Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

W	ebsite		vii		
A	know	ledgments	viii		
No	otatio	n	xi		
1	Intro 1.1 1.2	Oduction Who Should Read This Book?			
Ι	Appl	lied Math and Machine Learning Basics	29		
2	Linear Algebra				
	2.1	Scalars, Vectors, Matrices and Tensors	31		
	2.2	Multiplying Matrices and Vectors			
	2.3	Identity and Inverse Matrices			
	2.4	Linear Dependence and Span			
	2.5	Norms			
	2.6	Special Kinds of Matrices and Vectors	40		
	2.7	Eigendecomposition	42		
	2.8	Singular Value Decomposition	44		
	2.9	The Moore-Penrose Pseudoinverse			
	2.10	The Trace Operator			
	2.11	The Determinant			
	2.12	Example: Principal Components Analysis	48		
3	Prob	pability and Information Theory	53		
	3.1	Why Probability?	54		