

Characterization of the Xen Project Code Review Process: an Experience Report

Daniel Izquierdo-Cortazar, Lars Kurth, Jesus M.Gonzalez-Barahona, Santiago Dueñas, and Nelson Sekitoleko

Problem

Traditional Code Inspections

Modern Code Review

Mandatory code review

Verses

Project/ Code review parameters: patch reviewers, size
of the patch, time-to-merge, neutrality etc.

Impact

-Product & process quality, cost and time to market

Understand

Impact of code review the overall development effort:

Mandated reviewer checklists and in-person meetings

Lightweight, tool-supported

Xen Project: Virtualization platform powering largest clouds e.g Amazon, linux

- Impact of Code review process on development effort: mainly Time-to-Merge
- Verify: perception: increased messages related to code review: Impact on project parameters: e.g. time to merge.
- Quantitative data suitable for informed discussion: corrective action

Research Questions

RQ1: Is time-to-merge increasing, measured from the moment a change is proposed to the moment it is finally merged into the code base?

RQ2: Is there an impact of size of "combined patches" (patchseries), measured as the number of individual patches in them, on time-to-merge for those patch series?

Year	No. of commits	No. of emails	No. of Patches
2002-2016	34,494	257,572	146,977

Table 1: Some parameters related to the activity observed in Xen repositories

Methodology

- 1.Retrieval of mailing list information
- Retrieval of Git information.
- 3. Detection and classification code review messages.
- 4.Merging information from CVSAnaly (git) and ML-Stats (mailing list) databases
- 5. Analysis: Querying, Ipython notebook, Pandas --> Simple Statistics

Methodology

Year	No. of commits	No. of emails	No. of Patches
2002-2016	34,494	257,572	146,977

Table 1: Some parameters related to the activity observed in Xen repositories

Year	No. of patches	No. of commits	No. of commits matching to patches
2011	1559	2181	581
2012	1907	2296	954
2013	2345	2503	1396
2014	2035	2332	1315
2015	2060	2204	1244

Table 3: Number of patches, commits, and commits corresponding to patches identified in the combined database (matched commits)

Results: RQ1:Time-to-merge is under control.

Figure 3: Evolution of time to merge

RQ2:Time-to-merge is behaving in a similar way for all sizes of patch series

Figure 4: Time to merge patchsets (days) by number of patches

RQ2:Time-to-merge is behaving in a similar way

Small and large patch series show the same pattern

Figure 5: Time to merge (days) for patch series composed of a single patch..

Figure 6: Time to merge (days) for patch series composed of more than 4 patches.

Conclusion, Future work and Take away

- → Conclusion
- Time-to-merge is under control: Xen community
- Small and large patch series show the same pattern.
- Other metrics: time to commit, time to re-work a patch, cycle time, time to review

→ Future

- Matching algorithm: email threads to git commits
- Conducting similar study (and more): Linux Kernel