

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 2019

Supervised learning | classification

Supervised learning

What we need to know about classification

- What is classification?
- What we need as a dataset in classification
- Binary vs. multiclass classification
- Classification models (categories of classifier models)
- How to choose a classification model?
- Support vector machine (SVM) classifier model
- Designing a multiclass SVM model with an example
- How to evaluate the performance of a classifier model?

Tuning the model; grid search and 10-fold cross validation

TUNING:

```
Tuning_model <- tune(svm, Trainingset450k17, label_vector, scale = F, tolerance = 0.00001, type = "C-classification", kernel = "radial", probability = T ranges = list(cost = seq(8, 12, 1), gamma = seq(0.20, 0.25, 0.01)), tunecontrol= tune.control(sampling = "cross", cross=10), seed=123456)

Plot(Tuning_model, xlime=range(0:15), ylime=range(0:1))
```

The darkest shades of blue indicating the best (see the two plots).

Narrowing in on the darkest blue range and performing further tuning.

2) TRAINING:

```
Radial_model <- svm(Trainingset450k17, label_vector, scale = F, tolerance = 0.00001, type = "C-classification", kernel = "radial", cost = 10, gamma = 0.22, probability = T, seed = 123456)
```

Plot(Tuning model, xlime=range(0.2:0.25), ylime=range(8:12))

Three key steps

1) Tuning

Choose a hyperplane; try <u>linear</u> or nonlinear (<u>polynomial</u> or <u>RBF kernels</u>) and find it's parameters

2) Training

Train the classifier based on the identified parameters of the hyperplane

3) Testing

Test the trained classifier by giving it some new samples (without subgroups): seq_test_BEM_97

3) TESTING (PREDICTION):

Radial model <- predict(object= Radial model, newdata = seq_test_BEM_97, probability=T)

What is resampling technique?

If you use the entire training data to select the "optimal" classifier, then there would be a fundamental problem.

The final model will normally **overfit** the training data: it will not be able to generalise to new data.

The error rate estimate will be overly optimistic (lower than the true error rate)

Split dataset into two groups

Training set: used to train the classifier

Test set: used to estimate the error rate of the trained classifier

Training set Test set

K-fold cross-validation (CV)

Cross validation and bootstrapping are resampling methods

Question: why do we need resampling method?

A limited number of good samples (limited data)

Collection of data is expensive

K-fold cross-validation (CV)

Create a K-fold partition of a dataset

For each of K experiments, use K-1 folds for training and a different fold for testing

This procedure is illustrated in the following figure for K=5

Experiment k=4

Experiment k=3

Experiment k=2

Experiment k=1

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Average error

Binary vs. multiclass classification

Binary classifier classifies data points into one of two classes

Multiclass classifier: classifies data points into one of three or more classes

Multiclass to binary classification

High risk: H Medium risk: M Low risk: L

Multiclass to binary classification

Training stage

Training a single classifier per class

Classification

Evaluate classification performance

Confusion Matrix

- True Positives (TP), True Negatives (TN), False
 Positives (FP), False Negatives (FN)
- Accuracy
- Precision
- Recall or Sensitivity
- Specificity
- F1 Score

Confusion matrix (error matrix) - multiclass

Describe the performance of a multiclass classification model using a confusion matrix

Reference subgroup (actual subgroup)

	Group 1	Group 2	Group 3	Group 4
Group 1	16	0	0	0
Group 2	0	31	1	0
Group 3	0	0	19	0
Group 4	0	0	0	45

Reference

	Group 1	Group 2
Group 1	TP	FP
Group 2	FN	TN

True positive: TP False positive: FP True negative: TN False negative: FN

Predicted by a classifier

Classifier model based on 9126 samples and 440 genes

Original dataset

6 immune subgroups 440 genes (5 signatures)

Immune subtype	Number of samples in each immune subtype
C1	2416
C2	2591
С3	2397
C4	1157
C5	385
C6	180

Training data (with subgroup)

SCHOOL OF **ELECTRONICS**, ELECTRICAL **ENGNIEERING AND** COMPUTER SCIENCE

Optimising the parameters of a nonlinear SVM classifier

RNA-seq, 6 immune subgroups 440 genes (5 signatures)

- MultipleImputationModelling() - Dataset_Spilitter() including
- TCGA_Cancer_Immune_Subtypes()
- TCGA_Gene_Signature()
- Index_of_Sample_When_Spilit()

Training/validation dataset

20%*

Test dataset (Unobserved data)

Multi-class Support vector machine (SVM) classifier

- One-against-one approach
- Tried linear, polynomial and RBF kernels and RBF kernels performed the best
- Tuning (optimising) C and y using a grid search and 10-fold cross validation technique
 - Building models for multiple combinations of parameter values and selecting the best.

Mixture model based clustering: 6 immune subgroups

Based on the "Immune Landscape of Cancer" paper

- When C is large, the margin is wide, and there are many support vectors.
- When C is small, we seek narrow margins that are rarely violated (low bias, high variance).
- C controls the bias-variance trade-off.
- y controls the standard deviation of the Gaussian function.

SCHOOL OF
ELECTRONICS,
ELECTRICAL
ENGNIEERING AND
COMPUTER SCIENCE

Grid search cross-validated training (n=7300)

- Initial range: $cost = 2^{(-1:5)}$, $gamma=2^{(-14:-6)}$
- 10-fold cross validation
- Computational time (on Kelvin Clusters) ~144 hours (intensive)
- Best parameters : c=8, $\gamma=0.000977$
- Best performance (cross-validation accuracy): 89.85%
- Misclassification error (MSE) used for assessing

#	cost	gamma	error	dispersion	
1	0.5	6.10E-05	0.16434	0.016693	
2	1	6.10E-05	0.150643	0.014414	
3	2	6.10E-05	0.142974	0.015261	
4	4	6.10E-05	0.133251	0.016698	
5	8	6.10E-05	0.126266	0.016624	
6	16	6.10E-05	0.122569	0.016242	
7	32	6.10E-05	0.119145	0.015617	
8	0.5	0.000122	0.15037	0.015097	
9	1	0.000122	0.138866	0.015577	
10	2	0.000122	0.129826	0.017489	
11	4	0.000122	0.122568	0.016091	
12	8	0.000122	0.120104	0.017211	
13	16	0.000122	0.115037	0.013512	
14	32	0.000122	0.112026	0.011304	
15	0.5	0.000244	0.137496	0.016093	
16	1	0.000244	0.128731	0.017364	
17	2	0.000244	0.120241	0.015275	
18	4	0.000244	0.115859	0.01703	
19	8	0.000244	0.109422	0.013913 0.011629	
20	16	0.000244	0.105452		
21	32	0.000244	0.105588	0.013308	
22	0.5	0.000488	0.128595	0.018547	
23	1	0.000488	0.118325	0.017501	
24	2	0.000488	0.112984	0.017151	
25	4	0.000488	0.108189	0.015978	
26	8	0.000488	0.102576	0.012763	
27	16	0.000488	0.102165	0.013166	
28	32	0.000488	0.106958	0.013633	
29	0.5	0.000977	0.122981	0.018059	
30	1	0.000977	0.112435	0.017506	
31	2	0.000977	0.108327	0.016439	
32	4	0.000977	0.102849	0.013686	
33	8	0.000977	0.10148	0.013272	
34	16	0.000977	0.105725	0.013511	
35	32	0.000977	0.105725	0.014026	
36	0.5	0.001953	0.127913	0.01585	
37	1	0.001953	0.115313	0.015628	
38	2	0.001953	0.109012	0.013842	
39	4	0.001953	0.109286	0.012823	
40	8	0.001953	0.111204	0.012277	

Hyperplane (3 angles)

Refine the model, ver1 (not improved)

- 10-fold cross validation
- Computational time: ~72 hours
- Best parameters : c=8.4, $\gamma=0.0009$
- Best performance (cross-validation accuracy): 89.82%

#	cost	gamma	error	dispersion		
1	7.9	7.00E-04	0.102437	0.015038		
2	7.95	7.00E-04	0.102711	0.014984		
3	8	7.00E-04	0.102848	0.014766		
4	8.05	7.00E-04	0.102985	0.014786		
5	8.1	7.00E-04	0.102985	0.014601		
6	8.15	7.00E-04	0.103259	0.014806		
7	8.2	7.00E-04	0.103533	0.014565		
8	8.25	7.00E-04	0.10367	0.014929		
9	8.3	7.00E-04	0.103807	0.014589		
10	8.35	7.00E-04	0.10367	0.014563		
11	8.4	7.00E-04	0.10367	0.014563		
12	7.9	8.00E-04	0.102847	0.015517		
13	7.95	8.00E-04	0.102984	0.015319		
14	8	8.00E-04	0.103121	0.015363		
15	8.05	8.00E-04	0.103395	0.015162		
16	8.1	8.00E-04	0.103395	0.015162		
17	8.15	8.00E-04	0.103532	0.015106		
18	8.2	8.00E-04	0.103532	0.015285		
19	8.25	8.00E-04	0.103259	0.015039		
20	8.3	8.00E-04	0.103122	0.015105		
21	8.35	8.00E-04	0.103122	0.015133		
22	8.4	8.00E-04	0.103122	0.015133		
23	7.9	9.00E-04	0.102163	0.015314		
24	7.95	9.00E-04	0.102163	0.015314		
25	8	9.00E-04	0.102163	0.015314		
26	8.05	9.00E-04	0.102163	0.015314		
27	8.1	9.00E-04	0.1023	0.015339		
28	8.15	9.00E-04	0.102574	0.015209		
29	8.2	9.00E-04	0.102574	0.015087		
30	8.25	9.00E-04	0.102574	0.015087		
31	8.3	9.00E-04	0.102163	0.015071		
32	8.35	9.00E-04	0.10189	0.014722		
33	8.4	9.00E-04	0.101753	0.014649		
34	7.9	0.001	0.102711	0.01497		
35	7.95	0.001	0.102711	0.01497		
36	8	0.001	0.102848	0.015143		
37	8.05	0.001	0.103122	0.015165		
38	8.1	0.001	0.102985	0.015148		
39	8.15	0.001	0.103122	0.014998		
40	8.2	0.001	0.103396	0.015181		
41	8.25	0.001	0.103259	0.015015		
42	8.3	0.001	0.103396	0.015152		
43	8.35	0.001	0.103122	0.015093		
44	8.4	0.001	0.103259	0.015286		

Refine the model, ver2 (slightly improved)

Performance of 'svm'

- New range: cost = seq(8.3, 8.9, 0.05), gamma = seq(0.0007, 0.001, 0.0001)
- 10-fold cross validation
- Computational time: ~ 72 hours
- Best parameters : c=8.6, $\gamma=0.0008$
- Best performance (cross-validation accuracy): 89.93%

#	cost	gamma	error	dispersion
20	8.6	8.00E-04	0.100657384	0.007941988
16	8.4	8.00E-04	0.100794183	0.00804287
14	8.3	8.00E-04	0.100794371	0.007888516
15	8.35	8.00E-04	0.100794371	0.007888516
19	8.55	8.00E-04	0.100794371	0.007941203
21	8.65	8.00E-04	0.100794371	0.00780882
17	8.45	8.00E-04	0.10093117	0.007961321
18	8.5	8.00E-04	0.10093117	0.007961321
3	8.4	7.00E-04	0.101067219	0.008199534
5	8.5	7.00E-04	0.101067219	0.008199534
22	8.7	8.00E-04	0.101068343	0.007499372
23	8.75	8.00E-04	0.101068343	0.007499372
1	8.3	7.00E-04	0.101204205	0.007932533
4	8.45	7.00E-04	0.101204205	0.008036983
24	8.8	8.00E-04	0.10120533	0.007682581
2	8.35	7.00E-04	0.101341191	0.007921247
6	8.55	7.00E-04	0.101341191	0.007999823
25	8.85	8.00E-04	0.101342316	0.007670905
7	8.6	7.00E-04	0.101478178	0.008192227
8	8.65	7.00E-04	0.101478178	0.008418173
9	8.7	7.00E-04	0.101478178	0.008418173
26	8.9	8.00E-04	0.101479115	0.007680895
10	8.75	7.00E-04	0.101615164	0.008402578

Sorted based on error (only 23 out of 52 rows illustrated)

Performance evaluation of training models

Parallel processing on multiple cores

Subsample random selection

Confusion matrix and overall statistics

Training/validation dataset

Training (n=7302), validation (n=7302)

Accuracy: 0.9969

95% CI: (0.9953,0.998)

Kappa: 0.9959

n=23		Reference (model based clustering)										
disco	rdant	C1	C2	C3	C4	C5	C6	NC	Total			
	C1	1926	4	0	0	0	3		1933			
0	C2	2	2069	1	0	0	2		2074			
Classifier ver1.1.0	С3	4	0	1916	0	0	5		1925			
ver	C4	0	0	0	926	0	0		926			
ifier	C 5	0	0	0	0	308	0		308			
assi	C6	1	0	1	0	0	134		136			
ס	NC											
	Total	1933	2073	1918	926	308	144		7302			

	Sensitivity	Specificity	Pos-Pred Value	Neg-Pred Value	Precision	Recall	F1	Prevalence	Detection Rate	Detection Prevalence	Balanced Accuracy
Class: C1	0.996378686	0.998696219	0.996378686	0.998696219	0.996378686	0.996378686	0.996378686	0.264721994	0.263763353	0.264721994	0.997537453
Class: C2	0.998070429	0.999043794	0.9975892	0.999234889	0.9975892	0.998070429	0.997829756	0.283894823	0.283347028	0.284031772	0.998557112
Class: C3	0.998957247	0.99832838	0.995324675	0.999628045	0.995324675	0.998957247	0.997137653	0.262667762	0.262393865	0.263626404	0.998642814
Class: C4	1	1	1	1	1	1	1	0.126814571	0.126814571	0.126814571	1
Class: C5	1	1	1	1	1	1	1	0.042180225	0.042180225	0.042180225	1
Class: C6	0.93055556	0.999720592	0.985294118	0.998604521	0.985294118	0.93055556	0.957142857	0.019720624	0.018351137	0.018625034	0.965138074

Overall Statistics for the training dataset (n=7302)

SCHOOL OF
ELECTRONICS,
ELECTRICAL
ENGNIEERING AND
COMPUTER SCIENCE

Overall statistics when using the training set for prediction – discordant samples

Training set & validation: n=7302; mismatched percentage: 0.3%

	Row_index	Sample_id	Cancer_type	Ref_immune_group (using unsupervised clustering)	Predicted	C1	C2	С3	C4	C 5	C6	Problematic Samples*
1	485	TCGA.AA.3514	COAD	C1	C2	<u>0.037</u>	0.96	3.60E-05	0.00064	0.00016	5.00E-05	Yes
2	491	TCGA.AA.3525	COAD	C1	C2	<u>0.15</u>	0.85	0.0022	0.0021	0.00028	0.0028	Yes
3	716	TCGA.AR.A1AM	BRCA	C1	C3	<u>0.25</u>	0.087	0.61	0.0037	0.0027	0.04	No
4	852	TCGA.BG.A2AD	UCEC	C1	C3	<u>0.081</u>	0.00051	0.91	0.0028	8.30E-05	0.0017	Yes
5	1506	TCGA.G9.6365	PRAD	C1	C3	<u>0.32</u>	0.00027	0.67	0.0013	6.40E-05	0.00032	No
6	1555	TCGA.HZ.A49I	PAAD	C1	C6	<u>0.33</u>	0.067	0.012	0.0027	0.0017	0.59	No
7	1880	TCGA.XD.AAUG	PAAD	C1	C3	<u>0.083</u>	0.0012	0.87	0.0015	0.0011	0.047	Yes
8	1978	TCGA.21.5782	LUSC	C2	C1	0.95	<u>0.055</u>	9.60E-07	6.40E-07	3.90E-05	5.70E-05	Yes
9	2432	TCGA.A6.2671	COAD	C2	C1	0.99	<u>0.0017</u>	0.005	0.0014	0.00015	0.00038	Yes
10	2477	TCGA.AA.3522	COAD	C2	C1	0.91	<u>0.014</u>	0.0087	0.058	0.0016	0.0045	Yes
11	2756	TCGA.BK.A139	UCEC	C2	C1	0.99	0.0088	2.20E-05	0.00019	4.40E-05	3.60E-05	Yes
12	4082	TCGA.55.6970	LUAD	С3	C2	0.0035	0.75	<u>0.23</u>	0.006	0.00018	0.016	No
13	5498	TCGA.J2.8192	LUAD	С3	C6	0.0092	0.0011	<u>0.47</u>	0.0023	0.00075	0.52	No
14	7163	TCGA.22.1005	LUSC	C6	C2	0.00064	0.64	0.048	0.00023	0.00034	<u>0.32</u>	No
15	7169	TCGA.38.7271	LUAD	C6	C3	0.00014	0.002	0.87	0.00017	0.0013	<u>0.12</u>	Yes
16	7170	TCGA.3A.A9I7	PAAD	C6	C1	0.37	0.088	0.25	0.036	0.028	<u>0.23</u>	No
17	7196	TCGA.75.7030	LUAD	C6	C3	0.0064	4.50E-05	0.69	0.00019	0.00044	<u>0.3</u>	No
18	7202	TCGA.98.A53D	LUSC	C6	C3	0.0013	6.40E-05	0.71	0.00036	0.00078	<u>0.29</u>	No
19	7206	TCGA.A7.A0DB	BRCA	C6	C3	0.048	0.0016	0.47	0.056	0.0018	<u>0.42</u>	No
20	7215	TCGA.AR.A0TT	BRCA	C6	C2	0.0022	0.62	0.015	0.00018	0.00047	<u>0.36</u>	No
21	7219	TCGA.AR.A5QM	BRCA	C6	C1	0.5	0.024	0.017	0.00066	0.00023	<u>0.46</u>	No
22	7272	TCGA.HZ.7922	PAAD	C6	C1	0.91	0.00081	0.038	0.00056	0.00054	<u>0.046</u>	Yes
23	7284	TCGA.MS.A51U	BRCA	C6	C3	0.16	0.039	0.57	0.0063	0.005	<u>0.22</u>	No

*Being part of the classifier training set

Classifier performance (A1): balanced accuracy when using bootstrapping (1000 times) on training and validation sets

Immunogenomics subgrouping: training and prediction phases

Training phase

Any Questions?