

# ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

Chunyuan Li<sup>1</sup>, Hao Liu<sup>2</sup>, Changyou Chen<sup>3</sup>, Yunchen Pu<sup>1</sup>, Liqun Chen<sup>1</sup>, Ricardo Henao<sup>1</sup> Lawrence Carin<sup>1</sup> <sup>1</sup>Duke University <sup>2</sup>Nanjing University <sup>3</sup>University at Buffalo http://chunyuan.li



#### Highlights

#### Main Contributions

- 1 Raise the non-identifiability issues in bidirectional adversarial learning
- 2 Propose ALICE algorithms: a conditional entropy framework to remedy the issues
- 3 Unify ALI/BiGAN, CycleGAN/DiscoGAN/DualGAN and Conditional GAN as joint distribution matching

#### Non-identifiability issues

#### Generative Adversarial Networks (GAN)

Marginal distribution matching:  $p(\boldsymbol{x}) = q(\boldsymbol{x})$ 

### Adversarially Learned Inference (ALI)

Joint distribution matching:  $p(\boldsymbol{x}, \boldsymbol{z}) = q(\boldsymbol{x}, \boldsymbol{z})$ 

Importan details: Universal distribution approximators for the sampling procedure of conditionals  $\tilde{x} \sim p_{\theta}(x|z)$  and  $\tilde{z} \sim q_{\phi}(z|x)$  are carried out as:

$$\tilde{\boldsymbol{x}} = g_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{\epsilon}), \ \boldsymbol{z} \sim p(\boldsymbol{z}), \ \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), \text{ and}$$

$$\tilde{\boldsymbol{z}} = g_{\boldsymbol{\phi}}(\boldsymbol{x}, \boldsymbol{\zeta}), \ \boldsymbol{x} \sim q(\boldsymbol{x}), \ \boldsymbol{\zeta} \sim \mathcal{N}(0, \mathbf{I}),$$

Issues: The correlation between  $oldsymbol{x}$  and  $oldsymbol{z}$  is not specified.

#### **Problem Illustration**

- In (a), for  $0 < \delta < 1$ , we can generate "realistic"  $oldsymbol{x}$  from any sample of  $p(\boldsymbol{z})$ , but with poor reconstruction.
- In (b)  $\delta = 1$  or (c)  $\delta = 0$ , only one of the solutions will be meaningful in supervised learning.

#### Any $\delta \in [0, 1]$ is a valid solution of ALI ?!



Many applications require meaningful mappings.

- $lacktriangled{1}$  In unsupervised learning, the inferred latent code can reconstruct its  $oldsymbol{x}$  itself with high probability.  $\delta \to 1$  or  $\delta \to 0$
- 2 In supervised learning, the task-specified correspondence between samples imposes restrictions on the mappings.

#### **ALICE Algorithms**

#### Adversarially Learned Inference with Conditional Entropy (ALICE)

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \max_{\boldsymbol{\omega}} \ \underline{\mathcal{L}_{\text{ALICE}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\omega})} = \underline{\mathcal{L}_{\text{ALI}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\omega})} + \underline{\mathcal{L}_{\text{CE}}(\boldsymbol{\theta}, \boldsymbol{\phi})}. \tag{1}$$
Our ALICE Objective ALI Objective CE Regularizer

In unsupervised learning, cycle-consistency is considered to upperbound CE:

- 1 Explicit cycle-consistency Prescribed the distribution forms, e.g.  $\ell_k$ -norm
- 2 Implicit cycle-consistency Adversarially learned "perfect" reconstruction

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \max_{\boldsymbol{\eta}} \mathcal{L}_{Cycle}^{A}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\eta}) = \mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x})}[\log \sigma(f_{\boldsymbol{\eta}}(\boldsymbol{x}, \boldsymbol{x}))] + \mathbb{E}_{\hat{\boldsymbol{x}} \sim p_{\boldsymbol{\theta}}(\hat{\boldsymbol{x}}|\boldsymbol{z}), \boldsymbol{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \log(1 - \sigma(f_{\boldsymbol{\eta}}(\boldsymbol{x}, \hat{\boldsymbol{x}})))].$$
(2)

In semi-supervised learning, the pairwise information is leveraged to approximate CE:

- **1** Explicit mapping Prescribed the forms,  $\ell_k$ -norm or standard supervised losses
- 2 Implicit mapping Implicit mapping via conditional GAN

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\chi}} \mathcal{L}_{\text{Map}}^{A}(\boldsymbol{\theta}, \boldsymbol{\chi}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{z} \sim \tilde{\pi}(\boldsymbol{x}, \boldsymbol{z})} [\log \sigma(f_{\boldsymbol{\chi}}(\boldsymbol{x}, \boldsymbol{z})) + \mathbb{E}_{\hat{\boldsymbol{x}} \sim p_{\boldsymbol{\theta}}(\hat{\boldsymbol{x}}|\boldsymbol{z})} \log(1 - \sigma(f_{\boldsymbol{\chi}}(\hat{\boldsymbol{x}}, \boldsymbol{z})))].$$
(3)

#### A Unified Perspective for Bivariate GANs

#### ALI is equivalent to CycleGAN

CycleGAN is easier to train, as it decomposes the joint distribution matching objective (as in ALI) into four subproblems.

$$\underbrace{H^{q_{\phi}}(\boldsymbol{x}|\boldsymbol{z})}_{\text{Conditional entropy}} + \underbrace{\mathbb{E}_{q_{\phi}(\boldsymbol{z})}[\text{KL}(q_{\phi}(\boldsymbol{x}|\boldsymbol{z})||p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}))]}_{\text{Conditional distribution matching}} = \underbrace{-\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})]}_{\text{Cycle consistency}}$$
(4)

#### - Stochastic mapping vs. Deterministic mapping

Deterministic mappings imply cycle-consistency in theory (as in BiGAN), but have practical difficulties. When cycle-consistency is satisfied e.g. optimum of (2), (i) a deterministic mapping enforces the conditionals are matched. (ii) The matched conditionals enforce  $H^{q_{\phi}}(\boldsymbol{x}|\boldsymbol{z})=0$ , indicating the mapping becomes deterministic.

#### Conditional GAN is doing joint distribution matching

When the optimum in (3) is achieved,  $\tilde{\pi}(\boldsymbol{x},\boldsymbol{z}) = p_{\boldsymbol{\theta}^*}(\boldsymbol{x},\boldsymbol{z}) = q_{\boldsymbol{\phi}^*}(\boldsymbol{x},\boldsymbol{z}).$ One can leverage the empirically-defined distributions  $\tilde{\pi}(m{x},m{z})$  implied by paired data, to resolve the ambiguity issues in unsupervised bivariate GANs.

#### Experiments

#### Grid search over a set of hyper-parameters for 576 experiments I. Toy dataset









(a) True x (b) True z

(c) Inception Score

(d) MSE

Figure: Generation (c) and reconstruction (d) results on toy data (a,b).



(a) ALICE

(b) ALI

(c) Denoising autoencoders

Figure: Sampling of z, reconstruction of x and linear interpolation in z.

## II. Alice4Alice ALICE for painting the cartoon "Alice's Wonderland", based on edges



Training set: two domains (edges and cartoon) and two modes (Alice and Rabbit)



ALICE: one pair in each mode is leveraged to resolve ambiguity



CycleGAN: mixing colors due to the non-identifiable issue Code: https://github.com/ChunyuanLI/ALICE