Statistical Methods for High Dimensional Biology STAT/BIOF/GSAT 540

Lecture 8 – Linear Models Part II

Sara Mostafavi

January 27 2016

outline

Quick review of previous lecture

Linear regression & Factorial design

Developing mouse retina – time course for the experiment

So sample collections:

4 developmental stages

2 genotypes: wild-type, Nrl KO

Experimental design

devStage	wt	NrlKO
E16	4	3
P2	4	4
P6	4	4
P10	4	4
4 _weeks	4	4

```
> t.test(gExp ~ gType, miniDat,
        subset = gene == "Irs4", var.equal = TRUE)
                                          NrIKO
        two sample t test
                                            wt
                                               7.4
 summary(aov(gExp ~ gType, miniDat,
             subset = gene == "Irs4"))
 (one-way) analysis of variance
             "ANOVA"
> summary(lm(gExp ~ gType, miniDat,
            subset = gene == "Irs4"))
                linear model
              linear regression
```


gExp

Let's map this notation/formulation to our working example

Group 1 (WT)
$$Y_1 = \mu_1 + \varepsilon_1$$
 where $\varepsilon_1 \sim F, E(\varepsilon_1) = 0$
Group 2 (NrIKO) $Y_2 = \mu_2 + \varepsilon_2$ where $\varepsilon_2 \sim F, E(\varepsilon_2) = 0$

- * Note that we have a different expected value μ_i for each group
- * With this formulation, we can actually have many groups, not just 2!
- * Note that we are assuming the same noise distribution for the two groups (can be relaxed if we think it should be ...)

Do we think the expression levels at different developmental stages are generated by different underlying distributions? Or a common one?

the column vector of the responses one element per experimental unit a column vector of the errors

a (design) matrix that represents covariate info, one row per experimental unit

a column vector of the parameters in the linear model

Generic linear model, using conventional matrix formulation

$Y = X\alpha + \varepsilon$

Different ways of writing this (design matrix, parameter vector) pair correspond to different parametrizations of the model.

Understanding these concepts makes it easier ...

- * to interpret fitted models with confidence
- * to fit models such that comparisons you care most about are directly addressed in the inferential "report"

increase the complexity ...

what if you've got 2 categorical covariates, e.g. genotype and developmental stage?

genotype = wt vs. Nrl knockout

simplifying developmental stage to a two-level factor = E16 (ref) vs. 4_weeks

```
'data.frame':
                  15 obs. of 5 variables:
 $ sample : num 20 21 22 23 16 17 6 36 37 38 ...
 $ devStage: Factor w/ 2 levels "E16","4 weeks": 1 1 1 1 1 1 2 2 2 ...
            : Factor w/ 2 levels "wt", "NrlKO": 1 1 1 1 2 2 2 1 1 1 ...
   qType
   qExp
            : num 9.96 10.05 9.82 9.8 8.54 ...
            : Factor w/ 4 levels "wt.E16", "NrlKO.E16", ...: 1 1 1 1 2 2 2 3 3 3 ...
   grp
                                         > miniDat
                                                   sample devStage gType
                                                                            qExp
                                                                                            grp
                                                                           9.958
                                         Sample 20
                                                       20
                                                                E16
                                                                                         wt.E16
                                                                       wt
                                         Sample 21
                                                       21
                                                                E16
                                                                       wt 10.050
                                                                                         wt.E16
                                         Sample 22
                                                       22
                                                                E16
                                                                       wt 9.825
                                                                                         wt.E16
                                         Sample 23
                                                       23
                                                                E16
                                                                       wt 9.799
                                                                                         wt.E16
                                         Sample 16
                                                       16
                                                                E16 NrlKO 8.539
                                                                                      NrlKO.E16
                                         Sample 17
                                                       17
                                                                E16 NrlKO 8.730
                                                                                      NrlKO.E16
                                         Sample 6
                                                        6
                                                                E16 NrlKO 9.498
                                                                                      NrlKO.E16
                                         Sample 36
                                                                       wt 11.410
                                                                                     wt.4 weeks
                                                       36
                                                            4 weeks
                                         Sample 37
                                                                       wt 11.780
                                                       37
                                                            4 weeks
                                                                                     wt.4 weeks
                                         Sample 38
                                                                       wt 11.320
                                                       38
                                                            4 weeks
                                                                                     wt.4 weeks
                                         Sample 39
                                                       39
                                                            4 weeks
                                                                       wt 11.660
                                                                                     wt.4 weeks
                                         Sample 11
                                                            4 weeks NrlKO 8.244 NrlKO.4 weeks
                                                       11
                                         Sample 12
                                                       12
                                                            4 weeks NrlKO 8.394 NrlKO.4 weeks
                                         Sample 2
                                                            4 weeks NrlKO 8.382 NrlKO.4 weeks
                                                        2
                                         Sample 9
                                                            4 weeks NrlKO 9.055 NrlKO.4 weeks
                                                        9
> with(miniDat, table(qType, devStage))
      devStage
       E16 4 weeks
qType
 wt.
                4
 NrlKO
        3
> table(miniDat$qrp)
      wt.E16
                NrlKO.E16
                           wt.4 weeks NrlKO.4 weeks
                       3
          4
                                   4
```

> str(miniDat)

Does it make sense to you to analyze this data like this? What do the parameters of response-trx model mean?

> table(miniDat\$grp)

(theAvgs <- with(miniDat, tapply(gExp, grp, mean)))</pre>

wt.E16 NrlKO.E16 wt.4_weeks NrlKO.4_weeks 9.908000 8.922333 11.542500 8.518750

4 groups

model parameters	R	stats
θ	(Intercept)	wt, E16
$ au_1$	grpNrlKO.E16	effect of NrIKO
$ au_2$	grpwt.4_weeks	effect of 4_weeks
$ au_3$	grpNrlKO.4_weeks	effect of NrIKO and 4_weeks

More intuitive to model each genotype separately

```
> with(miniDat, table(gType, devStage))
             devStage
              E16 4 weeks
     gType
       wt
                 4
۲s
       NrlKO
                 3
                         wt
NrIKO
     2 * 2 = 4 \text{ groups}
  11
gExp
  10
   9
                E16
                                     4 weeks
  > with(miniDat,
         tapply(gExp, list(gType, devStage), mean))
             E16
                  4 weeks
        9.908000 11.54250
  wt
  NrlKO 8.922333 8.51875
```

$$2 * 2 = 4$$
 groups

$$Y = X\alpha + \varepsilon$$

$$\begin{bmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n_4 4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \theta \\ \tau_A \\ \tau_B \\ \tau_{AB} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{n_4 4} \end{bmatrix}$$

	model paramet	R	stats
	θ	(Intercept)	wt, EI6
	$ au_A$	gTypeNrlKO	effect of NrIKO
]	$ au_B$	devStage4_weeks	effect of 4_weeks
	$ au_{AB}$	gTypeNrlKO:devS tage4_weeks	interaction effect of NrIKO and 4_weeks

wt NrIKO

$$\begin{bmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n_4 3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{n_4 3} \end{bmatrix} + \begin{bmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n_4 3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{n_4 3} \end{bmatrix}$$

$$\begin{bmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n_4 3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \theta \\ \tau_A \\ \tau_B \\ \tau_{AB} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{n_4 3} \end{bmatrix}$$

"it's just 4 groups"

 $lm(y \sim grp)$

"it's a 2x2 factorial design"

lm(y ~ thingA * thingB)

"it's just 4 groups"

```
> summary(grpFit)
lm(formula = gExp ~ grp, data = miniDat)
<snip, snip>
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.9080 0.1575 62.911 2.03e-15 ***

grpNrlKO.E16 0.2406 -4.097 0.00177 **

grpwt.4_weeks 1.6345 0.2227 7.339 1.47e-05 ***

grpNrlKO.4_weeks -1.3893 0.2227 -6.237 6.37e-05 ***
```

$$H_0: \boldsymbol{\tau}_j = 0$$

Residual standard error: 0.315 on 11 degrees of freedom F-statistic: 70.76 on 3 and 11 DF, p-value: 1.78e-07

"it's a 2x2 factorial design"

wt NrIKO

```
> cbind(sampleMeans = theAvgs,
         minuRef = theAvgs - theAvgs["wt.E16"],
        twoFactFit = coef(twoFactFit))
                                                  11 -
                             minuRef twoFactFit
              sampleMeans
 wt.E16
                 9.908000 0.0000000 9.9080000
                 8.922333 -0.9856667 -0.9856667 W
 NrlKO.E16
 wt.4 weeks
                11.542500 1.6345000 1.6345000
 NrlKO.4 weeks
                 8.518750 -1.3892500 -2.0380833
 > theAvgs["NrlKO.4 weeks"] -
       (theAvgs["wt.E16"] +
        (theAvgs["NrlKO.E16"] - theAvgs["wt.E16"]) +
                                                                                     4 weeks
         (theAvgs["wt.4 weeks"] - theAvgs["wt.E16"]))
                                                                                \mu_3
                                                                                            \mu_4
 NrlKO.4 weeks
     -2.038083
                                                                         	au_B
> summary(twoFactFit)
lm(formula = gExp ~ gType * devStage, data = miniDat)
                                                                         H_0: \tau_A = 0
<snip, snip>
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
                                                                          H_0: \tau_B = 0
                                         0.1575 62.911 2.03e-15 ***
(Intercept)
                              9.9080
qTypeNr1KO
                             -0.9857
                                         0.2406 -4.097 0.00177 **
devStage4 weeks
                             1.6345
                                         0.2227 7.339 1.47e-05 ***
gTypeNrlKO:devStage4 weeks -2.0381
                                         0.3278 -6.217 6.56e-05 ***
                                                                          H_0: \tau_{AB} = 0
```

Under the hood, the same linear model is being fit in all three cases*.

However, the analyst is causing the model to be *parametrized* differently, in accordance with distinct analytical interests.

$$\lim(y \sim 0 + grp)$$

$$\lim(y \sim grp)$$

$$\frac{\mu_1 \mu_2}{\tau_3} \mu_4$$

$$\frac{\mu_1 \mu_2}{\theta}$$

$$\lim(y \sim thingA * thingB)$$

$$\frac{\mu_1 \mu_2}{\tau_4} \mu_3 \mu_4$$

$$\frac{\tau_4}{\tau_{AB}}$$

^{*} Go ahead and check me -- the fitted values and residuals are exactly the same!

optional take-home challenges:

fit the model various ways and verify my claim that the fitted values (see fitted()) and residuals (see resid()) are the same (this, like many simple facts I'm pointing out, will not hold up in messier situations)

try this for yet another way to fit the model:

lm(gExp ~ gType/devStage, miniDat)

figure out how that's being parametrized and double check yourself with numbers

Recall: R formulas are expressed in 'Wilkinson-Rogers' notation. See Venables and Ripley 3.7 and 6.2 for an introduction. And/or read Ch. I I of "An Introduction to R".

hopefully now it is clear how there are different ways to look at data arising from, e.g., four separate groups

hopefully you now have some sense of how there can be different ways to "parametrize" a model and why you might do that

let's look at a handful of genes/probesets to get a feel for all the ways a gene could be interesting or boring now

approaching with 2x2 factorial mindset

sketch a plot for a boring gene no knockout effect no developmental stage effect no interaction yawn

boring genes

1431312_at

Call:

lm(formula = prMat ~ gType * devStage, data = prDes)

Response[21641]: 1448243 at

wt NrIKO

8

- 7

Residuals:

Min 01 Median Q3 Max -0.7580 -0.2404 -0.0390 0.2316 1.0803

Coefficients:

	Estimate	Sta. Error	t value	Pr(> t)	
(Intercept)	8.5240	0.2561	33.280	2.15e-12	**
gTypeNrlKO	-0.4337	0.3912	-1.108	0.291	
devStage4_weeks	-0.2533	0.3622	-0.699	0.499	
gTypeNrlKO:devStage4_weeks	0.5504	0.5332	1.032	0.324	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5123 on 11 degrees of freedom Multiple R-Squared: 0.1081, Adjusted R-squared: -0.1351 F-statistic: 0.4446 on 3 and 11 DF, p-value: 0.726

$$H_0: \tau_{\Lambda Nrl} = 0$$

$$H_0: \tau_{4 \text{ weeks}} = 0$$

$$H_0: \tau_{\Delta Nrl} = 0$$

$$H_0: \tau_{4_\text{weeks}} = 0$$

$$H_0: \tau_{\Delta Nrl, 4_\text{weeks}} = 0$$

sketch a plot for this: no knockout effect YES developmental stage effect no interaction

developmental stage matters, but gene knock out does not

1447988 at

8.5

8.0

Call:

lm(formula = prMatSimple ~ qType * devStage)

Response[21450]: 1447988 at

Residuals:

Min 01 Median Max -0.54800 -0.12975 0.06925 0.16963 0.33500

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.1212	0.1430	42.819	1.37e-13	***
gTypeNrlKO	-0.1196	0.2184	-0.548	0.594888	
devStage4_weeks	1.1065	0.2022	5.473	0.000194	***
<pre>gTypeNrlKO:devStage4_weeks</pre>	-0.4122	0.2976	-1.385	0.193486	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2859 on 11 degrees of freedom Multiple R-Squared: 0.7983, Adjusted R-squared: 0.7433 F-statistic: 14.52 on 3 and 11 DF, p-value: 0.0003849

$$H_0: \tau_{\Delta Nrl} = 0$$

$$H_0: \tau_{\Delta Nrl} = 0$$

$$H_0: \tau_{4_\text{weeks}} \neq 0$$

$$H_0: \tau_{\Delta Nrl, 4_\text{weeks}} = 0$$

sketch a plot for this: YES knockout effect no developmental stage effect no interaction

gene knock out matters, but developmental stage does not NrIKO •

Call:

lm(formula = prMatSimple ~ qType * devStage)

Response[21306]: 1447753 at

Residuals:

Min 01 Median -0.11550 -0.06637 0.01067 0.03238 0.19550

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.47725	0.04711	137.484	< 2e-16	***
gTypeNrlKO	0.29008	0.07197	4.031	0.00198	**
devStage4_weeks	-0.07675	0.06663	-1.152	0.27377	
gTypeNrlKO:devStage4_weeks	-0.10258	0.09807	-1.046	0.31801	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09423 on 11 degrees of freedom Multiple R-Squared: 0.7251, Adjusted R-squared: 0.6501 F-statistic: 9.67 on 3 and 11 DF, p-value: 0.002035

$$H_0: \tau_{\Delta Nrl} > 0$$

$$H_0: \tau_{4_\text{weeks}} = 0$$

$$H_0: \tau_{\Delta Nrl} \neq 0$$

$$H_0: \tau_{4_\text{weeks}} = 0$$

$$H_0: \tau_{\Delta Nrl, 4_\text{weeks}} = 0$$

sketch a plot for this:
YES knockout effect
YES developmental stage effect
no interaction

gene knock out & developmental stage matter, but no interaction

NrIKO •

Call:

lm(formula = prMatSimple ~ gType * devStage)

Response[1784]: 1417810 a at

Residuals:

Min Q1 Median Max -0.6545 -0.1963 0.0510 0.1578 0.3725

	Estimate	Sta. Error	t value	Pr(> t)	
(Intercept)	10.3885	0.1576	65.932	1.21e-15	***
gTypeNrlKO	-0.8435	0.2407	-3.505	0.00493	**
devStage4_weeks	1.6490	0.2228	7.400	1.36e-05	***
<pre>gTypeNrlKO:devStage4_weeks</pre>	-0.4215	0.3280	-1.285	0.22516	

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3151 on 11 degrees of freedom Multiple R-Squared: 0.9133, Adjusted R-squared: 0.8897 F-statistic: 38.63 on 3 and 11 DF, p-value: 3.914e-06

$$H_0: \tau_{\Lambda Nrl} \times 0$$

$$H_0: \tau_{4_\text{weeks}} \neq 0$$

$$H_0: \tau_{\Delta Nrl} \neq 0$$

$$H_0: \tau_{4_\text{weeks}} \neq 0$$

$$H_0: \tau_{\Delta Nrl, 4_\text{weeks}} = 0$$

sketch a plot for this:
YES knockout effect
YES developmental stage effect
YES interaction
as exciting as it gets, folks

gene knock out & developmental stage matter AND there's interaction

gExp

1458220_at

- 12

Call:

lm(formula = prMatSimple ~ gType * devStage)

Daniel 1000011 1455005 11

Response[26861]: 1455695_at

Residuals:

Min Q1 Median Q3 Max -0.3833 -0.1645 -0.1090 0.1297 0.5757

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	9.9080	0.1575	62.911	2.03e-15	***
gTypeNrlKO	-0.9857	0.2406	-4.097	0.00177	**
devStage4_weeks	1.6345	0.2227	7.339	1.47e-05	***
<pre>gTypeNrlKO:devStage4_weeks</pre>	-2.0381	0.3278	-6.217	6.56e-05	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.315 on 11 degrees of freedom Multiple R-Squared: 0.9507, Adjusted R-squared: 0.9373 F-statistic: 70.76 on 3 and 11 DF, p-value: 1.78e-07

$$H_0: \tau_{\Delta Nrl} \nvDash 0$$

$$H_0: \tau_{4_{\mathrm{weeks}}} \neq 0$$

$$H_0: \tau_{\Delta Nrl, 4 \text{ weeks}} \stackrel{-}{\bowtie} 0$$

increase the complexity ...

2 categorical covariates:

genotype = wt vs. Nrl knockout

developmental stage = EI6 (ref) vs. P2 vs P6 vs PI0 vs 4_weeks

Challenge:

We will take a "ref + tx effects" and "factorial design" approach.

How many parameters will we be estimating (other than residual variance)?

What are they?

How do they break down in terms of intercept, effects relating to just 1 covariate, interaction effects?

"two-way ANOVA" or ... just a linear model!

$$y_{ijk} = \theta + \tau_j + \beta_k + (\tau \beta)_{jk} + \varepsilon_{ijk}$$

devStage gType	EI6	P2	P6	PIO	4_weeks
wt	θ	$oldsymbol{eta}_{P2}$	$oldsymbol{eta}_{P6}$	$oldsymbol{eta}_{P10}$	$oldsymbol{eta_4}_{ ext{weeks}}$
NrIKO	$ au_{NrlKO}$	$(auoldsymbol{eta})_{NrlKO,P2}$	$(auoldsymbol{eta})_{NrlKO,P6}$	(τ β) NrlKO,P10	$(auoldsymbol{eta})$ NrlKO,4_weeks

anticipate the plot and inferential results for a boring gene no knockout effect no developmental stage effects no interaction yawn

linear model style inferential output ... too granular?

Call:

lm(formula = prMat ~ gType * devStage)

Response[21567]: 1448159 at

Residuals:

Min Q1 Median Q3 Max -0.2725 -0.0735 0.0025 0.0955 0.2163

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	8.38600	0.06903	121.475	<2e-16	* * *
gTypeNrlKO	0.12067	0.10545	1.144	0.262	
devStageP2	0.06550	0.09763	0.671	0.508	
devStageP6	0.09500	0.09763	0.973	0.339	
devStageP10	0.06050	0.09763	0.620	0.540	
devStage4_weeks	-0.12300	0.09763	-1.260	0.218	
gTypeNrlKO:devStageP2	-0.04617	0.14371	-0.321	0.750	
gTypeNrlKO:devStageP6	-0.21417	0.14371	-1.490	0.147	
gTypeNrlKO:devStageP10	-0.08617	0.14371	-0.600	0.553	
<pre>gTypeNrlKO:devStage4_weeks</pre>	0.03133	0.14371	0.218	0.829	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1381 on 29 degrees of freedom Multiple R-Squared: 0.2709, Adjusted R-squared: 0.04463 F-statistic: 1.197 on 9 and 29 DF, p-value: 0.3339

two-way ANOVA style inferential output ... too confusing?


```
> anova(lm(gExp ~ gType * devStage, jDat))
Analysis of Variance Table
```

Response: gExp

```
> anova(lm(gExp ~ devStage * gType, jDat))
Analysis of Variance Table
```

ANOVA tables address whether, e.g., all the interaction effects, are non-zero

note the agreement above for the interaction gType:devStage

note the discrepancies above for main effects ... depends on order ... related to the sequential nature of Type I sums of squares

we are suffering for our unbalanced design:(

two-way ANOVA style inferential output ... too confusing?


```
> Anova(lm(gExp ~ gType * devStage, jDat))
Anova Table (Type II tests)
```

Response: gExp

	Sum Sq	Df	F value	Pr(>F)	
gType	0.03022	1	1.5855	0.2180	
devStage	0.10365	4	1.3594	0.2722	
qType:devStage	0.07191	4	0.9430	0.4532	
Residuals					

```
> Anova(lm(gExp ~ devStage * gType, jDat))
Anova Table (Type II tests)
```

			_	
	Sum Sq	Df	F value	Pr(>F)
devStage	0.10365	4	1.3594	0.2722
gType	0.03022	1	1.5855	0.2180
devStage:gType	0.07191	4	0.9430	0.4532
Residuals	0.55283	29		

Anova() from the car package computes Type II sums of squares which are nonsequential

tests for each main effect after the other main effect

arguably only makes real sense in the absence of interaction?

F tests in regression

small model is nested within big -- it's a special case where some parameters are equal to zero

model	example	# params = DF	RSS
small	lm(y ~ gType + devStage)	p _{small} = 6	RSS _{small}
big	Im(y ~ gType * devStage)	p _{big} = I 0	RSS _{big}

$$\begin{aligned} y_{ijk} &= \theta + \tau_j + \beta_k + (\tau \beta)_{jk} + \varepsilon_{ijk} \text{ "big"} \\ y_{ijk} &= \theta + \tau_j + \beta_k + (\tau \beta)_{jk} + \varepsilon_{ijk} \text{ "small"} \end{aligned}$$

$$\begin{array}{ll} \text{by definition:} & \\ & \text{psmall} \leq \text{pbig} \\ & \text{RSS}_{\text{small}} \geq \text{RSS}_{\text{big}} \end{array} \\ F = \frac{\left(\frac{RSS_{small} - RSS_{big}}{p_{big} - p_{small}} \right)}{\frac{RSS_{big}}{n - p_{big}}} \sim_{H_0} F_{(p_{big} - p_{small}, n - p_{big})} \end{array}$$

we can't replicate an entire linear models course here and you won't be using single-dataset tools like lm() or anova(lm()) for much longer anyway

good rules of thumb

try to have a balanced experiment!

first check for interaction, e.g. using anova() the presence / absence of interaction should influence how vigorously you delve into and interpret main effects of gType or devStage

interaction	gType main effect	devStage main effect	the deal	
no	no	no	boring	
no	no	yes	only devStage matters	
no	yes	no	only gType matters	
no	yes	yes	both matter but don't interact	
yes	no	no		
yes	no	yes	weird and I don't go here	
yes	yes	no		
yes	yes	yes	exciting!	

think about this:
no interaction
no knockout effect
YES developmental stage effects

gType wt NrIKO devStage 1456219_at Residuals Signif. codes: - 10 1445613_at 1455007_s_at 10 9 8 7 -6 E16 P2 P2 P6 E16 P6 P10 4_weeks P10 4_weeks

Analysis of Variance Table

Response[26301]: 1455007_s_at

Df Sum Sq Mean Sq F value Pr(>F) 1 0.3209 0.32092 2.1120 0.1569 4 7.7431 1.93578 12.7394 4.204e-06 *** 0.8642

gType:devStage 4 0.1927 0.04818 0.3171

29 4.4066 0.15195

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

only devStage matters

think about this:
no interaction
YES knockout effect
no developmental stage effects

Analysis of Variance Table

think about this:
no interaction
YES knockout effect
YES developmental stage effects

think about this:

YES interaction

YES knockout effect

YES developmental stage effects

beginning to see the awkwardness of having a categorical variable with many levels (devStage)?

much nicer to have a quantitative variable and treat it that way!

let's make a quantitative version of devStage

first, let's discuss in abstract ... then we'll do for real

FIGURE 16.1 Relation between Regression and Analysis of Variance Models.

Imagine the covariate is not categorical (A vs. B vs. C) but is quantitative

FIGURE 1.4 Pictorial Representation of Regression Model.

Rotated 90° rel to previous figure, to reflect how we usually view.

Covariate X on horizontal axis.

Response Y on vertical axis.

FIGURE 1.4 Pictorial Representation of Regression Model.

$$Y_{X=x} = f(x;\alpha) + \varepsilon_x, E(\varepsilon_x) = 0$$

Regression function is linear ... linear model.

Some regression models, in decreasing generality:

Nonparametric regression (smoothers like loess, splines)

Nonlinear (parametric) regression

Linear model, (multiple) linear regression
- if a mix of categorical and quantitative covariates,
sometimes called analysis of covariance (ANCOVA)

Analysis of variance (ANOVA), i.e. linear model with a covariates categorical

Two-sample t test

inference in linear models

Plain vanilla linear model, matrix formulation

$$Y = X\alpha + \varepsilon$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \qquad \alpha = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Here's what a design matrix would look like with I quantitative covariate.

$Y = X\alpha + \varepsilon$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} \alpha_0 \cdot 1 + \alpha_1 \cdot x_1 \\ \alpha_0 \cdot 1 + \alpha_1 \cdot x_2 \\ \vdots \\ \alpha_0 \cdot 1 + \alpha_1 \cdot x_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} \alpha_0 + \alpha_1 x_1 + \varepsilon_1 \\ \alpha_0 + \alpha_1 x_2 + \varepsilon_2 \\ \vdots \\ \alpha_0 + \alpha_1 x_1 + \varepsilon_1 \end{bmatrix}$$

$$y_i = \alpha_0 + \alpha_1 x_i + \varepsilon_i$$

Here we are just fitting a line but using matrix notation to handle all n observations at once, more elegantly.

Big pay-offs ensue

how to estimate the alphas?

the story is the same whether you have quantitative and/or categorical covariate(s)

$Y = X\alpha + \varepsilon$

Estimation of the parameter α

Two viewpoints:

- maximum likelihood estimation, assuming ε_i are iid $N(0, \sigma^2)$
- "ordinary least squares" (OLS), i.e. minimizing the sum of the squared residuals

both lead to the same estimator of α :

$$\hat{\alpha} = (X^T X)^{-1} X^T y = \min^{-1} \sum_{i=1}^{n} (y_i - x_i \alpha)^2$$

Estimation of the parameter α

$$\hat{\alpha} = (X^T X)^{-1} X^T y = \min^{-1} \sum_{i=1}^{n} (y_i - x_i \alpha)^2$$

How one might derive this ...

- linear algebra: fitted value $X\hat{\alpha}$ must be the projection of the observed data vector Y onto the space spanned by the columns of X
- calculus: take the sum of squared residuals and minimize it, i.e. take first derivative(s), set equal to zero, and solve for $\hat{\alpha}$

Greatest Hits of Regression Results (normal iid errors)

$$Y = X\alpha + \varepsilon$$
 regression model

$$\hat{\alpha} = (X^T X)^{-1} X^T Y$$
 the MLE and OLS estimator of α

$$\hat{Y} = X\hat{\alpha}$$
 the fitted or predicted values

$$\hat{Y} = X(X^T X)^{-1} X^T Y = HY$$
 where $H = X(X^T X)^{-1} X^T$ is called the "hat matrix"

$$\hat{\varepsilon} = Y - \hat{Y} = Y - X\hat{\alpha}$$
 the residuals (note NOT the same as the errors ε)

$$\hat{\sigma}^2 = \frac{1}{n-p} \hat{\varepsilon}^T \hat{\varepsilon}$$
 the estimated error variance (p is the dimension of \alpha)

$$\hat{V}(\hat{\alpha}) = \hat{\sigma}^2 (X^T X)^{-1}$$
 the estimated covariance matrix of $\hat{\alpha}$ estimated standard errors for the estimated regression coefficients -- $\hat{se}(\hat{\alpha}_j)$ -- are obtained by taking the square root of the diagonal elements of $\hat{V}(\hat{\alpha})$

Inference in Regression (normal iid errors)

 $Y = X\alpha + \varepsilon$ regression model $\hat{\alpha} = (X^T X)^{-1} X^T Y$ the MLE and OLS estimator of α $\hat{\sigma}^2 = \frac{1}{n-p} \hat{\varepsilon}^T \hat{\varepsilon}$ the estimated error variance $\hat{V}(\hat{\alpha}) = \hat{\sigma}^2 (X^T X)^{-1}$ the estimated covariance matrix of $\hat{\alpha}$

How test $H_0: \alpha_i = 0$?

With a t-statistic. Under H_0 , we have (at least approximately) that:

$$\frac{\hat{\alpha}_{j}}{\widehat{se}(\hat{\alpha}_{j})} \sim t_{n-p}$$

so a p-value is obtained by computing a tail probability for the observed value of $\hat{\alpha}_i$ from a t_{n-p} distribution.

How to do inference on contrasts? (still assuming normal iid errors, one gene-at-a-time model)

$$Y = X\alpha + \varepsilon$$
 regression model
 $\hat{\alpha} = (X^T X)^{-1} X^T Y$
 $\hat{\sigma}^2 = \frac{1}{n-p} \hat{\varepsilon}^T \hat{\varepsilon}$ the estimated error variance
 $\hat{V}(\hat{\alpha}) = \hat{\sigma}^2 (X^T X)^{-1}$ the estimated covariance matrix of $\hat{\alpha}$

Consider the contrasts of interest:

$$C^T \alpha = \beta \implies C^T \hat{\alpha} = \hat{\beta}$$

Using results not developed in this class, we have that:

$$\hat{V}(\hat{\beta}) = C^T \hat{V}(\hat{\alpha})C = \hat{\sigma}^2 C^T (X^T X)^{-1} C$$
 is the estimated covariance matrix of $\hat{\beta}$

How to do inference on contrasts?

How test $H_0: \beta_i = 0$?

With a t-statistic. Under H_0 , we have (at least approximately) that:

$$\frac{\hat{\beta}_{j}}{\widehat{se}(\hat{\beta}_{i})} \sim t_{n-p}$$

so a p-value is obtained by computing a tail probability for the observed value of $\hat{\beta}_i$ from a t_{n-p} distribution.