

#7

RECEIVED

AUG 08 2002

SEQUENCE LISTING

<110> DONALD & FERNANDO
PLUNKETT, Marian L
HARRIS, Scott
MAZAR, Andrew P

TECH CENTER 1600/2900

<120> HISTIDINE PROLINE RICH GLYCOPROTEIN (HPRG) AS AN ANTI-ANGIOGENIC AND ANTI-TUMOR AGENT

<130> 38342-178463

<140> US 10/074,225

<141> 2002-02-14

<150> US 60/268,370

<151> 2001-02-14

<160> 11

<170> PatentIn version 3.1

<210> 1

<211> 525

<212> PRT

<213> Homo sapiens

<400> 1

Met Lys Ala Leu Ile Ala Ala Leu Leu Leu Ile Thr Leu Gln Tyr Ser
1 5 10 15

Cys Ala Val Ser Pro Thr Asp Cys Ser Ala Val Glu Pro Glu Ala Glu
20 25 30

Lys Ala Leu Asp Leu Ile Asn Lys Arg Arg Arg Asp Gly Tyr Leu Phe
35 40 45

Gln Leu Leu Arg Ile Ala Asp Ala His Leu Asp Arg Val Glu Asn Thr
50 55 60

Thr Val Tyr Tyr Leu Val Leu Asp Val Gln Glu Ser Asp Cys Ser Val
65 70 75 80

Leu Ser Arg Lys Tyr Trp Asn Asp Cys Glu Pro Pro Asp Ser Arg Arg
85 90 95

Pro Ser Glu Ile Val Ile Gly Gln Cys Lys Val Ile Ala Thr Arg His
100 105 110

Ser His Glu Ser Gln Asp Leu Arg Val Ile Asp Phe Asn Cys Thr Thr
115 120 125

Ser Ser Val Ser Ser Ala Leu Ala Asn Thr Lys Asp Ser Pro Val Leu
130 135 140

Ile Asp Phe Phe Glu Asp Thr Glu Arg Tyr Arg Lys Gln Ala Asn Lys
145 150 155 160

Ala Leu Glu Lys Tyr Lys Glu Glu Asn Asp Asp Phe Ala Ser Phe Arg
165 170 175

Val Asp Arg Ile Glu Arg Val Ala Arg Val Arg Gly Gly Glu Gly Thr
180 185 190

Gly Tyr Phe Val Asp Phe Ser Val Arg Asn Cys Pro Arg His His Phe
195 200 205

Pro Arg His Pro Asn Val Phe Gly Phe Cys Arg Ala Asp Leu Phe Tyr
210 215 220

Asp Val Glu Ala Leu Asp Leu Glu Ser Pro Lys Asn Leu Val Ile Asn
225 230 235 240

Cys Glu Val Phe Asp Pro Gln Glu His Glu Asn Ile Asn Gly Val Pro
245 250 255

Pro His Leu Gly His Pro Phe His Trp Gly Gly His Glu Arg Ser Ser
260 265 270

Thr Thr Lys Pro Pro Phe Lys Pro His Gly Ser Arg Asp His His His
275 280 285

Pro His Lys Pro His Glu His Gly Pro Pro Pro Pro Asp Glu Arg
290 295 300

Asp His Ser His Gly Pro Pro Leu Pro Gln Gly Pro Pro Pro Leu Leu
305 310 315 320

Pro Met Ser Cys Ser Ser Cys Gln His Ala Thr Phe Gly Thr Asn Gly
325 330 335

Ala Gln Arg His Ser His Asn Asn Asn Ser Ser Asp Leu His Pro His
340 345 350

Lys His His Ser His Glu Gln His Pro His Gly His His Pro His Ala
355 360 365

His His Pro His Glu His Asp Thr His Arg Gln His Pro His Gly His
370 375 380

His Pro His Gly His His Pro His Gly His His Pro His Gly His His
385 390 395 400

Pro His Gly His His Pro His Cys His Asp Phe Gln Asp Tyr Gly Pro
405 410 415

Cys Asp Pro Pro Pro His Asn Gln Gly His Cys Cys His Gly His Gly
420 425 430

Pro Pro Pro Gly His Leu Arg Arg Arg Gly Pro Gly Lys Gly Pro Arg
435 440 445

Pro Phe His Cys Arg Gln Ile Gly Ser Val Tyr Arg Leu Pro Pro Leu
450 455 460

Arg Lys Gly Glu Val Leu Pro Leu Pro Glu Ala Asn Phe Pro Ser Phe
465 470 475 480

Pro Leu Pro His His Lys His Pro Leu Lys Pro Asp Asn Gln Pro Phe
485 490 495

Pro Gln Ser Val Ser Glu Ser Cys Pro Gly Lys Phe Lys Ser Gly Phe
500 505 510

Pro Gln Val Ser Met Phe Phe Thr His Thr Phe Pro Lys
515 520 525

<210> 2
<211> 2051
<212> DNA
<213> Homo sapiens

<400> 2
atataatata aactaataaa gatcagggaaa taattaatgt ataccgttat gtagaccgac 60
tcaggtatgt aagttagagaa tatgaagggtg aattagataa ttaaagggtt ggtttaacaa 120
aatgaaggca ctcattgcag cactgctttt gatcacattt cagtatttgt gtgccgtgag 180
tcccactgac tgcagtgttg ttgagccgga ggctgagaaa gctctagacc tgatcaacaa 240
aaggcgacgg gatggctacc tttccaattt gctgcggattt gctgatgccc acttggacag 300
agtggaaaat acaactgtat attacttagt ctttagatgtt caagaatcgg actgttcgg 360

cctatccagg aaatactgga atgactgtga gccacctgat tccagacgtc catctgaaat 420
agtgatcgga caatgttaagg taatagctac aagacattcc catgaatctc aggacctcag 480
agtgattgac tttaactgca ccacaagttc tgtcttca gcactggcca ataccaaaga 540
tagtccggtc ctcatagatt tcttgagga tactgagcgc tacagaaaac aagccaacaa 600
agccctttag aagtacaaag aggagaatga tgacttgcc tcttcagag tggaccgaat 660
cgagagagtt gcaagagtga gaggagggga aggaactggt tacttcgtgg acttctctgt 720
gcggaactgc cccagacacc atttccccag acacccaat gtcttggat tctgcagagc 780
agatttgttc tatgtatgttag aagccttggaa cttggaaagc cggaaaaacc ttgtcataaa 840
ctgtgaagtc ttgcaccctc aggaacatga gaacatcaat ggtgtaccgc ctcatgggg 900
acatcccttc cactgggtg ggcattgagcg ttcttctacc accaagcctc cattcaagcc 960
ccatggatct agagatcatc atcatccccaa caagccacac gaacatggac ccccacctcc 1020
tccagatgaa agagatcact cacatggacc cccacttcca caaggccctc ctccactatt 1080
gcccatgtcc tgctcaagtt gtcaacatgc cactttggc acaaattgggg cccaaagaca 1140
tttcataat aataattcca gtgacctcca tccccataag catcattccc atgaacagca 1200
tccccacgga caccatccccatgcacacca tcctcatgaa catgataccca atagacagca 1260
tccccatgga caccatccccatgcacacca tcctcatgaa caccacccca atggacacca 1320
tccccatgga caccatccccatgcacacca tcctcatgaa tttccaagac tatggacccctt gtgacccacc 1380
acccccataac caaggtcact gttgccatgg ccacggccca ccacctgggc acttaagaag 1440
gcgaggccca ggtaaaggac cccgtccctt ccattgcaga caaattggat ctgtgtaccg 1500
actccctcct ctaagaaaag gtgaggtgct gccacttcctt gaggccaatt ttcccagctt 1560
cccatggccg caccacaaac atcctctaaa gccagacaat cagcccttc ctcaatcagt 1620
ctctgaatca tgtccagggaa agttcaagag tgggtttcca caagtttcca tgtttttac 1680
acatacattt ccaaaaataaa atgtgattcc tttgaagagg aaaatgaata atacattgaa 1740
tttagaaacat aaataaaaatg accagtaatt gtgaaaatta cagttttttt caacctactt 1800
tcataactgaa gatgcagcaa aatgtgaatg ggaaaagaga tggcctgaga agagagatca 1860
aatggaaagg agagggaaaga actcagtgcgt gcctattagt agttaattct gtcactcacc 1920
actacatcac ttgagacaaa tctatgccac tcagaatctc cttcttcctt ggacttaact 1980
ctaattcttag agtctctgtt actgcttggg ctatacctgg gcataactaat aaagtatggt 2040
attgaaaacta t 2051

<210> 3
<211> 526
<212> PRT
<213> Lepus americanus

<400> 3

Ala Thr Leu Gln Cys Ser Trp Ala Leu Thr Pro Thr Asp Cys Lys Thr
1 5 10 15

Thr Lys Pro Leu Ala Glu Lys Ala Leu Asp Leu Ile Asn Lys Trp Arg
20 25 30

Arg Asp Gly Tyr Leu Phe Gln Leu Leu Arg Val Ala Asp Ala His Leu
35 40 45

Asp Gly Ala Glu Ser Ala Thr Val Tyr Tyr Leu Val Leu Asp Val Lys
50 55 60

Glu Thr Asp Cys Ser Val Leu Ser Arg Lys His Trp Glu Asp Cys Asp
65 70 75 80

Pro Asp Leu Thr Lys Arg Pro Ser Leu Asp Val Ile Gly Gln Cys Lys
85 90 95

Val Ile Ala Thr Arg Tyr Ser Asp Glu Tyr Gln Thr Leu Arg Leu Asn
100 105 110

Asp Phe Asn Cys Thr Thr Ser Ser Val Ser Ser Ala Leu Ala Asn Thr
115 120 125

Lys Asp Ser Pro Val Leu Phe Asp Phe Ile Glu Asp Thr Glu Pro Phe
130 135 140

Arg Lys Ser Ala Asp Lys Ala Leu Glu Val Tyr Lys Ser Glu Ser Glu
145 150 155 160

Ala Tyr Ala Ser Phe Arg Val Asp Arg Val Glu Arg Val Thr Arg Val
165 170 175

Lys Gly Gly Glu Arg Thr Asn Tyr Tyr Val Asp Phe Ser Val Arg Asn
180 185 190

Cys Ser Arg Ser His Phe His Arg His Pro Ala Phe Gly Phe Cys Arg
195 200 205

Ala Asp Leu Ser Phe Asp Val Glu Ala Ser Asn Leu Glu Asn Pro Glu
210 215 220

Asp Val Ile Ile Ser Cys Glu Val Phe Asn Phe Glu Glu His Gly Asn
225 230 235 240

Ile Ser Gly Phe Arg Pro His Leu Gly Lys Thr Pro Leu Gly Thr Asp
245 250 255

Gly Ser Arg Asp His His His Pro His Lys Pro His Lys Phe Gly Cys
260 265 270

Pro Pro Pro Gln Glu Gly Glu Asp Phe Ser Glu Gly Pro Pro Leu Gln
275 280 285

Gly Gly Thr Pro Pro Leu Ser Pro Pro Phe Arg Pro Arg Cys Arg His
290 295 300

Arg Pro Phe Gly Thr Asn Glu Thr His Arg Phe Pro His His Arg Ile
305 310 320

Ser Val Asn Ile Ile His Arg Pro Pro Pro His Gly His His Pro His
325 330 335

Gly Pro Pro Pro His Gly His His Pro His Gly Pro Pro Pro His Gly
340 345 350

His Pro Pro His Gly Pro Pro Arg His Pro Pro His Gly Pro Pro
355 360 365

Pro His Gly His Pro Pro His Gly Pro Pro Pro His Gly His Pro Pro
370 375 380

His Gly Pro Pro Pro His Gly His Pro Pro His Gly Pro Pro Pro His
385 390 395 400

Gly His Pro Pro His Gly His Gly Phe His Asp His Gly Pro Cys Asp
405 410 415

Pro Pro Ser His Lys Glu Gly Pro Gln Asp Leu His Gln His Ala Met
420 425 430

Gly Pro Pro Pro Lys His Pro Gly Lys Arg Gly Pro Gly Lys Gly His
435 440 445

Phe Pro Phe His Trp Arg Arg Ile Gly Ser Val Tyr Gln Leu Pro Pro
450 455 460

Leu Gln Lys Gly Glu Val Leu Pro Leu Pro Glu Ala Asn Phe Pro Gln
465 470 475 480

Leu Leu Leu Arg Asn His Thr His Pro Leu Lys Pro Glu Ile Gln Pro
485 490 495

Phe Pro Gln Val Ala Ser Glu Arg Cys Pro Glu Glu Phe Asn Gly Glu
500 505 510

Phe Ala Gln Leu Ser Lys Phe Phe Pro Ser Thr Phe Pro Lys
515 520 525

<210> 4
<211> 1662
<212> DNA
<213> Lepus americanus

<220>
<221> misc_feature
<222> (1604)..(1604)
<223> N can be A, C, G or T

<400> 4
gcgccacact gcagtgttcg tgggcttga ctcccactga ctgcaaaact accaagccct 60
tggctgagaa agctctagac ctgatcaata aatggcgacg ggatggctac cttttccagt 120
tgctgcagt cgctgatgcc cacttggacg gagcggaatc tgccactgtc tactattnag 180
tcttagatgt gaaagagact gactgttcag tgctatccag gaaacactgg gaagactgtg 240
acccagatct tactaaacgt ccatctttg acgtgattgg gcaatgtaa gtgatacgta 300
ccagatattc ggatgaatat cagactctaa gattgaatga cttaactgc accacgagtt 360
ccgtctttc agccctggcc aacactaaag acagtcctgt tctctttgat ttcatcgagg 420
acacggagcc ctccagaaaa tcccgccgaca aagccctgga ggtgtacaaa agtggaaagcg 480
aggcgtatgc ctctttcaga gtggaccggg tagagagagt cacaagggtg aaaggaggag 540
agagaaccaa ttactatgtg gacttctccg tgaggaactg ctccaggtct cacttccaca 600
gacaccccgcc ctgggggttc tgccagagcag atctgtcctt tgatgtagaa gcctcgaact 660
tggaaaaccc agaagacgtt attataagct gtgaagtctt taactttgag gaacatggaa 720
acatcagtgg ttttcgaccc catttgggca agactccact tgggactgat ggatccagag 780

atcatcatca tccccacaag ccacataagt ttggatgcc acctccccaa gaaggggaag	840
atttctcgga aggaccacca cttcaaggtg gaacccccc actctcccc cccttcaggc	900
caagatgtcg tcatgcctt tttggcacca atgaaaccca tcggttccct catcatcgaa	960
tttcagtgaa catcatccat aggccccctc cccatggaca tcaccccat gggccccctc	1020
cccatggaca tcaccccat gggccccctc cccatggaca tcctcctcat ggaccccttc	1080
cccgacatcc tccccatggg cctcctcccc atggacatcc ccccatggg cccctcccc	1140
atggacatcc tcctcatggg cccctcccc atggacatcc tccccatggg cccctcccc	1200
atggacatcc tccccatggc catggttcc atgaccatgg accctgtgac ccaccatccc	1260
ataaaagaagg tccccaaagac ctccatcagc atgccatggg accaccacct aagcaccagg	1320
gaaagagagg tccaggtaaa ggacacttcc cttccactg gagaagaatt gggtctgttt	1380
accaactgcc cccactgcag aaaggtaag tccttcccc tccgaagcc aattttcccc	1440
agcttctctt gcggaaaccac acccaccctc taaagcccga gatccagccc ttccctcagg	1500
tagcctctga gcgctgtcca gaggagttca atggtgagtt tgacacaactc tccaaagttt	1560
tcccatctac atttccaaaa tgaaatctga ttcccttgat gggnaacaat gaatgatatt	1620
ctqtattaqc accataaaata aatgtggcc atgatgaatg ca	1662

<210> 5
<211> 148
<212> PRT
<213> Homo sapiens

<400> 5

His Pro His Lys His His Ser His His Glu Gln His Pro His His Gly His His
1 5 10 15

Pro His Ala His His Pro His Glu His Asp Thr His Arg Gln His Pro
20 25 30

His Gly His His Pro His Gly His His Pro His Gly His His His Pro His
35 40 45

Gly His His Pro His Gly His His Pro His Cys His Asp Phe Gln Asp
50 55 60

Tyr Gly Pro Cys Asp Pro Pro Pro His Asn Gln Gly His Cys Cys His
 65 70 75 80

Gly His Gly Pro Pro Pro Gly His Leu Arg Arg Arg Gly Pro Gly Lys
85 90 95

Gly Pro Arg Pro Phe His Cys Arg Gln Ile Gly Ser Val Tyr Arg Leu
100 105 110

Pro Pro Leu Arg Lys Gly Glu Val Leu Pro Leu Pro Glu Ala Asn Phe
115 120 125

Pro Ser Phe Pro Leu Pro His His Lys His Pro Leu Lys Pro Asp Asn
130 135 140

Gln Pro Phe Pro
145

<210> 6
<211> 101
<212> PRT
<213> Lepus americanus

<400> 6

Ser Val Asn Ile Ile His Arg Pro Pro Pro His Gly His His Pro His
1 5 10 15

Gly Pro Pro Pro His Gly His His Pro His Gly Pro Pro Pro His Gly
20 25 30

His Pro Pro His Gly Pro Pro Arg His Pro Pro His Gly Pro Pro
35 40 45

Pro His Gly His Pro Pro His Gly Pro Pro Pro His Gly His Pro Pro
50 55 60

His Gly Pro Pro Pro His Gly His Pro Pro His Gly Pro Pro Pro His
65 70 75 80

Gly His Pro Pro His Gly His Gly Phe His Asp His Gly Pro Cys Asp
85 90 95

Pro Pro Ser His Lys
100

<210> 7
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<220>
<221> MISC_FEATURE
<222> (1)..(2)
<223> Xaa at positions 1 and 2 can be either His or Pro

<400> 7

Xaa Xaa Pro His Gly
1 5

<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 8

His His Pro His Gly
1 5

<210> 9
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 9

His Pro Pro His Gly
1 5

<210> 10
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 10

Pro Pro Pro His Gly
1 5

<210> 11

<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 11

Ala Pro Pro His Gly
1 5

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Fernando DOÑATE et al.

Appl. No. 10/074,225

Filed: February 14, 2002

For: HISTIDINE PROLINE RICH
GLYCOPROTEIN (HPTG) AS AN
ANTIANGIOGENIC AND ANTI-
TUMOR AGENT

Art Unit: 1636

Examiner: Unknown

Atty. Docket No. 38342-178463

RECEIVED

AUG 08 2002

TECH CENTER 1600/2900

Customer No.

26694

PATENT TRADEMARK OFFICE

STATEMENT TO SUPPORT FILING AND SUBMISSION
IN ACCORDANCE WITH 37 CFR §§1.821-1.825

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

In response to the Notice to Comply dated June 21, 2002, the undersigned hereby states that the content of the Sequence Listing submitted herewith, the Sequence Listing and the computer readable copy submitted herewith, in accordance with 37 CFR 1.821(c) and (e), respectively, are the same.

In the unlikely event that the Patent Office determines that an extension and/or other relief is required as a result of this statement, applicants petition for any required relief including extensions of time and authorize the Assistant Commissioner to charge the cost of such petitions and/or other fees due to our Deposit Account No. 22-0261 and advise us accordingly.

Respectfully submitted,

Shmuel Livnat
Registration No. 33,949
VENABLE
P.O. Box 34385
Washington, D.C. 20043-9998
Telephone: (202) 216-8158
Telefax: (202) 962-8300

Date: 6-Aug-2002