	Applicant: For:	Dubé <i>et al.</i> INTEGRATED ELECTROFLUIDIC SYSTEM AND METHOD
1	1.	An integrated electrofluidic system comprising:
2,		an electronic control system mounted on a support platform;
3		a microfluidic system embedded in said platform and having an input and
4	an output and	at least one electrofluidic component, and
5		at least one electrical conductor carried by said platform for electrically
6	interconnection	ng said electronic control system and said at least one electrofluidic
7	component.	
1	2.	The integrated electrofluidic system of claim 1 in which said platform
2	includes a plu	rality of laminated layers forming said embedded microfluidic system.
1	3.	The integrated electrofluidic system of claim 1 in which said platform
2	includes a po	lyimide material.
1	4.	The integrated electrofluidic system of claim 1 in which said platform
2	includes KAI	TON [®] .

6. The integrated electrofluidic system of claim 5 in which said phenolic

The integrated electrofluidic system of claim 2 in which said layers are

5.

laminated using a phenolic resin adhesive.

- resin adhesive is R/FLEX®. The integrated electrofluidic system of claim 5 in which said phenolic resin adhesive is etched to a thickness of 3 to 10 µm. The integrated electrofluidic system of claim 5 in which said phenolic resin adhesive is selectively removed from regions where bonding is undesirable between said layers and/or between a said layer and said electrofluidic component and/or a microfluidic component. The integrated electrofluidic system of claim 1 in which said microfluidic system includes a valve. The integrated electrofluidic system of claim 1 in which said microfluidic 10. system includes a pump. The integrated electrofluidic system of claim 1 in which said microfluidic system includes a reservoir. The integrated electrofluidic system of claim 1 in which said microfluidic system includes a mixer.
 - 13. The integrated electrofluidic system of claim 1 in which said microfluidic

2	system includes at least one channel.
1.5	
1	14. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a filter.
1	15. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a dispenser.
1	16. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a reactor.
₹. • • • •	
1	17. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a heater.
1	18. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a concentrator.
1	
1	19. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a pressurizing device.
1	The intermeted electroflyidic system of eleim 1 in which sold microflyidic
1	20. The integrated electrofluidic system of claim 1 in which said microfluidic
2	system includes a cooling device.

1	21. The integrated electrofluidic system of claim 1 further including a sensor
2	device integrated with said microfluidic system.
1	22. The integrated electrofluidic system of claim 21 in which said sensor
2	device is embedded in said platform.
1	23. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a flexure plate wave sensor.
1	
1	24. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a photoelectric sensor device.
* 1	
1	25. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes an optical sensor device.
-	
1	26. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes an electrochemical sensor device.
-1	27. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a temperature sensor device.
1	28. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a pressure sensor device.

1:	29. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a flow sensor device.
1	30. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a viscosity sensor device.
1	31. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a mass sensor device.
1	32. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes a magnetic sensor device.
1	33. The integrated electrofluidic system of claim 21 in which said sensor
2	device includes an acoustic sensor device.
1	34. The integrated electrofluidic system of claim 1 further including a
2	dispenser device integrated with said microfluidic system.
1	35. The integrated electrofluidic system of claim 1 further including a heat
2	exchange device integrated with said microfluidic system.
; `:	
1	36. The integrated electrofluidic system of claim 34 in which said dispenser
2	device includes a drug delivery device.

- The integrated electrofluidic system of claim 1 further including a fuel cell
- 2 device integrated with said microfluidic device.

1	38. An integrated electrofluidic system comprising:
2	an electronic control system mounted on a support platform;
3	a microfluidic system embedded in said platform and having an input and
4	an output and at least one electrofluidic component;
5	at least one electrical conductor carried by said platform for electrically
6	interconnecting said electronic control system and said at least one electrofluidic
7	component; and
8	a sensor integrated with said electrofluidic system.
1	39. The integrated electrofluidic system of claim 38 in which said platform
2	includes a plurality of laminated layers forming said ambadded migrafluidic gratem

1	40. An integrated electrofluidic system comprising:
2	an electronic control system mounted on a support platform;
3	a microfluidic system embedded in said platform and having an input and
4	an output and at least one electrofluidic component;
5	at least one electrical conductor carried by said platform for electrically
6	interconnecting said electronic control system and said at least one electrofluidic
7	component; and
8	a dispenser device integrated said electrofluidic system.
1	41. The integrated electrofluidic system of claim 40 in which said platform
2	includes a plurality of laminated layers forming said embedded microfluidic system.
1	42. The integrated electrofluidic system of claim 40 in which said dispensing
2	device dispenses fluid in the range of about 100 microliters to 100 picoliters.
1	43. The integrated electrofluidic system of claim 40 in which said dispensing
2	device dispenses fluid at a rate of about 0.1 to 100 microliters/min.

1	44. An integrated electrofluidic system comprising:	,
2	an electronic control system mounted on a support platform;	
3	a microfluidic system embedded in said platform and having an input a	nc
4	an output and at least one electrofluidic component;	
5	at least one electrical conductor carried by said platform for electrically	
6	interconnecting said electronic control system and said at least one electrofluidic	
7	component; and	
8	a heat exchange device integrated with said electrofluidic system.	
1	45. The integrated electrofluidic system of claim 43 in which said platform	
2	includes a plurality of laminated layers forming said embedded microfluidic system	

1	46. A method for manufacturing an integrated electrofluidic system, the
2	method comprising:
3	a) providing a substrate layer having an adhesive layer;
4	b) thinning said adhesive layer;
5	c) machining said adhesive layer and said substrate layer to create
6	features that define at least one microfluidic component and/or at least one electronic
7	component; d) aligning said substrate layers;
9	e) laminating the layers to embed said microfluidic component and/or
10	said electronic component between said layers; and
11	f) repeating steps a) through e) for a predetermined number of layers
12	of said substrate and said adhesive layer.
	47 TI A L C Live 46 in aliahan labana labana KARTON®
1	47. The method of claim 46 in which said substrate layer is KAPTON®.
1	48. The method of claim 46 in which said adhesive layer is thinned by plasma
2	etching.
1	49. The method of claim 46 in which said adhesive layer and said substrate are
2	machined by applying an energy beam with a laser.
1	50. The method of claim 46 in which step a) further includes providing
i	
2	additional microfluidic component and/or an electronic component to be embedded

- 3 between said layers.
- 1 51. The method of claim 46 further including the step of attaching additional 2 microfluidic components and/or electronic components to the top surface of said
- 3 laminated layers.
- The method of claim 46 further including the step of applying a mask to said adhesive layer to define removal of said adhesive and to further define said microfluidic components.
- 1 53. The method of claim 46 in which step a) further includes providing
 2 electrical pads and electrical leads for interconnecting said microfluidic components and
 3 said electronic components.
 - 54. The method of claim 46 further including the step of attaching electrical pads and electrical leads to the surface of said laminated layers.
- The method of claim 49 in which said machining includes raster scanning to define said features.
- The method of claim 55 further including the step of controlling the depth of said features by modifying said raster path.

1	37. The inclined of claim 40 further including the step of femoving residual
2	carbon and cleaning said substrate layers.
•	
1	58. The method of claim 46 further including the step of tacking the layers.
1	59. The method of claim 46 wherein said machining includes depositing and
2	patterning thin films of material on said substrate layer to form said electronic
2	
3	components.
4	60. The method of claim 59 in which said material is chosen from the group
2	consisting of titanium, chrome, gold, platinum, tungsten, copper and nickel.
4	consisting of titalium, chrome, gold, platinum, tungsten, copper and meker.
1	61. The method of claim 59 in which said material is plated with a material
2	including copper.
1	62. The method of claim 60 further including the step of depositing a thin film
2	of said material on said substrate layer to form an electric heater.
1	63. The method of claim 62 further including the step of depositing a thin film
2	of said material on said substrate layer to form an electric cooling device.
1.	64. The method of claim 46 in which step c) further includes applying a
2	chemically functional coating to said substrate.

- 1 65. The method of claim 64 in which said chemically functional coating is
- 2 chosen from the group consisting of: polymers, antibodies, human IgG or animal IgG,
- antibody fragments, antigens, antigen fragments, peptides, aptamers, single-stranded
- 4 DNA (ssDNA), and biomolecules.