Super Solar Electric Proyecto Solar Tarea 1

Grupo 2

Profesor: Pedro Brito

Francisco Antilef Alexander Oses Pablo Sáez Camilo Velásquez

<u>Introducción</u>

Marco Teórico

1. Ley de Ohm

Tabla 1.1¹ Teorica

Voltaje [V]	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Corriente [A]	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Resistencia [Ω]	10	10	10	10	10	10	10	10	10	10

Tabla 1.2²

Real

Voltaje [V]	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Corriente [A]	0.052	0.1	0.149	0.18	0.23	0.28	0.33	0.38	0.43	0.48
Resistencia [Ω]	9.62	10	10.07	11.11	10.87	10.71	10.61	10.53	10.47	10.42

Figura 1.3³

¹ Tabla representativa de los datos obtenidos de los cálculos teóricos a esperar del experimento.

² Tabla representativa de los datos obtenidos de las mediciones del experimento.

³ Gráfico línea de tendencia de la corriente (eje vertical) vs voltaje (eje horizontal).

Preguntas

• ¿Como se comporta la resistencia Eléctrica?

R: Más o menos estable, ya que tiende a mantenerse en el transcurso del tiempo, aunque presentando mínimas perturbaciones despreciables.

• ¿Que representa la pendiente de la curva?

R: La pendiente de la curva del gráfico (figura 1.3) representa la inversa de la resistencia, la cual llamamos Conductancia Eléctrica.

• ¿Que es un material Óhmico?

R: Un material recibe la denominación de"óhmico" o lineal si el voltaje entre sus extremos es directamente proporcional a la intensidad de la corriente que circula por él, es decir, se cumple que $I=\frac{V}{R}$.

• ¿Es la resistencia que usamos un material Óhmico?

R: Pensamos que sí ya que cumple la ley de Ohm considerando que el error cuadrático medio con respecto a la teoría del " $I=\frac{V}{R}$ " es despreciable.

• ¿Que es un material no Óhmico?

R: Es un material no conductor que no cumple con la ley de Ohm (descrita en el marco teórico), por ejemplo la madera.

2. Ley de corrientes de Kirchhoff

Tabla 2.1⁴ Valores calculados

I_f : 0.55[A]	V_f : 5 [V]
$I_1: 0.5[A]$	V ₁ : 5 [V]
I ₂ : 0.05 [A]	V ₂ : 5 [V]

*Tabla 2.2*⁵ Valores medidos

I_f : 0.54 [A]	V_f : 5 [V]
<i>I</i> ₁ : 0.48 [<i>A</i>]	V ₁ : 5.05 [V]
<i>I</i> ₂ : 0.05 [<i>A</i>]	V ₂ : 5.06 [V]

Preguntas

• ¿Se cumple la ley de corrientes de Kirchhoff? Compare I_1 con I_2 .

R: Sí, ya que la diferencia entre I_f con $I_1 + I_2$ en los valores medidos es despreciable, por lo cual podemos decir que se cumple la afirmación de la ley de Kirchhoff.

- ¿Qué corriente es mayor?
 R: La corriente I₁ es mayor ya que tiene una resistencia menor.
- ¿Cuál es la diferencia de potencial en R1 y en R2?
 R: Voltaje en R1 = V₁ = 5.05 [V] y R2 = V₂ = 5.06 [V]
- ¿Cómo son las caídas de potencial en las resistencias en comparación con la de la fuente?

R: Despreciando (considerándolo como error instrumental) la diferencia de $\pm 0.05 [V]$ podemos considerar que las caídas de potencial son la misma en tanto la fuente como en las resistencias.

⁴ Tabla representativa de los datos obtenidos de los cálculos teóricos a esperar del experimento.

⁵ Tabla representativa de los datos obtenidos de las mediciones del experimento.

3. Ley de voltajes de Kirchhoff

Tabla 3.1⁶ Valores calculados

I_f : 0.04545 [A]	V_f : 5 [V]
I ₁ : 0.04545 [A]	<i>V</i> ₁ : 0.45 [<i>V</i>]
I ₂ : 0.04545 [A]	V ₂ : 4.54 [V]

*Tabla 3.2*⁷ Valores medidos

I_f : 0.04 [A]	V_f : 5[V]
I_1 : 0.044 [A]	<i>V</i> ₁ : 0.45 [<i>V</i>]
I_2 : 0.044 [A]	V ₂ :4.57[V]

• ¿Se cumple la ley de voltajes de Kirchhoff?

R: Sí, ya que la diferencia entre V_f con $V_1 + V_2$ en los valores medidos es despreciable, por lo cual podemos decir que se cumple la afirmación de la ley de Kirchhoff.

- Compare V_1 con V_2 . ¿Qué voltaje es mayor?
- R: Debido a la resistencia de 100 $\ [\Omega]$ vs la de 10 $\ [\Omega]$, el $\ V_2$ es considerablemente mayor.
 - ¿Cuál es la corriente que circula a través de R_1 y de R_2 ?
 - R: La misma, ya que se encuentran en serie, por lo tanto $I_1 = I_2 = 0.044 \, [A]$ ¿Cómo son las corrientes en las resistencias en comparación con la que pasa a través
 - de la fuente?
 - R: No hay ninguna diferencia, ya que las diferencias se pueden considerar nulas.
 - ¿Cómo son las caídas de potencial en las resistencias en comparación con la de la fuente?

R: Las caídas de potencial en las resistencias por separado son $0.45\ [V]$ y $4.57\ [V]$ respectivamente, en comparación con la de la fuente $5\ [V]$, por lo cual podemos ver que la suma de los voltajes que pasan por cada resistencia al sumarse dan aproximadamente el voltaje de la fuente.

⁶ Tabla representativa de los datos obtenidos de los cálculos teóricos a esperar del experimento.

⁷ Tabla representativa de los datos obtenidos de las mediciones del experimento.

4. Potencia y efecto Joule

Potencia en circuito con dos resistencias en paralelo con una fuente Tabla 4.18

Medidas en la fuente	Medidas en R_1	Medidas en R_2		
-	R_1 : 11.5 [Ω]	R_2 : 103.8 [Ω]		
V_f : 5.0 [V]	V ₁ : 5.0 [V]	V ₂ : 5.0 [V]		
I_f : 5.5 [A]	$I_1: 0.5[A]$	I ₂ : 0.05 [A]		
P_f :	P ₁ : 2.174 [W]	P ₂ : 0.241 [W]		
-	T_1^0 :	T_2^0 :		

Cálculos de potencia con dos resistencias en serie con una fuente Tabla 4.29

Medidas en la fuente	Medidas en R_1	Medidas en R_2		
-	R_1 : $[\Omega]$	R_2 : $[\Omega]$		
V_f : $[V]$	V_1 : $[V]$	V_2 : $[V]$		
I_f : [A]	I_1 : [A]	I_2 : [A]		
P_f :	P_1 : $[W]$	P_2 : $[W]$		
-	T_1^0 :	T_2^0 :		

- ¿Cómo se comporta la resistencia eléctrica de los elementos en ambos casos?
 R:
- ¿En qué caso se disipa más potencia?
- ¿Cómo es la potencia de la fuente en comparación con la suma de las potencias disipadas en las resistencias?
 R:

⁸ Tabla representativa de los datos obtenidos del experimento práctico con 2 resistencias en paralelo

⁹ Tabla representativa de los datos obtenidos del experimento práctico con 2 resistencias en serie

Conclusión