The Mesh Model vs. Loop Quantum Gravity: +70 Category Comparison

Thomas Lock

Purpose

This table offers a structured comparison between the Mesh Model and Loop Quantum Gravity (LQG) across over seventy key dimensions. It is designed to:

- Provide conceptual clarity for researchers evaluating quantum gravity models,
- Highlight the unique structural and dynamical features of the Mesh Model relative to spin-network-based quantization,
- Situate coherence-based field emergence alongside LQG's discrete geometric formalism.

Category	Mesh Model	Loop Quantum Gravity (LQG)		
1. Structural Foundations				
Foundational Metaphor	Interlaced Tension and Curvature Fields	Spin Networks and Quantum Geometry		
Geometry Origin	Emergent from Coherence and Curvature Interaction	Quantized Area and Volume from Spin Representations		
Spacetime Definition	Region of Mesh Coupling	Discrete Quantum States of Geometry (Spin Networks)		
Causality	Emergent from Field Structure	Encoded in Spin Foam Histories (Covariant Formulation)		
Time Emergence	From Directional Coherence Spread	Relational Time; No Global Clock		
Vacuum Structure	Structured Curvature Substrate	Ground State of Quantum Geometry		
Particle Identity	Defined by Stability in Coherence Phase Space	Not Intrinsic; Matter Added to Background Geometry		
Field Quantization Origin	Ripple Locking in Mesh Structure	Canonical Quantization of Connections and Triads		
Antimatter Mechanism	Curvature Inversion / Ripple Destruction	Not Intrinsic; Handled via Matter Sector Extensions		
Mass Generation	Emergent from Divergence and Resistance	Not Emergent; Must Be Introduced via Matter Coupling		
2. Field Theory & Dynamics				
Quantum Behavior	Arises from Mesh Phase Geometry	Canonical Quantization of Geometric Operators		
Superposition	Real Harmonic Mesh Modes	Superposition of Spin Network States		

Entanglement	Phase-Locked Coherence	Present via Spin Network Entanglement; Structure-Dependent			
Born Rule	Derived from Resonance Collapse	Assumed via Standard Quantum Interpretation			
Gauge Interactions	Emergent from Mesh Coupling Modes	SU(2) Geometry Built-In; Other Interactions Added Separately			
Gravitational Origin	Curvature from Stiffness + Coherence	From Quantized Connection (Ashtekar Variables)			
Fermion Origin	Coherence Structures with Ripple Memory	Not Intrinsic; Fermions Coupled via External Fields			
Boson Origin	Propagating Mesh Ripples	Gauge Fields Modeled but Not Derived from Geometry			
Spin Origin	Vortex/Ripple Structures	Arises from Spin Representations in Spin Networks			
Charge Origin	Ripple Asymmetry / Mesh Topology	Not Intrinsic; Requires Gauge Field Specification			
Interaction Mediation	Field Deformation and Tension Response	Not Fundamental; Dynamics via Vertex Amplitudes			
Decay	Loss of Coherence and Structure	Not Modeled Intrinsically; Requires Matter Sector Modeling			
Field Equations	Lagrangians from Coupled Mesh Tensors	Hamiltonian Constraint + Spin Foam Amplitudes			
Curved-Spacetime QFT Support	Fully Implemented via Mesh–Field Transformer	Limited; Background-Independent but Not Fully QFT-Compatible			
Geometry Source Equation	$g^{\mu\nu}(x) \propto \sum \phi_i \phi_j \partial^\mu \psi_i \partial^\nu \psi_j$	Geometry from Area/Volume Operators and States			
Feynman Diagram Support	Fully supported via mesh-derived QFT	No Traditional Diagrams; Uses Spin Foam Path Sums			
Scattering Amplitudes	Derivable from mesh interactions	Under Development; Spin Foam Vertex Amplitudes Used			
	3. Observational & Experimental A	Alignment			
Testability	Built for Lab	Still Theoretical; Some Cosmological Signals Proposed			
Low-Mass Gravity Suppression	Predicts Deviation Below 1 mg	No Prediction; Focused on Planck-Scale Geometry			
Vacuum Energy	Curvature Substrate = Dark Energy	Cosmological Constant Not Derived; May Be Tuned			
Dark Matter Candidates	Stable Mesh Solitons in CPS Zones	Not Intrinsic; No Dark Matter Prediction			
Early Universe Behavior	Inflation = Phase Locking	LQC Models Explore Quantum Bounce			
Cosmic Expansion	Ongoing Coherence Spread	Quantum Bounce + Modified Friedmann Equations			
Time's Arrow	Irreversible Entanglement Growth	Symmetric Bounce in LQC; No Built- In Arrow			

Black Hole Radiation	Tunneling Through Vacuum Gradient	Hawking Radiation Compatible via Horizon Area Quantization		
Black Hole Core	Supercooled, Structured, Finite	No Singularity; Replaced by Discrete Structure		
Gravitational Wave Echoes	Predicts Reflection off Shells	Under Investigation; Echoes Predicted in Some Models		
Higgs Decay Behavior	No Gravitational Coupling = Confirmed	Not Modeled; Higgs Not Included in Core Framework		
Entropy Origin	Coherence Modes at Boundary	Horizon Entropy from Quantized Area Spectrum		
Gravitational Coupling Constant	Emergent from Mesh Stiffness	Introduced via Quantized Geometry Scale		
Curvature Limit	Defined by Structure Saturation	Maximum Curvature from Discrete ness; No Divergences		
Amplitude-Level Predictions	Mesh excitations produce measurable \mathcal{M}, σ values	Uses Transition Amplitudes; Not Tra ditional S-Matrix		
	4. Cosmology & Quantum Gra	avity		
Singularity Resolution	No Singularities, Just Saturated Core	Singularities Replaced by Quantum Bounce		
Remnant Problem	Avoided by Smooth Radiation + Full Evaporation	Open Question; Some Models Predict Remnants		
Inflation Mechanism	Rapid Coherence Locking	Not Intrinsic; Can Be Modeled in LQC		
Dark Energy Identity	Zone VI Curvature Substrate	Not Explained; Cosmological Constant Treated as Input		
Time Dilation Origin	Extreme Ripple Slowdown in Shell	Emerges Semiclassically; Geometry Redshift from Spin States		
Radiation Pathway	Quantum Tunneling Across Gradient	Not Intrinsic; Some Work on Discrete Radiation Paths		
Information Recovery	Structured Phase Return + Page Curve	Under Investigation; Some Models Suggest Unitarity		
Horizon Structure	Apparent Horizon Only (No True Barrier)	Quantum Horizon with Area Spectrum		
Page Curve	Matches Hawking Before Turning Over Smoothly	Qualitatively Supported; No Full Derivation Yet		
Coherence Phase Space	Structural Classification of All Particles	Not Present; Particles Not Classified Structurally		
	5. Teaching, Math, & Scientific Ph	nilosophy		
Mathematical Transparency	Geometry + Mechanics + Field Theory	Mathematically Rigorous; High Barrier to Entry		
Dimensional Assumptions	3+1 Only	Typically 3+1, but Independent of Embedding Manifold		
Engineering Compatibility	Real Design Pathways (Mesh Drive)	No Engineering Implementation Envisioned		

Computation Readiness	Simulatable via Tension Networks	Spin Network/Spin Foam Simulations Possible			
Student Accessibility	Teachable from First Principles	High Entry Bar; Requires Background in GR and QFT			
Scientific Philosophy	Structure First, Observation Bound	Background Independence, Relational Ontology			
Experimental Anchoring	Built to Connect with Data	Cosmological Predictions Possible; No Confirmed Tests			
Future Vision	Tool for Spacetime Engineering	Fundamental Theory of Quantum Geometry			
Metric Reconstruction	Geometry is emergent and testable from mesh coherence	Reconstructed from Spin Network States			
6.	Causality, Collapse, and Coherence	e Structure			
Causal Structure Source	Derived from Field-Level Structure	Not Explicit; Causal Behavior from Spin Foam Transitions			
Light Cone Definition	Emergent from Coneeff = $f(\vec{C}, \vec{v}, \mathcal{R})$	Emerges in Semiclassical Limit; No Fundamental Cones			
Collapse Mechanism	Coherence Divergence Governs Attenuation	Not Modeled Intrinsically; Decoherence Models Exist			
Interference Criteria	Coherence Overlap and Finite Resistance	Interference Allowed; No Explicit Interference Metric			
Mass Emergence	$m_{\rm eff}^2(x) \propto \Gamma(x) + \mathcal{R}(x)$	Not Emergent; Requires Matter Coupling			
Dark Matter Interpreta- tion	Causal Isolation in Coherence Field	Not Addressed in Base Theory			
Dark Energy Interpreta- tion	High-Coherence, Non-Curving Field Phase	Not Intrinsically Modeled			
Decay Law Derivation	$P(t) = 1 - e^{-\int \Gamma(x(t))dt}$	No Decay Law in Core Framework			
Entropy Bound Origin	$S_{\max} \le \frac{1}{4} \int_{\Sigma} \nabla \cdot \vec{C} dA$	Entropy from Area Quantization; Bousso Bound Compatibility Unclear			
Causal Horizon Type	Resistance-Defined Horizon $\mathcal{R} \to \infty$	Quantized Apparent Horizons			
	7. Particle Structure and Internal	Geometry			
$Spin-\frac{1}{2}$ Origin	Topological Phase Winding	Defined via Spin Representations			
Flavor Oscillation Mechanism	Coherence Field Superposition	Not Intrinsic; Must Be Modeled in Matter Sector			
CP Violation Source	Phase Offset in Coherence Vectors	Not Modeled in Core Framework			
Sterile Neutrino Realization	Causally Isolated Mode in Coherence Space	Not Included			
Quark Triplet Binding	Cone Neutrality Constraint	No Color Confinement Mechanism Present			
Fractional Charge Origin	Topological Winding Density	No Fractional Charge Mechanism in Geometry			
Gluon Dynamics	Coherence Curvature Field (Field Strength Tensor)	Not Implemented; Gauge Interactions Modeled Externally			

Field Current Source	Mesh-Defined Interaction Currents	Noether	Currents	Not	Present	in
		Canonical LQG				