Bayesian Estimation

Jacob M. Montgomery

Bayesian point estimation

Overview

- Last we talked about
 - "Simple" methods to make inferences using this approach
 - Some advanced approaches applicable both here and in MLE (the delta method and the parametric bootstrap)
- ▶ This time we are going to talk about Bayesian inference

Bayesian thinking

▶ Bayes' Theorem marks the beginnings of serious statistical inference.

Bayesian thinking

- Bayes' Theorem marks the beginnings of serious statistical inference.
- ► For many years Bayesian statistics was a backwater of statistics.
- However, as we have moved into the computer age, the popularity of Bayesian inference has waxed markedly.

The big picture

► Like the other approaches mentioned so far, we assume that the true DGP can be characterized by a parametric function

$$\mathcal{F} = \{ f(x|\theta) : x \in \mathcal{X}, \theta \in \Theta \}.$$

The big picture

► Like the other approaches mentioned so far, we assume that the true DGP can be characterized by a parametric function

$$\mathcal{F} = \{ f(x|\theta) : x \in \mathcal{X}, \theta \in \Theta \}.$$

- ▶ Here x is the observed data, \mathcal{X} is the sample space.
- We think of θ as some point in the possible parameter space Θ .
- ▶ The basic idea is that we observe x generated by $f(x|\theta)$ and infer the value of θ .

Adding prior beliefs: The "drawback"

▶ The big difference is that we add to our model *prior beliefs* about the probable values of θ , which is characterized by a prior density

 $\pi(\theta)$.

Adding prior beliefs: The "drawback"

▶ The big difference is that we add to our model *prior beliefs* about the probable values of θ , which is characterized by a prior density

$$\pi(\theta)$$
.

▶ The basic idea is that "update" our prior beliefs about θ as we observe more data x.

Adding prior beliefs: The "drawback"

▶ The big difference is that we add to our model *prior beliefs* about the probable values of θ , which is characterized by a prior density

$$\pi(\theta)$$
.

- ▶ The basic idea is that "update" our prior beliefs about θ as we observe more data x.
- ▶ A formal statement of Bayes' Rule in this context is:

$$p(\theta|x) = \pi(\theta) \frac{f(x|\theta)}{f(x)}$$

where f(x) is the marginal distribution of x

$$f(x) = \int_{\Theta} f(x|\theta)\pi(\theta)d\theta$$

▶ In this setting *x* is fixed observed data.

▶ In this setting x is fixed observed data. Inferences are *not* made based on asymptotic distributions of any statistic t(x), the likelihood, or imagined repeated samples.

- In this setting x is fixed observed data. Inferences are *not* made based on asymptotic distributions of any statistic t(x), the likelihood, or imagined repeated samples.
- ▶ Instead, imagine that θ is some true parameter whose value we do not know.
- ▶ We use Bayes' formula to update our beliefs about θ .

- ▶ In this setting x is fixed observed data. Inferences are *not* made based on asymptotic distributions of any statistic t(x), the likelihood, or imagined repeated samples.
- ▶ Instead, imagine that θ is some true parameter whose value we do not know.
- We use Bayes' formula to update our beliefs about θ .
- Note that this is the **exact opposite of frequentist statistics** where we have assumed that θ is some fixed (but unknown) parameter and all inferences are generated by treating t(x) as a random variable.

Bayesian inference in practice

So we want to set up:

$$p(\theta|x) = \pi(\theta) \frac{f(x|\theta)}{f(x)}$$

► This can be re-written as:

$$p(\theta|x) = \pi(\theta) \frac{L(\theta)}{f(x)}$$

Which can further be re-written as

$$p(\theta|x) = c_x \pi(\theta) L(\theta)$$

► How can we figure this out?:

$$p(\theta|x) = c_x \pi(\theta) L(\theta)$$

► How can we figure this out?:

$$p(\theta|x) = c_x \pi(\theta) L(\theta)$$

► The key here is that we can rarely directly carry out this operation

$$1/c_{x} = f(x) = \int_{\Theta} f(x|\theta)\pi(\theta)d\theta$$

▶ Instead, we use the knowledge that $p(\theta|x)$ must integrate to one.

► How can we figure this out?:

$$p(\theta|x) = c_x \pi(\theta) L(\theta)$$

The key here is that we can rarely directly carry out this operation

$$1/c_{x} = f(x) = \int_{\Theta} f(x|\theta)\pi(\theta)d\theta$$

- ▶ Instead, we use the knowledge that $p(\theta|x)$ must integrate to one.
- ► The common approach for today's class will be:
 - Write out the likelihood
 - Multiply it by a (carefully chosen) prior
 - \blacktriangleright Combine the two and think about θ as being the random variable.
 - See that resulting formula is the "kernel" of some known probability distribution.

Let $X_1, \ldots, X_n \sim Bern(p)$. Let $s = \sum X_i$. Suppose we take the uniform distribution as a prior $\pi(p) = 1$.

Let $X_1, \ldots, X_n \sim Bern(p)$. Let $s = \sum X_i$. Suppose we take the uniform distribution as a prior $\pi(p) = 1$.

$$p(p|\mathbf{x}) \propto \pi(p)L(p)$$
$$= p^{s}(1-p)^{n-s}$$

Let $X_1, \ldots, X_n \sim Bern(p)$. Let $s = \sum X_i$. Suppose we take the uniform distribution as a prior $\pi(p) = 1$.

$$p(p|\mathbf{x}) \propto \pi(p)L(p)$$

= $p^{s}(1-p)^{n-s}$

- ► The difficult part here is to adjust your mind to see that our random variable is no longer s but instead p.
- We need to "see" that this is the kernel of some known distribution.

► This is what we have

$$p^s(1-p)^{n-s}$$

► This is what we have

$$p^{s}(1-p)^{n-s}$$

▶ If some variable y is distributed according to a $Beta(\alpha, \beta)$ distribution, then the pdf is:

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}$$

.

$$\propto y^{\alpha-1}(1-y)^{\beta-1}$$

► This is what we have

$$p^{s}(1-p)^{n-s}$$

If some variable y is distributed according to a $Beta(\alpha, \beta)$ distribution, then the pdf is:

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}$$

.

$$\propto y^{\alpha-1}(1-y)^{\beta-1}$$

Keeping in mind that p in the top formula takes the place of y in the bottom formula, what is the posterior distribution of p?

What was the integration constant?

▶ We now showed that

$$p|\mathbf{x} \sim Beta(s+1, n-s+1).$$

What was the integration constant?

We now showed that

$$p|\mathbf{x} \sim Beta(s+1, n-s+1).$$

▶ This means that the full posterior distribution was:

$$\frac{\Gamma(s+1+n-s+1)}{\Gamma(s+1)\Gamma(n-s+1)}p^{s+1-1}(1-p)^{n-s+1-1}$$

What was the integration constant?

▶ We now showed that

$$p|\mathbf{x} \sim Beta(s+1, n-s+1).$$

▶ This means that the full posterior distribution was:

$$\frac{\Gamma(s+1+n-s+1)}{\Gamma(s+1)\Gamma(n-s+1)}p^{s+1-1}(1-p)^{n-s+1-1}$$

But the kernel we started out with was only

$$p^s(1-p)^{(n-s)}.$$

▶ So what was the integration constant $c_x = f(x)$?

Making a point estimate

Now that we have found the posterior distribution of θ , making an estimate is easy.

Making a point estimate

- Now that we have found the posterior distribution of θ , making an estimate is easy.
- Let $p(\theta|\mathbf{x})$ be the posterior distribution of θ . The point estimate, $\hat{\theta}$ is just the first central moment of $p(\theta|\mathbf{x})$, $E(\theta)$.

Making a point estimate

- Now that we have found the posterior distribution of θ , making an estimate is easy.
- Let $p(\theta|\mathbf{x})$ be the posterior distribution of θ . The point estimate, $\hat{\theta}$ is just the first central moment of $p(\theta|\mathbf{x})$, $E(\theta)$.
- Alternatively, we might want to use some of our MLE methods to find the posterior mode. This would be the modal a posteriori (MAP) estimate.

Creating a an interval estimate

▶ To create a *credible interval* we need to find a and b such that

$$\int_{-\infty}^{a} p(\theta|\mathbf{x})d\theta = \int_{b}^{\infty} p(\theta|\mathbf{x})d\theta = \alpha/2$$

If we can find this, then we can have an interval C = (a, b) such that

$$P(\theta \in C|\mathbf{x}) = \int_{a}^{b} p(\theta|\mathbf{x})d\theta = 1 - \alpha$$

Creating a an interval estimate

▶ To create a *credible interval* we need to find a and b such that

$$\int_{-\infty}^{a} p(\theta|\mathbf{x})d\theta = \int_{b}^{\infty} p(\theta|\mathbf{x})d\theta = \alpha/2$$

If we can find this, then we can have an interval C = (a, b) such that

$$P(\theta \in C|\mathbf{x}) = \int_a^b p(\theta|\mathbf{x})d\theta = 1 - \alpha$$

▶ This will create a CI centered around the posterior mean.

Creating a an interval estimate

▶ To create a *credible interval* we need to find a and b such that

$$\int_{-\infty}^{a} p(\theta|\mathbf{x})d\theta = \int_{b}^{\infty} p(\theta|\mathbf{x})d\theta = \alpha/2$$

If we can find this, then we can have an interval C = (a, b) such that

$$P(\theta \in C|\mathbf{x}) = \int_a^b p(\theta|\mathbf{x})d\theta = 1 - \alpha$$

- ▶ This will create a CI centered around the posterior mean.
- ▶ An alternative is to create a Highest Posterior Density interval centered around the posterior mode(s).
- Both methods will typically be done numerically.

▶ We previously established that the posterior distribution is

$$p(p|\mathbf{x}) \sim \textit{Beta}(s+1, n-s+1)$$

▶ We previously established that the posterior distribution is

$$p(p|\mathbf{x}) \sim Beta(s+1, n-s+1)$$

▶ The mean of the $Beta(\alpha, \beta)$ distribution is $\alpha/(\alpha + \beta)$ so our point estimate is

$$\hat{p} = \frac{s+1}{n+2}$$

▶ We previously established that the posterior distribution is

$$p(p|\mathbf{x}) \sim Beta(s+1, n-s+1)$$

▶ The mean of the $Beta(\alpha, \beta)$ distribution is $\alpha/(\alpha + \beta)$ so our point estimate is

$$\hat{p} = \frac{s+1}{n+2}$$

Notice that this is slighly off from the MLE we established.

Example: Bernoulli

We previously established that the posterior distribution is

$$p(p|\mathbf{x}) \sim \textit{Beta}(s+1, n-s+1)$$

▶ The mean of the $Beta(\alpha, \beta)$ distribution is $\alpha/(\alpha + \beta)$ so our point estimate is

$$\hat{p} = \frac{s+1}{n+2}$$

- ▶ Notice that this is slighly off from the MLE we established.
- ▶ However, notice also that this difference will diminish as $n \to \infty$
- Let $\lambda = n/(n+2)$, \bar{x} be the MLE, and p^* be the prior mean (1/2). Then $\hat{p} = \lambda \bar{x} + (1-\lambda)p^*$

- Now we need to figure out the credible interval
- ▶ Let's say that n = 100 and s = 20
- ► So

2.5% 97.5% ## 0.1340576 0.2896866

##

[1] 0.95

lower upper

0.1262027 0.2832161 ## attr(,"credMass")

Class Exercise

Let our data $X_1, ..., X_n$ be iid Poisson(λ). We assume that the prior distribution be a gamma distribution such that

$$\pi(\lambda|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda}$$

- ▶ Find the posterior distribution for λ
- Find the point estimate for λ
- ▶ Find the 95% credible interval for λ .

Posteriors for functions of parameters

One of the nice features of the Bayesian approaches is that calculating posterior distributions for transformations of parameters is almost trivially easy.

Posteriors for functions of parameters

- One of the nice features of the Bayesian approaches is that calculating posterior distributions for transformations of parameters is almost trivially easy.
- Here is the process:
 - 1. Calculate the posterior distribution for the parameter.
 - 2. Simulate out of the posterior.
 - 3. Apply the transformation to the simulated parameters.
 - 4. Construct the credible interval (and even a point estimate) from this simulated sample.

Example: Log odds

▶ Imagine that in our previous example we are interested not in *p* but in the log odds:

$$log(\frac{p}{1-p})$$

Take the code from our last example, and estimate the postior for this transformed parameter.

Example: Log odds

Imagine that in our previous example we are interested not in p but in the log odds:

$$log(\frac{p}{1-p})$$

- ► Take the code from our last example, and estimate the postior for this transformed parameter.
- ▶ How would we make a posterior predictive interval?

Let $\hat{\theta}$ be the MLE and let $\sigma_{\hat{\theta}}$ be the standard error,

$$rac{1}{\sqrt{nI(\hat{ heta})}}.$$

Under appropriate regularity conditions.

Let $\hat{\theta}$ be the MLE and let $\sigma_{\hat{\theta}}$ be the standard error,

$$\frac{1}{\sqrt{nl(\hat{\theta})}}$$
.

Under appropriate regularity conditions.

▶ The posterior will be approximately normal with mean $\hat{\theta}$ and standard deviation $\sigma_{\hat{\theta}}$.

Let $\hat{\theta}$ be the MLE and let $\sigma_{\hat{\theta}}$ be the standard error,

$$\frac{1}{\sqrt{n l(\hat{\theta})}}.$$

Under appropriate regularity conditions.

- ▶ The posterior will be approximately normal with mean $\hat{\theta}$ and standard deviation $\sigma_{\hat{\theta}}$.
- ▶ Thus, in asymptotic terms, the Bayesian posterior will be exactly the same as the asymptotic distribution of the MLE.

 \blacktriangleright Let $\hat{\theta}$ be the MLE and let $\sigma_{\hat{\theta}}$ be the standard error,

$$\frac{1}{\sqrt{n l(\hat{\theta})}}.$$

Under appropriate regularity conditions.

- ▶ The posterior will be approximately normal with mean $\hat{\theta}$ and standard deviation $\sigma_{\hat{\theta}}$.
- ► Thus, in asymptotic terms, the Bayesian posterior will be exactly the same as the asymptotic distribution of the MLE.
- ▶ The differences between the approaches occur in finite samples.

Jargon Alert!: Types of priors

- Conjugate priors
- ► Informative priors
- ► Flat/noninformative priors
- Improper priors
- Jeffrey's priors

Bayesian statistics with multiple parameters

► Sometimes it's possible to divide the posterior so that we can see a distribution for one/both of the parameters

Bayesian statistics with multiple parameters

- Sometimes it's possible to divide the posterior so that we can see a distribution for one/both of the parameters
- ▶ In these cases the posteriors are conditionally independent.

Bayesian statistics with multiple parameters

- Sometimes it's possible to divide the posterior so that we can see a distribution for one/both of the parameters
- ▶ In these cases the posteriors are conditionally independent.
- Sometimes this calculation cannot be done, and we will have to give up on solving the problem analytically.
- Instead we will rely on more advanced algorithms we cover later in this class.
 - Gibbs sampler
 - Metropolis-hastings.
- ▶ We will return to these issues when we tackle the Bayesian t-test.

Multiple parameters

- ▶ Wasserman 11.7
- Overview of normal-gamma problem