1 Zadanie 6. (Test Wilcoxona dla dwóch prób.)

Na dwóch grupach osób o liczebnościach m i n porównujemy skuteczność dwóch terapii A i B, chcąc wykazać, że B działa lepiej niż A. Niech X i Y oznaczają reakcję na działanie terapii A i B, odpowiednio. Im X (Y) większe tym terapia A (B) zadziałała lepiej. Znając wartości przyjęte przez zmienne losowe X_1, \ldots, X_m (reakcje pacjentów na terapię A) i Y_1, \ldots, Y_n (reakcje pacjentów na terapię B) chcemy zweryfikować:

$$H_0$$
: terapie A i B działają tak samo,
 H_1 : terapia B działa lepiej niż A. (1)

1.1 Statystyka testowa

Model. Obserwujemy dwie niezależne próby losowe

$$X_1, \ldots, X_m$$
 i.i.d. F , Y_1, \ldots, Y_n i.i.d. G .

Zakładamy, że F i G są dystrybuantami rozkładów ciągłych oraz $G(x) = F(x - \theta)$ dla pewnego nieznanego $\theta \in \mathbb{R}$. Przy takich założeniach, problem testowania (1) można zapisać w równoważnej postaci:

$$H_0: \quad \theta = 0$$

 $H_1: \quad \theta > 0$,

Aby opisać test Wilcoxona musimy wprowadzić pojęcie rangi.

Definition 1 Ranga obserwacji a_k w dowolnej próbie a_1, \ldots, a_n to liczba tych obserwacji w tej próbie, które są mniejsze lub równe a_k

$$r_k \stackrel{def}{=} \#\{j : a_j \le a_k\}.$$

Aby nadać rangi obserwacjom a_1, \ldots, a_n , ustawiamy je w kolejności od najmniejszej do największej (tworzymy statystystyki porządkowe). Ranga każdej obserwacji to numer miejsca, który zajmuje ona w tym uporządkowanym ciągu. Najmniejsza z obserwacji ma więc rangę 1, a największa rangę n.

Uwaga. Taki sposób przypisywania rang ma sens, gdy w próbie nie ma powtarzających się obserwacji. Oczywiście, jeśli próba pochodzi z rozkładu ciągłego, to z prawdopodobieństwem 1 nie ma w niej powtarzających się obserwacji.

Opis testu Wilcoxona sumy rang (ang. Wilcoxon rank-sum test). Niech $s_1 < s_2 < \ldots < s_n$ oznaczają uporządkowane rosnąco rangi y-ów w **połączonej** próbie $x_1, \ldots, x_m, y_1, \ldots, y_n$. Można pokazać, że jeśli hipoteza H_0 jest prawdziwa, to statystyka

$$W = \sum_{i=1}^{n} S_i$$

ma rozkład o średniej i wariancji

$$\mu_W = \frac{n(n+m+1)}{2}, \quad \sigma_W^2 = \frac{mn(n+m+1)}{12}.$$

Wartości W znacznie różniące się od μ_W są nietypowe dla H_0 . Co więcej, duże wartości W są znacznie bardziej prawdopodobne dla H_1 niż dla H_0 . Jeśli bowiem kuracja B jest lepsza od kuracji A, to rangi s_1, \ldots, s_n przyjmują duże wartości, bo y_1, \ldots, y_n mają tendencję do przyjmowania większych wartości od x_1, \ldots, x_m . Test Wilcoxona odrzuca więc H_0 na rzecz H_1 , gdy statystyka W przyjmie wartość w znacznie większą od μ_W .

Z symetrii wynika że dla $\binom{N}{n}$ możliwych wyborów liczb naturalnych $1 \le s_1 < \ldots < s_n \le N = n + m$ zachodzi

$$P_{H_0}(S_1 = s_1, \dots, S_n = s_n) = \frac{1}{\binom{N}{n}}$$

To umożliwia wyznaczenie kwantyli rozkładu tej statystyki testowej dla H_0 . Mamy bowiem

$$P_{H_0}(W \ge w) = \sum_{\substack{\{1 \le s_1 < \dots < s_n \le n \\ s_1 + \dots + s_n \ge w\}}} \frac{1}{\binom{N}{n}}$$

Ponadto, można udowodnić, że dla H_0 zachodzi zbieżność

$$W^* := \frac{W - \frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}} \xrightarrow{D} N(0,1)$$

gdy n i m dążą do nieskończoności.

1.2 Test Wilcoxona

1. **Test dokładny:** dla małych n, m rozkład W dla H_0 został stablicowany, więc można z tablic odczytać

p-value =
$$P_{H_0}(W \ge w)$$
.

Odrzucamy H_0 , gdy p-value $\leq \alpha$.

2. Test asymptotyczny: Dla dużych m, n odrzucamy H_0 , gdy

$$W^* := \frac{W - \frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}} \ge z_{\alpha},$$

gdzie z_{α} jest kwantylem rzędu $1-\alpha$ rozkładu N(0,1). Taki test ma asymptotyczny poziom istotności α , tzn.

$$\lim_{m,n\to\infty} P_{H_0}\left(\frac{W-\frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}} \ge z_\alpha\right) \to \alpha.$$

1.3 Zadanie.

W pierwszej części zadania oblicz dokładną wartość prawdopodobieństwa $P_{H_0}(W^* \geq z_{\alpha})$ dla wskazanych (m,n) i α (generując kombinacje za pomocą odpowiedniej funkcji, np. **combinations** z pakietu R).

()	$P_H(W^* \ge z_\alpha)$					
(n,m)	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.01$	$\alpha = 0.005$		
(5,5)						
(8,5)						
(10,5)						

Czy dla małych (m, n) aproksymacja rozkładu statystyki W^* rozkładem normalnym jest sensowna?

Z aproksymacji N(0,1) wynika, że dla każdego $w \in R$,

$$P_{H_0}(W \ge w) = P_H\left(W^* \ge \frac{w - \frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}}\right) \approx 1 - \Phi\left(\frac{w - \frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}}\right)$$

Jak dokładna jest ta aproksymacja? Oznaczmy:

 $\alpha_0(w) = P_{H_0}(W \geq w)$ - wartość dokładna (funkcja combinations z R); $\alpha_1(w) = 1 - \Phi\left(\frac{w - \frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}}\right)$ - aproksymacja;

$$\alpha_2(w)=1-\Phi\left(\frac{w-\frac{1}{2}-\frac{1}{2}n(N+1)}{\sqrt{mn(N+1)/12}}\right)$$
- aproksymacja z poprawką na ciągłość. Tę poprawkę stosujemy wtedy, gdy wykorzystujemy CTG do aproksy-

macji rozkładu dyskretnego.

W drugiej części zadania wyznacz $\alpha_0(w), \alpha_1(w), \alpha_2(w)$ dla wskazanych (m, n)i w.

	m = 6, n = 3						
	w = 9	w = 12	w = 15	w = 18	w = 21		
$\alpha_0(w)$							
$\alpha_1(w)$							
$\alpha_2(w)$							

	m = 6, n = 6						
	w = 27	w = 33	w = 39	w = 45	w = 51		
$\alpha_0(w)$							
$\alpha_1(w)$							
$\alpha_2(w)$							

Czy poprawka na ciągłość polepsza jakość aproksymacji?