Instructions:

- (1) Only the key ideas count for scores, so write precise and concise answers.
- (2) Handwritten as well as typed up solutions are allowed for submission.
- (3) Answer ALL questions.
- A Let the functor $T: \mathbf{Set} \to \mathbf{Set}$ be defined on objects by $T(X) := \mathbb{Z} \times X$, and on morphisms by $T(f) := \mathbb{I}_{\mathbb{Z}} \times f$. Also define a natural transformations $\mu: TT \Rightarrow T$ whose component $\mu_X: TTX \to TX$ is given by $\mu_X(m, n, x) := (m+n, x)$, and yet another natural transformation $\eta: 1_{\mathbf{Set}} \Rightarrow T$ whose component $\eta_X: X \to TX$ is given by $\eta_X(x) := (0, x)$.

Max. marks: 10

[3]

- (a) Show that the triple $\mathbb{T} := (T, \mu, \eta)$ is a monad on **Set**.
- (b) Find an adjoint pair of functors $F \dashv G$, $F : \mathbf{Set} \hookrightarrow \mathcal{C} : G$, that induces this monad on \mathbf{Set} .
- B Without using any version of Beck's monadicity theorem, show that the inclusion of a reflective subcategory is a monadic functor. [5]

Assignment-8

A (a) Let $T: \mathbf{Set} \to \mathbf{Set}$ be defined by $T(X) = \mathbb{Z} \times X$. For a function $f: X \to Y$, $T(f) = 1_{\mathbb{Z}} \times f$. The natural transformations associated with T are $\mu: TT \Rightarrow T$ and $\eta: 1_{\mathbf{Set}} \Rightarrow T$, where:

$$\mu_X \colon T(T(X)) \to T(X)$$

is given by:

$$\mu_X(m, n, (p, q, x)) = (m + n + p, q, x),$$

and:

$$\eta_X \colon X \to T(X)$$

is given by:

$$\eta_X(x) = (0, x).$$

To verify that (T, μ, η) is a monad, we check the associativity and unit laws. Consider the associativity law:

$$\mu_X \circ T(\mu_X) = \mu_X \circ \mu_{T(X)}.$$

First, compute $T(\mu_X)$:

$$T(\mu_X)(m, n, (p, q, x)) = \mu_X(m, n, (p, q, x)) = (m + n + p, q, x).$$

Then:

$$\mu_X \circ T(\mu_X)(m, n, (p, q, x)) = \mu_X(m + n + p, q, x) = (m + n + p + q, x).$$

Next, compute $\mu_X \circ \mu_{T(X)}$:

$$\mu_{T(X)} \colon T(T(T(X))) \to T(T(X))$$

is given by:

$$\mu_{T(X)}(m, n, (p, q, (r, s, x))) = (m + n + p + r, q + s, x).$$

$$\mu_X \circ \mu_{T(X)}(m, n, (p, q, x)) = \mu_X(m + n + p, q, x) = (m + n + p + q, x).$$

Thus:

$$\mu_X \circ T(\mu_X) = \mu_X \circ \mu_{T(X)},$$

demonstrating associativity.

For the unit law:

$$\mu_X \circ T(\eta_X) = \mathrm{id}_{T(X)}.$$

Compute $T(\eta_X)$:

$$T(\eta_X)(x) = (0, x).$$

$$\mu_X \circ T(\eta_X)(x) = \mu_X(0, x) = (0, x).$$

Thus:

$$\mu_X \circ T(\eta_X) = \mathrm{id}_{T(X)},$$

verifying the unit law.

Therefore, (T, μ, η) is a monad on **Set**.

(b) Let $T: \mathbf{Set} \to \mathbf{Set}$ be the functor defined as $T(X) = \mathbb{Z} \times X$ for objects X and $T(f) = 1_{\mathbb{Z}} \times f$ for morphisms $f: X \to Y$. The natural transformations are $\eta_X: X \to \mathbb{Z} \times X$, where $\eta_X(x) = (0, x)$, and $\mu_X: \mathbb{Z} \times (\mathbb{Z} \times X) \to \mathbb{Z} \times X$, where $\mu_X(m, n, x) = (m + n, x)$.

The Eilenberg-Moore category \mathbf{Set}^T consists of objects (X, α) , where $X \in \mathbf{Set}$ and $\alpha : \mathbb{Z} \times X \to X$ satisfies

$$\alpha \circ \eta_X = \mathrm{id}_X \quad \text{(i.e., } \alpha(0,x) = x),$$

$$\alpha \circ (1_{\mathbb{Z}} \times \alpha) = \alpha \circ \mu_X \quad \text{(i.e., } \alpha(m,\alpha(n,x)) = \alpha(m+n,x)).$$

A morphism $f:(X,\alpha) \to (Y,\beta)$ satisfies $f \circ \alpha = \beta \circ (1_{\mathbb{Z}} \times f)$, meaning the following diagram commutes:

$$\begin{array}{ccc} \mathbb{Z} \times X & \xrightarrow{\alpha} & X \\ \downarrow 1_{\mathbb{Z}} \times f & & \downarrow f \\ \mathbb{Z} \times Y & \xrightarrow{\beta} & Y \end{array}$$

Define the left adjoint functor $F: \mathbf{Set} \to \mathbf{Set}^T$ by $F(X) = (\mathbb{Z} \times X, \mu_X)$, where $\mu_X(m, n, x) = (m+n, x)$. For a morphism $f: X \to Y$, define $F(f) = 1_{\mathbb{Z}} \times f: \mathbb{Z} \times X \to \mathbb{Z} \times Y$.

The right adjoint functor $G : \mathbf{Set}^T \to \mathbf{Set}$ maps a T-algebra (X, α) to its underlying set X, and for a morphism $f : (X, \alpha) \to (Y, \beta)$, define G(f) = f.

The monad T on **Set** is induced by the adjunction $F \dashv G$, where:

$$T(X) = G(F(X)) = G(\mathbb{Z} \times X, \mu_X) = \mathbb{Z} \times X,$$

$$\eta_X(x) = (0, x),$$

$$\mu_X(m, n, x) = (m + n, x).$$

To verify that $F \dashv G$ induces the monad T, we check the triangular identities. For the left triangular identity $G\epsilon F = 1_F$, where $\epsilon: FG \Rightarrow 1_{\mathbf{Set}^T}$ is the counit of the adjunction, we verify that applying F followed by G gives back the original algebra structure. Similarly, the right triangular identity $F\eta G = 1_G$, where $\eta: 1_{\mathbf{Set}} \Rightarrow GF$ is the unit of the adjunction, holds because applying G followed by F yields the identity.

Thus, the adjoint pair $F \dashv G$ induces the monad $T = (\mathbb{Z} \times (-), \mu, \eta)$.

Sol B An adjunction $F \dashv G : \mathcal{C} \leftrightarrows \mathcal{D}$ is called monadic if the Eilenberg–Moore comparison functor

$$K: \mathcal{D} \to \mathcal{C}^T$$

is part of an equivalence of categories, where T=GF is the monad on $\mathcal C$ induced by the adjunction, and $\mathcal C^T$ is the Eilenberg–Moore category of T-algebras. The functor K sends an object $d\in\mathcal D$ to the T-algebra in $\mathcal C^T$ associated to G(d), i.e.,

$$K(d) = (G(d), G(\epsilon_d) : T(G(d)) \rightarrow G(d)),$$

where $\epsilon_d : FG(d) \to d$ is the counit of the adjunction.

Now, consider the reflective subcategory situation. Let $\mathcal{A} \subseteq \mathcal{B}$ be a reflective subcategory, which means that there is an adjunction

$$L \dashv i : \mathcal{B} \leftrightarrows \mathcal{A},$$

where $L: \mathcal{B} \to \mathcal{A}$ is the left adjoint (the reflector), and $i: \mathcal{A} \to \mathcal{B}$ is the right adjoint (the inclusion functor). The goal is to show that this adjunction is monadic. For this, we need to show that the comparison functor

$$K: \mathcal{A} \to \mathcal{B}^T$$

is an equivalence of categories, where T = iL is the monad on \mathcal{B} induced by the adjunction $L \dashv i$.

The monad $T: \mathcal{B} \to \mathcal{B}$ is given by T = iL. The unit of the monad is the unit of the adjunction $L \dashv i$, denoted by $\eta_B: B \to iL(B)$ for each $B \in \mathcal{B}$, and the multiplication of the monad T comes from the counit of the adjunction, $\mu_B: iL(iL(B)) \to iL(B)$.

The Eilenberg–Moore comparison functor $K: \mathcal{A} \to \mathcal{B}^T$ sends each object $A \in \mathcal{A}$ to a T-algebra in \mathcal{B}^T . Specifically, for each $A \in \mathcal{A}$, $K(A) = (A, \theta_A)$, where the structure map $\theta_A : T(A) = iL(A) \to A$ is an isomorphism because A is in the reflective subcategory \mathcal{A} , meaning that L(A) = A and $iL(A) \cong A$.

To show that the adjunction is monadic, we need to show that $K: \mathcal{A} \to \mathcal{B}^T$ is an equivalence of categories. This can be done by verifying two things: (1) The functor K is fully faithful because for any two objects $A, A' \in \mathcal{A}$, there is a natural isomorphism $\mathcal{A}(A, A') \cong \mathcal{B}(i(A), i(A'))$. Since $\mathcal{A} \subseteq \mathcal{B}$, this is a natural identification of hom-sets. (2) Every T-algebra $(B, \theta_B) \in \mathcal{B}^T$ is isomorphic to some object in \mathcal{A} . Specifically, for each T-algebra (B, θ_B) , the object $L(B) \in \mathcal{A}$ is such that $iL(B) \cong B$ as T-algebras. Thus, every object in \mathcal{B}^T arises from some object in \mathcal{A} .

Since K is fully faithful and essentially surjective, it follows that K is an equivalence of categories. Therefore, the adjunction $L \dashv i$ is monadic.

More generally, a functor $G:\mathcal{D}\to\mathcal{C}$ is called monadic if it has a left adjoint $F:\mathcal{C}\to\mathcal{D}$ such that the adjunction $F\dashv G$ is monadic. That is, the comparison functor

$$K:\mathcal{D} \to \mathcal{C}^T$$

is an equivalence of categories, where T = GF is the monad induced by the adjunction.

Using this definition of monadicity, the inclusion functor $i:\mathcal{A}\to\mathcal{B}$ in a reflective subcategory is monadic because the comparison functor $K:\mathcal{A}\to\mathcal{B}^T$ is an equivalence of categories. Thus, the adjunction $L\dashv i$ is monadic.

Instructions:

- (1) Only the key ideas count for scores, so write precise and concise answers.
- (2) Handwritten as well as typed up solutions are allowed for submission.
- (3) Answer ALL questions.
- A Suppose (L, \leq) is the linear poset with 3 elements, where $L := \{0, 1, 2\}$ with 0 < 1 < 2, through of as a category. Define a bifunctor $\otimes : L \times L \to L$ by $a \otimes b := \min\{a, b\}$. Show that $((L, \leq), \otimes, 2)$ is a monoidal category. [3]

The a bifunctor $\otimes : L \times L \to L$ by $a \otimes b := \min\{a, b\}$. Show that $((L, \leq), \otimes, 2)$ is a monoidal category. Is this monoidal structure symmetric?

Is this monoidal structure closed?

[1]

Max. marks: 10

- B An abelian group A is said to be a torsion abelian group if for any $a \in A$ there is a positive integer n such that na = 0. Show that the full subcategory **TorAb** of **Ab** consisting of torsion abelian groups is an abelian category. You may use that **Ab** is an abelian category. [3]
- C Are the following categories abelian? Justify briefly.

[1 each]

[1]

- (a) **Gr**-the category of groups and group homomorphisms
- (b) Ring—the category of unital rings and unit-preserving morphisms

Sol A

We are given the poset $L = \{0,1,2\}$ with 0 < 1 < 2, viewed as a category, and a bifunctor \otimes : $L \times L \to L$ defined by $a \otimes b = \min\{a,b\}$. We aim to show that $((L, \leq), \otimes, 2)$ forms a monoidal category. A monoidal category consists of:

- a category C,
- a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,
- an object *I* (the unit object),
- a natural isomorphism α (the associator) with components $\alpha_{A,B,C}: A \otimes (B \otimes C) \to (A \otimes B) \otimes C$,
- a natural isomorphism λ (the left unitor) with components $\lambda_A: I \otimes A \to A$,
- a natural isomorphism ρ (the right unitor) with components $\rho_A : A \otimes I \to A$.

First, we verify that $L = \{0,1,2\}$ forms a category. The objects of L are $\{0,1,2\}$, and there is a morphism $a \to b$ if and only if $a \le b$. Each element has an identity morphism, and morphisms compose correctly: if $a \le b$ and $b \le c$, then $a \le c$. Thus, L is a category.

The bifunctor $\otimes : L \times L \to L$ is defined by $a \otimes b = \min\{a, b\}$. It respects morphisms: if $a \leq a'$ and $b \leq b'$, then $\min(a, b) \leq \min(a', b')$, which means \otimes is a valid bifunctor.

Next, we show that $2 \in L$ acts as the unit object. For any $a \in L$, we have:

$$a \otimes 2 = \min(a, 2) = a$$
 and $2 \otimes a = \min(2, a) = a$,

so 2 behaves as the unit object with respect to \otimes .

Now, we define the associator $\alpha_{A,B,C}: A \otimes (B \otimes C) \to (A \otimes B) \otimes C$. Using the definition of \otimes as min, we compute:

$$A \otimes (B \otimes C) = \min(A, \min(B, C)) = \min(A, B, C),$$

and

$$(A \otimes B) \otimes C = \min(\min(A, B), C) = \min(A, B, C).$$

Thus, $\alpha_{A,B,C}$ is the identity isomorphism for all $A,B,C \in L$.

Similarly, we define the left unitor $\lambda_A : 2 \otimes A \to A$ and the right unitor $\rho_A : A \otimes 2 \to A$. Both λ_A and ρ_A are identity isomorphisms since:

$$2 \otimes A = \min(2, A) = A$$
 and $A \otimes 2 = \min(A, 2) = A$.

Thus, the unit object 2, the bifunctor \otimes , and the associator α , left unitor λ , and right unitor ρ satisfy the conditions required for a monoidal category. Therefore, $((L, \leq), \otimes, 2)$ is a monoidal category.

First, we check whether the monoidal structure $((L, \leq), \otimes, 2)$ is symmetric. In a symmetric monoidal category, there must exist a natural isomorphism $\gamma_{A,B}: A\otimes B\to B\otimes A$ for every pair of objects A,B such that $\gamma_{A,B}\circ\gamma_{B,A}=\mathrm{id}_{A\otimes B}$.

In the case of $((L, \leq), \otimes, 2)$, the bifunctor \otimes is defined by $a \otimes b = \min(a, b)$. Since $\min(a, b) = \min(b, a)$, it follows that:

$$a \otimes b = b \otimes a$$

for all $a, b \in L$. Therefore, the braiding $\gamma_{A,B}$ is simply the identity map. Clearly, $\gamma_{A,B} \circ \gamma_{B,A} = \mathrm{id}_{A \otimes B}$, as both maps are the identity. Thus, the monoidal structure is symmetric.

Next, we check whether the monoidal structure is closed. In a closed monoidal category, for every object A, the functor $A \otimes -: \mathcal{C} \to \mathcal{C}$ has a right adjoint, called the internal hom or exponential, denoted [A, -]. This means that for all objects $A, B, C \in \mathcal{C}$, there must be a natural isomorphism:

$$\operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(B, [A, C]).$$

For the poset $((L, \leq), \otimes, 2)$, where \otimes is the minimum function $\min(a, b)$, the hom-sets correspond to the inequality $a \leq b$. Thus:

$$\operatorname{Hom}(A \otimes B, C) = \operatorname{Hom}(\min(A, B), C) = (\min(A, B) \leq C).$$

For $A \otimes -$ to have a right adjoint, there must exist an object [A, C] such that:

$$\operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(B, [A, C]).$$

This implies that [A, C] must satisfy:

$$(\min(A, B) \le C) \cong (B \le [A, C]).$$

However, in the poset $L = \{0,1,2\}$, there is no object [A,C] that consistently satisfies this adjunction property for all A, B, C. For example, if A = 1 and C = 1, no single object [A,C] can satisfy the required isomorphism for all B. Thus, $((L, \leq), \otimes, 2)$ does not have internal hom objects, meaning the monoidal structure is not closed.

Sol B

Let **TorAb** be the full subcategory of **Ab**, the category of abelian groups, consisting of torsion abelian groups. A group G is called torsion if for every element $g \in G$, there exists a positive integer n such that $n \cdot g = 0$. We will show that **TorAb** satisfies the four axioms of an abelian category:

A zero object in a category is both initial and terminal. In **Ab**, the zero abelian group 0 is both the initial and terminal object. Since 0 is a torsion group (as every element satisfies $n \cdot 0 = 0$), it belongs to **TorAb**. Hence, **TorAb** has a zero object.

Let $f : G \to H$ be a morphism in **TorAb**, where G and H are torsion abelian groups. The kernel of f in **Ab** is the subgroup

$$\ker(f) = \{ g \in G \mid f(g) = 0 \}.$$

Since *G* is a torsion group, every element of $\ker(f) \subseteq G$ is also torsion, meaning $\ker(f)$ is a torsion group. Hence, $\ker(f) \in \mathbf{TorAb}$.

The cokernel of f in \mathbf{Ab} is the quotient group

$$coker(f) = H/f(G),$$

where f(G) is the image of f in H. Since H is a torsion group, every element of H has finite order, and the quotient H/f(G) consists of elements with finite order as well. Thus, $\operatorname{coker}(f) \in \operatorname{TorAb}$.

A sequence of morphisms $G \xrightarrow{f} H \xrightarrow{g} K$ in a category is exact at H if $\ker(g) = \operatorname{im}(f)$. Since **TorAb** is a full subcategory of **Ab**, it inherits exact sequences from **Ab**. That is, if $G \to H \to K$ is an exact sequence in **Ab** and $G, H, K \in \operatorname{TorAb}$, then the sequence is exact in **TorAb**. Therefore, **TorAb** is an exact subcategory of **Ab**.

In an abelian category, the product and coproduct of any two objects must coincide, i.e., it must have biproducts. In **Ab**, the biproduct of two abelian groups G and H is their direct sum $G \oplus H$. Since the direct sum of two torsion abelian groups is again a torsion abelian group (i.e., every element of $G \oplus H$ has finite order), **TorAb** is closed under direct sums. Hence, **TorAb** has biproducts, as required in an abelian category.

Sol C

- (a) The category **Gr** is **not abelian**. Although it has a zero object (the trivial group $\{e\}$) and kernels, it lacks cokernels and biproducts, as products and coproducts do not coincide.
- **(b)** The category **Ring** is **not abelian**. There is no zero object since the terminal object is 0 and the initial object is **Z**. Additionally, products and coproducts do not coincide, and the category is not additive.

Instructions:

- (1) Only the key ideas count for scores, so write precise and concise answers.
- (2) Handwritten as well as typed up solutions are allowed for submission.
- (3) Answer ALL questions. A Given an abelian category \mathcal{A} and $n \in \mathbb{Z}$, show with justification that
 - (a) $H_n: \mathrm{Ch}_{\bullet}(\mathcal{A}) \to \widetilde{\mathcal{A}}$ is a functor; [4]

Max. marks: 10

- (a) $H_n: \mathsf{Ch}_{\bullet}(\mathcal{A}) \to \mathcal{A}$ is essentially surjective. [1]
- B Show exactness of the sequence $K_1 \to K_2 \to K_3 \to Q_1 \to Q_2 \to Q_3$ obtained from the Snake lemma at K_3 . You may freely use diagram chasing, thanks to the Freyd-Mitchell embedding theorem. [5]

Sol A Let A be an abelian category, and consider the homology functor

$$H_n: \mathrm{Ch}_{\bullet}(\mathcal{A}) \to \mathcal{A}$$

for each $n \in \mathbb{Z}$.

Given a chain map $f_{\bullet}: (C_{\bullet}, d_{\bullet}^C) \to (D_{\bullet}, d_{\bullet}^D)$, the map induced on homology is defined as:

$$H_n(f_{\bullet}): H_n(C_{\bullet}) \to H_n(D_{\bullet}),$$

where $H_n(f_{\bullet})(\operatorname{cls}(z_n)) = \operatorname{cls}(f_n(z_n))$ for an n-cycle $z_n \in Z_n(C_{\bullet})$, and $\operatorname{cls}(z_n)$ is the equivalence class of z_n in homology.

Let z_n be an n-cycle, so $d_n^C z_n = 0$. Since f_{\bullet} is a chain map, we have:

$$d_n^D f_n(z_n) = f_{n-1}(d_n^C z_n) = f_{n-1}(0) = 0,$$

which shows that $f_n(z_n)$ is also an *n*-cycle in D_{\bullet} . Hence, $H_n(f_{\bullet})$ maps cycles to cycles.

Now, suppose that z_n and z_n' are homologous, i.e., $z_n - z_n' \in \operatorname{im}(d_{n+1}^C)$, so $z_n - z_n' = d_{n+1}^C(c_{n+1})$ for some $c_{n+1} \in C_{n+1}$. Applying f_{\bullet} , we get:

$$f_n(z_n) - f_n(z'_n) = f_n(d_{n+1}^{C}(c_{n+1})) = d_{n+1}^{D}(f_{n+1}(c_{n+1})),$$

which shows that $f_n(z_n)$ and $f_n(z_n')$ are homologous in D_{\bullet} . Therefore, $H_n(f_{\bullet})(\mathrm{cls}(z_n)) = H_n(f_{\bullet})(\mathrm{cls}(z_n'))$, and $H_n(f_{\bullet})$ is well-defined.

1. Identity morphism: For the identity chain map $id_{C_{\bullet}}$, we have:

$$H_n(\mathrm{id}_{C_\bullet})(\mathrm{cls}(z_n)) = \mathrm{cls}(\mathrm{id}_{C_n}(z_n)) = \mathrm{cls}(z_n),$$

showing that $H_n(\mathrm{id}_{C_{\bullet}})=\mathrm{id}_{H_n(C_{\bullet})}$. 2. Composition of chain maps: Let $f_{\bullet}:C_{\bullet}\to D_{\bullet}$ and $g_{\bullet}:D_{\bullet}\to E_{\bullet}$ be two chain maps. The composition of these maps is $(g_{\bullet}\circ f_{\bullet})$, and for any n-cycle $z_n\in Z_n(C_{\bullet})$, we have:

$$H_n(g_{\bullet} \circ f_{\bullet})(\operatorname{cls}(z_n)) = \operatorname{cls}((g_n \circ f_n)(z_n)) = \operatorname{cls}(g_n(f_n(z_n))).$$

This is equal to:

$$H_n(g_{\bullet})(\operatorname{cls}(f_n(z_n))) = H_n(g_{\bullet})(H_n(f_{\bullet})(\operatorname{cls}(z_n))),$$

which shows that:

$$H_n(g_{\bullet} \circ f_{\bullet}) = H_n(g_{\bullet}) \circ H_n(f_{\bullet}).$$

Thus, H_n is a functor from $Ch_{\bullet}(A)$ to A.

Let \mathcal{A} be an abelian category, and consider the category of chain complexes over \mathcal{A} , denoted by $Ch_{\bullet}(A)$. The *n*-th homology functor is defined as

$$H_n: \mathrm{Ch}_{\bullet}(\mathcal{A}) \to \mathcal{A}$$

where for any chain complex C_{\bullet} , the *n*-th homology is given by

$$H_n(C_{\bullet}) = \frac{\ker(d_n : C_n \to C_{n-1})}{\operatorname{im}(d_{n+1} : C_{n+1} \to C_n)}.$$

We seek to prove that the homology functor H_n is essentially surjective, meaning that for any object $A \in \mathcal{A}$, there exists a chain complex $C_{\bullet} \in \operatorname{Ch}_{\bullet}(\mathcal{A})$ such that $H_n(C_{\bullet}) \cong A$.

Given an object $A \in \mathcal{A}$, construct a chain complex C_{\bullet} as follows:

$$C_m = \begin{cases} A & \text{if } m = n, \\ 0 & \text{if } m \neq n, n - 1. \end{cases}$$

Define the differentials $d_n : C_n \to C_{n-1}$ and $d_{n+1} : C_{n+1} \to C_n$ to be zero. Explicitly, the complex is:

$$C_{\bullet} = \cdots \rightarrow 0 \rightarrow A \xrightarrow{0} 0 \rightarrow \cdots$$

where A is concentrated in degree n.

Now, compute the homology of this chain complex at each degree. For degree n,

$$H_n(C_{\bullet}) = \frac{\ker(d_n : C_n \to C_{n-1})}{\operatorname{im}(d_{n+1} : C_{n+1} \to C_n)} = \frac{\ker(0 : A \to 0)}{\operatorname{im}(0 : 0 \to A)} = \frac{A}{0} \cong A.$$

For $m \neq n$, either $C_m = 0$ or the differentials involved are zero, so the homology is

$$H_m(C_{\bullet})=0.$$

Thus, for any object $A \in \mathcal{A}$, we have constructed a chain complex C_{\bullet} such that $H_n(C_{\bullet}) \cong A$ and $H_m(C_{\bullet}) = 0$ for $m \neq n$. Therefore, the homology functor $H_n : \operatorname{Ch}_{\bullet}(\mathcal{A}) \to \mathcal{A}$ is essentially surjective.

Sol B

$$\ker(u_1) \xrightarrow{\overline{f_1}} \ker(u_2) \xrightarrow{\overline{f_2}} \ker(u_3) \xrightarrow{\int_{i_1}} \underbrace{\int_{i_2} \int_{i_3} \int_{i_3}}_{M_1} \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{\delta} 0$$

$$0 \xrightarrow{\downarrow u_1} \underbrace{\int_{u_2} \int_{u_2} \int_{u_3} \int_{\delta}}_{W_1} \underbrace{\int_{u_2} \int_{u_3} \int_{\delta}}_{W_2} \times \int_{u_3} \underbrace{\int_{u_3} \int_{\delta}}_{W_3} \times \operatorname{coker}(u_1) \xrightarrow{\overline{g_1}} \operatorname{coker}(u_2) \xrightarrow{\overline{g_2}} \operatorname{coker}(u_3)$$

We aim to show the exactness of the sequence:

$$\ker(u_1) \to \ker(u_2) \to \ker(u_3) \to \operatorname{coker}(u_1) \to \operatorname{coker}(u_2) \to \operatorname{coker}(u_3)$$

obtained from the Snake Lemma at $ker(u_3)$. We proceed with the proof.

We first consider the part of the sequence:

$$\ker(u_2) \xrightarrow{\overline{f_2}} \ker(u_3) \xrightarrow{\delta} \operatorname{coker}(u_1).$$

Clearly, $\operatorname{im}(\overline{f_2}) \subseteq \ker(\delta)$. For any $x_3 \in \operatorname{im}(\overline{f_2})$, there exists a preimage $x_2 \in \ker(u_2)$. Since $u_2(x_2) = 0$, we have $\delta(x_3) = 0$. Therefore, $\operatorname{im}(\overline{f_2}) \subseteq \ker(\delta)$.

Conversely, suppose $x_3 \in \ker(\delta)$. Let $x_2 \in K_2$ be a preimage of x_3 , and let $y_1 \in Q_1$ be a preimage of $u_2(x_2)$. Since $x_3 \in \ker(\delta)$, we have $y_1 \in \operatorname{im}(u_1)$, meaning there exists a preimage $x_1 \in K_1$ such that $u_1(x_1) = y_1$. Writing

$$u_2(f_1(x_1)) = u_1(x_1) = y_1 = u_2(x_2),$$

we obtain $x_2 - f_1(x_1) \in \ker(u_2)$. Therefore,

$$x_3 = f_2(x_2) = f_2(x_2 - f_1(x_1)) \in \operatorname{im}(\overline{f_2}),$$

and hence $\ker(\delta) \subseteq \operatorname{im}(\overline{f_2})$.

Thus, the sequence is exact at $ker(u_3)$:

$$\ker(u_2) \xrightarrow{f_2} \ker(u_3) \xrightarrow{\delta} \operatorname{coker}(u_1).$$

Now, consider the sequence:

$$\ker(u_3) \xrightarrow{\delta} \operatorname{coker}(u_1) \xrightarrow{\overline{g_1}} \operatorname{coker}(u_2).$$

We first show that $\operatorname{im}(\delta) \subseteq \ker(\overline{g_1})$. Take an element $x_3 \in \ker(u_3)$, and let $x_2 \in K_2$ be a preimage of x_3 , and $y_1 \in Q_1$ be a preimage of $u_2(x_2)$ under $\overline{g_1}$. Then y_1 is a representative of $\delta(x_3)$, and since $\overline{g_1}(y_1) = u_2(x_2) \in \operatorname{im}(u_2)$, we conclude that

$$\overline{g_1}(\delta(x_3)) = 0$$
,

so im(δ) \subseteq ker($\overline{g_1}$).

Conversely, take an element $y_1 \in \ker(\overline{g_1})$. Then $\overline{g_1}(y_1) \in \operatorname{im}(u_2)$, meaning there is a preimage $x_2 \in K_2$ of $\overline{g_1}(y_1)$. Using the equation $u_3(f_2(x_2)) = g_2(u_2(x_2)) = g_2(\overline{g_1}(y_1)) = 0$ (due to the exactness of the original sequence), we conclude that $x_3 := f_2(x_2) \in \ker(u_3)$. Thus, from the construction of x_3 , we have $\delta(x_3) = y_1$, and therefore $\ker(\overline{g_1}) \subseteq \operatorname{im}(\delta)$.

Hence, the sequence is exact at $coker(u_1)$:

$$\ker(u_3) \xrightarrow{\delta} \operatorname{coker}(u_1) \xrightarrow{\overline{g_1}} \operatorname{coker}(u_2).$$

In conclusion, the sequence

$$\ker(u_1) \to \ker(u_2) \to \ker(u_3) \to \operatorname{coker}(u_1) \to \operatorname{coker}(u_2) \to \operatorname{coker}(u_3)$$

is exact at both $ker(u_3)$ and $coker(u_1)$, as required by the Snake Lemma.

Instructions:

epimorphism.

- (1) Only the key ideas count for scores, so write precise and concise answers.
- (2) Handwritten as well as typed up solutions are allowed for submission.
- (3) Answer ALL questions. Max. marks: 10
 A Suppose P, Q, R are objects of an abelian category satisfying P ⊕ Q ≅ R. Show that R is projective if and only if P and Q are projective. [2]
 B Show that the pullback of an epimorphism along any morphism in Sets is again an epimorphism. [2]
 Say that an object P of a (not-necessarily-abelian) category C is projective if C(P, −) preserves epimorphisms. Show that every object of the category Sets is projective if and only if the axiom of choice holds. You may use question B above. [1]
 D Verify in Set that a monomorphism m has the left lifting property with respect to any epimorphism e. [2]
 If f is a morphism in Sets that has the left lifting property with respect to all epimorphisms, then show that f is a monomorphism. [2]

Show that any morphism f in **Sets** can be factorised as f = em, where m is a monomorphism and e is an

[1]

Sol A

Let P, Q, and R be objects of an abelian category \mathcal{A} such that $P \oplus Q \cong R$. We aim to show that R is projective if and only if both P and Q are projective.

Assume first that R is projective. By definition, this means that the functor $\operatorname{Hom}_{\mathcal{A}}(R,-)$ is exact. We consider the natural isomorphism:

$$\operatorname{Hom}_{\mathcal{A}}(A,R) \cong \operatorname{Hom}_{\mathcal{A}}(A,P \oplus Q) \cong \operatorname{Hom}_{\mathcal{A}}(A,P) \oplus \operatorname{Hom}_{\mathcal{A}}(A,Q)$$

for any object A in \mathcal{A} . Since R is projective, $\operatorname{Hom}_{\mathcal{A}}(R,-)$ being exact implies that the induced sequence

$$0 \to \operatorname{Hom}_{\mathcal{A}}(A, P) \to \operatorname{Hom}_{\mathcal{A}}(A, R) \to \operatorname{Hom}_{\mathcal{A}}(A, Q)$$

is exact. Consequently, $\operatorname{Hom}_{\mathcal{A}}(P,-)$ and $\operatorname{Hom}_{\mathcal{A}}(Q,-)$ must also be exact, which shows that P and Q are projective.

Now assume that both P and Q are projective. By the definition of projectivity, $\operatorname{Hom}_{\mathcal{A}}(P,-)$ and $\operatorname{Hom}_{\mathcal{A}}(Q,-)$ are exact functors. We again utilize the natural isomorphism:

$$\operatorname{Hom}_{\mathcal{A}}(A,R) \cong \operatorname{Hom}_{\mathcal{A}}(A,P \oplus Q) \cong \operatorname{Hom}_{\mathcal{A}}(A,P) \oplus \operatorname{Hom}_{\mathcal{A}}(A,Q)$$

The exactness of $\operatorname{Hom}_{\mathcal{A}}(P,-)$ and $\operatorname{Hom}_{\mathcal{A}}(Q,-)$ implies that the functor $\operatorname{Hom}_{\mathcal{A}}(R,-)$ is exact as well, given that the direct sum of exact functors is exact.

Thus, R is projective.

We have shown that R is projective if and only if both P and Q are projective. This completes the proof.

Sol B

Let $f: A \to B$ be a regular epimorphism in **Set**, which means that f is surjective. Let $g: C \to B$ be any morphism in **Set**. Consider the pullback diagram:

$$\begin{array}{ccc}
P & \xrightarrow{\pi_1} & A \\
\downarrow \pi_2 & & \downarrow f \\
C & \xrightarrow{g} & B
\end{array}$$

where $P = \{(a,c) \in A \times C \mid f(a) = g(c)\}$, and the projection maps are $\pi_1 : P \to A$ and $\pi_2 : P \to C$.

We want to show that the map $\pi_1: P \to A$ is a regular epimorphism, i.e., that π_1 is surjective. Take any $a \in A$. Since f is surjective, there exists $b \in B$ such that f(a) = b.

Now, consider the function $g:C\to B$. By the definition of g, there exists some $c\in C$ such that g(c)=b=f(a). Therefore, the pair $(a,c)\in P$ satisfies f(a)=g(c), and hence $\pi_1(a,c)=a$.

Thus, for every $a \in A$, there exists a pair $(a, c) \in P$ such that $\pi_1(a, c) = a$. This shows that π_1 is surjective, and since in **Set**, regular epimorphisms are precisely the surjections, π_1 is a regular epimorphism.

Sol C

Axiom 1. Let R be an equivalence relation on a set X. Then there is a set X/R, and a function $q: X \to X/R$ with the following properties:

- $I. (x, y) \in R \iff q(x) = q(y),$
- 2. For any set Y and function $f: X \to Y$ that is constant on equivalence classes (i.e., f(x) = f(y) whenever $(x, y) \in R$), there exists a unique function $g: X/R \to Y$ such that $f = g \circ q$.

The function q is called the coequalizer of the projections p_0 , $p_1 : R \to X$, where $p_0(x, y) = x$ and $p_1(x, y) = y$.

Now we will show "Every object in **Sets** is projective if and only if the Axiom of Choice holds" using the axiom above.

Proof. Let $f: X \to Y$ be an epimorphism, and let $g: S \to Y$ be any function.

Suppose every set is projective. Let $f: X \to Y$ be a surjection, and consider the kernel pair of f, $p_0, p_1: X \times_Y X \to X$, where:

$$p_0(x_1, x_2) = x_1, \quad p_1(x_1, x_2) = x_2,$$

with $X \times_Y X = \{(x_1, x_2) \in X \times X \mid f(x_1) = f(x_2)\}$. This is an equivalence relation on X. By Axiom 1, the coequalizer of p_0 and p_1 exists. Let $q: X \to X/R$ be this coequalizer, so:

$$q \circ p_0 = q \circ p_1$$
.

Since f is an epimorphism, f coequalizes p_0 and p_1 , which implies there is a unique map m: $X/R \to Y$ such that:

$$f = m \circ q$$
.

Now, suppose every object in **Sets** is projective. In particular, S is projective. Since $m: X/R \to Y$ is a surjection and $g: S \to Y$ is a function, the projectivity of S ensures there exists a map $h': S \to X/R$ such that:

$$m \circ h' = g$$
.

Define $h = q \circ h'$. Then:

$$f \circ h = m \circ q \circ h' = g.$$

Thus, we have lifted g to a function $h: S \to X$, showing that S is projective. This holds for any set S.

Now, we show that the Axiom of Choice holds. Consider a family of non-empty sets $\{A_i\}_{i\in I}$. Let $X = \coprod_{i\in I} A_i$, and define a surjection $f: X \to I$ by sending each element of A_i to i. Since I is projective by assumption, there exists a map $b: I \to X$ such that:

$$f \circ h = \mathrm{id}_I$$
.

This map b selects an element from each set A_i , giving a choice function, and thus, the Axiom of Choice holds.

Conversely, suppose the Axiom of Choice holds. We now show that every set is projective.

Let S be any set, and let $f: X \to Y$ be a surjection. We are given a map $g: S \to Y$ and aim to find a map $h: S \to X$ such that:

$$f \circ b = \varrho$$
.

Define the kernel pair of f, p_0 , $p_1: X \times_Y X \to X$, as before. By Axiom 1, there exists a coequalizer $q: X \to X/R$ that coequalizes p_0 and p_1 . Since f coequalizes p_0 and p_1 , there is a unique function $m: X/R \to Y$ such that:

$$f = m \circ q$$
.

Now, by the Axiom of Choice, for each $s \in S$, there exists an element $x_s \in X$ such that $f(x_s) = g(s)$. Define a function $b: S \to X$ by selecting such an x_s for each s. Then:

$$f \circ h(s) = g(s),$$

so S is projective.

Thus, every set in **Sets** is projective if and only if the Axiom of Choice holds.

Sol D

Let **Set** denote the category of sets and functions. We aim to show that any monomorphism $m: A \to B$ in **Set** has the left lifting property with respect to any epimorphism $e: X \to Y$.

First, recall that a weak factorization system (E, M) on a category C consists of two classes of morphisms, E and M, such that: I. Any morphism in E has the left lifting property with respect to any morphism in M. 2. Every morphism $f: C \to D$ in C can be factored as $f = m \circ e$, where $e \in E$ and $m \in M$.

In **Set**, there is a standard weak factorization system (E, M), where: - E is the class of epimorphisms (surjections), - M is the class of monomorphisms (injections).

For any function $f: X \to Y$ in **Set**, we can always factor f as:

$$f = m \circ e$$

where $e: X \to \operatorname{Im}(f)$ is a surjection (epimorphism) onto the image of f, and $m: \operatorname{Im}(f) \to Y$ is an injection (monomorphism).

Next, we show that every monomorphism $m \in M$ has the left lifting property with respect to any epimorphism $e \in E$. This means that given any commutative square:

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
\downarrow^{m} & & \downarrow^{e} \\
B & \xrightarrow{g} & Y
\end{array}$$

where $m \in M$ is a monomorphism and $e \in E$ is an epimorphism, there must exist a function $b: B \to X$ such that:

$$h \circ m = f$$
 and $e \circ h = g$.

We now proceed to prove this property in detail.

Since $e: X \to Y$ is surjective, for each $b \in B$, we know that there exists at least one $x_b \in X$ such that $e(x_b) = g(b)$. Therefore, we can define a function $b: B \to X$ by choosing for each $b \in B$ a corresponding element $x_b \in X$ such that $e(x_b) = g(b)$.

This choice ensures that $e \circ h = g$, so the right side of the lifting condition is satisfied. It remains to check that $h \circ m = f$.

Since $m:A\to B$ is injective, for any element $a\in A$, the element $m(a)\in B$ has a unique corresponding $x_{m(a)}\in X$ such that $e(x_{m(a)})=g(m(a))$. However, by commutativity of the original square, we have:

$$g \circ m = e \circ f$$
.

Thus, for each $a \in A$, we get:

$$e(x_{m(a)}) = g(m(a)) = e(f(a)).$$

Since e is an epimorphism (surjective), this implies $x_{m(a)} = f(a)$. Therefore, h(m(a)) = f(a), which gives $h \circ m = f$, completing the left side of the lifting condition.

Hence, there exists a function $h: B \to X$ such that:

$$h \circ m = f$$
 and $e \circ h = g$,

which verifies that m has the left lifting property with respect to e.

Thus, we have shown that in the category **Set**, every monomorphism has the left lifting property with respect to every epimorphism, as required.

Let $f: A \to B$ be a morphism in the category **Set** that has the *left lifting property* (LLP) with respect to all epimorphisms. We aim to show that f is a monomorphism, i.e., for any pair of functions $g_1, g_2: X \to A$, if $f \circ g_1 = f \circ g_2$, then $g_1 = g_2$.

Given $f: A \to B$, suppose there are two functions $g_1, g_2: X \to A$ such that:

$$f \circ g_1 = f \circ g_2$$
.

We want to show that $g_1 = g_2$.

Consider the function $b: X \to X$ defined by:

$$h(x) = \begin{cases} g_1(x) & \text{if } g_1(x) = g_2(x), \\ a & \text{if } g_1(x) \neq g_2(x), \end{cases}$$

where $a \in A$ is some arbitrary element. Define the function $e : X \coprod \{*\} \to X$, which is the projection map that maps the disjoint union $X \coprod \{*\}$ onto X, i.e.,

$$e(x) = x$$
 for all $x \in X$, and $e(*) = x_0$ for some $x_0 \in X$.

This map *e* is clearly an epimorphism (surjective). Consider the following commutative diagram:

$$X \xrightarrow{g_1} A$$

$$id_X \downarrow \qquad \qquad \downarrow f$$

$$X \xrightarrow{f \circ g_1} B$$

Since f has the left lifting property with respect to all epimorphisms, there exists a map $k: X \coprod \{*\} \to A$ such that the following diagram commutes:

$$X \coprod \{*\} \xrightarrow{k} A$$

$$\downarrow f$$

$$X \xrightarrow{f \circ g_1} B$$

Thus, we have $f(k(x)) = f(g_1(x))$ for all $x \in X$. Since f is a function, and we assumed that $f \circ g_1 = f \circ g_2$, this forces $k(x) = g_1(x) = g_2(x)$. Hence, $g_1 = g_2$, showing that f is injective. Thus, f is a monomorphism.

Let $f: A \to B$ be a morphism in the category **Set**. We aim to factor f as $f = e \circ m$, where m is a monomorphism (injection) and e is an epimorphism (surjection).

First, we define the image of f, denoted as Im(f). The image of f is the set:

$$Im(f) = \{ f(a) \mid a \in A \} \subseteq B.$$

Since f maps elements from A into B, the image is a subset of B.

Next, we define two functions: I. The epimorphism $e:A\to \operatorname{Im}(f)$ given by e(a)=f(a) for all $a\in A$. 2. The monomorphism $m:\operatorname{Im}(f)\to B$ which is the inclusion map, defined by:

$$m(b) = b$$
 for all $b \in \text{Im}(f)$.

Now, we need to check the properties of e and m: - The map e is surjective because for every element $b \in \text{Im}(f)$, there exists an element $a \in A$ such that e(a) = f(a) = b. Therefore, e is an epimorphism.

- The map m is injective because if $m(b_1) = m(b_2)$ for some $b_1, b_2 \in \text{Im}(f)$, then $b_1 = b_2$. Therefore, m is a monomorphism.

Now we can express f as follows:

$$f(a) = m(e(a))$$
 for all $a \in A$.

This shows that:

$$f = m \circ e$$
.

Thus, we have factored f as $f = e \circ m$, where m is a monomorphism and e is an epimorphism.

Instructions:

(3) Answer ALL questions.

- (1) Only the key ideas count for scores, so write precise and concise answers.
- (2) Handwritten as well as typed up solutions are allowed for submission.
- A Suppose \mathcal{E} is an elementary topos and A is an object of \mathcal{E} . Show the following:
 - (a) \mathcal{E} is a well-powered category.
 - [1] (b) $A^0 \cong 1$. [1]

Max. marks: 10

- B Show the following for sets A, B_1, B_2 :
 - (a) $A^{B_1 \times B_2} \cong (A^{B_1})^{B_2}$. [2]
 - (b) $A^{B_1+B_2} \cong A^{B_1} \times A^{B_2}$. [2]
- C For an object F of $\mathcal{E} := [2, \mathbf{Sets}]$, where 2 is the discrete category with only two objects, say a, b, show that $\mathbf{Sub}_{\mathcal{E}}(F)$ is in bijective correspondence with $P(F(a)) \times P(F(b))$, where P(X) is the power set of X. Hence find a subobject classifier for \mathcal{E} with justification.
- D Suppose S_1, S_2 are sieves on an object C of a small category C. Show that $S_1 \cap S_2$ is again a sieve on C. [1]

Sol A

(a)

A category C is well-powered if for every object $X \in C$, the collection of subobjects of X, denoted Sub(X), forms a set. In an elementary topos E, there exists a *subobject classifier* $\Omega \in E$, meaning that for every monomorphism $f: A \to X$, there is a unique characteristic morphism $\chi_f: X \to \Omega$ that makes the following diagram commute:

$$\begin{array}{ccc}
A & \longrightarrow 1 \\
f \downarrow & \downarrow \\
X & \xrightarrow{\chi_f} \Omega
\end{array}$$

Subobjects of X correspond to certain morphisms from X to Ω . Since the hom-set $\operatorname{Hom}_E(X,\Omega)$ is a set, this implies that the collection of subobjects of X is also a set, meaning E is well-powered. **(b)**

The exponential object A^0 represents the set of morphisms from the terminal object 1 to A. In other words, $A^0 = \text{Hom}_E(1, A)$, where 1 is the terminal object in E.

For any object A, the set $\operatorname{Hom}_E(1,A)$ consists of the *global elements* of A, i.e., elements of A without dependence on other objects. Since $A^0 \cong \operatorname{Hom}_E(1,A)$, and for the terminal object we have $1^0 \cong 1$, it follows that $A^0 \cong 1$.

Sol B

(a) To prove the isomorphism $A^{(B_1 \times B_2)} \cong (A^{B_1})^{B_2}$, we will use the structure of a cartesian closed category. This isomorphism illustrates how exponentiation distributes over products in such categories.

First, we understand the object $A^{(B_1 \times B_2)}$, which represents the set of all functions from $B_1 \times B_2$ to A:

$$A^{(B_1\times B_2)}=\{f:B_1\times B_2\to A\}.$$

Next, we consider the object $(A^{B_1})^{B_2}$, which represents the set of all functions from B_2 to A^{B_1} :

$$(A^{B_1})^{B_2} = \{g : B_2 \to (B_1 \to A)\}.$$

Now, we define a bijection between these two sets of functions.

From $A^{(B_1 \times B_2)}$ to $(A^{B_1})^{B_2}$: Given a function $f: B_1 \times B_2 \to A$, we construct a corresponding function $g: B_2 \to A^{B_1}$ by defining:

$$g(b_2)(b_1) = f(b_1, b_2).$$

From $(A^{B_1})^{B_2}$ to $A^{(B_1 \times B_2)}$: Given a function $g: B_2 \to A^{B_1}$, we construct a corresponding function $f: B_1 \times B_2 \to A$ by defining:

$$f(b_1, b_2) = g(b_2)(b_1).$$

Now we need to check that these constructions are inverses of each other. Starting with $f \in A^{(B_1 \times B_2)}$: - We construct $g: B_2 \to A^{B_1}$ by setting $g(b_2)(b_1) = f(b_1, b_2)$. - Then we reconstruct f from g by setting $f'(b_1, b_2) = g(b_2)(b_1) = f(b_1, b_2)$.

Thus,
$$f' = f$$
.

Starting with $g \in (A^{B_1})^{B_2}$: - We construct $f: B_1 \times B_2 \to A$ by setting $f(b_1, b_2) = g(b_2)(b_1)$. - Then we reconstruct g from f by setting $g'(b_2)(b_1) = f(b_1, b_2) = g(b_2)(b_1)$.

Thus, g' = g.

Using the adjunction properties of exponentiation in a cartesian closed category, we have shown that there is a natural isomorphism between the two objects $A^{(B_1 \times B_2)}$ and $(A^{B_1})^{B_2}$. Therefore, the isomorphism holds:

$$A^{(B_1 \times B_2)} \cong (A^{B_1})^{B_2}.$$

- **(b)** To prove the isomorphism $A^{B_1+B_2} \cong A^{B_1} \times A^{B_2}$, we will again use the structure of a cartesian closed category.
- 1. Coproduct: The coproduct $B_1 + B_2$ represents the disjoint union of the objects B_1 and B_2 with canonical injection morphisms $i_1 : B_1 \to B_1 + B_2$ and $i_2 : B_2 \to B_1 + B_2$.
- 2. Exponentiation: The object A^B denotes the object of morphisms from B to A. So A^{B_1} and A^{B_2} represent morphisms from B_1 and B_2 to A.

Now, for a fixed object C, consider morphisms from $C \times (B_1 + B_2)$ to A:

$$C(C \times (B_1 + B_2), A)$$
.

Using the universal property of coproducts, we have:

$$C(C \times (B_1 + B_2), A) \cong C(C \times B_1, A) \times C(C \times B_2, A).$$

By the exponentiation adjunction, we have:

$$C(C \times B_1, A) \cong C(C, A^{B_1}),$$

and

$$C(C \times B_2, A) \cong C(C, A^{B_2}).$$

Thus, we can combine these results:

$$C(C \times (B_1 + B_2), A) \cong C(C, A^{B_1}) \times C(C, A^{B_2}).$$

This implies:

$$C(C \times (B_1 + B_2), A) \cong C(C, A^{B_1} \times A^{B_2}).$$

By the properties of exponentiation in a cartesian closed category, we conclude:

$$A^{B_1+B_2} \cong A^{B_1} \times A^{B_2}$$
.

Sol C Let [2, **Sets**] be the category of functors from the discrete category with two objects $\{a, b\}$ to the category of sets. A functor $F : [2] \to \mathbf{Sets}$ assigns:

$$F(a)$$
 to the object a , $F(b)$ to the object b ,

with no morphisms between a and b. Thus, each functor F is a pair of sets (F(a), F(b)).

Next, we describe $\operatorname{Sub}_{[2,\mathbf{Sets}]}(F)$, the subobjects of F. A subobject corresponds to a subfunctor $G \subseteq F$, which assigns:

$$G(a) \subseteq F(a), \quad G(b) \subseteq F(b).$$

Hence, the subobjects of F are in bijection with pairs of subsets of F(a) and F(b), meaning:

$$Sub_{[2.\mathbf{Sets}]}(F) \cong P(F(a)) \times P(F(b)),$$

where P(X) denotes the power set of a set X.

In a topos, a subobject classifier is an object Ω such that for any object F, there is a bijection between subobjects of F and morphisms $F \to \Omega$.

The subobject classifier in **Sets** is $\Omega_{\textbf{Sets}} = \{0, 1\}$. In [2, **Sets**], the subobject classifier should assign to each object a and b a copy of $\{0, 1\}$, so the subobject classifier Ω is the functor:

$$\Omega(a) = \{0, 1\}, \quad \Omega(b) = \{0, 1\},$$

which is $\Omega = (\{0, 1\}, \{0, 1\}).$

Given any object F = (F(a), F(b)), the subobjects of F are classified by a morphism $F \to \Omega$. This morphism corresponds to characteristic functions:

$$\chi_a: F(a) \to \{0,1\}, \quad \chi_b: F(b) \to \{0,1\},$$

indicating whether each element of F(a) and F(b) belongs to the subsets $G(a) \subseteq F(a)$ and $G(b) \subseteq F(b)$.

Thus, the subobject classifier for [2, **Sets**] is the functor $\Omega = (\{0, 1\}, \{0, 1\})$.

Sol D Let C be a category, and let Sieve(C) denote the set of sieves on an object C in C. The set Sieve(C) is partially ordered by inclusion, i.e., for two sieves S_1 and S_2 on C, we say $S_1 \leq S_2$ if $S_1 \subseteq S_2$. In any poset, the intersection of any collection of elements is still an element of the poset. Thus, the intersection of sieves is well-defined. Our goal is to prove that the intersection of any family of sieves on C is also a sieve on C.

Let $\{S_i\}_{i\in I}$ be a family of sieves on C. The intersection is defined as

$$S = \bigcap_{i \in I} S_i = \{ f : D \to C \mid f \in S_i \text{ for all } i \in I \}.$$

We need to show that *S* is a sieve, i.e., that it is closed under precomposition.

Take any morphism $f: D \to C$ in S, so that $f \in S_i$ for all $i \in I$. Since each S_i is a sieve, it is closed under precomposition. Therefore, for any morphism $g: E \to D$, we have $f \circ g \in S_i$ for each $i \in I$. Thus,

$$f \circ g \in \bigcap_{i \in I} S_i = S.$$

Since S is closed under precomposition, it satisfies the definition of a sieve. Therefore, $\bigcap_{i \in I} S_i$ is a sieve on C.