MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 9, 2024

Outline

- Real Analysis Lecture 3
 - Decimal expansions
 - The Triangle Inequality

Outline

- Real Analysis Lecture 3
 - Decimal expansions
 - The Triangle Inequality

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

Notation:

$$a_0.a_1a_2a_3...a_n$$
.

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

Notation:

$$a_0.a_1a_2a_3...a_n$$
.

Any positive real number x > 0 can be approximated by a finite decimal expansion.

Theorem (Apostol Theorem 1.20)

For any real x > 0 and $n \in \mathbb{Z}_+$, there exists a finite decimal expansion $r_n = a_0.a_1a_2...a_n$ with

$$r_n \leq x < r_n + \frac{1}{10^n}.$$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$.

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$. Then $0 \le a_k \le 9$ for all $k \ge 1$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$. Then $0 \le a_k \le 9$ for all $k \ge 1$ and

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n+1}{10^n}$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\dots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

Note: this is slightly different than the usual limit meaning, for two good reasons:

we haven't defined limits

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x = a_0.a_1a_2a_3a_4...$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.999999999...$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x = a_0.a_1a_2a_3a_4...$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.999999999...$$

$$1 \nless 0 + \frac{9}{10} + \frac{9}{100} + \dots + \frac{9+1}{10^n} = 1.$$

Problem

Find the decimal expansion of 1/7.

Problem

Find a rational number whose decimal expansion is

0.45454545....

Problem

Which kinds of numbers have decimal expansions that end? (Meaning that after a while, all the decimals are zero?

Problem

Which kinds of numbers have decimal expansions that repeat?

Outline

- Real Analysis Lecture 3
 - Decimal expansions
 - The Triangle Inequality

Absolute value

The **absolute value** of $x \in \mathbb{R}$ is

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

In particular,

$$0 \le |x|$$

and also

$$-|x| \le x \le |x|.$$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If
$$|x| \le a$$
 then $-a \le -|x|$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Conversely, if $-a \le x \le a$ then

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Conversely, if $-a \le x \le a$ then

$$x \ge 0 \Rightarrow |x| = x \le a$$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Conversely, if $-a \le x \le a$ then

$$x \ge 0 \Rightarrow |x| = x \le a$$

$$x \le 0 \Rightarrow |x| = -x \le -(-a) = a$$

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Proof.

$$-|x| \le x \le |x|$$
 and $-|y| \le y \le |y|$

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Proof.

$$-|x| \le x \le |x|$$
 and $-|y| \le y \le |y|$

Adding these together, we get

$$-(|x|+|y|) \le x+y \le |x|+|y|$$

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Proof.

$$-|x| \le x \le |x|$$
 and $-|y| \le y \le |y|$

Adding these together, we get

$$-(|x|+|y|) \le x+y \le |x|+|y|$$

It follows from the previous theorem that

$$|x+y| \le |x| + |y|$$

Advanced triangle inequality

Theorem (Triangle inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ we have

$$|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|.$$

Advanced triangle inequality

Theorem (Triangle inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ we have

$$|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|.$$

Proof.

Induction.

Theorem (Cauchy-Schwartz Inequality (Apostol Theorem 1.23))

If x_1, \ldots, x_n and y_1, \ldots, y_n are real numbers, then

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \leq \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$$

If y_k isn't always zero, then equality holds if and only if there exists $t \in \mathbb{R}$ with $x_k = ty_k$ for all k.

Theorem (Cauchy-Schwartz Inequality (Apostol Theorem 1.23))

If x_1, \ldots, x_n and y_1, \ldots, y_n are real numbers, then

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \le \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$$

If y_k isn't always zero, then equality holds if and only if there exists $t \in \mathbb{R}$ with $x_k = ty_k$ for all k.

Vector version:

$$(\vec{x}\cdot\vec{y})^2 \leq |\vec{x}|^2 |\vec{y}|^2.$$


```
Proof.
```

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \text{ with equality iff all terms zero}$$

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \text{ with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \quad \text{with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

Take
$$t = -(\sum_{k=1}^{n} x_{k} y_{k}) / (\sum_{k=1}^{n} y_{k}^{2})$$
:

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \quad \text{with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

Take
$$t = -\left(\sum_{k=1}^{n} x_k y_k\right) / \left(\sum_{k=1}^{n} y_k^2\right)$$
:

$$\sum_{k=1}^{n} x_k^2 - \frac{\left(\sum_{k=1}^{n} x_k y_k\right)^2}{\left(\sum_{k=1}^{n} y_k^2\right)} \ge 0.$$

Theorem (Minkowski inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ and $y_1, y_2, \ldots, y_n \in \mathbb{R}$ we have

$$\left(\sum_{k=1}^{n}(x_k+y_k)^2\right)^{1/2} \leq \left(\sum_{k=1}^{n}x_k^2\right)^{1/2} + \left(\sum_{k=1}^{n}y_k^2\right)^{1/2}$$

Theorem (Minkowski inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ and $y_1, y_2, \ldots, y_n \in \mathbb{R}$ we have

$$\left(\sum_{k=1}^{n}(x_k+y_k)^2\right)^{1/2}\leq \left(\sum_{k=1}^{n}x_k^2\right)^{1/2}+\left(\sum_{k=1}^{n}y_k^2\right)^{1/2}$$

Vector version:

$$|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|.$$

Theorem (Minkowski inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ and $y_1, y_2, \ldots, y_n \in \mathbb{R}$ we have

$$\left(\sum_{k=1}^{n}(x_k+y_k)^2\right)^{1/2}\leq \left(\sum_{k=1}^{n}x_k^2\right)^{1/2}+\left(\sum_{k=1}^{n}y_k^2\right)^{1/2}$$

Vector version:

$$|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|.$$

A higher dimensional triangle inequality!

Proof.

By the triangle inequality:

Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Now applying the Cauchy-Schwartz inequality:

Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Now applying the Cauchy-Schwartz inequality:

$$\leq \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2} + \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2}$$

$$= \left[\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} + \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2}\right] \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2}$$

Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Now applying the Cauchy-Schwartz inequality:

$$\leq \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2} + \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2}$$

$$= \left[\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} + \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2}\right] \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2}$$

