PCT/JP97/03239

日本国特許庁 12.09.97

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1996年 9月13日

REC'D 3 1 0CT 1997

出 願 番 号 Application Number:

平成 8年特許願第243060号

出 願 人 Applicant (s):

財団法人相模中央化学研究所 株式会社プロテジーン

PRIORITY DOGUMENT

1997年10月17日

荒中 寿 糧 脳

Eatent Office

【書類名】 特許願

【整理番号】 S018065

【提出日】 平成 8年 9月13日

【あて先】 特許庁長官殿

【発明の名称】 分泌シグナル配列を有するヒト蛋白質およびそれをコー

ドするDNA

【請求項の数】 4

【発明者】

【住所又は居所】 神奈川県相模原市南台1-9-2

【氏名】 加藤 誠志

【発明者】

【住所又は居所】 神奈川県相模原市西大沼4-4-1

【氏名】 関根 伸吾

【発明者】

【住所又は居所】 東京都葛飾区高砂5-13-11

【氏名】 山口 知子

【発明者】

【住所又は居所】 神奈川県藤沢市長後647-2

【氏名】 小林 みどり

【特許出願人】

【代表出願人】

【識別番号】 000173762

【郵便番号】 229

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】 財団法人相模中央化学研究所

【代表者】 近藤 聖

【電話番号】 0427(42)4791

【特許出願人】

【郵便番号】 153

【住所又は居所】 東京都目黒区中町2丁目20番3号

【氏名又は名称】 株式会社プロテジーン

【代表者】 棚井 丈雄

【電話番号】 03(3792)1019

【手数料の表示】

【予納台帳番号】 011501

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 分泌シグナル配列を有するヒト蛋白質およびそれをコードする DNA

【特許請求の範囲】

【請求項1】 配列番号1から配列番号9で表されるアミノ酸配列のいずれかを含む蛋白質。

【請求項2】 請求項1記載の蛋白質のいずれかをコードするDNA。

【請求項3】 配列番号10から配列番号18で表される塩基配列のいずれかを含むcDNA。

【請求項4】 配列番号19から配列番号27で表される塩基配列のいずれかからなる、請求項3記載のcDNA。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、分泌シグナル配列を有するヒト蛋白質、およびそれをコードしているDNAに関する。本発明の蛋白質は、医薬品として、あるいは該蛋白質に対する抗体を作製するための抗原として用いることができる。本発明の ヒトcDN A は、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、該cDNAがコードしている蛋白質を大量生産するための遺伝子源として用いることができる。

[0002]

【従来技術】

細胞は多くの蛋白質を細胞外に分泌している。これらの分泌蛋白質は、細胞の増殖制御、分化誘導、物質輸送、生体防御などにおいて重要な役割を演じている。分泌蛋白質は細胞内蛋白質と異なり、細胞外で作用するので、注射や点滴などによる体内投与が可能であり、医薬としての可能性を秘めている。事実、インターフェロン、インターロイキン、エリスロポイエチン、血栓溶解剤など、多くのヒト分泌蛋白質が現在医薬として使用されている。また、これら以外の分泌蛋白質についても臨床試験が進行中であり、医薬品を目指した用途開発がなされてい

る。ヒト細胞は、まだ多くの未知の分泌蛋白質を生産していると考えられており、これらの分泌蛋白質並びにそれをコードしている遺伝子が入手できれば、これらを用いた新しい医薬品開発が期待できる。

[0003]

従来、これらの分泌蛋白質を得るためには、大量の血液や細胞培養上澄などから生理活性を指標としてターゲット蛋白質を単離精製し、その一次構造を決定したのち、得られたアミノ酸配列情報に基づいて対応するcDNAをクローン化し、これを用いて組換え蛋白質を生産する方法がとられてきた。しかし、分泌蛋白質は一般に含有量が低いので、単離精製することが困難なものが多い。一方、分泌蛋白質やI型膜蛋白質は、そのアミノ末端(N末端)に分泌シグナル配列と呼ばれる約20アミノ酸残基からなる疎水性の配列を有している。したがって、この分泌シグナル配列の有無を指標に、分泌蛋白質やI型膜蛋白質をコードする遺伝子をクローン化することができると考えられる。

[0004]

【発明が解決しようとする課題】

本発明の目的は、分泌シグナル配列を有する新規なヒト蛋白質、および該蛋白質をコードするDNAを提供することである。

[0005]

【課題を解決するための手段】

本発明者らは鋭意研究の結果、ヒト完全長 c D N A バンクの中から分泌シグナル配列を有する c D N A を選択的にクローン化し、本発明を完成した。すなわち、本発明は分泌シグナル配列を有するヒト蛋白質である、配列番号 1 から配列番号 9 で表されるアミノ酸配列のいずれかを含む蛋白質を提供する。また本発明は上記蛋白質をコードする D N A、例えば配列番号 1 0 から配列番号 1 8 で表される塩基配列のいずれかを含む c D N A を提供する。

[0006]

本発明の蛋白質は、ヒトの臓器、細胞株などから単離する方法、本発明のアミノ酸配列に基づき化学合成によってペプチドを調製する方法、あるいは本発明の

ヒト分泌蛋白質をコードするDNAを用いて組換えDNA技術で生産する方法などにより取得することができるが、組換えDNA技術で取得する方法が好ましく用いられる。例えば、本発明のcDNAを有するベクターからインビトロ転写によってRNAを調製し、これを鋳型としてインビトロ翻訳を行なうことによりインビトロで発現できる。また翻訳領域を公知の方法により適当な発現ベクターに組換えてやれば、大腸菌、枯草菌、酵母、動物細胞等で、コードしている蛋白質を大量に発現させることができる。

[0007]

本発明の蛋白質を、大腸菌などの微生物で発現させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、cDNAクローニング部位、ターミネーター等を有する発現ベクターに、本発明のcDNAの翻訳領域を組換えた発現ベクターを作成し、該発現ベクターで宿主細胞を形質転換したのち、得られた形質転換体を培養してやれば、該cDNAがコードしている蛋白質を微生物内で大量生産することができる。この際、分泌シグナル配列を除去した翻訳領域に開始コドンを付加して発現させてやれば、成熟蛋白質を得ることができる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。該融合蛋白質を適当なプロテアーゼで切断することによって該cDNAがコードする蛋白質部分のみを取得することもできる。

[0008]

本発明の蛋白質を、動物細胞で分泌発現させる場合には、該 c DNAの翻訳領域を、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する動物細胞用発現ベクターに組換え、動物細胞内に導入してやれば、本発明の蛋白質を成熟蛋白質として細胞外に分泌生産することができる。

[0009]

本発明の蛋白質には、配列番号1から配列番号9で表されるアミノ酸配列のいかなる部分アミノ酸配列を含むペプチド断片(5アミノ酸残基以上)も含まれる。これらのペプチド断片は抗体を作製するための抗原として用いることができる。また、本発明の蛋白質は、シグナル配列が除去された後、成熟蛋白質の形で細胞外に分泌される。したがって、これらの成熟蛋白質は本発明の蛋白質の範疇に

はいる。成熟蛋白質のN末端アミノ酸配列は、シグナル配列切断部位決定法 [特開平8-187100]を用いて容易に求めることができる。また、多くの分泌蛋白質は、分泌された後プロセシングを受けて活性型となる。このような活性型となった蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。アミノ酸配列の中に糖鎖結合部位が存在すると、適当な動物細胞で発現させれば糖鎖が付加した蛋白質が得られる。したがって、このような糖鎖が付加した蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。

[0010]

本発明のDNAには、上記蛋白質をコードするすべてのDNAが含まれる。該 DNAは、化学合成による方法、cDNAクローニングによる方法などを用いて 取得することができる。

[0011]

本発明のcDNAは、例えばヒト細胞由来cDNAライブラリーからクローン化することができる。cDNAはヒト細胞から抽出した ポリ (A) ⁺RNAを鋳型として合成する。ヒト細胞としては、人体から手術などによって摘出されたものでも培養細胞でも良い。cDNAは、岡山-Berg法 [Okayama, H. and Berg, P., Mol. Cell. Biol. 2:161-170 (1982)]、Gubler-Hoffman法 [Gubler, U. and Hoffman, J. Gene 25:263-269 (1983)]などいかなる方法を用いて合成してもよいが、完全長クローンを効率的に得るためには、実施例にあげたようなキャッピング法 [Kato、S. et al.、Gene 163:193-196 (1995)]を用いることが望ましい。

[0012]

内の疎水性部分の有無の確認によって行なつ。次いでシーケンンングによる全塩 基配列の決定、インビトロ翻訳による蛋白質発現によって第二次選別行なう。本

発明のcDNAが、分泌シグナル配列を有する蛋白質をコードしていることの確認は、シグナル配列検出法 [Yokoyama-Kobayashi、M. et al.、Gene 163:193-196(1995)]を用いて行う。すなわち、ターゲット蛋白質のN末端をコードするcDNA断片を、ウロキナーゼのプロテアーゼドメインをコードするcDNAと融合させたのち、COS細胞内で発現させ、ウロキナーゼ活性が細胞培養液中に検出された場合には、挿入したcDNA断片がコードしている部分が、シグナル配列として機能していることを意味する。

[0013]

本発明のcDNAは、配列番号10から配列番号18で表される塩基配列あるいは配列番号19から配列番号27で表される塩基配列のいずれかを含むことを特徴とするものである。それぞれのクローン番号(HP番号)、cDNAクローンが得られた細胞、cDNAの全塩基数、コードしている蛋白質のアミノ酸残基数をそれぞれ表1にまとめて示した。

[0014]

【表1】

表1

配列番号	H P番号 	細胞	塩基数	アミノ酸 残基数
1, 10, 19	HP00658	HT-1080	1 2 9 6	154
2, 11, 20	HP00714	КВ	3 3 1 1	3 1 5
3, 12, 21	HP00876	胃癌	1 1 5 2	1 5 8
4, 13, 22	HP01134	肝臓	1749	3 7 6
5, 14, 23	HP10029	КВ	988	173
6, 15, 24	HP10189	КВ	3 9 0	9 3
7, 16, 25	HP10269	U 9 3 7	4 6 6 7	1 1 7 2
8, 17, 26	HP10298	胃癌	1086	1 2 2

9、18、27 HP10368 胃癌

8 6 6

1 7 5

[0015]

なお、配列番号19から配列番号27のいずれかに記載のcDNAの塩基配列に基づいて合成したオリゴヌクレオチドプローブを用いて、本発明で用いたヒト細胞株やヒト組織から作製したcDNAライブラリーをスクリーニングすることにより、本発明のcDNAと同一のクローンを容易に得ることができる。

[0016]

一般にヒト遺伝子は個体差による多型が頻繁に認められる。従って配列番号1 0から配列番号27において、1又は複数個のヌクレオチドの付加、欠失および /又は他のヌクレオチドによる置換がなされているcDNAも本発明の範疇には いる。

[0017]

同様に、これらの変更によって生じる、1又は複数個のアミノ酸の付加、欠失 および/又は他のアミノ酸による置換がなされている蛋白質も、配列番号1から 配列番号9で表されるアミノ酸配列を有するそれぞれの蛋白質の活性を有する限 り、本発明の範疇に入る。

[0018]

本発明のcDNAには、配列番号10から配列番号18で表される塩基配列あるいは配列番号19から配列番号27で表される塩基配列のいかなる部分塩基配列を含むcDNA断片(10bp以上)も含まれる。例えば、実施例に示した様に、分泌シグナル配列をコードする部分は、他の蛋白質をコードするcDNAと融合させることにより、任意の蛋白質を細胞外に分泌させるための手段として用いることができる。また、センス鎖およびアンチセンス鎖からなるDNA断片もこの範疇にはいる。これらのDNA断片は遺伝子診断用のプローブとして用いるエレができる。

【実施例】

次に実施例により発明を具体的に説明するが、本発明はこれらの例に限定され

るものではない。DNAの組換えに関する基本的な操作および酵素反応は、文献 ["Molecular Cloning. A Laboratory Manual"、Cold Spring Harbor Laboratory、1989]に従った。制限酵素および各種修飾酵素は特に記載の無い場合宝酒造社 製のものを用いた。各酵素反応の緩衝液組成、並びに反応条件は付属の説明書に 従った。cDNA合成は文献 [Kato、S. et al.、Gene 150:243-250(1994)]に従った。

[0020]

(1) ポリ (A) ⁺RNAの調製

mRNAを抽出するためのヒト細胞として、繊維肉腫細胞株HT-1080(ATCC CCL 121)、類表皮癌細胞株KB(ATCC CRL 17)、ホルボールエステルで刺激した組織球リンホーマ細胞株U937(ATCC CRL 1593)、手術によって摘出された胃癌組織並びに肝臓を用いた。それぞれの細胞株の培養は、常法に従って行った。

[0021]

ヒト細胞約1gを5.5Mグアニジウムチオシアネート溶液20m1中でホモジナイズした後、文献 [Okayama、H. et al.、"Methods in Enzymology" Vol.164、Academic Press、1987] に従い、総mRNAを調製した。これを20mMトリス塩酸緩衝液(pH7.6)、0.5M NaCl、1mM EDTAで洗浄したオリゴdTセルロースカラムにかけ、上掲文献に従いポリ(A) +RNAを得た。

[0022]

(2) c D N A ライブラリーの作製

上記ポリ (A) † RNA10 μ gを100mMトリス塩酸緩衝液 (pH8) に溶解し、RNaseを含まないバクテリア由来アルカリホスファターゼ1単位を添加し、37 $^{\circ}$ C1時間反応させた。反応液をフェノール抽出後、エタノール沈殿を行ない、ペレットを50mM 酢酸ナトリウム (pH6)、1mM EDTA、0.1%2-メルカプトエタノール、0.01%Triton X-100溶液に溶解した。これに、タバコ由来酸ピロホスファターゼ(エピセンターテクノ

ロジーズ社製)1単位を添加して、総量100μ1で37℃1時間反応させた。 反応液をフェノール抽出後、エタノール沈殿を行ない、ペレットを水に溶解し、 脱キャップ処理したポリ(A)⁺RNA溶液を得た。

[0023]

脱キャップ処理したポリ(A) $^+$ RNA、DNA $^-$ RNAキメラオリゴヌクレオチド(5' $^-$ dG $^-$ dA $^-$ GG $^-$ GG $^-$ A $^-$ 3')3 n m o 1 を 5 0 mMトリス塩酸緩衝液(p H 7.5)、0.5 mMATP、5 mM MgCl $_2$ 、10 mM 2 $^-$ メルカプトエタノール、25%ポリエチレングリコール水溶液に溶解し、T4RNAリガーゼ50単位を添加し、総量30 μ 1で20 $^+$ C12時間反応させた。反応液をフェノール抽出後、エタノール沈殿を行ない、ペレットを水に溶解し、キメラオリゴキャップ付加ポリ(A) $^+$ RNAを得た。

[0024]

本発明者らが開発したベクターpKA1 (特開平4-117292号公報)をKpnIで消化後、末端転移酵素により約60個のdTテールを付加した。これをEcoRV消化して片側のdTテールを除去したものをベクタープライマーとして用いた。

[0025]

先に調製したキメラオリゴキャップ付加ポリ(A) $^+$ RNA6μgを、ベクタープライマー1.2μgとアニールさせた後、50mMトリス塩酸緩衝液(pH 8.3)、75mM KC1、3mM MgCl $_2$ 、10mMジチオスレイトール、1.25mMdNTP(dATP+dCTP+dGTP+dTTP)溶液に溶解し、逆転写酵素(GIBCO-BRL社製)200単位を添加し、総量20μ1で42C1時間反応させた。反応液をフェノール抽出後、エタノール沈殿を行ない、ペレットを50mMトリス塩酸緩衝液(pH 7.5)、100mM NaC1 1mMジチオスレイトール溶液に溶解した。

反応液をシェントル抽出後、エダノール沈殿を行ない、ペレットをとりmMトッス塩酸緩衝液(pH7.5)、100mM KC1、4mM MgCl₂、10

mM $(NH_4)_2SO_4$ 、 $50\mu g/m1$ 牛血清アルブミン溶液に溶解した。これに大腸菌DNAリガーゼ60単位を添加し、16C16時間反応させた。反応液に $2mMdNTP2\mu 1$ 、大腸菌DNAポリメラーゼI4単位、大腸菌RNaseHO. 1単位を添加し、12C1時間ついで22C1時間反応させた。

[0026]

次いでcDNA合成反応液を用いて大腸菌DH12S(GIBCO-BRL社製)の形質転換を行なった。形質転換はエレクトロポレーション法によって行なった。形質転換体の一部を100μg/m1アンピシリン含有2xYT寒天培地上に蒔いて37℃一晩培養した。寒天上に生じた任意のコロニーを拾い100μg/m1アンピシリン含有2xYT培地2m1に接種して37℃で一晩培養した。培養液を遠心して、菌体からアルカリリシス法によりプラスミドDNAを調製した。プラスミドDNAはEcoRIとNotIで二重消化した後、0.8%アガロースゲル電気泳動を行ないcDNAインサートの大きさを求めた。また、得られたプラスミドを鋳型にして、蛍光色素で標識したM13ユニバーサルプライマーとTaqポリメラーゼ(アプライドバイオシステムズ社製キット)を用いてシーケンス反応を行なった後、蛍光DNAシーケンサー(アプライドバイオシステムズ社)にかけてcDNAの5、末端約400bpの塩基配列を決定した。配列データはホモ・プロテインcDNAバンクデータベースとしてファイル化した

[0027]

(3)分泌シグナル配列を有する蛋白質をコードしているcDNAの選択

ホモ・プロテイン c DN Aバンクに登録された塩基配列を3フレームのアミノ酸配列に変換し、開始コドンから始まるオープンリーディングフレーム(ORF)の有無を調べた。次いでORFがコードしている部分のN末端に分泌蛋白質に特有なシグナル配列が認められるものを選択した。これらのクローンについては、エキソヌクレアーセIIIによる欠失法を用いて、5'並びに3'両方向からシーケンシングを行い、全塩基配列の決定を行った。ORFがコードしている蛋白質について、Kyte-Doolittleの方法[Kyte、J & Doolittle、R.F.、J.Mol.Biol. 157:105-132

(1982)] により、疎水性/親水性プロフィールを求め、疎水性領域の有無を調べた。コードしている蛋白質のアミノ酸配列中に膜貫通ドメインと思われる 疎水的な領域がない場合には、この蛋白質は分泌蛋白質あるいは膜貫通ドメイン を持たない膜蛋白質であると見なした。

[0028]

(4) 分泌シグナル検出ベクターpSSD3の構築

[0029]

2本のオリゴDNAリンカーL1(5、一GATCCGGGTCACGTGGGATー3、)とL2(5、一ATCCCACGTGACCGGー3、)を合成し、T4ポリヌクレオチドキナーゼによりリン酸化した。両者をアニールしたのち、先に調製したpSSD1の切断片とT4DNAリガーゼにより連結し、大腸菌JM109を形質転換した。形質転換体からプラスミドpSSD3を調製し、リンカー挿入部分の塩基配列を決定することにより目的とする組換え体を確認した。得られたプラスミドの構造を図1に示す。本プラスミドベクターは、ポリクローニング部位に3種の平滑末端生成制限酵素部位、SmaI、PmaCI、EcoRVを有している。これらの切断部位は7bpの間隔で並んでいるので、この中のいずれかを選べば、挿入するcDNA断片の3種のフレームと合わせて融合蛋白質を発現するベクターを構築できる。

[0030]

イニト 合派トガナル 耐列の機能確認

政が分泌シクナル配列として機能することを、文献記載の方法 LYokoyam a-Kobayashi、M. et al.、Gene 163:193-1

17 4/4 Apr

96(1995)]によって確認した。まずターゲットcDNAを含んでいるプラスミドを、分泌シグナル配列をコードしていると考えられる部分の下流に存在する適当な制限酵素部位で切断した。もしこの制限酵素部位が5'突出末端である場合には、クレノウ処理によって平滑末端にした。さらにHindIIIによる消化を行い、SV40プロモーターとその下流に分泌シグナル配列をコードしているcDNAを含むDNA断片をアガロースゲル電気泳動によって単離した。この断片を、pSSD3のHindIIIと、ウロキナーゼのコーディングフレームと合うように選択した制限酵素部位の間に挿入し、ターゲットcDNAの分泌シグナル配列部分とウロキナーゼプロテアーゼドメインの融合蛋白質を発現するためのベクターを構築した(図2参照)。

[0031]

融合蛋白質発現ベクターを有する大腸菌(宿主: JM109)を100μg/m1アンピシリン含有2×YT培地2m1中で37℃2時間培養した後、ヘルパーファージM13KO7(50μ1)を添加し、37℃で一晩培養した。遠心によって分離した上澄からポリエチレングリコール沈殿によって一本鎖ファージ粒子を得た。これを100μ1の1mMトリス-0.1mMEDTA、pH8(TE)に懸濁した。また対照として、pSSD3、並びにウロキナーゼの完全長cDNAを含むベクターpKA1-UPA[Yokoyama-Kobayashi、M. et al.、Gene 163:193-196(1995)]から同様にして調製した一本鎖ファージ粒子懸濁液を用いた。

[0032]

サル腎臓由来培養細胞COS7は、10%ウシ胎児血清を含むダルベッコ改変イーグル(DMEM)培地中、 $5\%CO_2$ 存在下、37℃で培養した。 1×10^5 個のCOS7細胞を6穴プレート(ヌンク社、穴の直径3cm)に植え、 $5\%CO_2$ 存在下、37℃で22時間培養した。培地除去後、リン酸緩衝液で細胞表面を洗浄し、さらに50mMトリス塩酸(pH7.5)を含むDMEM(TDMEM)で再度洗浄した。この細胞に一本鎖ファージ懸濁液 $1\mu1$ 、DMEM 培地 0.6m1、TRANSFECTAM (IBF社) $3\mu1$ を懸濁したものを添加し、 $5\%CO_2$ 存在下、37℃で3時間培養した。サンプル液を除去後、T

DMEMで細胞表面を洗浄し、10%ウシ胎児血清含有DMEMを1穴あたり2ml加え、5%CO₂存在下、37℃にて2日間培養した。

[0033]

2%ウシフィブリノーゲン(マイルス社)、0.5%アガロース、1 mM塩化カルシウムを含む50 mMリン酸緩衝液(pH7.4)10 m1に10単位のヒトトロンビン(持田製薬)を加え、直径9 cmのプレート中で固化させ、フィブリンプレートを調製した。トランスフェクションしたCOS7細胞の培養上清10μ1をフィブリンプレートに載せ、37℃15時間インキュベートした。得られた溶解円の直径をウロキナーゼ活性の指標とした。表2に、各クローンからcDNA断片を切り出すのに用いた制限酵素部位、pSSD3を切断するのに用いた制限酵素部位、溶解円の有無を示した。対照としてpSSD3を用いたもの以外は、いずれのサンプルも溶解円を形成し、ウロキナーゼが培地中に分泌されたことが確認された。すなわち、いずれのcDNA断片も分泌シグナル配列として機能するアミノ酸配列をコードしていることが示された。

[0034]

【表2】

表 2

HP番号	制限酵素部位	溶解円	
	cDNA*	ベクター	
HP00658	HindIII (K)	Sma I	+
HP00714	PvuII	PmaC I	+
HP00876	Ncol(K)	PmaC I	+
HP01134	PmaC I	PmaC I	+
11.11.1.25.25.45.45	A CAPA	C* ., T	1
HP10269	î'vuii	PmaCi	+
HP10298	HindIII (K)	PmaC I	+

HP10368	EcoRV	PmaCI	+
p K A 1 – U P A			+
p S S D 3			_

^{* (}K) は、制限酵素切断後、クレノウ処理をすることを意味する。 【0035】

(6) インビトロ翻訳による蛋白質合成

本発明の c DNA を有するプラスミドベクターを用いて、 $T_N T$ ウサギ網状赤 血球溶解物キット(プロメガ社製)によるインビトロ転写/翻訳を行なった。こ の際「³⁵S]メチオニンを添加し、発現産物をラジオアイソトープでラベルした 。いずれの反応もキットに付属のプロトコールに従って行なった。プラスミド2 μgを、T_NTウサギ網状赤血球溶解物12.5μ1、緩衝液(キットに付属) $0.5 \mu 1$ 、アミノ酸混合液(Metを含まない) $2 \mu 1$ 、 $[^{35}S]$ メチオニン (アマーシャム社) 2 μ 1 (0.37MBq/ μ 1)、T7RNAポリメラーゼ O. 5 μ l 、 R N a s i n 2 O U を含む総量 2 5 μ l の反応液中で 3 0 ℃で 9 O 分間反応させた。また、膜系存在下の実験は、この反応系に、イヌ膵臓ミクロソ ーム画分(プロメガ)2.5μ1を添加して行った。反応液3μ1にSDSサン プリングバッファー(125mMトリス塩酸緩衝液、pH6.8、120mM2 ーメルカプトエタノール、2%SDS溶液、0.025%ブロモフェノールブル ー、20%グリセロール)2μ1を加え、95℃3分間加熱処理した後、SDS ーポリアクリルアミドゲル電気泳動にかけた。オートラジオグラフィーを行ない 、翻訳産物の分子量を求めた。表3に、各クローンから得られた膜ミクロソーム 系の存在下/非存在下におけるインビトロ翻訳産物の分子量の大きさを、 c D N AのORFがコードしている蛋白質の分子量の計算値と共に示した。

[0036]

【表3】

表3

配列 HP番号 計算値(Da) インビトロ翻訳産物(kDa)

特平 8-243060

番号			膜系無添加	膜系添加*	
					
1	HP00658	17,037	1 8	1 6	
2	HP00714	37,106	4 7	_	
3	HP00876	18,230	1 8	_	
4	HP01134	42,947	4 2	4 9	
5	HP10029	18,894	2 1	1 8	
6	HP10189	9, 113	1 2	_	
7	HP10269	129, 572	1 3 0	_	
8	HP10298	13, 161	1 6	_	
9	HP10368	19,979	1 9	1 8	

^{* -} は未検討。

[0037]

(7) クローン例

<HP00658>(配列番号1、10、19)

ヒト繊維肉腫細胞株HT-1080cDNAライブラリーから得られたクローンHP00658のcDNAインサートの全塩基配列を決定したところ、55bpの5′非翻訳領域、465bpのORF、776bpの3′非翻訳領域からなる構造を有していた。ORFは154アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図3にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。ORFがコードしているアミノ酸配列を用いてプロテインデータベースを検索したところ、N末端63アミノ酸残基はRANTES蛋白質(EMBLアクセション番号M21121)と7番目の一アミノ酸残基(RANTESではマルゼニ、大田中質ではマニー、NMMは空全に一致したが、61番目以降は

440 **44.** 11

質は、それより長いよう4アミノ酸残基からなっていた。インビトロ翻訳の結果、ORFから予想される分子量17,037とほぼ一致する18kDaの翻訳産

物が生成した。この際、ミクロソームを添加すると、分泌シグナル配列部分が切断除去されたと考えられる1.6 kD a の産物が生成した。この結果は、p.S.S.D. 3 の結果と合わせて、本蛋白質が分泌シグ配列ナルを有することを確証する。分泌シグナル配列切断部位予測法である(-3、-1)規則 [von Heijne、G.、Nucl. Acid Res. 1.4:4.6.83-4.6.9.0 (1.9.8.6.0)] を適用すると、成熟蛋白質は2.4番目のセリンから始まると予想される。

[0038]

両者の塩基配列を比較すると、RANTEScDNAでは、本cDNAの242番目から325番目までの塩基配列が欠失していることがわかった。その結果、フレームシフトが起こり、サイズの異なるORFが生成したと考えられる。他の領域でもいくつか変異が認められ、241番目までは97.7%、325番目以降は98.0%の相同性であった。RANTESはT細胞特異的な蛋白質として得られたものであるが[Schall、T. J. et al.、J. Immunol.141:1018-1025(1988)]、本cDNAは繊維肉腫細胞から得られた。したがって、本蛋白質はRANTESとは異なる機能を有していると考えられる。

[0039]

また、本cDNAの塩基配列を用いてGenBankを検索したが、ESTの中に、90%以上の相同性を有するものは見いだせなかった。

[0040]

<HP00714>(配列番号2、11、20)

ヒト類表皮癌細胞株KBcDNAライブラリーから得られたクローンHP00714のcDNAインサートの全塩基配列を決定したところ、56bpの5、非翻訳領域、948bpのORF、2310bpの3、非翻訳領域からなる構造を有していた。ORFは315アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図4にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量37,106より大きい47kDaの翻訳産物が生成した。本蛋白質と類似性を有するヒトレティキュロ

カルビンの場合にも、SDS-PAGE上の翻訳産物のバンドが予想される分子 量よりも10kDa程度大きめにでるので [Ozawa、M.、J. Bioch em. 117:1113-1119 (1995)]、この差異はこの蛋白質の物 理化学性質に起因するものと考えられる。分泌シグナル配列切断部位予測法であ る (-3、-1)規則を適用すると、成熟蛋白質は20番目のリジンから始まる と予想される。本蛋白質は、C末端に小胞体局在化シグナルモチーフ配列である KDELに類似した配列HDEFを有しているので、小胞体に存在している可能 性がある。

[0041]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒトレティキュロカルビン(GenBankアクセション番号D42073)と類似性を有していた。表4に、本発明のヒト蛋白質(HP)とヒトレティキュロカルビン(RC)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、60.5%の相同性を有していた。

[0042]

【表4】

表 4

NO AKVWKDYDRDKDDKISWEEYKQATYGYYLGNPAEFHDSSDHHTFKKMLPRDERKFKAADL HP DGDLIATKEEFTAFLHPEEYDYMKDIVVQETMEDIDKNADGFIDLEEYIGDMYSHDGNTD

- RC NGDLTATREEFTAFLHPEEFEHMKEIVVLETLEDIDKNGDGFVDQDEYIADMFSHEENGP
- HP EPEWVKTEREQFVEFRDKNRDGKMDKEETKDWILPSDYDHAEAEARHLVYESDQNKDGKL

- RC EPDWVLSEREQFNEFRDLNKDGKLDKDEIRHWILPQDYDHAQAEARHLVYESDKNKDEKL
- HP TKEEIVDKYDLFVGSQATDFGEALVR-HDEF

***** ** ** ** ** ***

RC TKEEILENWNMFVGSQATNYGEDLTKNHDEL

[0043]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性し、かつ開始コドンから含んでいるもの(例えば、アクセション番号F3872)が存在したが、この配列から本蛋白質を予想することはできない。

[0044]

レティキュロカルビンは、小胞体の膜表面に局在している蛋白質であり、小胞体内に分泌されてきた蛋白質のフォールディングなどに関与していると考えられている。したがって、本発明の蛋白質も、組換え蛋白質のフォールディングプロセスへの応用が考えられる。

[0045]

<HP00876>(配列番号3、12、21)

ヒト胃癌 c D N A ライブラリーから得られたクローンHP00876の c D N A インサートの全塩基配列を決定したところ、146bpの5′非翻訳領域、477bpのORF、529bpの3′非翻訳領域からなる構造を有していた。ORFは158アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図5にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量18,230にほぼ一致する18kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌シグナル配列

部分が切断除去されたと考えられる16kDaの産物が生成した。この結果は、pSSD3の結果と合わせて、本蛋白質が分泌シグナルを有することを確証する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は18番目のグリシンか23番目のアスパラギン酸から始まると予想される。

[0046]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、いくつかのC型レクチンと類似性を有していた。その一例として、表5に、本発明のヒト蛋白質(HP)とガラガラヘビC型レクチン(CL)(Swiss-PROTアクセション番号P21963)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、35.3%の相同性を有していた。

[0047]

【表5】

表 5

HP MASRSMRLLLLLSCLAKTGVLGDIIMRPSCAPGWFYHKSNCYGYFRKLRNWSDAELECOS

.*. .*. .. ** *..*.*.*.*.

CL NNCPLDWLPMNGLCYKIFNQLKTWEDAEMFCRK

HP YGNGAHLASILSLKEASTIAEYISGYQRSQ-PIWIGLHDPQKRQQWQWIDGAMYLYRSWS

* * ****. . *. .*****.*.. * .* * .* . * .*.

CL YKPGCHLASFHRYGESLEIAEYISDYHKGQENVWIGLRDKKKDFSWEWTDRSCTDYLTWD

HP GKSMGG--NKH-CAEMSSNNNFLTWSSNECNKROHFLCKYRP

. . **. *.*. * ... *... ***...

CL KNQPDHYQNKEFCVELVSLTGYRLWNDQVCESKDAFLCQCKF

また、本でロバムの塩基配列を用いてGenbankを検索したか、ESIの中に、90%以上の相同性を有するものは見いだせなかった。

[0049]

プラスミドpHP00876を1μgを20単位のPvuIIで消化した後、1%アガロースゲル電気泳動にかけ、約700bpのDNA断片をゲルから切り出した。次いでpET-21a(Novagen社)1μgを、20単位のNheIで消化した後クレノウ処理を行い、1%アガロースゲル電気泳動にかけ、5.4kbpのDNA断片をゲルから切り出した。ベクター断片とcDNA断片をライゲーションキットにより連結後、大腸菌BL21(DE3)(Novagen社)を形質転換した。形質転換体からプラスミドpET876を調製し、制限酵素切断地図により目的とする組換え体を確認した。本発現ベクターは、クローンHP00876がコードする蛋白質の第29番目のセリンから始まる蛋白質の前にメチオニンーアラニンが付加した蛋白質を発現する。

[0050]

pET876/BL21 (DE3) を100μg/m1アンピシリン含有LB 培地5m1に懸濁し、37℃で振とう培養し、A₆₀₀が約0.5になったときにイソプロピルチオガラクトシドを1mMになるように添加した。さらに37℃で6時間培養後、遠心によって集菌し、菌体をアミロースカラム用カラム緩衝液(10mMトリス塩酸、pII7.4、200mM NaC1、1mM EDTA)25m1に懸濁した。この溶液を超音波処理後、不溶画分をSDSーポリアクリルアミド電気泳動にかけたところ、約14kDaの位置に本ベクターの発現に由来するバンドが認められた。

[0051]

レクチンは、糖鎖を認識して結合するので、糖鎖検出試薬や糖蛋白質精製用アフィニティー担体としての用途がある。また、細胞外に分泌されたレクチンは細胞間情報伝達においても重要な役割を果たしているので、医薬としての用途もある。

[0052]

<HP01134>(配列番号4、13、22)

ヒト肝臓cDNAライブラリーから得られたクローンHP01134のcDNAインサートの全塩基配列を決定したところ、116bpの5、非翻訳領域、1

131bpのORF、502bpの3、非翻訳領域からなる構造を有していた。ORFは376アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図6にKyte-Doolitt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量42、947とほぼ一致する42kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌後Nーグリコシレーションによって糖鎖が付加されたと考えられる49kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位が4箇所(91番目Asn-Gly-Thr、167番目Asn-Glu-Thr、263番目Asn-Thr-Ser、272番目Asn-Lys-Thr)存在する。以上の結果は、pSSD3の結果と合わせて、本蛋白質が分泌シグナルを有することを確証する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は17番目のアラニンか18番目のバリンから始まると予想される。

[0053]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、いくつかのシステインプロテイナーゼと類似性を有していた。その一例として、表6に、本発明のヒト蛋白質(HP)とミカンシステインプロテイナーゼ(CP)(GenBankアクセション番号Z47793)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、N末端側286アミノ酸残基の領域で49%の相同性を有していた。本蛋白質は、分泌された蛋白質のプロセシングに関与していると考えられる。

[0054]

【表 6】

寿の

MVWKVAVELSVALGIGAVEIDDPEDGGKIL

* ** ** .. *..

- CP MTRLASGVLITLLVALAGIADGSRDIAGDILKLPSEAYRFFHNGGGGAKVNDDDDSVGTR
- HP WVVIVAGSNGWYNYRHQADACHAYQIIHRNGIPDEQIVVMMYDDIAYSEDNPTPGIVINR
 - *.*..****..***** *****.....*. **.*.*****..*.*.*.*.
- CP WAVLLAGSNGFWNYRHQADICHAYQLLRKGGLKDENIIVFMYDDIAFNEENPRPGVIINH
- HP PNGTDVYQGVPKDYTGEDVTPQNFLAVLRGDAEAVKGIGSGKVLKSGPQDHVFIYFTDHG
- CP PHGDDVYKGVPKDYTGEDVTVEKFFAVVLGNKTALTG-GSGKVVDSGPNDHIFIFYSDHG
- HP STGILVFPNED-LHVKDLNETIHYMYKHKMYRKMVFYIEACESGSMMN-HLPDNINVYAT
- CP GPGVLGMPTSRYIYADELIDVLKKKHASGNYKSLVFYLEACESGSIFEGLLLEGLNIYAT
- HP TAANPRESSYACYY----DEKRSTY---LGDWYSVNWMEDSDVEDLTKETLHKQYHLVKS

 .*. *.. *. *** ***...* .****...* .****...*.*.**...*...*
- CP TASNAEESSWGTYCPGEIPGPPPEYSTCLGDLYSIAWMEDSDIHNLRTETLHQQYELVKT
- HP HT----NTSHVMQYGNKTISTMKVMQFQGMKRKASSPVPLPPVTHLDLTPSPDVPLTIM
 - .* .*******
- CP RTASYNSYGSHVMQYGDIGLSKNNLFTYLGTNPANDNYTFVDENSLRPASKAVNQRDADL

[0055]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号F01300)が存在したが、いずれも本cDNAより短く、開始コドンから含んでいるものは見いだせなかった。

[0056]

細胞外に分泌されるプロテアーゼは、各種生理機能を有しているので、医薬としての用途を有している。また、限定分解による蛋白質の構造解析など、研究用 試薬としても用いられている。

[0057]

<HP10029>(配列番号5、14、23)

ヒト類表皮癌細胞株KBcDNAライブラリーから得られたクローンHP10

029のcDNAインサートの全塩基配列を決定したところ、8bpの5、非翻訳領域、522bpのORF、458bpの3、非翻訳領域からなる構造を有していた。ORFは173アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図7にKyte-Doo1ittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量18,894とほぼ一致する21kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌シグナル配列部分が切断除去されたと考えられる18kDaの産物が生成した。この結果は、pSSD3の結果と合わせて、本蛋白質が分泌シグナル配列を有することを確証する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は32番目のバリンから始まると予想される。本蛋白質は、C末端に小胞体局在化シグナルモチーフ配列であるKDELに類似した配列RTELを有しているので、小胞体に存在している可能性がある。

[0058]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、相同性を有するものは見いだせなかった。ただし、塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号H87021)が存在したが、いずれも本cDNAより短く、開始コドンから含んでいるものは見いだせなかった。

[0059]

<HP10189>(配列番号6、15、24)

ヒト類表皮癌細胞株KBcDNAライブラリーから得られたクローンHP10189のcDNAインサートの全塩基配列を決定したところ、101bpの5、非翻訳領域、222bpのORF、67bpの3、非翻訳領域からなる構造を有していた。ORFは73アミノ酸残基からなる蛋白質をコードしており、N末端に公認とガモに配列と用われて砂水性領域が存在した。図8にKセナム、Doo

ンピトロ翻訳の結果、OREから予想される分子量9, 110とはは一致する10kDaの翻訳産物が生成した。分泌シグナル配列切断部位予測法である(-3

、-1)規則を適用すると、成熟蛋白質は27番目のアラニンから始まると予想 される。

[0060]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、相同性を有するものは見いだせなかった。ただし、塩基配列を用いてGenBankを検索したところ、ESTの中に、本cDNAと90%以上の相同性を有し、開始コドンから含んでいるもの(例えば、アクセション番号N56270)が存在したが、フレームシフトが起こっており、本cDNAと同じORFは見いだせなかった。

[0061]

<HP10269>(配列番号7、16、25)

ヒトリンホーマ細胞株U937cDNAライブラリーから得られたクローンHP10269のcDNAインサートの全塩基配列を決定したところ、753bpの5′非翻訳領域、3519bpのORF、395bpの3′非翻訳領域からなる構造を有していた。ORFは1172アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図9にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量129,571とほぼ一致する130kDaの翻訳産物が生成した。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は18番目のグルタミンから始まると予想される。

[0062]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 ラミニンSのB3鎖と類似性を有していた。表7に、本発明のヒト蛋白質(HP)とヒトラミニンSのB3鎖(B3)(GenBankアクセション番号L25 541)のアミノ酸配列の比較を示す。

[0063]

【表7】

表 7

アミノ酸残基番号	НР	В 3
1 2 4	Gln	Arg
269	Рrо	欠失
3 8 8	Pro	Ala
4 2 6	Gln	Arg
4 2 7	Gly	Arg
4 3 9	Arg	欠失
4 4 1	Asp	Glu
603	Arg	Pro
8 1 5	G 1 y	A 1 a

[0064]

本cDNAの塩基配列とデータベース記載の塩基配列を比較すると、本cDNAの方が5、末端が600bp以上長く、データベース記載の塩基配列の5、末端81bpは、本cDNAの塩基配列と全く一致しない。従って、両者は異なるmRNAに由来するものである。

[0065]

ラミニンは、細胞外マトリックスとして、細胞の増殖や分化に深く関わっている。 したがって、細胞培養添加剤などとして用いられている。

[0066]

<HP10298>(配列番号8、17、26)

ヒト胃癌 c DNAライブラリーから得られたクローンHP10298の c DNAインサートの全塩基配列を決定したところ、137bpの5、非翻訳領域、3 c o b o の O D E o E o O b o の o o e b a 距離領域からかえ構造を右していた。 O

ナル配列と思われる疎水性領域が存在した。図IUにKyte-Doolitt
1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ

翻訳の結果、ORFから予想される分子量13,161とほぼ一致する16kD aの翻訳産物が生成した。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は18番目のロイシンから始まると予想される。本蛋白質は、C末端約20アミノ酸残基が疎水性であることから、この部分を介して膜に結合している可能性もある。

[0067]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、相同性を有するものは見いだせなかった。ただし、塩基配列を用いてGenBankを検索したところ、ESTの中に、本cDNAと90%以上の相同性を有し、開始コドンから含んでいるもの(例えば、アクセション番号D78655)が存在したが、不明瞭な配列が多く、本cDNAと同じORFは見いだせなかった

[0068]

<HP10368>(配列番号9、18、27)

ヒト胃癌 c D N A ライブラリーから得られたクローンHP10368の c D N A インサートの全塩基配列を決定したところ、72bpの5、非翻訳領域、528bpのORF、266bpの3、非翻訳領域からなる構造を有していた。ORFは175アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル配列と思われる疎水性領域が存在した。図11にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量19,979とほぼ一致する20kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌シグナル配列部分が切断除去されたと考えられる19kDaの産物が生成した。この結果は、pSSD3の結果と合わせて、本蛋白質が分泌シグナルを有することを確証する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は19番目のロイシンか21番目のアルギニンから始まると予想される。本蛋白質は、C末端に小胞体局在化シグナルモチーフ配列であるKDELに類似した配列KTELを有しているので、小胞体に存在している可能性がある。

[0069]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、相同性を有するものは見いだせなかった。ただし、塩基配列を用いてGenBankを検索したところ、ESTの中に、本cDNAと90%以上の相同性を有し、開始コドンから含んでいるもの(例えば、アクセション番号T86663)が存在したが、不明瞭な配列が多く、本cDNAと同じORFは見いだせなかった

[0070]

【発明の効果】

本発明は分泌シグナル配列を有するヒト蛋白質、およびそれをコードしている c DNAを提供する。本発明の蛋白質は、いずれも細胞外に分泌され、細胞外液 中あるいは細胞膜表面に存在するので、細胞の増殖や分化を制御している蛋白質 と考えられる。したがって、本発明の蛋白質は、医薬品として、あるいは該蛋白質に対する抗体を作製するための抗原として用いることができる。また、該DN Aを用いることにより、該蛋白質を大量に発現することができる。

[0071]

【配列表】

配列番号:1

配列の長さ:154

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:繊維肉腫

セルライン: HT-1080

クローン名: HP00658

配列

Met Lys Val Ser Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala

1 5 10 15

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro

20 25 30

Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys

35 40 45

Glu Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val His

50 55 60

85

Arg Ser Arg Met Pro Lys Arg Glu Gly Gln Gln Val Trp Gln Asp Phe

65 70 75 80

Leu Tyr Asp Ser Arg Leu Asn Lys Gly Lys Leu Cys His Pro Lys Glu

90 95

Pro Pro Ser Val Cys Gln Pro Arg Glu Glu Met Gly Ser Gly Val His

100 105 110

Gln Leu Phe Gly Asp Glu Leu Gly Trp Arg Val Leu Glu Pro Glu Leu

115 120 125

Thr Gln Ile Cys Leu Phe Leu Leu Ala Leu Val Leu Ala Trp Glu Ala

130

135

140

Ser Pro His Tyr Pro Thr Pro Pro Ala Pro

145

150

[0072]

配列番号:2

配列の長さ:315

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No 起源: 生物名:ホモ=サピエンス 細胞の種類:類表皮癌 セルライン: KB クローン名: HP00714 配列 Met Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe Ala Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro Gln Leu Ser Asp Lys Val His Asn Asp Ala Gln Ser Phe Asp Tyr Asp His Asp Ala Phe Leu Gly Ala Glu Glu Ala Lys Thr Phe Asp Gln Leu Thr Pro Glu Glu Ser Lys Glu Arg Leu Gly Lys Ile Val Ser Lys Ile Asp Gly Asp Lys Asp Gly Phe Val Thr Val Asp Glu Leu Lys Asp Trp Ile Lys Phe Ala Gin Lys Arg Trp Ile Tyr Glu Asp Val Glu Arg Gln Trp Lys Gly His Asp Leu Asn Glu Asp Gly Leu Val Ser Trp Glu Glu Tyr Lys Asn Ala Thr Tyr Gly Tyr Val Leu Asp Asp Pro Asp Pro Asp ten Cly Dhe den Tyr Lye Cln Met Met Val dry den Cly dry dry Dhe

Lys Met Ala Asp Lys Asp Gly Asp Leu Ile Ala Ihr Lys Glu Glu Fhe

出証特平09-3084226

Thr	Ala	Phe	Leu	His	Pro	Glu	Glu	Tyr	Asp	Tyr	Met	Lys	Asp	Ile	Val
			180					185					190		
Val	Gln	Glu	Thr	Met	Glu	Asp	Ile	Asp	Lys	Asn	Ala	Asp	Gly	Phe	Ile
		195					200					205			
Asp	Leu	Glu	Glu	Tyr	Ile	Gly	Asp	Met	Tyr	Ser	His	Asp	Gly	Asn	Thr
	210					215					220				
Asp	Glu	Pro	Glu	Trp	Val	Lys	Thr	Glu	Arg	Glu	Gln	Phe	Val	Glu	Phe
225					230					235					240
Arg	Asp	Lys	Asn	Arg	Asp	Gly	Lys	Met	Asp	Lys	Glu	Glu	Thr	Lys	Asp
				245					250					255	
Trp	Ile	Leu	Pro	Ser	Asp	Tyr	Asp	His	Ala	Glu	Ala	Glu	Ala	Arg	His
			260					265					270		
Leu	Val	Tyr	Glu	Ser	Asp	Gln	Asn	Lys	Asp	Gly	Lys	Leu	Thr	Lys	Glu
		275					280					285			
Glu	Ile	Val	Asp	Lys	Tyr	Asp	Leu	Phe	Val	Gly	Ser	Gln	Ala	Thr	Asp
	290					295					300				
Phe	Gly	Glu	Ala	Leu	Vāl	Ārg	His	Āsp	Glu	Phe					
305					310					315					
[0	0 7	3]													

配列番号:3 配列の長さ:158 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 ハイポセティカル:No 起源: 生物名:ホモ=サピエンス 細胞の種類:胃癌 クローン名: HP00876 配列 Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Ser Cys Leu Ala 1 5 10 15 Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro 20 25 30 Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu 35 40 45 Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly 50 55 60 Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala 65 70 75 80 Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu 85 90 His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met 105 Tyr len Tyr Arg Ser Trp Ser Cly Lys Ser Met Cly Cly Asp Lys Nic

Tys Ala olu Met Ser Ser Asn Asn Ehe Leu ihr Trp Ser Ser Asn 130 135 140

Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro

145

150

155

[0074]

配列番号: 4 配列の長さ:376 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 ハイポセティカル:No 起源: 生物名:ホモ=サピエンス 細胞の種類:肝臓 クローン名: HP01134 配列 Met Val Trp Lys Val Ala Val Phe Leu Ser Val Ala Leu Gly Ile Gly 1 5 10 15 Ala Val Pro Ile Asp Asp Pro Glu Asp Gly Gly Lys His Trp Val Val 20 25 30 Ile Val Ala Gly Ser Asn Gly Trp Tyr Asn Tyr Arg His Gln Ala Asp 35 40 45 Ala Cys His Ala Tyr Gln Ile Ile His Arg Asn Gly Ile Pro Asp Glu 50 55 60 Gln Ile Val Val Met Met Tyr Asp Asp Ile Ala Tyr Ser Glu Asp Asn 65 70 75 80 Pro Thr Pro Gly Ile Val Ile Asn Arg Pro Asn Gly Thr Asp Val Tyr 85 90 Gln Gly Val Pro Lys Asp Tyr Thr Gly Glu Asp Val Thr Pro Gln Asn 100 105 110 Phe Leu 4la Val Leu Arg Clv Asp 4la Clu 4la Val Lys Clv Tle Clv

ser ofly Lys Var Leu Lys Ser Gly fro ofn Aspints val Phe He Tyr

130 135 140

Phe	Thr	Asp	His	Gly	Ser	Thr	Gly	He	Leu	Val	Phe	Pro	Asn	Glu	Asp
145					150					155					160
Leu	His	Val	Lys	Asp	Leu	Asn	Glu	Thr	Ile	His	Tyr	Met	Tyr	Lys	His
				165					170					175	
Lys	Met	Tyr	Arg	Lys	Met	Val	Phe	Tyr	Ile	Glu	Ala	Cys	Glu	Ser	Gly
			180					185					190		
Ser	Met	Met	Asn	His	Leu	Pro	Asp	Asn	Ile	Asn	Val	Tyr	Ala	Thr	Thr
		195					200					205			
Ala	Ala	Asn	Pro	Arg	Glu	Ser	Ser	Tyr	Ala	Cys	Tyr	Tyr	Asp	Glu	Lys
	210					215					220				
Arg	Ser	Thr	Tyr	Leu	Gly	Asp	Trp	Tyr	Ser	Val	Asn	Trp	Met	Glu	Asp
225					230					235					240
Ser	Asp	Val	Glu	Asp	Leu	Thr	Lys	Glu	Thr	Leu	His	Lys	Gln	Tyr	His
				245					250					255	
Leu	Val	Lys	Ser	His	Thr	Asn	Thr	Ser	His	Val	Met	Gln	Tyr	Gly	Asn
			260					265					270		
Lys	Thr	Ile	Ser	Thr	Met	Lys	Val	Met	Gln	Phe	Gln	Gly	Met	Lys	Arg
		275					280					285			
Lys	Ala	Ser	Ser	Pro	Val	Pro	Leu	Pro	Pro	Val	Thr	His	Leu	Asp	Leu
	290					295					300				
Thr	Pro	Ser	Pro	Asp	Val	Pro	Leu	Thr	Ile	Met	Lys	Arg	Lys	Leu	Met
305					310					315					320
Asn	Thr	Asn	Asp	Leu	Glu	Glu	Ser	Arg	Gln	Leu	Thr	Glu	Glu	Ile	Gln
				325					330					335	
Arg	His	Leu	Asp	Tyr	Glu	Tyr	Ala	Leu	Arg	His	Leu	Tyr	Val	Leu	Val
			340					345					350		
Asn	Leu	Cys	Glu	Lys	Pro	Tyr	Pro	Leu	His	Arg	Ile	Lys	Leu	Ser	Met
		355					360					365			
Asn	His	Val	Cvs	Len	Glv	His	Tvr								

370

375

[0075]

配列番号:5

配列の長さ:173

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP10029

配列

Met Ala Ala Pro Ser Gly Gly Trp Asn Gly Val Arg Ala Ser Leu Trp

1 5 10 15

Ala Ala Leu Leu Leu Gly Ala Val Ala Leu Arg Pro Ala Glu Ala Val

20 25 30

Ser Glu Pro Thr Thr Val Ala Phe Asp Val Arg Pro Gly Gly Val Val

35 40 45

His Ser Phe Ser His Asn Val Gly Pro Gly Asp Lys Tyr Thr Cys Met

50 55 60

85

Phe Thr Tyr Ala Ser Gln Gly Gly Thr Asn Glu Gln Trp Gln Met Ser

5 70 75 80

Leu Gly Thr Ser Glu Asp His Gln His Phe Thr Cys Thr Ile Trp Arg

90 95

Pro Gln Gly Lys Ser Tyr Leu Tyr Phe Thr Gln Phe Lys Ala Glu Val

100 105 110

Arg Gly Ala Glu Ile Glu Tyr Ala Met Ala Tyr Ser Lys Ala Ala Phe

115 120 125

Glu Arg Glu Ser Asp Val Pro Leu Lys Thr Glu Glu Phe Glu Val Thr

配列番号:6

配列の長さ:73

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP10189

配列

Met Gly Val Lys Leu Glu Ile Phe Arg Met Ile Ile Tyr Leu Thr Phe

1 5 10 15

Pro Val Ala Met Phe Trp Val Ser Asn Gln Ala Glu Trp Phe Glu Asp

20 25 30

Asp Val Ile Glm Arg Lys Arg Glu Leu Trp Pro Pro Glu Lys Leu Glm

35 40 45

Glu Ile Glu Glu Phe Lys Glu Arg Leu Arg Lys Arg Arg Glu Glu Lys

50 55 60

Leu Leu Arg Asp Ala Gln Gln Asn Ser

65 70

[0077]

配列番号:7

配列の長さ:1172

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:組織球リンホーマ

セルライン: U937

クローン名: HP10269

配列

1

Met Arg Pro Phe Phe Leu Leu Cys Phe Ala Leu Pro Gly Leu Leu His

5 10 15

Ala Gln Gln Ala Cys Ser Arg Gly Ala Cys Tyr Pro Pro Val Gly Asp

20 25 30

Leu Leu Val Gly Arg Thr Arg Phe Leu Arg Ala Ser Ser Thr Cys Gly

35 40 45

Leu Thr Lys Pro Glu Thr Tyr Cys Thr Gln Tyr Gly Glu Trp Gln Met

50 55 60

Lys Cys Cys Lys Cys Asp Ser Arg Gln Pro His Asn Tyr Tyr Ser His

65 70 75 80

Arg Val Glu Asn Val Ala Ser Ser Ser Gly Pro Met Arg Trp Trp Gln

85 90 95

Ser Gln Asn Asp Val Asn Pro Val Ser Leu Gln Leu Asp Leu Asp Arg

100 105 110

Ala Gly Met Leu Ile Glu Arg Ser Ser Asp Phe Gly Lys Thr Trp Arg

	130					135					140				
Val	Tyr	Gln	Tyr	Leu	Ala	Ala	Asp	Cys	Thr	Ser	Thr	Phe	Pro	Arg	Val
145					150					155					160
Arg	Gln	Gly	Arg	Pro	Gln	Ser	Trp	Gln	Asp	Val	Arg	Cys	Gln	Ser	Leu
				165					170					175	
Pro	Gln	Arg	Pro	Asn	Ala	Arg	Leu	Asn	Gly	Gly	Lys	Val	Gln	Leu	Asn
			180					185					190		
Leu	Met	Asp	Leu	Val	Ser	Gly	Ile	Pro	Ala	Thr	Gln	Ser	Gln	Lys	Ile
		195					200					205			
Gln	Glu	Val	Gly	Glu	Ile	Thr	Asn	Leu	Arg	Val	Asn	Phe	Thr	Arg	Leu
	210					215					220				
Ala	Pro	Val	Pro	Gln	Arg	Gly	Tyr	His	Pro	Pro	Ser	Ala	Tyr	Tyr	Ala
225					230					235					240
Val	Ser	Gln	Leu	Arg	Leu	Gln	Gly	Ser	Cys	Phe	Cys	His	Gly	His	Ala
				245					250					2 55	
Asp	Arg	Cys	Ala	Pro	Lys	Pro	Gly	Ala	Ser	Ala	Gly	Pro	Ser	Thr	Ala
			260					265					270		
Val	Gln	Val	His	Asp	Val	Cys	Val	Cys	Gln	His	Asn	Thr	Ala	Gly	Pro
		275					280					285			
Asn	Cys	Glu	Arg	Cys	Ala	Pro	Phe	Tyr	Asn	Asn	Arg	Pro	Trp	Arg	Pro
	290					295					300				
Ala	Glu	Gly	Gln	Asp	Ala	His	Glu	Cys	Gln	Arg	Cys	Asp	Cys	Asn	Gly
305					310					315					320
His	Ser	Glu	Thr	Cys	His	Phe	Asp	Pro	Ala	Val	Phe	Ala	Ala	Ser	Gln
				325					330					335	
Gly	Ala	Tyr	Gly	Gly	Val	Cys	Asp	Asn	Cys	Arg	Asp	His	Thr	Glu	Gly
			340					345					350		
Lys	Asn	Cys	Glu	Arg	Cys	Gln	Leu	His	Tyr	Phe	Arg	Asn	Arg	Arg	Pro
		355					360					365			

Gly	Ala	Ser	Ile	Gln	Glu	Thr	Cys	Ile	Ser	Cys	Glu	Cys	Asp	Pro	Asp
	370					375					380				
Gly	Ala	Val	Pro	Gly	Ala	Pro	Cys	Asp	Pro	Val	Thr	Gly	Gln	Cys	Val
385					390					395					400
Cys	Lys	Glu	His	Val	Gln	Gly	Glu	Arg	Cys	Asp	Leu	C ys	Lys	Pro	Gly
				405					410					415	
Phe	Thr	Gly	Leu	Thr	Tyr	Ala	Asn	Pro	Gln	Gly	Cys	His	Arg	Cys	Asp
			420					425					430		
Cys	Asn	Ile	Leu	Gly	Ser	Arg	Arg	Asp	Met	Pro	Cys	Asp	Glu	Glu	Ser
		43 5					440					445			
Gly	Arg	Cys	Leu	Cys	Leu	Pro	Asn	Val	Val	Gly	Pro	Lys	Cys	Asp	Gln
	450					455					460				
Cys	Ala	Pro	Tyr	His	Trp	Lys	Leu	Ala	Ser	Gly	Gln	Gly	Cys	Glu	Pro
465					470					475					480
Cys	Ala	Cys	Asp	Pro	His	Asn	Ser	Leu	Ser	Pro	Gln	Cys	Asn	Gln	Phe
				485					490					495	
Thr	Gly	Gln	Cys	Pro	Cys	Arg	Glu	Gly	Phe	Gly	Gly	Leu	Met	Cys	Ser
			500					505					510		
Ala	Ala	Ala	Ile	Arg	Gln	Cys	Pro	Asp	Arg	Thr	Tyr	Gly	Asp	Val	Ala
		515					520					525			
Thr	Gly	Cys	Arg	Ala	Cys	Asp	Cys	Asp	Phe	Arg	Gly	Thr	Glu	Gly	Pro
	530					535					540				
Gly	Cys	Asp	Lys	Ala	Ser	Gly	Arg	Cys	Leu	Cys	Arg	Pro	Gly	Leu	Thr
545					550					555					560
Gly	Pro	Arg	Cys	Asp	Gln	Cys	Gln	Arg	Gly	Tyr	Cys	Asn	Arg	Tyr	Pro
				SPE					270					575	

Arg Glu Gln Ala Leu Arg Phe Gly Arg Leu Arg Asn Ala Thr Ala Ser

		595					600					605			
Leu	Trp	Ser	Gly	Pro	Gly	Leu	Glu	Asp	Arg	Gly	Leu	Ala	Ser	Arg	Ile
	610					615					620				
Leu	Asp	Ala	Lys	Ser	Lys	Ile	Glu	Gln	Ile	Arg	Ala	Val	Leu	Ser	Ser
625					630					635					640
Pro	Ala	Val	Thr	Glu	Gln	Glu	Val	Ala	Gln	Val	Ala	Ser	Ala	Ile	Leu
				645					650					655	
Ser	Leu	Arg	Arg	Thr	Leu	Gln	Gly	Leu	Gln	Leu	Asp	Leu	Pro	Leu	Glu
			660					665					670		
Glu	Glu	Thr	Leu	Ser	Leu	Pro	Arg	Asp	Leu	Glu	Ser	Leu	Asp	Arg	Ser
		675					680					685			
Phe	Asn	Gly	Leu	Leu	Thr	Met	Tyr	Gln	Arg	Lys	Arg	Glu	Gln	Phe	Glu
	690					695					700				
L y s	Ile	Ser	Ser	Ala	Asp	Pro	Ser	Gly	Ala	Phe	Arg	Met	Leu	Ser	Thr
705					710					715					720
Ala	Tyr	Glu	Gln	Ser	Ala	Gln	Ala	Ala	Gln	Gln	Val	Ser	Asp	Ser	Ser
				725					730					735	
Arg	Leu	Leu	Asp	Gln	Leu	Arg	Asp	Ser	Arg	Arg	Glu	Ala	Glu	Arg	Leu
			740					745					750		
Val	Arg	Gln	Ala	Gly	Gly	Gly	Gly	Gly	Thr	Gly	Ser	Pro	Lys	Leu	Val
		755					760					765			
Ala	Leu	Arg	Leu	Glu	Met	Ser	Ser	Leu	Pro	Asp	Leu	Thr	Pro	Thr	Phe
	770					775					780				
Asn	Lys	Leu	Cys	Gly	Asn	Ser	Arg	Gln	Met	Ala	Cys	Thr	Pro	Ile	Ser
785					790					795					800
Cys	Pro	Gly	Glu	Leu	Cys	Pro	Gln	Asp	Asn	Gly	Thr	Ala	Cys	Gly	Ser
				805					810					815	
Arg	Cys	Arg	Gly	Val	Leu	Pro	Arg	Ala	Gly	Gly	Ala	Phe	Leu	Met	Ala
			820					825					830		

Gly	Gln	Val	Ala	Glu	Gln	Leu	Arg	Gly	Phe	Asn	Ala	Gln	Leu	Gln	Arg
		835					840					845			
Thr	Arg	Gln	Met	Ile	Arg	Ala	Ala	Glu	Glu	Ser	Ala	Ser	Gln	Ile	Gln
	850					855					860				
Ser	Ser	Ala	Gln	Arg	Leu	Glu	Thr	Gln	Val	Ser	Ala	Ser	Arg	Ser	Gln
865					870					875					880
Met	Glu	Glu	Asp	Val	Arg	Arg	Thr	Arg	Leu	Leu	Ile	Gln	Gln	Val	Arg
				885					890					895	
Asp	Phe	Leu	Thr	Asp	Pro	Asp	Thr	Asp	Ala	Ala	Thr	Ile	Gln	Glu	Val
			900					905					910		
Ser	Glu	Ala	Val	Leu	Ala	Leu	Trp	Leu	Pro	Thr	Asp	Ser	Ala	Thr	Val
		915					920					925			
Leu	Gln	Lys	Met	Asn	Glu	Ιle	Gln	Ala	Ile	Ala	Ala	Arg	Leu	Pro	Asn
	930					935					940				
Val	Asp	Leu	Val	Leu	Ser	Gln	Thr	Lys	Gln	Asp	Ile	Ala	Arg	Ala	Arg
945					950					955					960
Arg	Leu	Gln	Ala	Glu	Ala	Glu	Glu	Ala	Arg	Ser	Arg	Ala	His	Ala	Val
				965					970					975	
Glu	Gly	Gln	Val	Glu	Asp	Val	Val	Gly	Asn	Leu	Arg	Gln	Gly	Thr	Val
			980					985					990		
Ala	Leu	Gln	Glu	Ala	Gln	Asp	Thr	Met	Gln	Gly	Thr	Ser	Arg	Ser	Leu
		995					100	0				100	5		
Arg	Leu	Ile	Gln	Asp	Arg	Val	Ala	Glu	Val	Gln	Gln	Val	Leu	Arg	Pro
	1010	O				101	5				102	O			
Ala	Glu	Lys	Leu	Val	Thr	Ser	Met	Thr	Lys	Gln	Leu	Gly	Asp	Phe	Trp
100					100	n				109	-				1010

1045 1050 1055

Ala Val Gin Ala Gin Gin Leu Ala Giu Giy Ala Ser Giu Gin Ala Leu

Ser Ala Gln Glu Gly Phe Glu Arg Ile Lys Gln Lys Tyr Ala Glu Leu Lys Asp Arg Leu Gly Gln Ser Ser Met Leu Gly Glu Gln Gly Ala Arg Ile Gln Ser Val Lys Thr Glu Ala Glu Glu Leu Phe Gly Glu Thr Met Glu Met Met Asp Arg Met Lys Asp Met Glu Leu Glu Leu Leu Arg Gly Ser Gln Ala Ile Met Leu Arg Ser Ala Asp Leu Thr Gly Leu Glu Lys Arg Val Glu Gln Ile Arg Asp His Ile Asn Gly Arg Val Leu Tyr Tyr Ala Thr Cys Lys [0078]

配列番号:8 配列の長さ:122 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 ハイポセティカル:No 起源: 生物名:ホモ=サピエンス 細胞の種類:胃癌 クローン名: HP10298 配列 Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr 1 5 10 15 Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp 20 25 30 Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Arg Ile Leu Thr
50 55 60

Val Gly Pro Gln Ser Leu Gly Ser Glu Ala Leu Ala Ser Pro Thr Arg
65 70 75 80

Arg Ala Ala Cys Thr Val Phe Thr Ala Thr Ala Ser Thr Arg Thr Trp

85 90 95

Gly Pro Pro Leu Pro His Ser Leu Thr Gly Cys Val Phe Ile Glu Trp

Phe Val Phe Pro Cys Cly Len Clu Pro Phe

10013

配列番号:9 配列の長さ:175 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 ハイポセティカル:No 起源: 生物名:ホモ=サピエンス 細胞の種類:胃癌 クローン名: HP10368 配列 Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Leu Val Ala Leu Ser 1 5 10 15 Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp 20 25 30 Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp 35 40 Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Lys 50 55 60 Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp Glu 70 75 Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys Glu 85 90 lle Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu 100 105 110 Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile 115 120 125 Met Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg 130 135 140

配列番号:10

配列の長さ:462

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:繊維肉腫

セルライン: HT-1080

クローン名: HP00658

配列

ATGAAGGTCT	CCGCGGCAGC	CCTCGCTGTC	ATCCTCATTG	CTACTGCCCT	CTGCGCTCCT	60
GCATCTGCCT	CCCCATATTC	CTCGGACACC	ACACCCTGCT	GCTTTGCCTA	CATTGCCCGC	120
CCACTGCCCC	GTGCCCACAT	CAAGGAGTAT	TTCTACACCA	GTGGCAAGTG	CTCCAACCCA	180
GCAGTCGTCC	ACAGGTCAAG	GATGCCAAAG	AGAGAGGAC	AGCAAGTCTG	GCAGGATTTC	240
CTGTATGACT	CCCGGCTGAA	CAAGGGCAAG	CTTTGTCACC	CGAAAGAACC	GCCAAGTGTG	300
TGCCAACCCA	GAGAAGAAAT	GGGTTCGGGA	GTACATCAAC	TCTTTGGAGA	TGAGCTAGGA	360
TGGAGAGTCC	TTGAACCTGA	ACTTACACAA	ATTTGCCTGT	TTCTGCTTGC	TCTTGTCCTA	420
GCTTGGGAGG	CTTCCCCTCA	CTATCCTACC	CCACCCGCTC	CT		462
[0081]						

配列番号:11

配列の長さ:945

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP00714

配列

60	CTTGAGCAAA	CAGCCTTTGC	TCCCTGTGCA	TATGTGCCTG	GACAGTTTCT	ATGGACCTGC
120	GGTTCACAAT	TCAGTGACAA	GAGCCTCAGC	TGTACATCAT	AGAAGGACCG	CCCACAGAAA
180	AGCAAAGACC	GTGCTGAAGA	GCCTTCTTGG	TGACCATGAT	GTTTTGATTA	GATGCTCAGA
240	AAGTAAAATA	GAAAGATTGT	GAAAGGCTTG	AGAGAGCAAG	TGACACCAGA	TTTGATCAGC
300	TAAATTTGCA	AAGACTGGAT	GATGAGCTCA	TGTCACTGTG	AGGACGGGTT	GATGGCGACA
360	CCTCAATGAG	AGGGGCATGA	CGACAGTGGA	GGATGTAGAG	GGATTTACGA	CAAAAGCGCT
420	TTTAGATGAT	ACGGCTACGT	AATGCCACCT	GGAGTATAAA	TTTCCTGGGA	GACGGCCTCG
480	GCGGAGGTTT	TTAGAGATGA	CAGATGATGG	TAACTATAAA	ATGATGGATT	CCAGATCCTG
540	AGCTTTCCTG	AGGAGTTCAC	GCCACCAAGG	AGACCTCATT	ACAAGGATGG	AAAATGGCAG
600	GGAAGATATA	AGGAAACAAT	ATAGTAGTAC	CATGAAAGAT	AGTATGACTA	CACCCTGAGG
660	GTACAGCCAT	TTGGTGACAT	GAAGAGTATA	CATTGATCTA	CTGATGGTTT	GATAAGAATG
720	TGTTGAGTTT	GAGAGCAGTT	AAGACAGAGC	AGAATGGGTA	CTGATGAGCC	GATGGGAATA
780	GATCCTTCCC	CCAAAGACTG	AAGGAAGAGA	GAAGATGGAC	ACCGTGATGG	CGGGATAAGA
0.4.0		mam.mama		0001011000	1 TC 1 TCC 1 C 1	TC LC LCT LTC

CAGGCCACAG A.TTTGGGGA GGGCTTAGTA CGGCATGATG AGTTC

345

[0082]

配列番号:12

配列の長さ: 474

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP00876

配列

ATGGCTTCCA	GAAGCATGCG	GCTGCTCCTA	TTGCTGAGCT	GCCTGGCCAA	AACAGGAGTC	60
CTGGGTGATA	TCATCATGAG	ACCCAGCTGT	GCTCCTGGAT	GGTTTTACCA	CAAGTCCAAT	120
TGCTATGGTT	ACTTCAGGAA	GCTGAGGAAC	TGGTCTGATG	CCGAGCTCGA	GTGTCAGTCT	180
TACGGAAACG	GAGCCCACCT	GGCATCTATC	CTGAGTTTAA	AGGAAGCCAG	CACCATAGCA	240
GAGTACATAA	GTGGCTATCA	GAGAAGCCAG	CCGATATGGA	TTGGCCTGCA	CGACCCACAG	300
AAGAGGCAGC	AGTGGCAGTG	GATTGATGGG	GCCATGTATC	TGTACAGATC	CTGGTCTGGC	360
AAGTCCATGG	GTGGGAACAA	GCACTGTGCT	GAGATGAGCT	CCAATAACAA	CTTTTTAACT	420
TGGAGCAGCA	ACGAATGCAA	CAAGCGCCAA	CACTTCCTGT	GCAAGTACCG	ACCA	474
[0083]						

配列番号:13

配列の長さ:1128

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名: HP01134

配列

60	CGTTCCTATA	GCATTGGTGC	GTGGCCCTGG	ATTCCTCAGT	AAGTAGCTGT	ATGGTTTGGA
120	AAATGGCTGG	TGGCAGGTTC	GTGGTGATCG	CAAGCACTGG	AAGATGGAGG	GATGATCCTG
180	CCGCAATGGG	AGATCATTCA	CATGCCTACC	AGACGCGTGC	GGCACCAGGC	TATAATTATA
240	TGAAGACAAT	TTGCTTACTC	TACGATGACA	TGTGATGATG	AACAGATCGT	ATTCCTGACG
300	GGGAGTCCCG	ATGTCTATCA	AATGGCACAG	CAACAGGCCC	GAATTGTGAT	CCCACTCCAG
360	GAGAGGCGAT	TTGCTGTGTT	CAAAATTTCC	TGTTACCCCA	CTGGAGAGGA	AAGGACTACA
420	CCAGGATCAC	AGAGTGGCCC	AAAGTCCTGA	AGGATCCGGC	TGAAGGCAT	GCAGAAGCAG
480	CAATGAAGAT	TGGTTTTTCC	ACTGGAATAC	CCATGGATCT	ACTTCACTGA	GTGTTCATTT
540	AATGTACCGA	ACAAACACAA	CATTACATGT	TGAGACCATC	AGGACCTGAA	CTTCATGTAA
600	CCTGCCGGAT	TGATGAACCA	TCTGGGTCCA	AGCCTGTGAG	TCTACATTGA	AAGATGGTGT
660	CGCCTGTTAC	AGTCGTCCTA	AACCCCAGAG	TACTGCTGCC	TTTATGCAAC	AACATCAATG
720	GATGGAAGAC	GCGTCAACTG	GACTGGTACA	GTACCTGGGG	AGAGGTCCAC	TATGATGAGA
780	GGTAAAATCG	AGTACCACCT	CTGCACAAGC	TAAAGAGACC	AAGATCTGAC	TCGGACGTGG
840	CATGAAAGTG	CAATCTCCAC	GGAAACAAAA	CATGCAGTAT	CCAGCCACGT	CACACCAACA
900	TCCAGTCACA	TCCCCCTACC	AGTTCTCCCG	ACGCAAAGCC	AGGGTATGAA	ATGCAGTTTC
960	GAAACTGATG	TCATGAAAAG	CCTCTCACCA	CCCTGATGTG	TCACCCCCAG	CACCTTGACC
1020	GCATCTGGAT	AGATCCAGCG	CTCACGGAGG	GTCCAGGCAG	ATCTGGAGGA	AACACCAATG
1080	GCCGTATCCG	TTTGTGAGAA	CTGGTCAACC	TTTGTACGTG	CGTTGAGACA	TACGAGTATG
1128		GTCACTAC	GTGTGCCTTG	CATGGACCAC	TAAAATTGTC	CTTCACAGGA

[0084]

配列番号:14

配列の長さ:519

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP10029

配列

ATGGCGGCGC	CCAGCGGAGG	GTGGAACGGC	GTCCGCGCGA	GCTTGTGGGC	CGCGCTGCTC	60
CTAGGGGCCG	TGGCGCTGAG	GCCGGCGGAG	GCGGTGTCCG	AGCCCACGAC	CGTGGCGTTT	120
GACGTGCGGC	CCGGCGGCGT	CGTGCATTCC	TTCTCCCATA	ACGTGGGCCC	GGGGACAAA	180
TATACGTGTA	TGTTCACTTA	CGCCTCTCAA	GGAGGGACCA	ATGAGCAATG	GCAGATGAGT	240
CTGGGGACCA	GCGAAGACCA	CCAGCACTTC	ACCTGCACCA	TCTGGAGGCC	CCAGGGGAAG	300
TCCTATCTGT	ACTTCACACA	GTTCAAGGCA	GAGGTGCGGG	GCGCTGAGAT	TGAGTACGCC	360
ATGGCCTACT	CTAAAGCCGC	ATTTGAAAGG	GAAAGTGATG	TCCCTCTGAA	AACTGAGGAA	420
TTTGAAGTGA	CCAAAACAGC	AGTGGCTCAC	AGGCCCGGGG	CATTCAAAGC	TGAGCTGTCC	480
AAGCTGGTGA	TTGTGGCCAA	GGCATCGCGC	ACTGAGCTG			519
[0085]]					

配列番号:15

配列の長さ:219

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP10189

配列

ATGGGGGTGA AGCTGGAGAT ATTTCGGATG ATAATCTACC TCACTTTCCC TGTGGCTATG 60

TTCTGGGTTT CCAATCAGGC CGAGTGGTTT GAGGACGATG TCATACAGCG CAAGAGGGAG 120

CTGTGGCCAC CTGAGAAGCT TCAAGAGATA GAGGAATTCA AAGAGAGGTT ACGGAAGCGG 180

CGGGAGGAGA AGCTCCTTCG CGACGCCCAG CAGAACTCC 219

配列番号:16

配列の長さ:3516

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:リンホーマ

セルライン: U937

クローン名: HP10269

配列

	ATGAGACCAT	TCTTCCTCTT	GTGTTTTGCC	CTGCCTGGCC	TCCTGCATGC	CCAACAAGCC	60
•	TGCTCCCGTG	GGGCCTGCTA	TCCACCTGTT	GGGGACCTGC	TTGTTGGGAG	GACCCGGTTT	120
(CTCCGAGCTT	CATCTACCTG	TGGACTGACC	AAGCCTGAGA	CCTACTGCAC	CCAGTATGGC	180
1	GAGTGGCAGA	TGAAATGCTG	CAAGTGTGAC	TCCAGGCAGC	CTCACAACTA	CTACAGTCAC	240
(CGAGTAGAGA	ATGTGGCTTC	ATCCTCCGGC	CCCATGCGCT	GGTGGCAGTC	CCAGAATGAT	300
(GTGAACCCTG	TCTCTCTGCA	GCTGGACCTG	GACAGGAGAT	TCCAGCTTCA	AGAAGTCATG	360
	ATGGAGTTCC	AGGGCCCAT	GCCTGCCGGC	ATGCTGATTG	AGCGCTCCTC	AGACTTCGGT	420
	AAGACCTGGC	GAGTGTACCA	GTACCTGGCT	GCCGACTGCA	CCTCCACCTT	CCCTCGGGTC	480
(CGCCAGGGTC	GGCCTCAGAG	CTGGCAGGAT	GTTCGGTGCC	AGTCCCTGCC	TCAGAGGCCT	540
	AATGCACGCC	TAAATGGGGG	GAAGGTCCAA	CTTAACCTTA	TGGATTTAGT	GTCTGGGATT	600
(CCAGCAACTC	AAAGTCAAAA	AATTCAAGAG	GTGGGGGAGA	TCACAAACTT	GAGAGTCAAT	660
	TTCACCAGGC	TGGCCCCTGT	GCCCCAAAGG	GGCTACCACC	CTCCCAGCGC	CTACTATGCT	720
(GTGTCCCAGC	TCCGTCTGCA	GGGGAGCTGC	TTCTGTCACG	GCCATGCTGA	TCGCTGCGCA	780
1	CCC	\mathbf{C}	↑ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	* CCCCTCTCC	ACCTCCACCA	тстстстстс	910

COUTGGAGAU UGGUGGAGGG UCAGGAUGGU CATGAATGUU AAAGGTGUGA UTGCAATGGG 960
CACTCAGAGA CATGTCACTT TGACCCCGCT GTGTTTGCCG CCAGCCAGGG GGCATATGGA 1020

GGTGTGTGTG	ACAATTGCCG	GGACCACACC	GAAGGCAAGA	ACTGTGAGCG	GTGTCAGCTG	1080
CACTATTTCC	GGAACCGGCG	CCCGGGAGCT	TCCATTCAGG	AGACCTGCAT	CTCCTGCGAG	1140
TGTGATCCGG	ATGGGGCAGT	GCCAGGGGCT	CCCTGTGACC	CAGTGACCGG	GCAGTGTGTG	1200
TGCAAGGAGC	ATGTGCAGGG	AGAGCGCTGT	GACCTATGCA	AGCCGGGCTT	CACTGGACTC	1260
ACCTACGCCA	ACCCGCAGGG	CTGCCACCGC	TGTGACTGCA	ACATCCTGGG	GTCCCGGAGG	1320
GACATGCCGT	GTGACGAGGA	GAGTGGGCGC	TGCCTTTGTC	TGCCCAACGT	GGTGGGTCCC	1380
AAATGTGACC	AGTGTGCTCC	CTACCACTGG	AAGCTGGCCA	GTGGCCAGGG	CTGTGAACCG	1440
TGTGCCTGCG	ACCCGCACAA	CTCCCTCAGC	CCACAGTGCA	ACCAGTTCAC	AGGGCAGTGC	1500
CCCTGTCGGG	AAGGCTTTGG	TGGCCTGATG	TGCAGCGCTG	CAGCCATCCG	CCAGTGTCCA	1560
GACCGGACCT	ATGGAGACGT	GGCCACAGGA	TGCCGAGCCT	GTGACTGTGA	TTTCCGGGGA	1620
ACAGAGGCC	CGGGCTGCGA	CAAGGCATCA	GGCCGCTGCC	TCTGCCGCCC	TGGCTTGACC	1680
GGGCCCCGCT	GTGACCAGTG	CCAGCGAGGC	TACTGCAATC	GCTACCCGGT	GTGCGTGGCC	1740
TGCCACCCTT	GCTTCCAGAC	CTATGATGCG	GACCTCCGGG	AGCAGGCCCT	GCGCTTTGGT	1800
AGACTCCGCA	ATGCCACCGC	CAGCCTGTGG	TCAGGGCCTG	GGCTGGAGGA	CCGTGGCCTG	1860
GCCTCCCGGA	TCCTAGATGC	AAAGAGTAAG	ATTGAGCAGA	TCCGAGCAGT	TCTCAGCAGC	1920
CCCGCAGTCA	CAGAGCAGGA	GGTGGCTCAG	GTGGCCAGTG	CCATCCTCTC	CCTCAGGCGA	1980
ACTCTCCAGG	GCCTGCAGCT	GGATCTGCCC	CTGGAGGAGG	AGACGTTGTC	CCTTCCGAGA	2040
GACCTGGAGA	GTCTTGACAG	AAGCTTCAAT	GGTCTCCTTA	CTATGTATCA	GAGGAAGAGG	2100
GAGCAGTTTG	AAAAAATAAG	CAGTGCTGAT	CCTTCAGGAG	CCTTCCGGAT	GCTGAGCACA	2160
GCCTACGAGC	AGTCAGCCCA	GGCTGCTCAG	CAGGTCTCCG	ACAGCTCGCG	CCTTTTGGAC	2220
CAGCTCAGGG	ACAGCCGGAG	AGAGGCAGAG	AGGCTGGTGC	GGCAGGCGGG	AGGAGGAGGA	2280
GGCACCGGCA	GCCCCAAGCT	TGTGGCCCTG	AGGCTGGAGA	TGTCTTCGTT	GCCTGACCTG	2340
ACACCCACCT	TCAACAAGCT	CTGTGGCAAC	TCCAGGCAGA	TGGCTTGCAC	CCCAATATCA	2400
TGCCCTGGTG	AGCTATGTCC	CCAAGACAAT	GGCACAGCCT	GTGGCTCCCG	CTGCAGGGGT	2460
GTCCTTCCCA	GGGCCGGTGG	GGCCTTCTTG	ATGGCGGGGC	AGGTGGCTGA	GCAGCTGCGG	2520
GGCTTCAATG	CCCAGCTCCA	GCGGACCAGG	CAGATGATTA	GGGCAGCCGA	GGAATCTGCC	2580
TCACAGATTC	AATCCAGTGC	CCAGCGCTTG	GAGACCCAGG	TGAGCGCCAG	CCGCTCCCAG	2640
ATGGAGGAAG	ATGTCAGACG	CACACGGCTC	CTAATCCAGC	AGGTCCGGGA	CTTCCTAACA	2700
GACCCCGACA	CTGATGCAGC	CACTATCCAG	GAGGTCAGCG	AGGCCGTGCT	GGCCCTGTGG	2760

CTGCCCACAG	ACTCAGCTAC	TGTTCTGCAG	AAGATGAATG	AGATCCAGGC	CATTGCAGCC	2820
AGGCTCCCCA	ACGTGGACTT	GGTGCTGTCC	CAGACCAAGC	AGGACATTGC	GCGTGCCCGC	2880
CGGTTGCAGG	CTGAGGCTGA	GGAAGCCAGG	AGCCGAGCCC	ATGCAGTGGA	GGGCCAGGTG	2940
GAAGATGTGG	TTGGGAACCT	GCGGCAGGGG	ACAGTGGCAC	TGCAGGAAGC	TCAGGACACC	3000
ATGCAAGGCA	CCAGCCGCTC	CCTTCGGCTT	ATCCAGGACA	GGGTTGCTGA	GGTTCAGCAG	3060
GTACTGCGGC	CAGCAGAAAA	GCTGGTGACA	AGCATGACCA	AGCAGCTGGG	TGACTTCTGG	3120
ACACGGATGG	AGGAGCTCCG	CCACCAAGCC	CGGCAGCAGG	GGGCAGAGGC	AGTCCAGGCC	3180
CAGCAGCTTG	CGGAAGGTGC	CAGCGAGCAG	GCATTGAGTG	CCCAAGAGGG	ATTTGAGAGA	3240
ATAAAACAAA	AGTATGCTGA	GTTGAAGGAC	CGGTTGGGTC	AGAGTTCCAT	GCTGGGTGAG	3300
CAGGGTGCCC	GGATCCAGAG	TGTGAAGACA	GAGGCAGAGG	AGCTGTTTGG	GGAGACCATG	3360
GAGATGATGG	ACAGGATGAA	AGACATGGAG	TTGGAGCTGC	TGCGGGGCAG	CCAGGCCATC	3420
ATGCTGCGCT	CAGCGGACCT	GACAGGACTG	GAGAAGCGTG	TGGAGCAGAT	CCGTGACCAC	3480
ATCAATGGGC	GCGTGCTCTA	CTATGCCACC	TGCAAG			3516
[0007]	1					

[0087]

配列番号:17

配列の長さ:366

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: c DNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10298

配列

ATGGGCCTGT	TGCTCCTGGT	CCCATTGCTC	CTGCTGCCCG	GCTCCTACGG	ACTGCCCTTC	60
TACAACGGCT	TCTACTACTC	CAACAGCGCC	AACGACCAGA	ACCTAGGCAA	CGGTCATGGC	120
AAAGACCTCC	TTAATGGAGT	GAAGCTGGTG	GTGGAGACAC	CCGAGGAGAC	CCTGTTCACC	180
CGCATCCTAA	CTGTGGGCCC	CCAGAGCCTG	GGGTCCGAAG	CTTTGGCTTC	CCCGACCCGC	240
AGAGCCGCTT	GTACGGTGTT	TACTGCTACC	GCCAGCACTA	GGACCTGGGG	CCCTCCCCTG	300
CCGCATTCCC	TCACTGGCTG	TGTATTTATT	GAGTGGTTCG	TTTTCCCTTG	TGGGTTGGAG	360
CCATTT						366

[0088]

配列番号:18

配列の長さ:525

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10368

配列

ATGGAGAAA	TTCCAGTGTC	AGCATTCTTG	CTCCTTGTGG	CCCTCTCCTA	CACTCTGGCC	60
AGAGATACCA	CAGTCAAACC	TGGAGCCAAA	AAGGACACAA	AGGACTCTCG	ACCCAAACTG	120
CCCCAGACCC	TCTCCAGAGG	TTGGGGTGAC	CAACTCATCT	GGACTCAGAC	ATATGAAGAA	180
GCTCTATATA	AATCCAAGAC	AAGCAACAAA	CCCTTGATGA	TTATTCATCA	CTTGGATGAG	240
TGCCCACACA	GTCAAGCTTT	AAAGAAAGTG	TTTGCTGAAA	ATAAAGAAAT	CCAGAAATTG	300
GCAGAGCAGT	TTGTCCTCCT	CAATCTGGTT	TATGAAACAA	CTGACAAACA	CCTTTCTCCT	360
GATGGCCAGT	ATGTCCCCAG	GATTATGTTT	GTTGACCCAT	CTCTGACAGT	TAGAGCCGAT	420
ATCACTGGAA	GATATTCAAA	CCGTCTCTAT	GCTTACGAAC	CTGCAGATAC	AGCTCTGTTG	480
CTTGACAACA	TGAAGAAAGC	TCTCAAGTTG	CTGAAGACTG	AATTG		525
[0089]]					

配列番号:19

配列の長さ:1296

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:繊維肉腫

セルライン: HT-1080

クローン名: HP00658

配列の特徴:

特徴を表す記号:CDS

存在位置:56..520

特徴を決定した方法:E

配列

CCTGCAGAGG ATCAAGACAG CACGTGGACC TCGCACAGCC TCTCCCACAG GTACC ATG 58

Met

1

AAG GTC TCC GCG GCA GCC CTC GCT GTC ATC CTC ATT GCT ACT GCC CTC 106

Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala Leu

10 15

TGC GCT CCT GCA TCT GCC TCC CCA TAT TCC TCG GAC ACC ACA CCC TGC 154

Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro Cys

20 25 30

TGC TTT GCC TAC ATT GCC CGC CCA CTG CCC CGT GCC CAC ATC AAG GAG 202

Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys Glu

35 40 45

TAT TTC TAC ACC AGT GGC AAG TGC TCC AAC CCA GCA GTC GTC CAC AGG 250

Tyr	Phe	Tyr	Thr	Ser	Gly	Lys	Cys	Ser	Asn	Pro	Ala	Val	Val	His	Arg	
50					55					60					65	
TCA	AGG	ATG	CCA	AAG	AGA	GAG	GGA	CAG	CAA	GTC	TGG	CAG	GAT	TTC	CTG	298
Ser	Arg	Met	Pro	Lys	Arg	Glu	Gly	Gln	Gln	Val	Trp	Gln	Asp	Phe	Leu	
				70					7 5					80		
TAT	GAC	TCC	CGG	CTG	AAC	AAG	GGC	AAG	CTT	TGT	CAC	CCG	AAA	GAA	CCG	346
Tyr	Asp	Ser	Arg	Leu	Asn	Lys	Gly	Lys	Leu	Cys	His	Pro	Lys	Glu	Pro	
			85					90					95			
CCA	AGT	GTG	TGC	CAA	CCC	AGA	GAA	GAA	ATG	GGT	TCG	GGA	GTA	CAT	CAA	394
Pro	Ser	Val	Cys	Gln	Pro	Arg	Glu	Glu	Met	Gly	Ser	Cly	Val	His	Gln	
		100					105					110				
CTC	TTT	GGA	GAT	GAG	CTA	GGA	TGG	AGA	GTC	CTT	GAA	CCT	GAA	CTT	ACA	442
Leu	Phe	Gly	Asp	Glu	Leu	Gly	Trp	Arg	Val	Leu	Glu	Pro	Glu	Leu	Thr	
	115					120					125					
CAA	ATT	TGC	CTG	TTT	CTG	CTT	GCT	CTT	GTC	CTA	GCT	TGG	GAG	GCT	TCC	490
Gln	Ile	Cys	Leu	Phe	Leu	Leu	Ala	Leu	Val	Leu	Ala	Trp	Glu	Ala	Ser	
130					135					140					145	
CCT	CAC	TAŢ	CCT	ACC	CCA	CCC	GCT	CCT	TGA	AGGG	CCC A	AGA				530
Pro	His	Tyr	Pro	Thr	Pro	Pro	Ala	Pro								
				150												
TTC	racc <i>i</i>	ACA (CAGC	AGCA	GT T	ACAA	AAAC	C TT(CCCC	AGGC	TGG.	ACGT	GGT	GGCT(CACGCC	590
TGT	AATC(CCA (GCAC	rttg(GG A	GGCC.	AAGG'	T GG(GTGG	ATCA	CTT	GAGG'	TCA	GGAG	TTCGAG	650
ACC	AGCC.	rgg (CCAA	CATG.	AT G.	AAAC(CCCA	г ст	CTAC	ΓΑΑΑ	AAT.	ACAA.	AAA	ATTA	GCCGGG	710
CGT	GGTA	GCG (GGCG	CCTG	TA G	rccc.	AGCT.	A CTO	CGGG	AGGC	TGA	GGCA	GGA	GAAT	GGCGTG	770
AAC	CCGG	GAG (GCGG.	AGCT'	TG C.	AGTG.	AGCC	G AG	ATCG(CGCC	ACT	GCAC'	TCC	AGCC'	TGGGCG	830
. ~ • . ,	· • (C)		4 ********	*/****	TYY •		1111	4 4 4	5 5 5 5	4 4 4 4	4 4 4	T4/14	5.5.5	<u>ለ</u> ጥጥ ለ /	מרנירני	800
AAC	CCAG	i A G (GTGG.	AGGC	TG C.	A GTG.	AGCT	i AG	ATTG	TGCU	ACT	TCAC	rce	AGCC	TGGGTG	1016
ACA.	AAGT(GAG .	ACTC	CGTC.	AC A	ACAA(CAAC.	A AC	AAAA.	AGCT	TCC	CCAA	CTA	AAGC	CTAGAA	1070

GAGCTTCTGA	GGCGCTGCTT	TGTCAAAAGG	AAGTCTCTAG	GTTCTGAGCT	CTGGCTTTGC	1130
CTTGGCTTTG	CCAGGGCTCT	GTGACCAGGA	AGGAAGTCAG	CATGCCTCTA	GAGGCAAGGA	1190
GGGGAGGAAC	GCTGCACTCT	TAAGCTTCCG	CCGTCTCAAC	CCCTCACAGG	AGCTTACTGG	1250
CAAACATGAA	AAATCGGCTT	ACCATTAAAG	TTCTCAATGC	AACCAT		1296
[0090]	ļ					

配列番号:20

配列の長さ:3311

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP00714

配列の特徴:

特徴を表す記号:CDS

存在位置:57..1004

特徴を決定した方法:E

配列

GAGCGGCGC CACGGCATCC TGTGCTGTGG GGGCTACGAG GAAAGATCTA ATTATC ATG 59

Met

1

GAC CTG CGA CAG TTT CTT ATG TGC CTG TCC CTG TGC ACA GCC TTT GCC 107

Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe Ala

5 10 15

TTG AGC AAA CCC ACA GAA AAG AAG GAC CGT GTA CAT CAT GAG CCT CAG 155

Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro Gln

20 25 30

CITC ACT CAC AAC CIT CAC AAT CAT CAT CAC ACT TIT CAT TAT CAC CAT 0.02

35 40 45

GAT GCC TTC TTG GGT GCT GAA GAA GCA AAG ACC TTT GAT CAG CTG ACA 251

Asp	Ala	Phe	Leu	Gly	Ala	Glu	Glu	Ala	Lys	Thr	Phe	Asp	Gln	Leu	Thr	
50					55					60					65	
CCA	GAA	GAG	AGC	AAG	GAA	AGG	CTT	GGA	AAG	ATT	GTA	AGT	AAA	ATA	GAT	299
Pro	Glu	Glu	Ser	Lys	Glu	Arg	Leu	Gly	Lys	Ile	Val	Ser	Lys	Ile	Asp	
				70					7 5					80		
GGC	GAC	AAG	GAC	GGG	TTT	GTC	ACT	GTG	GAT	GAG	CTC	AAA	GAC	TGG	ATT	347
Gly	Asp	Lys	Asp	Gly	Phe	Val	Thr	Val	Asp	Glu	Leu	Lys	Asp	Trp	Ile	
			85					90					95			
AAA	TTT	GCA	CAA	AAG	CGC	TGG	ATT	TAC	GAG	GAT	GTA	GAG	CGA	CAG	TGG	395
Lys	Phe	Ala	Gln	Lys	Arg	Trp	Ile	Tyr	Glu	Asp	Val	Glu	Arg	Gln	Trp	
		100					105					110				
AAG	GGG	CAT	GAC	CTC	AAT	GAG	GAC	GGC	CTC	GTT	TCC	TGG	GAG	GAG	TAT	443
Lys	Gly	His	Asp	Leu	Asn	Glu	Asp	Gly	Leu	Val	Ser	Trp	Glu	Glu	Tyr	
	115					120					125					
AAA	AAT	GCC	ACC	TAC	GGC	TAC	GTT	TTA	GAT	GAT	CCA	GAT	CCT	GAT	GAT	491
Lys	Asn	Ala	Thr	Tyr	Gly	Tyr	Val	Leu	Asp	Asp	Pro	Asp	Pro	Asp	Asp	
130					135					140					145	
GGA	TTT	AAC	TAT	AAA	CAG	ATG	ATG	GTT	AGA	GAT	GAG	CGG	AGG	TTT	ΑΑΛ	539
Gly	Phe	Asn	Tyr	Lys	Gln	Met	Met	Val	Arg	Asp	Glu	Arg	Arg	Phe	L ys	
				150					155					160		
ATG	GCA	GAC	AAG	GAT	GGA	GAC	CTC	ATT	GCC	ACC	AAG	GAG	GAG	TTC	ACA	587
Met	Ala	Asp	Lys	Asp	Gly	Asp	Leu	Ile	Ala	Thr	Lys	Glu	Glu	Phe	Thr	
			165					170					175			
GCT	TTC	CTG	CAC	CCT	GAG	GAG	TAT	GAC	TAC	ATG	AAA	GAT	ATA	GTA	GTA	635
Ala	Phe	Leu	His	Pro	Glu	Glu	Tyr	Asp	Tyr	Met	Lys	Asp	Ile	Val	Val	
		180					185					190				
CAG	GAA	ACA	ATG	GAA	GAT	ATA	GAT	AAG	AAT	GCT	GAT	GGT	TTC	ATT	GAT	683
Gln	Glu	Thr	Met	Glu	Asp	Ile	Asp	Lys	Asn	Ala	Asp	Gly	Phe	Ile	Asp	
	195					200					205					

CTA GAA GAG TAT ATT GGT GAC ATG TAC AGC CAT GAT GGG AAT ACT GAT	731
Leu Glu Glu Tyr Ile Gly Asp Met Tyr Ser His Asp Gly Asn Thr Asp	
210 215 220 225	
GAG CCA GAA TGG GTA AAG ACA GAG CGA GAG CAG TTT GTT GAG TTT CGG	779
Glu Pro Glu Trp Val Lys Thr Glu Arg Glu Gln Phe Val Glu Phe Arg	
230 235 240	
GAT AAG AAC CGT GAT GGG AAG ATG GAC AAG GAA GAG ACC AAA GAC TGG	827
Asp Lys Asn Arg Asp Gly Lys Met Asp Lys Glu Glu Thr Lys Asp Trp	
245 250 255	
ATC CTT CCC TCA GAC TAT GAT CAT GCA GAG GCA GAA GCC AGG CAC CTG	875
Ile Leu Pro Ser Asp Tyr Asp His Ala Glu Ala Glu Ala Arg His Leu	
260 265 270	
GTC TAT GAA TCA GAC CAA AAC AAG GAT GGC AAG CTT ACC AAG GAG GAG	923
Val Tyr Glu Ser Asp Gln Asn Lys Asp Gly Lys Leu Thr Lys Glu Glu	
275 280 285	
ATC GTT GAC AAG TAT GAC TTA TTT GTT GGC AGC CAG GCC ACA GAT TTT	971
Ile Val Asp Lys Tyr Asp Leu Phe Val Gly Ser Gln Ala Thr Asp Phe	
290 295 300 305	
GGG GAG GCC TTA GTA CGG CAT GAT GAG TTC TGAGCTACGG AGGAACCCT	1020
Gly Glu Ala Leu Val Arg His Asp Glu Phe	
310 315	
CATTTCCTCA AAAGTAATTT ATTTTTACAG CTTCTGGTTT CACATGAAAT TGTTTGCGCT	1080
ACTGAGACTG TTACTACAAA CTTTTTAAGA CATGAAAAGG CGTAATGAAA ACCATCCCGT	1140
CCCCATTCCT CCTCCTCTCT GAGGGACTGG AGGGAAGCCG TGCTTCTGAG GAACAACTCT	1200
AATTAGTACA CTTGTGTTTG TAGATTTACA CTTTGTATTA TGTATTAACA TGGCGTGTTT	1260
$ + \alpha = \alpha$	1990
TCACTTAACT AATTTTGTAA GCCTGAGATC AATAAGAAAT GTTCAGGAGA GAGGAAAGAA	1440
AAAAAATATA TGCTCCACAA TTTATATTTA GAGAGAGAAC ACTTAGTCTT GCCTGTCAAA	1500

AAGTCCAACA	TTTCATAGGT	AGTAGGGGCC	ACATATTACA	TTCAGTTGCT	ATAGGTCCAG	1560
CAACTGAACC	TGCCATTACC	TGGGCAAGGA	AAGATCCCTT	TGCTCTAGGA	AAGCTTGGCC	1620
CAAATTGATT	TTCTTCTTTT	TCCCCCTGTA	GGACTGACTG	TTGGCTAATT	TTGTCAAGCA	1680
CAGCTGTGGT	GGGAAGAGTT	AGGGCCAGTG	TCTTGAAAAT	CAATCAAGTA	GTGAATGTGA	1740
TCTCTTTGCA	GAGCTATAGA	TAGAAACAGC	TGGAAAACTA	AAGGAAAAT	ACAAGTGTTT	1800
TCGGGGCATA	CATTTTTTT	CTGGGTGTGC	ATCTGTTGAA	ATGCTCAAGA	CTTAATTATT	1860
TGCCTTTTGA	AATCACTGTA	AATGCCCCCA	TCCGGTTCCT	CTTCTTCCCA	GGTGTGCCAA	1920
GGAATTAATC	TTGGTTTCAC	TACAATTAAA	ATTCACTCCT	TTCCAATCAT	GTCATTGAAA	1980
GTGCCTTTAA	CGAAAGAAAT	GGTCACTGAA	TGGGAATTCT	CTTAAGAAAC	CCTGAGATTA	2040
AAAAAAGACT	ATTTGGATAA	CTTATAGGAA	AGCCTAGAAC	CTCCCAGTAG	AGTGGGGATT	2100
TTTTTCTTCT	TCCCTTTCTC	TTTTGGACAA	TAGTTAAATT	AGCAGTATTA	GTTATGAGTT	2160
TGGTTGCAGT	GTTCTTATCT	TGTGGGCTGA	TTTCCAAAAA	CCACATGCTG	CTGAATTTAC	2220
CAGGGATCCT	CATACCTCAC	AATGCAAACC	ACTTACTACC	AGGCCTTTTT	CTGTGTCCAC	2280
TGGAGAGCTT	GAGCTCACAC	TCAAAGATCA	GAGGACCTAC	AGAGAGGCT	CTTTGGTTTG	2340
AGGACCATGG	CTTACCTTTC	CTGCCTTTGA	CCCATCACAC	CCCATTTCCT	CCTCTTTCCC	2400
TCTCCCCGCT	GCCAAAAAA	AAAAAAAAG	GAAACGTTTA	TCATGAATCA	ACAGGGTTTC	2460
AGTCCTTATC	AAAGAGAGAT	GTGGAAAGAG	CTAAAGAAAC	CACCCTTTGT	TCCCAACTCC	2520
ACTTTACCCA	TATTTTATGC	AACACAAACA	CTGTCCTTTT	GGGTCCCTTT	CTTACAGATG	2580
GACCTCTTGA	GAAGAATTAT	CGTATTCCAC	GTTTTTAGCC	CTCAGGTTAC	CAAGATAAAT	2640
ATATGTATAT	ATAACCTTTA	TTATTGCTAT	ATCTTTGTGG	ATAATACATT	CAGGTGGTGC	2700
TGGGTGATTT	ATTATAATCT	GAACCTAGGT	ATATCCTTTG	GTCTTCCACA	GTCATGTTGA	2760
GGTGGGCTCC	CTGGTATGGT	AAAAAGCCAG	GTATAATGTA	ACTTCACCCC	AGCCTTTGTA	2820
CTAAGCTCTT	GATAGTGGAT	ATACTCTTTT	AAGTTTAGCC	CCAATATAGG	GTAATGGAAA	2880
TTTCCTGCCC	TCTGGGTTCC	CCATTTTTAC	TATTAAGAAG	ACCAGTGATA	ATTTAATAAT	2940
GCCACCAACT	CTGGCTTAGT	TAAGTGAGAG	TGTGAACTGT	GTGGCAAGAG	AGCCTCACAC	3000
CTCACTAGGT	GCAGAGAGCC	CAGGCCTTAT	GTTAAAATCA	TGCACTTGAA	AAGCAAACCT	3060
TAATCTGCAA	AGACAGCAGC	AAGCATTATA	CGGTCATCTT	GAATGATCCC	TTTGAAATTT	3120
TTTTTTTGTT	TGTTTGTTTA	AATCAAGCCT	GAGGCTGGTG	AACAGTAGCT	ACACACCCAT	3180
ATTGTGTGTT	CTGTGAATGC	TAGCTTTCTT	GAATTTGGAT	ATTGGTTATT	TTTTATAGAG	3240

TGTAAACCAA	GTTTTATATT	CTGCAATGCG	AACAGGTACC	TATCTGTTTC	TAAATAAAAC	3300
TGTTTACATT	C					3311
[0091])					

8 - 243060

配列番号:21

配列の長さ:1152

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP00876

配列の特徴:

特徴を表す記号:CDS

存在位置:147..623

特徴を決定した方法:E

配列

10

ACTGGAGACA CTGAAGAAGG CAGGGGCCCT TAGAGTCTTG GTTGCCAAAC AGATTTGCAG 60 ATCAAGGAGA ACCCAGGAGT TTCAAAGAAG CGCTAGTAAG GTCTCTGAGA TCCTTGCACT 120 AGCTACATCC TCAGGGTAGG AGGAAG ATG GCT TCC AGA AGC ATG CGG CTC 173 Met Ala Ser Arg Ser Met Arg Leu Leu 1 5

20

CTA TTG CTG AGC TGC CTG GCC AAA ACA GGA GTC CTG GGT GAT ATC ATC 221 Leu Leu Ser Cys Leu Ala Lys Thr Gly Val Leu Gly Asp Ile Ile

ATG AGA CCC AGC TGT GCT CCT GGA TGG TTT TAC CAC AAG TCC AAT TGC 269

Met Arg Pro Ser Cys Ala Pro Gly Trp Phe Tyr His Lys Ser Asn Cys

15

30 35 40

TAT GGT TAC TTC AGG AAG CTG AGG AAC TGG TCT GAT GCC GAG CTC GAG 317

Tyr Gly Tyr Phe Arg Lys Leu Arg Asn Trp Ser Asp Ala Glu Leu Glu

45 50 55 25

TGT CAG TCT TAC GGA AAC GGA GCC CAC CTG GCA TCT ATC CTG AGT TTA	365
Cys Gln Ser Tyr Gly Asn Gly Ala His Leu Ala Ser Ile Leu Ser Leu	
60 65 70	
AAG GAA GCC AGC ACC ATA GCA GAG TAC ATA AGT GGC TAT CAG AGA AGC	413
Lys Glu Ala Ser Thr Ile Ala Glu Tyr Ile Ser Gly Tyr Gln Arg Ser	
75 80 85	
CAG CCG ATA TGG ATT GGC CTG CAC GAC CCA CAG AAG AGG CAG CAG TGG	461
Gln Pro Ile Trp Ile Gly Leu His Asp Pro Gln Lys Arg Gln Gln Trp	
90 95 100 105	
CAG TGG ATT GAT GGG GCC ATG TAT CTG TAC AGA TCC TGG TCT GGC AAG	509
Gln Trp Ile Asp Gly Ala Met Tyr Leu Tyr Arg Ser Trp Ser Gly Lys	
110 115 120	
TCC ATG GGT GGG AAC AAG CAC TGT GCT GAG ATG AGC TCC AAT AAC AAC	557
Ser Met Gly Gly Asn Lys His Cys Ala Glu Met Ser Ser Asn Asn	
125 130 135	
TTT TTA ACT TGG AGC AGC AAC GAA TGC AAC AAG CGC CAA CAC TTC CTG	605
Phe Leu Thr Trp Ser Ser Asn Glu Cys Asn Lys Arg Gln His Phe Leu	
140 145 150	
TGC AAG TAC CGA CCA TAGAGCAAGA ATCAAGATTC TGCTAACTCC	650
Cys Lys Tyr Arg Pro	
155	
TGCACAGCCC CGTCCTCTC CTTTCTGCTA GCCTGGCTAA ATCTGCTCAT TATTTCAGAG	710
GGGAAACCTA GCAAACTAAG AGTGATAAGG GCCCTACTAC ACTGGCTTTT TTAGGCTTAG	770
AGACAGAAAC TTTAGCATTG GCCCAGTAGT GGCTTCTAGC TCTAAATGTT TGCCCCGCCA	830
TCCCTTTCCA CAGTATCCTT CTTCCCTCCT CCCCTGTCTC TGGCTGTCTC GAGCAGTCTA	890
CANCACTGCA TCTCCAGCCT ATCANACACC TCCCTCTTTC CCCATAACAA CTAAACATTT	dev
- reduction for attrette boardedeach of aector aactorteur tertition	1070
TTGGCCATGG GAAGGTTTAC CAGTAGAATC CTTGCTAGGT TGATGTGGGC CATACATTCC	1130

TTTAATAAAC CATTGTGTAC AT

1152

配列番号: 22

配列の長さ:1749

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名: HP01134

配列の特徴:

特徴を表す記号: CDS

存在位置:117..1247

特徴を決定した方法:E

5

配列

AATCACAGCA GTNCCGACGT CGTGGGTGTT TGGTGTGAGG CTGCGAGCCG CCGCCGCCAC 60

CACTGCCACC ACGGTCGCCT GCCACAGGTG TCTGCAATTG AACTCCAAGG TGCAGA ATG 119

Met

15

1

GTT TGG AAA GTA GCT GTA TTC CTC AGT GTG GCC CTG GGC ATT GGT GCC

Val Trp Lys Val Ala Val Phe Leu Ser Val Ala Leu Gly Ile Gly Ala

ar his tar the Bea Ber tar his Bea Gry the Gry his

GTT CCT ATA GAT GAT CCT GAA GAT GGA GGC AAG CAC TGG GTG GTG ATC 215

10

Val Pro Ile Asp Asp Pro Glu Asp Gly Gly Lys His Trp Val Val Ile

20 25 30

TGC CAT GCC TAC CAG ATC ATT CAC CGC AAT GGG ATT CCT GAC GAA CAG 311

Cys	His	Ala	Tyr	Gln	Ile	Ile	His	Arg	Asn	Gly	Ile	Pro	Asp	Glu	Gln	
50					55					60					65	
ATC	GTT	GTG	ATG	ATG	TAC	GAT	GAC	ATT	GCT	TAC	TCT	GAA	GAC	AAT	CCC	359
Ile	Val	Val	Met	Met	Tyr	Asp	Asp	Ile	Ala	Tyr	Ser	Glu	Asp	Asn	Pro	
				70					7 5					80		
ACT	CCA	GGA	ATT	GTG	ATC	AAC	AGG	CCC	AAT	GGC	ACA	GAT	GTC	TAT	CAG	407
Thr	Pro	Gly	Ile	Val	Ile	Asn	Arg	Pro	Asn	Gly	Thr	Asp	Val	Tyr	Gln	
			85					90					95			
GGA	GTC	CCG	AAG	GAC	TAC	ACT	GGA	GAG	GAT	GTT	ACC	CCA	CAA	AAT	TTC	455
Gly	Val	Pro	Lys	Asp	Tyr	Thr	Gly	Glu	Asp	Val	Thr	Pro	Gln	Asn	Phe	
		100					105					110				
CTT	GCT	GTG	TTG	AGA	GGC	GAT	GCA	GAA	GCA	GTG	AAG	GGC	ATA	GGA	TCC	503
Leu	Ala	Val	Leu	Arg	Gly	Asp	Ala	Glu	Ala	Val	Lys	Gly	Ile	Gly	Ser	
	115					120					125					
GGC	AAA	GTC	CTG	AAG	AGT	GGC	CCC	CAG	GAT	CAC	GTG	TTC	ATT	TAC	TTC	551
Gly	Lys	Val	Leu	Lys	Ser	Gly	Pro	Gln	Asp	His	Val	Phe	Ile	Tyr	Phe	
130					135					140					145	
ACT	GAC	CAT	GGA	TCT	ACT	GGA	ATA	CTG	GTT	TTT	CCC	AAT	GAA	GAT	CTT	599
Thr	Asp	His	Gly	Ser	Thr	Gly	Ile	Leu	Val	Phe	Pro	Asn	Glu	Asp	Leu	
				150					155					160		
CAT	GTA	AAG	GAC	CTG	AAT	GAG	ACC	ATC	CAT	TAC	ATG	TAC	AAA	CAC	AAA	647
His	Val	Lys	Asp	Leu	Asn	Glu	Thr	Ile	His	Tyr	Met	Tyr	Lys	His	Lys	
			165					170					175			
ATG	TAC	CGA	AAG	ATG	GTG	TTC	TAC	ATT	GAA	GCC	TGT	GAG	TCT	GGG	TCC	695
Met	Tyr	Arg	Lys	Met	Val	Phe	Tyr	Ile	Glu	Ala	Cys	Glu	Ser	Gly	Ser	
		180					185					190				
ATG	ATG	AAC	CAC	CTG	CCG	GAT	AAC	ATC	AAT	GTT	TAT	GCA	ACT	ACT	GCT	743
Met	Met	Asn	His	Leu	Pro	Asp	Asn	Ile	Asn	Val	Tyr	Ala	Thr	Thr	Ala	
	195					200					205					

GCC	AAC	CCC	AGA	GAG	TCG	TCC	TAC	GCC	TGT	TAC	TAT	GAT	GAG	AAG	AGG	791
Ala	Asn	Pro	Arg	Glu	Ser	Ser	Tyr	Ala	Cys	Tyr	Tyr	Asp	Glu	Lys	Arg	
210					215					220					225	
TCC	ACG	TAC	CTG	GGG	GAC	TGG	TAC	AGC	GTC	AAC	TGG	ATG	GAA	GAC	TCG	839
Ser	Thr	Tyr	Leu	Gly	Asp	Trp	Tyr	Ser	Val	Asn	Trp	Met	Glu	Asp	Ser	
				230					235					240		
GAC	GTG	GAA	GAT	CTG	ACT	AAA	GAG	ACC	CTG	CAC	AAG	CAG	TAC	CAC	CTG	887
Asp	Val	Glu	Asp	Leu	Thr	Lys	Glu	Thr	Leu	His	Lys	Gln	Tyr	His	Leu	
			245					250					255			
GTA	AAA	TCG	CAC	ACC	AAC	ACC	AGC	CAC	GTC	ATG	CAG	TAT	GGA	AAC	ΛΛΛ	935
Val	Lys	Ser	His	Thr	Asn	Thr	Ser	His	Val	Met	Gln	Tyr	Gly	Asn	Lys	
		260					265					270				
ACA	ATC	TCC	ACC	ATG	AAA	GTG	ATG	CAG	TTT	CAG	GGT	ATG	AAA	CGC	AAA	983

Thr Ile Ser Thr Met Lys Val Met Gln Phe Gln Gly Met Lys Arg Lys	
275 280 285	
GCC AGT TCT CCC GTC CCC CTA CCT CCA GTC ACA CAC CTT GAC CTC ACC	1031
Ala Ser Ser Pro Val Pro Leu Pro Pro Val Thr His Leu Asp Leu Thr	
290 295 300 305	
CCC AGC CCT GAT GTG CCT CTC ACC ATC ATG AAA AGG AAA CTG ATG AAC	1079
Pro Ser Pro Asp Val Pro Leu Thr Ile Met Lys Arg Lys Leu Met Asn	
310 315 320	
ACC AAT GAT CTG GAG GAG TCC AGG CAG CTC ACG GAG GAG ATC CAG CGG	1127
Thr Asn Asp Leu Glu Glu Ser Arg Gln Leu Thr Glu Glu Ile Gln Arg	
325 330 335	
CAT CTG GAT TAC GAG TAT GCG TTG AGA CAT TTG TAC GTG CTG GTC AAC	1175
His Leu Asp Tyr Glu Tyr Ala Leu Arg His Leu Tyr Val Leu Val Asn	
340 345 350	
CTT TGT GAG AAG CCG TAT CCG CTT CAC AGG ATA AAA TTG TCC ATG GAC	1223
Leu Cys Glu Lys Pro Tyr Pro Leu His Arg Ile Lys Leu Ser Met Asp	
355 360 365	
CAC GTG TGC CTT GGT CAC TAC TGAAGAGCTG CCTCCTGGAA GCTTTT	1270
His Val Cys Leu Gly His Tyr	
370 375	
CCAAGTGTGA GCGCCCCACC GACTGTGTGC TGATCAGAGA CTGGAGAGGT GGAGTGAGAA	1330
GTCTCCGCTG CTCGGGCCCT CCTGGGGAGC CCCCGCTCCA GGGCTCGCTC CAGGACCTTC	1390
TTCACAAGAT GACTTGCTCG CTGTTACCTG CTTCCCCAGT CTTTTCTGAA AAACTACAAA	1450
TTAGGGTGGG AAAAGCTCTG TATTGAGAAG GGTCATATTT GCTTTCTAGG AGGTTTGTTG	1510
TTTTGCCTGT TAGTTTTGAG GAGCAGGAAG CTCATGGGGG CTTCTGTAGC CCCTCTCAAA	1570
AGGAGTETTT ATTETGAGAA TITGAAGETG AAACETETTT AAATETTEAG AATGATTITA	1630
TTGAAGAGGG CCGCAAGCCC CAAATGGAAA ACTGTTTTTA GAAAATATGA TGATTTTTGA	1690
TTGCTTTTGT ATTTAATTCT GCAGGTGTTC AAGTCTTAAA AAATAAAGAT TTATAACAG	1749
[0093]	

配列番号:23

配列の長さ:988

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP10029

配列の特徴:

特徴を表す記号: CDS

存在位置: 9...530

特徴を決定した方法:E

υG

配列

AGTCCAAC ATG GCG GCG CCC AGC GGA GGG TGG AAC GGC GTC CGC GCG AGC 50

Met Ala Ala Pro Ser Gly Gly Trp Asn Gly Val Arg Ala Ser

1 5 10

TTG TGG GCC GCG CTG CTC CTA GGG GCC GTG GCG CTG AGG CCG GCG GAG 98

Leu Trp Ala Ala Leu Leu Leu Gly Ala Val Ala Leu Arg Pro Ala Glu

15 20 25 30

GCG GTG TCC GAG CCC ACG ACC GTG GCG TTT GAC GTG CGG CCC GGC GGC 146

Ala Val Ser Glu Pro Thr Thr Val Ala Phe Asp Val Arg Pro Gly Gly

35 40 45

ימדי מדה מגיד דיים חדיי דיים מגיד גולה מדה ההה מהה ההה הילה אולי דולה אהר 101

əə 60°

TGT ATG TTC ACT TAC GCC TCT CAA GGA GGG ACC AAT GAG CAA TGG CAG 242

Cys	Met	Phe	Thr	Tyr	Ala	Ser	Gln	Gly	Gly	Thr	Asn	Glu	Gln	Trp	Gln	
		65					70					7 5				
ATG	AGT	CTG	GGG	ACC	AGC	GAA	GAC	CAC	CAG	CAC	TTC	ACC	TGC	ACC	ATC	290
Met	Ser	Leu	Gly	Thr	Ser	Glu	Asp	His	Gln	His	Phe	Thr	Cys	Thr	Ile	
	80					85					90					
TGG	AGG	CCC	CAG	GGG	AAG	TCC	TAT	CTG	TAC	TTC	ACA	CAG	TTC	AAG	GCA	338
Trp	Arg	Pro	Gln	Gly	Lys	Ser	Tyr	Leu	Tyr	Phe	Thr	Gln	Phe	Lys	Ala	
95					100					105					110	
GAG	GTG	CGG	GGC	GCT	GAG	ATT	GAG	TAC	GCC	ATG	GCC	TAC	TCT	AAA	GCC	386
Glu	Val	Arg	Gly	Ala	Glu	Ile	Glu	Tyr	Ala	Met	Ala	Tyr	Ser	Lys	Ala	
				115					120					125		
GCA	TTT	GAA	AGG	GAA	AGT	GAT	GTC	CCT	CTG	AAA	ACT	GAG	GAA	TTT	GAA	434
Ala	Phe	Glu	Arg	Glu	Ser	Asp	Val	Pro	Leu	Lys	Thr	Glu	Glu	Phe	Glu	
			130					135					140			
GTG	ACC	AAA	ACA	GCA	GTG	GCT	CAC	AGG	CCC	GGG	GCA	TTC	AAA	GCT	GAG	482
Val	Thr	L ys	Thr	Ala	Val	Ala	His	Arg	Pro	Gly	Ala	Phe	L ys	Ala	Glu	
		145					150					155				
CTG	TCC	AAG	CTG	GTG	ATT	GTG	GCC	AAG	GCA	TCG	CGC	ACT	GAG	CTG		527
Leu	Ser	Lys	Leu	Val	Ile	Val	Ala	L y s	Ala	Ser	Arg	Thr	Glu	Leu		
	160					165					170					
TGA	CCAC	GCAGO	CCC 1	TGTTC	GCGGC	GT GC	GCACC	CTTCT	CA7	CTCC	CGGT	GAAC	GCTG <i>I</i>	AAG		580
GGGC	CTGI	CGG C	CCCTC	GAAAC	GG GC	CCAGO	CACAT	CAC	CTGGT	TTTT	CTAC	GGAGC	GA (CTCTI	TAAGTT	640
TTCT	CACCI	GG C	GCTG <i>I</i>	ACGTT	G CC	CTTGT	CCGC	AGC	GGCT	TGC	AGGC	GTGGC	CTG A	AAGCO	CCTGGG	700
GCAC	GAGAA	CA C	GAGGG	STCCA	G GC	GCCC1	CCTC	GCI	CCCA	ACA	GCTT	CTCA	AGT T	rccc <i>i</i>	ACTTCC	760
TGCT	GAGC	CTC 1	тстс	GACT	C AC	GATO	CGCAC	ATC	CCGGC	GCA	CAAA	AGAGO	GT (GGGG <i>I</i>	AACATG	820
GGGC	CTAT	GC 1	rgggc	GAAAC	GC AC	GCCAT	GCTC	CCC	CCCGA	CCT	CCAC	GCCG <i>I</i>	GC A	ATCCI	TTCATG	880
AGCC	CTGCA	GA A	CTGC	CTTTC	CC TA	TGTT	TACC	CAC	GGGGA	CCT	CCTT	TCAC	GAT (GAACT	TGGGAA	940
GAGA	TGAA	AT C	STTTI	TTCA	T A T	TTAA	ATAA	ATA	AGAA	CAT	TAAA	AAGC				988
[0	0.9	4 1														

配列番号:24

配列の長さ:390

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:類表皮癌

セルライン: KB

クローン名: HP10189

配列の特徴:

特徴を表す記号:CDS

存在位置:102..323

特徴を決定した方法:E

25

配列

AATCAGCTTC AGCAATGGAG CGTGCAAAAC ACCAGTGAGC TTCTGTCTTG CTGGAGGGTC 60
GGCTTTGGGC GGAACTGGCT TTGTTGACCG GGAGAAACGA G ATG GGG GTG AAG CTG 116

Met Gly Val Lys Leu

1 5

소드

GAG ATA TTT CGG ATG ATA ATC TAC CTC ACT TTC CCT GTG GCT ATG TTC 164

Glu Ile Phe Arg Met Ile Ile Tyr Leu Thr Phe Pro Val Ala Met Phe

10 15 20

TGG GTT TCC AAT CAG GCC GAG TGG TTT GAG GAC GAT GTC ATA CAG CGC 212

Trp Val Ser Asn Gln Ala Glu Trp Phe Glu Asp Asp Val Ile Gln Arg

30

Lys Arg old Led , rp (ro fro old Lys Led old old fle old old fhe

40 45 50

AAA	GAG	AGG	TTA	CGG	AAG	CGG	CGG	GAG	GAG	AAG	CTC	CTT	CGC	GAC	GCC	308
Lys	Glu	Arg	Leu	Arg	Lys	Arg	Arg	Glu	Glu	Lys	Leu	Leu	Arg	Asp	Ala	
	55					60					65					
CAG	CAG	AAC	TCC	TGAG	GCCT	CC I	AAGTO	GGGAG	GT CO	CTAG	CCCCI	Γ				350
Gln	Gln	Asn	Ser													
70																
CCCC	CTGAT	rga A	ATAI	raca i	ΓΑ ΤΑ	CTC	AGTTO	C CT1	rgtt <i>i</i>	ATTC						390
[0	0.9	5]														

配列番号:25

配列の長さ:4667

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:リンホーマ

セルライン: U937

クローン名: HP10269

配列の特徴:

特徴を表す記号:CDS

存在位置:754..4272

特徴を決定した方法:E

配列

CATTTAGTTA	CTCTGCTCAT	TTCTCTTAAG	CTTTCCTTGG	ATGAGTTGAG	CTTTGAATCC	60
TTCCTGATGA	ACCTTGCCTT	TTAAGGATCC	TCCAAATGCC	CCAAGAAGCT	GGGATTTTTC	120
ATTTTTTTT	TCACTGGGGA	GGGGAATGGT	GCTTTCCAGG	GTCCTGGATG	TTTGAGTCTT	180
CTCACCTTCC	AGCCCGGTGA	TATGTCTGGA	GCTTTAACTC	TCTATATAAG	CCCTAATCTT	240
TGTGTTCTCT	GCCTGATCTT	CTGTCTGGGG	TGGTCCAGGT	CACAAGAAGA	AGCTGACCCC	300
TGCTGGCTTT	GGGAAAATGC	TGAGTTCATT	GCCTGGCACA	AATGCAAGGG	CCCTTCCCCA	360
CCCTGTGAAT	TCTGGTCTCT	GATGATCACT	TACATGTGCC	TTGTGCTTTC	TGTTTGAGGG	420
GCCCCTTGCA	GCCCCCACAG	GCAGGTGGGC	ATTGTGGAGC	TCACTACAAG	AACTCTGGGA	480
CCGACCGACC	AACCCACTTG	CCCAGTCCCG	TCCTGGGAGG	TGGGGGTGCA	GTGACGACAG	540
• TOCOTOTO •	cocomoco (c	4 TTCCTC 4 C 4	CCCCCCCTCC	CCTCCCCCTA	CACCCACCCA	600

CATTCAAGAG GAGCTTTCAG GCGATCTGGA GAAAGAACGG CAGAACACAC AGCAAGGAAA 720
GGTCCTTTCT GGGGATCACC CCATTGGCTG AAG ATG AGA CCA TTC TTC CTC TTG 774

Met Arg Pro Phe Phe Leu Leu

									**-							
										l			5	5		
TGT	TTT	GCC	CTG	CCT	GGC	CTC	CTG	CAT	GCC	CAA	CAA	GCC	TGC	TCC	CGT	822
Cys	Phe	Ala	Leu	Pro	Gly	Leu	Leu	His	Ala	Gln	Gln	Ala	Cys	Ser	Arg	
		10					15					20				
GGG	GCC	TGC	TAT	CCA	CCT	GTT	GGG	GAC	CTG	CTT	GTT	GGG	AGG	ACC	CGG	870
Gly	Ala	Cys	Tyr	Pro	Pro	Val	Gly	Asp	Leu	Leu	Val	Gly	Arg	Thr	Arg	
	25					30					35					
TTT	CTC	CGA	GCT	TCA	TCT	ACC	TGT	GGA	CTG	ACC	AAG	CCT	GAG	ACC	TAC	918
Phe	Leu	Arg	Ala	Ser	Ser	Thr	Cys	Gly	Leu	Thr	Lys	Pro	Glu	Thr	Tyr	
40					45					50					55	
TGC	ACC	CAG	TAT	GGC	GAG	TGG	CAG	ATG	AAA	TGC	TGC	AAG	TGT	GAC	TCC	966
Cys	Thr	Gln	Tyr	Gly	Glu	Trp	Gln	Met	Lys	Cys	Cys	Lys	Cys	Asp	Ser	
				60					65					70		
AGG	CAG	CCT	CAC	AAC	TAC	TAC	AGT	CAC	CGA	GTA	GAG	AAT	GTG	GCT	TCA	1014
Arg	Gln	Pro	His	Asn	Tyr	Tyr	Ser	His	Arg	Val	Glu	Asn	Val	Ala	Ser	
			7 5					80					85			
TCC	TCC	GGC	CCC	ATG	CGC	TGG	TGG	CAG	TCC	CAG	AAT	GAT	GTG	AAC	CCT	1062
Ser	Ser	Gly	Pro	Met	Arg	Trp	Trp	Gln	Ser	Gln	Asn	Asp	Val	Asn	Pro	
		90					95					100				
GTC	TCT	CTG	CAG	CTG	GAC	CTG	GAC	AGG	AGA	TTC	CAG	CTT	CAA	GAA	GTC	1110
Val	Ser	Leu	Gln	Leu	Asp	Leu	Asp	Arg	Arg	Phe	Gln	Leu	Gln	Glu	Val	
	105					110					115					
ATG	ATG	GAG	TTC	CAG	GGG	CCC	ATG	CCT	GCC	GGC	ATG	CTG	ATT	GAG	CGC	1158
Met	Met	Glu	Phe	Gln	Gly	Pro	Met	Pro	Ala	Gly	Met	Leu	Ile	Glu	Arg	
120					125					130					135	
TCC	TCA	GAC	TTC	GGT	AAG	ACC	TGG	CGA	GTG	TAC	CAG	TAC	CTG	GCT	GCC	1206
Ser	Ser	Asp	Phe	G1 y	Lys	Thr	Trp	Arg	Val	Tyr	Gln	Tyr	Leu	Ala	Ala	
				140					145					150		

GAC	TGC	ACC	TCC	ACC	TTC	CCT	CGG	GTC	CGC	CAG	GGT	CGG	CCT	CAG	AGC	1254
Asp	Cys	Thr	Ser	Thr	Phe	Pro	Arg	Val	Arg	Gln	Gly	Arg	Pro	Gln	Ser	
			155					160					165			
TGG	CAG	GAT	GTT	CGG	TGC	CAG	TCC	CTG	CCT	CAG	AGG	CCT	AAT	GCA	CGC	1302
Trp	Gln	Asp	Val	Arg	Cys	Gln	Ser	Leu	Pro	Gln	Arg	Pro	Asn	Ala	Arg	
		170					175					180				
CTA	AAT	GGG	GGG	AAG	GTC	CAA	CTT	AAC	CTT	ATG	GAT	TTA	GTG	TCT	GGG	1350
Leu	Asn	Gly	Gly	Lys	Val	Gln	Leu	Asn	Leu	Met	Asp	Leu	Val	Ser	Gly	
	185					190					195					
ATT	CCA	GCA	ACT	CAA	AGT	CAA	AAA	ATT	CAA	GAG	GTG	GGG	GAG	ATC	ACA	1398
lle	Pro	Ala	Thr	Gln	Ser	Gln	Lys	Ile	Gln	Glu	Va l	Gly	Glu	Ile	Thr	
200					205					210					215	
AAC	TTG	AGA	GTC	AAT	TTC	ACC	AGG	CTG	GCC	CCT	GTG	CCC	CAA	AGG	GGC	1446
Asn	Leu	Arg	Val	Asn	Phe	Thr	Arg	Leu	Ala	Pro	Val	Pro	Gln	Arg	Gly	
				220					225					230		
TAC	CAC	CCT	CCC	AGC	GCC	TAC	TAT	GCT	GTG	TCC	CAG	CTC	CGT	CTG	CAG	1494
Tyr	His	Pro	Pro	Ser	Ala	Tyr	Tyr	Ala	Val	Ser	Gln	Leu	Arg	Leu	Gln	
			235					240					245			
GGG	AGC	TGC	TTC	TGT	CAC	GGC	CAT	GCT	GAT	CGC	TGC	GCA	CCC	AAG	CCT	1542
Gly	Ser	Cys	Phe	Cys	His	Gly	His	Ala	Asp	Arg	Cys	Ala	Pro	Lys	Pro	
		250					255					260				
GGG	GCC	TCT	GCA	GGC	CCC	TCC	ACC	GCT	GTG	CAG	GTC	CAC	GAT	GTC	TGT	1590
Gly	Ala	Ser	Ala	Gly	Pro	Ser	Thr	Ala	Val	Gln	Val	His	Asp	Val	Cys	
	265					270					275					
GTC	TGC	CAG	CAC	AAC	ACT	GCC	GGC	CCA	AAT	TGT	GAG	CGC	TGT	GCA	CCC	1638
v _a t	1.00	01 m	Hi-	t «- y»	The	110	<1.	Ð≠r.	ten	CVS	C1,,	Arer	C45	415	Pro	
iTU	1AC	AAC	$AA \subset$	UGG	CCC	TGG	$A \cup A$	UCG	ulli	GAG	GGU	∪AG	$\cup A \cup$	GLL	∪A İ	d861
Phe	Tyr	Asn	Asn	Arg	Pro	Trp	Arg	Pro	Ala	Glu	Gly	Gln	Asp	Ala	His	

300)	305	310
GAA TGC CAA AGG TGC	GAC TGC AAT GGG	CAC TCA GAG ACA	TGT CAC TTT 1734
Glu Cys Gln Arg Cys	Asp Cys Asn Gly	His Ser Glu Thr	Cys His Phe
315	320		325
GAC CCC GCT GTG TTT	GCC GCC AGC CAG	GGG GCA TAT GGA	GGT GTG TGT 1782
Asp Pro Ala Val Phe	Ala Ala Ser Gln	Gly Ala Tyr Gly	Gly Val Cys
330	335	340	
GAC AAT TGC CGG GAC	C CAC ACC GAA GGC	AAG AAC TGT GAG	CGG TGT CAG 1830
Asp Asm Cys Arg Asp	His Thr Glu Gly	Lys Asn Cys Glu	Arg Cys Gln
345	350	355	
CTG CAC TAT TTC CGG	AAC CGG CGC CCG	GGA GCT TCC ATT	CAG GAG ACC 1878
Leu His Tyr Phe Arg	Asn Arg Arg Pro	Gly Ala Ser Ile	Gln Glu Thr
360	365	370	375
TGC ATC TCC TGC GAG	TGT GAT CCG GAT	GGG GCA GTG CCA	GGG GCT CCC 1926
Cys Ile Ser Cys Glu	Cys Asp Pro Asp	Gly Ala Val Pro	Gly Ala Pro
380)	385	390
TGT GAC CCA GTG ACC	GGG CAG TGT GTG	TGC AAG GAG CAT	GTG CAG GGA 1974
Cys Asp Pro Val Thr	Gly Gln Cys Val	Cys Lys Glu His	Val Gln Gly
395	400		405
GAG CGC TGT GAC CTA	TGC AAG CCG GGC	TTC ACT GGA CTC	ACC TAC GCC 2022
Glu Arg Cys Asp Leu	Cys Lys Pro Gly	Phe Thr Gly Leu	Thr Tyr Ala
410	415	420	
AAC CCG CAG GGC TGC	CAC CGC TGT GAC	TGC AAC ATC CTG	GGG TCC CGG 2070
Asm Pro Glm Gly Cys	His Arg Cys Asp	Cys Asn Ile Leu	Gly Ser Arg
425	430	435	
AGG GAC ATG CCG TGT	GAC GAG GAG AGT	GGG CGC TGC CTT	TGT CTG CCC 2118
Arg Asp Met Pro Cys	Asp Glu Glu Ser	Gly Arg Cys Leu	Cys Leu Pro
440	445	450	455
AAC GTG GTG GGT CCC	AAA TGT GAC CAG	TGT GCT CCC TAC	CAC TGG AAG 2166

Asn	Val	Val	Gly	Pro	Lys	Cys	Asp	Gln	Cys	Ala	Pro	Tyr	His	Trp	Lys	
				460					465					470		
CTG	GCC	AGT	GGC	CAG	GGC	TGT	GAA	CCG	TGT	GCC	TGC	GAC	CCG	CAC	AAC	2214
Leu	Ala	Ser	Gly	Gln	Gly	Cys	Glu	Pro	Cys	Ala	Cys	Asp	Pro	His	Asn	
			475					480					485			
TCC	CTC	AGC	CCA	CAG	TGC	AAC	CAG	TTC	ACA	GGG	CAG	TGC	CCC	TGT	CGG	2262
Ser	Leu	Ser	Pro	Gln	Cys	Asn	Gln	Phe	Thr	Gly	Gln	Cys	Pro	Cys	Arg	
		490					495					500				
GAA	GGC	TTT	GGT	GGC	CTG	ATG	TGC	AGC	GCT	GCA	GCC	ATC	CGC	CAG	TGT	2310
Glu	Gly	Phe	Gly	Gly	Leu	Met	Cys	Ser	Ala	Ala	Ala	Ile	Arg	Gln	Cys	
	505					510					515					
CCA	GAC	CGG	ACC	TAT	GGA	GAC	GTG	GCC	ACA	GGA	TGC	CGA	GCC	TGT	GAC	2358
Pro	Asp	Arg	Thr	Tyr	Gly	Asp	Val	Ala	Thr	Gly	Cys	Arg	Ala	Cys	Asp	
520					525					530					535	
TGT	GAT	TTC	CGG	GGA	ACA	GAG	GGC	CCG	GGC	TGC	GAC	AAG	GCA	TCA	GGC	2406
Cys	Asp	Phe	Arg	Gly	Thr	Glu	Gly	Pro	Gly	Cys	Asp	Lys	Ala	Ser	Gly	
				540					545					550		
CGC	TGC	CTC	TGC	CGC	CCT	GGC	TTG	ACC	GGG	CCC	CGC	TGT	GAC	CAG	TGC	2454
Arg	Cys	Leu	Cys	Arg	Pro	Gly	Leu	Thr	Gly	Pro	Arg	Cys	Asp	Gln	C ys	
			555					560					565			
CAG	CGA	GGC	TAC	TGC	AAT	CGC	TAC	CCG	GTG	TGC	GTG	GCC	TGC	CAC	CCT	2502
Gln	Arg	Gly	Tyr	Cys	Asn	Arg	Tyr	Pro	Val	Cys	Val	Ala	Cys	His	Pro	
		570					575					580				
TGC	TTC	CAG	ACC	TAT	GAT	GCG	GAC	CTC	CGG	GAG	CAG	GCC	CTG	CGC	TTT	2550
Cys	Phe	Gln	Thr	Tyr	Asp	Ala	Asp	Leu	Arg	Glu	Gln	Ala	Leu	Arg	Phe	
	הפר					EQA					בטב					
uly	Arg	Leu	Arg	Asn	Ala	ihr	Ala	Ser	Ļеu	ırp	Set	υly	ora	ыу	Leu	
600					605					610					615	

GAG	GAC	CGT	GGC	CTG	GCC	TCC	CGG	ATC	CTA	GAT	GCA	AAG	AGT	AAG	ATT	2646
Glu	Asp	Arg	Gly	Leu	Ala	Ser	Arg	Ile	Leu	Asp	Ala	Lys	Ser	Lys	lle	
				620					625					630		
GAG	CAG	ATC	CGA	GCA	GTT	CTC	AGC	AGC	CCC	GCA	GTC	ACA	GAG	CAG	GAG	2694
Glu	Gln	Ile	Arg	Ala	Val	Leu	Ser	Ser	Pro	Ala	Val	Thr	Glu	Gln	Glu	
			635					640					645			
GTG	GCT	CAG	GTG	GCC	AGT	GCC	ATC	CTC	TCC	CTC	AGG	CGA	ACT	CTC	CAG	2742
Val	Ala	Gln	Val	Ala	Ser	Ala	Ile	Leu	Ser	Leu	Arg	Arg	Thr	Leu	Gln	
		650					655					660				
GGC	CTG	CAG	CTG	GAT	CTG	CCC	CTG	GAG	GAG	GAG	ACG	TTG	TCC	CTT	CCG	2790
Gly	Leu	Gln	Leu	Asp	Leu	Pro	Leu	Glu	Glu	Glu	Thr	Leu	Ser	Leu	Pro	
	665					670					675					
AGA	GAC	CTG	GAG	AGT	CTT	GAC	AGA	AGC	TTC	AAT	GGT	CTC	CTT	ACT	ATG	2838
Arg	Asp	Leu	Glu	Ser	Leu	Asp	Arg	Ser	Phe	Asn	Gly	Leu	Leu	Thr	Met	
680					685					690					695	
TAT	CAG	AGG	AAG	AGG	GAG	CAG	TTT	GAA	AAA	ATA	AGC	AGT	GCT	GAT	CCT	2886
Tyr	Gln	Ārg	Lys	Ārg	Glu	Gln	Phe	Glu	Lys	Ile	Ser	Ser	Αla	ÀSP	Pro	
				700					705					710		
TCA	GGA	GCC	TTC	CGG	ATG	CTG	AGC	ACA	GCC	TAC	GAG	CAG	TCA	GCC	CAG	2934
Ser	Gly	Ala	Phe	Arg	Met	Leu	Ser	Thr	Ala	Tyr	Glu	Gln	Ser	Ala	Gln	
			715					720					725			
GCT	GCT	CAG	CAG	GTC	TCC	GAC	AGC	TCG	CGC	CTT	TTG	GAC	CAG	CTC	AGG	2982
Ala	Ala	Gln	Gln	Val	Ser	Asp	Ser	Ser	Arg	Leu	Leu	Asp	Gln	Leu	Arg	
		730					735					740				
GAC	AGC	CGG	AGA	GAG	GCA	GAG	AGG	CTG	GTG	CGG	CAG	GCG	GGA	GGA	GGA	3030
Asp	Ser	Arg	Arg	Glu	Ala	Glu	Arg	Leu	Val	Arg	Gln	Ala	Gly	Gly	G1 y	
	745					750					755					
GGA	GGC	ACC	GGC	AGC	CCC	AAG	CTT	GTG	GCC	CTG	AGG	CTG	GAG	ATG	TCT	3078
Gly	Gly	Thr	Gly	Ser	Pro	Lys	Leu	Val	Ala	Leu	Arg	Leu	Glu	Met	Ser	

760					765					770					775	
TCG	TTG	CCT	GAC	CTG	ACA	CCC	ACC	TTC	AAC	AAG	CTC	TGT	GGC	AAC	TCC	3126
Ser	Leu	Pro	Asp	Leu	Thr	Pro	Thr	Phe	Asn	Lys	Leu	Cys	Gly	Asn	Ser	
				780					785					790		
AGG	CAG	ATG	GCT	TGC	ACC	CCA	ATA	TCA	TGC	CCT	GGT	GAG	CTA	TGT	CCC	3174
Arg	Gln	Met	Ala	Cys	Thr	Pro	Ile	Ser	Cys	Pro	Gly	Glu	Leu	Cys	Pro	
			795					800					805			
CAA	GAC	AAT	GGC	ACA	GCC	TGT	GGC	TCC	CGC	TGC	AGG	GGT	GTC	CTT	CCC	3222
Gln	Asp	Asn	Gly	Thr	Ala	Cys	Gly	Ser	Arg	Cys	Arg	Gly	Val	Leu	Pro	
		810					815					820				
AGG	GCC	GGT	GGG	GCC	TTC	TTG	ATG	GCG	GGG	CAG	GTG	GCT	GAG	CAG	CTG	3270
Arg	Ala	Gly	Gly	Ala	Phe	Leu	Met	Ala	Gly	Gln	Val	Ala	Glu	Gln	Leu	
	825					830					835					
CGG	GGC	TTC	AAT	GCC	CAG	CTC	CAG	CGG	ACC	AGG	CAG	ATG	ATT	AGG	GCA	3318
Arg	Gly	Phe	Asn	Ala	Gln	Leu	Gln	Arg	Thr	Arg	Gln	Met	Ile	Arg	Ala	
840					845					850					855	
GCC	GAG	GAA	TCT	GCC	TCA	CAG	ATT	CAA	TCC	AGT	GCC	CAG	CGC	TTG	GAG	3366
Ala	Glu	Glų	Ser	Ala	Ser	Gln	Ile	Gln	Ser	Ser	Ala	Gln	Arg	Leu	Glu	
				860					865					870		
ACC	CAG	GTG	AGC	GCC	AGC	CGC	TCC	CAG	ATG	GAG	GAA	GAT	GTC	AGA	CGC	3414
Thr	Gln	Val	Ser	Ala	Ser	Arg	Ser	Gln	Met	Glu	Glu	Asp	Val	Arg	Arg	
			875					880					885			
ACA	CGG	CTC	CTA	ATC	CAG	CAG	GTC	CGG	GAC	TTC	CTA	ACA	GAC	CCC	GAC	3462
Thr	Arg	Leu	Leu	Ile	Gln	Gln	Val	Arg	Asp	Phe	Leu	Thr	Asp	Pro	Asp	
							0.05					900				
		890					895					000				
k / *****	7* 4 40		7*/*/*	k	• Œ⊅÷	·• • /·	895	y+m/>	k /~ ~	^ t ^	ree		c T c	nen	CTC	0510
k 2*****	7* 4 '''		X*//*//*	,	. ∰	·*•		71m/2	€/ ^{m.m}	n(n	ree		CTC	nee	стс	OFIA
ţ /····	905		X**/*/*	•	• वर्ष	, 310		11mm	• /7 ^	C.	915		∼∓ ∼	ncc	стс	0510

Trp	Leu	Pro	Thr	Asp	Ser	Ala	Thr	Val	Leu	Gln	Lys	Met	Asn	Glu	Ile		
920					925					930					935		
CAG	GCC	ATT	GCA	GCC	AGG	CTC	CCC	AAC	GTG	GAC	TTG	GTG	CTG	TCC	CAG	3606	
Gln	Ala	Ile	Ala	Ala	Arg	Leu	Pro	Asn	Val	Asp	Leu	Val	Leu	Ser	Gln		
				940			٠		945					950			
ACC	AAG	CAG	GAC	ATT	GCG	CGT	GCC	CGC	CGG	TTG	CAG	GCT	GAG	GCT	GAG	3654	
Thr	Lys	Gln	Asp	Ile	Ala	Arg	Ala	Arg	Arg	Leu	Gln	Ala	Glu	Ala	Glu		
			955					960					965				
GAA	GCC	AGG	AGC	CGA	GCC	CAT	GCA	GTG	GAG	GGC	CAG	GTG	GAA	GAT	GTG	3702	
Glu	Ala	Arg	Ser	Arg	Ala	His	Ala	Val	Glu	Gly	Gln	Val	Glu	Asp	Val		
		970					975					980					
GTT	GGG	AAC	CTG	CGG	CAG	GGG	ACA	GTG	GCA	CTG	CAG	GAA	GCT	CAG	GAC	3750	
Val	Gly	Asn	Leu	Arg	Gln	Gly	Thr	Val	Ala	Leu	Gln	Glu	Ala	Gln	Asp		
	985					990					995						
ACC	ATG	CAA	GGC	ACC	AGC	CGC	TCC	CTT	CGG	CTT	ATC	CAG	GAC	AGG	GTT	3798	
Thr	Met	Gln	Gly	Thr	Ser	Arg	Ser	Leu	Arg	Leu	Ιle	Gln	Asp	Arg	Val		
1000)				1005	5				1010)				1015		
GCT	GAG	GTT	CAG	CAG	GTA	CTG	CGG	CCA	GCA	GAA	AAG	CTG	GTG	ACA	AGC	3846	
Ala	Glu	Val	Gln	Gln	Val	Leu	Arg	Pro	Ala	Glu	Lys	Leu	Val	Thr	Ser		
				1020)				1025	5				1030	0		
ATG	ACC	AAG	CAG	CTG	GGT	GAC	TTC	TGG	ACA	CGG	ATG	GAG	GAG	CTC	CGC	3894	
Met	Thr	Lys	Gln	Leu	Gly	Asp	Phe	Trp	Thr	Arg	Met	Glu	Glu	Leu	Arg		
			1035	5				1040)				104	5			
CAC	CAA	GCC	CGG	CAG	CAG	GGG	GCA	GAG	GCA	GTC	CAG	GCC	CAG	CAG	CTT	3942	
His	Gln	Ala	Arg	Gln	Gln	Gly	Ala	Glu	Ala	Val	Gln	Ala	Gln	Gln	Leu		
		1050)				1055	5				1060)				
GCG	GAA	GGT	GCC	AGC	GAG	CAG	GCA	TTG	AGT	GCC	CAA	GAG	GGA	TTT	GAG	3990	
Ala	Glu	Gly	Ala	Ser	Glu	Gln	Ala	Leu	Ser	Ala	Gln	Glu	Gly	Phe	Glu		
	1065)				1075	1075					

	AGA	ATA	AAA	CAA	AAG	TAT	GCT	GAG	TTG	AAG	GAC	CGG	TTG	GGT	CAG	AGT	4038	
	Arg	Ile	Lys	Gln	Lys	Tyr	Ala	Glu	Leu	L ys	Asp	Arg	Leu	Gly	Gln	Ser		
1080 1085											1090)				1095		
	TCC	ATG	CTG	GGT	GAG	CAG	GGT	GCC	CGG	ATC	CAG	AGT	GTG	AAG	ACA	GAG	4086	
	Ser	Met	Leu	Gly	Glu	Gln	Gly	Ala	Arg	Ile	Gln	Ser	Val	Lys	Thr	Glu		
					1100)				1105 1110								
	GCA	GAG	GAG	CTG	TTT	GGG	GAG	ACC	ATG	GAG	ATG	ATG	GAC	AGG	ATG	AAA	4134	
	Ala	Glu	Glu	Leu	Phe	Gly	Glu	Thr	Met	Glu	Met	Met	Asp	Arg	Met	Lys		
				1115	5				1120)				1125				
	GAC	ATG	GAG	TTG	GAG	CTG	CTG	CGC	GGC	AGC	CAG	GCC	ATC	ATG	CTG	CGC	4182	
	Asp	Met	Glu	Leu	Glu	Leu	Leu	Arg	Gly	Ser	Gln	Ala	Ile	Met	Leu	Arg		
1130 1135													1140)				
	TCA	GCG	GAC	CTG	ACA	GGA	CTG	GAG	AAG	CGT	GTG	GAG	CAG	ATC	CGT	GAC	4230	
	Ser	Ala	Asp	Leu	Thr	Gly	Leu	Glu	Lys	Arg	Val	Glu	Gln	Ile	Arg	Asp		
		1145	5				1150)				1155	5					
	CAC	ATC	AAT	GGG	CGC	GTG	CTC	TAC	TAT	GCC	ACC	TGC	AAG	T			4270	
	His	Ile	Asn	Gly	Arg	Val	Leu	Tyr	Tyr	Ala	Thr	Cys	Lys					
	1160)				1165	5				1170)						
	GATO	GCTAC	CAG (CTTC	CAGCO	CC GI	TTGC(CCCAC	CTC	ATCTO	GCCG	CCT	TTGC:	TTT :	TGGT:	rggggg	4330	
	CAG	ATTGO	GGT I	ΓGGA	ATGC:	TT TO	CCATO	CTCC	A GGA	AGACT	TTTC	ATG	CAGC	CTA .	AAGT	ACAGCC	4390	
	TGG	ACCAC	CCC (CTGG	IGTG:	ra go	CTAG:	ΓAAGA	A TTA	ACCC7	ΓGAG	CTG	CAGC	ΓGA (GCCT	GAGCCA	4450	
	ATGO	GGACA	AGT 7	raca(CTTG	AC AC	GACA	AAGAT	r GGT	ΓGGAC	GATT	GGC	ATGC(CAT	TGAA	ACTAAG	4510	
	AGC	TCTC <i>I</i>	AAG 7	ГСАА	GGAAG	GC TO	GGGCT	rggg(C AG	ГАТСО	CCCC	GCC.)ATT	GTT (CTCC	ACTGGG	4570	
	GAG	GAAT	CCT (GGAC	CAAG	CA CA	AAAA	ACTT	A AC	AAAA	GTGA	TGT	AAAA	ATG .	AAAA	GCCAAA	4630	
	TAAA	AAAT(CTT :	ΓGGA	AAAG	AG CO	CTGG	AGGT:	Г СА	ACGAC	3						4667	

出証特平のサー3084226

 $r \land \land \land \land \land \land$

配列番号: 26

配列の長さ:1086

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10298

配列の特徴:

特徴を表す記号:CDS

存在位置:138..506

特徴を決定した方法:E

配列

TTTAATTTCC CCGAAATCAG ACTGCTGCCT TGGACCGGGA CAGCTCGCGG CCCCCGAGAG

CTCTAGCCGT CGAGGAGCTG CCTGGGGACG TTTGCCCTGG GGCCCCAGCC TGGCCCGGGT

120

CACCCTGGCA TGAGGAG ATG GGC CTG TTG CTC CTG GTC CCA TTG CTC CTG

Met Gly Leu Leu Leu Val Pro Leu Leu Leu

1 5 10

CTG CCC GGC TCC TAC GGA CTG CCC TTC TAC AAC GGC TTC TAC TAC TCC 218

Leu Pro Gly Ser Tyr Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser

15 20 25

AAC AGC GCC AAC GAC CAG AAC CTA GGC AAC GGT CAT GGC AAA GAC CTC 266
Asn Ser Ala Asn Asp Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu

30 35 40

CTT AAT GGA GTG AAG CTG GTG GTG GAG ACA CCC GAG GAG ACC CTG TTC

314

Leu Asn Gly Val Lys Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe

45 50 55

ACC CGC ATC CTA ACT GTG GGC CCC CAG AGC CTG GGG TCC GAA GCT TTG	362											
Thr Arg Ile Leu Thr Val Gly Pro Gln Ser Leu Gly Ser Glu Ala Leu												
60 65 70 75												
GCT TCC CCG ACC CGC AGA GCC GCT TGT ACG GTG TTT ACT GCT ACC GCC	410											
Ala Ser Pro Thr Arg Arg Ala Ala Cys Thr Val Phe Thr Ala Thr Ala												
80 85 90												
AGC ACT AGG ACC TGG GGC CCT CCC CTG CCG CAT TCC CTC ACT GGC TGT	458											
Ser Thr Arg Thr Trp Gly Pro Pro Leu Pro His Ser Leu Thr Gly Cys												
95 100 105												
GTA TTT ATT GAG TGG TTC GTT TTC CCT TGT GGG TTC GAG CCA TTT	503											
Val Phe Ile Glu Trp Phe Val Phe Pro Cys Gly Leu Glu Pro Phe												
110 115 120												
TAACTGT TTTTATACTT CTCAATTTAA ATTTTCTTTA AACATTTTTT TACTATTTTT												
TGTAAAGCAA ACAGAACCCA ATGCCTCCCT TTGCTCCTGG ATGCCCCACT CCAGGAATCA	620											
TGCTTGCTCC CCTGGGCCAT TTGCGGTTTT GTGGGCTTCT GGAGGGTTCC CCGCCATCCA	680											
GGCTGGTCTC CCTCCCTTAA GGAGGTTGGT GCCCAGAGTG GGCGGTGGCC TGTCTAGAAT	740											
GCCGCCGGGA GTCCGGGCAT GGTGGGCACA GTTCTCCCTG CCCCTCAGCC TGGGGGAAGA	800											
AGAGGGCCTC GGGGGCCTCC GGAGCTGGGC TTTGGGCCCTC TCCTGCCCAC CTCTACTTCT	860											
CTGTGAAGCC GCTGACCCCA GTCTGCCCAC TGAGGGGCTA GGGCTGGAAG CCAGTTCTAG	920											
GCTTCCAGGC GAAAGCTGAG GGAAGGAAGA AACTCCCCTC CCCGTTCCCC TTCCCCTCTC	980											
GGTTCCAAAG AATCTGTTTT GTTGTCATTT GTTTCTCCTG TTTCCCTGTG TGGGGAGGGG	1040											
CCCTCAGGTG TGTGTACTTT GGACAATAAA TGGTGCTATG ACTGCC	1086											
[0097]												

配列番号:27

配列の長さ:866

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10368

配列の特徴:

特徴を表す記号:CDS

存在位置:73..600

特徴を決定した方法:E

配列

ACTCAGAAGC TTGGACCGCA TCCTAGCCGC CGACTCACAC AAGGCAGGTG GGTGAGGAAA 60

TCCAGAGTTG CC ATG GAG AAA ATT CCA GTG TCA GCA TTC TTG CTC CTT GTG 111

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val

1 5 10

GCC CTC TCC TAC ACT CTG GCC AGA GAT ACC ACA GTC AAA CCT GGA GCC

159

Ala Leu Ser Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala

15 20 25

AAA AAG GAC ACA AAG GAC TCT CGA CCC AAA CTG CCC CAG ACC CTC TCC 207

Lys Lys Asp Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser

30 35 40 45

AGA GGT TGG GGT GAC CAA CTC ATC TGG ACT CAG ACA TAT GAA GAA GCT

255

CTA TAT AAA TOU AAG ACA AGO AAC AAA CCC TIG AIG AIT AIT CAT CAC 505

Leu Tyr Lys Ser Lys Thr Ser Asn Lys Pro Leu Met Ile His His

			65					70					7 5			
TTG	GAT	GAG	TGC	CCA	CAC	AGT	CAA	GCT	TTA	AAG	AAA	GTG	TTT	GCT	GAA	351
Leu	Asp	Glu	Cys	Pro	His	Ser	Gln	Ala	Leu	Lys	Lys	Val	Phe	Ala	Glu	
		80					85					90				
AAT	AAA	GAA	ATC	CAG	AAA	TTG	GCA	GAG	CAG	TTT	GTC	СТС	CTC	AAT	CTG	399
Asn	Lys	Glu	Ile	Gln	Lys	Leu	Ala	Glu	Gln	Phe	Val	Leu	Leu	Asn	Leu	
	95					100					105					
GTT	TAT	GAA	ACA	ACT	GAC	AAA	CAE	CTT	TCT	CCT	GAT	GGC	CAG	TAT	GTC	447
Va l	Tyr	Glu	Thr	Thr	Asp	Lys	His	Leu	Ser	Pro	Asp	Gly	Gln	Tyr	Val	
110					115					120					125	
CCC	AGG	ATT	ATG	TTT	GTT	GAC	CCA	TCT	CTG	ACA	GTT	AGA	GCC	GAT	ATC	495
Pro	Arg	Ile	Met	Phe	Val	Asp	Pro	Ser	Leu	Thr	Val	Arg	Ala	Asp	Ile	
				130					135					140		
ACT	GGA	AGA	TAT	TCA	AAC	CGT	CTC	TAT	GCT	TAC	GAA	CCT	GCA	GAT	ACA	543
Thr	Gly	Arg	Tyr	Ser	Asn	Arg	Leu	Tyr	Ala	Tyr	Glu	Pro	Ala	Asp	Thr	
			145					150					155			
GCT	CTG	TTG	CTT	GAC	AAC	ÁTG	ÁÁG	AAA	GCT	CTC	ÅAG	TTG	CTG	AAG	ACT	591
Ala	Leu	Leu	Leu	Asp	Asn	Met	Lys	Lys	Ala	Leu	Lys	Leu	Leu	Lys	Thr	
		160					165					170				
GAA	TTG	TAAA	AGAAA	AAA A	AAATO	CTCC	AA GO	CCCTT	CTGT	CTC	GTCAC	GCC	TTG			640
Glu	Leu															
	175															
AGAC	CTTGA	AAA C	CCAGA	AGA	AG TO	GTGA(GAAGA	A CTO	GGCT <i>I</i>	AGTG	TGGA	AGC	ATA (GTGA	ACACAC	700
TGAT	TAGO	GTT A	ATGGT	TTA	AT GT	TAC	ACAA	CTA	ATTT	ГТТА	AGA	AAAA	CAA (GTTT	ΓAGAAA	760
TTTC	GTT1	CA A	AGTGT	[ACA]	rg To	GTGA	AAACA	ATA	ATTG1	ΓΑΤΑ	CTAC	CCATA	AGT (GAGC	CATGAT	820
TTTC	CTAAA	AAA A	AAAA	ATA	AA TO	GTTT	rggg	G GTO	GTTCT	TGTT	TTCT	CC				866
[0	0 9	8]														
7		Andr 374	: L =V	T												

【図面の簡単な説明】

【図1】 分泌シグナル配列検出ベクターpSSD3の構造を表す図である。

- 【図2】 分泌シグナル配列ーウロキナーゼ融合遺伝子の作製法を示す図である
- 【図3】 クローンHP00658がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図4】 クローンHP00714がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図5】 クローンHP00876がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図 6】 クローンHP01134がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図7】 クローンHP10029がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図8】 クローンHP10189がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図9】 クローンHP10269がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図10】 クローンHP10298がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図11】 クローンHP10368がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【書類名】

図面

【図1】

【図2】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

1 1

【書類名】 要約書

【要約】

【課題】 分泌シグナル配列を有するヒト蛋白質、およびそれをコードしている c DNAを提供する。

【解決手段】 配列番号1から配列番号9で表されるアミノ酸配列を含む蛋白質および該蛋白質をコードするDNA、例えば配列番号10から配列番号18で表される塩基配列を含むcDNA。分泌機能が確認された分泌シグナル配列を有するヒト蛋白質をコードしているcDNA、およびこのヒトcDNAの組換え体を発現させることにより該蛋白質を提供することができる。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000173762

【住所又は居所】

神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】

財団法人相模中央化学研究所

【特許出願人】

【識別番号】

596134998

【住所又は居所】

東京都目黒区中町2丁目20番3号

【氏名又は名称】

株式会社プロテジーン

出願人履歴情報

識別番号

[000173762]

1. 変更年月日 1995年 4月14日

[変更理由] 住所変更

住 所 神奈川県相模原市西大沼4丁目4番1号

氏 名 財団法人相模中央化学研究所

出願人履歴情報

識別番号

[596134998]

1. 変更年月日 1996年 9月13日

[変更理由] 新規登録

住 所 東京都目黒区中町2丁目20番3号

氏 名 株式会社プロテジーン