Mathematics 552 Homework, January 17, 2020

Problem 1. First some practice with doing arithmetic with complex numbers. Compute the following:

(a)
$$(3-4i)(2+5i)$$

(b) $\frac{2+5i}{4-3i}$

(c)
$$z^2 - 2z + 2$$
 where $z = 1 + i$
(d) $(1+i)^2$
(e) $(1+i)^3$

Problem 2. If z = 4 - 3i compute the following:

- (a) \overline{z}
- (b) |z|

Powers of i will come up repeatedly. The next problem shows us the

Problem 3. Compute i^2 , i^3 , i^4 , i^5 , i^6 , i^7 , and i^8 . Then give a formula for i^n when n is a positive integer.

We can view a complex number z = x + iy as a two dimensional vector in a obvious way: z corresponds to the point (x, y) in the plane. Then the addition of complex numbers corresponds to the vector of the vectors in the usual way. We call this the *complex plane*.

Problem 4. Let a = 1 + 2i and b = 3 - i. Draw a picture showing, and labeling, a, b, a + b, a - b and 2a.

Problem 5. Let a be a complex number and r a positive real number. Explain why the set of points z such that

$$|z - a| = r$$

is a circle with center a and radius r.

For any real number θ define a complex number $e^{i\theta}$ by

$$cis(\theta) = cos(\theta) + i sin(\theta).$$

Problem 6. Show for all real numbers α and β that

$$\operatorname{cis}(\alpha)\operatorname{cis}(\beta) = \operatorname{cis}(\alpha + \beta)$$

Hint: Recall the addition formulas for sin and cos:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
$$\sin(\alpha + \beta) = \cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta).$$

Problem 7. Find the following:

- (a) All the cube roots of i. Draw a picture of them.
- (b) All the fourth roots of -16. Draw a picture of them.

Problem 8. Draw a picture showing all the fifth roots of -4 + 4i.

Problem 9. Let $p(z) = a_3 z^3 + a_1 z^2 + a_1 z + a_0$ where a_0, a_1, a_2, a_3 are real numbers. Show that if z_0 is a complex number with $p(z_0) = 0$, then also $p(\overline{z_0}) = 0$. That is if a complex number is a root of p(z), then so is its complex conjugate. *Hint:* We know that $p(z_0) = a_3 z_0^3 + a_1 z_0^2 + a_1 z_0 + a_0 = 0$. Take the complete conjugate of this equation and use that $\overline{a_j} = a_j$ as the a_j 's are real.

Problem 10. Generalize the last problem to polynomials or arbitrary degree.

Problem 11. Use the De Moivre's formula

$$cis(\theta)^n = cis(n\theta)$$

to find formulas for $\cos(2\theta)$, $\sin(2\theta)$, $\cos(3\theta)$, and $\sin(3\theta)$.