Name: Jiong chen Dis : 211
Emns): 3chen 672@ Wisc.edu
Problem 1
$A = \{0, 1, 2, 3, 4, 5\}$
Part a
i) R= {(0,0),(1,1),(2,2), 13,3),(4,4),(5,5)
(1,5),(5,1),(2,0),(0,2),(4,1),(1,4),(5,4)
(4.5) here $A = \{0, 1, 2, 3, 4, 5\}$
ii) equivalence class
[1] = {1,4,5} = [4] = [5]
[2] = { 2,0} = 20]
Part b
ì)
5 = {(x, x): x \in x
Mo, S is not a equivalence relation
Let x = (1) Y = (1,2) so x ∈
but 2 is not (ess or equal to 50
So s is not symmetric.
Therefore, 5 is not a equivalence relation
•
ii) Yes, s is a order relation
if (14 //) A dy = (x) then must [x]= Y

Name:	Jiong	Chen		DBi	١١)
Email:	3chen6	72@ Wisc	.edu		
Problem	if (l) then so	5 is X 7 [Y]) there [x] 2[/ (> // Z	(172) t be) x = y > z
	The	town	Since	5 is	both antisymmetric 5 is a order

Name: Jiong chen Dts: 21)
Emril: 3chen 672@ Wise.edu
Problem 2.
Part a:
i) if a E b and b E a
then b must equal to a
So R is antisymmetric
if a \in b and b \in c
then there must be a G b E C
So a E C
so R is transitive
Since R is both antisymmetric and
gransitin. So R is a order relation.
ii) prove by contradiction
suppose it is a total order:
((Ya,b65) a ≠ b => (aRb V b Ra)
then let a={A} b={T}
we have a = b, so we must
have akb or bRa
but a \$ b and b \$ a
so the assumption is wrong
Ris not a total order

Name: Jiong chen Dts: 21)
Email: 3chen 672@ Wise.edu
Problem 2. CONT
iii) R 13 a partial brown because
for all a65, a = a
so R is reflexive
Therefore kis a partial order
iv) Ris not strict order
because R 15 reflexive, 50 R
is not antireflexive
Therefore R is not a Strict order.
Part b?
i) maximal element: {A,B,0}
{B, [, 4]
ii) minimal element 1 {\$3
ili) There is no greatest element iv) The least element is & \$13.
iv> The least element is & d3