Modeling open-boundary approach to pressure projection

Kraig Winters

Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA

(Received 3 March 2021)

For open boundary problems, it is necessary to assume even extensions and use cosine expansions for the velocity field in a spectral-type algorithm. Here we explore by example a pressure-projection algorithm for a one-dimensional evolution equation intended to be a model for the approach used in **flow_solve**.

1. The model problem

We model flow one-dimensional flow u(x) [m/s] in the closed interval $x \in [0, L]$ with boundary conditions $u(0) = u(L) = u_B(t)$, which which serve as a surrogate for Dirichlet boundary values obtained from solving a 'parent' problem over a larger domain. The governing equations are

$$u_t = \mathcal{F}_{\text{body}} + \nu u_{xx} - p_x \quad , \quad u_x = 0 \tag{1.1}$$

which describe divergent-free flow in one dimension. The 1d continuity equation implies that the only allowable flow is constant with respect to x and so, in this simple problem, the flow is a time dependent uniform flow, i.e.

$$u(x,t) = u_B(t) \tag{1.2}$$

Note that the viscous term is identically equal to zero for these flows. In the simplest case, when $\mathcal{F}_{\text{body}} = 0$, the flow is driven by the boundary values and the corresponding pressure field id

$$p(x,t) = -\frac{\partial u}{\partial t}x. \tag{1.3}$$

At first glance, this simple model problem seems outside the scope of using cosine expansions in x for u and p.

2. Pressure projection using cosine expansions

We denote the cosine expansion of f(x) as f(k). The expansion coefficients are obtained by Fourier transforming the even extension of f about x = L over the open interval $x \in [0, 2L)$. Note that these Fourier coefficients are conjugate symmetric and real. Our approach will be to compute x derivatives by taking the cosine transform, multiplying by the wavenumbers k, and inverse transforming back to physical space. In these demonstration problems, these operations are carried out by explicitly constructing even extensions from [0, L] to [0, 2L) and using FFTs. In **flow_solve** cosine transforms are used directly, a procedure that is more efficient with respect to memory and computation.

FIGURE 1. The function $u_s^*(x)$ for n=1, even extended across x=L. The function "smoothly jumps" from the value u(0)=1 to the value $u_B(\Delta t)$ at the boundaries x=0,L in such a way that the derivatives are equal to zero there. Here $u_s^*(x)$ is a well-behaved function with a narrow transition scale of width $\gamma=5\Delta x$ where $\Delta x=L/256$

Let u^n be the solution at some discrete time value $t^n = n\Delta t$. To estimate u^{n+1} we adopt the following procedure.

(1) Compute

$$u^* = u^n + \int_{t_n}^{t_{n+1}} \mathcal{F}_{\text{body}} + \nu u_{xx} \, dt$$
 (2.1)

using an explicit time stepping method. In these examples, we will use the Euler method for simplicity. Depending on the configuration, higher order Adams methods are used in **flow_solve**. We assume that u^n and u^* are smooth, continuous functions when even-extended across x = L, i.e. that their first derivatives vanish at the endpoints and their second derivatives are finite. For the illustration problem that follows, we take $\mathcal{F}_{\text{body}} = 0$ and $u_B(t, x) = u_B(t) = \cos(2\pi t/T)$.

(2) Introduce the velocity boundary conditions at t^{n+1} as "smoothed discontinuities", *i.e.* jumps that are spread over thin transition regions of width γ . For this example u^* transitions from $u^n = u_B(t^n)$ in the interior to $u_B(t^{n+1})$ at the boundaries.

$$u_s^*(x) = \begin{cases} (u^*(x) - u_B(0, t^{n+1}))e^{-(\frac{x}{\gamma})^4} + u_B(0, t^{n+1}) & 0 \le x \le L/2, \\ (u^*(x) - u_B(L, t^{n+1}))e^{-(\frac{x-L}{\gamma})^4} + u_B(L, t^{n+1}) & L/2 < x < L \end{cases}$$
(2.2)

Figure (1) shows $u_s^*(x)$ and its even extension. The choice of exponent in the transition function ensures that both the first and second derivatives of $u_s^*(x)$ vanish at x = 0, L. This allows both of these functions to be expanded in well-behaved cosine series.

(3) Compute $\frac{\partial}{\partial x}u_s^*$ using cosine expansions. The result and its even extension are shown in Figure (2). The even extension is continuous and has derivatives that vanish at x = 0, L.

FIGURE 2. The function $\frac{\partial}{\partial x}u_s^*(x)$ for n=1, even extended across x=L.

For this example problem, where u^* is only nonzero due to the jump in boundary values, $\frac{\partial}{\partial x}u_s^*$ is a resolvable approximation to the derivative of a delta function.

(4) Given the definition of $u^*(x)$ (2.1), it follows that the corrected velocity

$$u^{n+1} = u^* - \Delta t \, \phi_x$$

provided that $\phi_x = \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} p_x dt$. Using the smoothed field u_s^* in place of u^* in this equation and differentiating with respect to x yields

$$\phi_{xx} = \frac{-1}{\Delta t} \frac{\partial}{\partial x} u_s^*.$$

Because u_s^* already satisfies the desired boundary conditions for $u(t^{n+1})$ at x=0,L, the boundary conditions on ϕ are simply $\phi_x=0$ at x=0,L. We solve for ϕ by taking the cosine transform of $\frac{\partial}{\partial x}u_s^*$, multiplying by $\frac{-1}{\Delta t\,k^2}$, and inverse transforming. The resulting ϕ is shown in Figure(3).

(5) Compute ϕ_x using cosine expansions. The updated velocity is then $u^{n+1} = u_s^* - \Delta t \, \phi_x$. Thus, we have constructed u^{n+1} that satisfies the equation of motion and the required boundary conditions. The pressure gradient ϕ_x and the computed solution $u^{n+1}(x)$ are shown in Figures 4 and cr respectively. The mean error $u(t^{n+1}, x) - u_B(t^{n+1})$ is 9.5×10^{-8} .

After one time step, we have a very good approximate solution for u in a boundary driven problem using a numerical method based on implicit satisfaction of homogeneous Neumann conditions for all dependent variables. This is achieved via a discrete version of exchanging inhomogeneity in the boundary conditions for inhomogeneity in the source term in the elliptic equation for pressure. While the errors in the velocity field are small in magnitude, they have small scale components and we have the possibility of disconti-

FIGURE 3. The function $\phi(x)$ for n=1, even extended across x=L. The pressure field is linear in x throughout the interior of the domain but transitions to a vanishing slope within γ transition regions near the boundaries. The function is well behaved, has vanishing derivatives at the boundaries and has continuous second derivatives. The pointwise residual $\phi_x x + \frac{-1}{\Delta t} \frac{\partial}{\partial x} u_s^*$, normalized by the maximum magnitude of $\phi_x x$, is everywhere less than 10^{-12} .

FIGURE 4. The function $\phi_x(x)$ for n=1, even extended across x=L. The gradient is approximately constant in the interior but zero at the boundaries.

nuities in derivatives higher than n=2. For all time time steps after the first, the viscous term will be nonzero as viscosity will act on the small scale errors in the solution. While this seems like a good thing in that small scales are continuously damped, continuity issues may give rise to the continuous generation of these errors. Stability of the time integration will depend on the maintanence of smoothness at small scales. To enhance smoothness, we let $\nu=0.01\Delta x^2/\Delta t$ be nonzero and we use a Gaussian filter when differentiating in wavenumber space to taper the coefficients corresponding to the highest 10% of the discrete wavenumbers.

FIGURE 5. The function $u(t^{n+1},x) = u_s^* - \Delta t \phi_x$ for n=1, even extended across x=L. The velocity is essentially constant and matches the boundary value $u_B(t^{n+1}, u(t^{n+1}, x))$ is (at worst) a C^1 function, inheriting this property from ϕ_x .

FIGURE 6. The computed solution $u(T,x)=u_s^*-\Delta t\phi_x$ after 100 time steps, even extended across x=L. The velocity is nearly constant and approximately matches the boundary value $u_B(T)=1$. It is a little noisy at small scales, but not significantly worse than after a single time step, eg. the mean magnitude of the difference between the computed and exact solutions is 4.5×10^{-7} .

3. Time stepping

For $\Delta t = T/100$, we now integrate for one period of the boundary forcing. The exact solution is again u = 1 and the computed solution is shown in Figure 6 along with the computed pressure gradient ϕ_x in Figure 7.

We now check the spectral behavior of the functions used to construct the solution after integrating 100 steps. Shown are the Fourier transforms of the underlying functions after even extension from [0, L] to [0, 2L). The cosine coefficients are twice the odd coefficients for $k \ge 0$. The Poisson solution is simply a multiplication in wavenumber space by $1/k^2$

FIGURE 7. The function $\phi_x(x)$ at step 100, even extended across x = L. The gradient ϕ_x is essentially constant in the interior but vanishes at the boundaries. ϕ_x has a well behaved expansion in a cosine series.

FIGURE 8. Fourier transform of the even-extended source term in the Poisson equation for pressure. Odd coefficients are equal to zero and not shown.

while the calculation of ϕ_x is just a multiplication of this result by k. Thus, the spectral shape of these functions shown in Figure 9.

Fourier transforms of ϕ (black) and ϕ_x (red)

FIGURE 9. Fourier transform of the even-extended functions ϕ and ϕ_x . Odd coefficients are equal to zero and not shown.

FIGURE 10. Various fields after 100 time steps for nonzero body forcing.

4. Removal of divergence resulting from body forces

To this point, we have focused on the behavior of the solution procedure in response to the imposition of velocity boundary conditions. Essentially, we have absorbed the inhomogeneous boundary information into a modified source term for the pressure Poisson equation while retaining homogeneous Neumann conditions. We now show that this solution also removes any interior divergence that appears in u_* by virtue of the body force. In this simple one-dimensional example, any non-constant component of $\mathcal{F}_{\text{body}}(x)$ will need to be removed in the pressure projection step. To illustrate, we take

$$\mathcal{F}_{\text{body}}(x) = \cos(2\pi x/L) \tag{4.1}$$

a generic term that will introduce divergence but is itself an even function about x=0,L. The exact solution for velocity remains the same:u is constant in x and matches the imposed, time dependent boundary values. The pressure field, however, is different. The pressure correction at each time step must now accelerate the flow to match the updated boundary values while at the same time removing the divergence induced by the body forcing. Figure cr shows that this introduces no further difficulties. The mean magnitude of the difference between the computed and exact solutions is 4.4×10^{-7} , essentially unchanged.

5. Indirect imposition of boundary conditions by nudging

Here we consider the same physical problem with solution $u = u_B(t)$ for all x. The solution will be approximated by adding a forcing term to the equation for u that nudges the computed solution toward the boundary values over a time scale on the order of Δt . The additional forcing term takes the form

$$\mathcal{F}_{\text{nudge}} = \frac{-1}{\tau} \left\{ \mathcal{W}_0(x) \left[u(x,t) - u_B(0,t) \right] + \mathcal{W}_L(x) \left[u(x,t) - u_B(L,t) \right] \right\}$$
 (5.1)

8

0.9875

where $\tau = O(\Delta t)$ and the near-boundary windowing functions are given by

$$W_0(x) = e^{-(\frac{(x-0)}{\sigma})**4}$$
 and $W_L(x) = e^{-(\frac{(x-L)}{\sigma})**4}$. (5.2)

In practice, τ has to be greater than about $3\Delta t$ in order to maintain stability of the discrete time integration.

With this approach

$$u^* = u^n + \int_{t_n}^{t_{n+1}} \mathcal{F}_{\text{body}} + \mathcal{F}_{\text{nudge}} + \nu u_{xx} \, dt$$
 (5.3)

and there is no need to further adjust the values near the boundaries nor do any smoothing. Smoothness of u^* near the endpoints is controlled by the vanishing derivatives of the windowing functions at the boundaries. Time-varying boundary conditions will never be satisfied exactly but the magnitude of the boundary error scales like τ/T where T is the time scale over which the boundary values vary. For nested applications where the required time step is much smaller than that used in the outer simulation that produces the boundary values, this error is likely to be negligible.