ICU SURVIVAL ANALYSIS

Yuling Gu

Alice Guo

Tam Nguyen

OUTLINE

- Business Use Case
- Dataset
- EDA & Approach
- Modeling
- Model Comparison
- Conclusion
- Lesson Learned

BUSINESS USE CASE

- In clinical practice, estimates of mortality risk can be useful in triage and resource allocation
- Help hospital to:
 - determine appropriate levels of care
 - prepare discussions with patients and their families around expected outcomes
- Help payers to know how the health outcomes of their policyholders will be affected, so that payers can identify useful policies

PROBLEM STATEMENTS

- MIT's GOSSIS community initiative is seeking an efficient way to address the problems with existing severity of illness systems:
 - They often lack generalizability beyond the patients on whom the models were developed, and
 - The models are often proprietary, costly to use (APACHE scoring system...), and suffer from opaque algorithms.

OBJECTIVES

- Create a model that uses data from the first 24 hours of intensive care to predict patient survival with:
 - Better prediction probability of death (as compared to apache_4a_icu_prob, apache_4a_hospital_prob)
 - Minimize apache features
 - Transparent (easy to explain)
 - Generalizability
 - Less complexity

DATA DESCRIPTION

EDA & APPROACH

- Data Cleaning & Feature Engineering
- Initial Findings
- Challenges
- Approach
- Assumption

DATA CLEANING | DEMOGRAPHIC

FEATURES

	percent_missing
hospital_admit_source	23.3
age	4.6
bmi	3.7
weight	3.0
ethnicity	1.5
height	1.5
icu_admit_source	0.1
gender	0.0
elective_surgery	0.0
hospital_death	0.0
hospital_id	0.0
patient_id	0.0
icu_id	0.0
icu_stay_type	0.0
icu_type	0.0
pre_icu_los_days	0.0
readmission_status	0.0
encounter_id	0.0

CLEANING & IMPUTE

Drop features:

- that add no value to the model with std = 0: readmission status
- encounter id (repeat with patient id)

Replace negative values with 0:

- pre_icu_los_days (the length of stay (days) of the patient between hospital admission and unit admission)
- **Impute missing values**: (Mice imputer & most frequent)

- Mice imputer *: age, height, weight
 - calculate BMI based on height, weight and impute missing value for BMI
- Most frequent value:
 - ethnicity
 - Impute either hospital_admit_source or icu_admit_source, based on the other: most frequent category for each group.

DATA CLEANING | VITALS - LABS

廖	Ŷ

FEATURES			VITAL
	percent_missing	h1_spo2_min	4.6
h1_diasbp_invasive_max	81.7		3.9
h1_diasbp_invasive_min	81.7	h1_diasbp_max	3.9
h1_sysbp_invasive_min	81.7	h1_diasbp_min	
h1_sysbp_invasive_max	81.7	h1_sysbp_max	3.9
h1_mbp_invasive_min	81.6	h1_sysbp_min	3.9
h1_mbp_invasive_max	81.6	h1_heartrate_max h1 heartrate min	3.0
d1_diasbp_invasive_min	74.1	d1 temp min	2.5
d1_diasbp_invasive_max	74.1	d1_temp_max	2.5
d1_sysbp_invasive_max	74.1	d1 mbp noninvasive max	1.6
d1_sysbp_invasive_min	74.1	d1 mbp noninvasive min	1.6
d1_mbp_invasive_max	73.9	d1 diasbp noninvasive min	1.1
d1_mbp_invasive_min	73.9	d1_diasbp_noninvasive_max	1.1
h1_temp_max	23.7	d1_sysbp_noninvasive_min	1.1
h1_temp_min	23.7	d1_sysbp_noninvasive_max	1.1
h1_mbp_noninvasive_max	9.9	d1_resprate_max	0.4
h1_mbp_noninvasive_min	9.9	d1_resprate_min	0.4
h1_diasbp_noninvasive_max	8.0	d1_spo2_max	0.4
h1_diasbp_noninvasive_min	8.0	d1_spo2_min	0.4
h1_sysbp_noninvasive_min	8.0	d1_mbp_max	0.2
h1 sysbp noninvasive max	8.0	d1_mbp_min	0.2
h1_mbp_max	5.1	d1_diasbp_max	0.2
h1_mbp_min	5.1	d1_diasbp_min	0.2
h1 resprate max	4.8	d1_sysbp_max	0.2
h1 resprate min	4.8	d1_sysbp_min	0.2
		d1_heartrate_min	0.2
h1_spo2_max	4.6	d1_heartrate_max	0.2

perc	ent_missing				LABS
h1_bilirubin_max	92.3	h1_hemaglobin_max	79.7	d1_platelets_min	14.7
h1_bilirubin_min	92.3	h1_sodium_max	79.2	d1_platelets_max	14.7
h1_lactate_max	92.0	h1_sodium_min	79.2	d1_wbc_max	14.4
h1_lactate_min	92.0	h1_potassium_max	78.6	d1_wbc_min	14.4
h1_albumin_min	91.4	h1_potassium_min	78.6	d1_calcium_min	14.2
h1_albumin_max	91.4	d1_lactate_min	74.6	d1_calcium_max	14.2
h1_pao2fio2ratio_min	87.4	d1_lactate_max	74.6	d1_hemaglobin_max	13.2
h1_pao2fio2ratio_max	87.4	d1_pao2fio2ratio_max	72.0	d1_hemaglobin_min	13.2
h1_arterial_ph_min	83.3	d1_pao2fio2ratio_min	72.0	d1_hematocrit_max	12.7
h1_arterial_ph_max	83.3	d1_arterial_ph_min	65.6	d1_hematocrit_min	12.7
h1_hco3_max	83.0	d1_arterial_ph_max	65.6	d1_bun_max	11.5
h1_hco3_min	83.0	d1 arterial pco2 max	64.6	d1_bun_min	11.5
h1_arterial_pco2_max	82.8	d1 arterial pco2 min	64.6	d1_sodium_max	11.1
h1_arterial_pco2_min	82.8	 d1_arterial_po2_max	64.6	d1_sodium_min	11.1
h1_wbc_max	82.8	d1_arterial_po2_min	64.6	d1_creatinine_max	11.1
h1_wbc_min	82.8	d1 inr min	63.2	d1_creatinine_min	11.1
h1_arterial_po2_max	82.8	d1_inr_max	63.2	d1_potassium_min	10.5
h1_arterial_po2_min	82.8		63.2	d1_potassium_max	10.5
h1_calcium_min	82.7	h1_inr_max		d1_glucose_max	6.3
h1_calcium_max	82.7	h1_inr_min	63.2	d1_glucose_min	6.3
h1_platelets_min	82.5	d1_bilirubin_min	58.5		
h1_platelets_max	82.5	d1_bilirubin_max	58.5		
h1_bun_min	81.9	h1_glucose_max	57.4		
h1_bun_max	81.9	h1_glucose_min	57.4		
h1_creatinine_min	81.7	d1_albumin_min	53.5		
h1_creatinine_max	81.7	d1_albumin_max	53.5		
h1_hematocrit_min	80.1	d1_hco3_min	16.4		
h1_hematocrit_max	80.1	d1 hco3 max	16.4		

CLEANING & IMPUTE

Min - Max problem (max < min)

Consistent values

d1_b	un_max d	l1_bun_min
5678	4.0	113.1
13466	4.0	113.1
17084	4.0	53.0
19002	4.0	76.0
23600	4.0	113.1

Replace with nan

Different values by patients

	d1_respra	te_max o	d1_resprate_min
52067		14.0	20.0
71776		92.0	96.0
72737		14.0	25.0
73863		92.0	100.0
81314		14.0	18.0

Flip the columns

Drop features

- Multiple measurements for same indicator, i.e. 'mbp': mean blood pressure.
 - ('d1_mbp_max','d1_mbp_min'); ('d1_mbp_invasive_max','d1_mbp_invasive_min'); ('d1_mbp_noninvasive_max','d1_mbp_noninvasive_min')
- Drop first hour data (more than 80% of missing values)

Impute & add in new features

- **Impute** missing values for:
 - d1 features (max and min) based on the most frequent values of patients in the same apache_3i_bodysystem group
- **Add features:**
 - calculated the difference between:
 - max and min value for every indicator, i.e.: 'diff sodium d1'='d1 sodium max' -'d1 sodium min';
 - 1st hour and 1st 24 hours, i.e.: 'diff_max_sodium_1hr_24hr', 'diff min sodium 1hr 24hr'
 - pulse pressure = sysbp diasbp (systolic blood pressure) - (diastolic blood pressure)
 - the severity of patients: based on the number of missing features

DATA CLEANING | APACHE (ACUTE PHYSIOLOGY AND CHRONIC HEALTH EVALUATION)

FEATURES

FEATURES	
	percent_missing
pao2_apache	77.3
fio2_apache	77.3
ph_apache	77.3
paco2_for_ph_apache	77.3
paco2_apache	77.3
bilirubin_apache	63.4
albumin_apache	59.3
urineoutput_apache	53.4
wbc_apache	24.0
hematocrit_apache	21.7
bun_apache	21.0
creatinine_apache	20.6
sodium_apache	20.3
glucose_apache	12.0
apache_4a_icu_death_prob	8.7
apache_4a_hospital_death_prob	8.7
temp_apache	4.5
gcs_verbal_apache	2.1
gcs_eyes_apache	2.1
gcs_motor_apache	2.1
apache_3j_bodysystem	1.8
apache_2_bodysystem	1.8
apache_2_diagnosis	1.8
resprate_apache	1.3
apache_3j_diagnosis	1.2

gcs_unable_apache	1.1
map_apache	1.1
heart_rate_apache	1.0
immunosuppression	0.8
intubated_apache	0.8
solid_tumor_with_metastasis	0.8
lymphoma	0.8
leukemia	0.8
cirrhosis	0.8
hepatic_failure	0.8
diabetes_mellitus	0.8
aids	0.8
arf_apache	0.8
ventilated_apache	0.8
apache_post_operative	0.0

APACHE:

severity score and mortality estimation tool in US

CLEANING & IMPUTE

Drop features:

- apache_2_diagnosis (the APACHE II diagnosis for the ICU admission)
- apache_2_bodysystem (Admission diagnosis group for APACHE II), due to high correlation between apache II and apache III.

Impute:

- apache score by using 1st 24 hours min, max values for the same measurements
- Replace negative value of apache_icu_death_prob with 0
- Create 'Undefined' category for missing values in apache_3j_bodysystem

Encode:

- apache_3j_diagnosis: The APACHE III-J sub-diagnosis code which best describes the reason for the ICU admission, i.e.
 - 203: Aspiration pneumonia
 - '203.01': Arrest, respiratory (without cardiac arrest)

INITIAL FINDINGS (1)

Age, Gender, Ethnicity distribution with Hospital Death

	icu_admit_source	count	death_rate
0	Other ICU	859	14.4
1	Other Hospital	2358	13.4
2	Floor	15611	13.4
3	Accident & Emergency	54060	8.6
4	Operating Room / Recovery	18713	3.7

	hospital_admit_source	count	death_rate
0	Step-Down Unit (SDU)	1131	18.8
1	Other ICU	233	15.0
2	Other	7	14.3
3	Floor	8055	13.9
4	Other Hospital	1641	13.5
5	Acute Care/Floor	1910	10.5
6	Direct Admit	6441	10.3
7	Emergency Department	36962	8.7
8	ICU	35	8.6
9	ICU to SDU	45	6.7
10	Chest Pain Center	134	6.0
11	Recovery Room	2896	3.6
12	Operating Room	9787	3.5
13	PACU	1017	3.0
14	Observation	10	0.0

INITIAL FINDINGS (2)

	no_missingFeatures	total_patients	survived	death	death_rate
0	0.0	25.0	14.0	11.0	44.0
1	10.0	882.0	681.0	201.0	22.8
2	20.0	3673.0	3004.0	669.0	18.2
3	30.0	8196.0	6944.0	1252.0	15.3
4	40.0	13790.0	11688.0	2102.0	15.2
5	50.0	22863.0	19432.0	3431.0	15.0
6	60.0	35578.0	30762.0	4816.0	13.5
7	70.0	58977.0	52744.0	6233.0	10.6
8	80.0	77748.0	70732.0	7016.0	9.0
9	90.0	83446.0	76116.0	7330.0	8.8
10	100.0	87658.0	80057.0	7601.0	8.7
11	110.0	91101.0	83241.0	7860.0	8.6

SMOTE - COMPUTATION EXPENSIVE BUT DOES NOT RESOLVE PROBLEM!

Impute Approach: Logistic Regression

Without SMOTE

ROC_AUC_test: 0.8586259061433837 Brier_Score_test: 0.061777675845410746

Accuracy Score_Test: 0.92

Classification	precision	recall	f1-score	suppor
0 1	0.93 0.60	0.99 0.21	0.96 0.31	20950 1979
accuracy macro avg weighted avg	0.77 0.90	0.60 0.92	0.92 0.63 0.90	22929 22929 22929

With SMOTE

ROC_AUC_test: 0.8551542991385682 Brier_Score_test: 0.15200817887032306

Accuracy Score_Test: 0.782

Classification	Report_Test	:		
	precision	recall	f1-score	suppor
0	0.97	0.78	0.87	20950
1	0.25	0.76	0.38	1979
accuracy			0.78	22929
macro avg	0.61	0.77	0.62	22929
woighted ava	0 01	0.79	0 02	22020

Binning Approach: Logistic Regression

Without SMOTE

ROC_AUC: 0.8829942317966332 Brier_Score: 0.0571302837125455 Accuracy Score_Test: 0.926 Classification Report_Test:

	precision	recall	f1-score	support
0 1	0.94 0.65	0.98 0.30	0.96 0.41	20950 1979
accuracy macro avg weighted avg	0.79 0.91	0.64 0.93	0.93 0.69 0.91	22929 22929 22929

With SMOTE

Classification	Report Test:			
	precision	recall	f1-score	suppor
0	0.98	0.78	0.86	20950
1	0.25	0.80	0.38	1979
accuracy			0.78	22929
macro avg	0.61	0.79	0.62	22929
weighted avg	0.91	0.78	0.82	22929
L				

ASSUMPTION & SOLUTION

- Apache score is specialized to the US's patients; therefore, it might not be appropriate measurements for patient from outside of the US.
- Keep minimum features without losing accuracy

ASSUMPTIONS

- Any features that makes the model biased and less generalizable should be dropped
- Our model only considers patient's health, severity instead of hospital or ICU quality, level of care, etc.
- SMOTE is not applicable for this data
- Adjust probability instead of trying to balance the data
- Patients with high missing features has lower survival rate overall
- Assuming missing measurement as people who falls into normal range of the test results.

BUSINESS RELATED

- Try 2 different approaches:
 - keep provided apache score for modeling, and compare against
 - models that remove almost apache score having similar feature measurements to labs and vitals.

- Drop features:
 - hospital_id, icu_id,
 - apache_4a_hospital_death_ prob
 - apache_4a_icu_death_prob
 - gender, ethnicity

- Adjust prediction probability to classify target variable based on quantile probability - 90% quantile
- Using other metrics to evaluate the model instead of accuracy, i.e.: AUC, precision-recall, Brier score,

. . .

- Binning dataset (vitals | labs)
 - Bin it into 5 categories based on quantile
 - Treat missing value as another category (normal range)
- Impute missing value using apache3j bodysystem
 - Features that has more than 50% missing values, fillna by 99

SOLUTIONS

MODELING

- Assessment Criteria
- Models
 - Logistic Regression
 - Random Forest
 - Light Gradient Boosting
 - CatBoost
 - Neural Network
- Model Selection

MODEL ASSESSMENT CRITERIA

- Imbalanced dataset False positive rate and true positive rate are more important than accuracy
- Higher the AUC score, means better model results

- The lower Bier Score, the better model results

- More balanced between two scores, means better model results

- Time takes model to run
- Number of features
- Less time and features make a good model

LOGISTIC REGRESSION (1) - BINNING

Classification Report_Train precision recall f1-score 0 0.96 0.94 0.95 1 0.49 0.56 0.52

— Classification Report_Test —				
-	precision	recall	f1-score	
0	0.96	0.94	0.95	
1	0.46	0.54	0.50	

Complexity

Total number of features using: 463 features

Time running models: 13.4s (Colab)

Number of models tried: 10

Feature Importance	Coefficient	Importance
apache_3j_bodysystem_Metabolic	1.0	1.5
bin_d1_lactate_min_100_percentile	1.0	1.5
elective_surgery_0	0.7	1.0
bin_d1_heartrate_max_100_percentile	0.7	1.0
bin_d1_creatinine_max_100_percentile	0.6	0.9
gcs_motor_apache_2.0	0.6	0.8
bin_d1_inr_max_100_percentile	0.5	0.8
age	0.5	0.8
bin_d1_temp_max_60_percentile	0.5	0.8
apache_3j_bodysystem_Neurological	0.5	0.8
bin_d1_hemaglobin_max_80_percentile	e 0.5	0.7
bin_d1_temp_max_100_percentile	0.5	0.7
gcs_motor_apache_6.0	0.5	0.7
bin_d1_wbc_min_100_percentile	0.5	0.7
solid_tumor_with_metastasis_0.0	0.5	0.7
bin_d1_temp_max_80_percentile	0.5	0.7
bin_d1_pao2fio2ratio_max_80_percenti	le 0.5	0.7
bin_urineoutput_apache_80_percentile	0.5	0.7
solid_tumor_with_metastasis_1.0	0.4	0.7
bin_d1_h1_min_hco3_(0.0, 32.0]	0.4	0.7

LOGISTIC REGRESSION (2) - IMPUTING

Classification Report_Train precision recall f1-score 0 0.95 0.94 0.95 1 0.45 0.49 0.47

	Classification	on Report	Test —		
	Classification Report_Test —				
	precision	recall	f1-score		
0	0.95 0.43	0.94	0.95 0.45		
-	0.10	0.10	0.15		

Complexity

Total number of features using: 177 features

■ Time running models: **9.85s** (Colab) Number of models tried: 2

Feature Importance Coefficient Importance apache_3j_bodysystem_Metabolic 1.3 4.6 apache_3j_bodysystem_Hematological 0.7 2.6 diff_max_platelets_24hr_1hr 0.7 2.5 elective_surgery_1 0.6 2.2 apache_3j_bodysystem_Genitourinary 0.6 2.2 icu_admit_source_Operating Room / Recovery 0.6 2.2 diff_min_platelets_24hr_1hr 0.6 2.2 gcs_motor_apache_6.0 0.6 2.1 ventilated_apache_0.0 0.6 2.0 0.5 age 1.9 gcs_motor_apache_2.0 0.5 1.7 0.5 solid_tumor_with_metastasis_0.0 1.7 gcs_motor_apache_5.0 0.4 1.6 diabetes_mellitus_1.0 0.4 1.5 hospital_admit_source_Step-Down Unit (SDU) 0.4 1.5 hospital_admit_source_Operating Room 0.4 1.5 gcs_motor_apache_1.0 0.4 1.5 icu_type_CSICU 0.4 1.4 apache_3j_bodysystem_Gynecological 0.4 1.3 apache_3j_bodysystem_Musculoskeletal/Skin 0.3 1.2

LOGISTIC REGRESSION (3) - PCA

Classification Report_Train precision recall f1-score 0 0.96 0.94 0.95 1 0.48 0.55 0.51

			_Test
pred	cision	recall	f1-score
0 1	0.96 0.47	0.94 0.54	0.95 0.51

Complexity

Total number of features using: 712 features

Time running models: 22.6s (Colab)
Number of models tried: 2

RANDOM FOREST - BINNING

Classification Report_Train

	precision	recall	f1-score
0	0.94	0.97	0.95
1	0.49	0.35	0.41

	Classification	Ranor	t Tast	
	Jassincation	ricpor	t_103t	
	precision	recall	f1-score	
0	0.94	0.97	0.95	
1	0.49	0.35	0.41	

Complexity

Total number of features using: 34 features

Time running models: 8.48s (Colab)

Number of models tried: 2

Feature Importance Importance 0.26 gcs_eyes_apache_1.0 gcs_motor_apache_6.0 0.24 bin_d1_spo2_min_(-1.0, 89.0] 0.13 ventilated_apache_0.0 0.08 icu_admit_source_Operating Room / Recovery 0.05 0.03 elective_surgery_0 bin_d1_lactate_max_100_percentile 0.03 bin_d1_creatinine_max_Normal 0.03 0.03 bin_d1_max_min_spo2_(10.0, 100.0] bin_d1_creatinine_min_Normal 0.02 gcs_motor_apache_1.0 0.02 ventilated_apache_1.0 0.01 0.01 bin_d1_lactate_max_80_percentile bin_d1_creatinine_max_100_percentile 0.01 apache 3j bodysystem Cardiovascular 0.01 bin_fio2_apache_(0.8, 1.0] 0.01 bin_d1_arterial_po2_max_Normal 0.01 bin_d1_hematocrit_max_Normal 0.00 bin_d1_arterial_pco2_max_Normal 0.00 pulse_pressure_min 0.00 0.00 bin_d1_max_min_pco2_Normal bin_d1_sodium_min_Normal 0.00 0.00 bin_d1_hematocrit_min_Normal bin_d1_arterial_pco2_min_Normal 0.00 apache_3j_bodysystem_Metabolic 0.00 0.00 bin_d1_wbc_max_Normal 0.00 bin_d1_lactate_min_100_percentile 0.00 missing_count 0.00

WHY WE USE LGB AND CATBOOST OVER XBG?

Function	XGB	CATBOOST	LGB
Categorical variable	 Can not handle categorical variables 	l automatically lone-hot may size	 Can handle categorical variable: binning continuous variable to discrete variable based on histogram
	Leve	el-wise tree growth	Leaf-wise tree growth
Tree growth		ogram-based algorithm for computing the best split	filter out the data instances for finding a split value; can reduce more loss than the levelwise algorithm, resulting in much better accuracy which can rarely be achieved by any of the existing boosting algorithms
Time complexity	 Take more time to run model, especially on high dimensiona data 	The algorithm reduce time for hyper- parameter tuning and and lower the chances of overfitting also which leads to more generalized models	 Compatibility with large data set: Reduce significant training time as compared to XGBOOST

LGB - IMPUTING

Classification Report_Train precision recall f1-score 0 0.97 0.95 0.96 1 0.60 0.73 0.66

	Classificati	on Repo	rt_Test –	_
	precision	recall	f1-score	
0	0.96	0.94	0.95	
1	0.47	0.54	0.50	

Complexity

Total number of features using: **177 features**

Number of models tried: 4

• Time running models: **8.15 mins** (Colab) With StratifiedKFold: 10 folds

Feature Importance Feature importance over 10 folds average pre icu los days urineoutput apache map apache missing features diff d1 heartrate max min pulse pressure max pulse pressure min diff min glucose 24hr 1hr diff min heartrate 24hr 1hr diff d1 temp max min diff_max_wbc_24hr_1hr diff_d1_spo2_max_min diff min wbc 24hr 1hr diff min hematocrit 24hr 1hr diff min hemaglobin 24hr 1hr diff d1 sysbp max min diff max creatinine 24hr 1hr diff_max_temp_24hr_1hr diff_max_glucose_24hr_1hr diff min platelets 24hr 1hr diff max bun 24hr 1hr diff max heartrate 24hr 1hr diff max hemaglobin 24hr 1hr diff max platelets 24hr 1hr diff min resprate 24hr 1hr diff d1 glucose max min diff d1 resprate max min diff max sodium 24hr 1hr diff d1 lactate max min diff max hematocrit 24hr 1hr diff min creatinine 24hr 1hr diff min calcium 24hr 1hr diff_min_sysbp_24hr_1hr diff max sysbp 24hr 1hr diff min spo2 24hr 1hr diff d1 diasbp max min diff d1 inr max min diff pulse max min diff min potassium 24hr 1hr diff min bun 24hr 1hr diff_d1_arterial_pco2_max_min diff max calcium 24hr 1hr

average feature imp

175

LGB - SHAPLEY

Feature Importance

CATBOOST - IMPUTING

Classification Report_Train precision recall f1-score 0.97 0.75 0.84 0.22 0.75 0.34

	Classification Report_Test =				
	precision	recall	f1-score		
0	0.96	0.94	0.95		
1	0.47	0.54	0.50		

Complexity

Total number of features using: **107 features**

Time running models: **8 mins** (Colab) + **1hr** - GridSearch •

Grid Search Parameters:

- Learning rate: 0.04
- Depth: 7

Feature Importance

feature_names	feature_importances
age	7.4
ventilated_apache	4.6
gcs_motor_apache	3.7
diff_d1_spo2_max_min	3.2
apache_3j_bodysystem	3.2
gcs_verbal_apache	3.0
icu_admit_source	2.8
map_apache	2.4
elective_surgery	2.4
pre_icu_los_days	2.2
gcs_eyes_apache	2.0
diff_d1_temp_max_min	2.0
diff_max_wbc_24hr_1hr	1.9
missing_features	1.8
pulse_pressure_min	1.8
diff_max_bun_24hr_1hr	1.7
diff_min_bun_24hr_1hr	1.5
urineoutput_apache	1.5
diff_max_sodium_24hr_1hr	1.4
pulse_pressure_max	1.4

CATBOOST - SHAPLEY

Feature Importance

PCA + NEURAL NETWORK (1)

Using 70 out of 138 principle components

Why using PCA for Neural Network?

- Reduces computation complexity by reducing the size of the network, amount of data needed to train
- Reduce overfitting
- However, discriminative information that distinguishes the class might be in low variance components.

Neural Network Model

```
def create_model(input_dim):
    input_layer = Input(shape=(input_dim, ))
    classifier = Dense(256, activation='relu')(input_layer)
    classifier = Dense(128, activation='relu')(input_layer)
    classifier = Dropout(0.5)(classifier)
    classifier = Dense(1, activation='sigmoid')(classifier)
    classModel = Model(inputs=input_layer, outputs=classifier)
    classModel.compile(optimizer='adam', loss='mean_squared_error')
    return classModel
```

Layer (type)	Output	Shape	Param #
input_5 (InputLayer)	(None,	712)	0
dense_10 (Dense)	(None,	128)	91264
dropout_3 (Dropout)	(None,	128)	0
dense_11 (Dense)	(None,	1)	129

Total params: 91,393 Trainable params: 91,393 Non-trainable params: 0

PCA + NEURAL NETWORK (2)

	Classification Report_Train					
	precision	recall	f1-score			
0	0.97	0.95	0.96			
1	0.56	0.64	0.60			

	Classificatio	n Report	_Test
	precision	recall	f1-score
0	0.96	0.94	0.95
1	0.48	0.56	0.52

Complexity

Total number of features using: 91,393 features

Time running models: 38.5s (Colab)

Train vs. Validation loss 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 epoch Sparse - probability for both death and survived Predicted probabilities

MODEL COMPARISION & SELECTION

No	Model	AUC	Brier Score	Precision	Recall	Run Time	No. features	Overfitting
众	Logistic Reg - Binning	0.880	0.0575	0.46	0.54	13.4s	463	No
2	Logistic Reg - Imputing	0.859	0.0617	0.43	0.46	9.85s	177	No
3	Logistic Reg - PCA	0.880	0.0579	0.47	0.54	22.6s	712	No
4	Random Forest - Binning	0.820	0.0644	0.49	0.35	8.48s	34	No
5	LGB - Imputing	0.886	0.0566	0.47	0.54	8.15 mins	177	Yes
6	CatBoost	0.884	0.0567	0.47	0.54	8 mins	107	No
公	Neural Network - PCA	0.890	0.0546	0.48	0.56	38.5s	91,939	No

Best performance in terms of AUC, Brier Score, Precision, Recall

Business related (less complexity + generalizable)

COMPARE THE WINNING MODEL WITH ACTUAL APACHE_4A_PROBABILITY

0.92

0.52

0.93

0.43

Logistic Regression Predict Probability

survived

SUMMARY

- Conclusion
- Lesson Learned
- Future Work

CONCLUSION

- Logistic regression is a good model for this type of dataset
- SMOTE does not help in this case since:
 - it does not take
 into account neighboring
 examples can be from other
 classes, introducing additional
 noise
 - is not very practical for high dimensional data
- Binning: works well for extreme values, that shows importance in the model

LESSON LEARNT

- Should not drop features or observations with high percentage of missing values without having a basic domain knowledge
- Trade-off between explainability and interpretability. The best performance model does not have to be the one that being used in practical
- Be creative! Our call to adjust the threshold instead of using the original probability threshold: 0.5 for imbalanced data
- Try to use functions to utilize code

FUTURE WORK

- Have a better understanding about the features (domain knowledge)
- Collect more data: Using GAN to generate more data instead of using SMOTE
- Improve model prediction ability by:
 - Learning the key features importance of each model and try to combine such features
 - Applying Autoencoder to get a higher level of understanding the characteristics of patients who were misclassified with 'death' or 'survived'

APPENDIX

DICTIONARY

Features	Definition
ventilated_apache	Whether the patient was invasively ventilated at the time of the highest scoring arterial blood gas using the oxygenation scoring algorithm, including any mode of positive pressure ventilation delivered through a circuit attached to an endo-tracheal tube or tracheostomy
urineoutput_apache	The total urine output for the first 24 hours
map_apache	The mean arterial pressure measured during the first 24 hours which results in the highest APACHE III score
intubated_apache	Whether the patient was intubated at the time of the highest scoring arterial blood gas used in the oxygenation score
apache_post_operative	The APACHE operative status; 1 for post-operative, 0 for non-operative
arf_apache	Whether the patient had acute renal failure during the first 24 hours of their unit stay, defined as a 24 hours urine output <410ml, creatinine >=133 micromol/L and no chronic dialysis
gcs_unable_apache	Whether the Glasgow Coma Scale was unable to be assessed due to patient sedation
apache_3j_diagnosis	The APACHE III-J sub-diagnosis code which best describes the reason for the ICU admission