

www.vishay.com

Vishay Semiconductors

RoHS

HALOGEN FREE

Hyperfast Rectifier, 2 x 15 FRED Pt®

PRIMARY CHARACTERISTICS				
I _{F(AV)}	2 x 15 A			
V _R	200 V			
V _F at I _F	0.78 V			
t _{rr} typ.	See Recovery table			
T _J max.	175 °C			
Package	TO-220 FullPAK 3L			
Circuit configuration	Common cathode			

FEATURES

- Hyperfast recovery time
- Low forward voltage drop
- 175 °C operating junction temperature
- · Low leakage current
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

200 V series are the state of the art hyperfast recovery rectifiers specifically designed with optimized performance of forward voltage drop and hyperfast recovery time.

The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Peak repetitive reverse voltage		V_{RRM}		200	V
Average rectified forward ourrent	per diode	I _{F(AV)}	T _C = 125 °C	15	
Average rectified forward current —	per device			30	Α
Non-repetitive peak surge current		I _{FSM}	T _J = 25 °C	200	
Operating junction and storage temper	ratures	T _J , T _{Stg}		-65 to +175	°C

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	200	-	-	.,
Forward voltage V _F	I _F = 15 A	-	0.92	1.05	V	
	I _F = 15 A, T _J = 125 °C	-	0.78	0.85		
Reverse leakage current I _R		$V_R = V_R$ rated	-	-	10	
		$T_J = 125 ^{\circ}\text{C}, V_R = V_R \text{rated}$	-	5	300	μA
Junction capacitance	C _T	V _R = 200 V	-	57	-	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8	-	nΗ

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _C = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1 \text{ A}, dI_F/dt = 50 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	-	35	
Reverse recovery time t _{rr}		$I_F = 1 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	-	30	ns
	۲rr	T _J = 25 °C	$I_F = 15 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_B = 160 \text{ V}$	-	26	-	115
		T _J = 125 °C		-	40	-	
Peak recovery current I _{RRM}		T _J = 25 °C		-	2.8	-	Α
	IRRM	T _J = 125 °C		-	6.0	-	1
Reverse recovery charge Q _{rr}		$T_J = 25 ^{\circ}C$		-	37	-	nC
		T _J = 125 °C		-	120	-	IIC

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C
Thermal resistance, junction-to-case per diode	R _{thJC}	Mounting surface, flat, smooth and greased	-	-	3.5	°C/W
Marking device		Case style TO-220 FullPAK 3L		30CTI	H02FP	

Fig. 1 - Typical Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Note

 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}; \\ Pd = \text{forward power loss} = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 5);} \\ Pd_{REV} = \text{inverse power loss} = V_{R1} \times I_R \text{ (1 - D); } I_R \text{ at } V_{R1} = \text{rated } V_R \\ \end{array}$

Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

Fig. 8 - Typical Stored Charge vs. dl_F/dt

Vishay Semiconductors

- (1) di_F/dt rate of change of current through zero crossing
- (4) Q_{rr} area under curve defined by t_{rr} and I_{RRM}
- (2) I_{RRM} peak reverse recovery current
- $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.
- (5) $di_{(rec)M}/dt$ peak rate of change of current during t_b portion of t_{rr}

Fig. 9 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- Current rating (30 = 30 A)
- 3 C = common cathode
- **4** T = TO-220
- 5 H = hyperfast recovery
- Voltage rating (02 = 200 V)
- 7 FP = TO-220 FullPAK 3L
- 8 Environmental digit:
 - -N3 = halogen-free, RoHS-compliant, and totally lead (Pb)-free

ORDERING INFO	RMATION (Example)		
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-20CTH03FP-N3	50	1000	Antistatic plastic tube

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?96155
Part marking information	www.vishay.com/doc?95456