《商业银行网点扩张如何影响企业创新:理论与经验证据》 补充材料

张伟俊 袁凯彬 李万利

附录 1: 基准回归结果扩展

附表 1 基准回归结果: 扩充 35 公里及以上的银行网点数

	In the Extension of the							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	10 公里	15 公里	20 公里	25 公里	30 公里	35 公里	40 公里	45 公里
A: 当期回归								
ln Branch	0.0171***	0.0190***	0.0199***	0.0177***	0.0124***	0.0083	0.0035	-0.0005
	(0.0041)	(0.0043)	(0.0044)	(0.0045)	(0.0046)	(0.0100)	(0.0106)	(0.0116)
观测值	360 118	360 118	360 118	360 118	360 118	360 118	360 118	360 118
\mathbb{R}^2	0.7959	0.7959	0.7959	0.7959	0.7959	0.7959	0.7958	0.7958
B:滞后1期								
ln Branch	0.0198***	0.0263***	0.0304***	0.0301***	0.0268***	0.0233^{*}	0.0179	0.0137
	(0.0043)	(0.0046)	(0.0048)	(0.0049)	(0.0051)	(0.0121)	(0.0127)	(0.0136)
观测值	313 179	313 179	313 179	313 179	313 179	313 179	313 179	313 179
\mathbb{R}^2	0.8099	0.8100	0.8100	0.8100	0.8100	0.8099	0.8099	0.8099
C:滞后2期								
ln Branch	0.0134***	0.0195***	0.0259***	0.0279***	0.0264***	0.0248^{*}	0.0201	0.0162
	(0.0039)	(0.0041)	(0.0044)	(0.0046)	(0.0049)	(0.0132)	(0.0140)	(0.0146)
观测值	268 856	268 856	268 856	268 856	268 856	268 856	268 856	268 856
\mathbb{R}^2	0.8229	0.8230	0.8230	0.8230	0.8230	0.8230	0.8229	0.8229
控制变量	控制	控制	控制	控制	控制	控制	控制	控制
时间固定效应	控制	控制	控制	控制	控制	控制	控制	控制
企业固定效应	控制	控制	控制	控制	控制	控制	控制	控制

说明:括号内的值为企业层面聚类调整的稳健标准误。*、**及***分别表示回归系数在10%、5%及1%水平上显著。除特别说明外,后表同。

由附表 1 可知,一方面,从 10 公里至 20 公里,系数值会越来越大,这源于企业能够获取金融资源的半径还未达到阈值。随着距离越大,企业能够利用的银行网点也越来越多。另一方面,从 20 公里至 30 公里,系数值越来越小。由于企业能够利用的银行网点在地理上存在阈值半径,一旦超过阈值,阈值外的网点企业无法获取。此时,随着距离继续增加,将混入更多的零效应而"稀释"整体的系数值大小。尤其从 35 公里开始,系数值逐渐不显著。实际上,35 公里就已经大幅超出企业能够利用的银行网点最大距离,而且随着距离增加,ln Branch 还会混杂更多来自城市层面的混杂因素,联合导致系数值变得不显著。

附录 2: 描述统计

附表 2 变量描述统计

				= ' =		
变量	形式	样本数	均值	标准差	最小值	最大值
In Apply	log	360 118	0.6224	0.9529	0.0000	2.9444
ln(专利授权数)	log	360 118	0.7698	1.0720	0.0000	3.2581
ln Branch10	log	360 118	1.9094	1.5884	0.0000	4.8598
ln Branch15	log	360 118	2.4168	1.7491	0.0000	5.3327
ln Branch20	log	360 118	2.7927	1.8359	0.0000	5.7236
ln(国有五大行网点 20)	log	360 118	4.4806	1.2541	2.0794	6.5639
ln(邮政储蓄网点 20)	log	360 118	2.8386	1.3387	0.0000	4.7185
ln(农商行网点 20)	log	360 118	2.7350	1.8856	0.0000	5.2204
ln(外资银行网点 20)	log	360 118	0.5630	1.0082	0.0000	3.3322
ln Branch25	log	360 118	3.0845	1.8733	0.0000	5.9216
ln Branch30	log	360 118	3.3114	1.8845	0.0000	6.0474
In Scale	log	360 118	5.2960	1.0048	3.5264	7.2298
ln Age	log	360 118	2.0554	0.7675	0.6931	3.5835
ln Sub	log	360 118	1.1915	2.4049	0.0000	7.3696
ROA		360 118	0.0002	0.0006	0.0000	0.0024
EX	虚拟	360 118	0.3003	0.4584	0.0000	1.0000
SOE	虚拟	360 118	0.0375	0.1900	0.0000	1.0000
tfp	log	360 116	1.9155	0.5648	0.9694	3.0897
FDI	虚拟	351 514	0.1070	0.3092	0.0000	1.0000

说明: (1)中国工业企业数据库使用范围为 1998-2013 年,首先,根据企业汇报的详细地址结合高德 地图 API 与网络爬虫获取企业经纬度信息。若企业不存在有效的详细地址信息,则按照企业的省市信息与 企业名称联合构造地址再次爬取。其次,将非有效观测值剔除,其中非有效界定为两种情形:一是在隔年 插值与企业名称插值处理后,仍然无法获取有效的经纬度信息;二是尽管我们在爬虫代码中试图限定企业 所属地级市,但根据所抓取的经纬度匹配县级市后,仍然与中国工业企业数据报告的驻地信息不一致的企 业观测值。为了避免错误识别而产生"取伪"问题,将存在以上问题的企业从样本各期一律剔除。最后, 剔除在余下样本中仅出现1期的企业观测值。由于2010年数据质量有限,参考聂辉华等(2016)将其剔除, 并将 2009 和 2011 年视为连续年份纳入回归。(2) 专利申请数和专利授权数来自 CNRDS 数据库,将企业 名称与中国工业企业数据库合并得到。(3)商业银行网点名单来自银保监会的金融许可证信息数据库,根 据数据库中汇报的地址信息使用高德地图 API 与网络爬虫抓取经纬度信息,然后基于地级市层面与中国工 业企业数据库合并,最后以10、15、…、30公里等地理距离范围计算企业附近的银行网点数,其中回归分 析主要使用 12 家全国性股份制商业银行与城市商业银行之和作为核心解释变量,即表中变量 Branch 的对 数形式。表中还汇报了企业附近 20 公里(即基准回归中系数值最大的对应距离)以内的国有五大行、邮政 储蓄、农商行和外资银行数目,以示参考。(4) TFP 按照 LP 法估计,对于 2008-2013 年缺失中间品的观 测值,借鉴余淼杰等(2018)利用省份层面工资率估算企业层面的工资支出,并对缺失资本原值的观测值 利用单豪杰(2008)的资本折旧率和永续盘存法计算企业投资,然后根据核算公式估算企业的中间品投入。 事实上,TFP 作为影响企业创新的重要因素,在回归分析中是否将其作为控制变量加入回归模型,本文主 要结论依然稳健。(5)*FDI* 设定为虚拟变量,参照《外商投资统计制度》定义外资股权超过 10%为 1,否 则为 0。(6)所有连续型变量按照 5%和 95%分位点进行缩尾处理。

附录 3: 稳健性检验中未汇报结果

附表 3 稳健性: 考察遗漏变量

	(1)	(2)	(3)	(4)
ln Branch	0.0307***	0.0327***	0.0168***	0.0142***
	(0.0047)	(0.0046)	(0.0047)	(0.0051)
In Scale	-0.0242***	-0.0229***	-0.0264***	-0.0223***
	(0.0046)	(0.0046)	(0.0046)	(0.0046)
ln <i>Age</i>	0.0744***	0.0749***	0.0699***	0.0684***
	(0.0067)	(0.0067)	(0.0067)	(0.0067)
ln Sub	0.0103***	0.0101^{***}	0.0113***	0.0107^{***}
	(0.0009)	(0.0009)	(0.0008)	(0.0008)
ROA	0.0469***	0.0470^{***}	0.0302^{*}	0.0388**
	(0.0177)	(0.0172)	(0.0172)	(0.0186)
EX	0.0981***	0.0965***	0.0980^{***}	0.0938***
	(0.0058)	(0.0058)	(0.0060)	(0.0060)
FDI	0.0647***	0.0664***	0.0641***	0.0636***
	(0.0206)	(0.0206)	(0.0205)	(0.0207)
SOE	-0.0223	-0.0219	-0.0354	-0.0340
	(0.0242)	(0.0242)	(0.0240)	(0.0235)
TFP	-0.0513***	-0.0460***	-0.0440***	-0.0283***
	(0.0055)	(0.0055)	(0.0055)	(0.0055)
观测值	313 175	313 175	313 172	313 084
\mathbb{R}^2	0.8102	0.8105	0.8133	0.8135
控制其他银行数量	未控制	控制	控制	控制
固定效应	控制	控制	控制	控制
城市×年份固定效应	未控制	未控制	未控制	控制
省份×年份固定效应	未控制	未控制	控制	未控制

说明:其他银行主要包括国有 5 大行、邮政储蓄、外资银行及农商行。*Branch* 代表企业附近 20 公里以内的商业银行网点数,滞后 1 期加入回归。固定效应在基准回归包含的固定效应基础上,增加了城市和省份趋势固定效应。

附表 3 的结果显示,在控制可能的遗漏变量和省、市层面混杂因素后,回归结果与基准回归结果并无明显差异,一定程度上反映基准回归结果的稳健性。

附录 4: 安慰剂检验

附图 1 安慰剂检验

根据安慰剂检验结果,正文中利用的外资银行首次进入地级市层面的冲击较为外生。在 500 次随机重置该冲击在各年度冲击的城市后,系数估计值的概率分布曲线关于零点对称, 不存在结构性偏移。

附录 5: 样本外检验

(1) (2) (3) (4)(5) (6) 非上市公司 非上市公司 全样本 上市公司 全样本 上市公司 0.0389*** 0.0391*** 0.0395*** 0.0222 0.0394*** In Branch 0.0190 (0.0065)(0.0063)(0.0204)(0.0065)(0.0063)(0.0205)观测值 154 379 166 505 166 505 12 126 154 379 12 126 控制 控制 控制 控制 控制 控制 固定效应 控制变量 未控制 未控制 未控制 控制 控制 控制

附表 4 样本外检验: 加入上市公司

说明:表中汇报的上市公司样本已剔除 ST 等情形的观测值,仅保留制造业上市公司,以求与工业企业保持一致。非上市公司样本与基准回归样本一致,全样本指非上市公司样本加上市公司样本。为保持工业企业数据与上市公司数据口径统一,迁就两者数据长度的短板,所有列均采用 2007-2013 年的样本回归。

在附表 4 中,我们将上市公司数据合并到正文样本中进行分析。由于最新的中国工业企业数据仅更新到 2013 年,同时上市公司数据受 2007 年会计准则调整的影响,因此我们取共同交集的年份即 2007-2013 年展开样本外检验。附表 4 的结果显示,以非上市公司样本为参照,无论是否引入企业层面的控制变量,结果显著,且与正文的全时间长度样本估计结果相似。在兼有非上市公司和上市公司的全样本中,无论是否引入企业层面的控制变量,系数值均显著。而在仅上市公司样本中,无论是否引入企业层面的控制变量,系数值均不显著。需要说明的是,为了尽可能高估显著性,附表 4 中选择了令标准误最小的企业层面进行聚类。从结果看,即使聚类到企业层面,银行网点扩张对企业创新的影响在上市公司样本中仍然不

显著。无论是否引入控制变量,银行网点扩张的影响在上市公司样本中均不显著。

附录 6: 其他补充内容

(一) 考虑银行网点扩张与企业创新之间传导路径的扩展探讨

由于银行是否扩张取决于银行自身的评估,假定银行在上一期进行扩张的概率为 z^b, 那 么其不扩张的概率为 1-z^b。对一个代表性企业,银行网点扩张对其研发活动是外生的。随着 技术水平的复杂程度变高,企业创新的投资会逐渐变高,而对缺乏资金的企业,需要获取更 多外部融资投入研发活动,提高其技术水平。

令 $A^{max}=\max[A_{ii}]$ 表示 t 期行业前沿的技术水平。将银行扩张与企业创新成功的可行集分为(银行扩张,银行不扩张),并考虑企业创新成功的概率在银行扩张与否时存在差异,具体设定如下:

$$A = \begin{cases} A_t^{max} & \text{若银行扩张的概率为} z_{t-1}^b, \text{ 企业创新成功的概率为} p_i \\ A_{i,t-1} & \text{若银行扩张的概率为} z_{t-1}^b, \text{ 企业创新失败的概率为} 1 - p_i \\ A_t^{max} & \text{若银行不扩张的概率为} 1 - z_{t-1}^b, \text{ 企业创新成功的概率为} v_i \\ A_{i,t-1} & \text{若银行不扩张的概率为} 1 - z_{t-1}^b, \text{ 企业创新失败的概率为} 1 - v_i \end{cases} \tag{A1}$$

(A1) 式刻画的是,当企业创新成功后,达到当期前沿技术水平;而创新失败时,企业技术维持上一期水平。在此基础上,定义银行扩张时企业创新成功的概率为 p_i ,而银行没有扩张企业创新成功的概率为 v_i ,并假定 $1 \ge p_i \ge v_i \ge 0$ 。其经济含义为,银行扩张有助于降低企业外部融资摩擦,便利化企业的研发活动,所以企业研发成功的概率更高^①。

企业创新产出(H_{it})是当期企业自身技术水平与当期行业前沿技术水平之比,取值范围是 $0 \le 1$ 的连续统。当创新成功时,企业当期的创新产出达到最大值。需要补充的是,这里取最大值的情形相当于企业创新水平以 1 为参照标准(numeraire)。因此,企业当期的创新产出可以表述为:

正可以衣处为:
$$\begin{cases} A_t^{max} / A_t^{max} = 1 & \text{若银行扩张的概率为} z_{t-1}^b \\ & \text{企业创新成功的概率为} p_i \end{cases}$$

$$A_{i,t-1} / A_t^{max} = H_{t-1} / (1+g) & \text{若银行扩张的概率为} z_{t-1}^b \\ & \text{企业创新失败的概率为} 1 - p_i \end{cases}$$

$$A_t^{max} / A_t^{max} = 1 & \text{若银行不扩张的概率为} 1 - z_{t-1}^b \\ & \text{企业创新成功的概率为} v_i \end{cases}$$

$$A_{i,t-1} / A_t^{max} = H_{t-1} / (1+g) & \text{若银行不扩张的概率为} 1 - z_{t-1}^b \\ & \text{企业创新失败的概率为} 1 - v_i \end{cases}$$

定义 g_{it} 为企业 t 期技术水平的增长率,即 $Amax\ t/Amax\ t-1=g$ 。进一步将企业创新产出按照固定替代弹性生产函数(CES)加总可得:

$$H_t = \int_0^1 H_{it} \mathrm{d}i \tag{A3}$$

其中, H_{it} 为企业 i 在 t 期的创新产出。结合(A2)式可得到以下企业创新产出关于银行扩张概率的函数:

_

① 正文中的回归结果也佐证了银行网点扩张有利于降低企业外部融资摩擦。

$$H_{t} = z_{t-1}^{b} p_{i} + \left[H_{t-1} / (1+g) \right] z_{t-1}^{b} (1-p_{i}) + \left(1 - z_{t-1}^{b} \right) v_{i} + \left[H_{t-1} / (1+g) \right] \left(1 - z_{t-1}^{b} \right) (1-v_{i})$$
(A4)

在稳态(变量加上标*)情况下, $H = H_{t-1} = H^*$ 、zb $t-1=z^*$ 、 $p = p^*$ 及 $v = v^*$,所以:

$$H^* = \left\{ (1+g) \left[z^* \left(p^* - v^* \right) + v^* \right] \right\} / \left\{ g + \left[z^* \left(p^* - v^* \right) + v^* \right] \right\}$$
 (A5)

对函数 H*求解关于银行扩张概率 z*的偏导可得:

$$\partial H^*/\partial z^* > 0 \tag{A6}$$

其经济含义为,银行网点扩张会促进企业创新产出水平。根据基准回归结果,银行网点扩张对非上市企业创新具有显著促进作用,相当于以期望形式验证了(A6)式。

(二) 基准回归稳健性检验

附表 5 剔除总行和分行的回归结果

	(1)	(2)	(2)
	(1)	(2)	(3)
ln <i>Branch</i>	0.0291***	0.0291***	0.0291**
	(0.0045)	(0.0084)	(0.0108)
观测值	313 179	313 179	313 179
\mathbb{R}^2	0.8099	0.8100	0.8100
固定效应	控制	控制	控制
控制变量	控制	控制	控制
聚类层	企业	省份	省份-年份

说明:标准误为聚类稳健标准误,其中第(1)列聚类到企业层面,第(2)列聚类到省份层面,第(3)列为省份和年份双向聚类。

为检验基准回归结果的可靠性,我们回到企业邻近网点的测算步骤,剔除各银行的总行与所有分行,重新测算企业附近 20 公里内的银行网点数并展开回归分析,结果见附表 5。在剔除总行和分行样本后,我们关心的变量 ln *Branch* 的系数值仍然稳健,且与基准回归的0.0304(正文表 1 B 部分第(3)列)非常接近。

(三)金融可及性渠道效应稳健性检验

参照 Beck et al. (2004) 关于金融可得性的衡量,我们将非上市公司样本与 2005 年世界银行中国企业调查数据进行合并[©],进一步佐证银行扩张的金融可得性渠道。调查数据中有问到企业"以下因素在多大程度上影响贵公司的经营和发展",其中金融可得性是我们关注的,回答从 0(None)、1(Low)、2(Moderate)、3(High)到 4(Very high)。具体回归结果见附表 6,仅以合并后的样本作为参照。无论是否引入企业层面的控制变量,结果均显著为正(如第(1)和(2)列),且与正文全样本估计结果相似。金融可得性渠道检验结果表明,无论是否引入企业层面的控制变量,ln Branch×ATF 系数值均不显著(如第(3)和(4)列),依然得出与正文相同的结论。通过上述进一步的检验,我们认为银行扩张中并不存在金融可及性渠道效应。

①考虑到世界银行是匿名调查问卷,所以不能直接进行合并。具体来说,先按照年份和城市将世行数据与非上市公司数据进行匹配,然后根据两位数行业代码将两个数据源进行匹配,最后根据公司员工数进行匹配,得到含有企业金融可得性指标在内的公司层面数据。

附表 6 使用世行数据验证金融可及性渠道

	(1)	(2)	(3)	(4)
In Branch	0.1119***	0.0827***	0.1174***	0.0803***
	(0.0222)	(0.0120)	(0.0202)	(0.0145)
ln <i>Branch</i> × <i>ATF</i>			-0.0046	0.0021
			(0.0095)	(0.0066)
观测值	8040	3748	8040	3748
\mathbb{R}^2	0.0310	0.1931	0.0311	0.1931
固定效应	控制	控制	控制	控制
控制变量	未控制	控制	未控制	控制

说明:奇数列是未加入控制变量的样本,偶数列为加入控制变量的样本;第(1)、(2)列与基准回归相似,第(3)、(4)列为加入交互项的回归。合并数据为非上市公司与2005年世界银行中国企业调查数据。

参考文献:

聂辉华、江艇、张雨潇、方明月(2016):《我国僵尸企业的现状、原因与对策》,《宏观经济管理》 第9期。

单豪杰(2008): 《中国资本存量 K 的再估算:1952~2006 年》, 《数量经济技术经济研究》第 10 期。 余淼杰、金洋、张睿(2018): 《工业企业产能利用率衡量与生产率估算》, 《经济研究》第 5 期。

Beck, T.; Demirgüç-Kunt, A. and Maksimovic, V. "Bank Competition and Access to Finance: International Evidence." *Journal of Money, Credit and Banking*, 2004, 36(3), pp. 627-648.

论文通讯作者: 袁凯彬

邮箱: kaibin.yuan@foxmail.com

日期: 2021年5月29日