2019 MATH CAMP LECTURE NOTES

WADE HANN-CARUTHERS

1. Advanced Analysis

1.1. Correspondences. A correspondence $F: X \rightrightarrows Y$ is a function $X \to 2^Y$. Let $E \subset Y$.

Definition 1. The strong/upper preimage of E is the set of points in X whose image is contained in E.

Think of this as universal quantification.

Definition 2. The weak/lower preimage of E is the set of points in X whose image has nonempty intersection with E.

Think of this as existential quantification.

Definition 3. A correspondence is

- upper hemicontinuous if the strong preimage of every open set is open
- lower hemicontinuous if the weak preimage of every open set is open
- continuous if it is upper hemicontinuous and lower hemicontinuous

Exercise 1. Consider the correspondence $\mathbb{R}^2 \rightrightarrows \mathbb{R}^2$ which maps (m, b) to the set of points (x, y) that satisfy y = mx + b. Prove that this correspondence is lower hemicontinuous but not upper hemicontinuous.

Exercise 2. Consider the correspondence $\mathbb{R}^2 \rightrightarrows \mathbb{R}^2$ which maps (a,b) to the set of points (x,y) such that $ax \geq 0$ and $by \geq 0$. Prove that this correspondence is upper hemicontinuous but not lower hemicontinuous.

For any property P, we say that a correspondence is P-valued if every point is mapped to a set with property P. We often care about correspondences that are convex-valued, compact-valued, and nonempty-valued.

1.2. **Theorem of the maximum.** Let $f: X \times \Theta \to \mathbb{R}$ be a continuous function.

Note 1. We can interpret Θ as the parameter space, X as the space of all possible alternatives, and f as the payoff function.

Let $C: \Theta \rightrightarrows X$ a compact and nonempty valued correspondence.

Note 2. We can interpret C as giving the set of available alternatives given the parameter.

Define
$$f^*: \Theta \to \mathbb{R}$$
 by $f^*(\theta) = \sup\{f(x, \theta) : x \in C(\theta)\}.$

Note 3. We can interpret $f^*(\theta)$ as the payoff an agent receives when she makes the optimal choice given that the parameter is θ .

Define
$$C^*: \Theta \rightrightarrows X$$
 by
$$C^*(\theta) = \arg \sup\{f(x,\theta) : x \in C(\theta)\}$$
$$= \{x \in C(\theta) : f(x,\theta) = f^*(\theta)\}$$

Note 4. We can interpret $C^*(\theta)$ as the set of alternatives that are optimal among those that are available given that the parameter is θ .

Theorem 3. If C is continuous at θ , then f^* is continuous and C^* is upper hemicontinuous with nonempty and compact values.

Note 5. In words, the theorem says that, given a technical condition (C is continuous at θ), the value function f^* is continuous in the parameter and the set of optimal alternatives given the parameter is nonempty and compact (plus C^* is nice in the sense that it upper hemicontinuous.)

Let
$$X = \mathbb{R}^2$$
, $\Theta = \mathbb{R}^2$, with $f : \Theta \times X \to \mathbb{R}$ and $C : \Theta \rightrightarrows X$ given by $f((x_0, y_0), (x_1, y_1)) = -(x_1^2 + y_1^2)$ $C(x_0, y_0) = \{(x, y) : (x - x_0)^2 + (y - y_0)^2 \le 1\}.$

Exercise 4. Verify that f and C satisfy the assumptions of Theorem 3.

Exercise 5. Compute f^* and C^* .

Exercise 6. Verify directly that the consequences of Theorem 3 hold for f^* and C^* .

1.3. Kakutani fixed point theorem. Let $S \subseteq \mathbb{R}^n$ nonempty, compact, convex. Let $\phi: S \rightrightarrows S$ a correspondence.

Definition 4. The graph of ϕ is

$$Gr(\phi) = \{(v, w) : w \in \phi(v)\}.$$

Definition 5. A fixed point of ϕ is an $s \in S$ such that $s \in \phi(s)$.

Theorem 7. If ϕ is nonempty and convex valued and $Gr(\phi)$ is closed, then ϕ has a fixed point.

Exercise 8 (Brouwer fixed-point theorem). Let $S \subseteq \mathbb{R}^n$ nonempty, compact, convex. Let $f: S \to S$ be a continuous function. Prove that f has a fixed point.

1.4. Envelope Theorem. Let

$$f:[0,1] \times [0,1] \to \mathbb{R}$$

 $(x,t) \mapsto 2xt - x^2.$

Define

$$V(t) = \sup_{x \in [0,1]} f(x,t)$$

and

$$x^*(t) = \arg \sup_{x \in [0,1]} f(x,t).$$

Note 6. For this particular choice of f, $x^*(t)$ is actually a function, so in this case we have $V(t) = f(x^*(t), t)$.

Exercise 9. Calculate V(t) and $x^*(t)$.

Exercise 10. Prove that

$$V'(t) = \frac{\partial f(x,t)}{\partial t}|_{(x^*(t),t)}.$$

Exercise 11. Sketch a graph of V(t) as well as f(x,t) for several values of x.

This simple exercise illustrates the core ideas behind the following result:¹

Theorem 12 ((some of the) Envelope Theorem). Let

$$f(x_1,\ldots,x_n,t_1,\ldots,t_m):\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}$$

be smooth. Let

$$x^*(t_1,\ldots,t_m) = \arg\sup_{x \in \mathbb{R}^n} f(x_1,\ldots,x_n,t_1,\ldots,t_m),$$

and let

$$V(t_1, \ldots, t_m) = f(x^*(t_1, \ldots, t_m), t_1, \ldots, t_m).$$

Then for $i = 1, \ldots, m$,

$$\frac{\partial V(t_1,\ldots,t_m)}{\partial t_i} = \frac{\partial f(x,t_1,\ldots,t_m)}{\partial t_i}|_{(x^*(t_1,\ldots,t_m),t_1,\ldots,t_m)}.$$

California Institute of Technology

 $^{^{1}\}mathrm{We}$ will give the statement of the full envelope theorem when we discuss constrained optimization.