אינפי 2 ־ סמסטר א' תשע"ט תרגיל בית 7

להגשה עד יום חמישי, 13 בדצמבר, בשעה 23:45, דרך תיבת ההגשה במודל

- 1. עבור כל אחת מהטענות הבאות, קבעו האם היא נכונה עבור טורים כלליים. אם לא, קבעו האם היא נכונה עבור טורים חיוביים (כלומר, טורים $(a_n \ge 0)$ עבורם $\sum a_n$
 - .מתכנס, אז גם $\sum_{n=1}^{\infty}a_n$ מתכנס מתכנס, אז גם $\sum_{n=1}^{\infty}a_n$
 - (ב) אם $\sum_{n=1}^\infty a_n b_n$ מתכנסים, אז גם $\sum_{n=1}^\infty b_n$ מתכנס.
 - .מתכנס, אז גם $\sum_{n=1}^{\infty}a_n$ מתכנס, אז גם $\sum_{n=1}^{\infty}a_n^2$ מתכנס
 - .מתכנס $\sum_{n=1}^\infty a_n$ מתכנס, אז גם $\sum_{n=1}^\infty |a_n|$ מתכנס או (ד
 - (ה) אם $\sum_{n=1}^{\infty}a_{2n}$ מתכנס, אז גם $\sum_{n=1}^{\infty}a_{n}$ מתכנס.
 - (ו) אם $\sum_{n=1}^{\infty}a_{2n}$ מתכנס, אז גם $\sum_{n=1}^{\infty}|a_n|$ מתכנס.
 - מתכנסים, אז גם $\sum_{n=1}^\infty a_n$ מתכנסים, אז גם $\sum_{n=1}^\infty a_{2n-1}$ ב מתכנסים (ז)
 - 2. לכל אחד מהטורים הבאים, קבעו האם הוא מתכנס בהחלט, מתכנס בתנאי או לא מתכנס:

(A)
$$\sum_{n=1}^{\infty} 5^n \tan\left(\frac{\pi}{6^n}\right)$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n \cdot \sqrt[3]{n+1}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \frac{n}{m} \rfloor}}{\sqrt{n}}$$

(E)
$$\sum_{n=2}^{\infty} \frac{\sin(\frac{1}{n})}{\ln n}$$

$$(F) \sum_{n=2}^{\infty} \frac{\sin(\frac{1}{n})}{\ln^2 n}$$

(G)
$$\sum_{n=2}^{\infty} (-1)^n \cdot \frac{\sqrt{n}}{\ln n}$$

"בסעיף (D), מינוס, מינוס, מינוס, מינוס, בסעיף (H) הטור בסעיף שינוי הסימנים לm (D), בסעיף מינוס, מ באופן מחזורי (ראינו שהוא מתכנס, אבל עכשיו אתם יכולים לתת הוכחה קלה יותר).

- $n \in \mathbb{N}$ יהי.
- $n\log(n) n + 1 \le \log(n!) \le (n+1)\log(n+1) n$ שמתקיים שמתקיים (א) $\log(n!) = \log(1) + \log(2) + \cdots + \log(n)$ הדרכה:

$$e\left(\frac{n}{e}\right)^n \le n! \le e\left(\frac{n+1}{e}\right)^{n+1}$$
 (ב)

- בשאלה או נראה שמבחן ההשוואה הגבולי לא נכון עבור טורים כלליים: מצאו סדרות $(a_n)_{n=1}^\infty$ ד שמתקיימים כל התנאים .4
 - (א) בכנס. $\sum_{n=1}^{\infty}a_n$ מתכנס. לכל $a_n \neq 0$
 - $\lim_{n\to\infty}\frac{b_n}{a_n}=1$ (2)
 - (ג) הטור $\sum_{n=1}^{\infty} b_n$ לא מתכנס.

כדי a_n כדי מספיק קטן ביחס ל a_n כדי העיוות של a_n על־ידי "עיוות של היים לפי לייבניץ. הגדירו את אל־ידי "עיוות של a_n על־ידי שמתכנס לפי לייבניץ. הגדירו את שיתקיים תנאי ב', אבל מספיק גדול כדאי שיתקיים תנאי ג'.

5. (בונוס 5 נק") הוכיחו שהטור שהטור שהטור $\frac{1}{2} - \frac{1}{8} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} - \frac{1}{7} - \frac{1}{8} + \frac{1}{6} + \dots$ מתכנס (בטור זה, כל רצף מחוברים שווי סימן מורכב ממחובר אחד יותר מאשר הרצף הקודם לו).