Introduction

We will attempt to solve a second-order ODE numerically on python. We will use the classical harmonic oscillator as an example. However, we will first solve the problem analytically. Recall for a mass on a 1-D mass-less spring, the mass moves in one-dimension according to Hooke's law, and Newton's second law:

$$F_H = -kx(t)$$
 Hookes' law (1)

$$F_N = \frac{\mathrm{d}p(t)}{\mathrm{d}t}$$
 Newton's second law (2)

Where k is the force constant. The mass of the object is constant, and as such, equation (2) reduces to:

$$F = m \frac{\mathrm{d}v(t)}{\mathrm{d}t}$$

$$= mx(t)$$
(3)

$$= mx(t) \tag{4}$$

where x(t) is the acceleration of the mass attached to the spring.

Solving the H.O. without damping

We begin by setting Hooke's law equal to Newton's law to see the ODE:

$$F_{N} = F_{H}$$

$$m\ddot{x} = -kx$$

$$m\ddot{x} + kx = 0$$

$$\ddot{x} + \frac{k}{m}x = 0$$
(5)

where we omitted to write x(t) for clarity, but remembering that it is time dependent. We will also set the constant $\frac{k}{m} = \omega^2$.

Solving the H.O.-cont'd

Our equation can now be written as:

$$\ddot{x} + \omega^2 x = 0 \tag{6}$$

We can now ask ourselves, which function when differentiated twice, and added to itself yields zero. Both cosine and sine would work, as well as a linear combination of them.

Solving cont'd

If we choose $x(t) = A\cos(\omega t) + B\sin(\omega t)$ as our guess for the solution, we see:

$$x = A\cos(\omega t) + B\sin(\omega t) \tag{7}$$

$$\dot{x} = -A\omega \sin(\omega t) + B\omega \cos(\omega t) \tag{8}$$

$$\ddot{x} - A\omega^2 \cos(\omega t) - B\omega^2 \sin(\omega t) \tag{9}$$

We can in fact see, if we add our expression for \ddot{x} to our guess for x, it does solve the Homogeneous equation. Now, we need to define initial conditions to fix the values of A and B.

Choosing initial conditions

Let us choose that the particle starts at rest v(0) = 0, and at some elongation $x(0) = x_0$

$$\dot{x} = -A\omega\sin(\omega * 0) + B\omega\cos(\omega * 0) = 0 \tag{10}$$

this condition is satisfied if B=0, this picks out the cosine solution.

$$x(0) = A\cos(\omega * 0) = x_0 \quad \rightarrow A = x_0. \tag{11}$$

Analytic solution

Hence, we see that the equation, for these sets of initial conditions, our solution simplifies to:

$$x(t) = x_0 \cos(\omega t)$$

$$x(t) = x_0 \cos\left(\sqrt{\frac{k}{m}}t\right)$$
(12)

Therefore, the mass oscillates about the position x_0 (the amplitude of the motion), with angular frequency $\omega = \sqrt{\frac{k}{m}}$.

Solving the H.O. with damping

In the case of damped motion, air(fluid) resistance or friction with a surface or both could contribute to damping the motion of the mass m. This friction force is proportional to the velocity of the mass m (for small velocities of oscillation). Hence, we can write the intervening forces as:

$$F_H = -kx$$
; $F_N = m\ddot{x}$ quad; $F_D = -\mu\dot{x}$

the drag coefficient μ is related to the medium/material doing the drag. It is important to remember that the spring acts on the mass with a restoring force F_H , so it acts opposite to the motion of the mass. Similarly, the drag force resists the mass' motion, so it acts in the same direction as the F_H . This fact is the reason mathematically, F_H and F_D have the same sign.

Second-order differential with constant coefficient

The equation we want to solve is the following:

$$m\ddot{x} + \mu \dot{x} + kx = 0 \tag{13}$$

$$\ddot{x} + \frac{\mu}{m} + \frac{k}{m} = 0 \tag{14}$$

We can guess a function $x(t) = e^{ct}$ as the solution and plug it back in the differential equation:

$$c^{2}e^{ct} + \frac{\mu c}{m}e^{ct} + \frac{k}{m}e^{ct} = 0$$
 (15)

$$e^{ct}\left(c^2 + \frac{\mu c}{m} + \frac{k}{m}\right) = 0\tag{16}$$

We realize then that we need only solve the quadratic equation for the parameter c. The general solutions of c are given by:

$$c_{1,2} = -\frac{\mu}{2m} \pm \sqrt{\left(\frac{\mu}{2m}\right)^2 - \frac{k}{m}} \tag{17}$$

Solving the quadratic part and finding general solutions

We can set $\omega^2 = \frac{k}{m}$ as before, in addition to setting $\delta = \frac{\mu}{2m}$. Our expression for the solutions of c is then:

$$c_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega^2} \tag{18}$$

Depending on the value of the discriminant, we can have, for c: (i) **two solutions** $c_1 \neq c_2$ if $\delta^2 - \omega^2 > 0$, (ii) **one solution** such that $c_1 = c_2$ if $\delta^2 - \omega^2 = 0$ and (iii) **complex solutions** if $\delta^2 - \omega^2 < 0$. These three cases correspond to three different physical situations. If:

- $\delta^2 \omega^2 > 0$, this referred to as an *overdamped* motion
- $\delta^2 \omega^2 = 0$, this is referred to as a *critically damped* motion
- $\delta^2 \omega^2 < 0$, this is referred to as the *underdamped* motion

The general solutions to three physical situations

For each type of damped motion, there are associated solutions that describe the motion of the mass:

- overdamped motion: $x(t) = Ae^{c_1t} + Be^{c_2t}$
- critically damped motion: $x(t) = Ae^{c_1t} + Bte^{c_1t}$
- underdamped motion: $x(t) = e^{-\delta t} \left(A e^{i\omega t} + B e^{-i\omega t} \right)$

The values of the coefficients A and B are determined from the initial conditions. The values of m, k and μ fix the values of δ and ω , specifying which physical situation we are in, and consequently, which model to choose.