STABILITY of SWITCHED SYSTEMS under ARBITRARY SWITCHING

Daniel Liberzon

Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

SYSTEMS with SPECIAL STRUCTURE

Triangular systems

- Feedback systems
 - passivity conditions
 - small-gain conditions

2-D systems

TRIANGULAR SYSTEMS

For linear systems, triangular form \Rightarrow GUES

$$A_1 = \begin{pmatrix} -a_1 & b_1 \\ 0 & -c_1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -a_2 & b_2 \\ 0 & -c_2 \end{pmatrix}$$

 $\dot{x}_2 = -c_\sigma x_2 \Rightarrow x_2 \rightarrow 0$ exponentially fast

$$\dot{x}_1 = -a_\sigma x_1 + b_\sigma x_2 \Rightarrow x_1 \to 0 \text{ exp fast}$$

 \exists quadratic common Lyap fcn $x^TDx,\ D$ diagonal

For nonlinear systems, not true in general

Need to know
$$x_2 \to 0 \Rightarrow x_1 \to 0$$
 (ISS) [Angeli & L '00]

FEEDBACK SYSTEMS: ABSOLUTE STABILITY

(A,b) controllable

$$g(s) = c^T(sI - A)^{-1}b$$

$$u = -\varphi_p(y)$$
$$k_1 y^2 \le y \varphi_p(y) \le k_2 y^2 \ \forall p$$

Circle criterion: ∃ quadratic common Lyapunov function ⇔

$$h(s) = \frac{1 + k_2 g(s)}{1 + k_1 g(s)}$$
 is strictly positive real (SPR): $Re h(i\omega) > 0$

For $k_1 = 0, k_2 = \infty$ this reduces to g(s) SPR (passivity)

Popov criterion not suitable: V depends on φ_p

FEEDBACK SYSTEMS: SMALL-GAIN THEOREM

(A,b) controllable

$$g(s) = c^T (sI - A)^{-1}b$$

$$u = -\varphi_p(y)$$
$$|\varphi_p(y)| \le |y| \ \forall p$$
$$(k_1 = -1, k_2 = 1)$$

Small-gain theorem:

∃ quadratic common Lyapunov function

$$\iint \|g\|_{\infty} = \max_{\omega} |g(i\omega)| < 1$$

TWO-DIMENSIONAL SYSTEMS

Necessary and sufficient conditions for GUES known since 1970s

worst-case switching

$$\dot{x} = A_1 x, \ \dot{x} = A_2 x, \ x \in \mathbb{R}^2$$

∃ quadratic common Lyap fcn <=>

convex combinations of $A_1, A_2, A_1^{-1}, A_2^{-1}$ Hurwitz

OBSERVABILITY and ASYMPTOTIC STABILITY

Barbashin-Krasovskii-LaSalle theorem:

 $\dot{x} = f(x)$ is glob. asymp. stable (GAS) if $\exists V$ s.t.

- $\dot{V} := \frac{\partial V}{\partial x} f(x) \le 0 \ \forall x$ (weak Lyapunov function)
- ullet \dot{V} is not identically zero along any nonzero solution (observability with respect to \dot{V})

Example:

$$\dot{x} = Ax, \quad V(x) = x^T P x$$

$$A^T P + P A \le -C^T C \} => \mathsf{GAS}$$
 (A,C) observable

SWITCHED LINEAR SYSTEMS

$$\dot{x} = A_{\sigma}x$$

Theorem (common weak Lyapunov function):

Switched linear system is GAS if

•
$$\exists P > 0$$
 s.t. $A_p^T P + P A_p \leq -C_p^T C_p \ \forall p$

- (A_p, C_p) observable for each p
- \exists infinitely many switching intervals of length $\geq \tau$

Want to handle nonlinear switched systems and nonquadratic weak Lyapunov functions

Need a suitable nonlinear observability notion

OBSERVABILITY: MOTIVATING REMARKS

Several ways to define observability (equivalent for linear systems)

Benchmarks:

- observer design or state norm estimation
- detectability vs. observability
- LaSalle's stability theorem for switched systems

Joint work with Hespanha, Sontag, and Angeli

No inputs here, but can extend to systems with inputs

STATE NORM ESTIMATION

$$\dot{x} = Ax, \quad y = Cx$$

$$x(0) = W^{-1} \int_0^\tau e^{A^T t} C^T y(t) dt$$
 where

$$W = \int_0^\tau e^{A^T t} C^T C e^{At} dt \qquad \text{(observability Gramian)}$$

$$\dot{x} = f(x), \quad y = h(x)$$

Observability definition #1:

$$|x(0)| \le \gamma \left(||y||_{[0,\tau]} \right)$$
 where $\gamma \in \mathcal{K}_{\infty}$

This is a robustified version of 0-distinguishability

OBSERVABILITY DEFINITION #1: A CLOSER LOOK

Small-time observability:

$$\forall \tau > 0 \ \exists \gamma \in \mathcal{K}_{\infty} : |x(0)| \le \gamma \left(||y||_{[0,\tau]} \right)$$

Large-time observability:

$$\exists \tau > 0, \ \gamma \in \mathcal{K}_{\infty} : |x(0)| \leq \gamma \left(\|y\|_{[0,\tau]} \right)$$

Counterexample: $\dot{x} = 1$

Initial-state observability:

$$\forall \tau > 0 \ \exists \gamma \in \mathcal{K}_{\infty} : |x(0)| \le \gamma \left(\|y\|_{[0,\tau]} \right)$$

Final-state observability:

$$\forall \tau > 0 \ \exists \gamma \in \mathcal{K}_{\infty} : \ |x(\tau)| \leq \gamma (\|y\|_{[0,\tau]})$$

DETECTABILITY vs. OBSERVABILITY

$$\dot{x} = Ax, \quad y = Cx$$

Detectability $\Leftrightarrow \exists L: A-LC$ is Hurwitz

$$\dot{x} = (A - LC)x + Ly, |x(t)| \le ce^{-\lambda t}|x(0)| + d||y||_{[0,t]}$$

Observability $\Leftrightarrow A - LC$ can have arbitrary eigenvalues

$$\dot{x} = f(x), \quad y = h(x)$$

A natural detectability notion is output-to-state stability (OSS):

$$|x(t)| \le \beta(|x(0)|, t) + \gamma(||y||_{[0,t]})$$

where $\beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$ [Sontag-Wang]

Observability def'n #2: OSS, and β can decay arbitrarily fast

OBSERVABILITY DEFINITION #2: A CLOSER LOOK

Definition: $\forall \varepsilon > 0, \ \nu \in \mathcal{K}_{\infty} \quad \exists \beta \in \mathcal{KL}, \ \gamma \in \mathcal{K}_{\infty}$:

$$|x(t)| \le \beta(|x(0)|, t) + \gamma(||y||_{[0,t]}) \quad \forall t \ge 0$$

and

$$\beta(r,\varepsilon) \le \nu(r) \quad \forall r \ge 0$$

Theorem: This is equivalent to definition #1 (small-time obs.)

OSS admits equivalent Lyapunov characterization:

$$|x| \ge \rho(|y|) \implies \dot{V} \le -\alpha(|x|), \quad \alpha, \rho \in \mathcal{K}_{\infty}$$

For observability, α should have arbitrarily rapid growth

STABILITY of SWITCHED SYSTEMS

$$\dot{x} = f_{\sigma}(x)$$

Theorem (common weak Lyapunov function):

Switched system is GAS if

•
$$\exists V \text{ s.t. } \frac{\partial V}{\partial x} f_p(x) \leq -W_p(x) \leq 0 \quad \forall x, \ \forall p$$

- \exists infinitely many switching intervals of length $\geq \tau$
- Each system

$$\dot{x} = f_p(x), \quad y = W_p(x)$$

is observable:

$$\exists \gamma \in \mathcal{K}_{\infty} : |x(0)| \leq \gamma \left(||y||_{[0,\tau]} \right)$$