

Linear Regression Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886/MO444, August 30, 2022

\$ 70 000

\$ 160 000

Linear Regression

Hom

Competitions

₩ Datasets

<> Code

Discussions

O Courses

More

Q Search

Description Evaluation

Overview

Tutorials

Frequently Asked Questions

Start here if...

You have some experience with R or Python and machine learning basics. This is a perfect competition for data science students who have completed an online course in machine learning and are looking to expand their skill set before trying a featured competition.

Competition Description

Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, lowa, this competition challenges you to predict the final price of each home.

Competitions

Datasets

<> Code

Discussions

Courses

✓ More

Q Search

C Refresh

Q Search leaderboard

This leaderboard is calculated with all of the test data.

#	Team	Members	Score	Entries	Last	Code	Join
1	fedesoriano		0.00000	2	23d		
2	Lev1nLee		0.00000	1	2d		
3	Moshi Wei	4)	0.00044	3	2mo		
4	Jewel Liu		0.00044	1	2mo		
5	YIYANG HAO		0.00044	13	6d		
6	Bing Guo	(4)	0.00044	4	2mo		

Today's Agenda

_ _ _

- Linear Regression with One Variable
 - Model Representation
 - Cost Function
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation

Model Representation

Housing Prices

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training	set of
housing	prices

Size in feet ² (x)	Price (\$) in 1000's (y)		
2104	460		
1416	232		
1534	315		
852	178		
•••	•••		

Notation:

m = Number of training examplesx's = "input" variable / featuresy's = "output" variable / "target" variable

How do we represent h?

Linear regression with one variable.

Univariate linear regression.

Cost Function

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θi 's: Parameters

How to choose θi 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Choose θ_0 , θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

$$\begin{array}{c}
\text{minimize } J(\theta_0, \theta_1) \\
\theta_0, \theta_1
\end{array}$$

Cost function (Squared error function) 17

Cost Function Intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_1}{\text{minimize }} J(\theta_I)$$

\
١
,

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameters θ_1)

$h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

 $J(\theta_1) = J(1) = ?$

$$J(heta_1)$$

(function of the parameters θ_1)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = 0$$

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

Cost Function Intuition II

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x) = 50 + 0.06x$

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\,\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want minimize
$$J(\theta_0, \theta_1)$$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update)}$$

$$j = 0 \text{ and } j = 1\text{)}$$

repeat until convergence {

(simultaneously update

$$j = 0 \text{ and } j = 1$$
)

Derivative term

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Correct: Simultaneous update

$$\begin{aligned} \text{temp0} &:= \ \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \text{temp1} &:= \ \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_0 &:= \ \text{temp0} \end{aligned}$$

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \, \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \, \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \, \operatorname{temp0} \\ & \theta_1 := \, \operatorname{temp1} \end{aligned}$$

Incorrect

$$\begin{aligned} & \operatorname{temp0} := \, \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \, \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

$$\theta_1 := \text{temp}$$

 $\theta_1 \subseteq \mathbb{R}$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can be overshoot the minimum. It may fail to converge, or even diverge.

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$ do?

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

 θ_1 at local optima

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

$$= \frac{1}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{-1} - y^{-1})$$

$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$

$$j = 1$$
: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

$$h_{\theta}(x) = \theta_0 + \theta_1 x \implies y = b + mx$$

$$y = b + mx$$

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

- Stochastic Gradient Descent
- Mini-batch Gradient Descent

"Batch" Gradient Descent

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$

update θ_0 and θ_1 simultaneously

}

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
repeat until convergence {
```

```
for i = 1, ..., m { \theta_0 := \theta_0 - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \theta_1 := \theta_1 - \alpha(h_\theta(x^{(i)}) - y^{(i)})x^{(i)} }
```

Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

```
Say b = 10, m = 1000.
repeat until convergence {
      for i = 1, 11, 21..., 991 {
             \theta_0 := \theta_0 - \alpha \frac{1}{10} \sum_{k=0}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)})
             \theta_1 := \theta_1 - \alpha \frac{1}{10} \sum_{i+9}^{i=k} (h_{\theta}(x^{(k)}) - y^{(k)}) x^{(k)}
```

Batch vs. Stochastic vs. Mini-batch

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 3
- Probabilistic Machine Learning: An Introduction, Chap. 11

References

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 1 & 2
- https://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html

Machine Learning Videos

- Linear Regression: A friendly introduction, https://youtu.be/wYPUhge9w5c
- Linear Regression, Clearly Explained!!!, https://youtu.be/nk2CQITm_eo

Today's Agenda

- Linear Regression with One Variable
 - Model Representation
 - Cost Function
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation