

STAT 390 Group 2 Cindy Ha, Willie Xie, Erica Zhang

TABLE OF CONTENTS

O1 OVERVIEW O2
OBJECTIVES

03DATA

04METHODOLOGY

05
REFERENCES

06
conclusion

Overview

What is our project about?

Through this project, we will:

- Utilize a regularly updated and comprehensive COVID-19 dataset
- Employ a regression analysis approach to create models that can accurately predict new cases
- Apply the implications of the forecasts to guide individuals and public health systems

Objectives

What do we hope to achieve?

GOAL

- Forecast the number of confirmed daily new cases of COVID-19 in the US
- Measure the degree of spread of COVID-19

APPLICATION

 Advise healthcare systems on potential spikes and when to take preventative measures

Data

Data & Initial Preprocessing

The initial dataset contains:

- 67 variables: 1 response = new_cases 66 possible predictors
- 341,408 observations

Some issues addressed:

- Missingness
 - Around 41-ish predictors have at least 30% missingness
 Note some variables are not updated daily or recently
- Insignificant variables
 - Some variables hold no variable (aka country codes)
- Multicollinearity
 - Some variables are running averages of other variables and others are scaled by population size
 - Only 3 predictors have large multicollinearity issues with many other variables: population, life_expectancy, human_development_index

Methodology

Methodology

DATA CLEANING

- Exclude predictors with more than 30% of data **missing**
- Check that data types are correct
- Remove predictors without significant value
- Address multicollinearity

DATA SPLITTING AND RESAMPLING

- **Split** data into training and testing sets (80/20)
- Time series stratified sampling based on geographic location
- **Time series resampling** through validation sets

TRAINING MODELS

- Regression Models
 - OLS, Elastic Net, K-Nearest Neighbors, Multivariate Adaptive Regression Spline (MARS), Random Forest, Boosted Trees, Support Vector Machines (SVMs), Neural Networks
 - o ARIMA and Ensemble models

ASSESSING MODEL PERFORMANCE

Performance Metrics: RMSE and R²

References

Useful Articles & Books

Below are starting papers and books that describes how to approach time series predicting and different approaches to predicting COVID-19.

Predicting Time Series Data

- Alassafi M., Jarrah M, Alotaibi R. (2022). Time series predicting of COVID-19 based on deep learning.
- Long, J. (JD), & Teetor, P. (2019). R cookbook, 2nd edition. 14 Time Series Analysis.

Predicting COVID-19

- Painuli, D., Mishra, D., Bhardwaj, S., & Aggarwal, M. (2021). Forecast and prediction of COVID-19 using machine learning.
- Smita Rath, Alakananda Tripathy, Alok Ranjan Tripathy. (2020). Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model.

Conclusion

Our Plan

What We Did

- 1. Set a **project goal**: predict the daily count of new confirmed COVID-19 cases in the US
- 2. Determine our **regression models**
- 3. Determine performance metrics (RMSE, \mathbb{R}^2)
- 4. Started data preprocessing to narrow down predictor variables

What We Plan to Do

- Continue working with the data
- 2. Build and run models
- 3. Apply our insights!

Thank You!

