⑩ 日本国特許庁(JP)

(1)実用新案出願公告

⑫実用新案公報(Y2)

平3-34381

®Int. Cl. 3

識別記号

庁内整理番号

❷❷公告 平成3年(1991)7月22日

B 62 D 5/04

9034 - 3D

(全4頁)

パワーステアリング装置 の考案の名称

> 頤 昭59-136425 ②)実

開 昭61-51271 69公

願 昭59(1984)9月7日 22出

@昭61(1986)4月7日

晴 光 下 森 のおく 案 者

兵庫県姫路市千代田町840番地 三菱電機株式会社姫路製

作所内

外2名

泰 樹 猪 狩 四考 案 者

広島県広島市東区牛田早稲田1丁目8番地の15

東京都千代田区丸の内2丁目2番3号

三菱電機株式会社 切出 願 人 弁理士 大岩 增雄 70代 理 人

也 直

奥 審査官 特開 昭54-102727 (JP, A) 69参考文献

特開 昭49-33315 (JP, A)

特公 昭53-32572 (JP, B2)

特公 昭49-2730 (JP, B1)

1

砂実用新案登録請求の範囲

- (1) 一方向回転力を出力する電動機、この電動機 により回転付勢される第1伝導手段、この第1 伝導手段と係合し、上記第1伝導手段の回転方 上記第1伝導手段の回転を第1出力軸に制御伝 達する第1電磁すべりクラツチ、上記第2伝導 手段の回転を第2出力軸に制御伝達する第2電 磁すべりクラツチ、上記第1出力軸または上配 ンドル軸手段、及びハンドルの左右の操舵に応 じて上記第1電磁すべりクラツチと上記第2電 磁すべりクラツチを電気的に選択して切り換え る切り換え手段を備えたパワーステアリング装 置。
- (2) 第1出力軸と第2出力軸からハンドル軸手段 への回転力伝達はベルトによることを特徴とす る実用新案登録請求の範囲第1項記載のパワー ステアリング装置。
- への回転力伝達は歯車手段によることを特徴と する実用新案登録請求の範囲第1項記載のパワ ーステアリング装置。

2

考案の詳細な説明

[考案の技術分野]

この考案はパワーステアリング装置、特に電動 機駆動式のものにおいて、その電動機からハンド 向とは逆方向に回転付勢される第2伝導手段、 5 ル軸手段を回転駆動する回転力伝達に関するもの である。

〔従来技術〕

第1図、第2図は従来のパワーステアリング装 置を示す一部断面図と一部側面図である。図にお 第2出力軸の回転出力により回転付勢されるハ 10 いて、1はハンドル、2はこのハンドル1の軸で あるハンドル軸、3はこのハンドル軸2と中間軸 5 との間に配設され、回転力の係脱を行う板式ク ラッチ装置、4は上記中間軸5に固定されたウオ ームホイール、1はこのウオームホイールと嚙合 15 するウオーム、8は直流電動機、9はこの直流電 動機8の電機子軸で、上記ウオームが設けられて いる。

従来のパワーステアリング装置は上記のように 構成され、ハンドル1が運転者により左右何れか (3) 第1出力軸と第2出力軸からハンドル軸手段 20 一方に回転されると、この回転力及びその方向を 検出(図示せず)して直流電動機 8 が図示矢印A 何れかの、ハンドル1の回転方向に応じた方向に 回転付勢される。この回転力が電機子軸 9 、ウオ ーム7に伝達され、ウオーム7に嚙合したウオー

ムホイール4を回転付勢する。ウオームホイール 4に固定された中間軸5が回転し、板式クラツチ 装置3を介してハンドル軸2を回転付勢し、ハン ドル1の操舵を補助付勢する。運転者がハンドル 1の回転方向を換える度に、直流電動機8の回転 方向を換えてハンドル1の操舵を補助付勢する。

しかるに上配のように、ハンドル1の回転方向 が换わる度に、直流電動機 8 の回転方向を換えな ければならず、直流電動機8の回転子(図示せ るという欠点があつた。例えば、自動車におい て、急な切り返し等、高度な応答性が必要とされ る場合、この欠点は致命的なものであつた。

「考案の概要〕

れたものでハンドル軸を各々正逆両方向に回転付 勢する2つの出力軸に回転を制御伝達する各々2 つの電磁すべりクラツチとこの2つの電磁すべり クラツチを電気的に選択して切り換える切り換え テアリング装置を提案するものである。

[考案の実施例]

第3図、第4図はこの考案の一実施例を示す断 面図であり、1,2は上記従来装置と全く同一の ヤポックス10に固定される直流電動機、12は この直流電動機11の電機子軸、13 a はこの電 機子軸12に固定された第1平歯車、13bはこ の第1平歯車に常時嚙合係合された第2平歯車、 5 aは上記平歯車13 a の回転を、第1出力軸1 B aに制御伝達する第1電磁すべりクラツチであ る第1電磁パウダークラッチ、15bは上記第2 平歯車136の回転を、第2出力軸166に制御 パウダークラツチ、17a, 17bは各々第1出 力軸16 a 第2出力軸16 b に固定された平歯車 Z₂、18a, 18bは各々平歯車17a, 17b に常時嚙合係合された平歯車Z3、19a,19b 1、第2中間出力軸、20a,20bはこの第 1、第2中間出力軸 19 a, 19 b に各々固定さ れた平歯車Z、22a,22bはこの平歯車Zに 常時囓合係合された平衡車Z5、21a,21bは

この平崩車乙。、22a,22bが各々固定された 第1、第2最終出力軸、23a,23bはこの第 1、第2最終出力軸22a, 22bに固定された 第1、第2駆動プーリ、26は上記ハンドル軸2 に固定された被駆動プーリ、27は上記駆動プー リ23aと被駆動プーリ26に巻掛けされた第1 タイミングベルト、28は上記駆動プーリ23b と被駆動プーリ26に巻掛けされた第2タイミン グベルト、25は上記電機子軸12、逆回転輸1 ず)の慣性力によつて応答に時間的な遅れを生じ 10 4、第1出力軸 16a第2出力軸 16b、中間出 力軸19a,19b最終出力軸21a,21bを 各々ポールペアリング24a,24bを介して軸 承する上記ギャポツクス10のフレーム、29は 上記第1電磁パウダークラツチ15a、第2電磁 この考案は、かかる欠点を改善する目的でなさ 15 パウダークラッチ 1 5 bを選択的に切り換えるス イツチ装置でパツテリ30からの第1、第2電磁 パウダークラツチ15a,15bへの通電制御で 行い、両電磁パウダークラツチ15a, 15bへ の通電を止める第1スイツチ29aと、電磁パウ 手段を設けることにより、応答性のよいパワース 20 ダークラッチ 15a, 15bへの通電を択一的に 行う第2スイツチ29 bよりなる。

上記のように構成されたパワーステアリング装 置の動作について説明する。 直流電動機 1 1 の一 方向回転出力により、直流電動機11の電機子軸 ものである。10はギヤボツクス、11はこのギ 25 12に固定された第1平歯車13aは正方向回転 駆動される、第1平歯車13aと幕時嚙合係合さ れた第2平歯車13bは逆方向回転駆動される。 第1スイツチ29aがOFFの時は、両第1、第 2電磁パウダークラッチ 15a, 15bは通電さ 14はこの第2平歯車が固定された逆回転軸、1 30 れず、第1出力軸16a、第2出力軸16bには 第1平歯車13 a、第2平歯車13 bの回転力は 伝達されない。この場合は運転者がハンドル1を 正逆何れにも回転させない時である。次に例えば 運転者がハンドル1を正転側に回転付勢した場 伝達する第2電磁すべりクラツチである第2電磁 35 合、第1スイツチ29aがON、第2スイツチ2 9 bが正転側(図示実線状態)になり、スイッチ 装置29はパツテリ30から第1電磁パウダーク ラツチ15aに通電され、第1出力軸16aに第 1平歯車13 aの回転力が伝達される。第1出力 はこの平歯車18a, 18bが各々固定された第 40 軸18aに固定された平歯車Z2, 17a、平歯車 Z₂, 17 aに常時嚙合係合された平歯車Z₃, 18 a、平歯車Z3, 18aが固定された中間出力軸 1 9 a、中間出力軸 1 9 a に固定された平歯車Z4, 2 Oa、平歯車Z., 20aに常時嚙合係合された平 歯車25, 22a、平歯車Zs, 22aが固定され た最終出力軸21 a に回転力が伝達される。これ ら平歯車Z2, Z3, Z4, Z5により回転速度を低下さ せトルクを上げている。最終出力軸21 aに固定 された第1駆動プーリ23aから第1タイミング 5 ベルト27を介して被駆動プーリ28が回転駆動 され、ハンドル軸が正方向回転駆動される。同様 に運転者がハンドル1を逆転側に回転付勢した場 合、スイツチ装置27により第2電磁パウダーク 方向回転力が第2出力軸16bに伝達され、平衡 車2. Za, Za, Zsを介して、第2駆動プーリ23 b、第2タイミングベルト28に伝達され、被駆 動プーリ26を介してハンドル軸2を逆方向回転 駆動される。したがつてパワーステアリング装置 15 の応答性が向上する。また、第1、第2の電磁パ ウダークラツチの各電磁コイルの通電電流を制御 することにより各々の伝達回転力を制御できるの で、ハンドル軸2の回転駆動制御を自由に行なえ る。

なお上記実施例では直流電動機11をパワース テアリング装置運転時常時作動させておくものを 示したが、第1スイツチ29aON時のみ作動す るようにしても、ある程度の応答性の向上が得ら

なお上記実施例では平歯車の啮合係合による回 転力伝達を行うものについて示したが、他の伝達 手段、例えば摩擦係合による回転力伝達も同効果 が期待できる。タイミングベルトについても同様 に別の伝達手段でもよい。

また上記実施例では運転者がハンドル操作をし ている場合について示したがハンドルを介さない 無人運転についても行なえる。

〔考案の効果〕

この考案は以上説明したとおり、ハンドル軸を 各々正逆両方向に回転付勢する2つの出力軸に、 回転を制御伝達する各々2つの電磁すべりクラツ チと、この2つの電磁すべりクラツチを電気的に 選択して切り換える切り換え手段とを設けること ラッチ15bが通電され、第2平衡車13bの逆 10 により、自動車のハンドルの急な切り返しにおい ても応答性が良好であり、また、電磁すべりクラ ツチを使用することにより、ハンドル軸の回転駆 動制御を自由に行なえるという効果が得られる。

図面の簡単な説明

第1図は従来のパワーステアリング装置を示す 一部断面図、第2図は従来のパワーステアリング 装置を示す一部側面図、第3図はこの考案の一実 施例を示す一部断面図、第4図はこの考案の回路 図である。

図において、1はハンドル、2はハンドル軸、 20 11は直流電動機、13aは第1平歯車、13b は第2平歯車、15 aは第1電磁パウダークラツ チ、15bは第2電磁パウダークラツチ、16a は第1出力軸、16bは第2出力軸、23aは第 25 1駆動プーリ、23bは第2駆動プーリ、26は 被駆動プーリ、27は第1タイミングベルト、2 8は第2タイミングベルト、29はスイツチ装置 である。なお各図中同一符号は同一または相当部 分を示すものとする。

30

BEST AVAILABLE CUPY