Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny

Stefan Zetzsche¹ Wojciech Różowski²

¹Amazon Web Services

²University College London

November 27, 2024

Introduction

Denotational Semantics

Operational Semantics

Well-Behaved Semantics

Discussion, Related and Future Work

Semantics of Regular Expressions

Lang

$$\overline{\mathsf{Exp} ::= 0 \mid 1 \mid a \in A \mid e + f} \mid e \cdot f \mid e^*$$

Lang := $\mathcal{P}(A^*)$ with $E(L) := [\varepsilon \in L]$ and $D_a(L) := \{w \mid a \cdot w \in L\}$

Denotational Semantics of Regular Expressions

We can equip Lang with algebraic structure resembling regular expressions:

$$\begin{aligned} 0 &:= \emptyset \\ 1 &:= \{ \varepsilon \} \\ L_1 \cdot L_2 &:= \{ w_1 \cdot w_2 \mid w_i \in L_i \} \\ L_1 + L_2 &:= L_1 \cup L_2 \\ L^* &:= \bigcup_{n \geq 0} L^n, \quad \text{where} \quad L^{n+1} := L \cdot L^n, \quad L^0 := \{ \varepsilon \} \end{aligned}$$

Let denotational be the unique homomorphism

$$(\mathsf{Exp}, 0, 1, a, +, \cdot, \ ^*) \rightarrow (\mathsf{Lang}, 0, 1, \{a\}, +, \cdot, \ ^*).$$

Operational Semantics of Regular Expressions

We can equip Exp with coalgebraic structure resembling deterministic automata:

$$E(0) := 0 D_{a}(0) := 0$$

$$E(1) := 1 D_{a}(1) := 0$$

$$E(b) := 0 D_{a}(b) := [a = b]$$

$$E(e + f) := E(e) + E(f) D_{a}(e + f) := D_{a}(e) + D_{a}(f)$$

$$E(e \cdot f) := E(e) \cdot E(f) D_{a}(e \cdot f) := D_{a}(e) \cdot f + E(e) \cdot D_{a}(f)$$

$$E(e^{*}) := 1 D_{a}(e^{*}) := D_{a}(e) \cdot e^{*}.$$

Let operational be the unique homomorphism

$$(\mathsf{Exp}, E, D_a) \to (\mathsf{Lang}, E, D_a).$$

Well-Behaved Semantics of Regular Expressions

```
denotational : (\mathsf{Exp}, 0, 1, a, +, \cdot, \ ^*) \to (\mathsf{Lang}, 0, 1, \{a\}, +, \cdot, \ ^*) operational : (\mathsf{Exp}, E, D_a) \to (\mathsf{Lang}, E, D_a)
```

Some immediate questions:

- Are denotational and operational well-defined?
- Are denotational and operational also homomorphisms of the respective other type?
- Are denotational and operational equal?

In this paper, we use *Dafny* to encode denotational and operational and prove their equivalence.

Dafny: A Verification-Aware Programming Language

Dafny allows a clear distinction between an idealised mathematical specification and an efficient implementation thereof.

```
function Fib(n: nat): nat {
   if n <= 1 then n else Fib(n - 1) + Fib(n - 2)
}

method ComputeFib(n: nat) returns (fib: nat)
{
   var i, currentFib, nextFib := 0, 0, 1;
   while i < n
   {
      i, currentFib, nextFib := i + 1, nextFib, currentFib + nextFib;
   }
   return currentFib;
}</pre>
```

Dafny: A Verification-Aware Programming Language

Dafny allows a clear distinction between an idealised mathematical specification and an efficient implementation thereof.

```
function Fib(n: nat): nat {
   if n <= 1 then n else Fib(n - 1) + Fib(n - 2)
}

method ComputeFib(n: nat) returns (fib: nat)
   ensures fib == Fib(n)
{
   var i, currentFib, nextFib := 0, 0, 1;
   while i < n
   {
      i, currentFib, nextFib := i + 1, nextFib, currentFib + nextFib;
   }
   return currentFib;
}</pre>
```

Dafny: A Verification-Aware Programming Language

Dafny allows a clear distinction between an idealised mathematical specification and an efficient implementation thereof.

```
function Fib(n: nat): nat {
 if n \le 1 then n else Fib(n - 1) + Fib(n - 2)
method ComputeFib(n: nat) returns (fib: nat)
 ensures fib == Fib(n)
 var i, currentFib, nextFib := 0, 0, 1;
 while i < n
    invariant i <= n && currentFib == Fib(i) && nextFib == Fib(i + 1)
    i, currentFib, nextFib := i + 1, nextFib, currentFib + nextFib;
 return currentFib:
```

Dafny Supports Multiple Paradigms

Polymorphism

Inductive datatypes

```
datatype List<T> = Nil | Cons(T, List)
```

Coinductive datatypes

```
codatatype Stream<T> = Cons(T, Stream)
```

Lambda expressions

```
var f: int -> int := x => x+1
```

Higher-order functions

```
► F(f: int -> int, n: int): int { f(n) }
```

Classes and traits with mutable states

Some Use Cases of Dafny

Authorization

AWS Identity and Access Management

Distributed Systems

► IronFleet

Cryptography

► AWS Encryption SDK

Privacy

▶ DafnyVMC, SampCert

Code Generation

DafnyBench, DafnyAutopilot, VerMCTS, Laurel, ...

Denotational Semantics

Regular Expressions as Datatype

In Dafny, we define regular expressions as inductive datatype:

On a high-level, Exp is the *smallest* structure closed under the constructors of regular expressions. It is the *initial* Σ -algebra.

Formal Languages as Codatatype

In Dafny, we define formal languages as coinductive datatype:

```
codatatype Lang<!A> = Alpha(eps: bool, delta: A -> Lang<A>)
```

On a high-level, Lang is the *greatest* structure closed under the destructors of deterministic automata. It is the *final B*-coalgebra.

Formal Languages as Codatatype

To some, our way of modeling formal languages might seem odd at first sight.

Typically, a formal language is defined intrinsically, as an element of type $\mathcal{P}(A^*)$.

Here, we treat formal languages extrinsically, in terms of their universal property as greatest coalgebraic structure X equipped with functions $E: X \to 2$ and $D: X \to X^A$.

Indeed, for any $U \in \mathcal{P}(A^*)$, we can define $E(U) := [\varepsilon \in U]$ and $D(U)(a) := \{w \mid aw \in U\}$.

An Algebra of Formal Languages

```
function Zero<A>(): Lang {
  Alpha(false, (a: A) => Zero())
function One<A>(): Lang {
  Alpha(true, (a: A) => Zero())
function Singleton<A(==)>(a: A): Lang {
  Alpha(false, (b: A) => if a == b then One() else Zero())
function {:abstemious} Plus<A>(L1: Lang, L2: Lang): Lang {
 Alpha(L1.eps | | L2.eps, (a: A) => Plus(L1.delta(a), L2.delta(a)))
function {:abstemious} Comp<A>(L1: Lang, L2: Lang): Lang {
 Alpha(L1.eps && L2.eps,
        (a: A) => Plus(Comp(L1.delta(a), L2),
                       Comp(if L1.eps then One() else Zero(), L2.delta(a))))
function Star<A>(L: Lang): Lang {
 Alpha(true, (a: A) => Comp(L.delta(a), Star(L)))
```

We equip Lang with a Σ -algebra structure.

Denotational Semantics as Induced Morphism

```
function Denotational<A(==)>(e: Exp): Lang {
  match e
  case Zero => Languages.Zero()
  case One => Languages.One()
  case Char(a) => Languages.Singleton(a)
  case Plus(e1, e2) => Languages.Plus(Denotational(e1), Denotational(e2))
  case Comp(e1, e2) => Languages.Comp(Denotational(e1), Denotational(e2))
  case Star(e1) => Languages.Star(Denotational(e1))
}
```

The Σ -algebra structures of Exp and Lang allow us to define Denotational.

```
greatest predicate Bisimilar<A(!new)>[nat](L1: Lang, L2: Lang) {
   && (L1.eps == L2.eps)
   && (forall a :: Bisimilar(L1.delta(a), L2.delta(a)))
}
```

Two languages that are equal are also bisimilar, but the reverse is not necessarily true, since there is no extensional equality for functions in Dafny.

```
/* Pseudo code for illustration purposes */
predicate Bisimilar#<A(!new)>[k: nat](L1: Lang, L2: Lang)
 decreases k
 if k == 0 then
   true
 else
   && (L1.eps == L2.eps)
   && (forall a :: Bisimilar#[k-1](L1.delta(a), L2.delta(a)))
}
predicate Bisimilar<A(!new)>(L1: Lang, L2: Lang) {
 forall k: nat :: Bisimilar#[k](L1, L2)
```

Under the hood, Dafny transforms the *greatest* predicate Bisimilar into the above data.

```
greatest lemma BisimilarityIsReflexive<A(!new)>[nat](L: Lang)
  ensures Bisimilar(L, L)
{}
```

Dafny automatically proves that bisimilarity is reflexive.

```
/* Pseudo code for illustration purposes */
lemma BisimilarityIsReflexive#<A(!new)>[k: nat](L: Lang)
  ensures Bisimilar#[k](L, L)
 decreases k
 if k == 0 {
 } else {
    forall a ensures Bisimilar#[k-1](L.delta(a), L.delta(a)) {
      BisimilarityIsReflexive#[k-1](L.delta(a));
lemma BisimilarityIsReflexive<A(!new)>(L: Lang)
  ensures Bisimilar(L, L)
 forall k: nat ensures Bisimilar#[k](L, L) {
    BisimilarityIsReflexive#[k](L);
 7
}
```

Under the hood, Dafny transforms the *greatest* lemma BisimilarityIsReflexive into the above data.

Denotational Semantics as Algebra Homomorphism

```
ghost predicate IsAlgebraHomomorphism<A(!new)>(f: Exp -> Lang) {
  forall e :: IsAlgebraHomomorphismPointwise(f, e)
ghost predicate IsAlgebraHomomorphismPointwise<A(!new)>(f: Exp -> Lang. e: Exp) {
  Bisimilar<A>(
   f(e).
    match e
    case Zero => Languages.Zero()
    case One => Languages.One()
    case Char(a) => Languages.Singleton(a)
    case Plus(e1, e2) => Languages.Plus(f(e1), f(e2))
    case Comp(e1, e2) => Languages.Comp(f(e1), f(e2))
    case Star(e1) => Languages.Star(f(e1))
lemma DenotationalIsAlgebraHomomorphism<A(!new)>()
  ensures IsAlgebraHomomorphism<A>(Denotational)
 forall e ensures IsAlgebraHomomorphismPointwise<A>(Denotational, e) {
    BisimilarityIsReflexive<A>(Denotational(e)):
```

Denotational is a Σ -algebra homomorphism (up to pointwise bisimilarity).

Operational Semantics

A Coalgebra of Regular Expressions

```
function Eps<A>(e: Exp): bool {
 match e
  case Zero => false
 case One => true
 case Char(a) => false
  case Plus(e1, e2) => Eps(e1) || Eps(e2)
  case Comp(e1, e2) => Eps(e1) && Eps(e2)
  case Star(e1) => true
function Delta<A(==)>(e: Exp): A -> Exp {
  (a: A) =>
    match e
    case Zero => Zero
    case One => Zero
    case Char(b) => if a == b then One else Zero
    case Plus(e1, e2) => Plus(Delta(e1)(a), Delta(e2)(a))
    case Comp(e1, e2) => Plus(Comp(Delta(e1)(a), e2),
                              Comp(if Eps(e1) then One else Zero, Delta(e2)(a)))
    case Star(e1) => Comp(Delta(e1)(a), Star(e1))
```

Using Brzozowski's derivatives, we equip Exp with a *B*-coalgebra structure.

Operational Semantics as Induced Morphism

```
function Operational<A(==)>(e: Exp): Lang {
  Alpha(Eps(e), (a: A) => Operational(Delta(e)(a)))
}
```

The B-coalgebra structures of Exp and Lang allow us to define Operational.

Operational Semantics as Coalgebra Homomorphism

```
ghost predicate IsCoalgebraHomomorphism<A(!new)>(f: Exp -> Lang) {
    && (forall e :: f(e).eps == Eps(e))
    && (forall e, a :: Bisimilar(f(e).delta(a), f(Delta(e)(a))))
}

lemma OperationalIsCoalgebraHomomorphism<A(!new)>()
    ensures IsCoalgebraHomomorphism<A>(Operational)
{
    forall e, a ensures Bisimilar<A>(Operational(e).delta(a), Operational(Delta(e)(a))) {
        BisimilarityIsReflexive(Operational(e).delta(a));
    }
}
```

Operational is a B-coalgebra homomorphism (up to pointwise bisimilarity).

The Status

The Goal

The Plan

- 1. Denotational is also a B-coalgebra homomorphism.
- 2. *B*-coalgebra homomorphisms are unique up to pointwise bisimilarity.
- Denotational and Operational are equal up to pointwise bisimilarity.
- 4. Operational is also a Σ -algebra homomorphism.

```
lemma DenotationalIsCoalgebraHomomorphism<A(!new)>()
ensures IsCoalgebraHomomorphism<A>(Denotational)
```

The proof is a bit more elaborate than the previous ones. We again use that bisimilarity is reflexive, but also that it is a congruence relation with respect to Plus and Comp:

```
greatest lemma PlusCongruence<A(!new)>[nat]
  (L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)
  requires Bisimilar(L1a, L1b)
  requires Bisimilar(L2a, L2b)
  ensures Bisimilar(Plus(L1a, L2a), Plus(L1b, L2b))
{}
```

```
lemma CompCongruence<A(!new)>(L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)
requires Bisimilar(L1a, L1b)
requires Bisimilar(L2a, L2b)
ensures Bisimilar(Comp(L1a, L2a), Comp(L1b, L2b))
{
...
}
```

```
lemma CompCongruence<A(!new)>(L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)
  requires Bisimilar(L1a, L1b)
 requires Bisimilar(L2a, L2b)
 ensures Bisimilar(Comp(L1a, L2a), Comp(L1b, L2b))
 forall k ensures Bisimilar#[k](Comp(L1a, L2a), Comp(L1b, L2b)) {
   if k != 0 {
     var k' : | k' + 1 == k:
     CompCongruenceHelper(k', L1a, L1b, L2a, L2b):
   }
 }
lemma CompCongruenceHelper<A(!new)>(k: nat, L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)
 requires forall n : nat :: n <= k + 1 ==> Bisimilar#[n](L1a, L1b)
 requires forall n : nat :: n <= k + 1 ==> Bisimilar#[n](L2a, L2b)
 ensures Bisimilar#[k+1](Comp(L1a, L2a), Comp(L1b, L2b))
  . . .
```

(2/4) Coalgebra Homomorphisms Are Unique

```
lemma UniqueCoalgebraHomomorphism<A(!new)>
(f: Exp -> Lang, g: Exp -> Lang, e: Exp)
  requires IsCoalgebraHomomorphism(f)
  requires IsCoalgebraHomomorphism(g)
  ensures Bisimilar(f(e), g(e))
```

At the heart of the proof lies the observation that bisimilarity is transitive:

```
greatest lemma BisimilarityIsTransitive<A(!new)>[nat]
(L1: Lang, L2: Lang, L3: Lang)
  requires Bisimilar(L1, L2) && Bisimilar(L2, L3)
  ensures Bisimilar(L1, L3)
{}
```

(3/4) Denotational and Operational Semantics Are Bisimilar

```
lemma OperationalAndDenotationalAreBisimilar<A(!new)>(e: Exp)
  ensures Bisimilar<A>(Operational(e), Denotational(e))
{
   OperationalIsCoalgebraHomomorphism<A>();
   DenotationalIsCoalgebraHomomorphism<A>();
   UniqueCoalgebraHomomorphism<A>(Operational, Denotational, e);
}
```

From the previous results, we can immediately deduce our main claim.

(4/4) Operational Semantics as Algebra Homomorphism

```
lemma OperationalIsAlgebraHomomorphism<A(!new)>()
ensures IsAlgebraHomomorphism<A>(Operational)
```

The main idea of the proof is to take advantage of that denotational is an algebra homomorphism and pointwise bisimilar to operational.

We also use that bisimilarity is symmetric and a congruence with respect to Star.

Discussion, Related and Future Work

Discussion

Some Related Work

Derivatives of Regular Expressions (Brzozowski, 1964)

▶ Introduces the *B*-coalgebra structure on Lang.

Towards a Mathematical Operational Semantics (Turi; Plotkin, 1997)

Introduces the concept of well-behaved semantics in the context of bialgebras.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages (Jacobs, 2006)

▶ Discusses a bialgebraic perspective on regular expressions.

Formal Languages, Formally and Coinductively (Traytel, 2017)

Represents languages coinductively in Isabelle.

Some Future Work

Kleene Algebra With Tests

Extends Kleene Algebra with primitives in a Boolean algebra.

Guarded Kleene Algebra with Tests

Axiomatises an efficiently decidable fragment of KAT.

NetKAT

Extends Kleene Algebra with Tests with primitives for network verification.