

Reference : GAIA-ESC-ICD-00515
Date : 18-Dec-2006
Issue : 2 - revision 0

page i

GAIA Space/Ground Interface Control Document Volume 1 RF Interface

prepared by GAIA Operations Team reference GAIA-ESC-ICD-00515

issue 2 revision 0

date of issue 18-Dec-2006

Date : 18-Dec-2006 Issue : 2 - revision 0

page

DISTRIBUTION

Name	organisation
R. Schmidt	ESA/ESTEC
G. Colangelo	ESA/ESTEC
A. Winton	ESA/ESTEC
M. Witting	ESA/ESTEC
R. Furnell	ESA/ESTEC
J. Dodsworth	ESA/ESOC
A. Rudolph	ESA/ESOC
G. Billig	ESA/ESOC
C. Watson	ESA/ESOC
J. Wardill	ESA/ESOC

Reference

: GAIA-ESC-ICD-00515

Date Issue : 18-Dec-2006 : 2 - revision 0

page iii

APPROVAL

Title titre	GAIA Space/Ground Interface Control Document Volume1 RF Interface		2 revision 0 revision
Prepared by: auteur	GAIA Operations Team	Date date	12-Dec-2006
Approved by: approuvé	Andreas Rudolph	date date	12-Dec-2006
Authorised by: autorisé	John Dodsworth	date date	12-Dec-2006

Date : 18-Dec-2006 Issue : 2 - revision 0

page iv

CHANGE LOG

late issue	revision	Pages	reason for change
2-Dec- 2 2006	0	all	Update request from GAIA project in line ESTEC-ESOC PM #9, GAIA-ESC-MIN-0009 to align document with agreements with industry and GAIA SRR outcome: • Up/downlink frequencies updated as per frequency coordination request • Ranging tone frequency specified • Option for GMSK modulation at medium bit rate removed • Doppler and sweep range & rates updated in line with LEOP worst case conditions and transponder capabilities • Concatenated coding table updated for selectable punctured coding rates • Villafranca replaced by Maspalomas 15m as LEOP station • Station characteristics updated in line with OPSON inputs • Atmospheric attenuation curves added to annex • Bit and Frame error rates vs. Eb/N0 added to annex

Date : 18-Dec-2006 Issue : 2 - revision 0

page

Table Of Contents

1	INTRO	DUCTION AND SCOPE	. 1
		ppe	
	1.2 Op	erations Scenario	. 1
	1.2.1	Nominal Mission Operations	. 1
	1.2.2	Contingency Operations	. 2
	1.2.3	Packet Distribution	. 3
	1.3 Ap	plicable Documents	. 3
		ference Documents	
2	TELEC	COMMUNICATION SYSTEM	. 4
	2.1 Do	wn Link	. 4
	2.1.1	Frequencies	. 4
	2.1.2	Telemetry Channel Formats	. 4
	2.1.3	Ranging Signal	
	2.1.4	Modulation	
	2.1.5	Telemetry Bit Rates	
	2.1.6	Coding	
	2.1.7	Frame Synchronisation	
	2.1.8	Bitstream Pseudo Randomiser	
		-link (on-Board Reception)	
	2.2.1	Frequencies	
	2.2.2	Telecommand Format Standard	
	2.2.3	Ranging Signal	
	2.2.4	Modulation	
	2.2.5	Telecommand Bit Rates	
	2.2.6	Uplink Sweep	
	2.2.7	Telecommand Specific Requirements	
		.1 Telecommand Chain Selection	
		2 Loss of Bit Synchronization	
3		ATIONAL UTILISATION	
J		erational Modes	
	3.1.1	Modulation Modes	
	3.1.1	Transponder Modes	
	3.1.2	Antenna Switching	
	3.1.3	Command Operations Procedure (COP-1)	
4		PRMANCE	
4			
	1	Transporter Paguiroments	
	4.1.1	Transponder Requirements.	
		Suitcase	
		ound Stations	
	4.3.1	Kourou 15m, French Guyana	
	4.3.2	Maspalomas 15m, Spain	14 15
	4 1 1	New Norcia 55m Australia	1

Reference : GAIA-ESC-ICD-00515 Date : 18-Dec-2006

Issue : 2 - revision 0 page vi

4.3.4	Cebreros 35 M, Spain	16				
	4.4 Required Links 17					
4.4.1	Required Link Performance	17				
4.4.2	Ground Station Network	17				
4.4.3	Link Budget Formats and Definitions	18				
Appendix A	Acronyms and Glossary of terms	1				
Appendix B	Link Budget Format	3				
Appendix C	Atmospheric Attenuation Profiles	8				
Appendix D	Telemetry Bit/Symbol Rate Definition & Bit Error Rates	16				
Appendix E	Spectral Emission Masks.	20				

Date : 18-Dec-2006 Issue : 2 - revision 0

page

1 INTRODUCTION AND SCOPE

1.1 Scope

The ESA Radio Frequency and Modulation Standard [AD-5], requires to control the spacecraft/ground station interface a) in a definitive and formal specification of the RF interface; b) by means of Link Budget Tables regularly updated to keep track of the development of the spacecraft and ground stations(s). The hardware interface compatibility will be demonstrated by Spacecraft/Ground station compatibility tests, to be documented by the Compatibility Test Plan and the related Compatibility Test Results Report.

This Space/Ground Interface Control Document (SGICD) defines the relevant parameters for the interface between the GAIA spacecraft and the ground stations, as well as the list of standards and other documents applicable to this interface, and shall act as the source document for all data to be used in the preparation of the Link Budget Tables.

The Packet Telemetry and Telecommand Standards ([AD-1], [AD-2]) address the transport of telemetry and telecommand data between user applications on the ground and user applications on-board the satellite, and the intermediate transfer of this data through the different elements of the ground and space segments. This detail is covered in SGICD Volume2 [RD-5].

The document will be agreed between the ESA GAIA Project Manager, the appointed ESOC representative and the Prime Contractor. Upon approval the document will be controlled by the ESA GAIA Project Manager, to whom, any updates or changes to any parameters contained in it shall be submitted.

For each of the major project reviews, the Prime Contractor (in association with his subcontractors) shall supply ESA with updated information concerning the spacecraft performance or confirmation that no change has occurred from the previous review. This shall be achieved through submittal of respective compliance tables.

1.2 Operations Scenario

1.2.1 Nominal Mission Operations

The mission operations of the GAIA spacecraft and its payload will be conducted under control of the GAIA Mission Operations Centre (MOC) at the European Space Operations Centre (ESOC). This task includes spacecraft operations required for all

Date : 18-Dec-2006 Issue : 2 - revision 0

page 2

phases of the mission: LEOP, transfer phase to the final operational orbit around L2 including commissioning and performance verification phases, injection in the low amplitude Lissajous orbit, and the satellite and payload operations during the operational orbit. Throughout the complete mission duration (from launch up to the end of the mission, when ground contact to the spacecraft /payload is terminated), facilities and services will be provided to the GAIA Scientific Community for planning and execution of astronomical observations, and provision of the necessary data sets.

Interaction with the spacecraft will be by monitoring and analysis of telemetered data and the uplink of commands to effect the necessary operations. Most commands will be stored on-board for later execution at a defined time, other may be intended for execution in near real-time. In both cases, it may also be necessary to control subsystem and experiment equipment using low-level commands or high-level commands (i.e. via on-board applications or On-Board Control Procedures).

Telemetry and telecommands will also be required for on-board software management functions, including:

- control of, and communication with, on-board processes (such as an on-board telemetry monitor)
- loading and dumping of on-board memories
- control of on-board Mission Time-Line

All telecommands must be appropriately verified by telemetry at acceptance and execution.

Telemetry data will be required in order to verify the execution of all mission operations and will also be required for:

- routine on ground health monitoring of the subsystems and the payload;
- reporting to the ground any anomalous events detected on-board and any actions taken autonomously by the on-board systems;
- performance evaluation on the ground for the purposes of long term trend analysis and feed back into the mission planning cycle.

1.2.2 Contingency Operations

In the event of unforeseen on-board events, actions will be necessary to investigate and correct anomalies utilising the available telemetry and command functions. In addition it may be necessary to modify on-board software in order to compensate for on-board failures or anomalous performance.

Date : 18-Dec-2006 Issue : 2 - revision 0

page 3

1.2.3 Packet Distribution

The following telemetry and telecommand packet categories exist:

- Those generated on-ground and up-linked to the spacecraft
- Those generated by on-board applications and down linked to the ground
- Those generated on-board and routed to other on-board applications (and to the ground if necessary)

1.3 Applicable Documents

- AD-1 Telemetry Space Link Protocol, CCSDS 132.0-B-1 Issue 1 September 2003.
- AD-2 Telecommand Space Link Protocol, CCSDS 232.0-1-1 Issue 1 September 2003.
- AD-3 Telemetry Channel Coding Standard, CCSDS 131.0-B-1, September 2003.
- AD-4 Ranging Standard, PSS-04-104, Vol. I, Issue 2, March 1991.
- AD-5 ECSS Radio Frequency and Modulation Standard, ECSS E-50-05A, 24 January 2003.¹
- AD-6 CCSDS Packet Telemetry, CCSDS 102.0-B-4, November 1995.
- AD-7 Telecommand, Command Operations Procedures, CCSDS 232.1-B-1, Sept 2003.
- AD-8 Telecommand, Part 1 Channel Service, CCSDS 201.0-B-3 June 2001.
- AD-9 Telecommand, Part 2 Data Routing Service, CCSDS 202.0-B-3, June 2001.
- AD-10 Space Packet Protocol, CCSDS 133.0-B-1 Issue 1 September 2003.
- AD-11 File Delivery Protocol, CCSDS 727.0-B-2, Issue 2 October 2002.

Note: It is expected that ECSS-E50-03 and ECSS-E50-04 (pending release) will become applicable early in the development of GAIA.

1.4 Reference Documents

- RD-1 GAIA Operations Interface Requirements Document, GAIA-ESC-RD-00514.
- RD-2 ESA Telecommand Decoder Specification, PSS-04-151.
- RD-3 GAIA SOW GAIA-EST-SOW-00444.
- RD-4 GAIA Transponder Specifications. TBW.
- RD-5 GAIA SGICD Volume2, GAIA-GS-ICD-1002-OPS-OA.
- RD-6 GAIA Radio Frequency Test procedure and Report, TBW.
- RD-7 IEEE Standard, 149, 1979.
- RD-8 GAIA consolidated Report on Mission Analysis. Draft, Issue 0.1. GAIA-MA-RP-0010-TOS/GA.
- RD-9 Telemetry & Telecommand Packet Utilization ECSS E-70-41A.
- RD-10 GAIA Mission Requirement Document, GAIA-EST-RD-00553

¹ Note a new version of the standard, ECSS-E-50-05B, is in the approval process.

Date : 18-Dec-2006 Issue : 2 - revision 0

page 4

2 TELECOMMUNICATION SYSTEM

The telecommunication system supports the functions of tracking, telecommand and telemetry for each phase of the mission.

The spacecraft telecommunication subsystem consists of a redundant set of transponders using X-Band for the uplink, and X-Band for the downlink. Depending on the mission phase, the transponder can be routed via RF switches to different antennas. The telecommunication subsystem provides hot redundancy for the receiving function and cold redundancy for the transmitting function.

The associated ground network consists of a number of stations, which support some or all of the mission phases. A full description of the station utilisation will be found in Section 4 together with the appropriate specification of spacecraft and ground stations.

The satellite telecommunication subsystem is allocated with its dedicated frequency in the X-Band frequency range. The frequency assignments have been agreed with the ESA Frequency Management Office.

2.1 Down Link

2.1.1 Frequencies

A frequency is allocated for GAIA as a Category A (non Deep Space) Mission and its telecommunication subsystem shall support a downlink frequency in the 8450-8500 MHz frequency band (X-Band). The selected down link carrier frequency for GAIA is 8459.0000 MHz (spanning 8454-8464 MHz when 10 Msps transmitted).

The antenna polarisation sense shall be LHC (Left Hand Circular) in accordance with [RD-7].

2.1.2 Telemetry Channel Formats

The telemetry shall follow the Packet Telemetry Standard [AD-1] without Source Packet segmentation as mentioned in [AD-6].

2.1.3 Ranging Signal

The ranging signal is defined in section 2.2.3.

Date : 18-Dec-2006 Issue : 2 - revision 0

page 5

2.1.4 Modulation

The telemetry modulation scheme and the bit rates to be transmitted shall be as follows (See section 2.1.5 for details on bit rates):

Rate	Information rate	Modulation Scheme	Subcarrier
			Frequency
Low-1	62.5 bps	PCM(NRZ-	0.1 to 1000 kHz
		L)/PSK/PM	
Low-2	2 kbps	PCM(NRZ-	0.1 to 1000 kHz
		L)/PSK/PM	
Medium	250 kbps	PCM(SP-L)PM	Not applicable
High	5 Mbps	GMSK	Not applicable

The modulation scheme to be used for high rate transmission to New Norcia (NNO) is GMSK (with BT=0.25) as defined in [AD-5]. GMSK modulation is not compatible with ranging. PCM(SP-L)PM modulation is compatible with ranging. This modulation scheme could be used at the beginning and at the end of the ground station passes in order to perform ranging.

High rate telemetry transmissions have to comply with the emission masks stipulated by the Space Frequency Co-ordination Group (SFCG) in recommendation REC 17-2R1 which are reported in § 6.3 of [AD-5].

The ranging signal in the ranging channel of the transponder directly phase modulates (PM) the downlink carrier. When simultaneous ranging and telemetry is performed, the two signals are added prior to phase modulation of the downlink carrier. Ranging is not possible simultaneously with GMSK modulation. During these phases, Doppler tracking only will be used instead of ranging.

2.1.5 Telemetry Bit Rates

The information rates (fb) and transmitted symbol rates (fs') listed below shall be supported. The information rates refer to the transfer layer with the associated data structure (Transfer Frames). The symbol rates results from the applied concatenated encoding.

Concatenated encoding

fb = information rate [bps]

fs = data rate at convolutional encoder input [bps]

fs'= transmitted symbol rate [sps]

fsc = subcarrier frequency [Hz]

N = subcarrier frequency/transmitted symbol rate ratio

Date : 18-Dec-2006 Issue : 2 - revision 0

page 6

Rate = Selected punctured convolutional code rate (see section 2.1.6 and Appendix C).

FS'	Rate	fs	Fb	fsc	N
143.385625	1/2	71.6928125	62.5	N*fs'	TBD
4588.34	1/2	2294.17	2000	N*fs'	TBD
22941.7	1/2	11470.85	10000	N*fs'	TBD
573542.5	1/2	286771.25	250000	N/A	N/A
9084914	1/2	4542457	3960000	N/A	N/A
	2/3	6056609	5280000	N/A	N/A
	3/4	6813686	5939999	N/A	N/A
	5/6	7570762	6599999	N/A	N/A
	7/8	7949300	6929999	N/A	N/A
	NC	9084914	7919999	N/A	N/A
10000000	1/2	5000000	4358874	N/A	N/A
	2/3	6666667	5811832	N/A	N/A
	3/4	7500000	6538311	N/A	N/A
	5/6	8333333	7264790	N/A	N/A
	7/8	8750000	7628030	N/A	N/A
	NC	10000000	8717748	N/A	N/A
11470850	1/2	5735425	4999999	N/A	N/A
	2/3	7647233	6666665	N/A	N/A
	3/4	8603138	7499999	N/A	N/A
	5/6	9559042	8333332	N/A	N/A
	7/8	10036994	8749998	N/A	N/A
	NC	11470850	9999998	N/A	N/A

Table 2-1: TM Bit Rates for concatenated encoding (note values for high bit rates rounded). Note values in table are TBC and will be updated with exact bit rates implemented on-board once these are known.

For details on the above mentioned bit/symbol rate definition, see Appendix D.

2.1.6 Coding

The baseline coding shall be concatenated encoding (Reed Solomon R-S 255,223 with interleaving depth I = 5, and selectable punctured convolutional code rate 1/2, 2/3, 3/4, 5/6, 7/8 or No Coding (NC) with constraint length k = 7) in accordance with [AD-3].

The transfer frame has a maximum length of 223*I=1115 octets.

For achievable bit and frame error rates, see Appendix D.

Date : 18-Dec-2006 Issue : 2 - revision 0

page 7

2.1.7 Frame Synchronisation

In order to allow a proper frame synchronisation on ground, a synchronisation marker 1ACFFC1D (Hex) shall be inserted at the first bit of the code block of each transfer frame in line with [AD-3].

2.1.8 Bitstream Pseudo Randomiser

An on-board pseudo randomiser shall be implemented. The requirements for the pseudo randomiser are given in [AD-3].

2.2 Up-link (on-Board Reception)

2.2.1 Frequencies

A frequency will be allocated for GAIA as a Category A (non Deep Space) Mission and its telecommunication subsystem shall support an uplink frequency in the 7190-7235 MHz frequency band (X-Band). The selected uplink link carrier frequency for GAIA is 7199.7625 MHz (spanning 7198.2-7201.2 MHz when ranging transmitted).

The ratio for uplink and downlink frequencies for the transponders shall be as follows: $\frac{1}{49}$ fdownlink = $\frac{749}{880}$ (X-/X-Band).

The maximum Rx Doppler rate shall be 1500 Hz/sec (LEOP worst case).

The antenna polarisation sense shall be the LHC (Left Hand Circular) according to [RD-7].

2.2.2 Telecommand Format Standard

The telecommand format shall follow the Packet Telecommand Standard, [AD-6].

2.2.3 Ranging Signal

For the ESA ground stations the ranging signal is in accordance with the Ranging Standard [AD-4].

The selected tone frequency shall be 1 MHz from the carrier, \pm 100kHz to ensure adequate offset from SP-L null (see [AD-5]).

2.2.4 Modulation

The telecommand modulation scheme shall be PCM(NRZ-L)/PSK/PM on a sinusoidal sub-carrier. The selected subcarrier frequency is 16 kHz.

Date : 18-Dec-2006
Issue : 2 - revision 0

page

The ranging signal directly phase modulates (PM) the uplink carrier. For simultaneous ranging and telecommand, the two signals are added prior phase modulation of the uplink carrier.

2.2.5 Telecommand Bit Rates

The following telecommand bit rates shall be used. These bit rates refer to the digital bit stream at the physical layer, consisting of CLTUs and Idle/Acquisition sequences.

- 125 bps,
- 4 kbps.

2.2.6 Uplink Sweep

The uplink sweep shall be implemented according to the following limitations:

- The range shall cover the maximum Doppler shift of +/- 220 kHz (LEOP worst case)
- The rate shall be 3500 Hz/s (TBC)
- The telecommand sweep shall be possible to complete within 2-3 minutes (TBC)
- The maximum sweep discontinuity shall be 1 Hz

2.2.7 Telecommand Specific Requirements

The following requirements have been based on the telecommand rejections observed in orbit with previous missions, namely related to:

- Telecommand chain selection with multiple channels
- Loss of bit synchronisation with telecommands containing long series of "zeroes"

2.2.7.1 Telecommand Chain Selection

When the on-board telecommand chain features multiple input channels, the selection process of the active input channel shall insure that the probability of maximum length frame rejection (or abandonment of CLTU) is less than 10⁻³. This probability of rejections is defined:

- In worst case conditions (spacecraft attitude, distance from ground station);
- When the Bit Error Rate at any input of the telecommand decoder is less than 10⁻⁵;
- When the same valid CLTU is arriving quasi-simultaneously at several inputs of the telecommand decoder, with different signal to noise ratios;
- When the A/D commanding service is enabled.

2.2.7.2 Loss of Bit Synchronization

Telecommands with a minimum bit transition density of 3% at code block level (coding layer) and uplinked at the GAIA bit rates of section 2.2.5 shall be decoded and

page

distributed on-board with a rejection rate of less than 10⁻³, in worst case conditions (spacecraft attitude, distance from ground station, etc.)

Date : 18-Dec-2006 Issue : 2 - revision 0

page 10

3 OPERATIONAL UTILISATION

3.1 Operational Modes

3.1.1 Modulation Modes

The telecommunication subsystem shall support the following modes for the up-link:

- Carrier only (unmodulated carrier)
- Telecommand
- Ranging
- Simultaneous telecommand and ranging

The following operational modes shall be supported for the downlink:

- Carrier only (unmodulated carrier)
- Telemetry
- Ranging
- Simultaneous telemetry and ranging

3.1.2 Transponder Modes

It shall be possible to command the transponder to operate in either coherent or non-coherent mode as described below.

In the coherent mode, the transmitter shall operate coherent to the receiver as soon as the receiver is locked (see section 2.2.1 for ratio between up- and downlink frequency). This is referred to as coherent state. If the receiver loses lock, the transmitter shall go to non-coherent state and return to the coherent state, after the receiver locks.

In the non-coherent mode, the transmitter shall remain in non-coherent state irrespective of the receiver lock status, until switched to coherent mode.

3.1.3 Antenna Switching

Requirements for the on-board design are included in the GAIA Mission Requirements Document [RD-10].

Date : 18-Dec-2006 Issue : 2 - revision 0

page 11

3.1.4 Command Operations Procedure (COP-1)

The Command Operations Procedure COP-1 [AD-7] shall be supported. Within COP-1, the packet telecommand services AD (Sequence Controlled Service) and BD (Expedited Service) shall be supported in parallel.

Date : 18-Dec-2006 Issue : 2 - revision 0

page 12

4 PERFORMANCE

4.1 Spacecraft

4.1.1 Transponder Requirements

The requirements to be satisfied by the transponder are comprised in the Radio Frequency and Modulation Standard [AD-5] and the Ranging Standard [AD-4]. The detailed requirements to be applied to the transponder shall be agreed with the ESA project office.

4.2 RF Suitcase

RF suitcase requirements are contained in the GAIA Statement Of Work [RD 3].

4.3 Ground Stations

The performance characteristics together with the foreseen equipment configurations for the ESA ground stations are depicted in Table 4-1 to Table 4-4.

Date : 18-Dec-2006 Issue : 2 - revision 0

page 13

4.3.1 Kourou 15m, French Guyana

The Kourou ground station parameters are summarised in Table 4-1.

Kourou 15m, French Guyana					
Geographical Co-ordinates	Longitude [deg]		-52.80		
	Latitude [deg]		5.25		
Uplink	Antenna Polarisation		LHC or RHC	2	
	Antenna Gain [dB]		56.7 _{X-Band}		
Downlink	Antenna Plarisation		any		
	Antenna Gain [dB]		59.3 _{X-Band}		
Timing System Synchronisation t	o UTC [microsec]	21026	5.0		
	A. 1 . 1 *[1D]	NOM	ADV	FAV	
	Atmospheric Loss * [dB]	0.00	1.20	0.80	
	Ionospheric Loss [dB]	0.00	0.00	0.00	
	link				
EIRP (300-W HPA)	X-Band [dBW]	82.0	81.0	82.8	
	Pointing Loss [dB]	0.05	0.12	0.00	
	Axial Ratio [dB]	0.90	1.25	0.00	
Down		27.5	27.0	20.0	
Effective G/T at 10° elevation	X-Band [dB/K]	37.5	37.0	38.0	
Pointing Loss	X-Band [dB] [dB]	0.10	0.40 1.25	0.00	
Axial ratio					
Carrier Lop Bandwidth 2B _L continuous 0.3-3000 [Hz]		NOM	+20%	-20%	
TM demodulation technological le	osses [dB] Tx Rate >2730 [sps]	0.90	1.0	0.80	
Ranging Tone Loop Bandwidth [1	rad/sec]		10 ⁻³ to 1.5		
Required Ranging Loop S/N [dB]	-	19.00	19.00	19.00	
Required C/N in 2B _L for no data of	legradation [dB]	Res	sidual carrier:	: 17	
Required C/N in 2B _L for no data of	degradation [dB]	Supp	ressed carrie	er: 25	
Required TM E _b /N ₀	[dB]	AD[3]			
Station Equipment	Low Noise Amplifier	80-K FET _{X-Band}			
	Receiver / Demod / Tracking	IFMS			
	Telemetry TMTCS				
	Decoders	TCDS			
Telecommand		TMTCS			
	Data Communications	TCP-IP			
	Timing System	H-Maser +	H-Maser + GPS		
	Station Control	STC2, FEC/NT, MCM4			

^{*95%} probability at 10° elevation, for 99% probability the losses are defined in Appendix C.

Table 4-1. Kourou Ground Station Parameters.

^{**}X-band downlink upgrade to LNAs planned for improved performance. Values to be updated once measurements available.

Date : 18-Dec-2006 : 2 - revision 0 Issue

14 page

4.3.2 Maspalomas 15m, Spain

The Maspalomas ground station parameters are summarised in Table 4-2.

Maspalomas 15m, Spain				
Geographical Co-ordinates	Longitude [deg]		15.63	
Geographical Co-ordinates	Latitude [deg]		27.78	
Uplink	Antenna Polarisation	†	LHC or RHC	7
Op	Antenna Gain [dB]		56.7 _{X-Band}	
Downlink	Antenna Plarisation		any	
	Antenna Gain [dB]		59.5 _{X-Band}	
Timing System Synchronisation	to UTC [microsec]		5.0	
		NOM	ADV	FAV
	Atmospheric Loss * [dB]	0.60	0.50	0.70
	Ionospheric Loss [dB]	0.00	0.00	0.00
Up	link**			
EIRP (300-W HPA)	X-Band [dBW]	81.5	81.5	81.5
	Pointing Loss [dB]	0.28	1.14	0.00
	Axial Ratio [dB]	0.90	1.25	0.00
	vnlink			
Effective G/T at 10° elevation	X-Band [dB/K]	37.5	37.0	37.5
Pointing Loss	X-Band [dB]	0.1	0.4	0.0
Axial ratio	[dB]	0.90	1.25	0.0
Carrier Lop Bandwidth 2B _L cont	NOM	+20%	-20%	
TM demodulation technological	0.90	1.0	0.80	
Ranging Tone Loop Bandwidth [[rad/sec]		10 ⁻³ to 1.5	
Required Ranging Loop S/N [dB	3	19.00	19.00	19.00
Required C/N in 2B _L for no data	degradation [dB]	Re	sidual carrier	: 17
Required C/N in $2B_L$ for no data	degradation [dB]	Sup	pressed carrie	er: 25
Required TM E _b /N ₀	[dB]		AD[3]	
Station Equipment	Low Noise Amplifier	80-K FET _{X-Band}		
	Receiver / Demod / Tracking	IFMS		
	Telemetry	TMTCS		
	Decoders	TCDS		
Telecommand TMTCS				
	Data Communications	TCP-IP		
	Timing System	Cesium		
	Station Control	STC2, FEC	C/NT, MCM4	
			-	

Table 4-2. Maspalomas Ground Station Parameters

^{*95%} probability at 10° elevation, for 99% probability the losses are defined in Appendix C.
** The station is to be upgraded for X-Band uplink. The values have to be confirmed after completion of upgrade and test

Date : 18-Dec-2006 : 2 - revision 0 Issue

15 page

4.3.3 New Norcia 35m, Australia

The New Norcia ground station parameters are summarised in Table 4-3:

	_			
New Norcia 35m, Australia				
Geographical Co-ordinates	Longitude [deg]		116.19	
	Latitude [deg]		-31.05	
Uplink	Antenna Polarisation	I	LHC or RHC	
	Antenna Gain [dB]		65.5 _{X-Band}	
Downlink	Antenna Plarisation		any	
	Antenna Gain [dB]		67.8 _{X-Band}	
Timing System Synchronisation to	UTC [microsec]	37037	5.0	
	* * * * * * * * * * * * * * * * * * * *	NOM	ADV	FAV
	Atmospheric Loss * [dB]	0.50	0.60	0.40
	Ionospheric Loss [dB]	0.00	0.00	0.00
Upli				
EIRP (2-kW HPA at 10°	X-Band [dBW]	97.0	96.0	97.0
elevation)	W.B. J.F.IDWI	105.0	1060	107.0
EIRP (20-kW HPA at 10°	X-Band [dBW]	107.0	106.0	107.0
elevation) In emergency or for Deep Space				
missions				
1113310113	Pointing Loss [dB]	0.80	0.80	0.00
	Axial Ratio [dB]	1.00	1.50	0.50
Down		1.00	1.00	0.20
Effective G/T at 10° elevation	X-Band [dB/K]	49.8	49.3	50.0
Pointing Loss (inc in G/T value)	X-Band [dB]	0.0	0.0	0.0
Axial ratio	[dB]	1.0	1.5	0.5
Carrier Lop Bandwidth 2B _L contin	uous 0.3-3000 [Hz]	NOM	+20%	-20%
TM demodulation technological lo		0.90	1.0	0.80
Ranging Tone Loop Bandwidth [m			10 to 1880	•
Required Ranging Loop S/N [dB]		19.00	19.00	19.00
Required C/N in 2B _L for no data de	egradation [dB] **	Res	idual carrier:	17
Required C/N in $2B_L$ for no data de	egradation [dB] **	Supp	ressed carrie	r: 25
Required TM E _b /N ₀	[dB]	AD[3]		
Station Equipment	Low Noise Amplifier	20-K HEM	Γ	
	Receiver / Demod / Tracking	IFMS		
	Telemetry	TMTCS		
	Decoders	TCDS		
	Telecommand	TMTCS		
	Data Communications	TCP-IP		
	Timing System	H-Maser +	GPS	
	Station Control	STC2, FEC	NT, MCM4	
* 0.50/ 1 1 111	0.000/ 1.1111. 1.1	1 0 1 1	11 0	

^{*95%} probability at 10° elevation, for 99% probability the losses are defined in Appendix C. ** assuming concatenated coding

Table 4-3. New Norcia Ground Station Parameters

page 16

4.3.4 Cebreros 35 M, Spain

The Cebreros ground station parameters are summarised in Table 4-4.

Coographical Co-ordinates	Cebreros 35m, Spain				
Latitude [deg]	•	Longitude [deg]		-4 36	
Uplink	Geographical Co-ordinates	0 1 01			
Downlink	TT 1' 1		_		
Downlink Antenna Gain [dB] any Timing System Synchronisation to UTC [microsec] 5.0 Timing System Synchronisation to UTC [microsec] NOM ADV *** NOM*** ADV**** PAV*******************************	Uplink		I		
Antenna Gain [dB] 68.0 x-Band		<u>L</u>			
Timing System Synchronisation to UTC [microsec] 5.0 NOM ADV FAV Atmospheric Loss * [dB] 0.50 0.60 0.40 Ionospheric Loss [dB] 0.00 0.00 0.00 Uplink 91.4 91.0 91.4 EIRP (400-W SSA at 10° V-Band [dBW] 91.4 91.0 91.4 elevation) 98.4 98.00 98.4 elevation) 8 98.00 98.4 EIRP (20-kW HPA at 10° V-Band [dBW] 108.4 108.0 108.4 elevation) 10 mergency or for Deep Space 108.4 108.0 108.4 elevations Pointing Loss [dB] 0.7 0.7 0.7 Axial Ratio [dB] 1.00 1.50 0.50 Downlink 50.80 50.3 50.8 Effective G/T at 10° elevation X-Band [dB/K] 50.80 50.3 50.8 Pointing Loss (inc in G/T values) X-Band [dB] 0.0 0.0 0.0 Axial ratio [dB] 1.0 1.5 0.50	Downlink				
NOM		E 3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timing System Synchronisation to	UTC [microsec]	21026		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		*5103			
$ \begin{array}{ c c c c c } \hline EIRP (400-W SSA at 10^{\circ} & X-Band [dBW] & 91.4 & 91.0 & 91.4 \\ elevation) & & & & & & & & & & & & & & & \\ EIRP (2-kW HPA at 10^{\circ} & X-Band [dBW] & 98.4 & 98.00 & 98.4 \\ elevation) & & & & & & & & & & & & \\ EIRP (20-kW HPA at 10^{\circ} & X-Band [dBW] & 108.4 & 108.0 & 108.4 \\ elevation) & & & & & & & & & & \\ EIRP (20-kW HPA at 10^{\circ} & X-Band [dBW] & 108.4 & 108.0 & 108.4 \\ elevation) & & & & & & & & & \\ In emergency or for Deep Space & & & & & & & \\ missions & & & & & & & & \\ & & & & & & & & & & $		1 1		1	†
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ionospheric Loss [dB]	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ık			
EIRP (2-kW HPA at 10° elevation) X-Band [dBW] 98.4 98.00 98.4 elevation) EIRP (20-kW HPA at 10° elevation) X-Band [dBW] 108.4 108.0 108.4 elevation) In emergency or for Deep Space missions Pointing Loss [dB] 0.7 0.7 0.7 Axial Ratio [dB] 1.00 1.50 0.50 Downlink 50.80 50.3 50.8 Pointing Loss (inc in G/T values) X-Band [dB] 0.0 0.0 0.0 Axial ratio [dB] 1.0 1.5 0.50 Carrier Lop Bandwidth 2B _L continuous 0.3-3000 [Hz] NOM +20% -20% TM demodulation technological losses [dB] for Tx rate >2730 [sps] 0.90 1.0 0.80 Ranging Tone Loop Bandwidth [mHz] 19.00 19.00 19.00 Required Ranging Loop S/N [dB] 19.00 19.00 19.00 Required C/N in 2B _L for no data degradation [dB] ** Residual carrier: 17 Required C/N in 2B _L for no data degradation [dB] ** Suppressed carrier: 25	EIRP (400-W SSA at 10°	X-Band [dBW]	91.4	91.0	91.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X-Band [dBW]	98.4	98.00	98.4
elevation) In emergency or for Deep Space missions $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
In emergency or for Deep Space missions Pointing Loss [dB] 0.7 0.7 0.7 0.50 Axial Ratio [dB] 1.00 1.50 0.50 Downlink Effective G/T at 10° elevation X-Band [dB/K] 50.80 50.3 50.8 Pointing Loss (inc in G/T values) X-Band [dB] 0.0 0.0 0.0 0.0 Axial ratio [dB] 1.0 1.5 0.50 Carrier Lop Bandwidth $2B_L$ continuous 0.3-3000 [Hz] NOM +20% -20% TM demodulation technological losses [dB] for Tx rate >2730 [sps] 0.90 1.0 0.80 Ranging Tone Loop Bandwidth [mHz] Required Ranging Loop S/N [dB] 19.00 19.00 19.00 Required C/N in $2B_L$ for no data degradation [dB] ** Required C/N in $2B_L$ for no data degradation [dB] ** Required C/N in $2B_L$ for no data degradation [dB] ** Suppressed carrier: 25		X-Band [dBW]	108.4	108.0	108.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	missions				
$ \begin{array}{ c c c c c c } \hline \textbf{Downlink} & & & & & & \\ \hline Effective G/T at 10^{\circ} \ elevation & X-Band [dB/K] & 50.80 & 50.3 & 50.8 \\ \hline Pointing Loss (inc in G/T values) & X-Band [dB] & 0.0 & 0.0 & 0.0 \\ \hline Axial ratio & [dB] & 1.0 & 1.5 & 0.50 \\ \hline Carrier Lop Bandwidth 2B_L continuous 0.3-3000 [Hz] & NOM & +20\% & -20\% TM demodulation technological losses [dB] for Tx rate >2730 [sps] & 0.90 & 1.0 & 0.80 \\ \hline Ranging Tone Loop Bandwidth [mHz] & & & & & & & \\ \hline Required Ranging Loop S/N [dB] & 19.00 & 19.00 & 19.00 \\ \hline Required C/N in 2B_L for no data degradation [dB] ** & Residual carrier: 17 \\ \hline Required C/N in 2B_L for no data degradation [dB] ** & Suppressed carrier: 25$		·			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.00	1.50	0.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pointing Loss (inc in G/T values)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Axial ratio	[dB]	1.0	1.5	0.50
Ranging Tone Loop Bandwidth [mHz]	Carrier Lop Bandwidth 2B _L continu	ous 0.3-3000 [Hz]	NOM	+20%	-20%
Required Ranging Loop S/N [dB] 19.00 19.00 19.00 Required C/N in $2B_L$ for no data degradation [dB] ** Residual carrier: 17 Required C/N in $2B_L$ for no data degradation [dB] ** Suppressed carrier: 25	TM demodulation technological los	ses [dB] for Tx rate >2730 [sps]	0.90	1.0	0.80
Required Ranging Loop S/N [dB] 19.00 19.00 19.00 Required C/N in $2B_L$ for no data degradation [dB] **Residual carrier: 17 Required C/N in $2B_L$ for no data degradation [dB] **Suppressed carrier: 25	Ranging Tone Loop Bandwidth [ml	Hz]		10 to 1880	
Required C/N in $2B_L$ for no data degradation [dB] ** Required C/N in $2B_L$ for no data degradation [dB] ** Suppressed carrier: 25		-	19.00	19.00	19.00
Required C/N in 2B _L for no data degradation [dB] ** Suppressed carrier: 25		gradation [dB] **			
11D[J]	Required TM E _b /N ₀	[dB]		AD[3]	

Date : 18-Dec-2006 Issue : 2 - revision 0

page 17

Station Equipment	Low Noise Amplifier	20-K HEMT
	Receiver / Demod / Tracking	IFMS
	Telemetry	TMTCS
	Decoders	TCDS
	Telecommand	TMTCS
	Data Communications	TCP-IP
	Timing System	H-Maser + GPS
	Station Control	STC2, FEC/NT, MCM4

^{*95%} probability at 10° elevation, for 99% probability the losses are defined in Appendix C.

Table 4-4. Cebreros Ground Station Parameters

4.4 Required Links

4.4.1 Required Link Performance

The links budgets shall be computed as defined in [AD-5], that means including nominal, adverse, favourable, mean - 3 sigma and worst case RSS (Root Sum Square). The minimum values of those margins shall be:

nominal: ≥ 3 dB
 RSS worst case: ≥ 0 dB
 mean - 3 sigma: ≥ 0 dB

The link budget margins shall be computed under the following assumptions:

• Telemetry:

Telemetry bit error rate associated with 99.999% of transfer frame delivery for concatenated coding (probability of frame loss = 10^{-5}); the required E_b/N_0 for obtaining the above specified probability of frame loss is 2.7 dB for concatenated encoding compliant with [AD-3].

• Telecommand:

The requirements of [AD-2] are applicable

• Ranging:

See Vol1 [AD-4].

4.4.2 Ground Station Network

The ground station network to support the required telemetry, telecommand and tracking links shall be as shown in Table 4-5:

^{**} assuming concatenated coding

Date : 18-Dec-2006 Issue : 2 - revision 0

page 18

Station	LEOP	L ₂ Trans- fer	Commissioning	Science
Kourou 15m	Yes	Yes	No	No (only emergency TT&C support including Medium bit rate downlink)
Maspalomas 15m	Yes	No	No	No
New Norcia 35m	Yes	Yes	Yes	Yes
Cebreros 35 m	Yes	Yes	Yes	Yes

Table 4-5. Ground Station Network Utilisation.

4.4.3 Link Budget Formats and Definitions

Any link budget calculations shall be presented in a standard format as specified in Appendix B, and shall further include summary tables and graphical presentations for both uplink and downlink.

The following link budgets for maximum up/down link distances shall be verified for both ranging on (with exception of high rate telemetry) and off for the following information rates:

The link budgets should follow the format shown in Appendix B considering a minimum elevation of 5° for downlink. Atmospheric attenuation profiles are provided in Appendix C.

Uplink	X-l	oand					
	L	GA					
Kourou 15m	125	5 bps					
Maspalomas 15 m	125	125 bps					
Cebreros 35m	4 k	kbps					
New Norcia 35 m	4 k	4 kbps					
Downlink	X-I	Band					
	LGA	MGA					
Kourou 15m	62.5 bps	250 kbps					
Maspalomas 15 m	62.5 bps	250 kbps					
Cebreros 35m	2 kbps	5 Mbps					
New Norcia 35 m	2 kbps	5 Mbps					

page A-1

Appendix A Acronyms and Glossary of terms

Acronym	Description
AD	Sequence-Controlled Service
AD	Applicable Document
BD	Expedited Service
BT	Bandwidth Symbol Duration
CCSDS	Consultative Committee for Space Data Systems
CLCW	Command Link Control Word
CLTU	Command Link Transfer Unit
C/N	Carrier to Noise ratio
COP1	Command Operation Procedure 1
CPDU	Command Pulse Distribution Unit
E_b/N_0	Energy per bit/ Noise Power density
EIRP	Equivalent isotropic Radiated Power
FAV	Favourable
FEC 4	Front End Controler Ggeneration 4
FER	Frame Error Rate
FET	Field Effect Transistor
GMSK	Gaussian Minimum Shift Keying
GPS	Global Positioning System
HEMT	High Electron Mobility Transistor
HK	House Keeping
HPA	High Power Amplifier
ICD	Interface Control Document
IFMS	Intermediate Frequency and Modem System
ISS	Internet Service System
LGA	Low Gain Antenna
LHC	Left Hand Circular
MCM3	Monitor and Control Module Generation 3
MGA	Medium Gain Antenna
MOC	Mission Operations Centre
N/A	Not Applicable
NOM	Nominal
NRZ-L	Non-Return to Zero-Level
OBCP	On Board Control Procedure
PCM	Pulse Code Modulation
PM	Phase Modulation
PSS	Procedures, Specifications and Standards
PSK	Phase Shift Keying
RF	Radio Frequency
RHC	Right Hand Circular

Date : 18-Dec-2006 Issue : 2 - revision 0

Acronym	Description	
S/N	Signal to Noise	
SP-L	Split Phase-Level	
STC2	Station Computer Generation 2	
TBC	To Be Confirmed	
TBD	To Be Defined	
TBW	To Be Written	
TC	Telecommand	
TCDS	Telemetry Concatenated Decoding System	
TCE	Telecommand Encoder	
TM	Telemetry	
TMP4	Telemetry Processor Generation 4.	

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-3

Appendix B Link Budget Format

<u>Link budgets are given for information only</u>, the examples are based on assumptions below.

The assumed up-link parameters for GAIA (to be corrected at time of PDR and throughout Phase C/D as updated values become available):

Parameter		NOM	ADV	FAV
Antenna Gain [dBi]	LGA	-3 dBi	-3 dBi	-3 dBi
Polarisation		RHC	RHC	RHC
Axial ratio [dB]	LGA	<4 dB	<4 dB	<4 dB
Pointing losses	LGA	NA	NA	NA
Circuit losses [dB]	LGA	TBC	TBC	TBC
Antenna Noise Temperature [°K]	LGA	100 TBC	100 TBC	100 TBC
Receiver Noise figure [dB]		2 TBC	2 TBC	2 TBC
Ranging on-board Channel bandwa	idth (double sided) [MHz]	1.4 TBC	1.4 TBC	1.4 TBC
Loop bandwidth at threshold (doub	ole sided) [Hz]	100 TBC	100 TBC	100 TBC
Input signal range [dBm]		-141 to -60	-141 to -60	-141 to -60
Receiver telecommand threshold a	t 300°K [dBm]	-135 TBC	-135 TBC	-135 TBC
Implementation losses [dB]	Carrier	1 dB TBC	1 dB TBC	1 dB TBC
	Telecommand	1.3 dB	1.3 dB	1.3 dB
		TBC	TBC	TBC
	Ranging	1.3 dB	1.3 dB	1.3 dB
		TBC	TBC	TBC
Modulation index [rad]	Telecommand	1	+/- 5%	+/- 5%
	Ranging	>0.65	+/- 5%	+/- 5%

The down link parameters for GAIA:

Parameter		NOM	ADV	FAV
TT&C S/S output pover MGA (*)		17.0	17.0	17.0
[dBW]				
Circuit losses [dB]	LGA	TBC	TBC	TBC
	MGA	TBC	TBC	TBC
Antenna Gain [dBi]	LGA	-3 dBi TBC	-3 dBi TBC	-3 dBi TBC
	MGA	17.6 dBi TBC	17.6 dBi	18.4 dBi TBC
			TBC	
Pointing losses [dB]	LGA	TBD	TBD	TBD
	MGA	TBD	TBD	TBD
Polarisation		RHC	RHC	RHC
Axial ratio [dB]	LGA	<4dB	< 4dB	< 4dB
	MGA	3 dB	3 dB	2 dB
Modulation index [rad] (**)	Telemetry	1.2 TBC	+/- 10%	+/- 10%
	Ranging	0.7 TBC	+/- 10%	+/- 10%

^(**) The Telemetry Modulation Index is not applicable for high rate telemetry.

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-4

LINK ID : F35GAIA PAGE 1/4

DATE : 17/06/200418:12

ORBIT : *Lissajous L2*STATION : *Ferth 35-m*

ALTITUDE (1000km): 1680 ELEVATION (deg): 5

TELECOMMAND BIT RATE (kb/sec) : 2.00 RANGING : No TELEMETRY BIT RATE (kb/sec) : 5000.00

RS (1) or CONCAT. CODING (2) : 2

BASIC UPLINK (1/2)

	NOM	ADV	FAV	MEAN	VAR	PDF
G/S TX POWERdBW	33.00	33.00	33.00	33.00	0.00	TRI
CIRCUIT LOSSdB	0.20	1.10	0.00	0.55	0.10	UNI
TX ANT GAINdBi	64.30	64.30	64.30	64.30	0.00	UNI
G/S ANT TX AXIAL RATdB	0.50	1.00	0.00			
POINTING LOSSdB	0.10	0.20	0.00	0.10	0.00	UNI
EIRP G/SdBW	97.00	96.00	97.30	96.65	0.10	
FREQUENCY	7.24	7.24	7.24	7.24		
SLANT RANGE1000*km	1686	1686	1686	1686		
PATH LOSSdB	234.17	234.17	234.17	234.17		
ATMOSPHERIC LOSSdB	0.50	0.60	0.40	0.50	0.00	GAU
IONOSPHERIC LOSSdB	0.00	0.00	0.00	0.00	0.00	GAU
COPOLAR ANT-GAINS (Y=1/N=0)?	а					
POLARISATION MISMATCH.dB	0.17	0.34	0.06	0.20	0.01	UNI
TOTAL PROPAG. LOSSdB	234.84	235.11	234.62	234.87	0.01	
POWFLUX at S/C.dBm/m^2	-68.53	-69.53	-68.23	-68.88		
RX ANT GAINdBi	-3.00	-3.00	-2.80	-2.93	0.00	TRI
POINTING LOSS (*)dB	0.00	0.00	0.00	0.00	0.00	TRI
S/C ANT RX AXIAL RATdB	3.00	4.00	2.00			
ANTENNA NOISE TEMPK	100.00	100.00	100.00			
ANTENNA/FEED VSWR:1	1.10	1.20	1.00			
VSWR LOSSdB	0.01	0.04	0.00	0.02	0.00	TRI
CABLE PHYSICAL TEMPK	290.00	330.00	240.00			
CABLE LOSSdB	1.10	1.20	1.00	1.10	0.00	UNI
CIRCUITS TEMPERATUREK	290.00	330.00	240.00			
RFDU CIRCUIT LOSSdB	1.10	1.40	1.00	1.20	0.01	UNI
TOTAL CIRCUIT & CABLE LOSSdB	2.21	2.64	2.00			
DIPL. CIRCUIT LOSSdB	0.00	0.00	0.00	0.00	0.00	UNI
RECEIVER NOISE FIGURE.dB	2.00	2.00	1.80			
REF SYSTEM TEMP (**).K	459.62	459.62	438.93			
RX SYSTEM TEMP (***)K		374.63	300.60			
RX SYSTEM TEMP (***)dBK		25.74	24.78	25.26	0.03	GAU
S/C RX G/TdB/K	-30.59	-31.37	-29.58			
RX POWER (***)dBm	-113.05	-114.75	-112.12	-113.47	0.13	
THEOR CAR THRSH(**)dBm	-136.98					
CAR ACQ THRSH (**).dBm	-139.00	-139.00	-139.00			
THEOR TC THRSH(**).dBm	-123.00					
TC RX THRSH (**).dBm	-135.00	-135.00	-135.00			
REQ RX POWER (***).dBm	-135.00	-135.00	-135.00	-135.00		

RX POWER MARGINdB	21.95	20.25	22.88	21.53	0.13
MEAN-3*SIGMAdB	20.45				
MARGIN - w.c. RSSdB	20.97				

RX S/No.....dBHz 60.17 58.12 61.70 59.88 0.16

^{*)} POINTING LOSS may be included in RX ANTENNA GAIN.

^{**)} Reference at Diplexer/RFDU Interface, 290 K input noise temperature.

^{***)} Reference at Diplexer/RFDU Interface.

Date : 18-Dec-2006 : 2 - revision 0 Issue

A-5 page

LINK ID : P35GAIA PAGE 2/4

DATE : 17/06/200418:12 ORBIT : Lissajous L2

ALTITUDE (1000km): 1680 STATION : Perth 35-m ELEVATION (deg):

TELECOMMAND BIT RATE (kb/sec) : RANGING 2.00 TELEMETRY BIT RATE (kb/sec) : 5000.00 with CONCAT. CODING: Yes

UPLINK (2/2)

	NOM	ADV	FAV	MEAN	VAR	PDF
RX S/NodBHz	60.17	58.12	61.70	59.88	0.16	
MODULATION INDICES (*)			_			
TELECOMMANDrad pk	1.00	1.05	0.95	(sine	∋)	
RANGING (RNG)rad pk	0.65	0.68	0.62			
RNG, sine(1) or sqre(2):	1					
CARRIER RECOVERY						
CARRIER SUPPRESSIONdB	3.27	3.63	2.93	3.27	0.02	TRI
BPL (1), non-coh AGC (2)						
or coherent AGC (3) ?	3					
AGC INPUT BNDWDTHkHz	7.95	8.75	7.16			
PLL-BDW 2*Blo (**)Hz	100.00	120.00	80.00			
THRSHD C/N in 2*BlodB	15.00	(commo	n Definit	ion)		
PLL DAMPING (**)	0.99	1.09	0.89			
Effect PLL DAMPING	0.99	1.09	0.89			
Effect PLL-BDW 2*B1Hz	100.00	120.00	80.00			
Max ACQ SWEEP RATE.kHz/s	0.50	0.36	0.64	0.50		
Effect PLL-BDW 2*B1.dBHz	20.00	20.79	19.03	19.94	0.13	TRI
BP-LIMT SYSTEM LOSSdB	0.00	0.00	0.00	0.00	0.00	TRI
IMPLEMENTATION LOSSdB	1.00	1.00	1.00	1.00	0.00	TRI
REQ C/N in PLL-BDWdB	10.00	10.00	10.00	10.00		
CARRIER MARGINdB	25.90	22.70	28.73	25.66	0.31	
MEAN-3*SIGMAdB	24.00					

CARRIER MARGINdB	25.90	22.70	28.73	25.66	0.31
MEAN-3*SIGMAdB	24.00				
MARGIN - w.c. RSSdB	24.54				

TELECONNAND RECOVERY

ILLECOMMEND RECOVERI						
MODULATION LOSSdB	5.06	5.50	4.66	5.07	0.03	TRI
IMPLMENT LOSS (***)dB	1.30	1.30	1.30	1.30	0.00	TRI
BIT RATEkb/s	2.000	2.000	2.000			
BIT RATEdBHz	33.01	33.01	33.01	33.01		
REQ Eb/No (****)dB	9.60	9.60	9.60	9.60		

TELECOMMAND MARGINdB	11.19	8.71	13.13	10.89	0.19
MEAN-3*SIGMAdB	9.60				
MARGIN - w.c. RSSdB	10.07				

TRANSPD RANGING-CHANNEL
TC in RNG-Vdbd ? Y=1/N=0
TONE MODILIATION LOSS AB

10.20	8.92
1540.00	1260.00
61.88	61.00
1.30	1.30
-15.26	-9.53
-5.27	-10.56
	1540.00 61.88 1.30 -15.26

- *) ADV and FAV Cases refer HERE to the Carrier Recovery ! Variation of the Preset Indices is +/- 5 % .
- **) Reference at Carrier Acquisition Threshold.
- ***) Demod Loss until TC Video Output; TC Decoder Loss not included.
- ****) Includes TC Decoder Implementation Losses.

Date : 18-Dec-2006 : 2 - revision 0 Issue

A-6 page

LINK ID : P35GAIA PAGE 3/4

DATE : 17/06/200418:12 ORBIT : Lissajous L2 ALTITUDE (1000km): 1680 STATION : Perth 35-m ELEVATION (deg): 5

TELECOMMAND BIT RATE (kb/sec): 2.00 RANGING: No TELEMETRY BIT RATE (kb/sec): 5000.00 with CONCAT. CODING: Yes

BASIC DOWNLINK (1/2)

	NOM	ADV	FAV	MEAN	VAR	PDF
S/C TX POWERdBW	17.00	17.00	17.00	17.00	0.00	TRI
DIPL. CIRCUIT LOSSdB	0.00	0.00	0.00			
RFDU CIRCUIT LOSSdB	0.30	0.30	0.30			
CABLE LOSSdB	0.26	0.30	0.26			
VSWR, overall1	1.20	1.20	1.15			
VSWR LOSSESdB	0.04	0.04	0.02			
TOTAL LOSSdB	0.60	0.64	0.58	0.61	0.00	UNI
S/C TX ANT GAINdBi	17.60	16.80	18.40	17.60	0.11	TRI
S/C ANT TX AXIAL RATdB	1.50	1.50	1.50			
POINTING LOSS (*)dB	0.00	0.00	0.00	0.00	0.00	TRI
EIRP S/CdBW	34.00	33.16	34.82	33.99	0.11	
FREQUENCY	8.50	8.50	8.50	8.50		
SLANT RANGE1000*km	1686	1686	1686	1686		
PATH LOSSdB	235.57	235.57	235.57	235.57		
ATMOSPHERIC LOSSdB	0.50	0.60	0.40	0.50	0.00	GAU
IONOSPHERIC LOSSdB	0.00	0.00	0.00	0.00	0.00	GAU
COPOLAR ANT-GAINS(Y=1/N=0)?	a					
POLARISATION MISMATCH.dB	0.06	0.09	0.03	0.06	0.00	UNI
TOTAL PROPAG. LOSSdB	236.12	236.26	236.00	236.13	0.00	
FLUX at G/SdBm/m^2	-131.52	-132.36	-130.71	-131.54	0.11	
POWER FLUX DENSdBW/m^2	-164.99	-163.46	-166.66	(in 4	kHz)	
MAXIM FLUX DENSdBW/m^2	-150.00	-150.00	-150.00	(S- or	X-Bnd)	

FLUX MARGINdB	14.99	13.46	16.66			
G/S RX ANT GAINdBi	68.00	68.00	68.00	68.00	0.00	UNI
POINTING LOSSdB	0.30	0.40	0.00	0.20	0.01	UNI
G/S ANT RX AXIAL RATdB	0.50	1.00	0.00			
SYSTEM NOISE TEMPdBK	17.90	18.40	17.90	18.15	0.01	GAU
RX G/TdB/K	50.10	49.60	50.10	49.85	0.01	

RX S/NodBHz	76.28	74.71	77.52	76.11	0.13
-------------	-------	-------	-------	-------	------

S/N in RANGING BANDWIDTH			
S(Tone)/N in VideobddB	-12.13	-15.26	-9.53
S(TC)/N in RG-Videobd.dB	-7.66	-5.27	-10.56

MODULATION INDICES (**)			
TELEMETRY (TM)rad pk	1.20	1.32	1.08
TM, sine(1) or sqre(2) :	1		
RANGING (sine)rad pk	0.00	0.00	0.00
RANG. TONE effectrad pk	0.00	0.00	0.00
TC in RG-Videobdrad pk	0.00	0.00	0.00
NOISE INDEX	0.00	0.00	0.00

- *) POINTING LOSS may be included in TX ANTENNA GAIN.
- **) ADV and FAV Cases refer HERE to the Carrier Recovery ! Variation of the Preset Indices is +/- 10 % .

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-7

1680

LINK ID : P35GAIA PAGE 4/4

DATE : 17/06/200418:12

ORBIT : Lissajous L2

STATION : Perth 35-m

ELEVATION (deg):

TELECOMMAND BIT RATE (kb/sec): 2.00 RANGING: No TELEMETRY BIT RATE (kb/sec): 5000.00 with CONCAT. CODING: Yes

DOWNLINK (2/2)

	NOM	ADV	FAV	MEAN	VAR	PDF
RX S/NodBHz	76.28	74.71	77.52	76.11	0.13	
CARRIER RECOVERY						
CARRIER SUPPRESSIONdB	3.46	4.30	2.75	3.50	0.10	TRI
PLL BANDWIDTH 2*B1Hz	10.00	12.00	8.00			
PLL BANDWIDTHdBHz	10.00	10.79	9.03	9.94	0.13	TRI
REQ LOOP S/NdB	25.00	25.00	25.00	25.00		
CARRIER MARGINdB	37.82	34.62	40.74	37.67	0.36	
MEAN-3*SIGMAdB	35.87					
MARGIN - w.c. RSSdB	36.32					
TELEMETRY RECOVERY						
TLM MODULATION LOSSdB	3.04	3.64	2.56	3.08	0.05	TRI
DEMODULATOR TECH LOSS.dB	0.40	0.50	0.30	0.40	0.00	TRI
BIT RATEkb/s	5000.00	5000.00	5000.00			
BIT RATEdBHz	66.99	66.99	66.99	66.99		
CONCAT CODING GAIN(*).dB	9.70	9.70	9.70			
CODING RATE 1/R	2.29					
REQ Eb/NodB	2.80	2.80	2.80	2.80		
TELEMETRY MARGINdB	3.05	0.78	4.87	2.84	0.18	
MEAN-3*SIGMAdB	1.57					
MARGIN - w.c. RSSdB	1.92					
TONE RECOVERY						

TONE RECOVERY				
TONE MODULATION LOSSdB	No RG	No RG	No RG	No RG
IMPLEMENTATION LOSSdB	0.00	0.00	0.00	0.00
REQ S(Tone)/NdB	19.00	19.00	19.00	19.00

MAX RE	EQ LOOP-BDW(**).mHz	No RG	No RG	No RG	No RG

COMB. CARR. JITTER (***)				
RX TRSPD-PLL JITTdeg	0.65	0.94	0.47	0.67
TRANSMT CARR. JITTdeg	2.00	3.00	1.00	2.00
JITT BDW 2*B (****)Hz	5.00	10.00	3.00	6.50
RX COMBD CARR JITTdeg	1.09	1.91	0.60	1.60

- *) PFL=Probability of Frame Loss. Transfer Frame Length is FS=1275 Octets, and Interleaving Depth is I=5.
- **) The required MINIMUM Loop-Bandwith supported by MPTS is 1.25 mHz; the MAXIMUM Loop-Bandwidth (two-sided) is 1880 mHz.
- ***) Coherent transponder mode assumed for RX COMBD CARR JITTer at G/S.
- ****) 2*B is the bandwidth of the jitter from the TX chain or a HPA.

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-8

Appendix C Atmospheric Attenuation Profiles

Atmospheric attenuation profiles for the various ground stations are provided for 5° and 10° elevation. These have been produced using the RAPIDS software implementing the relevant ITU recommendations.

Figure 4-1 Atmospheric attenuation Kourou at 5 deg elevation

Figure 4-2 Atmospheric attenuation Kourou at 10 deg elevation

Figure 4-3 Atmospheric attenuation Maspalomas at 5 deg elevation

Date : 18-Dec-2006 Issue : 2 - revision 0

Figure 4-4 Atmospheric attenuation Maspalomas at 10 deg elevation

Figure 4-5 Atmospheric attenuation New Norcia at 5 deg elevation

Date : 18-Dec-2006 Issue : 2 - revision 0

Figure 4-6 Atmospheric attenuation New Norcia at 10 deg elevation

Figure 4-7 Atmospheric attenuation Cebreros at 5 deg elevation

Figure 4-8 Atmospheric attenuation Cebreros at 10 deg elevation

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-16

Appendix D Telemetry Bit/Symbol Rate Definition & Bit Error Rates

The on-board functions that concur to the generation of the transmitted telemetry frame are shown below. Figure 4-9 and Figure 4-10 provide a summary of the encoding and decoding processes on-board and on-ground. In the second part of this appendix bit and frame error rates are shown.

Figure 4-9 Encoding process

Figure 4-10 End-to-end Telemetry Coding and Decoding Scheme

Concatenated Encoding

Frame structure before convolutional encoding:

32 8920 1280

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-17

R-S plus header:

Synch. Marker = 32 bits Data Field = 8920 bits R-S trailer = 1280 bits

Defining: fs = data rate at convolutional encoder input

fb = information bit rate

yields:

$$\frac{f_s}{f_b} = \frac{32 + 8920 + 1280}{8920} = \frac{10232}{8920} \approx 1.147085$$

Example: $f_s=32.768$ kb/s corresponds to an information rate $f_b=28.56632$ kb/s

Frame structure after convolutional encoding:

The structure is the same as before. However, the concatenated encoder (convolutional and punctured) will add error correction bits depending on the selected rate to achieve the required Bit Error Rate (e.g. in the case of rate 1/2 the encoder will double every bit). Therefore, the frame length will be twice as long or 20464 symbols.

Moreover, what counts is the symbol rate at the modulator input or at the convolutional encoder output. For the standard rate ½ code, this is given by:

$$\frac{f_s'}{f_b} = 2\frac{f_s}{f_b} = 2\frac{10232}{8920} \approx 2.29417$$

where f_s' is the transmitted symbol rate.

Example: The information rate $f_b=28.56632$ kb/s above given corresponds to a transmitted symbol rate $f_s'=65.536$ ks/s.

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-18

Bit and Frame Error Rates for Punctured Coding Schemes

The following graphs present the simulated Bit and Frame error rates vs E_b/N_0 simulated performance for the CCSDS Concatenated Scheme with Outer E=16 Reed-Solomon Code (255,223) and Inner Punctured Convolutional Code, using finite interleaving with I=5 (courtesy of Prof. Chiaraluce, Universita' Politecnica delle Marche (Italy.)).

Figure 6-9 Bit error rate over E_b/N_0 for punctured coding rates 1/2, 2/3, 3/4, 5/6, 7/8

Figure 6-10 Frame error rate over E_b/N_0 for punctured coding rates 1/2, 2/3, 3/4, 5/6, 7/8

Date : 18-Dec-2006 Issue : 2 - revision 0

page A-20

Appendix E Spectral Emission Masks.

See § 6.3 of [AD-5].