Discrete Mathematics: Lecture 20

Part III. Mathematical Logic

predicate logic, quantifiers, WFFs, from NL to WFFs, logic equivalence

Xuming He
Associate Professor

School of Information Science and Technology ShanghaiTech University

Spring Semester, 2024

Predicate and Individual

Predicate मांज: describe the property of the subject term (in a sentence)

- A predicate is a function from a domain of individuals to {T, F}
- n-ary predicate_{n \gtrsim iji; a predicate on n individuals}
 - *I*: "is an integer" // unary
 - *G*: "is greater than" //binary
- Predicate variable 谓词变项: a symbol that represents any predicate

Individual ↑ 付荷: the object you are considering (in a sentence)

- " $\sqrt{1+2\sqrt{1+3\sqrt{1+\cdots}}}$ is an integer"
- " e^{π} is greater than π^{e} "
 - Individual Constant $\uparrow \phi$ $\pi \pi$: $\sqrt{1+2\sqrt{1+3\sqrt{1+\cdots}}}$, e^{π} , π^e
 - Individual Variable 个体变项: *x*, *y*, *z*
 - **Domain**个体域: the set of all individuals in consideration

From Predicates to Propositions

Propositional function $P(x_1, ..., x_n)$, where P is an n-ary predicate

- P(x, y):"x is greater than y"
- P(x, y) gives a proposition when we assign values to x, y
 - $P(e^{\pi}, \pi^e)$ is a proposition (a true proposition and hence has a truth value)
- P(x, y) is not a proposition

EXAMPLE: p:"Alice's father is a doctor"; q:"Bob's father is a doctor"

- Individuals: Alice's father, Bob's father; Predicate D: "is a doctor"
- p = D(Alice's father), q = D(Bob's father)

Function of Individuals: a map on the domain of individuals

- f(x) = x's father
- p = D(f(Alice)); q = D(f(Bob))

Universal Quantifier

DEFINITION: Let P(x) be a propositional function. The **universal** quantification $ext{exp}$ of P(x) is "P(x) for all x in the domain".

- notation: $\forall x \ P(x)$; read as "for all $x \ P(x)$ " or "for every $x \ P(x)$ "
 - "∀" is called the universal quantifier 全称量词
 - " $\forall x P(x)$ " is true iff P(x) is true for every x in the domain
 - " $\forall x P(x)$ " is false iff there is an x_0 in the domain such that $P(x_0)$ is false

EXAMPLE: P(n): " $n^2 + n + 41$ is a prime"

- When domain = natural numbers, " $\forall nP(n)$ " is "for every natural number n, n^2+n+41 is a prime"
- When domain is $D=\{0,1,\dots,39\}$, " $\forall nP(n)$ " is "for every $n\in D$, n^2+n+41 is a prime"

REMARK: If the domain is empty, then " $\forall x P(x)$ " is true for any P.

Existential Quantifier

DEFINITION: Let P(x) be a propositional function. The **existential quantification** P(x) is "there is an x in the domain such that P(x)"

- notation: $\exists x \ P(x)$; read as "for some $x \ P(x)$ " or "there is an x s.t.P(x)"
 - "∃" is called the **existential quantifier**存在量词
 - " $\exists x P(x)$ " is true iff there is an x in the domain such that P(x) is true
 - " $\exists x P(x)$ " is false iff P(x) is false for every x in the domain

EXAMPLE: P(x): " $x^2 - x + 1 = 0$ "

• " $\exists x \ P(x)$ " is false when $D = \mathbb{R}$ and is true when $D = \mathbb{C}$

REMARK: If the domain is empty, then " $\exists x \ P(x)$ " is false for any P.

REMARK: if not stated, the individual can be anything.

Binding Variables and Scope

DEFINITION: An individual variable x is **bound**_{0\(\pi\)\(\pi\)\) if a quantifier (\forall, \exists) is used on x; otherwise, x is said to be **free**_{0\(\phi\)\(\phi\)}.}

- $\exists x(x+y=1)$
 - x is bound and y is free
- scoperry of a quantifier: the part of a formula to which a quantifier is used
 - the scope of $\exists x \text{ in } \exists x(x+y=1) \text{ is } (x+y=1)$
- Predicate Logic and the area of logic that deals with predicates and quantifiers (a.k.a. predicate calculus)
 - predicate logic is an extension of propositional logic

Well-Formed Formulas

Elements that may appear in Well-Formed Formulas 合式公式:

- Propositional constants: **T,F**, p, q, r, ...
- Propositional variables: *p*, *q*, *r*, ...
- Logical Connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$
- Parenthesis: (,)
- Individual constants: a, b, c, ...
- Individual variables: x, y, z, ...
- Predicate constants: *P*, *Q*, *R*, ...
- Predicate variables: *P*, *Q*, *R*, ...
- Quantifiers: ∀,∃
- Functions of individuals: f, g, ...

Well-Formed Formulas

DEFINITON: well-formed formulas 合式公式/formulas

- 1) propositional constants, propositional variables, and propositional functions without connectives are WFFs
- 2) If A is a WFF, then $\neg A$ is also a WFF
- 3) If A, B are WFFs and there is no individual variable x which is bound in one of A, B but free in the other, then $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ are WFFs.
- 4) If A is a WFF with a free individual variable x, then $\forall x A, \exists x A$ are WFFs.
- 5) WFFs can be constructed with 1)-4).
 - Example: $\forall x \ F(x) \lor G(x), \forall x P(y)$ are not WFFs
 - Example: $\exists x (A(x) \rightarrow \forall y B(x, y))$ is a WFF

Precedence: \forall , \exists have higher precedence than \neg , \land , \lor , \rightarrow , \leftrightarrow

• $\forall x P(x) \rightarrow Q(y) \text{ means } (\forall x P(x)) \rightarrow Q(y), \text{ not } \forall x (P(x) \rightarrow Q(y))$

From Natural Language to WFFs

The Method of Translation:

- Introduce symbols to represent propositional constants, propositional variables, individual constants, individual variables, predicate constants, predicate variables, functions of individuals
- Construct WFFs with 1)-4) such that WFFs reflect the real meaning of the natural language

EXAMPLE: All irrational numbers are real numbers.

- Every irrational number is a real number.
- For every x, if x is an irrational number, then x is a real number.
 - I(x) = "x is an irrational number"
 - R(x) = "x is a real number"
 - Translation: $\forall x (I(x) \rightarrow R(x))$

From Natural Language to WFFs

EXAMPLE: Some real numbers are irrational numbers.

- There is a real number which is also an irrational number.
- There is an x such that x is a real number and also an irrational number.
 - I(x) = "x is an irrational number"
 - R(x) = "x is a real number"
 - Translation: $\exists x (R(x) \land I(x))$

EXAMPLE: There is a symbol that can not be understood by any person's brain.

- There is a symbol such that any person's brain can not understand it.
- There is an x such that x is a symbol and any person's brain can not understand x.
 - S(x): "x is a symbol"
 - Translation: $\exists x (S(x) \land (\cdots))$

From Natural Language to WFFs

EXAMPLE: There is a symbol that can not be understood by any person's brain.

- Any person's brain can not understand x.
- For any y, if y is a person, then y's brain cannot understand x.
 - P(y): "y is a person"
 - Translation: $\forall y (P(y) \rightarrow (\cdots))$
- y's brain cannot understand x
 - U(z,x): "z can understand x"
 - b(y) = the brain of y
 - Translation: $\neg U(b(y), x)$
- Translation: $\exists x \ \Big(S(x) \land \forall y \ \Big(P(y) \rightarrow \neg U(b(y), x) \Big) \Big)$

Interpretation

DEFINITION: an **interpretation**_{##} requires one to (remove all uncertainty)

- assign a concrete proposition to every proposition variable
- assign a concrete predicate to every predicate variable
- restrict the domain of every bound individual variable
- assign a concrete individual to every free individual variable
- choose a concrete function, if there is any

EXAMPLE: $\exists x P(x) \rightarrow q$

- Domain of $x = \{Alice, Bob, Eve\}$
- P(x) = "x gets A+"
- q = "I get A+"
- If at least one of Alice, Bob, and Eve gets A+, then I get A+.

Types of WFFs

DEFINITION: A WFF is **logically valid**普遍有效 if it is **T** in every interpretation

• $\forall x (P(x) \lor \neg P(x))$ is logically valid

DEFINITION: A WFF is **unsatisfiable**不可满足 if it is **F** in every interpretation

• $\exists x (P(x) \land \neg P(x))$ is unsatisfiable

DEFINITION: A WFF is **satisfiable** π if it is **T** in some interpretation

- $\forall x (x^2 > 0)$
 - true when domain= nonzero real numbers

THEOREM: Let A be any WFF. A is logically valid iff $\neg A$ is unsatisfiable.

Rule of Substitution: Let A be a tautology in propositional logic. If we substitute any propositional variable in A with an arbitrary WFF from predicate logic, then we get a logically valid WFF.

• $p \vee \neg p$ is a tautology; hence, $P(x) \vee \neg P(x)$ is logically valid

Logical Equivalence

DEFINITION: Two WFFs A,B are **logically equivalent**### if they always have the same truth value in every interpretation.

• notation: $A \equiv B$; example: $\forall x \ P(x) \land \forall x \ Q(x) \equiv \forall x \ (P(x) \land Q(x))$

THEOREM: $A \equiv B$ iff $A \leftrightarrow B$ is logically valid.

- $A \equiv B$
- iff A, B have the same truth value in every interpretation I
- iff $A \leftrightarrow B$ is true in every interpretation I
- iff $A \leftrightarrow B$ is logically valid

THEOREM: $A \equiv B$ iff $A \rightarrow B$ and $B \rightarrow A$ are both logically valid.

• $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$

Rule of Substitution

METHOD: Applying the rule of substitution to the logical equivalences in propositional logic, we get logical equivalences in predicate logic.

$$P \lor Q \equiv Q \lor P \qquad A(x) \lor B(y) \equiv B(y) \lor A(x)$$

$$(P \land Q) \land R \equiv P \land (Q \land R) \qquad (A(x) \land B(y)) \land c \equiv A(x) \land (B(y) \land c)$$

$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \qquad A(x) \land (B(y) \lor c) \equiv (A(x) \land B(y)) \lor (A(x) \land c)$$

$$P \land (P \lor Q) \equiv P \qquad A(x) \land (A(x) \lor B(y)) \equiv A(x)$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q \qquad \neg (A(x) \land B(y)) \equiv \neg A(x) \lor \neg B(y)$$

$$P \rightarrow Q \equiv \neg P \lor Q \qquad A(x) \rightarrow (\forall y B(y)) \equiv \neg A(x) \lor (\forall y B(y))$$

$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \qquad A(x) \leftrightarrow c \equiv (A(x) \rightarrow c) \land (c \rightarrow A(x))$$

De Morgan's Laws for Quantifiers

THEOREM: $\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$

- Show that $\neg \forall x \ P(x) \rightarrow \exists x \ \neg P(x)$ is logically valid
 - Suppose that $\neg \forall x \ P(x)$ is **T** in an interpretation *I*
 - $\forall x P(x) \text{ is } \mathbf{F} \text{ in } I$
 - There is an x_0 such that $P(x_0)$ is **F** in I
 - There is an x_0 such that $\neg P(x_0)$ is **T** in I
 - $\exists x \neg P(x) \text{ is } \mathbf{T} \text{ in } I$
- Show that $\exists x \neg P(x) \rightarrow \neg \forall x P(x)$ is logically valid
 - Suppose that $\exists x \neg P(x)$ is **T** in an interpretation *I*
 - There is an x_0 such that $\neg P(x_0)$ is **T** in *I*
 - There is an x_0 such that $P(x_0)$ is **F** in I
 - $\forall x P(x)$ is **F** in *I*
 - $\neg \forall x P(x)$ is **T** in *I*

THEOREM: $\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$.