Análisis Matemático II

Lic. en Ciencias de la Computación

Práctico 3 - 2020

(1) ¿Qué es una serie de potencias?

- (2) a) ¿Cuál es el radio de convergencia de una serie de potencias? ¿Cómo se determina?
 - b) ¿Cuál es el intervalo de convergencia de una serie de potencias? ¿Cómo se calcula?
- (3) Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.

$$a) \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

$$\frac{d}{n} \sum_{n=1}^{\infty} \sqrt{n} x^{n}$$

$$\frac{e}{n} \sum_{n=1}^{\infty} \frac{x^{n}}{n!}$$

$$g$$
) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$

$$b) \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+1}$$

$$e) \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$\frac{n}{n} \sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$$

$$\frac{c}{n} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$$

$$f) \sum_{n=1}^{\infty} n^n x^n$$

i)
$$\sum_{n=0}^{\infty} \frac{1+5^n}{n!} x^n$$

(4) Suponga que $\sum_{n=0}^{\infty} c_n x^n$ es convergente cuando x=-4 y diverge cuando x=6. ¿Qué puede decir con respecto a la convergencia o divergencia de las series siguientes?

$$a) \sum_{n=0}^{\infty} c_n$$

$$c) \sum_{n=0}^{\infty} c_n (-3)^n$$

$$b) \sum_{n=0}^{\infty} c_n 8^n$$

d)
$$\sum_{n=0}^{\infty} (-1)^n c_n 9^n$$

(5) Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.

a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{n^{1/4}}$$

$$\frac{d)}{n} \sum_{n=1}^{\infty} \frac{(4x-1)^n}{n^n}$$

$$\frac{\mathbf{g}}{\mathbf{g}}\sum_{n=1}^{\infty}n!(2x-1)^n$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 2^{2n}} x^n$$

a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{n^{1/4}}$$
 d) $\sum_{n=1}^{\infty} \frac{(4x-1)^n}{n^n}$ g) $\sum_{n=1}^{\infty} n! (2x-1)^n$
b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 2^{2n}} x^n$ e) $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x+2}{2}\right)^n$ h) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4^n \ln n}$
c) $\sum_{n=1}^{\infty} \frac{e^n}{n^3} (4-x)^n$ f) $\sum_{n=0}^{\infty} n^3 (2x-3)^n$

$$\frac{h)}{n} \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4^n \ln n}$$

$$\frac{c)}{n} \sum_{n=1}^{\infty} \frac{e^n}{n^3} (4-x)^r$$

$$f$$
) $\sum_{n=0}^{\infty} n^3 (2x-3)^n$

(6) Usar la expansión $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$, válida en el rango -1 < x < 1, para representar las siguientes funciones:

a)
$$f(x) = \frac{1}{1+x}$$
, en potencias de x . $f(x) = \frac{2}{3-x}$, en potencias de x .

c)
$$f(x) = \frac{2}{3-x}$$
, en potencias de x .

b)
$$f(x) = \frac{3}{1 - x^4}$$
, en potencias de x .

d)
$$f(x) = \ln x$$
, en potencias de $(x - 4)$.

e)
$$f(x) = \frac{1}{x^2}$$
, en potencias de $(x+2)$. $f(x) = x \ln(1-x)$, en potencias de x .

(7) Expresar las siguientes integrales como una serie de potencias en x.

a)
$$\int \frac{1}{1+x^4} dx$$

b)
$$\int \frac{x}{1+x^5} dx$$

c)
$$\int \frac{x}{1-x^8} dx$$

d)
$$\int \frac{\ln(1-x)}{x} dx$$

- (8) Si $f^{(n)}(0) = (n+1)!$ para $n = 0, 1, 2, \ldots$, encuentre la serie de Taylor centrada en cero para f y su radio de convergencia.
- (9) Encuentre la serie de Taylor para f con centro en 4 si

$$f^{(n)}(4) = \frac{(-1)^n n!}{3^n (n+1)}$$

¿Cuál es el radio de convergencia de la serie de Taylor?

(10) Encontrar la representación en serie de Taylor, centrada en a=0, de las siguientes funciones. ¿Para qué valores de x vale la representación?

a)
$$f(x) = (1-x)^2$$

b) $f(x) = \ln(1+x)$
c) $f(x) = \cos(x)$
d) $f(x) = \sin(5x^2)$
e) $f(x) = e^{5x}$
f) $f(x) = xe^x$

(11) Determinar el orden de los polinomios de Taylor que deberían usarse para aproximar los siguientes valores con un error menor que $5 \cdot 10^{-5}$.

(a)
$$e^{0.1}$$
 (b) $\ln 1.4$

- (12) Estimar el error cometido al aproximar la función $f(x) = \sqrt[3]{x}$ por su polinomio de Taylor de orden 2, centrado en a = 8, para $7 \le x \le 9$.
- (13) Sea $f(x) = (1+x)^{1/2}$. Usando el polinomio de Taylor de orden 3 de f, centrado en a=0, calcular el valor aproximado de $\sqrt{2}$ que da dicho polinomio, y estimar el error en esta aproximación.
- (14) ¿Para qué valores de x se puede aproximar sen x por $x \frac{x^3}{3!}$ con un error menor que 10^{-4} ?