

Nature-inspired computing

- Nature has always served as a source of inspiration for engineers and scientists
- The best problem solver known in nature is:
 - the (human) brain that created "the wheel, New York, wars and so on" (after Douglas Adams' Hitch-Hikers Guide)
 - the evolution mechanism that created the human brain (after Darwin's Origin of Species)
- Answer 1 → neurocomputing
 - Artificial Neural Networks (Week 6)
- Answer 2 → evolutionary computing
 - Genetic Algorithms and Evolutionary Computing (Week 7)
 - Swarm Intelligence (Today)

2/39

Outline

- Swarm Intelligence
- Introduction to Particle Swarm Optimization (PSO)
 - Origins
 - Concept
 - PSO Algorithm
- Introduction to Ant Colony Optimization (ACO)
 - Origin & Concept
 - ACO Algorithm

3

School of fish or flock of birds **COORDINATION**??

Swarm intelligence

- Collective system capable of accomplishing difficult tasks in dynamic and varied environments:
 - NO external guidance or control
 - NO central coordination
- Achieving a collective performance which could not normally be achieved by an individual acting alone

Source: http://www.scs.carleton.ca/~arpwhite/courses/95590Y/notes/SI Lecture 3.pdf

_

Swarm intelligence

- Constituting a natural model particularly suited to distributed problem solving
 - Particle Swarm Optimisation (**PSO**) a way to solve optimisation problems, based on the swarming behaviour via direct communication.
 - Ant Colony Optimisation (ACO) a different way to solve optimisation problems based on the way that ants indirectly communicate directions to each other.

Source: http://www.scs.carleton.ca/~arpwhite/courses/95590Y/notes/SI Lecture 3.pdf

Introduction to the PSO: Origins

• <u>Inspired from the nature</u> social behavior and dynamic movements with communications of insects, birds and fish

9

Introduction to the PSO: Origins

• In 1986, Craig Reynolds described this process in 3 simple behaviors:

Separation

avoid crowding local flock mates

Alignment

move towards the average heading of local flock mates

Cohesion

move toward the average position of local flock mates

Introduction to the PSO: Origins

- Application to optimization: Particle Swarm Optimization
- Proposed by James Kennedy & Russell Eberhart (1995)
- Combines self-experiences with social experiences

11

Introduction to the PSO: Concept

- Many particles (called agents in PSO)
 constituting a swarm "fly" around in the
 search space looking for the best solution
- Each particle in search space adjusts its "flying" based on:
 - its position,
 - its own flying experience, AND
 - the flying experience of other particles

Introduction to the PSO: Concept

- Collection of flying particles (swarm) Changing solutions
- Search area Possible solutions
- Movement towards a promising area to get the global optimum
- Each particle keeps track:
 - its best solution, personal best, pbest
 - the best value of any particle, global/neighborhood best, gbest

13

Introduction to the PSO: Concept Each particle modifies its position according to: its current position: xⁱ_{pk} its current velocity: vⁱ_{pk} the vector between its current position and pbest the vector between its current

Current Motion Influence

position and gbest

Introduction to the PSO: Algorithm - Neighborhood

Introduction to the PSO: Algorithm - Parameters

- •Algorithm parameters:
 - A : Population of agents (agent = particle)
 - p_i : Position of agent a_i in the solution space (a_i .Pos)
 - f : Objective function
 - v_i : Velocity of agent's a_i (a_i :Vel)
 - **V(a_i)** : Neighborhood of agent a_i (**a**_i.NB)

17

Introduction to the PSO: Algorithm

Introduction to the PSO: Algorithm

Particle update rule

$$a.Pos = a.Pos + a.Vel$$

with

```
a.Vel = a.Vel + cl*rand*(a.pBest - a.Pos) + c2*rand*(a.gBest - a.Pos)
```

- where
 - a.Pos: particle's position
 - a. Vel: path direction
 - c1 : weight of local information
 - c2 : weight of global information
 - · a.pBest: best position of the particle
 - a.gBest: best position of the (neighbouring) swarm
 - rand: random variable

19

Introduction to the PSO: Algorithm - Example

y

x

search space

PSO: Applications

- Suitable for problems whose solutions can be mapped to an Rⁿ space.
 - Energy management: what is a user's optimal consumption profile given the multiple objectives: Minimizing cost, maximizing comfortability, minimizing environmental damages, etc.
 - Aircraft surface design: safety vs cost vs practicality
 - Vehicle routing problems
 - Structural engineering problems
 - ... and even
 - · weights of an ANN

Presentation Outline

- Swarm Intelligence
- Introduction to Particle Swarm Optimization (PSO)
 - Origins
 - Concept
 - PSO Algorithm
- Introduction to Ant Colony Optimization (ACO)
 - Origin & Concept
 - ACO Algorithm

29

Collective intelligence as emergent property of many individuals operating simple rules

For Lasius Niger ants, [Franks, 89] observed:

- regulation of nest temperature within 1 degree celsius range;
- · forming bridges;
- · raiding specific areas for food;
- · building and protecting nest;
- · sorting brood and food items;
- · cooperating in carrying large items;
- · emigration of a colony;
- finding shortest route from nest to food source;
- preferentially exploiting the richest food source available.

The ACO algorithm is inspired by this: •

A key concept: Stigmergy

Stigmergy is:

indirect communication via interaction with the environment [Gassé, 59]

- A problem gets solved bit by bit ..
- Individuals communicate with each other in the above way, affecting what each other does on the task.
- Individuals leave *markers* or *messages* these don't solve the problem in themselves, but they affect other individuals in a way that helps them solve the problem ...
 - e.g. as we will see, this is how ants find shortest paths.

31

Stigmergy in Ants

Ants are behaviorally unsophisticated, but collectively they can perform complex tasks.

Ants have highly developed sophisticated sign-based **stigmergy**

- They communicate using pheromones;
- They lay trails of pheromone that can be followed by other ants.
- If an ant has a **choice of two pheromone trails** to follow, one to the NW, one to the NE, but the NW one is *stronger* which one will it follow?

ACO Concept: Pheromone Trails

- Individual ants lay pheromone trails while travelling from the nest, to the nest or possibly in both directions.
- The pheromone trail gradually evaporates over time.
- But pheromone trail strength accumulate with multiple ants using path.

33

ACO Concept: Pheromone Trails

Ant Algorithms – (P.Koumoutsakos – based on notes L. Gamberdella (www.idsia.ch)

Ant Colony Optimisation Algorithms: Basic Ideas

- Ants are agents that interact with its environment (and leave its information on the env.)
- Typical environment in ACO is a graph.

Ants:

Move along between nodes in a graph.

They choose where to go based on pheromone strength (and maybe other things)

An ant's path represents a specific candidate solution.

When an ant has finished a solution, pheromone is laid on its path, according to quality of solution.

This pheromone trail affects behaviour of other ants by 'stigmergy' ...

35

Some nice online demo:

• http://www.theprojectspot.com/tutorial-post/ant-colony-optimization-for-hackers/10

Travelling Salesman Problem (TSP)

TSP PROBLEM: Given N cities, and a distance function d between cities, find a tour that:

- 1. Goes through every city once and only once
- 2. Minimizes the total distance.
- Problem is NP-hard
- Classical combinatorial optimization problem to test.

37

ACO: Algorithm


```
[x*] = ACO()
[a<sub>j</sub>.State] = Ant_Colony_Initialization();
while not terminated:
  For each ant a in A do:
        a.generateSolutions();
        a.transitionToNewState();
   end
```

pheromoneUpdate();
end

ACO for the Traveling Salesman Problem –

generateSolution()

$$p_{xy}^k = rac{(au_{xy}^lpha)(\eta_{xy}^eta)}{\sum_{z \in ext{allowed}_y} (au_{xz}^lpha)(\eta_{xz}^eta)}$$

Note: Ants don't have to start from the same city. -> *Parallelized computation*.

 p_{xy}^{k} : The probability that the k^{th} ant currently at city x would move to (allowable) city y

 τ_{xy} : the amount of pheromone deposited for transition from x to y

 η_{xy} : the heuristics for how desirable it is to go from x to y (e.g., $\frac{1}{d_{xy}}$, where d_{xy} is distance between x and y)

 α and β parameters to control the influence of τ_{xy} and η_{xy} , respectively.

39

ACO for TSP - Pheromone update

$$au_{xy} \leftarrow (1-
ho) au_{xy} + \sum_k^m \Delta au_{xy}^k$$

 $\Delta au_{xy}^k = \left\{egin{array}{ll} Q/L_k & ext{if ant k uses curve xy in its tour} \ 0 & ext{otherwise} \end{array}
ight.$

 τ_{xy} : the amount of pheromone deposited for transition from x to y

 ρ : the **pheromone evaporation** coefficient

m: the number of ants, and

 $\Delta \tau_{xy}^k$: the amount of pheromone deposited on link xy by the k^{th} ant.

Q: a constant

 L_k : cost for the route taken by the k^{th} ant (e.g., total distance of that route)

ACO State Transition Rule

Next city is chosen between the **not visited** cities according to a *probabilistic* rule

Exploitation: the best edge is chosen

Exploration: each of the edges in proportion to its value

41

Summary

- Swarm intelligence:
 - Achieving a collective performance which could not normally be achieved by an individual acting alone: PARALLELIZING THE SEARCH
- PSO has a memory (for storing pbest and qbest)
- There is no selection in PSO
 - → all particles survive for the length of the run
 - → PSO is the only EA that does not remove candidate population members
- PSO is: Simple in concept, easy to implement, and computationally efficient
- ACO is an approach for solving hard combinatorial optimization problems.
- Artificial ants implement a randomized construction heuristic which makes probabilistic decisions.
- The accumulated search experience is taken into account by the adaptation of the pheromone trail.