Matemática IV- 2023

TP3 - Números

1. Probar que no hay naturales simultáneamente pares e impares

2.	Analizar si las siguientes afirmaciones son verdaderas o falsas:
	 (a) 1 a y a 0 (b) a b y c b entonces ac b (c) a(a+1) es par (d) a b entonces a bc
3.	Si a un número se lo divide por 4, el resto es 2 y si se lo divide por 3, el resto es 1. ¿Cuál es el resto si se lo divide por 12 ?
4	Calcular el máximo común divisor entre:
1.	(i) $(16,38)$ (ii) $(120,50)$ (iii) $(31,57)$ (iv) $(-60,45)$ (v) $(9834,1430)$
5.	Probar que si a y b son enteros:
	(a) $(a, 1) = 1$ (b) si a es no nulo, $(a, 0) = a $ (c) $(a, a) = a $
6.	Hallar $mcd(5k+3,3k+2)$, para cualquier k entero
7.	Sean $a,b\in Z$ y sea p primo. Demostrar que si $p ab$ entonces $p a$ ó $p b$ Mostrar que ésto no se cumple si p no es primo.
8.	Hallar el menor entero positivo q tal que $6552q$ es el cuadrado de un entero.
9.	Demostrar que dados a y b en Q tales que $a < b$, existe otro número racional x tal que $a < x < b$.

 $10.\ {\rm Probar}$ que no existe un número racional cuyo cuadrado sea 3

11. Indique la parte real Re(z) y la parte imaginaria Im(z) de los siguientes complejos:

a) $\sqrt{-49}$ b) $\sqrt{-20}$ c) $\sqrt{-\frac{9}{16}}$ d) z=-8 h) z=7i f) z=(3+i)+(5-4i) g) z=3i-(5-2i) h) $\frac{1+3i}{3-i}$ i) $\frac{1-i}{(1+i)^2}$

- 12. La suma de un número complejo y su conjugado es -8 y la suma de sus módulos es 10. De qué números complejos se trata?
- 13. Hallar, si existe, x real tal que Re(z) = Im(z) siendo $z = \frac{x+2i}{4-3i}$
- 14. Encontrar, si existe,un valor de k real para que el complejo $\frac{2-(1+k)i}{1-ki}$ sea un número
- 15. Calcular las siguientes potencias:

a) i^{489} b) $-i^{1026}$ c) $(3i)^{168}$

16. Dados los siguientes números complejos, encontrar la forma más adecuada para realizar las operaciones pediddas:

 $z_1 = 3 + 3i$ $z_2 = -1 + i$ $z_3 = 5 + 4i$ $z_4 = 9$ $z_5 = 5i$ $z_6 = -7$ $z_7 = -4 - 4i$ $z_8 = -8i$ $z_9 = 2 - 2i$ $z_{10} = 3 - 4i$

a) $z_1 + z_7$ b) $z_5 - z_3$ c) $z_9.z_6$ d) z_8/z_{10} e) $z_3 + z_6$ f) $z_2 - z_6$ g) $z_3.z_{10}$ h) z_1^3 i) z_9^9 j) z_5^{15} k) z_{10}^3

- l) hallar las raíces cuartas de z_2
- m) hallar las raíces cúbicas de z_4
- n) hallar las raíces séptimas de i

Ejercicios Adicionales

- 1. Dados a,b,c enteros coprimos, probar que si a|c y b|c entonces ab|c
- 2. Sean a y b dos enteros coprimos, demostrar que :
 - (a) a + b es coprimo con a
 - (b) $a|c \ y \ b|c$ entonces ab|c
- 3. Demostrar que : Si (a, b) = d; a|c y b|c entonces ab|cd
- 4. El resto de la división de un número por 7 es 2; si se lo divide por 3, su resto es 1. ¿Cuál es el resto si se lo divide por 21?
- 5. * Intente codificar (en el lenguaje que Ud prefiera) el algoritmo de Euclides. Pruebe que funciona con alguno de los ejercicios
- 6. * Investigue que dice $La\ criba\ de\ Erat\'ostenes\$ y trate de escribir un c\'odigo que realice el procedimiento.
- 7. Sean u y v números racionales. Probar que:
 - (a) $u + v \in Q \ y \ u v \in Q$
 - (b) $u.v \in Q$
 - (c) Si u es no nulo, $u^{-1} \in Q$
- 8. Dados $a,b,c,d\in Z$, suponiendo que los denominadores no se anulen y que $\frac{a}{b}=\frac{c}{d}$ no es cero, probar:
 - (a) $\frac{a}{c} = \frac{b}{d}$ y $\frac{b}{a} = \frac{d}{c}$
 - (b) $\frac{a+b}{b} = \frac{c+d}{d}$
 - (c) $\frac{a-b}{b} = \frac{c-d}{d}$
- 9. Demostrar que si p es primo y $n \in \mathbb{N}$, entonces $\sqrt[n]{p}$ es irracional
- 10. La suma de dos números complejos es 6, el módulo del primero es $\sqrt{13}$ y el del segundo es 5. De qué números complejos se trata?
- 11. Demostrar que para cualquier complejo z vale que
 - $z.\overline{z} = |z|^2$
 - $z + \overline{z} = 2Re(z)$
 - $z \overline{z} = 2Im(z)i$

- 12. Encontrar el valor de h para que el complejo $\frac{1+3hi}{7+(h-2)i}$ sea un imaginario puro.
- 13. Realizar las operaciones con los complejos del último ejercicio (antes de los adicionales):
 - *) hallar las raíces cúbicas de $z_{\rm 5}$
 - **) hallar las raíces quintas de z_6
 - ***) hallar las raíces séptimas de z_8