Лабораторная работа № 5

ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Цель работы: получить навык проведения вычислительного эксперимента, направленного на исследование свойств итерационных методов решения СЛАУ.

Индивидуальное задание включает в себя решение системы линейных алгебраических уравнений (СЛАУ)

$$Ax=b$$

со случайным образом сгенерированными матрицей A и вектором решения x с использованием различных итерационных методов. Поскольку большинство классических итерационных методов решения СЛАУ применимы при достаточно жестких ограничениях на вид матрицы системы, первым заданием лабораторной работы является построение СЛАУ с заданными свойствами.

Задания на лабораторную работу

Задача 1. Генерация СЛАУ (1 балл, обязательная)

Написать вычислительную программу на языке программирования C++ для генерации ленточной, симметричной, положительно определенной и обладающей диагональным преобладанием матрицы CЛAУ, а также векторов точного решения и правой части. Размерность (NxN) матрицы системы и параметр l, определяющий ширину ленты, указаны в индивидуальном задании. Генерация включает несколько этапов.

- 1) Случайным образом генерируются внедиагональные элементы ленточной матрицы А: $a_{ii} \in [-1,1]$ ($i \neq j$, $\max(0,i-l) \leq j \leq \min(i+l,N)$).
- 2) Генерируются диагональные элементы таким образом, чтобы обеспечить диагональное преобладание:

$$a_{ii} = q \sum_{\substack{j=1 \ j \neq i}}^{N} |a_{ij}|, \quad q > 1.$$

Необходимо сгенерировать три различных ленточных матрицы A_1 , A_2 , A_3 , соответствующие q={1.1, 2, 10}, и отличающиеся, таким образом, только диагональными элементами. В результате будут сгенерированы три ленточные (ширина ленты 2l+1) матрицы с диагональным преобладанием, не являющиеся, в общем случае, ни симметричными, ни положительно определенными. Эти свойства будут им приданы на последнем этапе.

3) Сгенерировать случайный вектор x размерности N с элементами

$$x_i \in [-1,1], i=1,2,...,N.$$

Этот вектор будет представлять собой вектор точного решения СЛАУ.

4) По известным A_1 , A_2 , A_3 и x вычислить три различных вектора правой части системы:

$$\boldsymbol{b}_{k} = A_{k}\boldsymbol{x}$$
.

5) Выполнить симметризацию системы путем умножения слева на транспонированную матрицу A^{T} :

$$A^{T}Ax=A^{T}b$$
.

Полученная в результате матрица новой системы $A^* = A^T A$ будет симметричной, положительно определенной, ленточной (с шириной ленты 4l+1) и обладать диагональным преобладанием.

Таким образом, в лабораторной работе будут решаться СЛАУ
$$A^*x=b^*$$
, $A^*=A^TA$, $b^*=A^Tb$

с тремя различными матрицами A_1^* , A_2^* , A_3^* и тремя векторами правых частей \boldsymbol{b}_1^* , \boldsymbol{b}_2^* , \boldsymbol{b}_3^* . При написании программ в памяти должны храниться только элементы ленточных матриц A_1^* , лежащие внутри ленты.

Задача 2. Метод Якоби (2 балла)

- 1) Написать вычислительную программу на языке программирования C++ для решения СЛАУ с указанной в индивидуальном задании точностью методом Якоби, являющегося частным случаем метода простых итераций.
- 2) С использованием написанной программы исследовать зависимость числа итераций метода Якоби, необходимых для достижения заданной точности, от величины параметра q, определяющего степень диагонального преобладания.

Задача 3. Метод SOR (3 балла)

- 1) Написать вычислительную программу на языке программирования C++ для решения CЛАУ с указанной в индивидуальном задании точностью методом последовательной верхней релаксации (SOR) с параметром релаксации $\omega \in (0,2)$.
- 2) С использованием написанной программы исследовать зависимость числа итераций метода SOR от параметров q и ω . При сравнении предусмотреть частный случай ω =1, соответствующий методу Гаусса-Зейделя.

Задача 4. Метод РССМ (4 балла)

- 1) Написать вычислительную программу на языке программирования C++ для решения СЛАУ с указанной в индивидуальном задании точностью методом сопряженных градиентов (CGM).
- 2) С использованием написанной программы исследовать зависимость числа итераций метода сопряженных градиентов от параметра q.

- 3) Выполнить модификацию написанной программы путем введения предобуславливателя в виде тиагового метода Якоби.
- 4) Для системы с матрицей A_i , требующей наибольшего числа итераций метода сопряженных градиентов, с использованием написанной программы исследовать зависимость числа итераций метода сопряженных градиентов с предобуславливателем (PCGM) от количества шагов m метода Якоби, используемого в качестве предобуславливателя.

Теоретическая часть

Номер задачи	Литература		
1	-		
2	[1] (Глава 3, п. 3.1), [2] (Глава III, §3, п.2, п.5)		
	[3] (Глава 6, §3, §2)		
3	[1] (Глава 3, п. 3.2), [2] (Глава III, §3, пп.3-5)		
	[3] (Глава 6, §7)		
4	[1] (Глава 3, п. 3.3, п. 3.4), [2] (Глава III, §6, п.3),		
	[3] (Глава 6, §7, §10)		

- 1. Ортега Дж. Введение в параллельные и векторные методы решения линейных систем.
- 2. Самарский А.А. Введение в численные методы.
- 3. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.

Индивидуальные задания к лабораторной работе №5

Вариант	N	l	Абсолютная
			погрешность
1	1000	40	10 ⁻⁶
2	950	14	10 ⁻⁴
3	900	25	10 ⁻⁵
4	850	12	10 ⁻⁶
5	800	7	10 ⁻⁴ 10 ⁻⁵
6	750	34	10 ⁻⁵
7	700	16	10^{-6}
8	650	26	10^{-7}
9	700	10	10^{-6}
10	750	18	10^{-6}
11	800	23	10^{-5}
12	850	11	10 ⁻⁶
13	900	33	10 ⁻⁷
14	950	17	10 ⁻⁶
15	1000	13	10 ⁻⁵