3 NEOPLASIA

NEOPLASIAN PERUSTEET

I. TERMISTÖ

- A. Neoplasia tarkoittaa klonaalista, kontrolloimatonta soluproliferaatiota, joka on seurausta solun geneettisestä mutaatiosta.
 - 1. Klonaalisuudella viitataan siihen, että kaikki neoplastiset solut ovat yhden mutatoituneen solun jälkeläisiä.
 - a. Esimerkiksi B-solujen klonaalisuus voidaan määrittää Ig-kevyen ketjun fenotyypin suhteen avulla.
 - i. Jokainen B-solu esittää kevyttä ketjua, joka on joko kappa tai lambda; normaali suhde on 3:1.
 - ii. B-solukon hyperplasiassa suhde säilyy normaalina (polyklonaalinen), neoplasiassa (esim. lymfooma) suhde kasvaa tai laskee (monoklonaalinen).
 - 2. Solut eivät ole kuitenkaan kaikki samanlaisia, sillä syöpäsolukossa tapahtuu jatkuvasti sattumanvaraisia mutaatioita.
- B. Neoplastiset kasvaimet (tuumorit) jaetaan benigneihin ja maligneihin (hyvän- ja pahanlaatuisiin).
 - 1. Benignit tuumorit kasvavat yleensä hitaasti ja erottuvat selvästi ympäröivästä kudoksesta.
 - a. Pysyvät siis lokalisoituneina eivätkä metastasoi.
 - 2. Malignit tuumorit kasvavat yleensä nopeasti ja invasoivat ympäröivään kudokseen.
 - a. Primaarikasvaimen eli alkuperäisen tuumorin solut pystyvät myös siirtymään muualle elimistöön ja muodostaa etäpesäkkeen (metastasointi).
 - b. Sekundaarikasvain tarkoittaa etäpesäkkeitä tai kasvaimia, jotka ilmaantuvat uudestaan alkuperäiseen kudokseen kirurgisen hoidon jälkeen.
 - 3. Syöpä tarkoittaa maligneja kasvaimia.
- C. Rajalaatuisilla kasvaimilla on joitain maligneja piirteitä, mutta käyttäytyminen ei ole selkeästi pahanlaatuista.
- D. Kasvaimet nimetään niiden erilaistumissuunnan eli sen perusteella, millaista kudosta tuumorit tuottavat.
 - 1. Hyvänlaatuisten kasvainten nimessä yleensä jälkiliite -ooma.
 - 2. Pahanlaatuisten kasvainten jälkiliite vaihtelee.

Taulukko 1. Esimerkkejä hyvän- ja pahanlaatuisten kasvainten nimeämisestä.

Lähtökudos		Hyvänlaatuisia kasvaimia	Pahanlaatuisia kasvaimia
Epiteeli	Levyepiteeli	Papillooma	Levyepiteelikarsinooma
	Lieriöepiteeli tai rauhasepiteeli	Adenooma	Adenokarsinooma
	Uroteeli	Papillooma	Uroteelikarsinooma
Mesenkymaalinen eli tukikudos	Sidekudos	Fibrooma	Fibrosarkooma
	Rasvakudos	Lipooma	Liposarkooma
	Rusto	Kondrooma	Kondrosarkooma
	Luu	Osteooma	Osteosarkooma
	Poikkijuovainen lihas	Rabdomyooma	Rabdomyosarkooma
	Sileälihas	Leiomyooma	Leiomyosarkooma
	Verisuonet	Hemangiooma	Angiosarkooma
	Aivokalvot	Meningeooma	Anaplastinen meningeooma
	Mesoteeli	Adenomatoidi tuumori	Mesoteliooma
Hermokudos	Gliasolut	-	Gliooma, glioblastooma, astrosytooma, oligodendrogliooma
	Perifeeriset hermot	Schwannooma, neurofibrooma	Maligni perifeerinen hermotuppituumori
Hematopoieettinen	Luuydin	-	Leukemia
	Imukudos	-	Lymfooma
Itusolut	Munasolu, siittiö tai niiden esiaste	Teratooma, kypsä	Teratooma, epäkypsä
		-	Seminooma, dysgerminooma, embryonaalinen karsinooma
Embryonaalinen solukko	Epäkypsä hermokudos	-	Neuroblastooma
	Epäkypsä munuaiskudos	-	Nefroblastooma
	Epäkypsä verkkokalvo	_	Retinoblastooma

KARSINOGENEESI

I. PERIAATTEET

- A. Syövän synty on monen vaiheen prosessi, joka pohjautuu useiden geneettisten muutosten kertymiseen solussa niin, ettei niitä pystytä korjaamaan, mutta ne eivät aiheuta suoraa solukuolemaa.
 - 1. Muutokset voivat kohdistua proto-onkogeeneihin, kasvunrajoitegeeneihin, apoptoosin säätelijägeeneihin sekä kasvainsolujen ja normaalien solujen interaktioita välittäviin geeneihin.
 - 2. Muutokset johtavat kontrolloimattomaan solujen kasvuun ja erilaistumiseen.
- B. Mutaatiot voidaan jakaa matkustajamutaatioiksi (passenger) ja ajurimutaatioiksi (driver).
 - 1. Matkustajamutaatiot eli toissijaiset mutaatiot eivät vaikuta kasvaimen kasvuun.
 - a. Voivat kuitenkin tietyissä olosuhteissa olla hyödyllisiä tuumorille, esim. lääkeresistenssiä aiheuttamalla.

- 2. Ajurimutaatiot vaikuttavat "syöpägeeneihin" ja suorasti aiheuttavat kasvaimen syntyä ja kasvua.
- C. Mutaatiotyyppejä ovat esim. pistemutaatio, uudelleenjärjestäytyminen, deleetio ja geenimonistumat.
 - 1. Myös epigeneettiset muutokset voivat vaikuttaa syövän muodostumiseen.
 - a. Promootterialueiden metylaatio voi hiljentää kasvunrajoitegeenejä.
- D. DNA-vaurioita aiheuttavat tekijät ovat karsinogeenejä eli ne lisäävät riskiä kasvaimille.
 - 1. Voivat olla kemikaaleja (esim. tupakansavu), onkogeenisiä mikrobeja (esim. HPV) tai fysikaalisia (esim. ionisoiva säteily)

II. MUUTOSTEN KOHDEGEENIT

- A. Proto- eli esionkogeeni tarkoittaa normaalia geeniä, joka mutatoituneena tai yliekspressoituneena kiihdyttää solun kasvua.
 - 1. Näin mutatoitunutta proto-onkogeenia kutsutaan onkogeeniksi.
- B. Kasvunrajoitegeenit
 - 1. Normaalissa solussa kasvua vaimentava funktio ja estää syövän tunnusmerkkien ilmentymistä.
- C. Apoptoosin säätelijägeenit
 - 1. Epätasapainot apoptoosia suosivien ja elossapysymistä edistävien signaalien välillä johtavat apoptoosin estymiseen.
- D. Kasvainsolujen ja normaalien solujen interaktioita välittävät geenit
 - 1. Tietyt geenit säätelevät tuumorisolujen tunnistamista ja mutaatiot niissä voivat häiritä immuunifunktiota kasvainta vastaan.

Syövän ominaispiirteet

I. PERIAATTEET

- A. Kaikissa syövissä on kahdeksan (8) tunnusmerkkiä, jotka mahdollistavat syövän kasvun.
 - 1. Omien kasvusignaalien tuottaminen ja ylläpitäminen
 - 2. Riippumatttomuus kasvunrajoitetekijöistä
 - 3. Solukuoleman välttäminen
 - 4. Loputon jakautumiskyky
 - 5. Oman verisuonituksen edistäminen
 - 6. Ympäristöön tunkeutuminen ja etäpesäkkeiden lähettäminen
 - 7. Immuunipuolustuksen välttäminen
 - 8. Poikkeava metabolia
- B. Kasvua ja leviämistä edistävät inflammaatio ja genomin epävakaus.

II. OMIEN KASVUSIGNAALIEN TUOTTAMINEN JA YLLÄPITÄMINEN

- A. Perustuu proto-onkogeenien gain-of-function mutaatioihin, jotka tekevät niistä onkogeenejä.
- B. Onkogeenit voidaan jakaa kasvutekijöihin, kasvutekijäreseptoreihin, signaalinvälittäjiin, transkriptiotekijöihin ja solusyklin säätelijöihin.
 - 1. Kasvutekijät aikaansaavat solujen kasvua ja proliferaatiota.
 - a. Yleensä solut eivät tuota samaa kasvutekijää, jolle ne ovat itse reaktiivisia, mutta tämä toiminta saattaa häiriintyä syövissä muodostaen autokriinisilmukan (esim. PDGF astrosytoomissa).

- 2. Kasvutekijäreseptorit vastaanottavat kasvutekijöiden signaalin ja välittävät sen signaalinvälittäjien kautta eteenpäin.
 - a. Reseptoreita aktivoivat mutaatiot tai yliekspressiot lisäävät kasvua stimuloivaa signalointia, esim:
 - i. ERBB1 yliekspressio keuhkojen levyepiteelikarsinoomissa
 - ii. ERBB2 (HER2) yliekspressio rintasyövissä
 - iii. KIT pistemutaatio gastrointestinaalisessa stroomakasvaimessa (GIST)
- 3. Signaalinvälittäjät sijaitsevat reseptorista alavirtaan ja välittävät tiedon sen aktivaatiosta tumaan.
 - a. RAS on G-proteiini, joka on normaalisti sitoutuneena kasvutekijäreseptoriin GDP-sitoutuneessa inaktiivisessa muodossa.
 - i. Kasvutekijän sitoutuminen reseptoriin johtaa GDP:n vaihdon GTP:hen, joka aktivoi RAS:n.
 - ii. Aktivoitu RAS stimuloi alavirtaan mahdollisesti kahta eri viestipolkua: RAF/ERK/MAPK ja PI3K/AKT.
 - iii. Nämä vievät viestin tumaan, jossa ne vaikuttavat transkriptiotekijöihin, kuten MYC.
 - iv. RAS:n aktivoitumistila on normaalisti lyhytaikainen, sillä RASproteiinin oma GTPaasi-aktiviteetti (GTPase activating protein, GAP) hajottaa GTP:n takaisin GDP:ksi.
 - v. GTPaasi-aktiviteettia heikentävät RAS-geenin pistemutaatiot pidentävät aktiivista tilaa johtaen jatkuvaan kasvusignalointiin (esim. GAP:n, kuten NF1:n mutaatio neurofibromatoosissa).
 - vi. RAS on yleisin onkogeeni (n. 30% kaikista kasvaimista).
 - vii. Mutaatioita voi myös olla RAS-reitin haaroissa: esim. aktivoivat BRAF-mutaatiot MAPK-viestitiessä
 - b. ABL on tyrosiinikinaasi, jota normaalisti hiljennetään solunsisäisillä mekanismeilla.
 - i. t(9;22) translokaatio tuottaa BCR-ABL-hybridiproteiinia (Philadelphia-kromosomi).
 - ii. Tämä aiheuttaa jatkuvaa tyrosiinikinaasiaktiivisuutta, joka stimuloi kaikkia RAS-reitin signaaleja.
 - iii. Yhteydessä KML ja joihinkin ALL
- 4. Transkriptiotekijät käynnistävät ylemmän signaalin määrittämän geeniluennan ja siten RNA:n ja proteiinien muodostamisen.
 - a. MYC aktivoi mm. monia kasvua kannustavia geenejä, kuten CDK:ita (solusyklin säätelijöitä).
 - b. esim. c-MYC:n t(8;14) translokaatio johtaa MYC:n ylituotantoon ja on yhteydessä Burkittin lymfoomaan.
- 5. Solusyklin säätelijät (sykliinit ja sykliinistä riippuvat kinaasit) edistävät solusyklin siirtymistä vaiheesta toiseen.
 - a. Solusykli koostuu interfaasista (G1, S ja G2) ja mitoosista (M).
 - i. Solusyklin ulkopuolella oleva solu on lepotilassa (G0).
 - ii. G1-vaiheessa syntetisoidaan DNA:n kahdentumiseen tarvittavia komponentteja.
 - iii. S-vaiheessa DNA kopioidaan.

- iv. G2-vaiheessa solu valmistautuu tuman jakautumiseen (M).
- v. Tärkeät tarkastuspisteet ovat G1/S- ja G2/M-transitiot.
- b. Sykliinit ja niistä riippuvat kinaasit (CDK) kompleksoituvat ja fosforyloivat solusykliä edistäviä proteiineja.
- c. esim. CDK4- tai sykliini D-geenien gain-of-function mutaatiot edistävät G1/S-tarkastuspisteen läpi etenemistä.
 - i. CCND1:n (sykliini D) t(11;14) translokaatio yhteydessä manttelisolulymfoomaan.
 - ii. CDK4-amplifikaatioita esiintyy erityisesti melanoomissa.
- III. Riippumattomuus kasvunrajoitetekijöistä
 - A. Normaalisti kasvunrajoitegeenit (tuumorisupressorigeenit) tuottavat proteiineja, jotka estävät ja rajoittavat solunjakautumista ja kasvua, esim. p53 (kaikkein yleisin mutaatiokohde syövissä) ja RB.
 - B. Molemmat kasvunrajoitegeenin alleelit pitää inaktivoitua, jotta kasvunrajoitevaikutus poistuisi (kaksivaihe- eli Knudsonin two-hit-hypoteesi).
 - 1. Kasvainkudoksessa siten vallitsee alleelivaurion suhteen homotsygotia (heterotsygotian menetys, LOH).
 - C. Retinoblastoomageeni (RB) tuottaa RB-proteiinia, joka säätelee siirtymistä G1-vaiheesta S-vaiheeseen.
 - 1. Aikaisin G1-vaiheessa RB on aktivoitunut (hypofosforyloitunut) ja sitoo E2F-transkriptiotekijöitä.
 - 2. Kasvutekijäsignalointi johtaa sykliini D/CDK4-kompleksien aktivaatioon, jolloin ne fosforyloivat RB:tä vapauttaen E2F, mitä seuraa S-vaiheeseen siirtymistä säätelevien geenien transkriptio.
 - Kompleksin toimintaa säätelee CDK-inhibiittori p16 (CDKN2A-geeni), jonka deleetiot ja mutationaaliset inaktivaatiot ovat todella yleisiä kasvaimissa.
 - 3. Kaksivaihehypoteesin mukaan molemmat RB-geenit tulee olla toimintahäiriöllisesti mutatoituneet tai deletoituneet, jolloin E2F on jatkuvasti vapaa ylläpitäen säätelemätöntä solunjakautumista.
 - a. Perinnöllisessä retinoblastoomassa (verkkokalvon varhaissolusyöpä) genomissa on valmiiksi RB1-geenivirhe, jolloin vaaditaan vain yksi somaattinen "isku" lisää terveeseen alleeliin.
 - D. TP53-kasvunrajoitegeeni tuottaa transkriptiotekijää p53, joka säätelee siirtymistä G1-vaiheesta S-vaiheeseen.
 - 1. Normaalitilassa p53-määrät ovat vähäisiä, sillä MDM2-entsyymi ubikitinoi p53:a ohjaten sitä proteasomeihin hajotettavaksi.
 - a. Myös amplifikoiva mutaatio MDM2-geenissä voi siten johtaa heikkoon p53-toimintaan.
 - 2. Solun stressitilanteet (esim. DNA:n vauriot) aktivoivat p53, joka pysäyttää solusyklin ja aloittaa DNA:n korjausprosessit.
 - a. p53 lisää esim. CDKN1A (p21) transkriptiota
 - b. p21 estää sykliini-CDK-komplekseja ja siten RB:n fosforylaatiota, mikä johtaa solusyklin pysähtymisen G1vaiheeseen.

- 3. Jos DNA:n vaurio on palautumaton, p53 joko ohjaa solun pysyvään senesenssiin tai käynnistää apoptoosin ja estää siten haitallisen mutaation leviämisen jälkeläissoluihin.
 - a. p53 lisää proapoptoottisten geenien, kuten BAX:n transkriptiota, mikä johtaa apoptoosiin (kts. apoptoosin mekanismi)
- 4. Perinnöllinen inaktivoiva mutaatio TP53:ssa aiheuttaa Li-Fraumenin (SBLA) syndrooman, jossa esiintyy toisen alleelin ituratamutaatio.
 - a. Kaksivaihehypoteesia seuraten mahdollisuus maligniteeteille kasvaa runsaasti (25x riski), sillä vain toisen alleelin tulee vaurioitua satunnaisesti.
 - b. Ilmenee alttiutena useille eri syöville, kuten sarkoomille, rintasyövälle, leukemioille ja lisämunuaisen kuorikerroksen karsinoomille (SBLA).

II. SOLUKUOLEMAN VÄLTTÄMINEN

- A. Tuumorisoluissa on usein mutaatioita apoptoosia säätelevissä geeneissä.
 - 1. Syöpäsoluihin vaikuttaa monia rasitteita, kuten kasvusignaalihäiriöitä, ER-stressin laukaisevia poikkeavasti laskostuneita proteiineja ja liiallisen kasvun aiheuttamaa hypoksiaa.
- B. Apoptoosin säätely tapahtuu BCL2-perheen proteiinien eli apoptoosin estäjien (esim. BCL-XL, BCL2) ja edistäjien (esim. BAX, BAK) tasapainon kautta.
 - 1. Myös TP53-mutaatiot voidaan laskea solukuoleman välttämismekanismeihin, sillä p53:n toiminta ohjaa apoptoottisten geenien transkriptiota.
 - 2. Apoptoosia estävän BCL2:n yliekspressio todetaan noin puolessa ihmissyövistä, joista klassinen esimerkki on follikulaarinen lymfooma.
 - a. t(14;18) johtaa lisääntyneeseen BCL2, mikä suojaa B-lymfosyyttejä apoptoosilta.
 - b. Tämä johtaa B-lymfosyyttien kertymiseen imusolmukkeisiin.

III. LOPUTON JAKAUTUMISKYKY (SENESENSSIN VÄISTÖ)

- A. Normaalisti somaattiset solut voivat jakautua vain rajallisen määrän kertoja (Hayflickin raja), jonka jälkeen ne siirtyvät replikaativiseen senesenssiin.
 - 1. Kromosomien päissä olevat toistojaksot eli telomeerit toimivat mm. DNA:n replikaation aloituskohtina ja ne lyhenevät solun jakautuessa.
 - 2. Lopulta DNA:n replikaatio ei enää käynnisty, mikä johtaa senesenssiin.
- B. Normaalisti ainoastaan sukusoluissa ja kantasoluissa ilmenee telomeraasientsyymiä (TERT), joka ylläpitää telomeerien pituutta.
 - 1. Telomeraasientsyymi on yleensä aktivoitunut syövissä.

IV. OMAN VERISUONITUKSEN EDISTÄMINEN

- A. Syöpäsolukko, kuten normaalitkin solut, vaativat selvitäkseen ja kasvaakseen ravinteita ja happea.
 - 1. Kasvain pystyy kasvaa vain noin 1-2 mm³ kokoiseksi ilman angiogeneesia (uusien verisuonten muodostuminen jo olemassa olevista verisuonista), sillä diffuusio ei välitä ravinteita pidemmälle.
 - a. Vaskulogeneesi tarkoittaa täysin uusien verisuonten kehittymistä endoteelin prekursorisoluista.

- B. Angiogeeninen käänne tarkoittaa sitä, että angiogeneesiä suosivien kasvutekijöiden vaikutus ylittää estävien tekijöiden vaikutuksen.
 - 1. Hapen puute kasvaimessa stabiloi transkriptiotekijä HIF1α:n, joka lisää angiogeneesiä suosivien kasvutekijöiden (esim. VEGF, FGF, PDGF) luentaa.
 - 2. p53 indusoi angiogeneesin estäjien synteesiä, joten p53:n menetys tai inaktivoivat mutaatiot suosivat angiogeneesiä.
- C. Kasvainten verisuonitus eroaa normaalista.
 - 1. Verisuonet ovat helposti läpäiseviä (rikkinäinen tyvikalvo), mikä auttaa metastasoinnissa.
- V. YMPÄRISTÖÖN TUNKEUTUMINEN (INVAASIO JA ETÄPESÄKKEIDEN LÄHETTÄMINEN (METASTASOINTI)
 - A. Ekstrasellulaarimatriksiin invaasio
 - 1. Epiteliaaliset solut muuttuvat mesenkymaalisiksi eli epäkypsän tukikudossolun kaltaisiksi (epiteeli-mesenkyymitransitio, EMT).
 - a. Solujen välinen adheesio heikentyy E-kadheriinin menetyksen kautta.
 - Normaalisti E-kadheriini toimii solujen välisenä "liimana" rajoittaen niiden kasvua ja liikkumista (kasvun kontaktiinhibitio).
 - 2. Irronneet kasvainsolut tarttuvat tyvikalvon laminiineihin ja hajoittavat tyvikalvon (pääosin tyypin IV kollageenia) proteaaseilla.
 - 3. Syöpäsolut hajoittavat ECM:ää ja kulkevat sen läpi interaktioilla ECM:n rakenteiden avulla.
 - 4. Syöpäsolut saavuttavat imu- tai verisuonen.
 - B. Tunkeutuminen suoniin (intravasaatio) ja ohjautuminen muualle elimistössä
 - 1. Tuumoreiden metastasointipaikka on usein ennustettavissa primaarituumorin sijainnin perusteella.
 - a. Monet tuumorit ekstravasoituvatkin ensimmäiseksi kohtaamassaan hiussuonistossa.
 - b. Joillakin tuumoreilla esiintyy elintropismia eli ne metastasoituvat suosivasti tiettyyn elimeen.
 - i. Johtuu syöpäsolun pinnan reseptoreiden ja määräpaikan endoteelin ligandien vuorovaikutuksesta.
 - ii. Esim. eturauhassyövän metastaasit luuhun
 - 2. Karsinoomat metastasoivat yleensä imusuoniteitse.
 - a. Ensimmäiset etäpesäkkeet havaitaan siksi yleensä kasvaimen elintä tyhjentävissä imusolmukkeissa.
 - 3. Sarkoomat ja muutamat karsinoomat metastasoivat yleensä verisuoniteitse:
 - a. Munuaissolukarsinooma
 - b. Hepatosellulaarinen karsinooma
 - c. Follikulaarinen kilpirauhassyöpä
 - d. Korionkarsinooma
- VI. IMMUUNIPUOLUSTUKSEN VÄLTTÄMINEN
 - A. Syöpää vastaan kehittyy immuunivaste, mutta se ei yleensä riitä hallitsemaan syövän kasvua.
 - B. Mutatoituneet geenit tuottavat tuumoriantigeenejä eli syöpäsoluille tyypillisiä molekyylejä, joita vasta-aineet ja T-solureseptorit tunnistavat.
 - 1. Immuunipuutokset lisäävät riskiä syöville.

- C. Nopeasti kasvaessaan tuumorisoluja kuolee, jolloin dendriittisolut fagosytoivat niitä ja kulkevat imusolmukkeisiin esittelemään tuumoriantigeenejä tappaja-t-soluille.
 - Dendriittisolut siis aktivoivat CD8+- T-soluja MHCI-interaktiolla eli tapahtuu "crosspresentaatiota" (yleensä endogeenisesti tuotettu proteiini esitellään MHCI:n avulla).
 - 2. Tappaja-t-solut kulkevat tuumorin luokse ja hyökkäävät kyseistä syöpäantigeenia ilmentäviä soluja vastaan.
 - 3. T-soluilla ei kuitenkaan todennäköisesti ole massiivista roolia tuumorien valvomisessa, sillä aktivoimattomat T-solut eivät pääse kudoksiin helposti, eikä tuumorisoluilla yleensä ole tarpeellisia ko-stimulaattoreita pinnallaan; kasvainsolujen jatkuva mutatoituminen myös heikentää niiden tunnistamista.
- D. Syöpäsolut kuitenkin välttelevät mahdollista T-lymfosyyttien hyökkäystä vähentämällä MHC I-molekyylien ilmentymistä pinnallaan, jolloin tappaja-t-solut eivät pysty tunnistamaan syöpäsoluja.
 - 1. Normaalisti NK-solujen tappotoimintaa inhiboi MHC I-molekyylit, joten näiden vähentyessä NK-solut aktivoituvat ja tappavat syöpäsolun.
- E. Kasvain tuottaa usein välittäjäaineita, jotka ohjaavat kertyneiden valkosolujen muuttumista anti-inflammatoriseen suuntaan ja edistävät syövän kasvua.
 - 1. Treg (CD4-säätelijä-T-solu) erittävät TGF-betaa ja IL-10, jotka tuottavat immunosupressiivisen ympäristön, jossa CTL:t eivät toimi tehokkaasti.
 - 2. M2-makrofagit lisäävät angiogeneesia ja häiritsevät lymfosyyttien toimintaa.
- F. Syöpäsolut voivat ilmentää pinnoillaan koinhibitorisia molekyylejä.
 - 1. Syöpäsolut PD-L1 sitoutuu PD-1 T-lymfosyyttien pinnalla jarruttaen niiden toimintaa.
- G. Kasvaimet voivat tuottaa paljon entsyymiä indoleamiini 2,3-dioksygenaasi (IDO), joka metaboloi tryptofaania, joka on tarpeellinen aminohappo T-solujen proliferaatiolle ja toiminnalle.

VII. TULEHDUS SYÖVÄN EDISTÄJÄNÄ

- A. Infiltroivat syövät aiheuttavat kroonisen tulehdusreaktion, joka auttaa syövän kasvussa sekä voi ilmentyä myös systeemisesti (esim. kroonisen taudin anemia ja kakeksia).
 - Kakeksia tarkoittaa erityisesti syöpäsairauksien yhteydessä havaittavaa progressiivista luurankolihaksen ja rasvakudoksen menetystä sekä heikkoutta ja toimintakyvyn laskua.
 - a. Johtuu pääosin tulehdussolujen erittämistä sytokiineista, kuten TNF-alfasta, joka laskee ruoanhalua ja lisää perusaineenvaihduntaa.
 - 2. Leukosyytit ja strooman solut erittävät kasvutekijöitä, jotka stimuloivat proliferaatiota ja angiogeneesiä.
 - 3. Tulehdussolujen vapauttamat proteeasit rikkovat solu-solu- ja solu-ECMkontakteja vapauttaen kasvun kontakti-inhibition vaikutuksen sekä helpottaen invaasiota ECM:n läpi.
 - a. Myös esim. TGF-beta auttaa invaasiossa edistämällä epiteelimesenkyymi-transitiota.

VIII. POIKKEAVA METABOLIA

A. Syöpäsolujen metabolian pääpiirteet ovat korkea glukoosin kulutus ja tämän fermentaatio maitohapoksi hapekkaissakin ympäristöissä.

- 1. Tätä kutsutaan aerobiseksi glykolyysiksi (Warburg effect), sillä normaalisti aerobisissa olosuhteissa soluhengityksen aloittava glykolyysi etenee sitruunahappokiertoon.
- 2. Energiantuotannon kannalta epätehokasta, mutta syntyvät glukoosin metaboliatuotteet ovat syöpäsoluille tärkeitä raaka-aineita, jotka mahdollistavat nopean kasvun ja proliferaation.
- Onkogeeni- tai vähentynyt tuumorisupressorisignalointi mahdollistaa metabolian muokkauksen, esim. PI3K/AKT-reitin aktivoituminen lisää GLUT-transporttereita lisäten glykolyysiä.

IX. GENOMIN EPÄVAKAUS JA DNA:N KORJAUSKEINOT

- A. Häiriöt geenin kopiointi- ja korjausmekanismeissa aiheuttavat epävakautta genomissa ja lisäävät siten riskejä syöpien muodostumiselle.
 - 1. Ovat siis edellytyksiä yllä olevien kahdeksan tunnusmerkin kehittymiselle, sillä ne mahdollistavat mutaatiot toisissa geeneissä solunjakautumisen aikana.
- B. Replikaatiossa tapahtuneet pistemutaatioista johtuvat virheet (emäspariumavirhe, mismatch) korjaavat proteiinit, kuten MLH1, MSH2 tai MSH6 (mismatch-repair).
 - 1. Synnynnäinen toisen alleelin mutaatio MMR-geeneissä ja toinen somaattinen hankittu mutaatio johtaa geenivirheiden kertymiseen.
 - Kertyneet mutaatiot on helppo tunnistaa mikrosatelliiteista (DNA:n toistojaksoja) ja niiden pituuksien muuttumista kutsutaan mikrosatelliitti-instabiliteetiksi (kts. HNPCC).
- C. Ulkoinen säteily tai happiradikaalit voivat aiheuttaa yhden DNA-juosteen katkoksia, ja näiden korjausmekanismi on emäksenkorjaus (base excision repair, BER).
- D. Pyrimidiinitähteiden ristisitoutumien (estää normaalia DNA:n replikaatiota) korjausmekanismi on nukleotidinpoistokorjaus (nucleotide excision repair, NER).
 - 1. UV-säteily aiheuttaa erityisesti tymidiinidimeerejen muodostumista.
 - 2. Xeroderma pigmentosumissa esiintyy NER-entsyymien perinnöllisiä häiriöitä, mitkä altistavat auringonvalon aiheuttamille ihosyöville.
- E. DNA:n kaksoissäievauriot ovat joko kaksoissäiekatkoksia tai säikeiden silloittumisia (crosslinking).
 - 1. Voidaan korjata joko yhdistämällä homologiset päät (HR) tai ei-homologiset päät (NHEJ).
 - a. NHEJ:ssa katkenneet päät yhdistetään toisiinsa, mikä altistaa DNA:n kadolle ja translokaatioille, jotka voivat toimia haitallisina muutoksina.
 - b. HR:ssä käytetään toista ehjää kromosomia mallina korjaukselle, mikä johtaa matalaan virheriskiin verrattuna NHEJ:hin.
 - 2. ATM-geenin perinnölliset mutaatiot johtavat häiriintyneeseen kaksisäievaurioiden tunnistamiseen ja siten niiden heikkoon korjaamiseen.
 - a. Ataksia-telangiektasiassa ATM-geenin autosomaalisesti resessiivinen mutaatio:
 - i. Neurologiset oireet (tasapainovaikeudet), jotka johtuvat pikkuaivojen atrofiasta.
 - ii. Telangiektasiat (laajentuneita verisuonia) silmän sidekalvoille ja auringolle alttiilla ihoalueilla
 - iii. Lisääntynyt infektioherkkyys, joka johtuu B- ja T-solujen kehityksen häiriöistä ja siten matalista lgA-, lgG- ja lgE-tasoista.

- iv. Kohonnut riski syöville (erit. leukemioille ja lymfoomille)
- v. Kohonnut AFP-arvo
- vi. Harvinainen, Suomessa n. 1/100 000 lasta

KLIINISET OMINAISUUDET

I. MAKROSKOOPPISET PIIRTEET

- A. Kasvaimet erotellaan benigneiksi ja maligneiksi yleensä mikroskooppisen tutkimuksen pohjalta, mutta myös kliiniset havainnot voivat antaa vihjeitä laadusta:
 - 1. Yleisesti ottaen hyvänlaatuiset kasvaimet ovat paikallisia, hidaskasvuisia, viereisestä kudoksesta hyvin erottuvia (säännöllinen rajapinta normaalikudokseen), helposti liikuteltavissa ja joustavia.
 - 2. Pahanlaatuiset taas vastoin ovat infiltroivia, nopeakasvuisia, huonosti erottuvia, tarttuvat ympäröiviin kudoksiin ja ovat kovempia kosketukselle.

II. HISTOPATOLOGINEN ANALYYSI

- A. Histopatologisen tutkimuksen perusteella tehty diagnoosia kutsutaan patologisanatomiseksi diagnoosiksi (PAD).
- B. Benignien kasvainten solukko yleensä muistuttaa lähtökudosta niin histologisesti että sytologisesti (hyvin erilaistunut):
 - 1. Ei invaasiota, eikä siten metastasointipotentiaalia
 - 2. Korkea järjestäytymisaste (organisoitunut kasvutyyli) ja yhdenmukaiset solut
 - 3. Säännölliset tumat ja solumuoto
 - 4. Matala tuma/sytoplasma-suhde
 - 5. Vähäinen mitoottinen aktivisuus
- C. Malignien kasvainten solukko on yleensä huonosti erilaistunutta:
 - 1. Invasoi ja siten voi metastasoida
 - a. Kyky lähettää etäpesäkkeitä on pahanlaatuisuuden tärkein erottava piirre.
 - 2. Huonosti järjestäytynyttä
 - 3. Soluatypiaa (tumien muutokset)
 - 4. Korkea tuma/sytoplasma-suhde
 - 5. Korkea mitoottinen aktiivisuus
- D. Huonosti erilaistunutta solukkoa voi olla vaikea tunnistaa, mutta immunohistokemialliset tyypitykset auttavat; esim. nämä välikokoiset filamentit auttavat erotuksessa.
 - 1. Keratiini epiteeli
 - 2. Vimentiini mesenkyymi
 - 3. Desmiini Lihas
 - 4. GFAP neuroglia (CNS oligodendrosyytit, astrosyytit, ependyymisolut, mikroglia; PNS Schwannin solut, satelliittisolut)
 - 5. Neurofilamentti neuronit

III. ERILAISTUMISASTE JA LEVINNEISYYS

- A. Prognoosin eli ennusteen arvioimiseksi voidaan luokitella kasvaimet erilaistumisasteen (gradus) ja levinneisyyden (stage) mukaan.
 - 1. Levinneisyydellä on suurempi merkitys ennustearvion kannalta.
- B. Kasvainten gradeeraus perustuu erilaistumisasteen määrittämiseen.
 - 1. Yleensä 2-4-portainen luokittelu (low-grade/high-grade tai gradus 1-3/4):

- a. Gradus 1 pienin, pahanlaatuisuusaste eli kudos on hyvin erilaistunut (muistuttaa alkuperäiskudosta), mitoosifrekvenssi on pieni ja tuma-atypia on vähäistä
- b. Graduksen noustessa erilaistuminen huonontuu, mitoosifrekvenssi kasvaa ja tumapleomorfia voimistuu.
- C. Levinneisyys eli stage kuvailee primaarikasvaimen kokoa ja levinneisyyttä; perustuu TNM-luokitukseen:
 - 1. T = Tumor(T0-T4)
 - a. Viittaa primaarikasvaimen kokoon tai invaasion syvyyteen.
 - 2. N = regional lymph Nodes (N0-N3)
 - b. Viittaa paikallisten imusolmukemetastaasien esiintymiseen.
 - 3. M = Metastasis (M0-M1)
 - c. Viittaa kaukometastaasien esiintymiseen.
 - 4. Jos x numeron tilalla (esim. pNx), tarkoittaa se tilannetta, jossa arviointia ei toteuteta tai se on mahdotonta.
- D. Kaikille syöville tehdään cTNM (kliininen levinneisyysluokittelu) ja kaikille poistetuille myös pTNM (patologinen luokittelu)

IV. SYÖVÄN KASVAINMERKKIAINEET

- A. Verestä määritettävät kasvainmerkkiaineet auttavat diagnostiikassa ja seurannassa, mutta eivät yleensä toimi yksinään syövän diagnoosina.
- B. Käyttöön liittyy myös paljon häiriötekijöitä, sillä esimerkiksi tulehdustaudit voivat nostaa arvoja (esim. PSA prostatiitissa).

III. SYTOLOGIA

- A. Histologisten kudosleikkeiden tutkimisen lisäksi voidaan ottaa solunäyte eli sytologinen näyte.
- B. Näytteistä voidaan erityisesti tarkastella yksittäisten solujen morfologiaa, kuten tumien koon, muodon ja värjäytyvyyden sekä sytoplasman muutoksia.
 - 1. Usein luokittelussa käytetään Papanicolaoun papaluokkia (0-5)
 - a. 0 = Riittämätön/epäedustava näyte
 - b. 1 = Hyvänlaatuinen, normaali sytologia
 - c. 2 = Atyyppinen, mutta ei maligni (reaktiivisia soluja, esim. inflammaatio, sädehoito, metaplasia)
 - d. 3 = Lievästi epäilyttävä, mutta epävarma maligniteetti
 - e. 4 = Vahva epäilys maligniteetista
 - f. 5 = Varmasti pahanlaatuinen
- C. Irtosolunäytteissä tutkitaan epiteelipinnoilta irtoavaa solukkoa (sivelynäyte/eritenäyte).
 - 1. Yleisimpiä ovat esim. kohdunkaulan syövän seulontatutkimus ja virtsan sytologinen tutkimus verivirtsaisuuden selvittelyssä ja rakkosyövän seurannassa.
- D. Ohutneulanäytteitä voidaan ottaa kaikista elimista paitsi aivoista, mutta tavallisesti käytetään kaulakyhmyjen erotusdiagnostiikassa.
 - 1. Tarkka näytteenotto tärkeää, sillä suurten kasvainten keskusosa saattaa olla nekroosissa, jolloin keskustaa kannattaa välttää (myös reunanäytteet saattavat olla riittämättömiä ympäröivän turvotuksen takia).
 - 2. Metodin ongelmana on usein riittämätön näyte, joten sijalle on tullut monissa tilanteissa paksuneulanäyte, joka on histologinen kudosnäyte.

a. Paksuneulanäytettä hyödynnetään erityisesti rinnan, eturauhasen ja maksan tuumoridiagnostiikassa.

EPIDEMIOLOGIA

- I. SYÖPÄTILANNE (2021)
 - A. Syöpä on suomalaisten toisiksi yleisin kuolinsyy.
 - B. Syöpämäärät ovat kasvussa, mutta ennuste paranee samalla.
 - C. Miehet:
- 1. Ilmantuvuus:
 - a. 1. Eturauhassyöpä (5217)
 - b. 2. Paksu- ja peräsuolisyöpä (2109)
 - c. 3. Keuhkosyöpä (1756)
- 2. Kuolleisuus:
 - a. 1. Keuhkosyöpä (1491)
 - b. 2. Eturauhassyöpä (976)
 - c. 3. Paksu ja peräsuolisyöpä (745)

- D. Naiset:
- 1. Ilmaantuvuus:
 - a. 1. Rintasyöpä (5105)
 - b. 2. Paksu- ja peräsuolisyöpä (1717)
 - c. 3. Keuhkosyöpä (1102)
- 2. Kuolleisuus
 - a. 1. Rintasyöpä (914)
 - b. 2. Keuhkosyöpä (855)
 - c. 3. Paksu- ja peräsuolisyöpä (633)
- E. Keuhkosyövän ennuste on niin huono, koska toteamisvaiheessa sairaus on yleensä levinnyt niin, että leikkaushoito ei toimi.