Math 104, HW12

Tianshuang (Ethan) Qiu December 3, 2021

1 Q1

1.1 a

First we know that $\sqrt{x^2} = |x|$. Since we know that $\frac{1}{n} \to 0$ and $\frac{1}{n^2} \to 0$, we can show uniform convergence by the following.

Let $\epsilon > 0$, pick N such that for all n > N, $\left| \frac{1}{n^2} \right| < \epsilon$. Now since |x| < 1 and the domain of the square root being positive,

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}} \le \sqrt{x^2 + \frac{2}{\sqrt{n}}|x| + \frac{1}{n}} \le \sqrt{(x + \frac{1}{\sqrt{n}})^2}$$

By our first statement the above expression is equal to $|(x + \frac{1}{\sqrt{n}})|$. By our definition of N,

$$||(x + \frac{1}{\sqrt{n}})| - |x|| \le |x + \frac{1}{\sqrt{n}} - x| = |\frac{1}{\sqrt{n}}| < \frac{1}{N} < \epsilon$$

Thus we have $f_n \to |x|$ uniformly.

1.2 b

 $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, and by the power rule we know that

$$f_n'(x) = \frac{2x}{\sqrt{x^2 + \frac{1}{n}}}$$