CS2102

Tutorial 08

NOTES

- In this slide, we will skip certain algorithms
- The algorithms skipped are
 - Algorithm #1: Attribute Closure
 - Algorithm #2: Minimal Cover
- The hope is that you are all familiar with those algorithms
 - If you are not, please seek help from either your TA or myself

• Question: Is δ a lossless-join decomposition? Explain.

- Find an intermediate R_i such that one of the following is true:
 - $R \Rightarrow \{R_1, R_i\}$ and $R_i \Rightarrow \{R_2, R_3\}$ are each lossless-join decomposition
 - $R \Rightarrow \{R_2, R_i\}$ and $R_i \Rightarrow \{R_1, R_3\}$ are each lossless-join decomposition
 - $R \Rightarrow \{R_3, R_i\}$ and $R_i \Rightarrow \{R_1, R_2\}$ are each lossless-join decomposition

• Question: Is δ a lossless-join decomposition? Explain.

- Find an intermediate R_i such that one of the following is true:
 - $R \Rightarrow \{R_1, R_i\}$ and $R_i \Rightarrow \{R_2, R_3\}$ are each lossless-join decomposition
 - $R \Rightarrow \{R_2, R_i\}$ and $R_i \Rightarrow \{R_1, R_3\}$ are each lossless-join decomposition
 - $R \Rightarrow \{R_3, R_i\}$ and $R_i \Rightarrow \{R_1, R_2\}$ are each lossless-join decomposition
- Let $R_i(A, B, C, E)$
 - Decomposition of $R \Rightarrow \{R_3, R_i\}$ is a lossless-join decomposition
 - $(R_3 \cap R_i) = \{A, C\}$ and $\{A, C\} \to \{A, C, D\}$ with $R_3(A, C, D)$
 - Decomposition of $R_i \Rightarrow \{R_1, R_2\}$ is a lossless-join decomposition
 - $(R_1 \cap R_2) = \{A, B\} \text{ and } \{A, B\} \to \{A, B, C\} \text{ with } R_1(A, B, C)$

Question 5(b)

• Question: Is δ a dependency-preserving decomposition? Explain.

- Since we are doing this manually, we consider only <u>union minimal cover of</u> <u>projection</u>
 - $F_{R_1} = \{AB \to C\}$ $F_{R_2} = \{E \to AB\}$ $F_{R_3} = \{AC \to D\}$
 - $(F_{R_1} \cup F_{R_2} \cup F_{R_3}) = \{AB \to C, E \to AB, AC \to D\} = G$

Question 5(b)

• Question: Is δ a dependency-preserving decomposition? Explain.

- Since we are doing this manually, we consider only <u>union minimal cover of</u> <u>projection</u>
 - $F_{R_1} = \{AB \to C\}$ $F_{R_2} = \{E \to AB\}$ $F_{R_3} = \{AC \to D\}$
 - $(F_{R_1} \cup F_{R_2} \cup F_{R_3}) = \{AB \to C, E \to AB, AC \to D\} = G$
- Consider $F = \{AB \rightarrow C, AC \rightarrow D, E \rightarrow ABCD\}$
 - Then $F = \{AB \rightarrow C, AC \rightarrow D, E \rightarrow AB, E \rightarrow CD\}$ by decomposition
 - Only need to proof $G \models E \rightarrow CD$
 - Compute E^+ w.r.t. G, $E^+ = ABCDE$
 - Since $C \in ABCDE$ and $D \in ABCDE$ then it is dependency-preserving

Question 5(c)

- Question: *Is R in BCNF? Explain.*
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF \Rightarrow check all FD (or run Algo #5)

Question 5(c)

- Question: *Is R in BCNF? Explain.*
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)
 - Counterexample
 - Consider $ABC \rightarrow D$
 - $ABC \rightarrow D$ is non-trivial
 - $ABC^+ = ABCD \subset R \Rightarrow ABC$ is not a superkey of R

Question 5(d)

- Question: Is δ in BCNF? Explain.
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)
 - ➤ All fragments!

Question 5(d)

- Question: Is δ in BCNF? Explain.
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)
 ➤ All fragments!
 - Consider only *union minimal cover of projection* (part (b))
 - $F_{R_1} = \{AB \to C\}$ $\Rightarrow AB$ is superkey $\Rightarrow R_1$ is in BCNF
 - $F_{R_2} = \{E \to AB\}$ $\Rightarrow E$ is superkey $\Rightarrow R_2$ is in BCNF
 - $F_{R_3} = \{AC \to D\}$ $\Rightarrow AC$ is superkey $\Rightarrow R_3$ is in BCNF

Question 5(e)

- Question: *Is R in 3NF? Explain.*
 - Method:
 - If not $3NF \Rightarrow$ find counterexample
 - If in 3NF ⇒ check all FD

Question 5(e)

- Question: *Is R in 3NF? Explain.*
 - Method:
 - If not 3NF ⇒ find counterexample
 - If in 3NF \Rightarrow check all FD
 - Counterexample:
 - Consider $ABC \rightarrow D$
 - $ABC \rightarrow D$ is non-trivial
 - $ABC^+ = ABCD \subset R \Rightarrow ABC$ is not superkey
 - B is not prime attribute \Rightarrow keys are $\{\{E\}\}$

Question 5(f)

- Question: Is δ in 3NF? Explain.
 - Method:
 - If not 3NF ⇒ find counterexample
 - If in 3NF \Rightarrow check all FD
 - ➤ All fragments!

Question 5(f)

- Question: Is δ in 3NF? Explain.
 - Method:
 - If not $3NF \Rightarrow$ find counterexample
 - If in 3NF ⇒ check all FD
 ➤ All fragments!
 - Consider only *union minimal cover of projection* (part (b))
 - $F_{R_1} = \{AB \to C\}$ $\Rightarrow AB$ is superkey $\Rightarrow R_1$ is in 3NF
 - $F_{R_2} = \{E \to AB\}$ $\Rightarrow E$ is superkey $\Rightarrow R_2$ is in 3NF
 - $F_{R_3} = \{AC \to D\}$ $\Rightarrow AC$ is superkey $\Rightarrow R_3$ is in 3NF

Question 5(f)

- Question: Is δ in 3NF? Explain.
 - Method:
 - If not $3NF \Rightarrow$ find counterexample
 - If in 3NF ⇒ check all FD
 ➤ All fragments!
 - Consider only union minimal cover of projection (part (b))
 - $F_{R_1} = \{AB \to C\}$ $\Rightarrow AB$ is superkey $\Rightarrow R_1$ is in 3NF
 - $F_{R_2} = \{E \to AB\}$ $\Rightarrow E$ is superkey $\Rightarrow R_2$ is in 3NF
 - $F_{R_3} = \{AC \to D\}$ $\Rightarrow AC$ is superkey $\Rightarrow R_3$ is in 3NF
 - \bullet Or simply, since δ is in BCNF, it is automatically in 3NF!

- Question: Is δ a lossless-join decomposition? Explain.
 - Method:
 - Use Theorem 1

- Question: Is δ a lossless-join decomposition? Explain.
 - Method:
 - Use Theorem 1
 - Decomposition of $R \Rightarrow \{R_1, R_2\}$ is a lossless-join decomposition
 - $(R_1 \cap R_2) = \{E\} \text{ and } \{E\} \to \{A, B, E\} \text{ with } R_3(A, B, E)$

Question 6(b)

• Question: Is δ a dependency-preserving decomposition? Explain.

- Since we are doing this manually, we consider only <u>union minimal cover of</u> <u>projection</u>
 - $F_{R_1} = \{E \to BD\}$ $F_{R_2} = \{A \to E, CE \to A\}$
 - $(F_{R_1} \cup F_{R_2}) = \{E \rightarrow BD, A \rightarrow E, CE \rightarrow A\} = G$

Question 6(b)

• Question: Is δ a dependency-preserving decomposition? Explain.

- Since we are doing this manually, we consider only <u>union minimal cover of</u> <u>projection</u>
 - $F_{R_1} = \{E \to BD\}$ $F_{R_2} = \{A \to E, CE \to A\}$
 - $(F_{R_1} \cup F_{R_2}) = \{E \to BD, A \to E, CE \to A\} = G$
- Consider $F = \{A \rightarrow E, AB \rightarrow D, CD \rightarrow AE, E \rightarrow B, E \rightarrow D\}$
 - Then $F = \{A \rightarrow E, AB \rightarrow D, CD \rightarrow AE, E \rightarrow BD\}$ by union
 - Two FDs need to be implied: $G \models AB \rightarrow D$ and $G \models CD \rightarrow AE$
 - Compute AB^+ w.r.t. G, $AB^+ = ABDE \Rightarrow G \models AB \rightarrow D$
 - Compute CD^+ w.r.t. G, $CD^+ = CD \implies G \not\models CD \rightarrow AE$

Question 6(b)

• Question: Is δ a dependency-preserving decomposition? Explain.

- Since we are doing this manually, we consider only <u>union minimal cover of</u> <u>projection</u>
 - $F_{R_1} = \{E \to BD\}$ $F_{R_2} = \{A \to E, CE \to A\}$
 - $(F_{R_1} \cup F_{R_2}) = \{E \to BD, A \to E, CE \to A\} = G$
- Consider $F = \{A \rightarrow E, AB \rightarrow D, CD \rightarrow AE, E \rightarrow B, E \rightarrow D\}$
 - Then $F = \{A \rightarrow E, AB \rightarrow D, CD \rightarrow AE, E \rightarrow BD\}$ by union
 - Two FDs need to be implied: $G \models AB \rightarrow D$ and $G \models CD \rightarrow AE$
 - Compute AB^+ w.r.t. G, $AB^+ = ABDE \Rightarrow G \models AB \rightarrow D$
 - Compute CD^+ w.r.t. G, $CD^+ = CD \implies G \not\models CD \rightarrow AE$

Question 6(c)

- Question: *Is R in BCNF? Explain.*
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)

Question 6(c)

- Question: *Is R in BCNF? Explain.*
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)
 - Counterexample
 - Consider $A \rightarrow E$
 - $A \rightarrow E$ is non-trivial
 - $A^+ = ABDE \subset R \Rightarrow A$ is not a superkey of R

Question 6(d)

- Question: Is δ in BCNF? Explain.
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)
 - ➤ All fragments!

Question 6(d)

- Question: Is δ in BCNF? Explain.
 - Method:
 - If not BCNF ⇒ find counterexample
 - If in BCNF ⇒ check all FD (or run Algo #5)
 ➤ All fragments!

Counterexample:

- Consider $A \rightarrow E$
 - $A \rightarrow E$ is in F_{R_2}
 - $A \rightarrow E$ is non-trivial
 - $A^+ = AE$ w.r.t. $F_{R_2} \implies AE \subset R_2$

Question 6(e)

- Question: *Is R in 3NF? Explain.*
 - Method:
 - If not $3NF \Rightarrow$ find counterexample
 - If in 3NF ⇒ check all FD

Question 6(e)

- Question: *Is R in 3NF? Explain.*
 - Method:
 - If not 3NF ⇒ find counterexample
 - If in 3NF \Rightarrow check all FD
 - Counterexample:
 - Consider $E \rightarrow B$
 - $E \rightarrow B$ is non-trivial
 - $E^+ = BDE \subset R$ $\Rightarrow E$ is not superkey
 - B is not prime attribute \Rightarrow keys are $\{\{A,C\}, \{C,D\}, \{C,E\}\}$

Question 6(f)

- Question: Is δ in 3NF? Explain.
 - Method:
 - If not 3NF ⇒ find counterexample
 - If in 3NF \Rightarrow check all FD
 - ➤ All fragments!

Question 6(f)

- Question: Is δ in 3NF? Explain.
 - Method:
 - If not $3NF \Rightarrow$ find counterexample
 - If in 3NF ⇒ check all FD
 ➤ All fragments!
 - Consider only <u>union minimal cover of projection</u> (part (b))
 - $F_{R_1} = \{E \to BD\}$ $\Rightarrow E$ is superkey $\Rightarrow R_1$ is in 3NF
 - $F_{R_2} = \{CE \rightarrow A, A \rightarrow E\} \Rightarrow CE \text{ is superkey}$ $\Rightarrow E \text{ is prime attribute of } R_2$ $\Rightarrow R_2 \text{ is in 3NF}$

- Question: Find a lossless-join BCNF decomposition of R
 - Method:
 - Algorithm 6
 - Let $\theta = \{R(A, B, C, D, E)\}$ and $\delta = \{\}$

- Question: Find a lossless-join BCNF decomposition of R
 - Method:
 - Algorithm 6
 - Let $\theta = \{R(A, B, C, D, E)\}$ and $\delta = \{\}$
 - Consider R(A, B, C, D, E)
 - Run Algo 5: $B \rightarrow DE$ violates
 - Let $\theta = \{R_1(B, D, E), R_2(A, B, C)\}$ and $\delta = \{\}$

- Question: Find a lossless-join BCNF decomposition of R
 - Method:
 - Algorithm 6
 - Let $\theta = \{R(A, B, C, D, E)\}$ and $\delta = \{\}$
 - Consider R(A, B, C, D, E)
 - Run Algo 5: $B \rightarrow DE$ violates
 - Let $\theta = \{R_1(B, D, E), R_2(A, B, C)\}$ and $\delta = \{\}$
 - Consider $R_1(B, D, E)$
 - Run Algo 5: R_1 is in BCNF
 - Let $\theta = \{R_2(A, B, C)\}$ and $\delta = \{R_1(B, D, E)\}$

- Question: Find a lossless-join BCNF decomposition of R
 - Method:
 - Algorithm 6
 - Let $\theta = \{R_2(A, B, C)\}$ and $\delta = \{R_1(B, D, E)\}$
 - Consider $R_2(A, B, C)$
 - Run Algo 5: $C \rightarrow B$ violates
 - Let $\theta = \{R_3(B,C), R_4(A,C)\}\$ and $\delta = \{R_1(B,D,E)\}\$
 - Consider $R_3(B,C)$ \Rightarrow In BCNF by Lemma 3
 - Let $\theta = \{R_4(A, C)\}$ and $\delta = \{R_1(B, D, E), R_3(B, C)\}$
 - Consider $R_4(A, C)$ \Rightarrow In BCNF by Lemma 3
 - Let $\theta = \{ \}$ and $\delta = \{R_1(B, D, E), R_3(B, C), R_4(A, C)\}$

- Question: Find a lossless-join BCNF decomposition of R
 - Method:
 - Algorithm 6
 - Let $\theta = \{ \}$ and $\delta = \{R_1(B, D, E), R_3(B, C), R_4(A, C)\}$
 - Done because $\theta = \{ \}$
 - $\delta = \{R_1(B, D, E), R_3(B, C), R_4(A, C)\}$

- Question: Is your BCNF decomposition dependency-preserving?
 - Method:
 - Compute union minimal cover of projection
 - $F_{R_1} \cup F_{R_2} \cup F_{R_3} = \{B \to DE, C \to B\} = G$
 - Consider $AB \rightarrow C$
 - Compute AB^+ w.r.t. G, $AB^+ = AB$
 - $G \not\Vdash AB \rightarrow C$

• Question: Find a lossless-join and dependency-preserving 3NF decomposition of R.

- Compute minimal cover (Algo 2)
 - Let $G = \{B \to D, AB \to C, C \to B, B \to E\}$ be one minimal cover

• Question: Find a lossless-join and dependency-preserving 3NF decomposition of R.

- Compute minimal cover (Algo 2)
 - Let $G = \{B \to D, AB \to C, C \to B, B \to E\}$ be one minimal cover
- Construct 3NF decomposition
 - $B \to D$ $\Rightarrow R_1(B, D)$
 - $AB \rightarrow C \Rightarrow R_2(A, B, C)$
 - $C \to B \Rightarrow R_3(B,C)$
 - Key: $\{A, B\} \Rightarrow R_4(A, B)$

• Question: Find a lossless-join and dependency-preserving 3NF decomposition of R.

- Compute minimal cover (Algo 2)
 - Let $G = \{B \to D, AB \to C, C \to B, B \to E\}$ be one minimal cover
- Construct 3NF decomposition
 - $B \to D$ $\Rightarrow R_1(B, D)$
 - $AB \rightarrow C \Rightarrow R_2(A, B, C)$
 - $C \to B \Rightarrow R_3(B,C)$
 - Key: $\{A, B\} \Rightarrow R_4(A, B)$
- Remove redundancy: $\delta = \{R_1(B, D, E), R_2(A, B, C)\}$