V606

Suszeptibilität paramagnetischer Substanzen

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 11. April 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziels	etzung	2		
2	The	orie	2		
	2.1	Magnetismus und Materie	2		
		2.1.1 Diamagnetismus			
		2.1.2 Paramagnetismus	3		
	2.2	Paramagnetische Suszeptibilität	3		
		2.2.1 Seltene-Erd-Verbindungen	6		
	2.3	Messverfahren	6		
		2.3.1 Apparatur zur Induktivitätsmessung			
		2.3.2 Unterdrückung von Störspannungen	7		
3	B Durchführung				
4	Aus	vertung	8		
	4.1	Fehlerrechnung	8		
	4.2	Durchlasskurve			
	4.3	Effektiver Querschnitt			
	4.4	Suszeptibilität			
5	Disk	ussion	11		
Literatur					
Anhang					

1 Zielsetzung

Mit dem nachfolgenden Versuch soll die Suszeptibilität der Oxide einiger Seltener-Erd-Elemente gemessen werden. Die Messergebnisse dienen anschließend zum Vergleich mit den aus der Theorie errechneten Erwartungswerten.

2 Theorie [1]

2.1 Magnetismus und Materie

Der im Vakuum geltende Zusammenhang zwischen magnetischer Flussdichte \boldsymbol{B} und magnetischer Feldstärke \boldsymbol{H}

$$\boldsymbol{B} = \mu_0 \boldsymbol{H}$$

muss unter Anwesenheit von Materie um die Magnetisierung \boldsymbol{M} zu

$$\boldsymbol{B} = \mu_0 \boldsymbol{H} + \boldsymbol{M}$$

ergänzt werden. Dabei beschreibt μ_0 die magnetische Feldkonstante. Verantwortlich für das Auftreten von M sind atomare magnetische Momente im betrachteten Material. Daher lässt sich die Magnetisierung mit dem mittleren magnetischen Moment $\bar{\mu}$ und der Anzahl der Momente pro Volumen N als

$$\mathbf{M} = N\mu_0\,\bar{\boldsymbol{\mu}}$$

ausdrücken. Ihre Abhängigkeit zu \boldsymbol{H} wird über

$$\mathbf{M} = \mu_0 \chi \mathbf{H}$$

formuliert. Der Faktor χ heißt magnetische Suszeptibilität und weist selbst komplexe Beziehungen zur Feldstärke H und Temperatur T auf.

2.1.1 Diamagnetismus

Durch die Induktion magnetischer Momente beim Einwirken äußerer Magnetfelder tritt in allen Atomen das Phänomen des Diamagnetismus auf. Das induzierte Feld ist dem ursächlichen dabei entgegengesetzt und schwächt so dessen Einfluss ab. Für die Suszeptibilität muss dann $\chi < 0$ gelten. Ideale Diamagneten werden durch Supraleiter realisiert, welche $\chi = -1$ erreichen und das Magnetfeld in ihrem Inneren vollständig verdrängen.

2.1.2 Paramagnetismus

Anders als der Diamagnetismus ist der Paramagnetismus keine universelle Eigenschaft der Materie, sondern lässt sich nur bei Atomen, Ionen und Molekülen beobachten, deren Gesamtdrehimpuls nicht verschwindet. Bei Abwesenheit eines äußeren Feldes sind die an den Drehimpuls gekoppelten magnetischen Momente durch thermische Bewegung zufällig orientiert, sodass keine mittlere Magnetisierung existiert. Wird jedoch ein Magnetfeld angelegt, richten sich die Momente parallel dazu aus, sodass dessen Wirkung verstärkt wird. Die Suszeptibilität erfüllt dann $\chi > 0$ und ist aufgrund des Störeinflusses der thermischen Bewegung temperaturabhängig. Anhand dieses Modells kann χ nun berechnet werden.

2.2 Paramagnetische Suszeptibilität

Der atomare Gesamtdrehimpuls J setzt sich aus Bahndrehimpuls der Elektronenhülle und Eigendrehimpuls der Elektronen, dem Spin, zusammen. Für den Paramagnetismus kann der Beitrag des zusätzlich auftretenden Kerndrehimpulses vernachlässigt werden. Solange das äußere Magnetfeld nicht zu stark ist, wird von LS-Kopplung mit

$$J = L + S$$

ausgegangen, also der Annahme, dass J der Vektorsumme von Gesamtbahndrehimpuls L und Gesamtspin S entspricht. Dabei setzen sich L und S nach

$$oldsymbol{L} = \sum_i oldsymbol{l}_i$$

aus der jeweiligen Vektorsumme der Einzeldrehimpulse sämtlicher in der Hülle enthaltenen Elektronen zusammen. Anwenden quantenmechanischer Mittel liefert dann die zugehörigen magnetischen Momente, welche sich auf

$$\mu_L = -\frac{\mu_B}{\hbar} L \tag{1}$$

und

$$\boldsymbol{\mu}_S = -g_s \frac{\mu_B}{\hbar} \boldsymbol{S} \tag{2}$$

belaufen. Dabei entspricht $\hbar=\frac{h}{2\pi}$ der reduzierten Planck-Konstante, die mit Wirkungsquantum h, Frequenz ν und Kreisfrequenz ω die Beziehung $h\nu=\hbar\omega$ erfüllt. Mit der Ladung e_0 und Ruhemasse m_0 des Elektrons bezeichnet das Bohrsche Magneton

$$\mu_B = \frac{1}{2} \frac{e_0}{m_0} \hbar$$

das zur Drehimpulseinheit \hbar gehörige magnetische Moment. Ebenso ist mit der negativen Ladung des Elektrons das negative Vorzeichen in (1) und (2) erklärt. Der Faktor g_S entspricht dem gyromagnetischen Verhältnis des freien Elektrons.

Unter Verwendung der Bahndrehimpulsquantenzahl L, Spinquantenzahl S und Gesamtdrehimpulsquantenzahl J des Atoms lässt sich

$$|\mathbf{L}| = \sqrt{L(L+1)}\hbar$$
 $|\mathbf{S}| = \sqrt{S(S+1)}\hbar$ $|\mathbf{J}| = \sqrt{J(J+1)}\hbar$ (3)

für die Beträge der Drehimpulse schreiben. Aus (1) und (2) folgt damit weiter

$$|\boldsymbol{\mu}_L| = \frac{\mu_B}{\hbar} |\boldsymbol{L}| = \mu_B \sqrt{L(L+1)} \tag{4}$$

und

$$|\boldsymbol{\mu}_S| = g_s \frac{\mu_B}{\hbar} |\boldsymbol{S}| = g_S \,\mu_B \sqrt{S(S+1)} \tag{5}$$

für die entsprechenden magnetischen Momente. Bei LS-Kopplung verschwindet die zu J orthogonale Komponente von μ , sodass nur $\mu_J \parallel J$ messbar ist. In Abbildung 1 kann dazu der Zusammenhang

$$|\boldsymbol{\mu}_{J}| = |\boldsymbol{\mu}_{S}|\cos\alpha + |\boldsymbol{\mu}_{L}|\cos\beta \tag{6}$$

abgelesen werden. Zudem lässt sich nach dem Cosinussatz mittels des Dreiecks OAB

$$\cos \alpha = \frac{|\mathbf{J}|^2 - |\mathbf{L}|^2 + |\mathbf{S}|^2}{2|\mathbf{J}||\mathbf{S}|} \qquad \cos \beta = \frac{|\mathbf{J}|^2 + |\mathbf{L}|^2 - |\mathbf{S}|^2}{2|\mathbf{J}||\mathbf{S}|}$$
(7)

aus Abbildung 1 herleiten.

Abbildung 1: Vektordiagramm der Drehimpulse einer Elektronenhülle mit den resultierenden magnetischen Momenten.

Einsetzen von (3), (4), (5) und (7) in die Beziehung (6) liefert nun

$$\begin{split} |\pmb{\mu}_J| &= \mu_B \left(g_S \sqrt{S(S+1)} \cos \alpha + \sqrt{L(L+1)} \cos \beta\right) \\ &= \mu_B \frac{\left(g_S+1\right) J(J+1) + \left(g_S-1\right) \left(S(S+1) - L(L+1)\right)}{2 \sqrt{J(J+1)}} \end{split}$$

als Betrag des magnetischen Moments. Anhand der Größe g_S kann mit guter Genauigkeit die Näherung $g_S\approx 2$ ausgenutzt werden, um über den für das Atom spezifischen Landé-Faktor

$$g_J = \frac{3J(J+1) + \left(S(S+1) - L(L+1)\right)}{2J(J+1)}$$

den Ausdruck

$$|\boldsymbol{\mu}_{J}| \approx \mu_{B} \, g_{J} \sqrt{J(J+1)} \tag{8}$$

zusammenzufassen. Ein weiteres quantenmechanisches Phänomen ist die Richtungsquantelung, wonach der Winkel zwischen einem äußeren Magnetfeld und μ_J nicht beliebig ist, sondern nur solche Werte einnimmt, bei denen die Komponente μ_{J_z} von μ_J in Feldrichtung ein ganzzahliges Vielfaches von $\mu_B g_J$ darstellt. Entsprechend muss

$$\mu_{J_z} = -\mu_B \, g_J \, m$$

gelten, wobei $m \in \mathbb{Z}$ die Orientierungsquantenzahl bezeichnet. Da μ_{J_z} als Komponente von μ_J immer $|\mu_{J_z}| \leq |\mu_J|$, also laut (8) $m \leq \sqrt{J(J+1)}$ erfüllt, führt die Einschränkung $m \in \{-J, -J+1, \ldots, 0, \ldots, J-1, J\}$ zu dem Schluss, dass genau 2J+1 Möglichkeiten zur Einstellung des magnetischen Moments relativ zur äußeren Feldrichtung existieren. Jeder dieser Einstellrichtungen lässt sich eine spezifische potentielle Energie

$$E_m = -\boldsymbol{\mu}_J \cdot \boldsymbol{B} = \mu_{J_z} B = \mu_B g_J m B$$

zuordnen. Dieses Auftreten von 2J+1 Unterenergieniveaus heißt Zeeman-Effekt.

$$\begin{split} Z(E,T) &= \exp \left(-\frac{E}{kT} \right) \\ \mu_{ges} &= \sum_{m=-J}^{J} -\mu_B \, g_J m Z(E,T) = -\mu_B \, g_J \sum_{m=-J}^{J} m \, \exp \left(-\frac{\mu_B \, g_J m B}{kT} \right) \\ \bar{\mu} &= -\mu_B \, g_J \frac{\sum_{m=-J}^{J} m \, \exp \left(-\frac{\mu_B \, g_J m B}{kT} \right)}{\sum_{m=-J}^{J} \exp \left(-\frac{\mu_B \, g_J m B}{kT} \right)} \end{split}$$

$$\begin{split} \frac{\mu_B \, g_J m B}{k T} \ll 1 \\ \exp\left(-\frac{\mu_B \, g_J m B}{k T}\right) &= 1 - \frac{\mu_B \, g_J m B}{k T} + \cdots \\ \sum_{m=-J}^J \left(1 - \frac{\mu_B \, g_J m B}{k T}\right) &= 2J + 1 - \frac{\mu_B \, g_J B}{k T} \sum_{m=-J}^J m = 2J + 1 \\ \sum_{m=-J}^J \left(m - \frac{\mu_B \, g_J m^2 B}{k T}\right) &= -\frac{\mu_B \, g_J B}{k T} \sum_{m=-J}^J m^2 = -\frac{\mu_B \, g_J B}{3k T} J(J+1)(2J+1) \\ M &= N \mu_0 \, \bar{\mu} = N \mu_0 \, \mu_B^2 \, g_J^2 \frac{J(J+1) B}{3k T} \\ \chi &= \frac{N \mu_0 \, \mu_B^2 \, g_J^2 J(J+1)}{3k T} \\ \chi &\sim \frac{1}{T} \end{split}$$

2.2.1 Seltene-Erd-Verbindungen

2.3 Messverfahren

2.3.1 Apparatur zur Induktivitätsmessung

$$\begin{split} L &= \mu_0 \frac{n^2}{I} F \\ L_{\widehat{M}} &= \mu \, \mu_0 \frac{n^2}{I} F \\ L_M &= \mu_0 \frac{n^2}{I} F + (\mu - 1) \mu_0 \frac{n^2}{I} Q = \mu_0 \frac{n^2}{I} F + \chi \mu_0 \frac{n^2}{I} Q \\ \Delta L &= \chi \mu_0 \frac{n^2}{I} Q \end{split}$$

$$\Delta L = \chi \mu_0 \frac{n^2}{I} Q$$

$$\mathfrak{U}_{\mathrm{Br}} = \frac{\mathfrak{r}_4 \mathfrak{r}_1 - \mathfrak{r}_3 \mathfrak{r}_2}{(\mathfrak{r}_1 + \mathfrak{r}_2)(\mathfrak{r}_3 + \mathfrak{r}_4)} \, \mathfrak{U}_{\mathrm{Sp}} \end{split}$$

 ${\bf Abbildung~2:}~{\bf Br\"{u}ckenschaltung~f\"{u}r~eine~Suszeptibilit\"{a}tsmessung.}$

2.3.2 Unterdrückung von Störspannungen

Abbildung 3: Filterkurve eines Selektivverstärkers.

Abbildung 4: Blockschaltbild der verwendeten Messapparatur.

r

3 Durchführung

4 Auswertung

4.1 Fehlerrechnung

Für den Mittelwert gilt

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{9}$$

Für den Fehler des Mittelwertes gilt

$$\Delta \bar{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}.$$
 (10)

Für die Gaußsche Fehlerfortpflanzung gilt

$$\Delta f = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot \left(\Delta x_i\right)^2}.$$
 (11)

Diese Formeln werden für sämtliche Fehlerrechnungen in diesem Versuch verwendet, ohne sie für die jeweiligen Rechnungen explizit anzugeben. Die Rechnungen selbst werden dabei mithilfe von Uncertainties durchgeführt.

4.2 Durchlasskurve

Zunächst wird die Filterkurve eines Selektivverstärkers untersucht, wobei eine effektive Spannung U_E in Höhe von 1 V verwendet. Aufgenommen wird dabei die Ausgangspannung U_A in Anhängigkeit von der Frequenz v. Die Frequenz wurde von 2 kHz auf 31 kHz hochgedreht. In der Tabelle 1 sind die aufgenommen Messwerte aufgetragen.

Tabelle 1: Die Messwerte für Filterkurve

	v	u
	2	0.01
	4	0.02
	6	0.025
	8	0.03
	10	0.04
	11	0.05
	12	0.06
	13	0.07
	14	0.08
	15	0.095
	16	0.115
	17	0.145
	18	0.19
	19	0.26
	20	0.42
	20.5	0.6
	21	0.98
	21.1	1.2
	21.2	1.3
	21.3	1.5
	21.4	1.85
	21.5	2.35
	21.6	3.1
	21.7	4
	21.8	4.4
	21.9	3.8
	22	2.95
	22.1	2.45
	22.2	1.85
	22.3	1.55
	22.4	1.3
	22.5	1.15
	23	0.68
	25	0.265
	27	0.17
	29	0.125
	31	0.1
-		

Abbildung 5: Filterkurve des Selektivverstärkers mit einer Güte Q=20 und die Ausgleichskurve in Form einer Gaußverteilung .

4.3 Effektiver Querschnitt

4.4 Suszeptibilität

5 Diskussion

Literatur

[1] Anleitung zu Versuch 606, Suszeptibilität paramagnetischer Stoffe. TU Dortmund, Fakultät Physik. 2023.

Anhang