Sparse Estimation for Functional Semiparametric Additive Models

Authors: Peijun Sang, Richard A. Lockhart and Jiguo Cao Presenter: Tianyu Guan

Simon Fraser University

February 27, 2019

G. Tianyu 0 / 34

Outline

- Introduction
- Model
- Reproducing Kernel Hilbert Space
- Estimation Method
- Application

G. Tianyu 1 / 34

Tecator Data

- 240 meat samples
- 100-channel spectrum of absorbance with wavelength ranging from 850 – 1050nm (851nm, 853nm, ..., 1049nm) - function
- the contents of moisture (water) scalar
- the contents of fat scalar
- the contents of protein-scalar

Objective

Predict the content of protein

G. Tianyu 2 / 34

Tecator Data - spectrum of absorbance

G. Tianyu 3 / 34

Previous Studies

 Regress the content of protein on the functional spectral trajectories

$$Y = b + \int X(t)\beta(t) dt + \varepsilon$$

 Regress the content of protein on the scaled FPC scores of the functional spectral trajectories (a regularized functional additive model proposed by Zhu et al. (2014))

$$Y = b + \sum_{k=1}^{s} f_k(\zeta_k) + \varepsilon$$

- Y is the response (the content of protein)
- X is the functional predictor (the functional spectral trajectory)
- β is the unknown coefficient function
- $f_k(\cdot)$ are unknown smooth functions
- s is a sufficiently large number such that $f_k \equiv 0$ when k > s
- ζ_k is the scaled FPC score
- \bullet ε is the error

G. Tianvu 4/34

Tecator Data - pairewise scatter plots

- Each content is highly correlated with the other two contents
- Add the content of water(scalar) and fat(scalar) into the regression model

G. Tianyu 5 / 34

Functional Semiparametric Additive Model (FSAM)

- Predict a scalar response variable using both scalar and functional predictors
- Functional covariate is represented by its scaled leading FPC scores (non-parametric additive components)
- Scalar covariates are modeled linearly (parametric)

$$Y = b + \sum_{k=1}^{s} f_k(\zeta_k) + \mathbf{z}^T \boldsymbol{\alpha} + \varepsilon$$

- $\mathbf{z} = (z_1, \dots, z_p)^T$ is a p-dimensinal scalar covariate (e.g. p = 2 in the Tector Data example. z_1 is the content of water and z_2 is the content of fat.)
- $\alpha = (\alpha_1, \dots, \alpha_p)^T$ is the coefficient vector
- The authors develop a method (COSSO¹ penalty) for estimating the FSAM by smoothing and slecting non-vanishing components for the functional covariate

1. COSSO: component selection and smoothing operator

G. Tianyu 6 / 34

Models with effect of scalar predictors

$$Y = b_0 + \int X(t)\beta(t) dt + \mathbf{z}^T \alpha + \varepsilon$$
 (1)

FPCS on X

- The covariance function of *X* is $G(s,t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$
- $\lambda_1, \lambda_2, \ldots$ are eigenvalues of $G, \lambda_1 \geq \lambda_2 \geq \cdots \geq 0$
- $\psi_1(t), \psi_2(t), \ldots$ are the corresponding orthonormal eigenfunctions
- $\int \psi_i \psi_k \, \mathrm{d} t = 0 \text{ if } j \neq k$
- $X(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_k \psi_k(t)$
- $\mu(t)$ is the mean function of X
- $\xi_k = \int (X(t) \mu(t)) \psi_k(t) dt$ is the uncorrelated FPC score

G. Tianyu 7 / 34

Model (1) can be written as

$$Y = b + \sum_{k=1}^{\infty} \xi_k b_k + \mathbf{z}^T \alpha + \varepsilon$$

- $b = b_0 + \int \mu(t)\beta(t) dt$
- $b_k = \int \psi_k(t) \beta(t) dt$

To allow for greater flexibility

$$Y = b + \sum_{k=1}^{\infty} f_k(\xi_k) + \mathbf{z}^T \boldsymbol{\alpha} + \varepsilon$$
 (2)

• $f_k(\cdot)$ are unknown smooth functions

G. Tianyu 8 / 34

Standardization of ξ_k

$$\zeta_k = \Phi(\lambda_k^{-1/2} \xi_k)$$

- $Var(\xi_k) = \lambda_k$
- ullet $\Phi(\cdot)$ is a continuously differentiable map from R to [0,1]
- A wide range of cumulative distribution functions (CDFs) can be used as $\Phi(\cdot)$
- $\Phi(\cdot)$ is the CDF of N(0,1) in the paper

Advantages

- ζ_k have similar or the same variations
- $\zeta_k \in [0,1]$ is convenient to do the model regularization
- When the distribution of ξ is close to Gaussian, ζ is approximately uniform in [0,1], which is convenient for nonparametric modeling on the effect of ζ

G. Tianyu 9 / 34

Model (2) can be written as

$$Y = b + \sum_{k=1}^{\infty} f_k(\zeta_k) + \mathbf{z}^T \alpha + \varepsilon$$

The truncated model is

$$Y = b + \sum_{k=1}^{s} f_k(\zeta_k) + \mathbf{z}^T \boldsymbol{\alpha} + \varepsilon$$
 (3)

• s is large enough that $f_k \equiv 0$ when k > s

G. Tianyu 10 / 34

For elements f, g, h

Operation of addition

- f + g = g + f
- (f+g) + h = f + (g+h)
- for any two elements f and g, there exists an element h such that f+h=g

Operation of scalar multiplication

- $(\alpha + \beta)f = \alpha f + \beta f$
- 1f = f and 0f = 0
- α and β are real numbers

G. Tianyu 11 / 34

Linear space

A set \mathcal{L} of such elements form a linear space

• If $f, g \in \mathcal{L}$ implies that $f + g \in \mathcal{L}$ and $\alpha f \in \mathcal{L}$

Functional

A functional in a linear space \mathcal{L} operates on an element $f \in \mathcal{L}$ and returns a real number as its value

Linear functional

A linear functional $L \in \mathcal{L}$ satisfies

- L(f+g) = Lf + Lg
- $L(\alpha f) = \alpha L f, f, g \in \mathcal{L}, \alpha$ is real

G. Tianyu 12 / 34

Bilinear form

A bilinear form J(f,g) in a linear space \mathcal{L} and takes $f,g\in\mathcal{L}$ as arguments and returns a real value and satisfies

- $J(\alpha f + \beta g, h) = \alpha J(f, h) + \beta J(g, h)$
- $J(f, \alpha g + \beta h) = \alpha J(f, g) + \beta J(f, h)$
- $J(\cdot, \cdot)$ is symmetric if J(f, g) = J(g, f)
- A symmetric bilinear form is non-negative definite if $J(f,f) \geq 0$ $\forall f \in \mathcal{L}$
- A symmetric bilinear form is positive definite if $J(f,f) > 0 \ \forall f \in \mathcal{L}$

G. Tianvu 13 / 34

Inner product

- A linear space is often equipped with an inner product
- An inner product is a positive definite bilinear form with a notation (\cdot,\cdot)
- \bullet An inner product defines a norm in the linear space, $\|f\|=\sqrt{(f,f)}$
- A norm measures the distance between elements in the space $\|f-g\|$
- The Cauchy-Schwarz inequality $|(f,g)| \le \|f\| \|g\|$ hold in such a linear space
- The triangle inequality $||f + g|| \le ||f|| + ||g||$ hold in such a linear space
- A sequence satisfying $\lim_{n,m\to\infty} \|f_n f_m\| = 0$ is called a Cauchy sequence
- A linear space is $\mathcal L$ is complete if every Cauchy sequence in $\mathcal L$ converges to an element in $\mathcal L$

G. Tianyu 14 / 34

Hilbert space

A Hilbert space $\mathcal H$ is a complete inner product linear space

- \bullet For every g in a Hilbert space $\mathcal{H},$ $L_{g}\!f=(g,\!f)$ defines a continuous linear functional L_{g}
- Conversely, every continuous linear functional L in $\mathcal H$ has a representation $Lf=(g_L,f)$ for some $g_L\in\mathcal H$, called the representer of L

G. Tianyu 15 / 34

Riesz representation

Theorem: For every continuous linear functional L in a Hilbert space \mathcal{H} , there exists a unique $g_L \in \mathcal{H}$ such that $Lf = (g_L, f), \forall f \in \mathcal{H}$

• A linear functional L is continuous if $\lim_{n\to\infty} Lf_n = Lf$ whenever $\lim_{n\to\infty} f_n = f$

Evaluation functional

- Define the evaluation functional as $[x](\cdot)$
- \bullet [x]f = f(x)

Reproducing kernel Hilbert space (RKHS)

Consider a Hilbert space \mathcal{H} of functions on domain \mathcal{X} . If the evaluation functional [x]f = f(x) is continuous in \mathcal{H} , $\forall x \in \mathcal{X}$, then \mathcal{H} is called a reproducing kernel Hilbert space

• By the Riesz representation theorem, for the evaluation functional [x]f = f(x), there exists $R_x \in \mathcal{H}$, the representer, such that $[x]f = f(x) = (R_x, f), \forall f \in \mathcal{H}$

G. Tianyu 16 / 34

Reproducing kernel Hilbert space (RKHS)

Consider a Hilbert space $\mathcal H$ of functions on domain $\mathcal X$. If the evaluation functional [x]f=f(x) is continuous in $\mathcal H$, $\forall x\in \mathcal X$, then $\mathcal H$ is called a reproducing kernel Hilbert space

- By the Riesz representation theorem, for the evaluation functional [x]f = f(x), there exists $R_x \in \mathcal{H}$, the representer, such that $[x]f = f(x) = (R_x, f), \forall f \in \mathcal{H}$
- $(R_x, R_y) = (R_y, R_x) = R_x(y) = R_y(x)$
- The function $R(x, y) = R_x(y) = (R_x, R_y)$ is symmetric bivariate
- R(x,y) has the reproducing property $(R(x,\cdot),f(\cdot))=f(x)$ and is called the reproducing kernel
- the reproducing kernel is unique when it exists

G. Tianyu 17 / 34

Example: lth-order Soblev space on [0,1] \mathcal{H}

Definition: $\mathcal H$ is a collection of functions on [0,1] whose first (l-1)th derivatives are absolutely continuous and the lth derivative belongs to $L^2[0,1]$

- $L^2[0,1]$ is a Hilbert space which is a collection of all square integrable functions on [0,1]
- ullet is a reproducing kernel Hilbert space equipped with

$$(f,g) = \sum_{\nu=0}^{l-1} \left(\int_0^1 f^{(\nu)} \, \mathrm{d}x \right) \left(\int_0^1 g^{(\nu)} \, \mathrm{d}x \right) + \int_0^1 f^{(l)} g^{(l)} \, \mathrm{d}x$$

G. Tianyu 18 / 34

Example: lth-order Soblev space on [0,1] \mathcal{H}

For l=2

$$R(x,y) = 1 + k_1(x)k_1(y) + k_2(x)k_2(y) - k_4(x-y)$$

- $k_1(x) = x 0.5$
- $k_2(x) = \frac{1}{2} (k_1^2(x) \frac{1}{12})$
- $k_4(x) = \frac{1}{24} \left(k_1^4(x) \frac{k_1^2(x)}{2} + \frac{7}{240} \right)$

The paper focuses on the second order Soblev space with $\emph{l}=\emph{2}$

G. Tianyu 19 / 34

Left: contour plot of R(x, y). Right: 3d plot of R(x, y)

G. Tianyu 20 / 34

The model is

$$Y = b + \sum_{k=1}^{s} f_k(\zeta_k) + \mathbf{z}^T \boldsymbol{\alpha} + \varepsilon$$
 (4)

- The regression function $f(\zeta) = b + \sum_{k=1}^{s} f_k(\zeta_k)$
- \bullet $f_k \in \bar{H}, k = 1, \ldots, s$
- $f(\zeta)$ lies in the truncated subspace $\mathcal{F}^s = 1 \bigoplus \sum_{k=1}^s \bar{H}$
- $\mathcal{F}^s = 1 \bigoplus \sum_{k=1}^s \bar{H}$ is direct sum of the space of constant and s copies of \bar{H}

G. Tianvu 21/34 Consider the model

$$Y = b + \sum_{k=1}^{s} f_k(\zeta_k) + \varepsilon$$

for now. The loss function with the Component Selection and Smoothing Operator (COSSO) is defined as

$$Q(f) = \frac{1}{n} \sum_{i=1}^{n} \{Y_i - f(\zeta_i)\}^2 + \tau^2 J(f)$$
 (5)

- $J(f) = \sum_{k=1}^{s} \|\mathcal{P}^k f\|$ is the COSSO penalty
- $\mathcal{P}^k f$ denotes the projection of f onto \bar{H} with the argument being the kth component of ζ , i.e. f_k

22 / 34

An equivalent reformulation

Minimizing

$$Q(f) = \frac{1}{n} \sum_{i=1}^{n} \{Y_i - f(\zeta_i)\}^2 + \tau^2 J(f)$$
 (6)

is equivalent to minimizing

$$\frac{1}{n} \sum_{i=1}^{n} \{Y_i - f(\zeta_i)\}^2 + \lambda_0 \sum_{k=1}^{s} \theta_k^{-1} \|\mathcal{P}^k f\|^2 + \lambda \sum_{k=1}^{s} \theta_k$$
 (7)

- with respect to f and θ
- subject to $\theta_k > 0$, $k = 1, \ldots, s$

G. Tianvu 23 / 34

$$\frac{1}{n} \sum_{i=1}^{n} \{Y_i - f(\zeta_i)\}^2 + \lambda_0 \sum_{k=1}^{s} \theta_k^{-1} \|\mathcal{P}^k f\|^2 + \lambda \sum_{k=1}^{s} \theta_k$$

- From the spline literature² the minimizer of the above loss function has the form $f(\zeta) = b + \sum_{k=1}^{s} \theta_k \sum_{i=1}^{n} c_i R(\hat{\zeta}_{ik}, \zeta_k)$
- $R(\cdot, \cdot)$ is the reproducing kernel of \bar{H}
- $f_k(\zeta_k) = \sum_{i=1}^n c_i \theta_k R(\hat{\zeta}_{ik}, \zeta_k), \ \hat{\zeta}_{ik}$ is the estimated scaled FPC scores
- $\mathbf{c} = (c_1, \dots, c_n)^T$ is a vector of unknown parameters
- $\bullet \sum_{k=1}^{s} \theta_k^{-1} \| \mathcal{P}^k f \|^2 = \sum_{k=1}^{s} \theta_k \mathbf{c}^T R_k \mathbf{c} = \mathbf{c}^T R_\theta \mathbf{c}$
- R_k denote the $n \times n$ matrix with the (j, l) entry $R(\hat{\zeta}_{jk}, \hat{\zeta}_{lk})$
- $R_{\theta} = \sum_{k=1}^{s} \theta_k R_k$
- 2. e.g. Chapter 10 (Additive and Interaction Splines) of Wahba, Grace. Spline models for observational data written by Grace Wahba in 1990

G. Tianyu 24 / 34

•
$$f_k(\zeta_k) = \sum_{i=1}^n c_i \theta_k R(\hat{\zeta}_{ik}, \zeta_k)$$

$$\|\mathcal{P}^k f\|^2 = \|f_k\|^2 = \left(\sum_{i=1}^n c_i \theta_k R(\hat{\zeta}_{ik}, \zeta_k), \sum_{j=1}^n c_j \theta_k R(\hat{\zeta}_{jk}, \zeta_k)\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \theta_k^2 c_i c_j \left(R(\zeta_k, \hat{\zeta}_{ik}), R(\zeta_k, \hat{\zeta}_{jk})\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \theta_k^2 c_i c_j R(\hat{\zeta}_{ik}, \hat{\zeta}_{jk})$$

$$= \theta_k^2 \mathbf{c}^T R_k \mathbf{c}$$

$$\sum_{k=1}^{s} \theta_k^{-1} \| \mathcal{P}^k f \|^2 = \mathbf{c}^T \left(\sum_{k=1}^{s} \theta_k R_k \right) \mathbf{c} = \mathbf{c}^T R_{\theta} \mathbf{c}$$

G. Tianyu 25 / 34

Using the estimated scaled FPC scores, the loss function is

$$\frac{1}{n} \sum_{i=1}^{n} \{Y_i - f(\hat{\zeta}_i)\}^2 + \lambda_0 \sum_{k=1}^{s} \theta_k^{-1} \|\mathcal{P}^k f\|^2 + \lambda \sum_{k=1}^{s} \theta_k$$

•
$$f_k(\zeta_k) = \sum_{j=1}^n c_j \theta_k R(\hat{\zeta}_{jk}, \zeta_k)$$
 and $f_k(\hat{\zeta}_{ik}) = \sum_{j=1}^n c_j \theta_k R(\hat{\zeta}_{jk}, \hat{\zeta}_{ik})$

$$\bullet f(\hat{\zeta_{ik}}) = b + \sum_{k=1}^{s} \sum_{j=1}^{n} c_j \theta_k R(\hat{\zeta_{jk}}, \hat{\zeta_{ik}})$$

It can be written as

$$\|\mathbf{Y} - \mathbf{1}_n b - R_{\theta} \mathbf{c}\|_E^2 + \lambda_0 \mathbf{c}^T R_{\theta} \mathbf{c} + \lambda \mathbf{1}_n^T \boldsymbol{\theta}$$

- $\bullet \parallel \cdot \parallel_E$ represents the Euclidean norm
- $\mathbf{1}_n$ is the vector of ones of length n

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_s)$$

G. Tianvu 26 / 34 To minimize

$$\|\mathbf{Y} - \mathbf{1}_n b - R_{\theta} \mathbf{c}\|_E^2 + \lambda_0 \mathbf{c}^T R_{\theta} \mathbf{c} + \lambda \mathbf{1}_n^T \boldsymbol{\theta}$$
 (8)

We alternatively solve for (b, \mathbf{c}) with θ fixed and then solve for θ with (b, \mathbf{c}) fixed

• When θ is fixed, solving (8) is equivalent to solving

$$\min_{b,\mathbf{c}} \|\mathbf{Y} - \mathbf{1}_n b - R_{\theta} \mathbf{c}\|_E^2 + \lambda_0 \mathbf{c}^T R_{\theta} \mathbf{c}$$
 (9)

• When (b, \mathbf{c}) is fixed (8) becomes

$$\min_{\theta > 0} (\mathbf{v} - G\theta)^T (\mathbf{v} - G\theta) + n\lambda \mathbf{1}_s \theta \tag{10}$$

- $\mathbf{v} = \mathbf{y} (1/2)n\lambda_0\mathbf{c} \mathbf{1}_nb$
- G is $n \times s$ matrix with the kth column being $R_k \mathbf{c}$

G. Tianvu 27 / 34 • We consider an equivalent optimization problem: for some $M \ge 0$, find

$$\min_{\boldsymbol{\theta}} (\mathbf{v} - G\boldsymbol{\theta})^T (\mathbf{v} - G\boldsymbol{\theta})$$
 subject to $\mathbf{1}_s^T \boldsymbol{\theta} \leq M$ and $\boldsymbol{\theta} \geq \mathbf{0}_s$ (11)

Algorithm 1 Iterative updating for regularized functional semiparametric additive model

Step 1: Start with an initial value of α , say $\hat{\alpha}^{(0)}$, and an initial value of θ , say $\hat{\theta}^{(0)}$.

Step 2: Use the current estimate $\hat{\pmb{\alpha}}^{(m)}$ and $\hat{\pmb{\theta}}^{(m)}$ to obtain estimates $\hat{b}^{(m+1)}$ and $\hat{\pmb{\epsilon}}^{(m+1)}$ by solving (9), in which \pmb{y} is replaced by $\pmb{y} - \pmb{Z}\hat{\pmb{\alpha}}^{(m)}$.

Step 3: Use the current estimate $\hat{\boldsymbol{\alpha}}^{(m)}$, $\hat{b}^{(m+1)}$ and $\hat{\boldsymbol{c}}^{(m+1)}$ to obtain an updated estimate $\hat{\boldsymbol{\theta}}^{(m+1)}$ by solving (11), in which \boldsymbol{v} is replaced by $\boldsymbol{y} - \boldsymbol{Z}\hat{\boldsymbol{\alpha}}^{(m)} - (1/2)n\lambda_0\hat{\boldsymbol{c}}^{(m+1)} - \mathbf{1}_n\hat{b}^{(m+1)}$.

Step 4: Use the estimate $\hat{b}^{(m+1)}$, $\hat{c}^{(m+1)}$ and $\hat{\boldsymbol{\theta}}^{(m+1)}$ to obtain an updated estimate $\hat{\boldsymbol{\alpha}}^{(m+1)}$ by solving a least squares problem. Step 5: Repeat Steps 2, 3 and 4 until $||\hat{\boldsymbol{\alpha}}^{(m+1)} - \hat{\boldsymbol{\alpha}}^{(m)}|| < \epsilon$, where ϵ is a pre-determined tolerance value.

G. Tianyu 28 / 34

Tuning parameter selection

- In step 1 in Algorithm 1, the initial value of θ is chosen as 1_s
- Cross validation (or GCV) is used to choose tuning parameter λ_0 when solving for (b, \mathbf{c}) with θ fixed
- When solving for θ with (b, \mathbf{c}) fixed, we use the chosen value of λ_0 and use CV to tune M

G. Tianyu 29 / 34

Tecator Data

- 240 meat samples
- 100-channel spectrum of absorbance with wavelength ranging from 850 – 1050nm (851nm, 853nm, ..., 1049nm) - function
- the contents of moisture (water) scalar
- the contents of fat scalar
- the contents of protein- scalar

Objective

 Predict the content of protein using spectral trajectories, the content of water and the content of fat

G. Tianyu 30 / 34

G. Tianyu 31 / 34

Table 4 Summary of prediction error and proportion of variance explained on the test set of each model, FAM represents the functional additive model [24] where only the $\hat{\xi}$,s are considered as explanatory variables. MARS₀ denotes the MARS model considering only the $\hat{\xi}$,s as explanatory variables while neglecting the effect of the fat content, d = 10 and d = 20 indicate that 10 and 20 leading FPCs are initially retained, respectively.

	d = 20					
	FSAM-COSSO	CSEFAM	FSAM-GAMS	FAM	MARS	MARS ₀
MSPE	0.52	0.71	0.84	0.73	0.83	1.18
R ²	0.97	0.96	0.95	0.96	0.95	0.93
	d = 10					
	FSAM-COSSO	CSEFAM	FSAM-GAMS	FAM	MARS	MARS ₀
MSPE	0.92	1.99	1.35	1.42	0.97	1.01
R^2	0.95	0.88	0.92	0.92	0.94	0.94

- MSPE is the mean squared prediction error
- R^2 is the quasi- R^2 defined by

$$R^{2} = 1 - \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} / \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

32 / 34

- Sang, Peijun, Richard A. Lockhart, and Jiguo Cao. Sparse estimation for functional semiparametric additive models. *Journal of Multivariate Analysis 168 (2018): 105-118*.
- Wong, Raymond KW, Yehua Li, and Zhengyuan Zhu. Partially linear functional additive models for multivariate functional data. *Journal of the American Statistical Association (2018): 1-13.*
- Zhu, Hongxiao, Fang Yao, and Hao Helen Zhang. Structured functional additive regression in reproducing kernel Hilbert spaces. *Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76, no. 3 (2014): 581-603.*
- Wahba, Grace. Spline models for observational data. Vol. 59. Siam, 1990.

G. Tianyu 33 / 34

Thank You!

G. Tianyu 34 / 34