Probabilistic Mappings of Probability Measures

Albert Tarantola

Université Paris VI & IPGP

Inverse Days, Tahkovuori, Finland, December 2008

The Bayes-Popper approach.

Using observations to infer the values of some parameters corresponds to solving an *inverse problem*. Practitioners some-

times seek the best solution implied by the data, but observations should only be used to falsify possible solutions, not to deduce any particular solution.

let μ_1 and μ_2 be two measures such that, for every $F \in \mathcal{F}$, the following expressions make sense:

Intersection of measures: Given a measure space $(\Omega, \mathcal{F}, \mu)$,

$$\mu[\mu_1, \mu_2][F] = \int_{\omega \in F} \frac{d\mu_1}{d\mu}(\omega) \frac{d\mu_2}{d\mu}(\omega) d\mu(\omega)$$

$$\mu[\mu_1, \mu_2][F] \qquad \mu[\mu_1, \mu_2][F]$$

 $(\mu_1 \cap \mu_2)[F] = \frac{\mu[\mu_1, \mu_2][F]}{\mu[\mu_1, \mu_2][\Omega]}$.

The probability measure $(\mu_1 \cap \mu_2)$ is the *intersection* of the two measures μ_1 and μ_2 . The quintuplet $\{\Omega, \mathcal{F}, \mu, \mu_1, \mu_2\}$ is a

finite *Radon-Nikodym space*.

Family of probability measures: Let (X, \mathcal{F}_X) and (Y, \mathcal{F}_Y) be two measurable spaces, and assume that to every $x \in X$ it is associated a probability measure θ_x on (Y, \mathcal{F}_Y) . We use the notation Θ for the set $\{\theta_x \mid x \in X\}$, and we say that Θ is a

family of probability measures from X on (Y, \mathcal{F}_Y) .

 $\Theta = \{\theta_x \mid x \in X\}$ a family of probability measures from X on (Y, \mathcal{F}_Y) , and π_X a measure on (X, \mathcal{F}_X) . If for any $F_Y \in$

Image: Let (X, \mathcal{F}_X) and $(Y, \overline{\mathcal{F}}_Y)$ be two measurable spaces,

$$\mathcal{F}_Y$$
, the function $\theta_x[F_Y]$ is π_X -measurable, the *image* of π_X (by the family Θ) is the measure on (Y, \mathcal{F}_Y) , denoted $\Theta[\pi_X]$,

defined by the condition

$$(\Theta[\pi_X])[F_Y] = \int_Y heta_x[F_Y] \, d\pi_X(x)$$
 for every $F_Y \in \mathcal{F}_Y$.

X a family of probability measures from X on (Y, \mathcal{F}_Y) such that for every $x \in X$, $(Y, \mathcal{F}_Y, \mu_Y, \theta_x, \pi_Y)$ is a Radon-Nikodym

Reciprocal image: Let $(X, \mathcal{F}_X, \mu_X)$ and $(Y, \mathcal{F}_Y, \mu_Y)$ be two measure spaces, π_Y a measure on (Y, \mathcal{F}_Y) , and $\Theta = \{\theta_x \mid x \in \mathcal{F}_Y\}$

space. The *reciprocal image* of π_Y (by the family Θ), denoted $\Theta^{-1}[\pi_Y]$, is the measure on (X, \mathcal{F}_X) , absolutely continuous

w.r.t. μ_X , defined, via its μ_X -density, as

 $\frac{d(\Theta^{-1}[\pi_Y])}{d\mu_X}(x) = \int_Y (\theta_x \cap \pi_Y)(y) \ d\mu_Y(y) .$

and (Y, \mathcal{F}_Y) , to every pair of measures τ_X and τ_Y , respec-

tively on (X, \mathcal{F}_X) and on (Y, \mathcal{F}_Y) , is associated a measure $\tau_X \times \tau_Y$ on $(X \times Y, \mathcal{F}_X \times \mathcal{F}_Y)$, called the product measure,

Product of measures: Given two measurable spaces (X, \mathcal{F}_X)

defined for every
$$F_X \in \mathcal{F}_X$$
 and every $F_Y \in \mathcal{F}_Y$, by

$$(au_X imes au_Y)[F_X imes F_Y] = \int_{F_X} d au_X(x) \int_{F_Y} d au_Y(y)$$
 .

Marginal measures: Given two measurable spaces (X, \mathcal{F}_X) and (Y, \mathcal{F}_Y) , to every measure π on $(X \times Y, \mathcal{F}_X \times \mathcal{F}_Y)$ are associated the two marginal measures (respectively on (X, \mathcal{F}_X) and on (Y, \mathcal{F}_Y)) defined (respectively for every $F_X \in \mathcal{F}_X$ and

and on
$$(Y, \mathcal{F}_Y)$$
) defined (respectively for every $F_X \in \mathcal{F}_X$ and every $F_Y \in \mathcal{F}_Y$) by

 $\pi_X[F_X] = \pi[F_X \times Y]$; $\pi_Y[F_Y] = \pi[X \times F_Y]$.

 $(Y, \mathcal{F}_Y, \mu_Y)$, given a family $\Theta = \{\theta_x \mid x \in X\}$ of probability measures on (Y, \mathcal{F}_Y) , and given a probability measure π on

Inference space: Given two measure spaces $(X, \mathcal{F}_X, \mu_X)$ and

 $(X \times Y, \mathcal{F}_X \times \mathcal{F}_Y)$, an *inference space* is the quintuplet

$$\mathcal{I} = \{X \times Y, \mathcal{F}_X \times \mathcal{F}_Y, \mu_X \times \mu_Y, \pi, \Theta\}$$
 .

Y, $\mathcal{F}_X \times \mathcal{F}_Y$, $\mu_X \times \mu_Y$, π , Θ } is such that $\pi = \pi_X \times \pi_Y \quad ,$ where π_Y and π_Y are the two marginal probability measures

where π_X and π_Y are the two marginal probability measures of the probability measure π , if the intersections $\theta_X \cap \pi_Y$ are

Premise inference space: If an inference space $\mathcal{I} = \{X \times Y\}$

Y, $\mathcal{F}_X \times \mathcal{F}_Y$, $\mu_X \times \mu_Y$, π , Θ } is such that

Conclusion inference space: If an inference space $\mathcal{I} = \{X \times \mathcal{I} \in \mathcal{I} \cap \mathcal{I} \in \mathcal{I} \cap \mathcal{I} \in \mathcal{I} \cap \mathcal{I} \in \mathcal{I} \in \mathcal{I} \cap \mathcal{I} \in \mathcal{I} \in \mathcal{I} \cap \mathcal{I} \in \mathcal{I} \cap \mathcal{I} \in \mathcal{I} \cap \mathcal$

 $\Theta[\pi_X] = \pi_Y$, where π_X and π_Y are the two marginal probability measures of the probability measure π , we say that $\mathcal I$ is a *conclusion*

inference space.

premise inference space, then the quintuplet $\widetilde{I} = \{X \times Y,$ $\mathcal{F}_X \times \mathcal{F}_Y$, $\mu_X \times \mu_Y$, $\widetilde{\pi}$, $\widetilde{\Theta}$ \ where the probability measures of the family $\widetilde{\Theta} = {\widetilde{\theta}_x | x \in X}$ are defined as

Theorem: If $\mathcal{I} = \{X \times Y, \mathcal{F}_X \times \mathcal{F}_Y, \mu_X \times \mu_Y, \pi, \Theta\}$ is a

$$\widetilde{ heta}_x \ = \ heta_x \cap \pi_Y$$

and where the probability measure $\tilde{\pi}$ is defined by

$$\widetilde{\pi}[F_X imes F_Y] = \int_{F_X} \int_{F_Y} \widetilde{ heta}_x(y) \ d\mu_Y(y) \ d\pi_X(x)$$
 ,

is a conclusion inference space, i.e. the two marginal probability measures of $\widetilde{\pi}$, say $\widetilde{\pi}_X$ and $\widetilde{\pi}_Y$, are related as

res of
$$ec{\pi}$$
 , say $ec{\pi}_X$ and $ec{\pi}_Y$, are related as $\widetilde{\Theta}[\widetilde{\pi}_X] \ = \ \widetilde{\pi}_Y \ \ .$

Furthermore, one has

and $\widetilde{\pi}_Y = \pi_Y \cap \Theta[\pi_X]$.

$\widetilde{\pi}_X = \pi_X \cap \Theta^{-1}[\pi_Y]$

$$\widetilde{\theta}_x = \theta_x \cap \pi_Y$$

$$\widetilde{\pi}[F_X \times F_Y] = \int_{F_X} \int_{F_Y} \widetilde{\theta}_x(y) \ d\mu_Y(y) \ d\pi_X(x)$$
 , s a conclusion inference space, i.e. the two marginal probab

isures of
$$\widetilde{\pi}$$
 , say $\widetilde{\pi}_X$ and $\widetilde{\pi}_Y$, are related as

THE END.