Sabbir Ahmed

CMSC 411 - HW 05

DATE: November 25, 2017

1. The table below lists parameters for different direct-mapped cache designs.

	Cache Data Size	Cache Block Size		
i)	64 KB	1 word		
ii)	64 KB	2 words		

(a) **Question** Calculate the total number of bits required for the cache listed in the table, assuming a 32-bit address.

Answer

(b) **Question** What is the total number of bits if the cache is organized as a 4-way associative with one word blocks?

Answer

2. For a pipeline with a perfect CPI=1 if no memory-access related stall, consider the following program and cache behaviors.

	Data Writes Per 1000 In- structions		Data Cache Miss Rate	Block Size (Byte)	
200	160	0.20%	2%	8	

(a) **Question** For a write-through, write-allocate cache with sufficiently large write buffer (i.e., no buffer caused stalls), what's the minimum read and write bandwidths (measured by byte-per-cycle) needed to achieve a CPI of 2?

Answer

(b) **Question** For a write-back, write-allocate cache, assuming 30% of replaced data cache blocks are dirty, what's the minimal read and write bandwidths needed for a CPI of 2?

Answer

3. Using the sequences of 32-bit memory read references, given as word addresses in the following table:

For each of these read accesses, identify the binary address, the tag, the index, and whether it experiences a hit or a miss, for each of the following cache configurations. Assume the cache is initially empty.

(a) Question A direct-mapped cache with 16 one-word blocks.

Answer

(b) **Question** A direct-mapped cache with two-word blocks and a total size of eight blocks.

Answer

(c) **Question** A fully associative cache with two-word blocks and a total size of eight words. Use LRU replacement.

Answer

(d) **Question** A 2-way set associative cache with one-word block size and total size of 8 words, while applying LRU replacement policy.

Answer