## **Exercise 1**

(Proof based on [1]). Given two merge trees  $T_f$  and  $T_g$ , equipped with functions  $f:T_f\to\mathbb{R}$  and  $g:T_g\to\mathbb{R}$ , we want to prove that  $d_I(T_f,T_g)=d_{FD}(T_f,T_g)$ . We break down the proof in two Lemmas:

Lemma 1.  $d_I(T_f, T_g) \leq d_{FD}(T_f, T_g)$ 

Proof. In what follows,  $\mathbf{j}^a:T_g\to T_g$  and  $\mathbf{i}^a:T_f\to T_f$  are the two a-shift maps for  $T_f$  and  $T_g$  respectively. Let  $\delta=d_{FD}\left(T_f,T_g\right)$  denote the functional distortion-distance between two merge trees  $T_f$  and  $T_g$ , and let  $\phi^*:T_f\to T_g$  and  $\psi^*:T_g\to T_f$  be the optimal continuous maps achieving  $\delta$ . We will now construct a pair of  $\delta$ -compatible maps for  $T_f$  and  $T_g$  using  $\phi^*$  and  $\psi^*$ . This then implies that  $d_I\left(T_f,T_g\right)\leq d_{FD}\left(T_f,T_g\right)$  as claimed.

First, we construct the map  $\alpha^\delta: T_f \to T_g$  as follows: for every point  $x \in T_f$ , let  $y = \phi^*(x)$ . Now set  $\rho = f(x) + \delta - g \circ \phi^*(x)$ : by the definition of  $d_{FD}$ ,  $\rho$  is a non-negative real value in the range  $[0,2\delta]$ . We now set  $\alpha^\delta(x) = \mathrm{j}^\rho(y) = \mathrm{j}^\rho \circ \phi^*(x)$ . Easy to see that by the choice of  $\rho, g\left(\alpha^\delta(x)\right) = f(x) + \delta$ . Since  $\phi^*$  is continuous, the function  $\rho: T_f \to \mathbb{R}$  is continuous, and the map  $\alpha^\delta$  is thus also a continuous map. Similarly, we construct  $\beta^\delta: T_g \to T_f$ . By their construction, the first two requirements on the exercise sheet are satisfied. We now show that the other two requirements also hold for  $\alpha^\delta$  and  $\beta^\delta$ .

Indeed, consider a point  $x \in T_f$ , and let  $y = \phi^*(x)$  and  $y' = \alpha^\delta(x)$ . By the definition of  $\alpha^\delta$ ,  $g(y') = f(x) + \delta \geq g(y)$  and there is a monotone path  $\pi$  connecting y to y' (in particular, y' is along the path from y to the root of the merge tree  $T_g$ ). Now map  $\pi$  back to  $T_f$  via the map  $\beta^\delta$ , which is necessarily a monotone path  $\pi'$  connecting  $\tilde{x} := \beta^\delta(y)$  and  $x' := \beta^\delta(y') = \beta^\delta \circ \alpha^\delta(x)$ . In other words, x' is along the path from  $\tilde{x}$  to the root of the merge tree  $T_f$ . By the definition of  $\alpha^\delta$  and  $\beta^\delta$ ,  $f(x') = f(x) + 2\delta$ . We could also show that x' is along the path from x to the root of the merge tree  $T_f$ : this implies that  $x' = \mathrm{i}^{2\delta}$ , namely,  $\beta^\delta \circ \alpha^\delta = \mathrm{i}^{2\delta}$ . A symmetric argument shows that  $\alpha^\delta \circ \beta^\delta = \mathrm{j}^{2\delta}$ . Putting everything together, we have that  $\alpha^\delta$  and  $\beta^\delta$  form a  $\delta$ -compatible pair of maps between  $T_f$  and  $T_g$ . As such,  $d_I(T_f, T_g) \leq \delta = d_{FD}(T_f, T_g)$ .

**Lemma 2.**  $d_I(T_f, T_q) \geq d_{FD}(T_f, T_q)$ 

*Proof.* Let  $\varepsilon=d_I\left(T_f,T_g\right)$ . Suppose that  $\varepsilon$  is obtained by a pair of  $\varepsilon$ -compatible maps  $\alpha^\varepsilon:T_f\to T_g$  and  $\beta^\varepsilon:T_g\to T_f$ . We will show that the correspondances generated by these two maps  $\alpha^\varepsilon$  and  $\beta^\varepsilon$  induce a distance distortion at most  $\varepsilon$ . This implies that  $d_{FD}\left(T_f,T_g\right)\leq \varepsilon$ . Specifically, let  $C\left(\alpha^\varepsilon,\beta^\varepsilon\right)$  and  $D\left(\alpha^\varepsilon,\beta^\varepsilon\right)$  be defined as in Definition 4.25 of the Lecture Notes. We now bound  $D\left(\alpha^\varepsilon,\beta^\varepsilon\right)$ .

Consider two pairs  $(x_1,y_1)$ ,  $(x_2,y_2) \in C$   $(\alpha^{\varepsilon},\beta^{\varepsilon})$ . We first aim to bound  $|d_f(x_1,x_2)-d_g(y_1,y_2)|$  from above. Consider  $y_1=\alpha^{\varepsilon}(x_1)$  and  $y_2=\alpha^{\varepsilon}(x_2)$ . Let  $\pi_1$  be the optimal path connecting  $x_1$  to  $x_2$  that achieves  $d_f(x_1,x_2)$ , which is necessarily the unique simple path connecting  $x_1$  to  $x_2$  in the tree  $T_f$ . Its image  $\pi_1'=\alpha^{\varepsilon}(\pi_1)$  is a path connecting  $y_1$  and  $y_2$ . By the first and second properties of  $\varepsilon$ -compatible maps written on the exercise sheet, we have that  $\alpha^{\varepsilon}$  shift every point up by  $\varepsilon$  in the corresponding function value. Hence the range of  $\pi_1$  is shifted up by  $\varepsilon$  to the range of  $\pi_1'$  while their heights are the same. Hence we have  $d_g(y_1,y_2) \leq d_f(x_1,x_2)$ . We have 2 different cases:

- 1. Consider the optimal path  $\pi_2$  connecting  $y_1$  to  $y_2$  to achieve  $d_g\left(y_1,y_2\right)$  in  $T_g$ . Let  $x_1'=\beta^\varepsilon\left(y_1\right)$ ,  $x_2'=\beta^\varepsilon\left(y_2\right)$ . The image  $\pi_2'=\beta^\varepsilon\left(\pi_2\right)$  of  $\pi_2$  under the map  $\beta^\varepsilon$  is a path connecting  $x_1'$  to  $x_2'$  in  $T_f$ . Similarly, we have that height  $(\pi_2)=$  height  $(\pi_2')$  and the range of  $\pi_2$  is translated up by  $\varepsilon$  to  $\pi_2'$ . On the other hand, by the third and fourth properties of  $\varepsilon$ -compatible maps written on the exercise sheet , we have  $x_1'=\mathrm{i}^{2\varepsilon}\left(x_1\right)$ , and  $x_2'=\mathrm{i}^{2\varepsilon}\left(x_2\right)$ . By the definition of the shift map, there is a monotone path from  $x_1$  to  $x_1'$  (along the path from  $x_1$  to the root of the merge tree  $T_f$ ) in  $T_f$ ; and similarly for  $x_2$  and  $x_2'$ . Concatenating these two montone paths with  $\pi_2'$  we obtain a path  $\pi_3$  connecting  $x_1$  to  $x_2$ . Since the two new paths are monotone, of height  $2\varepsilon$  each, and both going up, we have that  $|d_f\left(x_1,x_2\right)-d_g\left(y_1,y_2\right)|\leq 2\varepsilon$ . If the two pairs are obtained via  $x_1=\beta^\varepsilon\left(y_1\right)$  and  $x_2=\beta^\varepsilon\left(y_2\right)$ , a symmetric argument will show  $|d_f\left(x_1,x_2\right)-d_g\left(y_1,y_2\right)|\leq 2\varepsilon$  as well.
- 2. We now consider the remaining case where  $y_1 = \alpha^\varepsilon \left( x_1 \right)$  but  $x_2 = \beta^\varepsilon \left( y_2 \right)$ . Let  $\pi$  be the optimal path connecting  $x_1$  to  $x_2$  in  $T_f$  to achieve  $d_f \left( x_1, x_2 \right)$ . Let  $\pi' = \beta^\varepsilon (\pi)$  be its image in  $T_g$ : note  $\pi'$  connects  $y_1$  to  $y_2' = \beta^\varepsilon \left( x_2 \right)$ . By first and second properties on exercise sheet we have that  $\pi'$  is of the same height of  $\pi$  (and its range is that of  $\pi$  shifted upward by  $\varepsilon$ ). By third and fourth properties on the exercise sheet we have that  $y_2' = \mathbf{j}^{2\varepsilon} \left( y_2 \right)$  and thus there is a monotone path  $\pi_4$  of height  $2\varepsilon$  connecting  $y_2$  to  $y_2'$ .

Hence the concatenation  $\pi_5 = \pi' \circ \pi_4$  is a path connecting  $y_1$  to  $y_2$ . Thus height  $(\pi_5) \leq \operatorname{height}(\pi') + 2\varepsilon = \operatorname{height}(\pi) + 2\varepsilon$ , implying that  $d_q(y_1, y_2) \leq d_f(x_1, x_2) + 2\varepsilon$ .

A symmetric argument shows that  $d_f(x_1, x_2) \leq d_g(y_1, y_2) + 2\varepsilon$ . Hence  $|d_f(x_1, x_2) - d_g(y_1, y_2)| \leq 2\varepsilon$ .

It then follows that  $D\left(\alpha^{\varepsilon},\beta^{\varepsilon}\right)\leq \varepsilon$ . On the other hand, by the first and second properties of  $\varepsilon$ -compatible maps written on the exercise sheet,  $\|f-g\circ\alpha^{\varepsilon}\|_{\infty}=\varepsilon$  and  $\|f\circ\beta_{\epsilon}-g\|_{\infty}=\varepsilon$ . By definition 4.25 of the Lecture Notes, it then follows that  $d_{FD}\left(T_{f},T_{g}\right)\leq\varepsilon$ .

**Intuition:** we basically just create our bounds by taking the maps guaranteed by one distance to build the maps for the other distance.  $\Box$ 

## Exercise 2

(a) By definition,  $\mathcal{M}(\mathcal{U}, f)$  is the nerve of the pullback cover  $f^*(\mathcal{U})$ . By assumption,  $f^*(\mathcal{U})$  is a good cover of X. Thus, by the Nerve Theorem,  $\mathcal{M}(\mathcal{U}, f)$  is homotopy equivalent to  $\bigcup f^*(\mathcal{U}) = \bigcup V_\beta$ , where each  $V_\beta$  is a path connected component of some  $f^{-1}(U_\alpha)$ . Since  $f^*(\mathcal{U})$  is a (good) cover of X, we get

$$\bigcup f^*(\mathcal{U}) = X$$

and this proves (a).

(b) Let  $X=S^2$ , the 2-sphere of radius 1 centered in the origin. We take Z=[-1,1], as filter function f we consider the projection onto the vertical axis Z=[-1,1] and as good cover  $\mathcal U$  of Z we take  $\mathcal U=\{[-1,-0.2),(-0.3,0.3),(0.2,1]\}$ . Let  $\mathcal V=f^{-1}(\mathcal U)$  be the cover of  $S^2$  given by the lower cap  $\mathcal V_1=f^{-1}([-1,-0.2))$ , the upper cap  $\mathcal V_2=f^{-1}((0.2,1])$  and the belt  $\mathcal V_3=f^{-1}((-0.3,0.3))$ . Each  $\mathcal V_i,\,i=1,\cdots,3$ , is path-connected and so the Mapper  $\mathcal M(\mathcal U,f)$  is the nerve of  $\mathcal V$ , that is the following simplicial complex:



This simplicial complex is not homotopy equivalent to  $S^2$ .

(c) Consider the split of the X = 2D-disk into the three sets as follows,  $Z = \{1, 2, 3, 4, 5, 6\}$ :



The numbers are the value of the filtration f on these areas. Now, let the open cover be  $(4-\epsilon,6+\epsilon)$  for the red part,  $(1-\epsilon,2+\epsilon)\cup(5-\epsilon,5+\epsilon)$  for the green part, and  $(2-\epsilon,5+\epsilon)$  for the blue part. Obviously, the pullback cover is exactly these three areas as I drew them above. This is clearly not a good cover, since red and green intersect in two connected components, thus this intersection is not contractible. However, the nerve of the three areas is just a filled in triangle, which is homotopy equivalent to the disk.

## References

[1] Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between reeb graphs, 2016.