学号	姓名
23214321	陈宁浩
23214322	陈宁浩 何昌烨
23214323	胡静静
23214324	黄项龙
23214326	刘润尧
23214329	宋珂
23214336	戴泳涛
23214338	杜冠男
23214339	段培明
23214345	黄瀚
23214346	黄樾
23214353	梁励
23214364	毛睿
23214364 23214369	钱甜奕
23214303	发
23214378 23214383	徐博研
23214383	赵海洋
23214410	陈东
23214417	陈宁宁
23214421	陈腾跃
23214426	陈煜彦
23214427	崔铮浩
23214446	何鸿荣
23214449	何芷莹
23214452	洪桂航
23214460	黄泽林
23214466	赖柔成
23214474	李宏立
23214478	李茂锦
23214491	梁恒中
23214503	刘星宇
23214509	罗经周
23214534	苏达威
23214542	王辉
23214564	熊泽华
23214565	徐浩耀
23214573	杨坤业
23214576	杨子逸杨沅旭
23214578	杨沅旭
23214590	易钰淇
23214594	曾家洋
23214600	张珊
23214601	张晓逊
23214615	钟龙广
23214624	庄梓轩
23214625	1年41
23220055	李品律
20220033	プロロー

page 92-93

Ex.1

(a) $\exp(2\pm 3\pi i) = e^2 \exp(\pm 3\pi i) = -e^2$, since $\exp(\pm 3\pi i) = -1$.

(b)
$$\exp \frac{2+\pi i}{4} = \left(\exp \frac{1}{2}\right) \left(\exp \frac{\pi i}{4}\right) = \sqrt{e} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$
$$= \sqrt{e} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}\right) = \sqrt{\frac{e}{2}} (1+i).$$

(c) $\exp(z+\pi i) = (\exp z)(\exp \pi i) = -\exp z$, since $\exp \pi i = -1$.

Ex.6

First write

$$\left| \exp(z^2) \right| = \left| \exp[(x+iy)^2] \right| = \left| \exp(x^2 - y^2) + i2xy \right| = \exp(x^2 - y^2)$$

and

$$\exp(|z|^2) = \exp(x^2 + y^2).$$

Since $x^2 - y^2 \le x^2 + y^2$, it is clear that $\exp(x^2 - y^2) \le \exp(x^2 + y^2)$. Hence it follows from the above that

$$\left|\exp(z^2)\right| \leq \exp(|z|^2).$$

Ex.8

(a) Write $e^z = -2$ as $e^x e^{iy} = 2e^{i\pi}$. This tells us that

$$e^x = 2$$
 and $y = \pi + 2n\pi$ $(n = 0, \pm 1, \pm 2,...)$

That is,

$$x = \ln 2$$
 and $y = (2n+1)\pi$ $(n = 0, \pm 1, \pm 2,...)$

Hence

$$z = \ln 2 + (2n+1)\pi i$$
 $(n = 0, \pm 1, \pm 2,...).$

(b) Write $e^z = 1 + \sqrt{3}i$ as $e^x e^{iy} = 2e^{i(\pi/3)}$, from which we see that

$$e^x = 2$$
 and $y = \frac{\pi}{3} + 2n\pi$ $(n = 0, \pm 1, \pm 2,...)$.

That is,

$$x = \ln 2$$
 and $y = \left(2n + \frac{1}{3}\right)\pi$ $(n = 0, \pm 1, \pm 2,...)$.

Consequently,

$$z = \ln 2 + \left(2n + \frac{1}{3}\right)\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$

(c) Write $\exp(2z-1)=1$ as $e^{2x-1}e^{i2y}=1e^{i0}$ and note how it follows that

$$e^{2x-1} = 1$$
 and $2y = 0 + 2n\pi$ $(n = 0, \pm 1, \pm 2, ...)$.

Evidently, then,

$$x = \frac{1}{2}$$
 and $y = n\pi$ $(n = 0, \pm 1, \pm 2,...);$

and this means that

$$z = \frac{1}{2} + n\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$

page 97-98

Ex.1

(a)
$$\text{Log}(-ei) = \ln |-ei| + i \text{Arg}(-ei) = \ln e - \frac{\pi}{2}i = 1 - \frac{\pi}{2}i$$
.

(b)
$$\text{Log}(1-i) = \ln |1-i| + i \text{Arg}(1-i) = \ln \sqrt{2} - \frac{\pi}{4}i = \frac{1}{2}\ln 2 - \frac{\pi}{4}i$$
.

Ex.3

(a) Observe that

$$Log(1+i)^2 = Log(2i) = ln 2 + \frac{\pi}{2}i$$

and

$$2\text{Log}(1+i) = 2\left(\ln\sqrt{2} + i\frac{\pi}{4}\right) = \ln 2 + \frac{\pi}{2}i.$$

Thus

$$Log(1+i)^2 = 2Log(1+i).$$

(b) On the other hand,

$$Log(-1+i)^2 = Log(-2i) = ln 2 - \frac{\pi}{2}i$$

and

$$2\text{Log}(-1+i) = 2\left(\ln\sqrt{2} + i\frac{3\pi}{4}\right) = \ln 2 + \frac{3\pi}{2}i.$$

Hence

$$Log(-1+i)^2 \neq 2Log(-1+i).$$

Ex.4

(a) Consider the branch

$$\log z = \ln r + i\theta \qquad \left(r > 0, \frac{\pi}{4} < \theta < \frac{9\pi}{4} \right).$$

Since

$$\log(i^2) = \log(-1) = \ln 1 + i\pi = \pi i$$
 and $2\log i = 2\left(\ln 1 + i\frac{\pi}{2}\right) = \pi i$,

we find that $log(i^2) = 2logi$ when this branch of log z is taken.

(b) Now consider the branch

$$\log z = \ln r + i\theta \qquad \left(r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4} \right).$$

Here

$$\log(i^2) = \log(-1) = \ln 1 + i\pi = \pi i$$
 and $2\log i = 2\left(\ln 1 + i\frac{5\pi}{2}\right) = 5\pi i$.

Hence, for this particular branch, $\log(i^2) \neq 2\log i$.

Ex.9

(a) g(z) = z - i 为整函数, f[g(z)] = Log[g(z)] 在除 $\text{Arg}[g(z)] = \pi$ 之外的区域解析,

$$Arg[g(z)] = \pi \Rightarrow \frac{x}{\sqrt{x^2 + (y-1)^2}} = -1, \ \frac{y-1}{\sqrt{x^2 + (y-1)^2}} = 0 \Rightarrow x \le 0, y = 1$$

(b) $f(z) = \text{Log}(z+4)/(z^2+i)$ 在除 $z^2+i=0$, $\text{Arg}(z+4) = \pi$ 之外的区域解析,

$$z^{2} + i = 0 \Rightarrow z = e^{-i\pi/4}, e^{i3\pi/4} = \pm \frac{1-i}{\sqrt{2}}$$

$$Arg(z+4) = \pi \Rightarrow \frac{x+4}{\sqrt{(x+4)^2 + y^2}} = -1, \ \frac{y}{\sqrt{(x+4)^2 + y^2}} = 0 \Rightarrow x \le -4, y = 0$$

Ex.10

Since $\ln(x^2 + y^2)$ is the real component of any (analytic) branch of $2\log z$, it is harmonic in every domain that does not contain the origin. This can be verified directly by writing $u(x,y) = \ln(x^2 + y^2)$ and showing that $u_{xx}(x,y) + u_{yy}(x,y) = 0$.

page 100

Ex.1

Suppose that $\text{Re} z_1 > 0$ and $\text{Re} z_2 > 0$. Then

$$z_1 = r_1 \exp i\Theta_1$$
 and $z_2 = r_2 \exp i\Theta_2$,

where

$$-\frac{\pi}{2} < \Theta_1 < \frac{\pi}{2} \quad \text{and} \quad -\frac{\pi}{2} < \Theta_2 < \frac{\pi}{2}.$$

The fact that $-\pi < \Theta_1 + \Theta_2 < \pi$ enables us to write

$$\begin{aligned} \operatorname{Log}(z_1 z_2) &= \operatorname{Log}[(r_1 r_2) \exp i(\Theta_1 + \Theta_2)] = \ln(r_1 r_2) + i(\Theta_1 + \Theta_2) \\ &= (\ln r_1 + i\Theta_1) + (\ln r_2 + i\Theta_2) = \operatorname{Log}(r_1 \exp i\Theta_1) + \operatorname{Log}(r_2 \exp i\Theta_2) \\ &= \operatorname{Log} z_1 + \operatorname{Log} z_2. \end{aligned}$$

Ex.2

$$Log(z_1 z_2) = Log(r_1 r_2 e^{i(\theta_1 + \theta_2)}) = \ln(r_1 r_2) + i(\Theta_1 + \Theta_2 + 2N\pi)$$

$$\Theta_1, \Theta_2 \in (-\pi, \pi], \ \Theta_1 + \Theta_2 \in (-2\pi, 2\pi].$$

$$\underline{\underline{}} \Theta_1 + \Theta_2 \in (-2\pi, -\pi], \ N = 1, \Theta_1 + \Theta_2 + 2\pi \in (0, \pi] \subset (-\pi, \pi]_{\circ}$$

$$\Theta_1 + \Theta_2 \in (-\pi, \pi], \ N = 0.$$

$$\underline{\ }$$
 $\underline{\ }$ $\Theta_1 + \Theta_2 \in (\pi, 2\pi], \ N = -1, \Theta_1 + \Theta_2 - 2\pi \in (-\pi, 0] \subset (-\pi, \pi]_{\circ}$

故
$$\text{Log}(z_1 z_2) = \ln r_1 + i\Theta_1 + \ln r_2 + i\Theta_2 + i2N\pi = \text{Log}z_1 + \log z_2 + i2N\pi, N$$
 取 $0, \pm 1$.

Ex.3

We are asked to show in two different ways that

$$\log\left(\frac{z_{1}}{z_{2}}\right) = \log z_{1} - \log z_{2} \qquad (z_{1} \neq 0, z_{2} \neq 0).$$

(a) One way is to refer to the relation $\arg \left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$ in Sec. 7 and write

$$\log\left(\frac{z_{1}}{z_{2}}\right) = \ln\left|\frac{z_{1}}{z_{2}}\right| + i\arg\left(\frac{z_{1}}{z_{2}}\right) = (\ln|z_{1}| + i\arg z_{1}) - (\ln|z_{2}| + i\arg z_{2}) = \log z_{1} - \log z_{2}.$$

(b) Another way is to first show that $\log \left(\frac{1}{z}\right) = -\log z \ (z \neq 0)$. To do this, we write $z = ne^{i\theta}$

and then

$$\log\left(\frac{1}{z}\right) = \log\left(\frac{1}{r}e^{-i\theta}\right) = \ln\left(\frac{1}{r}\right) + i(-\theta + 2n\pi) = -[\ln r + i(\theta - 2n\pi)] = -\log z,$$

where $n = 0, \pm 1, \pm 2,...$ This enables us to use the relation

$$\log(z_1 z_2) = \log z_1 + \log z_2$$

and write

$$\log\left(\frac{z_1}{z_2}\right) = \log\left(z_1 \frac{1}{z_2}\right) = \log z_1 + \log\left(\frac{1}{z_2}\right) = \log z_1 - \log z_2.$$