

Przepływomierze z serii IOG®

Przepływomierze owalno-zębate liniowe i kołnierzowe

Cechy

- Kompaktowa konstrukcja
- Wysoka dokładność i powtarzalność
- Fabryczna kalibracja
- Zakres pomiaru od 1-700 I/min
- Montaż w dowolnej pozycji (pionowo lub poziomo)
- · Mały spadek ciśnienia
- Minimalna ilość części zużywających się
- Szeroki zakres liczników elektronicznych
- Opcjonalna regulowana długość zabudowy
- Dopuszczenie ATEX

Opis

Przemysłowy przepływomierz OG to przepływomierz modularny, ekonomiczny a zarazem o dużej dokładności posiadający mocną obudowę.

W związku z zastosowaną technologią pomiaru, przepływomierz przemysłowy OG może być użyty w wielu aplikacjach gdzie konwencjonalne przepływomierze nie znajdują zastosowania.

Zasada pomiaru

Ciecz wpływa przez wlot a następnie przepływa przez komorę pomiarową. W komorze, ciecz wymusza obrót wewnętrznych zębatek zanim wypłynie przez wylot. Każdy obrót zębatek przemieszcza określoną objętość cieczy. W trakcie obrotu, magnes umieszczony w zębatce mija zamontowany na górze układ kontaktronowy. Kontaktron przesyła impulsy do mikroprocesora w liczniku pokazując odpowiednią wartość na wyświetlaczu. Przepływomierze owalno-zębate mogą być użyte w połączeniu z różnymi licznikami przemysłowymi.

Aplikacje

Przepływomierze owalno-zębate nadają się zarówno do pomiaru cieczy o wysokiej lepkości jak i wysoko korozyjnych.

Przemysłowe przepływomierze owalno-zębate przeznaczone są do różnych aplikacji chemicznych włączając w to płyny oparte na bazie ropy, roztwory wodne i inne płyny kompatybilne z materiałami konstrukcyjnymi przepływomierza.

		Ciśnienie (bar)					
Przyłącze	Materiał korpusu	NPT/BSP	ANSI 150#	ANSI 300#	DIN		
1/2"	Stal 316SS	206	20	N/A	16		
1/2	Aluminium	138	20	IN/A	10		
3/4"	Stal 316SS	206	20	50	16		
3/4	Aluminium	138	20	N/A			
1"	Stal 316SS	206	20	50	16		
'	Aluminium	138	20	N/A			
1" HF	Stal 316SS	206	20	50	16		
1 11	Aluminium	138	20	N/A			
1 1/2"	Stal 316SS	138	20	50	16		
1 1/2	Aluminium	103	20	N/A			
2"	Stal 316SS	103	20	50	16		
	Aluminium	69	20	N/A	10		
3"	Stal 316SS	69	20	50	16		
J.,	Aluminium	51	20	N/A	10		

Dane techniczne

Obudowa i przyłącza					
Średnice	1/2", 3/4", 1", 1"HF, 1.1/2", 2", 3"				
Aluminium	NPT, BSP, 150#, PN16				
Stal nierdzewna 316 SS	NPT, BSP, 150#, 300#, PN16				
Temperatura robocza (materiał zębatek)					
Stal nierdzewna 316 SS	-30 °C do +120 °C				
Plastik (PPS/LCP)	-30 °C do +80 °C				
Maks. temperatura składowania	+125 °C				
Min. temperatura składowania	-55 °C				
Lepkość					
Maks 1000 cP* W przypadku pomiaru cięczy o wiekszej lenkości pależy skonsultować się z producentem					

Maks. 1000 cP*. W przypadku pomiaru cieczy o większej lepkości należy skonsultować się z producentem

Zakresy pomiaru

Przyłącze	l/min	Lepkość cieczy	Dokładność (%)	Powtarzalność (%)
1/2"	1 – 30	>5.0 cP	±0.5	±0.03
1/2	2 - 25	<5.0 cP	±2.0	±0.03
3/4"	2 - 60	>5.0 cP	±0.5	±0.03
3/4	4.5 - 53	<5.0 cP	± 2.0	±0.03
1"	2.3 - 68	>5.0 cP	±0.5	±0.03
	5.3 - 60	<5.0 cP	±2.0	±0.03
1" HF	5.7 - 170	>5.0 cP	±0.5	±0.03
I Hr	9.5 - 150	<5.0 cP	±2.0	±0.03
1 ½"	9.5 - 245	>5.0 cP	±0.5	±0.03
	15 - 227	<5.0 cP	± 1.0	±0.03
2"	15 - 380	>5.0 cP	±0.5	±0.03
2	23- 380	<5.0 cP	± 1.0	±0.03
3"	20 - 700	>5.0 cP	±0.5	±0.03
3	38 - 700	<5.0 cP	± 1.0	±0.03

Materiały konstrukcyjne

Przyłącze	Korpus	Pokrywa	Wałki	Zębatki	Łożyskowanie	Magnes	0-Ring	Śruby	
1/2"	316L SS	316L SS	316L SS	316L SS	Graphalloy	Alnico	Aflas	316L SS	
1/2	6061 AI	6061 AI	310F 99		LCP		Viton	3101.33	
3/4"	316L SS	316L SS	316L SS	316L SS	Graphalloy	Alnico	Aflas	316L SS	
3/4	6061 AI	6061 AI	310L 33		LCP		Viton		
1"	316L SS	316L SS	316L SS	316L SS	Graphalloy	Alnico	Aflas	316L SS	
I	6061 AI	6061 AI	310L 33		LCP		Viton	JIUL 33	
1" HF	316L SS	316L SS	316L SS	316L SS	Fluorosint	Neodymowy	Aflas	316L SS	
т пг	6061 AI	6061 AI	310L 33			niklowany	Viton	JIUL 33	
1 1/2"	316L SS	316L SS	316L SS	316L SS	Fluorosint	Neodymowy	Aflas	316L SS	
1 1/2	6061 AI	6061 AI	310L 33	310L 33	LINOLOSILIF	niklowany	Viton	3101 33	
2"	316L SS	316L SS	316L SS	316L SS	Fluorosint	Neodymowy	Aflas	316L SS	
2	6061 AI	6061 AI	310L 33			niklowany	Viton	JIUL 33	
3″	316L SS	316L SS	2161 66	316L SS	Fluorosint	Neodymowy	Aflas	316L SS	
3	6061 AI	6061 AI	316L SS			niklowany	Viton	310L 33	

Na życzenie dostępne są opcjonalne o-ringi Buna-N i EPDM.

^{*}ze standardowymi zębatkami

Wymiary

Przyłącze	A	В	C	D	E	F	G	Н	J	K	L	M	N
1/2"	100 mm	87.5 mm	92 mm	246.4 mm	130 mm	227 mm	257 mm	170 mm	214.6 mm	195.1 mm	225.8 mm	100.2 mm	122.9 mm
3/4"	100 mm	98 mm	92 mm	257 mm	130 mm	237 mm	267 mm	170 mm	221 mm	202 mm	232 mm	100 mm	123 mm
1″	100 mm	98 mm	92 mm	257 mm	130 mm	237 mm	267 mm	170 mm	221 mm	202 mm	232 mm	100 mm	123 mm
1" HF	100 mm	99 mm	92 mm	258 mm	130 mm	238 mm	268 mm	170 mm	218 mm	199 mm	230 mm	100 mm	123 mm
1-1/2"	140 mm	125 mm	125 mm	283 mm	130 mm	268 mm	293 mm	212 mm	226 mm	207 mm	237 mm	N/A	N/A
2″	150 mm	136 mm	134 mm	295 mm	130 mm	275 mm	304 mm	264 mm	233 mm	213 mm	243 mm	N/A	N/A
3″	210 mm	162 mm	180 mm	320 mm	130 mm	300 mm	329 mm	344 mm	244 mm	224 mm	254 mm	N/A	N/A

Liczniki przemysłowe Typ ILR 700, 710, 720, 730, 740

Cechy

- Duży 6-cyfrowy wyświetlacz LCD z trzema miejscami po przecinku
- Jednostka sumatora w litrach, pintach, ćwiartkach lub galonach
- Niekasowalny 11-cyfrowy sumator całościowy
- Kasowalny 5-cyfrowy sumator
- Zakres temperatury pracy licznika Seria ILR: -20 °C do +60 °C Seria ER 420: -30 °C do +80 °C
- Low battery indicator
- Bateria o długim czasie żywotności
- Współczynnik kalibracji zapisany w nieulotnej pamieci
- Programowalne wyjście impulsowe

Opis

Moduł licznika elektronicznego zawiera układ mikroprocesora zasilanego baterią litową. Może zostać zaprogramowany do zliczania w litrach, pintach, ćwiartkach lub galonach. Współczynnik kalibracji jest zaprogramowany podczas testu w fabryce. W przeciwieństwie do przepływomierzy mechanicznych, te przepływomierze mogą być ponownie skalibrowane gdy zaistnieje taka potrzeba. 6-cyfrowy wyświetlacz ciekłokrystaliczny, z dokładnością do 3 miejsc po przecinku, pokazuje dokładną objętość cieczy zmierzoną przez przepływomierz. Całość licznika jest chroniona przed normalnym zużyciem przez odporną na uderzenia obudowę.

Działanie

Przemysłowe przepływomierze owalno-zębate mają magnesy w swych zębatkach które powodują zwarcia kontaktronu i wysyłanie impulsów do licznika podczas swojego obrotu.

Licznik pracuje w trybie uśpienia do momentu wykrycia impulsów spowodowanych przepływem cieczy przez przepływomierz.

Mikroprocesor w liczniku następnie mierzy przepływ i wyświetla na wyświetlaczu objętość lub natężenie przepływu cieczy przepływającej przez przepływomierz.

Licznik posiada 6-cyfrowy sumator z trzema miejscami po przecinku Jeśli dawka przekroczy 999.999 to nastąpi zmiana na 2 miejsca po przecinku itd. Po osiągnięciu wartości 99999 wartość zmieni się na 0.000. Sumator zostanie wyzerowany po naciśnięciu przycisku 'reset'.

Licznik posiada również kasowalny sumator który wymaga aby przycisk total i reset były wciśnięte jednocześnie aby go wyzerować (przytrzymać przycisk "Total", a następnie przycisnąć przycisk "Reset" aby wyzerować sumator podczas gdy wyświetlana jest wartość sumatora kasowalnego). Ta opcja może być użyta dla większej ilości dawek w aplikacjach dozowania.

Sumator całkowity posiada pojemność 11 znaków i wyświetla zawartość w wybranej jednostce. Przyciśnięcie i przytrzymanie przycisku total wyświetli wartość sumatora całkowitego.

Model licznika	Cechy licznika
ILR 700	Ulepszona rozdzielczość w związku z kwadratowym sygnałem wyjściowym
Standardowy licznik	Licznik może być ustawiony liniowo lub prostopadle do przepływu
	Wskaźnik natężenia przepływu lub sumator może być wybrany z menu
	Możliwość zmiany jednostki pomiaru
ILR 710 pojedyncze wyjście	Skalowalne wyjście impulsowe
impulsowe	Możliwość ustawienia długości impulsu
ILR 720 podwójne wyjście	Wyjście impulsowe – może być użyte do wykrycia kierunku przepływu
impulsowe	Zewnętrzne wyjście zerujące
ILR 730 wyjście analogowe	Wyjście analogowe 4-20mA prezentujące natężenie przepływu
	Możliwość nastawy minimalnej i maksymalnej wartości dla wyjścia analogowego
Uwaga: ILR 710, 720 i 730 maj	ą wszystkie standardowe właściwości ILR 700.
ILR 740 impulsator	Impulsator (kontaktron)
ER 420	Szczegóły zawarte w osobnej karcie katalogowej.
wskaźnik natężenia przepły-	
wu/sumator	