Finding Clarity in Chaos: Leveraging Noisy Labels for Superior Anomaly Detection

<u>Dennis M. Hofmann</u>, Peter M. VanNostrand, Lei Ma, Huayi Zhang, Joshua C. DeOliveira, Lei Cao, Elke A. Rundensteiner Based on the paper "Agree to Disagree: Robust Anomaly Detection with Noisy Labels" [1] accepted at SIGMOD 2025.

Background: Anomaly detection aims to identify objects that significantly differ from the expected behavior. Anomaly detection is critical for tasks such as detecting cybersecurity attacks, financial fraud, and life-threatening health conditions. [2]

Motivation

Since anomalies are rare, it is difficult to acquire large number of high-quality labels [2].

We can cheaply generate pseudo-labels.

2 Challenges: Learning from Noisy Labels for Anomaly Detection

Challenge 1: The scarcity of anomalies invalidates common clean sample selection metrics (such as loss [3]).

Challenge 2: The diversity of anomalies leads to many marginal anomalies that are likely to be assigned noisy pseudo-labels

3 Solutions

Solution 1: Select a diverse set of easy and marginal samples with clean labels using peer networks

Solution 2: Learn a contrastive anomaly-aware embedding space to refurbish noisy labels

4 Experiments

Method	Datasets (F-1 score)		
	Annthyroid	Cardio Pageblocks	WPBC
IF (Base)	0.34.01	0.54 _{.02} 0.44 _{.01}	0.17.02
AutoOD [4]	0.48.04	0.12.04 0.49.06	0.32.03
UADB [5]	0.39.02	0.61 _{.04} 0.25 _{.18}	$\overline{0.17_{.02}}$
Unity (ours)	0.78.00	0.65.09 0.63.01	0.36.02

- Inlier Class Anomaly Class

 Anomaly Class

 Anomaly Class

 WPBC

 Ori ADR Ori ADR Ori ADR
 - 1. Unity outperforms SOTA LNL-AD Methods
- 2. Unity significantly decreases the noise rate

References

- [1] D. Hofmann, et al. *Agree to Disagree:*Robust Anomaly Detection with Noisy Labels.

 SIGMOD 2025
- [2] S. Han et al. *ADBench: Anomaly Detection Benchmark.* NeurIPS. 2022.
- [3] H. Song, et al. Learning From Noisy Labels With Deep Neural Networks: A Survey. TNNLS 2023
- [4] L. Cao et al. AutoOD: Automatic Outlier Detection. SIGMOD. 2023.
- [5] H. Ye et al. UADB: Unsupervised Anomaly Detection Booster. ICDE. 2023.

