

SEQUENCE LISTING

<110> Maquat, Lynne E.

<120> NONSENSE-MEDIATED mRNA DECAY

<130> 21108.0023U2

<140> 10/525,273

<141> 2005-02-22

<150> PCT/US03/26166

<151> 2003-08-21

<150> 60/405,602

<151> 2002-08-22

<160> 38

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 1

gcctattggc ctatttccc

20

<210> 2

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 2

cctgaagttc tcaggatc

18

<210> 3

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 3

atctggcacc acacccctca caatgagctg cg

32

<210> 4

<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 4
cgtcatactc ctgcttgctg atccacatct gc 32

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 5
tgcaaggagt ttcatcctg 19

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 6
agaatcagta gtttaacaca c 21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 7
tgagcatagt tattaatgc ag 22

<210> 8
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 8
gcttagctcga gaccggtgcc accatggact acaaagacga tgacgacaag gcggaaaggc 60
tggagcgtgt gcggatc 77

<210> 9

<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 9
tttaaacccg gcctgcgggg ccagagtagc caggatcccg cg 43

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 10
tgaccttcag cgccctcg 18

<210> 11
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 11
ctccgaggtcc ctctgcc 17

<210> 12
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 12
ggcaaaggct ctgagaagc 19

<210> 13
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 13
ccgagggtccc aaaggcg 17

<210> 14
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 14
atcgaagatc tggatccaag gtcgggcagg agagggcct 39

<210> 15
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 15
tacacaaaagc aatgtccatt acatgccacg gtgtttcgtc ctttccacaa gatataaa 59

<210> 16
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 16
cgaaaatctag aaaaaagtgg catgtaatgg acattgccta cacaaagc 48

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 17
gcugcagcag aacaggccat t 21

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 18
guacaaccca ggauaugugt t 21

<210> 19
<211> 59
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 19

tacacaaaca gggctgttct tcgagatgcg gtgttcgtc ctttccacaa gatataaa 59

<210> 20

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 20

cgaatcttag aaaaaagcat ctcgaagaac agccctgcta cacaaaca 48

<210> 21

<211> 59

<212> DNA

<213> Artificial Sequence

v

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 21

tacacaaagc aatgtccgtt gcatgccacg gtgttcgtc ctttccacaa gatataaa 59

<210> 22

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 22

cgaatcttag aaaaaagtgg catgcaacgg acattgccta cacaaagc 48

<210> 23

<211> 59

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 23

tacacaaagt tcagaggctg tgtcataacg gtgttcgtc ctttccacaa gatataaa 59

<210> 24

<211> 48

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 24
cgaaaatctag aaaaaagtta tgacacagcc tctgaaccta cacaaagt 48

<210> 25
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 25
tacacaaaacc aaggcacttg ttggcagtcg gtgttcgtc ctttccacaa gatataaa 59

<210> 26
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 26
cgaaaatctag aaaaaagact gccacaaga gtgcgttgc cacaacc 48

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 27
gcagcgagca actgagaagc 20

<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 28
gggttagtg gtacttgtga gc 22

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 29
gactgagccg atcccgccg 19

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 30
gcagtaacgg cagacttctc 20

<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 31
ccttcctgc tcttgccctg 19

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 32
gcttttatt tgtcagaaga cag 23

<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 33
atctggcacc acaccttcta caatgagctg 30

<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 34
cgtcatactc ctgcttgctg atccacatct

30

<210> 35
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 35
atgacttcga aagtttat

18

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 36
ttcagatttg atcaacgca

19

<210> 37
<211> 1419
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 37
Met Ala Glu Gly Leu Glu Arg Val Arg Ile Ser Ala Ser Glu Leu Arg
1 5 10 15
Gly Ile Leu Ala Thr Leu Ala Pro Gln Ala Gly Ser Arg Glu Asn Met
20 25 30
Lys Glu Leu Lys Glu Ala Arg Pro Arg Lys Asp Asn Arg Arg Pro Asp
35 40 45
Leu Glu Ile Tyr Lys Pro Gly Leu Ser Arg Leu Arg Asn Lys Pro Lys
50 55 60
Ile Lys Glu Pro Pro Gly Ser Glu Glu Phe Lys Asp Glu Ile Val Asn
65 70 75 80
Asp Arg Asp Cys Ser Ala Val Glu Asn Gly Thr Gln Pro Val Lys Asp
85 90 95
Val Cys Lys Glu Leu Asn Asn Gln Glu Gln Asn Gly Pro Ile Asp Pro
100 105 110
Glu Asn Asn Arg Gly Gln Glu Ser Phe Pro Arg Thr Ala Gly Gln Glu
115 120 125
Asp Arg Ser Leu Lys Ile Ile Lys Arg Thr Lys Lys Pro Asp Leu Gln
130 135 140
Ile Tyr Gln Pro Gly Arg Arg Leu Gln Thr Val Ser Lys Glu Ser Ala
145 150 155 160

Ser Arg Val Glu Glu Glu Val Leu Asn Gln Val Glu Gln Leu Arg
 165 170 175
 Val Glu Glu Asp Glu Cys Arg Gly Asn Val Ala Lys Glu Glu Val Ala
 180 185 190
 Asn Lys Pro Asp Arg Ala Glu Ile Glu Lys Ser Pro Gly Gly Gly Arg
 195 200 205
 Val Gly Ala Ala Lys Gly Glu Lys Gly Lys Arg Met Gly Lys Gly Glu
 210 215 220
 Gly Val Arg Glu Thr His Asp Asp Pro Ala Arg Gly Arg Pro Gly Ser
 225 230 235 240
 Ala Lys Arg Tyr Ser Arg Ser Asp Lys Arg Arg Asn Arg Tyr Arg Thr
 245 250 255
 Arg Ser Thr Ser Ser Ala Gly Ser Asn Asn Ser Ala Glu Gly Ala Gly
 260 265 270
 Leu Thr Asp Asn Gly Cys Arg Arg Arg Gln Asp Arg Thr Lys Glu
 275 280 285
 Arg Pro Pro Leu Lys Lys Gln Val Ser Val Ser Ser Thr Asp Ser Leu
 290 295 300
 Asp Glu Asp Arg Ile Asp Glu Pro Asp Gly Leu Gly Pro Arg Arg Ser
 305 310 315 320
 Ser Glu Arg Lys Arg His Leu Glu Arg Asn Trp Ser Gly Arg Gly Glu
 325 330 335
 Gly Glu Gln Lys Thr Ser Ala Lys Glu Tyr Arg Gly Thr Leu Arg Val
 340 345 350
 Thr Phe Asp Ala Glu Ala Met Asn Lys Glu Ser Pro Met Val Arg Ser
 355 360 365
 Ala Arg Asp Asp Met Asp Arg Gly Lys Pro Asp Lys Gly Leu Ser Ser
 370 375 380
 Gly Gly Lys Gly Ser Glu Lys Gln Glu Ser Lys Asn Pro Lys Gln Glu
 385 390 395 400
 Leu Arg Gly Arg Gly Arg Ile Leu Ile Leu Pro Ala His Thr Thr
 405 410 415
 Leu Ser Val Asn Ser Ala Gly Ser Pro Glu Ser Ala Pro Leu Gly Pro
 420 425 430
 Arg Leu Leu Phe Gly Ser Gly Ser Lys Gly Ser Arg Ser Trp Gly Arg
 435 440 445
 Gly Gly Thr Thr Arg Arg Leu Trp Asp Pro Asn Asn Pro Asp Gln Lys
 450 455 460
 Pro Ala Leu Lys Thr Gln Thr Pro Gln Leu His Phe Leu Asp Thr Asp
 465 470 475 480
 Asp Glu Val Ser Pro Thr Ser Trp Gly Asp Ser Arg Gln Ala Gln Ala
 485 490 495
 Ser Tyr Tyr Lys Phe Gln Asn Ser Asp Asn Pro Tyr Tyr Pro Arg
 500 505 510
 Thr Pro Gly Pro Ala Ser Gln Tyr Pro Tyr Thr Gly Tyr Asn Pro Leu
 515 520 525
 Gln Tyr Pro Val Gly Pro Thr Asn Gly Val Tyr Pro Gly Pro Tyr Tyr
 530 535 540
 Pro Gly Tyr Pro Thr Pro Ser Gly Gln Tyr Val Cys Ser Pro Leu Pro
 545 550 555 560
 Thr Ser Thr Met Ser Pro Glu Glu Val Glu Gln His Met Arg Asn Leu
 565 570 575
 Gln Gln Gln Glu Leu His Arg Leu Leu Arg Val Ala Asp Asn Gln Glu
 580 585 590
 Leu Gln Leu Ser Asn Leu Leu Ser Arg Asp Arg Ile Ser Pro Glu Gly
 595 600 605
 Leu Glu Lys Met Ala Gln Leu Arg Ala Glu Leu Leu Gln Leu Tyr Glu
 610 615 620
 Arg Cys Ile Leu Leu Asp Ile Glu Phe Ser Asp Asn Gln Asn Val Asp
 625 630 635 640

Gln Ile Leu Trp Lys Asn Ala Phe Tyr Gln Val Ile Glu Lys Phe Arg
 645 650 655
 Gln Leu Val Lys Asp Pro Asn Val Glu Asn Pro Glu Gln Ile Arg Asn
 660 665 670
 Arg Leu Leu Glu Leu Leu Asp Glu Gly Ser Asp Phe Phe Asp Ser Leu
 675 680 685
 Leu Gln Lys Leu Gln Val Thr Tyr Lys Phe Lys Leu Glu Asp Tyr Met
 690 695 700
 Asp Gly Leu Ala Ile Arg Ser Lys Pro Leu Arg Lys Thr Val Lys Tyr
 705 710 715 720
 Ala Leu Ile Ser Ala Gln Arg Cys Met Ile Cys Gln Gly Asp Ile Ala
 725 730 735
 Arg Tyr Arg Glu Gln Ala Ser Asp Thr Ala Asn Tyr Gly Lys Ala Arg
 740 745 750
 Ser Trp Tyr Leu Lys Ala Gln His Ile Ala Pro Lys Asn Gly Arg Pro
 755 760 765
 Tyr Asn Gln Leu Ala Leu Leu Ala Val Tyr Thr Arg Arg Lys Leu Asp
 770 775 780
 Ala Val Tyr Tyr Tyr Met Arg Ser Leu Ala Ala Ser Asn Pro Ile Leu
 785 790 795 800
 Thr Ala Lys Glu Ser Leu Met Ser Leu Phe Glu Glu Thr Lys Arg Lys
 805 810 815
 Ala Glu Gln Met Glu Lys Lys Gln His Glu Glu Phe Asp Leu Ser Pro
 820 825 830
 Asp Gln Trp Arg Lys Gly Lys Lys Ser Thr Phe Arg His Val Gly Asp
 835 840 845
 Asp Thr Thr Arg Leu Glu Ile Trp Ile His Pro Ser His Pro Arg Ser
 850 855 860
 Ser Gln Gly Thr Glu Ser Gly Lys Asp Ser Glu Gln Glu Asn Gly Leu
 865 870 875 880
 Gly Ser Leu Ser Pro Ser Asp Leu Asn Lys Arg Phe Ile Leu Ser Phe
 885 890 895
 Leu His Ala His Gly Lys Leu Phe Thr Arg Ile Gly Met Glu Thr Phe
 900 905 910
 Pro Ala Val Ala Glu Lys Val Leu Lys Glu Phe Gln Val Leu Leu Gln
 915 920 925
 His Ser Pro Ser Pro Ile Gly Ser Thr Arg Met Leu Gln Leu Met Thr
 930 935 940
 Ile Asn Met Phe Ala Val His Asn Ser Gln Leu Lys Asp Cys Phe Ser
 945 950 955 960
 Glu Glu Cys Arg Ser Val Ile Gln Glu Gln Ala Ala Ala Leu Gly Leu
 965 970 975
 Ala Met Phe Ser Leu Leu Val Arg Arg Cys Thr Cys Leu Leu Lys Glu
 980 985 990
 Ser Ala Lys Ala Gln Leu Ser Ser Pro Glu Asp Gln Asp Asp Gln Asp
 995 1000 1005
 Asp Ile Lys Val Ser Ser Phe Val Pro Asp Leu Lys Glu Leu Leu Pro
 1010 1015 1020
 Ser Val Lys Val Trp Ser Asp Trp Met Leu Gly Tyr Pro Asp Thr Trp
 1025 1030 1035 1040
 Asn Pro Pro Pro Thr Ser Leu Asp Leu Pro Ser His Val Ala Val Asp
 1045 1050 1055
 Val Trp Ser Thr Leu Ala Asp Phe Cys Asn Ile Leu Thr Ala Val Asn
 1060 1065 1070
 Gln Ser Glu Val Pro Leu Tyr Lys Asp Pro Asp Asp Asp Leu Thr Leu
 1075 1080 1085
 Leu Ile Leu Glu Glu Asp Arg Leu Leu Ser Gly Phe Val Pro Leu Leu
 1090 1095 1100
 Ala Ala Pro Gln Asp Pro Cys Tyr Val Glu Lys Thr Ser Asp Lys Val
 1105 1110 1115 1120

Ile Ala Ala Asp Cys Lys Arg Val Thr Val Leu Lys Tyr Phe Leu Glu
 1125 1130 1135
 Ala Leu Cys Gly Gln Glu Glu Pro Leu Leu Ala Phe Lys Gly Gly Lys
 1140 1145 1150
 Tyr Val Ser Val Ala Pro Val Pro Asp Thr Met Gly Lys Glu Met Gly
 1155 1160 1165
 Ser Gln Glu Gly Thr Arg Leu Glu Asp Glu Glu Asp Val Val Ile
 1170 1175 1180
 Glu Asp Phe Glu Glu Asp Ser Glu Ala Glu Gly Ser Gly Gly Glu Asp
 1185 1190 1195 1200
 Asp Ile Arg Glu Leu Arg Ala Lys Lys Leu Ala Leu Ala Arg Lys Ile
 1205 1210 1215
 Ala Glu Gln Gln Arg Arg Gln Glu Lys Ile Gln Ala Val Leu Glu Asp
 1220 1225 1230
 His Ser Gln Met Arg Gln Met Glu Leu Glu Ile Arg Pro Leu Phe Leu
 1235 1240 1245
 Val Pro Asp Thr Asn Gly Phe Ile Asp His Leu Ala Ser Leu Ala Arg
 1250 1255 1260
 Leu Leu Glu Ser Arg Lys Tyr Ile Leu Val Val Pro Leu Ile Val Ile
 1265 1270 1275 1280
 Asn Glu Leu Asp Gly Leu Ala Lys Gly Gln Glu Thr Asp His Arg Ala
 1285 1290 1295
 Gly Gly Tyr Ala Arg Val Val Gln Glu Lys Ala Arg Lys Ser Ile Glu
 1300 1305 1310
 Phe Leu Glu Gln Arg Phe Glu Ser Arg Asp Ser Cys Leu Arg Ala Leu
 1315 1320 1325
 Thr Ser Arg Gly Asn Glu Leu Glu Ser Ile Ala Phe Arg Ser Glu Asp
 1330 1335 1340
 Ile Thr Gly Gln Leu Gly Asn Asn Asp Asp Leu Ile Leu Ser Cys Cys
 1345 1350 1355 1360
 Leu His Tyr Cys Lys Asp Lys Ala Lys Asp Phe Met Pro Ala Ser Lys
 1365 1370 1375
 Glu Glu Pro Ile Arg Leu Leu Arg Glu Val Val Leu Leu Thr Asp Asp
 1380 1385 1390
 Arg Asn Leu Arg Val Lys Ala Leu Thr Arg Asn Val Pro Val Arg Asp
 1395 1400 1405
 Ile Pro Ala Phe Leu Thr Trp Ala Gln Val Gly
 1410 1415

<210> 38
<211> 5965
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 38
cctggctgcg cgcggcggtg gcggagccgc tacggctgta gcagcagccg cgaagatggc 60
ggaaggggctg gagcgtgtgc ggatctccgc gtcggagctg cgccggatcc tggctactct 120
ggcccccgag gcccggagca gagaaaacat gaagaatta aaggaggcca ggccgcgcaa 180
agataaacagg cgtccagatc tggaaatcta taaggctggc ctttctcggc taaggaacaa 240
gccccaaatc aaggaacccc ctgggagtga ggaattcaaa gatgaaattg ttaatgaccg 300
agattgctct gctgttggaa atggcacaca gcccgtaaa gatgtctgca aggaactgaa 360
caaccaagag cagaatggtc ctatagaccc agaaaataat cggggacaag aatccttcc 420
taggactgct ggacaagagg atcgtagttt aaaaattatc aaaagaacaa agaaaacccga 480
cctgcagatc tatcagcctg gacgacgtt gcagactgtt agcaaagaat ccgccagtcg 540
ggtggaggag gaagaagtcc tcaaccaggt agaacaactg agagtagagg aagatgagtg 600
tagggaaat gttgcgaagg aggaagtgc gaataaacca gacagggccg agatagaaaa 660

gagcccaggt	ggtgggagag	taggggctgc	aaaaggagaa	aaaggaaaga	ggatgggaaa	720
aggggagggg	gtgagggaaa	cccacgacga	cccggcccgc	gggaggccgg	gctccgcaaa	780
gcgcctactcc	cgctcagaca	aacgaaggaa	tcgcgtaccgc	acgcgcagca	ccagctcagc	840
tggcagcaac	aacagcgctg	agggagctgg	cctgacggat	aatggatgtc	gccgcccggc	900
acaggatagg	accaaggaga	ggccaccact	gaagaagcaa	gtgtctgtgt	cctcaaccga	960
ttcttagac	gaggacagaa	ttgatgagcc	tgatggatta	ggacccagga	gaagttcaga	1020
aaggaagaga	catttagaaa	gaaaactggtc	tggccgtggg	gagggtgagc	agaaaaaccag	1080
tgctaaagaa	tatcgaggca	ctttcgtgt	cacttcgtat	gcagaagcca	tgaacaaaga	1140
gtctcccatg	gtgaggtcag	ccaggatga	tatgataga	ggaaagcctg	acaaaggctt	1200
gagcagtggg	ggcaaaggct	ctgagaagca	ggagtc当地	aacccgaaac	aagaacttcg	1260
gggtcgttgt	cgtggattc	tgatttgcc	tgcccatacc	accctatctg	tcaattcagc	1320
aggttctcca	gagtccgcgc	ctttgggacc	tcggctttg	tttggatctg	gtagtaaggg	1380
atctcgagt	tggggccgtg	gaggcaccac	acgcggattg	tgggacccaa	acaatcctga	1440
tcagaaacct	gctctaaaga	ctcagacccc	ccagctacat	ttcttgacca	ctgatgatga	1500
agtcagccct	acatcttggg	gtgactcagc	ccagctcag	gcatcttact	ataagttca	1560
aaactctgac	aacccttatt	attacccccc	gacaccaggc	cctgcctccc	agtatcccta	1620
tacgggctat	aaccctctac	agtacccagt	gggccttacg	aatggatgtgt	acccaggggc	1680
ttactaccca	ggctacccga	ctccgtcagg	acagtatgt	tgtagccctc	tacctaccag	1740
caccatgagt	cccgaggagg	tagagcagca	catgaggaac	ctgcagcaac	aggagctgca	1800
caggctctc	cgggtggctg	acaaccaga	actgcagctc	agcaacctgc	tctccaggga	1860
ccgcattcgt	ccggaggggc	tggagaagat	ggcgc当地	agagctgaac	tgctgcagct	1920
atatgagcgc	tgtattctat	tagatattga	gttctctgtat	aatcagaatg	tggatcagat	1980
cctgtggaaag	aatgctttct	atcaggtgat	tgagaagttc	aggcaacttgc	tcaaggatcc	2040
gaatgtttag	aacccagaac	agattcgaa	cagacttttgc	gagctcttgg	atgagggtag	2100
tgacttcttt	gatagtttgc	ttcagaagat	gcaggttact	tacaagttca	aactggaaga	2160
ctacatggat	ggtcttgcca	ttcgc当地	gccattacgc	aagacagtaa	aatatgcctt	2220
gatcagtgcc	cagcgatgca	tgatatgc当地	aggagatatt	gctaggtacc	gggagcaagc	2280
cagtgataca	gc当地attatg	gaaaagcagc	cagttggat	ctgaaggccc	agcacattgc	2340
tcccaagaat	gggc当地ccct	ataaccaggat	ggcttgc当地	gcagttgtata	cgaggaggaa	2400
gcttgacgct	gtcttattact	atatgc当地	tttagtgc当地	agcaacccctt	tcctgactgc	2460
caaggagagt	ctcatgagct	tgtttgaaga	gaccaaggcg	aaggcagaac	agatggaaaa	2520
gaagcaacat	gaggaatttgc	acctgagccc	tgaccagttg	cggaaaggaa	agaagtctac	2580
tttccggcat	gttggagatg	acaccactcg	cctggagatc	tggattc当地	catcccatcc	2640
acggcttcc	cagggactg	agtctggaa	ggattctgag	caagagaatg	ggctgggcaag	2700
cctgagttccc	agtgtatctg	acaaaagggtt	catcctcgt	tttctccatg	ccatgggaa	2760
gctgtttacc	cggattggg	tggagacat	ccctgc当地	gctgagaagg	tcctcaagga	2820
gttccagggtg	ttactgc当地	acagcccccc	tcccattgga	agtaccgc当地	tgctgcagct	2880
tatgaccatc	aatatgtttg	cagtacacaa	ctccctcgt	aaagactgt	tctcggagga	2940
gtgccgc当地	gtgatccagg	aacaaggccg	agctctggc	ttggccatgt	tttctctact	3000
ggtccgc当地	tgcacctcgt	tacttaagga	gtccgc当地	gctcagctgt	cctctccctg	3060
ggaccaggat	gaccaagacg	acatcaaggt	gtcttccctt	gtcccgacc	tgaaggagct	3120
gctccccagt	gtcaaaggct	ggtc当地	gatgctc当地	tacccggaca	cctggaaatcc	3180
tcctcccaca	tccctggatc	tgccctc当地	tggtgctgt	gatgtatgtt	cgacgc当地	3240
tgatttctgt	aacatactg	ctgc当地	tcagttctg	gtgccactgt	acaaggacc	3300
ggatgtatgac	ctcaccctc	ttatcctg	agaggatcgg	tttctctc当地	gctttgtccc	3360
cttgctggct	gcccctcagg	acccctg	ctgtggagaa	acctcggata	aggattattgc	3420
agctgactgc	aaaagggtca	cagtgc当地	gtatttctg	gaagccctt	gtggaca	3480
agagcctctg	ctggcattca	agggtggaa	gtatgtgt	gtggcacc	tcccagacac	3540
catgggaaag	gaaatggaa	gccaagagg	aacacgactg	gaagatgagg	aggaggatgt	3600
ggtgattgaa	gactttgagg	aaagattcaga	ggctgaaaggc	agcggagg	aggatgacat	3660
cagggagctt	cgggccaaga	agctggct	ggccagg	atagctg	agcagcgtc	3720
ccaggaaaag	atccaggctg	tcctggag	ccacagtc	atgaggc	tggagctc	3780
aatcagac	ttgttccctg	taccagac	caacggctt	attgacc	tggccag	3840
ggcgc当地	ctggagag	ggaag	cattgtgg	cccctcatg	tgatcaatg	3900
gctggacggc	ctggccaagg	ggcagg	agaccacc	gctgggg	acgcccgt	3960
ggtacaagag	aaggccc	agtc当地	gttctc当地	cagcgat	agagtccgg	4020
cttgc当地	cgagcc	ccagccgt	caatgact	gaatccatg	cctccgc	4080
tgaggacatc	actggcc	tggtaacaa	cgatgat	atcctgt	gctgc当地	4140
ctactgc当地	gacaagg	ctaagg	ccgc当地	aaagagg	caatccgg	4200
actgc当地	gtgg	gtctgt	tgacggat	ccgaaac	cgtgt	4260
gaatgttcc	gtacgg	aca	ccctc当地	cccaggt	gctgagg	4320

ccacactggg gccccccccc cccgtggAAC cgttcctgaa aggccaccAG ggcGCCAGTG	4380
tagcacggAA gatGCCACG tgcctgAGCC accaatCCAC ccagacaATA aaccatCCTC	4440
ttccaACCCA CGCCACGGCC atgctgtggg ggacctgCTC CTCACAGAGC CCCTCCCAAG	4500
gatCgggCGG AAGCTGCTGG gaccCTCCTG ggCTGCCAGG atttagCAGG gaggtggCTG	4560
gctacAGCAA cagcAGCTGG gcaAGCCAGA tagggcGCCCT atgctCTCAG CCTTCTCCC	4620
tccccGTCT cattCCAAGG ctgaggGAgg gcCTCTCGC CTgggACGC agccACTTTC	4680
tccAGTGGAG acaggGCAGG ggTTcAGAGT ttccGTcAGA tgCAGTgAAA tcACAGTTCC	4740
ctttcatCTT cagaACCTCT GTCGTGAATG tttcaAGAG gCTTGGTTA agtCAGGAAG	4800
aagtGCCAG ggtgtgtGTC CCCAGTCTCC CTgaggGCCCT gactCGCCCA tgaACCCAAG	4860
tcggCTTCTA gacAGCATGT ccctaACAGC agCCCTGGGC CCCCCACCTCT tctaccatCC	4920
acCCCAgACT taccACACAC CTTCTCTGCT GTCCTCTTC CTGCCCTTAT caACCTGGGT	4980
ccCTCACACT tcGCCAGTTG CGTCCCCGTG gacAGTCATG agtCTAGAGG aaAGGGGcat	5040
ctggTCTCAG GCCGtgCTC tcgggtggCC tCCACCTGCT CCCTTCTCC TCACTGGCCT	5100
ttcttCCGT ctAGCTCTT CTTcAGGAAA tgcTCTGACT CTCCtCAgCT CCCCCCTTCAC	5160
ccCTCCTTGC CCGCCTACCC TCCCTCCAGA atAGCCCTC ACCCTTCTTC CCCTTCTAGT	5220
tgateCTTTT cacCTCCCTG ATCCCTTCA tttCTTcACC GCGGTTCTC GTCATAGGGG	5280
ttCTCActCT gaACTTCCC TCTCTACTAC CCAAGGcAGG AACCTAGTAC aggtCTCCCA	5340
cccAGGGCCT tCCACCTCG GTCCTGTGc TgggAGAAAC ttCCAGGCGT ggACAGCCCA	5400
gcCTGAGGCA ttCCAGTGT GGGGcACCGT CGCCTAACCT ggTTCTAGC tttGCCCTCA	5460
ctccccGGAA aaACTGACAC TGACACAGGG GCCCTTCCT TGCCCTTTA gCTGGTACCT	5520
cAGTGGGAG GCTCCTTAC CAAGAATGAG ttCCtGAAAC CCAGGGCCAG AGACAAGGAC	5580
aACTTAgGGG aAGACGGGtT tTCGGTGA gCCAGGGCA aATCTTAATG ggACAGTGG	5640
gggataCCCC agAGCCCATG GCCTGACTGC ACAGCCTGCC TggAGGATGG GTGCGCAGCT	5700
ctGCCCTCCC tgAGGCCCCAG GACTATGCCA GAAGCGATGG ggtAccGTGT AGGGGAGCCA	5760
aggCCAGTAG tttGGGGGta ggAGTCCCT agAGTCTCAG aAGACTGGGC tCTTGGAGT	5820
acAGGGTCCC CGGCCTCTCC ttaAGATTC tCTCCCAcGC TggAAGGCCG ATGACTGGGT	5880
ggTCGGGAGG gagACCCAGC tCTCCCTTCT GtCCCGTTG cAGCACTGGT tttGTTCCt	5940
taataAAATTt ttagttatGA aACAT	5965