STM: SenTiMetalchemy Multi-modal approach to Sentiment Analysis

Team Member: Tom Liu, Kexin Gao, Lexie Wang, Yutong Li

Main Task (D2 - D3)

- Task: Sentiment Intensity Classification
 - Input: Text (Uni-modal), Audio, Video (Multi-modal)
 - Output: Sentiment intensity score within [-3, 3]
- Dataset: CMU-MOSI Dataset (Zadeh et al., 2016)
 - a collection of 2199 opinion video clips annotated with sentiment in the range [-3,3]
 - Annotated with labels for subjectivity, sentiment intensity, per-frame and per-opinion annotated visual features, and per-milliseconds annotated audio features.
- Approach:
 - Uni-modal method
 - 3 models trained on only text modality
 - Multi-modal method
 - 1 fusion model trained on text, audio, video modalities

Figure: Distribution of sentiment over the entire dataset.

Figure 3: Sentiment intensity histograms for different spoken words and visual gestures. In each histogram y-axis is the frequency of co-occurrence and x-axis is sentiment intensity as in Figure 2.

System Overview

Data Loading

 CMU-Multimodal SDK - get the embeddings of the three modalities of each instance

Data Processing

- Uni-modal (text only)
 - Get the embeddings of each token of the sentence
 - Average into a sentence embedding vector
- Multi-modal (text + audio +video)
 - SDK built-in feature alignment method
 - Align acoustic and visual features with textual features

Dataset Split

- dataset is split into train (58%), test (10%), and development (32%)
- Training
 - Train 4 models in total (details in the next part)
- Evaluation
 - Metrics: ACC-7, ACC-2, F1 score, MSE, R^2

Uni-modal processing

Multi-modal processing

Uni-Modal Model

- Baseline Support Vector Regression
 - Radial Basis Function kernel
- Neural Network
 - STM-NN: two fully connected layers with size of 512 and 256
 - STM-LSTM: **LSTM** layer followed by one **fully connected layer**
 - *STM–UniModalLSTM: Trained on each of the three modalities individually

Multi-Modal Model

Result (Main Task)

- STM-NN and STM-LSTM outperform the baseline model in ACC-2
- ACC-7 of the fusion model is significantly higher than the ACC-7 of uni-modal models.
- STM UniModalLSTM reaches ACC-2 of 48% for audio modal, 52% for video, 71% for text.

Method	Model	MAE ↓	Corr ↑	ACC-7↑	ACC-2↑	F1 ↑
Uni-modal	STM-SVR	1.60	0.39	20.52	70.74	72.88
	STM-NN	1.02	0.43	20.08	73.80	75.63
	STM-LSTM	1.09	0.37	21.40	74.24	75.69
Multi-modal	STM-Fusion	1.08	0.31	22.16	70.99	71.73
	UniMSE	0.69	0.81	48.68	86.90	86.42

Table 1: Results on CMU-MOSI. Contents in italic denote the current SOTA model (trained on larger dataset MOSEI). Contents in bold denote the best performance from our models.

Issues and Successes

Issues

- STM-LSTM outperformed STM-Fusion in ACC-2 and F1
- Computational resources
- Simple concatenation late fusion
- CMU-MOSI dataset size is small

Successes

- Improvement in 7 class classification
- STM-Fusion performed better than STM -UniModalLSTM in visual and acoustic modalities

Adaptation Task

Dataset	# V	' # S '	Mod	Sent	Emo	TL (hh:mm:ss)
MOSEI	23,500	1,000	$\{l,v,a\}$	1	/	65:53:36
CMU-MOSI [64] I	2,199	1 98 1	$\{l,v,a\}$	1	ı X	02:36:17

- CMU- MOSEI (Bagher Zadeh et al., 2018)
 - More than 23,500 sentence videos
 - 1000 online YouTube speakers
 - Gender balanced
 - Annotated with sentiment intensity and emotion

Next Step - Adaptation Task

- We may try the Attention mechanism
- Current output: Sentiment Score Only (i.e., [-3, 3])
- Next step: Sentiment Score + Emotion Label (2.5, "happy")

Reference

Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph (Bagher Zadeh et al., 2018)

MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos (Zadeh et al., 2016)