Christopher Kapic

December 2020

1.2

Theorem 1. The triangle inequality states that

$$|a-b| \le |a-c| + |c-b|.$$

Theorem 2. Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

1.3 - The Axiom of Completeness

Theorem 3 (Axiom of Completeness). Every nonempty set of real numbers that is bounded has a least upper bound.

Definition 1 (bounded). A set $A \subseteq \mathbb{R}$ is bounded above if there exists a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbb{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition 2 (least upper bound, supremum). A real number s is the least upper bound for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- (i) s is an upper bound for A;
- (ii) if b is any upper bound for A, then $s \leq b$.

The least upper bound is also known as the supremum of the set A.

Definition 3 (maximum). A real number a_0 is a maximum of the set A is a_0 is an element of A and $a_0 \ge a$ for all $a \in A$. Similarly, a number a_1 is a minimum of A if $a_1 \in A$ and $a_1 \le a$ for every $a \in A$.

Lemma 1. Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

1.4 - Consequences of Completeness

Theorem 4 (Nested Interval Property). For each $n \in \mathbb{R}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \dots$$

has a nonempty intersection; that is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Theorem 5 (Archimedean Property). (i) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying n > x.

(ii) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying 1/n < y.

Theorem 6 (Density of \mathbb{Q} in \mathbb{R}). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Furthermore, given any two real numbers a < b, there exists an irrational number t satisfying a < t < b.

Theorem 7 ($\sqrt{2}$ exists). There exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.

Christopher Kapic

December 2020

1.5 - Cardinality

Definition 1 (one-to-one, onto). A function $f: A \to B$ is one-to-one (1-1) if $a_1 \neq a_2$ in A implies that $f(a_1) \neq f(a_2)$ in B. The function f is onto if, given any $b \in B$, it is possible to find an element $a \in A$ for which f(a) = b.

Definition 2 (bijectivity). The set A has the same cardinality as B if there exists $f: A \to B$ that is 1-1 and onto. In this case, we write $A \sim B$.

Definition 3 (countable). A set A is countable if $\mathbb{N} \sim A$. An infinite set that is not countable is called an uncountable set.

Theorem 1 (1.5.6). (i) The set \mathbb{Q} is countable.

(ii) The set \mathbb{R} is uncountable.

Theorem 2 (1.5.7). If $A \subseteq B$ and B is countable, then A is either countable or finite.

Theorem 3 (1.5.8). (i) If $A_1, A_2, ... A_m$ are each countable sets, then the union $A_1 \cup A_2 \cup \cdots \cup A_m$ is countable.

(ii) If A_n is a countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable.

Christopher Kapic

December 2020

2.2

Definition 1 (sequence). A sequence is a function whose domain is \mathbb{N} .

Definition 2 (convergence of a sequence). A sequence (a_n) converges to a real number a if, for every positive number ϵ , there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $|a_n - a| < \epsilon$.

Definition 3 (ϵ -neighborhood). Given a real number $a \in \mathbb{R}$ and a positive number $\epsilon > 0$, the set

$$V_{\epsilon}(a) = \{ x \in \mathbb{R} : |x - a| < \epsilon \}$$

is called the ϵ -neighborhood of a.

Definition 4 (convergence of a sequence, topologically). A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, there exists a point in the sequence after which all of the terms are in $V_{\epsilon}(a)$. In other words, every ϵ -neighborhood contains all but a finite number of the terms of (a_n) .

Theorem 1 (Uniqueness of Limits). The limit of a sequence, when it exists, must be unique.

Definition 5 (divergence). A sequence that does not converge is said to diverge.

2.3

Definition 6 (bounded). A sequence (x_n) is bounded if there exists a number M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Theorem 2 (2.3.2). Every convergent sequence is bounded.

Theorem 3 (Algebraic Limit Theorem). Let $\lim a_n = a$, and $\lim b_n = b$. Then,

- (i) $\lim(ca_n) = ca$, for all $c \in \mathbb{R}$;
- (ii) $\lim(a_n + b_n) = a + b$;
- (iii) $\lim(a_nb_n) = ab$;
- (iv) $\lim(a_n/b_n) = a/b$, provided $b \neq 0$.

Theorem 4 (Order Limit Theorem). Assume $\lim a_n = a$ and $\lim b_n = b$.

- (i) If $a_n \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$.
- (ii) If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- (iii) If there exists $c \in \mathbb{R}$ for which $c \leq b_n$ for all $n \in \mathbb{N}$, then $c \leq b$. Similarly, if $a_n \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$.

Christopher Kapic

December 2020

2.4 The Monotone Convergence Theorem, Infinite Series

Definition 1 (increasing, decreasing, monotone). A sequence (a_n) is increasing if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$ and decreasing if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is monotone if it is either increasing or decreasing.

Theorem 1 (Monotone Convergence Theorem). If a sequence is monotone and bounded, then it converges.

Definition 2 (convergence of a series). Let (b_n) be a sequence. An infinite series is a formal expression of the form

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + b_3 + b_4 + b_5 + \dots$$

We define the corresponding sequence of partial sums (s_m) by

$$s_m = b_1 + b_2 + b_3 + \dots + b_m,$$

and say that the series $\sum_{n=1}^{\infty} b_n$ converges to B if the sequence (s_m) converges to B. In this case, we write $\sum_{n=1}^{\infty} b_n = B$.

Theorem 2 (Cauchy Condensation Test). Suppose (b_n) is decreasing and satisfies $b_n \geq 0$ for all $n \in \mathbb{N}$. Then, the series $\sum_{n=1}^{\infty} b_n$ converges if and only if the series

$$\sum_{n=0}^{\infty} 2^n b_{2^n} = b_1 + 2b_2 + 4b_4 + 8b_8 + 16b_{16} + \dots$$

converges.

Theorem 3 (Corrollary 2.4.7). The series $\sum_{n=1}^{\infty} 1/n^p$ converges if and only if p > 1.

2.5 - Subsequences and the Bolzano-Weierstrass Theorem

Definition 3 (subsequence). Let (a_n) be a sequence of real numbers, and let $n_1 < n_2 < n_3 < n_4 < n_5 < \dots$ be an increasing sequence of natural numbers. Then the sequence

$$(a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, a_{n_5}, \dots)$$

is called a subsequence of (a_n) and is denoted by (a_{n_k}) , where $k \in \mathbb{N}$ indexes the subsequence.

Theorem 4 (2.5.2). Subsequences of a convergent sequence converge to the same limit as the original sequence.

Theorem 5 (Bolzano-Weierstrass Theorem). Every bounded sequences contains a convergent subsequence.

2.7 - Properties of Infinite Series

Theorem 6 (Algebraic Limit Theorem for Series). If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$, then

- (i) $\sum_{k=1}^{\infty} ca_k = cA \text{ for all } c \in \mathbb{R} \text{ and }$
- (ii) $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$.

Theorem 7 (Cauchy Criterion for Series). The series $\sum_{k=1}^{\infty} a_k$ converges if and only if, given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \ge N$ it follows that

$$|a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon.$$

Theorem 8 (2.7.3). If the series $\sum_{k=1}^{\infty} a_k$ converges, then $(a_k) \to 0$.

Theorem 9 (Comparison Test). Assume (a_k) and (b_k) are sequences satisfying $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$.

- (i) If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
- (ii) If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.

Theorem 10 (Absolute Convergence Test). If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges as well.

Theorem 11 (Alternating Series Test). Let (a_n) be a sequence satisfying,

- (i) $a_1 \ge a_2 \ge a_3 \ge \dots \ge a_n \ge a_{n+1} \ge \dots$ and
- (ii) $(a_n) \to 0$.

Then, the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Definition 4 (absolute, conditional convergence). If $\sum_{n=1}^{\infty} |a_n|$ converges, then we say that the original series $\sum_{n=1}^{\infty} a_n$ converges absolutely. If, on the other hand, the series $\sum_{n=1}^{\infty} a_n$ converges but the series of absolute values $\sum_{n=1}^{\infty} |a_n|$ does not converge, then we say that the original series $\sum_{n=1}^{\infty} a_n$ converges conditionally.

Definition 5 (rearrangement). Let $\sum_{k=1}^{\infty} a_k$ be a series. A series $\sum_{k=1}^{\infty} b_k$ is called a rearrangement of $\sum_{k=1}^{\infty} a_k$ if there exists a one-to-one, onto function $f: \mathbb{N} \to \mathbb{N}$ such that $b_{f(k)} = a_k$ for all $k \in \mathbb{N}$.

Theorem 12 (2.7.10). If a series converges absolutely, then any rearrangement of this series converges to the same limit.

Christopher Kapic

December 2020

2.8 - Double Summations and Products of Infinite Series

Theorem 1 (2.8.1). Let $\{a_{ij}: i, j \in \mathbb{N}\}$ be a doubly indexed array of real numbers. If

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$$

converges, then both $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}$ and $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$ converge to the same value. Moreover,

$$\lim_{n \to \infty} s_{nn} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij},$$

where $s_{nn} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$.

3.2 - Open and Closed Sets

Definition 1 (open). A set $O \subseteq \mathbb{R}$ is open if for all points $a \in O$ there exists an ϵ -neighborhood $V_{\epsilon}(a) \subseteq O$.

Theorem 2 (3.2.3). (i) The union of an arbitrary collection of open sets is open.

(ii) The intersection of a finite collection of open sets is open.

Definition 2 (limit point). A point x is a limit point of a set A if every ϵ -neighborhood $V_{\epsilon}(x)$ of x intersects the set A at some point other than x.

Theorem 3 (3.2.5). A point x is a limit point of a set A if and only if $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Definition 3 (isolated point). A point $a \in A$ is an isolated point of A if it is not a limit point of A.

Definition 4 (closed). A set $F \subseteq \mathbb{R}$ is closed if it contains its limit points.

Theorem 4 (3.2.8). A set $F \subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

Theorem 5 (Density of \mathbb{Q} in \mathbb{R}). For every $y \in \mathbb{R}$, there exists a sequence of rational numbers that converges to y.

Definition 5 (closure). Given a set $A \subseteq \mathbb{R}$, let L be the set of all limit points of A. The closure of A is defined to be $\overline{A} = A \cup L$.

Theorem 6 (3.2.12). For any $A \subseteq \mathbb{R}$, the closure \overline{A} is a closed set and is the smallest closed set containing A.

Theorem 7 (3.2.13). A set O is open if and only if O^c is closed. Likewise, a set F is closed if and only if F^c is open.

Theorem 8 (3.2.14). (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Christopher Kapic

December 2020

3.2 - Open and Closed Sets

Definition 1 (open). A set $O \subseteq \mathbb{R}$ is open if for all points $a \in O$ there exists an ϵ -neighborhood $V_{\epsilon}(a) \subseteq O$.

Theorem 1 (3.2.3). (i) The union of an arbitrary collection of open sets is open.

(ii) The intersection of a finite collection of open sets is open.

Definition 2 (limit point). A point x is a limit point of a set A if every ϵ -neighborhood $V_{\epsilon}(x)$ of x intersects the set A at some point other than x.

Theorem 2 (3.2.5). A point x is a limit point of a set A if and only if $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Definition 3 (isolated point). A point $a \in A$ is an isolated point of A if it is not a limit point of A.

Definition 4 (closed). A set $F \subseteq \mathbb{R}$ is closed if it contains its limit points.

Theorem 3 (3.2.8). A set $F \subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

Theorem 4 (Density of \mathbb{Q} in \mathbb{R}). For every $y \in \mathbb{R}$, there exists a sequence of rational numbers that converges to y.

Definition 5 (closure). Given a set $A \subseteq \mathbb{R}$, let L be the set of all limit points of A. The closure of A is defined to be $\overline{A} = A \cup L$.

Theorem 5 (3.2.12). For any $A \subseteq \mathbb{R}$, the closure \overline{A} is a closed set and is the smallest closed set containing A.

Theorem 6 (3.2.13). A set O is open if and only if O^c is closed. Likewise, a set F is closed if and only if F^c is open.

Theorem 7 (3.2.14). (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

3.3 - Compact Sets

Definition 6 (compactness). A set $K \subseteq \mathbb{R}$ is compact if every sequence in K has a subsequence that converges to a limit that is also in K.

Definition 7 (bounded). A set $A \subseteq \mathbb{R}$ is bounded if there exists M > 0 such that $|a| \leq M$ for all $a \in A$.

Theorem 8 (Characterization of Compactness in \mathbb{R} - 3.3.4). A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof on page 96.

Theorem 9 (Nested Compact Set Property - 3.3.5). If

$$K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq \dots$$

is a nested sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty. Proof on page 97.

Definition 8 (open cover, finite subcover). Let $A \subseteq \mathbb{R}$. An open cover for A is a (possibly infinite) collection of open sets $\{O_{\lambda} : \lambda \in \Lambda\}$ whose union contains the set A; that is, $A \subseteq \bigcup_{\lambda \in \Lambda} O_{\lambda}$. Given an open cover for A, a finite subcover is a finite subcollection of open sets from the original open cover whose union still manages to completely contain A.

Theorem 10 (Heine-Borel Theorem - 3.3.8). Let K be a subset of \mathbb{R} . All of the following statements are equivalent in the sense that any one of them implies the two others:

- (i) K is compact.
- (ii) K is closed and bounded.
- (iii) Every open cover for K has a finite subcover.

Proof on page 98.

3.4 - Perfect Sets and Connected Sets

Definition 9 (perfect). A set $P \subseteq \mathbb{R}$ is perfect if it is closed and contains no isolated points.

Theorem 11 (3.4.3). A nonempty perfect set is uncountable. Proof on page 102.

Definition 10 (separated, disconnected, connected). Two nonempty sets $A, B \subseteq \mathbb{R}$ are separated if $\overline{A} \cap B$ and $A \cap \overline{B}$ are both empty. A set $E \subseteq \mathbb{R}$ is disconnected if it can be written as $E = A \cup B$, where A and B are nonempty separated sets.

A set that is not disconnected is called a connected set.

Theorem 12 (3.4.6). A set $E \subseteq \mathbb{R}$ is connected if and only if, for all nonempty disjoint sets A and B satisfying $E = A \cup B$, there always exists a convergent sequence $(x_n) \to x$ with (x_n) contained in one of A or B, and x an element of the other.

Proof on page 104.

Theorem 13 (3.4.7). A set $E \subseteq \mathbb{R}$ is connected if and only if whenever a < c < b with $a, b \in E$, it follows that $c \in E$ as well.

Proof on page 105.

Christopher Kapic

December 2020

4.2 - Functional Limits

Definition 1 (functional limit). Let $f: A \to \mathbb{R}$, and let c be a limit point of the domain A. We say that $\lim_{x\to c} f(x) = L$ provided that, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < |x-c| < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

Definition 2 (functional limit: topological version). Let c be a limit point of the domain of $f: A \to \mathbb{R}$. We say $\lim_{x\to c} f(x) = L$ provided that, for every ϵ -neighborhood $V_{\epsilon}(L)$ of L, there exists a δ -neighborhood $V_{\delta}(c)$ around c with the property that for all $x \in V_{\delta}(c)$ different from c (with $x \in A$) it follows that $f(x) \in V_{\epsilon}(L)$.

Theorem 1 (Sequential Criterion for Functional Limits - 4.2.3). Given a function $f: A \to \mathbb{R}$ and a limit point c of A, the following two statements are equivalent:

- (i) $\lim_{x\to c} f(x) = L$.
- (ii) For all sequences $(x_n) \subseteq A$ satisfying $x_n \neq c$ and $(x_n) \rightarrow c$, it follows that $f(x_n) \rightarrow L$.

Proof on page 118.

Theorem 2 (Corollary 4.2.4 - Algebraic Limit Theorem for Functional Limits). Let f and g be functions defined on a domain $A \subseteq \mathbb{R}$, and assume $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ for some limit point c of A. Then,

- (i) $\lim_{x\to c} kf(x) = kL$ for all $k \in \mathbb{R}$,
- (ii) $\lim_{x\to c} [f(x) + g(x)] = L + M$,
- (iii) $\lim_{x\to c} [f(x)g(x)] = LM$, and
- (iv) $\lim_{x\to c} f(x)/g(x) = L/M$, provided $M \neq 0$.

Proof on page 119.

4.3 - Continuous Functions

Definition 3 (continuity). A function $f: A \to \mathbb{R}$ is continuous at a point $c \in A$ if, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$ (and $x \in A$) it follows that $|f(x) - f(c)| < \epsilon$.

If f is continuous at every point in the domain A, then we say that f is continuous on A.

Theorem 3 (Characterization of Continuity - 4.3.2). Let $f: A \to \mathbb{R}$, and let $c \in A$. The function f is continuous at c if and only if any one of the following three conditions is met:

- (i) For all $\epsilon > 0$, there exists a $\delta > 0$ such that $|x c| < \delta$ (and $x \in A$) implies $|f(x) f(c)| < \epsilon$;
- (ii) For all $V_{\epsilon}(f(c))$, there exists a $V_{\delta}(c)$ with the property that $x \in V_{\delta}(c)$ (and $x \in A$) implies $f(x) \in V_{\epsilon}(f(c))$;

- (iii) For all $(x_n) \to c$ (with $x_n \in A$), it follows that $f(x_n) \to f(c)$.

 If c is a limit point of A, then the above conditions are equivalent to...
- (iv) $\lim_{x\to c} f(x) = f(c)$. Proof on page 123.

Theorem 4 (Corollary 4.3.3 - Criterion for Discontinuity). Let $f: A \to \mathbb{R}$, and let $c \in A$ be a limit point of A. If there exists a sequence $(x_n) \subseteq A$ where $(x_n) \to c$ but such that $f(x_n)$ does not converge to f(c), we may conclude that f is not continuous at c.

Theorem 5 (Algebraic Continuity Theorem - 4.3.4). Assume $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ are continuous at a point $c \in A$. Then,

- (a) kf(x) is continuous at c for all $k \in \mathbb{R}$;
- (b) f(x) + g(x) is continuous at c;
- (c) f(x)g(x) is continuous at c; and
- (d) f(x)/g(x) is continuous at c, provided the quotient is defined. Proof on page 124.

Theorem 6 (Composition of Continuous Functions - 4.3.9). Given $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$, assume that the range $f(A) = \{f(x) : x \in A\}$ is contained in the domain B so that the composition $g \circ f(x) = g(f(x))$ is defined on A.

If f is continuous at $c \in A$, and if g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

Christopher Kapic

December 2020

4.3 - Continuous Functions

Definition 1 (continuity). A function $f: A \to \mathbb{R}$ is continuous at a point $c \in A$ if, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$ (and $x \in A$) it follows that $|f(x) - f(c)| < \epsilon$.

If f is continuous at every point in the domain A, then we say that f is continuous on A.

Theorem 1 (Characterization of Continuity - 4.3.2). Let $f: A \to \mathbb{R}$, and let $c \in A$. The function f is continuous at c if and only if any one of the following three conditions is met:

- (i) For all $\epsilon > 0$, there exists a $\delta > 0$ such that $|x c| < \delta$ (and $x \in A$) implies $|f(x) f(c)| < \epsilon$;
- (ii) For all $V_{\epsilon}(f(c))$, there exists a $V_{\delta}(c)$ with the property that $x \in V_{\delta}(c)$ (and $x \in A$) implies $f(x) \in V_{\epsilon}(f(c))$;
- (iii) For all $(x_n) \to c$ (with $x_n \in A$), it follows that $f(x_n) \to f(c)$.

 If c is a limit point of A, then the above conditions are equivalent to...
- (iv) $\lim_{x\to c} f(x) = f(c)$. Proof on page 123.

Theorem 2 (Corollary 4.3.3 - Criterion for Discontinuity). Let $f: A \to \mathbb{R}$, and let $c \in A$ be a limit point of A. If there exists a sequence $(x_n) \subseteq A$ where $(x_n) \to c$ but such that $f(x_n)$ does not converge to f(c), we may conclude that f is not continuous at c.

Theorem 3 (Algebraic Continuity Theorem - 4.3.4). Assume $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ are continuous at a point $c \in A$. Then,

- (a) kf(x) is continuous at c for all $k \in \mathbb{R}$;
- (b) f(x) + g(x) is continuous at c;
- (c) f(x)g(x) is continuous at c; and
- (d) f(x)/g(x) is continuous at c, provided the quotient is defined. Proof on page 124.

Theorem 4 (Composition of Continuous Functions - 4.3.9). Given $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$, assume that the range $f(A) = \{f(x) : x \in A\}$ is contained in the domain B so that the composition $g \circ f(x) = g(f(x))$ is defined on A.

If f is continuous at $c \in A$, and if g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

4.4 - Continuous Functions on Compact Sets

Theorem 5 (Preservation of Compact Sets - 4.4.1). Let $f: A \to \mathbb{R}$ be continuous on A. If $K \subseteq A$ is compact, then f(K) is compact as well.

Proof on page 130.

Theorem 6 (Exterme Value Theorem - 4.4.2). If $f: K \to \mathbb{R}$ is continuous on a compact set $K \subseteq \mathbb{R}$, then f attains a maximum and minimum value. In other words, there exist $x_0, x_1 \in K$ such that $f(x_0) \leq f(x) \leq f(x_1)$ for all $x \in K$.

Proof on page 130.

Definition 2 (uniform continuity). A function $f: A \to \mathbb{R}$ is uniformly continuous on A if for every $\epsilon > 0$ there exists a $\delta > 0$ such that for all $x, y \in A$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Theorem 7 (Sequential Criterion for Absence of Uniform Continuity - 4.4.5). A function $f: A \to \mathbb{R}$ fails to be uniformly continuous on A if and only if there exists a particular $\epsilon_0 > 0$ and two sequences (x_n) and (y_n) in A satisfying

$$|x_n - y_n| \to 0$$
 but $|f(x_n) - f(y_n)| \ge \epsilon_0$.

Proof on page 132.

Theorem 8 (Uniform Continuity on Compact Sets - 4.4.7). A function that is continuous on a compact set K is uniformly continuous on K.

Proof on page 133.

Christopher Kapic

December 2020

4.5 - The Intermediate Value Theorem

Theorem 1 (Preservation of Connected Sets - 4.5.2). Let $f: G \to \mathbb{R}$ be continuous. If $E \subseteq G$ is connected, then f(E) is connected as well.

Proof on page 137.

Definition 1 (intermediate value property). A function f has the intermediate value property on an interval [a,b] if for all x < y in [a,b] and all L between f(x) and f(y), it is always possible to find a point $c \in (x,y)$ where f(c) = L.

Another way to summarize the Intermediate Value Theorem is to say that every continuous function on [a,b] has the intermediate value property.

5.2 - Derivatives and the Intermediate Value Property

Definition 2 (differentiability). Let $g: A \to \mathbb{R}$ be a function defined on an interval A. Given $c \in A$, the derivative of g at c is defined by

$$g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c},$$

provided this limit exists. In this case we say g is differentiable at c. If g' exists for all points $c \in A$, we say that g is differentiable on A.

Theorem 2 (5.2.3). If $g: A \to \mathbb{R}$ is differentiable at a point $c \in A$, then g is continuous at c as well. Proof on page 149.

Theorem 3 (Algebraic Differentiability Theorem - 5.2.4). Let f and g be functions defined on an interval A, and assume both are differentiable at some point $c \in A$. Then,

- (i) (f+g)'(c) = f'(c) + g'(c),
- (ii) (kf)'(c) = kf'(c), for all $k \in \mathbb{R}$,
- (iii) (fg)'(c) = f'(c)g(c) + f(c)g'(c), and
- (iv) $(f/g)'(c) = \frac{g(c)f'(c)-f(c)g'(c)}{[g(c)]^2}$, provided that $g(c) \neq 0$.

Proof on page 149.

Theorem 4 (Chain Rule - 5.2.5). Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ satisfy $f(A) \subseteq B$ so that the composition $g \circ f$ is defined. If f is differentiable at $c \in A$ and if g is differentiable at $f(c) \in B$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Proof on page 150.

Theorem 5 (Interior Extremum Theorem - 5.2.6). Let f be differentiable on an open interval (a,b). If f attains a maximum value at some point $c \in (a,b)$ (i.e., $f(c) \ge f(x)$ for all $x \in (a,b)$), then f'(c) = 0. The same is true if f(c) is a minimum value.

Proof on page 151.

Theorem 6 (Darboux's Theorem - 5.2.7). If f is differentiable on an interval [a,b], and if α satisfies $f'(a) < \alpha < f'(b)$ (or $f'(a) > \alpha > f'(b)$), then there exists a point $c \in (a,b)$ where $f'(c) = \alpha$.

Proof on page 152.

5.3 - The Mean Value Theorems

Theorem 7 (Rolle's Theorem - 5.3.1). Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then there exists a point $c \in (a,b)$ where f'(c) = 0.

Proof on page 156.

Theorem 8 (Mean Value Theorem - 5.3.2). If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there exists a point $c \in (a,b)$ where

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof on page 156.

Theorem 9 (Corollary 5.3.3). If $g: A \to \mathbb{R}$ is differentiable on an interval A and satisfies g'(x) = 0 for all $x \in A$, then g(x) = k for some constant $k \in \mathbb{R}$.

Proof on page 157.

Theorem 10 (Corollary 5.3.4). If f and g are differentiable functions on an interval A and satisfy f'(x) = g'(x) for all $x \in A$, then f(x) = g(x) + k for some constant $k \in \mathbb{R}$.

Proof on page 158.

Theorem 11 (Generalized Mean Value Theorem - 5.3.5). If f and g are continuous on the closed interval [a,b] and differentiable on the open interval (a,b), then there exists a point $c \in (a,b)$ where

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

If g' is never zero on (a,b), then the conclusion can be stated as

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof on page 158.

Theorem 12 (L'Hospital's Rule: 0/0 case). Let f and g be continuous on an interval conataining a, and assume f and g are differentiable on this interval with the possible exception of the point a. If f(a) = g(a) = 0 and $g'(x) \neq 0$ for all $x \neq a$, then

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \text{ implies } \lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Proof on page 159.

Definition 3 (5.3.7). Given $g: A \to \mathbb{R}$ and a limit point c of A, we say that $\lim_{x\to c} g(x) = \infty$ if, for every M > 0, there exists a $\delta > 0$ such that whenever $0 < |x - c| < \delta$ it follows that $g(x) \ge M$.

Theorem 13 (L'Hospital's Rule: ∞/∞ case). Assume f and g are differentiable on (a,b) and that $g'(x) \neq 0$ for all $x \in (a,b)$. If $\lim_{x\to a} g(x) = \infty$ (or $-\infty$), then

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \text{ implies } \lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Proof on page 159.

Christopher Kapic

December 2020

5.3

Definition 1 (differentiability). Let $g: A \to \mathbb{R}$ be a function defined on an interval A. Given $c \in A$, the derivative of g at c is defined by

$$g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c},$$

provided this limit exists. In this case we say g is differentiable at c. If g' exists for all points $c \in A$, we say that g is differentiable on A.

Theorem 1 (5.2.3). If $g: A \to \mathbb{R}$ is differentiable at a point $c \in A$, then g is continuous at c as well. Proof on page 149.

Theorem 2 (Algebraic Differentiability Theorem - 5.2.4). Let f and g be functions defined on an interval A, and assume both are differentiable at some point $c \in A$. Then,

- (i) (f+g)'(c) = f'(c) + g'(c),
- (ii) (kf)'(c) = kf'(c), for all $k \in \mathbb{R}$,
- (iii) (fg)'(c) = f'(c)g(c) + f(c)g'(c), and
- (iv) $(f/g)'(c) = \frac{g(c)f'(c) f(c)g'(c)}{[g(c)]^2}$, provided that $g(c) \neq 0$.

Proof on page 149.

Theorem 3 (Chain Rule - 5.2.5). Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ satisfy $f(A) \subseteq B$ so that the composition $g \circ f$ is defined. If f is differentiable at $c \in A$ and if g is differentiable at $f(c) \in B$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Proof on page 150.

Theorem 4 (Interior Extremum Theorem - 5.2.6). Let f be differentiable on an open interval (a,b). If f attains a maximum value at some point $c \in (a,b)$ (i.e., $f(c) \ge f(x)$ for all $x \in (a,b)$), then f'(c) = 0. The same is true if f(c) is a minimum value.

Proof on page 151.

Theorem 5 (Darboux's Theorem - 5.2.7). If f is differentiable on an interval [a,b], and if α satisfies $f'(a) < \alpha < f'(b)$ (or $f'(a) > \alpha > f'(b)$), then there exists a point $c \in (a,b)$ where $f'(c) = \alpha$.

Proof on page 152.

7.2 - The Definition of the Riemann Integral

Definition 2 (partition, lower sum, upper sum). A partition P of [a,b] is a finite set of points from [a,b] that includes both a and b. The notational convention is to always list the points of a partition $P = \{x_0, x_1, x_2, \ldots, x_n\}$ in increasing order; thus,

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

For each subinterval $[x_{k-1}, x_k]$ of P, let

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$
 and $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}.$

The lower sum of f with respect to P is given by

$$L(f,P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

Likewise, we define the upper sum of f with respect to P by

$$U(f,P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}).$$

For a particular partion P, it is clear that $U(f, P) \ge L(f, P)$. The fact that this same inequality holds if the upper and lower sums are computed with respect to different partitions is the content of the next two lemmas.

Definition 3 (refinement - 7.2.2). A partition Q is a refinement of a partition P if Q contains all of the points of P; that is, if $P \subseteq Q$.

Lemma 1 (7.2.3). If $P \subseteq Q$, then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$. Proof on page 218.

Lemma 2 (7.2.4). If P_1 and P_2 are any two partitions of [a,b], then $L(f,P_1) \leq U(f,P_2)$. Proof on page 219.

Definition 4 (upper integral, lower integral). Let \mathcal{P} be the collection of all possible partitions of the interval [a,b]: The upper integral of f is defined to be

$$U(f)=\inf\{U(f,P):P\in\mathcal{P}\}.$$

In a similar way, define the lower integral of f by

$$L(f) = \sup\{L(f, P) : P \in \mathcal{P}\}.$$

Lemma 3 (7.2.6). For any bounded function f on [a, b], it is always the case that $U(f) \geq L(f)$.

Definition 5 (Riemann Integrability). A bounded function f defined on the interval [a,b] is Riemann-integrable if U(f) = L(f). In this case, we define $\int_a^b f$ or $\int_a^b f(x)dx$ to be this common value; namely,

$$\sum_{a}^{b} f = U(f) = L(f).$$

Theorem 6 (Integrability Criterion - 7.2.8). A bounded function f is integrable on [a,b] if and only if, for every $\epsilon > 0$, there exists a partition P_{ϵ} of [a,b] such that

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon.$$

Proof on page 221.

Theorem 7 (7.2.9). If f is continuous on [a,b], then it is integrable. Proof on page 222.

7.3 - Integrating Functions with Discontinuities

Theorem 8 (7.3.2). If $f:[a,b] \to \mathbb{R}$ is bounded, and f is integrable on [c,b] for all $c \in (a,b)$, then f is integrable on [a,b]. An analysis result holds at the other endpoint.

Proof on page 224.

7.4 - Properties of the Integral

Theorem 9 (7.4.1). Assume $f:[a,b] \to \mathbb{R}$ is bounded, and let $c \in (a,b)$. Then, f is integrable on [a,b] if and only if f is integrable on [a,c] and [c,b]. In this case, we have

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Proof on page 228.

Theorem 10 (7.4.2). Assume f and g are integrable functions on the interval [a, b].

- (i) The function f + g is integrable on [a, b] with $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.
- (ii) For $k \in \mathbb{R}$, the function kf is integrable with $\int_a^b kf = k \int_a^b f$.
- (iii) If $m \le f(x) \le M$ on [a, b], then $m(b a) \le \int_a^b f \le M(b a)$.
- (iv) If $f(x) \leq g(x)$ on [a, b], then $\int_a^b f \leq \int_a^b g$.
- (v) The function |f| is integrable and $|\int_a^b f| \le \int_a^b |f|$.

Proof on page 230.

Definition 6 (7.4.3). If f is integrable on the interval [a, b], define

$$\int_{b}^{a} f = -\int_{a}^{b} f.$$

Also, for $c \in [a, b]$ define

$$\int_{c}^{c} f = 0.$$

Theorem 11 (Integrable Limit Theorem - 7.4.4). Assume that $f_n \to f$ uniformly on [a,b] and that each f_n is integrable. Then, f is integrable and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f.$$

Proof on page 232.