∞ Baccalauréat C Étranger gr. I bis - Liban juin 1978 ∾

EXERCICE 1 4 POINTS

Dans cet exercice, pour noter les entiers, on utilise le système décimal.

Soit E le sous-ensemble de $\mathbb N$ constitué des entiers n qui possède les propriétés suivantes :

- 4 divise n
- n admet au moins dix diviseurs appartenant à N
- il existe un entier premier p tel que n = 37p + 1.
- 1. Quel est le plus petit élément de E?
- **2.** Existe-t-il un élément n, de E, vérifiant 26800 < n < 27800?

EXERCICE 2 4 POINTS

Soit E un plan vectoriel euclidien rapporté à une base (\vec{a}, \vec{b}) . (Le produit scalaire des vecteurs \vec{x} et \vec{y} de E est noté $\vec{x} \cdot \vec{y}$). Soit φ l'application de \mathbb{R} dans E, telle que

$$\forall x \in \mathbb{R}, \quad \varphi(t) = \cos t \, \overrightarrow{a} + \sin t \, \overrightarrow{b}.$$

et φ' sa dérivée.

- **1.** Montrer que $\forall \alpha \in \mathbb{R}$, $\varphi(\alpha)$ et $\varphi'(\alpha)$ constituent une base de E.
- **2.** Pour tout réel t, décomposer $\varphi(t)$ dans une telle base.
- **3.** Étudier l'ensemble des réels u tels que $\varphi(u) \cdot (\varphi'(u) = 0$.

PROBLÈME 12 POINTS

1. Soit f l'application de \mathbb{R} dans \mathbb{R} telle que

$$\forall x \in \mathbb{R}, \quad \int_0^{\frac{\pi}{4}} e^{-\frac{x}{\cos^2 t}} \, \mathrm{d} t.$$

Montrer que, $\forall x \ge 0$, $f(x) \le e^{-x}$.

Quelle est la limite de f quand x tend vers $+\infty$.

2. a. Montrer que, pour tout réel *b* strictement positif,

$$(\forall x \in \mathbb{R}) \quad \left[x \leqslant b \Rightarrow e^x - 1 - x \leqslant \frac{1}{2} e^b x^2 \right]$$

et
$$\left[x \geqslant -b \Rightarrow e^x - 1 - x \geqslant \frac{1}{2}e^b x^2\right]$$

b. Montrer que, pour tout réel a, il existe une application φ_a , de $\mathbb R$ dans $\mathbb R$, continue en a, telle que $\varphi(a)=0$ et

$$\forall x \in \mathbb{R}, \quad f(x) - f(a) = (x - a) \left[- \int_0^{\frac{\pi}{4}} \frac{\mathrm{e}^{-\frac{x}{\cos^2 t}}}{\cos^2 t} \, \mathrm{d}t + \varphi_a(x) \right].$$

En déduire que *f* est différentiable.

Préciser la dérivée f' de f.

Le baccalauréat de 1978 A. P. M. E. P.

3. Soit P une primitive (sur \mathbb{R}) de f application définie par $u \longmapsto \mathrm{e}^{-u^2}$. À tout réel x, on associe l'application Q_x , de $I = \left] -\frac{\pi}{2} \right.$; $\frac{\pi}{2} \left[\text{ dans } \mathbb{R} \right]$, telle que

$$\forall x \in \mathbb{R}, \quad Q_x(t) = P(x \tan t).$$

Montrer que Q_x est dérivable sur I; expliciter sa dérivée. Prouver que :

$$\forall x \in \mathbb{R}, \quad \int_0^x e^{-u^2} du = x \int_0^{\frac{\pi}{4}} \frac{e^{-\frac{s}{\cos^2 t}}}{\cos^2 t} dt.$$

4. - Soit g l'application de \mathbb{R} dans \mathbb{R} telle que

$$\forall x \in \mathbb{R}, \quad g(x) = f(x^2).$$

Soit g' sa dérivée.

Montrer que $\forall x \in \mathbb{R}$, $g'(x) = -2e^{-x^2} \int_0^x e^{-t^2} dt$.

Que peut-on dire da la fonction h telle que :

$$\forall x \in \mathbb{R}, \quad h(x) = g(x) + \left(\int_0^x e^{-t^2} dt\right)^2$$
?

Quelle est la limite de $\int_0^x e^{-t^2} dt$ quand x tend vers $+\infty$?