Homework 2

Due date: 2019. 3.20.

In this homework, let G be a group.

- 1. Find the order of the following group and the order of each element in the group.
- (1) \mathbb{Z}_{12}
- (2) U(10)
- (3) D_4
- 2. In $<\mathbb{Q}$, +>, find the elements in $\Big\langle \frac{1}{2} \Big\rangle$.
- 3. In $<\mathbb{Q}^*,\; \cdot >$, find the elements in $\Big\langle \frac{1}{2} \Big\rangle.$
- 4. Prove that the \mathcal{D}_3 does not have a subgroup of order 4.
- 5. Must the centralize of an element of a group be Abelian?
- 6. Must the center of a group be Abelian?

Prove or disprove: (7-8)

- 7. If $H \leq G$ and $K \leq G$, then $H \cap K \leq G$.
- 8. If $H \leq G$ and $K \leq G$, then $H \cup K \leq G$.

MUMA1 - HW2

WOMADBOY 2017004093 08 25 27

/. (1)
$$Z_{12} = \{0, 1, 2, 3, \dots, 10, 11\}$$

Order of Z_{12} , $|Z_{m}| = 12$ $e = 0$
 $|0| = 1$
 $|11| = 12$ $(1^{12} = 1 + 1 + \dots + 1 = 12 = 0)$
 $|2| = b$ $(2^{6} = 2 + 2 + \dots + 2 = 12 = 0)$
 $|3| = 4$, $|4| = 3$, $|5| = 12$, $|6| = 2$
 $|1| = 12$, $|8| = 3$, $|9| = 4$, $|10| = 6$, $|11| = 12$

(2)
$$U(10) = \{1, 3, 7, 9\}$$

 $|U(10)| = 4, e = 1$
 $|11 = 1, |3| = 4, |7| = 4, |9| = 2$

(9)
$$D4 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$$

 $|P4| = 8$, $e = R_0$
 $|R_0| = 1$, $|R_{90}| = 4$, $|R_{180}| = 2$, $|R_{270}| = 4$
 $|H| = 2$, $|V| = 2$, $|D| = 2$, $|D'| = 2$

2.
$$\langle Q, + \rangle$$

 $\langle \frac{1}{2} \rangle = \{ \cdots, -2, -\frac{2}{2}, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \cdots \}$

3.
$$\langle Q^*, \cdot \rangle$$

 $\langle \frac{1}{2} \rangle = \{ \cdots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \cdots \}$

4. Dr = [Ro, R120, R240, L1, L2, L2]

Ro is identity,

Thus Gulgroups of Dr have to contain Ro

R120. R240 = e, L1. L1 = e, L2. L2 = e, L3. L3 = e

i) Subgroup of order 1.

Do When ii), iii) added one more other element,

It become Pr to be subgroup of G

.. Do does not have a subgroup of order 4.

5. Let G is not Abelian group.

Yg EG, ge = eg = g

C(e) = G

: C(e) is not Abelian

b. $Z(G) = \{a \in G \mid ax = xa, \forall x \in G\}$ $\forall a, b \in Z(G), ab = ba (: a, b \in G)$ $\vdots Z(G) \text{ is Abelian}$

- 1. HGG, KGG → HNKSG prove).
 - i) existance of e

 Since H, K are subgroup of G,

 e is in H, K.

 : e ∈ HNK (nonempty set)

 - : HOK is subgroup of G
- 8. $H \leq G$, $K \leq G \rightarrow HUK \leq G$ disprove). Let $H \not= K$, $K \not= H$, $h \in H(h \not= K)$, $k \in K(K \not= H)$ Then we know that $h, K, h'', k'' \in HUK$

WTS $hk \notin HUK$ Suppose $hk \in H$, then, h', $hk \in H$ $h' \cdot hk = (h'h) \cdot k = e \cdot k \notin H \ (\Rightarrow =)$ $\therefore hk \notin H$ Similarly, also $hk \notin K$ (same argument) Thus $hk \notin HUK$

: HUK is not subgroup of G