

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Odsek za računarsku tehniku i računarske komunikacije

Standardne kombinacione mreže

Dekoderi, koderi, multiplekseri, demultiplekseri, iterativne mreže i mreže tipa stablo

Logička kola

Oznake ekvivalentnih logičkih kola

Naponski nivoi

Napon	Izlazi	Margina šuma	Ulazi
Ιναροπ	Logička 1		Logička 1
			Nevažeće
	Logička 0		Logička 0

Primer kombinacione mreže

Ilustracija rada kombinacione mreže

Propagacija signala u realnom vremenu!

Logičko kolo unosi kašnjenje prilikom generisanje izlaza u odnosu na trenutak promene signala na njegovom ulazu

Multiplekser

Multiplekseri su kombinacione mreže sa 2ⁿ ulaznih priključaka, n adresnih (upravljačkih S_{n-1} , S_{n-2} , ..., S_0), ulazom dozvole E i jednim izlaznim priključkom

 $X_{2n_{-1}}$ Multiplekser 2ⁿ x 1

ako je E = 1ako je E = 0Multiplekser se analitički definiše u obliku: $Y = \begin{cases} X_s \\ \lambda \end{cases}$

gde je
$$s = \sum_{j=0}^{n-1} s_j 2^j$$
 odnosno $Y = E \cdot \sum_{i=1}^n x_i p_i(s)$ gde su p potpuni proizvodi (konstituente jedinice) adresnih promenljivih

Multiplekser 2x1

				_		
	5	Α	В		Z	
()	0	0		0	
()	0	1		0	
()	1	0		1	
()	1	1		1	
	1	0	0		0	

$$Z = \overline{S} \cdot A + S \cdot B$$

Multiplekser 8x1

E	S_2	S ₁	S ₀	Y
0	×	×	×	0
1	0	0	0	X_0
1	0	0	1	X ₁ X ₂ X ₃
1	0	1	0	X_2
1	0	1	1	X_3
1	1	0	0	X_4
1	1	0	1	X ₄ X ₅
1	1	1	0	X_6
1	1	1	1	X_7

E – signal dozvole izlaza

Multiplekser 8x1

```
(iX(0) AND NOT(iSEL(2)) AND NOT(iSEL
                                      (1)) AND NOT(iSEL(0)))
(iX(1) AND NOT(iSEL(2)) AND NOT(iSEL
                                           AND
                                      (1))
                                                   (iSEL(0))) OR
(iX(2) AND NOT(iSEL(2)) AND
                                (iSEL
                                       (1))
                                           AND NOT(iSEL(0))) OR
(iX(3) AND NOT(iSEL(2)) AND
                                (iSEL
                                      (1))
                                           AND
                                                   (iSEL(0))) OR
(iX(4) AND
              (iSEL(2)) AND NOT(iSEL
                                      (1)) AND NOT(iSEL(0))) OR
(iX(5) AND
           (iSEL(2)) AND NOT(iSEL
                                      (1)) AND
                                                   (iSEL(0))) OR
                                      (1)) AND NOT(iSEL(0))) OR
(iX(6) AND
             (iSEL(2)) AND
                                (iSEL
             (iSEL(2)) AND
                                      (1)) AND
(iX(7) AND
                               (iSEL
                                                   (iSEL(0))) OR
   -- provera vrednosti signala dozvole rada
  IF (iE = '1') THEN
     -- multipleksiranje dozvoljeno ->
     -- odredjivanje izlaznog signala
     -- u zavisnosti od vrednosti adresnog vektora
     CASE ISEL IS
       WHEN "000" => OY <= iX(0);
       WHEN "001" => OY <= iX(1);
       WHEN "010" => OY <= iX(2);
       WHEN "011" => OY <= iX(3);
       WHEN "100" => OY <= iX(4);
       WHEN "101" => OY <= iX(5);
       WHEN "110" => OY <= iX(6):
       WHEN OTHERS => OY <= iX(7);
     END CASE;
  ELSE
     -- multipleksiranje nije dozvoljeno ->
-- postavljanje definisane vrednosti na izlaz
     OY <= '0';
   END IF:
```

10

Primena multipleksera

- Multiplekser kao selektor izvora
 - U slučaju da je izvor vektor sa proizvoljnim brojem bita koriste se vektorski multiplekseri

- Paralelno serijska konverzija
 - Informacije se dovode istovremeno na ulaze multipleksera, a kontinualnim menjanjem adresne informacije na ulazu izabiraju se izlazni priključci redom jedan za drugim, i spajaju na izlaz

Demultiplekser

- Demultiplekser je kombinaciona mreža sa
 - jednim ulazom X,
 - \diamond n adresnih (selekcionih) promenljivih $S=(S_{n-1}, ..., S_0)$,
 - priključkom za upravljanje (dozvola) E i
 - \Rightarrow 2ⁿ izlaza Y = (Y_{2n-1}, ..., Y₀),

Demultiplekser

							ISEL2		<u> </u>	PUT INSE	O sns
E	S_2	S_1	S ₀	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0	×	×	×	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	X
1	0	0	1	0	0	0	0	0	0	X	0
1	0	1	0	0	0	0	0	0	X	0	0
1	0	1	1	0	0	0	0	X	0	0	0
1	1	0	0	0	0	0	X	0	0	0	0
1	1	0	1	0	0	X	0	0	0	0	0
1	1	1	0	0	X	0	0	0	0	0	0
1	1	1	1	X	0	0	0	0	0	0	0

ISELO

ISELI

Demultiplekser u VHDL-u


```
PROCESS (ix, iE, iSEL) BEGIN
   oy <= "00000000"; -- inicijalizacija izlaznog vektora
   -- provera signala dozvole rada
   IF (iE = '1') THEN
     -- demultipleksiranje dozvoljeno ->
     -- prosledjivanje ulaznog signala na izlaz
     -- u zavisnosti od vrednosti adresnog vektora
     CASE ISEL IS
       WHEN "000" \Rightarrow oY(0) \Leftarrow iX;
       WHEN "001" => oY(1) <= iX;
       WHEN "010" \Rightarrow oY(2) \Leftarrow iX;
       WHEN "011" => oY(3) <= iX;
       WHEN "100" => oY(4) <= iX;
       WHEN "101" => oY(5) <= iX;
       WHEN "110" => oY(6) <= iX;
       WHEN OTHERS \Rightarrow \circ Y(7) \leqslant iX;
     END CASE;
   ELSE
     -- demultipleksiranje nije dozvoljeno ->
     -- dodela predefinisane vrednosti izlaznom signalu
     oy <= "0000000";
   END IF;
 END PROCESS:
```


Vremenska simulacija rada demultipleksera

Aktivan signal dozvole izlaza
Signal dozvole izlaza neaktivan

Dekoder

Dekoder je kombinaciona mreža koja poseduje n ulaznih i 2ⁿ izlaznih priključaka.

Mreža realizuje 2ⁿ Bulovih funkcija:

$$D_{j}(X) = \begin{cases} 1 & za x = j \\ 0 & za x \neq j \end{cases}$$

gde su j = 0, 1, 2, ..., 2^{n-1} ; i

 $D_0(X) = \overline{X}_{n-1} \overline{X}_{n-2} \dots \overline{X}_2 \overline{X}_1 \overline{X}_0$ $D_1(X) = \overline{X}_{n-1} \overline{X}_{n-2} \dots \overline{X}_2 \overline{X}_1 X_0$ $D_2(X) = \overline{X}_{n-1} \overline{X}_{n-2} \dots \overline{X}_2 X_1 \overline{X}_0$

$$D_{2^{n}-2}(X) = X_{n-1}X_{n-2} \dots X_{2}X_{1}X_{0}$$

$$D_{2^{n}-1}(X) = X_{n-1}X_{n-2} \dots X_{2}X_{1}X_{0}$$

Dekoder transformiše n-elementarni binarni težinski kod u 2ⁿ-elementarni kod, jer svakoj reči na ulazu dekodera odgovara jedinični signal samo na jednom izlaznom priključku.

Dekoder 2x4

Ilustracija kaskadnog dekodera

Dekoder 3x8 formiran od dekodera 2x4 i 1x2

Signal dozvole dekodovanja

problem	X1	X2	D0	D1	D2	D3
	0	0	0	1	1	1
	0	1	1	0	1	1
	1	0	1	1	0	1
	1	1	1	1	1	0

Kako prepoznati na osnovu stanja izlaznih signala kada je ulazni signal rabildan?

Signal dozvole dekodovanja

	V			
r	25	er	116	
	-		יני	

Primer dekodera: IK: 74LS138

Matrični dekoder 3x8

	ULAZI	DEKC	DERA	20		I	ZLA.	ZI DI	EKO	DER	A	
G ₁	\overline{G}_2^*	C	В	A	\mathbf{Y}_{0}	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	Y_7
×	Н	×	×	×	Н	H	Н	Н	Н	Н	Н	Н
L	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	H	H	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	H	Н	Н	Н	L	H	Н	Н	Н
Н	L	H	L	L	Н	Н	Н	H	L	Н	Н	Н
Н	L	H	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
H	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

$$E = G_1 \cdot G_{2A} \cdot G_{2B}$$

$$Y_0 = \overline{E \cdot \overline{C} \cdot \overline{B} \cdot \overline{A}}, \quad Y_1 = \overline{E \cdot \overline{C} \cdot \overline{B} \cdot A}, \quad Y_2 = \overline{E \cdot \overline{C} \cdot B \cdot \overline{A}}, \quad Y_3 = \overline{E \cdot \overline{C} \cdot B \cdot A},$$

$$Y_4 = E \cdot C \cdot B \cdot A$$
, $Y_5 = E \cdot C \cdot B \cdot A$, $Y_6 = E \cdot C \cdot B \cdot A$, $Y_7 = E \cdot C \cdot B \cdot A$,

Logička šema 74LS138

Dekoder u VHDL-u


```
PROCESS (iX, iE) BEGIN
   -- provera zadovoljenja uslova dozvole dekodovanja
   IF (iE = '0') THEN
     -- dekodovanje je dozvoljeno ->
     -- formira se izlaz dekodera
     CASE IX IS
       WHEN "00" => oD <= "1110";
       WHEN "01" => oD <= "1101";
       WHEN "10" => oD <= "1011";
       WHEN "11" | => OD <= "0111";
       WHEN OTHERS => OD <= "1111";
     END CASE;
   ELSE
     -- dekodovanje nije dozvoljeno ->
     -- svi izlazi dekodera su postavljeni na 1
     oD <= "1111";
   END IF;
 END PROCESS;
```


Koder

- Koderi su kombinacione mreže sa 2ⁿ ulaza i n izlaza (izlazi se nazivaju adrese)
- Koder obavlja inverznu
 operaciju u odnosu na dekoder,
 jer predstavlja pretvarač koda
 "jedan od 2ⁿ" u binarni kod

X ₃	X ₂	X ₁	X ₀	Y	Y ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Prioritetni koder

problem

Kako definisati izlaz kodera u slučaju da je istovremeno aktivno više od jednog ulaza?

rešenje

Definiše se lista prioriteta za ulazne signale

Ulaz najvećeg prioriteta

Ulaz najnižeg prioriteta

Mreža za razrešenje prioriteta

kombinaciona mreža sa 2ⁿ ulaza i 2ⁿ izlaza pri čemu je

$$Z_{i} = \begin{cases} 1 & za x_{i} = 1 \ i \ x_{k} = 0 \ za \ k > i \\ 0 & u \text{ protivnom} \end{cases}$$

$$Z(3) \le X(3)$$
;

$$Z(2) \le NOT(X(3)) AND X(2);$$

$$Z(1) \leq NOT(X(3))$$
 AND NOT(X(2)) AND X(1);

$$Z(0) \le NOT(X(3))$$
 AND NOT(X(2)) AND NOT(X(1)) AND X(0);

BCD Koder


```
PROCESS (iU) BEGIN
   sBCD | VECTOR <= | "0000";
   IF (iU(0) = '1') THEN SBCD VECTOR \langle = "0000"; END IF;
   IF (iU(1) = '1') THEN SBCD VECTOR \leftarrow "0001"; END IF;
   IF (iU(2) = '1') THEN SBCD VECTOR \langle = '0010''; END IF;
   IF (iU(3) = '1') THEN SBCD VECTOR <= "0011"; END IF;
   IF (iU(4) = '1') THEN SBCD VECTOR <= "0100"; END IF;
   IF (iU(5) = '1') THEN SBCD VECTOR \langle = "0101"; END IF;
   IF (iU(6) = '1') THEN SBCD VECTOR \leftarrow "0110"; END IF;
   IF (iU(7) = '1') THEN SBCD VECTOR \leq "0111"; END IF;
   IF (iU(8) = '1') THEN SBCD VECTOR <= "1000"; END IF;
   IF (iU(9) = '1') THEN SBCD VECTOR <= "1001"; END IF;
 END PROCESS;
oD <= sBCD VECTOR(3); |-- | bi|t sa | težinom | 8
 oC <= sBCD VECTOR(2); -- bit sa težinom 4
OA <= sKoji ulazni signal je najvećeg prioriteta u
           navedenom pristupu implementaciji?
```


Vremenska simulacija rada **BCD** kodera

PROBLEM:

Ista vrednost izlaznog signala za dva različita ulazna vektora!!!

Iterativne mreže

Mreže u obliku K-iterativnih mreža realizuju prekidačke funkcije n promenljivih pomoću n/k-1 identičnih podmreža (ćelija) G i F

Ulazni vektor je podeljen u n/k grupa koje sadrže k-elemenata, svaka grupa se dovodi na pojedinačnu podmrežu (ćeliju)

