SDM COLLEGE OF ENGINEERING AND TECHNOLOGY, DHARWAD-580002

(An autonomous Institution affiliated to Visvesvaraya Technological University, Belgaum – 590018)

Department of Electronics and Communication Engineering

MAJOR PROJECT ON

STUDY AND ANALYSIS OF CMOS PERFORMANCE FACTORS

PROPOSED BY:

Khushi S.A - 2SD21EC035 Santrupti F - 2SD21EC077 Vaishnavi P - 2SD21EC111 Veena Goudru - 2SD21EC113

STUDENTS OF 7th SEMESTER

UNDER THE GUIDANCE OF:

Prof. Vyas Murnal

Department of ECE, SDMCET, Dharwad-02

Contents

- > Introduction
- Motivation
- Literature Survey
- Objectives
- Problem Statement
- Technologies Used
- Preliminary Study Done
- Introduction To Leakage Power
- Leakage Power Reduction
- Preliminary Results
- Future work
- References

Introduction

- •Study and Analysis of CMOS (Complementary Metal-Oxide-Semiconductor) performance factors are crucial in understanding and enhancing the efficiency of modern electronic devices.
- •Widely used in **integrated circuits (ICs)** due to its **low power consumption**, **high noise immunity**, and **scaling potential**.
- •Essential for optimizing **performance** as device dimensions shrink and the demand for **higher speed** and **lower power** increases.

Motivation

- The motivation behind studying and analyzing CMOS performance factors stems from the **rapid advancements** and **evolving demands in modern electronics**.
- As technology progresses, the need for **highly efficient**, **low-power**, and **high-speed devices** has grown exponentially, particularly in fields such as **telecommunications**, **computing**, and **portable electronics**.

Literature survey

Year Of

2016

Publication

Title

Techniques Employed

Leakage Power

Reduction Techniques

SI

No

Authors

Rawat

Vikas Singhai, Saima Ayyub, Paresh

1.	Yuan Taur and Tak H. Ning	2022	Fundamentals of modern VLSI Devices	Scaling techniques
2.	Sarthak Talwara , B. Mohapatrab and Mohammad Rashid Ansari	2020	Performance Analysis of CMOS Technology	Reduction of Parasitic
3.	Zitong Han	2020	The power-delay product and its implication to CMOS Inverter	Gate sizing and transistor sizing

Comparison of Leakage Power

Reduction Techniques in 65nm

Technologies

Objectives

- To perform detailed literature survey on various CMOS performance factors.
- To investigate sensitivity of CMOS delay to device parameters.

Problem statement

- To perform detailed study, analysis on various CMOS performance factors in VLSI technology.
- To perform performance related simulations using CADENCE virtuoso (90nm).

Technologies Used

• Cadence Virtuoso (Electronic Design Automation (EDA) tool suite) Technology node: 90 nm

cādence°

Virtuoso® Design Environment

version IC6.1.5.500.15

Protected by US Patents: 5,790,436; 5,812,431; 5,859,785; 5,949,992; 6,493,849; 6,278,964; 6,300,765; 6,304,097; 6,414,498; 6,560,755; 6,618,837; 6,693,439; 6,826,736; 6,851,097; 6,711,725; 6,832,358; 6,874,133; 6,918,102; 6,954,908; 6,957,400; 7,003,745; 7,003,749;

Copyright @ 1992-2012 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and Virtuoso are registered trademarks and the Cadence logo is a trademark of Cadence Design Systems, Inc. All others are the property of their respective holders.

Noise Margin

Noise margin is the tolerance level for unwanted voltage (noise) that can be present on an input signal without causing errors in the output.

Impact on Power

- Reduced noise margin: Decreased power consumption.
- Increased noise margin: Increased power consumption.

Impact on Delay

- Reduced noise margin: Decreased delay.
- Increased noise margin: Increased delay.

• Switching Characteristics

Switching characteristics in CMOS refers to behaviour of the signal when they change their states from 0 to 1 and 1 to 0.

Impact on Power

- Increased switching activity – increases power consumption

Impact on Delay

- Longer transition times (increased switching activity) increases the delay

• Parasitic Elements (resistance, capacitance)

Propagation delay of CMOS inverter

Propagation delay refers to the time taken by the signal to reach from input to output.

Impact on Power

- Increased propagation delay leads to lower power consumption.

Impact on Delay

- Increased propagation delay leads to longer signal path delays and takes more time to reach output.

CMOS LOGIC CIRCUITS	POWER	DELAY
INVERTER	46nW	16.33ps
NAND	40.35nW	26.71ps
NOR	52.7nW	31.718ps

NMOS - Vds vs Ids

NMOS – Vgs vs Ids

PMOS – Vds vs Ids

PMOS – Vgs vs Ids

- Leakage power consumption is the power consumed by the sub threshold currents and by reverse biased diodes in a CMOS transistor.
- Short circuit power consumption occurs during switching of both NMOS and PMOS transistors in the circuit and they conduct simultaneously for a short amount of time.

Sleep Approach NAND gate – 26.55 nw

Stack Approach based 2 input NAND gate – 19.47 nw

Sleepy Stack Approach based 2 input NAND gate – 24.62 nw

90 nm	Power (nW)
Sleep Approach NAND gate	26.55 nW
Stack Approach based 2 input NAND gate	19.47 nW
Sleepy Stack Approach based 2 input NAND gate	24.62 nW

Key Factors affecting device parameters :

1) Capacitance

The total delay of a circuit is influenced by the time it takes to charge or discharge the load capacitance (CL) through the driving transistor. The delay can be separated into **rise time** (charging) and fall time (discharging).

	Capacitance	0.1pF	0.3pF	0.5pF	0.8pF	1pF	2pF
	Delay	1.182ns	3.378ns	5.568ns	8.77ns	10.838ns	18.75ns
1							

CONCLUSION: An increase in load capacitance increases the delay in a CMOS inverter, as it takes more time to charge and discharge the capacitance. Larger load capacitance results in slower switching and higher propagation delay.

2) Power Supply Voltage

The power supply voltage is the external voltage provided to a circuit or device to power its operation.

Power Supply Voltage	0.45V	0.7V	0.9V	1.2V	1.5V	1.8V
Delay	25.17ns	0.0953ns	0.0488ns	0.0356ns	0.0292ns	0.025ns

CONCLUSION: An increase in delay occurs when the supply voltage (VDD) is reduced, as the transistors switch slower, resulting in longer rise and fall times. This increases the overall propagation delay of the CMOS inverter.

3) Threshold Voltage

The **threshold voltage (VT)** is the minimum voltage required at the gate of a transistor (e.g., MOSFET) to create a conducting path between the source and drain terminals. Beyond this voltage, the transistor switches from the OFF state to the ON state.

Threshold Voltage	0.45V	0.40V	0.25V	0.125V	0.09V
Delay	82.46ps	79.52ps	50.67ps	27.33ps	14.99ps

$$t_{pd} = (C_L V_{dd}) / I_{ds}$$

CONCLUSION: A decrease in threshold voltage lowers the required voltage for the transistor to turn on, increases the current that can flow through it, and reduces the time needed to charge discharge the capacitances associated with switching. As a result, delay decreases.

4) Channel Width

The channel width refers to the width of the conductive channel in a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) that connects the source and drain terminals. This channel allows the flow of charge carriers (electrons or holes) when the transistor is turned on.

a) Width of pmos =120nm (fixed)

	Width of nmos	120nm	180nm	240nm	300nm	450nm	600nm
ŀ							
	Delay	54.01ps	56.24ps	57.73ps	59.74ps	63.98ps	67.045ps

b) Width of nmos =120nm (fixed)

Width of pmos	120nm	180nm	240nm	300nm	450nm	600nm
Delay	54.01ps	49.8ps	46.84ps	44.905ps	41.345ps	38.955ps

CONCLUSION: Increasing NMOS width increases delay due to secondary effects like leakage current, short-channel effects, or insufficient improvement in current drive. Increasing PMOS width decreases delay as it compensates for the PMOS's lower mobility, improving current drive and speeding up switching.

5) Channel length

The channel length (L) in a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) refers to the distance between the source and drain terminals, where the current flows through the channel created in the semiconductor material between these two terminals.

a) Length of pmos =100nm (fixed)

Length of nmos	100nm	150nm	200nm	250nm	300nm	500nm
Delay	54.01ps	50.62ps	48.62ps	47.4ps	46.53ps	44.92ps

b) Length of nmos =100nm (fixed)

Length of pmos	100nm	150nm	200nm	250nm	300nm	500nm
Delay	54.015ps	59.925ps	62.345ps	66.69ps	70.47ps	90.195ps

CONCLUSION: the lower mobility of holes in PMOS transistors explains why delay increases significantly as the PMOS length increases, while NMOS devices exhibit a relatively stable delay.

6) Gate oxide Thickness

Gate oxide thickness refers to the thickness of the insulating layer of oxide that separates the gate electrode from the semiconductor channel in a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This layer plays a critical role in the performance of the transistor, as it controls the flow of current between the source and drain terminals by influencing the gate's ability to control the channel.

Gate oxide	2.0nm	2.5nm	3.0nm	3.5nm	4.0nm	4.5nm
Delay	20.34ps	22.89ps	25.54ps	28.23ps	31.83ps	34.61ps

CONCLUSION: Thinner oxide leads to a higher gate capacitance. Higher gate capacitance increases the charging/discharging time, resulting in greater propagation delay, reducing overall circuit speed and performance.

37

Conclusion

• The objectives of performing a detailed analysis of CMOS performance factors and investigating delay sensitivity using simulations in Cadence Virtuoso have been successfully met.

Future Work

- Sensitivity of delay parameter with respect to NAND and NOR gates.
- In similar manner as delay, analyzing the sensitivity of CMOS performance factors to power.

References

- [1]Taur, Y., & Ning, T. H. (2023). Fundamentals of modern VLSI devices (3rd ed.). Cambridge University Press.
- [2] Talwar, S., Mohapatra, B., & Ansari, M. R. (2020, May 23). Performance Analysis of CMOS Technology. 2nd International Conference on Communication & Information Processing (ICCIP) 2020. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3647984
- [3] Zitong Han 2021. The power-delay product and its implication to CMOS Inverter. J. Phys.: Conf. Ser. 1754 012131 https://iopscience.iop.org/article/10.1088/1742-6596/1754/1/012131/pdf
- [4]International Journal of Computer Applications (0975 8887) Volume 134 No.8, January 2016 28 Comparison of Leakage Power Reduction Techniques in 65nm Technologies

THANK YOU

Switching Characteristics

Waveforms of the output node voltage (dotted) of a CMOS inverter. (a) Pull-down transition after an abrupt rise of input voltage (solid). (b) Pullup transition after an abrupt fall of input voltage (solid).

1. Overview of CMOS Inverter Switching: Describes the basic switching characteristics of a CMOS inverter, especially when the gate voltage undergoes an abrupt or infinitely sharp transition.

Switching Transition

Example: In an inverter, when Vin transitions from 0 to Vdd Before the transition, the nMOSFET is off, and the pMOSFET is on. After the transition, the nMOSFET is on, and the pMOSFET is off.

Pull-Down Switching Characteristics: The switching behaviour is defined by the differential equation:

$$(C_++C+)dVout/dt=-IN(Vin=Vdd)$$

- **Definition of nMOSFET Pull-Down Delay (τn)**:Defined as the time it takes for the output node voltage to reach Vdd/2.
- **Definition of pMOSFET Pull-Up Delay (τp)**: Defined as the time for the output voltage to rise.

Noise Margin

Noise margin is the tolerance level for unwanted voltage (noise) that can be present on an input signal without causing errors in the output.

Noise margin for a given transfer curve is measured by the size of the maximum square that can fit between itself and its complementary curve.

Propagation delay of CMOS inverter

Inverter propagation delay: time delay between input and output signals; figure of merit of logic speed. Typical propagation delays: < 100 ps.

Average propagation delay: $tp = (T_{PHL} + T_{LHP})/2$.

Where, T_{PHL} = propagation delay high to low and T_{PLH} = propagation delay low to high

Propagation delay and Power tradeoff:

 V_{DD} increases \Rightarrow tp decreases

- **Reason:** V_{DD} increases as a result, the overdrive voltage V_{GS} - V_{TH} is also increased which increases the current I_D
- **Trade-off:** VDD ↑⇒more power consumed.

• Parasitic Elements

Parasitic elements in CMOS (Complementary Metal-Oxide-Semiconductor) circuits refer to unintended components, such as capacitances, resistances, and sometimes inductances, that arise from the physical layout and materials used in semiconductor devices. These elements can affect the performance, power consumption, and reliability of CMOS circuits, especially as devices are scaled down in size. Common parasitic elements in CMOS:

- 1) Source-Drain Resistance
- 2) Gate Resistance
- 3) Junction Capacitance
- 4) Overlap Capacitance
- 5) Interconnect R and C