

## PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2024

# QUÍMICA

# TEMA 9: ORGÁNICA

- Junio, Ejercicio B6
- Reserva 1, Ejercicio B4
- Reserva 2, Ejercicio B6
- Reserva 3, Ejercicio B4
- Reserva 4, Ejercicio B6
- Julio, Ejercicio B6



#### **Considerando los compuestos:**

- (1)  $CH_3CHOHCH_2CH = CH_2$ , (2)  $CH_3CH_2COCH_2CH_3$ ,
- (3) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>COCH<sub>3</sub>, (4) CH<sub>3</sub>CH<sub>4</sub>CH<sub>3</sub>COCH<sub>3</sub>

Justifique el tipo de isomería que presentan entre sí:

- a) Los compuestos 1 y 2.
- b) Los compuestos 2 y 3.
- c) Los compuestos 3 y 4.

QUÍMICA. 2024. JUNIO. B6

- (1)  $CH_3CHOHCH_2CH = CH_2 \Rightarrow C_5H_{10}O$  Pent-4-en-2-ol
- (2)  $CH_3CH_2COCH_2CH_3 \Rightarrow C_5H_{10}O$  Pentan-3-ona
- (3)  $CH_3CH_2COCH_3 \Rightarrow C_5H_{10}O$  Pentan-2-ona
- (4)  $CH_3CH(CH_3)COCH_3 \Rightarrow C_5H_{10}O$  Metilbutanona
- a) El 1 y el 2 son isómeros de función, ya que el 1 es un alcohol y el 2 una cetona.
- b) El 2 y el 3 son isómeros de posición, ya que los dos tienen el grupo cetona y sólo se diferencian en la posición del grupo funcional.
- c) El 3 y el 4 son isómeros de cadena, ya que el 3 tiene una cadena lineal de 5 átomos de carbono y el 4 tiene una ramificación.



Indique los productos que se obtienen en cada una de las siguientes reacciones, especificando el tipo de reacción:

a)  $CH_3CH_2COOH + CH_3OH \xrightarrow{H^+}$ 

b) CH<sub>3</sub>CH<sub>2</sub>CHClCH<sub>3</sub>  $\xrightarrow{\text{KOH}}$ 

c)  $CH_3CH = CH_2 + H_2O \xrightarrow{H^+}$ 

QUÍMICA. 2024. RESERVA 1 EJERCICIO B4

- a) CH<sub>3</sub>CH<sub>2</sub>COOH + CH<sub>3</sub>OH  $\xrightarrow{\text{H}^+}$  CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>3</sub> + H<sub>2</sub>O (Reacción de esterificación)
- b)  $CH_3CH_2CHClCH_3 \xrightarrow{KOH} CH_3CH_2CH = CH_2 + HCl$  (Reacción de eliminación).
- c)  $CH_3CH = CH_2 + H_2O \xrightarrow{H^+} CH_3CHOHCH_3$  (Reacción de adición).



Escriba las siguientes reacciones:

- a) Combustión del CH<sub>3</sub>CH<sub>3</sub>
- b) Deshidratación del CH<sub>3</sub>CH<sub>2</sub>OH
- c) Nitración del benceno ( $C_6H_6$ )
- QUÍMICA. 2024. RESERVA 2. EJERCICIO B6

a) 
$$CH_3 - CH_3 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$
 (Reacción de combustion)

b) 
$$CH_3 - CH_2OH + H_2SO_4 \xrightarrow{\text{calor}} CH_2 = CH_2 + H_2O$$
. (Reacción de eliminación)

c) 
$$C_6H_6$$
(benceno) +  $HNO_3 \xrightarrow{H_2SO_4} C_6H_5NO_2 + H_2O$ . (Reacción de sustitución electrófila)



Razone si son verdaderas o falsas las siguientes afirmaciones:

- a) Los compuestos obtenidos, según la regla de Markovnikov, por adición de HBr al  $CH_2 = CHCH_2CH_3$  y  $CH_3CH = CHCH_3$  son iguales.
- b) El CH<sub>2</sub> = C(CH<sub>3</sub>)CH<sub>3</sub> presenta isomería cis-trans, pero el CH<sub>3</sub>CH = CHCH<sub>3</sub> no.
- c) El CH<sub>3</sub>COOH no desvía el plano de la luz polarizada.
- **QUIMICA. 2024. RESERVA 3. EJERCICIO B4**

#### RESOLUCIÓN

a) Verdadera.

$$CH_2 = CHCH_2CH_3 + HBr \rightarrow CH_3CHBrCH_2CH_3$$
  
 $CH_3CH = CHCH_3 + HBr \rightarrow CH_3CHBrCH_2CH_3$ 

b) Falsa. El  $CH_2 = C(CH_3)CH_3$  no tiene isomería cis-trans. El but-2-eno si presenta isomería geométrica:  $CH_3CH = CHCH_3$ 

c) Verdadera. No tiene isomería óptica ya que no tiene un carbono asimétrico.



Considerando la molécula  $CH_2 = CHCH_2 CH_3$ 

- a) Indique la hibridación de cada uno de sus átomos de carbono.
- b) Escriba la fórmula semidesarrollada de un isómero de cadena.
- c) Escriba la reacción de hidrogenación.
- QUÍMICA. 2024. RESERVA 4. EJERCICIO B6

a) 
$$sp^{2}$$
;  $sp^{2}$ ;  $sp^{3}$ ;  $sp^{3}$ 

b) 
$$CH_2 = C(CH_3) - CH_3$$

c) 
$$CH_2 = CHCH_2CH_3 + H_2 \rightarrow CH_3CH_2CH_2CH_3$$



#### Escriba las siguientes reacciones:

- a)  $CH_3CH = CH_2$  con  $Cl_2$
- b)  $CH \equiv CH \text{ con 1 mol de HBr}$
- c)  $CH_3CH = CHCH_3$  con  $H_2$

QUÍMICA. 2024. JULIO. EJERCICIO B6

# RESOLUCIÓN

a)  $CH_3CH = CH_2 + Cl_2 \rightarrow CH_3CHClCH_2Cl$ 

b)  $CH \equiv CH + HBr \rightarrow CH_2 = CHBr$ 

c)  $CH_3CH = CHCH_3 + H_2 \rightarrow CH_3CH_2CH_2CH_3$