МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

ОТЧЕТ

по практической работе №8 по дисциплине «МОПСУ»

ТЕМА: Pабота Simulink-моделей в режиме реального времени Вариант №9

Студент гр. 9492	 Викторов А.Д.
Преподаватель	Игнатович Ю.В

Санкт-Петербург

2024

Задание

- 1. Ознакомьтесь с демонстрационными примерами, работающими в режиме реального времени.
- 2. Выполните настройку одной из своих моделей (в соответствии с вашим вариантом) для работы в режиме реального времени. Продемонстрируйте работу вашей модели в режиме реального времени в нормальном режиме и в режиме ядра реального времени. Составьте отчет по работе, поместив в него описание и результаты всех этапов моделирования.
- 3. При создании собственной модели реального времени, начните создавать ее в бланке новой модели, используя библиотеку блоков Simulink. Не копируйте блоки из ранее созданных моделей, т.е. создавайте модели "с чистого листа".
- 4. В случае затруднений, ознакомьтесь подробно с содержимым окон настройки модели sldrtex_PLC_reg и ее блоков.

Цель работы

Цель данной работы заключается в изучении методов разработки для ПЛК и МК.

Исходные данные

Паспортные данные двигателя постоянного тока приведены в таблице 1:

Таблина 1

Марка	$P_{\scriptscriptstyle \mathrm{H}}$,	ωн,	$U_{\scriptscriptstyle m H}$,	$I_{\scriptscriptstyle \mathrm{H}},$	$M_{\scriptscriptstyle m H}$,	$J_{\rm дB} \cdot 10^{-4}$,	$R_{\scriptscriptstyle \mathrm{M}}$,	$L_{\scriptscriptstyle \mathrm{M}},$
двигател	Вт	рад/с	В	A	Н·м	кг·м ²	Ом	мГн
СЛ-121	77	315	110	1,07	0,245	1,67	8,5	58

Содержание практической работы

1. На рисунке 1 представлена исходная модель системы:

Рисунок 1 – Исходная модель системы

При помощи данной модели были подобранны коэффициенты ПИД регулятора для последующей реализации вычислений в реальном времени Результат подбора продемонстрирован на рисунке 2:

Рисунок 2 – Результат подбора коэффициентов ПИД

Рисунок 3 – Переходный процесс в замкнутой системе

Далее была создана система, работающая в режиме реального времени (рисунок 3)

Рисунок 4 – Система реального времени

На вход подаётся импульсное воздействие значение на выходе продемонстрированно на рисунке 5

Рисунок 5 — Результат моделирования

Пропущенные тики отсутствовали, в режиме ядра реального времени (Kernel Mode) пропущенные тики не фиксируются (их появление — это свидетельство неработоспособности модели).

Вывод

В ходе работы была изучена работа демонстрационных примеров в режиме реального времени, настроена одна из моделей для работы в этом режиме и продемонстрирована ее работа в нормальном режиме и режиме ядра реального времени. При создании собственной модели использовалась библиотека блоков Simulink, модель была создана "с чистого листа".

Получены навыки настройки и использования моделей в режиме реального времени, а также опыт создания собственных моделей с помощью библиотеки блоков.