

PH 205 **Quiz 2 (07 November 2023)**

Full marks: 10

Time: 40 minutes

Tick the correct answer(s) for each question. In case of MCQs, the correct answer(s) will carry 1 mark, whereas wrong answer will carry -1/2 mark.

- Which of the following is incorrect for a homojunction LED:
- (a) It has a relatively lower efficiency than the heterojunction LED
- (b) Photon reabsorption is usually present in the device
- (c) The effective volume from which the photons emerge is quite lárge
- (d) The homojunction LEDs are made by epitaxial process.
- 2. In a quantum well LASER, which of the following statement(s) is/are incorrect?
- (a) The threshold current for lasing is very small
- (b) The optical confinement factor is close to unity
 - (c) Strained quantum well LASER has low threshold current
 - 3. Which of the following is incorrect for a diode LASER:
- Output power increases with temperature (a)
 - (b) The threshold current increases with temperature
 - (c) The long wavelength lasers are more sensitive to temperature of operation
 - 4. Which of the following is incorrect for a solar cell:
- (a) Si solar cells have higher efficiency than GaAs solar cells
 - (b) The power conversion efficiency is dependent on the doping type of top layer (illuminated)
 - (c) The power conversion efficiency of conventional solar cells is below 30%
 - (d) Antireflection coating can be used to increase the efficiency of a solar cell
 - 5. Which of the following is incorrect for a low threshold Laser:
 - (a) The active layer thickness should be low.
 - (b) The radiative recombination time should be large.
- (c) The injected carrier density should be large.
 - (d) The area of the device active region should be small.

[P.T.O]

Write down the correct answer(s) in the given space against each question.

6. Name any two semiconducting materials can be used for making photodiode for operation in
the wavelength range 1.0 - 1.6 µm with high efficiency. ANS: (a) Germanium (b) Algans / In Gars P
7. For some photodetector, the fraction of electron-hole pairs that contribute to the detector current is 0.8 and the absorption coefficient of the detector material is 10 ⁴ cm ⁻¹ and the thickness
of the active layer is 4 μm . Assuming no reflection loss, the external quantum efficiency (%) of
the photodetector is ANS:
8. A solar cell has a fill factor of 0.75. If the open circuit voltage and short circuit current are 0.5
V and 50 mA, respectively, the max power output from the cell will be ANS:
Street and a supplementary general and the during A fig. 1 see matter on a fig.
9. For a GaAs LED, given that the radiative recombination time is 20 ns and the non-radiative
recombination time is 100 ns. The internal quantum efficiency (%) of the LED is ANS: 83.3
10. In a GaAs Febry-Perot Laser cavity, the absorption loss in the cavity is 100 cm ⁻¹ . The reflection
coefficient of the GaAs-air interface is 0.33. The cavity length (L in µm) at which the absorption
loss and the mirror loss becomes equal is:
ANS: L =μm
May use the space below for rough work