13:3-Partial Derivatives

Dr. Md. Abul Kalam Azad Associate Professor, Mathematics NSc, IUT

Objectives

- Find and use partial derivatives of a function of two variables.
- Find and use partial derivatives of a function of three or more variables.
- Find higher-order partial derivatives of a function of two or three variables.

You can determine the rate of change of a function f with respect to one of its several independent variables.

This process is called partial differentiation, and the result is referred to as the partial derivative of f with respect to the chosen independent variable.

Definition of Partial Derivatives of a Function of Two Variables

If z = f(x, y), then the **first partial derivatives** of f with respect to x and y are the functions f_x and f_y defined by

$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

Partial derivative with respect to x

and

$$f_y(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Partial derivative with respect to y

provided the limits exist.

- This definition indicates that if z = f(x, y), then to find f_x , you *consider* y *constant* and differentiate with respect to x.
- Similarly, to find f_y , you consider x constant and differentiate with respect to y.

Example 1 – Finding Partial Derivatives

• a. To find f_x for $f(x, y) = 3x - x^2y^2 + 2x^3y$, consider y to be constant and differentiate with respect to x.

$$f_x(x, y) = 3 - 2xy^2 + 6x^2y$$
 Partial derivative with respect to x

• To find f_y , consider x to be constant and differentiate with respect to y.

$$f_{v}(x, y) = -2x^{2}y + 2x^{3}$$

Partial derivative with respect to y

Example 1 – Finding Partial Derivatives cont'd

b. To find f_x for $(x, y) = (\ln x)(\sin x^2 y)$, consider y to be constant and differentiate with respect to x.

$$f_x(x, y) = (\ln x)(\cos x^2 y)(2xy) + \frac{\sin x^2 y}{x}$$
 Partial derivative with respect to x

To find f_y , consider x to be constant and differentiate with respect to y.

$$f_{y}(x, y) = (\ln x)(\cos x^{2}y)(x^{2})$$

Partial derivative with respect to y

Notation for First Partial Derivatives

For z = f(x, y), the partial derivatives f_x and f_y are denoted by

$$\frac{\partial}{\partial x}f(x,y) = f_x(x,y) = z_x = \frac{\partial z}{\partial x}$$

Partial derivative with respect to x

and

$$\frac{\partial}{\partial y}f(x,y) = f_y(x,y) = z_y = \frac{\partial z}{\partial y}.$$

Partial derivative with respect to y

The first partials evaluated at the point (a, b) are denoted by

$$\frac{\partial z}{\partial x}\Big|_{(a,b)} = f_x(a,b)$$

and

$$\frac{\partial z}{\partial y}\Big|_{(a,b)} = f_y(a,b).$$

- The partial derivatives of a function of two variables, z = f(x, y), have a useful geometric interpretation.
- If $y = y_0$, then $z = f(x, y_0)$ represents the curve formed by intersecting the surface z = f(x, y) with the plane $y = y_0$, as shown in Figure.

 (x_0, y_0, z_0)

$$\frac{\partial f}{\partial x}$$
 = slope in x-direction

Therefore,

$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

represents the slope of this curve at the point $(x_0, y_0, f(x_0, y_0))$.

• Note that both the curve and the tangent line lie in the plane $y = y_0$.

Similarly,

$$f_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

represents the slope of the curve given by the intersection of z = f(x, y) and the plane $x = x_0$ at $(x_0, y_0, f(x_0, y_0))$, as shown in Figure.

■ Informally, the values of $\partial f/\partial x$ and $\partial f/\partial y$ at the point (x_0, y_0, z_0) denote the **slopes of the surface in the** x- and y-directions, respectively.

Example 3 – Finding the Slopes of a Surface

• Find the slopes in the *x*-direction and in the *y*-direction of the surface

$$f(x, y) = -\frac{x^2}{2} - y^2 + \frac{25}{8}$$

at the point $(\frac{1}{2}, 1, 2)$.

Solution:

The partial derivatives of f with respect to x and y are

$$f_x(x, y) = -x$$
 and $f_y(x, y) = -2y$.

Partial derivatives

Example 3 – Solution

cont'd

• So, in the *x*-direction, the slope is

$$f_{x}\left(\frac{1}{2},1\right) = -\frac{1}{2}$$

Figure 13.30

• and in the y-direction, the slope is

$$f_{y}\left(\frac{1}{2},1\right)=-2.$$

Figure 13.30

Figure 13.31

Figure 13.31

Partial Derivatives of a Function of Three or More Variables

- The concept of a partial derivative can be extended naturally to functions of three or more variables. For instance, if w = f(x, y, z), then there are three partial derivatives, each of which is formed by holding two of the variables constant.
- That is, to define the partial derivative of w with respect to x, consider y and z to be constant and differentiate with respect to x.
- A similar process is used to find the derivatives of w with respect to y and with respect to z.

Partial Derivatives of a Function of Three or More Variables

$$\frac{\partial w}{\partial x} = f_x(x, y, z) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x}$$

$$\frac{\partial w}{\partial y} = f_y(x, y, z) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y, z) - f(x, y, z)}{\Delta y}$$

$$\frac{\partial w}{\partial z} = f_z(x, y, z) = \lim_{\Delta z \to 0} \frac{f(x, y, z + \Delta z) - f(x, y, z)}{\Delta z}$$

• In general, if $w = f(x_1, x_2, \dots, x_n)$, then there are n partial derivatives denoted by

$$\frac{\partial w}{\partial x_k} = f_{x_k}(x_1, x_2, \dots, x_n), \quad k = 1, 2, \dots, n.$$

To find the partial derivative with respect to one of the variables, hold the other variables constant and differentiate with respect to the given variable.

Example 6 – Finding Partial Derivatives

■ a. To find the partial derivative of $f(x, y, z) = xy + yz^2 + xz$ with respect to z, consider x and y to be constant and obtain

 $\frac{\partial}{\partial z}[xy + yz^2 + xz] = 2yz + x.$

• **b.** To find the partial derivative of $f(x, y, z) = z \sin(xy^2 + 2z)$ with respect to z, consider x and y to be constant. Then, using the Product Rule, you obtain

$$\frac{\partial}{\partial z} \left[z \sin(xy^2 + 2z) \right] = (z) \frac{\partial}{\partial z} \left[\sin(xy^2 + 2z) \right] + \sin(xy^2 + 2z) \frac{\partial}{\partial z} \left[z \right]$$
$$= (z) \left[\cos(xy^2 + 2z) \right] (2) + \sin(xy^2 + 2z)$$
$$= 2z \cos(xy^2 + 2z) + \sin(xy^2 + 2z).$$

Example 6 – Finding Partial Derivatives

cont'd

• c. To find the partial derivative of

$$f(x, y, z, w) = \frac{x + y + z}{w}$$

with respect to w, consider x, y, and z to be constant obtain

$$\frac{\partial}{\partial w} \left[\frac{x + y + z}{w} \right] = -\frac{x + y + z}{w^2}.$$

Higher-Order Partial Derivatives

- The function z = f(x, y) has the following second partial derivatives.
 - ✓ 1. Differentiate twice with respect to x:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}.$$

 \checkmark 2. Differentiate twice with respect to y:

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}.$$

✓ 3. Differentiate first with respect to x and then with respect to y:

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}.$$

Higher-Order Partial Derivatives

✓ **4.** Differentiate first with respect to *y* and then with respect to *x*:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}.$$

The third and fourth cases are called **mixed partial derivatives**.

Example 7 – Finding Second Partial Derivatives

• Find the second partial derivatives of $f(x, y) = 3xy^2 - 2y + 5x^2y^2$ and determine the value of $f_{xy}(-1, 2)$.

Solution:

Begin by finding the first partial derivatives with respect to *x* and *y*.

$$f_x(x, y) = 3y^2 + 10xy^2$$
 and $f_y(x, y) = 6xy - 2 + 10x^2y$

Then, differentiate each of these with respect to x and y. $f_{xx}(x, y) = 10y^2$ and $f_{yy}(x, y) = 6x + 10x^2$

Example 7 – Solution

cont'd

$$f_{xy}(x, y) = 6y + 20xy$$
 and $f_{yx}(x, y) = 6y + 20xy$

At (-1, 2), the value of f_{xy} is $f_{xy}(-1, 2) = 12 - 40 = -28$.

Suggested Problems

Exercise 13.3:16,28,37,43,52,55,62,68,88,92,71,129,128

Thanks a lot ...