Table A-5 SI unit prefixes

Multiplication factor	Prefix	Symbol	Pronunciation (USA) (1)	Meaning (in USA)	Meaning (in other countries)	
1 000 000 000 000 000 000 = 1018	00 000 000 000 000 000 = 10 ¹⁸ exa (2) E ex'a (a as in about)		ex'a (a as in about)	One quintillion times (3)	trillion	
$1000000000000000 = 10^{15}$	peta (2)	P	as in petal	One quadrillion times (3)	thousand billion	
$1000000000000 = 10^{12}$	tera	T	as in terrace	One trillion times (3)	billion	
$1000000000 = 10^9$	giga	G	jig'a (a as in about)	One billion times (3)	milliard	
$1000000 = 10^6$	mega	M (4)	as in megaphone	One million times		
$1000 = 10^3$	kilo	k	as in kilowatt	One thousand times		
$100 = 10^2$	hecto	h (5)	heck'toe	One hundred times		
10 = 10	deka	da (5)	deck'a (a as in about)	Ten times		
$0.1 = 10^{-1}$	deci	d (5)	as in decimal	One tenth of		
$0.01 = 10^{-2}$	centi	c (5)	as in sentiment	One hundredth of		
$0.001 = 10^{-3}$	milli	m	as in military	One thousandth of		
$0.000001 = 10^{-6}$	micro	μ (6)	as in microphone	One millionth of		
$0.000000001 = 10^{-9}$	nano	п	nan'oh (an as in ant)	One billionth of (3)	milliardth	
$0.000000000001 = 10^{-12}$	pico	P	peek'oh	One trillionth of (3)	billionth	
$0.000000000000001 = 10^{-15}$	femto	ſ	fem'toe (fem as in feminine)	One quadrillionth of (3)	thousand billiontl	
$0.000000000000000001 = 10^{-18}$	atto	a	as in anatomy	One quintillionth of (3)	trillionth	

The first syllable of every prefix is accented to assure that the prefix will retain its identity. Therefore, the preferred pronunciation of kilometer places the accent on the first syllable, not the second.

- 4. The symbol M often means 1 000 when used with American engineering units.
- 5. While hecto, deka, deci, and centi are SI prefixes, their use should generally be avoided except for the SI unit-multiples for area and volume and nontechnical use of centimeter, as for body and clothing measurement. The prefix hecto should be avoided also because the longhand symbol h may be confused with k.
- Although SI rules prescribe vertical (roman) type, the sloping (italics) form is usually acceptable in the USA for the Greek letter μ because
 of the scarcity of the upright style.

^{2.} Approved by the 15th General Conference of Weights and Measures (CGPM), May-June 1975.

These terms should be avoided in technical writing because the denominators above one million are different in most other countries, as indicated in the last column.

基礎化学工学

- ・講義の展望・目標 化学工学とはどのような学問? 生命・物質工学概論で説明 「実験室」(科学)と「工場」(工学)の橋渡し
- 化学工学で使う道具表・グラフ・数式
- ・将来どのような仕事で活躍できるのか?先輩の話

「基礎化学工学」の目標

- ▶数値と単位の取り扱いに強くなる 数値+単位で意味を持つ!
- ▶収支を取る

範囲を決めて、入ってくる量(input)、出ていく量(output) と 残る量 (accumulation)を決める!

▶正解を目指して努力する 社会では「部分点」は通用しない!

「化学工学」関連科目

基礎化学工学:単位,収支,伝熱&流動の基礎

輸送現象:熱,物質,運動量の移動理論

反応工学:反応器のモデル化、設計理論

分離工学:分離装置のモデル化,設計理論

環境生物化学工学:酵素,細胞,微生物の反応

プロセス設計:プラントの設計(装置設計、コスト)

実験・演習. 卒業研究

大学院の講義へ

輸送現象特論, 反応工学特論, 単位操作特論, etc

相関関係を見つける道具

☆グラフ

- ▶利点:全体の傾向 を把握しやすい。
- ▶欠点:異なる条件 での数値化が難し い。(有効数字が 少ない)

♦数式

- ▶利点:数値として結果を得ることができる。(有効数字が多い)
- ▶欠点:全体の傾向 を把握しにくい。

お互いに補い合う関係にある

	然メルエ	データ	(衣)	
METHANOL				CH40

ANDROSE D	.,SPRAKE C.H.S.:	J.CHEH.THERMS	DYNAMICS 2.	31(1978).
A = 7.20				
A 9 7.20		= 1582.698	c i	239.765
N.B.P. s	64.548			
•	P EXPTL.	P CALCO.	DEV. P	PERCENT
c	KPA	KPA	KPA	FACEINI
14.899	9.815	9.812	-0.003	-8.83
19.236	12.468	12.469	6.881	0.01
23.323	15.519	15.515	-0.003	-0.02
27.663	18.858	18.859	0.001	0.01
29.911	21.769	21.763	-6.005	-0.83
32.685	25.206	25.228	7.014	8.86
35.656	29.128	29.131	0.083	0.01
42.637	36.493	36.494	2.081	0.00
45.427	45.347	45.356	2.059	0.02
48.876	52.883	52.885	0.002	0.00
53.315	64.036	64.630	-0.205	-0.01
56.428	72.975	72.978	-2.025	-0.21
62.814	67.345	67.328	-0.025	-0.03
63.784	98.336	98.318	-0.612	-0.01
64.717	101.998	102.002	P. 004	0.00
68.483	117.714	117.781	-0.012	-0.01
71.778	133.741	133.748	0.000	0.01
75.663	154.640	154.635	-8.285	-0.00
79.626	178.306	178.340	0.033	0.02
. 83.678	285.653	285.744	8.891	0.04

実験データのグラフ化

- (1) y=a+bx y 対 x をプロット (傾き: b, 切片:a)
- (2) $y=ax^b$ $\log y$ 対 $\log x$ をプロット(両対数グラフ) (傾き: b,切片: $\log a$ または x=1のときy=a)
- (3) $y=ae^{bx}$ $\log y$ 対 x をプロット(片対数グラフ) (傾き: b,切片: $\log a$ または x=0のときy=a)
- (4) y=a+b/x y 対 1/x をプロット (傾き: b, 線上の1点でaを決定)

単位と次元

量を数値として表すときある基準量の何倍である かで表す

単位とは? 基準量 長さの基準量 1m,1ft 質量の基準量 1kg,1lb

次元とは? 量の種類

質量 M Mass

(力 F Force)

長さ L Length

時間 T Time

温度 θ Thermo

キログラム原器

国際キログラム原器:白金90%+イリジウム10%

(フランス) 精度:8桁

日本国キログラム原器(副原器):産業技術総合

研究所(産総研, つくば)

その他の基準:

1メートル=国際メートル原器 → 光の速さ

1秒=1日/86400 → 原子の振動現象

単位系

絶対単位系 (MLT系)

重力単位系 (FLT系)

工学単位系(FMLT系)

メートル制単位 kg, m, s イギリス制単位 lb. ft. s

これらを統合

SI単位系=絶対単位系 + メートル制単位

- S I 使用上の主な注意点(p.3~p.5)
- 2) 2つ以上の積のとき N·m (中黒) あるいは N m (半字あけ) mN は避ける ニュートン・メートル? ミリニューン?
- 3)単位の割り算 m/s あるいは m·s⁻¹ J/(mol·K) あるいは J·mol⁻¹·K⁻¹
- 9) 大文字と小文字の区別

K (ケルビン) と k (キロ) N (ニュートン) と n (ナノ) C (クーロン) と c (センチ) S (ジーメンス) と s (秒)

SI単位

7個の基本単位と2個の補助単位(表1·1, p.2) 重要な5個の基本単位

> 長さ m 質量 kg 時間 s 温度 K 物質量 mol

16個の接頭語(表1·2, p.2) S I 誘導単位(表1·3, p.3)

重要! 単位換算表:p.345 付表1

講義を通してのお願い(約束)

- 1. 課題提出
- レポートには自筆の署名をする。(技術者の倫理)
- >友人に教えてもらいながらでも自分でレポートを書く。 丸写しは絶対にだめ!
- 2. 受講上の義務
 - >出欠システムを正しく利用する
 - >授業中の無駄話,携帯電話の使用,途中の出入りは皆の迷惑 になる。
- 3. もう一つの目標

関数電卓, EXCELを利用した計算の習得, インターネットを使った 学習

4. 関数電卓, 定規(講義内での演習に必要)

数値と単位の関係

- 数値は単位と一緒になってはじめて意味を持っ。
- 単位を持つ数値の加算, 減算は, 変数についた係数のように取り扱う。

$$3cm - 1cm = 2cm$$
 $(3x - x = 2x)$
 $3cm - 1mm = ?$ $(3x - y = ?)$

• 表1·1~表1·3(pp. 2~3) SI単位 付表(p. 345) 単位換算表

単位の換算(3)

基準: 溶液1 mol

モル分率 (mol fraction) -> 質量分率 (mass fraction)

$$x = \frac{(0.2)(32)}{(0.2)(32) + (0.8)(18)} = \frac{\text{g methanol}}{\text{g soln}}$$

$$w = ($$
)(20) = kg

* 逆はどうしたら良いか? 質量分率 → モル分率

単位の換算(2)

間違いを避けるために:

単位の乗算・除算で望んでいる単位が得られているかをチェックする。

$$0.2 \frac{\text{mol methanol}}{\text{mol soln}} \times 20 \text{ kg soln} = 4 \frac{\text{mol methanol} \cdot \text{kg soln}}{\text{mol soln}}$$

どうすればよいか?

単位の統一: モル分率→質量分率

単位の換算(4)

メタノールの質量分率; w = 0.3077 の水溶液

メタノールのモル分率 x は?

基準: 溶液1 g

$$x = \frac{(0.3077)/(32)}{(0.3077)/(32) + (0.6923)/(18)} = \frac{\text{mol methanol}}{\text{mol so ln}}$$

単位の読み方

<長さ> <圧力>

ft:フット, フィート psi:ピーエスアイ, プサイ

<質量> (pounds par square inch)

lb:ポンド <熱量>

とカン Btu:ビーティーユー

Kg:ラージキログラム (British thermal unit)

(kg重) <粘度>

Lb:ラージポンド P:ポイズ(poise)

dyn:ダイン(dyne) Poiseuille(物理学者)

単位の換算

例題) 23 lb·ft/min²をkg·cm/s²に換算せよ。

$$\begin{array}{c|ccccc} 23 & \text{lb} \cdot \text{ft} & \text{kg} & \text{cm} & 1^2 & \text{min}^2 \\ \hline & \text{min}^2 & \text{lb} & \text{ft} & (60)^2 & \text{s}^2 \end{array}$$

単位の換算(溶液の濃度,流量)

0.5 [M] (モル濃度)の硫酸水溶液が1.25 m³/minで反応器に入ってくる。溶液の比重は1.03である。次の計算を行え。

- (1)硫酸の質量濃度[kg H₂SO₄/m³]
- (2)硫酸の質量流量[kg H₂SO₄/s]
- (3)硫酸の質量分率

単位の換算(溶液の濃度,流量)

(1)硫酸の(成分)質量濃度はモル濃度に硫酸の分子量を掛けて求める。

$$c\left(\frac{\text{kg H}_{2}\text{SO}_{4}}{\text{m}^{3}}\right) = \frac{0.5 \text{ mol H}_{2}\text{SO}_{4} | 98 \text{ g} | 1 \text{ kg} | 10^{3} \text{ liter}}{\text{liter} | \text{mol} | 10^{3} \text{ g} | 1 \text{ m}^{3}}$$

$$= \frac{\text{kg H}_{2}\text{SO}_{4}}{\text{m}^{3}}$$

単位の換算(溶液の濃度,流量)

(2)硫酸の(成分)質量流量は体積流量に質量濃度を掛けて求める。

$$q\left(\frac{\text{kg H}_{2}\text{SO}_{4}}{\text{s}}\right) = \frac{1.25 \text{ m}^{3} | 49 \text{ kg H}_{2}\text{SO}_{4} | 1 \text{ min}}{\text{min} | \text{m}^{3} | 60 \text{ s}}$$

$$= \frac{\text{kg H}_{2}\text{SO}_{4}}{\text{s}}$$

◎数式の換算

演習問題 1 · 5 (p.30)

円管内乱流 水の境膜伝熱係数式をSI単位に換算 $h=(3210+43\ t)(\ u)^{0.8}\diagup(\ D)^{0.2}$ (i)

- h 伝熱係数 [kcal/(m²·h·℃)]
- t 水の温度 [℃]
- u 流速 [m/s]
- **D** 管の内径 [cm]

次元的に不健全な式 係数が次元をもっている

例題1・2の解2の方法で行う ①各変数を新しい単位系の変数に置き換える h [kcal/(m²·h·℃)] = h' [J/(m²·s·K)]

単位の換算(溶液の濃度,流量)

(3)質量分率は硫酸の成分質量流量と全質量流量の比から求めることができる。

$$\begin{split} \rho_{\text{solution}} &= (1.03)(1000 \ \frac{\text{kg}}{\text{m}^3}) = 1030 \ \frac{\text{kg}}{\text{m}^3} \\ Q_{\text{solution}} \left(\frac{\text{kg}}{\text{s}} \right) &= \frac{1.25 \ \text{m}^3 \text{soln}}{\text{min}} \frac{1030 \ \text{kg}}{\text{m}^3 \text{soln}} \frac{1 \ \text{min}}{60 \ \text{s}} \\ &= \frac{\text{kg}}{\text{s}} \\ x_{\text{H}_2 \text{SO}_4} &= \frac{q_{\text{H}_2 \text{SO}_4}}{Q_{\text{solution}}} = \frac{1.02 \ \text{kg H}_2 \text{SO}_4/\text{s}}{\text{kg soln}/\text{s}} = \frac{\text{kg H}_2 \text{SO}_4}{\text{kg soln}} \end{split}$$

今日の課題:全流量Q[kg/s]をモル流量M[mol/s]に変換せよ。 ヒント:成分毎のモル流量の和、または平均分子量から

②新しい変数の単位を元の単位に換算する

 $h[\text{kcal/}(\text{m}^2\cdot\text{h}\cdot^{\circ}\text{C})]$

- = h' [J/($m^2 \cdot s \cdot K$)]
- = h' [2.3894 × 10⁻⁴kcal/{ $m^2 \cdot (1/3600)h \cdot ^{\circ}$ }]
- = $0.8600 \, h' \quad [\text{kcal/}(\text{m}^2 \cdot \text{h} \cdot ^{\circ}\text{C})]$ (ii)

同様にして

$$t \, [^{\circ}C] = T'[K] = (T'-273) \, [^{\circ}C]$$
 (iii)

$$u [m/s] = u' [m/s]$$
 (iv)

$$D \text{ [cm]} = D' \text{ [m]} = D' \text{ [100 cm]} = 100 D' \text{ [cm]}$$
 (v)

③得られた新しい変数と元の変数の関係式を元の式に 代入する

式(ii)から(v)を式(i)に代入

$$0.8600h' = [3210 + 43 \times (T' - 273)] \times (u')^{0.8} / (100 D)^{0.2}$$

 $h' = (19.9T' - 3950)(u')^{0.8} / (D')^{0.2}$

次元解析

例題1.4 円管流れ;摩擦応力τωを求めよ

変数: $\tau_{w} = [kg/(m \cdot s^{2})]$

$$\rho = [kg/m^3]$$

 $\mu = [kg/(m \cdot s)]$

D = [m]

U = [m/s]

注意)単位面積に掛かる力は[N/m²]で [N]=[kg·m/s²]

次元解析

© 変数の数n=5, 基本量の数m=3であり, 無次元項の数はp=n-m=2となる。

τ_wを次式で表現できると仮定する。

$$\tau_{w} = kD^{a_1}U^{a_2}\rho^{a_3}\mu^{a_4}$$

これを次元式で表すと

 $[ML^{-1}T^{-2}] = k[L]^{a_1}[LT^{-1}]^{a_2}[ML^{-3}]^{a_3}[ML^{-1}T^{-1}]^{a_4}$

次元解析

次元的な健全性(両辺で次元が一致する)の条件から

M:
$$1 = a_3 + a_4$$

$$L: -1 = a_1 + a_2 - 3a_3 - a_4$$

$$T: -2 = -a_2 - a_4$$

変数の数が条件式の数よりも多い。

一つが未定となる。

次元解析

 a_4 を残す場合,

$$a_1 = -a_4$$
, $a_2 = 2 - a_4$, $a_3 = 1 - a_4$

$$\tau_W = kD^{-a_4}U^{2-a_4}\rho^{1-a_4}\mu^{a_4}$$

$$=k(U^2\rho)(\mu/DU\rho)^{a_4}$$

$$=k(U^2\rho)(DU\rho/\mu)^{-a_4}$$

$$\tau_W/(U^2\rho) = k(DU\rho/\mu)^{-a_4}$$

次元解析

無次元数の指数

無次元数の値を変えた実験を行ない、 無次元数間の<u>両対数プロット</u>から決定

<例>

$$\tau_W / (U^2 \rho) = 2f = k(DU\rho / \mu)^{-a_4}$$
f:摩擦係数

$$p.45$$
図 2.10 Moody線図
$$f = 16(DU\rho/\mu)^{-1}$$
 (層流域)

例題1.4(参考)

a₃を従属変数とした場合,

$$a_1 = -1 + a_3$$
, $a_2 = 1 + a_3$, $a_4 = 1 - a_3$

$$\tau_W D / (U \mu) = k (D U \rho / \mu)^{a_3}$$

次元解析

注意)

- ・関与する因子をもれなく取り上げる
- ・各無次元数が無次元となっているかチェックする。
- ・因子の数が多く、同じ次元を持つ因子が複数あるとき、異なる無次元数の定義が生じる。
- ・無次元数の指数の大きさ=現象への関与

無次元数の意味

◎流れ

レイノルズ数; Re =
$$\frac{Lu\rho}{\mu}$$
 慣性力
粘性力

フルード数;
$$\operatorname{Fr} = \frac{u^2}{gL}$$
 慣性力重力

無次元数の意味

◎伝熱

プラントル数:

$$\Pr = \frac{C_P \mu}{k}$$

 $\Pr = \frac{C_P \mu}{k}$ 分子拡散による運動量移動分子拡散による熱移動

ペクレ数:

$$Pe = \frac{u\rho C_p L}{k} \text{ or } \frac{uL}{D}$$

対流による熱、物質移動

伝導または拡散による熱,物質移動

無次元数の意味

◎物質移動

シュミット数:

$$Sc = \frac{\mu}{\rho D}$$

 $Sc = \frac{\mu}{\rho D}$ 運動量の分子拡散 分子拡散

シャーウッド数:

$$Sh = \frac{k_c L}{D}$$

境界層内の濃度勾配

流体本体から境界層を通しての濃度勾配

無次元数

注意) 長さ(L), 速度(u), etc. は代表値で状況 によって変わる。

$$Re = \frac{Du\rho}{u}$$

パイプ流れのRe数

流体中の球 体のRe数

攪拌槽のRe数

$$Re = \frac{nd^2\rho}{\mu}$$

1.2 気体の状態方程式

(1)理想気体の状態方程式

$$PV = nRT$$

 $P[Pa], V[m^3], n[mol], T[K]$

R: ガス定数 8.314 J/(mol·K)

$$[Pa \cdot m^3 \cdot mol^{-1} \cdot K^{-1}]$$

ex. 0°C(273.15 K), 1気圧(101300 Pa)において . 1 molの気体が占める体積は.

$$V = \frac{nRT}{P} = \frac{(1)(8.314)(273.15)}{101300} = 0.022418 \text{ m}^3$$

気体の状態方程式

(2)実在気体の状態方程式

気体では分子の間が離れており、相互作用が 小さいが、圧力が高くなると分子間距離が短くな り相互作用を無視できなくなる

- •van der Waals式
- ·Virial方程式(BWR式, etc.)
- •SRK(Soave-Redlich-Kwong)式
- •Peng-Robinson式

実在気体の状態方程式

1) van der Waals式

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2} \qquad V_m = \frac{V}{n}$$

2)SRK式

$$P = \frac{RT}{V_m - b} - \frac{\alpha(T)a}{V_m(V_m + b)}$$

 $a = 0.42747R^2T_C^2/P_C$, $b = 0.08664RT_C/P_C$

 $m = 0.48508 + 1.574\omega - 0.176\omega^2$

$$\alpha(T) = \left[1 + m(1 - \sqrt{T/T_C})\right]^2$$

実在気体の状態方程式

3) Virial式

$$\frac{PV_m}{RT} = z = 1 + B'P + C'P^2 + \cdot (ベルリン型)$$

$$\frac{PV_m}{RT} = z = 1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \cdots (ライデン型)$$

$$B' = \frac{B}{RT} \qquad z = 1 + \frac{BP}{RT}$$

例題1·5 1.0 kg He が1m³の容器に入っている。 T=273 K における容器内の圧力は?

(i)理想気体の状態方程式

1.0 kg He:
$$n = \frac{1000 \text{g}}{4.0 \text{g/mol}} = 250 \text{ mol}$$

$$P = \frac{nRT}{V} = \frac{(250)(8.314)(273)}{1}$$

$$= 5.674 \times 10^5 \text{ Pa} = 567 \text{ kPa}$$

$$T_r = \frac{T}{T_C} = \frac{273}{5.2} = 52.5 \qquad P_r = \frac{P}{P_C} = \frac{567}{227} = 2.50$$

$$V_m = \frac{1}{250} = 4 \times 10^{-3} \text{ mol}$$

1. 3 収支

収支(balance)の役割

化学プラント(装置)の設計,操作において,

- 1) 既知の量(プロセス変数)から未知の量を知るため。
- 2)必要な情報を確認するため。

"質量保存則"と"エネルギー保存則"

(iii) SRK式

$$\alpha = 0.42747R^{2}T_{C}^{2}/P_{C}$$

$$= \frac{(0.42747)(8.314)^{2}(5.2)^{2}}{(227)} = 3.506 \times 10^{-3}$$

$$b = 0.08664RT_{C}/P_{C} = 1.647 \times 10^{-5}$$

$$m = 0.48508 + 1.574\omega - 0.176\omega^{2} = -0.15042$$

$$\alpha(T) = \left[1 + m(1 - \sqrt{T/T_{C}})\right]^{2} = 3.766$$

$$P = \frac{RT}{V_m - b} - \frac{\alpha(T)a}{V_m(V_m + b)} = 5.698 \times 10^5 \text{ Pa}$$

収 支(2)

◆収支式

(input) - (output) = (accumulation)

注)定常状態では、(蓄積)=0

収 支(3)

- ◆収支式を使う手順
- 1)範囲(系)を決める(図式化)
- 2)系へ出入りする流れを確定し、既知量は数値で、未知量は変数で表す
- 3) 基準(単位)を統一し、(1)式へ代入する
- 4) 得られた式を解き、未知量を求める

例題1.6

*未知数; L, Mの2個

<物質収支式>

全量収支(kg/h): (L + 50) - M = 0

成分収支(kg/h): (0.15)(50) – (0.001)M = 0 これを解くと、M = 7500 kg/h, L = 7450 kg/h

例題1.7(蒸留操作)

既知変数: F, x_F, x_W, α 未知変数: D, W, x_D

全量収支: F = D + W

成分収支: $Fx_F = Dx_D + Wx_W$

回収率の定義から:

$$\alpha = \frac{Wx_W}{Fx_F} \Longrightarrow W = \frac{\alpha Fx_F}{x_W}$$

$$D = F - W = F(1 - \frac{\alpha x_F}{x_W})$$

$$x_D = \frac{Fx_F - Wx_W}{D} = \frac{Fx_F - (\frac{\alpha Fx_F}{x_W})x_W}{\frac{F(x_W - \alpha x_F)}{x_W}}$$

課題

メタン(CH₄)が、300 K に保たれた球形タンク(容積 20,000 m³)に、80,000 kg 充填されている。タンク内部の圧力を以下の2つの方法で求めよ。

- 1) 理想気体の状態方程式
- 2)SRK状態方程式

反応系の物質収支(1)

- ◆反応系の物質収支式
- (入量)+(反応による生成量)
 - (出量) (反応による消失量) = (蓄積)
- ◆反応の化学量論(stoichiometry)

$$2SO_2 + O_2 \rightarrow 2SO_3 \qquad (a)$$

例題) SO₂ 1.5 molを完全に反応させるため に酸素O。は何mol必要か?

$$\frac{1.5 \text{ mol SO}_2 | 1 \text{ mol O}_2}{| 2 \text{ mol SO}_2} = 0.75 \text{ mol O}_2$$

例題1.10の解説

15wt%水酸化ナトリウム(苛性ソーダ)水溶液毎時 400kgを98wt%濃硫酸で中和する。1時間当たりを基 準にする。

中和反応

$$2\text{NaOH+ H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$$

40 98 142 18

NaOHと硫酸は2:1で反応する

(NaOHのモル数) = 2×(硫酸のモル数)

必要な硫酸をxkgと置くと、

$$\frac{(400)(0.15)}{(40)}$$
=2× $\frac{x(0.98)}{(98)}$ (両辺の単位はkmol)

反応系の物質収支(2)

• 限定反応物質(limiting reactant) 反応が進行した時に、先に消失する成分 反応(a)において、SO、3 mol とO、1 mol を反応 させると、O₂が先に消失する。

反応:
$$2SO_2 + O_2 \rightarrow 2SO_3$$
 (a)

反応前 O_2b mol反応後 x>yの場合(完全反応)

$$\begin{array}{cccc} SO_2 & x & x-2b & x-2y \\ O_2 & y & y-b & 0 \end{array}$$

$$SO_3$$
 0 $2b$ $2y$

例題1.10の解説

必要な98wt%硫酸は 75 kg となり, 生成する硫酸ナト リウムのモル数は 0.75 kmol, 生成する水のモル数 は 1.5 kmol となる。

排水中の水: (400)(1-0.15) = 340 kg 硫酸中の水: (75)(1-098) = 1.5 kg

反応によって生じた水: (1.5)(18) = 27 kg

合計 368.5 kg

溶解度は0.13 kg/kg-水なので、加水量をw [kg]とすれ ば.

$$\frac{(0.75)(142)}{\text{w}+368.5} = 0.13 \qquad \therefore \text{w} = 450.73 \text{ kg}$$

熱量(エンタルピー)

◆ エンタルピー変化の種類

顕熱(sensible heat): 相変化を伴わない物質の温度上昇に必要な熱量

潜熱(latent heat):一定温度で、相変化に必要な熱量

(融解熱,蒸発熱,昇華熱,etc.)

反応熱(heat of reaction): 反応に伴い発生 または吸収する熱量

ただし、<u>温度変化が小さい場合</u>、 C_p を平均値で一定とみなすこともできる。

<例> 水 20°C
$$C_p$$
=4.1817 kJ/(kg·K)
30°C C_p =4.1784 kJ/(kg·K)

$$\Delta H = \overline{C}_p (T_1 - T_0) \qquad \text{(c)}$$

液体から気体への相変化を伴う場合

$$\Delta H = \int_{T_1}^{T_b} C_p^L dt + \Delta H^V + \int_{T_b}^{T_2} C_p^V dt \quad \text{(a)'}$$
(cf. p.19, \boxed 1.5)

エンタルピー

◆基準温度*T*₀からの差で表す(相変化が無い場合)

$$\Delta H = \int_{T_0}^{T_1} C_p dt \quad \text{(a)}$$

単位は,単位質量(又はモル)当たりの熱量

* 定圧比熱が多項式で与えられる場合

$$C_p = a + bT + cT^2 + \dots$$
 (b)

$$\Delta H = a(T_1 - T_0) + \frac{b}{2}(T_1^2 - T_0^2) + \frac{c}{3}(T_1^3 - T_0^3) + \dots$$

今日の演習問題

アセトン(液) 1 mol を30℃から50℃まで加 熱すために必要な熱量を求めよ

- (1) 50°Cにおける定圧比熱を用いた場合 $C_p[J/(\text{mol·K})]=123.0+0.186T$;T in [°C]
- (2) 温度依存性を考慮する場合

$$\Delta H = \left[123.0T + \frac{0.186}{2} T^2 \right]_{T_1}^{T_2}$$

課題

- ① 基準温度を 20 ℃として、70 ℃における それぞれ液体のベンゼン、水 1 mol 当た りのエンタルピー[J/mol]を求めよ
 - i) 30 ℃における定圧比熱を用いよ
 - ii) ベンゼンについて C_p の温度依存性を 考慮して計算せよ
- ② 基準温度を 20 ℃として、100 ℃の水蒸 気のエンタルピー[J/mol]を計算せよ。た だし、100 ℃における蒸発潜熱ΔH^V を 40650 [J/mol]とする

エネルギー収支

◆エネルギーの種類

運動エネルギー: $\frac{1}{2}u^2$

位置エネルギー: gz

エンタルピー: *H*

仕事: V

熱:

$$gz_1 + \frac{1}{2}u_1^2 + H_1 + W + Q = gz_2 + \frac{1}{2}u_2^2 + H_2$$
 (1.43)

$$H_1 + Q = H_2 (1.44)$$

例題1-13

基準温度:293 K (20℃)

入熱量(油):[kg/s][kJ/kg]=[kJ/s]

$$w_{oil}\Delta H_{oil} = w_{oil}C_{p,oil}(T_{oil,in} - T_0)$$

= (0.4)(2.093)(423 - 293)
= 108.84 kJ/s

例題1. 13(別解)

<u>基準温度を313 K(油の出口温度</u>)とすると、出入りの熱量の値が変わる。

入熱量:油 (0.4)(2.093)(423-313)=92.092 J/s

水 (4)(4.186)(293-313)= (-)334.88 J/s

出熱量:油 (0.4)(2.093)(313-313)=0 J/s

水 (4)(4.186)(*T*-313)=16.744 (*T*-313) J/s

収支式(定常): (-)242.788=16.744 (T-313)

T=298.5 K (答えは同じ)

燃焼熱(1)

- ◆高発熱量;H_k
 - ✓熱量計で測定される熱量

(熱量計は室温付近で操作されるため、燃焼ガ ス中の水蒸気が凝縮するため)

- ◆低発熱量; H₁
 - √高発熱量から水の蒸発潜熱を引いた値。

(高温(373K以上)の燃焼ガス中の水蒸気は凝縮しないため)

理論空気量(1)

• 理論酸素量

可燃成分(C, H, S)を完全燃焼するため に必要な酸素量

$$C + O_2 \rightarrow CO_2$$
 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ (モル数の関係)
 $S + O_2 \rightarrow SO_2$

注)燃料に含まれる酸素量は控除する

燃焼熱(2)

*固体/液体燃料

 $H_1 = H_h - 2.51(9h + w)$ [MJ/kg-燃料]

h, *w*: 燃料 1 kg中の水素および水の量[kg/kg-燃料]

*気体燃料

 $H_h = 12.6co + 12.8h_2 + 39.9ch_4 + 70.55c_2h_6 + 64.0c_2h_4$

+101.2 c_3h_8 +133.1 c_4h_{10} [MJ/m³-燃料]

 $H_1 = H_h - 2.02(h_2 + 2ch_4 + 3c_2h_6 + 2c_2h_4)$

 $+4c_3h_8+5c_4h_{10}$ [MJ/m³-燃料]

 $co, h_2, ch_4, c_2h_6, c_2h_4, c_3h_8, c_4h_{10}$:

燃料 1 m³中の各成分の体積[m³]またはモル分率[-]

理論空気量(2)

理論空気量(酸素の体積分率, O. 21)
 0℃, 1気圧の空気量(m³)に換算

$$A_0 = (O_2 \text{ kmol})(22.4 \text{ m}^3/\text{kmol}) \left(\frac{100}{21}\right)$$

[m³/kg-燃料]; 固体,液体

[m³/m³-燃料]; 気体

空気比m; $A=mA_0$

実際には理論空気量よりも多い空気量を用いる

理論燃焼ガス量

• 過剰空気(酸素)と乾き燃焼ガス(例題1.16)

燃焼ガス温度

- 理論燃焼ガス温度273 Kの燃料が 273 Kの理論空気量で 完全燃焼したときのガスの温度
- 燃焼ガス温度を計算するための収支式 (入熱量):燃料&空気の顕熱+燃焼熱 (出熱量):燃焼ガスの顕熱+伝熱&放射に よる損失

<例題1・18>

基準温度: 273Kとすると, 燃料, 空気の顕熱は0 kJ/molとなり, 入熱量は燃焼熱のみ。

放射による熱損失が無いとすると、出熱量は燃焼ガスの顕熱のみ。

$$H_l = G_0 c_{pm} (t_{th} - 273) \tag{1.50}$$

$$t_{th} = \frac{H_l}{G_0 c_{pm}} + 273 \tag{1.51}$$

注) G_0c_{pm} :個々のガスを区別する時は, 比熱とガス量の積の和, $\sum G_ic_{pi}$

補足説明

例題1.18

*H_I*の単位を[MJ/m³]から [kJ/m³]へ変換

$$t_{th} = \frac{(93.12)(1000)}{(1.84)(3+4) + (1.76)(18.81)} + 273$$
 [K] 燃焼ガス (CO_2, H_2O) の混合ガス $)$ の比熱とガス量とガス量

• 燃料, 空気の温度が異なる場合, 基準温度が 供給温度と異なる場合, 燃料と空気の顕熱項 を考慮する。

例えば、空気を $T_0[K]$ まで予熱すると、

$$t_{th} = \frac{(93.12)(1000) + (1.31)(T_0 - 273)(5 + 18.81)}{(1.84)(3 + 4) + (1.76)(18.81)} + 273$$

今日の演習

空気比1.2で燃焼させるため、燃焼ガス中には、それぞれ N_2 =(18.81)(0.2)=3.76 m³、 O_2 =(5)(0.2)=1 m³が過剰に存在する

今日の演習

◎プロパン(気体) 1m³ を空気比 1.2 で完全燃焼させた時の燃焼ガス温度を求めよ。(供給温度は 273 Kとする)

ただし、燃焼ガス($CO_2 + H_2O$), O_2 , N_2 の比熱を それぞれ1.84 kJ/($m^3 \cdot K$), 1.76 kJ/($m^3 \cdot K$), 1.70 kJ/($m^3 \cdot K$)とする

(ヒント)燃焼ガスには,

 N_2 =(18.81)(0.2)=3.76 m³, O_2 =(5)(0.2)=1 m³ が過剰に含まれる。

中間試験

日時:平成27年6月3日(水)8:50~10:20

場所:5111教室(階段教室)

注意: 教科書, ノート持込 (<u>授業の配布資料以</u> 外のコピーは不可)

関数電卓(必須)

5分前には入室, 通路から間隔を空け、

整列して着席のこと

出題範囲は、「燃焼計算」まで。

単位換算を間違えないように。

Range

(Units

of T)

0 - 1200

0 - 1200

0 - 1500

-30-60

 $d \cdot 10^9$

34.76

18.20

-1.965

TABLE B.2 Heat Capacities^a

Compound

Acetone

Acetylene

Air

Formula

CH₃COCH₃

 C_2H_2

Form 1: $C_p(J/\text{mol}\cdot{}^\circ\text{C})$ or $(J/\text{mol}\cdot\text{K})=a+bT+cT^2+dT^3$ Form 2: $C_p(J/\text{mol}\cdot{}^\circ\text{C})$ or $(J/\text{mol}\cdot\text{K})=a+bT+cT^{-2}$

Example: $(C_p)_{\text{acctone(g)}} = 71.96 + (20.10 \times 10^{-2})T - (12.78 \times 10^{-5})T^2 + (34.76 \times 10^{-9})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas law to apply.

a

123.0

71.96

42.43

28.94

 $b \cdot 10^2$

20.10

6.053

0.4147

18.6

 $c \cdot 10^{5}$

-12.78

-5.033

0.3191

Temp.

Unit

°C

°C

 $^{\circ}\mathrm{C}$

°C

1

1

1

Mol. Wt. State Form

g

g

g

58.08

26.04

29.0

		g	1	K	28.09	0.1965	0.4799	-1.965	272 1000
		0						-1.903	273-1800
17.03		g	1	$^{\circ}\mathrm{C}$	35.15	2.954	0.4421	-6.686	0-1200
132.15		c	1	K	215.9				275 - 328
78.11	78.1	1	1	K	62.55	23.4			279 - 350
		g	1	$^{\circ}\mathrm{C}$	74.06	32.95	-25.20	77.57	0 - 1200
58.12	58.1	g	1	$^{\circ}\mathrm{C}$	89.46	30.13	-18.91	49.87	0-1200
58.12	58.1	g	1	$^{\circ}\mathrm{C}$	92.30	27.88	-15.47	34.98	0-1200
56.10		g	1	°C	82.88	25.64	-17.27	50.50	0-1200
64.10		c	2	K	68.62	1.19	-8.66×10^{10}	_	298-720
100.09		С	2	K	82.34	4.975	-12.87×10^{10}		273-1033
74.10		c	1	K	89.5	1.570	12.07 × 10		276-373
56.08		c	2	K	41.84	2.03	-4.52×10^{10}		273-1173
12.01		c	2	K	11.18	1.095	-4.891×10^{10}		
44.01			1	°C				7.464	273-1373
		g			36.11	4.233	-2.887	7.464	0-1500
28.01		g	1	°C	28.95	0.4110	0.3548	-2.220	0-1500
153.84		1	1	K	93.39	12.98	4.60		273-343
70.91		g	1	°C	33.60	1.367	-1.607	6.473	0-1200
63.54	63.5	С	1	K	22.76	0.6117	,		273–1357
120.19	120.10	~	1	°C	139.2	52.76	20.70	120.5	0.1000
120.19	120.15	g	1	C	139.2	53.76	-39.79	120.5	0-1200
0416	0414			0.00					
84.16		g	1	°C	94.140	49.62	-31.90	80.63	0-1200
70.13		g	1	°C	73.39	39.28	-25.54	68.66	0-1200
30.07		g	1	°C	49.37	13.92	-5.816	7.280	0-1200
46.07	46.07	1	1	°C	103.1				0
		1	1	°C	158.8				100
		g	1	$^{\circ}\mathbf{C}$	61.34	15.72	-8.749	19.83	0-1200
28.05		g	1	$^{\circ}\mathrm{C}$	+40.75	11.47	-6.891	17.66	0-1200
159.70	159.70	c	2	K	103.4	6.711	-17.72×10^{10}	_	273-1097
30.03	30.03	g	1	$^{\circ}\mathrm{C}$	34.28	4.268	0.0000	-8.694	0-1200
4.00	4.00	g	1	$^{\circ}\mathbf{C}$	20.8				A11
86.17		ĭ	1	°C	216.3				20-100
		g	î	°C	137.44	40.85	-23.92	57.66	0-1200
2.016	2.01	g	1	°C	28.84	0.00765	0.3288	-0.8698	0-1200
80.92		g	1	°C	29.10	-0.0227	0.9887	-4.858	
36.47			1	°C	29.13	-0.0227 -0.1341			0-1200
27.03		g	1	°C			0.9715	-4.335	0-1200
34.08		g	1	°C	35.3	2.908	1.092		0-1200
		g			33.51	1.547	0.3012	-3.292	0-1500
95.23		С	1	K	72.4	1.58			273-991
40.32		С	2	K	45.44	0.5008	-8.732×10^{10}		273-2073
16.04	16.04	g	1	$^{\circ}\mathrm{C}$	34.31	5.469	0.3661	-11.00	0-1200
		g	1	K	19.87	5.021	1.268	-11.00	273 - 1500
32.04	32.04	1	1	°C	75.86				0
					82.59				40
		g	1	°C	42.93	8.301	-1.87	-8.03	0-700
98.18	98.18	g	1	$^{\circ}\mathrm{C}$	121.3				0-1200
84.16		_	1						0-1200
		_						05.01	25
						0.8188	_0.2925	0.3652	0-3500
ŀ	, <i>I</i>	84.16 63.02 30.01	98.18 g 84.16 g 63.02 l 30.01 g	98.18 g 1 84.16 g 1 63.02 l 1 30.01 g 1	98.18 g 1 °C 84.16 g 1 °C 63.02 l 1 °C 30.01 g 1 °C	g 1 °C 42.93 98.18 g 1 °C 121.3 84.16 g 1 °C 98.83 63.02 l 1 °C 110.0 30.01 g 1 °C 29.50	g 1 °C 42.93 8.301 98.18 g 1 °C 121.3 56.53 84.16 g 1 °C 98.83 45.857 63.02 1 1 °C 110.0 30.01 g 1 °C 29.50 0.8188	g 1 °C 42.93 8.301 -1.87 98.18 g 1 °C 121.3 56.53 -37.72 84.16 g 1 °C 98.83 45.857 -30.44 63.02 l 1 °C 110.0 30.01 g 1 °C 29.50 0.8188 -0.2925	g 1 °C 42.93 8.301 -1.87 -8.03 98.18 g 1 °C 121.3 56.53 -37.72 100.8 84.16 g 1 °C 98.83 45.857 -30.44 83.81 63.02 l 1 °C 110.0

^a Adapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, © 1974, Table E.1. Adapted by permissio of Prentice-Hall, Inc., Englewood Cliffs, N.J.

TABLE B.2 (Continued)

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	а	$b \cdot 10^2$	$c \cdot 10^5$	$d\cdot 10^9$	Range (Units of T)
Nitrogen	N ₂	28.02	g	1	°C	29.00	0.2199	0.5723	-2.871	0-1500
Nitrogen dioxide	NO_2	46.01	g	1	°C	36.07	3.97	-2.88	7.87	0-1200
Nitrogen tetraoxide	N_2O_4	92.02	g	1	°C	75.7	12.5	-11.3		0 - 300
Nitrous oxide	N_2O	44.02	g	1	°C	37.66	4.151	-2.694	10.57	0 - 1200
Oxygen	O_2	32.00	g	1	°C	29.10	1.158	-0.6076	1.311	0 - 1500
n-Pentane	C_5H_{12}	72.15	1	1	$^{\circ}\mathrm{C}$	155.4	43.68			0 - 36
n i circano	03-12	,	g	1	°C	114.8	34.09	-18.99	42.26	0 - 1200
Propane	C_3H_8	44.09	g	1	°C	68.032	22.59	-13.11	31.71	0 - 1200
Propylene	C_3H_6	42.08	g	1	°C	59.580	17.71	-10.17	24.60	0 - 1200
Sodium carbonate	Na ₂ CO ₃	105.99	c	1	K	121				288 - 371
Sodium carbonate	Na_2CO_3 $10H_2O$	286.15	c	1	K	535.6				298
Sulfur	S	32.07 (Rho	c ombic)	1	K	15.2	2.68			273–368
		(c	1	K	18.3	1.84			368-392
		(Mon	oclinic	c)		,				
Sulfuric acid	H_2SO_4	98.08	1	1	°C	139.1	15.59			10-45
Sulfur dioxide	SO ₂	64.07	g	1	$^{\circ}\mathrm{C}$	38.91	3.904	-3.104	8.606	0 - 1500
Sulfur trioxide	SO_3	80.07	g	1	$^{\circ}\mathrm{C}$	48.50	9.188	-8.540	32.40	0 - 1000
Toluene	C_7H_8	92.13	ĩ	1	°C	148.8				0
	- /8		1	1	$^{\circ}\mathrm{C}$	181.2				100
			g	1	°C	94.18	38.00	-27.86	80.33	0 - 1200
Water	H_2O	18.016		1	$^{\circ}\mathrm{C}$	75.4				0 - 100
	20	20.040	g	1	°C	33.46	0.6880	0.7604	-3.593	0-1500

温度と温度差

(1)温度(温度計)

$$t[^{\circ}C] = (t'[^{\circ}F] - 32)/1.8$$

$$T[K] = t[^{\circ}C] + 273.15$$

$$T'[{}^{\circ}R] = t'[{}^{\circ}F] + 459.67$$

$$T[K] = T'[{}^{\circ}R]/1.8$$

(2)温度差(温度計の目盛)

$$\Delta T[K] = \Delta t[^{\circ}C]$$

$$\Delta t[^{\circ}C] = \Delta t'[^{\circ}F]/1.8$$

$$\Delta T'[\circ R] = \Delta t'[\circ F]$$

次元と単位

量	次元	単位	
質量	М	kg	
重量(力)	MLT ⁻²	kg·m·s ⁻²	(N)
圧 力	$ML^{-1}T^{-2}$	kg·m ⁻¹ ·s ⁻²	(Pa)
密度	ML ⁻³	kg∙m ⁻³	
粘 度	ML-1T-1	kg·m ⁻¹ ·s ⁻¹	(Pa·s)
仕 事	ML^2T^{-2}	kg·m²·s ⁻²	(J)
表面張力	MT ⁻²	kg·s ⁻²	$(N \cdot m^{-1})$

気体定数(gas constant), R

Value of R	Units of R
83.145	bar•cm ³ •mol ⁻¹ •K ⁻¹
8.3145	$J \cdot mol^{-1} \cdot K^{-1}$
10.740	psia • ft ³ • lb-mol ⁻¹ • R ⁻¹
1.987	cal·mol-1·K-1
82.058	atm \cdot cm 3 \cdot mol $^{-1}$ \cdot K $^{-1}$

Table 4.6-1 The Critical and Other Constants for Selected Fluids

		Molecular Weight						
Substance	Symbol	$(g \text{ mol}^{-1})$	$T_C(\mathbf{K})$	$P_C(MPa)$	$V_C(\text{m}^3/\text{kmol})$	Z_C	ω	$T_{\text{boil}}(\mathbf{K})$
Acetylene	C_2H_2	26.038	308.3	6.140	0.113	0.271	0.184	189.2
Ammonia	NH_3	17.031	405.6	11.28	0.0724	0.242	0.250	239.7
Argon	Ar	39.948	150.8	4.874	0.0749	0.291	-0.004	87.3
Benzene	C_6H_6	78.114	562.1	4.894	0.259	0.271	0.212	353.3
<i>n</i> -Butane	C_4H_{10}	58.124	425.2	3.800	0.255	0.274	0.193	272.7
Isobutane	C_4H_{10}	58.124	408.1	3.648	0.263	0.283	0.176	261.3
1-Butene	C_4H_8	56.108	419.6	4.023	0.240	0.277	0.187	266.9
Carbon dioxide	CO_2	44.010	304.2	7.376	0.0940	0.274	0.225	194.7
Carbon monoxide	CO	28.010	132.9	3.496	0.0931	0.295	0.049	81.7
Carbon tetrachloride	CCl_4	153.823	556.4	4.560	0.276	0.272	0.194	349.7
n-Decane	$C_{10}H_{22}$	142.286	617.6	2.108	0.603	0.247	0.490	447.3
n-Dodecane	$C_{12}H_{26}$	170.340	658.3	1.824	0.713	0.24	0.562	489.5
Ethane	C_2H_6	30.070	305.4	4.884	0.148	0.285	0.098	184.5
Ethyl ether	$C_4H_{10}O$	74.123	466.7	3.638	0.280	0.262	0.281	307.7
Ethylene	C_2H_4	28.054	282.4	5.036	0.129	0.276	0.085	169.4
Helium	He	4.003	5.19	0.227	0.0573	0.301	-0.387	4.21
n-Heptane	C_7H_{16}	100.205	540.2	2.736	0.0432	0.263	0.351	371.6
n-Hexane	$C_{6}H_{14}$	86.178	507.4	2.969	0.370	0.260	0.296	341.9
Hydrogen	H_2	2.016	33.2	1.297	0.065	0.305	-0.22	20.4
Hydrogen flouride	HF	20.006	461.0	6.488	0.069	0.12	0.372	292.7
Hydrogen sulfide	H_2S	34.080	373.2	8.942	0.0985	0.284	0.100	212.8
Methane	CH_4	16.043	190.6	4.600	0.099	0.288	0.008	111.7
Naphthalene	$C_{10}H_{8}$	128.174	748.4	4.05	0.410	0.267	0.302	491.1
Neon	Ne	20.183	44.4	2.756	0.0417	0.311	0.	27.0
Nitric oxide	NO	30.006	180.0	6.485	0.058	0.250	0.607	121.4
Nitrogen	N_2	28.013	126.2	3.394	0.0895	0.290	0.040	77.4
n-Octane	C_8H_{18}	114.232	568.8	2.482	0.492	0.259	0.394	398.8
Oxygen	O_2	31.999	154.6	5.046	0.0732	0.288	0.021	90.2
<i>n</i> -Pentane	C_5H_{12}	72.151	469.6	3.374	0.304	0.262	0.251	309.2
Isopentane	C_5H_{12}	72.151	460.4	3.384	0.306	0.271	0.227	301.0
Propane	C_3H_8	44.097	369.8	4.246	0.203	0.281	0.152	231.1
Propylene	C_3H_6	42.081	365.0	4.620	0.181	0.275	0.148	225.4
Refrigerant R12	CCl_2F_2	120.914	385.0	4.124	0.217	0.280	0.176	243.4
Refrigerant HFC-134a	CH ₂ FCF ₃	102.03	374.23	4.060	0.198	0.258	0.332	247.1
Sulfur dioxide	SO ₂	64.063	430.8	7.883	0.122	0.268	0.251	263.
Toluene	C_7H_8	92.141	591.7	4.113	0.316	0.264	0.257	383.8
Water	H_2O	18.015	647.3	22.048	0.056	0.229	0.344	373.2
Xenon	Xe	131.300	289.7	5.836	0.118	0.286	0.002	165.0

Source: Adapted from R. C. Reid, J. M. Prausnitz, and B. E. Poling, *The Properties of Gases and Liquids*, 4th ed., McGraw-Hill, New York, 1986, Appendix A and other sources.