7.1

因为 $R_1 \cap R_2 = A$, 得到 $A \to ABC$, 因为 $A \to BC \in F$, 得到 $A \to ABC \in F^+$ 故是 lossless decomposition

7.30

a.

 $B^+ = \{A, B, C, D, E\}$

b.

因为 $A \rightarrow BCD$, 则有 $A \rightarrow ABCD$

因为 $BC \rightarrow DE$, 则有 $ABCD \rightarrow ABCDE$

由传递律得: $A \rightarrow ABCDE$

则 AG o ABCDEG

所以AG为超键

C.

根据 $F' = (F - \{A \rightarrow BCD\}) \cup \{A \rightarrow BC\}$ 能够推出 $A \rightarrow D$,得到:

在 $A \rightarrow BCD$ 中, D 为无关属性, 则 $A \rightarrow BC$

同理得到

在 $BC \rightarrow DE$ 中, D 为无关属性, 则 $BC \rightarrow E$

又 $B^+ = ABCDE$, 且当前集合可以推出 $B \rightarrow E$

则删去 C 得到 $B \rightarrow E$

合并得到正则覆盖

d.

对于每一个函数依赖, 得到:

$$r_1(A, B, C)$$

$$r_2(B,D,E)$$

$$r_3(D,A)$$

但这三个模式都不包含候选键,则加入 $r_4(A,G)$

e.

首先对于 r(A, B, C, D, E, G), 由于 $A \to BCD$, 导致不是 BCNF 故分解为 $r_1(A, B, C, D)$ 和 $r_2(A, E, G)$ 此时 r_1 为 BCNF,但对于 r_2 ,由于 $A \to E$,不是 BCNF 继续分解为 $r_2(A, E)$ 和 $r_3(A, G)$,都为 BCNF 故最终的 BCNF 分解为

$$r_1(A, B, C, D)$$
 $r_2(A, E)$ $r_3(A, G)$

(1)

$$A^+ = \{A, B, C, D, E\}$$

$$B^+ = \{A,B,C,D,E\}$$

$$C^+ = \{C\}$$

$$D^+ = \{A, B, C, D, E\}$$

$$E^+=\{E\}$$

$$G^+ = \{G\}$$

其中,A,B,D 的闭包中加入G,即可包含R 的所有属性故候选键为AG,BG,DG

(2)

1 NF

A, B, D, G 出现在候选键中

但属性 C 部分依赖于候选键 $AG(A \rightarrow C)$, 所以不是 2NF