Chapter 6: Ridge Regression^a

In this chapter we consider observations $\{(y_i^0, x_i^0)\}_{i=1}^n$ and assume the following linear model regression model

$$Y_i^0 = \alpha + \beta^{\top} x_i^0 + \epsilon_i, \quad i = 1, \dots, n$$
 (6.1)

where $\beta \in \mathbb{R}^p$, $\alpha \in \mathbb{R}$ and where, for all $i, l \in \{1, ..., n\}$, $\mathbb{E}[\epsilon_i] = \text{and}$ $\mathbb{E}[\epsilon_i \epsilon_l] = \sigma^2 \delta_{il}$ for some $\sigma^2 > 0^{\text{b}}$.

We consider below the fixed design setting, in which the covariates $\{x_i^0\}_{i=1}^n$ are fixed (i.e. non-random).

Assume first that $n \geq p$ and that $\operatorname{rank}(\boldsymbol{X}^0) = p$. In this case, we can estimate (α, β) by ordinary least squares (OLS), that is we can estimate α and β using

$$\hat{\alpha} := \bar{y}^0 - \hat{\beta}^\top \bar{x}^0, \quad \hat{\beta} := \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \|y - \boldsymbol{X}\beta\|_2^2 = (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top y.$$

Remark: This expression for $\hat{\alpha}$ and for $\hat{\beta}$ is obtained by applying Proposition 6.1 below with $\lambda = 0$.

Letting

$$Y^0 = (Y_1^0, \dots, Y_p^0), \quad Y = Y^0 - \frac{1}{n} \sum_{i=1}^n Y_i^0,$$

the corresponding OLS estimate $\hat{\mu}$ of $\mathbb{E}[Y]$ is given by

$$\hat{\mu} = \boldsymbol{X}\hat{\beta} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y} = \mathbf{A}\boldsymbol{y}$$

Remark: We focus on the estimation of $\mathbb{E}[Y]$ and not on $\mathbb{E}[Y^0]$ because $\mathbb{E}[Y]$ depends only on the main parameter of interest β .

^aThe main reference for this chapter is [11].

^bRecall that the intercept α in (6.1) allows to have estimators of β which are not affected by a shift of the response variables, that is, which are independent of $c \in \mathbb{R}$ if each y_i^0 is replaced by $y_i^0 + c$.

Some properties of the estimator $\hat{\mu}$ under the model (6.1)

Under the model (6.1) the estimator^a $\hat{\mu}$ is unbiased, i.e. $\mathbb{E}[\hat{\mu}] = \mathbb{E}[Y]$.

In addition, under (6.1) we have $Var(Y) = \sigma^2(\mathbf{I}_n - \frac{1}{n}\mathbf{1}_n)$ and thus, noting that $\mathbf{X}^{\top}\mathbf{1}_n = \mathbf{0}_n$, it follows that under (6.1) the variance of the estimator $\hat{\mu}$ is given by

$$Var(\hat{\mu}) = Var(\mathbf{A}Y) = \mathbf{A}\sigma^2 \mathbf{I}_n \mathbf{A} - \frac{\sigma^2}{n} \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} (\mathbf{X}^\top \mathbf{1}_n) \mathbf{A}$$
$$= \sigma^2 \mathbf{A}^2 = \sigma^2 \mathbf{A}$$

Using the fact that tr(BC) = tr(CB), we remark that

$$\operatorname{tr}(\mathbf{A}) = \operatorname{tr}\{(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\} = p$$

so that, under (6.1), $\hat{\mu}$ is such that $\frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}(\hat{\mu}_i) = \sigma^2 \frac{p}{n}$.

Therefore, under (6.1) and as p grows, the average variance of the OLS estimators $\{\hat{\mu}_i\}_{i=1}^n$ of $\{\mathbb{E}[Y_i]\}_{i=1}^n$ increases, until reaching the value σ^2 when $p = n^{\rm b}$.

On the other hand, if we simply estimate $\mathbb{E}[Y]$ by y then the resulting average variance of the estimators $\{Y_i\}_{i=1}^n$ of $\{\mathbb{E}[Y_i]\}_{i=1}^n$ is

$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}(Y_i) = \sigma^2.$$

In words, as $p \to n$ the average variance of the OLS estimators $\{\hat{\mu}_i\}_{i=1}^n$ converges to the average variance of the naive estimators $\{Y_i\}_{i=1}^n$.

 \implies For $p \approx n$ the OLS estimate $\hat{\mu}$ of $\mathbb{E}[Y]$ is not better than the naive estimate y.

^aIn this chapter we make the distinction between an estimator, which is a random variable, and an estimate which is a realization of an estimator.

^bIf p > n then $X^{\top}X$ is no longer invertible and therefore $\hat{\mu}$ does not exist.

Linear regression in high dimension and ridge regression

As we just saw, for p > n the OLS estimator of β cannot be computed and for $p \approx n$ the OLS estimator $\hat{\mu}$ performs poorly.

In this context, as discussed in Chapter 1 (see pages 31-32), a first approach that can be used to estimate β is principal component regression (PCR).

Ridge regression is a second possible approach to linear regression with high-dimensional data, which is based on the following lemma.

Lemma 6.1 Let $\lambda > 0$ and $\gamma_1 \geq \cdots \geq \gamma_p$ be the p eigenvalues of the matrix $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_p$. Then, $\gamma_p \geq \lambda$.

Proof: Let $l_1 \geq \cdots \geq l_p$ be the eigenvalues of $\boldsymbol{X}^{\top}\boldsymbol{X}$. Then, since for all $\beta \in \mathbb{R}^p$ we have $\beta^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\beta = \|\boldsymbol{X}\beta\|^2 \geq 0$, it follows that $l_j \geq 0$ for all $j \in \{1, \ldots, p\}$. Then, letting v_j be an eigenvector associated to the eigenvalue l_j , we have

$$(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_p)v_j = \boldsymbol{X}^{\top}\boldsymbol{X}v_j + \lambda v_j = l_j v_j + \lambda v_j = (l_j + \lambda)v_j$$

showing that $l_j + \lambda \geq \lambda$ is an eigenvalue of the matrix $\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_p$, with associated eigenvector v_j . The result follows.

Building on the result of Lemma 6.1, for every $\lambda > 0$ the ridge estimate $(\hat{\alpha}_{\lambda}, \hat{\beta}_{\lambda})$ of (α, β) is defined by

$$\hat{\alpha}_{\lambda} = \bar{y}^0 - \hat{\beta}_{\lambda}^{\top} \bar{x}^0, \quad \hat{\beta}_{\lambda} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{X}^{\top} y.$$
 (6.2)

Corresponding optimization problem

As shown in the following proposition, $(\hat{\alpha}_{\lambda}, \hat{\beta}_{\lambda})$ can be interpreted as a penalized least squares estimate of (α, β) .

Proposition 6.1 Let $(\hat{\alpha}_{\lambda}, \hat{\beta}_{\lambda})$ the as defined in (6.2). Then,

$$(\hat{\alpha}_{\lambda}, \hat{\beta}_{\lambda}) = \underset{\alpha \in \mathbb{R}, \, \beta \in \mathbb{R}^p}{\operatorname{argmin}} \|y^0 - \alpha - \boldsymbol{X}^0 \beta\|_2^2 + \lambda \|\beta\|_2^2.$$
 (6.3)

It also holds true that

$$\hat{\beta}_{\lambda} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|y - \boldsymbol{X}\beta\|_2^2 + \lambda \|\beta\|_2^2.$$

Two important remarks:

- 1. In (6.3) the intercept is excluded from the penalty term to make $\hat{\beta}_{\lambda}$ independent of $\hat{\alpha}_{\lambda}^{a}$.
- 2. The input variables $\{x_{(j)}\}_{j=1}^p$ should all be on the same scale to ensure that that the size of the components $\{\beta_j\}_{j=1}^p$ of β is comparable, and thus that the penalty $\lambda \|\beta\|$ appearing in (6.3) makes sense.

If the variables are not on the same scale we can proceed as follows: Letting $\mathbf{D} = \operatorname{diag}(s_1^2, \dots, s_p^2)$, $\tilde{\mathbf{X}}^0 = \mathbf{X}^0 \mathbf{D}^{-1/2}$ and $\gamma = \mathbf{D}^{1/2} \beta$, we can rewrite (6.1) as

$$Y^{0} = \alpha + \mathbf{X}^{0} \mathbf{D}^{-1/2} (\mathbf{D}^{1/2} \beta) + \epsilon = \alpha + \tilde{\mathbf{X}}^{0} \gamma + \epsilon$$

and compute the ridge regression estimate $(\hat{\alpha}_{\lambda}, \hat{\gamma}_{\lambda})$ of (α, γ) using the normalized variables $\{\tilde{x}_{(j)}^0\}_{j=1}^p$. We then estimate β using $\tilde{\beta}_{\lambda} = \mathbf{D}^{-1/2} \hat{\gamma}_{\lambda}$.

all particular, if α was in the penalty term then adding an arbitrary constant $c \neq 0$ to each observation y_i^0 would modify the value of all the components of $\hat{\beta}_{\lambda}$. In this case, the estimated slope parameters would have the undesirable property be affected by an arbitrary shift of the response variables $\{y_i^0\}_{i=1}^n$.

Proof of Proposition 6.1

Let $F(\alpha, \beta) = \sum_{i=1}^{n} (y_i^0 - \alpha - \beta^{\top} x_i^0)^2 + \lambda \|\beta\|_2^2$. Simple computations show that F is strictly convex for all $\lambda > 0$, implying that the global minimizer of this function is unique.

For all $\beta \in \mathbb{R}^p$ let $\alpha_{\beta} = \operatorname{argmin}_{\alpha \in \mathbb{R}} F(\alpha, \beta)$ so that to prove the proposition we need to show that

$$F(\hat{\alpha}_{\lambda}, \hat{\beta}_{\lambda}) = \min_{\alpha \in \mathbb{R}, \, \beta \in \mathbb{R}^p} F(\alpha, \beta) = \min_{\beta \in \mathbb{R}^p} F(\alpha_{\beta}, \beta).$$

We have

$$0 = \frac{\partial}{\partial \alpha} F(\alpha, \beta) \Big|_{(\alpha, \beta) = (\alpha_{\beta}, \beta)} \Leftrightarrow \alpha_{\beta} = \bar{y}^{0} - \beta^{\top} \bar{x}^{0}, \quad \forall \beta \in \mathbb{R}^{p}$$
 (6.4)

and thus

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} F(\alpha_{\beta}, \beta) = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|y^0 - \alpha_{\beta} - \boldsymbol{X}^0 \beta\|_2^2 + \lambda \|\beta\|_2^2 \\
= \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|y - \boldsymbol{X}\beta\|_2^2 + \lambda \|\beta\|_2^2 \\
= (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{X}^\top y \\
= \hat{\beta}_{\lambda}.$$

Using (6.4) it follows that $\alpha_{\hat{\beta}_{\lambda}} = \bar{y}^0 - \hat{\beta}_{\lambda}^{\top} \bar{x}^0 = \hat{\alpha}_{\lambda}$ and the proof is complete.

$\hat{\beta}_{\lambda}$ as a shrinkage estimator of β

Proposition 6.1 shows that ridge regression imposes a penalty on the size of β . The strength of the penalty depends on the parameter λ , with the larger λ the smaller $\|\hat{\beta}_{\lambda}\|$. This claim is formalized in the following two propositions.

Proposition 6.2 Assume that $\mathbf{X}^{\top}y \neq 0$. Then, the ridge estimate of β is such that have $\|\hat{\beta}_{\lambda}\| < \|\beta_{\lambda_0}\|$ for all $\lambda > \lambda_0 > 0$.

Proof: Remark that for every $\lambda \geq 0$ we have

$$\hat{\beta}_{\lambda} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} y \tag{6.5}$$

and let $\boldsymbol{B}_{\lambda} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1}.$

Let $\lambda > \lambda_0 \geq 0$ and remark that

$$\|\hat{\beta}_{\lambda_0}\|^2 - \|\hat{\beta}_{\lambda}\|^2 = (\boldsymbol{X}^{\top} y)^{\top} (\boldsymbol{B}_{\lambda_0} - \boldsymbol{B}_{\lambda}) \boldsymbol{X}^{\top} y$$

so that to prove the proposition it is enough to show that $B_{\lambda_0} - B_{\lambda} \succ 0$.

Since the matrices B_{λ_0} and B_{λ} are invertible (see Lemma 6.1) we have

$$\boldsymbol{B}_{\lambda_0} - \boldsymbol{B}_{\lambda} \succ 0 \Leftrightarrow \boldsymbol{B}_{\lambda}^{-1} - \boldsymbol{B}_{\lambda_0}^{-1} \succ 0.$$

Therefore, noting that

$$\boldsymbol{B}_{\lambda}^{-1} - \boldsymbol{B}_{\lambda_0}^{-1} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_p) (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_p) - (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda_0 \boldsymbol{I}_p) (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda_0 \boldsymbol{I}_p)$$
$$= 2 \boldsymbol{X}^{\top} \boldsymbol{X} (\lambda - \lambda_0) + (\lambda^2 - \lambda_0^2) \boldsymbol{I}_p$$

the result follows from the fact that $\lambda > \lambda_0$ and the fact that the matrix XX^{\top} is positive semi-definite.

Proposition 6.3 Assume that (6.1) holds for some β such that $\mathbf{X}\beta \neq 0$. Then, $\|\mathbb{E}[\hat{\beta}_{\lambda}]\| < \|\mathbb{E}[\beta_{\lambda_0}]\|$ for all $\lambda > \lambda_0 > 0$. If in addition $\mathbf{X}^{\top}\mathbf{X}$ is invertible then $\|\mathbb{E}[\hat{\beta}_{\lambda}]\| < \|\beta\|$ of for all $\lambda > 0$.

Proof: The result follows from similar computations as in the proof of Proposition 6.3.

Variance of $\hat{\beta}_{\lambda}$ under the model (6.1)

Proposition 6.3 implies that, unlike the OLS estimator $\hat{\beta}$, the ridge estimator $\hat{\beta}_{\lambda}$ is biased under the model (6.1).

As shown in the following proposition, $\hat{\beta}_{\lambda}$ has however the advantage to have a smaller variance.

Proposition 6.4 Assume that $\mathbf{X}^{\top}\mathbf{X}$ is invertible. Then, under the model (6.1), we have $\operatorname{Var}(\hat{\beta}_{\lambda_0}) - \operatorname{Var}(\hat{\beta}_{\lambda}) \succ 0$ for all $\lambda > \lambda_0 \geq 0$.

Proof: Recall that under the model (6.1) we have $Var(Y) = \sigma^2(\mathbf{I}_n - \frac{1}{n}\mathbf{1}_n)$ and note that $\mathbf{X}^{\top}\mathbf{1}_n = \mathbf{0}_n$. Therefore, under the model (6.1), for all $\lambda > 0$ we have

$$\operatorname{Var}(\hat{\beta}_{\lambda}) = \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \operatorname{Var}(Y) \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}$$

$$= \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} (\boldsymbol{I}_{n} - \frac{1}{n} \boldsymbol{1}_{n}) \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}$$

$$= \sigma^{2} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}.$$

Let $\lambda > \lambda_0 \geq 0$ and note that, since by assumption the matrix $\boldsymbol{X}^{\top} \boldsymbol{X}$ is invertible, we have

$$\operatorname{Var}(\hat{\beta}_{\lambda_0}) - \operatorname{Var}(\hat{\beta}_{\lambda}) \succ 0 \Leftrightarrow \operatorname{Var}(\hat{\beta}_{\lambda})^{-1} - \operatorname{Var}(\hat{\beta}_{\lambda_0})^{-1} \succ 0.$$

Simple computations show that

$$\frac{\operatorname{Var}(\hat{\beta}_{\lambda})^{-1} - \operatorname{Var}(\hat{\beta}_{\lambda_0})^{-1}}{\sigma^2} = 2(\lambda - \lambda_0)\boldsymbol{I}_p + (\lambda^2 - \lambda_0^2)(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$$

and, since $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \succ 0$, the proposition is proved.

Remark: Compared to $\hat{\beta}$, for all $\lambda > 0$ and under (6.1) the estimator $\hat{\beta}_{\lambda}$ has therefore a larger bias and a smaller variance, and a natural question is which of these two estimators has the lowest mean squared error (MSE). It can be shown (see [11], Theorem 1.2) that there exists a $\lambda > 0$ such that $\hat{\beta}_{\lambda}$ has a smaller MSE than $\hat{\beta}$ under (6.1), that is that under (6.1) there exists a $\lambda > 0$ such that

$$\mathbb{E}[\|\hat{\beta}_{\lambda} - \beta\|^2] < \mathbb{E}[\|\hat{\beta} - \beta\|^2].$$

A useful technical lemma

Lemma 6.2 Let $\lambda > 0$ and $\mathbf{A}^{(\lambda)} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^{\top}$. Then, $a_{ii}^{(\lambda)} \in [0, 1)$ for all $i \in \{1, \dots, n\}$.

Proof: We have

$$\boldsymbol{I}_p - \mathbf{A}^{(\lambda)} = \boldsymbol{X} \Big((\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} - (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \Big) \boldsymbol{X}^{\top}$$

and therefore, recalling that for two invertible matrices C and B we have $C > B \Leftrightarrow B^{-1} > C^{-1}$, it follows that $I_p - \mathbf{A}^{(\lambda)}$ is a positive definite matrix (since $\lambda > 0$).

Therefore, all the diagonal elements of the matrix $I_p - \mathbf{A}^{(\lambda)}$ are strictly positive^a, showing that $a_{ii}^{(\lambda)} < 1$ for all i.

On the other hand, since $\mathbf{A}^{(\lambda)}$ is semi-definite positive then $a_{ii}^{(\lambda)} \geq 0$ for all i. The proof is complete.

aIndeed, if $\mathbf{M} \in \mathbb{R}^{n \times n}$ is positive definite and e.g. $m_{11} \leq 0$ then for $v = (1, 0, \dots, 0) \in \mathbb{R}^n$ we have $v^{\mathsf{T}} \mathbf{M} v = m_{11} \leq 0$.

Choosing the penality parameter λ

When p is large compared to n and λ is too small then $\hat{\beta}_{\lambda}$ will be such that $\|y - \mathbf{X}\hat{\beta}_{\lambda}\|_{2}^{2} \approx 0$, in which case we will over-fit the data. On the other hand, it is clear from (6.2) that $\hat{\beta}_{\lambda} \to 0$ as $\lambda \to \infty$, and thus that if λ is too large then we will under-fit the data.

In practice we choose λ so that the model has good out-of-sample predictive performance. One way to achieve this is to use cross validation.

Letting $\hat{\beta}_{-i,\lambda}$ be the ridge estimate of β computed from all the observations but (y_i, x_i) , in leave-one-out ordinary cross validation (OCV) we let $\lambda = \hat{\lambda}$ where $\hat{\lambda}$ is, for some set $\Lambda \subseteq [0, \infty)$, defined by

$$\hat{\lambda} = \underset{\lambda \in \Lambda}{\operatorname{argmin OCV_{ridge}}}(\lambda), \quad \operatorname{OCV_{ridge}}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\top} \hat{\beta}_{-i,\lambda})^2.$$

Remark: In practice Λ is often a finite set and $\hat{\lambda}$ is obtained by computing $OCV_{ridge}(\lambda)$ for all $\lambda \in \Lambda$.

This definition of $OCV_{ridge}(\lambda)$ suggests that we need to perform n regressions to compute this quantity. However, by Theorem 6.1 below, for all $\lambda > 0$ we have

$$OCV_{ridge}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - x_i^{\top} \hat{\beta}_{\lambda})^2}{(1 - a_{ii}^{(\lambda)})^2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_{\lambda,i})^2}{(1 - a_{ii}^{(\lambda)})^2}$$
(6.6)

with $\mathbf{A}^{(\lambda)}$ as defined in Lemma 6.2 and with $\hat{\mu}_{\lambda} = \mathbf{X}\hat{\beta}_{\lambda}$ the ridge estimate of $\mathbb{E}[Y]$. Therefore, only one regression is needed to compute $\mathrm{OCV}_{\mathrm{ridge}}(\lambda)$.

Remark: By lemma 6.2 we have $a_{ii}^{(\lambda)} \in [0,1)$ for all $i \in \{1,\ldots,n\}$ and all $\lambda > 0$, and thus $OCV_{ridge}(\lambda)$ is well-defined for all $\lambda > 0$.

A key result for cross-validation

The equality in (6.6) is obtained by applying the following theorem with $M = I_p \lambda$.

Theorem 6.1 Let $M \in \mathbb{R}^{p \times p}$ be a semi-definite positive matrix such that the matrix $(X^{\top}X + M)$ is invertible. Let

$$\beta_{\boldsymbol{M}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \boldsymbol{\beta}^{\top} \boldsymbol{M} \boldsymbol{\beta}$$

and assume that, for all $i \in \{1, ..., n\}$, the function

$$\mathbb{R}^p \ni \beta \mapsto \sum_{l \neq i} (y_l - \beta^\top x_l)^2 + \beta^\top \mathbf{M} \beta$$

has a unique global minimizer $\beta_{-i,\mathbf{M}} \in \mathbb{R}^p$. Let

$$\boldsymbol{A}^{(\boldsymbol{M})} = \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X} + \boldsymbol{M})^{-1}\boldsymbol{X}^{\top}$$

and assume that $|a_{ii}^{(M)}| \neq 1$ for all $i \in \{1, ..., n\}$. Then,

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\top} \beta_{-i,\mathbf{M}})^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - x_i^{\top} \beta_{\mathbf{M}})^2}{(1 - a_{ii}^{(\mathbf{M})})^2}.$$

Proof of Theorem 6.1

Let $i \in \{1, ..., n\}$, $\tilde{y}^{(M,-i)}$ denote the vector y where the ith element has been replaced by $x_i^{\top} \beta_{-i,M}$ and

$$L_{-i}(\beta) = \sum_{l \neq i}^{n} (y_l - x_l^{\top} \beta)^2 + \beta^{\top} \mathbf{M} \beta.$$

Then, $\nabla L_{-i}(\beta) = -2 \sum_{l \neq i} x_l (y_l - x_l^{\top} \beta) + 2 \mathbf{M} \beta$ for all $\beta \in \mathbb{R}^p$, and thus

$$\nabla L_{-i}(\beta_{-i,\mathbf{M}}) = 0 \Leftrightarrow -2\sum_{l\neq i}^{n} x_l (y_l - x_l^{\top} \beta_{-i,\mathbf{M}}) + 2\mathbf{M} \beta_{-i,\mathbf{M}} = 0$$

$$\Leftrightarrow -2\sum_{l=1}^{n} x_l (\tilde{y}_l^{(\mathbf{M},-i)} - x_l^{\top} \beta_{-i,\mathbf{M}}) + 2\mathbf{M} \beta_{-i,\mathbf{M}} = 0$$

$$\Leftrightarrow -2\mathbf{X}^{\top} \tilde{y}^{(\mathbf{M},-i)} + 2(\mathbf{X}\mathbf{X}^{\top} + \mathbf{M}) \beta_{-i,\mathbf{M}} = 0$$

$$\Leftrightarrow \beta_{-i,\mathbf{M}} = (\mathbf{X}^{\top} \mathbf{X} + \mathbf{M})^{-1} \mathbf{X}^{\top} \tilde{y}^{(\mathbf{M},-i)}.$$

Using this expression for $\beta_{-i,M}$, we obtain

$$x_{i}^{\top}\beta_{-i,\mathbf{M}} = (a_{i}^{(\mathbf{M})})^{\top}\tilde{y}^{(\mathbf{M},-i)}$$

$$= (a_{i}^{(\mathbf{M})})^{\top}y + (a_{i}^{(\mathbf{M})})^{\top}(\tilde{y}^{(\mathbf{M},-i)} - y)$$

$$= (a_{i}^{(\mathbf{M})})^{\top}y + a_{ii}^{(\mathbf{M})}(x_{i}^{\top}\beta_{-i,\mathbf{M}} - y_{i})$$

$$= x_{i}^{\top}\beta_{\mathbf{M}} - a_{ii}^{(\mathbf{M})}(y_{i} - x_{i}^{\top}\beta_{-i,\mathbf{M}})$$

showing that

$$y_i - x_i^{\mathsf{T}} \beta_{\mathbf{M}} = (1 - a_{ii}^{(\mathbf{M})}) (y_i - x_i^{\mathsf{T}} \beta_{-i,\mathbf{M}}).$$

The result follows.

Generalized cross validation: preliminaries

Let $G \in O(n)$ and consider the transformation $y \mapsto y_G := Gy$ and $X \mapsto X_G := GX$ of the data.

Then, it is easily checked that the resulting ridge regression estimate $\hat{\beta}_{G,\lambda}$ of β is given by

$$\hat{\beta}_{G,\lambda} \in \operatorname*{argmin}_{\alpha \in \mathbb{R}, \, \beta \in \mathbb{R}^p} \|y_G - X_G \beta\|_2^2 + \lambda \|\beta\|_2^2 = \hat{\beta}_{\lambda}$$

while, letting $\hat{\mu}_{\lambda}^{(G)} = X_G \hat{\beta}_{\lambda} = G \hat{\mu}_{\lambda}$, the resulting OCV criterion is

$$OCV_{ridge}^{(G)}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{G,i} - \hat{\mu}_{\lambda,i}^{(G)}\right)^{2}}{\left(1 - a_{ii}^{(G,\lambda)}\right)^{2}}$$

where

$$\boldsymbol{A}^{(\boldsymbol{G},\lambda)} = \boldsymbol{X}_{\boldsymbol{G}} (\boldsymbol{X}_{\boldsymbol{G}} \boldsymbol{X}_{\boldsymbol{G}}^{\top} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{X}_{\boldsymbol{G}}^{\top} = \boldsymbol{G} \boldsymbol{A}^{(\lambda)} \boldsymbol{G}^{\top}.$$

Therefore, applying the rotation G to the observations $\{(y_i, x_i)\}_{i=1}^n$ leaves the ridge regression estimate $\hat{\beta}_{\lambda}$ unchanged but, in general, modifies the OCV criterion.

Given this dependence of OCV (and therefore of the resulting choice of λ) to the choice of G one can wonder what is a "bad" rotation G of the data in term of cross validation that we should avoid.

The generalized cross validation criterion

Intuitively, if G is such that we have highly uneven values of $a_{ii}^{(G,\lambda)}$ then the value of $\text{OCV}_{\text{ridge}}^{(G)}(\lambda)$ will tend to be dominated by a small number of data points.

To avoid this problem, a natural idea is to apply OCV using a rotation $G_* \in O(n)$ of the data such that

$$a_{ii}^{(G_*,\lambda)} = a_{ll}^{(G_*,\lambda)}, \quad \forall i, l \in \{1,\dots,n\}.$$

Remark: It can be shown that such a matrix G_* indeed exists (see [13], Section 6.2.3, page 258).

Noting that

$$\operatorname{tr}(\boldsymbol{A}^{(\boldsymbol{G},\lambda)}) = \operatorname{tr}(\boldsymbol{G}\boldsymbol{A}^{(\lambda)}\boldsymbol{G}^{\top}) = \operatorname{tr}(\boldsymbol{A}^{(\lambda)}), \quad \forall \boldsymbol{G} \in O(n),$$

it follows that G^* is such that $a_{ii}^{(G_*,\lambda)} = \operatorname{tr}(A^{(\lambda)})/n$ for all i.

Therefore,

$$OCV_{\text{ridge}}^{(G_*)}(\lambda) = \frac{1}{n} \frac{\sum_{i=1}^n \left(y_{G_*,i} - \hat{\mu}_{\lambda,i}^{(G_*)} \right)^2}{(1 - \operatorname{tr}(\boldsymbol{A}^{(\lambda)})/n)^2}
= \frac{n \|y - \hat{\mu}_{\lambda}\|^2}{(n - \operatorname{tr}(\boldsymbol{A}^{(\lambda)}))^2}
=: GCV_{\text{ridge}}(\lambda).$$

Choosing λ which minimizes $\lambda \mapsto GCV_{ridge}(\lambda)$ is called generalized cross validation.

Remark: By Lemma 6.2 we have $\operatorname{tr}(\boldsymbol{A}^{(\lambda)}) \in [0, n)$ for all $\lambda > 0$ and thus $\operatorname{GCV}_{\operatorname{ridge}}(\lambda)$ is well defined for every $\lambda > 0$.

Bayesian perspective of ridge regression

Consider the following Bayesian linear regression model

$$\beta \sim \mathcal{N}_p(0, \mathbf{I}_p \sigma^2 / \lambda), \quad Y_i \sim \mathcal{N}_1(x_i^\top \beta, \sigma^2), \quad i = 1, \dots, n.$$
 (6.7)

By definition, the posterior distribution of β given the observation y is $\pi(\beta|y) \propto \pi(y|\beta)\pi(\beta)$, and simple computations show that

$$\beta | y \sim \mathcal{N}_p(\hat{\beta}_{\lambda}, (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \sigma^2).$$
 (6.8)

We therefore see that the ridge estimator $\hat{\beta}_{\lambda}$ is both the posterior mean and the posterior mode of β in the Bayesian model (6.7). Hence, in (6.7), the prior distribution for β acts as a penalty on $\|\beta\|$. In other words, the prior distribution leads the posterior distribution to favour values of β such that $\|\beta\|$ is small.

To interpret the posterior variance of β note that under the model (6.7) we have

$$\operatorname{Var}(\hat{\beta}_{\lambda}) = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\sigma^{2}$$

while, using the fact that $\mathbf{I}_p = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_p)^{-1} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_p)$ and (6.5), it is easily checked that, under (6.7),

$$b(\beta) := \mathbb{E}[\hat{\beta}_{\lambda} | \beta] - \beta = \mathbb{E}[\hat{\beta}_{\lambda} | \beta] - \beta = \left(\frac{1}{\lambda} \boldsymbol{X}^{\top} \boldsymbol{X} + \boldsymbol{I}_{p}\right)^{-1} \beta.$$

Therefore, $(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1}\sigma^2 = \operatorname{Var}(\hat{\beta}_{\lambda}) + \mathbb{E}_{\operatorname{prior}}[b(\beta)b(\beta)^{\top}]$ which, with (6.8), shows that the Bayesian posterior covariance matrix for β can be viewed as the sum of the covariance matrix of $\hat{\beta}_{\lambda}$ (under (6.7)) and of the prior expected squared bias of $\hat{\beta}_{\lambda}$ (under (6.7)).

An illustrative example

We let n = 40, p = 50 and simulate the covariates $\{x_i^0\}_{i=1}^n$ using $X_{ij}^0 \stackrel{\text{iid}}{\sim} \mathcal{U}(0,1)$ and the response variable $\{y_i^0\}_{i=1}^n$ using

$$Y_i^0 = \beta_*^\top x_i^0 + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}_1(0, 1), \quad i = 1, \dots, n$$

where $\beta_{*,j}$ is a random draw from the $\mathcal{U}(0,1)$ distribution for $j=1,\ldots,10$ while $\beta_{*,j}=0$ for j>10. For this example we consider the linear model (6.1) without intercept and estimate β using the non-centred data $\{(y_i^0, x_i^0)\}_{i=1}^n$.

From the results presented in Figure 6.1, we see that for this example OCV allows to choose a λ such that the mean squared error (MSE) of $\hat{\mu}_{\lambda}$ (for estimating $\mathbb{E}[Y^0]$) is very close to the one we could achieve in the ideal scenario where we could choose λ knowing $\mathbb{E}[Y^0]$.

Figure 6.1: The dots show the mapping $\lambda \mapsto \mathrm{MSE}(\lambda) := \frac{1}{n} \|\hat{\mu}_{\lambda} - \mathbf{X}^0 \beta^*\|^2$ and the solid line the mapping $\lambda \mapsto \mathrm{OCV}_{\mathrm{ridge}}(\lambda)$. The red dot is for $\lambda^* = \mathrm{argmin}_{\lambda} \, \mathrm{MSE}(\lambda)$ and the blue dots are for $\hat{\lambda} = \mathrm{argmin}_{\lambda} \, \mathrm{OCV}_{\mathrm{ridge}}(\lambda)$.