2]:	<pre>from scipy.stats import pearsonr import matplotlib.pyplot as plt import seaborn as sns from IPython.display import display #Read data from .csv file passenger_train = pd.read_csv("train.csv") passenger_test = pd.read_csv("test.csv")</pre>
3]:	<pre>passenger_train.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype</class></pre>
	5 Age 714 non-null float64 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB The training data set have 891 examples and 11 features + one target values.('Survived'). Features have a different type, 5 of them intege 5 are objects and 2 are floats. I can give a short description of the features:
4]:	<pre>#Pclass: Ticket class #Name:Passenger Name #Sex: Sex #Age: Age in years #Sibsp: # of siblings / spouses aboard the Titanic #Parch: # of parents / children aboard the Titanic #Ticket: Ticket Number #Fare: Passenger Fare #Cabin: Cabin number #Embarked: Port of Embarkation</pre> passenger_train.describe()
	count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000 mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208 std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429 min 1.000000 0.000000 0.420000 0.000000 0.000000 0.000000 0.000000 25% 223.500000 0.000000 2.000000 28.00000 0.000000 0.000000 14.454200 75% 668.500000 1.000000 38.00000 1.000000 0.000000 31.000000
	max 891.000000 1.000000 3.000000 80.000000 6.000000 512.329200 This graph shows us our training data set the survival rate is 38.3%. Also, we can see the age range is 0.4 and 80. I will look later for missivalues more deeply but we can see that also feature age has missing values. display (passenger_train.head()) PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarke 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85
	Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN Heikkinen, Miss. Laina female 26.0 0 0 0 STON/O2. 3101282 7.9250 NaN Heikkinen, Miss. Laina female 26.0 0 0 0 STON/O2. 3101282 7.9250 NaN Allen, Mr. William Henry male 35.0 1 0 113803 53.1000 C123 Allen, Mr. William Henry male 35.0 0 0 0 373450 8.0500 NaN As you can see above in our data set we need to convert a lot of features into numeric ones later on for the machine learning algorithm approcess them. Also, our numerical values have a different range, we need to set them as similar and close one each other. And the next step, we'll look at our dataset which has missing values.
6]: 6]:	<pre>total=passenger_train.isnull().sum().sort_values(ascending=False) percent = passenger_train.isnull().sum()/passenger_train.isnull().count()*100 percent_2 = (round(percent, 1)) missing_data = pd.concat([total, percent_2], axis=1, keys=['Total', '%']) missing_data.head(5) Total % Cabin 687 77.1 Age 177 19.9 Embarked 2 0.2</pre>
7]: 7]:	Ticket 0 0.0 Ticket 0 0.0 The main problems are Cabin and age sections. Embarked has just 2 missing data and we can fill it with ease. passenger_train.columns.values array(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype=object) We have 11 features and one target feature as "Survived". In the next steps, I'll look at which features have most correlated with "Survived First of all, we will start with "Age" and "Sex".
	Step 1 In this step, as I said before we will look at each feature how they related to the Survived and analysing them on some graph. Step1.1 Age and Sex survived = 'survived' not_survived = 'not survived' fig, axes = plt.subplots(nrows=1,ncols=2,figsize=(15,5))
	<pre>women = passenger_train[passenger_train['Sex']=='female'] men = passenger_train[passenger_train['Sex']=='male'] ax=sns.distplot(women[women['Survived']==1].Age.dropna(),bins=18, label = survived,ax=axes[0],kde = False) ax=sns.distplot(women[women['Survived']==0].Age.dropna(),bins=18, label = not_survived,ax=axes[0],kde = Fa ax.legend() ax.set_title('Female') ax=sns.distplot(men[men['Survived']==1].Age.dropna(),bins=18, label = survived,ax=axes[1],kde = False) ax=sns.distplot(men[men['Survived']==0].Age.dropna(),bins=18, label = not_survived,ax=axes[1],kde = False) ax.legend() ax.set_title('Male') ## You can write these ones also in histplot function. #ax=sns.distplot(women[women['Survived']==1].Age.dropna(),bins=18, label = survived,ax=axes[0],kde = False #ax=sns.distplot(women[women['Survived']==0].Age.dropna(),bins=18, label = not_survived,ax=axes[0],kde = False</pre>
	<pre>#ax.legend() #ax.set_title('Female') #ax=sns.distplot(men[men['Survived']==1].Age.dropna(),bins=18, label = survived,ax=axes[1],kde = False,col #ax=sns.distplot(men[men['Survived']==0].Age.dropna(),bins=18, label = not_survived,ax=axes[1],kde = False #ax.legend() #ax.set_title('Male') C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a de ated function and will be removed in a future version. Please adapt your code to use either `displot` (a fi -level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a de ated function and will be removed in a future version. Please adapt your code to use either `displot` (a fi -level function with similar flexibility) or `histplot` (an axes-level function for histograms).</pre>
8]:	warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a de ated function and will be removed in a future version. Please adapt your code to use either `displot` (a fi-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a de ated function and will be removed in a future version. Please adapt your code to use either `displot` (a fi-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) Text(0.5, 1.0, 'Male') Female Male survived not survived not survived not survived not survived
	25 - 20 - 40 - 30 - 20 - 5 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	For women passenger, the survival chances are higher between 14 and 40 years old. For men, this is changing. It's around the age of 18 and 30. If you compare both of them, women survival probability is more than men. Women survival probability also high in the age of 5 and 18 but on the other side, it is not the same for men. Step 1.2 Embarked, Pclass and Sex fg = sns.FacetGrid (passenger_train, row='Embarked', height=4, aspect=1.5) fg.map (sns.pointplot, 'Pclass', 'Survived', 'Sex', palette= None, order= None, hue_order = None)
	<pre>fg.add_legend() """ S = Southhampton, UK C = Chebourg, France Q = Quenstown, Ireland """ print(passenger_train['Embarked'].value_counts()) S 644 C 168 Q 77 Name: Embarked, dtype: int64 Embarked = S</pre>
	0.8 - 0.6 - 0.4 - 0.2 -
	0.0 - Embarked = C 1.0 - 0.8 - 0.6 - 0.6 - 0.4
	0.0 - Embarked = Q 1.0 - 0.8 - 0.6
	As we can see above graphs, embarked is correlated with survival depending on gender.
	Women on port S and on port Q have a higher chance of survival. On port C, there is less chance of survival. Men on port C a have a high probability to survive otherwise on port Q and S they have less chance of survival. Step 1.3 Pclass Pclass also seems to be correlated with survival that's why we will plot it. sns.barplot(x='Pclass', y='Survived', data=passenger_train) <axessubplot:xlabel='pclass', ylabel="Survived"></axessubplot:xlabel='pclass',>
	0.7 - 0.6 - 0.5 - 0.8 - 0.1 - 0.1 -
	As expected the first class have a higher survival chance than the other classes. We'll plot another plot for looking more deeply and understand each class effect on survival. cls= sns.FacetGrid(passenger_train,col='Survived',row='Pclass',height=2,aspect=1.5) cls.map(plt.hist,'Age',alpha=0.5,bins=18) cls.add_legend() <seaborn.axisgrid.facetgrid 0x1b175bd39a0="" at=""></seaborn.axisgrid.facetgrid>
	Pclass = 1 Survived = 1 40 Pclass = 2 Survived = 0 Pclass = 2 Survived = 1
	Pclass = 3 Survived = 0 Pclass = 3 Survived = 1 40 20 40 Age Those plats also show us about the first class has more shapes of survival on the other hand, it shows us a third class high probability to
	These plots also show us about the first-class has more chance of survival, on the other hand, it shows us a third-class high probability to not survived. Step 1.4 SibSp and Parch These two features would make more sense as combined, it will show us the total number of relatives, a person has on the Titanic. data = [passenger_train,passenger_test] for dataset in data: dataset['relatives'] = dataset['SibSp'] + dataset['Parch'] dataset.loc[dataset['relatives'] > 0 , 'not alone'] = 0
2]:	<pre>dataset.loc[dataset['relatives'] == 0, 'not_alone'] = 1 #dataset['not_alone'] = dataset['not_alone'].astype(int) passenger_train['not_alone'].value_counts() # Sıfır yalnız insanları gösterir 1.0 537 0.0 354 Name: not_alone, dtype: int64 axes = sns.pointplot(x='relatives',y='Survived',data=passenger_train,height=4.5,aspect=1.5) ## axes = sns.factorplot(x='relatives',y='Survived',data=passenger_train,height=5,aspect=1.5)</pre>
	0.8 - 0.6 - 0.4 - 0.2 - 0.0 -
	The above plotting shows us, you had a high probability of survival with 1 to 3 relatives and if you had less than 1 or more than 3 that probability is less. Step 2 Data Preprocessing Before the starting analysis of our data, firstly, we need to look at the dataset. In our dataset, we don't need to use Passengeld, that's why we will drop it. After that, we'll focus on missing data that are classified before it. We have missing data on Cabin(687), Embarked(2) and Age(177). I decided to delete also Cabin. If we have missing values on features, we'll fix it.
4]: 5]:	<pre>passenger_train = passenger_train.drop(['PassengerId','Cabin'],axis=1) Step2.1 Age data = [passenger_train,passenger_test] for dataset in data: mean = passenger_train["Age"].mean() std = passenger_test["Age"].std() a = dataset["Age"].isnull().sum() # compute random numbers between the mean, std and is_null rand = np.random.randint(mean-std,mean+std,size=a)</pre>
	<pre># fill NaN values in Age column with random values generated age_slice = dataset["Age"].copy() age_slice[np.isnan(age_slice)]=rand dataset["Age"]=age_slice dataset["Age"]=passenger_train["Age"].astype(int) passenger_train["Age"].isnull().sum()</pre> Step2.2 Embarked Just 2 missing values on this one. I will just fill these with the most common ones.
6]: 6]: 7]:	<pre>passenger_train["Embarked"].describe() count 889 unique 3 top S freq 644 Name: Embarked, dtype: object common='S' data = [passenger_train, passenger_test] for dataset in data: dataset['Embarked'] = dataset['Embarked'].fillna(common)</pre>
	Step 2.3 Convert Features We will fix our dataset and now we need to change our features type. For the machine learning model, we need to have all datatype as a integer. In this step, we will convert to features integer. Name, Sex, Ticket and Embarked type of "Object". Also Fare and not_alone converting from float to integer. passenger_train.info()
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype</class></pre>
9]:	<pre>10 relatives 891 non-null int64 11 not_alone 891 non-null float64 dtypes: float64(2), int32(1), int64(5), object(4) memory usage: 80.2+ KB # Fare and not_alone float to int data = [passenger_train,passenger_test] for dataset in data: dataset['Fare'] = dataset['Fare'].fillna(0) dataset['Fare'] = dataset['Fare'].astype(int) dataset['not_alone'] = dataset['not_alone'].fillna(0) dataset['not_alone'] = dataset['not_alone'].astype(int)</pre>
	<pre>Step 2.3.1 Name We'll change to Name as a Title. So that we can build a new feature. data = [passenger_train,passenger_test] # for dataset in data: dataset['Title'] = dataset.Name.str.extract(pat ='([A-Za-z]+)\.',expand=False) pd.crosstab(passenger_train['Title'],passenger_train['Sex'])</pre>
0]:	Sex female male Title Capt 0 1 Col 0 2 Countess 1 0 Don 0 1 Dr 1 6
	Jonkheer 0 1 Lady 1 0 Major 0 2 Master 0 40 Miss 182 0 Mile 2 0 Mme 1 0 Mr 0 517
1]:	<pre>Mrs 125 0 Ms 1 0 Rev 0 6 Sir 0 1 # replace titles with a more common title or as Rare for dataset in data: dataset['Title'] = dataset['Title'].replace(['Capt','Col','Countess','Don','Dona',\</pre>
1]:	<pre>dataset['Title'] = dataset['Title'].replace('Mlle','Miss') dataset['Title'] = dataset['Title'].replace('Ms','Miss') dataset['Title'] = dataset['Title'].replace('Mme','Mrs') passenger_train[['Title','Survived']].groupby(['Title']).mean() Survived Title Master 0.575000 Miss 0.702703</pre>
2]:	<pre>Mr 0.156673 Mrs 0.793651 Rare 0.347826 titles = {"Mr": 0, "Miss": 1, "Mrs": 2, "Master": 3, "Rare": 4} for dataset in data: # convert titles into numbers dataset['Title'] = dataset['Title'].map(titles) # filling NaN with 0, to get safe dataset['Title'] = dataset['Title'].fillna(0) passenger train = passenger train.drop(['Name'], axis=1)</pre>
3]: 3]:	passenger_test = passenger_test.drop(['Name'], axis=1) Survived Pclass Sex Age SibSp Parch Ticket Fare Embarked relatives not_alone Title 0 0 3 male 22 1 0 A/5 21171 7 S 1 0 0 1 1 1 female 38 1 0 PC 17599 71 C 1 0 2 2 1 3 female 26 0 0 STON/O2.3101282 7 S 0 1 1 3 1 1 female 35 1 0 113803 53 S 1 0 2
	4 0 3 male 35 1 0 113803 53 5 1 0 2 4 0 3 male 35 0 0 373450 8 S 0 1 0 Step 2.3.2 Sex Now in this step, we will convert the sex feature as an integer. 0 or 1. Male is 0 and Female is a 1. genders = {"male":0, "female":1} data = [passenger_train, passenger_test] for dataset in data: dataset['Sex']=dataset['Sex'].map(genders)
5]: 5]:	Step 2.3.3 Ticket passenger_train['Ticket'].describe() count 891 unique 681 top 1601 freq 7 Name: Ticket, dtype: object 681 values are unique on this dataset, that's why it would be diffucult the classify them. We will drop it.
6]:	passenger_train = passenger_train.drop(['Ticket'],axis=1) passenger_test = passenger_test.drop(['Ticket'],axis=1) Step 2.3.4 Embarked Convert 'Embarked' into numeric values. ports = {'S':0,'C':1,'Q':2} data = [passenger_train,passenger_test] for dataset in data: dataset['Embarked']=dataset['Embarked'].map(ports)
8]: 8]:	dataset['Embarked'] = dataset['Embarked'] .map(ports) passenger_train.head() Survived Pclass Sex Age SibSp Parch Fare Embarked relatives not_alone Title 0 0 3 0 22 1 0 7 0 1 0 0 1 1 1 38 1 0 71 1 1 0 2 2 1 3 1 26 0 0 7 0 0 1 1 3 1 1 35 1 0 53 0 1 0 2 4 0 3 0 35 0 8 0 0 1 0
	Step 3 - Setting Categories Now our all features numeric values but some of them have huge range difference. Such as feature age range is from 0.4 to 80. For a machine learning model, we need to have a similar range of difference about all features. In this step, we will update our features(Age an Fare) as like that Step3.1 Age According to distirubution we will grouping age feature as a 7 different group. (0-10 = 0) & (11-18 = 1) & (19-22 = 2) & (23-27 = 3
	According to distirubution we will grouping age feature as a 7 different group. (0-10 = 0) & (11-18 = 1) & (19-22 = 2) & (23-27 = 3) & (28-33 = 4) & (34-40 = 5) & (40 = 6) data = [passenger_train,passenger_test] for dataset in data: dataset['Age'] = dataset['Age'].astype(int) dataset.loc[dataset['Age']<=10,'Age']=0 dataset.loc[(dataset['Age'] > 10) & (dataset['Age'] <=18),'Age']=1 dataset.loc[(dataset['Age'] > 18) & (dataset['Age'] <=22),'Age']=2 dataset.loc[(dataset['Age'] > 22) & (dataset['Age'] <=27),'Age']=3 dataset.loc[(dataset['Age'] > 27) & (dataset['Age'] <=33),'Age']=4 dataset.loc[(dataset['Age'] > 33) & (dataset['Age'] <=40),'Age']=5 dataset.loc[(dataset['Age'] > 40),'Age']=6
9]:	<pre>passenger_train['Age'].value_counts() 4 166 6 161 5 155 3 139 2 113 1 93 0 64 Name: Age, dtype: int64 Step3.1 Fare</pre>
	Also in this feature, we have a very different range. Titanic has offered a different type of ticket and according to them, we have ticket class and fare. That's dor better solution we also need to group our fare features like age. According to distribution we will grouping age features as a 6 different group (0-7.91\$ = 0) & (>7.91\$-15\$ = 1) & (>15\$ - 31\$ = 2) & (>31\$-99\$ = 3) & (>99\$-250\$ = 4) & (>250\$ = 5) data = [passenger_train,passenger_test] for dataset in data: dataset.loc[dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <=15), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 15) & (dataset['Fare'] <=31), 'Fare'] = 2 dataset.loc[(dataset['Fare'] > 31) & (dataset['Fare'] <=99), 'Fare'] = 3
1]: 1]:	<pre>dataset.loc[(dataset['Fare']>99) & (dataset['Fare']<=250),'Fare'] =4 dataset.loc[(dataset['Fare']>250),'Fare'] =5 dataset['Fare']=dataset['Fare'].astype(int) passenger_train["Fare"].describe() count 891.000000 mean</pre>
2]: 2]:	max
	25% 0.000000 2.000000 0.000000 0.000000 0.000000 0.000000
	In this part, we will train 3 models and compare their results. Firstly, we need to drop survived features on our training dataset. Because t dataset does not provide labels for their testing set, we used the predictions on the training set to compare the algorithms with each oth Also, drop the passenger Id and cabin on test data. # Algorithms from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import SGDClassifier X_train = passenger_train.drop("Survived", axis=1)
4]: 5]: 5]:	<pre>X_train = passenger_train.drop("Survived", axis=1) Y_train = passenger_train["Survived"] X_test = passenger_test.drop(["PassengerId", "Cabin"], axis=1).copy() X_train Pclass Sex Age SibSp Parch Fare Embarked relatives not_alone Title 0 3 0 2 1 0 0 0 1 0 0 1 1 1 5 1 0 3 1 1 0 2 2 3 1 3 0 0 0 0 0 1 1 3 1 1 5 1 0 3 0 1 0 2</pre>
6]: 6]:	891 rows × 10 columns X_test Pclass Sex Age SibSp Parch Fare Embarked relatives not_alone Title 0
	3 3 0 5 0 0 1 0 0 1 0 4 3 1 5 1 1 1 0 2 0 2
	417 3 0 1 1 1 2 1 2 0 3 418 rows × 10 columns Our test data have 418 rows × 10 columns. Train data have 891 rows × 10 columns. The target feature is 'Survived'. Logistic Regression Firstly, we will train our model for logistic regression. logr = LogisticRegression()
	<pre>logr.fit(X_train,Y_train) Y_predict = logr.predict(X_test) accuary_log = round(logr.score(X_train,Y_train)*100,2) print(f"Logistic regression has a {accuary_log}* accuary.") Logistic regression has a 81.03* accuary. Stochastic Gradient Descent Secondly, we will train our model for Stochastic Gradient Descent.</pre>
8]:	Stochastic Gradient Descent has a 78.68% accuary. Random Forest Finally, we will train your model for Random forest
8]: 9]:	
8]: 9]:	<pre>Random Forest Finally, we will train your model for Random forest. randomF = RandomForestClassifier(n_estimators=100) randomF.fit(X_train,Y_train) Y_prediction = randomF.predict(X_test) randomF.score(X_train,Y_train) accuary_randomF = round(randomF.score(X_train,Y_train)*100,2) print(f"Random Forest has a {accuary_randomF}% accuary.") Random Forest has a 91.25% accuary.</pre>

0.818277 Random Forest 0.806966 Logistic Regression 0.709313 Stoachastic Gradient Descent These results looks much more better and realistic than firs models. Still random forest is the best one and we can continue with model has a average accuracy of 82% with a standard deviation of 4%. The standard deviation shows us, how precise the estimate This means our model can differ +-4%. In the next steps, we will try to understand which feature has more important for our models. For this step, we will use the Rando model result because we reach the best solution with it and easy to use model. Feature Importance					
importance importance importance	<pre>s = pd.DataFrame({'feature':X_s = importances.sort_values(');</pre>	_train.columns,'impo importance',ascendin	rtance':np.round(randg=False).set_index(':	domF.feature_importar	
plt.title(plt.xlabelplt.ylabelText(0, 0.5	, 'Value') Importance of Features	importance			
	Features Features Four result has the most correlation befor our random forest prediction modes				
## Random from sklea rf = Rando scores = o print("Sco print("Mea print("Sta Score_rand Scores: [0. 0.84269663 Mean: 0.819 Standard De	rn.model_selection import crossmForestClassifier(n_estimators ross_val_score(rf, X_train, Y_res:", scores) n:", scores.mean()) ndard Deviation:", scores.std = scores.mean() 75555556 0.83146067 0.7640449 0.78651685 0.82022472 0.8202 3757802746566 viation: 0.04175020452039037 prest model still predicts as well as it cores.	Parch', 'not_alone',' ss_val_score s=100) _train, cv=10, scori ()) 4 0.80898876 0.89887 2472]	SibSp'],axis=1) ng = "accuracy") 64 0.86516854	you have, the more likely	
mi suriei iron	overfitting and vice versa.				