Task 3- GRIP at Sparks Foundation

Decision Tree Algorithm on Iris Dataset

To create the decision tree classifier and visualizing it

```
In [1]: # Importing libraries in Python
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_csv("D://Dipali//Datasets//iris.csv")
```

In [3]: df.head()

Out[3]:

Out[4]:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

```
In [4]: df.tail()
```

Create PDF in your applications with the Pdfcrowd HTML to PDF API

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

```
In [5]: df.columns
Out[5]: Index(['Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width',
               'Species'],
              dtype='object')
In [6]: df.shape
Out[6]: (150, 5)
In [7]: df.isnull().any()
Out[7]: Sepal.Length
                        False
        Sepal.Width
                        False
        Petal.Length
                        False
        Petal.Width
                        False
        Species
                        False
        dtype: bool
In [8]: df.dtypes
Out[8]: Sepal.Length
                        float64
        Sepal.Width
                        float64
        Petal.Length
                        float64
        Petal.Width
                        float64
        Species
                         object
        dtype: object
```

In [9]: df.describe()

Out[9]:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Exploratory Data Analysis

```
In [10]: df['Petal.Length'].plot.hist()
  plt.show()
```



```
In [11]: sns.pairplot(df, hue='Species')
```

Out[11]: <seaborn.axisgrid.PairGrid at 0x98a3438>

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
16	5.4	3.9	1.3	0.4
17	5.1	3.5	1.4	0.3
18	5.7	3.8	1.7	0.3
19	5.1	3.8	1.5	0.3
20	5.4	3.4	1.7	0.2
21	5.1	3.7	1.5	0.4

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
22	4.6	3.6	1.0	0.2
23	5.1	3.3	1.7	0.5
24	4.8	3.4	1.9	0.2
25	5.0	3.0	1.6	0.2
26	5.0	3.4	1.6	0.4
27	5.2	3.5	1.5	0.2
28	5.2	3.4	1.4	0.2
29	4.7	3.2	1.6	0.2
120	6.9	3.2	5.7	2.3
121	5.6	2.8	4.9	2.0
122	7.7	2.8	6.7	2.0
123	6.3	2.7	4.9	1.8
124	6.7	3.3	5.7	2.1
125	7.2	3.2	6.0	1.8
126	6.2	2.8	4.8	1.8
127	6.1	3.0	4.9	1.8
128	6.4	2.8	5.6	2.1
129	7.2	3.0	5.8	1.6
130	7.4	2.8	6.1	1.9
131	7.9	3.8	6.4	2.0
132	6.4	2.8	5.6	2.2

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
133	6.3	2.8	5.1	1.5
134	6.1	2.6	5.6	1.4
135	7.7	3.0	6.1	2.3
136	6.3	3.4	5.6	2.4
137	6.4	3.1	5.5	1.8
138	6.0	3.0	4.8	1.8
139	6.9	3.1	5.4	2.1
140	6.7	3.1	5.6	2.4
141	6.9	3.1	5.1	2.3
142	5.8	2.7	5.1	1.9
143	6.8	3.2	5.9	2.3
144	6.7	3.3	5.7	2.5
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

1
Species
setosa

	Species
22	setosa
23	setosa
24	setosa
25	setosa
26	setosa
27	setosa
28	setosa
29	setosa
120	virginica
121	virginica
122	virginica
123	virginica
124	virginica
125	virginica
126	virginica
127	virginica
128	virginica
129	virginica
130	virginica
131	virginica
132	virginica

	Species
133	virginica
134	virginica
135	virginica
136	virginica
137	virginica
138	virginica
139	virginica
140	virginica
141	virginica
142	virginica
143	virginica
144	virginica
145	virginica
146	virginica
147	virginica
148	virginica
149	virginica

150 rows × 1 columns

```
In []: # Plot normal probability plot
In [15]: numeric_col.head()
    charcter_col.head()
```

```
Out[15]:
           Species
         0 setosa
         1 setosa
         2 setosa
         3 setosa
         4 setosa
In [16]: from statsmodels.graphics.gofplots import qqplot
         from matplotlib import pyplot
In [17]: # plot one by one column in dataframe
         for i in numeric_col:
             print("----")
             print(i)
             # To check the normality by graph
             qqplot(df[i], line='s')
             pyplot.show()
         Sepal.Length
```


Petal.Width


```
In [18]: sns.countplot(df['Species'])
Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0xb3c19b0>
```


Model Building and Evaluation

```
In [19]: from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier

In [20]: X=df.drop('Species',axis=1)
    y=df['Species']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

In [21]: tree=DecisionTreeClassifier()
    tree.fit(X train,y train)
```

```
predic=tree.predict(X_test)
print("Decision Tree is ready")
```

Decision Tree is ready

Classification Report

```
In [22]: from sklearn.metrics import classification_report,confusion_matrix
    from sklearn.metrics import accuracy_score
    print(classification_report(y_test,predic))
```

	precision	recall	fl-score	support	
setosa	1.00	1.00	1.00	8	
versicolor	1.00	0.75	0.86	8	
virginica	0.88	1.00	0.93	14	
accuracy			0.93	30	
macro avg	0.96	0.92	0.93	30	
weighted avg	0.94	0.93	0.93	30	

```
In [23]: print(confusion_matrix(y_test,predic))

[[ 8  0  0]
       [ 0  6  2]
       [ 0  0  14]]
```

```
In [24]: print(accuracy_score(y_test,predic))
```

0.933333333333333

```
In [0]: # Install required libraries
!pip install pydotplus
!apt-get install graphviz -y
```

Decision tree visualization

Out[0]:

