

Specification document of TC1047, TC1047A

Component manufacturer	Microchip Technology
Model number	TC1047, TC1047A

Datasheets 21498D.book (microchip.com)

Specification Ver 01.00.00 Oct 13,2022 New release

01.00.01 Oct 18,2022 Corrected license content

Documentation provided Rui Long Lab Inc. https://rui-long-lab.com/

1.	Component datasheet	2
	·	
2.	Component Software IF specification	3
	·	
3.	File Structure and Definitions	5

License

Open Source Software for Embedded Components ("OSS-EC") is open source software files and related documentation files for component products used in computer systems and other applications. OSS-EC is provided to those who accept the OSS-EC Terms of Use for the OSS-EC site; see https://oss-ec.com/license_agreement/ for the OSS-EC Terms of Use. By downloading the OSS-EC from the OSS-EC site or obtaining the OSS-EC by any means, you accept the Terms of Use. Please read and accept the Terms of Use before using the OSS-EC. If you do not agree to the Terms of Use, please do not use the OSS-EC.

1. Component datasheet

Temperature accuracy $\pm 2.0^{\circ}$ C (Max at +25° C)

Temperature range $-40 \text{ to } +125^{\circ} \text{ C}$

Range of power supply voltage (Vdd) 2.7 to 4.4 [V] TC1047

2.5 to 5.5 [V] TC1047A

Output voltage (Vout) Linear 0.01 [mV/° C] Typ.

0 [° C] 0.5 [V] Typ.

Calculation $Vout = 0.5V + (0.01 \text{ V/}^{\circ} \text{ C} \times \text{Ta})$

 $Ta = (Vout - 0.5V) / (0.01 V/^{\circ} C)$

Applications IoT etc

· Cellular Phones

Power Supply Thermal Shutdown

· Temperature-Controlled Fans

• Temperature Measurement/Instrumentation

· Temperature Regulators

· Consumer Electronics

· Portable Battery-Powered Equipment

2. Component Software IF specification

The software interface specifications based on the TC1047, TC1047A component specifications are as follows.

The voltage value-to-physical value conversion equation is a linear conversion equation as shown in the equation below.

ADC value to voltage value conversion formula

$$vi = (ai \times iADC_vdd) / 2^{iADC_bit}$$
 [V]

Voltage value to physical value conversion formula

y = (vi - iTC1047_xoff) / iTC1047_gain + iTC1047_yoff [°C] iTC1047_min
$$\leq$$
 y \leq iTC1047_max

```
A/D conversion value
ai
٧i
                 Sensor output voltage value [V]
i ADC vdd
                 Sensor supply voltage value [V]
iADC_bit
                 A/D conversion bit length
                 Temperature value [°C]
#define iTC1047_xoff
                                                     // X offset [V]
                                   0. 5F
#define iTC1047_yoff
                                   <u>0. 0F</u>
                                                     // Y offset [°C]
                                                     // Gain [V/°C]
#define iTC1047_gain
                                   0. 01F
#define iTC1047_max
                                   125. OF
                                                     // Temperature Max [°C]
#define iTC1047_min
                                   -40. OF
                                                     // Temperature Min [°C]
```


3. File Structure and Definitions

TC1047.h

```
#include "user_define.h"
// Components number
#define iTC1047
                                                           // Microchip Technology TC1047, TC1047A
                             117U
// TC1047 System Parts definitions
#define iTC1047_xoff
                             <u>0. 5F</u>
                                                           // X offset [V]
#define iTC1047_yoff
                             <u>0. 0F</u>
                                                           // Y offset [°C]
#define iTC1047_gain
                             0.01F
                                                           // Gain [V/°C]
#define iTC1047_max
                             125. OF
                                                           // Temperature Max [°C]
#define iTC1047_min
                             <u>-40. 0F</u>
                                                           // Temperature Min [°C]
extern const tbl_adc_t tbl_TC1047;
```


TC1047.cpp

```
#include
                "TC1047. h"
#if
        iTC1047_ma == iSMA
                                                        // Simple moving average filter
static float32 TC1047_sma_buf[iTC1047_SMA_num];
static const sma_f32_t TC1047_Phy_SMA =
        iInitial ,
                                                        // Initial state
        iTC1047_SMA_num ,
                                                  // Simple moving average number & buf size
        OU ,
                                                        // buffer position
        0.0F,
                                                        // sum
        &TC1047_sma_buf[0]
                                                        // buffer
};
\#elif iTC1047_ma == iEMA
                                                        // Exponential moving average filter
static const ema_f32_t TC1047_Phy_EMA =
{
        iInitial ,
                                                        // Initial state
        0.0F,
                                                        // Xn-1
        iTC1047_EMA_K
                                                        // Exponential smoothing factor
};
\#elif iTC1047_ma == iWMA
                                                        // Weighted moving average filter
static float32 TC1047_wma_buf[iTC1047_WMA_num];
static const wma_f32_t TC1047_Phy_WMA =
{
        iInitial ,
                                                        // Initial state
        iTC1047_WMA_num ,
                                                // Weighted moving average number & buf size
                                                        // buffer poition
        OU ,
                                                        // kn sum
        iTC1047_WMA_num * (iTC1047_WMA_num + 1)/2,
        &TC1047_wma_buf[0]
                                                        // Xn buffer
};
#else
                                                        // Non-moving average filter
#endif
#define iDummy_adr
                         0xffffffff
                                                        // Dummy address
```



```
const tbl_adc_t tbl_TC1047 =
        iTC1047
        iTC1047_pin
        iTC1047_xoff
        iTC1047_yoff
        iTC1047_gain
        iTC1047_max
        iTC1047_min
        iTC1047_ma
#if
        iTC1047_ma == iSMA
                                                         // Simple moving average filter
        &TC1047_Phy_SMA
        (ema_f32_t*) iDummy_adr ,
        (wma_f32_t*) iDummy_adr
#elif
                                                         // Exponential moving average filter
        iTC1047_ma == iEMA
        (sma_f32_t*) iDummy_adr,
        &TC1047_Phy_EMA
        (wma_f32_t*) iDummy_adr
#elif
        iTC1047_ma == iWMA
                                                          // Weighted moving average filter
        (sma_f32_t*) iDummy_adr,
        (ema_f32_t*) iDummy_adr ,
        &TC1047_Phy_WMA
#else
                                                          // Non-moving average filter
        (sma_f32_t*) iDummy_adr,
        (ema_f32_t*) iDummy_adr ,
        (wma_f32_t*) iDummy_adr
#endif
};
```