```
pandas:
  1. Series: One-Dimentinal data structure
  2. Data-Frame: Multi-Dimentional data structure
import pandas as pd
n1 = pd.Series([10,20,30,40,50])
n1
         10
    1
         20
    2
         30
    3
         40
         50
    dtype: int64
type(n1)
    pandas.core.series.Series
n1 = pd.Series([11,21,31,41,51], index = ['a','b','c','d','e'])
n1
         11
    a
         21
         31
         41
         51
    dtype: int64
pd.Series({'west Bengal' : 'kolkata', 'Maharastra' : 'Mumbai', 'Tamilr
                  kolkata
    west Bengal
    Maharastra
                  Mumbai
    Tamilnadu
                  Chennai
    dtype: object
n2 = pd.Series({'c1' : 'kolkata', 'c2' : 'Mumbai', 'c3' : 'Chennai'},
n2
    c2
          Mumbai
    c4
             NaN
```

Pandas Tutorial for Data Science

kolkata

c1

```
с3
          Chennai
    dtype: object
n3 = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
n3[4]
    5
n3[:7]
    0
         1
    1
         2
    2
         3
    3
         4
    4
         5
    5
         6
         7
    dtype: int64
n3[-4:]
          7
    6
    7
          8
    8
          9
         10
    dtype: int64
n3 + 4
    0
          5
    1
          6
    2
          7
    3
          8
    4
          9
    5
         10
    6
         11
    7
         12
    8
         13
         14
    dtype: int64
n4 = pd.Series([10,20,30,40,50,60,70,80,90,100])
n3 + n4
    0
          11
    1
          22
    2
          33
    3
          44
    4
          55
    5
          66
          77
```

```
7
          88
     8
          99
     9
         110
     dtype: int64
n4 // 5
     0
          2
     1
          4
     2
          6
     3
          8
     4
       10
     5
         12
     6
         14
     7
         16
     8
         18
     9
         20
     dtype: int64
DataFrame in pandas
d1 = pd.DataFrame({'Name' : ['Sasanka', 'Raktim', 'Puronjit'], 'Marks'
d1
           Name Marks
     0 Sasanka
                    90
      1
          Raktim
                    92
      2
         Puronjit
                    91
dataset = pd.load_csv('california_housing_test.csv')
     AttributeError
                                              Traceback (most recent call last)
     <ipython-input-32-69e24274f530> in <module>
     ----> 1 dataset = pd.load_csv('california_housing_test.csv')
     /usr/local/lib/python3.8/dist-packages/pandas/__init__.py in __getattr__(name)
                    return _SparseArray
        242
        243
              raise AttributeError(f"module 'pandas' has no attribute '{name}'")
     --> 244
        245
        246
     AttributeError: module 'pandas' has no attribute 'load_csv'
      SEARCH STACK OVERFLOW
```

from sklearn import datasets

```
iris.target[:10]
    array([0, 0, 0, 0, 0, 0, 0, 0, 0])
iris
          [6.7, 3., 5.2, 2.3],
          [6.3, 2.5, 5., 1.9],
          [6.5, 3., 5.2, 2.],
          [6.2, 3.4, 5.4, 2.3],
          [5.9, 3., 5.1, 1.8]]),
     0,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
          'frame': None,
     'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
     'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n-----
    \n\n**Data Set Characteristics:**\n\n
                                    :Number of Instances: 150 (50 in each of
    three classes)\n
                    :Number of Attributes: 4 numeric, predictive attributes and
    the class\n
               :Attribute Information:\n
                                          - sepal length in cm\n
    sepal width in cm\n

    petal length in cm\n

                                               petal width in cm\n
    - class:\n
                        - Iris-Setosa\n
                                                 - Iris-Versicolour\n
    - Iris-Virginica\n
                               \n
                                    :Summary Statistics:\n\n
    SD Class Correlation\n
    Min Max
           Mean
                                         _______
    ==== ======\n sepal length: 4.3 7.9
                                                  5.84
                                                         0.83
                         2.0 4.4 3.05 0.43
    0.7826\n
             sepal width:
                                              -0.4194\n
                                                         petal length:
                                         petal width:
    1.0 6.9
            3.76
                  1.76
                        0.9490 (high!)\n
                                                      0.1 2.5
    0.76
          0.9565 (high!)\n
                          :Missing Attribute Values: None\n
    =======\n\n
    Distribution: 33.3% for each of 3 classes.\n :Creator: R.A. Fisher\n
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n :Date: July,
    1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is
    taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the
    UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is
    perhaps the best known database to be found in the\npattern recognition
    literature. Fisher\'s paper is a classic in the field and\nis referenced
    frequently to this day. (See Duda & Hart, for example.) The\ndata set contains
    3 classes of 50 instances each, where each class refers to a\ntype of iris plant.
    One class is linearly separable from the other 2; the \nlatter are NOT linearly
    separable from each other.\n\n.. topic:: References\n\n - Fisher, R.A. "The use
    of multiple measurements in taxonomic problems"\n
                                              Annual Eugenics, 7, Part
    II, 179-188 (1936); also in "Contributions to\n
                                             Mathematical Statistics"
    (John Wiley, NY, 1950).\n - Duda, R.O., & Hart, P.E. (1973) Pattern
    Classification and Scene Analysis.\n
                                   (Q327.D83) John Wiley & Sons.
    471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the
                             Structure and Classification Rule for
    Neighborhood: A New System\n
                                   Environments". IEEE Transactions on
    Recognition in Partially Exposed\n
    Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-71.\n
    Catha C II /4070\ "The Deduced Necessat Necessat Dula"
```

iris = datasets.load iris()

```
dates, G.W. (1972) Ine Reduced Nearest Neighbor Rule . IEEE Transactions\n
on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings,
54-64. Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3
classes in the data.\n - Many, many more ...',
  'feature_names': ['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)'],
  'filename': 'iris.csv',
  'data_module': 'sklearn.datasets.data'}
```

import pandas as pd

cht = pd.read_csv("/content/sample_data/california_housing_test.csv")
cht

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populati
0	-122.05	37.37	27.0	3885.0	661.0	153
1	-118.30	34.26	43.0	1510.0	310.0	80
2	-117.81	33.78	27.0	3589.0	507.0	148
3	-118.36	33.82	28.0	67.0	15.0	4
4	-119.67	36.33	19.0	1241.0	244.0	85
2995	-119.86	34.42	23.0	1450.0	642.0	125
2996	-118.14	34.06	27.0	5257.0	1082.0	349
2997	-119.70	36.30	10.0	956.0	201.0	69
2998	-117.12	34.10	40.0	96.0	14.0	4
2999	-119.63	34.42	42.0	1765.0	263.0	75
3000 ro	ws × 9 colum	ns				
1						•

cht.head()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.05	37.37	27.0	3885.0	661.0	1537.0
1	-118.30	34.26	43.0	1510.0	310.0	809.0
2	-117.81	33.78	27.0	3589.0	507.0	1484.0
3	-118.36	33.82	28.0	67.0	15.0	49.0
4	-119.67	36.33	19.0	1241.0	244.0	850.0
4						•

cht.tail()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populati
2995	-119.86	34.42	23.0	1450.0	642.0	125
2996	-118.14	34.06	27.0	5257.0	1082.0	349
2997	-119.70	36.30	10.0	956.0	201.0	69
2998	-117.12	34.10	40.0	96.0	14.0	4
2999	-119.63	34.42	42.0	1765.0	263.0	75
4						•

cht.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	р
count	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	30
mean	-119.589200	35.63539	28.845333	2599.578667	529.950667	14
std	1.994936	2.12967	12.555396	2155.593332	415.654368	10
min	-124.180000	32.56000	1.000000	6.000000	2.000000	
25%	-121.810000	33.93000	18.000000	1401.000000	291.000000	7
50%	-118.485000	34.27000	29.000000	2106.000000	437.000000	11
75%	-118.020000	37.69000	37.000000	3129.000000	636.000000	17
max	-114.490000	41.92000	52.000000	30450.000000	5419.000000	119
7						
1						•

cht.head().iloc[1:3, 0:2]

	longitude	latitude	1
1	-118.30	34.26	
2	-117.81	33.78	

cht.loc[:3,('latitude', 'total_bedrooms', 'population')]

latitude total_bedrooms population

cht.head(7)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.05	37.37	27.0	3885.0	661.0	1537.0
1	-118.30	34.26	43.0	1510.0	310.0	809.0
2	-117.81	33.78	27.0	3589.0	507.0	1484.0
3	-118.36	33.82	28.0	67.0	15.0	49.0
4	-119.67	36.33	19.0	1241.0	244.0	850.0
5	-119.56	36.51	37.0	1018.0	213.0	663.0
6	-121.43	38.63	43.0	1009.0	225.0	604.0
						•

new_set = cht.drop([2,4,7], axis = 0)

new_set.head(7)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.05	37.37	27.0	3885.0	661.0	1537.0
1	-118.30	34.26	43.0	1510.0	310.0	809.0
3	-118.36	33.82	28.0	67.0	15.0	49.0
5	-119.56	36.51	37.0	1018.0	213.0	663.0
6	-121.43	38.63	43.0	1009.0	225.0	604.0
8	-122.84	38.40	15.0	3080.0	617.0	1446.0
9	-118.02	34.08	31.0	2402.0	632.0	2830.0
4						•

new_set = cht.drop('total_rooms', axis = 1)

new_set.iloc[:4]

	longitude	latitude	housing_median_age	total_bedrooms	population	households
0	-122.05	37.37	27.0	661.0	1537.0	606.0
1	-118.30	34.26	43.0	310.0	809.0	277.0
2	-117.81	33.78	27.0	507.0	1484.0	495.0
3	-118.36	33.82	28.0	15.0	49.0	11.0
4						

cht.min()

longitude	-124.1800
latitude	32.5600
housing_median_age	1.0000
total_rooms	6.0000
total_bedrooms	2.0000
population	5.0000
households	2.0000
median_income	0.4999
<pre>median_house_value</pre>	22500.0000
dtype: float64	

cht.max()

longitude	-114.4900
latitude	41.9200
housing_median_age	52.0000
total_rooms	30450.0000
total_bedrooms	5419.0000
population	11935.0000
households	4930.0000
median_income	15.0001
<pre>median_house_value</pre>	500001.0000
dtype: float64	

cht.median()

longitude	-118.48500
latitude	34.27000
housing_median_age	29.00000
total_rooms	2106.00000
total_bedrooms	437.00000
population	1155.00000
households	409.50000
median_income	3.48715
<pre>median_house_value dtype: float64</pre>	177650.00000

cht.mean()

longitude	-119.589200
latitude	35.635390
housing_median_age	28.845333
total_rooms	2599.578667
total_bedrooms	529.950667
population	1402.798667
households	489.912000
median_income	3.807272
<pre>median_house_value dtype: float64</pre>	205846.275000

cht.sum()

longitude -3.587676e+05

```
latitude
                          1.069062e+05
     housing_median_age
                          8.653600e+04
     total_rooms
                          7.798736e+06
     total_bedrooms
                          1.589852e+06
     population
                          4.208396e+06
     households
                          1.469736e+06
     median_income
                          1.142182e+04
     median_house_value
                         6.175388e+08
     dtype: float64
cht.keys()
     Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
            'total_bedrooms', 'population', 'households', 'median_income',
            'median_house_value'],
           dtype='object')
def oneFourth(val):
  return val * 0.25
cht[['latitude','households']].apply(oneFourth).head()
                               1
        latitude households
     0
           9.3425
                      151.50
      1
           8.5650
                       69.25
      2
           8.4450
                      123.75
      3
           8.4550
                        2.75
     4
           9.0825
                       59.25
cht['households'].value counts()
     273.0
              12
     375.0
              12
     614.0
              12
     363.0
              11
     287.0
              11
               . .
     685.0
               1
     89.0
               1
     973.0
               1
     802.0
     1036.0
               1
     Name: households, Length: 1026, dtype: int64
cht.sort values(by = 'population').tail(10)
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populati
1283	-117.18	32.92	4.0	15025.0	2616.0	756
947	-117.23	33.91	9.0	11654.0	2100.0	759
2014	-117.22	32.86	4.0	16289.0	4585.0	760
33	-118.08	34.55	5.0	16181.0	2971.0	815
321	-121.73	37.68	17.0	20354.0	3493.0	876
1597	-117.12	33.49	4.0	21988.0	4055.0	882
2429	-117.20	33.58	2.0	30450.0	5033.0	941
1146	-117.27	33.15	4.0	23915.0	4135.0	1087
2186	-116.14	34.45	12.0	8796.0	1721.0	1113

Colab paid products - Cancel contracts here

• ×