GSERM 2024Regression for Publishing

June 18, 2024

Link To The "Friday Poll"

https://bit.ly/RegForPub-2024

Parameter Invariance

Implicit in

$$Y = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$$

is that

$$\frac{\partial E(Y)}{\partial X_k} = \beta_k \ \forall \text{ values of } X_k, X_\ell, k \neq \ell.$$

Conceptually: The marginal association between Y and every X is identical for all values of X.

Moderators

Moderating variable Z:

Intuition: The marginal association between X and Y varies with / depends on the value(s) of Z.

Moderating variables imply interactive models.

Don't Get Confused

Don't mistake a moderator for a mediator...

Interaction Effects

Multiplicative interaction:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + u_i$$

So:

$$E(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i}$$

= $\beta_0 + \beta_2 X_{2i} + (\beta_1 + \beta_3 X_{2i}) X_{1i}$
= $\beta_0 + \beta_2 X_{2i} + \psi_1 X_{1i}$

where $\psi_1 = \beta_1 + \beta_3 X_{2i}$. This means that the marginal effect:

$$\frac{\partial \mathsf{E}(Y_i)}{\partial X_1} = \beta_1 + \beta_3 X_{2i}.$$

Interaction Effects

Similarly:

$$E(Y_i) = \beta_0 + \beta_1 X_{1i} + (\beta_2 + \beta_3 X_{1i}) X_{2i}$$

= $\beta_0 + \beta_1 X_{1i} + \psi_2 X_{2i}$

which implies:

$$\frac{\partial \mathsf{E}(Y_i)}{\partial X_2} = \beta_2 + \beta_3 X_{1i}.$$

"Direct Effects"

Note that if $X_2 = 0$, then:

$$E(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2(0) + \beta_3 X_{1i}(0)$$

= $\beta_0 + \beta_1 X_{1i}$.

Similarly, for $X_1 = 0$:

$$E(Y_i) = \beta_0 + \beta_1(0) + \beta_2 X_{2i} + \beta_3(0) X_{2i} = \beta_0 + \beta_2 X_{2i}$$

Key Point

In most instances, the quantities we care about are not β_1 and β_2 , but rather ψ_1 and ψ_2 .

Inference

Point estimates:

$$\hat{\psi}_1 = \hat{\beta}_1 + \hat{\beta}_3 X_2$$

and

$$\hat{\psi}_2 = \hat{\beta}_2 + \hat{\beta}_3 X_1.$$

For variance, recall that:

$$Var(a + bZ) = Var(a) + Z^{2}Var(b) + 2ZCov(a, b)$$

Inference

Means that:

$$\widehat{\mathsf{Var}(\hat{\psi}_1)} = \widehat{\mathsf{Var}(\hat{\beta}_1)} + X_2^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2X_2 \widehat{\mathsf{Cov}(\hat{\beta}_1, \hat{\beta}_3)}.$$

and

$$\widehat{\mathsf{Var}(\hat{\psi}_2)} = \widehat{\mathsf{Var}(\hat{\beta}_2)} + X_1^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2X_1 \widehat{\mathsf{Cov}(\hat{\beta}_2, \hat{\beta}_3)}.$$

Types of Interactions: Dichotomous Xs

For

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{1i} D_{2i} + u_i$$

we have:

$$\begin{split} &\mathsf{E}(Y|D_1=0,D_2=0) &= \beta_0 \\ &\mathsf{E}(Y|D_1=1,D_2=0) &= \beta_0+\beta_1 \\ &\mathsf{E}(Y|D_1=0,D_2=1) &= \beta_0+\beta_2 \\ &\mathsf{E}(Y|D_1=1,D_2=1) &= \beta_0+\beta_1+\beta_2+\beta_3 \end{split}$$

Values of E(Y) for Changes in D_1

Values of E(Y) for Changes in D_2

Dichotomous and Continuous Xs

The model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i D_i + u_i$$

gives:

$$E(Y|X, D = 0) = \beta_0 + \beta_1 X$$

 $E(Y|X, D = 1) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X$

Four possibilities:

- $\beta_2 = \beta_3 = 0$
- $\beta_2 \neq 0$ and $\beta_3 = 0$
- $\beta_2 = 0$ and $\beta_3 \neq 0$
- $\beta_2 \neq 0$ and $\beta_3 \neq 0$

No Slope or Intercept Differences ($\beta_2 = \beta_3 = 0$)

Intercept Shift ($\beta_2 \neq 0$, $\beta_3 = 0$)

Slope Change ($\beta_2 = 0, \ \beta_3 \neq 0$)

Slope and Intercept Change $(\beta_2 \neq 0, \beta_3 \neq 0)$

Two Continuous Xs

The model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + u_i$$

means that:

$$\beta_3 = 0 \rightarrow \frac{\partial E(Y)}{\partial X_1} = \beta_1 \,\forall \, X_2 \text{ and } \frac{\partial E(Y)}{\partial X_2} = \beta_2 \,\forall \, X_1$$

Two Continuous Variables: No Interactive Effects

Two Continuous Variables: Interaction Present

Quadratic, Cubic, and Other Polynomial Effects

For the polynomial-in-X model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_i X_i^j + u_i$$

in general:

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \beta_1 + 2\beta_2 X + 3\beta_3 X^2 + \dots + j\beta_j X^{j-1}.$$

The quadratic case (j = 2):

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

implies

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \beta_1 + 2\beta_2 X.$$

Two Quadratic Relationships

Note: Red line is $Y_i = 10 + 1X_i - 5X_i^2 + u_i$; black line is $Y_i = -50 - 1X_i + 3X_i^2 + u_i$.

Example of a Cubic Relationship

Note: Solid line is $Y_i = -1 + 1X_i - 8X_i^2 + 5X_i^3 + u_i$.

Higher-Order Interactive Models

The three-way interaction:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{1i}X_{2i} + \beta_{5}X_{1i}X_{3i} + \beta_{6}X_{2i}X_{3i} + \beta_{7}X_{1i}X_{2i}X_{3i} + u_{i}$$

...is complex; consider the special case of dichotomous X_1 , X_2 :

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}D_{1i} + \beta_{3}D_{2i} + \beta_{4}X_{i}D_{1i} + \beta_{5}X_{i}D_{2i} + \beta_{6}D_{1i}D_{2i} + \beta_{7}X_{i}D_{1i}D_{2i} + u_{i}$$

Three-Way Interaction: Two Dummy + One Continuous Covariates

Example: President Clinton's 1996 "Thermometer Score"

Details:

- Source: 1996 American National Election Study
- $N \approx 1300$
- "Feeling Thermometer":

"In the list that follows, rate that person/party using something we call the feeling thermometer. Ratings between 50 degrees and 100 degrees mean that you feel favorable and warm toward the person/party. Ratings between 0 and 50 degrees mean that you don't feel favorable toward the person/party and that you don't care too much for that person. You would rate the person at the 50-degree mark if you don't feel particularly warm or cold toward the person."

- Ideology measures:
 - Seven-point scale (1 = "very left / liberal," 7 = "very right / conservative")
 - · Each respondent places themself + President Clinton
- Party ID: Republican (GOP=1) vs. Democrat/Independent (GOP=0)

Clinton "Feeling Thermometer" Data

Distribution:

Summary statistics:

> describe(ClintonTherm, skew=FALSE)

	vars	n	mean	sd	median	min	max	range	se
caseid	1	1297	2000.70	718.42	1854	1001	3403	2402	19.95
ClintonTherm	2	1297	57.00	30.00	60	0	100	100	0.83
RConserv	3	1297	4.32	1.39	4	1	7	6	0.04
${\tt ClintonConserv}$	4	1297	2.98	1.37	3	1	7	6	0.04
PID	5	1297	2.06	1.05	2	1	5	4	0.03
GOP	6	1297	0.32	0.47	0	0	1	1	0.01

A Basic Regression

```
> fit0<-lm(ClintonTherm~RConserv+GOP,data=CT)
> summary(fit0)
Call:
lm(formula = ClintonTherm ~ RConserv + GOP, data = CT)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 93.476 2.228 42.0 <2e-16 ***
RConserv -6.487 0.537 -12.1 <2e-16 ***
GOP -26.670 1.606 -16.6 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 23.6 on 1294 degrees of freedom
```

Multiple R-squared: 0.38, Adjusted R-squared: 0.379 F-statistic: 396 on 2 and 1294 DF, p-value: <2e-16

30 / 88

Coefficient Plot: Non-Interactive Model

An Interactive Model

```
> fit1<-lm(ClintonTherm~RConserv+GOP+RConserv*GOP,data=CT)</pre>
> summary(fit1)
Call:
lm(formula = ClintonTherm ~ RConserv + GOP + RConserv * GOP,
   data = CT
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.927 2.487 36.16 <2e-16 ***
RConserv -5.571 0.609 -9.15 <2e-16 ***
GOP
   -6.484 6.569 -0.99 0.3238
RConserv:GOP -4.058 1.281 -3.17 0.0016 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 23.6 on 1293 degrees of freedom
```

Multiple R-squared: 0.384, Adjusted R-squared: 0.383 F-statistic: 269 on 3 and 1293 DF, p-value: <2e-16

32 / 88

Coefficient Plot: Interactive Model

Syntax Matters

Different ways to specify the (mathematically identical, but sometimes computationally different) interactive model in R :

```
> summary(lm(ClintonTherm~RConserv+GOP+RConserv*GOP,data=CT))
> summary(lm(ClintonTherm~RConserv+GOP+RConserv:GOP,data=CT))
> summary(lm(ClintonTherm~RConserv*GOP,data=CT))
> summary(lm(ClintonTherm~(RConserv+GOP)^2,data=CT))
> CT$GOPxRC<-CT$GOP * CT$RConserv
> summary(lm(ClintonTherm~RConserv+GOP+GOPxRC,data=CT))
```

Interpretation: Two Regressions, Sort Of

```
\begin{split} \mathsf{E}(\mathsf{Thermometer} \mid \mathsf{Non\text{-}GOP})_i &=& 89.9 - 6.5(0) - 5.6(\mathsf{R's}\;\mathsf{Conservatism}_i) \\ &- 4.0(0 \times \mathsf{R's}\;\mathsf{Conservatism}_i) \\ &=& 89.9 - 5.6(\mathsf{R's}\;\mathsf{Conservatism}_i) \end{split}
```

E(Thermometer | GOP)_i =
$$[89.9 - 6.5(1)] + [-5.6 - 4.0(1 \times \text{R's Conservatism}_i)]$$

= $83.4 - 9.6(\text{R's Conservatism}_i)$

Thermometer Scores by Conservatism, GOP and Non-GOP

Interactive Results \approx Separate Regressions

Feeling Thermometer Models

	Interactive	Non-GOP	GOP
(Intercept)	89.927	89.927	83.443
	(2.487)	(2.469)	(6.170)
RConserv	-5.571	-5.571	-9.629
	(0.609)	(0.604)	(1.144)
GOP	-6.484		
	(6.569)		
$RConserv \times GOP$	-4.058		
	(1.281)		
Num.Obs.	1297	887	410
R2	0.384	0.088	0.148
R2 Adj.	0.383	0.087	0.146
F	269.011	84.961	70.878
RMSE	23.53	23.38	23.86

For RConserv:

Clinton Thermometer;
$$= \beta_0 + (\beta_1 + \beta_3 \mathsf{GOP}_i)\mathsf{R}$$
's Conservatism; $+ \beta_2 \mathsf{GOP}_i + u_i$
 $= \beta_0 + \psi_{1i}\mathsf{R}$'s Conservatism; $+ \beta_2 \mathsf{GOP}_i + u_i$.

So:

$$\hat{\psi}_{1i} = \hat{\beta}_1 + \hat{\beta}_3 \times \mathsf{GOP}_i$$

and

$$\hat{\sigma}_{\psi_1} = \sqrt{\widehat{\mathsf{Var}(\hat{\beta}_1)} + (\mathsf{GOP})^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2(\mathsf{GOP}) \widehat{\mathsf{Cov}(\hat{\beta}_1, \hat{\beta}_3)}}.$$

For GOP:

Clinton Thermometer_i =
$$\beta_0 + (\beta_2 + \beta_3 \times R's Conservatism_i)GOP_i + \beta_1(R's Conservatism_i) + u_i$$

= $\beta_0 + \psi_{2i}GOP_i + \beta_1(R's Conservatism_i) + u_i$.

So:

$$\hat{\psi}_{2i} = \hat{eta}_2 + \hat{eta}_3 imes$$
 (R's Conservatism $_i$).

and

$$\hat{\sigma}_{\psi_2} = \sqrt{\widehat{\mathsf{Var}(\hat{\beta}_2)} + (\mathsf{R's\ Conservatism}_i)^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2k\widehat{\mathsf{Cov}(\hat{\beta}_2,\hat{\beta}_3)}}.$$

```
> Psi1<-fit1$coeff[2]+fit1$coeff[4]
> Psi1
    RConserv
-9.628577
> SPsi1<-sqrt(vcov(fit1)[2,2] + (1)^2*vcov(fit1)[4,4] + 2*1*vcov(fit1)[2,4])
> SPsi1
[1] 1.127016
> Psi1 / SPsi1 # <-- t-statistic
    RConserv
-8.543422</pre>
```

```
> # psi_2 | RConserv = 1
> fit1$coeff[3]+(1 * fit1$coeff[4])
    GOP
-10.54208
[1] 5.335847
# Implies t is approximately 2
> # psi_2 | RConserv = 7
> fit1$coeff[3]+(7 * fit1$coeff[4])
    GOP
-34.89045
> sqrt(vcov(fit1)[3,3] + (7)^2*vcov(fit1)[4,4] + 2*7*vcov(fit1)[3,4])
[1] 3.048302
# t is approximately 11
```

An Easier Way: linearHypothesis()

```
> library(car)
> linearHypothesis(fit1, "RConserv+RConserv:GOP")
Linear hypothesis test
Hypothesis:
R.Conserv + R.Conserv:GOP = 0
Model 1: restricted model
Model 2: ClintonTherm ~ RConserv + GOP + RConserv * GOP
 Res.Df RSS Df Sum of Sq F Pr(>F)
   1294 758714
2 1293 718173 1 40541 73 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
>
> # Note: Same as t-test:
> sqrt(73)
[1] 8.544
```

An Easier Way: linearHypothesis()

```
> # psi_2 | RConserv = 7:
> linearHypothesis(fit1, "GOP+7*RConserv:GOP")
Linear hypothesis test
Hypothesis:
GOP + 7 RConserv: GOP = 0
Model 1: restricted model
Model 2: ClintonTherm ~ RConserv + GOP + RConserv * GOP
 Res.Df RSS Df Sum of Sq F Pr(>F)
   1294 790938
   1293 718173 1 72766 131.01 < 2.2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Marginal Effects Plots, I

```
> ConsSim<-seq(1,7,1)
> psis<-fit1$coeff[3]+(ConsSim * fit1$coeff[4])
> psis.ses<-sqrt(vcov(fit1)[3,3] +
    (ConsSim)^2*vcov(fit1)[4,4] + 2*ConsSim*vcov(fit1)[3,4])

> plot(ConsSim,psis,t="l",lwd=2,xlab="Respondent Conservatism",
    ylab="Estimated Marginal Effect",ylim=c(-40,0))
> lines(ConsSim,psis+(1.96*psis.ses),lty=2,lwd=2)
> lines(ConsSim,psis-(1.96*psis.ses),lty=2,lwd=2)
> abline(h=0,lwd=1,lty=2)
```

The Plot...

Same, Using plot_me (plotMElm package)

Interacting Two Continuous Covariates

```
> fit2<-lm(ClintonTherm~RConserv+ClintonConserv+RConserv*ClintonConserv.data=CT)
> summarv(fit2)
Call:
lm(formula = ClintonTherm ~ RConserv + ClintonConserv + RConserv *
   ClintonConserv, data = CT)
Residuals:
          10 Median 30
  Min
                            Max
-95.48 -13.48 0.48 15.48 100.15
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                      119.351 5.163 23.11 < 2e-16 ***
(Intercept)
RConserv
                      -19.567 1.036 -18.88 < 2e-16 ***
ClintonConserv
                      -7.931 1.648 -4.81 0.0000017 ***
RConserv:ClintonConserv 3.629 0.339 10.69 < 2e-16 ***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 22 on 1293 degrees of freedom
Multiple R-squared: 0.462, Adjusted R-squared: 0.461
F-statistic: 370 on 3 and 1293 DF. p-value: <2e-16
```

Hypothesis Tests ("by hand")

```
> psi<-fit2$coef[2]+(1*fit2$coef[4])
> psi
RConserv
  -15.94
> varpsi<-sqrt(vcov(fit2)[2,2] + (1)^2*vcov(fit2)[4,4] + 2*1*vcov(fit2)[2,4])
> varpsi
Γ17 0.744
> psi/varpsi # t-test
RConserv
 -21.42
> linearHypothesis(fit2, "RConserv+1*RConserv:ClintonConserv")
Linear hypothesis test
Hypothesis:
RConserv + RConserv:ClintonConserv = 0
Model 1: restricted model
Model 2: ClintonTherm ~ RConserv + ClintonConserv + RConserv * ClintonConserv
 Res.Df
           RSS Df Sum of Sq F Pr(>F)
  1294 850442
  1293 627658 1 222784 459 <2e-16 ***
Signif, codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
> (psi/varpsi)^2
RConserv
  458.9
```

Marginal Effect Plot, II

```
> psis2<-fit2$coef[3]+(ConsSim*fit2$coef[4])
> psis2.ses<-sqrt(vcov(fit2)[3,3] + (ConsSim)^2*vcov(fit2)[4,4]
+ 2*ConsSim*vcov(fit2)[3,4])

> plot(ConsSim,psis2,t="l",lwd=2,xlab="Respondent's
    Conservatism",ylab="Marginal Effect of Clinton's
    Conservatism",ylim=c(-10,20))
> lines(ConsSim,psis2+(1.96*psis2.ses),lty=2,lwd=2)
> lines(ConsSim,psis2-(1.96*psis2.ses),lty=2,lwd=2)
```

> abline(h=0,lty=2,lwd=1,col="red")

Same, Using plot_me

Predicted Values: A Contour Plot

Predicted Values: A Wireframe Plot

```
> trellis.par.set("axis.line",list(col="transparent"))
> wireframe(hats~grid$RConserv*grid$ClintonConserv,
    drape=TRUE,
    xlab=list("Respondent's Conservatism",rot=30),
    ylab=list("Clinton's Conservatism",
    rot=-40),zlab=list("Predictions",rot=90),
    scales=list(arrows=FALSE,col="black"),
    zoom=0.85,pretty=TRUE),
    col.regions=colorRampPalette(c("blue","red"))(100))
```


Predictions Using marginal effects

Interpreting Interactions: Other Tools

A partial list of packages and things:

- All the various model summary and plotting tools in Vincent Arel-Bundock's modelsummary and marginal effects packages
- interactions (vignette)
- emmeans (see, e.g., this vignette)
- plot_model in sjPlot (tutorial)
- interactionR
- interplot
- InteractionPoweR (power analyses for interactive models)

Variable Transformations

Why Transform?

- Induce / conform to linearity
- Induce / conform to additivity
- Induce normality in the u_i s
- Facilitate interpretation
- Make the model fit the theory

Examples

This:

$$Y_i = \beta_0 X_i^{\beta_1} u_i$$

becomes this:

$$ln(Y_i) = ln(\beta_0) + \beta_1 X_i + ln(u_i)$$

And this:

$$\exp(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

becomes this:

$$Y_i = \ln(\beta_0) + \beta_1 \ln(X_i) + \ln(u_i)$$

Monotonic Transformations

The "Ladder of Powers":

Transformation	р	f(X)	Fox's $f(X)$
Cube	3	X^3	$\frac{X^3-1}{3}$
Square	2	X^2	$\frac{X^2-1}{2}$
(None/Identity)	(1)	(X)	(\bar{X})
Square Root	$\frac{1}{2}$	\sqrt{X}	$2(\sqrt{X}-1)$
Cube Root	1 1 3	$\sqrt[3]{X}$	$3(\sqrt[3]{X}-1)$
Log	0 (sort of)	ln(X)	$\int \ln(X)$
Inverse Cube Root	$-\frac{1}{3}$	$\frac{1}{\sqrt[3]{X}}$	$\frac{\left(\frac{1}{\sqrt[3]{X}}-1\right)}{-\frac{1}{3}}$
Inverse Square Root	$-\frac{1}{2}$	$\frac{1}{\sqrt{X}}$	$\frac{\left(\frac{1}{\sqrt{X}}-1\right)}{-\frac{1}{2}}$
Inverse	-1	$\frac{1}{X}$	$\frac{\left(\frac{1}{X}-1\right)}{-1}$
Inverse Square	-2	$\frac{1}{X^2}$	$\frac{\left(\frac{1}{X^2}-1\right)}{-2}$
Inverse Cube	-3	$\frac{1}{X^3}$	$\frac{\left(\frac{1}{X^3}-1\right)}{-3}$

A General Rule

Using higher-order power transformations (e.g., squares, cubes, etc.) "inflates" large values and "compresses" small ones; conversely, using lower-order power transformations (logs, etc.) "compresses" large values and "inflates" (or "expands") smaller ones.

Power Transformations: Two Issues

1. X must be positive; so:

$$X^* = X + (|X_{\ell}| + \epsilon)$$

with (CZ's Rule of Thumb):

$$\epsilon = \frac{X_{\ell+1} - X_{\ell}}{2}$$

2. Power transformations generally require that:

$$\frac{X_h}{X_l} > 5 \text{ (or so)}$$

A Note On Logarithms

Note that:

$$ln(X|X \le 0)$$
 is undefined.

For X = 0, we might:

- 1. exclude observations,
- 2. add some arbitrary amount (perhaps 1.0) to all observations
- 3. add some arbitrary amount (perhaps 1.0) to observations where X=0
- 4. add some arbitrary amount (perhaps 1.0) to *observations where* X=0, and include a variable D_i in your regression, where:

$$D_i = \begin{cases} 1 \text{ if } X_i = 0 \\ 0 \text{ otherwise} \end{cases}$$

The short answer: Do #4. Find out more at this poster.

A Note On Logarithms (continued)

For X < 0, we should think about how we expect X and Y to covary when X < 0:

- 1. a "shift", where the logarithmic form starts at values of X less than zero,
- 2. a "V-curve," where E(Y|X=k)=E(Y|X=-k), or
- 3. an "S-curve," where the X-Y relationship for X<0 "mirrors" that for X>0 [so E(Y|X=k)=-E(Y|X=-k)]

Which is correct? It depends on your theory. Again: find out more at this poster.

Which Transformation?

Mosteller and Tukey's "Bulging Rule":

Transformed Xs: Interpretation

For:

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i,$$

then:

$$\mathsf{E}(Y) = \exp(\beta_0 + \beta_1 X_i)$$

and so:

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \exp(\beta_1).$$

Transformed Xs: Interpretation

Similarly, for:

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

we have:

$$\frac{\partial \mathsf{E}(Y)}{\partial \ln(X)} = \beta_1.$$

So doubling X (say, from X_{ℓ} to $2X_{\ell}$):

$$\begin{array}{rcl} \Delta \mathsf{E}(Y) & = & \mathsf{E}(Y|X = 2X_{\ell}) - \mathsf{E}(Y|X = X_{\ell}) \\ & = & [\beta_0 + \beta_1 \ln(2X_{\ell})] - [\beta_0 + \beta_1 \ln(X_{\ell})] \\ & = & \beta_1 [\ln(2X_{\ell}) - \ln(X_{\ell})] \\ & = & \beta_1 \ln(2) \end{array}$$

Log-Log Regressions

Specifying:

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + ... + u_i$$

means:

Elasticity
$$_{YX}\equiv \frac{\%\Delta Y}{\%\Delta X}=\beta_1.$$

In other words, a one-percent change in X leads to a $\hat{\beta}_1$ -percent change in Y.

An Example: Cell Phones and Wealth

Data are a tiny subset of the World Development Indicators (2018 only)...

- ISO3 The country's ISO3 (alphanumeric) code.
- country The name of the country.
- GDPPerCapita GDP per capita (constant 2010 \$US)
- MobileCellSubscriptions Mobile / cellular subscriptions per 100 people

> describe(WDI)													
	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
IS03*	1	186	93.5	53.84	93.5	93.5	68.94	1.00	186.0	185	0.00	-1.22	3.95
Country*	2	186	93.5	53.84	93.5	93.5	68.94	1.00	186.0	185	0.00	-1.22	3.95
GDPPerCapita	3	186	15769.2	22904.65	6257.3	11146.0	7358.36	274.13	178571.4	178297	3.05	14.09	1679.45
MobileCellSubscriptions	4	186	109.0	38.01	110.1	108.4	30.00	25.11	335.1	310	1.32	7.02	2.79

"Ladder of Powers": Mobile Subscriptions

"Ladder of Powers": Wealth / GDP

Scatterplots

Various Regressions

Models with and Without Transformations

	Linear Y & X	Linear Y, Log X	Log Y, Linear X	Log Y and X
(Intercept)	100.235	82.944	4.546	4.357
	(3.199)	(3.904)	(0.032)	(0.037)
GDP Per Capita (1000s)	0.557		0.005	
	(0.115)		(0.001)	
Logged GDP Per Capita (1000s)		14.047		0.146
		(1.669)		(0.016)
Num.Obs.	186	186	186	186
R2	0.113	0.278	0.103	0.314
R2 Adj.	0.108	0.274	0.098	0.310
F	23.370	70.830	21.142	84.305
RMSE	35.71	32.22	0.35	0.31

Density Plots of \hat{u}_i s

Nonmonotonicity

(One) simple solution: Polynomials...

• First-order / linear (P = 1):

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Second-order / quadratic (P = 2):

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

• Third-order / cubic (P = 3):

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \beta_{3}X_{i}^{3} + u_{i}$$

• ...pth-order (P = p):

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \beta_{3}X_{i}^{3} + \dots + \beta_{p}X_{i}^{p} + u_{i}$$

Understanding Polynomials

Read coefficients "left to right." So, for the quadratic:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

then:

	\hat{eta}_2				
\hat{eta}_1	< 0	= 0	> 0		
< 0	E(Y) decreases in X at an increasing rate	E(Y) decreases linearly in X	E(Y) decreases in X at low values of X , but increases in X at high values of X		
= 0	$E(Y)$ decreases in X^2	E(Y) is (quadratically) unrelated to X	$E(Y)$ increases in X^2		
> 0	E(Y) increases in X at low values of X , but decreases in X at high values of X	E(Y) increases linearly in X	E(Y) increases in X at an increasing rate		

Polynomials: Simulated Example

- > N<-500
- > set.seed(7222009)
- > X<-runif(N,3,17)
- > Y<-8+2*sin(X)+rnorm(N)

Some Polynomial Regressions

"Raw" vs. Orthogonal Polynomials

Check out the P = 12 regression:

```
> summary(R.12)
Call:
lm(formula = Y ~ X + I(X^2) + I(X^3) + I(X^4) + I(X^5) + I(X^6) +
    I(X^7) + I(X^8) + I(X^9) + I(X^{10}) + I(X^{11}) + I(X^{12})
Coefficients: (1 not defined because of singularities)
                   Estimate
                                 Std. Error t value Pr(>|t|)
(Intercept) -92.9216900503 816.2489413571
                                              -0.11
                                                        0.91
             149.4055086103 1212.1158531764
                                               0.12
                                                        0.90
I(X^2)
                                              -0.13
                                                        0.89
            -104.6855472388 788.3527710495
T(X^3)
              46.9192208616 296.7267961681
                                              0.16
                                                        0.87
I(X^4)
             -14.5570311719
                             71.9111574249
                                             -0.20
                                                        0.84
I(X^5)
                                              0.26
                                                        0.79
               3.1175787785
                              11.8013895994
I(X^6)
              -0.4537511003
                              1.3406553442
                                              -0.34
                                                        0.74
I(X^7)
               0.0442854569
                               0.1056218156
                                                        0.68
                                               0.42
I(X^8)
              -0.0028398562
                               0.0056659448
                                              -0.50
                                                        0.62
I(X^9)
               0.0001145568
                               0.0001974535
                                               0.58
                                                        0.56
I(X^10)
              -0.0000026340
                               0.0000040301
                                              -0.65
                                                        0.51
I(X^11)
                               0.000000366
                                               0.72
                                                        0.47
               0.0000000263
I(X^12)
                                                 NΑ
                         NΑ
                                         NΑ
                                                          NΑ
```

Residual standard error: 0.986 on 488 degrees of freedom Multiple R-squared: 0.669, Adjusted R-squared: 0.662 F-statistic: 89.7 on 11 and 488 DF, p-value: <2e-16

"Raw" vs. Orthogonal Polynomials (continued)

What's going on?

• The "raw" polynomial terms are (often strongly) correlated with each other...

```
> cor(X,I(X^2))
[1] 0.984
```

- ullet \rightarrow large standard errors / imprecision in the estimates
- Can also lead to numerical instability in estimation...

Orthogonal Polynomials

An alternative is to use orthogonal polynomials...

- Think of these as orthogonal (uncorrelated) versions of the polynomials above
- There are many of them; probably the most commonly-used are the Legendre polynomials:

• The math is a bit complex; the R command is poly()

Our Example

"Raw" polynomials using poly():

Residual standard error: 0.986 on 488 degrees of freedom Multiple R-squared: 0.669, Adjusted R-squared: 0.662 F-statistic: 89.7 on 11 and 488 DF, p-value: <2e-16

```
> P.12R<-lm(Y~poly(X,degree=12,raw=TRUE))
> summary(P.12R)
Call:
lm(formula = Y ~ poly(X, degree = 12, raw = TRUE))
Residuals:
   Min
             10 Median
                            30
                                   May
-2.8041 -0.6935 -0.0245 0.6881 3.0645
Coefficients: (1 not defined because of singularities)
                                         Estimate
                                                       Std. Error t value Pr(>|t|)
(Intercept)
                                   -92.9216900503 816.2489413571
                                                                   -0.11
                                                                             0.91
polv(X, degree = 12, raw = TRUE)1
                                   149.4055086103 1212.1158531764
                                                                    0.12
                                                                             0.90
polv(X, degree = 12, raw = TRUE)2
                                  -104.6855472388 788.3527710495
                                                                   -0 13
                                                                             0.89
polv(X, degree = 12, raw = TRUE)3
                                    46.9192208616 296.7267961681
                                                                    0.16
                                                                             0.87
poly(X, degree = 12, raw = TRUE)4
                                   -14.5570311719
                                                  71.9111574249 -0.20
                                                                             0.84
polv(X, degree = 12, raw = TRUE)5
                                     3.1175787785 11.8013895994
                                                                    0.26
                                                                             0.79
polv(X, degree = 12, raw = TRUE)6
                                    -0.4537511003 1.3406553442
                                                                   -0 34
                                                                             0.74
polv(X, degree = 12, raw = TRUE)7
                                    0.0442854569 0.1056218156
                                                                    0.42
                                                                             0.68
polv(X, degree = 12, raw = TRUE)8
                                    -0.0028398562 0.0056659448
                                                                   -0.50
                                                                             0.62
polv(X, degree = 12, raw = TRUE)9
                                     0.0001145568 0.0001974535
                                                                    0.58
                                                                             0.56
polv(X, degree = 12, raw = TRUE)10
                                    -0.0000026340 0.0000040301 -0.65
                                                                             0.51
polv(X, degree = 12, raw = TRUE)11
                                     0.0000000263
                                                    0.0000000366
                                                                    0.72
                                                                             0.47
poly(X, degree = 12, raw = TRUE)12
                                               NA
                                                               NΑ
                                                                      NΑ
                                                                               NΑ
```

Our Example (continued)

Orthogonal polynomials:

```
> P.12<-lm(Y~poly(X,degree=12))
> summary(P.12)
Call:
lm(formula = Y ~ poly(X, degree = 12))
Residuals:
   Min
             1Q Median
                                    Max
-2.8255 -0.6953 -0.0286 0.6894 3.0733
Coefficients:
                       Estimate Std. Error t value
                                                        Pr(>|t,|)
                         7.7989
                                    0.0441 176.80
(Intercept)
                                                         < 2e-16 ***
poly(X, degree = 12)1
                       4.7901
                                    0.9863
                                              4.86 0.00000161352 ***
poly(X, degree = 12)2
                       -6.2379
                                    0.9863
                                            -6.32 0.00000000058 ***
poly(X, degree = 12)3
                                             2.54
                        2.5039
                                    0.9863
                                                           0.011 *
poly(X, degree = 12)4
                       -9.5937
                                    0.9863
                                            -9.73
                                                         < 2e-16 ***
poly(X, degree = 12)5 -21.5763
                                            -21.87
                                    0.9863
                                                         < 2e-16 ***
poly(X, degree = 12)6
                       12.0295
                                            12.20
                                    0.9863
                                                         < 2e-16 ***
poly(X, degree = 12)7
                       12.4067
                                    0.9863
                                            12.58
                                                         < 2e-16 ***
poly(X, degree = 12)8
                       -5.2176
                                    0.9863
                                            -5.29 0.00000018541 ***
poly(X, degree = 12)9
                       -1.4389
                                    0.9863
                                            -1.46
                                                           0.145
polv(X, degree = 12)10
                        2.0529
                                    0.9863
                                              2.08
                                                           0.038 *
polv(X, degree = 12)11
                         0.7097
                                    0.9863
                                              0.72
                                                           0.472
poly(X, degree = 12)12 -0.3987
                                    0.9863
                                             -0.40
                                                           0.686
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.986 on 487 degrees of freedom
Multiple R-squared: 0.669, Adjusted R-squared: 0.661
F-statistic: 82.1 on 12 and 487 DF, p-value: <2e-16
```

What Degree Polynomial?

```
> for(degree in 1:12) {
+ fit <- lm(Y~poly(X,degree))
   assign(paste("P", degree, sep = "."), fit)
+ }
> anova(P.1,P.2,P.3,P.4,P.5,P.6,P.7,P.8,P.9,P.10,P.11,P.12)
Analysis of Variance Table
Model 1: Y ~ poly(X, degree)
Model 2: Y ~ poly(X, degree)
Model 3: Y ~ poly(X, degree)
Model 4: Y ~ poly(X, degree)
Model 5: Y ~ poly(X, degree)
Model 6: Y ~ poly(X, degree)
Model 7: Y ~ poly(X, degree)
Model 8: Y ~ poly(X, degree)
Model 9: Y ~ poly(X, degree)
Model 10: Y ~ poly(X, degree)
Model 11: Y ~ poly(X, degree)
Model 12: Y ~ poly(X, degree)
  Res.Df RSS Df Sum of Sq
                                         Pr(>F)
     498 1409
     497 1370 1
                        39 40.00 0.00000000058 ***
3
     496 1364 1
                           6.44
                                          0.011 *
     495 1272 1
                        92 94.60
                                        < 2e-16 ***
     494 807 1
                       466 478.51
                                        < 2e-16 ***
     493 662 1
                       145 148.74
                                        < 2e-16 ***
     492
          508 1
                       154 158,22
                                        < 2e-16 ***
8
     491 481 1
                        27 27.98 0.00000018541 ***
     490 479 1
                             2.13
                                          0.145
10
     489 474 1
                         4 4.33
                                          0.038 *
11
     488 474 1
                             0.52
                                          0.472
12
     487 474 1
                             0.16
                                          0.686
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
```

What Degree Polynomial?

Plotting R_{adi}^2 for different polynomial degrees...

Polynomial Tips

Good things...

- Polynomials are <u>flexible</u> functional forms for nonlinear marginal associations
- They are also easy to fit, and easily interpretable

Cautions...

- Polynomials can be prone to overfitting, which...
- ...can lead to poor out-of-sample generalizability / predictive power
- This is especially true outside the observed values of the data (extrapolation)

Transformation Tips

- Theory is valuable.
- Try different things.
- Look at plots.
- It takes practice.