Zadanie egzaminacyjne 1, wersja 0 Rachunek prawdopodobieństwa i statystyka

Wojciech Woźniak

Treść zadania

Rozwiązaniem zadania ma być funkcja, obliczająca wartość dystrybuanty rozkładu chi-kwadrat z podanym stopniem swobody, w podanym punkcie.

$$\chi^2(k): f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}, \quad k \in \mathbb{N}, \quad x \in [0, \infty)$$

Opis rozwiązania

Opis rozpocznę od zdefiniowania, co dokładnie będziemy liczyć. Poźniej wyznaczę wzór na funkcję Gamma Eulera (taki, który pozwoli nam obliczyć jej wartość bez całek), a na koniec opiszę, jak bedzie liczona główna całka (czyli wzór trapezów i metoda Romberga).

Co będziemy liczyć?

Dystrybuanta F(x) to funkcja, która opisuje prawdopodobieństwo, że zmienna losowa X przyjmie wartość nie większą niż x. Będziemy ją wyznaczać, licząc całkę oznaczoną z podanej w treści zadania funkcji gęstości prawdopodobieństwa f(x):

$$F(x) = P(X \le x) = \int_0^x f(t) dt$$

Obliczanie funkcji Gamma Eulera dla k

Dla parzystych k to obliczenie wartości tej funkcji jest trywialne (argument będzie całkowity, dzięki czemu możemy skorzystać ze wzoru z silnią udowodnionego na ćwiczeniach).

Dla nieparzystych k sprawa się lekko komplikuje - da się jednak wyprowadzić wzór, dzięki któremu unikniemy liczenia całki! Zgodnie ze wskazówką z wykładu zauważamy, że argument funkcji będzie w postaci n $+\frac{1}{2}$. Skorzystajmy z relacji Legendre'a:

$$\Gamma(n)\Gamma\left(n+\frac{1}{2}\right) = \sqrt{\pi} \, 2^{1-2n}\Gamma(2n), \quad n>0$$

Powyższy wzór przekształcamy do postaci:

$$\Gamma\left(n+\frac{1}{2}\right) = \sqrt{\pi} \, 2^{1-2n} \frac{\Gamma(2n)}{\Gamma(n)}, \quad n > 0$$

Co daje nam możliwość obliczania wartości tej funkcji licząc tylko wartości Gammy dla liczb całkowitych (a więc bez całek).

Wzór trapezów

Ideą wzoru jest zinterpretowanie całki oznaczonej jako pole pod wykresem funkcji (dzieląc je potem na trapezy i sumując ich pola). By wyliczyć wartość całki $\int_a^b f(x) dx$ wykonujemy następujące kroki:

- 1. Przedział całkowania [a, b] dzielimy na n równych części. (W metodzie Romberga $n = 2^i$),
- 2. Długość takiej części oznaczamy jako $l = \frac{b-a}{n}$,
- 3. Obliczamy wartości funkcji w punktach $a, a+l, a+2l, \cdots, b-l, b$.

Po wykonaniu tych kroków jesteśmy w stanie wyznaczyć przybliżoną wartości całki z pomocą poniższego wzoru:

$$\int_{a}^{b} f(x) dx \approx \frac{l}{2} (f(a) + 2f(a+l) + 2f(a+2l) + 2f(b-l) + f(b))$$

Metoda Romberga

Jest to jedna z metod poznanych na Analizie Numerycznej. Jest ona rozszerzeniem wzoru trapezów. W trakcie obliczania funkcji tworzymy macierz dolnotrójkątną. Pierwszą kolumnę zapełniamy, korzystając ze wzoru trapezów, wartości w kolejnych kolumnach wyznaczamy interpolacją Richardsona.

$$R = \begin{bmatrix} R_{0,1} & & & \\ R_{0,1} & R_{1,1} & & \\ R_{0,2} & R_{1,2} & R_{2,2} & \\ R_{0,3} & R_{1,3} & R_{2,3} & R_{3,3} \end{bmatrix}$$

Metoda Romberga wyznacza $R_{0,i}$ korzystając z metody trapezów:

$$R_{0,i}: R_{2^i} = \frac{b-a}{2^i} \sum_{k=0}^{2^{i-1}} \frac{f(x_k) + f(x_{k+1})}{2}$$

Wartości w dalszych kolumnach wyznaczane są wzorem rekurencyjnym:

$$R_{m,i} = \frac{4^m * R_{m-1,i+1} - R_{m-1,i}}{4^m - 1}$$

Implementacja rozwiązania

W pliku z1.m znajdują się implementacje funkcji, pozwalające wyliczyć szukane wartości:

- 1. Funkcja z1() obsługuje przyjęcie parametrów wejścia (x,k), wywołuje funkcję metody Romberga i wypisuje wynik wraz z wynikiem z wbudowanej funkcji dla porównania.
- 2. Romberg(f, a, b, n) implementuje metodę Romberga dla wartości funkcji f, w przedziale od a do b, dla macierzy rozmiaru n. Korzystamy z wymienionych wyżej wzorów (po przeindeksowaniu dla uproszczenia implementacji).
- 3. pdf(x,k) to funkcja gęstości prawdopodobieństwa rozkładu chi-kwadrat w punkcie x z k stopniami swobody.
- 4. $gamma_{k/2}(k)$ liczy wartość funkcji Gamma Eulera dla k/2, korzystając z wyprowadzonego wyżej wzoru.
- 5. fac(n) to pomocnicza funkcja rekurencyjna, licząca silnię z n.