2.3 Overview

In the third column the "rule" is always considered with respect to \tilde{w} , i.e. the partition without repeated $\lambda_i's$. To get the dimension of $\mathrm{HH}_0(A,A_{\gamma w})_{C_W(w)}$, we know by Lemma 2.1 that it is enough to take the product of all the contributions corresponding to λ_i in \tilde{w} .

γ	$\operatorname{tr}(\gamma)$	"Rule" for dim(HH ₀ ($A, A_{\gamma w}$) $_{C_W(w)}$)	Generating function
S and $S^3 = -S$	0	$\lambda_i \leadsto 1 \text{ if } \lambda_i \equiv 0 \mod 4$ $\lambda_i \leadsto 2 \text{ else}$	$\prod_{k=1}^{\infty} \begin{cases} \frac{1}{1-x^k} & \text{if } k \equiv 0 \mod 4\\ 1 + \frac{2x^k}{1-x^k} & \text{else} \end{cases}$
$E_{+} = TS \text{ and } E_{-} = (TS)^{-1}$	1	$\lambda_i \rightsquigarrow 1 \text{ (NOTE: regular)}$	$\prod_{k=1}^{\infty} \frac{1}{1-x^k}$
$-E_+$ and $-E$	-1	$\lambda_i \leadsto 1 \text{ if } \lambda_i \equiv 0 \mod 3$ $\lambda_i \leadsto 3 \text{ else}$	$\prod_{k=1}^{\infty} \begin{cases} \frac{1}{1-x^k} & \text{if } k \equiv 0 \mod 3\\ 1 + \frac{3x^k}{1-x^k} & \text{else} \end{cases}$
$S^4 = \operatorname{Id}$	2	$\lambda_i \rightsquigarrow 1$	$\prod_{k=1}^{\infty} \frac{1}{1-x^k}$
$S^2 = -\operatorname{Id}$	-2	$\begin{array}{c} odd \ \lambda_i \leadsto 4 \\ even \ \lambda_i \leadsto 1 \end{array}$	$\prod_{k=1}^{\infty} \begin{cases} 1 + \frac{4x^k}{1 - x^k} & \text{if } k \text{ is odd} \\ \frac{1}{1 - x^k} & \text{if } k \text{ is even} \end{cases}$
$T^m \text{ for } m \in \mathbb{Z}_0$	2	$\lambda_i \leadsto m \lambda_i$	$\prod_{k=1}^{\infty} \left[1 + \frac{ m kx^k}{1-x^k} \right]$
$-T^m \text{ for } m \in \mathbb{Z}_0$	-2	$\begin{array}{c} odd \ \lambda_i \leadsto 4 \\ even \ \lambda_i \leadsto 2 \end{array}$	$\prod_{k=1}^{\infty} \begin{cases} 1 + \frac{4x^k}{1 - x^k} & \text{if } k \text{ is odd} \\ 1 + \frac{2x^k}{1 - x^k} & \text{if } k \text{ is even} \end{cases}$
regular	$ \operatorname{tr}(\gamma) > 2$	$\lambda_i \leadsto \operatorname{tr}(\operatorname{Id} - \gamma) $	$\prod_{k=1}^{\infty} \left[1 + \frac{ \operatorname{tr}(\operatorname{Id} - \gamma) x^k}{1 - x^k} \right]$

Note that if you do not like case distinctions in the generating functions, you could also write:

$$\begin{split} \prod_{k=1}^{\infty} \left\{ \frac{1}{1-x^k} & \text{if } k \equiv 0 \mod 3 = \prod_{k=0}^{\infty} \left[\frac{1}{1-x^{3k}} (1 + \frac{3x^{3k+1}}{1-x^{3k+1}}) (1 + \frac{3x^{3k+2}}{1-x^{3k+2}}) \right] \\ \prod_{k=1}^{\infty} \left\{ \frac{1}{1-x^k} & \text{if } k \equiv 0 \mod 4 = \prod_{k=0}^{\infty} \left[\frac{1}{1-x^{4k}} (1 + \frac{2x^{4k+1}}{1-x^{4k+1}}) (1 + \frac{2x^{4k+1}}{1-x^{4k+2}}) (1 + \frac{2x^{4k+1}}{1-x^{4k+2}}) (1 + \frac{2x^{4k+1}}{1-x^{4k+3}}) \right] \\ \prod_{k=1}^{\infty} \left\{ \frac{1 + \frac{4x^k}{1-x^k}}{1-x^k} & \text{if } k \text{ is odd} \\ \frac{1}{1-x^k} & \text{if } k \text{ is even} = \prod_{k=1}^{\infty} \left[1 + \frac{(2,5-1,5(-1)^k)x^k}{1-x^k} \right] \right. \\ \prod_{k=1}^{\infty} \left\{ \frac{1 + \frac{4x^k}{1-x^k}}{1-x^k} & \text{if } k \text{ is odd} \\ 1 + \frac{2x^k}{1-x^k} & \text{if } k \text{ is even} = \prod_{k=1}^{\infty} \left[1 + \frac{(3-(-1)^k)x^k}{1-x^k} \right] \right. \end{split}$$