

META JACKET

CAPSTONE PROJECT REVIEW-1

OUR TEAM

Priyam Jain	20BAI10087
Ishaan Shukla	20BAI10105
Anagh Garg	20BAI10127
Naman Purkar	20BAI10259
Varun Shukla	20BAI10292

Our Mentor and Reviewers

Dr. Pranshu Pranjal

Dr.S.Periyanayagi

Dr. Venkata Prasad Padhy

Agenda

INTRODUCTION

Existing work with limitations

<u>Methodology</u>

Novelty of the project

Real time usage

Hardware & software requirements

Overall system architecture diagram

Conclusion

Introduction

Challenges

- Traditional methods face limitations.
- Polymorphic threats evade detection.
- Swift spread necessitates innovation.

Solutions

- Behavioral Analysis:
 Uncover patterns through behavior.
- Machine Learning and Al:
 Adaptive algorithms for threat recognition.
- Cloud-Based Detection:
 Real-time analysis and
 sharing.

Conclusion

- Holistic Defense: Combine methods for comprehensive protection.
- Continuous Innovation:
 Stay ahead of evolving threats.

INTRODUCTION

Existing work with limitations

Existing work with limitations

Although not widely implemented, the concept of machine learning methods for malware detection is not new. Several types of studies were carried out in this field, aiming to figure the accuracy of different methods.

"Malware Detection Using Machine Learning" Dragos Gavrilut aimed for developing a detection system based on several modified perceptron algorithms.

"A Static Malware Detection System Using Data Mining Methods" proposed extraction methods based on PE headers, DLLs and API functions and methods based on Naive Bayes, J48 Decision Trees, and Support Vector Machines.

Methodology

Introduction

Malware detection methods categorized into:

- Signature-based
- Behavior-based

Analysis Approaches

- Static Analysis:
 - Code examination without execution.
- Dynamic Analysis:
 - Real-time observation of behavior.

Signature-Based

- Identifies using virus codes/hashes.
- Cloud-based database cross-check.

Methodology

Behavior-Based

- Identifies through behavior observation.
- Malware behaves distinctly.

Key Takeaways

- Static and dynamic analysis essential.
- Signature-based relies on known codes.
- Behavior-based focuses on actions.
- Combined use enhances detection.

Methodology

NOVELTY

Real-time Protection

- Swift response to cyber threats.
- Constant monitoring for immediate defense.

Al-Based Counteraction

- Intelligent response to ongoing attacks.
- Adaptive measures guided by Al algorithms.

Evolutionary Defense

- Al-driven malware analysis.
- Defense evolves in tandem with emerging threats.

NOVELTY

Real Time Usage

Introduction

• IoT Security Challenge:

 Growing threat landscape in smart homes.

Smart Homes Protection:

Machine learningdefends against IoTthreats.

Unique Capabilities

- Adaptability to IoT
 Environment: Swift
 identification of unusual device communication.
- Continuous Learning:
 Machine learning models
 update and refine.

Benefits

Agile Defense:

 Proactively counters evolving threats

Real Time Usage

HARDWARE AND SOFTWARE REQUIREMENTS

HARDWARE REQUIREMENTS

Anti Virus Malware

Device

Laptop, desktop or pc.

RAM
Recommended 8GB or above

Ethernet or Wifi

SOFTWARE REQUIREMENTS

Operating System

Mac, Linux, Windows

Latest PiP Version

Used to install libraries

Python Libraries

Numpy, Pandas, Seabon, Matplotlib Scikit-learn

Compilers

Jupyter Notebook , Vs Code , PyCharm , Google Colab

Latest Kernel Version

Latest Kernel Version

To make the model accessible to all using website

Overall system architecture diagram

Overall system architecture diagram

Conclusion

Conclusion

) Malware	
2) Advantages of Malware detection system	
B) Existing algorithms used for malware detection	

5) Using Data Science and Mining Techniques

4) Explaining detecting malware

Thank You