[Solution of Homework 2]

Problem 1 (Optimal Coupling)

Let Ω be a finite state space and μ, ν be two distributions over Ω . Prove that there exists a coupling ω of μ and ν such that

$$\mathbf{Pr}_{(X,Y)\sim\omega}\left[X
eq Y
ight]=D_{\mathrm{TV}}(\mu,
u).$$

You need to explicitly describe how ω is constructed.

Proof.

Let P(x,y) denote $\mathbf{Pr}_{(X,Y)\sim\omega}\left[X=x,Y=y\right]$ and use ρ to denote $D_{\mathrm{TV}}(\mu,\nu)$ for shorthand. The coupling ω can be constructed as follows: First, we set $P(a,a)=\min\{\mu(a),\nu(a)\}, \forall a\in\Omega.$ Clearly, if $D_{\mathrm{TV}}(\mu,\nu)=0$, the forementioned setting is indeed the optimal coupling. Otherwise, for any $a\in\Omega$, let

$$R_X(a) = \mu(a) - P(a,a) \ R_Y(a) =
u(a) - P(a,a).$$

For any $a,b\in\Omega$, let

$$P(a,b) = rac{R_X(a)R_Y(b)}{
ho}.$$

It's clear that $\sum_a R_X(a) = \sum_b R_Y(b) = \rho$ by the fact that $D_{\mathrm{TV}}(\mu, \nu) = \max_{A \in \Omega} |\mu(A) - \nu(A)|$. Moreover, $R_X(a)R_Y(a) = 0, \forall a \in \Omega$. Now we need check it's indeed a coupling. For a fixed $a \in \Omega$,

$$egin{aligned} \sum_b P(a,b) &= P(a,a) + \sum_{b:b
eq a} P(a,b) \ &= P(a,a) + \sum_{b:b
eq a} rac{R_X(a)R_Y(b)}{
ho} \ &= P(a,a) + rac{R_X(a)}{
ho}(
ho - R_Y(a)) \ &= P(a,a) + R_X(a) = \mu(a) \end{aligned}$$

Similarly, you can check that $\sum_b P(a,b) = \nu(b), \forall b \in \Omega$. Hence it's a feasible coupling. As for the optimiality,

$$egin{aligned} \mathbf{Pr}_{(X,Y)\sim\omega} \ [X
eq Y] &= 1 - \sum_{a\in\Omega} P(a,a) \ &= \sum_{a\in\Omega} \mu(a) - \sum_{a\in\Omega} P(a,a) =
ho. \end{aligned}$$

Problem 2 (Stochastic Dominance)

Let $\Omega\subseteq\mathbb{Z}$ be a finite set of integers. Let μ and ν be two distributions over Ω . We say μ is stochastic dominance over ν if for $X\sim\mu$, $Y\sim\nu$ and any $a\in\Omega$,

$$\mathbf{Pr}\left[X\geq a
ight]\geq\mathbf{Pr}\left[Y\geq a
ight].$$

We write $\mu \succeq \nu$.

1. Consider the binomial distirbution $\operatorname{Binom}(n,p)$ where $X \sim \operatorname{Binom}(n,p)$ satisfies for any $a=0,1,\ldots,n$, $\operatorname{\mathbf{Pr}}[X=a]=\binom{n}{a}\cdot p^a\cdot (1-p)^{n-a}$. Prove that for any $p,q\in[0,1]$, $\operatorname{Binom}(n,p)\succeq\operatorname{Binom}(n,q)$ if and only if $p\geq q$. *Proof.*

We consturct the following coupling with respect to Binom(n, p) and Binom(n, q):

- 1. Sample U_i uniformly at random from [0,1] for any $i\in [n]$ i.i.d;
- 2. $X_i=1$ iff $U_i \leq p$ and $Y_i=1$ iff $U_i \leq q$ for any $i \in [n]$;
- 3. Let $X = \sum_{i=1}^n X_i$ and $Y = \sum_{i=1}^n Y_i$.

It is obvious that $X \sim \operatorname{Binom}(n,p)$ and $Y \sim \operatorname{Binom}(n,q)$ which justifies the above process is indeed a coupling. With this coupling, we know that $\{Y \geq a\} \subseteq \{X \geq a\}$ for any $a=0,1,\ldots,n$ iff $p \geq q$. Therefore, if $p \geq q$, we have $\operatorname{Binom}(n,p) \succeq \operatorname{Binom}(n,q)$.

On the other hand, let $X \sim \operatorname{Binom}(n,p)$ and $Y \sim \operatorname{Binom}(n,q)$. If $\operatorname{Binom}(n,p) \succeq \operatorname{Binom}(n,q)$, we have $\operatorname{\mathbf{Pr}}[X=n] \geq \operatorname{\mathbf{Pr}}[Y=n]$ which implies that $p \geq q$.

2. A coupling ω of μ and ν is *monotone* if $\mathbf{Pr}_{(X,Y)\sim\omega}\left[X\geq Y\right]=1$. Prove that $\mu\succeq\nu$ if and only if a monotone coupling of μ and ν exists.

Proof.

Proof of " \Leftarrow ".Suppose ω is a monotone coupling of μ and ν , which means $\mathbf{Pr}_{(X,Y)\sim\omega}\left[X\geq Y\right]=1.$ Then

$$egin{aligned} \mathbf{Pr}_{Y\sim
u} \ [Y\geq a] &= \mathbf{Pr}_{(X,Y)\sim\omega} \ [Y\geq a] \ &= \mathbf{Pr}_{(X,Y)\sim\omega} \ [X\geq Y\wedge Y\geq a] + \mathbf{Pr}_{(X,Y)\sim\omega} \ [X< Y\wedge Y\geq a] \ &= \mathbf{Pr}_{(X,Y)\sim\omega} \ [X\geq Y\geq a] \ &\leq \mathbf{Pr}_{(X,Y)\sim\omega} \ [X\geq a] = \mathbf{Pr}_{X\sim\mu} \ [X\geq a] \ . \end{aligned}$$

Proof of " \Rightarrow ". Define the cumulative distribution function $F_{\mu}(x)=\mu((-\infty,x])$ and $F_{\nu}(x)=\nu((-\infty,x])$. Then use these functions to construct two random variables:

$$X = F_{\mu}^{-1}(U), Y = F_{\nu}^{-1}(U),$$

where U is sampled uniform at random from $\left[0,1\right]$ and

 $F_\mu^{-1}(u) riangleq \inf\{x \in \mathbb{R}: F_\mu(x) \geq u\}$ is a generalized inverse(similar for $F_
u^{-1}$).

Now we claim that $\omega = (X, Y)$ is a monotone coupling of μ and ν .

First we need to check that ω is a coupling of μ and ν which means X and Y follows μ and ν respectively.

$$\mathbf{Pr}\left[X \leq x
ight] = \mathbf{Pr}\left[F_{\mu}^{-1}(U) \leq x
ight] = \mathbf{Pr}\left[U \leq F_{\mu}(x)
ight] = F_{\mu}(x) \quad ext{(similar for Y)}$$

Then we will check $\mathcal C$ is a monotone coupling. According to $\mu\succeq
u$, we have $F_\mu(x)\leq F_
u(x)$ for $x\in\mathbb R$. Thus

$$\mathbf{Pr}\left[X\geq Y
ight]=\mathbf{Pr}\left[F_{\mu}^{-1}(U)\geq F_{
u}^{-1}(U)
ight]=1.$$

3. Consider the Erdős–Rényi (https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model) model $\mathcal{G}(n,p)$ for random graph. In this model, each $G\sim \mathcal{G}(n,p)$ is a simple undirected random graph with n vertices where each $\{i,j\}\in {[n]\choose 2}$ is present with probability p independently. Prove that for any $p,q\in [0,1]$ satisfying $p\geq q$, it holds that $\mathbf{Pr}_{G\sim \mathcal{G}(n,p)}\left[G \text{ is connected}\right]\geq \mathbf{Pr}_{H\sim \mathcal{G}(n,q)}\left[H \text{ is connected}\right].$ Proof

The following coupling justifies the statement:

- 1. Sample U_e uniformly at random from [0,1] for any $e\in {[n]\choose 2}$ i.i.d;
- 2. e occurs in G iff $U_e \leq p$ and e occurs in H iff $U_e \leq q$ for any $e \in {[n] \choose 2}$.

Problem 3 (Total Variation Distance is Non-Increasing)

Let P be the transition matrix of an irreducible and aperiodic Markov chain with state space Ω . Let π be its stationary distribution. Let μ_0 be an arbitrary distribution on Ω and $\mu_t^{\mathtt{T}}=\mu_0^{\mathtt{T}}P^t$ for every $t\geq 0$. For every $t\geq 0$, let $\Delta(t)=D_{\mathtt{TV}}(\mu_t,\pi)$ be the total variation distance between μ_t and π . Prove that $\Delta(t+1)\leq \Delta(t)$ for every $t\geq 0$. Proof

Let $X_t\sim \mu_t$ and $Y_t\sim \pi$. By coupling lemma, there exist a coupling ω of X_t and Y_t such that $\mathbf{Pr}\left[X_t\neq Y_t\right]=\Delta(t)$. Equipped with ω , we construct the coupling ω' of X_{t+1} and Y_{t+1} as follows:

- 1. We first sample (X_t,Y_t) from ω ;
- 2. Next we run the Markov chain according to the transition matrix P on X_t and Y_t as follows:

- ullet If $X_t=Y_t$, the two chains evolve synchronously;
- ullet If $X_t
 eq Y_t$, the two chains evolve independently.

Under the coupling ω' ,

$$\Delta(t+1) \leq \mathbf{Pr}\left[X_{t+1}
eq Y_{t+1}
ight] \leq \mathbf{Pr}\left[X_{t}
eq Y_{t}
ight] = \Delta(t).$$