Indian Institute of Technology

PH205 (Nov 2023) End-semester Examination

Full marks: 50 Time: 3 hours

		Time. 5 Hours
answer(s) for each question in	n your answer script. Each ques	stion carry one mark.
		_
\ <u>L</u> /		(σ) of the sample is
		/
	equence of events (among dif	fusion, drift, injection
, (b)	, (c)	
ght in theregion of spectrur	C ∝region and m.	 GaN emits light in
up I with items in Group II, r	most suitably.	
	R. tunnel diode	S. LASER
2. Coherent radiation,	3. Spontaneous emission,	4. Current gain
, Q R	S	
ndgap of Al _{0.3} Ga _{0.7} As alloy v	vill be	tual crystal
MOSFETs can be categorize	d into four types as follows:	
	(b)	
	anductor sample of cross-sector) as $N_D(x) = N_0 \exp\left(-\frac{x}{L}\right)$ ority carrier remains constant electrons of wave vector k in the effective mass (m*) of the sion is forward biased, the sector) that take place are:	electrons of wave vector \mathbf{k} in a solid is given by $E(\mathbf{k})=Ak^2+e$ effective mass (m*) of the electron at $\begin{vmatrix} \mathbf{k} \end{vmatrix} = k_0$ is given by $m^* = \dots$ fon is forward biased, the sequence of events (among different in) that take place are:

10. Transconductance (g) of a JFET is defined as (formula): g = and

its unit is

Section 2

11. A semiconductor sample is n-type doped. Briefly describe an experimental technique with schematic to determine its bandgap energy (E_g) and the donor energy level (E_D). Use a graphical method for the determination of E_g and E_D . [3]

Draw the schematic diagram of a quantum well laser for low threshold operation and briefly explain its working principle. [2+2]

13. The absorption coefficient near the band-edge of Si is $^{\sim}10^3$ cm $^{-1}$. What is the minimum thickness (in cm unit) of a sample that can absorb 90% of the incident light? [3]

14. In a p-type GaAs sample, electrons are injected from a contact. If the electron mobility is 4000 cm²/V-s at 300K, calculate the diffusion length for electrons. Take recombination time as 0.6 ns. [3]

15. A Si diode is being used as a thermometer by operating it at a fixed forward (bias) current. The voltage is then a measure of the temperature. At 300K, the diode voltage is found to be 0.6V. How much will be the *voltage change* if the temperature changes by 1 K? [4]

16. Consider a semiconductor laser having an optical confinement factor of unity. If the threshold carrier density is 1.32×10^{18} cm⁻³ and the active layer thickness is 20 μ m, calculate the threshold current density (J_{th}) for the lasing action to start. Assume a radiative recombination time of 2.4 ns. [3]

17. A Schottky barrier is formed between a metal having a work function of 4.3 eV and p-type Si (electron affinity χ =4 eV). The acceptor doping in the Si is 10^{17} /cm³. (a) Calculate the work function of the semiconductor (ϕ_s). (b) Draw the equilibrium band diagram, showing numerical value of qV₀. [3+2]

48. Consider a Si solar cell with area=1 cm², acceptor doping density=5×10¹⁷ cm⁻³, donor doping density=10¹⁶ cm⁻³ and photocurrent of 25 mA. If $D_n = 20$ cm²/s, $D_p = 10$ cm²/s, $\tau_n = 3 \times 10^{-7} \, s$, $\tau_p = 10^{-7} \, s$, calculate the open circuit voltage (V_{oc}) of the solar cell operated at 300K.

19. Consider a GaAs p-n LED with the p-region on the top to emit light, and $D_n=30 \text{ cm}^2/\text{S}$, $D_p=15 \text{ cm}^2/\text{S}$, $N_a=5\times10^{16} \text{ cm}^{-3}$ and $N_d=5\times10^{17} \text{ cm}^{-3}$, $\tau_n=10 \text{ ns}$, $\tau_p=100 \text{ ns}$. Calculate the diode injection efficiency (γ_{inj}).

20. A Si p-n junction with cross-sectional area, A=0.001 cm² is formed with $N_a=10^{15}$ cm⁻³, $N_d=10^{17}$ cm⁻³. Calculate (a) built-in potential, V_0 , (b) current I with a forward bias of 0.5 V. Assume that the current is diffusion dominated. Assume $\mu_n=1500$ cm²/V-s, $\mu_p=450$ cm²/V-s, $\tau_n=\tau_p=2.5\,\mu s$. [2+3]

For the given circuit below for a Si NPN transistor with β =100, calculate the I_B, I_C and V_{CE}. [3]

Useful Formula:

$$\begin{split} \overline{\gamma_{inj}} &= \frac{J_n}{J_n + J_p}, \quad L_n = \sqrt{D_n \tau_n} \;, \quad J_n = \frac{e D_n n_p}{L_n} \\ V_{oc} &= \frac{mkT}{e} \ln(1 + \frac{I_L}{I_0}), \quad I_0 = A \left[\frac{e D_n n_p}{L_n} + \frac{e D_p P_n}{L_p} \right] \end{split}$$

$$\alpha_{loss} = -\frac{1}{L} lnR, \ \ \text{R=} \frac{(n_2 - n_1)^2}{(n_2 + n_1)^2}, \quad \ n_{th} = \frac{J_{th} \tau_r}{e \, d_{laser}}$$

$$I = I_0[\exp\left(\frac{eV}{kT}\right) - 1]$$

$$n_i$$
=1.5×10¹⁰ /cc for Si

$$V_0 = \frac{kT}{e} \ln(\frac{N_a N_d}{n_i^2})$$

