School of Computing Science Simon Fraser University SFU Simon Fraser Univerview Vancouver, Canada

Model Selection Scores for Multi-Relational Bayesian Networks

Sajjad Gholami

Oliver Schulte

Outline

- Brief Summary of Main Paper: Learning first-order Bayesian Networks for Multi-Relational Data
- What is a first-order BN good for?
 - Answering first-order probabilistic queries.
 - Probabilistic inference over links and attributes
 - Extracting Features: Extract, Transform, Load
 - Classification
 - Exception Mining and Anomaly Detection

Main Paper Summary

Locally Consistent Bayesian Network Scores for Multi-Relational Data

Bayesian Networks

Multi-Relational Data

- k-ary functor: maps a tuple of k individuals to a value
- I.I.D. data: unary (k=1) functors
- Multi-Relational: k>1

User					
User_id	Age	Gender			
3	0	М			
5	1	F			
7	2	М			

User_id	Movie_id	Rating
3	The Dictator	1
5	Thor	4
5	The Dictator	3
7	BraveHeart	5

Movie						
Movie_id	Action	Drama	Horror			
The Dictator	0	0	0			
Thor	1	0	0			
BraveHeart	1	1	1			

First-Order Bayesian Networks

A first-order
 Bayesian network is
 a Bayesian network
 whose nodes are
 first-order terms

(Wang et al. 2008)

AKA parametrized
 Bayesian network
 (Poole 2003, Kimmig et al. 2014)

gender(A)

ActsIn(A,M)

First-Order Bayesian Networks represent a Database Distribution

Wang, D. Z.; Michelakis, E.; Garofalakis, M. & Hellerstein, J. M. (2008), BayesStore: managing large, uncertain data repositories with probabilistic graphical models, in , VLDB Endowment, , pp. 340--351. Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', *Machine Learning*, 1--45.

Probabilistic First-Order Queries

- Database probability of a first-order formula = #satisfying instantiations/#possible instantiations
- Examples:
 - $P_D(gender(Actor) = W) = 0.5$
 - $P_D(gender(Actor) = W, ActsIn(Actor, Movie) = T) = 1/4$

DEMO: Bayes Net Query

Data Query

Num Movies	3883
Num Users	6039
Num Movie-User Pairs	$3883 \times 6039 = 23449437$

movie-user pairs with action movie, woman user

Action(Movie) = T,	
HasRated(User,Movie) = T,	
gender(User) = W	66642
	66642/23449437=
Frequency	0.0028

First-Order Bayesian Networks

Nodes = First-order terms

Upgrading Bayesian Network Scores

Upgrading Bayesian Network Scores

Desired Properties:

Generalization:

Model comparison for i.i.d special case of the upgraded one

Preserving Local Consistency:

o Model comparison consistent for i.i.d. then consistent for multi-relational data.

Statistical Consistency

- We provide a general method for generalizing non-relational model selection scores to multi-relational scores
- A model selection score is **consistent** if BNs that maximize the score are guaranteed to represent the database distribution if the domain sizes are arbitrarily large.

Intuitions

- The main issue: Event counts depend on the data **and** on the networks considered.
- Solution:
 - 1. Rescale counts to be compatible for current and alternative graphs.
 - 2. Normalize scores to be compatible across alternative graphs.

Bayesian Network Scores

Standard scores have this form:

LL: Log Likelihood of data under model

Penalty: A function of number of parameters and sample size

- Log-Likelihood:
 - Sum over all parent-child value assignments.
- AIC: LL f(#Parameters)
- BIC: LL f(#Parameters) x log(SampleSize)

Normalized Gain Upgrade Method

To score an edge e:

A = Normalized Likelihood differential

B = Normalized penalty term differential by the <u>larger</u> local sample size

Normalized gain = A - B

Applications of First-Order Bayesian Networks

Tutorial:

https://oschulte.github.io/srl-tutorial-slides/

Github:

https://github.com/sfu-cl-lab/FactorBase

Example: IMDB toy data

gender = Woman country = U.S.

gender = Woman country = U.S.

False False n/an/a

True False \$500K n/a

False True \$5M n/a

False n/a

True \$2M

ActsIn salary

runtime = 98 min drama = true

action = true

runtime = 111 min drama = false action = true

ETL: Feature Vectors

- Learned Bayesian network
 →family conjunctions
- Feature = proportion of family conjunction in data
- Works well for classification and anomaly detection

gender(A)	ActsIn(A,M)	Drama(M)				Q
M	T	T	0	0	1/2	0
M	T	F	0	0	0	0
M	F	T	1/2	0	0	0
M	F	F	1/2	0	1/2	0
W	T	T	0	0	0	0
W	T	F	0	1/2	0	1/2
W	F	T	0	1/2	0	1/2
W	F	F	0	0	0	0

Native Relational Applications

- Via ETL, a Bayesian network can leverage traditional machine learning classification and anomaly/exception mining.
- Purely relational methods work even better (see refs).
- For exception mining, compare Kullback-Leibler divergence (KLD) between data distribution for a random average individual and data distribution for a specific individual.

Population Database e.g. IMDB

Individual Database e.g. Brad Pitt's movies

Schulte, O.; Qian, Z.; Kirkpatrick, A. E.; Yin, X. & Sun, Y. (2016), 'Fast learning of relational dependency networks', Machine Learning, 1--30.

Riahi, F. & Schulte, O. (2015), Model-Based Outlier Detection for Object-Relational Data, in 'Computational Intelligence, 2015 IEEE Symposium Series on', pp. 1590--1598.

Case Study: Movies

- Brave Heart is the most unusual drama
- Its most unusual feature is Actor Quality
 - 93% of Brave Heart's actors have the highest actor quality
 - A random average drama has only 42% actors of highest quality

MovieTitle		KLD Rank	KLD Max Node	KLD Max feature Value	Individual Probability	
Brave Heart	Drama	1	Actor_Quality	a_quality=4	0.93	0.42
Austin Powers	Comedy	2	Cast_position	cast_num=3	0.78	0.49
Blue Brothers	Comedy	3	Cast_position	cast_num=3	0.88	0.49

Case Study: Soccer Strikers

Player Name		KLD Rank			Individual Probability	Class Probability
Edin Dzeko	Striker	1	Dribble Efficiency	DE = Low	0.16	0.50
Paul Robinson	Goalie		SavesMade	SM = Medium	0.30	0.04
Michel Vorm	Goalie	3	SavesMade	SM = Medium	0.37	0.04

Conclusions

- Relational Bayes net learning has a solid theoretical foundation.
- Scales to millions of records.
- Supports various applications, e.g.
 - database frequency estimation
 - joint inference over attributes and relationships
 - link-based classification
 - exception mining

SFU

Thank you!

Tutorial:

https://oschulte.github.io/srl-tutorial-slides/

Github:

https://github.com/sfu-cl-lab/FactorBase

Formulas

- A (conjunctive) formula is a **joint assignment** $term_1 = value_1,...,term_n = value_n$
 - e.g., ActsIn(Actor, Movie) = T, gender(Actor) = W
- A ground formula contains only constants
 - e.g., ActsIn(UmaThurman, KillBill) = T, gender(UmaThurman) = W

Learned Bayes Net for IMDb

