Universidade do Estado de Santa Catarina - UDESC Departamento de Ciência da Computação - DCC Disciplina: Linguagens Formais e Máquinas (LFM) Prof.: Ricardo Ferreira Martins

LISTA DE EXERCÍCIOS

- 1. Desenvolva Gramáticas Livres de Contexto que gerem as seguintes linguagens:
 - (a) $L_1 = \emptyset$
 - (b) $L_2 = \{\epsilon\}$
 - (c) $L_3 = \{a, b\}^*$
 - (d) $L_4 = \{w | w \text{ \'e palíndromo em } \{a, b\}^*\}$
 - (e) $L_5 = \{ww^r | w \text{ \'e palavra em } \{a, b\}^*\}$
 - (f) $L_6 = \{w | w \text{ \'e palavra de } \{x, y, (,)\}^*, \text{ com parênteses balanceados}\}$
 - (g) $L_7 = \{a^i b^j c^k | i = j \text{ ou } j = k \text{ e } i, j \text{ e } k \ge 0\}$
- 2. Considere a gramática livre de contexto G = (V, T, P, S), com:

$$V = \{S, A, B\}, T = \{a, b, \epsilon\}, P = \{S \rightarrow aS | aSbS | \epsilon\}$$

- (a) Defina L(G).
- (b) Mostre que G é ambígua.
- (c) Qualquer LLC pode ser representada por uma gramática não-ambígua?
- 3. Construa um autômato a pilha que aceite cada uma das linguagens a seguir:
 - (a) $L_1 = \{0^n 1^m | n \le m\}$
 - (b) $L_2 = \{0^n 1^m | n \ge m\}$
 - (c) $L_3 = \{0^n 1^m 0^n | n \text{ e } m \text{ são arbitrários}\}$
 - (d) $L_4 = \{w | w \text{ \'e pal\'indromo em } \{a, b\}^*\}$

RFM