

Forelesning nr.3 analog elektronikk IN 1080 Mekatronikk

Norton- og Thévenins teoremer ac-analyse Kondensatorer og reaktans

Dagens temaer

- Kretsteoremer
 - Thévenin og Norton
 - Superposisjon
- Representasjon av sinussignaler
- Kondensatorer
- Kapasitiv reaktans
- Tidsrespons til RC-krets

Kretsteoremer

- Kretsteoremer brukes for å analysere og forenkle kretser
 - Fungerer best for mindre kretser (få komponenter)
 - Større kretser krever datamaskin-baserte verktøy, f.eks LTspice
- Skal se på tre teoremer i IN1080 (det finnes flere)
 - Superposisjon
 - Analyse av lineære kretser med flere uavhengige kilder
 - Thévenins teorem
 - Forenkling ved å erstatte større kretsdeler med en spenningskilde i serie med en resistor
 - Nortons teorem
 - Forenkling ved å erstatte større kretsdeler med en strømkilde i parallell med en resistor

Superposisjon

 «Responsen til en lineær krets med flere uavhengige kilder er lik summen av responsene forårsaket av hver enkelt kilde»

$$v_o = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n$$

- Hver uavhengige kilde betraktes som input til kretsen
- Output (responsen) kan være spenningen over eller strømmen gjennom et vilkårlig element i kretsen
- Vi skal se på superposisjon i kretser med resistorer (ikke med spoler og/eller kondensatorer)

Superposisjon (forts)

- Fremgangsmåte
 - 1. Identifiser alle de uavhengige strøm- og spenningskildene (input)
 - 2. Bestem hva som skal være output (enten strøm eller spenning gjennom/over en resistor)
 - Kortslutt alle spenningskilder og åpne alle strømkilder bortsett fra én kilde
 - 4. Finn bidraget til output fra den ene kilden i 3)
 - 5. Gjenta 3) og 4) for alle kildene i 1)
 - 6. Output er summen av bidragene fra hver enkelt kilde fra punkt 4)

Eksempel superposisjon

• Eksempel: Bruk superposisjon til å finne spenningen v_o over 10Ω -resistoren

Fjern v₃ og i₂ for å finne bidraget v_{o1} fra v₁

Finner v_{o1} -bidraget vha spenningsdelerformelen:

$$v_{o1} = \frac{10}{40 + 10} v_1 = \frac{1}{5} v_1 \Rightarrow a_1 = \frac{1}{5} V / V$$

Fjern v₁ og v₃ for å finne bidraget fra i₂

$$v_{o2} = \frac{40\Omega * 10\Omega}{40\Omega + 10\Omega} i_2 = 8\Omega i_2 \Rightarrow a_2 = \frac{v_{o2}}{i_2} = 8 V/A$$

Fjern v₁ og i₂ for å finne bidraget fra v₃

$$v_{o3} = \frac{10}{40 + 10} (-v_3) = -\frac{1}{5} v_3 \Rightarrow a_3 = -\frac{1}{5} V/V$$

Til slutt legger vi sammen bidragene fra enkeltkildene og får

$$v_o = a_1 v_1 + a_2 i_2 + a_3 v_3 = \frac{1}{5} v_1 + 8i_2 V/A + (-\frac{1}{5} v_3)$$

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Superposisjon – eller ikke?

- <u>Uten</u> superposisjon:
 - Bruker KVL og summerer Vs1 og Vs2: Vs_tot = Vs1 + Vs2
 - $Vx = \frac{R2}{R1+R2} Vs_tot$
- <u>Med</u> superposisjon:
 - Bidrag fra Vs1 (Vs2 kortsluttes): $Vx_vs1 = \frac{R2}{R1+R2}Vs1$
 - Bidrag fra Vs2 (Vs1 kortsluttes): $Vx_vs2 = \frac{R2}{R1+R2}Vs2$
 - Totalt: $Vx = Vx_{vs1} + Vx_{vs2} = \frac{R2}{R1 + R2}Vs1 + \frac{R2}{R1 + R2}Vs2 = \frac{R2}{R1 + R2}(Vs1 + Vs2) = \frac{R2}{R1 + R2}(Vs_{vs2} + Vs_{vs2})$
- Merk: Eksemplet virker mer komplisert med superposisjon, men med mange kilder i en stor krets vil superposisjon forenkle utregningene

Thévenins teorem

 «Ethvert lineært to-terminalers nettverk bestående av strømkilder, spenningskilder og resistorer kan erstattes av en ekvivalent krets med én spenningskilde i serie med én resistor»

Det matematisk-naturvitenskapelige fakultet

Thévenins teorem (forts)

- Fremgangsmåte
 - Identifiser (del)kretsen som skal erstattes av en Thévenin-ekvivalent
 - Beregn V_{th} og R_{th}
 - V_{th}: Spenningen V_{AB} mellom A og B etter at resten av kretsen er fjernet
 - R_{th}: Resistansen mellom A og B når spenningskildene kortsluttes og strømkildene åpnes

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Thévenins teorem (forts)

Eksempel

- V_{th}: Spenningen mellom A og B etter at resten av kretsen er fjernet (OC = «Open Circuit»)
- R_{th}: Resistansen mellom A og B når V_s
 kortsluttes

$$V_{th} = Voc = \frac{R_2}{R_1 + R_2} V_s$$

$$R_{th} = \frac{R_1 R_2}{R_1 + R_2}$$

Finn V_{th} og R_{th} for den blå delen

Fjerner kretsen som ikke skal inngå (dvs tar bort R_L)

- 1. Nuller ut kilden(e): Kortslutter V1
- 2. Beregner R_{th} mellom node a og b:

R1||R2=(R1*R2)/(R1+R2)=($3\Omega*6\Omega$)/($3\Omega+6\Omega$)=2 Ω

3. Setter tilbake V1 og finner Vab:

Vab=Vth=V1*(R2/(R1+R2)=9v*(6 Ω)/(3 Ω +6 Ω)=6v

Setter sammen ekvivalenten og kobler til resten:

 For ulike verdier av den variable resistoren RL er det nå enklere å beregne f.eks hvordan strømmen gjennom den varierer

Uten Thévenin-forenkling

IL = Vab/RL og Vab = V1*R1/(R1 + R2||RL)

IL = V1*R1/(R1+R2*RL/(R2+RL))/RL

RL= 2Ω : IL = 9v*3 Ω /(3 Ω +6 Ω *2 Ω /(6 Ω +2 Ω))/2 Ω =1.5A

RL=10Ω : IL = $9v^*3$ Ω /(3 Ω +6 Ω *10 Ω /(6 Ω +10 Ω))/10 Ω=0.5A

RL=100 Ω : IL = 9v*3 Ω /(3 Ω +6 Ω *100 Ω /(6 Ω +100 Ω))/100 Ω =0.06A

Med Thévenin-forenkling

IL=Vth/(Rth + RL)

RL= 2Ω : IL= $6v/(2\Omega + 2\Omega)=1.5A$

RL= 10Ω : IL= $6v/(2\Omega + 10\Omega)=0.5A$

RL= 100Ω : $6v/(2\Omega + 100\Omega)=0.06A$

Eksempel

 Finn Thévenin-ekvivalenten til kretsen innenfor den røde stiplede firkanten når Vx=12v, R1=10 kOhm, R2=40kOhm og R3=2kOhm

Nortons teorem

- Variant av Thévenins teorem
- «Ethvert lineært to-terminalers nettverk bestående av strømkilder, spenningskilder og resistorer kan erstattes av en ekvivalent krets med én strømkilde i parallell med én resistor»

Nortons teorem

- Samme metode som for Thévenins teorem
 - Likhet: Kildene kortsluttes (spenningskilder) eller åpnes (strømkilder)
 - Forskjell: Terminalene A og B kortsluttes for å finne strømmen gjennom dem (istedenfor å beregne spenningen over dem)
- Sammenhengen mellom Norton- og Thévenin-ekvivalenter:

$$R_{th} = R_{no}$$

$$V_{th} = I_{no}R_{no}$$

$$\frac{V_{th}}{R_{th}} = I_{no}$$

Nortons teorem (forts)

- Fremgangsmåte
 - Identifiser (del)kretsen som skal erstattes av en Norton-ekvivalent
 - Beregn I_{no} og R_{no}
 - I_{no}: Strømmen fra A til B når resistorene erstattes med R_{th} og kildene med V_{th}
 - R_{no}: Samme som Thévenin-resistansen R_{th}

Det matematisk-naturvitenskapelige fakultet

Nortons teorem (forts)

- Eksempel
 - Identifiser (del)kretsen som skal erstattes med
 Norton-ekvivalenten
 - Beregn I_{no} og R_{no}

$$R_{no} = R_{th} = \frac{R_1 R_2}{R_1 + R_2}$$

$$I_{no} = \frac{V_{th}}{R_{th}}$$

Eksempel

 Finn Norton-ekvivalenten til kretsen innenfor den røde stiplede firkanten når Vx=12v, R1=10 kOhm, R2=40kOhm og R3=2kOhm

Signaler

- . Et signal er en strøm eller spenning som overfører informasjon
- Signaler som varierer over tid kalles ac-signaler
 - . Informasjonsinnholdet kan ligge i tidsvariasjonen
 - . Variasjonen kan være *periodisk* (b), dvs. den gjentar seg med faste mellomrom, eller *ikke-periodisk* ((a) og (c))
- dc-signaler også kan variere over tid, men dette er som regel ikke tilsiktet (f.eks. batteri som lades ut)

Sinussignaler

- Mange naturlige fenomener varierer med sinus-karakteristikk
- Sinussignaler og deres egenskaper kan beskrives presist matematisk
- Vilkårlige signaler kan representeres som summer av sinusformede signaler
- Sinussignaler er viktige i bla lyd- og bildebehandling

Amplitude og periode

- En enkel variant av et sinussignal er gitt av f(t) = A*sin(t)
- Skaleringsfaktoren A kalles amplitude og er den maksimale verdien f(t) kan ha
- T kalles perioden og er tiden det tar før (sinus)signalet gjentar seg

A = 20 volt T=50 μs

Amplitude og periode (forts)

- Et balansert sinussignal er sentrert rundt 0: Maksimal positiv verdi = maksimal negativ verdi (absoluttverdi).
- Amplituden er den positive maksimumsverdien
- Gjennomsnittsverdien over en hel periode er lik 0 hvis signalet er balansert

Mer om periode og frekvens

 Mens perioden er tiden det tar før signalformen gjentas, er frekvensen antallet ganger signalformen gjentar seg per sekund

- Frekvens måles i Hertz: 1Hz = 1/s
- Perioden T og frekvensen f er omvendt proporsjonale: $T = \frac{1}{f} \Leftrightarrow f = \frac{1}{T}$

Strøm- og spenningsretning

 For et balansert sinussignal endres strømretningen og/eller polariteten til spenningen én gang per periode

Signalet er positivt halve perioden og negativ den andre halve perioden

Øyeblikksverdi

Øyeblikksverdien er amplituden på et bestemt tidspunkt til

Peak-til-peak verdi

- Amplitude kalles også magnitude eller peak-verdi V_p
- Peak-til-peak verdi er definert som

$$V_{pp} = 2V_p \wedge I_{pp} = 2I_p$$

Sinussignaler med dc-offset

 Hvis sinussignalet har en dc-komponent, forskyves amplituden opp eller ned

• V_p defineres relativt til dc-offset, og ikke fra 0

Mer om sinusfunksjonen

 Så langt har vi betraktet sinus som en funksjon med tid som den uavhengige variabelen (tiden t går langs den horisontale aksen): f(t)=sin(t)

• Vi kan også bruke definisjonen ut fra enhetssirkelen og la vinkelen mellom den horisontale aksen og vektoren som utgjør radius være argument til sinus: $g(\phi) = sin(\phi)$

Mer om sinusfunksjonen (forts)

- Istedenfor å la tiden t øke for å vise endringen over tid, kan vi la vinkelen ϕ øke, som betyr at vi roterer vektoren som utgjør hypotenusen i trekanten hvor sinus(ϕ) er lengden på motstående katet
- Etter en hel omdreining, dvs $\phi = 2\pi$, er vi tilbake til utgangspunktet
- Om endepunktet projiseres horisontalt på en rett linje, får man en «vanlig» sinuskurve:

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Mer om sinus (forts)

- Radian er lengden som spissen av vektoren har tilbakelagt; 1 radian tilsvarer lengden på radius
- Sammenhengen mellom grader og radianer er

$$2\pi \, rad = 360^{\circ} \leftrightarrow 1 \, rad = \left(\frac{180^{\circ}}{\pi}\right) * grader$$

 Vinkelhastighet ("angular velocity") sier hvor hurtig vektoren roterer rundt enhetssirkelen:

vinkelhastighet =
$$\frac{\text{avstand(målt i grader eller radianer)}}{\text{tid (målt i sekunder)}} \leftrightarrow \omega = \frac{\alpha}{t}$$

• ω kalles også *vinkelfrekvens*

Mer om sinus (forts)

Dette gjør at vi kan skrive sinusformede strømmer og spenninger som

$$i(t) = I_m sin(\omega t)$$

$$v(t) = V_m sin(\omega t)$$

- Tilslutt trenger vi å ta hensyn til at sinuskurven ikke alltid starter i (0,0)
 - Forskyves kurven horisontalt (mot venstre eller høyre) kalles dette faseskift eller fasedreining
 - Fasedreiningen angis ved å legge til en vinkel ϕ

$$i(t) = I_m sin(\omega t + \phi)$$

$$v(t) = V_m sin(\omega t + \phi)$$

Positiv ϕ flytter kurven mot **venstre**

Det matematisk-naturvitenskapelige fakultet

Kondensatorer

- Kondensatorer er viktige i elektronikk og har mange bruksområder
 - Lagring av energi (ladninger)
 - Utglatting av signaler som endrer seg hurtig
 - Blokkering av signaler med bestemte frekvenser
 - Omvandling av likestrøm til vekselstrøm og omvendt (dc-ac og ac-dc omformere)
 - Spenningsregulatorer, batterier etc
 - Beskyttelse mot høye og kortvarige spenningspulser
- Impedansen til resistorerer er UAVHENGIG av frekvensen til strømmen som går gjennom dem
- Impedansen til kondensatorer VARIERER med frekvensen til strømmen

Det matematisk-naturvitenskapelige fakultet

Kondensatorer (forts)

- En kondensator kan lagre elektrisk ladning
- En kondensator består av to plater av ledende materiale med isolasjon i mellom
- Kondensatorer kan lages av ulike materialer
- Noen har «+» og «-» terminal; disse kan eksplodere hvis de kobles feil!

Kondensatorer (forts)

En kondensator kan sammenlignes med et vannrør med en elastisk membran

- Hvis vannet beveger seg vil membranen også bevege seg (et stykke), slik det ser ut som det renner vann igjennom røret (vann = elektrisk strøm)
- Hvis vannet endrer retning, vil membranen gå tilbake til sin opprinnelige posisjon og presse vannet tilbake
- Det vil være trykkforskjell på hver side av membranen når vannet beveger seg (trykkforskjell = spenning)
- Uten bevegelse i vannet vil membranen ikke bevege seg (dc-spenning gir ingen strøm gjennom kondensatoren)

Det matematisk-naturvitenskapelige fakultet

Kondensatorer (forts)

- Hvis platene kobles til en spenning V_s , oppstår et elektrisk felt mellom platene
- Feltet gjør at elektroner beveger seg fra den ene platen over til den andre
- Når spenningen mellom platene har nådd V_s vil ikke lenger elektroner bevege seg

(a) Neutral (uncharged) capacitor (same charge on both plates)

(c) After the capacitor charges to V_S, no electrons flow.

(b) When connected to a voltage source, electrons flow from plate A to plate B as the capacitor charges.

(d) Ideally, the capacitor retains charge when disconnected from the voltage source.

Kondensatorer (forts)

- Hvis spenningskilden fjernes vil en ideell kondensator holde på ladningene beholde til evig tid og spenningen forblir konstant
- I en fysisk kondensator derimot «lekker» platene ladninger slik at kondensatoren utlades
- Denne effekten kan modelleres med en resistor i parallell:

Ved ekstra høye frekvenser (~10⁹ Hertz) blir oppførselen mer komplisert

Kondensatorer (forts)

 Evnen til å lagre ladninger kalles kapasitans C, som måles i Farad og er definert ved

$$C = \frac{Q}{V} \Leftrightarrow Q = CV \Leftrightarrow V = \frac{Q}{C}$$

- 1 Farad er lagring av 1 Coulomb med 1 volt potensialforskjell mellom platene
- Kapasitansen bestemmes as platearealet A, avstanden d mellom platene og permittiviteten ε : $C = \varepsilon \frac{A}{d}$

ε er en egenskap ved materialet mellom platene og måles i Farad/meter

Sammenheng strøm, spenning og impedans

 Sammenhengen mellom strømmen gjennom og spenningen over en kondensator er gitt av

$$V = \frac{Q}{C} \Rightarrow i_c = C \frac{dv_c}{dt}$$

Impedansen til en kondensator heter kapasitiv reaktans og er gitt av

$$X_c = \frac{1}{2\pi fC}$$

 En sinusformet strøm og –spenning gjennom/i en kondensator ikke er i fase, men forskjøvet i forhold til hverandre

Oppsummering kondensatorens virkemåte

https://www.youtube.com/watch?v=u-jigaMJT10

Viktige punkter :

- Elektronene "trekkes" fra kondensatoren mot den positive terminalen på batteriet
- Elektronene "skyves" fra den negative terminalen på batteriet mot kondensatoren
- Etterhvert blir det så mange negative ladninger på ÷ siden at elektronene beveger seg langsommere mot kondesatorens ÷ plate og til slutt stopper elektronstrømmen
- Tilsvarende blir det overskudd av positive landinger på +siden av kondensatoren slik at elektronene beveger seg langsommere mot batteriet
- Kondensatorer lades hurtig opp til å begynne med og deretter langsommere og langsommere
- Samme for utladning: Først hurtig og deretter langsommere og langsommere

RC-kretser

- En enkel RC-krets består av en resistor og en kondensator
- Resistoren og kondensatoren kan være i serie eller i parallell
 - Enklere å analysere seriekoblet RC-krets
- Skal analysere oppførselen for to ulike typer innsignal:
 - Sinusformet
 - Pulsformet (firkantpulser)

Sammenheng strøm-spenning i en kondensator

- Resistor: Ingen faseforskyvning mellom strøm og spenning, dvs $\phi = 0$
 - Maksimal spenningsforskjell gir maksimal strøm
 - Null spenningsforskjell gir null strøm
- Kondensator: Spenning og strøm er faseforskjøvet, dvs φ ‡ 0
 - Maksimal spenningsforskjell gir <u>ikke</u> maksimal strøm
 - Null spenningsforskjell gir ikke null strøm
- Fasedreiningen mellom strøm og spenning kan forstås ved å observere når endringen langs en sinus-kurve er størst og når den er minst
- (Faseforskyvning = fasedreining = faseforskjell)

Sammenheng strøm-spenning i en kondensator

- Strømmen gjennom en kondensator er størst når endringen i spenningen over den er størst, og minst når endringen i spenningen er minst
 - Når spenningsforskjellen er på det mest positive (eller mest negative) er endringen lik 0, dvs strømmen lik 0
 - Når spenningsforskjellen er 0, er endringen størst, dvs strømmen er størst
 - . Vi sier at i_c leder over v_c med 90° (π /2)
 - . Dermed ligger v_c bak i_c med 90° (π /2)

$$i_c = C \frac{dv_c}{dt}$$

Sammenheng strøm-spenning i seriell RC-krets

- Spenningen V_R over motstanden R er i fase med strømmen I, og leder over V_s , dvs φ>0
- . V_R og V_C har 90° fasedreining
- . For å finne
 - . fasedreiningen mellom V_S og V_C
 - . fasedreining mellom V_S og I
- må vi beregne den samlede frekvensavhengige impedansen (gjennomgås på neste forelesning)

- KVL, KCL og Ohms lov gjelder fortsatt
 - . Men vi må endre formlene fordi impedansen endrer seg med frekvensen IN 1080 Mekatronikk

Total impedans i seriell RC-krets

- Z er den samlede impedansen mot vekselstrøm i en krets
- Impedansen har en frekvensuavhengig resistiv del R og en frekvensavhengig reaktiv del X_c

 Den resistive og reaktive delen har en fasedreining på -90° i forhold til hverandre

Total impedans i seriell RC-krets (forts)

- Den totale impedansen er gitt av Z=R+X_c der R og X_c er vektorer («phasors»).
- Z finner man ved vektorsummasjon

- Z har en fasevinkel θ i forhold R og φ = 90°- θ i forhold til X_c
- /Z/ måles i Ohm (Ω)

Total impedans i seriell RC-krets (forts)

- Lengden til \boldsymbol{Z} (magnituden) finnes ved Pythagoras: $|\boldsymbol{Z}| = \sqrt{R^2 + X_C^2}$
- Fasedreiningen θ mellom \mathbf{R} og \mathbf{Z} er gitt av $\theta = \tan^{-1}(\frac{X_C}{R})$
- Fasedreiningen φ mellom $\mathbf{X_c}$ og \mathbf{Z} er gitt av $\varphi=90^0-\theta=90^0- an^{-1}(rac{X_C}{R})$

Faseforskjell strøm - spenning

- I en seriell RC-krets er strømmen gjennom resistoren og kondensatoren den samme
- For å finne sammenhengen mellom V_s , V_R og V_C bruker man KVL og vektoraddisjon (samme som for å finne Z)

$$|\mathbf{V}_{S}| = \sqrt{V_R^2 + V_C^2}$$

$$\theta = \tan^{-1}(\frac{V_C}{V_R})$$

Faseforskjell strøm - spenning (forts)

• Siden strømmen I og resistorspenning V_R er i fase, er fase-dreiningen mellom I og V_S lik fasedreiningen mellom V_R og V_S

$$\theta = \tan^{-1}(\frac{V_C}{V_R})$$

Impedans, fasedreining og frekvens

- Jo større kapasitiv reaktans X_c målt i forhold til R, desto større fasedreining mellom strøm og spenning
- Når frekvensen synker blir fasedreiningen mindre

$$X_c = \frac{1}{2\pi fC}$$

Kapasitiv reaktans

- En kondensator har en motstand mot elektrisk strøm som er avhengig av frekvensen til spenningen/strømmen
- . Denne motstanden kalles *kapasitiv reaktans* X_c og er definert ved

$$X_c = \frac{1}{2\pi fC}$$

- . Jo større frekvens, desto mindre kapasitiv reaktans
- . Jo større kapasitans, desto mindre kapasitiv reaktans

Det matematisk-naturvitenskapelige fakultet

Oppgave

- Spm 1: Hva sier gjennomsnittverdien til et sinussignal?
- Spm 2: Over hvilket tidsintervall bør vi beregne gjennomsnittsverdien?
- Spm 3: Vis at gjennomsnittsspenningen er gitt av formelen

$$V_{avg} = \frac{2}{\pi} V_p \approx 0.637 * V_p$$

Oppgaver

- Spm 1: Utled formelen for sammenhengen mellom strøm og spenning for en kondesator ved hjelp av formelen Q=VC
- Spm 2: Ta utgangspunkt i formelen for I-V sammenhengen for en kondensator og forklar
 - Spm 2-1: Hva er impedansen til en kondensator når det er en likespenning over kondensatoren?
 - Spm 2-1-1: Hva kan kondensatoren erstattes med i dette tilfellet?
 - Spm 2-2: Hva er impedansen når det er en vekselspenning med veldig høy frekvens?
 - Spm 2-2-1: Hva kan kondensatoren ersattes med i dette tilfellet?
- Spm 3: Hva skjer med impedansen til en kondensator når man dobler frekvensen til ac-spenningen over den? Når man reduserer frekvensen til halvparten?
- Spm 4: Finn den kapasitive reaktansen når $C=0,0047 \mu F$ og f=1 kHz

Det matematisk-naturvitenskapelige fakultet

Oppgave

- Spm 1: Hva er definisjonen av 1 radian?
- Spm 2: Hva måleenheten for radianer?
- Spm 3: Hvordan definerer vi vinkelhastighet og hva er måleenheten?
- Spm 4: Hva er et annet navn for vinkelhastighet?
- Spm 5: Hva er vinkelhastigheten til en sinusbølge med f=60Hz?
- Spm 6: Gitt en sinusbølge med vinkelfrekvens = 500 rad/s. Hva er frekvensen målt i Hertz og perioden målt i sekunder?

Det matematisk-naturvitenskapelige fakultet

Oppgave

Gitt sinussignalet til høyre

- Spm 1: Hva er perioden hvis t₃=0,01s?
- Spm 2: Hva er frekvensen hvis t₃=0,002s?
- Spm 3: Hvordan finner vi amplituden til signalet?
- Spm 4: Hva er gjennomsnittsverdien over en hel periode?
- Spm 5: Vis grafisk når er <u>endringen</u> i signalet minst.
- Spm 6: Begrunn matematisk når <u>endringen</u> i signalet størst.

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Nøtt til neste gang

Hva er dette?

