

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

Om nucleic - nucleic search, using sw model

Run on: March 3, 2005, 21:55:55 ; Search time 693.243 Seconds

(without alignments)
11384.206 Million cell updates/sec

Title: US-09-990-249B-3
Perfect score: 1330
Sequence: 1 ggagagagacccatcggtaca.....ctgttaaggtagagaagtgtt 1330
Scoring table: IDENTITY_NUC
Searched: Gapext 1.0

Total number of hits satisfying chosen parameters: 10803276

Minimum DB seq length: 0
Maximum DB seq length: 200000000
Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Published Applications NA:*

1: /cgn2_5/prodata/2/pubpna/us07_pubcomb.seq:*

2: /cgn2_6/prodata/2/pubpna/PCT_NEW_PUB.seq:*

3: /cgn2_6/prodata/2/pubpna/us06_NEW_PUB.seq:*

4: /cgn2_6/prodata/2/pubpna/us05_pubcomb.seq:*

5: /cgn2_6/prodata/2/pubpna/us07_NEW_PUB.seq:*

6: /cgn2_6/prodata/2/pubpna/PICTUS_pubcomb.seq:*

7: /cgn2_6/prodata/2/pubpna/us08_NEW_PUB.seq:*

8: /cgn2_6/prodata/2/pubpna/us09_pubcomb.seq:*

9: /cgn2_6/prodata/2/pubpna/us09_pubcomb.seq:*

10: /cgn2_6/prodata/2/pubpna/us09c_pubcomb.seq:*

11: /cgn2_6/prodata/2/pubpna/us09_NEW_PUB.seq:*

12: /cgn2_6/prodata/2/pubpna/us10_pubcomb.seq:*

13: /cgn2_6/prodata/2/pubpna/us10a_pubcomb.seq:*

14: /cgn2_6/prodata/2/pubpna/us10b_pubcomb.seq:*

15: /cgn2_6/prodata/2/pubpna/us10c_pubcomb.seq:*

16: /cgn2_6/prodata/2/pubpna/us10d_pubcomb.seq:*

17: /cgn2_6/prodata/2/pubpna/us10e_pubcomb.seq:*

18: /cgn2_6/prodata/2/pubpna/us10f_pubcomb.seq:*

19: /cgn2_6/prodata/2/pubpna/us10_g_pubcomb.seq:*

20: /cgn2_6/prodata/2/pubpna/us11_NEW_PUB.seq:*

21: /cgn2_6/prodata/2/pubpna/us60_NEW_PUB.seq:*

22: /cgn2_6/prodata/2/pubpna/us60_pubcomb.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

RESULT 1
US-10-71-600-17759
; Sequence 17759, Application US/10741600
; Publication No. US20050026169A1
; GENERAL INFORMATION:
; APPLICANT: CARGILL, Michele et al.
; TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
; TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
; FILE REFERENCE: CL001499
; CURRENT APPLICATION NUMBER: US/10/741,600
; CURRENT FILING DATE: 2003-12-22
; NUMBER OF SEQ ID NOS: 73997
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17759
; LENGTH: 106236
; TYPE: DNA
; ORGANISM: Homo sapiens
; US-10-741-600-17759

Query Match Similarity 13.8%; Score 183.4; DB 19; Length 106236;
Best Local Similarity 61.7%; Pred. No. 1.1e-46;
Matches 651; Conservative 0; Mismatches 266; Indels 138; Gaps 17;

Qy 177 GGCTGAAGCCCTGGAGGGATCCTTACCAACGATGGAAACACTAACATCG 236
Db 5325 GGCTCAAGGCCATAGCAGCAGGAGCTCTCATATTATGGAAACTATATCGT 5384
Qy 237 TTTCAGTGCTGTCT-----TGATCCATACCGCTGATCTCAGTCCTTCATTC 283
Db 5385 TTTCATTTGTTCTTCAGACAGCTCTGTATCATATTCTTCAGTCACCTTATTC 5444
Qy 284 CTACATAGCC---AGACTTATGTCAGATGGCAAGCTCCCTCCCTGGTAAG- 338
Db 5445 CCACCTCTAGCCAAAGGTTATGTCAGACAGCTCCCTCCCTACCCGCT 5504

Copyright GenCore version 5.1.6
(c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model
Run on: March 3, 2005, 21:55:55 ; Search time 3172.76 Second
(without alignments)
11384.206 Million cell updates/sec

Title: US-09-990-249B-2
Perfect score: 6087

Sequence: 1 cccggaggatcccttttcac.....ctgttaactggagtaacataa 6087

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 5401638 seqs, 2966923429 residues
Total number of hits satisfying chosen parameters: 10803276

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Listing first 45 summaries

Database : Published Applications NA,*

1: /cgn2_6/prodata/2/pubpna/us07_PUBCOMB.seq:*

2: /cgn2_6/prodata/2/pubpna/PCTC_NEW_PUB.seq:*

3: /cgn2_6/prodata/2/pubpna/us06_PUBCOMB.seq:*

4: /cgn2_6/prodata/2/pubpna/us07_NEW_PUB.seq:*

5: /cgn2_6/prodata/2/pubpna/PCTUS1_PUBCOMB.seq:*

6: /cgn2_6/prodata/2/pubpna/PUBCOMB.seq:*

7: /cgn2_6/prodata/2/pubpna/us08_PUBCOMB.seq:*

8: /cgn2_6/prodata/2/pubpna/us09A_PUBCOMB.seq:*

9: /cgn2_6/prodata/2/pubpna/us09B_PUBCOMB.seq:*

10: /cgn2_6/prodata/2/pubpna/us09C_PUBCOMB.seq:*

11: /cgn2_6/prodata/2/pubpna/us09_NEW_PUB.seq:*

12: /cgn2_6/prodata/2/pubpna/us09_NEW_PUBCOMB.seq:*

13: /cgn2_6/prodata/2/pubpna/us09_PUBCOMB.seq:*

14: /cgn2_6/prodata/2/pubpna/us09_PUBCOMB.seq:*

15: /cgn2_6/prodata/2/pubpna/us09_PUBCOMB.seq:*

16: /cgn2_6/prodata/2/pubpna/us09_PUBCOMB.seq:*

17: /cgn2_6/prodata/2/pubpna/us09_PUBCOMB.seq:*

18: /cgn2_6/prodata/2/pubpna/us09_PUBCOMB.seq:*

19: /cgn2_6/prodata/2/pubpna/us10_NEW_PUB.seq:*

20: /cgn2_6/prodata/2/pubpna/us60_NEW_PUB.seq:*

21: /cgn2_6/prodata/2/pubpna/us60_PUBCOMB.seq:*

22: /cgn2_6/prodata/2/pubpna/us60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No. Score Query Length DB ID Description

1 6087 100.0 6087 9 US-09-990-249A-2 Sequence 2, Appli

2 6087 100.0 6087 18 US-10-829-491-2 Sequence 2, Appli

3 3086 50.9 5849 18 US-10-677-77-1 Sequence 1, Appli

4 2637 4 43.3 5960 10 US-09-78-888B-14 Sequence 14, Appli

5 2637 4 43.3 5960 10 US-09-326-688-14 Sequence 14, Appli

6 2634 8 43.3 18116 18 US-10-790-455-7 Sequence 7, Appli

7 2634 8 43.3 18116 18 US-10-811-136B-7 Sequence 7, Appli

8 2634 8 43.3 18116 19 US-10-940-315-7 Sequence 7, Appli

9 2633 4 43.3 3327 18 US-10-796-486-56 Sequence 49, Appli

10 2633 4 43.3 3369 18 US-10-796-486-48 Sequence 53, Appli

11 2633 4 43.3 3954 18 US-10-796-486-53

ALIGNMENTS

RESULT 1

US-09-990-249A-2 ; Sequence 2, Application US/09990249A

; Patent No. US2002010411A1
; GENERAL INFORMATION:

; APPLICANT: Chu, Ing-Ming

; TITLE OF INVENTION: Transgenic animals for screening therapeutic agents for brain t

; FILE REFERENCE: 28489/00000

; CURRENT APPLICATION NUMBER: US/09/990-249A

; CURRENT FILING DATE: 2001-11-21

; PRIOR APPLICATION NUMBER: US 60/252745

; PRIOR FILING DATE: 2000-11-22

; NUMBER OF SEQ ID NOS: 2

; SOFTWARE: Patentin version 3.1

; SEQ ID NO ^2 LENGTH: 6087

; TYPE: DNA

; ORGANISM: Artificial Sequence

; FEATURE: OTHER INFORMATION: Nucleotides 1-594, human FGF1B Promoter; 595-3233, SV40; 3234-61

; OTHER INFORMATION: 7, PCG2-Basic plasmid vector (Promega)

Query Match	100.0%	Score	6087	DB	9	Length	6087	Sequence 57, Appli
Best Local Similarity	100.0%	Pred. No.	0	Matches	0	Mismatches	0	Sequence 49, Appli
Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli	Sequence 2, Appli
Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli	Sequence 1, Appli
Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli	Sequence 14, Appli
Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli	Sequence 17, Appli
Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli	Sequence 7, Appli
Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli
Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli
Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli
Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli	Sequence 49, Appli
Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli
Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli
Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli	Sequence 50, Appli
Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli	Sequence 51, Appli
Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli	Sequence 52, Appli
Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli	Sequence 53, Appli
Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli	Sequence 54, Appli
Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli	Sequence 55, Appli
Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli	Sequence 56, Appli
Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli	Sequence 57, Appli
Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli	Sequence 58, Appli
Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli	Sequence 59, Appli
Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli	Sequence 60, Appli
Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli	Sequence 61, Appli
Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli	Sequence 62, Appli
Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli	Sequence 63, Appli
Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli	Sequence 64, Appli
Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli	Sequence 65, Appli
Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli	Sequence 66, Appli
Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli	Sequence 67, Appli
Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli	Sequence 68, Appli
Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli	Sequence 69, Appli
Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli	Sequence 70, Appli
Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli	Sequence 71, Appli
Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli	Sequence 72, Appli
Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli	Sequence 73, Appli
Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli	Sequence 74, Appli
Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli	Sequence 75, Appli
Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli	Sequence 76, Appli
Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli	Sequence 77, Appli
Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli	Sequence 78, Appli
Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli	Sequence 79, Appli
Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli	Sequence 80, Appli
Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli	Sequence 81, Appli
Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli	Sequence 82, Appli
Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli	Sequence 83, Appli
Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli	Sequence 84, Appli
Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli	Sequence 85, Appli
Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli	Sequence 86, Appli
Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli	Sequence 87, Appli
Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli	Sequence 88, Appli
Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli	Sequence 89, Appli
Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli	Sequence 90, Appli
Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli	Sequence 91, Appli
Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli	Sequence 92, Appli
Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli	Sequence 93, Appli
Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli	Sequence 94, Appli
Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli	Sequence 95, Appli
Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli	Sequence 96, Appli
Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli	Sequence 97, Appli
Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli	Sequence 98, Appli
Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli	Sequence 99, Appli
Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli	Sequence 100, Appli
Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli	Sequence 101, Appli
Sequence 102, Appli	Sequence 102, Appli	Sequence 102, Appli	Sequence 102,					

