Compound Poisson Processes

Noah Gblonyah, Seth Okyere, and Michael Throolin

10 December 2021

Concept

Definition (Counting Processes). A random process $\{N(t), t \in [0, \infty)\}$ is a counting process if,

- 1. N(0) = 0.
- 2. $N(t) \in \{0, 1, 2, 3, 4, ...\}$ and is non-decreasing.

Definition (Poisson Processes). A random process N(t) is a poisson process with rate λ if,

- 1. N(t) has independent increments. That is the set $N(t_j + s_j) N(t_j)$, $j \in \{0, 1, 2, ..., n\}$ is independent for each non-overlapping increment $(t_j, t_j + s_j]$.
- 2. For all $t \geq 0$ and h > 0 , $N(t+h) N(t) \sim POIS(\Lambda)$ where $\Lambda = \int_t^{t+h} \lambda(z) dz$.

Definition (Compound Poisson Process). A compound poisson process S(t) is defined as follows:

- 1. For t > 0, $S(t) = \sum_{i=1}^{N(t)} X_i$, where N(t) is a poisson process with rate function λ ,
- 2. All random variables X_i and $\{N(t), t > 0\}$ are independent and identically distributed,
- 3. $N(t) = 0 \implies S(0) = 0$.

Examples and Exploration

Sources

 $https://www.probabilitycourse.com/chapter11/11_1_1_counting_processes.php \\ https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.750\&rep=rep1\&type=pdf$