The variable backpround of XMM - Newton 15/03/2023 - Broletto - Prot. A. Tienpo

{A inizio lexione, generalità sui rappi comici} ~ Il 90% sono pt.
Lo spetho (su scale logaritarica) dei rega cosmici locali ha un pino colis e une cariglia => Sorpenti e processi diversi (energie M => distanza M)
e une cariglie => Sorpenti e processi diversi (energio 14 => distanza 11)
[m² sr s GeV] Reppio di aurnoture (chessico) => R= mv1/9B
I knee Il Sde modifica il campo mapuetico interplenetario
soler modul. => Forze di Lorentz devie i vessi assimici
5 [eV] Al massimo del acto solono si henno como manonatici
(distribuzione spetrole) interplanetari che sono congolati al plasma
=> Bît => RW => Reppi aarmai schermati => Numero di
ma chie sden
[Cennisa SAA e sempo goonne puetico - sensibilité depli strumenti 3 ; « (intensité
Orbita di XMM = HEO (High Earth Orbit) & Fasce di V.H. cosmic rays)
Lockmen Hole => Zone di aèlo con minore densité di
(grafico slides) mezzo interstellare, ufile per osservare l'esterno della Galassia
Carva di luce = Nº di conteggi al secondo nel campo di vista.
Not prefico trebto de XMM del L.H. si redono depli spot: sono buchi nen
Nel profico tretto de XMM del L.H. si redono depli spot; sono buchi nen in accrescimento, e quello de rediemo è l'emissione X dei loro dischi di
accrescimento al centro delle galossie più loutene.
Fino a 3.5 - 10 4 s -> cts/s pressoché obstante => Livello di fondo besso, socienti distinte
Fino a 3.5-1045 -> cts/s pressoché oostente => Livello di fondo besso, sorgenti distinte Oltre 3.5-1045 -> cts/s con picchi altissimi => A ponità di esposizione, tondo molto più intenso
18 Fig. 11, DOI: 10.1051/0004-6361: 200000087, ESO 2001 @}
=> Perdo le sorgenti più deboli, poidré moscoste dal tondo di particelle,
che entre no enche nel telescopio e, quindi, nel MOS/PN di XMM
Ció è causato da particella de XMM incontre nella sua orbita, che non
per mette di vedere nel 40% del tempo dell'orbite pli oppetti più deboli => Qualità di doti così besse de non essere utilizzabile
Seppiemo, però, de queste particelle sono cavide

The venable background of XMM - Newton 15/03/2023 - Brdetto - Prot. A. Tiengo

Chandre he un'orbite simile e	quelle di XMM - Newton >> CCD danneggiati
	de fesci enerpetici
EXOSAT = Predecessore di XMM	de fesci energetici - Newton, in HEO tocalizzati
"Serendipitaus ExoSAT sources in	the replon of the
"Serendipitaus ExoSAT sources in Coma duster: AGNs with stee	ep X-rey spectre " => Nel 1985 si ere
	ep X-ray spectre" => Nel 1985 si era già scaperto il b.g.
Era già noto de le particelle do	ennegoteno = ossernato da XMM
Era ple noto de le particelle de gli strument solo se focalizza questo punto non era stato ma	te 9 ma.
questo punto non ere stato ma	esso in conto
Quali particelle provocano ifla	ves? Si cure me ute non i p con EE [8, 40] Hel
=> Most seguale le perticelle.	ma il Radiation Manitar no:
Ruote parte filtri di Mos = I	CCD sono rensibili al shipslo rappio X
=> Utile per ridure	cob sono sensibili al simpolo rappio X na anche a un neggio ottico sufficientemente
i porticelle più o meno veloci	htenso (1000 g da 1 eV = 1 regglo X)
particelle più o meno veloù	
Stelle brillanti => Filtro soltile	soltre luce 20 diseale, che è dittusse
Stelle più brillenti bloccate doi	filtri più "pesenti" (vedi die premmi di Mos).
MOS1(= MOS2) + Filtri diver	si => Spettri ottenuti completemente diversi
	a cause di Bethe-Bloch [de]
Minimum Ionizhe Particle	evends perticelle cariche.
MIP = Particelle di alte evergl	le (ne sono pode)
Sapendo le composizione dei filt	hi, Interpolendo le stopphe power in 2 filtri
diversi trovo il tipo di perticelle	che presentano le perdite di energie
=> dimostro de sono p+	ni, interpolando le stopping power in 2 titri che presentano le perdita di energie (per le mappione)
	00

Printed on 100% recycled pap Stampa su carta 100% riciclat

Palazzo del Broletto - Piazza della Vittoria 15 - 27100 Pavia (Italia) - Tel. +39 0382 375811 - Fax +39 0382 375899

Email: info@iusspavia.it - www.iusspavia.it - C.F. 96049740184 - P. IVA 02002080186

IussPavia in IUSS - Scuola Universitaria Superiore Pavia

The variable background of XMM- Newton 15/03/2023 - Broletto - Prot. A. Tiengo ITUSS
Scuola Universitaria Superiore Pavia Minore fattore di puedegno in Mos => Maggiore sensibilité per je pt di E11 Regioni vuote nelle curre di luce => Periodi di alto flusso non gestibili dall'élettroma => Filtro sottile vede molto di più Sottre endo il fondo della prima parte dell'osserva zione (con flusso M), e tenendo la seconda coma fondo strumentale, ottengo 4 spettri (2 con filtro sposso, 2 con filtro sottile). Entrembi honno picco per MIP (che perdono sempre la Fase bright stesse energie, ceduta al Si del CCD; che li rivela) Fose Laint => La (teorica) rige jottile dei MIP è ampliate Abhiemo onche per vie delle permetrie non pertetta la fluorescenza cts/shev Sovrepponendo i prelici con = 10 | filtro sottile dell'Alluminio T DE= 40 heV <= treslezione lungo essex t traslezie - filho spesso Dalla sottrazione otteniano un obla premma filho spesso L>DE=40 her per E 220 her tra conteggi Approx. DE 7 DECE) è talso, in generale a filtro spesso e filtro sottile => Vado ad alte energie (~150 keV) => Le perdite dipende de E per osservare la sorrepposizione, paidié prima di 20 keV non vale. DE = DE(E) => Calcolo DE con stopping number da NIST Database pt di sbieco honno DE 11 => Come stoni necessarie Modellizza zvoue della perdita fittata con dE(E) = SE + cE exp (-E/Ef)

=> Stapping power per ogni filtro => Dalle tracce dei fotoni ipotizzo

dE/pdx = cost. tre stato iniziale e stato tinale => Integro per perdita totale

Printed on 100% recycle

Palazzo del Broletto - Piazza della Vittoria 15 - 27100 Pavia (Italia) - Tel. +39 0382 375811 - Fax +39 0382 375899

Email: info@iusspavia.it - www.iusspavia.it - C.F. 96049740184 - P. IVA 02002080186

IussPavia iusspavia in IUSS - Scuola Universitaria Superiore Pavia

The variable background of XMM - Newton 20/03/2023 - Broletto - Prof. A. Tiengo

Nelle prime parte dell'ossernezione c'é più background => A questa togliamo la se condo parte, puremente Ottenpo un seguale privo di ettetti sistematici = stramentale Modalità low gain => Spettri tra 20 e 120 heV (molto empi)

dE/pdx & tipo di particella (debolmente) => Ponilarmo dE/pdx non di pendente da E => Funzione di tit: Valida fino a ~ 50 keV per $F(E) = k(E + BE)^{-\alpha} [cts/skeV]$ filtro sottile; non a sono problemi Distribuzione energia perdita di energia delle particelle finale al all'interno del filtro i ileve tore con filtro spesso, alle alté energie => Ottengo tutti i peremetri dal sepuale dei due filtri pià lavorato => Définisco stopping power différenziale Tre le 20 keV le F(E) è une torte sottostima per il filtro sottile analogo al precedente, e pai intepro tutte le parolite infinitesime (stesse cose tre le 10 per quello spesso Ipotesi di DE + DE(E) da riverdere sotto i 20 keV Slide Proton energy loss in filters }

de leinitial) = Deit ci Einitial e Einitial

eff. Densità di energia dE l'Einitial integnata restituisce tunzione di ripartiziare che => Einitial = Etinal + DEF + trove Emitial = Emitial (Etinal) + Cf Efinal e Eff effettuamente misurata

In questo modo ho $F(E) = k (E + \Delta E + cE \exp(-E/E_f)^{-\alpha} [indipendente]$ \Rightarrow Fit perfetto tra 2 e 120 keV, con deti ottenuti da altre ossernazioni

Sempirical model of energy loss \Rightarrow Grafici e dati?

L'incerte 22e dei dati par il fit di F(E) in orbita è minore di quella dei tabulati a Terra.

Le curva di perdita nei filtri tabulate sono compatibili con F(E) precedente.

Palazzo del Broletto - Piazza della Vittoria 15 - 27100 Pavia (Italia) - Tel. +39 0382 375811 - Fax +39 0382 375899 Email: info@iusspavia.it - www.iusspavia.it - C.F. 96049740184 - P. IVA 02002080186

IussPavia iusspavia in ScuolalussPavia in IUSS - Scuola Universitaria Superiore Pavia

The verieble backpround of XMM - Newton 20/03/2023 - Broletto - Prot. A. Tiengo.

Il repione me uto prece de ute è valso nell'ipotesi di perticelle = protoni, me posso
ripetere la stessa procedimenta con le perticelle alta al posto dei protoni.
=> Ottenpo incompetibilità tre dati orbitali e dati tebuleti,
soprethuto dati tabulati
-> A parité di energie ha carica dappie => Mappione ibnizzazione
(usendo Helt = x) => Mappione perdite nel
tiltro spesso (che non
Background flores in XMM due to soft pt viene registrate dal (<100 keV) tocused by the X-ray mirrors. modello empirico dei pt)
TOO IEV TOUSEN OF THE A VLY WINDS
Allow to dolla to allo allo allo allo allo allo al
Allore une parte delle particelle de impette è costituite da a, me
è preve le rte la componente dei protoni.
rill 1110 r Orbita diverse (LEO, L2)
Effetto evitabile con < Magnetic diversors (LEO, L2) La Svantaggio: B11 per avere un effetto consistente sui protoni
La Sventeggio: B11 per evere un effetto consistente sui proton
Perché aproscère il probleme del bechpround? Applicazione della tecnica
su The Astrophysical Journal,
Perché conoscere il probleme del bachground? Applicazione della tecnica su The Astrophysical Journal, 898:37 (8pp), 20 luglio 2020

Data Analysis - 27/03/2023 - A. Tiempo Gamma Ray Barst = Lampo gamma -> Brevi e casuali, V fuori dalla Via Lattea Audieno da pochissimi secondi e (ranssimi) are -> 1964 scaperta 1948 pubb-Sortelliti Vela - Controllo trienzolare consente di individuare la direzione essetto dell'esmissione J. Problemi dei GRB - Sono uniformemente distribuiti nello saezio (diversamente doube stelle delle notre galossia) => Non sappianno con certe zza, a cosa sono dovicti né la lono luminosità intrinseca, fino al 1994. 1994 - Beppo SAX - Dotatro di una cornere e ~ 10 erc min (e grendo golo) e una più piccole da ~1 erc min. Afterglow - Sorpente molto più debale (vaggi X) h corrispondenza di un GRB breve, che ve appenendosi nel tempo. Redshift parnette di visolvere blive blive proprietà, cometti de l'enevere emesse se tosse una sorgente => Esstono ande nell'ottico => Vedi slides 1 supernova al secondo vs 1 GRB al giono => ~ 1000 supernove Probleme di fisica fonde mentele aonnesso ai GRB Gra vantebilità di 110 s corrisponde di 1/10 secondi luce. Non dovnemmo vedere roppi y a pri di 1 MeV, deto de in e-+ e+ -> y >

> e+ + e- la produzione di (e+, e-) dopo il y dell'anni chi linento i

troppo lente. => Non dornemmo redere qualcore di così energetico e così lantano, non con oppetti molto competti (e i GRB I sembre no essere molto competti). => Probleme risolts parando un moto relativistico proprio nella ma direzione Dopo il primo atterplave si è travato il GAB più icino chi rempre paco dillente da una superno re particolor mente Inflante, con viole di emissiolire molto larghe, dovute a moto relativistico (allungamento delle distanze, in allontonamente) GRB 030329 - Osservatible per oliversi mes: sons lepate alle SM Dopo afterglow è emersa la supernova Modello colleysor Une stelle, massicale ha un nucles de collaisse tormando un buco nero. se un bico nero si forma improvisemento, si forma un olisco oli occrescimento e quindi un jet ad sirgolo ristebb lungo l'esse di emissique (e-tet, essenzialimente) In alternative, une magnetar Questo jet è un GRB. -> Osserve shole. selle, cui shoh Il modello è gerevalmente eccettato per quelli hunghi.

2 tipi di GRB - Durate diverse e presenza di picchi multipli nel tempo GRB corti prodotti da tustone di delle di rentroni - Osservato, ma che sia una che sia una regola generale Swift come successone di Beppo SAX Compo du vista = 1/4 dell'intero cielo. GRB 031203 -Con XMM-Newton osserviens un efterplow con emissione diffuse disturbente poiché etterplon X I me emprezoe diffuse "eli ~ 2 ero min. Ere uno dei più vicioni (~1.3.109 ly). Allone Possibile visolizione probleme del bockprond? rappio della nurola di diffusione ~ 750 000 ly => Alone dovuto alla dithus. Ore dei repoi X sulla polvere galatica I golvere scattera di più il blu. => stesso motilo per cui il cielo interstellare è blu e dipondenza lineare date da (Fx(E)(NH)) NH - Quentità di grani a = dimensione consteristice dei prem. Injensità della sorgente della sorgente che controla controla controla della sorgente controla controla della c Trovaemo la legge one vie dell'esponsione de tuto questo. => Vedi slioles. => l'enello si espande, non vinane tisso; neppure nell'esemplo di GRB 0312 03 articolo oli Tiengo & and Here pletti tto due onetti, opinino con la ona legge oneria struction ineglio, posso smittane Di = Di (ti, Oi) Trovo due picchi per gli avelli de cerco E avvenuto e GRB 22 10 09 A di la titudire (dietro le Vie detter). Brightest of All Time Si è visto par più oli 12 pibrin. (della stona amana) Articolo by Tierpo Almeno negli altimi 10.000 andi