CLAIMS

- 1. A plastisol formulation, comprising:
 - a) a plasticizer or mixture of plasticizers; and
- b) a mixture of polymer particles comprising at least two components A and B;
 - c) at least one member selected from the group consisting of fillers, coupling agents, stabilizers, desiccants, rheological additives, hollow bodies and mixtures thereof;

wherein said polymer particles comprising at least two components A and B have one of the following structures

- ba) a 2-stage structure, a 3-stage structure or multi-stage structure, or bb) a gradient polymer structure.
 - 2. The plastisol formulation according to claim 1, wherein said component A comprises a polymer particle obtained by emulsion polymerization, said polymer particle having a core KA, an outermost shell S_1A , a second shell S_2A and a third shell S_3A ;
 - wherein said component B comprises a polymer particle comprising a core KB, an outermost shell S₁B, a second shell S₂B and a third shell S₃B;

wherein said core KA comprises the following monomers in copolymerized form:

K A a) 10 to 50 percent by mass, relative to the core, of (meth)acrylates of

Formula I

20

15

$$O$$
 (I) OR^2

wherein

 $R^1 = H \text{ or } CH_3$; and

 $R^2 = CH_3$ or CH_2CH_3 ;

K A b) 50 to 90 percent by mass, relative to the core, of compounds of Formula I; wherein $R^1 = H$ or CH_3 , and R^2 is selected from the group consisting of propyl,

isopropyl, tert-butyl, n-butyl, isobutyl, pentyl, hexyl, iso-octyl, octyl, cyclohexyl, 2-ethylhexyl, octadecyl, dodecyl, tetradecyl, oleyl, decyl, benzyl, cetyl, isobornyl, neopentyl, cyclopentyl, undecyl, and docosyl;

KAc) 0 to 10 percent by mass, relative to the core, of compounds that can be copolymerized with the monomers KAa) and/or KAb); and

K A d) 0.1 to 9.9 percent by mass of monomers containing an epoxy group; wherein said outermost shell $S_1 A$ comprises the following monomers in copolymerized form:

S₁ A a) 70 to 100 percent by mass of monomers of Formula I, wherein

15 $R^1 = H \text{ or } CH_3, \text{ and}$

 $R^2 = CH_3 \text{ or } CH_2CH_3;$

 S_1 A b) 0 to 30 percent by mass of the monomer of Formula I, wherein the R^1 and R^2 have the meaning indicated for K A b); and

 S_1 A c) 0 to 10 percent by mass of a monomer copolymerized with S_1 A a) and S_1 A 20 b);

wherein said second shell S_2 A comprises of the following monomers in copolymerized form:

S₂ A a) 20 to 80 percent by mass of monomers of Formula I, wherein

 $R^1 = H$ or CH_3 , and

 $R^2 = CH_3 \text{ or } CH_2CH_3;$

S₂ A b) 20 to 70 percent by mass of the monomer of Formula I, wherein

 $R^1 = H$ or CH_3 , and

R² has the same meanings as for K A b); and

S₂ A c) 0.1 to 9.9 percent by mass of monomers containing an epoxy group;

wherein said third shell S₃ A comprises the following monomers in copolymerized form:

S₃ A a) 30 to 100 percent by mass of monomers of Formula I, wherein:

 $R^1 = H$ or CH_3 , and

 $R^2 = CH_3$ or CH_2CH_3 ;

10 S₃ A b) 0 to 70 percent by mass of the monomer of Formula I, wherein:

 $R^1 = H$ or CH_3 , and R^2 has the same meanings as for K A b); and

 S_3 A c) 0 to 10 percent by mass of a monomer that can be copolymerized with S_1 A) to S_1 A), the monomers having the meanings indicated for K A c);

wherein said core KB comprises the following monomers in copolymerized form:

KB a) 10 to 50 percent by mass, relative to the core, of (meth)acrylates Formula I

$$\bigcap_{\mathsf{R}^1} \mathsf{OR}^2 \qquad \mathsf{(I)}$$

wherein

 $R^1 = H \text{ or } CH_3$; and

15

 $R^2 = CH_3 \text{ or } CH_2CH_3;$

K B b) 50 to 90 percent by mass, relative to the core, of compounds of Formula I, wherein R¹ and R² have the meanings indicated for K A b);

KBc) 0 to 10 percent by mass, relative to the core, of compounds copolymerizable with the monomers KBa) and/or KBb); and

K B d) 0.1 to 9.9 percent by mass of monomers that contain nucleophilic groups,

S₁ B a) 70 to 100 percent by mass of monomers of Formula I, wherein:

5 $R^1 = H \text{ or } CH_3$, and

 $R^2 = CH_3$ or CH_2CH_3 ;

S₁ B b) 0 to 30 percent by mass of the monomer of Formula I, wherein:

R¹ and R² have the meaning indicated for K A b);

 $S_1 \ B \ c) \ 0$ to 10 percent by mass of a monomer copolymerizable with $S_1 \ B \ a)$ and/or

 $10 S_1 B b$); and

S₁ B d) 0.1 to 9.9 percent by mass of monomers that contain nucleophilic groups; wherein said second shell S₂ B of polymer B comprises the following monomers in copolymerized form:

S₂ B a) 20 to 80 percent by mass of monomers of Formula I, wherein:

15 $R^1 = H \text{ or } CH_3, \text{ and}$

 $R^2 = CH_3 \text{ or } CH_2CH_3;$

S₂ B b) 20 to 70 percent by mass of the monomer of Formula I, wherein:

R¹=H or CH₃, and R² has the same meanings as for K B b); and

S₂ B c) 0.1 to 9.9 percent by mass of monomers that are capable of a nucleophilic

reaction with the epoxide-containing monomer of polymer A;

wherein said third shell S₃B comprises of the following monomers in copolymerized form:

S₃ B a) 30 to 90 percent by mass of monomers of Formula I, wherein:

 R^1 =H or CH₃, and

 $R^2 = CH_3 \text{ or } CH_2CH_3;$

- S₃ B b) 10 to 70 percent by mass of the monomer of Formula I, wherein:
- R^1 =H or CH₃, and R^2 has the same meanings as for K B b);
- S_3 B c) 0 to 10 percent by mass of a monomer copolymerizable with S_1 B a) and/or S_1 B b), the monomers having the meanings indicated for K A c); and
- 5 S₃ B d) 0.1 to 9.9 percent by mass of monomers that contain nucleophilic groups.
 - 3. The plastisol formulation according to claim 1, wherein a mixing ratio of components A and B ranges between 100:0 and 20:80 parts by weight.
 - 4. The plastisol formulation according to claim 1, wherein a mixing ratios relative to the total mass of the component A have the following values:
- 10 (K A) 20 to 90 percent by mass,
 - (S_1A) 10 to 80 percent by mass,
 - (S_2A) 0 to 70 percent by mass, and
 - (S_3A) 0 to 70 percent by mass.
- 5. The plastisol formulation according to claim 1, wherein a mixing ratio relative to
 the total mass of the component B has the following values:
 - (KB) 20 to 100 percent by mass,
 - (S_1B) 0 to 80 percent by mass,
 - (S_2B) 0 to 70 percent by mass, and
 - (S_3B) 0 to 70 percent by mass.
- 6. The plastisol formulation according to claim 1, wherein said component A represents a gradient polymer, wherein the proportions by mass relative to the polymer A are as follows:
 - (K A) 0 to 90 percent by mass, and
 - (S A) 10 to 100 percent by mass.
- 7. The plastisol formulation according to claim 1, wherein said component B

represents a gradient type, wherein the proportions by mass relative to the polymer B are as follows:

(KB) 0 to 90 percent by mass,

10

claim 1.

- (SB) 10 to 100 percent by mass.
- 8. A method for coating of a metal sheet, comprising:contacting a metal sheet with the plastisol according to claim 1.
 - 9. A metal sheet coated with a plastisol formulation according to claim 1.
 - 10. A vehicle, at least partly coated with a plastisol formulation according to claim 1.
 - 11. A method for underbody protection of vehicles, comprising:

 contacting a underbody of a vehicle with the plastisol formulation according to