Linear Algebra and Vector Calculus Notes and Exercises

Somnath Sikdar

January 28, 2020

Contents

1	Line	ar Algebra Basics	2
	1.1	Linear Functions	2
	1.2	Image and Kernel of a Linear Function	2

Chapter 1

Linear Algebra Basics

1.1 Linear Functions

A function $L: \mathbb{R}^m \to \mathbb{R}^n$ is a linear function if for all $x, y \in \mathbb{R}^m$ and for all $a, b \in \mathbb{R}$

$$L(a\boldsymbol{x} + b\boldsymbol{y}) = aL(\boldsymbol{x}) + bL(\boldsymbol{y}).$$

It follows (by induction) that for all $x_1, \ldots, x_r \in \mathbf{R}^m$ and all $a_1, \ldots, a_r \in \mathbf{R}$

$$L(a_1\boldsymbol{x}_1 + \dots + a_r\boldsymbol{x}_r) = a_1L(\boldsymbol{x}_1) + \dots + a_rL(\boldsymbol{x}_r).$$

Theorem 1.1. A linear function $L: \mathbf{R}^m \to \mathbf{R}^n$ is completely determined by its effect on the standard basis vectors $\mathbf{e}_1, \dots, \mathbf{e}_m$ of \mathbf{R}^m . An arbitrary choice of vectors $L(\mathbf{e}_1), \dots, L(\mathbf{e}_m)$ of \mathbf{R}^n determines a linear function from \mathbf{R}^m to \mathbf{R}^n .

Proof. Given any vector $x \in \mathbb{R}^m$, we can express it as a unique linear combination $\sum_{i=1}^m \alpha_i e_i$ of the basis vectors. By the linearity of L, $L(x) = \sum_i \alpha_i L(e_i)$ which is completely specified by $L(e_1), \ldots, L(e_m)$.

Let b_1, \ldots, b_m be any vectors in \mathbb{R}^n . Define a map L from \mathbb{R}^m to \mathbb{R}^n as follows: for $x = \sum_{i=1}^m \alpha_i e_i \in \mathbb{R}^m$, $L(x) = \sum_{i=1}^m \alpha_i b_i$. Then $L(e_i) = b_i$ for all $1 \le i \le m$ and for all $x, y \in \mathbb{R}^m$ and all $a, b \in \mathbb{R}$:

$$L(a\boldsymbol{x} + b\boldsymbol{y}) = \sum_{i=1}^{m} (ax_i + by_i)\boldsymbol{b}_i = a\sum_{i} x_i \boldsymbol{b}_i + b\sum_{i} y_i \boldsymbol{b}_i = aL(\boldsymbol{x}) + bL(\boldsymbol{y})$$

Note that the domain of definition of a linear function must be a vector space. An non-linear function can be defined on a subset of a vector space.

1.2 Image and Kernel of a Linear Function

The image $\operatorname{Im}(L)$ of a linear function $L \colon \mathbf{R}^m \to \mathbf{R}^n$ is the set of vectors in \mathbf{R}^n that L maps \mathbf{R}^m to. In symbols, $\operatorname{Im}(L) := \{L(\boldsymbol{x}) \in \mathbf{R}^n \colon \boldsymbol{x} \in \mathbf{R}^m\}$. The kernel $\operatorname{Ker}(L)$ of L is the set of vectors in \mathbf{R}^m that L maps to the zero vector in \mathbf{R}^n : $\operatorname{Ker}(L) := \{\boldsymbol{x} \in \mathbf{R}^m \colon L(\boldsymbol{x}) = \mathbf{0}_n\}$.

Theorem 1.2. Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear function. Then the following hold:

- 1. Im(L) is a subspace of \mathbb{R}^n ;
- 2. Ker(L) is a subspace of \mathbb{R}^m ;
- 3. $\dim(\operatorname{Im}(L)) + \dim(\operatorname{Ker}(L)) = \dim(\mathbf{R}^m) = m$.

Proof. The proof of (1) and (2) are similar. For proving (1), let $z_1, z_2 \in \text{Im}(L)$ and $\alpha, \beta \in \mathbf{R}$. Then there exist $x_1, x_2 \in \mathbf{R}^m$ such that

$$L(\alpha \boldsymbol{x}_1 + \beta \boldsymbol{x}_2) = \alpha \boldsymbol{z}_1 + \beta \boldsymbol{z}_2,$$

implying that $\alpha z_1 + \beta z_2 \in \text{Im}(L)$. Since Im(L) is closed under vector addition and multiplication by scalars, it is a vector space. Since it is a subset of \mathbb{R}^n , it must be a subspace of \mathbb{R}^n .

To prove (3), let us assume that $\dim(\operatorname{Ker}(L)) = k$ and that b_1, \ldots, b_k is a basis of $\operatorname{Ker}(L)$. Extend this basis to a basis $b_1, \ldots, b_k, b_{k+1}, \ldots, b_m$ for \mathbf{R}^m . Then for every vector $\mathbf{x} \in \mathbf{R}^m$ there exist scalars β_1, \ldots, β_m such that $\mathbf{x} = \sum_{i=1}^k \beta_i b_i$. Moreover since L is linear,

$$L(\boldsymbol{x}) = \sum_{i=1}^{m} \beta_i L(\boldsymbol{b}_i)$$

= $\sum_{i=k+1}^{m} \beta_i L(\boldsymbol{b}_i)$.

This shows that every vector in $\operatorname{Im}(L)$ can be expressed as a linear combination of the vectors $L(\boldsymbol{b}_{k+1}),\ldots,L(\boldsymbol{b}_m)$. To show that they form a basis of $\operatorname{Im}(L)$, it is sufficient to show that they are linearly independent. Suppose not. Then there exist scalars $\beta_{k+1},\ldots,\beta_m$, not all zero, such that $\sum_{i=k+1}^m \beta_i L(\boldsymbol{b}_i) = \mathbf{0}_n$. By the linearity of L, we have $L(\sum_{i=k+1}^m \beta_i \boldsymbol{b}_i) = \mathbf{0}_n$ and hence $\mathbf{0}_m \neq \sum_{i=k+1}^m \beta_i \boldsymbol{b}_i \in \operatorname{Ker}(L)$. This is a contradiction since the vectors $\boldsymbol{b}_{k+1},\ldots,\boldsymbol{b}_m$ are not in the space spanned by the vectors $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_k$. Thus the vectors $\beta_{k+1},\ldots,\beta_m$ must be independent and form a basis of $\operatorname{Im}(L)$. This proves (3).