Lecture 15a: Statistical Learning

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

	3/1		Project 2 Out	
9	3/4	3/5	Quantifying Uncertainty	[Ch 13.1-13.6]
	3/6	3/7	Bayesian Networks	[Ch 14.1-14.2]
10	3/11	3/12	(spring break, no class)	
	3/13	3/14	(spring break, no class)	
11	3/18	3/19	Inference in Bayesian Networks	[Ch 14.3-14.4]
	3/20	3/21	Decision Theory	[Ch 16.1-16.3 and 16.5]
	3/23		Project 2 Due	
12	3/25	3/26	Advanced topics (Chao traveling to National Science Foundation)	
	3/27	3/28	Advanced topics (Chao traveling to National Science Foundation	
	3/29		Homework 2 Out	
13	4/1	4/2	Markov Decision Processes	[Ch 17.1-17.2]
	4/3	4/4	Decision Tree Learning	[Ch 18.1-18.3]
	4/5		Homework 2 Due	
	4/5		Project 3 Out	
14	4/8	4/9	Perceptron Learning	[Ch 18.6]
	4/10	4/11	Neural Network Learning	[Ch 18.7]
15 (4/15	4/16	Statistical Learning	[Ch 20.2.1-20.2.2]
	4/17	4/18	Reinforcement Learning	[Ch 21.1-21.2]
16	4/22	4/23	Artificial Intelligence Ethics	
	4/24	4/25	Wrap-Up and Final Review	
	4/26		Project 3 Due	
	5/3	5/2	Final Exam (2pm-4pm)	

Outline

- What is Al?
- Part I: Search
- Part II: Logical reasoning
- Part III: Probabilistic reasoning
- Part IV: Machine learning
 - Decision Tree Learning
 - Perceptron Learning
 - Neural Network Learning

- Statistical Learning
- Reinforcement Learning

Recap: Bayesian networks (example)

Both the topology and the conditional probability tables (CPTs)

Recap: Bayesian networks (semantics)

Both the topology and the conditional probability tables (CPTs)

Recap: Computing the joint distribution

• Each entry $P(x_1,...,x_n)$ in the full joint distribution, which is the abbreviation of $P(X_1=x_1 \land ... \land X_n=x_n)$ is the product of the elements of the CPTs defined as follows:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

$$P(j, m, a, b, e)$$

= $P(j|a) P(m|a) P(a|b,e) P(b) P(e)$
= $0.90*0.70*0.95*0.001*0.002$
= 0.000001197

$$P(\neg m, j, \neg a, \neg e, b) = ?$$

Each node needs a probability table. Size of table depends on number of parents.

$\mathbf{P}(H)$		
True	False	
0.01	0.99	

	$\mathbf{P}(M \mid H)$	
H	True	False
True	0.1	0.9
False	0.99	0.01

			$\overline{H,B)}$
H	B	True	False
	True		0.99
True	False	0.1	0.9
False	True	0.02	0.98
False	False	1.0	0.0

..., etc

H = hardware problem

 $B = \mathsf{bug} \; \mathsf{in} \; \mathsf{lab}$

M =mailer is running

 $L = \mathsf{lab} \; \mathsf{is} \; \mathsf{running}$

 $R={
m received\ email}$

 $S = \mathsf{problem} \ \mathsf{solved}$

• Compute $P(B \mid \neg R, S)$

Each node needs a probability table. Size of table depends on number of parents.

$\mathbf{P}(H)$		
True	False	
0.01	0.99	

	$\mathbf{P}(M)$	$(H \mid H)$
H	True	False
True	0.1	0.9
False	0.99	0.01

		$P(L \mid$	$\overline{H,B)}$
H	B	True	False
True	True	0.01	0.99
True	False	0.1	0.9
False	True	0.02	0.98
False	False	1.0	0.0

..., etc.

H = hardware problem

 $B = \mathsf{bug} \; \mathsf{in} \; \mathsf{lab}$

M =mailer is running

 $L = {\sf lab} \; {\sf is} \; {\sf running}$

 $R={
m received\ email}$

 $S = \mathsf{problem} \ \mathsf{solved}$

• Compute $P(B \mid \neg R, S)$

1. Apply the conditional probability rule.

$$P(B \mid \neg R, S) = \frac{P(B, \neg R, S)}{P(\neg R, S)}$$

H = hardware problem

 $B = \mathsf{bug} \mathsf{in} \mathsf{lab}$

M = mailer is running

 $L = \mathsf{lab} \mathsf{\ is\ running}$

 $R={
m received\ email}$

 $S = \mathsf{problem} \ \mathsf{solved}$

Compute **P** (*B* | ¬*R*,*S*)

Apply the conditional probability rule.

$$P(B \mid \neg R, S) = \frac{P(B, \neg R, S)}{P(\neg R, S)}$$

2. Apply the marginal distribution rule to the unknown vertices. $P(B, \neg R, S)$ has 3 unknown vertices with $2^3 = 8$ possible value assignments.

$$P(B, \neg R, S) = P(B, \neg R, S, H, M, L) + P(B, \neg R, S, H, M, \neg L) + P(B, \neg R, S, H, \neg M, L) + P(B, \neg R, S, H, \neg M, \neg L) + P(B, \neg R, S, \neg H, M, L) + P(B, \neg R, S, \neg H, M, \neg L) + P(B, \neg R, S, \neg H, \neg M, L) + P(B, \neg R, S, \neg H, \neg M, L) + P(B, \neg R, S, \neg H, \neg M, \neg L)$$

 $H={\sf hardware\ problem}$

 $B = \mathsf{bug} \; \mathsf{in} \; \mathsf{lab}$

M = mailer is running

 $L = {\sf lab} \; {\sf is} \; {\sf running}$

 $R={
m received\ email}$

 $S = \mathsf{problem} \ \mathsf{solved}$

Compute **P** (*B* | ¬*R*,*S*)

Apply the conditional probability rule.

$$P(B \mid \neg R, S) = \frac{P(B, \neg R, S)}{P(\neg R, S)}$$

- 2. Apply the marginal distribution rule to the unknown vertices. $P(B, \neg R, S)$ has 3 unknown vertices with $2^3 = 8$ possible value assignments.
- 3. Apply joint distribution rule for Bayesian networks.

$$P(B, \neg R, S, H, M, L)$$

$$= P(B) P(H)$$

$$P(M \mid H) P(\neg R \mid M)$$

$$P(L \mid H, B) P(S \mid L)$$

$$P(B, \neg R, S) = P(B, \neg R, S, H, M, L) + P(B, \neg R, S, H, M, \neg L) + P(B, \neg R, S, H, \neg M, L) + P(B, \neg R, S, H, \neg M, \neg L) + P(B, \neg R, S, \neg H, M, L) + P(B, \neg R, S, \neg H, M, \neg L) + P(B, \neg R, S, \neg H, \neg M, L) + P(B, \neg R, S, \neg H, \neg M, \neg L) + P(B, \neg R, S, \neg H, \neg M, \neg L)$$

Question: Where do the CPTs come from?

· Answer: Learning <u>probabilistic models</u> from data

Outline of today's lecture

- Statistical learning
- Maximum-likelihood parameter learning
- Naïve Bayes models

Data and hypotheses

- Data (as the evidence)
 - Instantiations of random variables that describe the domain
- Hypotheses
 - Probabilistic theories of how the domain works
- Learning
 - Learn the hypothesis that best fit the data

Statistical learning example

- Candy in two flavors indistinguishable from the outside
 - cherry
 - lime
- Sold in large bags of five kinds:

```
- h_1: 100% cherry

- h_2: 75% cherry + 25% lime

- h_3: 50% cherry + 50% cherry

- h_4: 25% cherry + 75% lime

- h_5: 100% lime
```

```
Learning problem: Which bag (H = h_1, ..., or H = h_5) is this?
```

Statistical learning example

- Candy in two flavors indistinguishable from the outside
 - cherry
 - lime
- Sold in large bags of five kinds:

```
- h_1: 100% cherry

- h_2: 75% cherry + 25% lime

- h_3: 50% cherry + 50% cherry

- h_4: 25% cherry + 75% lime

- h_5: 100% lime
```

Learning problem: Which bag $(H = h_1, ..., or H = h_5)$, given favors of randomly drawn candies $(D_1, ..., D_N)$?

 Calculate the probability of each hypothesis, given the data (d), and make the prediction on that basis

```
- P(h_1 | \mathbf{d}) = \alpha P(\mathbf{d} | h_1) P(h_1)

- P(h_2 | \mathbf{d}) = \alpha P(\mathbf{d} | h_2) P(h_2)

- P(h_3 | \mathbf{d}) = \alpha P(\mathbf{d} | h_3) P(h_3)

- P(h_4 | \mathbf{d}) = \alpha P(\mathbf{d} | h_4) P(h_4)

- P(h_5 | \mathbf{d}) = \alpha P(\mathbf{d} | h_5) P(h_5)
```

Likelihood of the data under each hypothesis $P(d \mid h_i)$

Hypothesis prior $P(h_i)$

 Calculate the probability of each hypothesis, given the data (d), and make the prediction on that basis

$$- P(h_{1} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{1}) P(h_{1}) = \alpha P(\mathbf{d} | h_{1}) * 0.1$$

$$- P(h_{2} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{2}) P(h_{2}) = \alpha P(\mathbf{d} | h_{2}) * 0.2$$

$$- P(h_{3} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{3}) P(h_{3}) = \alpha P(\mathbf{d} | h_{3}) * 0.4$$

$$- P(h_{4} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{4}) P(h_{4}) = \alpha P(\mathbf{d} | h_{4}) * 0.2$$

$$- P(h_{5} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{5}) P(h_{5}) = \alpha P(\mathbf{d} | h_{5}) * 0.1$$

Likelihood of the data under each hypothesis $P(d \mid h_i)$

Hypothesis prior $P(h_i)$

• Calculate the **probability of each hypothesis**, given the data $(d = \{d_1, ..., d_5\})$, and make prediction on that basis

$$- P(h_{1} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{1}) P(h_{1}) = \alpha P(\mathbf{d} | h_{1}) * 0.1$$

$$- P(h_{2} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{2}) P(h_{2}) = \alpha P(\mathbf{d} | h_{2}) * 0.2$$

$$- P(h_{3} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{3}) P(h_{3}) = \alpha P(\mathbf{d} | h_{3}) * 0.4$$

$$- P(h_{4} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{4}) P(h_{4}) = \alpha P(\mathbf{d} | h_{4}) * 0.2$$

$$- P(h_{5} | \mathbf{d}) = \alpha P(\mathbf{d} | h_{5}) P(h_{5}) = \alpha P(\mathbf{d} | h_{5}) * 0.1$$

Likelihood of the data under each hypothesis $P(d \mid h_i)$

Hypothesis prior $P(h_i)$

$$P(\mathbf{d} \mid h_i) = \prod_j P(d_j \mid h_i)$$

 Calculate the probability of each hypothesis, given the data, and make the prediction on that basis

Likelihood of the data under each hypothesis $P(d \mid h_i)$

Hypothesis prior $P(h_i)$

$$P(\mathbf{d} \mid h_i) = \prod_j P(d_j \mid h_i)$$

First 10 candies are all "lime"

Bayesian learning (in general)

 Calculate the probability of each hypothesis, given the data, and make the prediction of unknown quantity X

Bayesian learning (in general)

- Calculate the probability of each hypothesis, given the data, and make the prediction of unknown quantity X
 - Step 1. Computing the probability of data, given each hypothesis $P(\mathbf{d} \mid h_i) = \prod_j P(d_j \mid h_i)$
 - Step 2. Computing the probability of each hypothesis

$$P(h_i \mid \mathbf{d}) = \alpha P(\mathbf{d} \mid h_i) P(h_i)$$

Step 3. Computing the probability of X, given the data

$$\mathbf{P}(X \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid \mathbf{d}, h_i) \mathbf{P}(h_i \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid h_i) P(h_i \mid \mathbf{d})$$

Bayesian learning (before any candy is revealed)

 Calculate the probability of each hypothesis, given the data, and make the prediction on that basis

$$- P(h_1 | \mathbf{d}) = \alpha P(\mathbf{d} | h_1) * 0.1 = \alpha^{\dagger}$$
 * 0.1 = \alpha^* 0.1

$$- P(h_2 | \mathbf{d}) = \alpha P(\mathbf{d} | h_2) * 0.2 = \alpha^{\dagger}$$
 * 0.2 = \alpha^* 0.2

$$- P(h_3 | \mathbf{d}) = \alpha P(\mathbf{d} | h_3) * 0.4 = \alpha^{\dagger}$$
 * 0.4 = \alpha^* 0.4

$$- P(h_4 | \mathbf{d}) = \alpha P(\mathbf{d} | h_4) * 0.2 = \alpha^{\dagger}$$
 * 0.2 = \alpha^* 0.2

$$- P(h_5 | \mathbf{d}) = \alpha P(\mathbf{d} | h_5) * 0.1 = \alpha^{\dagger}$$
 * 0.1 = \alpha^* 0.1

Know nothing about the candies in this bag

Bayesian learning (after 1 candy is revealed)

 Calculate the probability of each hypothesis, given the data, and make the prediction on that basis

First candy is "lime"

Bayesian learning (after 2 candies are revealed)

 Calculate the probability of each hypothesis, given the data, and make the prediction on that basis

First 2 candies are "lime"

Bayesian learning (after 3 candies are revealed)

 Calculate the probability of each hypothesis, given the data, and make the prediction on that basis

First 3 candies are "lime"

Bayesian learning (results)

Bayesian prediction eventually agrees with the true hypothesis

Bayesian learning (results)

Bayesian prediction eventually agrees with the true hypothesis

$$\mathbf{P}(X \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid h_i) P(h_i \mid \mathbf{d})$$

Bayesian learning (results)

Bayesian prediction eventually agrees with the true hypothesis

Maximum a posteriori (MAP)

Make prediction based on a single, most probable, hypothesis

$$\mathbf{P}(X \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid h_i) P(h_i \mid \mathbf{d})$$

Bayesian learning (MAP)

 Approximating Bayesian prediction (weighted sum) by making decisions using the most probable hypothesis

$$\mathbf{P}(X \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid \mathbf{d}, h_i) \mathbf{P}(h_i \mid \mathbf{d}) = \sum_{i} \mathbf{P}(X \mid h_i) P(h_i \mid \mathbf{d})$$

$$\mathbf{P}(X \mid \mathbf{d}) \approx \mathbf{P}(X \mid h_{\text{MAP}})$$

 h_{MAP} is the hypothesis with largest $P(h_i|d)$

$$P(h_i \mid \mathbf{d}) = \alpha P(\mathbf{d} \mid h_i) P(h_i)$$

$$P(\mathbf{d} \mid h_i) = \prod_j P(d_j \mid h_i)$$

The role of prior – $P(h_i)$

- Bayesian (and MAP) learning uses the prior to penalize complexity
 - Complex hypothesis has a lower prior probability

 $P(h_i \mid \mathbf{d}) = \alpha P(\mathbf{d} \mid h_i) \frac{P(h_i)}{P(h_i)}$

Ockham's razor: find the simplest hypothesis that is consistent with the data

$$P(\mathbf{d} \mid h_i) = \prod_j P(d_j \mid h_i)$$

The role of prior – $P(h_i)$

- Maximum-likelihood hypothesis can be learned by using a uniform prior
 - Equivalent to maximizing P(d | h_i)

with a small data set

Outline of today's lecture

- Statistical learning
- Maximum-likelihood parameter learning
- Naïve Bayes models

Density estimation

- Learning a probability model, given data generated from that model
 - E.g., finding the conditional probabilities in a Bayesian network whose structure is fixed

Likelihood

- Let the proportions of "cherry" and "lime" candies be (θ) and (1-θ), respectively.
- If we unwrap N candies, and find that there are
 - (c) cherry candies
 - (l = N c) lime candies
- The likelihood of this data set (d) is

$$P(\mathbf{d} \mid h_{\theta}) = \prod_{j=1}^{N} P(d_j \mid h_{\theta}) = \theta^c \cdot (1 - \theta)^{\ell}$$

Log likelihood

- Let the proportions of "cherry" and "lime" candies be (θ) and (1-θ), respectively.
- If we unwrap N candies, and find that there are
 - (c) cherry candies
 - (l = N c) lime candies
- The likelihood of this data set is

$$P(\mathbf{d} \mid h_{\theta}) = \prod_{j=1}^{N} P(d_j \mid h_{\theta}) = \theta^c \cdot (1 - \theta)^{\ell}$$

$$L(\mathbf{d} \mid h_{\theta}) = \log P(\mathbf{d} \mid h_{\theta}) = \sum_{j=1}^{N} \log P(d_j \mid h_{\theta}) = c \log \theta + \ell \log(1 - \theta)$$

Maximizing the log likelihood

• To find the maximum, compute the derivative of $L(d \mid h_{\theta})$ and set it to zero.

$$L(\mathbf{d} \mid h_{\theta}) = \log P(\mathbf{d} \mid h_{\theta}) = \sum_{j=1}^{N} \log P(d_j \mid h_{\theta}) = c \log \theta + \ell \log(1 - \theta)$$

$$\frac{dL(\mathbf{d} \mid h_{\theta})}{d\theta}$$

$$= \frac{c}{\theta} - \frac{\ell}{1 - \theta}$$

$$= 0 \qquad \Rightarrow \quad \theta = \frac{c}{c + \ell} = \frac{c}{N}$$

Maximizing the log likelihood

• To find the maximum, compute the derivative of $L(d \mid h_{\theta})$ and set it to zero.

$$L(\mathbf{d} \mid h_{\theta}) = \log P(\mathbf{d} \mid h_{\theta}) = \sum_{j=1}^{N} \log P(d_j \mid h_{\theta}) = c \log \theta + \ell \log(1 - \theta)$$

$$\frac{dL(\mathbf{d} \mid h_{\theta})}{d\theta}$$

$$= \frac{c}{\theta} - \frac{\ell}{1 - \theta}$$

$$= 0$$

The maximum-likelihood hypothesis (hML) says that the <u>proportion (θ) of cherry candies</u> is equal to the <u>observed proportion</u>

$$\Rightarrow \quad \theta = \frac{c}{c+\ell} = \frac{c}{N}$$

Obvious, but also comforting

General method for maximum-likelihood parameter learning

- Write down the likelihood of the data as a function of the parameters
- Compute the derivative of the log likelihood w.r.t. each parameter
- Find the parameter values such that the derivatives are zero

- Wrapper for each candy is chosen probabilistically based the flavor
 - But the conditional distributions are unknown

Question: What's the likelihood of seeing a cherry candy in a green wrapper?

- Wrapper for each candy is chosen probabilistically based the flavor
 - But the conditional distributions are unknown

$$P(Flavor = cherry, Wrapper = green \mid h_{\theta,\theta_1,\theta_2})$$

Question: What's the likelihood of seeing a cherry candy in a green wrapper?

- Wrapper for each candy is chosen probabilistically based the flavor
 - But the conditional distributions are unknown

$$\begin{split} &P(Flavor = cherry, Wrapper = green \mid h_{\theta,\theta_1,\theta_2}) \\ &= P(Flavor = cherry \mid h_{\theta,\theta_1,\theta_2}) P(Wrapper = green \mid Flavor = cherry, h_{\theta,\theta_1,\theta_2}) \\ &= \theta \cdot (1 - \theta_1) \; . \end{split}$$

Wrapper

F	$P(W=red \mid F)$	P(W=green/F)
cherry	θ_1	$(1-\theta_1)$
lime	θ_2	$(1-\theta_2)$

Question: What's the likelihood of seeing a cherry candy in a green wrapper?

Data: Unwrapping N candies, of which c are cherries

$$P(\mathbf{d} \mid h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^{\ell} \cdot \theta_1^{r_c} (1-\theta_1)^{g_c} \cdot \theta_2^{r_{\ell}} (1-\theta_2)^{g_{\ell}}$$

$$L = [c \log \theta + \ell \log(1 - \theta)] + [r_c \log \theta_1 + g_c \log(1 - \theta_1)] + [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Data: Unwrapping N candies, of which c are cherries

$$P(\mathbf{d} \mid h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^{\ell} \cdot \theta_1^{r_c} (1-\theta_1)^{g_c} \cdot \theta_2^{r_{\ell}} (1-\theta_2)^{g_{\ell}}$$

$$L = [c \log \theta + \ell \log(1 - \theta)] + [r_c \log \theta_1 + g_c \log(1 - \theta_1)] + [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Derivatives

$$\begin{array}{ll} \frac{\partial L}{\partial \theta} & = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0\\ \frac{\partial L}{\partial \theta_1} & = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0\\ \frac{\partial L}{\partial \theta_2} & = \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0 \end{array}$$

Data: Unwrapping N candies, of which c are cherries

$$P(\mathbf{d} \mid h_{\theta,\theta_1,\theta_2}) = \theta^c (1 - \theta)^{\ell} \cdot \theta_1^{r_c} (1 - \theta_1)^{g_c} \cdot \theta_2^{r_{\ell}} (1 - \theta_2)^{g_{\ell}}$$

$$L = [c \log \theta + \ell \log(1 - \theta)] + [r_c \log \theta_1 + g_c \log(1 - \theta_1)] + [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Derivatives

$$\begin{array}{lll} \frac{\partial L}{\partial \theta} &=& \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 & \Rightarrow & \theta = \frac{c}{c + \ell} \\ \frac{\partial L}{\partial \theta_1} &=& \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0 & \Rightarrow & \theta_1 = \frac{r_c}{r_c + g_c} \\ \frac{\partial L}{\partial \theta_2} &=& \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0 & \Rightarrow & \theta_2 = \frac{r_\ell}{r_\ell + g_\ell} \end{array}$$

Data: Unwrapping N candies, of which c are cherries

$$P(\mathbf{d} \mid h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^{\ell} \cdot \theta_1^{r_c} (1-\theta_1)^{g_c} \cdot \theta_2^{r_{\ell}} (1-\theta_2)^{g_{\ell}}$$

$$L = [c \log \theta + \ell \log(1 - \theta)] + [r_c \log \theta_1 + g_c \log(1 - \theta_1)] + [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Derivatives

$$\frac{\partial L}{\partial \theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0$$

$$\frac{\partial L}{\partial \theta_1} = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0$$

$$\frac{\partial L}{\partial \theta_2} = \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0$$

Same as before - obvious, but also comforting

$$\Rightarrow \theta = \frac{c}{c+\ell}$$

$$\Rightarrow \theta_1 = \frac{r_c}{r_c + g_c}$$

$$\Rightarrow \theta_2 = \frac{r_\ell}{r_\ell + g_\ell}$$

Proportion is equal to the "observed" proportion

Data: Unwrapping N candies, of which c are cherries

$$P(\mathbf{d} \mid h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^{\ell} \cdot \theta_1^{r_c} (1-\theta_1)^{g_c} \cdot \theta_2^{r_{\ell}} (1-\theta_2)^{g_{\ell}}$$

$$L = [c \log \theta + \ell \log(1 - \theta)] + [r_c \log \theta_1 + g_c \log(1 - \theta_1)] + [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Learning is compositional, one for each parameter

Same as before - obvious, but also comforting

Wrapper

$$\theta_1 = \frac{r_c}{r_c + g_c}$$

$$\theta_2 = \frac{r_\ell}{r_\ell + g_\ell}$$

 $\theta = \frac{c}{c+\ell}$

Proportion is equal to the "observed" proportion

Outline of today's lecture

- Statistical learning
- Maximum-likelihood parameter learning
- Naïve Bayes models

Recap: Naïve Bayes model

A single cause directly influence a number of effects, all
of which are conditionally independent, given the cause

$$\mathbf{P}(\mathit{Cause},\mathit{Effect}_1,\ldots,\mathit{Effect}_n) = \mathbf{P}(\mathit{Cause}) \prod_i \mathbf{P}(\mathit{Effect}_i \mid \mathit{Cause})$$

```
P(Toothache, Catch, Cavity)
= P(Toothache, Catch | Cavity)P(Cavity)
= P(Toothache | Cavity)P(Catch | Cavity)P(Cavity)
```

Naïve Bayesian learning

Assumption: Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

 Using maximum-likelihood estimates to learn CDTs; that is, using "frequencies" to compute the "probabilities"

Naïve Bayesian learning

Properties

- Tolerant of noise in attribute and class values of examples
- Learn quickly, even for large problems

Early application

- Email spam detector, where
 - Attribute_i = "how often does the i-th word in a dictionary appear in the email?"
 - Class = "is this email spam?"

How to use the learned model?

Assumption: Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

With observed attribute values $x_1, ..., x_n$, what's the probability of each class C?

How to use the learned model?

Assumption: Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

With observed attribute values $x_1, ..., x_n$, what's the probability of each class C?

The wrapper color may be "red" or "green"

• **Assumption:** Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

P(F = cherry | W = red, T = paper) = ?

P(F = lime | W = red, T = paper) = ?

The wrapper color may be "red" or "green"

Assumption: Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

P(F = cherry | W= red, T= paper) =
$$\alpha * P(cherry) * P(red | cherry) * P(paper | cherry)$$

= $\alpha * 0.6 * 0.7 * 0.8 = \alpha * 0.336$
P(F = lime | W= red, T= paper) = ?

The wrapper color may be "red" or "green"

• **Assumption:** Attributes $(X_1,...,X_n)$ are conditionally independent of each

other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

P(F = cherry | W= red, T= paper) =
$$\alpha * P(cherry) * P(red | cherry) * P(paper | cherry)$$

= $\alpha * 0.6 * 0.7 * 0.8 = \alpha * 0.336$
P(F = lime | W= red, T= paper) = $\alpha * P(lime) * P(red | lime) * P(paper | lime)$
= $\alpha * 0.4 * 0.2 * 0.1 = \alpha * 0.008$

The wrapper color may be "red" or "green"

• **Assumption:** Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

P(F = cherry | W= red, T= paper) =
$$\alpha * P(cherry) * P(red | cherry) * P(paper | cherry)$$

= $\alpha * 0.6 * 0.7 * 0.8 = \alpha * 0.336$
P(F = lime | W= red, T= paper) = $\alpha * P(lime) * P(red | lime) * P(paper | lime)$
= $\alpha * 0.4 * 0.2 * 0.1 = \alpha * 0.008$

$$\alpha = 1 / (0.336 + 0.008) = 1/0.344$$

The wrapper color may be "red" or "green"

• **Assumption:** Attributes $(X_1,...,X_n)$ are conditionally independent of each

other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

P(F = cherry | W= red, T= paper) =
$$\alpha * P(cherry) * P(red | cherry) * P(paper | cherry)$$

= $\alpha * 0.6 * 0.7 * 0.8 = \alpha * 0.336 = 0.977 (97.7%)$
P(F = lime | W= red, T= paper) = $\alpha * P(lime) * P(red | lime) * P(paper | lime)$
= $\alpha * 0.4 * 0.2 * 0.1 = \alpha * 0.008 = 0.023 (2.3%)$

 $\alpha = 1 / (0.336 + 0.008) = 1/0.344$

The wrapper color may be "red" or "green"

Quiz 13

• **Assumption:** Attributes (X₁,...,X_n) are conditionally independent of each other, given the class (C)

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \, \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

With the observed wrapper being "green" and "plastic", what is the probability of the candy being "cherry" and "lime", respectively?

The wrapper color may be "red" or "green"