

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/73
Paper 7 Probability	& Statistics 2 (S2)	Octo	ber/November 2018
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
NAME CENTRE NUMBER			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

1

adult males is found to be 176 cm.

The standard deviation of the heights of adult males is 7.2 cm. The mean height of a sample of 200

(ii) A he day b fast f	Calculate a 97.5% confidence interval for the mean height of adult males.	[3]
••\		F1
11)	State a necessary condition for the calculation in part (i) to be valid.	[1
lay 1	radteacher models the number of children who bring a 'healthy' packed lunch to so by the distribution B(150, p). In the past, she has found that $p = \frac{1}{3}$. Following the food outlet near the school, she wishes to test, at the 1% significance level, whether a decreased.	opening of
has	State the null and alternative hypotheses for this test.	[1
has	State the null and alternative hypotheses for this test.	[1

On a randomly chosen day she notes the number, N, of children who bring a 'healthy' packed lunch to school. She finds that N = 36 and then, assuming that the null hypothesis is true, she calculates that $P(N \le 36) = 0.0084$.

•	
•	
	According to the model, what is the largest number of children who might bring a packed luo school?
from	contains bulation has mean 12 and standard deviation 2.5. A large random sample of size n is chost this population and the sample mean is denoted by \overline{X} . Given that $P(\overline{X} < 12.2) = 0.975$, configurificant figures, find the value of n .
•••••	

4

ma ver	Ill drops of two liquids, A and B , are randomly and independently distributed in the air. The age numbers of drops of A and B per cubic centimetre of air are 0.25 and 0.36 respectively.
(i)	A sample of 10 cm^3 of air is taken at random. Find the probability that the total number of drops of A and B in this sample is at least 4. [3]

probability that the tot	al number of drops of	of A and B in this	pproximating distribut s sample is less than 60	O. [5]
••••••				
•••••		•••••		••••••
		•••••		
		•••••		
		•••••		

5

The times, in months, taken by a builder to build two types of house, P and Q, are represented by the

J	Find the probability that the total time taken to build one house of each type is less than 6

	l a type P house						
			•••••				•••••
•••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	••••••
•••••	•••••		••••••	••••••	•••••	••••••	•••••
			•••••	•••••	•••••		•••••
			•••••				•••••
••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•	••••••
					•••••		
•••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
	•••••						
•••••		••••••	••••••	••••••	•••••	••••••	•••••
•••••		•••••	••••••	••••••	•••••		•••••
			•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
			•••••				•••••
••••••		•••••••	•••••••	••••••	••••••	••••••••	••••••
••••••	•••••		•••••	••••••	•••••	••••••	•••••

6 The random variable <i>X</i> has probability density function given	ven by
--	--------

s probability density function given by
$$f(x) = \begin{cases} kx^{-1} & 2 \le x \le 6, \\ 0 & \text{otherwise,} \end{cases}$$

where k is a constant.

(i)	Show that $k = \frac{1}{\ln 3}$.	[2]
		••••
		••••
		••••
		••••
		••••
(ii)	Show that $E(X) = 3.64$, correct to 3 significant figures.	[3]
(ii)	Show that $E(X) = 3.64$, correct to 3 significant figures.	[3]
(ii)	Show that $E(X) = 3.64$, correct to 3 significant figures.	[3]
(ii)	Show that $E(X) = 3.64$, correct to 3 significant figures.	[3]
(ii)	Show that $E(X) = 3.64$, correct to 3 significant figures.	
(ii)		

•••••
•••••
•••••
•••••
•••••
•••••
•
•••

as follows.	n = 150	$\Sigma x - 7480$	$\Sigma x^2 = 380000$	
	n = 150	2x = 7400	2x = 300 000	
(i) Carry out th	ne test at the 2.5%	significance level.		
				•••••
				•••••
				•••••
				•••••
				•••••

You may now assume that the population standard deviation of the masses of sacks of flour is $6.856 \, \text{kg}$. The quality control officer weighs another random sample of $150 \, \text{sacks}$ and carries out another test at the 2.5% significance level.

	Given that the population mean mass is 49 kg, find the probability of a Type II error.	[
•		•••
•		•••
•		
•		
•		•••
		•••
		••
		•••
		•••
		•••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.