

Poli mero

muitas unidades repetidas

POLÍMEROS SÃO MOLÉCULAS "GIGANTES" FORMADAS A PARTIR DE MUITAS PEQUENAS MOLÉCULAS (MONÓMEROS)

- Polímeros naturais (biopolímeros): celulose, amido, algodão, soja, seda, quitosano, colagénio, albumina....
- Polímeros sintéticos: nylon, PVC, PP, PE, PVA, PMA, PMMA.....

O que é um polímero?

- Moléculas de grandes dimensões, com muitas unidades repetidas;
- Os polímeros são hidrocarbonetos: compostos de carbono e hidrogénio;
- Fortes ligações covalentes C-C na cadeia principal e ligações secundárias (van der Waals e de hidrogénio) entre as várias cadeias;
- Moléculas que, para a mesma fórmula molecular, podem apresentar diferentes estruturas e propriedades (isomerismo); por exemplo C₃H₆O;
- A massa molecular dos polímeros é variável e depende do comprimento médio das cadeias.

Como se repetem e organizam os monómeros?

Homopolímeros – polímeros formados por cadeias poliméricas constituídas por um único tipo de unidade de repetição (um só mero).

Copolímeros – polímeros formados por cadeias poliméricas constituídas por duas ou mais unidades de repetição (dois ou mais meros).

Polimerização – processo químico pelo qual os monómeros se combinam quimicamente formando polímeros com longas cadeias moleculares (polimerização por adição e condensação).

1. <u>Polimerização por adição</u>: as ligações duplas são rompidas e substituídas por ligações simples; a polimerização ocorre sem formação de subprodutos.

Etapas da polimerização por adição....

(etileno)

$$R \cdot + C = C \longrightarrow R - C - C \cdot$$
radical livre

(catalisador ou iniciador) monómero

Iniciação

R"

etileno ——

R

R'

cloreto de vinilo ——C

isobutileno ——CH₃ ——CH₃

álcool vinílico ——OH

cloreto de vinilideno ——CI ——CI

propileno ——CH₃

metacrilato de metilo ——CH₃ ——COOCH₃

acetato de vinilo ——OCOCH₃

acetato de virillo

acrilonitrilo ——C ——N

Designação do polímero:

estireno

poli(nome do monómero)

2. <u>Polimerização por condensação</u>: reações sucessivas entre pares de grupos funcionais reativos nos monómeros, com formação de uma segunda molécula, não polimerizável, como subproduto (H₂O; HCl; CH₃OH).

Massa molecular média, \overline{M}_n ; \overline{M}_W

Num polímero nem todas as cadeias têm o mesmo comprimento!

- M_i massa molecular média de cada um dos intervalos de massa molecular
- X_{I}^{\prime} fração, em número, do material cuja massa molecular se insere num determinado intervalo de massa molecular
- W. fração, em massa, do material cuja massa molecular se insere num determinado intervalo de massa molecular

Grau de polimerização, GP:

 $grau\ de\ polimerização\ médio(GP) = \frac{massa\ molecular\ média\ do\ polímero\ (\overline{M_n})}{massa\ molecular\ média\ do\ mero\ (\overline{m})}$

Para copolímeros:
$$\overline{m}=\Sigma f_{\dot{I}}m_{\dot{I}}$$
 fração da cadeia \int massa molecular do mero

O GP médio do polietileno pode variar entre 3500 e 25000 meros!

Exemplo

Na figura encontram-se representadas as distribuições das massas moleculares, em número e massa, para o policloreto de vinilo (PVC).

Determinar:

- a) a massa molecular média ponderal;
- b) a massa molecular média numérica;
- c) o grau de polimerização.

Cristalinidade

O grau de cristalinidade de um polímero influencia o seu comportamento mecânico

Quanto mais complexa a cadeia, menos cristalino (mais amorfo), mais rígido e mais resistente será o polímero.

O ponto de fusão, a rigidez e a resistência aumentam com o grau de polimerização e com a complexidade da estrutura molecular.

Ligações entre as cadeias

Comportamento mecânico

Tipos de materiais poliméricos:

TERMOPLÁSTICOS

TERMOENDURECÍVEIS (ou Termofixos)

ELASTÓMEROS

TERMOPLÁSTICOS (PVC, PE, PS, PMMA)

- deformam-se com o aquecimento; retomam a forma inicial após arrefecimento; facilmente remodelados e reciclados; ligações fracas entre as cadeias (van der Waals);
- maioria dos polímeros lineares formados por adição e com alguma ramificação;
- são, em geral, menos rígidos, menos resistentes e mais dúcteis.

TERMOENDURECÍVEIS (resinas epoxídicas, PU's)

- são duros e não amaciam com o aumento de temperatura;
- todos os polímeros formados por condensação e os polímeros lineares com reticulação (cross-linking); ligações covalentes fortes;
- > são, em geral, mais rígidos, mais resistentes e mais frágeis.

ELASTÓMEROS (silicone)

- deformam-se sob a acção de forças; voltam à forma inicial após o seu desaparecimento;
- polímeros com pequena reticulação;
- > grande deformação elástica.

Algumas propriedades dos polímeros

- ✓ elevada estabilidade em ambiente biológico e não apresentam efeitos cancerígenos;
- √ apresentam comportamento semi-cristalino ou amorfo;
- ✓ produzidos sob várias formas (fibras, líquidos viscosos, esferas, etc.);
- ✓ o ponto de fusão, a rigidez e a resistência aumentam com o grau de polimerização e com a complexidade da estrutura molecular;
- ✓ propriedades físicas e mecânicas apropriadas e ajustáveis;
- ✓ possível ligação entre os polímeros sintéticos e polímeros naturais;
- ✓ semelhança com componentes da matriz extra celular (polímeros naturais);
- √ hidrofílicos (hidrogéis);
- ✓ biocompatíveis e biodegradáveis (hidrólise, degradação enzimática).