Buck 变换器的闭环回路设计之 PID 调节

已知 $V_{in} = 20V$, $V_o = 5V$, $R = 1\Omega \sim 10\Omega$, $f_s = 100kHz$, 根据这些参数设计一个 ccm 模式下的闭环 buck 变换器,使其纹波电压不超过输出电压的 0.5%。

1.确定电容电感大小

根据张占松《开关电源原理与设计》上的公式计算所需电感和电容的大小。

$$L_c = \frac{(1-D)R_{\text{max}}}{2f}$$

代入数据可得 $L_c=37.5uH$,为了保证 buck 工作在 ccm 模式下,选取电感大小为 $L=1.2L_2=50uH$ 。再根据以下公式

$$C \ge \frac{(1-D)}{8Lf^2} \frac{V_o}{\Delta V_o}$$

可得电容大小为 $C \ge 37.5uF$,为了减小纹波电压,取C = 500uF(电容的选取先通过这个公式确定一个初值,然后通过开环仿真确定其大小。根据开环仿真纹波电压大小,调整电容值。如果纹波电压过大,就加大电容,直到纹波电压在要求范围内。)

2. buck 的开环仿真

假设电感 dsr 和电容 esr 分别为 $r_c=0.25\Omega$ 和 $r_c=0.01\Omega$ 。利用 simplorer 软件进行仿真,搭建如下电路。

图 1 buck 开环仿真电路图

设置 pwm_switch 的开关频率为 100kHz, 占空比 D=0.25.最终得到电感电流和输出电压波形如下图所示。

图 2 开环 buck 电感电流波形图

图 3 开环 buck 输出电压波形图

由图 3 知,当电路稳定时,输出电感电流的平均值为 \bar{I}_L = 0.4364A,电感电流的峰峰值 I_{PK} = 0.7861。显然有 $\frac{1}{2}I_{PK}$ < \bar{I}_L ,所以可知电路确实工作在 ccm 模式。将电感电流的波形图进行局部放大,可以发现 buck 确实工作在 ccm 模式。纹波电压为 0.01V,在要求的范围内。所以,对于仿真来说,所选取的电容和电感的大

小是合理的。

图 4 开环 buck 电感电流局部放大图

3. buck 闭环环路设计

参照 TI 的资料,可知开环 buck 的传递函数为

$$G(s) = V_{in} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{Q\omega_0} + \frac{s^2}{\omega_0^2}}$$

其中, $\omega_z = \frac{1}{r_c C}$, $\omega_0 = \frac{1}{\sqrt{LC}}$, $Q = \frac{1}{\sqrt{L/C}}$,代入数据可得它们的值如下:

$$\omega_z = 2 \times 10^5 \, rad \, / \, s, \omega_0 = 6.3246 \times 10^3 \, rad \, / \, s, Q = 3.1623$$

开环 Buck 的开环传递函数粗略幅频特性曲线如下:

图 5 buck 开环传递函数粗略幅频特性曲线

利用在 matlab 下运行如下脚本:

```
Vin=20;l=50e-6;c=500e-6;r=1;rc=0.01;rl=0.25;
omeg0=1/(1*c)^0.5;
omegz=1/rc/c;
omegzl=rl/1;
Q=r/(1/c)^0.5;
G1=tf(Vin*[1/omegz 1],[1/omeg0^2 1/Q/omeg0 1]);
margin(G1);
```

可得所设计的开环 buck 幅频相频特性曲线如下图所示:

由上图可知,穿越频率为 $f_{c1}=2.91\times10^4/2/\pi=4.6kHz$,开环 buck 的相位裕度为 12.4° ,小于 45° ,需要进行相位补偿。增益裕度为无穷大,不需要补偿了。

常用的补偿方式有比例补偿,PI 补偿,PD 补偿,PID 补偿等等。我们只要选取一种补偿方式使其相位裕度大于等于 45°,幅值裕度大于 7db 就可以了。

我们选取补偿后的穿越频率 $f_{c2}=\frac{1}{10}f_s=10$ kHz ,对应的角频率为 $\omega_{c2}=2\pi f_{c2}=6.28\times 10^4 rad/s$,利用 matlab 的点捕捉功能,在图上捕捉出角频率

为 ω_{c2} 的点,如下图所示。

$$f_{c2} = \frac{1}{10} f_s$$

图 7 10kHz 幅频相频点捕捉图

由上图可知,在频率为 10kHZ 处的相角为 -161° 。如果单单采用比例补偿,是不行的。因为采用比例补偿将开环 buck 的穿越频率由 f_{c1} 增加到 f_{c2} 后,此时的相位裕度为 180° -161° = 19° $<45^\circ$,显然不行。频率为 10kHZ 处的相角为 -161° ,要是 buck 稳定,在此处的相角最小应该为 -135° (此时对应的相位裕度刚好为 45°),只有这样,最终的相位裕度才能大于等于 45° 。所以,应该找一个相频曲线有大于 0 的部分补偿网络对该 buck 进行补偿(这里采用 PI 补偿是不行的,有兴趣的可以自己尝试)。根据各类补偿网络的相频曲线可知,有 PD、PID 补偿网络的相频曲线存在大于 0 的部分。在这里,为了增大静态增益,我们选取 PID 补偿网络对系统进行补偿(有 $\frac{1}{\varsigma}$ 部分)。

4. PID 补偿网络的参数设计

采用 PID 补偿网络对我们的开环 buck 进行补偿,按照以下步骤就可以确定 PID

补偿网络的各个参数。

1) 首先将穿越频率调整到 $f_{c2} = \frac{1}{10} f_s$ 处,具体计算方法如下:

还是使用点捕捉功能,在 matlab 画出的幅频相频曲线上捕捉角频率为 ω_{c2} 是的幅值,如图 7 所示,可得此时幅值为-13.4dB,所以补偿网络的应该在开环的幅频曲线基础上加上13.4dB(向上平移 13.4 个单位),使穿越频率额由 f_{c1} 变成到 f_{c2} 。平移多少个单位,也可以通过计算得来。计算很简单,如下:

 $\omega_{c2} = 2\pi f_{c2} = 6.28 \times 10^4 \, rad \, / \, s < \omega_z = 2 \times 10^5 \, rad \, / \, s$,所以 $10 \, kHz$ 对应的点也在斜率为 $-40 \, dB$ 的直线上,因此在相频曲线上取角频率为 $\omega_{c1} = 2.91 \times 10^4 \, rad \, / \, s$ 和 $\omega_{c2} = 2\pi f_{c2} = 6.28 \times 10^4 \, rad \, / \, s$ 的两个点(设这两个点的幅值分别为 A_{c1} 和 A_{c2} (单位 dB)),利用直线斜率的定义可得:

$$\frac{A_{c1} - A_{c2}}{\lg \omega_{c1} - \lg \omega_{2}} = -40 dB / dec$$

显然有 $A_{c1}=0$ (穿越频率过横轴),所以可得

补偿网络的电路图如下:

图 8 PID 补偿网络电路图

由于取样电流一般为 1mA 左右,所以设置取样网络的两个电阻值 $R1=4k\Omega,R3=1k\Omega$ 。取 $V_p=4V$ (V_p 是三角波峰值,闭环网络传递函数里最终因 为三角波的比较环节会引入一个 $\frac{1}{V_p}$ 的比例因子,也相当于一个比例环节,所以 这里需要将它带上),则有:

$$20\lg \frac{R2}{VpR1} = 13.3(or\,13.4)dB$$

所以 $R2 = VpR1 \times 10^{13.3/20} = 4 \times 4 \times 10^{13.3/20} = 74k\Omega$ 。将 PID 网络的比例系数 P 乘到开 环 buck 传递函数里去得到的传递函数如下:

$$G_{P}(s) = \frac{R2}{R1 \times Vp} \times V_{in} \frac{1 + \frac{s}{\omega_{z}}}{1 + \frac{s}{Q\omega_{0}} + \frac{s^{2}}{\omega_{0}^{2}}}$$

在 matlab 中运行如下脚本

```
Vin=20;Vp=4;l=50e-6;c=500e-6;r=1;rc=0.01;rl=0.25;
omeg0=1/(1*c)^0.5;
omegz=1/rc/c;
omegzl=rl/l;
Q=r/(1/c)^0.5;
R1=4e3;
R2=74e3;
Gp=tf(R2/R1/Vp*Vin*[1/omegz 1],[1/omeg0^2 1/Q/omeg0 1]);
margin(Gp)
```

可以得到 Gp 的幅频相频曲线如下图所示:

图 9 传递函数 Gp 的幅频相频曲线

由上图可知,传递函数 Gp 穿越角频率为 $6.26 \times 10^4 \, rad \, / \, s$,很接近 10kHz,所以 R2 选择基本合理。此时相角裕度也增加到了 19.2° ,几乎与 161° 互补,说明计算正确。

2) 提高静态增益

为了能够使用 PID 补偿网络提供开环 buck 的静态增益,又不影响到它的幅值裕度(为什么会影响到幅值裕度请观察 PID 补偿网络的相频曲线)。

因为 PID 补偿的相频曲线有个从-90°增加到 0°的过程,而开环 buck 的相频曲初始有个从 0°向 180°减小的过程,如果把这个这两个过程叠加起来,可能为产生一个-180°的相角。这个-180°相角对应的频率所对应的幅值就是系统的幅值裕度的相反数。而在这两个过程中,PID 补偿网络的幅值一直为正,开环 buck的幅值也一直为正。这样一来,叠加后的幅值必然大于 0,从而幅值裕度必然小于 0,显然是不行的。因此,为了避免产生这种情况,我们应该选取合适的 C2。根据 PID 补偿网络和 Gp 的相频曲线可知,如果我们使得下式成立,那么一定不会出现上文所说的那种情况。

$$\frac{10}{R2C2} = \omega_0$$

所以可得

$$C2 = \frac{10}{\omega_0 R2} = \frac{10}{6.3246 \times 10^3 \times 74 \times 10^3} F = 21nF$$

现在可将 PID 补偿网络的 PI 部分加入开环 buck 的传递函数中,得到的新传递函数如下:

$$G_{PI} = \frac{R2}{R1} \frac{(1 + R2C2s)}{R2C2s} \times \frac{1}{Vp} \times V_{in} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{Q\omega_0} + \frac{s^2}{\omega_0^2}}$$

根据这个传递函数的幅频相频曲线可以判断我们选取的R2,C2是否合理。

```
在 matlab 上运行如下脚本
```

```
Vin=20;Vp=4;l=50e-6;c=500e-6;r=1;rc=0.01;rl=0.25;
omeg0=1/(1*c)^0.5;
omegz=1/rc/c;
omegzl=rl/l;
Q=r/(1/c)^0.5;
G1=tf(Vin*[1/omegz 1],[1/omeg0^2 1/Q/omeg0 1]);
R1=4e3;
R2=74e3;
C2=21e-9;
G2=tf(R2/R1*[R2*C2 1],[R2*C2 0]);
GPI=series(1/Vp*G1,G2);
margin(GPI)
```

可得传递函数 G_{PI} 的幅频相频特性曲线如下图所示:

由上图可得, G_{PI} 的穿越角频率为 $6.26 \times 10^4 \, rad \, / \, s$,与 G_P 的穿越角频率相同,接近 $10kH_Z$ 。相位裕度为 18.6° ,相对于 G_P 的 19.2° 减小了 0.6° ,几乎可以忽略不计。这里没有出现我们上文说的幅值裕度为负的那种情况,说明我们的 C2 选择的基本合理。接下来,我们需要做的就是增大相位裕度,使其大于等于 45° 。 3)提高相位裕度

观察 PID 补偿网络的相频特性曲线可知,如果要提高开环 buck 的相位裕度,应该 PID 补偿网络的相频曲线上相角大于(45°-18.6°)=25.4°的部分加到 f_{c2} 上,也就是有 $2\pi f_{c2} \ge \frac{0.1}{R1C1}$ 。如果我们先取 $2\pi f_{c2} = \frac{0.1}{R1C1}$ 试试看,此时可确定 C1 的值如下:

$$C1 = \frac{0.1}{2\pi f_{c2}R1} = \frac{0.1}{\omega_{c2}R1} = \frac{0.1}{6.26 \times 10^4 \times 4 \times 10^3} = 0.4nF$$

(注: 这里取得 $\omega_{c2} = 6.26 \times 10^4 \, rad \, / \, s$ 是因为 G_{PI} 的穿越频率为 $6.26 \times 10^4 \, rad \, / \, s$ 。 当然,如果不喜欢这样取的话取 $6.28 \times 10^4 \, rad \, / \, s$ ($10kH_Z$)也无妨,应该不会相差太大)。经过 PID 补偿后,闭环网络的传递函数 G_{PID} 如下:

$$G_{PID} = \frac{R2}{R1} \frac{(1 + R2C2s)(1 + R1C1s)}{R2C2s} \times \frac{1}{Vp} \times V_{in} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{Q\omega_0} + \frac{s^2}{\omega_0^2}}$$

```
在 matlab 上运行如下脚本:
```

```
Vin=20;Vp=4;l=50e-6;c=500e-6;r=1;rc=0.01;rl=0.25;
omeg0=1/(1*c)^0.5;
omegz=1/rc/c;
omegzl=r1/l;
Q=r/(1/c)^0.5;
G1=tf(Vin*[1/omegz 1],[1/omeg0^2 1/Q/omeg0 1]);
R1=4e3;
R2=74e3;
C1=2e-9;
C2=21e-9;
G2=tf(R2/R1*[R1*C1*R2*C2 (R1*C1+R2*C2) 1],[R2*C2 0]);
GPID=series(1/Vp*G1,G2);
margin(GPID)
```

运行完成后,可得 G_{PID} 的幅频相频曲线如下图所示:

 G_{PID} 的穿越频角频率为 $6.27 \times 10^4 \, rad \, / \, s$,接近 10kHz,但是相角裕度为 24.4° ,偏小。我们在此基础上增大 C1,相角裕度也会增加。调整 C1的时候,最好在 matlab下面建一个M文件,这样操作起来比较方便。建一个M文件格式如下(操作方法:点击matlab File/Script, M文件开头敲入 function BuckCompensatorPID (M文件中后面的逗号不要),换行,后面复制上面的代码。每增大一次 C1 值,点击一次运行,看相位裕度是否达到要求。

function BuckCompensatorPID

```
Vin=20;Vp=4;l=50e-6;c=500e-6;r=1;rc=0.01;rl=0.25;
omeg0=1/(1*c)^0.5;
omegz=1/rc/c;
omegzl=r1/1;
Q=r/(1/c)^0.5;
G1=tf(Vin*[1/omegz 1],[1/omeg0^2 1/Q/omeg0 1]);
R1=4e3;
R2=74e3;
C1=2e-9;
C2=21e-9;
G2=tf(R2/R1*[R1*C1*R2*C2 (R1*C1+R2*C2) 1],[R2*C2 0]);
GPID=series(1/Vp*G1,G2);
margin(GPID)
```

最终取得C1 = 2nF, 此时闭环 buck 的幅频相频曲线如下:

由上图可知,闭环 buck 的穿越角频率为 6.68×10^4 rad/s,相位裕度为 47.8°,幅值裕度为无穷大,满足要求。至此 PID 补偿网络的参数全部计算完毕,下面我们开始进行闭环 buck 的仿真。

4. buck 闭环仿真

闭环仿真电路仿真如下图所示:

电感电流波形如下图所示:

电感电流峰峰值的 0.5 倍小于电感电流平均值, buck 工作在 ccm 模式。将电感电流波形进行局部放大可得下图:

输出电压波形如下图所示:

纹 波 电 压 $\Delta V_o = 0.0189V$,输 出 电 压 $V_o = 4.9992V$, $\frac{\Delta V_o}{V_o} = \frac{0.0189}{4.9992} = 0.0038 = 0.38\% < 0.5\%$,满足设计要求。

暴怒的小二(论坛 ID: qiuseqian) _ 2013.11.6