CS450 Assignment 3 Jiadong Hong

Question 1

Question-1: Given the linear system

$$2x_1 - 6\alpha x_2 = 3,$$
$$3\alpha x_1 - x_2 = \frac{3}{2}.$$

- (a) Find value(s) of α for which the system has no solutions.
- (b) Find value(s) of α for which the system has an infinite number of solutions.
 - (c) Assuming a unique solution exists for a given α , find the solution.

Question-2: Use Gaussian elimination and three-digit chopping arithmetic to solve the following linear systems, and compare the approximations to the actual solution.

(a)

$$0.03x_1 + 58.9x_2 = 59.2$$

$$5.31x_1 - 6.10x_2 = 47.0$$

Actual solution [10, 1].

(b)

$$3.03x_1 - 12.1x_2 + 14x_3 = -119$$
$$-3.03x_1 + 12.1x_2 - 7x_3 = 120$$
$$6.11x_1 - 14.2x_2 + 21x_3 = -139$$

Actual solution $[0, 10, \frac{1}{7}]$.

Question 3

Question-3: Let x be the solution to the linear least squares problem $Ax \cong b$, where

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array} \right]$$

$$A^{T}r = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \neq 0$$

$$A^{T}r = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1$$

Question-4: Let \boldsymbol{a} be any nonzero vector. If $\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1$, where $\alpha = \pm \|\boldsymbol{a}\|_2$, and

$$\boldsymbol{H} = \boldsymbol{I} - 2 \frac{\boldsymbol{v} \boldsymbol{v}^T}{\boldsymbol{v}^T \boldsymbol{v}}$$

show that $\mathbf{H}\mathbf{a} = \alpha \mathbf{e}_1$.

Suppose $X = \frac{U}{||U||_1}$ $= X - 2xx^Tx = -X.$ Suppose $X = \frac{U}{||U||_1}$ $= X + 2xx^Tx = -X.$ $= X - 2xx^Tx = -X.$

Question-5: Determine the Householder transformation that annihilates all but the first entry of the vector $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$. Specifically, if

$$\left(\boldsymbol{I} - 2\frac{\boldsymbol{v}\boldsymbol{v}^T}{\boldsymbol{v}^T\boldsymbol{v}}\right) \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right] = \left[\begin{array}{c} \alpha \\ 0 \\ 0 \\ 0 \end{array} \right],$$

what are the values of α and \boldsymbol{v} ?

Since Q4 have proof that

$$Ha = \alpha e_1$$

We can conclude that

$$lpha=2$$
 $v=a-2e_1=egin{bmatrix} -1\ 1\ 1\ 1\ \end{bmatrix}$

Where,

$$a=egin{bmatrix}1\1\1\1\end{bmatrix}e_1=egin{bmatrix}1\0\0\0\0\end{bmatrix}$$

Question 6

Question-6: Suppose that you are computing the QR factorization of the matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{array} \right]$$

by Householder transformations. (a) How many Householder transformations are required? (b) What does the first column of \boldsymbol{A} become as a result of applying the first Householder transformation? (c) What does the first column then become as a result of applying the second Householder transformation? (d) How many Givens rotations would be required to compute the QR factorization of \boldsymbol{A} ?

- (a) There should be 3 householder transformation in QR process.
- (b) [2, 0, 0, 0]^T
- (c) [2, 0, 0, 0]^T
- (d) there should be 6.

Question-7: we observed that the cross-product matrix A^TA is exactly singular in floating-point arithmetic if

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{array} \right],$$

where ϵ is a positive number smaller than $\sqrt{\epsilon_{\text{mach}}}$ in a given floating-point system. Show that if $\mathbf{A} = \mathbf{Q}\mathbf{R}$ is the reduced QR factorization for this matrix \mathbf{A} ,

then R is not singular, even in floating-point arithmetic.

Question-8: Let $c = \cos(\theta)$ and $s = \sin(\theta)$ for some angle θ . Give a detailed geometric description of the effects on vectors in the Euclidean plane \mathbb{R}^2 of each the following 2×2 orthogonal matrices.

(a)
$$G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$
 (b) $H = \begin{bmatrix} -c & s \\ s & c \end{bmatrix}$

Question 9

Question-9: Find a rotation matrix P with the property that PA has a zero entry in the second row and first column, where

$$A = \left[\begin{array}{rrr} 3 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3 \end{array} \right]$$

$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -5 & 3 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 365 & 3 \\ 0 & 3546 & 36 \end{bmatrix}$$

$$\Rightarrow \cos \theta \Rightarrow 0 \Rightarrow 0 \Rightarrow \frac{17}{2} + k\pi \text{ (k6 2)}$$

Question-10: Given a vector $\boldsymbol{a} = [2, 3, 4]^T$

- 1. Specify an elementary elimination matrix that annihilates the third component of \boldsymbol{a}
- 2. Specify a Householder transformation that annihilates the third component of \boldsymbol{a}
 - 3. Specify the Givens rotation that annihilates the third component of a

(C) T C -5 7 7 3 7
Lsc J L4
= T 3C-457 => 3S+4C=0
7-1
$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \theta = +\cos^{-1} \left(-\frac{4}{3} \right)$