organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-Methyl-*N*-phenyl-2-(quinolin-8-yl-oxy)acetamide monohydrate

Li-Hua Zhi, Wei-Na Wu,* Shu Li, Yun-Long Li and Xiao-Dong Cai

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China Correspondence e-mail: wuwn08@hpu.edu.cn

Received 25 April 2011; accepted 6 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.039; wR factor = 0.101; data-to-parameter ratio = 18.0.

In the title compound, $C_{18}H_{16}N_2O_2\cdot H_2O$, the dihedral angle between the quinoline ring system and the benzene ring is 87.19 (8)°. In the crystal, water molecules are linked to acetamide molecules via intermolecular $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds.

Related literature

For the luminescent properties of lanthanide complexes with amide-type ligands, see: Li *et al.* (2003); Wu *et al.* (2008). For the synthesis of 2-chloro-*N*-methyl-*N*-phenylacetamide, see: Zhi *et al.* (2011). For the similar structure of *N*-phenyl-2-(quinolin-8-yloxy)acetamide hemihydrate, see: Li *et al.* (2005).

Experimental

Crystal data

 $C_{18}H_{16}N_2O_2\cdot H_2O$ $M_r = 310.34$ Orthorhombic, $P2_12_12_1$ a = 6.6028 (8) Å b = 14.9207 (18) Å c = 16.3505 (19) Å $V = 1610.8 (3) \text{ Å}^3$ Z = 4 Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.16 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.986$, $T_{\max} = 0.991$ 10373 measured reflections 3911 independent reflections 3113 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.101$ S = 1.05 3911 reflections 217 parameters 125 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.12 \text{ e Å}^{-3}$

 $\Delta \rho_{\text{max}} = 0.12 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e Å}^{-3}$

Table 1
Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1W-H1WA\cdots O2$	0.86 (1)	1.97 (1)	2.8249 (19)	178 (3)
$O1W-H1WB\cdots N1$	0.86 (1)	1.97 (1)	2.831 (2)	176 (3)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 21001040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2091).

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, X.-F., Liu, W.-S., Guo, Z.-J. & Tan, M.-Y. (2003). *Inorg. Chem.* 42, 8735–

Li, X.-M., Wen, Y.-H., Li, M.-J. & Zhang, S.-S. (2005). Acta Cryst. E61, o2389– o2390.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215

Zhi, L.-H., Wu, W.-N., Li, X.-X., Li, Y.-W. & Wang, Y. (2011). Acta Cryst. E67, 068.

supplementary m	aterials	

Acta Cryst. (2011). E67, o1420 [doi:10.1107/S1600536811017181]

N-Methyl-N-phenyl-2-(quinolin-8-yloxy)acetamide monohydrate

L.-H. Zhi, W.-N. Wu, S. Li, Y.-L. Li and X.-D. Cai

Comment

The amide type open-chain ligands have attracted much attention mainly because their excellent coordination ability and high selectivity to metal ions. Lanthanide complexes usually exhibit fascinating properties that may have potential applications in biology, medicine, and material science (Li *et al.*, 2003). The luminescent properties of lanthanide complexes with amide type ligands have been investigated in our previous work (Wu *et al.*, 2008). As part of our ongoing studies of the amide type ligands, the title compound was synthesized and characterized by X-ray diffraction.

In the title compound, all bond lengths are comparable with those observed in a similar compound (Li *et al.*, 2005). The dihedral angle between the quinoline ring (N1/C1–C9, r.m.s. deviation 0.0038 Å) and the benzene ring(C13–C18, r.m.s. deviation 0.0049 Å) is 87.19 (8)°. In the crystal structure, solvent water molecules form intermolecular O—H···N and O—H···O hydrogen bonds with acetamide molecules to stabilize the packing (Table 1).

Experimental

8-Hydroxyquinoline (1.5 g, 10.3 mmol) and anhydrous potassium carbonate (1.6 g, 11.6 mmol)were added to DMF (15 mL), then 2-chloro-*N*-methyl-*N*-phenylacetamide (1.83 g, 10.0 mmol, Zhi *et al.*, 2011) and a small quantity of KI were added. The reaction mixture was stirred for 5 h at 100–110 °C. After cooling down, 150 mL water was added and stirred for 2 h. The precipitate was collected by filtration and washed with water. Recrystallization from EtOH/H₂O (1:1) gave colorless blocks.

Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.93 and 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2 \text{Ueq}(C)$. The water H atoms were located from difference Fourier map calculation and then refined unsing *DFIX* and DANG instruction, with O—H = 0.85Å and $U_{iso}(H) = 1.5 \text{Ueq}(O)$. DELU, SIMU and ISOR restraints have been applied on the U_{ij} -values of the C atoms.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level.

N-Methyl-N-phenyl-2-(quinolin-8-yloxy)acetamide monohydrate

Crystal data

 $C_{18}H_{16}N_2O_2\cdot H_2O$ F(000) = 656

 $M_r = 310.34$ $D_x = 1.280 \text{ Mg m}^{-3}$

Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Hall symbol: P 2ac 2ab $\theta = 1.9-28.2^{\circ}$ a = 6.6028 (8) Å $\mu = 0.09 \text{ mm}^{-1}$ b = 14.9207 (18) Å T = 296 K c = 16.3505 (19) Å Block, colorless

 $V = 1610.8 (3) \text{ Å}^3$ $0.16 \times 0.15 \times 0.10 \text{ mm}$

Z = 4

Data collection

Bruker SMART CCD 3911 independent reflections

Radiation source: fine-focus sealed tube 3113 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.027$

 ϕ and ω scans $\theta_{max} = 28.2^{\circ}, \, \theta_{min} = 1.9^{\circ}$

Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\text{min}} = 0.986, T_{\text{max}} = 0.991$ $k = -19 \rightarrow 18$

10373 measured reflections $l = -21 \rightarrow 18$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full

Hydrogen site location: inferred from neighbouring

sites

 $R[F^2 > 2\sigma(F^2)] = 0.039$ H atoms treated by a mixture of independent and

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0498P)^2 + 0.0847P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $S = 1.05 \qquad (\Delta/\sigma)_{\text{max}} = 0.005$

3911 reflections $\Delta \rho_{max} = 0.12 \ e \ \text{Å}^{-3}$

217 parameters $\Delta \rho_{min} = -0.14 \text{ e Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct

methods

Extinction coefficient: 0.0132 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
O1	0.80212 (17)	0.10711 (7)	0.15970 (6)	0.0452(3)
O2	0.8822(2)	0.06977 (8)	0.31349 (8)	0.0583 (4)
C8	0.7564 (3)	0.12177 (10)	0.07926 (9)	0.0420(4)
N2	0.6671 (2)	0.17225 (9)	0.36347 (8)	0.0471 (3)
N1	1.0695 (2)	0.04605 (10)	0.05053 (9)	0.0510(4)
C10	0.6699 (3)	0.14635 (11)	0.21760 (9)	0.0440 (4)
H10A	0.5345	0.1221	0.2113	0.053*
H10B	0.6637	0.2107	0.2095	0.053*
C11	0.7500(2)	0.12557 (10)	0.30174 (10)	0.0419(3)
C9	0.9020(3)	0.08886 (10)	0.02220 (10)	0.0437 (4)
C13	0.5129 (2)	0.23910 (10)	0.35189 (9)	0.0415 (4)
C7	0.5874 (3)	0.16515 (12)	0.05232 (12)	0.0552 (5)
H7	0.4921	0.1860	0.0896	0.066*
C18	0.5634(3)	0.32878 (11)	0.35671 (12)	0.0525 (4)
H18	0.6969	0.3456	0.3665	0.063*
C4	0.8680(3)	0.10316 (12)	-0.06202 (11)	0.0574 (5)
C14	0.3166 (3)	0.21536 (12)	0.33744 (12)	0.0560 (5)
H14	0.2810	0.1551	0.3349	0.067*
C17	0.4168 (3)	0.39294 (12)	0.34698 (13)	0.0596 (5)
H17	0.4515	0.4532	0.3504	0.072*
C2	1.1823 (4)	0.02794 (15)	-0.08759 (13)	0.0711 (5)
H2	1.2811	0.0065	-0.1230	0.085*
C3	1.0166 (4)	0.07026 (13)	-0.11641 (12)	0.0676 (5)
Н3	1.0001	0.0778	-0.1725	0.081*
C12	0.7333 (4)	0.15493 (14)	0.44699 (11)	0.0660 (5)
H12A	0.8400	0.1112	0.4465	0.099*
H12B	0.6214	0.1326	0.4785	0.099*
H12C	0.7821	0.2095	0.4710	0.099*
C1	1.2014 (3)	0.01726 (14)	-0.00346 (12)	0.0651 (5)
H1	1.3157	-0.0124	0.0159	0.078*
C15	0.1708 (3)	0.28045 (14)	0.32658 (14)	0.0636 (5)
H15	0.0379	0.2638	0.3153	0.076*
C16	0.2201 (3)	0.36932 (13)	0.33224 (11)	0.0572 (5)

H16	0.1210	0.4131	0	0.3261	0.069*	
C6	0.5576 (4)	0.17827 (1	13) -	-0.03189 (14)	0.0698 (6)	
Н6	0.4425	0.2084	-	-0.0497	0.084*	
C5	0.6923 (4)	0.14804 (1	14) -	-0.08755 (13)	0.0716 (6)	
H5	0.6686	0.1570	-	-0.1430	0.086*	
O1W	1.2156 (2)	0.02723 (1	13) 0	0.21238 (9)	0.0780 (5)	
H1WA	1.116 (3)	0.039(2)	0	0.2438 (12)	0.117*	
H1WB	1.175 (4)	0.035(2)	0	0.1629 (7)	0.117*	
Atomic displa	cement parameters	(3^2)				
Atomic dispidi						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0470 (6)	0.0525 (6)	0.0361 (6)	0.0104 (5)	0.0031 (5)	-0.0040(5)
O2	0.0599 (8)	0.0629 (7)	0.0521 (7)	0.0214 (7)	0.0033 (6)	0.0043 (6)
C8	0.0488 (9)	0.0365 (7)	0.0408 (8)	-0.0012 (7		-0.0026 (6)
N2	0.0526 (8)	0.0498 (7)	0.0388 (7)	0.0069 (7)	-0.0004 (6)	-0.0044 (6)
N1	0.0518 (8)	0.0548 (8)	0.0464 (8)	0.0031 (7)	0.0078 (7)	-0.0076 (7)
C10	0.0421 (8)	0.0464 (8)	0.0434 (9)	0.0066 (7)	0.0034 (7)	-0.0065 (6)
C11	0.0407 (8)	0.0403 (7)	0.0447 (8)	-0.0014 (7	0.0044 (7)	0.0006 (6)
C9	0.0550 (10)	0.0375 (8)	0.0387 (8)	-0.0057 (7	0.0012 (7)	-0.0039 (6)
C13	0.0455 (9)	0.0432 (8)	0.0359 (8)	0.0022 (7)	0.0068 (7)	-0.0048 (6)
C7	0.0585 (11)	0.0503 (9)	0.0567 (11	0.0080 (9)	-0.0105 (9)	-0.0038 (8)
C18	0.0482 (9)	0.0485 (9)	0.0609 (11	-0.0033 (9	0.0073 (8)	-0.0083 (8)
C4	0.0805 (12)	0.0517 (9)	0.0399 (9)	-0.0131 (9	0.0012 (8)	-0.0027 (7)
C14	0.0520 (10)	0.0456 (9)	0.0702 (12	2) -0.0054 (8	0.0062 (9)	-0.0068 (8)
C17	0.0673 (12)	0.0426 (9)	0.0688 (12	2) -0.0005 (9	0.0122 (10)	-0.0021 (8)
C2	0.0772 (12)	0.0777 (11)	0.0583 (10	0) -0.0052 (1	1) 0.0226 (10)	-0.0194 (9)
C3	0.0946 (13)	0.0671 (10)	0.0410 (9)	-0.0168 (1	0.0102 (9)	-0.0082 (8)
C12	0.0814 (14)	0.0756 (12)	0.0409 (9)	0.0124 (11	-0.0048 (10)	-0.0004 (8)
C1	0.0650 (11)	0.0710 (10)	0.0594 (10	0.0011 (10	0.0170 (9)	-0.0157 (8)
C15	0.0460 (10)	0.0669 (12)	0.0779 (13	0.0010 (9)	0.0040 (10)	-0.0074 (10)
C16	0.0607 (12)	0.0571 (10)	0.0538 (10	0.0140 (9)	0.0081 (9)	0.0007 (8)
C6	0.0790 (14)	0.0625 (11)	0.0680 (13	0.0115 (11	-0.0239 (11)	0.0068 (10)
C5	0.1004 (17)	0.0673 (12)	0.0472 (11	-0.0026 (1	2) -0.0181 (12)	0.0063 (9)
O1W	0.0531 (8)	0.1216 (12)	0.0594 (8)	0.0265 (9)	-0.0078 (7)	-0.0196 (9)
Geometric pai	rameters (Å, °)					
O1—C8		1.3670 (19)	(C4—C3	1 4	12 (3)
O1—C10		1.4148 (19)		C14—C15		79 (3)
O2—C11		1.2217 (19)		C14—H14	0.93	
C8—C7		1.363 (2)		C17—C16		67 (3)
C8—C9		1.427 (2)		C17—H17	0.93	
N2—C11		1.343 (2)		C2—C3		48 (3)
N2—C11 N2—C13		1.438 (2)		C2—C1		91 (3)
N2—C13 N2—C12		1.457 (2)		C2—H2	0.93	
N1—C1		1.312 (2)		C3—H3	0.93	
N1—C9		1.358 (2)		C12—H12A	0.90	
C10—C11		1.506 (2)		C12—H12B	0.90	
210 011		1.500 (2)			0.70	

C10—H10A	0.9700	C12—H12C	0.9600
C10—H10B	0.9700	C1—H1	0.9300
C9—C4	1.412 (2)	C15—C16	1.368 (3)
C13—C14	1.364 (3)	C15—H15	0.9300
C13—C18	1.381 (2)	C16—H16	0.9300
C7—C6	1.405 (3)	C6—C5	1.350(3)
C7—H7	0.9300	C6—H6	0.9300
C18—C17	1.371 (3)	C5—H5	0.9300
C18—H18	0.9300	O1W—H1WA	0.855 (10)
C4—C5	1.403 (3)	O1W—H1WB	0.860 (10)
C8—O1—C10	116.19 (12)	C13—C14—H14	119.9
C7—C8—O1	124.58 (15)	C15—C14—H14	119.9
C7—C8—C9	120.25 (15)	C16—C17—C18	120.76 (17)
O1—C8—C9	115.17 (14)	C16—C17—H17	119.6
C11—N2—C13	123.34 (13)	C18—C17—H17	119.6
C11—N2—C12	119.34 (15)	C3—C2—C1	118.3 (2)
C13—N2—C12	117.32 (14)	C3—C2—H2	120.9
C1—N1—C9	117.70 (16)	C1—C2—H2	120.9
O1—C10—C11	108.01 (13)	C2—C3—C4	120.4 (2)
O1—C10—H10A	110.1	C2—C3—H3	119.8
C11—C10—H10A	110.1	C4—C3—H3	119.8
O1—C10—H10B	110.1	N2—C12—H12A	109.5
C11—C10—H10B	110.1	N2—C12—H12B	109.5
H10A—C10—H10B	108.4	H12A—C12—H12B	109.5
O2—C11—N2	121.78 (15)	N2—C12—H12C	109.5
O2—C11—C10	122.34 (14)	H12A—C12—H12C	109.5
N2—C11—C10	115.88 (14)	H12B—C12—H12C	109.5
N1—C9—C4	122.23 (16)	N1—C1—C2	124.6 (2)
N1—C9—C8	119.17 (14)	N1—C1—H1	117.7
C4—C9—C8	118.59 (17)	C2—C1—H1	117.7
C14—C13—C18	119.42 (16)	C16—C15—C14	120.51 (19)
C14—C13—N2	121.02 (15)	C16—C15—H15	119.7
C18—C13—N2	119.55 (15)	C14—C15—H15	119.7
C8—C7—C6	119.84 (19)	C17—C16—C15	119.19 (19)
C8—C7—H7	120.1	C17—C16—H16	120.4
C6—C7—H7	120.1	C15—C16—H16	120.4
C17—C18—C13	119.93 (17)	C5—C6—C7	121.5 (2)
C17—C18—H18	120.0	C5—C6—H6	119.3
C13—C18—H18	120.0	C7—C6—H6	119.3
C5—C4—C9	119.61 (18)	C6—C5—C4	120.24 (19)
C5—C4—C3	123.58 (19)	C6—C5—H5	119.9
C9—C4—C3	116.8 (2)	C4—C5—H5	119.9
C13—C14—C15	120.17 (17)	H1WA—O1W—H1WB	107.3 (16)
C10—O1—C8—C7	-5.0 (2)	C14—C13—C18—C17	0.0(3)
C10—O1—C8—C9	174.32 (13)	N2—C13—C18—C17	-179.02 (16)
C8—O1—C10—C11	-177.88 (13)	N1—C9—C4—C5	-179.83 (17)
C13—N2—C11—O2	179.28 (15)	C8—C9—C4—C5	-0.7(2)
C12—N2—C11—O2	-1.2 (2)	N1—C9—C4—C3	0.3(2)

C13—N2—C11—C10	-0.7 (2)	C8—C9—C4—C3	179.43 (15)
C12—N2—C11—C10	178.81 (16)	C18—C13—C14—C15	0.9(3)
O1—C10—C11—O2	-12.8 (2)	N2—C13—C14—C15	179.93 (17)
O1—C10—C11—N2	167.15 (14)	C13—C18—C17—C16	-0.2 (3)
C1—N1—C9—C4	-0.3 (2)	C1—C2—C3—C4	0.4(3)
C1—N1—C9—C8	-179.41 (16)	C5—C4—C3—C2	179.79 (19)
C7—C8—C9—N1	179.84 (15)	C9—C4—C3—C2	-0.4(3)
O1—C8—C9—N1	0.5 (2)	C9—N1—C1—C2	0.4(3)
C7—C8—C9—C4	0.7 (2)	C3—C2—C1—N1	-0.4(3)
O1—C8—C9—C4	-178.61 (14)	C13—C14—C15—C16	-1.7(3)
C11—N2—C13—C14	77.0 (2)	C18—C17—C16—C15	-0.5(3)
C12—N2—C13—C14	-102.5 (2)	C14—C15—C16—C17	1.5 (3)
C11—N2—C13—C18	-103.99 (19)	C8—C7—C6—C5	0.6(3)
C12—N2—C13—C18	76.5 (2)	C7—C6—C5—C4	-0.7(3)
O1—C8—C7—C6	178.61 (17)	C9—C4—C5—C6	0.7(3)
C9—C8—C7—C6	-0.7(3)	C3—C4—C5—C6	-179.47(19)

Hydrogen-bond geometry (Å, °)

D— H ··· A	D—H	$H\cdots A$	D··· A	D— H ··· A
O1W—H1WA···O2	0.86(1)	1.97(1)	2.8249 (19)	178 (3)
O1W—H1WB···N1	0.86(1)	1.97(1)	2.831(2)	176 (3)

Fig. 1

