アカマツ林生態系における樹冠と林床からの水蒸気・COzフラックスへの寄与

13s6023f 山田遼太

はじめに

森林は主要な陸域生態系であり,大気圏との間で 物質やエネルギーの交換を行っている.この交換に 対しては樹冠部や林床からの寄与がありこれらの 交換の環境応答性が異なるため、それぞれを明らか にする必要がある. 本研究では、樹冠上と林床にお けるフラックス観測により、樹冠部と林床からの寄た. 与の変化とその制御要因を明らかにした.

観測サイト・方法

観測サイトは山梨県富士吉田市のアカマツの優 占する温帯常緑針葉樹林であり,樹冠下層には常緑 広葉樹のソヨゴ,落葉広葉樹のコナラも見られる. 樹冠上, 林床において渦相関法を用いた水蒸気, CO2 フラックスの測定と気象観測が行われた. 樹冠上で 測定されたフラックスは生態系全体のフラックス を表し, 林床のフラックスは林床でのフラックスを 表す. 樹冠上のフラックスに対しての林床のフラッ クスの割合を求めることで,生態系全体に対しての 林床からのフラックスの寄与を調べた.解析対象期 間は2015年12月から2016年11月までである.

結果・考察

正味放射量は、樹冠上では冬から夏にかけて増加 し秋以降に減少する傾向となった. 一方, 林床では 5月上旬にピークを迎え,7月まで減少傾向でそれ 以降はほぼ一定であった. また樹冠部の植物量は, 5月頃に広葉樹の展葉により大きく増加し秋以降 に落葉によって減少した. 植物量の増加に伴い、林 床への日射が妨げられその影響を受けて林床の正 味放射量は減少したと考えられる.

増加し秋以降に減少する傾向となり,正味放射量の 季節変化と樹冠部の植物量の増減による影響を受 けていた.一方林床では潜熱フラックスは5月上旬 にピークを迎え、7月まで減少傾向でそれ以降はほ

ぼ一定となり,林床の正味放射量の季節変化の影響 を受けていた. 結果として, 生態系全体の潜熱フラ ックスへの林床からの寄与は,植物量が少なく樹冠 部の寄与が小さかった冬は6割以上となり,樹冠上 の潜熱フラックスが増加し林床の潜熱フラックス が減少した春~夏では 1 割~2 割程度まで低下し

呼吸量は,樹冠上では気温と植物量の季節変化に 伴い冬から夏にかけて増加し秋以降は減少した.林 床の呼吸量もほぼ同様の季節変化を示したが,積雪 のあった期間は積雪の影響で呼吸量は小さくなっ た. 樹冠上の光合成量は冬から夏にかけて増加し秋 以降は減少した. 林床の光合成量はほぼ無視できる 程度であった.生態系全体の呼吸量への林床からの 寄与は、樹冠部の落葉広葉樹の着葉期間では 4~5 割程度であり、落葉後は6~7割程度であった。ま た, 積雪がある期間は積雪によって土壌から大気へ の CO₂の輸送が妨げられ林床の呼吸量が小さくな った影響で林床からの寄与は4割程度であった.

結論

このサイトでは、樹冠部の広葉樹の展葉や落葉が 生態系全体のフラックスへの林床からの寄与の季 節変化に対しての重要な制御要因であった. 樹冠部 の植物量の増減に影響された正味放射量の季節変 化に伴い林床の正味放射が減少し,結果としてそれ が潜熱フラックスへの林床からの寄与の変化を引 き起こした. 樹冠部の呼吸量は植物量の増減や温度 の季節変化に伴う季節変化を示し、夏にピークを迎 えそれ以降は減少傾向であった. 結果として, 生態 系全体の呼吸量への林床からの寄与の季節変化は 潜熱フラックスは、樹冠上では冬から夏にかけて 広葉樹の着葉期間は低下し、広葉樹の落葉後は増加 した. 積雪も生態系全体の呼吸量への林床からの寄 与を変化させる要因の1つであった.