1. Вступ

У даній курсовій роботі необхідно виконати синтез автомата і синтез комбінаційних схем. Розробка виконується на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ».

2. Синтез автомата

2.1. Побудова графічної схеми алгоритму і розмітка станів автомата

Відповідно до «Технічного завдання ІАЛЦ.463626.002 ТЗ» складаємо графічну схему алгоритму з урахуванням тривалості сигналів і виконуємо розмітку станів автомата (рисунок 4.1).

Рисунок 4.1 Графічна схема алгоритму з розміченими станами

Зм.	Арк.	№ докум.	Підп.	Дата

2.2. Побудова графу автомата

Згідно з графічною схемою алгоритму побудуємо граф автомата і виконаємо кодування станів автомата (рисунок 4.2).

Рисунок 4.2 Граф автомата з закодованими вершинами

2.3. Побудова таблиці переходів

Для синтезу логічної схеми автомату необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 10 кількість тригерів знайдемо за формулою K>=]log₂ N[=]log₂ 10[= 4. Так як для побудови даного автомата необхідно використовувати Т-тригери, запишемо таблицю переходів цього типу тригерів (рисунок 4.3).

RS	j.
R = *	S = 0
R = 0	S = 1
R = 1	S = 0
R = 0	S = *

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.3 Таблиця переходів RS-тригера

2.4. Синтез комбінаційних схем для функцій збудження тригерів та вихідних сигналів

Використовуючи дані з рисунку 4.2, заповнимо структурну таблицю автомата (таблиця 4.1).

Таблиця 4.1 Структурна таблиця автомата

Переход и	Ст	ари	J CM	ОДН		H	Вхідні сигна Вихідні сигнали ли						Функції збудження тригерів										
	70	Ø3	92	101	70	Q3	92	91	×	X2	7.1	172	13	7,4	73	R4	25	R3	53	R2	25	R1	51
z1-z2	0	0	0	0	0	0	0	1	_	1	0	0	0	0	0	-	0	_	0	_	0	0	1
z2-z3	0	0	0	1	0	0	1	0	-	1	0	0	1	0	0	-	0	-	0	0	1	1	0
z2-z4	0	0	0	1	0	0	1	1	_	0	0	0	1	0	0	_	0	_	0	0	1	0	_
z3-z4	0	0	1	0	0	0	1	1	-	ı	0	0	0	1	1	_	0	_	0	0	_	0	1
z4-z5	0	0	1	1	0	1	0	0	-	0	0	0	0	0	0	-	0	0	1	1	0	1	0
z4-z7	0	0	1	1	0	1	1	0	-	1	0	0	0	0	0	1	0	0	1	0	١	1	0
z5-z6	0	1	0	0	0	1	0	1	-	-	1	1	0	0	0	-	0	0	-	_	0	0	1
z6-z8	0	1	0	1	0	1	1	1	0	1	1	0	0	0	0	1	0	0	1	0	1	0	_
z6-z9	0	1	0	1	1	0	0	0	1	1	1	0	0	0	0	0	1	1	0	-	0	1	0
z7-z8	0	1	1	0	0	1	1	1	0	ı	0	1	0	0	0	-	0	0	ı	0	-	0	1
<i>z7-z9</i>	0	1	1	0	1	0	0	0	1	-	0	1	0	0	0	0	1	1	0	1	0	-	0
z8-z8	0	1	1	1	0	1	1	1	0	ı	0	0	1	0	0	-	0	0	_	0	_	0	_
z9-z10	1	0	0	0	1	0	0	1	_	ı	1	0	1	0	0	0	1	_	0	_	0	0	1
z10-z1	1	0	0	1	0	0	0	0	-	-	1	0	0	0	0	1	0	-	0	-	0	1	0

2.5. Синтез комбінаційних схем для функцій збудження пригерів та вихідних сигналів

На основі структурної таблиці автомата (таблиці 4.1) виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій збудження тригерів є коди станів та вхідні сигнали, для вихідних сигналів — тільки коди станів. Виконаємо мінімізацію функцій методом діаграм Вейча. Враховуючи заданий елементний базис (31, 2АБО, НЕ) мінімізувати функцію будемо за ДДНФ

					IN ALL LECTE OF TO	Арк
Зм.	Арк.	№ докум.	Підп.	Дата	IA/IЦ.463626.UU4 113	4