数据分析架构实例与安全

云挖掘

提纲

- ●Part 1 数据分析架构实例
- > 数据挖掘例子
- > 数据分析架构实例——网站用户流失预警
- > 开源数据分析软件Weka介绍
- Part 2 大规模数据挖掘(云挖掘Hadoop)
- ➤ Map-Reduce方法
- ➤ Classification (k-NN) 的MapReduce化
- Part 3 安全云挖掘
- ➤ 微分流形在安全云挖掘中的应用(Matlab)

Part 1 数据分析架构实例

Why Mine Data? Commercial View

Lots of data is being collected and warehoused

- Web data, e-commerce
- purchases at department/ grocery stores
- Bank/Credit Card transactions

- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Mine Data? Scientific Viewwint

- Data collected and stored a enormous speeds (GB/hour
 - remote sensors on a satellite
 - telescopes scanning the skies
 - microarrays generating gene expression data
- Traditional techniques infeasible for raw data
- Data mining may help scientists
 - in classifying and segmenting data
 - in Hypothesis Formation

Mining Large Data Sets - Motivation

- There is often information "hidden" in the that is not readily evident
- Human analysts may take weeks to discover useful information
- Much of the data is never analyzed at all

From: R. Grossman, C. Kamath, V. Kumar, "Data Mining for Scientific and Engineering Applications

What is Data Mining?

Many Definitions

 Non-trivial extraction of implicit, previously unknown and potentially useful information from data

Exploration & analysis, by automatic or

semi-automatic mean large quantities of in order to discove meaningful pattern

What is (not) Data Mining?

1 What is not Data Mining?

- Look up phone number in phone directory
- Query a Websearch engine for information about"Amazon"

What is Data Mining?

- Certain names are more
 prevalent in certain US
 locations (O'Brien, O'Rurke,
 O'Reilly... in Boston area)
- Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, Amazon.com,)

Origins of Data Mining

Draws ideas from machine learning/Alpapettern recognition, statistics, and database systems

Traditional Techniques may be unsuitable due to

- Enormity of data
- High dimensionality of data
- Heterogeneous, distributed nature of data

Data Mining Tasks

Data Mining Tasks

Prediction Methods

Use some variables to predict unknown or future values of other variables.

Description Methods

Find humaninterpretable patterns that describe the data.

Data Mining Tasks...

数据挖掘例子

1

超市分析交易 数据,安排货 架上货物摆布, 以提高销售 额 2

信用卡公司分 析信用卡历史 数据,判断哪 些人有风险, 哪些人没有 3

保险公司分析 以前的客户记 录,决定哪些 客户的潜在花 费是昂贵的

数据挖掘例子

4

汽车公司分析 不同地方人的 购买模型,有 针对性地发送 给客户喜欢的 汽车手册 5

广告公司分析 人们购买模式, 估计他们的收入 个为潜在的市 场信息 6

税务局分析不 同团体的交所 得税的记录, 发现异常模型 和趋势

Part 1 数据分析架构实例

网站用户行为分析架构实例

- ❖某网站是游戏门户网站,在多个服务器上运营着多款游戏,每天有大量数据如日志记录等。需根据记录数据进行分析,得出一些有用结果。
- ❖现在已有各种统计报表,如每日各款游戏点击排名、游戏大厅位置点击排名、各种统计量的饼图、柱图等。
- ❖希望进一步得到细化分析——数据分析、挖掘

网站用户行为分析

预测模块

奇异点分析

分类模块

网站用 户行为 分析 聚类模块

关联规则模块

0 0 0

怎么搭建整个模型呢?

预测模块

用户 流失 预警

Decision Tree决策 树算法、 Bayes贝 叶斯算法 游戏 访问 预测

Case Based Reasoni ng案例推 理算法 用户 充值 预测

K nearest neighbor 最近邻算 法、最小 二乘法

奇异点分析

游戏奇 异点分 析

Graphical & Statisticalbased 图 形统计方 法 用户流 失奇异 点分析

Nearestneighbor based 最 近邻方法 用户充 值奇异 点分析

Density based 密 度方法

分类模块

- ❖游戏分类——Instance-based k, lbk算法
- ❖玩家分类——Bayes贝叶斯算法

聚类模块

- ❖玩家聚类——Kmeans 均值算法
- ❖ 游戏聚类——Kmeans 均值算法

❖访问规律——Apriori算法

任务确定

架构目标确定

用户流失预警

流失客户原因分析

其它 模块

用户流失预警—— Bayes算法, Ibk算法 流失客户原因分析—— Kmeans均 值聚类算法

其它各模块: 可放在长期 目标

客户流失预警

- ❖客户流失分析过程指客户流失逻辑模型的建立过程,包括数据采样、数据分析、模型评估和应用,在一系列分析之后得出客户流失的名单列表、流失的原因、特征和进行流失预警。
- ❖注意:目前侧重的是预测客户流失,与客户分类应该有一定的区别

架构过程

市场部、运营部

反馈

市场部、运营部

结果分析

学习模型 的实现

朴素贝叶斯算法的改进

数据转换

数据表合并、新属性生成、不等长数据的滑动

数据清洗

样本训练集的确定

架构过程

	数据清洗	
方法	小规模数据上先进 行尝试	
样本数 据	某款游戏一个月数 据大约150,000条	
去除完 全无用	大约剩50,000条	
活跃用 户	剩下15,000条左右	
流失用 户	大约1/3——5,000 条	

数据转换 多个表合并成一个 大的物理表 心跳表中的多条数 据将合成一条数据 生成一些贝叶斯分 类算法有用属性 不等长数据处理: 滑动窗口 训练数据集完成: 15,000条整齐数 据

学习模型实现 简单、可用、快速、 好解释 属性挑选 连续属性离散化 贝叶斯分类 Kmeans聚类

算法框架

需要分类的用户数据

训练集

用户流失集

分类算法

聚类出已知流失用户特征

训练集

流失用户的类型

算法结果

样本表	客户数目	改进贝叶斯算法准确度
test1	1000	714
test2	1000	736
test3	1000	747
test4	1000	716
test5	1000	762

决策支持

流失客 户提出 预警

流失原因 分析 结果分析

有目的进行 营销、挽回 部分客户

开源数据分析软件Weka介绍

- ❖开源
- ❖全面
- ❖规范
- ❖WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),它的源代码可通过 http://www.cs.waikato.ac.nz/ml/weka得到

开源数据分析软件Weka介绍

❖WEKA作为一个公开的数据挖掘工作平 ,集合了大量能承担数据挖掘任务的机器 学习算法,包括对数据进行预处理,分类 ,回归、聚类、关联规则以及在新的交互 式界面上的可视化。如果想自己实现数据 挖掘算法的话,可以看一看weka的接口文 档。在weka中集成自己的算法甚至借鉴它 的方法自己实现可视化工具并不是件很困 难的事情。

学生做数据分析项目过程

提纲

- ●Part 1 数据分析架构实例
- > 数据挖掘例子
- > 数据分析架构实例——网站用户流失预警
- > 开源数据分析软件Weka介绍
- Part 2 大规模数据挖掘(云挖掘Hadoop)
- ➤ Map-Reduce方法
- ➤ Classification (k-NN) 的MapReduce化
- Part 3 安全云挖掘
- ➤ 微分流形在安全云挖掘中的应用(Matlab)

大规模数据挖掘

多款游戏、多台服务器

每天独立登陆IP有 600,000~700,000个

一些数据挖掘算法跑不起来

云化 MapReduce 方法

云计算——网络发展的必然结果

云计算简化实现机制

Part 2 大规模数据挖掘(云挖掘) Hadoop)

- ►Map-Reduce方法
- ➤ Classification (k-NN)算法的MapReduce化

What's Mapreduce

Parallel/Distributed Computing Programming Model

Shuffle Implementation

Partition and Sort Group

Partition function: hash(key)%reducer number Group function: sort by key

Hadoop MapReduce Architecture

Nearest Neighbor Classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

Unknown record

Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

MapReduce: kNN

MapReduce化算法提高效率

- ❖单个节点并非跑不出 结果:大数据集上需 要一天、一周才能出 等一天、一周才能出 结果。有时候有较高 实时要求的任务一小 时出结果都太慢
- **利用多个节点进行 MapReduce云化,可 以利用空置设备同步 运行,提高速度,对 有较高实时性要求的 算法有好处

提纲

- ●Part 1 数据分析架构实例
- > 数据挖掘的概念与特点
- > 数据分析架构实例——网站用户流失预警
- > 开源数据分析软件Weka介绍
- Part 2 大规模数据挖掘(云挖掘Hadoop)
- ➤ Map-Reduce方法
- ➤ Classification (k-NN) 的MapReduce化
- Part 3 安全云挖掘
- ► 微分流形在安全云挖掘中的应用(Matlab)

数据分析带来的隐私保护问题

隐私保护

数据挖掘可以挖 掘潜在规律、辅 助决策、检测异 常模式、恐怖活 动和欺诈行为 也可挖掘分析出感兴趣的私人信息。云挖掘中更加涉及到客户端 把隐私数据交付 把隐私数据交付 给云端进行挖掘,客户对此会产生疑虑。

安全云挖掘

安全云挖掘

既不泄露隐私, 又能保证挖掘结 果的大致准确—— 一隐私保护数据 挖掘 在客户端向云端 传送隐私数据时, 可先进行随机化 变换、加密

Privacy-preserving Data Mining

Hide sensitive individual data values from the outside world

A Random Rotation
 Perturbation
 Approach to Privacy
 Data Classification

Deriving Private Information from Randomized Data

Data conversion cryptology ...

A valid and effcient decision model based on the distorted data can be constructed

PrivacyPreserving Data
mining

A Framework for High Accuracy Privacy-Preserving Mining

微分流形: 保持拓扑特性

设 M 是一个Hausdorff 拓扑空间, 若对每一点 $p \in M$,都有 P 的一个开领域 U 和 R^n 的一个开子集同胚,则称 M 为 n 维拓扑流形,简称为 n 维流形.

几种流形学习算法

1

▶局部线性嵌入(LLE)

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. *Science*, vol. 290, pp. 2323--2326, 2000.

2

▶等距映射(Isomap)

J.B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, vol. 290, pp. 2319--2323, 2000.

3

➤拉普拉斯特征映射 (Laplacian Eigenmap)

M. Belkin, P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. *Neural Computation*, Vol. 15, Issue 6, pp. 1373 –1396, 2003.

LLE算法示意图

MDS 示意图

Dimensionality Reduction: ISOMAP

By: Tenenbaum, de Silva, Langford (2000)

- Construct a neighbourhood graph
- For each pair of points in the graph, compute the shortest geodesic distances

安全云挖掘

安全云挖掘

使用微分流形完 成了几个隐私保 护数据挖掘算法 怎样并行化进行 微分流形变换, 同时不影响挖掘 结果

分析的完整架构

流失用 户预警

数据 分析

> 大规模 数据分 析

安全云 挖掘

逐步深入细化

