

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)Welcome
United States Patent and Trademark Office[Help](#) [FAQ](#) [Terms](#) [IEEE Peer Review](#)[Quick Links](#)

» Se

Welcome to IEEE Xplore®

- [Home](#)
- [What Can I Access?](#)
- [Log-out](#)

Tables of Contents

- [Journals & Magazines](#)
- [Conference Proceedings](#)
- [Standards](#)

Search

- [By Author](#)
- [Basic](#)
- [Advanced](#)

Member Services

- [Join IEEE](#)
- [Establish IEEE Web Account](#)
- [Access the IEEE Member Digital Library](#)

 [Print Format](#)

[Home](#) | [Log-out](#) | [Journals](#) | [Conference Proceedings](#) | [Standards](#) | [Search by Author](#) | [Basic Search](#) | [Advanced Search](#)
[Join IEEE](#) | [Web Account](#) | [New this week](#) | [OPAC Linking Information](#) | [Your Feedback](#) | [Technical Support](#) | [Email Alerting](#)
[No Robots Please](#) | [Release Notes](#) | [IEEE Online Publications](#) | [Help](#) | [FAQ](#) | [Terms](#) | [Back to Top](#)

Copyright © 2003 IEEE — All rights reserved

- Home
- What Can I Access?
- Log-out

Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

Search

- By Author
- Basic
- Advanced

Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

Design and implementation of a series voltage sag compensator under practical utility conditions

Po-Tai Cheng Chian-Chung Huang Chun-Chiang Pan Bhattacharya, S.
Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsin-Chu, Taiwan;
This paper appears in: Industry Applications, IEEE Transactions on

Publication Date: May-June 2003

On page(s): 844- 853

Volume: 39, Issue: 3

ISSN: 0093-9994

INSPEC Accession Number: 7648259

Abstract:

Voltage sags have become one of the most important power quality concerns recent years. According to survey results across the US, voltage sags and short duration power outages account for 92% of power quality problems encountered by industrial customers. Voltage sags often cause undervoltage faults in various sensitive loads and subsequently interrupt the manufacturing processes. Such interruptions often inflict severe losses for industries. In Taiwan, ROC, most high-tech manufacturers use uninterruptible power supplies to avoid interruptions, the cost effectiveness of such an approach remains unclear. As the utility grid continues to improve the reliability of electric power, the inverter-based voltage sag compensator has become a viable solution to prevent production interruptions resulting from voltage sags. The existing sag compensation systems accomplish fast response within a small fraction of a fundamental cycle by tracking the utility voltages closely, and switch on the compensator whenever the voltage waveform deviates from the normal values. However, the utility voltages often contain transient spikes with amplitudes up to 200% resulting from switching of power factor-correction capacitors, circuit breakers switchings, lightning strikes, and so on. Such transient disturbances may trigger the sag compensator into operation. Its controller is very sensitive. The switching frequency of the sag compensator's inverter is inadequate to compensate the narrow pulses of voltage spikes. Furthermore, the power semiconductor devices (like insulated gate bipolar transistors) of the inverter may also be damaged due to overvoltage by the spikes. In this paper, a brief overview of power quality issues of a high-tech industry in Taiwan is provided to validate the need for ride-through technologies. A synchronous-reference-frame-based controller for the inverter-based voltage sag compensator is also presented. A sag detection mechanism is included in the controller for correct and prompt identification of voltage sags. Disturbances like voltage spikes are attenuated to avoid any false triggering of the compensator. The overall system responds to voltage sags and restores the voltage back to balance.

1.0 pu for critical loads within one-eighth to one-fourth h of a cycle, which meets the requirement of industry standards like the SEMI-F47 standard. Simulation and laboratory test results are presented to verify the functionality of the proposed system.

Index Terms:

circuit breakers compensation invertors power capacitors power factor correction power quality power system faults SEMI-F47 standard Taiwan circuit breakers switching false triggering avoidance high-tech manufacturers industrial customers insulated gate bipolar transistors inverter-based voltage sag compensator lightning strikes line voltage tracking manufacturing processes interruption power quality problems power semiconductor devices power-factor-correction capacitors ride-through technologies sag compensators sag compensator inverter sag detection mechanism sensitive loads series voltage sag compensator short-duration power outages switching frequency synchronous-referenced frame-based controller transient disturbances transient spikes undervoltage faults uninterruptible power supplies utility conditions voltage spikes voltage waveforms

Documents that cite this document

Select link to view other documents in the database that cite this one.

Reference list:

1. M. F. McGranaghan, D. R. Mueller, and M. J. Samotyj, "Voltage sags in industrial systems," *IEEE Trans. Ind. Applicat.*, vol. 29, pp. 397-403, Mar./Apr. 1993.
[Abstract] [PDF Full-Text (560KB)]
2. T. S. Chen and A. Liu, *Switching transient analysis of static power capacitor in the utility distribution system* Taipei, Taiwan, R.O.C.: Power Research Inst., Taiwan Power Co., 1995.
3. W. K. Chang, *NSC 90-2218-E-194-046 analysis, simulation, and measurement of transients generated by switchable shunt capacitors in a power system* Taiwan, R.O.C.: Nat. Science Council, 2002.
4. W. Y. Huang, *Switching surge and ferroresonance analyses for 161 kV system phase-III development region of Hsinchu Science Park*, M.S. thesis Hsin-Chu, Taiwan, R.O.C.: Nat. Tsing Hua Univ., June 2002.
5. T. E. Grebe, "Applications of distribution system capacitor banks and their impact on power quality," *IEEE Trans. Ind. Applicat.*, vol. 32, pp. 714-719, May/June 1996.
[Abstract] [PDF Full-Text (520KB)]
6. M. F. McGranaghan, T. E. Grebe, G. Hensley, T. Singh, and M. Samotyj, "Impact of utility switched capacitors on customer systems," *IEEE Trans. Power Delivery*, vol. 6, pp. 1623-1628, Oct. 1991.
[Abstract] [PDF Full-Text (444KB)]
7. V. E. Wagner, J. P. Staniak, and T. L. Orloff, "Utility capacitor switching and adjustable-speed drives," *IEEE Trans. Ind. Applicat.*, vol. 27, pp. 645-651, July/Aug. 1991.
[Abstract] [PDF Full-Text (652KB)]
8. T. A. Bellei, R. P. O'Leary, and E. H. Camm, "Evaluating capacitor-switching devices for preventing nuisance tripping of adjustable-speed drives due to voltage magnification," *IEEE Trans. Power Delivery*, vol. 11, pp. 1373-1378, July 1996.

[\[Abstract\]](#) [\[PDF Full-Text \(736KB\)\]](#)

9. A. A. Grgis, C. M. Fallon, J. C. P. Rubino, and R. C. Catoe, "Harmonics and transient overvoltages due to capacitor switching," *IEEE Trans. Ind. Applicat.*, 29, pp. 1184-1188, Nov./Dec. 1993.

[\[Abstract\]](#) [\[PDF Full-Text \(380KB\)\]](#)

10. SEMI F47-0200 *Specifications for semiconductor processing equipment v sags immunity* Mountain View, CA: Semiconductor Equipment and Materials International, 2000.

11. ITI (CBEMA) *curve application notes* Washington, DC: Information Techn Industry Council, 2000.

12. S. W. Middlekauff, "Field experience with a series compensation device," *PES Summer Meeting* San Diego, CA, 1998.

[\[Buy Via Ask*IEEE\]](#)

13. S. W. Middlekauf and E. R. Collins Jr, "System and customer impact: considerations for series custom power devices," *IEEE Trans. Power Delivery*, 13, pp. 278-282, Jan. 1998.

[\[Abstract\]](#) [\[PDF Full-Text \(500KB\)\]](#)

14. K. Chan and A. Kara, "Voltage sags mitigation with an integrated gate commutated thyristor based dynamic voltage restorer," *Proc. IEEE Int. Conf. Harmonics and Quality of Power*, 1998, pp. 561-565.

[\[Abstract\]](#) [\[PDF Full-Text \(384KB\)\]](#)

15. A. Kara, D. Amhof, P. Dahler, and H. Gruning, "Power supply quality improvement with a dynamic voltage restorer (DVR)," *Proc. IEEE APEC'98*, 1, pp. 986-993.

[\[Abstract\]](#) [\[PDF Full-Text \(508KB\)\]](#)

16. W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, and M. F. McGranaghan, "Dynamic sag correctors: cost effective industrial power line conditioning," *IEEE Trans. Ind. Applicat.*, vol. 37, pp. 212-217, Jan./Feb. 2000

[\[Abstract\]](#) [\[PDF Full-Text \(196KB\)\]](#)

17. K. Haddad, G. Joos, and S. Chen, "Control algorithm for series static volt regulators in faulted distribution systems," *Proc. IEEE PESC'99*, 1999, pp. 41423.

[\[Abstract\]](#) [\[PDF Full-Text \(416KB\)\]](#)

18. A. Sannino and J. Svensson, "Static series compensator for voltage sag mitigation supplying nonlinear loads," *Proc. IEEE PES Winter Meeting*, 2002, 1, 1147-1152.

[\[Abstract\]](#) [\[PDF Full-Text \(459KB\)\]](#)

19. C. Zhan, V. K. Ramachandaramurthy, A. Arulampalam, C. Fitzer, S. Kromli, M. Barnes, and N. Jenkins, "Dynamic voltage restorer based on voltage-space-pwm control," *IEEE Trans. Ind. Applicat.*, vol. 37, pp. 1855-1863, Nov./Dec. 2001

[\[Abstract\]](#) [\[PDF Full-Text \(316KB\)\]](#)

20. T. S. Key, "Diagnosing power quality-related computer problems," *IEEE Trans. Ind. Applicat.*, vol. 15, pp. 381-393, July/Aug. 1979.

[\[Buy Via Ask*IEEE\]](#)

21. S. Bhattacharya, P. T.Cheng, and D.Divan, "Hybrid solutions for improvir passive filter performance in high power applications," *IEEE Trans. Ind. Appl.* vol. 33, pp. 732-747, May/June 1997.

[\[Abstract\]](#) [\[PDF Full-Text \(452KB\)\]](#)

22. S. Bhattacharya, D.Divan, and B.Banerjee, "Synchronous frame harmoni isolator using active series fliter," *Proc. EPE'91*, 1991, pp. 30-35.

[\[Buy Via Ask*IEEE\]](#)

23. *Workshop on Power Quality for the Semiconductor Fabrication Industry*, Electric Power Research Institute (EPRI), 1998.

24. J. W. Schwartzenberg and R. W.De Doncker, "15 kV medium voltage stat transfer switch," *Conf. Rec. IEEE-IAS Annu. Meeting*: IEEE, 1995, vol. 3, pp. 2520.

[\[Abstract\]](#) [\[PDF Full-Text \(368KB\)\]](#)

[SEARCH RESULTS](#) [\[PDF Full-Text \(815 KB\)\]](#) [NEXT](#) [DOWNLOAD CITATION](#)

[Home](#) | [Log-out](#) | [Journals](#) | [Conference Proceedings](#) | [Standards](#) | [Search by Author](#) | [Basic Search](#) | [Advanced Join IEEE](#) | [Web Account](#) | [New this week](#) | [OPAC Linking Information](#) | [Your Feedback](#) | [Technical Support](#) | [Email No Robots Please](#) | [Release Notes](#) | [IEEE Online Publications](#) | [Help](#) | [FAQ](#) | [Terms](#) | [Back to Top](#)

Copyright © 2003 IEEE — All rights reserved

	Type	L #	Hits	Search Text	DBs	Time Stamp	Comments	Error Definition	Errors
1	IS&R	L1	147898	(382/128,129,130,131,132,133).CCLS. or (("378") or ("600") or ("128") or ("250")).CLAS.	USPAT	2003/12/17 16:15			0
2	BRS	L2	11613	1 and ((support\$4 near4 (system or devic\$4 or apparatus))	USPAT	2003/12/17 17:00			0
3	BRS	L3	35	2 and (slic\$4 near2 subject\$4)	USPAT	2003/12/17 16:16			0
4	BRS	L4	12	3 and (acquir\$4 near3 imag\$4)	USPAT	2003/12/17 16:17			0
5	BRS	L5	12	4 and (imag\$4 naer3 position\$4)	USPAT	2003/12/17 16:48			0
6	BRS	L7	0	6 and sag\$4	USPAT	2003/12/17 16:17			0
7	BRS	L6	8	4 and (imag\$4 near3 position\$4)	USPAT	2003/12/17 16:18			0
8	BRS	L8	5	(slic\$4 near2 subject\$4) and ((support\$4) near4 (system or devic\$4 or apparatus)) and (imag\$4 adj position\$4)	USPAT	2003/12/17 16:32			0
9	BRS	L9	17	(slic\$4 near2 subject\$4) and ((support\$4) near4 (system or devic\$4 or apparatus)) and (imag\$4 near2 position\$4)	USPAT	2003/12/17 16:43			0
10	BRS	L10	19	(slic\$4 near2 subject\$4) and ((support\$4) near4 (system or devic\$4 or apparatus)) and (imag\$4 near3 position\$4)	USPAT	2003/12/17 16:46			0
11	BRS	L11	1	1 and (sag near2 correct\$4)	USPAT	2003/12/17 16:47			0

	Type	L #	Hits	Search Text	DBs	Time Stamp	Comments	Error Definition	Errors
12	BRS	L12	348	1 and (sag)	USPAT	2003/12/17 16:47			0
13	BRS	L13	25	12 and (support\$4 near2 element\$4)	USPAT	2003/12/17 16:52			0
14	BRS	L14	25	13 and (imag\$4 naer3 position\$4)	USPAT	2003/12/17 16:50			0
15	BRS	L15	11	14 and ((support\$4) near4 (system or devic\$4 or apparatus))	USPAT	2003/12/17 16:50			0
16	BRS	L17	0	16 and ((support\$4) near4 (system or devic\$4 or apparatus))	USPAT	2003/12/17 16:50			0
17	BRS	L16	5	13 and (imag\$4 near3 position\$4)	USPAT	2003/12/17 16:50			0
18	BRS	L18	145	(support\$4 near2 element\$4) same sag	USPAT	2003/12/17 16:55			0
19	BRS	L19	2	1 and 18	USPAT	2003/12/17 16:53			0
20	BRS	L20	206	(support\$4 near4 element\$4) same sag	USPAT	2003/12/17 16:57			0
21	BRS	L21	3	1 and 20	USPAT	2003/12/17 16:55			0
22	BRS	L22	99	(support\$4 near4 element\$4) with sag	USPAT	2003/12/17 17:19			0
23	BRS	L23	1	1 and 22	USPAT	2003/12/17 16:56			0
24	BRS	L24	67	((support\$4 near4 element\$4) near7 (sag))	USPAT	2003/12/17 17:00			0
25	BRS	L25	0	1 and 24	USPAT	2003/12/17 16:59			0
26	BRS	L26	78	2 and sag	USPAT	2003/12/17 17:00			0
27	BRS	L27	54	26 and element\$5	USPAT	2003/12/17 17:00			0

	Type	L #	Hits	Search Text	DBs	Time Stamp	Comments	Error Definition	Errors
28	BRS	L28	54	27 and support\$5	USPAT	2003/12/17 17:10			0
29	BRS	L29	223	NM adj image	USPAT	2003/12/17 17:17			0
30	BRS	L31	1	29 and sag	USPAT	2003/12/17 17:14			0
31	BRS	L32	2079 39	(nuclear adj medicine or NM)	USPAT	2003/12/17 17:20			0
32	BRS	L33	1230 8	1 and 32	USPAT	2003/12/17 17:18			0
33	BRS	L34	0	33 and (support\$4 near4 element\$4) with sag	USPAT	2003/12/17 17:19			0
34	BRS	L35	4	33 and (support\$4 near4 element\$4) and sag	USPAT	2003/12/17 17:21			0
35	BRS	L36	3054	(nuclear adj medicine)	USPAT	2003/12/17 17:20			0
36	BRS	L37	0	36 and (support\$4 near4 element\$4) and sag	USPAT	2003/12/17 17:21			0
37	BRS	L38	33	36 and (support\$4 near4 element\$4)	USPAT	2003/12/17 17:31			0
38	BRS	L39	1113 4	longitudinal adj position	USPAT	2003/12/17 17:31			0
39	BRS	L40	711	1 and 39	USPAT	2003/12/17 17:31			0
40	BRS	L41	65	40 and (support\$4 near4 element\$4)	USPAT	2003/12/17 17:31			0
41	BRS	L42	1	41 and sag	USPAT	2003/12/17 17:32			0
42	BRS	L46	26	41 and (imag\$4 near4 position\$4)	USPAT	2003/12/17 17:33			0