МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №3

по дисциплине: «Вычислительная математика»

Выполнил: ст. группы ПВ-211 Медведев Дмитрий Сергеевич

Проверила: Бондаренко Т.В.

Численное интегрирование

Вариант 8

Цель работы: изучить понятие квадратурной формулы; изучить основные способы численного интегрирования; получить практические навыки решения задачи численного интегрирования с помощью ЭВМ.

Ход работы

- 1. Вычислить «вручную» интегралы из таблицы вариантов заданий:
- точно (все 3 интеграла);

– по формуле центральных (средних) прямоугольников, используя для оценки точности двойной просчёт при n1=8; n2=10 (интеграл 1);

n	0	1	2	3	4	5	6	7		
x	0	0,375	0,75	1,125	1,5	1,875	2,25	2,625		
y(x+1/2)	0,041748	0,494385	1,702881	3,983643	7,653076	13,02759	20,42358	30,15747		
							Сумма:	29,05664		
n	0	1	2	3	4	5	6	7	8	9
х	0	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4	2,7
y(x+1/2)	0,025875	0,293625	0,984375	2,260125	4,282875	7,214625	11,21738	16,45313	23,08388	31,27163
									Сумма:	29,12625

- по формуле трапеций при n=8 (интеграл 1 и 2);

n	0	1	2	3	4	5	6	7	8
х	0	0,375	0,75	1,125	1,5	1,875	2,25	2,625	3
У	0	0,193359	0,984375	2,689453	5,625	10,10742	16,45313	24,97852	36
									29,63672
n	0	1	2	3	4	5	6	7	8
х	0	0,392699	0,785398	1,178097	1,570796	1,963495	2,356194	2,748894	3,141593
У	1	0,382683	-0,70711	-0,92388	-1,8E-16	0,92388	0,707107	-0,38268	-1
									0

- по формуле парабол (Симпсона) при n=8 (интеграл 1 и 3).

n	0	1	2	3	4	5	6	7	8
X	0	0,375	0,75	1,125	1,5	1,875	2,25	2,625	3
у	0	0,193359	0,984375	2,689453	5,625	10,10742	16,45313	24,97852	36
								Сумма:	29,25
n	0	1	2	3	4	5	6	7	8
X	0	0,25	0,5	0,75	1	1,25	1,5	1,75	2
у	3	3,316074	3,732051	4,279507	5	5,948222	7,196152	8,838521	11
								Сумма:	11,28214

Замечание. Для вычисления значений «вручную» рекомендуется использовать Microsoft Excel или другую программу.

2. Определить погрешность вычисления интеграла 1 по каждой из формул. Результаты представить в виде табл. 3.1.

Погрешность	Формула це прямоуго	ентральных ольников	Формула трапеций	Формула парабол n =	Формула Гаусса				
	n = 8	n = 10	n = 8	8	n = 1	n = 2	n = 3	n = 4	
Δ1	0,193359375	0,12375	0,38671875	0					
δ1	0,006610577	0,004230769	0,013221154	0					
Δ2			0	0,000141965					
δ2			0	1,25833E-05					

3. Описать в модуле функции, которые возвращают приближенные значения интегралов от функции f(x) с оценкой точности по принципу Рунге для методов центральных прямоугольников, трапеций и парабол.

Исходными данными являются: подынтегральная функция f(x); пределы интегрирования a, b; начальное число отрезков разбиения n; точность вычисления є. Необходимые для работы значения подынтегральной функции вычисляются непосредственной подстановкой значений аргумента в вычислительную формулу функции.

```
#include "integrals.h"
#include "utility"
#include "vector"
#include "stdlib.h"

typedef std::pair<double, double> GridElement;
typedef std::vector<GridElement> Grid;
```

```
double calculateIntegralByCentralRectangle(Function function, double lowBorder,
                                            double highBorder, int nParts) {
    Grid grid(nParts);
    double step = (highBorder - lowBorder) / nParts;
    double sum = 0;
    for (int i = 0; i < nParts; i++) {</pre>
        grid[i].first = lowBorder + (i + 0.5) * step;
        grid[i].second = function(grid[i].first);
        sum += grid[i].second;
    return sum * step;
double calculateIntegralByTrapezoid(Function function, double lowBorder,
                                    double highBorder, int nParts) {
    Grid grid(nParts + 1);
    grid[0] = {lowBorder, function(lowBorder)};
    grid[grid.size() - 1] = {highBorder, function(highBorder)};
    double step = (highBorder - lowBorder) / nParts;
    double sum = (grid[0].second + grid[grid.size() - 1].second) / 2;
    for (int i = 1; i < nParts; i++) {</pre>
        grid[i].first = lowBorder + i * step;
        grid[i].second = function(grid[i].first);
        sum += grid[i].second;
    return step * sum;
double calculateIntegralByParable(Function function, double lowBorder,
                                  double highBorder, int nParts) {
    Grid grid(nParts + 1);
    grid[0] = {lowBorder, function(lowBorder)};
    grid[grid.size() - 1] = {highBorder, function(highBorder)};
    double step = (highBorder - lowBorder) / nParts;
    double sum = grid[0].second + grid[grid.size() - 1].second;
    for (int i = 1; i < grid.size() - 1; i += 2) {</pre>
        grid[i].first = lowBorder + i * step;
        grid[i].second = function(grid[i].first);
        sum += 4 * grid[i].second;
    for (int i = 2; i < grid.size() - 1; i += 2) {
        grid[i].first = lowBorder + i * step;
        grid[i].second = function(grid[i].first);
        sum += 2 * grid[i].second;
    return step / 3 * sum;
}
double calculateIntegralByCentralRectangleWithEps(Function function, double lowBorder,
                                                   double highBorder, int nParts,
double &eps) {
   double integralValueNParts = calculateIntegralByCentralRectangle(function,
lowBorder, highBorder, nParts);
   double difference = abs(integralValueNParts -
calculateIntegralByCentralRectangle(function, lowBorder,
highBorder, nParts / 2));
    eps = (double) 1 / 3 *difference;
    return integralValueNParts;
```

```
double calculateIntegralByTrapezoidWithEps(Function function, double lowBorder,
                                           double highBorder, int nParts, double &eps)
    double integralValueNParts = calculateIntegralByTrapezoid(function, lowBorder,
highBorder, nParts);
    double difference = abs(integralValueNParts -
calculateIntegralByTrapezoid(function, lowBorder,
highBorder, nParts / 2));
    eps = (double) 1 / 3 * difference;
    return integralValueNParts;
double calculateIntegralByParableWithEps(Function function, double lowBorder,
                                         double highBorder, int nParts, double &eps) {
    double integralValueNParts = calculateIntegralByParable(function, lowBorder,
highBorder, nParts);
   double difference = abs(integralValueNParts - calculateIntegralByParable(function,
lowBorder,
highBorder, nParts / 2));
   eps = (double) 1 / 15 * difference;
    return integralValueNParts;
}
```

4. Составить программу для вычисления приближенных значений интегралов согласно варианту (все функции из таблицы вариантов заданий) с использованием всех функций, описанных в модуле.

```
#include <iostream>
#include "libs/integrals/integrals.h"
#include "cmath"
#include "windows.h"
double f1(double x) {
   return pow(x, 3) + pow(x, 2);
double f2(double x) {
   return cos(3 * x);
double f3(double x) {
   return pow(3, x) + 2;
int main() {
   SetConsoleOutputCP(CP UTF8);
   std::cout << "Вычисление по формуле центральных прямоугольников\n" <<
              "Интеграл 1, n = 8: " << calculateIntegralByCentralRectangle(f1, 0, 3,
8) <<
              "\nИнтеграл 1, n = 10: " << calculateIntegralByCentralRectangle(f1, 0,
3, 10) <<
              "\n\nВычисление по формуле трапеции\n" <<
              "Интеграл 1, n = 8: " << calculateIntegralByTrapezoid(f1, 0, 3, 8) <<
              "\nИнтеграл 2, n = 8: " << calculateIntegralByTrapezoid(f2, 0,
std::numbers::pi / 3, 8) <<
              "\n\nВычисление по формуле парабол\n" <<
              "Интеграл 1, n = 8: " << calculateIntegralByParable(f1, 0, 3, 8) <<
              "\nMHTerpan 3, n = 8: " << calculateIntegralByParable(f3, 0, 3, 8);
}
```

C:\Users\dimam\Desktop\4Semester\VM\LR3\Code\cmake-build-debug\Code.exe

```
Вычисление по формуле центральных прямоугольников Интеграл 1, n = 8: 29.0566
Интеграл 2, n = 8: 1.30795e-16
Интеграл 3, n = 8: 11.2591
Вычисление по формуле трапеций Интеграл 1, n = 8: 29.6367
Интеграл 2, n = 8: 8.71967e-17
Интеграл 3, n = 8: 11.3276
Вычисление по формуле парабол Интеграл 1, n = 8: 29.25
Интеграл 2, n = 8: 7.75082e-17
Интеграл 3, n = 8: 11.2821
Process finished with exit code 0
```

5. Вычислить «вручную» интеграл из столбца 1 табл. 3.1 по формуле Гаусса при n = 2. Значения узлов ti и весов Ai приведены в табл. 3.2.

6. Описать в модуле функцию для вычисления приближенного значения интеграла от функции f(x) по формуле Гаусса при $n=1,\,2,\,3,\,4$. Добавить в составленную программу вычисление приближенных значений интегралов (все функции из таблицы вариантов заданий) с использованием формулы Гаусса.

```
double calculateIntegralByGauss(Function function, double lowBorder,
                                 double highBorder, int nParts) {
    double sum = 0;
    for (int i = 0; i < nParts; i++) {</pre>
        double value = gaussCoefficients[nParts][i].A;
        value *= function((highBorder + lowBorder) / 2 +
                           (highBorder - lowBorder) / 2 *
gaussCoefficients[nParts][i].t);
        sum += value;
    }
    return (highBorder - lowBorder) / 2 * sum;
}
int main() {
    SetConsoleOutputCP(CP_UTF8);
    std::cout << "Вычисление интеграла по формуле Гаусса\n";
    for (int i = 1; i <= 4; i++) {
        std::cout << "Интеграл 1, n = " << i << ": " <<
                  calculateIntegralByGauss(f1, 0, 3, i) << "\n";</pre>
    }
    std::cout << "Интеграл 2, n = 4: " <<
              calculateIntegralByGauss(f2, 0, std::numbers::pi / 3, 4) << "\</pre>
n";
    std::cout << "Интеграл 3, n = 4: " <<
              calculateIntegralByGauss(f3, 0, 2, 4) << "\n";</pre>
}
C:\Users\dimam\Desktop\4Semester\VM\LR3\Code\cmake-build-debug\Code.exe
Вычисление интеграла по формуле Гаусса
Интеграл 1, n = 1: 16.875
Интеграл 1, n = 2: 29.25
Интеграл 1, n = 3: 29.2495
Интеграл 1, n = 4: 29.2499
Интеграл 2, n = 4: 2.47642e-07
Интеграл 3, n = 4: 11.2819
```

Process finished with exit code 0

7. Заполнить значения погрешности вычисления интеграла 1 в таблице 3.1 для формулы Гаусса при $n=1,\,2,\,3,\,4.$

Погрешность	Формула центральных прямоугольников		Формула трапеций	Формула парабол n =	Формула Гаусса			
	n = 8	n = 10	n = 8	8	n = 1	n = 2	n = 3	n = 4
Δ1	0,193359375	0,12375	0,38671875	0				
δ1	0,006610577	0,004230769	0,013221154	0				
Δ2			0	0,000141965	12,375	0	0,0005	0,0001
δ2			0	1,25833E-05	0,423077	0	1,71E-05	3,42E-06

Вывод: в ходе лабораторной работы мы изучили понятие квадратурной формулы; изучили основные способы численного интегрирования; получили практические навыки решения задачи численного интегрирования с помощью ЭВМ.