Abstract Algebra

: Lecture 14

Leo

2024.11.7

Let R be an integral domain. Let $d \in R$, invertible or non-invertible. Let R^* be the set of invertible elements of R.

Definition 1. Let a = bc. b is a factor of a and a is a multiple of b. If c is invertible, we can rewrite a = bc as $a = bc^{-1}$. In this case we say a and b are associate. Denoted by $a \sim b$.

Definition 2. An element $d \in R$ is called irreducible if d = ab then a or b is invertible.

Definition 3. An element $d \in R$ is called prime if d|ab then d|a or d|b.

Remark 4. $Irreducible \neq prime$.

Lemma 5. In a ID, a prime is irreducible.

证明. Let R be a ID, let $d \in R$ be a prime. Suppose d = ab, then d|ab, so d|a or d|b, as d is prime. If d|a, then a = dc for some $c \in R$, so a = abc. Since R is a ID, it shows 1 = bc, i.e. b is a unit. Thus d is irreducible by definition.

Remark 6. An irreducible element is not necessarily a prime.

Example 7. Let $R = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$. Claim: (1). 2 is irreducible. (2). 2 is not prime.

- (1). Suppose $2 = (a + b\sqrt{-5}(c + d\sqrt{-5}))$ for some $a, b, c, d \in \mathbb{Z}$. Then taking complex conjugation, $2 = (a b\sqrt{-5}(c d\sqrt{-5}))$. $4 = (a^2 + 5b^2)(c^2 + 5d^2)$. Then b = d = 0, and $4 = a^2c^2$. So either $a^2 = 4$ and $c^2 = 1$ or $a^2 = 1$ and $c^2 = 4$. i.e. either $a = \pm 2$ and $c = \pm 1$ or $a = \pm 1$ and $c = \pm 2$. So 2 is irreducible.
- (2). $2|6 = (1+\sqrt{-5})(1-\sqrt{-5})$, but $2 \nmid 1+\sqrt{-5}$ and $2 \nmid 1-\sqrt{-5}$, so 2 is not prime.

Definition 8. Let D be an ID. Then D is called a unique factorazition domain (UFD) if:

- (1). Each non-invertible element of D can be written as a product of finitely many irreducible elements. (Chain condition)
- (2). And this factorization is unique up to the order of the factors and multiplication by units.

Theorem 9. Let D be a ID. Then D is a UFD if and only if:

- (1). Chain condition;
- (2). Prime condition: every irreducible element is prime.

证明. First assume (1) and (2) hold. Let $a = p_1 p_2 \dots p_s = q_1 q_2 \dots q_t$. Where p_i, p_j are irreducibles. Then $p_1 | q_1 q_2 \dots q_t$, so $p_1 | q_1$ or $p_1 | q_2 \dots q_t$. Continue this argument there exists i such that $p_1 | q_i$. Similarly take p_2 . Finally we get $a = p_1 p_2 \dots p_s = q_1 q_2 \dots q_t$. where s = t and $p_i = q_i$ after reordering. Therefore D is a UFD.

Conversely, Let D be a UFD. Then we need to irreducible element is prime. Let $d \in D$ to be an irreducible element s.t. d|ab where a, b are not invertible. Then ab = dc for some $c \in D$. If c is invertible, then $d = abc^{-1} = a(bc^{-1})$, contradiction. So c is not invertible.

Since D is a UFD, let $a = p_1 p_2 \dots p_r$, $b = q_1 q_2 \dots q_s$, $c = u_1 u_2 \dots u_t$. $d \pm p_i$ or $d \pm q_j$, i.e. d|a or d|b. Therefore d is a prime.

Definition 10. An ID is called a Principal Ideal Domain (PID) if every ideal is principal.

Theorem 11. A PID is a UFD. A UFD is not nessecary a PID.

Example 12. $\mathbb{Z}[x]$ is a UFD. $\mathbb{Z}[x]$ is not a PID. Take (2,x), this is not a principal ideal.

Proposition 13. Let D be a PID. And $p \in D - \{0\}$. Then:

- (1). p is a prime $\Leftrightarrow p$ is irreducible;
- (2). (p) is a prime ideal \Leftrightarrow (p) is a maximal ideal.

延明. Let p be irreducible. Then (p) is maximal. If (p) is not maximal, then there exists (q) such that $(p) \subseteq (q)$. Then p = aq for some $a \in D$. Since D is a PID, (q) = (p) or (q) = (1).

So D/(p) is a field, so is ID, and (p) is a prime ideal, and p is a prime.

Conversely, (leave as an exercise).

延明. (Proof of PID is UFD). Since irreducibility equivalent to prime by the proposition. We only need to prove that every non-zero non-unit element is a product of finitely many irreducible elements. If not we have:

$$(a) \subset (b) \subset (b_1) \subset (b_2) \subset \cdots$$

Let
$$I = \bigcup_{0 \le i < \infty} (b_i) \bigcup (a)$$
. Let $I = (d)$ (next time)