Boston University Department of Electrical and Computer Engineering

ENG EC 503 (Ishwar) Learning from Data

Assignment 2

© Spring 2017 Prakash Ishwar

Issued: Tue 31 Jan 2017 **Due:** 5pm Wed 8 Jan 2017 in box outside PHO440

Required reading: Your notes from lectures and slides on website.

Problem 2.1 (MMSE, MMAE, MAP, and ML decision rules) Let X = Y + Z where Y and Z are independent Gaussians with zero means and variances σ_Y^2 and σ_Z^2 respectively which are known. Derive the MMSE, MMAE, MAP, and ML decision rules for estimating Y for a given test point X = x. The expressions will be functions of x, σ_Y^2 and σ_Z^2 . For the MMSE estimate, also derive an expression for the Bayes risk $E[(Y - h_{MMSE}(X))^2]$.

Problem 2.2 (MMSE decision rule for light intensity) The intensity Y of a light source is exponentially distributed with a known mean $1/\lambda$. Given Y = y, let $X_1, \ldots, X_n \sim \text{IID Poisson}(y)$ be n IID photon-count measurements of the light source.

- (a) Derive the MMSE estimate of Y given $X_1 = x_1, \dots, X_n = x_n$, as a function of $\lambda, n, x_1, \dots, x_n$.
- (b) *Determine* the limit to which the MMSE estimate converges to as $\lambda \to 0$. *Compare* with the ML estimate of Y given $X_1 = x_1, \dots, X_n = x_n$.

Useful result: $\forall a \in (0, \infty), \int_0^\infty t^k e^{-at} dt = \frac{k!}{a^{k+1}}.$

Problem 2.3 (Soft Thresholding decision rule) Let X = Y + Z where $Y \perp \!\!\! \perp Z$ (i.e., Y and Z are independent), $Z \sim \mathcal{N}(0, \sigma^2)$, $\sigma > 0$, and $Y \sim p(y) = 0.5\lambda \exp(-\lambda |y|)$, $\lambda > 0$ (Note: p(y) is the prior pdf of Y). Derive $h_{\text{MAP}}(x)$, the MAP estimate of Y based on X = x.

Problem 2.4 (*ML learning of Categorical model parameters*) Let x_1, \ldots, x_n be n IID training samples from a categorical distribution: $p(x|\theta) = \theta_x$ where $\theta = (\theta_1, \ldots, \theta_m)^{\mathsf{T}}$ is an *unknown* pmf over the first m positive integers. *Derive* the expression for $\hat{\theta}_{ML}(x_1, \ldots, x_n)$.

Useful result: For any two pmfs p(x) and q(x) over the same set, the scalar quantity

$$D(p||q) := \sum_{x} p(x) \ln(p(x)/q(x)) \ge 0,$$

i.e., it is always nonnegative, and is equal to zero if, and only if, p(x) = q(x) for all x, i.e., if the pmfs are identical. The nonnegative scalar quantity D(p||q) is called the Kullback-Liebler (KL) divergence or relative entropy of the pair of pmfs (p,q). This is an *asymmetric* measure of distance between pmfs and plays a fundamental role in Probability, Statistics, Machine Learning, and Information Theory. A related nonnegative scalar quantity is $\sum_{x} p(x) \ln(1/p(x))$ which is called the entropy of the pmf p.

Problem 2.5 (*ML learning of scalar Gaussian model parameters*) Let $\hat{\mu}_{ML}$ and $\widehat{\sigma^2}_{ML}$ denote the ML estimate of the mean and variance parameters of a scalar Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ based on observing n IID training samples x_1, \ldots, x_n .

(a) *Derive* the expressions for $\hat{\mu}_{ML}$ and $\widehat{\sigma^2}_{ML}$ in terms of the training samples x_1, \ldots, x_n and n. *Tip:* using an empirical random variable can reduce clutter.

Problem 2.1 (MMSE, MMAE, MAP, and ML decision rules) Let X = Y + Z where Y and Z are independent Gaussians with zero means and variances σ_Y^2 and σ_Z^2 respectively which are known. Derive the MMSE, MMAE, MAP, and ML decision rules for estimating Y for a given test point X = x. The expressions will be functions of x, σ_Y^2 and σ_Z^2 . For the MMSE estimate, also derive an expression for the Bayes risk $E[(Y - h_{MMSE}(X))^2]$.

	Feature space	Label space y	Loss function	$\ell(\mathbf{x}, y, h)$	Bayes rule name	h _{Bayes} (x)	Posterior property:	
MMSE	Rd	R ^m	Squared error	$ y - h(\mathbf{x}) ^2$	Minimum Mean Squared Error	$E[Y \mathbf{X} = \mathbf{x}]$ $= \int_{\mathbb{R}^m} y p(y \mathbf{x}) dy$	Mean	
	-	-	A h 1	1 1/31	(MMSE)	.h_ (v)	11111111	
l(y,h(x)) = y-h(x) 2								
	Examples of Bayes decision rules							
	• Minimum Mean Square Error (MMSE) Estimate • Here, $\mathcal{X} = \mathbb{R}^d, \mathcal{Y} = \mathbb{R}^m, \ell(\mathbf{x}, y, h) = \ y - h(\mathbf{x})\ ^2$							
Y112 X=Y+2	- "	CIC, A	ı — ı⊼ ,.	y — № , e	(\mathbf{x}, y, n)	$-\parallel y - h(\mathbf{x}) \parallel$		
x is observation	• Result: $h_{\text{Bayes}}(\mathbf{x}) = h_{\text{MMSE}}(\mathbf{x}) = \text{posterior mean} = E[Y \mathbf{X} = \mathbf{x}]$ • Proof: If $g(\mathbf{x}) = E[Y \mathbf{X} = \mathbf{x}]$ then $E[(Y - g(\mathbf{x})) \mathbf{X} = \mathbf{x}] = 0$.							
MMSE = E(Y X= x] is result								
men of posterior	Thus, for any h ,							
C PONTE 180	E[Y - h	$(\mathbf{x})\ ^2 \mathbf{X} $	$= \mathbf{x}] =$	$E\big[\ Y$	$-g(\mathbf{x}) ^2 \mathbf{X}=$	= x] +	
G (y p(y/x) dy					E[g($ \mathbf{x} - h(\mathbf{x})) ^2$	X = x	
) / (- · /								
X, Y, Z are jointly Gaussian							_	
C> Yh Vara IV C i - Salara	11 11							
jaka jointly bansling = 4188 Con	101104//	199	1455/ax	1		٦ /		
y/ x	۶×	Ň	· /V	(LL'	11 X2m	.) cov(Y X=~))	
6*	Y x x ar gointly Gaussian => also conditionally gaussian y x = x ~ N (E[Y x = n] cov(Y X = n)) x / (x, x) M + Cov(y, x) (cov(x)) (x - mx)							
(ou/x, x)	prob. rvies 0							
, , ,								
	prob. with 0 $\sigma_{\nu}^{2} + \sigma_{\nu}^{2}$ $\sigma_{\nu}^{3} + \sigma_{\nu}^{2}$							
(Shides ((xrz)(y)) (swith x 4y) - 672 C 072 X							
					ı	<u> </u>	~~	
						0y +	0 z	

unliated $E[h(x)] = m \times h(x)$ estimator

expected and of estimator is true value

$$\frac{1}{\int_{0}^{\infty} P(x_{j}|y) p(y)} = \left(\frac{1}{11} \frac{y^{x_{j}}}{x_{j}!} e^{-y}\right) \frac{-\lambda y}{\lambda e}$$

$$\frac{1}{\int_{0}^{\infty} Num(y) dy} = \frac{1}{\int_{0}^{\infty} Num(y) dy}$$

$$= y^{(\chi_1 + \dots + \chi_n)}$$

$$= \frac{\chi_{\gamma} e^{2\chi_{3} - \gamma(\lambda_{m})}}{e^{2\chi_{3} - \gamma(\lambda_{m})}}$$

Maximum Likelihood (ML) Decision Rule

- $h_{ML}(\mathbf{x}) = \arg \max_{y \in \mathcal{Y}} p(\mathbf{x}|y)$
- Result: If $Y \sim \text{Uniform}(y)$ then the MAP rule reduces to the ML rule, i.e.,

$$h_{\mathrm{MAP}}(\mathbf{x}) = h_{\mathrm{ML}}(\mathbf{x}) = \arg \max_{y \in \mathcal{Y}} p(\mathbf{x}|y)$$

• *Proof*: For any x, since Y is uniformly distributed,

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y) \cdot \underbrace{p(y)}_{\text{does not change}}$$

(b) *Compute* the expected values $E[\hat{\mu}_{ML}]$ and $E[\widehat{\sigma^2}_{ML}]$ of the ML estimates with respect to the distribution on the training set. Based on your expressions, are the ML estimates of the mean and variance unbiased? If not, propose a slight modification to make them unbiased.

Problem 2.6 (ML learning of the support of a uniform distribution)

 $X_1, \ldots, X_n \sim \text{IID Uniform}([0, \theta])$ where $\theta > 0$ is a deterministic unknown parameter.

- (a) Derive an ML estimate of θ given $X_1 = x_1, \dots, X_n = x_n$ as a function of x_1, \dots, x_n . Show that it is not unique. Select the one which is the smallest among all choices.
- (b) Show that the ML estimate is biased. Then explain how to modify it to make it unbiased.

