ЛАБОРАТОРНАЯ РАБОТА №45 ЗАКОНЫ ФОТОМЕТРИИ

Поляков Даниил, 19.Б23-ф3

Цель работы: проверка закона «обратных квадратов» для интенсивности света, измерение отношения между световыми и энергетическими единицами.

Оборудование

- оптическая скамья;
- источник света (галогенная лампа);
- датчик освещённости;
- термоэлемент Молла;
- диафрагма;
- линза;
- светофильтр.

Схема установки

 ${\rm A}$ — измерение освещённости датчика светом лампы в зависимости от расстояния;

В — измерение освещённости датчика светом из диафрагмы в зависимости от расстояния;

- 1 лампа;
- 2 оптическая скамья;
- 3 датчик освещённости;
- 4 линза;
- 5 диафрагма.

Расчётные формулы

• Закон обратных квадратов:

$$E_{\rm s} = rac{I_{
m s}}{r^2} = rac{I_{
m s}}{(x-x_0)^2}$$
 $E_{
m s}$ — освещённость приёмника; $I_{
m s}$ — сила света; r — расстояние между точечным источником и приёмником; x — положение приёмника; x_0 — положение точечного источника.

• Световой поток, падающий на датчик:

$$\Phi_{\rm s} = E_{\rm s} \cdot \pi \frac{d^2}{4}$$
 $E_{\rm s}$ — освещённость датчика; d — диаметр датчика.

• Поток излучения, падающий на термоэлемент:

$$\Phi_{
m e} = a \cdot (\varepsilon - \varepsilon_0)$$
 ε — термоэдс при включенной лампе; ε_0 — термоэдс при выключенной лампе; $a=10~{
m Bt/B}$ — чувствительность термоэлемента.

• Относительная спектральная световая эффективность:

$$K(\lambda) = rac{arPhi_{
m s}(\lambda)}{V(555) \cdot arPhi_{
m e}(\lambda)}$$
 $arPhi_{
m s}$ — световой поток; $arPhi_{
m e}$ — поток излучения; $V(555) = 683~{
m лm/Bt}$ — фотометрический эквивалент излучения.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\bar{x}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}} + (\Delta_{x,\text{сист}})^2 \qquad \qquad n - \text{количество измерений;} \\ \Delta_{x,\text{сист}} - \text{систематическая погрешность.}$$

2

• Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1,x_2,\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1}\cdot\Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\cdot\Delta_{x_2}\right)^2 + \ldots}$$

Порядок измерений

- 1. Устанавливаем датчик освещённости на оптическую скамью перпендикулярно направлению света от лампы. Запускаем ПО CASSY Lab. Проверяем, что при выключенной лампе показания датчика в любом положении равны 0. Включаем лампу. Устанавливаем период усреднения $\Delta t = 100$ мс. Это означает, что каждое измерение является результатом усреднения показаний датчика за этот период времени. Запускаем серию из 100 измерений освещённости датчика $E_{\rm s}$ в течение 10 с. Получаем «пробную» серию измерений, которую в дальнейшем используем для оценки относительной погрешности показаний датчика.
- 2. Устанавливаем период усреднения $\Delta t = 10 \, \mathrm{c}$ (соответствующий продолжительности «пробной» серии измерений). Устанавливаем датчик на расстоянии примерно 20 см от источника света. Сдвигая датчик от источника, снимаем положение датчика x со шкалы оптической скамьи и соответствующее ему значение освещённости E_{s} .
- 3. Устанавливаем линзу и диафрагму между лампой и датчиком. Источником света в данном случае является диафрагма. Проводим аналогичные измерения, описанные в пункте 2.
- 4. Меняем источник света на лампу с отражателем. Устанавливаем светофильтр между лампой и датчиком. Наблюдаем очень сильные колебания показаний датчика. В связи с этим проводим измерения за длительный промежуток времени. Устанавливаем период усреднения $\Delta t = 500~\mathrm{Mc}$. Проводим серию из 300 измерений освещённости датчика E_s в течение 150 с. Снимаем датчик освещённости со скамьи и устанавливаем на его место термоэлемент (на том же расстоянии от источника света). При выключенной лампе снимаем нулевую термоэдс ε_0 . Включаем лампу, ждём, пока установится значение на приборе, и снимаем термоэдс ε при включенной лампе.
- 5. Измеряем диаметр датчика линейкой.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

1. Оценка погрешности показаний датчика

Таблица 1. Показания датчика (E_s , клк) в течение 10 с на некотором коротком расстоянии от лампы

0 – 1 c	1 – 2 c	2 – 3 c	3 – 4 c	4 – 5 c	5 – 6 c	6-7c	7 – 8 c	8 – 9 c	9 – 10 c
12.90	12.87	12.87	12.87	12.86	12.86	12.85	12.87	12.86	12.86
12.90	12.87	12.87	12.87	12.86	12.87	12.89	12.87	12.86	12.87
12.90	12.86	12.87	12.86	12.85	12.87	12.86	12.87	12.86	12.87
12.87	12.85	12.87	12.87	12.85	12.89	12.86	12.87	12.86	12.87
12.86	12.86	12.86	12.87	12.86	12.87	12.86	12.86	12.86	12.87
12.87	12.86	12.86	12.86	12.86	12.87	12.86	12.86	12.86	12.87
12.87	12.86	12.85	12.86	12.87	12.87	12.87	12.86	12.87	12.87
12.87	12.87	12.85	12.87	12.87	12.89	12.86	12.86	12.87	12.87
12.89	12.87	12.87	12.85	12.87	12.87	12.87	12.86	12.87	12.87
12.87	12.87	12.87	12.87	12.86	12.87	12.87	12.86	12.86	12.87

Погрешность рассчитаем по формуле для прямых измерений. Приборную погрешность датчика освещённости примем равной половине цены деления:

$$\Delta_{E_s$$
, сист = 0.005 клк.

Полученное среднее значение освещённости и его погрешность:

$$E_{\rm s}$$
 = 12.867 ± 0.005 клк

Выходит, что при измерении освещённости усреднением показаний за 10 секунд флуктуация вносит значительно меньший вклад в погрешность, чем приборная погрешность. Тогда погрешность последующих измерений при других положениях датчика будем считать равной приборной.

2. Зависимость освещённости от расстояния

Таблица 2. Освещённость датчика в различных положениях

Без диа	фрагмы	С диафрагмой			
X, CM	$E_{ m s}$, клк	<i>X</i> , CM	$E_{ m s}$, клк		
45	12.77	35	59.8		
43	10.49	34	42.4		
41	8.73	33	30.7		
39	7.42	32	22.7		
37	6.33	31	18.1		
35	5.47	30	14.38		
33	4.75	29	11.93		
31	4.19	28	9.93		
29	3.72	27	8.49		
27	3.32	26	7.02		
25	2.98	25	6.28		
23	2.68	24	5.55		
21	2.43	23	4.89		
19	2.22	22	4.32		
17	2.03	21	3.87		
_	_	20	3.38		
_	_	19	3.07		
_	_	18	2.86		
_	_	17	2.62		

Осуществим подгонку полученных данных по закону обратных квадратов. Силу света $I_{\rm s}$ и положение источника $x_{\rm 0}$ найдём как параметры аппроксимации.

График 1. Зависимость освещённости датчика от его положения для установки без диафрагмы

Аппроксимирующая кривая очень точно описывает экспериментальные точки. Полученные параметры аппроксимации:

$$I_{\rm s} = 4430 \pm 50 \; {\rm клк \cdot cm^2} = 450 \pm 6 \; {\rm кд}$$
 $x_0 = 63.53 \pm 0.13 \; {\rm cm}$

Изобразим график $E_s(r^{-2})$ и убедимся в его линейности.

График 2. Линеаризованная зависимость освещённости датчика от расстояния между источником и датчиком для установки без диафрагмы

Экспериментальные точки действительно лежат на одной прямой, проходящей через начало координат.

График 3. Зависимость освещённости датчика от его положения для установки с диафрагмой

Аппроксимирующая кривая очень точно описывает экспериментальные точки. Полученные параметры аппроксимации:

$$I_{\rm s}$$
 = 1340 ± 20 клк · см 2 = 450 ± 6 кд

$$x_0 = 39.62 \pm 0.04$$
 cm

Изобразим график $E_{\rm s}(r^{-2})$ и убедимся в его линейности.

График 4. Линеаризованная зависимость освещённости датчика от расстояния между источником и датчиком для установки с диафрагмой

Экспериментальные точки действительно лежат на одной прямой, проходящей через начало координат.

3. Отношение между световыми и энергетическими единицами

Таблица 3. Показания датчика ($E_{\rm s}$, клк) в течение 150 с на некотором расстоянии от лампы

0 –	15 –	30 –	45 –	60 –	75 –	90 –	105 –	120 –	135 –
15 c	30 c	45 c	60 c	75 c	90 c	105 c	120 c	135 c	150 c
7.42	7.42	7.64	7.07	7.34	7.51	6.81	6.84	6.71	7.25
7.31	7.37	7.53	6.86	7.46	7.08	6.97	6.77	6.75	7.03
7.34	7.12	7.29	6.70	7.57	7.08	6.75	6.70	6.79	7.04
7.43	6.98	6.94	6.66	7.56	7.39	6.72	6.68	6.80	6.94
7.44	7.08	6.97	6.60	7.57	7.53	6.80	6.55	6.86	6.91
7.59	7.03	6.99	6.88	7.57	7.42	6.84	6.67	7.21	6.82
7.33	7.13	6.91	7.22	7.69	7.38	6.79	6.59	7.42	6.80
7.43	6.91	6.84	7.22	7.62	7.48	6.79	6.71	7.43	6.86
7.62	6.94	6.89	6.58	7.61	7.48	6.82	6.66	6.73	6.71
7.62	7.20	6.85	6.49	7.55	7.51	6.73	6.72	6.76	6.72
7.68	7.29	6.89	6.70	7.64	7.47	6.76	6.68	6.76	6.64
7.68	7.16	6.86	7.55	7.64	7.48	6.89	6.77	6.79	6.68
7.64	7.11	6.86	7.70	7.61	7.46	6.90	6.97	6.89	6.71
7.55	7.25	6.82	7.70	7.59	7.38	6.70	6.75	6.79	6.75
7.56	7.19	6.85	7.22	7.59	7.47	7.06	6.94	7.02	6.80
7.61	7.08	6.89	6.64	7.55	7.46	7.51	6.84	6.86	6.80
7.71	7.02	6.93	6.82	7.51	7.34	7.47	6.99	6.81	6.86
7.68	7.43	6.86	6.75	7.49	7.28	7.38	7.12	6.81	6.94
7.56	7.25	7.04	7.51	7.47	7.31	7.30	6.82	6.93	6.93
7.56	6.99	7.22	7.42	7.51	7.29	7.12	6.76	7.03	6.93
7.68	6.99	6.68	7.28	7.59	7.26	6.80	6.71	6.99	6.93
7.57	7.19	6.79	6.86	7.52	7.25	7.21	6.73	6.88	6.94
7.68	7.31	6.88	6.93	7.59	7.22	7.49	6.67	6.91	6.97
7.70	7.33	6.82	6.76	7.65	7.28	7.46	6.67	6.95	6.99
7.64	7.22	6.93	6.79	7.61	7.26	7.47	6.94	6.94	6.91
7.69	7.15	6.76	6.98	7.46	7.00	7.40	6.93	7.10	6.93
7.66	7.10	6.81	6.99	7.64	6.94	7.16	6.81	7.12	6.93
7.61	6.99	7.08	7.19	7.66	6.89	6.82	6.77	7.04	6.91
7.53	6.97	6.81	7.17	7.40	6.82	7.19	6.81	7.03	6.89
7.57	7.21	6.68	6.93	7.48	7.38	7.43	6.94	6.88	6.86

Такое количество измерений обусловлено очень сильными колебаниями показаний датчика в течение времени. Эти колебания скорее всего вызваны непостоянностью интенсивности света лампы.

Погрешность рассчитаем по формуле для прямых измерений. Приборную погрешность датчика освещённости примем равной половине цены деления:

$$\Delta_{E_{\circ}, \text{сист}} = 0.005$$
 клк.

Полученное среднее значение освещённости и его погрешность:

$$E_{\rm s}$$
 = 7.12 ± 0.04 клк

В данном случае флуктуация показаний прибора вносит основной вклад в погрешность.

Измеренный диаметр датчика: $d = 1.0 \pm 0.1$ см.

Вычислим световой поток, падающий на датчик:

$$\Phi_{\rm s}$$
 = 0.56 ± 0.11 лм

Далее изложены результаты измерений с помощью термоэлемента. Цена деления термоэлемента 0.01 мВ. Погрешность термоэдс примем равной 0.05 мВ, чтобы приблизительно учесть влияние флуктуации показаний прибора.

Термоэдс, полученное при выключенной лампе:

$$\varepsilon_0 = -2.59 \pm 0.05 \text{ MB}$$

Термоэдс, полученное при включенной лампе:

$$\varepsilon = 2.11 \pm 0.05 \text{ MB}$$

Вычислим поток излучения, падающий на термоэлемент:

$$\Phi_{\rm e} = 47.0 \pm 0.7 \; {\rm MBT}$$

Наконец, рассчитаем относительную спектральную световую эффективность для длины волны использованного светофильтра ($\lambda = 640 \pm 20$ нм):

$$K(640) = 0.017 \pm 0.003$$

Табличное значение этого коэффициента при данной длине волны:

$$K_{\rm T}(640) = 0.175$$

Табличный коэффициент на порядок больше экспериментального. Ближайшее к экспериментальному табличное значение коэффициента:

$$K_{\text{\tiny T}}(680) = 0.017$$

Длина волны соответствующего табличного значения не совпадает с длиной волны светофильтра в указанных пределах погрешности. Возможные причины несовпадения:

- неправильная настройка датчика;
- неправильно указанная пропускаемая длина волны светофильтра;
- неидеальность светофильтра.

Выводы

В результате работы был успешно проверен закон обратных квадратов для оптического излучения. Оптическое излучение можно описать как с помощью энергетических величин, так и с помощью световых (фотометрических) величин. В работе были измерены два типа энергетических характеристик излучения с использованием соответствующих приборов.

Экспериментально полученная относительная спектральная световая эффективность для длины волны использованного светофильтра ($\lambda = 640 \pm 20 \; \text{нм}$):

$$K(640) = 0.017 \pm 0.003$$

Возможные причины несовпадения экспериментального и табличного значений:

- неправильная настройка датчика;
- неправильно указанная пропускаемая длина волны светофильтра;
- неидеальность светофильтра.