

Manuel Ferre y Paloma de la Puente

Centre for Automation and Robotics

Centro de Automática y Robótica Madrid, Spain

Índice

- 1. Introducción
- 2. Instalación de Gazebo
- 3. Simulador Gazebo stand-alone
- 4. Crear simulaciones con Gazebo
- 5. Conexión Gazebo ROS2

Introducción Gazebo

El siguiente gráfico muestra la evolución de Gazebo desde su primer lanzamiento en 2002, en estos momentos se puede instalar:

- Gazebo Classic 11, la versión original del simulador
- Ignition, la versión actualizada de Gazebo que arrancó en 2019, y
- Gazebo Garden, la continuación de Ignition que cambió de nombre.

Combinaciones entre ROS y Gazebo

Aspecto de gazebo 11 utilizado en ROS

Aspecto de ignition

Aspecto de ignition

Arquitectura cliente/servidor de Ignition Gazebo, basada en entidades.

Arquitectura cliente/servidor de Ignition Gazebo.

Índice

- 1. Introducción
- 2. Instalación de Gazebo
- 3. Simulador Gazebo stand-alone
- 4. Crear simulaciones con Gazebo
- 5. Conexión Gazebo ROS2

Instalación Gazebo

Instalación de Gazebo

El siguiente cuadro muestra el mejor rendimiento para cada versión de Ubuntu y Gazebo

	GZ Citadel (LTS)	GZ Fortress (LTS)	GZ Garden	GZ Harmonic (LTS)
ROS 2 Jazzy (LTS) ¹	×	×	+	$\overline{\mathbf{v}}$
ROS 2 Rolling	×	✓	+	+
ROS 2 Iron	×	$ \checkmark $	+	+
ROS 2 Humble (LTS)	×	✓	+	+
ROS 2 Foxy (LTS)	$\overline{\mathbf{v}}$	×	×	×
ROS 1 Noetic (LTS)		+	×	×

- - Recommended combination
- X Incompatible / not possible.
- Possible, but use with caution. These combinations of ROS and Gazebo can be made to work together, but some effort is required.

https://gazebosim.org/docs/latest/ros_installation

Instalación de Gazebo

https://gazebosim.org/docs/fortress/install (todas las librerías)

En caso de instalar con ROS se recomienda otra instalación

Tutorials

Welcome to the Gazebo Sim tutorials. These tutorials will guide you through the process of understanding the capabilities of the Gazebo Sim library and how to use the library effectively.

Getting Started

- Installation: Install instructions.
- · Terminology: List of terms used across the documentation.
- GUI configuration: Customizing your layout.
- · Server configuration: Customizing what system plugins are loaded.
- . Model Command: Use the CLI to get information about the models in a simulation.
- · Reset simulation Reset simulation
- Finding resources: The different ways in which Gazebo looks for files.
- · Debugging: Information about debugging Gazebo.

GUI and rendering features

- · Move Camera to model Move camera to model
- . Model Photo Shoot Taking perspective, top, front, and side pictures of a model
- Video Recorder: Record videos from the 3D render window.
- Headless rendering: Access the GPU on a remote machine to produce sensor data without an X server.
- · Apply Force and Torque: Applying forces and/or torques to models during simulation through the GUI.
- . Mouse Drag: Move models by dragging them in the scene using forces and torques.

Instalación de Gazebo

INSTALACIÓN DE GAZEBO CON ROS

Instalación en función de la versión de ROS

```
$ sudo apt-get install ros-${ROS_DISTRO}-ros-gz
```

\${ROS_DISTRO} == humble, rolling, foxy, noetic, etc.

Configuración:

- Ubuntu Jammy 22.04
- ROS 2 Humble Hawksbill
- Gazebo Fortress (Gazebo Sim, version 6.15.0)

https://gazebosim.org/docs/latest/ros_installation

Índice

- 1. Introducción
- 2. Instalación de Gazebo
- 3. Simulador Gazebo stand-alone
- 4. Crear simulaciones con Gazebo
- 5. Conexión Gazebo ROS2

Arrancar Gazebo

ign gazebo

Incluir varios objetos en la simulación. Posteriormente guardar el mundo (ejemplo1.sdf), para utilizarlo posteriormente.

ign gazebo ejemplo1.sdf

Primeros pasos con Gazebo

Arrancar Gazebo

ign gazebo shapes.sdf

Primeros pasos con Gazebo

Ejercicios:

- Manipular los objetos con los controles
- Cambiar la representación del suelo con el pluging 'Grid config'

Tutoriales

Tutoriales de Gazebo

https://gazebosim.org/docs/fortress/tutorials

Construyendo un robot en Gazebo

Copiar el fichero: building_robot.sdf

Ejecutar: ign gazebo building robot.sdf

https://gazebosim.org/docs/fortress/building_robot

Construyendo un robot en Gazebo

Copiar el fichero: ejemplo.sdf

Ejecutar: ign gazebo ejemploCoche.sdf

https://gazebosim.org/docs/fortress/building_robot

SDF

SDF: Simulation Description Format

Components of SDF Models

Links: A link contains the physical properties of one body of the model. This can be a wheel, or a link in a joint chain. Each link may contain many collision and visual elements. Try to reduce the number of links in your models in order to improve performance and stability. For example, a table model could consist of 5 links (4 for the legs and 1 for the top) connected via joints. However, this is overly complex, especially since the joints will never move. Instead, create the table with 1 link and 5 collision elements.

Collision: A collision element encapsulates a geometry that is used for collision checking. This can be a simple shape (which is preferred), or a triangle mesh (which consumes greater resources). A link may contain many collision elements.

Visual: A visual element is used to visualize parts of a link. A link may contain 0 or more visual elements.

Inertial: The inertial element describes the dynamic properties of the link, such as mass and rotational inertia matrix.

Sensor: A sensor collects data from the world for use in plugins. A link may contain 0 or more sensors.

Light: A light element describes a light source attached to a link. A link may contain 0 or more lights.

Joints: A joint connects two links. A parent and child relationship is established along with other parameters such as axis of rotation, and joint limits.

Plugins: A plugin is a shared library created by a third party to control a model.

Construcción de un robot

COMPONENTES DE UN MODELO SDF

Links

Propiedades físicas de un objeto del modelo

(Collision, Visual, Inertial, Sensor).

Joints

Conector entre dos o más Links.

Plugins

Código que realiza el control del modelo.

Formatos de ficheros

Existe un gran número de simuladores para robots y cada uno de ellos tiene su propio formato nativo de datos, y admite otros formatos de lectura de ficheros 3D.

Simulador	Programación	Formatos que utiliza	Entorno
Gazebo	C++	SDF, URDF, OBJ, STL, Collada	Ubuntu / ROS
RoboDK	Python,	SLDPRT, SLDASM, STEP, OBJ, STL, 3DS, Collada, VRML, UR DF,	Windows, y otras plataformas
Webots	C++	WBT, VRML, X3D, 3DS, Blen der, BVH, Collada, FBX, STL, OBJ, URDF,	Windows
Coppelia/Vrep	C, Java, LUA	IRDF, Collada, DXF,	Ubuntu, Windows

Construyendo un robot en Gazebo

Copiar el fichero: ejemplo.sdf

Ejecutar: ign gazebo ejemploCoche.sdf

EJERCICIO: añadir 1 ruedas esférica adicional en la parte frontal del vehículo

https://gazebosim.org/docs/fortress/building_robot

Índice

- 1. Introducción
- 2. Instalación de Gazebo
- 3. Simulador Gazebo stand-alone
- 4. Crear simulaciones con Gazebo
- 5. Conexión Gazebo ROS2

Construyendo un mundo en Gazebo

El formato SDF se utiliza para la creación de mundos en Gazebo.

https://gazebosim.org/docs/fortress/sdf_worlds

Construyendo un mundo en Gazebo

Los componentes más importantes son:

- Motor físico: determina la interacción
- Plugins: código de ejecución
- Light: iluminación de la simulación
- Añadir modelos: desde Fuel

https://gazebosim.org/docs/fortress/sdf_worlds

Construyendo un mundo en Gazebo

Los componentes más importantes son:

- GUI: La interfaz es configurable, y ofrece:
 - Estadísticas
 - Árbol de entidades
 - Tamaño de la ventana
 - Etc....

https://gazebosim.org/docs/fortress/sdf_worlds

Construyendo un robot en Gazebo

EJERCICIO: arrancar gazebo con el ejemplo del Nao y crear un nuevo mundo con 2 robots Nao

Construyendo un robot en Gazebo

EJERCICIO: arrancar gazebo con el ejemplo del Nao y crear un nuevo mundo con 2 robots Nao

SOLUCIÓN

Índice

- 1. Introducción
- 2. Instalación de Gazebo
- 3. Simulador Gazebo stand-alone
- 4. Crear simulaciones con Gazebo
- 5. Conexión Gazebo ROS2

El siguiente código implementa el código para mover el robot con 2 ruedas direccionales

```
<plugin
    filename="libignition-gazebo-diff-drive-system.so"
    name="ignition::gazebo::systems::DiffDrive">
    <left_joint>left_wheel_joint</left_joint>
        <right_joint>right_wheel_joint</right_joint>
        <wheel_separation>1.2</wheel_separation>
        <wheel_radius>0.4</wheel_radius>
        <odom_publish_frequency>1</odom_publish_frequency>
        <topic>cmd_vel</topic>
</plugin>
```

https://gazebosim.org/docs/fortress/moving_robot

Mover el robot en Gazebo

Ejecutar la simulación del robot en un terminal

ign gazebo mover_robot.sdf

Desde otro terminal se controla la velocidad del vehículo

```
ign topic -t "/cmd_vel" -m ignition.msgs.Twist -p
"linear: {x: 0.5}, angular: {z: 0.05}"
```

https://gazebosim.org/docs/fortress/moving_robot

Mover el robot en Gazebo

Ejercicio: añadir objetos y que choque el vehículo

Mover el robot en Gazebo

https://gazebosim.org/docs/fortress/moving_robot

Ejercicio: mover el robot desde el teclado

Revisar el tutorial y seguir las instrucciones

En el siguiente tutorial describe cómo añadir sensores al vehículo y al entorno, en concreto:

- IMU
- Contact sensor
- Lidar

https://gazebosim.org/docs/fortress/sensors

Sensor IMU:

- 1. Añadir el pluging de la IMU

- 2. Añadir el sensor al link del chasis (al final)

Sensor IMU:

- 3. Ejecutar la simulación y pulsar 'Play'

- 4. Visualizar la información de la IMU

Sensor de contacto en un muro:

- 1. Añadir el objeto del muro al mundo

```
<model name='wall'>
    <static>true</static>
    <pose>5 0 0 0 0 0</pose><!--pose relative to the world-->
    <link name='box'>
        <pose/>
        <visual name='visual'>
            <geometry>
                <box>
                    <size>0.5 10.0 2.0</size>
                </box>
            </geometry>
            <!--let's add color to our link-->
            <material>
                <ambient>0.0 0.0 1.0 1</ambient>
                <diffuse>0.0 0.0 1.0 1</diffuse>
                <specular>0.0 0.0 1.0 1
            </material>
        </visual>
        <collision name='collision'>
            <geometry>
                <box>
                    <size>0.5 10.0 2.0</size>
                </box>
            </geometry>
        </collision>
   </link>
</model>
```


Sensor de contacto en un muro:

 2. Añadir el pluging y el sensor de contacto al muro

Sensor de contacto en un muro:

- 3. Añadir el pluging de detección de contacto

Sensor de contacto en un muro:

- 4. Añadir el pluging de respuesta al evento

Sensor de contacto en un muro:

- 5. Ejecutar los programas

```
ign gazebo sensor_contacto.sdf
```

ign topic -e -t /wall/touched

