Problem 1. Consider the function $f: [0, 2\pi] \to [-1, 1]$ given by $f(x) = \cos x$. Determine each of the following sets.

- (i) $f([0,\pi])$
- (ii) $f(\lbrace \pi \rbrace)$

- (ii) $f(\{n\})$ (iii) $f((0, \frac{\pi}{2}))$ (iv) $f((0, \pi))$ (v) $f^{-1}(\{-1, 1\}) = \{0, \pi, 2\pi\}$ (vi) $f^{-1}(\{0, 1\})$ (vii) $f^{-1}(\{-1, 0\})$ (viii) $f^{-1}(\{0\})$

Solution.

- (i) [-1,1]
- (ii) $\{-1\}$
- (iii) (0,1)
- (iv) (-1,1)
- (v) $\{0, \pi, 2\pi\}$
- (vi) $\{0, \frac{\pi}{2}, \frac{3\pi}{2}, 2\pi\}$
- (vii) $(\frac{\pi}{2}, \pi) \cup (\pi, \frac{3\pi}{2})$
- (viii) $\left\{\frac{\pi}{2}, \frac{3\pi}{2}\right\}$

Problem 2. Consider $f: A \to B$.

- (i) Prove f is injective if and only if $X = f^{-1}(f(X))$ for all $X \subseteq A$.
- (ii) Prove f is surjective if and only if $Y = f(f^{-1}(Y))$ for all $Y \subseteq B$.

```
Solution.
(i)
   Suppose X \subseteq A.
   Suppose the function f is injective.
         Suppose m \in X.
         Because f is a function, there is some f(m) where f(m) \in \{f(x) : x \in X\}.
         So, f(m) \in f(X).
         So, m \in \{x : f(x) \in f(X)\}.
         Therefore, m \in f^{-1}(f(X)).
         Suppose m \in f^{-1}(f(X)).
         So, m \in \{x : f(x) \in f(X)\}.
         So, it must be the case that f(m) \in f(X).
         Expanded, f(m) \in \{f(x) : x \in X\}.
         So, there is some x \in X where f(m) = f(x).
         Because f is injective, m = x.
         So, m \in X.
   So, X = f^{-1}(f(X)).
   Suppose that X = f^{-1}(f(X)) for all X \subseteq A.
   So, for all singletons \{x\} \subseteq A, \{x\} = f^{-1}(f(\{x\})).
   Assume there exists some y, z \in A such that f(y) = f(z) and y \neq z.
   So, the set f^{-1}(f(\{y\})) contains both y and z.
   This is a contradiction. So, if f(y) = f(z), then y = z, for all y, z \in A.
   Thus, f is injective.
```

(ii)

Suppose $Y \subseteq B$.

Suppose the function f is surjective.

Suppose $n \in Y$.

Because f is surjective, there is some x_n for which $f(x_n) = n$.

So, $x_n \in \{x : f(x) \in Y\}$ and $\{x : f(x) \in Y\} = f^{-1}(Y)$.

So, $x_n \in f^{-1}(Y)$.

Then $n \in \{f(x) : x \in f^{-1}(Y)\}\$ and $\{f(x) : x \in f^{-1}(Y)\} = f(f^{-1}(Y)).$

So, $n \in f(f^{-1}(Y))$.

Suppose $n \in f(f^{-1}(Y))$.

Then $n \in \{f(x) : x \in \{x : f(x) \in Y\}\}.$

So, there is some x_n where $f(x_n) = n$ and $x_n \in \{x : f(x) \in Y\}$.

So, $f(x_n) \in Y$, thus $n \in Y$.

Therefore, $Y = f(f^{-1}(Y))$ because an arbitrary element y in either set is always in both sets.

Suppose $Y = f(f^{-1}(Y))$ for all $Y \subseteq B$.

So, for all singletons $\{y\} \subseteq B$, $\{y\} = f(f^{-1}(\{y\}))$.

Therefore, for every $y \in B$, there is some $x \in A$ such that f(x) = y (particularly the only $x \in f^{-1}(\{y\})$).

Thus, f is surjective.