

Functional Geometry

Peter Henderson Department of Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK p.henderson@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/~ph

October, 2002

Abstract. An algebra of pictures is described that is sufficiently powerful to denote the structure of a well-known Escher woodcut, Square Limit. A decomposition of the picture that is reasonably faithful to Escher's original design is given. This illustrates how a suitably chosen algebraic specification can be both a clear description and a practical implementation method. It also allows us to address some of the criteria that make a good algebraic description.

Keywords: Functional programming, graphics, geometry, algebraic style, architecture, specification.

A picture is an example of a complex object that can be described in terms of its parts.

Let us define a picture as a function which takes three arguments, each being two-space vectors and returns a set of graphical objects to be rendered on the output device.

also george

still george

turn


```
turnBox : Box -> Box
turnBox \{a, b, c\} = \{a = add a b\}
                       , c = neg b }
turn : Picture -> Picture
turn p = turnBox >> p
```


turn >> turn

turn >> turn >> turn

turn >> turn >> turn >> turn

