

UV Traitement du signal

Cours 8

Systèmes linéaires discrets

Définition et caractérisations (temporelle et fréquentielle)

ASI 3

Contenu du cours

- Introduction
 - Définition d'un système discret
 - Classification des systèmes discrets
- Caractérisation temporelle des systèmes linéaires discrets
 - Notion de convolution linéaire de signaux discrets
 - Réponse impulsionnelle d'un système (stabilité, réponse à une entrée quelconque)
 - Système linéaire discret décrit par une équation aux différences
- □ Réponse fréquentielle des systèmes linéaires discrets
 - Caractérisation des SLID par la fonction de transfert
 - Transformée en z
 - Définition
 - Propriétés
 - SLID et Transformée en z
 - Pôles et zéros
 - Stabilité d'un SLID

Introduction

Définition d'un système discret

Un système discret est une entité qui réalise la conversion d'une suite discrète $\{x(n)\}$ en entrée en une autre suite discrète $\{y(n)\}$ en sortie.

Notation : $y(n) = \mathcal{T}[x(n)]$

Classification des systèmes

Système statique ou sans mémoire

L'échantillon de sortie y(n) à l'instant n ne dépend que de l'échantillon de l'entrée x(n) au même instant Exemple $y(n) = ax^2(n) + b$

Système dynamique ou avec mémoire

L'échantillon y(n) est fonction des échantillons de l'entrée aux instants antérieurs ou égaux à n et/ou des échantillons de sortie antérieurs à l'instant n

Exemple _
$$y(n) = a_1y(n-1) + a_2\sqrt{y(n-2)} + b_0x^2(n) + b_1x(n-1)$$

Introduction

Exemple de systèmes dynamiques : « Voice transformer »

Effet « écho » : ajout au signal d'entrée le même son retardé

$$y(t) = x(t) + x(t - t_0)$$

 Effet « réverbération » : addition d'échos successifs avec retards et filtrages différents (atténuations)

$$y(t) = x(t) + \sum_{n=0}^{nbechos} \frac{A}{2^n} x(t - nt_0)$$

Effet « voix de robot » : addition d'un tremolo

$$y(t) = x(t) + \sin(2\pi f_0 t)$$

Effet « flanger », « chorus », « wha wha », etc.

Introduction

Classification des systèmes

Linéarité

Si
$$x(n) = a_1x_1(n) + a_2x_2(n)$$
 alors $y(n) = a_1T[x_1(n)] + a_2T[x_2(n)]$

Causalité

La réponse y(n) du système à l'instant $n=k_0$ ne dépend que des entrées x(n) aux instants $n \le k_0$

Invariance temporelle

Si
$$y(n) = \mathcal{T}[x(n)]$$
 alors $y(n-n_0) = \mathcal{T}[x(n-n_0)]$ $\forall n, n_0 \in \square$

Exemples

- y(n) = x(n) x(n-1) est un système invariant
- y(n) = nx(n) est un système variant
- Stabilité BIBO (Bounded Input, Bounded Output)

Un système discret est dit stable si en réponse à une entrée bornée, sa sortie est bornée

$$\exists M_x / |x(n)| < M_x \Rightarrow \exists M_y / |y(n)| = \mathcal{T}[x(n)] | < M_y \quad \forall n \in \mathbb{Z}$$

Convolution linéaire de signaux discrets

Définition

On appelle <u>produit de convolution linéaire</u> de deux signaux discrets x(n) et h(n), l'expression

$$x(n)*h(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

• Cas de signaux causaux (x(n) = 0, h(n) = 0 pour n < 0)

$$x(n) * h(n) = \sum_{k=0}^{n} x(k)h(n-k)$$
 Ne pas confondre la convolution linéaire et convolution circulaire des signaux discrets

Ne pas confondre la convolution linéaire et la

Exemple

Calculer le produit de convolution linéaire des signaux suivants

Convolution linéaire de signaux discrets

Exemple (suite et fin)

Posons z(n) = x(n) * h(n). Les 2 signaux étant causaux, on a

$$z(n) = \sum_{k=0}^{n} x(k)h(n-k)$$

On distingue 3 cas

-n < 0

x(k) et h(n-k) n'ont pas d'échantillons non nuls en commun

$$z(n) = 0$$

 $-0 \le n < N-1$

$$z(n) = \sum_{k=0}^{n} a^{n-k}$$
. Suite géo. de premier terme an et de raison 1/a

$$z(n) = a^n \frac{1 - a^{-(n+1)}}{1 - a^{-1}} \rightarrow z(n) = \frac{a^{(n+1)} - 1}{a - 1}$$

 $n \ge N - 1$

$$z(n) = \sum_{k=0}^{N-1} a^{n-k}.$$
 On trouve

$$z(n) = a^n \frac{1 - a^{-N}}{1 - a^{-1}}$$

Convolution linéaire de signaux discrets

- Propriétés (idem analogique)
 - Commutativité

$$x(n) * h(n) = x(n) * h(n)$$

Associativité

$$x(n) * h(n) * z(n) = x(n) * (h(n) * z(n)) = (x(n) * h(n)) * z(n)$$

Distributivité par rapport à l'addition

$$h(n)*(x(n)+z(n)) = h(n)*x(n)+h(n)*z(n)$$

Elément neutre du produit de convolution : impulsion de Dirac

$$x(n) * \delta(n) = x(n)$$

et aussi:

Durée d'un signal issu du produit de convolution linéaire

Si x(n) est de durée N_1 et h(n) de durée N_2 , alors $x(n)_*h(n)$ est de durée N_1+N_2-1

Etude de système linéaire invariant discret (SLID)

Caractérisation d'un SLID : réponse impulsionnelle

La réponse impulsionnelle d'un système discret est sa réponse à une entrée sous forme d'impulsion de Dirac

- Avantages de la réponse impulsionnelle : idem analogique
 - caractérisation complète du système
 - permet de calculer la sortie du système discret pour des signaux d'entrée quelconques en utilisant la convolution linéaire de signaux discrets

TdS

Réponse d'un SLID à une entrée quelconque

Application de la convolution linéaire

Système
$$\mathcal{T}$$
 $y(n) = ?$

Décomposition du signal discret x(n)

$$x(n) = \sum_{k \in \mathbb{Z}} x(k)\delta(n-k)$$

Réponse du système

$$y(n) = \mathcal{T}[x(n)] \implies y(n) = \mathcal{T}\left[\sum_{k \in \mathbb{Z}} x(k)\delta(n-k)\right]$$

Propriété de linéarité du système discret

$$y(n) = \sum_{k \in \mathbb{Z}} x(k) \mathcal{T}[\delta(n-k)]$$

L'opérateur \mathcal{T} [.] agit sur les termes dépendant de la variable temporelle n

Propriété d'invariance temporelle du système

$$\mathcal{T}[\delta(n-k)] = h(n-k)$$

Réponse impulsionnelle décalée

On en déduit

$$y(n) = \sum_{k \in \mathbb{Z}} x(k)h(n-k)$$

$$\Rightarrow$$
 $y(n) = x(n) * h(n)$

La réponse d'un système discret linéaire invariant à une entrée quelconque x(n) est la convolution linéaire de x(n) avec la réponse impulsionnelle h(n) du système.

Réponse impulsionnelle d'un SLID

Stabilité et réponse impulsionnelle

Stabilité = garantir que la sortie d'un système est bornée si son entrée est bornée

Un système linéaire discret invariant est stable ssi sa réponse impulsionnelle est absolument sommable

$$\sum_{n\in\mathbb{Z}}|h(n)|<+\infty$$

Causalité et réponse impulsionnelle

Un système linéaire discret invariant est causal ssi sa réponse impulsionnelle h(n) est causale

$$h(n) = 0 \quad \forall n < 0$$

> Remarque : si le système est causal, on a

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{n} x(k)h(n-k)$$

Exemple

Etudier la causalité et la stabilité du système linéaire caractérisé par la réponse impulsionnelle

$$h(n) = a^n \Gamma(n)$$

Autre caractérisation d'un SLID

Equation aux différences linéaire à coefficients constants

Système régi par une équation aux différences d'ordre *N*

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r) \longrightarrow y(n) = -\sum_{k=1}^{N} \frac{a_k}{a_0} y(n-k) + \sum_{r=0}^{M} \frac{b_r}{a_0} x(n-r)$$

Avantages

- Calcul de la sortie du système sans connaissance de la réponse impulsionnelle h(n)
- Calcul de la sortie y(n) à partir des N sorties décalées y(n-k), des M entrées décalées x(n-r) et de l'entrée courante x(n). Mais ceci nécessite la connaissance des conditions initiales du système
- Quelle que soit la longueur de la réponse impulsionnelle h(n) (finie ou infinie), le nombre d'opérations nécessaires au calcul de y(n) est fini (comparativement au calcul par convolution linéaire)

Exemple

$$y(n)$$
 - $ay(n-1)$ = $cx(n)$

Autre caractérisation d'un SLID

Equation aux différences linéaire à coefficients constants

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r) \quad \text{avec } a_0 = 1$$

$$N=0 \longrightarrow y(n) = \sum_{r=0}^{M} b_r x(n-r)$$

- y(n) dépend de l'entrée courante x(n) et des M entrées précédentes x(n-r)
- > Système à *réponse non recursive* > La réponse impulsionnelle est finie $\longrightarrow h(n) = \sum_{r=0}^{M} b_r \delta(n-r)$

On parle de système à <u>Réponse Impulsionnelle Finie (RIF)</u>

♦
$$N \ge 1$$
 $y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{r=0}^{M} b_r x(n-r)$

- $\triangleright y(n)$ dépend de l'entrée courante x(n), des M entrées précédentes x(n-r) mais aussi des N sorties précédentes y(n-k)
- Système à réponse récursive
- Système à <u>Réponse Impulsionnelle Infinie (RII)</u>

SLID et Transformée de Fourier à Temps Discret

Réponse fréquentielle des SLID

$$y(n) = h(n) * x(n)$$

En utilisant le théorème de Plancherel, on a

$$Y(f) = H(f).X(f)$$

H(f): TFTD de la réponse impulsionnelle ou fonction de transfert du système discret

Module |H(f)| : spectre d'amplitude H(f) Argument $\phi(f) = \arg(H(f))$: spectre de phase

TdS

Transformée en z (TZ)

Définition

La TZ est la généralisation de la TFTD. Soit un signal discret x(n). Sa TZ est définie par

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n).z^{-n}$$
 avec $z \in \mathbb{C}$

Rappel : la TFTD de x(n) est :

$$X(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$$

Condition d'existence de la TZ

La transformée existe si la série converge. L'ensemble des valeurs de la variable complexe z pour lesquelles la série converge est appelée Région De Convergence (RDC)

$$RDC = \left\{ z \in \mathbb{C} / \sum_{n=-\infty}^{+\infty} \left| x(n).z^{-n} \right| < +\infty \right\}$$

Exemple

Calculer la TZ de $x(n) = \Gamma(n)$

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n).z^{-n} \longrightarrow X(z) = \sum_{n=0}^{+\infty} z^{-n} \longrightarrow X(z) = \lim_{N \to +\infty} \sum_{n=0}^{N-1} z^{-n}$$

$$X(z) = \lim_{N \to +\infty} \frac{1 - z^{-N}}{1 - z^{-1}}$$
 La limite est finie si $|z^{-1}| < 1$ i.e. $|z| > 1$ $\longrightarrow X(z) = \frac{1}{1 - z^{-1}}$ pour $|z| > 1$

TdS

Transformée en z

Région de convergence

De façon générale, on montre que la RDC est un anneau de convergence défini par

$$0 \le r_1 \le |z| \le r_2 \le + \infty$$

$$\text{avec} \quad r_1 = \lim_{n \to +\infty} |x(n)|^{1/n} \quad \text{et} \quad r_2 = \lim_{n \to +\infty} |x(-n)|^{-1/n}$$

Remarques

- ◆ Si r1 > r2, la série ne converge pas
- ◆ Signal défini à droite $\exists n_0 / x(n) = 0 \quad \forall n < n_0$ (signal causal pour $n_0 = 0$)

$$r_2 = +\infty$$
 RDC = région extérieure au cercle de rayon r_1

◆ Signal défini à gauche $\exists n_0 / x(n) = 0 \quad \forall n > n_0$ (signal anticausal pour $n_0=0$)

$$r_1 = 0$$
 RDC = disque de rayon r_2

Transformée en z : propriétés

Soit x(n), un signal discret. Soit X(z) sa TZ avec la RDC : $r_1 \le |z| \le r_2$

Linéarité

$$ax(n) + by(n) \rightarrow aX(z) + bY(z)$$

La RDC est au moins l'intersection de la RDC de X(z) et de la RDC de Y(z)

☐ Changement d'échelle en z

$$a^n x(n) \to X\left(\frac{z}{a}\right)$$

RDC: $|a|r_1 \le |z| \le |a|r_2$

Retournement du temps

$$x(-n) \rightarrow X(z^{-1})$$

 $\mathsf{RDC}: \ \frac{1}{r_2} \le |z| \le \frac{1}{r_1}$

☐ Théorème de la valeur finale

$$\lim_{n\to +\infty} x(n) = \lim_{z\to 1} (z-1)X(z)$$

Décalage temporel

$$x(n-n_0) \rightarrow z^{-n_0}X(z) \quad \forall n_0 \in \square$$

La RDC est identique à l'exception de restrictions éventuelles en z=0 et $z=\infty$

Dérivation en z

$$n x(n) \rightarrow -z \frac{dX(z)}{dz}$$

La RDC est identique à l'exception de restrictions éventuelles en z=0 et $z=\infty$

Produit de convolution

$$x(n) * y(n) \rightarrow X(z).Y(z)$$

La RDC est au moins l'intersection de la RDC de X(z) et de la RDC de Y(z)

Transformée en z : propriétés

☐ Transformée en z inverse

- Intégrale de Cauchy $x(n) = \frac{1}{j2\pi} \oint_C X(z)z^{n-1}dz$ (en pratique : théorème des résidus) $x(n) = \sum_{z_i = p\hat{o}les\ de\ z^{n-1}} Res\{z^{n-1}X(z)\}_{z=z_i}$
- Décomposition en éléments simples

$$X(z) = \sum_{i} X_{i}(z)$$
 \longrightarrow $x(n) = \sum_{i} x_{i}(n)$ Les $X_{i}(z)$ sont des fonctions à TZ⁻¹ connues

Développement en série de puissance

$$X(z) = \sum_{n=0}^{+\infty} c_n z^{-n}$$
 \longrightarrow $x(n) = c_n \quad \forall n$ Si $X(z)$ peut être décomposé en série alors $x(n)$ est le coefficient associé à z^{-n}

□ TZ et Transformée de Fourier à Temps Discret (TFTD)

■ Hypothèse : on suppose que le cercle unité (|z|=1) ∈ RDC de X(z).

On restreint le calcul de X(z) au cercle unité en posant $z = e^{j2\pi f}$

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n) \cdot e^{-j2\pi f n} = X(f) \longrightarrow X(f) = X(z)|_{z=e^{j2\pi f}}$$

$$(|z|=1) \in \mathsf{RDC}$$

La transformée de Fourier à temps discret (TFTD) d'un signal est sa transformée en *z* évaluée sur le cercle unité

Transformée en z

Exemples

Calculer la TZ et la région de convergence associée des signaux suivants :

$$\mathbf{x}(n) = a^n \Gamma(n), \quad a \in \mathbb{R}^+$$

$$x(n) = \begin{cases} a^n, & n \ge 0 \\ -b^n, & n \le -1 \end{cases} \text{ avec } |a| < |b|$$

$$x(n) = \Gamma(n) - \Gamma(N-n)$$

Transformée en z et systèmes linéaires discrets

Caractérisation par la réponse impulsionnelle

$$x(n)$$
 Système τ $y(n)$

h(n): réponse impulsionnelle du système

$$y(n) = h(n) * x(n)$$

$$\downarrow$$

$$Y(z) = X(z).H(z)$$

Caractérisation du SLID par une équation aux récurrences

Equation aux récurrences :
$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$$

En utilisant la propriété de décalage temporel de la TZ, on a : $\left(\sum_{k=0}^{N} a_k z^{-k}\right) Y(z) = \left(\sum_{r=0}^{M} b_r z^{-r}\right) X(z)$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} a_k z^{-k}}{\sum_{r=0}^{M} b_r z^{-r}} \quad \text{ou} \quad H(z) = \frac{b_M z^{-M} + \dots + b_1 z^{-1} + b_0}{a_N z^{-N} + \dots + a_1 z^{-1} + a_0}$$

La fonction de transfert H(z) a la forme d'une fraction rationnelle : $H(z) = \frac{N(z)}{D(z)}$

N(z) et D(z): polynômes en z^{-1} de degrés respectifs M pour les entrées et N pour les sorties

Pôles et zéros – stabilité d'un système discret causal

$$H(z) = \frac{N(z)}{D(z)}$$

☐ Zéros d'un système discret

Les zéros sont les racines du polynôme N(z)

□ Pôles d'un système discret

Les pôles sont les racines $\lambda_i \in \square$ du polynôme D(z)

Remarque: H(z) diverge (H(z) = ∞) pour $z=λ_i$ ⇒ $λ_i ∉$ RDC de H(z)

$lue{}$ Fonction de transfert H(z) et stabilité d'un système discret causal

Causalité

Le système est causal ssi la RDC de H(z) est l'extérieur d'un disque $\Rightarrow \lambda_i \in$ au disque

$$RDC = \{z \in \mathbb{C}, |z| > r\} \longrightarrow \lambda_i \in \{z \in \mathbb{C}, |z| \le r\}$$

Stabilité

Un système linéaire discret est stable ssi sa FT H(z) converge sur le cercle unité

$$\sum_{n\in\ |\mathbf{N}|} |h(n)| < +\infty \quad \Leftrightarrow \quad \big\{z\in\ \mathbb{C}\ , \big|z\big| = 1\big\} \in\ RDC$$

Conclusion

Un système discret <u>linéaire et causal</u> est <u>stable</u> ssi tous les pôles de H(z) sont à l'intérieur du cercle unité