SPI Slave With single Port RAM FPI Team

Supervised by: Eng Karim Waseem

Team members
Abdelrahman Mohamed Hassan Ali
Sherif Shawky Gaafar Mahmoud
Khaled Ali Elsayed Ali

1-Waveform snippets:

2-QuestaLint snippets:

Figure 1: snippet from QuestaLint showing no linting Errors

Lint checks had only one warning as shown below:

There was no problem with this warning so we just waived it and the design now has no Errors as shown in figure 1.

3-Synthesis snippets for each encoding:

1- Sequential:

Figure 2: Schematic after the elaboration

Figure 3: RAM

Figure 4: SPI

Figure 5: Schematic after synthesis

Figure 6: RAM after synthesis

Figure 7: SPI after synthesis

99	State	New Encoding	Previous Encoding
00 :			
01	IDLE	000	000
02 ;	CHK_CMD	100	001
03	WRITE	011	010
04	READ_ADD	010	011
05	READ_DATA	001	100
06 :			
7 INFO:	[Synth 8-3354] encoded FSM wit	th state register 'cs reg' using e	ncoding 'sequential' in module

Figure 8: Report showing type of encoding used (sequential)

Figure 9: Timing Report

Figure 10: Snippet of the critical path highlighted in the schematic

2- One_hot:

Figure 11:Schematic after the elaboration

Figure 12: RAM

Figure 13: SPI

Figure 14:Schematic after synthesis

Figure 15: RAM after synthesis

Figure 16: SPI after synthesis

State	ı	New Encoding	ı	Previous Encoding
IDLE	I	00001	I	000
CHK_CMD	I	10000	I	001
WRITE	I	01000	I	010
READ_ADD		00100	I	011
READ_DATA	I	00010	I	100

INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'one-hot' in module 'SPI' WARNING: [Synth 8-327] inferring latch for variable 'in_MOSI_reg' [E:/digital design projects/Team_project_

Figure 17:Report showing type of encoding used (one_hot)

Figure 18: Timing Report

Figure 19: Critical Path

3- gray:

Figure 20: Schematic after the elaboration

Figure 21: RAM

Figure 22: SPI

Figure 23: Schematic after synthesis

Figure 24: RAM after synthesis

Figure 25: SPI after synthesis

State	New Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	111	001
WRITE	010	010
READ_ADD	011	011
READ_DATA	001	100

Figure 26: Report showing type of encoding used (gray)

Note: we wrote the attribute (* fsm_encoding = "gray" *)

Before cs and ns declaration and tried to open new

Project and run again but the tool keeps the gray

Encoding as shown in figure (the first two states are

Wrong then it becomes right)

Figure 27: Timing Report 12

Figure 28: Critical path

4-Implementation snippets for each encoding:

1- Sequential:

Figure 29: Utilization report

Figure 30: Timing Report

Figure 31: device

2- One hot:

Figure 32: Utilization report

Figure 33: Timing Report

Figure 34: device

3- gray:

Name	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	Slice (815 0)	LUT as Logic (20800)	LUT as Memory (9600)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)	BSCANE2 (4)
✓ N SPI_With_SPR	1267	1946	11	611	1159	108	744	1	5	2	1
> 1 dbg_hub (dbg_hub)	480	727	0	234	456	24	309	0	0	1	1
I M (RAM)	2	9	1	3	2	0	0	0.5	0	0	0
I S (SPI)	22	21	0	10	22	0	8	0	0	0	0
> 1 u_ila_0 (u_ila_0)	763	1189	10	369	679	84	423	0.5	0	0	0

Figure 35: Utilization report

Figure 36: Timing report

Figure 37: device

- ➤ Since we wish to operate at the highest frequency possible so we will choose the encoding based on the encoding type that gives us highest setup time slack
 - Sequential = 0.123 ns
 - One_hot =0.372 ns
 - gray = 0.415 ns
- ➤ So, we will choose gray encoding and now we will add a debug core such that all internals can be analyzed and generate bitstream file.

5- Snippet of messages tab:

Figure 38: Snippets of messages tab showing no errors after running (elaboration, synthesis and implementation)

Figure 39: successful bitstream