Math 250A

Fall 2015

8/27

Group Action

```
A group G acts on a set S: G \times S \to S (g,s) \mapsto g \cdot s e \cdot s = s (gg') \cdot s = g \cdot (g' \cdot s) Alternatively, \phi : G \to Perm(S) \phi is a homomorphism (gives the corresponding properties) (\phi(g))(s) = g \cdot s
```

Examples of Group Actions

```
The trivial action: G \rightarrow Perm(S) v.
```

 $G \rightarrow Perm(S)$ where $g \mapsto e_{Perm(S)}$

G acting on self by left/right translation, conjugation

G acting on the set of subgroups of G by conjugation:

$$g \cdot H = gHg^{-1} = \{ghg^{-1} | h \in H\}$$

Normal subgroup $N \subseteq G$

G acting on N, $g \cdot n := gng^{-1} \in N$

 $G = S_3$ where S is the set of subgroups of G of order 2.

$$S = \{\{1, (1\ 2)\}, \{1, (1\ 3)\}, \{1, (2\ 3)\}\}\$$

recall
$$\sigma(a_1, a_2, a_3, ... a_k) \sigma^{-1} = (\sigma a_1, \sigma a_2, \sigma a_3, ... \sigma a_k)$$

V vector space over a field K

 $G = GL(V) = group of invertible linear maps <math>V \rightarrow V$

e.g. if $V = K^n$ then G = GL(n, K)

G acts on V (rather simply) by $L \cdot v = L(v)$

Orbits and Stabilizers

Given G acting on S by $G \times S \rightarrow S$ there is an obvious relation on S:

$$s, s': s \sim s' \leftrightarrow \exists g \in G, s' = gs$$

the orbit of s is just the equivalence class of s under this relation

i.e.,
$$G \cdot s = \{g \cdot s | g \in G\}$$

The conjugacy classes of s are the orbits of S under the group action of G by conjugation the orbit of s, $O(s) = \{s\} \leftrightarrow s = gsg^{-1} \forall g$

$$\leftrightarrow (\forall g)gs = sg$$

 \leftrightarrow *s* \in *Z*(*G*) the center of the group

Example, for $G = S_3$

the orbit of 1 is $\{1\}$

the orbit of $(1\ 2) = \{(1\ 2), (1\ 3), (2\ 3)\}$

the orbit of $(1\ 2\ 3) = \{(1\ 2\ 3), (1\ 3\ 2)\}$

Stabilizer (isotropy group) of a given element $s \in S := G_s$

$$G_s = \{g \in G | g \cdot s = s\}$$

stabilizer is closed under inverses: $g \in G_s \to g \cdot s = s \to g^{-1}gs = g^{-1}s \to s = g^{-1}s$

large stabilizer↔ small orbit

there exists a natural bijection $\alpha: G/G_s \to O(s)$ defined $gG_s \mapsto g \cdot s$ well-definition:

if $g_1G_s = g_2G_s$ then $\exists g \in G_s, g_1 = g_2g$ and $\alpha(g_1G_s) = g_1 \cdot s = g_2gs = g_2s = \alpha(g_2G_s)$ injectivity:

if
$$\alpha(g_1G_s) = g_1 \cdot s = g_2 \cdot s = \alpha(g_2G_s)$$
 then $g_2^{-1}g_1 \cdot s = s$, $g_2^{-1}g_1 \in G_s$ and $g_1G_s = g_2G_s$

9/1

Group Actions \rightarrow Sylow theorems

Recall:

the stabilizer $G_s = \{g \in G | g \cdot s = s\}$

the orbit $O(s) = \{g \cdot s | g \in G\}$

$$G/G_s \cong O(s)$$
 and $\#(G/G_s) = \#O(s)$

Let Σ = set of representatives for $s \sim s' \leftrightarrow O(s) = O(s')$

$$#S = \sum_{s \in \Sigma} \#O(s) = \sum_{s} (G : G_s)$$

G finite $(G : G_s) = \frac{\#G}{\#G_s}$

Mass formula $\#S = (\sum_{s} \frac{1}{\#(G_s)})(\#G)$

A subgroup H of G acted upon by G has orbits, cosets, and trivial stabilizer.

Hence from the above $\#H_s = \#H$, and $\#G = (G : H) \cdot \#H$.

This is a statement of Lagrange's Theorem, $(G:H) = \frac{\#G}{\#H}$.

The kernel of the action

$$K = \bigcap_{s \in S} G_s$$

```
This is just the kernel of G \xrightarrow{\varphi} Perm(S).
```

We can relate the stabilizers of points in the same orbit.

Let s' = gs.

Assume $x \in G_s$.

Since $x \in G_{s, s}(gxg^{-1})gs = g(xs) = gs$.

Hence $gxg^{-1} \in G_{gs}$, so $gG_sg^{-1} \subset G_{gs}$.

Apply this relation with $g \to g^{-1}$ and $s \to gs$:

Assume $x \in G_{gs}$.

Then $(g^{-1}xg)(s) = (g^{-1})(xgs) = (g^{-1}gs) = s$. So $g^{-1}G_{gs}g \subset G_s \to G_{gs} \subset gG_sg^{-1}$

Thus, $gG_sg^{-1} = G_{gs} = G_{s'}$.

The stabilizer of s' = gs is a conjugate of the stabilizer of s.

Applications

p: prime

p-group: a finite group G, # $G = p^n$, $n \ge 1$

"A p-group has a non-trivial center"

Recall: the center $Z(G) = Z = \{g \in G | gs = sg \forall s \in G\}.$

Since $gs = sg \rightarrow s = gsg^{-1}$, will be useful to consider action on self by conjugation.

G a p-group, S a finite set. Then $\#O(s) = \frac{\#G}{\#G_s} = \frac{p^n}{p^k}$.

Two cases:

- 1) #O(s) = 1, s is fixed by G, $s \in S^G$ (set of fixed points of S)
- 2) (k < n), thus #O(s) is divisible by p.

 $\#S = \text{sum of } \# \text{ of elements in the orbits } \equiv_{modp} \# \text{ of orbits of size } 1 = \#(S^G).$

Take S = G, with action $g : s \mapsto gsg^{-1}$. Then $S^G = Z(G)$.

 $\#Z(G) \equiv_{mod p} \#(S^G) \equiv_{mod p} \#S = \#G = p^n \equiv_{mod p} 0.$

Thus, the order of the center is divisible by p, and must be non-trivial.

 $H \leq G$ a finite group, (G: H) = p, the smallest prime dividing $\#G \rightarrow H \leq G$

Let S = G/H; #(S) = (G : H) = p, and let G act on S by left translation.

This induces $\varphi: G \to S_P$; recall $\#S_p = p!$

The stabillizer of H, $G_H = \{x \in G | xH = H\} = H$.

By inspection, we can see that $G_{gH} = gHg^{-1}$.

Let $K = \bigcap_{g \in G} gHg^{-1}$, the largest normal subgroup contained in H.

Note that $K = ker(\varphi)$ induced above; by the First Isomorphism Theorem $\varphi(G) \leq S_p$.

 $(G:K) = \#(G/K) = \#(\varphi(G))$, which divides $\#(S_v) = p!$

Further, since $K \le H \le G$, (G:K) = (G:H)(H:K).

Since (G:K) divides p! and (G:H) divides p, (H:K) divides (p-1)!.

But p is the smallest prime dividing #G, so (H:K) = 1, K = H and H is normal.

A familiar embedding of a group into a larger group; "Cauchy's Theorem"

 $G \hookrightarrow Perm(G)$ by letting G act on itself by left-translation.

Its kernel $K = \{g \in G | gs = s \forall s\} = \{e\}$ (consider s = e), hence is an injection.

Since an injection, an embedding.

Recall $S_n \subset \text{group of } n \times n \text{ invertible matrices. } \sigma \mapsto M(\sigma) \text{ a permutation matrix.}$

Need to be careful in the construction to ensure $M(\sigma\tau) = M(\sigma)M(\tau)!$

E.g. $\sigma = (132)$ does $M(\sigma)$ have 1 in the 1st column, 3rd row?

Or in the 1st row, 3rd column? One of these yields $M(\sigma \tau) = M(\tau)M(\sigma)$.

G finite of order n; V the vector space of functions $G \xrightarrow{f} \mathbb{Z}$; note $V \cong \mathbb{Z}^n$

Linear maps $V \to V$ correspond to $n \times n$ matrices over \mathbb{Z} : $GL(V) \approx GL(n, \mathbb{Z})$.

Similarly, invertible linear maps correspond to $n \times n$ invertible matrices over \mathbb{Z} .

We can embed G in $GL(n,\mathbb{Z})$ by using a left action of G on $GL(n,\mathbb{Z}) = \{\phi : V \to V\}$ Recall that $V = \{f : G \to \mathbb{Z}\}.$

This left action takes the form $L_g \mapsto \phi$ where $\phi(f(x)) = f(xg)$

 $L_{gg'} = L_{g'} \circ L_g$ as desired? Verify for yourself.

Check this over.

$$L_{gg'}(\varphi(x)) = \varphi(xgg') = L_{g'}(\varphi(xg)) = L_{g'} \circ L_g(\varphi(x))$$

 $g \mapsto L_g$ is a homomorphism $G \to GL(V)$

Using \mathbb{F}_p instead of \mathbb{Z} , get $G \hookrightarrow GL(n, \mathbb{F}_p)$, an embedding into a finite group.

9/3

Sylow Theorems

Lagrange: If $H \leq G$ then #(H) | #(G).

 A_4 with n = 6 gives the counterexample to the converse.

Salvaging the converse: the case where $n = p^k$, p prime.

(Sylow I): If
$$|G| = p^k \cdot r$$
, $(p,r) = 1$

 $\exists H \leq G \text{ such that } |H| = p^k$

Such an H is called a p-Sylow subgroup of G

Generally assuming $k \neq 0$

Example : \mathbb{Z}_{12}

has 2-sylow subgroup $\{0,3,6,9\}$ and 3-sylow subgroup $\{0,4,8\}$

Example: D_6 generated by r, s subject to $rs = sr^{-1}$, $r^6 = e$, $s^2 = e$, has order 12 $\#(D_6) = 12$ so has 3-sylow subgroup $\{1, r^2, r^4\}$

Also has 2-sylow subgroups $\{1, r^3, s, r^3s\}, \{1, r^3, rs, r^4s\}, \{1, r^3, r^2s, r^5s\}$

Example: $G = GL_n(\mathbb{F}_p)$, $n \times n$ linear transformations in \mathbb{F}_p , equal to $Aut(\mathbb{F}_p^n)$

The order of |G|:

Asserting linear independence in each vector of an $n \times n$ matrix

$$|G| = (p^n - 1)(p^n - p)(p^n - p^2) \cdots (p^n - p^{n-1}) = p^{1+2+3+\cdots+n-1} \cdot r = p^{\frac{n^2 - n}{2}} \cdot r$$

 $(p,r) = 1$

Consider P the set of $n \times n$ upper triangular matrices with 1's on the diagonal.

Then $|P| = p^{1+2+3+\cdots+n-1} = p^{\frac{n^2-n}{2}}$, and P is a p-Sylow subgroup.

Theorem: (Sylow I) p-Sylow subgroups always exist.

Proof Sketch:

Suppose $|H| = p^k \cdot r$, (p,r) = 1, k > 0

Show $\exists G$, $H \leq G$, where G has a p-Sylow subgroup

Show that if G has a p-Sylow subgroup and $H \le G$, then H has a p-Sylow subgroup Proof:

By Cayley's theorem, if |H| = n, then $H \le S_n$.

(H acts on itself by left translates. This yields an embedding into S_n .)

Additionally $S_n \leq GL_n(\mathbb{F}_p)$ mapping to permutation matrices.

Alternatively, consider $V \cong \mathbb{F}_p^n$, the vector space of functions $\varphi : G \to \mathbb{F}_p$.

Embed H into GL(V) by this action: $g \in H \mapsto$ automorphism taking $\varphi(x)$ to $\varphi(xg)$. (Recall end of previous lecture).

We know that $GL_n(\mathbb{F}_p)$ has p-Sylow subgroups. (from the lower triangular matrices) Let $G = GL_n(\mathbb{F}_p)$.

Let P be a p-Sylow subgroup of G. Consider G acting on the set of cosets of P.

Now, $Stab(gP) = gPg^{-1}$. (guest lecturer notation for stabilizer)

Similarly, letting H act on G/P, $Stab(gP) = (gPg^{-1} \cap H)$

This intersection is a p-group.

Want to choose $g \in G$ such that $gPg^{-1} \cap H$ is a p-Sylow subgroup.

If $(H:(gPg^{-1}\cap H))$ is coprime to p, then $gPg^{-1}\cap H$ is a p-Sylow subgroup.

By Orbit-Stabilizer, $(H: (gPg^{-1} \cap H)) = O(gP)$.

Note this is an orbit of G/P induced by the action of the group H.

Since P is a p-Sylow subgroup of G, $|G/P| \not\equiv_{mod p} 0$.

The sum of the orbits is |G/P|.

Hence there must be some orbit with size coprime to p.

Corollary: All p-subgroups of H are contained in a conjugate of P.

Let $J \le H$ be a p-subgroup. Then $J \cap gPg^{-1}$ is a p-Sylow subgroup of J for some $g \in G$. So since J is a p-group $J \cap gPg^{-1} = J$, i.e. $J \subset gPg^{-1}$.

(since a p-group can't contain a proper p-Sylow subgroup by definition)

Corollary: (Sylow II) All p-Sylow groups are conjugate.

Proof:

Let $H \leq G$ and $P \leq G$ be p-Sylow subgroups.

By the preceding corollary, $H \subset gPg^{-1}$ for some $g \in G$.

Since $|H| = |P| = |gPg^{-1}|$, $H \cap gPg^{-1} = H$.

Corollary: Every p-subgroup of G is contained in a p-Sylow of G.

By the above, each is contained in a conjugate of P, said conjugate being a p-Sylow.

The p-Sylow subgroups in G are all conjugate, so that:

If P is a p-Sylow of G then G/N(P) is the set of p-Sylows in G.

Where N(P) is the normalizer of P.

So there are (G : N(P)) p-Sylows in total.

Lemma: If a finite p-group Γ acts on a set X, then $\#(X) \equiv_{modp} \#(X^{\Gamma})$ (X^{Γ} the fixed points of X under Γ).

Proof:

$$#X = \sum_{i} #Orb(x_{i}) = \sum_{i} \frac{|\Gamma|}{|Stab(x_{i})|} \equiv_{mod p} #X^{\Gamma}$$

Each $\frac{|\Gamma|}{|Stab(x_{i})|} \equiv_{mod p} 1$ if x_{i} fixed, else $\frac{|\Gamma|}{|Stab(x_{i})|} \equiv_{mod p} 0$.

Let $Syl_p(G)$ describe the p-Sylow subgroups of G and n_p denote its cardinality.

Theorem: (Sylow III) If $|G| = p^k \cdot r$, k > 0 then $n_p \equiv_{mod p} 1$. Further, $n_p | r$. Proof:

Let P act on $Syl_p(G)$ by conjugation.

By the lemma, $\#Syl_p(G) = n_p \equiv_{mod p} (Syl_p(G))^p$.

Suppose Q is fixed under the group action. Then $pQp^{-1} = Q \ \forall p \in P$.

Then $P \leq N(Q)$; similarly $Q \leq N(Q)$.

P, Q are p-Sylow subgroups of N(Q); therefore P, Q are conjugate in N(Q).

However, $Q \subseteq N(Q)$ so that Q is equal to all its conjugates in N(Q), and P = Q.

Hence P is the only fixed Sylow-p subgroup so $(Syl_P(G))^P \equiv_{mod p} 1$.

G acts on $Syl_p(G)$ as only one orbit since all p-Sylows in G are conjugate.

$$(G:P) = n_p, n_p = |G| = p^k \cdot r, n_p | p^k \cdot r, \text{ but } n_p \nmid p, \text{ so } n_p | r.$$

9/8

Review of Sylow Theorems

Prove existence by showing existence in a larger known subgroup.

And then that contained subgroups must have their own Sylow p-subgroups.

$$O(s) = S = \{p\text{-Sylows}\}$$

$$O(s) = G/G_s = G/N(P)$$

The number of p-Sylows is notated $n_p = (G : N(P))$

P,Q p-Sylows and $P \subset N(Q)$ then P = Q

reason: $PQ \le G$ a subgroup of G

HK not necessarily a group, but will be if one normalizes the other ie $H \subset N(K)$

Theorem $n_p \equiv_{mod p} 1$

Consider the action of *P* on *S* by conjugation

Take $x \in P$ and $x : Q \mapsto xQx^{-1}$

The number of fixed points is 1, since *P* fixes only itself

A simple group has

more than one element

no non-trivial proper normal subgroups

(kind of like a prime number)

G finite abelian

G simple \leftrightarrow G cyclic of prime order (simple easy exercise)

continuing...

non-sporadic finite simple groups

$$A_n (n \leq 5)$$

recall the alternating groups A_n are the even permutations on $\{1, \dots, n\}$

Lie groups over finite fields, e.g. $\{\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\} \subset SL(2, \mathbb{Z}|p\mathbb{Z})$

P = projective; $PSL(2, \mathbb{Z}|p\mathbb{Z}) = SL(2, \mathbb{Z}|p\mathbb{Z})$

Simple groups of order ≤ 60 .

- (a) There are no non-abelian simple groups of order < 60
- (b) If G is simple of order 60, then $G \cong A_5$.

$$(\#A_n = \frac{n!}{2})$$

G simple of order 60.

H < G simple (finite), H proper, $(G : H) = n \ge 2$

G acts on G/H by left translation.

The action is transitive (for each pair xH,yH, \exists permutation taking one to the other) Therefore, this action is non-trivial.

$$\pi: G \to Perm(G/H) = S_n$$

 $ker(\pi) \neq G$ and is a normal subgroup \rightarrow the kernel is trivial.

$$\pi: G \hookrightarrow S_n$$
 and in fact $\pi: G \hookrightarrow A_n$ (if $\#G > 2$)

Why? because $G \cap A_n \subseteq G$

If
$$G \subset S_n$$
.

Then $G \to S_n/A_n = \{\pm 1\}$ by the sign map, kernel is $G \cap A_n$.

Recall $sgn: S_n \to \{\pm 1\}$ $sgn(\sigma) = (-1)^t$ given t, num of transpositions

$$G/(G \cap A_n) \hookrightarrow S_n/A_n = \{\pm 1\}$$

$$(G: G \cap A_n) = 1 \text{ or } 2.$$

If G is simple then this cannot be 2 (would be normal subgroup), so =1.

And $G \hookrightarrow A_n$ for that A_n .

G simple, order 60.

H a proper subgroup of G, index n. (consider small values of n)

If n = 2 then H is normal in G, a contradiction.

(smallest prime dividing the order of a group)

If n = 3 or n = 4: $G \hookrightarrow A_3, A_4$ but their orders are too small (3, 12)

If n = 5: $G \hookrightarrow A_5$ and they are equal in cardinality \rightarrow done.

Remaining case: n = 15.

What is n_5 , the number of 5-Sylow subgroups.

 $n_5|60/5 = 12$, $n_5 = (G : N(P)) n_5$ divides the index

Also, $n_5 \equiv_{mod 5} 1$.

Thus $n_5 = 1$ or $n_5 = 6$.

If $n_5 = 1$ then only one 5-Sylow subgroup of G, must be normal.

This is impossible since G is simple.

Then $n_5 = 6$: tells you there are lots of elements of order 5 in G.

There is no overlap (excepting at the identity) between 5-Sylows.

Hence the number of elements of order 5 is $6 \cdot 4 = 24$

Elements of order 5 in A_5 are 5-cycles (a b c d e).

Need to take all strings of length 5: 120, and divide out by rotations 5.

Thus we get 120/5 = 24 (check).

Consider n_2 the number of 2-Sylow subgroups.

Then n_2 divides 60/4 = 15, and $n_2 \neq 1$ because of simplicity.

Also, $n_2 = (G : N(P_2))$, and this can't be 3 since G has no subgroup of index 3.

If $n_2 = 5$ then $N(P_2)$ is the desired index-5 subgroup \rightarrow done.

From divisibility $n_2 = 1,3,5,15$.

Elminate 1 by simplicity, 3 since the index is too small, 5 works, consider 15.

Considering the situation where there are 15 2-Sylow subgroups (of order 4).

These are groups like the Klein 4-group (no elements of order 4).

There are 2 2-Sylow subgroups P and Q where $P \cap Q$ has order 2.

Prove by counting.

Taking intersection, must be proper else they would be the same.

Hence $P \cap Q$ has order 1 or 2.

If there is utterly no overlap, there are $15 \cdot 3 + 1 = 46$ elt's of 2-Sylows.

And these do not have order 5. But there are 24 elements of order 5. Too many.

Now we know that some of these 2-Sylow subgroups have non-trivial overlap.

Consider $N(P \cap Q)$ for some such intersection, will be a subgroup of G.

Cannot be all of G, G is simple. (would make $P \cap Q$ normal)

 $N(P \cap Q)$ contains P and Q since both are abelian.

Each are normal subgroups of $N(P \cap Q)$, so its order is divisible by 4.

Hence could have order 12, 20, or 60 (divisible by 4, divides 60).

Its index cannot be 1 (G is simple) cannot be 3 (A_n too small), = 5.

QED (revisit why).

Jordan-Hölder theorem

Website reference.

G finite non-trivial. Is G simple? $\{e\} \subset G$, $G/\{e\}$ simple.

Not simple $G \supset G_1 \supset (e)$, $G_1 \subseteq G$, G_1 , G/G_1 smaller than G.

Keep going until 'end', using principle of string induction.c

Proposition: $\exists G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n$, $G_{i+1} \subseteq G_i$, G_i/G_{i+1} simple.

A *normal tower* or *composition series*, the simple quotients are the *constituents*.

Obtain a successive extension of simple groups.

Main point.

 $N = p_1 \cdots p_n$

 $\{p_1, p_2, \dots, p_n\}$ a set where order doesn't count but multiplicity does.

Gauss's theorem: (FTA) each prime decomposition of N yields the same set.

Similarly, given G and $G_i/G_{i+1}=Q_i$ and $\{Q_0,\cdots,Q_{n-1}\}$.

Order not mattering, multiplicity matters, up to isomorphism.

Theorem: Each composition yields the same multiset.

Theorem of "Camille Jordan and some guy named Hölder."

9/10

Jordan-Hölder Theorem.

 $G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n$ $G_{i+1} \subseteq G_i, G_i/G_{i+1} = Q_i \text{ simple.}$

Statement of the theorem:

The "set" (multiplicity matters) $\{Q_0, \dots, Q_{n-1}\}$ is independent of the filtration.

Order doesn't count, Q_i up to isomorphism.

Proof strategy: by induction.

If G has a filtration with n quotients, then all filtrations have n quotients.

And all filters have the same set of quotients.

Question, can two different groups have the same reduction?

Answer: yes. $S_3 \supset A_3 \supset \{e\}$. Quotients $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$.

Also $\mathbb{Z}/6\mathbb{Z} \supset 3\mathbb{Z}/6\mathbb{Z} \supset 6\mathbb{Z}/6\mathbb{Z}$, same quotients but radically different structure.

"Knowing the building blocks does not confer knowledge of the building".

Demonstrating the existence of such a filtration for a group $G \neq \{e\}$.

Similar to the proof of prime decompositions.

If it is simple, then the filtration is $G \supset \{e\}$, done.

If G is not simple, $G \supset N \supset \{e\}$, and G/N, N smaller than G.

Strong induction. $\overline{G} = G/N$, then $\overline{G} \supset \overline{G_1} \supset \cdots$ and similarly for $N \supset H_1 \supset \cdots$

Note there is a correspondence b/t subgroups of G con't N and subgroups of G/N

 $G \supset L \supset N$, $L/N \subset G/N$ and $\pi : G \to G/N$, $\pi^{-1}(K) \subset G$ and $K \subset G/N$.

Base case n = 1, $G \supset \{e\}$, $G/\{e\}$ simple and G simple.

Supposing $G \supset G_1 \supset \cdots \supset G_n \supset \{e\} = G_{n+1}$ and $G \supset G'_1 \supset \cdots \supset G'_m \supset \{e\} = G'_{m+1}$. m = n, $\{G_i/G_{i+1}\} = \{G'_j/G'_{j+1}\}$... If $G'_1 = G_1$, then done by induction.

Assume G_1, G_1' are distinct. Then $G_1 \cap G_1'$ is smaller than G_1 or G_1' .

Also, G_1G_1' is a subgroup since its factors are normal by hypothesis.

Indeed, it is also a normal subgroup since G_1 and G'_1 are invariant under conjugation.

Additionally, G_1G_1' is of size larger than G_1 and G_1' . Thus it must be equal to G.

Can map $G_1'/(G_1 \cap G_1') \to G_1G_1'/G_1$. Kernel is exactly $G_1 \cap G_1'$, hence injection.

This defines $G_1'/(G_1 \cap G_1') \hookrightarrow G/G_1$. Symmetrically, $G_1/(G_1 \cap G_1') = G/G_1'$.

Have $G_1 \supset \cdots \supset G_n \supset \{e\} = G_{n+1}$.

Take $G_1 \supset G_1 \cap G_1' = H \supset H_1 \supset H_2 \supset \cdots \supset H_k \supset \{e\}$, a Jordan-Hölder filtration of G_1 . Obtained by induction.

Note $G_1/H = G/G_1'$ is the first quotient of this filtration.

By induction, these two filtrations have the same length.

The constituents of G_1 are the constituents of H, with $G_1/H = G/G_1'$ appended.

Constituents: G/G_1 + constituents of $G_1 = G/G_1 + G/G_1'$ + constituents of H.

Have $G \supset G_1' \supset H \supset H_1 \supset \cdots \supset H_k = \{e\}$, same length as $G_1' \supset G_2' \supset \cdots \supset G_m' = \{e\}$.

Have related two different filtrations that have are unrelated, by a common filtration, which depends on the intersection of these two filtrations.

Free Groups

S a set, define the free abelian group on S, $\mathbb{Z}^S = \mathbb{Z}\langle S \rangle = \{\sum_{s \in S} n_s \cdot s | n_s \in \mathbb{Z}\}.$

Where all but finitely many of the n_s are 0.

$$S = \{1, \dots, n\}, \mathbb{Z}^S = \mathbb{Z}^n = \{(c_1, \dots, c_n) | c_i \in \mathbb{Z}\}$$

$$\sum_{i=0}^{\infty} n_i x^i = \sum_{i=0}^{\infty} n_i \cdot i \in \mathbb{Z}\langle S \rangle$$

where $n_i = 0$ for i >> 0.

"To map $\mathbb{Z}\langle X\rangle$ to A in the world of abelian groups is to map S to A in the world of sets." $S \to \mathbb{Z}\langle S\rangle$ a set map, $s \in S \mapsto 1 \cdot s$.

Given $f : \mathbb{Z}\langle S \rangle A$ homomorphism.

And in fact, $F: Hom(\mathbb{Z}\langle X \rangle, A) \to Maps(S, A)$, F is a bijection.

These elements of the free abelian group are "formal sums".

That is, an $f: S \to \mathbb{Z}$.

Let
$$f: \mathbb{Z}\langle S \rangle \to A$$
, $f(\sum n_s s) = \sum_{s \in S} n_s f(s)$

An abelian group A is free of finite rank if $A \cong \mathbb{Z}^n$ for some $n \ge 0$ ($\mathbb{Z} = \mathbb{Z}\langle \emptyset \rangle = 0$).

Define rank(A) = n. If $\mathbb{Z}^m \cong A \cong \mathbb{Z}^n$ then n = m.

Why? Take positive integer > 1, e.g. 2. Then $\mathbb{Z}^n/2\mathbb{Z}^n \cong \mathbb{Z}^m/2\mathbb{Z}^m$.

LHS has 2^n elts and RHS has 2^m elts so n = m.

A subgroup of a free abelian group of rank n is a free abelian group of rank $\leq n$. Proof: by induction on n.

$$n = 0$$
: $A = (0) = B$.

n = 1: $A = \mathbb{Z} \supset B$. What are the subgroups of \mathbb{Z} ? $(0), (t) = t\mathbb{Z}, t \ge 1$.

Proof by division algorithm: $\mathbb{Z} \supset B \neq 0$, t =smallest positive integer in B.

Division algorithm ensures that all elements are multiples of t.

$$B \subset \mathbb{Z}^n \xrightarrow{\pi} \mathbb{Z}$$
.

$$\pi:(c_1,\cdots,c_n)\mapsto c_n\in\mathbb{Z}.$$

Cases:

(1)
$$\pi(B) = (0), B \subset \mathbb{Z}^{n-1}$$
, free of rank $\leq n - 1$

(2)
$$\pi(B) = t\mathbb{Z}, t \geq 1$$

$$B \xrightarrow{\pi|_B} t\mathbb{Z} \xrightarrow{surj.} 0$$

$$ker(\pi)|_B = C$$
 free of rank $\leq n - 1$.

Choose $b \in B$ such that $\pi(b) = t$.

$$C \subset \mathbb{Z}^{n-1}$$
: $C = ker(\pi)|_B$, free of rank $\leq n-1$.

$$C = B \cap \mathbb{Z}^{n-1}$$

$$C \subset B$$
, $\mathbb{Z} \cdot b \subset B$

Missing (pf in Lang)

Simple linear algebra.

 $a_1, \dots, a_n \in A$ corresponds to a homomorphism $\mathbb{Z}^n \to A$, $(c_1, \dots, c_n) \mapsto \sum_{i=1}^n c_i a_i$.

These are linearly independent if f is 1-to-1, and these span/generate A if f is onto.

A is finitely generated if A is spanned by a_1, \dots, a_n for some $n \ge 0$, $a_i \in A$

A is finitely generated iff A is a quotient of \mathbb{Z}^n for some n.

Corollary: a subgroup of a finitely generated abelian group is again finitely generated.

$$\mathbb{Z}^n \xrightarrow{f} A$$
 finitely generated, have $B \subset A$, $f^{-1}(B) \leq \mathbb{Z}^n$, and $f^{-1}(B) \cong \mathbb{Z}^k$, $k \leq n$.

A finitely generated, torsion-free.

I.e. given $a \in A$ and $n \cdot a = 0$, $n \ge 1$, then a = 0.

Statement: A is free and of finite rank.

Proof: Take a finite set of generators S in which take T lin indep and large as possible.

take
$$T = a_1, \dots, a_k$$
 and $S = a_1, \dots, a_k, \dots, a_m$

$$\sum_{1}^{k+1} c_k a_k = 0, c_{k+1} \neq 0$$

$$B = span\{a_1, \cdots, a_k\} \cong \mathbb{Z}^k$$
.

 a_{k+1}, \cdots, a_m : some multiple lies on B.

$$N \ge 1$$
; $N \cdot A \subset B$.

Th: NA free, $N: A \rightarrow NA$ A torsion free.

Multiplication on A by a positive integer is injective.

A is isomorphic to NA by the mutliplication by n, since NA is free, A is free.

9/15