计算机网络实验二

网络层数据分组的捕获和解析

班级: 2011211319 姓名: 蒋雪枫 学号: 2017211319

1、实验类别

协议分析型

2、实验内容和实验目的

- 1) 捕获在连接 Internet 过程中产生的网络层分组: DHCP 分组, ARP 分组, IP 数据分组, ICMP 分组。
 - 2) 分析各种分组的格式, 说明各种分组在建立网络连接过程中的作用。
 - 3) 分析 IP 数据分组分片的结构。

通过本次实验了解计算机上网的工作过程, 学习各种网络层分组的格式及其作用, 理解长度大于 1500 字节 IP 数据组分片传输的结构。

3、实验设备环境

1 台 Windows 操作系统的 pc 机,要求能够连接到 Internet,并安装 Wireshark 软件。

4、实验过程:

1. 捕获 DHCP 报文:

首先在 CMD 中使用 ipconfig /release 断开链接,这时再使用 ipconfig /renew 重新建立链接等待获取一个 ip 地址,这时候在 WireShark 里面采用 udp.port==68 进行过滤,发现能够收到一系列 DHCP 包,我们对其中一个进行分析。

注:如果不这么做,很有可能看不见 DHCP,而只能看见 DHCPv6

图 1 DHCP 捕获

图 2 DHCP 分析 1

```
Wireshark · Packet 484 · WLAN
> Frame 484: 344 bytes on wire (2752 bits), 344 bytes captured (2752 bits) on interface 0 ^
Ethernet II, Src: IntelCor_57:2d:3f (ac:ed:5c:57:2d:3f), Dst: Broadcast (ff:ff:ff:ff:ff:
   > Destination: Broadcast (ff:ff:ff:ff:ff)
   > Source: IntelCor_57:2d:3f (ac:ed:5c:57:2d:3f)
     Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
     0100 .... = Version: 4
     .... 0101 = Header Length: 20 bytes (5)
   > Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
     Total Length: 330
     Identification: 0x5687 (22151)
   > Flags: 0x0000
     Time to live: 64
     Protocol: UDP (17)
     Header checksum: 0x231d [validation disabled]
     [Header checksum status: Unverified]
     Source: 0.0.0.0
     Destination: 255.255.255.255
v User Datagram Protocol, Src Port: 68, Dst Port: 67
     Source Port: 68
     Destination Port: 67
     Length: 310
     Checksum: 0xbf81 [unverified]
     [Checksum Status: Unverified]
     [Stream index: 48]

    Bootstrap Protocol (Discover)

     Message type: Boot Request (1)
     Hardware type: Ethernet (0x01)
     Hardware address length: 6
     Hops: 0
     Transaction ID: 0xf8486d6d
     Seconds elapsed: 0
   > Bootp flags: 0x0000 (Unicast)
     Client IP address: 0.0.0.0
     Your (client) IP address: 0.0.0.0
     Next server IP address: 0.0.0.0
```

图 3 DHCP 字段

2、捕获 IP 数据包, 进行分析

图 4 上知乎网

图 5 获取知乎网相关的数据报,进行字段分析

图 6 一系列 IP 数据报

图 7 一般的 IPV4 数据报字段模式

对于知乎网相关报文.	首部分析如下:
71 1 NO 1 MITO A 118 A.	

字段	报文	内容
包头长度	45 H	包头长 20 字节(5*4,版本号 ipv4)
服务类型	00 H	正常时延,正常吞吐量,正常可靠性
总长度	0028 H	数据分组长度为 2*16+8=40 字节
标识	1ebe H	标识为 1ebe(H)
标志	010(3bit)	DF=1, MF=0, 表示不分片
片偏移	0H(13bit)	偏移量为 0
生存周期	40H	每跳生存时间为 64s,TTL,time to live
协议	06 H	协议为 TCP (6)
头部校验和	d396 H	头部校验和 d396 (H)
源地址	0a7afae9 H	10.122.250.233(本地 ip)
目的地址	7659ccbe H	118.89.204.190(远程 ip)

3.分析上网流程:

通过连接网络的过程,之后分析连接后有哪些数据包即可了解上网的过程。可以发现在断开网络的时候,可以捕获到 DHCP Release 分组用于断开网络,局域网重新连接,与此同时,捕获到 DHCP ACK 分组用于网络的重连。

具体步骤:

- 1.使用 cmd 切断无线网络连接。
- 2.同时 Wireshark 捕获到 DHCP Release 用于断开网络。
- 3.使用 cmd 重新连接网络
- 4.Wireshark 捕获到 DHCP ACK 用于网络的重连:

图 8 DHCP 相关包

4.ICMP 报文解析:

ICMP 报文

图 9 ICMP 内容字段模式

分析 ICMP 分组:

```
Wireshark · Packet 1512 · WLAN
> Frame 1512: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface 0
v Ethernet II, Src: IntelCor_fa:4d:c6 (94:b8:6d:fa:4d:c6), Dst: IntelCor_57:2d:3f (ac:ed:5
   > Destination: IntelCor 57:2d:3f (ac:ed:5c:57:2d:3f)
   > Source: IntelCor fa:4d:c6 (94:b8:6d:fa:4d:c6)
     Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 10.122.247.147, Dst: 10.122.250.233
     0100 .... = Version: 4
     .... 0101 = Header Length: 20 bytes (5)

▼ Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

       0000 00.. = Differentiated Services Codepoint: Default (0)
       .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
     Total Length: 64
     Identification: 0x3e1e (15902)
   ∨ Flags: 0x0000
       0... .... = Reserved bit: Not set
       .0.. .... = Don't fragment: Not set
       ..0. .... = More fragments: Not set
       ...0 0000 0000 0000 = Fragment offset: 0
     Time to live: 128
     Protocol: ICMP (1)
     Header checksum: 0xf52d [validation disabled]
     [Header checksum status: Unverified]
     Source: 10.122.247.147
     Destination: 10.122.250.233

    Internet Control Message Protocol

     Type: 8 (Echo (ping) request)
     Code: 0
     Checksum: 0x9375 [correct]
     [Checksum Status: Good]
     Identifier (BE): 6205 (0x183d)
 0000 ac ed 5c 57 2d 3f 94 b8 6d fa 4d c6 08 00 45 00
                                                     ··\W-?·· m·M···E·
 0010 00 40 3e 1e 00 00 80 01 f5 2d 0a 7a f7 93 0a 7a
                                                      @>····z
 0020 fa e9 08 00 93 75 18 3d 24 00 c6 2d 62 1f 00 00
                                                      · · · · · u · = $ · · - b · · ·
                                                     ...... ......
```

图 10 ICMP 字段捕获

字段	报文	内容
类型	08 H	问一台机器是否仍处于活动状态
代码	00 H	
校验和	9375 H	校验和为 9375 H

(5) 制作一个8000字节的IP数据分组,发送后捕获分析。由于分组长度大于1500字节, 因此需要分片传输。按照 2) 中的方法分析所有分片的结构。

通过 cmd 向网关发送 8000 字节的数据。

No.	Time	Source	Destination	Protocol Le
	84 15.950414	10.122.250.233	10.122.192.1	IPv4
	85 15.950419	10.122.250.233	10.122.192.1	IPv4
	86 15.950428	10.122.250.233	10.122.192.1	IPv4
	87 15.950432	10.122.250.233	10.122.192.1	ICMP
	88 15.952903	10.122.192.1	10.122.250.233	IPv4
	89 15.953898	10.122.192.1	10.122.250.233	IPv4
	90 15.953899	10.122.192.1	10.122.250.233	IPv4
	91 15.953899	10.122.192.1	10.122.250.233	IPv4
	92 15.953901	10.122.192.1	10.122.250.233	IPv4

配 管理员: C:\Windows\system32\cmd.exe

Microsoft Windows [版本 10.0.17134.765]

(c) 2018 Microsoft Corporation。保留所有权利。

C:\Users\Administrator>ping -1 8000 10.122.192.1

正在 Ping 10.122.192.1 具有 8000 字节的数据: 来自 10.122.192.1 的回复: 字节=8000 时间=4ms TTL=64 来自 10.122.192.1 的回复: 字节=8000 时间=20ms TTL=64 来自 10.122.192.1 的回复: 字节=8000 时间=6ms TTL=64 来自 10.122.192.1 的回复: 字节=8000 时间=3ms TTL=64

10.122.192.1 的 Ping 统计信息: 数据包: 己发送 = 4, 己接收 = 4, 丢失 = 0 (0% 丢失), 往返行程的估计时间(以毫秒为单位): 最短 = 3ms, 最长 = 20ms, 平均 = 8ms

图 11 给默认网关发送 8000 字节数据

Source	Destination	Protocol	Length Info
10.122.250.233	239.255.255.250	SSDP	216 M-SEARCH * HTTP/1.1
10.122.250.233	10.122.192.1	IPv4	1514 Fragmented IP protocol
10.122.250.233	10.122.192.1	IPv4	1514 Fragmented IP protocol
10.122.250.233	10.122.192.1	IPv4	1514 Fragmented IP protocol
10.122.250.233	10.122.192.1	IPv4	1514 Fragmented IP protocol
10.122.250.233	10.122.192.1	IPv4	1514 Fragmented IP protocol
10.122.250.233	10.122.192.1	ICMP	642 Echo (ping) request id
10.122.192.1	10.122.250.233	IPv4	1514 Fragmented IP protocol
10.122.192.1	10.122.250.233	IPv4	1514 Fragmented IP protocol
10.122.192.1	10.122.250.233	IPv4	1514 Fragmented IP protocol
10.122.192.1	10.122.250.233	IPv4	1514 Fragmented IP protocol
10.122.192.1	10.122.250.233	IPv4	1514 Fragmented IP protocol
10.122.192.1	10.122.250.233	ICMP	642 Echo (ping) reply io

图 12 分析这 8000 字节信息走向

结论分析:

上面为发送给默认网关的所有数据包的分片的分析, 5 个长度为 1500 字节的 IP 分组, 每个分组的净荷域=1500-20=1480, 最后一个分组为 628, 要减去头部 20 字节和 icmp 的 8 字节, 故前五个分组组装起来为 1480*5=7400。加上最后一个分片, 其总长度为 7400+600=8000, 结果正确。

图 13 第一个 Fraction 的字段, 具体内容在实验 2 已完成, 不予赘述

5、实验结论和实验心得:

做实验的时间基本为预期中的 2 个小时内,完成了实验要求的内容。在写完了计网大作业--DNS 中继服务器之后,其实对 Wireshark 的使用可以说掌握得很不错了。在做第一个捕捉 DHCP 分组时,由于最开始想要偷懒就没有禁用网卡,但发现这样无法捕获 DHCP 报只能出现 DHCPv6 报。同时我也更会使用 Wireshark 的 filter 工具了。之后的第二个实验在寻找 ip 分组的过程,通过结合 Nslookup 和浏览特定网站的办法寻找了一个合适的 ip 分组。在第三个实验需要结合第一个实验的思路,完整地理解你是如何被分配到一个 ip,之后又是如何上网的(在断开网络的时候,可以捕获到 DHCP Release 分组用于断开网络,局域网重新连接,与此同时,捕获到 DHCP ACK 分组用于网络的重连)。第四个和第五个实验与前面的思路相似,只是依葫芦画瓢,完成比较顺利。

总之、最有收获的还是一步步对报文进行分析、完成相关参数表的填写。

通过这次实验,我对网络层的概念有了更深层次的理解,同时也对计算机连接校园网的机制更加清晰,也更加熟练得使用 WireShark 工具。之前只是停留于课本,而未实践过,所以比较概念化,没有真正的理解网络的内涵,虽通过本次实验也只是了解有限,但是我还是对网络层有了更加深刻的认识,希望以后能更好的运用所学的内容完成其他工作。