BS2280 - Econometrics 1

Lecture 9 - Part 2: Nonlinear Models and Transformation of Variables I

Dr. Yichen Zhu

Structure of today's lecture

Models which are nonlinear in variables: Hyperbolic Model

Models which are nonlinear in parameters: Logarithmic Models

Intended Learning Outcomes

- Understanding methods how models that are non-linear in variables and parameters can be estimated with OLS
- Interpreting the coefficients of
 - Hyperbolic models
 - Logarithmic models

Background

- We will begin with an example of a simple model that can be linearised by a cosmetic transformation.
- The table and plot show the average annual rates of growth of employment and GDP for 31 OECD countries

	Average an	nual pe	rcentage growth	rates		
	Employment	GDP		Employment		
Australia	2.57	3.52	Korea	1.11	4.48	
Austria	1.64	2.66	Luxembourg	1.34	4.55	
Belgium	1.06	2.27	Mexico	1.88	3.36	
Canada	1.90	2.57	Netherlands	0.51	2.37	
Czech Republic	0.79	5.62	New Zealand	2.67	3.41	
Denmark	0.58	2.02	Norway	1.36	2.49	
Estonia	2.28	8.10	Poland	2.05	5.16	
Finland	0.98	3.75	Portugal	0.13	1.04	
France	0.69	2.00	Slovak Republic	2.08	7.04	
Germany	0.84	1.67	Slovenia	1.60	4.82	
Greece	1.55	4.32	Sweden	0.83	3.47	
Hungary	0.28	3.31	Switzerland	0.90	2.54	
Iceland	2.49	5.62	Turkey	1.30	6.90	
Israel	3.29	4.79	United Kingdom	0.92	3.31	
Italy	0.89	1.29	United States	1.36	2.88	
Japan	0.31	1.85				

• We would expect nonlinear relationship!

Review: Nonlinear in Variables

- **Linear in variables**: The variables included on the right side of the regression are exactly as defined, rather than as functions
- Linear in variables:

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u_i$$

Nonlinear in variables:

$$EARNINGS_i = \beta_1 + \beta_2 \frac{S_i^2}{i} + \beta_3 \sqrt{EXP_i} + u_i$$

ullet This model is nonlinear in variables, because variable g is expressed as $\frac{1}{g}$

$$e_i = \beta_1 + \frac{\beta_2}{g_i} + u_i$$

- We can rewrite the model so that is linear in variables as well as parameters
- Define $z = \frac{1}{2}$
- Therefore

$$e_i = \beta_1 + \beta_2 z_i + u$$

	e	g	z		e	g	z
Australia	2.57	3.52	0.2841	Korea	1.11	4.48	0.223
Austria	1.64	2.66	0.3757	Luxembourg	1.34	4.55	0.219
Belgium	1.06	2.27	0.4401	Mexico	1.88	3.36	0.297
Canada	1.90	2.57	0.3891	Netherlands	0.51	2.37	0.422
Czech Republic	0.79	5.62	0.1781	New Zealand	2.67	3.41	0.292
Denmark	0.58	2.02	0.4961	Norway	1.36	2.49	0.401
Estonia	2.28	8.10	0.1234	Poland	2.05	5.16	0.193
Finland	0.98	3.75	0.2664	Portugal	0.13	1.04	0.960
France	0.69	2.00	0.5004	Slovak Republic	2.08	7.04	0.142
Germany	0.84	1.67	0.5980	Slovenia	1.60	4.82	0.207
Greece	1.55	4.32	0.2315	Sweden	0.83	3.47	0.288
Hungary	0.28	3.31	0.3021	Switzerland	0.90	2.54	0.394
Iceland	2.49	5.62	0.1779	Turkey	1.30	6.90	0.144
Israel	3.29	4.79	0.2089	United Kingdom	0.92	3.31	0.302
Italy	0.89	1.29	0.7723	United States	1.36	2.88	0.347

• This model is nonlinear in variables, because variable g is expressed as $\frac{1}{g}$

$$e_i = \beta_1 + \frac{\beta_2}{g_i} + u_i$$

- We can rewrite the model so that is linear in variables as well as parameters
- Define $z = \frac{1}{a}$
- Therefore

$$e_i = \beta_1 + \beta_2 z_i + u$$

	e	g	z		e	g	z
Australia	2.57	3.52	0.2841	Korea	1.11	4.48	0.223
Austria	1.64	2.66	0.3757	Luxembourg	1.34	4.55	0.219
Belgium	1.06	2.27	0.4401	Mexico	1.88	3.36	0.297
Canada	1.90	2.57	0.3891	Netherlands	0.51	2.37	0.422
Czech Republic	0.79	5.62	0.1781	New Zealand	2.67	3.41	0.292
Denmark	0.58	2.02	0.4961	Norway	1.36	2.49	0.401
Estonia	2.28	8.10	0.1234	Poland	2.05	5.16	0.193
Finland	0.98	3.75	0.2664	Portugal	0.13	1.04	0.960
France	0.69	2.00	0.5004	Slovak Republic	2.08	7.04	0.142
Germany	0.84	1.67	0.5980	Slovenia	1.60	4.82	0.207
Greece	1.55	4.32	0.2315	Sweden	0.83	3.47	0.288
Hungary	0.28	3.31	0.3021	Switzerland	0.90	2.54	0.394
Iceland	2.49	5.62	0.1779	Turkey	1.30	6.90	0.144
Israel	3.29	4.79	0.2089	United Kingdom	0.92	3.31	0.302
Italy	0.89	1.29	0.7723	United States	1.36	2.88	0.347

• This model is nonlinear in variables, because variable g is expressed as $\frac{1}{g}$

$$\mathbf{e}_i = \beta_1 + \frac{\beta_2}{g_i} + u_i$$

- We can rewrite the model so that is linear in variables as well as parameters
- Define $z = \frac{1}{g}$
- Therefore

$$e_i = \beta_1 + \beta_2 z_i + u$$

	e	g	z		e	g	z
Australia	2.57	3.52	0.2841	Korea	1.11	4.48	0.223
Austria	1.64	2.66	0.3757	Luxembourg	1.34	4.55	0.219
Belgium	1.06	2.27	0.4401	Mexico	1.88	3.36	0.297
Canada	1.90	2.57	0.3891	Netherlands	0.51	2.37	0.422
Czech Republic	0.79	5.62	0.1781	New Zealand	2.67	3.41	0.292
Denmark .	0.58	2.02	0.4961	Norway	1.36	2.49	0.401
Estonia	2.28	8.10	0.1234	Poland	2.05	5.16	0.193
Finland	0.98	3.75	0.2664	Portugal	0.13	1.04	0.960
France	0.69	2.00	0.5004	Slovak Republic	2.08	7.04	0.142
Germany	0.84	1.67	0.5980	Slovenia	1.60	4.82	0.207
Greece	1.55	4.32	0.2315	Sweden	0.83	3.47	0.288
Hungary	0.28	3.31	0.3021	Switzerland	0.90	2.54	0.394
Iceland	2.49	5.62	0.1779	Turkey	1.30	6.90	0.144
Israel	3.29	4.79	0.2089	United Kingdom	0.92	3.31	0.302
Italy	0.89	1.29	0.7723	United States	1.36	2.88	0.347
Japan	0.31	1.85	0.5417				

ullet This model is nonlinear in variables, because variable g is expressed as $\frac{1}{g}$

$$e_i = \beta_1 + \frac{\beta_2}{g_i} + u_i$$

- We can rewrite the model so that is linear in variables as well as parameters
- Define $z = \frac{1}{g}$
- Therefore

$$e_i = \beta_1 + \beta_2 z_i + u_i$$

Average annual percentage growth rates								
	е	g	z		е	g	z	
Australia	2.57	3.52	0.2841	Korea	1.11	4.48	0.223	
Austria	1.64	2.66	0.3757	Luxembourg	1.34	4.55	0.219	
Belgium	1.06	2.27	0.4401	Mexico	1.88	3.36	0.297	
Canada	1.90	2.57	0.3891	Netherlands	0.51	2.37	0.422	
Czech Republic	0.79	5.62	0.1781	New Zealand	2.67	3.41	0.292	
Denmark	0.58	2.02	0.4961	Norway	1.36	2.49	0.401	
Estonia	2.28	8.10	0.1234	Poland	2.05	5.16	0.193	
Finland	0.98	3.75	0.2664	Portugal	0.13	1.04	0.960	
France	0.69	2.00	0.5004	Slovak Republic	2.08	7.04	0.142	
Germany	0.84	1.67	0.5980	Slovenia	1.60	4.82	0.207	
Greece	1.55	4.32	0.2315	Sweden	0.83	3.47	0.288	
Hungary	0.28	3.31	0.3021	Switzerland	0.90	2.54	0.394	
Iceland	2.49	5.62	0.1779	Turkey	1.30	6.90	0.144	
Israel	3.29	4.79	0.2089	United Kingdom	0.92	3.31	0.302	
Italy	0.89	1.29	0.7723	United States	1.36	2.88	0.347	
Japan	0.31	1.85	0.5417					

ullet This model is nonlinear in variables, because variable g is expressed as $\frac{1}{g}$

$$e_i = \beta_1 + \frac{\beta_2}{g_i} + u_i$$

- We can rewrite the model so that is linear in variables as well as parameters
- Define $z = \frac{1}{g}$
- Therefore

$$e_i = \beta_1 + \beta_2 z_i + u_i$$

Average annual percentage growth rates								
	е	g	z		е	g	z	
Australia	2.57	3.52	0.2841	Korea	1.11	4.48	0.2235	
Austria	1.64	2.66	0.3757	Luxembourg	1.34	4.55	0.2199	
Belgium	1.06	2.27	0.4401	Mexico	1.88	3.36	0.2976	
Canada	1.90	2.57	0.3891	Netherlands	0.51	2.37	0.422	
Czech Republic	0.79	5.62	0.1781	New Zealand	2.67	3.41	0.2929	
Denmark .	0.58	2.02	0.4961	Norway	1.36	2.49	0.4013	
Estonia	2.28	8.10	0.1234	Poland	2.05	5.16	0.193	
Finland	0.98	3.75	0.2664	Portugal	0.13	1.04	0.960	
France	0.69	2.00	0.5004	Slovak Republic	2.08	7.04	0.142	
Germany	0.84	1.67	0.5980	Slovenia	1.60	4.82	0.207	
Greece	1.55	4.32	0.2315	Sweden	0.83	3.47	0.288	
Hungary	0.28	3.31	0.3021	Switzerland	0.90	2.54	0.394	
Iceland	2.49	5.62	0.1779	Turkey	1.30	6.90	0.1449	
Israel	3.29	4.79	0.2089	United Kingdom	0.92	3.31	0.302	
Italy	0.89	1.29	0.7723	United States	1.36	2.88	0.347	
Japan	0.31	1.85	0.5417					

Hyperbolic Model

Output regression of e on z.

```
Call:
lm(formula = e ~ z, data = oecd exercises)
Residuals:
    Min
              10 Median
-1.18370 -0.53588 -0.07868 0.37322 1.60711
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1731
                        0.2495
                                 8.710 1.37e-09 ***
            -2.3481
                        0.6367 -3.688 0.000926 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6522 on 29 degrees of freedom
Multiple R-squared: 0.3193, Adjusted R-squared: 0.2958
F-statistic: 13.6 on 1 and 29 DF, p-value: 0.0009261
```


- The figure shows the transformed data and the regression line for the regression of *e* on *z*.
- Therefore

$$\hat{e}_i = 2.17 - 2.35z_i$$

Hyperbolic Model

- However, we define $z = \frac{1}{g}$
- So, substituting $\frac{1}{g}$ for z, we obtain the nonlinear relationship between e and g.
- The figure shows this relationship plotted in the original diagram.

Therefore

$$\hat{e}_i = 2.17 - 2.35z_i = 2.17 - \frac{2.35}{g_i}$$

$$\hat{e}_i = 2.17 - 2.35z_i = 2.17 - \frac{2.35}{g_i}$$

- Question: How can we interpret this model? What is the marginal impact of an increase in g on e?
- To calculate the marginal impact of an increase in g on e, we have to take the first derivative.
 - Derive

$$\frac{d\hat{e}_i}{dg_i} =$$

- (Hint: Make use of the power rule, derivative of $\frac{1}{2}$ is $-\frac{1}{2}$
- What is the marginal impact of g on e when g is 1% and 3%?
- The marginal effect will not be constant!

$$\hat{e}_i = 2.17 - 2.35z_i = 2.17 - \frac{2.35}{g_i}$$

- **Question**: How can we interpret this model? What is the marginal impact of an increase in *g* on *e*?
- To calculate the marginal impact of an increase in g on e, we have to take the first derivative.
 - Derive

$$\frac{d\hat{e}_i}{dg_i} =$$

- What is the marginal impact of g on e when g is 1% and 3%?
- The marginal effect will not be constant!

$$\hat{e}_i = 2.17 - 2.35z_i = 2.17 - \frac{2.35}{g_i}$$

- **Question**: How can we interpret this model? What is the marginal impact of an increase in *g* on *e*?
- To calculate the marginal impact of an increase in g on e, we have to take the first derivative.
 - Derive

$$\frac{d\hat{e}_i}{dg_i} =$$

- What is the marginal impact of g on e when g is 1% and 3%?
- The marginal effect will not be constant!

$$\hat{e}_i = 2.17 - 2.35z_i = 2.17 - \frac{2.35}{g_i}$$

- Question: How can we interpret this model? What is the marginal impact of an increase in g on e?
- To calculate the marginal impact of an increase in g on e, we have to take the first derivative.
 - Derive

$$\frac{d\hat{e}_i}{dg_i} =$$

- What is the marginal impact of g on e when g is 1% and 3%?
- The marginal effect will not be constant!

$$\hat{e}_i = 2.17 - 2.35z_i = 2.17 - \frac{2.35}{g_i}$$

- Question: How can we interpret this model? What is the marginal impact of an increase in g on e?
- To calculate the marginal impact of an increase in g on e, we have to take the first derivative.
 - Derive

$$\frac{d\hat{e}_i}{dg_i} =$$

- What is the marginal impact of g on e when g is 1% and 3%?
- The marginal effect will not be constant!

Background

- You will frequently come across data where a model with nonlinear parameter leads to a better fit of the model
- Fortunately, some of these models can be estimated with OLS nevertheless
- The natural Logarithm can do the magic!
- A Logarithmic transformation has also many positive externalities.

- Linear in parameters: The parameters $\beta_2, \beta_3, ..., \beta_k$ are multiplied with the X variables.
- **Assumption 1**. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + u_i$$

- Example.
- Linear in parameters (this model is also linear in variables):

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u_i$$

Nonlinear in parameters:

$$EARNINGS_i = \beta_1 + S_i^{\beta_2} + \beta_2 \beta_3 EXP_i + u_i$$

- **Linear in parameters:** The parameters $\beta_2, \beta_3, ..., \beta_k$ are multiplied with the X variables.
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- Example.
- Linear in parameters (this model is also linear in variables):

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u_i$$

Nonlinear in parameters:

$$EARNINGS_i = \beta_1 + S_i^{\beta_2} + \beta_2 \beta_3 EXP_i + u_i$$

- **Linear in parameters:** The parameters $\beta_2, \beta_3, ..., \beta_k$ are multiplied with the X variables.
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- Example.
- Linear in parameters (this model is also linear in variables):

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u$$

Nonlinear in parameters:

$$extstyle extstyle ext$$

- Linear in parameters: The parameters $\beta_2, \beta_3, ..., \beta_k$ are multiplied with the X variables.
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- Example.
- Linear in parameters (this model is also linear in variables):

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u_i$$

Nonlinear in parameters:

$$EARNINGS_i = eta_1 + S_i^{eta_2} + eta_2eta_3 EXP_i + u_i$$

- **Linear in parameters:** The parameters $\beta_2, \beta_3, ..., \beta_k$ are multiplied with the X variables.
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- Example.
- Linear in parameters (this model is also linear in variables):

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u_i$$

Nonlinear in parameters:

$$EARNINGS_{i} = \beta_{1} + S_{i}^{\beta_{2}} + \beta_{2}\beta_{3}EXP_{i} + u_{i}$$

- **Linear in parameters:** The parameters $\beta_2, \beta_3, ..., \beta_k$ are multiplied with the X variables.
- Assumption 1. Model is linear in parameters and correctly specified:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$$

- Example.
- Linear in parameters (this model is also linear in variables):

$$EARNINGS_i = \beta_1 + \beta_2 S_i + \beta_3 EXP_i + u_i$$

Nonlinear in parameters:

$$EARNINGS_i = \beta_1 + \frac{S_i^{\beta_2}}{S_i} + \frac{\beta_2 \beta_3 EXP_i}{S_i} + u_i$$

• The parameter is not just a simple multiplication with S_i or EXP_i anymore!!!

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - log XZ = log X + log Z
 - \bullet $log \stackrel{X}{=} = log X log Z$
 - logXⁿ = nlogX
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - \bullet logXZ = logX + logZ
 - \bullet $log \stackrel{\times}{=} log X log Z$
 - logXⁿ = nlogX
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - \bullet logXZ = logX + logZ
 - \bullet $log \stackrel{\times}{=} log X log Z$
 - logXⁿ = nlogX
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - \bullet logXZ = logX + logZ
 - \bullet $log \stackrel{\wedge}{=} log X log Z$
 - logXⁿ = nlogX
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - logXZ = logX + logZ
 - $log \frac{X}{Z} = log X log Z$
 - $log \bar{X}^n = nlog X$
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - logXZ = logX + logZ
 - $log \frac{X}{7} = log X log Z$
 - $log \bar{X}^n = nlog X$
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - logXZ = logX + logZ
 - $log \frac{X}{Z} = log X log Z$
 - $log \overline{X}^n = nlog X$
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - logXZ = logX + logZ
 - $log \frac{X}{Z} = log X log Z$
 - $log\bar{X}^n = nlogX$
 - $loge^x = X$ (In Econometrics, log is Natural Logarithm log_e or ln)

$$Y = \beta_1 X^{\beta_2}$$

- Clearly non-linear in parameters and OLS does not work with model
- However, We can make equation linear in parameters!
- We use logarithmic transformation
- Review: Basic rules of Logs
 - logXZ = logX + logZ
 - $log \frac{X}{Z} = log X log Z$
 - $log\bar{X}^n = nlogX$
 - loge^x = X (In Econometrics, log is Natural Logarithm log_e or ln)

Logarithmic Models

For the model

$$Y = \beta_1 X^{\beta_2}$$

We use logarithmic transformation

$$\begin{array}{l} log Y = log \beta_1 X^{\beta_2} \\ = log \beta_1 + log X^{\beta_2} \\ = log \beta_1 + \beta_2 log X \end{array} \begin{array}{c} \textit{Use: logXZ} = log X + log Z \\ \textit{Use: If logX}^n = nlog X \end{array}$$

We can simplify by writing:

$$Y' = \beta_1' + \beta_2 X'$$

- where Y' = logY, $\beta'_1 = log\beta_1$, X' = logX
- Question: How can we interpret β_2 ? What is the marginal impact of an increase in X on Y?

Logarithmic Models

For the model

$$Y = \beta_1 X^{\beta_2}$$

• We use logarithmic transformation

$$egin{aligned} log Y &= log eta_1 X^{eta_2} \ &= log eta_1 + log X^{eta_2} \ &= log eta_1 + eta_2 log X \end{aligned} egin{aligned} \textit{Use: } log XZ &= log X + log Z \ \textit{Use: } lf \ log X^n &= nlog X \end{aligned}$$

• We can simplify by writing:

$$Y' = \beta_1' + \beta_2 X'$$

- where Y' = logY, $\beta'_1 = log\beta_1$, X' = logX
- Question: How can we interpret β_2 ? What is the marginal impact of an increase in X on Y?

Logarithmic Models

For the model

$$Y = \beta_1 X^{\beta_2}$$

• We use logarithmic transformation

$$egin{aligned} log Y &= log eta_1 X^{eta_2} \ &= log eta_1 + log X^{eta_2} \ &= log eta_1 + eta_2 log X \end{aligned} egin{aligned} \textit{Use: } log XZ &= log X + log Z \ \textit{Use: } lf \ log X^n &= nlog X \end{aligned}$$

• We can simplify by writing:

$$Y' = \beta_1' + \beta_2 X'$$

- where Y' = logY, $\beta'_1 = log\beta_1$, X' = logX
- Question: How can we interpret β_2 ? What is the marginal impact of an increase in X on Y?

Logarithmic Models

For the model

$$Y = \beta_1 X^{\beta_2}$$

• We use logarithmic transformation

$$egin{aligned} log Y &= log eta_1 X^{eta_2} \ &= log eta_1 + log X^{eta_2} \ &= log eta_1 + eta_2 log X \end{aligned} egin{aligned} \textit{Use: } log XZ &= log X + log Z \ &\downarrow \textit{Use: } lf \ log X^n &= nlog X \end{aligned}$$

• We can simplify by writing:

$$Y' = \beta_1' + \beta_2 X'$$

- where Y' = logY, $\beta'_1 = log\beta_1$, X' = logX
- Question: How can we interpret β_2 ? What is the marginal impact of an increase in X on Y?

Logarithmic Models

For the model

$$Y = \beta_1 X^{\beta_2}$$

• We use logarithmic transformation

$$egin{align*} log Y &= log eta_1 X^{eta_2} \ &= log eta_1 + log X^{eta_2} \ &= log eta_1 + eta_2 log X \end{array} egin{align*} \textit{Use: } log XZ = log X + log Z \ \textit{Use: } lf \ log X^n = nlog X \end{array}$$

• We can simplify by writing:

$$Y' = \beta_1' + \beta_2 X'$$

- where Y' = logY, $\beta'_1 = log\beta_1$, X' = logX
- **Question**: How can we interpret β_2 ? What is the marginal impact of an increase in X on Y?

$$Y = \beta_1 X^{\beta_2}$$

- For the model
- We use logarithmic transformation and ge

To calculate the marginal impact of an increase in X on Y, we differentiate it

$$dlnY = \beta_2 dlnX$$

$$\frac{dY}{Y} = \beta_2 \frac{dX}{X}$$

$$100 \times \frac{dY}{Y} = \beta_2 100 \times \frac{dX}{X}$$

$$\beta_2 = \frac{\%\Delta Y}{2} = elasticity$$
Derivative of Natural Log: $\frac{d}{dX}$ In $Y = \frac{1}{Y}$ so $dlnX = \frac{dX}{X}$ and $dlnY = \frac{dY}{Y}$ multiply by 100 for both sides

• We interpret as 1% change in X bring β_2 % change in Y.

$$Y = \beta_1 X^{\beta_2}$$

- For the model
- We use logarithmic transformation and get

$$logY = log eta_1 + eta_2 log X$$

 $log Y = log eta_1 + eta_2 log X$ $\int log S N = log S N$ $log S N = log S N$

To calculate the marginal impact of an increase in X on Y, we differentiate it

$$dlnY = \beta_2 dlnX$$

$$\frac{dY}{Y} = \beta_2 \frac{dX}{X}$$

$$100 \times \frac{dY}{Y} = \beta_2 100 \times \frac{dX}{X}$$

$$\frac{d}{dY} \ln Y = \frac{1}{Y}$$

$$so \ dlnX = \frac{dX}{X} \ and \ dlnY = \frac{dY}{Y}$$

$$multiply \ by \ 100 \ for \ both \ sides$$

$$\frac{dY}{dX} = \frac{dY}{dX} + \frac{dY}{dX} = \frac{dY}{dX}$$

• We interpret as 1% change in X bring β_2 % change in Y.

$$Y = \beta_1 X^{\beta_2}$$

- For the model
- We use logarithmic transformation and get

$$log Y = log eta_1 + eta_2 log X$$
 $\int log is Natural Logarithm log_e or In $log_1 + eta_2 log X$$

• To calculate the marginal impact of an increase in X on Y, we differentiate it.

$$dlnY = \beta_2 dlnX$$

$$\frac{dY}{Y} = \beta_2 \frac{dX}{X}$$

$$100 \times \frac{dY}{Y} = \beta_2 \% \Delta X$$

$$\beta_2 = \frac{\% \Delta Y}{\% \Delta Y} = elasticity$$
Derivative of Natural Log: $\frac{d}{dX} lnX = \frac{1}{X}$

$$\frac{d}{dY} lnY = \frac{1}{Y}$$
so $dlnX = \frac{dX}{X}$ and $dlnY = \frac{dY}{Y}$

$$multiply by 100 for both sides$$

We interpret as 1% change in X bring β_2 % change in Y.

$$Y = \beta_1 X^{\beta_2}$$

- For the model
- We use logarithmic transformation and get

$$log Y = log eta_1 + eta_2 log X$$
 $log is Natural Logarithm log_e or In $log = ln eta_1 + eta_2 ln X$$

• To calculate the marginal impact of an increase in X on Y, we differentiate it.

$$dlnY = \beta_2 dlnX$$

$$\frac{dY}{Y} = \beta_2 \frac{dX}{X}$$

$$100 \times \frac{dY}{Y} = \beta_2 \% \Delta X$$

$$\beta_2 = \frac{\% \Delta Y}{\% \Delta Y} = elasticity$$

$$Derivative of Natural Log: $\frac{d}{dX} lnX = \frac{1}{X}$

$$\frac{d}{dY} lnY = \frac{1}{Y}$$

$$so \ dlnX = \frac{dX}{X} \ and \ dlnY = \frac{dY}{Y}$$

$$multiply \ by \ 100 \ for \ both \ sides$$$$

• We interpret as 1% change in X bring β_2 % change in Y.

Summary

Model	Dependent Variable	Independent Variable	Interpretation
$m{Y} = eta_1 + eta_2 m{X}$ Level-Level Model	Υ	Χ	1 unit change in X bring β_2 units change in Y
$log Y = \beta_1 + \beta_2 log X$ Log-Log Model	logY	logX	1 % change in X bring β_2 % change in Y

- We use data from the US Consumer Expenditure Survey data.
- We regress FDHO, food eaten at home, on EXP, total annual household expenditure
- Both are measured in dollars for a sample of 869 households in the United States
- Firstly, we present original data in USD

- We use data from the US Consumer Expenditure Survey data.
- We regress FDHO, food eaten at home, on EXP, total annual household expenditure
- Both are measured in dollars for a sample of 869 households in the United States
- Firstly, we present original data in USD

- We use data from the US Consumer Expenditure Survey data.
- We regress FDHO, food eaten at home, on EXP, total annual household expenditure
- Both are measured in dollars for a sample of 869 households in the United States
- Firstly, we present original data in USD

- We use data from the US Consumer Expenditure Survey data.
- We regress FDHO, food eaten at home, on EXP, total annual household expenditure
- Both are measured in dollars for a sample of 869 households in the United States
- Firstly, we present original data in USD

$$FDHO_i = \beta_1 + \beta_2 EXP_i + u_i$$

We estimate the following model:

$$\widehat{FDHO}_i = 369.44 + 0.063 EXP_i$$

- 6.3 cents out of each dollar of expenditure is spent on food at home
- USD 369 would be spent on food at home if total expenditure were zero. Obviously this is impossible.

$$FDHO_i = \beta_1 + \beta_2 EXP_i + u_i$$

We estimate the following model:

$$\widehat{FDHO}_i = 369.44 + 0.063 EXP_i$$

- 6.3 cents out of each dollar of expenditure is spent on food at home
- USD 369 would be spent on food at home if total expenditure were zero. Obviously this is impossible.

$$FDHO_i = \beta_1 + \beta_2 EXP_i + u_i$$

We estimate the following model:

$$\widehat{FDHO}_i = 369.44 + 0.063 EXP_i$$

- 6.3 cents out of each dollar of expenditure is spent on food at home
- USD 369 would be spent on food at home if total expenditure were zero. Obviously this is impossible.

- We will fit now a constant elasticity function using the same data
- We begin with taking the natural Log of FDHO and EXP and plot the data below

- We will fit now a constant elasticity function using the same data
- We begin with taking the natural Log of FDHO and EXP and plot the data below

$$FDHO_i = \beta_1 EXP_i^{\beta_2}$$

After log transformation, We estimate the following model:

$$logFDHO_i = log\beta_1 + \beta_2 logEXP_i$$

```
ces2013$1nFDHO <- log(ces2013$FDHO) # log transformation
sum(is.infinite(ces2013$lnFDHO)) # Are we losing obs because of log?
ces2013$lnEXP <- log(ces2013$EXP)
sum(is.infinite(ces2013$lnEXP))
Call:
lm(formula = lnFDHO ~ lnEXP, data = ces2013)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.700950 0.084361 8.309 <2e-16 ***
           0.665786 0.009691 68.702 <2e-16 ***
lnEXP
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.59 on 6332 degrees of freedom
Multiple R-squared: 0.4271, Adjusted R-squared: 0.427
F-statistic: 4720 on 1 and 6332 DF. p-value: < 2.2e-16
    loaFDHO_i = 0.70 + 0.66 logEXP_i
```

$$log\widehat{FDHO}_i = 0.70 + 0.66 logEXP_i$$

- The estimate of the elasticity is 0.66. Is that plausible?
- A 1% increase in total household expenditure leads to a 0.66% increase in food eaten at home expenditure.
- Food is a normal good, so its elasticity should be positive, but it is a basic necessity.
- Expenditure on it should grow less rapidly than expenditure generally, so its elasticity should be less than 1.
- The intercept has no substantive meaning.

$$\widehat{logFDHO_i} = 0.70 + 0.66 logEXP_i$$

- The estimate of the elasticity is 0.66. Is that plausible?
- A 1% increase in total household expenditure leads to a 0.66% increase in food eaten at home expenditure.
- Food is a normal good, so its elasticity should be positive, but it is a basic necessity.
- Expenditure on it should grow less rapidly than expenditure generally, so its elasticity should be less than 1.
- The intercept has no substantive meaning.

$$log\widehat{FDHO}_i = 0.70 + 0.66 logEXP_i$$

- The estimate of the elasticity is 0.66. Is that plausible?
- A 1% increase in total household expenditure leads to a 0.66% increase in food eaten at home expenditure.
- Food is a normal good, so its elasticity should be positive, but it is a basic necessity.
- Expenditure on it should grow less rapidly than expenditure generally, so its elasticity should be less than 1.
- The intercept has no substantive meaning.

$$log\widehat{FDHO}_i = 0.70 + 0.66 logEXP_i$$

- The estimate of the elasticity is 0.66. Is that plausible?
- A 1% increase in total household expenditure leads to a 0.66% increase in food eaten at home expenditure.
- Food is a normal good, so its elasticity should be positive, but it is a basic necessity.
- Expenditure on it should grow less rapidly than expenditure generally, so its elasticity should be less than 1.
- The intercept has no substantive meaning.

$$log\widehat{FDHO}_i = 0.70 + 0.66 logEXP_i$$

- The estimate of the elasticity is 0.66. Is that plausible?
- A 1% increase in total household expenditure leads to a 0.66% increase in food eaten at home expenditure.
- Food is a normal good, so its elasticity should be positive, but it is a basic necessity.
- Expenditure on it should grow less rapidly than expenditure generally, so its elasticity should be less than 1.
- The intercept has no substantive meaning.

Compare Linear and Nonlinear Model

$$FDHO_i = \beta_1 EXP_i^{\beta_2}$$

• After log transformation, We estimate the following model:

$$logFDHO_i = log\beta_1 + \beta_2 logEXP_i$$

According to R output,

$$logFDHO_i=0.70+0.66logEXP$$
 $logeta_1=0.70$, so $eta_1=e^{0.701}=2.02$, $eta_2=0.66$ $logFDHO_i=2.02EXP_i^{0.66}$

• We can now compare the linear model and the nonlinear in the same diagram.

Compare Linear and Nonlinear Model

$$FDHO_i = \beta_1 EXP_i^{\beta_2}$$

• After log transformation, We estimate the following model:

$$logFDHO_i = log\beta_1 + \beta_2 logEXP_i$$

According to R output,

$$logFDHO_i=0.70+0.66logEXP_i$$
 $logeta_1=0.70$, so $eta_1=e^{0.701}=2.02$, $eta_2=0.66$ $FDHO_i=2.02EXP_i^{0.66}$

We can now compare the linear model and the nonlinear in the same diagram.

Compare Linear and Nonlinear Model

$$FDHO_i = \beta_1 EXP_i^{\beta_2}$$

• After log transformation, We estimate the following model:

$$logFDHO_i = log\beta_1 + \beta_2 logEXP_i$$

According to R output,

$$log\widehat{FDHO_i}=0.70+0.66logEXP_i$$
 $logeta_1=0.70$, so $eta_1=e^{0.701}=2.02$, $eta_2=0.66$ $FDHO_i=2.02EXP_i^{0.66}$

• We can now compare the linear model and the nonlinear in the same diagram.

Compare Linear and Logarithmic Model

Linear model:

$$\widehat{FDHO}_{i} = 369.44 + 0.063 EXP_{i}$$

Nonlinear model:

$$FDHO_i = 2.02EXP_i^{0.66}$$

Compare Linear and Logarithmic Model

Linear model:

$$\widehat{FDHO}_i = 369.44 + 0.063 EXP_i$$

Nonlinear model:

$$FDHO_i = 2.02EXP_i^{0.66}$$

