Chip Happens:

A Machine Learning Approach for Detecting Potato Chip Defects

Nick Hay • 16.02.2024 Capstone Project

Bio

Nicholas Hay

Education: Bachelor of Technology Degree in Food Science (2000)

Professional experience: Food manufacturing, Insurance, Bookkeeping

Data Science learnings: Data Science & Al Bootcamp (IOD)

Link https://www.linkedin.com/in/nicholas-h-2b380910/

TE KUNENGA

KI PŪREHUROA

UNIVERSITY OF NEW ZEALAND

DATA SCIENCE

Agenda

- Opportunity
- Data
- Modelling
- Results
- Deployment

Can image recognition & machine learning classify potato chips as defective (or non defective)

Data Analysis

Data / EDA

- Sourced from Kaggle [1]
- 961 images
- Labelled (Train / Test)
- Test, Defective 92 images
- Test, Not Defective 100 images
- Train, Defective 369 images
- Train, Non Defective 400 images
- Size Original 2976, resized 224
- Manipulated

Modelling

Convolutional Neural Network (CNN) [2]

Key Components of CNN:

- Convolutional layers
- Activation function Rectified Linear Unit (ReLU)
- Pooling layers
- Fully connected layers

Sequential Model (Binary Classification)

- Import the images (Image Data Generator) can augment (transform by flipping, shifts)
- Load Data (flow from directory)
- Normalise image pixels (divide by 255)
- Construct model architecture (add layers)
 - Convolution (2D)
 - Max Pooling
 - Flatten
 - Dense
- Train the model (pre-trained VGG19, ResNet50)
- Evaluate the model
- Made predictions

Hyperparameters

Image Size: 224 x 224

Batch Size: 32 images

Epochs: Number of Passes (10 - 30)

Early Stopping: Patience (3) on

Validation Loss

Validation Split: 20% of Training data

Results

Results:

Model	Training Accuracy	Validation Accuracy	Accuracy on Evaluation
First attempt	100%	99%	98.44%
VGG19	100%	99%	98.44%
ResNet50	100%	52%	52.08%
First attempt (Augmented)	100%	100%	98.96%

VGG19 - Confusion Matrix

True Positives (TP): The model correctly predicted 89 defective items.

True Negatives (TN): The model correctly predicted 100 non-defective items.

False Negatives (FN): The model incorrectly predicted 3 defective items as non-defective.

False Positives (FP): The model did not make any incorrect predictions of non-defective items as defective.

VGG19 - Model Accuracy & Loss

VGG19 Predictions

Predicted: Defective Actual: Defective

Predicted: Defective Actual: Defective

Predicted: **Non_Defective** (incorrect) Actual: Defective

Predicted: Defective Actual: Defective

Predicted: Defective Actual: Defective

Predicted: Defective Actual: Defective

VGG19 - Correct Predictions

VGG19 - Incorrect Predictions

Implementation

Deployment - Application

Conclusion & Future work

Conclusion & Future Work

- Machine learning can predict defective images
- Application to verify the model is working
- Train the model using more images
- Computing power to run more epochs
- Techniques to minimise overfitting
- Recommend to stakeholders, investigate the practical implications of deploying the model in a manufacturing environment.

Thank you & a Questions

References:

[1] Navid, Usama. "PepsiCo Lab Potato Chips Quality Control." *Kaggle*, https://www.kaggle.com/datasets/concaption/pepsico-lab-potato-quality-control

[2] Keita, Zoumana. "An Introduction to Convolutional Neural Networks: A Comprehensive Guide to CNNs in Deep Learning."

DataCamp, https://www.datacamp.com/tutorial/introduction-to-convolutional-neural-networks-cnns.

