EKSPONENCIJALNE FUNKCIJE

Funkcija zadata formulom:

$$y = a^x$$
 gde je $a \in R, a > 0, a \ne 1$

se naziva eksponencijalna funkcija.

- \rightarrow Funkcija $y = a^x$ je svuda definisana, znači za $\forall x \in R$
- \rightarrow Za x = 0 je $y = a^{\circ} = 1$ pa funkcija prolazi kroz tačku (0,1), tj. tu seče y-osu.
- \rightarrow Ako je a > 0 funkcija je rastuća
- \rightarrow Ako je 0 < a < 1 funkcija je opadajuća
- \rightarrow Funkcija $y = a^x$ je uvek pozitivna, tj. grafik je iznad x-ose
- → Važe osnovna svojstva stepena:

$$a^{x+y} = a^x \cdot a^y$$

$$a^{x-y} = \frac{a^x}{a^y}$$

$$(a^x)^y = a^{xy}$$

$$(a \cdot b)^x = a^x b^x$$

$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

gde su a > 0, b > 0, $x, y \in R$

Primer 1. Nacrtati grafik funkcije $y = 2^x$

Rešenje:

Iskoristićemo tablicu vrednosti. Uzećemo proizvoljne x-seve i naći vrednosti za y.

Koje vrednosti je najbolje birati za x?

Najčešće se uzimaju : od -3 do 3

x	-3	-2	-1	0	1	2	3
\overline{y}							

Ove vrednosti menjamo u $y = 2^x$ i popunjavamo tablicu:

Za x = -3 je
$$y = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

Za x = -2 je
$$y = 2^{-2} = \frac{1}{2^2} = \frac{1}{4}$$

Za x = -1 je
$$y = 2^{-1} = \frac{1}{2^1} = \frac{1}{2}$$

Za
$$x = 0$$
 je $y = 2^0 = 1$

Za
$$x = 1$$
 je $y = 2^1 = 2$

Za
$$x = 2$$
 je $y = 2^2 = 4$

Za
$$x = 3$$
 je $y = 2^3 = 8$

_	\boldsymbol{x}	-3	-2	-1	0	1	2	3
	у	1	1	1	1	2	4	8
	-	$\frac{-}{8}$	$\frac{-}{4}$	$\frac{\overline{2}}{2}$				

Konstruišemo grafik:

- \rightarrow Funkcija je definisana za $\forall x \in R$
- \rightarrow y-osu seče u (0,1)
- \rightarrow Pošto je $a = 2 > 0 \implies$ rastuća je
- \rightarrow Uvek je pozitivna, tj. y > 0 za $\forall x \in R$
- \rightarrow Prava y = 0 (x- osa) joj je horizontalna asimptota sa leve strane

Primer 2. Nacrtaj grafik funkcije $y = \left(\frac{1}{2}\right)^x$

Rešenje:

Funkcija
$$y = \left(\frac{1}{2}\right)^x$$
 je ustvari $y = 2^{-x}$

Uzimamo iste vrednosti za x, od -3 do 3, nadjemo y i popunimo tablicu:

X	-3	-2	-1	0	1	2	3
y	8	4	2	1	1	1	1
					$\frac{\overline{2}}{2}$	$\frac{\overline{4}}{4}$	8

Sad sklopimo grafik:

- \rightarrow Funkcija je definisana za $\forall x \in R$
- \rightarrow y-osu seče u (0,1)
- \rightarrow Kako je $a = \frac{1}{2}$, to jest 0 < a < 1, funkcija je opadajuća
- \rightarrow Uvek je pozitivna, y > 0 za $\forall x \in R$
- \rightarrow Prava y = 0 (x- osa) joj je horizontalna asimptota sa desne strane

Primer 3. Nacrtaj grafik funkcije

$$y = 2^x + 1$$

Rešenje:

I ovde možemo napraviti tablicu vrednosti:

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\overline{y}	9	5	3	2	3	5	9
	$\frac{-}{8}$	$\frac{-}{4}$	$\frac{\overline{2}}{2}$				

Ali je lakše da razmišljamo ovako:

Nacrtamo grafik $y = 2^x$ pa ga za 1 "podignemo" po y-osi, tako dobijemo $y = 2^x + 1$

(Pogledajte fajl kvadratna funkcija, slična translacija je i tamo radjena)

- \rightarrow Funkcija je definisana za $\forall x \in R$
- \rightarrow y-osu seče u (0,2)
- \rightarrow Pošto je $a = 2 > 0 \implies$ rastuća je
- \rightarrow Uvek je pozitivna, tj. y > 0 za $\forall x \in R$
- \rightarrow Prava y = 1 joj je horizontalna asimptota sa leve strane

Primer 4. Nacrtaj grafik funkcije: $y = 2^{x+1}$

Rešenje:

Pazite, sada je +1 gore u eksponentu.

Napravimo tablicu vrednosti:

x	-3	-2	-1	0	1	2	3
 у	1	1	1	2	4	8	16
	$\frac{}{4}$	$\frac{\overline{2}}{2}$					

Naravno, ako vam se jave veliki brojevi u rešenju, tu tačku ne morate unositi na grafiku....

- \rightarrow Funkcija je definisana za $\forall x \in R$
- \rightarrow y-osu seče u (0,2)
- \rightarrow Pošto je $a = 2 > 0 \implies$ rastuća je
- \rightarrow Uvek je pozitivna, tj. y > 0 za $\forall x \in R$
- \rightarrow Prava y = 0 joj je horizontalna asimptota sa leve strane

Primer 5. Nacrataj grafik funkcije $y = 2^{x+|x|}$

Rešenje:

Da se podsetimo definicije apsolutne vrednosti: $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$

Ovde moramo crtati dva grafika. Evo kako razmišljamo:

A grafici su:

Na slici 1. je grafik funkcije y = 1. On nam treba samo za x < 0.(Znači isprekidani deo nam ne treba!)

Na slici 2. je grafik funkcije $y = 4^x$. On nam treba samo za $x \ge 0$ (Isprekidani deo sa leve strane nam ne treba!)

Na slici 3. je konačan grafik funkcije $y = 2^{x+|x|}$.