Integrais indefinidas

15.1 Antiderivadas

Sendo f(x) e F(x) definidas em um intervalo $I \subset \mathbb{R}$, dizemos que

F(x) é uma antiderivada ou uma primitiva de f(x), em I, se F'(x) = f(x) para cada $x \in I$.

Ou seja, F é antiderivada ou primitiva de f se F é uma função cuja derivada é f.

Como primeiros exemplos, temos

f(x)	primitiva de $f(x)$
$3x^2$	χ^3
2	2x
e^{x}	e^{x}
$\operatorname{sen} x$	$-\cos x$

Observação 15.1. Se F é antiderivada de f em I, e c é uma constante, então F + c também é uma antiderivada de f em I.

De fato, se F'(x) = f(x), para cada $x \in I$, então

[F(x) + c]' = F'(x) = f(x), e portanto F(x) + c também é uma antiderivada de f(x) em I.

Assim, por exemplo x^3 , $x^3 + 5$ e $x^3 - \sqrt{2}$ são primitivas (ou antiderivadas) de $3x^2$.

Veremos agora que, em cada intervalo I, duas primitivas de uma mesma função diferem entre si por uma constante.

Proposição 15.1. Se F_1 e F_2 são antiderivadas de f, em um intervalo $I \subset \mathbb{R}$, então existe $c \in \mathbb{R}$ tal que $F_1(x) = F_2(x) + c$, para cada $x \in I$.

Para demonstrar a proposição 15.1, faremos uso do seguinte resultado.

Lema 15.1. Sendo I um intervalo de números reais, se f é contínua no intervalo I e f'(x) = 0 para cada x no interior de I, então f é constante em I, ou seja, existe $c \in \mathbb{R}$ tal que f(x) = c para todo $x \in I$.

Poderíamos aceitar o lema 15.1 como evidente e seguir adiante. No entanto, este lema é consequência de um teorema importante sobre funções deriváveis, conhecido como *Teorema do valor médio*. Como tornaremos a fazer uso do teorema do valor médio mais adiante, julgamos oportuno citá-lo agora.

Teorema 15.1 (Teorema do valor médio). Suponhamos que f é uma função contínua no intervalo [a,b] e derivável no intervalo [a,b[. Então existe $c \in]a,b[$ tal que

$$\frac{f(b)-f(a)}{b-a}=f'(c)$$

Aceitaremos este teorema sem demonstração, e faremos uma interpretação geométrica de seu resultado.

O quociente $\frac{f(b)-f(a)}{b-a}$ é a taxa de variação média, $\frac{\Delta f}{\Delta x}$, da função f, no intervalo [a,b], sendo $\Delta x = b-a$ e $\Delta f = f(b)-f(a)$.

 $\frac{f(b)-f(\alpha)}{b-\alpha}$ é também a inclinação da reta passando por $A=(\alpha,f(\alpha))$ e B=(b,f(b)).

Figura 15.1. Interpretação geométrica do Teorema do valor médio: $\frac{f(b) - f(a)}{b - a} = f'(c).$

O teorema do valor médio diz que essa taxa de variação média é também a taxa

de variação instantânea de f, em relação a x, $\frac{\mathrm{d}f}{\mathrm{d}x}(c)$, para algum ponto c no intervalo]a,b[.

Em termos geométricos, isto quer dizer que a inclinação da reta AB coincide com a inclinação de uma reta tangente ao gráfico de f em um ponto (c, f(c)), para algum $c \in]a, b[$. A figura 15.1 ilustra geometricamente o teorema do valor médio.

Uma interpretação cinemática do teorema do valor médio é a seguinte: a velocidade média de um ponto móvel, em movimento retilíneo, no intervalo de tempo $[t_1, t_2]$, coincide com sua velocidade instantânea em algum instante $t_0 \in]t_1, t_2[$, isto é,

$$\frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} = s'(t_0) \text{ em um instante } t_0, \text{ com } t_1 < t_0 < t_2$$

Por exemplo, se um carro, com velocidade variável, faz um percurso de $180\,\mathrm{km}$ em duas horas, sua velocidade média é $\frac{180\,\mathrm{km}}{2\,\mathrm{h}}=90\,\mathrm{km/h}$. Intuitivamente, sabemos que em algum instante do percurso, seu velocímetro acusará a velocidade instantânea de $90\,\mathrm{km/h}$.

Demonstração do lema 15.1. Suponhamos que f'(x) = 0 para cada x no interior do intervalo I.

Mostraremos que, quaisquer que sejam x_1 e x_2 em I, $x_1 < x_2$, tem-se $f(x_1) = f(x_2)$.

Temos f contínua em $[x_1, x_2]$ e derivável em $]x_1, x_2[$, pois $]x_1, x_2[$ está contido no interior do intervalo I.

Pelo teorema do valor médio,
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$
 para algum $c \in]x_1, x_2[$.

Como f'(c) = 0, temos $f(x_1) = f(x_2)$, e como x_1 e x_2 são pontos quaisquer do intervalo I, temos f constante em I.

Demonstração da proposição 15.1. Suponhamos que, $F'_1(x) = F'_2(x) = f(x)$ para cada $x \in I$, I um intervalo de \mathbb{R} .

Consideremos a função $\varphi = F_1 - F_2$.

Então,
$$\varphi'(x) = F'_1(x) - F'_2(x) = f(x) - f(x) = 0$$
, para cada $x \in I$.

Pelo lema 15.1, φ é constante no intervalo I.

Assim, existe $c \in \mathbb{R}$ tal que $F_1(x) - F_2(x) = c$ para cada $x \in I$.

Portanto
$$F_1(x) = F_2(x) + c$$
, para cada $x \in I$.

Definição 15.1 (Integral indefinida). Sendo F uma primitiva de f no intervalo I, chama-se integral indefinida de f, no intervalo I, à primitiva genérica de f em I, F(x) + C, sendo C uma constante real genérica. Denotamos tal fato por

$$\int f(x) dx = F(x) + C$$

Em equações que exprimem integrais definidas, geralmente omite-se o intervalo I.

15.2 Integrais imediatas

Coletaremos agora algumas integrais indefinidas cujo cálculo é imediato.

Proposição 15.2.

1.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \text{ se } \alpha \neq -1.$$

$$2. \int \frac{1}{x} dx = \ln|x| + C.$$

3.
$$\int \operatorname{sen} x \, \mathrm{d}x = -\cos x + C.$$

$$4. \int \cos x \, dx = \sin x + C.$$

$$5. \int e^x dx = e^x + C.$$

6.
$$\int a^x dx = \frac{a^x}{\ln a} (a > 0, a \neq 1).$$

7.
$$\int \sec^2 x \, dx = \operatorname{tg} x + C.$$

8.
$$\int \csc^2 x \, dx = -\cot g \, x + C.$$

9.
$$\int \sec x \cdot \operatorname{tg} x \, \mathrm{d}x = \sec x + C.$$

10.
$$\int \csc x \cdot \cot x \, dx = -\csc x + C.$$

11.
$$\int \frac{1}{1+x^2} dx = \arctan x + C.$$

12.
$$\int \frac{1}{\sqrt{1-x^2}} = \operatorname{arcsen} x + C.$$

Demonstração. Para a dedução das integrais acima, basta verificar que a derivada do segundo membro, em cada igualdade, é a função que se encontra sob o sinal de integração.

Como exemplos,

se
$$\alpha \neq -1$$
, $\left(\frac{x^{\alpha+1}}{\alpha+1}\right)' = (\alpha+1) \cdot \frac{x^{\alpha+1-1}}{\alpha+1} = x^{\alpha}$.
 $(\ln |x|)' = 1/x$:
se $x > 0$, $(\ln |x|)' = (\ln x)' = 1/x$;
se $x < 0$, $(\ln |x|)' = (\ln (-x))' = \frac{1}{-x} \cdot (-x)' = 1/x$.
 $(\alpha^{x})' = \alpha^{x} \cdot \ln \alpha$, $\log \left(\frac{\alpha^{x}}{\ln \alpha}\right)' = \frac{\alpha^{x} \ln \alpha}{\ln \alpha} = \alpha^{x}$.

15.3 Manipulações elementares de integrais

Suponhamos $\int f(x) dx = F(x) + C_1$, e $\int g(x) dx = G(x) + C_2$. Então

1.
$$[F(x) + G(x)]' = F'(x) + G'(x) = f(x) + g(x)$$
, logo

$$\int (f(x) + g(x)) dx = F(x) + G(x) + C = \int f(x) dx + \int g(x) dx \qquad (C = C_1 + C_2).$$

2. Sendo k uma constante real,
$$[k \cdot F(x)]' = k \cdot F'(x) = k \cdot f(x)$$
, logo
$$\int kf(x) dx = kF(x) + C = k \int f(x) dx$$
 $(kC_1 = C)$

Reunimos os fatos acima, com outros também úteis, na seguinte proposição.

Proposição 15.3. Se $\int f(x) dx = F(x) + C$ e $\int g(x) dx = G(x) + C$, então, sendo $a, b, k \in \mathbb{R}$, $a \neq 0$,

1.
$$\int [f(x) + g(x)] dx = F(x) + G(x) + C$$

2.
$$\int \mathbf{k} \cdot \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \mathbf{k} \cdot \mathbf{F}(\mathbf{x}) + \mathbf{C}$$

3.
$$\int f(x+b) dx = F(x+b) + C$$

4.
$$\int f(x-b) dx = F(x-b) + C$$

5.
$$\int f(b-x) dx = -F(b-x) + C$$

6.
$$\int f(\alpha x) dx = \frac{1}{\alpha} F(\alpha x) + C$$

7.
$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C$$

Demonstração. As duas primeiras propriedades já foram deduzidas anteriormente. Das

cinco propriedades restantes, as quatro primeiras são consequências imediatas da última, a única que deduziremos.

Por hipótese, F'(x) = f(x).

Logo
$$[F(ax + b)]' = F'(ax + b) \cdot (ax + b)' = af(ax + b)$$
, de onde

$$\left(\frac{1}{a}F(ax+b)\right)'=\frac{1}{a}\cdot af(ax+b)=f(ax+b).$$

Portanto
$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C.$$

15.4 Exemplos elementares

- 1. $\int \cos x \, dx = \sin x + C$. Logo, pela proposição 15.3,
 - (a) $\int \cos 3x \, dx = \frac{1}{3} \sin 3x + C$

(b)
$$\int \cos(2x - \frac{3\pi}{2}) dx = \frac{1}{2} \sin(2x - \frac{3\pi}{2}) + C$$

- 2. $\int e^x dx = e^x + C$. Logo, pela proposição 15.3,
 - (a) $\int e^{x-5} dx = e^{x-5} + C$
 - (b) $\int e^{2-x} dx = -e^{2-x} + C$
 - (c) $\int e^{5x} dx = \frac{1}{5}e^{5x} + C$
- 3. Calcular $\int tg^2 x dx$.

Temos $\int \sec^2 x \, dx = \operatorname{tg} x + C$.

Temos ainda $\cos^2 x + \sin^2 x = 1$, logo $1 + \operatorname{tg}^2 x = \sec^2 x$.

Logo, pela proposição 15.3,

$$\int tg^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x - \int 1 \, dx = tg \, x - x + C$$

4. Calcular $\int (5\cos x + \cos 5x) dx$.

$$\int (5\cos x + \cos 5x) dx = 5 \int \cos x dx + \int \cos 5x dx$$
$$= 5\sin x + \frac{1}{5}\sin 5x + C$$

5. Calcular $\int \sin x \cos x \, dx$.

Temos sen $2x = 2 \operatorname{sen} x \cos x$, logo sen $x \cos x = \frac{1}{2} \operatorname{sen} 2x$. Daí

$$\int \sin x \cos x \, dx = \frac{1}{2} \int \sin 2x \, dx$$
$$= \frac{1}{2} \cdot \frac{1}{2} (-\cos 2x) + C = -\frac{1}{4} \cos 2x + C$$

6. Calcular
$$\int \frac{\sqrt{x}+1}{x} dx.$$

$$\int \frac{\sqrt{x}+1}{x} dx = \int \left(\frac{\sqrt{x}}{x} + \frac{1}{x}\right) dx$$

$$= \int \frac{\sqrt{x}}{x} dx + \int \frac{1}{x} dx$$

$$= \int x^{-1/2} dx + \int \frac{1}{x} dx$$

$$= \frac{x^{1/2}}{1/2} + \ln|x| + C = 2\sqrt{x} + \ln|x| + C$$

15.5 Integração por mudança de variável ou integração por substituição

Suponhamos que

$$\int f(x) dx = F(x) + C$$
 (15.1)

Suponhamos que x = $\phi(t)$ é uma função derivável de t, para t em um intervalo $I\subset\mathbb{R}.$

Na aula 14 definimos a diferencial de x, como sendo

$$dx = \frac{dx}{dt}dt = \varphi'(t) dt$$

No contexto daquela aula, a diferencial dx foi definida como uma boa aproximação de Δx , quando $dt = \Delta t$ é suficientemente pequeno.

Neste capítulo, a diferencial terá um sentido simbólico, sendo empregada quando realizamos troca de variáveis no cálculo de integrais.

Suponhamos definida no intervalo I a função composta $f(\phi(t))$.

Como veremos agora, podemos substituir $x = \phi(t)$ na expressão 15.1, fazendo $dx = \phi'(t) dt$, ou seja, de 15.1 obtemos

$$\int f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(t)) + C$$
 (15.2)

De fato, aplicando derivação em cadeia,

$$\frac{d}{dt}[F(\varphi(t))] = \frac{d}{dx}[F(x)] \cdot \frac{dx}{dt}$$

$$= F'(x) \cdot \varphi'(t)$$

$$= F'(\varphi(t)) \cdot \varphi'(t)$$

$$= f(\varphi(t)) \cdot \varphi'(t)$$

logo,
$$\int f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(t)) + C$$
.

Portanto

$$\int f(x) dx = F(x) + C \implies \int f(\phi(t)) \cdot \phi'(t) dt = F(\phi(t)) + C$$

pela mudança de variável $x = \varphi(t)$, tomando-se $dx = \varphi'(t) dt$.

Na prática, quando identificamos que uma integral é da forma $\int f(\phi(t))\phi'(t) dt$, podemos às vezes fazer uma substituição $x = \phi(t)$, e levando em conta as considerações anteriores passamos por uma sequência de igualdades tal como a seguir,

$$\int f(\varphi(t))\varphi'(t) dt = \int f(x) dx = F(x) + C = F(\varphi(t)) + C$$

Algumas vezes, no entanto, queremos calcular $\int f(x) dx$, e fazemos uma mudança de variável $x = \phi(t)$ passando então por uma sequência de igualdades em ordem diferente tal como a seguir,

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C = F(x) + C$$

fazendo uso da integral "mais complicada" $\int f(\phi(t)\phi'(t)) dt$ (da qual sabemos como calcular uma primitiva) para finalmente obter $\int f(x) dx$. Isto é o que ocorre em substituições trigonométricas, assunto que será estudado adiante.

Neste caso, estamos assumindo implicitamente que

$$\int f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(t)) + C \implies \int f(x) dx = F(x) + C$$

o que é justificado desde que possamos também expressar também $t = \psi(x)$, como função inversa e derivável de $x = \phi(t)$, para que possamos, ao final dos cálculos, obter a integral indefinida como função de x, a partir de sua expressão em função de t.

Mas a melhor maneira de nos familiarizarmos com técnicas de integração por substituição é através de exemplos. Vamos aos primeiros exemplos.

Exemplo 15.1. Calcular
$$\int \frac{1}{\sqrt{3-2x}} dx$$
.

Solução. Começamos fazendo a substituição u = 3 - 2x.

Então
$$du = u'(x) \cdot dx = (3-2x)' dx = -2dx$$
.

Portanto $dx = -\frac{1}{2}du$.

Assim, temos

$$\int \frac{1}{\sqrt{3-2x}} dx = \int \frac{1}{\sqrt{u}} \cdot \left(-\frac{1}{2}\right) du = -\frac{1}{2} \int u^{-1/2} du = -\frac{1}{2} \cdot \frac{u^{-1/2+1}}{-\frac{1}{2}+1} + C$$
$$= -u^{1/2} + C = -\sqrt{u} + C = -\sqrt{3-2x} + C$$

Exemplo 15.2. Calcular $\int \operatorname{tg} x \, dx$.

Solução.
$$\int \operatorname{tg} x \, dx = \int \frac{\operatorname{sen} x}{\cos x} dx$$
.

Como $(\cos x)' = -\sin x$, tomamos $u = \cos x$, e teremos

$$du = (\cos x)'dx = -\sin x dx.$$

Assim,

$$\int tg \, x \, dx = \int \frac{1}{\cos x} \sin x \, dx = \int \frac{1}{u} (-du) = -\ln|u| + C = -\ln|\cos x| + C$$

Exemplo 15.3. Calcular $\int \sec x \, dx$.

Solução. Calcularemos esta integral por uma substituição que requer um truque "esperto".

$$\int \sec x \, dx = \int \frac{\sec x \cdot (\sec x + tg \, x)}{\sec x + tg \, x} dx = \int \frac{\sec^2 x + \sec x \cdot tg \, x}{\sec x + tg \, x} dx$$

Aplicamos a mudança de variável

$$u = \sec x + \tan x$$

e teremos $du = (\sec x + \tan x)'dx = (\sec x \tan x + \sec^2 x)dx$.

Logo,
$$\int \sec x \, dx = \int \frac{1}{u} du = \ln |u| + C = \ln |\sec x + \tan x| + C$$
.

Exemplo 15.4. Calcular $\int \csc x \, dx$.

Solução. Imitando o truque usado no exemplo anterior, o leitor poderá mostrar que

$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C.$$

Exemplo 15.5. Calcular
$$\int \frac{x}{\sqrt{x^2+5}} dx$$
.

Solução. Note que $(x^2 + 5)' = 2x$. Isto sugere fazermos

$$u = x^2 + 5$$
, do que segue $du = 2x dx$, ou seja, $x dx = \frac{1}{2}du$.

Temos então

$$\int \frac{x}{\sqrt{x^2 + 5}} dx = \int \frac{1}{\sqrt{u}} \cdot \frac{1}{2} du = \frac{1}{2} \int u^{-1/2} du = u^{1/2} + C = \sqrt{x^2 + 5} + C$$

15.6 Ampliando nossa tabela de integrais imediatas

Com a finalidade de dinamizar o cálculo de integrais indefinidas, ampliaremos a lista de integrais imediatas da seção 15.2, adotando como integrais "imediatas" as quatro seguintes, que deduziremos em seguida.

Proposição 15.4. Sendo $\alpha > 0$, $e \lambda \neq 0$,

1.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C.$$

2.
$$\int \frac{\mathrm{d}x}{\alpha^2 - x^2} = \frac{1}{2\alpha} \ln \left| \frac{\alpha + x}{\alpha - x} \right| + C.$$

3.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C.$$

4.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + \lambda}} = \ln|x + \sqrt{x^2 + \lambda}| + C$$

Demonstração. $\int \frac{dx}{\alpha^2 + x^2} = \frac{1}{\alpha^2} \int \frac{1}{1 + (\frac{x}{\alpha})^2} dx$

Fazendo $\frac{x}{a} = y$, temos dx = a dy, e então

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a^2} \int \frac{a}{1 + y^2} dy = \frac{1}{a} \int \frac{1}{y^2 + 1} dy$$
$$= \frac{1}{a} \operatorname{arctg} y + C = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$

Para deduzir a segunda integral, lançamos mão da decomposição

$$\frac{1}{\alpha^2 - x^2} = \frac{\frac{1}{2\alpha}}{\alpha + x} + \frac{\frac{1}{2\alpha}}{\alpha - x}$$

Assim sendo,

$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \int \frac{1}{a + x} dx + \frac{1}{2a} \int \frac{1}{a - x} dx$$

$$= \frac{1}{2a} \ln|a + x| - \frac{1}{2a} \ln|a - x| + C$$

$$= \frac{1}{2a} \ln \frac{|a + x|}{|a - x|} + C = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

Para deduzir a terceira integral, fazemos uso da integral indefinida

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = arcsen x + C$$

e procedemos a uma mudança de variável, tal como no cálculo da primeira integral acima. O leitor poderá completar os detalhes.

Para deduzir a quarta integral, apelaremos para um recurso direto, uma derivação. Mostraremos que

$$(\ln|x + \sqrt{x^2 + \lambda}|)' = \frac{1}{\sqrt{x^2 + \lambda}}$$

De fato, sendo $u = x + \sqrt{x^2 + \lambda}$, e sendo $(\sqrt{w})' = \frac{1}{2\sqrt{w}} \cdot w'$, temos

$$(\ln|x + \sqrt{x^2 + \lambda}|)' = (\ln|u|)' = \frac{1}{u} \cdot u'$$

$$= \frac{1}{x + \sqrt{x^2 + \lambda}} \cdot (x + \sqrt{x^2 + \lambda})'$$

$$= \frac{1}{x + \sqrt{x^2 + \lambda}} \cdot (1 + \frac{1}{2\sqrt{x^2 + \lambda}} \cdot 2x)$$

$$= \frac{1}{x + \sqrt{x^2 + \lambda}} \cdot \frac{\sqrt{x^2 + \lambda} + x}{\sqrt{x^2 + \lambda}} = \frac{1}{\sqrt{x^2 + \lambda}}$$

15.6.1 Nossa tabela de integrais imediatas

Adotaremos como integrais imediatas as integrais da tabela 15.1 da página 164. Esta tabela inclui as integrais imediatas da proposição 15.2, e também as integrais calculadas nos exemplos 15.2, 15.3 e 15.4, e as integrais da proposição 15.4.

15.7 Problemas

Calcule as seguintes integrais indefinidas, utilizando, quando necessário, mudança de variáveis. Sempre que julgar conveniente, faça uso da tabela 15.1 de integrais indefinidas da página 164.

1.
$$\int (x + \sqrt{x}) dx$$
. Resposta. $\frac{x^2}{2} + \frac{2x\sqrt{x}}{3} + C$.

2.
$$\int \left(\frac{3}{\sqrt{x}} - \frac{x\sqrt{x}}{4}\right) dx. \text{ Resposta. } \left(6\sqrt{x} - \frac{1}{10}x^2\sqrt{x}\right) + C.$$

3.
$$\int \frac{x^2 dx}{\sqrt{x}}$$
. Resposta. $\frac{2}{5}x^2\sqrt{x} + C$.

4.
$$\int \left(x^2 + \frac{1}{\sqrt[3]{x}}\right)^2 dx$$
. Resposta. $\frac{x^5}{5} + \frac{3}{4}x^2\sqrt[3]{x^2} + 3\sqrt[3]{x} + C$.

5.
$$\int \operatorname{sen} \alpha x \, dx$$
. Resposta. $-\frac{\cos \alpha x}{\alpha} + C$.

Tabela 15.1. Tabela ampliada de integrais imediatas (nas últimas linhas, $\alpha > 0$ e $\lambda \neq 0$).

$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, (\alpha \neq -1)$	$\int \frac{1}{x} \mathrm{d}x = \ln x + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int \cos x \mathrm{d}x = \sin x + C$
$\int e^x dx = e^x + C$	$\int a^x dx = \frac{a^x}{\ln a} (a > 0, a \neq 1)$
$\int \sec^2 x dx = \operatorname{tg} x + C$	$\int \csc^2 x dx = -\cot g x + C$
$\int \sec x \cdot \tan x dx = \sec x + C$	$\int \csc x \cdot \cot x dx = -\csc x + C$
$\int \sec x dx = \ln \sec x + \operatorname{tg} x + C$	$\int \csc x dx = -\ln \csc x + \cot x + C$
$\int \operatorname{tg} x \mathrm{d}x = -\ln \cos x + C$	$\int \cot g x dx = \ln \sin x + C$
$\int \frac{1}{1+x^2} dx = \arctan x + C$	$\int \frac{1}{\sqrt{1-x^2}} dx = x + C$
$\int \frac{\mathrm{d}x}{\alpha^2 + x^2} = \frac{1}{\alpha} \arctan \frac{x}{\alpha} + C$	$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + C.$
$\int \frac{\mathrm{d}x}{\sqrt{\alpha^2 - x^2}} = \arcsin \frac{x}{\alpha} + C$	$\int \frac{\mathrm{d}x}{\sqrt{x^2 + \lambda}} = \ln x + \sqrt{x^2 + \lambda} + C$

6.
$$\int \frac{\ln x}{x} dx$$
. Resposta. $\frac{\ln^2 x}{2} + C$.

7.
$$\int \frac{1}{\sin^2 3x} dx$$
. Resposta. $-\frac{\cot 3x}{3} + C$.

8.
$$\int \frac{dx}{3x-7}$$
. Resposta. $\frac{1}{3} \ln |3x-7| + C$.

9.
$$\int \operatorname{tg} 2x \, dx$$
. Resposta. $-\frac{1}{2} \ln |\cos 2x| + C$.

10.
$$\int \cot(5x-7) dx$$
. Resposta. $\frac{1}{5} \ln|\sin(5x-7)| + C$.

11.
$$\int \cot \frac{x}{3} dx$$
. Resposta. $3 \ln |\sin \frac{x}{3}| + C$.

12.
$$\int tg \, \phi \, sec^2 \, \phi \, d\phi$$
. Resposta. $\frac{1}{2} \, tg^2 \, \phi + C$. Sugestão. Faça $u = tg \, \phi$.

13.
$$\int e^x \cot e^x dx$$
. Resposta. $\ln |\sec e^x| + C$. Sugestão. Faça $u = e^x$.

14.
$$\int \sin^2 x \cos x \, dx$$
. Resposta. $\frac{\sin^3 x}{3} + C$. Sugestão. Faça $u = \sin x$.

15.
$$\int \cos^3 x \sin x \, dx$$
. Resposta. $-\frac{\cos^4 x}{4} + C$.

16.
$$\int \frac{x \, dx}{\sqrt{2x^2 + 3}}$$
. Resposta. $\frac{1}{2}\sqrt{2x^2 + 3} + C$. Sugestão. Faça $u = 2x^2 + 3$.

17.
$$\int \frac{x^2 dx}{\sqrt{x^3 + 1}}$$
. Resposta. $\frac{2}{3}\sqrt{x^3 + 1} + C$.

18.
$$\int \frac{\sin x \, dx}{\cos^3 x}. Resposta. \frac{1}{2\cos^2 x} + C.$$

19.
$$\int \frac{\cot g x}{\sin^2 x} dx. Resposta. -\frac{\cot g^2 x}{2} + C.$$

20.
$$\int \frac{dx}{\cos^2 x \sqrt{\lg x - 1}}. Resposta. \ 2\sqrt{\lg x - 1} + C.$$

21.
$$\int \frac{\sin 2x \, dx}{\sqrt{1 + \sin^2 x}}$$
. Resposta. $2\sqrt{1 + \sin^2 x} + C$. Sugestão. Faça $u = 1 + \sin^2 x$.

22.
$$\int \frac{\arcsin x \, dx}{\sqrt{1-x^2}}. Resposta. \frac{\arcsin^2 x}{2} + C.$$

23.
$$\int \frac{\arccos^2 x \, dx}{\sqrt{1-x^2}}. Resposta. -\frac{\arccos^3 x}{3} + C.$$

24.
$$\int \frac{x \, dx}{x^2 + 1}$$
. Resposta. $\frac{1}{2} \ln(1 + x^2) + C$.

25.
$$\int \frac{x+1}{x^2+2x+3} dx$$
. Resposta. $\frac{1}{2} \ln(x^2+2x+3) + C$.

26.
$$\int \frac{\cos x}{2 \sin x + 3} dx. Resposta. \frac{1}{2} \ln(2 \sin x + 3) + C.$$

27.
$$\int \frac{dx}{x \ln x}$$
. Resposta. $\ln |\ln x| + C$. Sugestão. Faça $u = \ln x$.

28.
$$\int 2x(x^2+1)^4 dx$$
. Resposta. $\frac{(x^2+1)^5}{5} + C$.

29.
$$\int tg^4 x \, dx$$
. Resposta. $\frac{tg^3 x}{3} - tg x + x + C$.
Sugestão. Primeiro mostre que $tg^4 x = tg^2 x \cdot tg^2 x = \sec^2 x \cdot tg^2 x - \sec^2 x + 1$.

30.
$$\int \frac{dx}{\cos^2 x (3 \lg x + 1)}$$
. Resposta. $\frac{1}{3} \ln |3 \lg x + 1| + C$.

31.
$$\int \frac{\mathsf{tg}^3 x}{\mathsf{cos}^2 x} dx. \ \text{Resposta.} \ \frac{\mathsf{tg}^4 x}{4} + \mathsf{C}.$$

32.
$$\int e^{2x} dx$$
. Resposta. $\frac{1}{2}e^{2x} + C$.

33.
$$\int x a^{x^2} dx$$
. Resposta. $\frac{a^{x^2}}{2 \ln a} + C$.

34.
$$\int \frac{e^x}{3+4e^x} dx$$
. Resposta. $\frac{1}{4} \ln(3+4e^x) + C$.

35.
$$\int \frac{\mathrm{d}x}{1+2x^2}$$
. Resposta. $\frac{1}{\sqrt{2}} \operatorname{arctg}(\sqrt{2}x) + C$.

36.
$$\int \frac{\mathrm{d}x}{\sqrt{1-3x^2}}$$
. Resposta. $\frac{1}{\sqrt{3}} \operatorname{arcsen}(\sqrt{3}x) + C$.

37.
$$\int \frac{dx}{\sqrt{16-9x^2}}$$
. Resposta. $\frac{1}{3} \arcsin \frac{3x}{4} + C$.

38.
$$\int \frac{dx}{9x^2+4}$$
. Resposta. $\frac{1}{6} \arctan \frac{3x}{2} + C$.

39.
$$\int \frac{dx}{4-9x^2}$$
. Resposta. $\frac{1}{12} \ln \left| \frac{2+3x}{2-3x} \right| + C$.

40.
$$\int \frac{dx}{\sqrt{x^2+9}}$$
. Resposta. $\ln(x+\sqrt{x^2+9})+C$.

41.
$$\int \frac{x^2 dx}{5 - x^6}$$
. Resposta. $\frac{1}{6\sqrt{5}} \ln \left| \frac{x^3 + \sqrt{5}}{x^3 - \sqrt{5}} \right| + C$. Sugestão. $x^6 = (x^3)^2$, e então $u = x^3$.

42.
$$\int \frac{x \, dx}{\sqrt{1-x^4}}$$
. Resposta. $\frac{1}{2} \arcsin x^2 + C$. Sugestão. Faça $u = x^2$.

43.
$$\int \frac{x \, dx}{x^4 + a^4}$$
. Resposta. $\frac{1}{2a^2} \operatorname{arctg} \frac{x^2}{a^2} + C$.

44.
$$\int \frac{\cos x \, dx}{\alpha^2 + \text{sen}^2 x}. \quad \textit{Resposta.} \quad \frac{1}{\alpha} \arctan\left(\frac{\sin x}{\alpha}\right) + C.$$

45.
$$\int \frac{\mathrm{d}x}{x\sqrt{1-\ln^2 x}}$$
. Resposta. $\arcsin(\ln x) + C$.

46.
$$\int \frac{\arccos x - x}{\sqrt{1 - x^2}} dx. \ Resposta. -\frac{1}{2} (\arccos x)^2 + \sqrt{1 - x^2} + C.$$

47.
$$\int \frac{x - \arctan x}{1 + x^2} dx$$
. Resposta. $\frac{1}{2} \ln(1 + x^2) - \frac{1}{2} (\arctan x)^2 + C$.

48.
$$\int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$$
. Resposta. $\frac{4}{3}\sqrt{(1+\sqrt{x})^3} + C$.

49.
$$\int \frac{\cos^3 x}{\sin^4 x} dx. \quad Resposta. \quad \frac{1}{\sin x} - \frac{1}{3 \sin^3 x} + C.$$

$$Sugestão. \quad \text{Faça} \int \frac{\cos^3 x}{\sin^4 x} dx = \int \frac{\cos^2 x \cdot \cos x}{\sin^4 x} dx = \int \frac{(1 - \sin^2 x) \cos x}{\sin^4 x} dx, \text{ e então } u = \sin x.$$

50.
$$\int \frac{2x+3}{2x+5} dx$$
. Resposta. $x - \ln|2x+5| + C$.