Birth Weights

In [2]: baby = Table.read_table('baby.csv')
baby

Out[2]:	Birth Weight	Gestational Days	Maternal Age	Maternal Height	Maternal Pregnancy Weight	Maternal Smoker
	120	284	27	62	100	False
	113	282	33	64	135	False
	128	279	28	64	115	True
	108	282	23	67	125	True
	136	286	25	62	93	False
	138	244	33	62	178	False
	132	245	23	65	140	False
	120	289	25	62	125	False
	143	299	30	66	136	True
	140	351	27	68	120	False

... (1164 rows omitted)

```
▶ smoking_and_birthweight = baby.select('Birth Weight', 'Maternal Smoker')

In [3]:
             smoking_and_birthweight
    Out[3]:
              Birth Weight Maternal Smoker
                                   False
                     120
                     113
                                   False
                     128
                                    True
                     108
                                    True
                     136
                                   False
                     138
                                    False
                     132
                                   False
                     120
                                   False
                     143
                                    True
                     140
                                   False
             ... (1164 rows omitted)

▶ smoking_and_birthweight.group('Maternal Smoker')

In [4]:
    Out[4]:
              Maternal Smoker count
```

False

True

715 459

C:\Users\schoend\Anaconda3\lib\site-packages\datascience\tables.py:920: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with diffe rent lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.

values = np.array(tuple(values))


```
In [6]:
         means_table = smoking_and_birthweight.group('Maternal Smoker', np.average)
            means table
   Out[6]:
            Maternal Smoker Birth Weight average
                     False
                                     123.085
                      True
                                     113.819
In [7]:
         def diff_between_group_means(tbl):
                means = tbl.group('Maternal Smoker', np.average)
                return means.column(1).item(0) - means.column(1).item(1)
In [8]:
         observed_diff = diff_between_group_means(smoking_and_birthweight)
            observed diff
   Out[8]: 9.266142572024918
In [9]:
         # PLAN:
            # Shuffle birth weights
            # Assign some to group A and some to group B
            # Find difference between averages of the two groups (statistic)
            # Repeat
```

```
weights = smoking_and_birthweight.select('Birth Weight')
In [10]:
             weights
   Out[10]:
              Birth Weight
                     120
                     113
                     128
                     108
                     136
                     138
                     132
                     120
                     143
                     140
             ... (1164 rows omitted)
```

```
▶ smoking = smoking_and_birthweight.select('Maternal Smoker')

In [11]:
              smoking
    Out[11]:
              Maternal Smoker
                       False
                       False
                        True
                        True
                       False
                        False
                        False
                       False
                        True
                        False
              ... (1164 rows omitted)
           # Shuffle birth weights
In [12]:
             weights = smoking_and_birthweight.select('Birth Weight')
          # Shuffle birth weights
In [13]:
              shuffled_weights = weights.sample(with_replacement=False).column(0)
             shuffled_weights
```

Out[13]: array([138, 86, 148, ..., 122, 108, 135])

```
In [14]: 

# Assign some to group A and some to group B
simulated = smoking.with_column('Shuffled weights', shuffled_weights)
simulated
```

Out[14]: Maternal Smoker Shuffled weights False 138

False	138
False	86
True	148
True	146
False	88
False	103
False	119
False	97
True	112
False	99

... (1164 rows omitted)

```
In [15]: # Find difference between averages of the two groups (statistic)
simulated_diff = diff_between_group_means(simulated)
simulated_diff
```

Out[15]: -2.6604110486463384

In [17]: Name Table().with_column('Difference between group means', diffs).hist(bins=20)
plots.scatter(observed_diff, 0, color = 'red', s = 40);

Deflategate

Team	Blakeman	Prioleau
Patriots	11.5	11.8
Patriots	10.85	11.2
Patriots	11.15	11.5
Patriots	10.7	11
Patriots	11.1	11.45
Patriots	11.6	11.95
Patriots	11.85	12.3
Patriots	11.1	11.55
Patriots	10.95	11.35
Patriots	10.5	10.9
Patriots	10.9	11.35
Colts	12.7	12.35

Team	Combined
Patriots	11.65
Patriots	11.025
Patriots	11.325
Patriots	10.85
Patriots	11.275
Patriots	11.775
Patriots	12.075
Patriots	11.325
Patriots	11.15
Patriots	10.7
Patriots	11.125
Colts	12.525
Colts	12.525
Colts	12.725
Colts	12.35

```
In [21]:
          initial pressure = np.append(12.5 * np.ones(11), 13 * np.ones(4))
              initial_pressure
    Out[21]: array([12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
                     13. , 13. , 13. , 13. ])
In [22]:

    drop values = initial pressure - football.column(1)

  | football = football.drop('Combined').with_column('Drop', drop_values)

In [23]:
In [24]:

    football.show()

                Team Drop
               Patriots
                       0.85
               Patriots 1.475
               Patriots 1.175
               Patriots
                      1.65
               Patriots 1.225
```

Patriots 0.725
Patriots 0.425
Patriots 1.175

Patriots 1.375 Colts 0.475

Colts 0.475
Colts 0.275
Colts 0.65

1.35

1.8

Patriots

Patriots

```
In [25]:
          means = football.group('Team', np.average)
             means
    Out[25]:
                Team Drop average
                Colts
                          0.46875
              Patriots
                          1.20227
In [26]:
          ▶ observed_difference = means.column(1).item(0) - means.column(1).item(1)
             observed difference
    Out[26]: -0.733522727272728
In [27]:

    def diff_between_means(tbl):

                 means = tbl.group('Team', np.average).column(1)
                 return means.item(0) - means.item(1)
In [28]:
          drops = football.select('Drop')
In [29]:
          ▶ | shuffled drops = drops.sample(with replacement = False).column(0)
             shuffled_drops
   Out[29]: array([0.65, 1.175, 0.425, 1.475, 0.275, 1.375, 1.35, 0.725, 1.8,
                     0.85 , 1.225, 1.65 , 0.475, 1.175, 0.475])
          ▶ | simulated_football = football.with_column('Drop', shuffled_drops)
In [30]:
             simulated football.show(3)
                Team Drop
              Patriots
                     0.65
              Patriots 1.175
              Patriots 0.425
             ... (12 rows omitted)
```

```
In [32]: M differences = make_array()

for i in np.arange(5000):
    shuffled_drops = drops.sample(with_replacement = False).column(0)
    simulated_football = football.with_column('Drop', shuffled_drops)
    new_diff = diff_between_means(simulated_football)
    differences = np.append(differences, new_diff)
```


In [34]: np.average(differences <= observed_difference)</pre>

Out[34]: 0.0032

Analyzing RCTs

In [35]: ▶ #See Inferential Thinking textbook Section 12.3

```
In [36]: bta = Table.read_table('bta.csv')
bta.show()
```

Group	Result
Control	1
Control	1
Control	0
Treatment	1

Group	Result
Treatment	0

Group	Result
Control	1
Control	1
Control	0
Treatment	1

Group	Result
Treatment	0

In [38]: ▶ bta.group('Group', sum)

Out[38]:

Group	Result sum
Control	2
Treatment	9

In [39]: ▶ bta.group('Group', np.average)

Out[39]:

Group	Result average
Control	0.125
Treatment	0.6

Group	Outcome if assigned treatment	Outcome if assigned control
Control	Unknown	1
Control	Unknown	1
Control	Unknown	0
Treatment	1	Unknown

	Treatment	0	Unknown
	Treatment	0	Unknown
[41]: N	bta.group('Group', np.average).	column(1)	
Out[41]:	array([0.125, 0.6])		
[42]:)	abs(0.125 - 0.6)		
Out[42]:	0.475		
[43]:)	<pre>def distance_between_group_proportions(tbl): proportions = tbl.group('Group', np.average).column(1) return abs(proportions.item(1) - proportions.item(0))</pre>		
[44]:)	<pre>observed_distance = distance_between_group_proportions(bta) observed_distance</pre>		
Out[44]:	0.475		
[45]:)	<pre>labels = bta.select('Group') results = bta.select('Result')</pre>		

Unknown

Group Outcome if assigned treatment Outcome if assigned control

0

Treatment

In [41]:

In [42]:

In [43]:

In [44]:

In [45]:

Out[46]: array([0.04166667, 0.0875 , 0.3 , ..., 0.0875 , 0.04166667 0.04166667])

In [47]: Table().with_column('Distance', distances).hist(bins = np.arange(0, 1, 0.1))
plots.scatter(observed_distance, 0, color='red', s=40);

In [48]: np.average(distances >= observed_distance)

Out[48]: 0.011

In []: ▶