Sentiment Analysis with Deep Learning Models: A Comparative Study on a Decade of Sinhala Language Facebook Data

Authors Gihan Weeraprameshwara Vihanga Jayawickrama

Dr. Nisansa de Silva Yudhanjaya Wijeratne

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Conclusion

Outline

1. Introduction

Sentiment Analysis for Sinhala Colloquial Text

Capability of Facebook data for sentiment analysis

Self annotated dataset of large quantity

State-of-the-art model for Sinhala sentiment analysis

Identify the best model for Sinhala sentiment analysis

2. Methodology

Walkthrough

Dataset

- Developed by Mr. Yudhanjaya Wijeratne and Dr. Nisansa de Silva [1]
- Contains 1.8 million Facebook posts spanning over a decade from different sources.
- Over 540 million user reactions
- 526,732 data rows after preprocessing steps

- Removing text in other languages, numbers, and other text that contains no sentimental value
- Scaling the reaction counts of each row so that their sum is 1
- Removes the bias towards posts with higher reaction counts

- Dividing each message into word tokens and removing stopwords [1]
- Stopwords do not contain a significant sentimental value

- Using the embeddings developed by the work of Senevirathne et al.[2]
- fastText with 300 dimension

- Binary classification of posts divided into positive and negative classes
- Using the Facebook reactions

[2] L. Senevirathne, P. Demotte, B. Karunanayake, U. Munasinghe, and S. Ranathunga, "Sentiment analysis for sinhala language using deep learning techniques," 2020.

Count of Each Reaction

Model	Reaction count
Like	38,889,706
Love	2,336,796
Wow	321,178
Haha	1,486,413
Sad	609,597
Angry	349,296
Thankful	7

- Core Reaction Set Model, All Reaction Set Model, Star Rating Model[3-4]
- Deep learning models

- Collect performance measures for the selected models
- Compare with the work of Senevirathne et al.[2]

^[2] L. Senevirathne, P. Demotte, B. Karunanayake, U. Munasinghe, and S. Ranathunga, "Sentiment analysis for sinhala language using deep learning techniques," 2020.

^[3] V. Jayawickrama, G. Weeraprameshwara, N. de Silva, and Y. Wijeratne, "Seeking sinhala sentiment: Predicting facebook reactions of sinhala posts," arXiv preprint arXiv:2112.00468, 2021.

^[4] S. De Silva, H. Indrajee, S. Premarathna et al., "Sensing the sentiments of the crowd: Looking into subjects," in 2nd International Workshop on Multi-modal Crowd Sensing, 2014.

Models Tested

- Core Reaction Set model [3], All Reaction set models [3], Star Rating Model [3-4]
- Baseline models; GRU [5], LSTM [6], BiLSTM [7]
- Baseline models with CNN layer [8]
- stacked 2 and 3 layer LSTM and BiLSTM models [9]
- HAHNN [10]
- Capsule-A, Capsule-B [11]
- [3] V. Jayawickrama, G. Weeraprameshwara, N. de Silva, and Y. Wijeratne, "Seeking sinhala sentiment: Predicting facebook reactions of sinhala posts," arXiv preprint arXiv:2112.00468, 2021.
- [4] S. De Silva, H. Indrajee, S. Premarathna et al., "Sensing the sentiments of the crowd: Looking into subjects," in 2nd International Workshop on Multi-modal Crowd Sensing, 2014.
- [5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation ofgated recurrent neural networks on sequence modeling," arXiv preprintarXiv:1412.3555, 2014.
- [6] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
- [7] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.
- [8] X. Wang, W. Jiang, and Z. Luo, "Combination of convolutional and recurrent neural network for sentiment analysis of short texts," in Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers, pp. 2428–2437, 2016.
- [9] J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, "Sentiment analysis of chinese microblog based on stacked bidirectional lstm," IEEE Access, vol. 7,pp. 38856–38866, 2019.
- [10] J. Abreu, L. Fred, D. Mac^edo, and C. Zanchettin, "Hierarchical attentional hybrid neural networks fordocument classification," in International Conference Artificial Neural Networks. Springer, 2019, pp.396-402.
- [11] W. Zhao, J. Ye, M. Yang, Z. Lei, S. Zhang, and Z. Zhao, "Investigating capsule networks with dynamic routing for text classification," 2018.

3. Results

Model	F1 S	core (%)	
	News comments [2]	Facebook dataset [1]	
Core Reaction [3]	-	49.80	
Star Rating Model [3-4]	-	33.77	
GRU [5]	54.83	81.33	
LSTM [6]	54.50	81.24	
BiLSTM [7]	57.71	82.58	
CNN [8]+ GRU [5]	54.19	81.37	
CNN [8] + BiLSTM [7]	58.53	81.00	

- [1] Y. Wijeratne and N. de Silva, "Sinhala language corpora and stopwords from a decade of sri lankan facebook,"arXiv preprint arXiv:2007.07884, 2020.
- [2] L. Senevirathne, P. Demotte, B. Karunanayake, U. Munasinghe, and S. Ranathunga, "Sentiment analysis for sinhala language using deep learning techniques," 2020.
- [3] V. Jayawickrama, G. Weeraprameshwara, N. de Silva, and Y. Wijeratne, Seeking sinhala sentiment: Predicting facebook reactions of sinhala posts, arXiv preprint arXiv:2112.00468, 2021.
- [4] S. De Silva, H. Indrajee, S. Premarathna et al., "Sensing the sentiments of the crowd: Looking into subjects," in 2nd International Workshop on Multi-modal Crowd Sensing, 2014.
- [5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
- [6] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
- [7] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.
- [8] X. Wang, W. Jiang, and Z. Luo, "Combination of convolutional and recurrent neural network for sentiment analysis of short texts," in Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers, pp. 2428–2437, 2016.

Model	F1 Score (%)		
	News comments [2]	Facebook dataset [1]	
Stacked LSTM 2 [9]	53.17	81.58	
Stacked LSTM 3 [9]	53.67	81.24	
Stacked BiLSTM 2 [9]	57.78	82.56	
Stacked BiLSTM 3 [9]	59.42	84.58	
HAHNN [10]	59.25	77.39	
Capsule A [11]	53.55	79.67	
Capsule B [11]	59.11	82.04	

^[1] Y. Wijeratne and N. de Silva, "Sinhala language corpora and stopwords from a decade of sri lankan facebook," arXiv preprint arXiv:2007.07884, 2020.

^[2] L. Senevirathne, P. Demotte, B. Karunanayake, U. Munasinghe, and S. Ranathunga, "Sentiment analysis for sinhala language using deep learning techniques," 2020.

^[6] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.

^[7] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.

^[9] J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, "Sentiment analysis of Chinese microblog based on stacked bidirectional lstm," IEEE Access, vol. 7,pp. 38856–38866, 2019.

^[10] J. Abreu, L. Fred, D. Mac^edo, and C. Zanchettin, "Hierarchical attentional hybrid neural networks fordocument classification," in International Conference on Artificial Neural Networks. Springer, 2019, pp.396-402.

^[11] W. Zhao, J. Ye, M. Yang, Z. Lei, S. Zhang, and Z. Zhao, "Investigating capsule networks with dynamic routing for text classification," 2018.

Figure 3. Change of the F1 score of the Models.

4. Conclusion

- The usage of Facebook dataset[1] significantly improves the performance of models.
- The state-of-the-model form the results is 3 layer stacked BiLSTM model [9].
- The CNN layer [8] used in the work of Senevirathne et al.[2] needs to be improved.
- The use of attention mechanism introduced in the work of Vaswani et al. [12].

^[1] Y. Wijeratne and N. de Silva, "Sinhala language corpora and stopwords from a decade of sri lankan facebook," arXiv preprint arXiv:2007.07884, 2020.
[2] L. Senevirathne, P. Demotte, B. Karunanayake, U. Munasinghe, and S. Ranathunga, "Sentiment analysis for sinhala language using deep learning techniques." 2020.

^[8] X. Wang, W. Jiang, and Z. Luo, "Combination of convolutional and recurrent neural network for sentiment analysis of short texts," in Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers, pp. 2428–2437, 2016.

^[9] J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, "Sentiment analysis of chinese microblog based on stacked bidirectional lstm," IEEE Access, vol. 7,pp. 38856–38866, 2019.

^[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural information processing systems, pp. 5998–6008, 2017.

References

- [1] Y. Wijeratne and N. de Silva, "Sinhala language corpora and stopwords from a decade of sri lankan facebook," arXiv preprint arXiv:2007.07884, 2020.
- [2] L. Senevirathne, P. Demotte, B. Karunanayake, U. Munasinghe, and S. Ranathunga, "Sentiment analysis for sinhala language using deep learning techniques," 2020.
- [3] V. Jayawickrama, G. Weeraprameshwara, N. de Silva, and Y. Wijeratne, "Seeking sinhala sentiment: Predicting facebook reactions of sinhala posts," arXiv preprint arXiv:2112.00468, 2021.
- [4] S. De Silva, H. Indrajee, S. Premarathna et al., "Sensing the sentiments of the crowd: Looking into
- subjects," in 2nd International Workshop on Multi-modal Crowd Sensing, 2014.
- [5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
- [6] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
- [7] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

- [8] X. Wang, W. Jiang, and Z. Luo, "Combination of convolutional and recurrent neural network for sentiment analysis of short texts," in Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers, pp. 2428–2437, 2016.
- [9] J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, "Sentiment analysis of chinese microblog based on stacked bidirectional lstm," IEEE Access, vol. 7,pp. 38856–38866, 2019.
- [10] J. Abreu, L. Fred, D. Mac^edo, and C. Zanchettin, "Hierarchical attentional hybrid neural networks for document classification," in International Conference on Artificial Neural Networks. Springer, 2019, pp.396–402.
- [11] W. Zhao, J. Ye, M. Yang, Z. Lei, S. Zhang, and Z. Zhao, "Investigating capsule networks with dynamic routing for text classification," 2018.
- [12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural information processing systems, pp. 5998–6008, 2017.

