IN THE CLAIMS:

ð,

Please cancel claims 1-18 without prejudice or disclaimer, and substitute new Claims 19-36 therefor as follows:

Claims 1-18 (Cancelled).

- 19. (New) A microstructured optical fibre comprising a core region with a material having a refractive index n_{co} and a microstructured region surrounding the core region with a background material having a refractive index n_m which is lower than the refractive index n_{co} , the microstructured region comprising a plurality of microstructures having a refractive index different from the refractive index n_m , the distance Δ_{Φ} between the centers of any couple of adjacent microstructures being at least equal to about λ_p and not higher than about $1.5\lambda_p$, wherein λ_p is the spatial variation length of the electric field intensity in the microstructured region.
- 20. (New) The microstructured optical fibre according to claim 19, wherein the distance Δ_{Φ} is not higher than about $1.3\lambda_p$.
- 21. (New) The microstructured optical fibre according to claim 19, wherein a distance Δ_p between the center of an innermost microstructure and the edge of the core region is at least of about $0.50\lambda_p$.
- 22. (New) The microstructured optical fibre according to claim 19, wherein a distance Δ_p between the center of an innermost microstructure and the edge of the core region is not higher than about $0.75\lambda_p$.
- 23. (New) The microstructured optical fibre according to claim 19, wherein λ_p is not higher than 7 μm .

24. (New) The microstructured optical fibre according to claim 19, wherein λ_p is at least about 1 μm .

4

- 25. (New) The microstructured optical fibre according to claim 19, wherein the microstructures have a diameter of at least about 0.2 µm.
- 26. (New) The microstructured optical fibre according to claim 19, wherein the plurality of microstructures is arranged in at least one shell.
- 27. (New) The microstructured optical fibre according to claim 19, further comprising a cladding region surrounding the microstructured region.
- 28. (New) The microstructured optical fibre according to claim 27, wherein the cladding region comprises a material having a refractive index n_{c1} lower than the refractive index n_m of the background material of the microstructured region.
- 29. (New) The microstructured optical fibre according to claim 19, wherein the microstructures have a refractive index lower than the refractive index n_m of the background material of the microstructured region.
- 30. (New) An optical communication line comprising a microstructured optical fibre according to claim 19.
- 31. (New) An optical communication system comprising a transmitting station for supplying an optical signal, a receiving station for receiving the optical signal and an optical communication line according to claim 30.
- 32. (New) A method for making a microstructured optical fibre starting from a target fibre, comprising the steps of making a microstructured preform and drawing the microstructured preform into the microstructured optical fibre, wherein the step of making the microstructured preform comprises the steps of:

- a) providing a core region having a material with a refractive index n_{co};
- b) providing a microstructured region, surrounding the core region, having a background material with a refractive index n_m which is lower than the refractive index n_∞ ; and
- c) providing the microstructured region with a plurality of microstructures having a refractive index different from the refractive index n_m ; the step of making the preform further comprising the step of:
- d) spacing the microstructures apart from each other so that in the drawn microstructured optical fibre the distance Δ_Φ between the centers of any couple of microstructures is at least equal to about λ_p and not higher than about $1.5\lambda_p$, wherein λ_p is the spatial variation length of the electric field intensity of the target fibre.
- 33. (New) The method according to claim 32, wherein the refractive index difference $\Delta n_{co,m}$ between the core region and the background material of the microstructured region is substantially the same as the refractive index difference between a core region and an outer core region of the target fibre.
- 34. (New) The method according to claim 32, wherein the step of making the preform also comprises the step of: e) providing a cladding region surrounding the microstructured region.
- 35. (New) The method according to claim 34, wherein the cladding region provided in step e) has a refractive index n_{c1} so that the refractive index difference $\Delta n_{m,c1}$ between the background material of the microstructured region and the cladding region is substantially the same as the refractive index difference between an outer core region and a cladding region, surrounding the outer core region, of the target fibre.

36. (New) A microstructured optical fibre preform comprising a core region with a material having a refractive index n_{co} and a microstructured region, surrounding the core region, with a background material having a refractive index n_m which is lower than the refractive index n_{co} , the microstructured region comprising a plurality of microstructures having a refractive index different from the refractive index n_m , the microstructures being spaced apart so that in a microstructured optical fibre drawn from the preform the distance Δ_Φ between the centers of any couple of microstructures is at least equal to about λ_p and not higher than about $1.5\lambda_p$, wherein λ_p is the spatial variation length of the electric field intensity in the microstructured region of the microstructured optical fibre drawn from the preform.