Mechanics of Materials

Lecture 17 - Strain Transformation

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

20 Oct. 2020

1

schedule

- 20 Oct Strain Transformation, HW 7 Due
- 22 Oct Beam Deflection
- 27 Oct Beam Deflection, HW 8 Due, HW 7 Self-Grade Due
- 29 Oct Beam Deflection

outline

- absolute maximum shear
- plane strain
- principal strains and mohr's circle
- strain rosettes
- material property relationships

3

absolute maximum shear

- We already know how to find the maximum in-plane shear, but sometimes the maximum shear stress can occur in another plane
- We can do this (without treating it as a fully 3D problem) by treating each plane as its own plane stress problem

mohr's circle

_

mohr's circle

• The maximum absolute shear will depend on whether σ_1 and σ_2 are in the same or opposite directions

$$au_{abs,max} = rac{\sigma_1}{2}$$
 same direction $au_{abs,max} = rac{\sigma_1 - \sigma_2}{2}$ opposite directions

 Which of the three mohr's circles the maximum occurs in will determine which plane the shear acts in

7

plane strain

- Under plane stress we assume no out-of-plane stresses are present
- This is typically a good assumption for very thin materials
- Under plane strain we assume no out-of-plane strains are present
- Typically a good assumption for very thick materials

sign convention

- Normal strains, ϵ_x and ϵ_y , are considered positive when they cause elongation, and negative when they cause contraction
- Shear strains, γ_{xy} are positive if the interior angle becomes smaller than 90°, and negative if the angles becomes larger than 90°

9

general equations

- We derive the general strain transformation equations by comparing infinitesimal elements before and after deformation
- To find γ_{x'y'} we compare the angle between dx and dy before and after deformation

general equations

- The equations are nearly exactly the same as the stress transformation equations
- Pay attention to the difference, strain transformation equations are NOT on the equation sheet

$$\begin{split} \epsilon_{x'} &= \frac{\epsilon_x + \epsilon_y}{2} + \frac{\epsilon_x - \epsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta \\ \frac{\gamma_{x'y'}}{2} &= -\left(\frac{\epsilon_x - \epsilon_y}{2}\right) \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta \end{split}$$

• As with σ_{v}' , we find ϵ_{v}' by letting $\theta_{v} = \theta_{x} + 90^{\circ}$

11

engineering strain

- Side note: there is another definition of shear strain known as tensorial shear strain, where $\gamma_{xy}=2\epsilon_{xy}$
- Under tensorial strain, the transformation equations are exactly the same (as in this case both stress and strain are tensors)
- \(\gamma_{xy}\) is known as engineering strain, you will need to pay attention to which strain convention is used when extracting data from finite elements or other sources

principal strains

 As you might imagine, since the transformation equations are nearly identical so are the principal strain equations

$$\begin{split} \tan 2\theta_p &= \frac{\gamma_{\text{xy}}}{\epsilon_{\text{x}} - \epsilon_{\text{y}}} \\ \epsilon_{1,2} &= \frac{\epsilon_{\text{x}} + \epsilon_{\text{y}}}{2} \pm \sqrt{\left(\frac{\epsilon_{\text{x}} - \epsilon_{\text{y}}}{2}\right)^2 + \left(\frac{\gamma_{\text{xy}}}{2}\right)^2} \end{split}$$

13

mohr's circle

- Mohr's circle can also be used in exactly the same way for strain as it is for stress
- The only difference is that the vertical axis is tensor strain, or \(\gamma_{xy} / 2 \)

example 10.4

The state of plane strain at a point has components of $\epsilon_x=250\mu\epsilon$, $\epsilon_y=-150\mu\epsilon$, and $\gamma_{xy}=120\mu\epsilon$. Determine the principal strains and the direction they act.

rosettes

- Normal strain is fairly easy to measure using a strain gage
- Shear strain is more difficult to measure directly, so instead a "rosette" of normal strain gages is used
- We can use the strain transformation equations to determine $\tau_{\mbox{\tiny XV}}$

15

• Usually, we have $\theta_a=0$, $\theta_b=90$ and $\theta_c=45$ OR $\theta_a=0$, $\theta_b=60$ and $\theta_c=120$

$$\begin{split} \epsilon_{a} &= \frac{\epsilon_{x} + \epsilon_{y}}{2} + \frac{\epsilon_{x} - \epsilon_{y}}{2} \cos 2\theta_{a} + \frac{\gamma_{xy}}{2} \sin 2\theta_{a} \\ \epsilon_{b} &= \frac{\epsilon_{x} + \epsilon_{y}}{2} + \frac{\epsilon_{x} - \epsilon_{y}}{2} \cos 2\theta_{b} + \frac{\gamma_{xy}}{2} \sin 2\theta_{b} \\ \epsilon_{c} &= \frac{\epsilon_{x} + \epsilon_{y}}{2} + \frac{\epsilon_{x} - \epsilon_{y}}{2} \cos 2\theta_{c} + \frac{\gamma_{xy}}{2} \sin 2\theta_{c} \end{split}$$

17

example 10.8

The readings from the rosette shown are $\epsilon_a=60\mu\epsilon$, $\epsilon_b=135\mu\epsilon$ and $\epsilon_c=264\mu\epsilon$. Find the in-plane principal strains and their directions.

generalized hooke's law

• We have previously used Hooke's Law in 2D, in 3D we have

$$\begin{split} \epsilon_{x} &= \frac{1}{E} [\sigma_{x} - \nu (\sigma_{y} + \sigma_{z})] \\ \epsilon_{y} &= \frac{1}{E} [\sigma_{y} - \nu (\sigma_{x} + \sigma_{z})] \\ \epsilon_{z} &= \frac{1}{E} [\sigma_{z} - \nu (\sigma_{x} + \sigma_{y})] \end{split}$$

19

generalized hooke's law

And in shear

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$\gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$\gamma_{xz} = \frac{1}{G} \tau_{xz}$$

- When a material deforms it often changes volume
- The change in volume per unit volume is called "volumetric strain" or dilatation

$$e = \frac{\partial V}{\partial V} = \epsilon_x + \epsilon_y + \epsilon_z = \frac{1 - 2\nu}{F} (\sigma_x + \sigma_y + \sigma_z)$$

21

hydrostatic pressure

- One way of characterizing volumetric response is to apply hydrostatic pressure (equal compression on all sides with no shear)
- Under this case, we have

$$\frac{p}{e} = -\frac{E}{3(1-2\nu)}$$

 We call the term on the right (with no negative sign) the bulk modulus, k