WO 2005/050211 PCT/E

SEQUENCE LISTING

<110> Bayer HealthCare AG

<120> Diagnostics and Therapeutics for Diseases Associated with G Protein-Coupled Receptor 85 (GPR85)

-1-

<130> BHC 03 01 056

<160> 5

<170> PatentIn version 3.1

<210> 1

<211> 3685

<212> DNA

<213> Homo sapiens

<400> 1

ggcacgagga ttttactgct gtctcaagat cagattatta ctgtagagaa gatttttatt 60 ttttgtttca ttaacagatt attataaagc aaaaagcatg cagaaaaaga agcagacgtt 120 180 ttacattggg aattaatgaa agcgtgtctg ctagttttgg gtaggagaac tgggaagttg 240 ttqcttaaaa ttttatatca cctccacaaa caaaactctt cggaaatggt aaaataagaa 300 aatgcatgat totagaggca ttootaagca cocacgtgto aggotttgtg gtgtotgtgg tatcatccga ccgtttggac tggttagggc ttactgagag ctccatttct ggaaagcctt 360 420 acaagactga ggaatatcag actgcgaatc accgggaacg gttcctttgc agcacagaag caatctctct ccccatcttc gcatattctg atggcaaaac aagtggaaga aaagaggaag 480 catgactgca gatcagatca gttctctttg tggattatat tttcagtaaa atgtatggat 540 600 ctatcttttc cttgttctta tatctagatc atgagacttg actgaggctg tatccttatc ctccatccat ctatggcgaa ctatagccat gcagctgaca acattttgca aaatctctcg 660 720 cctctaacag cctttctgaa actgacttcc ttgggtttca taataggagt cagcgtggtg ggcaacctcc tgatctccat tttgctagtg aaagataaga ccttgcatag agcaccttac 780 840 tacttcctgt tggatctttg ctgttcagat atcctcagat ctgcaatttg tttcccattt gtgttcaact ctgtcaaaaa tggctctacc tggacttatg ggactctgac ttgcaaagtg 900 attgcctttc tgggggtttt gtcctgtttc cacactgctt tcatgctctt ctgcatcagt 960 1020 gtcaccagat acttagctat cgcccatcac cgcttctata caaagaggct gaccttttgg 1080 acgtgtctgg ctgtgatctg tatggtgtgg actctgtctg tggccatggc atttcccccg gttttagacg tgggcactta ctcattcatt agggaggaag atcaatgcac cttccaacac 1140 cgctccttca gggctaatga ttccttagga tttatgctgc ttcttgctct catcctccta 1200 gccacacage ttgtctacct caagetgata tttttegtce acgategaag aaaaatgaag 1260 ccagtccagt ttgtagcagc agtcagccag aactggactt ttcatggtcc tggagccagt 1320 1380 ggccaggcag ctgccaattg gctagcagga tttggaaggg gtcccacacc acccaccttg 1440 ctgggcatca ggcaaaatgc aaacaccaca ggcagaagaa ggctattggt cttagacgag 1500 ttcaaaatgg agaaaagaat cagcagaatg ttctatataa tgacttttct gtttctaacc ttgtggggcc cctacctggt ggcctgttat tggagagttt ttgcaagagg gcctgtagta 1560 1620 ccagggggat ttctaacagc tgctgtctgg atgagttttg cccaagcagg aatcaatcct

WO 2005/050211 PCT/EP2004/011808

- 2 -

tttgtctgca ttttctcaaa cagggagctg aggcgctgtt tcagcacaac ccttctttac 1680 tgcagaaaat ccaggttacc aagggaacct tactgtgtta tatgagggag catctgtaaa 1740 tetttageet tgtgaaaact aacettetet getgageaat tgtggeecat agecatattt 1800 tgagaagaaa ttcaagaatg gaatcagcag ttttaaggat ttgggcaaca ttctgcagtc 1860 tttgcaatag ttcacctata atcctatttt aaatctcaga gtgatcctgc tgactgccag 1920 caaaggtttg taattaagaa gggactgaac cactgcccta agtttcttta tgtggtcaaa 1980 aactagataa tgaaagtagc aggtgctaag tatcagtgct aaatgctctg tatgtcacta 2040 catatgaaaa aacatcaaaa aacaattagc attggacatc ttaataaatt aagttgacat 2100 gaggtaaatg tgttgataaa aactaatttt agaagtttga agactttaaa acatttcata 2160 ctactattgt tttgcaaaga ctaaaatatt tggggactta aagtactgta atccactaaa 2220 2280 gacgtgccaa tgaattattg gaatatcaca ctttaaaaac cgccttgtaa gttctgggga gcattccaaa gcagtatatt ggttccaatt agagtttact ttttttgtat taatacattg 2340 ctatttctaa ataccacttt cctcatctac tagtaagatt gctagcattg aactgtatta 2400 tgtggttttt gttgatttgg tataaagttt ttccaattca tttatatttt acaaatgcta 2460 gatattggtc tgggaggcaa cattaatggt accagcctgt cacaactgag cagttctaat 2520 aatgcagaat aaatacatgt tgccttaaag ggttatctag tatccttcat cttatttagc 2580 actggagcaa atagccaagg gaaatcaaat cagtaactgg tcatggtcat gcatctaaaa 2640 gtgcatggaa gatcatttat tactttttcc ttttttctc acatggtttg aaacttaaag 2700 tgcacatcac tgaaataatg agattttctt ctacggtgtg ctaccctttc taaactgttc 2760 taagaagcag gcagttgatg tatgtttata ttttaagtca gctgtcaagg ggagaccaca 2820 gccttagtat gacatcctgc acaatttgtg aagcatttat tctactgaag gcacagtctt 2880 gtttatactt tctgcacatt cagtgtattg gtaatttaaa ttattcagt tttaacttgt 2940 gaaagettat attatgattt etggtatttt agaaatacat tagagtetgt gagteteatt 3000 ctttaagata cagatgtgtg aacttcaata taaagttgca tttgccaaaa tttacccgtg 3060 tagcctgtta attttcttga aataagtttt acatttttgg cacataacaa cgtttttttt 3120 aatttgggag gcaagcacaa actaggaaga ctagctttat tatggttttg ctttttgatt 3180 cttgtagcta ctatattcca gactggaaat gtatgaatga taatcaacat aatgctgata 3240 aactgacata atattatctg taaaagcatt atttggtagt ttattataat catccctcta 3300 ttattcttaa atgccagtag tatttagaga tgtgtacctg cttagttaat tggctcagaa 3360 ttttaatata aacatcacac tttaatttgg agcatagtac catagaaatt tggggttcta 3420 aatatacaac ttgtaagaag aatggtttac actaacatta tgacaaaact agaaaaagtt 3480 attatttttg tttgctttct gttgttttgt ttattggttg gtttttgtga agtttatttt 3540 3600 ttttttggta tttgataatt aagattagga atctaataac acagaattcc atattgctat agtacttctg taaagagaat atcaatataa ataaggaaaa taaatcaatg aaatgtttca 3660 3685 atggttaaaa aaaaaaaaaa aaaaa

<210> 2

<211> 370

<212> PRT

<213> Homo sapiens

20

<400> 2

Met Ala Asn Tyr Ser His Ala Ala Asp Asn Ile Leu Gln Asn Leu Ser

1 5 10 15

Pro Leu Thr Ala Phe Leu Lys Leu Thr Ser Leu Gly Phe Ile Ile Gly

25

30

- 3 -

Val	Ser	Val	Val	Gly	Asn	Leu	Leu	Ile	Ser	Ile	Leu	Leu	Val	Lys	Asp
		35					40					45			
Lys	Thr	Leu	His	Arg	Ala	Pro	Tyr	Tyr	Phe	Leu	Leu	Asp	Leu	Сув	Сув
	50					55					60				
Ser	Asp	Ile	Leu	Arg	Ser	Ala	Ile	Cys	Phe	Pro	Phe	Val	Phe	Asn	Ser
65					70					75					80
Val	Lys	Asn	Gly	Ser	Thr	Trp	Thr	Tyr	Gly	Thr	Leu	Thr	Сув	Lys	Val
				85					90					95	
Ile	Ala	Phe	Leu	Gly	Val	Leu	Ser	Сув	Phe	His	Thr	Ala	Phe	Met	Leu
			100					105					110		
Phe	Cys	Ile	Ser	Val	Thr	Arg	Tyr	Leu	Ala	Ile	Ala	His	His	Arg	Phe
		115					120					125			
Tyr	Thr	Lys	Arg	Leu	Thr	Phe	Trp	Thr	Сув	Leu	Ala	Val	Ile	Сув	Met
	130					135					140				
Val	Trp	Thr	Leu	Ser	Val	Àla	Met	Ala	Phe	Pro	Pro	Val	Leu	Asp	Val
145					150					155	-				160
Gly	Thr	Tyr	Ser	Phe	Ile	Arg	Glu	Glu	Asp	Gln	Сув	Thr	Phe	Gln	His
				165					170					175	
Arg	Ser	Phe	Arg	Ala	Asn	Asp	Ser	Leu	Gly	Phe	Met	Leu	Leu	Leu	Ala
			180					185					190		
Leu	Ile	Leu	Leu	Ala	Thr	Gln	Leu	Val	Tyr	Leu	Lys	Leu	Ile	Phe	Phe
		195					200					205			
Val	His	Asp	Arg	Arg	Lys	Met	Lys	Pro	Val	Gln	Phe	Val	Ala	Ala	Val
	210					215					220				
Ser	Gln	Asn	Trp	Thr	Phe	His	Gly	Pro	Gly	Ala	Ser	Gly	Gln	Ala	Ala
225					230					235					240
Ala	Asn	Trp	Leu	Ala	Gly	Phe	Gly	Arg	Gly	Pro	Thr	Pro	Pro	Thr	Leu
				245					250					255	
Leu	Gly	Ile	Arg	Gln	Asn	Ala	Asn	Thr	Thr	Gly	Arg	Arg	Arg	Leu	Leu
			260					265					270		
Val	Leu	Asp	Glu	Phe	Lys	Met	Glu	Lys	Arg	Ile	Ser	Arg	Met	Phe	Туг
		275					280					285			
Ile	Met	Thr	Phe	Leu	Phe	Leu	Thr	Leu	Trp	Gly	Pro	Tyr	Leu	Val	Ala
	290					295					300				
Cys	Tyr	Trp	Arg	Val	Phe	Ala	Arg	Gly	Pro	Val	Val	Pro	Gly	Gly	Phe
305					310					315					320
Leu	Thr	Ala	Ala	Val	Trp	Met	Ser	Phe	Ala	Gln	Ala	Gly	Ile	Asn	Pro
				325					330					335	
Phe	Val	Сув		Phe	Ser	Asn	Arg	Glu	Leu.	Arg	Arg	Cys	Phe	Ser	Thr
			340					345					350		
Thr	Leu		Tyr	Сув	Arg	Lys		Arg	Leu	Pro	Arg		Pro	Tyr	Cys
		355					360					365			
Val	Ile														

370

WO 2005/050211 PCT/EP2004/011808

- 4 -

<210>	3								
<211>	20								
<212>	DNA								
<213>	artificial sequence								
<220>									
<223>	forward primer								
<400>									
tttgca	agag ggcctgtagt	20							
<210>									
<211> <212>									
	artificial sequence								
\ 21 37	artificial seducate								
<220>									
<223>	reverse primer								
<400>	4								
tgggca	tgggcaaaac tcatccaga 19								
<210>	5								
<211>	25								
<212>									
<213>	artificial sequence								
<220>									
<223>	probe								
400									
<400>									
ccagggggat ttctaacagc tgctg 25									