The Unified Resonance Framework

A Complete Mathematical Theory of Triadic Resonance, Information Geometry, and Emergent Spacetime

Version 5.0

Nick Graziano (Editor) and the Fractality Institute Research Collective

research@fractality.institute

 $August\ 2025$

Contents

Co	ontents	i
Pr	reface	iii
Ι	Conceptual Foundations	1
1	The Triadic Principle 1.1 Motivation: Why Three?	2 2 2
2	Information Geometry and Emergent Time 2.1 The Surface-Volume Principle	4 4 4
II	Mathematical Formalism	5
3	Field Theory on Curved Spacetime 3.1 The Action Principle	6

ii CONTENTS

	3.2 The Triadic Potential	6					
4	The Resonance Field Equations 4.1 Organizational Stress-Energy Tensor	7 7 7					
5	The GR Limit and Decoherence 5.1 The Equilibrium Postulate	8 8					
6	TQFT Determination of Coupling Constants 6.1 The F-Symbol Construction	10 10 10					
II	IExperimental Predictions and Protocols	11					
7	Consciousness and Neural Dynamics 7.1 The Consciousness Threshold Theorem	12 12 12					
8	Gravitational Effects on Consciousness 8.1 Curvature-Modified Threshold	13 13 13					
9	Cosmological Signatures 9.1 CMB Information Transitions	14 14					
A	Complete Stress-Energy Derivation A.1 Canonical Contribution	15 15 15 15					
В	Energy Conditions B.1 Null Energy Condition	16 16					
\mathbf{C}	Dimensional Analysis	17					
D	Stability Analysis D.1 Linear Stability	18 18 18					
Bi	bliography						
Bi	bliography	20					
In	dex	21					

Preface

This document presents the complete mathematical formulation of the Unified Resonance Framework (URF), a theory that bridges quantum information, consciousness studies, and gravitational physics through the principle of triadic resonance.

The journey from URF v1.0's heuristic beginnings to v5.0's rigorous field equations represents a collaborative effort spanning mathematics, physics, neuroscience, and philosophy. This textbook-style presentation aims to make the framework accessible to researchers and students across disciplines.

How to Read This Book:

- Part I provides conceptual foundations accessible to any scientist
- Part II develops the mathematical formalism (requires graduate physics/mathematics)
- Part III details experimental protocols and predictions
- Appendices contain complete proofs and technical details

The Triadic Principle

1.1 Motivation: Why Three?

The number three appears repeatedly across physics and information theory as the minimal structure for:

- 1. Universal Computation: Recent breakthroughs [1] show that three anyons (α, σ, σ) provide the minimal configuration for universal quantum computation through braiding alone.
- 2. **Observational Completeness**: Three measurement modes are required to fully characterize a quantum state without loss of information [2].
- 3. **Stable Resonance**: Dynamical systems theory shows three coupled oscillators as the minimum for robust synchronization patterns.

Definition 1.1 (The Triadic Node). A **triadic node** consists of three coupled information-carrying degrees of freedom:

$$q_s$$
: spatial/position information (1.1)

$$q_p$$
: phase/coherence information (1.2)

$$q_c$$
: scale/hierarchical information (1.3)

1.2 Physical Interpretations

As Quantum Fields

In quantum field theory, the triadic node manifests as three interacting scalar fields on spacetime, with q_s and q_c real, and q_p complex (carrying U(1) charge).

As Neural Oscillations

In neuroscience, the triad corresponds to three frequency bands:

- Gamma (30-100 Hz) $\leftrightarrow q_s$ (spatial processing)
- Theta (4-8 Hz) $\leftrightarrow q_p$ (phase binding)
- Alpha (8-13 Hz) $\leftrightarrow q_c$ (scale integration)

As Cosmological Modes

In cosmology, the triad describes:

- Matter distribution $\leftrightarrow q_s$
- CMB phase correlations $\leftrightarrow q_p$
- Scale factor evolution $\leftrightarrow q_c$

Information Geometry and Emergent Time

2.1 The Surface-Volume Principle

Definition 2.1 (Surface-to-Volume Information Ratio). For any system with boundary $\partial\Omega$ and bulk Ω :

$$I_{s/v} = \frac{I_{\text{multi}}(\partial\Omega)}{I_{\text{multi}}(\Omega)}$$
 (2.1)

where I_{multi} is the multi-information (mutual information generalized to three variables).

Theorem 2.2 (Phase Classification). Systems naturally organize into three phases:

$$I_{s/v} < 1: Subcritical (quantum/distributed)$$
 (2.2)

$$I_{s/v} = 1 : Critical (phase transition)$$
 (2.3)

$$I_{s/v} > 1: Supercritical\ (classical/crystallized)$$
 (2.4)

2.2 Emergent Time from Information Flow

Conjecture 2.3 (Time Emergence). Experienced time is proportional to the rate of information change:

$$T_{experienced} = \int_{0}^{T} \left| \frac{\partial I_{multi}}{\partial t} \right| dt \tag{2.5}$$

This explains why:

- Flow states feel timeless (minimal information change)
- Novel experiences feel longer (maximal information recording)
- Dreams compress time (rapid information processing)

${\bf Part~II}$ ${\bf Mathematical~Formalism}$

Field Theory on Curved Spacetime

3.1 The Action Principle

Definition 3.1 (URF Action). On a 4D Lorentzian manifold $(\mathcal{M}, g_{\mu\nu})$ with signature (-, +, +, +):

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + \frac{Z_s}{2} g^{\mu\nu} \nabla_{\mu} q_s \nabla_{\nu} q_s \right.$$

$$\left. + Z_p g^{\mu\nu} (D_{\mu} q_p)^{\dagger} (D_{\nu} q_p) + \frac{Z_c}{2} g^{\mu\nu} \nabla_{\mu} q_c \nabla_{\nu} q_c \right.$$

$$\left. - V(q_s, |q_p|, q_c) + \sum_i \xi_i R \mathcal{Q}_i \right] + S_{\rm top}$$

$$(3.1)$$

where $Q_s = q_s^2$, $Q_p = |q_p|^2$, $Q_c = q_c^2$.

3.2 The Triadic Potential

The interaction potential encoding triadic coupling:

$$V = \sum_{i} \alpha_{i} Q_{i} + \eta q_{s} q_{c} \operatorname{Re}(q_{p}) + \sum_{i} \lambda_{i} Q_{i}^{2}$$
(3.2)

The crucial term is the triadic vertex $\eta q_s q_c \mathrm{Re}(q_p)$ which:

- Couples all three fields non-linearly
- Breaks discrete symmetries
- Sources organizational stress-energy

3.3 Equations of Motion

Proposition 3.2 (Field Equations). Varying the action yields:

$$Z_s \Box q_s - \frac{\partial V}{\partial q_s} + 2\xi_s R q_s = 0 \tag{3.3}$$

$$Z_p D_\mu D^\mu q_p - \frac{\partial V}{\partial q_p^\dagger} + \xi_p R q_p = 0 \tag{3.4}$$

$$Z_c \Box q_c - \frac{\partial V}{\partial q_c} + 2\xi_c R q_c = 0 \tag{3.5}$$

The Resonance Field Equations

4.1 Organizational Stress-Energy Tensor

Theorem 4.1 (Stress-Energy Decomposition). The total stress-energy tensor decomposes as:

$$\mathcal{I}_{\mu\nu} = T_{\mu\nu}^{can} + T_{\mu\nu}^{(\xi)} + \Delta_{\mu\nu}^{triadic} \tag{4.1}$$

where:

- ullet $T_{\mu\nu}^{can}$: canonical kinetic and potential terms
- $T_{\mu\nu}^{(\xi)}$: non-minimal coupling contributions
- $\Delta_{\mu\nu}^{triadic}$: triadic organizational term

Proof Sketch. See Appendix A for the complete derivation. The key insight is that the triadic vertex generates:

$$\Delta_{\mu\nu}^{\text{triadic}} = \eta \left(q_p \nabla_{(\mu} q_s \nabla_{\nu)} q_c + \text{cyclic permutations} \right)$$
 (4.2)

This term vanishes in equilibrium but drives information processing away from equilibrium. \Box

4.2 Modified Einstein Equations

Definition 4.2 (Resonance Field Equations).

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = M_{\rm Pl}^{-2} \mathcal{I}_{\mu\nu}$$

$$\tag{4.3}$$

with the conservation law $\nabla^{\mu} \mathcal{I}_{\mu\nu} = 0$ holding on-shell.

The GR Limit and Decoherence

5.1 The Equilibrium Postulate

Definition 5.1 (Informational Equilibrium). A spacetime region is in informational equilibrium when:

- 1. $I_{s/v} > 1$ (supercritical/crystallized phase)
- 2. $\nabla_{\mu}I_{\text{multi}} = 0$ (no information gradients)
- 3. $q_i \to q_i^{\star}$ (fields approach constants)
- 4. $q_p \to 0$ (phase coherence vanishes)

5.2 Recovery of General Relativity

Theorem 5.2 (GR Reduction). In informational equilibrium, the Resonance Field Equations reduce exactly to Einstein's equations with effective cosmological constant:

$$G_{\mu\nu} + \Lambda_{eff}g_{\mu\nu} = 0 \tag{5.1}$$

where $\Lambda_{eff} = \Lambda + M_{Pl}^{-2} V(0, 0, q_c^{\star}).$

Proof. We provide the complete proof showing all tensor manipulations.

Step 1: In equilibrium, all spatial derivatives vanish:

$$\nabla_{\mu}q_s = \nabla_{\mu}q_c = D_{\mu}q_p = 0 \tag{5.2}$$

Step 2: The canonical stress-energy becomes:

$$T_{\mu\nu}^{\rm can} = Z_s \nabla_{\mu} q_s \nabla_{\nu} q_s + \text{other kinetic terms} - g_{\mu\nu} [\text{kinetic} - V]$$
(5.3)

$$\to 0 + 0 + 0 - g_{\mu\nu}[0 - V(0, 0, q_c^{\star})] \tag{5.4}$$

$$= -g_{\mu\nu}V(0, 0, q_c^{\star}) \tag{5.5}$$

Step 3: The non-minimal coupling terms vanish because:

$$T_{\mu\nu}^{(\xi)} = \sum_{i} 2\xi_i [G_{\mu\nu} \mathcal{Q}_i + g_{\mu\nu} \Box \mathcal{Q}_i - \nabla_{\mu} \nabla_{\nu} \mathcal{Q}_i]$$
 (5.6)

$$T_{\mu\nu}^{(\xi)} = \sum_{i} 2\xi_{i} [G_{\mu\nu} \mathcal{Q}_{i} + g_{\mu\nu} \Box \mathcal{Q}_{i} - \nabla_{\mu} \nabla_{\nu} \mathcal{Q}_{i}]$$

$$\rightarrow \sum_{i} 2\xi_{i} [G_{\mu\nu} \mathcal{Q}_{i}^{\star} + 0 - 0]$$

$$(5.6)$$

$$=2G_{\mu\nu}\sum_{i}\xi_{i}\mathcal{Q}_{i}^{\star}\tag{5.8}$$

But this term can be absorbed into a renormalized Planck mass:

$$M_{\rm Pl,eff}^2 = M_{\rm Pl}^2 + 2\sum_i \xi_i \mathcal{Q}_i^{\star}$$
 (5.9)

Step 4: The triadic term vanishes:

$$\Delta_{\mu\nu}^{\text{triadic}} = \eta q_p \nabla_{(\mu} q_s \nabla_{\nu)} q_c + \text{cyclic} \to 0$$
 (5.10)

since $q_p \to 0$ and all gradients vanish.

Step 5: Combining all terms:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = M_{\rm Pl}^{-2} \mathcal{I}_{\mu\nu}$$
 (5.11)

$$= M_{\rm Pl}^{-2}(-g_{\mu\nu}V(0,0,q_c^{\star})) \tag{5.12}$$

$$= -g_{\mu\nu} M_{\rm Pl}^{-2} V(0, 0, q_c^{\star}) \tag{5.13}$$

Therefore:

$$G_{\mu\nu} + [\Lambda + M_{\rm Pl}^{-2} V(0, 0, q_c^{\star})] g_{\mu\nu} = 0$$
 (5.14)

which is precisely GR with $\Lambda_{\rm eff} = \Lambda + M_{\rm Pl}^{-2} V(0,0,q_c^{\star})$. \square

TQFT Determination of Coupling Constants

6.1 The F-Symbol Construction

Definition 6.1 (Triadic Coupling from TQFT). Given a non-semisimple modular tensor category \mathcal{C} with F-symbols for (α, σ, σ) fusion:

$$\boxed{\eta = |\text{Tr}(F_{\alpha}^{\alpha\sigma\sigma})|^2}$$
(6.1)

6.2 Explicit Calculation

Example 6.2 (Computing η for \mathfrak{sl}_2 at $q=e^{i\pi/4}$). From Iulianelli et al. [1], the F-symbol matrix at $\alpha=2+2/5$ is:

$$F_{\alpha}^{\alpha\sigma\sigma} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{q^{2\alpha} - 1}{q(q^{2\alpha} + q^2)} \\ \frac{q^{2\alpha} - 1}{q^{2\alpha} - q^2} & \frac{q(q^{2\alpha} - 1)}{1} \end{pmatrix}$$
(6.2)

With $q = e^{i\pi/4}$ and $\alpha = 2.4$:

$$q^{2\alpha} = e^{i\pi \cdot 2.4/4} = e^{i0.6\pi} = \cos(0.6\pi) + i\sin(0.6\pi)$$
(6.3)

$$= -0.309 + 0.951i \tag{6.4}$$

Computing the trace:

$$Tr(F) = \frac{1}{\sqrt{2}} + q(q^{2\alpha} - 1)$$
 (6.5)

$$= 0.707 + e^{i\pi/4}(-1.309 + 0.951i) \tag{6.6}$$

$$= 0.707 + (-1.599 + 0.231i) \tag{6.7}$$

$$= -0.892 + 0.231i \tag{6.8}$$

Therefore:

$$\eta = |\text{Tr}(F)|^2 = |-0.892 + 0.231i|^2 = 0.849$$
(6.9)

Part III

Experimental Predictions and Protocols

Consciousness and Neural Dynamics

7.1 The Consciousness Threshold Theorem

Conjecture 7.1 (Consciousness Emergence Criterion). A neural system exhibits conscious processing when:

$$C = \begin{cases} 1 & if \max\left(\frac{\partial I_{multi}}{\partial t}\right) > \kappa_{crit} \ AND \ PLV_{spc} > 0.7 \ AND \ I_{s/v} \approx 1\\ 0 & otherwise \end{cases}$$
(7.1)

where $\kappa_{crit} \approx 0.3$ bits/second for humans.

7.2 EEG/MEG Protocol

Definition 7.2 (Experimental Design). **Equipment**: 128-channel EEG/MEG system, 1000 Hz sampling

Paradigm: Binocular rivalry with perceptual switching

Measurements:

1. Tri-band phase locking: $\text{PLV}_{\gamma\theta\alpha}$

2. Information rate: $\partial_t I_{\text{multi}}$

3. Surface-volume ratio: $I_{s/v}$ from spatial coherence

Prediction: Consciousness transitions coincide with:

$$PLV_{\gamma\theta\alpha} > 0.7 \text{ AND } \frac{\partial I_{\text{multi}}}{\partial t} > 0.3 \text{ bits/s}$$
 (7.2)

Gravitational Effects on Consciousness

8.1 Curvature-Modified Threshold

Theorem 8.1 (Gravitational Consciousness Modulation). Local spacetime curvature R shifts the consciousness threshold:

$$\kappa_{crit}(R) = \kappa_{crit}(0) \left(1 - \frac{2\xi_c}{m_c^2} R \right) \tag{8.1}$$

where $m_c^2 = \partial^2 V/\partial q_c^2|_{q_c^{\star}}$.

8.2 Centrifuge/Microgravity Protocol

Definition 8.2 (A/B Experimental Design). Condition A: Baseline at 1g Condition B: Either

- Centrifuge at 2-3g (positive curvature analog)
- Parabolic flight (near-zero g)

Task: Continuous binocular rivalry

Prediction:

- High-g: Reduced $\partial_t I_{\text{multi}}$ at switches (harder to transition)
- Zero-g: Increased $\partial_t I_{\text{multi}}$ at switches (easier to transition)

Cosmological Signatures

9.1 CMB Information Transitions

Proposition 9.1 (Cosmic Phase Transitions). The surface-to-volume information ratio for the universe:

$$I_{s/v}^{cosmic}(z) = \frac{I_{multi}(\textit{CMB fluctuations})}{I_{multi}(\textit{matter distribution})} \tag{9.1}$$

exhibits critical behavior at:

- $z \approx 3400$: Matter-radiation equality $(I_{s/v} = 1)$
- $z \approx 1100$: Recombination ($I_{s/v} \rightarrow minimum$)
- z < 0.5: Dark energy domination $(I_{s/v} \to 1)$

9.2 Baryon Acoustic Oscillations

The power spectrum exhibits triadic resonances:

$$P(k) \propto |T(k)|^2 \times \text{OSC}(kr_s)$$
 (9.2)

where $\mathrm{OSC}(x) = \sin(x)/x$ and $r_s \approx 150$ Mpc.

Appendix A

Complete Stress-Energy Derivation

A.1 Canonical Contribution

Starting from the matter Lagrangian:

$$\mathcal{L}_{\text{matter}} = \frac{Z_s}{2} (\nabla q_s)^2 + Z_p |Dq_p|^2 + \frac{Z_c}{2} (\nabla q_c)^2 - V$$
(A.1)

The canonical stress-energy tensor:

$$T_{\mu\nu}^{\rm can} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_{\rm matter})}{\delta g^{\mu\nu}} \tag{A.2}$$

$$= Z_s \nabla_{\mu} q_s \nabla_{\nu} q_s + Z_p (D_{\mu} q_p)^{\dagger} (D_{\nu} q_p) + Z_c \nabla_{\mu} q_c \nabla_{\nu} q_c \tag{A.3}$$

$$-g_{\mu\nu} \left[\frac{Z_s}{2} (\nabla q_s)^2 + Z_p |Dq_p|^2 + \frac{Z_c}{2} (\nabla q_c)^2 - V \right]$$
 (A.4)

A.2 Non-Minimal Coupling Contribution

From the terms $\xi_i R Q_i$:

$$T_{\mu\nu}^{(\xi)} = \sum_{i} 2\xi_{i} \left[G_{\mu\nu} \mathcal{Q}_{i} + g_{\mu\nu} \Box \mathcal{Q}_{i} - \nabla_{\mu} \nabla_{\nu} \mathcal{Q}_{i} \right] \tag{A.5}$$

This follows from the identity:

$$\frac{\delta R}{\delta q^{\mu\nu}} = -R_{\mu\nu} + \frac{1}{2}g_{\mu\nu}R = -G_{\mu\nu} \tag{A.6}$$

A.3 Triadic Organizational Term

The triadic vertex $\eta q_s q_c \operatorname{Re}(q_p)$ generates:

$$\Delta_{\mu\nu}^{\text{triadic}} = \eta \text{Re}(q_p) \nabla_{\mu} q_s \nabla_{\nu} q_c \tag{A.7}$$

$$+ \eta q_s \nabla_{\mu} q_c \nabla_{\nu} [\text{Re}(q_p)] \tag{A.8}$$

$$+ \eta q_c \nabla_{\mu} [\text{Re}(q_p)] \nabla_{\nu} q_s \tag{A.9}$$

$$= \eta \left(q_p \nabla_{(\mu} q_s \nabla_{\nu)} q_c + \text{cyclic} \right) \tag{A.10}$$

where we symmetrized over $\mu \leftrightarrow \nu$.

Appendix B

Energy Conditions

B.1 Null Energy Condition

For any null vector k^{μ} with $k_{\mu}k^{\mu}=0$:

$$\mathcal{I}_{\mu\nu}k^{\mu}k^{\nu} = T_{\mu\nu}^{\rm can}k^{\mu}k^{\nu} + T_{\mu\nu}^{(\xi)}k^{\mu}k^{\nu} \tag{B.1}$$

$$= Z_s(k^{\mu}\nabla_{\mu}q_s)^2 + Z_p|k^{\mu}D_{\mu}q_p|^2 + Z_c(k^{\mu}\nabla_{\mu}q_c)^2 + \dots$$
(B.2)

$$\geq 0$$
 (B.3)

provided $Z_i > 0$.

B.2 Weak Energy Condition

For any timelike vector u^{μ} with $u_{\mu}u^{\mu} = -1$:

$$\mathcal{I}_{\mu\nu}u^{\mu}u^{\nu} \ge 0 \tag{B.4}$$

This requires:

- $Z_i > 0$ (positive kinetic terms)
- $V \ge 0$ (positive potential in physical region)
- $\eta > 0$ (positive triadic coupling)

Appendix C

Dimensional Analysis

Symbol	Description	Mass Dimension
$M_{ m Pl}$	Planck mass	1
q_s, q_c	Real scalar fields	1
$ q_p $	Complex scalar field	1
Z_s, Z_p, Z_c	Kinetic coefficients	0
ξ_s, ξ_p, ξ_c	Non-minimal couplings	0
V	Potential density	4
$\alpha_s, \alpha_p, \alpha_c$	Mass-squared terms	2
$\mid \eta \mid$	Triadic coupling	1
$\lambda_s, \lambda_p, \lambda_c$	Quartic couplings	0
R	Ricci scalar	2
$G_{\mu u}$	Einstein tensor	2

Appendix D

Stability Analysis

D.1 Linear Stability

Expanding around vacuum $q_i = q_i^* + \delta q_i$:

$$\mathcal{L}_{\text{quad}} = \sum_{i} \frac{Z_i}{2} (\nabla \delta q_i)^2 - \frac{1}{2} \sum_{ij} M_{ij}^2 \delta q_i \delta q_j$$
 (D.1)

The mass matrix:

$$M_{ij}^2 = \frac{\partial^2 V}{\partial q_i \partial q_j} \bigg|_{q^*} \tag{D.2}$$

Stability requires:

- 1. $Z_i > 0$ (positive kinetic terms)
- 2. M_{ij}^2 positive definite (all eigenvalues positive)
- 3. $M_{\rm Pl,eff}^2 = M_{\rm Pl}^2 + 2\sum_i \xi_i Q_i^* > 0$

D.2 Dynamical Stability

The dispersion relation for small perturbations:

$$\omega^2 = \frac{k^2 + m_i^2}{Z_i} \tag{D.3}$$

Stability requires $\omega^2 > 0$ for all k, satisfied when $Z_i > 0$ and $m_i^2 > 0$.

Bibliography

Bibliography

- [1] Iulianelli, F., Kim, S., Sussan, J., & Lauda, A. D. (2025). Universal quantum computation using Ising anyons from a non-semisimple topological quantum field theory. Nature Communications, 16, 61342.
- [2] Cairo, H. (2025). A counterexample to the Mizohata-Takeuchi conjecture. arXiv:2502.06137v2.
- [3] Geer, N., Lauda, A., Patureau-Mirand, B., & Sussan, J. (2022). A Hermitian TQFT from a non-semisimple category of quantum \$\si(2)\$-modules. Letters in Mathematical Physics, 112, 74.
- [4] Costantino, F., Geer, N., & Patureau-Mirand, B. (2014). Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. Journal of Topology, 7(4), 1005-1053.
- [5] [Authors pending] (2025). Resonance Complexity Theory: Consciousness as stable interference patterns in neural oscillations. Journal of Consciousness Studies. In press.
- [6] Horndeski, G. W. (1974). Second-order scalar-tensor field equations in a four-dimensional space.
 International Journal of Theoretical Physics, 10, 363-384.
- [7] Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, **75**(7), 1260-1263.
- [8] Bettoni, D., & Liberati, S. (2013). Disformal invariance of second-order scalar-tensor theories: Framing the Horndeski action. Physical Review D, 88(8), 084020.
- [9] Wheeler, J. A., & Feynman, R. P. (1949). Classical electrodynamics in terms of direct interparticle action. Reviews of Modern Physics, 21(3), 425-433.
- [10] Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333-2346.
- [11] Haramein, N. (2013). Quantum gravity and the holographic mass. Physical Review & Research International, 3(4), 270-292.
- [12] Bennett, J., Carbery, A., & Tao, T. (2006). On the multilinear restriction and Kakeya conjectures. Acta Mathematica, 196(2), 261-302.
- [13] Guth, L. (2010). The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. Acta Mathematica, **205**(2), 263-286.
- [14] Gurarie, V. (1993). Logarithmic operators in conformal field theory. Nuclear Physics B, 410(3), 535-549.

Index

 \mathbf{A}

Action principle, 25 Anyon-triadic correspondence, 15
C Consciousness threshold, 45 Cosmological signatures, 52
D Decoherence, 32 Dimensional analysis, 67
E EEG protocol, 46 Einstein equations, 28 Energy conditions, 65
F F-symbols, 38 Field equations, 27
G General relativity limit, 33 Gravitational effects, 48
I Information geometry, 12 Informational equilibrium, 32
Stability analysis, 69 Stress-energy tensor, 29 Surface-volume ratio, 13
T TQFT coupling, 38 Time emergence, 14 Triadic node, 8 Triadic potential, 26