1/23

Lecture 1

Course outline & Introduction

AEM-ADV12 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline

2/23

- 1. Course outline
- 2. Hydrodynamic stability
- 3. Navier-Stokes equation as a dynamical system

Lectures 4/23

Lecturer

Dr Yongyun Hwang Office: 337 (CAGB) Phone: 020 7594 5078

E-mail: y.hwang@imperial.ac.uk

Office hour

E-mail me to arrange an appointment

Feel free to come !!!

Lecture composition

11 lectures

1 tutorial (last year exam)

1 exam to test your knowledge (not to test problem solving technique)

ecture outline.	3/23
1. Course outline	

Further readings (Books)

6/23

1. Introduction to hydrodynamic stability (2002) P.G. Drazin, Cambridge University Press – an introductory text for classical stability analysis

Ch.3

 Stability of fluid motions (1976) D.D. Joseph, Springer – focused on nonlinear perspective of stability analysis focused on energy stability method

1 dea . de

3. Hydrodynamic stability (1982) P.G. Drazin and W.R. Reid, Cambridge University Press – a comprehensive bible for classical stability analysis (1980's research monograph)

ch9,-chio

4. Hydrodynamic instabilities in open flows (1998) P. Huerre and M Rossi, (Chapter 2 in Hydrodynamics and nonlinear instabilities, edited by C. Godreche and P Manneville, Cambridge University Press) — A high level text with focus on spatio-temporal development of instabilities (Absolute/convective and local/global instabilities)

Ch7,-Ch3

5. Stability and transition in shear flow (2001) P.J. Schmid & D.S. Henningson, Springer – a comprehensive research monograph up to 2000 with focus on non-modal stability analysis.

Objectives of the course

5/23

Objectives

: to deliver basic theoretical tools of hydrodynamic stability for advanced study

1. Fundamental of hydrodynamic stability

- a) Basic methodologies of hydrodynamic stability theory
- b) Main results from 1850 to 1970
- c) Will cover only 'linear' stability analysis.

2. Introduction to modern hydrodynamic stability theories

- a) Two major breakthroughs made in 1980s and 1990s
- b) Case studies of transition in shear flows
 - : Boundary layer and cylinder wake
- c) Case studies of transition control

Course structure 8/23

PART II - Introduction to modern hydrodynamic stability

Lecture 7-8. Non-modal stability analysis

- Initial value problem of linearised equation
- Algebraic instability, transient growth and non-normality
- Lift-up effect and Orr mechanism

Lecture 9-10. Spatio-temporal development of instabilities

- Temporal vs spatial stability theories
- Absolute and convective instabilities
- Briggs-Bers criterion
- Physical examples

Lecture 11. Transition in shear flows: case studies

- Case studies (boundary layer and cylinder wake)
- Is hydrodynamic stability relevant to turbulence?

Course structure

7/23

PART I – Fundamentals of hydrodynamic stability

Lecture 1. Definition of stability

- Why do we study hydrodynamic stability?
- Mathematical definition of stability

Lecture 2-3. Basic dynamical system theory

- Nonlinear dynamical system
- Phase portrait and linear stability
- Introductory bifurcation theory

Lecture 4-6. Linear stability of parallel shear flows

- Rayleigh equation for inviscid flow
- Squire's transformation
- Rayleigh inflectional point theorem
- Shear layer instabilities (Broken profile analysis)
- Orr-Sommerfeld-Squire equation for viscous flow
- Eigenspectra and neutral stability curves
- Spatial stability analysis and vibrating ribbon problem

Lecture outline		9/23
2. Hydrodynami	ic stability	

Hydrodynamic stability What is hydrodynamic stability? A branch of fluid dynamics investigating transition to turbulence

10/23

Transition in shear flows

11/23

Example 1 – Axisymmetric jet

Transition in shear flows

14/23

Example 4 – Transition in boundary layer

K-type transition

H-type transition Sayadi et al. (2012)

Transition is often quite sensitive to external noise and disturbances, and can lead to a dramatic change in the flow field.

Transition in shear flows

13/23

Example 3 – bifurcating axisymmetric jet

Jet with a helical forcing at the exit Reynolds et al. (2001)

Transition is often quite sensitive to external noise and disturbances, and can lead to a dramatic change in the flow field.

Hydrodynamic stability

16/23

What is hydrodynamic stability?

A branch of fluid dynamics investigating transition to turbulence

What you can actually do with hydrodynamic stability are to study:

- 1. Transition to turbulence (the goal of this course)
- 2. Control of transition and turbulence
- 3. Coherent structure dynamics in turbulent flows

Transition and coherent structures in shear flows

15/23

Example 5 - Karman vortex shedding

Laminar vortex shedding at low Reynolds number

Turbulent vortex shedding at high Reynolds number

The structures observed in transition often persist even in turbulent flows

Lecture outline	17/2:
3. Navier-Stokes equation as a dynamical sy	ystem

Dynamical system

18/27

Definition: Nonlinear dynamical system

A general nonlinear dynamical system is defined as

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t), \quad \mathbf{x}(t=0) = \mathbf{x}_0$$

where
$$\mathbf{x} = [x_1, x_2, x_3, ..., x_n]^T$$
 with
$$\mathbf{f} = [f_1(\mathbf{x}), f_2(\mathbf{x}), f_3(\mathbf{x}), ..., f_n(\mathbf{x})]^T$$

Dynamical system

Example 2: Navier-Stokes equation

Stokes equation
$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$p \int_{-\infty}^{\infty} t \, dt \, dt$$

$$\nabla \cdot \mathbf{u} = 0$$

Let
$$\mathbf{x} = \left[\begin{array}{cc} \mathbf{u}^T & p \end{array} \right]^T$$
 , then

$$\frac{\partial}{\partial t} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} 1/\operatorname{Re}\nabla^2 & -\nabla \\ \nabla \cdot & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} + \begin{bmatrix} -(\mathbf{u} \cdot \nabla)\mathbf{u} \\ 0 \end{bmatrix}$$

We discretise the system with e.g. FVM or FEM, then it becomes a finite dimensional dynamical system. In fact, the Navier-Stokes equation is an infinite dimensional dynamical system.

Summary 21/23

- 1. Course outline
- 2. Hydrodynamic stability
- 3. Navier-Stokes equation as a dynamical system