Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 8

Элементарные симметрические многочлены. Основная теорема о симметрических многочленах. Лексикографический порядок. Теорема Виета. Дискриминант многочлена. Понятие о базисе Грёбнера.

Пусть K — произвольное поле.

Определение 1. Многочлен $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ называется симметрическим, если $f(x_{\tau(1)}, \ldots, x_{\tau(n)}) = f(x_1, \ldots, x_n)$ для всякой перестановки $\tau \in S_n$.

Примеры:

- 1) Многочлен $x_1x_2 + x_2x_3 + x_3x_4$ не является симметрическим.
- 2) Многочлен $x_1x_2 + x_2x_3 + x_3x_4 + x_1x_4$ также не является симметрическим.
- 3) Степенные суммы $s_k(x_1,\ldots,x_n)=x_1^k+x_2^k+\ldots+x_n^k$ являются симметрическими многочленами.
- 4) Элементарные симметрические многочлены

являются симметрическими.

5) Определитель Вандермонда

$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

симметрическим многочленом не является (при перестановке индексов умножается на её знак), а вот его квадрат уже является.

Основная цель этой лекции — понять, как устроены все симметрические многочлены.

Легко видеть, что все симметрические многочлены образуют подкольцо (и даже подалгебру) в $K[x_1,\ldots,x_n]$. В частности, если $F(y_1,\ldots,y_k)$ — произвольный многочлен и $f_1(x_1,\ldots,x_n)$, ..., $f_k(x_1,\ldots,x_n)$ — симметрические многочлены, то многочлен

$$F(f_1(x_1,...,x_n),...,f_k(x_1,...,x_n)) \in K[x_1,...,x_n]$$

также является симметрическим. Мы покажем, что всякий симметрический многочлен однозначно выражается через элементарные симметрические многочлены.

Основная теорема о симметрических многочленах. Для всякого симметрического многочлена $f(x_1, \ldots, x_n)$ существует и единственен такой многочлен $F(y_1, \ldots, y_n)$, что

$$f(x_1,\ldots,x_n)=F(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)).$$

Пример.
$$s_2(x_1,\ldots,x_n)=x_1^2+\ldots+x_n^2=(x_1+\ldots+x_n)^2-2\sum_{1\leqslant i< j\leqslant n}x_ix_j=\sigma_1^2-2\sigma_2,$$
 откуда $F(y_1,\ldots,y_n)=y_1^2-2y_2.$

Доказательство этой теоремы потребует некоторой подготовки. Начнём с того, что определим старший член многочлена от многих переменных.

Пусть M_n — множество всех одночленов от переменных x_1, \ldots, x_n . Определим на M_n лексикографический порядок следующим образом:

$$ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n} \prec bx_1^{j_1}x_2^{j_2}\dots x_n^{j_n} \quad \Leftrightarrow \quad \exists k: \ i_1=j_1,\dots,i_{k-1}=j_{k-1},i_k< j_k.$$

Например, $x_1^2 x_3^9 \prec x_1^2 x_2$.

Замечание 1. Легко видеть, что если $u, v, w \in M_n$ и $u \prec v$, то $uw \prec vw$.

Упражнение 1. Докажите, что лексикографический порядок обладает свойством транзитивности: если $u, v, w \in M_n, u \prec v$ и $v \prec w$, то $u \prec w$.

Свойство транзитивности лексикографического порядка позволяет корректно определить следующее понятие

Определение 2. Старшим членом ненулевого многочлена $f(x_1, ..., x_n)$ называется наибольший в лексикографическом порядке встречающий в нём одночлен. Обозначение: L(f).

Примеры:

- 1) $L(s_k) = x_1^k$;
- $2) L(\sigma_k) = x_1 x_2 \dots x_k.$

Лемма о старшем члене. Пусть $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ — произвольные ненулевые многочлены. Тогда L(fg) = L(f)L(g).

 $\ \ \, \mathcal{A}$ оказательство. Пусть u — какой-то одночлен многочлена f и v — какой-то одночлен многочлена g. По определению старшего члена имеем

(1)
$$u \leq L(f), \quad v \leq L(g).$$

Тогда $uv \preccurlyeq uL(g) \preccurlyeq L(f)L(g)$, т.е. $uv \preccurlyeq L(f)L(g)$. Более того, легко видеть, что $uv \prec L(f)L(g)$ тогда и только тогда, когда хотя бы одно из «неравенств» (1) является строгим. Отсюда следует, что после раскрытия скобок в произведении fg одночлен L(f)L(g) будет старше всех остальных возникающих одночленов. Ясно, что после приведения подобных членов этот одночлен сохранится и будет по-прежнему старше всех остальных одночленов, поэтому L(f)L(g) = L(fg).

Лемма 1. Если $ax_1^{k_1}x_2^{k_2}...x_n^{k_n}$ — старший член некоторого симметрического многочлена $f(x_1,...,x_n)$, то $k_1 \geqslant k_2 \geqslant ... \geqslant k_n$.

Доказательство. От противного. Пусть $k_i < k_{i+1}$ для некоторого $i \in \{1, \dots, n-1\}$. Тогда, будучи симметрическим, многочлен f содержит одночлен $ax_1^{k_1} \dots x_{i-1}^{k_{i-1}} x_i^{k_{i+1}} x_{i+1}^{k_i} x_{i+2}^{k_{i+2}} \dots x_n^{k_n}$, который старше L(f). Противоречие.

Пемма 2. Пусть k_1, \ldots, k_n — целые неотрицательные числа. Если $k_1 \geqslant k_2 \geqslant \ldots \geqslant k_n$, то существуют и единственны такие целые неотрицательные числа l_1, l_2, \ldots, l_n , что

$$x_1^{k_1} x_2^{k_2} \dots x_n^{k_n} = L(\sigma_1(x_1, \dots, x_n)^{l_1} \sigma_2(x_1, \dots, x_n)^{l_2} \dots \sigma_n(x_1, \dots, x_n)^{l_n}).$$

Доказательство. С учётом леммы о старшем члене требуемое условие означает, что искомые числа l_1, \ldots, l_n удовлетворяют системе

$$\begin{cases} l_1 + l_2 + \dots + l_n = k_1; \\ l_2 + \dots + l_n = k_2; \\ \dots \\ l_n = k_n, \end{cases}$$

из которой они легко находятся:

$$l_i=k_i-k_{i+1}$$
 при $1\leqslant i\leqslant n-1;$ $l_n=k_n.$

Доказательство основной теоремы о симметрических многочленах. Пусть $f(x_1,\ldots,x_n)$ — произвольный симметрический многочлен.

Сначала докажем существование искомого многочлена $F(y_1,\ldots,y_n)$. Если $f(x_1,\ldots,x_n)$ — нулевой многочлен, то можно взять $F(y_1,\ldots,y_n)=0$. Далее считаем, что $f(x_1,\ldots,x_n)\neq 0$. Пусть $L(f)=ax_1^{k_1}\ldots x_n^{k_n},$ $a\neq 0$. Тогда $k_1\geqslant k_2\geqslant\ldots\geqslant k_n$ в силу леммы 1. По лемме 2 найдётся одночлен от элементарных симметрических многочленов $a\sigma_1^{l_1}\ldots\sigma_n^{l_n}$, старший член которого совпадает с L(f). Положим $f_1:=f-a\sigma_1^{l_1}\ldots\sigma_n^{l_n}$. Если $f_1=0$, то $f=a\sigma_1^{l_1}\ldots\sigma_n^{l_n}$ и искомым многочленом будет $F(y_1,\ldots,y_n)=ay_1^{l_1}\ldots y_n^{l_n}$. Если же $f_1\neq 0$, то $L(f_1)\prec L(f)$. Повторим ту же процедуру: вычтя из f_1 подходящий одночлен от σ_1,\ldots,σ_n , мы получим новый многочлен f_2 со следующим свойством: либо $f_2=0$ (и тогда мы получаем выражение f через элементерные симметрические многочлены), либо $L(f_2)\prec L(f_1)$. Многократно повторяя эту процедуру,

мы получим последовательность многочленов f, f_1, f_2, \ldots со свойством $L(f) \succ L(f_1) \succ L(f_2) \succ \ldots$ Покажем, что процесс закончится, т. е. найдётся такое m, что $f_m = 0$ (и тогда мы получим представление f в виде многочлена от $\sigma_1, \ldots, \sigma_n$). Для этого заметим, что переменная x_1 входит в старший член каждого из многочленов f_1, f_2, \ldots в степени, не превышающей k_1 . Но в силу леммы 1 одночленов с таким условием имеется лишь конечное число, поэтому процесс не может продолжаться бесконечно.

Теперь докажем единственность многочлена $F(y_1, \ldots, y_n)$. Предположим, что

$$f(x_1,\ldots,x_n)=F(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))=G(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))$$

для двух различных многочленов $F(y_1,\ldots,y_n), G(y_1,\ldots,y_n) \in K[y_1,\ldots,y_n]$. Тогда многочлен

$$H(y_1, \ldots, y_n) := F(y_1, \ldots, y_n) - G(y_1, \ldots, y_n)$$

является ненулевым, но $H(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))=0$. Покажем, что такое невозможно. Пусть H_1,\ldots,H_s — все ненулевые одночлены в H. Обозначим через w_i старший член многочлена

$$H_i(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)) \in K[x_1,\ldots,x_n].$$

В силу леммы 2 среди одночленов w_1, \dots, w_s нет пропорциональных. Выберем из них старший в лексикографическом порядке. Он не может сократиться ни с одним членов в выражении

$$H_1(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))+\ldots+H_s(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)),$$

поэтому $H(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))\neq 0$, и мы пришли к противоречию.

На практике многочлен $F(y_1, \ldots, y_n)$ можно искать, повторяя описанный в доказательстве алгоритм, однако он может потребовать много вычислений. Более эффективным для нахождения многочлена $F(y_1, \ldots, y_n)$ является метод неопределённых коэффициентов, который планируется разобрать на семинарах.

Теорема Виета. Пусть $\alpha_1, \dots, \alpha_n$ — корни многочлена $x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$. Тогда

$$\sigma_k(\alpha_1,\ldots,\alpha_n)=(-1)^k a_{n-k}, \quad k=1,\ldots,n.$$

Доказательство. Достаточно приравнять коэффициенты при x^{n-k} в левой и правой частях равенства

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = (x - \alpha_{1})(x - \alpha_{2})\dots(x - \alpha_{n}).$$

Из теоремы Виета и основной теоремы о симметрических многочленах следует, что мы можем выразить значение любого симметрического многочлена от корней данного многочлена через коэффициенты, не находя самих корней.

Определение 3. Дискриминантом многочлена $h(x) = a_n x^n + \ldots + a_1 x + a_0$ с корнями $\alpha_1, \ldots, \alpha_n$ называется выражение

$$D(h) = a_n^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

Замечание 2. Дискриминант D(h) является симметрическим многочленом от $\alpha_1, \ldots, \alpha_n$, а значит, в соответствии с вышесказанным он является многочленом от коэффициентов $a_n, a_{n-1}, \ldots, a_0$.

 $\it 3ameranue 3.$ Непосредствено из определения следует, что $\it D(h)=0$ тогда и только тогда, когда многочлен $\it h$ имеет кратный корень.

Пример 1. Пусть $h(x) = ax^2 + bx + c$. Тогда

$$D(h) = a^{2}(\alpha_{2} - \alpha_{1})^{2} = a^{2}((\alpha_{1} + \alpha_{2})^{2} - 4\alpha_{1}\alpha_{2}) = a^{2}((-b/a)^{2} - 4c/a) = b^{2} - 4ac.$$

Понятие о базисе Грёбнера¹. Рассмотрим в кольце $K[x_1, \ldots, x_n]$ идеал I, порождённый многочленами f_1, \ldots, f_k . Как выяснить алгоритмически, принадлежит ли данный многочлен $f \in K[x_1, \ldots, x_n]$ идеалу I? Другими словами, представим ли многочлен f в виде $f_1h_1 + \ldots + f_kh_k$ для некоторых многочленов $h_1, \ldots, h_k \in K[x_1, \ldots, x_n]$? При k = 1 или n = 1 ответить на этот вопрос легко, в общем случае сложнее.

Базисом Грёбнера идеала I в кольце $K[x_1, \ldots, x_n]$ называется такой набор многочленов $g_1, \ldots, g_m \in I$, что для всякого $g \in I$ старший член g делится на старший член одного из g_i . Оказывается, базис Грёбнера данного идеала всегда существует и его можно эффективно построить, исходя из набора порождающих f_1, \ldots, f_k (алгоритм Бухбергера и его модификации). Имея такой базис, мы можем проводить редукции, т. е. вычитать из данного многочлена f один из элементов базиса Грёбнера, умноженный на некоторый

¹Это необязательный материал, в программу экзамена он не войдёт.

4

многочлен так, чтобы старший член сократился. Осуществляя редукции, мы за конечное число шагов выясним, лежит ли f в идеале.

Базисы Грёбнера позволяют алгоритмически решать и многие другие задачи, связанные с системами полиномиальных уравнений.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 3, $\S \, 8)$
- [2] А. И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава 6, $\S 2$)
- [3] Сборник задач по алгебре под редакцией А.И.Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 6, §§ 31,32)