Imperfecciones en el Arreglo Atómico.

Hay tres tipos básicos de imperfecciones de red:

Desplazamiento

Núcleo de la dislocación y "línea" de la dislocación

- •Defectos Lineales (Dislocaciones).
- Defectos Puntuales.
- •Defectos de Superficie.

Vector de Burgues (**b**): Distancia de Repetición o Distancia Interplanar.

Dislocación de Borde.

Las dislocaciones son imperfecciones lineales en una red que de otra forma sería perfecta.

Dislocación de Tornillo.

TABLA 4-2 Resumen de factores que afectan el deslizamiento en estructuras metálicas

Esfuerzo cortante resultante crítico (psi)	50–100	5,000-10,000	50-100'
Número de sistemas de deslizamiento	12	48	3°
Deslizamiento cruzado	Puede ocurrir	Puede ocurrir	No puede ocurrir
Resumen de propiedades	Dúctil	Resistente	Relativamente frágil

- •Esfuerzo Cortante Crítico.
- •Número de Sistemas de Deslizamiento.
- •Deslizamiento Cruzado.

Defectos Puntuales.

Son discontinuidades de la red que involucran uno o quizá varios átomos.

- •Vacancias.
- •Defecto Interticial.
- Defecto Sustitucional.
- Defectos Frenkel.
- Defectos Schottky.

Defects in a single-crystal lattice. Self-interstitial, vacancy, interstitial, and substitutional. *Source*: After Moffatt et al.

<u>Influencia de la</u> <u>Estructura Cristalina.</u>

Ecuación de Arrhenius

$$n_{v} = n \exp\left(\frac{-Q}{RT}\right)$$

$$n = \frac{\#_\acute{a}tomos \times celda}{Volumen _celda}$$

n_v número de vacancias por cm³ n número de puntos de red por cm³ Q energía requerida para producir una vacancia en cal/mol R constante de los gases, 1.987

K*cal/mol

T temperatura en K

Plano (100)

Sitio intersticial

Defecto Frenkel cuando un ion salta de un punto normal de la red a un sitio intersticial, dejando una vacancia.

Defecto Schottky cuando falta tanto un anión como un catión. Se presenta en materiales cerámicos de enlace iónico.

Defecto de Reemplazo de un ion de valencia +1 por otro ion de valencia +2.

Figure 4-1 Point defects: (a) vacancy, (b) interstitial atom, (c) small substitutional atom, (d) large substitutional atom, (e) Frenkel defect, and (f) Schottky defect. All of these defect disrupt the perfect arrangement of the surrounding atoms.

<u>Defectos de Superficie.</u>

Ecuación de Hall-Petch

$$\sigma_{y} = \sigma_{0} + Kd^{-\frac{1}{2}}$$

Microstructure of an alumina ceramic. (Courtesy of Dr. Richard McAfee and Dr. Ian Nettleship.)

Metalografía proceso de preparar una muestra, observar y registrar su microestructura.

Número de Tamaño de Grano ASTM cantidad de granos a 100X en 1 in².

Bordes de Grano de Ángulo Pequeño no bloquean eficientemente el deslizamiento (bordes inclinados, bordes torcidos).

 $\sigma_{\rm v}$ esfuerzo de cedencia d diámetro promedio de los granos σ_0 y K constantes del metal

American Society for Testing & Materials (ASTM)