MATH253X-F01
Fall 2019

 ${\rm Midterm}~{\rm Exam}~2$

Name:

Instructions. (100 points) You have 60 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.

(6^{pts}) 1. Consider the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + 3y^2}{3x^2 + y^2}.$$

Either show it does not exist, or give strong evidence for suspecting it does.

(10^{pts}) **2.** The following table gives some information about a function f(x,y):

(x,y)	f	f_x	f_y
(-1,3)	3	2	-1
(0,1)	-5	-1	3
(3,4)	1	4	-2

(a) (5 pts) Use the chain rule to compute $\frac{dg}{dt}(0)$ where:

$$g(t) = f(t^2 - t + 3, 2e^{-3t} + 2).$$

(b) (5 pts) Give an equation for the linear (tangent plane) approximation to f at the point (-1,3), and use it to estimate f(-1.1,3.2).

(12^{pts}) **3.** Evaluate the integral

$$\int_0^4 \int_{\sqrt{y}}^2 e^{\left(x^3+1\right)} dx \, dy$$

fully, by first drawing the region of integration, and then reversing the order of integration.

(12^{pts}) 4. Find and classify (using the Second Derivatives Test) all critical points of

$$f(x,y) = x^2y - 2xy + y^2 - 3y + 1.$$

(8^{pts}) **5.** Give an equation for the tangent plane to the surface

$$\frac{xy}{y+z} + e^{-z}\ln(x+2y) = 3$$

at the point (3, -1, 0).

(10^{pts}) **6.** Use polar coordinates to find the volume of the solid bounded by the cone $z = \sqrt{x^2 + y^2}$ and the top half of the sphere $x^2 + y^2 + z^2 = 6$.

(16^{pts}) **7.** A flat triangular plate is bounded by the lines y = 2 - 2x, y = 2 + 2x and the x-axis, where x, y are in m. The mass density is given by

$$\rho(x,y) = y^2 \text{ kg/m}^2.$$

From the symmetry of the plate and the density, you can see that the center of mass of the plate must be on the y-axis, so $\bar{x}=0$.

(a) (8 pts) Give an expression involving integrals for \bar{y} , including appropriate limits of integration.

(b) (8 pts) The total mass of the plate is $m=\frac{4}{3}$ kg. Use this to calculate \bar{y} .

(10^{pts}) 8. Use Lagrange multipliers to find the maximum product of two positive numbers satisfying $x^2 + y = 6$.

(16^{pts}) **9.** Let $f(x,y) = x^2y - x + y^2$.

(a) (5 pts) Compute the directional derivative of f when moving in the direction of $-\mathbf{j}$ when you are at the point (1,-1). Interpret your result in terms of change in values of f.

(b) (5 pts) Give the direction and magnitude of maximum decrease of f when at the point (1, -1).

(c) (6 pts) Fully set up bounds and integrand for computing the surface area of f over the region $[-1,2]\times[-2,1]$. DO NOT EVALUATE.