Examenul național de bacalaureat 2025 Proba E. c)

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	2	2
1	$2z_1 + iz_2 = 2(1-i) + i(2+i) = 2 - 2i + 2i + i^2 =$	2 p
	=2-1=1	3p
2.	$f(a) = a + 3$, $(f \circ f)(a) = a + 6$, pentru orice număr real a	3 p
	a+6=9, de unde obținem $a=3$	2p
3.	$2x^2 - 3x + 2 = x^2$, de unde obținem $x^2 - 3x + 2 = 0$	2p
	x=1 sau $x=2$, care convin	3 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 3 divizori ai numărului 2^6 , deci sunt 3 cazuri favorabile, de unde obținem $p = \frac{3}{90} = \frac{1}{30}$	3 p
5.	Mijlocul segmentului AC are coordonatele (3,2) și mijlocul segmentului BD are coordonatele $\left(\frac{5+a}{2}, \frac{b}{2}\right)$ $a=1$ și $b=4$	3p 2p
6.	$tgB = \frac{AC}{AB}$, de unde obținem $AC = 6$	3p
	$BC^2 = 2^2 + 6^2$, de unde obținem $BC = 2\sqrt{10}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ -9 & 0 & 5 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ -9 & 0 & 5 \end{vmatrix} = $ $= -10 + 0 + 0 + 18 - 0 - 0 = 8$	2p 3p
	$A(x) \cdot A(y) = \begin{pmatrix} 4 - 6x - 6y & 0 & 2x + 2y \\ 0 & 4 & 0 \\ -18x - 18y & 0 & 4 + 6x + 6y \end{pmatrix} =$	3p
	$= 2 \begin{pmatrix} 2-3(x+y) & 0 & x+y \\ 0 & 2 & 0 \\ -9(x+y) & 0 & 2+3(x+y) \end{pmatrix} = 2A(x+y), \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$A(x) + A(3x) = 2A(2x)$, $(A(x) + A(3x)) \cdot A(2x) = 4A(4x)$, pentru orice număr real x	3 p
	$4A(4x) = 4A(x^2)$, de unde obținem $4x = x^2$, deci $x = 0$ sau $x = 4$	2p

2.a)	$f(1) = a \cdot 1^3 + 3 \cdot 1^2 - a \cdot 1 - 6 =$	3p
	= a + 3 - a - 6 = -3, pentru orice număr real nenul a	2p
b)	$f = X(X^2 + 3X - 1) - 6$ și câtul împărțirii este X	3 p
	Restul este -6	2p
c)	$(1+x_1)(1+x_2)(1+x_3) = -\frac{f(-1)}{a}$, pentru orice număr real nenul a	3p
	$-\frac{f(-1)}{a} = 1$, de unde obținem $a = 3$	2p

SUBIECTUL al III-lea

(30 de puncte)

	•	uncte
1.a)	$f'(x) = 2 + \frac{x+2}{x} \cdot \frac{x+2-x}{(x+2)^2} = 2 + \frac{2}{x(x+2)} =$	3p
	$= \frac{2x^2 + 4x + 2}{x(x+2)} = \frac{2(x+1)^2}{x(x+2)}, \ x \in (0,+\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(2 + \frac{1}{x} \ln \frac{x}{x+2} \right) = 2$	2p
	$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} \ln \frac{x}{x+2} = 0$, deci dreapta de ecuație $y = 2x$ este asimptota oblică spre $+\infty$ la graficul funcției f	3р
c)	Pentru orice $x \in (0, +\infty)$, $f'(x) > 0 \Rightarrow f$ este strict crescătoare, deci f este injectivă	2p
	$\lim_{x\to 0} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$ și f este continuă, deci f este surjectivă, de unde obținem că f este bijectivă	3p
2.a)	$\int_{0}^{3} f(x)(x+1)^{3} dx = \int_{0}^{3} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{3} =$	3р
	=9-0=9	2p
b)	$\int_{0}^{1} \sqrt{f(x)(x+1)} dx = \int_{0}^{1} \frac{x}{x+1} dx = \int_{0}^{1} \left(1 - \frac{1}{x+1}\right) dx = x \left \frac{1}{0} - \ln(x+1) \right _{0}^{1} =$	3p
	$=1-0-\ln 2+\ln 1=1-\ln 2$	2p
c)	$g(x) = \frac{e^x}{(e^x + 1)^3}, x \in \mathbb{R} \Rightarrow \mathcal{A} = \int_{-1}^{1} g(x) dx = \int_{-1}^{1} \frac{e^x}{(e^x + 1)^3} dx = \int_{-1}^{1} \frac{(e^x + 1)^4}{(e^x + 1)^3} dx = -\frac{1}{2(e^x + 1)^2} \Big _{-1}^{1} = -\frac{1}{2(e^x + 1)^2} \Big _{-$	3p
	$=\frac{e^2-1}{2(e+1)^2}=\frac{e-1}{2(e+1)}$	2p

Pagina 2 din 2