2. Stichprobenverteilungen

- Stichprobenstatistiken/Stichprobenverteilungen
- Transformationen von univariaten Zufallsvariablen
- Transformationsregeln f
 ür bivariate Verteilungen
- Funktionen zweier unabhängiger Zufallsvariablen
- Maximum/Minimum unabhängiger Zufallsvariablen
- Übersicht von Verteilungen und Transformationsregeln

0

2.1 Stichprobenstatistiken/Stichprobenverteilungen

- \hookrightarrow Beim Rückschluss von den Daten/Realisierungen auf das Modelll (Ω, P) wird Zufallsvariable (**Stichprobenstatistik**) $T(X_1, \ldots, X_n)$ verwendet.
- \hookrightarrow Der Rückschluss kann (bei endlichem n) nicht exakt sein.
 - ☐ Fehler/Ungenauigkeiten werden mit Wahrscheinlichkeiten bewertet.
 - \square Die Verteilung von T abhängig vom WS-Modell (Ω, P) wird **Stichprobenverteilung** genannt.
- \hookrightarrow Abgrenzung von der **Modellverteilung**: Verteilung(sannahme) der ZV X_1, \ldots, X_n (ggf. mit Abhängigkeitsstruktur)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Beispiele für Modellverteilungen

- \hookrightarrow hier: Einstichprobenmodelle (meist) mit u.i.v. Zufallsvariablen X_1, \ldots, X_n
 - \square "u.": X_1, \ldots, X_n sind stochastisch unabhängig, d.h.

 \forall Ereignisse A_i : $P(X_1 \in A_1, \dots, X_n \in A_n) = P(X_1 \in A_1) \cdots P(X_n \in A_n)$

- □ "i.": Die $X_1, ..., X_n$ haben dieselbe ("identische") Verteilung, d.h. \forall Ereignisse A und $\forall i, j: P(X_i \in A) = P(X_i \in A)$
- → Beispiele diskreter Modelle
 - \square Bernoulli-Ketten: $X_i \sim Bin(1, p)$

(Binomialverteilung)

 \square Klassierte Merkmale: $X_i \sim M(1, p_1, \dots, p_K)$ \square Wartezeiten: $X_i \sim Geo(p)$ (Multinomialverteilung) (geometrische Verteilung)

 \square Ankunftszähler: $X_i \sim Pois(\lambda)$

(Poisson-Verteilung)

- \hookrightarrow Beispiele stetiger Modelle:
 - \square Wartezeiten: $X_i \sim Exp(\lambda)$

(Exponentialverteilung) (Normalverteilung)

 \square Messfehler: $X_i \sim \mathcal{N}(\mu, \sigma^2)$

(Pareto-Verteilung)

 \square Einkommen: $X_i \sim Par(\lambda, c)$

(Tareto vertenang)

2

- \hookrightarrow Diese Modellannahmen (inkl. "u.i.v.") müss(t)en im Einzelfall geprüft werden.
 - ☐ Hierfür gibt es statistische Tests (Verteilungstests, s.u.)

Beispiele für Stichprobenstatistiken (Einstichprobenfall)

- $\hookrightarrow T(X) = X_1 + \cdots + X_n$ bzw. $T(X) = \bar{X}$ bei Rückschluss auf Erwartungswert, z.B. bei Bernoulli-Ketten, klassierten Merkmale, Wartezeiten, Ankunftszähler
- $\hookrightarrow T(X) = \max(X_1, \dots, X_n)$ z.B. bei Einkommen
- $\hookrightarrow T(X) = \sum (X_i \bar{X})^2$ bzw. $T(X) = X_1^2 + \cdots + X_n^2$, z.B. bei Rückschluss auf die Varianz.

Bei Modell-Verteilungen mit mehreren Parametern müssen auch mehrere Stichprobenstatistiken gleichzeitig verwendet werden, z.B.:

- \hookrightarrow Modellverteilung $\mathcal{N}(\mu, \sigma^2)$
 - $\Box T_1(X) = \bar{X}$ $\Box T_2(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$
- \hookrightarrow Modellverteilung $\mathcal{R}(a,b)$ (Rechteckverteilung)
 - $\Box \ T_1(X) = \min(X_1, \dots, X_n)$
 - $\Box T_2(X) = \max(X_1, \dots, X_n)$
- \hookrightarrow Für die Verfahren der schließenden Statistik wird dann manchmal die gemeinsame Verteilung von T_1 , T_2 benötigt.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Ausgangssituation: Zugrunde liegt eine Stichprobe mit *n* (meist) unabhängigen Zufallsvariablen X_1, \ldots, X_n oder eine ZV X

- \hookrightarrow Wie ist $Y = X^2$ oder allgemeiner $Y = X^a$ verteilt? (Stichwort Datentransformation)
- \hookrightarrow Wie ist $Y = X_1^2 + \ldots + X_n^2$ verteilt? (Stichwort χ^2 -Verteilung)

$$Y_1, \ldots, Y_k \text{ mit } Y_k = g_k(X_1, \ldots, X_n)$$
?

Wir betrachten hier einige wichtige Spezialfälle:

- \square Univariate Verteilungen: n=1 und k=1
- Bivariate Verteilungen: n = 2 und k = 2
- Bivariate Verteilungen: n = 2 und k = 1

2.2 Transformationen von univariaten Zufallsvariablen

- Die Zufallsvariable X wird über eine Funktion $g(\cdot)$ in die Zufallsvariable Y überführt. Gesucht ist die Dichtefunktion von Y
- spezielle Vorgehensweisen, je nach Verteilungsart
 - diskrete Verteilungen: Bündelung von Wahrscheinlichkeiten, übertragbar auf Zufallsvektoren
 - □ stetige Verteilungen:
 - Substitutionsregel für Integrale → Dichtetransformationssatz

Diskreter Fall: Einleitendes Beispiel

Betrachte die diskrete, gleichverteilte ZV X mit Träger $\mathcal{T}_X = \{1, 2, 3, 4, 5\}$ und die transformierte ZV $Y = g(X) := (X - 2)^2$.

Es gilt $\mathcal{T}_Y = \{0,1,4,9\}$ gilt, denn nur diese Werte werden von Y mit positiver W'keit angenommen.

Nun können wir einfach die Vorkommenswahrscheinlichkeiten aufsummieren:

$$f_Y(0) = P(Y = 0) = P(X = 2) = 1/5,$$

 $f_Y(1) = P(Y = 1) = P(X \in \{1, 3\}) = P(X = 1) + P(X = 3) = 2/5$
 $f_Y(4) = P(Y = 4) = P(X = 4) = 1/5$
 $f_Y(9) = P(Y = 9) = P(X = 5) = 1/5$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Diskreter Fall: Allgemein

Sei X diskrete ZV mit Träger \mathcal{T}_X und Dichte $f_X(x) = P(X = x)$. Sei ferner Y = g(X) univariate Transformation von X. Dann gilt:

$$f_y(y) = P(Y = y) = P(g(X) = y) = \sum_{\substack{x \in T_X, \\ g(x) = y}} f_X(x).$$

Übung: Betrachte die ZV X mit Träger $\mathcal{T}_X = \{-2, -1, 0, 1, 2\}$ und Dichte $f_X(x) = 1/|\mathcal{T}_X|$. Bestimme die Verteilung von Y = 2|X| + 1.

Der Träger von Y ist die Menge $T_Y = \{1, 3, 5\}$ und wir erhalten für die Dichte:

$$f_Y(1) = f_X(0) = P(X = 0) = 1/5$$

 $f_Y(3) = f_X(1) + f_X(-1) = 2/5$
 $f_Y(5) = f_X(2) + f_X(-2) = 2/5$.

Stetiger Fall: Idee

Wir gehen nun zum allgemeinen stetigen Fall über. Sei also X stetig verteilt mit Verteilungsfunktion $F_X(x)$. Sei ferner Y = g(X) univariate Transformation von X.

Ansatz:

- \hookrightarrow Bestimme die Verteilungsfunktion $F_Y(y)$ von Y mit Hilfe der bekannten Verteilungsfunktion von X.
- \hookrightarrow Dazu muss die Ungleichung $g(X) \le y$ so nach X aufgelöst werden, dass die Verteilungsfunktion F_X für die Berechnung der WS $P(g(X) \le y)$ eingesetzt werden kann.
- \hookrightarrow Die Dichte $f_Y(y)$ ist dann ("fast sicher") die Ableitung von $F_Y(y)$.

Stetiger Fall: Beispiel

Sei $X \sim \mathcal{N}(0,1)$ -verteilt, d.h. mit Dichte φ und VF Φ

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$$

Betrachte die Transformation $Y = X^2$ und berechne die Verteilungsfunktion F_Y .

$$\hookrightarrow$$
 Für $y < 0$ ist $F_Y(y) = P(Y \le y) = P(X^2 \le y) = 0$ $(X^2 \ge 0)$

$$\hookrightarrow$$
 Für $y = 0$ ist $F_Y(0) = P(Y \le 0) = P(X^2 \le 0) = P(X = 0) = 0$ (X stetig v.)

Die Dichte dazu ist dann

$$\hookrightarrow f_Y(y) = F_Y'(y) = 2\Phi'(\sqrt{y}) \frac{1}{2\sqrt{y}} = \varphi(\sqrt{y}) \frac{1}{\sqrt{y}} = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, \ y > 0.$$

Das ist die Dichte einer so genannten $\chi^2(1)$ -Verteilung.

Übung: Es sei X eine stetig auf [0;1] gleichverteilte Zufallsvariable. Berechnen Sie die Verteilung von $Y=-2\ln(X)$.

Für y > 0 gilt

$$F_Y(y) = P(Y \le y) = P(-2\ln(X) \le y) = P(\ln(X) > -\frac{y}{2})$$
$$= P(X > e^{-y/2}) = \int_{e^{-y/2}}^{1} 1dx$$
$$= 1 - e^{-y/2}$$

Als Dichte ergibt sich nach Ableiten:

$$F'_{Y}(y) = f_{Y}(y) = -\left(-\frac{1}{2}\right)e^{-y/2} = \frac{1}{2}e^{-y/2} = \frac{\lambda e^{-\lambda y}}{2}$$

d.h. die Dichte einer Exponential-Verteilung $E \times p(\lambda)$ mit $\lambda = \frac{1}{2}$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 11

Alternative: Dichtetransformationssatz

Verwendung der Substitutionsregel anstelle der Kettenregel ergibt:

Dichtetransformationssatz

Sei X eine stetige Zufallsvariable mit Dichtefunktion $f_X(\cdot)$ und $\mathcal{T} = \{x : f_X(x) > 0\}$. Weiter sei $g : \mathcal{T} \to \Omega \subseteq \mathbb{R}$ eine Funktion mit den folgenden Eigenschaften

- (i) g ist **bijektiv** (umkehrbar eindeutig) mit Umkehrfunktion $h = g^{-1}$,
- (ii) $g \text{ und } (\text{dann auch!}) \ h \text{ sind stetig differenzierbar mit } h'(y) \neq 0 \text{ für alle } y \in \Omega$

Dann ist Y = g(X) eine stetige Zufallsvariable mit der Dichte

$$f_Y(y) = f_X(h(y)) \cdot |h'(y)| \cdot \mathbb{1}_{\Omega}(y)$$

$X \sim \mathcal{N}(\mu, \sigma^2)$, gesucht ist Verteilung von $Y = g(X) = e^X$

$$h = g^{-1}(y) = \ln(y)$$
 sowie $h'(y) = \frac{1}{y}$

Mit dem Dichtetransformationssatz folgt nun unmittelbar:

$$f_{Y}(y) = \underbrace{|h'(y)|}_{=1/y} f_{X}(h(y)) \cdot \mathbb{1}_{\Omega}(y)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \cdot \frac{1}{y} \cdot e^{-\frac{(\ln(y) - \mu)^{2}}{2\sigma^{2}}} \mathbb{1}_{[0;\infty)}(y)$$

Das ist die Dichte einer Lognormalverteilung (Verwendung: Bedienungs-/Wartezeiten. Alternative zur Normalverteilung, wenn nur positive Werte auftreten können.)

Übung: Es sei X eine stetig auf [0;1] gleichverteilte Zufallsvariable. Berechnen Sie die Verteilung von $Y = -2 \ln(X)$ mit Hilfe des Dichtetransformationssatzes.

Die Transformation ist hier $y = g(x) = -2\ln(x)$ mit Wertebereich $[0, \infty)$. Wir erhalten

$$h(y) = e^{-y/2}$$
 und damit $h'(y) = -\frac{1}{2}e^{-y/2} \neq 0$.

Die Dichte einer R[0,1]-Verteilung lautet $f_X(x)=\mathbb{1}_{[0,1]}(x)$. Mit dem Dichtetransformationssatz folgt:

$$f_{Y}(y) = |h'(y)| f_{X}(h(y)) \mathbb{1}_{[0,\infty)}(y) = \left| -\frac{e^{-y/2}}{2} \right| \mathbb{1}_{[0,1]}(e^{-y/2}) \mathbb{1}_{[0,\infty)}(y)$$
$$= \frac{1}{2} e^{-y/2} \mathbb{1}_{[0,\infty)}(y).$$

14

Auch auf diesem Wege erhalten wir also die Dichte einer Exp(1/2)-Verteilung.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Übung: Sei $X \sim \mathcal{N}(\mu, \sigma^2)$. Zeige mit dem Dichtetransformationssatz, dass die lineare Transformation $Z = \frac{X - \mu}{\sigma}$ eine $\mathcal{N}(0, 1)$ -Verteilung besitzt.

Wir erhalten

$$h(z) = z\sigma + \mu$$
 und $h'(z) = \sigma > 0$.

Mit $f_Z(z) = f_X(h(z)) \cdot |h'(z)|$ folgt sodann:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{1}{2}\left(\frac{(\sigma z + \mu) - \mu}{\sigma}\right)^2} \cdot |\sigma|$$
$$= \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}z^2}$$

Das ist die aber gerade die Dichte der Standardnormalverteilung, womit die Aussage gezeigt ist. D.h. $Z \sim \mathcal{N}(0,1)$.

2.3 Transformationsregeln für bivariate Verteilungen

Gemeint sind Transformationen

$$(X, Y) \mapsto (U, V) = (g_1(X, Y), g_2(X, Y))$$

bei denen sich X, Y aus U, V "rekonstruieren lassen,z.B.

$$\Box \ (X,Y) \mapsto (X+Y,X-Y)$$

$$\Box (X,Y) \mapsto (X \cdot Y, X/Y)$$

- - $\Box (X,Y) \mapsto (U,V) = (X+Y,X-Y) \quad \rightsquigarrow \quad X+Y$ (Summenverteilungen)

$$\square (X,Y) \mapsto (U;V) = (X \cdot Y, X/Y) \quad \rightsquigarrow \quad X/Y \qquad (z.B. \ t-Verteilung)$$

- → Dabei Beschränkung auf den stetigen Fall
- → Hilfsmittel: Bivariater Dichtetransformationssatz.

Dichtetransformationssatz (bivariat), Verteilung von (U, V) = g(X, Y)

Es sei (X,Y) ein stetig verteilter Zufallsvektor mit gemeinsamer stetiger Dichte $f=f_{X,Y}$ und $\mathcal{T}=\{(x,y)\in\mathbb{R}^2:f(x,y)>0\}$

Weiter sei $g=(g_1,g_2):\mathcal{T}\to\Omega\subseteq\mathbb{R}^2$ eine Funktion mit folgenden Eigenschaften:

- (i) g ist stetig differenzierbar.
- (ii) g ist bijektiv mit Umkehrfunktion $h=(h_1,h_2):\Omega\to\mathcal{T}$, d.h. insbesondere $\left\{\begin{array}{ccc} u&=&g_1(x,y)\\ v&=&g_2(x,y) \end{array}\right\} \Leftrightarrow \left\{\begin{array}{ccc} x&=&h_1(u,v)\\ y&=&h_2(u,v) \end{array}\right\} \qquad \forall (x,y)\in\mathcal{T}, \forall (u,v)\in\Omega$
- (iii) h ist differenzierbar, $\mathcal{J}_h(u,v)=\left(egin{array}{cc} \partial h_1/\partial u & \partial h_1/\partial v \\ \partial h_2/\partial u & \partial h_2/\partial v \end{array}
 ight)$ ist invertierbar $\forall (u,v)\in\Omega$

Dann ist (U, V) = g(X, Y) ein stetiger Zufallsvektor mit der Dichte

$$f_{U,V}(u,v) = f_{X,Y}(h(u,v)) \cdot |\det(\mathcal{J}_h(u,v))| \cdot 1_{\Omega}(u,v)$$

- Bezeichnung: $\mathcal{J}_h(u, v)$ heißt **Jacobi-Matrix** von h in (u, v).
- Transformationssatz übertragbar auf den Fall multivariater Verteilungen

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 17

Generisches Beispiel

Gegeben: Zufallsvektor (X, Y) mit stetiger WS-Dichte $f_{X,Y}$. Gesucht: die gemeinsame Verteilung von (U, V) = (X + Y, X - Y). Dazu:

•
$$\begin{cases} u = x + y \\ v = x - y \end{cases}$$
 nach x, y auflösen: $\Leftrightarrow \begin{cases} u + v = 2x \\ u - v = 2y \end{cases} \Leftrightarrow \begin{cases} x = (u + v)/2 \\ y = (u - v)/2 \end{cases}$

• Schreibe Lösung als Funktion h(u, v) und berechne die Jacobi-Matrix und den Betrag ihrer Determinante:

$$h(u,v)=(rac{u+v}{2},rac{u-v}{2}),\ \mathcal{J}_h(u,v)=egin{pmatrix} 1/2 & 1/2 \ 1/2 & -1/2 \end{pmatrix}$$
 und $|\det\mathcal{J}_h(u,v)|=rac{1}{2}$

• Wende den Dichtetransformationssatz an: $f_{U,V}(u,v) = f_{X,Y}(\frac{u+v}{2},\frac{u-v}{2}) \cdot \frac{1}{2}$

Daraus (z.B.) die Randverteilungen:

•
$$f_{X+Y}(u) = \int\limits_{-\infty}^{\infty} f_{X,Y}(\frac{u+v}{2}, \frac{u-v}{2}) \cdot \frac{1}{2} dv \stackrel{t=\frac{u+v}{2}, dt=\frac{1}{2}dv, u-t=\frac{u-v}{2}}{=} \int\limits_{-\infty}^{\infty} f_{X,Y}(t, u-t) dt$$

•
$$f_{X-Y}(v) = \int\limits_{-\infty}^{\infty} f_{X,Y}(\frac{u+v}{2}, \frac{u-v}{2}) \cdot \frac{1}{2} du \stackrel{t=\frac{u-v}{2}, dt=\frac{1}{2}du, v+t=\frac{u+v}{2}}{=} \int\limits_{-\infty}^{\infty} f_{X,Y}(v+t, t) dt$$

Randverteilungen insb. wichtig bei st.u. X, Y, d.h. für $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Übung: Berechnen Sie in der obigen Situation eine Dichte der gemeinsamen Verteilung von (U, V) = (X + Y, X) und daraus eine allgemeine Formel für die Dichte von X + Y bei st.u. X, Y.

- Es ist (u, v) = g(x, y) = (x + y, x).
- Daraus zunächst die Umkehrfunktion:
 - $\Box v = x \Leftrightarrow x = v$
 - $\square u = x + y \Leftrightarrow y = u x = u v$
- D.h. es ist h(u, v) = (v, u v). Jakobi-Matrix ist $\mathcal{J}_h = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

 $\mathsf{mit} \mid \mathsf{det}\,\mathcal{J}_{\mathsf{h}} | = 1.$

Aufgrund der Dichtetransformation ergibt sich die Dichte

 $f_{U,V}(u,v) = f_{X,Y}(v,u-v) \cdot 1 = f_{X,Y}(v,u-v)$

Die Randverteilung ergibt sich durch Wegintegrieren der Variable v,d.h.

$$f_{X+Y}(u) = \int_{-\infty}^{\infty} f_{U,Y}(u,v)dv = \int_{-\infty}^{\infty} f_{X,Y}(v,u-v)dv = \int_{-\infty}^{\infty} f_X(v)f_Y(u-v)dv$$

Ist das Ziel nur die Berechnung der Verteilung von X + Y, so ist dieser Rechenweg etwas einfacher als der Weg über (X + Y, X - Y).

$$f_{X,Y}(x,y) = e^{-(x+y)} = e^{-x} \cdot e^{-y}$$
, $x,y \ge 0$ (s.o., X, Y , st.u.)

$$\hookrightarrow$$
 Gesucht: Dichte von $(U, V) = (X + Y, X - Y)$ bzw. $U = X + Y$

 $=\frac{1}{2}\cdot e^{-(\frac{u+v}{2}+\frac{u-v}{2})}\cdot 1_{[0:\infty]^2}(\frac{u+v}{2},\frac{u-v}{2})$

$$\hookrightarrow f_{U,V}(u,v) = f_{X,Y}(\frac{u+v}{2},\frac{u-v}{2}) \cdot \frac{1}{2}$$

$$= \frac{1}{2} \cdot e^{-u} \cdot 1_{[0;\infty]^2} \left(\frac{u+v}{2}, \frac{u-v}{2} \right)$$

Umformung der Bedingung
$$1_{[0,\infty]^2}(...) = 1$$
:

$$u+v\geq 0, u-v\geq 0 \Leftrightarrow v\geq -u, v\leq u \Leftrightarrow |v|\leq u \Leftrightarrow |v|\leq u, u\geq 0$$

$$= \frac{1}{2}e^{-u} \cdot 1_{[0,\infty[}(u) \cdot 1_{[-u;u]}(v)$$

 \hookrightarrow Dichte von U ist

$$f_{U}(u) = \int_{-\infty}^{\infty} f_{U,V}(u,v)dv$$

=
$$\int_{-\infty}^{\infty} \frac{1}{2}e^{-u} \cdot 1_{[0;\infty[}(u) \cdot 1_{[-u;u]}(v)dv$$

=
$$ue^{-u}1_{[0;\infty[}(u)$$

Beachte: U ist Summe zweier st.u. Exp(1)-verteilter ZV.

(Erlangverteilung)

2.4 Funktionen zweier unabhängiger Zufallsvariablen

- Im Folgenden: X, Y st.u. ZV und eine stetige Funktion $g : \mathbb{R}^2 \to \mathbb{R}$.
- Gesucht: Die Verteilung von g(X, Y), z.B.

$$\Box$$
 $g(X,Y) = X + Y$ (Faltung, engl.: Convolution)

$$\Box$$
 $g(X,Y) = XY$

$$\Box g(X,Y) = X/Y$$

$$\square g(X,Y) = \max(X,Y)$$

$$\square g(X,Y) = \min(X,Y)$$

- \hookrightarrow Diskreter Fall: X, Y seien st.u.
 - $\ \square\ X$ nehme Werte in $\mathcal{T}_1 = \{x_0, x_1, x_2, \dots\}$ an,
 - \square Y nehme Werte in $\mathcal{T}_2 = \{y_0, y_1, y_2, \dots\}$ an.
- \hookrightarrow Betrachte eine Funktion $g: \mathcal{T}_1 \times \mathcal{T}_2 \to \mathbb{R}$. Die ZV Z = g(X, Y) nimmt nur Werte der Form $g(x_i, y_j)$, d.h. Werte in der folgenden diskreten Menge an:

$$\mathcal{Z} := g(\mathcal{T}_1 \times \mathcal{T}_2) = \{z \in \mathbb{R} : \exists i, j \in \mathbb{N}_0 \ z = g(x_i, y_j)\}\$$

 \hookrightarrow Dann hat Z eine diskrete Verteilung mit Dichte (für $z \in \mathcal{Z}$)

$$f_{Z}(z) = P(Z = z) = P(g(X, Y) = z) = P(\{(X, Y) \in \mathcal{T}_{1} \times \mathcal{T}_{2} : g(X, Y) = z\})$$

$$= \sum_{(x,y) \in \mathcal{T}_{1} \times \mathcal{T}_{2}} f_{X,Y}(x,y) \cdot 1_{\{z\}}(g(x,y)) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_{X,Y}(x_{i},y_{j}) \cdot 1_{\{z\}}(g(x_{i},y_{j}))$$

$$\stackrel{\text{st.u.}}{=} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_{X}(x_{i}) f_{Y}(y_{j}) \cdot 1_{\{z\}}(g(x_{i},y_{j}))$$

P(Z=z) ist die Summe all derjenigen Produkt-WS $f_X(x)f_Y(y)$ mit g(x,y)=z.

• Jetzt g(x, y) = x + y

Faltung von diskreten Zufallsvariablen

• Für st.u. reelle ZV X, Y mit Werten in $\mathcal{T}_1 = \{x_0, x_1, \ldots, \}$, $\mathcal{T}_2 = \{y_0, y_1, \ldots\}$ ist Z = X + Y diskrete ZV mit Werten in $\mathcal{T} = \{z : \exists i, j \in \mathbb{N} \ z = x_i + y_j\}$ und Dichte

$$f_Z(z) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_X(x_i) \cdot f_Y(y_j) \cdot 1_{\{z\}}(x_i + y_j). \quad \text{für } z \in \mathcal{T}$$
 (*)

• Spezialfall
$$\mathcal{T}_1 = \mathcal{T}_2 = \mathbb{N}_0$$
: $f_Z(z) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_X(i) \cdot f_Y(j) \cdot 1_{\{z\}}(i+j)$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_X(i) \cdot f_Y(j) \cdot 1_{\{j\}}(z-i) \text{ d.h.}$$

$$f_Z(z) = \sum_{i=0}^{z} f_X(i) \cdot f_Y(z-i) \text{ für } z \in \mathbb{N}_0$$

Beispiel: Binomialverteilung

- $X, Y \text{ st.u.}, X \sim Bin(1, p), Y \sim Bin(k, p), \qquad P(Y = j) = \binom{k}{j} p^{j} (1 p)^{k-j}$
- Für z = 0 gilt $P(X + Y = 0) = P(X = 0)P(Y = 0) = (1 p)(1 p)^k = (1 p)^{k+1}$
- Für z = k + 1 gilt $P(X + Y = k + 1) = P(X = 1, Y = k) = pp^k = p^{k+1}$
- Für $z \in \{1, \ldots, k\}$ gilt

$$P(X + Y = z) = P(X = 0)P(Y = z) + P(X = 1)P(Y = z - 1)$$

$$= (1 - p)\binom{k}{z}p^{z}(1 - p)^{k-z} + p\binom{k}{z-1}p^{z-1}(1 - p)^{k-(z-1)}$$

$$= (\binom{k}{z} + \binom{k}{z-1})p^{z}(1 - p)^{(k+1)-z}$$

$$= \binom{k+1}{z}p^{z}(1 - p)^{(k+1)-z}$$

• Insgesamt $X + Y \sim Bin(k+1, p)$

Faltung von Binomialverteilungen (Übungszettel!)

Falls X, Y st.u. mit $X \sim Bin(m, p), Y \sim Bin(k, p), dann <math>X + Y \sim Bin(m + k, p)$

Übung: Es seien X, Y stochastisch unabhängig und $Poi(\lambda)$ bzw. $Poi(\mu)$ -verteilt. Zeigen Sie zunächst für $n \in \mathbb{N}_0$: $P(X + Y = n) = \sum_{k=0}^{n} P(X = k) P(Y = n - k)$

$$P(X + Y = n) = P(X = 0, Y = n) + P(X = 1, Y = n - 1) + \dots + P(X = n, Y = 0)$$

$$= P(X = 0) P(Y = n) + \dots + P(X = n) P(Y = 0)$$

Folgern Sie daraus $P(X + Y = n) = \frac{(\lambda + \mu)^n}{n!} e^{-(\lambda + \mu)}$, d.h. $X + Y \sim Poi(\lambda + \mu)$

$$P(X + Y = n) = \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} e^{-\lambda} \cdot \frac{\mu^{n-k}}{(n-k)!} e^{-\mu}$$

$$= e^{-\lambda} e^{-\mu} \cdot \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \lambda^{k} \mu^{n-k}$$

$$= \frac{e^{-\lambda - \mu}}{n!} \cdot \sum_{k=0}^{n} \frac{n}{k!(n-k)!} |\lambda^{k} \mu^{n-k}|$$

$$= \frac{e^{-\lambda - \mu}}{n!} \cdot \sum_{k=0}^{n} \binom{n}{k} \lambda^{k} \mu^{n-k} = \frac{(\lambda + \mu)^{n}}{n!} e^{-(\lambda + \mu)}$$

$$= (\lambda + \mu)^{n}$$

Dies sind die diskreten Punktwahrscheinlichkeiten einer $Poi(\lambda + \mu)$ -Verteilung.

Hilfsmittel: $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$, binomische Formel: $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Summen von stetigen ZVen (Faltungssatz)

Seien X, Y st.u. stetig verteilte Zufallsvariablen und Z = X + Y. Dann gilt

$$f_Z(z) = f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy$$

Ergibt sich aus dem generischen Beispiel oben, z.B.

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) dx \stackrel{\text{st.u.}}{=} \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

Beispiele

Seien X und Y unabhängige exponentialverteilte Zufallvariablen mit den Parametern λ_1 und λ_2 , d.h. für x,y>0: $f_X(x)=\lambda_1e^{-\lambda_1x},\quad f_Y(y)=\lambda_2e^{-\lambda_2y}$

$$f_{X+Y}(z) = \int_0^z \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 (z-x)} dx = \int_0^z \lambda_1 \lambda_2 e^{-\lambda_2 z} e^{-(\lambda_1 - \lambda_2) x} dx, \quad z > 0$$

Dann zwei mögliche Ergebnisse/Verteilungstypen:

- $\lambda_1 \neq \lambda_2$: Hypo-Exponential verteilung: $f_{X+Y}(z) = \frac{\lambda_1 \lambda_2 (e^{-\lambda_1 z} e^{-\lambda_2 z})}{\lambda_2 \lambda_1} 1_{]0;\infty[}(z)$
- $\lambda_1 = \lambda_2 = \lambda$: Erlang(2)-Verteilung: $f_{X+Y}(z) = \lambda^2 z e^{-\lambda z} 1_{]0;\infty[}(z)$

Beide Verteilungen treten als Bedienzeitverteilungen auf (Simulation): Die Gesamt-Bedienzeit besteht dabei aus zwei unabhängigen exponentialverteilten Komponenten (Phasen). Verallgemeinerungen:

- Mehr Phasen, sequentiell (speziell: Erlang(n)-Verteilung)
- Mehr Phasen, Übergänge zwischen Phasen gemäß Matrix von Übergangs-WS.

Übung: Berechnen Sie die Dichte im obigen Beispiel für $\lambda_1 \neq \lambda_2$ und z > 0

$$\int_{0}^{z} \lambda_{1} \lambda_{2} e^{-\lambda_{2}z} e^{-(\lambda_{1} - \lambda_{2})x} dx = \lambda_{1} \lambda_{2} e^{-\lambda_{2}z} \cdot \int_{0}^{z} e^{-(\lambda_{1} - \lambda_{2})x} dx$$

$$= \lambda_{1} \lambda_{2} e^{-\lambda_{2}z} \cdot \left[\frac{-e^{-(\lambda_{1} - \lambda_{2})x}}{\lambda_{1} - \lambda_{2}} \right]_{0}^{z}$$

$$= \lambda_{1} \lambda_{2} e^{-\lambda_{2}z} \cdot \left(\frac{-e^{-(\lambda_{1} - \lambda_{2})x}}{\lambda_{1} - \lambda_{2}} - \left(\frac{-1}{\lambda_{1} - \lambda_{2}} \right) \right)$$

$$= \lambda_{1} \lambda_{2} e^{-\lambda_{2}z} \cdot \left(-e^{-(\lambda_{1} - \lambda_{2})z} - \left(\frac{-1}{\lambda_{1} - \lambda_{2}} \right) \right)$$

$$= \frac{\lambda_{1} \lambda_{2}}{\lambda_{1} - \lambda_{2}} \cdot \left(-e^{-\lambda_{1}z} + e^{-\lambda_{2}z} \right)$$

$$= \frac{\lambda_{1} \lambda_{2}}{\lambda_{2} - \lambda_{1}} \cdot \left(e^{-\lambda_{1}z} - e^{-\lambda_{2}z} \right)$$

Ubung: Berechnen Sie die Dichte im obigen Beispiel für $\lambda_1 = \lambda_2 = \lambda$ und z > 0

$$\int_{0}^{z} \lambda_{1} \lambda_{2} e^{-\lambda_{2} z} e^{-(\lambda_{1} - \lambda_{2}) x} dx = \int_{0}^{z} \lambda \lambda \cdot e^{-\lambda z} dx$$

$$= \lambda^{2} e^{-\lambda z} \cdot \int_{0}^{1} 1 dx$$

$$= \lambda^{2} e^{-\lambda z} \cdot z$$

• *-Schreibweise bei st.u. X, Y: Statt $\mathcal{L}(X + Y)$ schreibt man $\mathcal{L}(X) * \mathcal{L}(Y)$

Wichtige Faltungsformeln

- Diskret
 - $\Box Bin(n,p) * Bin(k,p) = Bin(n+k,p)$ Daraus: Sind X_1, \ldots, X_n u.i.v $\sim Bin(1,p)$, dann $X_1 + \cdots + X_n \sim Bin(n,p)$.
 - \square $Poi(\lambda) * Poi(\mu) = Poi(\lambda + \mu)$
- Stetig
 - $\square \mathcal{N}(\mu_1, \sigma_1^2) * \mathcal{N}(\mu_2, \sigma_1^2) = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 - □ $Erlang(\lambda, n) * Erlang(\lambda, m) = Erlang(\lambda, n + m)$ Daraus: Sind $X_1, ..., X_n$ u.i.v $\sim Exp(\lambda)$, dann $X_1 + \cdots + X_n \sim Erlang(\lambda, n)$

Die letzten beiden Faltungsformeln sind Spezialfälle der Faltungsformel der Gamma-Verteilung.

2.5 Maximum/Minimum unabhängiger Zufallsvariablen

Sind X_1, \ldots, X_n unabhängige und identisch stetig verteilte Zufallsvariablen mit Dichtefunktion $f_X(\cdot)$ und Verteilungsfunktion $F_X(\cdot)$, dann gilt für das Maximum Y_n und das Minimum Z_n der ZVen:

$$f_{Y_n}(y) = n[F_X(y)]^{n-1}f_X(y),$$

 $f_{Z_n}(z) = n[1 - F_X(z)]^{n-1}f_X(z).$

Dichten ergeben sich mit Kettenregel durch Ableiten der Verteilungsfunktionen:

•
$$F_{Y_n}(y) = P(\max(X_1, ..., X_n) \le y) = P(X_1 \le y, ..., X_n \le y) \stackrel{uiv}{=} F_X(y)^n$$

•
$$F_{Z_n}(z) = 1 - P(X_1 > z, ..., X_n > z) \stackrel{uiv}{=} 1 - (1 - F_X(z))^n$$

Bsp. Systemausfall

System mit n Teilsystemen mit u.i.v. Ausfallzeitpunkten $X_1,\ldots,X_n \sim \textit{Exp}(\lambda)$

Gesucht ist die Verteilung(sfunktion) des Ausfallzeitpunktes X des Gesamtsystems

a) bei Parallelschaltung, d.h. Ausfall in sämtlichen Teilsystemen. Für x > 0:

$$F_X(x) = P(X \le x) = P(X_1 \le x, \dots, X_n \le x) \stackrel{uiv}{=} P(X_1 \le x)^n = (1 - e^{-\lambda x})^n$$

Nach Ableiten: Dichte $f_X(x) = n\lambda e^{-\lambda x} (1 - e^{-\lambda x})^{n-1} 1_{[0,\infty]}(x)$

b) Serienschaltung, d.h. Ausfall in einem Teilsystem. Für x > 0:

$$F_X(x) = P(\min(X_i) \le x) \stackrel{uiv}{=} 1 - (1 - F_{X_1}(x))^n = 1 - (e^{-\lambda x})^n = 1 - e^{-n\lambda x}$$
 ist Verteilungsfunktion einer $Exp(n\lambda)$ -Verteilung.

2.6 Übersicht von Verteilungen und Transformationsregeln

Voraussetzung jeweils: X_1, X_2, \dots sind u.i.v. Zufallsvariablen.

	Verteilung	Träger	Dichte $f(x)$	Wenn $\mathcal{L}(X_i)$ =	und $Y =$	$dann\ \mathcal{L}(Y) =$
diskret	Bernoulli $Bin(1, p)$	$\{0,1\}$	$p^{\times}(1-p)^{1-x}$		$1_B(X_1)$	$Bin(1, P(X_1 \in B))$
	Binomial $Bin(n, p)$	$\{0,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$Bin(k_i, p)$	$X_1 + X_2$	$Bin(k_1+k_2,p)$
	Geometrisch $Geo(p)$	N	$p(1-p)^{x-1}$	Bin(1, p)	$\inf\{i: X_i = 1\}$	Geo(1, p)
				$Exp(\lambda)$	$\lfloor X_1 \rfloor + 1$	$Geo(1-e^{-\lambda})$
	NegBin. $NBin(r, p)$	$\mathbb{N}_{\geq r}$	$(-1)^{\times} {\binom{-r}{x}} p^r (1-p)^{\times}$	Bin(1, p)	$\inf\{n: \sum_{i=1}^n X_i \ge r\}$	NBin(r, p)
				$NBin(r_i, p)$	$X_1 + X_2$	$NBin(r_1+r_2,p)$
	Poisson $Poi(\lambda)$	\mathbb{N}_0	$\frac{\lambda^{x}}{x!}e^{-\lambda}$	$Poi(\lambda_i)$	$X_1 + X_2$	$Poi(\lambda_1 + \lambda_2)$
stetig	Rechteck $Re(a, b)$	[a; b]	$\frac{1}{b-a}$	Re(a,b)	$c + dX_1, d > 0$	(' ' ' '
	Exponential $Exp(\lambda)$	$[0;\infty[$	$\lambda e^{-\lambda x}$	Re(0,1)	$-rac{\ln(1-X_1)}{\lambda}$, $\lambda>0$	$Exp(\lambda)$
				$Exp(\lambda_i)$	$\min(X_1, X_2)$	$Exp(\lambda_1 + \lambda_2)$
	Normal $\mathcal{N}(\mu, \sigma^2)$	$]-\infty;\infty[$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\mathcal{N}(\mu, \sigma^2)$	$aX_1 + b, a \neq 0$	$\mathcal{N}(a\mu+b,a^2\sigma^2)$
				$\mathcal{N}(\mu_i, \sigma_i^2)$	$X_1 + X_2$	$\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
	Lognormal $\mathcal{LN}(\mu, \sigma^2)$	[0;∞[$\frac{1}{\sigma \times \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma}\right)^2}$	$\mathcal{N}(\mu, \sigma^2)$	e^{X_1}	$\mathcal{LN}(\mu, \sigma^2)$
	Gamma $\Gamma(\lambda,c)$	[0; ∞[$\frac{\lambda^{c}}{\Gamma(c)} x^{c-1} e^{-\lambda x}$	$\Gamma(\lambda, c_i)$	$X_1 + X_2$	$\Gamma(\lambda, c_1 + c_2)$
	Pareto $Par(\lambda, c)$	$[\lambda;\infty[$	$\frac{c}{\lambda} \left(\frac{\lambda}{x} \right)^{c+1}$	$Exp(\mu)$	e^X	$Par(1, \mu)$
	Weibull $Wei(\lambda, c)$	[0; ∞[$\frac{c}{\lambda} \left(\frac{x}{\lambda} \right)^{c-1}$	$Exp(\mu)$	$X^{1/c}$	$Wei(\mu^{1/c},c)$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022