DIALOG(R) File 347: JAPIO (c) JPO & JAPIO. All rts. reserv.

01507810

HEAT TREATING DEVICE OF SAND MOLD CASTING

PUB. NO.: 59-219410 [JP 59219410 A] PUBLISHED: December 10, 1984 (19841210)

INVENTOR(s): FURUSE SHOHEI UEJIMA KENGO

WATANABE YOSHIHIRO

WAIANABE IUSHINIKU

APPLICANT(s): TRINITY IND CORP [352273] (A Japanese Company or Corporation)

, JP (Japan)

APPL. NO.: 58-093450 [JP 8393450] FILED: May 27, 1983 (19830527)

INTL CLASS: [3] C21D-001/63; B22D-029/00

JAPIO CLASS: 12.2 (METALS -- Metallurgy & Heat Treating); 12.4 (METALS --

Casting)

JOURNAL: Section: C, Section No. 276, Vol. 09, No. 88, Pg. 82, April

17, 1985 (19850417)

ABSTRACT

PURPOSE: To accelerate effectively collapsion of molding sand from a casting by providing a zone for accelerating the collapsion of the molding sand between a heating furnace and a cooler and maintaining said zone at the high temperature atmosphere of the oxygen concentration higher than the oxygen concentration in the heating furnace.

CONSTITUTION: A casting product P is conveyed successively from a preheating furnace 1 to a heating furnace 2, a device 3 for accelerating collapsion of molding sand and a cooler 4. The product is heat treated continuously by a burner 6 and a turbo fan 7 in the furnace 2 and the device 3. The atmosphere of the oxygen concentration higher than the oxygen concentration of the atmosphere in the furnace 2 is provided by a heat exchanger 12 to the device 3. More specifically, the heat exchanger 12 feeds fresh air containing about 21% oxygen through an air feed duct 15 by a fan 14 into the device 3, sucks the air in the device 3 through a duct 13 and discharges the same from a duct 16 after heat exchange with the f ed air. The oxidation decomposition of the binder for the molding sand is thus accelerated and the molding sand is easily dislodged from the product P.

(2) Japanese laid open patent application 59-219410

1. Title of the invention

Heat treating device of sand mold casting

2. Claims

A heat treating device of a sand mold casting comprising a heating furnace for heat treatment of the casting, which is conveyed from a molding device, by combustion in an atmosphere substantially sealed from an outer air, and a cooling device for quenching in water or oil the product conveyed out from the heating furnace, the heat treating device being characterized by a zone for accelerating collapsion of molding sand, which zone is provided on the convey path of the casting between the heating furnace and the cooling device, and which zone provides a high temperature atmosphere with higher concentration of oxygen than that in the heating furnace.

15

10

5

3. Detailed description of the invention

The present invention relates to a heat treating device of a sand mold casting, and particulary to a heat treating device of a direct combustion heating type which uses for heating combustion by, such as a burner.

20

In general, a casting, which is molded in a sand mold and conveyed from a molding device, is subject to a heat treatment of heating and cooling so as to improve the steel structure. Core sand and molding sand stuck to the casting surface are removed, and then the casting is sent to a washing process.

25

For example, in a case of an aluminium die casting which is suitable for molding a product having a complicated figure, the casting is heated to about 500°C, and then heat treated of quenching in water or oil. During those processes, the molding sand is collapsed and fallen down from the casting.

However, in a case of a casting having a complicated internal figure, core sand and the like can not be totally removed during the heating and brought to the cooling process. Accordingly, an additional removing means is required.

30

Herein, in a case of a direct combustion heating method which uses combustion flame from a burner and so on for the heat treating, the inside of the heating furnace is rigidly sealed in order for adequate maintenance of the heating atmosphere and effective use of heat energy, and the air taken from outside is minimized, being held to the amount necessary for combustion by the burner.

Thereby, the oxygen concentration in the atmosphere within the heating furnace lowers down by combustion by the burner from the normal state of about 21% to about 5-10%.

5

10

15

20

25

30

The high temperature air functions as, other than effecting the aimed heating treatment, accelerating oxidization decomposition of a high molecular binder binding the molding sand, and collapsing the molding sand. If the oxygen concentration within the furnace decreases, the collapsion of the molding sand is disturbed, and the casting is brought to the following cooling process together with a large amount of the molding sand stuck thereto. Accordingly, it is necessary to provide a stirring device or a sand extracting pump and the like in the cooling tank, so as to remove and discharge the molding sand by, such as a stirring effect in the water current.

Moreover, as the removed sand is usually collected and reused, additional efforts and time are required to separate it from water or oil, or to dry it, etc.

An object of the present invention is to solve those drawbacks of the prior art, and provide a heat treating device for a sand mold casting which is of a direct combustion heating type and effectively accelerates collapsion of molding sand from the casting.

In order to achieve this object, the present invention provides a heat treating device of a sand mold casting comprising a heating furnace for heat treatment of the casting, which is conveyed from a molding device, by combustion in an atmosphere substantially sealed from an outer air, and a cooling device for quenching in water or oil the product conveyed out from the heating furnace, the heat treating device being characterized by a zone for accelerating collapsion of molding sand, which zone is provided on the convey path of the casting between the heating furnace and the cooling device, and which zone provides a high temperature atmosphere with higher concentration of oxygen than that in the heating furnace.

Hereafter, the present invention will be described in detail based on the embodiment shown in the drawings.

Figure 1 is a schematic plan view of a continuing heat treating apparatus of aluminium die casting products in accordance with an embodiment of the present invention. The aluminum casting product (hereafter, the product) brought out from a casting device (not shown) is conveyed successively from preheating furnace 1 to heating furnace 2, accelerating device 3 for accelerating collapsion of the molding sand and a cooling device 4, and in the meantime is subjected to the continuing heat treatment.

10

5

Preheating furnace 1 is a zone for, in advance of the heating treatment, uniformly preheating each part of product P which is taken out from a molding device, by using the discharged air of high temperature from heating furnace 2 or accelerating device 3, so as to enhance heat effects to product P within heating furnace 2 and to save energy. The preheating furnace has an endless chain (not shown) for conveying product P along the direction of arrow A during the preheating.

15

Heating furnace 2 is perpendicularly provided to the exit end of preheating furnace 1. It is a zone for heating product P to a predetermined heating temperature for a predetermined time duration. It has a plurality of path rollers to convey product P in a direction of arrow B during the heat treatment.

20

25

In addition, as shown in Figure 2 which is a cross sectional view, heating furnace 2 is sealed with casing 5 having a double wall structure with a heat insulator provided therebetween. The above of casing 5, burners 6 and turbo fans 7 are provided at opposite sides at a predetermined interval along the convey direction B. The atmosphere within the furnace is heated to the heating temperature by a direct combustion heating method, and at the same time, moved by turbo fans 7 driven by fan motors 8 through duct 9 and around product P, and then discharged to the outside of the furnace as a high temperature discharged air. The discharged air is introduced into preheating furnace 1, and used as a preheating source of product P within preheating furnace 1.

Underneath of casing 5, provided is screw conveyer 10 for conveying out the molding sand collapsed from product P which is conveyed within the furnace. Collecting basket 11 is provided at on a discharging end of the conveyer.

Herein, the aforementioned casing 5, screw conveyer 10, etc. are also provided in the above mentioned preheating furnace 1 and accelerating device 3 which will be described below.

5

10

15

20

25

30

Accelerating device 3 for accelerating collapsion of molding sand is, as shown in Figure 1, provided between a terminal end of a product path of heating furnace 2 and cooling device 4 which will be described below. The device is used for providing the product with a high temperature atmosphere of the oxygen concentration higher than that in heating furnace 2 (e.g. oxygen concentration of normal fresh air of 21%), so as to accelerate oxidation decomposition of a binder for the molding sand.

That is, as shown in Figures 3 and 4, accelerating device 3 is provided with heat exchanger 12 for heating and introducing fresh air.

Heat exchanger 12 is an entire heat exchanger which forcibly exchanges the heat between the fresh air directly introduced therein and having the oxygen concentration of 21%, and high temperature discharged air which is introduced therein via discharging duct 13 having an opening in duct 9 of accelerating device 3. The fresh air, which is heated to a high temperature by the heat exchange with the high temperature discharged air provided via duct 13, is introduced by fan 14 via air intake duct 15 whose opening is located in accelerating device 3.

Herein, 16 is a discharging duct discharging the discharged air of the heat exchanger.

Cooling device 4 is a zone provided adjacent to accelerating device 3 and for quenching the product provided from accelerating device 3. It comprises product shelf 18 which is cylinder driven for sinking product P in and out of water tank 17 within the pit, pump 19 for stirring water in water tank 17, and sand extracting pump 20 for discharging molding sand fallen from product P together with water.

Herein, preheating furnace 1, heating furnace 2, and accelerating device 3 are separated each other by partition doors 22 which are opened and closed by cylinders

21 and which are provided to seal each treating zone so as to maintain the desired atmosphere therein. In addition, such a partition door 22 is also provided at the entrance of preheating furnace 1 and at the exit of accelerating device 3.

5

10

15

20

25

30

In the present device comprising with the above mentioned components, aluminium die casting product P which is to be heat treated is conveyed into preheating furnace 1, and conveyed in the direction of arrow A by the endless chain, so as to be uniformly preheated to a relatively low predetermined temperature (e.g. about 100°C) by using a part of the heat discharged from heating furnace 2.

Next, preheated product P is conveyed via partition door 22 opened by activation of cylinder 2 into heating furnace 2 on the path rollers (not shown) in the direction of arrow B, being heated with the heat from burner 6 to a predetermined heat treatment temperature (e.g. about 510°C), and heat treated in this temperature for a predetermined period (e.g. 240 minutes).

The heating air is effectively and uniformly disbursed by turbo fan 7 provided in the furnace, and discharged to the outside of the furnace after heating product P. The discharged air of high temperature is then introduced into preheating furnace 1 and used as a preheating source.

Herein, the core sand coupled to the interior of product P and the molding sand stuck on the surface thereof are collapsed down from product P as the binder binding them is oxidized during the heat treatment and decomposed by the heat. The sand is discharged by screw conveyer 10 underneath of casing 5, and collected in basket 11.

However, since entrance of outer air is minimized to just enough for combustion by burner 6 in order to improve heat efficiency within heating furnace 2, the oxygen concentration gradually goes down from the normal value of about 21 % to about 5-10 % during the heat treatment. If such a condition is settled, the oxidation decomposition can not be adequately carried out, and the molding sand is hardly collapsed from the surface of the product.

Accordingly, by the present device, in the following accelerating device 3 for accelerating collapsion of the molding sand, high temperature fresh air is introduced which has a high oxygen concentration.

That is, in accelerating device 3 for accelerating collapsion of the molding sand in which heat treated device P is conveyed, fresh air is heated in heat exchanger 12 through heat exchanges with discharged high temperature air fed via duct 13, and then discharged into the accelerating device via supply duct 15, resulting in an increase of oxygen concentration in the atmosphere within accelerating device 3 to about 15-20%. That accelerates oxidation decomposition of the binder for the molding sand, and the molding sand collapse and falls down easily from product P. The fallen molding sand is conveyed out and retrieved by screw conveyer 10 of the same type of ones in heating furnace 2.

10

5

Then, product P is conveyed to cooling device 4, cooling treated in water tank 17, and then conveyed to the following washing device, etc.

Herein, product P conveyed to cooling device 4 has some molding sand stuck thereto. The molding sand falls by a stir of water flow by pump 19 during immersion into water tank 17, and is discharged with water by sand extracting pump 20 to a device for collecting the molding sand (not shown).

15

20

As described above, in the embodiment of the present invention, the accelerating device 3 is provided between heating furnace 2 using a direct combustion heating method with burner 6 and the following cooling device 4. As accelerating device 3 introduces fresh air and provides a high temperature atmosphere of high oxygen concentration, molding sand, which is hardly collapsible from product P due to low oxygen concentration in heating furnace 2 during heating treatment, is brought into contact with the high temperature fresh air of high oxygen concentration, so that oxidation decomposition of the binder for the mold sand is enhanced and collapsion of the molding sand is accelerated.

25

Consequently, there are advantages that most molding sand stuck on product P is collapsed while passing through accelerating device 3, and that the load of sand extracting pump 20 of the following cooling device 4 and the efforts and costs to collect and reuse molding sand collected with water are significantly diminished.

Moreover, the provision of accelerating device 3 at the exit end of heating furnace 2 provides an effect of diminishing disturbance in the atmosphere, such as

30

decrease in the temperature of the furnace by contacting with fresh air of a low temperature, when partition door 22 at the exit end of heating furnace 2 is opened.

Furthermore, the aforementioned atmosphere of high oxygen concentration can be adequately obtained by merely introducing fresh air. No special source for supplying oxygen is required. Heating the fresh air is efficiently done by an exchange of heat with the discharged air of high temperature from the accelerating device 3.

Furthermore, the discharged air after the heat exchanged can be provided through discharging duct 16 to preheating furnace 1 and used as a preheat source. It may be used for drying the molding sand containing water which collected by sand extracting pump 20 of cooling device 4. As a whole apparatus, it is possible to use heat extremely efficiently.

Herein, in the above described embodiment, a partition door 22 is provided in a rear section within the furnace 2 itself, and the section between partition door 22 and the outlet is used as a section for accelerating collapsion of the molding sand. A device 3 for accelerating collapsion of the molding sand may of course be provided as an independent section between heating furnace 2 and cooling device 4.

Moreover, heated product P is quenched in water of water tank 17. As a coolant, conventional quench oil may be used instead of water as required.

Furthermore, the embodiment is suitable for castings having complicated figures. The preferred embodiment has been described for the heat treatment of aluminium die casting products in which a problem of separation from molding sand is often arose. The device in accordance with the present invention may be used for heat treatment of any castings in general which are molded using sand molds, and provides the excellent effects.

As described above, in accordance with the present invention, during the heat treatment of casting products using sand molds, molding sand can easily be collapsed from the products.

4. Brief description of the drawings

5

10

15

20

25

30

Figure 1 is a plan view schematically showing an embodiment in accordance with the present invention.

Figure 2 is a cross-sectional view of the embodiment, Figure 3 is a plan view showing an important part of the embodiment, Figure 4 is a cross-sectional view of the part.

Description of reference numerals

5

10

1: a preheating furnace, 2: a heating furnace, 3: an accelerating device for accelerating collapsion of molding sand, 4: a cooling device, 5: a casing, 6: a burner, 7: a turbo fan, 8: a fan motor, 10: a screw conveyer, 12: a heat exchanger, 15: an air intake duct, P: aluminium die casting product.

(54) HEAT TREATING DEVICE OF SAND MOLD CASTING

(11) 59-219410 (A)

(43) 10.12.1984 (19) JP

(21) Appl. No. 58-93450

(22) 27.5.1983

(71) TORINITEI KOGYO K.K. (72) SHIYOUHEI FURUSE(2)

(51) Int. Cl3. C21D1/63,B22D29/00

PURPOSE: To accelerate effectively collapsion of molding sand from a casting by providing a zone for accelerating the collapsion of the molding sand between a heating furnace and a cooler and maintaining said zone at the high temp. atmosphere of the oxygen concn. higher than the oxygen concn. in the heating furnace.

CONSTITUTION: A casting product P is conveyed successively from a preheating furnace 1 to a heating furnace 2, a device 3 for accelerating collapsion of molding sand and a cooler 4. The product is heat treated continuously by a burner 6 and a turbo fan 7 in the furnace 2 and the device 3. The atmosphere of the oxygen concn. higher than the oxygen concn. of the atmosphere in the furnace 2 is provided by a heat exchanger 12 to the device 3. More specifically, the heat exchanger 12 feeds fresh air contg. about 21% oxygen through an air feed duct 15 by a fan 14 into the device 3, sucks the air in the device 3 through a duct 13 and discharges the same from a duct 16 after heat exchange with the feed air. The oxidation decomposition of the binder for the molding sand is thus accelerated and the molding sand is easily dislodged from the product P.

D37

⑫ 日本国特許庁 (JP)

①特許出願公開

亚公開特許公報(A)

昭59-219410

⑤ Int. Cl.³C 21 D 1/63B 22 D 29/00

識別記号

Product Production

庁内整理番号 7730-4K 7225-4E 砂公開 昭和59年(1984)12月10日

発明の数 1 審査請求 未請求

(全 6 頁)

②砂型鋳造品の熱処理装置

创特

願 昭58-93450

學出

願 昭58(1983) 5 月27日

⑦発 明

者 古瀬昭平

豊田市平山五丁目7番地の4

⑫発 明 者 上島健吾

大阪市大正区泉尾六丁目5番68

号

位発 明 者 渡辺吉啓

岐阜県加茂郡八百津町上吉田10

84

⑩出 願 人 トリニティ工業株式会社

東京都千代田区丸の内二丁目4

番1号

砂代 理 人 弁理士 沢野勝文

明 40 智

1. 発明の名称

砂型鉄道品の熱処理装置

2.特許請求の範囲

紡造設備から取入される砂型鋳造品を外気から 構造断された雰囲気内での燃焼によって加熱処理 するようになされた加熱炉と前記加熱炉から散出 される製品を水中又は油液中で急冷するようにな された冷却装置とを備えた砂型鋳造品の熱処理装 置において、前記加熱炉と冷却装置との間の鋳造 置において、前記加熱炉と冷却装置との間の鋳造 品取送路に少なくとも前記加熱炉内飾よりも破壊 激度の高い高温の雰囲気を与える鋳砂前落度進発 域を設けたことを特徴とする砂型鋳造品の熱処理 装置。

3.発明の詳細な説明

本発明は砂型精造品の熱処理装置に係り、特に 加熱のためにパーナ等の燃焼を用いる直火加熱方 式の熱処理装置に関する。

辞造投稿から取出される砂型による辞造品は一 般に鋳造組織の改賞等のために加熱及び冷却等の 熱処理に付され且つ中子砂や鋳造品裏面に付着した鋳砂等を除去された後に洗浄工程に送られる。

例えば、複雑な形状の製品の鋳造に適したアルミダイカスト等の場合では鋳造品を約500円程度の温度に加熱した後、これを水中又は油液中で急冷する熱処理にかけると共に、この間に鋳砂を鋳造品から崩壊・脱落させる。

しかし、内部に複雑な構造を有する構造品の場合には、中子砂等がこの加熱の間には完全に除去されずに冷却工程まで持ち越されるので更に付加的な除去手段を設ける必要がある。

ここで、加熱処理にパーナ等の燃焼塩を用いる 直火加熱方式の場合には、加熱雰囲気の適性な地 特に加えて熱エネルギーを極力有効に利用するために加熱炉の内部が最重に遮蔽され、外部から採 り入れる空気もパーナの燃焼に必要な最小限度に 抑えられる。

このため、加熱炉内部の雰囲気の酸素液度はパーナの燃焼によって連常の約21%の状態から次 乳に減少し約5~10%程度にまで低下する。

特問昭59-219410(2)

再進の空気は本来の無処理効果のほかにはむを結合している高分子結合剤等を酸化分解して終むの崩壊・脱宿を促す役割をも果たしているので、炉中の雰囲気中の酸素濃度がこのように低下するとは砂の崩宿が妨げられ、は造品が多量の缺少を付着したまま次の冷却工程に移行することとなる。このため、例えば冷却槽に假律装置や掲むポンプ等を設けて水波の優伴作用によって結びを除去して排出する必要がある。

面も、通常は除去された終砂は回収して再度使用されることとされるから、水分又は油分の分離除去や乾燥等のための労力、時間が更に必要となる。

そこで本発明の目的は、かかる従来技術の欠点を解析し、特に加熱炉内部での熱処理のために直火加熱方式が用いられる際の鋳造品からの鋳砂の 前宿を効果的に促進することのできる砂型鋳造品 の熱処理装置を提供することにある。

この目的を達成するために本発明は、鋳造設備 から概入される砂型鋳造品を外気から電遮断され た雰囲気内での燃焼によって加熱処理するようになされた加熱炉と前記加熱炉から脚出される製品を水中又は油液中で急冷するようになされた冷却装置とを優えた砂型鉄造品の熱処理装置において、前記加熱炉と冷却装置との間の鉄造品散送路に少なくとも前記加熱炉内部よりも散素濃度の高い高温の雰囲気を与える鉄砂崩落促進帯域を設けたことを特徴とする。

以下、本発明を図面に示す実施例に基づいて詳 細に説明する。

第1図は木発明装置の一例としてアルミダイカスト製品のための連続熱処理装置の概要を示す平面図であり、鋳造設備(図示せず)から取り出されたアルミダイカスト製品(以下単に製品という) Pは予熱炉1~加熱炉2~鋳砂が落促進装置3~冷却装置4を経て順次散送され、この間に連続的な熱処理を施されるように成されている。

予無炉1は加熱炉2内における製品Pの加熱効率を高め且つ省エネルギー化を図るために加熱炉2又は鋳砂和落促進装置3から排出される形温の

排気を有効利用して鋳造設備から取り出された製品 P の各部を加熱処理に先立って均一に予熱するための帯域であり、予熱中に製品 P を矢印 A 方向に沿って収送するためのエンドレスチェイン(図示せず)を備えている。

加熱炉 2 は予熱炉 1 の機出側端部に直角方向に設けられており、予熱された製品 P を所定の加熱温度にまで昇温し、その温度で所定時間に亘って加熱する都域であって、加熱処理中に製品 P を失即 B 方向に沿って W送するための多数のパスローラを備えている。

また、加熱炉2は第2図の断面図に示す如りくく 断熱材を介在させた二重壁構造のケーシング5に よって由閉され、粒ケーシング5の上部には 酸送方向Bに沿って所定間隔でバーナ6及びター ボファン1が対向して配設されており、炉内等に 気を直火加熱方式で前記加熱温度に加熱すると にファンモータ8によって回転駆動されるターボ ファン1によりダクト9及び製品Pの周囲を通りに であるの排気を炉外に排出し、排出された排気に に であるの排気を炉外に排出し、排出された排気に 予熱炉1に導入されて予熱炉1内における製品P の予熱源として利用するように成されている。

ケーシング5の下方には炉内を設送される製品 Pから崩落する鋳砂を排出するためのスクリューコンペア10が配設されそのコンペア排出場所には回収パケット11が付設されている。

なお、前記ケーシング 5 乃至スクリューコンベア 1 0 等は、前述の予熱炉 1 及び後述する紡砂筋 落促進装置 3 にもそれぞれ同様に設けられている

转砂筋液促進装置3は第1図に示すように加熱炉2の製品連路の鉄端部と後述する冷却装置4との間に配設され、加熱炉2内の雰囲気よりも監索進度の高い高温の雰囲気(例えば、酸素温度21%の通常の外気組成)を製品に与えて转砂結合剤の酸化分解を促進させるためのものである。

即ち、終砂崩落促進装置3には第3図及び第4 図に示す如く、新鮮な外気を加熱して導入する熱 交換器12が配換されている。

熱交換器12は、その内部に直接取り入れられ

特問昭59-219410(3)

る酸素調度21%の新鮮な外気と、紡砂扇落促進 装置3内のダクト9内に関口された抗気ダクト1 3を介して送給されて取り入れられる高温の抗気 との間で独制的に熱交換を行う全熱交換器が用い られており、ダクト13により送給される高温の 排気との熱交換により両温に加熱された外気は、 ファン14によって映出口が鋳砂崩落促進装置3 内に関口された給気ダクト15を介して導入される。

なお、16は熱交換後の排気を外部に排出する 排気ダクトである。

冷却装置(は終砂前落便進装置 3 からの製品を 急冷するために筋接して設けられた 帯域であり、 ピット内の水根 1 7 に対して製品 P を出没させる ためのシリンダ駆動される製品棚 1 8. 水根 1 7 中の水を復伴するボンブ 1 9、製品 P から削落し た時砂を水と共に排出する揚砂ボンブ 2 0 とを備えている。

なお、予熱炉1. 加熱炉2及び紡砂前落促進装 新3の相互間はそれぞれ処理帯域中の雰囲気が所 望の状態に適宜に保持されるようにシリンダ 2 1 によって関閉可能な仕切ドア 2 2 により互いに遮断されている。また、このような仕切ドア 2 2 は予熱炉 1 の収入口及び紡砂期度促進装置 3 の取出口にもそれぞれ配設されている。

以上の構成からなる本発明装置においては、熱処理されるアルミダイカスト製品Pがまず予熱炉1に散入され、エンドレスチェインによって矢印 A方向に扱送され、ここで加熱炉2の排気による熱の一部を利用して比較的低い所定温度(例えば約100で程度)で均一に予熱される。

次いで、予熱処理を終えた製品Pはシリンダ21の駆動による仕切ドア22の開放によって知熱炉2内に搬入され、パスローラ(図示せず)上を矢印B方向に搬送されながらパーナ6の加熱によって所定の熱処理温度(例えば約510で程度)に発温され、この温度で所定時間(例えば約240分程度)に直って加熱処理される。

加熱用の空気は切内に設置されたターポファン 7によって効果的に均一な分布形態をとり製品P

を加熱してから炉外に排出され、排出された高温 の排気はその後予熱炉」に導入されて予熱源とし て利用される。

ここで、製品Pの内部に結合した中子砂及び表面に付着した鉄砂はそれらを結合している結合剤が加熱処理中の低化、加熱によって分解することにより前速して製品Pから脱落し、ケーシング5下方のスクリューコンペア10により排出されバケット11に回収される。

しかし、加熱炉2内では熱効率を良くするために外気の導入を極力抑えパーナ6の燃機に必要な程度に抑制してあるから、熱処理中に酸素透度が次類に低下し適常の約21%の状態から約5~10%程度に迄減少する。そしてこのような状態になると結合剤の酸化分解が充分に行われず、結役が製品面から順花し難くくなる。

このため木発明装置においては、次工程の転砂 期宿促進装置3において放影遺皮の高い高温の新 鮮な外気が導入される。

即ち、加熱処理後の製品Pが擬入される終砂崩

商促進装置3では、熱交換器12において新鮮な 外気がダクト13を介して送給される高温の排気 との熱交換によって加温された後ファン14によって給気ダクト15から導入され、数装置3内の 雰囲気の低素凝度が約15~20%程度に増 れる。これにより紡砂結合剤の酸化分解が促進され、 おもが削壊して製品Pから容易に脱落する場 れ、鉄砂が削壊して製品Pから容易に脱落する場 もってなる。そして崩落した紡砂は加熱炉2の場合 と同様なスクリューコンペア10によって排出されて回収される。

その後、製品Pは冷却装置4に塩入されて水積 17中で冷却処理され、次に抜良の洗浄装置等に 塩出されて行く。

なお、冷却装置4に服入される製品Pには扱分かの時秒が付着しているが、これらは水槽17中に浸漬された際にボンブ19による水変優拌により水中に設落し、揚砂ボンブ20によって水と共に排出されて時砂図収装置(図示せず)に送られる

以上のように木売明実施例においては、バーナ

特問昭59-219410(4)

6による電火加熱方式を用いた加熱炉 2 とその後段の冷却装置 4 との間に新鮮な外気を導入して散業速度の高い高温の雰囲気を与える終砂前高促進装置 3 を設けてあるので、加熱炉 2 での加熱処理中の散素濃度の低下により製品 P から崩落し難くくなっている終砂をここで散素濃度の高い新鮮な外気に接触させ、鉄砂の結合剤の酸化分解を早めてその崩壊・脱落を促進させることができるという効果がある。

したがって、製品Pに付着した紡砂は鉄砂商商 促進装置3を通過する際には殆ど前落し、次段の 冷却装置4での拐砂ポンプ20等の負荷や水分と 共に回収された鋳砂の回収再生の労力及び費用が 若しく低減されるという利点がある。

また、鉄砂崩落促進装置3を加熱炉2の扱出口側に配設したことにより、加熱炉2の排出口側の仕切ドア22の関放の際の低温の外気との直接接触による炉内温度の低下等の雰囲気の優乱を晒しく振越させる効果も得られる。

更に、前記の如き放業機度の高い雰囲気は単に

新鮮な外気を導入することによって充分得られ、 何ら特別な酸素供給源を必要としないし、この際 の外気の加熱も鋳砂廚落促進装置3内からの高湿 の排気との熱交換によって効果的に行うことがで きる。

更にまた、熱交換後の排気は排気ダクト16によって予熱炉1内に送給することにより予熱炉1の予熱線として利用することもでき、或いはまた冷却装置4の場砂ボンブ20により回収された水分を含む鋳砂の乾燥に用いることもでき、装置全体としての熱利用を極めて効率的に行うことがでまる。

なお、上述の実施例においては加熱炉2自体の 後部に仕切ドア22を付設してこれと吸出網部と の間の帯域を終砂前落促進帯域として利用してい るが、終砂崩落促進装置3をそれ自体独立した帯 域として加熱炉2と冷却装置4との間に設けるこ とも勿論可能である。

また、加熱された製品Pは水槽17中で水により製冷されているが、冷媒としては水のほか必要

に応じて通常の焼人油を用いることもできる。

また、実施例は複雑な構造物の鋳造に適しており、そのために鋳砂との器型性がしばしば問題となるアルミダイカストの熱処理の場合を特に経過な例として説明したが、未発明装置はこれに限らず、砂型を用いて鋳造される製品の熱処理であれば広く一般の鋳造物に適用して優れた効果を得ることができる。

以上述べたように、木発明によれば砂型鉄造製品の熱処理に際し、製品から紡砂を容易に崩落させることができるという優れた効果を有する。

4.図面の簡単な説明

第1四は木発明の一実施側の概要を示す平面図 第2回はその根断面図、第3回は木発明実施側の要部を示す平面図、第4回はその根断面図である。

符号の説明

1 …予熱炉、2 …加熱炉、3 …妨砂筋落促進 装置、4 …冷却装置、5 …ケーシング、6 …バー ナ、7 …ターボファン、8 …ファンモータ、1 0 …スクリューコンペア、 1 2 …熱交換器、 1 5 … 給気ダクト、 P …アルミダイカスト製品。

特許出願人 トリニティ工業株式会社

代 理 人 弁理士 凍 野 膝

第 1 豆

第3日

第4個

