My Objective Functions

The system is an adsorption chiller, and I intend to optimise the following objectives first each objective function alone in Single Objective Optimization (SOO), then all objectives simultaneously in multi-objective optimization (MOO). I want to use three optimization algorithms **GWO and MOGWO**; **PSO and MOPSO**; **ANT LION and MOALO**; or any three you are conversant with.

I want the optimal values and plots (Pareto-Fronts, etc.) to show results. Results and figures can be presented in the pdf file UCHE MOO I am sharing. The expected optimal values are shown in parenthesis by the objective functions.

1. Objective 1: Maximize COP [0.5 – 0.8]

The linear regression equations for the performance indicators of the single-stage dual-bed adsorption chiller are as follows:

$$\begin{split} \text{COP} &= -1.1469 + 0.0014 T_{hw,in} - 0.0085 T_{cw,in} + 0.0124 T_{chw,in} \\ &\quad + 0.0050 \dot{m}_{hw} + 0.0099 \dot{m}_{cw,bed} + 0.0793 \dot{m}_{chw} + 0.0092 \dot{m}_{cw,cond} \\ &\quad + 5.0687 \times 10^{-6} U_{bed} A_{bed} + 5.2952 \times 10^{-6} U_{evap} A_{evap} \\ &\quad + 4.6260 \times 10^{-7} U_{cond} A_{cond} \end{split}$$
 with adjusted $R^2 = 0.8041$

2. Maximize Cooling Capacity, Q_{cc} [> 16 kW] The linear regression equations for the performance indicators of the single-stage dual-bed adsorption chiller are as follows:

$$\begin{split} Q_{cc} &= -64.6199 + 0.3107 T_{hw,in} - 0.8625 T_{cw,in} + 0.7601 T_{chw,in} \\ &+ 0.6108 \dot{m}_{hw} + 0.9944 \dot{m}_{cw,bed} + 4.4533 \dot{m}_{chw} + 0.5967 \dot{m}_{cw,cond} \\ &+ 0.0006 U_{bed} A_{bed} + 0.0003 U_{evap} A_{evap} \\ &+ 2.6623 \times 10^{-5} U_{cond} A_{cond} \end{split}$$
 with adjusted $R^2 = 0.9250$

3. Maximize waste heat recovery efficiency, η_e [> 0.65]

$$\begin{split} \eta_e &= -0.2347 - 0.0003 T_{hw,in} - 0.0019 T_{cw,in} + 0.0026 T_{chw,in} \\ &+ 0.0277 \dot{m}_{hw} + 0.0034 \dot{m}_{cw,bed} + 0.0150 \dot{m}_{chw} + 0.0019 \dot{m}_{cw,cond} \\ &+ 2.0286 \times 10^{-6} U_{bed} A_{bed} + 1.0279 \times 10^{-6} U_{evap} A_{evap} \end{split}$$

+ 6.8084
$$\times 10^{-8} U_{cond} A_{cond}$$

with adjusted $R^2 = 0.8371$

4. Maximize adsorption chiller efficiency, η_{ADC} [> 0.23]

$$\begin{split} \eta_{ADC} &= -3.0552 - 0.0029 T_{hw,in} - 0.0100 T_{cw,in} \ + 0.0040 T_{chw,in} \\ &+ 0.0017 \dot{m}_{hw} \ + \ 0.0037 \dot{m}_{cw,bed} + 0.0294 \dot{m}_{chw} + 0.0033 \dot{m}_{cw,cond} \\ &+ 1.8566 \times 10^{-6} U_{bed} A_{bed} + 1.9477 \ \times 10^{-6} U_{evap} A_{evap} \\ &+ 1.6083 \ \times 10^{-7} U_{cond} A_{cond} \end{split}$$
 with adjusted $R^2 = 0.9630$

(The adjusted R^2 values can be used for the MOO when using weights)

Table 1A: Decision Variables and Bounds

Key Parameters	Range	Units
Hot water inlet temperature $(T_{hw,in})$	65 – 95	°C
Cold water inlet temperature $(T_{cw,in})$	22 – 36	°C
Chilled water inlet temperature $(T_{chw,in})$	10 – 20	°C
Temperature of outlet chilled water ()	7 – 12	°C
Hot water mass flow rate of (\dot{m}_{hw})	0.8 - 2.2	kgs-1
Cool water mass flow rate of (\dot{m}_{cw})	0.8 - 2.2	kgs-1
Chilled water mass flow rate of (\dot{m}_{chw})	0.2 - 1.4	kgs-1
$\dot{m}_{cw,bed}$	0.8 - 2.2	kgs-1
$\dot{m}_{cw,cond}$	0.8 - 2.2	kgs-1
$U_{bed} A_{bed}$	2,000 – 10,000	W/K
$U_{evap} A_{evap}$	2,000 – 10,000	W/K
$U_{cond} A_{cond}$	10,000 – 10,000	W/K
Cp_w	4.186	kJ/kg K