Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação

Computação Básica

Atividades a serem desenvolvidas nas sessões de Laboratório

Sessão 2:

Objetivos:

- 1. Aprender a elaborar programas que utilizam estruturas condicionais.
- 2. Aprender a solicitar os dados do usuário, por meio de mensagens explicativas.
- 3. Aprender a imprimir os resultados para o usuário, usando mensagens explicativas.

ATENÇÃO: NÃO UTILIZAR ACENTOS NOS PROGRAMAS

Atividades:

1. Criar o programa abaixo

- a) Compile e corrija todos os erros do seu programa, caso existirem.
- b) Execute o programa quatro vezes, com os seguintes dados:

```
- 7 7
- 3 6
- 6 3
10 10
```

Em todos os programas abaixo, solicite os dados do usuário e imprima os dados para o usuário usando mensagens explicativas adequadas.

- 2. Modifique o programa fonte acima, para imprimir o maior número, se ambos forem diferentes. Se forem iguais, imprima uma mensagem adequada.
- 3. Crie um programa que leia os três coeficientes de uma equação de segundo grau ax² + bx + c=0 e imprima o valor das raízes. Calcule as raízes se o valor do discriminante (delta) for maior ou igual a zero. Se for menor do que zero, apenas imprima uma mensagem adequada, e finalize o programa.

Teste o programa com os seguintes conjuntos de valores:

•	a = 1, b = -8, c = 15	resposta correta:	$x_1 = 5$	$x_2 = 3$
•	a = 1, b = -8, c = 0	resposta correta:	$x_1 = 8$	$x_2 = 0$
•	a = 2, b = -6, c = 4	resposta correta:	$x_1 = 2$	$x_2 = 1$
•	a = 4, b = 8, c = 3	resposta correta:	$x_1 = -0.5$	$x_2 = -1.5$
•	a = 4, b = 2, c = 1	discriminante menor do que zero		

- 4. Ao serem informados pelo usuário um ponto de origem (x,y) num espaco bidimensional, altura A, e largura L podemos definir um retângulo (conforme figura abaixo). O programa deve receber um outro ponto (a,b) e decidir se ele esta:
 - -dentro do retângulo
 - -fora do retângulo
 - -em alguma das linhas que definem o retângulo

Considerar que A e L serão sempre positivos.

5. Dados três valores de um suposto triangulo, decidir esses valores podem ou não ser um triangulo, e caso seja, decidir se é um triangulo retângulo ou não.

Dado que:

- Para ser triangulo a soma de dois lados sempre tem que ser maior que o outro (testar para todos os lados!)
- Para ser triangulo retângulo o maior lado elevado ao quadrado tem que ser igual a soma dos quadrados dos outros dois lados.