H1: Materialen						
	1.1 opdeling op basis van functionele eigenschappen					
metalen	= sterk, vervormbaar, elektrisch geleidbaar, onstabiel in chemisch agressieve milieus					
keramische materialen	= slecht thermisch en elektrisch geleidbaar, breekbaar, stabiel in chemisch agressieve milieus >> vb: vuurvast materiaal in extreem warme industriële ovens					
glazen	= gelijkaardig aan keramische materialen, maar laten licht door					
polymeren / plastics	= vervormbaar, chemisch inert					
composieten	= combinatie van vorige groepen > vb: vezelsterke polymeren / beton					
halfgeleiders	= materialen die nog goede geleiders nog goede isolatoren zijn > vertonen eigenschappen gelijkaardig aan keramische materialen					
	1.2 opdeling op basis van bindingtype					
1.2.1 ionaire binding						
ionaire binding	= binding door aantrekking tss positieve en negatieve ionen > binding is niet-gericht, ie: positief ion zal elk aangrenzend negatief ion aantrekken > de elektrostatische potentiële energie is dan: $U_c = \frac{Z_1 e Z_2 e}{4\pi \epsilon_0 r}$					
energie ve groep ionen	Voor een structuur van ionen kan je de energie berekenen via: 1: kies ion en bereken totale energie op basis vd vgl met alle ionen in de groep 2: herhaal sommatie voor alle ionen in de groepen 3: deel totale energie door2, want elk ion zal tweemaal meegeteld worden > voor een ionair materiaal is deze uiteindelijk van de vorm: $U_c = \alpha \frac{Z_1 e Z_2 e}{4\pi \epsilon_0 r}$ met α de Madelung-constante specifiek voor het materiaal					
	Echter, er is ook repulsie wanneer de ionen te dicht bij elkaar komen > deze repulsie-energie wordt gegeven door: $U_{rep} = \frac{B}{r^n}$ >> dan is de totale energie: $Z^2e^2\alpha N_a BN_a$					
	>> dan is de totale energie: $U_{tot} = -\frac{Z^2 e^2 \alpha N_a}{4\pi \epsilon_0 r} + \frac{BN_a}{r''}$					
evenwichts-energie	In evenwicht zullen de krachten elkaar compenseren en hebben we dus: $\frac{dU_{tot}}{dr} = \frac{Z^2 e^2 \alpha N_a}{4\pi \epsilon_0 r^2} - \frac{nBN_a}{r^{n+1}} = 0$ of dus, met \mathbf{r}_0 de evenwichts-afstand: $U_{tot}^{(0)} = -\left(\frac{Z^2 e^2 \alpha N_a}{4\pi \epsilon_0 r_0}\right) \left(1 - \frac{1}{n}\right)$					
	>> atomen in een vastestof bevinden zicht op evenwichtsposities in energieminimum > er moet energie toegevoegd worden om de atomen uit kun evenwichtspos. te verplaatsen					
	in evenwicht hebben we bvb voor NaCl: $r_0 = r_{Na+} + r_{Cl-}$					

1.2.2 covalente binding											
covalente binding	= binding waarbij valentie-elektronen worden gedeeld tss atomen > directionele binding										
flexibiliteit van covalente binding	bin- 1: polymeren = aaneenschakeling van C en H in covalente binding > elke molecule redelijk neutraal geladen > zwakke interacties > laag smeltpunt										
	2: diamant = grid van C-atomen die allemaal verbonden zijn > één grote verbonden molecule > hoge hardheid en hoog smeltpunt					ijn via	coval	ente	bindin	g	
1.2.3 de metaalbinding											
metaalbinding	= delen van elektronen, maar niet-directionele binding (in tegensteling tot covalent) > valentieelektronen zijn gedelokaliseerd > ie: e zijn niet gelokaliseerd aan één of twee atomen, maar aan meerdere > hoge elektrische geleidbaarheid										
1.2.4 van der Waalse binding e	n waterstofbinding										
vander Waalse binding	e zijn gedelokaliseerd rondom kern > fluctuaties in dipoolmoment > induceert dipoolmoment in naburig atoom > aantrekking volgens: $U_{tot} = -\frac{K_{att}}{r^6} + \frac{K_{rep}}{r^{12}}$ >> vb: argon										
binding met permanente dipolen	Bij permanente dipolen kunnen deze interacties tot moleculen leiden > vb: water										
1.2.5 opdeling volgens binding	stype										
opdeling via bindingstype	we kunnen nu de materialen > echter, in één materiaal ku	-				-	s voo	rkome	en		
		Kristalstructuren Gerichte binding tussen de structurele eenheden de structurele eenheden								g tussen acturele	
		AB 2 of meerdere elementen	AX met X een mo- leculair ion	MIT AY met Y een complex ion	Me AA 1 type element	AB 2 of meer- dere elemen- ten	AA 1 of 2 type elementen	van-der-	-Waals ZZ' 2 of meer- dere molecu- len	AA 1 type element	valent AB 2 of meer- dere elemen- ten
	>> echter: ionaire, vanderwa > covalente binding heeft g				e bind	ingen	hebb	en cer	ntrale	krach	t op atoom
gelijkenis van opdeling	vergeleken met vorig opdelingtype vinden we: metallische binding -> metalen ionair + covalent -> keramische materialen en glazen sterk gebonden covalent + vanderwaals -> polymeren										

	1.3 een indeling op basis van atomische structuur					
opdeling op basis van afstand	We kunnen structuren opdelen op basis van hun afstand $r_{ij} = r_{i}-r_{j} $ tss twee atomen i en j > we hebben dus een set van afstanden $\{r_{ij}\}$ tss gemiddeld atoom i en elk ander atoom j,,N > distributie van deze interatomische afstanden wordt gegeven door: $\rho(r) = \langle \rho \rangle g(r) = \frac{1}{4\pi N r^2} \sum_{i} \sum_{j} \delta \left(r - r_{ij}\right)$					
	$4\pi Nr^2 \stackrel{?}{\sim} 1$					
	met $\langle \rho \rangle$ = gemiddelde deeltjesdichtheid $ \rho(r) = paardichtheidsdistributie $ g(r) = paardistributie					
paardistributie g(r)	tel het aantal atomen dn in een smalle sferische schil met volume dv op elke afstand r van een willekeurig gekozen atoom dat als oorsprong dient. > dan dv=4πr²dr > g(r) is het gemiddelde van deze aantallen voor verschillende willekeurige gekozen atomen					
	vb: g(r) voor een ideaal gas van atomen met straal R_0 > geen enkel atoom kan zich op <2 R_0 bevinden > g(r)=0 voor afstanden kleiner dan $2R_0$ > hierna is de kans om een atoom te vinden cte					
vb: g(r) voor glazen en vloei- stoffen	g(r)=0 voor afstanden kleiner dan $2R_0$ > eerste piek het grootst, de gem afstand tot dichtste buren > volume-integraal onder deze piek is gelijk aan gem. aantal dichtste naburen (NN): $\langle NN \rangle = \langle \rho \rangle \int_{\text{eerste}} g(r) 4\pi r^2 dr$					
	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
vb: g(r) voor goud	reeks scherpe pieken met hoge intensiteit: > heel andere atoomstructuur vgl met glas > kristallijne structuur 50 40 40 20 20 4R ₀ 6R ₀ 8R ₀ 10R ₀ 12R ₀					