CS4423 - Networks

Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway

3. Random Networks

Lecture 11: Erdös-Rényi Random Graph Models.

A random graph (https://en.wikipedia.org/wiki/Random_graph) is a mathematical model of a family of networks, where certain parameters (like the number of nodes and edges) have fixed values, but other aspects (like the actual edges) are randomly assigned. The simplest example of a random graph is in fact the network G(n, m) with fixed numbers n of nodes and m of edges, placed randomly between the vertices. Although a random graph is not a specific object, many of its properties can be described precisely, in the form of expected values, or probability distributions.

Randomly Selected Edges

Let us denote by G(n,m) a network with n nodes and m chosen edges, chosen uniformly at random (out of the possible $\binom{n}{2}$). Equivalently, one can choose uniformly at random one network in the **set** G(n,m) of **all** networks on a given set of n nodes with **exactly** m edges.

Definition (ER Model A: Uniform Random Graphs). Let $n \geq 1$, let $N = \binom{n}{2}$ and let $0 \leq m \leq N$. The model G(n,m) consists of the ensemble of graphs G with n nodes $X = \{1,2,\ldots,n\}$, and m randomly selected edges, chosen uniformly from the N possible edges.

One could think of G(n,m) as a probability distribution $P:G(n,m)\to\mathbb{R}$, that assigns to each network $G\in G(n,m)$ the same probability

$$P(G) = {N \choose m}^{-1},$$

where $N = \binom{n}{2}$.

For example ...

In order to make some random graphs, we first need to import the standard libraries \dots

```
In [1]: import numpy as np
   import pandas as pd
   import networkx as nx
   import matplotlib.pyplot as plt
```

... and the random module, for a function choice that selects a random element from a list.

```
In [2]: import random
```

Picking edges at random involves picking several (2 to be precise) nodes from the list of nodes of a graph, avoiding repetition. A simple algorithm for selection without repetition can be based on the following function pick, which works on a set elements and a subset chosen of already chosen elements, as follows:

- 1. pick a random element x from the set elements
- 2. if x is in the subset chosen go back to step 1, else return x.

Note. This algorithm (and its implementation here) has no explict termination condition. Hence, under unfortunate circumstances, it may run for a very long time, or indeed forever ...

To select l random elements, simply pick l times, while keeping track of already selected elements in a list chosen.

```
In [6]: lll = [2, 3, 5, 7, 11, 13, 17, 19]
    pick_elements(lll, 3)
Out[6]: [17, 19, 13]
```

Note. Suppose the vertex set X has n elements and that k elements

```
(x_0,x_1,\ldots,x_{k-1})
```

have already been chosen. Then the next element x_k is chosen with probability $\frac{1}{n-k}$ (from the n-k remaining elements at this stage:

Clearly, x_0 is chosen with probability $\frac{1}{n}$ from the n elements. Next, in a first draw x_1 is chosen with probability $\frac{1}{n}$. With the same probability $\frac{1}{n}$, this first draw produces element x_0 again, in which case a second draw has to be carried out, where x_1 has another chance of $\frac{1}{n}$ to be drawn. And x_0 too, calling for a third draw, and so on. In total, x_1 's chances of being drawn are

$$P(x_1) = rac{1}{n} + rac{1}{n^2} + rac{1}{n^3} + \dots = rac{1}{n} \sum_{l \geq 0} ig(rac{1}{n}ig)^l = rac{1}{n} rac{1}{1 - rac{1}{n}} = rac{1}{n-1}.$$

Similarly, x_k 's chances of being drawn are

$$P(x_k) = rac{1}{n} + rac{k}{n^2} + rac{k^2}{n^3} + \dots = rac{1}{n} \sum_{l > 0} ig(rac{k}{n}ig)^l = rac{1}{n} rac{1}{1 - rac{k}{n}} = rac{1}{n - k}.$$

To pick a random edge means to pick 2 elements from the node set of G. Again, one can use a list of already chosen edges to avoid repetition.

```
In [7]: def pick_edge(G, chosen):
    while True:
        edge = pick_elements(list(G.nodes()), 2)
        edge.sort()
        if edge not in chosen:
            return edge

In [8]: G = nx.Graph()
    G.add_nodes_from(range(16))

In [9]: list(G.nodes)

Out[9]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

In [10]: pick_edge(G, [[11,14]])

Out[10]: [8, 13]
```

To pick m edges, without repetition, simply apply pick_edge m times.

Now we have all the building blocks for a function $random_graph_A$ that takes the order n and the size m of a random ER graph of type A as arguments, and constructs such a graph.

```
In [12]: def random_graph_A(n, m):
    """construct a random type A graph
    with n nodes and m = links"""
    G = nx.Graph()
    G.add_nodes_from(range(n))
    G.add_edges_from(pick_edges(G, m))
    return G
```

Now we can construct and draw a random graph on ${\color{red}16}$ vertices with ${\color{red}15}$ edges.

The networkx version of this random graph constructor is called gnm_random_graph and should produce the same random graphs with the same probability.

```
In [14]: G = nx.gnm_random_graph(16, 15)
    nx.draw(G, with_labels = True, node_color = 'lightblue')
```



```
In [15]: list(G.nodes())
Out[15]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
```

An Animated Random Graph

100 nodes, 46 components, 10 maxSize, 54 links.

Definition (ER Model B: Binomial Random Graphs). Let $n \geq 1$, let $N = \binom{n}{2}$ and let $0 \leq p \leq 1$. The model G(n,p) consists of the ensemble of graphs G with n nodes $X = \{1,2,\ldots,n\}$, and each of the N possible edges chosen with probability p.

The probability P_G of a particular graph G=(X,E) with $X=\{1,2,\ldots,n\}$ and m=|E| edges in the G(n,p) model is $P_G=p^m(1-p)^{N-m}.$

For example ...

Such a random graph is easy to generate programmatically, using python's basic random number generator random.random() which returns a random number in the (half-open) interval [0,1), every time it is called. If this number is less then p, we include the edge, if not we don't.

```
In [19]: 15/120
```

Out[19]: 0.125

```
In [20]: G = random_graph_B(16, 0.125)
    nx.draw(G, with_labels=True, node_color = 'y')
In [21]: | G.number_of_nodes(), G.number_of_edges()
Out[21]: (16, 20)
7
                                                     10-15
In [23]: G.number_of_nodes(), G.number_of_edges()
Out[23]: (16, 11)
In [ ]:
```