STAT 576 Bayesian Analysis

Lecture 6: Model Checking

Chencheng Cai

Washington State University

Model Checking Methods

Goal:

- Assess the fit of the model to the data.
- Assess the fit of the model to our substantive knowledge.
- ► Assess the adequacy/robusteness of the model.

Model Checking Methods

Goal:

- Assess the fit of the model to the data.
- Assess the fit of the model to our substantive knowledge.
- Assess the adequacy/robusteness of the model.

Methods:

- Sensitivity Analysis.
 - Check whether other models generate a similar posterior.
- External Validation.
 - Posterior predictive checking.
- Internal Validation.
 - Cross-validation predictive checking.

Sensitivity Analysis

- ▶ How the results are affected by different choices of the model structure?
 - different models (binomial v.s. Poisson, normal v.s. t)
 - different priors
 - different structures (hierarchical v.s. separate)
 - different distribution families (Gaussian v.s. mixed Gaussian)

Sensitivity Analysis

- ▶ How the results are affected by different choices of the model structure?
 - different models (binomial v.s. Poisson, normal v.s. t)
 - different priors
 - different structures (hierarchical v.s. separate)
 - different distribution families (Gaussian v.s. mixed Gaussian)
- Compare the sensitivity of essential inference quantities.
 - extreme quantities v.s. mean/median.
 - extrapolation v.s. interpolation.

Example: Election Prediction

- ▶ Posterior winning probability of Bill Clinton at each state in Oct. 1992.
- ► Hierarchical linear regression model.

Example: Election Prediction

- ▶ Posterior winning probability of Bill Clinton at each state in Oct. 1992.
- ► Hierarchical linear regression model.
- ▶ The model seems wrong at Texas and Florida.

Example: Election Prediction

- ▶ Posterior winning probability of Bill Clinton at each state in Oct. 1992.
- ► Hierarchical linear regression model.
- ▶ The model seems wrong at Texas and Florida.
- It is much easier to evaluate the performance afterwards.

▶ Idea: check the discrepancy between the predicted values and the observed values.

- ldea: check the discrepancy between the predicted values and the observed values.
- ► Procedure:
 - ► Generate simulated samples from the joint posterior predictive distribution
 - Compare the samples with the observed data.
 - Systematic differences imply the failings of the model.

- ▶ Simon Newcomb set up an experiment in 1882 to measure the light speed.
- ▶ The travel time of light was recorded for the round-trip between
 - his lab on the Potomac river
 - ▶ a mirror at the base of the Washington Monument
- ▶ The total travel distance is 7422 meters.

- ▶ Simon Newcomb set up an experiment in 1882 to measure the light speed.
- ▶ The travel time of light was recorded for the round-trip between
 - his lab on the Potomac river
 - a mirror at the base of the Washington Monument
- ▶ The total travel distance is 7422 meters.
- ▶ The measurement was repeated n = 66 times.

Histogram for deviations from 24800 ns

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

• We can choose a noninformative prior for μ and σ^2 :

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

• We can choose a noninformative prior for μ and σ^2 :

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$

ightharpoonup Recall our previous results for multiparameter Bayesian inference. The marginal posterior for μ is

$$\mu \mid y \sim t_{66} \left(\bar{y}, \frac{65}{66^2} s^2 \right)$$

▶ We model the travel time by a normal distribution:

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

▶ We can choose a noninformative prior for μ and σ^2 :

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$$

ightharpoonup Recall our previous results for multiparameter Bayesian inference. The marginal posterior for μ is

$$\mu \mid y \sim t_{66} \left(\bar{y}, \frac{65}{66^2} s^2 \right)$$

- ► A 95% credible interval is [23.6, 28.8].
- ▶ We know the true value should be around 33.0.

Generate posterior predictive replicates y^{rep}

- ▶ Draw $\mu^{(s)}, \sigma^{2(s)}$ from the joint posterior distribution $p(\mu, \sigma^2 \mid y)$.
- ightharpoonup Draw $y^{rep(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{2(s)})$.
- ightharpoonup Repeat the drawing to get n replicates of y^{rep} .

Generate posterior predictive replicates y^{rep}

- ▶ Draw $\mu^{(s)}, \sigma^{2(s)}$ from the joint posterior distribution $p(\mu, \sigma^2 \mid y)$.
- ightharpoonup Draw $y^{rep(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{2(s)})$.
- ▶ Repeat the drawing to get n replicates of y^{rep} .

We get the histogram of the **smallest** travel time for all replicates.

We get the histogram of the **smallest** travel time for all replicates.

▶ Can hardly observe an occurrence that is less than -20.

We get the histogram of the **smallest** travel time for all replicates.

- ▶ Can hardly observe an occurrence that is less than -20.
- ▶ Decide: whether the **data** was wrong or the **model** was wrong?

We get the histogram of the **smallest** travel time for all replicates.

- ► Can hardly observe an occurrence that is less than -20.
- ▶ Decide: whether the **data** was wrong or the **model** was wrong?
- ► The model was wrong: should use heavy-tailed distribution or contaminated normal (mixed Gaussian).

► Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

- ▶ **Test quantity** (or discrepancy measure) $T(y, \theta)$
 - lacktriangle Summary quantity for the observed data $T(y,\theta)$
 - Summary quantity for a replicated data $T(y^{rep}, \theta)$.

Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

- ▶ **Test quantity** (or discrepancy measure) $T(y, \theta)$
 - lacktriangle Summary quantity for the observed data $T(y,\theta)$
 - Summary quantity for a replicated data $T(y^{rep}, \theta)$.
- ▶ The frequentist counter-part is known as **test statistics** T(y), which only depends on the data.

Replicated datasets:

$$p(y^{rep} \mid y) = \int \underbrace{p(y^{rep} \mid \theta)}_{obs. \ model} \underbrace{p(\theta \mid y)}_{posterior} d\mu(\theta)$$

- ▶ **Test quantity** (or discrepancy measure) $T(y, \theta)$
 - lacktriangle Summary quantity for the observed data $T(y,\theta)$
 - Summary quantity for a replicated data $T(y^{rep}, \theta)$.
- The frequentist counter-part is known as **test statistics** T(y), which only depends on the data.
- ▶ In the light speed example, we choose $T(y, \theta) = \min(y)$ (also a test statistic).

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Posterior predictive p-values:

$$p_B = \mathbb{P}[T(y^{rep}, \theta) \ge T(y, \theta) \mid y]$$

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Posterior predictive p-values:

$$p_B = \mathbb{P}[T(y^{rep}, \theta) \ge T(y, \theta) \mid y]$$

- ▶ The classical p-values measure how likely the data is coming from the null model.
- ► The posterior predictive p-values measure how likely the data is similar to the postetior predictive replicates.

Classical p-values:

$$p_C = \mathbb{P}[T(y^{rep}) \ge T(y) \mid \theta]$$

Posterior predictive p-values:

$$p_B = \mathbb{P}[T(y^{rep}, \theta) \ge T(y, \theta) \mid y]$$

- ▶ The classical p-values measure how likely the data is coming from the null model.
- ► The posterior predictive p-values measure how likely the data is similar to the postetior predictive replicates.
- ▶ In Bayesian, θ is also random. p_B can be estimated by joint samples of (y^{rep}, θ) .

$$p_B = \iint \mathbb{I}\{T(y^{rep}, \theta) \ge T(y, \theta)\} p(y^{rep} \mid \theta) p(\theta \mid y) d\mu(\theta) d\mu(y^{rep})$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} \mathbb{I}\{T(y^{rep(s)}, \theta^{(s)}) \ge T(y, \theta^{(s)})\}$$

If we use the sample variance as the test quantity:

Cannot tell the discrepancy — because the sample variance is a sufficient statistics.

- A good test statistic is ancilliary
 - ancilliary: depends on the observed data but independent of the parameters.
- ▶ A **bad** test statsistic is highly dependent of the parameters.
 - ▶ i.e. sufficient statistics.

- A good test statistic is ancilliary
 - ancilliary: depends on the observed data but independent of the parameters.
- ► A **bad** test statsistic is highly dependent of the parameters.
 - i.e. sufficient statistics.
- ▶ If we have multiple test statistics, we do not conduct p-value justification.
 - See the smoking example in the textbook.

- A good test statistic is ancilliary
 - ancilliary: depends on the observed data but independent of the parameters.
- A bad test statsistic is highly dependent of the parameters.
 - i.e. sufficient statistics.
- ▶ If we have multiple test statistics, we do not conduct p-value justification.
 - See the smoking example in the textbook.
- ► An extreme p-value often suggests the weakness of the current model. The next step is to revise the model.

Example: Educational Testing

Data: the effects of coaching programs for the SAT-V scores for students in 8 schools.

	Estimated treatment	Standard error of effect
School	effect, y_j	estimate, σ_j
A	28	15
В	8	10
\mathbf{C}	-3	16
D	7	11
${f E}$	-1	9
\mathbf{F}	1	11
\mathbf{G}	18	10
$_{ m H}$	12	18

Example: Educational Testing

Separate estimation:

- ► Some schools have moderate effects (18-28).
- ▶ Most schools have small effects (0-12).
- Two have negative effects.
- ▶ Difficult to distinguish because of large variance.

Separate estimation:

- ► Some schools have moderate effects (18-28).
- ► Most schools have small effects (0-12).
- ► Two have negative effects.
- ▶ Difficult to distinguish because of large variance.

Pooled estimation:

- \triangleright All schools have identical effect θ .
- Use noninformative prior.
- Posterior mean: 7.7 with s.e. 4.1

Separate estimation:

- ▶ Some schools have moderate effects (18-28).
- ▶ Most schools have small effects (0-12).
- ► Two have negative effects.
- ▶ Difficult to distinguish because of large variance.

Pooled estimation:

- ightharpoonup All schools have identical effect θ .
- Use noninformative prior.
- Posterior mean: 7.7 with s.e. 4.1

Hierarchical model:

- lacksquare $\theta_1,\ldots,\theta_8\sim\mathcal{N}(\mu,\tau^2)$ i.i.d.
- ▶ $y_j \mid \theta_j \sim (\theta_j, \sigma_j^2)$ independent.
- ▶ choose flat prior $p(\mu, \tau) \propto 1$.

Hierarchical model:

- By drawing posterior samples:

 - lacksquare draw $heta_1^{(s)},\dots, heta_8^{(s)}$ from $p(heta_1,\dots, heta_8\mid \mu^{(s)}, au^{(s)},y)$

Hierarchical model:

- By drawing posterior samples:
 - ightharpoonup draw $\mu^{(s)}, \tau^{(s)}$ from $p(\mu, \tau \mid y)$
 - $\blacktriangleright \ \, \mathsf{draw} \,\, \theta_1^{(s)}, \ldots, \theta_8^{(s)} \,\, \mathsf{from} \,\, p(\theta_1, \ldots, \theta_8 \mid \mu^{(s)}, \tau^{(s)}, y)$
- we have the posterior quantiles for each school:

School	Posterior quantiles				
	2.5%	25%	median	75%	97.5%
\overline{A}	-2	7	10	16	31
В	-5	3	8	12	23
\mathbf{C}	-11	2	7	11	19
D	-7	4	8	11	21
${f E}$	-9	1	5	10	18
\mathbf{F}	-7	2	6	10	28
\mathbf{G}	-1	7	10	15	26
H	-6	3	8	13	33

- Assumptions:
 - ightharpoonup normality of y_i .
 - ightharpoonup exchangeability of the priors for θ_i 's.
 - **normality** of prior of θ_j .
 - flat hyperprior.

- Assumptions:
 - ightharpoonup normality of y_i .
 - ightharpoonup exchangeability of the priors for θ_j 's.
 - ightharpoonup normality of prior of θ_j .
 - lat hyperprior.
- Comparing posterior inferences to substantive knowledge:
 - Individual effects between 5 and 10 seems reasonable.
 - Some lower bounds go to negative.

- Posterior predictive checking.
 - $y^{rep} = (y_1^{rep}, \dots, y_8^{rep})$
 - ► Test statistics: max, min, mean, s.d.

Sensitivity Analysis:

- ▶ Uniform prior for τ : the marginal posterior for τ
 - no significant change if we multiply it by another prior

Sensitivity Analysis:

- Uniform prior for τ : the marginal posterior for τ
 - no significant change if we multiply it by another prior

▶ normality of $y_j \mid \theta_j, \sigma_j$: ensured by experimental designa and CLT.

Sensitivity Analysis:

- ▶ Uniform prior for τ : the marginal posterior for τ
 - no significant change if we multiply it by another prior

- ▶ normality of $y_j \mid \theta_j, \sigma_j$: ensured by experimental designa and CLT.
- normality of the prior for θ_j 's: One may consider other heavy-tailed distributions. But needs advanced sampling techniques.

Model Evaluation

- ▶ We need certain criterion in evaluating a model.
- provide a "perfomance measure" of the model
- provide a standard for comparing models
- A very intuitive way is to compare the predicted values with the true values.

Compare y_i (observation) with prediction:

Compare y_i (observation) with prediction:

- ▶ if the prediction is a **point prediction** \hat{y}_i :
 - ▶ mean squared error: $n^{-1} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - ightharpoonup mean absolute error: $n^{-1}\sum_{i=1}^{n}|y_i-\hat{y}_i|$

Compare y_i (observation) with prediction:

- ▶ if the prediction is a **point prediction** \hat{y}_i :
 - ▶ mean squared error: $n^{-1} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - ightharpoonup mean absolute error: $n^{-1} \overline{\sum_{i=1}^{n}} |y_i \hat{y}_i|$
- ▶ if the prediction is a **probabilistic prediction** $p(y_i | \theta)$:
 - ▶ log-predictive density (lpd): $n^{-1} \sum_{i=1}^{n} \log p(y_i \mid \theta)$

Compare y_i (observation) with prediction:

- ▶ if the prediction is a **point prediction** \hat{y}_i :
 - ightharpoonup mean squared error: $n^{-1}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$
 - ightharpoonup mean absolute error: $n^{-1}\sum_{i=1}^{n}|y_i-\hat{y}_i|$
- ▶ if the prediction is a **probabilistic prediction** $p(y_i | \theta)$:
 - ▶ log-predictive density (lpd): $n^{-1} \sum_{i=1}^{n} \log p(y_i \mid \theta)$

Justification

If we have the true distribution F (with density f) such that $y_1, \ldots, y_n \sim F$, i.i.d.. Then

$$\begin{split} \operatorname{lpd} &= \frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \theta) \xrightarrow{a.s.} \mathbb{E}_F[\log p(y_i \mid \theta)] = \int f(y) \log p(y \mid \theta) d\mu(y) \\ &= \underbrace{\int f(y) \log f(y) d\mu(y)}_{\text{neg. entropy of } F} - \underbrace{\int f(y) \log \frac{f(y)}{p(y \mid \theta)} d\mu(y)}_{\text{Kullback-Leibler divergence } \operatorname{KL}(f||p_\theta) \end{split}$$

Notation:

- ▶ y: observed data
- $ightharpoonup ilde{y}$: a new data
- ightharpoonup F: the true model of y with density f.

Notation:

- ▶ y: observed data
- \triangleright \tilde{y} : a new data
- ightharpoonup F: the true model of y with density f.

The posterior predictive density for \tilde{y}_i is

$$p(\tilde{y}_i \mid y) = \int p(\tilde{y}_i \mid \theta) \underbrace{p(\theta \mid y)}_{\text{posterior}} d\mu(\theta) = \mathbb{E}_{\text{post}}[p(\tilde{y}_i \mid \theta)] = p_{\text{post}}(\tilde{y}_i)$$

Notation:

- ▶ y: observed data
- \triangleright \tilde{y} : a new data
- ightharpoonup F: the true model of y with density f.

The posterior predictive density for \tilde{y}_i is

$$p(\tilde{y}_i \mid y) = \int p(\tilde{y}_i \mid \theta) \underbrace{p(\theta \mid y)}_{\text{posterior}} d\mu(\theta) = \mathbb{E}_{\text{post}}[p(\tilde{y}_i \mid \theta)] = p_{\text{post}}(\tilde{y}_i)$$

- ightharpoonup $\mathbb{E}_{\mathsf{post}}$ is the expectation is taken for θ w.r.t. the posterior.
- $ightharpoonup p_{\mathsf{post}}(\tilde{y}_i)$ is the predictive density for \tilde{y}_i induced from the posterior $p_{\mathsf{post}}(\theta)$.

The **expected predictive density** for \tilde{y}_i is

$$elpd = \mathbb{E}_F[\log p_{\mathsf{post}}(\tilde{y}_i)] = \int f(\tilde{y}_i) \log p_{\mathsf{post}}(\tilde{y}_i) d\mu(\tilde{y}_i)$$

Bayesian version: the expected predictive density:

$$\mathbb{E}_F[\log p_{\mathsf{post}}(\tilde{y}_i)] = \int f(\tilde{y}_i) \log p(\tilde{y}_i \mid y) d\mu(\tilde{y}_i)$$

Bayesian version: the expected predictive density:

$$\mathbb{E}_F[\log p_{\mathsf{post}}(ilde{y}_i)] = \int f(ilde{y}_i) \log p(ilde{y}_i \mid y) d\mu(ilde{y}_i)$$

Frequentist version: the expected predictive density given $\hat{\theta}$:

$$\mathbb{E}_{F}[\log p(\tilde{y}_{i} \mid \hat{\theta})] = \int f(\tilde{y}_{i}) \log p(\tilde{y}_{i} \mid \hat{\theta}) d\mu(\tilde{y}_{i})$$

Bayesian version: the expected predictive density:

$$\mathbb{E}_F[\log p_{\mathsf{post}}(\tilde{y}_i)] = \int f(\tilde{y}_i) \log p(\tilde{y}_i \mid y) d\mu(\tilde{y}_i)$$

Frequentist version: the expected predictive density given $\hat{\theta}$:

$$\mathbb{E}_{F}[\log p(\tilde{y}_{i} \mid \hat{\theta})] = \int f(\tilde{y}_{i}) \log p(\tilde{y}_{i} \mid \hat{\theta}) d\mu(\tilde{y}_{i})$$

The connection is given by

$$p(\tilde{y}_i \mid y) = \int p(\tilde{y}_i \mid \theta) p(\theta \mid y) d\mu(\theta)$$

Prediction Accuracy — Evaluation

- ▶ In practice, we do not know $\theta \longrightarrow$ we cannot calculate $\log p(y_i \mid \theta)$.
- ▶ Instead, we work with an averaged version w.r.t. $\theta \sim p(\theta \mid y)$ (the posterior).

Prediction Accuracy — Evaluation

- ▶ In practice, we do not know $\theta \longrightarrow$ we cannot calculate $\log p(y_i \mid \theta)$.
- ▶ Instead, we work with an averaged version w.r.t. $\theta \sim p(\theta \mid y)$ (the posterior).
- We summarize the predictive accuracy of the fitted model to data by the log pointwise predictive density:

lppd =
$$\log \prod_{i=1}^{n} p_{\mathsf{post}}(y_i) = \sum_{i=1}^{n} \log \int p(y_i \mid \theta) p_{\mathsf{post}}(\theta) d\mu(\theta)$$

▶ It is called "pointwise" because we ignore any dependence structure between the observations and only compute the marginal.

Prediction Accuracy — Evaluation

- ▶ In practice, we do not know $\theta \longrightarrow$ we cannot calculate $\log p(y_i \mid \theta)$.
- ▶ Instead, we work with an averaged version w.r.t. $\theta \sim p(\theta \mid y)$ (the posterior).
- ► We summarize the predictive accuracy of the fitted model to data by the **log pointwise predictive density**:

lppd =
$$\log \prod_{i=1}^{n} p_{\mathsf{post}}(y_i) = \sum_{i=1}^{n} \log \int p(y_i \mid \theta) p_{\mathsf{post}}(\theta) d\mu(\theta)$$

- ▶ It is called "pointwise" because we ignore any dependence structure between the observations and only compute the marginal.
- If we don't have a closed-form for the integral, we can draw $\theta^{(1)}, \dots, \theta^{(S)} \sim p_{\text{post}}(\theta)$ i.i.d., and

$$\widehat{\text{lppd}} = \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i \mid \theta^{(s)}) \right)$$

Prediction Accuracy — Estimation

▶ We want to estimat the expected predictive accuracy using **out-of-sample** data.

Prediction Accuracy — Estimation

- ▶ We want to estimat the expected predictive accuracy using **out-of-sample** data.
- ► Several methods can be used to estimate the out-of-sample predictive accuracy by the existing data.
 - Within-sample predictive accuracy: use the log predictive density on the training data.
 - Adjusted within-sample predictive accuracy: adjust the within-sample predictive accuracy by the expected overestimation. Also known as **information criterion**.
 - ► Cross-validation: split training and testing data and estimate the predictive accuracy on the testing data.

In classical inference (frequentist version), the goal is to estimate the expected out-of-sample predictive accuracy conditioned on $\hat{\theta}$:

$$epld = \mathbb{E}_F[\log p(\tilde{y} \mid \hat{\theta})]$$

In classical inference (frequentist version), the goal is to estimate the expected out-of-sample predictive accuracy conditioned on $\hat{\theta}$:

$$epld = \mathbb{E}_F[\log p(\tilde{y} \mid \hat{\theta})]$$

It is estimated by

$$\widehat{\text{epld}}_{\mathsf{AIC}} = \log p(y \mid \hat{\theta}_{\mathsf{mle}}) - k$$

where k is the number of parameters in the model.

In classical inference (frequentist version), the goal is to estimate the expected out-of-sample predictive accuracy conditioned on $\hat{\theta}$:

$$epld = \mathbb{E}_F[\log p(\tilde{y} \mid \hat{\theta})]$$

It is estimated by

$$\widehat{\text{epld}}_{\mathsf{AIC}} = \log p(y \mid \hat{\theta}_{\mathsf{mle}}) - k$$

where k is the number of parameters in the model. Or equivalently, we define

$$AIC = -2\log p(y \mid \hat{\theta}_{\mathsf{mle}}) + 2k$$

In classical inference (frequentist version), the goal is to estimate the expected out-of-sample predictive accuracy conditioned on $\hat{\theta}$:

$$epld = \mathbb{E}_F[\log p(\tilde{y} \mid \hat{\theta})]$$

It is estimated by

$$\widehat{\text{epld}}_{\mathsf{AIC}} = \log p(y \mid \hat{\theta}_{\mathsf{mle}}) - k$$

where k is the number of parameters in the model. Or equivalently, we define

$$AIC = -2\log p(y \mid \hat{\theta}_{\mathsf{mle}}) + 2k$$

Why -k in estimated epld (or 2k in AIC)?

Overestimation from using in-sample data

$$\log p(y \mid \hat{\theta}_{\mathsf{mle}}) - \frac{k}{2} \approx \mathbb{E}_F[\log p(\tilde{y} \mid \theta_0)] \approx \mathbb{E}_F[\log p(\tilde{y} \mid \hat{\theta}_{\mathsf{mle}})] + \frac{k}{2}$$

Deviance Information Criterion (DIC)

DIC is a Bayesian version of AIC:

$$\widehat{\mathsf{epld}}_{\mathsf{DIC}} = \log p(y \mid \hat{\theta}_{\mathsf{Bayes}}) - p_{\mathsf{DIC}}$$

where p_{DIC} is the effective number of parameters:

$$p_{\mathsf{DIC}} = 2 \left(\log p(y \mid \hat{\theta}_{\mathsf{Bayes}}) - \mathbb{E}_{\mathsf{post}}[\log p(y \mid \theta)] \right)$$

Deviance Information Criterion (DIC)

DIC is a Bayesian version of AIC:

$$\widehat{\mathsf{epld}}_\mathsf{DIC} = \log p(y \mid \hat{\theta}_\mathsf{Bayes}) - p_\mathsf{DIC}$$

where p_{DIC} is the effective number of parameters:

$$p_{\mathsf{DIC}} = 2 \left(\log p(y \mid \hat{\theta}_{\mathsf{Bayes}}) - \mathbb{E}_{\mathsf{post}}[\log p(y \mid \theta)] \right)$$

Equivlantly, DIC is defined as

$$\mathrm{DIC} = -2\log p(y\mid \hat{\theta}_{\mathsf{Bayes}}) + 2p_{\mathsf{DIC}}$$

WAIC revises DIC in two ways:

- \blacktriangleright replace $\hat{\theta}_{\mathsf{Bayes}}$ by an average over $p_{\mathsf{post}}(\theta).$
- replace the joint predictive density by the point-wise version.

WAIC revises DIC in two ways:

- \blacktriangleright replace $\hat{\theta}_{\mathsf{Bayes}}$ by an average over $p_{\mathsf{post}}(\theta).$
- replace the joint predictive density by the point-wise version.

The effective number of parameters in WAIC is

$$p_{\mathsf{WAIC}} = 2\sum_{i=1}^{n} (\log \mathbb{E}_{\mathsf{post}}[p(y_i \mid \theta)] - \mathbb{E}_{\mathsf{post}}[\log p(y_i \mid \theta)])$$

WAIC revises DIC in two ways:

- \blacktriangleright replace $\hat{\theta}_{\mathsf{Bayes}}$ by an average over $p_{\mathsf{post}}(\theta).$
- replace the joint predictive density by the point-wise version.

The effective number of parameters in WAIC is

$$p_{\mathsf{WAIC}} = 2\sum_{i=1}^{n} \left(\log \mathbb{E}_{\mathsf{post}}[p(y_i \mid \theta)] - \mathbb{E}_{\mathsf{post}}[\log p(y_i \mid \theta)] \right)$$

The estimated expected log pointwise predict density is

$$\widehat{\text{elppd}}_{\mathsf{WAIC}} = \operatorname{lppd} - p_{\mathsf{WAIC}} = \sum_{i=1}^n \log \mathbb{E}_{\mathsf{post}}[p(y_i \mid \theta)] - p_{\mathsf{WAIC}}$$

WAIC revises DIC in two ways:

- lacktriangle replace $\hat{\theta}_{\mathsf{Bayes}}$ by an average over $p_{\mathsf{post}}(\theta).$
- replace the joint predictive density by the point-wise version.

The effective number of parameters in WAIC is

$$p_{\mathsf{WAIC}} = 2\sum_{i=1}^{n} (\log \mathbb{E}_{\mathsf{post}}[p(y_i \mid \theta)] - \mathbb{E}_{\mathsf{post}}[\log p(y_i \mid \theta)])$$

The estimated expected log pointwise predict density is

$$\widehat{\text{elppd}}_{\mathsf{WAIC}} = \operatorname{lppd} - p_{\mathsf{WAIC}} = \sum_{i=1}^{n} \log \mathbb{E}_{\mathsf{post}}[p(y_i \mid \theta)] - p_{\mathsf{WAIC}}$$

Similarly, we define WAIC by

$$WAIC = -2lppd + 2p_{WAIC}$$

Comparison

- ► All estimators are equivelent asymptotically.
- ▶ AIC and DIC require a point estimator. WAIC does not.
- ▶ The integrals involved in DIC and WAIC need Monte Carlo simulation.

Comparison

- ► All estimators are equivelent asymptotically.
- ▶ AIC and DIC require a point estimator. WAIC does not.
- ▶ The integrals involved in DIC and WAIC need Monte Carlo simulation.
- ▶ WAIC requires a partition of the data.
- ▶ AIC and DIC requires independent errors in the observations.
- Only WAIC is fully Bayesian.

Comparison

- All estimators are equivelent asymptotically.
- ▶ AIC and DIC require a point estimator. WAIC does not.
- ▶ The integrals involved in DIC and WAIC need Monte Carlo simulation.
- ▶ WAIC requires a partition of the data.
- ▶ AIC and DIC requires independent errors in the observations.
- Only WAIC is fully Bayesian.

Bayesian information criterion (BIC) has a different goal and therefore is not discussed here.

The Bayesian LOO-CV estimate of out-of-sample predictive fit is

$$lppd_{loo-cv} = \sum_{i=1}^{n} log \, p_{post(-i)}(y_i) = \sum_{i=1}^{n} log \int p(y_i \mid \theta) \underbrace{p(\theta \mid y \setminus \{y_i\})}_{posterior \text{ with all obs. except } y_i} d\mu(\theta)$$

The Bayesian LOO-CV estimate of out-of-sample predictive fit is

$$\operatorname{lppd}_{\mathsf{loo-cv}} = \sum_{i=1}^{n} \log p_{\mathsf{post}(-i)}(y_i) = \sum_{i=1}^{n} \log \int p(y_i \mid \theta) \underbrace{p(\theta \mid y \setminus \{y_i\})}_{\mathsf{posterior \ with \ all \ obs. \ except \ y_i} d\mu(\theta)$$

- ▶ In practice, the above integral can be replaced by Monte Carlo sample mean.
- ▶ $lppd_{loo-cv}$ underestimates the predictive accuracy because it uses n-1 observations instead of n.

The Bayesian LOO-CV estimate of out-of-sample predictive fit is

$$\operatorname{lppd}_{\mathsf{loo-cv}} = \sum_{i=1}^{n} \log p_{\mathsf{post}(-i)}(y_i) = \sum_{i=1}^{n} \log \int p(y_i \mid \theta) \underbrace{p(\theta \mid y \setminus \{y_i\})}_{\mathsf{posterior \ with \ all \ obs. \ except \ y_i} d\mu(\theta)$$

- ▶ In practice, the above integral can be replaced by Monte Carlo sample mean.
- ▶ $lppd_{loo-cv}$ underestimates the predictive accuracy because it uses n-1 observations instead of n.
- ► The bias can be estimated by

$$b = \operatorname{lppd} - \overline{\operatorname{lppd}}_{-i}$$

where

$$\overline{\text{lppd}}_{-i} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \log p_{\mathsf{post}(-i)}(y_j)$$

The bias-corrected Bayesian LOO-CV is then

$$lppd_{cloo-cv} = lppd_{loo-cv} + b$$

The bias-corrected Bayesian LOO-CV is then

$$lppd_{cloo-cv} = lppd_{loo-cv} + b$$

If we compare the formula to other methods, we can the effective numbers of parameters are

$$p_{\mathsf{loo-cv}} = \operatorname{lppd} - \operatorname{lppd}_{\mathsf{loo-cv}}$$

 $p_{\mathsf{cloo-cv}} = \overline{\operatorname{lppd}}_{-i} - \operatorname{lppd}_{\mathsf{loo-cv}}$

Example: SAT-V Score

		No	Complete	Hierarchical
		pooling	pooling	model
		$(au=\infty)$	$(\tau = 0)$	$(\tau \text{ estimated})$
	$-2 \operatorname{lpd} = -2 \log p(y \hat{ heta}_{\mathrm{mle}})$	54.6	59.4	
AIC	k	8.0	1.0	
	$\mathrm{AIC} = -2\widehat{\mathrm{elpd}}_{\mathrm{AIC}}$	70.6	61.4	
	$-2\operatorname{lpd} = -2\log p(y \hat{ heta}_{\mathrm{Bayes}})$	54.6	59.4	57.4
DIC	$p_{ m DIC}$	8.0	1.0	2.8
	$\mathrm{DIC} = -2\widehat{\mathrm{elpd}}_{\mathrm{DIC}}$	70.6	61.4	63.0
WAIC	$-2 \operatorname{lppd} = -2 \sum_{i} \log p_{\operatorname{post}}(y_i)$	60.2	59.8	59.2
	p_{WAIC1}	2.5	0.6	1.0
	$p_{\mathrm{WAIC}2}$	4.0	0.7	1.3
	$\mathrm{WAIC} = -2\widehat{\mathrm{elppd}}_{\mathrm{WAIC}2}$	68.2	61.2	61.8
LOO-CV	$-2 \mathrm{lppd}$		59.8	59.2
	$p_{ m loo-cv}$		0.5	1.8
	$-2\mathrm{lppd}_{\mathrm{loo-cv}}$		60.8	62.8

Suppose we have two competing models H_1 and H_2 . We put the testing in a Bayesian framework:

Suppose we have two competing models H_1 and H_2 . We put the testing in a Bayesian framework:

- ▶ Prior $p(H_1)$ and $p(H_2)$ with $p(H_1) + p(H_2) = 1$
- ▶ Likelihood: $p(y \mid H_1)$ and $p(y \mid H_2)$
- Posterior:

$$p(H_i \mid y) = \frac{p(H_i)p(y \mid H_i)}{p(H_1)p(y \mid H_1) + p(H_2)p(y \mid H_2)}, \quad i = 1, 2$$

It is easy to verify $p(H_1 \mid y) + p(H_2 \mid y) = 1$.

Suppose we have two competing models H_1 and H_2 . We put the testing in a Bayesian framework:

- ▶ Prior $p(H_1)$ and $p(H_2)$ with $p(H_1) + p(H_2) = 1$
- ightharpoonup Likelihood: $p(y \mid H_1)$ and $p(y \mid H_2)$
- Posterior:

$$p(H_i \mid y) = \frac{p(H_i)p(y \mid H_i)}{p(H_1)p(y \mid H_1) + p(H_2)p(y \mid H_2)}, \quad i = 1, 2$$

It is easy to verify $p(H_1 \mid y) + p(H_2 \mid y) = 1$.

To decide, we look at the posterior ratio:

$$\frac{p(H_2 \mid y)}{p(H_1 \mid y)} = \frac{p(H_2)}{p(H_1)} \times \underbrace{\frac{p(y \mid H_2)}{p(y \mid H_1)}}_{\text{Bayes Factor}(H_2; H_1)}$$

The decision depends on the magnitude of the Bayes Factor of the two models.

Bayes factor	1 to 3.2	3.2 to 10	10 to 100	> 100
Decision	a bare mention	substantial	strong	decisive

Bayes factor	1 to 3.2	3.2 to 10	10 to 100	> 100
Decision	a bare mention	substantial	strong	decisive

- $ightharpoonup H_1$ and H_2 are symmetric.
- ▶ When H_i is a composite assumption on θ , we have

$$p(y \mid H_i) = \int p(y \mid \theta) p(\theta \mid H_i) d\mu(\theta)$$

Bayes factor	1 to 3.2	3.2 to 10	10 to 100	> 100
Decision	a bare mention	substantial	strong	decisive

- $ightharpoonup H_1$ and H_2 are symmetric.
- ▶ When H_i is a composite assumption on θ , we have

$$p(y \mid H_i) = \int p(y \mid \theta) p(\theta \mid H_i) d\mu(\theta)$$

- ▶ There is no Type I error to control.
- ▶ The posterior directly gives the probability of hypotheses after observing the data.

Bayes factor	1 to 3.2	3.2 to 10	10 to 100	> 100
Decision	a bare mention	substantial	strong	decisive

- $ightharpoonup H_1$ and H_2 are symmetric.
- ▶ When H_i is a composite assumption on θ , we have

$$p(y \mid H_i) = \int p(y \mid \theta) p(\theta \mid H_i) d\mu(\theta)$$

- There is no Type I error to control.
- ▶ The posterior directly gives the probability of hypotheses after observing the data.
- Bayes factor works better for discrete models than continuous models.

