Master Theorem in Another Form

Master Theorem

• The order of growth of its solution T(n) depends on the values of the constants a and b and the order of growth of the function f(n).

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$

• The efficiency analysis of many divide-and-conquer algorithms is greatly simplified by the following theorem:

Master Theorem: If
$$a < b^d$$
, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b} a)$

Note: The same results hold with O instead of Θ .

Master Theorem

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$
If $a < b^d$, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b})$

Solve these recurrence:

$$T(n) = 4T(n/2) + n^2$$

$$T(n) = 16T(n/4) + n$$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$
If $a < b^d$, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b})$

Solve these recurrence:

$$T(n) = 4T(n/2) + n^2$$
 $T(n) = 4T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2 \log n)$

$$T(n) = 16T(n/4) + n$$
 $T(n) = 16T(n/4) + n \Longrightarrow T(n) = \Theta(n^2)$