О сверхсходящихся численных схемах метода граничных элементов

Петров А.Г. (ИПМех РАН)

История метода граничных элементов в гидродинамике

$$AV(s) + B\Phi(s) = k\Phi(s)$$

- 1. Воинов В.В., Воинов О.В., Петров А.Г. Метод расчета потенциального обтекания тела вращения потоком несжимаемой жидкости// ЖВМ и МФ. Т.14. № 3. 1974 г.
- 2. Воинов В.В., Воинов О.В. Численный метод расчета нестационарных движений идеальной жидкости со свободными поверхностями// ДАН СССР. Т. 221. N3. 1975
- 3. Воинов В.В., Воинов О.В. О схеме захлопывания кавитационного пузыря около стенки и образования кумулятивной струйки // ДАН СССР. Т. 227. N1. 1976 г.

- 4. Brebia C.A., Dominguez J. The Boundery Element Method for Potential Problem// Applied Mathematical Modelling. 1977.
- 5. Векуа И.Н. Новые методы решения эллиптических уравнений. М.: Гостехиздат, 1948.
- 6. Петров А.Г., Смолянин В.Г. Расчет профиля капиллярно-гравитационной волны на поверхности тяжелой жидкости конечной глубины. Вестник МГУ, №3, 1991г. С. 92-96
- 7. Петров А.Г. Квадратурные формулы для периодических функций и их применение в методе граничных элементов // Ж.В.М. и М.Ф. 2008. 48, № 8. 1344—1361.

Квадратурные формулы

Brebia C.A., Banerjee P.K., Butterfield R.

Координаты узлов и весовые множители

для
$$\int_{0}^{1} \ln (1/x) f(x) dx \approx \sum A_{i} f(x_{i})$$

x _i		. A _i			
	i = 2				
0.1120088061 6697618295	7205488948	0.7185393190 3038444066 5510200891			
0.6022769081 1873810275	7080225338	0.2814606809 6961555933 4489799109			
	i = 3				
(-1) 0.6389079308 7325404996	1166031363	0.5134045522 3236332512 9300497567			
0.3689970637 1561876554		0.3919800412 0148755480 6287180966			
0.7668803039 3894145542	3682659817 (-1)	0.9461540656 6149120064 4123214672			
	i = 4				
(-1) 0.4144848019 9383220803	3213101564	0.3834640681 4513512485 0046522343			
0.2452749143 2060225193	9675759523	0.3868753177 7476262733 6008234554			
0.5561654535 6027583718	0184354376	D.1904351269 5014241536 1360014547			
0.8489823945 3298517464	7849188085 (-1)	0.3922548712 9959832452 5852285552			
0.0403023943 329831 /404	1049100003 (-1)	U.3924346112 3937632432 3632263332			

Белых В. Н. К проблеме конструирования ненасыщаемых квадратурных формул на отрезке//Мат. Сборник. Том 210, № 1. 2019. С. 27-62.

Построены ненасыщаемые хорошо обусловленные с весовой функцией из Lp[I], $1 , квадратурные формулы на конечном отрезке I. Для частных видов весовых функций, имеющих важные приложения, указаны алгоритмы эффективного вычисления всех параметров квадратур. Для С<math>\infty$ -гладких подынтегральных функций ответ конструируется с абсолютно неулучшаемой экспоненциальной оценкой погрешности. Неулучшаемость оценки обусловлена асимптотикой Александровского n-поперечника компакта $C\infty$ -гладких функций.

ТЕОРЕМА 10. Ненасыщаемые квадратурные формулы с весовыми функциями $r(t) = -\ln|t|$ и r(t) = 1 по нулям $t_k = \cos\frac{\pi(2k-1)}{2n}$, $1 \le k \le n$, $n \ge 2$, многочлена $T_n(x) = \cos(n\arccos x)$ степени n имеют соответственно следующий вид:

$$-\int_{-1}^{+1} f(t) \ln|t| dt = \sum_{k=1}^{n} a_k f(t_k) + \wp_n^D(f), \qquad |\wp_n^D(f)| \leqslant \left(2 + \sum_{k=1}^{n} |a_k|\right) E_n(f), \tag{5.11}$$

$$\int_{-1}^{+1} f(t) dt = \sum_{k=1}^{n} A_k f(t_k) + \wp_n^C(f), \qquad |\wp_n^C(f)| \leqslant \left(2 + \sum_{k=1}^{n} |A_k|\right) E_n(f). \quad (5.12)$$

Здесь

$$a_k = 2(-1)^{k-1} \frac{\sqrt{1-t_k^2}}{n} T^D(n, t_k), \qquad A_k = 2(-1)^{k-1} \frac{\sqrt{1-t_k^2}}{n} T^C(n, t_k),$$

а функции

$$T^{D}(n,x) = \sum_{m=1}^{[n/2]} D_m T_{n+1-2m}(x) + \frac{1 - (-1)^n}{4} D_{[(n+1)/2]},$$
$$T^{C}(n,x) = \sum_{m=1}^{[n/2]} C_m T_{n+1-2m}(x) + \frac{1 - (-1)^n}{4} C_{[(n+1)/2]}$$

вычисляются по предварительно рассчитанным коэффициентам $D_m, C_m, 1 \leq m \leq [(n+1)/2]$ (см. лемму 5).

ЛЕММА 5. Для коэффициен тов α_n и β_n верны рекуррентные формулы

$$\alpha_n = \frac{1 - (-1)^n}{2} C_{[(n+1)/2]}, \qquad C_j = \frac{1}{j - 0.5}, \quad j \ge 2, \quad C_1 = 2,$$

$$\beta_n = \frac{1 - (-1)^n}{2} D_{[(n+1)/2]},$$

$$D_j = -\frac{j - 1.5}{j - 0.5} D_{j-1} - \frac{0.5}{(j - 0.5)^2 (j - 1.5)}, \quad j \ge 2, \qquad D_1 = 2.$$

3 десь через [x] обозначено целое число, ближайшее слева κx .

Линейные операторы, действующие на периодические функции

$$\Phi(z) = \int_0^1 H(z'-z)F(z')dz', \quad \Phi(z_i) = \sum_{j=1}^N g_{ij} F(z_j)$$

Алгоритм определения коэффициентов квадратурной формулы. Коэффициенты квадратурной формулы находятся из системы линейных уравнений. Она получается применением квадратурной формулы к последовательности тригонометрических функций,

$$F(z) = 1, \cos x, \cos 2x, ..., \cos(M-1)x, \cos Mx,$$

 $\sin x, \sin 2x, ..., \sin(M-1)x, \quad x = 2\pi z, \quad M = N/2$

для которых квадратурная формула точна.

Крылов В.И. Приближенное вычисление интегралов. М. 1967. 500 с.

Петров А.Г. Численные схемы без насыщения для периодических функций //2018, том 481, N^{o} 4, с. 362–366

Таблица квадратурных $\int_{0}^{1} H(z'-z_{i})F(z')dz' = \sum g_{j-i}F_{j}$ формул

$$\int_0^1 H(z'-z_i)F(z')dz' = \sum_{i=1}^N g_{j-i}F_j$$

$$\int_0^1 H(z-z_i) F_N(z) dz = \sum_{j=1}^N g_{j-i} F_N(z_j), \quad F_N(z) = \sum_{n=0}^{M-1} \left(a_n \cos nx + b_n \sin nx \right) + b_M \sin Mx, \quad M = N/2$$

H(z)	g_m
1	1/N
$\frac{1}{2}\ln(\sin\pi z)^2$	$\alpha(N,m) = -\frac{1}{N} \left[\ln 2 + \frac{(-1)^m}{N} + \sum_{k=1}^{N/2-1} \frac{1}{k} \cos 2\pi k z_m \right]$
$\frac{1}{2}(\sin(\pi z))^2\ln(\sin\pi z)^2$	$-\frac{1}{N}\left(\frac{1}{4} + \frac{2(-1)^m}{N(N^2 - 4)} - \frac{3\cos(2\pi m / N)}{8} + \sum_{n=2}^{N/2-1} \frac{\cos(2\pi nm / N)}{2n(n^2 - 1)}\right)$

Пример сходимости квадратурной

формулы
$$I = \int_0^{2\pi} e^{\sin x} \ln|\sin\frac{x}{2}| dx = 2\pi \sum_{n=1}^N e^{\sin x_m} g_m \quad Iexact \approx -5.09174699389$$

$$I_4 \approx -5.111, \quad I_8 \approx -5.0917001, \quad I_{12} \approx -5.09174707, \quad I_{16} \approx -5.09174699378$$

 $R_4 \approx 1.9 \cdot 10^{-2}, \quad R_8 \approx -4.6 \cdot 10^{-5}, \quad R_{12} \approx 7.8 \cdot 10^{-8}, \quad R_{16} \approx -1.1 \cdot 10^{-10}.$

Сравнение погрешностей

квадратурной формулы Белых
$$|\int_{-1}^{1} F(t)dt - \sum_{i=1}^{N} A_i F(t_i)|$$
 (18)

с квадратурной формулы трапеций $|\int_{-1}^{1} F(z)dz - \frac{2}{N} \sum_{i=1}^{N} F(z_i)|$ (6) для периодической функции $F(z) = Exp(\sin \pi z)$

N	8	10 12		14	16
(6)	$3.99 \cdot 10^{-7}$	$1.11 \cdot 10^{-9}$	$2.08 \cdot 10^{-12}$	$2.23 \cdot 10^{-15}$	$2.97 \cdot 10^{-18}$
(18)	$1.93 \cdot 10^{-3}$	$1.06 \cdot 10^{-4}$	$9.39 \cdot 10^{-6}$	$5.81 \cdot 10^{-6}$	$1.37 \cdot 10^{-6}$

Теорема 1

$$\Phi(z) = \int_0^1 H(z'-z)F(z')dz'$$

Пусть квадратурная формула $\Phi(z_i) = \sum_{i=1}^N g_{j-i} F_j$ точна для тригонометрического полинома $F_N(z)$.

Интеграл по периоду $\int_0^1 |H(z-z_i)| dz \le h$ и сумма $\sum_{j=1}^N |g_{j-i}| \le \sigma$

ограничены постоянными h и σ , не зависящими от N. Тогда для аналитической функции F(z) погрешность квадратурной формулы убывает по экспоненте

$$\rho_N = \left| \int_0^1 H(z - z_i) F(z) dz - \sum_{j=1}^N g_{j-i} F_j \right| < Ce^{-sN},$$

где постоянные C и s зависят от функций H(z) и F(z).

$$\mathit{Белыx}: \mathbf{I}_1 = \sum_{k=1}^N A_k F(x_k)$$
 точная для $\mathbf{x}^n, \quad n = 0, 1, N-1$

$$\Pi e p u o \partial : I_2 = \sum_{k=1}^{N} F(-1 + 2 k/N)$$

точная для $\cos \pi x$, $\sin \pi x$, n = 0, 1, N - 1

$$Iexact = \int_{-1}^{1} e^{\sin(\pi x)} dx = 2.5321317555040164$$

$$|\Delta_1 = |Iexact - I_1|, \quad \Delta_2 = |Iexact - I_2|$$

$$Log_{10}\Delta_1$$
 -3 -4 -6 -6 -6

$$Log_{10}\Delta_2$$
 -7 -9 -12 -15 -18

Свойства периодических функций F(z) = F(z+1)

Ряд и коэффициенты Фурье

$$F(z) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \quad x = 2\pi z$$

$$a_n = 2\int_0^1 F(z)\cos 2\pi nz dz, \quad b_n = 2\int_0^1 F(z)\sin 2\pi nz dz$$

Для функции F(z), имеющей k-1 непрерывных производных коэффициенты Фурье убывают по степенному закону

$$|a_n| = o(1/n^k), |b_n| = o(1/n^k).$$

Для аналитической функции - убывают по геометрической прогрессии $|a_n| \le C\theta^n$, $|b_n| \le C\theta^n$, $0 < \theta < 1$.

Оценка остаточного члена ряда Фурье

$$R_{n} = \sum_{j=n+1}^{\infty} a_{j} \cos(jx) + b_{j} \sin(jx) < 2C \sum_{j=n+1}^{\infty} \theta^{j} < \frac{2C}{1-\theta} \theta^{n+1}$$

Бари Н. К. Тригонометрические ряды М.: Физматлит. 1961. 936 с

Доказательство теоремы об экспоненциальной сходимости

$$F(z) = F_{N}(z) + R_{N}(z),$$

$$F_{N}(z) = \frac{A_{0}}{2} + \sum_{n=1}^{M-1} (A_{n} \cos nx + B_{n} \sin nx) + A_{M} \cos Mx,$$

$$R_{N}(z) = \sum_{n=M+1}^{\infty} (A_{n} \cos nx + B_{n} \sin nx) + B_{M} \sin Mx, \quad x = 2\pi z.$$

$$|R_{N}| < C \left(\theta^{M} + \sum_{n=M+1}^{\infty} (2\theta^{n})\right) = C \frac{1+\theta}{1-\theta} \theta^{M}, \quad M = N/2, \quad 0 < \theta < 1$$

$$\rho_{N} = \int_{0}^{1} H(z - z_{i}) \left(F_{N}(z) + R_{N}(z)\right) dz - \sum_{j=1}^{N} g_{j-i} \left(F_{N}(z_{j}) + R_{N}(z_{j})\right) =$$

$$= \int_{0}^{1} H(z - z_{i}) R_{N}(z) dz - \sum_{j=1}^{N} g_{j-i} R_{N}(z_{j})$$

$$|\rho_{N}| \le \left[\int_{0}^{1} |H(z - z_{i})| dz + \sum_{j=1}^{N} |g_{j-i}|\right] |R_{N}| \le |h + \sigma| C \frac{1+\theta}{1-\theta} \theta^{M},$$

Интегральные уравнения для гармонической функции

$$AV(s)+B\Phi(s)=egin{cases} 0 &$$
 внутренняя задача $2\pi\Phi(s) &$ внешняя задача, $ds=lf(\zeta)d\zeta$

$$AV(\zeta) = -\int_{0}^{1} G(\zeta, \zeta')V(\zeta')ds', \quad G(\zeta, \zeta') = \frac{1}{2}\ln(\sin\pi(\zeta - \zeta')^{2} + g(\zeta, \zeta'))$$

$$B\Phi(\zeta_i) = \int_0^1 G_n(\zeta, \zeta') (\Phi(\zeta') - \Phi(\zeta)) d\zeta',$$

$$2\pi \Phi(M) = \oint_{\partial S} \left[-G(M, M') \frac{\partial \Phi}{\partial n'}(M') + \Phi(M') \frac{\partial G(M, M')}{\partial n'} \right] ds', \quad M' \in S.$$

Квадратурные формулы с экспоненциальной Погрешностью для интегральных операторов уравнения Лапласа

$$\begin{split} AV(\zeta) &= -\int\limits_0^1 G(\zeta,\zeta')V(\zeta')lf(\zeta')d\zeta' = \sum\limits_{j=1}^N A_{ij}V_jlf_j, \\ B\Phi(\zeta_i) &= \int\limits_0^1 G_n(\zeta,\zeta') \big(\Phi(\zeta') - \Phi(\zeta)\big)d\zeta' = \sum\limits_{j=1}^N B_{ij}\Phi_j, \end{split}$$

$$\sum_{j=1}^{N} \left(A_{ij} l f_{j} V_{j} + B_{ij} \Phi_{j} \right) = 0, \quad i = 1, 2, ..., N,$$

$$A_{ij} = -\frac{1}{N}(\beta(|i-j|) + G_{ij}), \quad \beta(m) = -\ln\left|\sin\frac{\pi m}{N}\right| + \alpha(N,m),$$

$$B_{ij} = \frac{1}{N}G_{nij}, \quad i \neq j, \quad B_{ii} = -\sum_{j=1}^{N}B_{ij}.$$

Тестирование численных схем для уравнения Лапласа

Гармоническая функция $\Phi = x^2 - y^2$ внутри эллипса $x = \cos 2\pi \zeta$, $y = 0.1\sin 2\pi \zeta$.

$$\sum_{i=1}^{N} \left(A_{ij} l f_{j} V_{j} + B_{ij} \Phi_{j} \right) = \varepsilon_{i}, \quad i = 1, 2, ..., N; \quad \varepsilon = \max(\varepsilon_{i}), \quad ds = l f(\zeta) d\zeta$$

Сравнение сходимости схем без насыщения и 2-го порядка

Сходимость вычисления значений функции во внутренних точках

$$2\pi \Phi(M) = \frac{1}{N} \sum_{j=1}^{N} \left[-G(M, M_j) V(M_j) l f_j + \Phi(M_j) G_n(M, M_j) \right], \quad M \in S$$
$$\Delta = (\Phi - x^2) / x^2, \quad N = 128$$

N 28 160 192 256

$$\Delta = (\Phi - x^2)/x^2$$
 6×10⁻⁶ 2×10⁻⁷ 1×10⁻⁸ 4×10⁻¹⁰

Внешние задачи для уравнения Лапласа

Схема для обтекания контура с циркуляцией $\sum_{j=1}^N A_{ij} l f_j V_j = 2\pi (C + y_i U), \quad \frac{l}{N} \sum_{j=1}^N f_j V_j = -\Gamma.$

Обтекание эллипса $V = UV^{(U)} + \Gamma V^{(\Gamma)}$, a = 1, b = 0.1

Точное решение

Численная схема

$$V^{(U)} = \frac{2(a+b)\sin(2\pi\zeta)}{\sqrt{2(a^2+b^2-(a^2-b^2)\cos 2\pi\zeta)}}, \quad \sum_{j=1}^{N} A_{ij} lf_j V_j^{(U)} = 2\pi(C_1+y_i), \quad i=1,2,...N, \quad \sum_{j=1}^{N} f_j V_j^{(U)} = 0,$$

$$V^{(\Gamma)} = -\frac{1}{\pi\sqrt{2}\sqrt{a^2 + b^2 - (a^2 - b^2)\cos 2\pi\zeta}} \sum_{j=1}^{N} A_{ij} lf_j V_j^{(\Gamma)} = 2\pi C_3, \quad i = 1, 2, ...N, \quad \frac{l}{N} \sum_{j=1}^{N} f_j V_j^{(\Gamma)} = -1.$$

Сравнение точного и численного решений для $V^{(U)}$

Внешние задачи для уравнения Лапласа

Схема для обтекания контура с циркуляцией $\sum_{j=1}^N A_{ij} l f_j V_j = 2\pi (C + y_i U), \quad \frac{l}{N} \sum_{j=1}^N f_j V_j = -\Gamma.$

Обтекание эллипса $V = UV^{(U)} + \Gamma V^{(\Gamma)}$, a = 1, b = 0.1

Точное решение

Численная схема

$$V^{(U)} = \frac{2(a+b)\sin(2\pi\zeta)}{\sqrt{2(a^2+b^2-(a^2-b^2)\cos 2\pi\zeta)}}, \quad \sum_{j=1}^{N} A_{ij} lf_j V_j^{(U)} = 2\pi(C_1+y_i), \quad i=1,2,...N, \quad \sum_{j=1}^{N} f_j V_j^{(U)} = 0,$$

$$V^{(\Gamma)} = -\frac{1}{\pi\sqrt{2}\sqrt{a^2 + b^2 - (a^2 - b^2)\cos 2\pi\zeta}} \sum_{j=1}^{N} A_{ij} lf_j V_j^{(\Gamma)} = 2\pi C_3, \quad i = 1, 2, ...N, \quad \frac{l}{N} \sum_{j=1}^{N} f_j V_j^{(\Gamma)} = -1.$$

Сравнение точного и численного решений для $V^{(U)}$

Схема для V^(г) абсолютно точная

Достоверность расчетов развития кумулятивных струй

Аналитические и полуаналитические решения

- 1. Karabut E.A., Kuzhuget A.A. Euro. Jnl of Applied Mathematics. 25 (6) (2014) 729-747
- 2. Karabut E.A., Petrov A.G., Zhuravleva E.N. Semi-analytical study of the Voinovs problem, Euro. Jnl of Applied Mathematics. (2018) 1-40.
- 3. Crapper G.D. An exact solution for progressive capillary waves of arbitrary amplitudes // J. Fluid Mech. 1957. V. 2. P. 532–540.

Законы сохранения

$$I_{x} = -\int_{0}^{1} y \frac{\partial \Phi}{\partial \zeta} d\zeta, \quad I_{y} = \int_{0}^{1} x \frac{\partial \Phi}{\partial \zeta} \Phi d\zeta,$$

$$E = \frac{1}{2} \int_{0}^{1} \Psi \frac{\partial \Phi}{\partial \zeta} d\zeta, \quad M = \frac{1}{2} \int_{0}^{1} (x^{2} + y^{2}) \frac{\partial \Phi}{\partial \zeta} d\zeta$$

Сверхсходящиеся схем метода граничных элементов

- 1. Петров А.Г. Квадратурные формулы для периодических функций и их приложение к методу граничных элементов// ЖВМ. 2008. Том. 48, No. 8
- 2. Петров А.Г. Схема без насыщения для обтекания решетки профилей и вычисление точек отрыва в вязкой жидкости// ЖВМ. 2011. Том 51, № 7
- 3. Петров А.Г. Потапов И.И. О расчете сил, действующих на тела, для плоских и осесимметричных задач кавитационного обтекания// ЖВМ. 2016. Том 56, № 2
- 4. Петров А.Г., Сандуляну Ш.В. Моделирование электрохимической обработки методом граничных элементов без насыщения// ЖВМ. 2016. Том 56, № 10
- 5. Байков Н.Д., Петров А.Г. О формировании кумулятивной струи в плоскопараллельном потоке идеальной жидкости//Вестник МГУ. Сер. 1. МАТЕМ, МЕХАНИКА. 2017. N5. C. 42-47.
- 6. Байков Н.Д., Петров А.Г. Деформация цилиндрических полостей в плоскопараллельных потенциальных течениях с циркуляцией и под влиянием массовых сил Вычислительные методы и программирование. Т. 19. 2018.
- 7. N.D. Baykov N.D., Petrov A.G. On the plane-parallel motion of self-gravitating and rotating incompressible fluid with a free boundary// European Journal of Mechanics / B Fluids 78 (2019) 150–160
- 8. Байков Н.Д., Петров А.Г. ОБ ОБРУШЕНИИ КАПИЛЛЯРНО-ГРАВИТАЦИОННЫХ ВОЛН И ФОРМИРОВАНИИ КУМУЛЯТИВНЫХ СТРУЙ//2020. ПММ. Т. 84. N 5. 554-563

Метод граничных элементов для решения задач теории упругости и течения вязкой жидкости при малых числах Рейнольдса

Петров Александр Георгиевич

(Институт проблем механики имени А.Ю. Ишлинского РАН, г. Москва),

Казакова Анастасия Олеговна

(Чувашский государственный университет имени И.Н. Ульянова, г. Чебоксары)

Бигармоническое уравнение

А. О. Казакова, А. Г. Терентьев, Численное решение краевых задач для полигармонического уравнения Ж. выч. матем. и матем. физ., 2012, том 52, N 11, 2050–2059

Работы по методу граничных элементов и схеме без насыщения

- 1. Казакова А.О., Петров А.Г. О поле скоростей вязкой жидкости между двумя цилиндрами, вращающимися и движущимися поступательно // Изв. РАН. Мех. жидкости и газа. 2016. № 3. С. 16–25.
- 2. Казакова А.О., Петров А.Г. Расчет течения вязкой жидкости между двумя произвольно движущимися цилиндрами произвольного сечения ЖВМ. 2019. Том 59, № 6. С. 1063-1082.

Квадратурные формулы без насыщения для интегральных операторов бигармонического уравнения

Система уравнений

$$AV(s) + B\Phi(s) + A^{(1)}V^{(1)}(s) + B^{(1)}\Phi^{(1)}(s) = 0, \quad AV^{(1)}(s) + B\Phi^{(1)}(s) = 0$$

Квадратурная формула для оператора $A^{(1)}$

$$G^{(1)} = \frac{r^2}{4} \left(\frac{1}{2} \ln r^2 - 1 \right) = \frac{l^2 f^2(\zeta)}{4\pi^2} H(\zeta' - \zeta) + g(\zeta, \zeta'), \quad r^2 = (x' - x)^2 + (y' - y)^2$$

$$H(z) = \frac{1}{2} (\sin(\pi z))^2 \ln(2\sin\pi z)^2$$

$$A^{(1)}V^{(1)} = -\int_{0}^{1} G^{(1)}(\zeta, \zeta')V^{(1)}lf(\zeta')d\zeta' = \sum_{j=1}^{N} A_{ij}V^{(1)}{}_{j}lf_{j}$$

Квадратурная формула для оператора $oldsymbol{B}^{(1)}$

$$G_n^{(1)}(\zeta,\zeta') = G_n^{(1)} = \frac{1}{4} \left(\frac{dy}{d\zeta'} (x'-x) - \frac{dx}{d\zeta'} (y'-y) \right) \left(\frac{1}{2} \ln \left((x'-x)^2 + (y'-y)^2 \right) - 1 \right) =$$

$$= K(\zeta)H(\zeta'-\zeta) + g(\zeta,\zeta'), \quad K(\zeta) = \frac{1}{4\pi^2} \left(\frac{d^2y}{d\zeta^2} \frac{dx}{d\zeta} - \frac{d^2x}{d\zeta^2} \frac{dy}{d\zeta} \right)$$

Для оператора $B^{(1)}$ находим матрицу $B^{(1)}_{ij} = K(\zeta_i) eta_{\!\scriptscriptstyle 1}(\mid i-j\mid) + G_{\!\scriptscriptstyle nij}$

Система уравнений

$$\varepsilon_{i} = \sum_{j=1}^{N} \left(A_{ij} V_{j} l f_{j} + B_{ij} \Phi_{i} + A_{ij}^{(1)} V_{j}^{(1)} l f_{j} + B_{ij}^{(1)} \Phi_{j}^{(1)} \right), \quad \delta_{i} = \sum_{j=1}^{N} \left(A_{ij} V_{j}^{(1)} l f_{j} + B_{ij} \Phi_{i}^{(1)} \right)$$

Значения функции во внутренней точке

$$2\pi\Phi(M) = \frac{1}{N} \sum_{j=1}^{N} \left[-G(M, M_{j})V(M_{j})l f_{j} + \Phi(M_{j})G_{n}(M, M_{j}) - G^{(1)}(M, M_{j})V^{(1)}(M_{j})l f_{j} + \Phi^{(1)}(M_{j})G_{n}^{(1)}(M, M_{j}) \right], \quad M \in S.$$

Проверка сходимости. Эллипс $x = \cos t$, $y = 0.1 \sin t$,

$$\Phi = x^3 - y^3$$

Аппроксимация системы уравнений

N	32	48	64	80	96	112
${\cal E}$	$7 \cdot 10^{-4}$	$2.8 \cdot 10^{-5}$	$1.1 \cdot 10^{-6}$	$5.6 \cdot 10^{-8}$	$1.3 \cdot 10^{-8}$	$6 \cdot 10^{-9}$
δ	$1.4 \cdot 10^{-2}$	$5.5 \cdot 10^{-4}$	$2.2 \cdot 10^{-5}$	$8.7 \cdot 10^{-7}$	$3.5 \cdot 10^{-8}$	$1.4 \cdot 10^{-9}$
\mathcal{E}_1	$9.6 \cdot 10^{-3}$	$4.7 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$9.3 \cdot 10^{-4}$
$\delta_{\!\scriptscriptstyle 1}$	$2.6 \cdot 10^{-2}$	$1.2\cdot10^{-2}$	$6.9 \cdot 10^{-3}$	$4.4\cdot10^{-3}$	$3.1 \cdot 10^{-3}$	$2.2\cdot10^{-3}$

Значения во внутренних точках

$$\delta \Phi = \max |\Phi(M) - x^3|/x^3, \quad 0.01 < x < 0.99$$

$$N$$
 128 160 192 224 $\delta \Phi$ 8×10⁻⁶ 3×10⁻⁷ 1.5×10⁻⁸ 5.5×10⁻¹⁰

Течение вязкой жидкости (приближение Стокса)

$$\mu \Delta \mathbf{v}_{x} = \frac{\partial p}{\partial x}, \quad \mu \Delta \mathbf{v}_{y} = \frac{\partial p}{\partial y}, \quad \mathbf{v}_{x} = \frac{\partial \Psi}{\partial y}, \quad \mathbf{v}_{y} = -\frac{\partial \Psi}{\partial x} \Rightarrow \Delta^{2} \Psi = 0$$

Течение между двумя вращающимися круговыми цилиндрами

Более сложные течения

Модель миксера

Прямоугольная лопатка

Фигурная лопатка

Плоская задача теории упругости об эксцентрической трубе, находящейся под равномерным внешним и внутренним давлением

Уфлянд Я.С. Биполярные координаты в теории упругости. –

М.-Л.: Гостехиздат, 1950. – 232 с.

Граничные условия:

$$\sigma_{\eta}\Big|_{\eta=\eta_0}=-p_0,\quad \sigma_{\eta}\Big|_{\eta=\eta_1}=-p_1,$$

$$\sigma_{\eta\xi}\Big|_{\eta=\eta_0}=\sigma_{\eta\xi}\Big|_{\eta=\eta_1}=0.$$

Результаты численного решения задачи и сравнение их с аналитическим решением

при
$$\rho_0 = 0.4, \rho_1 = 1, \Delta x = 0.1, p_0 = 1, p_1 = 3, N_0 = 60$$

(a) графики напряжения σ_{xx}

(в) графики напряжения

(б) графики напряжения σ_{xy}

Спасибо за внимание!