

UVA DSP

By: Majd Zreik, PhD

Computer Vision Team Lead

30.08.2021

Quin is developing a Digital Health Platform

Quin Consumer

For patients

Key features

- Native app for smartphone, in a later stage available for iPad and desktop
- Available for iOS and Android
- Symptom checker, symptom monitoring, video consultations, appointment scheduling, context and information
- The app is CE certified as a medical device (Class 1) and follows the AVG (GDPR) guidelines

Quin Pro

For GPs and medical specialists

Key features

- · Video consultation
- Online appointment scheduling
- Specialist Care diagnostics via care pathways
- Patient information from Quin app services as a check in
- Becoming a complete GP information system over the years
- Available in web browser for phones, tablets and computers

Quin's data driven care pathway

Quin's Hip OA Care Pathway

We want to help GPs to uniformly and objectively assess hip osteoarthritis

Quin Al for Hip OA Assessment in X-rays

We use convolutional neural networks (CNNs) to first **localize** the hip joints in AP and FP views and then to **predict** the osteoarthritis (OA) severity using KL-score* and other radiological features:

^{*} https://radiopaedia.org/articles/kellgren-and-lawrence-system-for-classification-of-osteoarthritis

Explainability of AI

- Explainable AI (XAI) is a technique used to **explain** the decision of an AI model.
- In computer vision, this means **emphasizing** regions in the input image that **contributed** the most to the decision of the CNN.
- This would increase the clinicians trust and adoption of AI in their daily work.

Explainability of AI – Good Examples

• Joint space **narrowing** (JSN) in the joint can be a result of osteoarthritis (OA).

Explainability of AI – Bad Examples

- Explainability is important for debugging AI models and for shedding some light on why do they (not) work.
- Although a model predicts correctly, it could be focusing on the wrong features:

Data Systems Project - Overview

- All is still seen as a magic **black-box**, it is non-intuitive, and difficult for people to understand and trust.
- In the medical image analysis field, this problem is **amplified** and leads to a limited adoption of such AI systems.
- The four pillars of the XAI project:
 - Implement XAI
 - Evaluate XAI
 - Visualize XAI
 - Put it all together

Data Systems Project - Implement XAI

- There are **numerous** methods to explain the predictions of an AI system.
- However, there is no central platform that can run several implementations on the same input image to provide the user an easy way to examine (and evaluate) the different results.
- In this project, we aim to:
 - Build a platform to run multiple XAI implementations on a given input image.
 - Build an intuitive graphical interface with a plug-and-play nature for the platform.
 - Support different architectures (ResNets, VGG, etc.)
 - Integrate other pillars (*Visualize XAI* and *Evaluate XAI*)

Original
2020 © Quin

Grad-CAM LIME

Data Systems Project - Evaluate XAI

- There are **numerous** methods to explain the predictions of an AI system.
- However, given a specific task, evaluating the **performance** of such methods is **hard**.
- In this project, we aim to:
 - Research for existing evaluation metrics and implement them.
 - Interview clinicians for new clinically relevant evaluation metrics and implement them.
 - Build a graphical interface to visualize those metrics for a given input image.
 - Define and build a feedback interface for clinicians to interact and evaluate the explainable outcomes on top of the input image.
 - Implement those visualizations into the platform.

From: Wang et al. "Score-CAM: Score-weighted visual explanations for convolutional neural networks. 2020.

Data Systems Project - Visualize XAI

- The most common way to visualize the explainable result is by overlaying a colorful heatmap on top of the input image.
- For medical image analysis this is not optimal as it might interfere with the specialist reading the input image.
- In this project, we aim to:
 - Research ways of visualizing XAI results for the medical image analysis field.
 - Interview clinicians for new clinically optimized ways of visualizing XAI results for medical images.
 - Implement those visualizations into the platform.

Electric Guitar

p = 0.32

(c) Explaining acoustic guitar

Data Systems Project – Technical Details

- A public dataset of X-ray images of knees suspected with osteoarthritis (OA) is available to download [1].
- The students would use the dataset to train* a CNN model of their choice (ResNet family, VGG, etc.) using PyTorch (or PyTorch Lightning) [2] or find a pretrained model [3].
- The model will solve a 5-class classification problem (kl-score of 0-4).
- Use the trained model to execute the different XAI projects.

^[2] Similar paper: https://pubs.rsna.org/doi/pdf/10.1148/ryai.2020190065

^[3] Similar repo: https://github.com/MIPT-Oulu/DeepKnee

Final Words

- Why do you want to do this project?
 - XAI is a hot topic of research in the AI and computer vision communities.
 - A very hands-on experience
 - Get good grades at UvA
 - Bonus: Outstanding students may be considered for:
 - Completing their Master thesis at Quin.
 - Starting an exciting internship in one of Quin's many computer vision projects.

Thank you!

Questions?

