

Tratamiento de Señales

Version 2024-I

Convolución 1D

[Capítulo 4]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = x(t) * g(t)$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} g(t - \tau) x(\tau) d\tau$$

Continua:
$$y(t) = \int_{-\infty}^{+\infty} g(t-\tau)x(\tau)d\tau$$

Discreta:
$$y(k) = \sum_{i=-\infty}^{+\infty} g(k-i)x(i)$$