que destacar que respecto del clima hay 1 registro por cada ciudad relevada para un mismo momento, mientras que relativo al mercado de energía hay un registro para cada momento y la cantidad consumida no se encuentra discriminada por ciudad.

En el primer relevamiento de las variables, y en vistas de nuestro objetivo se realiza un primer descarte de variables por no considerarse pertinentes y se las excluye del EDA y de los modelos. Las variables excluidas son:

• Las variables del dataframe de producción y consumo, exceptuando las variables de cantidad consumida (total load actual) y de precio (Price actual).

Del total de las 46 variables, si quitamos las mencionadas arriba, nos quedamos con 19 variables, de las cuales se tienen :

- 8 variables categóricas
- 11 variables numéricas (cuantitativas)
  Entre las categóricas hay algunas ordinales y otras nominales.

A continuación se detallan los principales resultados del EDA, de las demás variables estudiadas.

## 5. EDA: Exploratory Data Analysis

### Análisis gráfico

Para iniciar el análisis exploratorio de datos se estudió mediante un histograma la distribución de frecuencias de las temperaturas medias a nivel nacional y luego el comportamiento de éstas solo considerando la ciudad de Sevilla, a efectos de establecer rango de datos y comportamiento general. De ello se obtuvo lo siguiente

➤ El histograma de temperaturas medias nacionales presenta forma típica de distribución normal (campana de Gauss) con varianza pequeña y por ende gran concentración de valores en la proximidad de la media.



Se observa que la media es aproximadamente 290° K y el rango de valores se encuentra comprendido en el intervalo [260; 315]

Para un mejor análisis comparativo entre los dos casos particulares en mención se recurre a un boxplot diferenciando las distribuciones por ciudad y considerando las temperaturas máximas para un conocimiento más acabado de los datos (con estudio de mayor número de variables) y tomando como supuesto de apoyo que las temperaturas máximas son las de mayor incidencia en el consumo eléctrico debido a la utilización de aires acondicionados y electrodomésticos afines como son las heladeras. El estudio arroja lo siguiente:



Interpretando el gráfico anterior, puede observarse que, salvando las diferencias en el rango de temperaturas, Sevilla y Madrid presentan la mayor amplitud térmica, teniendo Sevilla en términos generales temperaturas más elevadas. A su vez, Sevilla muestra una media más centrada entre los cuantiles 25% y 75%, como así también una menor distancia entre éstos, lo que se traduce en una concentración más elevada de los valores en términos relativos con la muestra inherente a la ciudad capital.

➤ Posteriormente, en el caso particular de Sevilla, se extrae que la temperatura media aproximada es de 292° K y las temperaturas con frecuencias mínimamente significativas se encuentran comprendidas entre 272° K y 308° K.

A su vez, se deduce a simple vista que los datos para este caso presentan una varianza mayor que en el histograma de la temperatura media a nivel nacional en su frecuencia y por lo tanto una mayor dispersión de los valores alrededor de la media.



En motivo de lo anterior, sumado al hecho de que las condiciones climáticas vienen detalladas por ciudad, pero los datos de consumo son a nivel nacional; a fin de poder construir un modelo basado en las condiciones climáticas para la predicción del consumo, se realiza el siguiente supuesto fundamental:

- Por la mayor amplitud térmica, la inexistencia de valores atípicos, su tendencia a temperaturas más altas, con las implicancias antes detalladas y el comportamiento de los valores alrededor de la media; se decide tomar como caso representativo para la construcción del modelo, la ciudad de Sevilla, uniendo estos valores a los de consumo nacional para cada momento temporal.
- Con motivo de profundizar en el estudio gráfico de las variables y en consideración de los conocimientos generales sobre clima, se selecciona como siguiente variable a analizar la humedad y su relación con la temperatura. El resultado se muestra a continuación:



La conclusión es evidente en cuanto a que humedad y temperatura presentan relación inversa entre ellas, con comportamiento lineal. Como conclusión visual se puede agregar que la humedad influye en la amplitud térmica de manera positiva, no así en la temperatura propiamente dicha.

Ya habiendo analizado las principales variables climáticas a primera vista, procedemos a realizar un estudio bivariado de ellas a nivel general a lo largo del dataframe bajo estudio mediante un gráfico pair.plot de la biblioteca Seaborn, obteniendo lo siguiente:



Se extrae del presente examen que:

- Las temperaturas máxima, mínima y simple se encuentran relacionadas entre sí de manera positiva, hecho que se considera una conclusión lógica, si no obvia.
- El consumo de energía no muestra un comportamiento claro respecto de ningunas de las variables del resto del conjunto, al menos en este

- análisis bivariado.
- Lo que podría esperarse como comportamiento de la cantidad consumida en relación al precio (relación inversa), no es tal lo que requerirá un estudio más profundo.
- ▶ Dado lo anterior y recurriendo a la teoría económica, haciendo hincapié en que el consumo de energía presentaría una demanda inelástica debido a que independientemente de su precio, la utilización de los electrodomésticos se mantiene, o incluso es indispensable como es el caso de las heladeras y en menor medida, pero sostenido la utilización de los sistemas eléctricos de climatización; pasa a considerarse la relación de la demanda con el recíproco de su precio (1/Px), lo cual se plasma visualmente con el siguiente gráfico:



Fundamentado esto, se podría decir además que el mercado eléctrico presenta cierta estabilidad, lo que no justificaría grandes variaciones de precios, excepto cambios económicos coyunturales, que pueden considerarse no habituales en economías del primer mundo, aunque no imposible, como evidenció el impacto de la guerra Rusia-Ucrania y adyacente crisis de gas y por extensión energética en todo Europa.

#### **Análisis matemático**

Superado el primer pantallazo a nuestros datos, recurriremos a herramientas matemáticas para una elección eficiente de nuestras variables. Para ello elegimos el método PCA (Principal Components Analysis), en el cual, solo tomando variables numéricas, se determina el porcentaje de variabilidad que explica cada una y se ordenan, tomando esta categorización, de mayor a menor.

Como criterio general se busca que el modelo desarrollado pueda explicar al menos el 95% de la variabilidad de la variable explicada.

Éste método, además de jerarquizar la importancia de las variables dentro del modelo, busca brindar una herramienta precisa para la reducción de la dimensionalidad, lo que es sumamente deseable, entre otros motivos, por la claridad a la hora de extraer conclusiones.

Para evitar problemas de magnitudes por tener las variables distintas unidades de medida, se estandarizan previo a la aplicación del método (restando a cada valor su media y dividiendo por su desvío estándar).

En la primera prueba incluimos todas las variables ya seleccionadas:

| Variable          | Varianza Explicada   |
|-------------------|----------------------|
| temp              | 0.29463220578205646  |
| temp_min          | 0.17021262859307634  |
| temp_max          | 0.10330780236205588  |
| pressure          | 0.08243169339701324  |
| humidity          | 0.07753309313984079  |
| wind_speed        | 0.059016537669030866 |
| wind_deg          | 0.05123982066651435  |
| rain_1h           | 0.04915948209345598  |
| rain_3h           | 0.04475755859929375  |
| snow_3h           | 0.03016949972956929  |
| clouds_all        | 0.025254397980920072 |
| weather_id        | 0.012219183126557709 |
| total load actual | 6,60969E-05          |
| price actual      | 1,62053E-19          |



Para lograr una mejor aproximación se eliminan las variables que a pesar de ser numéricas representan categorías (clouds\_all y weather\_id) como así también la variable relativa a la dirección del viento. Luego se realiza nuevamente el cálculo.

| Variable          | Variance Explained   |
|-------------------|----------------------|
| temp              | 0.3662748084502922   |
| temp_min          | 0.14091433386935465  |
| temp_max          | 0.12046811111730812  |
| pressure          | 0.10028664884879483  |
| humidity          | 0.09304749410973102  |
| wind_speed        | 0.06438051977718127  |
| rain_1h           | 0.06041822522067787  |
| rain_3h           | 0.03646671484909068  |
| snow_3h           | 0.017657053161306634 |
| total load actual | 8,61E-05             |
| price actual      | 4,86859E-20          |



Eliminamos ahora el precio por ser el menos relevante (y con fundamento teórico en nuestras conclusiones del análisis gráfico) y la cantidad por ser nuestra variable objetivo y repetimos el test:

| Variable   | Varianza Explicada     |
|------------|------------------------|
| temp       | 0.4473823782640926     |
| temp_min   | 0.16320968145362633    |
| temp_max   | 0.12535691731601104    |
| pressure   | 0.11154719374128576    |
| humidity   | 0.08341747410513167    |
| wind_speed | 0.046303325994775754   |
| rain_1h    | 0.02267500733700965    |
| rain_3h    | 0.00010802178806735523 |
| snow_3h    | 0.0                    |



En este testeo observamos que las últimas 3 variables no son de relevancia según nuestro criterio. A su vez observamos que de eliminar la 6° variable, no alcanzaríamos el 95% de varianza explicada.

Atento a ello, conservamos como definitivas para nuestro modelo las primeras 6 variables.

#### Conjetura extra.

A fin de completar el análisis numérico se realiza una hipótesis extra sobre el comportamiento de los datos, la cual se enuncia de la siguiente manera:

❖ El consumo de energía, más que de la temperatura, dependerá de la diferencia entre ésta y la temperatura de confort, todo ello elevado al cuadrado. Lo anterior se explica en base a qué alejarnos de la temperatura en cuestión, nos llevará a calefaccionar o refrescar nuestro ambiente y ello elevará el consumo de energía. Esto mismo, se toma elevado al cuadrado para convertir en positivos los valores de la diferencia explicada, para temperaturas por debajo de la de confort, la cual es considerada la temperatura de 22° C.

La formula de ello, quedaría expresada así: Dif. Temp. =  $(Temp. - 22)^2$ .

Aplicado el método PCA para esta hipótesis, en los casos de 9 variables y de 6 variables (descartando las temperaturas por su correlación con la variable creada), se arrojan los siguientes resultados:

| Variable           | Varianza Explicada   | Variable           | Varianza Explicada  |
|--------------------|----------------------|--------------------|---------------------|
| temp               | 0.4033840619893744   | pressure           | 0.2440362640762379  |
| temp_min           | 0.14940962878746783  | humidity           | 0.20188213253248552 |
| temp_max           | 0.11254558587664389  | wind_speed         | 0.16717052632579493 |
| pressure           | 0.11142806098153077  | rain_1h            | 0.1624539089013531  |
| humidity           | 0.09346176193946029  | rain_3h            | 0.12702280440861374 |
| wind_speed         | 0.07255827056784468  | snow_3h            | 0.09743436375551483 |
| rain_1h            | 0.03705468922007599  | diferencia_confort | 0.0                 |
| rain_3h            | 0.020062684283248488 |                    |                     |
| snow_3h            | 9,53E-05             |                    |                     |
| diferencia_confort | 0.0                  |                    |                     |

Atento a que, en ninguno de los casos, esta nueva variable explica la varianza, se descarta la

hipótesis y se conservan las variables seleccionadas en el paso anterior.

#### **Dataset seleccionado**

Luego de aplicar las herramientas antes descriptas y realizado el análisis transmitido, el dataset a modelar es el siguiente:

| dt_iso          | temp    | temp_min       | temp_max       | pressure | humidity | wind_speed | total load actual |
|-----------------|---------|----------------|----------------|----------|----------|------------|-------------------|
| 2014-12-31 23:0 | 0.22500 | 0.225000000000 | 0.225000000000 | 1039     | 75       | 1          | 25385.0           |
| 2015-01-01 00:0 | 0.22500 | 0.225000000000 | 0.225000000000 | 1039     | 75       | 1          | 24382.0           |
| 2015-01-01 01:0 | 0.93600 | 0.936000000000 | 0.936000000000 | 1039     | 71       | 3          | 22734.0           |
| 2015-01-01 02:0 | 0.93600 | 0.936000000000 | 0.936000000000 | 1039     | 71       | 3          | 21286.0           |
| 2015-01-01 03:0 | 0.93600 | 0.936000000000 | 0.936000000000 | 1039     | 71       | 3          | 20264.0           |

## 6. Algoritmo Elegido.

A fin de poder aplicar los modelos de ML, se generó una codificación a las variables categóricas, es decir, se les asignó un valor numérico, mediante el algoritmo de *labelencoder*.

Los modelos utilizados para predecir la variable Attrition fueron los siguientes:

- 1. Árbol de Decisión
- 2. Random Forest
- 3. Regresión Logística
- 4. KNN
- 5. XGBoost

En un primer lugar se testearon los modelos con el dataset completo, filtrando las variables que se mencionaron en la sección anterior, tomando una división de Train/Test con una relación de 70/30.

Finalmente se utilizó una técnica de optimización de parámetros, sobre tres de los modelos implementados, el bosque aleatorio, y el XGBoost.

Cabe aclarar que originalmente se construyeron los modelos buscando optimizar el resultado de las métricas  $r^2$ , MSE y MAE,

Random Forest Regressor: Gradient Boosting Regressor:

## 7. Métricas de Desempeño del Modelo.

A continuación se presentan los resultados obtenidos

## Modelos con dataset considerando la técnica Oversampling:

| Métrica \<br>Modelo | arbol_1b | arbol_2b | forest_1b | forest_2b | LogRegb  | knn_b | XGboost_b |
|---------------------|----------|----------|-----------|-----------|----------|-------|-----------|
| Accuracy            | 0.646259 | 0.811791 | NaN       | NaN       | 0.673469 | NaN   | 0.786848  |
| Precision           | 0.176870 | 0.333330 | NaN       | NaN       | 0.221480 | NaN   | 0.296300  |
| Recall              | 0.426230 | 0.360660 | NaN       | NaN       | 0.540980 | NaN   | 0.393440  |
| ROC_curve           | 0.617470 | 0.641780 | NaN       | NaN       | 0.641780 | NaN   | 0.620530  |

## Modelos optimizados:

| Métrica \<br>Modelo | arbol_<br>optimizado |
|---------------------|----------------------|
| Accuracy            | 0.82337              |
| Precision           | 0.22222              |
| Recall              | 0.03333              |
| ROC_curve           | 0.66523              |

## 8. Iteraciones de Optimización.

No se realizaron iteraciones sobre los modelos optimizados.

# 9. Métricas finales del Modelo Optimizado.

El modelo considerado óptimo sEGÚN los resultados de las métricas obtenidas, fue la Regresión Logística, para la cual se obtuvo:

| Métrica \<br>Modelo | Regresión Logística<br>optimizada |
|---------------------|-----------------------------------|
| Accuracy            | 0.866848                          |
| Precision           | 0.666670                          |
| Recall              | 0.366670                          |
| ROC_curve           | 0.796750                          |



Figura 9.1 Curva.

## 10. Futuras líneas

# 11. Conclusiones: