

IN THE CLAIMS:

1 1. (Currently Amended) A method of fabricating a membrane electrode assembly
2 for use in a fuel cell, comprising:
3 (A) providing a mold that includes a first and second mold plate adapted to
4 impart a desired shape to induce compression to decrease the thickness of
5 components in the mold and to apply pressure substantially evenly across
6 an entire active area of a membrane electrode assembly being fabricated in
7 the mold;
8 (B) providing a lead frame, including at least a first lead frame component that
9 is adapted to be received into said mold, ~~wherein the lead frame includes a~~ a
10 ~~current collector with a raised surface where the raised surface provides a~~
11 ~~minimum limit to the thickness of components in the mold;~~
12 (C) assembling a protonically conductive membrane with catalyst coatings on
13 each of its major surfaces onto said first lead frame component;
14 (D) placing said lead frame containing said membrane into the mold;
15 (E) compressing said second mold plate onto said first mold plate;
16 (F) introducing a moldable material in communication with said mold plates;
17 and
18 (G) allowing the moldable material to cure in said mold to solidify and form a
19 plastic frame around said membrane to produce a membrane electrode as-
20 sembly for use in a fuel cell, wherein the plastic frame holds components
21 of the fuel cell in compression without using screws and nuts.

1 2. (Previously Presented) The method as defined in claim 1 further comprising inte-
2 grating the current collector into said first lead frame component onto which said mem-
3 brane is placed.

1 3. (Previously Presented) The method as defined in claim 2 further comprising:
2 (A) providing a second lead frame component that includes a second current
3 collector; and
4 (B) sandwiching said catalyzed membrane between the first and second cur-
5 rent collectors;
6 (C) introducing the lead frame components into said mold;
7 (D) compressing the first and second mold plates together;
8 (E) introducing a moldable material into said mold;
9 (F) allowing the moldable material to cure to form the shape of the mold
10 plates thereby forming a sealed fuel cell.

1 4. (Original) The method as defined in claim 1 wherein the step of introducing the
2 moldable material includes injection molding a moldable material into said mold.

1 5. (Cancelled)

1 6. (Currently Amended) A method of fabricating a fuel cell array, comprising:
2 (A) providing a mold that includes a first and second mold plate of a desired
3 shape that forms a cavity to induce compression to decrease the thickness
4 of components in the mold and to apply pressure substantially evenly
5 across an entire active area of a membrane electrode assembly being fabri-
6 cated in the mold;
7 (B) providing a sheet of protonically conductive membrane material that has
8 been coated on each of its major surfaces with a catalyst material to form a
9 sheet of catalyzed membrane;
10 (C) providing a lead frame structure that includes a plurality of individual lead
11 frame components that define separate fuel cells, wherein each lead frame
12 includes a current collector ~~with a raised surface, where the raised surface~~
13 provides a minimum limit to the thickness of components in the mold;

14 (D) assembling said sheet of catalyzed membrane into said lead frame struc-
15 ture;
16 (E) placing said lead frame structure containing said membrane sheet into the
17 mold;
18 (F) compressing said second mold plate onto said first mold plate;
19 (G) introducing a moldable material in communication with said mold plates;
20 and
21 (H) allowing the plastic to cure in said mold to solidify and form a plastic
22 frame around said individual fuel cells to produce a fuel cell array, wherein the
23 plastic frame holds components of the individual fuel cells in compression with-
24 out using screws and nuts.

1 7. (Currently Amended) A method of establishing a seal around a fuel cell, compris-
2 ing:
3 (A) providing a lead frame assembly including:
4 (i) providing first and second current collectors adapted to serve as lead
5 frame components in an associated mold device, wherein the first and sec-
6 ond current collectors each have a raised surface;
7 (ii) assembling fuel cell components including:
8 (a) a catalyzed protonically conductive, electronically non-
9 conductive membrane; and
10 (b) first and second diffusion layers disposed on opposite sides of
11 said membrane;
12 (iii) arranging said fuel cell components between said first and second cur-
13 rent collectors;
14 (B) inserting the resulting lead frame assembly into a molding device;
15 (C) introducing a moldable material into said molding device having a mold
16 cavity designed such so as to decrease the thickness of components in the
17 mold to a minimum limit for the thickness of components in the mold
18 which is set by the raised surface on the first and second current collectors

19 | and to apply pressure substantially evenly across an entire active area of
20 | the membrane being fabricated in the mold; and

21 | (D) allowing said moldable material to cure to seal the edges of the lead frame
22 | assembly against leaks to thereby seal the fuel cell without using a gasket
23 | and said moldable material forming a plastic frame, wherein the plastic
24 | frame holds components of the fuel cell in compression without using
25 | screws and nuts.

1 | 8. (Previously Presented) The method as defined in claim 7 further comprising spot
2 | welding the first and second current collectors that serve as lead frame components to-
3 | gether to maintain the components in place.

1 | 9. (Previously Presented) The method as defined in claim 7 further comprising trim-
2 | ming excess lead frame component portions away from said fuel cell to result in a fin-
3 | ished fuel cell.

1 | 10. (Previously Presented) The method as defined in claim 7 further comprising pro-
2 | viding said mold device with a mold cavity which, when said moldable material is intro-
3 | duced into said mold cavity and cured, creates a frame around said fuel cell.

1 | 11. (Currently Amended) A method of establishing a sealed diffusion layer for use in
2 | a fuel cell, comprising:
3 | (A) providing a first current collector integrated into a lead frame component,
4 | wherein the first current collector includes a raised surface;
5 | (B) applying a diffusion layer material to said first current collector on
6 | said lead frame component;
7 | (C) providing a second current collector integrated into a lead frame compo-
8 | nent;
9 | (D) applying a second diffusion layer material to said second current collector
10 | on said lead frame component;

11 (E) placing a catalyzed protonically conductive, electronically non-conductive
12 membrane between said first lead frame component and said second lead
13 frame component to form an assembly;
14 (F) placing said assembly into a molding device;
15 (G) closing mold plates associated with said molding device and hot pressing
16 the assembly for a predetermined time period to decrease the thickness of
17 components in the mold ~~to a minimum limit for the thickness of components in the mold which is set by the raised surface on the first current collector~~ and to apply pressure substantially evenly across an entire active
18 area of a membrane electrode assembly being fabricated in the mold;
19
20 (H) introducing a moldable material into said mold cavity of said mold device;
21 and
22 (I) allowing said moldable material to cure to seal said lead frame compo-
23 nents integrating said first and second current collectors together to form a
24 fuel cell, wherein said moldable material forms a plastic frame and the
25 plastic frame holds components of the fuel cell in compression without us-
26 ing screws and nuts.
27

1 12. (Original) The method as defined in claim 11 wherein step (H) includes an insert
2 molding technique.

1 13. (Previously Presented) The method as defined in claim 11 further comprising
2 spot welding said first and second lead frame components together to maintain said com-
3 ponents in position prior to placing the assembly into the molding device.

1 14. (Currently Amended) A method of introducing compression into a fuel cell, com-
2 prising:
3 (A) providing a catalyst coated membrane;
4 (B) providing a first current collector integrated into a first lead frame compo-
5 nent suitable for being received into a molding device, wherein the first

6 current collector includes a raised surface where the raised surface pro-
7 vides a minimum limit to the thickness of components in the mold;

8 (C) providing a second current collector integrated into a second lead frame
9 component suitable for being received into a molding device;

10 (D) assembling said first and second current collectors on either side of said
11 membrane to result in an assembly;

12 (E) placing said assembly into said mold device that has been provided with
13 mold plates that form a cavity that induces compression to decrease the
14 thickness of components in the mold and to apply pressure substantially
15 evenly across an entire active area of a membrane electrode assembly be-
16 ing fabricated in the mold;

17 (F) closing said mold plates and maintaining said mold plates in a closed posi-
18 tion to induce further compression; and

19 (G) introducing a moldable material into the resulting mold cavity thereby cre-
20 ating a plastic frame around the fuel cell that maintains compression
21 within said fuel cell without the need for mechanical fasteners.

1 15. – 21. (Cancelled)

1 22. (New) A method of fabricating a membrane electrode assembly for use in a fuel cell,
2 comprising:

3 providing the membrane electrode assembly having a proton exchange membrane,
4 wherein the proton exchange membrane is configured with an anode aspect and a cathode
5 aspect;

6 providing an anode side component of a lead frame, with the anode side compo-
7 nent of the lead frame having an anode current collector;

8 providing a cathode side component of the lead frame, with the cathode side com-
9 ponent of the lead frame having a cathode current collector;

10 connecting the anode side component of the lead frame to the cathode side com-
11 ponent of the lead frame with the membrane electrode assembly sandwiched between to
12 form a lead frame assembly;

13 placing the lead frame assembly within a mold cavity;

14 closing the mold cavity, wherein the fuel cell is compressed to a predetermined
15 thickness dictated by a desired internal pressure; and

16 injecting plastic around the membrane electrode assembly to form a plastic frame,
17 wherein the plastic frame holds components of the fuel cell in compression without using
18 screws and nuts.

1 23. (New) The method of claim 22, further comprising:

2 trimming excess material from the lead frame structure away to leave only the
3 fuel cell with current collectors extending outward.

1 24. (New) The method of claim 22, further comprising:

2 providing one or more anode diffusion layers between the anode current collector
3 and the anode aspect, wherein the one or more anode diffusion layers are employed to

4 evenly distribute a liquid fuel mixture across the anode aspect of the proton exchange
5 membrane; and
6 providing one or more cathode diffusion layers between the cathode current col-
7 lector and the cathode aspect, wherein the one or more cathode diffusion layers allows a
8 fast supply and even distribution of gaseous oxygen across the cathode aspect of the pro-
9 ton exchange membrane.

1 25. (New) The method of claim 22, wherein the anode current collector, the cathode cur-
2 rent collector, and the proton exchange membrane are each configured with a plurality of
3 openings that allow plastic to flow through to form a plurality of internal fasteners.