Содержание

1	Введ	цение	3
	1.1	Элементы теории множеств	3
	1.2	Мощность множества. Счётные и несчётные множества	4
	1.3	Понятие рационального числа. Понятие вещественного числа	7
	1.4	Ограниченные множества вещественных чисел	9
	1.5	Арифметические операции над вещественными числами. Свойства вещественных чисел	9
2	Теория пределов числовых последовательностей.		
	2.1	Числовая последовательность. Предел числовой последовательности	12
	2.2	Теоремы о сходящихся последовательностях	13
	2.3	Арифметические действия с последовательностями, имеющими конечный предел	16
	2.4	Бесконечно малые и бесконечно большие последовательности. Леммы о бесконечно малых последовательностях	18
	2.5	Монотонные последовательности	20
	2.6	Число e	21
	2.7	Принцип вложенных отрезков	23
	2.8	Подпоследовательность. Теорема Больцано-Вейерштрасса	23
	2.9	Частичные пределы	24
	2.10	Критерий Коши сходимости числовой последовательности	26
3	Теория пределов функций. Непрерывность функций в точке и на отрезке.		
	3.1	Функция. Предел функции в точке.	27
	3.2	Односторонние пределы	30
	3.3	Свойства пределов функций	32
	3.4	Непрерывность функции в точке. Разрывы I и II родов	33
	3.5	Замечательные пределы	35
	3.6	Эквивалентные бесконечно малые функции в точке	37
	3.7	Порядок переменной. Сравнение функций в окрестности заданной точки	40
	3.8	Глобальные свойства функций, непрерывных на отрезке	41
	3.9	Равномерная непрерывная функция	43
	3.10	Непрерывность функции в точке. Разрывы I и II родов	45
	3.11	Замечательные пределы	48
	3.12	Эквивалентные бесконечно малые функции в точке	50
	3.13	Порядок переменной. Сравнение функций в окрестности заданной точки	53

	3.14	Глобальные свойства функций, непрерывных на отрезке	54
	3.15	Равномерная непрерывная функция	56
4	4 Дифференциальные исчисления функции		
	4.1	Производная функции в точке	58
	4.2	Геометрический смысл прооизводной	61
	4.3	Производные элементарных функций	62

1. Введение

1.1. Элементы теории множеств.

Определения (множества)

Множество - совокупность объектов одинаковой природы.

Обозначение: А, В, С - множества. а, b, с - элементы множества.

Множества А и В называются равными, если они состоят из одних и тех же элементов.

Множество A называется подмножеством множества B, если $\forall a \in A \implies a \in B$. Обозначение: $A \subset B$.

Множество, не содержащее ни одного элемента, называется пустым множеством. Обозначение: Ø.

Объединением множеств A и B $(A \cup B)$ называется $C : C = \{c : c \in A \cup c \in B\}$.

Пересечением множеств A и B $(A \cap B)$ называется $D: D = \{d: d \in A \cap d \in B\}$.

Разностью множеств A и B ($A \setminus B$) называется $E : E = \{e : e \in A \cap e \notin B\}$.

Симметричной разностью множеств A и B ($A\triangle B$) называется $F:F=\{f:f\in (A\diagdown B)\cup (B\diagdown A)\}.$

Свойства операций

- 1. $\forall A \ A \subset A$ $\forall A \ \varnothing \subset A$
- $2. \ A \cup A = A$ $A \cap A = A$
- 3. $A \cup \emptyset = A$ $A \cap \emptyset = \emptyset$
- 4. $A \subset B, B \subset C \implies A \subset C$
- 5. $A \subset B, B \subset A \implies A = B$
- 6. $A \setminus (A \setminus B) = A \cap B$
- 7. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 8. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- 9. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- 10. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 11. $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Доказательство пункта 9:

Пусть Х - произвольное множество.

Если $x \in A \implies x \in A \cup X$

Если $x \notin A \implies x \notin A \cap X$

Если $x \in A \cap B \implies x \in A$ и $x \in B$

Если $x \in A \cup B \implies x \in A$ или $x \in B$

Если
$$x \notin A \cap B \implies x \notin A$$
 или $x \notin B$
Если $x \notin A \cup B \implies x \notin A$ и $x \notin B$

- а) Пусть $x \in A \setminus (B \cap C)$. Тогда $x \in A$ и $x \notin B \cap C$. Следовательно $x \in A$ и $(x \notin B)$ или $(x \notin C)$. Отсюда $(x \in A$ и $x \notin B)$ или $(x \in A$ и $x \notin B)$. Тогда $x \in (A \setminus B) \cup (A \setminus C)$.
- б) Пусть $x \in (A \setminus B) \cup (A \setminus C)$. Тогда $x \in (A \setminus B)$ или $x \in (A \setminus C)$. Пусть для определённости $x \in A \setminus B$. Тогда $x \in A$ и $x \notin B$. Отсюда $x \in A$ и $x \notin B \cap X$, например $x \in A$ и $x \notin B \cap C \implies x \in A \setminus (B \cap C)$.

Ч.т.л.

Определения (декартово произведение)

Декартовым произведением множеств A и B ($A \times B$) называется множество $C: C = \{(a; b) : a \in A$ и $b \in B\}$.

Отображением F множества A в множество B называется подмножество их декартова произведения. $(F \subset A \times B) : \forall a \in A \exists ! (a; b) \in F.$

Примеры:

$$A = \{1; 3; 5\}, B = \{2; 4; 6\}$$

- $F = \{(1, 2), (3, 4), (5, 6)\}$ отображение
- $F = \{(1, 2), (1, 4), (3, 4), (5, 6)\}$ не отображение

Пусть F - отображение A в B. Тогда элемент $b:(a;b)\in F$ называется образом элемента a при отображении F. b=F(a)

При этом a называется прообразом (одним из возможных) элемента b.

Множество $\{b \in B : \exists \ a \in A : b = F(a)\}$ называется образом множества A при отображении F и обозначается F(A).

Отображение F называется **сюръекцией** или отображением "на", если F(A) = B (все элементы b использованы в парах с элементами a)

Отображение F называется **инъекцией** или вложением, если $F(a_1) = F(a_2) \implies a_1 = a_2$ (каждому элементу a соответствует только один элемент b)

Отображение F называется **биекцией** или взаимооднозначным отображением, если оно является и сюръекцией, и инъекцией.

Пример: $A\{1;3;5\}, B\{2;4;6\}$

- $F_1\{(1;2),(3;2),(5;6)\}$ не сюръекция, не инъекция.
- $F_2\{(1;2),(3;4),(5;6)\}$ сюръекция, инъекция; следовательно, биекция.

1.2. Мощность множества. Счётные и несчётные множества.

Эквивалентность

Множества A и B называются эквивалентными (равномощными), если между ними можно установить взаимооднозначное соответствие.

Обозначение: $A \sim B$.

Свойства:

1. $A \sim A$ (свойство рефлексивности)

- 2. $A \sim B \implies B \sim A$ (свойство симметричности)
- 3. $A \sim B, B \sim C \implies A \sim C$ (свойство транзитивности)

Мощность множеств. Счётные множества.

Множества чисел:

- N натуральные числа (1; 2; 3; ...)
- Z целые числа $(0; \pm 1; \pm 2; ...)$
- Q рациональные числа $(rac{p}{q}:p\in Z,q\in N,rac{p}{q}$ несократимое)
- R действительные/вещественные числа

$$N \subset Z \subset Q \subset R$$

Мощность множества - некая числовая характеристика (обозначающаяся #A), обладающая свойствами:

- 1. Если A конечно, то #A кол-во элементов множества.
- 2. Если A, B бесконечномерные, то
 - $\#A = \#B \Leftrightarrow A \sim B$
 - $\#A \leq \#B \Leftrightarrow A \sim C, C \subset B$, no A ne $\subset B$

Утверждение: $Z \sim N$

Доказательство:

$$0; -1; 1; -2; 2; -3; 3; \dots$$

Каждому элементу Z соответствует элемент N.

Утверждение: $Q \sim N$

Доказательство:

Договоримся, что $0 = \frac{0}{1}$

Обозначим h=|p|+q - высота числа $\frac{p}{q}$

Будем нумеровать рациональные числа по возрастанию h; при фиксированном h - по возрастанию q; при фиксированном h и q - по возрастанию p.

$$h=1,q=1 \implies p=0: r_1=rac{0}{1}$$
 $h=2,q=1 \implies p=\pm 1: r_2=rac{-1}{1}, r_3=rac{1}{1}$ $h=2,q=2 \implies p=0$ (не может быть по определению) $h=3,q=1 \implies p=\pm 2: r_4=rac{-2}{1}, r_5=rac{2}{1}$ $h=3,q=2 \implies p=\pm 1: r_6=rac{-1}{2}, r_7=rac{1}{2}$ $h=3,q=3 \implies p=0$ (не может быть по определению)

Индексы r являются натуральными числами \implies каждому рациональному числу можно поставить в соответствие натуральное число.

Ч.т.л.

Множества, эквивалентные множеству N, называются <u>счётными</u>.

Утверждение: ∀ непустое подмножество счётного множества конечно или счётно.

Доказательство: занумеруем все элементы множества, затем перенумируем элементы подмножества в порядке возрастания номеров. Либо элементы закончатся, либо получим счётное подмножество.

Ч.т.л.

Утверждение: счётное объединение счётных множеств счётно. Доказательство:

$$A_1=\{a_{11};a_{12};\ldots;a_{1n}\}$$
- счётное $A_2=\{a_{21};a_{22};\ldots;a_{2n}\}$ - счётное $A_3=\{a_{31};a_{32};\ldots;a_{3n}\}$ - счётное $A=\{a_{11};a_{21};a_{12};a_{13};a_{22};a_{31};a_{32};\ldots\}$ $N=\{1;2;3;4;5;6;7;\ldots\}$

Каждому элементу множества A можно поставить в соответствие натуральное число из множества N.

Ч.т.л.

Несчётные множества.

Теорема 2.1:

Множество H всех бесконечных наборов из цифр 0 и 1 не является счётным.

Доказательство:

Пусть
$$h \in H, h = (h_1, h_2, h_3, \dots, h_k, \dots,), h_k = 0$$
 или 1 Предположим противное. Пусть H - счётное, т.е. $H = \{h^1, h^2, h^3, \dots, h^j, \dots, h^k, \dots\}$

$$h^{1} = \{h_{1}^{1}, h_{2}^{1}, h_{3}^{1}, \dots, \dots\}$$

$$h^{2} = \{h_{1}^{2}, h_{2}^{2}, h_{3}^{2}, \dots, \dots\}$$

$$\vdots$$

$$h^{j} = \{h_{1}^{j}, h_{2}^{j}, \dots, h_{j}^{j}, \dots\}$$

$$h^n = \{h_1^n, h_2^n, \dots, h_n^n, \dots\}$$

Построим набор
$$\bar{h}=\{\bar{h}_1^1;\bar{h}_2^2;\dots;\bar{h}_j^{\bar{j}};\dots;\bar{h}_n^{\bar{n}};\dots\}$$
, где $\bar{h}_k^{\bar{k}}=\begin{cases}0,$ если $h_k^k=1\\1,$ если $h_k^k=0\end{cases}$ Очевидно, что

 $\bar{h} \in H$, т.е. \bar{h} имеет номер, пусть $\bar{h} = h^j$

На j-ом месте h^j имеет элемент h^j_i

На j-ом месте \bar{h} имеет элемент \bar{h}^j_j , т.е. $h^j_j=\bar{h}^j_j$ Получили противоречие. Таким образом H не является счётным.

Ч.т.д.

Следствие: множество всех подмножеств счётного множества не является счётным.

Теорема 2.2:

Множество K всех бесконечных наборов, состоящих из цифр от 0 до 9, не является счётным. Доказательство: очевидно, что $H \subset K$. Если бы K было счётным, то и H было бы счётным, а это не так.

Ч.т.д.

Множества, эквивалентные множеству вещественных чисел отрезка [0, 1] называются множествами мощности континуума.

1.3. Понятие рационального числа. Понятие вещественного числа.

Рациональными числами будем называть числа вида

$$\frac{p}{q}, p \in Z, q \in N, \mathrm{HOД}(p,q) = 1, 0 = \frac{0}{1}$$

Множество рациональных чисел - Q.

Свойства:

- 1. $\forall a, b \in Q \mid a < b$ или a = b (правило упорядочивания)
- 2. $\forall a, b \in Q \exists ! c \in Q \mid c = a + b$ (корректность определения суммы)

- 3. $\forall a, b \in Q \; \exists ! \; d \in Q \; | \; d = ab$ (корректность определения произведения)
- 4. $\forall a, b, c \in Q$ если a < b, а $b < c \implies a < c$ $\forall a, b, c \in Q$ если a = b, а $b = c \implies a = c$ (транзитивность)
- 5. $\forall a, b \in Q \mid a + b = b + a$ (коммутативность сложения)
- 6. $\forall a, b, c \in Q \mid (a+b) + c = a + (b+c)$ (ассоциативность сложения)
- 7. $\exists !\ 0 \in Q\ |\ \forall a \in Q\ a + 0 = 0 + a = a$ (существование нейтрального элемента по сложению)
- 8. $\forall a \in Q \; \exists ! \; a' \in Q \; | \; a + a' = a' + a = 0$ (существование обратного элемента по сложению)
- 9. $\forall a, b \in Q \mid ab = ba$ (коммутативность умножения)
- 10. $\forall a, b, c \in Q \mid (ab)c = a(bc)$ (ассоциативность умножения)
- 11. $\exists !\ 1 \in Q \mid \forall a \in Q\ a \times 1 = 1 \times a = a$ (существование нейтрального элемента по умножению)
- 12. $\forall a \neq 0, a \in Q \; \exists ! \; a' \in Q \; | \; a \times a' = a' \times a = 1$ (существование обратного элемента по умножению)
- 13. $\forall a, b, c \in Q \ (a+b)c = ac + bc \ ($ дистрибутивность)
- 14. если $a < b, c \in Q \implies a + c < b + c$
- 15. если $a < b, c > 0 \implies ac < bc$
- 16. $\forall a \in Q \; \exists \; n \in N \; | \; n > a$ (аксиома Архимеда, или "натуральных чисел бесконечно много")

Вещественные числа

Вещественным или действительным числом называется произвольная бесконечная десятичная дробь вида $\pm a_1, a_2 a_3 a_4 \dots a_n \dots$

Рассмотрим $0, (9) = 0,9999 \cdots \in Q$

$$0, (9) = \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \dots = \begin{vmatrix} S & = & \frac{b_1}{1-q} \\ b_1 & = & \frac{9}{10} \\ q & = & \frac{1}{10} \end{vmatrix} = \frac{\frac{9}{10}}{1 - \frac{1}{10}} = 1$$

Договоримся, что рациональное число не может содержать в своей записи бесконечное число 9. Модуль (абсолютная величина) числа $a=\pm a_0, a_1a_2\dots a_n\dots$ называется число, выраженное той же дробью, что и a, но взятой со знаком "+".

Правила сравнения вещественных чисел

1. Пусть $a = \pm a_0, a_1 a_2 \dots a_n \dots$ $b = \pm b_0, b_1 b_2 \dots b_n \dots$ $a, b \in R$

Числа a и b называются равными, если перед ними один знак и $a_0=b_0, a_1=b_1, \ldots, a_n=b_n, \ldots$

2. Пусть $a \neq b$

- \forall положительное число > 0
- \forall отрицательное число < 0
- \forall положительное число $> \forall$ отрицательного числа
- a > 0, b > 0. Будем говорить, что a > b, если $a_0 = b_0, a_1 = b_1, \dots, a_k > b_k$.
- a < 0, b < 0. a > b, если |a| < |b|; a < b, если |a| > |b|.

1.4. Ограниченные множества вещественных чисел.

Ограниченные множества

Множество $X\subset R$ ограничено сверху, если $\exists\ M\in R\ |\ \forall x\in X\ x\leq M$

Множество $X \subset R$ ограничено снизу, если $\exists m \in R \mid \forall x \in X \ x > m$

Числа M и m называются верхней и нижней гранями множества X соответственно.

Число $\bar{x} \in R$ ($\underline{x} \in R$) называется точной верхней (нижней) гранью множества X, если:

- 1. $\forall x \in X \ x \leq \bar{x} \ (x \geq \underline{x})$
- 2. $\forall x' \in R \mid x' < \bar{x} \; \exists \; x_0 \in X \mid x_0 > x' \; (\forall x' \in R \mid x' > \underline{x}, \; \exists \; x_0 \in X \; x_0 < x')$ (невозможность уменьшить точную грань)
- 3. (на самом деле 2*): $\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon) \ | \ \bar{x} \varepsilon < x_n$ $\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon) \ | \ x \varepsilon > x_n$

Обозначения:

- $\bar{x} = \sup x$ супремум множества X
- $x = \inf x$ инфинум множества X

Теорема 4.1 (принцип полноты Вейерштрасса):

 \forall непустое ограниченное сверху (снизу) множество $X\subset R$ имеет точную верхнюю (нижнюю) грань.

1.5. Арифметические операции над вещественными числами. Свойства вещественных чисел.

Леммы

Лемма 1: пусть
$$a \in R$$
 $\forall \varepsilon > 0, \varepsilon \in Q \ \exists \ \alpha, \beta \in Q \ | \ \alpha \leq a \leq \beta$, причём $\beta - \alpha < \varepsilon$

Доказательство:

Пусть
$$a=a_0, a_1a_2a_3\dots a_n\dots \geq 0$$

Пусть $\alpha=a_0, a_1a_2a_3\dots a_n.$ Очевидно, что $\alpha\leq a.$

Положим
$$\beta = \alpha + \frac{1}{10^n}$$

 $\beta=a_0,a_1a_2a_3\dots(a_n+1)$. Очевидно, что $\beta\geq a$

Замечание:

$$orall arepsilon>0, arepsilon\in Q\ \exists\ n\in N\implies |\ 10^n>rac{1}{arepsilon}$$
 (аксиома Архимеда)
$$\beta-\alpha=rac{1}{10^n}$$

.

Ч.т.д.

Лемма 2: $\forall a, b \in R \ \exists \ \alpha \in Q \mid a < \alpha < b$ Замечание: таких α бесконечно много.

Доказательство:

Пусть $a = a_0, a_1 \dots a_n \dots \ge 0$ Пусть $a = a_0, a_1 \dots a_k 99 \dots 9a_p \dots$ при $a_p \ne 9$

 $b = b_0, b_1, \dots, b_k, \dots, a_0 = b_0, a_1 = b_1, \dots, a_k < b_k \implies a < b_0$

 $\alpha = a_0, a_1 \dots a_k 99 \dots 9(a_p + 1).$

 $a < \alpha$, т.к. $a_p < a_p + 1$

 $b > \alpha$, т.к. $a_k < b_k$

Следовательно $a < \alpha < b$

Если $a<0,\,b>0,$ то $\alpha=0,000\dots$

Если $a < b \le 0$, то переходим к модулям.

Ч.т.д.

Лемма 3: пусть $a,b\in R$. Если $\forall \varepsilon>0, \varepsilon\in Q\mid \exists\ \gamma_1,\gamma_2\in Q\mid \gamma_1\leq a\leq \gamma_2\$ и $\gamma_1\leq b\leq \gamma_2\$ и $\gamma_1-\gamma_2<\varepsilon,$ то a=b.

Доказательство:

Предположим противное.

Пусть $a \neq b$; пусть для определённости a < b. Тогда по лемме 2 $\exists \ \alpha_1, \alpha_2 \in Q \ | \ a < \alpha_1 < \alpha_2 < b$

Положим $\varepsilon=\frac{\alpha_2-\alpha_1}{2}.$ По условию леммы $\exists~\gamma_1,\gamma_2\in Q\mid \gamma_1\leq a<\alpha_1<\alpha_2< b\leq \gamma_2$ и $\gamma_2-\gamma_1<\varepsilon$

Отсюда $\gamma_1 < \alpha_1 < \alpha_2 < \gamma_2$. Отнимем γ_1 .

$$0 < \alpha_2 - \alpha_1 < \alpha_2 - \gamma_1 < \gamma_2 - \gamma_1$$
$$\alpha_2 - \alpha_1 > \varepsilon, \gamma_2 - \gamma_1 < \varepsilon$$

Получили противоречие. Следовательно, a = b.

Ч.т.д.

Арифметические действия

Суммой чисел $a,b\in R$ называется число $c\in R\mid \forall \alpha_1,\alpha_2,\beta_1,\beta_2\in Q; \alpha_1\leq a\leq \alpha_2; \beta_1\leq b\leq \beta_2$ выполнено $\alpha_1+\beta_1\leq c\leq \alpha_2+\beta_2$

Произведением чисел $a,b\in R$ называется число $c\in R\mid \forall \alpha_1,\alpha_2,\beta_1,\beta_2\in Q; \alpha_1\leq a\leq \alpha_2; \beta_1\leq b\leq \beta_2$ выполнено $\alpha_1\beta_1\leq c\leq \alpha_2\beta_2$

Замечание: все операции с вещественными числами производятся с погрешностью.

По определению положим: $a \times 0 = 0 \times a = 0$

Пусть $a, b \in R$. Тогда по определению

$$ab = \begin{cases} |a||b|, \text{ если } ab > 0 \text{ (а и b одного знака)} \\ -|a||b|, \text{ если } ab < 0 \text{ (а и b разных знаков)} \end{cases}$$

Свойства вещественных чисел

- 1. $\forall a, b \in R \mid a < b$ или a = b (правило упорядочивания)
- 2. $\forall a,b \in R \exists ! c \in R \mid c = a + b$ (корректность определения суммы)
- 3. $\forall a,b \in R \; \exists ! \; d \in R \; | \; d = ab$ (корректность определения произведения)
- 4. $\forall a, b, c \in R$ если a < b, а $b < c \implies a < c$ $\forall a, b, c \in R$ если a = b, а $b = c \implies a = c$ (транзитивность)
- 5. $\forall a, b \in R \mid a + b = b + a$ (коммутативность сложения)
- 6. $\forall a, b, c \in R \mid (a + b) + c = a + (b + c)$ (ассоциативность сложения)
- 7. $\exists !\ 0 \in R \mid \forall a \in R\ a + 0 = 0 + a = a$ (существование нейтрального элемента по сложению)
- 8. $\forall a \in R \; \exists ! \; a' \in R \; | \; a + a' = a' + a = 0$ (существование обратного элемента по сложению)
- 9. $\forall a, b \in R \mid ab = ba$ (коммутативность умножения)
- 10. $\forall a, b, c \in R \mid (ab)c = a(bc)$ (ассоциативность умножения)
- 11. $\exists ! \ 1 \in R \mid \forall a \in R \ a \times 1 = 1 \times a = a$ (существование нейтрального элемента по умножению)
- 12. $\forall a \neq 0, a \in R \exists ! \ a' \in R \mid a \times a' = a' \times a = 1$ (существование обратного элемента по умножению)
- 13. $\forall a, b, c \in R \ (a+b)c = ac + bc$ (дистрибутивность)
- 14. если $a < b, c \in Q \implies a + c < b + c$
- 15. если $a < b, c > 0 \implies ac < bc$
- 16. $\forall a \in R \; \exists \; n \in N \; | \; n > a$ (аксиома Архимеда, или "натуральных чисел бесконечно много")

Арифметические действия 2. Electric Boogalo

Разностью чисел $a,b \in R$ называется число $c \in R \mid a = c + b$

Покажем, что этому определению удовлетворяет число c = a + b', где b' - обратное к b по сложению.

Действительно
$$c + b = (a + b') + b = a + (b' + b) = a + 0 = a$$

Покажем, что c - единственное.

Пусть
$$\exists d \in R \mid a = d + b$$
, тогда $c = a + b' = d + b + b' = d + 0 = d$

Т.е. разность определена единственным образом.

По определению 0 - b = 0 + b' = b' = -b

Пишем, что b' = 0 - b = -b

Обозначение: c = a - b

Частным чисел $a,b\in R,b\neq 0$ называется число $c\in R\mid a=bc$

Покажем, что этому определению удовлетворяет число c = ab', где b' - обратное к b по умножению.

Действительно $cb = (ab')b = a(b'b) = a \times 1 = a$

Покажем, что c - единственное.

Пусть $\exists d \in R \mid a = db$, тогда c = ab' = (db)b' = d(bb') = d

Т.е. частное определено единственным образом.

Обозначение: $c = \frac{a}{b}$

2. Теория пределов числовых последовательностей.

2.1. Числовая последовательность. Предел числовой последовательности.

Определение числовой последовательности.

Пусть каждому натуральному $n \in N$ по определённому закону ставится в соответствие действительное число x_n .

Тогда говорят, что определена числовая последовательность.

Обозначение: $\{x_n\}$

 $x_1, x_2, \ldots, x_n, \ldots$ - элементы последовательности.

Пример: арифметическая прогрессия $x_n = a + d(n-1)$, геометрическая прогрессия $x_n = a \times q^n$.

При a < b:

- Множество чисел $x \mid a \le x \le b$ называется отрезком [a; b]
- Множество чисел $x \mid a < x < b$ называетя интервалом (a; b)
- Если $a \le x < b$ или $a < x \le b$, то есть [a;b) или (a;b], то эти множества называются полуинтервалом или полуотрезком.
- Замечание: a,b могут быть ∞ и $-\infty$ и образовывать, например, $(-\infty;\infty),[a,\infty)$ и т.д.

Произвольный интервал (a;b), содержащий точку $c\ (a < c < b)$ называется окрестностью точки c и обозначается U(c).

Крайне важные определения

Интервал вида $(c-\varepsilon;c+\varepsilon)$ при $\varepsilon>0$ называется ε -окрестностью точки c.

Число a называется **пределом** числовой последовательности x_n , если

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \; \big| \; \forall n > N \implies |x_n - a| < \varepsilon$$

Говоря по-русски, для любого эпсилон больше нуля существует номер N, зависящий от эпсилон, при котором при любом номере n больше номера N выполняется неравенство: $|x_n-a|$ меньше эпсилон.

Есть такие последовательности, чьих пределов не существует, например,

$$\lim_{n\to\infty} (-1)^n = \nexists$$

<u>Пример:</u> $x_n = \frac{1}{n}$. Докажем, что $\lim_{n \to \infty} x_n = 0$.

$$\begin{aligned} |\frac{1}{n} - 0| &< \varepsilon \\ \frac{1}{n} &< \varepsilon \\ 1 &< n\varepsilon \\ n &> \frac{1}{\varepsilon} \end{aligned}$$

$$N(\varepsilon) = \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix}$$

Проверка:

$$\varepsilon=\frac{1}{10}$$
 $N(0.1)=10$ $x_{10}=\frac{1}{10}\notin \varepsilon ext{-окр.}$ $x_{11}=\frac{1}{11}\in \varepsilon ext{-окр.}$

$$arepsilon = rac{1}{100}$$
 $N(0.01) = 100$ $x_{100} = rac{1}{100}
otin arepsilon ext{-окр.}$ $x_{101} = rac{1}{101} \in arepsilon ext{-окр.}$

Ч.т.д.

Последовательность, имеющая конечный предел, называется сходящейся последовательностью. В противном случае - расходящейся.

2.2. Теоремы о сходящихся последовательностях

Теорема 2.1:

Если $\{x_n\}$ имеет предел, то он единственный.

Доказательство:

Предположим противное. Пусть $\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}x_n=b, a\neq b$, пусть для определённости a< b

Выберем окрестности точки a и b таким образом, чтобы они не пересекались.

По условию $\lim_{n\to\infty}x_n=a\implies$ в окрестность точки a попадает ∞ -ое число элементов $\{x_n\}$

Вне этой окрестности находится конечное число элементов $\{x_n\}$ \implies в окрестность точки

b попадает конечное число элементов $\{x_n\}$.

Получили противоречие, т.к. $\lim_{n\to\infty} x_n = b \implies$ в окрестности точки b должно быть ∞ -ое число элементов $\{x_n\}$.

Отсюда следует, что a = b.

Ч.т.д.

Теорема 2.2:

Если $\{x_n\}$ сходится, то она ограничена.

Доказательство:

Пусть $\{x_n\}$ сходится. Тогда существует конечный $\lim_{n\to\infty}x_n=a$, т.е.

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \; | \; \forall n > N \implies |x_n - a| < \varepsilon$$

Рассмотрим $|x_1-a|\geq arepsilon, |x_2-a|\geq arepsilon, \ldots, |x_n-a|\geq arepsilon$ Обозначим $\max\{|x_1-a|,|x_2-a|,\ldots,|x_n-a|\}=d\implies d\geq arepsilon$ Тогда

$$\begin{cases} \forall n = 1..N \implies |x_n - a| \le d \\ \forall n > N \implies |x_n - a| < \varepsilon \le d \end{cases} \implies \forall N \implies |x_n - a| \le d$$
$$a - d < x_n < a + d$$

Отсюда следует, что $\{x_n\}$ ограничена.

Ч.т.д.

Замечание: ограниченность подпоследовательности является необходимым условием, но не является достаточным, т.е. если $\{x_n\}$ ограничена, то она не обязана сходиться. Пример:

$${x_n} = (-1)^n \Rightarrow -1; 1; -1; 1; \dots$$

 $\{x_n\}$ ограничена, но $\lim_{n\to\infty}x_n=\nexists$

У данной последовательности нет такого элемента, который если окружить окрестностью ("ловушкой"), получится "поймать" все элементы последовательности.

Теорема 2.3 (о сохранении знака):

Если
$$\lim_{n\to\infty}x_n=a\neq 0$$
, то $\exists~N=N(\varepsilon)~\big|~\forall n>N\implies|x_n|>\frac{a}{2}$ Если $a>0$, то $x_n>\frac{a}{2}$ Если $a<0$, то $x_n<\frac{a}{2}$

Доказательство:

Пусть $\lim_{n\to\infty} x_n = a$. Зафиксируем $\varepsilon = \frac{|a|}{2}$.

$$\forall \varepsilon > 0 \,\exists \, N = N(\varepsilon) \mid \forall n > N \implies |x_n - a| < \varepsilon$$

$$a - \frac{|a|}{2} < x_n < a + \frac{|a|}{2}$$

$$a > 0$$

$$x_n > a - \frac{|a|}{2}$$

$$x_n < a + \frac{|a|}{2}$$

$$x_n < \frac{a}{2}$$

Ч.т.д.

Теорема 2.4:

Если $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b$ и $\forall n\in N \ x_n\leq y_n$, то $a\leq b$.

Доказательство:

Предположим противное.

Пусть a>b. Зафиксируем $\varepsilon=\frac{a-b}{2}$. Т.к. $\lim_{n\to\infty}x_n=a$, то для $\varepsilon=\frac{a-b}{2}$ $\exists N_1\mid \forall n>N_1\mid x_n-a\mid<\varepsilon$

$$a - \varepsilon < x_n < a + \varepsilon$$

Т.к. $\lim_{n \to \infty} y_n = b$, то для $\varepsilon = \frac{a-b}{2} \; \exists N_2 \; \big| \; \forall n > N_2 \; |y_n - b| < \varepsilon$

$$b - \varepsilon < y_n < b + \varepsilon$$

Пусть $N = max\{N_1, N_2\}$. Тогда $\forall n > N$

$$y_n < b + \varepsilon = b + \frac{a - b}{2} = \frac{a}{2} + \frac{b}{2} = \frac{a}{2} + \frac{b}{2} = \frac{a}{2} + \frac{b}{2} + \frac{a}{2} - \frac{a}{2} = a - \frac{a - b}{2} = a - \varepsilon < x_n$$
 $y_n < x_n$

Получили противоречие. Таким образом, $a \le b$.

Ч.т.д.

Следствие: если $\{x_n\}$ - сходящаяся подпоследовательность и $\forall n \in N \ x_n \in [a;b]$, то её предел $\in [a;b]$

Доказательство:

 $\forall n \ a_n \leq x_n \leq b_n$

Пусть $\lim_{n\to\infty} x_n = c$.

Рассмотрим $\{a_n\}$. Её элементы: a; a; a; a; ...

 $\lim_{n\to\infty} a_n = a$

 $\forall n \ a_n \leq x_n \implies a \leq c$ (по теореме 2.4).

Аналогично $c \leq b$. Следовательно, $a \leq c \leq b$.

Ч.т.д.

Теорема 2.5 ("теорема о двух милиционерах"):

Если $\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}y_n=a$ и $\forall n\in N\ x_n\leq z_n\leq y_n$, то $\lim_{n\to\infty}z_n=a$

Доказательство:

Зафиксируем ε .

$$\lim_{n \to \infty} x_n = a \implies \exists N_1 \mid \forall n > N_1 \ a - \varepsilon < x_n < a + \varepsilon$$

$$\lim_{n \to \infty} y_n = a \implies \exists N_2 \mid \forall n > N_2 \ a - \varepsilon < y_n < a + \varepsilon$$

Пусть $N = max\{N_1, N_2\}$. Тогда $\forall n > N$

$$a - \varepsilon < x_n \le z_n \le y_n < a + \varepsilon$$

 $a - \varepsilon < z_n < a + \varepsilon \implies \lim_{n \to \infty} z_n = a$

Ч.т.д.

Теорема 2.6:

Если $\lim_{n\to\infty} x_n = a$, то $\lim_{n\to\infty} |x_n| = |a|$

Доказательство:

$$\begin{split} |a-b| &\geq \left||a|-|b|\right| \\ \text{ T.K. } \lim_{n\to\infty} x_n = a \text{, to } \exists N \; \big| \; \forall n>N \implies |x_n-a|<\varepsilon \\ \varepsilon > |x_n-a| &\geq \left||x_n|-|a|\right| \implies \left||x_n|-|a|\right|<\varepsilon \implies \lim_{n\to\infty} |x_n| = |a| \end{split}$$

Ч.т.д.

2.3. Арифметические действия с последовательностями, имеющими конечный предел

Пусть $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$.

Все описанные в параграфе действия можно применять только для сходящихся последовательностей.

Для доказательств действий часто применяется неравенство треугольника:

$$|a+b| \le |a| + |b|$$

Теорема 3.1:

$$\lim_{n \to \infty} (x_n \pm y_n) = a \pm b$$

Доказательство:

Докажем для "+", т.е. $\lim_{n\to\infty}(x_n+y_n)=a+b$ Зафиксируем $\frac{\varepsilon}{2}$.

$$\exists N_1 \mid \forall n > N_1 \implies |x_n - a| < \frac{\varepsilon}{2}$$

 $\exists N_2 \mid \forall n > N_2 \implies |y_n - b| < \frac{\varepsilon}{2}$

Пусть $N = max\{N_1, N_2\}$ Тогда $\forall n > N$

$$|(x_n + y_n) - (a+b)| = |(x_n - a) + (y_n - b)| \le |x_n - a| + |y_n - b|$$
$$|x_n - a| + |y_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

T.e. $\lim_{n\to\infty}(x_n+y_n)=a+b$

Ч.т.д.

Теорема 3.2:

$$\lim_{n \to \infty} (x_n y_n) = ab$$

Доказательство:

 $\lim_{n \to \infty} y_n = b \implies \{y_n\}$ - сходящаяся $\implies \{y_n\}$ - ограничена (по т. 2.2) $\implies \exists M \mid |y_n| \le M$, причём выберем M таким образом, чтобы $|a| \le M$.

$$\exists N_1 \mid \forall n > N_1 \implies |x_n - a| < \frac{\varepsilon}{2M}$$
$$\exists N_2 \mid \forall n > N_2 \implies |y_n - b| < \frac{\varepsilon}{2M}$$

Рассмотрим $|x_ny_n - ab|$

$$|x_n y_n - ab| = |x_n y_n - ay_n + ay_n - ab| \le |x_n y_n - ay_n| + |ay_n - ab| =$$

$$|y_n||x_n - a| + |a||y_n - b| \le M \times \frac{\varepsilon}{2M} + M \times \frac{\varepsilon}{2M} = \varepsilon \implies \lim_{n \to \infty} (x_n y_n) = ab$$

Ч.т.д.

Теорема 3.3:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}, b \neq 0$$

Доказательство:

$$\left| \frac{x_n}{y_n} - \frac{a}{b} \right| = \left| \frac{x_n b - ay_n - ab + ab}{y_n b} \right| = \left| \frac{b(x_n - a) - a(y_n - b)}{y_n b} \right| \le \left| \frac{x_n - a}{y_n} \right| + \left| \frac{(y_n - b)a}{y_n b} \right| = \frac{|x_n - a|}{|y_n|} + \frac{|a||y_n - b|}{|y_n||b|}$$

По теореме о сохранении знака $\forall n > N_1$

$$|y_n| > \frac{|b|}{2}$$

$$\frac{1}{|y_n|} > \frac{2}{|b|}$$

Т.к.
$$\lim_{n\to\infty} x_n = a \implies \forall n > N_2 \ |x_n-a| < \frac{\varepsilon |b|}{4}$$
Т.к. $\lim_{n\to\infty} y_n = b \implies \forall n > N_3 \ |a| |y_n-b| < \frac{\varepsilon |b|^2}{4}$

 $\lim_{n\to\infty} g_n = 0 \longrightarrow \forall n > 1 \forall 3 |\alpha| |g_n = 0|$

Пусть $N = max\{N_1, N_2, N_3\}$. Тогда $\forall n > N$:

$$\left|\frac{x_n}{y_n} - \frac{a}{b}\right| < \frac{\varepsilon|b|}{4} \times \frac{2}{|b|} + \frac{\varepsilon|b|^2}{4} \times \frac{2}{|b||b|} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$$

Ч.т.д.

 $\underline{3}$ амечание: пределы в левых частях равенств могут существовать без существования пределов $\lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} y_n = b$

Пример:

$$x_n = (-1)^n \qquad \lim_{n \to \infty} x_n = \nexists$$

$$y_n = (-1)^{n+1} \qquad \lim_{n \to \infty} y_n = \nexists$$

Как НЕЛЬЗЯ:

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n = \nexists + \nexists = \nexists$$

Как правильно:

$$x_n + y_n = (-1)^n + (-1)^{n+1} = \{0; 0; 0; \dots\} \implies \lim_{n \to \infty} (x_n + y_n) = 0$$

2.4. Бесконечно малые и бесконечно большие последовательности. Леммы о бесконечно малых последовательностях

Последовательность $\{\alpha_n\}$ называется бесконечно малой, если $\lim_{n \to \infty} \alpha_n = 0$

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \; | \; \forall n > N \implies |\alpha| < \varepsilon$$

<u>Утверждение:</u> для того, чтобы $\lim_{n\to\infty} x_n = a \Leftrightarrow x_n = a + \alpha_n$, $\{\alpha_n\}$ - беск. малая последовательность.

Последовательность B_n называется бесконечно большой, еслии $\lim_{n\to\infty} B_n = \pm \infty$.

Говорят: $\{B_n\}$ стремится к бесконечности.

$$\forall M > 0 \; \exists \; N = N(M) \; | \; \forall n > N \implies |B_n| > M$$

Лемма 1: сумма конечного числа беск. малых последовательностей является беск. малая последовательность.

$$\alpha_n^1, \alpha_n^2, \dots, \alpha_n^k \to 0$$

Доказательство:

Рассмотрим $\alpha_n = \alpha_n^1 + \dots + \alpha_n^k$

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} (\alpha_n^1 + \dots + \alpha_n^k) = \lim_{n \to \infty} \alpha_n^1 + \dots + \lim_{n \to \infty} \alpha_n^k = 0$$

 $\lim_{n\to\infty} \alpha_n = 0 \implies \alpha_n$ - беск. малая последовательность.

Лемма 2: произведение беск. малой последовательности на ограниченную последовательность есть беск. малая последовательность.

$$\alpha_n^1 \times x_n \to 0$$

Доказательство:

Пусть $\lim_{n\to\infty} \alpha_n = 0$

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \; | \; \forall n > N \implies |\alpha_n| < \frac{\varepsilon}{M}$$

Т.к. $\{x_n\}$ ограничена, то $\exists M \ \forall n \ |y_n| \leq M$

$$|x_n y_n - 0| < \frac{\varepsilon}{M} \times M = \varepsilon$$

Ч.т.д.

Пример:

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = \lim_{n \to \infty} (-1)^n \times \lim_{n \to \infty} \frac{1}{n} = 0$$

Хоть $\lim_{n\to\infty}(-1)^n=\nexists$, но эта последовательность ограничена, а следовательно может быть одним из множителей.

Лемма 3: произведение <u>конечного</u> числа беск. малых последовательностей есть беск. малая последовательность.

Доказательство:

Рассмотрим $\alpha_n = \alpha_n^1 \times \alpha_n^2 \times \cdots \times \alpha_n^k$

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} (\alpha_n^1 \times \alpha_n^2 \times \dots \times \alpha_n^k) = \lim_{n \to \infty} \alpha_n^1 \times \dots \times \lim_{n \to \infty} \alpha_n^k = 0 \times \dots \times 0 = 0$$

 $\{\alpha_n\}$ - беск. малая последовательность, т.к. $\lim_{n\to\infty}\alpha_n=0$

Ч.т.д.

Определённые выражения

Обозначим:

- 0 беск. малая величина
- ∞ беск. большая величина
- а конечная величина

Примеры определённых выражений:

$$\frac{a}{0} \to \infty; \frac{0}{a} \to 0; \frac{0}{\infty} \to 0; \frac{\infty}{0} \to \infty; \frac{a}{\infty} \to 0; \frac{\infty}{a} \to \infty; \dots$$

Неопределённые выражения

Пример:

Пусть $\lim_{n\to\infty} x_n = 0$, $\lim_{n\to\infty} y_n = 0$

1. Пусть $x_n = \frac{1}{n}, y_n = \frac{1}{n^2}$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \begin{bmatrix} 0\\0 \end{bmatrix} = \lim_{n \to \infty} n = \infty$$

2. Пусть $x_n = \frac{1}{n^2}, y_n = \frac{1}{n}$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \left[\frac{0}{0} \right] = \lim_{n \to \infty} \frac{1}{n} = 0$$

3. Пусть $x_n = \frac{a}{n}, y_n = \frac{1}{n}$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \left[\frac{0}{0} \right] = \lim_{n \to \infty} a = a$$

4. Пусть $x_n = \frac{(-1)^n}{n}, y_n = \frac{1}{n}$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \left[\frac{0}{0} \right] = \lim_{n \to \infty} (-1)^n = \nexists$$

Виды неопределённостей:

$$\begin{bmatrix} \frac{0}{0} \end{bmatrix}; \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix}; [0 \times \infty]; [\infty - \infty]; [1^{\infty}]; \begin{bmatrix} \infty^{0} \end{bmatrix}; \begin{bmatrix} 0^{0} \end{bmatrix}$$

Замечание: при нахождении предела посл-ти используется выражение "раскрыть неопределённость".

2.5. Монотонные последовательности

Последовательность называется неубывающей, если $\forall n \in N \ x_n \leq x_{n+1}$.

Последовательность называется возрастающей, если $\forall n \in N \ x_n < x_{n+1}$.

Последовательность называется невозрастающей, если $\forall n \in N \ x_n \geq x_{n+1}$.

Последовательность называется убывающей, если $\forall n \in N \ x_n > x_{n+1}$.

Невозрастающие, неубывающие, возрастающие и убывающие последовательности называются монотонными.

Рассмотрим неубывающую посл-ть: $x_1 \le x_2 \le x_3 \le \cdots \le x_n \le \dots$

Данная последовательность всегда ограничена снизу.

Теорема 5.1:

Если неубывающая последовательность $\{x_n\}$ ограничена сверху, то она сходится.

Доказательство: так как $\{x_n\}$ ограничена сверху, то $\exists \bar{x} = \sup\{x_n\}$

Докажем, что $\lim_{n\to\infty} x_n = \bar{x}$

Т.к. \bar{x} - точная верхняя грань, то

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) : x_n < \bar{x} \; \bar{x} - \varepsilon < x_n$$

Кроме того, по условию $\{x_n\}$ неубывающая, то есть

$$\forall n > N \; x - \varepsilon < x_n \le x_n \le \bar{x} < x + \varepsilon \implies |x_n - \bar{x}| < \varepsilon$$

$$\text{T.e. } \lim_{n \to \infty} x_n = \bar{x}$$

<u>Замечание:</u> аналогичную теорему можно сформулировать и доказать для убывавющей, возрастающей и невозрастающей последовательности.

Следствие: для того, чтобы монотонная последовательность сходилась \Leftrightarrow , чтобы $\{x_n\}$ была ограниченой.

2.6. Число е.

Формула бинома Ньютона:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k} = \sum_{k=0}^n a^{n-k} b^k$$

$$C_n^k = \frac{n!}{k!(n-k)!}, n! = 1 \times 2 \times \dots \times n, 0! = 1$$
(1)

Докажем формулу бинома Ньютона методом математической индукции:

1. База индукции.

При
$$n=1$$
 должно выполняться равенство $(a+b)^1=\sum_{k=0}^1 C_1^k a^k b^{1-k}$ $a+b=C_1^0 a^0 b^1+C_1^1 a^1 b^0$ $a+b=b+a$

2. Преположение индукции.

Пусть при n=m верно равенство $(a+b)^m=\sum_{k=0}^m C_m^k a^k b^{m-k}$

3. Шаг индукции.

Докажем справедливость равенства для n=m+1, т.е докажем, что $(a+b)^{m+1}=\sum_{k=0}^{m+1}C_{m+1}^ka^kb^{m-1-k}$ Доказательство:

$$\frac{2}{3 \text{амечание: } C_m^{k+1}} + C_m^k = \frac{m!}{(k-1)!(m-k+1)} + \frac{m!}{k!(m-k)!} = \frac{m!}{(k-1)!(m-k)!} \left(\frac{1}{m-k+1} + \frac{1}{k}\right) = \frac{m!}{(k-1)!(m-k)!} \left(\frac{k+m-k+1}{(m-k+1)k}\right) = \frac{m!}{(k-1)!(m-k)!} \left(\frac{m+1}{(m-k+1)k}\right) = \frac{(m+1)!}{k!(m-k+1)!} = C_{m+1}^k$$

$$(a+b)^{m+1} = (a+b)^m \times (a+b) = (\sum_{k=0}^m C_m^k a^k b^{m-k}) \times (a+b) =$$

$$\sum_{k=0}^m C_m^k a^{k+1} b^{m-k} + \sum_{k=0}^m C_m^k a^k b^{m-k+1} = \sum_{k=1}^{m+1} C_m^{k-1} a^k b^{m-(k-1)} + \sum_{k=0}^m C_m^k a^k b^{m-k+1} =$$

$$C_m^m a^{m+1} b^0 + \sum_{k=1}^m C_m^{k-1} a^k b^{m-k+1} + \sum_{k=1}^m C_m^k a^k b^{m-k+1} + C_m^0 a^0 b^{m+1} =$$

$$a^{m+1} + b^{m+1} + \sum_{k=1}^m (C_m^{k-1} + C_m^k) a^k b^{m-k+1} =$$

$$a^{m+1} + b^{m+1} + \sum_{k=1}^m C_{m+1}^k a^k b^{m-k+1} = a^{m+1} + \sum_{k=0}^m C_{m+1}^k a^k b^{m-k+1} =$$

$$\sum_{k=0}^{m+1} C_{m+1}^k a^k b^{m+1-k}$$
Ч.т.д.

Рассмотрим последовательность $x_n = (1 + \frac{1}{n})^n$

1. Покажем, что эта посл-ть ограничена снизу.

$$x_n = (1 + \frac{1}{n})^n =$$

$$= C_n^1 * 1^{n-1} \times (\frac{1}{n})^1 + C_n^2 \times 1^{n-2} * (\frac{1}{n})^2 + \dots + C_n^n \times 1^0 \times (\frac{1}{n})^n =$$

$$= 1 + 1 + \frac{n(n-1)}{2!} \times \frac{1}{n^2} + \dots +$$

$$+ \frac{1}{k!} n(n-1) \dots (n-k+1) \frac{1}{n^k} + \dots +$$

$$+ \frac{1}{n!} n(n-1) \dots (n-n+1) \frac{1}{n^n} \ge 2, \forall n$$

Значит x_n ограничена снизу.

2. Докажем, что x_n ограничена сверху. <u>Замечание:</u> $\frac{1}{n!} \le \frac{1}{2^{n-1}}$ (упр. - доказать методом мат. индукции)

$$x_n \le 2 + \frac{1}{2!} \times 1 + \dots + \frac{1}{n!} \le 2 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} \le 1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{1 - \frac{1}{2}} = 3$$

3. Докажем, что $\{x_n\}$ является возрастающей.

$$x_{n+1} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{k!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{k-1}{n+1}\right) + \dots + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{n}{n+1}\right)$$

 $x_n < x_{n+1}$, т.к. у x_{n+1} на одно положительное слагаемое больше и каждое соответствующее слагаемое у x_{n+1} больше, чем у x_n .

То есть, x_n - возрастающая. То есть по теореме $5.1 \exists \lim_{n \to \infty} (1 + \frac{1}{n})^n = e = 2.7182$

2.7. Принцип вложенных отрезков.

Теорема 7.1:

Пусть задана послед-ть отрезков $S_n = [a_n; b_n], \forall n \in N$, вложенных друг в друга, т.е. $S_{n+1} \subset S_n$ с длинами, стремящимися к нулю ($\alpha_n = b_n - a_n \to_{n \to \infty} 0$). Тогда \exists и притом единственная точка c, одновременно принадлежащая всем отрезкам S_n ($c \in S_n$).

Доказательство: $S_2 \subset S_1$

 $S_3 \subset S_2$

: :

 $a_1 \le a_2 \le a_3 \le \dots \le b_m, \forall m \in N$

Т.е. $\{a_n\}$ неубывающая и ограничена сверху \Longrightarrow по теореме $5.1 \ \exists \lim_{n \to \infty} a_n = \sup\{a_n\} = c$ $a_n < c < b_m, \forall m, n \in N \ (a_n < c \ \text{т.к.} \ c - \text{грань}; \ c < b_m \ \text{т.к.} \ c = \sup\{a_n\})$ Например, $a_n < c < b_n$. То есть $\exists c \in S_n, \forall n$.

Докажем единственность методом от противного:

Пусть \exists точка $c_1 \in S_n, \forall n.$ Тогда $a_n < c, c_1 < b_n.$ Пусть для определённости $c < c_1.$

Рассмотрим $b_n - a_n > c_1 - c$. Рассмотрим $\lim_{n \to \infty} (b_n - a_n) \neq 0$. Это противоречит условию теоремы про стремление к нулю.

Точка c - единственная.

Ч.т.д.

2.8. Подпоследовательность. Теорема Больцано-Вейерштрасса.

Пусть задана $\{x_n\}$ - последовательность. Выберем из неё бесконечное множество элементов с номерами $n_1 < n_2 < \dots$ Полученная последовательность $\{x_{n_k}\}$ называется подпоследовательностью последовательности $\{x_n\}$. Таких подпоследовательностей можно извлечь бесконечно много из искомой последовательности.

Утверждение: если $\{x_n\}$ сходится, то все $\{x_{n_k}\}$ будут сходится и $\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n, \forall k\in N$. Утверждение: если $\{x_n\}$ беск. большая, т.е. $\lim_{n\to\infty} x_n = \pm \infty$, то все $\{x_{n_k}\}$ будут являться беск. большими.

Утверждение: если $\{x_n\}$ неограничена, то из неё можно извлечь беск. большую.

Вопрос? если $\{x_n\}$ ограничена...

Теорема 8.1 (Больцано-Вейерштрасса):

Из любой ограниченной последовательности $\{x_n\}$ можно извлечь сходящуюся подпоследовательность.

Доказательство: т.к. $\{x_n\}$ ограничена, то $\forall n, x_n \in [a_0; b_0]$.

Выберем произвольно какой-либо элемент последовательности $\{x_n\}$. Пусть его номер - n_1 . Очевидно, что $x_{n_1} \in [a_0; b_0]$. Разделим отрезок $[a_0; b_0]$ на два равных отрезка. Тогда по крайней мере на одном из них (обозначим его $[a_1; b_1]$) окажется беск. много элементов посл-ти $\{x_n\}$. Поэтому среди них найдется элемент с номером $N > n_1$. Обозначим его n_2 ($x_{n_2} \in [a_1; b_1] \subset [a_0; b_0], b_1 - a_1 = \frac{b_0 - a_0}{2}$). Разделим отрезок $[a_1; b_1]$ на два равных отрезка. Обозначим $[a_2; b_2]$ отрезок с ∞ числом элементов x_n . Выберем элемент с номером $N > n_2$. Обозначим его n_3 ($x_{n_3} \in [a_2; b_2] \subset [a_1; b_1], b_2 - a_2 = \frac{b_1 - a_1}{2}$). Продолжая этот процесс, получим подпоследовательность $\{x_{n_k}\}$.

$$a_k \le x_{n_k} \le b_k, k = 0, 1, 2, \dots$$

 $[a_k; b_k] \subset [a_{k-1}; b_{k-1}], k = 1, 2, \dots$
 $b_k - a_k = \frac{b_0 - a_0}{2^k}, k = 0, 1, 2, \dots$
 $\lim_{k \to \infty} (b_k - a_k) = [\frac{a}{\infty}] = 0$

То есть получили систему вложенных отрезков $[a_k;b_k]$ с длинами, стремящимися к 0. Тогда по теореме 7.1:

 $\exists !$ точка c, принадлежащая всем отрезкам.

 $\lim_{k\to\infty}a_k=\lim_{k\to\infty}b_k=c$, t.k. $a_k\leq x_{n_k}\leq b_k$.

To есть по теореме 2.5 (о двух милиционерах) $\lim_{k\to\infty} x_{n_k} = c$

2.9. Частичные пределы

Пусть x_n - произвольная последовательность. x_n :

- сходящиеся все подпоследовательности сходятся к одному и тому же числу.
- расходящиеся:
 - стремящиеся к бесконечности все подпоследовательности будут стремиться к ∞
 - не имеющие предела:
 - * неограниченные можно извлечь беск. большую последовательность. Пример: $\{1;2;1;3;1;4;\dots\}$
 - * ограниченные можно извлечь сходяющуюся подпоследовательность. Пример: $(-1)^n=\{-1;1;-1;1;-1;1;\dots\}$

Если x_n ограничена, то по теореме Больцано-Вейерштрасса можно рассматривать различные сходящиеся подпоследовательности $\{x_{n_k}\}$.

Пределы сходящихся подпоследовательности, извлечённых из ограниченной последовательности, называются частичными пределами.

Верхним пределом последовательности $\{x_n\}$ называется число M (конечное, $\pm \infty$), обладающее свойствами:

1. \exists подпоследовательность $\{x_{n_k}\}$ $\lim_{k\to\infty} x_{n_k} = M$.

2. $\forall \{x_{n_k}\} \lim_{k\to\infty} x_{n_k} \leq \underline{M}$. Обозначение: $M = \overline{\lim}_{k\to\infty} x_n$.

Замечание: если $\{x_n\}$ неограничена сверху, то $\overline{\lim}_{k \to \infty} x_n = \infty$.

Замечание: если $\{x_n\}$ сходящаяся и $\lim_{n\to\infty}x_n=M$, то $\overline{\lim}_{k\to\infty}x_n=M$.

Разница между обычным пределом (единственным) и верхним пределом

Левее $M-\varepsilon$ в случае "обычного" предела находятся конечное число элементов x_n , а в случае верхнего предела - ∞ число элементов x_n .

Нижним пределом последовательности $\{x_n\}$ называется число m (конечное, $\pm \infty$):

1. \exists подпоследовательность $\{x_{n_k}\}\Big|\lim_{k\to\infty}x_{n_k}=m$.

2. \forall сходящейся $\{x_{n_k}\}\lim_{k\to\infty}x_{n_k}\geq m$.

Обозначение: $m = \underline{\lim}_{k \to \infty} x_n$.

Замечание: если $\{x_n\}$ неограничена сверху, то $\varliminf_{k\to\infty} x_n = -\infty$.

Замечание: если $\{x_n\}$ сходящаяся и $\lim_{n\to\infty}x_n=m$, то $\underline{\lim}_{k\to\infty}x_n=m$.

Разница между обычным пределом (единственным) и нижним пределом

Разница между "обычным" пределом и нижним пределом заключается в том, что правее $M + \varepsilon$ в случае "обычного" предела находятся конечное число элементов x_n , а в случае нижнего предела - ∞ число элементов x_n .

Очевидно, $\underline{\lim}_{n\to\infty}x_n\leq \overline{\lim}_{n\to\infty}x_n$. Для того, чтобы последовательность $\{x_n\}$ имела предел (конечный, $\pm\infty$) \Leftrightarrow чтобы $\underline{\lim}_{n\to\infty}x_n=\overline{\lim}_{n\to\infty}x_n$. В этом случае $\lim_{n\to\infty}x_n=\underline{\lim}_{n\to\infty}x_n=\overline{\lim}_{n\to\infty}x_n$

2.10. Критерий Коши сходимости числовой последовательности

Последовательность $\{x_n\}$ называется **фундаментальной**, если она удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \; \exists \; n_0 \; | \; \forall n > n_0, \forall m > n_0 \; |x_n - x_m| < \varepsilon$$

или

$$\forall \varepsilon > 0 \; \exists \; n_0 \; | \; \forall n > n_0, \forall p > 0 \; |x_{n+p} - x_n| < \varepsilon$$

Леммы о фундаментальных последовательностях

Лемма 1: если последовательность $\{x_n\}$ имеет конечный предел, то она фундаментальная.

Доказательство:

Пусть $\{x_n\}$ - сходящаяся.

Тогда $\exists \lim_{n\to\infty} x_n = a$, т.е.

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) \; | \; \forall n > N \implies |x_n - a| < \frac{\varepsilon}{2}$$

Пусть m > N и n > N. Рассмотрим $|x_m - x_n|$.

$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Т.е. $\{x_n\}$ - фундаментальна.

Ч.т.л.

Лемма 2: если последовательность фундаментальна, то она ограничена.

Доказательство:

Пусть $\{x_n\}$ - фундаментальна. Тогда по условию Коши

$$\exists n_0 \mid \forall m, n > n_0 \implies |x_n - x_m| < \varepsilon$$

Зафиксируем $m=n_0+1$. Получим $|x_n-x_{n_0+1}|<\varepsilon$.

$$-\varepsilon < x_n - x_{n_0+1} < \varepsilon$$
$$x_{n_0+1} - \varepsilon < x_n < x_{n_0+1} + \varepsilon$$

Обозначим $d = max\{|x_1|, |x_2|, \dots, |x_{n_0}|, |x_{n_0+1} + \varepsilon|\}.$

Тогда

$$\forall n \in N \Rightarrow -d \le x_n \le d$$

To есть $\{x_n\}$ ограничена.

Ч.т.д.

Лемма 3: если некоторая подпосл-ть фундаментальной посл-ти сходится, то предел этой подпосл-ти является пределом всей посл-ти.

Доказательство:

Пусть $\{x_n\}$ - фундаментальная последовательность. Пусть $\{x_{n_k}\}$ - её сходящаяся подпослть.

Пусть $\lim_{k\to\infty} x_{n_k} = a$

3ададим $\varepsilon > 0$

По условию Коши

$$\exists n_0 \mid \forall m, n > n_0 \implies |x_n - x_m| < \frac{\varepsilon}{2}$$

Т.к. $\lim_{k\to\infty}x_{n_k}=a$, т.е.

$$\exists k_0 = k_0(\varepsilon) \implies |x_{n_k} - a| < \frac{\varepsilon}{2}$$

Пусть k_0 будет таким, чтобы при $k>k_0 \implies n_k>n_0$

$$|x_n - a| = |x_n - x_{n_k} + x_{n_k} - a| \le |x_n - x_{n_k}| + |x_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies \lim_{n \to \infty} x_n = a$$

Ч.т.д.

Теорема 10.1 (критерий Коши сходимости числовой посл-ти):

Для того, чтобы посл-ть имела конечный предел ⇔ чтобы она была фундаментальна.

Доказательство:

Докажем необходимость (\Rightarrow) .

Пусть посл-ть имеет конечный предел. Тогда по лемме 1 она фундаментальна.

Докажем достаточность (\Leftarrow) .

Пусть посл-ть фундаментальная. Тогда по лемме 2 она ограничена, следовательно по теореме Больцано-Вейерштрасса можно извлечь сходящуюся подпосл-ть.

Тогда по лемме 3 вся посл-ть будет иметь предел, равный пределу подпосл-ти, т.е. посл-ть сходящаяся.

Ч.т.д.

3. Теория пределов функций. Непрерывность функций в точке и на отрезке.

3.1. Функция. Предел функции в точке.

Пусть $E \subset R$. Пусть $\forall x \in E$ по вполне определённому закону ставится в соответствие единственное число y. Тогда говорят, что на множестве E задана функция y = f(x).

E - область определения функции.

x - независимая переменная (аргумент функции).

y - зависимая переменная (функция).

Определение предела функции в точке по Гейне (в терминах последовательностей)

Число a называется пределом функции f(x) в точке x_0 , если f(x) определена в некоторой окрестности точки x_0 , быть может за исключением самой точки x_0 (такая окрестность называется выколотой окрестностью) и $\forall \{x_n\} \mid \lim_{n \to \infty} x_n = x_0$, порождаемая ею посл-ть $\{f(x_n)\}$ имеет своим пределом точку a, т.е. $\lim_{n \to \infty} f(x_n) = a$. Запись:

$$\lim_{x \to x_0} f(x) = a$$

Пример:

Рассмотрим такой предел

$$\lim_{x \to 0} \frac{2x^2 + x - 1}{x - 1} = \left| \frac{\Pi \text{усть } x_n \text{ - произвольная}}{\lim_{n \to \infty} x_n = 0} \right| = \lim_{n \to \infty} \frac{2x_n^2 + x_n - 1}{x_n - 1} =$$

$$\frac{\lim_{n \to \infty} (2x_n^2 + x_n - 1)}{\lim_{n \to \infty} (x_n - 1)} = \frac{\lim_{n \to \infty} (2x_n^2) + \lim_{n \to \infty} x_n - 1}{\lim_{n \to \infty} x_n - 1} =$$

$$\frac{2\lim_{n \to \infty} x_n \times \lim_{n \to \infty} x_n + \lim_{n \to \infty} x_n - 1}{\lim_{n \to \infty} x_n - 1} = \frac{-1}{-1} = 1$$

Другой пример: доказать, что $\lim_{x\to 0}\sin\frac{1}{x}=\nexists$

Доказательство:

Выберем $\{x_n\}$ такую, что $\lim_{n\to\infty} x_n = 0$.

1.
$$x_n = \frac{1}{\pi n}$$

$$\lim_{n \to \infty} \frac{1}{\pi n} \implies \lim_{n \to \infty} \sin \frac{1}{\frac{1}{\pi n}} = \lim_{n \to \infty} \sin \pi n = 0$$

2.
$$x_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$$

$$\lim_{n \to \infty} \frac{1}{\frac{\pi}{2} + 2\pi n} = 0 \implies \lim_{n \to \infty} \sin \frac{1}{\frac{1}{\frac{\pi}{2} + 2\pi n}} = \lim_{n \to \infty} \sin (\frac{\pi}{2} + 2\pi n) = \lim_{n \to \infty} \sin \frac{\pi}{2} = 1$$

Поэтому $\lim_{x\to 0} \sin \frac{1}{x} = \nexists$.

Ч.т.д.

Определение предела функции в точке по Коши

Число a называется пределом функции f(x) в точке x_0 , если f(x) определена в окрестности точки x_0 , быть может за исключением самой точки x_0 и, если $\forall \varepsilon>0$ \exists $\delta=\delta(\varepsilon)$ | $|x-x_0|<\delta$ \Longrightarrow $|f(x)-a|<\varepsilon$

Если x находятся в δ -окрестности точки x_0 , то все значения f(x) располагаются в полосе шириной 2ε .

Теорема 1.1:

Определения предела функции f(x) в точке x_0 по Гейне и по Коши эквивалентны.

Доказательство:

1. Докажем Гейне → Коши

Пусть функция имеет предел в точке x_0 в смысле Гейне.

Предположим противное. Пусть функция f(x) не имеет предел в точке x_0 в смысле Коши. Это значит, что \exists хотя бы одно ε_0 , для которого нельзя подобрать нужное δ .

То есть $\forall \delta$ среди x, удовлетворяющих неравенству $|x-x_0|<\delta$ должно найтись хотя бы одно $x=x(\delta):|f(x(\delta))-a|\geq \varepsilon$

Составим последовательность. Выберем $\delta = \frac{1}{k}$ и для каждого k будем искать точку x_k для которой не выполняется определение Коши.

(a)
$$k=1$$
 $\delta=1$ $|x_1-x_0|<1$ \Longrightarrow $|f(x_1)-a|\geq \varepsilon_0$ такой x_1 \exists

такой
$$x_1$$
 \exists (b) $k=2$ $\delta=\frac{1}{2}$ $|x_2-x_0|<\frac{1}{2} \implies |f(x_2)-a|\geq \varepsilon_0$ такой x_2 \exists

такой
$$x_2$$
 \exists (c) $k=3$ $\delta=\frac{1}{3}$ $|x_3-x_0|<\frac{1}{3} \implies |f(x_3)-a|\geq \varepsilon_0$ такой x_3 \exists

То есть $\forall k>0 \ |x_k-x_0|<\frac{1}{k} \implies \lim_{k\to\infty} x_k=x_0$, но тогда $|f(x_k)-a|\geq \varepsilon_0$, то есть $\lim_{k\to\infty} f(x_k)\neq a$. Получили противоречие, т.к. по Гейне $\lim_{k\to\infty} f(x_k)=a$.

2. Докажем Коши → Гейне

Пусть функция имеет предел по Коши.

Зададим произвольную последовательность $\{x_n\}: \lim_{n\to\infty} x_n = x_0$. Так как определение по Коши выполняется, то

$$orall arepsilon > 0 \; \exists \; \delta = \delta(arepsilon) : |x - x_0| < \delta \implies |f(x) - a| < arepsilon$$
 Т.к. $\lim_{n o \infty} x_n = x_0 \implies orall arepsilon > 0 \; \exists n_0 = n_0(arepsilon) : |x_n - x_0| < \delta \implies |f(x_n) - a| < arepsilon \implies \lim_{x o x_0} f(x) = a$ Ч.т.д.

Предел функции в бесконечно удалённой точки

$$\lim_{x \to +\infty} f(x) = a$$

Число a называется пределом функции f(x) при $x \to +\infty$, если

$$\forall \varepsilon > 0 \; \exists \; k = k(\varepsilon) : x > k \implies |f(x) - a| < \varepsilon$$

Упр.: уметь расписывать ВСЕГДА и ВЕЗДЕ

$$\lim_{x \to -\infty} f(x) = a; \lim_{x \to x_0} f(x) = \infty; \lim_{x \to x_0} f(x) = -\infty;$$
$$\lim_{x \to +\infty} f(x) = +\infty; \lim_{x \to +\infty} f(x) = -\infty; \lim_{x \to -\infty} f(x) = +\infty;$$
$$\lim_{x \to -\infty} f(x) = -\infty$$

Например, распишем последнее. Нужны два параметра. В определении Коши есть δ для x (аргумента) и ε для y (функции).

Т.к. $x \to -\infty$, то мы не можем использовать δ (она используется для малых величин), поэтому введём параметр K вместо δ .

Т.к. $\lim_{x\to -infty} f(x) = -\infty$, то мы не можем использовать ε (он используется для малых величин), поэтому введём параметр M вместо ε .

Тогда определение принимает вид:

$$\forall M > 0 \ \exists \ K = K(M) > 0 : x < -K \implies f(x) < -M$$

3.2. Односторонние пределы

Если значение функции f(x) стремится к числу a по мере стремления x к x_0 со стороны меньших (больших) значений, то число a называют пределом функции f(x) в точке x_0 слева (справа)

Обозначение:

- предел слева: $\lim_{x\to x_0-0} f(x) = f(x_0-0) = a$
- предел справа $\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) = a$

Пример:

$$\lim_{x \to 0-0} 2^{\frac{1}{x}} = 0; \lim_{x \to 0+0} 2^{\frac{1}{x}} = \infty$$

Пример 2:

$$f(x) = \text{sign } x = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

$$\lim_{x\to 0-0} \operatorname{sign} x = -1; \lim_{x\to 0+0} \operatorname{sign} x = 1$$

<u>Утверждение:</u> для того, чтобы существовал обычный двусторонний предел функции в точке $x_0 \Leftrightarrow$ чтобы в этой точке существовали левый и правый односторонние пределы и чтобы они были равны.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x)$$

3.3. Свойства пределов функций

Теорема 3.1

Если $\lim_{x\to x_0} f(x)=a$, где a - конечное число, то в некоторой окрестности точки x_0 f(x) ограничена.

Доказательство:

По определению Коши предела функции в точке:

$$orall arepsilon > 0 \; \exists \; \delta = \delta(arepsilon) : |x - x_0| < \delta \implies |f(x) - a| < arepsilon$$
 $-arepsilon < f(x) - a < arepsilon$ $a - arepsilon < f(x) < a + arepsilon$ **Ч.т.л.**

Теорема 3.2 (о сохранении знака)

Если функция f(x) имеет в точке x_0 не равный нулю конечный предел a, то \exists окрестность точки $x_0: \forall x$, принадлежащего этой окрестности, выполняется

$$f(x) > \frac{a}{2}, a > 0$$
$$f(x) < \frac{a}{2}, a < 0$$

Доказательство:

$$\lim_{x \to x_0} f(x) = a$$

Обозначим $U(x_0)$ - окрестность точки x_0

Тогда $\forall x \in U(x_0): |f(x) - a| < \varepsilon = \frac{|a|}{2}$

$$a - \frac{|a|}{2} < f(x) < a + \frac{|a|}{2}$$

$$a > 0$$

$$f(x) > a - \frac{a}{2}$$

$$f(x) < \frac{a}{2}$$

$$f(x) < -\frac{|a|}{2}$$

Ч.т.д.

Теорема 3.3

Если f(x) = c (константа), то $\lim_{x \to x_0} f(x) = c$ - уже доказана.

Теорема 3.4

Если $\lim_{x\to x_0} f(x) = a$, $\lim_{x\to x_0} g(x) = b$ и $\forall x \in R$ из окрестности точки x_0 :

$$f(x) \le g(x) \implies a \le b$$

3.4. Непрерывность функции в точке. Разрывы I и II родов.

Функция f(x) называется непрерывной в точке x_0 , если

$$\lim_{x \to \infty} f(x) = f(x_0)$$

$$\lim_{x \to \infty} f(x) = f(\lim_{x \to \infty} x) = f(x_0)$$

Т.е. для непрерывности в точке функции множества меняются знаками предела и функции

1. Через прирождение

 $\Delta x = x - x_0$ - прирождение аргумента

 $\Delta y = y - y_0$ - прирождение функции

Функция f(x), направленная в точке x_0 , если $\lim_{\delta x=0} \delta y = 0$

2. Определение Гейне

Функция f(x) называется непрерывной в точке x_0 , если для \forall последовательности $\lim_{x\to\infty}x_n=x_0$

Порождающая её последовательность $f(x_n) \lim_{n\to\infty} f(x_0) = f(x_0)$

3. Определение Коши

Функция f(x) называется непрерывной в точке $x_0 \ \forall \varepsilon > 0 \ \exists \ (\delta - \delta \varepsilon)$

Функция f(x) имеет в точке x_0 разрыв II рода, если хотя бы один из пределов (справа или слева) не существует или бесконечен.

Пример 1: рассмотрим при $x \neq 2$

$$f(x) = \frac{x^2 - 4}{x - 2}$$

$$f(x) = \frac{x^2 - 4}{x - 2} = x + 2$$

$$f(2) = \nexists$$

$$\lim_{x \to 2 - 0} f(x) = \lim_{x \to 2 - 0} (x + 2) = 4$$

$$\lim_{x \to 2 + 0} f(x) = 4$$

f(x) непрерывна $\forall x \in R,$ кроме x=2, где f(x) терпит разрыв I рода устранений.

Замечание: рассмотрим
$$g(x) = \begin{cases} f(x), x \neq 2 \\ 4, x = 2 \end{cases}$$
 ; $g(x)$ непрерывна $\forall x \in R$

Пример 2: рассмотрим

$$f(x) = [x]$$
 - целая часть $x, x > 0$

$$f(x) = 1$$

$$\lim_{x \to 1-0} [x] = 0$$

$$\lim_{x \to 1+0} [x] = 1$$

 $\forall x \in N \; f(x)$ терпит разрыв I рода (скачок), в остальных $x>0 \; f(x)$ - непрерывна.

Пример 3: рассмотрим

$$f(x) = \frac{1}{x}$$

$$f(0) = \nexists$$

$$\lim_{x \to 0-0} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0+0} \frac{1}{x} = \infty$$

f(x) непрерывна $\forall x \in R$, кроме x=0, где она терпит разрыв II рода.

3.5. Замечательные пределы

Теорема 5.1 (I Замечательный предел)

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\sin x} = 1$$

Доказательство:

Рассмотрим в координатной плоскости круг радиуса R с центром в начале координат

$$\begin{split} S_{\triangle OAB} &< S_{\text{cektO}AB} < S_{\triangle OAC} \\ \frac{1}{2}R^2 \sin x &< \frac{1}{2}R^2x < \frac{1}{2}R^2\text{tg }x \\ \sin x &< x < \text{tg }x \mid : \sin x \ (\text{пусть } \sin x > 0) \\ 1 &< \frac{x}{\sin x} < \frac{1}{\cos x} \\ \lim_{x \to 0} 1 &= 1, \lim_{x \to 0} \frac{1}{\cos x} = 1 \implies \lim_{x \to 0} \frac{1}{\sin x} = 1 \end{split}$$

 $\underline{\mbox{3амечание:}}\ f(x) = \cos x$ и $\frac{x}{\sin x}$, поэтому неравенство будет выполняться для $\frac{-\pi}{2} < x < 0$

Теорема 5.2 (II Замечательный предел)

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$
$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

Доказательство:

Надо показать, что

$$\lim_{x \to 0-0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0+0} (1+x)^{\frac{1}{x}} = e$$

Замена:

$$x = \frac{1}{y} \implies \lim_{y \to -\infty} (1 + \frac{1}{y})^y = \lim_{y \to \infty} (1 + \frac{1}{y})^y = e$$

<u>Замечание:</u> будем считать известным фактом, что $\forall n \in N$ верно $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$.

Пусть $x_n \to \infty$ (доказываем по определению Гейне) Покажем, что $\lim_{x_n \to \infty} (1+\frac{1}{x_n})^{x_n} = e.$ $\{x_n\}$ - произвольная посл-ть: $\lim_{n \to \infty} x_n = \infty$ Рассмотрим посл-ть $k_n = [x_n]$ - целая часть x_n .

$$k_n \le x_n < k_n + 1$$

$$\frac{1}{k_n + 1} < \frac{1}{x_n} \le \frac{1}{k_n}$$

$$1 + \frac{1}{k_n + 1} < 1 + \frac{1}{x_n} \le 1 + \frac{1}{k_n}$$

$$(1 + \frac{1}{k_n + 1})^{k_n} < (1 + \frac{1}{x_n})^{k_n} \le (1 + \frac{1}{k_n})^{k_n}$$

$$\text{T.K. } k_n \le x_n < k_n + 1$$

$$(1 + \frac{1}{k_n + 1})^{k_n} < (1 + \frac{1}{x_n})^{k_n} \le (1 + \frac{1}{k_n})^{k_n + 1}$$

1.
$$\lim_{n \to \infty} (1 + \frac{1}{k_n + 1})^{k_n + 1 - 1} = \lim_{n \to \infty} (1 + \frac{1}{k_n + 1})^{k_n + 1} (1 + \frac{1}{k_n + 1})^{-1} = e \times 1 = e$$
2.
$$\lim_{n \to \infty} (1 + \frac{1}{k_n})^{k_n + 1} = \lim_{n \to \infty} (1 + \frac{1}{k_n})^{k_n} (1 + \frac{1}{k_n})^1 = e \times 1 = e$$

Тогда $\lim_{x_n\to\infty}(1+\frac{1}{x_n})^{x_n}=e$ (по теореме о двух милиционерах) Рассмотрим $x_n\to-\infty$. Замена: $x_n'=-x_n$. Рассмотрим $\lim_{x_n\to-\infty}(1+\frac{1}{x_n})^{x_n}=\lim_{x_n'\to\infty}(1+\frac{1}{-x_n'})^{-x_n'}=e$

Ч.т.д.

3.6. Эквивалентные бесконечно малые функции в точке

Функция f(x) называется беск. малой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$ Замечание: Функция, которая является беск. м. в одной точке, может не быть беск. б. в другой точке.

Теорема 6.1

Сумма и произведения конечного числа беск. м. функция в точке есть функция беск. м. в точке.

Теорема 6.2

Произведение беск. м. функции в точке на ограниченную есть беск. м. функция в точке.

Доказательство:

Пусть f(x) - беск. м. функция в точке $x_0 \implies \lim_{x \to x_0} f(x) = 0$ Пусть g(x) - ограничена в окрестности точки $x_0 \ (u(x_0)) \implies \exists \ M: |g(x)| \le M$ $0 \le |f(x)g(x)| \le M|f(x)|$

По теореме о двух милиционерах так как $\lim_{x\to x_0} 0=0$ и $\lim_{x\to x_0} M|f(x)|=M\times 0=0$, то $\lim_{x\to x_0} |f(x)g(x)|=0 \implies \lim_{x\to x_0} f(x)g(x)=0$

Ч.т.д.

Пример:

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

x - беск. м. $\sin \frac{1}{x}$ - огр.

Эквивалентность беск. м. функций

Пусть f(x) и g(x) являются беск. м. функциями в точке x_0 . Тогда они называются эквивалентными беск. м. функциями в точке x_0 , если

 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

Обозначение: $f(x) \sim g(x), x \to x_0$

Например, $\sin x \sim x, x \to 0$

<u>Замечание:</u> если $f_1(x) \sim f_2(x), x \to x_0$, а $g_1(x) \sim g_2(x), x \to x_0$, то

$$\lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = \lim_{x \to x_0} \frac{f_2(x)}{g_1(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_2(x)}$$

При нахождении предела дроби можно заменять на эквивалентные беск. м. или числитель, или знаменатель, или и то, и другое (но не часть числителя или знаменателя).

Так НЕЛЬЗЯ:

$$tg x - \sin x \sim^? 0$$

Основные эквивалентности при $x \to 0$

- 1. $\sin x \sim x$
- 2. $tg x \sim x$
- 3. $\ln(1+x) \sim x$

4.
$$e^x - 1 \sim x$$

5.
$$a^x - 1 \sim x \ln a$$

6.
$$(1+x)^m - 1 \sim mx$$

7.
$$\arcsin x \sim x$$

8.
$$\arctan x \sim x$$

9.
$$1 - \cos x \sim \frac{x^2}{2}$$

Доказательство:

1. доказано (І Замечательный предел)

2.

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x} = 1$$

3.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \times \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \ln e = 1$$

4. частный случай пункта 5 (a = e)

5.

$$\lim_{x \to 0} \frac{a^x - 1}{x \ln a} = \begin{vmatrix} a^x - 1 = y \\ x \to 0 \implies y \to 0 \\ \ln a^x = \ln(1+y) \\ x \ln a = \ln(1+y) \end{vmatrix} = \lim_{y \to 0} \frac{y}{\ln(1+y)} = 1$$

6.

$$\lim_{x \to 0} \frac{(1+x)^m - 1}{mx} = \lim_{x \to 0} \frac{(1+x)^m - 1}{\ln(1+x)} \frac{\ln(1+x)}{mx} =$$

$$= \lim_{x \to 0} \frac{(1+x)^m - 1}{\ln(1+x)} \lim_{x \to 0} \frac{\ln(1+x)}{mx} = \lim_{x \to 0} \frac{(1+x)^m - 1}{m\ln(1+x)} = \begin{vmatrix} (1+x)^m - 1 = y \\ x \to 0 \implies y \to 0 \\ (1+x)^m = y + 1 \\ \ln(1+x)^m = \ln(1+y) \\ m\ln(1+x) = \ln(1+y) \end{vmatrix} =$$

$$= \lim_{x \to 0} \frac{y}{\ln(1+y)} = 1$$

7.

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \begin{vmatrix} \arcsin x = y \\ x \to 0 \implies y \to 0 \\ x = \sin y \end{vmatrix} = \lim_{y \to 0} \frac{y}{\sin y} = 1$$

8.

$$\lim_{x \to 0} \frac{\arctan x}{x} = \begin{vmatrix} \arctan x = y \\ x \to 0 \implies y \to 0 \end{vmatrix} = \lim_{y \to 0} \frac{y}{\operatorname{tg} y} = \lim_{y \to 0} \frac{y \cos y}{\sin y} = 1$$

9.

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{2\sin^2(\frac{x}{2})}{\frac{x^2}{2}} = 1$$

3.7. Порядок переменной. Сравнение функций в окрестности заданной точки.

Рассмотрим функции f(x) и g(x), заданные в $u(x_0)$ за исключением быть может самой точки x_0 . x_0 - конечная, $\pm \infty$.

Пусть $g(x) \neq 0 \ \forall x \in u(x_0)$.

Если $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \left[\frac{0}{0}\right] = 0$, то в этом случае f(x) = o(g(x)), (о читается как "о малое"), т.е. f(x) является беск. м. более высокого порядка малости, чем g(x) при $x\to x_0$.

Если $\lim_{x\to x_0} \frac{f(x)}{g(x)}=k\neq 0$, то f(x) и g(x) называются беск. малой одного порядка при $x\to x_0$.

Беск. малая f(x) при $x \to x_0$ имеет k-ый порядок малости по отношению к g(x) при $x \to x_0$, если f(x) имеет тот же порядок малости, что и $g^k(x)$, т.е. $\lim_{x \to x_0} \frac{f(x)}{g^k(x)} = 0$

Теорема 7.1

Для того, чтобы функции f(x) и g(x) были эквивалентными при $x \to x_0 \Leftrightarrow f(x) = g(x) + o(g(x)), x \to x_0$

Доказательство:

Докажем необходимость (⇒)

Пусть $f(x) \sim g(x), x \to x_0$. Тогда по определению $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$. Следовательно,

$$\lim_{x \to x_0} \varepsilon(x) = 0$$

$$\frac{f(x)}{g(x)} = 1 + \varepsilon(x) \Big| \times g(x)$$

$$f(x) = g(x) + \varepsilon(x)g(x) = g(x) + o(g(x))$$

Докажем достаточность (⇐)

Пусть $f(x) = g(x) + o(g(x)), x \to x_0$ Например,

$$f(x) = g(x) + \varepsilon(x)g(x) \Big| : g(x)$$

$$\frac{f(x)}{g(x)} = 1 + \varepsilon(x)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

T.e. $f(x) \sim q(x), x \to x_0$.

Ч.т.д.

Функция f(x) называется функцией, ограниченной относительно функции g(x) в $u(x_0)$, если ограничена функция $\frac{f(x)}{g(x)}$, т.е.

$$\left| \frac{f(x)}{g(x)} \right| \le c$$
 или $|f(x)| \le c |g(x)|$

В этом случае $f(x) = O(g(x)), x \to x_0$ $f(x) = O(1), x \to x_0$ "функция f(x) ограничена.

3.8. Глобальные свойства функций, непрерывных на отрезке

Функция f(x) называется непрерывной на отрезке [a;b], если она непрерывна в каждой точке интервала (a;b), в точке x=a справа, в точке x=b слева.

Теорема 8.1 (І-ая теорема Вейерштрасса)

Если функция f(x) непрерывна на [a;b], то она ограничена на нём, т.е.

$$\exists M > 0 : |f(x)| \le M \ \forall x \in [a; b]$$

Доказательство:

Предположим противное. Пусть f(x) непрерывна на [a;b], но при этом не ограничена на нём. Составим последовательность x_n следующим образом:

$$\exists x_1 \in [a; b] : f(x_1) > 1$$

 $\exists x_2 \in [a; b] : f(x_2) > 2$
 \vdots
 $\exists x_n \in [a; b] : f(x_n) > 2$
 \vdots

В результате получили посл-ть $\{x_n\}$. Она ограничена ($\forall n \ x_n \in [a;b]$). По теореме Больцано-Вейерштрасса (т. 8.1 гл. 2) из неё можно извлечь сходяющуся подпосл-ть x_{n_k}

Пусть $\lim_{k\to\infty} x_{n_k} = \alpha$

Так как f(x) непрерывна на [a;b], то по определению $\lim_{x\to x_0} f(x) = f(x_0)$

В нашем случае $\lim_{k\to\infty} f(x_{n_k})=f(\lim_{k\to\infty} x_{n_k})=f(\alpha)$ - конечное число (в силу непрерывности)

Однако $f(\alpha)$ является беск. б. по построению x_n ($f(x_n)$ беск. б.), $f(\alpha) = \infty$.

Получили противоречие, т.е. f(x) ограничена.

Ч.т.д.

Теорема 8.2 (ІІ-ая теорема Вейерштрасса)

Среди значений, которые на отрезке [a;b] принимает непрерывная функция, существует наибольшее и наименьшее значения (в том числе может быть и в крайних точках).

Доказательство:

По І-ой теореме Вейерштрасса f(x) ограничена сверху, т.е. $\exists k: f(x) \leq k \ \forall x \in [a;b]$ Тогда существует точная верхняя грань f(x) на [a;b]. $M = \sup f(x), x \in [a;b]$ Составим вспомогательную посл-ть $\{x_n\}$ на основе свойства $\sup f(x)$.

$$\exists x_1 : M - 1 < f(x_1) \le M$$

$$\exists x_2 : M - \frac{1}{2} < f(x_2) \le M$$

$$\vdots$$

$$\exists x_n : M - \frac{1}{n} < f(x_n) \le M$$

$$\vdots$$

 $\{x_n\}$ ограничена ($\forall nx_n \in [a;b]$)

Тогда по теореме Больцано-Вейерштрасса из неё можно извлечь сходящуюся подпосл-ть $x_{n_k}, \lim_{k \to \infty} x_{n_k} = \alpha$

- 1. С одной стороны, f(x) непрерывна на $[a;b] \implies \lim_{k \to \infty} f(x_{n_k}) = f(\lim_{k \to \infty} x_{n_k}) = f(\alpha)$
- 2. С другой стороны $M \frac{1}{n} < f(x_n) \le M$, следовательно

$$M - \frac{1}{n_k} < f(x_{n_k}) \le M$$

Т.к. $\lim_{k\to\infty}(M-\frac{1}{n_k})=M$ и $\lim_{k\to\infty}M=M$, то $\lim_{k\to\infty}f(x_{n_k})=M$ (по т. о двух милиционерах), т.е. $f(\alpha)=M$. $\beta\in[a;b]:f(\beta)=m$

Теорема 8.3 (Теорема Больцано-Коши)

Если функция f(x) непрерывна на [a;b] и f(a)=m, f(b)=n, то на интервале (a;b) f(x) по крайней мере один раз принимает значение p, заключённое между m и n.

Доказательство:

Для доказательства надо найти точку ξ , $f(\xi)=p$. Разобъём отрезок [a;b] на 2 равных отрезка точкой $\frac{a+b}{2}$ Варианты:

- 1. $f(\frac{a+b}{2}) = p \implies \xi = \frac{a+b}{2}$. Ч.т.д.
- 2. $f(\frac{a+b}{2}) \neq p$. Тогда либо $f(\frac{a+b}{2}) < p$, либо $f(\frac{a+b}{2}) > p$. В первом случае далее выберем отрезок $[\frac{a+b}{2};b]$, во втором $[a;\frac{a+b}{2}]$. Переобозначим выбранный отрезок $[a_1;b_1]$, $f(a_1) . <math>b_1 a_1 = \frac{b-a}{2}$.

Разделим $[a_1; b_1]$ на 2 равных отрезка и выберем тот, на левом конце которого значение функции меньше p, а на правом - больше.

Тогда либо через конечное число шагов мы получим такую точку ξ , либо систему вложенных отрезков $[a_n;b_n], f(a_n)$

Тогда по теореме о вложенных отрезках \exists точка ξ , принадлежащая всем отрезкам одновременно и $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$

В точке ξ f(x) непрерывна.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = f(\xi)$$

Тогда по теореме о двух милиционерах:

$$f(a_n)$$

Следствие теоремы Больцано-Коши: если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка такая, что значение f(x) в этой точке равно 0.

<u>Замечание:</u> будем считать элементарные функции непрерывными на своей области определения: $\lim_{x\to x_0} \mathsf{tg} \cdot \cdots = \mathsf{tg} \lim_{x\to x_0} \ldots$

Замечание: замена неопределённостей может идти по такому принципу

$$u^{v} \to e^{\ln u * v}$$

$$1^{\infty} \to [0 \times \infty] \to \begin{cases} \begin{bmatrix} \frac{0}{0} \\ \frac{1}{0} \end{bmatrix} \\ \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix} \end{cases}$$

$$\infty^{0} \to [\infty \times 0]$$

$$0^{0} \to [\infty \times 0]$$

3.9. Равномерная непрерывная функция

Вспомним определение непрерывности функции в точке по Коши:

$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Зафиксируем ε . Вообще говоря, в каждой точке x существует своё δ , т.е. $\delta = \delta(\varepsilon, x)$.

В связи с этим выделяют класс функций (непрерывных), для которых при фиксированном $\varepsilon>0$ можно указать $\delta>0$, пригодная сразу для всех x, принадлежащая некоторому X.

Функция, определённая на множестве X, называется **равномерно-непрерывной** на этом множестве, если

$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) : \forall x', x'' \in X : |x' - x''| < \delta \implies |f(x') - f(x'')| < \varepsilon$$

Примеры:

1.
$$f(x) = x, x \in R$$

Пусть $x', x'' \in R : |x' - x''| < \delta$

$$|f(x') - f(x'')| = |x' - x''| < \delta = \varepsilon$$

2.
$$f(x) = x^2, x \in R$$

Пусть $x', x'' \in R : |x' - x''| < \delta$
Пусть $x'' = x' + h \implies |x' - x' - h| = |h| < \delta$
 $|f(x') - f(x'')| = |x'^2 - (x' + h)^2| = |x'^2 - x'^2 - 2x'h - h^2| = |2x'h + h^2|$

Так как $x' \in R$, то можно так его выбрать, что $|2x'h+h^2|=\infty \implies$ функция $f(x)=x^2$ не является непрерывной на области своего определения.

Теорема 9.1 (Теорема Кантора)

Если функция определена и непрерывна на отрезке [a;b], то она равномерно-непрерывна на нём. Доказательство:

Предположим противное. Пусть

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) : \forall x', x'' \in [a; b] : |x' - x''| < \delta \implies |f(x') - f(x'')| \ge \varepsilon$$

Зададим последовательность $\delta_n:\lim_{n\to\infty}\delta_n=0.$

Построим две вспомогательные последовательности x'_n и x''_n :

$$\exists x'_{1}, x''_{1} : |x'_{1} - x''_{1}| < \delta_{1} \implies |f(x'_{1}) - f(x''_{1})| \ge \varepsilon$$

$$\exists x'_{2}, x''_{2} : |x'_{2} - x''_{2}| < \delta_{2} \implies |f(x'_{2}) - f(x''_{2})| \ge \varepsilon$$

$$\exists x'_{n}, x''_{n} : |x'_{n} - x''_{n}| < \delta_{n} \implies |f(x'_{n}) - f(x''_{n})| \ge \varepsilon$$

Рассмотрим $\{x_n'\}$: она ограничена. Тогда по теореме. Больцано-Вейерштрасса из неё можно извлечь сх-ся подпосл-ть $\{x'_{n_k}\}$.

Пусть $\lim_{k\to\infty} x'_{n_k} = x_0$ Аналогично м. извлечь $\{x''_{n_k}\}$

Т.к.
$$|x_n' - x_n''| < \delta_n \implies |x_{n_k}'' - x_{n_k}''| < \delta_{n_k}$$

Т.к. $|x'_n - x''_n| < \delta_n \implies |x'_{n_k} - x''_{n_k}| < \delta_{n_k}$ $\lim_{k \to \infty} x'_{n_k} = \lim_{k \to \infty} x''_{n_k} = x_0$ Так как f(x) непрерывнв на [a;b], то она непрерывна в точке $x_0 \in [a;b]$

Значит $\lim_{k\to\infty} f(x'_{n_k}) = \lim_{k\to\infty} f(x''_{n_k}) = f(x_0)$

Pассмотрим |f(x)|

Пример: рассмотрим $g = \sin \frac{1}{x}, x \in (0; 1)$

На (0;1) y является непрерывна. Покажем, что на (0;1) y не является равномерно-непрерывной функцией.

Рассмотрим x'_n :

$$x'_n = \frac{1}{\pi n}, \lim_{n \to \infty} x'_n = 0, x'_n \in (0; 1)$$

Рассмотрим x_n'' :

$$x_n'' = \frac{1}{\frac{\pi}{2} + 2\pi n}, \lim_{n \to \infty} x_n'' = 0, x_n'' \in (0; 1)$$

Рассмотрим

$$|f(x'_n) - f(x''_n)| = |\sin \pi n - \sin(\frac{\pi}{2} + 2\pi n)| = 1$$
$$\forall \delta : |x'_n - x''_n| < \delta \implies |f(x'_n) - f(x''_n)| = 1$$
$$\forall \varepsilon : 0 < \varepsilon < 1 \implies \nexists \delta(\varepsilon)$$

Пусть $\varepsilon = \frac{1}{2}$. Тогда $\nexists \delta(\varepsilon)$.

Теорема 3.5

Если
$$\varphi(x) \leq f(x) \leq g(x)$$
 и $\lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} g(x) = a$, то $\lim_{x \to x_0} f(x) = a$.

Теорема 3.6

Если существуют конечные пределы $\lim_{x\to x_0} f(x)$ и $\lim_{x\to x_0} g(x)$, то существуют конечные пределы

$$\lim_{x \to x_0} (\lambda f(x) + \mu g(x)) = \lambda \lim_{x \to x_0} f(x) + \mu \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) * g(x)) = \lim_{x \to x_0} f(x) * \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \lim_{x \to x_0} g(x) \neq 0$$

Критерий Коши существования функции в точке:

Для того, чтобы существовал конечный предел при $x \to x_0$ $f(x) \Leftrightarrow$ чтобы f(x) была определена в окрестности точки x_0 за исключением быть может самой точки x_0 и

$$\forall \varepsilon > 0 \ \exists U_{\delta}(x_0) : \forall x', x'' \in U_{\delta}(x_0) \implies x', x'' \neq x_0, |f(x') - f(x'')| < \varepsilon$$

3.10. Непрерывность функции в точке. Разрывы I и II родов.

Функция f(x) называется непрерывной в точке x_0 , если

$$\lim_{x \to \infty} f(x) = f(x_0)$$

$$\lim_{x \to \infty} f(x) = f(\lim_{x \to \infty} x) = f(x_0)$$

Т.е. для непрерывности в точке функции множества меняются знаками предела и функции

1. Через приращение

 $\Delta x = x - x_0$ - приращение аргумента

 $\Delta y = y - y_0$ - приращение функции

Функция f(x), направленная в точке x_0 , если $\lim_{\delta x=0} \delta y = 0$

2. Определение Гейне

Функция f(x) называется непрерывной в точке x_0 , если для \forall последовательности $\lim_{x\to\infty}x_n=x_0$

Порождающая её последовательность $f(x_n) \lim_{n\to\infty} f(x_0) = f(x_0)$

3. Определение Коши

Функция f(x) называется непрерывной в точке x_0 $\forall \varepsilon>0$ \exists $\delta=\delta(\varepsilon)>0$: $|x-x_0|<\delta$ \Longrightarrow $|f(x)-f(x_0)|<\varepsilon$

Функция f(x) называется непрерывной в точке x_0 справа (слева), если

$$\lim_{x \to x_0 + 0} f(x) = f(x_0)$$

$$\left(\lim_{x \to x_0 - 0} f(x) = f(x_0)\right)$$

<u>Утверждение:</u> если функции f(x) и g(x) называются непрерывными в точке x_0 , то их сумма, разность и произведение тоже непрерывны в точке x_0 . При условии, что $g(x) \neq 0$, частность $\frac{f(x)}{g(x)}$ тоже непрерывна в точке x_0 .

Если функция f(x) не является непрерывной в точке x_0 , то говорят, что функция в точке x_0 не имеет разрыв.

Функция f(x) имеет в точке x_0 разрыв I рода, если существуют конечные пределы функции f(x) в точке x_0 справа и слева, но не все три числа $\lim_{x\to x_0-0} f(x) = f(x_0-0)$; $\lim_{x\to x_0+0} f(x) = f(x_0+0)$; $f(x_0)$ равны между собой.

Функция f(x) имеет в точке x_0 разрыв II рода, если хотя бы один из пределов (справа или слева) не существует или бесконечен.

Пример 1: рассмотрим при $x \neq 2$

$$f(x) = \frac{x^2 - 4}{x - 2}$$

$$f(x) = \frac{x^2 - 4}{x - 2} = x + 2$$

$$f(2) = \nexists$$

$$\lim_{x \to 2-0} f(x) = \lim_{x \to 2-0} (x + 2) = 4$$

$$\lim_{x \to 2+0} f(x) = 4$$

f(x) непрерывна $\forall x \in R,$ кроме x=2, где f(x) терпит разрыв I рода устранений.

Замечание: рассмотрим
$$g(x) = \begin{cases} f(x), x \neq 2 \\ 4, x = 2 \end{cases}$$
 ; $g(x)$ непрерывна $\forall x \in R$

Пример 2: рассмотрим

$$f(x) = [x]$$
 - целая часть $x, x > 0$

$$f(x) = 1$$

$$\lim_{x \to 1-0} [x] = 0$$

$$\lim_{x \to 1+0} [x] = 1$$

 $\forall x \in N \; f(x)$ терпит разрыв I рода (скачок), в остальных $x>0 \; f(x)$ - непрерывна.

Пример 3: рассмотрим

$$f(x) = \frac{1}{x}$$

$$f(0) = \nexists$$

$$\lim_{x \to 0-0} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0+0} \frac{1}{x} = \infty$$

f(x) непрерывна $\forall x \in R$, кроме x=0, где она терпит разрыв II рода.

3.11. Замечательные пределы

Теорема 5.1 (I Замечательный предел)

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\sin x} = 1$$

Доказательство:

Рассмотрим в координатной плоскости круг радиуса R с центром в начале координат

$$\begin{split} S_{\triangle OAB} &< S_{\text{cektO}AB} < S_{\triangle OAC} \\ \frac{1}{2}R^2 \sin x &< \frac{1}{2}R^2x < \frac{1}{2}R^2\text{tg }x \\ \sin x &< x < \text{tg }x \mid : \sin x \ (\text{пусть } \sin x > 0) \\ 1 &< \frac{x}{\sin x} < \frac{1}{\cos x} \\ \lim_{x \to 0} 1 &= 1, \lim_{x \to 0} \frac{1}{\cos x} = 1 \implies \lim_{x \to 0} \frac{1}{\sin x} = 1 \end{split}$$

 $\underline{\mbox{3амечание:}}\ f(x) = \cos x$ и $\frac{x}{\sin x}$, поэтому неравенство будет выполняться для $\frac{-\pi}{2} < x < 0$

Теорема 5.2 (II Замечательный предел)

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$
$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

Доказательство:

Надо показать, что

$$\lim_{x \to 0-0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0+0} (1+x)^{\frac{1}{x}} = e$$

Замена:

$$x = \frac{1}{y} \implies \lim_{y \to -\infty} (1 + \frac{1}{y})^y = \lim_{y \to \infty} (1 + \frac{1}{y})^y = e$$

<u>Замечание:</u> будем считать известным фактом, что $\forall n \in N$ верно $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$.

Пусть $x_n \to \infty$ (доказываем по определению Гейне) Покажем, что $\lim_{x_n \to \infty} (1 + \frac{1}{x_n})^{x_n} = e$. $\{x_n\}$ - произвольная посл-ть: $\lim_{n \to \infty} x_n = \infty$ Рассмотрим посл-ть $k_n = [x_n]$ - целая часть x_n .

$$k_n \le x_n < k_n + 1$$

$$\frac{1}{k_n + 1} < \frac{1}{x_n} \le \frac{1}{k_n}$$

$$1 + \frac{1}{k_n + 1} < 1 + \frac{1}{x_n} \le 1 + \frac{1}{k_n}$$

$$(1 + \frac{1}{k_n + 1})^{k_n} < (1 + \frac{1}{x_n})^{k_n} \le (1 + \frac{1}{k_n})^{k_n}$$

$$\text{T.K. } k_n \le x_n < k_n + 1$$

$$(1 + \frac{1}{k_n + 1})^{k_n} < (1 + \frac{1}{x_n})^{k_n} \le (1 + \frac{1}{k_n})^{k_n + 1}$$

1.
$$\lim_{n \to \infty} (1 + \frac{1}{k_n + 1})^{k_n + 1 - 1} = \lim_{n \to \infty} (1 + \frac{1}{k_n + 1})^{k_n + 1} (1 + \frac{1}{k_n + 1})^{-1} = e \times 1 = e$$
2.
$$\lim_{n \to \infty} (1 + \frac{1}{k_n})^{k_n + 1} = \lim_{n \to \infty} (1 + \frac{1}{k_n})^{k_n} (1 + \frac{1}{k_n})^1 = e \times 1 = e$$

Тогда $\lim_{x_n\to\infty}(1+\frac{1}{x_n})^{x_n}=e$ (по теореме о двух милиционерах) Рассмотрим $x_n\to-\infty$. Замена: $x_n'=-x_n$. Рассмотрим $\lim_{x_n\to-\infty}(1+\frac{1}{x_n})^{x_n}=\lim_{x_n'\to\infty}(1+\frac{1}{-x_n'})^{-x_n'}=e$

Ч.т.д.

3.12. Эквивалентные бесконечно малые функции в точке

Функция f(x) называется беск. малой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$ Замечание: Функция, которая является беск. м. в одной точке, может не быть беск. б. в другой точке.

Теорема 6.1

Сумма и произведения конечного числа беск. м. функция в точке есть функция беск. м. в точке.

Теорема 6.2

Произведение беск. м. функции в точке на ограниченную есть беск. м. функция в точке.

Доказательство:

Пусть f(x) - беск. м. функция в точке $x_0 \implies \lim_{x \to x_0} f(x) = 0$ Пусть g(x) - ограничена в окрестности точки $x_0 \ (u(x_0)) \implies \exists \ M: |g(x)| \le M$ $0 \le |f(x)g(x)| \le M|f(x)|$

По теореме о двух милиционерах так как $\lim_{x\to x_0}0=0$ и $\lim_{x\to x_0}M|f(x)|=M\times 0=0$, то $\lim_{x\to x_0}|f(x)g(x)|=0\implies \lim_{x\to x_0}f(x)g(x)=0$

Ч.т.д.

Пример:

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

$$x$$
 - беск. м. $\sin \frac{1}{x}$ - огр.

Эквивалентность беск. м. функций

Пусть f(x) и g(x) являются беск. м. функциями в точке x_0 . Тогда они называются эквивалентными беск. м. функциями в точке x_0 , если

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Обозначение: $f(x) \sim g(x), x \to x_0$ Например, $\sin x \sim x, x \to 0$

<u>Замечание:</u> если $f_1(x) \sim f_2(x), x \to x_0$, а $g_1(x) \sim g_2(x), x \to x_0$, то

$$\lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = \lim_{x \to x_0} \frac{f_2(x)}{g_1(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_2(x)}$$

При нахождении предела дроби можно заменять на эквивалентные беск. м. или числитель, или знаменатель, или и то, и другое (но не часть числителя или знаменателя).

Так НЕЛЬЗЯ:

$$tg x - \sin x \sim ? 0$$

Основные эквивалентности при $x \to 0$

- 1. $\sin x \sim x$
- 2. $tg x \sim x$
- 3. $\ln(1+x) \sim x$

4.
$$e^x - 1 \sim x$$

5.
$$a^x - 1 \sim x \ln a$$

6.
$$(1+x)^m - 1 \sim mx$$

7.
$$\arcsin x \sim x$$

8.
$$\arctan x \sim x$$

9.
$$1 - \cos x \sim \frac{x^2}{2}$$

Доказательство:

1. доказано (І Замечательный предел)

2.

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x} = 1$$

3.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \times \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \ln e = 1$$

4. частный случай пункта 5 (a = e)

5.

$$\lim_{x \to 0} \frac{a^x - 1}{x \ln a} = \begin{vmatrix} a^x - 1 = y \\ x \to 0 \implies y \to 0 \\ \ln a^x = \ln(1+y) \\ x \ln a = \ln(1+y) \end{vmatrix} = \lim_{y \to 0} \frac{y}{\ln(1+y)} = 1$$

6.

$$\lim_{x \to 0} \frac{(1+x)^m - 1}{mx} = \lim_{x \to 0} \frac{(1+x)^m - 1}{\ln(1+x)} \frac{\ln(1+x)}{mx} =$$

$$= \lim_{x \to 0} \frac{(1+x)^m - 1}{\ln(1+x)} \lim_{x \to 0} \frac{\ln(1+x)}{mx} = \lim_{x \to 0} \frac{(1+x)^m - 1}{m \ln(1+x)} = \begin{vmatrix} (1+x)^m - 1 = y \\ x \to 0 \implies y \to 0 \\ (1+x)^m = y + 1 \\ \ln(1+x)^m = \ln(1+y) \\ m \ln(1+x) = \ln(1+y) \end{vmatrix} =$$

$$= \lim_{x \to 0} \frac{y}{\ln(1+y)} = 1$$

7.

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \begin{vmatrix} \arcsin x = y \\ x \to 0 \implies y \to 0 \end{vmatrix} = \lim_{y \to 0} \frac{y}{\sin y} = 1$$

8.

$$\lim_{x \to 0} \frac{\arctan x}{x} = \begin{vmatrix} \arctan x = y \\ x \to 0 \implies y \to 0 \end{vmatrix} = \lim_{y \to 0} \frac{y}{\operatorname{tg} y} = \lim_{y \to 0} \frac{y \cos y}{\sin y} = 1$$

9.

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{2\sin^2(\frac{x}{2})}{\frac{x^2}{2}} = 1$$

3.13. Порядок переменной. Сравнение функций в окрестности заданной точки.

Рассмотрим функции f(x) и g(x), заданные в $u(x_0)$ за исключением быть может самой точки x_0 . x_0 - конечная, $\pm \infty$.

Пусть $g(x) \neq 0 \ \forall x \in u(x_0)$.

Если $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \left[\frac{0}{0}\right] = 0$, то в этом случае f(x) = o(g(x)), (о читается как "о малое"), т.е. f(x) является беск. м. более высокого порядка малости, чем g(x) при $x\to x_0$.

Если $\lim_{x\to x_0} \frac{f(x)}{g(x)}=k\neq 0$, то f(x) и g(x) называются беск. малой одного порядка при $x\to x_0$.

Беск. малая f(x) при $x \to x_0$ имеет k-ый порядок малости по отношению к g(x) при $x \to x_0$, если f(x) имеет тот же порядок малости, что и $g^k(x)$, т.е. $\lim_{x \to x_0} \frac{f(x)}{g^k(x)} = 0$

Теорема 7.1

Для того, чтобы функции f(x) и g(x) были эквивалентными при $x \to x_0 \Leftrightarrow f(x) = g(x) + o(g(x)), x \to x_0$

Доказательство:

Докажем необходимость (⇒)

Пусть $f(x) \sim g(x), x \to x_0$. Тогда по определению $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$. Следовательно,

$$\lim_{x \to x_0} \varepsilon(x) = 0$$

$$\frac{f(x)}{g(x)} = 1 + \varepsilon(x) | \times g(x)$$

$$f(x) = g(x) + \varepsilon(x)g(x) = g(x) + o(g(x))$$

Докажем достаточность (⇐)

Пусть $f(x) = g(x) + o(g(x)), x \rightarrow x_0$ Например,

$$f(x) = g(x) + \varepsilon(x)g(x) : g(x)$$

$$\frac{f(x)}{g(x)} = 1 + \varepsilon(x)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

T.e. $f(x) \sim q(x), x \rightarrow x_0$.

Ч.т.д.

Функция f(x) называется функцией, ограниченной относительно функции g(x) в $u(x_0)$, если ограничена функция $\frac{f(x)}{g(x)}$, т.е.

$$\left| rac{f(x)}{g(x)}
ight| \leq c$$
 или $|f(x)| \leq c \, |g(x)|$

В этом случае $f(x) = O(g(x)), x \to x_0$ $f(x) = O(1), x \to x_0$ "функция f(x) ограничена.

3.14. Глобальные свойства функций, непрерывных на отрезке

Функция f(x) называется непрерывной на отрезке [a;b], если она непрерывна в каждой точке интервала (a;b), в точке x=a справа, в точке x=b слева.

Теорема 8.1 (І-ая теорема Вейерштрасса)

Если функция f(x) непрерывна на [a;b], то она ограничена на нём, т.е.

$$\exists M > 0 : |f(x)| \le M \ \forall x \in [a; b]$$

Доказательство:

Предположим противное. Пусть f(x) непрерывна на [a;b], но при этом не ограничена на нём. Составим последовательность x_n следующим образом:

$$\exists x_1 \in [a; b] : f(x_1) > 1$$

 $\exists x_2 \in [a; b] : f(x_2) > 2$
 \vdots
 $\exists x_n \in [a; b] : f(x_n) > 2$
 \vdots

В результате получили посл-ть $\{x_n\}$. Она ограничена ($\forall n \ x_n \in [a;b]$). По теореме Больцано-Вейерштрасса (т. 8.1 гл. 2) из неё можно извлечь сходяющуся подпосл-ть x_{n_k}

Пусть $\lim_{k\to\infty} x_{n_k} = \alpha$

Так как f(x) непрерывна на [a;b], то по определению $\lim_{x\to x_0} f(x) = f(x_0)$

В нашем случае $\lim_{k\to\infty} f(x_{n_k})=f(\lim_{k\to\infty} x_{n_k})=f(\alpha)$ - конечное число (в силу непрерывности)

Однако $f(\alpha)$ является беск. б. по построению x_n ($f(x_n)$ беск. б.), $f(\alpha) = \infty$.

Получили противоречие, т.е. f(x) ограничена.

Ч.т.д.

Теорема 8.2 (ІІ-ая теорема Вейерштрасса)

Среди значений, которые на отрезке [a;b] принимает непрерывная функция, существует наибольшее и наименьшее значения (в том числе может быть и в крайних точках).

Доказательство:

По І-ой теореме Вейерштрасса f(x) ограничена сверху, т.е. $\exists k: f(x) \leq k \ \forall x \in [a;b]$ Тогда существует точная верхняя грань f(x) на [a;b]. $M = \sup f(x), x \in [a;b]$ Составим вспомогательную посл-ть $\{x_n\}$ на основе свойства $\sup f(x)$.

$$\exists x_1 : M - 1 < f(x_1) \le M$$

$$\exists x_2 : M - \frac{1}{2} < f(x_2) \le M$$

$$\vdots$$

$$\exists x_n : M - \frac{1}{n} < f(x_n) \le M$$

 $\{x_n\}$ ограничена ($\forall nx_n \in [a;b]$)

Тогда по теореме Больцано-Вейерштрасса из неё можно извлечь сходящуюся подпосл-ть $x_{n_k}, \lim_{k \to \infty} x_{n_k} = \alpha$

- 1. С одной стороны, f(x) непрерывна на $[a;b] \implies \lim_{k \to \infty} f(x_{n_k}) = f(\lim_{k \to \infty} x_{n_k}) = f(\alpha)$
- 2. С другой стороны $M \frac{1}{n} < f(x_n) \le M$, следовательно

$$M - \frac{1}{n_k} < f(x_{n_k}) \le M$$

Т.к. $\lim_{k\to\infty}(M-\frac{1}{n_k})=M$ и $\lim_{k\to\infty}M=M$, то $\lim_{k\to\infty}f(x_{n_k})=M$ (по т. о двух милиционерах), т.е. $f(\alpha)=M$. $\beta\in[a;b]:f(\beta)=m$

Теорема 8.3 (Теорема Больцано-Коши)

Если функция f(x) непрерывна на [a;b] и f(a)=m, f(b)=n, то на интервале (a;b) f(x) по крайней мере один раз принимает значение p, заключённое между m и n.

Доказательство:

Для доказательства надо найти точку ξ , $f(\xi)=p$. Разобъём отрезок [a;b] на 2 равных отрезка точкой $\frac{a+b}{2}$ Варианты:

- 1. $f(\frac{a+b}{2}) = p \implies \xi = \frac{a+b}{2}$. Ч.т.д.
- 2. $f(\frac{a+b}{2}) \neq p$. Тогда либо $f(\frac{a+b}{2}) < p$, либо $f(\frac{a+b}{2}) > p$. В первом случае далее выберем отрезок $[\frac{a+b}{2};b]$, во втором $[a;\frac{a+b}{2}]$. Переобозначим выбранный отрезок $[a_1;b_1]$, $f(a_1) . <math>b_1 a_1 = \frac{b-a}{2}$.

Разделим $[a_1; b_1]$ на 2 равных отрезка и выберем тот, на левом конце которого значение функции меньше p, а на правом - больше.

Тогда либо через конечное число шагов мы получим такую точку ξ , либо систему вложенных отрезков $[a_n;b_n], f(a_n)$

Тогда по теореме о вложенных отрезках \exists точка ξ , принадлежащая всем отрезкам одновременно и $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$

В точке ξ f(x) непрерывна.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = f(\xi)$$

Тогда по теореме о двух милиционерах:

$$f(a_n)$$

Следствие теоремы Больцано-Коши: если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка такая, что значение f(x) в этой точке равно 0.

<u>Замечание:</u> будем считать элементарные функции непрерывными на своей области определения: $\lim_{x\to x_0} \mathsf{tg} \cdot \cdots = \mathsf{tg} \lim_{x\to x_0} \ldots$

Замечание: замена неопределённостей может идти по такому принципу

$$u^{v} \to e^{\ln u * v}$$

$$1^{\infty} \to [0 \times \infty] \to \begin{cases} \begin{bmatrix} \frac{0}{0} \\ \frac{1}{0} \end{bmatrix} \\ \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix} \end{cases}$$

$$\infty^{0} \to [\infty \times 0]$$

$$0^{0} \to [\infty \times 0]$$

3.15. Равномерная непрерывная функция

Вспомним определение непрерывности функции в точке по Коши:

$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Зафиксируем ε . Вообще говоря, в каждой точке x существует своё δ , т.е. $\delta = \delta(\varepsilon, x)$.

В связи с этим выделяют класс функций (непрерывных), для которых при фиксированном $\varepsilon>0$ можно указать $\delta>0$, пригодная сразу для всех x, принадлежащая некоторому X.

Функция, определённая на множестве X, называется **равномерно-непрерывной** на этом множестве, если

$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) : \forall x', x'' \in X : |x' - x''| < \delta \implies |f(x') - f(x'')| < \varepsilon$$

Примеры:

1.
$$f(x) = x, x \in R$$

Пусть $x', x'' \in R : |x' - x''| < \delta$

$$|f(x') - f(x'')| = |x' - x''| < \delta = \varepsilon$$

2.
$$f(x) = x^2, x \in R$$

Пусть $x', x'' \in R : |x' - x''| < \delta$
Пусть $x'' = x' + h \implies |x' - x' - h| = |h| < \delta$

$$|f(x') - f(x'')| = |x'^2 - (x' + h)^2| = |x'^2 - x'^2 - 2x'h - h^2| = |2x'h + h^2|$$

Так как $x' \in R$, то можно так его выбрать, что $|2x'h+h^2|=\infty \implies$ функция $f(x)=x^2$ не является непрерывной на области своего определения.

Теорема 9.1 (Теорема Кантера)

Если функция определена и непрерывна на отрезке [a;b], то она равномерно-непрерывна на нём. Доказательство:

Предположим противное. Пусть

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) : \forall x', x'' \in [a; b] : |x' - x''| < \delta \implies |f(x') - f(x'')| \ge \varepsilon$$

Зададим последовательность $\delta_n:\lim_{n\to\infty}\delta_n=0.$

Построим две вспомогательные последовательности x'_n и x''_n :

$$\exists x_1', x_1'' : |x_1' - x_1''| < \delta_1 \implies |f(x_1') - f(x_1'')| \ge \varepsilon$$

$$\exists x_2', x_2'' : |x_2' - x_2''| < \delta_2 \implies |f(x_2') - f(x_2'')| \ge \varepsilon$$

$$\exists x_n', x_n'' : |x_n' - x_n''| < \delta_n \implies |f(x_n') - f(x_n'')| \ge \varepsilon$$

Рассмотрим $\{x_n'\}$: она ограничена. Тогда по теореме. Больцано-Вейерштрасса из неё можно извлечь сх-ся подпосл-ть $\{x'_{n_k}\}$.

Пусть $\lim_{k\to\infty} x'_{n_k} = x_0$ Аналогично м. извлечь $\{x''_{n_k}\}$

Т.к.
$$|x'_n - x''_n| < \delta_n \implies |x'_{n_k} - x''_{n_k}| < \delta_{n_k}$$

Т.к. $|x'_n - x''_n| < \delta_n \Longrightarrow |x'_{n_k} - x''_{n_k}| < \delta_{n_k}$ $\lim_{k \to \infty} x'_{n_k} = \lim_{k \to \infty} x''_{n_k} = x_0$ Так как f(x) непрерывнв на [a;b], то она непрерывна в точке $x_0 \in [a;b]$

Значит $\lim_{k\to\infty} f(x'_{n_k}) = \lim_{k\to\infty} f(x''_{n_k}) = f(x_0)$

Рассмотрим $|f(x') - f(x'')| \ge \varepsilon$ (*)

Перейдем в (*) к пределу при $k \to \infty$

$$\varepsilon \le |\lim_{k \to \infty} f(x'_{n_k}) - \lim_{k \to \infty} f(x''_{n_k})| = |f(x_0) - f(x_0)| = 0$$

Получили противоречие, т.к. $\varepsilon>0 \implies f(x)$ - непрерывна.

Пример: рассмотрим $g = \sin \frac{1}{x}, x \in (0;1)$

На (0;1) y является непрерывна. Покажем, что на (0;1) y не является равномерно-непрерывной функцией.

Рассмотрим x'_n :

$$x'_n = \frac{1}{\pi n}, \lim_{n \to \infty} x'_n = 0, x'_n \in (0; 1)$$

Рассмотрим x_n'' :

$$x_n'' = \frac{1}{\frac{\pi}{2} + 2\pi n}, \lim_{n \to \infty} x_n'' = 0, x_n'' \in (0; 1)$$

Рассмотрим

$$|f(x'_n) - f(x''_n)| = |\sin \pi n - \sin(\frac{\pi}{2} + 2\pi n)| = 1$$
$$\forall \delta : |x'_n - x''_n| < \delta \implies |f(x'_n) - f(x''_n)| = 1$$
$$\forall \varepsilon : 0 < \varepsilon < 1 \implies \nexists \delta(\varepsilon)$$

Пусть $\varepsilon = \frac{1}{2}$. Тогда $\delta(\varepsilon) = \sharp$.

Ч.т.д.

Замечание: на практике, как правило, функции, которые растут больше, чем y=x, не является равн.-непр-ми на D(f).

4. Дифференциальные исчисления функции

4.1. Производная функции в точке

y = f(x)

 Δx - приращение аргумента

 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ - приращение функции

Производной от функции f(x) в точке x_0 называется предел отношения приращения функции в точке x_0 к приращению аргумента при стремлении последнего к 0.

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = y' = \frac{dy}{dx} = \frac{d \sqcup d}{dx} f$$

$$y'''' = y^{IV} = y^{(4)}$$

<u>Замечание</u>: для существования производной от f(x) в точке x_0 необходимо, чтобы f(x) была определена в некоторой окрестности x_0 и в самой точке x_0 .

Замечание: функция имеет производную в точке x_0 , если $\exists \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

<u>Замечание:</u> если $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \pm \infty$, то говорят, что функция имеет бесконечную производную в точке.

Если $\Delta x \to 0$ принимает только положительные значения то соответствующий предел называется правой производной от f(x) в точке x_0 .

Если $\Delta x \to 0$ принимает только отрицательные значения то соответствующий предел называется левой производной от f(x) в точке x_0 .

Функция f(x) имеет производную на [a;b], если она имеет производную во всех точках (a;b), в точке x=a имеет правую производную, в точку x=b - левую.

<u>Утверждение:</u> если f(x) имеет в точке x_0 правую и левую производные, то f(x) имеет в точке x_0 производную.

<u>Утверждение:</u> если правая и левая производные в точке $x_0 \exists$ и не равны между собой, то производная в точке $x_0 \exists$.

Пример:

$$\begin{vmatrix} y' \\ x = 0 \end{vmatrix}$$

Правая производная

$$y'_{+}\Big|_{x=0} = \lim_{\Delta x \to 0} \frac{f(x_0) - f(0)}{x_0 - 0} = \begin{vmatrix} \Delta x \to 0 \sim x_0 \to 0 \\ & & \end{vmatrix} = \lim_{x_0 \to 0} \frac{x_0 - 0}{x_0} = 1$$

Левая производная

$$y'_{-}\Big|_{x=0} = \lim_{\Delta x \to 0} \frac{f(-x_0) - f(0)}{-x_0 - 0} = \begin{vmatrix} \Delta x \to 0 \sim x_0 \to 0 \\ -x_0 \to 0 \end{vmatrix} = \lim_{x_0 \to 0} \frac{-x_0 - 0}{-x_0} = -1$$

Функция y = |x| не имеет производной в точке 0.

Пример: докажем, что $y = x^2$ имеет производную в точке x = 0.

$$\lim_{x \to 0+0} \frac{f(x) - f(x_0)}{\Delta x} = \lim_{x \to 0+0} \frac{x^2 - 0}{x - 0} = 0$$

$$\lim_{x \to 0-0} \frac{f(-x) - f(x_0)}{\Delta x} = \lim_{x \to 0-0} \frac{x^2 - 0}{-x - 0} = 0$$

B точке x = 0 действительно f'(x) = 0.

Ч.т.д.

Теорема 1.1

Функция, имеющая конечную производную в точке, непрерывна в этой точке.

Доказательство:

Пусть существует $\lim_{x \to x_0} \frac{\Delta y}{\Delta x} = f'$ конечное.

$$\frac{\Delta y}{\Delta x} = f' + \varepsilon(\Delta x), \lim_{\Delta x \to 0} \varepsilon(\Delta x) = 0$$

$$\Delta y = f' \Delta x + \varepsilon(\Delta x) \Delta x$$

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (f' \Delta x + \varepsilon(\Delta x) \Delta x) = \lim_{\Delta x \to 0} f' \Delta x + \lim_{\Delta x \to 0} \varepsilon(\Delta x) \Delta x = 0 + 0 = 0$$
 Ч.т.д.

Мгновенная скорость

Пусть S = S(t) - закон движения в точке.

Рассмотрим $[t,t+\Delta t]$: $\Delta S=S(t+\Delta t)-S(t)$ - путь, пройденный за промежуток времени Δt . $v_{\rm cp}=\frac{\Delta S}{\Delta t}$ - средняя скорость. Мгновенная скорость $v=\lim_{\Delta t\to 0}\frac{\Delta S}{\Delta t}=S'(t)$ $a=\lim_{\Delta t\to 0}\frac{\Delta v}{\Delta t}$ - ускорение.

4.2. Геометрический смысл прооизводной

$$M_0(x_0; f(x_0))$$

$$M(x_0 + \Delta x; f(x_0 + \Delta x))$$

Запишем уравнение прямой M_0M

<u>Замечание:</u> уравнение прямой, проходящей через точки $(x_0; y_0)$ и $(x_1; y_1)$:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

$$\frac{x - x_0}{x_0 + \Delta x - x_0} = \frac{y - f(x_0)}{f(x_0 + \Delta x) - f(x_0)}$$

$$\frac{x - x_0}{\Delta x} = \frac{y - y_0}{\Delta y}$$

$$\Delta y(x - x_0) = \Delta x(y - y_0) \mid * \Delta x$$

$$y - y_0 = \frac{\Delta y}{\Delta x}(x - x_0)$$

$$y = \frac{\Delta y}{\Delta x}(x - x_0) + f(x_0) \mid : M_0 M$$

$$\operatorname{tg} \angle \beta = \frac{|MN|}{|M_0 N|} = \frac{\Delta y}{\Delta x}$$

Пусть $\Delta x \to 0$. Тогда точка M будет стремиться к точке M_0 , а угол β к углу α .

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$
 по определению

С другой стороны,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \operatorname{tg} \, \beta = tg \lim_{\Delta x \to 0} \beta = tg\alpha$$

Рассмотрим уравнение секущей при $\Delta x \to 0$

$$y = f'(x_0)(x - x_0) + f(x_0)$$

- уравнение касательной к графику функции f(x) в точке x_0 .

Допустим $f'(x_0) = \infty$. Тогда рассмотрим уравнение секущей:

$$y = \frac{\Delta y}{\Delta x}(x - x_0) + y_0 \mid : \frac{\Delta y}{\Delta x}$$
$$\frac{y}{\frac{\Delta y}{\Delta x}} = x - x_0 + \frac{y_0}{\frac{\Delta y}{\Delta x}}$$

Перейдём к пределу при $\Delta x \to 0$. Тогда уравнение касательной примет вид $x = x_0$.

Замечание: если $L_1 \perp L_2$

$$L_1: y = k_1 x + b_1$$

 $L_2: y = k_2 x + b_2 \implies k_1 k_2 = -1$

Прямая, проходящая через точку x_0 перпендикулярно касательной, проведённой в этой точке, называется нормалью к графику функции f(x).

$$K_{\rm H} = -\frac{1}{K_{\rm Kac}} = -\frac{1}{f'(x_0)}$$
$$y = -\frac{1}{f'(x_0)}(x - x_0) + y_0$$

4.3. Производные элементарных функций

1.
$$y = \mathbb{C} = const$$

 $y(x) = \mathbb{C}, y(x + \Delta x) = \mathbb{C}$

$$y' = \lim_{\Delta x \to 0} \frac{y(x + \Delta x) - y(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\mathbb{C} - \mathbb{C}}{\Delta x} = 0$$

 $2. \ y = \sin x$

$$y' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2} * \cos(x + \frac{\Delta x}{2})}{\frac{\Delta x}{2} * 2} = \cos x$$

Аналогично доказывается, что $(\cos x)' = -\sin x$

Определние

Функция y=f(x) заданная в $u(x_0)$ называется дифферинцируемой в этой (.) если ее приращение $\Delta y=f(x_0+\Delta x)=f(x_0)$ рпедставление в этой окружностьи в виде $\Delta y=A\Delta x=o(\Delta x), \Delta x=>0, A=const$

Определние

Линейная часть прирощения ф-ии $A\Delta x$ называется дифферинциалом ф-ии в (.) x_0 и обозначается $\mathrm{df}|x=x_0$ или $\mathrm{df}(x_0)$

Тогда
$$\Delta y = dy + o(\Delta x)$$

Замечание

$$o(\Delta x)=o(A\Delta x)=o(dy)$$
 Тогда $\Delta y=dy+o(dy)|:dy$ $\frac{\Delta y}{dy}=1+rac{o(dy)}{dy}$ $\lim_{\Delta x o 0}rac{\Delta y}{dy}=1$ Т е $\Delta y\sim dy$ при $\Delta x o 0$

Теорема 9.1(необходимость и достаточность условия диф-ии в (.))

Для того чтобы f(x) была диф-ема в (.) x_0 чтобы в этой (.) она имела конечную производную

Док-во

$$\Rightarrow \exists \ f(\mathbf{x}) \ \mathrm{диф\text{-}ema} \ \mathbf{B} \ (.) \ x_0$$
 Покажем что
$$\exists \ f'(x_0) \ \text{-} \ \mathrm{конечноe}$$
 Тогда по
$$\underbrace{\mathrm{Onp}}_{\Delta y} \Delta y = A \Delta x + o(\Delta x)$$

$$\Delta y = A \Delta \overline{x} + \epsilon(\Delta x) * \Delta x$$

$$\lim_{\Delta x \to 0} \epsilon(\Delta x) = 0$$

$$\underbrace{\frac{\Delta y}{\Delta x}}_{\Delta x} = A + \epsilon(\Delta x)$$

$$\lim_{\Delta x \to 0} \underbrace{\frac{\Delta y}{\Delta x}}_{\Delta x} = A$$

$$f'(x)|x = x_0 = A = const$$

$$<= \exists \ f(x) \ \mathrm{имеет} \ \mathrm{конечную} \ \mathrm{производную} \ \mathbf{B} \ (.) x_0$$

$$\mathsf{T} \ \mathbf{e} \ \exists \lim_{\Delta x \to 0} \underbrace{\frac{\Delta y}{\Delta x}}_{\Delta x} = f'(x_0)$$

$$\underbrace{\frac{\Delta y}{\Delta x}}_{\Delta y} = f'(x_0) + \epsilon(\Delta x)| * \Delta x$$

$$\Delta y = f'(x_0) \Delta x + \epsilon(\Delta x) \Delta x = f'(x_0) \Delta x + o(\Delta x)$$
 ЧТЛ

Замечание

Такие образом $dy|x=x_0=f'(x_0)\Delta x$

Геометрический смысл дифферинцирования

Рассмотрим ф-ию y=f(x)

 $M_0(x_0, f(x_0))$

 $M(x_0, \Delta x, f(x_0 + \Delta x))$ $\operatorname{tg} \alpha = f'(x_0)$ Рассмотрим $\Delta ABM_0 \ (AM_0)\operatorname{tg} \alpha = |AB|$

 $f'(x_0)\Delta x = \Delta y$ $|MB| = o(\Delta x)$

Отсюда для независимой переменной х $\Delta x = dx$

Геометрический смысл дифферинцирования: это есть прирощение окружности касательной производной к графику окружности в (.) x_0

$$V = S(t)|t = t_0 = \frac{dS}{dt}$$

$$dS = S'(t)|t = t_0$$

$$dt = S'(t)|t = t_0 \Delta t$$

Дифферинциал dS равен пути который прошла бы рассматриваемая точка за время Δt начиная с момента времени $t=t_0$, если бы на этом участке пути скорость была бы постоянно равной $S'=t_0$

Свойства дифферинциалов

$$1. \ d(u+-V) = du + -dv$$

$$2. \ d(u*v) = udv + vdu$$

3.
$$d(CU) = cdu$$

4.
$$d(\frac{u}{v}) = \frac{u'v - uv'}{v^2} = \frac{vdu - udv}{v^2}$$

Док-во

$$d(\frac{u}{v}) = (\frac{u}{v})'dx = \frac{u'v - uv'}{v^2}dx = \frac{vdu - udv}{v^2}$$

Параграф 10(Примемение дифферинциалов в приближенных вычислениях. Дифференциал сложных функций)

Если f(x) диф-ла в (.)
$$x_0$$
 $\Delta y = dy + o(dx)$ $\Delta y == dy$
$$f(x_0 + \Delta x) - f(x_0) == f'(x_0)dx |\Delta x| f(x_0 + \Delta x) == f(x_0) + f'(x_0)\Delta x$$

Пример

$$sin 32$$
 Рассмотрим $f(x)=sin x$ $32=x_0+\Delta x=30+2$ $x_0=30; \Delta x=2=\frac{\pi}{90}$ $f'(x)=const$ $f(30)=\frac{1}{2}\,f'(30)=\frac{\sqrt{3}}{2}\,sin 32=\frac{1}{2}+\frac{\sqrt{3}}{2}-\frac{\pi}{90}=0,53$

Параграф 11(Производные)

Определение

 \Box функция y=f(x) имеет производную y'=f(x) во всех (.) некоторой окрестности (.) x_0 . Если функция f(x) имеет в (.) x_0 производную [(f(x))']| $x=x_0$, то оно называется второй производной функцией f(x) в (.) x_0 f'=(f')'

Аналогично

$$f^n = (f^(m+1))'$$

1.
$$y = a^x$$

$$y'' = a^x \ln^2(a)$$

$$y^n = a^x \ln^n(a)$$

2.
$$y = \sin(x)$$

 $y(n) = \sin(x) = \sin(\frac{n\pi}{2} + x)$

3.
$$y = \cos(x)$$

 $\cos^n = \cos(\frac{n\pi}{2} + x)$

4.
$$y = ln(x)$$