网络 与信息安全

复变函数与积分变换

——第十讲

孤立奇点

贵州大学计算机科学与技术学 潘平

电话: 13078569531

邮箱: panping_17@163.com

明德至善 博学笃行

网络 与 信息安全

目录

奇点的基本概念

奇点的判别方法

网络 与信息安全

奇点的基本概念

孤立奇点的定义

函数 f(z) 不解析的点称为奇点,确切地:

定义:

若 z_0 是函数 f(z) 的奇点,但 f(z) 在 z_0 的去心邻域 $0 < |z-z_0| < \delta$ 内解析,则称 z_0 为 f(z)的孤立奇点

例如函数 $f^{(z)}=\frac{1}{z(1-z)}$ 在 z=0和 z=1 不解析,但存在 z=0 的 去心邻域 0 < |z| < 1及 z=1 的去心邻域 0 < |z-1| < 1 内解析。

因而, z=0 和 z=1 是函数 f(z) 的孤立奇点

网络 与 信息安全

再如:

$$f(z) = \frac{1}{\cos \frac{1}{z}}$$
 的奇点 $z = 0$ 不是孤立奇点,因为

$$z=0$$
 及 $\frac{1}{z_k}=k\pi+\frac{\pi}{2}$ \Rightarrow $z_k=\frac{2}{(2k+1)\pi}$ 都是它的奇点。

当 $k \to \infty$ 时无限接近于**0**,这样,在 z = 0 的不论多么小的邻域内总有函数的 奇点存在。

孤立奇点的分类

以洛朗级数为工具,对孤立奇点进行分类:

函数f(z)可展开成洛朗级数:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

网络 与 信息安全

其中:
$$c_n = \frac{1}{2i\pi} \oint_C \frac{f(z)dz}{(z-z_0)^{n+1}}$$

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

其中: C为 $0 < |z-z_0| < \delta$ 内绕 z_0 的任一条正向简单闭曲线。

定义: 设函数 f(z) 在 $z_0(\neq \infty)$ 孤立奇点处的去心邻域的洛朗级数为式

(1) 如果在洛朗级数中不含 $z = z_0$ 的负幂项,那么称 z_0 为可去奇点。

这时, f(z) 在 z_0 的去心邻域内的洛朗级实际上就是一个普通的幂级数:

$$c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \dots + c_n(z - z_0)^n + \dots$$

因此,这个幂级数的和函数 F(z) 是在 z_0 解析的函数,且当 $z \neq z_0$ 时。

网络 与 信息安全

$$F(z) = f(z)$$
 当 $z = z_0$ 时, $F(z) = c_0$, 但是, 由于

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} F(z) = F(z_0) = c_0$$

所以无论 f(z) 原来在 z_0 是否有定义,如果令 $f(z_0) = c_0$,那 么在圆域 $|z-z_0| < \delta$ 内有:

$$f(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \dots + c_n(z - z_0)^n + \dots$$

从而函数 f(z)在 z_0 就解析。正是由于这个原因,称 z_0 是可去奇点。

定理: 孤立奇点 z_0 是 f(z) 的可去奇点的充分必要条件是:

$$\lim_{z \to z_0} f(z) = c_0$$

网络 与 信息安全

例: 对于函数 (1) $f(z) = \frac{e^z - 1}{z}$

显然 z=0 是 f(z) 的一个奇点,但因

f(z) 在 z=0 处的存在洛朗级数,即

$$\frac{e^{z}-1}{z} = \frac{1}{z} \left(z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots \right) = 1 + \frac{z}{2!} + \frac{z^{2}}{3!} + \cdots$$

中不含负幂次项,如果定义 $\frac{e^z-1}{z}$ 在 z=0 的值为1(即 c_0),则 $\frac{e^z-1}{z}$ 在 z=0解析,所以 z=0是函数 f(z) 的可去奇点

明德至善 博学笃行

网络 与 信息安全

(2)
$$f(z) = \frac{\sin z}{z}$$
 从表面看 $z = 0$ 是 $f(z)$ 的奇点,但是的洛朗级数为:

$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \right) = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \dots$$

不含有负幂次项,且 $\frac{\sin z}{z}$ 在 z=0 的值为**1**,则 $\frac{\sin z}{z}$ 在 z=0 解析,因此,z=0 是函数的可去奇点。

(2) 如果在洛朗级数中只有有限个 $z-z_0$ 的负幂次项,且其中关于 $(z-z_0)^{-1}$ 的最高幂为 $(z-z_0)^{-m}$,即 $c_{-m} \neq 0$,那么称 z_0 为函数 f(z)的 m 级 极点,其中一级极点也称为简单极点。

如果 z_0 为 f(z)的 m 级极点,f(z)在 z_0 的去心邻域 $0 < |z-z_0| < \delta$ 内洛朗级数为:

明德至善 博学笃行

网络 与 信息安全

$$f(z) = c_{-m}(z - z_0)^{-m} + \dots + c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^{n} + \dots$$

如果我们令

$$\varphi(z) = c_{-m} + \dots + c_{-m+1}(z - z_0)^1 + c_0(z - z_0)^m + \dots$$

则 $\varphi(z)$ 在圆域 $|z-z_0|<\delta$ 内解析,且

$$f(z) = \frac{1}{(z - z_0)^m} \varphi(z)$$

反之,若存在 z_0 点解析函数 $\varphi(z)$,且 $\varphi(z_0) \neq 0$,使上式成立,则 z_0 是 f(z)的 m 级极点。

当
$$z_0$$
 是 $f(z)$ 的极点时,由
$$f(z) = \frac{1}{(z - z_0)^m} \varphi(z)$$
 式可知
$$\lim_{z \to z_0} f(z) \to \infty$$

网络 与信息安全

例 对于有理分式函数

$$f(z) = \frac{z-2}{(z^2+1)(z-1)^3}$$

z=0 是它的一个二级极点,因为: 请同学们自己证明

 $z = \pm i$ 是它的一级极点

(3) 如果在洛朗级数中含有无穷多个 $(z-z_0)$ 的负幂项,那么称 z_0 为函数 f(z) 的本性极点。

如果 z_0 为函数 f(z) 的本性极点,则函数 f(z) 具有如下性质:

在 z_0 的去心邻域内,对于任意给定的复数 M ,总可以找到一个趋于 z_0 的数列 $\{z_n\}$,使得 $\lim_{n\to\infty}f(z_n)=M$,从而当 $z\to z_0$ 时,f(z) 的极限不存在。

网络 与 信息安全

例

函数 $f(z) = e^{\frac{1}{z}}$ 以 z = 0 为它的本性奇点,因为在级数:

$$f(z) = e^{\frac{1}{z}} = 1 + z^{-1} + \frac{z^{-2}}{2!} + \dots + \frac{z^{-n}}{n!} + \dots$$

中含有无穷多个Z的负幂项。

在本性奇点的邻域内,函数 f(z) 有性质:

性质: 如果 z_0 为函数 f(z) 的本性奇点,则对于任意给定的复数 A,总可以找到一个趋于 z_0 的数列,当z沿这个数列趋于 z_0 时,

f(z) 的值趋向于 A

网络 与 信息安全

综上所述:

如果 z_0 为函数 f(z) 的可去奇点,则 $\lim_{z \to z_0} f(z)$ 存在且有限;

如果 z_0 为函数 f(z) 的极点,则 $\lim_{z\to z_0} f(z)\to \infty$;

如果 z_0 为函数 f(z) 的本性奇点,则 $\lim_{z \to z_0} f(z)$ 不存在且且不趋于无穷;

即:

如果函数 f(z) 在其孤立点 z_0 的极限 $\lim_{z \to z_0} f(z)$

A: 存在,则 z_0 为 f(z) 的可去奇点;

B: 为无穷,则 z_0 为f(z)的极点;

C: 不存在也不为无穷,则 z_0 为f(z) 的本性极点。

网络 与 信息安全

奇点的判别方法

对于极点,我们可以通过函数的零点来判断;或者通过极限的不同情形来判别孤立奇点的类型要。

用函数的零点判别极点的类型

定义: 若函数 f(z) 在点 z_0 解析,且 $f(z_0) = 0$,则称 z_0 为 f(z) 的零点; 若函数 f(z) 在点 z_0 的邻域内的泰勒级数为:

$$f(z) = \sum_{n=m}^{\infty} c_n (z - z_0)^n$$

其中: $c_n \neq 0$ m 为正整数,则称 z_0 为 f(z)的 m 级零点

由此可得

月徳至善 博学笃行

网络 与 信息安全

定理: z_0 为函数 f(z) 的 m 级零点的充要条件是 f(z) 在 z_0 解析,

$$f^{(n)}(z_0) = 0 (n = 0, 1, 2, \dots, m-1) \qquad f^{(m)}(z_0) \neq 0$$

证明: 如果 z_0 为f(z) 的 m 级零点,则 z_0 是f'(z)的 m-1 级零点

证: 由 z_0 是 f(z) 的 m 级零点,依定义,存在一函数 $\varphi(z)$,在 z_0 解析

且
$$\varphi(z) \neq 0$$
 $f(z) = (z - z_0)^m \varphi(z)$ 求导有:

由于
$$\phi(z) = m\varphi(z) + (z - z_0)\varphi'(z)$$
 $f'(z) = m(z - z_0)^{m-1}\varphi(z) + (z - z_0)^m\varphi'(z)$

在
$$z_0$$
 处解析,且 $\phi(z_0) = m\varphi(z_0) \neq 0$ $= (z-z_0)^{m-1}[m\varphi(z) + (z-z_0)\varphi'(z)]$

根据定义,
$$z_0$$
 为 $f'(z)$ 的 $=(z-z_0)^{m-1}\phi(z)$

m-1 级零点

网络 与 信息安全

定理: 若函数 f(z) 和 g(z) 在 z_0 点解析,则:

- (1) 当 z_0 分别为 f(z)和g(z) 的 m,n 级零点时, z_0 为函数 f(z)g(z) 的 m+n 级零点,若 m < n ,则 z_0 为f(z)/g(z)的 m-n 级极点。
- (2) 当 z_0 为 g(z) 的 n 级零点时,但 $f(z_0) \neq 0$ 时, z_0 为函数 f(z)/g(z) 的 n 级极点
- (3) 若 f(z)=1 ,则若 z_0 为 g(z) 的 n 级零点时,则 z_0 为函数 1/g(z) 的 n 级极点

例: 下列函数有些什么奇点? 如果是极点,指出它的级

(1)
$$f(z) = tgz$$
 (2) $f(z) = \frac{\sin z}{(z-1)^2(z+1)^3}$ (3) $f(z) = \frac{\sin z}{z^3}$

网络与 信息安全

解:
$$(1) \quad f(z) = tgz = \frac{\sin z}{\cos z}$$
 的奇点是分母的零点,即:
$$z_k = \left(k + \frac{1}{2}\right)\pi, k = 0, \pm 1, \pm 2, \cdots$$

由于 $(\cos z)' = -\sin z$ 而 $\sin z$ 在 z_k 解析,且 $\sin z_k \neq 0$

因此,根据定理可知, z_k 均为 f(z) = tgz 的简单极点

(2) 对于
$$f(z) = \frac{\sin z}{(z-1)^2(z+1)^3}$$
 显然, $z=1$ $z=-1$

是奇点,由于 $f(z) = \frac{1}{(z-1)^2} \frac{\sin z}{(z+1)^3}$ 函数 $\frac{\sin z}{(z+1)^3}$ 在 z=1解析

且
$$\frac{\sin z}{(z+1)^3} \neq 0$$
 因此, $z=1$ 是 $f(z)$ 的二级极点

同理, z = -1 是 f(z) 的三级极点

网络 与 信息安全

(3) 对于
$$f(z) = \frac{\sin z}{z^3}$$
 $z = 0$ 是奇点,由于

$$f(z) = \frac{\sin z}{z^3} = \frac{1}{z^3} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \right) = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} + \dots = \frac{1}{z^2} \varphi(z)$$

其中: $\varphi(z)$ 在 z=0 点解析,且 $\varphi(z) \neq 0$

所以, z=0 是函数的二级极点

函数在无穷远点的性态

前面我们所讨论的奇点都是在有限复平面上进行,为了考虑函数在无穷远点的性态,下面我们地扩充复平面上进行讨论

网络 与信息安全

若函数 f(z) 在无穷远点 $z \to \infty$ 的去心邻域 $R < |z| < \infty$ 内解析,则称 $z \to \infty$ 为 f(z)的孤立奇点。

因此, 其洛朗级数为:

作如下变换,令

$$f(z) = \sum_{k=-\infty}^{\infty} c_k z^k \qquad \qquad \xi = \frac{1}{z}$$

则:

$$\varphi(\xi) = f(\frac{1}{\xi}) = \sum_{k=-\infty}^{\infty} c_k \xi^{-k}$$

在 $0 < |z| < \frac{1}{R}$ 内解析, $\xi = 0$ 为 $\varphi(\xi)$ 的孤立奇点。这样我们可以通过 $\xi = 0$ 的类型来定义孤立奇点 $z \to \infty$ 的类型

网络 与 信息安全

定义:

设 $\xi=0$ 是函数 $\varphi(\xi)=f(\frac{1}{\xi})$ 的孤立奇点,若 $\xi=0$ 为 $\varphi(\xi)$ 的可去 奇点,则称 $z\to\infty$ 为 f(z)的可去奇点;若 $\xi=0$ 为 $\varphi(\xi)$ 的 m 级 极点,则称 $z\to\infty$ 为 f(z)的 m 级极点;若 $\xi=0$ 为 $\varphi(\xi)$ 的本性 奇点,则称 $z\to\infty$ 为 f(z)的本性奇点。

例: 函数 $f(z) = \frac{z}{z-2}$ 在 $z \to \infty$ 的去心邻域为: $2 < |z| < \infty$ 的洛朗级数为

$$f(z) = \frac{z}{z-2} = 1 + \frac{2}{z} + \left(\frac{2}{z}\right)^2 + \left(\frac{2}{z}\right)^3 + \cdots$$

中不含Z的正幂项,所以

 $z \to \infty$ 是 f(z) 的可去奇点。

若
$$f(\infty) = 1$$
 , 则 $f(z)$ 在 $z \rightarrow \infty$ 解析

网络 与 信息安全

例: 判断
$$z \to \infty$$
 是函数 $f(z)$

$$f(z) = \frac{z^6 + 1}{z(z+1)^2}$$

的什么类型的奇点?如果是极点,指出它的级。

$$\mathbf{M}$$
: $\Leftrightarrow \xi = \frac{1}{z}$ 则

$$\varphi(\xi) = f(\frac{1}{\xi}) = \frac{1 + \xi^6}{\xi^3 (1 + \xi)^2} = \frac{1}{\xi^3} \frac{1 + \xi^6}{(1 + \xi)^2} = \frac{1}{\xi^3} g(\xi)$$

由于 $g(\xi)$ 在 $\xi=0$ 解析,且 $g(\xi)\neq 0$

所以 $\xi=0$ 是 $\varphi(\xi)$ 的二级极点,因此, $z\to\infty$ 是 f(z) 的二级极点。

明德至善 博学笃行

网络 与 信息安全

谢谢!