

Running Deep Learning Applications on HPC System

Hao Ji, Data Scientist

USC Center for Advanced Research Computing

Conten

Section 1: History of Al

Section 2: ML Perf Benchmark

Section 3: Install PyTorch on Cluster

Section 4: Running Deep Learning Models

Introduction

ML Perf

Create Kernels

Running DL Models

Pre-1950s: Foundations of Al

The formal study of AI began with mathematicians and philosophers like Alan Turing.

In 1950, Alan Turing proposed the famous "Turing Test," a measure of a machine's ability to exhibit human-like intelligence. This concept laid the groundwork for future AI research.

The "standard interpretation" of the Turing test, in which player C, the interrogator, is given the task of trying to determine which player – A or B – is a computer and which is a human. The interrogator is limited to using the responses to written questions to make the determination.

1950s and 1960s: Early Research and Symbolic Al

The term "artificial intelligence" was coined in 1956 at the Dartmouth Conference, where the field of Al research was officially established.

During this period, researchers focused on symbolic AI, using rules and logic to mimic human problem-solving processes.

Introduction ML Perf PyTorch Running DL Models

1970s and 1980s: Knowledge-Based Systems Al

Research saw a shift towards knowledge-based systems and expert systems.

These systems utilized large knowledge bases to reason and draw conclusions about specific domains.

Though promising, early expert systems faced limitations due to the complexity of representing all human knowledge in a formalized manner.

Introduction ML Perf PyTorch Running DL Models

1980s and 1990s: Al Winter

During this period, AI faced a decline in interest and funding due to unmet expectations and the inability to deliver on grand promises.

Progress in AI did not match initial optimism, leading to a phase known as the "AI Winter."

Introduction ML Perf PyTorch Running DL Models

Late 1990s and 2000s: Machine Learning and Neural Networks

The resurgence of AI came with the advent of machine learning techniques, particularly neural networks.

Improved computational power and access to vast amounts of data allowed neural networks to excel in tasks like image recognition and language processing.

Support vector machines and other machine learning algorithms also gained popularity.

Introduction

2010s: Deep Learning and AI Breakthroughs

Deep learning, a subset of machine learning using artificial neural networks with multiple layers, became the driving force behind many AI breakthroughs.

Applications of AI proliferated in various fields, including natural language processing, computer vision, robotics, and autonomous vehicles.

Present and Beyond

Al continues to evolve rapidly, with ongoing research in areas like reinforcement learning, explainable Al, Large Language Model and Al ethics.

Integration of AI in everyday life through virtual assistants, smart devices, and recommendation systems is becoming increasingly common.

However, concerns about AI's societal impact, privacy, and ethical implications persist.

Introduction of Machine Learning

ML Perf Benchmark

ML Perf: A broad ML benchmark suite for measuring the performance of ML software frameworks, ML hardware accelerators, and ML cloud and edge platforms

Area Benchmark Dataset **Quality Target** Reference Latest Version Implementation Available Model Vision Image classification ImageNet 75.90% classification ResNet-50 v1.5 v3.1 Image segmentation 0.908 Mean DICE Vision KiTS19 3D U-Net v3.1 (medical) score Object detection Open Images v3.1 Vision 34.0% mAP RetinaNet (light weight) 0.377 Box min AP Object detection COCO and 0.339 Mask min Mask R-CNN v3.1 Vision (heavy weight) 0.058 Word Error Speech recognition LibriSpeech RNN-T v3.1 Language Rate Wikipedia 0.72 Mask-LM NLP BERT-large Language v3.1 2020/01/01 accuracy 2.69 log perplexity LLM C4 GPT3 v3.1 Language Recommendation Criteo 4TB multi-hot 0.8032 AUC DLRM-dcnv2 v3.1 Commerce Marketing, Art, LAION-400M-FID<=90 and Stable Diffusionv2 Image Generation v3.1 filtered CLIP>=0.15 Gaming 1TB Click Logs v2.1 Recommendation 0.8025 AUC DLRM Commerce Reinforcement 50% win rate vs. Mini Go (based on Go v2.1 Research Alpha Go paper) learning checkpoint Object detection Vision COCO 23.0% mAP SSD v1.1 (light weight) WMT English-Translation 24.0 Sacre BLEU NMT v0.7 Language (recurrent) German Translation (non-WMT English-25.00 BLEU Transformer v0.7 Language recurrent) German

ML Perf Training

The MLPerf Training benchmark measures how fast systems can train models to a target quality metric.

- **MLPerf Training**
- MLPerf Training: HPC

ML Perf Inference

The MLPerf inference benchmark suite measures how fast systems can process inputs and produce results using a trained model

- MLPerf Inference: Datacenter
- MLPerf Inference: Edge
- MLPerf Inference: Mobile
- **MLPerf Inference: Tiny**

ML Perf Storage

The MLPerf Storage benchmark suite measures how fast storage systems can supply training data when a model is being trained.

MLPerf Storage

Edge: Lenovo SE450 Edge Server

Mobile: Xiaomi note12 turbo

Tiny: Cora Z7 for ARM/FPGA SoC Development

ML Perf Training Benchmark

Performance

How fast is a model for training, inference?

Quality

How good are a model's predictions?

- End to end training of a Resnet56 CIFAR10 model
- Nvdia P100 with 512GB of memory and 28 CPU cores
- TensorFlow 1.2 compiled from source with CUDA 8.0 and CuDNN 5.1

ML Perf

ML Perf Benchmark

ML Perf Benchmark

Training v1.1	

Trailing															
Closed	Open						Benchmark results (minutes)								
							Image classification	Image segmentation (medical)	Object detection, light-weight	Object detection, heavy-weight	Speech recognition	NLP	Recom- mendation	Reinforce- ment Learning	-
							ImageNet	KiTS19	coco	coco	LibriSpeech	Wikipedia	1TB Clickthrough	Go	
ID	Submitter	System	Processor	# Accelerator #	ŧ	Software	ResNet	3D U-Net	SSD	Mask R-CNN	RNN-T	BERT [1]	DLRM	Minigo	Details Code
Available	cloud														
1.1-2000	Azure	nd96amsr_a100_v4_ngc21.09_merlin_hugectr	AMD EPYC 7V12	2 NVIDIA A100-SXM4-80GB (400W)	8	Merlin HugeCTR with NVIDIA DL Frameworks Release 21.09							1.87	5	details code
1.1-2001	Azure	nd96amsr_a100_v4_ngc21.09_mxnet	AMD EPYC 7V12	2 NVIDIA A100-SXM4-80GB (400W)	8	MXNet NVIDIA Release 21.09	29.720	25.400	8.309	9					details code
1.1-2002	Azure	nd96amsr_a100_v4_ngc21.09_pytorch	AMD EPYC 7V12	2 NVIDIA A100-SXM4-80GB (400W)	8	PyTorch NVIDIA Release 21.09				47.064	37.550	21.213	3		details code
1.1-2003	Azure	nd96amsr_a100_v4_ngc21.09_tensorflow	AMD EPYC 7V12	2 NVIDIA A100-SXM4-80GB (400W)	8	TensorFlow NVIDIA Release 21.09								319.410	0 details code
1.1-2004	Azure	nd96amsr_a100_v4_n4_ngc21.09_pytorch	AMD EPYC 7V12	8 NVIDIA A100-SXM4-80GB (400W)	32	PyTorch NVIDIA Release 21.09				14.912	2				details code
1.1-2005	Azure	nd96amsr_a100_v4_n8_ngc21.09_mxnet	AMD EPYC 7V12	16 NVIDIA A100-SXM4-80GB (400W)	64	MXNet NVIDIA Release 21.09	4.587		1.517	7					details code
1.1-2006	Azure	nd96amsr_a100_v4_n8_ngc21.09_pytorch	AMD EPYC 7V12	16 NVIDIA A100-SXM4-80GB (400W)	64	PyTorch NVIDIA Release 21.09						3.11	1		details code
1.1-2007	Azure	nd96amsr_a100_v4_n9_ngc21.09_mxnet	AMD EPYC 7V12	18 NVIDIA A100-SXM4-80GB (400W)	72	MXNet NVIDIA Release 21.09		3.800							details code
1.1-2008	Azure	nd96amsr_a100_v4_n16_ngc21.09_pytorch	AMD EPYC 7V12	32 NVIDIA A100-SXM4-80GB (400W)	128	PyTorch NVIDIA Release 21.09					4.533	3			details code
1.1-2009	Azure	nd96amsr_a100_v4_n32_ngc21.09_tensorflow	AMD EPYC 7V12	64 NVIDIA A100-SXM4-80GB (400W)	256	TensorFlow NVIDIA Release 21.09								30.714	4 details code
1.1-2010	Azure	nd96amsr_a100_v4_n34_ngc21.09_pytorch	AMD EPYC 7V12	68 NVIDIA A100-SXM4-80GB (400W)	272	PyTorch NVIDIA Release 21.09				3.908	3				details code
1.1-2011	Azure	nd96amsr_a100_v4_n48_ngc21.09_tensorflow	AMD EPYC 7V12	96 NVIDIA A100-SXM4-80GB (400W)	384	TensorFlow NVIDIA Release 21.09								24.802	2 details code
1.1-2012	Azure	nd96amsr_a100_v4_n96_ngc21.09_mxnet	AMD EPYC 7V12	192 NVIDIA A100-SXM4-80GB (400W)	768	MXNet NVIDIA Release 21.09		1.262							details code
1.1-2013	Azure	nd96amsr_a100_v4_n128_ngc21.09_mxnet	AMD EPYC 7V12	256 NVIDIA A100-SXM4-80GB (400W) 1	1024	MXNet NVIDIA Release 21.09	0.583		0.455	5					details code
1.1-2014	Azure	nd96amsr_a100_v4_n128_ngc21.09_pytorch	AMD EPYC 7V12	256 NVIDIA A100-SXM4-80GB (400W) 1	1024	PyTorch NVIDIA Release 21.09						0.656	3		details code
1.1-2015	Azure	nd96amsr_a100_v4_n192_ngc21.09_pytorch	AMD EPYC 7V12	384 NVIDIA A100-SXM4-80GB (400W) 1	1536	PyTorch NVIDIA Release 21.09					3.20	5			details code
1.1-2016	Azure	nd96amsr_a100_v4_n224_ngc21.09_tensorflow	AMD EPYC 7V12	448 NVIDIA A100-SXM4-80GB (400W) 1	1792	TensorFlow NVIDIA Release 21.09								17.439	9 details code
1.1-2017	Azure	nd96amsr_a100_v4_n256_ngc21.09_mxnet	AMD EPYC 7V12	512 NVIDIA A100-SXM4-80GB (400W) 2	2048	MXNet NVIDIA Release 21.09	0.438								details code
1.1-2018		nd96amsr_a100_v4_n256_ngc21.09_pytorch	AMD EPYC 7V12	512 NVIDIA A100-SXM4-80GB (400W) 2	2048	PyTorch NVIDIA Release 21.09						0.422	2		details code
Available	on-premise														
1.1-2019	Baidu	1_node_8_A100_NGC21.05_MXNet	Intel(R) Xeon(R) Platinum 8350C	2 NVIDIA A100-SXM4-80GB (400W)	8	MXNet NVIDIA Release 21.05	28.605								details code
1.1-2020	Baidu	1_node_8_A100_PaddlePaddle	Intel(R) Xeon(R) Platinum 8350C	2 NVIDIA A100-SXM4-80GB (400W)	8	PaddlePaddle (branch: develop, commitID: 605e7f0)	28.613								details code
1.1-2021	Dell	DSS8440x8A100-PCIE-40GB	Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz	2 NVIDIA A100-PCIE-40GB (250W)	8	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	38.871		11.193	61.505	5	66.63	1	393.431	details code
1.1-2022	Dell	DSS8440x8A100-PCIE-40GB-NVBridge	Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz	2 NVIDIA A100-PCIE-40GB (250W)	8	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	37.083		10.899	58.571				405.424	4 details code
1.1-2023	Dell	R750xax4A100-PCIE-80GB	Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz	2 NVIDIA A100-PCIE-80GB (300W)	4	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	62.949	60.586	18.321	93.134	84.02	56.260		590.009	9 details code
1.1-2024	Dell	R750xax4A100-PCIE-80GB-8368	Intel(R) Xeon(R) Platinum 8368 CPU @ 2.40GHz	2 NVIDIA A100-PCIE-80GB (300W)	4	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	64.131		18.390	91.562	2	56.13	1		details code
1.1-2025	Dell	2xR750xax4A100-PCIE-80GB	Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz	4 NVIDIA A100-PCIE-80GB (300W)	8	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	32.087								details code
1.1-2026	Dell	DSS8440x8A100-PCIE-80GB	Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz	2 NVIDIA A100-PCIE-80GB (300W)	8	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	33.553	28.543	9.835	55.033	60.763	41.269	9		details code
1.1-2027	Dell	DSS8440x10A100-PCIE-80GB	Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz	2 NVIDIA A100-PCIE-80GB (300W)	10	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	28.187		8.223	46.948	3	36.859			details code
1.1-2028	Dell	4xR750xax4A100-PCIE-80GB	Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz	8 NVIDIA A100-PCIE-80GB (300W)	16	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	17.336								details code
1.1-2029	Dell	8xR750xax4A100-PCIE-80GB	Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz	16 NVIDIA A100-PCIE-80GB (300W)	32	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	10.586		3.477	7					details code
1.1-2030	Dell	XE8545x4A100-SXM-40GB	AMD EPYC 7763 64-Core Processor	2 NVIDIA A100-SXM4-40GB (400W)	4	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	61.820		16.998	95.157	79.563	3			details code
1.1-2031	Dell	XE8545x4A100-SXM-80GB	AMD EPYC 7713 64-Core Processor	2 NVIDIA A100-SXM4-80GB (500W)	4	NGC MXNet 21.09 , NGC PyTorch 21.09 , NGC TensorFlow 21.09-tf1	56.326	55.999	16.244	83.774	106.542	38.85	9.52	451.293	3 details code
1.1-2032	Dell	2xXE8545x4A100-SXM-80GB	AMD EPYC 7713 64-Core Processor	4 NVIDIA A100-SXM4-80GB (500W)	8	NGC MXNet 21.09, NGC PyTorch 21.09, NGC TensorFlow 21.09-tf1	30.123		8.735	48.788	35.068	26.547	7		details code
1.1-2033	Fujitsu	PRIMERGY-GX2460M1-mxnet	AMD EPYC 7502 32-Core Processor	2 NVIDIA A100-PCIe-40GB (250W)	4	MXNet NGC21.09	70.294	49.946	20.916	6					details code
1.1-2034	Fujitsu	PRIMERGY-GX2460M1-pytorch	AMD EPYC 7502 32-Core Processor	2 NVIDIA A100-PCIe-40GB (250W)	4	Pytorch NGC21.09					109.216	127.843	3		details code

The MLPerf Storage benchmark suite measures how fast storage systems can supply training data when a model is being trained.

Workloads: Each workload supported by MLPerf Storage is defined by a corresponding MLPerf Training benchmark.

Area	Task	Model	Nominal Dataset (see below)	Latest Version Available		
Vision	Medical image segmentation	3D UNET	KITS 2019 (602x512x512)	v0.5		
Language	Language processing	BERT-large	Wikipedia (2.5KB/sample)	vO.5		

The dataset is referred to as a "nominal dataset" above because the MLPerf Storage benchmark simulates the above named real datasets using synthetically generated populations of files where the distribution of the size of the files matches the distribution in the real dataset.

The size of the dataset used in each benchmark submission is automatically scaled to a size that prevents significant caching of the dataset in the systems actually running the benchmark code.

CARC OnDemand

Web Address: https://carc-ondemand.usc.edu

About

Services

User Information

Education & Outreach

News & Events

User Support

User Guides

HPC Basics

Getting Started with CARC OnDemand

Getting Started with Discovery Discovery Resource Overview Getting Started with Endeavour Endeavour Resource Overview Running Jobs on CARC Systems Slurm Job Script Templates

Data Management
Software and Programming
Project and Allocation
Management
Hybrid Cloud Computing
Secure Computing

Getting Started with CARC OnDemand

The CARC OnDemand service is an online access point that provides users with web access to their CARC /home, /project, and /scratch directories and to the Discovery and Endeavour HPC clusters. OnDemand offers:

- · Easy file management
- · Command line shell access
- Slurm job management
- Access to interactive applications, including Jupyter notebooks and RStudio Server

OnDemand is available to all CARC users. To access OnDemand, you must belong to an active project in the CARC User Portal.

Intro to CARC OnDemand video

Log in to CARC OnDemand

Note: We recommend using OnDemand in a private browser to avoid potential permissions issues related to your browser's cache. If you're using a private browser and still encounter permissions issues, please submit a help ticket.

Introduction

PyTorch

DL Models

Anaconda: package and environment manager primarily used for open-source data science packages for the Python and R programming languages.

Building a Customized Conda Environment

Last updated July 05, 2023

Anaconda is a package and environment manager primarily used for open-source data science packages for the Python and R programming languages. The Conda module is available on CARC, users do not need to install it themselves.

1. Request an interactive session

The login node is meant for login purposes only and has process limits.

It is a good practice to request an interactive session for package installation. The following example code requests one GPU, 8 CPU cores, and 32GB memory in the gpu partition with a time limit of 1 hour.

[user@discovery1 ~]\$ salloc --partition=gpu --gres=gpu:1 --cpus-per-task=8 --mem=32GB --time=1:00: salloc: Pending job allocation 15731446 salloc: job 15731446 queued and waiting for resources salloc: job 15731446 has been allocated resources salloc: Granted job allocation 15731446 salloc: Waiting for resource configuration salloc: Nodes a02-15 are ready for job [user@a02-15 ~]\$

Table of Contents

- 1. Request an interactive session
- 2. Load a Conda module
- 3. Initialize shell to use Conda and Mamba
- 4. Create a virtual environment & install packages
- 5. Verify the software installation
- Create a new environment in /project

https://www.carc.usc.edu/userguides/data-science/building-condaenvironment

An example of Training

The problem we're going to solve today is to train a model to classify MNIST datasets. The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples.

CARC Cluster

Slurm script for job submission

git clone https://github.com/uschpc/Running-DL-Applications.git

Common types of GPU

CPU model	CPU frequency	CPUs/node	GPU model	GPUs/node	Memory/node	Nodes
xeon-6130	2.10 GHz	32	V100	2	184 GB	29
xeon-2640v4	2.40 GHz	20	P100	2	123 GB	38
epyc-7282	2.80 GHz	32	A40	2	248 GB	12
ерус-7513	2.60 GHz	64	A100	2	248 GB	12
	xeon-6130 xeon-2640v4 epyc-7282	xeon-6130 2.10 GHz xeon-2640v4 2.40 GHz epyc-7282 2.80 GHz	xeon-6130 2.10 GHz 32 xeon-2640v4 2.40 GHz 20 epyc-7282 2.80 GHz 32	xeon-6130 2.10 GHz 32 V100 xeon-2640v4 2.40 GHz 20 P100 epyc-7282 2.80 GHz 32 A40	xeon-6130 2.10 GHz 32 V100 2 xeon-2640v4 2.40 GHz 20 P100 2 epyc-7282 2.80 GHz 32 A40 2	xeon-6130 2.10 GHz 32 V100 2 184 GB xeon-2640v4 2.40 GHz 20 P100 2 123 GB epyc-7282 2.80 GHz 32 A40 2 248 GB

GPU specifications in the GPU partition

There are four kinds of GPUs in the GPU partition: A100, A40, V100, P100. The following is a summary table for the GPU specifications:

GPU model	Architecture	Memory	Memory Bandwidth	Clock		Tensor Cores	Single Precision Performance (FP32)	Double Precision Performance (FP64)		
A100	ampere	40GB	1.6TB/s	765MHz	6912	432	19.5TFLOPS	9.7TFLOPS		
A40	ampere	48GB	696GB/s	1305MHz	10752	336	37.4TFLOPS	584.6GFLOPS		
V100	volta	32GB	900GB/s	1230MHz	5120	640	14TFLOPS	7TFLOPS		
P100	pascal	16GB	732GB/s	1189MHz	3584	n/a	9.3TFLOPS	4.7TFLOPS		