ACAMICA

¡Bienvenidas/os a Data Science!

Agenda

¿Cómo anduvieron?

Debate: Algoritmos que cautivan II

Hands-On: Notebook 38

Puesta en común Notebook 38

Break

Explicación: SVD

Hands-On: Notebook 39

Cierre

¿Cómo anduvieron?

Algoritmos que cautivan

"La libertad es lo contrario a la compulsión"

- Byung-Chul Han -

Sistemas de recomendación

La idea es usar es la tecnología juegue a nuestro favor.

Usemos las herramientas que nos ofrece en función de que nos ayude a **alcanzar nuestros objetivos.**

Teniendo **en claro** que esto también puede ser una forma de

gobierno de nuestras voluntades

Siendo la VOLUNTAD una facultad humana que intersecta la

INTELIGENCIA RACIONAL

+

INTELIGENCIA EMOCIONAL

¿Cómo puedo ser dueño de elegir lo que capta mi atención?

1. Estar en el MOMENTO PRESENTE

2. Aplicar:

LA AUTENTICIDAD

3. FILTRAR CON LA PREGUNTA CONSTANTE:

Esto: "¿Me lleva a mi mejor versión?"

Hands-on INTELIGENCIA **EMOCIONAL** Caso de Salvador Valdés de la Fuente

Emprender una segunda etapa profesional en el mundo de hoy

lan 31 · 7 min...

por Salvador Valdés de la Fuente

Egresado de Data Science en Acámica

Tip número 1: préstale atención a tus sensaciones y analízalas. La respuesta siempre está dentro tuyo.

Tip número 2: Confía en ti. Vas a tener miedos, puedes equivocarte. Pero dale lugar a tu instinto y a eso que te mueve y te entusiasma, y síguelo con convicción.

Tip número 3: préstale atención a tus sensaciones y analízalas.

La respuesta siempre está dentro tuyo.

Hands-on training

DS_Encuentro_38_Metricas.ipynb

Repaso: Aprendizaje no supervisado

Solo datos

Llamamos Aprendizaje No Supervisado a los métodos para trabajar con datos (instancias) que no tienen asociados una etiqueta (una clase o un valor).

Los objetivos principales en Aprendizaje No Supervisado son:

- Clustering
- Reducción de dimensionalidad

- Clustering
- Reducción de dimensionalidad

Buscamos reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de "información" posible.

¿Para qué sirve?

Reducir la cantidad de features en un dataset puede servir para:

- Reducir el input en un modelo de regresión o clasificación
- Compresión de archivos
- Visualización
- Detectar features relevantes en datasets
- Muchísimas mas cosas

¿Para qué sirve?

Reducir la cantidad de features en un dataset puede servir para:

- Reducir el input en un modelo de regresión o clasificación
- Compresión de archivos
- Visualización
- Detectar features relevantes en datasets
- Muchísimas mas cosas

¿Cómo se hace?

Algunos de los métodos de reducción de dimensionalidad son:

- PCA: Principal Component Analysis (usa SVD)
- MDS: Multidimensional scaling
- t-SNE: t-distributed Stochastic Neighbor Embedding
- Auto-Encoders (Se hace con Redes Neuronales)
- LDA: Linear Discriminant Analysis (si hay etiquetas de clases)

¿Para qué sirve?

Reducir la cantidad de features en un dataset puede servir para:

- Reducir el input en un modelo de regresión o clasificación
- Compresión de archivos
- Visualización
- Detectar features relevantes en datasets
- Muchísimas mas cosas

¿Cómo se hace?

Algunos de los métodos de reducción de dimensionalidad son:

- PCA: Principal Component Analysis (usa SVD)
- MDS: Multidimensional scaling
- t-SNE: t-distributed Stochastic Neighbor Embedding
- Auto-Encoders (Se hace con Redes Neuronales)
- LDA: Linear Discriminant Analysis (si hay etiquetas de clases)

Aprendizaje No Supervisado

SVD (Singular Value Decomposition)

SVD · Definición

Es un método de álgebra lineal que nos permite representar cualquier matriz en términos de la multiplicación de otras 3 matrices.

SVD · ¿Para qué sirve?

Para MUCHAS COSAS. Es parte del corazón de muchos algoritmos numéricos (solución sis. lineal, pseudoinversa, etc.). En este contexto vamos a usarlo para "reducir" adecuadamente la matriz M (pasar de tener muchos features a tener menos, pero que sean buenos).

SVD · Álgebra

Se puede demostrar que a toda matriz M la podemos escribir como :

¿Y qué tiene que ver esto con todo lo que venimos hablando?

Aprendizaje No Supervisado

SVD truncado

Objetivo: queremos una nueva matriz B que reemplace a M, que tenga menos columnas (menos features).

Objetivo: queremos una nueva matriz B que reemplace a M, que tenga menos columnas (menos features).

Idea de cómo lograrlo: si tomamos solo los r valores principales (elementos en la diagonal de Sigma) de valor más grande, podemos construir una matriz B que sea una "buena" reducción de M.

Matriz completa: es la M original, tiene toda la información.

Matriz completa: es la M original, tiene toda la información.

Matriz truncada: perdimos información. Pero si tomamos un valor de r adecuado, M moño es muy parecida a M. Construimos una matriz B mas chica que M, esta es la matriz con la que vamos a trabajar.

SVD truncado

SVD truncado

SVD truncado

Matriz con la que vamos a trabajar en vez de M, tiene la misma información que M moño.

Aprendizaje No Supervisado

Ejemplo conceptual SVD

Tenemos un dataset de 7 usuarios y 5 peliculas. Cada usuario puso un valor entre 0 a 5 a cada película.

Tenemos un dataset de 7 usuarios y 5 peliculas. Cada usuario puso un valor entre 0 a 5 a cada película.

$$\mathbf{M}_{7 \times 5} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix}$$

Tenemos un dataset de 7 usuarios y 5 peliculas. Cada usuario puso un valor entre 0 a 5 a cada película.

Buscamos una matriz B más con menos columnas que M. Proponemos usar un valor de r = 2 es decir que B será de 7 x 2. Veamos como quedaría:

Esta vez usaremos solo los 2 valores singulares más grandes de SIgma.

$$U_{\rm r} = \begin{bmatrix} 0.13 & 0.02 \\ 0.41 & 0.07 \\ 0.55 & 0.09 \\ 0.68 & 0.11 \\ 0.15 & -0.59 \\ 0.07 & -0.73 \\ 0.07 & -0.29 \end{bmatrix} \Sigma_{\rm r} = \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5 \end{bmatrix} \quad \mathbf{V}_{\rm r}^{\star} = \begin{bmatrix} 0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & -0.12 & -0.69 & -0.69 \end{bmatrix}$$

$$\Sigma_{\mathsf{r}} = \left[\begin{array}{ccc} 12.4 & 0 \\ 0 & 9.5 \end{array} \right] \quad \mathsf{V}_{\mathsf{r}}^{\star} = \left[\begin{array}{cccc} 0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & -0.12 & -0.69 & -0.69 \end{array} \right]$$

Pesos: X Z

Pesos: X Z

- Ahora cada Usuario estará identificado por dos features X y Z. Notemos que los primeros 4 usuarios tienen un valor alto de X y bajo de Z. En los otros 3, se da al revés.
- Los features encontrados corresponden a los géneros.

Pasamos de identificar a cada usuario con un puntaje al género de las películas en lugar de a las películas en sí, pasamos de 5 a 2 features.

Cuanta información perdemos por usar B en lugar de M?

Pasamos de identificar a cada usuario con un puntaje al género de las películas en lugar de a las películas en sí, pasamos de 5 a 2 features.

Cuanta información perdemos por usar B en lugar de M?

$$\widetilde{\mathbf{M}} = \mathbf{U} \quad \mathbf{\Sigma}_{\mathbf{r}} \quad \mathbf{V}_{\mathbf{r}}^*$$

$$m \times n \quad m \times \mathbf{r} \quad \mathbf{r} \times \mathbf{n}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \qquad \mathbf{\widetilde{M}} = \begin{bmatrix} 0.92 & 0.95 & 0.92 & 0.01 & 0.01 \\ 2.91 & 3.01 & 2.91 & -0.01 & -0.01 \\ 3.90 & 4.04 & 3.90 & 0.01 & 0.01 \\ 4.82 & 5.00 & 4.82 & 0.03 & 0.03 \\ 0.70 & 0.53 & 0.70 & 4.11 & 4.11 \\ -0.69 & 1.34 & -0.69 & 4.78 & 4.78 \\ 0.32 & 0.23 & 0.32 & 2.01 & 2.01 \end{bmatrix}$$

Estamos muy cerca!!

Hiperparámetro r

¿Cómo podríamos elegir el valor de r?

¿Cómo podríamos elegir el valor de r?

Una posibilidad es mirar la distancia entre M y M moño.

$$\left| \left| \mathbf{M} - \widetilde{\mathbf{M}} \right| \right|_F = \sqrt{\sum_{ij} (\mathbf{M}_{ij} - \widetilde{\mathbf{M}}_{ij})^2}$$

El método de SVD nos GARANTIZA que elegimos los mejores r vectores (combinaciones de features) para minimizar esta norma!

¿Cómo podríamos elegir el valor de r?

Una posibilidad es mirar la distancia entre M y M moño.

$$|\mathbf{M} - \widetilde{\mathbf{M}}||_F = \sqrt{\sum_{ij} (\mathbf{M}_{ij} - \widetilde{\mathbf{M}}_{ij})^2}$$

El método de SVD nos GARANTIZA que elegimos los mejores r vectores (combinaciones de features) para minimizar esta norma!

Full-Rank Dog

Rank 100 Dog

Rank 50 Dog

Rank 10 Dog

Rank 3 Dog

¿Cómo podríamos elegir el valor de r?

Una posibilidad es mirar la distancia entre M y M moño.

Otra posibilidad es **tener algún criterio sobre el peso relativo** de los valores singulares seleccionados respecto a la suma de todos. (Es más costoso, hay que calcular todos los valores singulares)

¿Y no hay algo un poco más visual?

Aprendizaje No Supervisado

Representación gráfica SVD

SVD · Representación gráfica

Feature 1

- El espacio original tiene 2 coordenadas,
 2 features. Esto sirve para definir la posición de todas las instancias del dataset (cada punto azul).
- SVD nos da dos nuevos vectores, el 1er y 2do vector singular. Si usamos ambos como coordenadas, podemos definir perfecto la posición de cada punto.
- Veamos qué pasa si ahora sólo usamos el primer vector singular para definir los puntos.

SVD · Representación gráfica

Hands-on training

Hands-on training

DS_Encuentro_38_SVD.ipynb

ACAMICA