Numerical Methods (DS288): Assignment 5

Name: Subhasis Biswas Serial Number: 23-1-22571

Question 1:

The exact solution is given by: $y(x) = x + 3e^{-x/2} - 2$ Table for Comparison:

h = 1

x	y exact	Euler	${\bf Modified Euler}$	Taylor	RK	Euler Error	Modified Error	Taylor Error	RK Error
0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
1	0.8195919791	0.5	0.875	0.8203125	0.8203125	0.3195919791	0.0554080209	0.0007205209	0.0007205209
2	1.1036383235	0.75	1.171875	1.1045125326	1.1045125326	0.3536383235	0.0682366765	0.000874209	0.000874209
3	1.6693904804	1.375	1.732421875	1.6701859898	1.6701859898	0.2943904804	0.0630313946	0.0007955094	0.0007955094

h = 0.5

x	y exact	Euler	${\bf Modified Euler}$	Taylor	RK	Euler Error	Modified Error	Taylor Error	RK Error
0.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
0.5	0.8364023492	0.75	0.84375	0.8364257812	0.8364257812	0.0864023492	0.0073476508	2.3432e-05	2.3432e-05
1.0	0.8195919791	0.6875	0.8310546875	0.8196284771	0.8196284771	0.1320919791	0.0114627084	3.6498e-05	3.6498e-05
1.5	0.9170996582	0.765625	0.9305114746	0.9171422954	0.9171422954	0.1514746582	0.0134118164	4.26372e-05	4.26372e-05
2.0	1.1036383235	0.94921875	1.1175870895	1.1036825982	1.1036825982	0.1544195735	0.013948766	4.42747e-05	4.42747e-05
2.5	1.3595143906	1.2119140625	1.3731149137	1.3595574923	1.3595574923	0.1476003281	0.0136005231	4.31017e-05	4.31017e-05
3.0	1.6693904804	1.5339355469	1.6821210263	1.6694307618	1.6694307618	0.1354549336	0.0127305459	4.02814 e - 05	4.02814 e - 05

h = 0.25

x	y exact	Euler	${\bf Modified Euler}$	Taylor	RK	Euler Error	Modified Error	Taylor Error	RK Error
0.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
0.25	0.8974907078	0.875	0.8984375	0.8974914551	0.8974914551	0.0224907078	0.0009467922	7.473e-07	7.473e-07
0.5	0.8364023492	0.796875	0.8380737305	0.8364036682	0.8364036682	0.0395273492	0.0016713813	1.319e-06	1.319e-06
0.75	0.8118678364	0.759765625	0.8140807152	0.8118695824	0.8118695824	0.0521022114	0.0022128788	1.7461e-06	1.7461e-06
1.0	0.8195919791	0.7585449219	0.8221962564	0.8195940337	0.8195940337	0.0610470573	0.0026042772	2.0545e-06	2.0545e-06
1.25	0.8557842856	0.7887268066	0.8586576326	0.8557865519	0.8557865519	0.0670574789	0.002873347	2.2664e-06	2.2664e-06
1.5	0.9170996582	0.8463859558	0.9201430663	0.9171020583	0.9171020583	0.0707137024	0.003043408	2.4001e-06	2.4001e-06
1.75	1.000586059	0.9280877113	1.0037200507	1.0005885301	1.0005885301	0.0724983477	0.0031339916	2.4711e-06	2.4711e-06
2.0	1.1036383235	1.0308267474	1.1067997322	1.1036408158	1.1036408158	0.0728115761	0.0031614087	2.4923e-06	2.4923e-06
2.25	1.2239574021	1.151973404	1.2270966386	1.2239598764	1.2239598764	0.0719839981	0.0031392365	2.4743e-06	2.4743e-06
2.5	1.3595143906	1.2892267285	1.3625931263	1.3595168168	1.3595168168	0.0702876621	0.0030787357	2.4262e-06	2.4262e-06
2.75	1.5085187874	1.4405733874	1.5115079943	1.5085211426	1.5085211426	0.0679454	0.0029892069	2.3552e-06	2.3552e-06
3.0	1.6693904804	1.604251714	1.6722687762	1.6693927479	1.6693927479	0.0651387664	0.0028782958	2.2674e-06	2.2674 e - 06

h = 0.125

x	y exact	Euler	${\bf Modified Euler}$	Taylor	RK	Euler Error	ModEuler Error	Taylor Error	RK Error
0.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
0.125	0.9432391884	0.9375	0.943359375	0.943239212	0.943239212	0.0057391884	0.0001201866	2.36e-08	2.36e-08
0.25	0.8974907078	0.88671875	0.8977165222	0.8974907521	0.8974907521	0.0107719578	0.0002258145	4.43e-08	4.43e-08
0.375	0.8620873545	0.8469238281	0.8624055609	0.862087417	0.862087417	0.0151635264	0.0003182064	6.25e-08	6.25e-08
0.5	0.8364023492	0.8174285889	0.8368009273	0.8364024275	0.8364024275	0.0189737603	0.0003985781	7.82e-08	7.82e-08
0.625	0.8198468868	0.7975893021	0.8203149337	0.8198469787	0.8198469787	0.0222575848	0.0004680469	9.19e-08	9.19e-08
0.75	0.8118678364	0.7868024707	0.8123954748	0.81186794	0.81186794	0.0250653657	0.0005276384	1.036e-07	1.036e-07
0.875	0.8119455793	0.7845023163	0.8125238738	0.8119456928	0.8119456928	0.027443263	0.0005782945	1.135e-07	1.135e-07
1.0	0.8195919791	0.7901584215	0.820212858	0.819592101	0.819592101	0.0294335576	0.0006208789	1.219e-07	1.219e-07
1.125	0.8343484742	0.8032735202	0.8350046576	0.834348603	0.834348603	0.031074954	0.0006561834	1.288e-07	1.288e-07
1.25	0.8557842856	0.8233814251	0.8564692194	0.85578442	0.85578442	0.0324028604	0.0006849338	1.344e-07	1.344e-07
1.375	0.8834947339	0.8500450861	0.8842025283	0.8834948728	0.8834948728	0.0334496478	0.0007077944	1.389e-07	1.389e-07
1.5	0.9170996582	0.8828547682	0.9178250315	0.9170998006	0.9170998006	0.03424489	0.0007253733	1.424e-07	1.424e-07
1.625	0.9562419302	0.9214263452	0.9569801566	0.9562420751	0.9562420751	0.0348155851	0.0007382263	1.449e-07	1.449e-07
1.75	1.000586059	0.9653996986	1.0013329205	1.0005862056	1.0005862056	0.0351863604	0.0007468615	1.466e-07	1.466e-07
1.875	1.04981688	1.0144372174	1.0505686226	1.0498170276	1.0498170276	0.0353796626	0.0007517426	1.475e-07	1.475e-07
2.0	1.1036383235	1.0682223914	1.1043916161	1.1036384714	1.1036384714	0.0354159322	0.0007532926	1.478e-07	1.478e-07
2.125	1.1617722577	1.1264584919	1.162524155	1.1617724053	1.1617724053	0.0353137658	0.0007518973	1.476e-07	1.476e-07
2.25	1.2239574021	1.1888673362	1.2247053097	1.2239575489	1.2239575489	0.0350900659	0.0007479076	1.468e-07	1.468e-07
2.375	1.2899483061	1.2551881276	1.2906899491	1.2899484517	1.2899484517	0.0347601785	0.000741643	1.455e-07	1.455e-07
2.5	1.3595143906	1.3251763697	1.3602477843	1.3595145345	1.3595145345	0.0343380209	0.0007333937	1.439e-07	1.439e-07
2.625	1.4324390462	1.3986028466	1.4331624692	1.4324391882	1.4324391882	0.0338361996	0.000723423	1.42e-07	1.42e-07
2.75	1.5085187874	1.4752526687	1.5092307572	1.5085189271	1.5085189271	0.0332661188	0.0007119698	1.397e-07	1.397e-07
2.875	1.5875624573	1.5549243769	1.5882617074	1.5875625945	1.5875625945	0.0326380804	0.0006992502	1.372e-07	1.372e-07
3.0	1.6693904804	1.6374291033	1.67007594	1.669390615	1.669390615	0.0319613771	0.0006854596	1.345e-07	1.345e-07

Adams-Bashforth Four Step Explicit vs Adams-Moulton Three Step Implicit:

x	y exact	Adam Bashforth	Absolute Error (Bash)	Adam Moulton	Absolute Error (Moulton)
0.375	0.8620873545	-	-	0.8123553871	0.0497319674
0.5	0.8364023492	0.8364032909485142	9.41734299653163e-07	0.8620873297	2.48e-08
0.625	0.8198468868	0.8198485297052864	1.6428653613065336e-06	0.8364022643	8.49e-08
0.75	0.8118678364	0.8118701634853724	2.3271124558466028e-06	0.8198467491	1.378e-07
0.875	0.8119455793	0.8119484688210935	2.88953741722775e-06	0.8118676524	1.84e-07
1.0	0.8195919791	0.819595364341713	3.3852038124893014e-06	0.8119453553	2.24e-07
1.125	0.8343484742	0.8343522792897314	3.805096962516963e-06	0.8195917206	2.586e-07
1.25	0.8557842856	0.8557884492382046	4.163681233793071e-06	0.8343481861	2.881e-07
1.375	0.8834947339	0.8834991979588801	4.464046057361948e-06	0.8557839724	3.131e-07
1.5	0.9170996582	0.9171043712991692	4.713076125262283e-06	0.8834943999	3.34e-07
1.625	0.9562419302	0.9562468456479026	4.915404662964029e-06	0.9170993069	3.513e-07
1.75	1.000586059	1.0005911350090526	5.075973527501887e-06	0.956241565	3.652e-07
1.875	1.04981688	1.0498220790488677	5.19901847084725e-06	1.0005856829	3.762e-07
2.0	1.1036383235	1.1036436120451347	5.288530807723291e-06	1.0498164956	3.844e-07
2.125	1.1617722577	1.1617776058391371	5.348108213398817e-06	1.1036379332	3.903e-07
2.25	1.2239574021	1.2239627831302407	5.381055191433504e-06	1.1617718636	3.941e-07
2.375	1.2899483061	1.2899536965107503	5.390377572522809e-06	1.2239570061	3.96e-07
2.5	1.3595143906	1.3595197693986438	5.378818073387137e-06	1.28994791	3.962e-07
2.625	1.4324390462	1.4324443950599517	5.348872400112725e-06	1.3595139957	3.949e-07
2.75	1.5085187874	1.5085240902253085	5.302811069363145e-06	1.4324386539	3.923e-07
2.875	1.5875624573	1.5875676999831005	5.242696726304175e-06	1.5085183988	3.886e-07
3.0	1.6693904804	1.6693956508466221	5.170401332410535e-06	1.5875620734	3.839e-07

Note: xe - y within the table stands for $x \times 10^y$.

Question 2:

Put $u_1 = y \text{ (eq 1)} \text{ and } u_2 = y' \text{ (eq 2)}.$

Differentiating both the equations and combining, we obtain:

$$u_1' = y' = u_2$$

$$u_2' = y'' = -(4y' + 5y) = -(4u_2 + 5u_1)$$

 $u'_2 = y'' = -(4y' + 5y) = -(4u_2 + 5u_1)$ It's been given that $u_1(0) = 3$ and $u_2(0) = -5$.

So, the given second order differential equation can be written as:

 $u'_1 = u_2$ with the initial condition $u_1(0) = 3$ $u'_2 = -(4u_2 + 5u_1)$ with the initial condition $u_2(0) = -5$.

Table of outcome:

x	y(Exact)	y(RK4)	dy(Exact)	dy(RK4)	y(RK4) - y(Exact)	dy(RK4) - dy(Exact)
0.0	3.0	3.0	-5.0	-5.0	0.0	0.0
0.1	2.525658217055026	2.5256458333333334	-4.481885989737062	-4.481854166666666	1.2383721693e-05	3.1823070395e-05
0.2	2.104046855694013	2.104027832552083	-3.950651542704738	-3.950599976475694	1.902314193e-05	5.1566229044e-05
0.3	1.735084272968695	1.735062685057882	-3.432423548670007	-3.432361519751276	2.1587910814e-05	6.2028918731e-05
0.4	1.416555087330076	1.41653369346863	-2.944181613409432	-2.944115995078026	2.1393861445e-05	6.5618331406e-05
0.5	1.144904546575131	1.14488509380768	-2.496076908375324	-2.496012568675801	1.9452767452e-05	6.4339699524e-05
0.6	0.915825975073754	0.91580945332808	-2.093266774410837	-2.093206959357834	1.6521745674e-05	5.9815053004e-05
0.7	0.724685409626735	0.72467226002807	-1.737349435345552	-1.737296116657582	1.3149598665e-05	5.331868797e-05
0.8	0.566819672956992	0.566809954399726	-1.427471777977892	-1.427425956962153	9.718557266e-06	4.5821015738e-05
0.9	0.437737377263264	0.437730896557476	-1.161172519690354	-1.161134484614697	6.480705788e-06	3.8035075656e-05
1.0	0.333246610858547	0.333243021925761	-0.935013398312139	-0.934982936351778	3.588932786e-06	3.0461960361e-05
1.1	0.249528238875141	0.24952711626036	-0.745042365627117	-0.745018932776962	1.122614781e-06	2.3432850155e-05
1.2	0.183169739798695	0.183170631338272	-0.587125160546764	-0.587108014150552	8.91539577e-07	1.7146396212e-05
1.3	0.131171199758918	0.131173662699689	-0.457175047093682	-0.457163346171334	2.462940771e-06	1.1700922349e-05
1.4	0.090932397606581	0.09093602188309	-0.351304861992977	-0.351297740585782	3.624276509e-06	7.121407195e-06
1.5	0.060227744781402	0.060232166573397	-0.265920744951194	-0.26591736342825	4.421791996e-06	3.381522944e-06
1.6	0.03717411244622	0.037179020588598	-0.197772931072261	-0.197772509881038	4.908142378e-06	4.21191223e-07
1.7	0.020195211156307	0.020200348476017	-0.143975676691798	-0.143977516483534	5.13731971e-06	1.839791737e-06
1.8	0.007985121447557	0.007990282665256	-0.102005676986159	-0.102009168467046	5.161217699e-06	3.491480887e-06
1.9	-0.000527248062221	-0.000522220601641	-0.069686131126713	-0.069690757420861	5.02746058e-06	4.626294148e-06
2.0	-0.006211622236465	-0.006206844052916	-0.045161840646539	-0.045167174432836	4.778183549e-06	5.333786297e-06
2.1	-0.009767053262399	-0.009762603753652	-0.026869319128465	-0.026875016345117	4.449508748e-06	5.697216652e-06
2.2	-0.011749499589537	-0.011745428078236	-0.013504784551111	-0.013510576055304	4.0715113e-06	5.791504193e-06
2.3	-0.012596185072761	-0.01259251655886	-0.003992045901124	-0.00399772812744	3.668513901e-06	5.682226316e-06
2.4	-0.012646800146462	-0.012643540560656	0.002548363187895	0.002542937810869	3.259585806e-06	5.425377026e-06
$\frac{2.5}{2.6}$	-0.012161716073231	-0.012158856920055 -0.011334971848457	0.006827948164047	0.006822880509207 0.00941178031491	2.859153176e-06	5.067654841e-06
2.7	-0.011337449501512 -0.010319649199824	-0.011334971848437	0.009416427413708 0.010765095925305	0.01076090199288	2.477653055e-06 2.122183537e-06	4.647098798e-06 4.193932426e-06
2.7	-0.010319049199824	-0.009212091774775	0.010765095925505	0.01076090199288	1.797118567e-06	3.731510414e-06
2.9	-0.00921388893341	-0.008093041891441	0.011227340402323	0.011223014892111	1.504667949e-06	3.277291418e-06
3.0	-0.007012036640346	-0.007010791268083	0.011070442732331	0.011073103300333	1.245372262e-06	2.843783561e-06
3.1	-0.005998641381074	-0.005997622852131	0.009716452067725	0.009714012640291	1.018528943e-06	2.439427434e-06
3.2	-0.005073163819057	-0.005072341268631	0.008778579640354	0.008776510244893	8.22550426e-07	2.069395461e-06
3.3	-0.004244599950501	-0.003072341203031	0.0037789640585412	0.003770310244833	6.55258246e-07	1.736297039e-06
3.4	-0.003515002728319	-0.003514488609427	0.006807055642833	0.006805614856281	5.14118892e-07	1.440786552e-06
3.5	-0.002881686793139	-0.002881290364997	0.005869054319063	0.005867872242363	3.96428143e-07	1.1820767e-06
3.6	-0.002338900804413	-0.002338601353437	0.00499943295029	0.004998474587115	2.99450975e-07	9.58363175e-07
3.7	-0.001879074262368	-0.001878853738382	0.004211336450868	0.004210569282059	2.20523985e-07	7.6716881e-07
3.8	-0.001493727934283	-0.001493570807416	0.003510230419085	0.003509624802625	1.57126867e-07	6.0561646e-07
3.9	-0.001174121424983	-0.001174014496077	0.002896208550892	0.00289573791071	1.06928906e-07	4.70640183e-07
4.0	-0.000911697974179	-0.000911630158438	0.002365759803229	0.002365400659162	6.7815741e-08	3.59144067e-07
4.1	-0.000698375076843	-0.000698337175885	0.001913100894006	0.001912832776475	3.7900958e-08	2.68117531e-07
4.2	-0.000526719828896	-0.000526704302541	0.001531162754032	0.001530968038963	1.5526355e-08	1.94715069e-07
4.3	-0.000390039805948	-0.000390040551865	0.001212304532968	0.001212168225377	7.45917e-10	1.36307591e-07
4.4	-0.000282413592574	-0.000282425739327	0.000948815677172	0.000948725165654	1.2146754e-08	9.0511518e-08
4.5	-0.00019867960524	-0.000198699322204	0.0007332553431	0.000733200142195	1.9716964e-08	5.5200904e-08
4.6	-0.000134397417326	-0.000134421743339	0.00055866884427	0.000558640337267	2.4326013e-08	2.8507003e-08
4.7	-8.5792238936e-05	-8.5818930352e-05	0.000418712788594	0.00041870397973	2.6691416e-08	8.808864e-09
4.8	-4.9690383516e-05	-4.9717781413e-05	0.000307713873504	0.000307719155605	2.7397897e-08	5.282101e-09
4.9	-2.3451341141e-05	-2.3478256839e-05	0.00022068079769	0.000220695738992	2.6915698e-08	1.4941302e-08
5.0	-4.900364828e-06	-4.92598244e-06	0.000153284257105	0.000153305409234	2.5617612e-08	2.1152129e-08

Question 3:

Fixed Point Iteration:

The general iteration formula is given by: $\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)})$ for k = 1, 2, 3...A screenshot from the textbook (page 634), which describes the iteration scheme in this particular problem.

634 CHAPTER 10 • Numerical Solutions of Nonlinear Systems of Equations

Solution Solving the *i*th equation for x_i gives the fixed-point problem

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$
(10.4)

Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $G(\mathbf{x}) = (g_1(\mathbf{x}), g_2(\mathbf{x}), g_3(\mathbf{x}))^t$, where

$$g_1(x_1, x_2, x_3) = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$g_2(x_1, x_2, x_3) = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$g_3(x_1, x_2, x_3) = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$

Result:
$$\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)})$$

	(k)	(k)	(k)	
Iteration	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$\mid\mid \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\mid\mid_{\infty}$
0	0.1	0.1	-0.1	_
1	0.4999833335	0.0222297936	-0.5230461262	0.4230461261913656
2	0.4999774683	2.81537e-05	-0.5235980718	0.022201639896641867
3	0.5	3.76e-08	-0.5235987747	2.8116039917230884e-05
4	0.5	1e-10	-0.5235987756	3.757173792917623e-08

Newton's Method:

 $\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \mathbf{J}(\mathbf{x}^{(k-1)})^{-1}\mathbf{F}(\mathbf{x}^{(k-1)})$ for k = 1, 2, 3..., where **J** is the Jacobian of the set of functions. In this case, the computation from the example is attached below.

Example 1 The nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

was shown in Example 2 of Section 10.1 to have the approximate solution $(0.5,0,-0.52359877)^t$. Apply Newton's method to this problem with $\mathbf{x}^{(0)}=(0.1,0.1,-0.1)^t$.

Solution Define

$$\mathbf{F}(x_1, x_2, x_3) = (f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3))^t,$$

where

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2},$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06,$$

and

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}.$$

642 CHAPTER 10 • Numerical Solutions of Nonlinear Systems of Equations

The Jacobian matrix $J(\mathbf{x})$ for this system is

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}.$$

Let $\mathbf{x}^{(0)} = (0.1, 0.1, -0.1)^t$. Then $\mathbf{F}(\mathbf{x}^{(0)}) = (-0.199995, -2.269833417, 8.462025346)^t$

$$J(\mathbf{x}^{(0)}) = \begin{bmatrix} 3 & 9.999833334 \times 10^{-4} & 9.999833334 \times 10^{-4} \\ 0.2 & -32.4 & 0.9950041653 \\ -0.09900498337 & -0.09900498337 & 20 \end{bmatrix}.$$

Solving the linear system, $J(\mathbf{x}^{(0)})\mathbf{y}^{(0)} = -\mathbf{F}(\mathbf{x}^{(0)})$ gives

$$\mathbf{y}^{(0)} = \left[\begin{array}{c} 0.3998696728 \\ -0.08053315147 \\ -0.4215204718 \end{array} \right] \quad \text{and} \quad \mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \mathbf{y}^{(0)} = \left[\begin{array}{c} 0.4998696782 \\ 0.01946684853 \\ -0.5215204718 \end{array} \right].$$

Result:
$$\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)})$$

Iteration	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$\mid\mid \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)} \mid\mid_{\infty}$
0	0.1	0.1	-0.1	-
1	0.4998696729	0.0194668485	-0.5215204719	0.42152047193583064
2	0.5000142402	0.0015885914	-0.5235569643	0.017878257167124205
3	0.5000001135	1.24448e-05	-0.5235984501	0.0015761465869723395
4	0.5	8e-10	-0.5235987756	1.244400753583079e-05
5	0.5	0.0	-0.5235987756	7.757857127143585 e-10

Question 4: a) Table for comparison

	X	y(Exact)	y(Shooting)	Absolute Error
0	0.0	1.25	1.25	0.0
1	0.2	1.317350212	1.3173080971	4.21149e-05
2	0.4	1.3265045603	1.3264260933	7.84671e-05
3	0.6	1.2817620876	1.281652347	0.0001097406
4	0.8	1.1894119056	1.1892756055	0.0001363002
5	1.0	1.0568859788	1.0567277081	0.0001582707
6	1.2	0.8920864725	0.8919107277	0.0001757448
7	1.4	0.7029475159	0.7027586739	0.000188842
8	1.6	0.4971871048	0.4969894112	0.0001976936
9	1.8	0.2821843958	0.2819819742	0.0002024216
10	2.0	0.0649310438	0.064727916	0.0002031278
11	2.2	-0.1479767675	-0.1481766606	0.0001998931
12	2.4	-0.3503253628	-0.3505181421	0.0001927793
13	2.6	-0.5362608188	-0.5364426521	0.0001818332
14	2.8	-0.7002624926	-0.7004295826	0.0001670901
15	3.0	-0.8371160376	-0.8372646138	0.0001485762
16	3.2	-0.9418875183	-0.9420138298	0.0001263115
17	3.4	-1.0098993544	-1.0099996655	0.0001003111
18	3.6	-1.0367083603	-1.0367789468	7.05865e-05
19	3.8	-1.0180858928	-1.0181230393	3.71465e-05
20	4.0	-0.9500000022	-0.95	2.2e-09

The algorithm has been given below:

Linear Shooting

To approximate the solution of the boundary-value problem

$$-y'' + p(x)y' + q(x)y + r(x) = 0, \quad \text{for } a \le x \le b, \text{ with } y(a) = \alpha \text{ and } y(b) = \beta,$$

(Note: Equations (11.3) and (11.4) are written as first-order systems and solved.)

INPUT endpoints a, b; boundary conditions α, β ; number of subintervals N.

OUTPUT approximations $w_{1,i}$ to $y(x_i)$; $w_{2,i}$ to $y'(x_i)$ for each i = 0, 1, ..., N.


```
Step 1 Set h = (b - a)/N;
                     u_{1,0} = \alpha;
                     u_{2,0} = 0;
                     v_{1,0} = 0;
                     v_{2,0} = 1.
Step 2 For i = 0, ..., N-1 do Steps 3 and 4.
               (The Runge-Kutta method for systems is used in Steps 3 and 4.)
         Step 3 Set x = a + ih.
         Step 4 Set k_{1,1} = hu_{2,i};
                               k_{1,2} = h [p(x)u_{2,i} + q(x)u_{1,i} + r(x)];
                               k_{2,1} = h \left[ u_{2,i} + \frac{1}{2} k_{1,2} \right];
                               k_{2,2} = h \left[ p(x + h/2) \left( u_{2,i} + \frac{1}{2} k_{1,2} \right) \right]
                                          +q(x+h/2)(u_{1,i}+\frac{1}{2}k_{1,1})+r(x+h/2)];
                               k_{3,1} = h \left[ u_{2,i} + \frac{1}{2} k_{2,2} \right];
                               k_{3,2} = h \left[ p(x + h/2) \left( u_{2,i} + \frac{1}{2} k_{2,2} \right) \right]
                                          +q(x+h/2)(u_{1,i}+\frac{1}{2}k_{2,1})+r(x+h/2)];
                               k_{4,1} = h \left[ u_{2,i} + k_{3,2} \right];
                               k_{4,2} = h [p(x+h)(u_{2,i} + k_{3,2}) + q(x+h)(u_{1,i} + k_{3,1}) + r(x+h)];
                               u_{1,i+1} = u_{1,i} + \frac{1}{6} \left[ k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1} \right];
                               u_{2,i+1} = u_{2,i} + \frac{1}{6} [k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2}];
                               k'_{1,1} = hv_{2,i};
                               k'_{1,2} = h [p(x)v_{2,i} + q(x)v_{1,i}];
                               k'_{2,1} = h \left[ v_{2,i} + \frac{1}{2} k'_{1,2} \right];
                              k'_{2,2} = h \left[ p(x+h/2) \left( v_{2,i} + \frac{1}{2} k'_{1,2} \right) + q(x+h/2) \left( v_{1,i} + \frac{1}{2} k'_{1,1} \right) \right];
                               k'_{3,1} = h \left[ v_{2,i} + \frac{1}{2} k'_{2,2} \right];
                               k'_{3,2} = h \left[ p(x+h/2) \left( v_{2,i} + \frac{1}{2} k'_{2,2} \right) + q(x+h/2) \left( v_{1,i} + \frac{1}{2} k'_{2,1} \right) \right];
                               k'_{4,1} = h [v_{2,i} + k'_{3,2}];
                               k'_{4,2} = h [p(x+h)(v_{2,i} + k'_{3,2}) + q(x+h)(v_{1,i} + k'_{3,1})];
                               v_{1,i+1} = v_{1,i} + \frac{1}{6} \left[ k'_{1,1} + 2k'_{2,1} + 2k'_{3,1} + k'_{4,1} \right];
                               v_{2i+1} = v_{2i} + \frac{1}{6} \left[ k'_{12} + 2k'_{22} + 2k'_{32} + k'_{42} \right].
Step 5 Set w_{1,0} = \alpha;
                      w_{2,0} = \frac{\beta - u_{1,N}}{v_{1,N}};
               OUTPUT (a, w_{1,0}, w_{2,0}).
Step 6 For i = 1, ..., N
                      set W1 = u_{1,i} + w_{2,0}v_{1,i};
                           W2 = u_{2,i} + w_{2,0} v_{2,i};
                           x = a + ih;
                      OUTPUT (x, W1, W2). (Output is x_i, w_{1,i}, w_{2,i}.)
```

Step 7 STOP. (The process is complete.)

b) Table for comparison

	X	y(Exact)	y(Finite Difference)	Absolute Error
0	0.0	1.25	1.25	0.0
1	0.2	1.317350212	1.3145034486	0.0028467634
2	0.4	1.3265045603	1.3206068973	0.0058976631
3	0.6	1.2817620876	1.2727547904	0.0090072972
4	0.8	1.1894119056	1.1773987408	0.0120131648
5	1.0	1.0568859788	1.0421063162	0.0147796626
6	1.2	0.8920864725	0.8748775164	0.017208956
7	1.4	0.7029475159	0.6837123416	0.0192351743
8	1.6	0.4971871048	0.4763719857	0.0208151191
9	1.8	0.2821843958	0.2602638562	0.0219205396
10	2.0	0.0649310438	0.0423982623	0.0225327815
11	2.2	-0.1479767675	-0.1706161003	0.0226393327
12	2.4	-0.3503253628	-0.3725570094	0.0222316466
13	2.6	-0.5362608188	-0.5575645924	0.0213037735
14	2.8	-0.7002624926	-0.7201139873	0.0198514948
15	3.0	-0.8371160376	-0.854987803	0.0178717654
16	3.2	-0.9418875183	-0.9572498692	0.0153623509
17	3.4	-1.0098993544	-1.0222209406	0.0123215862
18	3.6	-1.0367083603	-1.0454565727	0.0087482125
19	3.8	-1.0180858928	-1.0227271584	0.0046412655
20	4.0	-0.9500000022	-0.95	2.2e-09

Comparison between y(Exact) and y(Finite Difference Method)

The algorithm is as follows:

Linear Finite-Difference

To approximate the solution of the boundary-value problem

$$y'' = p(x)y' + q(x)y + r(x)$$
, for $a \le x \le b$, with $y(a) = \alpha$ and $y(b) = \beta$:

INPUT endpoints a, b; boundary conditions α, β ; integer $N \ge 2$.

OUTPUT approximations w_i to $y(x_i)$ for each i = 0, 1, ..., N + 1.

Step 1 Set
$$h = (b-a)/(N+1)$$
;
 $x = a+h$;
 $a_1 = 2 + h^2q(x)$;
 $b_1 = -1 + (h/2)p(x)$;
 $d_1 = -h^2r(x) + (1 + (h/2)p(x))\alpha$.

Step 2 For
$$i = 2, ..., N-1$$

set $x = a + ih$;
 $a_i = 2 + h^2 q(x)$;
 $b_i = -1 + (h/2)p(x)$;
 $c_i = -1 - (h/2)p(x)$;
 $d_i = -h^2 r(x)$.

Step 3 Set
$$x = b - h$$
;
 $a_N = 2 + h^2 q(x)$;
 $c_N = -1 - (h/2)p(x)$;
 $d_N = -h^2 r(x) + (1 - (h/2)p(x))\beta$.

Step 4 Set
$$l_1 = a_1$$
; (Steps 4–8 solve a tridiagonal linear system using Algorithm 6.7.) $u_1 = b_1/a_1$; $z_1 = d_1/l_1$.

Step 5 For
$$i = 2, ..., N-1$$
 set $l_i = a_i - c_i u_{i-1}$; $u_i = b_i/l_i$; $z_i = (d_i - c_i z_{i-1})/l_i$.

Step 6 Set
$$l_N = a_N - c_N u_{N-1}$$
;
 $z_N = (d_N - c_N z_{N-1})/l_N$.

Step 7 Set
$$w_0 = \alpha$$
;
 $w_{N+1} = \beta$.
 $w_N = z_N$.

Step 8 For
$$i = N - 1, ..., 1$$
 set $w_i = z_i - u_i w_{i+1}$.

Step 9 For
$$i = 0, ..., N + 1$$
 set $x = a + ih$;
OUTPUT (x, w_i) .

Step 10 STOP. (The procedure is complete.)