Options:

-ainp FILE change default ascii input parameter filename to FILE

-binp FILE change default binary input parameter filename to FILE

-est only do the parameter estimation

-noest do not do the parameter estimation (optimization)

-ind FILE change default input data filename to FILE

-lmn N use limited memory quasi newton -- keep N steps

-lmn2 N use other limited memory quasi newton -- keep N steps

-ilmn N use other limited memory quasi newton for random effects models - keep N steps

-dd N check derivatives after N function evaluations

-lprof perform profile likelihood calculations

-maxph N increase the maximum phase number to N

-mcdiag use diagonal covariance matrix for mcmc with diagonal values 1

-mcmc [N] perform markov chain monte carlo with N simulations

-mcmult N multiplier N for mcmc default

-mcr resume previous mcmc

-mcrb N reduce amount of correlation in the covariance matrix 1<=N<=9

-mcnoscale don't rescale step size for mcmc depending on acceptance rate

-nosdmcmc turn off mcmc histogram calcs to make mcsave run faster

-mcprobe N use probing strategy for mcmc with factor N

-mcgrope N Deprecated, same as -mcprobe

-mcseed N seed for random number generator for markov chain monte carlo

-mcscale N rescale step size for first N evaluations

-mcsave N save the parameters for every Nth simulation

-mceval go through the saved mcmc values from a previous mcsave

-nuts MCMC draws with the no-U-turn sampler

-rwm MCMC draws with a Metopolis sampler.

-mcu use uniformly distributed steps for mcmc instead of random normal

-crit N1,N2,... set gradient magnitude convergence criterion to N

-iprint N print out function minimizer report every N iterations (default 20).

-maxfn N1,N2,.. set maximum number opf function eval's to N

-rs if function minimizer can't make progress rescale and try again

-nox suppress vector and gradient values in minimizer screen report

-phase N start minimization in phase N

-simplex use simplex for minimization -- deprecated, use -neldmead

-neldmead use Nelder-Mead simplex algorithm for minimization

-nohess don't do hessian or delta method for std dev

-eigvec calculate eigenvectors of the Hessian

-sdonly do delta method for std dev estimates without redoing hessian

-ams N set arrmblsize to N (ARRAY_MEMBLOCK_SIZE)

-cbs N set CMPDIF_BUFFER_SIZE to N (ARRAY_MEMBLOCK_SIZE)

-mno N set the maximum number of independent variables to N

-mdl N set the maximum number of dvariables to N

-gbs N set GRADSTACK_BUFFER_SIZE to N (ARRAY_MEMBLOCK_SIZE)

-hess_step N take N Newton steps with inverse Hessian

-hess_step_toleps set hess_step tolerance to eps

-mip N set maximum the number of initial parameters to a value N that is greater than zero

(default is 4000).

-display N N sets display output with '0' for quiet display, '1' for concise display, or '2' for legacy

display (default is 1).

-info show how to cite ADMB, license, and acknowledgements

-version show version information

-help show this message

Random effects options if applicable

-nr N maximum number of Newton-Raphson steps

-imaxfn N maximum number of evals in quasi-Newton inner optimization

-is N set importance sampling size to N

-isf N set importance sampling size funnel blocks to N

-isdiag print importance sampling diagnostics

-hybrid do hybrid Monte Carlo version of MCMC

-hbf set the hybrid bounded flag for bounded parameters

-hyeps mean step size for hybrid Monte Carlo

-hynstep number of steps for hybrid Monte Carlo

-noinit do not initialize RE before inner optimization

-ndi N set maximum number of separable calls

-ndb N set number of blocks for RE derivatives (reduce temp file size)

-ddnr use high precision Newton-Raphson, for banded Hessian case only

-nrdbg verbose reporting for debugging newton-raphson

-mm N do minimax optimization

-shess use sparse Hessian structure inner optimzation