Week 7

Group Action Applications: A_5 and the Sylow Theorems

7.1 Actions of A_5

11/7: • Classifying subgroups of $G = A_5 \cong Do$.

- Let $H \leq G$. We must have |H||G| by Lagrange's theorem.
 - Thus, if $H \leq A_5$, we must have

$$|H| \in \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$$

- A good place to start is with orders of H that correspond to cyclic subsets.
- In particular, let's start with subgroups of the form $\langle (**)(**) \rangle$, which all have order 2.
 - Are such groups conjugate?
 - To prove that two groups of the form $\langle (**)(**) \rangle$ are conjugate, it will suffice to show that their generators are conjugate (since the only other element the identity will naturally be conjugate to itself).
 - Let $x, y \in A_5$ be arbitrary elements of the form (**)(**). Then there exists $g \in S_5$ such that $gxg^{-1} = y$.
 - But is $g \in A_5$? If $g \in A_5$, then we are done. If $g \notin A_5$, then can we find an element $g' \in A_5$ such that $g'xg'^{-1} = y$?
 - First, note that if $gxg^{-1} = y = g'xg'^{-1}$, then

$$g^{-1}(gxg^{-1})g' = g^{-1}(g'xg'^{-1})g'$$

 $x(g^{-1}g') = (g^{-1}g')x$

Thus, $g^{-1}g' \in C_{S_5}(x)$, or g' = gh for some $h \in C_{S_5}(x)$.

- If $g \notin A_5$ and we want $g' \in A_5$, then we must have $h \notin A_5$.
 - \succ Intuitively, this means that if g is the product of an odd number of permutations and we want g' = gh to be the product of an even number of permutations, h had better be a product of an odd number of permutations as well.
 - ightharpoonup More formally, consider G/A_5 . If $g \in gA_5 \neq A_5$ and we want $g' \in g'A_5 = A_5$, then by homomorphically mapping gA_5 to $1 \in \mathbb{Z}/2\mathbb{Z}$ and A_5 to $0 \in \mathbb{Z}/2\mathbb{Z}$, we must have $h \in gA_5$ to get $gh \in A_5$.
- Regardless, this example motivates the following two propositions, which we can use to resolve the original conjugacy question.

- By Proposition 1, since $x \sim y$ in S_5 and $C_{S_5}(x) \not\subset A_5$ (take the first transposition in (**)(**); for example, know that (12) commutes with (12)(34)), we know that $x \sim y$ in A_5 .
- Therefore, there are 15 subgroups of the form $\langle (**)(**) \rangle$, all of which are conjugate in A_5 .
- Proposition 1: Let $x \sim y$ in S_n . Then if $C_{S_n}(x) \not\subset A_n$, then $x \sim y$ in A_n .

Proof. Since $x \sim y$ in S_n , there exists $g \in S_n$ such that $gxg^{-1} = y$. If $g \in A_n$, then we are done. Now suppose $g \notin A_n$. Since $C_{S_n}(x) \not\subset A_n$, there exists $h \in C_{S_n}(x)$ such that $hxh^{-1} = x$ and $h \notin A_n$. Since $g, h \notin A_n$, we have that $gh \in A_n$. Additionally, we have that

$$(gh)x(gh)^{-1} = g(hxh^{-1})g^{-1} = gxg^{-1} = y$$

Therefore, $x \sim y$ in A_n , as desired.

• Proposition 2: If $C_{S_n}(x) \subset A_n$ and $\sigma x \sigma^{-1} = y$, then $x \sim y$ in A_n iff $\sigma \in A_n$.

Proof. Suppose first that $x \sim y$ in A_n . Then $gxg^{-1} = y$ for some $g \in A_n$. Then as per the above, $gxg^{-1} = \sigma x\sigma^{-1}$ implies that $g^{-1}\sigma \in C_{S_n}(x)$. Thus, $\sigma = gh$ for some $h \in C_{S_n}(x) \subset A_n$. But since $g, h \in A_n$, we must have $\sigma \in A_n$, too.

Now suppose that $\sigma \in A_n$. Then since $\sigma x \sigma^{-1} = y$, $x \sim y$ in A_n as desired.

- Now we discuss subgroups of the form $\langle (***) \rangle$.
 - Let x be an arbitrary element of A_5 of the form (***). In particular, suppose x = (abc) for $a, b, c \in [5]$.
 - Then $(de) \in C_{S_5}(x)$, where $d, e \in [5]$ are the other two elements that are not already represented by a, b, c.
 - Moreover, (de) will be in the centralizers of both x and x^2 .
 - There are $\binom{5}{2} = 10$ subgroups of the form we're discussing (20 generators/elements of the form (***), though).
 - Suppose we have two subgroups $\langle x \rangle$, $\langle y \rangle$ of the form being discussed. We know that $\langle x \rangle$, $\langle y \rangle$ are conjugate in S_5 . But since $C_{S_5}(x) \not\subset A_5$ again as per the above, we know the groups are conjugate in A_5 .
 - Therefore, there are 10 subgroups of the form $\langle (***) \rangle$, all of which are conjugate in A_5 .
- Now we discuss subgroups of the form $\langle (*****) \rangle$.
 - We know that $|C_{S_5}((12345))| \cdot |\{(12345)\}| = 120$. Additionally, only a power of (12345) commutes with it in this case, so the first term is 5. Thus, the second must be 24.
 - In sum, we have showed that there are 24 elements conjugate to (12345) in S_5 .
 - Another way we could show this is by counting all of the 5-cycles and knowing that they are all conjugate as 5-cycles. Indeed, there are 4! = 24 5-cycles.
 - Claim: In A_5 , |x| = 5 implies $x \sim x$, $x \nsim x^2$, $x \nsim x^3$, and $x \sim x^4 = x^{-1}$.

Proof. We know that |x| = 5. Thus, let x = (abcde).

By the above statements on $C_{S_5}((12345))$, we know that $C_{S_5}(x) \subset A_5$. Thus, by proposition 2, $gxg^{-1} = x'$ iff $g \in A_n$. Thus,

$$exe^{-1} = x \implies x \sim x$$

$$[(bc)(cd)(de)]x[(bc)(cd)(de)]^{-1} = (bced)(abcde)(bced)^{-1} = (acebd) \implies x \nsim x^{2}$$

$$(bdec)(abcde)(bdec)^{-1} = (adbec) \implies x \nsim x^{3}$$

$$[(be)(cd)](abcde)[(be)(cd)]^{-1} = (aedcb) \implies x \sim x^{4} = x^{-1}$$

as desired. \Box

- $-x^2 \sim x^3$ in A_5 as well.
- (abced) and (acebd) are conjugate by $(bce) \in A_5$.
- Six subgroups, all conjugate.
- All of the subgroups are conjugate, but not all of the elements are conjugate?
- Consider $K = \{e, (12)(34), (13)(24), (14)(23)\} \triangleleft A_4 \subset A_5$.
- Consider a transitive group action from A_5 to $X = \{\text{cong of } K\}$.
- $Stab(K) = N_{A_5}(K) \supset A_4$.
- By O.S. trm, $X = |A_5|/|A_4| = 5$.
- Let $H \subset A_5$ have |H| = 4.
- We want to show that H fixes a point. Equivalently, we want to find $x \in \{1, 2, 3, 4, 5\}$ such that $|\operatorname{Orb}(x)| = 1$.
- Since $4 = |H| = |\operatorname{Orb}(x)| \cdot |\operatorname{Stab}(x)|$ and $5 \equiv 1 \mod 2$. Thus, there is a fixed point.
- Thus, there are 15 cyclic subgroups of order 4 like K, and they are all conjugate.
- $H \leq A_5$ has index d iff there is a transitive action and puts A_5/H . Induces a map from $A_5 \to S_d$?? As A_5 has no normal subgroups. If $d=2,3,4,\ldots$?? If d=5, then $A_5 \to S_5 \to S_5/A_5$. But really $A_5 \to S_5 \to S_5/A_5 \cong \mathbb{Z}/2\mathbb{Z}$.
- The hard ones are 6, 10, or 12.
- Consider a subgroup of A_5 of order 6. Must be $\mathbb{Z}/6\mathbb{Z}$ or S_3 . These groups have subgroups of order 3. If we have this, it must be a subgroup of $S_3 \times S_2 \cap A_5$. Important: $\langle (1,2,3) \rangle$ and (1,2)(4,5).
- Same analysis for subgroups of order 10. Subsets of order 1,2,5,10. (12) orbits include...
- Table with sets.
- If we spend a couple of hours understanding this example in complete detail, that will be very helpful
 for the final.