Solución a los Problemas de los Viernes

Juan Camacho, Santiago Correa

15 de Noviembre 2024

Problema 1

a) Demuestre que $f(q_1, p_1)$ es una constante del movimiento.

Paso 1: Entender el problema

Se nos da un Hamiltoniano \mathcal{H} que depende de las variables q_1 y p_1 únicamente a través de una función $f(q_1, p_1)$:

$$\mathcal{H} = \mathcal{H}\left(f(q_1, p_1), q_2, p_2, \dots, q_n, p_n\right).$$

Debemos demostrar que $f(q_1, p_1)$ es una constante del movimiento, es decir:

$$\frac{df}{dt} = 0.$$

Paso 2: Utilizar la ecuación de movimiento para f

La derivada total de f respecto al tiempo es:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \{f, \mathcal{H}\}.$$

Dado que f no depende explícitamente del tiempo, $\frac{\partial f}{\partial t}=0$, por lo que:

$$\frac{df}{dt} = \{f, \mathcal{H}\}.$$

Nuestra tarea es calcular el paréntesis de Poisson $\{f, \mathcal{H}\}$ y demostrar que es cero.

Paso 3: Calcular el paréntesis de Poisson $\{f, \mathcal{H}\}$

El paréntesis de Poisson para funciones de múltiples variables es:

$$\{f, \mathcal{H}\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} \right).$$

Dado que f depende solo de q_1 y p_1 , todas las derivadas parciales respecto a q_i y p_i para $i \neq 1$ son cero:

$$\frac{\partial f}{\partial q_i} = 0, \quad \frac{\partial f}{\partial p_i} = 0 \quad \text{para} \quad i \neq 1.$$

Por lo tanto, el paréntesis de Poisson se reduce a:

$$\{f, \mathcal{H}\} = \frac{\partial f}{\partial q_1} \frac{\partial \mathcal{H}}{\partial p_1} - \frac{\partial f}{\partial p_1} \frac{\partial \mathcal{H}}{\partial q_1}.$$

Paso 4: Expresar las derivadas parciales de $\mathcal H$ en términos de f

Dado que \mathcal{H} depende de q_1 y p_1 solo a través de $f(q_1, p_1)$, podemos aplicar la regla de la cadena:

$$\frac{\partial \mathcal{H}}{\partial q_1} = \frac{\partial \mathcal{H}}{\partial f} \frac{\partial f}{\partial q_1},$$

$$\frac{\partial \mathcal{H}}{\partial p_1} = \frac{\partial \mathcal{H}}{\partial f} \frac{\partial f}{\partial p_1}.$$

Paso 5: Sustituir en el paréntesis de Poisson

Sustituimos estas expresiones en el paréntesis de Poisson:

$$\{f, \mathcal{H}\} = \frac{\partial f}{\partial q_1} \left(\frac{\partial \mathcal{H}}{\partial f} \frac{\partial f}{\partial p_1} \right) - \frac{\partial f}{\partial p_1} \left(\frac{\partial \mathcal{H}}{\partial f} \frac{\partial f}{\partial q_1} \right).$$

Simplificando:

$$\{f, \mathcal{H}\} = \frac{\partial \mathcal{H}}{\partial f} \left(\frac{\partial f}{\partial q_1} \frac{\partial f}{\partial p_1} - \frac{\partial f}{\partial p_1} \frac{\partial f}{\partial q_1} \right).$$

Observamos que los términos en el paréntesis se cancelan:

$$\frac{\partial f}{\partial q_1} \frac{\partial f}{\partial p_1} - \frac{\partial f}{\partial p_1} \frac{\partial f}{\partial q_1} = 0.$$

Por lo tanto:

$$\{f, \mathcal{H}\} = \frac{\partial \mathcal{H}}{\partial f} \times 0 = 0.$$

Paso 6: Concluir que f es una constante del movimiento Dado que $\{f, \mathcal{H}\} = 0$, tenemos:

$$\frac{df}{dt} = 0.$$

Por lo tanto, $f(q_1, p_1)$ es una constante del movimiento.

b) Usando este resultado, encuentre las cantidades conservadas en el caso de una partícula sometida al potencial

$$V = \frac{\vec{a} \cdot \vec{r}}{r^3}, \quad \text{con} \quad \vec{a} = a_z \hat{z}.$$

Paso 1: Analizar el potencial

El potencial dado es:

$$V(\vec{r}) = \frac{\vec{a} \cdot \vec{r}}{r^3} = \frac{a_z z}{r^3},$$

donde
$$r = \sqrt{x^2 + y^2 + z^2}$$
.

Paso 2: Identificar las simetrías del sistema

El vector \vec{a} apunta en la dirección z, por lo que el potencial depende explícitamente de z y r, pero es independiente de x e y de manera explícita. Sin embargo, el potencial es **invariante bajo rotaciones alrededor del eje** z, ya que no depende del ángulo ϕ en coordenadas cilíndricas.

Paso 3: Determinar las cantidades conservadas

1. Momento angular alrededor del eje z:

Debido a la invariancia bajo rotaciones alrededor de z, el componente L_z del momento angular es conservado:

$$L_z = xp_y - yp_x.$$

2. Energía total \mathcal{H} :

Como el Hamiltoniano no depende explícitamente del tiempo, la energía total es conservada:

$$\mathcal{H} = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) + V(\vec{r}).$$

Paso 4: Relacionar con el resultado de la parte (a)

En la parte (a), demostramos que si el Hamiltoniano depende de q_i y p_i solo a través de una función $f(q_i, p_i)$, entonces f es conservado.

En este caso, el Hamiltoniano no depende de ϕ (el ángulo alrededor del eje z), por lo que p_{ϕ} es una constante del movimiento.

En coordenadas cilíndricas, $p_{\phi} = L_z$.

Conclusión:

Utilizando el resultado de la parte (a), encontramos que el momento angular alrededor del eje z, L_z , es una constante del movimiento debido a la forma en que el Hamiltoniano depende de ϕ y p_{ϕ} . Por lo tanto, las cantidades conservadas son:

- El momento angular L_z . - La energía total \mathcal{H} .

Problema 2

a) Muestre que $f_1 = pq - 2\mathcal{H}t$ es una constante del movimiento.

Nota: Asumimos que el Hamiltoniano es:

$$\mathcal{H} = \frac{1}{2}p^2 + \frac{1}{2q^2}.$$

Paso 1: Calcular la derivada temporal de f_1 Queremos demostrar que:

$$\frac{df_1}{dt} = 0.$$

Empezamos calculando la derivada total de f_1 :

$$\frac{df_1}{dt} = \frac{d}{dt}(pq - 2\mathcal{H}t) = \frac{d}{dt}(pq) - 2\mathcal{H}.$$

Paso 2: Calcular $\frac{d}{dt}(pq)$

Utilizamos la regla del producto:

$$\frac{d}{dt}(pq) = \dot{p}q + p\dot{q}.$$

Paso 3: Utilizar las ecuaciones de Hamilton

Las ecuaciones de Hamilton son:

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p} = p,$$

$$\dot{p} = -\frac{\partial \mathcal{H}}{\partial a} = -\left(\frac{\partial}{\partial a} \left(\frac{1}{2a^2}\right)\right) = -\left(-\frac{1}{a^3}\right) = \frac{1}{a^3}.$$

Paso 4: Sustituir en $\frac{d}{dt}(pq)$

Sustituimos \dot{p} y \dot{q} :

$$\frac{d}{dt}(pq) = \left(\frac{1}{q^3}\right)q + pp = \frac{1}{q^2} + p^2.$$

Paso 5: Expresar $2\mathcal{H}$ en términos de p y q Dado que:

$$\mathcal{H} = \frac{1}{2}p^2 + \frac{1}{2q^2},$$

entonces:

$$2\mathcal{H} = p^2 + \frac{1}{q^2}.$$

Paso 6: Calcular $\frac{df_1}{dt}$

Sustituimos los resultados anteriores:

$$\frac{df_1}{dt} = \left(\frac{1}{q^2} + p^2\right) - \left(p^2 + \frac{1}{q^2}\right) = 0.$$

Conclusión:

Como $\frac{df_1}{dt} = 0$, entonces $f_1 = pq - 2\mathcal{H}t$ es una constante del movimiento.

b) Muestre que la transformación $Q = \lambda q$, $P = \lambda^{-1}p$ es canónica, encuentre el generador infinitesimal y determine su relación con f_1 .

Paso 1: Verificar que la transformación es canónica

Para que una transformación sea canónica, debe preservar el paréntesis de Poisson:

$${Q, P} = 1.$$

Calculamos:

$${Q, P} = {\lambda q, \lambda^{-1} p} = \lambda \lambda^{-1} {q, p} = {q, p} = 1.$$

Por lo tanto, la transformación es canónica.

Paso 2: Encontrar el generador infinitesimal

Consideramos una transformación infinitesimal con $\lambda = 1 + \epsilon$, donde ϵ es pequeño. Entonces:

$$Q = (1 + \epsilon)q \quad \Rightarrow \quad \delta q = \epsilon q,$$

$$P = (1 - \epsilon)p \quad \Rightarrow \quad \delta p = -\epsilon p.$$

Paso 3: Relacionar las variaciones con el generador G

En una transformación canónica infinitesimal, las variaciones de q y p están dadas por:

$$\delta q = \{q, G\}, \quad \delta p = \{p, G\}.$$

Paso 4: Plantear las ecuaciones para G

Usando las variaciones calculadas:

$$\{q,G\} = \epsilon q \quad \Rightarrow \quad \frac{\partial G}{\partial p} = \epsilon q,$$

$$\{p,G\} = -\epsilon p \quad \Rightarrow \quad -\frac{\partial G}{\partial q} = -\epsilon p \quad \Rightarrow \quad \frac{\partial G}{\partial q} = \epsilon p.$$

Paso 5: Integrar para encontrar G

Integrando $\frac{\partial G}{\partial p}$ respecto a p:

$$G = \epsilon q p + f(q),$$

donde f(q) es una función de q.

Derivando G respecto a q:

$$\frac{\partial G}{\partial q} = \epsilon p + f'(q).$$

Igualando con la expresión anterior:

$$\frac{\partial G}{\partial q} = \epsilon p \quad \Rightarrow \quad \epsilon p + f'(q) = \epsilon p \quad \Rightarrow \quad f'(q) = 0.$$

Por lo tanto, f(q) es una constante, que podemos tomar como cero. Entonces:

$$G = \epsilon qp$$
.

Paso 6: Relacionar el generador con f_1

Observamos que el generador G es proporcional a qp, que es parte de f_1 :

$$f_1 = pq - 2\mathcal{H}t = qp - 2\mathcal{H}t.$$

Cuando $t=0,\,f_1=qp,\,$ que es exactamente el generador G sin el factor $\epsilon.$

Conclusión:

El generador infinitesimal de la transformación es $G = \epsilon qp$, y f_1 está directamente relacionado con G y la energía \mathcal{H} . Esto muestra que f_1 es una constante del movimiento asociada a la simetría de escala generada por la transformación canónica.

Problema 3

a) Calcule $\{\vec{r} \cdot \vec{p}, \mathcal{H}\}$.

Paso 1: Expresar el Hamiltoniano y el producto escalar

El Hamiltoniano para una partícula en el potencial dado es:

$$\mathcal{H} = \frac{1}{2m}\vec{p}^2 + V(\vec{r}),$$

donde $V(\vec{r}) = \frac{\vec{a} \cdot \vec{r}}{r^3}$.

El producto escalar es $\vec{r} \cdot \vec{p} = \sum_{i} r_i p_i$.

Paso 2: Calcular el paréntesis de Poisson $\{\vec{r} \cdot \vec{p}, \mathcal{H}\}\$

El paréntesis de Poisson es:

$$\{\vec{r}\cdot\vec{p},\mathcal{H}\} = \{\vec{r}\cdot\vec{p},T\} + \{\vec{r}\cdot\vec{p},V\},\$$

donde $T = \frac{1}{2m}\vec{p}^2$.

Paso 3: Calcular $\{\vec{r} \cdot \vec{p}, T\}$

Utilizamos las propiedades de los paréntesis de Poisson:

$$\{\vec{r} \cdot \vec{p}, T\} = \sum_{i} \left(\frac{\partial (\vec{r} \cdot \vec{p})}{\partial r_i} \frac{\partial T}{\partial p_i} - \frac{\partial (\vec{r} \cdot \vec{p})}{\partial p_i} \frac{\partial T}{\partial r_i} \right).$$

Calculamos las derivadas: $-\frac{\partial(\vec{r}\cdot\vec{p})}{\partial r_i} = p_i. -\frac{\partial(\vec{r}\cdot\vec{p})}{\partial p_i} = r_i. -\frac{\partial T}{\partial p_i} = \frac{1}{m}p_i. -\frac{\partial T}{\partial r_i} = 0 \text{ (ya que } T \text{ no depende de } r_i).$ Sustituimos:

$$\{\vec{r} \cdot \vec{p}, T\} = \sum_{i} \left(p_i \cdot \frac{1}{m} p_i - r_i \cdot 0 \right) = \frac{1}{m} \sum_{i} p_i^2 = \frac{\vec{p}^2}{m}.$$

Paso 4: Calcular $\{\vec{r} \cdot \vec{p}, V\}$

De manera similar:

$$\{\vec{r} \cdot \vec{p}, V\} = \sum_{i} \left(\frac{\partial (\vec{r} \cdot \vec{p})}{\partial r_{i}} \frac{\partial V}{\partial p_{i}} - \frac{\partial (\vec{r} \cdot \vec{p})}{\partial p_{i}} \frac{\partial V}{\partial r_{i}} \right).$$

Dado que V no depende de p_i , $\frac{\partial V}{\partial p_i} = 0$.

Entonces:

$$\{\vec{r}\cdot\vec{p},V\} = -\sum_{i} r_{i} \frac{\partial V}{\partial r_{i}} = -\vec{r}\cdot\nabla V.$$

Paso 5: Combinar los resultados

Por lo tanto:

$$\{\vec{r}\cdot\vec{p},\mathcal{H}\} = \frac{\vec{p}^2}{m} - \vec{r}\cdot\nabla V.$$

Paso 6: Expresar \vec{p}^2 en términos de \mathcal{H}

Sabemos que:

$$\vec{p}^2 = 2m(\mathcal{H} - V).$$

Sustituimos:

$$\{\vec{r} \cdot \vec{p}, \mathcal{H}\} = \frac{2m(\mathcal{H} - V)}{m} - \vec{r} \cdot \nabla V = 2(\mathcal{H} - V) - \vec{r} \cdot \nabla V.$$

Paso 7: Calcular $\vec{r} \cdot \nabla V$

Primero, expresamos V explícitamente:

$$V = \frac{\vec{a} \cdot \vec{r}}{r^3}.$$

Calculamos la derivada parcial de V respecto a r_i :

$$\frac{\partial V}{\partial r_i} = \frac{\partial}{\partial r_i} \left(\frac{a_k r_k}{r^3} \right) = \frac{a_i}{r^3} - \frac{3a_k r_k r_i}{r^5}.$$

Entonces:

$$\vec{r} \cdot \nabla V = r_i \left(\frac{a_i}{r^3} - \frac{3a_k r_k r_i}{r^5} \right) = \frac{\vec{a} \cdot \vec{r}}{r^3} - \frac{3(\vec{a} \cdot \vec{r})r^2}{r^5} = \frac{\vec{a} \cdot \vec{r}}{r^3} - \frac{3(\vec{a} \cdot \vec{r})}{r^3} = -2\frac{\vec{a} \cdot \vec{r}}{r^3} = -2V.$$

Paso 8: Sustituir $\vec{r} \cdot \nabla V$ en la expresión de $\{\vec{r} \cdot \vec{p}, \mathcal{H}\}$

Sustituimos:

$$\{\vec{r} \cdot \vec{p}, \mathcal{H}\} = 2(\mathcal{H} - V) - (-2V) = 2(\mathcal{H} - V) + 2V = 2\mathcal{H}.$$

Conclusión:

Hemos demostrado que:

$$\{\vec{r}\cdot\vec{p},\mathcal{H}\}=2\mathcal{H}.$$

b) A partir de ese resultado obtenido, encuentre una cantidad conservada y la familia de transformaciones infinitesimales que origina.

Paso 1: Encontrar la cantidad conservada

Observamos que el paréntesis de Poisson nos sugiere que la cantidad:

$$f = \vec{r} \cdot \vec{p} - 2\mathcal{H}t$$

es una constante del movimiento. Para confirmarlo, calculamos su derivada temporal:

$$\frac{df}{dt} = \frac{d}{dt}(\vec{r} \cdot \vec{p}) - 2\mathcal{H} - 2t\frac{d\mathcal{H}}{dt}.$$

Pero dado que $\frac{d\mathcal{H}}{dt}=0$ (el Hamiltoniano no depende explícitamente del tiempo), tenemos:

$$\frac{df}{dt} = \frac{d}{dt}(\vec{r} \cdot \vec{p}) - 2\mathcal{H}.$$

Usando el resultado anterior:

$$\frac{d}{dt}(\vec{r}\cdot\vec{p}) = \{\vec{r}\cdot\vec{p},\mathcal{H}\} = 2\mathcal{H}.$$

Entonces:

$$\frac{df}{dt} = 2\mathcal{H} - 2\mathcal{H} = 0.$$

Por lo tanto, f es una constante del movimiento.

Paso 2: Identificar la familia de transformaciones infinitesimales

La cantidad conservada f está asociada a una simetría del sistema. El generador de esta simetría es $G = \vec{r} \cdot \vec{p}$.

Las transformaciones infinitesimales generadas por G son:

- Variación de \vec{r} :

$$\delta \vec{r} = \{\vec{r}, G\}\epsilon = \frac{\partial G}{\partial \vec{p}}\epsilon = \vec{r}\epsilon.$$

- Variación de \vec{p} :

$$\delta \vec{p} = \{\vec{p}, G\}\epsilon = -\frac{\partial G}{\partial \vec{r}}\epsilon = -\vec{p}\epsilon.$$

Estas transformaciones corresponden a una dilatación (escalamiento) en el espacio de coordenadas y una contracción correspondiente en el espacio de momentos.

Conclusión:

La cantidad conservada es $f = \vec{r} \cdot \vec{p} - 2\mathcal{H}t$, y está asociada a la simetría de escala del sistema. La familia de transformaciones infinitesimales son las dilataciones generadas por $G = \vec{r} \cdot \vec{p}$.