Partially Ordered Sets

Dr. Danny Nguyen Transcribed by Thomas Cohn

11/6/18

Defn: A partially ordered set (also known as a poset) is a pair $P = (X, \preceq)$ with X a set and \preceq a relation on X with the following properties:

- 1. Reflexivity: $\forall x \in X, x \leq x$
- 2. Anti-Symmetry: $x \leq y \land y \leq x \rightarrow x = y$
- 3. Transitivity: $x \leq y \land y \leq z \rightarrow x \leq z$

If $x \leq y$, but $x \neq y$, we write $x \prec y$.

Ex:
$$(\mathbb{R}, \leq)$$

 (\mathbb{N}, \leq)
 $([a, b], \leq)$ where $[a, b] = \{a, a+1, \dots, b\}$

In these examples, every pair of numbers is comparable. But this is not required!

Ex:
$$(\{a, b, c, d\}, \leq = \{(a, b), (a, c), (b, d), (c, d)\})$$

Defn: For $P = (X, \preceq)$ and some $x, y \in X$, if neither $x \preceq y$ nor $y \preceq x$, then we say x and y are incomparable (or independent).

Defn: A poset $P = (X, \preceq)$ is a total ordering if every pair $x, y \in X$ is comparable.

Ex: Our first three examples of posets above are total orderings. The last one is not.

Can we define a total order on \mathbb{R}^2 ? Yes! Dictionary (lexicographic) ordering: $(x_1, y_1) \leq (x_2, y_2)$ if

- $x_1 < x_2$
- $x_1 = x_2 \text{ and } y_1 \le y_2$

We could also use polar coordinates:

 $(r_1, \theta_1) \leq (r_2, \theta_2)$ if

- $r_1 < r_2$
- $r_1 = r_2$ and $\theta_1 \le \theta_2$

Defn: Let $P = (X, \preceq)$. An element $x \in X$ is <u>minimal</u> if there is no $y \in X$ s.t. $y \prec x$.

Thm: (a) If $P = (X, \preceq)$ is a finite poset, then there exists a total ordering \leq on X which extends \preceq .

(b) If $x, y \in X$ are incomparable, then there are 2 total orderings \leq_1 and \leq_2 s.t. $x \leq_1 y$ and

 $y \leq_2 x$.

Proof (a): By induction on |X| = n.

Base case: |X| = 1 is trivial.

Induction: Assume that for all $|X| \leq n$. Then consider |X| = n + 1. We claim that if $P = (X, \preceq)$ is a finite poset, there is some minimal $x \in X$.

Proof of claim: Pick a random $y \in X$. If y is minimal, we're done. Otherwise, pice $y_1 \prec y$. Repeat. Since X is finite, we cannot have an infinite chain, so some y_k is the minimal element in P.

Consider $x \in X$ minimal. Let $P' = (X - x, \preceq)$. Then P' has n elements, so there is a total or- $\operatorname{der} \leq' \operatorname{on} P'$ which extends \leq . Because x is minimal, it is less than all elements in X-x, so we can add it into P' and still have a total order. \square

Proof (b): By induction on |X| = n.

Base case: |X| = 2 is trivial.

Induction: Assume that the assumption is true if $|X| \leq n$. Let X have size n+1. Then $\exists z \in X$ minimal.

Case 1: $z \neq x$ and $z \neq y$. By induction, $P' = (X - z, \preceq)$ has 2 total orderings \leq_1' and \leq_2' with $x \leq_1' y$ and $y \leq_2' x$. Complete \leq_1', \leq_2' to \leq_1, \leq_2 by putting z last. Case 2: x, y are both minimal elements. Let $P'' = (X - \{x, y\}, \preceq)$. Then P'' has the total ordering

 \leq ". Complete \leq " to \leq_1 or \leq_2 by putting x < y last or y < x last.

Case 3: x is the only minimum element in X. This is not possible, because $x \prec y$. \square

Boolean posets: $P = (2^Y, \subseteq)$, where 2^Y is the power set of Y and \subseteq is the subset relation.

Ex:
$$Y = \{1\}$$
. Then $2^Y = \{\emptyset, \{1\}\}$
 $Y = \{1, 2\}$. Then $2^Y = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

Thm: If $P = (X, \preceq)$ is any finite poset, then it can be embedded into some boolean poset. Proof: For $x \in X$, let $S_x = \{y \in X : y \leq x\}$. Consider $(2^X, \subseteq)$. The map $x \mapsto S_x$ is an embedding of P into $(2^X,\subseteq)$. \square