Grafos: Grafos, digrafos e multigrafos; Isomorfismo

Prover conhecimento para que o aluno possa desenvolver algoritmos específicos por meio da manipulação de grafos Moises

GRAFOS	UNINOVE		ON-LINE	
Um grafo éulipa tripla presnata (Nana, g) em que:	00			
Curso: MÓDULO - INFORMÁTICA - N é umpop riv utte de váribes (Bós);				
De 03/08/2016 a 30/12/2016 - A é um <u>ຣລຊກາມທາ</u> to de arestas (arcos);		» 22/09/2016	(1)	
- g é uma função que associa cada aresta um par o		ue representam os	extremos dessa are	sta.
» ANÁLISE DE ALGORITMOS E TEORIA DOS GRAFOS - 80h Objeto: Grafes: Módullo - INFORMÁTICA De 03/08/2016 a 30/12/2016		» 13/10/2016(1)		
No grafo asimestemos 4 vértices (1, 2, 3 e) e 6 arest	as (a1, a2, a3, a4,	a5 e a6). As funçõe	es que associam as	arestas aos
seus extremos assumem os seguintes valores:		» 10/11/2016	(1)	
g(a1)=(1, SERENCIAMENTO DE BANCO DE DADOS - 80h				
g(a2)=(1,2 _{Sala:} 148440				
g(a3)=(2,2)				
g(a4)=(2,3GESTÃO DE PROJETOS EM TI - 80h		VE	R TODOS	
g(a5)=(1,3)e 03/08/2016 a 30/12/2016				
g(a6)=(3,4)				
» PROGRAMAÇÃO ORIENTADA A OBJETOS - 80h Vértices adjagations - Informática				
De 03/08/2016 a 30/12/2016 São adjac eates:os v értices extremos de uma aresta:	. No grafo acima	o vértice 3 é adjace	nte ao vértice 4, pois	s são
extremos da aresta a6.				

Arestas adjacentes

São adjacentes as arestas que compartilham o mesmo vértice. No grafo acima a aresta a4 é adjacente a aresta a5, pois elas compartilham o vértice 3.

TIPOS DE GRAFOS

GRAFOS NÃO DIRECIONADOS: São grafos cujas arestas não possuem setas.

Características de um Grafo Não Direcionado

- Todas as arestas tem duplo sentido (ida/volta)
- Não existe diferença entre as arestas, ou seja, (a1, a2) = (a2, a1)

Objeto: Grafo 2

GRAFOS DIRECIONADOS (DÍGRAFOS): São grafos cujas arestas são direcionadas, ou seja, elas possuem setas.

Características de um Grafo Direcionado

- Todas as arestas possuem um único sentido;

Objeto: Grafo 3

SUBGRAFOS

Subgrafos são grafos parciais que pertencem a um grafo maior. A área demarcada em vermelho no grafo a seguir representa um subgrafo do grafo completo.

Objeto: Grafo 4

GRAFO SIMPLES E MULTIGRAFOS

Objeto: Grafo 5

Laços

Observe o grafo acima. Ele possui um laço, ou seja, a aresta a3 que começa e termina no mesmo vértice 2. Em grafos direcionados os laços também são chamados de self-loops.

Arestas Múltiplas

Além disso, o grafo acima também possui arestas múltiplas, ou seja, tanto a aresta a1 quanto a aresta a2 possuem as mesmas extremidades – vértices 1 e 2.

GRAFO SIMPLES E MULTIGRAFO

Desse modo, o subgrafo (em vermelho) é chamado de grafo simples, pois não contém laços e nem arestas múltiplas. Por outro lado, o grafo completo acima é chamado de multigrafo por possuir laços e arestas múltiplas.

GRAFOS ISOMORFOS

Quando os grafos possuem diferença aparente, mas se comparados é possível perceber que a relação de incidência se mantém preservada quando se observa a correspondência entre os seus vértices e as suas arestas.

Objeto: Grafo 6

Grafo 2

Referências

DIVERIO, T. A.; MENEZES, P. B.. **Teoria da Computação: Máquinas Universais e Computabilidade**. Porto Alegre: Sagra Luzzato, 2000.

MENEZES, P. B.: Linguagens Formais e Autômatos. Porto Alegre: Sagra-Luzzato, 2001.

LINZ, P.: Na Introduction to Formal Languages and Automata, Boston: Jones and Bartlett Publishers, 2006.

GREENLAW,R.; HOOVER,H.J.: Fundamentals of the Theory of Computation, Morgan Kaufmann; 1998.

