LC02: Energie chimique

Prérequis:

- Oxydo réduction : piles et électrolyse
- Premier principe de la thermodynamique
- Electrocinétique : notion de tension et de courant

Problématiques de la leçon

DEpenses d'Energie des mEnages et part dANS LEUR BUDGET

Champ: France entière (y compris DOM).

Sources : Insee, Comptes nationaux ; SDES, Bilan énergétique de la France

 Ecrire la formule brute du combustible

 $C_2H_6O(l)$

- $C_2H_6O(l)$
- Ajouter sans coefficient stœchiométrique l'eau, le CO₂ et le dioxygène

- $C_2H_6O(l)$
- Ajouter sans coefficient stæchiométrique **l'eau, le CO, et** $C_2H_6O(l)+~O_2(g)
 ightarrow~H_2O(l)+~CO_2(g)$ le dioxygène

$$C_2H_6O(l) + O_2(g) \rightarrow H_2O(l) + CO_2(g)$$

- $C_2H_6O(l)$
- Ajouter sans coefficient stæchiométrique **l'eau, le CO, et** $C_2H_6O(l)+~O_2(g)
 ightarrow~H_2O(l)+~CO_2(g)$ le dioxygène
- Ajuster le nombre d'atomes de carbone avec CO₂(g)

- $C_2H_6O(l)$
- Ajouter sans coefficient stæchiométrique l'eau, le CO, et ${}^{C_2H_6O(l)}+ {}^{O_2(g)} o {}^{H_2O(l)}+ {}^{CO_2(g)}$ le dioxygène

- Ajuster le nombre d'atomes de carbone avec CO₂(g)
- $C_2H_6O(l) + O_2(q) \rightarrow H_2O(l) + 2CO_2(q)$

 Ecrire la formule brute du combustible

- $C_2H_6O(l)$
- Ajouter sans coefficient stæchiométrique **l'eau, le CO, et** $C_2H_6O(l)+~O_2(g)
 ightarrow~H_2O(l)+~CO_2(g)$ le dioxygène

$$C_2H_6O(l) + O_2(g) \rightarrow H_2O(l) + CO_2(g)$$

- Ajuster le nombre d'atomes de carbone avec CO₂(g)
- $C_2H_6O(l) + O_2(q) \rightarrow H_2O(l) + 2CO_2(q)$

 Ajuster le nombre d'atomes d'hydrogène avec H₂O(I)

• Ecrire la **formule brute** du combustible

- $C_2H_6O(l)$
- Ajouter sans coefficient stœchiométrique l'eau, le CO₂ et le dioxygène

$$C_2H_6O(l) + O_2(g) \to H_2O(l) + CO_2(g)$$

- Ajuster le nombre d'atomes de carbone avec CO₂(g)
- $C_2H_6O(l) + O_2(g) \to H_2O(l) + 2CO_2(g)$

Ajuster le nombre d'atomes
 d'hydrogène avec H₂O(l)

$$C_2H_6O(l) + O_2(g) \to 3H_2O(l) + 2CO_2(g)$$

• Ecrire la **formule brute** du combustible

- $C_2H_6O(l)$
- Ajouter sans coefficient stœchiométrique l'eau, le CO₂ et le dioxygène

$$C_2H_6O(l) + O_2(g) \to H_2O(l) + CO_2(g)$$

- Ajuster le nombre d'atomes de carbone avec CO₂(g)
- $C_2H_6O(l) + O_2(g) \rightarrow H_2O(l) + 2CO_2(g)$

Ajuster le nombre d'atomes
 d'hydrogène avec H₂O(l)

 $C_2H_6O(l) + O_2(g) \to 3H_2O(l) + 2CO_2(g)$

Ajuster le nombre d'atomes
 d'oxygène avec O₂(g)

• Ecrire la **formule brute** du combustible

- $C_2H_6O(l)$
- Ajouter sans coefficient stœchiométrique l'eau, le CO₂ et le dioxygène

$$C_2H_6O(l) + O_2(g) \to H_2O(l) + CO_2(g)$$

 Ajuster le nombre d'atomes de carbone avec CO₂(g)

$$C_2H_6O(l) + O_2(g) \rightarrow H_2O(l) + 2CO_2(g)$$

Ajuster le nombre d'atomes
 d'hydrogène avec H₂O(I)

$$C_2H_6O(l) + O_2(g) \to 3H_2O(l) + 2CO_2(g)$$

 Ajuster le nombre d'atomes d'oxygène avec O₂(g)

$$C_2H_6O(l) + 3O_2(g) \rightarrow 3H_2O(l) + 2CO_2(g)$$

Combustion du butane

$$C_4H_{10}(g) + \frac{13}{2}O_2(g) \to 5H_2O(l) + 4CO_2(g)$$

illustration-forum.com

Energies de liaison

Liaison AB(g)	€ _{m,AB} (en kJ·mol ⁻¹)	
Н-Н	436	
C-H	415	
C-C	346	
C-O	358	
О-Н	463	
0=0	497	
C=O	804 (dans CO ₂)	

5. Quelques valeurs d'énergie molaire de liaison. Une énergie molaire de liaison est toujours positive car l'espèce chimique *AB* doit recevoir de l'énergie pour que la liaison soit rompue.

<u>Première générale</u>, Nathan

• Casser toutes les liaisons, et calculer la somme des énergies de liaisons rompues (attention aux coefficients stœchiométriques!)

• Casser toutes les liaisons, et calculer la somme des énergies de liaisons rompues (attention aux coefficients stœchiométriques!)

 Reformer les liaisons qui nous intéressent et sommer les <u>opposés</u> des énergies de liaisons (qui sont formées)

• Casser toutes les liaisons, et calculer la somme des énergies de liaisons rompues (attention aux coefficients stœchiométriques!)

 Reformer les liaisons qui nous intéressent et sommer les <u>opposés</u> des énergies de liaisons (qui sont formées)

Sommer les deux contributions

$$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(l) + CO_2(g)$$

Pouvoir calorifique du méthane

Composé chimique majoritaire	Méthane CH4	Propane C3H8	N-butane et isobutane C4H10	
Caractéristique olfactive	Le gaz de ville est rendu odorant par l'ajout de "THT"	Les GPLs sont des produits odorants par la présence naturelle de composés soufrés. L'odeur est parfois renforcée par l'ajout de Vigileak.		
™C ébullition / liquéfaction	-160ºC > transport / stockage en phase liquide difficile > approvisionnement par canalisation en phase gazeuse	faible pression (environ 7 bar relatif à 15°C) > stockage en citernes ou bouteilles, même dans des zones difficile d'accès	02C environ > transport / stockage en phase liquide possible sou faible pression (environ 1 bar relatif à 152C) > stockage en citerne ou bouteille > utilisation à température ambiante > l'emplissage des bouteilles s'effectue par pesées (kg)	
Densité phase gazeuse	Plus léger que l'air > aération en partie haute	Plus lourd que l'air > aération en partie basse	Plus lourd que l'air > aération en partie basse	
Pouvoir calorifique inférieur (=PCI) (= énergie dégagée par la combustion d'1kg de gaz) M] : mégajoule (1 M] =	13.8 kWh/kg (49,6 M]/kg) Attention le plus souvent le gaz naturel est donnée en kWh/m3 et en PCS	12.8 kWh/kg (46 M)/kg)	12.7 kWh/kg (45.6 M)/kg)	

Emission de gaz à effet de serre

$$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(l) + CO_2(g)$$

Emission de gaz à effet de serre

$$CH_4(g) + 2O_2(g) \to 2H_2O(l) + CO_2(g)$$

Dégagement de CO2 à la combustion	205 gC02/kWh (PCI)	233 gCO2/kWh (PCI)	239 gC02/kWh
Emission de CO2 des énergies sur leur cycle de vie de l'extraction à la combustion. (source ADEME)	241 gCO2/kWh (PCI)	266 gCO2/kWh (PCI)	266 gCO2/kWh (PCI)

Pile Daniell

Pile Daniell

$$H_2O(l) oughtarrow 2H^+(aq) + rac{1}{2}O_2(g) + 2e^ 2H^+(aq) + 2e^- oughtarrow H_2(g)$$
 Electrodes $H_2O(l) oughtarrow H_2(g) + rac{1}{2}O_2(g)$