1 Organizační úvod

Přesun nebyl odhlasován.

Poznámka (Literatura)

• Engelking: General Topology (spíš taková příručka, hodně obtížná)

• Čech: Bodová topologie

• Kelley: General Topology

• Willard: General Topology

Doporučené jsou poslední dvě.

Poznámka (Podmíny zakončení)

Zkouška (ústní) + úkoly ze cvičení (a účast na cvičení)

2 Úvod

Poznámka (Historie)

- Euler: mosty ve městě Královec (7 mostů, Eulerovský tah)
- Listing (1847): pojem topologie (bez rigorózních definic)
- Poincaré (1895): Analysis Situs (Poincarého hypotéza)
- Fréchet (1906): definuje metrický prostor (až dodnes)
- Hausdorff (1914): tzv. Hausdorffův TP
- Kuratowski (1922): TP, jak jej známe dnes (formálně)

Poznámka (TOPOSYM)

V Praze se každých 5 let koná významná konference topologů – TOPOSYM.

3 Základní pojmy

Topos = umístění (řečtina).

3.1 Topologický prostor, báze, subbáze, váha, charakter

Definice 3.1 (Topologický prostor (TP))

Uspořádaná dvojice (\mathbb{X}, τ) se nazývá topologický prostor, pokud \mathbb{X} je množina, $\tau \subseteq \mathcal{P}(\mathbb{X})$ a platí:

- (T1) \emptyset , $\mathbb{X} \in \tau$
- (T2) jsou-li $\mathbb{U}, \mathbb{V} \in \tau$, pak $\mathbb{U} \cap \mathbb{V} \in \tau$
- (T3) je-li $\mathcal{U} \in \tau$, pak $\bigcup \mathcal{U} \in \tau$.

Definice 3.2 (Topologie)

Systém τ se nazýva
jí body. Prvky τ se nazývají body. Prvky τ se nazývají o
tevřené množiny.

Definice 3.3 (Okolí bodu)

Množina $\mathbb{V} \subseteq \mathbb{X}$ se nazývá okolí bodu x, pokud existuje $\mathbb{U} \in \tau$, že $x \in \mathbb{U} \subseteq \mathbb{V}$. Množina všech okolí bodu x značíme $\mathcal{U}(x) = \mathcal{U}_{\tau}(x)$.

Definice 3.4 (Báze a subbáze)

Soubor množin $\mathcal{B} \subseteq \tau$ se nazývá báze topologie τ , pokud pro každé $\mathbb{U} \in \tau$ existuje $\mathcal{U} \subseteq \mathbb{B}$: $\bigcup \mathcal{U} = \mathbb{U}$. Soubor $\mathcal{S} \subseteq \tau$ se nazývá subbáze topologie τ , pokud $\{\bigcap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S}$ konečná $\}$ je báze topologie τ .

Tvrzení 3.1 (Charakterizace otevřené množiny pomocí okolí)

```
\begin{array}{l} At \ (\mathbb{X},\tau) \ je \ TP \ a \ \mathbb{U} \in \mathbb{X}. \ Pak \ \mathbb{U} \in \tau, \ pr\'{a}v\check{e} \ kdy\check{z} \ \forall x \in \mathbb{U} \exists \mathbb{V} \in \mathcal{U}(x) : \mathbb{V} \subseteq \mathbb{U} \\ \hline D\mathring{u}kaz \\ \text{D\mathring{u}kaz} \ (\Longrightarrow) \ \text{vid\'ime} \ \mathbb{U} = \mathbb{V}. \\ \\ \text{Opačně v\'{ime}} \ \forall x \in \mathbb{U} \exists \mathbb{V}_x \in \mathcal{U}(x) : \mathbb{V}_x \subseteq \mathbb{U}. \ \exists \mathbb{W}_x \in \tau : x \in \mathbb{W}_x \subseteq \mathbb{U}_x. \ \mathbb{U} = \bigcup_{x \in \mathbb{U}} \mathbb{W}_x \in \tau. \\ \hline \tau. \ \text{Tedy} \ \mathbb{U} \in \tau. \end{array}
```

Příklad

Je-li (\mathbb{X} , ϱ) metrický prostor (MP), pak soubor všech ϱ -otevřených množin tvoří topologii na množině \mathbb{X} .

Definice 3.5 (Metrizovatelný TP)

TP (X, τ) se nazývá metrizovatelný, pokud na množině X existuje metrika ϱ tak, že topologie odvozené z (X, ϱ) splývá s topologií τ .

Příklad

Je-li (X, ϱ) MP, pak systém všech otevřených koulí tvoří bázi topologie τ_{ϱ} .

Například

Všechny otevřené intervaly tvoří bázi topologie na \mathbb{R} .

Systém $\{(-\infty, b), (a, \infty) : a, b \in \mathbb{R}\}$ je subbáze topologie na \mathbb{R} .

Příklad (Diskrétní a indiskrétní TP)

Je-li \mathbb{X} množina, pak $(\mathbb{X}, \mathcal{P}(\mathbb{X}))$ je TP, nazývá se diskrétní TP (a vždy je metrizovatelný). Naopak $(\mathbb{X}, \{\emptyset, \mathbb{X}\})$ se nazývá indiskrétní TP. (Pokud $|\mathbb{X}| \geq 2$, pak indiskrétní TP není metrizovatelný.)

Tvrzení 3.2 (Vlastnosti báze)

Je- $li(X, \tau)$ TP a \mathcal{B} jeho báze, pak

 $(B1) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{B} \forall x \in \mathbb{U} \cap \mathbb{V} \exists \mathbb{W} \in \mathbb{B} : x \in \mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V},$

 $(B2) \mid \mathcal{B} = \mathbb{X}.$

Je-li $\mathbb X$ libovolná množina a $\mathcal B\subseteq \mathbb P(\mathbb X)$ splňuje podmínky (B1), (B2), pak na $\mathbb X$ existuje jediná topologie, jejíž báze je $\mathbb B$.

 $D\mathring{u}kaz$

První část je snadná (průnik 2 množin báze je otevřený, tj. prvkem topologie, tedy se dá zapsat jako sjednocení podmnožiny báze).

Druhá část: Mějme tedy \mathbb{X} a \mathcal{B} z věty splňující obě podmínky. Definujme $\tau := \{ \bigcup \mathcal{U} : \mathcal{U} \subseteq \mathcal{B} \}. \ \tau$ je topologie na \mathbb{X} (ověříme, že τ splňuje podmínky topologie).

Zároveň volba τ je jediná množná, jelikož každý její prvek se musí dát vyjádřit jako sjednocení báze a opačně. \Box

Důsledek

Je-li $\mathbb X$ množina, $\mathcal S\subseteq\mathcal P(\mathbb X)$ a $\bigcup\mathcal S=\mathbb X$, pak $\mathcal S$ je subbáze jednoznačně určené topologie na $\mathbb X$.

 $D\mathring{u}kaz$

 $\mathcal{B} = \{ \cap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S}$ konečná $\}$ splňuje podmínky (B1) a (B2) předchozího tvrzení (B2 definice \mathcal{S} , B1 protože $\mathbb{U}, \mathbb{V} \in \mathcal{B}, \mathbb{U} = \bigcup \mathcal{F}_1, \mathbb{V} = \bigcap \mathcal{F}_2, \mathcal{F}_1, \mathcal{F}_2 \subseteq \mathcal{S}$ konečné. $\mathbb{U} \cap \mathbb{V} = \bigcap (\mathcal{F}_1 \cup \mathcal{F}_2) \in \mathcal{B}$. (Dokonce celý průnik je prvkem \mathcal{B} , nejenom pro každý prvek existuje množina, která ho obsahuje, je podmnožinou průniku a je v \mathcal{B}).

Tvrzení 3.3 (Vlastnosti systému všech okolí)

Je- $li(X, \tau)$ TP, pak soubory $v\check{s}ech$ $okoli(U_{\tau}(x), x \in X)$ $spl\check{n}u\check{j}i$

 $(U1) \ \forall x \in \mathbb{X} : \mathcal{U}(x) \neq \emptyset, x \in \bigcap \mathcal{U}(x),$

 $(U2) \ \forall \mathbb{U} \in \mathcal{U}(x) \forall \mathbb{V} : \mathbb{U} \subseteq \mathbb{V} \subseteq \mathbb{X} \implies \mathbb{V} \in \mathcal{U}(x),$

 $(U3) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{V} \in \mathcal{U}(x),$

 $(U4) \ \forall \mathbb{U} \in \mathcal{U}(x) \exists \mathbb{V} \in \mathcal{U}(x) \forall y \in \mathbb{V} : \mathbb{U} \in \mathcal{U}(y)$

Je-li $\mathbb X$ množina a systémy množin $\mathcal U(x)\subseteq\mathcal P(\mathbb X), x\in\mathbb X$ splňující podmínky (U1-4), pak na množině $\mathbb X$ existuje jediná topologie τ , že $\mathcal U(x)=\mathcal U_\tau(x), x\in\mathbb X$.

 $D\mathring{u}kaz$

První část snadná. (Domácí cvičení.)

Položme $\tau=\{\mathbb{U}\in\mathcal{P}(\mathbb{X}): \forall x\in\mathbb{U}, \mathbb{U}\in\mathcal{U}(x)\}.$ τ je topologie na X. Z (U1) a (U2) vyplyne (T1). Atd...

Definice 3.6 (Báze okolí)

At (X, τ) je TP. Systém množin $\mathcal{B}(x) \subseteq \mathcal{P}(X)$ se nazývá báze okolí v bodě x, pokud $\mathcal{B}(x) \subseteq \mathcal{U}_{\tau}(x)$ a pro každé $V \in \mathcal{U}_{\tau}(x)$ existuje $V \in \mathcal{B}(x)$, že $V \in V$?? Indexovaný soubor $\{\mathcal{B}(x) : x \in X\}$ se nazývá báze okolí prostoru X, pokud $\forall x \in X : \mathcal{B}(x)$ je báze okolí v bodě x.

Tvrzení 3.4 (Vlastnosti báze okolí)

Je- $li(X, \tau)$ TP $a\{B(x): x \in X\}$ báze okolí, pak

(O1) $\mathcal{B}(x) \neq \emptyset, x \in \bigcap \mathcal{B}(x), x \in \mathbb{X},$

 $(O2) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{B}(x) \exists \mathbb{W} \in \mathcal{B}(x) : \mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V},$

 $(O3) \ \forall \mathbb{U} \in \mathcal{B}(x) \exists \mathcal{B}(x) \forall y \in \mathbb{V} \exists \mathbb{W} \in \mathcal{B}(y) : \mathbb{W} \subseteq \mathbb{U}.$

Je-li \mathbb{X} množina a $\mathcal{B}(x) \subseteq \mathcal{P}(\mathbb{X}), x \in \mathbb{X}$ soubory splňující (O1), (O2), (O3), pak na množině \mathbb{X} existuje jediná topologie, jejíž báze okolí je $\{\mathcal{B}(x): x \in \mathbb{X}\}.$

```
\begin{array}{l} D\mathring{u}kaz\\ \text{První část je snadná.} \end{array} \begin{array}{l} \text{Položme }\mathcal{U}(x) = \left\{\mathbb{U} \in \mathcal{P}(x) : \exists \mathbb{B} \in \mathcal{B}(x) : \mathbb{B} \subseteq \mathbb{U}\right\}, x \in \mathbb{X}. \text{ Ověříme, že splňuje (U1-4).}\\ \text{(U1) z (O1). (U2) z definice }\mathcal{U}. \text{ (U3) z (O2), (U4) z (O3).} \end{array}
```

Definice 3.7 (Váha prostoru)

At (X, τ) je TP. Pak váha prostoru (X, τ) je nejmenší mohutnost báze prostoru (X, τ) . Značíme ji $w(X) = w(X, \tau)$

Charakter v bodě x je nejmenší mohutnost báze okolí bodu x. Značíme ho $\chi(x, \mathbb{X})$.

Charakter prostoru \mathbb{X} je sup $\{\chi(x,\mathbb{X}): x \in \mathbb{X}\}.$

```
\begin{array}{l} \operatorname{\it Nap \check{r} \acute{t} klad} \\ \mathrm{w}(\mathbb{R}) = \omega \ (\mathbb{R} \ \mathrm{m\'{a}} \ \mathrm{spo\check{c}etnou} \ \mathrm{b\'{a}zi}). \\ \\ \mathrm{w}(\mathbb{X}, \mathcal{P}(\mathbb{X})) = |\mathbb{X}| \ (\{\{x\}: x \in \mathbb{X}\} \ \mathrm{je} \ \mathrm{b\'{a}ze} \ (\mathbb{X}, \mathcal{P}(\mathbb{X}))) \\ \\ \mathrm{w}(\mathbb{X}, \{\emptyset, \{\mathbb{X}\}\}) = 1 \\ \\ \overline{\operatorname{\it Nap\check{r} \acute{t} klad}} \\ \mathrm{Je-li} \ (\mathbb{X}, \tau) \ \mathrm{metrizovateln\acute{y}}, \ \mathrm{pak} \ \chi(x, \mathbb{X}) \leq \omega \end{array}
```

Tvrzení 3.5

$$At (X, \tau) je TP a x \in X. Pak \chi(x, X) \le w(X)$$

 $D\mathring{u}kaz$

At \mathcal{B} je báze (\mathbb{X}, τ) , že $|\mathcal{B}| = w(\mathbb{X})$. Položme $\mathcal{B}(x) := \{ \mathbb{U} \in \mathcal{B} : x \in \mathbb{U} \}$. $\mathcal{B}(x)$ je báze okolí v bodě x.

$$|\mathcal{B}(x)| \leq |\mathcal{B}|$$
, protože $\mathcal{B}(x) \subseteq \mathcal{B}$. $\chi(x, \mathbb{X}) \leq |\mathcal{B}(x)| \leq |\mathcal{B}| = w(\mathbb{X})$.

3.2 Vnitřek, Uzávěr, hranice

Definice 3.8 (Uzavřená množina)

Ať (X, τ) je TP. Množina $\mathbb{F} \subseteq X$ se nazývá uzavřená, pokud její doplněk je otevřená množina (neboli $x \setminus \mathbb{F} \in \tau$).

Definice 3.9 (Obojetná množina (clopen set))

Množina se nazývá obojetná, pokud je uzavřená a otevřená zároveň.

Definice 3.10 (Uzávěr)

Je-li $\mathbb{A} \subseteq \mathbb{X}$, pak uzávěr \mathbb{A} je $\operatorname{cl}(\mathbb{A}) = \overline{\mathbb{A}} = \bigcap \{ \mathbb{F} \subseteq \mathbb{X}, \mathbb{A} \subseteq \mathbb{F}, \mathbb{F}$ je uzavřená $\}$.

Definice 3.11 (Vnitřek množiny)

Vnitřek množiny \mathbb{A} je Int $\mathbb{A} = \mathbb{A}^0 = \bigcup \{ \mathbb{U} \in \tau : \mathbb{U} \subseteq \mathbb{A} \}.$

Definice 3.12 (Hranice množiny)

Hranice množiny \mathbb{A} je $\delta \mathbb{A} = \overline{\mathbb{A}} \cap \overline{\mathbb{X} \setminus \mathbb{A}}$

Tvrzení 3.6 (Vztah vnitřku a uzávěru)

 $At(X, \tau) \ je \ TP, \ A \subseteq X, \ pak \ X \setminus \overline{A} = Int(X \setminus A) \ a \ X \setminus Int \ A = \overline{X \setminus A}.$

 $D\mathring{u}kaz$

 $\backslash \overline{\mathbb{A}}$ je otevřená, navíc $\mathbb{X} \backslash \overline{\mathbb{A}} \subseteq \mathbb{X} \backslash \mathbb{A}$. Tedy $\mathbb{X} \backslash \overline{\mathbb{A}} \subseteq \operatorname{Int}(\mathbb{X} \backslash \mathbb{A})$. Int $(\mathbb{X} \backslash \mathbb{A}) \mathbb{X} \backslash \mathbb{A}$, přechodem k doplňku $\mathbb{A} \subseteq \mathbb{X} \backslash \operatorname{Int}(\mathbb{X} \backslash \mathbb{A})$. Tedy $\overline{\mathbb{A}} \subseteq \mathbb{X} \backslash \operatorname{Int}(\mathbb{X})$???. Přechodem k doplňku: Int $(\mathbb{X} \backslash \mathbb{A}) \subseteq \mathbb{X} \backslash \overline{\mathbb{A}}$.

Druhou část můžeme dokázat přechodem k doplňku a převedením na první část. \qed

Tvrzení 3.7 (Charakterizace uzávěru)

 $Bud(X,\tau)$ TP, $x\in X$, $A\subseteq X$ a B(x) báze okolí v bodě x. Pak následující podmínky jsou ekvivalentní

- 1) $x \in \mathbb{A}$,
- 2) $\forall \mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$,
- 3) $\forall \mathbb{U} \in \mathcal{B}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$.

 $D\mathring{u}kaz$

- 1) -> 2) sporem: Kdyby pro nějaké $\mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} = \emptyset$, pak existuje \mathbb{V} otevřené: $x \in \mathbb{V} \subseteq \mathbb{U}$. $\mathbb{V} \cap \mathbb{A} = \emptyset$. $\mathbb{X} \setminus \mathbb{V}$ je uzavřená a $\mathbb{A} \subseteq \mathbb{X} \setminus \mathbb{V}$. Pak $x \in \overline{\mathbb{A}} \subseteq \mathbb{X} \setminus \mathbb{V}$, neobsahuje x.
 - $2) \rightarrow 3)$ triviální
- 3) -> 1) sporem: $x \notin \overline{\mathbb{A}}$ pak $x \in \mathbb{X} \setminus \overline{\mathbb{A}}$. Pak existuje $\mathbb{U} \in \mathcal{B}(x)$: $x \in \mathbb{U} \subseteq \mathbb{X} \setminus \overline{\mathbb{A}}$. Pak ???

Jako speciální důsledky dostáváme následující. Je-li $\mathbb U$ otevřená, pak $\mathbb U\cap\mathbb A=\emptyset$ právě když $\mathbb U\cap\overline{\mathbb A}=\emptyset$. Jsou-li $\mathbb U$, $\mathbb V$ otevřené disjunktní množiny, pak $\mathbb U\cap\overline{\mathbb V}=\emptyset=\overline{\mathbb U}\cap\mathbb V$.

Tvrzení 3.8 (Vlastnosti uzávěru)

Pro množiny \mathbb{A} , \mathbb{B} v $TP(\mathbb{X}, \tau)$ platí

$$(C1) \ \overline{\emptyset} = \emptyset,$$

$$(C2) \mathbb{A} \subseteq \overline{\mathbb{A}},$$

$$(C3) \overline{\overline{\mathbb{A}}} = \overline{\mathbb{A}} (C4) \overline{\mathbb{A} \cup \mathbb{B}} = \overline{\mathbb{A}} \cup \overline{\mathbb{B}},$$

$$(C5) \ \overline{\mathbb{A} \cap \mathbb{B}} \subseteq \overline{\mathbb{A}} \cap \overline{\mathbb{B}}.$$

 $D\mathring{u}kaz$

První dvě jsou jednoduché, 3. plyne z uzavřenosti uzávěru. 4. dokážeme inkluzemi. Shrnutím dostaneme (C5). $\hfill\Box$

Příklad

Zobrazení z podmnožin do podmnožin, které splňuje podmínky (C1-C4) jednoznačně určuje topologii.

Tvrzení 3.9 (Vlastnosti vnitřku)

Obdobně jako vlastnosti uzávěru.

Tvrzení 3.10 (Charakterizace hranice)

 $At \ \mathbb{A} \subseteq \mathbb{X} \ a \ x \in \mathbb{X}$. $Pak \ x \in \delta \mathbb{A}$, $právě \ když \ každé okolí bodu <math>x \ protíná \ jak \ \mathbb{A}$, $tak \ \mathbb{X} \setminus \mathbb{A}$.

 $D\mathring{u}kaz$

Plyne okamžitě z definice hranice $\delta \mathbb{A} = \overline{\mathbb{A}} \cap \overline{\mathbb{X} \setminus \mathbb{A}}$ a charakterizace uzávěru.

Tvrzení 3.11 (Vlastnosti hranice)

12. bodů viz skripta. Stejně tak důkaz.

3.3 Husté a řídké množiny, hromadné a izolované body

Definice 3.13 (Hustá a řídká množina, hustota, separabilní prostor)

At X je TP. Množina $\mathbb{A}\subseteq \mathbb{X}$ se nazývá hustá (v X), pokud $\overline{\mathbb{A}}=\mathbb{X}$. A se nazývá řídká, pokud $\mathbb{X}\setminus\overline{\mathbb{A}}$ je hustá.

Hustota prostoru \mathbb{X} je nejmenší mohutnost husté podmnožiny, značí se (\mathbb{X}) (d…density). Prostor se spočetnou hustotou se nazývá separabilní.

Tvrzení 3.12 (Charakterizace hustých a řídkých množin)

Ať \mathbb{X} je TP. $Množina <math>\mathbb{A} \subseteq \mathbb{X}$ je hustá $v \mathbb{X}$, právě $když \forall \mathbb{U}$ otevřená neprázdná $v \mathbb{X}$ protíná \mathbb{A} . $Množina \mathbb{A}$ je řídká $(v \mathbb{X})$, právě $když \forall \mathbb{V}$ otevřená neprázdná $\exists \mathbb{U}$ otevřená neprázdná, že $\mathbb{U} \subseteq \mathbb{V} \setminus \mathbb{A}$, což je právě $když \operatorname{Int}(\overline{\mathbb{A}}) = \emptyset$.

Důkaz

Označme $\tau * = \tau \setminus \emptyset$. Z charakterizace uzávěru: $\overline{\mathbb{A}} = \mathbb{X} \Leftrightarrow \forall x \in \mathbb{X} \forall \mathbb{V} \in \mathcal{U}(x) : \mathbb{V} \cap \mathbb{A} \neq \emptyset$. A je řídká $\Leftrightarrow \mathbb{X} \setminus \overline{\mathbb{A}}$ je hustá $\Leftrightarrow \forall \mathbb{U} \in \tau * : \mathbb{U} \cap (\mathbb{X} \setminus \overline{\mathbb{A}}) \neq \emptyset \Leftrightarrow \forall \mathbb{U} \in \tau * : \mathbb{U} \setminus \overline{\mathbb{A}} \neq \emptyset$.

První část dostaneme ekvivalencí z předchozího: $\forall \mathbb{U} \in \tau * \exists \mathbb{V} \in \tau * : \mathbb{V} \subseteq \mathbb{U} \setminus \overline{\mathbb{A}}$.

Druhá část pak plyne z Int $\overline{A}=\emptyset$

Tvrzení 3.13 (Vztah váhy a hustoty)

 $At \ \mathbb{X} \ je \ TP. \ Pak \ (\mathbb{X}) \le w(\mathbb{X}). \ Speciálně každý prostor se spočetnou bází je separabilní.$

 $D\mathring{u}kaz$

At \mathcal{B} je báze TP X. (BÚNO $\emptyset \notin \mathcal{B}$). $forall \mathbb{B} \in \mathcal{B}$ fixujeme $x_B \in \mathcal{B}$, $\mathbb{D} := \{x_B : B \in \mathcal{B}\}$. Zřejmě $|\mathbb{D}| \leq |\mathcal{B}|$, \mathbb{D} je hustá v X. (Když tedy volíme \mathcal{B} nejmenší, získáme výraz.)

Poznámka

Pro metrizovatelný TP \mathbb{X} platí $(\mathbb{X}) = \mathbf{w}(\mathbb{X})$.

Definice 3.14 (Izolovaný a hromadný bod)

Ať \mathbb{X} je TP. Bod $x \in \mathbb{A} \subseteq \mathbb{X}$ se nazývá izolovaným bodem množiny A, pokud existuje otevřená množina $\mathbb{U} \subseteq \mathbb{X}$, že $\mathbb{U} \cap \mathbb{A} = \{x\}$. Bod x se nazývá hromadným bodem množiny \mathbb{A} , pokud každé okolí bodu x protíná množinu $\mathbb{A} \subseteq \{x\}$

Například

V diskrétním prostoru jsou všechny body izolované. Naopak je-li $\mathbb{X}=\mathbb{R}$ a $\mathbb{A}=\mathbb{Q}$, pak každý bod \mathbb{X} je hromadným bodem množiny \mathbb{A} . Žádný bod z \mathbb{A} není izolovaným bodem \mathbb{A} .

Definice 3.15 (Derivace množiny)

Množina hromadných bodů množiny A se značí A'. Někdy se nazývá derivace A.

Tvrzení 3.14 (Vlastnosti derivace)

 $\overline{\mathbb{A}} = \mathbb{A} \cup \mathbb{A}', \ (\mathbb{A} \cup \mathbb{B})' = \mathbb{A}' \cup \mathbb{B}'$

Důkaz Domácí cvičení (je jednoduchý).

3.4 Spojitá zobrazení

Definice 3.16 (Spojité zobrazení, homeomorfizmus a spojitost v bodě)

Ať (X, τ) a (Y, σ) jsou TP. Ať $f : X \to Y$. Zobrazení f se nazývá spojité, pokud $\forall U \in \sigma : f^{-1}(U) \in \tau$.

f se nazývá homeomorfizmus, pokud f je bijekce a f i f^{-1} jsou spojitá.

f je spojité v bodě x, pokud $\forall \mathbb{V} \in \mathcal{U}_{\sigma}(f(x)) \exists \mathbb{U} \in \mathcal{U}_{\tau}(x) : f(U) \subseteq \mathbb{V}$.

$Nap\check{r}iklad$

 \mathbb{R} , (0,1) jsou homeomorfní (ale nejsou izometrické)

Poznámka

Vlastnosti, TP, které se zachovávají homeomorfizmem se nazývají topologické vlastnosti.

(Úplnost není topologický pojem.)

Například

Zobrazení z diskrétního prostoru je vždy spojité.

Zobrazení do indiskrétního prostoru je taktéž vždy spojité.

Tvrzení 3.15 (Charakterizace spojitých zobrazení)

 $At(X,\tau), (Y,\sigma)$ jsou TP, $f: X \to Y$ zobrazení. Pak následující je ekvivalentní:

- 1) f je spojité
- 2) vzory množin z nějaké subbáze jsou otevřené
- 3) vzory množin z nějaké báze jsou otevřené
- 4) f je spojité v každém bodě
- 5) vzory uzavřených množin jsou uzavřené
- $6) \ \forall \mathbb{A} \subseteq \mathbb{X} : f(\overline{\mathbb{A}}) \subseteq f(\mathbb{A})$
- 7) $\forall \mathbb{B} \subseteq \mathbb{Y} : \overline{f^{-1}(\mathbb{B})} \subseteq f^{-1}(\overline{\mathbb{B}})$
- 8) $\forall \mathbb{B} \subseteq \mathbb{Y} : f^{-1}(\operatorname{Int} \mathbb{B}) \subseteq \operatorname{Int} (f^{-1}(\mathbb{B}))$

 $D\mathring{u}kaz$

1->2 Triviální (z definice).

2->3 At \mathcal{B} je nějaká báze. Dle 2 pro nějakou subbázi \mathcal{S} toho (\mathbb{Y}, σ) platí, že $f^{-1}(\mathbb{S})$ je otevřená pro $\mathbb{S} \in \mathcal{S}$. At $\mathbb{B} \in \mathcal{B}$. \mathbb{B} lze vyjádřit jako sjednocení konečných průniků prvků \mathcal{S} . (Vzor průniku je průnik vzorů, vzor sjednocení je sjednocení vzorů.) $f^{-1}(\mathbb{B})$ je sjednocením konečných průniků prvků tvaru $f^{-1}(\mathbb{S}), \mathbb{S} \in \mathcal{S}$. Tedy $f^{-1}(\mathbb{B})$ je otevřená.

3->4 At $x \in \mathbb{X}$, \mathbb{V} okolí bodu f(x). \mathcal{B} báze z 3. podmínky. $\exists \mathbb{B} \in \mathcal{B}$, že $f(x) \in \mathcal{B} \subseteq \mathbb{V}$. $\mathbb{U} = f^{-1}(\mathbb{B})$ otevřená, $x \in \mathbb{U} f(\mathbb{U}) \subseteq \mathbb{B} \subseteq \mathbb{V}$.

4->5 Ať $\mathbb{F} \subseteq \mathbb{Y}$ je uzavřená. Ať $x \in \overline{f^{-1}(F)}$. Chceme, že $x \in f^{-1}(\mathbb{F})$ (tj. že $f(x) \in \mathbb{F}$). Z 4 pro každé okolí \mathbb{V} bodu f(x) existuje \mathbb{U} okolí x, že $f(x) \subseteq V$. Z definice uzávěru platí, že každé takové \mathbb{U} protíná $f^{-1}(\mathbb{F})$, tedy $f(\mathbb{U}) \cap \mathbb{F} \neq \emptyset$, tedy $\mathbb{V} \cap \mathbb{F} \neq \emptyset$. Tedy podle charakterizace uzávěru $f(x) \in \overline{\mathbb{F}} = \mathbb{F}$.

5->6 $f^{-1}(\overline{f(\mathbb{A})})$ je uzavřená dle 5 a obsahuje \mathbb{A} , tedy obsahuje i $\overline{\mathbb{A}}$. Pak $f(\overline{\mathbb{A}})\subseteq f\left(f^{-1}(\overline{f(\mathbb{A})})\right)\subseteq \overline{f(\mathbb{A})}$.

6->7 Ať $\mathbb{B} \subseteq Y$, $A := f^{-1}(\mathbb{B})$. Dle 6 $f(\overline{f^{-1}(\mathbb{B})}) \subseteq \overline{f(f^{-1}(\mathbb{B}))} \subseteq \overline{\mathbb{B}}$. $\overline{f^{-1}(\mathbb{B})} \subseteq f^{-1}(\overline{\mathbb{B}})$ (aplikováním vzoru? na předchozí).

7->8 Vztah vnitřku a uzávěru. $f^{-1}(\operatorname{Int}\mathbb{B}) = f^{-1}(\mathbb{Y} \setminus \overline{\mathbb{Y} \setminus \mathbb{B}}) = \mathbb{X} \setminus f^{-1}(\overline{\mathbb{Y} \setminus \mathbb{B}}) \stackrel{\text{dle } 7}{\subseteq} \mathbb{X} \setminus \overline{\mathbb{Y} \setminus \mathbb{B}} = \mathbb{X} \setminus \overline{\mathbb{X} \setminus f^{-1}(\mathbb{B})} = \mathbb{X} \setminus (\mathbb{X} \setminus \operatorname{Int} f^{-1}(\mathbb{B})) = \operatorname{Int} f^{-1}(\mathbb{B}).$

8->1 Je-li $\mathbb{V} \subseteq \mathbb{Y}$ otevřená, pak ze 7: $f^{-1}(\mathbb{V}) \subseteq \operatorname{Int}(f^{-1}(\mathbb{V}))$. Triviálně Int $f^{-1}(\mathbb{V}) \subseteq f^{-1}(\mathbb{U})$. Tedy $f^{-1}(\mathbb{V}) = \operatorname{Int} f^{-1}(\mathbb{V})$, tedy $f^{-1}(\mathbb{V})$ je otevřená.

Tvrzení 3.16 (Skládání spojitých zobrazení)

 $At \mathbb{X}, \mathbb{Y}, \mathbb{Z} \ jsou \ TP, \ f: \mathbb{X} \to \mathbb{Y}, g: \mathbb{Y} \to \mathbb{Z} \ zobrazen\'i. \ Jsou \ li \ f, g \ spojit\'a, \ pak \ g \circ f: \mathbb{X} \to \mathbb{Z} \ je \ spojit\'e.$

Pokud f je spojité v bodě x a g spojité v f(x), pak $g \circ f$ je spojité v x.

Je-li \mathbb{V} okolí gf(x), pak $g^{-1}(\mathbb{V})$

3.5 Oddělovací axiomy

Definice 3.17

TP X se nazývá:

- T_0 , pokud $\forall x, y \in \mathbb{X} \exists \mathbb{U}$ otevřená : $|U \cap \{x, y\}| = 1$.
- T_1 , pokud $\forall x, y \in \mathbb{X}, x \neq y \exists \mathbb{U}$ otevřená : $x \in \mathbb{U}, y \notin \mathbb{U}$.
- T_2 (Hausdorffův), pokud $\forall x, y \in \mathbb{X} \exists \mathbb{U}, V$ otevřené disjunktní : $x \in \mathbb{U}, y \in \mathbb{V}$.
- regulární, pokud $\forall \mathbb{F} \subseteq \mathbb{X}$ uzavřenou $\forall \in \mathbb{X} \backslash \mathbb{F} \exists \mathbb{U}, \mathbb{V}$ otevřené disjunktní: $x \in \mathbb{U}, \mathbb{F} \subseteq \mathbb{V}$.
- normální, pokud $\forall \mathbb{E}, \mathbb{F}$ uzavřené disjunktní $\exists \mathbb{U}, \mathbb{V}$ otevřené disjunktní: $\mathbb{E} \subseteq \mathbb{U}, \mathbb{F} \subseteq \mathbb{V}$.
- úplně regulární, pokud $\forall \mathbb{F} \subseteq \mathbb{X}$ uzavřenou $\forall x \in \mathbb{X} \setminus \mathbb{F} \exists f : \mathbb{X} \to [0,1]$ spojitá, že $f(x) = 0, f(\mathbb{F}) \subseteq \{1\}.$
- T_3 , pokud je regulární a T_1 .
- $T_{3\frac{1}{2}}$ nebo T_{π} (Tichonovův), pokud je úplně regulární a T_1 .
- T_4 , pokud je normální a T_1 .

Poznámka

normální
$$\implies$$
 úplně regulární $\overset{\text{rozpůlení intervalu }[0,1]}{\Longrightarrow}$ regulární

$$T_4 \implies T_\pi \implies T_3 \implies T_2 \implies T_1 \implies T_0$$

(Platí pouze tímto směrem, ne opačně!)

$$T_0 \not \Longrightarrow T_1 : (\{0,1\}, \{\emptyset, \{0,1\}, \{0\}\}) \dots (Sierpinského TP)$$

 $T_1 \not \Longrightarrow T_2 : (\mathbb{N}, \{\emptyset\} \cup \{\mathbb{N} \setminus K : K \text{je konečná}\}) \text{(Topologie kokonečných (doplněk konečných) množin)}$

Tvrzení 3.17 (Metrizovatelné prostory jsou T_4)

Je-li \mathbb{X} metrizovatelný prostor a \mathbb{E} , $\mathbb{F} \subseteq \mathbb{X}$ uzavřené disjunktní množiny, pak existuje spojitá funkce $f: \mathbb{X} \to [0,1]$, že $f(\mathbb{E}) \subseteq \{0\}$, $f(\mathbb{F}) \subseteq \{1\}$.

Důkaz

 \mathbb{X} je metrizovatelný, tedy existuje metrika ϱ kompatibilní s topologií na \mathbb{X} . Položme $f(x) = \frac{\varrho(x,\mathbb{E})}{\varrho(x,\mathbb{E}) + \varrho(x,\mathbb{F})}, x \in \mathbb{X}$. f je dobře definovaná a jistě spojitá. $f(x) = 0, x \in \mathbb{E}$, $f(x) = 1, x \in \mathbb{F}$.

Lemma 3.18

At X je TP. Pak

- a) \mathbb{X} je $T_1 \Leftrightarrow ka\check{z}d\acute{a}$ jednoprvková množina je uzavřená $\Leftrightarrow ka\check{z}d\acute{a}$ konečná množina je uzavřená.
- b) \mathbb{X} je $T_2 \implies \forall x, y \in \mathbb{X}, x \neq y \exists \mathbb{U} \in \mathcal{U}(x) : y \notin \overline{\mathbb{U}}$.

- c) \mathbb{X} je regulární $\Leftrightarrow \forall x \in \mathbb{X} \forall \mathbb{U} \in \mathcal{U}(x) \exists \mathbb{V} \in \mathcal{U}(x) : \overline{\mathbb{V}} \subseteq \mathbb{U}$.
- \mathbb{X} je normální $\Leftrightarrow \forall \mathbb{V} \subseteq \mathbb{X}$ otevřenou $\forall \mathbb{E} \in \mathbb{V}$ uzavřenou $\exists U \subseteq \mathbb{X}$ otevřená : $\mathbb{E} \subseteq \mathbb{U} \subseteq \overline{\mathbb{U}} \subseteq V$.

Důkaz Jednoduché.

Věta 3.19 (Urysohnovo lemma)

 $TP \ \mathbb{X}$ je normální \Leftrightarrow pro každé dvě disjunktní uzavřené \mathbb{E} , \mathbb{F} existuje spojitá funkce $f: \mathbb{X} \to [0,1]$, že $f(\mathbb{E}) \subseteq \{0\}$, $f(\mathbb{F}) \subseteq \{1\}$

 $D\mathring{u}kaz$

Implikace zprava doleva je snadná – uvažujeme $\left\{x \in \mathbb{X} : f(x) < \frac{1}{2}\right\}$ a $\left\{x \in \mathbb{X} : f(x) > \frac{1}{2}\right\}$.

 \Longrightarrow Označme $D:=\mathbb{Q}\cap [0,1],\ D=\{r_n:n\in\mathbb{N}\cup\{0\}\},\ r_0=0,r_1=1\ (r_n)$ prostá posloupnost. Indukcí najdeme otevřené množiny $\mathbb{V}_q:q\in D,$ že pro $p,q\in D,p< q\implies \mathbb{V}_p\subseteq \mathbb{V}_q$ a navíc $\mathbb{E}\subseteq \mathbb{V}_0,\mathbb{V}_1\subseteq \mathbb{X}\setminus \mathbb{F}.$

Z normality najdeme otevřenou množinu \mathbb{U} , že $\mathbb{E} \subseteq \mathbb{U} \subseteq \overline{\mathbb{U}} \subseteq \mathbb{X} \setminus \overline{r}$. Položíme $\mathbb{V}_0 = \mathbb{U}$, $\mathbb{V}_1 = \mathbb{X} \setminus \mathbb{F}$.

Nyní předpokládejme, že $V_{r_0}, V_{r_1}, \dots, V_{r_n}, n \geq 1$. Už známe a platí, že pro $p, q \in \{r_0, \dots, r_n\}$: $p < q \implies \overline{\mathbb{V}_p} \subseteq \mathbb{V}_q$. Chceme najít $\mathbb{V}_{r_{n+1}}$. At $i, j \leq n$ jsou taková, že $r_i = \max\{r_k : r_k < r_{n+1}\}$ a $r_j = \min\{r_k : r_k > r_{n+1}\}$. TODO! Z normality existuje otevřená $\mathbb{V}_{r_{n+1}}$, že $\overline{\mathbb{V}_{r_i}} \subseteq \mathbb{V}_{r_{n+1}} \subseteq \mathbb{V}_{r_j}$.

Položme $f(x) = 1, x \in \mathbb{X} \setminus \mathbb{V}_1 | f(x) = \inf r \in D : x \in \mathbb{V}_r, x \in \mathbb{V}_1. \ f : \mathbb{X} \to [0,1].$ Nyní stačí ověřit spojitost: vzory subbázových (nějaké subbáze) podmnožin jsou otevřené. Zvolím si subbázi $\{[0,b),(a,1],a,b\in(0,1)\}. \ f^{-1}([0,b)) = \{x\in\mathbb{X}:f(x)< b\} = \{x\in\mathbb{X}:\exists r < b: x\in\mathbb{V}_r\} = \bigcap_{r < b} \mathbb{V}_r \dots$ otevřené. $f^{-1}((a,1]) = \{x\in\mathbb{X}:f(x)>a\} = \{x\in\mathbb{X}:\exists r>a: \{x\in\mathbb{X}:\exists s>a: x\notin\overline{\mathbb{V}_s}\} = \bigcup_{s>a} \mathbb{X} \setminus \overline{\mathbb{V}_s} \dots$ otevřené

 $Poznámka (T_4 \implies T_{3.5}, normalita \implies úplná regularita)$

3.6 Konvergence v topologických prostorech

Definice 3.18 (Usměrněné množiny)

Dvojice (\mathbb{I}, \leq) se nazývá usměrněná množina, pokud \mathbb{I} je množina a \leq je binární relace na \mathbb{I} , která je reflexivní, tranzitivní a pro $i, j \in \mathbb{I}$, pak existuje $k \in \mathbb{I}$, že $i \leq k, j \leq k$.

 $Nap\check{r}iklad$ (\mathbb{N}, \leq)

Definice 3.19 (Net)

Net v TP X je libovolné zobrazení z usměrněné množiny do X.

Definice 3.20 (Konvergence netu)

Řekneme, že net $(x_i)_{i\in\mathbb{I}}$ konverguje k bodu x, pokud $\forall \mathbb{U} \in \mathcal{U}(x) \exists i_0 \in \mathbb{I} \forall i \in \mathbb{I}, i \geq i_0 : x_i \in \mathbb{U}$. Pokud existuje právě jeden, značíme $x = \lim_{i \in \mathbb{I}} x_i$.

Bod x se nazývá hromadným bodem netu $(x_i)_{i\in\mathbb{I}}$, pokud $\forall \mathbb{U} \in \mathcal{U}(x) \forall i \in \mathbb{I} \exists j \geq i : x_j \in \mathbb{U}$.

Tvrzení 3.20 (Jednoznačnost limity netu)

Prostor X je Hausdorffův \Leftrightarrow každý net má nejvýše jednu limitu.