Functions

AI Casas

4/16/2020

Functions: Part I

Hacer una funcion que sume dos numeros cualquiera

```
add2 <- function(x,y){
    x + y
}
add2

## function(x,y){
## x + y
## }

add2(3,4)</pre>
```

[1] 7

Hacer una funcion que de imprima valores de una serie numerica mayores a un valor determinado "n"

```
p <- 1:20
above <- function (p,n){
  use <- p > n
   p[use]
}
above(p,8)
```

```
## [1] 9 10 11 12 13 14 15 16 17 18 19 20
```

Como hacer la media de las columnas de una tabla

```
oz <- read.csv("hw1_data.csv")
oz</pre>
```

```
##
       Ozone Solar.R Wind Temp Month Day
## 1
          41
                 190 7.4
                             67
                                         1
## 2
          36
                 118 8.0
                             72
                                    5
                                         2
## 3
          12
                 149 12.6
                             74
                                    5
                                         3
## 4
          18
                 313 11.5
                             62
                                    5
                                         4
                  NA 14.3
                                         5
## 5
          NA
                             56
                                    5
```

##	6	28	NA	14.9	66	5	6
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	10	NA	194	8.6	69	5	10
##	11	7	NA	6.9	74	5	11
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16
##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8	9.7	59	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23
##	24	32	92	12.0	61	5	24
##	25	NA	66	16.6	57	5	25
##	26	NA	266	14.9	58	5	26
##	27	NA	NA	8.0	57	5	27
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
##	30	115	223	5.7	79	5	30
##	31	37	279	7.4	76	5	31
##	32	NA	286	8.6	78	6	1
##	33	NA	287	9.7	74	6	2
##	34	NA	242	16.1	67	6	3
##	35	NA NA	186	9.2	84	6	4
##	36	NA NA	220	8.6	85	6	5
##	37	NA NA	264	14.3	79	6	6
##	38						7
##	39	29 NA	127	9.7	82 97	6 6	
		NA 71	273	6.9	87		8
## ##	40	71	291	13.8 11.5	90 97	6	9 10
	41	39 NA	323		87	6	
##	42	NA NA	259	10.9	93	6	11
##	43	NA	250	9.2	92	6	12
##	44	23 NA	148	8.0	82	6	13
##	45	NA	332	13.8	80	6	14
##	46	NA	322	11.5	79	6	15
##	47	21	191	14.9	77	6	16
##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	52	NA	150	6.3	77	6	21
##	53	NA	59	1.7	76	6	22
##	54	NA	91	4.6	76	6	23
##	55	NA	250	6.3	76	6	24
##	56	NA	135	8.0	75	6	25
##	57	NA	127	8.0	78	6	26
##	58	NA	47	10.3	73	6	27
##	59	NA	98	11.5	80	6	28

##	60	NA	31	14.9	77	6	29
##	61	NA	138	8.0	83	6	30
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	65	NA	101	10.9	84	7	4
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	72	NA	139	8.6	82	7	11
##	73	10	264	14.3	73	7	12
##	74	27	175	14.9	81	7	13
##	75	NA	291	14.9	91	7	14
##	76	7	48	14.3	80	7	15
##	77	48	260	6.9	81	7	16
##	78	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##		79	187				19
	80			5.1	87 85	7	
##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	83	NA	258	9.7	81	7	22
##	84	NA	295	11.5	82	7	23
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	96	78	NA	6.9	86	8	4
##		35	NA	7.4	85	8	5
##	98	66	NA NA	4.6	87	8	6
						8	
##	99	122	255	4.0	89		7
##	100	89	229		90	8	8
##	101	110	207	8.0	90	8	9
##	102	NA	222	8.6	92	8	10
##	103	NA	137		86	8	11
##	104	44	192		86	8	12
##	105	28	273		82	8	13
##	106	65		9.7	80	8	14
##	107	NA	64	11.5	79	8	15
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244		78	8	19
##	112	44	190		78	8	20
##	113	21	259		77	8	21

```
## 115
                   255 12.6
                                75
                                        8
                                            23
           NA
## 116
           45
                   212
                         9.7
                                79
                                            24
                   238
                         3.4
## 117
                                        8
                                            25
          168
                                81
## 118
           73
                   215
                         8.0
                                86
                                        8
                                            26
## 119
                         5.7
                                        8
                                            27
           NA
                   153
                                88
## 120
                   203
                         9.7
                                        8
                                            28
           76
                                97
                   225
## 121
          118
                         2.3
                                94
                                        8
                                            29
## 122
           84
                   237
                         6.3
                                96
                                        8
                                            30
## 123
           85
                   188
                         6.3
                                94
                                        8
                                            31
## 124
           96
                   167
                         6.9
                                91
                                        9
                                             1
                                             2
## 125
                   197
                         5.1
                                92
                                        9
           78
                                             3
## 126
           73
                   183
                         2.8
                                93
                                        9
                    189
                                        9
                                             4
## 127
           91
                         4.6
                                93
## 128
           47
                    95
                         7.4
                                87
                                             5
                                        9
## 129
           32
                    92 15.5
                                84
                                        9
                                             6
## 130
           20
                   252 10.9
                                        9
                                             7
                                80
## 131
           23
                   220 10.3
                                78
                                             8
## 132
                   230 10.9
                                             9
           21
                                75
                                        9
## 133
           24
                   259
                        9.7
                                73
                                        9
                                            10
                   236 14.9
## 134
           44
                                81
                                        9
                                            11
## 135
           21
                   259 15.5
                                76
                                        9
                                            12
## 136
                   238 6.3
           28
                                77
                                        9
                                            13
## 137
            9
                    24 10.9
                                71
                                        9
                                            14
                   112 11.5
                                        9
## 138
           13
                                71
                                            15
## 139
           46
                   237
                         6.9
                                78
                                        9
                                            16
## 140
           18
                   224 13.8
                                67
                                        9
                                            17
## 141
                    27 10.3
                                        9
                                            18
           13
                                76
                                        9
## 142
                   238 10.3
                                68
                                            19
           24
## 143
           16
                   201 8.0
                                82
                                        9
                                            20
## 144
           13
                   238 12.6
                                64
                                        9
                                            21
## 145
           23
                    14 9.2
                                71
                                        9
                                            22
                                            23
## 146
           36
                   139 10.3
## 147
            7
                    49 10.3
                                            24
                                69
                                        9
## 148
           14
                    20 16.6
                                63
                                        9
                                            25
## 149
                   193
                        6.9
                                70
                                        9
                                            26
           30
## 150
           NA
                   145 13.2
                                77
                                        9
                                            27
## 151
                   191 14.3
                                75
                                        9
                                            28
           14
## 152
           18
                   131 8.0
                                76
                                        9
                                            29
## 153
           20
                   223 11.5
                                68
                                            30
                                        9
colmean <- function(y, removeNA = TRUE){</pre>
  nc \leftarrow ncol(y)
  means <- numeric(nc)</pre>
  for(i in 1:nc){
    means[i] <- mean(y[,i], na.rm = TRUE)</pre>
  }
  means
```

114

colmean(oz)

36 14.3

8 22

```
## [1] 42.129310 185.931507 9.957516 77.882353 6.993464 15.803922
```

Hay una funcion en R que ya te hace eso de por si y no necesitas escribir el codigo

Una funcion que eleve al cuadrado cualquier numero que le introduzcas

```
f <- function(a){
   a^2
}
f(3)</pre>
```

[1] 9

?paste()

```
eq <- function(x,y){
    x^2 + y/x
}
eq(2,3)</pre>
```

[1] 5.5