Функциональное программирование **vs.** Интуиционистская логика

Лозов Пётр

СП6ГУ

28 ноября 2019 г.

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Наш план

1. Соответствие Карри — Ховарда

2. Призраки минувших доказательств

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

λ -исчисление

Разработано Алонзо Чёрчем для формализации и анализа понятия вычислимости в 1930 годах

An unsolvable problem of elementary number theory Church, A. 1936

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

λ -исчисление

Синтаксис λ -исчисления

$$X = \{a, b, c, x, y, z, \ldots\}$$

λ -исчисление

Синтаксис λ -исчисления

$$X = \{a, b, c, x, y, z, \ldots\}$$

- x
- \bullet $\lambda z.z$
- \bullet $(\lambda x. xx)(\lambda x. xx)$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

Примеры

$$\bullet$$
 $(\lambda z. z) x$

Лозов Пётр (СПбГУ)

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

Примеры

$$\bullet \ (\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \rightsquigarrow^{\beta} A[x \leftarrow B]$$

- $(\lambda z. z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x)a$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

- $\bullet \ (\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x) a \leadsto^{\beta} (\lambda x.x)[x \leftarrow a]$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

- $\bullet \ (\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x) a \leadsto^{\beta} (\lambda x.x)[x \leftarrow a] \leadsto \lambda x.x$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

- $\bullet \ (\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x)a \rightsquigarrow^{\beta} (\lambda x.x)[x \leftarrow a] \rightsquigarrow \lambda x.x$
- \bullet $(\lambda z.\lambda y.zy)y$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

- $\bullet \ (\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x) a \leadsto^{\beta} (\lambda x.x)[x \leftarrow a] \leadsto \lambda x.x$
- $(\lambda z.\lambda y.zy)y \leadsto^{\beta} (\lambda y.zy)[z \leftarrow y]$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

Примеры

- $\bullet \ (\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x) a \leadsto^{\beta} (\lambda x.x)[x \leftarrow a] \leadsto \lambda x.x$
- $(\lambda z.\lambda y.zy)y \leadsto^{\beta} (\lambda y.zy)[z \leftarrow y] \leadsto^{\alpha} (\lambda t.zt)[z \leftarrow y]$

Основное правило преобразования λ -выражения

$$(\lambda x. A) B \leadsto^{\beta} A[x \leftarrow B]$$

Примеры

- $(\lambda z.z) x \leadsto^{\beta} z[z \leftarrow x] \leadsto x$
- $(\lambda x.\lambda x.x)a \rightsquigarrow^{\beta} (\lambda x.x)[x \leftarrow a] \rightsquigarrow \lambda x.x$
- $(\lambda z.\lambda y.zy)y \rightsquigarrow^{\beta} (\lambda y.zy)[z \leftarrow y] \rightsquigarrow^{\alpha} (\lambda t.zt)[z \leftarrow y] \rightsquigarrow \lambda t.yt$

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

Возможности λ -исчисления

- Выразимы натуральные числа
- Выразима арифметические операции
- Выразим условный оператор
- Выразима рекурсия
- Полнота по Тьюрингу

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda\,x.\,x\,x)(\lambda\,x.\,x\,x)$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda \, x.\, x\, x)(\lambda \, x.\, x\, x) \, \leadsto^{\beta} \, (\lambda \, x.\, x\, x)[x. \leftarrow \lambda \, x.\, x\, x]$

• Отсутствие нормальной формы у некоторых выражений

$$(\lambda x. x x)(\lambda x. x x) \leadsto^{\beta} (\lambda x. x x)[x. \leftarrow \lambda x. x x] \leadsto (\lambda x. x x)(\lambda x. x x)$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda \, x.\, x\, x)(\lambda \, x.\, x\, x) \, \leadsto^{\beta} \, (\lambda \, x.\, x\, x)[x. \leftarrow \lambda \, x.\, x\, x] \, \leadsto \, (\lambda \, x.\, x\, x)(\lambda \, x.\, x\, x) \, \leadsto^{\beta} \, \dots$

• Важен порядок редукции

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} (\lambda x. x x)[x. \leftarrow \lambda x. x x] \rightsquigarrow (\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} \dots$

• Важен порядок редукции $(\lambda x. a)((\lambda x. x x)(\lambda x. x x))$

• Отсутствие нормальной формы у некоторых выражений $(\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} (\lambda x. x x)[x. \leftarrow \lambda x. x x] \rightsquigarrow (\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} \dots$

• Важен порядок редукции

$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx)) \leadsto^{\beta} (\lambda x. a)((\lambda x. xx)[x. \leftarrow \lambda x. xx]) \leadsto^{\beta} \dots$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} (\lambda x. x x)[x. \leftarrow \lambda x. x x] \rightsquigarrow (\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} \dots$

• Важен порядок редукции

$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx)) \rightsquigarrow^{\beta} (\lambda x. a)((\lambda x. xx)[x. \leftarrow \lambda x. xx]) \rightsquigarrow^{\beta} \dots$$
$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx))$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} (\lambda x. x x)[x. \leftarrow \lambda x. x x] \rightsquigarrow (\lambda x. x x)(\lambda x. x x) \rightsquigarrow^{\beta} \dots$

• Важен порядок редукции

$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx)) \leadsto^{\beta} (\lambda x. a)((\lambda x. xx)[x. \leftarrow \lambda x. xx]) \leadsto^{\beta} ...$$
$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx)) \leadsto^{\beta} a[x \leftarrow (\lambda x. xx)(\lambda x. xx)]$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

• Отсутствие нормальной формы у некоторых выражений $(\lambda x. xx)(\lambda x. xx) \rightsquigarrow^{\beta} (\lambda x. xx)[x. \leftarrow \lambda x. xx] \rightsquigarrow (\lambda x. xx)(\lambda x. xx) \rightsquigarrow^{\beta} \dots$

• Важен порядок редукции

$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx)) \leadsto^{\beta} (\lambda x. a)((\lambda x. xx)[x. \leftarrow \lambda x. xx]) \leadsto^{\beta} ...$$
$$(\lambda x. a)((\lambda x. xx)(\lambda x. xx)) \leadsto^{\beta} a[x \leftarrow (\lambda x. xx)(\lambda x. xx)] \leadsto a$$

• Полнота по Тьюрингу

Просто типизированное λ -исчисление (STLC)

Введено Алонзо Чёрчем для исключения λ -выражений с "плохим" поведением

A Formulation of the Simple Theory of Types Church, A. 1940

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Типы

Синтаксис типов

$$V = \{\alpha, \, \beta, \, \gamma, \, \ldots\}$$

$$T = V \mid T \to T$$

Типы

Синтаксис типов

$$V = \{\alpha, \, \beta, \, \gamma, \, \ldots\}$$

$$T = V \mid T \to T$$

- \bullet α
- $\bullet \beta \rightarrow \beta$
- $\alpha \rightarrow (\alpha \rightarrow \beta) \rightarrow \beta$

Контексты

Множество контекстов:

$$S_{\Gamma} = \Lambda \mid V : T, S_{\Gamma}$$

Контексты

Множество контекстов:

$$S_{\Gamma} = \Lambda \mid V : T, S_{\Gamma}$$

$$\Gamma = x\,:\,\alpha,\,y\,:\,\beta\,\rightarrow\,\gamma,\,\Lambda$$

Утверждения

В контесте Γ λ -выражение A имеет тип t

$$\Gamma \vdash A : t$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 11/51

Утверждения

В контесте Γ λ -выражение A имеет тип t

$$\Gamma \vdash A : t$$

 λ -выражение A имеет тип t

$$\Lambda \vdash A : t$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 11/51

Правила вывода типов

$$\frac{x:t\in\Gamma}{\Gamma\vdash x:t} \text{ (Var)}$$

$$\frac{x:t_1, \Gamma \vdash A:t_2}{\Gamma \vdash \lambda x. A:t_1 \to t_2}$$
 (Abst)

$$\frac{\Gamma \vdash A : t_0 \to t \qquad \Gamma \vdash B : t_0}{\Gamma \vdash AB : t} \text{ (App)}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример вывода (1)

$$\Lambda \vdash (\lambda x. x)(\lambda y. y) : t$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример вывода (2)

$$\frac{\Lambda \vdash \lambda \, x. \, x \, : \, t_0 \to t}{\Lambda \vdash (\lambda \, x. \, x)(\lambda \, y. \, y) \, : \, t} \, \, (\mathsf{App})$$

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

Пример вывода (3)

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример вывода (4)

$$\frac{\frac{x:t_0 \in x:t,\,\Lambda}{x:t_0,\,\Lambda \vdash x:t}\,\text{(Var)}}{\frac{\Lambda \vdash \lambda\,x.\,x:t_0 \to t}{\Lambda \vdash (\lambda\,x.\,x)(\lambda\,y.\,y):t}}\,\frac{\Lambda \vdash \lambda\,y.\,y:t_0}{(\text{App})}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример вывода (5)

$$\frac{\frac{x:t\in x:t,\,\Lambda}{x:t,\,\Lambda\vdash x:t}\,\text{(Var)}}{\frac{\Lambda\vdash\lambda\,x.\,x:t\to t}{\Lambda\vdash(\lambda\,x.\,x)(\lambda\,y.\,y):t}}\,\text{(Abst)}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 17/51

Пример вывода (6)

$$\frac{\frac{x:t_1 \rightarrow t_2 \in x:t_1 \rightarrow t_2,\, \Lambda}{x:t_1 \rightarrow t_2,\, \Lambda \vdash x:t_1 \rightarrow t_2}\, \text{(Var)}}{\frac{\Lambda \vdash \lambda \, x.\, x:\, (t_1 \rightarrow t_2) \rightarrow t_1 \rightarrow t_2}{\Lambda \vdash (\lambda \, x.\, x) (\lambda \, y.\, y):\, t_1 \rightarrow t_2}}\, (\text{App})}{\Lambda \vdash (\lambda \, x.\, x) (\lambda \, y.\, y):\, t_1 \rightarrow t_2}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример вывода (7)

$$\frac{\frac{x:t_1\to t_2\in x:t_1\to t_2,\,\Lambda}{x:t_1\to t_2,\,\Lambda\vdash x:t_1\to t_2}\,\text{(Var)}}{\frac{\Lambda\vdash\lambda\,x.\,x:\,(t_1\to t_2)\to t_1\to t_2}{(\mathsf{Abst})}}\frac{y:t_1,\,\Lambda\vdash y:t_2}{\Lambda\vdash\lambda\,y.\,y:\,t_1\to t_2}\,\text{(Abst)}}{\frac{(\mathsf{Abst})}{\Lambda\vdash\lambda\,y.\,y:\,t_1\to t_2}}$$

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

Пример вывода (8)

$$\frac{\frac{x:t_1 \to t_2 \in x:t_1 \to t_2, \Lambda}{x:t_1 \to t_2, \Lambda \vdash x:t_1 \to t_2} \text{ (Var)}}{\frac{\Lambda \vdash \lambda \, x. \, x: (t_1 \to t_2) \to t_1 \to t_2}{\Lambda \vdash (\lambda \, x. \, x) (\lambda \, y. \, y):t_1 \to t_2}} \frac{\frac{y:t_2 \in y:t_1, \Lambda}{y:t_1, \Lambda \vdash y:t_2} \text{ (Var)}}{\frac{\chi:t_1 \to \chi_2}{\Lambda \vdash \chi_2} \text{ (Abst)}} \frac{\Lambda \vdash (\lambda \, x. \, x) (\lambda \, y. \, y):t_1 \to t_2}{\Lambda \vdash (\lambda \, x. \, x) (\lambda \, y. \, y):t_1 \to t_2} \text{ (App)}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 20/51

Пример вывода (9)

$$\frac{\frac{x:t_1\to t_1\in x:t_1\to t_1,\,\Lambda}{x:t_1\to t_1,\,\Lambda\vdash x:t_1\to t_1}\,\text{(Var)}}{\frac{\Lambda\vdash\lambda\,x.\,x:\,(t_1\to t_1)\to t_1\to t_1}}\,\frac{\frac{y:t_1\in y:t_1,\,\Lambda}{y:t_1,\,\Lambda\vdash y:t_1}\,\text{(Var)}}{\frac{\chi:t_1\to t_1}{\Lambda\vdash\lambda\,y.\,y:t_1\to t_1}}\,\frac{(\text{Abst})}{(\text{App})}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 21/51

Пример вывода (10)

$$\frac{\frac{x:\alpha \to \alpha \in x:\alpha \to \alpha,\,\Lambda}{x:\alpha \to \alpha,\,\Lambda \vdash x:\alpha \to \alpha}\,\text{(Var)}}{\frac{\Lambda \vdash \lambda\,x.\,x:\,(\alpha \to \alpha) \to \alpha \to \alpha}\,\text{(Abst)}} \quad \frac{\frac{y:\alpha \in y:\alpha,\,\Lambda}{y:\alpha,\,\Lambda \vdash y:\alpha}\,\text{(Var)}}{\frac{\Lambda \vdash \lambda\,y.\,y:\alpha \to \alpha}\,\text{(Abst)}}$$

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

Особенности STLC

- Если выражение имеет тип, то оно имеет нормальную форму
- Если выражение имеет тип, то порядок редукции не важен
- ullet Свойство безопасности: сохранение типа после eta-редукции
- Нет полноты по Тьюрингу

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 23/51

Интуиционистская логика

Интуиционистская логика - раздел современной математической логики, отражающий идеи конструктивного доказательства

- Вместо истины и ложности доказуемость
- Нет закона исключённого третьего
- Нет закона снятия двойного отрицания

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Формулы

Синтаксис формул

$$V = \{\alpha, \, \beta, \, \gamma, \, \ldots\}$$

$\Phi = \ \bot \mid V \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid \Phi \to \Phi$

Обозначения

$$\neg \phi = \phi \rightarrow \bot$$

$$\top = \bot \rightarrow \bot$$

Суждения

Список гипотез

$$\Gamma = \Phi, \Gamma \mid \Lambda$$

Суждение (из списка гипотез Γ следует формула A)

$$\Gamma \vdash A$$

Часть правил натурального вывода

$$\frac{\phi \in \Gamma}{\Gamma \vdash \phi} \text{ (Ax)}$$

$$\frac{\phi, \ \Gamma \vdash \psi}{\Gamma \vdash \phi \to \psi} \ (\mathsf{Impl} \ \mathsf{I})$$

$$\frac{\phi, \ \Gamma \vdash \phi \to \psi \qquad \phi, \ \Gamma \vdash \psi}{\Gamma \vdash \phi} \ (\mathsf{Impl} \ \mathsf{E})$$

27 / 51

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

Пример вывода

$$\frac{\alpha \to \beta \in \alpha, \alpha \to \beta, \Lambda}{\alpha, \alpha \to \beta, \Lambda \vdash \alpha \to \beta} \text{ (Ax) } \frac{\alpha \in \alpha, \alpha \to \beta, \Lambda}{\alpha, \alpha \to \beta, \Lambda \vdash \alpha} \text{ (Ax)} \frac{\alpha, \alpha \to \beta, \Lambda \vdash \alpha}{\alpha, \alpha \to \beta, \Lambda \vdash \beta} \text{ (Impl E)} \frac{\alpha, \Lambda \vdash (\alpha \to \beta) \to \beta}{\Lambda \vdash \alpha \to (\alpha \to \beta) \to \beta} \text{ (Impl I)}$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Сравним

(Ax)
$$\frac{\phi \in \Gamma}{\Gamma \vdash \phi}$$

$$\frac{x:t\in\Gamma}{\Gamma\vdash x:t} \text{ (Var)}$$

$$(Impl I) \frac{\phi, \ \Gamma \vdash \psi}{\Gamma \vdash \phi \to \psi}$$

$$\frac{x:t_1, \ \Gamma \vdash A:t_2}{\Gamma \vdash \lambda \ x. \ A:t_1 \to t_2}$$
 (Abst)

$$(\mathsf{Impl}\;\mathsf{E})\;\frac{\phi,\;\Gamma\vdash\phi\to\psi\qquad\phi,\;\Gamma\vdash\psi}{\Gamma\vdash\phi}$$

$$rac{\Gamma dash A \,:\, t_0 o t \qquad \Gamma dash B \,:\, t_0}{\Gamma dash A \, B \,:\, t}$$
 (App)

Правила натурального вывода для конъюнкции

(Conj I)
$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi}$$

(Conj E1)
$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi}$$

(Conj E2)
$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi}$$

Лозов Пётр (СП6ГУ)

Сравним (2)

(Conj I)
$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi}$$

$$rac{\Gamma dash A: t_1 \qquad \Gamma dash B: t_2}{\Gamma dash (A,B): (t_1,t_2)}$$
 (Pair)

(Conj E1)
$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi}$$

$$\frac{\Gamma \vdash A : (t_1, t_2)}{\Gamma \vdash fst \, A : t_1}$$
 (Fst)

(Conj E2)
$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash A : (t_1, t_2)}{\Gamma \vdash snd \, A : t_2} \, (\mathsf{Snd})$$

Лозов Пётр (СП6ГУ)

Правила натурального вывода для дизъюнкции

(Disj I1)
$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi}$$

(Disj I2)
$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi}$$

$$\text{(Disj E)} \ \frac{\Gamma \vdash \phi \lor \psi \qquad \phi, \Gamma \vdash \nu \qquad \psi, \Gamma \vdash \nu}{\Gamma \vdash \nu}$$

Сравним (3)

(Disj I1)
$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi}$$

$$\frac{\Gamma \vdash A:t}{\Gamma \vdash Left \; A:Either \; t \; t_0} \; (\text{Left})$$

(Disj I2)
$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi}$$

$$rac{\Gamma dash A:t}{\Gamma dash Right\ A:Either\ t_0\ t}$$
 (Right)

Сравним (4)

$$\text{(Disj E)} \ \frac{\Gamma \vdash \phi \lor \psi \qquad \phi, \Gamma \vdash \nu \qquad \psi, \Gamma \vdash \nu}{\Gamma \vdash \nu}$$

$$\frac{\Gamma \vdash A : Either \ t_1 \ t_2 \qquad x : t_1, \Gamma \vdash B : t_3 \qquad y : t_2, \Gamma \vdash C : t_3}{\Gamma \vdash \underline{case} \ A \ \underline{of} \ Left \ x \rightarrow B \ \underline{or} \ Right \ y \rightarrow C} \ (\mathsf{Case})$$

Лозов Пётр (СПБГУ) 28 ноября 2019 г. 34/51

Наблюдаемые соответствия

λ -исчисление	Формальная логика
Типы	Теоремы
Выражения	Доказательства
Импликация	Конструктор типов функций
Конъюнкция	Тип кортежа
Дизъюнкция	Тип Either

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 35/51

Соответствие Карри — Ховарда

- Наблюдаемая структурная эквивалентность между доказательствами и программами
- Можно формализовать в виде изоморфизма между логической системой и типизированным исчислением

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

λ -куб

 $\lambda \to -$ STLC $\lambda 2 -$ STLC + полиморфизм $\lambda \underline{\omega} -$ STLC + алгебраические типы $\lambda P -$ STLC + зависимые типы

 Лозов Пётр (СПБГУ)
 28 ноября 2019 г.
 37 / 51

Функциональные языки λC

- Типовая система достаточно мощная для кодирования содержательных теорем
- Доказывать теоремы (синтезировать выражение заданного типа) можно в полуавтоматическом режиме
- Подобные языки: CoQ, Agda, Idris и т.д.

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Призраки минувших доказательств

Рассмотрим три различных решения одной задачи взятия первого и последнего элементов списка

- Классический
- "Безопасный"
- С призрачными типами

Лозов Пётр (СПБГУ) 28 ноября 2019 г.

Решение #1

```
head :: [a] -> a
head xs = case xs of
  (x:) \rightarrow x
  [] -> error "empty list!"
endpts = do
  putStrLn "Enter a non-empty list of integers:"
  xs <- readLn
  if xs /= [] then return (head xs, head (reverse xs))
              else endpts
```

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 40 / 51

Решение #2

```
headMay :: [a] -> Maybe a
headMay xs = case xs of
  (x:) \rightarrow Just x
  [] -> Nothing
safeEndpts = do
  putStrLn "Enter a non-empty list of integers:"
  xs <- readI.n
  case headMay xs of
    Just x -> return (x, fromJust (headMay (reverse xs))
    -> safeEndpts
```

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Решение #3

```
rev cons :: Proof (IsCons xs) -> Proof (IsCons (Rev xs))
gdpReverse :: ([a] ~~ xs) -> ([a] ~~ Rev xs)
gdpHead :: ([a] ~~ xs ::: IsCons xs) -> a
gdpHead xs = head (the xs) - safe!
gdpEndpts = do
  putStrLn "Enter a non-empty list of integers:"
  xs <- readI.n
 name xs $ \xs -> case classify xs of
    IsCons proof ->
      return (gdpHead (xs ...proof),
              gdpHead (gdpReverse xs ...rev cons proof))
    IsNil proof -> gdpEndpts
```

Лозов Пётр (СП6ГУ) 28 ноября 2019 г.

Сравним

- #1 система типов не убережет от ошибки
- #2 избыточные конструторы
- #3 использование лишних структур на уровне типов?

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Подробнее о призрачных типах

$$v^t \xrightarrow{name} v^t \xrightarrow{t \sim \bar{n}} \underbrace{v^t}^{t \sim \bar{n}} \xrightarrow{t \sim \bar{n} :: p} \underbrace{compile}_{t \sim \bar{n}} \xrightarrow{t \sim \bar{n} :: p} v$$

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Примитивы призрачных доказательств

```
data Proof p = QED

data TRUE
data FALSE
data p && q
data p || q
data p -> q
data Not p
data p == q
```

Правила вывода призрачных доказательств

```
andIntro :: Proof p -> Proof q -> Proof (p && q)
andElimL :: Proof (p && q) -> Proof p
orIntroL :: Proof p -> Proof (p | | q)
implIntro :: (Proof p -> Proof q) -> Proof (p -> q)
implElim :: Proof (p -> q) -> Proof p -> Proof q
notIntro :: (Proof p -> Proof FALSE) -> Proof (Not p)
contradicts :: Proof p -> Proof (Not p) -> Proof FALSE
absurd :: Proof FALSE -> Proof p
refl :: Proof (x == x)
           - ... and many more
axiom :: Proof p
axiom = QED
```

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример

```
reverse :: ([a] ~~ xs) -> ([a] ~~ Rev xs)
reverse xs = defn (Prelude.reverse (the xs))

rev_length :: Proof (Length (Rev xs) == Length xs)
rev_rev :: Proof (Rev (Rev xs) == xs)
rev_cons :: Proof (IsCons xs) -> Proof (IsCons (Rev xs))
```

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример (2)

Лозов Пётр (СПбГУ) 28 ноября 2019 г.

Пример (3)

Лозов Пётр (СПбГУ) 28 ноября 2019 г. 49/51

Ссылки І

A Tutorial Introduction to the Lambda Calculus

Raúl Rojas

PDF

Курс математической логики и теории вычислимости Γ ерасимов A.C.

PDF

Типы в языках программирования. 1й том.

Бенджамин Пирс

Software Foundations (vol. 1, 2)

Benjamin C. Pierce
Online

Лозов Пётр (СП6ГУ)

Ссылки II

Ghosts of Departed Proofs Matt Noonan PDF

Лозов Пётр (СПбГУ) 28 ноября 2019 г.