$m \times n$ MATRIX A has m rows and n columns	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ is } 2 \times 3$
i, j – entry is in the i^{th} – row and j^{th} – column	the 2,3 – entry of A is 6, $a_{23} = 6$
row vector or row, matrix with one row	(1 2 3) a row of size 3
column vector or column, matrix with one column	$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is a column of size 3
Square matrix, $m = n$, number of rows is the same as the number of columns	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is a square matrix.
1×1 is a scalar, a	4 is a scalar
A ^T is the transpose where columns and rows are switched	$\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$
sum, A+B only possible if of the same size, and then add entry-per-entry	if $\mathbf{B} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$ then $\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1+a & 2+b & 3+c \\ 4+d & 5+e & 6+f \end{pmatrix}$ $4\mathbf{B} = \begin{pmatrix} 4a & 4b & 4c \\ 4d & 4e & 4f \end{pmatrix}$
scalar product, aA always possible	$4\mathbf{B} = \begin{pmatrix} 4a & 4b & 4c \\ 4d & 4e & 4f \end{pmatrix}$
multiplication of $(1 \times n)(n \times 1)$, $(a_1 a_2 a_3 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3 + \cdots + a_nb_n$	$(1 2 3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 1 \times a + 2 \times b + 3 \times c = a + 2b + 3c$
multiplication AB only possible if the	AB is not possible, but
number of columns of A is the number of rows of B : then each row times each column.	$\mathbf{AB}^{T} = \begin{pmatrix} a + 2b + 3c & d + 2e + 3f \\ 4a + 5b + 6c & 4d + 5e + 6f \end{pmatrix}$
stacking, making matrices out of smaller matrices	$ (\mathbf{A} \mathbf{B}) = \begin{pmatrix} 1 & 2 & 3 & a & b & c \\ 4 & 5 & 6 & d & e & f \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & 3 & a & b & c \\ 4 & 5 & 6 & d & e & f \end{pmatrix} = (\mathbf{A} \mathbf{B}) $
blocking , thinking of a matrix as made up of smaller matrices	$\begin{pmatrix} 1 & 2 & 3 & a & b & c \\ 4 & 5 & 6 & d & e & f \end{pmatrix} = (\mathbf{A} \mathbf{B})$
adjacency matrix, (0,1) - matrix	$i \rightarrow j$ if and only if $a_{ij} = 1$
main diagonal: the $1,1-$, $2,2-$,, $n,n-$ positions	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ has 1 and 4 on its main diagonal.

Diagonal Matrix—square one which has only zeroes off the main diagonal	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is diagonal
I, the identity matrix: diagonal matrix with 1's along the diagonal of any square size	$\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
IM = MI = M	$(a b)\mathbf{I}_2 = (a b) = \mathbf{I}_1(a b)$
0 and J , zero and jay, of any size, having all zeroes and all ones respectively	$0_{2\times 3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \mathbf{J}_{2\times 3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
Upper triangular—square with zeroes below diagonal. Lower triangular similarly.	$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \text{ is upper, } \mathbf{B}^{\mathrm{T}} = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \text{ is lower}$
Product of upper triangulars is also upper triangular with diagonal just the product	$ \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & b+2c \\ 0 & 3c \end{pmatrix} $
Block multiplication: If $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$ and	Let $\mathbf{M} = \begin{pmatrix} \mathbf{J}_{2\times 3} & \mathbf{I} \\ \mathbf{O}_{4\times 3} & \mathbf{D} \end{pmatrix}$ and let $\mathbf{N} = \begin{pmatrix} \mathbf{X} & \mathbf{Y} \\ \mathbf{Z} & \mathbf{W} \end{pmatrix}$ be $5 \times ?$.
$N = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ and MN exists and so does AX	Then block multiplication can be used when and only when \mathbf{X} is $3\times$? and then
, then $MN = \begin{pmatrix} AX + BZ & AY + BW \\ CX + DZ & CY + DW \end{pmatrix}$	$MN = \begin{pmatrix} J_{2\times3}X + Z & J_{2\times3}Y + W \\ DZ & DW \end{pmatrix}$
A is invertible if $AX = XA = I$ for some X. In particular A is then square.	$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$ is invertible since
	$\mathbf{A} \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \mathbf{A} = \mathbf{I}_2$
Inverse is unique, \mathbf{A}^{-1} and $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$	$ \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} $
Upper triangular is invertible if and only if every diagonal entry is nonzero. Inverse is also upper triangular.	$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \text{ is invertible, } \mathbf{B}^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}$
Diagonal matrix is invertible if and only if diagonal entries are not zero. Inverse is the diagonal of the reciprocals.	$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{pmatrix}$
If A and B are invertible, then so is AB and $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$	$(\mathbf{AB})^{-1} = \begin{pmatrix} 2 & 13 \\ 3 & 21 \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 21 & -13 \\ -3 & 2 \end{pmatrix} = \mathbf{B}^{-1} \mathbf{A}^{-1}$
$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$	$ (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \begin{pmatrix} 2 & 13 \\ 3 & 21 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 2 & 3 \\ 13 & 21 \end{pmatrix} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} $
Permutation if every entry is either a 0 or a 1, and only one 1 in each row. Permutation matrix \mathbf{P} is invertible, $\mathbf{P}^{-1} = \mathbf{P}^{T}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

	(1	2	3	(x)	6	
I at A -	4	5	6	, $\mathbf{x} = \begin{vmatrix} \mathbf{x} \\ \mathbf{y} \end{vmatrix}$ and $\mathbf{b} = \begin{vmatrix} \mathbf{x} \\ \mathbf{y} \end{vmatrix}$	15	and
Let A -	7	8	9	$\mathbf{x} = \begin{bmatrix} y & \text{and } \mathbf{b} - \end{bmatrix}$	24	. and
	10	11	12)	(z)	(33)	

P invertible, then $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{P}\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b}$ have the same solutions

let
$$\mathbf{P} = \begin{pmatrix} 2 & 5 & 2 & 1 \\ 3 & 1 & 4 & 7 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
. Then $\mathbf{A}\mathbf{x} = \mathbf{b}$ and

$$\begin{pmatrix} 46 & 56 & 66 \\ 105 & 120 & 135 \\ 26 & 31 & 36 \\ 22 & 26 & 30 \end{pmatrix} \mathbf{X} = \begin{pmatrix} 168 \\ 360 \\ 93 \\ 78 \end{pmatrix}$$
 have the same solutions.

A matrix **A** is said to be in (**row**) **reduced form** (or **row echelon form**, or **row reduced echelon form**) if the following 4 conditions are satisfied:

- ① The first nonzero term of any row is a 1. This entry is called a **pivot**, and thus every row is either all zeros or it has a unique pivot. Hence a nonzero row will be called **pivotal**, and such a row will have exactly one pivot. Conversely, every pivot is in a pivotal row.
- ② A column that contains a pivot, a **pivotal column**, has all zeroes except for the pivot. Hence any pivotal column is identical to a column of the identity matrix, and a **pivotal column** has exactly one pivot, and every pivot is in a pivotal column.
- 3 Any zero row is below any pivotal row.
- The pivots in the matrix lie from upper left to lower right.

$$\begin{pmatrix} 1 & ? & 0 & ? & 0 \\ 0 & 0 & 1 & ? & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ is reduced}$$

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ are }$$

left to lower right.

$$\mathbf{M} = \begin{pmatrix} 3 & 2 & 1 & 39 \\ 2 & 3 & 1 & 34 \\ 1 & 2 & 3 & 26 \end{pmatrix}, \text{ then } \begin{pmatrix} 1 & 0 & 0 & \frac{37}{4} \\ 0 & 1 & 0 & \frac{17}{4} \\ 0 & 0 & 1 & \frac{11}{4} \end{pmatrix} = \mathbf{PM} \text{ where }$$

 $\mathbf{P} = \frac{1}{12} \begin{pmatrix} 7 & -4 & -1 \\ -5 & 8 & -1 \\ 1 & -4 & 5 \end{pmatrix}.$

The reduced form of **A** is unique, $rref(\mathbf{A})$ is a common designation

For any matrix **M** there exists an invertible

matrix **P** such that **PM** is reduced

No matter what invertible matrix **Q** we use, if **QM** is reduced, then **QM** is as above

A is invertible if and only if $rref(\mathbf{A}) = \mathbf{I}$	$\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$ reduces to \mathbf{I}_2		
If A is invertible, then (A I) reduces to $(I A^{-1})$	$rref\begin{pmatrix} 2 & 3 & 1 & 0 \\ 3 & 5 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 5 & -3 \\ 0 & 1 & -3 & 2 \end{pmatrix}$		
To solve, $\mathbf{A}\mathbf{x} = \mathbf{b}$ reduce augmented matrix $(\mathbf{A} \mathbf{b})$ and proceed.	(1 2) $\mathbf{x} = 7$ has all solutions where $x_1 = 7 - 2x_2$ so x_2 is a free variable		
$r(\mathbf{A})$, the rank of \mathbf{A} , is the number of pivots in the reduced form of \mathbf{A} . The nullity is the number of free variables.	$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ has rank 3 and nullity 2.}$		
To solve $ \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} $ we have $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_4 = b_1, \ \mathbf{x}_3 + \mathbf{x}_4 = b_2, \ \mathbf{x}_5 = b_3 $ and the leading variables are $\mathbf{x}_1, \ \mathbf{x}_3$ and \mathbf{x}_5			
$\mathbf{A}\mathbf{x} = \mathbf{b}$ will have a solution if and only if $r(\mathbf{A}) = r(\mathbf{A} \mathbf{b})$	As above, $r(\mathbf{A}) = r(\mathbf{A} \mathbf{b})$ if and only if $b_4 = 0$ which is equivalent to the system having a solution (infinitely many in this case)		
If $\mathbf{M}\mathbf{x} = \mathbf{b}$ has a solution, then that solution is unique if and only if $r(\mathbf{M}) = n$ where n is the number of columns of \mathbf{M} —otherwise it has infinitely many solutions	Let $\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & ? \\ 0 & 0 & 0 \end{pmatrix}$ be reduced. Then $\mathbf{M}\mathbf{x} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$ is equivalent to $x_1 = b_1$, $x_2 = b_2$, and $r(\mathbf{M}) = 3$ if and only if $? = 1$. And then $x_3 = b_3$, otherwise x_3 is free and can be anything. Of course, $b_4 = 0$ if there is to be a solution		
If $\mathbf{M}\mathbf{x} = \mathbf{b}$ has infinitely many solutions, then all solutions can be written in the form $\mathbf{u} + t_1 \mathbf{v}_1 + \dots + t_k \mathbf{v}_k$ where \mathbf{u} is an arbitrary solution to $\mathbf{M}\mathbf{x} = \mathbf{b}$, $\mathbf{M}\mathbf{v}_i = 0$ for each $i = 1, \dots, k$, k is the number of free variables, and the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ when viewed in the positions corresponding to the free variables constitute \mathbf{l}_k	The system $\begin{pmatrix} 1 & -2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 7 \\ 8 \\ 9 \\ ? \end{pmatrix}$ when written out becomes $x_1 - 2x_2 + 3x_4 = 7$ so $x_1 = 7 + 2x_2 - 3x_4$, $x_3 + 4x_4 = 8$ so $x_3 = 8 - 4x_4$, and $x_5 = 9$, so its solution set is given by $\begin{pmatrix} 7 \\ 0 \\ 8 \\ 0 \\ 9 \end{pmatrix} + t_1 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -3 \\ 0 \\ -4 \\ 1 \\ 0 \end{pmatrix}$		

An expression of the form $a_1\mathbf{A}_1 + a_2\mathbf{A}_2 + \cdots + a_t\mathbf{A}_t$ is called a linear combination of $\mathbf{A}_1, \dots, \mathbf{A}_t$	$ \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix} = 2\mathbf{J}_2 + 3\mathbf{I}_2 $
To write a linear combination is equivalent to matrix multiplication by a vector	$ \begin{pmatrix} 5 \\ 2 \\ 2 \\ 5 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ because } \begin{pmatrix} 5 \\ 2 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} $
the span of $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_t$,	
$[\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_t]$, is the collection of all linear combinations of them	the span of $\mathbf{I}_2, \mathbf{J}_2, \ [\mathbf{I}_2, \mathbf{J}_2] = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \right\}$
A collection <i>V</i> is called a space if the following occur:	The set $\{t\mathbf{J}_2\}$ is a space since it satisfies the three conditions:
the following occur: $0 0 \in V$	$0\mathbf{J}_2$, $t\mathbf{J}_2 + s\mathbf{J}_2 = (t+s)\mathbf{J}_2$ and $s(t\mathbf{J}_2) = (st)\mathbf{J}_2$.
2 If $\mathbf{u}, \mathbf{v} \in V$ then so does	On the other hand: $\{(t \ 0), (0 \ t)\}$ is NOT a space although
u + v	it satisfies the first and third condition, it does not satisfy the
$3 \qquad \text{If } \mathbf{u} \in V \text{ then so does } a\mathbf{u}$	second one:
for any scalar a	$(1 0) + (0 1) = (1 1) \notin V$
the column space of a matrix, $C(A)$, is the span of its columns	
For any b , $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution when and only when $\mathbf{b} \in C(\mathbf{A})$	$\begin{pmatrix} 6 \\ 15 \\ 24 \end{pmatrix} \in \mathbf{C} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \text{ since } \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \\ 24 \end{pmatrix}$
the null space of a matrix, $N(A)$, is the set of solutions of the homogeneous system $Ax = 0$	$\mathbf{N} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \left\{ a \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$
the row space of a matrix, $\mathbf{R}(\mathbf{A})$, is the span of its rows	$ \mathbf{R} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}^{T}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{bmatrix}^{T}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^{T} = \left\{ a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}^{T} + b \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}^{T} + c \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^{T} \right\} $
If P is invertible, then $R(PA) = R(A)$ and $N(PA) = N(A)$ but not necessarily true that $C(PA) = C(A)$	$\begin{pmatrix} -5 & 2 & 0 \\ 4 & -1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 3 & 0 & -3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{pmatrix} $ so $\begin{bmatrix} (1 & 2 & 3), (4 & 5 & 6), (7 & 8 & 9) \end{bmatrix} = \begin{bmatrix} (1 & 0 & -1), (0 & 1 & 2) \end{bmatrix}$ $\mathbf{N} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \mathbf{N} \begin{pmatrix} 3 & 0 & -3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{pmatrix}, $ but $\begin{bmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} \neq \begin{bmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

let $\mathbf{A} = (\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_r)$, then the following statements are equivalent: ① Every column of \mathbf{A} is pivotal ② \mathbf{A} is of full column rank, $r(\mathbf{A}) = n$ ③ If $\mathbf{A}\mathbf{u} = 0$, then $\mathbf{u} = 0$, i.e., $\mathbf{N}(\mathbf{A}) = 0$ ④ If $\mathbf{A}\mathbf{u} = \mathbf{A}\mathbf{v}$, then $\mathbf{u} = \mathbf{v}$ ⑤ There exists a matrix \mathbf{B} such that $(\mathbf{A} \mathbf{B})$ is invertible	Let $\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$ Then $rref(\mathbf{M}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ Also $r(\mathbf{M}) = 2$. The system $\mathbf{M}\mathbf{x} = 0$ reduces to $x_1 = 0$ and $x_2 = 0$. The matrix $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 3 & 0 & 0 \\ 1 & 4 & 0 & 0 \end{pmatrix}$ is invertible.
Let \mathbf{w}_1 , \mathbf{w}_2 ,, \mathbf{w}_n be vectors in \mathbb{R}^m . We will refer to them as transparent if there is a set of n positions among the rows of the \mathbf{w} 's where we can find \mathbf{I}_n .	$\begin{bmatrix} 3 \\ 1 \\ 7 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ is transparent since we can see the identity matrix \blacksquare_3 in rows 2, 4 and 5
 Consider u₁, u₂,, uₙ. Then the following are equivalent: ① u₁ ≠ 0 and for each i = 2,,n, uᵢ ∉ [u₁,,uᵢ₁] ② There exists an invertible matrix P such that Pu₁, Pu₂,, Puₙ is transparent ③ Whenever a₁u₁ + a₂u₂ + ··· + aₙuₙ = 0, we must have a₁ = a₂ = ··· = aₙ = 0 ④ For any scalars, if a₁u₁ + a₂u₂ + ··· + aₙuₙ = b₁u₁ + b₂u₂ + ··· + bₙuₙ we must have a₁ = b₁, a₂ = b₂,, aₙ = bₙ ⑤ There exists an invertible matrix P whose first n columns are u₁, u₂,, uₙ Such a collection of vectors is known as linearly independent 	Take $\mathbf{u}_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ and $\mathbf{u}_{2} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$. Then $\mathbf{u}_{2} \notin [\mathbf{u}_{1}]$, and $\mathbf{P} = \begin{pmatrix} 0 & 0 & 4 & -3 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{pmatrix}$ satisfies $ (\mathbf{P}\mathbf{u}_{1} \mathbf{P}\mathbf{u}_{2}) = \begin{pmatrix} \mathbf{I}_{2} \\ 0 \end{pmatrix}. \text{ If } a_{1}\mathbf{u}_{1} + a_{2}\mathbf{u}_{2} = 0 \text{ then } a_{1} + a_{2} = 0 \text{ and so we get } a_{2} = 0 \text{ and then } a_{1} = 0 \text{ also.} $
Let V be a space and \mathbf{u}_1 , \mathbf{u}_2 ,, \mathbf{u}_n be in V . We say they span V if $[\mathbf{u}_1, \mathbf{u}_2,, \mathbf{u}_n] = V$. They are also called a spanning set. Let V be a space and \mathbf{u}_1 , \mathbf{u}_2 ,, \mathbf{u}_n be a spanning set for V . Then we say they form a basis if they are also linearly independent. A space has many bases but all of them have the same size. That common size is called the dimension of V	$ \begin{pmatrix} 1\\4\\7 \end{pmatrix}, \begin{pmatrix} 2\\5\\8 \end{pmatrix}, \begin{pmatrix} 3\\6\\9 \end{pmatrix} \text{ is a spanning set for } \mathbf{C} \begin{pmatrix} 1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9 \end{pmatrix} $ $ \begin{pmatrix} 1\\4\\7 \end{pmatrix}, \begin{pmatrix} 2\\5\\8 \end{pmatrix}, \begin{pmatrix} 3\\6\\9 \end{pmatrix} \text{ is NOT a basis for } \mathbf{C} \begin{pmatrix} 1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9 \end{pmatrix} $ $ \dim \mathbb{R}^5 = 5 $

Every column of A is a linear combination of pivotal columns of A	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}, \ rref(\mathbf{A}) = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix},$ and $\mathbf{C}_3 = -\mathbf{C}_1 + 2\mathbf{C}_2$ in both matrices and also $\mathbf{C}_4 = -2\mathbf{C}_1 + 3\mathbf{C}_2 \text{ where } \mathbf{C} \text{ is for column}$
$\dim \mathbf{C}(\mathbf{A}) = r(\mathbf{A})$ $\dim \mathbf{R}(\mathbf{A}) = r(\mathbf{A})$ $\dim \mathbf{N}(\mathbf{A}) = n - r(\mathbf{A})$ where n is the number of columns of \mathbf{A}	$\begin{pmatrix} 1 \\ 5 \\ 9 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ 6 \\ 10 \end{pmatrix} \text{ is a basis for } \mathbf{C}(\mathbf{A});$ $(1 0 -1 -2), (0 1 2 3) \text{ is a basis for } \mathbf{R}(\mathbf{A}), \text{ and}$ $\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} \text{ is a basis for } \mathbf{N}(\mathbf{A})$
$r(\mathbf{A}) = r(\mathbf{A}^{T})$	$rref(\mathbf{A}^{\mathrm{T}}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \end{pmatrix}^{\mathrm{T}}$
If M has independent columns, then $\mathbf{Q} = \mathbf{M}(\mathbf{M}^{\mathrm{T}}\mathbf{M})^{-1}\mathbf{M}^{\mathrm{T}}$ is the projection onto $\mathbf{C}(\mathbf{M})$	$rref(\mathbf{A}^{T}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \end{pmatrix}^{T}$ $Let \mathbf{M} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} \text{ so } \mathbf{Q} = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$
Solve $\mathbf{M}\mathbf{x} = \mathbf{b}$ by solving $\mathbf{M}\mathbf{x} = \mathbf{Q}\mathbf{b}$	To solve $\mathbf{M}\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, one solves instead for $\frac{1}{6} \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}$
If B is a square matrix, then there is always a unique monic polynomial $m_{\mathbf{B}}(x)$ of least degree such that $m_{\mathbf{B}}(\mathbf{B}) = 0$, the minimum polynomial of B	If $\mathbf{B} = \mathbf{I}$, then $m_{\mathbf{B}}(x) = x - 1$ If $\mathbf{B} = 0$, then $m_{\mathbf{B}}(x) = x$ If $\mathbf{B} = \mathbf{J}_n$, then $m_{\mathbf{B}}(x) = x^2 - nx$
$\langle \mathbf{B} \rangle = [\mathbf{I}, \mathbf{B}, \mathbf{B}^2, \mathbf{B}^3, \dots]$ is the algebra generated by B , which is a space closed under multiplication	If $\mathbf{B} = \mathbf{I}$, then $\langle \mathbf{B} \rangle = [\mathbf{I}] = \{a\mathbf{I}\}$ If $\mathbf{B} = \mathbf{J}_n$, then $\langle \mathbf{B} \rangle = [\mathbf{I}, \mathbf{J}] = \{a\mathbf{I} + b\mathbf{J}\}$ If $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, then $\langle \mathbf{B} \rangle = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right\}$
$\dim \langle \mathbf{B} \rangle = \deg m_{\mathbf{B}}(x)$	Consider $\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$, then $m_{\mathbf{B}}(x) = (x-2)^3 = x^3 - 6x^2 + 12x - 8, \text{ so}$ $\mathbf{B}^3 = 6\mathbf{B}^2 - 12\mathbf{B} + 8\mathbf{I} \text{ and } \mathbf{I}, \mathbf{B}, \mathbf{B}^2 \text{ constitute a}$ basis for $\langle \mathbf{B} \rangle$ and $\dim \langle \mathbf{B} \rangle = 3$

the determinant of a matrix is a scalar	$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$
$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - afh - bdi$	$\det \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} = 45 + 96 + 84 - 105 - 48 - 72 = 0$
If A is a square, then a new matrix $\tilde{\mathbf{A}}$ (the adjoint) can be built whose i, j – entry is $(-1)^{i+j}$ det \mathbf{A}_{ji} where \mathbf{A}_{ji} is obtained from A by deleting the j^{th} – row and the i^{th} – column (note the switch)	If $\mathbf{A} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix}$, then $\tilde{\mathbf{A}} = \begin{pmatrix} 2 & 2 & -3 \\ 4 & -11 & 6 \\ -3 & 6 & -3 \end{pmatrix}$
$\mathbf{A}\tilde{\mathbf{A}} = (\det \mathbf{A})\mathbf{I} = \tilde{\mathbf{A}}\mathbf{A}$ $\mathbf{A} \text{ is invertible when and only when } \det \mathbf{A} \neq 0 \text{ and then}$ $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}\tilde{\mathbf{A}}$	$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix} \begin{pmatrix} 2 & 2 & -3 \\ 4 & -11 & 6 \\ -3 & 6 & -3 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix}^{-1} = \frac{-1}{3} \begin{pmatrix} 2 & 2 & -3 \\ 4 & -11 & 6 \\ -3 & 6 & -3 \end{pmatrix}$
For any i , $\det \mathbf{A} = (-1)^{i+1} a_{i1} \det \mathbf{A}_{1i} + (-1)^{i+2} a_{i2} \det \mathbf{A}_{2i} + \dots + (-1)^{i+n} a_{in} \det \mathbf{A}_{ni}$	$\det\begin{pmatrix} 2 & 0 & 0 \\ ? & a & b \\ ? & c & d \end{pmatrix} = 2(ad - bc)$
$\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$	$522 = \det\begin{pmatrix} 46 & 26 \\ 79 & 56 \end{pmatrix} = \det\begin{pmatrix} 2 & 5 \\ 5 & 8 \end{pmatrix} \det\begin{pmatrix} 3 & 8 \\ 8 & 2 \end{pmatrix} = -9 \times -58$
$\widetilde{\mathbf{A}}^{\mathrm{T}} = \widetilde{\mathbf{A}}^{\mathrm{T}}$ and $\det(\mathbf{A}^{\mathrm{T}}) = \det \mathbf{A}$	
Let $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ 0 & \mathbf{C} \end{pmatrix}$ where \mathbf{A} and \mathbf{C} are square (not necessarily of the same size). Then $\det \mathbf{M} = \det \mathbf{A} \det \mathbf{C}$.	Let $\mathbf{M} = \begin{pmatrix} 2 & 1 & ? & ? & ? \\ 1 & 2 & ? & ? & ? \\ 0 & 0 & 3 & 1 & 1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix}$, then $\det \mathbf{M} = \det \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \det \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} = 3 \times 20 = 60$
Let A be upper triangular, then $\det \mathbf{A} = a_{11}a_{22}\cdots a_{nn} = \prod_{i=1}^{n} a_{ii}$	$\det\begin{pmatrix} 1 & 0 & 0 \\ ? & 2 & 0 \\ ? & ? & 3 \end{pmatrix} = 6$
If P is a permutation, then $\det \mathbf{P} = \pm 1$	$\det\begin{pmatrix}0&1\\1&0\end{pmatrix} = -1, \det\begin{pmatrix}0&1&0\\0&0&1\\1&0&0\end{pmatrix} = 1$

Throughout the remaining of the course, our matrices will be square				
The polynomial $c_{\mathbf{A}}(x) = \det(\mathbf{A} - x\mathbf{I})$ has leading	$c_{\mathbf{J}_2}(x) = -2x + x^2$			
coefficient ± 1 and has degree the size of A .	$c_{\mathbf{J}_3}(x) = 3x^2 - x^3$			
It is called the characteristic polynomial of A	J			
Let λ be a scalar. Then the following are	$0 \det(\mathbf{J}_3 - 3\mathbf{I}) = 0$			
equivalent:	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$			
$0 \det(\mathbf{A} - \lambda \mathbf{I}) = 0$				
2 Au = λ u for some nonzero vector u 3 λ is a root of $c_{\mathbf{A}}(x)$				
This a root of $\mathcal{C}_{\mathbf{A}}(x)$	$\mathbf{S} \qquad c_{\mathbf{J}_3}(3) = (3x^2 - x^3)(3) = 3(3)^2 - (3)^3 = 0$			
Such a λ is called an eigenvalue of A and such a u is an eigenvector of A	3 is an eigenvalue of \mathbf{J}_3 and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a			
	corresponding eigenvector			
The complete list of roots of $c_{\mathbf{A}}(x)$ (that is the	The spectrum of \mathbf{J}_3 is 3,0,0			
list eigenvalues) is known as the spectrum of A	The spectrum of \mathbf{J}_2 is 2,0			
The spectrum of an upper triangular matrix consists of its diagonal entries	The spectrum of $\mathbf{A} = \begin{pmatrix} 1 & ? & ? \\ 0 & 2 & ? \\ 0 & 0 & a \end{pmatrix}$ is 1,2, a			
A and B are similar if $P^{-1}AP = B$ for some	Since $\begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} -14 & -22 \\ 12 & 19 \end{pmatrix}$,			
invertible matrix P	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $\begin{pmatrix} -14 & -22 \\ 12 & 19 \end{pmatrix}$ are similar			
Two similar matrices have the same	$x^2 - 5x - 2$ is the common characteristic			
characteristic polynomial	polynomial of the example above			
	\mathbf{J}_3 is diagonalizable since			
A is diagonalizable if A is similar to a diagonal matrix.	$ \begin{vmatrix} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $			
If P diagonalizes A , then its columns are eigenvectors of A	Indeed $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ are eigenvectors of \mathbf{J}_3			
	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has spectrum 1,1 so if it were			
Not every matrix is diagonalizable	diagonalizable it would be similar to \ \ which is impossible			
Not every matrix has real eigenvalues but when	If $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, then $c_{\mathbf{A}}(x) = x^2 + 1$, but also			
it does, it is similar to an upper triangular matrix	$ \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} $			

The trace of a matrix is the sum of its diagonal elements. Abbreviated, tr A .	$\operatorname{tr} \mathbf{I}_n = n = \operatorname{tr} \mathbf{J}_n$
If $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$, then $c_{\mathbf{A}}(x) = c_{\mathbf{B}}(x)$, $m_{\mathbf{A}}(x) = m_{\mathbf{B}}(x)$, det $\mathbf{A} = \det \mathbf{B}$ and tr $\mathbf{A} = \operatorname{tr} \mathbf{B}$	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $\begin{pmatrix} -14 & -22 \\ 12 & 19 \end{pmatrix}$ both have determinant -2 and trace 5
If $\lambda_1, \lambda_2,, \lambda_n$ is the spectrum of A then $\lambda_1 \times \lambda_2 \times \cdots \times \lambda_n = \det \mathbf{A} \text{ and }$ $\lambda_1 + \lambda_2 + \cdots + \lambda_n = \operatorname{tr} \mathbf{A}$	Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 0 & 1 \\ 5 & 0 & 1 \end{pmatrix}$ then $\mathbf{A} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{A} \begin{pmatrix} 1 \\ 7 \\ -5 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 7 \\ -5 \end{pmatrix}$ and $\mathbf{A} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = -4 \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ so its spectrum is $0, 6, -4$ and tr $\mathbf{A} = 2 = 0 + 6 - 4$ while det $\mathbf{A} = 0 = 0 \times 6 \times 4$
If $p(x)$ is a polynomial, and A is similar to B , then $p(\mathbf{A})$ is similar to $p(\mathbf{B})$	$ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^2 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 10 \\ 15 & 22 \end{pmatrix} $ is similar to $ \begin{pmatrix} -14 & -22 \\ 12 & 19 \end{pmatrix}^2 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -67 & -110 \\ 60 & 98 \end{pmatrix} $
If $\lambda_1, \lambda_2,, \lambda_n$ is the spectrum of A and $p(x)$ is a polynomial, then $p(\lambda_1), p(\lambda_2),, p(\lambda_n)$ is the spectrum of $p(\mathbf{A})$	Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 0 & 1 \\ 5 & 0 & 1 \end{pmatrix}$, then $\mathbf{A}^2 + \mathbf{I} = \begin{pmatrix} 27 & 2 & 8 \\ 10 & 11 & 16 \\ 10 & 10 & 17 \end{pmatrix}$ has spectrum 1,37,17
$c_{\mathbf{A}}(\mathbf{A}) = 0$	If $\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $c_{\mathbf{M}}(x) = x^2 - (a+d)x + (ad-bc)$ and $\mathbf{M}^2 - (a+d)\mathbf{M} + (ad-bc)\mathbf{I} = 0$
$m_{\mathbf{A}}(x)$ is a factor of $c_{\mathbf{A}}(x)$ and every eigenvalue is a root of $m_{\mathbf{A}}(x)$	Consider $\mathbf{M} = \begin{pmatrix} 1 & x & 0 & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 0 & z \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Then $c_{\mathbf{M}}(x) = x^{2}(x-1)^{2}$ and $m_{\mathbf{M}}(x) = x^{2}(x-1)^{2}$ if $z \neq 0$ and $z \neq 0$, $m_{\mathbf{M}}(x) = x(x-1)^{2} \text{ if } x \neq 0 \text{ and } z = 0,$ $m_{\mathbf{M}}(x) = x^{2}(x-1) \text{ if } z \neq 0 \text{ and } x = 0,$ $m_{\mathbf{M}}(x) = x(x-1) \text{ if } z \neq 0 \text{ and } x = 0,$
If λ is an eigenvalue of A then its algebraic multiplicity is the number of times λ occurs as a root of $c_{\mathbf{A}}(x)$	In the previous example, the algebraic multiplicity of 1 is 2 and so is the algebraic multiplicity of 0
If λ is an eigenvalue of $\bf A$ then its geometric multiplicity is the number of independent eigenvectors for λ	In the example above, if $x = 0$, then $r(\mathbf{A} - \mathbf{I}) = 2$ so its nullity is 2, and so the geometric multiplicity of 1 is also 2. If $x \neq 0$, then $r(\mathbf{A} - \mathbf{I}) = 3$ and then the geometric multiplicity is only 1.

The geometric multiplicity is always less than or equal to the algebraic multiplicity	Let $\mathbf{M} = \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$. Then the algebraic multiplicity of 1 is 3. But if $x \neq 0$ and $y \neq 0$, then $r(\mathbf{M} - \mathbf{I}) = 2$, so the geometric multiplicity of 1 is just 1. If $x \neq 0$ and $y = 0$, then geometric multiplicity is 2, and if $x = y = 0$, then it is of course 3
Eigenvectors corresponding to different eigenvalues are linearly independent	Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 0 & 1 \\ 5 & 0 & 1 \end{pmatrix}$, then $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 7 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ are independent
 The following are equivalent for a matrix A: ■ A is diagonalizable ② There is a basis of Rⁿ consisting of eigenvectors of A ③ The geometric multiplicity equals the algebraic multiplicity for every eigenvalue 	$\mathbf{M} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}. \text{ Then } \mathbf{O} \text{ holds since } \mathbf{P}^{-1}\mathbf{M}\mathbf{P} = \mathbf{D}$ $\text{where } \mathbf{P} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \text{ and } \mathbf{D} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \mathbf{O} \text{ holds since } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ form a basis of eigenvectors. } \mathbf{O} \text{ holds since the multiplicities of } \mathbf{O} \text{ are both } \mathbf{O} \text{ while those of } \mathbf{O} \text{ are both } \mathbf{O} \text{ are both } \mathbf{O} \text{ holds since the multiplicities } \mathbf{O} \text{ holds } \mathbf{O} \text{ are both } \mathbf{O} \text{ holds } \mathbf{O} ho$
A matrix with different eigenvalues is diagonalizable	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 0 & 1 \\ 5 & 0 & 1 \end{pmatrix}$ is diagonalizable since its eigenvalues are $0, 6, -4$
A matrix is diagonalizable if and only if its minimum polynomial has different roots	eigenvalues are $0, 6, -4$ The minimum polynomial of $\mathbf{M} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$ is $x^2 - 4x$ while its characteristic polynomial is $x(x^2 - 4x)$
$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_i$ are mutually orthogonal if $\mathbf{u}_i^{T} \mathbf{u}_j = \mathbf{u}_i \cdot \mathbf{u}_j = 0$ for any $i \neq j$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ are mutually orthogonal}$
If $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_t$ are mutually orthogonal and not zero, then they are linearly independent	same as above
If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t$ are independent, and $\mathbf{u}_1 = \mathbf{v}_1$, $\mathbf{u}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1, \ \mathbf{u}_3 = \mathbf{v}_3 - \frac{\mathbf{v}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{v}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2,$ then $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_t$ are mutually orthogonal	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ become } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

A symmetric matrix has real eigenvalues	If $\mathbf{A} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$, then its spectrum is given by $\frac{a + c \pm \sqrt{(a - c)^2 + 4b^2}}{2}$
Eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal	Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$ then $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ are eigenvectors for 0 and 14 respectively and they are orthogonal
A square matrix P is orthogonal if $\mathbf{PP}^{T} = \mathbf{I}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \text{ and } \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & \sqrt{2} & 1 \\ -\sqrt{3} & \sqrt{2} & 1 \\ 0 & \sqrt{2} & -2 \end{pmatrix} \text{ are }$
The following are equivalent: • P is orthogonal • P ^T is orthogonal • The columns of P form an orthonormal basis (mutually orthogonal of length 1) • The rows of P form an orthonormal basis (mutually orthogonal of length 1)	The examples just above illustrate the theorem. Peculiarly, not enough for the columns to be mutually orthogonal to obtain the rows to be orthogonal. $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}$ has orthogonal columns but not rows
Let A have real eigenvalues. Then there exists an orthogonal matrix P such that $\mathbf{P}^{T}\mathbf{A}\mathbf{P} = \mathbf{T}$ is upper triangular.	$\frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & \sqrt{2} & 1\\ -\sqrt{3} & \sqrt{2} & 1\\ 0 & \sqrt{2} & -2 \end{pmatrix}^{T} \begin{pmatrix} 1 & 1 & -2\\ 1 & 1 & -2\\ 1 & 1 & -2 \end{pmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & \sqrt{2} & 1\\ -\sqrt{3} & \sqrt{2} & 1\\ 0 & \sqrt{2} & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 3\sqrt{2}\\ 0 & 0 & 0 \end{pmatrix}$
Let A be symmetric, then there exists an orthogonal matrix P such that $\mathbf{P}^{T}\mathbf{A}\mathbf{P} = \mathbf{D} \text{ is diagonal}$ A is orthogonally diagonalizable	$ \begin{vmatrix} \frac{1}{\sqrt{42}} \begin{pmatrix} \sqrt{3} & \sqrt{7} & 4\sqrt{2} \\ 2\sqrt{3} & -2\sqrt{7} & \sqrt{2} \\ 3\sqrt{3} & \sqrt{7} & -2\sqrt{2} \end{pmatrix}^{T} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \frac{1}{\sqrt{42}} \begin{pmatrix} \sqrt{3} & \sqrt{7} & 4\sqrt{2} \\ 2\sqrt{3} & -2\sqrt{7} & \sqrt{2} \\ 3\sqrt{3} & \sqrt{7} & -2\sqrt{2} \end{pmatrix} = \begin{pmatrix} 14 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $
An equation of the form $ax + bxy + cy + dx + ey + f = 0$ is a general quadratic equation	$4x^2 + 4xy + y^2 - 24x + 38y - 139 = 0$
A general quadratic equation always represents a conic (although some are so called simplistic conic)	$x^{2} + y^{2} = 1$ is the unit circle $x^{2} - y^{2} = 1$ is a hyperbola $x^{2} - y^{2} = 0$ represents two lines
One associates the symmetric matrix $\begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$ with the equation	$4x^{2} + 4xy + y^{2} - 24x + 38y - 139 = 0 \text{ has matrix } \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$
the shape of the conic is determined by the determinant of the matrix: 0, parabola, positive, ellipse and negative hyperbola	$4x^2 + 4xy + y^2 - 24x + 38y - 139 = 0$ is a parabola