HEXFET® Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

V _{DSS}	100V
R _{DS(on)} typ.	7.9mΩ
R _{DS(on)} max.	9.3mΩ
I _D	43A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

G	D	S
Gate	Drain	Source

Base Part Number Package Type		Standar	Ordereble Bert Number	
base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRFI4410ZPbF	TO-220 Full-Pak	Tube	50	IRFI4410ZPbF

Absolute Maximum Ratings					
Symbol	Parameter	Max.	Units		
_D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	43			
_D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	30	Α		
DM	Pulsed Drain Current ①	170			
P _D @T _C = 25°C	Maximum Power Dissipation	47	W		
	Linear Derating Factor	0.3	W/°C		
V_{GS}	Gate-to-Source Voltage	± 30	V		
= AS	Single Pulse Avalanche Energy (Thermally Limited) ②	310	mJ		
Γ _J	Operating Junction and	-55 to + 175			
$\Gamma_{ m STG}$	Storage Temperature Range		°C		
_	Soldering Temperature, for 10 seconds (1.6mm from case)	300			
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)			

Thermal Resistance

Symbol Parameter		Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case 4		3.2	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount)		65	C/VV

2017-04-27

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		95		mV/°C	Reference to 25°C, I _D = 5mA ①
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.9	9.3	mΩ	$V_{GS} = 10V, I_D = 26A$
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$
	Drain-to-Source Leakage Current			20		$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$
IDSS	Dialii-to-Source Leakage Current			250	μA	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	n 1	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R_G	Internal Gate Resistance		0.9		Ω	

Dynamic @ T₁ = 25°C (unless otherwise specified)

	u 1j – 20 0 (umess otherwise specifica)	1	ı	1		T
gfs	Forward Trans conductance	80			S	$V_{DS} = 50V, I_{D} = 26A$
Q_g	Total Gate Charge		81	110		I _D = 26A
Q_gs	Gate-to-Source Charge		18		nC	$V_{DS} = 50V$
Q_{gd}	Gate-to-Drain Charge		23			V _{GS} = 10V ④
$t_{d(on)}$	Turn-On Delay Time		15			$V_{DD} = 65V$
t _r	Rise Time		27		ns	I _D = 26A
$t_{d(off)}$	Turn-Off Delay Time		43		115	$R_G = 2.7\Omega$
t _f	Fall Time		30			V _{GS} = 10V ④
C _{iss}	Input Capacitance		4910			$V_{GS} = 0V$
Coss	Output Capacitance		330			$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance		150		рF	f = 1.0MHz
Coss eff. (ER)	Effective Output Capacitance (Energy Related)		420		•	V _{GS} =0V,V _{DS} = 0V to 80V See Fig. 11
Coss eff. (TR)	Effective Output Capacitance (Time Related)		680			V_{GS} = 0V, V_{DS} = 0V to 80V \odot

Source-Drain R	Ratings and	d Characteristics
----------------	-------------	-------------------

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			43		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			170		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 26A, V_{GS} = 0V $ ④
t	Reverse Recovery Time		47	71	ns	T _J = 25°C
ι _{rr}	Treverse resovery Time		54	81	110	T _J = 125°C
(Daviera Daviera Charre		110	160	•	$T_J = 25^{\circ}C$ $V_R = 85V$ $I_F = 26A$
Q_{rr}	Reverse Recovery Charge		140	210	nC	$T_J = 125^{\circ}C$ di/dt= 100A/µs@
I _{RRM}	Reverse Recovery Current		2.5		Α	T _J = 25°C
ton	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.91mH, $R_G = 25\Omega$, $I_{AS} = 26$ A, $V_{GS} = 10$ V. Part not recommended for use above this value. ③ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \P R₀ is measured at T_J approximately 90°C.
- ⑤ $C_{oss\ eff.}$ (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} . ⑥ $C_{oss\ eff.}$ (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

2017-04-27

Fig. 1 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig. 2 Typical Output Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7. Typical Source-to-Drain Diode Forward Voltage

Fig. 9. Maximum Drain Current vs. Case Temperature

Fig. 11. Typical C_{OSS} Stored Energy

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy vs. Drain Current

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- (For further info, see AN-1005 at www.infineon.com)

 1.Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. $P_{D \text{ (ave)}}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. l_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

Fransient thermal resistance, see Figures 13 $P_{D (ave)} = 1/2 (1.3 \cdot BV \cdot I_{av}) = \Delta T / Z_{thJC}$ $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$ $E_{AS (AR)} = P_{D (ave)} \cdot I_{av}$

Fig 15. Maximum Avalanche Energy vs. Temperature

5 2017-04-27

Fig 16. Threshold Voltage vs. Temperature

Fig 18. Typical Recovery Current vs. dif/dt

Fig 17. Typical Recovery Current vs. dif/dt

Fig 19. Typical Stored Charge vs. dif/dt

Fig 20. Typical Stored Charge vs. dif/dt

2017-04-27

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

TO-220 Full-Pak Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

1.0 DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.

2,0 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

(3,0) LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTER MOST EXTREMES OF THE PLASTIC BODY.

√5,0 DIMENSION 61, 63, 65 & c1 APPLY TO BASE METAL ONLY.

 $\cancel{6.0}$ STEP OPTIONAL ON PLASTIC BODY DEFINED BY DIMENSIONS u & v.

7.0 CONTROLLING DIMENSION: INCHES.

S Y M	DIMENSIONS				N	
В	MILLIM	ETERS		INC	HES	O T E S
0 L	MIN.	MAX.		MIN.	MAX.	S
Α	4.57	4.83		.180	.190	
A1	2.57	2.82		.101	.111	
A2	2.51	2.92		.099	.115	
ь	0.61	0.94		.024	.037	
ь1	0.61	0.89		.024	.035	5
b2	0.76	1.27		.030	.050	
ь3	0.76	1.22		.030	.048	5
Ь4	1.02	1.52		.040	.060	
b5	1.02	1.47		.040	.058	5
С	0.33	0.63		.013	.025	
с1	0.33	0.58		.013	.023	5
D	8.66	9.80		.341	.386	4
d1	15.80	16.13		.622	.635	
d2	13.97	14.22		.550	.560	
d3	12.29	12.93		.484	.509	
E	9.63	10.74		.379	.423	4
е		BSC			BSC	
L	13.21	13.72		.520	.540	
L1	3.10	3.68		.122	.145	3
n	6.05	6.60		.238	.260	
ØΡ	3.05	3.45		.120	.136	
u	2.39	2.49		.094	.098	6
٧	0.41	0.51		.016	.020	6
Ø1	_	45°		_	45°	

LEAD ASSIGNMENTS

HEXFET

1.- GATE

2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR

3.- EMITTER

TO-220 Full-Pak Part Marking Information

EXAMPLE: THIS IS AN IRFI840G
WITH ASSEMBLY
LOT CODE 3432
ASSEMBLED ON WW 24, 2001
IN THE ASSEMBLY LINE "K"

Note: "P" in assembly line position indicates "Lead-Free"

TO-220AB Full-Pak packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to website at http://www.irf.com/package/

8 2017-04-27

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) [†]				
Moisture Sensitivity Level	TO-220 Full-Pak N/A				
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments				
04/27/2017	 Changed datasheet with Infineon logo - all pages. Corrected Package Outline on page 8. Corrected fig 19 & 20 - Y axis title from "A" to "nC" on page 6. Added disclaimer on last page. 				

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

9 2017-04-27