Arquivos - Índices

Prof.: Leonardo Tórtoro Pereira leonardop@usp.br

*Material baseado em aulas dos professores: Elaine Parros Machado de Souza, Gustavo Batista, Robson Cordeiro, Moacir Ponti Jr., Maria Cristina Oliveira e Cristina Ciferri.

- Mecanismo para localizar informação via chave através de mapeamento
 - ◆ Chave → localização da informação
 - ex: índice de um livro, catálogo de biblioteca...
 - Agiliza o trabalho de busca

- → No caso de arquivos:
 - Permite localizar registros rapidamente
 - Evita ter que reorganizar o arquivo de dados conforme este for modificado
- → Não é necessário manter arquivo ordenado...

- → Arquivo de Índice (index file):
 - Impõe "ordem" a um arquivo de dados sem precisar rearranjar o arquivo em si
 - Permite acesso a registros via chave sem precisar varrer o arquivo de dados

- → Arquivo de Índice (index file):
 - Permite várias visões diferentes de um mesmo arquivo de dados
 - Acesso por índices diferentes
 - Permite acesso rápido a arquivos com registros de tamanho variável.

Índice Primário

Índice Primário

- → Exemplo Prático (Arquivo de Músicas)
 - Registros de tamanho variável com:
 - ID Number: Número de identificação
 - Title: Título
 - Composer: Compositor(es)
 - Artist: Artista(s)
 - Label: Rótulo (código da gravadora)
 - Chave primária:
 - Combinação de Label e ID Number

ANG3795 167 COL31809 353 COL38358 211 DG139201 396 DG18807 256 FF245 442 LON2312 32 MER75016 300 77 RCA2626 WAR23699 132

Arquivo de Índice Arquivo auxiliar em disco

Índice Primário

32	LON 2312 Romeo and Juliet Prokofiev
77	RCA 2626 Quartet in C Sharp Minor
132	WAR 23699 Touchstone Corea
167	ANG 3795 Symphony No. 9 Beethoven
211	COL 38358 Nebraska Springsteen
256	DG 18807 Symphony No. 9 Beethoven
300	MER 75016 Coq d´or Suite Rimsky
353	COL 31809 Symphony No. 9 Dvorak
396	DG 139201 Violin Concerto Beethoven
442	FF 245 Good News Sweet Honey In The

Arquivo de Dados

Arquivo armazenado em disco

- → Cada par (chave , localização) é um registro
 - Implementação eficiente usa registros de tamanho fixo
 - Campos de tamanho fixo => chave primária e localização (RRN ou byte offset)
 - Pode eventualmente conter outros campos
 - Ex.: tamanho do registro no arquivo de dados

- → Em geral, mantido ordenado
 - Permite busca binária (BB) se forem registros de tamanho fixo
- Menor e mais simples que o arquivo de dados original
 - Muitas vezes cabe todo em memória primária
 - Busca e manutenção mais eficientes!

- → O Arquivo de Dados, em contraste...
 - Cada registro no arquivo de dados possui um correspondente no arquivo de índice
 - Em geral, muito maior que o arquivo de índices
 - Em geral, possui registros de tamanho variável
 - Em geral, "organizado" segundo a ordem de entrada dos registros
 - Entry sequenced file

- → Exemplo: índice "moderado"
 - Arquivo de dados com 10^6 registros de ~1KB em média
 - Deve ser indexado até byte offset ~10°6 × 1000
 - = 1 Bilhão
 - 4 bytes são suficientes para representar esse offset

- → Exemplo: índice "moderado"
 - Arquivo de índice com registros de 24 bytes
 - 4 bytes para o byte offset + 20 bytes para a chave
 - CPF, por exemplo, requer apenas 11 bytes na maior representação
 - ◆ Com 10°6 registros, arquivo de índice ocupa 24 × 10°6
 - ≅ 24MB
 - Cabe na RAM!

- Criação dos arquivos de índice (index file) e de dados (data file);
- → Carregar índice para memória (em geral em vetor);
- → Busca;
- → Inserção de registro;
- → Atualização de registro;
- → Eliminação de registro.

- → Busca
 - Localização da chave no índice é rápida
 - Em geral índice é mantido ordenado
 - Pode-se usar Busca Binária
 - Se índice não estiver ordenado
 - Busca é sequencial

- → Busca
 - ◆ Localização e recuperação do registro de dados
 - O(1) acessos externos
 - Qualquer consulta baseada na chave será O(1)
 - Base também para operações de remoção e atualização baseadas em chave

- → Inserção
 - Novo registro é inserido no arquivo de dados
 - No final do arquivo ou
 - Seguindo uma política do tipo first-fit ou worst-fit

- → Inserção
 - Um registro (entrada) correspondente é inserido no arquivo de índice
 - Campos: chave e indicador do início do novo registro no arquivo de dados (byte offset ou RRN)
 - Índice em vetor ordenado
 - Inserção demanda deslocamentos
 - Rápido em RAM!

- → Remoção
 - Registro é removido do arquivo de dados segundo alguma política de marcação de registros removidos (remoção lógica)
 - O registro correspondente é removido do índice
 - Deslocamentos (remoção física)
 - Ou marcação da entrada correspondente no vetor (lógica)

- → Atualização
 - Registro é alterado no arquivo de dados
 - Se atualização não muda o valor da chave:
 - Se tamanho do registro não aumenta, nada muda no índice
 - Caso contrário, altera-se apenas o byte offset no índice (por que?)

- → Atualização
 - Se atualização muda o valor da chave
 - Altera-se o registro no vetor de índices em RAM
 - Chave e, se necessário, byte offset
 - Reordena-se o vetor de índices
 - No índice atualização pode ser tratada como remoção + inserção

- → Ao final de uma seção de operações:
 - Se o índice foi alterado em RAM => atualizar o arquivo de índice no disco
 - Política de atualização definida de acordo com as características da aplicação

- Mas... é imperativo que programas que acessam os arquivos se protejam contra índices desatualizados
 - Queda de energia
 - Crashs do sistema (software ou hardware)
 - **...**
- → Estratégia de prevenção?

Prevenção de Índices Desatualizados

Prevenção de Índices Desatualizados

- → É fundamental implementar um mecanismo que permita saber se o índice está atualizado em relação ao arquivo de dados
- → Uma possível estratégia:
 - Flag de status
 - "Setado" no arquivo índice mantido em disco assim que a sua cópia na memória é alterada

Prevenção de Índices Desatualizados

- → Flag de status
 - Flag pode ser mantido no registro cabeçalho do arquivo índice
 - Atualizado sempre que o índice é reescrito no disco
 - Se um programa detecta que o índice está desatualizado:
 - Uma função é ativada para reconstruir o índice a partir do arquivo de dados

- > Se o índice não cabe na memória primária
 - Acesso e manutenção feitos em memória secundária
 - Nada muda para o arquivo de dados

- Busca
 - Busca sequencial => O(n) acessos
 - Busca Binária => O(log n) acessos
 - Pode demandar um acesso para cada registro verificado

- → Remoção
 - Alternativa 1:
 - Deslocar todos os registros subsequentes no arquivo de índice para preencher espaço do registro removido
 - Otimiza espaço, mas a um custo computacional altíssimo...

- → Remoção
 - Alternativa 2:
 - Colocar um marcador e encadear o registro removido em uma lista de registros de índice disponíveis
 - Análogo ao que é feito para o arquivo de dados

- → Alternativa 2:
 - Inserção deverá respeitar ordem da chave para permitir BB ...
 - Pode não valer a pena manter e percorrer a lista de disponíveis com baixa possibilidade de sucesso ...

- → Remoção
 - Alternativa 3:
 - Apenas marcar os registros como disponíveis (sem lista)

- → Inserção (alternativa 3 de remoção)
 - Para BB: Chave inserida deve respeitar ordem do índice
 - Busca-se pela localização onde a chave deveria ser inserida (BB)
 - Se localização corresponde a um slot disponível, tudo resolvido
 - Caso contrário, é necessário deslocar todos os registros de índice subsequentes até o próximo slot vago ou EOF

Arquivos de Índices Grandes

- → Atualização
 - Se atualização muda o valor da chave:
 - Trata-se como uma remoção + inserção de registro de índice
 - Se atualização não muda o valor da chave:
 - Se tamanho do registro não aumenta, nada muda no índice
 - Caso contrário, muda-se apenas o byte offset no índice

Arquivos de Índices Grandes

- Na prática.... não é aconselhável usar índices simples se o índice não cabe em memória primária:
 - A busca binária pode exigir vários acessos a disco;
 - A necessidade de deslocar registros nas inserções e remoções
 - Manutenção do índice excessivamente cara.

Arquivos de Índices Grandes

- → Desempenho das operações só pode ser melhorado com abordagens de indexação mais sofisticadas:
 - Hashing Externo
 - Máximo desempenho para acesso direto
 - Árvores-B (B-trees)
 - Bom compromisso entre desempenho, manutenção e possibilidade de acesso sequencial ordenado por chaves

- → O que fazer quando a chave primária não é o alvo da consulta?
 - Ex: CPF é uma chave muito usual, mas ... e o código do arquivo de músicas usado como exemplo na aula anterior?
 - Como saber que se deve procurar por ANG3795 quando se deseja a ficha musical de "Symphony No. 9", de Beethoven ???

- Quais os dados da música de código ANG3795 ?
 - Geralmente usado internamente por um programa, mas raramente pelo usuário de modo direto

- Quais os dados da Symphony No. 9, de Beethoven ?
 - Consulta típica de um usuário

- → Em diversas aplicações, a busca por registros não se faz por chave primária, mas por chaves secundárias
 - Você procura um livro na biblioteca por título/autor ou por ISBN?
- → Como localizar o registro, de maneira eficiente, se o índice primário é construído em função da chave primária?

- → Solução:
 - Definir índices que relacionam chaves secundárias ao arquivo de dados
 - Índices Secundários

- → Tipos de Índices Secundários
 - Fracamente ligado (Loosely Binding)
 - Relaciona uma chave secundária à chave primária
 - Fortemente ligado (Tight Binding)
 - Relaciona uma chave secundária diretamente ao registro no arquivo de dados

- → Exemplo: Arquivo de Música
 - Dados o arquivo de dados e índice primário definidos na aula anterior...
 - Criar um índice secundário com Compositor como chave de indexação
 - Buscar a Symphony No 9 de Beethoven

ANG3795	167
COL31809	353
COL38358	211
DG139201	396
DG18807	256
FF245	442
LON2312	32
MER75016	300
RCA2626	77
WAR23699	132

32	LON 2312 Romeo and Juliet Prokofiev
77	RCA 2626 Quartet in C Sharp Minor
132	WAR 23699 Touchstone Corea
167	ANG 3795 Symphony No. 9 Beethoven
211	COL 38358 Nebraska Springsteen
256	DG 18807 Symphony No. 9 Beethoven
300	MER 75016 Coq d´or Suite Rimsky
353	COL 31809 Symphony No. 9 Dvorak
396	DG 139201 Violin Concerto Beethoven
442	FF 245 Good News Sweet Honey In The

Arquivo de Índice

Arquivo de Dados

Chaves Repetidas

Beethoven		ANG3795	
Beethoven		DG139201	
Beethoven		DG18807	
Beethoven		RCA2626	
Corea		WAR23699	
Dvorak		COL31809	
Prokofiev		LON2312	
Rimsky		MER75016	
Springsteen		COL38358	
Sweet Honey In The		FF245	

ANG3795	167
COL31809	353
COL38358	211
DG139201	396
DG18807	256
FF245	442
LON2312	32
MER75016	300
RCA2626	77
WAR23699	132

	gaas
32	LON 2312 Rom
77	RCA 2626 Quar
132	WAR 23699 To
167	ANG 3795 Sym
211	COL 38358 Neb
256	DG 18807 Symp
300	MER 75016 Coq
353	COL 31809 Sym
396	DG 139201 Viol
442	FF 245 Good N

Arquivo de Índice Secundário

Arquivo de Índice Primário

Arquivo de Dados

- Diferença importante entre os índices dos tipos primário e secundário:
 - Índice secundário:
 - Permite múltiplos registros com chaves iguais
 - Chaves duplicadas devem ser mantidas agrupadas e ordenadas internamente ao grupo de acordo com a chave primária

- Diferença importante entre os índices dos tipos primário e secundário:
 - Índice secundário:
 - Permite consultas eficientes envolvendo combinações de chaves secundárias
 - Múltiplos índices

- → Busca
 - Pesquisar o índice de chave secundária para encontrar a chave primária relacionada
 - Usar a chave primária para pesquisar o índice de chave primária para encontrar o byte offset (ou RRN) do registro no arquivo de dados
 - Recuperar o registro no arquivo de dados

- → Inserção:
 - ◆ Inserir novo registro no arquivo de dados
 - Inserir a entrada correspondente no índice primário
 - Inserir a entrada correspondente em cada índice secundário
 - Entradas duplicadas devem ser mantidas agrupadas e ordenadas
 - Pode ser muito custoso se os arquivos de índices não couberem em RAM

- → Atualização (3 situações):
 - Situação 1:
 - Alteração de chave secundária
 - Índice secundário para esta chave precisa ser reordenado

- → Situação 2:
 - Alteração de chave primária
 - Índice primário precisa ser reordenado
 - Índices secundários precisam ser varridos e as entradas contendo a chave primária alterada devem ser atualizadas
 - Se houver chaves secundárias duplicadas, pode ser necessário reordená-las localmente pela chave primária

- → Situação 3:
 - Alteração de outros campos apenas
 - Não afeta nenhum dos índices
 - Se necessário: atualizar o byte offset do índice primário

- → Remoção (2 situações):
 - Abordagem delete all references
 - Remover o registro do arquivo de dados
 - Remover a entrada correspondente do arquivo de índice primário

- → Abordagem delete all references
 - Remover as entradas correspondentes de cada arquivo de índice secundário
 - Buscar o registro, gerenciar espaços vagos e reordenar registros em múltiplos arquivos de índices pode ser custoso se não couberem em RAM

- → Remoção (2 situações):
 - Abordagem Delete Some References
 - Remover o registro no arquivo de dados
 - Remover a entrada correspondente no arquivo de índice primário
 - As entradas correspondentes nos índices secundários são mantidas

- → Abordagem Delete Some References
 - Busca no arquivo de índice secundário, por uma chave primária que não existe mais, indicará que o registro foi removido
 - Nesse momento, é possível eliminar o registro do índice secundário
 - Custo computacional extra associado?
 - Busca por chave inexistente no índice primário

	delete all references	delete some references
vantagens	 sem queda de desempenho na busca por registros removidos índices permanecem do tamanho necessário 	→ mais simples - sem necessidade de reorganização a cada remoção
desvantagens	 necessidade de reorganização a cada remoção processo altamente custoso, devido à ordenação 	 com queda de desempenho na busca na busca por registros removidos crescimento do tamanho dos índices secundários e necessidade de reorganização periódica

- → Múltiplos índices permitem manter diferentes visões dos registros de um mesmo arquivo de dados
 - Consultas por chaves secundárias diferentes
 - Localizar conjuntos de registros do arquivo de dados usando uma ou mais chaves

- → Possível fazer uma busca (consulta) em vários índices e combinar (AND, OR, NOT) os resultados individuais
 - Combina chaves relacionadas
 - Consultas que combinam visões particulares

Ex: encontre todos os registros tal que:

composer = "BEETHOVEN" AND title = "SYMPHONY NO. 9"

Exemplo: Arquivo de Músicas – Múltiplos Índices

Índice por compositor

Composer index	
Secondary key	Primary key
BEETHOVEN	ANG3795
BEETHOVEN	DG139201
BEETHOVEN	DG18807
BEETHOVEN	RCA2626
COREA	WAR23699
DVORAK	COL31809
PROKOFIEV	LON2312
RIMSKY-KORSAKOV	MER75016
SPRINGSTEEN	COL38358
SWEET HONEY IN THE R	FF245

Title index Secondary key Primary key COO D'OR SUITE MER75016 GOOD NEWS FF245 NEBRASKA COL38358 **OUARTET IN C SHARP M** RCA2626 ROMEO AND JULIET LON2312 SYMPHONY NO. 9 ANG3795 COL31809 SYMPHONY NO. 9 SYMPHONY NO. 9 DG18807 TOUCHSTONE **WAR23699 VIOLIN CONCERTO** DG139201

Índice por título

→ Exemplo: composer = "BEETHOVEN" AND title = "SYMPHONY NO. 9"

ANG3795		
		ANG3795
DG139201		
56155261	4 6 1 5	COL31809
DG18807	AND	
		DG18807
RCA2626		
116712020		

- → Resultado
 - ANGI3795|Symphony No. 9|Beethoven|Giulini
 - DGI18807ISymphony No. 9IBeethovenIKarajan

- → Processamento co-sequencial dos arquivos
 - Beneficia-se da ordenação local pelas chaves primárias!

- → Índice fortemente ligado
 - Relaciona chave secundária diretamente ao registro no arquivo de dados

Beethoven	167
Beethoven	353
Beethoven	211
Beethoven	396
Corea	256
Dvorak	442
Prokofiev	32
Rimsky	300
Springsteen	77
Sweet Honey In The	132

32	LON 2312 Romeo and Juliet Prokofiev
77	RCA 2626 Quartet in C Sharp Minor
132	WAR 23699 Touchstone Corea
167	ANG 3795 Symphony No. 9 Beethoven
211	COL 38358 Nebraska Springsteen
256	DG 18807 Symphony No. 9 Beethoven
300	MER 75016 Coq d´or Suite Rimsky
353	COL 31809 Symphony No. 9 Dvorak
396	DG 139201 Violin Concerto Beethoven
442	FF 245 Good News Sweet Honey In The

Arquivo de Índice Secundário

Arquivo de Dados

- → Busca
 - Pesquisar o índice de chave secundária para encontrar o byte offset (ou RRN) do registro no arquivo de dados

- → Inserção
 - Inserir o registro no arquivo de dados
 - Inserir a entrada correspondente em cada arquivo de índice secundário
 - Chaves duplicadas devem ser mantidas agrupadas e ordenadas

- → Remoção
 - Remover o registro no arquivo de dados
 - Delete all references: remover a entrada correspondente em cada arquivo de índice secundário
 - Delete some references: manter a entrada correspondente em cada arquivo de índice secundário

- → Atualização
 - Situação 1: alteração de chave secundária
 - Índice secundário para esta chave precisa ser reordenado
 - Situação 2: alteração de outros campos apenas
 - Não afeta nenhum dos índices
 - Se necessário: atualizar o byte offset no índice secundário

Tipos de Índice Secundário - Resumo

Tipos de Índice Secundário - Resumo

	fracamente ligado	fortemente ligado
vantagens	diminui custo de remoções na abordagem delete some references: modificação no arquivo de dados afeta apenas o índice primário	
	menor complexidade de codificação	melhor desempenho na busca

Tipos de Índice Secundário - Resumo

	fracamente ligado	fortemente ligado
	Acesso indireto: Índice secundário -> Índice primário -> arquivo de dados	Alto custo para modificações: Modificações no arquivo de dados afeta todos os índices secundários
desvantagens	Queda no desempenho na busca	Maior complexidade de codificação

- Problemas nas estruturas de índices secundário vistas até agora:
 - Repetição de chaves secundárias
 - Arquivos de índices secundários maiores que o necessário

- Problemas nas estruturas de índices secundário vistas até agora:
 - Necessidade de rearranjar os índices mesmo quando o novo registro (inserção) que tem um valor de chave secundária já existente
 - Ex: se uma nova gravação da Sinfonia no. 9 de Beethoven for inserida no arquivo de música

- → Solução 1: Vetor de Tamanho Fixo
 - Para índices fracamente ligados
 - Associar um conjunto de chaves primárias (tamanho fixo) a cada chave secundária

Beethoven	ANG3795	DG139201	DG18807	RCA2626
Corea	WAR23699			
Dvorak	COL31809			
Prokofiev	LON2312			
Rimsky	MER75016			
Springsteen	COL38358			
Sweet Honey In The	FF245			

- → Solução 1: Vetor de Tamanho Fixo
 - Elimina entradas com chaves secundárias duplicadas
 - Não é necessário reordenar o índice a cada inserção de registro com chave secundária já existente

- → Solução 1: Vetor de Tamanho Fixo
 - Porém:
 - É limitado a um número fixo de repetições da chave
 - Quanto maior esse número, maior a fragmentação interna do arquivo de índice!
 - Talvez não compense a eliminação das chaves duplicadas

- → Solução 2: Listas invertidas
 - Para índices fracamente ligados
 - Cada chave secundária é associada a uma lista encadeada de chaves primárias (ordenadas)

<u>Índices Secundários</u> Melhorados

- → Solução 2: Listas invertidas
 - Implementação:
 - Para cada valor de chave secundária, cria-se no arquivo de índice secundário apenas uma entrada com uma referência ao RRN do primeiro registro da lista encadeada que armazena as chaves primárias correspondentes

- → Solução 2: Listas invertidas
 - Implementação:
 - As listas encadeadas de chaves primárias ORDENADAS correspondentes às chaves secundárias são mantidas em um arquivo sequencial separado, organizado segundo a entrada dos registros
 - Entry sequenced file

Arquivo de Índice Secundário

secundária

Listas Invertidas

Campo com **RRN** da Campo de chave primeira referência da chave primária na lista invertida

S	0	LON2312	-1
ida	1	RCA2626	-1
Invertidas	2	WAR23699	-1
<u>n</u>	3	ANG3795	8
Listas	4	COL38358	-1
	5	DG18807	1
de	6	MER75016	-1
Arquivo	7	COL31809	-1
	8	DG139201	5
	9	FF245	-1

Campo de chave primária

Campo com **RRN** da próxima referência da chave primária na lista invertida, ou -1

rquivo de Índice Secundário

Listas Invertidas

Beethoven	3
Corea	2
Dvorak	7
Prokofiev	0
Rimsky	6
Springsteen	4
Sweet Honey In The	9

Ex:

Chave: Beethoven

Lista de Chaves Primárias: ANG3795 -> DG139201 ->

DG18807 -> RCA2626

<u>n</u>	0	LON2312
	1	RCA2626
ם >	2	WAR23699
	3	ANG3795
-15tas	4	COL38358
<u>"</u>	5	DG18807
ט ס	6	MER75016
	7	COL31809
<u> </u>	8	DG139201
	9	FF245

8

rquivo de Índice Secundário

Listas Invertidas

Beethoven	3
Corea	2
Dvorak	7
Prokofiev	0
Rimsky	6
Springsteen	4
Sweet Honey In The	9

2	0	LON2312
	1	RCA2626
	2	WAR23699
	3	ANG3795
	4	COL38358
	5	DG18807
5	6	MER75016
	7	COL31809
5	8	DG139201
	9	FF245

Ex: Inserção de um novo registro relativo a Dvorak

Antes:

lista de Códigos: COL31809

8

5

rquivo de Índice Secundário

Listas Invertidas

Beethoven	3
Corea	2
Dvorak	10
Prokofiev	0
Rimsky	6
Springsteen	4
Sweet Honey In The	9

••••

Ex: Inserção de um novo registro relativo a Dvorak

Antes:

lista de Códigos: AMB37829 -> COL31809

St	O	LON2312	-1
tida	1	RCA2626	-1
de Listas Invertidas	2	WAR23699	-1
in s	3	ANG3795	8
stas	4	COL38358	-1
Lis	5	DG18807	1
	6	MER75016	-1
Arquivo	7	COL31809	-1
rqu	8	DG139201	5
Ā	9	FF245	-1
	10	AMB37829	7

- → Exemplo: inserção de novo registro (Dvorak)
 - Inserir o novo registro no arquivo de dados
 - Inserir a entrada correspondente no índice primário
 - AMB37829

- → Como a chave secundária (Dvorak) já existe no índice secundário
 - Inserir nova chave primária (AMB37829) na lista invertida de Dvorak ("inserção ORDENADA na lista")
 - Inserção do registro no final do arquivo
 - Atualização de RRNs no arquivo de índice secundário e lista invertida para manter ordenação

- → Vantagens:
 - Índice secundário só precisa ser alterado quando:
 - For inserido um registro com chave secundária ainda não existente
 - For inserido/removido registro cabeça de lista invertida
 - For alterada uma chave (primária ou secundária) já existente

- → Vantagens:
 - Quando necessário, rearranjar o índice é mais simples:
 - Contém menos registros
 - Não existe duplicidade de chaves secundárias

- → Vantagens:
 - Em muitos casos, as operações de remoção, inserção ou alteração de registros no arquivo de dados implicam apenas em alterar o arquivo de listas invertidas

- → Vantagens:
 - Arquivo de listas invertidas nunca precisa ser ordenado, pois é entry sequenced
 - Unica preocupação é encadear cada lista de forma ordenada segundo a chave primária (ordenação lógica)
 - Logo, é trivial reutilizar o espaço liberado por registros eliminados do arquivo de listas invertidas (registros de tamanho fixo)

- → Desvantagens:
 - Registros associados a cada valor de chave secundária, encadeados em uma mesma lista de chaves primárias, não estão adjacentes no disco:
 - Podem ser necessários vários seeks para recuperar uma lista
 - O ideal seria manter o índice e as listas em RAM
 - Quando não é possível, é recomendável pensar em estruturas de indexação mais sofisticadas...

Índices Seletivos

Índices Seletivos

- → O índice secundário não precisa cobrir todo o arquivo de dados
 - Exemplos:
 - Índice de músicas do gênero rock
 - Índice de músicas lançadas depois de 1980
- Dependente da aplicação
 - Operações e uso dos dados

Referências

- → M. J. Folk, B. Zoellick and G. Riccardi. File Structures: An object-oriented approach with C++, Addison Wesley, 1998.
- → R. Elmasri, S. Navathe. Sistemas de Banco de Dados, Person, 6a Edição, 2010.