Aufgabe 2

Geles Sir allgarius as, which Stapher in enforden / doppel I logarithiseter Staturury als greeder Excless

Einfacl doger, Homsich:

Fam y = a. 6 mil a > 0 6 > 0

und him du y- Slader logariblemoch shelint log (y) = log (a) + x log (b)

Bei Dappelt dogeritemichen:

Potenfulction y=h xh

in alogorishmid: $\log(y) - \log(k) + n \cdot \log(x)$

L, an und any leiche Schon du Logarithmen Finktion asgenord!

Wiederholung Landau Symbole

Big - O - Notation wid his daufseilalgeritmen vermodel 26: Adolition n-s n bal O(n) Multiplibation n-s n hat O(n2)

Definitiones (famal)

$$f(n) \in \mathcal{O}(g(n))$$
 gran dan wen $\exists k > 0 \exists n. \forall n \geqslant n. |f(n)| \leq k \cdot g(n)$
Odu $f(n) \in \mathcal{O}(g(n))$ gran dan wen $\lim \sup \frac{|f(n)|}{g(n)} < \infty$

Aufgabe 4

a) leign sin: lst
$$f(x) = O(g(x))$$
 fix $x \to x_0 \implies f(x) = O(g(x))$ fix $x \to x_0$

Betweente die Definition ist
$$f(x) = O(g(x))$$
 für $x \to x_0 \implies \lim_{x \to x_0} \frac{|f(x)|}{|g(x)|} = 0$

d.h
$$\forall \varepsilon > \exists n_0 \text{ socken } \text{fin } n > n_0 : \left| \frac{f(x)}{g(x)} \right| < \varepsilon \Leftrightarrow |f(x)| < \varepsilon |g(x)| \quad \forall n > n_0 \text{ (x)}$$

Sei mus
$$f(x) = O(g(x))$$
 and rule $\epsilon = 1$ $\Longrightarrow |f(x)| \leq |g(x)|$

damil
$$\exists C$$
 in desertable $z \in A$ sodium $f(x) = O(g(x))$

by leger six: let
$$f(x) = o(x^k)$$
 fix $x \to 0$ must such $f(x) = o(x^k)$ fix $k < k$

So
$$f(x) = o(x^k)$$
 fix $x \to 0$ \iff $\lim_{x \to 0} \frac{|f(x)|}{|x^k|} = 0$

To
$$\ell < k$$
 girt $\frac{\left| \frac{f(x)}{f(x)} \right|}{\left| \frac{f(x)}{f(x)} \right|} = \frac{\left| \frac{f(x)}{f(x)} \right|}{\left| \frac{f(x)}{f(x)} \right|} = \frac{\left|$

da
$$\ell < R$$
 guhl $\times \frac{k-\ell}{g_{igh}}$ mull and $\frac{1}{|x^{k}|}$ elen $\rightarrow 0$

$$\mathcal{E}_{x \to 0} \left[\frac{|f(x)|}{|x|^{2}} = \lim_{x \to 0} \frac{|f(x)|}{|x|^{2}} \right] = 0 \quad \text{for } f(x) \in (1)$$

() leight Six order windulyer Six: lst f(x) = O(h(x)) fris $x \to x_0$ and g(x) = O(h(x)) fris $x \to x_0$ and g(x) = O(h(x))Bein adoheus von Fin ktwies dominist die Rochste Potenz Allgamein: Sei $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$ so girl $T_2(n) + T_2(n) = O(max(f(n), g(n)))$ Benein: Da T₁(n) = O(f(n)) ← ∃(1>0 ∃ €1>0 ∀x ∈ B∈(x0): |T₁(n)) ≤ (1 | f(n)) fix T₂(n) = O(g(n)) ← ∃ c₂>0 ∃ ε₁>0 ∀× ∈ β_ε(x₆): |T₂(n) | ≤ (₂| f(n)) atte 2 max (a,b) $dem \ gill + |T_1(n)| + |T_L(n)| \leq C_1 |f(n)| + C_2 |g(n)| \leq C(|f(n)| + |g(n)|) \leq C(|f(n)| + |g(n)|)$ rebu nun max ((1, (1) und not (E,, E,) run girt also for allem für $f_1 = O(q)$ und $f_2 = O(q)$ dan $f_1 + f_2 = O(\max(q, q)) = O(q)$ d) Zeiger Si oder Widaleger ris: (1) 2x = 0 (4x) fix x -3 00 music gelten IC>0 IE VX (BE(x0): |2x| (4x) & ist $4^{\times} = (2^{2})^{\times} = (2^{\times})^{2}$ damif $2^{\times} = ((2^{\times})^{2})^{2}$ da $\times -3 \infty = 14 \times (2^{\times})^{2}$ Si $(2^{\times})^{2}$ (ii) $\frac{x}{1-x^2} - x + x^3 + 0 (x^4)$ für x->0 Behachk die Taylarrihe 1-x2 = 1+ x2+ x4+ x6+... durch Multipliaktion $\frac{x}{1-x^2} = x \cdot (1+x^2+x^4+x^6) = x+x^3+x^5+\cdots$ Veryleich beide Seiter $\times \pm x^3 \pm x^5 \pm \cdots$ da x = 0 ist dur turage waln!

we $x + x^{3} + 0(x^{4})$ that $x = x + x^{3} + 0(x^{4})$ the distribution of the stress shallow giges multiget that x^{4} (iii) $\frac{x}{1-x^{1}} = x + x^{3} + 0(x^{5})$ for $x = x + x^{3}$

Betrachte Taylor Series für 1-1 = x + x + x +

Warn $cos(x) = O(1) \iff \exists (> 0 \exists \le > 6) \forall x \in B_{\varepsilon}(x_0) : |cos(x)| < (|y|(x))$ da $|cos(x)| \le 1 \exists c sodan |cos(x)| \le (.1 damil 1st die Aunge für x -> so walk$

Aufgabe 5

Schreib du folgweter Ausdancke is du Fam f(h) = O(h) fir h > O mit moglishet großem p EN oder g(n) = 0 (n9) his n ∈ N, n -> = mit blever, q ∈ N

a)
$$f(h) = 4(h^3+h)^2-4h^2 = 4(h^6+2h^4+h^2)-4h^2$$

$$= 4h^6+8h^4+4h^2-4h$$
Beach re run $\lim_{h\to 0} \left|\frac{4h^6+8h^4}{h^3}\right| = 4h^3+8h = 0$

$$\lim_{h\to 0} \left|\frac{4h^6+8h^4}{h^4}\right| = 4h^3+8 = 8$$

$$\lim_{k\to 0} \left| \frac{4h^{2} + 8h^{4}}{h^{5}} \right| = 4h + \frac{8}{h} = \infty$$

$$e) f(h) = \frac{e^h - e^h}{2h} - 1$$

6)
$$f(h) = \frac{e^{-e}}{2h} - 1$$

 $\lim_{h \to 0} \frac{e^{-e} - e^{-e}}{2h^2} - \frac{2h}{2h^2} = \frac{e^{-e} - 2h}{2h^2} = \frac{e^{-e} - 2h}{2h^2} = \frac{e^{-e} - e^{-e}}{2h^2} = 0$

$$\lim_{h \to 0} \frac{2h}{h} = \frac{2h^2 - 2h^2}{2h^3} - \frac{2h^2}{h^2} = \frac{2h^2 - 2h}{6h^2} = \frac{e^{-\frac{1}{2}} - 2h}{$$

$$\lim_{k\to 0} \frac{e^{h-\frac{1}{e^{h}}-1}}{e^{h}} = \frac{e^{h-\frac{1}{e^{h}}}-\frac{1}{h^{3}}}{2h^{3}} = 0 \text{ dand } f(h) = 0 \text{ (h)}$$

$$= e^{h-\frac{1}{e^{h}}-1} = e^{h-\frac{1}{e^{h}}-2h}$$

$$= \frac{2h^{3}}{8h^{3}} = \frac{h - h}{24h^{2}} = \frac{h - h}{48h} = 0$$

c)
$$g(n) = 4(n^{3} + n)^{2} - 4n^{2}$$

$$= 4(n^{6} + 2n^{4} + n^{2}) - 4n^{2}$$

$$= 4n^{6} + 8n^{4} + 4n^{2} - 4n^{2}$$

$$= 4n^{6} + 8n^{4}$$

$$\lim_{n \to \infty} \left| \frac{4n^{6} + 8n^{4}}{n^{6}} \right| = 4 + \frac{8}{n^{2}} = 4$$

$$\lim_{n \to \infty} \left| \frac{4n^{6} + 8n^{4}}{n^{5}} \right| = 4n + \frac{8}{n} = \infty$$

$$\lim_{n \to \infty} \left| \frac{4n^{6} + 8n^{4}}{n^{5}} \right| = 4n + \frac{8}{n} = \infty$$

d) (h) = sup $\frac{1-e^{-hx}}{1-e^{-x}}$

Ziel: find für $g(n) = O(n^{\alpha})$ mit moglichet blum q hin $n \to \infty$

Sei
$$g(n) = \sup_{x>0} \frac{1-e^{-x}}{1-e^{-x}}$$

Betrach Taylornih Von e^{-x} Betrach Taylornih Von e^{-x} $\int_{-\infty}^{\infty} e^{(n)} e^{(n)} dx$ $\int_{-\infty}^{\infty} e^{(n)} e^{(n)} dx$ fix $x \rightarrow 0$: $\int \frac{-\bar{\ell}^{nx}}{\sqrt{-\bar{\ell}^{nx}}} = \frac{nx}{x} = n$

Detrack regional
$$\sum_{h=0}^{N} \frac{f^{(h)}(a)}{h!} (x-a)^{h} = 1 - x + O(x^{1})$$

fix $x \rightarrow 0$ girl also $g(n) \approx n$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}{h!} (x-a) = 1 - x + 0$$

$$\int_{h=0}^{\infty} \frac{f(x)}$$

$$f(0) = e^{-1}$$

$$f'(0) = -e^{-2} - 1$$

$$f'(0) = e^{-2} - 1$$

$$f''(0) =$$

and die Fenktion bonuyust his große x giga 1

Un der Marinim zu hider literathe Albitury $\frac{S}{S_A}\left(\frac{1-e^{-nx}}{1-e^{-x}}\right)$ exist $\frac{d}{dx}\left(1-e^{-nx}\right) = ne^{-nx}$ Duel interegal: $f'(x) = \frac{ne^{nx}\left(1-e^{x}\right) - e^{-x}\left(1-e^{-nx}\right)}{e^{-nx}}$ Quotanteregal: $f'(x) = \frac{n e^{nx} \cdot (1 - e^{x}) - e^{x} \cdot (1 - e^{nx})}{(1 - e^{x})^{2}}$

$$f'(x) = \frac{n e^{nx} (1 - e^{x})^{2}}{(1 - e^{x})^{2}}$$

$$= \frac{n e^{nx} (1 - e^{x})^{2}}{(1 - e^{x})^{2}} = \frac{1 - e^{nx}}{(1 - e^{x})^{2}} \approx n \text{ and } g(n) = 0(n)$$

$$= \frac{n e^{nx} (n + 1) \times -x}{1 - 2e^{-x} + e^{-2x}} = \frac{n e^{(n + 1)} \times -x}{(n + 1) \times -x}$$

$$= \frac{n e^{nx} (1 - e^{x})^{2}}{(1 - e^{x})^{2}} = \frac{n e^{nx} (1 - e^{x})^{2}}{(1 - e^{x})^{2}} = \frac{n e^{nx}}{(1 - e^{x})^{2}} = \frac{n e^{nx} (1 - e^{x})^{2}}{(1 - e^{x})^{2}} = \frac{n e^{nx}}{(1 - e^{x})^{2}} = \frac{n e^$$

Toylor - Series:
$$\sum_{h=0}^{N} \frac{f^{(h)}(a)}{h!} (x-a)^{h}$$

In mill
$$\sum_{h=0}^{N} \frac{f^{(h)}(0)}{h!} (x)^{h}$$

$$f^{(h)}(x) = f^{(h)}(x) = 1 - x^{h}$$

$$f^{(h)}(x) = f^{(h)}(x) = (1-x^{h})^{h}$$

Tens
$$\frac{3}{2} = \frac{f''(0)}{n!} = 1 + x^2 + x^4 + \cdots$$