Classification of neighbourhoods of leaves of singular foliations

joint work with Camille Laurent-Gengoux

Simon-Raphael Fischer

國家理論科學研究中心

4 September 2023

Foliations as associated bundles

Table of contents

- Singular Foliations
- 2 Curved Yang-Mills gauge theory
- Foliations as associated bundles
- Conclusion

Singular Foliations ●○○○○○○○

Foliations as associated bundles

Singular Foliations:

- Gauge Theory (Ex.: Singular foliation \leftrightarrow Symmetry breaking \rightarrow Higgs mechanism)
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
-

Foliations as associated bundles

Definition

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is involutive,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is involutive, i.e. $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Foliations as associated bundles

Singular Foliations

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is locally finitely generated.

Singular Foliations

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Singular Foliations

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Idea: Relation to gauge theory

Singular Foliations

Figure: F-connections

Idea: Relation to gauge theory

Singular Foliations

Figure: F-connections

Theorem (\mathscr{F} -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $\mathsf{Sym}(\tau_{l},\tau_{l'})$.
- For a contractible loop γ_0 at I: PT_{γ_0} values in $Inn(\tau_I)$.

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle \mathscr{G}

Definition (LGB actions)

A **right-action of** $\mathscr G$ **on** $\mathscr T$ is a smooth map

 $\mathscr{T}*\mathscr{G}:=\mathscr{T}_{\phi}\times_{\pi_{\mathscr{G}}}\mathscr{G}\to\mathscr{T}$, $(t,g)\mapsto t\cdot g$, satisfying the following properties:

$$\phi(t \cdot g) = \phi(t), \tag{1}$$

$$(t \cdot g) \cdot h = t \cdot (gh), \tag{2}$$

$$t \cdot e_{\phi(t)} = p \tag{3}$$

for all $t \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\phi(t)}$, where $e_{\phi(t)}$ is the neutral element of $\mathcal{G}_{\phi(t)}$.

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi_{\mathcal T}\colon \mathcal T\to L'$ so that one has a commuting diagram

1 Ehresmann connection: \mathscr{G} preserving $\pi_{\mathscr{T}}$ and

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(t \cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(t) \cdot \mathsf{PT}^{\mathscr{G}}_{\Psi \circ \gamma}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathscr{G}_{\phi(t)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{F}}(t) = g_{\gamma_0} \cdot t \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle)

A surjective submersion $\pi_{\mathscr{P}} \colon \mathscr{P} \to L'$, with \mathscr{G} -action

$$\mathcal{P} * \mathcal{G} \rightarrow \mathcal{P}$$
 $\mathcal{P} * \mathcal{G}$

simply transitive on $\pi_{\mathscr{P}}$ -fibres of \mathscr{P} , and "suitable" atlas.

Connection and curvature

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

This gives rise to a generalised gauge theory by contracting the

Connection and curvature

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Remarks ([S.-R. F.])

This gives rise to a generalised gauge theory by contracting the involved curvatures.

Definition (Associated bundles, [C. L.-G., S.-R. F.])

Equivalence relation on $\mathscr{P}_{\phi} \times_{\pi_{\mathscr{T}}} \mathscr{T}$

$$(p,t) \sim (p \cdot g, g^{-1} \cdot t)$$

defines the **associated bundle** $\mathscr{P} \tilde{\times} \mathscr{T}$ over L'.

Associated bundles and connections

Theorem (Associated connection, [C. L.-G., S.-R. F.])

Given a multiplicative Ehresmann connection on \mathcal{G} , and related Ehresmann connection on \mathcal{P} and \mathcal{T} , then

$$\mathsf{PT}_{\gamma}^{\mathscr{P} ilde{ imes}\mathscr{T}}[p,t]\coloneqq\left[\mathsf{PT}_{\gamma}^{\mathscr{P}}(p),\mathsf{PT}_{\Psi\circ\gamma}^{\mathscr{T}}(t)
ight]$$

is a well-defined connection.

- G a subgroup of $\operatorname{Inn}(\tau_I)$
- \bigcirc P a principal G-bundle, equipped with an ordinary connection

Singular Foliations

- G a subgroup of $Inn(\tau_l)$
- P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**

Singular Foliations

- G a subgroup of $Inn(\tau_l)$
- P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{D}:=(P\times P)/G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G)/G$, the inner group bundle

Singular Foliations

- G a subgroup of $Inn(\tau_l)$
- P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G) / G$, the inner group bundle
- $\mathfrak{G} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

Singular Foliations

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- G a subgroup of $Inn(\tau_l)$
- P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G) / G$, the inner group bundle

Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- G a subgroup of $Inn(\tau_l)$
- P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{P} := (P \times P) / G$, the **Atiyah groupoid**
- $\mathscr{G} := (P \times G) / G$, the inner group bundle

Remarks

Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.

Singular Foliations

 \mathcal{P} comes with two natural projections to L, denoted by t and s

This extends to the associated bundle

 \mathscr{P} comes with two natural projections to L, denoted by t and s

This extends to the associated bundle

$$\begin{array}{ccc}
\mathscr{P}\widetilde{\times}\mathscr{T} & \longrightarrow \mathscr{T} \\
(t,s) \downarrow & \downarrow & \downarrow \\
L \times L & \xrightarrow{\mathrm{pr}_2} & L
\end{array}$$

Remarks ([C. L.-G., S.-R. F.])

Associated connection independent of the choice of \mathscr{F} -connection!

 \mathcal{P} comes with two natural projections to L, denoted by t and s

This extends to the associated bundle

$$\begin{array}{ccc}
\mathscr{P} \widetilde{\times} \mathscr{T} & \longrightarrow \mathscr{T} \\
(t,s) \downarrow & \downarrow & \downarrow \\
L \times L & \xrightarrow{\operatorname{pr}_2} & L
\end{array}$$

Remarks ([C. L.-G., S.-R. F.])

Associated connection independent of the choice of \mathcal{F} -connection!

Explicitly, one possible way:

Remarks

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \hookrightarrow At(P) \longrightarrow TL$$

Foliations as associated bundles

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

$$\pi_{\mathscr{T}}^{!}\mathsf{Ad}(P) \longrightarrow \pi_{\mathscr{T}}^{!}\mathsf{At}(P) \longrightarrow \mathsf{T}\mathscr{T}$$

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Explicitly, one possible way:

Remarks

Singular Foliations

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

Remarks

Observe

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Ad(P) and At(P) the adjoint and Atiyah bundle of P, respectively:

Remarks

Why Yang-Mills connections?

Involutive \leftrightarrow Connection on \mathcal{T} and \mathcal{G} Yang-Mills

Remarks (Why **curved** gauge theory?)

- Associated connection invariant under choice of F-connection $\nabla^{\mathscr{F}}$
- Associated connection has the form

$$\nabla^{\mathscr{F}} + A \cdot$$

where A is the connection 1-form on \mathcal{P}

Thank you!