Representing Numbers Module 1

Key Takeaways

CONVERSION TABLE

Table containing first 16 binary, decimal, and hex numbers

DECIMAL <--> BINARY

Divide-by-2 & Expansion

DECIMAL <--> HEX

Divide-by-16 & Expansion

HEX <--> BINARY

Reference & 4-Bit Groups

FRACTIONS

Multiply-by-2

CONVERSION TABLE

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

WHAT TO KNOW?

- 1. Get very familiar with these conversions
- 2. Practice writing the first 8 or 16 binary numbers...you will do this a lot

DECIMAL ---> BINARY

Divide – by – 2

- 1. Divide decimal number by 2
- 2. If a remainder exists, write a 1 Otherwise, write a 0
- 3. Discard the remainder
- 4. Repeat until you reach zero
- 5. Result is read bottom to top

BINARY ---> DECIMAL

Expansion

- 1. Each digit represents a specific power of 2
- 2. Multiple the digit by its associated power of 2
- 3. Add all of the products together

DECIMAL ---> HEX

<u>Divide – by – 16</u>

- 1. Divide decimal number by 16
- 2. Multiple remainder (it will be a fraction) by 16 and write the corresponding Hex digit
- 3. Discard the remainder
- 4. Repeat until you reach zero
- 5. Result is read bottom to top

HEX ---> DECIMAL

Expansion

- 1. Each digit represents a specific power of 16
- 2. Multiple the digit by its associated power of 16
- 3. Add all of the products together

HEX ---> BINARY

Reference Table/Memory

- 1. Treat each hex digit separately
- 2. Convert each digit to a 4-Bit binary number from reference or memory
- 3. Combine them (maintain their order)

BINARY ---> HEX

4-Bit Groups

- 1. Pad the binary number on the left side until the number of bits is divisible by 4
- 2. Separate the number into 4-Bit groups
- 3. Convert each group into a Hex digit from reference or memory
- 4. Combine them (maintain their order)

DECIMAL ---> BINARY

$\underline{\text{Multiply} - \text{by} - 2}$

- 1. Convert whole portion as usual (divide by 2)
- 2. Multiple fractional part by 2
- 3. If product is >= 1, write a 1 Otherwise write a 0
- 4. Discard any whole portion and repeat steps on fractional part
- 5. Stop at 0 or at sufficient precision
- 6. Result is read top to bottom

DON'T FORGET!

- 1. When dealing with fractions, you must read the answer from top to bottom
- 2. n bits can represent 2ⁿ different numbers and the range of those numbers is 0 to 2ⁿ 1

Practice Problems Conversions

- 1. Convert **1AD5₁₆** to Decimal
- 2. Convert **BE101₁₆** to Binary
- 3. Convert **01001101011₂** to Decimal
- 4. Convert **11101100001**₂ to Hex
- 5. Convert **2345** to Hex
- 6. Convert **456** to Binary
- 7. Convert **0.46** to Binary
- 8. Convert **8.945** to Binary

Practice Problems Conceptual

- 9. Why do we need to "pad" binary numbers with 0s when converting to Hex?
- 10. Can we convert from binary to decimal using the 4-Bit Grouping method? Why or why not?
- 11. How many different numbers can be represented with 4 bits?
- 12. How many bits would you need to account for 17 numbers?

Practice Problems Answers

- 1. $1AD5_{16} = 6869$
- 2. BE101₁₆ = **101111110000100000001**₂
- 3. 01001101011₂ = **619**
- 4. 11101100001₂ = **761**₁₆
- 5. 2345 = **929**₁₆
- 6. 456 = **111001000**₂
- 7. 0.46 = **0.01110101110**₂
- 8. 8.945 = **1000.1111000111**₂
- 9. As we separate the groups of binary digits (starting at the right), we may end up with less than 4 digits on the left side. We add extra 0s so that we can reference the Hex digits, which require 4 binary digits.
- 10. No, we can't. The fact that 16 (Hex) is a power of 2 makes the direct conversion possible. 10 (Decimal) is not a power of 2 and thus we can't convert directly.
- 11. 16 States with a range of 0-15.
- 12. 17 is 1 more than we can represent with 4 bits, so we need to use an extra bit. Thus, we need 5 bits.