Chapitre 7

Révisions MP2

Dérivabilité

Opérations su les fonctions dérivables.

Integration su un segment

Formules de

Fonctions vectorielles à une variable

Lundi 13 octobre 2025

Table des matières

Chapitre 7

......

Dérivabilité

Opérations si les fonctions dérivables.

un segment

Formules de

- Dérivabilité.
- 2 Opérations sur les fonctions dérivables.
- 3 Intégration sur un segment
- Formules de Taylor

Table des matières

Chapitre 7

Dérivabilité. Comparaisons

Comparaisons voisinage d'un

Dérivabilité en u point.

Développement limité d'ordre 1

cinématique. Utilisation d'une

base. Dérivabilité sur

Opérations su

Intégration su

Formules de

Dérivabilité.

Opérations sur les fonctions dérivables

Intégration sur un segment

Formules de Taylor

Chapitre 7

Dérivabilité

Comparaisons a voisinage d'un point

Dérivabilité en un point.

. Développeme

limité d'ordre

Interprétation

cinématique.

base.

Dérivabilité sur

Opérations sur les fonctions dérivables

Intégration sur un segment

Formules de Taylor

1. Dérivabilité.

1. Dérivabilité.

Chapitre 7

Dérivabilité.

Comparaisons au voisinage d'un point

Dérivabilité en un point.

Développeme

Interprétation

cinématique.

Utilisation d'une base.

Dérivabilité sur

Opérations su les fonctions dérivables

integration su un segment

Formules d Taylor

1.1. Comparaisons au voisinage d'un point

1.1. Comparaisons au voisinage d'un point

Chapitre 7

Comparaisons au voisinage d'un

point

Dérivabilité en point.

point.
Développemen

limité d'ordre 1
Interprétation
cinématique.

Utilisation d'une base.

Dérivabilité sur

Opérations sur les fonctions dérivables.

Intégration su un segment

Formules de Taylor

Definition 1

Soient $f, g: I \to E$ et $a \in \overline{I}$. On a au voisinage de a:

- f(t) = O(g(t)) lorsque ||f(t)|| = O(||g(t)||)
- f(t) = o(g(t)) lorsque ||f(t)|| = o(||g(t)||)
- $f(t) \sim g(t)$ lorsque f(t) g(t) = o(g(t))

Remarques:

- Type de relation binaire?
- Pour o et O, $g = I \to \mathbb{R}^*$ en pratique
- Extension à $a = \pm \infty$

1. Dérivabilité.

Chapitre 7

Dérivabilité.

Comparaisons a voisinage d'un

Dérivabilité en un point.

limité d'ordre

Interprétation cinématique.

Utilisation d'une base.

Dérivabilité su

Opérations su les fonctions dérivables

Integration si un segment

Formules de Taylor

1.2. Dérivabilité en un point.

1.2. Dérivabilité en un point.

Chapitre 7

Derivabilite

voisinage d'un point

Dérivabilité en un point.

limité d'ordre 1

Interprétation

Utilisation d'une

Dérivabilité sur

Opérations su les fonctions dérivables.

Intégration su un segment

Formules de Taylor

Définition 2

Soit $f: I \rightarrow E$. On dit que f est dérivable en $a \in I$ lorsque :

$$t \mapsto \frac{1}{t-a} (f(t) - f(a)),$$

admet une limite finie $v \in E$ en a, appelé $d\acute{e}riv\acute{e}e$ de f au point a, et noté f'(a), Df(a), ou encore $\frac{\mathrm{d}f}{\mathrm{d}t}(a)$.

Remarque:

Dérivabilité à gauche ou à droite?

Proposition 1

Soit $f: I \to E$, et $a \in I$. Alors f est dérivable en a ssi f est dérivable à gauche et à droite en a, et $f'_{\sigma}(a) = f'_{\sigma}(a)$.

1. Dérivabilité.

Chapitre 7

Dérivabilité.

Comparaisons a voisinage d'un point

Dérivabilité en un

Développement limité d'ordre 1

Interprétation

cinématique.

Utilisation d'une

base.

Opérations s

Intégration su

Formules de

1.3. Développement limité d'ordre 1

1.3. Développement limité d'ordre 1

Chapitre 7

Développement

limité d'ordre 1

Opérations sur

Proposition 2

f est dérivable en a ssi f admet un développement limité d'ordre 1 en a, c'est-à-dire lorsqu'il existe $v \in E$, tel que pour t au voisinage de a :

$$f(t) = f(a) + (t - a)v + o(t - a).$$

Dans ces conditions, on a nécessairement f'(a) = v.

Corollaire 1

Si f est dérivable en a, f est continue en a.

Remarque:

réciproque fausse

1. Dérivabilité.

Chapitre 7

Dérivabilité.

Comparaisons a

Dérivabilité en ur point.

. Développeme

Interprétation

cinématique.

Utilisation d'une

base.

Dérivabilité s un intervalle.

Opérations su les fonctions dérivables.

integration su un segment

Formules de Taylor

1.4. Interprétation cinématique.

1.4. Interprétation cinématique.

Chapitre 7

Derivabilite

Comparaisons a voisinage d'un point Dérivabilité en u

point.

limité d'ordre 1

Interprétation cinématique.

Utilisation d'une base.

Dérivabilité sur un intervalle.

Opérations sur les fonctions dérivables.

Intégration su un segment

Formules de

Remarques:

- f : loi horaire du déplacement d'un mobile ponctuel
- Im(f): trajectoire du point mobile f(t)
- $f'(t_0)$: vecteur vitesse à l'instant t_0 .
- graphe de f?

1. Dérivabilité.

Chapitre 7

Derivabilite

Comparaisons a voisinage d'un

Dérivabilité en u point.

Développeme

Interprétation

Interprétation cinématique.

Utilisation d'une base.

Dérivabilité sur

Opérations su les fonctions dérivables

Integration su un segment

Formules de Taylor

1.5. Utilisation d'une base.

1.5. Utilisation d'une base.

Chapitre 7

Dérivabilité

Comparaisons ai voisinage d'un point Dérivabilité en L

point.

Développement limité d'ordre 1

cinématique. Utilisation d'une

base.

Opérations sur les fonctions

Intégration su

Formules d

Proposition 3

Soit \mathcal{B} une base de E et (f_1, \ldots, f_n) les composantes de $f: I \to E$ dans \mathcal{B} . Alors pour $a \in I$, f est dérivable en a ssi pour tout $i \in [1, n]$, f_i est dérivable en a. Dans ces conditions, f'(a) a pour coordonnées $(f'_1(a), \ldots, f'_n(a))$.

1. Dérivabilité.

Chapitre 7

Dérivabilité.

Comparaisons a

Dérivabilité en un point.

Développeme

limité d'ordre

cinématique.

Utilisation d'u

Dérivabilité sur un intervalle.

Opérations su les fonctions dérivables

Integration su un segment

Formules d Taylor

1.6. Dérivabilité sur un intervalle.

1.6. Dérivabilité sur un intervalle.

Chapitre 7

Dérivab

voisinage d'un point Dérivabilité en u

Développement limité d'ordre 1

limité d'ordre Interprétation

Utilisation d'un

base.

Dérivabilité sur un intervalle.

Opérations sur les fonctions

Intégration su un segment

Formules de Taylor

Definition 3

On dit que $f:I\to E$ est dérivable sur I lorsqu'elle est dérivable en tout point de I. On peut définir alors sur I l'application dérivée :

$$f': t \mapsto f'(t).$$

Si de plus, f' est continue sur I, on dit que f est de classe C^1 sur I.

Remarque:

dérivable n'implique pas \mathcal{C}^1 : exemple $x\mapsto x^2\sin\left(\frac{1}{x}\right)$.

Table des matières

Chapitre 7

Dérivabilité

Opérations sur les fonctions

dérivables.

linéaire. Dérivabilité e

Dérivabilité e composition.

Dérivabilité e application

linéaire.

Dérivabilité

Dérivabilité

Fonctions de

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules d

Dérivabilité.

2 Opérations sur les fonctions dérivables.

3 Intégration sur un segment

Formules de Taylor

Chapitre 7

Dérivabilité

Opérations sur les fonctions dérivables.

dérivables.

Dérivabilité et

combinaison linéaire.

Dérivabilité e

Dérivabilité e

application linéaire.

application bilinéaire.

Dérivabilité application

Fonctions de

Linéarité et multilinéarité

Intégration sur un segment

Formules de Tavlor 2. Opérations sur les fonctions dérivables.

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations s

Dérivabilité et combinaison linéaire

Dérivabilité e

composition.

Dérivabilité application

linéaire.

bilinéaire.

application

Fonctions d

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de

2.1. Dérivabilité et combinaison linéaire.

2.1. Dérivabilité et combinaison linéaire.

Chapitre 7

Dérivabilité

Opérations su les fonctions

Dérivabilité et combinaison linéaire

Dérivabilité (

Dérivabilité e

application linéaire.

Dérivabilité e application

Dérivabilité e application

Fonctions de

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de

Proposition 4

Soit $f,g:I\to E$ deux applications dérivables sur I et $\lambda\in\mathbb{K}$. Alors $f+\lambda g$ est dérivable sur I et

$$(f + \lambda g)' = f' + \lambda g'.$$

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations su les fonctions

Dérivabilité e combinaison

Dérivabilité et composition.

Dérivabilité e

application linéaire.

bilinéaire. Dérivabilité

application multilinéaire

Fonctions d

Linéarité et multilinéarité pour les classe

Intégration sur un segment

Formules de Taylor

2.2. Dérivabilité et composition.

2.2. Dérivabilité et composition.

Chapitre 7

Dérivabilité

Opérations si les fonctions

Dérivabilité combinaison linéaire.

Dérivabilité et composition.

Dérivabilité e application linéaire

linéaire. Dérivabilité e

bilinéaire.

Dérivabilité e

Fonctions de

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de

Proposition 5

Soit $f: I \to E$ et $\varphi: J \to \mathbb{R}$ telle que $\operatorname{Im}(\varphi) \subset I$. Si f et φ sont dérivables, $f \circ \varphi$ aussi et :

$$(f \circ \varphi)' = \varphi' \times f' \circ \varphi.$$

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations su les fonctions

dérivables.

combinaison linéaire.

Dérivabilité e composition.

Dérivabilité et application

linéaire. Dérivabilité e

bilinéaire. Dérivabilité

application multilinéaire

Fonctions d

Linéarité et multilinéarité pour les classe

Intégration sur un segment

Formules de

2.3. Dérivabilité et application linéaire.

2.3. Dérivabilité et application linéaire.

Chapitre 7

Dérivabilit

Opérations sur les fonctions

Dérivabilité e combinaison linéaire.

Dérivabilité e composition.

Dérivabilité et application linéaire.

Dérivabilité application

Dérivabilité e application

multilinéaire Fonctions de classe C^k .

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de

Proposition 6

Soit $f:I\to E$ une application dérivable sur I et $L\in\mathcal{L}(E,F)$. Alors $L\circ f:I\to F$ est dérivable sur I et

$$(L \circ f)' = L \circ f'.$$

Remarque:

Si de plus, f est de classe C^1 , $L \circ f$ aussi.

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations su les fonctions

Dérivabilité et

combinaison linéaire.

Dérivabilité e composition.

Dérivabilité

application linéaire. Dérivabilité et

application bilinéaire.

Dérivabilité e application

Fonctions d

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de

2.4. Dérivabilité et application bilinéaire.

2.4. Dérivabilité et application bilinéaire.

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Dérivabilité e combinaison

Dérivabilité et

composition.

Dérivabilité e application

Dérivabilité et application bilinéaire.

Dérivabilité e application multilinéaire

Fonctions de classe C^k .

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de Tavlor

Proposition 7

Soit $B: E \times F \to G$ bilinéaire, $f: I \to E$ et $g: I \to F$ dérivables sur I. Alors l'application

$$B(f,g): t \mapsto B(f(t),g(t))$$

est dérivable sur I, avec :

$$B(f,g)' = B(f',g) + B(f,g').$$

2.4. Dérivabilité et application bilinéaire.

Chapitre 7

Dérivabilité

Opérations sur les fonctions dérivables.

Dérivabilité et combinaison linéaire. Dérivabilité et composition. Dérivabilité et application

Dérivabilité et application bilinéaire.

Dérivabilité et application multilinéaire Fonctions de

Linéarité et multilinéarité pour les classes

Intégration sur un segment

Formules de Tavlor

Exemples:

- $E = F = G = \mathbb{K}$ et $B : (x, y) \mapsto xy$:régle du produit : (fg)' = f'g + fg'.
- Si $(\cdot|\cdot)$ produit scalaire sur $E, f, g: I \to E$ dérivables :

$$(f|g)': x \mapsto (f'(x)|g(x)) + (f(x)|g'(x))$$
 $(||f||^2)' = 2(f, f').$

• Si $f, g: I \to \mathbb{R}^2$ dérivables :

$$\big(\det(f,g)\big)'=\det(f',g)+\det(f,g').$$

Exercice 1

Soit E est un espace préhilbertien réel et soit une application $f:I\to E$. Montrer que f est de norme constante si, et seulement si, f(x) et f'(x) sont orthogonaux pour tout $x\in I$.

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations su les fonctions

dérivables. Dérivabilité et

combinaison linéaire.

Dérivabilité e composition.

composition.

application linéaire.

linéaire.

Dérivabilité et application multilinéaire

Fonctions o

Linéarité et multilinéarité

Intégration su un segment

Formules de Taylor

2.5. Dérivabilité et application multilinéaire

2.5. Dérivabilité et application multilinéaire

Chapitre 7

Derivabilite

Opérations sur les fonctions dérivables

Dérivabilité et combinaison

linéaire. Dérivabilité et

composition

Dérivabilité application linéaire

linéaire.

Dérivabilité e

Dérivabilité et application multilinéaire

Fonctions of

Linéarité et multilinéarité pour les classes

Intégration su un segment

Formules de Tavlor

Proposition 8

Soit $M: E_1 \times \cdots \times E_p \to F$ multilinéaire, et pour tout $j \in [1, p]$, $f_j: I \to E_j$ dérivable. Alors $M(f_1, \ldots, f_p): t \mapsto M(f_1(t), \ldots, f_p(t))$ est dérivable sur I et :

$$(M(f_1,...,f_p))'(t) = \sum_{j=1}^{p} M(f_1(t),...,f'_j(t),...,f_p(t))$$

Exercice 2

Soit $A: I \mapsto \mathcal{M}_n(\mathbb{K})$. Expliquer comment dériver l'application $f: t \mapsto \det(A(t))$.

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations su les fonctions

dérivables. Dérivabilité et

combinaison linéaire.

Dérivabilité e

composition.

application linéaire.

linéaire. Dérivabilité e

Dérivabilité e

Fonctions de classe C^k .

Linéarité et multilinéarité pour les classe

Intégration sur un segment

Formules de

2.6. Fonctions de classe C^k .

2.6. Fonctions de classe C^k .

Chapitre 7

Dérivabilité

Dérivabilité. Opérations sur

dérivables.

Dérivabilité e combinaison

combinaison linéaire. Dérivabilité et composition. Dérivabilité et

linéaire.

Dérivabilité et application bilinéaire.

Fonctions de classe C^k .

Linéarité et multilinéarité pour les classes

Intégration sur un segment

Formules de Tavlor

Definition 4

Sur l'ensemble $\mathcal{F}(I,E)$, on définit récursivement la classe \mathcal{C}^k par :

- f est de classe C^0 lorsque f est continue, et on pose $f^{(0)} = f$.
- f est de classe \mathcal{C}^{k+1} si f est de classe \mathcal{C}^k et si $f^{(k)}$ est dérivable et de dérivée continue. On définit alors $f^{(k+1)} = (f^{(k)})'$.

Exemple:

Pour $f: I \to E$ de classe C^2 , E euclidien, ||f'|| est constante ssi $f'(t) \perp f''(t)$ pour tout $t \in I$.

Definition 5

On dit que f est de classe C^{∞} si f est de classe C^k pour tout $k \in \mathbb{N}$.

2.6. Fonctions de classe C^k .

Chapitre 7

Dérivabilité

les fonctions dérivables. Dérivabilité et combinaison

combinaison linéaire. Dérivabilité et composition.

Dérivabilité et application linéaire.

bilinéaire. Dérivabilité

Fonctions de classe C^k .

Linéarité et multilinéarité pour les classe

Intégration su un segment

Formules de Tavlor

Exercice 3

Soit $f:I\to\mathbb{R}^n$ de classe \mathcal{C}^2 , et $a\in I$. On suppose que la famille $\left(f'(t),f''(t)\right)$ est libre pour tout $t\in I$, et on considère la famille orthonormale (d(t),n(t)) obtenue par orthonormalisation. On a en particulier $d:I\to S^{n-1}$ (la sphère unité de \mathbb{R}^n) définie par

 $d(t) = \frac{1}{v(t)} f'(t)$ (application *direction*), avec $v: I \to \mathbb{R}^+$ définie par $v(t) = \|f'(t)\|$ (application vélocité)

v(t) = ||f'(t)|| (application *vélocité*).

Montrer que les composantes tangentielles et normales de f'' sont respectivement :

$$(f''|d) = v'$$
 ; $(f''|n) = v||d'||$.

2. Opérations sur les fonctions dérivables.

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Dérivabilité et

combinaison linéaire.

Dérivabilité (composition.

Dérivabilité (

linéaire.

bilinéaire. Dérivabilité

application multilinéaire

Fonctions d

Linéarité et multilinéarité pour les classes

Intégration su un segment

Formules de

2.7. Linéarité et multilinéarité pour les classes \mathcal{C}^k

2.7. Linéarité et multilinéarité pour les classes \mathcal{C}^k

Chapitre 7

Dérivabilité

Opérations sur

dérivables.

combinaison linéaire. Dérivabilité et composition.

Dérivabilité et application linéaire.

application bilinéaire. Dérivabilité

Fonctions de classe C^k .

Linéarité et multilinéarité pour les classes C^k

Intégration su un segment

Formules de Taylor

Proposition 9

Pour $k \in \mathbb{N}$, $f, g \in \mathcal{C}^k(I, E)$ et $\lambda \in \mathbb{K}$, on a $f + \lambda g \in \mathcal{C}^k(I, E)$ et $(f + \lambda g)^{(k)} = f^{(k)} + \lambda g^{(k)}$.

Corollaire 2

Pour tout $k \in \mathbb{N} \cup \{\infty\}$, $C^k(I, E)$ est un sous-espace vectoriel de $\mathcal{F}(I, E)$, avec les inclusions :

$$\mathcal{C}^{\infty}(I,E) \subset \cdots \subset \mathcal{C}^{k+1}(I,E) \subset \mathcal{C}^{k}(I,E) \subset \cdots \subset \mathcal{C}^{0}(I,E) \subset \mathcal{F}(I,E).$$

De plus $D: f \mapsto f'$ est un endomorphisme de $C^{\infty}(I, E)$, et $D^k: f \mapsto f^{(k)}$ pour tout $k \in \mathbb{N}^*$.

Remarque:

D défini sur $C^k(I, E)$, pour tout $k \in \mathbb{N}^*$, mais à valeurs dans $C^{k-1}(I, E)$.

2.7. Linéarité et multilinéarité pour les classes C^k

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Dérivabilité et combinaison

combinaison linéaire.

Dérivabilité e composition.

Dérivabilité et application linéaire.

Dérivabilité et application bilinéaire.

application multilinéaire Fonctions de

Linéarité et multilinéarité pour les classes

Intégration su un segment

Formules de Taylor

Proposition 10

Soit $f \in \mathcal{C}^k(I, E)$, pour $k \in \mathbb{N} \cup \{\infty\}$ et $L \in \mathcal{L}(E, F)$. Alors $L \circ f \in \mathcal{C}^k(I, F)$ et :

$$(L\circ f)^{(k)}=L\circ f^{(k)}.$$

Proposition 11

(formule de Leibniz) Soit $B: E \times F \to G$ bilinéaire, $f \in \mathcal{C}^k(I, E)$ et $g \in \mathcal{C}^k(I, F)$. Alors $B(f, g) \in \mathcal{C}^k(I, G)$ et :

$$B(f,g)^{(k)} = \sum_{i=0}^{k} {k \choose i} B(f^{(i)}, g^{(k-i)}).$$

Remarque:

Plus généralement si $M: E_1 \times \cdots \times E_p \to G$ multilinéaire, avec les $f_j: I \to E_j$ de classe \mathcal{C}^k , alors $t \mapsto M(f_1(t), \dots, f_p(t))$ de classe \mathcal{C}^k .

Table des matières

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration sur un segment

Définition

Linéarité de l'intégrale Intégration e

orme Sommes de

Formules de

Dérivabilité.

- 2 Opérations sur les fonctions dérivables
- 3 Intégration sur un segment
- Formules de Taylor

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Intégration sur un segment

D/C 10

Linéarité d

Intégration e

Sommes de Riemann

Formules de

3. Intégration sur un segment

3. Intégration sur un segment

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration su

un segment Définition

Linéarité de l'intégrale

Intégrale Intégration e

norme Sommes de

Formules de

3.1. Définition

3.1. Définition

Chapitre 7

Derivabilite

Opérations sur les fonctions

Intégration su un segment Définition Linéarité de

l'intégrale Intégration et norme Sommes de

Formules de

Definition 6

On dit que $f:[a,b] \to E$ est continue par morceaux lorsqu'il existe une subdivision $(s_i)_{0 \le i \le r}$ de [a,b] telle que pour tout $i \in [0,r-1]$:

- f est continue sur $]s_i, s_{i+1}[$
- f admet des limites finies en s_i à droite et en s_{i+1} à gauche.

Remarques:

- équivalent à $f_{|s_i,s_{i+1}|}$ continue et prolongeable par continuité sur $[s_i,s_{i+1}]$, pour tout i.
- f continue par morceaux **ssi** ses composantes (f_1, \ldots, f_n) le sont

3.1. Définition

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Intégration sur un segment Définition Linéarité de l'intégrale

l'intégrale Intégration et norme

Sommes of Riemann

Formules de

Proposition 12

Pour $f:[a,b] \to E$ continue par morceaux de composantes (f_1,\ldots,f_n) dans une base $\mathcal{B}=(e_1,\ldots,e_n)$ la quantité :

$$\int_a^b f = \sum_{i=1}^n \left(\int_a^b f_i(t) dt \right) e_i$$

ne dépend pas de la base ${\mathcal B}$ considérée.

Definition 7

La quantité précédente définit l'*intégrale* de la fonction vectorielle f sur le segment [a,b]. On peut aussi la noter $\int_{[a,b]}^b f$ ou $\int_a^b f(t) \mathrm{d}t$.

un segment
Définition
Linéarité de
l'intégrale
Intégration et
norme

norme Sommes de Riemann

Formules de

Proposition 13

(relation de Chasles) Pour $a,b,c\in\mathbb{R}$ avec $a\leqslant b\leqslant c$, $f:[a,c]\to E$ est continue par morceaux ssi f est continue par morceaux sur [a,b] et sur [b,c] et on a alors :

$$\int_a^c f(t) \mathrm{d}t = \int_a^b f(t) \mathrm{d}t + \int_b^c f(t) \mathrm{d}t$$

Remarque:

Se généralise à $a,b,c\in I$ dans un ordre quelconque avec la convention

$$\int_{a}^{b} f = -\int_{b}^{a} f \qquad \text{si} \quad a > b$$

3. Intégration sur un segment

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration su un segment

Définition Linéarité de

l'intégrale Intégration et

norme

Formules d

3.2. Linéarité de l'intégrale

3.2. Linéarité de l'intégrale

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Intégration su un segment

Linéarité de l'intégrale

Intégration et norme

Formules de

Proposition 14

Si $f,g:[a,b]\to E$ sont continues par morceaux, et $\lambda\in\mathbb{K}$, l'application $f+\lambda g$ est continue par morceaux sur [a,b] et :

$$\int_{a}^{b} (f + \lambda g) = \int_{a}^{b} f + \lambda \int_{a}^{b} g$$

Proposition 15

Si $f:[a,b]\to E$ est continue par morceaux et $L\in\mathcal{L}(E,F)$, l'application $L\circ f:t\mapsto L\big(f(t)\big)$ est continue par morceaux et

$$\int_{a}^{b} L \circ f = L \left(\int_{a}^{b} f \right)$$

3. Intégration sur un segment

Chapitre 7

Dérivabilité

Opérations su les fonctions

dérivables.

Intégration su un segment

Définition Linéarité de

l'intégrale

Intégration et norme

Sommes de Riemann

Formules de

3.3. Intégration et norme

Dérivabilité

Opérations sur les fonctions dérivables.

dérivables.

Définition Linéarité de

l'intégrale

norme

Formules d

Proposition 16

(Inégalité triangulaire) Si $f:[a,b]\to E$ est continue par morceaux, l'application $\|f\|:t\mapsto \|f(t)\|$ est continue par morceaux et

$$\left\| \int_{a}^{b} f \right\| \leqslant \int_{a}^{b} \|f\|$$

Remarques:

- Il faut bien $a \leq b$ ici
- Inégalité de la moyenne?

3.3. Intégration et norme

Chapitre 7

Dérivabilité

Opérations sur les fonctions

dérivables.

Linéarité d

l'intégrale Intégration et

norme

Sommes de

Formules de

Proposition 17

On suppose I=[a,b]. L'application $f\mapsto \int_a^b \|f\|$ définit une norme sur l'espace $\mathcal{C}(I,E)$ des applications continues. En particulier, si f est continue :

$$\int_a^b ||f|| = 0 \quad \Leftrightarrow \quad f = 0$$

Remarque:

séparation non vérifiée sur l'espace des fonctions continues par morceaux : $\int_a^b \|f-g\| = 0$ ssi f et g coincident sauf sur un ensemble fini de points.

3. Intégration sur un segment

Chapitre 7

Dérivabilité

Opérations su les fonctions

dérivables.

Integration su un segment

Définition Linéarité de

Intégration et

norme Sommes de Riemann

Formules de

3.4. Sommes de Riemann

3.4. Sommes de Riemann

Chapitre 7

Dérivabilité

Opérations sur

les fonctions dérivables.

Intégration sur un segment

Linéarité de l'intégrale

norme Sommes de

Riemann

Formules de

Definition 8

Soit $f:[a,b] \to E$ continue par morceaux, $\sigma=(s_k)_{0\leqslant k\leqslant n}$ une subdivision de [a,b] (i.e. $a=s_0<\cdots< s_n=b$) et $\tau=(t_k)_{0\leqslant k\leqslant n-1}$ un marquage de σ ($t_k\in [s_k,s_{k+1}]$ pour tout $k\in [0,n-1]$).

On appelle somme de Riemann de f associée à (σ,τ) le vecteur :

$$S(f, \sigma, \tau) = \sum_{k=0}^{n-1} (s_{k+1} - s_k) f(t_k)$$

Remarques:

- pas d'une subdivision : $\max_{0 \le k \le n-1} (s_{k+1} s_k)$.
- Cas d'une subdivision régulière :
- marquage à gauche, à droite, centré.

3.4. Sommes de Riemann

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration un segment Définition Linéarité de

l'intégrale
Intégration et

Sommes de Riemann

Formules de

Theoreme 1

Soit $f:[a,b]\to E$ continue par morceaux. Pour tout $\varepsilon>0$, il existe $\delta>0$ telle que pour toute subdivision marquée (σ,τ) de pas $\leqslant\delta$:

$$\left\| \int_{[a,b]} f - S(f,\sigma,\tau) \right\| \leqslant \varepsilon$$

Remarque:

Équivalent à $S(f,\sigma_n,\tau_n)\longrightarrow \int_a^b f$ pour une suite $(\sigma_n,\tau_n)_{n\in\mathbb{N}}$ de subdivisions marquées dont le pas tend vers 0

3.4. Sommes de Riemann

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Intégration un segment Définition

l'intégrale Intégration et

Sommes de Riemann

Formules de

Corollaire 3

Pour $f:[a,b] \to E$ continue par morceaux :

$$\lim \left(\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+k\frac{b-a}{n}\right)\right) = \int_a^b f(t)dt$$

Remarque:

Également avec
$$\sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right)$$

Table des matières

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration su

Formules de Taylor

Primitive e

Inégalité des accroissements

accroissements finis Formule de

Inégalité de Taylor-Lagrange

Formule de

Dérivabilité.

Opérations sur les fonctions dérivables

3 Intégration sur un segment

4 Formules de Taylor

Chapitre 7

Dérivabilité

0-4---

les fonctions dérivables.

Intégration su un segment

Formules de Taylor

Primitive et

intégrale

accroissements finis

Taylor avec rest intégral

Inégalité de Taylor-Lagrange

Formule de Taylor-Young

4. Formules de Taylor

4. Formules de Taylor

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration su

Formules de

Primitive et intégrale

Inégalité des accroissements

Formule de Taylor avec rest

Inégalité de Taylor-Lagrange

Formule de Tavlor-Young

4.1. Primitive et intégrale

4.1. Primitive et intégrale

Chapitre 7

Dérivabilité

Opérations su les fonctions dérivables

Intégration sur un segment

Formules de Taylor

Primitive et intégrale

Inégalité des accroissements finis

intégral Inégalité de Taylor-Lagrange

Taylor-Lagrang Formule de Taylor-Young

Theoreme 2

Soit $f: I \to E$ continue et $a \in I$. L'application $F: x \mapsto \int_a^x f(t) dt$ est de classe C^1 sur I et F' = f.

Remarques:

- Toute fonction continue f admet donc une primitive F
- Pour tout $v \in E$, F + v est encore une primitive.

4. Formules de Taylor

Chapitre 7

Dérivabilité

Opérations su les fonctions

dérivables.

un segment

Taylor

Primitive et

Inégalité des accroissements

finis

Formule de Taylor avec rest intégral

Inégalité de Taylor-Lagrange

Formule de

4.2. Inégalité des accroissements finis

4.2. Inégalité des accroissements finis

Chapitre 7

Inégalité des accroissements

finis

Proposition 18

(Inégalité des accroissements finis) Soit $f:[a,b] \to E$ de classe C^1 et $M \ge 0$ tel que $||f'|| \le M$ sur [a, b]. Alors

$$||f(b)-f(a)|| \leq M(b-a)$$

Remarque:

Interprétation cinématique?

4.2. Inégalité des accroissements finis

Chapitre 7

Dérivabilité

les fonctions dérivables.

Formules de Taylor

Primitive et

Inégalité des accroissements finis

Formule de Taylor avec rest intégral

Taylor-Lagrange

Corollaire 4

- pour $f:[a,b] \to E$ de classe C^1 , f est constante sur [a,b] ssi f'=0.
- pour f: I → E continue, la différence entre deux primitives de f est constante. En particulier, si a ∈ I, l'ensemble de toutes les primitives est

$$\left\{x \mapsto \int_{a}^{x} f(t) dt + v, \ v \in E\right\}$$

4. Formules de Taylor

Chapitre 7

Formule de Taylor avec reste intégral

4.3. Formule de Taylor avec reste intégral

4.3. Formule de Taylor avec reste intégral

Chapitre 7

Dérivabilité

Opérations sur les fonctions

Intégration si un segment

Formules de Taylor

Primitive et intégrale

Inégalité des accroissemen

Formule de Taylor avec reste intégral

Inégalité de Taylor-Lagrange

Formule de Taylor-Young

Theoreme 3

Soit $f:I\to E$ de classe \mathcal{C}^{n+1} , avec $n\in\mathbb{N}$, et $a\in I$. Pour tout $x\in I$, on a :

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}}_{\text{partie régulière}} + \underbrace{\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^{n} \mathrm{d}t}_{\text{reste intégral}}$$

Remarque:

Autre écriture :

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + \int_{0}^{h} \frac{f^{(n+1)}(a+u)}{n!} (h-u)^{n} du$$

4. Formules de Taylor

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration su

Formules de

Taylor

intégrale

Inégalité des accroissements finis

Taylor avec resto intégral

Inégalité de Taylor-Lagrange

Formule de Taylor-Young 4.4. Inégalité de Taylor-Lagrange

4.4. Inégalité de Taylor-Lagrange

Chapitre 7

Derivabilite

Opérations sur les fonctions

Intégration su

Formules de Taylor

Primitive e

Inégalité de

Formule de Taylor avec rest

Inégalité de Taylor-Lagrange

Formule de Taylor-Young

Theoreme 4

Soit $f: I \to E$ de classe C^{n+1} , $a \in I$. Pour tout $x \in I$:

$$\left\| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right\| \leqslant \frac{|x - a|^{n+1}}{(n+1)!} \sup_{t \in [a,x]} \left\| f^{(n+1)}(t) \right\|$$

Remarques:

- ullet n=1: Inégalité des accroissements finis
- Autre formulation avec h = x a

4. Formules de Taylor

Chapitre 7

Dérivabilité

Opérations su les fonctions

Intégration su

Formules de

Primitive et

intégrale

Inégalité des accroissements finis

Taylor avec rest intégral

Inégalité de Taylor-Lagrange

Formule de Taylor-Young 4.5. Formule de Taylor-Young

4.5. Formule de Taylor-Young

Chapitre 7

Dérivabilit

Opérations sur les fonctions dérivables.

Intégration sui un segment

Formules de Taylor

Primitive et

Inégalité des accroissemen

Formule de Taylor avec resto intégral

Inégalité de Tavlor-Lagrange

Formule de Taylor-Young

Theoreme 5

Soit $f: I \to E$ de classe C^n , $a \in I$. Pour x au voisinage de a:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + o((x - a)^{n})$$

Remarque:

Développement limité de f en a à l'ordre n.

Exercice 4

Pour $n, p \in \mathbb{N}$, étudier la régularité et l'existence d'un développement limité en 0 de la fonction $f: x \mapsto x^n \sin\left(\frac{1}{x^p}\right)$.