- 1. (u_n) définie par $u_0=2$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n+n^2$
- 2. (v_n) définie par $v_0=2, v_1=-1$ et, pour tout $n\in\mathbb{N}, v_{n+2}=v_n\times v_{n+1}$

68

On considère la suite (u_n) définie par $u_0=2$ et, pour tout $n\in\mathbb{N}, u_{n+1}=u_n+n$

- 1. Calculer u_1 et u_2
- 2. Exprimer u_n en fonction de u_{n-1}
- 3. Exprimer u_{n+2} en fonction de u_{n+1}

69

On considère la suite (v_n) définie par $v_0=1$ et, pour tout $n\in\mathbb{N}, v_{n+1}=2v_n+3$.

- 1. Calculer v_1 à v_3 .
- 2. Représenter graphiquement ces 4 premiers termes de la suite.
- 3. Conjecturer le sens de variation de la suite.

70

On considère la suite (u_n) définie par $u_0=-5$ et, pour tout $n\in\mathbb{N}, u_{n+1}=2u_n+1$

- 1. Calculer u_1 et u_2 .
- 2. A l'aide de la calculatrice, calculer u_{20} .
- 3. Conjecturer le sens de variation de la suite.

71

On considère la suite (u_n) définie par $u_0=2$ et, pour tout $n\in\mathbb{N},$ $u_{n+1}=\frac{2u_n-2}{u_n-3}$

- 1. Calculer u_1 et u_2 .
- 2. A l'aide de la calculatrice, donner une valeur approchée de u_{15} à 10^2 près.
- 3. Conjecturer le sens de variation de la suite.

Suites arithmétiques

72

Soit u la suite arithmétique de premier terme $u_0=31$ et de raison 7. Exprimer u_{n+1} en fonction de u_n .

73

Soit v la suite arithmétique de premier terme $v_0 = 24$ et de raison 4.

- 1. Exprimer v_{n+1} en fonction de v_n .
- 2. Calculer v_4 à l'aide de la calculatrice.

74

Soit w la suite arithmétique de premier terme $w_0=7$ et de raison -5. Exprimer w_{n+1} en fonction de w_n .

75

Soit x la suite arithmétique de premier terme $x_0 = 2$ et de raison -6.

- 1. Exprimer x_{n+1} en fonction de x_n .
- 2. Calculer x_5 à l'aide de la calculatrice.

76

Soit v la suite arithmétique de premier terme $v_0 = 5$ et de raison 2. Calculer v_1 , v_2 et v_3 .

77

Soit u la suite arithmétique de premier terme $u_0 = 2$ et de raison 7. Calculer u_1 , u_2 et u_3 .

78

Soit v la suite arithmétique de premier terme $v_0 = 5$ et de raison 2. Calculer v_1 , v_2 et v_3 .

79

Soit w la suite arithmétique de premier terme $w_0 = 9$ et de raison -2. Calculer w_1 , w_2 et w_3 .

80

Soit x la suite arithmétique de premier terme $x_0=7$ et de raison -5. Calculer les termes d'indice 1 et 2.

81

Soit a la suite arithmétique de premier terme $a_1=3$ et de raison 4. Calculer les termes d'indice 2 et 3.

82

Soit b la suite arithmétique de premier terme

 $b_1=7$ et de raison -5. Calculer les termes d'indice 2 et 3.

83

Soit c la suite arithmétique de premier terme $c_1=\frac{3}{4}$ et de raison $\frac{1}{2}$. Calculer les quatre premiers termes de la suite.

84

Soit u une suite arithmétique de raison 5 tel que $u_3 = 11$. Calculer u_4 et u_5 .

85

Soit v une suite arithmétique de raison -6 tel que $v_6 = 9$. Calculer v_7 et v_8 .

86

Soit u une suite arithmétique telle que $u_{15}=8$ et $u_{19}=20$. Donner sa raison.

87

Soit v une suite arithmétique telle que $v_2=3$ et $v_{10}=-17$. Donner sa raison.

88

Soit w une suite arithmétique telle que $w_5=152$ et $w_{12}=112$. Donner sa raison.

89

Parmi les suites suivantes, repérer les suites arithmétiques et donner leur raison. Donner ensuite les trois premiers termes de ces suites.

1.
$$\begin{cases} u_0 = -1 \\ u_{n+1} = u_n + \epsilon \end{cases}$$

1.
$$\begin{cases} u_0 = -3 \\ u_{n+1} = u_n - 7 \end{cases}$$

$$2. \begin{cases} u_0 = 12 \\ u_{n+1} = 8u_n \end{cases}$$

3.
$$\begin{cases} u_0 = 7 \\ u_n = u_{n-1} + 9 \end{cases}$$

4.
$$\begin{cases} u_0 = 2 \\ u_n = -3u_{n-1} + 4 \end{cases}$$

5.
$$u_{n+1} = 5 + n$$

90

On considère la suite (u_n) définie pour tout entier naturel par $u_n = u_{n+1} + 8$. Cette suite est-elle arithmétique?

91

On considère la suite (v_n) définie pour tout entier naturel par $v_n=v_{n+1}\times 8$. Cette suite est-elle arithmétique?

92

On considère la suite arithmétique (u_n) de premier terme 12 et de raison 3. Déterminer, en justifiant, le sens de variation de cette suite.

93

Soit la suite arithmétique (v_n) de premier terme -5 et de raison 6. Déterminer, en justifiant, le sens de variation de cette suite.

94

 (w_n) est une suite arithmétique de premier terme 8 et de raison -2. Déterminer, en justifiant, le sens de variation de cette suite.

95

On considère la suite (u_n) définie ci-dessous.

$$\begin{cases} u_0 = 7 \\ u_{n+1} = u_n + 10 \end{cases}$$

Donner son sens de variation.

96

On considère la suite (v_n) définie ci-dessous.

$$\begin{cases} v_0 = 52 \\ v_{n+1} = v_n - 34 \end{cases}$$

Donner son sens de variation.

97

Parmi les suites suivantes, repérer les suites