

Цель работы:

1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

В работе используются:

измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

Описание работы

Диффузия в системе, подчиняется закону Фика. В одномерном случае его можно записать так:

$$j_a = -D\frac{\partial n_a}{\partial x}, \quad j_b = -D\frac{\partial n_b}{\partial x},$$

где D - коэффициент взаимной диффузии компонентов. Знак «минус» отражает тот факт, что диффузия идёт в направлении выравнивания концентраций.

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными. Для любых изменений концентраций справедливо $\triangle n_b = - \triangle n_{he}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия:

$$j_{he} = -D\frac{\partial n_{he}}{\partial x} \tag{1}$$

Перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц Не на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен:

$$D = \frac{1}{3}\lambda \overline{v},\tag{2}$$

где $\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$ - средняя тепловая скорость частиц примеси, $\lambda = \frac{1}{n_0\sigma}$ - их длина свободного пробега, n_0 - концентрация рассеивающих центров, σ - сечение столкновения частиц примеси с частицами фона.

Применяя закон Фика для нашей установки можем найти распределении концентрации в трубке n(x) - линейная функция:

$$j = -D\frac{\partial n}{\partial x} = const.$$

$$n(x) = \frac{\triangle n}{L}x\tag{3}$$

и плотность потока частиц всюду постоянна и равна

$$j = -D\frac{\Delta n}{L} \tag{4}$$

 $\triangle n$ - разность концентраций гелия на концах трубки.

Можем посчитать количеств частиц, пересекающих в единицу времени любое поперечное сечение трубки, зная площадь сечения трубки S:

$$\frac{dN_1}{dt} = jS, \quad \frac{dN_2}{dt} - jS \tag{5}$$

Выразим отсюда скорость изменения $\triangle n$. Вычитая из второго равенства первое и деля результат на объём сосуда V , с учетом (4) получим

$$\frac{d(\triangle n)}{dt} = -\frac{\triangle n}{\tau} \tag{6}$$

где введено обозначение

$$\tau = \frac{1}{D} \frac{VL}{2S} \tag{7}$$

Интегрируя (6), получаем, что разность концентраций будет убывать по экспоненциальному закону

$$\Delta n = \Delta n_0 e^{-t/\tau} \tag{8}$$

где $\triangle n_0$ - разность концентраций примеси в сосудах в начальный момент времени.

На установке мы измеряем напряжение, оно пропорционально разности концентраций, следовательно:

$$U = U_0 e^{-t/\tau} \tag{9}$$

Оборудование

Ход работы

Запишем параметры установки:

$$V = 800 \pm 5 \text{ cm}^3$$

$$L/S = 15,0 \pm 0,1 \ cm^{-1}$$

$$P_{he} = 0, 2P, \quad P_{vos} = 1,75P$$

Проведем измерения и запишем данные в таблицу:

	Р = 11 кПа			Р = 6 кПа			Р = 16 кПа			Р = 26 кПа	
t. c	U, мВ	In(U/U0)	t. c	U, мВ	In(U/U0)	t. c	U, MB	In(U/U0)	t. c	U, MB	In(U/U0)
0	10,99	0	0	2,95	0	0	11,22	0	0	13,56	0
20	10,77	0,020221	20	2,83	0,041528	20	10,88	0,030772	20	13,3	0,01936
40	10,49	0,046563	40	2,73	0,077504	40	10,67	0,050262	40	13,12	0,032986
60	10,22	0,072639	60	2,62	0,118631	60	10,46	0,070139	60	12,95	0,046028
80	9,96	0,098409	80	2,53	0,153586	80	10,28	0,087498	80	12,8	0,057679
100	9,7	0,12486	100	2,43	0,193914	100	10,1	0,105162	100	12,65	0,069467
120	9,46	0,149913	120	2,34	0,231654	120	9,92	0,123145	120	12,51	0,080596
140	9,23	0,174527	140	2,25	0,270875	140	9,74	0,141457	140	12,36	0,092659
160	9	0,199761	160	2,17	0,307078	160	9,58	0,15802	160	12,22	0,10405
180	8,87	0,214311	180	2,09	0,344641	180	9,41	0,175925	180	12,09	0,114746
200	8,55	0,251054	200	2,02	0,378708	200	9,24	0,194156	200	11,99	0,123051
220	8,35	0,274724	220	1,94	0,419117	220	9,09	0,210523	220	11,81	0,138178
240	8,13	0,301425	240	1,87	0,455867	240	8,93	0,228282	240	11,69	0,148391
260	7,94	0,325072	260	1,81	0,488478	260	8,78	0,245221	260	11,56	0,159573
280	7,74	0,350584	280	1,75	0,522189	280	8,64	0,261295	280	11,42	0,171758
300	7,56	0,374115	300	1,68	0,563011	300	8,49	0,278809	300	11,31	0,181437
320	7,38	0,398212	320	1,62	0,599379	320	8,35	0,295436	320	11,18	0,192998
340	7,21	0,421517	340	1,56	0,637119	340	8,21	0,312345	340	11,06	0,203789
360	7,03	0,446799	360	1,5	0,67634	360	8,07	0,329544	360	10,93	0,215613
380	6,86	0,471278	380	1,44	0,717162	380	7,93	0,347045	380	10,82	0,225728
400	6,69	0,496372	400	1,4	0,745333	400	7,81	0,362293	400	10,7	0,236881
420	6,54	0,519049	420	1,35	0,781701	420	7,69	0,377777	420	10,59	0,247214
440	6,39	0,542252	440	1,3	0,819441	440	7,56	0,394827	440	10,48	0,257656
460	6,22	0,569216	460	1,25	0,858662	460	7,43	0,412172	460	10,38	0,267243
480	6,08	0,591981	480	1,21	0,891185	480	7,32	0,427088	-	-	-
-	-	-	-	-	-	500	7,19	0,445007	-	-	-
-	-	-	-	-	-	520	7,07	0,461837	-	-	-
-	-	-	-	-	-	540	6,97	0,476083	-	-	-
-	-	-	-	-	-	560	6,85	0,493449	-	-	-
-	-	-	-	-	-	580	6,73	0,511123	-	-	-
-	-	-	-	-	-	600		0,527603	-	-	-
-	-	-	-	-	-	620	6,52	0,542824	-	-	-
-	-	-	-	-	-	640	6,42	0,55828	-	-	-
-	-	-	-	-	-	660	6,32	0,573979	-	-	-
-	-	-	-	-	-	680		0,588322	-	-	-
-	-	-	-	-	-	700	6,13		-	-	-
-	-	-	-	-	-	720	6,04		-	-	-

При помощи МНК построим графики линейной зависимости в координатах $-ln(U/U_0), t$:

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$a = \langle y \rangle - b \langle x \rangle$$

$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b^2}$$

$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

Зная, что b=1/ au будем сразу искать значение для коэффициента диффузии. Для ${
m P}=6$ к $\Pi{
m a}$

$$b_1 = 0,00185 \pm 0,00005 c^{-1}$$

$$D_1 = \frac{1}{\tau} \frac{VL}{2S} = b_1 \frac{VL}{2S} = 0,00185 \cdot \frac{800}{2} \cdot 15 = 11,10$$

$$\sigma_{D_1} = D_1 \sqrt{\left(\frac{\sigma_{b_1}}{b_1}\right)^2 + \left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2} = 11, 1 \cdot \sqrt{\left(\frac{0,00005}{0,00185}\right)^2 + \left(\frac{5}{800}\right)^2 + \left(\frac{0,1}{15}\right)^2} = 0,32$$

$$D_1 = 11, 10 \pm 0, 32$$

Для $P = 11 к \Pi a$

$$b_2 = 0,00124 \pm 0,00004 c^{-1}$$

$$D_2 = \frac{1}{\tau} \frac{VL}{2S} = b_2 \frac{VL}{2S} = 0,00124 \cdot \frac{800}{2} \cdot 15 = 7,44$$

$$\sigma_{D_2} = D_2 \sqrt{\left(\frac{\sigma_{b_2}}{b_2}\right)^2 + \left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2} = 7,44 \cdot \sqrt{\left(\frac{0,00004}{0,00124}\right)^2 + \left(\frac{5}{800}\right)^2 + \left(\frac{0,1}{15}\right)^2} = 0,25$$

$$D_2 = 7.44 \pm 0.25$$

Для P=16 к Πa

$$b_3 = 0,000843 \pm 0,000041 c^{-1}$$

$$D_3 = \frac{1}{\tau} \frac{VL}{2S} = b_3 \frac{VL}{2S} = 0,000843 \cdot \frac{800}{2} \cdot 15 = 5,06$$

$$\sigma_{D_3} = D_3 \sqrt{\left(\frac{\sigma_{b_3}}{b_3}\right)^2 + \left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2} = 5,06 \cdot \sqrt{\left(\frac{0,000041}{0,000843}\right)^2 + \left(\frac{5}{800}\right)^2 + \left(\frac{0,1}{15}\right)^2} = 0,25$$

$$D_3 = 5,06 \pm 0,25$$

Для P=26 к Πa

$$b_4 = 0.00567 \pm 0.000044 c^{-1}$$

$$D_4 = \frac{1}{\tau} \frac{VL}{2S} = b_4 \frac{VL}{2S} = 0,000567 \cdot \frac{800}{2} \cdot 15 = 3,41$$

$$\sigma_{D_4} = D_4 \sqrt{\left(\frac{\sigma_{b_4}}{b_4}\right)^2 + \left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_{L/S}}{L/S}\right)^2} = 3,41 \cdot \sqrt{\left(\frac{0,000044}{0,000567}\right)^2 + \left(\frac{5}{800}\right)^2 + \left(\frac{0,1}{15}\right)^2} = 0,26$$

$$D_4 = 3,41 \pm 0,26$$

По полученным значениям построим график в координатах D(1/P) при помощи МНК. Для построения графика определим погрешность 1/P, зная, что погрешность $\sigma_P = 0.5$ кПа:

$$\frac{1}{P_1} = \frac{1}{6000} = 1,67 \cdot 10^{-4} \, \Pi a^{-1}$$

$$\sigma_{1/P_1} = \frac{1}{P_1} \cdot \sqrt{\left(\frac{\sigma_P}{P_1}\right)^2} = \frac{1}{6000} \cdot \sqrt{\left(\frac{0.5}{6}\right)^2} = 1,4 \cdot 10^{-5} \, \Pi a^{-1}$$

$$\frac{1}{P_1} = (1,67 \pm 0,14) \cdot 10^{-4} \, \Pi a^{-1}$$

$$\frac{1}{P_2} = \frac{1}{11000} = 9,1 \cdot 10^{-5} \, \Pi a^{-1}$$

$$\sigma_{1/P_2} = \frac{1}{P_2} \cdot \sqrt{\left(\frac{\sigma_P}{P_2}\right)^2} = \frac{1}{11000} \cdot \sqrt{\left(\frac{0.5}{11}\right)^2} = 4,1 \cdot 10^{-6} \, \Pi a^{-1}$$

$$\frac{1}{P_2} = (9,1 \pm 0,41) \cdot 10^{-5} \, \Pi a^{-1}$$

$$\frac{1}{P_3} = \frac{1}{16000} = 6,25 \cdot 10^{-5} \, \Pi a^{-1}$$

Зависсимость логарифма отношения напряжений от времени

Зависсимость логарифма отношения напряжений от времени

$$\sigma_{1/P_3} = \frac{1}{P_3} \cdot \sqrt{\left(\frac{\sigma_P}{P_3}\right)^2} = \frac{1}{16000} \cdot \sqrt{\left(\frac{0,5}{16}\right)^2} = 1,9 \cdot 10^{-6} \, \Pi a^{-1}$$

$$\frac{1}{P_3} = (6,25 \pm 0,19) \cdot 10^{-5} \, \Pi a^{-1}$$

$$\frac{1}{P_4} = \frac{1}{26000} = 3,84 \cdot 10^{-5} \, \Pi a^{-1}$$

$$\sigma_{1/P_4} = \frac{1}{P_4} \cdot \sqrt{\left(\frac{\sigma_P}{P_4}\right)^2} = \frac{1}{26000} \cdot \sqrt{\left(\frac{0,5}{26}\right)^2} = 7,4 \cdot 10^{-7} \, \Pi a^{-1}$$

Зависсимость логарифма отношения напряжений от времени

Зависимость логарифма отношения напряжений от времени

$$\frac{1}{P_4} = (3,84 \pm 0,07) \cdot 10^{-5} \; \Pi a^{-1}$$

При помощи МНК построим график и запишем угловой коэффициент:

$$b = \frac{< xy > - < x > < y >}{< x^2 > - < x >^2}$$

 $b = \frac{(0.038 \cdot 3.41 + 0.625 \cdot 5.06 + 0.091 \cdot 7.44 + 0.167 \cdot 11.1) - (0.038 + 0.0625 + 0.091 + 0.167) \cdot (3.41 + 5.06 + 7.44 + 11.1)}{(0.038^2 + 0.0625^2 + 0.091^2 + 0.167^2) - (0.038 + 0.0625 + 0.091 + 0.167)^2}$

Обратная зависимость коэффициента диффузии от давления

$$b = 60, 2$$

$$a = \langle y \rangle - b \langle x \rangle$$

$$a = (3,41+5,06+7,44+11,1) - 60, 2 \cdot (0,038+0,0625+0,091+0,167)$$

$$a = 1,39$$

$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b^2}$$

$$\sigma_b = \frac{1}{2} \sqrt{\frac{(3,41^2 + 5,06^2 + 7,44^2 + 11,1^2) - (3,41 + 5,06 + 7,44 + 11,1)^2}{(0,038^2 + 0,0625^2 + 0,091^2 + 0,167^2) - (0,038 + 0,0625 + 0,091 + 0,167)^2}}$$

$$\sigma_b = 3, 1$$

$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\sigma_a = 3, 1\sqrt{(0,038^2 + 0,0625^2 + 0,091^2 + 0,167^2) - (0,038 + 0,0625 + 0,091 + 0,167)^2}$$

$$\sigma_a = 0,28$$

Запишем в виде интервала:

$$b = 60, 2 \pm 3, 1$$

$$a = 1,39 \pm 0,28$$

Проэкстраполировав к $P=10^5$ Па, получаем:

$$D = (0,602 \pm 0,031) c M^2/c$$

Вычислим λ :

$$M = rac{VL}{2S} = rac{800 \cdot 15}{2} = 6000 \ cm^2$$

$$D = \frac{1}{3}\lambda < v >, \quad < v > = \sqrt{\frac{8RT}{\pi M}}$$

$$\lambda = 3D\sqrt{\frac{\pi M}{8RT}} = 3 \cdot 0, 6 \cdot 10^{-4} \frac{3,14 \cdot 6000 \cdot 10^{-4}}{8 \cdot 8,31 \cdot 293} = 1,77 \cdot 10^{-6} \text{ M}$$

$$\sigma_{\lambda} = \lambda \sqrt{\left(\frac{\sigma_{V}}{2V}\right)^{2} + \left(\frac{\sigma_{L/S}}{2L/S}\right)^{2} + \left(\frac{\sigma_{D}}{D}\right)^{2}} = 1,77 \cdot 10^{-6} \cdot \sqrt{\left(\frac{5}{1600}\right)^{2} + \left(\frac{0,1}{30}\right)^{2} + \left(\frac{0,031}{0,602}\right)^{2}} = 9,2 \cdot 10^{-8} \text{ M}$$

$$\lambda = (1,77 \pm 0,09) \cdot 10^{-6} \,\mathrm{M}$$