```
<110> Buck, Linda
      Axel, Richard
<120> ODORANT RECEPTORS AND USES THEREOF
<130> 0575/38586-B/JPW/ADM
<150> US 08/129,079
<151> 1993-10-05
<160> 80
<170> PatentIn version 3.0
<210> 1
<211>
      954
<212> DNA
<213> Rattus sp. F12
<400> 1
atggaatcag ggaacagcac aagaagattt tcaagttttt ttcttcttgg atttacagaa
                                                                         60
aacccacaac ttcacttcct catttttgca ctattcctgt ccatgtacct ggtaacagtg
                                                                        120
cttgggaacc tgcttatcat tatggccatc atcacacagt ctcatttgca tacacccatg
                                                                        180
tactttttcc ttgctaacct atcctttgt gacatctgtt tcacctccac caccatccca
                                                                        240
aagatgttgg taaatatata cacccagag{f d} aagagcatca cctatgaaga ctgtattagc
                                                                        300
cagatgtgtg tettettggt tttegeagaa ttgggeaact tteteetgge tgtgatggee
                                                                        360
tatgaccgat atgtggctaa ctgtcaccca dtgtgttaca cagtcattgt gaaccaccgg
                                                                        420
ctctgtatcc tgctgcttct gctgtcctgg g\mathfrak{h}tatcagca ttttccatgc cttcatacag
                                                                        480
agettaattg tgetacagtt gacettetgt ggalgatgtga aaateeetea ettettetgt
                                                                        540
gaacttaatc agetgteeca acteacetgt teaoldsymbol{d}acaact tteeaagtea eeteataatg
                                                                        600
aatottgtac ctgttatgtt ggcagccatt toot\daggercagtg gcatccttta ctcttatttc
                                                                        660
aagatagtat ootooataca ttotatotoo acagtf tcagg ggaagtacaa ggoattttot
                                                                        720
acttgtgcct ctcacctttc cattgtctcc ttatttm{t}ata gtacaggcct cggagtgtac
                                                                        780
gtcagttctg ctgtggtcca aagctcacat tctgctgcaa gtgcttcggt catgtatact
                                                                        840
gtggtcaccc ccatgctgaa ccccttcatt tatagtchaa ggaataaaga tgtgaagaga
                                                                        900
```

gctctggaaa gactgttaga aggaaactgt aaagtgcatc attggactgg atga

-

<210> 2 <211> 1002 <212> DNA <213> Rattus sp. F3

	(400> 2 atggactcaa	gcaacaggac	aagagtttca	gaatttcttc	ttcttggatt	tgtagaaaac	60
ĉ	aagacctac	aaccccttat	ttatggtctt	tttctctcta	tgtacctggt	tactgtcatt	120
ç	gaaacatat	ccattattgt	ggctatcatt	tcagatccct	gtctgcacac	ccccatgtat	180
t	tcttcctct	ctaacctgtc	ctttgtggac	atctgtttca	tttcaaccac	tgttccaaag	240
а	ıtgttagtga	acatccagac	ccaaaacaat	gtcatcacct	atgcaggatg	cattacccag	300
а	tatactttt	tcttgctctt	tgtagaattg	gacaacttct	tgctgactat	catggcctat	360
ç	accgttacg	tagccatctg	tcaccccatg	cactacacag	ttatcatgaa	ctacaagctc	420
t	gtggatttc	tggttctggt	atcttggatt	gtaagtgttc	tgcatgcctt	gtttcaaagc	480
t	tgatgatgt	tggcgctgcc	cttctgcaca	catctggaaa	tcccacacta	cttctgtgaa	540
C	ctaatcagg	tgattcaact	cacctgttct	gatgcatttc	ttaatgatct	tgtgatatat	600
t	ttacacttg	tgctgctggc	tactgttcct	cttgctggca	tcttctattc	ttacttcaag	660
а	tagtgtcct	ccatatgtgc	tatatcgtca	gttcatggga	agtacaaagc	attctccacc	720
t	gtgcatctc	acctttcagt	cgtgtcttta	ttttactgca	caggactagg	agtgtacctc	780
а	gttctgctg	caaacaacag	ctcacaggca	agtgccacag	cctcagtcat	gtacactgta	840
g	ttaccccta	tggtgaaccc	ttttatctat	agtcttagga	ataaagatgt	taagagtgtt	900
С	tgaaaaaaa	ctctttgtga	ggaagttata	aggagtccac	cttccctact	tcatttcttc	960
С	tagtgttat	gtcatctccc	ttgttttatt	ttttgttatt	aa		1002
<	210> 3 211> 942 212> DNA 213> Rate	cus sp. F5					
		ccaaccagtc	cagtgtcacc	gagttcctcc	tectgggaet	ctccaggcag	60
C	cccagcagc	agcagctcct	cttcctgctc	ttcctcatca	tgtacctggc	cactgtcctg	120
9	gaaacctgc	tcatcatcct	ggctattggc	acagactccc	gcctgcacac	ccccatgtac	180
t	tcttcctca	gtaacctgtc	ctttgtggat	gtctgcttct	cctctaccac	tgtccctaaa	240
g	ttctggcca	accatatact	tgggagtcag	gccatttcct	tctctgggtg	tctcacccag	300
C	tgtattttc:	tcgctgtgtt	tggtaacatg	gacaatttcc	tgctggctgt	gatgtcctat	360
g	accgatttg	tggccatatg	ccacccttta	cactacacaa	caaagatgac	ccgtcagctc	420

tgtgtcctgc ttgttgtggg gtcatgggtt gtagccaaca tgaattgtct gttgcacata

ctgctcatgg	ctcgactctc	cttctgtgca	gacaacatga	tcccccactt	cttctgtgat	540
ggaactcccc	tcctgaaact	ctcctgctca	gacacacatc	tcaatgagct	gatgattctt	600
acagagggag	ctgtggtcat	ggtcacccca	tttgtctgca	tecteatete	ctacatccac	660
atcacctgtg	ctgtcctcag	agtctcatcc	cccaggggag	gatggaaatc	cttctccacc	720
tgtggctccc	acctggctgt	ggtctgcctc	ttctatggca	ccgtcatcgc	tgtgtatttc	780
aacccatcat	cctctcactt	agctgggagg	gacatggcag	ctgcagtgat	gtatgcagtg	840
gtgaccccaa	tgctgaaccc	tttcatctat	agcctgagga	acagcgacat	gaaagcagct	900
ttaaggaaag	tgctcgccat	gagatttcca	tctaagcagt	aa		942
<210> 4 <211> 936 <212> DNA <213> Ratt	tus sp. F6					
	gtactggcca	gaacctgtcc	acaccaggac	cattcatctt	gctgggcttc	60
ccagggccaa	ggagcatgcg	cattgggctc	ttcctgcttt	tcctggtcat	gtatctgctt	120
acggtagttg	gaaacctagc	catcatctcc	ctggtaggtg	cccacagatg	cctacagaca	180
cccatgtact	tcttcctctg	caacctctcc	ttcctggaga	tctggttcac	cacagcctgc	240
gtacccaaga	ccctggccac	atttgcgcct	cggggtggag	tcatttcctt	ggctggctgt	300
gccacacaga	tgtactttgt	cttttctttg	ggctgtaccg	agtacttcct	gctggctgtg	360
atggcttatg	accgctacct	ggccatctgc	ctgccactgc	gctatggtgg	catcatgact	420
cctgggctgg	cgatgcggtt	ggccctggga	tcctggctgt	gtgggtttc	tgcaatcaca	480
gttcctgcta	ccctcattgc	ccgcctctct	ttctgtggct	cacgtgtcat	caaccacttc	540
ttctgtgaca	tttcgccctg	gatagtgctt	tcctgcaccg	acacgcaggt	ggtggaactg	600
gtgtcctttg	gcattgcctt	ctgtgttatt	ctgggctcgt	gtggtatcac	actagtctcc	660
tatgcttaca	tcatcactac	catcatcaag	attccctctg	cccggggccg	gcaccgcgcc	720
ttctcaacct	gctcatccca	tctcactgtg	gtgctgattt	ggtatggctc	caccatcttc	780
ttgcatgtga	ggacctcggt	agagagctcc	ttggacctca	ccaaagctat	cacagtgctc	840
aacaccattg	tcacacctgt	gctgaaccct	ttcatatata	ctctgaggaa	caaggatgtc	900
						00 -

<210> 5 <211> 939 <212> DNA

aaggaagctc tgcgcaggac ggtgaagggg aagtga

```
<213>
       Rattus sp. I14
<400>
atgactggaa ataaccaaac titgatcitg gagttcctcc toctgggtct gcccatccca
                                                                       60
tcagagtate atetectgtt ctatgeeetg tteetggeea tgtaceteae cateateetg
                                                                      120
ggaaacctgc taatcattgt ccttgttcga ctggactctc atctccacat qcccatqtac
                                                                      180
ttgtttctca gcaacttgtc cttctctgac ctctgctttt cctctgtcac aatgcccaaa
                                                                      240
ttgcttcaga acatgcagag ccaagtacca tctatatcct atacaggctg cctgacacag
                                                                      300
ctgtacttct ttatggtttt tggagatatg gagagettee ttettgtggt catggeetat
                                                                      360
gaccgctatg tggccatttg ctttcctttg cgttacacca ccatcatgag caccaagttc
                                                                      420
tgtgcttcac tagtgctact tctgtggatg ctgacgatga cccatgccct gctgcatacc
                                                                      480
ctactcattg ctagattgtc tttttgtgag aagaatgtga ttcttcactt tttctgtgac
                                                                      540
attictgctc tictgaagtt gicctgctca qacattiatq tiaatqaqct qatqatatat
                                                                      600
atcttgggtg gactcatcat tattatccca ttcctattaa ttgttatgtc ctatgttaga
                                                                      660
attitictict ccattitgaa gitticcatci atticaggaca totacaaggi attictcaacc
                                                                      720
tgtggttccc atctgtctgt ggtgaccttg ttttatggga caatttttgg tatctactta
                                                                      780
tgtccatcag gtaataattc tactgtgaag gagattgcca tggctatgat gtacacagtg
                                                                      840
gtgactccca tgctgaatcc cttcatctac agcctgagga acagagacat gaaaagggcc
                                                                      900
ctaataagag ttatctgcac taagaaaatc tctctgtaa
                                                                      939
<210>
<211>
       945
<212>
       DNA
<213> Rattus sp. I15
<400>
atgacagaag agaaccaaac tgtgatctcc cagttccttc tccttttcct gcccatcccc
                                                                       60
tcagagcacc agcacgtgtt ctacgccctg ttcctgtcca tgtacctcac cactgtcctg
                                                                      120
gggaacctca tcatcatcat cctcattcac ctggactccc atctccacac acccatgtac
                                                                      180
ttgtttctca gcaacttgtc cttctctgat ctctgctttt cctctgttac gatgcccaaq
                                                                      240
ttgttgcaga acatgcagag ccaagttcca tccatcccct ttgcaggctg cctgacacaa
                                                                      300
ttatactttt acctgtattt tgcagacctt gagagcttcc tgcttgtggc catggcctat
                                                                      360
gaccgctatg tggccatctg cttccccctt cattacatga gcatcatgag ccccaagctc
                                                                      420
tgtgtgagtc tggtggtgct gtcctgggtg ctgaccacct tccatgccat gctgcacacc
                                                                      480
```

ctgctcatgg ccagattgtc attctgtgcg gacaatatga tcccccactt tttctgtgat

atatctcctt	tattgaaact	gtcctgctct	gacacgcatg	ttaatgagtt	ggtgatattt	600
gtcatgggag	ggcttgttat	tgtcattcca	tttgtgctca	tcattgtatc	ttatgcacga	660
gttgtcgcct	ccattcttaa	agtcccttct	gtccgaggca	tccacaagat	cttctccacc	720
tgcggctccc	atctgtctgt	ggtgtcactg	ttctatggga	caatcattgg	tctctactta	780
tgtccgtcag	ctaataactc	tactgtgaag	gagactgtca	tggccatgat	gtacacagtg	840
gtgaccccca	tgctgaaccc	cttcatctac	agcctgagga	acagagacat.	gaaagaggca	900
ctgataagag	tcctttgtaa	aaagaaaatt	accttctgtc	tatga		945
<210> 7 <211> 933 <212> DNA <213> Ratt	tus sp. I3					
	aaactttcat	cacccaattc	cttctcctgg	gactgcccat	ccctgaagaa	60
catcagcacc	tgttctatgc	cttgttcctg	gtcatgtacc	tcaccaccat	cttgggaaac	120
ttgctaatca	ttgtacttgt	tcaactggac	tcccagctcc	acacacctat	gtatttgttt	180
ctcagcaatt	tgtctttctc	tgatctatgt	ttttcctctg	tcacaatgcc	caagctgctg	240
cagaacatga	ggagccagga	cacatccatt	ccctatggag	gctgcctggc	acaaacatac	300
ttctttatgg	tttttggaga	tatggagagt	ttccttcttg	tggccatggc	ctatgaccgc	360
tatgtggcca	tctgcttccc	tctgcattac	accagcatca	tgagccccaa	gctctgtact	420
tgtctagtgc	tgttattgtg	gatgctgacg	acatcccatg	ccatgatgca	cacactgctt	480
gcagcaagat	tgtctttttg	tgagaacaat	gtggtcctca	acttcttctg	tgacctattt	540
gttctcctaa	agctggcctg	ctcagacact	tatattaatg	agttgatgat	atttatcatg	600
agtacactcc	tcattattat	tccattcttc	ctcattgtta	tgtcctatgc	aaggatcata	660
tcctctattc	ttaaggttcc	atctacccaa	ggcatctgca	aggtcttctc	tacctgtggt	720
tcccatctgt	ctgtagtatc	actgttctat	gggacaatta	ttggtctcta	cttatgtcca	780
gcaggtaata	attccactgt	aaaagagatg	gtcatggcca	tgatgtacac	tgtggtgacc	840
cccatgctga	atcccttcat	ctacagccta	aggaatagag	atatgaagag	ggccctaata	900
agagttatct	gtagtatgaa	aatcactctg	taa			933

<210> 8

<211> 984

<212> DNA

<213> Rattus sp. I7

<400> 8						
atggagcgaa	ggaaccacag	tgggagagtg	agtgaatttg	tgttgctggg	tttcccagct	60
cctgccccac	tgcgagtact	actattttc	ctttctcttc	tggactatgt	gttggtgttg	120
actgaaaaca	tgctcatcat	tatagcaatt	aggaaccacc	caaccctcca	caaacccatg	180
tattttttct	tggctaatat	gtcatttctg	gagatttggt	atgtcactgt	tacgattcct	240
aagatgctcg	ctggcttcat	tggttccaag	gagaaccatg	gacagctgat	ctcctttgag	300
gcatgcatga	cacaactcta	ctttttcctg	ggcttgggtt	gcacagagtg	tgtccttctt	360
gctgtgatgg	cctatgaccg	ctatgtggct	atctgtcatc	cactccacta	ccccgtcatt	420
gtcagtagcc	ggctatgtgt	gcagatggca	gctggatcct	gggctggagg	ttttggtatc	480
tccatggtta	aagttttcct	tatttctcgc	ctgtcttact	gtggccccaa	caccatcaac	540
cactttttct	gtgatgtgtc	tccattgctc	aacctgtcat	gcactgacat	gtccacagca	600
gagcttacag	actttgtcct	ggccattttt	attctgctgg	gaccgctctc	tgtcactggg	660
gcatcctaca	tggccatcac	aggtgctgtg	atgcgcatcc	cctcagctgc	tggccgccat	720
aaagcctttt	caacctgtgc	ctcccacctc	actgttgtga	tcatcttcta	tgcagccagt	780
attttcatct	atgccaggcc	taaggcactc	tcagcttttg	acaccaacaa	gctggtctct	840
gtactctacg	ctgtcattgt	accgttgttc	aatcccatca	tctactgctt	gcgcaaccaa	900
gatgtcaaaa	gagcgctacg	tcgcacgctg	cacctggccc	aggaccagga	ggccaatacc	960
aacaaaggca	gcaaaattgg	ttag				984
<210> 9 <211> 939 <212> DNA <213> Rati	tus sp. 18					
<400> 9 atgaacaaca	aaactgtcat	cacccatttc	ctcctcctgg	gattgcccat	cccccagag	60
caccagcaac	tgttctttgc	cctgttcctg	atcatgtacc	tcaccacctt	tctgggaaac	120
ctgctaattg	ttgtccttgt	tcaactggac	tctcatctcc	acacacccat	gtacttgttt	180
ctcagcaact	tgtccttctc	tgatctctgc	ttttcctctg	ttacaatgct	gaaattgctg	240
caaaatatac	agagccaagt	accatctata	tcctatgcag	gatgcctgac	acagatattc	300
ttctttttgt	tgtttggcta	ccttgggaat	ttccttcttg	tagccatggc	ctatgaccgc	360
tatgtggcca	tctgcttccc	tctgcattat	accaacatca	tgagccataa	gctctgtact	420
tgtctcctgc	tggtattttg	gataatgaca	tcatctcatg	ccatgatgca	caccctgctt	480

gcagcaagat tgtctttttg tgagaacaat gtactcctca actttttctg tgacctgtt	540
gttctcctaa agttggcctg ctcagacact tatgttaatg agttgatgat acatatcate	g 600
ggcgtgatca tcattgttat tccattcgtg ctcattgtta tatcctatgc caagatcate	660
tectecatte ttaaggttee atetacteaa ageatteaca aggtettete cacttgtgg	720
totoatotot otgtggtgto totgttotac gggacaatta ttggtotota tttatgtoo	a 780
tcaggtgata attttagtct aaaggggtct gccatggcta tgatgtacac agtggtaac	840
ccaatgctga acccgttcat ctacagccta agaaacagag acatgaagca ggccctaata	a 900
agagttacct gtagcaagaa aatctctctg ccatggtag	939
<210> 10 <211> 945 <212> DNA <213> Rattus sp. I9	
<400> 10 atgactagaa gaaaccaaac tgccatctct cagttcttcc ttctgggcct gccattccc	c 60
ccagagtacc aacacctgtt ctatgccctg ttcctggcca tgtacctcac cactctcct	g 120
gggaacetea teateateat ecteatteta etggaetece atetecaeae acceatgtae	180
ttgtttctca gcaatttatc ctttgccgac ctctgttttt cctctgtcac aatgcccaa	g 240
ttgttgcaga acatgcagag ccaagttcca tccatcccct atgcagggtg cctggcacac	g 300
atatacttct ttctgttttt tggagacctt ggaaacttcc tgcttgtggc catggccta-	360
gaccgctatg tggccatctg cttccccctt cattacatga gcatcatgag ccccaagct	420
tgtgtgagtc tggtggtgct gtcctgggtg ctgactacct tccatgccat gctgcacac	480
ctgctcatgg ccagattgtc attctgtgag gacagtgtga tccctcacta tttctgtga	t 540
atgtctactc tgctgaaagt ggcttgttct gacacccatg ataatgaatt agcaatatt	600
atcttagggg gccctatagt tgtactacct ttccttctca tcattgtttc ttatgcaaga	a 660
attgtttcct ccatcttcaa ggtcccttct tctcaaagca tccataaagc cttctccac	720
tgtggctccc acctgtctgt ggtgtcactg ttctatggga cagtcattgg tctctactt	
tgtccttcag ctaataactc cactgtgaag gagactgtca tgtctttgat gtacacaat	g 840
gtgacaccca tgctgaaccc cttcatctac agcctaagaa acagagacat aaaagatgc	a 900
ttagaaaaaa taatgtgcaa aaagcaaatt ccctcctttc tatga	945

<210> 11 <211> 645 <212> DNA

```
<213> Homo Sapiens H5
<220>
<221> misc feature
<222>
      ()..()
\langle 223 \rangle n = unknown
<400> 11
atctgttttg tgtctaccac tgtcccaaag cagctggtga acatccagac acagagcaga
                                                                        60
gtcatcacct atgcagactg catcacccag atgtgctttt ttatactctt tgtagtgttg
                                                                       120
gacagettae teetgactgt gatggeetat gaceggtttg tggeeatetg teacecetg
                                                                       180
cactacacag tcattatgag ctcctggctc tgtggactgc tggttctggt gtcctggatc
                                                                       240
gtgagcatcc tatattctct gttacaaagc ataatggcat tgcagctgtc cttctgtaca
                                                                       300
gaactgaaaa tooctcaatt tttctgtgaa cttaatcagg tcatccacct tgcctgttcc
                                                                       360
gacactttta ttaatgacat gatgatgaat tttacaagtg tgctgctggg tgggggatgc
                                                                       420
ctcgctggaa tattttactn ntactttaag atactttgtt gcatatgttc gatctcatca
                                                                       480
gctcagggga tgaataaagc actttccacc tgtgcatctc acctctcagt tgtctcctta
                                                                       540
ttttattgta caggegtagg tgtgtacctt agttetgetg caacccataa etcactetea
                                                                       600
aatgctgcag cctcggtgat gtacactgtg gtcacctcca tgctg
                                                                       645
<210> 12
<211> 215
<212>
      PRT
<213> Homo Sapiens H5
<220>
<221> UNSURE
<222>
      (147)..(147)
\langle 223 \rangle x = unknown
<400> 12
Ile Cys Phe Val Ser Thr Thr Val Pro Lys Gln Leu Val Asn Ile Gln
Thr Gln Ser Arg Val Ile Thr Tyr Ala Asp Cys Ile Thr Gln Met Cys
Phe Phe Ile Leu Phe Val Val Leu Asp Ser Leu Leu Leu Thr Val Met
Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His Tyr Thr Val
Ile Met Ser Ser Trp Leu Cys Gly Leu Leu Val Leu Val Ser Trp Ile
65
                    70
                                         75
                                                              80
```

Val	Ser	Ile	Leu	Tyr 85	Ser	Leu	Leu	Gln	Ser 90	Ile	Met	Ala	Leu	Gln 95	Leu		
Ser	Phe	Cys	Thr 100	Glu	Leu	Lys	Ile	Pro 105	Gln	Phe	Phe	Cys	Glu 110	Leu	Asn		
Gln	Val	Ile 115	His	Leu	Ala	Cys	Ser 120	Asp	Thr	Phe	Ile	Asn 125	Asp	Met	Met		
Met	Asn 130	Phe	Thr	Ser	Val	Leu 135	Leu	Gly	Gly	Gly	Cys 140	Leu	Ala	Gly	Ile		
Phe 145	Tyr	Xaa	Tyr	Phe	Lys 150	Ile	Leu	Cys	Cys	Ile 155	Cys	Ser	Ile	Ser	Ser 160		
Ala	Gln	Gly	Met	Asn 165	Lys	Ala	Leu	Ser	Thr 170	Cys	Ala	Ser	His	Leu 175	Ser		
Val	Val	Ser	Leu 180	Phe	Tyr	Cys	Thr	Gly 185	Val	Gly	Val	Tyr	Leu 190	Ser	Ser		
Ala	Ala	Thr 195	His	Asn	Ser	Leu	Ser 200	Asn	Ala	Ala	Ala	Ser 205	Val	Met	Tyr		
Thr	Val 210	Val	Thr	Ser	Met	Leu 215		-									
<210 <211 <212 <213	2> (13 640 DNA Ratti	ıs sı	э . J:	1												
<220 <221 <222 <223	i> r 2>	()	_feat () unkno														
<400		l3 ctt a	actto	ctgc	ta go	catco	ccaa	a gat	tgcta	agtg	aata	ataca	aga	cgaad	gaacaa	L	60
aato	gatca	acc 1	tatq	aaqq	ct a	catci	tecea	a aqt	tata	cttt	tcat	cacto	ett	taaa	gttttg	r .	120
															ccato		180
								_	_					_	חחחחח		240
					_										nnnnn		300
nnnr	nnnn	ו ממר	וממממ	וממממ	ות תח	וחחחר	ותתתח	ומת ב	ותחחר	nnnn	nnnı	ותתתר	nnn	nnnnı	nnnnn	ı .	360
nnnr	nnnr	ו ממר	ותתתח	וחחחו	ות מח	וחמחמ	וחחחח	ומת ה	וחמחמ	nnnn	nnnı	ומממו	nnn	nnnnı	nnnnn	L 4	420
nnnr	ותחחו	ntt t	tatt	ctta	ct c	taag	atagi	t tt	cctc	cata	cga	gaaat	tct	catca	atcaca	. 4	480
ggga	aaagt	tac a	aagni	natt	ct c	cacci	tgtg	c ato	ccca	cctc	tca	gttg	ttt	catta	attcta	L .	540
ttct	cacac	ctt 1	ttgg	gtgt	gt a	cctt	agtt	c tto	cttt	tacc	caaa	aacto	cac	actca	aactgo	: (600

```
<210> 14
```

<220>

<221> UNSURE

<222> (61)..(165)

 $\langle 223 \rangle$ x = unknown

<400> 14

Ile Cys Phe Thr Ser Ala Ser Ile Pro Lys Met Leu Val Asn Ile Gln 1 5 10 15

Thr Lys Asn Lys Val Ile Thr Tyr Glu Gly Cys Ile Ser Gln Val Tyr 20 25 30

Phe Ser Tyr Ser Leu Glu Phe Trp Thr Thr Phe Phe Ser Thr Val Met 35 40 45

Ala Tyr Asp Arg Tyr Val Ala Ile Cys His Pro Ser Xaa Tyr Thr Gly 50 60

Ser Tyr Ser Lys Ile Val Ser Ser Ile Arg Glu Ile Ser Ser Gln 145 150 155 160

Gly Lys Tyr Lys Xaa Phe Ser Thr Cys Ala Ser His Leu Ser Val Val 165 170 175

Ser Leu Phe Tyr Ser Thr Leu Leu Gly Val Tyr Leu Ser Ser Phe 180 185 190

Thr Gln Asn Ser His Ser Thr Ala Arg Ala Ser Val Met Tyr Ser Val
195 200 205

Val Thr Pro Met Leu 210

<211> 213

<212> PRT

<213> Rattus sp. J1

<210><211><212><213>	15 636 DNA Rattu	ıs sı	p. J2	2											
<400> acctcca	15 cca c	ccato	cccaa	aa ga	atgct	iggta	a aat	tata	caca	CCC	agag	caa ·	tacta	atcacc	60
tatgaag	act ç	gtatt	ctcc	ca ga	atgtt	tgta	a cto	cttg	gttt	ttg	gagaa	act (ggaca	aacttt	120
ctcctgg	ctg t	gato	ggcct	ta to	gatc	gatai	gto	ggcta	atct	gtca	accca	act (gtatt	acaca	180
gtcattg	rtga a	accad	ccgad	ct ct	gtat	cct	g cto	gctt	ctgc	tgt	ectg	ggt ·	tgtca	agcatt	240
ttacatg	rcct t	ctta	acaga	ag ct	ctaat	ctgta	a cta	acag	ttga	ccti	ctg	tgg a	agat	gtgaaa	300
atccctc	act t	ctto	ctgt	ga go	ctcaa	atcag	g cto	gtcc	caac	tcad	catg	ttc a	agaca	acttt	360
ccaagtc	acc t	caca	aatgo	ca to	cttgt	cacct	c gtt	tata	tttg	cago	ctat	ttc (cctca	agtggt	420
atccttt	act o	cttat	ttca	aa ga	atagt	gtct	t tc	cata	cgtt	ctat	gtc	ctc a	agtto	caaggg	480
aagtaca	agg c	cattt	tcta	ac at	gtgo	cctct	cac	cctt	tcca	ttgt	ctc	ctt a	atttt	tatagt	540
acaggcc	tcg g	gggt	gtaco	gt ca	agtto	itgat	t gto	gatco	cgaa	gct	caca	ctc (ctct	gcaagt	600
gcttcgg	tca t	gtat	acto	gt g	gtcad	cccc	c ato	gttg							636
<213>	16 212 PRT Rattu 16	ıs sp	o. J2	2											
Thr Ser	Thr	Thr	Ile 5	Pro	Lys	Met	Leu	Val	Asn	Ile	His	Thr	Gln 15	Ser	
Asn Thr	· Ile	Thr 20	Tyr	Glu	Asp	Cys	Ile 25	Ser	Gln	Met	Phe	Val 30	Leu	Leu	
Val Phe	Gly 35	Glu	Leu	Asp	Asn	Phe 40	Leu	Leu	Ala	Val	Met 45	Ala	Tyr	Asp	
Arg Tyr 50	Val	Ala	Ile	Cys	His 55	Pro	Leu	Tyr	Tyr	Thr 60	Val	Ile	Val	Asn	
His Arg	Leu	Cys	Ile	Leu 70	Leu	Leu	Leu	Leu	Ser 75	Trp	Val	Val	Ser	Ile 80	
Leu His	Ala	Phe	Leu 85	Gln	Ser	Leu	Ile	Val 90	Leu	Gln	Leu	Thr	Phe 95	Cys	:
Gly Asp	Val	Lys 100	Ile	Pro	His	Phe	Phe 105	Cys	Glu	Leu	Asn	Gln 110	Leu	Ser	
Gln Leu	Thr	Cys	Ser	Asp	Asn	Phe 120	Pro	Ser	His	Leu	Thr 125	Met	His	Leu	

```
Val Pro Val Ile Phe Ala Ala Ile Ser Leu Ser Gly Ile Leu Tyr Ser
                      135
Tyr Phe Lys Ile Val Ser Ser Ile Arg Ser Met Ser Ser Val Gln Gly
                                      155
Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Ile Val Ser
Leu Phe Tyr Ser Thr Gly Leu Gly Val Tyr Val Ser Ser Ala Val Ile
                              185
Arg Ser Ser His Ser Ser Ala Ser Ala Ser Val Met Tyr Thr Val Val
Thr Pro Met Leu
   210
<210> 17
<211> 646
<212> DNA
<213> Rattus sp. J4
<400> 17
cataggetat teatettetg teacaceeaa tatgettgte aaetteetta taaageaaaa
                                                                   60
taccatctca taccttggat gttctataca gtttggctca gctgctttgt ttggaggtct
                                                                 120
tgaatgcttc cttctggctg ccatggcgta tgatcgtttt gtagcaatct gcaacccact
                                                                 180
gctttattca acgaaaatgt ccacacaagt ctgtgtccag ttggttgtgg gatcttatat
                                                                 240
300
accaaataga atcaatcact tttactgtga ttttgctccg ttagtagaac tttcttgctc
                                                                 360
tgatgtcagt gttcctgatg ctgttacctc attttctgct gcctcagtta ctatgctcac
                                                                  420
agtgtttatc atagccatct cctataccta tatcctcatc accatcctga agatgcqttc
                                                                  48.0
cactgagggt cgacagaaag cattetetac etgeaettee caceteaetg cagteaetet
                                                                 540
gtgctatgga accatcacat tcatctatgt gatgcccaag tccagctact ccacagacca
                                                                  600
gaacaaggtg gtgtctgtgt tttatatggt ggtgatcccc atgttg
                                                                  646
<210> 18
<211> 215
<212> PRT
<213> Rattus sp. J4
```

Ile Gly Tyr Ser Ser Ser Val Thr Pro Asn Met Leu Val Asn Phe Leu 1 5 10 15

Ile Lys Gln Asn Thr Ile Ser Tyr Leu Gly Cys Ser Ile Gln Phe Gly

<400> 18

Ser	Ala	Ala 35	Leu	Phe	Gly	Gly	Leu 40	Glu	Cys	Phe	Leu	Leu 45	Ala	Ala	Met		
Ala	Tyr 50	Asp	Arg	Phe	Val	Ala 55	Ile	Cys	Asn	Pro	Leu 60	Leu	Tyr	Ser	Thr		
Lys 65	Met	Ser	Thr	Gln	Val 70	Cys	Val	Gln	Leu	Val 75	Val	Gly	Ser	Tyr	Ile 80		
Gly	Gly	Phe	Leu	Asn 85	Ala	Ser	Ser	Phe	Thr 90	Leu	Ser	Phe	Phe	Ser 95	Leu		
Ser	Phe	Cys	Gly 100	Pro	Asn	Arg	Ile	Asn 105	His	Phe	Tyr	Cys	Asp 110	Phe	Ala		
Pro	Leu	Val 115	Glu	Leu	Ser	Cys	Ser 120	Asp	Val	Ser	Val	Pro 125	Asp	Ala	Val		
Thr	Ser 130	Phe	Ser	Ala	Ala	Ser 135	Val	Thr	Met	Leu	Thr 140	Val	Phe	Ile	Ile		
Ala 145	Ile	Ser	Tyr	Thr	Tyr 150	Ile	Leu	Ile	Thr	Ile 155	Leu	Lys	Met	Arg	Ser 160		
Thr	Glu	Gly	Arg	Gln 165	Lys	Ala	Phe	Ser	Thr 170	Cys	Thr	Ser	His	Leu 175	Thr		
Ala	Val	Thr	Leu 180	Cys	Tyr	Gly	Thr	Ile 185	Thr	Phe	Ile	Tyr	Val 190	Met	Pro		
Lys	Ser	Ser 195	Tyr	Ser	Thr	Asp	Gln 200	Asn	Lys	Val	Val	Ser 205	Val	Phe	Tyr		
Met	Val 210	Val	Ile	Pro	Met	Leu 215											
<210 <211 <212 <213	L> 4 2> [l9 181 DNA Ratti	ıs sı	o. J	7												
<400 cat		l9 aag d	cccct	gca	ct ac	cacca	accat	cat	cgaat	aac	cga	gtgto	gca (cagtt	ctagt		60
cct	ctcct	igt t	tggtt	tgct	tg go	cctgt	tgat	cat	cctc	ccca	cct	ettg	gtc a	atggo	cctcca	1.	20
gct	ggagt	tc t	tgtga	actco	ca at	gtga	attga	a tca	atttt	ggc	tgt	gatgo	cct (ctcca	aattct	1	80
gcag	gataa	acc t	gcto	caga	ca co	ggtat	ttat	aga	agaaa	aatt	gtct	tggd	ctt 1	ttgc	catact	2	40
gaca	actca	atc a	attad	ctct	gg ta	atgt	gttgt	t tct	ctco	ctac	acat	cacat	ca 1	tcaaq	gaccat	3	00
ttta	aagt	tt d	cctto	ctgct	cc aa	acaaa	agaaa	a aaa	aggco	cttt	tcta	acato	gtt (cttc	ccacat	3	60
gatt	gtg	gtt t	ccat	caco	ct at	ggga	agct	g tat	tttc	catc	taca	atcaa	aac (cttca	agcgaa	4	20
ggaa	aggg	gta q	gccat	caat	ta aç	ggtt	gtato	c tgt	gcto	caca	acat	cagt	cg (cccct	ttgct	4	80

С 481 <210> 20 <211> 160 <212> PRT <213> Rattus sp. J7 <400> 20 Ile Cys Lys Pro Leu His Tyr Thr Thr Ile Met Asn Asn Arg Val Cys Thr Val Leu Val Leu Ser Cys Trp Phe Ala Gly Leu Leu Ile Ile Leu Pro Pro Leu Gly His Gly Leu Gln Leu Glu Phe Cys Asp Ser Asn Val Ile Asp His Phe Gly Cys Asp Ala Ser Pro Ile Leu Gln Ile Thr Cys Ser Asp Thr Val Phe Ile Glu Lys Ile Val Leu Ala Phe Ala Ile Leu Thr Leu Ile Ile Thr Leu Val Cys Val Val Leu Ser Tyr Thr Tyr Ile Ile Lys Thr Ile Leu Lys Phe Pro Ser Ala Gln Gln Arg Lys Lys Ala Phe Ser Thr Cys Ser Ser His Met Ile Val Val Ser Ile Thr Tyr Gly 120 Ser Cys Ile Phe Ile Tyr Ile Lys Pro Ser Ala Lys Glu Gly Val Ala 135 Ile Asn Lys Val Val Ser Val Leu Thr Thr Ser Val Ala Pro Leu Leu 155 <210> 21 <211> 481 <212> DNA <213> Rattus sp. J8 <220> <221> misc_feature <222> ()..() $\langle 223 \rangle$ n = unknown

<400> 21

catctgccac ccgctccact actctcttct catgagtcct gacaactgtg ctgctctggt 60
aacagtctcc tgggtgacag gggtgggcac gggcttcctg ccttccctcc tgatttctaa 120
gttggacttc tgtgggccca accgcatcaa ccatttcttc tgtgacctcc ctccattaat 180

ccagctgtcc tgctccagcg tctttgtgac agaaatggcc atctttgtcc tgtccatcgc 240
tgtgctctgc atctgtttcc tcctaaccen nnnntcctac attttcatag tgtcctccat 300
tctgagaatc ccttccacta ccggcaggat gaagacattt tctacatgtg cctcccacct 360
ggccgtggtc accatctact atgggaccat gatctccatg tatgtcggcc caaatgcgca 420
tctgtccccg gagctcaaca aggtcatttc tgtcttctac actgtgatca ccccactact 480
g

- <210> 22
- <211> 160
- <212> PRT
- <213> Rattus sp. J8
- <220>
- <221> UNSURE
- <222> (90)..(91)
- $\langle 223 \rangle$ x = unknown

<400> 22

- Ile Cys His Pro Leu His Tyr Ser Leu Leu Met Ser Pro Asp Asn Cys 1 5 10 15
- Ala Ala Leu Val Thr Val Ser Trp Val Thr Gly Val Gly Thr Gly Phe 20 25 30
- Leu Pro Ser Leu Leu Ile Ser Lys Leu Asp Phe Cys Gly Pro Asn Arg 35 40 45
- Ile Asn His Phe Phe Cys Asp Leu Pro Pro Leu Ile Gln Leu Ser Cys 50 55 60
- Ser Ser Val Phe Val Thr Glu Met Ala Ile Phe Val Leu Ser Ile Ala 65 70 75 80
- Val Leu Cys Ile Cys Phe Leu Leu Thr Xaa Xaa Ser Tyr Ile Phe Ile 85 90 95
- Val Ser Ser Ile Leu Arg Ile Pro Ser Thr Thr Gly Arg Met Lys Thr 100 105 110
- Phe Ser Thr Cys Gly Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly 115 120 125
- Thr Met Ile Ser Met Tyr Val Gly Pro Asn Ala His Leu Ser Pro Glu 130 135 140
- Leu Asn Lys Val Ile Ser Val Phe Tyr Thr Val Ile Thr Pro Leu Leu 145 150 155 160
- <210> 23
- <211> 646
- <212> DNA

```
<213> Rattus sp. J11
<220>
<221> misc_feature
<222>
     ()..()
\langle 223 \rangle n = unknown
<400> 23
ngtctgcttc tcctccacca ctgtccccaa ggtactggct aaccacatac tcaqtaqtca
                                                                60
ggccatttcc ttctctgggt gtctaactca gctgtatttt ctctgtgtgt ctgtgaatat
                                                               120
ggacaatttc ctgctggctg tgatggccta tgacagattt gtggccatat gccaccttt
                                                               180
gtactacaca acaaagatga cccaccagct ctgtgtcttg ctggtgtctg gatcannnnn
                                                               240
300
360
nnnnnnnnn nnnnnnnnn nnnnnnnnn nntgtgatca tggtcaccc
                                                               420
atttgtctgc atcctcatct cttacatcta catcaccaat gcagtcctca gagtctcatc
                                                               480
ctttagggga ggatggaaag ccttctccac ctgtggctca cacctggctg tggtctgcct
                                                               540
cttctatggc accatcattg ctgtgtattt caatcctgta tcttcccatt catctgagaa
                                                               600
ggacactgca gcaactgtgc tatacacagt ggtgactccc atgttg
                                                               646
<210> 24
<211> 215
<212> PRT
<213> Rattus sp. J11
<220>
<221> UNSURE
<222>
     (79)..(134)
\langle 223 \rangle \quad x = unknown
<400> 24
Val Cys Phe Ser Ser Thr Thr Val Pro Lys Val Leu Ala Asn His Ile
Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu Tyr
Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val Met
                         40
Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Thr
Lys Met Thr His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa Xaa
                  70
                                    75
                                                       8.0
```

Xaa	Хаа	Xaa	Xaa	Хаа 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa	
Xaa	Xaa	Xaa	Xaa 100	Xaa	Xaa	Xaa	Xaa	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa	
Xaa	Xaa	Xaa 115	Xaa	Xaa	Xaa	Xaa	Xaa 120	Xaa	Xaa	Xaa	Xaa	Xaa 125	Xaa	Xaa	Xaa	
Xaa	Xaa 130	Xaa	Xaa	Xaa	Xaa	Val 135	Ile	Met	Val	Thr	Pro 140	Phe	Val	Cys	Ile	
Leu 145	Ile	Ser	Tyr	Ile	Tyr 150	Ile	Thr	Asn	Ala	Val 155	Leu	Arg	Val	Ser	Ser 160	
Phe	Arg	Gly	Gly	Trp 165	Lys	Ala	Phe	Ser	Thr 170	Cys	Gly	Ser	His	Leu 175	Ala	
Val	Val	Cys	Leu 180	Phe	Tyr	Gly	Thr	Ile 185	Ile	Ala	Val	Tyr	Phe 190	Asn	Pro	
Val	Ser	Ser 195	His	Ser	Ser	Glu	Lys 200	Asp	Thr	Ala	Ala	Thr 205	Val	Leu	Tyr	
Thr	Val 210	Val	Thr	Pro	Met	Leu 215										
<21 <21 <21 <21	1> (2> !	25 646 DNA Ratti	us sļ	p. J:	14											
<22 <22 <22 <22	1> r 2>	()	_feat () unkno													
<40		25														
															tagtca	
					-			_	,			, ,		,	gaatat	
															cccttt	
gta	ctaca	aca a	acaco	cgat	ga co	ccac	cagct	cto	gtgto	cttg	ctg	gtgt	ctg	gatca	annnnn	240
nnnı	וחחחו	ו חחר	nnnnı	ותחחה	ות מח	nnnı	ומממר	ומת נ	nnnı	nnnn	nnnı	וחממר	nnn :	nnnnı	nnnnn	300
nnnı	nnnı	ו מממ	nnnnı	nnnnı	וח חו	nnnı	nnnr	וחת ה	מתחמר	nnnn	nnnr	nnnı	nnn :	nnnnı	nnnnnn	360
nnnı	ומממו	ו ממה	nnnnı	ומחמר	ות מח	ומחחר	nnnr	וממ ו	וחתחר	nnnn	nnt	gtga	tca	tggt	cacccc	420
att	tgtc	tgc a	atcci	tcat	ct c	ttaca	atcta	a cat	tcaco	caat	gca	gtcc	tca	gagt	ctcatc	480
ctt	tagg	gga (ggat	ggaa	ag co	cttc	tccad	cto	gtgg	ctca	cac	ctgg	ctg	tggt	ctgcct	540
ctt	ctate	ggc a	accat	tcat	tg c1	tgtgt	tatt	caa	atcct	tgta	tctt	ccca	att	catc	tgagaa	600

```
<210> 26
```

<213> Rattus sp. J14

<220>

<221> UNSURE

<222> (79)..(134)

 $\langle 223 \rangle \times = unknown$

<400> 26

Val Cys Phe Ser Ser Thr Thr Val Pro Lys Val Leu Ala Asn His Ile

1 10 15

Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu Tyr 20 25 30

Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val Met 35 40 45

Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Thr 50 55 60

Pro Met Thr His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa Xaa 65 70 75 80

Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys Ile 130 135 140

Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser Ser 145 150 155 160

Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ala 165 170 175

Val Val Cys Leu Phe Tyr Gly Thr Ile Ile Ala Val Tyr Phe Asn Pro $180 \hspace{1cm} 185 \hspace{1cm} 190$

Val Ser Ser His Ser Ser Glu Lys Asp Thr Ala Ala Thr Val Leu Tyr 195 200 205

Thr Val Val Thr Pro Met Leu 210 215

<211> 215

<212> PRT

```
<210>
       27
<211>
       481
<212>
       DNA
<213> Rattus sp. J15
<220>
<221> misc feature
<222>
       ()..()
\langle 223 \rangle x = unknown
<400> 27
tatotgcaac cototgcgct accoagtgct catgagegge egggtgtgce tgctcatqqt
                                                                         60
cgtggcctcc tggttgggag gatccctcaa cgcctccatt cagacttctc tgacccttca
                                                                       120
gttcccctac tgtggatcac ggaagatctc ccacttcttc tgtgaggtgc cctcqctqct
                                                                       180
gannntggcc tgtgcagaca ctgaagccta tgagcaggta ctatttgtga caqqcqtqqt
                                                                        240
ggtcctcctg gtgcccatta cattcattac tgcctcttat gccctcatcc tgqctqctgt
                                                                       300
gctccgaatg cactctgcgg aggggagtca gaaggcccta gccacatgct cctctcacct
                                                                       360
gacagtcgtc aatctcttct atgggcccct tgtctacacc tacatgttac ctgcttccta
                                                                       420
tcactcacca ggccaagacg acatagtatc cgtcttttac accgttctca cacccatgct
                                                                       480
t
                                                                       481
<210> 28
<211>
       160
<212>
       PRT
<213> Rattus sp. J15
<220>
<221> UNSURE
<222>
       (61)..(62)
\langle 223 \rangle x = unknown
<400> 28
Ile Cys Asn Pro Leu Arg Tyr Pro Val Leu Met Ser Gly Arg Val Cys
Leu Leu Met Val Val Ala Ser Trp Leu Gly Gly Ser Leu Asn Ala Ser
Ile Gln Thr Ser Leu Thr Leu Gln Phe Pro Tyr Cys Gly Ser Arg Lys
Ile Ser His Phe Phe Cys Glu Val Pro Ser Leu Leu Xaa Xaa Ala Cys
Ala Asp Thr Glu Ala Tyr Glu Gln Val Leu Phe Val Thr Gly Val Val
```

Val	Leu	Leu	Val	Pro 85	Ile	Thr	Phe	Ile	Thr 90	Ala	Ser	Tyr	Ala	Leu 95	Ile		
Leu	Ala	Ala	Val 100	Leu	Arg	Met	His	Ser 105	Ala	Glu	Gly	Ser	Gln 110	Lys	Ala		
Leu	Ala	Thr 115	Cys	Ser	Ser	His	Leu 120	Thr	Val	Val	Asn	Leu 125	Phe	Tyr	Gly		
Pro	Leu 130	Val	Tyr	Thr	Tyr	Met 135	Leu	Pro	Ala	Ser	Tyr 140	His	Ser	Pro	Gly		
Gln 145	Asp	Asp	Ile	Val	Ser 150	Val	Phe	Tyr	Thr	Val 155	Leu	Thr	Pro	Met	Leu 160		
<210 <211 <212 <213	_> 4 2> [29 481 DNA Ratti	us sp	o. J	L 6												
<400		29 agg (cctct	tcad	ct at	ccta	accct	cat	igaco	ccag	acad	etgte	gtg (ccaaç	gattgc		60
cact	ggtt	gc ·	tggtt	ggga	ag go	cttg	gctgc	g gcd	cagto	ggta	gaaa	attto	cct t	tggt	gtctcg	1	20
tcto	ccttt	tt.	tgtgç	gccc	ca at	caca	attca	a aca	acato	cttt	tgto	gattt	cc (cacct	gtgct	1	80
gago	cttgg	gct ·	tgtad	ctgat	ta ca	atcaç	gtgaa	a tgt	cct	ggta	gatt	ttat	ta 1	taaad	cctctg	2	4 C
caaq	gated	ctg (gccad	cctto	cc to	gctga	atcct	gaç	gctco	ctac	ttgo	cagat	aa 1	tccg	cacagt	3	00
gcto	caaga	att (cctto	cagct	g ca	aggca	aagaa	a gaa	aagca	attc	tcga	actto	gtg (cata	ccatct	3	60
cact	gtgg	gtt (ctcat	ctto	ct at	ggga	agcat	c cct	tttc	catg	tato	gtgc	ggc t	tgaaq	gaagac	4	20
ttac	ctccc	ctt (gacta	acgad	ca ga	agcct	tggd	c agt	agto	ctac	tcc	gtggt	ta d	cccct	ttcct	4	80
g																4	81
<210)> 3	30															

<211> 160

<212> PRT

<213> Rattus sp. J16

<400> 30

Ala Lys Ile Ala Thr Gly Cys Trp Leu Gly Gly Leu Ala Gly Pro Val 20 25 30

Val Glu Ile Ser Leu Val Ser Arg Leu Leu Phe Cys Gly Pro Asn His

Ile Gln His Ile Phe Cys Asp Phe Pro Pro Val Leu Ser Leu Ala Cys 50 60

 $\langle 223 \rangle$ x = unknown

```
Thr Asp Thr Ser Val Asn Val Leu Val Asp Phe Ile Ile Asn Leu Cys
65
Lys Ile Leu Ala Thr Phe Leu Leu Ile Leu Ser Ser Tyr Leu Gln Ile
Ile Arg Thr Val Leu Lys Ile Pro Ser Ala Ala Gly Lys Lys Lys Ala
Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Leu Ile Phe Tyr Gly
Ser Ile Leu Phe Met Tyr Val Arg Leu Lys Lys Thr Tyr Ser Leu Asp
Tyr Asp Arg Ala Leu Ala Val Val Tyr Ser Val Val Thr Pro Phe Leu
                                                             160
<210> 31
<211> 481
<212> DNA
<213> Rattus sp. J17
<220>
<221> misc feature
<222> ()..()
\langle 223 \rangle n = unknown
<400> 31
aatctgcaac ccactgcttt attccaccaa aatgtccaca caagtctgta tccagttggt
                                                                       60
tgcaggatct tatatagggg gttttcttaa tacttgcctc atcatgtttt actttttctc
                                                                      120
ttttctcttc tgtgggccaa atatagttga tcattttttc tgtgattttg ctcctttnnt
                                                                      180
ggaactttcg tgctctgatg tgagtgtctc tgtagttgtt atgtcatttt ctqctqqctc
                                                                      240
agttactatg atcacagtgt ttatcatagc catctcctat tcttacatcc tcatcaccat
                                                                      300
cctgaagatg tcctcaactg agggccgtca caaggctttc tccacatgta cctcccacct
                                                                      360
cactgoagtc actototact atggoaccat tacottoatt tatgtgatgc ccaagtcoac
                                                                      420
atactetaca gaccagaaca aggtggtgte tgtgttttac atggtggtga teccaatgtt
                                                                      480
                                                                      481
g
<210> 32
<211> 160
<212> PRT
<213> Rattus sp. J17
<220>
<221> UNSURE
<222> (59)..(60)
```

Ile Cys Asn Pro Leu Leu Tyr Ser Thr Lys Met Ser Thr Gln Val Cys 1 10 15
Ile Gln Leu Val Ala Gly Ser Tyr Ile Gly Gly Phe Leu Asn Thr Cys 20 25 30
Leu Ile Met Phe Tyr Phe Phe Ser Phe Leu Phe Cys Gly Pro Asn Ile 35 40 45
Val Asp His Phe Phe Cys Asp Phe Ala Pro Xaa Xaa Glu Leu Ser Cys 50 55 60
Ser Asp Val Ser Val Ser Val Val Val Met Ser Phe Ser Ala Gly Ser 75 80
Val Thr Met Ile Thr Val Phe Ile Ile Ala Ile Ser Tyr Ser Tyr Ile 85 90 95
Leu Ile Thr Ile Leu Lys Met Ser Ser Thr Glu Gly Arg His Lys Ala 100 105 110
Phe Ser Thr Cys Thr Ser His Leu Thr Ala Val Thr Leu Tyr Tyr Gly 115 120 125
Thr Ile Thr Phe Ile Tyr Val Met Pro Lys Ser Thr Tyr Ser Thr Asp 130 135 140
Gln Asn Lys Val Val Ser Val Phe Tyr Met Val Val Ile Pro Met Leu 145 150 155 160
<210> 33 <211> 479 <212> DNA <213> Rattus sp. J19
<400> 33 tatctgccac cctctgaagt acacagttat catgaatcac tatttttgtg tgatgctgct
gctcttctct gtgttcgtta gcattgcaca tgcgttgttc cacattttaa tggtgttgat
actgactttc agcacaaaaa ctgaaatccc tcactttttc tgtgagctgg ctcatatcat
caaacttacc tgttccgata attttatcaa ctatctgctg atatacacag agtctgtctt
attititggt gitcatatig tagggatcat titgicitat attiacacig tatccicagi

<400> 32

tttaagaatg tcattattgg gaggaatgta taaagccttt tcaacatgtg gatctcattt

gtcggttgtc tctgttttat ggcacaggtt ttggggtaca cataagctct ccacttactg

actctccaag gaagactgta gtggcttcag tgatgtacac tgtggttact cagatgctg

60

120

180

240

300

360

420

<210> 34 <211> 139 <212> PRT

```
<213> Rattus sp. J19
<400> 34
Ile Cys His Pro Leu Lys Tyr Thr Val Ile Met Asn His Tyr Phe Cys
Val Met Leu Leu Phe Ser Val Phe Val Ser Ile Ala His Ala Leu
Phe His Ile Leu Met Val Leu Ile Leu Thr Phe Ser Thr Lys Thr Glu
Ile Pro His Phe Phe Cys Glu Leu Ala His Ile Ile Lys Leu Thr Cys
Ser Asp Asn Phe Ile Asn Tyr Leu Leu Ile Tyr Thr Glu Ser Val Leu
Phe Phe Gly Val His Ile Val Gly Ile Ile Leu Ser Tyr Ile Tyr Thr
Val Ser Ser Val Leu Arg Met Ser Leu Leu Gly Gly Met Tyr Lys Ala
Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser Val Leu Trp His
Arg Phe Trp Gly Thr His Lys Leu Ser Thr Tyr
<210> 35
<211>
      480
<212>
      DNA
<213> Rattus sp. J20
<220>
<221> misc_feature
<222>
      ()..()
<223>
      n = unknown
<400> 35
aatctgctac ccactgaggt accttctcat catgagctgg gtggtgtgca cagcactgtc
                                                                      60
cgtggcaatc tgggtcatag gcttttgtgc ctccgttata cctctctgct tcacqatcct
                                                                     120
cccactctgt ggtccttacg tcgttgatta tcttttctgc gagctgccca tccttctgca
                                                                     180
cctgttctgc acagatacat ctctgctgga gnnnnnnnn nnnnnnnnn nnnnnnnnn
                                                                     240
nnnnnnnnn nncccttcct cctgattgtt ctctcctacc ttcgcatcct ggtggctgtg
                                                                     300
ataagaatag actcagctga gggcagaaaa aaggcctttt caacttgtgc ttcacacttg
                                                                     360
gctgtggtga ccatctacta tggaacaggg ctgatcaggt acttgaggcc caagtccctt
                                                                     420
```

tattccgctg agggagacag actgatetet gtgttetatg cagteattgg ecctgcactg

```
<210> 36
<211> 160
<212> PRT
<213> Rattus sp. J20
<220>
<221> UNSURE
<222> (71)..(84)
\langle 223 \rangle x = unknown
<400> 36
Ile Cys Tyr Pro Leu Arg Tyr Leu Leu Ile Met Ser Trp Val Val Cys
Thr Ala Leu Ser Val Ala Ile Trp Val Ile Gly Phe Cys Ala Ser Val
Ile Pro Leu Cys Phe Thr Ile Leu Pro Leu Cys Gly Pro Tyr Val Val
Asp Tyr Leu Phe Cys Glu Leu Pro Ile Leu Leu His Leu Phe Cys Thr
Asp Thr Ser Leu Leu Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Xaa Pro Phe Leu Leu Ile Val Leu Ser Tyr Leu Arg Ile
Leu Val Ala Val Ile Arg Ile Asp Ser Ala Glu Gly Arg Lys Lys Ala
                               105
Phe Ser Thr Cys Ala Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly
Thr Gly Leu Ile Arg Tyr Leu Arg Pro Lys Ser Leu Tyr Ser Ala Glu
Gly Asp Arg Leu Ile Ser Val Phe Tyr Ala Val Ile Gly Pro Ala Leu
<210> 37
<211> 35
<212> DNA
<213> artificial - primer A1
<220>
<221> modified base
<222> (9)..(9)
<223> i
<220>
<221> misc_feature
<222> (3)..(3)
<223> t or c
```

```
<220>
<221> modified_base
<222> (12)..(12)
<223> i
<220>
<221> misc_feature
<222> (5)..(5)
<223> g or a
<220>
<221> misc_feature
<222> (6)..(6)
<223> g or c
<220>
<221> misc_feature
<222> (10)..(10)
<223> a or c
<220>
<221> misc_feature
<222> (13)..(13)
<223> g or c
<220>
<221> modified_base
\langle 222 \rangle (15)...(15)
<223> i
<220>
<221> modified_base
\langle 222 \rangle (21)...(21)
<223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> t or c
<220>
<221> misc_feature
<222> (19)..(19)
<223> c or t
<220>
<221> modified_base
```

 $\langle 222 \rangle$ (24)...(24)

```
<223> i
<220>
<221> modified base
\langle 222 \rangle (27)...(27)
<223> i
<220>
<221> modified base
<222> (30)..(30)
<223> i
<220>
<221> modified base
\langle 222 \rangle (33)..(3\overline{3})
<223> i
<400> 37
aantnnatnn tnntnaannt ngcngtngcn gcnga
                                                                         35
<210> 38
<211> 32
<212> DNA
<213> artificial - primer A2
<220>
<221> misc_feature
<222> (3)..(3)
<223> n = c or t
<220>
<221> misc_feature
<222> (6)..(6)
<223> n = c or t
<220>
<221> misc_feature
<222> (9)..(9)
<223> n = c or t
<220>
<221> misc feature
<222> (10)..(10)
<223> n = c or a
<220>
<221> modified_base
<222> (12)..(12)
<223> i
```

<220>

```
<220>
<221> misc feature
<222> (13)..(13)
<223> n = g or a
<220>
<221> modified_base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = t or c
<220>
<221> modified base
<222> (21)..(21)
<223> i
<220>
<221> modified base
\langle 222 \rangle (24)...(24)
<223> i
<220>
<221> misc feature
<222> (25)..(25)
<223> n = c or t
<220>
<221> modified base
<222> (27)..(27)
<223> i
<220>
<221> modified base
<222> (30)..(30)
<223> i
<400> 38
aantanttnn tnntnaanct ngcnntngcn ga
<210> 39
<211> 32
<212> DNA
<213> artificial - primer A3
```

```
<221> misc feature
<222> (3)..(4)
<223> n = c or t
<220>
<221> misc feature
<222> (5)..(5)
\langle 223 \rangle n = a or t
<220>
<221> modified base
<222> (6)..(6)
<223> i
<220>
<221> misc_feature
<222> (9)..(9)
<223> n = c or t
<220>
<221> misc_feature
<222> (10)..(10)
<223> n = c or a
<220>
<221> modified base
<222> (12)..(12)
<223> i
<220>
<221> modified base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (16)..(16)
<223> n = a or t
<220>
<221> modified base
\langle 222 \rangle (18)..(18)
<223> i
<220>
<221> modified base
\langle 222 \rangle (21)..(2\overline{1})
```

<223> i

```
<220>
<221> modified base
\langle 222 \rangle (24)...(24)
<223> i
<220>
<221> misc feature
<222> (26)..(26)
<223> n = c or g
<220>
<221> modified base
<222> (27)..(27)
<223> i
<220>
<221> modified base
<222> (30)..(30)
<223> i
<400> 39
aannnnttnn tnatnncnct ngcntnngcn ga
                                                                      32
<210> 40
<211> 32
<212> DNA
<213> artificial - primer A4
<220>
<221> misc feature
<222> (1)..(1)
<223> . n = c or a
<220>
<221> modified_base
<222> (3)..(3)
<223> i
<220>
<221> modified base
<222> (6)..(6)
<223> i
<220>
<221> misc_feature
<222> (7)..(7)
<223> n = t or c
<220>
<221> modified_base
```

```
<222> (9)..(9)
<223> i
<220>
<221> misc feature
<222> (15)..(15)
\langle 223 \rangle n = c or t
<220>
<221> misc feature
<222> (18)..(18)
<223> n = c or t
<220>
<221> modified base
<222> (21)..(21)
<223> i
<220>
<221> misc feature
<222> (22)..(22)
<223> n = a or t
<220>
<221> misc_feature
<222> (23)..(23)
\langle 223 \rangle n = c or g
<220>
<221> misc feature
<222> (24)..(24)
<223> n = c or t
<220>
<221> misc_feature
<222> (27)..(27)
<223> n = c or t
<220>
<221> modified base
<222> (30)..(30)
<223> i
ngnttnntna tgtgnaanct nnnnttngcn ga
                                                                       32
<210> 41
<211> 32
<212> DNA
```

```
<213> artificial - primer A5
<220>
<221> modified base
<222> (3)..(3)
<223> i
<220>
<221> modified_base
<222> (6)..(6)
<223> i
<220>
<221> misc_feature
<222> (9)..(9)
<223> n = t or c
<220>
<221> modified base
\langle 222 \rangle (12)...(12)
<223> i
<220>
<221> modified base
<222> (15)..(15)
<223> i
<220>
<221> misc feature
<222> (18)..(19)
<223> n = t or c
<220>
<221> modified base
<222> (21)..(21)
<223> i
<220>
<221> misc feature
<222> (22)..(22)
<223> n = a or t
<220>
<221> misc feature
<222> (23)..(23)
<223> n = c or g
<220>
<221> modified base
\langle 222 \rangle (24)..(24)
```

```
<223> i
<220>
<221> modified base
<222> (27)..(27)
<223> i
<220>
<221> modified base
<222> (30)..(30)
<223> i
<400> 41
acngtntana tnacncannt nnnnatngcn ga
                                                                       32
<210> 42
<211> 33
<212> DNA
<213> artificial - primer B1
<220>
<221> modified base
<222> (4)..(4)
<223> i
<220>
<221> misc_feature
<222> (5)..(5)
<223> n = c or t
<220>
<221> misc_feature
<222> (6)..(6)
<223> n = g or t
<220>
<221> misc_feature
<222> (7)..(7)
<223> n = g or a
<220>
<221> modified base
\langle 222 \rangle (13)..(1\overline{3})
<223> i
<220>
<221> misc_feature
<222> (15)..(15)
<223> n = a or t
```

```
<220>
<221> modified_base
\langle 222 \rangle (16)...(1\overline{6})
<223> i
<220>
<221> misc_feature
<222> (17)..(18)
<223> n = a or c
<220>
<221> misc_feature
<222> (19)..(19)
<223> n = a or g
<220>
<221> modified base
<222> (22)..(22)
<223> i
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = t or c
<220>
<221> modified_base
\langle 222 \rangle (25)..(2\overline{5}) \langle 223 \rangle i
<220>
<221> misc_feature
\langle 222 \rangle (27)...(27)
\langle 223 \rangle n = t or c
<220>
<221> modified base
\langle 222 \rangle (28)..(28) \langle 223 \rangle i
<220>
<221> misc_feature
<222> (31)..(31)
<223> n = g or a
<400> 42
```

ctgnnnnttc atnannnnnt anannanngg ntt

```
<210> 43
<211> 31
<212> DNA
<213> artificial - primer B2
<220>
<221> misc feature
<222> (1)..(1)
<223> n = g or t
<220>
<221> misc_feature
<222> (2)..(2)
<223> n = g or a
<220>
<221> misc feature
<222> (4)..(4)
<223> n = g or c
<220>
<221> misc_feature
<222> (5)..(5)
<223> n = g or a
<220>
<221> modified base
<222> (8)..(8)
<223> i
<220>
<221> misc feature
<222> (11)..(11)
<223> n = g or a
<220>
<221> misc_feature
<222> (14)..(14)
<223> n = g or a
<220>
<221> misc_feature
<222> (17)..(17)
<223> n = g or a
<220>
<221> modified_base
<222> (20)..(20)
<223> i
```

```
<220>
<221> modified_base
\langle 222 \rangle (23)...(2\overline{3})
<223> i
<220>
<221> modified base
<222> (26)..(26)
<223> i
<220>
<221> misc_feature
<222> (29)..(29)
<223> n = g or a
<400> 43
nntnnttnag ncancantan atnatnggnt t
                                                                           31
<210> 44
<211> 32
<212> DNA
<213> artificial - primer B3
<220>
<221> modified_base
<222> (3)..(3)
<223> i
<220>
<221> misc feature
<222> (6)..(6)
<223> n = g or a
<220>
<221> misc_feature
<222> (9)..(9)
<223> n = g or a
<220>
<221> modified base
\langle 222 \rangle (12)...(12)
<223> i
<220>
<221> modified base
\langle 222 \rangle (15)...(15)
<223> i
<220>
<221> misc_feature
```

```
<222> (18)..(18)
<223> n = g or a
<220>
<221> modified_base
\langle 222 \rangle (21)..(2\overline{1})
<223> i
<220>
<221> modified_base
\langle 222 \rangle (24)..(2\overline{4})
<223> i
<220>
<221> modified base
\langle 222 \rangle (27)...(27)
<223> i
<220>
<221> misc feature
<222> (30)..(30)
<223> n = g or a
<400> 44
tcnatnttna angtngtnta natnatnggn tt
<210> 45
<211> 32
<212> DNA
<213> artificial - primer B4
<220>
<221> misc feature
<222> (3)..(3)
<223> n = c or t
<220>
<221> modified base
<222> (6)..(6)
<223> i
<220>
<221> misc feature
<222> (9)..(9)
<223> n = g or a
<220>
<221> modified base
<222> (12)..(12)
<223> i
```

```
<220>
<221> modified_base
\langle 222 \rangle (15)..(1\overline{5})
<223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = g or a
<220>
<221> modified_base
<222> (21)..(21)
<223> i
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = g or a
<220>
<221> modified base
<222> (27)..(27)
<223> i
<220>
<221> misc_feature
<222> (30)..(30)
<223> n = g or a
<400> 45
genttngtna anatngenta nagnaanggn tt
<210> 46
<211> 32
<212> DNA
<213> artificial - primer B5
<220>
<221> misc feature
<222> (3)..(3)
<223> n = a or g
<220>
<221> modified base
<222> (6)..(6)
<223> i
```

37

```
<220>
<221> misc_feature
<222> (9)..(9)
<223> n = a or g
<220>
<221> misc feature
<222> (10)..(10)
<223> n = c or g
<220>
<221> misc_feature
<222> (11)..(11)
<223> n = a or t
<220>
<221> modified base
<222> (12)..(12)
<223> i
<220>
<221> modified base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (16)..(16)
<223> n = g or c
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = g or a
<220>
<221> modified base
<222> (21)..(21)
<223> i
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = g or c
<220>
<221> modified_base
\langle 222 \rangle (26)..(27)
```

<223> i

<220>

```
<220>
<221> misc_feature
<222> (30)..(30)
<223> n = a or g
<400> 46
aantenggnn nnegnnanta natnannggn tt
<210> 47
<211> 32
<212> DNA
<213> artificial - primer B6
<220>
<221> misc_feature
<222> (1)..(1)
<223> n = g or c
<220>
<221> misc_feature
<222> (2)..(2)
<223> n = a or t
<220>
<221> modified_base
<222> (3)..(3)
<223> i
<220>
<221> misc_feature
<222> (4)..(4)
<223> n = g or c
<220>
<221> misc_feature
<222> (5)..(5)
<223> n = a or t
<220>
<221> modified base
<222> (6)..(6)
<223> i
<220>
<221> modified_base
<222>
      (9)..(9)
<223> i
```

39

E.

ě.


```
<221> misc_feature
<222> (12)..(12)
<223> n = a or g
<220>
<221> misc feature
<222> (15)..(15)
<223> n = a or g
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = a or g
<220>
<221> modified_base
<222> (21)..(21)
<223> i
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = a or g
<220>
<221> modified_base
<222> (27)..(27)
<223> i
<220>
<221> misc_feature
<222> (30)..(30)
<223> n = g or a
<400> 47
nnnnnnccna cnaanaanta natnaanggn tt
<210> 48
<211> 23
<212> DNA
<213> artificial - primer P1
<220>
<221> modified_base
<222> (6)..(6)
<223> i
<220>
<221> misc_feature
```

<222> (9)..(9)

40

```
<223> n = t or c
<220>
<221> misc feature
<222> (12)..(12)
<223> n = t or c
<220>
<221> misc feature
<222> (13)..(13)
<223> n = a or c
<220>
<221> modified base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = t or c
<220>
<221>
     modified base
<222> (21)..(21)
<223> i
<400> 48
atggentang anngntangt nge
                                                                     23
<210> 49
<211> 29
<212> DNA
<213> artificial - primer P4
<220>
<221> modified base
<222> (3)..(3)
<223> i
<220>
<221> misc_feature
<222> (5)..(5)
<223> n = g or a
<220>
<221> modified base
<222> (6)..(6)
<223>
```

```
<220>
<221> misc_feature
<222> (7)..(7)
<223> n = g or c
<220>
<221> misc feature
<222> (8)..(8)
<223> n = a or t
<220>
<221> modified_base
<222> (9)..(9)
<223> i
<220>
<221> modified base
\langle 222 \rangle (12)...(12)
<223> i
<220>
<221> misc feature
<222> (14)..(14)
<223> n = t or c
<220>
<221> modified base
\langle 222 \rangle (15)...(15)
<223> i
<220>
<221> misc_feature
<222> (16)..(16)
<223> n = g or c
<220>
<221> misc feature
<222> (17)..(17)
<223> n = a or t
<220>
<221> modified base
<222> (18)..(18)
<223> i
<220>
<221> misc feature
<222> (20)..(20)
<223> n = g or a
```

```
<220>
<221> misc_feature
<222> (21)..(21)
<223> n = g or a
<220>
<221> modified base
\langle 222 \rangle (24)...(24)
<223> i
<220>
<221> misc_feature
<222> (25)..(25)
<223> n = g or c
<220>
<221> misc feature
<222> (26)..(26)
<223> n = a or t
<220>
<221> modified base
\langle 222 \rangle (27)...(27)
<223> i
<220>
<221> misc feature
<222> (28)..(28)
<223> n = g or c
<400> 49
aanannnna cnannnnan ntgnnnnc
<210> 50
<211>
       6
<212> PRT
<213> artificial - motif
<400> 50
Lys Ile Val Ser Ser Ile
<210> 51
<211>
<212>
       PRT
<213> artificial - motif
```

<400> 51

43

```
Arg Ile Val Ser Ser Ile
<210> 52
<211> 6
<212> PRT
<213> artificial - motif
<400> 52
His Ile Thr Cys Ala Val
<210> 53
<211> 6
<212> PRT
<213> artificial - motif
<400> 53
His Ile Thr Trp Ala Val
<210> 54
<211> 19
<212> PRT
<213> Rattus sp.
<400> 54
Leu Ser Lys Glu Asp Cys Ser Gly Phe Ser Asp Val His Cys Gly Tyr
Ser Asp Ala
<210> 55
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (2)..(7)
\langle 223 \rangle x = unknown
<400> 55
Leu Xaa Xaa Pro Met Tyr Xaa Phe Leu
<210> 56
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
```

```
<222> (2)..(2)
\langle 223 \rangle X = H or Q
<220>
<221> VARIANT
<222> (3)..(3)
\langle 223 \rangle X = K or M or T
<220>
<221> VARIANT
<222> (7)..(7)
\langle 223 \rangle X = F or L
<400> 56
Leu Xaa Xaa Pro Met Tyr Xaa Phe Leu
<210> 57
<211> 10
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (2)..(7)
\langle 223 \rangle X = UNKNOWN
<400> 57
Met Xaa Tyr Asp Arg Xaa Xaa Ala Ile Cys
<210> 58
<211> 10
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (2)..(2)
<223> X = A OR S
<220>
<221> VARIANT
<222> (6)..(6)
\langle 223 \rangle X = F OR Y
<220>
<221> VARIANT
<222> (7)..(7)
\langle 223 \rangle X = L or V
```

```
<400> 58
Met Xaa Tyr Asp Arg Xaa Xaa Ala Ile Cys
<210> 59
<211> 7
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (3)..(4)
\langle 223 \rangle X = Unknown
<400> 59
Asp Arg Xaa Xaa Ala Ile Cys
<210> 60
<211> 7
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (3)..(3)
\langle 223 \rangle X = F or Y
<220>
<221> VARIANT
<222> (4)..(4)
\langle 223 \rangle X = L or V
<400> 60
Asp Arg Xaa Xaa Ala Ile Cys
<210> 61
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (2)...(7)
\langle 223 \rangle X = Unknown
<220>
<221> VARIANT
<222> (1)..(1)
<223> X = K \text{ or } R
```

```
narranna nabana
```

```
<400> 61
Xaa Xaa Phe Ser Thr Cys Xaa Ser His
<210> 62
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (1)..(1)
<223> X = K or R
<220>
<221> VARIANT
<222> (2)..(2)
\langle 223 \rangle X = A or I or S or V
<220>
<221> VARIANT
<222> (7)..(7)
\langle 223 \rangle X = A or G or S
<400> 62
Xaa Xaa Phe Ser Thr Cys Xaa Ser His
<210> 63
<211> 7
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (5)..(5)
\langle 223 \rangle X = Unknown
<400> 63
Phe Ser Thr Cys Xaa Ser His
<210> 64
<211> .7
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (5)..(5)
```

```
\langle 223 \rangle X = A or G or S
<400> 64
Phe Ser Thr Cys Xaa Ser His
<210> 65
<211> 12
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (2)..(9)
\langle 223 \rangle X = Unknown
<400> 65
Pro Xaa Xaa Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 66
<211> 12
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (2)..(2)
\langle 223 \rangle X = M or L or V
<220>
<221> VARIANT
<222> (3)..(3)
\langle 223 \rangle X = F or L or V
<220>
<221> VARIANT
<222> (6)..(6)
<223> X = F \text{ or } I
<220>
<221> VARIANT
<222> (9)..(9)
\langle 223 \rangle X = C or S or T
<400> 66
Pro Xaa Xaa Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 67
```

Er ng - ga ng <u>ng ng ng ng ng</u>

```
<211> 8
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (2)..(6)
\langle 223 \rangle X = Unknown
<400> 67
Pro Xaa Xaa Asn Pro Xaa Ile Tyr
<210> 68
<2.11> 8
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (2)..(2)
\langle 223 \rangle X = M or L or V
<220>
<221> VARIANT
<222> (3)..(3)
\langle 223 \rangle X = F or L or V
<220>
<221> VARIANT
<222> (6)..(6)
\langle 223 \rangle X = F or I
<400> 68
Pro Xaa Xaa Asn Pro Xaa Ile Tyr
<210> 69
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (3)..(6)
\langle 223 \rangle X = Unknown
<400> 69
Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
```

```
<210> 70
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (3)..(3)
\langle 223 \rangle X = F or I
<220>
<221> VARIANT
<222> (6)..(6)
\langle 223 \rangle X = C or S or T
<400> 70
Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 71
<211> 333
<212> PRT
<213> Rattus sp. F3
<400> 71
Met Asp Ser Ser Asn Arg Thr Arg Val Ser Glu Phe Leu Leu Gly
Phe Val Glu Asn Lys Asp Leu Gln Pro Leu Ile Tyr Gly Leu Phe Leu
Ser Met Tyr Leu Val Thr Val Ile Gly Asn Ile Ser Ile Ile Val Ala
Ile Ile Ser Asp Pro Cys Leu His Thr Pro Met Tyr Phe Phe Leu Ser
Asn Leu Ser Phe Val Asp Ile Cys Phe Ile Ser Thr Thr Val Pro Lys
Met Leu Val Asn Ile Gln Thr Gln Asn Asn Val Ile Thr Tyr Ala Gly
Cys Ile Thr Gln Ile Tyr Phe Phe Leu Leu Phe Val Glu Leu Asp Asn
Phe Leu Leu Thr Ile Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys His
Pro Met His Tyr Thr Val Ile Met Asn Tyr Lys Leu Cys Gly Phe Leu
Val Leu Val Ser Trp Ile Val Ser Val Leu His Ala Leu Phe Gln Ser
                    150
                                        155
```

Leu Met Met Leu Ala Leu Pro Phe Cys Thr His Leu Glu Ile Pro His 165 170 175

Tyr Phe Cys Glu Pro Asn Gln Val Ile Gln Leu Thr Cys Ser Asp Ala 180 185 190

Phe Leu Asn Asp Leu Val Ile Tyr Phe Thr Leu Val Leu Leu Ala Thr 195 200 205

Val Pro Leu Ala Gly Ile Phe Tyr Ser Tyr Phe Lys Ile Val Ser Ser 210 215 220

Ile Cys Ala Ile Ser Ser Val His Gly Lys Tyr Lys Ala Phe Ser Thr 225 230 235 240

Cys Ala Ser His Leu Ser Val Val Ser Leu Phe Tyr Cys Thr Gly Leu 245 250 255

Gly Val Tyr Leu Ser Ser Ala Ala Asn Asn Ser Ser Gln Ala Ser Ala 260 265 270

Thr Ala Ser Val Met Tyr Thr Val Val Thr Pro Met Val Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Ser Val Leu Lys Lys Thr 290 295 300

Leu Cys Glu Glu Val Ile Arg Ser Pro Pro Ser Leu Leu His Phe Phe 305 310 315 320

Leu Val Leu Cys His Leu Pro Cys Phe Ile Phe Cys Tyr 325 330

<210> 72

<211> 313

<212> PRT

<213> Rattus sp. F5

<400> 72

Met Ser Ser Thr Asn Gln Ser Ser Val Thr Glu Phe Leu Leu Gly 1 5 10 15

Leu Ser Arg Gln Pro Gln Gln Gln Gln Leu Leu Phe Leu Phe Leu 20 25 30

Ile Met Tyr Leu Ala Thr Val Leu Gly Asn Leu Leu Ile Ile Leu Ala 35 40 45

Ile Gly Thr Asp Ser Arg Leu His Thr Pro Met Tyr Phe Phe Leu Ser 50 60

Asn Leu Ser Phe Val Asp Val Cys Phe Ser Ser Thr Thr Val Pro Lys 65 70 75 80

Val Leu Ala Asn His Ile Leu Gly Ser Gln Ala Ile Ser Phe Ser Gly 85 90 95

Cys Leu Thr Gln Leu Tyr Phe Leu Ala Val Phe Gly Asn Met Asp Asn

100 105 110

Phe Leu Leu Ala Val Met Ser Tyr Asp Arg Phe Val Ala Ile Cys His

Pro Leu His Tyr Thr Thr Lys Met Thr Arg Gln Leu Cys Val Leu Leu 130

Val Val Gly Ser Trp Val Val Ala Asn Met Asn Cys Leu Leu His Ile 145 150 155 160

Leu Leu Met Ala Arg Leu Ser Phe Cys Ala Asp Asn Met Ile Pro His
165 170 175

Phe Phe Cys Asp Gly Thr Pro Leu Leu Lys Leu Ser Cys Ser Asp Thr 180 185

His Leu Asn Glu Leu Met Ile Leu Thr Glu Gly Ala Val Val Met Val 195 200 205

Thr Pro Phe Val Cys Ile Leu Ile Ser Tyr Ile His Ile Thr Cys Ala 210 215 220

Val Leu Arg Val Ser Ser Pro Arg Gly Gly Trp Lys Ser Phe Ser Thr 225 230 235 240

Cys Gly Ser His Leu Ala Val Val Cys Leu Phe Tyr Gly Thr Val Ile 245 250 255

Ala Val Tyr Phe Asn Pro Ser Ser Ser His Leu Ala Gly Arg Asp Met 260 265 270

Ala Ala Val Met Tyr Ala Val Val Thr Pro Met Leu Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Ser Asp Met Lys Ala Ala Leu Arg Lys Val290 295 300

Leu Ala Met Arg Phe Pro Ser Lys Gln 305

<210> 73

<211> 311

<212> PRT

<213> Rattus sp. F6

<400> 73

Met Ala Trp Ser Thr Gly Gln Asn Leu Ser Thr Pro Gly Pro Phe Ile 1 $$ 5 $$ 10 $$ 15

Leu Leu Gly Phe Pro Gly Pro Arg Ser Met Arg Ile Gly Leu Phe Leu
20 25 30

Leu Phe Leu Val Met Tyr Leu Leu Thr Val Val Gly Asn Leu Ala Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Ser Leu Val Gly Ala His Arg Cys Leu Gln Thr Pro Met Tyr Phe 50 60

Phe Leu Cys Asn Leu Ser Phe Leu Glu Ile Trp Phe Thr Thr Ala Cys 65 70 75 80

Val Pro Lys Thr Leu Ala Thr Phe Ala Pro Arg Gly Gly Val Ile Ser 85 90 95

Leu Ala Gly Cys Ala Thr Gln Met Tyr Phe Val Phe Ser Leu Gly Cys 100 105 110

Thr Glu Tyr Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr Leu Ala 115 120 125

Ile Cys Leu Pro Leu Arg Tyr Gly Gly Ile Met Thr Pro Gly Leu Ala 130 135 140

Met Arg Leu Ala Leu Gly Ser Trp Leu Cys Gly Phe Ser Ala Ile Thr 145 150 155 160

Val Pro Ala Thr Leu Ile Ala Arg Leu Ser Phe Cys Gly Ser Arg Val 165 170 175

Ile Asn His Phe Phe Cys Asp Ile Ser Pro Trp Ile Val Leu Ser Cys
180 185 190

Thr Asp Thr Gln Val Val Glu Leu Val Ser Phe Gly Ile Ala Phe Cys 195 200 205

Val Ile Leu Gly Ser Cys Gly Ile Thr Leu Val Ser Tyr Ala Tyr Ile 210 215 220

Ile Thr Thr Ile Ile Lys Ile Pro Ser Ala Arg Gly Arg His Arg Ala 225 230 235 240

Phe Ser Thr Cys Ser Ser His Leu Thr Val Val Leu Ile Trp Tyr Gly
245 250 255

Ser Thr Ile Phe Leu His Val Arg Thr Ser Val Glu Ser Ser Leu Asp 260 265 270

Leu Thr Lys Ala Ile Thr Val Leu Asn Thr Ile Val Thr Pro Val Leu 275 280 285

Asn Pro Phe Ile Tyr Thr Leu Arg Asn Lys Asp Val Lys Glu Ala Leu 290 295 300

Arg Arg Thr Val Lys Gly Lys 305 310

<210> 74

<211> 317

<212> PRT

<213> Rattus sp. F12

<400> 74

Met Glu Ser Gly Asn Ser Thr Arg Arg Phe Ser Ser Phe Phe Leu Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Gly Phe Thr Glu Asn Pro Gln Leu His Phe Leu Ile Phe Ala Leu Phe Leu Ser Met Tyr Leu Val Thr Val Leu Gly Asn Leu Leu Ile Ile Met Ala Ile Ile Thr Gln Ser His Leu His Thr Pro Met Tyr Phe Phe Leu Ala Asn Leu Ser Phe Val Asp Ile Cys Phe Thr Ser Thr Thr Ile Pro Lys Met Leu Val Asn Ile Tyr Thr Gln Ser Lys Ser Ile Thr Tyr Glu Asp Cys Ile Ser Gln Met Cys Val Phe Leu Val Phe Ala Glu Leu Gly 105 Asn Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr Val Ala Asn Cys His Pro Leu Cys Tyr Thr Val Ile Val Asn His Arg Leu Cys Ile Leu Leu Leu Leu Ser Trp Val Ile Ser Ile Phe His Ala Phe Ile Gln 155 Ser Leu Ile Val Leu Gln Leu Thr Phe Cys Gly Asp Val Lys Ile Pro His Phe Phe Cys Glu Leu Asn Gln Leu Ser Gln Leu Thr Cys Ser Asp 185 Asn Phe Pro Ser His Leu Ile Met Asn Leu Val Pro Val Met Leu Ala Ala Ile Ser Phe Ser Gly Ile Leu Tyr Ser Tyr Phe Lys Ile Val Ser 215 Ser Ile His Ser Ile Ser Thr Val Gln Gly Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Ile Val Ser Leu Phe Tyr Ser Thr Gly 250 Leu Gly Val Tyr Val Ser Ser Ala Val Val Gln Ser Ser His Ser Ala 265 Ala Ser Ala Ser Val Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro 280 Phe Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Arg Ala Leu Glu Arg 295 Leu Leu Glu Gly Asn Cys Lys Val His His Trp Thr Gly 310

<210> 75 <211> 310 <212> PRT <213> Rattus sp. I3

<400> 75

Ile Pro Glu Glu His Gln His Leu Phe Tyr Ala Leu Phe Leu Val Met 20 25 30

Tyr Leu Thr Thr Ile Leu Gly Asn Leu Leu Ile Ile Val Leu Val Gln 35 40 45

Leu Asp Ser Gln Leu His Thr Pro Met Tyr Leu Phe Leu Ser Asn Leu 50 60

Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys Leu Leu 65 70 75 80

Gln Asn Met Arg Ser Gln Asp Thr Ser Ile Pro Tyr Gly Gly Cys Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ala Gln Thr Tyr Phe Phe Met Val Phe Gly Asp Met Glu Ser Phe Leu 100 105 110

Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu 115 120 125

His Tyr Thr Ser Ile Met Ser Pro Lys Leu Cys Thr Cys Leu Val Leu 130 140

Leu Leu Trp Met Leu Thr Thr Ser His Ala Met Met His Thr Leu Leu 145 150 155 160

Ala Ala Arg Leu Ser Phe Cys Glu Asn Asn Val Val Leu Asn Phe Phe 165 170 175

Cys Asp Leu Phe Val Leu Leu Lys Leu Ala Cys Ser Asp Thr Tyr Ile 180 185 190

Asn Glu Leu Met Ile Phe Ile Met Ser Thr Leu Leu Ile Ile Ile Pro 195 200 205

Phe Phe Leu Ile Val Met Ser Tyr Ala Arg Ile Ile Ser Ser Ile Leu 210 215 220

Lys Val Pro Ser Thr Gln Gly Ile Cys Lys Val Phe Ser Thr Cys Gly 235 230 235

Ser His Leu Ser Val Ser Leu Phe Tyr Gly Thr Ile Ile Gly Leu

Tyr Leu Cys Pro Ala Gly Asn Asn Ser Thr Val Lys Glu Met Val Met 260 265 270

Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285

Ser Leu Arg Asn Arg Asp Met Lys Arg Ala Leu Ile Arg Val Ile Cys 290 295 300

Ser Met Lys Ile Thr Leu 305 310

<210> 76

<211> 327

<212> PRT

<213> Rattus sp. I7

<400> 76

Met Glu Arg Arg Asn His Ser Gly Arg Val Ser Glu Phe Val Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Phe Pro Ala Pro Ala Pro Leu Arg Val Leu Leu Phe Phe Leu Ser 20 25 30

Leu Leu Asp Tyr Val Leu Val Leu Thr Glu Asn Met Leu Ile Ile Ile 35 40 45

Ala Ile Arg Asn His Pro Thr Leu His Lys Pro Met Tyr Phe Phe Leu 50 55 60

Ala Asn Met Ser Phe Leu Glu Ile Trp Tyr Val Thr Val Thr Ile Pro 65 70 75 80

Lys Met Leu Ala Gly Phe Ile Gly Ser Lys Glu Asn His Gly Gln Leu 85 90 95

Ile Ser Phe Glu Ala Cys Met Thr Gln Leu Tyr Phe Phe Leu Gly Leu 100 105 110

Gly Cys Thr Glu Cys Val Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr 115 120 125

Val Ala Ile Cys His Pro Leu His Tyr Pro Val Ile Val Ser Ser Arg 130 135 140

Leu Cys Val Gln Met Ala Ala Gly Ser Trp Ala Gly Gly Phe Gly Ile 145 150 155 160

Ser Met Val Lys Val Phe Leu Ile Ser Arg Leu Ser Tyr Cys Gly Pro 165 170 175

Asn Thr Ile Asn His Phe Phe Cys Asp Val Ser Pro Leu Leu Asn Leu 180 185 190

Ser Cys Thr Asp Met Ser Thr Ala Glu Leu Thr Asp Phe Val Leu Ala 195 200 205

Ile Phe Ile Leu Leu Gly Pro Leu Ser Val Thr Gly Ala Ser Tyr Met 210 215 220

Ala Ile Thr Gly Ala Val Met Arg Ile Pro Ser Ala Ala Gly Arg His 225 230 235 240

Lys Ala Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Ile Ile Phe

245 250 255

Tyr Ala Ala Ser Ile Phe Ile Tyr Ala Arg Pro Lys Ala Leu Ser Ala 260 265 270

Phe Asp Thr Asn Lys Leu Val Ser Val Leu Tyr Ala Val Ile Val Pro 275 280 285

Leu Phe Asn Pro Ile Ile Tyr Cys Leu Arg Asn Gln Asp Val Lys Arg 290 295 300

Ala Leu Arg Arg Thr Leu His Leu Ala Gln Asp Gln Glu Ala Asn Thr 305 310 315 320

Asn Lys Gly Ser Lys Ile Gly 325

<210> 77

<211> 312

<212> PRT

<213> Rattus sp. I8

<400> 77

Met Asn Asn Lys Thr Val Ile Thr His Phe Leu Leu Gly Leu Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Pro Pro Glu His Gln Gln Leu Phe Phe Ala Leu Phe Leu Ile Met 20 25 30

Tyr Leu Thr Thr Phe Leu Gly Asn Leu Leu Ile Val Val Leu Val Gln 35 40 45

Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser Asn Leu 50 55 60

Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Leu Lys Leu Leu 65 70 75 80

Gln Asn Ile Gln Ser Gln Val Pro Ser Ile Ser Tyr Ala Gly Cys Leu 85 90 95

Thr Gln Ile Phe Phe Phe Leu Leu Phe Gly Tyr Leu Gly Asn Phe Leu 100 105 110

Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu 115

His Tyr Thr Asn Ile Met Ser His Lys Leu Cys Thr Cys Leu Leu 130 135 140

Val Phe Trp Ile Met Thr Ser Ser His Ala Met Met His Thr Leu Leu 145 150 155 160

Ala Ala Arg Leu Ser Phe Cys Glu Asn Asn Val Leu Leu Asn Phe Phe 165 170 175

Cys Asp Leu Phe Val Leu Leu Lys Leu Ala Cys Ser Asp Thr Tyr Val 180 185 190 Asn Glu Leu Met Ile His Ile Met Gly Val Ile Ile Ile Val Ile Pro 195 200 205

Phe Val Leu Ile Val Ile Ser Tyr Ala Lys Ile Ile Ser Ser Ile Leu 210 215 220

Lys Val Pro Ser Thr Gln Ser Ile His Lys Val Phe Ser Thr Cys Gly 225 230 235 240

Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile Gly Leu 245 250 255

Tyr Leu Cys Pro Ser Gly Asp Asn Phe Ser Leu Lys Gly Ser Ala Met 260 265 270

Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285

Ser Leu Arg Asn Arg Asp Met Lys Gln Ala Leu Ile Arg Val Thr Cys 290 295 300

Ser Lys Lys Ile Ser Leu Pro Trp 305 310

<210> 78

<211> 314

<212> PRT

<213> Rattus sp. I9

<400> 78

Met Thr Arg Arg Asn Gln Thr Ala Ile Ser Gln Phe Phe Leu Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Pro Phe Pro Pro Glu Tyr Gln His Leu Phe Tyr Ala Leu Phe Leu 20 25 30

Ala Met Tyr Leu Thr Thr Leu Leu Gly Asn Leu Ile Ile Ile Leu 35 40 45

Ile Leu Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser 50 55 60

Asn Leu Ser Phe Ala Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys 65 70 75 80

Leu Leu Gl
n Asn Met Gl
n Ser Gl
n Val Pro Ser Ile Pro Tyr Ala Gly 85 90 95

Cys Leu Ala Gln Ile Tyr Phe Phe Leu Phe Phe Gly Asp Leu Gly Asn 100 105 110

Phe Leu Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 115 120 125

Pro Leu His Tyr Met Ser Ile Met Ser Pro Lys Leu Cys Val Ser Leu 130 135 140

Val Val Leu Ser Trp Val Leu Thr Thr Phe His Ala Met Leu His Thr 155 Leu Leu Met Ala Arg Leu Ser Phe Cys Glu Asp Ser Val Ile Pro His Tyr Phe Cys Asp Met Ser Thr Leu Leu Lys Val Ala Cys Ser Asp Thr His Asp Asn Glu Leu Ala Ile Phe Ile Leu Gly Gly Pro Ile Val Val 200 Leu Pro Phe Leu Leu Ile Ile Val Ser Tyr Ala Arg Ile Val Ser Ser 215 Ile Phe Lys Val Pro Ser Ser Gln Ser Ile His Lys Ala Phe Ser Thr 235 Cys Gly Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Val Ile Gly Leu Tyr Leu Cys Pro Ser Ala Asn Asn Ser Thr Val Lys Glu Thr 265 Val Met Ser Leu Met Tyr Thr Met Val Thr Pro Met Leu Asn Pro Phe Ile Tyr Ser Leu Arg Asn Arg Asp Ile Lys Asp Ala Leu Glu Lys Ile 295 Met Cys Lys Gln Ile Pro Ser Phe Leu 310 <210> 79 <211> 312 <212> PRT <213> Rattus sp. I14 <400> 79 Met Thr Gly Asn Asn Gln Thr Leu Ile Leu Glu Phe Leu Leu Gly Leu Pro Ile Pro Ser Glu Tyr His Leu Leu Phe Tyr Ala Leu Phe Leu Ala Met Tyr Leu Thr Ile Ile Leu Gly Asn Leu Leu Ile Ile Val Leu Val Arg Leu Asp Ser His Leu His Met Pro Met Tyr Leu Phe Leu Ser Asn Leu Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys

Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Ser Tyr Thr Gly

Cys Leu Thr Gln Leu Tyr Phe Phe Met Val Phe Gly Asp Met Glu Ser

100 105 11

Phe Leu Leu Val Val Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 120 Pro Leu Arg Tyr Thr Thr Ile Met Ser Thr Lys Phe Cys Ala Ser Leu 135 Val Leu Leu Trp Met Leu Thr Met Thr His Ala Leu Leu His Thr 150 155 Leu Leu Ile Ala Arg Leu Ser Phe Cys Glu Lys Asn Val Ile Leu His Phe Phe Cys Asp Ile Ser Ala Leu Leu Lys Leu Ser Cys Ser Asp Ile 185 Tyr Val Asn Glu Leu Met Ile Tyr Ile Leu Gly Gly Leu Ile Ile Ile 200 Ile Pro Phe Leu Leu Ile Val Met Ser Tyr Val Arg Ile Phe Phe Ser 215 Ile Leu Lys Phe Pro Ser Ile Gln Asp Ile Tyr Lys Val Phe Ser Thr 230 Cys Gly Ser His Leu Ser Val Val Thr Leu Phe Tyr Gly Thr Ile Phe 245 250 Gly Ile Tyr Leu Cys Pro Ser Gly Asn Asn Ser Thr Val Lys Glu Ile 265 Ala Met Ala Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe 280 Ile Tyr Ser Leu Arg Asn Arg Asp Met Lys Arg Ala Leu Ile Arg Val 290 295 Ile Cys Thr Lys Lys Ile Ser Leu 310 <210> 80 <211> 314 <212> PRT <213> Rattus sp. I15

<400> 80

Met Thr Glu Glu Asn Gln Thr Val Ile Ser Gln Phe Leu Leu Phe 1 5 10 15

Leu Pro Ile Pro Ser Glu His Gln His Val Phe Tyr Ala Leu Phe Leu 20 25 30

Ser Met Tyr Leu Thr Thr Val Leu Gly Asn Leu Ile Ile Ile Leu 35 40 45

Ile His Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser 50 55 60

Asn Leu Ser Phe Ser Asp Leu Cys Phe Ser Ser Val The Met Pro Lys 70 75 Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Pro Phe Ala Gly Cys Leu Thr Gln Leu Tyr Phe Tyr Leu Tyr Phe Ala Asp Leu Glu Ser Phe Leu Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu His Tyr Met Ser Ile Met Ser Pro Lys Leu Cys Val Ser Leu 135 Val Val Leu Ser Trp Val Leu Thr Thr Phe His Ala Met Leu His Thr 150 155 Leu Leu Met Ala Arg Leu Ser Phe Cys Ala Asp Asn Met Ile Pro His 165 170 Phe Phe Cys Asp Ile Ser Pro Leu Leu Lys Leu Ser Cys Ser Asp Thr 180 185 His Val Asn Glu Leu Val Ile Phe Val Met Gly Gly Leu Val Ile Val 200 Ile Pro Phe Val Leu Ile Ile Val Ser Tyr Ala Arg Val Val Ala Ser 215 Ile Leu Lys Val Pro Ser Val Arg Gly Ile His Lys Ile Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile 245 Gly Leu Tyr Leu Cys Pro Ser Ala Asn Asn Ser Thr Val Lys Glu Thr 265 Val Met Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr Ser Leu Arg Asn Arg Asp Met Lys Glu Ala Leu Ile Arg Val Leu Cys Lys Lys Ile Thr Phe Cys Leu 310