Recap: Bayesian Idea

- Parameter of interest: θ (e.g. mean height μ)
- **Data model**: Conditional on θ , data x is distributed according to pf/pdf $\pi(x)$:

$$\pi(x|\theta) \propto L(\theta;x) \quad \leftarrow \text{the likelihood}$$

■ **Prior**: Prior knowledge (i.e. *before* collecting data) about θ is summaries by a pf/pdf,

$$\pi(\theta) \leftarrow \mathsf{the}\;\mathsf{prior}$$

■ **Posterior**: The updated knowledge about θ after collecting data: The conditional distribution of θ given data x:

$$\pi(\theta|x) = \frac{\pi(x|\theta)\pi(\theta)}{\pi(\theta)} \propto \pi(x|\theta)\pi(\theta)$$
 "posterior = likelihood × prior"

Recap: Normal model

Data:
$$X = (X_1, X_2, ..., X_n)$$
.

Data model: $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau)$

$$\pi(\mathbf{x}|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

We have considered two cases

- 1. Unknown mean μ , known precision au
 - Prior: $\pi(\mu) = \mathcal{N}(\mu_0, \tau_0)$
 - ▶ Posterior: $\pi(\mu|x) = \mathcal{N}(\frac{n\tau\bar{x}+\tau_0\mu_0}{n\tau+\tau_0}, n\tau+\tau_0)$
- 2. Unknown precision τ , know mean μ
 - Prior: $\pi(\tau) = Gamma(\alpha, \beta)$
 - ▶ **Posterior**: $\pi(\tau|x) = Gamma(\frac{n}{2} + \alpha, \{\frac{1}{2}\sum_{i=1}^{n}(x_i \mu)^2 + \frac{1}{\beta}\}^{-1})$

What if both mean and precision are unknown?

Normal example: mean and precision unknown

Assume both μ and τ unknown.

Prior: $\pi(\mu, \tau)$

Posterior: $\pi(\mu, \tau | \mathbf{x}) \propto \pi(\mathbf{x} | \mu, \tau) \pi(\mu, \tau)$.

Choice of prior: Assume μ and τ a priori independent, and normal and gamma, respectively. Specifically $\pi(\mu,\tau)=\pi(\mu)\pi(\tau)$, where

$$\blacksquare \ \pi(\mu) = \mathcal{N}(\mu_0, \tau_0)$$

$$\blacksquare \ \pi(\tau) = Gamma(\alpha, \beta)$$

Posterior density:

Normal example: mean and precision unknown

One question: What is the posterior marginal distribution of μ ? It has density

$$\pi(\mu|\mathbf{x}) = \int \pi(\mu, \tau|\mathbf{x}) d\tau.$$

The integral is easy, but $\pi(\mu|\mathbf{x})$ is not a standard distribution.

Solution: Turn to simulations.

Simulation: Toy example

In the normal case, when μ is known, the posterior distribution of τ is

$$\pi(\tau|x) = Gamma\left(\frac{n}{2} + \alpha, \left\{\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2 + \frac{1}{\beta}\right\}^{-1}\right)$$

Assume that

- We do not know the mean and variance of $Gamma(\cdot, \cdot)$.
- We *cannot* integrate $\pi(\tau|x)$.
- We can simulate $\tau \sim \pi(\tau|x)$.

Now answer these questions:

- What is the posterior mean of τ ?
- What is the posterior probability that $\tau > 0.025$?

Simulating an answer

Assume

- \blacksquare we have generated $\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(t)} \stackrel{iid}{\sim} \pi(\tau|\mathbf{x}).$
- \blacksquare that h is a real function defined on \mathbf{R} .

An estimate of $\mathbb{E}[h(\tau)|\mathbf{x}]$ is given by

$$\frac{1}{t} \sum_{i=1}^{t} h(\tau^{(i)})$$

Answer to question 1: An estimate of the posterior mean is

$$\frac{1}{t} \sum_{i=1}^{t} \tau^{(i)}$$

Answer to question 2: Recall that $P(\tau > 0.025 | \mathbf{x}) = \mathbb{E}[\mathbf{1}[\tau > 0.025]]$, hence an estimate of the probability is

$$\frac{1}{t} \sum_{i=1}^{t} \mathbf{1}[\tau^{(i)} > 0.025]$$

Unknown mean and precision: Simulating an answer

 ${\bf Setup} :$ We now return to the original problem: Both μ and τ are unknown.

Problem: We could not say much, e.g. we could not recognise the marginal posterior of μ .

Can do: We know the *conditional* posterior distribution of μ given τ (and vice versa).

$$\pi(\mu|\tau, \mathbf{x}) = \mathcal{N}(\frac{n\tau\bar{x} + \tau_0\mu_0}{n\tau + \tau_0}, n\tau + \tau_0)$$

$$\pi(\tau|\mu, \mathbf{x}) = Gamma(\frac{n}{2} + \alpha, \{\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 + \frac{1}{\beta}\}^{-1})$$

The idea is now to (attempt to) simulate $\pi(\mu, \tau | \mathbf{x})$ by alternating between

- \blacksquare simulating μ conditional on τ
- \blacksquare simulating τ conditional on μ

Later in the course we will show that approach in fact works (in a certain sense).

As an algorithm

- Choose initial values $\mu^{(0)}$ and $\tau^{(0)}$.
- For i = 1, 2, ..., t
 - 1. Conditional on $\tau^{(i-1)}$, generate

$$\mu^{(i)}|\mathbf{x}, \tau^{(i-1)} \sim \mathcal{N}\left(\frac{n\tau^{(i-1)}\bar{x} + \tau_0\mu_0}{n\tau^{(i-1)} + \tau_0}, n\tau^{(i-1)} + \tau_0\right)$$

2. Conditional on $\mu^{(i)}$ generate

$$\tau^{(i)}|\mathbf{x}, \mu^{(i)} \sim Gamma(\frac{n}{2} + \alpha, \{\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu^{(i)})^2 + \frac{1}{\beta}\}^{-1})$$

■ This algorithm generates a sequence of parameter pairs:

$$(\mu^{(0)}, \tau^{(0)}), (\mu^{(1)}, \tau^{(1)}), \dots, (\mu^{(t)}, \tau^{(t)}),$$

- \blacksquare $(\mu^{(i)}, \tau^{(i)})$ is approximately a sample from the posterior $\pi(\mu, \tau | \mathbf{x})$.
- \blacksquare The higher i is, the better this approximation is.
- Algorithm is an example of a *Gibbs sampler*.
- We have generated a realisation of a Markov chain.

Simulated posterior distribution (t = 100)

Simulated joint posterior distribution (t = 100)

Simulated joint posterior distribution (t = 10,000)

Marginal posterior distributions

The Gibbs sampler — The general algorithm

Aim: We want to sample $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ from a pdf/pf $\pi(\boldsymbol{\theta})$. Assume $\theta_i \in \Omega_i \subseteq \mathbf{R}^{d_i}$. Then, $\theta \in \Omega_1 \times \Omega_2 \times \dots \times \Omega_k \subset \mathbf{R}^{d_1 + d_2 + \dots + d_k}$

We can now (under some conditions) generate an *approximate* sample from $\pi(\theta)$ as follows:

Gibbs Sampler

- Choose initial value $\boldsymbol{\theta}^{(0)} = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_k^{(0)}).$
- For i = 1, 2, ..., t
 - 1. Generate $\theta_1^{(i)} \sim \pi(\theta_1 | \theta_2^{(i-1)}, \theta_3^{(i-1)}, \dots, \theta_k^{(i-1)})$
 - 2. Generate $\theta_2^{(i)} \sim \pi(\theta_2|\theta_1^{(i)},\theta_3^{(i-1)},\ldots,\theta_k^{(i-1)})$
 - :
 - k. Generate $heta_k^{(i)} \sim \pi(heta_k| heta_1^{(i)}, heta_2^{(i)},\dots, heta_{k-1}^{(i)})$

The higher i is the closer $\boldsymbol{\theta}^{(i)} = (\theta_1^{(i)}, \theta_2^{(i)}, \dots, \theta_k^{(i)})$ is to being a sample from $\pi(\boldsymbol{\theta})$.

Example: Marriage rates in Italy!

For the years 1936 to 1951 (16 years) we have observed the marriage rates 1000 in Italy.

Data: $\mathbf{y} = (y_1, y_2, \dots, y_{16}).$

Italian marriages: Model

Model: Conditional on (true) rates $\lambda_1, \lambda_2, \dots, \lambda_{16}$ the observed rates y_1, y_2, \dots, y_{16} are independent and $y_i \sim Pois(\lambda_i)$:

■ Joint distribution of y

$$\pi(\mathbf{y}|\boldsymbol{\lambda}) = \prod_{i=1}^{16} \pi(y_i|\lambda_i)$$

$$\pi(y_i|\lambda_i) = Poisson(\lambda_i) = \frac{e^{-\lambda_i}\lambda_i^{y_i}}{y_i!}$$

Italian marriages: Prior

Prior: Conditional on hyper parameter β the rates $\lambda_1, \lambda_2, \dots, \lambda_{16}$ are independent and $\lambda_i | \beta \sim Exp(\beta)$

■ The prior distribution of the λ_i s conditional on β :

$$\pi(\boldsymbol{\lambda}|\boldsymbol{\beta}) = \prod_{i=1}^{16} \pi(\lambda_i|\boldsymbol{\beta})$$

$$\pi(\lambda_i|\beta) = Exp(\beta) = \beta e^{-\beta\lambda_i}$$

As we a not sure which value the common parameter β should takes, we assume a *hyper prior* on β :

■ A prior we assume that $\beta \sim Exp(1)$ $\pi(\beta) = e^{-\beta}$.

Posterior

Conditional on the observed marriage rates what are the posterior distribution for the true rates?

Posterior:

$$\pi(\boldsymbol{\lambda}, \beta | \mathbf{y}) \propto \pi(\mathbf{y} | \boldsymbol{\lambda}, \beta) \pi(\boldsymbol{\lambda}, \beta)$$

$$= \pi(\mathbf{y} | \boldsymbol{\lambda}) \pi(\boldsymbol{\lambda} | \beta) \pi(\beta)$$

$$= \prod_{i=1}^{16} \pi(y_i | \lambda_i) \prod_{i=1}^{16} \pi(\lambda_i | \beta) \pi(\beta)$$

$$= \prod_{i=1}^{16} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} \prod_{i=1}^{16} \beta e^{-\beta \lambda_i} e^{-\beta}$$

To explore the posterior we makes use of a Gibbs sampler. For this we need the full conditionals.

Full conditionals — λ_i

- Let $\lambda_{-i} = (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_n)$.
- The full conditional for λ_i

$$\pi(\lambda_{i}|\boldsymbol{\lambda}_{-i}, \mathbf{y}, \boldsymbol{\beta}) = \frac{\pi(\lambda_{i}, \boldsymbol{\lambda}_{-i}, \mathbf{y}, \boldsymbol{\beta})}{\pi(\boldsymbol{\lambda}_{-i}, \mathbf{y}, \boldsymbol{\beta})}$$

$$\propto \prod_{i=1}^{16} \pi(y_{i}|\lambda_{i}) \prod_{i=1}^{16} \pi(\lambda_{i}|\boldsymbol{\beta}) \pi(\boldsymbol{\beta})$$

$$\propto \pi(y_{i}|\lambda_{i}) \pi(\lambda_{i}|\boldsymbol{\beta})$$

$$= \frac{e^{-\lambda_{i}} \lambda^{y_{i}}}{y_{i}!} \cdot \boldsymbol{\beta} e^{-\beta \lambda_{i}}$$

$$\propto e^{-\lambda_{i}(1+\beta)} \lambda_{i}^{y_{i}+1-1}$$

$$\propto Gamma(y_{i}+1, (1+\beta)^{-1}),$$

Full conditionals — β

■ Full conditional for β

$$\pi(\beta|\lambda, \mathbf{y}) \propto \prod_{i=1}^{16} \pi(\lambda_i|\beta)\pi(\beta)$$

$$= \prod_{i=1}^{16} \beta e^{-\beta\lambda_i} e^{-\beta}$$

$$\propto \beta^{16+1-1} e^{-\beta(1+\sum_{i=1}^{16} \lambda_i)}$$

$$= Gamma\left(17, \left(1+\sum_{i=1}^{n} \lambda_i\right)^{-1}\right).$$

Posterior marriage rates

Posterior distribution of eta

Known precision: Simulated posterior distribution

Known mean: Simulated posterior distribution

Example: Airport mishanling of luggage

Every hour the number of mishandled bags have been recorded:

The aiport is one of two states: **Normal** or **Broken**.

Notation:

- Let $y_t \in \mathbb{N}_0$ denote the number of mishandled bags at time t
- Let $x_t \in \{1, 2\}$ denote the state of the airport at time t (1=normal, 2=broken)

Objective:

■ Estimate the state of the airport at each time point.

Mishandling: Data model

- Conditional on $\mathbf{x} = (x_1, \dots, x_n)$ the number of mishandlings are independent, and the distribution of y_T only depends on x_t .
- The number of mishandlings is assumed to follow a Poisson distribution:
 - $y_t|x_t = 1 \sim Pois(10)$ Normal state
 - $v_t|x_t=2 \sim Pois(15)$ Broken state

Most likely state according to data model:

Mishandling: Prior

It is known that an airport tends to "stick" in the same state.

Hence we assume a Markov chain priort:

$$P(x_1 = 1) = P(x_1 = 2) = \frac{1}{2}$$
 Inital state

$$lacksquare P(x_{t+1}=x_t|x_t)=0.9$$
 Probablity of staying

$$lacksquare P(x_{t+1}
eq x_t | x_t) = 0.1$$
 Probablity of switching

Example of realisation of prior:

Mishandling: Posterior

The posterior:

$$\pi(x|y) \propto \pi(y|x)\pi(x)$$

$$= \prod_{t=1}^{N} \pi(y_t|x_t)\pi(x_1) \prod_{t=1}^{N-1} \pi(x_{t+1}|x_t)$$

Full conditionals

$$\pi(x_t|y_t, \mathbf{x}_{-t}) \propto \pi(y_t|x_t)\pi(x_{t+1}|x_t)\pi(x_t|x_{t-1})$$

Hence $x_t|y_t, \mathbf{x}_{-t}$ is a Bernoulli random variable:

$$\pi(x_t = i|y_t) = \frac{\pi(y_t|x_t = i)\pi(x_{t+1}|x_t = i)\pi(x_t = i|x_{t-1})}{\sum_{j=1}^2 \pi(y_t|x_t = j)\pi(x_{t+1}|x_t = j)\pi(x_t = j|x_{t-1})}$$

Posterior results

Plot of x_{30} during I=250 "sweeps" of the Gibbs sampler:

Estimate of the posterior probability that $x_t = 1$:

$$P(x_t = 1|\mathbf{y}) \approx \frac{1}{I} \sum_{i=1}^{I} 1[x_{t,i} = 1] = 57.2\%$$

Plot of the posterior probability for all times:

Comparison

Most likely state according to the posterior distribution

Compare this to the most likely state using only the data model:

