Introduction

I will start by presenting my own proof that I came up with when I decided to attack (prove) this theorem. Next I will present a proof of the Factor Theorem that I yoinked from Wikipedia. This proof uses an idea I'll dub 'problem translation'. Then I will present a second proof from the same article that is much less satisfying. And then I will make some connection(s) and get to invoke the idea of problem translation again.

Bonus: Best fit polynomial Taylor Series Given some function f(x), I want to find find a quadratic approximation, p(x), near the point $x=x_0$. That is, I want to say $f(x)\approx p(x)|\ x\approx x_0$ where $p(x)=ax^2+bx+c$. So $f(x)\approx ax^2+bx+c|\ x\approx x_0$ and I want to find values for a,b,c for this to be true. And the quadratic approximation, the best fit parabola at the point $x=x_0$ satisfies the three relations: $f(0)=p(0), f'(x_0)=p'(x_0)$, and $f''(x_0)=p''(x_0)$.

Also, same underlying mechanism. I state this underlying machinery explicitly as $f+(\Delta f)\approx f(x_0)+f'(x_0)(\Delta x)+\frac{f''(x_0)}{2}(\Delta x)^2\mid x\approx x_0$. And at $x_0=0,\,\Delta x=x-x_0=x$. And this change in x equaling x itself is a nice property.

Let me briefly explain how I reason about this mechanism, inspired by simple kinematics. I personally find thinking in terms of velocity and acceleration helpful for f' and f'' respectively. $f'(x_0)(\Delta x)$ is the contribution toward Δf solely from $f'(x_0)$ initial velocity, if this velocity is held constant so no acceleration. (This is a linear approximation as velocity is constant, no curvature). and $\frac{f''(x_0)}{2}(\Delta x)^2$ is the contribution toward Δf solely from $f''(x_0)$, the initial acceleration and likewise, no initial velocity. Then the velocity would linearly increase so the average velocity over Δx (think of x as t for time) would be $\frac{f''(x_0)(\Delta x)}{2}$ and thus the resulting Δf would be that average velocity times Δx . Alternatively, think of the velocity time graph being a triangle with base Δx and height $(\Delta x)f''(x_0)$.