Deep Learning Cheat Sheet

A concise reference for core deep learning concepts, especially for building and evaluating baseline models.

1. Activation Functions

Function	Description
ReLU	Outputs max(0, x)
Sigmoid	Squashes input to $[0, 1]$
Tanh	Zero-centered sigmoid
GELU	Smooth ReLU used in BERT

Common Activation Function Formulas

Sigmoid:

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Tanh:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

2. Training Parameters

- Batch Size: Number of samples per training step
- Epoch: One full pass through the training set
- Learning Rate: Step size for parameter updates
- Dropout: Randomly disables neurons to reduce overfitting
- Weight Decay: L2 regularization to penalize large weights

3. Normalization Techniques

Batch Normalization

- Normalizes activations across batch dimension
- Helps stabilize training and speeds up convergence

Layer Normalization

- Normalizes across features of each individual sample
- Common in sequence models like Transformers

4. Bias and Variance

- Bias: Error due to overly simple models (underfitting)
- Variance: Error from sensitivity to training data (overfitting)

Bias-Variance Tradeoff Table

Model Type	Bias	Variance	Risk
Underfit	High	Low	Poor capacity to learn
Overfit	Low	High	Poor generalization
Balanced	Low	Low	Ideal

5. Evaluation Metrics

- Accuracy = correct predictions / total samples
- Macro F1 Score = average F1 across all classes (equal weight)
- Use macro F1 when class distribution is balanced

6. Attention Mechanism (Transformers)

Formula:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V$$

Where:

- (Q) = query
- (K) = key
- (V) = value

Intuition:

- **Query** = what we're looking for
- $\mathbf{Key} = \mathbf{what}$ each token offers
- Value = information that will be passed forward if attended to

7. Softmax

• Converts logits into a probability distribution

Formula:

$$\operatorname{softmax}(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

- Outputs are between 0 and 1
- Sum of outputs = 1

8. Why Non-Linearity Matters

Linear models can't capture complex decision boundaries.

Without non-linear activation functions, stacked layers collapse into a single linear transformation.

Even simple non-linear functions (e.g., ReLU) break that limitation.

9. Overfitting vs. Underfitting

Signs of Overfitting

- Training loss decreases
- Validation loss increases
- High variance (model too flexible)

Signs of Underfitting

- Training loss is high
- Model cannot learn patterns
- High bias (model too simple)

10. Regularization Techniques

- Dropout: Deactivates a percentage of neurons per forward pass
- Weight Decay: Penalizes large weights (L2 regularization)
- Early Stopping: Stops training when validation loss plateaus

11. Optimization Strategy (Hyperparameter Tuning)

Recommended Tuning Order:

- 1. Learning rate
- 2. Dropout
- 3. Hidden layer size

- 4. Batch size
- 5. Weight decay
- 6. Embedding dimension
- 7. Optimizer
- 8. Activation function

Tune 1-2 hyperparameters at a time to avoid noise and overfitting to validation.

References

• Vaswani et al., "Attention Is All You Need" (2017)

• Stanford CS231n Notes: https://cs231n.github.io/

• FastAI Deep Learning Book: https://book.fast.ai