Clasificación

Dr. Mauricio Toledo-Acosta mauricio.toledo@unison.mx

Diplomado Ciencia de Datos con Python

Table of Contents

- Introducción: La tarea de clasificación
 - Clasificación multiclase

- 2 Métricas de desempeño
- 3 Comparación de algoritmos

asificación Clasificación May 15, 2025 2 / 29

3 / 29

sificación Clasificación May 15, 2025

¿Qué tienen en común las siguientes tareas?

4 / 29

¿Qué tienen en común las siguientes tareas?

Hello Friends! We hope you had a pleasant week. Last weeks trivia questions was:	No Spam
What do these 3 films have in common: One Crazy Summer, Whispers in the Dark, Moby Dick?	
Answer: Nantucket Island	
IMPORTANT INFORMATION:	Spam
The new domain names are finally available to the general public at discount prices. Now you can	
register one of the exciting new .BIZ or .INFO domain names, as well as the original .COM and .NET $$	
names for just \$14.95. These brand new domain extensions were recently approved by ICANN and have	
the same rights as the original .COM and .NET domain names. The biggest benefit is of-course that	
the .BIZ and .INFO domain names are currently more available. i.e. it will be much easier to register	
an attractive and easy-to-remember domain name for the same price. Visit: http://www.affordable-	
domains.com today for more info.	
If you have an internal zip drive (not sure about external) and you bios supports using a zip as floppy	No Spam
drive, you could use a bootable zip disk with all the relevant dos utils.	

Clasificación

Problema supervisado en el cual el objetivo es asignar una etiqueta o categoría a cada ejemplo de un conjunto de datos.

La tarea de clasificación consiste en entrenar un modelo para predecir a qué clase pertenece una nueva observación. Esto lo hacemos basándonos en un conjunto de datos etiquetados donde las categorías son conocidas.

• Clasificación Binaria: Dos etiquetas, mutuamente exclusivas.

Clasificación

Problema supervisado en el cual el objetivo es asignar una etiqueta o categoría a cada ejemplo de un conjunto de datos.

La tarea de clasificación consiste en entrenar un modelo para predecir a qué clase pertenece una nueva observación. Esto lo hacemos basándonos en un conjunto de datos etiquetados donde las categorías son conocidas.

- Clasificación Binaria: Dos etiquetas, mutuamente exclusivas.
- Clasificación Multi-clase: Varias etiquetas mutuamente excluyentes.

Clasificación

Problema supervisado en el cual el objetivo es asignar una etiqueta o categoría a cada ejemplo de un conjunto de datos.

La tarea de clasificación consiste en entrenar un modelo para predecir a qué clase pertenece una nueva observación. Esto lo hacemos basándonos en un conjunto de datos etiquetados donde las categorías son conocidas.

- Clasificación Binaria: Dos etiquetas, mutuamente exclusivas.
- Clasificación Multi-clase: Varias etiquetas mutuamente excluyentes.
- Clasificación Multi-etiqueta: Cada instancia tiene varias etiquetas.

Clasificación Binaria

Hello Friends! We hope you had a pleasant week. Last weeks trivia questions was:	No Spam
What do these 3 films have in common: One Crazy Summer, Whispers in the Dark, Moby Dick?	
Answer: Nantucket Island	
IMPORTANT INFORMATION:	Spam
The new domain names are finally available to the general public at discount prices. Now you can	
register one of the exciting new .BIZ or .INFO domain names, as well as the original .COM and .NET $$	
names for just \$14.95. These brand new domain extensions were recently approved by ICANN and have	
the same rights as the original .COM and .NET domain names. The biggest benefit is of-course that	
the .BIZ and .INFO domain names are currently more available. i.e. it will be much easier to register	
an attractive and easy-to-remember domain name for the same price. Visit: http://www.affordable-	
domains.com today for more info.	
If you have an internal zip drive (not sure about external) and you bios supports using a zip as floppy	No Spam
drive, you could use a bootable zip disk with all the relevant dos utils.	

Clasificación Binaria

Texto	ℓ
Hello Friends! We hope you had a pleasant	0
week. Last weeks trivia questions was	
IMPORTANT INFORMATION: The new do-	1
main names are finally available to the gen-	
eral	

Clasificación Binaria

$ w_1 $	 $ w_M $	ℓ
2	 0	1

asificación Clasificación May 15, 2025 6 / 29

Clasificación Multi-clase

7 / 29

Clasificación Multi-clase

p_1	 <i>p</i> ₇₈₄	$\mid \ell \mid$
0	 57	0

7 / 29

Clasificación Multi-etiqueta

Un ejemplo trabajado con código

Clasificación Multi-etiqueta

Texto	Action	Adventure	Fantasy	Romance
While on a journey of physicial and spiritual healing, a brilliant	1	1	1	0

Un ejemplo trabajado con código

Más ejemplos de clasificación

- Clasificación de imágenes (identificar objetos en fotos).
- Diagnóstico médico (clasificar si un tumor es benigno o maligno). Esto puede ser por medio de imágenes, mediciones, etc.
- Reconocimiento de voz (identificar palabras habladas).
- Detección de fraude (identificar transacciones fraudulentas).
- Detección de tópicos (Identificar el tópico de un documento escrito).
- Análisis de sentimientos (Identificar el sentimiento detrás de un texto).

9/29

Quiz

- Clasificar imágenes de dígitos escritos a mano (0 al 9).
- Determinar si un correo es spam o no spam.
- Etiquetar los elementos presentes en una foto (playa, atardecer, personas, perro.).
- Predecir si una transacción bancaria es fraudulenta o legítima.
- Clasificar las habilidades de un empleado (programación, diseño, marketing, liderazgo).

- Diagnosticar si un tumor es maligno o benigno a partir de una imagen médica.
- Evaluar si un estudiante aprobará o reprobará un examen basado en su historial.
- Identificar el tipo de animal en una foto (perro, gato o pez).
- Identificar los géneros asociados a una película.
- Detectar síntomas de un paciente (fiebre, tos, dolor de cabeza, fatiga).

La tarea de clasificación: Planteamiento matemático

Datos de entrada en la clasificación binaria:

$$X = \underbrace{\{x_1, ..., x_n\}}_{\text{Datos de entrada}} \subset \mathbb{R}^D, \quad Y = \underbrace{\{y_1, ..., y_n\}}_{\text{Etiqueta de cada dato}}$$

donde $y_i \in \{0, 1\}$.

Un clasificador es una función que asigna una etiqueta a cada dato de entrada.

Entrenar un modelo de clasificación quiere decir encontrar, mediante los datos de entrenamiento, una función que haga esta asignación.

asificación May 15, 2025 11 / 29

La geometría

La geometría

El algoritmo buscará encontrar la frontera de decisión de acuerdo a diferentes criterios.

asificación May 15, 2025 12 / 29

Separabilidad de clases: Ejemplo MNIST

Algoritmos de clasificación

Algoritmos Geométricos

- SVM (Máquinas de Vectores de Soporte)
- k-NN (k-Vecinos más Cercanos)
- Árboles de Decisión

Algoritmos Probabilísticos

- Naive Bayes
- Redes Bayesianas
- Clasificador de Máxima Verosimilitud

Algoritmos Basados en Optimización

- Regresión Logística
- Perceptrón
- Redes Neuronales

Algoritmos de Ensamble

- Random Forest
- AdaBoost
- XGBoost/LightGBM

El problema del desbalanceo de clases

Distribución desbalanceada (85% vs 15%)

15/29

Clasificación May 15, 2025

Algunos algoritmos no soportan la clasificación multiclase, sólo la binaria. En estos casos hay dos estrategias para convertir una clasificación multiclase (con k clases diferentes) en varios problemas de clasificaciones binarias:

 One vs all (OVA) o one vs rest (OVR). Se divide una clasificación multiclase en un problema de clasificación binaria por cada clase. En cada clasificación binaria se analiza si la entidad pertenece a la clase j-sima o no.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

ssificación Clasificación May 15, 2025 16 / 29

Algunos algoritmos no soportan la clasificación multiclase, sólo la binaria. En estos casos hay dos estrategias para convertir una clasificación multiclase (con k clases diferentes) en varios problemas de clasificaciones binarias:

- One vs all (OVA) o one vs rest (OVR). Se divide una clasificación multiclase en un problema de clasificación binaria por cada clase. En cada clasificación binaria se analiza si la entidad pertenece a la clase j-sima o no.
- One vs one (OVO). Se divide una clasificación multiclase en un problema de clasificación binaria por cada par de clases. En cada clasificación binaria se analiza si la entidad pertenece a la clase i-sima o a la clase j-sima.

4□ > 4□ > 4 = > 4 = > = 90

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs rest (OVR).
 - Clasificación binaria 1: Rojo, (azul, verde).
 - Clasificación binaria 2: Azul, (rojo, verde).
 - Clasificación binaria 3: Verde, (azul, rojo).

objeto	color
objeto 1	rojo
objeto 2	verde

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs rest (OVR).
 - Clasificación binaria 1: Rojo, (azul, verde).
 - Clasificación binaria 2: Azul, (rojo, verde).
 - Clasificación binaria 3: Verde, (azul, rojo).

objeto	rojo	verde	azul
objeto 1	1	0	0
objeto 2	0	1	0

Clasificación

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs one (OVO).
 - Clasificación binaria 1: Rojo, azul.
 - Clasificación binaria 2: Rojo, verde.
 - Clasificación binaria 3: Azul, verde.

objeto	color
objeto 1	rojo
objeto 2	verde

Un ejemplo ilustrativo...

asificación May 15, 2025 18 / 29

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs one (OVO).
 - Clasificación binaria 1: Rojo, azul.
 - Clasificación binaria 2: Rojo, verde.
 - Clasificación binaria 3: Azul, verde.

objeto	rojo/azul	rojo/verde	azul/verde
objeto 1	1	1	-
objeto 2	-	0	0

Un ejemplo ilustrativo...

asificación May 15, 2025 18 / 29

Table of Contents

- 1 Introducción: La tarea de clasificación
 - Clasificación multiclase

- 2 Métricas de desempeño
- 3 Comparación de algoritmos

Clasificación

Matriz de Confusión Binaria

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
condition	Positive (P)	True positive (TP)	False negative (FN)	
Actual co	Negative (N)	False positive (FP)	True negative (TN)	

Métricas de desempeño

Accuracy: De todos la población, ¿cuántos predije correctamente?

$$A = \frac{TP + TN}{\mathsf{Total}}.$$

 Recall: De todos la población positiva, ¿cuántos predije correctamente como positivos?

$$R = \frac{TP}{TP + FN} = TPR.$$

 Precision: De todos los que predije como positivos, ¿cuántos son realmente positivos?

$$P = \frac{TP}{TP + FP}.$$

• **F1 score**: Media armónica de la precisión y el recall:

$$2\frac{P\cdot R}{P+R}$$

Ejemplo

Tenemos la siguiente población $\{++---\}$:

• Si nuestro clasificador predice todo como —:

real	+	+	-	-	-	-
predicho	-	-	ı	-	-	ı

Accuracy: 0.66, Recall: 0, Precision: 0.

• Si nuestro clasificador predice todo como +:

real	+	+	_	-	_	-
predicho	+	+	+	+	+	+

Accuracy: 0.33, Recall: 1, Precision: 0.33.

Una métrica alta no pinta el panorama completo.

ROC-AUC Score

ROC-AUC Score

La curva paramétrica ROC (Receiver Operating Characteristic) muestra los valores FPR y TPR en varios valores de umbral de probabilidad. El **score AUC** es el area bajo la curva ROC, es una medida de rendimiento para los problemas de clasificación que representa el grado o medida de separabilidad. Indica la capacidad del modelo para distinguir entre clases.

ROC-AUC Score

ROC-AUC Score

La curva paramétrica ROC (Receiver Operating Characteristic) muestra los valores FPR y TPR en varios valores de umbral de probabilidad. El **score AUC** es el area bajo la curva ROC, es una medida de rendimiento para los problemas de clasificación que representa el grado o medida de separabilidad. Indica la capacidad del modelo para distinguir entre clases.

$$\begin{aligned} \text{FPR} &= \frac{\text{FP}}{\text{TN} + \text{FP}} \\ \text{TPR} &= \frac{\text{TP}}{\text{TP} + \text{FN}} \end{aligned}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

ROC-AUC Score

ROC-AUC Score

La curva paramétrica ROC (Receiver Operating Characteristic) muestra los valores FPR y TPR en varios valores de umbral de probabilidad. El **score AUC** es el area bajo la curva ROC, es una medida de rendimiento para los problemas de clasificación que representa el grado o medida de separabilidad. Indica la capacidad del modelo para distinguir entre clases.

$$\begin{aligned} \text{FPR} &= \frac{\text{FP}}{\text{TN} + \text{FP}} \\ \text{TPR} &= \frac{\text{TP}}{\text{TP} + \text{FN}} \longleftarrow \text{ Recall} \end{aligned}$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQ

El valor ROC-AUC es un número $0 \le s \le 1$. Entre más grande es s, el clasificador es mejor.

- Si s = 1, el clasificador es perfecto.
- Si $s = \frac{1}{2}$, el clasificador es aleatorio.
- Si s = 0, el calsificador predice perfectamente las clases *al revés*.

Umbral: 0.5

y_test	y_pred	probabilidades
0	0	0.048
0	0	0.145
1	1	0.905
0	0	0.24
1	0	0.215
0	0	0.231
0	0	0.116
1	1	0.551
1	0	0.172
1	1	0.803

$$\left(\begin{array}{cc} 5 & 0 \\ 2 & 3 \end{array}\right), \quad TPR = 0.6, \; FPR = 0$$

Umbral: 0.2

y_test	y_pred	probabilidades
0	0	0.048
0	0	0.145
1	1	0.905
0	1	0.24
1	1	0.215
0	1	0.231
0	0	0.116
1	1	0.551
1	0	0.172
1	1	0.803

$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$$
, $TPR = 0.8$, $FPR = 0.4$

Umbral: 0.75

y_test	y_pred	probabilidades
0	0	0.048
0	0	0.145
1	1	0.905
0	0	0.24
1	0	0.215
0	0	0.231
0	0	0.116
1	0	0.551
1	0	0.172
1	1	0.803

$$\begin{pmatrix} 5 & 0 \\ 3 & 2 \end{pmatrix}$$
, $TPR = 0.4$, $FPR = 0$

El área bajo la curva es 0.84.

Clasificación

Table of Contents

- Introducción: La tarea de clasificación
 - Clasificación multiclase

- 2 Métricas de desempeño
- 3 Comparación de algoritmos

sificación Clasificación May 15, 2025 27 / 29

Comparación de algoritmos

Algoritmo	Ventajas	Desventajas	
SVM	Útil en alta dimensión	Datasets grandes	
3 V IVI	(N < D)		
	Flexibilidad	Sensibilidad a outliers	
	Capturar relaciones no	Sobreajuste	
Árboles de Decisión	lineales complejas en-		
	tre features y target		
	Interpretabilidad e im-	Sensibilidad a pertur-	
	portancia de features	baciones	
	Features categóricas		

Comparación de algoritmos

Ventajas	Desventajas
Robustez y	Perdemos inter-
rendimiento	pretabilidad
Puede manejar datos	Alto costo computa-
faltantes	cional
importancia de fea-	
tures	
Interpretabilidad (coe-	Le afectan las features
ficientes)	colineales
Baseline	Puede no funcionar
	bien con datos dese-
	quilibrados
Puede descubrir rela-	Suele no tener buen
ciones no lineales	rendimiento como
4	otros algoritmos 📱 🕫
	Robustez y rendimiento Puede manejar datos faltantes importancia de features Interpretabilidad (coeficientes) Baseline Puede descubrir rela-