NAIVE BAYES CLASSIFIER

PART 1 OF 3 - REVIEW OF PROBABILITIES

GOALS

 Reviewing probabilities toward the Bayes Rule

CAROLINE BARRIÈRE, CSI4106, FALL 2020

Elementary event

An elementary or atomic event is an event that cannot be made up of other events.

Event, E

An event is a set of elementary events.

Sample space, S

The set of all possible outcomes of an event E is the sample space S.

Probability, p

The probability of an event E in a sample space S is the ratio of the number of elements in E to the total number of possible outcomes of the sample space S of E.

Thus, p(E) = |E| / |S|.

DEFINITIONS

Elementary event

A roll of 2 dice.

Event, E

The rolls making the sum of 7 between the dice.

Sample space, S

The set of all possible 2-dice rolling outcomes: {1,1}, {1,2}, {1,3},, {3,3}....{5,2},{6.6}

Probability, p(E)

Sum = 7
$$\rightarrow$$
 {1,6}, {2,5}, {3,4}, {4,3}, {5,2}, {6,1}
p(E) = |E| / |S| = 6 / 36

DICE ROLLING EXAMPLE

Bounds of p(E)

 $0 \le p(E) \le 1$, where $E \subseteq S$

Maximum probability mass = 1

Sum of the probabilities of all possible outcomes in S is 1.

Complements

$$p(\neg E) = 1 - p(E)$$

PROPERTIES

Union of E_1 and E_2 - Either of the event happening $P(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

Conditional probability of E_1 given E_2 - Supposes E_2 has happened $P(E_1|E_2) = p(E_1 \cap E_2) / P(E_2)$

PROBABILITY OF MULTIPLE EVENTS

Event A \rightarrow 2-dice rolls providing a sum of 6 {1,5}, {2,4}, {3,3}, {4,2}, {5,1}

Event B \rightarrow 2-dice rolls where the outcome of one dice is twice the outcome of the other dice

 $\{1,2\}, \{2,1\}, \{2,4\}, \{4,2\}, \{3,6\}, \{6,3\}$

Probability of any of the two events happening?

$$P(A \cup B) = p(A) + p(B) - p(A \cap B) = 5/36 + 6/36 - 2/36 = 9/36$$

DICE ROLLING EXAMPLE

Event A \rightarrow 2-dice rolls providing a sum of 6 {1,5}, {2,4}, {3,3}, {4,2}, {5,1}

Event B \rightarrow 2-dice rolls where the outcome of one dice is twice the outcome of the other dice

 $\{1,2\}, \{2,1\}, \{2,4\}, \{4,2\}, \{3,6\}, \{6,3\}$

Probability of A if B has already happened?

$$P(A \mid B) = p(A \cap B)/p(B) = (2/36) / (6/36) = 1/3$$

DIRE ROLLING EXAMPLE

$p(A|B) = p(A \cap B) / p(B)$ (eq. 1)

$$p(B|A) = p(A \cap B) / p(A)$$
 (eq. 2)

Rewrite equation 2 above:

$$p(A \cap B) = p(B|A)*p(A)$$
 (eq. 3)

Insert equation 3 in equation 1

$$p(A|B) = p(B|A)*p(A) /p(B)$$
 (eq. 4)

Bayes Rule

BAYES RULE

Next video:
Naive Bayes classifier