Name	Teacher
Part 2 (70 marks = 35% of paper) Answer all questions in part 2 in the spaces provided below	ow
Part 2 (70 marks = 35% of paper) Answer all questions in part 2 in the spaces provided below.	OTA
Answer all questions in part 2 in the spaces provided ber	
Write reactions for any reactions that occur in the following processor occurs write "no reaction".	ocedures. If no reaction
In each case describe in full what could be observed including anycolours	,
• odours	
 precipitates (state colours) 	
 gases evolved (state colour or describe as colourless) 	
If no change is observable, this should be stated	
(a) Barium hydroxide solution is mixed with a solution of nitric	acid.
Equation	
equation	
Observa tion 	
	()
	(3marks)
(b) Concentrated nitric acid is added to a piece of copper metal	
· · · · · · · · · · · · · · · · · · ·	
Equation	
Observation	
Observation ————————————————————————————————————	
-	(3 marks)
	, ,
(c) Solid chromium carbonate is added to a beaker of .10 M sulf	uric acid
Equation	
Equation	
Observation	
	(3 marks)
(d) A piece of solid nickel chloride is added to a beaker containing	ng magnesium nitrate soluti
a) 11 piece of some meker emoriae is added to a beaker comanni	is magnesium muate soluti
Equation	
Observation ————————————————————————————————————	
	(3 marks)

	A primary standard suitable for acid base titrations A polyatomic cation A catalyst used in the Haber Process The anode of a dry cell A reducing agent weaker than Cl¹- ion A substance that will oxidise Mn to Mn²+ but will not oxidise Pb to Pb²+	
1	A catalyst used in the Haber Process The anode of a dry cell A reducing agent weaker than Cl¹- ion A substance that will oxidise Mn to Mn²+ but will not oxidise Pb	
1	Process The anode of a dry cell A reducing agent weaker than Cl ¹⁻ ion A substance that will oxidise Mn to Mn ²⁺ but will not oxidise Pb	
. 1	A reducing agent weaker than Cl ¹⁻ ion A substance that will oxidise Mn to Mn ²⁺ but will not oxidise Pb	
. 1	Cl ¹⁻ ion A substance that will oxidise Mn to Mn ²⁺ but will not oxidise Pb	
1	to Mn ²⁺ but will not oxidise Pb	
L	The conjugate acid of C ₅ H ₁₀ Cl ¹⁻	
		(7 marks)
SeO ₄ ²⁻ Write oxidat	tion and reduction half equations, a redox equation and nam	portionates into selenium,Se and the selenate ion,
Reduct	ion half equation	
Redox	equation	
lising Age	ent Rec	ucing Agent(5mar

2

For each of the following pairs of substances describe a chemical test that would 4 distinguish between them. Describe the distinguishing observations, but no equations are

required

	Chemical test (Describe fully)	Observation in each case
Solid Al ₂ (CO ₃) ₃ and solid Na ₂ CO ₃		With Al ₂ (CO ₃) ₃ With Na ₂ CO ₃
Lead nitrate solution and magnesium chloride solution		With lead nitrate solution With magnesium chloride solution
Water and hydrogen peroxide solution		With water With hydrogen peroxide solution

(6 marks)

Your diagram should show:

Anode; cathode; oxidation half equation; reduction half equation; direction of electron flow; direction of ion movement; all substances present in the cell, predicted cell voltage (8)

- ⁶ The amount of CH₃COOH present in vinegar is analysed by titrating samples of it with a standardised 0.1000molL⁻¹ solution of NaOH.
 - Methyl orange is used as indicator; vinegar is pipetted into conical flasks. The volume of NaOH required to titrate the 20.00 mL samples is 17.00 mL.
- (a) Sketch a titration curve showing volume of NaOH added vs pH of flask contents (3)

(b) Describe the products of this titration

			(3
n the Hertzog Pro	cess process, SiCl4 is produced as	equilibrium is established	
SiO _{2 (S)} +	4HCl _(g) ←=→ SiCl _{4(g)}	+ 2H ₂ O _(g)	
The forward	reaction is exothermic		
1 1			
	escribed in the table below predict fect both the rate of reaction and e	how each change to the equilibri equilibrium yield of SiCl4	iur
			iur —
nditions would aff Change imposed	ect both the rate of reaction and e	equilibrium yield of SiCl4	iur —
nditions would aff	ect both the rate of reaction and e	equilibrium yield of SiCl ₄ Effect on yield of SiCl ₄	iur
Change imposed System is heated More SiO ₂ is	ect both the rate of reaction and e	equilibrium yield of SiCl ₄ Effect on yield of SiCl ₄	
Change imposed System is heated	ect both the rate of reaction and e	equilibrium yield of SiCl ₄ Effect on yield of SiCl ₄	
Change imposed System is heated More SiO ₂ is	ect both the rate of reaction and e	equilibrium yield of SiCl ₄ Effect on yield of SiCl ₄	
Change imposed System is heated More SiO ₂ is added The pressure is	ect both the rate of reaction and e	equilibrium yield of SiCl ₄ Effect on yield of SiCl ₄	

(c) The results of this analysis are proven to be inaccurate; explain whether the calculated % of CH₃COOH would be too high or too low, and why

	Alloue	
	Cathode	
(b)	Describe how the choice of sulfuric acid as electrolyte assists in the efficient operacell, resulting in higher EMF than if other electrolytes were used	(2) tion of this
9 Ex _]	plain each of the following	(2)
(a) 1	The pH of a solution of 0.1M NaH ₂ PO ₄ is 9 but the pH of a solution of KHSO ₄ is 2	
		(3)
(b) A	Although an iron bar is stable when exposed to a flame, iron filings will spark vigorouslyhen sprinkled into a bunsen flame.	usly

 $(c) \qquad \text{A solution of copper sulfate should not be stored in an iron container} \\$

(3)

		(3)
10 (a)) Describe what is meant by the term amphoteric	
		(1)
(b)	With the aid of balanced equations illustrate the amphoteric nature of aluminium hyd	roxide
		(3)