EXERCISE 16

WEIYU LI

1. Consider the regression model

$$y_i = f(x_i) + e_i, \quad i = 1, ..., n.$$

Suppose that $N_j(x)$, $j=1,\ldots,n$ are the basis functions of 3-rd order natural splines (with knots at x_i , $i=1,\ldots,n$), $f(x)=\sum_{j=1}^n N_j(x)\beta_j$, $\Omega=(\Omega_{jk})$ with $\Omega_{jk}=\int N_j''(t)N_k''(t)dt$, and $N=(N_{ij})$ with $N_{ij}=N_j(x_i)$.

(1) Using the smooth splines method, solve the estimation of $\beta = (\beta_1, ..., \beta_n)^{\top}$. *Solve.* From Page 53 of *Lec15.pdf*,

$$\hat{\beta} = (N^{\top}N + \lambda\Omega)^{-1}N^{\top}y.$$

(2) Denote $S_{\lambda} = N(N^{\top}N + \lambda\Omega)^{-1}N^{\top}$, prove that

$$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}^{-i}(x_i) \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{y_i - \hat{f}(x_i)}{1 - S_{\lambda}(i, i)} \right]^2,$$

where $\hat{f}^{-i}(x_i)$ is the predict value at x_i given the leave-*i*-out sample. (Hint: the smoother matrix $S_{\lambda} = S_{\lambda}(x)$ such that $\hat{y} = S_{\lambda}y$ is independent of the value of y.)

Proof. Denote $y^i = (y_1, \dots, y_{i-1}, \hat{f}^{-i}(x_i), y_i, \dots, y_n)^\top$. Notice that

$$\hat{f}(x_i) = e_i^{\top} S_{\lambda} y,$$

where $e_i \in \mathbb{R}^n$ is the identity vector with only the *i*-th entry nonzero and being 1. We first prove an important claim.

[CLAIM]

$$\hat{f}^{-i}(x_i) = e_i^{\top} S_{\lambda} y^i.$$

Proof of [CLAIM]: Note that \hat{f} is the twice differentiable function that minimizes $\sum_{j=1}^{n} (y_j - f(x_j))^2 + \lambda \int (f'')^2$, *i.e.*,

$$\hat{f} = \arg\min_{f \in \mathcal{C}^2} \sum_{j=1}^n (y_j - f(x_j))^2 + \lambda \int (f'')^2,$$

where \mathcal{C}^2 consists of twice differentiable function. Similarly,

$$\hat{f}^{-i} = \arg\min_{f \in \mathcal{C}^2} \sum_{j \neq i} (y_j - f(x_j))^2 + \lambda \int (f'')^2.$$

Date: 2019/12/02.

liweiyu@mail.ustc.edu.cn.

2 WEIYU LI

On the one hand, we have that

$$\begin{aligned} \min_{f \in \mathcal{C}^2} \sum_{j=1}^n \left(y_j^i - f(x_j) \right)^2 + \lambda \int \left(f'' \right)^2 &\leq \sum_{j=1}^n \left(y_j^i - \hat{f}^{-i}(x_j) \right)^2 + \lambda \int \left((\hat{f}^{-i})'' \right)^2 \\ &= \sum_{j \neq i} \left(y_j^i - \hat{f}^{-i}(x_j) \right)^2 + \lambda \int \left((\hat{f}^{-i})'' \right)^2, \end{aligned}$$

since $y_i^i = \hat{f}^{-i}(x_i)$. On the other hand, from the property that $\min(A + B) \ge \min A + \min B$,

$$\begin{aligned} & \min_{f \in \mathcal{C}^{2}} \sum_{j=1}^{n} \left(y_{j}^{i} - f(x_{j}) \right)^{2} + \lambda \int \left(f'' \right)^{2} \\ & \geq \min_{f \in \mathcal{C}^{2}} \left[\sum_{j \neq i} \left(y_{j}^{i} - f(x_{j}) \right)^{2} + \lambda \int \left(f'' \right)^{2} \right] + \min_{f \in \mathcal{C}^{2}} \left(y_{i}^{i} - f(x_{i}) \right)^{2} \\ & = \sum_{j \neq i} \left(y_{j}^{i} - \hat{f}^{-i}(x_{j}) \right)^{2} + \lambda \int \left(\left(\hat{f}^{-i} \right)'' \right)^{2} + 0. \end{aligned}$$

Consequently, we find that

$$\hat{f}^{-i} = \arg\min_{f \in C^2} \sum_{j=1}^n (y_j^i - f(x_j))^2 + \lambda \int (f'')^2,$$

that is, \hat{f}^{-i} is the fitted spline for the data (x, y^i) , then $\hat{f}^{-i}(x_i) = e_i^\top S_\lambda y^i$. Now we turn back to our main proof. Note that the right side can be rewritten as

$$\begin{split} \frac{y_i - \hat{f}(x_i)}{1 - S_{\lambda}(i, i)} &= \frac{y_i - \hat{f}^{-i}(x_i) + \hat{f}^{-i}(x_i) - \hat{f}(x_i)}{1 - S_{\lambda}(i, i)} \\ &= \frac{1}{1 - S_{\lambda}(i, i)} \left(y_i - \hat{f}^{-i}(x_i) + e_i^{\top} S_{\lambda}(y^i - y) \right) \\ &= \frac{1}{1 - S_{\lambda}(i, i)} \left(y_i - \hat{f}^{-i}(x_i) + e_i^{\top} S_{\lambda} e_i (\hat{f}^{-i}(x_i) - y_i) \right) \\ &= y_i - \hat{f}^{-i}(x_i). \end{split}$$