

Student Research Group 'Stochastic Volatility Models'

Methods of Simulation of the Heston Model: A Review

Artemy Sazonov, Danil Legenky, Kirill Korban Lomonosov Moscow State Univesity, Faculty of Mechanics and Mathematics October 19, 2022

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

Heston Model Definition

Assume that the spot asset at time *t* follows the diffusion

$$dS(t) = \mu S(t)dt + \sqrt{v(t)}S(t)dZ_1(t), \tag{1}$$

$$dv(t) = \left(\delta^2 - 2\beta v(t)\right) dt + 2\delta \sqrt{v(t)} dZ_2(t), \tag{2}$$

where Z_1 , Z_2 are the correlated Wiener processes with $dZ_1dZ_2=
ho dt$

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

Performance Comparison

Method	Euler	Broadie-Kaya	Andersen	
Elapsed, s	0.0001	0.0001	0.0001	

Accuracy Comparison

V

Parameters: $\mu = 0.1$, $\rho = -0.5$, $\delta = 0.1$, $\beta = 0.1$, $S_0 = 100$, $V_0 = 0.1$, r = 0.05, N = 1000

Method	Euler	Broadie-Kaya	Andersen	Exact
European Call Option Price	0.0001	0.0001	0.0001	0.0001
Relative Error, ϵ	0.00%	0.00%	0.00%	0.00%

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

A Brief Introduction to the Heston Model

Euler Simulation Method

Broadie-Kaya Simulation Method

Andersen Simulation Method

Comparison in Accuracy and Performance between Methods

Greeks Computation

Conclusion

We introduced the three most common simulation methods for dynamics of the Heston stochastic volatility model:

- 1. Euler scheme;
- 2. Broadie-Kaya scheme;
- 3. Andersen scheme.

