Lyapunov's Linearization Method (cont.)

Proof (cont.):

Choose $\gamma < \frac{\lambda_{\min}(Q)}{2\|P\|}$ so that \dot{V} is negative definite in a ball of radius $r(\gamma)$ around the origin, and appeal to Lyapunov's Stability Theorem (Lecture 8) to conclude (local) asymptotic stability.

- Theorem: The origin is asymptotically stable if $\Re\{\lambda_i(A)\} < 0$ for each eigenvalue, and unstable if $\Re\{\lambda_i(A)\} > 0$ for some eigenvalue.
- $\dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2||P|||x||g(x)|$
- $|x| \le r(\gamma) \Rightarrow \dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2\gamma ||P|||x|^2$

Region of Attraction

$$R_A = \{x : \phi(t, x) \to 0\}$$

"Quantifies" local asymptotic stability. Global asymptotic stability: $R_A = \mathbb{R}^n$.

<u>Proposition:</u> If x = 0 is asymptotically stable, then its region of attraction is an open, connected, invariant set. Moreover, the boundary is formed by trajectories.

Region of Attraction

Example: van der Pol system in reverse time:

$$\dot{x}_1 = -x_2 \dot{x}_2 = x_1 - x_2 + x_2^3$$

The boundary is the (unstable) limit cycle. Trajectories starting within the limit cycle converge to the origin.

Region of Attraction

Example: bistable switch:

$$\dot{x}_1 = -ax_1 + x_2$$

$$\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - bx_2$$

Estimating the Region of Attraction with a Lyapunov Function

Suppose $\dot{V}(x) < 0$ in $D - \{0\}$. The level sets of V inside D are invariant and trajectories starting in them converge to the origin. Therefore we can use the largest level set of V that fits into D

This estimate depends on the choice of Lyapunov function. A simple (but often conservative) choice is: $V(x) = x^T P x$ where P is selected for the linearization (see p.1).

Time-Varying Systems

$$\dot{x} = f(t, x)$$
 $f(t, 0) \equiv 0$

To simplify the definitions of stability and asymptotic stability for the equilibrium x=0, we first define a class of functions known as "comparison functions."

Khalil (Sec. 4.5), Sastry (Sec. 5.2)

Comparison Functions

<u>Definition:</u> A continuous function $\alpha:[0,\infty)\to[0,\infty)$ is <u>class- \mathcal{K} </u> if it is zero at zero and strictly increasing. It is <u>class- \mathcal{K}_{∞} </u> if, in addition, $\alpha(r)\to\infty$ as $r\to\infty$.

A continuous function $\beta:[0,\infty)\times[0,\infty)\to[0,\infty)$ is class- \mathcal{KL} if:

- **1** $\beta(\cdot,s)$ is class- \mathcal{K} for every fixed s,

Example: $\alpha(r) = \tan^{-1}(r)$ is class- \mathcal{K} , $\alpha(r) = r^c, c > 0$ is class- \mathcal{K}_{∞} , $\beta(r,s) = r^c e^{-s}$ is class- \mathcal{K}_{∞} .

Comparison Functions

<u>Proposition:</u> If $V(\cdot)$ is positive definite, then we can find class- \mathcal{K} functions $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ such that

$$\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|).$$

If $V(\cdot)$ is radially unbounded, we can choose $\alpha_1(\cdot)$ to be class- \mathcal{K}_{∞} .

Example:
$$V(x) = x^T P x$$
 $P = P^T > 0$

Example:
$$V(x) = x Px \quad P = P > 0$$

$$\alpha_1(|x|) = \lambda_{\min}(P)|x|^2 \quad \alpha_2(|x|) = \lambda_{\max}(P)|x|^2.$$

Stability Definitions

<u>Definition:</u> x=0 is stable if for every $\varepsilon>0$ and t_0 , there exists $\delta>0$ such that

$$|x(t_0)| \le \delta(t_0, \varepsilon) \implies |x(t)| \le \varepsilon \quad \forall t \ge t_0.$$

If the same δ works for all t_0 , *i.e.* $\delta = \delta(\varepsilon)$, then x = 0 is uniformly stable.

It is easier to define uniform stability and uniform asymptotic stability using comparison functions (next slide)

Stability Definitions

 $\mathbf{x}=0$ is uniformly stable if there exists a class- \mathcal{K} function $\alpha(\cdot)$ and a constant c>0 such that

$$|x(t)| \leq \alpha(|x(t_0)|)$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

• uniformly asymptotically stable if there exists a class- \mathcal{KL} $\beta(\cdot,\cdot)$ s.t.

$$|x(t)| \le \beta(|x(t_0)|, t-t_0)$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

- ightharpoonup globally uniformly asymptotically stable if $c=\infty$.
- uniformly exponentially stable if $\beta(r,s) = kre^{-\lambda s}$ for some $k, \lambda > 0$:

$$|x(t)| \le k|x(t_0)|e^{-\lambda(t-t_0)}$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.