МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет (национальный исследовательский университет)»

Высшая школа электроники и компьютерных наук
Кафедра системного программирования

РАЗРАБОТКА ДЕСКТОПНОГО ПРИЛОЖЕНИЯ ДЛЯ РАСЧЕТА МАРШРУТА СЕЛЬСКОХОЗЯЙСТВЕННОГО ДРОНА ПО ИМЕЮЩИМСЯ ХАРАКТЕРИСТИКАМ

Научный руководитель:

Автор:

д.ф.-м.н., доцент, профессор каф. СП

студент группы КЭ-303

Т.А. Макаровских

Е.В. Ращупкин

ЦЕЛЬ И ЗАДАЧИ

Цель работы:

Разработка десктопного приложения для расчета маршрута сельскохозяйственного дрона по имеющимся характеристикам

Задачи:

- 1. Выполнить анализ предметной области и произвести обзор существующих решений.
- 2. Разработать базовую архитектуру приложения.
- 3. Выполнить реализацию приложения.
- 4. Выполнить тестирование.

АКТУАЛЬНОСТЬ

Актуальность данной работы обусловлена растущим интересом к применению беспилотных летательных аппаратов (БПЛА) в сельском хозяйстве и необходимостью развития точного земледелия. В частности, дроны используются для мониторинга урожая и создания точных карт полей, что является ключевым сегментом "умного сельского хозяйства".

Преимущества:

- 1) повышении эффективности использования БПЛА;
- 2) сокращение затраты на выезд специалистов;
- 3) скорость и точность предварительной оценки затрат на выезд специалистов.

ОБЗОР АНАЛОГОВ

Возможность	DroneDeploy	Litchi	Pix4D Capture	UgCS
Планирование маршрута полета	Да	Да	Да	Да
Управление полетом дрона	Да	Да	Да	Да
Обработка полученных данных	Да	Да	Да	Да
Визуализация карты	Да	Да	Да	Да
Ограниченный ряд поддерживаемых дронов	Да	Да	Да	Да
Добавление собственных дронов	Ограничение функционала	Ограничение функционала	Нет	Ограничение функционала
Поддержка ОС	iOS, Android + Windows, macOS, Linux	iOS, Android + Windows, macOS, Linux	iOS, Android	Windows, macOS, Linux, Android
Лицензия	Проприетарная	Проприетарная	Проприетарная	Проприетарная
Стоимость	\$149+/месяц	\$25	Бесплатно	€790+ или €149+/месяц

ДИАГРАММА ВАРИАНТОВ ИСПОЛЬЗОВАНИЯ

ДИАГРАММА КОМПОНЕНТОВ СИСТЕМЫ

ДИАГРАММА ДЕЯТЕЛЬНОСТИ

МОДЕЛЬ БАЗЫ ДАННЫХ

mydatabase.db		Y 3	3;	ar and a second	
uav			camera		
uav_id	INTEGER		camera_id	INTEGER	
uav_name	TEXT		camera_name	TEXT	
uav_max_payload_mass	INTEGER		camera_mass	INTEGER	
uav_flight_duration	INTEGER		camera_fov_x	REAL	
uav_takeoff_speed	REAL		camera_resolution_x	INTEGER	
uav_flight_speed	REAL		camera_resolution_y	INTEGER	
uav_min_altitude	REAL	5		i di	
uav_max_altitude	REAL				

ИСПОЛЬЗУЕМЫЕ ТЕХНОЛОГИИ

- -Фреймворк: Tauri.
- –Язык программирования бэкенда: Rust.
- -База данных: Sqlite.
- -Фреймворк фронтенда: Svelte.
- -Язык программирования фронтенда: TypeScript.
- -Библиотека для отображения карты: OpenLayers.

АЛГОРИТМ ДИСКРИТЕЗАЦИИ ОБЛАСТИ

- 1. Найти минимальные и максимальные значения х и у из заданных координат многоугольника.
- 2. Перебирать значения х и у в пределах минимальных и максимальных значений с шагом, равным ширине и высоте области съемки.
- 3. Рассчитать координаты углов прямоугольника для каждой позиции.
- 4. Проверить, находится ли хотя бы один угол прямоугольника внутри многоугольника.
- 5. Если хотя бы один угол находится внутри, рассчитать координаты центра прямоугольника.
- 6. Добавить координаты центра в результирующий вектор.
- 7. Повторять шаги с 2 по 6 до тех пор, пока все позиции в пределах диапазона не будут обработаны.
- 8. Вернуть результирующий вектор, содержащий координаты центров прямоугольников, пересекающихся с многоугольником.

ВИЗУАЛИЗАЦИЯ РАБОТЫ АЛГОРИТМА ДИСКРЕТИЗАЦИИ

АЛГОРИТМ БЛИЖАЙШЕГО СОСЕДА

- 1. Установить текущую точку равной начальной позиции.
- 2. Найти ближайшую точку к текущей точке.
- 3. Удалить ближайшую точку из списка оставшихся точек.
- 4. Добавить ближайшую точку в список результатов.
- 5. Обновить текущую точку до ближайшей точки.
- 6. Если список оставшихся не пуст, вернутся к шагу 2.
- 7. Добавить начальную точку в конец списка результатов.
- 8. Вернуть список результатов в качестве выходных данных.

АЛГОРИТМ ПОЛНЫЙ ПЕРЕБОР

- 1. Для каждой точки создается новый поток, каждый из которых вычисляет кратчайший путь от этой точки.
- 2. В каждом потоке вызывается вспомогательная функция рекурсивно проверяющая все возможные пути.
- 3. Пройдя по всем точкам, она вычисляет общее расстояние и, если оно самое короткое на данный момент, обновляет лучший путь.
- 4. Когда все потоки завершены, извлекается кратчайший путь самый эффективный маршрут между точками.

интерфейс системы

РАБОТА АЛГОРИТМА БЛИЖАЙШИЙ СОСЕД

РАБОТА АЛГОРИТМА ПОЛНЫЙ ПЕРЕБОР

ТЕСТИРОВАНИЕ СИСТЕМЫ

Проведено 14 функциональных тестов системы.

Все тесты пройдены.

Тест 9: «Редактирование камеры»:

- 1) выбрать камеру;
- 2) включить режим редактирования;
- 3) изменить параметры камеры;
- 4) нажать кнопку "Update".

Тест 9 Пройден.

```
Some Camera >
                Fetch
Camera detatils
  Edit Mode
 ID:
  Name:
  Some Camera upd
 Mass (grams):
  256
  X-axis FOV
  (degrees):
 Resolution X:
  1920
 Resolution Y:
  1080
Update
        New
                       Undo
```

```
sqlite> select * from camera where (camera_id=6);
6|Some Camera upd|256|60.0|1920|1080
sqlite>
```

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- 1. Выполнен анализ предметной области и произведен обзор существующих решений.
- 2. Разработана базовая архитектура приложения.
- 3. Выполнена реализация приложения.
- 4. Выполнено тестирование.