*G Denotes RoHS Compliant, Pb Free Terminal Finish.

ULTRAFAST SOFT RECOVERY RECTIFIER DIODE

PRODUCT APPLICATIONS

- Anti-Parallel Diode

 Switchmode Power Supply
 Inverters
- Free Wheeling Diode -Motor Controllers
 - -Converters
- -Inverters
- Snubber Diode
- PFC

PRODUCT FEATURES

- Ultrafast Recovery Times
- Soft Recovery Characteristics
- Popular TO-247 Package or Surface Mount D³PAK Package
- Low Forward Voltage
- Low Leakage Current

PRODUCT BENEFITS

- Low Losses
- · Low Noise Switching
- Cooler Operation
- . Higher Reliability Systems
- Increased System Power Density

- 1 Cathode
- 2 Anode Back of Case - Cathode

MAXIMUM RATINGS

All Ratings: $T_C = 25$ °C unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT60D40B(G)_S(G)	UNIT
V _R	Maximum D.C. Reverse Voltage		
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	400	Volts
V _{RWM}	Maximum Working Peak Reverse Voltage		
I _{F(AV)}	Maximum Average Forward Current (T _C = 140°C, Duty Cycle = 0.5)	60	
I _{F(AV)}	RMS Forward Current (Square wave, 50% duty)	146	Amps
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)	600	
T _J ,T _{STG}	Operating and StorageTemperature Range	-55 to 175	°C
T _L	Lead Temperature for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
V _F	Forward Voltage	I _F = 60A		1.3	1.5	Volts
		I _F = 120A		1.6		
		I _F = 60A, T _J = 125°C		1.2		
I _{RM}	Maximum Reverse Leakage Current	V _R = V _R Rated			250	μА
		$V_R = V_R$ Rated, $T_J = 125$ °C			500	
C _T	Junction Capacitance, V _R = 200V			120		pF

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time $I_F = 1A$, $di_F/dt =$	$-100A/\mu s$, $V_R = 30V$, $T_J = 25^{\circ}C$	-	30		no
t _{rr}	Reverse Recovery Time	$I_F = 60A$, $di_F/dt = -200A/\mu s$ $V_R = 266V$, $T_C = 25^{\circ}C$	-	37		ns
Q _{rr}	Reverse Recovery Charge		-	80		nC
I _{RRM}	Maximum Reverse Recovery Current		-	4	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 60A$, $di_F/dt = -200A/\mu s$ $V_R = 266V$, $T_C = 125^{\circ}C$	-	110		ns
Q _{rr}	Reverse Recovery Charge		-	540		nC
I _{RRM}	Maximum Reverse Recovery Current		-	10	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 60A$, $di_F/dt = -800A/\mu s$ $V_R = 266V$, $T_C = 125^{\circ}C$	-	65		ns
Q _{rr}	Reverse Recovery Charge		-	1050		nC
I _{RRM}	Maximum Reverse Recovery Current		-	27		Amps

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-Case Thermal Resistance			.34	°C/W
$R_{ heta JA}$	Junction-to-Ambient Thermal Resistance			40	
١٨/	Package Weight		0.22		oz
W _T			5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

APT Reserves the right to change, without notice, the specifications and information contained herein.

FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

TYPICAL PERFORMANCE CURVES

Figure 4. Reverse Recovery Charge vs. Current Rate of Change

APT60D40B(G)_S(G)

Figure 3. Reverse Recovery Time vs. Current Rate of Change

Figure 5. Reverse Recovery Current vs. Current Rate of Change

Figure 7. Maximum Average Forward Current vs. CaseTemperature

0.25 I_{RRM}

Figure 9. Diode Test Circuit

Zero

- 1 I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I_{RRM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25•I_{RRM} passes through zero.
- $\mathbf{5}$ \mathbf{Q}_{rr} Area Under the Curve Defined by \mathbf{I}_{RRM} and \mathbf{t}_{rr} .

Figure 10, Diode Reverse Recovery Waveform and Definitions

TO-247 Package Outline

e1 SAC: Tin, Silver, Copper

D³PAK Package Outline

@3 100% Sn

2

