Outline

- Adaptation in signaling circuits
- Precise adaptation in bacterial chemotaxis
 - Introduction
 - A model of robust adaptation
- Defining circuit topologies for precise adaptation.

CONCEPT

- Biological circuits must operate robustly.
- A requirement for robustness imposes constraints on circuit design

What is adaptation?

 The ability of a system to return to a set point after a change in input levels

Adaptation expands the dynamic range of a sensory system

Adaptation allows for difference detection

Adaptation allows for response attenuation

Ligand-gated ion channel

Outline

- Adaptation in signaling circuits
- Precise adaptation in bacterial chemotaxis
 - Introduction
 - A model of robust adaptation
- Defining circuit topologies for precise adaptation.

CONCEPT

- Biological circuits must operate robustly.
- A requirement for robustness imposes constraints on circuit design

How do bacteria find food?

Chemotaxis – the ability to move along or against a gradient of increasing chemical concentration

Attractants: Nutrients, e.g. aspartate, serine

Repellents: Metal ions, leucine

https://www.youtube.com/watch?v=F6QMU3KD7zw

The bacterial chemotaxis machinery sensitive over a wide dynamic range

- Sensitivity: up to 1 molecule / cell length
- Dynamic range: up to 5 orders of magnitude

This exquisite sensitivity holds amid destabilizing effects of Brownian motion. **How?**

- Sensitivity: up to 1 molecule / cell length
- Dynamic range: up to 5 orders of magnitude

Due to Brownian motion, bacterial swimming direction changes by 90° after 10 seconds of motion

This exquisite sensitivity holds amid destabilizing effects of Brownian motion. **How?**

- Sensitivity: up to 1 molecule / cell length
- Dynamic range: up to 5 orders of magnitude

Due to Brownian motion, bacterial swimming direction changes by 90° after 10 seconds of motion

Bacteria measure temporal differences in attractant concentrations as they move

Bacteria alternate between two distinct modes of movement

Tumbling (CW flagellar movement): Randomizing direction

Run (CCW flagellar motor): Swimming straight

(Phillips, Kondev and Theriot, 2009)

Temporal changes in attractant concentration modulates tumbling frequency

Conditions worsen: Increase tumbling frequency

Conditions improve: decrease tumbling frequency

Temporal differences in attractant concentration modulates tumbling frequency

A signaling circuit controlling the flagellar motor rotation underlies chemotaxis

To detect temporal differences, this circuit must adapt precisely

Outline

- Adaptation in signaling circuits
- Precise adaptation in bacterial chemotaxis
 - Introduction
 - A model of robust adaptation
- Defining circuit topologies for precise adaptation.

CONCEPT

- Biological circuits must operate robustly.
- A requirement for robustness imposes constraints on circuit design

The control circuitry for bacterial chemotaxis

Two models can explain adaptation in bacterial chemotaxis

Model I Model II

Download these scripts from the course website:

```
chemotaxis-model1.py chemotaxis-model2.py
```

- 1) Familiarize yourself with the two models. What are the main differences between the two reaction schemes?
- 2) Simulate each system under the provided parameters. Describe its response to addition of ligand (t = 400).
- 3) Now, apply small perturbations to each system. How are adaptation dynamics affected?

Under what conditions do these models break down?

Robustness describes the effects of a given change on a given behavior

<u>Parameter</u> <u>Dynamic behavior</u>

conditions

Precision of

Protein levels adaptation

Rate constants Time of adaptation

Noise Steady-state

activity

Outline

- Adaptation in signaling circuits
- Precise adaptation in bacterial chemotaxis
 - Introduction
 - A model of robust adaptation
- Defining circuit topologies for perfect adaptation.

CONCEPT

- Biological circuits must operate robustly.
- A requirement for robustness imposes constraints on circuit design

What types of signaling circuits undergo precise adaptation?

Defining Network Topologies that Can Achieve Biochemical Adaptation

Wenzhe Ma,^{1,2,3} Ala Trusina,^{2,3} Hana El-Samad,^{2,4} Wendell A. Lim,^{2,5,*} and Chao Tang^{1,2,3,4,*}

(Cell, 2009)

Enumeration and testing all possible architectures enables identification of functional designs

Signaling circuits are modeled using ordinary differential equations

Defining the sensitivity and precision of an adaptive response

Adaptation sensitivity and precision are measured for different circuit parameters and topologies

How many types of circuits can give rise to perfect adaptation?

A All possible 3-node networks (16038)

• 395/16038 adaptive circuits

Here is a *non*-adaptive circuit...

Direct negative feeedback

Only two classes of core topologies can show precise adaptation

Negative feedback loop
With buffering node

Incoherent feedforward loop
With proportioner node

Key points

- Adaptation enables cells to sense differences, keep a wide dynamic range, and limit responses.
- The bacterial chemotaxis circuit undergoes precise adaptation in a robust manner.
- A requirement for robustness imposes constraints on circuit architecture.

Further reading

- Barkai, N. & Leibler, S. Robustness in simple biochemical networks. *Nature* **387**, 913–917 (1997).
- Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. *Cell* **138**, 760–773 (2009).
- Alon, U. An introduction to systems biology: design principles of biological circuits. (2007). Chapter 7