H19T1A1

a) Für $c \in \mathbb{C}$ und $r \in \mathbb{R}$, r > 0 bezeichne $\partial B(c,r)$ den Rand der Kreisscheibe mit Mittelpunkt c und Radius r in der komplexen Ebene. Der Rand der Kreisscheibe werde einmal entgegen dem Uhrzeigersinn, d.h. in mathematisch positiver Richtung, durchlaufen. Berechne die Integrale

$$\int_{\partial B(20,19)} \frac{\cos(z^2+1)}{z^2 - 2019} dz \quad \text{und} \quad \int_{\partial B(0,2)} \frac{\sin(z)}{(z-1)^3} dz$$

b) Berechne die Umlaufzahl/Windungszahl um Null für den Weg $\gamma:[0,2\pi]\to\mathbb{C}$ mit $\gamma(t)=(\cos(e^{it}))^2$.

Zu a):

Berechnung des ersten Integrals: Die Funktion $\mathbb{C} \ni z \mapsto \cos(z^2+1)$ im Zähler des Integranden ist ganz-holomorph, während der Nenner $z^2 - 2019$ Nullstellen bei $z_{\pm} := \pm \sqrt{2019}$ besitzt. Nun gilt $\sqrt{2019} > \sqrt{1600} = 40$, also folgt

$$|\sqrt{2019} - 20| > 40 - 20 > 19$$
 und $|-\sqrt{2019} - 20| = \sqrt{2019} + 20 > 19$

also liegen die zwei Singularitäten z_{\pm} des Integranden nicht in der abgeschlossenen Kreisscheibe $B(2\bar{0}, 19)$; diese Kreisscheibe ist vielmehr singularitätenfrei. Mit dem Cauchy-Integralsatz folgt:

$$\int_{\partial B(20,19)} \frac{\cos(z^2+1)}{z^2 - 2019} dz = 0$$

Berechnung des zweiten Integrals: Die Sinusfunktion im Zähler des Integranden ist ganz-holomorph, und die Nullstelle 1 des Nenners liegt in der offenen Kreisscheibe B(0,2). Damit ist die Cauchy-Integralformel für höhere (hier: zweite) Ableitungen anwendbar. Sie besagt allgemein:

Cauchy-Integralformel für höhere Ableitungen, Version für Kreisscheiben: Ist eine abgeschlossene Kreisscheibe $B(\bar{c},r)$ im Definitionsbereich einer holomorphen Funktion f enthalten, 1 so gilt für alle Punkte a in der offenen Kreisscheibe B(c,r) und alle $n \in \mathbb{N}$:

$$\int_{B(c,r)} \frac{f(z)}{(z-a)^n} dz = \frac{2\pi i}{(n-1)!} f^{n-1}(a)$$

In unserem Fall $(f = \sin, c = 0, r = 2, a = 1, n = 3)$ bedeutet das:

$$\int_{B(0,2)} \frac{\sin(z)}{(z-1)^3} dz = \frac{2\pi i}{2!} \sin''(1) = -\pi i \sin(1)$$

Zu b):

Die Umlaufzahl U beträgt mit der Abkürzung $f(z) := cos^2(z)$:

$$U = \frac{1}{2\pi i} \int_0^{2\pi} \frac{\gamma'(t)}{\gamma(t)} dt$$
$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f'(e^{it})}{f(e^{it})} i e^{it} dt$$
$$= \frac{1}{2\pi i} \int_{\partial B(0,1)} \frac{f'(z)}{f(z)} dz$$

Weil die Abbildung $[0, 2\pi] \ni t \mapsto e^{it}$ den positiv orientierten Rand des Einheitskreises in \mathbb{C} parametrisiert. Nun ist die Funktion $f: \mathbb{C} \to \mathbb{C}$ ganz-holomorph, und sie besitzt Nullstellen genau an den Nullstellen der Kosinusfunktion cos: $\mathbb{C} \to \mathbb{C}$. Die Kosinusfunktion besitzt keine Nullstellen in $\mathbb{C} \setminus \mathbb{R}$, und ihre betragskleinsten reellen Nullstellen sind $\pm \frac{\pi}{2}$. Wegen $\frac{\pi}{2} \geq 1$ liegt keine dieser Nullstellen in der abgeschlossenen Einheitskreisscheibe $B(\bar{0}, 1)$. Also umfasst der Holomorphiebereich von $\frac{f'}{f}$ diese Kreisscheibe. Mit dem Cauchy-Integralsatz folgt:

$$U = \frac{1}{2\pi i} \int_{\partial B(0,1)} \frac{f'(z)}{f(z)} dz = 0$$

¹Es genügt auch, wenn f auf der geschlossenen Kreisscheibe stetig und in ihrem Inneren holomorph ist, doch das ist für diese Aufgabe irrelevant.

²In der Tat: Für $z \in \mathbb{C} \setminus \mathbb{R}$, also $Im(z) \neq 0$, gilt $|e^{iz}| = e^{-Im(z)} \neq 1$, also $|e^{iz}| \neq |e^{-iz}|$ und daher $\cos(z) = (e^{iz} + e^{-iz})/2 \neq 0$