Self-Driving Car using Computer Vision

Saransh Bhalla Bini Elsa Paul

Over View

- Hardware
 - Remote controlled car
 - Raspberry pi
 - Pi camera
 - Bread board
 - Motor
 - Speed controller
 - Power supply

- > Software
 - > Opency
 - > Edge detection techniques
 - > Neural Network
 - > python

Hardware

OpenCV – Edge detection

- 1. RBG to Gray
- 2. GaussianBlur
- 3. cv2.Canny

Initial Frame

Canny Image

- 1. Get lines using cv2.HoughLinesP
- 2. Separate left and right lanes

Cropped canny image

CV2 Neural Network

- Collecting training data
- Training and generating the model
- Testing

Collecting Training data

- Run the car using keyboard control in different backgrounds
- Get the video from pi camera
- Convert to grayscale image :- cv2.COLOR_RGB2GRAY
- Discard the upper half (surroundings) of the image
- Store the pixels in stack (2D => 1D)
- Save as numpy format (.npz) with two attributes
 - Training data :- 1D array
 - Training Labels:- Key pressed
- Keys used (training labels)
 - ► Left arrow :- 0
 - Right arrow :- 1
 - Up arrow:-2
- Saves the frames only when the keys pressed to avoid noises

The Neural Network

- cv2.ml.ANN_MLP_create()
- layer_sizes (input size, 32, 3) :- input_size = 120 * 320
- TrainMethod: cv2.ml.ANN_MLP_BACKPROP
- ActivationFunction:-cv2.ml.ANN_MLP_SIGMOID_SYM
- Save the model

```
Image array shape: (1167, 51200)
Label array shape: (1167, 4)
Loading data duration: 2.85s
Before neural network
after nn
after nn1
Training ...
(1050, 51200)
(1050, 4)
Training duration: 779.77s
after nn2
Train accuracy: 69.14%
Validation accuracy: 60.68%
Model saved to: 'saved_model/nn_model.xml'
```

Testing

- Get the model to the pi
- Get the video
- Do the preprocessing (RBG2Gray and take half of the image)
- Give to the model
- Get the prediction (either 0, 1, 2)
- Change the direction of the car accordingly

The improvement

Do an edge detection before training

cv2.threshold(threshed, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)

Demo

