Detecting Local Insights from Global Labels: Supervised & Zero-Shot Sequence Labeling via a Convolutional Decomposition

Allen Schmaltz

aschmaltz@hsph.harvard.edu

Overview

We propose a new, more actionable view of neural network interpretability and data analysis by leveraging the remarkable matching effectiveness of representations derived from deep networks, guided by an approach for class-conditional feature detection.

We transform a deep network into a simple weighting over exemplar representations and associated labels, yielding an introspectable—and modestly updatable—version of the original model.

Task: Zero-Shot Binary Sequence Labeling

- Training: $\mathbb{D} = \{ (\mathbf{x}_d, Y_d) | 1 \le d \le |\mathbb{D}| \}$
 - Document of N tokens/words: $\mathbf{x} = x_1, ..., x_n, ..., x_N$
- Document-level label: $Y \in \{-1,1\}$ • Inference:
 - Predict token-level labels: $\hat{\mathbf{y}} = \hat{y}_1, ..., \hat{y}_n, ..., \hat{y}_N$, where $\hat{y}_n \in \{-1,1\}$
- Zero-Shot Grammatical Error Detection:

 $y_1 = -1$ $y_2 = 1$ $y_3 = -1$ Sentence 1: The runing example will be grammatical error detection, predicting whether or not each word has a grammatical error. Y = 1Sentence 2: See the paper for additional datasets and tasks.

Model Approximation

Training Convolutional (*Horizontal*) Decomposition (*see panel at right*)

labels: $\mathbf{y} = y_1, ..., y_n, ..., y_N$, where $y_n \in \{-1, 1\}$

- Cross-entropy against document-level label, $Y' \in \{0,1\}$
- Min-max constraint to encourage sparsity
 - $\mathcal{L}_{min} = -\log(1 \sigma(s_{min}^{+-}))$
 - $s_{min}^{+-} = \min(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$
 - $\mathcal{L}_{max} = -Y' \cdot \log \sigma(s_{max}^{+-}) (1 Y') \cdot \log(1 \sigma(s_{max}^{+-}))$
 - $s_{max}^{+-} = \max(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$
- Fully-supervised (token-level)
 - $\mathcal{L}_n = -y'_n \cdot \log \sigma(s_n^{+-}) (1 y'_n) \cdot \log(1 \sigma(s_n^{+-}))$

Horizontal (across the input) & Vertical (across the support set) Model Decompositions

Robustness to OOD data remains challenging, but we can detect such data and abstain from predicting:

Support Set Can be Viewed as an <u>Updatable</u> Database

 $\mathbb{S} = \left\{ (\mathbf{r}_{\tilde{n}}, \mathbf{x}^{(\tilde{n})}, \mathbf{s}_{\tilde{n}}^{+-}, \mathbf{y}^{(\tilde{n})}) \mid 1 \leq \tilde{n} \leq |\mathbb{S}| \right\}$

Model: K-NN APPROX. OF TRANSFORMER (BERTLARGE) +CNNDECOMPOSITION+MINMAXLOSS K-NN Output min L^2 distance max Admitted threshold constraint (Class -1, Class 1) n/N (Class -1, Class 1) 92597 27.0 1.0 45.9 (-1.2, 0.8)38110 0.41(34.2, 53.3)7879 0.09 53.5 4180 0.05 75.8 (34.2, 53.3)(-1.2, 0.8)

...and then update the support set:

Model	Training set	Support set	$F_{0.5}$
K-NN Approx.	FCE	FCE	27.0
K-NN Approx.	FCE	FCE+OOD	46.3
Original Model	FCE		25.8
Original Model	FCE+OOD		33.3

Zero-Shot Grammatical Error Detection

	Sentence-level	ence-level		Token-level	
Model	\overline{F}_1	P	R	F_1	$F_{0.5}$
RANDOM	58.30	15.30	50.07	23.44	17.79
MAJORITYCLASS	80.88	15.20	100	26.39	18.31
LIME (ROBERTA _{BASE} TRANSFORMER)†	84.51	19.06	34.70	24.60	20.95
LSTM+SOFTATTENTION T	85.14	28.04	29.91	28.27	28.40
TRANSFORMER (ROBERTA _{BASE}) + WEIGHTEDSOFTATTENTION	85.62	20.76	85.36	33.31	24.46
TRANSFORMER (BERT _{BASE}) + CNNDECOMPOSITION	86.29	53.17	35.37	42.48	48.31

FCE zero-shot sequence labeling test set results (Appendix: Table E.1) †Results from previous works

EMNLP (November 2021) Computational Linguistics (2021) Code: https://github.com/allenschmaltz/exa