CS684 - Embedded Systems (Software)

Introduction to Realtime Systems - I

> Kavi Arya IIT Bombay

Embedded Systems?

Plan

- Realtime Embedded Systems
 - Introduction
 - Application Examples
- Real-time support for ESW

1. Flight Simulator

CLIENT - pilot

SERVER - simulator

Constraints on responses to pilot inputs, aircraft state updates

Time Periods to meet Timing Requirements

CLIENT

SERVER

Requirement

Continuous pilot inputs should be polled at rates greater than

62.5*Hz*

Choice Made

The time period of the writer on Client should be less than **16** *ms*

Rationale

The writer thread on the Client polls for the pilot inputs from the joystick

Time Periods to meet Timing Requirements...

CLIENT

SERVER

Requirement

The state of the aircraft is to be advanced at **12.5** *ms* time steps

Choice Made

The time period of the Flight Dynamics thread on the Server is **12.5** *ms*

Rationale

The flight dynamics thread on the Server advances the state of the system

Time Periods to meet Timing Requirements...

Requirement

Response time for pilots should be less than **150** *ms* for commercial aircrafts and **100** *ms* for fighter aircrafts

Choice Made

Reader and Writer threads on Server, and the Reader thread on the Client should be as fast as the system permits. (Time period of **4***ms* in our case)

Rationale

- Delay in data transfer at these threads increases the response time
- These threads should be interrupt driven in order to minimize the response time

Example 2: Injection Molding

- –Keep plastic at proper temperature (liquid, not boiling)
- -Control injector solenoid (make sure that the motion of the solenoid terminates before the piston reaches the end of its travel.

Source: "Laboratory for Perceptual Robotics, UMass" Copyright 1996 by Roderic A. Grupen

Controlling a reaction

we know:

- if temperature too high, it explodes
- maximum rate of temperature increase
- rate of cooling

events:

- temperature change
- temperature > safe threshold

we can derive:

- how often we have to check temperature
- when we have to finish cooling

Example - Injection Molding (cont.)

Timing constraints

• the injector must be off within τ_{inj} seconds after A or B limit signals, so that $v_{inj}\tau_{inj} < \delta$

• the temperature control contactor must be activated within τ_{temp} seconds of a temperature event, so that $T_{boil} < T < T_{flow}$

Example - Injection Molding (cont.)

Concurrent control tasks

injector control:

```
in position A;
while(1) {
    wait_until(form_empty);
    on(forward);
    wait_until(B);
    off(forward);
    on(backward);
    wait_until(A);
    off(backward);
}
```

temperature control:

```
while(1) {
    analog_in(Temp);
    if (Temp > Tmax) {
        off(contactor);
    }
    else if (Temp < Tmin) {
        on(contactor);
    }
}</pre>
```


Example 3: Cruise Control

- Controls car speed
- Actuates the throttle valve by a cable connected to an actuator, instead of by pressing a pedal.
- The throttle valve controls the power and speed of the engine by limiting how much air the engine takes in .

Control Architecture for Cruise Control

Adaptive Cruise Control with Driver Alert

- Helps to reduce the need for drivers to manually adjust speed or disengage cruise control when encountering Slower traffic.
- Automatically manages vehicle speed to maintain a distance set by driver.
- Alerts drivers when slower traffic is detected in the path.
- Audible and visual alerts warn the driver when braking is necessary to avoid slower moving vehicles ahead.
- Drivers can adjust system sensitivity to their preferred driving style.

Plan

Real-Time Support

- Special Characteristics of Real-Time Systems
- Real-Time Constraints
- Canonical Real-Time Applications
- Scheduling in Real-time systems
- Operating System Approaches

What is "real" about real-time?

computer world e.g., PC real world industrial system, airplane

average response for user, interactive

events occur in environment at own speed

occasionally longer

reaction too slow: deadline miss

reaction: user annoyed

reaction: damage, pot. loss of human life

computer controls speed of user

computer must follow speed of environment

"computer time"

"real-time"

Real-Time Systems

A real-time system is a system that reacts to events in the environment by performing predefined actions within specified time intervals.

Flight Avionics

CLIENT SERVER

Constraints on responses to pilot inputs, aircraft state updates

Example: injection molding

Constraints:

- Keep plastic at proper temperature (liquid, but not boiling)
- Control injector solenoid
 (make sure motion of piston reaches end of its travel)

Real-Time Systems: Properties of Interest

Safety: Nothing bad will happen

Liveness: Something good will happen

Timeliness:

Things will happen on time -- by their deadlines, periodically,

In a Real-Time System....

Correctness of results depends on value and its **time** of delivery

correct value delivered too late is incorrect e.g., traffic light: light must be green when crossing, not enough before

Real-time:

(Timely) reactions to events as they occur, at their pace:

(real-time) system (internal) time same time scale as environment (external) time

Performance Metrics in Real-Time Systems

 Beyond minimizing response times and increasing the throughput:

- achieve timeliness.

 More precisely, how well can we predict that deadlines will be met?

Types of RT Systems

Dimensions along which real-time activities can be categorized:

- How <u>tight</u> are the deadlines?
 - --deadlines are tight when **laxity** (deadline -- computation time) is small.
- How <u>strict</u> are the deadlines?
 - --what is the value of executing an activity after its deadline?
- What are the characteristics of the environment?
 - --how static or dynamic must the system be?

Designers want their real-time system to be *fast, predictable, reliable, flexible*.

Hard, soft, firm

- Hard result useless or dangerous if deadline exceeded
- Soft
 result of some lower value if deadline exceeded
- Firm
 If value drops to zero at deadline

Deadline intervals: result required not later and not before

Examples

Hard real time systems

- Aircraft
- Airport landing services
- Nuclear Power Stations
- Chemical Plants
- Life support systems

– ...

Soft real time systems

- Multimedia
- Interactive video games
- ATM response
- **—** ...

Real-Time: Items and Terms

Task

- program, perform service, functionality
- requires resources, e.g., execution time

Deadline

- specified time for completion of, e.g., task
- time interval or absolute point in time
- value of result may depend on completion time

Plan

Special Characteristics of Real-Time Systems

Real-Time Constraints

Canonical Real-Time Applications

Scheduling in Real-time systems

Operating System Approaches

Timing Constraints

- Real-time means to be in time --How do we know something is "in time"?
 How do we express that?
- Timing constraints are used to specify temporal correctness e.g., "finish assignment by 2pm", "be at station before train departs".
- A system said to be (temporally) feasible, if it meets all specified timing constraints.
- Timing constraints do not come out of thin air: design process identifies events, derives models, and finally specifies timing constraints

Periodic

- activity occurs repeatedly
- e.g., to monitor environment values, temperature, etc.

Aperiodic

- can occur any time
- no arrival pattern given

aperiodic

Sporadic

- can occur any time, but
- minimum time between arrivals

Who initiates (triggers) actions?

Example: Chemical process

- Controlled so temperature stays below danger level
- Warning triggered before danger point

..... so cooling can still occur

Two possibilities:

- Action whenever temp raises above warn;
 event triggered
- Look every int time intervals;
 action when temp if measures above warn time triggered

ET vs TT

Time triggered

Stable number of invocations

Event triggered

- Only invoked when needed
- High number of invocation and computation demands if value changes frequently

Slow down the environment?

Importance

- Which parts of the system are important?
- Importance can change over time
 e.g., fuel efficiency during emergency landing
- Flow control
 Who has control over speed of processing?
 Who can slow partner down?
 - Environment
 - Computer system

RT: environment cannot be slowed down

Other Issues to worry about

Meet requirements -- some activities may run only:

- After others have completed precedence constraints
- While others are not running mutual exclusion
- Within certain times temporal constraints

Scheduling

Planning of activities, such that required timing is kept

Allocation

– Where should a task execute?

In Summary

Examples:

- Flight simulator
- Injection molding
- Automobile Cruise Control

Definitions:

- What is "real" about realtime systems
- Performance metrics in realtime systems: "timeliness"
- Types of RT systems: nature of deadlines, hard, soft, firm

Timing constraints

- Periodic, aperiodic, sporadic
- Event driven vs time-triggered systems
- Other issues: requirements, scheduling, resource allocation