

<u>Help</u>

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Course Notes</u>

☆ Course / 4. Combinational Logic / Worked Examples

(J

Next >

WE4.1

< Previous</pre>

☐ Bookmark this page

■ Calculator

Video explanation of solution is provided below the problem.

Truth Tables

16/16 points (ungraded)

Given the CMOS circuit with pulldown shown here, and assuming that the pullup is drawn correctly, fill in the truth table for this circuit.

Explanation

From the pulldown circuit, we can generate the corresponding function that the CMOS circuit represents. The pulldown tells us that $\overline{F}=(A+B)\,C+D$. So $F=\overline{((A+B)\,C+D)}$.

⊞ Calculator

We can then plug in the given input values to determine the value of F for each combination. When A=0 B=0 C=0 and D=0, then (A+B)C=0 that ORed with D=0, and finally the entire thing is negated, so F=1. For A=0 B=0 C=0 and D=1, (A+B)C=0+D=1 gives us 1 and the whole thing negated is F=0. In the same way, we can complete the rest of the truth table, and we get 1 0 1 0 0 0 1 0 0 0 1 0 0 0 for the remaining entries.

Submit

1 Answers are displayed within the problem

Truth Tables

1/1 point (ungraded)

Can the function F defined by the following truth table be implemented as a single CMOS gate?

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Can F be implemented as a single CMOS gate?

O NO

YES

.

Submit

✓ Correct (1/1 point)

Truth Tables

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>