Chi-Square	test (Goodness of Fit and Test of Independence)				
Chi Squared Test	Chi Square test is used when determining relationship between two categorical variables Goodness of Fit test: - Assess how well observed categorical data fits an expected or theoretical distribution Test of Independence: - Examine the association between two categorical variables to determine if they are independent or related				
Chi Squared GOF Notation:	Chi-squared statistic - Squared so that highly unusual differences between observed and expected will appear even more unusual $\chi^2_{\text{statistic:}} \qquad \chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E} \begin{array}{c} O: \text{observed} \\ E: \text{expected} \\ k: \text{number of cells} \end{array}$				
	Degrees of Freedom - To determine if the chi-squared is considered unusually high or not, we describe its distribution - Higher degree of freedom, closer to normal distribution • degrees of freedom (df): influences the shape, center, and spread $ \chi^2 \text{ degrees of freedom for a goodness of fit test:} \qquad df = k - 1 \\ k : \text{ number of cells} $				
	Condition: Cell based				
	Conditions for the chi-square test: 1. Independence: Sampled observations must be independent. • random sample/assignment • if sampling without replacement, n < 10% of population • each case only contributes to one cell in the table 2. Sample size: Each particular scenario (i.e. cell) must have at least 5 expected cases.				
Chi-Squared GOF Test Example:	Step 1: Identify the Hypothesis				

H₀: The observed counts of jurors from various race/ethnicities follow the same ethnicity distribution in the population.

HA: The observed counts of jurors from various ethnicities do not follow the same race/ethnicity distribution in the population.

Step 2: Calculate the expected count and compare with the actual (observed) distribution

ethnicity	white	black	nat. amer.	asian & PI	other	total
%in population	80.29%	12.06%	0.79%	2.92%	3.94%	100%
expected #	2007	302	20	73	98	2500
observed#	1920	347	19	84	130	2500
observed <				observed >		
expected				expected		

Step 3: FInd Chi-Squared and Df

$$\chi^{2} = \frac{(1920 - 2007)^{2}}{2007} + \frac{(347 - 302)^{2}}{302} + \frac{(19 - 20)^{2}}{20} + \frac{(84 - 73)^{2}}{73} + \frac{(130 - 98)^{2}}{98} = 22.63$$

$$df = k - 1 = 5 - 1 = 4$$

Step 4: Find the p-value

- P-value is the tail area above the calculated test statistic

Can either use R or Chi-squared table

Chi-Square Independence Test

(Two categorical variables with at least one variable with more than 2 levels)

	dating	cohabiting	married	total
obese	81	103	147	331
not obese	359	326	277	962
total	440	429	424	1293

Does there appear to be a relationship between weight and relationship status?

We need to be a bit more targeted in the ratio being calculated for

Step 1: Identify Hypothesis

H₀ (nothing going on): Weight and relationship status are independent. Obesity rates do not vary by relationship status.

H_A (something going on): Weight and relationship status are dependent. Obesity rates do vary by relationship status.

Step 2: Check the Conditions

- 1. Independence
- 2. Sample size

Step 3: Calculate the expected count

If in fact weight and relationship status are independent (i.e. if in fact H_0 is true) how many of the dating people would we expect to be obese? How many of the cohabiting and married?

- Look at the overall obesity rate in the sample and apply that for each relationship status

Step 4: Find Chi-square and df

 Note that df is multiplication of the #row-1 and #column-1

Step 5: FInd p-value

 We cannot conclude that living with someone is making some people obese and that marry someone is making people even more obese

```
R
> pchisq(31.68, 2, lower.tail = FALSE)
[1] 1.320613e-07
```