MP Corrigé

	Plaque chauffante						
1	Le flux du champ B à travers la spire de diamètre D_k : $\phi = \oiint_{S_k} \overrightarrow{B}. d\overrightarrow{S}_k = \frac{B_0 \pi D_k^2 \sin \omega t}{4}$						
2	La f.e.m. induite e_k dans la spire de diamètre D_k est : $e_k = -\frac{d\phi}{dt} = -\frac{B_0 \pi D_k^2 \omega \cos \omega t}{4}$ Le courant induit i_k dans la spire k est ; $i_k = \frac{e_k}{R_k} = -\frac{B_0 \pi D_k^2 \omega \cos \omega t}{4R_k}$						
3	La puissance instantanée P_k dissipée dans la spire k est : $P_k = R_k i_k^2 = \frac{\left(B_0 \pi D_k^2 \omega\right)^2 \cos \omega t^2}{16R_k}$	1					
4	La puissance moyenne $\langle P_k \rangle$:						
5	La puissance totale $\langle P \rangle = \sum_{1}^{3} P_{k} = \frac{\left(B_{0} \pi \omega\right)^{2}}{32} \left(\frac{D_{1}^{4}}{R_{1}} + \frac{D_{2}^{4}}{R_{2}} + \frac{D_{3}^{4}}{R_{3}}\right)$						
	Four à induction						
6	$\overrightarrow{B} = \mu_0 \ ni(t) \overrightarrow{u_z}$	1					
7	Le champ électrique qui est un véritable vecteur est perpendiculaire aux plans de symétries paires, or le plan (\vec{u}_r, \vec{u}_z) est un plan de symétrie impaire donc $\vec{E} = E(r, \theta, z, t)\vec{u}_{\theta}$. La distribution de courant est invariante par translation et par rotation autour de l'axe oz donc \vec{E} ne dépend ni de θ ni de z donc $\vec{E} = E(r, t)\vec{u}_{\theta}$.						
8	Pour déterminer \vec{E} , on utilise la loi de Maxwell-Ampère : $\overrightarrow{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$ Soit $\frac{1}{r}\frac{\partial (rE_{\theta})}{\partial r} = \mu_0 \ n\omega I_0 \sin \omega t \ . \text{Donc} \left[\vec{E} = \mu_0 \frac{r}{2} n\omega I_0 \sin \omega t \ \vec{u}_{\theta}\right]$						
9	La loi d'ohm est $\vec{j} = \gamma \vec{E} = \gamma \mu_0 \frac{r}{2} n\omega I_0 \sin \omega t \vec{u}_\theta$. La puissance par unité de volume est $P_v = \vec{j} \cdot \vec{E} = \gamma E^2 = \gamma (\mu_0 \frac{r}{2} n\omega I_0)^2 \sin^2 \omega t$.	2					

	$\left \left\langle P_{\nu}\right\rangle = \frac{\gamma}{8} (\mu_0 n\omega I_0)^2 r^2 \right .$					
	La puissance moyenne dissipée par effet joule dans le conducteur est :					
10	$\langle P \rangle = \iiint \langle P_{\nu} \rangle d\tau = \int_{0}^{R} \langle P_{\nu} \rangle 2\pi r H dr = \frac{\pi \gamma \omega^{2} \mu_{0}^{2} n^{2} H I_{0}^{2}}{4} \int_{0}^{R} r^{3} dr$					
10	$\sqrt{\langle P \rangle = \frac{\pi \gamma \omega^2 \mu_0^2 n^2 H I_0^2 R^4}{16}}$ AN: $\sqrt{\langle P \rangle = 73,45W}$	1				
	La quantité de chaleur nécessaire pour faire fondre le cylindre en cuivre					
	est:	_				
11	$Q = mC \Delta T = \rho C \pi R^2 H \Delta T$ A.N: $Q = 1,149 \cdot 10^8 J$					
	La durée nécessaire pour faire fondre le cylindre en cuivre est :					
12	$\tau_f = \frac{Q}{\langle P \rangle}$ A.N: $\tau_f = 18,1 jours$	1				
	Cette durée n'est pas raisonnable.					
	Si la fréquence du signal augmente il en sera de même de $\langle P \rangle$. Ainsi si					
13	$\omega = 100 \omega_0 \Rightarrow \langle P \rangle = 73,45 \times 10^4 \mathrm{W}$, d'où: $\tau_f = 2,6 \mathrm{mn}$.	2				
	Cette valeur est parfaitement raisonnable, ainsi il est recommandé de travailler à des fréquences beaucoup plus grandes que celles du secteur 50Hz.					
14.1	Transfert thermique par convection	1				
14.2	h: coefficient d'échange convectif, son unité est W m ⁻² K ⁻¹ .	1				
14.3	$R_{th} = \frac{1}{h S_t}$	1				
	Le bilan énergétique s'écrit : $\frac{Q}{\tau_f} = \langle P \rangle - hS_i \left(T_f - T_0 \right)$					
15.1	Soit: $\langle P \rangle \ge hS_t (T_f - T_0)$, ce qui donne:					
	$\omega_c = \sqrt{\frac{32 \times H \left(T_f - T_0\right) \times h \left(H + R\right)}{\mu_0^2 \times \gamma \times N^2 \times I_0^2 \times R^3}} $ A. N: $\omega_c = 12382 \ rad.s^{-1}$	1				
15.2	$\tau_f = \frac{Q}{\langle P \rangle - hS_t \left(T_f - T_0 \right)}$ A.N: $\tau_f = 3 mn$	1.5				
	La différence n'est pas grande.					

Lévitation magnétique

I-Prélimi	inaire	
16.1	Tout plan contant l'axe des z est un plan d'antisymétrie pour la distribution de courant, comme il y a une infinité de plans donc le champ \vec{B} est porté par oz :	1
	Le champ magnétique élémentaire créé par le nombre de spires ndz s'écrit :	

16.2	$dB = ndz \frac{\mu_0 I}{2R} \sin^3 \alpha; tg\alpha = \frac{R}{z} \Rightarrow dz = -\frac{1}{\sin^2 \alpha} d\alpha$ $B = \frac{n\mu_0 I}{2} \int_{\alpha_1}^{\alpha_2} \sin \alpha \ d\alpha = \frac{n\mu_0 I}{2} \left[-\cos \alpha \right]_{\alpha_1}^{\alpha_2}$ $\vec{B} = \frac{\mu_0 n I}{2} \left(\cos \alpha_1 - \cos \alpha_2 \right) \vec{u}_z$	2
16.3	Solénoïde semi infini $(\alpha_1 \to 0)$: $\vec{B} = \frac{\mu_0 nI}{2} (1 - \cos \alpha_2) \vec{u}_z$	0.5

II- Bobin	e plate et lévitation magnétique	·				
17	Pour être dans le cadre de l'ARQS, on doit pouvoir négliger le retard $\Delta t = \frac{z}{c} \text{dû à la propagation devant la période T du courant, soit :}$ $\frac{z}{c} \times f <<1, \text{ ce qui donne : } z <<\frac{c}{f} = 6000km \text{ (condition vérifiée).}$					
18	Le champ \vec{B} du solénoïde va induire dans la bobine une variation de flux qui est à l'origine d'un courant induit.					
19	D'après la question préliminaire : $\alpha_1 \rightarrow 0$ et $\alpha_2 = \alpha_0$ d'où : $ \overline{B} = \frac{n\mu_0 I}{2} (1 - \cos \alpha_0) \overline{u_z} = \frac{n\mu_0 I}{2} (1 - \frac{z}{\sqrt{a^2 + z^2}}) \overline{u_z} $	1.5				
. 20	Le plan (M, u_r, u_z) est un plan de symétrie impaire donc le champ \vec{B} est contenu dans ce plan, il a par conséquent deux composantes B_r et B_z .	1.5				
	Le flux du champ magnétique à travers une surface fermée est nul. $\phi = \oiint \overline{B}.d\overline{S} = -S_{base}B_z(z) + S_{base}B_z(z+dz) + S_{lat}B_r(r,z) = 0$ $\pi r^2 \frac{\partial B_z}{\partial z}dz + 2\pi r dz B_r = 0 \implies B_r = -\frac{r}{2}\frac{\partial B_z}{\partial z}$	2				
21.1	$B_{z}(z) = \frac{n\mu_{0} I}{2} (1 - \cos \alpha_{0}) = \frac{n\mu_{0} I}{2} (1 - \frac{z}{\sqrt{z^{2} + a^{2}}})$ $\left(\frac{\partial B_{z}}{\partial z}\right) = -\frac{n\mu_{0} Ia^{2}}{2(z^{2} + a^{2})^{\frac{3}{2}}} \Rightarrow B(r, z) = \frac{r n\mu_{0} Ia^{2}}{4(z^{2} + a^{2})^{\frac{3}{2}}}$	1				
21.2	Si z= a et r = b on a: $B_z = \frac{n\mu_0 I}{2} (1 - \frac{a}{\sqrt{a^2 + a^2}}) = \frac{n\mu_0 I}{2} (1 - \frac{1}{\sqrt{2}}) = 0.146 \mu_0 n I$	1				
	$B_r(r=b,z=a) = \frac{n\mu_0 I b}{8\sqrt{2} a}$					

	Soit: $\frac{B_r}{B_z} = \frac{1}{8\sqrt{2} \cdot 0,146} \frac{b}{a} \approx 0,6 \frac{b}{a}$	1								
21.3	Pour $\frac{b}{a} = \frac{1}{20} \implies \frac{B_r}{B_z} \approx 0.6 \frac{b}{a} \approx 0.03$ ce qui signifie que $B_r \ll B_z$									
22	Le flux du champ magnétique à travers la surface de la bobine est : $\phi_e = N\vec{B}.\vec{S} = NB_z \ \pi b^2 = \frac{N\pi b^2 n\mu_0 \ I}{2} (1 - \cos \alpha_0)$ Le coefficient d'inductance mutuelle M est tel que :									
	$\phi_e = MI \Rightarrow M = \frac{N\pi b^2 n\mu_0}{2} (1 - \cos \alpha_0)$									
23	La f.e.m. induite est tel que $e = -\frac{d\phi_e}{dt} = -M\frac{dI}{dt} = MI_0 \omega \sin \omega t$ $e = -L\frac{di_b}{dt} - M\frac{dI}{dt} = Ri_b \implies L\frac{di_b}{dt} + Ri_b + M\frac{dI}{dt} = 0;$									
24.1	$e = -L\frac{di_b}{dt} - M\frac{dI}{dt} = Ri_b \implies L\frac{di_b}{dt} + Ri_b + M\frac{dI}{dt} = 0;$ $Donc \left[\underline{i_b} = -\frac{jM\omega \underline{I}}{R + jL\omega} \right]$	2								
24.2	comme $I_b(t) = I_M e^{j(\omega t + \varphi)}$ donc on obtient : $I_M e^{j\varphi} = -\frac{jM\omega I_0}{R + jL\omega} = \frac{M\omega I_0}{jR - L\omega} \text{ ; on obtient alors :}$									
	$I_{M} = \frac{M\omega}{\sqrt{R^{2} + L^{2}\omega^{2}}} I_{0} \text{ et } \operatorname{tg}\varphi = \frac{R}{L\omega} \operatorname{avec} : \left[\cos\varphi = -\frac{L\omega}{\sqrt{R^{2} + L^{2}\omega^{2}}}\right]$									
25.1	L'element de courant I_b $d\vec{l}$ e_θ placé dans un champ magnétique est soumis à la force de Laplace $d\vec{F} = I_b$ $d\vec{l}$ $\Delta \vec{B} = I_b$ $d\vec{l}$ e_θ $\Delta (B_r\vec{e}_r + B_z\vec{e}_z) = -I_b$ $dlB_r\vec{e}_z + I_b$ $dlB_z\vec{e}_r$	1.5								
	On omet la force suivant \vec{e}_r car la bobine est indéformable.	1.5								
25.2	Donc: $d\vec{F} = I_b dl \ \vec{e}_{\theta} \Lambda B_r \vec{e}_r = -I_b dl B_r \vec{e}_z = I_b dl \frac{b}{2} \frac{\partial B_z}{\partial z} \vec{e}_z$									
25.3	$\vec{F} = -\frac{I_b \pi b^2 \mu_0 n N I a^2}{2(z^2 + a^2)^{\frac{3}{2}}} \vec{e}_z = -\frac{I_M I_0 \pi b^2 \mu_0 n N a^2 \cos \omega t \cos(\omega t + \varphi)}{2(z^2 + a^2)^{\frac{3}{2}}} \vec{e}_z$									
25.4	La force de Laplace moyenne s'écrit : $ \langle \vec{F}(t) \rangle = -\frac{I_{M}I_{0} \pi b^{2} \mu_{0} nNa^{2} \langle \cos \omega t \cos(\omega t + \varphi) \rangle}{2(z_{0}^{2} + a^{2})^{\frac{3}{2}}} \vec{e}_{z} $ $ \langle \vec{F}(t) \rangle = -\frac{I_{M}I_{0} \pi b^{2} \mu_{0} nNa^{2} \cos \varphi}{4(z_{0}^{2} + a^{2})^{\frac{3}{2}}} \vec{e}_{z} = \frac{I_{M}I_{0} \pi b^{2} \mu_{0} nNa^{2} L\omega}{4(z_{0}^{2} + a^{2})^{\frac{3}{2}} \sqrt{R^{2} + L^{2}\omega^{2}}} \vec{e}_{z} $	3								
25.4	$4(z_0^2 + a^2)^{\frac{3}{2}} \qquad e_z = \frac{1}{4(z_0^2 + a^2)^{\frac{3}{2}}} \sqrt{R^2 + L^2 \omega^2}$ Soit en remplaçant I _M par sa valeur:									

	$\left\langle \overrightarrow{F}(t) \right\rangle = \frac{I_0^2 \pi b^2 \mu_0 nNML\omega^2}{4a(R^2 + L^2\omega^2)} \sin^3 \alpha \overrightarrow{e}_z$	
25.5	$\left\ \left\langle \overrightarrow{F}(t)\right\rangle\right\ = \frac{I_0^2 \pi b^2 \mu_0 nNML\omega^2}{4a(R^2 + L^2\omega^2)} \ge mg soit \left[m \le \frac{I_0^2 \pi b^2 \mu_0 nNML\omega^2}{4a(R^2 + L^2\omega^2)g}\right]$	1.5
25.6	Si L=0, la force moyenne s'annule, donc, il n'y aura pas de lévitation.	1
	Problème 2	
	Interférences à trois ondes : 3 Fentes d'Young	
1.1	Les fentes d'Young permettent de rendre le figure d'interférence plus lumineuse.	0.5
1.2	La première lentille sert à donner du faisceau émis par S un faisceau de rayons parallèles arrivent en phase sur les fentes. La lentille 2 sert à focaliser un faisceau de rayons parallèles en un point de l'écran qui est placé au plan focal image de la lentille ce qui rend la figure d'interférence plus lumineuse	0.5
1.3	F L ₂ (E)	1.5
1.4	Oui, car les trois vibrations qui interfèrent en M sont issues d'une même source primaire F qui émet une radiation parfaitement monochromatique	1
2	La différence de marche entre les fentes F_1 et F_2 s'écrit : $\delta = (FM)_2 - (FM)_1 = F_2 H$ où H est la perpendiculaire issue de F_1 sur le rayon partant de F_2 . $\delta = \frac{a x}{f'} \Rightarrow \phi = \frac{2\pi}{\lambda} \frac{a x}{f'}$	1.5
3	$\frac{S = S_1 + S_2 + S_3}{S_1 + S_2 + S_3} = \frac{S_1}{S_1} e^{-j\phi} + \frac{S_1}{S_1} + \frac{S_1}{S_1} e^{-j\phi}$ $= S_1 \left[1 + e^{-j\phi} + e^{-j\phi} \right] = S_1 \left[1 + 2\cos\phi \right]$	1.5
4	$I = \underline{S} \cdot \underline{S}^* = \underline{S_1} \cdot \underline{S_1}^* \left[1 + 2\cos\phi \right]^2 = I_1 \left[1 + 2\cos\phi \right]^2$	1
5	Quand le nombre de fentes augmente il apparait des maximums secondaires et les maximums principaux augmentent d'intensité et deviennent moins larges.	1
6	$\underline{S} = \underline{S_1} + \underline{S_3} = \underline{S_1} e^{-j\phi} + \underline{S_1} e^{j\phi} = \underline{S_1} 2\cos\phi = \underline{S_1} 2\cos(\frac{2\pi}{\lambda} \frac{a x}{f'}) \text{ d'où}$	1

$I = \underline{S} \cdot \underline{S}^* = \underline{S_1} \cdot \underline{S_1}^* \left[2\cos\phi \right]^2 = 4I_1 \cos^2\left(\frac{2\pi}{\lambda} \cdot \frac{a \cdot x}{f'}\right) = 4I_1 \cos^2\left(\frac{\pi x}{i}\right) \text{avec}$	1
$i = \frac{\lambda f'}{2a} \qquad \text{A.N. } i = 0,25mm$	1

Interférences à N ondes : Le réseau

7	La différence de marche entre les rayons issus de deux fentes successives est : $\delta = a(\sin \theta - \sin i)$ d'où la différence de phase :							
,	$\varphi = \frac{2\pi\delta}{\lambda} = \frac{2\pi a(\sin\theta - \sin i)}{\lambda}$							
8	$\underline{S}_{1} = Ae^{i\omega t}, \underline{S}_{2} = Ae^{i(\omega t - \varphi)}\underline{S}_{p} = Ae^{i[\omega t - (P-1)\varphi]} = \underline{S}_{1}e^{-i(P-1)\varphi}$							
9	La vibration résultante \underline{S} est tel que : $\underline{S} = \underline{S}_1 + \underline{S}_2 + \underline{S}_3 \dots + \underline{S}_N$ $\underline{S} = \underline{S}_1 (1 + e^{-i\varphi} + e^{-i2\varphi} + e^{-i3\varphi} + \dots + e^{-i(N-1)\varphi})$ La partie de \underline{S} entre deux parenthèses est une suite géométrique de raison $e^{-i\varphi}$. Soit après calcul :							
	$\underline{S} = \underline{S}_1 e^{-i(N-1)\frac{\varphi}{2}} \frac{\sin(\frac{N\varphi}{2})}{\sin(\frac{\varphi}{2})}$	1.5						
10	L'intensité $I(\varphi)$ diffractée par le réseau dans la direction θ est tel que : $I(\varphi) = \underline{S} \cdot \underline{S}^{\bullet} = A^{2} \frac{\sin^{2}(\frac{N\varphi}{2})}{\sin^{2}(\frac{\varphi}{2})}$	1						
	$I(arphi)$ est périodique de période 2π .	0.5						
	Les positions des maximums principaux sont obtenus pour $\varphi=2m\pi$ avec $m\in Z$ La position des minimums est obtenu quand $I(\varphi)=0$ c'est-à-dire quand	1 .						
11	$\sin(\frac{N\varphi}{2}) = 0 avec \sin(\frac{\varphi}{2}) \neq 0 d'où:$ $N\varphi \qquad 2m\pi$							
	11 $\frac{N\varphi}{2} = m\pi \text{ soit } \varphi = \frac{2m\pi}{N} \text{ avec m non multiple de } N \text{ . Sachant que N est}$ un nombre très grand, le premier minimum est obtenu pour $\varphi = \frac{2\pi}{N}$; le							
	deuxième minimum pour $\varphi = \frac{4\pi}{N}$ etc	1						

	$I(0) = I_{\text{max}} = A^2 N^2$ comme $I(\varphi)$ est de période 2π on a	1						
12	$I(0) = I(2\pi) = I(4\pi) = \dots = I_{\text{max}} = A^2 N^2$	1						
	Les maximums secondaire se trouvent entre deux minimums successifs soit							
	$pour \varphi = \frac{(2m+1)\pi}{N} avec m \in Z^*$							
	1							
	Le premier maximum secondaire a une intensité $I_1' = I(\frac{3\pi}{2}) = A^2 \frac{\sin^2(\frac{3\pi}{2})}{\sin^2(\frac{3\pi}{2N})} = \frac{A^2 N^2}{(\frac{3\pi}{2})^2} = \boxed{0,045 \ I_{\text{max}}}$							
	Le deuxième maximum secondaire a une intensité							
	$I_2' = I(\frac{5\pi}{2}) = A^2 \frac{\sin^2(\frac{5\pi}{2})}{\sin^2(\frac{3\pi}{2N})} = \frac{A^2 N^2}{(\frac{5\pi}{2})^2} = \boxed{0,016 \ I_{\text{max}}}$	0.5						
	Donc les intensités des maximums secondaires sont négligeables devant I _{max}	0.5						
13	$ \begin{array}{c c} 1 \\ \underline{I(\varphi)} \\ I_{\text{max}} \end{array} $	1.5						
	arphi							
	-Les maximums secondaires deviennent très petits lorsque N est grand La finesse des pics principaux augmente avec N.							
	II- Applications des réseaux							
	II.1- Mesure du pas d'un réseau							
	La déviation s'écrit : $D = \theta - i$. Le minimum de déviation D_m est tel que	0.5						
	$\frac{dD}{di} = 0$ soit $\frac{d\theta}{di} - 1 = 0 \Rightarrow d\theta = di$	0.5						
	En utilisant la relation $a(\sin\theta - \sin i) = k\lambda$ et en la différentiant on obtient							
	$\cos\theta d\theta - \cos i di = 0 \operatorname{soit} \cos\theta = \cos i \implies \theta = \pm i$. La valeur $\theta = i$ n'est							
14.1	pas solution car le rayon ne subit pas de déviation donc c'est $\theta = -i$ qui							
	est la solution. Par conséquent $D_m = 2\theta$ et la relation $a(\sin \theta - \sin i) = k\lambda$ devient :							
	$2a\sin\theta = k \lambda \Rightarrow \sin(\frac{D_m}{2}) = \frac{k \lambda}{2a}$	0.5						
14.2	D'après la question précédente on a : $a = \frac{k \lambda}{2 \sin(\frac{D_m}{2})}$;	0.5						
	$AN. a=1,999 \mu m = 2 \mu m$ Le nombre total de traits N s'écrit $N=\frac{L}{a}$,	1						

	A.N.N = 5000	0.5				
14.c	$\frac{da}{a} = \frac{d\lambda}{\lambda} - \frac{d\left(\sin\frac{D_m}{2}\right)}{\sin\frac{D_m}{2}} = \frac{d\lambda}{\lambda} - \frac{\cot g\left(\frac{D_m}{2}\right)}{2} dD_m \text{ soit}$	1				
	$\frac{\Delta a}{a} = \frac{\Delta \lambda}{\lambda} + \frac{\cot g(\frac{D_m}{2})}{2} \Delta D_m \text{A.N} : \Delta a = 1.6nm$	1				
	II-2- Mesure de longueur d'onde et du pouvoir de dispersion angulaire					
	La différence de marche est $\delta = a \sin \theta = k \lambda$ à l'ordre k=1 on a $\lambda_n = a \sin \theta_n$ n variant de 1 à 4. Les longueurs d'ondes sont consignées sur le tableau 1.	2				
15-1	Couleur Violette Bleu Verte Oranger Longueur d'onde (nm) $\lambda_1 = 405 nm$ $\lambda_2 = 436 nm$ $\lambda_3 = 546 nm$ $\lambda_4 = 615 nm$ θ_i (en degré) i varie de 1 à 4 11,68 12,59 15,84 17,91					
	$\frac{d\theta}{d\lambda}$ (mn/nm) 1.75 1.76 1.79 1.80					
	Pour $\theta = \frac{\pi}{2} on a, a = k\lambda \Rightarrow k \leq \frac{a}{\lambda_n}$ pour la radiation λ_n n. Ainsi pour la	0.5				
15-2	radiation violette on a $k = \frac{2}{0,405} = 4,9$ donc $k=4$	1				
	pour la radiation orangée on a $k = \frac{2}{0,615} = 3,25$ donc $k = 3$					
16	D'après la relation $\delta = a \sin \theta = k \lambda$ quand la longueur d'onde λ varie de $d\lambda$ l'angle θ varie de $d\theta$. Soit en différentient cette relation on obtient $a \cos \theta d\theta = k d\lambda$ de telle manière que la dispersion angulaire s'exprime :					
	$d\lambda = a\cos\theta$					
17	A l'ordre k=1 on a $\frac{d\theta}{d\lambda} = \frac{1}{a\cos\theta}$	2				
	Les valeurs de la dispersion angulaire pour les quatre radiations sont reportées sur le tableau 1.					
	II-3- Pouvoir de résolution du réseau	1				
	$\varphi = \frac{2\pi\delta}{\lambda} \text{ or } \delta = k\lambda$	1.5				
	Si λ varie de $d\lambda$ la différence de marche subit une variation $d\delta = k \delta \lambda$					
18.1	de manière que la variation de phase $d\varphi = \frac{2\pi d\delta}{\lambda} = \frac{2\pi k d\lambda}{\lambda}$ d'où :					
	$d\varphi = \frac{2\pi d\delta}{\lambda} = \frac{2\pi kd\lambda}{\lambda}$					

18.2	$d\varphi \ge \frac{2\pi}{N} \Rightarrow dA$	$\lambda \geq \frac{\lambda}{kN}$; d'où	$d\lambda_{\min} = \frac{\lambda}{k N}$			1
		Les réseaux de 200 et 500 traits ne peuvent séparer les deux radiations à l'ordre k=1 car comme le montre le tableau 2; $d\lambda_{\min} \ge 0.6 nm$				
		7000	Tableau 2		r	2 5
10.1	N	5000	2000	500	200	2.5
19.1		0.118	0.295	1.18	2.95	
	Pour que les qua	tre réseaux pu	lissent séparer le	es deux radiatio	ns il faut que	
19.2	Pour que les quatre réseaux puissent séparer les deux radiations il faut que $d\lambda_{\min} \le 0.6 nm$ soit pour le réseau de 200 traits $k \ge \frac{\lambda}{N d\lambda_{\min}}$					1.5
	A.N: $k \ge 4.9$	donc $k = 5$				