Tesi di laurea di Chiara Leo

Tesi di laurea di Chiara Leo Reticoli e algebre di Boole

Febbraio 2016

Teorema

Ogni reticolo distributivo limitato L è isomorfo ad un sottoreticolo di un reticolo del tipo $\mathcal{P}(\mathsf{X}).$

Definizione

Un reticolo è un insieme ordinato (L, \leq) tale che per ogni coppia a,b \in L l'insieme $\{a,b\}$ ammette estremo superiore, denotato con $a \lor b$, e estremo inferiore, denotato con $a \land b$.

NOTAZIONE

Nel seguito denoteremo con (L, \land, \lor) un reticolo per mettere in evidenza le operazioni \land e \lor .

Legge commutativa e associativa in un reticolo:

$$-x \wedge y = y \wedge x$$

$$-(x \wedge y) \wedge z = x \wedge (y \wedge z),$$

$$-x \lor y = y \lor x$$
,

$$-(x \lor y) \lor z = x \lor (y \lor z).$$

Definizione

Si dice che L è limitato se ammette massimo e minimo, indicati rispettivamente con 1 e 0.

NOTAZIONE

 $(L, \wedge, \vee, 0, 1)$ denota un reticolo limitato.

Definizione

Un reticolo limitato $(L, \land, \lor, 0, 1)$ si dice *distributivo* se soddisfa una delle due condizioni equivalenti:

(a)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
,

(b)
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
.

Definizioni

Sia $(L, \land, \lor, 0, 1)$ un reticolo limitato, allora un elemento $a \in L$ si dice *complemento* di un elemento b se $a \lor b = 1$ e $a \land b = 0$;

Proprietà

Se un elemento x di un reticolo X limitato e distributivo ammette complemento \overline{x} , allora tale complemento è unico.

Definizione

un reticolo distributivo e complementato si dice *reticolo di Boole* o *reticolo Booleano*.

Proprietà

In un reticolo di Boole valgono le leggi di De Morgan:

$$\overline{x \lor y} = \overline{x} \land \overline{y} \; , \qquad \overline{x \land y} = \overline{x} \lor \overline{y} \; .$$

Proprietà

- -L'insieme ordinato $\mathbb{B}=\{0,1\}$, con 0<1, ammette un'unica struttura di reticolo che lo rende un reticolo Booleano.
- -Ogni reticolo Booleano contiene una copia di $\mathbb B.$
- -Per ogni insieme non vuoto X l'insieme parzialmente ordinato $(\mathcal{P}(X),\subseteq)$ risulta un reticolo Booleano, con 1=X, $0=\emptyset$, $A\vee B=A\cup B$, $A\wedge B=A\cap B$ per $A,B\in\mathcal{P}(X)$. Di conseguenza ogni sottoreticolo di $\mathcal{P}(X)$ risulta distributivo.

Defi<u>nizione</u>

Un sottoinsieme M di un reticolo (L, \wedge, \vee) si dice sottoreticolo se $a \wedge b \in M$ e $a \vee b \in M$ per ogni $a, b \in M$.

Proprietà

Un insieme totalmente ordinato è un reticolo di Boole se e solo se coincide con $\mathbb{B} = \{0, 1\}$.

Definizioni

Sia $(L, \land, \lor, 0, 1)$ un reticolo limitato. Un *ideale* di L è un sottoinsieme non vuoto I di L con le proprietà: (a)1 $\notin I$;

(b)se $a \in I$ e $b \le a$ allora anche $b \in I$; (c)se $a, b \in I$, allora anche $a \lor b \in I$.

Definizione

Un ideale I di L è primo se $a \land b \in I$ implica $a \in I$ oppure $b \in I$.

Lemma (esistenza di ideali primi)

Siano L un reticolo distributivo, $x,y\in L$ con $y\nleq x$. Allora esiste un ideale primo di L che contiene x ma non contiene y.

DIMOSTRAZIONE: Sia \mathcal{I} l'insieme degli ideali di L che contengono x e non contengono y.

Per il lemma di Zorn esiste un elemento massimale M di \mathcal{I} . Dobbiamo dimostrare che M è primo. Supponiamo che esistano $a,b\in L$ con $a\wedge b\in M$, ma $a\notin M$ e $b\notin M$. Sia M_a l'insieme degli elementi u di L tale che esiste $m\in M$ con $u\leq a\vee m$.

Dimostriamo che M_a è un ideale:

- siano $u, v \in M_a$, e $t \in L$ con t < u, allora $t \in M_a$;
- se $u \le a \lor m$ e $v \le a \lor n$ con $n, m \in M$, allora $u \lor v \le a \lor (n \lor m)$ con $n \lor m \in M$, in quanto M è un ideale, quindi $u \lor v \in M_a$;
- infine se per assurdo $1 \in M_a$, si avrebbe $1 = a \lor m$, per qualche $m \in M$. Allora

$$m \lor (a \land b) = (m \lor a) \land (m \lor b) = 1 \land (m \lor b) = m \lor b \ \text{èun}$$

Tesi di laurea di Chiara Leo

elemento di M e quindi anche $b \leq m \vee b$ è un elemento di M, in quanto M è un ideale, ma questo contraddice l'ipotesi $b \notin M$. Pertanto $1 \notin M_a$.

Dunque M_a è un ideale e contiene M (perché $m \le a \lor m$ per definizione di estremo superiore).

Osserviamo che $a \leq a \vee (a \wedge b)$, da cui segue $a \in M_a$. Allora M_a è un ideale di L che contiene propriamente M, e quindi $M_a \notin \mathcal{I}$ perchè M è massimale per \mathcal{I} , cioè $y \in M_a$.

Di conseguenza $y \leq a \lor m_1$ per qualche elemento $m_1 \in M$.

Analogamente risulta $y \leq b \lor m_2$ per qualche elemento $m_2 \in M$.

Dunque $y = y \land y \le (a \lor m_1) \land (b \lor m_2) =$

 $(a \wedge b) \vee (a \wedge m_2) \vee (m_1 \wedge b) \vee (m_1 \wedge m_2) \in M$, pertanto $y \in M$, ma ciò è assurdo

Quindi M_a non è un ideale e $b \in M$.

Definizioni

Siano (L_1, \wedge, \vee) e (L_2, \wedge, \vee) due reticoli. Allora un'applicazione $f: L_1 \to L_2$ si dice un omomorfismo di reticoli , se $f(a \wedge b) = f(a) \wedge f(b)$ e $f(a \vee b) = f(a) \vee f(b)$ per tutti gli $a, b \in L$. Se f è biettiva, f si dice un isomorfismo di reticoli. Se L_1 ed L_2 sono reticoli limitati con 0_i e 1_i il minimo e il massimo di L_i , i=1,2, allora f si dice un omomorfismo di reticoli limitati se $f(1_1)=1_2$ e $f(0_1)=0_2$.

Teorema

Ogni reticolo distributivo limitato L è isomorfo ad un sottoreticolo di un reticolo del tipo $\mathcal{P}(X)$.

Dimostrazione

Sia X l'insieme degli ideali primi di L. All'elemento $x \in L$ si mette in corrispondenza l'insieme P_x degli ideali primi di L che non contengono x. Consideriamo l'applicazione $\varphi \colon L \to \mathcal{P}(X)$ definita da $\varphi(x) \coloneqq P_x$. Valgono $\varphi(x \lor y) = P_{x \lor y} = P_x \cup P_y$ e $\varphi(x \land y) = P_{x \land y} = P_x \cap P_y$. Pertanto φ è un omomorfismo di reticoli tra L e $\varphi(L)$, quindi $\varphi(L)$ è un sottoreticolo di $\mathcal{P}(X)$. Segue dal lemma sugli ideali primi che $\varphi \colon L \to \mathcal{P}(X)$ è iniettiva. Dunque L è isomorfo al sottoreticolo $\varphi(L)$ di $\mathcal{P}(X)$.