Pathrise Project

Data Roadmap final Assignment Reza Saeedisepehr

- Introduction to Pathrise company
- Pathrise Project
- Methodology
- Data Collection
- Data Wrangling
- Exploratory data analysis(EDA)
- Performing Machine learning

Introduction to Pathrise company

MANIFESTO: We seek to uplift job seekers in their careers and help them fulfill their hopes, ambitions and livelihoods.

Pathrise Project

Pathrise's company as a recruitment agency holds a program which helps job seekers find a job. Actually this project is a combination of a <u>classic classification</u> problem and <u>regression</u> According to data of people getting involved in Pathrise's program in the past, the project has two main Objectives.

- 1. Preparing a model to predict whether people would find a job or not?
- 2. Preparing a model to predict how long does it take to find a job?

Methodology

Executive Summary

- 1. Data collection methodology:
 - 1. Data is provided by Pathrise company in excel format.
- 2. Perform data wrangling
 - 1. Converting categorical data
 - 2. Dealing with missing values
 - 3. Working with outliers
- 3. Perform exploratory data analysis (EDA) using visualization
- 4. Perform predictive analysis using classification and regression models
 - 1. Four models are trained and examined by grid search method with different hyper-parameters and eventually the best model with the lowest error is selected to predict whether or not someone would find a job
 - 2. Three regression models are trained and finally the best model with the lowest error is selected to predict how long how long a person would find a job

Data Collection

Tabular data is provided by Pathrise company in excel format

Items	values
Number of column	16
Number of rows	2544
percentage of Numerical columns	31.25%
percentage of Categorical columns	68.75%
Average percentage of missing values	5.46%

Data Wrangling And Main Challenges

Taking an appropriate approach to deal with Categorical data

More than <u>68%</u> of data is categorical

Choosing suitable methods to solve the missing values issues

Some columns includes more than 24% missing values.

Data preparation approach

Action plan to deal with different columns

Column Name	Туре	Approaches	Percentage of Missing values	Method to deal with missing values
id	Numerical	Remove/Useless	0.00%	-
pathrise_status	Categorical/Nominal	Remove/Data leakage	0.00%	-
primary_track	Categorical/Nominal	Covert to dummy values	0.00%	-
cohort_tag	Categorical/Ordinal	Convert to start date\Remove	0.31%	-
program_duration_days	Numerical	-	24.21%	calculation based on cohort _tag
placed	Numerical	-	0.00%	-
employment_status	Categorical/Ordinal	Replaced by ordinal number/Remove	9.00%	Calculation based on high frequency
highest_level_of_education	Categorical/Ordinal	Replaced by number of year spent on education/Remove	2.28%	Calculation based on high frequency
length_of_job_search	Categorical/Ordinal	Replaced by average value of period/Remove	2.91%	Calculation based on Average
biggest_challenge_in_search	Categorical/Nominal	Covert to dummy values	0.94%	Replaced by No challenge
professional_experience	Categorical/Ordinal	Replaced by average value of period/Remove	8.73%	Calculation based on Average
work_authorization_status	Categorical/Nominal	Covert to dummy values	10.14%	Calculation based on high frequency
number_of_interviews	Numerical	-	8.57%	Calculation based on Average
number_of_applications	Numerical	-	0.00%	-
gender	Categorical/Nominal	Remove/prevention of model bias	19.97%	-
race	Categorical/Nominal	Remove/prevention of model bias	0.71%	-

How to calculate program duration for missing values

Finding start program date

- 1. Cohort tag: each cohort starts on the first (A) and the third week (B) of the month. For instance, FEB20A/FEB20B cohort starts on the first/third Monday of February 2020.
- 2. Define a "get_mondy" function to convert Cohort tag data to date format

Current date assumption

- 1. Program
 duration day: show
 many days a fellow
 was in the program,
 N/A for current
 fellows
- 2. The most recent date according to the cohort tag column is assumed as the current date

Calculating Program duration for current student

Difference between start program date and current date is considered as program duration days for <u>current</u> student

^{*}S stands for current student

Working with Outliers

- Exploration of data reveals that numerical columns of dataset including "number of applications", "number of interviews" and "program duration days" have outliers
- **2.** <u>Interquartile range(IQR)</u> is used to indicate the outlier
- 3. Outliers are replaced by mean values.

Explorer in primary track 1. Which group of primary tracks have more primary_track population? 1000 2. Which primary track is more successful to find a job than others? placed/primary_track SWE (694) Design (92) 600 Data (88) PSO (80) Marketing (1) 400 Web (1) 200

primary_track

Explorer in primary track

The percentage of people being successful to find a job changes if the they are compared according to their population

The number of people whose primary track is marketing only two, so this group should be ignored as a insufficient evidence

Explorer in employment status

1. Which group of people had more chance to find a career?

Although the <u>students</u> made up the majority of people participating in Pathrise Program, people with <u>part time job</u> and <u>unemployed</u> people had a bit more chance to find a job

Explorer in highest level of education

1. How much can the education level help people find a job?

As is can be seen, different levels of education have not enough population to assess the influence of education level on the opportunity of finding a job. However, individuals with Bachelor's and master degree made up the most number of people being successful to find a career

Heat map correlation plot shows very small negative number -0.0074 correlation coefficient between level of education and placed

Explorer in biggest challenge in search

"Hearing back on my application" was the prevalent challenging issue for both groups (placed and not placed)

Explorer in length of job search

1. What is the most effective period of time to seek a job?

Less than one month

	1-2 months	3-5 months	6 months to a year	Less than one month	Over a year
Not placed %	59.5	66.2	64.3	63.3	63.3
Placed %	40.5	33.8	35.7	36.7	36.7
population %	31.8	20.9	9.5	33.0	4.9

<u>1-2 months</u> is the most effective period to find a job, As it can be shown, the chance of people to find a job decreased after this time

Explorer in professional experience

How much does people's professional experience help them find a job?

	Less than one year	1-2 years	3-4 years	5+ years
Not placed %	61.2	62.9	59.3	59.5
Placed %	38.8	37.1	40.7	40.5
population %	26.6	38.0	24.0	11.4

Although people with <u>1 to 2</u> years of professional experience were the largest group of people who found employment, people with <u>3 to 4</u> years of experience were more successful compared to their population

Less than one year

professional_experience

Explorer in program duration days

1. How much can the Pathrise program help the people find a job?

There is significant difference between average time which successful people and unsuccessful people spend on Pathrise Program

> Mean differences between two groups shows Program effectiveness

Explorer in program duration days

2. How much should the people spend time on Pathrise program?

Effectiveness of program decreases after almost **100 days**

Summary of EDA results

- Software engineering (<u>SWE</u>) was the most common primary track and people with this
 primary track was the most successful group.
- <u>Employed part-time</u>, unemployed and student People were the most group of people who find a job respectively
- There is insufficient evidence to show the relationship between <u>level of education</u> and opportunity of finding a job. However, correlation examination <u>shows vary small</u> <u>negative correlation coefficient.</u>
- "Hearing back on my application" was the prevalent **challenging** issue for both groups (placed and not placed)
- 1-2 months is the most effective period to find a job
- Having 3 to 4 years professional experience increase the chance of people a bit more to be successful in this program
- Following the Pathrise program in 100 days have remarkable effect to increase the opportunity of people to find a job.

Performing Machine learning

Machine learning

- ❖There are two questions which are aimed to answer it by preparing supervised machine learning models
 - ❖ Preparing a model would be able to predicting whether or not someone participating in Pathrise program would be successful to find a job. This a classic <u>supervised</u> <u>classification machine learning</u>.
 - Training a model would be able to predicting how long a person participating in Pathrise program would find a job. This is classic <u>regression machine learning</u>

Process of preparing a machine learning model

"Placed"

for

model

program

column is

target column

classification

duration days

is the target

column for

regression

model

Data

Preparing

- Working with missing values
- Convert categorical values to numerical values
- Working with outliers
- Standardizing the values

- **Splitting** dataset
- Dataset is splited to two dataset, training and test dataset
- A part of the data which the value of "placed" column form them is

Choosing different models

- > Candidates for classification model
- logistic regression
- Decision tree
- Super vector machine
- K nearest neighborhood
- Candidates for regression model
- Linear Regression
- Support Vector Regression
- Decision Tree Regression'

Setting **Hyper** parameters

Setting different hyperparameters for each model

Training models

Training models by taring dataset and applying grid search to find out the best hyperparameter

Evaluating models

- ➤ classification metrics
- confusion matrix
- Accuracy
- Recall
- Precision
- F1-score
- ROC curve Regression metrics
- MAE
- MSE
- RSME

Classification results

Comparing results of models' confusion matrix

Classification results

 Comparison of different metrics for each model in "placed=1" state

	Logistic	Support Vector Decision Tree		K Nearest
	Regression	Machine	Classifier	Neighbor
precision	0.57	0.56	0.71	0.56
recall	0.36	0.32	0.95	0.32
f1-score	0.44	0.41	0.81	0.41
accuracy	0.65	0.64	0.83	0.64

As it can be seen <u>decision tree</u> shows the least error and the best accuracy

Classification results

• Comparison of ROC curve for each model in "placed=1" state

The area under curve (AUC) for decision tree model is more than others and it shows better performance to predict and answer our question.

Regression results

• Comparison of residual distributions for different models

	Linear Regression	Decision Tree Regression	Support Vector Regression
MAE	87.7	85.5	83.7
MSE	11338	10846.8	10950
RMSE	106.5	104.1	104.6

<u>Support vector regression</u> model shows a bit better performance

Some proposals for future Research

Examining the number of different groups of people over time

For more information please see my GitHub https://github.com/Rezassp/Pathrise