

R Graphics

유충현 antony.ryu@nexr.com

Agenda

- R graphics 개요
- 저수준 그래픽 함수
- 고수준 그래픽 함수
- 사용자 정의 그래프 작성

R graphics 개요

graphics devices

R graphics 개요

graphics device

- windows graphics devices
 - windows, X11, win.graph
 - win.metafile, win.print
- graphics file devices
 - bmp, jpeg, png, tiff
- other graphics file devices
 - pdf, postscript

● graphics device의 확장

- Cairo package : R + cairo graphics
- rgl package : R + openGL

● 유용한 graphics packages

- grid package
- lattice package, ggplot2 package

graphics 함수

R graphics 개요

● low-level graphics 함수

- 캔버스에 그래프를 그리는 도구로서의 기능
 - points : 점을 그린다.
 - lines, segments : 선을 그린다.
 - rect, polygon : 면을 그린다.
- 글자를 그리는 도구로서의 기능
 - text
- 그래프를 꾸미는 도구로서의 기능
 - box, axis, abline, arrows, title, legend
- 이미 생성된 graphics에 덧그림

● high-level graphics 함수

- plot : generic 함수
- hist, barplot, boxplot, ...
- 함수 호출 시마다 새로운 graphics이 생성됨

plot region

R graphics 개요

● plot region의 구조

● plot region의 생성 함수

window : plot.window 함수

● box : box 함수

🎈 axis : Axis 함수

● title : title 함수

chart region : low-level graphics 함수

chart 생성 순서

R graphics 개요

- 1st. 새로운 plot을 생성
 - → > plot.new()
 - global graphics parameter(using **par**)를 가져온 후,
 - margins을 포함한 빈 graphics window를 만든다.
 - graphics window 모양

chart 생성 순서

R graphics 개요

- 2nd. 캔버스의 높이 및 폭 정의 및 종횡비 지정
 - → > plot.window(xlim, ylim, log = "x", asp=1)
 - graphics를 그리기 위한 axis scale
 - xlim, ylim, log (축에 log 취함), asp (가로, 세로 종횡 비)
- 3rd. chart 그리기
 - low-level graphics 함수를 이용해서 chart 그림
 - 점, 선, 면을 그리는 함수 이용
- 4th. chart 주변 꾸미기
 - > axis(1, 1:4, LETTERS[1:4])
 - x-축, y-축 등 각 축을 꾸밈
 - > title(main="The histogram of score")
 - 제목, 부제목, x-축 이름, y-축 이름 등 chart의 주석을 꾸밈
 - → > box()
 - chart 영역을 사각형으로 테두리를 그림

저수준 그래픽 함수

고수준 그래픽 함수

R의 대표적인 그래프 함수

plot 함수

● generic X-Y plotting 함수

- 인수(데이터)의 타입에 상관없이 사용할 수 있는 함수
- plot 함수의 종류

```
> apropos("^plot\\.")
```

```
[1] "plot.default" "plot.density" "plot.design" "plot.ecdf"
```

[5] "plot.function" "plot.lm" "plot.mlm" "plot.new"

[9] "plot.spec" "plot.spec.coherency" "plot.spec.phase" "plot.stepfun"

[13] "plot.ts" "plot.TukeyHSD" "plot.window" "plot.xy"

● plot 예제

- 10개의 정규 난수를 발생하여 산점도(scatter plot)을 출력
- 가장 simple한 방법을 이용
- 예제 script

```
x <- rnorm(10)
plot(x)</pre>
```


plot(x)

pch argument

plot 함수

pch : Plotting Character

plot(x)

type argument

plot 함수

- type : what TYPE of plot should be drawn.
- plot(x, type="l")
 - •"p" for points,
 - •"I" for lines,
 - •"b" for both,
 - •"c" for the lines part alone of "b",
 - •"o" for both 'overplotted',

•"s" for stair steps,

•"S" for other steps, see 'Details' below,

•"n" for no plotting.

cex argument

plot 함수

● cex : 글자의 크기

plot(x, cex=1+(1:10)*0.2)

lwd argument

plot 함수

- Iwd : line width, 선의 굵기
- plot(x, cex=1+(1:10)*0.2, lwd=1+(1:10)*0.2)

col argument

plot 함수

- col : colror
- plot(x, pch=16, cex=2, col=1:10)
- 색상 이름이나 RGB가능

main/sub argument

plot 함수

main: main title

sub: sub title

plot(x, main="Example Plot", sun="Sub Title")

xlab/ylab argument

plot 함수

xlab : X-Axis Lable

ylab : Y-Axis Lable

plot(x, xlab="X lable", ylab="Y lable")

hist

Histogram

- hist 함수
- hist(rnorm(1000))

Histogram of rnorm(1000)

pie

Pie Chart

- pie 함수
- 예제

```
pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")
pie(pie.sales)
```


barplot

Bar Chart

● barplot 함수

● 예제

barplot(VADeaths, beside = TRUE, col = c("lightblue", "mistyrose", "lightcyan", "lavender", "cornsilk"), legend = rownames(VADeaths), ylim = <math>c(0, 100))

boxplot

Box Plot

- boxplot 함수
- boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

사용자 정의 그래프

simple chart

사용자 정의 그래프

regression chart

simple chart

사용자 정의 그래프

regression chart script

```
x < - seq(0, 1, length=10)
y < -10 * x + rnorm(length(x))
plot.new()
plot.window(xlim = range(x), ylim = range(y))
points(x, y, col="blue", cex=1.2, pch=16)
abline(Im(y\sim x), col="red")
axis(1)
axis(2)
title(main = "f(x)=10*x+e")
title(ylab = "f(x)")
title(xlab = "sequence")
box()
```


사용자 정의 그래프 함수

lineChart

사용자 정의 그래프 함수

custom line chart

lineChart

사용자 정의 그래프 함수

● custom line chart 함수

● 함수원형

```
lineChart <- function(x, y=NULL, shadow=F, axes=T, main = NULL,
sub = NULL, xlab = NULL, ylab = NULL, log = "", col=1,
xlim = NULL, ylim = NULL, bg = "gray", fg="gray95", ...)</pre>
```

● 호출방법

- > x <- 1:10
- > y < rnorm(10)
- > z < rnorm(10)
- > lineChart(x, z, col=3)
- > lineChart(y, shadow=T, main="User define function",
- + xlab="sequence", ylab="random number")
- > lineChart(rnorm(30), shadow=T, main="custom line chart",
- + fg="seashell", bg="lightcyan")

lineChart

사용자 정의 그래프 함수

custom line chart

- > lineChart(cars\$speed, cars\$dist, col=3, lowess=T, shadow=T,
- + main="lowess by cars data", fg="lightcyan", bg="peachpuff")

사용자 정의 그래프 함수

Speed and Stopping Distances of Cars

사용자 정의 그래프 함수

- layout 함수를 이용한 plot region의 분할
 - Θ > par(mfrow=c(2, 2))
 - par 함수를 이용한 plot region의 분할
 - layout 함수를 이용한 plot region의 분할

사용자 정의 그래프 함수

사용자 정의 그래프 함수

● boxscatter 함수

● 함수원형

```
boxscatter <- function (x, y, main="Boxplot and Scatterplot",
pch=16, bpch=16, col=1, bcol=0,
xlab = NULL, ylab = NULL, ...)
```

● 호출방법

- > boxscatter(cars\$speed, cars\$dist)
- > boxscatter(cars\$speed, cars\$dist, pch="*")
- > boxscatter(cars\$speed, cars\$dist, xlab="Speed (mph)",
- + ylab="Stopping distance (ft)", main="Speed and Stopping
- + Distances of Cars", col="blue", bcol="lightgray", cex=1.2)

사용자 정의 그래프 함수

Korea census(seoul, 1970)

사용자 정의 그래프 함수

- layout 함수를 이용한 plot region의 분할
 - > layout 함수를 이용한 plot region의 분할

사용자 정의 그래프 함수

·	
6	
3 4	
1 5 2	
7	
,	

사용자 정의 그래프 함수

● plotPairBar 함수

● 함수원형

```
plotPairBar <- function(left, right, level, main = NULL, sub = NULL, l.lab = NULL, r.lab = NULL, l.col = "lightsalmon", r.col="lightblue")
```

● 호출방법

- > male <- xtabs(frequency~gender+age.group, data=population.info,
- + subset=gender=="male" & year=="1970" & region=="Seoul",
- + drop.unused.levels=T)
- > female <- xtabs(frequency~gender+age.group, data=population.info,
- + subset=gender=="female" & year=="1970" & region=="Seoul",
- + drop.unused.levels=T)
- > plotPairBar(male, female, names(male[1,]))
- > plotPairBar(male, female, names(male[1,]),
- + main="Korea census(seoul, 1970)", sub="population counts")
- > plotPairBar(male, female, names(male[1,]), main="Korea census(seoul, 1970)",
- + sub="population counts", l.col="limegreen", r.col="gold")

타 패키지 확장하기

RGoogleMaps extension

타 패키지 확장하기

RGoogleMaps package

- Google의 Google Static Maps API와 연동하는 R package
- Google Static Maps API를 호출하는 기본 기능만 있음
- 사용자가 다양한 주제도를 그리기 위해서는 함수 개발이 필요함

● 함수 구현 대상

- Scatter Plot
 - 지도 위에 scatter plot을 그림
 - frequency의 규모에 따라 points의 크기를 달리함
 - 비율척도의 값에 따라 points의 색상을 달리함
- Pie Chart
 - 지도 위에 파이차트를 그림
 - frequency의 규모에 따라 반지름의 크기를 달리함
 - 범주별 frequency에 따라서 파이의 크기를 달리함

RGoogleMaps extension

타 패키지 확장하기

scatter plot

RGoogleMaps extension

타 패키지 확장하기

ScatterOnStaticMap 함수

● 함수원형

```
ScatterOnStaticMap <- function(x, lat, lon, size=scale(x[,1]), xlim=range(lon), ylim=range(lat), col=NULL, pch=16, cex=NULL, col.regions=NULL, level.cnt=10, maptype=c("roadmap", "mobile", "satellite", "terrain", "hybrid", "mapmaker-roadmap", "mapmaker-hybrid")[4], alpha=1, title=NULL)
```

● 호출방법

> head(x)

Ι	_LATITUDE	I_LONGITUDE	CNT	RATIO
1	37.51484	127.0738	309	3
2	37.53197	127.0786	720	2
3	37.51155	127.0806	741	2

- > ScatterOnStaticMap(x=x[,c("CNT","RATIO")], lat=x\$I_LATITUDE,
- + lon=x\$I_LONGITUDE, alpha=0.8,
- + title=list(labels="Test scatterplot", font=3, col=4))

