INTEGRATED CIRCUITS

DATA SHEET

74LVC16374A/74LVCH16374A

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

Product specification Supersedes data of 1997 Aug 22 IC24 Data Handbook

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

FEATURES

- 5 volt tolerant inputs/outputs for interfacing with 5V logic
- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- All data inputs have bus hold (74LVCH16374A only)
- High impedance when V_{CC} = 0

DESCRIPTION

The 74LVC(H)16374A is a 16-bit edge-triggered flip-flop featuring separate D-type inputs for each flip-flop and 3-State outputs for bus oriented applications. The 74LVC16374A consists of 2 sections of eight positive edge-triggered flip-flops. A clock (CP) input and an output enable (OE) are provided for each octal. Inputs can be driven from either 3.3V or 5V devices. In 3-State operation, outputs can handle 5V. These features allow the use of these devices in a mixed 3.3V/5V environment.

The flip-flops will store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH CP transition.

When \overline{OE} is LOW, the contents of the flip-flops are available at the outputs. When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

The 74LVCH16374A bus hold data inputs eliminates the need for external pull up resistors to hold unused inputs.

PIN CONFIGURATION

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay Cp to Qn	$C_L = 50pF$ $V_{CC} = 3.3V$	3.8	ns
f _{MAX}	Maximum clock frequency		150	MHz
C _I	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per flip-flop	$V_{CC} = 3.3V^{1}$	30	pF

NOTES:

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF;

f_o = output frequency in MHz; V_{CC} = supply voltage in V;

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

ORDERING INFORMATION

ONDERNING IN ORMATION				
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74LVC16374A DL	VC16374A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74LVC16374A DGG	VC16374A DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74LVCH16374A DL	VCH16374A DL	SOT370-1
48-Pin Plastic TSSOP Type II	−40°C to +85°C	74LVCH16374A DGG	VCH16374A DGG	SOT362-1

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	1 OE	Output enable input (active LOW)
2, 3, 5, 6, 8, 9, 11, 12	1Q0 to 1Q7	3-State flip-flop outputs
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage
13, 14, 16, 17, 19, 20, 22, 23	2Q0 to 2Q7	3-State flip-flop outputs
24	2 OE	Output enable input (active LOW)
25	2CP	Clock input
36, 35, 33, 32, 30, 29, 27, 26	2D0 to 2D7	Data inputs
47, 46, 44, 43, 41, 40, 38, 37	1D0 to 1D7	Data inputs
48	1CP	Clock input

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODES		INPUTS	INTERNAL	OUTPUTS	
OF ERATING MODES	nOE	nCP	nDx	FLIP-FLOPS	Q0 to Q7
Load and read register	L L	↑	l h	L H	L H
Load register and disable outputs	H H	↑	l h	L H	Z Z

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition

Z = high impedance OFF-state

↑ = LOW-to-HIGH CP transition

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

LOGIC SYMBOL (IEEE/IEC)

BUS HOLD CIRCUIT

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT		
STWIBOL	FARAMETER	CONDITIONS	MIN	MAX		
\/	DC supply voltage (for max. speed performance)		2.7	3.6	V	
DC supply voltage (for low-voltage applications)			1.2	3.6	1 °	
VI	DC input voltage range		0	5.5	V	
\/-	DC input voltage range; output HIGH or LOW state		0	V _{CC}	V	
Vo	DC output voltage range; output 3-State		0	5.5	l '	
T _{amb}	Operating free-air temperature range		-40	+85	°C	
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7V$ $V_{CC} = 2.7 \text{ to } 3.6V$	0 0	20 10	ns/V	

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +6.5	V	
I _{IK}	DC input diode current	$V_I < 0$	-50	mA	
VI	DC input voltage	Note 2	-0.5 to +6.5	V	
I _{OK}	DC output diode current	$V_{O} > V_{CC}$ or $V_{O} < 0$	±50	mA	
\/	DC output voltage; output HIGH or LOW state	Note 2	-0.5 to V _{CC} +0.5	V	
Vo	DC output voltage; output 3-State	Note 2	-0.5 to 6.5	V	
ΙO	DC output source or sink current	$V_O = 0$ to V_{CC}	±50	mA	
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW	

NOTES:

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

			L	LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -	40°C to ⋅	+85°C	UNIT		
			MIN	TYP ¹	MAX			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LIICI I level Innut voltage	V _{CC} = 1.2V	V _{CC}			V		
VIH	V _{IH} HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0]		
V	LOW level Input voltage	V _{CC} = 1.2V			GND	V		
VIL	V _{IL} LOW level Input voltage	V _{CC} = 2.7 to 3.6V			0.8]		
V _{OH} HIGH level output voltage		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5					
	HIGH level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu\text{A}$	V _{CC} -0.2	V _{CC}		\ \ \		
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -18\text{mA}$	V _{CC} -0.6			1		
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -24\text{mA}$	V _{CC} -0.8			1		
	LOW level output voltage	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$			0.40			
V _{OL}		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$			0.20	V		
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24mA$		0.55		1		
II	Input leakage current	$V_{CC} = 3.6V; V_I = 5.5V \text{ or } GND^6$		± 0.1	±5	μΑ		
I _{OZ}	3-State output OFF-state current	$V_{CC} = 3.6V$; $V_I = V_{IH}$ or V_{IL} ; $V_O = 5.5V$ or GND		0.1	±5	μΑ		
I _{off}	Power off leakage supply	$V_{CC} = 0.0V; V_{I} \text{ or } V_{O} = 5.5V$			±10	μΑ		
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND; $I_O = 0$		0.1	20	μΑ		
Δl _{CC}	Additional quiescent supply current per input pin	$V_{CC} = 2.7V \text{ to } 3.6V; V_I = V_{CC} - 0.6V; I_O = 0$		5	500	μА		

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

DC ELECTRICAL CHARACTERISTICS (Continued)

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

			L	UNIT		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -			
			MIN	TYP ¹	MAX	
I _{BHL}	Bus hold LOW sustaining current	$V_{CC} = 3.0V; V_I = 0.8V^{2, 3, 4}$	75			μΑ
I _{BHH}	Bus hold HIGH sustaining current	$V_{CC} = 3.0V; V_I = 2.0V^{2, 3, 4}$	-75			μΑ
I _{BHLO}	Bus hold LOW overdrive current	$V_{CC} = 3.6V^{2, 3, 5}$	500			μΑ
I _{BHHO}	Bus hold HIGH overdrive current	$V_{CC} = 3.6V^{2, 3, 5}$	-500			μΑ

NOTES:

- All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.
 Valid for data inputs of bus hold parts (LVCH16-A) only.
 For data inputs only, control inputs do not have a bus hold circuit.
- The specified sustaining current at the data input holds the input below the specified V_I level.
- 5. The specified overdrive current at the data input forces the data input to the opposite logic input state.
- 6. For bus hold parts, the bus hold circuit is switched off when V_i exceeds V_{CC} allowing 5.5V on the input terminal.

AC CHARACTERISTICS

GND = 0V; $t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$; $R_L = 500 \Omega$; $T_{amb} = -40 ^{\circ} \text{C}$ to $+85 ^{\circ} \text{C}$.

SYMBOL	PARAMETER	WAVEFORM	V _C	c = 3.3V ±0).3V	V _{CC} =	2.7V	V _{CC} = 1.2V	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	MAX	
t _{PHL} t _{PLH}	Propagation delay CP to Qn	1, 4	1.5	3.8	5.4	1.5	6.4	17	ns
t _{PZH} t _{PZL}	3-State output enable time OE to Qn	2, 4	1.5	3.6	5.6	1.5	6.6	20	ns
t _{PHZ}	3-State output disable time OE to Qn	2, 4	1.5	3.9	5.5	1.5	6.5	12	ns
t _W	CP pulse width HIGH or LOW	1	3.0	1.5	_	3.0	ı	_	ns
t _{su}	Set-up time Dn to CP	3	2.0	0.3	_	1.9	_	_	ns
t _h	Hold time Dn to CP	3	1.5	-0.3	_	1.1	_	_	ns
f _{max}	Maximum clock pulse frequency	1	100	-	-	80	-	-	MHz

^{1.} All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25$ °C.

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V; \, V_M$ = 0.5 V_{CC} at $V_{CC} < 2.7V.$ V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

 $V_X = V_{OL} + 0.3V$ at $V_{CC} \ge 2.7V$; $V_X = V_{OL} + 0.1 \ V_{CC}$ at $V_{CC} < 2.7V$ $V_Y = V_{OH} - 0.3V$ at $V_{CC} \ge 2.7V$; $V_Y = V_{OH} - 0.1 \ V_{CC}$ at $V_{CC} < 2.7V$

Waveform 1. Clock (CP) to output (Qn) propagation delays, the clock pulse width and the maximum clock pulse frequency

Waveform 2. 3-State enable and disable times

Waveform 3. Data set-up and hold times for the Dn input to the CP input

TEST CIRCUIT

Waveform 4. Load circuitry for switching times

SW00047

1998 Mar 17 7

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT370-1		MO-118AA				93-11-02 95-02-04

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

16-bit edge triggered D-type flip-flop with 5 Volt tolerant inputs/outputs (3-State)

74LVC16374A/ 74LVCH16374A

	DEFINITIONS							
Data Sheet Identification Product Status		Definition						
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.						
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Phillips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.						
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.						

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04534

Let's make things better.

Philips Semiconductors

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.