Depth-first search - DFS traversal - Keep the following applications in mind: 1) Are all paths unique in a given G? 2) Is Gacyclic? [Tarjan'72]3) Find the strongly connected components in G? I.e. a maximal SEV s.t. Vijj∈S, i~oj & j~oi. [Edmonds, Korp 72/4) Maximum flow? 5) Matching ? (Hoporosth DFS idea: Recursively explore a Tarjan 13) neighbor before moving to the next neighbor. - Pseudocode: DFS-graph (G=(V,E)) { For each ve V visit[v] - false; count ←1; For each vEV if (visit[v] = false) DFS(v);

DFS(v) } risit[v] - true; begin time + D[v] < count++; For each (v, w) EE with visit[w] = false end time -F[v] - count++; DO(n+m) time complexity is easy to show.
-Example: timestamp: D(u) = 1D[j] = 7D Note the general D[V]=3 D[k] = 8 relationship: F[k] = 9D[W]= 3 F[j] = 10 D[t]=4 D[u] (D[v] F[v) = 11 F[t]=5 D[2]= 12 LF[v]/Flw F[w)=6 (Interval enclosed) for tree edge (4,2)

a forward edge or - Lemma: (u,v) is an edge in the DFS-tree if D(u) < D(v) < F(v) < F(u) & (u,v) ∈ E. Pf: . (=): is clear from the recursive nature of the DFS traversal. 2 2 1 W · (=): In the DFS aborithm either v is explored as a neighbor of u; or, it is explored as a neighbor of w; in the latter case (u,v) is called a forward edge. Lemma: The other kinds of non-tree edges are:

(Parenthesis · cross edge (u,v): (D[w], F[u]) &

(D[v], F[v]) are disjoint. · backward edge (u,v): D[v] < D[v] < F[v]. Cross backward edge

	Application 1: Unique-path testing
-	Input: Directed graph G=(V,E).
	Output: Yes if & u, v \in V, Fat most one
-	Simple path from u to v.

- Easy algorithm:

For each $u \in V$?

DFS(u);

if (DFS-tree has a forward or a cross edge)

then output non-unique-path;

3

output unique-path;

D Backward edges in DFS(u) do not yield multiple simple paths from u to any v.

D Time complexity is nx O(m+n).

Bringing it down to O(12).

- Note that if $\exists u, v \in V$ s.t. in DFS(u):

 there are two backward edges from vthen G is non-unique-path IThus,

 but $\int_{V}^{V} bud$
- D G is unique-path => tue V, DFS(u)
 has no cross edge, no forward edge &
 tv EV, at most one backward edge from v.
- This can be used to speed up the code; DFS(4) {

visit[u] \leftarrow true; $D[u] \leftarrow$ count++; $/\!/D[\cdot]$, $F[\cdot]$ are initialized $BackEdge[u] \leftarrow 0$; $For each (u,v) \in E$ For each (visit[v] = false) DFS(v);

· · · · · (contd.)

else if (F[v]70) out put non-unique-path; Back Edge [n] ++; if (Back Edge [u] = 2) ! Two backward edges output non-unique - path; 3 //end else 3/lend for F(u) - count ++; 3 lend DFS(u) Lemma: The also, for DFS (u) above, takes O(n) time · The edges that are traversed are either DFS(u) Tree edges, or <1 forward edge, or <1 crossedge, or <2 backward edges. · This gives us a count of n-1+1+n+1=0(n) edges actually traversed. Theorem! Doing this for all u, we get an O(n2) time also to decide unique-path.

20	
	Application 2: Topological ordering in de
_	- Can a backward edge appear in
	DFS-Graph (G), it G is a day?
	DFS-Graph (G), if G is a dag? -No; else we've a cycle.
Theorem	: Testine whether G is a dar is double in
	: Testing whether G is a day is doable in O(n+m) time.
_	- Let G be a dag & u e V.
	Let v, w be vertices in DFS(u)
	· If (v, w) is a DFS-tree edge then
	F[v] > F[w]
	· If (v, w) is a forward edge then
	F[v] > F[w].
	· If (v,w) is a cross edge then
	F[v]>F[w],
Theorem	Decreasing order of finish time F[-] give
0 4411	w a topological ordering on a day G
	in O(n+m) time.
75	,

		Application 3: Compute strongly connected an
	- Def	n: Let G=(V,E) be a directed graph.
		Vertices u, v e V are strongly connected
		if u-ov & v-ou.
		A maximal subset of vertices in V,
		with every pair strongly connected, is
<i>δ</i>	0_	called a strongly connected component.
<u>Kn</u>	undire	called a strongly connected component. etcd graph? (SCC)
	D	The state of the s
		can find the strongly
		connected components in
		nx O(m+n) time.
	Pf:	(Exercise)
		an this be improved?
		**
	_	Yes, in O(mm) time. We'll discuss Kosaraju (1978) 's
		We'll discuss Kosaraju (1978) 's
		idea.

- Defn: The root of a scc s is the vertex which is visited first in DFS.
- => D Root of a Scc sis the vertex that finishes last (among S).
- This gives an idea to spot the root of some scc:

Do DFS on G, order V in the decreasing order of F[:] & pick the first vertex u.

=> u is the root of a sec in G, say S.

- an: How do we find 5? Let 5' be another &cc & v'es!

Lemma: \u'\es, v'\es', (v',u') \notin E.

· Let v be the root of s'. (Gontdi)

.... (contd.)

- This gives us the idea to reverse the edges in G & consider $G^z := (V, E^z)$:

D 52 is a sec in 92 & there is no edge going out of 52.

D DFS on u in G² gives us S²!

Final algorithm for SCC · Do DFS on G& store V in the decreasing order of F[·]. · Compute Gr by reversing the edges. · Initialize ∀v∈V, SSCC-found[v] ← false; SCC-num[v] ← -1; · L-1; · For each ve V { if (scc-found [v) = false) { Do DFS(v) in G2; Let the DFS-tree have vertices A; For each XEA { Scc-found [n] - true; SC-num (x) ~i; remore x from 92; Theorem: SCC is computable in O(mon) time. Pf: (Exercise)