SC222: Tutorial Sheet 11

Problems based on Information Theory.

Pb 1) Entropy of a disjoint mixture. Let X_1 and X_2 be discrete random variables drawn according to probability mass functions $p_1(\cdot)$ and $p_2(\cdot)$ over the respective alphabets $\chi_1 = \{1, 2, \ldots, m\}$ and $\chi_2 = \{m + 1, \ldots, n\}$. Let

$$X = \begin{cases} X_1 & \text{with probability } \alpha, \\ X_2 & \text{with probability } 1 - \alpha. \end{cases}$$

- a) Find H(X) in terms of $H(X_1)$, $H(X_2)$, and α .
- b) Maximize over α to show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$ and interpret using the notion that $2^{H(X)}$ is the effective alphabet size.
- Pb 2) Let p(x, y) be given by

X	0	1
0	$\frac{1}{3}$	$\frac{1}{3}$
1	0	$\frac{1}{3}$

Find:

- a) H(X), H(Y).
- b) H(X|Y), H(Y|X).
- c) H(X,Y).
- d) H(Y) H(Y|X).
- e) I(X; Y).
- Pb 3) World Series. The World Series is a seven-game series that terminates as soon as either team wins four games. Let X be the random variable that represents the outcome of a World Series between teams A and B; possible values of X are AAAA, BABABAB, and BBBAAAA. Let Y be the number of games played, which ranges from 4 to 7. Assuming that A and B are equally matched and that the games are independent, calculate H(X), H(Y), H(Y|X), and H(X|Y).
- Pb 4) Run-length coding. Let $X_1, X_2, ..., X_n$ be (possibly dependent) binary random variables. Suppose that one calculates the run lengths $\mathbf{R} = (R_1, R_2, ...)$ of this sequence (in order as they occur). For example, the sequence $\mathbf{X} = 0001100100$ yields run lengths $\mathbf{R} = (3, 2, 2, 1, 2)$. Compare $H(X_1, X_2, ..., X_n)$, $H(\mathbf{R})$, and $H(X_n, \mathbf{R})$.

Pb 5) Grouping rule for entropy. Let $\mathbf{p} = (p_1, p_2, \dots, p_m)$ be a probability distribution on m elements (i.e., $p_i \geq 0$ and $\sum_{i=1}^m p_i = 1$).

Define a new distribution \mathbf{q} on m - 1 elements as $q_1 = p_1$, $q_2 = p_2$, ..., $q_{m-2} = p_{m-2}$, and $q_{m-1} = p_{m-1} + p_m$ [i.e., the distribution \mathbf{q} is the same as \mathbf{p} on $\{1, 2, \ldots, m-2\}$, and the probability of the last element in \mathbf{q} is the sum of the last two probabilities of \mathbf{p}]. Show that

$$H(\mathbf{p}) = H(\mathbf{q}) + (p_{m-1} + p_m)H\left(\frac{p_{m-1}}{p_{m-1} + p_m}, \frac{p_m}{p_{m-1} + p_m}\right)$$

- Pb 6) Discrete entropies. Let X and Y be two independent integer valued random variables. Let X be uniformly distributed over $\{1, 2, ..., 8\}$, and let $Pr\{Y = k\} = 2^{-k}$, k = 1, 2, 3, ...
 - a) Find H(X).
 - b) Find H(Y).
- Pb 7) Mutual information of heads and tails
 - a) Consider a fair coin flip. What is the mutual information between the top and bottom sides of the coin?
 - b) A six-sided fair die is rolled. What is the mutual information between the top side and the front face (the side most facing you)?
- Pb 8) Pure randomness. We wish to use a three-sided coin to generate a fair coin toss. Let the coin X have probability mass function

$$X = \begin{cases} A & p_A \\ B & p_B \\ C & p_C \end{cases}$$

where p_A, p_B, p_C are unknown.

- a) How would you use two independent flips X_1 , X_2 to generate (if possible) a Bernoulli($\frac{1}{2}$) random variable Z?
- b) What is the resulting maximum expected number of fair bits generated?
- Pb 9) Codes. Which of the following codes are
 - (a) Uniquely decodable?
 - (b) Instantaneous?

$$C_1 = \{00, 01, 0\}$$

$$C_2 = \{00, 01, 100, 101, 11\}$$

$$C_3 = \{0, 10, 110, 1110, \dots\}$$

$$C_4 = \{0, 00, 000, 0000\}$$