COURSE

Tương quan & Hồi quy tuyến tính

Lớp phân tích thống kê cơ bản

Khương Quỳnh Long Hà Nội, 06-08/06/2020

Nội dung

- 1. Phân tán đồ
- 2. Hệ số tương quan
- 3. Hồi quy tuyến tính đơn biến
- 4. Hồi quy tuyến tính đa biến

Tình huống nghiên cứu

 Nghiên cứu nhằm khảo sát các yếu tố ảnh hưởng tới trọng lượng sơ sinh của trẻ từ ivf (dữ liệu tlsosinh.dta)

Câu hỏi?

Mối liên quan giữa tuổi thai và trọng lượng sơ sinh?

Nhận xét?

- Thực hiện bằng Stata
- Cơ bản

```
twoway (scatter biếnphụthuộc biếnđộclập) twoway (scatter tlsosinh tuoithai)
```

Thêm đường hồi quy

```
twoway (scatter biếnphụthuộc biếnđộclập) (lfit biếnphụthuộc biếnđộclập) twoway (scatter tlsosinh tuoithai) (lfit tlsosinh tuoithai)
```

Thêm các label, legend...

```
twoway (scatter tlsosinh tuoithai) (lfit tlsosinh tuoithai), ytitle(Trọng lượng sơ sinh (gr)) xtitle(Tuổi thai (tuần))
```

- Thực hiện bằng Stata
- Graphics → twoway (scatter, line, etc.)
- Create → chọn biến X (độc lập) và Y (phụ thuộc) → Accept
- Create → chọn Fit plots → chọn biến X và Y → Accept
- Chọn OK
- Tùy chỉnh label, legend...

- Hệ số thể hiên mối liên hệ tuyến tính giữa 2 biến định lượng
- Tương quan Pearson

$$r_{xy} = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$

- Điều kiện sử dụng hệ số tương quan Pearson:
 - ✓ Biến kết cuộc (phụ thuộc) có phân phối bình thường
 - ✓ Biến độc lập và phụ thuộc có tương quan tuyến tính

- Hệ số tương quan:
- \checkmark r ∈ [-1 : 1]
- √ r > 0: tương quan thuận;
- √ r < 0: tương quan nghịch</p>
- \checkmark r = 0: không tương quan
- Mức độ tương quan (trị số tuyệt đối của r)¹
- √ 0.00–0.10: không đáng kể
- √ 0.10–0.39: tương quan yếu
- √ 0.40–0.69: tương quan vừa
- √ 0.70–0.89: tương quan mạnh
- ✓ 0.90–1.00: tương quan rất mạnh

r = 0.74, nhận xét?

- Thể hiện mối liên hệ tuyến tính, nếu r = 0
 - √ Không có mối liên hệ giữa 2 biến
 - √ Có mối liên hệ nhưng không phải tuyến tính
- Không có đơn vị đo lường
- Hai chiều (nếu X hoặc Y thay đổi thì biến còn lại thay đổi như thế nào)
- Không thay đổi bởi những phép biến đổi tuyến tính
- Có thể có dùng giá trị r nhưng phân tán đồ khác nhau
- Đơn biến, không kiểm soát được nhiễu

- R²: tỷ lệ biến thiên của biến phụ thuộc được giải thích bởi biến độc lập
- Ví dụ: $r = 0.74 \rightarrow R^2 = 0.55$
- → tuổi thai giải thích được 55% sự biến thiên của trọng lượng sơ sinh

- Kiểm định ý nghĩa cho hệ số tương quan:
- H_0 : r = 0: không có tương quan tuyến tính
- H_a: r ≠ 0: có tương quan tuyến tính
- Kết luận có ý nghĩa thống kê dựa vào giá trị p
- Tóm lại:
- ✓ Kết luận mức độ, xu hướng tương quan → r
- ✓ Kết luận có ý nghĩa thống kê → p

- Hệ số tương quan Spearman (ρ: rho)
- Đo lường sự tương quan giữa 2 biến:
- ✓ Phân phối không bình thường
- ✓ Biến thứ tự
- ✓ Tương quan monotonic

Tương quan Pearson vs Spearman

Thực hiện bằng Stata (tương quan Pearson)
 pwcorr cácbiếnsố, sig star (5)

pwcorr tlsosinh tuoithai, sig star(5)

```
tlsosinh tuoithai

tlsosinh 1.0000

r

tuoithai 0.7376* 1.0000
0.0000
```

Thực hiện bằng Stata (tương quan Spearman)
 spearman cácbiếnsố
 spearman tlsosinh tuoithai

```
. spearman tlsosinh tuoithai

Number of obs = 641 ρ

Spearman's rho = 0.5700

Test of Ho: tlsosinh and tuoithai are independent Prob > |t| = 0.0000
```

Hồi quy tuyến tính

Mục tiêu

- Tìm phương trình để diễn giải mối liên quan giữa biến độc lập và phụ thuộc
 - ✓ Nếu biến x thay đổi thì biến y thay đổi như thế nào?
- Đưa ra mô hình tiên lượng (dự báo)
 - √ Với giá trị của x = ... thì y là bao nhiêu?
- Hiệu chỉnh các yếu tố gây nhiễu (đa biến)

Phương trình:

$$Y = \alpha + \beta X + \varepsilon$$

- α: Điểm chặn/hằng số (intercept)
- β: Hệ số góc (slope)
- ε: Sai số ngẫu nhiên/phần dư (random error/residual)

Ví dụ:

Đối tượng	Trọng lượng (kg)	Thể tich huyết tương (lit)
1	58.0	2.75
2	70.0	2.86
3	74.0	3.37
4	63.5	2.76
5	62.0	2.62
6	70.5	3.49
7	71.0	3.05
8	66.0	3.12

- 1. Nếu trọng lượng cơ thể tăng 1 kg thì thể tích huyết tương thay đổi bao nhiêu lit?
- 2. Một người có cân nặng 65 kg thì thể tích huyết tương là bao nhiêu lit?

Thể tích huyết tương = 0.0857 + 0.04362*trọng lượng cơ thể

Phương trình:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

- Diễn giải: Khi các x₂, ..., x_n không thay đổi, biến x₁ thay đổi 1 đơn vị thì biến y thay đổi bao nhiêu đơn vị?
- Tiên lượng: Với các thông tin của x₁, x₂, ... x_n thì y là bao nhiêu?

Phương trình hồi quy

• Tìm đường thẳng hồi quy như thế nào?

Phương trình hồi quy

- Phương pháp bình phương tối thiểu (Ordinary Least Squares OLS)
- Tìm đường thẳng hồi quy sao cho tổng bình phương sai số (error) là nhỏ nhất

Phương trình hồi quy

Hệ số β

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = r \frac{s_y}{s_x}$$

Điểm chặn α

$$a = y - bx$$

Hồi quy tuyến tính

Thực hiện bằng Stata

```
regress biếnphụthuộc biếnđộclập regress tlsosinh tuoithai
```

Source	SS	df	MS	Number of obs	=	641
Model	148354317	1	148354317	F(1, 639) Prob > F	=	762.25 0.0000
Model	140334317	1	140334317	Prob > F	_	0.0000
Residual	124365805	639	194625.673	R-squared	=	0.5440
				Adj R-squared	=	0.5433
Total	272720122	640	426125.19	Root MSE	=	441.16
tlsosinh	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
tuoithai	206.6412	7.484572	27.61	0.000 191.94	39	221.3386
_cons	-4865.245	290.0814	-16.77	0.000 -5434.8	73	-4295.617

Phương trình

Trọng lượng sơ sinh (gram) = -4865 + 206 x Tuổi thai (tuần)

Hồi quy tuyến tính

Trọng lượng sơ sinh (gram) = -4865 + 206 x Tuổi thai (tuần)

Ý nghĩa:

- ✓ Diễn giải: Khi tuổi thai tăng lên 1 tuần thì trọng lượng sơ sinh tăng thêm 206 gram
- ✓ Tiên lượng:
 - O Một người mang thai 38 tuần → tl sơ sinh dự đoán là -4865 + 206*38 = 2963 gram
 - Một người mang thai 30 tuần → tl sơ sinh dự đoán là?

Kiểm định giả thuyết

Kiểm định ý nghĩa thống kê cho hệ số hồi quy:

$$\checkmark$$
 H₀: $\beta = 0$

 \checkmark H_a: β ≠ 0

Kết luận có ý nghĩa thống kê dựa vào giá trị p

Source	SS	df	MS	Number of ob	5 = =	641
Model	148354317	1	148354317	- F(1, 639) 7 Prob > F		762.25 0.0000
Residual	124365805	639	194625.673		=	0.5440
Residual	124303003		154025.075	· Adj R-square		0.5433
Total	272720122	640	426125.19		=	441.16
tlsosinh	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
tuoithai	206.6412	7.484572	27.61	0.000 191.9	139	221.3386
_cons	-4865.245	290.0814	-16.77	0.000 -5434.	373	-4295.617

 Nghiên cứu nhằm khảo sát các yếu tố ảnh hưởng tới trọng lượng sơ sinh của trẻ

regress tlsosinh tuoime tang_ha tuoithai gioi i.nghenghiep Chú ý: biến phân nhóm phải thêm i. trước tên biến

Source	SS	df	MS		of obs	=	641 142.76
Model	156720174	6	26120028.9	F(6, 6			0.0000
Residual	115999948	634	182965.218				0.5747
	1133333				squared		0.5706
Total	272720122	640	426125.19	-			427.74
tlsosinh	Coef.	Std. Err.	t	P> t	[95% Cont	f. Int	ervall
tuoime	1.715159	4.395607	0.39	0.697	-6.916551	10	.34687
tang_ha	-141.4826	50.67361	-2.79	0.005	-240.991	-4	1.9742
tuoithai	201.1081	7.485773	26.87	0.000	186.4082	2	15.808
gioi	166.1027	33.94635	4.89	0.000	99.44177	23	2.7635
nghenghiep							
2	156.1827	50.31545	3.10	0.002	57.37762	25	4.9878
3	185.3339	48.71592	3.80	0.000	89.6698	2	80.998
_cons	-4918.722	330.6725	-14.87	0.000	-5568.068	-42	69.376

- Chọn biến số đưa vào mô hình:
 - √ Có 2^k 1 mô hình khả dĩ (k: số biến số độc lập)
- Mô hình quá nhiều biến → overfitting
 - √ ít nhất 10 đối tượng cho mỗi biến trong mô hình (thường là 30-50)¹
- Mô hình quá ít biến → underfitting
 - ✓ Mô hình kém chính xác, nhiễu

Đánh giá độ phù hợp mô hình (model fit)

R²: hệ số xác định (Coefficient of determination)

✓ Phương sai giải thích bởi mô hình/tổng phương sai

R² hiệu chỉnh

$$\overline{R}^2 = 1 - \left(1 - R^2\right) \left[\frac{n-1}{n - (k+1)}\right]$$

Source	SS	df	MS		Number of obs		641 762.25
Model	148354317	1	148354317			=	0.0000
Residual	124365805	639	194625.673		R-squared Adj R-squared Root MSE		0.5440
Total	272720122	640	426125.19				0.5433 441.16
tlsosinh	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
tuoithai _cons	206.6412 -4865.245	7.484572 290.0814		0.000 0.000	191.943 -5434.87		221.3386 -4295.617

Đánh giá độ phù hợp mô hình (model fit)

- F = (Phương sai giải thích bởi mô hình) / (Phương sai không thể giải thích bởi mô hình)
- AIC (Akaike's Information Criterion)
 AIC = 2 x (Số biến log-likelihood)
- BIC (Bayesian Information Criterion)
 BIC = log(n) x Số biến 2 x log-likelihood
- Trong Stata
 estat ic

Các phương pháp lựa chọn mô hình

LINE

- Linear: Quan hệ tuyến tính giữa biến độc lập và phụ thuộc
- 2. Independence: Các sai số là độc lập
- Normality: Sai số của ước lượng có phân phối bình thường
- 4. Equal variance: Phương sai đồng nhất (homoscedasticity)

- 1. Linear: Quan hệ tuyến tính giữa biến độc lập và phụ thuộc
- Đơn biến: phân tán đồ của biến độc lập và phụ thuộc
- Đa biến: Phân tán đồ phần dư của mô hình và biến độc lập

predict res, resid
acprplot {biếnđộclập}, lowess

2. Independence: Các sai số là độc lập Thiết kế nghiên cứu

3. Normality: Sai số của ước lượng có phân phối bình thường predict stdres, rstandard hist stdres, norm

- 4. Equal variance: Phương sai đồng nhất (homoscedasticity)\
- Biểu đồ residual vs. fitted plot
 rvfplot
- Heteroskedasticity test

estat hettest

Nội dung đã học

- 1. Phân tán đồ
- 2. Hệ số tương quan
 - √ Ý nghĩa hệ số tương quan
 - ✓ Kiểm định ý nghĩa thống kê
 - ✓ Lựa chọn hệ số tương quan
- 3. Hồi quy tuyến tính
 - √ Ứng dụng, ý nghĩa của các tham số hồi quy (đơn biến, đa biến)
 - √ Đánh giá độ phù hợp mô hình
 - ✓ Giả định của hồi quy tuyến tính

Bài tập

- Dữ liệu "FEV.dta"
- age: tuổi
- fev: thể tích khí thở ra gắng sức trong 1 giây đầu tiên
- height: chiều cao (inch)
- sex: 0 = N\w\widetilde{u}; 1 = Nam
- smoker: đang hút thuốc
- Xác định các yếu tố ảnh hưởng tới FEV1