Build a Personalized Online Course Recommender System with Machine Learning

TING CHONG NA 26.05.2023

Outline

Intro	oduction and Background	
Expl	loratory Data Analysis	
	atent-based Recommender System ag Unsupervised Learning	
	aborative-filtering based Recommender System ng Supervised learning	
Con	clusion	
Арр	endix	

Introduction

IBM: MACHINE LEARNING CAPSTONE

Recommender System

Exploratory Data | Analysis

Course counts per genre

Course enrollment distribution

20 most popular courses

Word cloud of course titles

Course counts per genre

Course enrollment distribution

Histogram

Show distribution of course enrollment across all users

Min 1 course enrollment per user (>8,000 users just enrolls 1 course)

Max 61 courses enrollment per user

20 most popular courses

	TITLE	Enrolls
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670
19	data privacy fundamentals	3624

20 Highest rated courses 1ST: Python for Data Science 2ND: Introduction to Data Science 3RD: Big Data 101 Percentage of the top 20 course enrollments **63.3**%

Word cloud of course titles

Quick Visualization of the Popular learning topics across all the courses

Popular IT keywords:

Python, Data Science, Machine Learning, Big Data...

Content-based Recommender System using Unsupervised Learning

Flowchart

Average recommended courses per user

Top 10 most frequently recommended courses

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

score_threshold = 10.0

```
#On average, how many new courses have been recommended per test user?
res_df['COURSE_ID'].shape[0] / res_df['USER'].unique().shape[0]
61.81828703703704
```

```
#What are the most frequently recommended courses?
res_df['COURSE_ID'].value_counts()[:10]
TA0106EN
GPXX0IBEN
              548
excourse22
             547
excourse21
             547
ML0122EN
              544
GPXX0TY1EN
             533
excourse04
             533
excourse06
             533
             524
excourse31
excourse73
             516
Name: COURSE ID, dtype: int64
```

Average New Course Recommended per user

Top 10 Most Frequently Recommended Courses

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

threshold = 0.6

```
#On average, how many new/unseen courses have been recommended to each user
courses count/len user
0.987
#What are the most frequently recommended courses?
courses_list=[]
for c in courses:
    for name in c:
       courses list.append(name)
pd.Index(courses_list).value_counts()[:10]
excourse62
             257
excourse22
             257
WA0103EN
             101
TA0105
              41
DS0110EN
              38
excourse47
excourse46
excourse63
              23
              23
excourse65
ML0151EN
              17
dtype: int64
```

Average New Course Recommended per user

Top 10 Most Frequently Recommended Courses

Flowchart of clustering-based recommender system

For each user, first finds its cluster label First get all courses belonging to the same cluster Get the user's current enrolled courses Check if there are any courses on the popular course list which are new/unseen to the user Make Recommendation

Evaluation results of clustering-based recommender system

#On average, how many new/unseen courses have been recommended to each user? len(courses)/len(set(users))

4.71

	count
item	
BC0101EN	277
DS0105EN	281
ML0101ENv3	299
BD0211EN	303
DS0103EN	320
DA0101EN	321
BD0111EN	420
BD0101EN	539
DS0101EN	551
PY0101EN	579

Average New Course Recommended per user

Top 10 Most Frequently Recommended Courses

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborative-filtering models

Conclusions

Unsupervised-Learning Based Recommender System

- KMeans
- PCA

Supervised-Learning Based Recommender System

- K Nearest Neighbor (KNN)
- Non-negative Matrix Factorization (NMF)
- Neural Network

Predictive Model Based Recommender System

- Regression
- Classification

Appendix

Github

• https://github.com/chongna95/IBM-Maching-Learning/tree/main