ASCHAM SCHOOL

EXTENSION 2 MATHEMATICS

2001 TRIAL EXAMINATION

Time: 3 hours + 5 minutes reading time

Instructions:

Attempt all questions

All questions are of equal value

All necessary working should be shown for every question.

Full marks may not be awarded for careless or badly arranged work

A Table of Standard Integrals is provided

Approved calculators may be used

Each question should be answered in a separate booklet

Question 1

- (a) T $(a\cos\theta, b\sin\theta)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with centre O. A line through O, parallel to the tangent at T, meets the ellipse at M and N.
- (i) Show the gradient of the tangent at T is $-\frac{b\cos\theta}{a\sin\theta}$ and find the equation of MN.
- (ii) Show that M and N are $(-a \sin \theta, b \cos \theta)$ and $(a \sin \theta, -b \cos \theta)$

 Ξ

- (iii) Show that the area of ΔTMN is independent of θ .
- (b) Describe the locus |z-3|+|z+3|=10

[4]

[5]

Question 2

<u>a</u>

y = f(x) is drawn above. Copy the diagram into your answer booklet and on the same diagram sketch $y = log_e f(x)$. [2]

(d) Consider the area between the curves $y = 3 - x^2$ and y = -2x. Suppose that two vertical lines I unit apart cross this area.

If the first line is x = a, write an expression for the shaded area. \equiv

 $\overline{\Xi}$

Find the maximum value of the shaded area. \equiv

Question 4

(a) Use the substitution u = x - 1 to find $\int \frac{x}{\sqrt{x - 1}} dx$

Ξ

 \overline{z}

 $\overline{\Xi}$

[]

[] [3]

- Find the exact value of (i) $\int_0^1 \log_v x \, dx$ (ii) $\int_0^{m_1} e^x \cos e c^2 (e^x) dx$ **(**P)
- છ
- (i) Using the substitution $u = \frac{1}{x}$, show that $\int_0^1 \frac{\ln x}{1+x^2} dx = \int_1^1 \frac{\ln u}{1+u^2} du$ (ii) Deduce the value of $\int_0^1 \frac{\ln x}{1+x^2} dx$

 $\overline{\square}$

<u>C-1</u>

 $\overline{\mathbb{C}}$ Find $\int \frac{\cos x}{\sin x + \sin^2 x} dx$ 9

- 9 A dome has a circular base of radius 10 metres. Cross-sections perpendicular to $x = \frac{\pi}{2}$ is rotated about the line y = 2

Find the volume of the solid formed when the arc of $y = \sin x$ between x = 0 and

<u>e</u>

3

- (i) Why would Simpson's rule give the exact area of the parabolic cross-section? the base and one axis are parabolas whose height is the same as the base width.
- (ii) Show that the area of the parabolic cross-section is $\frac{8y^2}{3}$ square metres.

(iii) Find the volume of the dome.

 $\overline{\Xi}$

Question 3

- Express +1+i in modulus argument form Ξ (a
- Hence evaluate (-1+i)¹⁰ Ξ
- Find all pairs of integers x and y such that $(x+iy)^2 = -3-4i$ \odot

9

- <u>_1</u> (ii) Hence or otherwise, solve the quadratic equation $z^2 - 3z + (3+i) = 0$
- Show, by geometrical means or otherwise that, if z_i and z_2 are complex numbers Ξ such that $|z_1| = |z_2|$, then $\frac{z_1 + z_2}{z_1 - z_2}$ is pure imaginary. છ

In the diagram EB is parallel to DC. Tangents from B meet the circle at A and C. Prove that

(i)
$$\angle BCA = \angle BFA$$

(iii)
$$DF = CF$$

(b) (i) Draw the graph of
$$y = \frac{x^4 - 1}{y^2}$$

(ii) On separate axes sketch
$$y = \tan^{-1} \left(\frac{x^4 - 1}{x^4} \right)$$

(c) (i) On the same axes sketch
$$y = |x| - 2$$
 and $y = 4 + 3x - x^3$

(ii) Hence or otherwise solve
$$\frac{|x|-2}{4+3x-x^2} > 0$$

(a) Graph the intersection of:

$$z\vec{z} \ge 9$$
 $z + \vec{z} \le 8$ $0 < Arg(z) < \frac{\pi}{d}$

4

(b) Let
$$\alpha$$
 be the complex root of the polynomial $z^7 = 1$ with the smallest possible argument.

Let
$$\theta = \alpha + \alpha^2 + \alpha^4$$
 and

$$\delta = \alpha^3 + \alpha^5 + \alpha^6$$

(i) Explain why
$$\alpha^7 = 1$$
 and $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 = 0$
(ii) Show that $\theta + \delta = -1$ and $\theta \delta = 2$ and hence write a quadratic squared

(ii) Show that
$$\theta + \delta = -1$$
 and $\theta \delta = 2$ and hence write a quadratic equation whose roots are θ and δ [3]

 $\overline{\Xi}$

(iii) Show that
$$\theta = -\frac{1}{2} + \frac{\sqrt{7}}{2}$$
 and $\delta = -\frac{1}{2} - \frac{\sqrt{7}}{2}$

 $\overline{\Box}$

(iv) Write down
$$\alpha$$
 in modulus-argument form, and show that

<u>s</u>

[4]

$$\cos \frac{4\pi}{7} + \cos \frac{2\pi}{7} - \cos \frac{\pi}{7} = -\frac{1}{2}$$
 and $\sin \frac{4\pi}{7} - \sin \frac{2\pi}{7} - \sin \frac{\pi}{7} = \frac{\sqrt{7}}{2}$

[5]

 $\overline{\mathbf{C}}$

Question 7

(a) The roots of a cubic equation are α , β and γ , and $\sum \alpha^n = \alpha^n + \beta^n + \gamma^n$ It is given that $\sum \alpha = -1$, $\sum \alpha^2 = 7$, $\sum \alpha^1 = 8$

(i) Deduce that the equation is $x^3 + x^2 - 3x - 6 = 0$

 Ξ

 Ξ

(ii) Hence evaluate $\sum \alpha^4$

(b) (i) If $I_n = \int x(\ln x)^n dx$ for $n \ge 0$, show that $I_n = \frac{1}{2}x^2(\ln x)^n - \frac{n}{2}I_{n-1}$

(ii) Hence, find $\int x(\ln x)^2 dx$

(c) A particle is projected from the origin at an angle of α° with initial velocity V, and it passes through a point (m,n).

(i) Prove that $gm^2 \tan^2 \alpha - 2mV^2 \tan \alpha + gm^2 + 2nV^2 \approx 0$ where g is acceleration due to gravity

(ii) Prove that there are two possible trajectories if

$$(V^2 - gn)^2 > g^2(m^2 + n^2)$$

Question 8

(a) A chord AB and a diameter CD, of a circle centre O, intersect at M within the circle. M is not the centre.

(i) Show that $(CM + MD)^2 > (AM + MB)^3$

(ii) Deduce that $(CM - MD)^2 > (AM - MB)^2$

 $\overline{2}$

(b) A particle of mass m kg falls from rest in a medium where the resistance to motion is mkv when the particle has velocity v m/s. (i) Draw a diagram showing the forces acting on the particle. [1]

(ii) Show that the equation of motion of the particle is $\aleph = k(V - \nu)$ where V m/s is the terminal velocity of the particle in this medium, and κ metres is the distance fallen in t seconds.

(iii) Find in terms of V and k the time T seconds taken for the particle to attain 50% of its terminal velocity, and the distance fallen in this time.

(iv) What percentage if its terminal velocity will the particle have attained in time 2T seconds? Sketch a graph of v against t showing this information. [3]

(v) If the particle has reached 87.5% of its terminal velocity in 15 seconds, find the value of k.

End of Examination