ШВЕЛЛЕРЫ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ Сортамент

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М и н с к

ΓΟCT 8240-97

Предисловие

1 PA3PAБОТАН Межгосударственным техническим комитетом по стандартизации МТК 327, Украинским государственным научно-исследовательским институтом металлов

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 11 от 23 апреля 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Грузия Республика Казахстан Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Украина	Азгосстандарт Армгосстандарт Госстандарт Республики Беларусь Грузстандарт Госстандарт Республики Казахстан Молдовастандарт Госстандарт России Таджикстандарт Главгосслужба «Туркменстандартлары» Госстандарт Украины

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 5 апреля 2001 г. № 166-ст межгосударственный стандарт ГОСТ 8240—97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2002 г.
 - 4 B3AMEH ΓΟCT 8240—89

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Поправка к ГОСТ 8240—97 Швеллеры стальные горячекатаные. Сортамент

В каком месте	Напечатано	Должно быть
Библиографичес- кие данные	MKC 77:140.70	MKC 77.140.70

(ИУС № 10 2009 г.)

М Е Ж Г О С У Д А Р С Т В Е Н Н Ы Й С Т А Н Д А Р Т

ШВЕЛЛЕРЫ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ

Сортамент

Hot-rolled steel channels.
Assortment

Дата введения 2002—01—01

1 Область применения

Настоящий стандарт устанавливает сортамент стальных горячекатаных швеллеров общего и специального назначения высотой от 50 до 400 мм и шириной полок от 32 до 115 м.

2 Основные параметры и размеры

- 2.1 По форме и размерам швеллеры изготовляют следующих серий:
- У с уклоном внутренних граней полок;
- П с параллельными гранями полок;
- Э экономичные с параллельными гранями полок;
- Л легкой серии с параллельными гранями полок;
- С специальные.

Условные обозначения величин, характеризующих свойства швеллера:

- h высота (швеллера);
- b ширина полки;
- s толщина стенки;
- t толщина полки;
- R радиус внутреннего закругления;
- r радиус закругления полки;
- X_0 расстояние от оси Y—Yдо наружной грани стенки;
- Δ перекос полки;
- f прогиб стенки по высоте сечения профиля;
- F площадь поперечного сечения;
- I момент инерции;
- W— момент сопротивления;
- i радиус инерции;
- S_{x} статический момент полусечения.
- *2.2 Поперечное сечение швеллеров серий У, С должно соответствовать приведенному на рисунке 1, серий Π , Э, Π на рисунке 2.
- *2.3 Размеры швеллеров, площадь поперечного сечения, масса 1 м и справочные значения для осей должны соответствовать приведенным в таблицах 1—5.
- 2.3.1 Площадь поперечного сечения и масса 1 м швеллера вычислены по номинальным размерам, плотность стали принята равной 7,85 г/см³.

Издание официальное

^{*} См. примечание ФГУП «СТАНДАРТИНФОРМ» (с. 8).

ГОСТ 8240—97

Таблица 1 — Швеллеры с уклоном внутренних граней полок

Номер	I I I I I I I I I I				r	Пло- щадь			Спр	авочны	е значен	ия для о	сей			
пера					не б	олее	попере- чного	Масса 1 м, кг		<i>X</i> —	-X			<i>Y</i> — <i>Y</i>		X_0 , см
у			М	M			сечения <i>F</i> , см ²		I_x , cm ⁴	W_{x_3} , cm ³	<i>i_x</i> , cm	S_x , cm ³	I_y , cm ⁴	W _y , см ³	i ₀ , см	
5У	50	32	4,4	7,0	6,0	2,5	6,16	4,84	22,8	9,1	1,92	5,59	5,61	2,75	0,95	1,16
6,5У	65	36	4,4	7,2	6,0	2,5	7,51	5,90	48,6	15,0	2,54	9,00	_	3,68	1,08	1,24
8 У	80	40	4,5	7,4	6,5	2,5	8,98	7,05	89,4	22,4	3,16	23,30	12,80	4,75	1,19	1,31
10 У	100	46	4,5	7,6	7,0	3,0	10,90	8,59	174,0	34,8	3,99	20,40	20,40	6,46	1,37	1,44
12 У	120	52	4,8	7,8	7,5	3,0	13,30	10,40	304,0	50,6	4,78	29,60	31,20	8,52	1,53	1,54
14 Y	140	58	4,9	8,1	8,0	3,0	15,60	12,30	491,0	70,2	5,60	40,80	45,40	11,00	1,70	1,67
16 У	160	64	5,0	8,4	8,5	3,5	18,10	14,20	747,0	93,4	6,42	54,10	63,30	13,80	1,87	1,80
16a У	160	68	5,0	9,0	8,5	3,5	19,50	15,30	823,0	103,0	6,49	59,40	78,80	16,40	2,01	2,00
18 У	180	70	5,1	8,7	9,0	3,5	20,70	16,30	1090,0	121,0	7,24	69,80	86,00	17,00	2,04	1,94
18a Y	180	74	5,1	9,3	9,0	3,5	22,20	17,40	1190,0	132,0	7,32	76,10	105,00	20,00	2,18	2,13
20Y	200	76	5,2	9,0	9,5	4,0	23,40	18,40	1520,0	152,0	8,07	87,80	113,00	20,50	2,20	2,07
22У	220	82	5,4	9,5	10,0	4,0	26,70	21,00	2110,0	192,0	8,89	,	151,00	,	2,37	2,21
24У	240	90	5,6	10,0	_	4,0	30,60	24,00	2900,0	_		/	208,00	/	2,60	2,42
27У	270	95	6,0	10,5	11,0	4,5	35,20	27,70	4160,0	308,0	10,90	178,00	262,00	37,30	2,73	2,47
30 У	300	100	6,5	11,0	12,0	5,0	40,50	31,80	5810,0	387,0	12,00	224,00	327,00	43,60	2,84	2,52
33 Y	330	105	7,0	11,7	13,0	5,0	46,50	36,50	7980,0	484,0	13,10	281,00	410,00	51,80	2,97	2,59
36У	360	110	7,5	12,6	14,0	6,0	53,40	41,90	10820,0	601,0	14,20	350,00	513,00	61,70	3,10	2,68
40 Y	400	115	8,0	13,5	15,0	6,0	61,50	48,30	15220,0	761,0	15,70	444,00	642,00	73,40	3,23	2,75

Таблица 2 — Швеллеры с параллельными гранями полок

Номер	h	b	S	t	R	r	Пло- щадь			Спр	авочны	е значен	ия для с	сей		
швел- лера серии П					не б	олее	попере- чного сечения	Масса 1 м, кг		<i>X</i> —	-X			<i>Y</i> — <i>Y</i>		X_0 , см
			M	[M			<i>F</i> , см ²		I_x , cm ⁴	W_{x_3} , cm ³	i_{χ} , cm	S_x , cm ³	I_y , cm ⁴	W_{y_3} , cm ³	i _y , cm	
5П	50	32	4,4	7.0	6,0	3,5	6,16	4,84	22,8	9,1	1,92	5,61	5,95	2,99	0,98	1,21
$6,5\Pi$	65	36	4,4	7.2	$\begin{bmatrix} 6,0 \end{bmatrix}$	3,5	7,51	5,90	48,8	15,0	_	,		4,06	1.12	1,29
8П	80	40	4,5	7,4	6,5	3,5	8,98	7,05	89,8	22,5	3,16	/		3,31	1,24	1,38
10Π	100	46	4,5	7,6	7,0	4,0	10,90	8,59	175,0	34,9	/	20,50			1,44	1,53
12Π	120	52	4,8	7,8	7,5	4,5	13,30	10,40	305,0	50,8	4,79	29,70	34,90	9,84	1,62	1,66
14∏	140	58	4,9	8,1	8,0	4,5	15,60	12,30	493,0	70,4	5,61	40,90	51,50	12,90	1,81	1,82
16Π	160	64	5,0	8,4	8,5	5,0	18,10	14,20	750,0	93,8	6,44	54,30	72,80	16,40	2,00	1,97
16aΠ	160	68	5,0	9,0	8,5	5,0	19,50	15,30	827,0	/	6,51	59,50			2,15	2,19
18Π	180	70	5,1	8,7	9,0	5,0	20,70	16,30	1090,0	/	/	70,00			/	2,14
18aΠ	180	74	5,1	9,3	9,0	5,0	22,20	17,40	1200,0	/	/	_	123,00	/	/	2,36
20Π	200		5,2	9,0	9,5	5,5	23,40	_				_	134,00			2,30
$\frac{1}{22\Pi}$	220		5,4	9,5	10,0		26,70	_	/	_	_	_	178,00	_		2,47
$\frac{1}{24}\Pi$	240		5,6	′ _	1		30,60					_	·			$\begin{bmatrix} 2,72 \\ 2,72 \end{bmatrix}$
$\frac{27\Pi}{20\Pi}$	$\frac{270}{200}$	-	6,0		11,0		35,20	_	/		_					$\begin{bmatrix} 2,78 \\ 2,92 \end{bmatrix}$
30∏	1 1	100	. /	11,0	1 1		40,50		/		_	_				2,83
33∏ 36∏		105	l _′_	11,7	1		46,50		8010,0		_					$\begin{bmatrix} 2,90 \\ 2,90 \end{bmatrix}$
3011 40Π	l I	110 115	1 /	′ _	14,0 15,0		53,40		10850,0 15260,0		_	· · · · · · · · · · · · · · · · · · ·	I . ´ I			2,99
4011	400	113	0,0	13,3	15,0	7,0	01,50	+0,50	15200,0	705,0	15,60	773,00	700,00	67,70	٠,٥١	3,03

Таблица 3 — Швеллеры экономичные с параллельными гранями полок

Масса Попере	Номер	h	b	S	t	R	r	Пло- щадь		Справочные значения для осей							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	швел- лера серии					не б	олее	ре- чного	1 м,		<i>X</i> —.	X			<i>Y</i> — <i>Y</i>		X_0 , см
6,59 65 36 4,2 7,2 6,5 2,5 7,41 5,82 48,9 15,05 2,57 9,02 9,42 4,13 1,127 1 89 80 40 4,2 7,4 7,5 2,5 8,82 6,92 90,0 22,50 3,19 13,31 13,93 5,38 1,257 1 109 100 46 4,2 7,6 9,0 3,0 10,79 8,47 175,9 35,17 4,04 20,55 22,68 7,47 1,450 1 129 120 52 4,5 7,8 9,5 3,0 13,09 10,24 307,0 51,17 4,84 29,75 35,12 10,03 1,638 1 149 140 58 4,6 8,1 10,0 3,0 15,41 12,15 495,7 70,81 5,67 40,96 51,76 13,13 1,833 1 169 160 64 4,7 8,4 11,0 3,5 17,85 14,01 755,5 94,43 6,50 54,41	Э			N	ИM			ния		I_x , cm ⁴	W_x , cm ³	i_{χ} , cm	S_x , cm ³	I_y , cm ⁴	W_{y_3} , cm ³	i_y , cm	
	6,59 89 109 149 169 209 249 249 309 339	65 80 100 120 140 160 200 220 240 270 300 330	40 46 52 58 64 70 76 82 90 95 100 105	4,2 4,2 4,5 4,6 4,7 4,8 4,9 5,1 5,3 5,8 6,9	7,2 7,4 7,6 7,8 8,4 8,7 9,0 9,5 10,0 11,0 11,7	6,5 7,5 9,0 10,0 11,5 12,0 13,0 13,0 13,0 13,0	2,5 2,5 3,0 3,5 4,0 4,5 4,0 4,5 5,0	7,41 8,82 10,79 13,09 15,41 17,85 20,40 23,02 26,36 30,19 34,87 39,94 46,15	5,82 6,92 8,47 10,24 12,15 14,01 16,01 18,07 20,69 23,69 27,37 31,35 36,14	48,9 90,0 175,9 307,0 495,7 755,5 1097,9 1537,1 2134,2 2927,0 4200,2 5837,1 8021,8	15,05 22,50 35,17 51,17 70,81 94,43 121,99 153,71 194,02 243,92 311,12 389,14 488,17	2,57 3,19 4,04 4,84 5,67 6,50 7,34 8,17 9,00 9,85 10,97 12,09 13,18	9,02 13,31 20,55 29,75 40,96 54,41 70,05 88,03 111,00 139,08 178,25 224,00 281,23	9,42 13,93 22,68 35,12 51,76 73,17 100,51 134,07 179,05 249,03 316,24 395,57 497,02	4,13 5,38 7,47 10,03 13,13 16,70 20,87 25,54 31,54 40,07 47,43 55,58 65,78	1,127 1,257 1,450 1,638 1,833 2,024 2,219 2,413 2,606 2,872 3,011 3,147 3,282	1,23 1,32 1,41 1,56 1,70 1,86 2,02 2,18 2,35 2,52 2,78 2,83 2,83 2,88 2,94 3,04

ΓΟCT 8240-97

Таблица4 — Швеллеры легкой серии с параллельными гранями полок

Номер	h	b	S	t	R	r	Пло- щадь попе-	ъ л				значени	ия для ос			
швел-					не б	олее	pe-	Масса 1 м,		<i>X</i> —.	X			<i>Y</i> — <i>Y</i>		X_0 , см
серии			N	1 M			чного сече- ния <i>F</i> , см ²	KΓ	I_x , cm ⁴	W_x , cm ³	i_x , cm	S_x , cm ³	I_y , cm ⁴	<i>W</i> _y , см ³	<i>i_y</i> , см	
12Л 14Л 16Л 18Л 20Л 22Л 24Л	140 160 180 200 220 240	32 35 40 45 50 55	3,2 3,4 3,6 3,8 4,0 4,2	4,8 5,6 5,6 6,0 6,4 6,8	7 8 9 10 10		7,57 9,04 10,81 12,89 15,11 17,41	5,94 7,10 8,49 10,12 11,86 13,66	503,87 748,17 1070,97 1476,39	30,42 41,49 55,98 74,82 97,36 123,03	5,31 6,06 6,83 7,62 8,42 9,21	18,23 24,84 33,49 44,59 57,82 72,90	6,55 9,23 14,64 22,37 32,85 46,25	2,70 3,46 4,10 6,51 8,61 11,04	1,01 1,16 1,32 1,47 1,63	0,76 0,78 0,83 0,94 1,06 1,19 1,31
27Л 30Л	270 300		4,5 4,8	7,3 7,8	11 11		20,77 24,30	_	2218,16 3186,74	_		·				1,40 1,51

Таблица5 — Швеллеры специальные

	h	b	2	t	R	r		Пло- щадь			Справоч	ные зна	ачения дл	я осей		
Номер швел- лера		J	D	·	не б	олее	Уклон полок,	попе-	Масса 1 м, кг		<i>X</i> — <i>X</i>			<i>Y</i> — <i>Y</i>		X_0 , cm
С	MM						%	сече- ния <i>F</i> , см ²	ния		W_{x3} , cm ³	i_{χ} , cm	I_y , cm ⁴	W_{y_3} , cm ³	i_y , cm	
8C 14C 14Ca 16C	80 140 140 160	58 60	8,0	9,5 9,5	9,5 9,5	4,75 5,0		11,80 18,51 21,30 21,95	14,53 16,72	609,10	80,50 87,01	5,52 5,35	53,20 61,02	13,01 14,09	1,70 1,69	1,57 1,71 1,67 1,80
16Ca 18C	160 180	65 68	8,5 7,0	10,0 10,5	10,0 10,5	5,0 5,3		25,15 25,70	19,74 20,20	934,50 1272,00	116,80 141,00	6,10 7,04	83,40 98,50	17,55 20,10	1,82 1,96	1,75 1,88
18Са 18Сб 20С	180 180 200	100 73	8,0 7,0	10,5 10,5 11,0	10,5 11,0	5,0 5,5	6 10	29,30 34,04 28,83	26,72 22,63	1370,00 1791,01 1780,37	199,00 178,04	7,25 7,86	305,48 128,04	43,58 24,19	3,00 2,11	1,84 2,99 2,02
20Са 20Сб 24С	200 200 240	100	8,0	11,0 11,0 14,0	11,0	5,5	10 6 —	32,83 36,58 44,46	28,71	1913,71 2360,88 3841,35	236,09	8,03	327,23	46,30	2,99	1,95 2,93 2,35
26C 26Ca 30C	260 260 300	90	10,0	16,0 15,0 13,5	15,0	7,5	 8 10	44,09 50,60 43,88	34,61 39,72	4088,00 5130,83 6045,43	314,50 394,68	9,63 10,07	1115,60 343,15	171,60 52,62	5,03 2,60	3,91 2,48 2,20
30Са 30Сб	300 300	87	9,5	13,5 13,5	13,5	7,0	10 10	49,88 55,88	39,15	6495,43 6945,43	433,03	11,41	288,78	43,93	2,41	2,13 2,09

- 2.3.2 Значения радиусов закругления, уклона внутренних граней полок, указанных на рисунках 1 и 2 и приведенных в таблицах 1—5, используют для построения калибров и на профиле не контролируют.
- *2.4 Форма швеллера и предельные отклонения по размерам должны соответствовать приведенным на рисунке 3 и в таблице 6.
- 2.4.1 Уклон внутренних граней полок швеллеров серии У должен быть в пределах от 4 % до 10 %. По соглашению потребителя с изготовителем уклон внутренних граней полок не должен превышать 8 % при $h \le 300$ мм и 5 % при h > 300 мм.
- 2.5 Притупление прямых углов швеллеров до № 20 не должно превышать 2,5 мм, свыше № 20—3,5 мм. Притупление внешних углов не контролируют.
- 2.6 Швеллеры изготовляют длиной от 2 до 12 м, по соглашению потребителя с изготовителем длиной свыше 12 м:

^{*} См. примечание ФГУП «СТАНДАРТИНФОРМ» (с. 8).

- мерной длины;
- мерной длины с немерной в количестве не более 5 % массы партии;
- кратной мерной длины;
- кратной мерной длины с немерной в количестве не более 5 % массы партии;
- немерной длины;
- ограниченной длины в пределах немерной.

Рисунок 3

Таблицаб — Предельные отклонения параметров

В миллиметрах

Параметр	Интервал значений параметра	Предельное отклонение
Высота h	До 80 включ. Св. 80 » 200 » » 200 » 400 »	±1,5 ±2,0 ±3,0
Ширина полки <i>b</i>	До 40 включ. Св. 40 » 89 » » 89	±1,5 ±2,0 ±3,0
Толщина полки <i>t</i>	До 10 включ. Св. 10 » 11 » » 11	$-0.5 \\ -0.8 \\ -1.0$
Толщина стенки <i>s</i>	До 5,1 включ. Св. 5,1 » 6,0 » » 6,0	$\pm 0.5 \\ \pm 0.6 \\ \pm 0.7$
Перекос полки Δ при ширине полки b , не более	До 95 включ. Св. 95	0,015b
Прогиб стенки f по высоте h сечения профиля, не более	До 100 включ. Св. 100 » 200 » » 200 » 400 »	0,5 1,0 1,5

Примечания

- 1 Для швеллеров серии Л прогиб стенки не должен превышать 0,15s.
- 2 Для швеллеров серий У и П предельные отклонения по толщине стенки не контролируют.
- 3 Перекос полки Δ и прогиб стенки f швеллера измеряют, как показано на рисунке 3.

ΓΟCT 8240-97

*2.7 Предельные отклонения по длине швеллеров мерной и кратной мерной длины не должны превышать:

при длине от 2 до 8 м включ. — до +40 мм;

- » » св. 8 м до + [40 + 5(l 8)] мм, но не более 100 мм, где l длина швеллера, м.
- 2.8 Швеллеры должны быть обрезаны. Косина реза не должна выводить длину швеллеров за предельные отклонения по длине.

Длина отдельного швеллера — это наибольшая длина условно вырезанной штанги с торцами, перпендикулярными к продольной оси.

- 2.9 Кривизна швеллера в горизонтальной и вертикальной плоскостях не должна превышать 0.2% длины; по соглашению изготовителя с потребителем до 0.15% длины.
- 2.10 Предельные отклонения по массе не должны превышать ± 4 % для партии и ± 6 % для отдельного швеллера.

Отклонение от массы — это разность между фактической массой в состоянии поставки и рассчитанной по данным таблиц 1-5.

При расчете массы партии к метражу швеллеров мерной или кратной мерной длины прибавляют 0,5 от суммы предельных отклонений по длине швеллеров в партии.

2.11 Размеры и геометрическую форму швеллера контролируют на расстоянии не менее 500 мм от торца. Высоту швеллера контролируют в плоскости стенки, толщину стенки — у торца профиля.

^{*} См. примечание ФГУП «СТАНДАРТИНФОРМ» (с. 8).

УДК 669—423.2:338.33:006.354

MKC 77:140.70

B22

OKII 29 2500

Ключевые слова: швеллеры горячекатаные, сортамент, параметры, размеры, предельные отклонения, справочные величины

ПРИМЕЧАНИЕ ФГУП «СТАНДАРТИНФОРМ»

В информационном указателе «Национальные стандарты» № 12—2004 опубликована поправка

к ГОСТ 8240—97 Швеллеры стальные горячекатаные. Сортамент

В каком месте	Напечатано	Должно быть		
Пункт 2.2. Рисунок 1	X_0	X_0		
Пункт 2.3. Таблица 1.Графа $S_{\rm x}$. Для номера швеллера 8У	23,30	13,30		
таблица 2. Графа $W_{\rm y}$. Для но-мера швеллера 8Π	3,31	5,31		
таблица 5. Графа $I_{\rm y}$. Для номера швеллера 26С	1115,60	1115,60		
Пункт 2.4	на рисунке 3	на рисунках 1—3		
рисунок 3. Обозначение проги- ба	t	f		
Пункт 2.7	при длине от 2 до 8 м включ. — до $+$ 40 мм; при длине св. 8 м — до $+$ [40+5 (l — 8)] мм, но не более 100 мм	+ 40 мм — при длине от 2 до 8 м включ.; +[40+5 (<i>l</i> – 8)] мм, но не более 100 мм — при длине св. 8 м,		

Редактор Л.И. Нахимова Технический редактор Л.А. Гусева Корректор В.И. Варенцова Компьютерная верстка А.Н. Золотаревой

Подписано в печать 07.05.2008. Формат $60x84^1/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 1,40 Уч.-изд. л. 0,70. Тираж 94 экз. Зак. 459.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.

Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.

Изменение № 1 ГОСТ 8240—97 Швеллеры стальные горячекатаные. Сортамент

Принято Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол № 33 от 06.06.2008)

Зарегистрировано Бюро по стандартам МГС № 5788

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: AZ, AM, BY, GE, KZ, KG, MD, RU, TJ, UZ, UA [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Пункт 2.4 изложить в новой редакции:

«2.4 Форма швеллера и предельные отклонения размеров должны соответствовать приведенным на рисунках 1—3 и в таблицах 6 и 7».

Рисунок 3 заменить новым:

^{*} Дата введения в действие на территории Российской Федерации — 2012-09-01.

Таблица 6:

исключить интервал значений и предельные отклонения по параметру «Перекос полки Δ при ширине полки b, не более»;

примечание 3. Исключить слова «Перекос полки Δ и»; дополнить примечанием — 4:

«4 Для швеллеров серий «У», «П», «Э» допускается прогиб стенки f по высоте h сечения профиля не более 0,25s, кроме профилей с толщиной стенки 5,1; 5,3; 5,4; 5,6 и 5,8 мм».

Пункт 2.4 дополнить новым подпунктом — 2.4.2:

«2.4.2 В зависимости от величин перекоса полок швеллеры изготовляют высокой, повышенной и обычной категории точности.

Допустимые значения перекоса полок не должны превышать приведенных в таблице 7».

Стандарт дополнить таблицей 7:

Таблица7 — Допустимые значения перекоса полок

В миллиметрах

Параметр		Категория точности	
	Высокая	Повышенная	Обычная
Перекос пол- ки Δ (Δ '), не бо- лее, при шири- не полки b : до 95 включ. св. 95	$0.9 \\ 0.01 \ b$	1,0 0,015 <i>b</i>	1,2 0,025 <i>b</i>

 Π р и м е ч а н и е — Перекос полки Δ (Δ ') швеллера измеряют, как показано на рисунке 3.

(ИУС № 2 2012 г.)