Congratulations! You passed!

Grade received 80% To pass 80% or higher

1/1 point

1. In this quiz, you will practice doing partial differentiation, and calculating the total derivative. As you've seen in $the \ videos, partial \ differentiation \ involves \ treating \ every \ parameter \ and \ variable \ that \ you \ aren't \ differentiating \ by$ as if it were a constant.

 $\label{thm:condition} \textit{Keep in mind that it might be faster to eliminate multiple choice options that can't be correct, rather than (x,y) and (x,y) is a substitution of the correct of the correc$ performing every calculation.

Given $f(x,y)=\pi x^3+xy^2+my^4$, with m some parameter, what are the partial derivatives of f(x,y)

$$\bigcirc \ rac{\partial f}{\partial x} = 3\pi x^3 + y^2$$
,

$$\frac{\partial f}{\partial u} = 2xy^2 + 4my^4$$

$$\bigcirc \frac{\partial f}{\partial x} = 3\pi x^2 + y^2 + my^4,$$

$$rac{\partial f}{\partial u}=3\pi x^2+y^2+my^4$$

$$\bigcirc \frac{\partial f}{\partial x} = 3\pi x^3 + y^2 + my^4$$

$$\frac{\partial f}{\partial u} = \pi x^3 + 2xy + 4my^3$$

$$lacktriangledown$$
 $rac{\partial f}{\partial x}=3\pi x^2+y^2,$

$$\frac{\partial f}{\partial y} = 2xy + 4my^3$$

2. Given $f(x,y,z)=x^2y+y^2z+z^2x$, what are $rac{\partial f}{\partial x},rac{\partial f}{\partial u}$ and $rac{\partial f}{\partial z}$?

1/1 point

$$\bigcirc \ rac{\partial f}{\partial x} = 2xy + y^2z + z^2x$$
,

$$\frac{\partial f}{\partial u} = x^2 + 2yz + z^2x$$

$$rac{\partial f}{\partial z}=x^2y+y^2+2zx$$

$$\bigcirc$$
 $\frac{\partial f}{\partial x} = 2xy + z^2$,

$$\frac{\partial f}{\partial y} = x^2 + 2yz$$

$$\frac{\partial f}{\partial z} = y^2 + 2zx$$

$$\bigcirc \frac{\partial f}{\partial x} = xy + z^2$$
,

$$rac{\partial f}{\partial y}=x^2+yz$$

$$\frac{\partial f}{\partial z} = y^2 + zx$$

$$\bigcirc \frac{\partial f}{\partial x} = 3xyz$$
,

$$rac{\partial f}{\partial y}=3xyz$$

$$\frac{\partial f}{\partial z} = 3xyz$$

⊘ Correct

3. Given $f(x,y,z)=e^{2x}\sin(y)z^2+\cos(z)e^xe^y$, what are $\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$?

0 / 1 point

$$\frac{\partial f}{\partial y} = e^{2x} \cos(y) z^2 + \cos(z) e^x e^y$$

$$\frac{\partial f}{\partial z} = 2e^{2x}\sin(y)z + \sin(z)e^xe^y$$

$$\bigcirc \frac{\partial f}{\partial x} = 4e^{2x}\cos(y)z - \sin(z)e^x e^y,$$

$$\frac{\partial f}{\partial y} = 4e^{2x}\cos(y)z - \sin(z)e^x e^y$$

$$\frac{\partial f}{\partial z} = 4e^{2x}\cos(y)z - \sin(z)e^x e^y$$

$$\bigcirc \ rac{\partial f}{\partial x} = 2e^{2x}\sin(y)z^2 + \cos(z)e^xe^y$$
,

$$\frac{\partial f}{\partial y} = e^{2x}\cos(y)z^2 + \cos(z)e^x e^y$$

$$\frac{\partial f}{\partial z} = 2e^{2x}\sin(y)z - \sin(z)e^x e^y$$

$$\bigcirc \frac{\partial f}{\partial x} = 2e^{2x}\sin(y)z^2 + \cos(z)e^y,$$
$$\frac{\partial f}{\partial y} = e^{2x}\cos(y)z^2 + \cos(z)e^x$$

 $\frac{\partial f}{\partial z} = 2e^{2x}\sin(y)z - \sin(z)e^x e^y$

igotimes Incorrect Be careful when differentiating $\cos(z)$ with respect to z.

4. Recall the formula for the total derivative, that is, for f(x,y), x=x(t) and y=y(t) , one can calculate

1/1 point

 $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$

Given that
$$f(x,y)=rac{\sqrt{x}}{y}, x(t)=t$$
, and $y(t)=\sin(t)$, calculate the total derivative $rac{df}{dt}$

$$\bigcirc \ \frac{df}{dt} = \frac{1}{2\sqrt{t}\sin(t)} + \frac{\sqrt{t}\cos(t)}{\sin(t)}$$

$$\bigcirc \frac{df}{dt} = \frac{1}{2\sqrt{t}\sin(t)} - \frac{\sqrt{t}}{\sin^2(t)}$$

 $\bigcup \frac{a_I}{dt} = -\frac{1}{\sqrt{t}\sin(t)} - \frac{\sqrt{t}\cos(t)}{\sin^2(t)}$

5. Recall the formula for the total derivative, that is, for f(x,y,z), x=x(t), y=y(t) and z=z(t), one can calculate $\frac{df}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}+\frac{\partial f}{\partial z}\frac{dy}{dt}$.

1/1 point

Given that $f(x,y,z)=\cos(x)\sin(y)e^{2z}$, x(t)=t+1 , y(t)=t-1 , $z(t)=t^2$, calculate the total

$$\bigcirc \quad \frac{df}{dt} = [\cos(t+1)\sin(t-1) + \cos(t+1)\cos(t-1) + 4t\cos(t+1)\sin(t-1)]e^{2t^2}$$

$$\bigcirc \ \ \frac{df}{dt} = [-\sin(t+1)\sin(t-1) + \cos(t+1)\cos(t-1) + 2\cos(t+1)\sin(t-1)]e^{2t^2}$$

$$\bigcirc \atop \frac{df}{dt} = [-(t+1)\sin(t+1)\sin(t-1) + (t-1)\cos(t+1)\cos(t-1) + 4t\cos(t+1)\sin(t-1)]e^{2t^2}$$