TD1bis - Premiers exercices sur les quotients

Exercice 1. (Projecteurs)

Soit R un anneau, et M un R-module, on dit qu'un morphisme $p: M \to M$ est un **projecteur** si $p \circ p = p$, autrement dit p(p(x)) = p(x) pour tout $x \in M$.

- 1. Montrer que $\operatorname{Ker} p \cap \operatorname{Im} p = \{0\}.$
- 2. Montrer que $y \in \operatorname{Im} p \Leftrightarrow p(y) = y$.
- 3. Montrer que, pour tout $x \in M$, on a $x p(x) \in \operatorname{Ker} p$
- 4. En déduire que $M = \operatorname{Ker} p \oplus \operatorname{Im} p$.

Exercice 2.

- 1. Soit k un corps, E un k-espace vectoriel, $F \leq E$ et G un supplémentaire de F. Montrer que $E \twoheadrightarrow E/F$ induit un isomorphisme $G \simeq E/F$.
- 2. Considérons $\partial : \mathbb{k}[X] \to \mathbb{k}[X]$, on rappelle que Im $\partial = \mathbb{k}[X]$, et Ker $\partial = \{\text{Polynômes constants}\}$.
 - a) Montrer que

$$G := \{ P \in \mathbb{k}[X] \mid P(0) = 0 \}$$

est un supplémentaire de Ker ∂ dans $\mathbb{k}[X]$.

b) En déduire que $\mathbb{k}[X]$ admet un sous-espace strict qui lui est isomorphe.

Exercice 3. (Sous-espaces stables)

Soit E un k-espace vectoriel, et $u \in \text{End}(E)$.

- 1. Soit $F \subset E$ un sous-espace u-stable. Montrer que u induit un endomorphisme \overline{u} de E/F.
- 2. (Optionnel) On sait que (E, u) est un $\mathbb{k}[X]$ module, montrer que $(E/F, \overline{u})$ est le quotient du $\mathbb{k}[X]$ -modules (E, u) par le $\mathbb{k}[X]$ -module $(F, u|_F)$.
- 3. On suppose que E est de dimension finie n. Soit $\mathcal{F} := (f_1, \dots, f_r)$ une base de F, que l'on complète en une vase $\mathcal{E} = (f_1, \dots, f_r, e_{r+1}, \dots, e_n)$ de E. Montrer que $\overline{\mathcal{E}} = (\overline{e_{r+1}}, \dots, \overline{e_n})$, où $\overline{e_i}$ désigne l'image de e_i dans E/F, est une base de E/F.
- 4. Montrer que la matrice dans la base \mathcal{E} de u est de la forme

$$\begin{pmatrix} A & * \\ 0 & Q \end{pmatrix}$$

où $A = Mat_{\mathbb{F}}(u_{|F})$ et $Q = Mat_{\overline{\mathcal{F}}}(\overline{u})$.

Exercice 4. (Modules monogènes)

Soit M un R-module, on dit que M est monogène s'il existe un $m \in M$ tel que

$$\langle m \rangle := \{r.m \mid r \in R\} = M$$

- 1. Montrer que l'application $p: R \to M$ définie par $r \mapsto r.m$ est un morphisme surjectif de R-modules.
- 2. Montrer que le noyau de p est l'idéal annulateur de M dans R.
- 3. Montrer que R/I et M sont isomorphes en tant que R-modules.