(4주차) 서포트 백터 머신

1기 김희숙 1기 안하린 1기 최지우

1. 선형 SVM 분류

2. 비선형 SVM 분류

3. SVM 회귀

4. SVM 이론

목차

5.0 서포트 벡터 머신

SVM(support vector machine)란?

• 정의: 결정 경계 (Decision Boundary), 즉 분류를 위한 기준 선을 정의하여 주어진 데이터가 어느 카테고리에 속할지 판단하는 이진 선형 분류 모델

• 복잡한 분류 문제에 잘 맞음

• 작거나 중간 크기의 데이터셋에 적합

5.1 선형 SVM 분류

결정 경계 (Decision Boundary)

속성이 두개일 경우

속성이 세개일 경우

5.1 선형 SVM 분류

최적의 결정 경계는?

선형 SVM

SVM 분류기 = 라지 마진 분류

두 클래스 경계 사이가 가장 넓은 폭을 찾는 알고리즘 => 서포트 벡터

5.1 선형 SVM 분류

스케일 *SVM은 특성의 스케일에 민감

```
Xs = np.array([[1, 50], [5, 20], [3, 80], [5, 60]]).astype(np.float64)
ys = np.array([0, 0, 1, 1])
svm_clf = SVC(kernel="linear", C=100)
svm_clf.fit(Xs, ys)

plt.figure(figsize=(9,2.7))
plt.subplot(121)
plt.plot(Xs[:, 0][ys==1], Xs[:, 1][ys==1], "bo")
plt.plot(Xs[:, 0][ys==0], Xs[:, 1][ys==0], "ms")
plot_svc_decision_boundary(svm_clf, 0, 6)
plt.xlabel("$x_0$", fontsize=20)
plt.ylabel("$x_1$", fontsize=20, rotation=0)
plt.title("Unscaled", fontsize=16)
plt.axis([0, 6, 0, 90])
```



```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(Xs)
svm_clf.fit(X_scaled, ys)

plt.subplot(122)
plt.plot(X_scaled[:, 0][ys==1], X_scaled[:, 1][ys==1], "bo")
plt.plot(X_scaled[:, 0][ys==0], X_scaled[:, 1][ys==0], "ms")
plot_svc_decision_boundary(svm_clf, -2, 2)
plt.xlabel("$x'_0$", fontsize=20)
plt.ylabel("$x'_1$", fontsize=20, rotation=0)
plt.title("Scaled", fontsize=16)
plt.axis([-2, 2, -2, 2])
```


5.1.1 소프트 마진 분류

마진분류

- 마진(Margin)이란?
- → 결정 경계와 서포트 벡터 사이의 거리
- →최적의 결정경계 = 마진의 최대화
- →이상치를 다루는 것이 필요

소프트마진

5.1.1 소프트 마진 분류

SVM 파라미터: C

- C: 마진의 넓이와 마진오류 사이의 tradeoff를 결정하는 파라미터
- -적을 경우: 마진이 넓지만, train error 증가
- -높을 경우: 마진이 좁지만, train error 감소

5.2 비선형 SVM 분류

비선형 SVM

• 선형적으로 분류할 수 없는 비선형 데이터셋을 다룰 때 활용

하나의 특성 X1만을 가진 비선형 데이터셋 → X2=(X1)^2을 추가하여 2차원 데이터셋으로 변환

5.2 비선형 SVM 분류

• Moons 데이터셋 활용

다항식 특성을 추가하는 것은 간단하고 잘 작동하지만, 다항식의 차수가 높고 특성의 개수가 많아지면 모델 훈련 시간이 많이 소요되어 비효율적.

그래서 이때 커널트릭을 사용.

<u>커널 트릭</u> 실제로 특성을 추가하지 않았는데 다항식의 특성을 추가한 듯한 효과

5.2.1 다항식 커널

다항식 커널 (Polynomial Kernel)

5.2.2 유사도 특성

유사도 특성

- 비선형 특성을 다루는 또 다른 기법
- 유사도 함수로 계산한 특성을 추가

유사도함수: 가우시안 rbf로 정의

*유사도함수: 샘플과 특정 랜드마크의 닮은 정도를 측정

하이퍼파라미터. 작을수록 폭이 넓은 종모양이 됨

```
def gaussian_rbf(x, landmark, gamma):
    return np.exp(-gamma * np.linalg.norm(x - landmark, axis=1)**2)

gamma = 0.3

x1s = np.linspace(-4.5, 4.5, 200).reshape(-1, 1)
x2s = gaussian_rbf(x1s, -2 gamma)
x3s = gaussian_rbf(x1s, 1, gamma)

랜드마크 지점
```


5.2.3 가우시안 RBF 커널

파라미터: gamma & c

- Gamma: 하나의 데이터 샘플이 영향 력을 행사하는 거리를 결정
- Gamma가 클수록 데이터 포인터들이 영향력을 행사하는 길이가 짧아짐
- Gamma가 낮을수록 영향력이 커짐

5.2.3 가우시안 RBF 커널

방사 기저 함수 커널 (RBF 커널)

```
rbf_kernel_svm_clf = Pipeline([
         ("scaler", StandardScaler()).
         ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))
    1)
rbf_kernel_svm_clf.fit(X, y)
from sklearn.svm import SVC
gamma1, gamma2 = 0.1, 5
C1, C2 = 0.001, 1000
hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2)
sym clfs = []
for gamma, C in hyperparams:
   rbf_kernel_svm_clf = Pipeline([
           ("scaler", StandardScaler()),
           ("sym_clf", SVC(kernel="rbf", gamma=gamma, C=C))
   rbf kernel svm clf.fit(X, v)
   sym_clfs.append(rbf_kernel_sym_clf)
```


5.2.4 계산 복잡도

LinearSVC

- O(mn)
- liblinear 라이브러리 기반
- 훈련 샘플(m)과 특성 수(n)에 거의 선형적으로 늘어남 -> O(mn)
- 정밀도를 높이면 알고리즘 수행 시간이 증가함
- 허용 오차의 하이퍼파라미터(ε: tol 매개변수)로 조절

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class	Time complexity	Out-of-core support	Scaling required	Kernel trick
LinearSVC	$0(m \times n)$	No	Yes	No
SGDClassifier	$0(m \times n)$	Yes	Yes	No
SVC	$0(m^2 \times n)$ to $0(m^3 \times n)$	No	Yes	Yes

m: 샘플의 수 n: 특성의 수

5.2.4 계산 복잡도

SGDClassifier

- O(mn)
- 확률적 경사하강법을 이용하여 선형 모델 구현

SVC

- $O(m^2 n) \sim O(m^3 n)$
- libsvm 라이브러리 기반
- 훈련 샘플의 수가 커지면 시간이 매우 오래 걸림
- 복잡하지만 작거나 중간 규모의 훈련 세트에 대해 적합함
- 희소 특성인 경우에 잘 확장됨
- 알고리즘의 성능은 샘플이 가진 0이 아닌 특성의 평균 수에 비례함
- 허용 오차 하이퍼파라미터(ε: tol 매개변수)로 조절

SVM 회귀와 분류의 목표

 SVM 분류
일정한 마진 오류 안에서 두 클래스 사이의 도로 폭을 최대한 넓힘

SVM 회귀

제한된 마진 오류 안에서 도로 폭을 최대한 넓혀서 도로 위에 가능한 많은 샘플을 포함하도록 학습

**회귀 모델의 마진 위반 사례: 도로 밖에 위치한 샘플

EURON I

SVM 선형 회귀

- 선형 회귀 모델을 SVM을 이용하여 구현
- 마진 안에서는 훈련 샘플이 추가되어도 모델의 예측에는 변함이 없음
- 결과적으로 ε(epsilon) 에 민감하지 않다

LinearSVR 클래스 지정 from sklearn.svm import LinearSVR svm_reg = LinearSVR(epsilon = e)

 왼편 그래프
 오른편 그래프

 epsilon=e:
 e=1.5: 마진 크게
 e=0.5 마진 작게

SVM 비선형 회귀

- 커널 트릭을 활용하여 비선형 회귀 모델 구현
- 마진 안에서는 훈련 샘플이 추가되어도 모델의 예측에는 변함이 없음
- 결과적으로 ε(epsilon) 에 민감하지 않다
- 하이퍼파라미터 C(정규화 매개 변수)가 커질수록 마진 오차에 민감 → 과대 적합 가능성 ↑

# SVR + 다항식 커널			
from sklearn.svm import SVR			
<pre>svm_poly_reg = SVR(kernel = "poly", degree</pre>	= d,		
C = C, epsilon = e, gamm	na = "scale")		

	왼편 그래프	오른편그래프
degree=d:	d=2: 2차 다항 커널	d=2: 2차 다항커널
epsilon=e:	e=0.1: 마진 작게	e=0.1 마진 작게
C=C:	C=100: 가중치 규제 거의 없음	C=0.01: 가중치 규제 많음
	샘플에 더 민감	샘플에 덜 민감
	도록폭을 보다 넓게	도로폭을 보다 좁게

모델 생성 학습, 예측

• 사이킷런 LinearSVR(LinearSVC의 회귀 버전)을 사용하여 선형 SVM 회귀 적용 -> 필요한 시간이 훈련 세트의 크기에 비례하여 선형적으로 늘어남

```
#모델을 만들기 전 훈련 데이터의 스케일을 맞추고 평균을 @으로 맞춰야 함 from sklearn.svm import LinearSVR

svm_reg = LinearSVR(epsilon=1.5, random_state=42)
svm_reg.fit(X, y)

y_predict = svm_reg.predict(X)
```


사이킷런 SVR(svc의 회귀 버전)을 사용하여 선형 SVM 회귀 적용
 -> 훈련 세트의 크기가 커지면 훨씬 느려짐

```
from sklearn.svm import SVR

svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1, gamma="scale")
svm_poly_reg.fit(X, y)

y_predict = svm_reg.predict(X)
```


SVM의 장단점

장점

- 비선형 분리 데이터를 커널 트릭을 사용하여 분류 모델링 가능
- 고차원 공간에서 원활하게 작동함
- 텍스트 분류 및 이미지 분류에 효과적임

단점

- 데이터가 너무 많으면 속도가 느리고 메모리적으로 힘듦
- 확률 추정치를 제공하지 않음
- 선형 커널은 선형의 분리 가능한 데이터인 경우 로지스틱 회귀분석과 거의 유사함

5.4 SVM 이론

선형 SVM 작동 원리

- 결정 함수와 예측
- 목적 함수
- 2차 계획법(QP, quadratic programming)
- 쌍대 문제

커널 SVM 작동원리

• 쌍대 문제를 해결할 때 커널 기법 활용 가능

온라인 SVM

- 온라인 선형 SVM
- 온라인 커널 SVM

5.4.1 결정함수와 예측

선형 SVM 작동 원리: 결정 함수와 예측

• 선형 SVM 분류기 모델의 결정 함수

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

= $w_1 x_1 + \dots + w_n x_n + b$

선형 SVM 분류기 예측

$$\hat{y} = \begin{cases} 0 & \text{if } h(\mathbf{x}) < 0 \\ 1 & \text{if } h(\mathbf{x}) \ge 0 \end{cases}$$

단순히 결정 함수를 계산하여 새로운 샘플 X의 클래스를 예측 결과값이 0보다 크면 예측된 클래스 y.hat 은 양성 클래스(1), 0과 같거나 크면 음성 클래스(0)

5.4.1 결정함수와 예측

결정 경계

• 결정 함수의 값이 0인 점들의 집합

$$\{\mathbf{x} \mid h(\mathbf{x}) = 0\}$$

- 예제: 붓꽃 분류
- 꽃잎 길이와 너비를 기준으로 Iris-Virginica(초록색 삼각형) 품종 여부 판단

두 점선에 유의 h(X)가 1 또는 -1인 샘플들의 집합 margin과 밀접하게 관련됨

5.4.2 목적 함수

선형 SVM 작동 원리: 목적 함수

결정 함수의 기울기와 마진 폭

- 결정 함수의 기울기가 작아질 수록 마진 폭이 커짐
- 결정 함수의 기울기가 wil에 비례

5.4.2 목적 함수

선형 SVM 작동 원리: 목적 함수

마진을 크게 하기 위해 WW 를 최소화

- 하드 마진: 모든 양성(음성) 샘플에 대한 결정 함수의 값이 1(-1)보다 큼(작음)
- 소프트 마진: 모든 샘플에 대한 결정 함수의 값이 지정된 값 이상 또는 이하

5.4.2 목적 함수

하드 마진 선형 SVM 분류기의 목적 함수

• 목적 함수

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

• 조건

$$t^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1$$

• 단, 다음이 성립:

x⁽ⁱ⁾: i 번째 샘플

t(i): 양성 샘플(y(i) =1)일 때 1, 음성 샘플(y(i) =0)일 때 -1

B: 편향 W: 가중치 벡터

소프트 마진 선형 SVM 분류기의 목적 함수

목적 함수

조건

$$t^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1 - \zeta^{(i)}$$

• 단, 다음이 성립:

x⁽ⁱ⁾: i 번째 샘플

t(i): 양성 샘플(y(i) =1)일 때 1, 음성 샘플(y(i) =0)일 때 -1

 $t^{(i)}(w^T + X^{(i)} + b)$ $>= 1 - \zeta^{(i)}$ 와 $\zeta^{(i)} >= 0: \zeta^{(i)}$ 은 슬랙 변수로 i번째 샘플이 얼마나 마진을 위반할 지 정함

5.4.3 콰드라틱 프로그래밍

선형 SVM 작동 원리: 2차 계획법(QP)

- 하드/소프트 마진 문제: 선형 제약조건이 있는 블록 2차 최적화 문제
- 2차 계획법(QP, quadratic programming) 문제
- 일반적인 문제 공식

$$\min_{p} \operatorname{minimize} \frac{1}{2} p^{T} H p + f^{T} p$$

- $if A \cdot p \le b$ 1) p는 n_p 차원의 벡터, (n_p =모델 파라미터 수)
 - 2) H는 $n_p \times n_p$ 크기 행렬
 - 3) f는 n_p 차원의 벡터
 - 4) A는 $n_c \times n_p$ 크기 행렬($n_c = \text{제약 수}$)
 - 5) b는 n_c 차원의 벡터

5.4.4 쌍대문제

최적화 문제(optimization)

• 어떤 목적함수(objective function)의 함수 값을 최적화(최대화 또는 최소화)시키는 파라미터 조합을 찾는 것.

최대화 문제: 목적함수가 이윤, 점수(score) 등인 경우

최소화 문제: 목적함수가 비용(cost), 손실(loss), 에러(error) 등인 경우

쌍대 문제(dual problem)

- 최적화 문제를 푸는 과정에서, 원 문제를 깊게 관련된 다른 문제로 표현하는 것.
- 일반적으로 쌍대 문제의 해는 원 문제 해의 하한 값이지만, 특정 조건을 만족하면 원 문제와 똑같은 해를 제공함.

특히, 원 문제에서 적용할 수 없는 '커널 트릭'을 가능하게 하기 때문에 중요함.

(핸즈온 머신러닝 교재 부록 C 챕터 참고)

EURON I

5.4.4 쌍대문제

선형 SVM 분류의 최적화 문제

식 5-3: 하드 마진 선형 SVM 분류기 목적 함수

$$\begin{aligned} & \underset{\mathbf{w}, b}{\text{minimize}} & & \frac{1}{2}\mathbf{w}^T\mathbf{w} \\ & \text{subject to} & & t^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \geq 1 & \text{for } i = 1, 2, \dots, m \end{aligned}$$

마진을 크게 하기 위해 1/2w^Tw를 가능한 작게 만들어야 함 → 목적함수 최소화

위의 목적함수를 최소화하는 최적 파라미터(w, b)를 찾아야 함.

이 때, 특정 조건 (목적함수가 볼록 함수이고, 제약 조건이 연속 미분 가능하면서 볼록 함수이다.)을 만족하기 때문에 쌍대 문제를 풀어서 목적함수의 해를 얻을 수 있다.

식 5-6 선형 SVM 목적 함수의 쌍대 형식

$$\underset{\alpha}{\text{minimize}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)} - \sum_{i=1}^{m} \alpha^{(i)}$$

[조건]
$$i=1,2,\cdots,m$$
일때 $\alpha^{(i)}\geq 0$

이 식을 최소화하는 α를 찾아 원 문제의 식을 최소화하는 **w**와 b를 찾을 수 있음. 식 5-7 쌍대 문제에서 구한 해로 원 문제의 해 계산하기

$$\hat{\mathbf{w}} = \sum_{i=1}^{m} \hat{\alpha}^{(i)} t^{(i)} \mathbf{x}^{(i)}$$

$$\hat{b} = \frac{1}{n_s} \sum_{\substack{l=1 \ \hat{\boldsymbol{\alpha}}^{(l)} > 0}}^{m} \left(t^{(l)} - \hat{\mathbf{w}}^T \mathbf{x}^{(l)} \right)$$

훈련 샘플 수가 특성 개수보다 작을 때, (m<n) 원 문제보다 쌍대 문제를 푸는 것이 더 빠름.

SVM을 사용할 때, 바로 선형적인 decision boundary로 분류하기 어려운 데이터를 높은 차원으로 매핑하여 선형으로 분리해줄 수 있음.

선형 SVM 쌍대 문제에 이를 적용하면,

변환된 3차원 벡터의 내적 형태

이 때, 고차원 매핑과 내적까지의 결과를 연산량을 최소화해서 얻게 도와주는 것이 커널 트릭!

EURON

224쪽 예시: 2차 다항식 매핑

식 5-8: 2차 다항식 매핑

$$\phi\left(\mathbf{x}
ight) = \phi\left(\left(rac{x_1}{x_2}
ight)
ight) = \left(rac{{x_1}^2}{\sqrt{2}\,x_1x_2}
ight)$$

식 5-9: 2차 다항식 매핑을 위한 커널 트릭

$$egin{aligned} \phi(\mathbf{a})^T \phi(\mathbf{b}) &= \left(egin{array}{c} a_1^2 \ \sqrt{2} \, a_1 a_2 \ a_2^2 \end{array}
ight)^T \left(egin{array}{c} b_1^2 \ \sqrt{2} \, b_1 b_2 \ b_2^2 \end{array}
ight) = a_1^2 b_1^2 + 2a_1 b_1 a_2 b_2 + a_2^2 b_2^2 \ &= (a_1 b_1 + a_2 b_2)^2 = \left(\left(egin{array}{c} a_1 \ a_2 \end{array}
ight)^T \left(egin{array}{c} b_1 \ b_2 \end{array}
ight)^2 = (\mathbf{a}^T \mathbf{b})^2 \end{aligned}$$

원래 벡터 a, b를 매핑(변환)한 후 내적(점곱)한 것과 원래 벡터를 내적하여 제곱한 것이 같음 즉, 훈련 샘플을 변환할 필요 없음!

2차 다항식 커널: K(a,b)=(a^Tb)^2

자주 쓰이는 커널의 종류

식 5-10: 일반적인 커널

선형: $K(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{b}$

다항식: $K(\mathbf{a},\mathbf{b}) = \left(\gamma \mathbf{a}^T \mathbf{b} + r \right)^d$

가우시안 RBF: $K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$

시그모이트: $K(\mathbf{a}, \mathbf{b}) = \tanh(\gamma \mathbf{a}^T \mathbf{b} + r)$

추가 내용) 시그모이드 커널

svclassifier = SVC(kernel='sigmoid', degree=8)
svclassifier.fit(X_train, y_train)

y_pred = svclassifier.predict(X_test)
print('score : ',svclassifier.score(X_test,y_test))
print(confusion_matrix(y_test, y_pred))
print(classification_report(v_test, v_pred))

226쪽: 선형 SVM 분류기의 쌍대 문제에 커널 트릭 적용하기

식 5-2: 선형 SVM 분류기의 예측

$$\hat{y} = egin{cases} 0 & \mathbf{w}^T \mathbf{x} + b < 0$$
 일 때, $1 & \mathbf{w}^T \mathbf{x} + b \geq 0$ 일 때

식 5-7 쌍대 문제에서 구한 해로 원 문제의 해 계산하기

$$\hat{\mathbf{w}} = \sum_{i=1}^{m} \hat{\alpha}^{(i)} t^{(i)} \mathbf{x}^{(i)}$$

$$\hat{b} = \frac{1}{n_s} \sum_{i=1}^{m} \left(t^{(i)} - \hat{\mathbf{w}}^T \mathbf{x}^{(i)} \right)$$

w를 구하지 않아도 결정 함수에 w식을 대입함으로써 예측을 만들 수 있음. 식 5-11 커널 SVM으로 예측하기

$$h_{\hat{\mathbf{w}}\hat{b}}(\phi(\mathbf{x}^{(n)})) = \hat{\mathbf{w}}^T \phi(\mathbf{x}^{(n)}) + \hat{b} = \left(\sum_{i=1}^m \hat{\alpha}^{(i)} t^{(i)} \phi(\mathbf{x}^{(i)})\right)^T \phi(\mathbf{x}^{(n)}) + \hat{b}$$

$$= \sum_{i=1}^m \hat{\alpha}^{(i)} t^{(i)} \left(\phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(n)})\right) + \hat{b}$$

$$= \sum_{i=1}^m \hat{\alpha}^{(i)} t^{(i)} \underline{K(\mathbf{x}^{(i)}, \mathbf{x}^{(n)})} + \hat{b}$$

식 5-12 커널 트릭을 사용한 편향 계산

$$\hat{b} = \frac{1}{n_s} \sum_{\substack{i=1 \ \hat{\alpha}^{(i)} > 0}}^{m} \left(t^{(i)} - \hat{\mathbf{w}}^T \phi(\mathbf{x}^{(i)}) \right) = \frac{1}{n_s} \sum_{\substack{i=1 \ \hat{\alpha}^{(i)} > 0}}^{m} \left(t^{(i)} - \left(\sum_{j=1}^{m} \hat{\alpha}^{(j)} t^{(j)} \phi(\mathbf{x}^{(j)}) \right)^T \phi(\mathbf{x}^{(i)}) \right)$$

$$= \frac{1}{n_s} \sum_{\substack{i=1 \ \hat{\alpha}^{(i)} > 0}}^{m} \left(t^{(i)} - \sum_{\substack{j=1 \ \hat{\alpha}^{(j)} > 0}}^{m} \hat{\alpha}^{(j)} t^{(j)} \underline{K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})} \right)$$

5.4.6 온라인 SVM

온라인 학습: 새로운 샘플이 생겼을 때마다 점진적으로 학습하는 것.

온라인 SVM 분류기 방법 1) 비용함수 최소화 시키기 위한 경사 하강법 사용하기 (ex. SGDClassifier)

식 5-13: 선형 SVM 분류기의 비용 함수

$$J(\mathbf{w}, b) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^m \max \left(0, t^{(i)} - (\mathbf{w}^T \mathbf{x}^{(i)} + b) \right)$$

힌지 손실(hinge loss): max(0,1-t)

방법 2) 온라인 커널 SVM 구현하기 매트랩 또는 C++로 구현 가능 대규모의 비선형 문제라면. 신경망 알고리즘 쓰는 것이 추천됨

감사합니다 Q&A