Deadline: Friday October 14th, 11:59pm.

Policy to turn in assignment:

- Assignment should be submitted via BlackBoard.
- Student needs to turn in their assignment as a single PDF file.
- No email or late submission will be accepted.

4 points

1. Let $A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$. Construct a 2 × 2 nonzero matrix B such that AB is the zero matrix. Hint: Let $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Compute AB and make it equal to the zero matrix.

- - a) Find A^{-1} using the algorithm we saw in class.
 - b) Use A^{-1} to solve the linear system $A\vec{x} = \vec{b}$, where $\vec{b} = \begin{bmatrix} -5 \\ -3 \\ 2 \end{bmatrix}$.

4 points

3. Let A and B be $n \times n$ invertible matrices such that

$$(A^T + I_n)^{-1} = (BA^{-1})^T.$$

Find A^{-1} . Note: Your formula for A^{-1} should not depend on A or A^{T} . Hint: Try applying inverse and transpose on both sides. Then, manipulate the equation algebraically to obtain a matrix C such that $AC = I_n$.

3 points

- 4. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) Let A be an $n \times n$ matrix, and \vec{b} be a vector in \mathbb{R}^n . If the system $A\vec{x} = \vec{b}$ has infinitely many solutions, then A is not invertible.
 - b) Let A be an invertible square matrix. If AB = AC, then B = C.
 - c) If A and B are square matrices such that AB = BA, then $A^{-1} = B$.