Capacity and Scheduling in Small-Cell HetNets

Stephen Hanly

Macquarie University North Ryde, NSW 2109

Joint Work with Sem Borst, Chunshan Liu and Phil Whiting

Tuesday, January 13, 2015

Small Cells and Research Challenges

- Small Cells and Research Challenges
- Model

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results
- Discrete Linear Program

- Small Cells and Research Challenges
- Model
- Main Stability Results
- Discrete Linear Program
- **6** Cell Association and Scheduling Algorithms

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results
- 4 Discrete Linear Program
- 5 Cell Association and Scheduling Algorithms
- **6** Understanding the Converse

Small Cells and Data Offloading

- Re-use spectrum: make cells smaller
- Offload traffic from macro-cells onto pico and femto-cells

Small Cells: Theoretical Challenges

• What is the benefit? Base station densification gain?

Small Cells: Theoretical Challenges

- What is the benefit? Base station densification gain?
- Characterizing capacity

Small Cells: Theoretical Challenges

- What is the benefit? Base station densification gain?
- Characterizing capacity
- Optimizing resource allocation and cell association

System Model

- One macro Base Station (BS)
- L pico BSs
- All users in coverage of macro BS
- ullet \mathcal{C}_ℓ coverage area of pico BS ℓ
- Power levels are fixed
- Macro BS uses higher power than pico BSs

Time Sharing and Cell Association

• Time Share Spectrum

- Macro Cell versus Pico Cells
- Almost Blanking SubFrames

Time Sharing and Cell Association

• Time Share Spectrum

- Macro Cell versus Pico Cells
- Almost Blanking SubFrames

• Cell Range Expansion for Picos

- Expand pico-cells to cover more mobiles
- Contract pico-cells and send at Higher Rate

- How to split the time between macro and picos?
- 2 How to decide the cell association?

- How to split the time between macro and picos?
- A How to decide the cell association?
 - For cell association, one way is via biasing: add a bias to the measured power level to encourage offloading.

- How to split the time between macro and picos?
- A How to decide the cell association?
 - For cell association, one way is via biasing: add a bias to the measured power level to encourage offloading.
 - We will address both 1. and 2. in a joint approach

- How to split the time between macro and picos?
- A How to decide the cell association?
 - For cell association, one way is via biasing: add a bias to the measured power level to encourage offloading.
 - We will address both 1. and 2. in a joint approach
 - We will discover biasing based on rate ratios, not power levels

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results
- Discrete Linear Program
- 5 Cell Association and Scheduling Algorithms
- 6 Understanding the Converse

Arrivals in Space and Time

- Files arrive at rate λ_a files/slot (Poisson)
- $\eta(\cdot)$ gives a probability measure on the macrocell area
- Spatial arrival intensity is $\lambda(d\xi) = \lambda_a \eta(d\xi)$

Arrivals in Space and Time

- Files arrive at rate λ_a files/slot (Poisson)
- $\eta(\cdot)$ gives a probability measure on the macrocell area
- Spatial arrival intensity is $\lambda(d\xi) = \lambda_a \eta(d\xi)$
- *n*th arrival has length D_n bits; $\mathbb{E}[D_n] = D$

Hanly Capacity and Scheduling

Arrivals in Space and Time

- Files arrive at rate λ_a files/slot (Poisson)
- $\eta(\cdot)$ gives a probability measure on the macrocell area
- Spatial arrival intensity is $\lambda(d\xi) = \lambda_a \eta(d\xi)$
- *n*th arrival has length D_n bits; $\mathbb{E}[D_n] = D$
- How large can λ_a be?

Hanly Capacity and Scheduling

Pico versus Macro time

- Macro BS schedules files in macro-time
- All pico BSs can be scheduled simultaneously in pico-time

Pico versus Macro time

- Macro BS schedules files in macro-time
- All pico BSs can be scheduled simultaneously in pico-time
- A pico BS schedules files in its coverage area
- Not all files need be scheduled.

Pico versus Macro time

- Macro BS schedules files in macro-time
- All pico BSs can be scheduled simultaneously in pico-time
- A pico BS schedules files in its coverage area
- Not all files need be scheduled.
- We will consider only clearing schedules
- Clearing schedules include FCFS (one at a time) and PS (parallel processing)

Location based policies

 Schedules determined via only the location ξ and the size F (bits) of the file

Location based policies

- Schedules determined via only the location ξ and the size F(bits) of the file
- If π is such a scheduler, $\xi \in \mathcal{C}_{\ell}$, and F is the file size then:
 - $x_{\ell}^{\pi}(\xi, F)$ bits are from pico BS ℓ
 - $y_{\ell}^{\pi}(\xi, F)$ are from macro BS

Location based policies

- Schedules determined via only the location ξ and the size F (bits) of the file
- If π is such a scheduler, $\xi \in \mathcal{C}_{\ell}$, and F is the file size then:
 - $x_{\ell}^{\pi}(\xi, F)$ bits are from pico BS ℓ
 - $y_{\ell}^{\pi}(\xi, F)$ are from macro BS
- If nth arrival is of size D_n bits and located at ξ_n then

$$x_{\ell}^{\pi}(\xi_n, F_n) + y_{\ell}^{\pi}(\xi_n, F_n) = D_n$$

Hanly Capacity and Scheduling

Data rates

- Assume no interference between picocells (will relax later)
- So there is no interference in the system!

Data rates

- Assume no interference between picocells (will relax later)
- So there is no interference in the system!
- At any point ξ there is a macro-cell rate of $S(\xi)$ bits/slot
- At any point $\xi \in \mathcal{C}_{\ell}$ there is a pico-cell rate of $R_{\ell}(\xi)$ bits/slot

Data rates

- Assume no interference between picocells (will relax later)
- So there is no interference in the system!
- At any point ξ there is a macro-cell rate of $S(\xi)$ bits/slot
- At any point $\xi \in \mathcal{C}_{\ell}$ there is a pico-cell rate of $R_{\ell}(\xi)$ bits/slot
- A file can be served by macro and pico BSs in the same slot

Buildup of work

- Fix a location-based policy π and outcome $\omega \in \Omega$.
- Let $V_T^{\pi}(\omega)$ be time needed to clear all files that arrive in [0, T]

Hanly

Capacity and Scheduling 13 / 41

Buildup of work

- Fix a location-based policy π and outcome $\omega \in \Omega$.
- Let $V_T^{\pi}(\omega)$ be time needed to clear all files that arrive in [0, T]
- Clearly π is NOT stable if

$$\liminf_{T\uparrow\infty}\frac{V_T^\pi}{T}>1$$

on an event of nonzero probability.

13 / 41

Capacity and Scheduling

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results
- 4 Discrete Linear Program
- 5 Cell Association and Scheduling Algorithms
- 6 Understanding the Converse

Recall main parameters

$$\lambda_{a}\eta\left(d\xi\right)=\lambda\left(d\xi\right),\ \eta\left(d\xi\right)$$
 spatial intensity of arrivals

 $R_{\ell}(\xi), S_{\ell}(\xi)$ Rates for pico and macro at location ξ

 $x_{\ell}(\xi), y_{\ell}(\xi)$ bit assignments at location ξ

D mean download file size

Continuous Linear Program

Consider the following continuous LP:

$$\begin{aligned} & \min & & \tau = f + \sum_{\ell=1}^L \int \frac{y_\ell(\xi)}{S_\ell(\xi)} \lambda \left(d\xi \right) \\ & \text{sub} & & \int \frac{x_\ell(\xi)}{R_\ell(\xi)} \lambda \left(d\xi \right) \leq f \quad \forall \ell \\ & & & x_\ell(\xi) + y_\ell(\xi) \geq D, \end{aligned}$$

where f represents pico-time.

Let τ^{\ast} be the optimal value of the program.

Hanly Capacity and Scheduling

Sufficiency

Theorem (Hanly, Whiting)

Let τ^* be optimal solution to the LP. If $\tau^* < 1$, \exists a clearing schedule π with ergodic properties.

Also define $S_n^{\pi}(\omega) := \text{sojourn time nth job, then } \pi \text{ satisfies,}$

$$\mathbb{E}\left[S_n^{\pi}(\omega)\right] < \overline{S} < \infty \tag{1}$$

Converse

Theorem (Hanly, Whiting)

Let τ^* be the solution to the continuous LP. Suppose that $\tau^*>1$ then there is a fixed constant $\eta>0$, such that for any clearing schedule π

$$\liminf_{T \uparrow \infty} \frac{V_T^\pi(\omega)}{T} = 1 + \eta \quad \textit{almost surely}.$$

18 / 41

Talk Summary

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results
- 4 Discrete Linear Program
- 5 Cell Association and Scheduling Algorithms
- 6 Understanding the Converse

Discrete Model

- Let instantaneous rate of *n*th user provided by pico BS be denoted by R_n
- Instantaneous rate of user provided by macro BS be denoted by S_n

Discrete Model

- Let instantaneous rate of nth user provided by pico BS be denoted by Rn
- Instantaneous rate of user provided by macro BS be denoted by S_n
- The rate ratio is defined by $\rho_n = \frac{R_n}{S_n}$

Problem Formulation

- Let D_n denote the amount of bits of data required by a user.
- D_n can be split into x_n bits of data from pico BS and y_n bits of data from the macro BS.

Problem Formulation

- Let D_n denote the amount of bits of data required by a user.
- D_n can be split into x_n bits of data from pico BS and y_n bits of data from the macro BS.
- It therefore requires $\frac{x_n}{R_n}$ secs from pico BS and $\frac{y_n}{S_n}$ secs from macro BS
- The problem is to minimize the total time to satisfy all the data demands in the network.

Problem Formulation: General

• The problem to be solved is the following linear program:

min
$$f + \sum_{l=0}^{L} \sum_{n=1}^{N_{l}} \frac{y_{l,n}}{S_{l,n}}$$
sub
$$\sum_{n=1}^{N_{l}} \frac{x_{l,n}}{R_{l,n}} \le f \quad \forall l$$

$$x_{l,n} + y_{l,n} \ge D_{l,n} \quad \forall l, \ \forall n = 1, 2, \dots N_{l}$$

$$f \ge 0, x_{l,n} \ge 0, y_{l,n} \ge 0 \quad \forall l, \ \forall n = 1, 2, \dots N_{l}$$

where f is the time allocated to the picocells.

A One Dimensional Formulation

- Linear Programming theory tells us that the rate ratios $\rho := \frac{\kappa}{5}$ are the key to the optimal cell association
- Order the users in pico cell in decreasing order of the rate ratio

A One Dimensional Formulation

- Linear Programming theory tells us that the rate ratios $\rho:=\frac{R}{5}$ are the key to the optimal cell association
- Order the users in pico cell in decreasing order of the rate ratio
- Then there will be a user m_i in pico cell j such that
 - users $1, 2, ..., m_j 1$ will be 100 % served by the pico cell BS $(y_{j,n} = 0 \text{ for these users})$
 - users $m_j + 1, 2, ..., N_j$ will be 100 % served by the macro cell BS $(x_{i,n} = 0 \text{ for these users})$
 - user m_j may get its service from both base stations (pico and macro)

23 / 41

A One Dimensional Formulation

The macro-cell time required to service users users near pico cell j is

Hanly

$$g_j(f) = p_j(f) \frac{D_{j,m_j(f)}}{S_{j,m_j(f)}} + \sum_{n=m_j(f)+1}^{N_j} \frac{D_{j,n}}{S_{j,n}}$$

Capacity and Scheduling

The problem is therefore to minimize the following function of the scalar parameter f:

$$f + \sum_{l=1}^{L} g_l(f)$$

The problem is therefore to minimize the following function of the scalar parameter f:

$$f + \sum_{l=1}^{L} g_l(f)$$

The range for the optimization is $0 \le f \le \max_{l=1}^L \sum_{n=1}^{N_l} \frac{D_{l,n}}{S_{l,n}}$.

Hanly

Capacity and Scheduling

• Recall that the problem is to minimize the function $f + \sum_{l=1}^{L} g_l(f)$

- Recall that the problem is to minimize the function $f + \sum_{l=1}^{L} g_l(f)$
- The derivative at any non-break-point f is therefore $1 \sum_{l=1}^{L} \rho_l(f)$.

Capacity and Scheduling

- Recall that the problem is to minimize the function $f + \sum_{l=1}^{L} g_l(f)$
- The derivative at any non-break-point f is therefore $1 \sum_{l=1}^{L} \rho_l(f)$.
- But the optimum will occur at one of the break points, where the derivative changes.

- ullet Recall that the problem is to minimize the function $f + \sum_{l=1}^L g_l(f)$
- The derivative at any non-break-point f is therefore $1 \sum_{l=1}^{L} \rho_l(f)$.
- But the optimum will occur at one of the break points, where the derivative changes.
- edge rate condition: The time allocation f to pico-cells is optimal if and only if

$$\sum_{l=1}^{L} \rho_{l,f-} \ge 1 \ge \sum_{l=1}^{L} \rho_{l,f+}$$

- Recall that the problem is to minimize the function $f + \sum_{l=1}^{L} g_l(f)$
- The derivative at any non-break-point f is therefore $1 \sum_{l=1}^{L} \rho_l(f)$.
- But the *optimum* will occur at one of the break points, where the derivative changes.
- edge rate condition: The time allocation f to pico-cells is optimal if and only if

$$\sum_{l=1}^{L} \rho_{l,f-} \ge 1 \ge \sum_{l=1}^{L} \rho_{l,f+}$$

• We only need to check the $1 + \sum_{l=1}^{L} N_l$ break points, where the derivative changes, for the edge-rate condition.

Talk Summary

- Small Cells and Research Challenges
- Model
- Main Stability Results
- 4 Discrete Linear Program
- 5 Cell Association and Scheduling Algorithms
- 6 Understanding the Converse

Recall theorem for existence of schedule

Theorem (Hanly, Whiting)

Let τ^* be optimal solution to the LP. If $\tau^* < 1$, \exists a clearing schedule π with ergodic properties.

Recall theorem for existence of schedule

Theorem (Hanly, Whiting)

Let τ^* be optimal solution to the LP. If $\tau^* < 1$, \exists a clearing schedule π with ergodic properties.

The optimal solution of the continuous LP is characterized by rate ratio thresholds ρ_{ℓ}^* , $\ell=1,2,\ldots,L$:

$$x_{\ell}^{*}(\xi) = \begin{cases} D & \rho_{\ell}(\xi) > \rho_{\ell}^{*} \\ 0 & \text{o.w.} \end{cases}$$
 (2)

We will now show that these thresholds can be used to construct an optimal schedule.

30 / 41

- Suppose $\tau^* < 1$ and let f^* be the optimal value of f from continuous LP.
- Allocate $\frac{f^*}{\tau^*}$ of each slot to picos.
- Allocate $\frac{\tau^* f^*}{\tau^*}$ of each slot to the macro.
- \bullet Assign each file to pico or macro based on rate-ratio threshold $\rho_\ell^*.$

- All files that arrive during a slot are merged into one job
- Service time of each job can be computed (location-based policy)
- Each BS serves jobs in FCFS order
- D/G/1 queue at each base station.

- The workload arriving at the macro BS queue can be shown to be $\tau^* f^*$ slots/slot
- ullet The service rate of the macro BS is $\frac{ au^*-f^*}{ au^*}$ slots/slot
- ullet So the utilization of the macro BS is au^*

- The workload arriving at the macro BS queue can be shown to be $\tau^* f^*$ slots/slot
- ullet The service rate of the macro BS is $\frac{ au^*-f^*}{ au^*}$ slots/slot
- ullet So the utilization of the macro BS is au^*
- ullet The workload arriving at a pico BS can be shown to be at most f^* slots/slot
- The service rate of each pico BS is $\frac{f^*}{\tau^*}$ slots/slot
- ullet So the utilization of each pico BS is at most au^*

- The workload arriving at the macro BS queue can be shown to be $\tau^* f^*$ slots/slot
- \bullet The service rate of the macro BS is $\frac{\tau^*-f^*}{\tau^*}$ slots/slot
- ullet So the utilization of the macro BS is au^*
- The workload arriving at a pico BS can be shown to be at most f^* slots/slot
- The service rate of each pico BS is $\frac{f^*}{\tau^*}$ slots/slot
- ullet So the utilization of each pico BS is at most au^*
- \bullet If $\tau^* < 1$ then each D/G/1 queue is stable.

Talk Summary

- Small Cells and Research Challenges
- 2 Model
- Main Stability Results
- 4 Discrete Linear Program
- 5 Cell Association and Scheduling Algorithms
- **6** Understanding the Converse

- Suppose $\tau^* > 1$, and let π be a clearing schedule.
- Let N_T be the number of arrivals during [0, T].
- Let x_n be number of pico-cell bits for the nth arrival
- Let y_n be number of macro-cell bits for the nth arrival

 Imagine all the N_T arrivals being present at time zero

- Imagine all the N_T arrivals being present at time zero
- Let V_T^{LP} be the minimum time in the corresponding discrete LP

- Imagine all the N_T arrivals being present at time zero
- Let V_T^{LP} be the minimum time in the corresponding discrete LP
- We can analyze this and show that $\liminf_{T\uparrow\infty} \frac{V_T^{LP}}{T} > 1 + \eta$

= time when a pico is sending to at least one of N₂₀ arrivals

Discrete Linear Program

$$\begin{aligned} & \min & & f + \sum_{l} \sum_{n} \frac{y_{l,n}}{S_{l,n}} \\ & sub. & & \sum_{n} \frac{x_{l,n}}{R_{l,n}} \leq f \quad \forall I \\ & & & x_{l,n} + y_{l,n} \geq D_{l,n} \quad \forall I, n \end{aligned}$$

- Now consider the actual system under policy π
- Let f_T^{π} be the total time in which at least one of the N_T files is getting pico-service

= time when a pico is sending to at least one of N₂₀ arrivals

Discrete Linear Program

$$\begin{aligned} & \min & & f + \sum_{l} \sum_{n} \frac{y_{l,n}}{S_{l,n}} \\ & sub. & & \sum_{n} \frac{x_{l,n}}{R_{l,n}} \leq f \quad \forall \, l \\ & & & x_{l,n} + y_{l,n} \geq D_{l,n} \quad \forall \, l \, , n \end{aligned}$$

- Now consider the actual system under policy π
- Let f_T^{π} be the total time in which at least one of the N_T files is getting pico-service
- Then

$$V_T^{\pi} = f_T^{\pi} + \sum_{n=1}^{N_T} \frac{y_n}{S_n},$$

$$\sum_{n \in \mathcal{C}_{\ell}} \frac{x_n}{R_n} \le f_T^{\pi}$$

= time when a pico is sending to at least one of N₂₀ arrivals

Discrete Linear Program

$$\begin{aligned} & \min & & f + \sum_{l} \sum_{n} \frac{y_{l,n}}{S_{l,n}} \\ & sub. & & \sum_{n} \frac{x_{l,n}}{R_{l,n}} \leq f \quad \forall \, l \\ & & & x_{l,n} + y_{l,n} \geq D_{l,n} \quad \forall \, l \, , n \end{aligned}$$

- Now consider the actual system under policy π
- Let f_T^{π} be the total time in which at least one of the N_T files is getting pico-service
- Then

$$V_T^{\pi} = f_T^{\pi} + \sum_{n=1}^{N_T} \frac{y_n}{S_n},$$

$$\sum_{n\in\mathcal{C}_{\ell}}\frac{x_n}{R_n}\leq f_T^{\pi}$$

• So $(f_T^{\pi}, x_n, y_n, ...)$ is feasible for the earlier discrete LP

Understanding the converse

Hence

$$\liminf_{T\uparrow\infty}\frac{V_T^\pi}{T}\geq \frac{V_T^{LP}}{T}>1+\eta$$

which implies that π is unstable.

Hanly Capacity and Scheduling

Given stabilizing schedule is NOT dynamic and can greatly be improved

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed
- The assumption that there is no pico-cell interference can be relaxed:
 - Assume fixed power levels when pico scheduled to be "on"

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed
- The assumption that there is no pico-cell interference can be relaxed:
 - Assume fixed power levels when pico scheduled to be "on"
 - Many different modes: subsets of pico BSs that are simultaneously activated

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed
- The assumption that there is no pico-cell interference can be relaxed:
 - Assume fixed power levels when pico scheduled to be "on"
 - Many different modes: subsets of pico BSs that are simultaneously activated
 - The pico rates at a location are mode-dependent

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed
- The assumption that there is no pico-cell interference can be relaxed:
 - Assume fixed power levels when pico scheduled to be "on"
 - Many different modes: subsets of pico BSs that are simultaneously activated
 - The pico rates at a location are mode-dependent
 - Problem remains a continuous LP, but with a huge number of variables

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed
- The assumption that there is no pico-cell interference can be relaxed:
 - Assume fixed power levels when pico scheduled to be "on"
 - Many different modes: subsets of pico BSs that are simultaneously activated
 - The pico rates at a location are mode-dependent
 - Problem remains a continuous LP, but with a huge number of variables
 - Good but suboptimal schemes can be found focusing on the most important modes

- Given stabilizing schedule is NOT dynamic and can greatly be improved
- We can analyze Processor Sharing at each BS which gets much better delay performance
- Assumption that statistics are known can be relaxed
- The assumption that there is no pico-cell interference can be relaxed:
 - Assume fixed power levels when pico scheduled to be "on"
 - Many different modes: subsets of pico BSs that are simultaneously activated
 - The pico rates at a location are mode-dependent
 - Problem remains a continuous LP, but with a huge number of variables
 - Good but suboptimal schemes can be found focusing on the most important modes
- Extensions to multiple macro-cells

Applications

- Theory can be used as a basis for the search for adaptive algorithms
- Can be used as a cell planning tool since capacity is a function of base station locations

 Formulated a notion of capacity for a dynamic HetNet consisting of one macrocell, multiple picocells

- Formulated a notion of capacity for a dynamic HetNet consisting of one macrocell, multiple picocells
- Characterized capacity in terms of the solution of a deterministic, continuous Linear Program

- Formulated a notion of capacity for a dynamic HetNet consisting of one macrocell, multiple picocells
- Characterized capacity in terms of the solution of a deterministic, continuous Linear Program
- Showed how ABS slot and cell association can be solved jointly

- Formulated a notion of capacity for a dynamic HetNet consisting of one macrocell, multiple picocells
- Characterized capacity in terms of the solution of a deterministic, continuous Linear Program
- Showed how ABS slot and cell association can be solved jointly
- Showed how rate ratio thresholds provide the right way to bias pico-cells

- Formulated a notion of capacity for a dynamic HetNet consisting of one macrocell, multiple picocells
- Characterized capacity in terms of the solution of a deterministic, continuous Linear Program
- Showed how ABS slot and cell association can be solved jointly
- Showed how rate ratio thresholds provide the right way to bias pico-cells
- Questions?