MS3 Audio Separation Using Deep Neural Networks

ECE685 Introduction to Deep Learning Fall 2020

- Students: Jiajun Song, Heather Qiu
- TA: Mohammadreza Soltani

Background & Problem

Audio Separation:

Techniques can be extended to other disciplines with similar goals (e.g. image processing, digital communications).

Blind Source Separation:

Separating different source signals from a set of mixed signals.

Cocktail Party Problem

"I hear he won the Pulitzer for mathematics. Or was it the Emmy?"

(figure from MIP-Frontiers post)

Methods - ICA

Independent Component Analysis

- Based on a linear combination of statistically independent sources
- Tries to maximize the independence of output signals

Drawbacks

- Restrictive assumption that rarely holds in reality
- Too **simple** to fully represent the true data
- Bad performance in generalization and sensitive to noise

Dataset: MUSDB18

- Music audio recorded as a mixture of drums, bass, vocals, and other stems
- 150 full-length music tracks, total duration ~ 10 hrs
- More challenging than the removal of unrelated background noise

Methods - Data Preprocessing

- Data Augmentation
 - Chunking
 - Source augmentation
 - Random Track Mixing
- Dataset Robustness
 - Input/Output Standard Scaler
 - Fixed Validation Split

Methods: Model Architecture

Methods: Metrics

- Precision / Recall: calculated on the binary masks (require ad-hoc threshold)

- SDR: Source-to-distortion ratio

- SIR: Source-to-interface ratio

- SAR: Source-to-artifact ratio

ISR: Source-to-Spatial-Distortion Image

Results

- Source-to-distortion ratio (SDR): how well does the estimate match the ground truth source?

Conclusion & Future Work

- Open-unmix works effectively in music audio separation
- The performance decreases greatly when the length of the audio becomes longer
- Spectrogram-based / Waveform-based