Screening in Semiconductor

Udayan Ganguly Feb 1, 2024

Taur and Ning 2.1.4 Basic Equation for Device Operation

Topics

- Origin of Semiconductors vs. Metals (Informal Discussion)
- Bandgap, Fermi level & Equilibrium
- Screening :
 - Depletion
 - Free Carrier
- Depletion Approximation and its validity

Transport topics

Band-gap, Fermi Level, Equilibrium

- In metals (conductivity $G=\infty$) and insulators (G=0); no bandgap idea is needed
- For semiconductor, we need to acknowledge the existence of bandgap
 - Free carriers (majority, minority and dopants)
 - Fermi level
- Bandgap and Conduction vs Valence bands are described during the informal discussion

Equilibrium

- n*p=n_i²
 - No excess carriers
- Conduction and Valence bands are at equilibrium
 - Fermi level is common for n and p
- Conduction and Valence bands are shorted
 - Possibly by
 - fast recombination/generation
 - Metal semiconductor junction
- Question 1: If a band diagram below is given as such; how do we estimate n and p concentrations
- Question 2: If n & p concentration is given, how do we estimate band diagram
- Knowing n and assuming equilibrium (or Fermi level); we can get Ec and vice versa
- Which one is in equilibrium (case A or case B)
- If not in equilibrium, can we compute its evolution in time to equilibrium?
- We will see this next...

$$n(x) = N_C \exp \frac{E_F - E_C(x)}{kT}$$

$$E_F \text{ is constant } \Rightarrow \text{ equilibrium}$$

Screening by depletion vs. free carriers

- Background: We can solve dielectric with charge..
- Next step: Can we estimate for n-type semiconductor with $-\sigma(x=0)$ sheet charge?
- Poisson Equation

Draw the charge, E, V, and Band Diagram

Case 1: $\rho = \sigma(x = 0)$ =0 i.e. Dielectric capacitor w/ no charge

Case 2: $\rho = \sigma(x = 0) > 0$ i.e. Dielectric capacitor w/ no charge

If dielectric was a semiconductor, make a band diagram to 'guess' the type of charges that will develop as a response from the semiconductor

Screening by depletion

Draw the charge, E, V, and Band Diagram

Case 3: Place a charge $\sigma(x=0)<0$ in an n-type semiconductor

$$\rho = N_D + p(x) - n(x) + \sigma(x = 0)$$
 Steps:

- 0. Draw potential for dielectric case as initial guess. We now know E_F and E_C to guess charge response
- 1. near x=0 $\rho \approx N_D$; \rightarrow depletion
- 2. far from x=0; $\rho = 0$; $\rightarrow \sigma$ screened out
- 3. Use depletion approximation to find charge,
- 4. Depletion length comes from charge neutrality i.e. $\sigma = N_D^* L_{Depletion} \longrightarrow$ then find E, V and band diagram

If L_{Depletion}<<D, does the electrode participate in screening i.e. does electrode feel the presence of the charge?

Under what condition will electrode participate in screening?

L_{Depletion}>>D

Screening by Free Carriers

Draw the charge, E, V, and Band Diagram

Case 3: Place a charge $\sigma(x=0)>0$ in an n- ρ type semiconductor

$$\rho = N_D + p(x) - n(x) + \sigma(x = 0)$$

near x=0 $\rho \approx n(x)$; \rightarrow accumulated far from x=0; $\rho = 0$; \rightarrow σ screened out

To find accumulated charge, from charge neutrality i.e. $\sigma = 2 \int n(x) dx$ n(x) must be known \rightarrow then find E, V and band diagram can be drawn

Guess/Approximate crudely the shape of n(x) and predict the approx. E V profiles and band diagrams.

 \rightarrow The basic form of n(x) and V(x) is not known; can we calculate?

Derivation of Debye Length

•
$$\frac{d^2V}{dx^2} = -\frac{q\rho}{\varepsilon}$$
 where $\rho = N_D + p(x) - n(x) + \sigma(x = 0)$

- To get the general solution we solve for the case when $\sigma=0$ i.e. at $x\neq 0$; then we can find particular solution
- Guess that at most places V=0 \rightarrow ρ =0; so lets calculate Δ V instead which comes from the excess charge compared to net ρ =0

•
$$\rho = N_D + \frac{n_i^2}{n(x)} - n(x) = N_D (1 - \exp\left(\frac{qV}{kT}\right))$$

• where $qV = E_C - E_{CO}$ (i.e. the E_C bending)

- If $V(x) \to 0$ (small bending), we can do Taylor series expansion of the exponent
- $\rho = N_D + \frac{{n_i}^2}{n(x)} n(x) = -N_D(\frac{qV}{kT})$ What is the screening length?
 $\frac{d^2V}{dx^2} = -\frac{q\rho}{\varepsilon} = \frac{q^2N_DV}{\varepsilon kT} = \frac{V}{L_D^2}$
- Where the solution is of the nature $V(x)^{\sim} \exp(x/L_D)$ for small charge perturbation

Free carrier screening or Debye Length screening is exponential with screening length. This is very effective screening cf. depletions;

Exact solution is not easy. Numerical solution OK.

Difference between Debye and Depletion Length

- Debye Length is $L_D^2 = \frac{\varepsilon}{qN_D} \frac{kT}{q} = \frac{\varepsilon}{qN_D} V_T$
- Depletion Length is $L_{Dep}^{\ 2} = \frac{2\varepsilon}{qN_D} V_{bending}$
- $\frac{L_{Dep}}{L_D} = (2\frac{V_{bend}}{V_T})^{1/2}$ at the same doping
- Hence Debye length is smaller
- Its dependence is exponential
- Note the temperature dependence...
- At T=0 $L_D \rightarrow 0$; but L_{dep} remains finite; physically why?
- Electrons are confined by well easily at T=0; No spread (diffusion) is needed.

Example

p: doping in 10^{17} /cm³ n+ doping is 10^{20} /cm³

Given a n+/p device, what is the depletion length?

Write down the steps including assumptions to draw the band diagram. Explicitly draw all charge profiles – free and bound.

Given a n+/p/n+ device (consider it a planar MOSFET without a gate

electrode), there should be an barrier between S/D;

q	1.60E-19	С
eo	8.84E-14	F/cm
Nd	1.00E+17	per cc
V	1.00E+00	V
epsilon_S	1.19E+01	
L	1.15E-05	cm
	115	nm

Write down the steps including assumptions to draw the band diagram. Explicitly draw all charge profiles – free and bound.

what should be the doping for a 0.6V barrier

Steps

1. Assume depletion approx. to create $\rho_{assume}(x)$

- 2. Show that V(x) is a parabola (calc E(x))
- 3. Band diagram is obtained

- 4. Charge profile is obtained log $(\rho_{calc}(x))$ write down y-axis values
- 5. Compare: $\rho_{calc}(x) = \rho_{assume}(x)$
- → Solution is self-consistent

Essentially, free carrier does not disturb the $ho_{assume}(x)$

Example

Given a n+/p/n+ device (consider it a FinFET without a gate electrode), how much is the barrier between S/D;

n+ doping is $10^{20}/cm^3$

Write down the steps including assumptions to draw the band diagram.

Steps

1. Assume depletion approx. to create $\rho_{assume}(x)$

- 2. Show that V(x) is a parabola (calc E(x))
- 3. Band diagram is obtained

- 4. Charge profile is obtained log $(\rho_{calc}(x))$ write down y-axis values
- 5. Compare: $\rho_{calc}(x) = \rho_{assume}(x)$
- → Solution is self-consistent

Essentially, free carrier does not disturb the $ho_{assume}(x)$

Steps

- 1. Assume depletion approx. to create $\rho_{assume}(x)$
- 2. Show that V(x) is a parabola (calc E(x))
- 3. Band diagram is obtained

- 4. Charge profile is obtained log $(\rho_{calc}(x))$ write down y-axis values
- 5. Compare: $\rho_{calc}(x) = \rho_{assume}(x)$
- → Solution is NOT self-consistent

No doping → no depletion

$$\xrightarrow{\rho}$$
 x

Changing Lp in npn structure

Q: Plot V_{bi} vs. L_p

Only doping dependent built-in barrier or potential is the max potential possible. Here V_{bi} is Lp independent when $Lp \gg L_{dep}$...

$$V_{bio} = V_T \ln N_D / N_A$$

When $Lp \leq L_{dep}$, then V_{bi} reduces with Lp i. e. Lp dependent

Yes. By increasing L_{dep} which depends upon doping.

Q: Verify this with FEM simulation

Lp>>Ldep
$$V_{bi} = V_{bio}$$

Lp
$$\approx$$
Ldep $V_{bi} = V_{bio}$

$$Lp < Ldep V_{bi} = f(L_p) < V_{bio}$$

$$Lp \ll Ldep \qquad V_{bi} = f(L_p) << V_{bio}$$

Case 3: $\sigma=\sigma'$; V=0

3 Types of screening

Compare length-scales of screening

Metal WF

Case 1: assume that a dielectric is between metals and σ is sheet charge at L/2. The field lines will go all the way to the electrode i.e. L/2 (device geometry); Screening by dipoles will only reduce the electric field. This screening is by dielectric polarization.

Case 2: Assume that the dielectric is n-type semiconductor; In addition to dielectric polarization, free carrier (electrons) will be repelled to cause local depletion; ionic cores will screen out potential in depletion length, L_{depletion} (materials lengthscale). V(x) is quadratic;

• Case 3. Assume the σ is positive; then electrons are attracted causing accumulation. Free carrier screening will screen out electric field by debye length L_{Debye} (materials/local free carrier based length-scale). V(x) is approx. exponential decay.

 In case of all phenomenon acting together, the effective screening is by the shortest length scale.

Question 1: In quiz question, we assumed that a 20 nm gate length FinFET is practically undoped. Think about at what doping value, this assumption is violated in off-state qualitatively and if possibly a method to quantitatively estimate this doping.

In inversion, the free carrier concentration rises, at what gate voltage (assume $V_{SD} = 0$; and undoped channel) will debye length modify the electrostatics estimated by Laplace Equation;

3 Lessons

- $n(x) = Nc * \exp \frac{-(Ec Ef)}{kT}$; Under Boltzmann Distribution and Equilibrium (E_F is flat) $\log (n(x))$ has the same shape as E_c
- There are two kinds of screening
 - Bound Charges i.e. ionized Dopants
 - Characterized by Depletion Length)
 - Can be solved more easily
 - Free Carrier
 - Characterized by Debye Length)
 - needs numerical solution mostly for self consistency of potential and charge density.