Math 132 (Complex Analysis for Applications) University of California, Los Angeles

Aaron Chao

Winter 2022

These are my lecture notes for Math 132 (Complex Analysis for Applications), which is taught by Tyler James Arant. The textbook for this class is *Complex Analysis*, by Theodore W. Gamelin.

Contents			
1	1.1	3, 2022 What are the Complex Numbers?	

1 Jan 3, 2022

1.1 What are the Complex Numbers?

We first recall the basic algebraic properties of the real numbers, \mathbb{R} . For all $a, b, c \in \mathbb{R}$,

- 1. (Commutative law of addition): a + b = b + a
- 2. (Commutative law of multiplication): $a \cdot b = b \cdot a$
- 3. (Associative law of addition): (a + b) + c = a + (b + c)
- 4. (Associative law of multiplication): $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 5. (Distributive law): $a(b+c) = a \cdot b + a \cdot c$

The system of real numbers \mathbb{R} has many more (non-algebraic) properties which make it suitable for calculus. However, it lacks a particular desirable property: \mathbb{R} does not contain roots for all of its polynomial equations, e.g., there is not a solution to the equation

$$x^2 + 1 = 0 \quad \text{in } \mathbb{R}.$$

It turns out (by the non-trivial fundamental theorem of algebra) that we can get a number system for which every polynomial equation has a root by "appending" $i = \sqrt{-1}$ to \mathbb{R} .

Definition 1.1 (Complex number)

A complex number is an expression of the form

$$x + iy$$
 where $x, y \in \mathbb{R}$,

Two complex numbers a+ib and c+id are equal if and only if a=c and b=d We denote by $\mathbb C$ the set of all complex numbers.

For a complex number z = x + iy, we define its real and imaginary parts as follows:

$$\operatorname{Re} z = x$$

$$\operatorname{Im} z = y$$

There is a one-to-one correspondence between \mathbb{C} and \mathbb{R}^2 :

$$z \mapsto (\operatorname{Re} z, \operatorname{Im} z)$$

This can be visualized as the *complex plane*, where we can identify the real numbers and the *purely imaginary numbers*.

Example 1.2 (Addition and multiplication on \mathbb{C})

We can define operations of addition and multiplication on $\mathbb C$ as follows:

$$z = x + iy, \quad w = a + ib$$

$$z + w = (x + iy) + (a + ib) = (x + a) + i(y + b)$$

$$zw = (x + iy)(a + ib) = xa + ixb + iya + i^{2}yb$$

$$= (xa - yb) + i(xb + ya)$$

Example 1.3 (Multiplicative inverse in \mathbb{C})

Every nonzero complex number $z = x + iy \neq 0$ has a multiplicative inverse,

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2}.$$

Need to check $z \cdot \frac{1}{z} = 1$

$$z \cdot \frac{1}{z} = (x + iy) \left(\frac{x - iy}{x^2 + y^2} \right) = \left(\frac{x^2 - ixy + ixy - i^2y^2}{x^2 + y^2} \right) = \left(\frac{x^2 + y^2}{x^2 + y^2} \right) = 1$$

In addition to having additive and multiplicative inverses, the complex numbers also have the following algebraic properties:

For all $z_1, z_2, z_3 \in \mathbb{C}$,

- 1. (Commutative law of addition): $z_1 + z_2 = z_2 + z_1$
- 2. (Commutative law of multiplication): $z_1 \cdot z_2 = z_2 \cdot z_1$
- 3. (Associative law of addition): $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 4. (Associative law of multiplication): $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$
- 5. (Distributive law): $z_1(z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3$

1.2 Complex Conjugates and the Modulus

Definition 1.4 (Complex conjugate)

The <u>complex conjugate</u> of the number z = x + iy is the number

$$\overline{z} = x - iy.$$

Some basic facts about complex conjugation. All are simple to prove, so we only discuss the proof of a few.

- $\bar{\overline{z}} = z$
- $z = \overline{z}$ if and only if z is a real number
- $\bullet \ \overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$
- $\overline{z_1}\overline{z_2} = \overline{z}_1 \cdot \overline{z}_2$
- $\overline{\left(\frac{1}{z}\right)} = 1/\overline{z}$

Proof. We want to show that $\overline{\left(\frac{1}{z}\right)} = 1/\overline{z}$.

$$\frac{1}{\overline{z}} = \frac{1}{x - iy} = \frac{x - (-iy)}{x^2 + y^2} = \frac{x + iy}{x^2 + y^2} = \overline{\left(\frac{x - iy}{x^2 + y^2}\right)} = \overline{\left(\frac{1}{\overline{z}}\right)}$$

Geometrically, conjugation reflects z across the real axis:

Definition 1.5 (Absolute value/modulus)

The <u>absolute value</u> or <u>modulus</u> of z = x + iy is

$$|z| = \sqrt{x^2 + y^2}$$

Geometrically, |z| is the length of z as a vector in the complex plane:

Some properties relating complex conjugation and absolute value:

•
$$|z|^2 = z\overline{z}$$

$$z\overline{z} = (x+iy)(x-iy) = x^2 - ixy + ixy - i^2y^2$$
$$= x^2 + y^2$$
$$= |z|^2$$

$$\bullet \quad \frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{|z|^2}$$

• We have

$$\operatorname{Re} z = \frac{z + \overline{z}}{2}, \quad \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$
$$\frac{z + \overline{z}}{2} = \frac{x + iy + x - iy}{2} = \frac{2x}{2} = x$$

Note:
$$\frac{1}{i} = -i$$

• For
$$z, w \in \mathbb{C}, |zw| = |z| \cdot |w|$$
.

Note:
$$\frac{1}{i} = -i$$

• For $z, w \in \mathbb{C}, |zw| = |z| \cdot |w|$.

$$|z|^2 \cdot |w|^2 = z\overline{z} \cdot w\overline{w} = (zw)(\overline{z} \cdot \overline{w})$$

$$= (zw)\overline{(zw)} = |zw|^2$$

Then take a square root.