DFPT with magnetic fields and noncollinear XC functionals

Sergei Prokhorenko Eric Bousquet

(a) General definition

We are considering only the spin response (no orbital magnetization)

(b) Why to compute it?

• For small q and ω it gives the excitation spectrum ... magnons, spin (charge) density waves, etc.

FIG. 3. Calculated $\text{Im}[\chi(\mathbf{q},\omega)]$ (Ry⁻¹) for Cr.

S. Savrasov Phys. Rev. Lett. **81** 2570 (1998)

(b) Why to compute it?

- Second principles (Multibinit!)
- Fit effective Hamiltonian parameters (Heisenberg Hamiltonian etc.)

Phonons

Spin waves

(b) Why to compute it?

- Second principles (Multibinit!)
- Fit effective Hamiltonian parameters (Heisenberg Hamiltonian etc.)

Frozen magnon

SSSDW DFT

$$\exp(i\,\mathbf{k}\cdot\mathbf{r}) \begin{pmatrix} \exp(-i\,\frac{1}{2}\,\mathbf{q}\cdot\mathbf{r}) \; u_{\mathbf{k},\nu}^{(\uparrow)}(\mathbf{r}) \\ \exp(+i\,\frac{1}{2}\,\mathbf{q}\cdot\mathbf{r}) \; u_{\mathbf{k},\nu}^{(\downarrow)}(\mathbf{r}) \end{pmatrix} \qquad \hat{J}_{\alpha\beta}(q,\omega) = \hat{\chi}_{\alpha\beta}^{-1}(q,\omega)$$

DFPT

Phys. Rev. B 88, 134427 (2013)

(c) How to compute from perturbation theory?

$$i\frac{\partial}{\partial t}\varphi_k(\mathbf{r},t) = \hat{H}_{KS}[n](\mathbf{r},t)\varphi_k(\mathbf{r},t)$$

$$i\frac{\partial}{\partial t}\varphi_k^{(1)}(\boldsymbol{r},t) = \hat{H}_{KS}^{(0)}[n^{(0)}](\boldsymbol{r})\varphi_k^{(1)}(\boldsymbol{r},t) + \left[\hat{H}_{KS}^{(1)}[n](\boldsymbol{r},t) + v_{\text{ext}}^{(1)}(\boldsymbol{r},t)\right]\varphi_k^{(0)}(\boldsymbol{r},t)$$

$$\varphi_{k,\omega}^{(1)} = \sum_{m \neq k} |\varphi_m^{(0)}\rangle \frac{\langle \varphi_m^{(0)} | \hat{H}_\omega^{(1)} | \varphi_k^{(0)} \rangle}{\varepsilon_m^{(0)} - \varepsilon_k^{(0)} + \omega}$$

(c) How to compute?

• Sternheimer/Variational

$$i\frac{\partial}{\partial t}\varphi_k^{(1)}(\boldsymbol{r},t) = \hat{H}_{KS}^{(0)}[n^{(0)}](\boldsymbol{r})\varphi_k^{(1)}(\boldsymbol{r},t) + \left[\hat{H}_{KS}^{(1)}[n](\boldsymbol{r},t) + v_{\text{ext}}^{(1)}(\boldsymbol{r},t)\right]\varphi_k^{(0)}(\boldsymbol{r},t)$$

Conceptually simple + already implemented in Abinit TD-DFPT deneralization (Variation of the action "S" functional)

(d) Bibliography

Reviews

- "Aspects of Time-Dependent Perturbation Theory" Rev. Mod. Phys. P.W. Langhoff et al. (1972)
- "A unified formulation of the construction of variational principles" Rev. Mod. Phys. Gerjuoy et al. (1983)
- "Time-Dependent Density Functional Theory" M.A.L. Marques et al. Lect. Notes Phys. 706 (Springer, 2006)

Implementations and theory

- K. L. Liu, S. H. Vosko, Can. J. Phys. 67, 1015 (1989)
- S. Y. Savrasov, Phys. Rev. Lett. 81, 2570 (1998)
- G. Vignale, Phys. Rev. A. 77, 062611 (2008)
- R. Requist, O. Pankratov, Phys. Rev. A 79, 032502 (2009)

(d) Bibliography

Reviews

- "Aspects of Time-Dependent Perturbation Theory" Rev. Mod. Phys. P.W. Langhoff et al. (1972)
- "A unified formulation of the construction of variational principles" Rev. Mod. Phys. Gerjuoy et al. (1983)
- "Time-Dependent Density Functional Theory" M.A.L. Marques et al. Lect. Notes Phys. 706 (Springer, 2006)

Implementations and theory (spin response) K. L. Liu, S. H. Vosko, Can. J. Phys. 67, 1015 (1989) S. Y. Savrasov, Phys. Rev. Lett. 81, 2570 (1998) G. Vignale, Phys. Rev. A. 77, 062611 (2008) R. Requist, O. Pankratov, Phys. Rev. A 79, 032502 (2009) Paramagnetic case, HEG, transverse spin susc. "it is easy to show" style, implementation An easier causality problem resolution TD-DFPT

(d) Bibliography

- K. L. Liu, S. H. Vosko, Can. J. Phys. 67, 1015 (1989)
- S. Y. Savrasov, Phys. Rev. Lett. 81, 2570 (1998)

Paramagnetic case, HEG, transverse spin susc.

"it is easy to show" style, LMTO implementation

$$A_{U}[n,m_{z}] = G[n,m_{z}] + \frac{1}{2} \int_{t_{0}}^{t_{1}} d\tau \int d\mathbf{r}_{1} d\mathbf{r}_{2} n(\mathbf{r}_{1}\tau) \times u(\mathbf{r}_{1}-\mathbf{r}_{2})n(\mathbf{r}_{2}\tau) + \int_{t_{0}}^{t_{1}} d\tau \int d\mathbf{r} v_{0}(\mathbf{r})n(\mathbf{r}\tau) - \int_{t_{0}}^{t_{1}} d\tau \int d\mathbf{r} B(\mathbf{r}\tau)m_{z}(\mathbf{r}\tau)$$

$$\int_{t_0}^{t_1} d\tau \langle \psi[n, m_z; \tau] | \hat{T} - i(\partial/\partial \tau) | \psi[n, m_z; \tau] \rangle + A_{XC}[n, m_z]$$

Action is stationary

2nd order action is stationary w.r.t 1st order density

(d) Bibliography

- K. L. Liu, S. H. Vosko, Can. J. Phys. 67, 1015 (1989)
- S. Y. Savrasov, Phys. Rev. Lett. 81, 2570 (1998)

Action is stationary

2nd order action is stationary w.r.t 1st order density

action quasienergy

Causality: which functional is stationary?! e.g. G. Vignale, Phys. Rev. A. 77, 062611 (2008)

(d) Bibliography

(d) Bibliography

(d) Bibliography

$$v[n;\mathbf{r},t] = \frac{\delta A[n]}{\delta n(\mathbf{r},t)} \qquad \frac{\delta v[n;\mathbf{r},t]}{\delta n(\mathbf{r}',t')} = \frac{\delta^2 A[n]}{\delta n(\mathbf{r},t) \delta n(\mathbf{r}',t')}$$

(d) Bibliography

$$v[n;\mathbf{r},t] \equiv \frac{\delta A[n]}{\delta n(\mathbf{r},t)} \qquad \frac{\delta v[n;\mathbf{r},t]}{\delta n(\mathbf{r}',t')} = \frac{\delta^2 A[n]}{\delta n(\mathbf{r},t) \delta n(\mathbf{r}',t')}$$

Physical meaning of the stationary functional changes

(d) Bibliography

R. Requist, O. Pankratov, Phys. Rev. A 79, 032502 (2009)

$$\Psi(t) = \xi_{\tau}(t) \exp\left[-i \int_{-\infty}^{t} dt' K_{\tau}(t')\right] \qquad K_{\tau}(t) = \frac{\langle \xi_{\tau} | \hat{H}_{\tau}(t) - i \partial_{t} | \xi_{\tau} \rangle}{\langle \xi_{\tau} | \xi_{\tau} \rangle}$$
Secular phase

Assumptions

General considerations

General considerations

$$\delta B_{\beta}(r,t) = (e^{i\omega t + iqr} + c.c.) \sum_{G} \lambda_{G} e^{iGr}$$
 $\lambda_{G} = \lambda_{-G}^{*}$ is not zero for one single G value

$$\delta m_{\alpha}(r,t) = (2\pi)^2 \left(\lambda_G e^{i\omega t} e^{i(q+G)r} X_{\alpha\beta}(r,G+q,\omega) + \lambda_G^* e^{-i\omega t} e^{-i(q+G)r} X_{\alpha\beta}(r,-G-q,\omega) \right)$$

General considerations

$$\delta B_{\beta}(r,t) = (e^{i\omega t + iqr} + c.c.) \sum_{G} \lambda_{G} e^{iGr}$$
 $\lambda_{G} = \lambda_{-G}^{*}$ is not zero for one single G value

$$\delta m_{\alpha}(r,t) = (2\pi)^2 \left(\lambda_G e^{i\omega t} e^{i(q+G)r} X_{\alpha\beta}(r,G+q,\omega) + \lambda_G^* e^{-i\omega t} e^{-i(q+G)r} X_{\alpha\beta}(r,-G-q,\omega) \right)$$
Periodic part
$$\delta m_{\alpha}(r,t) = e^{i\omega t + iqr} \times (periodic \ function)$$

Incommensurate part

General considerations

$$\delta m_{\alpha}(r,t) = e^{i\omega t + iqr} \times (periodic\ function)$$

$$\int d^3r \int dt \left(\delta m_{\alpha}(r,t)e^{-i\omega t - iqr}\right) e^{-iG'r} = X_{\alpha,\beta}(G' - G, G + q, \omega)$$

General considerations

$$\int d^3r \int dt \left(\delta m_{\alpha}(r,t)e^{-i\omega t - iqr}\right) e^{-iG'r} = X_{\alpha,\beta}(G' - G, G + q, \omega)$$

$$\int d^3r \int dt \left(\delta m_{\alpha}(r,t)e^{-i\omega t - iqr}\right) = X_{\alpha,\beta}(G=0,q,\omega)$$

Euler Lagrange equations

$$\begin{pmatrix} \hat{H}_{KS}^{(0)} - \varepsilon_{k}^{(0)} + \omega & 0 \\ 0 & \hat{H}_{KS}^{(0)} - \varepsilon_{k}^{(0)} - \omega \end{pmatrix} \begin{pmatrix} \varphi_{k,+\omega}^{(1)} \\ \varphi_{k,-\omega}^{(1)} \end{pmatrix} = - \begin{pmatrix} \left(v_{Hxc,+\omega}^{(1)} + v_{ext,+\omega}^{(1)} - \varepsilon_{k,+\omega}^{(1)} \right) \varphi_{k}^{(0)} \\ \left(v_{Hxc,-\omega}^{(1)} + v_{ext,-\omega}^{(1)} - \varepsilon_{k,-\omega}^{(1)} \right) \varphi_{k}^{(0)} \end{pmatrix}$$

Ansatz

$$\varphi(\boldsymbol{r},t) = e^{-i\varepsilon^{(0)}t - i\lambda\Delta\varepsilon^{(1)}(t)} \times \left\{ \varphi^{(0)}(\boldsymbol{r}) + \lambda \left[\varphi_{+\omega}^{(1)}(\boldsymbol{r}) e^{i\omega t} + \varphi_{-\omega}^{(1)}(\boldsymbol{r}) e^{-i\omega t} \right] \right\}$$

$$\Delta\varepsilon^{(1)}[n](t) = \int_{-\infty}^{t} dt \langle \varphi^{(0)} | \hat{H}_{KS}^{(1)}[n](t) + v_{ext}^{(1)}(t) | \varphi^{(0)} \rangle.$$

Euler Lagrange equations

$$\begin{pmatrix} \hat{H}_{\text{KS}}^{(0)} - \varepsilon_{k}^{(0)} + \omega & 0 \\ 0 & \uparrow \hat{H}_{\text{KS}}^{(0)} - \varepsilon_{k}^{(0)} - \omega \end{pmatrix} \begin{pmatrix} \varphi_{k,+\omega}^{(1)} \\ \varphi_{k,-\omega}^{(1)} \end{pmatrix} = - \begin{pmatrix} \left(v_{\text{Hxc},+\omega}^{(1)} + v_{\text{ext},+\omega}^{(1)} - \varepsilon_{k,+\omega}^{(1)} \right) \varphi_{k}^{(0)} \\ v_{\text{Hxc},-\omega}^{(1)} + v_{\text{ext},-\omega}^{(1)} - \varepsilon_{k,-\omega}^{(1)} \right) \varphi_{k}^{(0)} \end{pmatrix}$$

$$\omega + i\eta \qquad \omega - i\eta$$

Ansatz

$$\varphi(\boldsymbol{r},t) = \mathrm{e}^{-\mathrm{i}\varepsilon^{(0)}t - \mathrm{i}\lambda\Delta\varepsilon^{(1)}(t)} \times \left\{ \varphi^{(0)}(\boldsymbol{r}) + \lambda \left[\varphi_{+\omega}^{(1)}(\boldsymbol{r}) \mathrm{e}^{\mathrm{i}\omega t} + \varphi_{-\omega}^{(1)}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i}\omega t} \right] \right\}$$

$$\Delta\varepsilon^{(1)}[n](t) = \int_{-\infty}^{t} \mathrm{d}t \langle \varphi^{(0)} | \hat{H}_{\mathrm{KS}}^{(1)}[n](t) + v_{\mathrm{ext}}^{(1)}(t) | \varphi^{(0)} \rangle.$$

Euler Lagrange equations

$$\begin{pmatrix} \hat{H}_{\text{KS}}^{(0)} - \varepsilon_{k}^{(0)} + \omega & 0 \\ 0 & \uparrow \hat{H}_{\text{KS}}^{(0)} - \varepsilon_{k}^{(0)} - \omega \end{pmatrix} \begin{pmatrix} \varphi_{k,+\omega}^{(1)} \\ \varphi_{k,-\omega}^{(1)} \end{pmatrix} = - \begin{pmatrix} \begin{pmatrix} v_{\text{Hxc},+\omega}^{(1)} + v_{\text{ext},+\omega}^{(1)} - \varepsilon_{k,+\omega}^{(1)} \\ v_{\text{Hxc},-\omega}^{(1)} + v_{\text{ext},-\omega}^{(1)} - \varepsilon_{k,-\omega}^{(1)} \end{pmatrix} \varphi_{k}^{(0)} \\ \omega + i\eta & \omega - i\eta \end{pmatrix}$$

- Solution for two different frequencies for each point of (ω,q) grid
- Phase factorization works in the same way as in the static case
- First order external potential is a constant matrix:

$$v_{ext}^{(1)} = \frac{1}{2}\vec{\sigma}$$

$$(\omega = 0, q = 0)$$

$$(\omega = 0, q \neq 0)$$

$$(\omega \neq 0, q \neq 0)$$

Physics (+ tests of xc flavors)

$$(\omega = 0, q = 0)$$

$$(\omega = 0, q \neq 0)$$

$$(\omega \neq 0, q \neq 0)$$

Physics (+ tests of xc flavors)

$$(\omega=0,q=0)$$

$$(\omega=0,q\neq0)$$

$$(\omega\neq0,q\neq0)$$

$$(\omega\neq0,q\neq0)$$
Physics (+ tests of xc flavors)

• Fe bcc

$$(\omega = 0, q = 0)$$

$$(\omega = 0, q \neq 0)$$

$$(\omega \neq 0, q \neq 0)$$

Physics (+ tests of xc flavors)

•
$$rfmagn = 1$$

•
$$\operatorname{Cr}_2\operatorname{O}_3$$
 $\chi_{\parallel}=0$

OK

• Cr₂O₃ transverse susceptibility

$$(\omega=0,q=0)$$

$$(\omega=0,q\neq0)$$

$$(\omega\neq0,q\neq0)$$

$$(\omega\neq0,q\neq0)$$
Physics (+ tests of xc flavors)

- NC + only longitudinal response is OK
- Many things can be probed even in this simplest case
 - Dynamic magnetic charges (spin part)
 - Phonon induced first order magnetization

$$(\omega=0,q=0)$$

$$(\omega=0,q\neq0)$$

$$(\omega\neq0,q\neq0)$$
Physics (+ tests of xc flavors)

Many people believe that if it ain't broke, don't fix it...

... if it ain't broke, it doesn't have enough features yet

NC LDA+U?

XC functionals

LSDA/GGA

Kettle principle:

use collinear xc functionals

$$U_{\alpha\beta} \sim 1/|m|$$

$$v_{xc} = v_x c[|m| = 0] + |m| \frac{dv_{xc}}{dm}$$

$$\{n, \vec{m}\} \rightarrow \{n_{\pm}, \gamma_{\pm}, \gamma_{\text{mix}}, \tau_{\pm}, \nabla^2 n_{\pm}\}$$

I. W. Bulik et al. Phys. Rev. B 87, 035117 (2013)

XC functionals

Other approaches

Kettle principle

PRL 98, 196405 (2007)

PHYSICAL REVIEW LETTERS

week ending 11 MAY 2007

First-Principles Approach to Noncollinear Magnetism: Towards Spin Dynamics

S. Sharma, ^{1,2,5,*} J. K. Dewhurst, ^{2,3} C. Ambrosch-Draxl, ^{2,4} S. Kurth, ⁵ N. Helbig, ^{1,5} S. Pittalis, ⁵ S. Shallcross, ⁶ L. Nordström, ⁷ and E. K. U. Gross ⁵

PRL **111,** 156401 (2013)

PHYSICAL REVIEW LETTERS

week ending 11 OCTOBER 2013

Transverse Spin-Gradient Functional for Noncollinear Spin-Density-Functional Theory

F. G. Eich^{1,2,*} and E. K. U. Gross¹

Thank you for your attention

Other developments: Hybrid MC (better sampling, faster than MMC, equilibrium properties?)