POWER AND DELAY CALCULATION FOR CMOS CIRCUITS: AMIRTHA PRASAD

22BEC1002

AIM:

To find delay and power for:

- a) Inverter circuit
- **b)** 2 input NAND gate.

TOOLS:

Linux operated computing system, Cadence® Virtuoso, gpdk 180nm technology library.

PROCEDURE:

- 1. Design an inverter circuit and find the transient analysis.
- 2. Calculate the delay (rising and falling) using calculator.
- 3. Calculate the power from transient analysis.
- 4. For the 2 input, NAND gate, for both rising and falling, calculate the best and worst cases delay and the power.

SCREENSHOTS AND DELAY:

1. INVERTER CIRCUIT:

2. TRANSIENT ANALYSIS:

3. DELAY:

FALLING: 7.976ps

RISING: 19.64ps

4. POWER:

5. NAND SCHEMATIC:

6. TRANSIENT ANALYSIS:

7. DELAY:

Pattern	Input	Output	Rise/fall	Delay(ps)
10	B(1f)	2r	rising	25.82(worst)
00	B(2f)	3r	rising	15.23(best)
11	A(3r)	1f	falling	21.5(worst)
11	A(1r)	4f	falling	21.10(best)

8. POWER:

INFERENCE:

- 1. Truth table is verified by giving different input values for the variables for the combinational circuit.
 - 2. The transient analysis is performed to verify the CMOS circuit.
- 3. The delay and power for sum and carry is calculated for all values and best and worst cases delay are analysed.