Homework 2

Due Date: February 25th, 2020

- 1. Edgeworth Box. Let $e^1 = (1,2)$ and $e^2 = (2,3)$. Find (compute and picture) the Pareto set, core and competitive equilibrium for each of the following cases:
- (a) $u^1(x,y) = x + y$, $u^2(x,y) = 2x + 3y$
- (b) $u^1(x,y) = x^{1/2}y^{1/2}$, $u^2(x,y) = x^{2/3}y^{1/3}$
- (c) $u^1(x,y) = \min\{x,y\}, u^2(x,y) = \min\{2x,3y\}$
- (d) $u^1(x,y) = x + y$, $u^2(x,y) = \min\{2x,3y\}$
- (e) $u^1(x,y) = x^{1/2}y^{1/2}$, $u^2(x,y) = 2x + 3y$
- **2.** Let $u^h(x_1,...,x_L) = x_1^{\alpha_1} x_2^{\alpha_2} ... x_L^{\alpha_L}$. Assume $\alpha_i \geq 0$ for all i and $\sum_{i=1}^L \alpha_i = 1$. Show that if $u^h(z)$ maximizes utility on $B^h(p) = \{y \in R_+^L | p \cdot y \leq p \cdot e^h\}$, then $p_l z_l = \alpha_l p \cdot e^h$ for all l = 1,...,L.
- 3. Consider an exchange economy in which there are four agents and three goods. Agents' utility functions are $u^1(x,y,z)=x^{1/2}y^{1/4}z^{1/4}$, $u^2(x,y,z)=x^{1/3}y^{1/3}z^{1/3}$, $u^3(x,y,z)=x^{2/3}y^{1/4}z^{1/12}$ and $u^4(x,y,z)=x^{1/4}y^{1/4}z^{1/2}$ respectively. Their endowments are $e^1=(1,2,0)$, $e^2=(0,2,3)$, $e^3=(1,1,1)$ and $e^4=(1,0,0)$ respectively. Compute the competitive equilibrium for this economy.
- **4.** Consider an exchange economy in which there is a commodity l such that
- (a) Household 1 owns (i.e. is endowed with) only commodity l and likes only commodity l.
- (b) Households 2, ..., H each own commodity l but none of them like commodity l. Show that a CE doesn't exist.
- 5. Consider an exchange economy in which there are two goods and two agents. Agent 1 has utility function $u^1(x,y) = -\sqrt{(x-1/4)^2 + (y-1/4)^2}$ and agent 2 has utility function $u^2(x,y) = \log(x) + \log(y)$. Endowments are $e^i = (1/2, 1/2)$ for i = 1, 2. Show that this economy has a competitive equilibrium which is not Pareto Optimal. Does this example contradict the First Welfare Theorem?
- **6.** Consider traders $h \in H = \{1, 2, ..., H\}$ with endowments $e^h \in R_{++}^K$ and monotonic, strictly concave utility function u^h . For any price vector $p \in R_{++}^K$, there will be a unique consumption bundle $y^h(p)$ in the budget set $B^h(p) = \{x \in R_+^K : p \cdot x \leq p \cdot e^h\}$ which maximizes u^h . (Note: the uniqueness

follows from strict concavity). Define the aggregate excess demand function $z: R_{++}^K \longrightarrow R^K$ by $z(p) = \sum_{h \in H} [y^h(p) - e^h]$. The function z(.) has the gross substitute (GS) property if whenever p' and p are such that, for some $l, p'_l > p_l$ and $p'_k = p_k$ for $k \neq l$, we have $z_k(p') > z_k(p)$ for $k \neq l$.

- (a) Using the fact that the aggregate excess demand functions are homogeneous of degree zero, prove that $z_l(p') < z_l(p)$.
- (b) Prove that if the aggregate excess demand function z(.) satisfies the gross substitute property, then there is at most one normalized price vector p such that z(p) = 0. (Note: normalized means $\sum_{l=1}^{K} p_l = 1$.)