# CMPT 300 Operating System I

2.3 -Process I Chapter 3

Dr. Hazra Imran

# Admin notes

Quiz 1 released

# Learning goal

• To introduce the notion of a process -- a program in execution, which forms the basis of all computation

#### **Process**

A program in execution.

aff

create a new process

• Two essential elements of a process are:

Program code

• A set of data/resources associated with that code

memory

Main idea: processor begins to execute the program code, and we refer to this executing entity as a process.

#### Process

# OS - collection of programs.



#### **Process**

• While the program is executing, the process can be uniquely characterized by a number of elements, including:



# Program vs Process vs Thread

Program

Static

Code +

Code

Static

Auta

Process

dynamic

instance

code to

Thread

Light weight

process

{ S(LWP)

multiple processes

program 

process

TI

process

TI

Pri

T3

# **Process Execution**



| OS                                                                                                                                                                                                                       | Program                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <ul> <li>Create entry for process list</li> <li>Allocate memory from program</li> <li>Load program into memory</li> <li>Set up stack with argc and argv</li> <li>Clear registers</li> <li>Execute call main()</li> </ul> |                                                               |
|                                                                                                                                                                                                                          | <ul><li>Run main()</li><li>Execute return from main</li></ul> |
| <ul><li>Free memory from process</li><li>Remove from process list</li></ul>                                                                                                                                              |                                                               |

# Processes and Memory

On process creation, the process is effectively given its own memory space



downward

Stack: local variable storage

Yearster state

Yearster state

Yeturn mem

Yeturn mem

Heap: dynamically allocated space

Data: global variables (preallocated space)

Text: storage of code

The PCB is created by the process when execution starts.

(A), True

🖊 ) False

The PCB becomes part of the program being executed by a process.

(A) True

(B) False

independent ds created/mainted by os

process terminate

## What do we need to track about a process?



A process is in exactly one state at any instant in time:

new running waiting ready terminated — Quewe

new: The process is being created

new

A process is in exactly one state at any instant in time: new running waiting ready terminated

- new: The process is being created
- running: Instructions are being executed by the CPU
- ready: The process is waiting to be assigned to a processor

new

A process is in exactly one state at any instant in time:

new running waiting ready terminated

- new: The process is being created
- running: Instructions are being executed by the CPU

new scheduled running

scheduled running

queued Ques. When a newly created process
Pr is ready to compete for the CPU, Pr moves itself from the new to the ready state.

(A) True

(B) False

A process is in exactly one state at any instant in time: new running waiting ready terminated

• waiting: The process is waiting for some event to occur



A process is in exactly one state at any instant in time: new running waiting ready terminated

• waiting: The process is waiting for some event to occur



A process is in exactly one state at any instant in time:

new running waiting ready terminated

• terminated: The process has finished execution



Ques. The transition (ready  $\rightarrow$  running) of a process P is caused by \_\_\_\_\_.

(not in running state)



- B) the process P itself
- C) Some other process

- Ques. The transition (running  $\rightarrow$  waiting) of a process P is caused by \_\_\_\_\_.

  A) OS  $\times$ A) OS X
- B) the process P itself
- C) Some other process

LO R, T, W X

P1-1250

Ques. The transition (running  $\rightarrow$  ready) of a process P is caused by \_\_\_\_\_.



- B) the process P itself
- C) Some other process



stop a running proess

Ques. The transition (waiting  $\rightarrow$  ready) of a process P is caused by \_\_\_\_

- A) OS
- B) the process P itself > p not runing
- C) Some other process

aquest acquire velosse

### **Questions?**

- How are a process' resources managed and reclaimed?
- How are processes in waiting are managed by the OS?
- How do we switch what process is currently running?
  - i.e. how do we perform a context switch?
- How does the OS choose what process should run next?
  - i.e. how does process scheduling work?

