HOMEWORK 1 MATH B4900

DUE: 2/12/2021

1. Class sums. Let R be a commutative ring with 1, and let G be a finite group. Before starting, review our work considering groups acting on themselves by conjugation (Section 4.3 in D&F). In particular, the conjugacy classes of group elements partition the group. For example, in S_n , the conjugacy classes are in bijection with cycle type; in S_3 in particular, the classes are

$$\{1\}, \{(12), (13), (23)\}, \text{ and } \{(123), (132)\}.$$

(a) In RG, a class sum corresponding to a conjugacy class

$$\mathcal{K}_g = \{ h \in G \mid h = aga^{-1} \text{ for some } a \in G \}$$
 is $\kappa_g = \sum_{h \in \mathcal{K}_g} h$.

For example, the class sums in RS_3 are

$$\kappa_1 = 1, \quad \kappa_{(12)} = (12) + (13) + (23), \quad \text{and} \quad \kappa_{(123)} = (123) + (132).$$

Compute the class sums in RD_8 and RA_4 .

(b) For each of the class sums κ in RD_8 , compute $r\kappa r^{-1}$ and $s\kappa s^{-1}$. Use your results to argue that $g\kappa = \kappa g$ for all $g \in D_8$.

(c) Claim: the center of the group algebra RG is the R-span of the class sums of G,

$$Z(RG) = R\{\kappa_g \mid g \in G\} = \{r_1\kappa_1 + \cdots + r_\ell\kappa_\ell \mid r_i \in R\},\$$

where $\kappa_1, \ldots, \kappa_\ell$ denote the ℓ class sums of G.

Let's prove it:

- (i) For each $g \in G$, show that for all $h \in G$, we have $h\kappa_g h^{-1} = \kappa_g$. Conclude that $a\kappa_g = \kappa_g a$ for all $a \in RG$ (showing that $\kappa_g \in Z(RG)$).
- (ii) Use the previous part to show that $r_1\kappa_1 + \cdots r_\ell\kappa_\ell \in Z(RG)$ for all $r_i \in R$ (showing that $R\{\kappa_i \mid i=1,\ldots\ell\} \subseteq Z(RG)$).
- (iii) Conversely, show that for $a = \sum_{g \in G} s_g g \in RG$, if $hah^-1 = a$ for all $h \in G$, then $s_g = s_{g'}$ whenever g is conjugate to g (i.e. the coefficients are constant across conjugacy classes). [Hint: Start one at a time: if $hah^-1 = a$, then compare both sides to get $s_g = s_{h^{-1}gh}$. Try on your examples in part (b) to get started if you need help.]
- (iv) Let $a \in RG$. Show that if ha = ah for all $h \in G$, then ba = ab for all $b \in RG$.
- (d) Let F be a field with $n! \neq 0$ in F. Show that

$$e_{+} = \sum_{\sigma \in S_{n}} \sigma$$
 and $e_{-} = \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sigma$

are essential idempotents in FS_n and are central, and compute the corresponding (pure) idempotents. [Hint: Do e_+ first, using the fact that any group acts transitively on itself by left multiplication. For e_- , do some small examples first, and modify your proof for e_+ appropriately.]

¹As usual, as an element of F, n! means $1 + 1 + \cdots + 1$ (n! terms).

2 HOMEWORK 1

- 2. **Vector spaces.** U, V, and W denote vector spaces over a common field F; φ and ψ denote linear transformations; A, B, and C denote bases; A, B, and C denote matrices in $M_n(F)$.
 - (a) Let $\varphi: V \to V$ be a linear map. An element $v \in V$ satisfying $\varphi(v) = \lambda v$ for some $\lambda \in F$ is called a weight vector of weight λ (otherwise known as an eigenvector of eigenvalue λ). More restrictively, element $\lambda \in F$ is called a weight or eigenvalue of φ if it is the weight of some non-zero weight vector of φ . Given a weight of φ , the weight space of V associated to λ is

$$V_{\lambda} = \{ v \in V \mid \varphi(v) = \lambda v \}$$

(the set of weight vectors in V of weight λ).

Show that V_{λ} is a subspace of V.

- (b) Check briefly that $\varphi(v) = \lambda v$ is equivalent to $(\varphi \lambda \cdot id)(v) = 0$.
- (c) Given a weight λ of φ , the generalized weight space associated to λ is

$$V^{\lambda} = \{ v \in V \mid (\varphi - \lambda \cdot \mathrm{id})^m(v) = 0 \text{ for some } m \in \mathbb{Z}_{>0} \}.^2$$

(i) Let

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{and} \quad v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Check that $v \in V^2$ but $v \notin V_2$.

- (ii) Briefly argue that $V_{\lambda} \subseteq V^{\lambda}$.
- (iii) Show that V^{λ} is a subspace of V. [Hint: If $(\varphi \lambda \cdot id)^m(v) = 0$, then $(\varphi \lambda \cdot id)^n v = 0$ for all integers $n \geq m$.]

To receive credit for this assignment, include the following in your solutions [edited appropriately]:

Academic integrity statement: I [violated/did not violate] the CUNY Academic Integrity Policy in completing this assignment. [enter your full name as a digital signature here]

For example:

Academic integrity statement: I did not violate the CUNY Academic Integrity Policy in completing this assignment.

Zajj B. Daugherty

²Here, ψ^m means $\psi \circ \psi \circ \cdots \circ \psi$ (*m* terms).