Subs Paper Things to Do:

- write dN/dS methods
- write dN/dS results
- write dN/dS discussion
- write dN/dS into conclusion
- spatial analysis of dN, dS, and ω
- mol clock for my analysis?
- GC content? COG? where do these fit?

Gene Expression Paper Things to Do:

- write abstract
- write intro
- add stuff from outline to Data section
- create graphs for expression distribution (no sub data)
- add # of genes to expression graphs (top)
- average gene expression
- write discussion
- write conclusion
- add into methods: filters for Hiseq, RT PCR and growth phases for data collection
- update supplementary figures/file

Inversions and Gene Expression Letter Things to Do:

- check if opposite strand in progressiveMauve means an inversions (check visual matches the xmfa)
- check if PARSNP and progressive Mauve both identify the same inversions (check xmfa file)
- create latex template for paper
- put notes from papers into doc
- use large PARSNP alignment to identify inversions

- confirm inversions with dot plot
- write outline for letter
- write Abstract
- write intro
- write methods
- compile tables (supplementary)
- write results
- write discussion
- write conclusion
- do same ancestral/phylogenetic analysis that I did in the subs paper

Last Week

✓ finished SMBE poster + sent them off for printing

✓ attempt to save dotter plots (FAIL)

As I mentioned before, the GUI for Dotter is really bad and it constantly freezes. And trying to save them is really really difficult. There is way too much noise and you can not see the inversions clearly. Although, through all the noise it looks like there are three major inversions which is good! If you have any suggestions on a different program to use so I can more easily obtain this dot plot please let me know!

Re-running the selection and substitutions stuff is almost done! Some of the results are in the below tables. I have not looked into this too much.

I also calculated the average gene expression per replicon for fun, this is found in Table 2. Streptomyces is like 2 orders of magnitude lower than everything else..which is weird so I am not sure what is going on there. Do you think this is something that needs to be put into the gene expression paper?

I have also been working to put the dN, dS, and ω values for each gene into a supplementary table on github. This is slowly getting done.

This Week

I hope to have the re-running of the selection and substitutions analysis done by the end of the week (hopefully!!! but there are always issues that are slowing down my progress).

I would like to double check the results of the selection and substitutions analysis to make sure that it all went well (and hopefully fixed some of the issues I was having before like *Streptomyces* having dS > dN)

If possible I would also like to have a dot plot for the inversions and gene expression analysis.

Next Week

Next Week + the week after is the conference and travelling for me. My goal is to read a bunch of papers and make notes on them while I am away.

Bacteria and Replicon	dN	dS	ω
E. coli Chromosome	NS	NS	1.416×10^{-4}
B. subtilis Chromosome	$-1.383 \times 10^{-6} ***$	NS	$-1.309 \times 10^{-5**}$
Streptomyces Chromosome			
$S. \ meliloti \ { m Chromosome}$	NS	NS	NS
$S. \ meliloti \ pSymA$	NS	NS	NS
S. meliloti pSymB	NS	NS	1.167×10^{-5} *

Table 1: Linear regression for dN, dS, and ω calculated for each bacterial replicon on a per genome basis. All results are marked with significance codes as followed: p: < 0.001 = `***', 0.001 < 0.01 < 0.01 < 0.01 < 0.05 = `NS'.

Bacteria and Replicon	Average Expression Value (CPM)
E. coli Chromosome	160.500
B. subtilis Chromosome	176.400
Streptomyces Chromosome	6.084
S. meliloti Chromosome	271.400
$S.\ meliloti\ pSymA$	690.100
S. meliloti pSymB	595.700

Table 2: Arithmetic gene expression calculated across all genes in each replicon. Expression values are represented in Counts Per Million.

Violin plots for per gene dN, dS, and ω :

Genome Distribution for per 10kb dN, dS, and ω averages:

	Gene Average			Genome Average		
Bacteria and Replicon	dS	dN	ω	dS	dN	ω
E. coli Chromosome	1.3694	0.1433	3.2789	0.7445	0.0752	1.5618
$B.\ subtilis\ { m Chromosome}$	4.4557	0.2755	8.9584	0.7947	0.1140	4.8677
Streptomyces Chromosome	0.1924	0.3201	2.6404	0.1775	0.3017	2.4358
$S.\ meliloti$ Chromosome	0.0134	0.0014	0.0844	0.0134	0.0013	0.0930
$S. \ meliloti \ \mathrm{pSymA}$	1.0602	0.7451	5.1290	0.4100	0.0863	0.8311
S. meliloti pSymB	3.3091	0.0260	0.3878	0.1436	0.0100	0.1950

Table 3: Weighted averages calculated for each bacterial replicon on a per genome basis using the gene length as the weight. Arithmetic mean calculated for the per gene averages for each bacterial replicon.

Bacteria and Replicon	Average Replicon Length	# of Coding Sites	# of Non-Coding Sites	# of Subs Coding	# of Subs Non-Coding
E. coli Chromosome	5082529	2960007	191748	207199	9534
B. subtilis Chromosome	4077077	2074653	102906	205150	6187
Streptomyces Chromosome	8497577	2422980	21581	551530	3670
S. meliloti Chromosome	3426881	1931139	199425	6684	842
S. meliloti pSym A	1455940	419223	34213	9832	943
$S.\ meliloti\ p{ m Sym}{ m B}$	1664597	552816	22098	11699	645

Table 4: Total proportion of coding and non-coding sites in each replicon and the percentage of those sites that have a substitution (multiple substitutions at one site are counted as two substitutions).

Bacteria and Replicon	Coding Sequences	Non-Coding Sequences
E. coli Chromosome	$3.557 \times 10^{-7} ***$	NS
B. subtilis Chromosome	$-7.804 \times 10^{-8***}$	-3.170×10^{8} *
Streptomyces Chromosome	$4.545 \times 10^{-8***}$	$1.584 \times 10^{-7} ***$
$S.\ meliloti$ Chromosome	$-9.183 \times 10^{-8} ***$	$-1.718 \times 10^{-7} ***$
S. meliloti pSymA	$-8.121 \times 10^{-7***}$	$-1.247 \times 10^{-7} ***$
S. meliloti pSymB	$1.655 \times 10^{-7***}$	$4.105 \times 10^{-7} ***$

Table 5: Logistic regression analysis of the number of substitutions along all positions of the genome of the respective bacteria replicons. These genomic positions were split up into the coding and non-coding regions of the genome. Grey coloured boxes indicate a negative logistic regression coefficient estimate. All results are statistically significant. Logistic regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication. All results are marked with significance codes as followed: < 0.001 = "**", 0.001 < 0.01 = "**", 0.01 < 0.05 = "", > 0.05 = "NS".

Bacteria Strain/Species	GEO Accession Number	Date Accessed
E. coli K12 MG1655	GSE60522	December 20, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{M}G1655$	GSE73673	December 19, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{M}G1655$	GSE85914	December 19, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{M}G1655$	GSE40313	November 21, 2018
$E.\ coli\ \mathrm{K}12\ \mathrm{M}G1655$	GSE114917	November 22, 2018
E. coli K12 MG1655	GSE54199	November 26, 2018
E. coli K12 DH10B	GSE98890	December 19, 2017
E. coli BW25113	GSE73673	December 19, 2017
E. coli BW25113	GSE85914	December 19, 2017
E. coli O157:H7	GSE46120	August 28, 2018
E. coli ATCC 25922	GSE94978	November 23, 2018
$B.\ subtilis\ 168$	GSE104816	December 14, 2017
$B.\ subtilis\ 168$	GSE67058	December 16, 2017
$B.\ subtilis\ 168$	GSE93894	December 15, 2017
B. subtilis 168	GSE80786	November 16, 2018
S. coelicolor A3	GSE57268	March 16, 2018
$S.\ natalensis\ HW-2$	GSE112559	November 15, 2018
S. meliloti 1021 Chromosome	GSE69880	December 12, 2017
S. meliloti 2011 pSymA	NC_020527 (Dr. Finan)	April 4, 2018
S. meliloti 1021 pSymA	GSE69880	November 15, 18
S. meliloti 2011 pSymB	NC_020560 (Dr. Finan)	April 4, 2018
S. meliloti 1021 pSymB	GSE69880	November 15, 18

Table 6: Summary of strains and species found for each gene expression analysis. Gene Expression Omnibus accession numbers and date accessed are provided.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-6.03×10^{-5}	1.28×10^{-5}	2.8×10^{-6}
B. subtilis Chromosome	-9.7×10^{-5}	2.0×10^{-5}	1.2×10^{-6}
Streptomyces Chromosome	-1.17×10^{-6}	1.04×10^{-7}	$<2\times10^{-16}$
S. meliloti Chromosome	3.97×10^{-5}	4.25×10^{-5}	NS (3.5×10^{-1})
$S.\ meliloti\ \mathrm{pSymA}$	1.39×10^{-3}	2.53×10^{-4}	4.9×10^{-8}
S. meliloti pSymB	1.46×10^{-4}	2.03×10^{-4}	NS $(5.34.7 \times 10^{-1})$

Table 7: Linear regression analysis of the median counts per million expression data along the genome of the respective bacteria replicans. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.