Operations Management I

Inventory Management (1)

Dong-Ho Lee
Department of Industrial Engineering
Hanyang University

® All rights reserved

- Introduction Inventory Definition and Classification
 - Reasons for Holding Inventory
 - ABC classification
 - Why Inventory Control Basic Trade-off
 - Inventory Control Systems
 - Inventory Models Classification

Hopp and Spearman, 2008, Factory Physics, McGraw Hill. (Chapter 2) Krajewski and Ritzman, 2005, Operations Management, Prentice Hall. (Chapter 15)

Introduction

Inventory (재고)

Definition

An accumulation of a commodity that will be used to satisfy some future demand for that commodity

- Classification
 - ✓ Based on material flow
 - ➤ Raw materials inventory (RMI)
 - ➤ Work in process (WIP)
 - > Finished goods inventory (FGI)
 - ✓ Based on product structure
 - Independent demand inventory
 - > Dependent demand inventory -

FGI

WIP

RMI

	Independent demand	Dependent demand
Demand	Uncertain	Certain (relatively)
Estimation	Forecasting	Compute from independent demand
Methods	Inventory models	MRP

Introduction

Reasons for Holding Inventory (1)

- Raw Materials Inventory (RMI)
 - ✓ Batching
 - Quantity discounts from suppliers
 - Limited capacity of the plant's purchasing function
 - Economies of scale in deliveries

Cycle stock ◀---- stock held between ordering cycles

- ✓ Variability
 - > Production gets ahead of schedule.
 - > Supplier deliveries get behind schedule.
 - Quality problems cause excessive scrap loss.

Shutting down the line for lack of materials

Incentive to order raw

materials in bulk

Safety stock <---- stock carried as protection against variability

Protect against supply errors, shortages, and stockouts

Introduction

Reasons for Holding Inventory (2)

- Work-in-Process (WIP) ◆---- Decouple successive stages in operations
 - ✓ Processing

Being worked on by a resource

✓ Queueing

Waits for a resource (person, machine or transport device)

✓ Waiting for batch

Storage

Waits for other jobs to arrive in order to form a batch (serve to fill a bulk manufacturing operation (process batch) or a move operation (transfer batch))

✓ Waiting to match

The case that a product consists of components waiting at an assembly operation for their counter parts to arrive so that an asembly can occur

Introduction

Reasons for Holding Inventory (3)

- Finished goods inventory (FGI)
 - ✓ Customer responsiveness
 - > Variability of customer demand
 - make-to-stock policy > Desired level of customer service
 - ✓ Batch production

If production occurs in prespecified quantities (batches), then output will sometimes not match customer orders and any excess will go into finished goods inventory

✓ Forecast errors

Forecasted demand > actual demand

Factory physics (2nd semester) → ✓ Production variability

Variability in production quantity can result in overproduction relative to demand

✓ Seasonality

Introduction

ABC Classification <---- Identifying critical inventory

Why

A small fraction of the purchased parts represent a large fraction of the purchasing expenditures. <---- Pareto law

- Method Inventory classification
 - ✓ A parts
 - 5 20% of the parts, accounting for 75-80% of total annual expenditures
 - Sophisticate and time-consuming methods for inventory control
 - ✓ B parts

Next 10 - 30% of the parts, accounting for 10 - 15% of the total annual expenditures

✓ C parts

Bottom 50 - 85% the parts, accounting for only 5 - 10% of the total annual expenditures (safety stock ↑ if important in operation)

Inventories of different classes of parts should be treated differently.

Introduction

Shrinkage

Deterioration

Why Inventory Control

Basic Trade-off

Balancing the conflicting costs and pressures that argue for both low and high inventories and determining the appropriate inventory levels

- ✓ Pressures for low inventories
 - Interest or opportunity cost
 - Storage and handling costs
 - Taxes, insurance and shrinkage
- PilferageObsolescence✓ Pressures for high inventories
 - Customer service
 - Ordering and setup costs
 - Stockout cost
 - Labor and equipment utilization
 - Backorders

 Transportation cost

 Lost sales

 Payments to supplie
 - Payments to suppliers (quantity discount)

Inventory control

Problem of determining an appropriate level of inventory (when and how much) <---- • Ordering time

Ordering quantity

High inventory holding cost

(20~40% of product value)

 $h = i \cdot C + w$

Production: setup cost

Purchasing: ordering cost

Monitoring

8

	Continuous Review	Periodic Review
When	Variable	Constant (T)
How much Constant (Q		Variable
Safety stock	Low	High
Management	Difficult (A class)	Easy (C class)

Introduction

Inventory Control Systems (1)

Continuous Review System (Q system)

Tracks the remaining inventory of an item each time a withdrawal is made to determine whether it is time to order

Reorder point (ROP) system Fixed order quantity system

Inventory position

- = net inventory + replenishment orders
- = (on-hand inventory backorders) + replenishment orders

✓ Method

Order the fixed quantity (Q) if the inventory level reaches the reorder point (r)

- ✓ Decision variables: Q and r
- ✓ Characteristics
 - Constant ordering quantity
 - Variable ordering cycle

	<u> </u>	
	Continuous Review	Periodic Review
When	Variable	Constant (T)
How much	Constant (Q)	Variable
Safety stock	Low	High
Management	Difficult (A class)	Easy (C class)

Introduction

Inventory Control Systems (2)

Periodic Review (P) System

Tracks the remaining inventory of an item periodically

Periodic reorder system
Fixed order interval system

Inventory position

- = net inventory + replenishment orders
- = (on-hand inventory backorders) + replenishment orders

✓ Method

- > Order with the fixed interval T
- Ordering quantity is the difference between the target inventory level R and the inventory level at the ordering time
- ✓ Decision variables: R and T
- √ Characteristics
 - > Constant ordering cycle
 - Variable ordering quantity

Introduction

Inventory Models

Classification

Four basic cases (according to demand parameter)

Deterministic models

Static models

Stochastic models

Dynamic models

- ✓ Focus of this class ◄----- Extensions (graduate courses)
 - Deterministic and static
 - Economic Order Quantity (EOQ)
 - Extensions
 - Deterministic and dynamic
 - Dynamic lot sizing (Wagner-Whitin model)
 - Stochastic and static
 - Single period: newsboy model,
 - Multi-period: base-stock model, (Q, r) model