CIS	3223	HW	2
$\mathbf{O}_{\mathbf{I}}$	0220	TT 4 4	_

Name:

Dr Anthony Hughes

Temple ID (last 4 digits:

You may use a simple non-graphing calculator (make):

1 Complete the following table by writing 1 or 0 in each box, where 1 represents "true" and 0 represents "false". No justification required. For each row, enter the number represented (1010 gives 10).

f	g	f = O(g)	$f = \Omega(g)$	f = o(g)	g = o(f)	number
\sqrt{n}	$\log\left(1+n^2\right)$					
$(\log n)^{10}$	$n^{0.1}$					
3^{n+2}	. 5^n					
$2n + \log n$	$n + (\log n)^2$					
2^n	$5^{n/2}$					
n	$\sum_{k=1}^{n} \log k$					

Give as good big $-\theta$ estimate for each of the following functions.

(a)
$$f(n) = (n^4 + 2^n)(n^3 + \log(n^4 + 1))$$

(b)
$$f(n) = (4n^2 \log(2^n + 1) + n^4)(n! + n2^n)$$

Give a big- θ bound for the solutions of the following recurrence relations.

(a)
$$T(n) = 8T(n/3) + 1000n^2$$

(b)
$$T(n) = 5T(n/4) + 7n$$

(c)
$$T(n) = 2T(n/2) + \sqrt{n}$$

(d)
$$T(n) = T(n-1) + n^2$$

3 Use strong induction to prove the following: $F_n \leq 2^{0.7n}$, $n \geq 1$ Base cases: Show true for n = 1 and 2:

$$\begin{array}{ll} n=1: & n=2: \\ {\rm lhs} = F_1 = 1 & {\rm lhs} = F_2 = 1 \\ {\rm rhs} = 2^{0.7} = 1.6245 & {\rm rhs} = 2^{1.4} = 2.6390 \\ {\rm So \ lhs} \le {\rm rhs}. \ {\rm True \ for} \ n=2 & {\rm So \ lhs} \le {\rm rhs}. \ {\rm True \ for} \ n=2 \end{array}$$

Inductive case: Assume true for $n=s,\ 1\leq s\leq k,\ k\geq 2$

Show true for n = k + 1:

lhs =

(Bonus 2 pts) Can you improve on 0.7 using 2 decimal precision?

$$F_n \le 2 - - n \qquad n \ge - - -$$