4.9. Linearity of expectation, part 1

Å

Theorem 4.3 ("Weak" Linearity of Expectations)

Let X be a discrete or continuous random variable, let $y=g_1(x)$ and $y=g_2(x)$ be two real-valued functions, and let $c\in\mathbb{R}$ be a constant. Then:

$$E(g_1(X) + g_2(X)) = E(g_1(X)) + E(g_2(X)),$$

and

$$E(cX) = cE(X).$$

Theorem 4.2 (Linearity of Expectations)

Let X and Y be two random variables and let $c \in \mathbb{R}$ be a constant. Then:

$$E(X+Y) = E(X) + E(Y),$$
 (4.14)

and

$$E(cX) = cE(X). (4.15)$$

Theorem 4.4 (Expectations of Constants)

Let $c \in \mathbb{R}$ be a constant, viewed as a constant random variable. Then E(c) = c.

Problem Prompt

Do problem 20 on the worksheet.

4.10. Variances and standard deviations

Definition 4.7

Let X be a random variable with expected value $\mu=E(X)$. The *variance* of X, denoted V(X), is given by

$$V(X) = E((X - \mu)^2).$$
 (4.17)

The variance of X is also denoted σ_X^2 or just σ^2 .

Definition 4.8

Let X be a random variable. The standard deviation of X, denoted σ_X or just σ , is the positive square root of the variance:

$$\sigma_X = \sqrt{V(X)}.$$

Problem Prompt

Do problems 21-23 on the worksheet.

Theorem 4.5 (Shortcut Formula for Variance)

Let X be a random variable. Then

$$V(X) = E(X^2) - E(X)^2 = E(X^2) - \mu_X^2$$
.

Theorem 4.6 (Variance of an Affine Transformation)

Let X be a random variable and a and b constants. Then

$$V(aX + b) = a^2V(X).$$
 (4.18)

Problem Prompt

Holy smokes. After a very, very long discussion of random variables, we've finally reached the end! Now finish off the worksheet and do problems 24 and 25.