Package 'vectormetrics'

April 24, 2023

Title Landscape Metrics for Categorical Map Patterns in Vector Data

Version 0.1
Description What the package does (one paragraph).
License GPL-3
Depends R (>= 3.1)
Encoding UTF-8
LazyData true
Imports dplyr, purrr, rlang, sf, tibble
Suggests sp
RoxygenNote 6.1.1
Tronge in total Citiz
R topics documented:
vector_landscape vm_c_area_cv vm_c_area_mn vm_c_area_sd vm_c_ca vm_c_cai_cv vm_c_cai_mn vm_c_cai_sd vm_c_circle_cv vm_c_circle_sd vm_c_core_cv 10 vm_c_core_sd 1 vm_c_core_sd 1 vm_c_cdad 1 vm_c_dcore_cv 1 vm_c_dcore_sd 1 vm_c_dcore_sd 1 vm_c_dcore_sd 1 vm_c_division 1

2

vm_c_ed	16
vm_c_enn_cv	17
vm_c_enn_mn	17
vm_c_enn_sd	18
vm_c_frac_cv	19
vm_c_frac_mn	19
	20
	21
-	21
	22
	23
	23
1	24
- -	25
1	25
_ <u></u> _	25 26
- -1 -	20 27
 1	
 1	27
	28
	29
1 _	29
— — <u>t</u>	30
	31
	31
	32
vm_l_cai_mn	33
vm_l_core_mn	33
vm_l_dcad	34
vm_l_dcore_mn	35
vm_l_division	35
vm_l_ed	36
vm_l_frac_mn	37
	37
	38
	38
	39
	10
	10
	11
1	12
	12
<u>_</u> _	†2 13
— — <u>,</u>	+3 14
	14 14
I	15
	15
	16
	17
	17
	18
	19
vm_l_ta	19

vector_landscape 3

vecto	or_landscape	Ех	can	ıpı	le i	mc	ıр	(r	an	do	m	ci	lus	ste	rı	nei	ıtr	al	le	ın	ds	ca	pe	2 1	nc	od	el).							
Index																																			58
	vm_p_shape	 	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
	vm_p_perim																																		
	vm_p_para																																		
	vm_p_ncore																																		
	vm_p_frac																																		
	vm_p_enn																																		
	vm_p_core	 																																	53
	vm_p_circle	 																																	53
	vm_p_cai	 																																	52
	vm_p_area	 																																	51
	vm_l_te																																		
	vm_l_tca	 																																	50

Description

An example map to show landscapetools functionality generated with the 'nlm_randomcluster()' algorithm and coerced to vector data (multipolygon).

Usage

vector_landscape

Format

A sf object.

Source

Simulated neutral landscape model with R. https://github.com/ropensci/NLMR/

vm_c_area_cv	The coefficient of variation of all patch areas at class level (vector
	data)

Description

This function allows you to calculate the coefficient of variation of all patch areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_area_cv(landscape, class)
```

Arguments

landscape the input landscape image,

vm_c_area_mn

Value

the returned calculated coefficient of variation of areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level, we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_area_cv(vector_landscape, "class")
```

vm_c_area_mn

The mean value of all patch areas at class level(vector data)

Description

This function allows you to calculate the mean value of all patch areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_area_mn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_area_mn(vector_landscape, "class")
```

vm_c_area_sd 5

vm_c_area_sd

The standard deviation of all patch areas at class level(vector data)

Description

This function allows you to calculate the standard deviation of all patch areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_area_sd(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated standard deviation of areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_area_sd(vector_landscape, "class")
```

vm_c_ca

The total area of each class(vector data)

Description

This function allows you to calculate the total area of each class in a categorical landscape in vector data format

Usage

```
vm_c_ca(landscape, class)
```

Arguments

landscape the input landscape image,

6 vm_c_cai_cv

Value

the returned calculated total class areas are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_ca(vector_landscape, "class")
```

vm_c_cai_cv

The coefficient of variation of ratio of the core area and the area at class level(vector data)

Description

This function allows you to calculate the coefficient of variation of the ratio of the core area and the area belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_cai_cv(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated coefficient of variation of ratio of the core area and the area of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_cai_cv(vector_landscape, "class", edge_depth = 1)
```

vm_c_cai_mn 7

vm_c_cai_mn	
-------------	--

Description

This function allows you to calculate the mean value of ratio of the core area and the area belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_cai_mn(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated mean value of core area index of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_cai_mn(vector_landscape, "class", edge_depth = 1)
```

vm_c_cai_sd	The standard deviation of core area index of all patches at class
	level(vector data)

Description

This function allows you to calculate the standard deviation of all the ratio of the core area and the area belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_cai_sd(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

8 vm_c_circle_cv

Value

the returned calculated standard deviation of ratio of the core area and the area of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_cai_sd(vector_landscape, "class", edge_depth = 1)
```

vm_c_circle_cv

The coefficient of variation of Ratios between the patch area and the smallest circumscribing circle of all patches at class level(vector data)

Description

This function allows you to calculate the coefficient of variation of ratios of each class in a categorical landscape in vector data format the ratio is the patch area relative to area of the smallest circumscribing circle of the patch

Usage

```
vm_c_circle_cv(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated coefficient of variation in each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_circle_cv(vector_landscape, "class")
```

vm_c_circle_mn 9

vm_c_circle_mn	The mean value of Ratios between the patch area and the smallest
	circumscribing circle of patches at class level(vector data)

Description

This function allows you to calculate the mean value of ratios of each class in a categorical landscape in vector data format the ratio is the patch area relative to area of the smallest circumscribing circle of the patch

Usage

```
vm_c_circle_mn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of ratios of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_circle_mn(vector_landscape, "class")
```

vm_c_circle_sd

The standard deviation of Ratios between the patch area and the smallest circumscribing circle of patches at class level(vector data)

Description

This function allows you to calculate the standard deviation of ratios of each class in a categorical landscape in vector data format the ratio is the patch area relative to area of the smallest circumscribing circle of the patch

Usage

```
vm_c_circle_sd(landscape, class)
```

Arguments

landscape the input landscape image,

10 vm_c_core_cv

Value

the returned calculated standard deviation of ratios of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level, we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_circle_sd(vector_landscape, "class")
```

vm_c_core_cv

The coefficient of variation of each class core areas(vector data)

Description

This function allows you to calculate the coefficient of variation of all patch core areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_core_cv(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated coefficient of variation of core areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_core_cv(vector_landscape, "class", edge_depth= 1)
```

vm_c_core_mn 11

vm_c_core_mn	
--------------	--

Description

This function allows you to calculate the mean value of all core patch areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_core_mn(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated mean value of core areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_core_mn(vector_landscape, "class", edge_depth= 1)
```

vm_c_core_sd

The standard deviation of all core areas of each class(vector data)

Description

This function allows you to calculate the standard deviation of all patch core areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_core_sd(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

12 vm_c_cpland

Value

the returned calculated standard deviation of core areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level, we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_core_sd(vector_landscape, "class", edge_depth= 1)
```

vm_c_cpland

Core area percentage of landscape in each class(vector data)

Description

This function allows you to calculate the total core area of each class in relation to the landscape area in a categorical landscape in vector data format

Usage

```
vm_c_cpland(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated ratios are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_cpland(vector_landscape, "class", edge_depth = 1)
```

vm_c_dcad 13

vm_c_dcad	Disjunct core area density of each class(vector data)	

Description

This function allows you to calculate the number of disjunct core areas of each class in relation to the landscape area in a categorical landscape in vector data format

Usage

```
vm_c_dcad(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated ratios are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_dcad(vector_landscape, "class", edge_depth = 1)
```

Description

This function allows you to calculate the coefficient of variation of each class belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_dcore_cv(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

14 vm_c_dcore_mn

Value

the returned calculated coefficient of variation in each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_dcore_cv(vector_landscape, "class", edge_depth= 1)
```

vm_c_dcore_mn

The mean value of number of core areas in each class(vector data)

Description

This function allows you to calculate the mean value of the total number of disjunct core areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_dcore_mn(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated mean value of number of core areas of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_dcore_mn(vector_landscape, "class", edge_depth= 1)
```

vm_c_dcore_sd

vm_c_dcore_sd	The standard deviation of the number of disjunct core areas of each class(vector data)
---------------	--

Description

This function allows you to calculate the standard deviation of all number of disjunct core areas belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_dcore_sd(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated standard deviation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_dcore_sd(vector_landscape, "class", edge_depth= 1)
```

 $vm_c_division$

Landscape division index of each class(vector data)

Description

This function allows you to calculate the Landscape division index of each class in a categorical landscape in vector data format, Landscape division index can somehow reflect the probability that two randomly selected points are not located in the same patch of class i

Usage

```
vm_c_division(landscape, class)
```

Arguments

landscape the input landscape image,

16 vm_c_ed

Value

the returned calculated index is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level, we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_division(vector_landscape, "class")
```

vm_c_ed

The Edge density of each class(vector data)

Description

This function allows you to calculate the total length of all patches in class i in a categorical landscape in vector data format

Usage

```
vm_c_ed(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated total length of perimeter is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_ed(vector_landscape, "class")
```

vm_c_enn_cv 17

vm_c_enn_cv	The coefficient of variation of Euclidean Nearest-Neighbor Distance of all patches at class level(vector data)

Description

This function allows you to calculate the coefficient of variation of the Euclidean Nearest-Neighbor Distance among patches of one class in a categorical landscape in vector data format Euclidean Nearest-Neighbor Distance means the distance from a patch edge to the nearest neighbouring patch belonging to the same class.

Usage

```
vm_c_enn_cv(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated coefficient of variation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_enn_cv(vector_landscape, "class")
```

vm_c_enn_mn

The mean value of the Euclidean Nearest-Neighbor Distance of patches in each class(vector data)

Description

This function allows you to calculate the mean value of Euclidean Nearest-Neighbor Distance among patches of one class in a categorical landscape in vector data format Euclidean Nearest-Neighbor Distance means the distance from a patch edge to the nearest neighbouring patch belonging to the same class.

Usage

```
vm_c_enn_mn(landscape, class)
```

18 vm_c_enn_sd

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_enn_mn(vector_landscape, "class")
```

vm_c_enn_sd

The standard deviation of Euclidean Nearest-Neighbor Distance of

patches in each class(vector data)

Description

This function allows you to calculate the standard deviation of Euclidean Nearest-Neighbor Distance among patches of one class in a categorical landscape in vector data format

Usage

```
vm_c_enn_sd(landscape, class)
```

Arguments

landscape the input landscape image, should in "POLYGON" or "MULTIPOLYGON"

form.

class the name of the class column of the input landscape

Value

the returned calculated standard deviation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_enn_sd(vector_landscape, "class")
```

vm_c_frac_cv

vm_c_frac_cv	The coefficient of variation of fractal dimension index of all patches in each class(vector data)

Description

This function allows you to calculate the coefficient of variation of fractal dimension index of all patches belonging to class i in a categorical landscape in vector data format The index is based on the patch perimeter and the patch area and describes the patch complexity

Usage

```
vm_c_frac_cv(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated coefficient of variation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_frac_cv(vector_landscape, "class")
```

vm_c_frac_mn

The mean value of the fractal dimension index of all patches in each class(vector data)

Description

This function allows you to calculate the mean value of fractal dimension index of all patches belonging to class i in a categorical landscape in vector data format The index is based on the patch perimeter and the patch area and describes the patch complexity

Usage

```
vm_c_frac_mn(landscape, class)
```

Arguments

landscape the input landscape image,

Value

the returned calculated mean value of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_frac_mn(vector_landscape, "class")
```

vm_c_frac_sd

The standard deviation of the fractal dimension index of all patches in each class(vector data)

Description

This function allows you to calculate the standard deviation of fractal dimension index of all patches belonging to class i in a categorical landscape in vector data format The index is based on the patch perimeter and the patch area and describes the patch complexity

Usage

```
vm_c_frac_sd(landscape, class)
```

Arguments

landscape the input landscape image, should in "POLYGON" or "MULTIPOLYGON"

form.

class the name of the class column of the input landscape

Value

the returned calculated standard deviation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_frac_sd(vector_landscape, "class")
```

vm_c_lpi 21

vm_c_lpi

Largest patch index(vector data)

Description

This function allows you to calculate the maximal patch area of each class in relative to total landscape area in a categorical landscape in vector data format

Usage

```
vm_c_lpi(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_lpi(vector_landscape, "class")
```

 vm_c_lsi

Landscape shape index (vector data)

Description

This function allows you to calculate the ratio between the actual edge length of class i and the hypothetical minimum edge length of class i in a categorical landscape in vector data format. The minimum edge length equals the edge length if class i would be maximally aggregated

Usage

```
vm_c_lsi(landscape, class)
```

Arguments

landscape the input landscape image,

vm_c_mesh

Value

the returned calculated index are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level, we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_lsi(vector_landscape, "class")
```

vm_c_mesh

Effective Mesh Size (vector data)

Description

This function helps to analyse the patch structure the calculate process is, each patch is squared before the sums for each class i are calculated and the sum is standardized by the total landscape area. it is a aggregation metric.

Usage

```
vm_c_mesh(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated values are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_mesh(vector_landscape, "class")
```

vm_c_ndca 23

vm_c_ndca	the number of disjunct core area in each class(vector data)

Description

This function allows you to calculate the number of disjunct core areas of each class in a categorical landscape in vector data format

Usage

```
vm_c_ndca(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated number of core area of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_ndca(vector_landscape, "class", edge_depth = 1)
```

vm_c_np

the number of patches in each class(vector data)

Description

This function allows you to calculate the number of patches of each class in a categorical landscape in vector data format

Usage

```
vm_c_np(landscape, class)
```

Arguments

landscape the input landscape image,

vm_c_pafrac

Value

the returned calculated number of patches of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_np(vector_landscape, "class")
```

vm_c_pafrac

Perimeter-Area Fractal Dimension(vector data)

Description

This function allows you to get the result of 2 divided by β , β is the slope of the regression of the area against the perimeter in logarithm of each class in a categorical landscape in vector data format

Usage

```
vm_c_pafrac(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated slope is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_pafrac(vector_landscape, "class")
```

vm_c_para_cv 25

vm_c_para_cv The coefficient of variation of Perimeter-Area ratio index of each class (vector data)	vm_c_para_cv	The coefficient of variation of Perimeter-Area ratio index of each class (vector data)
---	--------------	--

Description

This function allows you to calculate the coefficient of variation of the ratios of all patches belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_para_cv(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated coefficient of variation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_para_cv(vector_landscape, "class")
```

vm_c_para_mn

The mean value of all patches Perimeter-Area ratio index at class level(vector data)

Description

This function allows you to calculate the mean value of all patch ratios belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_para_mn(landscape, class)
```

Arguments

landscape the input landscape image,

26 vm_c_para_sd

Value

the returned calculated mean value of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_para_mn(vector_landscape, "class")
```

vm_c_para_sd

The standard deviation of Perimeter-Area ratio index of all patches at class level(vector data)

Description

This function allows you to calculate the standard deviation of the ratios of all patches belonging to one class in a categorical landscape in vector data format

Usage

```
vm_c_para_sd(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated standard deviation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_area_sd(vector_landscape, "class")
```

vm_c_pd 27

vm_c_pd

the patch density in each class(vector data)

Description

This metric is based on categorical landscape in vector data format. The density is the number of patches of each class relative to the total landscape area. Then the number is standardised, so that the comparison among different landscape is possible.

Usage

```
vm_c_pd(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated density of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_pd(vector_landscape, "class")
```

vm_c_pland

Percentage of landscape of class(vector data)

Description

This function allows you to calculate the percentage of each class in a categorical landscape in vector data format That means each class area is standardised by the total landscape area, so the comparision among different landscape is possible.

Usage

```
vm_c_pland(landscape, class)
```

Arguments

landscape the input landscape image,

28 vm_c_shape_cv

Value

the returned calculated percentage of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_pland(vector_landscape, "class")
```

vm_c_shape_cv

The coefficient of variation of Shape index of each class (vector data)

Description

This function allows you to calculate the coefficient of variation of shape index of all patches belonging to one class in a categorical landscape in vector data format shape index is the ratio between the actual perimeter of the patch and the hypothetical minimum perimeter of the patch. The minimum perimeter equals the perimeter if the patch would be maximally compact. That means, the perimeter of a circle with the same area of the patch.

Usage

```
vm_c_shape_cv(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated coefficient of variation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_shape_cv(vector_landscape, "class")
```

vm_c_shape_mn 29

vm_c_shape_mn The mean value of Shape index of each class (vector data)

Description

This function allows you to calculate the mean value of shape index of all patches belonging to one class in a categorical landscape in vector data format shape index is the ratio between the actual perimeter of the patch and the hypothetical minimum perimeter of the patch. The minimum perimeter equals the perimeter if the patch would be maximally compact. That means, the perimeter of a circle with the same area of the patch.

Usage

```
vm_c_shape_mn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_shape_mn(vector_landscape, "class")
```

vm_c_shape_sd

The standard deviation of Shape index of each class (vector data)

Description

This function allows you to calculate the standard deviation of shape index of all patches belonging to one class in a categorical landscape in vector data format shape index is the ratio between the actual perimeter of the patch and the hypothetical minimum perimeter of the patch. The minimum perimeter equals the perimeter if the patch would be maximally compact. That means, the perimeter of a circle with the same area of the patch.

Usage

```
vm_c_shape_sd(landscape, class)
```

30 vm_c_split

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated standard deviation of each class is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_shape_sd(vector_landscape, "class")
```

vm_c_split

Splitting index (vector data)

Description

This function allows you to calculate the relation between square of landscape area and sum of square of all patch area of class i in a categorical landscape in vector data format it is a aggregation metric.

Usage

```
vm_c_split(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated indices are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_split(vector_landscape, "class")
```

vm_c_tca 31

vm_c_tca	
----------	--

Description

This function allows you to calculate the total core area of each class in a categorical landscape in vector data format

Usage

```
vm_c_tca(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated total class core areas are in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level. we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_tca(vector_landscape, "class", edge_depth= 1)
```

vm_c_te

Total (class) edge (vector data)

Description

This function allows you to calculate the total length of edge of class i in a categorical landscape in vector data format

Usage

```
vm_c_te(landscape, class)
```

Arguments

landscape the input landscape image,

32 vm_l_area_mn

Value

the returned calculated length is in column "value", and this function returns also some important information such as level, class number and metric name. Moreover, the "id" column, although it is just NA here at class level, we need it because the output struture of metrics at class level should correspond to patch level one by one, and then it is more convinient to combine metric values at different levels and compare them.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_c_te(vector_landscape, "class")
```

vm_l_area_mn

The mean value of all patch areas at landscape level(vector data)

Description

This function allows you to calculate the mean value of all patch areas in a categorical landscape in vector data format

Usage

```
vm_l_area_mn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of areas is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_area_mn(vector_landscape, "class")
```

vm_1_cai_mn 33

vm_l_cai_mn	
-------------	--

Description

This function allows you to calculate the mean value of ratio of the core area and the area in a categorical landscape in vector data format

Usage

```
vm_l_cai_mn(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated mean value of core area index of the whole landscape is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_cai_mn(vector_landscape, "class", edge_depth = 1)
```

Description

This function allows you to calculate the mean value of all core patch areas in a categorical landscape in vector data format

Usage

```
vm_l_core_mn(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

34 vm_1_dcad

Value

the returned calculated mean value of core area of the whole landscape is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_core_mn(vector_landscape, "class", edge_depth= 1)
```

 vm_1_dcad

Disjunct core area density of the whole landscape(vector data)

Description

This function allows you to calculate the number of disjunct core areas in relation to the landscape area in a categorical landscape in vector data format

Usage

```
vm_l_dcad(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated ratios are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_dcad(vector_landscape, "class", edge_depth = 1)
```

vm_1_dcore_mn 35

vm_l_dcore_mn	The mean value of number of core areas in landscape(vector data)
vm_1_acore_mn	The mean value of number of core areas in lanascape(vector data)

Description

This function allows you to calculate the mean value of the total number of disjunct core areas in a categorical landscape in vector data format

Usage

```
vm_l_dcore_mn(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated mean value of number of the whole landscape is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_dcore_mn(vector_landscape, "class", edge_depth= 1)
```

 $vm_l_division$

Landscape division index of the whole landscape(vector data)

Description

This function allows you to calculate the Landscape division index in a categorical landscape in vector data format, Landscape division index can somehow reflect the probability that two randomly selected points are not located in the same patch

Usage

```
vm_l_division(landscape, class)
```

Arguments

landscape the input landscape image,

36 vm_l_ed

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_division(vector_landscape, "class")
```

 vm_1_ed

The Edge density of the whole landscape(vector data)

Description

This function allows you to calculate the total length of all patches in a categorical landscape in vector data format

Usage

```
vm_l_ed(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated total length of perimeter is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_ed(vector_landscape, "class")
```

vm_1_frac_mn 37

vm_l_frac_mn	The mean value of the fractal dimension index of landscape(vector
	data)

Description

This function allows you to calculate the mean value of fractal dimension index in a categorical landscape in vector data format The index is based on the patch perimeter and the patch area and describes the patch complexity

Usage

```
vm_l_frac_mn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of the whole landscape is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_frac_mn(vector_landscape, "class")
```

vm_l_lpi

Largest patch index(vector data)

Description

This function allows you to calculate the maximal patch area in relative to total landscape area in a categorical landscape in vector data format

Usage

```
vm_l_lpi(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

38 vm_1_mesh

Value

the returned calculated index are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_lpi(vector_landscape, "class")
```

 vm_llsi

Landscape shape index (vector data)

Description

This function allows you to calculate the ratio between the actual edge length of class i and the hypothetical minimum edge length in a categorical landscape in vector data format. The minimum edge length equals the edge length if class i would be maximally aggregated

Usage

```
vm_l_lsi(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level ## if the class name of input landscape is landcover, ## then write landcover in a double quotation marks as the second parameter. vm_l_lsi(vector_landscape, "class")

 vm_1_mesh

Effective Mesh Size (vector data)

Description

This function helps to analyse the patch structure the calculate process is, each patch is squared before the sums of them are calculated and the sum is standardized by the total landscape area. it is a aggregation metric.

Usage

```
vm_l_mesh(landscape, class)
```

vm_1_msidi 39

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated values are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_mesh(vector_landscape, "class")
```

vm_l_msidi

Modified Simpson's diversity index (vector data)

Description

This function allows you to calculate the Modified Simpson's diversity index in a categorical landscape in vector data format, Modified Simpson's diversity index is diversity index

Usage

```
vm_l_msidi(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_msidi(vector_landscape, "class")
```

40 vm_l_ndca

 vm_l_msiei

Modified Simpson's evenness index (vector data)

Description

This function allows you to calculate the Modified Simpson's evenness index in a categorical landscape in vector data format, Modified Simpson's evenness index is diversity index

Usage

```
vm_l_msiei(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_msiei(vector_landscape, "class")
```

vm_l_ndca

the number of disjunct core area in the whole landscape(vector data)

Description

This function allows you to calculate the number of disjunct core areas in a categorical landscape in vector data format

Usage

```
vm_l_ndca(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

vm_l_np 41

Value

the returned calculated number of core area is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_ndca(vector_landscape, "class", edge_depth = 1)
```

 vm_1_np

the number of patches in each class(vector data)

Description

This function allows you to calculate the number of patches of each class in a categorical landscape in vector data format

Usage

```
vm_l_np(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated number of patches of each class is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_np(vector_landscape, "class")
```

42 vm_l_para_mn

vm_l_pafrac

Perimeter-Area Fractal Dimension(vector data)

Description

This function allows you to get the result of 2 divided by β , β is the slope of the regression of the area against the perimeter in logarithm of all patches in a categorical landscape in vector data format

Usage

```
vm_l_pafrac(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated slope is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_pafrac(vector_landscape, "class")
```

vm_l_para_mn

The mean value of all patches Perimeter-Area ratio index at landscape level(vector data)

Description

This function allows you to calculate the mean value of all patch ratios in a categorical landscape in vector data format

Usage

```
vm_l_para_mn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

vm_l_pd 43

Value

the returned calculated mean value is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_para_mn(vector_landscape, "class")
```

 vm_1_pd

the patch density in the whole landscape(vector data)

Description

This metric is based on categorical landscape in vector data format. The density is the number of patches of the whole landscape relative to the total landscape area. Then the number is standardised, so that the comparison among different landscape is possible.

Usage

```
vm_l_pd(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated density of each class is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_pd(vector_landscape, "class")
```

44 vm_l_prd

vm_l_pr

Patch richness (vector data)

Description

This function allows you to calculate the Patch richness in a categorical landscape in vector data format, Patch richness index is a simplest diversity index

Usage

```
vm_l_pr(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_pr(vector_landscape, "class")
```

vm_l_prd

Patch richness density (vector data)

Description

This function allows you to calculate the Patch richness density in a categorical landscape in vector data format, Patch richness density is diversity index

Usage

```
vm_l_prd(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

vm_l_rpr 45

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_prd(vector_landscape, "class")
```

vm_l_rpr

Relative patch richness (vector data)

Description

This function allows you to calculate the Relative patch richness in a categorical landscape in vector data format, Relative patch richness is diversity index

Usage

```
vm_l_rpr(landscape, class, class_max)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

class_max the maximal number of class in your input landscape image

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_rpr(vector_landscape, "class")
```

vm_l_shape_mn

The mean value of Shape index of landscape (vector data)

Description

This function allows you to calculate the mean value of shape index of all patches in a categorical landscape in vector data format shape index is the ratio between the actual perimeter of the patch and the hypothetical minimum perimeter of the patch. The minimum perimeter equals the perimeter if the patch would be maximally compact. That means, the perimeter of a circle with the same area of the patch.

Usage

```
vm_l_shape_mn(landscape, class)
```

46 vm_1_shdi

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated mean value of each class is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_shape_mn(vector_landscape, "class")
```

vm_l_shdi

Shannon's diversity index (vector data)

Description

This function allows you to calculate the Shannon's diversity index in a categorical landscape in vector data format, Shannon's diversity index is diversity index

Usage

```
vm_l_shdi(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_shdi(vector_landscape, "class")
```

vm_l_shei 47

vm_l_shei

Shannons's evenness index (vector data)

Description

This function allows you to calculate the Shannons's evenness index in a categorical landscape in vector data format, Shannons's evenness index is diversity index. It is the ratio between the actual Shannon's diversity index and and the theoretical maximum of the Shannon diversity index.

Usage

```
vm_l_shei(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_shei(vector_landscape, "class")
```

 vm_l_sidi

Simpson's diversity index (vector data)

Description

This function allows you to calculate the Simpson's diversity index in a categorical landscape in vector data format, Simpson's diversity index is diversity index

Usage

```
vm_l_sidi(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_sidi(vector_landscape, "class")
```

vm_l_siei

Simpson's evenness index (vector data)

Description

This function allows you to calculate the Simpson's evenness index in a categorical landscape in vector data format, Simpson's evenness index is diversity index. It is the ratio between the actual Simpson's diversity index and the theoretical maximum Simpson's diversity index

Usage

```
vm_l_siei(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated index is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_sidi(vector_landscape, "class")
```

vm_l_split 49

|--|

Description

This function allows you to calculate the relation between square of landscape area and sum of square of all patch area in a categorical landscape in vector data format it is a aggregation metric.

Usage

```
vm_l_split(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated indices are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_split(vector_landscape, "class")
```

vm_l_ta

The total area of the whole landscape(vector data)

Description

This function allows you to calculate the total area of the whole landscape in a categorical landscape in vector data format

Usage

```
vm_l_ta(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated total class areas are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

50 vm_1_te

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_ta(vector_landscape, "class")
```

 vm_l_tca

The total core area of the whole landscape(vector data)

Description

This function allows you to calculate the total core area in a categorical landscape in vector data format

Usage

```
vm_l_tca(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated total class core areas are in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_tca(vector_landscape, "class", edge_depth= 1)
```

 vm_l_te

Total (class) edge(vector data)

Description

This function allows you to calculate the total length of edge of whole landscape in a categorical landscape in vector data format

Usage

```
vm_l_te(landscape, class)
```

vm_p_area 51

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated length is in column "value", and this function returns also some important information such as level and metric name, Moreover, class number and the "id" column, although both are "NA" here in the landscape level

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_l_te(vector_landscape, "class")
```

vm_p_area

AREA (patch level)

Description

Patch area (Area and edge metric)

Usage

```
vm_p_area(landscape, class)
```

Arguments

landscape sf* object.

class Column in sf* object indicating the land use type

Details

$$AREA = a_{ij} * (\frac{1}{10000})$$

where a_{ij} is the area in square meters.

AREA is an 'Area and edge metric' and equals the area of each patch in hectares. The lower limit of AREA is limited by the resolution of the input raster, i.e. AREA can't be smaller than the resolution squared (in hectares). It is one of the most basic, but also most important metrics, to characterise a landscape. The metric is the simplest measure of composition.

Units: Hectares

Range: AREA > 0

Behaviour: Increases, without limit, as the patch size increases.

Value

tibble

52 vm_p_cai

References

McGarigal, K., SA Cushman, and E Ene. 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/frags

Examples

```
vm_p_area(vector_landscape, "class")
```

vm_p_cai

core area index(vector data)

Description

This function allows you to calculate the ratio of the core area and the area in square meters. Core area is defined as an area that within the patch and its edge is a fixed value from the boundary of the patch. The index describes the percentage of a patch that is core area.

Usage

```
vm_p_cai(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated indices of all patches are in column "value", and this function returns also some important information such as level, class, patch id and metric name.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_cai(vector_landscape, "class", edge_depth = 0.8)
```

vm_p_circle 53

vm_p_circle	Ratio between the patch area and the smallest circumscribing circle of the patch.

Description

This function allows you to calculate the ratio between the patch area and the smallest circumscribing circle of the patch. The diameter of the smallest circumscribing circle is the The distance between the two farthest points on the patch.

Usage

```
vm_p_circle(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the function returns the calculated ratio of all patches in column "value", and this function returns also some important information such as level, class, patch id and metric name.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_circle(vector_landscape, "class")
```

vm_p_core

core area(vector data)

Description

This function allows you to calculate the core area of all patches in square meters Core area is defined as an area that within the patch and its edge is a fixed value from the boundary of the patch.

Usage

```
vm_p_core(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

vm_p_frac

Value

the returned calculated core areas of all patches are in column "value", and this function returns also some important information such as level, class, patch id and metric name.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_core(vector_landscape, "class", edge_depth = 0.8)
```

vm_p_enn

Euclidean Nearest-Neighbor Distance(vector data)

Description

This function allows you to calculate the distance to the nearest neighbouring patch of the same class in meters The distance is measured from edge-to-edge.

Usage

```
vm_p_enn(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated distances of all patches are in column "value", and this function returns also some important information such as level, class, patch id and metric name.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_enn(vector_landscape, "class")
```

vm_p_frac

fractal dimension index(vector data)

Description

This function allows you to calculate index fractal dimension index. The index is based on the patch perimeter and the patch area and describes the patch complexity.

Usage

```
vm_p_frac(landscape, class)
```

vm_p_ncore 55

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated indice of all patches are in column "value", and this function returns also some important information such as level, class, patch id and metric name.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_frac(vector_landscape, "class")
```

vm_p_ncore

the number of disjunct core area(vector data)

Description

This function allows you to calculate the number of disjunct core areas of all patches Core area is defined as an area that within the patch and its edge is a fixed value from the boundary of the patch. Disjunct core area is defined as a new discrete area(patch), which is a sub-part of core area

Usage

```
vm_p_ncore(landscape, class, edge_depth)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

edge_depth the fixed distance to the edge of the patch

Value

the returned calculated core areasnumber of disjunct core areas of all patches are in column "value", and this function returns also some important information such as level, class, patch id and metric name.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_core(vector_landscape, "class", edge_depth = 0.8)
```

56 vm_p_perim

vm_p_para	$P\epsilon$
viii_p_pai a	

Perimeter-Area ratio.

Description

This function allows you to calculate the ratio between the patch area and perimeter. The ratio describes the patch complexity in a straightforward way.

Usage

```
vm_p_para(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the function returns the calculated ratio of all patches in column "value", and this function returns also some important information such as level, class, patch id and metric name.

Examples

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_para(vector_landscape, "class")
```

vm_p_perim

The perimeter of each patches(vector data)

Description

This function allows you to calculate the perimeter of each patches in a categorical landscape in vector data format

Usage

```
vm_p_perim(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated perimeter of all patches is in column "value", and this function returns also some important information such as level, class, patch id and metric name. ## if the class name of input landscape is landcover, ## then write landcover in a double quotation marks as the second parameter. st_p_area(vector_landscape, "class")

vm_p_shape 57

vm_p_shape	Shape index(vector data)	

Description

This function allows you to calculate the shape index, which is the ratio between the actual perimeter of the patch and the hypothetical minimum perimeter of the patch. The minimum perimeter equals the perimeter if the patch would be maximally compact. That means, the perimeter of a circle with the same area of the patch.

Usage

```
vm_p_shape(landscape, class)
```

Arguments

landscape the input landscape image,

class the name of the class column of the input landscape

Value

the returned calculated indices of all patches are in column "value", and this function returns also some important information such as level, class, patch id and metric name.

```
## if the class name of input landscape is landcover,
## then write landcover in a double quotation marks as the second parameter.
vm_p_shape(vector_landscape, "class")
```

Index

* datasets	vm_c_split, 30
vector_landscape, 3	vm_c_tca, 31
	vm_c_te, 31
vector_landscape, 3	vm_1_area_mn, 32
vm_c_area_cv, 3	vm_l_cai_mn, 33
vm_c_area_mn,4	vm_l_core_mn, 33
vm_c_area_sd, 5	vm_1_dcad, 34
vm_c_ca, 5	vm_1_dcore_mn, 35
vm_c_cai_cv, 6	$vm_1_division, 35$
vm_c_cai_mn, 7	$vm_1_ed, 36$
vm_c_cai_sd, 7	vm_l_frac_mn, 37
vm_c_circle_cv, 8	vm_l_lpi, 37
vm_c_circle_mn, 9	$vm_1lsi, 38$
vm_c_circle_sd, 9	$vm_1_mesh, 38$
vm_c_core_cv, 10	$vm_1_msidi, 39$
vm_c_core_mn, 11	$vm_1_msiei, 40$
vm_c_core_sd, 11	vm_1_ndca, 40
vm_c_cpland, 12	vm_1_np, 41
vm_c_dcad, 13	vm_l_pafrac,42
vm_c_dcore_cv, 13	$vm_1_para_mn, 42$
vm_c_dcore_mn, 14	vm_1_pd, 43
vm_c_dcore_sd, 15	vm_l_pr,44
vm_c_division, 15	vm_1_prd, 44
vm_c_ed, 16	vm_l_rpr,45
vm_c_enn_cv, 17	vm_l_shape_mn, 45
vm_c_enn_mn, 17	$vm_1_shdi, 46$
vm_c_enn_sd, 18	vm_l_shei,47
vm_c_frac_cv, 19	vm_l_sidi,47
vm_c_frac_mn, 19	vm_l_siei,48
vm_c_frac_sd, 20	$vm_1_split, 49$
vm_c_lpi, 21	vm_l_ta, 49
vm_c_lsi, 21	vm_l_tca, <u>50</u>
vm_c_mesh, 22	vm_l_te, 50
vm_c_ndca, 23	vm_p_area, 51
vm_c_np, 23	vm_p_cai, <u>52</u>
vm_c_pafrac, 24	vm_p_circle, 53
vm_c_para_cv, 25	vm_p_core, 53
vm_c_para_mn, 25	vm_p_enn, 54
vm_c_para_sd, 26	vm_p_frac, 54
vm_c_pd, 27	vm_p_ncore, 55
vm_c_pland, 27	vm_p_para, 56
vm_c_shape_cv, 28	vm_p_perim, 56
vm_c_shape_mn, 29	vm_p_shape, 57
vm_c_shape_sd, 29	