

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE- CAMPUS CANGUARETAMA

RAFAELLA TANOEIRO DE OLIVEIRA SOUZA MARCUS VINICIUS SILVA NUNES RAYLA NGILA TAVEIRA DE BRITO

ESTUDO DA EFICIÊNCIA TÉRMICA E ENERGÉTICA DOS CONDICIONADORES DE AR DO IFRN CANGUARETAMA

MARCUS VINICIUS SILVA NUNES RAYLA NGILA TAVEIRA DE BRITO

ESTUDO DA EFICIÊNCIA TÉRMICA E ENERGÉTICA DOS CONDICIONADORES DE AR DO IFRN CANGUARETAMA

Trabalho de Conclusão de Curso apresentado ao Curso Técnico em Eletromecânica do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, em cumprimento às exigências legais como requisito parcial à obtenção do título de Técnico em Eletromecânica.

Orientador: Valério Fernandes de Azevedo

RAFAELLA TANOEIRO DE OLIVEIRA SOUZA

MARCUS VINICIUS SILVA NUNES

RAYLA NGILA TAVEIRA DE BRITO

ESTUDO DA EFICIÊNCIA TÉRMICA E ENERGÉTICA DOS CONDICIONADORES DE AR DO IFRN CANGUARETAMA

Trabalho de Conclusão de Curso apresentado ao Curso Técnico em Eletromecânica do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, em cumprimento às exigências legais como requisito parcial à obtenção do título de Técnico em Eletromecânica.

Aprovado em:/
Banca Examinadora
Dr. Valério Fernandes de Azevedo - Orientador
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
Me. Vinicius Guimarães da Cruz - Examinador
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
Me. Josinaldo Calixto da Silva - Examinador

Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

AGRADECIMENTOS

Ao Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte- *Campus* Canguaretama, por nos proporcionar, durante os quatro anos de curso, oportunidades enriquecedoras para nosso crescimento pessoal e profissional. De modo especial, a nossos professores que contribuíram para nossa formação acadêmica e humana.

A nosso orientador, Dr. Valério Fernandes de Azevedo, por nos guiar nessa jornada de pesquisa no IFRN- *Campus Canguaretama*. Ao coordenador de curso, Dr. Aldayr Dantas de Araújo, por sempre estar presente e nos incentivar no decorrer da pesquisa e curso.

Ao setor de Engenharia do *campus*, especificamente ao Me. David da Silveira Mousinho, por nos disponibilizar elementos necessários para a conclusão da nossa pesquisa.

A nossos familiares e parentes por nos impulsionar e entender que a ausência era demasiadamente necessária. A nossos amigos que nos encorajaram em todos os momentos de dificuldade.

Obrigado a todos!

RESUMO

Evidencia-se que a utilização de condicionadores de ar em ambientes educacionais torna-se a cada dia uma necessidade de maior relevância, principalmente em regiões de consideradas temperaturas médias, como a do litoral sul do Rio Grande do Norte. Instituições de ensino procuram propositar aos seus alunos condições que contribuam significativamente para a eficácia do processo de ensino e aprendizagem. Dessa forma, a instalação de condicionadores de ar em salas de aulas e laboratórios tornamse ações cada vez mais comuns. A crise energética brasileira, motivada pelo baixo volume de água dos reservatórios, faz com que as tarifas de energia fiquem cada dia mais onerosas e todo e qualquer desperdício de energia significa prejuízo nas receitas das instituições, que já sofrem com orçamentos reduzidos. A instalação de condicionadores de ar deve obedecer a critérios específicos e para sua utilização ser considerada eficaz, estudos de carga térmica e comportamento energético devem ser realizados cumprindo critérios técnicos disponíveis na literatura atual. Assim, este projeto visa estudar a carga térmica e o consumo energético atual dos condicionadores de ar instalados no IFRN - Campus Canguaretama e propor em alguns casos uma relocação de equipamentos de forma que as condições de conforto térmico e consumo de energia sejam consideradas ótimas.

Palavras-chave: condicionadores de ar, conforto térmico, consumo de energia.

LISTA DE ILUSTRAÇÕES

Figura 1. Fluxograma das etapas do projeto	12
Figura 2. Planta no Softare AutoCAD	15
Figura 3. Dimensões das janelas e portas, contidas na planta	15
Figura 4. Lista de tabelas contidas no site do INMETRO	20
Figura 5. Análise dos condicionadores de ar instalados no Campus	33
Figura 6. Análise das dependências com desconforto térmico no IFRN	
Canguaretama	34
Figura 7. Aumento, diminuição ou permanência dos BTU necessários dos	
condicionadores de ar do IFRN Canguaretama	34
Figura 8. Exemplo de salas que precisam de condicionadores de ar com menor	
consumo	35

LISTA DE TABELAS

Tabela 1. Calor do ambiente	13
Tabela 2. Calor das janelas	13
Tabela 3. Calor das pessoas	13
Tabela 4. Calor das portas	14
Tabela 5. Calor dos aparelhos eletrônicos	14

SUMÁRIO

1.	INT	RODUÇÃO	8
2.	RE	FERENCIAL TEÓRICO	9
3.	JU	STIFICATIVA	10
4.	ОВ	JETIVOS	.11
2	1.1.	Objetivos Gerais	. 11
2	1.2.	Objetivos Específicos	11
5.	ME	TODOLOGIA	12
5	5.1.	Estudo Teórico	12
5	5.2.	Projeto em AutoCAD das instalações do IFRN Canguaretama	. 14
5	5.3.	Cálculo da capacidade térmica dos ambientes	15
5	5.4.	Cálculo do consumo energético	19
5	5.5.	Propostas de readequações dos condicionadores	. 25
6.		ÁLISE DE DADOS	
7.		NCLUSÃO	
R	RF	FERÊNCIAS	37

1. INTRODUÇÃO

Está cientificamente comprovado que a performance humana na realização de atividades intelectuais, manuais e perceptivas, em geral, apresentam um melhor rendimento quando realizadas em ambientes com conforto térmico. Aliado a esta premissa, para contribuirmos positivamente com um desenvolvimento sustentável é necessário o conhecimento das condições e dos parâmetros relativos aos ocupantes do ambiente para que desperdícios com aquecimento e refrigeração, não aconteçam nas instalações.

Ao somar todas as formas de calor presentes num ambiente encontra-se carga térmica de um local e este cálculo é o ponto principal para a escolha do condicionador de ar que deve ser instalado em cada situação. Ao se instalar um condicionador de ar com menor potência que o indicado nos cálculos dos estudos de carga térmica, dotase os ambientes de uma condição indesejável que não é adequada para as atividades intelectuais e físicas. Por outro lado, quando escolhemos um condicionador de ar de maior potência que o necessário estamos contribuindo com o desperdício de recursos financeiros e ambientais.

Para Alvarez (1998), a implantação de uma unidade de ensino, normalmente acontece gradativamente e a instalação de condicionadores de ar acompanham esta evolução. Geralmente ao concluir-se a ocupação das edificações, um arranjo inadequado das capacidades dos condicionadores de ar é gerado, devido muitas vezes ao fato de se instalar equipamentos sem as devidas análises técnicas necessárias.

Assim, um estudo detalhado sobre a carga térmica de cada ambiente onde se encontra instalado algum condicionador de ar nas dependências do IFRN Canguaretama, comparando-se a carga projetada com a proposta, poderá trazer condições de se reestruturar a alocação desses equipamentos e dessa maneira, propiciar melhor desempenho térmico e energético.

2. REFERENCIAL TEÓRICO

Ao utilizar climatizadores de ar em suas dependências, as instituições de ensino têm considerável acréscimo nas despesas com energia elétrica. Nos EUA, 14% do consumo total de energia elétrica das escolas de nível médio é destinada a esta utilização, chegando a 39% nas instituições de ensino superior. No Brasil, estudos mostram que este custo representa cerca de 20% nas escolas de educação básica e profissional.

Segundo Xavier (1999), o potencial de utilização de condicionadores de ar, pode ser calculado comparando-se o consumo atual com o consumo previsto para o caso de sistemas de condicionadores de ar eficientes, onde o consumo atual é encontrado a partir da desagregação do consumo global da instalação em (KWh/mês).

Geller (1994), comenta que para se encontrar o consumo estimado em um eficiente sistema de condicionadores de ar, utiliza-se aos dados da capacidade do condicionador de ar em (BTU/h); do tempo de operação em horas do condicionador de ar e da eficiência do condicionador de ar.

A carga térmica de uma edificação depende de fatores como, volume do ambiente, posição de portas e janelas, direção do sol, quantidade de pessoas que utilizam o recinto e potência dos equipamentos instalados, entre outros. Para definir a real necessidade de potência instalada, estudos nos ambientes devem ser realizados antes da realização das instalações.

3. JUSTIFICATIVA

O conforto térmico em uma instituição educacional é de fundamental importância, especialmente, quando se refere ao ensino médio, modalidade normalmente constituída de adolescentes e jovens.

Um aspecto importante ao se conceber um projeto arquitetônico com o mínimo de eficiência energética é o conforto térmico, já que equipamentos utilizados para condicionar a temperatura do ambiente são os que mais consomem energia elétrica. Como o aumento de geração deste tipo de energia tem grande impacto econômico e ambiental, é de grande importância soluções que auxiliem na diminuição do consumo (Batiz et al, 2009).

Apesar de se impor metas de reduzir o desperdício dos recursos, poucos esforços são realizados em busca da obtenção de um ponto ótimo entre os desempenhos térmicos e energéticos, principalmente em edificações já estruturadas de ensino.

4. OBJETIVOS

4.1. **Geral**

Contribuir para melhoria nas condições de conforto térmico e desempenho energético no IFRN Canguaretama, através da análise da localização atual dos condicionadores de ar instalados naquela instituição de ensino.

4.2. Específicos

- Estudo teórico do assunto;
- Projeto da edificação utilizando o software AutoCAD;
- Cálculo da capacidade térmica dos ambientes;
- Cálculo do consumo energético;
- Relatório de propostas.

5. METODOLOGIA

O estudo foi realizado no IFRN- *Campus* Canguaretama e tem abordagem quantitativa de natureza descritiva, pois o objetivo é o levantamento de dados para a análise da eficiência térmica das salas da instituição de forma precisa.

O projeto foi dividido em cinco etapas, representadas na Figura 1 e detalhadas posteriormente.

Figura 1. Fluxograma das etapas do projeto

5.1. Estudo teórico

A primeira etapa do projeto, antes do início aos cálculos da capacidade térmica e consumo energético, foi a efetuação de um estudo para aprimoração dos conhecimentos sobre dimensionamento de condicionadores de ar. Após o estudo, descobriu-se que o dimensionamento de um condicionador de ar segue uma metodologia específica, possuindo a necessidade do uso de tabelas estabelecidas para a realização do cálculo da carga térmica. O dimensionamento divide-se em duas etapas, o cálculo de carga térmica e sua conversão para os BTU mínimos necessários de ar condicionado — dada através da relação: 1Kcal = 3,92BTU — a fim de suprir essa carga. Por sua vez, o cálculo de carga térmica segmenta-se em calores originados por distintas fontes, vista nas tabelas de 1 a 5, que foram utilizadas no decorrer do projeto

Kcal/h		
Volume do Ambiente (m³)	Entre andares	Sob telha
30	480	670
33	530	740
36	580	800
39	620	870
42	670	940
45	720	1000
48	770	1070
51	816	1140
54	864	1200
57	910	1270
60	960	1340
63	1010	1410
66	1060	1470
69	1100	1540
72	1150	1610
75	1200	1680

Tabela 1. Calor do Ambiente

Kcal/h					
Área da Janela	Com cortina		Com cortina Sem co		ortina
(m ²)	Manhã	Tarde	Manhã	Tarde	
1	160	212	222	410	
2	320	424	444	820	
3	480	636	666	1230	
4	640	848	888	1640	
5	800	1060	1100	2060	
6	980	1272	1332	2460	
7	1120	1484	1554	2870	
8	1280	1696	1777	3280	
9	1440	1908	1998	3960	
10	1800	2120	2220	4100	

Tabela 2. Calor das Janelas

Kcal/h		
Número de Pessoas	Calor	
1	125	
2	250	
3	375	
4	500	
5	625	
6	750	
7	875	
8	1000	
9	1125	
10	1250	

Tabela 3. Calor das pessoas

Kcal/h		
Área da Porta (m ²)	Calor	
1	125	
2	250	
3	375	
4	500	
5	625	
6	750	
7	875	
8	1000	
9	1125	
10	1250	

Tabela 4. Calor das portas

Kcal/h		
Potência Nominal (watts)	Calor	
50	45	
100	90	
150	135	
200	180	
250	225	
300	270	
350	315	
400	360	
450	405	
500	450	

Tabela 5. Calor dos aparelhos elétricos

5.2. Projeto em AutoCAD das instalações do IFRN- Campus Canguaretama

Após a realização do estudo teórico para o dimensionamento, foi desenvolvido o projeto em AutoCAD das instalações do IFRN Canguaretama. Dentro deste projeto, informaram-se as dimensões das salas, janelas e portas, valores fundamentais para a efetuação do cálculo de capacidade térmica dos ambientes. Para maior organização e detalhamento, produziu-se duas plantas, sendo elas do prédio principal e do prédio anexo, locais que seriam realizados os cálculos de capacidade térmica. Além das medidas do ambiente foram colocadas na planta as portas e janelas, detalhadas na legenda da planta.

Figura 2. Planta no software AutoCAD

Figura 3. Dimensões das janelas e portas, contidas na planta

5.3. Cálculo da capacidade térmica dos ambientes

Para a realização desse passo, utilizou-se os conhecimentos obtidos no estudo teórico e dados obtidos no projeto em AutoCAD do *Campus* Canguaretama. Além disso, foram efetuadas visitas as dependências do *campus* para a obtenção das outras informações necessárias ao dimensionamento de condicionadores de ar, como: aparelhos elétricos contidos nas salas e capacidade de pessoas. Seguidamente, executou-se dois estudos da capacidade térmica, sendo eles no

prédio principal e no prédio anexo.

Logo após a efetuação dos cálculos da carga térmica do volume das salas, área das janelas e portas, número de pessoas e aparelhos elétricos, os resultados foram somados e compactados em uma só tabela, que lista todas as 84 dependências do campus com as respectivas capacidades térmicas, e utilizados na etapa 5 do fluxograma da figura 1.

Sala	Carga térmica total	BTU
02	2264 Kcal/h	8874.88 BTU
03	5601 Kcal/h	21956.92 BTU
04	4415 Kcal/h	17306.8 BTU
06	4304 Kcal/h	16871.68 BTU
07-08	7498 Kcal/h	29392.16 BTU
10	3995 Kcal/h	15660.4 BTU
11	4495 Kcal/h	17620.4 BTU
12	11340 Kcal/h	44452.8 BTU
13	8054.3 Kcal/h	31572.7 BTU
14	3470 Kcal/h	13602.4 BTU
15	4605 Kcal/h	18051.6 BTU
16	3390 Kcal/h	3393.92 BTU
17	5238 Kcal/h	20532.92 BTU
18	3854 Kcal/h	15107.68 BTU
19	4504 Kcal/h	17655.68 BTU
21	4873 Kcal/h	19102.16 BTU
22	4124 Kcal/h	16166.08 BTU
23	6022 Kcal/h	23606.24 BTU
29	3164 Kcal/h	12402.88 BTU

30	2895 Kcal/h	11348.4 BTU
31	3363 Kcal/h	13182.96 BTU
32	1856 Kcal/h	7275.52 BTU
37	3200 Kcal/h	12544 BTU
38	5633 Kcal/h	22081.36 BTU
39	4530 Kcal/h	17757.6 BTU
40	3340 Kcal/h	13092.8 BTU
41	7097 Kcal/h	27820.24 BTU
43	3474 Kcal/h	13618.08 BTU
44	6663 Kcal/h	26118.96 BTU
45	5788 Kcal/h	22688.96 BTU
46	3299 Kcal/h	12932.08 BTU
47	3679 Kcal/h	14421.68 BTU
48	5098 Kcal/h	19984.16 BTU
49	8959 Kcal/h	35119.28 BTU
50	9795 Kcal/h	38396.4 BTU
51	9795 Kcal/h	38396.4 BTU
52	9795 Kcal/h	38396.4 BTU
53	4304.2 Kcal/h	16872.46 BTU
54	10087 Kcal/h	39541.04 BTU
55	10087 Kcal/h	39541.04 BTU
56	5504.2 Kcal/h	21576.46 BTU
61	9795 Kcal/h	38396.4 BTU
62	9795 Kcal/h	38396.4 BTU
63	5697.5 Kcal/h	22334.2 BTU

64	10087 Kcal/h	39541.04 BTU
65	10087 Kcal/h	39541.04 BTU
66	10087 Kcal/h	39541.04 BTU
Biblioteca	50080.32 Kcal/h	196314.85 BTU
68	5241 Kcal/h	20544.72 BTU
69	17750 Kcal/h	69580 BTU
70	9460 Kcal/h	37083,2 BTU
71	9325 Kcal/h	36554 BTU
72	5908 Kcal/h	23159.36 BTU
73	15567 Kcal/h	61453.84 BTU
74	14992 Kcal/h	59199.84 BTU
75	6788 Kcal/h	26608.96 BTU
80	9435 Kcal/h	36985.2 BTU
81	9435 Kcal/h	36985.2 BTU
82	9727 Kcal/h	38129.84 BTU
83	9727 Kcal/h	38129.84 BTU
84	7717Kcal/h	30250.64 BTU
Recepção	4103,36 Kcal/h	16085,1712 BTU
Repouso	4853,12 Kcal/h	19024,2304 BTU
Consultório	1542 Kcal/h	6044,64 BTU
Consult. Odont.	1874 Kcal/h	7346,08 BTU
Laboratório de Biologia e Química (93)	13609 Kcal/h	53347,28 BTU
123	18566,28 Kcal/h	72779,8176 BTU

124	14718,2 Kcal/h	57695,344 BTU
125	12245,72 Kcal/h	48003,2224 BTU
126	14672,68 Kcal/h	57516, 9056 BTU
127	9958,32 Kcal/h	39036,6144 BTU
128	15994,32 Kcal/h	62697,7344 BTU
129	9354,4 Kcal/h	36669,248 BTU
130	7975,76 Kcal/h	31264,9792 BTU
131	8589,8 Kcal/h	33672,016 BTU
135	20626,12 Kcal/h	80854,3904 BTU
136	15839,3 Kcal/h	62090,056 BTU
137	10956,38 Kcal/h	42949,0096 BTU
138	11859,22 Kcal/h	46880,1424 BTU
139	14034,28 Kcal/h	55478,273 BTU
140	10849,08 Kcal/h	45528,3936 BTU
141	11737,6 Kcal/h	46011,392 BTU
142	6331,37 Kcal/h	24818,9704 BTU
143	11574,95 Kcal/h	45373,804 BTU

5.4. Cálculo do consumo energético

Posterior a obtenção da capacidade térmica das determinadas salas e seus respectivos BTU necessários, desempenhou-se o cálculo do consumo energético. Para ser concluído, foi utilizada uma tabela, disponibilizada pelo setor de Engenharia do *campus*, que listava os condicionadores de ar instalados nas dependências, e as tabelas do INMETRO, Figura 3, oferecidas em um site, para a obtenção do consumo energético dos condicionadores de ar instalados.

Figura 4. Lista de tabelas contidas no site do INMETRO

Após isso foi feita uma tabela reunindo as 84 dependências do campus, com os condicionadores de ar instalados e seu respectivo consumo.

Sala	Condicionador de ar instalado	Consumo atual
02	12000 BTU	22,8 KWh/mês
03	12000 BTU	22,8 KWh/mês
04	9000 BTU	16,6 KWh/mês
06	12000 BTU	22,8 KWh/mês
07-08	24000 BTU	51,2 KWh/mês
10	12000 BTU	22,8 KWh/mês
11	18000 BTU	36,0 KWh/mês
12	48000 BTU	101.4 KWh/mês
13	18000 BTU	36,0 KWh/mês

14 18000 BTU 36,0 KWh/mês 15 24000 BTU 51,2 KWh/mês 16 12000 BTU 22,8 KWh/mês 17 24000 BTU 51,2 KWh/mês 18 12000 BTU 22,8 KWh/mês 19 12000 BTU 74,0 KWh/mês 21 24000 BTU Total: 36000 BTU Total: 36000 BTU 74,0 KWh/mês 22 24000 BTU 51,2 KWh/mês 23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 30 12000 BTU 16,6 KWh/mês			
15 24000 BTU KWh/mês 16 12000 BTU 22,8 KWh/mês 17 24000 BTU 51,2 KWh/mês 18 12000 BTU 22,8 KWh/mês 19 12000 BTU 22,8 KWh/mês 21 24000 BTU Total: 36000 BTU Total: 36000 BTU 74,0 KWh/mês 22 24000 BTU 51,2 KWh/mês 23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 31 9000 BTU 16,6	14	18000 BTU	·
16 12000 BTU KWh/mês 17 24000 BTU 51,2 KWh/mês 18 12000 BTU 22,8 KWh/mês 19 12000 BTU 74,0 KWh/mês 21 12000 BTU Total: 36000 BTU Total: 36000 BTU 74,0 KWh/mês 22 24000 BTU 51,2 KWh/mês 23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 30 12000 BTU 16,6	15	24000 BTU	,
17 24000 BTU KWh/mês 18 12000 BTU 22,8 KWh/mês 19 12000 BTU 22,8 KWh/mês 21 24000 BTU T4,0 KWh/mês 12000 BTU Total: 36000 BTU 51,2 KWh/mês 23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 31 9000 BTU 16,6	16	12000 BTU	
19 12000 BTU 22,8 KWh/mês 21 24000 BTU 12000 BTU 12000 BTU Total: 36000 BTU 74,0 KWh/mês 22 24000 BTU 51,2 KWh/mês 23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 31 9000 BTU 16,6	17	24000 BTU	·
21	18	12000 BTU	•
21 12000 BTU Total: 36000 BTU 74,0 KWh/mês 22 24000 BTU 51,2 KWh/mês 23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 31 9000 BTU 16,6	19	12000 BTU	·
23 60000 BTU 127,5 KWh/mês 29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês	21	12000 BTU Total: 36000	
29 18000 BTU 36,0 KWh/mês 30 12000 BTU 22,8 KWh/mês 16,6	22	24000 BTU	•
30 12000 BTU KWh/mês 12000 BTU 22,8 KWh/mês 16,6	23	60000 BTU	· ·
30 12000 BTU KWh/mês 16,6	29	18000 BTU	·
31 9000 BIII	30	12000 BTU	·
	31	9000 BTU	·
32 9000 BTU 16,6 KWh/mês	32	9000 BTU	·
37 12000 BTU 22,8 KWh/mês	37	12000 BTU	·
38 24000 BTU 51,2 KWh/mês	38	24000 BTU	•

24000 BTU	51,2 KWh/mês
12000 BTU	22,8 KWh/mês
24000 BTU	51,2 KWh/mês
12000 BTU	22,8 KWh/mês
24000 BTU	51,2 KWh/mês
24000 BTU	51,2 KWh/mês
18000 BTU	36,0 KWh/mês
18000 BTU	36,0 KWh/mês
18000 BTU	36,0 KWh/mês
48000 BTU	101.4 KWh/mês
	12000 BTU 24000 BTU 12000 BTU 24000 BTU 24000 BTU 18000 BTU 18000 BTU 48000 BTU 48000 BTU 48000 BTU 48000 BTU 48000 BTU

56	48000 BTU	101.4 KWh/mês	
61	48000 BTU	101.4 KWh/mês	
62	48000 BTU	101.4 KWh/mês	
63	48000 BTU	101.4 KWh/mês	
64	48000 BTU	101.4 KWh/mês	
65	48000 BTU	101.4 KWh/mês	
66	48000 BTU	101.4 KWh/mês	
	48000 BTU		
Biblioteca	48000 BTU	321.2	
	60000 BTU	KWh/mês	
	Total: 156 BTU		
68	24000BTU	51,2 KWh/mês	
	48000 BTU	202.8	
69	48000 BTU	KWh/mês	
70	48000 BTU	101.4 KWh/mês	
71	48000 BTU	101.4 KWh/mês	
72	24000 BTU	51,2 KWh/mês	
73	48000 BTU	101.4 KWh/mês	
· 			

74	48000 BTU	101.4 KWh/mês
75	48000 BTU	101.4 KWh/mês
80	48000 BTU	101.4 KWh/mês
81	48000 BTU	101.4 KWh/mês
82	48000 BTU	101.4 KWh/mês
83	48000 BTU	101.4 KWh/mês
84	48000 BTU	101.4 KWh/mês
Recepção	12000 BTU	22,8 KWh/mês
Repouso	12000 BTU	22,8 KWh/mês
Consultório	9000 BTU	16,6 KWh/mês
Consult. Odont.	9000 BTU	16,6 KWh/mês
Laboratório de Biologia e Química (93)	48000 BTU	101.4 KWh/mês
123	48000 BTU	101.4 KWh/mês
124	48000 BTU	101.4 KWh/mês
125	48000 BTU	101.4 KWh/mês
126	48000 BTU	101.4 KWh/mês

127	48000 BTU	101.4 KWh/mês
128	48000 BTU	101.4 KWh/mês
129	48000 BTU	101.4 KWh/mês
130	24000 BTU	51,2 KWh/mês
131	48000 BTU	101.4 KWh/mês
135	48000 BTU	101.4 KWh/mês
136	60000 BTU	127,5 KWh/mês
137	48000 BTU	101.4 KWh/mês
138	48000 BTU	101.4 KWh/mês
139	48000 BTU	101.4 KWh/mês
140	48000 BTU	101.4 KWh/mês
141	48000 BTU	101.4 KWh/mês
142	24000 BTU	51,2 KWh/mês
143	48000 BTU	101.4 KWh/mês

5.5. Proposta de readequação dos condicionadores

A última etapa da pesquisa refere-se as propostas de readequação dos condicionadores de ar, visando o conforto térmico e eficiência energética. Nesta etapa,

foram utilizadas a Tabela 6 completa, que informa os BTU necessários, e a Tabela 7 completa, indicando o condicionador de ar instalado e o consumo atual. Para a realização desse passo, usando a Tabela 6, pesquisou-se o condicionador de ar comercial que mais se aproximasse com os BTU necessário. Após isso, foi feita uma nova tabela com os seguintes pontos: Sala, condicionador de ar instalado, condicionador de ar necessário, consumo atual e consumo necessário, conforme a tabela abaixo:

Sala	Condicionador de ar instalado	Condicionador de ar necessário	Consumo atual	Consumo Necessário
02	12000 BTU	12000 BTU	22,8 KWh/mês	22,8 KWh/mês
03	12000 BTU	24000 BTU	22,8 KWh/mês	51,2 KWh/mês
04	9000 BTU	18000 BTU	16,6 KWh/mês	36,0 KWh/mês
06	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
07-08	24000 BTU	30000 BTU	51,2 KWh/mês	55,6 KWh/mês
10	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
11	18000 BTU	18000 BTU	36,0 KWh/mês	36,0 KWh/mês
12	48000 BTU	48000 BTU	101.4 KWh/mês	101.4 KWh/mês
13	18000 BTU	48000 BTU	36,0 KWh/mês	101.4 KWh/mês
14	18000 BTU	18000 BTU	36,0 KWh/mês	36,0 KWh/mês
15	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês

			36,0	36,0
14	18000 BTU	18000 BTU	KWh/mês	KWh/mês
15	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês
16	12000 BTU	48000 BTU	22,8 KWh/mês	101.4 KWh/mês
17	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês
18	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
19	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
21	24000 BTU 12000 BTU Total: 36000 BTU	24000 BTU	74,0 KWh/mês	51,2 KWh/mês
22	24000 BTU	18000 BTU	51,2 KWh/mês	36,0 KWh/mês
23	60000 BTU	30000 BTU	127,5 KWh/mês	55,6 KWh/mês
29	18000 BTU	18000 BTU	36,0 KWh/mês	36,0 KWh/mês
30	12000 BTU	12000 BTU	22,8 KWh/mês	22,8 KWh/mês
31	9000 BTU	18000 BTU	16,6 KWh/mês	36,0 KWh/mês
32	9000 BTU	9000 BTU	16,6 KWh/mês	16,6 KWh/mês
37	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
38	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês

		T	T	1
39	24000 BTU	18000 BTU	51,2 KWh/mês	36,0 KWh/mês
40	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
41	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês
43	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
44	24000 BTU	30000 BTU	51,2 KWh/mês	55,6 KWh/mês
45	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês
46	18000 BTU	18000 BTU	36,0 KWh/mês	36,0 KWh/mês
47	18000 BTU	18000 BTU	36,0 KWh/mês	36,0 KWh/mês
48	18000 BTU	24000 BTU	36,0 KWh/mês	51,2 KWh/mês
49	48000 BTU	36000 BTU	101.4 KWh/mês	66 KWh/mês
50	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
51	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
52	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
53	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
54	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
55	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês

			101.1	72.0
56	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
61	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
62	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
63	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
64	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
65	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
66	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
		60000 BTU		
	48000 BTU	60000 BTU		
	48000 BTU	60000 BTU	321.2 KWh/mês	393.2
Biblioteca	60000 BTU	18000 BTU		KWh/mês
	Total: 156 BTU	Total: 180		
68	24000BTU	24000BTU	51,2 KWh/mês	51,2 KWh/mês
60	48000 BTU	48000 BTU	202.8	152,6
69	48000 BTU	24000 BTU	KWh/mês	KWh/mês
70	48000 BTU	43000BTU	101.4 KWh/mês	73.8 KWh/mês
71	48000 BTU	43000 BTU	101.4 KWh/mês	73.8 KWh/mês
72	24000 BTU	240000BTU	51,2 KWh/mês	51,2 KWh/mês

		48000BTU	101.4	140.4
73	48000 BTU	18000BTU	KWh/mês	KWh/mês
74	48000 BTU	60000 BTU	101.4 KWh/mês	127,5 KWh/mês
75	48000 BTU	36000BTU	101.4 KWh/mês	68,4 KWh/mês
80	48000 BTU	43000BTU	101.4 KWh/mês	73.8 KWh/mês
81	48000 BTU	43000BTU	101.4 KWh/mês	73.8 KWh/mês
82	48000 BTU	43000BTU	101.4 KWh/mês	73.8 KWh/mês
83	48000 BTU	43000BTU	101.4 KWh/mês	73.8 KWh/mês
84	48000 BTU	36000BTU	101.4 KWh/mês	68,4 KWh/mês
Recepção	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
Repouso	12000 BTU	18000 BTU	22,8 KWh/mês	36,0 KWh/mês
Consultório	9000 BTU	7000 BTU	16,6 KWh/mês	13,4 KWh/mês
Consult. Odont.	9000 BTU	7000 BTU	16,6 KWh/mês	13,4 KWh/mês
Laboratório de Biologia e Química (93)	48000 BTU	55000 BTU	101.4 KWh/mês	120,4 KWh/mês
123	48000 BTU	60000 BTU 12000 BTU Total: 72000 BTU	101.4 KWh/mês	163,5 KWh/mês

139	48000 BTU	55000 BTU	101.4 KWh/mês 101.4	KWh/mês 120,4 KWh/mês 101.4
137	48000 BTU 48000 BTU	43000 BTU 48000 BTU	KWh/mês 101.4	KWh/mês 101.4
136	60000 BTU	60000 BTU	127,5 KWh/mês 101.4	127,5 KWh/mês 73.8
135	48000 BTU	43000 BTU 36000 BTU Total: 79000 BTU	101.4 KWh/mês	139,8 KWh/mês
131	48000 BTU	36000BTU	101.4 KWh/mês	66 KWh/mês
130	24000 BTU	36000 BTU	51,2 KWh/mês	66 KWh/mês
129	48000 BTU	36000 BTU	101.4 KWh/mês	66 KWh/mês
128	48000 BTU	60000 BTU	101.4 KWh/mês	127,5 KWh/mês
127	48000 BTU	36000 BTU	101.4 KWh/mês	66 KWh/mês
126	48000 BTU	58000 BTU	101.4 KWh/mês	127,5 KWh/mês
125	48000 BTU	48000 BTU	101.4 KWh/mês	101.4 KWh/mês
124	48000 BTU	55000 BTU	101.4 KWh/mês	120,4 KWh/mês

142	24000 BTU	24000 BTU	51,2 KWh/mês	51,2 KWh/mês
143	48000 BTU	48000 BTU	101.4 KWh/mês	101.4 KWh/mês

6. ANÁLISE DE DADOS

Os dados coletados com a pesquisa admitem que a pesquisa foi de extrema importância para o *Campus*. Com o conhecimento da carga térmica das dependências será possível a alteração ou relocação dos condicionadores de ar do IFRN Canguaretama.

O estudo foi realizado em todas as salas do prédio principal e anexo que apresentam climatizadores de ar instalados, sendo no total 84 dependências. Das 84 salas do campus, 23 possuem condicionadores de ar adequados e 61 apresentam condicionadores inadequados. Na Figura 5, é possível ver a representação em porcentagem.

Análise dos condicionadores instalados nas

Figura 5. Análise dos condicionadores de ar instalados no IFRN Canquaretama

Além disso, das 61 dependências com desconforto térmico, 28 delas estão com a carga térmica do ambiente elevada para o ar condicionado instalado e 33 delas apresentam condicionadores com BTU elevado para a carga térmica do local, podese analisar isto percentualmente na Figura 6.

Análise das dependências com desconforto térmico no IFRN Canguaretama

Figura 6. Análise das dependências com desconforto térmico no IFRN Canguaretama

Ao realizar a junção de todos os condicionadores, os adequados e inadequados, em um só gráfico, Figura 7, pode-se perceber percentualmente aqueles que permaneceram, aumentaram ou diminuíram os BTU necessários.

Figura 7. Aumento, diminuição ou permanência dos BTU necessários dos condicionadores de ar do IFRN Canguaretama.

Com esse estudo, haverá uma melhora na condição térmica dos ambientes e na questão energética, por haver condicionadores de ar necessários com menor consumo que o instalado, como pode-se ver em um exemplo na Figura 8.

Sala	Condicionador de ar instalado	Condicionador de ar necessário	Consumo atual	Consumo necessário
21	24000 BTU 12000 BTU Total: 36000 BTU	24000 BTU	74,0 KWh/mês	51,2 KWh/mês
22	24000 BTU	18000 BTU	51,2 KWh/mês	36,0 KWh/mês
23	60000 BTU	30000 BTU	127,5 KWh/mês	55,6 KWh/mês

Figura 8. Exemplo de salas que precisam de condicionadores de ar com menor consumo.

7. CONSIDERAÇÕES FINAIS

A presente pesquisa teve como objetivo o estudo da eficiência térmica e energética dos condicionadores de ar do IFRN Canguaretama, que é importante para a melhora do conforto térmico do ambiente, possibilitando que as dependências do campus estejam idealmente climatizadas.

Além disso, também contribui para a melhora energética, considerando que, em alguns casos, o condicionador de ar possui consumo maior que o ideal e, efetuando a devida troca, o consumo será reduzido, acarretando a diminuição de gastos desnecessários para o *Campus*.

A pesquisa foi de grande importância para aprimorar e ampliar conhecimentos obtidos anteriormente na matéria de Refrigeração e climatização, ministrada pelo orientador Dr. Valério Fernandes de Azevedo.

Portanto, conclui-se que a Instituição deve pôr em prática o presente trabalho para a melhora das condições térmicas das dependências do IFRN Canguaretama, além de uma redução no orçamento.

8. REFERÊNCIAS

ALVAREZ, A. L. M. Uso racional e eficiente de energia elétrica: metodologia para a determinação dos potenciais de conservação dos usos finais em instalações de ensino e similares. (Mestrado) São Paulo, 1998. Escola politécnica, Universidade de São Paulo.

BATIZ, E. C.; GOEDERT, J.; MORSCH, J. J.; KASMIRSKI-JR, P.; VENSKE, R. Avaliação do conforto térmico no aprendizado: estudo de caso sobre influência na atenção e memória. Produção, v. 19, n. 3, p. 477-488, 2009.

GELLER, H. O uso eficiente da eletricidade – Uma estratégia de desenvolvimento para o Brasil. Rio de Janeiro, Instituto Nacional de Eficiência Energética, 1994.

XAVIER, A. A. de P. Condições de conforto térmico para estudantes de 2 o Grau na região de Florianópolis. Florianópolis, 1999. 198 p. Dissertação (Mestrado em Engenharia de Produção) - Universidade Federal de Santa Catarina.

INMETRO. **Tabela de consumo/eficiência energética**. Disponível em: http://www.inmetro.gov.br/consumidor/pbe/condicionadores.asp> Acesso em: 18 de junho de 2018.