

**Engine Implementation** 

SHABNAM KHODADADI-

EC211233

DHRUV VERMA- EC211263

TUSHARA GOVINDA REDDY-

EC211256

OM BHARATBHAI VAGHASIA-

EC211242

#### Contents

- Problem Statement and Proposed Approach
- Dataset Definition
- Design Architecture
- Framework/Tools Used
- Implementation of Retrieval Models
- Evaluation
- Results
- Demo Video Link

 Note: Dear Evaluators, Due to the size of the recording we are providing the link to our SharePoint where the video has been hosted.

# 1. Problem Statement and Proposed Approach



- Lifestyle forum are widely used by travel enthusiasts, marketers, lifestyle service/ product companies, complementary services etc. In order to find relevant results for a given lifestyle related query such as "best restaurant near me" or "best cutlery store near me" we need real-time and semantic search engines to interpret the user location, demographic, preference and then provide relevant results.
- In our project we have implemented a Lifestyle Forum Search Engine which performs the following:
  - Retrieving semantically relevant items that don't necessarily match the query terms exactly
  - Retrieving user-personalized items for the same search query
- Methodology: We propose to develop a prototype of lifestyle forum search engine which employs Bag of Word concepts for indexing, BM25, DFR-BM25, retrieval model, and TFIDF,TF for retrieval ranking along with Precision-R evaluation metrics to provide relevant query results.

## 2. Dataset Definition



• Data Description: Our data is the search results are from lifestyle-focused forums, including bicycles, coffee, crafts, diy, gardening, lifehacks, mechanics, music, outdoors, parenting, pets, sports, and travel. There are 268893 documents in our dataset

#### Data distribution



|        | qid    | query                                          |
|--------|--------|------------------------------------------------|
| 0      | 0      | much practically feed give 1 one year class ol |
| 1      | 1      | zebra loaches loach safe prophylactic shrimp p |
| 2      | 2      | serpae tetras tetra fin quint nippers nipper   |
| 3      | 3      | neon Ne tetras tetra eat feed shrimp prawn     |
| 4      | 4      | much a great deal feed bung english English ma |
|        |        |                                                |
| 412    | 412    | fuse flux airbags                              |
| 413    | 413    | last utmost longer long manual automatic refle |
| 414    | 414    | much practically cost monetary value replace i |
| 415    | 415    | radiator hoses hose supposed presuppose hot re |
| 416    | 416    | difference remainder red Red clear percipient  |
| 417 rc | ws × 2 | 2 columns                                      |

#### Data Sample Text:

GenericDoc(doc\_id='0', text="In my experience rabbits are very easy to housebreak."

"They like to pee and poop in the same place every time, "

"so in most cases all you have to do is put a little bit of their waste in the

litter box "

"and they will happily use the litter box. "

"It is very important that if they go somewhere else, "

"miss the edge or kick waste out of the box that you clean it up well "

"and immediately as otherwise those spots will become existing places to

pee and poop. "



## 3. Design Architecture

a. User Query Pre-processor is responsible for query parsing to be passed to the retrieval framework.

b. Dataset Loader will process the lifestyle dataset into workable format by performing cleaning, filtering, lowercasing. The indexer will implement specific indexing models on the dataset which includes:

- i. Stemming to reduce words to base words and remove suffixes
- ii. Removal of Stop Words, Punctuations, and special characters.
- iii. Indexing the words using Term Frequency and Inverse Document Frequency method

c. Search and Ranking Framework provides on API for retrieval model BM25, DFR-BM25 to be used on the parsed query. It will use index for scanning, ranking and retrieval of relevant recommendation based on the query passed. We propose to use the Best Match Okapi Model- BM25, DFR-BM25 as part of our framework. Retrieval Ranking, we are making use of TFIDF, TF.

d. Evaluator is responsible for the result evaluation based on relevant evaluation metrics such as Precision-R=5,10,15, NDCG, Relevant Ranking etc.



## 4. Framework/Tools Used



| Framework                   | Description                                                        |
|-----------------------------|--------------------------------------------------------------------|
| Python (JupyterNotebook)    | Application development                                            |
| Pandas, NumPy               | Dataset manipulation, pre-processing and structuring.              |
| SKLearn- Feature extraction | Need to be able to convert the content of each string into vectors |
| PyTerrier                   | Indexing, Retrieval and Evaluation, Pipeline and Ranking           |
| ir-evaluation-py            | Effectiveness Evaluation Library for Python                        |

# 5. Implementation of Retrieval Models

#### We implement four models:

- BM25
- DFR-BM25
- TFIDF
- TF

```
BM_25 = pt.BatchRetrieve(index_ref, wmodel='BM25')
DFR_BM25_NoExp = pt.BatchRetrieve(index_ref, wmodel='DFR_BM25')
TF_IDF_NoEXP = pt.BatchRetrieve(index_ref, wmodel='TF_IDF')
TF_NoExp = pt.BatchRetrieve(index_ref, wmodel='Tf')
```

```
Relevant_document = pt.Experiment(
[BM_25, DFR_BM25_NoExp, TF_IDF_NoEXP, TF_NoExp],
topics,
qrels,
eval_metrics=["num_rel_ret"],
names=['BM25_NoExp', 'DFR_BM25_NoExp', 'TF_IDF_NoExp', 'TF_NoExp']
)
```

#### TF\_NoExp.search('best park in the city')

|   | qid | docid  | docno  | rank | score | query                 |
|---|-----|--------|--------|------|-------|-----------------------|
| 0 | 1   | 67582  | 67582  | 0    | 163.0 | best park in the city |
| 1 | 1   | 67586  | 67586  | 1    | 63.0  | best park in the city |
| 2 | 1   | 72187  | 72187  | 2    | 35.0  | best park in the city |
| 3 | 1   | 189126 | 189126 | 3    | 27.0  | best park in the city |
| 4 | 1   | 70154  | 70154  | 4    | 25.0  | best park in the city |



|   | qid | docid  | docno  | rank | score     | query                 |
|---|-----|--------|--------|------|-----------|-----------------------|
| 0 | 1   | 264258 | 264258 | 0    | 22.974159 | best park in the city |
| 1 | 1   | 73017  | 73017  | 1    | 21.640765 | best park in the city |
| 2 | 1   | 217979 | 217979 | 2    | 21.202923 | best park in the city |
| 3 | 1   | 222662 | 222662 | 3    | 20.099984 | best park in the city |
| 4 | 1   | 55339  | 55339  | 4    | 19.803737 | best park in the city |

#### DFR\_BM25\_NoExp.search('best park in the city')

|   | qid | docid  | docno  | rank | score     | query                 |
|---|-----|--------|--------|------|-----------|-----------------------|
| 0 | 1   | 264258 | 264258 | 0    | 10.409366 | best park in the city |
| 1 | 1   | 73017  | 73017  | 1    | 9.990389  | best park in the city |
| 2 | 1   | 217979 | 217979 | 2    | 9.704005  | best park in the city |
| 3 | 1   | 222662 | 222662 | 3    | 9.112209  | best park in the city |
| 4 | 1   | 55339  | 55339  | 4    | 8.991700  | best park in the city |



#### TF\_IDF\_NoEXP.search('best park in the city')

|   | qid | docid  | docno  | rank | score     | query                 |
|---|-----|--------|--------|------|-----------|-----------------------|
| 0 | 1   | 264258 | 264258 | 0    | 12.766094 | best park in the city |
| 1 | 1   | 73017  | 73017  | 1    | 11.864821 | best park in the city |
| 2 | 1   | 217979 | 217979 | 2    | 11.735416 | best park in the city |
| 3 | 1   | 222662 | 222662 | 3    | 11.180280 | best park in the city |
| 4 | 1   | 55339  | 55339  | 4    | 10.855647 | best park in the city |

## 6. Evaluation









### 7. Results

Query: best park in the city

BM\_25.search('best park in the city')

### Demo Video Link on SharePoint

- Demonstratio Video PG 41 IR ASSGN 7.mp4
- https://qmulprod.sharepoint.com/:v:/r/sites/IRP roject-Sem1/Shared%20Documents/General/PG 41 IR Assignment3/Demonstratio%20Video PG 41 I R ASSGN 7.mp4?csf=1&web=1&e=yf11eR

 Note: Dear Evaluators, Due to the size of the recording we are providing the link to our SharePoint where the video has been hosted.

## Thank you



Group 41\_Information\_Retrieval\_Assignment3