

Report No.: SZ12100034H02

Issued to

Verykool USA Inc

For

GSM/GPRS Dual-band Mobile Phone

Model Name : R623

Trade Name : verykool Brand Name : verykool

FCC ID : WA6R623

Standard : ANSI C 63.19:2007

HAC Level : T-Coil: T3

Test date : 2012-11-20 Issue date : 2012-12-5

Shenzhen MORL

Certification
Communications Technology Co., Ltd.

Tested by Zhu Zhan
Zhu Zhan
Date 2012.12.5

Date

Wu Xuewen

2012.12.65

Review by

Samuel Peng

1 -12 . 12 .

IEEE 1725

OTA

BOTF

Reg. No.

741109

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strice

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Contents

1.1. Identification of the Responsible Testing Laboratory	3
1.2. Identification of the Responsible Testing Location	3
1.3. Accreditation Certificate	3
1.4. List of Test Equipments	3
2. TECHNICAL INFORMATION	4
2.1. Identification of Applicant	4
2.2. Identification of Manufacturer	4
2.3. Equipment Under Test (EUT)	4
2.3.1. Photographs of the EUT	4
2.3.2. Identification of all used EUTs	4
2.4. Applied Reference Documents	5
2.5. Test Environment/Conditions	6
2.6. Operational Conditions During Test	7
2.6.1. INTRODUCTION	7
2.6.2. ANSI/IEEE PC 63.19 PERFORMANCE CATEGORIES	8
2.6.3. Description of Test System	9
2.6.4. TEST PROCEDURE	13
2.6.5. Uncertainty Estimation Table	17
2.6.6. OVERALL MEASUREMENT SUMMARY	18
2.6.7. TEST DATA	19
ANNEX A PHOTOGRAPHS OF THE EUT	24
ANNEY R FUT SETUD PHOTO	25

1.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co., Ltd.

Department: Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District,

Shenzhen, 518055 P. R. China

Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

1.2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd. Morlab

Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District,

Shenzhen, 518055 P. R. China

1.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572

1.4. List of Test Equipments

No.	Instrument	Type	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Rohde&Schwarz (CMU200, SN:105894)	2012-9-26	1year
3	Voltmeter	Keithley (2000, SN:1000572)	2012-9-26	1year
4	Signal Generator	Rohde&Schwarz (SMP_02)	2012-9-24	1year
5	Power Meter	Agilent (E4416A, SN:MY45102093)	2012-5-07	1year
6	Power Sensor	Agilent (N8482A, SN:MY41091706)	2012-5-07	1year
7	Directional coupler	Giga-tronics(SN:1829112)	2012-9-24	1year
8	Audio DAQ	NI (MonDAQ, SN:MonNumero)	2012-9-24	1year
9	T-coil Probe	SATIMO (SN:39/08 TCP11)	2012-10-06	1year
10	HAC holder	SN02_EPH02 (SN:SN_3608_SUPH16)	2012-9-24	1year

Report No.: SZ12100034H02

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1. Identification of Applicant

Company Name: Verykool USA Inc

Address: 3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA

2.2. Identification of Manufacturer

Company Name: Verykool Wireless Technology Ltd.

Address: Room 1701, Reward Building C, No.203, 2nd Section of WangJing, Li Ze

Zhong Yuan, Chao Yang District, Beijing, P.R. of China 100102

2.3. Equipment Under Test (EUT)

Model Name: R623 Trade Name: verykool Brand Name: verykool

Hardware Version: N/A Software Version: N/A

Frequency Bands: GSM 850MHz; PCS 1900MHz;

WIFI: 2412MHz-2462MHz BT: 2402MHz-2480MHz

Modulation Mode: GSM:GMSK

WIFI802.11B: DSSS; WIFI802.11G: OFDM WIFI 802.11N: OFDM: BT: GFSK/8-DPSK

Antenna type: Fixed Internal Antenna Development Stage: Identical prototype

Battery Model: 553450AR Battery specification: 1050mAh3.7V

HAC Test GSM 850; channel 128, 190, 251, BT OFF, Wifi OFF Configurations: GSM 1900; channel 512, 661, 810, BT OFF, Wifif OFF

2.3.1. Photographs of the EUT

Please see for photographs of the EUT.

2.3.2. Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	N/A	N/A

Report No.: SZ12100034H02

2.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	ANSI C 63.19:2007	American National Standard Methods of Measurement of Compatibility
		between Wireless Communications Devices and Hearing Aids

Note: Test report, reference KDB 285076 documents.

2.5. Test Environment/Conditions

Normal Temperature (NT): 20 ... 25 °C Relative Humidity: 30 ... 75 %

Air Pressure: 980 ... 1020 hPa

Test frequency: GSM 850MHz /PCS 1900MHz;

Operation mode: Call established

Power Level: GSM 850 MHz Maximum output power(level 5)

PCS 1900 MHz Maximum output power(level 0)

During HAC test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

Air-interface	Band	Type	C63.19-2007	Simultaneous	Reduced	VOIP
	(MHz)		Tested	Transmissions	power	
				Scenarios invoice		
				(Not to be tested)		
	850	Voice	Yes	Yes: WIFI or BT	N/A	N/A
GSM	1900	Voice	Yes	Yes: WIFI or BT	N/A	N/A
	GPRS	Data	N/A	N/A	N/A	N/A
WIFI	2450	Data	N/A	Yes GSM or WCDMA	N/A	N/A
BT	2450	Data	N/A	Yes GSM or WCDMA	N/A	N/A

The volume is at the maximum value, and the backlight of the phone is turned off. The Manufacturer doesn't design HAC mode software on the EUT

2.6. Operational Conditions During Test

2.6.1. INTRODUCTION

On July 10.2003.the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

Compatibility Tests involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions.
- RF Magnetic- field emissions.
- T-coil mode, magnetic-signal strength in the audio band.
- T-coil mode, magnetic-signal frequency response through the audio band.
- T-coil mode, magnetic-signal and noise articulation index.

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device

2.6.2. ANSI/IEEE PC 63.19 PERFORMANCE CATEGORIES

4.3.2.1. T-coil

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

	Telephone RF Parameter	
Category	Wireless Device Signal Quality	
	(Signal + Noise-to-noise ratio in dB)	
T1	0 to 10 dB	
T2	10 to 20 dB	
T3	20 to 30 dB	
T4	>30 dB	
Magnetic Coupling Parameters		

4.3.2.2. Articulation Weighing Factor (AWF)

Standard	Technology	AWF
T1/T1P1/3GPP	UMTS(WCDMA)	0
IS-95	CDMA	0
iden	GSM(22and 11Hz)	0
J-STD-007	GSM(217Hz)	-5

AWF has been developed from information presented to the committee regarding the interference potential of the various modulation types according to ANSI PC 63.19

2.6.3. Description of Test System

4.3.3.1. COMOHAC E-FIELD PROBE

Serial Number:	SN 41/08 EPH17
Frequency:	100MHz – 3GHz
Probe length:	330mm
Length of one dipole:	3.3mm
Maximum external diameter:	8mm
Probe extremity diameter:	6mm
Distance between dipoles/probe extremity:	3mm
	Dipole 1:R1=2.1807 MΩ
Resistance of the three dipole (at the connector):	Dipole 2:R1=2.0612 MΩ
	Dipole 3:R3=2.1892 MΩ
Connector (HIROSE series SR30)	6 wire male (Hirose SR30series)

CALIBRATION TEST EQUIPMENT

TYPE	IDENTIFICATION
C-11h	SATIMO AIR CALIBRATION
Calibration bench	SOFTWARE
Multimeter	Keithley 2000

MEASUREMENT PROCEDURE

Probe calibration is realized by using the waveguide method. The probe was inserted in a waveguide loading by a 50 load. By controlling the input power in the waveguide, we are able to create a know EField value in the waveguide.

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO

The following tables represent the calibration curves linearization by curve segment in CW signal.

4.3.3.2. COMOHAC H-FIELD PROBE

Serial Number:	SN 41/08 HPH18
Frequency:	100MHz – 3GHz
Probe length:	330mm
Length of one dipole:	3.3mm
Maximum external diameter:	8mm
Probe extremity diameter:	6mm
Distance between dipoles/probe extremity:	3mm
	Dipole 1:R1=2.1650 MΩ
Resistance of the three dipole (at the connector):	Dipole 2:R1=2.2176 MΩ
	Dipole 3:R3=2.4084 MΩ
Connector (HIROSE series SR30)	6 wire male (Hirose SR30series)

CALIBRATION TEST EQUIPMENT

TYPE	IDENTIFICATION
Calibration bench	SATIMO AIR CALIBRATION
Canbration bench	SOFTWARE
Multimeter	Keithley 2000

MEASUREMENT PROCEDURE

Probe calibration is realized by using the waveguide method. The probe was inserted in a waveguide loading by a 50 load. By controlling the input power in the waveguide, we are able to create a know HField value in the waveguide.

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO

The following tables represent the calibration curves linearization by curve segment in CW signal.

4.3.3.3. COMOHAC T-COIL PROBE

Serial Number:	SN 39/08 TCP11	
Dimensions:	6.55mm length*2.29mm	
Difficusions:	diameter	
DC resistance:	860.6Ω	
Wire size:	51 AWG	
Inductance:	132.1 mH at 1kHz	
Sensitivity:	-60.22 dB (V/A/m) at 1kHz	

SENSITIVITY

Probe coil sensitivity relative to sensitivity at 1000 Hz

T-Coil probe sensitivity (dB V/(A/m)) -60.22

Frequency (Hz)	H (dB (V/(A/m)))
200	-73,92940009
250	-72,01119983
315	-70,06378892
400	-67,88880017
500	-66,00059991
630	-64,07318901
800	-62,00820026
1000	-60,22
1250	-58,29179974
1600	-56,20760035
2000	-54,31940009
2500	-52,36119983
3150	-50,38378892
4000	-48,50880017
5000	-46,44059991

LINEARITY

Linearity = 0.27 dB

Power (dB) relative to 1 A/m	0	-10	-20	-30	-40	-50
H (dB (V/(A/m)))	0	-9,95	-19,95	-30	-39,9	-49,73

4.3.3.4. System Hardware

The HAC positioning ruler is used to position the phone properly with the regard to the position of the probe during a measurement. The positioning system is made of a dedicated frame that can be fixed on the table. The tip of the probe is positioned on a reference point located on the top of the positioning ruler. The distance between this reference point and the cross located on the ruler being known, the speaker of the phone is positioned on this cross in order to make sure both probe and phone are positioned properly.

During the measurement, the HAC ruler has to be removed so that it does not interfere with the measurement.

HAC positioning ruler

2.6.4. TEST PROCEDURE

4.3.4.1. T-coil Test Flow

The flow diagram below was followed (From C63.19):

C63.19 T-Coil Signal Test Process

4.3.4.2. TEST Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

Validation Setup with Helmholtz Coil

T-Coil Test Setup

4.3.4.3.T-coil Test Procedure

Frequency Response Validation

The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1 kHz, between 300 – 3000 Hz using the ITU-P.50 artificial speech signal as shown below:

Frequency Response Validation

Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

f(Hz)	HBI, A- Measured (dB re 1kHz)	HBI, A- Theoretical (dB re 1kHz)	dB Var.
100	-16.150	-16.170	0.020
125	-13.241	-13.250	0.009
160	-10.333	-10.340	0.007
200	-8.005	-8.010	0.005
250	-5.915	-5.920	0.005
315	-4.035	-4.040	0.005
400	-2.395	-2.400	0.005
500	-1.207	-1.210	0.003
630	-0.347	-0.350	0.003
800	0.068	0.070	0.002
1000	0.001	0.000	0.001
1250	-0.501	-0.500	-0.001
1600	-1.511	-1.510	-0.001
2000	-2.783	-2.780	-0.003
2500	-4.323	-4.320	-0.003
3150	-6.175	-6.170	-0.005
4000	-8.338	-8.330	-0.008
5000	-10.599	-10.590	-0.009
6300	-13.212	-13.200	-0.012
8000	-16.284	-16.270	-0.014
10000	-19.539	-19.520	-0.019

Frequency Response Validation

2.6.5. Uncertainty Estimation Table

Error Description	Uncertainty	Probe	Div	c	С	Std. Un	ıc.(+-%)
	value	Dist.		AMB1	AMB2	AMB1	AMB2
Probe Sensitivity	4.00	N	1.000	1	1	4.00	4.00
Reference level	0.70	R	1.732	1	1	0.40	0.40
AMCC geometry	0.60	R	1.732	1	1	0.35	0.35
AMCC current	0.10	R	1.732	1	1	0.06	0.06
Probe positioning during calibration	0.70	R	1.732	0.01	1	0.00	0.40
Noise contribution	5.90	R	1.732	0.1	1	0.34	3.41
Frequency slope	1.00	R	1.000	1	1	0.58	0.58
Repeatability/drift	0.60	R	1.732	1	1	0.35	0.35
Linearity/Dynamic range	1.00	R	1.732	0.1	1	0.06	0.58
Acoustic noise	2.40	R	1.732	1	1	1.39	1.39
Probe angle	0.90	R	1.732	1	1	0.52	0.52
Spectral processing	0.60	N	1.732	1	5	0.60	3.00
Integration time	0.20	R	1.732	1	1	0.12	0.12
Field disturbation	0.60	R	1.000	0	1	0.00	0.35
Reference signal spectral response	2.00	R	1.000	1	1	1.15	1.15
Probe positioning	0.90	R	1.732	1	1	0.52	0.52
EUT positioning	1.90	R	1.732	1	1	1.10	1.10
RF interference	0.00	R	1.732	1	1	0.00	0.00
Test signal variation	2.00	R	1.000	1	1	1.15	1.15
Combined Std. Uncertainty							
(ABM field)						4.85	6.66
Expanded Std. Uncertaninty on (%)						9.71	13.31

Note for table

- 1. N-Nomal
- 2. R-Rectangular
- 3. Div.- Divisor used to obataion standard uncertanty

2.6.6. OVERALL MEASUREMENT SUMMARY

4.3.7.1 T-coil

Mode	Test Description	Ambient Noise	ABM1	ABM2	Measurement Results	T Rating
GSM850	Axial	-41.71	9.87	-16.01	36.04	T4
	Radial H	-43.21	4.03	-5.04	28.97	T3
	Radial V	-39.36	2.68	-16.17	37.93	T4
	Axial	-41.71	10.77	-22.33	36.49	T4
GSM1900	Radial H	-43.21	3.63	-11.73	27.42	T4
	Radial V	-39.36	2.84	-22.49	38.02	T4

2.6.7. TEST DATA

FREQUENCY	<u>PARAMETERS</u>						
<u>GSM 850</u>	Measurement 1: T-coil on GSM Mode						
GSM 1900	Measurement 2: T-coil on GSM Mode						

MEASUREMENT 1

Date of measurement: 20/11/2012

A. Experimental conditions.

Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	GSM850

B. HAC Measurement Results

	Axial				Radial H		Radial V		
	128	190	251	128	190	251	128	190	251
	Max	Max	Max	Max	Max	Max	Max	Max	Max
ABM1, dBA/m	NULL	9.87	NULL	NULL	4.03	4.03	NULL	2.68	2.68
ABM2, dBA/m	NULL	-16.01	NULL	NULL	-5.04	NULL	NULL	-16.17	NULL
Ambient noise, dBA/m	-41.71	-41.71	-41.71	-43.21	-43.21	-43.21	-39.36	-39.36	-39.36
S+N/N(dB)	NULL	36.04	NULL	NULL	28.97	NULL	NULL	37.93	NULL
S+N/N per orientation (dB)	36.04		28.97			37.93			

C63.1	Mode	Band	Test Description	Minimu	Locatio	Measure	Catego	Verdic
9				m Limit	n	d	ry	t
				dBA/m	-	dBA/m	-	Pass/F
								ail
7.3.1.1			Intensity, Axial	-18	Max	9.87	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	4.03	-	PASS
				-	-	-	-	-
7.3.1.2	GSM	GSM850	Intensity, RadialV	-18	Max	2.68	-	PASS
				-	-	-	-	-
				dB		dB		
7.3.3			Signal to noise/noise,	5	Max	36.04	T4	PASS
			Axial					
7.3.3			Signal to noise/noise,	5	Max	28.97	Т3	PASS
			RadialH	-	-	-	-	-
7.3.3			Signal to noise/noise,	5	Max	37.93	T4	PASS
			RadialV	-	-	-	-	-

T.Coil Scan Overlay Magnetic Field Distributions

MEASUREMENT 2

Date of measurement: 20/11/2012

A. Experimental conditions.

Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	GSM1900

B. HAC Measurement Results

	Axial			Radial H			Radial V		
	512	661	810	512	661	810	512	661	810
	Max	Max	Max	Max	Max	Max	Max	Max	Max
ABM1, dBA/m	NULL	10.77	NULL	NULL	3.63	NULL	NULL	2.84	NULL
ABM2, dBA/m	NULL	-22.33	NULL	NULL	-11.73	NULL	NULL	-22.49	NULL
Ambient noise, dBA/m	-41.71	-41.71	-41.71	-43.21	-43.21	-43.21	-39.36	-39.36	-39.36
S+N/N(dB)	NULL	33.26	NULL	NULL	15.89	NULL	NULL	24.98	NULL
S+N/N per orientation (dB)	33.26		15.89			24.98			

C63.1	Mode	Band	Test Description	Minimu	Locatio	Measure	Catego	Verdict
9				m Limit	n	d	ry	
				dBA/m	-	dBA/m	-	Pass/F
								ail
7.3.1.1			Intensity, Axial	-18	Max	10.77	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	3.63	-	PASS
				-	-	-	-	-
7.3.1.2	GSM	GSM1900	Intensity, RadialV	-18	Max	2.84	-	PASS
				-	-	-	-	-
				dB		dB		
7.3.3			Signal to	5	Max	33.26	T4	PASS
			noise/noise, Axial					
7.3.3			Signal to	5	Max	35.89	T4	PASS
			noise/noise, RadialH	-	-	-	-	-
7.3.3			Signal to	5	Max	34.98	T4	PASS
			noise/noise, RadialV	-	-	-	-	-

Annex A Photographs of the EUT

Annex B EUT Setup photo

