6. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

import numpy as np import pandas as pd from sklearn import tree

file='loan1.csv' df=pd.read_csv(file)

df.head()

Home Owner		er Mari	Marital Status		Annual Income	Defaulted
Borro	ower					
0	Yes	Single 125	No			
1	No	Married	100	No		
2	No	Single 70	No			
3	Yes	Married	120	No		
4	No	Divorced	95	Yes		

df.shape

(10, 4)

df.info

<bound method DataFrame.info of Home Owner Marital Status Annual Income Defaulted Borrower

0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes>

```
d={'Yes':1,'No':0}
df['Home Owner']=df['Home Owner'].map(d)
df['Defaulted Borrower']=df['Defaulted Borrower'].map(d)
d1={'Single':0,'Married':1,'Divorced':2}
df['Marital Status']=df['Marital Status'].map(d1)
df.head()
```

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	0	125	0
1	0	1	100	0
2	0	0	70	0
3	1	1	120	0
4	0	2	95	1

df.columns

Index(['Home Owner', 'Marital Status', 'Annual Income', 'Defaulted Borrower'], dtype='object')

X=df[['Home Owner', 'Marital Status', 'Annual Income']]
y=df['Defaulted Borrower']
features=list(df.columns[:3])
print(features)

['Home Owner', 'Marital Status', 'Annual Income']

model=tree.DecisionTreeClassifier(criterion='entropy',splitter='random')
model=model.fit(X,y)

from IPython.display import Image from sklearn.externals.six import StringIO import pydotplus

dot_data=StringIO()

tree.export_graphviz(model,out_file=dot_data,feature_names=feature s,filled=True,rounded=True)

