GSM3612P

30V N-Channel MOSFETs

Product Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices are well suited for high efficiency fast switching applications.

Features

- 30V, 5.3A, $R_{DS(ON)}$ =32m Ω @ V_{GS} =4.5V
- Improved dv/dt capability
- Fast switching
- Suit for 2.5V Gate Drive Applications
- Green Device Available
- SOT-23 package design

Applications

- Notebook
- Load Switch
- LED applications

Packages & Pin Assignments

Ordering Information

Marking Information

Part Number	Package	Part Marking	Quantity
GSM3612PJZF	SOT-23	PYWMM	3000pcs

Absolute Maximum Ratings T_A=25°C Unless otherwise noted

Symbol	Parameter		Typical	Unit
V _{DS}	Drain-Source Voltage		30	V
V _{GS}	Gate-Source Voltage		±12	V
ID	Continuous Drain Current	T _A =25°C	5.3	А
U U	Continuous Drain Current	T _A =100°C	3.4	
I _{DM}	Pulsed Drain Current		21.2	Α
P _D	Power Dissipation (T _A =25°ℂ)		1.56	W
FD	Power Dissipation (Derate above 25℃)		0.012	W/°C
TJ	Operating Junction Temperature Range		-55 to +150	$^{\circ}\mathbb{C}$
T _{STG}	Storage Temperature Range		-55 to +150	${\mathbb C}$
R _{eJA}	Thermal Resistance-Junction to Ambient		80	°C/W

Electrical Characteristics

T_A=25[°]C Unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Static				
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V,I _D =250uA	30			V
△BV _{DSS} /△T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C, I _D =1mA		0.06		V/°C
V _{GS(th)}	Gate Threshold Voltage		0.4	0.6	0.9	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{DS}=V_{GS},I_{D}=250uA$		-3		mV/ ℃
I _{GSS}	Gate Leakage Current	V _{DS} =0V,V _{GS} =±12V			±100	nA
		V _{DS} =30V,V _{GS} =0V			1	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V,V _{GS} =0V, T _J =125°C			10	uA
I _S	Continuous Source Current	V _G =V _D =0V,			5.3	_
I _{SM}	Pulsed Source Current	Force Current			21.2	А
R _{DS(on)}	Drain-Source On-Resistance	V _{GS} =4.5V,I _D =4A	27 3:		32	mΩ
		V _{GS} =2.5V,I _D =3A		32	40	11122
g FS	Forward Transconductance	V _{DS} =10V,I _D =3A		7		S
V_{SD}	Diode Forward Voltage	V _{GS} =0V,I _S =1A			1	V
		Dynamic				
Q_g	Total Gate Charge)/ 40)/// 4.5\/		8.4	12	
Q_gs	Gate-Source Charge	V_{DS} =10V, V_{GS} =4.5V, I_{D} =4A		1	2	nC
Q_{gd}	Gate-Drain Charge]		2.2	4	
C _{iss}	Input Capacitance)/ =40)/)/ =0)/		695	1000	
Coss	Output Capacitance	V_{DS} =10V, V_{GS} =0V, f=1MHz		45	65	pF
C _{rss}	Reverse Transfer Capacitance			36	50	
t _{d(on)}	Turn-On Time			4.5	9	
t _r	Tam on this	V _{DD} =10V,I _D =1A,		13	25	ns
$t_{d(off)}$	Turn-Off Time	V_{GS} =4.5V, R_{G} =25 Ω		27	51	
t _f	12 2 1			8.3	16	
R_g	Gate Resistance	V _{DS} =0V,V _{GS} =0V, f=1MHz		1.5	3	Ω

Typical Performance Characteristics

Fig.1 Continuous Drain Current vs. Tc

Fig.3 Normalized V_{th} vs. T_J

Fig.5 Normalized Transient Impedance

Fig.2 Normalized RDSON vs. T,

Fig.4 Gate Charge Waveform

Fig.6 Maximum Safe Operation Area

Typical Performance Characteristics (Continue)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Package Dimension

	Dimensions				
Symbol	Millimeters		Inches		
Зуппоот	Min	Max	Min	Max	
Α	0.900	1.200	0.035	0.043	
A 1	0.000	0.100	0.000	0.004	
A2	0.900	1.100	0.035	0.039	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP		0.037	7 TYP	
e1	1.800	2.000	0.071	0.079	
L	0.550 REF		0.022	REF	
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	6°	

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

	GS Headquarter		
·	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)		
E	886-2-2657-9980		
[[:::•\	886-2-2657-3630		
@	sales_twn@gs-power.com		

Shenzhen Branch(China)		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1113 B Building, Happiness Washington, Baoan Nan Road, Luohu District, Shenzhen City, China	
F	0755-22208941	
<u> </u>	sales_cn@gs-power.com	

RD Division		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	824 Bolton Drive Milpitas. CA. 95035	
G	1-408-457-0587	

