

Hearing Aid Compatibility (HAC) RF Emission Test Report

APPLICANT: Nubia Technology Co.,Ltd

PRODUCT NAME: LTE Digital Mobile Phone

MODEL NAME: NX627J

BRAND NAME: NUBIA

FCC ID : 2AHJO-NX627J

STANDARD(S) : 47CFR 20.19

ANSI C63.19-2011

RECEIPT DATE : 2019-08-23

TEST DATE : 2019-09-30 to 2019-10-15

ISSUE DATE : 2019-10-16

Edited by:

Liang Yumei (Rapporteur)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. Attestation of Testing Summary
2. Technical Information
2.1. Applicant and Manufacturer Information
2.2. Equipment under Test (EUT) Description
2.3. Photographs of the EUT····································
2.4. Applied Reference Documents ····································
3. RF Audio Interference Level···································
4. Air Interface and Operating Mode ····································
5. HAC (RF) Measurement System ····································
5.1. RF Measurement Setup····································
5.2. E-Field Probe
5.3. Data Acquisition Electronics (DAE)····································
6. RF Measurement Procedure···································
6.1. General Guidance····································
6.2. RF Test Instructions ······· 16
7. Test Equipment List······· 18
8. System Validation····································
8.1. Test setup
8.2. Validation Result····································
9. Modulation Interference Factor ······· 22
10. Conducted Power 23
11. Low-power Exemption 29
12. Summary Test Results 32
13. Uncertainty Assessment······ 33 Annex A General Information

Annex B Test Setup Photos
Annex C Plots of Performance System Check
Annex D Plots of RF Emission Test Results
Annex E DASY Calibration Certificate

Change History			
Version	Date	Reason for change	
1.0 2019-10-16		First edition	

1. Attestation of Testing Summary

Air Interface	Frequency Band	E-field M-Rating	
CSM CMPS Voice	GSM850	M3	
GSM CMRS Voice	GSM1900	M3	
CDMA	CDMA2000 BC0	M4	
	CDMA2000 BC1	M4	
	LTE Band 38	M4	
LTE	LTE Band 40	M4	
	LTE Band 41	M4	

2. Technical Information

Note: Provide by Applicant.

2.1. Applicant and Manufacturer Information

Applicant:	Nubia Technology Co.,Ltd		
Applicant Address	10/F, Tower A, Hans Innovation Mansion, North Ring Rd.,		
Applicant Address:	No.9018, High-Tech Park, Nanshan District, Shenzhen, China		
Manufacturer: Nubia Technology Co.,Ltd			
Manufacturer Address	10/F, Tower A, Hans Innovation Mansion, North Ring Rd.,		
Manufacturer Address:	No.9018, High-Tech Park, Nanshan District, Shenzhen, China		

2.2. Equipment under Test (EUT) Description

EUT Type:	LTE Digital Mobile Phone			
Hardware Version:	NX627J_V1MB			
Software Version:	NX627J_ENCommon_V1.00			
Frequency Bands:	GSM 850: 824.2 MHz ~ 848.8 MHz			
	GSM 1900: 1850.2 MHz ~ 1909.8 MHz			
	WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz			
	WCDMA Band IV: 1710 MHz ~ 1755 MHz			
	WCDMA Band V: 826.4 MHz ~ 846.6 MHz			
	CDMA BC 0: 824.7 MHz ~ 848.31 MHz			
	CDMA BC 1: 1850 MHz ~ 1910 MHz			
	LTE Band 2: 1850 MHz ~ 1910 MHz			
	LTE Band 4: 1710 MHz ~ 1755 MHz			
	LTE Band 5: 824 MHz ~ 849 MHz			
	LTE Band 7: 2500 MHz ~ 2570 MHz			
	LTE Band 12: 699 MHz ~ 716 MHz			
	LTE Band 17: 704 MHz ~ 716 MHz			
	LTE Band 18: 815 MHz ~ 830 MHz			
	LTE Band 19: 830 MHz ~ 845 MHz			
	LTE Band 25: 1850 MHz ~ 1915 MHz			
	LTE Band 26: 814 MHz ~ 849 MHz			
	LTE Band 30: 2305 MHz ~ 2315 MHz			
	LTE Band 38: 2570 MHz ~ 2620MHz			
	LTE Band 40A: 2305 MHz ~ 2315 MHz			
	LTE Band 40B: 2350 MHz ~ 2360 MHz			
	LTE Band 41: 2555 MHz ~ 2655 MHz			

	<u> </u>
	LTE Band 66: 1710 MHz ~ 1780 MHz
	WLAN 2.4GHz: 2412 MHz ~ 2462 MHz
	WLAN 5.2GHz: 5180 MHz ~ 5240 MHz
	WLAN 5.3GHz: 5260 MHz ~ 5320 MHz
	WLAN 5.5GHz: 5500 MHz ~ 5720 MHz
	WLAN 5.8GHz: 5745 MHz ~ 5825 MHz
	Bluetooth: 2402 MHz ~ 2480 MHz
Modulation Mode:	GSM/GPRS: GMSK
	EDGE: 8PSK
	WCDMA: QPSK/16QAM
	1XRTT: QPSK
	EV-DO Rev.0/A/B: QPSK
	LTE: QPSK/16QAM/64QAM
	802.11b: DSSS
	802.11a/g/n-HT20/HT40/ac-VHT20/ac-VHT40: OFDM
	BR+EDR: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8-DPSK(3Mbps)
	Bluetooth LE: GFSK(1Mbps), π/4-DQPSK(2Mbps)
Antenna type:	WWAN: Fixed Internal
	WLAN: PIFA Antenna
	Bluetooth: PIFA Antenna
Battery:	3900mAh/3.82V
SIM cards description:	For dual SIM card version, both the SIM 1 and SIM 2 are the same
	chipset unit and tested as a single chipset, the SIM 1 was selected
	for testing.

2.3. Photographs of the EUT

Note: Please refer to the External Photos for the Photos of the EUT

2.4. Applied Reference Documents

Leading reference documents for testing:

			Method	
No.	Identity	Document Title	determination	
			/Remark	
1	47 CFR§20.19	Hearing aid-compatible mobile handsets.	No deviation	
2	ANSI C63.19-2011	American National Standard Methods of		
		Measurement of Compatibility between	No deviation	
		Wireless Communications Devices and		
		Hearing Aids		
3	KDB 285076 D01v05	HAC Guidance	No deviation	

Tel: 86-755-36698555

3. RF Audio Interference Level

FCC wireless hearing aid compatibility rules ensure that consumers with hearing loss are able to access wireless communications services through a wide selection of handsets without experiencing disabling radio frequency (RF)interference or other technical obstacles. To define and measure the hearing aid compatibility of handsets, in CFR47 part 20.19 ANSI C63.19 is referenced.

A handset is considered hearing aid-compatible for acoustic coupling if it meets a rating of at least M3 under ANSI C63.19, and A handset is considered hearing aid compatible for inductive coupling if it meets a rating of at least T3. According to ANSI C63.19 2011 version, for acoustic coupling, the RF electric field emissions of wireless communication devices should be measured and rated according to the emission level as below.

Table 3.1 WD RF audio Interference level categories in logarithmic units

Emission Categories	E-field Emissions		
	<960MHz	>960MHz	
M1	50 to 55 dB (V/m)	45 to 50 dB (V/m)	
M2	45 to 50 dB (V/m)	35 to 40 dB (V/m)	
M3	40 to 45 dB (V/m)	30 to 35 dB (V/m)	
M4	<40 dB (V/m)	<30 dB (V/m)	

Table 3.2 System performance classification table

System classification	Category sum
	Hearing aid category + telephone category
Usable	Hearing aid category + telephone category = 4
Normal use	Hearing aid category + telephone category = 5
Excellent performance	Hearing aid category + telephone category = ≥6

4. Air Interface and Operating Mode

Air Interface	Band	Transport	Simultaneous	Name of	Power
7 III IIIICII GOC	Dana	Type	Transmitter	Voice Service	Reduction
	GSM850	VO	WLAN&BT	CMRS Voice	Yes
GSM	GSM1900	VO			Yes
GSIVI	EDGE850	DT	WLAN&BT	N/A	Yes
	EDGE1900	וט	WLANGDI	IN/A	Yes
WCDMA	Band II				Yes
(UMTS)	Band IV	VO	WLAN&BT	CMRS Voice	Yes
(OWTS)	Band V				Yes
	BC0	VO	WLAN&BT	CMRS Voice	No
CDMA	BC1	VO	WLAN&BT	CMRS Voice	Yes
	EVDO	DT	WLAN&BT	N/A	Yes
	Band 2				Yes
	Band 4				Yes
	Band 5			VoLTE	Yes
	Band 7	VD			Yes
	Band 12		WLAN&BT		Yes
FDD-LTE	Band 17				Yes
FDD-LIE	Band 18				Yes
	Band 19				Yes
	Band 25				Yes
	Band 26				Yes
	Band 30				Yes
	Band 66				Yes
	Band 38		WLAN&BT	VoLTE	Yes
TDD-LTE	Band 40	VD			Yes
	Band 41				Yes
	2450				No
	5200 (U-NII-1)		GSM, LTE,		No
WiFi	5300 (U-NII-2A)	DT	CDMA,	N/A	No
	5500 (U-NII-2C)		WCDMA		No
	5800 (U-NII-3)				No
ВТ	2450	DT	GSM, LTE, CDMA, WCDMA	N/A	No

Where:

VO=Voice Only

DT=Digital Transport only

VD=CMRS and IP Voice Service over Digital Transport

BT=Bluetooth

- * Ref Lev in accordance with 7.4.2.1 of ANSI C63.19-2011 and the July 2012 VoLTE interpretation
- ** Ref Lev -20 dBm0
- *** Ref Lev XYNet established by KDB Inquiry NNNNNN @ -16 dBm0

Note:

- 1) Air Interface/Band MHz: List of all air interfaces and bands supported by the handset.
- 2) Type: For each air interface, indicate the type of voice transport mode:
 - i. VO = legacy Cellular Voice Service, from Table 7.1 in 7.4.2.1 of ANSI C63.19-2011;
 - ii. DT = Digital Transport only (no voice); and
 - iii. VD = IP Voice Service over Digital Transport.
- 3) Simultaneous Transmitter: Indicate any air interface/bands that operate in simultaneous or concurrent service transmission mode.
- 4) Name of Voice Service: See Q4 in 285076 D03 HAC FAQ for further clarification.
 - a) Ref Lev in accordance with 7.4.2.1 of ANSI C63.19-2011 and the July 2012 VoLTE interpretation
 - b) ** Ref Lev -20 dBm0
 - c) *** Ref Lev XYNet established by KDB Inquiry NNNNNN @ -16 dBm0
- 5) Power Reduction: If the 1900 MHz band GSM air interface was tested using the option to reduce the power, state in the test report the maximum power in the 1900 MHz band, and the reduced power used for testing compliance to demonstrate compliance to the requirement that power be reduced by no more than 2.5 dB.
- 6) The EUT respectively defined the top and bottom antenna maximum output power in the software and the default antenna including TX & RX is the bottom antenna. The top and bottom antenna will switch antomatically according to the receiver signal strength and maximum transmission power level. When power reduction is applied, all of WWAN bands except CDMA 2000 BC0 will reduce power and the reduced power will be used for the top antenna RF Emission testing.

5. HAC (RF) Measurement System

5.1. RF Measurement Setup

Fig 5.1 SPEAG RF System Configurations

5.2. E-Field Probe

The RF measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use with high permittivity. The dosimetric probe has special calibration at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification

<ER3DV6>

	One dipole parallel, two dipoles normal to	6
Construction	probe axis	
	Built-in shielding against static charges	
Calibration	In air from 100 MHz to 3.0 GHz	
Calibration	(Absolute accuracy ±6.0%, k=2)	T
Frequency	10 MHz to 6 GHz;Linearity: ± 0.2 dB	
	± 0.2 dB in HSL (rotation around probe axis)	The state of the s
Directivity	± 0.4 dB in HSL (rotation normal to probe	
	axis)	
	2 V/m to 1000 V/m	1
Dynamic	(M3 or better device readings fall well below	
Range	diode	
	compression point)	A STATE OF THE PARTY OF THE PAR
Linearity	± 0.2 dB	
	Overall length: 330 mm (Tip: 16 mm)	
Dimensions	Tip diameter: 8 mm (Body: 12 mm)	
	Distance from probe tip to dipole centers: 2.5	
	mm	Fig 5.2 Photo of ER3DV6
l _		

Probe Tip Description:

HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10% per mm).

5.3. Data Acquisition Electronics (DAE)

The data acquisition electronics(DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.3 Photo of DAE

6. RF Measurement Procedure

6.1. General Guidance

Referenced from ANSI C63.19 -2011 section 5.5.1:

- 1. Confirm the proper operation of the field probe, probe measurement system, and other instrumentation and the positioning system.
- 2. Position the WD in its intended test position.
- 3. Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration.
- 4. The center sub-grid shall be centered on the T-Coil mode perpendicular measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane, refer to illustrated in Figure 8.2. If the field alignment method is used, align the probe for maximum field reception.
- 5. Record the reading at the output of the measurement system.
- 6. Scan the entire 50 mm by 50 mm region in equality spaced increments and record the reading at each measurement point, The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is
 the lowest of all available choices. This eliminates the three sub-grids with the maximum
 readings. Thus, the six areas to be used to determine the WD's highest emissions are
 identified.
- 8. Identify the maximum reading within the non-excluded sub-grids identified in step 7).
- 9. Convert the maximum reading identified in step 8) to RF audio interference level, in, V/m, by taking the square root of the reading and then dividing it by the measurement system transfer function, established in ANSI C63.19 -2011 section 5.5.1.1. Convert the result to dB(V/m) by taking the base-10 logarithm and multiplying it by 20. Expressed as a formula:

RF audio interference level in
$$dB(V/m) = 20 \times log(R_{max}^{1/2}/TF)$$
, where R_{max} is the maximum reading.

- The RF audio interference level in dB (V/m) is obtained by adding the MIF (in dB) to the maximum steady-state rms field-strength reading, in dB (V/m)
- 11. Compare this RF audio interference level with the categories in ANSI C63.19-2011 clause 8 and record the resulting WD category rating.

6.2. RF Test Instructions

Fig 6.1 WD near-field emission scan flowchart

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

Fig 6.2 WD reference and plane for RF emission measurements

Fig 6.3 Gauge block with E-field probe

7. Test Equipment List

Manufacturer	Name of Equipment	Turno/Model	Serial	Calibration	
Manufacturer	Name of Equipment	Type/Model	Number	Last Cal.	Due Date
SPEAG	Isotropic E-Field Probe	ER3DV6	2434	2018.10.18	2019.10.17
SPEAG	Audio Holder	N/A	1094	NCR	NCR
SPEAG	835MHz Calibration Dipole	CD835V3	1113	2018.10.23	2019.10.22
SPEAG	1880MHz Calibration Dipole	CD1880V3	1111	2018.10.23	2019.10.22
SPEAG	2450MHz Calibration Dipole	CD2450V3	1074	2018.11.23	2019.11.22
SPEAG	2600MHz Calibration Dipole	CD2600V3	1010	2018.10.23	2019.10.22
SPEAG	Data Acquisition Electronics	DAE4	480	2019.04.11	2020.04.10
R&S	Base Station	CMU200	107082	2019.09.10	2020.09.09
R&S	Network Emulator	CMW500	124534	2019.04.17	2020.04.16
Agilent	Power Meter	E4416A	MY45102093	2019.04.17	2020.04.16
Agilent	Signal Generator	N5182B	MY53050509	2018.11.23	2019.11.22
Anritsu	Power Sensor	MA2411B	N/A	2018.11.23	2019.11.22
Anritsu	Power Meter	NRVD	101066	2018.11.23	2019.11.22
mini-circuits	Amplifier	ZHL-42W+	608501717	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NA	NA

8. System Validation

According to ANSI C63.19, before hearing aid testing commences, the experimental setup shall be validated. Subclauses 6.3.1through 6.3.5 include a set of pretest procedures designed to validate the experimental setup to ensure the accuracy of the results. To verify that the hearing aid performs per the manufacturer's specifications, 6.3.5 advises that the hearing aid be pretested per ANSI S3.22.

8.1. Test setup

- 1. In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator.
- 2. Position the E-field probe at a 15 mm distance from the top surface of the dipole, which is also fixed in an appropriate fixture.
- 3. Make sure that the desired measuring channel of the probe is aligned for maximum reception of the E-field generated by the dipole. This may be accomplished by rotating the probe until the maximum value is located. The E-field probe shall have been calibrated over the frequency range to be measured using standard calibration techniques.
- 4. Adjust the power level (20dBm→100mW) of the signal generator at the initial starting frequency such that the desired E-field strength at the 15 mm distance from the tip of the dipole is achieved. Setting the field strength to be in the range of category M2 is advised.
- 5. Step the frequency in increments of ≤1%, adjusting the power fed into the dipole such that the desired E-field strength is maintained.

Fig 8.1 WD dipole calibration procedure

8.2. Validation Result

After testing, record the frequency and signal generator setting at each frequency for use during the actual immunity test. Comparing to the original E-field value provided by SPEAG, the verification data should be within its specification of 25 %. Table 6.1 shows the target value and measured value. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to appendix A of this report. Deviation = ((Average E-field Value) - (Target value)) / (Target value) * 100%

Frequency (MHz)	Input Power (mW)	Target Value (V/m)	E-Field above high end (V/m)	E-Field above low end (V/m)	Average Value (V/m)	Deviation (%)	Limit (%)	Date
835	100	110.80	120.78	120.5	120.64	8.88	±12.8	2019.09.30
1880	100	89.50	96.72	95.5	96.11	7.39	±12.8	2019.10.15
2450	100	86.80	94.51	92.26	93.385	7.59	±12.8	2019.09.30
2600	100	86.80	94.62	91.83	93.225	7.40	±12.8	2019.09.30

9. Modulation Interference Factor

The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF). For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level.

This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF.

The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63.19-2011. ER3D, EF3D and EU2D E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the indirect measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading. Probe Modulation Response (PMR) calibration linearizes the probe response over its dynamic range for specific modulations which are characterized by their UID and result in an uncertainty specified in the probe calibration certificate. The MIF is characteristic for a given waveform envelope and can be used as a constant conversion factor if the probe has been PMR calibrated. The evaluation method for the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is scaled to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty. It may alliteratively be determined through analysis and simulation, because it is constant and characteristic for a communication signal. DASY52 uses well-defined signals for PMR calibration. The MIF of these signals has been determined by simulation and it is automatically applied. The MIF measurement uncertainty is estimated as follows, declared by HAC equipment provider SPEAG, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz:

0.2 dB for MIF	0.5 dB for MIF	1 dB for MIF
-7dB to +5 dB	-13dB to +11 dB	> -20 dB

MIF values applied in this test report were provided by the HAC equipment provider of SPEAG, and the worst values for all air interface are listed below to be determine the Low-power Exemption.

UID	Communication System Name	MIF(dB)
10021	GSM-FDD(TDMA,GMSK)	3.63
10025	EDGE-FDD (TDMA, 8PSK, TN 0)	3.75
10460	UMTS-FDD(WCDMA, AMR)	-25.43
10225	UMTS-FDD (HSPA+)	-20.39
10081	CDMA2000 (1xRTT, RC3 Full Rate)	-19.71
10295	CDMA2000 (1xRTT, RC1 SO3, 1/8th Rate 25 fr.)	3.26
10403	CDMA2000 (1xEV-DO)	-17.67
10169	LTE-FDD(SC-FDMA,1RB,20MHz,QPSK)	-15.63
10170	LTE-FDD(SC-FDMA,1RB,20MHz,16-QAM)	-9.76
10179	LTE-FDD(SC-FDMA,1RB,20MHz,64-QAM)	-9.93
10181	LTE-FDD(SC-FDMA,1RB,15MHz,QPSK)	-15.63
10175	LTE-FDD(SC-FDMA,1RB,10MHz,QPSK)	-15.63
10177	LTE-FDD(SC-FDMA,1RB,5MHz,QPSK)	-15.63
10184	LTE-FDD(SC-FDMA,1RB,3MHz,QPSK)	-15.62
10187	LTE-FDD(SC-FDMA,1RB,1.4MHz,QPSK)	-15.62
10172	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	-1.62
10173	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	-1.44
10174	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	-1.54
10240	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	-1.62
10237	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	-1.62
10234	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	-1.62
10231	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	-1.62
10228	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	-1.62
10061	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	-2.02
10077	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	0.12
10427	IEEE 802.11n (HT Greeneld, 150 Mbps, 64-QAM)	-13.44
10069	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	-3.15
10616	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	-5.57

10. Conducted Power

> Full Power

<GSM >

GSM850	Burst A	Tune-up		
TX Channel	128 189 251			Limit
Frequency (MHz)	824.2 836.4 848.8			(dBm)
GSM	33.05 33.17 33.32			33.50

GSM1900	Burst Average Power (dBm)			Tune-up
TX Channel	512 661 810			Limit
Frequency (MHz)	1850.2 1880 1909.8			(dBm)
GSM	27.67 27.55 27.76			28.00

<CDMA 2000>

BC0	Burst Average Power (dBm)			Tune-up
TX Channel	1013 384 777			Limit
Frequency (MHz)	824.7	836.52	848.31	(dBm)
1xRTT RC1 SO3,1/8th Rate	23.31 23.34 23.26		23.50	

BC1	Burst Average Power (dBm)			Tune-up
TX Channel	25 600 1175			Limit
Frequency (MHz)	1851.25 1880 1908.75			(dBm)
1xRTT RC1 SO3,1/8th Rate	17.36 17.31 17.35			17.50

<TDD-LTE Band 38>

				Power	Power	Power	
BW	Modulation	RB Size	RB	Low	Middle	High	Tuna un
[MHz]	iviodulation	ND SIZE	Offset	Ch. /	Ch. /	Ch. /	Tune-up limit
				Freq.	Freq.	Freq.	
	Char	nnel		37850	38000	38150	(dBm)
	Frequenc	y (MHz)		2580	2595	2610	
20	QPSK	1	0	22.79	22.82	22.94	
20	QPSK	1	49	22.78	22.85	22.83	23.50
20	QPSK	1	99	22.74	22.72	22.72	
20	QPSK	50	0	21.98	22.01	22.10	
20	QPSK	50	24	21.94	22.01	22.01	22.50
20	QPSK	50	50	22.01	22.07	22.06	22.50
20	QPSK	100	0	21.98	22.08	22.04	

<TDD-LTE Band 40A>

				Power	Power	Power	
BW	Modulation	RB Size	RB	Low	Middle	High	Tuna un
[MHz]	iviodulation	KD SIZE	Offset	Ch. /	Ch. /	Ch. /	Tune-up
				Freq.	Freq.	Freq.	limit
	Char	nnel			38750		(dBm)
	Frequenc	y (MHz)			2310		
10	QPSK	1	0		22.66		
10	QPSK	1	25		22.60		23.00
10	QPSK	1	49		22.42		
10	QPSK	25	0		21.78		
10	QPSK	25	12		21.68		22.00
10	QPSK	25	25		21.69		22.00
10	QPSK	50	0		21.71		

<TDD-LTE Band 40B>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up
	Char	nel			39200		(dBm)
	Frequenc	y (MHz)			2355		
10	QPSK	1	0				
10	QPSK	1	25	22.77			23.00
10	QPSK	1	49		22.34		
10	QPSK	25	0		21.79		
10	QPSK	25	12	21.72			22.00
10	QPSK	25	25	21.64			22.00
10	QPSK	50	0		21.82		
10	16QAM	1	0		21.95		22.00

<TDD-LTE Band 41>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Low Ch. / Freq.	Power Middle High Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit (dBm)
	Chan	nel		40340	40600	40870	41140	
	Frequenc	y (MHz)		2565	2591	2618	2645	
20	QPSK	1	0	22.87	22.67	22.82	22.93	
20	QPSK	1	49	22.87	22.77	22.75	22.61	23.50
20	QPSK	1	99	22.94	22.80	22.68	22.61	
20	QPSK	50	0	22.15	21.87	22.03	22.04	
20	QPSK	50	24	22.09	22.08	21.96	21.89	22.50
20	QPSK	50	50	22.10	22.10	21.93	21.76	22.30
20	QPSK	100	0	22.12	22.04	21.94	21.92	

> Down Power

<GSM >

GSM850	Burst A	Tune-up		
TX Channel	128 189 251			Limit
Frequency (MHz)	824.2 836.4 848.8			(dBm)
GSM	30.60 30.80 31.00			31.00

GSM1900	Burst Av	verage Powe	Tune-up	
TX Channel	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)
GSM	25.04	25.12	25.05	25.50

<CDMA 2000>

BC1	Burst Av	verage Powe	Tune-up	
TX Channel	25	600	1175	Limit
Frequency (MHz)	1851.25	1880	1908.75	(dBm)
1xRTT RC1 SO3,1/8th Rate	15.44	15.39	15.43	15.50

<TDD-LTE Band 38>

				Power	Power	Power	
BW	Modulation	RB Size	RB	Low	Middle	High	Tung up
[MHz]	iviodulation	Modulation ND Size		Ch. /	Ch. /	Ch. /	Tune-up limit
				Freq.	Freq.	Freq.	
Channel				37850	38000	38150	(dBm)
Frequency (MHz)			2580	2595	2610		
20	QPSK	1	0	19.29	19.38	19.37	
20	QPSK	1	49	19.39	19.31	19.40	20.00
20	QPSK	1	99	19.22	19.25	19.30	
20	QPSK	50	0	18.47	18.47	18.56	
20	QPSK	50	24	18.49	18.53	18.53	10.00
20	QPSK	50	50	18.33	18.43	18.47	19.00
20	QPSK	100	0	18.45	18.58	18.48	

<TDD-LTE Band 40A>

BW			RB	Power Low	Power Middle	Power High	
[MHz]	Modulation	RB Size	Offset	Ch. /	Ch. /	Ch. /	Tune-up
				Freq.	Freq.	Freq.	limit
	Char	nnel			38750		(dBm)
Frequency (MHz)				2310			
10	QPSK	1	0				
10	QPSK	1	25		19.60		20.00
10	QPSK	1	49		19.42		
10	QPSK	25	0		18.78		
10	QPSK	25	12	18.68			19.00
10	QPSK	25	25	18.69			19.00
10	QPSK	50	0		18.71		

<TDD-LTE Band 40B>

				Power	Power	Power	
BW	Modulation	RB Size	RB	Low	Middle	High	T
[MHz]	Modulation	KD SIZE	Offset	Ch. /	Ch. /	Ch. /	Tune-up
				Freq.	Freq.	Freq.	limit
	Chan	nnel			39200		(dBm)
Frequency (MHz)				2355			
10	QPSK	1	0				
10	QPSK	1	25		19.77		20.00
10	QPSK	1	49		19.34		
10	QPSK	25	0		18.79		
10	QPSK	25	12		19.00		
10	QPSK	25	25	18.64			19.00
10	QPSK	50	0	18.82			

<TDD-LTE Band 41>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Low Ch. / Freq.	Power Middle High Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit (dBm)
	Channel			40340	40600	40870	41140	
	Frequency (MHz)		2565	2591	2618	2645		
20	QPSK	1	0	19.17	19.32	19.43	19.29	
20	QPSK	1	49	19.27	19.25	19.11	18.97	19.50
20	QPSK	1	99	19.30	19.18	19.11	18.97	
20	QPSK	50	0	18.37	18.53	18.54	18.40	
20	QPSK	50	24	18.58	18.46	18.39	18.25	22.50
20	QPSK	50	50	18.60	18.43	18.26	18.12	22.50
20	QPSK	100	0	18.54	18.44	18.42	18.28	

Note:

The EUT respectively defined the top and bottom antenna maximum output power in the software and the default antenna including TX & RX is the bottom antenna. The top and bottom antenna will switch antomatically according to the receiver signal strength and maximum transmission power level.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

11. Low-power Exemption

Ain Interes	Max Tune-up	Worst Case	Power +	C63.19 test
Air Interface	Limit (dBm)	MIF (dB)	MIF(dB)	required
GSM850	33.50	3.63	37.13	Yes
GSM1900	28.00	3.63	31.63	Yes
WCDMA Band II	20.00	-25.43	-5.43	No
WCDMA Band IV	21.50	-25.43	-3.93	No
WCDMA Band V	23.00	-25.43	-2.43	No
CDMA BC0 Full Rate	24.00	-19.71	4.29	No
CDMA BC0 1/8th Frame Rate	23.50	3.26	26.76	Yes
BC0 EVDO	24.00	-17.67	6.33	No
CDMA BC1 Full Rate	18.00	-19.71	-1.71	No
CDMA BC1 1/8th Frame Rate	17.50	3.26	20.76	Yes
BC1 EVDO	18.00	-17.67	0.33	No
LTE Band 2	20.00	-15.63	4.37	No
LTE Band 4	21.00	-15.63	5.37	No
LTE Band 5	23.00	-15.63	7.37	No
LTE Band 7	23.00	-15.63	7.37	No
LTE Band 12	23.00	-15.63	7.37	No
LTE Band 17	23.00	-15.63	7.37	No
LTE Band 18	23.00	-15.63	7.37	No
LTE Band 19	23.00	-15.63	7.37	No
LTE Band 25	20.50	-15.63	4.87	No
LTE Band 26	23.00	-15.63	7.37	No
LTE Band 30	22.00	-1.62	20.38	No
LTE Band 38	23.50	-15.63	7.87	Yes
LTE Band 40A	23.00	-15.63	7.37	Yes
LTE Band 40B	23.00	-15.63	7.37	Yes
LTE Band 41	23.50	-15.63	7.87	Yes
LTE Band 66	23.00	-15.63	7.37	Yes

Note:

- According to ANSI C63.19 2011-version, for the air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is ≤17 dBm for any of its operating modes.
- 2. For all of bands, the worst case of max tune-up limit will be test RF, therefore WCDMA modes is not necessary for testing.
- 3. HAC RF rating is M4 for the air interface which meets the low power exemption.

- 4. The power reduction is lower than the full power, so please use the full power for the exemption evaluation.
- 5. The EUT respectively defined the top and bottom antenna maximum output power in the software and the default antenna including TX & RX is the bottom antenna. The top and bottom antenna will switch antomatically according to the receiver signal strength and maximum transmission power level.

Tel: 86-755-36698555

Http://www.morlab.cn

12. Summary Test Results

Note: Full power for bottom antenna.

> Full Power

Plot No.	Air Interface	Mode	Channel	Average Antenna Input Power (dBm)	MIF	E-Field (dBV/m)	Margin to FCC M3 limit (dB)	E-Field M Rating
1	GSM850	GSM Voice	128	33.05	3.63	31.32	13.68	M4
2	GSM850	GSM Voice	189	33.17	3.63	31.84	13.16	M4
3	GSM850	GSM Voice	251	33.32	3.63	32.78	12.22	M4
4	GSM1900	GSM Voice	512	27.67	3.63	17.22	17.78	M4
5	GSM1900	GSM Voice	661	27.55	3.63	17.13	17.87	M4
6	GSM1900	GSM Voice	810	27.76	3.63	17.26	17.74	M4
7	CDMA BC0	1xRTT, RC1 SO3, 1/8th Rate	1013	23.31	3.26	12.83	32.17	M4
8	CDMA BC0	1xRTT, RC1 SO3, 1/8th Rate	384	23.34	3.26	12.87	32.13	M4
9	CDMA BC0	1xRTT, RC1 SO3, 1/8th Rate	777	23.26	3.26	12.85	32.15	M4
10	CDMA BC1	1xRTT, RC1 SO3, 1/8th Rate	25	17.36	3.26	12.81	22.19	M4
11	CDMA BC1	1xRTT, RC1 SO3, 1/8th Rate	600	17.31	3.26	12.34	22.66	M4
12	CDMA BC1	1xRTT, RC1 SO3, 1/8th Rate	1175	17.35	3.26	12.32	22.68	M4

Plot No.	Air Interface	Mode	Channel	Average Antenna Input Power (dBm)	MIF	E-Field (dBV/m)	Margin to FCC M3 limit (dB)	E-Field M Rating
13	LTE Band 38	QPSK/1RB#0/20MHz	37850	22.79	-1.62	18.38	16.62	M4
14	LTE Band 38	QPSK/1RB#0/20MHz	38000	22.82	-1.62	16.79	18.21	M4
15	LTE Band 38	QPSK/1RB#0/20MHz	38150	22.94	-1.62	15.11	19.89	M4
16	LTE Band 40A	QPSK/1RB#0/10MHz	38750	22.66	-1.62	18.02	16.98	M4
17	LTE Band 40B	QPSK/1RB#25/10MHz	39200	22.77	-1.62	18.83	16.17	M4
18	LTE Band 41	QPSK/1RB#99/20MHz	40340	22.94	-1.62	16.07	18.93	M4
19	LTE Band 41	QPSK/1RB#99/20MHz	40600	22.80	-1.62	17.20	17.80	M4
20	LTE Band 41	QPSK/1RB#99/20MHz	40870	22.68	-1.62	14.50	20.50	M4
21	LTE Band 41	QPSK/1RB#99/20MHz	41140	22.61	-1.62	15.78	19.22	M4

Down Power

Plot No.	Air Interface	Mode	Channel	Average Antenna Input Power (dBm)	MIF	E-Field (dBV/m)	Margin to FCC M3 limit (dB)	E-Field M Rating
1	GSM850	GSM Voice	128	30.60	3.63	42.86	2.14	М3
2	GSM850	GSM Voice	189	30.80	3.63	43.31	1.69	М3
3	GSM850	GSM Voice	251	31.00	3.63	43.07	1.93	М3
4	GSM1900	GSM Voice	512	25.04	3.63	33.94	1.06	М3
5	GSM1900	GSM Voice	661	25.12	3.63	33.54	1.46	М3
6	GSM1900	GSM Voice	810	25.05	3.63	33.53	1.47	М3
10	CDMA BC1	1xRTT, RC1 SO3, 1/8th Rate	25	15.44	3.26	12.10	22.90	M4
11	CDMA BC1	1xRTT, RC1 SO3, 1/8th Rate	600	15.39	3.26	11.88	23.12	M4
12	CDMA BC1	1xRTT, RC1 SO3, 1/8th Rate	1175	15.43	3.26	11.59	23.41	M4

Plot No.	Air Interface	Mode	Channel	Average Antenna Input Power (dBm)	MIF	E-Field (dBV/m)	Margin to FCC M3 limit (dB)	E-Field M Rating
13	LTE Band 38	QPSK/1RB#0/20MHz	37850	19.29	-1.62	25.64	9.36	M4
14	LTE Band 38	QPSK/1RB#0/20MHz	38000	19.38	-1.62	25.38	9.62	M4
15	LTE Band 38	QPSK/1RB#0/20MHz	38150	19.37	-1.62	25.24	9.76	M4
16	LTE Band 40A	QPSK/1RB#0/10MHz	38750	19.66	-1.62	29.43	5.57	M4
17	LTE Band 40B	QPSK/1RB#25/10MHz	39200	19.77	-1.62	28.91	6.09	M4
18	LTE Band 41	QPSK/1RB#99/20MHz	40340	19.30	-1.62	25.60	9.40	M4
19	LTE Band 41	QPSK/1RB#99/20MHz	40600	19.18	-1.62	25.27	9.73	M4
20	LTE Band 41	QPSK/1RB#99/20MHz	40870	19.11	-1.62	25.13	9.87	M4
21	LTE Band 41	QPSK/1RB#99/20MHz	41140	18.97	-1.62	25.06	9.94	M4

13. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed tolie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 12.1.

Annex A General Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.				
	Morlab Laboratory				
Laboratory Address:	Address: FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,				
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.				
	China				
Telephone:	+86 755 36698555				
Facsimile:	+86 755 36698525				

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.	
	Morlab Laboratory	
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,	
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.	
	China	

Annex C Plots of RF System Check

System Check_835MHz_HAC_RF_E

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 °C;

DASY5 Configuration:

- Probe: ER3DV6 SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;
- Sensor-Surface: (Fix Surface), Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn480; Calibrated: 2018.10.29
- Phantom: HAC Test Arch with AMC
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Hearing Aid Compatibility Test (81x401x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Maximum value of Total (interpolated) = 120.78 V/m

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 58.41 V/m; Power Drift = -0.10 dB

Applied MIF = 0.00 dB

RF audio interference level = 41.64 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3 41.13 dBV/m	Grid 3 M3 40.61 dBV/m
Grid 4 M4 36.92 dBV/m	Grid 6 3M4 5 M 4 36.43 dBV/m
Grid 7 M3 41.33 dBV/m	Grid 9 M3 40.55 dBV/m

0 dB = 120.78 V/m = 41.64 dBV/m

C; T

Date: 2019.09.30

System Check 1880MHz HAC RF E

Communication System: UID 0, CW (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C;

DASY5 Configuration:

- Probe: ER3DV6 SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;
- Sensor-Surface: (Fix Surface), Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn480; Calibrated: 2018.10.29
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Hearing Aid Compatibility Test (81x321x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Date: 2019.10.15

Maximum value of Total (interpolated) = 96.72 V/m

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 73.68 V/m; Power Drift = -0.12 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.71 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2 39.22 dBV/m		Grid 3 M2
Grid 4 M2	Grid 5 M2	Grid 6 M2
39.03 dBV/m	39.55 dBV/m	38.72 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.33 dBV/m	39.71 dBV/m	38.81 dBV/m

0 dB = 96.71 V/m = 39.71 dBV/m

System Check_2450MHz_HAC_RF_E

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 °C;

DASY5 Configuration:

- Probe: ER3DV6 SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;
- Sensor-Surface: (Fix Surface), Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn480; Calibrated: 2018.10.29
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Hearing Aid Compatibility Test (81x321x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Date: 2019.09.30

Maximum value of Total (interpolated) = 97.05 V/m

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 81.76 V/m; Power Drift = -0.13 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.74 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.96 dBV/m	39.30 dBV/m	38.13 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
39.26 dBV/m	39.74 dBV/m	38.78 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.14 dBV/m	39.51 dBV/m	38.39 dBV/m

0 dB = 97.05 V/m = 39.74 dBV/m

System Check_2600MHz_HAC_RF_E

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;
- Sensor-Surface: (Fix Surface), Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn480; Calibrated: 2018.10.29
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch2600/Hearing Aid Compatibility Test (81x321x1): Interpolated grid: dx=0.5000 mm,

Date: 2019.09.30

dy=0.5000 mm

Maximum value of Total (interpolated) = 96.49 V/m

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 81.72 V/m; Power Drift = -0.18 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.69 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.96 dBV/m	39.26 dBV/m	38.15 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
39.25 dBV/m	39.69 dBV/m	38.79 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.15 dBV/m	39.52 dBV/m	38.33 dBV/m

0 dB = 96.49 V/m = 39.69 dBV/m

REPORT No.: SZ19070123S01

Annex D Plots of RF Test Results

Http://www.morlab.cn

E-mail: service@morlab.cn

HAC RF_GSM850_GSM Voice_Ch128_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 824.2

Date: 2019.09.29

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Device E-Ch128/Hearing Aid Compatibility Test (101x101x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 26.82 V/m; Power Drift = 0.12 dB

Applied MIF = 3.63 dB

RF audio interference level = 30.24 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 27.97 dBV/m		Grid 3 M4
		Grid 6 M4
29.54 dBV/m	30.24 dBV/m	30.1 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
31.05 dBV/m	31.32 dBV/m	30.86 dBV/m

Cursor:

Total = 31.32 dBV/m

E Category: M4

Location: 0.5, 25, 8.7 mm

0 dB = 36.80 V/m = 31.32 dBV/m

HAC RF_GSM850_GSM Voice_Ch189_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 836.4

Date: 2019.09.29

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Device E-Ch189/Hearing Aid Compatibility Test (101x101x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 27.71 V/m; Power Drift = 0.05 dB

Applied MIF = 3.63 dB

RF audio interference level = 30.40 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
27.85 dBV/m	28.85 dBV/m	28.82 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
29.98 dBV/m	30.4 dBV/m	29.86 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
31.6 dBV/m	31.84 dBV/m	31.12 dBV/m

Cursor:

Total = 31.84 dBV/m E Category: M4

Location: 1, 25, 8.7 mm

0 dB = 39.10 V/m = 31.84 dBV/m

HAC RF_GSM850_GSM Voice_Ch251_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 848.6

Date: 2019.09.29

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Device E-Ch251/Hearing Aid Compatibility Test (101x101x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 30.16 V/m; Power Drift = -0.01 dB

Applied MIF = 3.63 dB

RF audio interference level = 31.22 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 28.32 dBV/m	Grid 3 M4 28.39 dBV/m
Grid 4 M4 30.93 dBV/m	Grid 6 M4 29.99 dBV/m
Grid 7 M4 32.58 dBV/m	Grid 9 M4 31.83 dBV/m

Cursor:

Total = 32.78 dBV/m E Category: M4

Location: 2, 25, 8.7 mm

0 dB = 43.56 V/m = 32.78 dBV/m

HAC RF_GSM1900_GSM Voice_Ch512_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1850.2

Date: 2019.09.29

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Device E-Ch512/Hearing Aid Compatibility Test (101x101x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.999 V/m; Power Drift = -0.15 dB

Applied MIF = 3.63 dB

RF audio interference level = 16.69 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
15.54 dBV/m	17.22 dBV/m	16.97 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
14.03 dBV/m	13.86 dBV/m	12.47 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
16.63 dBV/m	16.69 dBV/m	15.59 dBV/m

Cursor:

Total = 17.22 dBV/m E Category: M4

Location: -4.5, -25, 8.7 mm

0 dB = 7.258 V/m = 17.22 dBV/m

HAC RF_GSM1900_GSM Voice_Ch661_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1880

Date: 2019.09.29

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Device E-Ch661/Hearing Aid Compatibility Test (101x101x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.922 V/m; Power Drift = -0.02 dB

Applied MIF = 3.63 dB

RF audio interference level = 15.77 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
15 dBV/m	17.13 dBV/m	17.1 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
13.58 dBV/m	13.9 dBV/m	13.05 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
15.76 dBV/m	15.77 dBV/m	14.18 dBV/m

Cursor:

Total = 17.13 dBV/m E Category: M4

Location: -7, -25, 8.7 mm

0 dB = 7.186 V/m = 17.13 dBV/m

HAC RF_GSM1900_GSM Voice_Ch810_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1909.8

Date: 2019.09.29

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Device E-Ch810/Hearing Aid Compatibility Test (101x101x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.939 V/m; Power Drift = 0.11 dB

Applied MIF = 3.63 dB

RF audio interference level = 15.60 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
15.1 dBV/m	17.26 dBV/m	17.19 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
14.08 dBV/m	13.92 dBV/m	12.82 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
15.58 dBV/m	15.6 dBV/m	14.45 dBV/m

Cursor:

Total = 17.26 dBV/m E Category: M4

Location: -6.5, -25, 8.7 mm

0 dB = 7.296 V/m = 17.26 dBV/m

HAC RF_CDMA2000 BC0_RC1 SO3_Ch1013_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

815.04 MHz;Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1013/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.494 V/m; Power Drift = 0.07 dB

Applied MIF = 3.26 dB

RF audio interference level = 12.83 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
11.84 dBV/m	10.47 dBV/m	9.86 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.71 dBV/m	12.83 dBV/m	9.7 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
12.09 dBV/m	11.03 dBV/m	9.6 dBV/m

Cursor:

Total = 12.83 dBV/m E Category: M4

Location: 0, 0.5, 8.7 mm

0 dB = 4.378 V/m = 12.83 dBV/m

HAC RF_CDMA2000 BC0_RC1 SO3_Ch384_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

836.52 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.1 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch384/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dv=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.508 V/m; Power Drift = 0.07 dB

Applied MIF = 3.26 dB

RF audio interference level = 12.65 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
12.24 dBV/m	10.29 dBV/m	8.42 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.68 dBV/m	12.65 dBV/m	8.31 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
12.87 dBV/m	10.34 dBV/m	7.64 dBV/m

Cursor:

Total = 12.87 dBV/m E Category: M4

Location: 20.5, 14.5, 8.7 mm

0 dB = 4.400 V/m = 12.87 dBV/m

HAC RF_CDMA2000 BC0_RC1 SO3_Ch777_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

848.97 MHz;Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch777/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.400 V/m; Power Drift = 0.10 dB

Applied MIF = 3.26 dB

RF audio interference level = 12.40 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
11.82 dBV/m	10.82 dBV/m	9.57 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.85 dBV/m	12.4 dBV/m	8.96 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
12.33 dBV/m	11.02 dBV/m	8.85 dBV/m

Cursor:

Total = 12.85 dBV/m E Category: M4

Location: 21, 0.5, 8.7 mm

0 dB = 4.388 V/m = 12.85 dBV/m

HAC RF_CDMA2000 BC1_RC1 SO3_Ch25_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

1851.25 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch25/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.359 V/m; Power Drift = -0.11 dB

Applied MIF = 3.26 dB

RF audio interference level = 12.81 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
11.83 dBV/m	10.83 dBV/m	9.54 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.19 dBV/m	12.81 dBV/m	9.73 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
11.88 dBV/m	11.04 dBV/m	9.33 dBV/m

Cursor:

Total = 12.81 dBV/m E Category: M4

Location: 0.5, 0.5, 8.7 mm

0 dB = 4.368 V/m = 12.81 dBV/m

HAC RF_CDMA2000 BC1_RC1 SO3_Ch600_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

1880 MHz;Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch600/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.223 V/m; Power Drift = 0.02 dB

Applied MIF = 3.26 dB

RF audio interference level = 11.77 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 11.47 dBV/m		Grid 3 M4 7.97 dBV/m
	Grid 5 M4	Grid 6 M4
Grid 7 M4 11.25 dBV/m		Grid 9 M4 7.61 dBV/m

Cursor:

Total = 12.34 dBV/m E Category: M4

Location: 25, 0, 8.7 mm

0 dB = 4.141 V/m = 12.34 dBV/m

HAC RF_CDMA2000 BC1_RC1 SO3_Ch1175_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

1909.95 MHz;Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1175/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.355 V/m; Power Drift = -0.16 dB

Applied MIF = 3.26 dB

RF audio interference level = 12.32 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
11.9 dBV/m	10.28 dBV/m	8.43 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.06 dBV/m	12.32 dBV/m	8.46 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
11.78 dBV/m	10.2 dBV/m	8.64 dBV/m

Cursor:

Total = 12.32 dBV/m E Category: M4

Location: 0.5, 0.5, 8.7 mm

0 dB = 4.129 V/m = 12.32 dBV/m

HAC RF_LTE Band 38_20M_QPSK_1RB_0offset_12.2Kbps_Ch37850_E

Communication System: UID 10173 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM);

Date: 2019.09.29

Frequency: 2580 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch37850/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 8.249 V/m; Power Drift = 0.03 dB

Applied MIF = -1.44 dB

RF audio interference level = 16.33 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
16.54 dBV/m	18.35 dBV/m	18.38 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
13.19 dBV/m	16.33 dBV/m	16.15 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
11.47 dBV/m	13.11 dBV/m	12.83 dBV/m

Cursor:

Total = 18.38 dBV/m E Category: M4

Location: -10, -25, 8.7 mm

0 dB = 8.298 V/m = 18.38 dBV/m

HAC RF_LTE Band 38_20M_QPSK_1RB_0offset_12.2Kbps_Ch38000_E

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Date: 2019.09.29

Frequency: 2595 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38000/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 6.548 V/m; Power Drift = -0.05 dB

Applied MIF = -1.62 dB

RF audio interference level = 16.30 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
12.1 dBV/m	16.57 dBV/m	16.79 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
11.82 dBV/m	16.3 dBV/m	16.66 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
13.89 dBV/m	13.81 dBV/m	15.19 dBV/m

Cursor:

Total = 16.79 dBV/m E Category: M4

Location: -14, -13, 8.7 mm

0 dB = 6.908 V/m = 16.79 dBV/m

HAC RF_LTE Band 38_20M_QPSK_1RB_0offset_12.2Kbps_Ch38150_E

Communication System: UID 10103 - CAB, LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK);

Date: 2019.09.29

Frequency: 2619.9 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38150/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 5.449 V/m; Power Drift = 0.05 dB

Applied MIF = -1.64 dB

RF audio interference level = 14.56 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
10.31 dBV/m	14.85 dBV/m	15.11 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
11.53 dBV/m	14.56 dBV/m	15.01 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
12.78 dBV/m	12.2 dBV/m	13.92 dBV/m

Cursor:

Total = 15.11 dBV/m E Category: M4

Location: -14, -13.5, 8.7 mm

0 dB = 5.692 V/m = 15.11 dBV/m

HAC RF_LTE Band 40A_10M_QPSK_1RB_0offset_12.2Kbps_Ch38750_E

Date: 2019.09.29

Communication System: UID 10237 - CAB, LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK);

Frequency: 2310 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38750/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 8.393 V/m; Power Drift = -0.17 dB

Applied MIF = -1.62 dB

RF audio interference level = 16.14 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
16.23 dBV/m	18.01 dBV/m	18.02 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
13.05 dBV/m	16.14 dBV/m	16.03 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
11.1 dBV/m	12.9 dBV/m	12.88 dBV/m

Cursor:

Total = 18.02 dBV/m E Category: M4

Location: -9.5, -25, 8.7 mm

0 dB = 7.957 V/m = 18.01 dBV/m

HAC RF_LTE Band 40B_10M_QPSK_1RB_25offset_12.2Kbps_Ch39200_E

Date: 2019.09.29

Communication System: UID 10237 - CAB, LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK);

Frequency: 2355 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch39200/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 7.311 V/m; Power Drift = -0.07 dB

Applied MIF = -1.62 dB

RF audio interference level = 16.37 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
15.76 dBV/m	18.69 dBV/m	18.83 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.54 dBV/m	16.37 dBV/m	16.54 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
11.3 dBV/m	12.5 dBV/m	12.44 dBV/m

Cursor:

Total = 18.83 dBV/m E Category: M4

Location: -12, -25, 8.7 mm

0 dB = 8.744 V/m = 18.83 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch40340_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2565 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.1 °C

DASY5 Configuration:

- Probe: ER3DV6 SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn480; Calibrated: 2019.04.11
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch40340/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dv=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 7.435 V/m; Power Drift = -0.02 dB

Applied MIF = -1.62 dB

RF audio interference level = 15.84 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
12.08 dBV/m	16.03 dBV/m	16.07 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
11.84 dBV/m	15.84 dBV/m	15.93 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
9.2 dBV/m	13.67 dBV/m	14.1 dBV/m

Cursor:

Total = 16.07 dBV/m E Category: M4

Location: -11, -13.5, 8.7 mm

0 dB = 6.362 V/m = 16.07 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch40600_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2591 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch40600/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 8.013 V/m; Power Drift = -0.06 dB

Applied MIF = -1.62 dB

RF audio interference level = 16.93 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
12.83 dBV/m	17.14 dBV/m	17.2 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
11.73 dBV/m	16.93 dBV/m	17.06 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
10.27 dBV/m	14.45 dBV/m	15.21 dBV/m

Cursor:

Total = 17.20 dBV/m E Category: M4

Location: -11.5, -13, 8.7 mm

0 dB = 7.241 V/m = 17.20 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch40870_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2618 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch40870/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 6.092 V/m; Power Drift = -0.09 dB

Applied MIF = -1.62 dB

RF audio interference level = 14.07 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 10.32 dBV/m		Grid 3 M4
	Grid 5 M4	Grid 6 M4
	Grid 8 M4	Grid 9 M4

Cursor:

Total = 14.50 dBV/m E Category: M4

0 dB = 5.308 V/m = 14.50 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch41140_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2645 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch41140/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 8.711 V/m; Power Drift = -0.10 dB

Applied MIF = -1.62 dB

RF audio interference level = 15.74 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
12.94 dBV/m	15.78 dBV/m	15.63 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.8 dBV/m	15.74 dBV/m	15.62 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
9.18 dBV/m	13.76 dBV/m	13.76 dBV/m

Cursor:

Total = 15.78 dBV/m E Category: M4

0 dB = 6.155 V/m = 15.78 dBV/m

HAC RF_GSM850_GSM Voice_Ch128_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 824.2

Date: 2019.09.30

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch128/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 128.0 V/m; Power Drift = -0.02 dB

Applied MIF = 3.63 dB

RF audio interference level = 42.05 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M4 33.69 dBV/m		Grid 3 M4 37.88 dBV/m
	Grid 5 M3	Grid 6 M3
	Grid 8 M3	Grid 9 M3

Cursor:

Total = 42.86 dBV/m E Category: M3

Location: -1, 19, 8.7 mm

0 dB = 139.0 V/m = 42.86 dBV/m

HAC RF_GSM850_GSM Voice_Ch189_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 836.6

Date: 2019.09.30

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch189/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 132.7 V/m; Power Drift = -0.02 dB

Applied MIF = 3.63 dB

RF audio interference level = 42.44 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
33.87 dBV/m	38.35 dBV/m	38.25 dBV/m
Grid 4 M4	Grid 5 M3	Grid 6 M3
39.23 dBV/m	42.44 dBV/m	41.09 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.59 dBV/m	43.31 dBV/m	41.51 dBV/m

Cursor:

Total = 43.31 dBV/m E Category: M3

0 dB = 146.3 V/m = 43.30 dBV/m

HAC RF GSM850 GSM Voice Ch251 E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 848.6

Date: 2019.09.30

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch251/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 126.4 V/m; Power Drift = 0.04 dB

Applied MIF = 3.63 dB

RF audio interference level = 42.14 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
33.38 dBV/m	38.19 dBV/m	38.08 dBV/m
Grid 4 M4	Grid 5 M3	Grid 6 M3
38.82 dBV/m	42.14 dBV/m	40.92 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.31 dBV/m	43.07 dBV/m	41.36 dBV/m

Cursor:

Total = 43.07 dBV/m E Category: M3

0 dB = 142.3 V/m = 43.07 dBV/m

HAC RF_GSM1900_GSM Voice_Ch512_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1850.2

Date: 2019.10.15

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch512/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.92 V/m; Power Drift = -0.03 dB

Applied MIF = 3.63 dB

RF audio interference level = 31.09 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3 30.84 dBV/m	Grid 3 M3 33.16 dBV/m
Grid 4 M4 27.96 dBV/m	Grid 6 M3 30.93 dBV/m
Grid 7 M4 27.68 dBV/m	Grid 9 M4 29.81 dBV/m

Cursor:

Total = 33.94 dBV/m E Category: M3

Location: -2, -21, 8.7 mm

0 dB = 49.75 V/m = 33.94 dBV/m

HAC RF_GSM1900_GSM Voice_Ch661_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1880

Date: 2019.10.15

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch661/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 17.52 V/m; Power Drift = 0.18 dB

Applied MIF = 3.63 dB

RF audio interference level = 30.71 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3	Grid 2 M3	Grid 3 M3
30.4 dBV/m	33.54 dBV/m	32.77 dBV/m
Grid 4 M4	Grid 5 M3	Grid 6 M3
27.44 dBV/m	30.71 dBV/m	30.55 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
27.14 dBV/m	29.82 dBV/m	29.61 dBV/m

Cursor:

Total = 33.54 dBV/m

E Category: M3

0 dB = 47.54 V/m = 33.54 dBV/m

HAC RF_GSM1900_GSM Voice_Ch810_E

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1909.8

Date: 2019.10.15

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.58 V/m; Power Drift = -0.09 dB

Applied MIF = 3.63 dB

RF audio interference level = 30.72 dBV/m

Emission category: M3

MIF scaled E-field

		Grid 3 M3
30.41 dBV/m	33.53 dBV/m	32.83 dBV/m
Grid 4 M4	Grid 5 M3	Grid 6 M3
27.38 dBV/m	30.72 dBV/m	30.66 dBV/m
Grid 7 M4	Grid 8 M3	Grid 9 M4
27.37 dBV/m	30.13 dBV/m	29.98 dBV/m

Cursor:

Total = 33.53 dBV/m

E Category: M3

0 dB = 47.47 V/m = 33.53 dBV/m

HAC RF_CDMA2000 BC1_RC1 SO3_Ch25_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

1851.25 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch25/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.609 V/m; Power Drift = -0.07 dB

Applied MIF = 3.26 dB

RF audio interference level = 11.32 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
10.95 dBV/m	12.1 dBV/m	11.67 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
10.57 dBV/m	11.32 dBV/m	11.13 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
10.54 dBV/m	10.87 dBV/m	11.25 dBV/m

Cursor:

Total = 12.10 dBV/m E Category: M4

Location: -0.5, -20, 8.7 mm

0 dB = 4.025 V/m = 12.10 dBV/m

HAC RF_CDMA2000 BC1_RC1 SO3_Ch600_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

1880 MHz;Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch600/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.668 V/m; Power Drift = -0.06 dB

Applied MIF = 3.26 dB

RF audio interference level = 10.94 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
11.38 dBV/m	11.88 dBV/m	10.47 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
11.32 dBV/m	10.94 dBV/m	10.1 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
10.88 dBV/m	10.78 dBV/m	9.99 dBV/m

Cursor:

Total = 11.88 dBV/m E Category: M4

Location: -4, -25, 8.7 mm

0 dB = 3.926 V/m = 11.88 dBV/m

HAC RF_CDMA2000 BC1_RC1 SO3_Ch1175_E

Communication System: UID 10295 - AAB, CDMA2000, RC1, SO3, 1/8th Rate 25 fr.; Frequency:

Date: 2019.10.09

1909.95 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1175/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 2.397 V/m; Power Drift = 0.18 dB

Applied MIF = 3.26 dB

RF audio interference level = 11.25 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
10.92 dBV/m	11.59 dBV/m	11.28 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
10.61 dBV/m	11.25 dBV/m	10.54 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
10.57 dBV/m	11.14 dBV/m	10.75 dBV/m

Cursor:

Total = 11.59 dBV/m E Category: M4

Location: 4, -15, 8.7 mm

0 dB = 3.800 V/m = 11.60 dBV/m

HAC RF_LTE Band 38_20M_QPSK_1RB_0offset_12.2Kbps_Ch37850_E

Communication System: UID 10173 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM);

Date: 2019.09.30

Frequency: 2580 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch37850/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.47 V/m; Power Drift = -0.07 dB

Applied MIF = -1.44 dB

RF audio interference level = 24.33 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.4 dBV/m	25.64 dBV/m	25.31 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.66 dBV/m	24.33 dBV/m	24.35 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.23 dBV/m	23.46 dBV/m	23.47 dBV/m

Cursor:

Total = 25.64 dBV/m

E Category: M4

0 dB = 19.13 V/m = 25.63 dBV/m

HAC RF_LTE Band 38_20M_QPSK_1RB_0offset_12.2Kbps_Ch38000_E

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Date: 2019.09.30

Frequency: 2595 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38000/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.76 V/m; Power Drift = -0.11 dB

Applied MIF = -1.62 dB

RF audio interference level = 24.23 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.23 dBV/m	25.38 dBV/m	25.1 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.75 dBV/m	24.23 dBV/m	24.24 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.08 dBV/m	23.15 dBV/m	23.15 dBV/m

Cursor:

Total = 25.38 dBV/m E Category: M4

0 dB = 18.58 V/m = 25.38 dBV/m

HAC RF_LTE Band 38_20M_QPSK_1RB_0offset_12.2Kbps_Ch38150_E

Communication System: UID 10103 - CAB, LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK);

Date: 2019.09.30

Frequency: 2619.9 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38150/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.97 V/m; Power Drift = -0.05 dB

Applied MIF = -1.64 dB

RF audio interference level = 24.21 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.03 dBV/m	25.24 dBV/m	24.95 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.64 dBV/m	24.21 dBV/m	24.22 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.19 dBV/m	23.15 dBV/m	23.15 dBV/m

Cursor:

Total = 25.24 dBV/m

E Category: M4

0 dB = 18.27 V/m = 25.23 dBV/m

HAC RF_LTE Band 40A_10M_QPSK_1RB_0offset_12.2Kbps_Ch38750_E

Date: 2019.09.30

Communication System: UID 10237 - CAB, LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK);

Frequency: 2310 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch38750/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 29.77 V/m; Power Drift = -0.06 dB

Applied MIF = -1.62 dB

RF audio interference level = 27.65 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 25.13 dBV/m	Grid 3 M4 28.96 dBV/m
Grid 4 M4 24.01 dBV/m	Grid 6 M4 27.61 dBV/m
Grid 7 M4 23.3 dBV/m	Grid 9 M4 26.41 dBV/m

Cursor:

Total = 29.43 dBV/m E Category: M4

Location: -4.5, -20, 8.7 mm

0 dB = 29.63 V/m = 29.43 dBV/m

HAC RF_LTE Band 40B_10M_QPSK_1RB_25offset_12.2Kbps_Ch39200_E

Date: 2019.09.30

Communication System: UID 10237 - CAB, LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK);

Frequency: 2355 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch39200/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 27.91 V/m; Power Drift = -0.06 dB

Applied MIF = -1.62 dB

RF audio interference level = 27.16 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
24.52 dBV/m	28.91 dBV/m	28.47 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
23.5 dBV/m	27.16 dBV/m	27.13 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
22.74 dBV/m	25.78 dBV/m	25.78 dBV/m

Cursor:

Total = 28.91 dBV/m E Category: M4

Location: -5, -20, 8.7 mm

0 dB = 27.91 V/m = 28.92 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch40340_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2565 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch40340/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 19.24 V/m; Power Drift = -0.07 dB

Applied MIF = -1.62 dB

RF audio interference level = 24.21 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.26 dBV/m	25.6 dBV/m	25.26 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.5 dBV/m	24.21 dBV/m	24.23 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.29 dBV/m	23.6 dBV/m	23.6 dBV/m

Cursor:

Total = 25.60 dBV/m E Category: M4

Location: -5.5, -20, 8.7 mm

0 dB = 19.05 V/m = 25.60 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch40600_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2591 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.2 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch40600/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.35 V/m; Power Drift = -0.14 dB

Applied MIF = -1.62 dB

RF audio interference level = 24.05 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
21.13 dBV/m	25.27 dBV/m	24.96 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.55 dBV/m	24.05 dBV/m	24.06 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
20.9 dBV/m	23 dBV/m	23 dBV/m

Cursor:

Total = 25.27 dBV/m

E Category: M4

0 dB = 18.35 V/m = 25.27 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_99offset_12.2Kbps_Ch40870_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2618 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch40870/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.98 V/m; Power Drift = -0.04 dB

Applied MIF = -1.62 dB

RF audio interference level = 24.12 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.01 dBV/m	25.13 dBV/m	24.83 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.63 dBV/m	24.12 dBV/m	24.12 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.11 dBV/m	23.01 dBV/m	23.02 dBV/m

Cursor:

Total = 25.13 dBV/m E Category: M4

0 dB = 18.04 V/m = 25.12 dBV/m

HAC RF_LTE Band 41_20M_QPSK_1RB_ 99 offset_12.2Kbps_Ch41140_E

Date: 2019.09.30

Communication System: UID 10172 - CAB, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK);

Frequency: 2645 MHz; Duty Cycle: 1:1.59

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.2 ℃

DASY5 Configuration:

- Probe: ER3DV6 - SN2434; ConvF(1, 1, 1); Calibrated: 2018.10.18;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn480; Calibrated: 2019.04.11

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch41140/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 20.14 V/m; Power Drift = -0.10 dB

Applied MIF = -1.62 dB

RF audio interference level = 24.17 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.1 dBV/m	25.06 dBV/m	24.75 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.93 dBV/m	24.17 dBV/m	24.16 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
20.91 dBV/m	22.69 dBV/m	22.69 dBV/m

Cursor:

Total = 25.06 dBV/m E Category: M4

0 dB = 17.90 V/m = 25.06 dBV/m