Bibliometric analysis of TreesLab scientific production

Alber Sánchez alber.ipia@inpe.br Michelle Picoli mipicoli@gmail.com

National Institute for Space Research - INPE Brazil

January 4, 2024

Overview

Introduction

Method

Data analysis

Overview

Knowledge synthesis

Conceptual structure Intellectual structure Social structure

Summary

Introduction

► TODO.

What is bibliometric analysis?

- ▶ Bibliometrics is the measurement of physical units of publications, bibliographic citations, and surrogates for them [3].
- ▶ The bibliometric methodology encapsules the application of quantitative techniques (i.e., bibliometric analysis e.g., citation analysis) on bibliometric data (e.g., units of publication and citation) [5].

Bibliometrix package

- R package for bibliometric analysis [1].
- It allows quantitative research in bibliometrics and scientometrics.
- Statistical analysis of publications.
- Useful for performance evaluation and policymaking.
- It includes a Web Application (biblioshiny) for non-programmers!

Bibliographic databases

- Scopus.
- ▶ Web of science.

ELSEVIER Scopus

© Clarivate
Web of Science™

Data pre-processing

- 1. Query Scopus and Web of Science.
- 2. Run analysis.
 - ▶ Bibliometrix: R coders (these slides!).
 - Biblioshiny: Non-coders.

Overview

Description	Results
Timespan Sources (Journals, Books, etc) Documents Annual Growth Rate % Document Average Age	1982:2023 277 532 10.46 10.5
Average citations per doc	17.69
References	16839
Author's Keywords (DE)	1320
Authors	1781
Authors of single-authored docs	16
Co-Authors per Doc	4.42
International co-authorships %	6.767

Documents by type

Description	Results
article	306
conference paper	152
review	11
article; proceedings paper	3
letter	1
note	1
short survey	1

Authors' productivity

thors	Articles
ISCHKE E	12
TALEV S	12
LVJ	11
	9
Α	8
	8
KOVA M	8
ISYAN D IAN E	7
STJUK V	7 7
	7
ZHOU Y 7	

Most cited papers

Paper	TC	TCperYear	NTC
YUAN C, 2015, CAN J FOR RES	462	46.20	9.53
SOUZA JR CM, 2005, REMOTE SENS ENVIRON	261	13.05	11.06
MAKI M, 2004, REMOTE SENS ENVIRON	199	9.48	5.66
LI Z, 2000, INT J REMOTE SENS	193	7.72	4.39
HENDERSON SB, 2011, ENVIRON HEALTH PERSPECT	161	11.50	4.03
SCHROEDER TA, 2011, REMOTE SENS ENVIRON	159	11.36	3.98
CHU T, 2013, REMOTE SENS	157	13.08	7.44
KOETZ B, 2008, FOR ECOL MANAGE	149	8.76	8.19
YUAN C, 2017, J INTELL ROB SYST THEOR APPL	135	16.88	7.52
KASISCHKE ES, 1993, REMOTE SENS ENVIRON	130	4.06	2.02

Most relevant sources

Sources	Articles
REMOTE SENSING	40
PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTIC	30
INTERNATIONAL JOURNAL OF REMOTE SENSING	25
INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IG	21
REMOTE SENSING OF ENVIRONMENT	16
FORESTS	13
INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY REMOTE SENSI	10
FOREST ECOLOGY AND MANAGEMENT	7
ENVIRONMENTAL MONITORING AND ASSESSMENT	6
IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE	6
SOVREMENNYE PROBLEMY DISTANTSIONNOGO ZONDIROVANIYA ZEMLI	6

Most relevant keywords

Author Keywords (DE)	Articles
REMOTE SENSING	137
FOREST FIRE	105
FOREST FIRES	43
MODIS	29
WILDFIRE	22
FIRE	21
GIS	21
LANDSAT	20
FOREST FIRE MONITORING	16
IMAGE PROCESSING	16

Most Productive Authors

Most Productive Countries

 ${\sf SCP: Single\ Country\ Publications,\ MCP:\ Multiple\ Country\ Publications}$

Annual Scientific Production

Average Article Citation per Year

Average Total Citation per Year

Structures of knowledge

- Science mapping aims at displaying the structural and dynamic aspects of scientific research [2].
- Science mapping allows investigating scientific knowledge from a statistical point of view:
 - Conceptual: What science talks about.
 - Intellectual: How the work of an author influences a given scientific community.
 - ► Social: How authors, institutions, and countries interact each other.

Conceptual structure

Represent relations among concepts or words in a set of publications.

Conceptual Structure - Map of words

- Clusters are identified by hierarchical clustering.
- Each color corresponds to a topic.

Conceptual Structure - Map of words

Factorial Map - Most contributing documents

- Identify the link between topic and documents.
- ▶ Plot the document associated to the highest absolute contribution.
- Absolute contributions measure the weight of each document in the information summarized by the two axes.
- ▶ The colors represent the clusters.

Factorial Map - Most contributing documents

- Identify the link between topic and most cited documents.
- Plot documents associated to the highest global citations.
- ► The colors represent the clusters.

Factorial Map - Most contributing documents

Factorial Map - Most cited documents

Network analysis

- A network is a representation of the co-occurrence matrix.
- Diagonal elements are the occurrences of each item in the collection.
- ▶ Non-diagonal elements are the co-occurrence of two item in a collection.

Network - Co-occurrences Authors-Keywords

Author_keywords Co-Occurrences

Network - Authors collaboration

Authors Collaboration

wang j

loupian e bartalitumazurov a korgvin g

bourgeau-chavez l kasischke e

calle a casanova j li z

Network - Authors co-occurrences

Authors Co-Occurrences

Network - Authors coupling

Network - Keyword co-occurrences

Keywords Co-Occurrences

Network - References co-citation

References Co-Citation

```
chu ja 2014 huang cwulder ma 2012-1

diaz-delgado r 2004

goetz sj 2006

goetz sj 2006

white ja 1996

white ja 1996
```

miller j.d. -1 roder a. key c.h. Idntile l.b. 2006-1

Network - Sources coupling

Sources Coupling

Network - Universities collaboration

Universities Collaboration

university of maryland

russian academy of sciences

department of space (dos), governme indian space research organi

ational de la recherche scientifique (cnrs)

nasa jet propulsjon Jahoratory (jpl) californiu Hittiguese i eguntuma system national aeronautics and partuman of arricultum (gode) service manifest states departum of arricultum (gode) service united states formatical resources canada university of magyland college park chinese academy of sciences

The strategic diagram [4]

- Upper-right: Themes are related externally to concepts applicable to other themes that are conceptually closely related.
- Upper-left: Well-developed internal ties but unimportant external ties; marginal importance for the field.
- ► Lower-left: Mainly represents emerging or disappearing themes.
- ► Lower-right: Important for a research field but are not developed.

	Density
Highly developed and isolated themes	Motor themes
	Centrality
Emerging or declining themes	Basic and transversal themes

The strategic diagram. Source [4]

Thematic map (keyword plus)

Thematic map (authors' keywords)

Thematic map (titles)

Thematic map (abstracts)

Take home message

► TODO.

References I

- [1] Massimo Aria and Corrado Cuccurullo. "Bibliometrix: An R-tool for Comprehensive Science Mapping Analysis". In: *Journal of Informetrics* 11.4 (Nov. 2017), pp. 959–975. ISSN: 17511577. DOI: 10.1016/j.joi.2017.08.007. (Visited on 11/14/2023).
- [2] Katy Börner, Chaomei Chen, and Kevin W. Boyack. "Visualizing Knowledge Domains". In: Annual Review of Information Science and Technology 37.1 (Jan. 2003), pp. 179–255. ISSN: 0066-4200, 1550-8382. DOI: 10.1002/aris.1440370106. (Visited on 12/21/2023).
- [3] R. N. Broadus. "Toward a Definition of "Bibliometrics"". In: Scientometrics 12.5-6 (Nov. 1987), pp. 373–379. ISSN: 0138-9130, 1588-2861. DOI: 10.1007/BF02016680. (Visited on 12/19/2023).

References II

- [4] M.J. Cobo et al. "An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field". In: *Journal of Informetrics* 5.1 (Jan. 2011), pp. 146–166. ISSN: 17511577. DOI: 10.1016/j.joi.2010.10.002. (Visited on 12/27/2023).
- [5] Naveen Donthu et al. "How to Conduct a Bibliometric Analysis: An Overview and Guidelines". In: *Journal of Business Research* 133 (Sept. 2021), pp. 285–296. ISSN: 01482963. DOI: 10.1016/j.jbusres.2021.04.070. (Visited on 12/11/2023).