TIPE 2024

Marilou Bernard de Courville

Introduction

1er objectif : un trajet efficace en métro

Données du problème

Algorithme de Dijkstra, structures de données Résultat : stations les

plus éloignées

2º objectif : un

plusieurs types de chemins Cas préliminaire du

Cas préliminaire du métro

Formalisation du

Résolution, application au cadre de la ville

Conclusion

TIPE 2024

Apprendre à une intelligence artificielle à jouer à Snake en utilisant un algorithme génétique

Marilou Bernard de Courville

Lycée Charlemagne

16 octobre 2023

Introduction

Problématique et pertinence au regard du thème de l'année

- ▶ Le jeu de Snake : piloter un serpent dans le but de manger des pommes, sans rentrer dans les murs ni se replier sur soi-même.
- ▶ **Objectif**: mettre en place une intelligence artificielle pouvant jouer au jeu de Snake.
- Le moyen d'y parvenir : utiliser un algorithme génétique, qui s'inspire de l'évolution naturelle.

TIPE 2024

Marilou Bernard de Courville

Introduction

1^{er} objectif : un trajet efficace en métro

Données du problème
Algorithme de Dijkstra,
structures de données
Résultat : stations les

plus éloignées 2º objectif : un traiet constitué de

lusieurs types de hemins

Cas préliminaire du métro

Formalisation du problème Résolution, application au cadre de la ville

onclusion

Trajet le plus court en métro - modélisation

Modèles de données utilisés (types)

Position

- Un tas est une représentation organisée en arbre des stations en fonction d'une priorité (distance du chemin).
- Représentation en tas (heap) efficace en complexité pour accéder au nœud de priorité minimum et mettre à jour les priorités.
- Trois structures étudiées : tas non modifiables (immutable heaps), tas modifiables, et tarbres (treap).
- ▶ Programmes réalisés en OCaml utilisent seulement le module Hashtbl de la bibliothèque standard pour manipuler les tas.

TIPE 2024

Marilou Bernard de Courville

Introduction

trajet efficace ei

Données du problème

Algorithme de Dijkstra, structures de données

Résultat : stations les plus éloignées

2º objectif : un trajet constitué de plusieurs types de chemins

Cas préliminaire du

ormalisation du roblème

Résolution, application

onclusion

11

Trajet le plus court en métro - algorithme

Algorithme de Dijkstra et influence des structures de données sur la complexité

Require: Un graphe G = (V, A), Vsommets. A arêtes Require: Un noeud source s Ensure: d tableau des plus court chemins de s vers $v \in V$ for all $v \in V[G]$ do $d[v] \leftarrow +\infty$, père $[v] \leftarrow$ None end for $d[s] \leftarrow 0, S \leftarrow \emptyset, Q \leftarrow V[G]$ while $Q \neq \emptyset$ do $u \leftarrow \text{Extrait}_{\text{Min}}(Q)$ $S \leftarrow S \cup \{u\}$ for all arête (u, v) d'origine u do if d[u] + w(u, v) < d[v] then $d[v] \leftarrow d[u] + w(u, v),$ pere[v] := uend if end for

end while

Table – Dijkstra : complexité (opérations)

Complexity
$\mathcal{O}\left(V^2+A\right)$
$\mathcal{O}\left(\left(V+A\right)\log V\right)$

TIPE 2024

Marilou Bernard de Courville

Données du problème

Algorithme de Diikstra. structures de données

Cas préliminaire du

Résolution, application au cadre de la ville

Plus compliqué : plus petit chemin passant par toutes les lignes du métro

Étude de la résolution à l'aide d'un solveur linéaire

- ➤ Sujet traité par Florian Sikora [7] par étude de graphe coloré pour le réseau du métro;
- ► Sommet : station, arête : trajet entre deux stations connexes, arête colorée par la couleur de la ligne reliant les stations
- ▶ Problème du "Generalised directed rural postman" [2];
- ▶ Problème NP-difficile : pas de solution en temps polynomial [6];
- ▶ Résolution requiert l'utilisation d'un solveur linéaire (CPLEX d'IBM) pour "integer linear programming" (ILP) [9];
- ► Fait intervenir une matrice de contraintes (MIP) de 1270x1847, 6999 coeffs non nuls.

TIPE 2024

Marilou Bernard de Courville

Introduction

1^{er} objectif : un trajet efficace en métro

Données du problème

Algorithme de Dijkstra, structures de données Résultat : stations les plus éloignées

2º objectif : un trajet constitué de plusieurs types de chemins

Cas préliminaire du métro

Formalisation du problème Résolution, application au cadre de la ville

nclusion

Formalisation du problème : variables

- ▶ Ensemble V des sommets, A des arêtes, C des couleurs. $(u,v) \in V^2$, $u \xrightarrow[l \in C]{} v \in A$.
- ▶ $x_{u,v,l} \in \{0,1\}$: variable binaire pour chaque arc $u \to v$ (sur ligne l), avec x = 1 si l'arc est considéré, x = 0 sinon.
- $ightharpoonup w_{u,v,l} \in \mathbb{N}$: est le temps pour parcourir l'arête $u \to v$
- $(u,v) \in V^2$, $f_{u,v,l}, y_v \in \mathbb{N}$ sont les flots des arcs/sommets : positifs si l'arc/sommet est sur le chemin considéré.
- ightharpoonup s, t sont les points de départ/arrivée fictifs (temps nul pour rejoindre tout sommet).
- $\forall ((u,v,l_1),(v,w,l_2)) \in A^2, z_{u,v,w,l_1,l_2} \in \{0,1\} \text{ indique si deux arêtes sont utilisées consécutivement } u \xrightarrow[l_1]{} v \xrightarrow[l_2]{} w.$

TIPE 2024

Marilou Bernard de Courville

Introduction

trajet efficace en

Données du problème

Algorithme de Dijkstra, structures de données Résultat : stations les plus éloignées

2º objectif : un trajet constitué de plusieurs types de chemins

Cas préliminaire du métro

Formalisation du problème

Résolution, application au cadre de la ville

onclusion

Conclusion

TIPE 2024

Marilou Bernard de Courville

Données du problème

Algorithme de Diikstra. structures de données Résultat : stations les

Cas préliminaire du

Formalisation du

Résolution, application au cadre de la ville

Conclusion

- Deux problématiques urbaines traitées :
 - optimisation d'un trajet en métro
 - parcours touristique efficace d'une ville en empruntant différents types de chemins
- Pertinence de la modélisation des problèmes urbains par des graphes pour les résoudre.
- Application de la recherche opérationnelle pour trouver une solution.
 - Optimisation fait intervenir un grand nombre de contraintes résultant en des problèmes combinatoires complexes sans solution analytique.
 - Importance du choix des algorithmes et structures de données pour obtenir des solutions pratiques efficaces.