Sol-gel ZrO₂ film optimized via Genetic Algorithm

Johann Dorn

October 10, 2020

Overview just for me

- What is the goal
- What is the status
- What are the optimazable parameters
- What is a genetic algorithm
- What are the parameters for a GA
- Plan

What is the goal?

- ZrO₂ film via doctor blading on steel
- should be insulating (no cracks or holes)
- ullet minimum thickness of 200 $\mu{\rm m}$

What is the status?

- lower heating rate produces less cracks
- composition of starting solution

What are optimizable parameters?

Volume:

- Zr isopropoxide
- AcAc
- iPrOH
- H2O
- Base? organic? for pH regulation
- Acid?
- Surfactant?
- high molecular co-polymer?

What are optimizable parameters?

- Volume:
 - Zr isopropoxide
 - AcAc
 - iPrOH
 - H2O
 - Base? organic? for pH regulation
 - Acid?
 - Surfactant?
 - high molecular co-polymer?

- Time:
 - Mixing Time
 - waiting before spreading
- Temperature:
 - Heating rate
 - Calcination holding time
 - Max temperature
 - Heating method oven/hot plate

What is a genetic algorithm?

- population of individuals (experiments)
- genes (experiment parameters)
- fitness (grade of satisfying the demands)
- only the fittest survive
- the individuals pair and produce offspring
- mutations

How does a GA work?

- random initial population
- calculate fitness
- select pairs to become parents
- mixing of their genomes via cross over
- mutate the offspring genomes
- o replace old with new population
- go to step 2

What are the parameters for GA?

- size of initial population (2-4 fold of genes)
- how is the fitness calculated?
- how are the parent pairs selected?
- crossover probability or rate
- mutation rate
- how is the population replaced?

Plan

- 6 month = 24 weeks
- First 2 weeks:
 - experimentally explore search space
 - choose parameters
 - choose GA parameters and write code
- 20 weeks: 10-20 generations create data for generations
- 2 weeks buffer

Status report: Insulating zirconia oxide layers on steel

Johann Dorn

December 1, 2020

Introduction

- Project: InnovaSteel4CIGS (AIT Sunplugged)
- CopperIndiumGalliumSelenide
- Objective:
 - Insulating coating for stainless steel
 - ZrO_2 and/or Al_2O_3
 - Scalability for industry
- application: insulation between CIGS cell and steel foil

Starting point

4th International Conference on Mechanical Engineering Research (ICMER2017)

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 257 (2017) 012087 doi:10.1088/1757-899X/257/1/012087

Morphology evaluation of ZrO₂ dip coating on mild steel and its corrosion performance in NaOH solution

M A Anwar¹, T Kurniawan¹, Y P Asmara¹, W S W Harun², A N Oumar³, A B D Nandyanto4

(a) 3 dipping

(b) 5 dipping

(c) 7 dipping

Recipe and Parameters

Recipe 1:

- 8ml Zr(OPr)₄
- 8ml AcAc
- 2ml i-PrOH
- 2.6ml H2O

Recipe and Parameters

Recipe 1:

- 8ml Zr(OPr)₄
- 8ml AcAc
- 2ml i-PrOH
- 2.6ml H2O

Parameters:

- Heating rate
- calcination temperature
- Mixing time
- pH regulator
- Surfactant
- High molecular polymer

SEM results

Adapted recipe 2

Ceramics International 42 (2016) 16867-16871

Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

A new sol-gel route to prepare dense Al₂O₃ thin films

School of Physics and Electronic Information Engineering, Henan Polytech University, Jiaozuo 454000, China

CrossMark

Recipe 2:

- 9.9ml 1-BuOH
- 0.1ml Zr(OPr)₄
- 0.025 AcAc
- 2ml AcOH

Fig. 6. FE-SEM micrograph of surface (a) and cross section (b) of an Al₂O₃ film.

SEM results

100 µm EHT * 500 NV Signal A = InLens Stage at T * 0.0° Date 27 Nov 2020 Time :13.5 nm Mag * 200 X

(a) Recipe 1

(b) Recipe 2

SEM cross section

Summary and Outlook

- 100nm layer
- dielectric properties: I-V, C-V
- optical spectrometry
- XRD
- Machine Learning

Sol-gel ZrO₂ film optimization

Johann Dorn

March 5, 2021

Calculation

•
$$G = \frac{dI}{dV} = 4.234E-6$$

•
$$G' = log(|G|) = -5.37$$

- pG = -log(|G|) = 5.37 pondus,power,potential
- Q: which points best for dV
- min max overestimation ?
- average ?

Statistics

Optimazation parameters

- min (average of G)
- min (number of hole)
- min (layers)
- min (calcination temperature)?
- max (DB velocity)?
- max (heating rate)?

Optimization meta

- starting population 10 s
- extra entities/experiments per timestep =5 e
- 5 time steps
- 1*10+(5-1)*5 = 10+4*5 = 10+20 = 30
- 20-30 extra samples for comparison
- approx 2-3 hours per sample

All questions

- where should be threshold be for holes?
- how to calculate derivative?
- boundaries for Tcal = [300:500] [400:500] °C
- layers = [6:14] [4:10]
- conc = [2:5] [1:5]
- vDoc = [10:20] mm/s
- TDOC = [40:80] °C
- vCal = [2:16] °C/min
- extra steel foil