Conceitos básicos

Sabemos que todo o número inteiro n é divisível por n, por -n, por 1 e por -1 (*i.e.* $n \mid n$, $-n \mid n$, $1 \mid n$, $-1 \mid n$).

Definição

Um número inteiro p > 1 diz-se um número primo se os únicos divisores inteiros positivos são 1 e p. Se p não é primo, então p diz-se um número composto.

Denota-se por P o conjunto de todos os número primos.

NOTAS:

- Os cinco primeiros primos são: 2,3,5,7 e 11.
- 2 é o único primo par.
- o maior primo conhecido é

$$2^{82589933} - 1$$

que é um número com 24 862 048 dígitos (provado que é primo em 7 de dezembro de 2018).

Teorema

Sejam $a, b \in \mathbb{Z}$ e $p \in \mathbb{P}$. Se $p \mid ab$, então $p \mid a$ ou $p \mid b$.

PROVA

Se p é primo e $p \nmid a$, então m.d.c.(a, p) = 1. Assim, como $p \mid a$, pelo Lema de Euclides, $p \mid b$.

Corolário

Sejam $n \in \mathbb{N}$, $a_1, \ldots, a_n \in \mathbb{Z}$ e $p \in \mathbb{P}$. Se $p \mid a_1 \cdots a_n$, então $p \mid a_k$ para algum $k \in \{1, 2, \ldots, n\}$.

Corolário

Sejam $n \in \mathbb{N}$, $p_1, \ldots, p_n, p \in \mathbb{P}$. Se $p \mid p_1 \cdots p_n$, então $p = p_k$ para algum $k \in \{1, 2, \ldots, n\}$.

Teorema Fundamental da Aritmética

Todo o número natural maior do que 1 escreve-se como um produto de números primos. Essa escrita é única a menos da ordem dos fatores.

PROVA (Existência)

Comecemos por provar, por indução completa, que, para todo o $n \in \mathbb{N} \setminus \{1\}$, existem primos, $p_1, \ldots, p_k \in \mathbb{P}$, com $k \geq 1$, tais que $n = p_1 \cdots p_k$.

Notemos que o enunciado é verdadeiro para n=2, pois $2=p_1$ e k=1.

Por hipótese de indução, suponhamos que o enunciado é verdadeiro para todo o número natural menor do que um certo n. Pretendemos provar que também é válido para n.

Se n é primo, então k = 1 e $n = p_1$.

Se n não é primo, então, como n>1, existem $a,b\in\mathbb{N}$, tais que n=ab e 1< a,b< n. Por hipótese de indução, existem q_1,\ldots,q_{k_1} e $q'_1,\ldots q'_{k_2}$ primos tais que

$$a = q_1 \cdots q_{k_1}$$
 e $b = q'_1 \cdots q'_{k_2}$.

Assim, $k = k_1 + k_2$ e n é um produto de primos:

$$n = ab = q_1 \cdots q_{k_1} q'_1 \cdots q'_{k_2}$$

.

PROVA (Unicidade)

Suponhamos que existem duas fatorizações de *n* como produto de números primos :

$$n=p_1\cdots p_{k_1}=q_1\cdots q_{k_2}.$$

Sem perda de generalidade, suponhamos também que $k_1 < k_2, \quad p_1 < p_2 < \cdots < p_{k_1}$ e $q_1 < q_2 < \cdots < q_{k_2}$.

Então, $p_1 \mid n$, pelo que $p_1 = q_t$ para algum $t \in \{1, \dots, k_2\}$. Logo $q_1 \leq p_1$. Reciprocamente, como $q_1 \mid n$, viria que $p_1 \leq q_1$. Assim, $p_1 = q_1$ e, consequentemente,

$$p_2\cdots p_{k_1}=q_2\cdots q_{k_2}.$$

Repetindo, sucessivamente, a argumentação anterior ao fim de k_1 etapas obter-se-ia que

$$p_1 = q_1, \ldots, p_{k_1} = q_{k_1}$$
 e $1 = q_{k_1+1} \cdots q_{k_2}$

o que implica que $k_2 = k_1$ e que as duas fatorizações são iguais.

Usando a operação de potênciação diríamos que todo o natural n > 1 admite uma única fatorização da forma

$$n=p_1^{r_1}\cdots p_k^{r_k}$$

com $k \ge 1$ e p_1, \ldots, p_k números primos tais que $p_1 < \cdots < p_k$. Tal fatorização será designada a fatorização de n em primos.

Proposição

Seja n um o número natural e $n = p_1^{r_1} \cdots p_k^{r_k}$ a fatorização de n em primos. O conjunto dos divisores de n é o conjunto

$$D_n = \{p_1^{c_1} \cdots p_k^{c_k} \mid 0 \le c_i \le r_i \text{ para } i = 1, \dots, k\}.$$

PROVA

Notar que

$$n = p_1^{r_1} \cdots p_k^{r_k} = p_1^{c_1} \cdots p_k^{c_k} \cdot p_1^{r_1 - c_1} \cdots p_k^{r_k - c_k},$$

com $0 \le c_i \le r_i$ para i = 1, ..., k, pelo que todos os elementos de D_n são divisores de n.

Reciprocamente, se $d \in \mathbb{N}$ é tal que $d \mid n$, então existe $x \in \mathbb{N}$ tal que n = dx. Qualquer primo que divide d ou que divide x também divide n. Assim, os primos que ocorrem na fatorização de d e na fatorização de x são elementos do conjunto $\{p_1, \ldots, p_k\}$, pelo que

$$d=p_1^{c_1}\cdots p_k^{c_k}$$
 e $x=p_1^{c_1'}\cdots p_k^{c_k'}$

com $0 \le c_i$, $0 \le c_i'$ para $i = 1, \ldots, k$, e

$$n = p_1^{r_1} \cdots p_k^{r_k} = p_1^{c_1} \cdots p_k^{c_k} + p_1^{c_1'} \cdots p_k^{c_k'} = p_1^{c_1 + c_1'} \cdots p_k^{c_k + c_k'}$$

Pelo Teorema Fundmental da Aritmética, a fatorização de n em primos é única e, então,

$$r_i = c_i + c_i'$$
, para $i = 1, \ldots, k$.

Consequentemente, $c_i \leq r_i$ para $i = 1, \ldots, k$.

Existem $(r_1 + 1)(r_2 + 1) \cdots (r_k + 1)$ divisores positivos de n.

Proposição

Sejam a e b número naturais cujas fatorizações em primos são:

$$a=p_1^{m_1}\cdots p_k^{m_k}$$
 e $b=p_1^{n_1}\cdots p_k^{n_k}$

Então,

- 2 m.m.c. $(a, b) = p_1^{c_1} \cdots p_k^{c_k}$ em que $c_i = \max(a_i, b_i)$ para $i = 1, \dots, k$;

EXEMPLO 5

$$\begin{array}{c} \text{m.d.c.}(101400,15444) =? & \text{m.m.c.}(101400,15444) =? \\ \\ 101400 = 2^3 \times 3 \times 5^2 \times 13^2 \\ \\ 15444 = 2^2 \times 3^3 \times 11 \times 13 \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} \text{m.d.c.}(101400,15444) = 2^2 \times 3^1 \times 5^0 \times 11^0 \times 13^1 \\ \\ \text{m.m.c.}(101400,15444) = 2^3 \times 3^3 \times 5^2 \times 11^1 \times 13^2 \end{array} \right.$$

EXEMPLO 6

Fatorizar o número n = 6858432000 em primos.

É fácil verificar que o número é múltiplo de 10, pelo que é múlptiplo de 2 e de 5, pelo fazendo divisões sucessivas por 2 e por 5, viria que

$$n = 2^9 \times 5^3 \times 107163$$
.

Fazendo tentativas de divisão por 3 viria que

$$n = 2^9 \times 3^7 \times 5^3 \times 49$$

e de seguida obtém-se facilmente a fatorização de *n* em primos

$$n = 2^9 \times 3^7 \times 5^3 \times 7^2$$

pois é fácil verificar que 2, 3, 5 e 7 são primos.

Fatorização em primos

A dificuldade reside em reconhecer um número primo e na determinação dos números primos que dividem um número natural.

Proposição

Todo o número composto n admite um divisor primo menor ou igual a \sqrt{n} .

PROVA

Sejam a, b > 1 tais que $n = a \times b$. Se $a, b > \sqrt{n}$, então

$$n = a \times b > \sqrt{n} \times \sqrt{n} = n,$$

o que é absurdo. Então a ou b é menor do que \sqrt{n} e há pelo menos um fator primo de a ou de b, respetivamente, que também é fator primo de n e menor do que \sqrt{n} .

Problema

Como calcular, no caso geral a fatorização em números primos de um número inteiro maior do que 1 ?

Fatorização em primos

Algoritmo de fatorização por ensaios de divisão sucessivos

Entrada: n > 2 e $P = (p_i)_{i < m}$ uma lista de primos.

- 1 $f = (), e = 0, i = 1, d = p_1$
- 2 Se $d > \sqrt{n}$, então $f \leftarrow f \cdot (\{n, 1\})$ e terminar.
- Se d|n, então $e \leftarrow e + 1$, $n \leftarrow$ quociente da divisão de n por d, repetir 3...
- 4 Se $e \neq 0$, então $f \leftarrow f \cdot (\{d, e\})$.
- **5** Se n = 1, então terminar.
- \bigcirc $i \leftarrow i + 1$.
- **2** Se $i \leq |P|$, então $d \leftarrow p_i$, e = 0, voltar a 2...
- Terminar com mensagem de que f pode não ser a lista completa de fatores primos de n.

Saída: *f* lista ordenada dos menores divisores primos e respetivos expoentes que ocorrem na fatorização de *n*.

Problema

Como calcular uma lista ordenada de números primos para entrada do algoritmo acima?

O crivo de Eratóstenes é uma lista que contém todos os números primos menores do que um dado número inteiro n > 2.

Algoritmo de construção do crivo

Entrada: n > 2.

- 2 Se $p_i > \sqrt{n}$, então terminar.
- ③ $P \leftarrow$ sequência que resulta de P por se retirar os elementos da forma kp_i para $2 \le K \le \frac{n}{p_i}$.
- 0 $i \leftarrow i + 1$, voltar a 2...

Saída: lista ordenada *P* dos números primos menores ou iguais a *n*.

Fatorização em primos

EXEMPLO 7

Usar o algoritmo Algoritmo de construção do crivo de Eratóstenes para determinar todos os primos inferiores a 28.

- $P = (2, 3, 4, 5, 6, \dots, 28);$
- 1ª iteração i = 1, $p_1 = 2$, $2 \le k \le \frac{28}{2}$. Então os elementos de P da forma kp_i , ou seja, da forma 2k são: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28. Resultado da 1ª iteração:

$$P = (2, 3, 5, \dots, 2n + 1, \dots, 25, 27);$$

• $2^{\underline{a}}$ iteração $i=2, p_2=3, 2 \leq k \leq \frac{28}{3}$. Então os elementosde P da forma kp_2 , ou seja, da forma 3k são: 9, 15, 21, 27. Resultado da $2^{\underline{a}}$ iteração:

$$P = (2, 3, 5, 7, 11, 13, 17, 19, 23, 25);$$

• $3^{\underline{a}}$ iteração $i=3, p_5=5, 2 \leq k \leq \frac{28}{5}$. Então os elementos de P da forma kp_3 , ou seja, da forma 5k é : 25. Resultado da $3^{\underline{a}}$ iteração:

$$P = (2, 3, 5, 7, 11, 13, 17, 19, 23).$$

O processo termina na $3^{\underline{a}}$ iteração, dado que $\sqrt{28} \simeq 5,29$.

EXEMPLO 8

• Fatorizar o número n = 434847593 em primos.

Se tentarmos divisões sucessivas pelos menores primos, dificilmente encontramos um divisor. Deveríamos fazer tentativas até \sqrt{n} , sendo que 20853 $<\sqrt{n}<$ 20854.

De facto, o menor número que divide *n* é 20849, o que conduziria a obter

$$n = 20849 \times 20857$$
.

Para este caso existem métodos que apontam rapidamente para esta fatorização, sem garantir que os fatores 20849 e 20857 são primos. Em tal caso, como poderíamos saber se 20849 e/ou 20857 são primos?

• Como fatorizar $n_1 = 20849$?

Notar que

$$144 < \sqrt{20849} < 145.$$

Então deveríamos tentar dividir n_1 , sucessivamente, por todos os primos inferiores a 144, até encontrar um que dividisse n_1 .

Como não se encontra um número nessas condições, então conclui-se que 20849 é primo.

• Como fatorizar $n_2 = 20857$?

Teorema de Euclides

O conjunto P dos números primos é infinito.

PROVA

Suponhamos que o conjunto P é finito, ou seja, que

$$\mathbb{P} = \{p_1, p_2, \dots, p_k\}$$

com $k \in \mathbb{N}$. Seja N o produto de todos os primos mais um, *i.e.*,

$$N = p_1 \cdots p_k + 1$$
.

Então, $N \in \mathbb{N}$, N > 1 e, consequentemente, N é um produto de números primos pelo Teorema Fundamental da Aritmética. Seja p um primo que divide N. Assim,

$$p \mid p_1 \cdots p_k + 1$$
 e $p \mid p_1 \cdots p_k$.

Isto implicava que $p \mid 1$, o que contradiz o facto p ser primo. A contradição resultou de se supor que \mathbb{P} é finito.

Distribuição dos números primos

Proposição

Seja $k \in \mathbb{N}$. Existem k inteiros consecutivos que não são primos.

PROVA

Para qualquer $j \in \{2, ..., k+1\}$, (k+1)! + j não é primo, porque é divisível por j.

EXEMPLO 9

No intervalo [1001! + 2, 1001! + 1001] não há números inteiros primos.

Definição

O número de primos menores ou iguais a um dado x é representado por $\pi(x)$ sendo π designada a função de distribuição de números primos.

Pelo Teorema de Euclides sobre números primos, conclui-se que $\lim_{x\to+\infty}\pi(x)=+\infty$.

O valor de $\pi(10^{27})$ foi publicado em 2015, por David Baugh e Kim Walisch e é

$$\pi(10^{27}) = 16352460426841680446427399$$

Distribuição de frequência de números primos

n	$\pi(n)$	$\frac{\pi(n)}{n}$
10	4	0,4
10 ²	25	0.25
10 ³	168	0.168
10 ⁴	1229	0, 1229
10 ⁵	9592	0.09592
10 ⁶	78498	0.078498
10 ⁷	664579	0.0664579
:	i.	:
10 ¹⁴	3204941750802	0.03204941750802
:		
10 ²⁰	2220819602560918840	0.02220819602560918840

Decréscimo de ocorrências de números primos

Intervalo	Número de primos
1 – 100	25
100 — 200	21
200 — 300	16
300 – 400	16
400 — 500	17
500 — 600	14
600 — 700	16
700 — 800	14
800 — 900	15
900 — 1000	14

Intervalo	Número de primos	
$10^6 - 10^6 + 100$	6	
$10^6 + 100 - 10^6 + 200$	10	
$10^6 + 200 - 10^6 + 300$	8	
$10^6 + 300 - 10^6 + 400$	8	
$10^6 + 400 - 10^6 + 500$	7	
$10^6 + 500 - 10^6 + 600$	7	
$10^6 + 600 - 10^6 + 700$	10	
$10^6 + 700 - 10^6 + 800$	5	
$10^6 + 800 - 10^6 + 900$	6	
$10^6 + 900 - 10^6 + 1000$	8	

À medida que se percorre o conjunto ordenado dos números naturais, os números primos tendem a ocorrer com menor frequência.

Curiosidades sobre números primos

O menor intervalo entre primos verifica-se entre os números 2 e 3, após o que um intervalo entre primos tem no mínimo comprimento 2, como por exemplo entre 5 e 7.

Definição

Se p e p+2 são dois números inteiros primos, então tais números designam-se primos gémeos.

Conjetura

Existe uma infinidade de primos gémeos.

Maiores primos gémeos

Primos gémeos	Nº dígitos	Ano
$2996863034895 \times 2^{1290000} \pm 1$	388342	2016
$3756801695685 imes 2^{666669} \pm 1$	200700	2011
$65516468355 \times 2^{333333} \pm 1$	100355	2009
$12770275971 \times 2^{222225} \pm 1$	66907	2017
$70965694293 imes 2^{2200006} \pm 1$	60219	2016
$66444866235 imes 2^{200003} \pm 1$	60218	2016

Curiosidades sobre números primos

Definição

Uma progressão aritmética de *n* primos é uma sequência de números primos do tipo

$$p, p+d, p+2d, \ldots, p+(n-1)d$$

em que p é o primeiro termo, d é a amplitude constante dos intervalos entre termos e p + (n-1)d é o último termo.

EXEMPLO 10

Progressão aritmética de 5 primos com p = 5 e d = 6:

A maior progressão aritmética conhecida tem comprimento 27. (23 de setembro de 2019, Rob Gahan).

Teorema (Green & Tao, 2004)

Existem progressões aritméticas finitas arbitrariamente longas.