

(51)4 G 01 G 19/04, B 65 G 67/22

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР по делам изовретений и отнрытий

BCECOHOSHAG

T在7855948

ENSTRUCTERA

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3527765/24-10
- (22) 24.12.82
- (46) 15.08.85. Бюл. № 30
- (72) Н.Ф.Филиппов, Г.И.Лошкарев, Б.С.Викулов и Б.Л.Пильник
- (71) Ингулецкий горнообогатительный комбинат им. 50-летия СССР
- (53) 681.269(088.8)
- (56) Авторское свидетельство СССР № 889580, кл. В 65 G 67/22, 1980. Авторское свидетельство СССР № 659489, кл. В 65 G 67/06, 1976.

(54)(57) УСТРОЙСТВО УПРАВЛЕНИЯ ДОЗИ-РОВАННОЙ ЗАГРУЗКОЙ ЖЕЛЕЗНОДОРОЖНЫХ ВАГОНОВ, содержащее конвейерные весы, установленные на подающем конвейере, и платформенные весы с циферблатным указателем, имеющим встроенный блок фотодатчиков, задатчик типов вагонов, соединенный с блоком задания коэффициентов, блоки управления подающим и загрузочным конвейерами и блок управления тяговым агрегатом перемещения вагонов, отличающееся тем, что, с целью повышения точнос-

ти равномерной весовой загрузки вагонов, в него введены логический блок управления, датчик перемещений тягового агрегата и датчик положения вагона, причем входы логического блока управления подключены соответственно к выходам датчика перемещений тягового агрегата, конвейерных весов и блока задания коэффициентов, а выходы - к блоку управления тяговым агрегатом, блоку управления загрузочным конвейером и к блоку фотодатчиков циферблатного указателя, другой вход которого соединен с задатчиком типа вагонов, а выход - с входами блока управления тяговым агрегатом, логического блока управления и задатчика типа вагонов. управляющий выход которого подклюк одному входу блока управления подающим конвейером, другой вход которого, вход блока управления загрузочным конвейером и вход блока управления тяговым агрегатом соединены с выходом датчика положения вагона.

1173190

Изобретение относится к управлению загрузкой железнодорожных вагоннов с использованием весоизмерительных средств и предназначено, в частности, для дозированной загрузки ва- 5 гонов железорудным концентратом в горнорудной промышленности.

Цель изобретения - повышение точности равномерной весовой загрузки вагонов.

На фиг. 1 представлена структурная схема предлагаемого устройства; на фиг. 2 — функциональная схема задатчика типа вагонов; на фиг. 3 функциональная схма блока фотодатчика; на фиг. 4 — расположение фотодатчиков в циферблатном указателе веса; на фиг. 5 — функциональная схема логического блока; на фиг. 6 иллюстрация точечно-шагового режима загрузки вагона.

Устройство содержит задатчик 1 типа вагонов, подключенный к блоку 2 коэффициентов и блоку 3 фотодатчиков, встроенному в циферблатный указатель 4 веса вагонных платформенных весов 5. Выходы блока 2 коэффициентов соединены с входами K_1 и K_2 логического блока 6, входы "вес" и "движение" которого соединены соответственно с импульсным выходом конвейерных весов 7 и датчиков 8 линейных перемещений тягового агрегата 9, выходы "шаг" и "стоп" соединены соответственно с входами "вперед" и "стоп" блока 10 управления приводом тягового агрегата 9, а выходы "вперед" и "назад" соединены с одноименными входами блока 11 управления при- 40 водом реверсивного конвейера 12. Выход "доза" логического блока 6 соединен с одноименным входом блока 3 фотодатчиков, выход "реверс" которого соединен с входом "сдвиг" задатчика 1 типа вагонов, входом "сброс" логического блока 6 и вторым входом "вперед" блока 10 управления приводом тягового агрегата 9, второй вход "стоп" которого соединен с выходом датчика 13 положения вагонов, связанным с входами "пуск" блока 11 управления приводом реверсного. конвейера 12 и блока 14 управления приводом подающего наклонного конвейера 15, вход "останов" которого соединен с одноименным выходом задатчика 1 типа вагонов. На

фиг. 1 показаны также загружаемые вагоны 16.

Задатчик 1 типа вагонов (см.фиг.2) содержат m п -позиционных переключателей 17₁ - 17_m (т -количество вагонов в составе, подаваемом под погрузку, п -число тилов вагопо весу загружаемого концентрата), неподвижные одноименные контакты которых объединены и образуют n выходных шин "выборка" задатчика 1, а их подвижные контакты через развязывающие диоды 18₁ - 18_{т под}ключены к соответствующим выходам 1 - т - т - канального кольцевого распределителя 19 импульсов, тактовый эход которого образует вход "сдвиг" задатчика 1 типа вагонов, связанный с одним входом элемента И 20, второй вход которого подключен к последнему т -му выходу распределителя 19, а выход образует выходную шину "останов" задатчика 1.

Блок 3 фотодатчиков (см. фиг.3) содержит п фотодатчиков 21,- 21, (п -число типов вагонов по весу загружаемого концентрата), каждый из которых содержит осветитель и фотодиод. Одни выводы осветителей всех фотодатчиков $21_4 - 21_\eta$ образуют и входов "выборка", вторые их выводы объединены и образуют вход "доза" блока 3 фотодатчиков, аноды фотодиодов всех фотодатчиков подключены к нулевой шине, а их катоды объединены и подключены к входу формирователя импульсов 22, связанному через резистор 23 с шиной питания, при этом выход формирователя импульсов 22 образует выход "реверс" блока 3 фотодатчиков.

Фотодатчики 21. - 21 п размещены в соответствующих задаваемой дозе точках шкалы цеферблатного указателя веса 4, с осью стрелки которого жестко соединен трехлепестковый имитатор 24 стрелки, взаимодействующий (перекрывающий световой поток) с фотодатчиками 21. - 21 п.

Вагоны, предназначенные для перевозок железорудного коецентрата, в зависимости от грузоподъемности, категории и маршрута следования подразделяются на девять типов, причем вес брутто (в тоннах) всех девяти типов вагонов образует числовой ряд 85, 86, 87, 88, 89, 90, 91, 92, 93, 128, из 20

которого видно, что за исключением. девятого типа загрузка вагонов кажъ дых двух соседних типов отличается на одну тонну. Следовательно, восемь из девяти фотодатчиков 21,- 21₈ долж-5 ны разместиться на небольшой дуге шкалы циферблатного указателя веса 4 от отметки "85 т"до отметки "83 т." Например, для 160-тонных вагонных весов эта дуга составляет 18° или 0,05 всей шкалы. Размещение фотодатчиков в этом случае затруднено из-за конструктивных сложностей. Кроме того, при столь близком размещении восьми фотодатчиков возможно влияние осветителя выбранного фотодатчика на фотодиоды соседних фотодатчиков, что, в свою очередь, требует дополнительных мер защиты,

*В предлагаемом устройстве фотодатчики размещены следующим образом. Первые восемь из девяти фотодатчиков 211- 218 разбиты на три группы (по числу лепестков имитатора 24 стрелки), причем фотодатчики 21,, 214, 21, первой группы, соответствующие первому, четвертому и седьмому типам вагонов, размещены на отметках шкалы циферблатного указателя 4, совпадающие с весом брутто этих типов вагонов, а именно на отметках "85т", "89т" и "92т", фотодатчики 21_2 , 21_5 и 21_8 второй группы сдвинуты на 120° , а фотодатчики 21, и 21₆ третьей группы — на 240° относительно отметок шкалы циферблатного указателя 4, соответствующих этим типам вагонов. Фотодатчик 21, размещен на отметке "128т", соответствующей весу брутто вагонов девятого типа.

Расположение фотодатчиков 21, - 21, в циферблатном указателе 4 веса показано на фиг. 4. Датчики размещаются на неподвижном кольце, закрепленном 45 с обратной стороны указателя.

Фотодатчики 21, 21, 21, 21, первой группы и фотодатчик 21, формируют выходной сигнал "реверс"
при перекрытии их светового потока 50
первым лепестком имитатора 24 стрелки, начальное положение которого совпадает с нулевой отметкой шкалы циферблатного указателя 4; фотодатчики 21, 21, 21, второй группы 55
и 21, 21, третьей группы формируют выходной сигнал при перекрытии
их светового потока соответственно

вторым и третьим лепестками имитатора 24, сдвинутыми относительно первого лепестка на 120° и 240°, считая по ходу часовой стрелки (см. фиг. 4, вид сзади).

Логический блок 6 (см. фиг.5) содержит два управляемых делителя частоты 25 и 26 с коэффициентами деления соответственно

$$K_1 = \frac{G}{4q} \qquad K_2 = \frac{L}{4l},$$

где G - грузоподъемность вагока, т; q - цена весовых импульсов, вырабатываемых конвейерными весами 7, т;

L - длина эагружаемого вагона, м;

1 - цена путевых импульсов с выхода датчика 8 линейных перемещений тягового агрегата 9, м.

Входы делителей 25 и 26 соединены соответственно с входами "движение" и "вес", а их шины управления подключены соответственно к входам "К2" и "К," логического блока 6. Выход делителя частоты:25 соединен с выходной шиной "стоп" логического блока 6 и подключен к входу двоичного двукразрядного счетчика 27 шагов, инверсный выход старшего триггера которого подключен к выходной шине "доза" и соединен с входом размещения работы делителя частоты. 26. Выход делителя 26 соединен с входом установки в "1" триггера 28 направления и с одним входом элемента И 29, второй вход которого подключен к прямому выходу триггера 28, связанному с входом разрешения работы делителя частоты 25, а выход элемента И 29 подключен в выходной шине "шаг" логического блока 6.

Прямой и инверсный выходы триггера 28 образуют соответственно выходы "вперед" и "назад", а его вход установки в "0" — вход "сброс" логического блока 6.

Предлагаемым устройством реализуется точечно-шаговая технология погрузки железорудного концентрата, заключающаяся в следующем.

Порожний состав, состоящий из десяти вагонов различной грузоподъемности, подается тяговым агрегатом на погрузочный пункт. Когда головной вагон занимает исходное положение под реверсивным загрузочным конвейе-

ром (см.фиг.ба), состав останавливается, последовательно запускаются загрузочный конвейер в направлении "назад" и подающий конвейер.

В вагон начинает поступать концентрат, загружая в хвостовой части вагона I конус.

После отсытки I конуса, составляющего $\frac{G}{4}$, где G - грузоподъемность загружаемого вагона в тоннах
(грубая загрузка по конвейерным весам на подающем конвейере), загрузочный конвейер реверсируется в
направлении вперед и поток концентрата поступает уже в головную часть
вагона, загружая II конус (см.
фиг.66).

После отсытки II конуса (также срубая загрузка $\frac{G}{L}$) дается команда тяговому агрегату на движение вперед. Состав протягивается на один шаг $(\frac{1}{L}$ длины загружаемого вагона), и загружается III конус (также гру- $\frac{G}{\Lambda}$, cm. Φ ur.6B), nocбая загрузка ле осыпки которого состав вновь протягивается на один шаг и загружается последний 1У конус. При заг-30 рузке 1У конуса (после второго шага) загружаемый вагон полностью устанавливается на платформе вагонных весов (см.фиг. 6 г) и дальнейшая загрузка происходит при непрерывном взвешивании вагона, чем обеспечивается его точная догрузка.

Загрузка 1У конуса продолжается до тех пор, пока вес вагона брутто с точностью, обеспечивае- 40 мой вагонными платформенными весами, не достигнет заданного значения, после чего загрузочный конвейер вновь реверсируется в направлении назад и поток концентрата поступа- 45 ет в следующий вагон. Одновременно включается тяговый агрегат и состав перемещается вперед до тех пор, пока следующий вагон не достигнет точки начала загрузки (CM. фиг. 6 д), и щикл загрузки следующего вагона повторяется.

Устройство автоматического управления установкой для дозированной загрузки вагонов железорудным концентратом в точечно-шаговом режиме работает следующим образом.

Перед началом погрузки оператор на переключателях 17₁ - 17_m задатчика 1 типа вагонов (см. фиг.2) набирает цифры типов вагонов в последовательности их размещения в составе начиная с головного вагона. Кольцевой m -канальный распределитель 19 импульсов задатчика 1 находится при этом в исходном состоянии, при котором единичный сигнал присутствует на его первом выходе. Этим сигналом опрашивается в исходном состоянии переключатель 17, установленный в і -е положение, соответствующее шифру типа головного вагона. Следовательно, на і -й выходной шине "выборка" присутствует единичный сигнал, который поступает в блок 3 фотодатчиков на соответствующий і -й вход "выборка". и далее на первый выход осветителя фотодатчика 21 (см. фиг.3). Однако осветитель не включается, так как на его втором: выходе, подключенном к входу "доза" блока 3 фотодатников, еще нет разрешающего нулевого, потенциала. :

Одновременно единичный сигнал с і ти выходной шины "выборка" задатчика 1 типа вагонов поступает в блок 2 коэффициентов и формирует на его выходных шинах K_A и K_Z двоичные коды коэффициента определяющего количество концентрата, подлежащего размещению в одном конусе и коэффициента $K_{\ell} = \frac{L}{41}$ определяющего длину шага (расстояние между соседними конусами). Двоичные коды коэффициентов К и К поступают в погический блок (см.фиг.5) на шины управления делителями частоты 26 и 25 соответственно.

После ввода в устройство данных о типах вагонов состава оператор с помощью дистанционного управляемого тягового агрегата подает состав на погрузочный путь.
Дальнейшая работа устройства до окончания загрузки последнего вагона происходит автоматически.

Головной вагон 16 подтягивается под точку начала загрузки и воздействует на датчик 13 положения вагона (например, фотореле), в результате чего последовательно запускаются реверсивный загрузочный конвейер 12 и подающий наклонный ковейер 15, причем реверсивный конвейер 12 апускается в направлении назад, так как в исходном состоянии триггер 28 направления в логическом блоке 6 находится в нулевом состоянии и с его инверсного выхода единичный сигнал поступает на выходную шину "назад" блока 6, связанную с одноименным входом блока 11 управления приводом конвейера 12.

Одновременно сигнал с выхода датчика 13 положения вагона поступает на один из входов "стоп" блока 10 управления приводом тятового агрегата 9 и приводит к его остановке. Головной вагон при этом занимает исходное положение под загрузочным конвейером 12 (см. фиг. 6 а), по которому концентрат поступает в хвостовую часть вагона, образуя I конус.

При движении потока концентрата по конвейеру 15 и далее по реверсивному конвейеру 12 в загружаемый вагон 16 конвейерные весы 7 вырабатывают импульсы, частота следования которых пропорциональна интенсивности потока.

Весовые импульсы с выхода конвейерных весов 7 поступают на вход "вес" логического блока 6, связанный с входом управляемого делителя частоты 26 (см. фиг.5), на входе разрешения работы которого присутствует разрешающий единичный сигнал с инверсного выхода старшего триггера двоичного счетчика 27 шагов, а на шины управления поступает двоичный код коэффициента деле-. ния К/. Следовательно, на выходе делителя частоты 26 появляется каж-_{А5} дый Кі-й из поступивших на его вход весовых импульсов, свидетельствующий об окончании отсыпки загружаемого конуса.

Погрешность загрузки конуса при этом определяется погрешность конвейерных весов 7. Это обеспечивает грубую загрузку первых трех конусов.

После отсыпки I конуса импульс 55 с выхода делителя частоты 26 поступает на вход установки в "1" триггера 28 направления и по задне-

му фронту переводит его в единичное состояние, в результате чего сигналы, снимаемые с выходных шин "вперед" и "назад" логического блока 6, меняются на противоположные. Загрузочный конвейер 12 реверсируется в направлении вперед, и поток концентрата поступает в головы ную часть вагона.

Второй импульс с выхода делителя частоты 26, свидетельствующий
об окончании загрузки II конуса,
не изменяя единичного состояния
15 триггера 28 направления, проходит
на выход элемента И 29, связанный
с выходной шиной "шаг" логического
блока 6. При этом в блок 10 управления приводом тягового агрегата
20 9 поступает команда на движение
в направлении вперед.

Состав протягивается в указанном направлении. Путевые импульсы, вырабатываемые датчиком 8 линейных перемещений тягового агрегата 9, поступают на вход "движение" ческого блока 6, связанный с входом управляемого делителя частоты. 25, на входе разрешения работы которого после отсыпки I конуса устанавливается разрешающий единичный сигнал с прямого выхода триггера 28 направления, а на шины управления поступает двоичный код коэффициента деления К2. Следовательно, на выходе делителя частоты 25 появляется каждый К₂-й из поступивших на его вход путевых импульсов.

После протягивания загружаемого вагона на один шаг импульс с выхода делителя частоты 25 поступает на вход двоичного двухраэрядного счетчика 27 шагов, где запоминается, и одновременно на выходную шину "стоп" логического блока 6, связанную с одноименным входом блока 10 управления приводом тягового агрегата 9. Состав останавливается, и осуществляется загрузка III конуса.

Появление третьего импульса с выхода делителя частоты 26 весовых импульсов вновь приводит к формированию команды тяговому агрегату 9 на движение вперед, а после протягивания загружаемого вагона на следующий шаг, о чем свидетельствует

импульс с выхода делителя частоты 25 путевых импульсов, состав вновь останавливается и начинается загруз-ка последнего 1У конуса.

После протягивания состава на два шага загружаемый головной вагон полностью устанавливается на платформе весов (см. фиг. 6 г) и, следовательно, дальнейшая догрузка вагона до заданной дозы происходит при его непрерывном взвешивании с погрешностью вагонных весов, т.е. осуществляется точная догрузка вагона до заданной дозы.

Это происходит следующим образом. Счетчик 27 шагов при поступлении на его вход импульсов устанавливается в состояние "01", при котором нулевым потенциалом с инверсного выхода старшего триггера запрещается работа делителя 26 частоты весовых импульсов. Одновременно этот нулевой потенциал через выходную шину "доза" поступает в блок 3 фото- 25 датчиков (см. фиг.3) и включает осветитель фотодатчика 21; , соответствующего типу головного вагона, так как на второй вывод осветителя і -й шине "выборки" из задатчика 1 типа вагонов поступает единичный потенциал. Засветка фотодио-21 i -го фотодатчика приводит к изменению на входе формиро-22 сигнала из "1" в "0", однако формирователь, реагирующий на обратное изменение входного сигнала из "0" в "1", выходной сигнал не вырабатывает..

Как было указано выше, лепестки 40 имитатора 24 стрелки сдвинуты друг относительно друга на 1/3 шкалы циферблатного указателя веса (120) или примерно на 50 т (для 160-тонных весов), а так как нес брутто 45 первых восьми типов вагонов (см. таблицу) расположен между отметками "85" и "93" шкалы, то каждый из этих фотодатчиков пересекается последовательно двумя лепестыками из трех (фотодатчик, соответстывующий девятому типу вагонов, пересекается всеми тремя лепестками).

Однако пересечение выбранного фотодатчика первым лепестком (первыми 55 двумя для девятого типа вагонов) не приводит к формированию преждевременного (ложного) сигнала на выходной

шине "реверс" блока 3 фотодатчиков, так как его осветитель в этот мо-мент еще обесточен. Включение осветителя (см. выше) происходит после загружи первых трех конусов и последующей установки загружаемого вагона на платформу весов, а значит, после прохождения первым лепестком выбранного фотодатчика, сответствующего типу загружаемого вагона.

Например, вагон 1-го типа, вес брутто которого составляет 85 т, в момент включения осветителя фотодатчика 21; уже загружен на 3/4 и его вес с тарой составляет примерно 70 т, следовательно, лепестки имитатора 24 стрелки, положение которых в исходном состоянии соответствовали отметкам "0", ~"50", "~100" шкалы, занимают новые положения, соответствующие отметкам ~70", ~"120", ~"16", (176), а выбранный фотодатчик 21; осветитель которого включился расположен на отметке "85" шкалы циферблатного указателя.

Загрузка 1У конуса продолжается до тех пор, пока вес брутто вагона не достигнет заданного значения, при соответствующим лепестком KOTODOM имитатора 24 стрелки происходит перекрытие светового потока осветителя фотодатчика 21; Его фотодиод затемняется, что приводит к изменению сигнала на входе формиро-вателя 22 из "0" в "1". Формирователь 22 вырабатывает импульсный сигнал, котрый поступает на выходную шину "реверс" блока 3 фотодатчиков и выполняет следующие функции.

В логическом блоке 6 (см.фиг.5) этот сигнал потсупает на вход установки в "0" триггера 28 направления и возвращает его в исходное состояние, что приводит к реверсированию загрузочного конвейера 12 в направлении назад и, следовательно, переключению потока концентрата в следующий вагон.

Одновременно этим же сигналом (его задним фронтом), поступающим на тактовый вход m -канального кольцевого распределителя 19 задатчика 1 типа вагонов (см.фиг.2), "1" из его первого разряда сдвигается во

второй. При этом на выходные шины "выборка" задатчика 1 типа вагонов, поступает шифр типа второго вагона, набранного на переключателе 172.

Кроме того, этим же сигналом, поступившим на вход "вперед" блока 10 управления приводом тягового агрегата 9, включается тяговый агрегат, и состав протягивается вперед до тех 10 пор, пока второй вагон не достигнет точки начала загрузки (момент срабатывания датчика 13 положения вагона). Цикл загрузки вагона повторяется.

При загрузке последнего вагона сигнал "реверс", поступивший на вход "сдвиг" задатчика 1 типа ваго-

нов, проходит на выход элемента И 20, так как во время действия этого сигнала на втором входе элемента И 20 еще присутствует единичный сигнал с последнего выхода ш -канального кольцевого распределителя 19.

Сигнал с выхода элемента И 20 через выходную шину "останов" задатчика 1 типа вагонов поступает на одноименный вход блока 14 управления приводом подающего конвейера 15, в результате чего конвейер 15, а также реверсивный загрузочный конвейер 12, отключаются.

Ove. 5

Составитель В.Ширшов
Редактор М.Циткина Техред Л.Микеш Корректор В.Гирняк
Заказ 5038/37 Тираж 703 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д.4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4