USTHB, Faculté de Chimie SNV Chimie I – LMD

27 Janvier 2019

RATTRAPAGE DU PREMIER SEMESTRE Durée 1H 30

Exercice 1: (2,5 points)

Le potassium 19K existe sous deux formes isotopiques; le ³⁹K et ⁴¹K avec des abondances respectives de (93,258%) et (6,742%).

a- Déterminer la masse atomique du potassium naturel

$$M=\sum_{i=1}^n m_i x_i$$
 / 100

$$\mathbf{M} = (\mathbf{m}_1 \mathbf{x}_1 + \mathbf{m}_2 \mathbf{x}_2) / 100$$

$$\mathbf{M} = (39x93,258 + 41x6,742) / 100$$

M = 39,135 una

b- Donner la constitution des noyaux des deux isotopes de K

 $^{39}_{19}$ K : Noyau : Protons = 19, Neutrons = 20

 $^{41}_{19}$ K : Noyau : Protons = 19, Neutrons = 22

Exercice 2: (7,75 points)

Soient les éléments du tableau périodique suivants: 80, 11Na, Sc, Se et Br tel que: le Scandium (Sc) est le premier élément de transition, le Brome (Br) est le troisième halogène et le Sélénium (Se) appartient à la même colonne que l'oxygène et à la même période que le brome.

1- Déterminer la configuration électronique de chaque élément et indiquer son numéro atomique, son groupe et sa période

Elément	Configuration électronique	Z	Groupe	Période
$\mathbf{O_8}$	$1s^2/2s^22p^4$		VIA	2
₁₁ Na	$1s^22s^22p^6/3s^1$		$\mathbf{I_A}$	3
21Sc	₁₈ [Ar] 4s ² 3d ¹	21	III_{B}	4
₃₄ Se	₁₈ [Ar] 4s ² 3d ¹⁰ 4p ⁴	34	VIA	4
₃₅ Br	$_{18}[Ar] 4s^2 3d^{10}4p^5$	35	VII _A	4

2- Quelle est la nature de la liaison NaBr? Justifier

Liaison ionique: Na+ Br-

(Grande différence d'électronégativité entre l'alcalin Na et l'halogène Br)

3- Les éléments O et Se peuvent se lier pour former les composés ; SeO₂, SeO₃ , (SeO₃)⁻²

Compléter le tableau ci-dessous:

Composés	Structure de Lewis	AX_mE_n	Hybridation	Géométrie
SeO ₂	Se	$\mathbf{AX}_{2}\mathbf{E}_{1}$	sp ²	Angulaire
SeO ₃	Se	AX_3	sp ²	Plan triangulaire
(SeO ₃) ²⁻	(-) O (-)	AX ₃ E ₁	sp ³	Pyramide trigonale

Exercice 3: 2,25 points soit la molécule de méthanal (H₂CO)

1-Representer son moment dipolaire et donner son expression (on négligera la polarisation des liaisons C-H)

$$\mu_R = \mu_{H2CO} = \mu_{C-O} \neq 0 \implies Molécule polaire$$

a- Le moment de liaison C=O est égal à 2,3D et la longueur de liaison C=O est de 1,23Å. Calculer le pourcentage du caractère ionique de cette liaison.

On Donne 1D=3,33 10⁻³⁰ C.m et Ie I= 1,6 10⁻¹⁹ C

Exercice 4 (1,5 point)

Soient les deux composés suivants :

Expliquer la différence de leurs températures d'ébullition.

Paranitroophènol

 $T = 114 \, ^{\circ}C$

Liaison hydrogène intermoléculaire

Soit la molécule (A) suivante en représentation de Cram

1- Nommer le composé (A) et préciser la configuration absolue du ou des

3-chloro-4-hydroxypentanal

2- Représenter un isomère de fonction de (A)

Acide 3-chloropentanoïque

3-chloro-4-hydroxypentan-2-one

3- Représenter un isomère de chaine de (A)

3-chloro-4-hydroxypentanal

3-chloro-4-hydroxy-2-méthylpentanal

4- Représenter en CRAM l'énantiomère (B) du composé (A)

Soit le composé acide 4-chloro 2-méthylbut-2-ènoique

1- Représenter la formule développée de ce composé

$$C1 - CH_2 - C = C - C$$
 $H - CH_3 - OH$

2- Quel type d'isomérie présente ce composé

Présence d'une double liaison isomérie géométrique

3- Représenter les stéréoisomères possibles de ce composé et préciser leurs configurations

