

Outline

Data Center Design

- Network Topology
- Hierarchical Network Design
- Leaf-Spine Design

Layer 2 Networks

- Layer 2 Protocols
- Layer 2 Network Design

Layer 3 Networks

- Layer 3 Protocols
- Layer 3 Network Design

Data Center

A facility used to house computer systems and associated components

- A data center is a facility used to house computer systems and associated components, such as compute, network, and storage systems.
 - From the size of a small server room to a few buildings geographically distributed
 - A critical business asset where companies run their workloads
- The modern data center has evolved from on-premises to cloud infrastructures requiring:
 - Scalability
 - Resiliency
 - Security
 - Efficiency

Data Center Design

Planning essential data center parameters

- Data center design is the process of planning all of a data center's essential computational and non-computational parameters:
 - Number and type of required servers
 - Network layout
 - Power, cooling, and ventilation systems
 - Physical data center security
 - Disaster recovery
 - Business continuity planning
- Modern data center design will incorporate many different aspects that will make it easy to manage and more efficient.

Data Center Design

A network topology is the schematic arrangement of network elements

- A network topology is the schematic arrangement of network elements, such as links and nodes...
- The physical topology describes how devices on the network are connected
- The logical topology describes how data moves from one node to another.
- Considerations when choosing a topology:
 - Availability redundancy and fault tolerance
 - Reliability downtime and delays are unacceptable
 - Performance locate faults, troubleshoot errors, allocate resources
 - Future growth add new nodes without negatively affecting performance or the user experience
 - Budget effective and affordable

Hierarchical Network Design

Traditional modular data center design

- A hierarchical design separates a network into distinct layers, where each layer has its role in the network.
- Most effective for north-south traffic
 - Traffic in and out of the data center
 - Client-server applications
- The model scales somewhat well, because of its modularity.
- May be subject to bottlenecks if uplinks between layers are oversubscribed.

Modern Data Centers

Modern data center environments are becoming much more dependent on east-west traffic

- Data center transformation is driven by new trends: cloud computing, virtualization, big data.
- Traffic patterns have changed to east-west communication:
 - More data moves between servers and storage nodes
- Modern data center design requirements:
 - Increased server-to-server communication
 - Scalability
 - Resiliency

Leaf-Spine Design

Modern data centers have transitioned to a leaf-spine design

- In the past few years, many data centers have transitioned to a leaf-spine design.
- Leaf-spine architecture is a multilayer, full-mesh topology composed of a leaf layer and a spine layer.
- Leaf-spine design advantages:
 - Provides predictable and deterministic latency
 - Improves scalability
 - Improves redundancy
 - Increases bandwidth
 - Offers congestion avoidance

3-level Leaf-Spine Design

Modern data centers have transitioned to a leaf-spine design

- When the network reaches a certain scale, a third level of switches should be considered.
- The upmost level, called the super spine or core, is used to interconnect the spine switches.

Layer 2 Networks

The networking devices are configured for switching

- In a layer 2 network, the networking devices are configured for switching
 - Build and maintain a MAC address table
 - Forward Ethernet frames based on the destination MAC address
- A layer 2 network compared to a layer 3 network provides:
 - Lower scalability
 - Lower bandwidth
 - Lower performance
 - Difficult to achieve redundancy and multipath support

Redundancy and Multipath Support

Layer 2 Loops

- Redundant links are required to provide a backup path in case of a link or switch failure
- Redundant links allow multiple paths between a pair of nodes
- Redundant links result in layer 2 loops as there are multiple paths between a pair of nodes

Broadcast Storms

Spanning Tree Protocol (STP)

STP ensures a loop-free logical topology for Ethernet networks

- STP allows a network design to include redundant links and to provide automatic backup paths, if an active link fails
- STP identifies redundant links and puts redundant ports in blocking state
- When a topology change occurs, STP reacts and moves blocked ports to forwarding state
- Convergence time is 30-50 seconds

Rapid Spanning Tree Protocol (RSTP)

RSTP provides rapid recovery after a topology change

- RSTP switches react immediately to a topology change and start negotiating port states
- RSTP provides an alternate port that immediately moves to forwarding state, if the port becomes unavailable
- RSTP is typically able to respond to changes within a few seconds or as fast as a few milliseconds on a physical link failure

Multiple Spanning Tree (MST)

MST enables to configure multiple STP instances

- MST enables configuring multiple STP instances,
 with a group of VLANs mapped to each instance
- Each instance may have a different active path
- MST provides redundancy, load-balancing, and multipath support, hence better overall network utilization
- Multiple MST instances are difficult to manage at scale

Link Aggregation Group (LAG)

Link aggregation, LAG, port channel, bonding

- LAG enables the aggregation of multiple physical ports into one logical port
- The benefits of link aggregation include the following:
 - Higher bandwidth LAG provides bandwidth that is the sum of the physical links' bandwidth
 - Load balancing Traffic is distributed on all physical links,
 which are part of the LAG
 - High availability When a physical link fails, other links of the LAG continue to serve the traffic

Multi Chassis LAG (MLAG)

- Physical ports of two separate switches are aggregated into one logical port
- MLAG switches appear as a single layer 2 switch
- The dual connected device (host or switch) runs a standard LAG and is unaware of the fact that its LAG is connected to two separate switches
- MLAG provides:
 - High bandwidth and load balancing
 - High availability in case of link failure
 - High availability in case of switch failure or switch software upgrade

Layer 2 Network Design

Full layer 2 network design:

- MSTP for multipath
- MLAG for redundancy
- Pros:
 - Simple design, well understood, and easy to configure at a small scale
- Cons:
 - Layer 2 protocols are difficult to manage at scale
- Typical deployments:
 - Traditional enterprises with few networking needs

Layer 3 Networks

Routers or layer 3 switches configured for routing

- Routers or layer 3 switches configured for routing
- Routing functionalities:
 - Build and maintain a forwarding database called a routing table
 - Include entries that map remote IP networks to next hop routers
 - Configured with static routes or a dynamic routing protocol, such as OSPF/BGP
 - Forward IP packets to the destination based on the routing table entries

Redundancy and Multipath Support

A layer 3 design provides redundant active-active links with no blocked ports

- Routing protocols identify and eliminate routing loops
 - Provide redundant active-active links with no blocked ports
- Equal Cost Multi Path (ECMP) is a routing strategy that allows packet forwarding to a single destination over multiple best paths
 - Multipath support
 - Load balancing
- IP packets carry a Time to Live (TTL) field
 - The number of hops (routers) the packet is allowed to traverse
 - Avoids packets endlessly circulating in a loop

Routing Protocols

An open-standard, scalable, and robust protocol should be chosen

- Dynamic routing protocols:
 - Open Shortest Path First (OSPF)
 - Border Gateway Protocol (BGP)
- BGP is the routing protocol of choice in modem data centers

BGP in the Data Center

BGP is an increasingly popular protocol for use in the data center

- BGP is the routing protocol that makes the Internet work
 - Allows service providers to exchange routing and reachability information
 - Designed for scalability and stability in very large networks
- BGP is an increasingly popular protocol for use in the data center as it lends itself well to the rich interconnections in a leaf-spine topology
- The following are some notable BGP properties:
 - Does not require routing state to be periodically refreshed (unlike OSPF)
 - Has many robust vendor implementations
 - Thoroughly tried and tested protocol that comes with years of operational experience

Layer 2/3 Network Design

Layer2/3 network design:

- Layer 2 from hosts to ToRs with MLAG for redundancy
- Layer 3 network with ECMP for redundancy and load balancing

Pros:

The designs are simple, well understood, and easy to configure

Cons:

Still uses layer 2

Typical deployments:

- Data centers and big enterprises
- High-scale bare metal hosts
- High-scale virtualized hosts

Full Layer 3 Network Design

Network design:

Full layer 3 from network to hosts with ECMP for redundancy even at the host level

Pros:

- Full layer 3 highly redundant
- Designed for high scale and virtualization
- Fewer protocols no MLAG, no STP

Cons:

A routing engine is required on hosts - RoH

Typical deployments:

Highly virtualized environments with a high degree of mobility

Summary

Data Center Design

- Network Topology
- Hierarchical Network Design
- Leaf-Spine Design

Layer 2 Networks

- Layer 2 Protocols
- Layer 2 Network Design

Layer 3 Networks

- Layer 3 Protocols
- Layer 3 Network Design

In a layer-3 data center design how can you achieve multipath support?

- A. BGP with ECMP can be configured
- B. A layer-3 design cannot support multipath
- C. STP with ECMP can be configured
- D. An MSTP instance per VLAN group can be configured

BGP is an increasingly popular protocol for use in the data center thanks to the following properties: (Select two)

- A. Periodic updates that allow fast convergence
- B. Scalable and stable
- C. Multipath support
- D. BGP was specifically designed for leaf-spine topologies.

Which two of these are used to prevent loops in a layer 2 network? (Select two)

- A. STP
- B. BGP
- C. MLAG
- D. RoH
- E. ECMP

What is the purpose of the Time To Live (TTL) field carried in an IP packet?

- A. Do determine the number of routers the packet is allowed to traverse
- B. Do determine what is the trip time allowed for a packet till it gets to the destination node
- C. To avoid packets from endlessly circulating in a loop
- D. Do record the time it takes for a packet to get to the destination node

In a layer-2 data center design how can you achieve multipath support?

- A. BGP with ECMP can be configured
- B. A layer-3 design cannot support multipath
- C. STP with ECMP can be configured
- D. An MSTP instance per VLANs group can be configured

