

Report No.: ZR/2019/B000406

Appendix A

Detailed System Check Results

1. System Performance Check
System Performance Check 750 MHz Head
System Performance Check 835 MHz Head
System Performance Check 835 MHz Head
System Performance Check 1750 MHz Head
System Performance Check 1900 MHz Head
System Performance Check 1900 MHz Head
System Performance Check 2450 MHz Head
System Performance Check 2600 MHz Head

Test Laboratory: SGS-SAR Lab

System Performance Check 750 MHz Head

DUT: D750V3; Type: D750V3; Serial: 1160

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL750; Medium parameters used: f = 750 MHz; $\sigma = 0.884$ S/m; $\varepsilon_r = 42.483$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3793; ConvF(9.41, 9.41, 9.41); Calibrated: 2019-03-25;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn871; Calibrated: 2019-06-27

• Phantom: SAM 8; Type: SAM; Serial: 1063

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.65 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 50.57 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 4.71 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.939$ S/m; $\varepsilon_r = 41.746$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3793; ConvF(9.04, 9.04, 9.04); Calibrated: 2019-03-25;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn871; Calibrated: 2019-06-27

• Phantom: SAM 8; Type: SAM; Serial: 1063

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.96 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 55.41 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.76 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.64 W/kgMaximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: D835V2; Serial: 4d120

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.909$ S/m; $\varepsilon_r = 41.668$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3793; ConvF(9.04, 9.04, 9.04); Calibrated: 2019-03-25;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn871; Calibrated: 2019-06-27

• Phantom: SAM 8; Type: SAM; Serial: 1063

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.05 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 53.74 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1750 MHz Head

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\varepsilon_r = 40.794$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3982; ConvF(8.8, 8.8, 8.8); Calibrated: 2019-09-11;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn896; Calibrated: 2019-09-18

• Phantom: SAM 3; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 88.03 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.49 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d142

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.408$ S/m; $\varepsilon_r = 41.495$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3982; ConvF(8.48, 8.48, 8.48); Calibrated: 2019-09-11;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn896; Calibrated: 2019-09-18

• Phantom: SAM 4; Type: SAM; Serial: 1640

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.82 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dv=8mm, dz=5mm

Reference Value = 88.89 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.39 W/kgMaximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d142

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.449$ S/m; $\varepsilon_r = 38.457$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3982; ConvF(8.48, 8.48, 8.48); Calibrated: 2019-09-11;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn896; Calibrated: 2019-09-18

• Phantom: SAM 4; Type: SAM; Serial: 1640

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.1 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 88.60 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.7 W/kg; SAR(10 g) = 5.54 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: D2450V2; Serial: 869

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.826$ S/m; $\varepsilon_r = 40.743$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3793; ConvF(6.93, 6.93, 6.93); Calibrated: 2019-03-25;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn871; Calibrated: 2019-06-27

• Phantom: SAM 7; Type: SAM; Serial: 1027

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 19.8 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 89.41 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.82 W/kgMaximum value of SAR (measured) = 21.0 W/kg

0 dB = 21.0 W/kg = 13.22 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head

DUT: D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 1.996$ S/m; $\varepsilon_r = 40.206$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3793; ConvF(6.78, 6.78, 6.78); Calibrated: 2019-03-25;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn871; Calibrated: 2019-06-27

• Phantom: SAM 7; Type: SAM; Serial: 1027

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 86.89 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 23.8 W/kg

0 dB = 23.8 W/kg = 13.77 dBW/kg