

Lenguajes Formales y de Programación [B-]

Elder Anibal Pum Rojas

CLASE 5

LABORATORIO LFP "B-"

Aux. Elder Pum

Agenda

- Anuncios
- Dudas
 - Solución de dudas
- Clase
 - Autómatas Finitos
 - Autómatas Finitos No Deterministas (AFN)
 - Autómatas Finitos
 Deterministas (AFD)
 - Python
- Parte Práctica

Anuncios

Anuncios

 Corto #2 - Definir fecha y hora de realización

Autómatas

Un autómata, es una máquina automática programable capaz de realizar determinadas operaciones de manera autónoma y sustituir a los seres humanos en algunas tareas, en especial las pesadas, repetitivas o peligrosas; puede estar dotada de sensores, que le permiten adaptarse a nuevas situaciones.

Autómatas

Ejemplo de autómata:

Figura 1.1. Modelo de un autómata finito de un interruptor de apagado/encendido (on/off).

Tipos de Autómatas

Deterministas

Deterministas

Para cada entrada, hay sólo un estado al que el autómata puede ir desde el estado en el que se encuentre. Se representa como $A = (Q, \Sigma, \delta, qO, F)$. Donde:

Q es un conjunto de estados. Σ es un alfabeto de símbolos de entrada q0 es el estado inicial del autómata. F representa cero o más estados finales. δ es una función de transición.

No Deterministas

No Deterministas

Un autómata finito es no determinista cuando se permite que el **AF** tenga 0 o más estados siguientes para cada par de estadoentrada.

Un AFN contiene las mismas partes que un AFD a diferencia de las transiciones que se verán más adelante.

Definicion de un AF

Ejemplo de AFD

Estados: A,B,C

Alfabeto: 0, 1

Estados de Aceptacion: A, C

Estado Inicial: A

Transiciones:

A,1; **A**

A,O;B

B,1;B

C,1;C

C,0;C

B,0;C

Ejercicios de AFD

AFD

Realizar la solución para cada uno de los problemas planteados a continuación.

(Identificar: Alfabeto, Estados, Estados de aceptación, estado inicial, transiciones y dibujar el grafo)

Ejercicio 1

Ejercicio 1

Elaborar un AFD que acepte cadenas binarias con un número impar de 1's.

Ejercicio 2

Ejercicio 2

Un AFD que permita reconocer cadenas con dos letras "a" al inicio y luego acepte cualquier combinación de "a" y "b". Después de las dos letras "a" debe venir al menos una letra "a" o "b".

Ejemplo Ejercicio 1

Ejemplo Ejercicio 2

aabaababa aaaaaa aababa aab aaa

Tarea 3

Realizar los 2 ejercicios comentados anteriormente.

Deben de colocar los 5 elementos que conforman al AFD, además de realizar el grafo (elección de ustedes si lo harán a mano o con software). En formato PDF.

Fecha de entrega: 16 de septiembre de 2023, antes de las 23:59 horas

No se aceptan entregas tarde.

Python

Ejecutable

Ejemplo en Python

Gracias por asistir

¿Dudas o preguntas?

LABORATORIO LENGUAJES FORMALES Y DE PROGRAMACION