- Whenever a net is driven by a signal, it takes the logic value of the signal
- When the signal source is tri-stated, the net too gets tri-stated
- In practice the net can have a capacitor associated with it, which can store the signal level even after the signal source dries up (*i.e.*, tri-stated)
- To account for this situation, a charge storage capacity is associated with the net
- Such nets are declared with the keyword trireg
- By virtue of the inherent capacitance associated with them, trireg nets can never be in the high impedance state that is, they can assume 0, 1, or \mathbf{x} value only

A **trireg** net can be in one of two possible states only:

Driven state:

When driven by a source or multiple sources, the net assumes the strength of the source. It can be any of the strengths specified in Table 1 except the high impedance value.

Capacitive state:

When the driven source (sources) is (are) tri-stated, the net retains the last value it was in – by virtue of the capacitance associated with it. The value can be 0, 1 or \mathbf{x} (but not the high impedance value).

Table 1 Strength levels associated with outputs of gate primitives

Name	supply	strong	pull	weak	High impedance
Abbreviations	su1	st1	pu1	we1	HiZ1
	su0	st0	pu0	we0	HiZ0
Strength	Strongest			Weakest	

NET CHARGES -CONT'D

- When in the capacitive state, a net can have a storage strength associated with it
- Three such storage strengths are possible namely large, medium, and small
- When a storage strength is not specified, it is assigned the default value **medium**
- For a **trireg** net one cannot assign storage strength capacity separately for the 0 and the 1 states
- A **trireg** net can be driven with possibilities of contention from two or more sources

Table 2 Capacitive storage strengths on nets

Name	large	medium	small
Strength	Strongest		Weakest

ZAKIR HUSSAIN Verilog HDL 4

■ Consider the design in Figure 1. As long as the signal control = 1, the signal out follows the signal in

■ When control goes to 0, out is disconnected from the input and it "floats." It retains the last value due to the capacitance storage capacity

■ The storage strength is **medium**, signifying a medium value of capacitance

```
module charge(out, in, control);
output out;
                                                 output
trireg (medium) out;
input in, control;
bufif1 gl(out, in, control);
endmodule
module tst charge; //TESTBENCH
reg in, control;
charge cl (out, in, control);
initial
    begin
    in =0; control =0; //when control=0 output is x
    #2 control =0;in =0;
    #2 control =1;in =0;
    #2 control =1; in =1;
    #2 control =0; in =0; // output is retained at
    end // the last value
initial $monitor($time ," in= %b ,control = %b , out=
%b " ,in, control, out);
initial #40$stop;
endmodule
```

Figure 1 Illustration of net storage; the test bench and simulation results are also shown in the figure.

ZAKIR HUSSAIN Verilog HDL 6