STRUCTURE À L'INFINI DES $M_{g,\nu}$ A. GROTHENDIECK

Autour de La "Longue Marche" à travers la théorie de Galois

Cote *n*° 147

//grothendieck.umontpellier.fr/archives-grothendieck/

Ce texte a été déchiffré et transcrit par Mateo Carmona

//github.com/mateocarmonamat/LaLongueMarche

STRUCTURE À L'INFINI DES $M_{g,v}$

§ I. — COURBES STANDARD

Soit k un corps algébriquement clos. Une "courbe standard" sur k es une schéma X sur k satisfaisant les conditions suivantes :

Généralisation sur une base quelconque.

Une *courbe standard* sur *S* (multiplicité schématique, disons) [] constructivement en termes d'un système a), b), c) comme ci-dessus, i.e.

[] On construit alors $\widehat{X}=Y/\sigma$, [] vers les schémas relatifs [], est pleinement fidèle (¹). []

1

§ II. – GRAPHE ASSOCIÉ À UNE COURBE STANDARD

Revenus au cas d'un corps de base k algébriquement clos, pour commencer. Soit X une courbe standard, d'où $Y, I, \widetilde{A}, \sigma_{\widetilde{A}}$.

Posons

(7)
$$S = \pi_{\circ}(Y) \simeq []$$
 des corps irréductibles de X

On a alors le diagramme d'application canoniquement entre ensembles finis

où q est de degré 2 et définit l'involution $\sigma_{\widetilde{A}}$. Les applications σ et p sont induites par les [] en passant aux π_{\circ} .

Le système $(\widetilde{A} \xrightarrow{\sigma} S, \sigma_{\widetilde{A}})$ où [], peut être consideré comme définissant un graphe, dans S est l'un des sommets,

La maquette d'une courbe standard X consiste, pour définition, en les donnes suivantes

Une courbe standard (sur k algébriquement clos) est "stable", si elle satisfait à l'un des conditions équivalentes suivantes

- a) Aut X est fini
- b) Pour tout α , $(Y_{\alpha}, I_{\alpha} \cup \widetilde{A}_{\alpha})$ est anabélien i.e. $2g_{\alpha} + \widehat{\nu}_{\alpha} \ge 3$ i.e. $2g_{\alpha} 2 + \widehat{\nu}_{\alpha} \ge 1$, i.e.
 - 1) Si $g_{\alpha} = 1$, on a $\hat{\nu}_{\alpha} \ge 1$
 - 2) Si $g_{\alpha} = 0$, on a $\hat{v}_{\alpha} \ge 3$
- c) Tout champ de vecteurs sur Y nul sur $I \cup \widetilde{A}$ est nul.
- d) $\underline{\operatorname{Aut}}_{(Y,\widetilde{A}_k,I)}$ est un schéma en groupes fini étale sur k. On voit que cette condition (sous la forme b)) ne dépend que de la *maquette* de la courbe. On dit que X est une MD-courbe (MD, initiale de "Mumford-Deligne" ou de "modulaire") si elle est stable, et 0-connexe (i.e. connexe non vide).

Les maquettes de telles courbes sont les maquettes 0-connexes et stables (i.e. dont les sommets de guère 1 sont de poids total \geq 1, et les sommets de guère 0 sont de poids total \geq 3), on les appellera les MD-graphes.

NB. Une maquette est une MD-graphe si et seule si

- a) elle est 0-connexe (i.e. le graphe G est connexe $\neq \emptyset$)
- b) elle n'est pas réduit à un seul sommet de guère 1, de poids total 0 []

STRUCTURE À L'INFINI DES $M_{g,v}$

c) les sommets []

Proposition. — $Si\ (G = (S, \widetilde{A}, \sigma), I, \underline{g} : S \longrightarrow \mathbf{N})$ est une MD-graphe, son type (g, v) est anabélien, i.e. $2g + v \ge 3$.

Si on avait g = 1, v = 0, alors la relation

$$g = 1 = \sum g_{\alpha} + h_1$$

montre que ou bien tous les g_{α} sont nuls et h_1 [], ou bien tous les g_{α} sauf une g_{α_0} sont nuls, []

Soit G une maquette. On dit qu'une courbe standard sur un corps algébriquement clos est de type G, si sa maquette est isomorphe à G, on dit qu'elle est G-épinglée si on se donne un isomorphisme entre se maquette et G (c'est donc une structure $\lceil \rceil$).

Soit $(\widehat{X},\underline{I})$ une courbe standard sur une base S quelconque, on dit qu'elle est de type G si ses fibres géométriques sont de type G. Alors les maquettes des fibres géométriques de $(\widehat{X},\underline{I})$ forment les fibres d'une schéma en maquettes (ou un MD-graphe) sur S $(\underline{S},\underline{\widetilde{A}},\sigma_{\underline{\widetilde{A}}},\underline{I},\underline{\widetilde{A}}\longrightarrow \underline{S},\underline{I}\longrightarrow \underline{S},\underline{S}\stackrel{\underline{g}}{\longrightarrow} \mathbf{N}_S)$ (système de revêtements finis étales de S et de morphismes entre ceuxci), localement isomorphe à la maquette G donnée. On appelle G-épinglage entre $(\widehat{X},\underline{I})$ tout isomorphisme entre G_S et $\underline{G}(\widehat{X},\underline{I})$. Si

(18)
$$\Gamma = \operatorname{Aut} G$$

(groupe fini), les G-épinglages de $(\widehat{X},\underline{I})$ s'identifient aux sections d'une certain Γ_S -torseur, appelé torseur de G-épinglages de $(\widehat{X},\underline{I})$.

Considérons, sur une base S fixée, le catégorie ([]) des courbes standard G-épinglées. Pour tout $\alpha \in S$

§ IV. — LA THÉORIE DE MUMFORD-DELIGNE

Soient S une multiplicité schématique, X une schéma relatif sur S, propre sur S, \underline{I} une sous-schéma fermé de X. On dit que (X,\underline{I}) est une MD-courbe relative sur S, si X, \underline{I} sont plats de présentation finie sur S, et si pour tout point géométrique de S, la fibre $(X_{\overline{s}},\underline{I}_{\overline{s}})$ est une MD-courbe géométrique sur k(s) i.e. $X_{\overline{s}}$ est 0-connexe, de dimension 1, [] c'est une fonction localement constant sur S.

Fixons nous une type numérique (g, v) anabélien $(2g + v \ge 1)$, et considérons, pour S variable, le groupoïde fibré

(24)
$$S \mapsto \widehat{M_{g,\nu}}(S) = \text{MD-courbes relatives sur } S$$
, de type numérique égal à (g,ν)

On a alors le vraiment [] théorème suivant :

Théorème de Mumford-Deligne (²). — Le groupoïde fibré $S\mapsto \widehat{M}_{g,v}/S$ sur Sch (plus généralement, sur les multiplicités schématiques...) est représentable pour une multiplicité schématique $\widehat{M}_{g,v}$, qui est lisse et propre sur Spec \mathbf{Z} , D'autre part $M_{g,v}$ est un ouvert de Zariski de $\widehat{M}_{g,v}$, schématiquement dense fibre par fibre.

On en déduit aisément p. ex. la connexité des fibres géométriques

²On suppose $2g + v \ge 3$ (cas anabélien)

§ V. — SPÉCIALISATION DE MD-GRAPHES

§ VI. — MORPHISMES DE []

§ VII. − ÉTUDE DES []

§ VIII. — STRUCTURE []

\S XI. — LA STRUCTURE GROUPOIDALE DES []

§ X. — STRUCTURES MDT DISCRÈTES : []

§ XI. – DIGRESSION : DÉPLOYEMENT []

§ XII. — DIGRESSION SUR []

§ XIII. — DIGRESSION SUR []

Une stratification globale