MATH 263: Discrete Mathematics 2

Practice Exam 1

Dr. Petrescu

Denny Cao

Due: February 3, 2023

Problem 1: Let $R = R : A \rightarrow A$ be a relation from a set A to itself, then:

$$R^n = \overbrace{R \circ R \circ \cdots \circ R \circ R}^n$$

That is, \mathbb{R}^n is the composition of \mathbb{R} with itself n times.

Give a counter example or prove the following assertions:

- a. If R is reflexive then R^n is reflexive.
- b. If R is symmetric then R^n is symmetric.
- c. If R is transitive then R^n is transitive.

Answer:

Problem 2: Suppose that R and S are reflexive relations on a set A. Prove or disprove each of these statements.

- a) $R \cup S$ is reflexive.
- b) $R \cap S$ is reflexive.
- c) $R \oplus S$ is irreflexive.
- d) R S is irreflexive.
- e) $S \circ R$ (S composed with R) is reflexive.

Answer:

Problem 3: Find the matrix that represents the relation R on $\{1, 2, 3, 4, 6, 12\}$, where aRb means a|b. Use elements in the order given to determine rows and columns of the matrix.

Answer: Let *a* be the row index and *b* be the column index.

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 4: Draw the directed graph for the relation defined by the matrix:

$$M = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Answer:

Problem 5: A Lemma in the book states: Let A be a set with n elements, and let R be a relation on A. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1. The book proves for the case that a = b. Find the proof for the case that $a \neq b$.

Answer:

Problem 6: Draw the directed graph that represents the relation:

$$ARA = \{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b)\}$$

where $A = \{a, b, c, d, e\}$

Problem 7: Find the matrix of the relation of ARA from Question 6 above. **Answer:**

$$R = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Problem 8: From the directed graph of question Question 6 above draw the digraph of \bar{R} (the

complement of R).

Problem 9: Find the matrix of the relation of $A\bar{R}A$ from question Question 6 above.

Answer: The complement of R is the matrix:

$$\overline{R} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Problem 10: From the directed graph of question Question 6 above draw the digraph of R^{-1} (the inverse of R).

Problem 11: Find the matrix of the relation of $A\mathcal{R}^{-1}A$ from question Question 6 above.

Answer: The inverse of R is the matrix:

Problem 12: In ARA from question Question 6 above remove or add the least amount of elements so that ARA represents an equivalence relation.