不確定度於校正之應用案例

提報人:喬凡

內容大剛

- 一、前言--工業4.0與量測(產品檢測)
- 二、量測不確定性簡介
- 三、量測不確定度評估方法
- 四、不確定度於校正之應用案例
 - 1. 數字電表校正不準確度評估
 - 2. 量表(錶盤、量規)校正不準確度評估
 - 3. 溫度櫃(恆溫器)校正不準確度評估
 - 4. 扭力計校正不確定評估

五、結語

一、前言

工業-4.0 與量測(產品檢測)

少樣多量 →少量多樣 → 企業如何生存發展?

重點項目

感知化 智慧化 物聯網 推動作法

生產最佳自動化調整(智能生產) 設施狀態監測 預防性維護

4.0 推動要項

工業

大數據 (分析運用)

推動作法

企業面臨 製造問題 與 生產週期 物料品質監控 設備異常監控與預測 零件生命週期預測 製程監控提前警報 良率保固分析

工廠產品檢測系統智能化架構

數據收 存運用

智能儀器 設備運用

環境/設備 穩定機制

自動化檢測系統架構圖

量測儀器發展

- A. 開機自測功能。
- B. 操作程序自動化: 具有軟體操作量測程序功能, 易於檢測系統設計。
- C. 具有量測數據處理能力:量測數據紀錄、儲存外,亦具有平均值、極大/極小值等數據統計與運算功能。
- D. 具通信功能:可遠端操控儀器與數據存取。
- E. 具有良好人機介面:使用人易於操控儀器,順利執行量測操作程序。

智能感測器的發展

特性

較高的量測準確度、可設置靈活檢測範圍、簡便按鍵操作、以及多種輸出型式與數據通信協定介面、自我診斷等功能。

進步發展

可提升 具有學習 模式設計

檢測 效率提升

應用 靈活性

感測器 融合

- ●測試過程中<u>取樣,統計</u>算出信號範圍,提出最佳操作設定,以及對各種狀況能快速提出最佳靈敏度的自動設定。
- ●對<u>微弱信號</u>主動<u>提高靈敏度</u> (即自適應性技術)。
- ●對<u>老化</u>所造成<u>參數漂移</u>,提 出補償作用,使其延壽。

●將檢測標準(如圖型、顏色等)存記,並予以數值化 ●檢測結果與記憶

●檢測結果與記憶標準<u>數值相比對</u>, 直接判定是否合格。 可視需要透過 軟體程式修編、 參數設定方式

檢測需求

主更高 和效能 因應多變的

智能感測器整合式運用

- ●微型化:安裝空間受限小
- ●多功能化:量測範圍增加,精準度提升
- ●無線化:省去安裝佈線困擾,應用面擴大

生產相關感測器 如製程監控、環境監測、產品檢測 產品識別相關感應器 如RFID、條碼掃描、編碼器等

整合運用

提供完整而即時的產品生產現況資料

適時全盤掌控產品製 程狀況,以及相關環 境與設備運作狀況 建立連續長期產品檢測、環境監測與裝備診斷等數據資料庫

用大數據

分析技術

作到設備的預防性維護,減少停 機時間,提高生產力 可在控制器中建立各項感測器的參數設定機制

減少新產品生產轉換、 製作機台停機等時間

檢測系統相關儀器設備科技發展

感測器

邁向智能化、微型化、多功能化。

(超小型雷射位移感測器體積可小至18×31×44mm,解析度可達1µm)

控制

指令執行速度上可達 1.0ns,

高速輸入為2µs,高速輸出為 1µs。

(日本KEYENCE公司推出的 PLC (可程式邏輯控制器))

切換器

資料傳輸率可達10 Gbps。

業界已有高速差分訊號切換器產品組合,具備超過11GHz的3dB頻寬,專為實現高達12 Gb/s多種周邊裝置連接應用而設計。

夾具系統

- >高精度夾頭重複定位精度可達 1µm (如瑞士EROWN公司)
- >多樣化加工夾具,使加工件在機台(如銑床、磨床等)與品質檢測作業,能快速準確定位

品質檢測相關科技發展

頻率度量

精準度優於5x10-14;

時刻差值同步在0.5微秒以內。

長度 度量

- ●一般機械的精度需求已達 0.1~ 0.01μm, 在超精密量測上的要求已達奈米 (nm)。
- 奈米粒徑量測校正範圍: 20 nm ~ 500 nm , 不確定度為1.3 nm。

表面粗糙 度量測

- ●已發展接觸式的原子力顯微鏡(AFM) 解析度可達 0.01nm。
- ●非接觸式的白光干涉儀 解析度可達 0.1nm。

產品檢測系統誤差來源與處置方式演進

處置 誤差 方式 來源	傳統方式 人工處理	工業3.0-自動化(數位化儀器運用)	工業4.0-智能化(人工智慧技術運用)
人為誤差	1. 人員訓練2. 產品檢驗程序書	建立產品自動化檢測系統	建立智能化產品自動檢測系統
環境誤差	人工定時環境監測紀錄	建立自動化環境監測系統	建立智能化的環境自動監測系統
設備誤差	1. 生產機台定期檢查。 2. 生產線執行首件檢 驗。 3. 量測儀器定期校正 (準)。	1. 數位化儀器、切換器、 共通匯流排運用。 2. 量測儀器具有自行檢 驗功能。 3. 生產機台自動化監控。 4. 儀器定期校正。	1.智能化的產品自動檢測 系統。 2.智能化設備的運用。 3.智能化生產機台與檢測 平台穩定性監控。 4.智能化待檢測物定位裝 置(含夾具)穩定性監控。 5.儀器定期校正。

二、量測不確定度簡介

量測不確定度(Measurement Uncertainty)
用來描述量測結果的離散性的非負值參數,
它與量測行為息息相關。

全球性 測試與校正實驗室 運作指導規範

2018年9月17

日修訂實施

ISO/IEC 17025 (第 3 版)

「測試與校正實驗室能力一般要求事項」 2017年11月公告執行

我國

CNS- 17025

測試與校正實驗室能力一 般要求事項

TAF實驗室認證明確要求測試與校正 實驗室對校正(準)或量測結果須有 對應之量測不確定度評估與說明。

國際實驗室認證聯盟(ILAC)

ILAC G17:01/2021

「ILAC 測試領域之量測不確定度指引」

今(2021)年一月修訂發布

量測不確定度評估運作指導規範----ISO/IEC Guide 98-3:2008

- ISO/IEC Guide 98-3 「量測不確定度表達指南(GUM)」
- --建立評估和表達量測不確定度的一般規則,適用於廣泛的量測範圍。

- ★計量標準的維持、量測儀器的校正----實現<u>標準的可追溯性</u>;
- ★產品特性的檢測---產品生產過程中品質管制和品質保證;
- ★<u>科學和工程</u>領域的<u>研究與開發</u>;

量測不確定度作法執行主要效用

★儀器使用者

- 易於評估儀器校正測試結果是否符合其需求。
- 易於評估校正實驗室的能量水準。

★測試實驗室

- 量測不確定度直接呈現在報告中,可以減少後續重複與多餘的多次再測試。
- 可瞭解並維護校正系統精準度,將更嚴謹地評估量測不確定度。
- 可評估測試方法的性能特性,協助標準方法的開發與改進。

量測不確定度對儀器精準度規格判定的考量

量測不確定性來源

- (1) 量測過程的環境影響;
- (2) 儀器規格的限制性; (如靈敏度、解析度、穩定性及遲滯等)
- (3) 計量標準或標準物質實際值的不準確;
- (4) 人為的偏差; (如讀值錯誤)
- (5) 與量測方法和量測程序有關的近似性和假定性;
- (6)被量測重複觀測值的變化。
- (7) 引用的數據或參數的不確定度;
- (8) 對被量測的定義不完整或不完善;
- (9) 實現被量測定義的方法不理想;
- (10) 取樣的代表性不夠,即被量測樣本不能完全代表所定義的被量測;

不確定度名詞定義

- ·量測不確定度[uncertainty(of measurement)]:與量測結果有關的參數, 用來表示量測結果的離散程度。
- •標準不確定度(standard uncertainty, u_i):量測結果的不確定度以一倍標準差表示。
- 合成標準不確定度(combined standard uncertainty, u_c):所有變異數或 共變數分量與其加權值乘積之總和的正平方根。
- 相對合成標準不確定度(relative combined standard uncertainty): 合成標準不確定度u_c(y)與量測值(y)之比值,亦即u_c(y)/y。
- · 擴充不確定度(expanded uncertainty, U):定義量測結果區間的量,期望合理賦予量測值有較高的信賴之水準,為合成標準不確定度與擴充係數之乘積。

三、量測不確定度評估方法

- 1. GUM方法
- 2. ISO 22514-7方法

ISO/IEC 98-3量測不確定度 GUM 評估方式

量測系統

輸入量

輸出量

通過 識別與量測結果 相關的 量測不確定度

分析評估

計算出 量測結果的涵蓋區間 (包含被量測的真值)

基於"機率密度函數"

- -其中的數學期望給出了量測值的估計值,
- -其中的標準偏差給出了相關的不確定性。

GUM量測不確定度評估實施程序

- 1. 描述量測作為。
- 2. 收集輸入量的資訊。
- 3. 建立數學模型(程式)。
- 4. 評估輸入量之量值和標準不確定度(A, B評估)。
- 5. 合成標準不確定度的計算。
- 6. 擴展量測不確定度的計算。
- 7. 完整的量測結果的說明。
- 8. 不確定度預算表的提出。

程序1. 量測描述

- 量測任務、
- 被量測屬性(如長度、體積、品質、電流、電阻、力、功率)
- 量測方法
- 量測程式
- 量測系統與量測系統的準備 (如加熱)
- 工作流程描述
- 量測物件性質(如功能、規範、公差、規定極限值、穩定性、形狀偏差),
- 量測前後被測物件的狀態 (如在破壞性量測的情況下)
- 量測標準件相關的校正證書/參考值的明確標識
- 環境條件的定性描述(如室內溫濕度條件)
- 來自現有檢驗計劃的所有資訊(如量測設置檢查或校正的作業指導書)。

程序2-收集輸入量的資訊 (1)識別輸入量

範例說明

	測 量 任	務
使用褶尺量測長度	使用萬用表量測電阻	使用 pH 計量測 pH 值
典	型輸入	画
讀取長度值	電流	電位差
讀取角度	電壓	温度
直尺的質量	頻率	材料
光照條件	纜線長度	濃度
應用程式設置	接觸電阻	液体成分
温度	内電阻	量測原理(設備類型)

程序2--收集輸入量的資訊(2)輸入量資訊的量化作法

量化數據來源或產生

- 直接量測的結果
- 先前量測的結果
- 校正或檢驗證書的資訊
- 製造商規範,數據表(例如濕度、溫度、大氣壓、量測儀器的靈敏度、解析度、量測誤差、修正值等)
- 基於經驗或重複量測的量測值的離散
- 相關特定數值表或文獻值(如:材料常數)
- 現有的包含在整體評定中的量測不確定度結果 (如:來自量測鏈的單個設備)
- 來自量測過程能力研究中的數據
- 來自之前量測鏈或校正鏈的資訊

程序3--建立數學模型(程式)

```
• 加法模型
 y = x_1 + x_2 + \dots + x_n
• 乘法模型
 y = x_1 \cdot x_2 \cdot \dots \cdot x_n
• 線性函数
 y = (a_1+b_1 \cdot x_1)+(a_2+b_2 \cdot x_2)+....+(a_n+b_n \cdot x_n)
                                            (ai和 bi 為常數, 1≤i≤n)
 y = y' + \alpha K + \beta K \cdot y' 或 y = Y' + k(y') k(y') = \alpha K + \beta K \cdot y'
     αK:修正常数(修正函数的截距),
     βK: 修正因子(修正函数的斜率)
     y':未修正的量測结果("原始值")
• 一般模型
  y = f(x_1, x_2, x_3, ..... x_n)
                           如電功率: p=V•I=I<sup>2</sup> •R
```

程序4--輸入量評定量值和標準不確定度

- A 類評估(方法 A):
- 通過重複量測,對量測結果進行統計分析估算得出。

例如:為評定量測不確定度而量測的數據、穩定性監控的結果、先前研究記錄的量測值。

- B 類評估(方法 B):
- 考量其他量測誤差來源,並經過分析、評估處理得出。

例如:生產商的規範、規格界限值、從先前研究中獲取的參數或文獻中的參數。

A類標準不確定度評估 常規法(塞爾公式法)

• 對i的輸入量,重覆執行 m 次單測值 x_{ik} 的算術平均值:

$$\overline{x}_i = \frac{1}{m} \sum_{k=1}^m x_{ik}$$

· 通過量測值平均值 xi 的實驗標準差

$$s(x_i) = \sqrt{\frac{1}{m-1} \sum_{k=1}^{m} (x_{ik} - \overline{x}_i)^2}$$

隨著量測次數 的增加而趨於 穩定的數值

的增加而減小

• 通過平均值 x_i 的分散來描述輸入量 i 的標準不確定度: $u(\overline{x_i}) = s(x_i)/\sqrt{m}$

$$= \sqrt{\frac{1}{m(m-1)} \sum_{k=1}^{m} (x_{ik} - \overline{x}_{i})^{2}}$$

A類標準不確定度評估(續) 極差法

- · 在重複性條件下,對輸入量(Xi)進行 n次獨立觀測。
- 計算結果中的最大值與最小值之差 R(稱為極差)。
- 在接近常態分佈前提下,單次量測結果 x_i 的實驗標準差 $S(x_i)$ 為: $S(x_i) = R/C = u(x_i)$
- ·上式中係數C及其自由度V如表:

n	2	3	4	5	6	7	8	9
С	1.13	1.64	2.06	2.33	2.53	2.70	2.85	2.97
ν	0.9	1.8	2.7	3.6	4.5	5.3	6.0	6.8

B類不確定度的評估方法

- 1. 已知量測值區間[\bar{x} -a, \bar{x} +a]、機率分佈和涵蓋係數k: $u(x_i)$ = a / k
- 2. 已知擴展不確定度U和涵蓋係數k: $u(x_i) = U(x_i) / k$
- 3. 已知擴展不確定度Up和信心水準p的常態分佈: $u(x_i) = Up / kp$
- 4. 已知擴展不確定度Up以及機率p 與有效自由度 v_{eff} 的t分佈 $u(x_i) = Up / tp(v_{eff})$ (tp為t分佈查表數值) $v_{eff} = u_c^4(Y) / [\sum_{i=1}^n (Ci u(x_i))^4 / v_i]$ 其中 $v_i = \frac{1}{2} \cdot (\frac{u(x_i)}{\Delta u(x_i)})^2$

p(%)	50	68.27	90	95	95.45	99	99.73
kp	0.67	1	1.645	1.960	2	2.576	3

B類不確定度的評估方法(續)

5. 其他常見的分佈

- 除常態分佈和t分佈外,其他分布有均匀分佈、反正弦分佈、三角分佈、梯形分佈等。
- 已知估計值 x_i 分散區間半寬為 a,且 x_i 落在 x_i -a- 至 x_i + a+ 範圍內的概率p 為 100%,得出 x_i 的標準不確定度為 $u(x_i) = a / k$

分佈類別	p(%)	k
常態	99.73 3	3
三 角	100	$\sqrt{6}$
梯 形 (β=0.71)	100	2
矩形(均匀)	100	$\sqrt{3}$
反正弦	100	$\sqrt{2}$

程序5--合成標準不確定度

模型	模型方程	量測结果 y 的合成標準不确定度u _c (y)
加法模型	$y = x_1 + x_2 + \dots + x_n$	$u_c(y) = \sqrt{u^2(x_1) + u^2(x_2) + + u^2(x_1)}$
	$y = y_0 + \delta x_1 + \delta x_2 + \delta x_3 + + \delta x_n$	$u_c(y) = \sqrt{u^2(\delta x_1) + u^2(\delta x_2) + + u^2(\delta x_n)}$
乘法模型	$y = x_1 \bullet x_2 \bullet \dots \bullet x_n$	$u_c(y)/y = \sqrt{[u(x_1)/x_1]^2 + [u(x_2)/x_2]^2 + + [u(xn)/xn]^2}$
線性模型	$y = a_1+b_1 \cdot x_1+a_2+b_2 \cdot x_2++a_n+b_n \cdot x_n$	$u_c(y) = \sqrt{\frac{u^2(a_1) + x_1^2 u^2(b_1) + b_1^2 u_2^2 (x_1) +}{+u^2(an) + xn^2 u^2(bn) + bn^2 \cdot u^2 x_n}}$
一般模型	$y = f(x_1, x_2, x_3, x_n)$	$u_c(y) = \sqrt{c_1^2 u^2(x_1) + c_2^2 u^2(x_2) + \cdots + c_n^2 [u^2(x_n)]}$

•u(xi): 第i個輸入量的值 xi 的標準不確定度,其中1≤i≤n,

•u(δi):與第 i 個輸入量期望值 xi 的偏差 δxi 的標準不確定度,其中 $1 \le i \le n$,

•靈敏係數 $c_i = \partial y / \partial x_i$

程序6--擴展量測不確定度

• 擴展量測不確定度 U 是一個參數,確定了量測結果的範圍。 $U=k_p\cdot u_c$

其中 u_c 為合成標準不確定度, k_p 是基於某信心水準的涵蓋係數。

- · kp 的值不僅取決於信心水準,同時也與自由度有關。
- 當可用的量測值個數少於20個或者需要選擇最優的 kp 時,與自由度尤其相關。

假設常態分佈時具有信心水準 p% 區間的擴充係數-kp

信賴水準-%	68.27	90.00	95.00	95.45	99.00	99.73
擴充係數-kp	1	1.645	1.960	2	2.576	3

程序7--完整的量測結果

- ●被量測的完整量測結果是:
 - 修正的量測值Y和相應的擴展量測不確定度U組成。
- ●量測結果的表示方式:
- y ± U (Bosch 推荐使用)
- y, U
- y, U_{rel}
- $y (1 \pm U_{rel})$

Urel 表示與量測值相關的擴展量測不確定度: $U_{rel} = U/|y|$ 。

程序8--不確定度預算表(配當表)

預算表內含項目

- 量測程式
- 相關所有輸入量(以符號形式表示)
- 每個輸入量的(估計)值
- 每個輸入量的相關的標準不確定度
- 所應用的機率密度函數 (如:常態分佈,矩形分佈)
- 自由度
- 量測不確定評估類型(A 類或 B 類)
- 靈敏係數
- 影響輸出量的不確定度分量
- 輸出量的值
- 輸出量的合成標準不確定度
- 涵蓋係數。

依據 ISO 22514-7 量測不確定度評估方法

- ●ISO 22514-7(2012):「過程管理中的統計方法—能力和性能—第7部分:量測過程的能力」
- ●遵循ISO/IEC指南 98-3(GUM)中採用的方法,建立了一個基本的、簡化的程序。

ISO 22514-7量測不確定度評估方法

細項不確定分量數據源

u _{CAL}	有限的校正精確度導致的偏差
u _{EV(MS)}	有限量測系統標準件重複性導致的偏差
u _{BI}	系統量測誤差
u _{LIN}	線性誤差
u _{REST(MS)}	量測系統其它影響導致的偏差
u _{EV(MP)}	有限量測過程重覆性導致的偏差
u _{AV}	操作員影響導致的偏差
u _{obj}	各個待測物不同質導致的偏差
u _{IA(1)}	輸入間交互作用導致的偏差
u _{IA(2)}	輸入間交互作用導致的偏差
u _{STAB}	量測過程隨時間的穩定性導致的偏差
u _ð	温度導致的偏差
u _{GV}	技術上不同系統可比性導致的偏差
u _{REST(MP)}	量測過程其它影響造成的偏差

五大類不確定分量數據源

標準件或參考件的校正標準不 確定度	u _{CAL}
未修正的系統量測誤差導致的 標準不確定度	u _{BI}
量測程序的標準不確定度(含 量測系統,標準件,操作員, 時間和環境)	u _{PRO}
被測物件的標準不確定度	u _{PAR}
其它不確定度分量的標準不確 定度	u _{EXT}

 $u_{C} = \sqrt{u_{CAL}^{2} + u_{BI}^{2} + u_{PRO}^{2} + u_{PAR}^{2} + u_{EXT}^{2}}$

●擴展量測不確定度: U=kp•uc

細 項不確定分量數據源

ISO 22514-7量測不確定度評估方法

不確定度符號	偏差符號	ISO 22514-7中所列不確定度分項	資料或數據來源
u _{CAL}	δx _{CAL}	有限的校正精確度導致的偏差	校正證書
u _{EV(MS)}	δx _{EV(MS)}	有限量測系統標準件重複性導致的偏差	使用標準件或參考件的量測系統的離散
u _{BI}	δx _{BI}	系統量測誤差	量測值與標準件或系列物件參考值的平均偏差
u _{LIN}	δx _{LIN}	線性誤差	
u _{REST(MS)}	δx _{REST(MS)}	量測系統其它影響導致的偏差	上述所有非系列物件導致的其他影響
u _{EV(MP)}	δx _{EV(MP)}	有限量測過程重覆性導致的偏差	系列物件導致量測系統離散的增加
u _{AV}	δx _{AV}	操作員影響導致的偏差	
u _{obj}	δx _{obj}	各個待測物不同質導致的偏差	
u _{IA(1)}	δx _{IA(1)}	輸入間交互作用導致的偏差	非系列零件導致的交互作用
u _{IA(2)}	δx _{IA(2)}	輸入間交互作用導致的偏差	操作員和系列零件間的交互作用
U _{STAB}	δx _{STAB}	量測過程隨時間的穩定性導致的偏差	偏離量測過程的長期穩定性導致的離散
u _ϑ	δx _θ	温度導致的偏差	溫度變化和偏離名義值的設置的影響
u _{GV}	δx _{GV}	技術上不同系統可比性導致的偏差	
u _{REST(MP)}	δx _{REST(MP)}	量測過程其它影響造成的偏差	

ISO 22514-7量測不確定度評估方法

類別	代號	不確定度	
標準件或參考件的 校正標準不確定度	u _{CAL}	$u_{CAL} = U_{CAL} / kp$	
未修正的系統量測誤差 導致的標準不確定度	u _{BI}	$u_{BI} = x_m - \overline{x}$	
量測程序的 標準不確定度 (含量測系統,標準件, 操作員,時間和環境)	u _{PRO}	$u_{PRO} = \sqrt{u_{EV(MS)}^2 + u_{REST(MS)}^2 + u_{AV}^2 + u_{IA(1)}^2 + u_{STAB}^2 + u_{\vartheta}^2}$ $\approx \sqrt{\frac{1}{m-1} \sum_{k=1}^{m} (x_k - \overline{x})^2}$	
被測物件的 標準不確定度	u _{PAR}	$u_{\underline{PAR}} = \sqrt{u_{EV(MP)}^2 - u_{EV(MS)}^2} \approx \sqrt{EV^2 - s^2}$	
其它不確定度分量的 標準不確定度	u _{EXT}	$u_{EXT} = \sqrt{u_{LIN}^2 + u_{OBJ}^2 + u_{IA(2)}^2 + u_{GV}^2 + u_{REST(MP)}^2}$	

ISO 22514-7量測不確定度評估方法

- 合成標準不確定度: $u_C = \sqrt{u^2_{CAL} + u^2_{BI} + u^2_{PRO} + u^2_{PAR} + u^2_{EXT}}$
- 擴展量測不確定度: U=kp uc
- 完整的量測結果: y = y' + U

四、量測儀器校正不確定度評估案例

- 1. 數字電表校正不準確度評估
- 2. 恆溫箱(溫度櫃)校正不準確度評估
- 3. 量表(錶盤、量規)校正不準確度評估
- 4. 扭力計校正不確定評估

1. 數字電表校正不準確度評估以《直流電壓》校正為例說明

	高精度多功能校準器	攜式多功能校正器	五位半數字萬用表
直流電壓	輸出精準度 約3.5 ppm	輸出精準度約0.01% 測量精準度約0.02%	測量精準度約0.015%
直流電流	輸出精準度 約35 ppm	輸出精準度約0.01% 測量精準度約0.01%	測量精準度約0.02%
交流電壓	輸出精準度 約103 ppm	測量精準度 約0.5%	測量精準度約0.2%
交流電流	輸出精準度 約42 ppm		測量精準度 約0.3%
電阻	輸出精準度 約6.5 ppm	輸出精準度 0.01%~0.02% 測量精準度 約0.05%	測量精準度約0.02%

(資料來源: "測量不確定度評定與表示指南",中國計量出版社)

多功能校正器直流電壓技術規格:

範圍選擇	解析度	信賴水準=99%之擴充不確定度			
		24小時	1年		
20 V	1μV	顯示值x(2 x10 ⁻⁶)+ 3μV	顯示值x(5 x10 ⁻⁶)+ 4μV	顯示值x(8 x10 ⁻⁶)+ 5μV	

待校正數字電表直流電壓技術規格:

範圍選擇	滿範圍顯示	解析度	年準確度(最大允許誤差)
20V	19.9999 V	100μV	±(0.0035 x 顯示值 + 0.0025% x 範圍)

本案例校正需求規格(直流電壓):

範圍選擇	輸入電壓	最大允許誤差
20 V	10V	±0.0007V

多功能校正器直流電壓

- ★本案例影響直流電壓量測結果的不確定度來源包括:
- 1. 多功能校正器直流電壓輸出量的不準確度。
- 2. 待測數位電表直流電壓之顯示解析度。
- 3.由於多功能校正器直流電壓輸出非常穩定,使得待測電表顯示值也很穩定,

校正器直流電壓輸出10.000000V,待測電表穩定顯示10.0001V。 多功能校正器直流電壓A類不準確定度評估並不適用。

- · 4.校正量測環境溫度維持23°C,負載與連接的影響可忽略不計。
- 5.預熱 ½ 小時可完全達到不確定度技術指標。

- 1. 校正器直流電壓輸出量的不準確度之評估
- 校正器規格之90天有效的不準確度為: 顯示值 x (5 x10-6)+ 4μV 因此分散區間半寬度:a₁ = 10.000001x(5 x10-6)V + 4 x 10-6 V = 54 x 10-6 V
- 設為常態分佈, p = 99%, 得 k1 = 2.58
 因此,不準確度 u₁ = a₁ / k₁ = (54 x 10⁻⁶) ÷ 2.58 = 20.9 x 10⁻⁶ V
 自由度: v₁ = ∞

信賴水準-%	68.27	90.00	95.00	95.45	99.00	99.73
擴充係數-kp	1	1.645	1.960	2	2.576	3

- 2.待測數位電表直流電壓顯示解析度的不準確度之評估
- 待測數位電表直流電壓量測範圍設為20V,解析度為100 μV。
 因此分散區間半寬度: a₂ = 100 μV÷2 = 50 x 10⁻⁶ V
- 設為均勻分佈, $k_2 = \sqrt{3}$ 標準不準確度 $u_2 = a_2 / k_2 = (50 \times 10^{-6}) \div \sqrt{3} = 28.9 \times 10^{-6} \text{ V}$ 自由度: $V_2 = \infty$

●不準確度分量表

	不確定度來源	評估類型	a _i	分佈	k	и	ν
1	校正器輸出不準確度	В	54 x 10 ⁻⁶ V	常態	2.58	20.9 x 10 ⁻⁶ V	∞
2	電表解析度不準確度	В	50 x 10 ⁻⁶ V	均勻	$\sqrt{3}$	28.9 x 10 ⁻⁶ V	∞

●合成不準確度之評估

$$u_C = \sqrt{u_1^2 + u_2^2} = \sqrt{(20.9 \times 10^{-6})^2 + (28.9 \times 10^{-6})^2} = 35.7 \times 10^{-6} \text{ V}$$
有效自由度: $v_{\text{eff}} = \infty$

●擴充不準確度之評估(U)

```
因 p = 95%,v_{eff} = \infty,查t分佈值表得 t_{95}(v_{eff} = \infty ) 得 k = 1.96 U = k•u_C = 1.96 x 35.7 x 10<sup>-6</sup> V = 70 μV (即 0.000 070 V)
```

●結論: 0.000 070 V < ± 0.000 7 V ;約1:10, 符合校正檢測要求。

2. 恆溫箱(溫度櫃) 校正不準確度評估

恆溫箱 (櫃)校正不準確度評估案例

(資料來源:"測量不確定度評定與表示指南",中國計量出版社)

	校正不確定度評估相關輸入資料說明					
1	溫度計解析度 0.1 ℃ 原廠規格					
2	溫度計準確度	± 0.6 °C	原廠規格			
3	熱電偶不準確度	2.0 ℃;信心水準99%	校正報告			
4	熱電偶 400°C 時修正值	0.5 °C	校正報告			

量測序列	量測值di/ºC	残差 υi /ºC	變異量 υi² /10-² ºC²
1	401.0	+0.78	60.84
2	400.1	-0.12	1.44
3	400.9	+0.68	46.24
4	399.4	+0.82	67.24
5	398.8	-1.42	201.64
6	400.0	-0.22	4.84
7	401.0	+0.78	60.84
8	402.0	+1.88	354.44
9	399.9	-0.32	10.24
10	399.0	-1.22	148.84
Σ	4 002.22		955.6
平均值 d	400.22		

●量測程式:

溫度設定值=溫度計顯示值+修正值: T=D+B 溫度量測結果=輸入估計值+最佳修正值: t=d+b

- ●A類標準不確定度評估
- $\overline{d} = (\sum_{i=1}^{n} di)/n = (\sum_{i=1}^{10} di)/10 = 400.22$ °C
- 實驗標準差 $S(di) = \sqrt{\sum_{i=1}^{n} (di \overline{d})/(10-1)} = \sqrt{9.556/9} = 1.03$ °C
- •標準不確定度 $u(d_1) = s(\overline{d}) = S(di) / \sqrt{n} = 1.03 / \sqrt{10} = 0.33$ °C
- 自由度v = 10-1=9

- ●B類標準不確定度評估
- 1.温度計量測準確度之不確定度評估: u(d₂)
- ・已知溫度計量測不準確度為 ± 0.6 °C; 為均勻(矩型)分佈標準不準確度 $u(d_2) = 0.6 / \sqrt{3} = 0.6 / 1.73 = 0.35$ °C
- 假設具有80%可靠性,則不可靠性為:1-80%=20% 則相對不確定性: $\sigma[u(d_2)]/u(d_2)=20\%$
 - 自由度: $v_2 = \frac{1}{2} \{ \sigma[u(d_2)] / u(d_2) \}^{-2} = 25 / 2 = 12.5 \approx 12$

- ●B類標準不確定度評估
- 2.温度計解析度不確定度評估: u(d₃)
- 已知溫度計解析度為 0.1 °C; 為矩型分佈 則半寬度為: 0.1 °C/2=0.05 °C
 - 别十見及為· U.1 ~C/2=U.U5 ~C
 - 實驗標準差 $s(d_3) = 0.05 / \sqrt{3} = 0.03$ °C
- 不確定度 $u(d_3) = s(d_3) / \sqrt{10 1} = 0.03 / 9 = 0.01$ °C
- 與u(d₂)相比,可忽略不計。[u(d₂) = 0.35 °C]

- ●B類標準不確定度評估
- 3.熱電偶之不確定度評估: u(b)
- 已知熱電偶400℃時的修正值為 : b = 0.5℃;

不確定度為2.0℃;信賴水準為99%,

查表可知:涵蓋係數 kp = 2.58

標準不準確度 u(b) = 2.0 / 2.58 = 0.78 °C

• 假設具有90%可靠性,則不可靠性為:1-90% = 10%

相對不確定性: σ[u(b)] / u(b) = 10%

自由度: $v_3 = \frac{1}{2} \{ \sigma[u(b)] / u(b) \}^{-2} = 50$

●合成標準不確定度評估

$$u_{c}(t) = u^{2}(d_{1}) + u^{2}(d_{2}) + u^{2}(b) = \sqrt{u^{2}(d_{1}) + u^{2}(d_{2}) + u^{2}(b)}$$

= $\sqrt{(0.33)^{2} + (0.35)^{2} + (0.78)^{2}} = 0.92 \, ^{0}C$

- ●擴充標準不確定度評估
- $U_p = k_p \bullet u_c(t) = t_p(v) \bullet u_c(t)$

$$v_{eff} \approx u_c^4(t)^7 / (A + B + C) = 0.92^{4} / (A + B + C) = 71.8 \approx 71$$

- 取信賴水準為95%;當 $v_{eff} = 71$; $t_{p}(v) \approx 2$ $U_{p} = k_{p} \bullet u_{c}(t) = t_{p}(v) \bullet u_{c}(t) = 2 \bullet 0.92 \, ^{\circ}\text{C} = 1.8 \, ^{\circ}\text{C}$
- ●完整報告: t = 400.7 °C ; Up = 1.8 °C (p = 95%)

量測不準確度預算表

符號	不確定度 來源	類型	偏差 (°C)	機率分佈	涵蓋 係數	標準不確定度	靈敏 係數	自由度
<i>u</i> (d ₁)	量測重複性	A	0.33	t	1	0.33	1	9
<i>u</i> (d ₂)	儀器準確 度	В	0.6	矩型	$\sqrt{3}$	0.35	1	12
u(b)	熱電偶校正	В	2.0	常態	2.58	0.78	1	50
$u_{\rm c}(t)$		合成		t		0.92		
Up		擴充	1.8	t	2			71

可攜式溫度計檢測儀

(產生物理熱量的溫度校準器)

- 輕巧、便攜、快速。
- 可校準多種感測器類型(PRT、RTD、熱電偶和 4-20 mA 傳送器)。
- ·涵蓋+25°C至660°C的範圍。
- 15 分鐘內冷卻至 +25°C, 15 分鐘內加熱至 660°C
- 內置雙通道讀數。
- 精度範圍從±0.01°C到±0.07°C不等,具體取決於測量溫度。
- 穩定度: ±0.01°C。
- 均匀性: ±0.01°C。
- 機載自動化和資料檔。

使用鉑電阻溫度計 (PRT) 提高校準器的準確度

乾井式溫度校準器相關的不確定性

- 軸向均勻度(溫度傳感元件的結構和長度差異)
- 徑向均勻度(從一口井到另一口井的熱梯度稱為徑向均勻度)
- 加載效應(插入計量井的溫感器探頭數量)
- •穩定性(在 30 分鐘內的溫度變化)
- 桿傳導誤差(沿溫度傳感元件桿長度的熱通量)(因微小,可忽略)
- 參考溫度計探頭校準不確定性
- 參考溫度計探頭漂移(含遲滯)
- 參考溫度計探桿熱傳導
- 溫度計讀數精準度

乾井式溫度校準器相關的不確定評估預算表

	規格(m ⁰ K)	機率分佈	不確定度(m ⁰ K)	
軸向均勻度	20	矩型	11.55	
徑向均勻度	10	矩型	5.77	
加載效應	5	矩型	2.89	
穩定性	5	矩型	2.89	
参考溫度探頭校準不確定性	4	矩型	2.31	
参考溫度探頭漂移(含遲滯)	3	矩型	1.73	
參考溫度計探桿熱傳導	2	矩型	1.15	
溫度計讀數精度	6		3.46	
合成不確定度(RSS)		14.32 m ⁰ K		
擴充不確定度(k=2)		28.64 m ⁰ K		

3. 量表(錶盤、量規)校正不準確度評估

(資料來源: Booklet 8-Measurement Uncertainty(Edition 06/2015)

●量測說明

為測試量表特性是否符合規格「8.0±0.1 mm及T = 200 μm」的特殊用例。

- ●輸入量
- □相關標準設備資訊
- 量測不確定度的製商規格: L_i 顯示長度(μ m)、 k_p = 2、 溫度範圍(20 ± 0.5) °C
- •器示值增量(解析度)
- □相關待測物件資訊
- 刻度間隔
- 刻度上指針位置之估計不確定度
- 量測中螺栓的長度
- 量測中螺栓的線性溫度膨脹係數

$$U_{\rm CAL} = 0.4 \ \mu \rm m + 0.6 \cdot 10^{-6} \cdot L_{\rm i}$$

$$\delta L_i = 0.1 \, \mu m$$

I = 0.01 mm

$$\Delta SI = 0.1 \cdot SI$$

 $L_X = 100 \text{ mm}$
 $\alpha_X = (8.5 \pm 1.5) \cdot 10^{-6} \text{ K}^{-1}$

●輸入量(續)

- □相關量測程序資訊
- 量測時對ϑo = 20°C的溫度偏差
- 支架長度
- 支架之線性溫度膨脹係數
- 標準設備之玻璃尺的有效長度
- 玻璃尺之線性溫度膨脹係數

$$\Delta \vartheta = 1K$$

$$L_B = 200 \text{ mm}$$

$$\alpha_{\rm B} = (10.5 \pm 1.5) \cdot 10^{-6} \, {\rm K}^{-1}$$

$$L_N = 70 \text{ mm}$$

$$\alpha_{\rm N} = (11.5 \pm 1.5) \cdot 10^{-6} \, {\rm K}^{-1}$$

```
●程式
y = y' + K + \delta x_{CAL} + \delta x_O + \delta x_N + \delta x_X + \delta x_B
                                      (設 y_0 = y' + K)
其中
           量表之呈現數值,
• y
• y'
           量表之未修正數值,
• K
           修正量,
           標準設備之顯示數值(無未確之常規值),
• y o
• \delta x_{CAL}
           來自標準設備校正精度的限值偏差,
           來自量尺讀值之準確的限值偏差,
• \delta x_0
           來自標準設備受溫度影響的偏差,
• \delta x_N
           來自待測物件受溫度影響的偏差,
• \delta x_X
• \delta x_R
           來自支架受溫度影響的。
```

●量測結果

探頭位於 $y'=8.00 \text{ mm時,標準設備顯示值是}y_0=8.022 \text{ mm}$ 。

●修正量

來自標準設備之常規顯示值 y_0 = 8.022 mm,與量表顯示值 y' = 8.00 mm,兩者偏差是-22 μ m;即 $K = y_0 - y'$ = 8.022 mm - 8.00 mm = 0.022 mm = 22 μ m

●輸入量之標準不準確度

1.標準設備:

設量測值服從常態分佈,當測出位移量是LI=yo=8.022 mm,標準不準確度為:

$$u_{CAL} = \frac{u_{CAL}}{K_p} = \frac{(0.4 + 0.6 \cdot y_0)}{K_p} = \frac{0.4 \ \mu m + 0.6 \cdot 10^{-6} \cdot 8022 \ \mu m}{2} = \frac{0.4 \ \mu m + 0.0048 \ \mu m}{2}$$
$$= 0.203 \ \mu m$$

- 2. 待測物件:來自量測顯示值不準確度的不準確度。
- 來自探頭位置,顯示值之偏差的上限和下限:

$$a_{+} = + \Delta SI = + 0.1 \cdot SI = + 0.1 \cdot 0.01$$
mm = +1.0 μ m

$$a_{-} = -\Delta SI = -0.1 \cdot SI = -0.1 \cdot 0.01$$
mm = -1.0 μ m

• 假設為矩形分佈的標準不準確度:

$$u_0 = \frac{a}{\sqrt{3}} = \frac{a_+ - a_-}{2} \frac{1}{\sqrt{3}} = \frac{1.0 \ \mu m}{\sqrt{3}} \approx 0.5774 \ \mu m$$

- 3.程序1:環境溫度偏差對量測設備玻璃尺長度(LN)的標準不準確度:
- · 來自LN之偏差的上限和下限:

$$a_{+} = \alpha_{N} \cdot L_{N} \cdot (+\Delta \vartheta) = 11.5 \cdot 10^{-6} \text{ K}^{-1} \cdot 70 \text{ mm} \cdot (+1 \text{K}) = 0.000805 \text{ mm}$$

= 0.805 \text{ \text{µm}}

$$a_{-} = \alpha_{N} \cdot L_{N} \cdot (+\Delta \vartheta) = 11.5 \cdot 10^{-6} \text{ K}^{-1} \cdot 70 \text{ mm} \cdot (-1 \text{K}) = -0.000805 \text{ mm}$$

= -0.805 \mum

• 假設矩形分佈的標準不準確度:

$$u_N = \frac{U_N}{\sqrt{3}} = \frac{a_+ - a_-}{2} \frac{1}{\sqrt{3}} = \frac{0.805 \,\mu\text{m}}{\sqrt{3}} \approx 0.465 \,\mu\text{m}$$

- 4.程序2:量測儀器螺栓長度(L_x)之室溫偏差的標準不準確度。
- · 來自Lx之偏差的上限和下限:

$$a_{+} = \alpha_{X} \cdot L_{X} \cdot (+\Delta \vartheta) = 8.5 \cdot 10^{-6} \text{ K}^{-1} \cdot 100 \text{ mm} \cdot (+1 \text{K}) = 0.00085 \text{ mm}$$

= 0.85 \(\mu\mathrm{m}\)

$$a_{-} = \alpha_{X} \cdot L_{X} \cdot (+\Delta \vartheta) = 8.5 \cdot 10^{-6} \text{ K}^{-1} \cdot 100 \text{ mm} \cdot (-1 \text{K}) = -0.00085 \text{ mm}$$

= -0.85 \text{ \text{µm}}

• 假設矩形分佈的標準不準確度:

$$u_{\chi} = \frac{U_B}{\sqrt{3}} = \frac{a_+ - a_-}{2} \frac{1}{\sqrt{3}} = \frac{0.85 \, \mu m}{\sqrt{3}} \approx 0.491 \, \mu m$$

5.程序3:支架長度(L_B)之室溫偏差的標準不準確度。 來自L_B之偏差的上限和下限:

$$a_{+} = \alpha_{B} \cdot L_{B} \cdot (+\Delta \vartheta) = 10.5 \cdot 10^{-6} \text{ K}^{-1} \cdot 200 \text{ mm} \cdot (+1 \text{K}) = 0.00210 \text{ mm}$$

= 2.10 µm

$$a_{-} = \alpha_{B} \cdot L_{B} \cdot (+\Delta \vartheta) = 10.5 \cdot 10^{-6} \text{ K}^{-1} \cdot 200 \text{ mm} \cdot (-1 \text{K}) = -0.00210 \text{ mm}$$

= -2.10 µm

• 假設矩形分佈的標準不準確度:

$$u_B = \frac{U_B}{\sqrt{3}} = \frac{a_+ - a_-}{2} \frac{1}{\sqrt{3}} = \frac{2.1 \,\mu m}{\sqrt{3}} \approx 1.2124 \; \text{mm} = 1.213 \; \mu \text{m}$$

輸入量標準不準確度彙整表

輸入量標準不準確度項目	分佈	代號	不準確度
標準設備不準確度	常態分佈	u _{CAL}	0.203 μm
待測物件顯示值不準確度	矩形分佈	u _O	0.5774 μm
溫度偏差對量測設備玻璃尺長度(L _N)的標準不準確度	矩形分佈	u _N	0.465 μm
量測儀器螺栓長度(L _N)之室溫偏差的標準不準確度	矩形分佈	u _x	0.491 μm
支架長度(L _B)之室溫偏差的標準不準確度	矩形分佈	u _B	1.213 μm
修正量		k	–22 μm

●輸出量之標準不準確度

$$u_{C} = \sqrt{u_{CAL}^{2} + u_{O}^{2} + u_{N}^{2} + u_{X}^{2} + u_{B}^{2} + K^{2}}$$

$$= \sqrt{(0.203^{2} + 0.578^{2} + 0.465^{2} + 0.491^{2} + 1.213^{2} + 22^{2}) \mu m^{2}}$$

$$\approx \sqrt{486.304} \ \mu \text{m} \approx 22.053 \ \mu \text{m}$$

●擴充量測之不準確度

- 採用擴充係數 k_p = 2 ,校正結果之擴充量測不準確度為: $U = k_p \times u_C = 2 \times 22.052 \, \mu m \approx 44.106 \, \mu m \approx 44.1 \, \mu m$
- ●完整量測結果
- $y = y' \pm U = (8000 \pm 44.1) \mu m = 8.0 mm \pm 44.1 \mu m$
- 在信心水準是95.45%狀況下,8mm量測點之量測結果常規值可預期落在7.956mm~8.044mm範圍內。
- U/T =44.1/200= 0.22 =22% >10 %,(主因修正量k未先校正) 因此採取修正後, u_C = 1.52 μ m,U/T = (1.52 x 2) / 200 = 0.015 = 1.5% < 10%

	Information about input quantities						Standard uncertainties of input quantities			Contributions to the measurement uncertainty of the measurand					
ON DOO	Description	Variable (symbol)	Measuring unit	Value of the unit variable	Value of the uncertainty data	Comments (z.B. references, explanatory notes, links to documents)	Evaluation type	Type A: Number of measured values; Type B: kp (≥1), confidence level (%), distribution	Numerical factor for calculating the standard uncertainty	Standard uncertainty	Sensitivity coefficient	Contribution to uncertainty	Contribution to uncertainty (squared)	Percentage contribution to MU budget $\frac{(c_i - u(x_i))^2}{\sum_{i=1}^{n} (c_i - u(x_i))^2}$	Rank (according to Pareto)
i				Xi	Ui	Δx_i	A B	m _i k _p , %, name	1 or √m _i k _p	$u(x_i) = U_i / k_p$	Ci	$c_i * u(x_i)$	$(c_i * u(x_i))^2$	[%]	
1	Standard: Calibration	δx_{CAL}	μm	0	0.4048	See text for calculation	В	Normal distribution (95%)	2.000	0.202	1	0.202	0.040968	0.0%	6
2	Measuring object: Reading of scale		μm	0	1.000	See text for calculation	В	Rectangular distribution	1.732	0.577	1	0.577	0.333333	0.0685%	3
3	Procedure: Length of glass scale		μm	0	0.805	See text for calculation	В	Rectangular distribution	1.732	0.465	1	0.465	0.216008	0.0%	5
4	Procedure: Length of measuring bolt		μm	0	0.850	See text for calculation	В	Rectangular distribution	1.732	0.491	1	0.491	0.240833	0.0495%	4
5	Procedure: Length of bracket	λν_	μm	0	2.100	See text for calculation	В	Rectangular distribution	1.732	1.212	1	1.212	1.470000	0.3023%	2
6	Systematic measurement error	y' - y _o	μm	-22	22.000	Basis: 1 measured value (no statistical evaluation)	В	1	1.000	22.000	1	22.000	484.000000	99.5%	1
7															
8															
g															
1															
1	ı														
	Model equation $y = y' + K + \delta x_{CAL} + \delta x_0 + \delta x_N + \delta x_X + \delta x_B$ $= y_0$ Expected values: $\delta x = 0$ Deviations: $-\Delta x \le \delta x \le \Delta x$					Total result:				$u_c^2 = 486.301$ 100,000% $u_c = 22.052$ $k_p = 2.000$ U/T = 0.221 U = 44.10					

4. 扭力計校正不確定評估

扭力計校正不確定評估案例

(資料來源:第11屆海峽兩岸計量學術研討會作者:呂錦華、陳茂源、張耀東、林秀璘。)

扭力標準件與待校件串連示意圖

扭力計校正不確定評估

待校扭力計之器差e的量測方程式

$$e = T - (T_s - e_s) \cdot cos\theta$$

其中

• T: 待校件之顯示值 [N·m]

• T_s:標準件顯示值 [N·m]

• e_s:標準件器差 [N·m]

· B: 待校件扭力軸向與標準件扭力軸向之同軸角度偏差 [°]

扭力計校正不確定評估

●依據 ISO GUM 評估方法,組合標準不確定度 u_c 為: $u_c^2(e) = (\frac{\partial e}{\partial T})^2 u^2(T) + (\frac{\partial e}{\partial Ts})^2 u^2(Ts) + (\frac{\partial e}{\partial es})^2 u^2(e_s) + (\frac{\partial e}{\partial e})^2 u^2(\vartheta)$

$$e = T - (T_s - e_s) \cdot cos\theta$$

其中靈敏係數:

$$\frac{\partial e}{\partial T} = 1 \quad ; \quad \frac{\partial e}{\partial Ts} = -\cos\vartheta \quad ; \quad \frac{\partial e}{\partial es} = \cos\vartheta \quad ; \quad \frac{\partial e}{\partial \theta} = (T_s - e_s)\sin\vartheta$$

●針對校正範圍為(0~5) N·m,相關參數估計值如下所示:

$$T = 5.00 \text{ N} \cdot \text{m}$$

$$T_{\rm s} = 5.00 \; {\rm N} \cdot {\rm m}$$

$$e_{s} = 0.00 \text{ N} \cdot \text{m}$$

- 1.待校件顯示值之標準不確定度 u(T)
- 主要來源為: 待校件之解析度 T_1 、重複性 T_2 及歸零誤差 T_3 等三項。 (1) 解析度之標準不確定度 $u(T_1)$
- 待校件之解析度為 $0.01 \, \text{N·m}$,估計呈矩形分布,解析度之標準不確定度 $u(T_1)$ 為: $u(T_1) = 0.01 \, \text{N·m} / 2 \cdot \sqrt{3}$
- 估計其相對不確定性 R 為 10 % ,則其自由度: $v(T_1) = \frac{1}{2} (\frac{100}{R})^2 = 50$

- 1.待校件顯示值之標準不確定度 u(T)
- (2) 重複性之標準不確定度 u(T₂)
- 每一個校正點均取3次量測值作平均,以平均值標準差為重複性 之標準不確定度。

經由量測數據得知,標準差為 0.0058 N·m,則重複性之標準不確定度 $u(T_2)$ 為: 0.0058 N·m / $\sqrt{3} = 0.00792 \text{ N·m}$

·因取3次量測值作平均,其自由度 v(T2)為3-1=2。

- 1.待校件顯示值之標準不確定度 u(T)
- (3) 歸零誤差之標準不確定度 u(T₃)
- 校正前,待校件須先歸零,此項與解析度之標準不確定度估算相同。
 - $u(T_3) = 0.01 \text{ N} \cdot \text{m} / 2 \sqrt{3} = 0.00288 \text{ N} \cdot \text{m}$
- ·估計其相對不確定性為10%,則其自由度v(T3)為50

1. 待校件顯示值之標準不確定度 u(T)

$$U(T) = \sqrt{u^2(T_1) + u^2(T_2) + u^2(T_3)} = 0.0053 \text{ N} \cdot \text{m}$$

• 應用 Welch-Satterthwaite 公式,其自由度v(T) 為

$$v(T) = u^4(T) / \left[\frac{u^4(T_1)}{v(T_1)} + \frac{u^4(T_2)}{v(T_2)} + \frac{u^4(T_3)}{v(T_3)} \right] = 11.8$$

2.標準件顯示值之標準不確定度 u(Ts)

本項不確定度主要來源與待校件相同,即標準件之解析度 T_{s1} 、重複性 T_{s2} 及歸零誤差 T_{c3} 等三項

解析度
$$T_{s1}$$
 $u(T_{s1}) = 0.01 \text{ N·m} / 2\sqrt{3}$, $v(T_{s1}) = 50$; 重複性 T_{s2} $u(T_{s2}) = 0.0058 \text{ N·m} / 3$, $v(T_{s2}) = 2$; 歸零誤差 T_{s3} $u(T_{s3}) = 0.01 \text{ N·m} / 2\sqrt{3}$, $v(T_{s3}) = 50$;

·標準不確定度 u(Ts)

$$u(Ts) = \sqrt{u^2(Ts_1) + u^2(Ts_2) + u^2(Ts_3)} = 0.0053 \text{ N·m}$$
 因 $\vartheta = 1^\circ$ 則靈敏係數 $\frac{\partial e}{\partial Ts} = -\cos\vartheta = -0.99985$ 不確定分量為 $|\frac{\partial e}{\partial Ts}| u(T_s) = 0.0053 \text{ N·m}$ 其自由度 $v(T_s) = 11.8$

3.標準件器差之標準不確定度 u(e_s)

- 由校正報告查得其相對擴充不確定度為 0.11%,信賴水準為 95%,涵蓋因子為 2。
- 則標準件器差之標準不確定度為 u(e_s) = [(0.11 %)•5 N·m] / 2 = 0.0028 N·m
- $\boxtimes \vartheta = 1^{\circ}$, $\frac{\partial e}{\partial es} = \cos \vartheta = 0.99985 \approx 1.0$ $\left|\frac{\partial e}{\partial es}\right| u(e_s) = 0.0028 \text{N} \cdot \text{m}$
- •因涵蓋因子為 2 ,可查得 t 分布表在信賴水準約 95 %,所對應的 t 值等於 2 時之自由度為 60 ,即 $v(e_s)=60$

4. 同軸角度偏差之標準不確定度 u(θ)

主要係來自待校件扭力軸向與標準件扭力軸向之角度偏差,估計其 角度偏差之變動約±1°,及呈矩形分布,

則同軸角度偏差之標準不確定度為

$$u(\theta) = 1$$
 °(π / 180°) / $\sqrt{3} = 0.0101$ N·m 為

因
$$\vartheta = 1^{\circ}$$
, $\frac{\partial e}{\partial \theta} = (T_s - e_s) \sin \vartheta = (5.00 - 0.00) \bullet 0.0175 = 0.08726$ N·m

- 則可得不確定分量為 $|\frac{\partial e}{\partial \theta}|$ $u(\theta) = 0.0009 \text{ N·m}$
- ·估計其相對不確定性為10%,則自由度v(θ)為50

扭力計校正不確定評估合成不確定度評估

• 綜合以上各項不確定度分量所估算之結果 代入式

$$u_c^2(e) = (\frac{\partial e}{\partial T})^2 u^2(T) + (\frac{\partial e}{\partial Ts})^2 u^2(Ts) + (\frac{\partial e}{\partial es})^2 u^2(e_s) + (\frac{\partial e}{\partial \theta})^2 u^2(\vartheta)$$

其中 $(\frac{\partial e}{\partial T})u(T) = 0.0053 \text{ N·m}$; $(\frac{\partial e}{\partial Ts})u(Ts) = 0.0053 \text{ N·m}$
 $(\frac{\partial e}{\partial es})u(e_s) = 0.0028 \text{ N·m}$; $(\frac{\partial e}{\partial \theta})u(\vartheta) = 0.0009 \text{ N·m}$
得出 $u_c(e) = 0.00802 \text{ N·m}$

• 應用 Welch-Satterthwaite 公式 ,可計算得有效自由度 $v_{eff}(e)$ 因v(T)=11.8 ; v(Ts)=11.811.8; $v(e_s)=60$; $v(\vartheta)=50$ $v_{eff}(e)=u_c^4(e)$ / $[\frac{u^4(T)}{v(T)}+\frac{u^4(T_s)}{v(Ts)}+\frac{u^4(e_s)}{v(e_c)}+\frac{u^4(\vartheta)}{v(\vartheta)}]=31$

扭力計校正不確定評估擴充不確定度評估

• 有效自由度veff(e) 為 31, 可查 t 分布表 在約 95% 信賴水準下, 其對應的 t 值為 2.04, 則可得涵蓋因子:

$$k = 2.04$$

擴充不確定度 U(e) 為
 U = k•u_c(e) = 2.04 x 0.00802 N·m = 0.02 N·m

不確定度配當表

不確定度源 xi	不確定度 估計量	機率 分佈	標準不確定度 u(xi)	靈敏係數	不確定度分量	自由度
待校件讀值 T			0.0053 N·m	1	0.0053 N·m	11.8
T ₁	0.01 N·m	矩形	0.00288 N·m			50
T ₂	0.0058 N·m	矩形	0.00792 N·m			2
T ₃	0.01 N·m	矩形	0.00288 N·m			50
標準件讀值 Ts				-0.99985	0.0053 N·m	11.8
T _{s1}	0.01 N·m	矩形	0.00288 N·m			50
T _{s2}	0.0058 N·m	矩形	0.00792 N·m			2
T _{s3}	0.01 N·m	矩形	0.00288 N·m			50
標準件器差 es	0.11 %	常態	0.0028 N·m	0.99985	0.0028 N·m	60
同軸角度偏差θ	±1°	矩形	0.0101 N·m	0.08726 N·m	0.0009 N·m	50

組合標準不確定度 uc(e) = 0.00802 N·m

有效自由度 veff = 31 涵蓋因子 k = 2.04

擴充不確定度 U = (2.04)(0.00802 N·m) = 0.02 N·m (95 % 信賴水準)

結 語

- 工廠量測儀器自校能量的建立,最首要的工作是校正系統的建立與維持,以 及所需參考標準的設置與追溯校正。
- 原則上,校正用參考標準的設置以「高精準度」的計量標準產生儀器(設備) 為佳(例如採購電表校正器、溫度計校正器、扭力校正器、量表校正器等)。
- 但為考量採購投資成本與後續送外追溯校正費用與運輸過程風險,可考量採購高精準度的「量測儀器」作為參考標準(例如六位半數位電表、鉑電阻溫度計),定期送外執行精準度追溯校正。

★儀器送外校正注意事項:

- (1) 先在廠內以參考標準,調整待校儀器精準度到最佳狀況。
- (2) 校正點以廠內常用測試點為主要點。
- (3) 校正報告除校正應有資料外,還要顯示校正量測所用參考標準(名稱、 廠牌、型號與序號)、追溯校正報告編號與有效日期,以及量測不確定度。

参考資料

- "Booklet 8-Measurement Uncertainty (Bosch)" , Edition 2015-06
- "測量不確定度評定與表示指南",中國計量出版社, 國家質量技術監督局計量司組, 2005-11-1
- "扭力計校正之不確定度評估",第 11 屆 海峽兩岸計量學術研討會,作者: 呂錦華、陳茂源、張耀東、林秀璘。2016-11。

謝謝! 敬請指教!