

数值分析

主讲教师: 贺慧霞

北京航空航天大学数学科学学院

第四章 非线性方程(组)的迭代解法

4.1-1 非线性方程迭代法

非线性科学是当今科学发展的一个重要研究方向,很多实际工程物理问题都归结为非线性方程(组)的求解。

非线性方程的求根非常复杂。

例如:

$$\begin{cases} \sin(\frac{\pi}{2}x) = y \\ y = \frac{1}{2} \end{cases}$$
 无穷组解
$$\begin{cases} y = x^2 + a \\ x = y^2 + a \end{cases} \Rightarrow \begin{cases} a = 1 & \pi \text{ TF} \\ a = \frac{1}{4} & - \text{ NF} \\ a = 0 & \text{ M} \text{ NF} \end{cases}$$

$$a = -1 & \text{ ITF} \end{cases}$$

根,重根的定义:

- 1. 根:如果存在常数s,使得 f(s)=0则称s是f(x)=0的根(零点);
- 2. 重根: 如果 $f(s) = f'(s) = ... = f^{(m-1)}(s) = 0, f^{(m)}(s) \neq 0,$ 则 称s为f(x) = 0的m重根.

此时有分解 $f(x) = (x-s)^m \varphi(x)$, $\varphi(s) \neq 0$, m是正整数.

这一部分的主要任务是解 f(x) = 0

其中f(x)是一元非线性函数。

求根问题包括下面几个问题:

- 根的存在性: 即f(x)=0有没有根? 若有, 有几个根?
- 哪儿有根? 确定有根区间
- 根的近似求解

常用的求非线性方程根的方法

*二分法(对分法、搜索法)

不动点法 (简单迭代法、压缩映象法)及其加速算法

* Newton方法及其变体

一、二分法(对分法)

【理论依据】闭区间上连续函数的零点定理 设函数 $f(x) \in C[a,b]$, f(a)f(b) < 0, 则 f(x)在区间[a,b]上有一实根 s使 f(s) = 0。

【二分法工作原理】均分根所在的区间

【例1】 求方程 $x^5 + x^3 + x^2 - 1 = 0$ 在区间 [0,1]内的根的位置.

解 设 $f(x) = x^5 + x^3 + x^2 - 1$, 由 f(0) = -1 = 0 与 f(1) = 0 知方程 f(x) = 0 在 f(0,1)内有根,设为 ξ .

为了进一步研究 ξ 的位置, 作如下计算和推断:

$$f(\frac{1}{2}) = -\frac{19}{32} < 0, \quad \text{in } \xi \in (\frac{1}{2}, 1);$$

在区间
$$(\frac{1}{2},1)$$
中的点 $x = \frac{3}{4}$ 处 $f(\frac{3}{4}) = \frac{227}{1024} > 0$, 故 $\xi \in (\frac{1}{2},\frac{3}{4})$; 在区间 $(\frac{1}{2},\frac{3}{4})$ 中的点 $x = \frac{5}{8}$ 处 $f(\frac{5}{8}) = -\frac{8843}{32768} < 0$, 故 $\xi \in (\frac{5}{8},\frac{3}{4})$. 如果取 $\xi = \frac{11}{16}$ (它是区间 $(\frac{5}{8},\frac{3}{4})$ 的中点),则误差 不超过 $\frac{1}{16}$ (它是区间 $(\frac{5}{8},\frac{3}{4})$ 的长度的一半).

某个雷电交加的夜晚, 医院的医生正在抢救一个危重病人, 忽然电停了。据了解原因是供电站到医院的某处线路出现了故障, 维修工, 如何迅速查出故障所在?(线路长10km, 每50m一棵电线杆)

身临其境 体验生活

如果沿着线路一小段一小段查找, 困难很多。

每查一个点要爬一次电线杆子, 10km长, 大约

有200根电线杆子。

想一想,维修线路 的工人师傅怎样工作 最合理?

探索问题 提取原理

如图,设供电站和医院的所在处分别为点A、B

这样每查一次,就可以把待查的线路长度缩减一半, 算一算,要把故障可能发生的范围缩小到50m~100m左 右,即一两根电杆附近,查7次就可以了.

二分法计算框图:

优点: 算法简单, 且总是收敛的.

缺点:收敛速度太慢.

二、简单迭代法及其收敛定理

迭代法的构想
$$f(x) = 0 \Leftrightarrow x = \varphi(x)$$
 $(Ax = b \Leftrightarrow x = Gx + d)$ 从一个初值 x_0 出发,计算

$$x_1 = \varphi(x_0), x_2 = \varphi(x_1), \dots, x_{k+1} = \varphi(x_k)$$

如果 $\{x_k\}$ 收敛,即存在 x^* ,使得 $\lim_{k\to +\infty} x_k = x^*$

则由
$$\lim_{k\to +\infty} x_{k+1} = \lim_{k\to +\infty} \varphi(x_k)$$
 得 $x^* = \varphi(x^*)$ 不動し、

即 x^* 是 $\varphi(x)$ 的不动点, 也就是 f(x) 的根。

问题: $\{x_k\}$ 收敛吗? 怎样实现 $\varphi(x)$

【例2】 用迭代法求方程 $x^4+2x^2-x-3=0$ 在区间[1, 1.2]内的实根.

解 对方程进行如下三种变形:

$$x^{4} + 2x^{2} - x - 3 = 0 \Rightarrow \begin{cases} x = \varphi_{1}(x) = (3 + x - 2x^{2})^{4} \\ x = \varphi_{2}(x) = \sqrt{x + 4} - 1 \\ x = \varphi_{3}(x) = x^{4} + 2x^{2} - 3 \end{cases}$$

可构造多种简单迭代,为求同一个根,它们所产生的的序列 $\{x_k\}$,有的可能收敛,有的可能不收敛,有的收敛的快,有的收敛的慢.

只有收敛的迭代过程才有意义,因此我们首先要研究 $\varphi(x)$ 的不动点的存在性及迭代法的收敛性.

9. [a,b] →[a,b]

定理4.1: 设函数 $\varphi(x) \in C[a,b]$ 在(a,b)内可导,且满足如下条件

- (1) 当 $x \in [a,b]$ 时, $\varphi(x) \in [a,b]$; 为保证 $x^{\bowtie} = \varphi(x^{\bowtie})$ 产生的恶代序列 [编] $\varphi(x)$ [a,b]
- (2) 当 $x \in (a,b)$ 时, $|\varphi'(x)| \le L < 1$ 其中L是一常数。

则有如下结论:

- (1) 方程 $x = \varphi(x)$ 在区间[a,b]上有唯一的根s;
- (2) 对任取的 $x_0 \in [a,b]$,简单迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_k\} \subset [a,b]$ 且收敛于s;

(3) 成立误差估计式
$$|s-x_k| \le \frac{L^k}{1-L} |x_1-x_0|$$
, $|s-x_k| \le \frac{L}{1-L} |x_k-x_{k-1}|$

注记: 不满足定理的条件, 也可能有不动点.

定理4.1说明:在一个固定的区间[a,b],在此区间内任取一点 x_0 作为初值,迭代都收敛.----大范围收敛定理.

$$|s-x_k| \le \frac{L}{1-L} |x_{k+1}-x_k|.$$
 (1)

1.实际计算中,可预先给定精度 $\eta > 0$,当 $\frac{|x_k - x_{k-1}|}{|x_k|} \le \eta$ 时,迭代结束;

$$|s-x_k| \le \frac{L^k}{1-L} |x_1-x_0|.$$
 (2)

2.同时,可根据预先给定的绝对误差限 ε ,求出满足 $|s-x_k| \le \varepsilon$ 的 最低迭代次数N;

$$\Rightarrow \frac{L^k}{1-L} | x_1 - x_0 | \le \varepsilon,$$
解出 $k \ge \ln \frac{\varepsilon \cdot (1-L)}{|x_1 - x_0|} / \ln L = d,$ 得到 $N = [d] + 1.$

例如,在前面例2中采用的三种迭代公式,在区间(1,1.2)内,有

$$x = \varphi_1(x) = (3 + x - 2x^2)^{1/4}$$

$$|\varphi_1'(x)| = \frac{x - 0.25}{(3 + x - 2x^2)^{\frac{3}{4}}} < \frac{1.2 - 0.25}{(3 + 1 - 2 \times 1.2^2)^{\frac{3}{4}}} < 0.87 < 1$$

$$x = \varphi_2(x) = \sqrt{\sqrt{x + 4} - 1}$$

$$|\phi_2'(x)| = \left[4\sqrt{\sqrt{x+4}-1}\sqrt{x+4}\right]^{-1} < \left[4\sqrt{\sqrt{5}-1}\sqrt{5}\right]^{-1} < 0.11$$

$$x = \varphi_3(x) = x^4 + 2x^2 - 3$$
 $|\phi_3'(x)| = |4x^3 + 4x| > 8$

故前两个迭代公式收敛,第三个迭代公式不收敛.

定义4.2: 设 $\varphi(x)$ 有不动点s,如果存在 s 的某个邻域 $R:|x-s| \le \delta$,对任何 $x_0 \in R$,迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_k\} \subset [s-\delta,s+\delta]$ 且收敛于s.则称迭代法 $x_{k+1} = \varphi(x_k)$ 局部收敛.

定理4.2: 设 $s = \varphi(s)$, $\varphi'(x)$ 在包含s的某个开区间内连续,如果 $|\varphi'(s)| < 1$, 则迭代法 $x_{k+1} = \varphi(x_k)$ 局部收敛.

Thun 4)并没有指出的的值,仅 强调邻域的存在性 国此满足Thun 条件对只要 火。足够转码S 2(kt)=\$P(Xk);>Tikk) → S

局部收敛定理条件比较宽松, 仅仅要求导函数在s点绝对值小于1即可.

证明 由连续函数的性质,存在不动点s的某个邻域 U_{δ} : $|x-s| \le \delta$,使对于任意 $x \in R$ 成立

$$|\varphi'(x)| \leq L < 1.$$

此外,对于任意 $x \in R$,总有 $\varphi(x) \in R$,这时因为

$$|\varphi(x) - s| = |\varphi(x) - \varphi(s)| = |\varphi'(\xi)||x - s|$$

$$\leq L|x - s| \leq |x - s|.$$

于是依据定理4.1可以断定迭代过程 $x_{k+1} = \varphi(x_k)$ 对于任意初值 $x_0 \in \mathbb{R}$ 均收敛. 证毕.

【例3】 用不同的方法求方程 $x^2 - 3 = 0$ 的根 $x^* = \sqrt{3}$.

(1)
$$\mathbf{x}_{k+1} = x_k^2 + x_k - 3, \varphi(x) = x^2 + x - 3,$$

$$\varphi'(x) = 2x+1$$
, $\varphi'(x^*) = \varphi'(\sqrt{3}) = 2\sqrt{3} + 1 > 1$.

(2)
$$x_{k+1} = \frac{3}{x_k}$$
 $\varphi(x) = \frac{3}{x}$, $\varphi'(x) = -\frac{3}{x^2}$, $\varphi'(x^*) = -1$.

由局部收敛定理,得不到迭代(1),(2)是否收敛.

(3)
$$x_{k+1} = x_k - \frac{1}{4}(x_k^2 - 3), \quad \varphi(x) = x - \frac{1}{4}(x^2 - 3),$$

$$\varphi'(x) = 1 - \frac{x}{2}, \quad \varphi'(x^*) = \varphi'(\sqrt{3}) \approx 0.134.$$

迭代(3),(4)一定收敛.

(4)
$$x_{k+1} = \frac{1}{2}(x_k + \frac{3}{x_k}), \quad \varphi(x) = \frac{1}{2}(x + \frac{3}{x}), \quad \varphi'(x) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x^*) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x) = \frac{1}{2}(1 - \frac{3}{x^2}),$$

取 $x_0 = 2$,对上述四种迭代法,计算三步所得结果如下:

k	\mathcal{X}_k	迭代法(1)	迭代法(2)	迭代法(3)	迭代法(4)
0	x_0	2	2	2	2
1	x_1	3	1.5	1.75	1.75
2	x_2	9	2	1.73475	1.73214
3	x_3	87	1.5	1.73236	1.73205
:	:	÷	:	:	:

 $\sqrt{3}$ =1.7320508…, 从迭代结果看, 迭代法(1),(2)均不收敛, 迭代法(3),(4)收敛, 且迭代法(4)比迭代法(3)收敛的快.

用什么手段能衡量 $x_k \rightarrow s$ 的速度?

二、简单迭代法及其收敛定理

迭代法的构想
$$f(x) = 0 \Leftrightarrow x = \varphi(x)$$
 $(Ax = b \Leftrightarrow x = Gx + d)$ 从一个初值 x_0 出发,计算

$$x_1 = \varphi(x_0), x_2 = \varphi(x_1), \dots, x_{k+1} = \varphi(x_k)$$

如果 $\{x_k\}$ 收敛,即存在 x^* ,使得 $\lim_{k\to +\infty} x_k = x^*$

则由
$$\lim_{k\to +\infty} x_{k+1} = \lim_{k\to +\infty} \varphi(x_k)$$
 得 $x^* = \varphi(x^*)$ 不動し、

即 x^* 是 $\varphi(x)$ 的不动点, 也就是 f(x) 的根。

9. [a,b] →[a,b]

定理4.1: 设函数 $\varphi(x) \in C[a,b]$ 在(a,b)内可导,且满足如下条件

- (1) 当 $x \in [a,b]$ 时, $\varphi(x) \in [a,b]$; 为保证 $x^{\bowtie} = \varphi(x^{\bowtie})$ 产生的恶代序列 [编] $\varphi(x)$ [a,b]
- (2) 当 $x \in (a,b)$ 时, $|\varphi'(x)| \le L < 1$ 其中L是一常数。

则有如下结论:

- (1) 方程 $x = \varphi(x)$ 在区间[a,b]上有唯一的根s;
- (2) 对任取的 $x_0 \in [a,b]$,简单迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_k\} \subset [a,b]$ 且收敛于s;

(3) 成立误差估计式
$$|s-x_k| \le \frac{L^k}{1-L} |x_1-x_0|$$
, $|s-x_k| \le \frac{L}{1-L} |x_k-x_{k-1}|$

注记: 不满足定理的条件, 也可能有不动点.

定理4.1说明:在一个固定的区间[a,b],在此区间内任取一点 x_0 作为初值,迭代都收敛.----大范围收敛定理.

$$|s-x_k| \le \frac{L}{1-L} |x_{k+1}-x_k|.$$
 (1)

1.实际计算中,可预先给定精度 $\eta > 0$,当 $\frac{|x_k - x_{k-1}|}{|x_k|} \le \eta$ 时,迭代结束;

$$|s-x_k| \le \frac{L^k}{1-L} |x_1-x_0|.$$
 (2)

2.同时,可根据预先给定的绝对误差限 ε ,求出满足 $|s-x_k| \le \varepsilon$ 的 最低迭代次数N;

$$\Rightarrow \frac{L^k}{1-L} | x_1 - x_0 | \le \varepsilon,$$
解出 $k \ge \ln \frac{\varepsilon \cdot (1-L)}{|x_1 - x_0|} / \ln L = d,$ 得到 $N = [d] + 1.$

定义4.2: 设 $\varphi(x)$ 有不动点s,如果存在 s 的某个邻域 $R:|x-s| \le \delta$,对任何 $x_0 \in R$,迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_k\} \subset [s-\delta,s+\delta]$ 且收敛于s.则称迭代法 $x_{k+1} = \varphi(x_k)$ 局部收敛.

定理4.2: 设 $s = \varphi(s)$, $\varphi'(x)$ 在包含s的某个开区间内连续,如果 $|\varphi'(s)| < 1$, 则迭代法 $x_{k+1} = \varphi(x_k)$ 局部收敛.

局部收敛定理条件比较宽松, 仅仅要求导函数在s点绝对值小于1即可.

【例3】 用不同的方法求方程 $x^2 - 3 = 0$ 的根 $x^* = \sqrt{3}$.

(1)
$$\mathbf{x}_{k+1} = x_k^2 + x_k - 3, \varphi(x) = x^2 + x - 3,$$

$$\varphi'(x) = 2x+1$$
, $\varphi'(x^*) = \varphi'(\sqrt{3}) = 2\sqrt{3} + 1 > 1$.

(2)
$$x_{k+1} = \frac{3}{x_k}$$
 $\varphi(x) = \frac{3}{x}$, $\varphi'(x) = -\frac{3}{x^2}$, $\varphi'(x^*) = -1$.

由局部收敛定理,得不到迭代(1),(2)是否收敛.

(3)
$$x_{k+1} = x_k - \frac{1}{4}(x_k^2 - 3), \quad \varphi(x) = x - \frac{1}{4}(x^2 - 3),$$

$$\varphi'(x) = 1 - \frac{x}{2}, \quad \varphi'(x^*) = \varphi'(\sqrt{3}) \approx 0.134.$$

迭代(3),(4)一定收敛.

(4)
$$x_{k+1} = \frac{1}{2}(x_k + \frac{3}{x_k}), \quad \varphi(x) = \frac{1}{2}(x + \frac{3}{x}), \quad \varphi'(x) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x^*) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x^*) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x) = \frac{1}{2}(1 - \frac{3}{x^2}$$

取 $x_0 = 2$,对上述四种迭代法,计算三步所得结果如下:

k	\mathcal{X}_k	迭代法(1)	迭代法(2)	迭代法(3)	迭代法(4)
0	x_0	2	2	2	2
1	x_1	3	1.5	1.75	1.75
2	x_2	9	2	1.73475	1.73214
3	x_3	87	1.5	1.73236	1.73205
:	:	÷	:	:	:

 $\sqrt{3}$ =1.7320508…, 从迭代结果看, 迭代法(1),(2)均不收敛, 迭代法(3),(4)收敛, 且迭代法(4)比迭代法(3)收敛的快.

用什么手段能衡量 $x_k \rightarrow s$ 的速度?

三、简单迭代法的收敛速度

在第k步迭代时,理论上可得到 $e_k = s - x_k$,在第k + 1步迭代时,理论上可得到 $e_{k+1} = s - x_{k+1}$,我们可以通过这两个量给出收敛快慢的描述。

定义: 设序列 x_k 收敛于s, 并且 $e_k = s - x_k \neq 0$ (k = 0,1,...),

如果存在常数 $p \ge 1$ 和常数 C > 0,使得极限 $\lim_{k \to +\infty} \frac{|e_{k+1}|}{|e_k|^p} = C$ 成立,

或者使得当 $k \ge K$ (某个正数)时, $\frac{|e_{k+1}|}{|e_k|^p} \le C$ 成立,

则称序列 $\{x_k\}$ 收敛于 s 具有 p 阶收敛速度,简称 x_k 是 p 阶收敛的。 C 称作渐近收敛常数或收敛因子.

p=1(此时必有 $0 < C \le 1$)时称 x_k 为线性收敛的,

p > 1时称 x_k 为超线性收敛的,

p = 2时称 x_k 为平方收敛的.

定理4.3: 设函数 $\varphi(x) \in C[a,b], \varphi'(x) \in C(a,b)$ 内可导,且满足如下条件

- (1) 当 $x \in [a,b]$ 时, $\varphi(x) \in [a,b]$;
- (2) 当 $x \in (a,b)$ 时, $\varphi'(x) \neq 0$, $|\varphi'(x)| \leq L < 1$,其中L是一常数。

则对任取的 $x_0 \in [a,b]$, 简单迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列

收敛于 $x = \varphi(x)$ 在[a,b]内的唯一根s,并且当 $x_0 \neq s$ 时 x_k 是线性收敛的。

Thm 41 保证

由于当 $x \in (a,b)$ 时 $\varphi'(x) \neq 0$,所以,只要 $x_0 \neq s$ 就必有 $x_k \neq s(k=1,2,\cdots)$ 。由 Taylor 公式,有

$$\varphi(x_k) = \varphi(s) + \varphi'(s + \theta(x_k - s))(x_k - s), \quad 0 < \theta < 1$$

记 $e_k = s - x_k$,由上式得 $\varphi(x_k) - \varphi(s) = x_{k+1} - s = -e_{k+1}$
 $e_{k+1} = \varphi'(s - \theta e_k)e_k$

因 $\lim_{t\to\infty} e_t = 0$ 和 $\varphi'(x)$ 的连续性,故得

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|}=\lim_{k\to\infty}|\varphi'(s-\theta e_k)|=|\varphi'(s)|$$

因为 $|\varphi'(s)| > 0$,所以由上式可知,序列 $\{x_k\}$ 是线性收敛的。

由定理 4.3 看到,迭代函数 $\varphi(x)$ 在方程的根 s 处的一阶导数不等于零,相应的简单迭代法只是线性收敛的,也就是说,只有一阶收敛速度。要想获得高阶收敛速度,迭代函数 $\varphi(x)$ 就要满足更多的条件。

定理4.4: 设 $\varphi^{(m)}(x)$ 在包含s的某个区间内连续 $(m \ge 2)$, $s = \varphi(s)$.并且

$$\varphi'(s) = \varphi''(s) = \dots = \varphi^{(m-1)}(s) = 0, \qquad \varphi^{(m)}(s) \neq 0$$

迭代法的收敛速度 依赖于迭代函数的选取.

【例2】 用不同的方法求方程 $x^2 = 3 = 0$ 的根 $x^* = \sqrt{3}$.

[#] (1)
$$\mathbf{x}_{k+1} = x_k^2 + x_k - 3, \varphi(x) = x^2 + x - 3,$$

$$\varphi'(x) = 2x+1$$
, $\varphi'(x^*) = \varphi'(\sqrt{3}) = 2\sqrt{3} + 1 > 1$.

(2)
$$x_{k+1} = \frac{3}{x_k}, \quad \varphi(x) = \frac{3}{x}, \quad \varphi'(x) = -\frac{3}{x^2}, \quad \varphi'(x^*) = -1.$$

(3)
$$x_{k+1} = x_k - \frac{1}{4}(x_k^2 - 3), \quad \varphi(x) = x - \frac{1}{4}(x^2 - 3),$$

$$\varphi'(x) = 1 - \frac{x}{2}, \quad \varphi'(x^*) = \varphi'(\sqrt{3}) \approx 0.134.$$

(4)
$$x_{k+1} = \frac{1}{2}(x_k + \frac{3}{x_k}), \quad \varphi(x) = \frac{1}{2}(x + \frac{3}{x}), \quad \varphi'(x) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x^*) = 0.$$

定理4.4: 设 $\varphi^{(m)}(x)$ 在包含s的某个区间内连续 $(m \ge 2)$, $s = \varphi(s)$.并且

$$\varphi'(s) = \varphi''(s) = \dots = \varphi^{(m-1)}(s) = 0, \qquad \varphi^{(m)}(s) \neq 0$$

则存在 $\delta > 0$, 当 $x_0 \in [s - \delta, s + \delta]$ 但 $x_0 \neq s$ 时,由简单迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_k\}$ 以m阶收敛速度收敛于s.

迭代法的收敛速度 依赖于迭代函数的选取.

(4)
$$x_{k+1} = \frac{1}{2}(x_k + \frac{3}{x_k}), \quad \varphi(x) = \frac{1}{2}(x + \frac{3}{x}), \quad \varphi'(x) = \frac{1}{2}(1 - \frac{3}{x^2}), \quad \varphi'(x^*) = 0.$$

 $\varphi''(x) = \frac{3}{x^3}, \varphi''(\sqrt{3}) = \frac{1}{\sqrt{3}} \neq 0$,即该迭代过程至少是二阶收敛的.

四、Steffensen加速收敛方法

设由算法 $x_{k+1} = \varphi(x_k)$ 计算出 x_k, x_{k+1}, x_{k+2} 三个迭代值,由微分中值定理得:

$$x_{k+1} - s = \varphi(x_k) - \varphi(s) = \varphi'(\xi_k)(x_k - s)$$

$$x_{k+2} - s = \varphi(x_{k+1}) - \varphi(s) = \varphi'(\xi_{k+1})(x_{k+1} - s)$$

假设x在s附近, $\varphi'(x)$ 的值变化不大,则有 $\varphi'(\xi_k) \approx \varphi'(\xi_{k+1})$

即
$$\frac{x_{k+1}-s}{x_k-s} \approx \frac{x_{k+2}-s}{x_{k+1}-s}$$
,由此解得 $s \approx \frac{x_{k+2}x_k-x_{k+1}^2}{x_{k+2}-2x_{k+1}+x_k}$.
$$= x_k - \frac{(x_{k+1}-x_k)^2}{x_{k+2}-2x_{k+1}+x_k}.$$

$$s \approx x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$
. 将 x_{k+1}, x_{k+2} 看成中间值,分别把他们记为 $y_k z_k$,于是得到加速后的算法:

斯特芬森迭代法

(1)
$$\begin{cases} y_k = \varphi(x_k), z_k = \varphi(y_k) \\ x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k}, k = 0, 1, \dots \end{cases}$$
 (2)
$$\begin{cases} x_{k+1} = \psi(x_k), k = 0, 1, \dots \\ \psi(x) = x - \frac{(\varphi(x) - x)^2}{\varphi(\varphi(x)) - 2\varphi(x) + x} \end{cases}$$

定理4.5:如果s是(2)式定义的迭代函数 $\psi(x)$ 的不动点,则s也是 $\varphi(x)$ 的不动点;反之,如果s是 $\varphi(x)$ 的不动点,设 $\varphi''(x)$ 存在,并且 $\varphi'(s) \neq 1$,则 s也是 $\psi(x)$ 的不动点.并且斯特芬森迭代法至少是二阶收敛的.

【例3】 试分别采用 $\varphi(x)=2+\ln x$ 和 $\varphi(x)=e^{x-2}$ 的 Steffensen 迭代法求方程 $x-\ln x=2$ 在区间 $(2,\infty)$ 内的根 s,要求 $\frac{|x_k-x_{k-1}|}{|x_k|} \le 10^{-8}$ 。

解 对于 $\varphi(x) = 2 + \ln x, \varphi'(s) = \frac{1}{s} \neq 1$, 对于 $\varphi(x) = e^{x-2}, \varphi'(s) = e^{s-2} \neq 1$, 故当 x_0 足够

接近 s 时, 迭代公式

$$\begin{cases} y_k = 2 + \ln x_k \\ z_k = 2 + \ln y_k \end{cases} \begin{cases} y_k = e^{x_k - 2} \\ z_k = e^{y_k - 2} \end{cases}$$

$$\begin{cases} x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k} \\ (k = 0, 1, \cdots) \end{cases}$$

$$\begin{cases} x_k = e^{x_k - 2} \\ x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k} \\ (k = 0, 1, \cdots) \end{cases}$$

$$(k = 0, 1, \cdots)$$

都能平方收敛于 s。现取 $x_0 = 3$,

方法一的迭代过程见表(1),方法二的迭代过程见表(2).

表(1)

k	x _k	
0	3.000 000 000	
1	3, 146 738 373	
2	3, 146 245 819	
3	3. 146 193 220	
4	3. 146 193 220	

表(2)

k	Ik	
0	3.000 000 000	
1	3. 205 791 857	
2	3. 153 859 280	
3	3. 146 327 554	
4	3. 146 193 262	
5	3. 146 193 262	

 $\varphi(x) = e^{x-2}$

由表格可知第一种迭代 s≈3.14193220已满足精度要求,

第二种迭代 s≈3.14193262已满足精度要求。

注记: 1 第二种迭代法 $\varphi(x)=e^{x-2}$ 不收敛,用斯特芬森迭代法仍可能收敛;

2 简单迭代法和斯特芬森迭代法也可以求方程的复数根.

本讲课程结束

北京航空航天大学数学科学学院

数值分析

主讲教师: 贺慧霞

北京航空航天大学数学科学学院

第四章 非线性方程(组)的迭代解法

4.1.5 Newton迭代法

一、Newton 迭代法

微分

$$\Delta y \approx df \Leftrightarrow f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

非线性问题的最简单解法是线性近似

Newton法的基本思想: 把非线性方程线性化。

设f(x)=0有近似根 $x_0, f'(x_0) \neq 0$,则f(x)在 x_0 点附近展开,可得 $f(x) \approx f(x_0) + (x - x_0) f'(x_0) = 0$

于是 f(x) = 0 可近似表示为 $f(x_0) + f'(x_0)(x - x_0) = 0$

$$f(x_0) + f'(x_0)(x - x_0) = 0$$

解出x作为近似根x:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 $(f'(x_0) \neq 0)$

依次产生迭代格式, 称 Newton 法:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \cdots$$

此式称为牛顿(Newton)迭代公式.(也是牛顿法)

牛顿法有显然的几何意义,方程f(x)=0的根 s可解释为曲线y=f(x)=x轴交点的横坐标. 设 x_k 是根 s的某个近似值,过曲线y=f(x)上横坐标为 x_k 的点 P_k 引切线,并将该切线与x轴交点的横坐标 x_{k+1} 作为 s 的新的近似值. 注意到切线方程为

$$y = f(x_k) + f'(x_k)(x - x_k).$$

由于这种几何背景,所以牛顿迭代法也称切线法.

定理4.6 设s是方程f(x) = 0的根,在包含s的某个开区间内 f''(x)连续且 $f'(x) \neq 0$,则存在 $\delta > 0$,当 $x_0 \in [s - \delta, s + \delta]$ 时,由Newton法产生的序列 $\{x_k\}$ 收敛于s;若 $f''(s) \neq 0$,且 $x_0 \neq s$,则序列 $\{x_k\}$ 是平方收敛的。

证明: 牛顿迭代法的迭代函数为 $\varphi(x) = x - \frac{f(x)}{f'(x)}$

设s是f(x)的一个单根,即f(s)=0, $f'(s)\neq 0$,有

$$\varphi'(s) = 1 - \frac{(f')^2 - ff''}{[f']^2} \Big|_{s=s} = \frac{f(s)f''(s)}{[f'(s)]^2} = 0, \quad \varphi''(s) = \frac{f''(s)}{f'(s)} \neq 0.$$

定理心如由吸來性如為产生的原理學的某个种的可以做多數。 μ 如果 $|\varphi'(s)| < 1$,则迭代法 $\mathbf{x}_{k+1} = \varphi(x_k)$ 局部收敛。

又因为 f''(s)+0, f''(x) 延良, 由延庚函的的局部保号性可知 习 $B_8(s)$, 纤 $\forall x \in B_8(s)$, f''(x)+0,

所以当
$$x_0 \in B_{\delta}(s)$$
且 $x_0 \neq s$ 时, $x_k \neq s(k = 1, 2, \dots)$,则

$$\lim_{k\to\infty} \left| \frac{x_{k+1} - s}{(x_k - s)^2} \right| = \lim_{k\to\infty} \frac{|f''(\xi_k)|}{2! |f(x_k)|} = \frac{|f''(s)|}{2 |f'(s)|} \neq 0.$$

Newton法的收敛性依赖于 x_0 的选取。

定理4.6为局部收敛定理,接下来给出大范围收敛定理。

定理4.7 设函数f(x)在区间[a,b]上存在二阶连续导数,且满足条件:

- (1) f(a)f(b) < 0; (保证有根)
- (2) f''(x)在区间[a,b]上不变号; (凸凹性不变)
- (3) 当 $x \in [a,b]$ 时, $f'(x) \neq 0$; (不存在极值的情况)
- (4) $x_0 \in [a,b], f(x_0)f''(x_0) > 0, (对初值迭代后,不会溢出或超出定义域)$

则由Newton法产生的序列 $\{x_k\}$ 收敛于方程f(x) = 0在[a,b]上的唯一的根s,并且至少是平方收敛的。

【例1】证明方程 $x^5+5x+1=0$ 在区间(-1,0) 内有唯一的实根,并用牛顿迭代法求这个根的近似值,使误差不超过0.01。

$$f(-1) = -5 < 0, f(0) = 1 > 0$$

故由介值定理知至少存在一个 $x^* \in (-1,0)$ 使 $f(x^*) = 0$, 又由

 $f'(x) = 5x^4 + 5 > 0$, 知f(x) 在[-1,0] 上单调增加, 因而方程

 $x^5 + 5x + 1 = 0$ 在区间(-1,0) 内有唯一实根。

下面用牛顿迭代法求这个根的近似值。

因为
$$f''(x) = 20x^3 < 0$$
 取 $x_0 = -1$ $(f(x_0)f''(x) > 0)$,代入牛顿迭

代法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_1 = -1 - \frac{-5}{5+5} = -0.5$$

$$x_2 = -0.5 - \frac{f(-0.5)}{f'(-0.5)} = -0.2474$$

$$x_3 = -0.2474 - \frac{f(-0.2474)}{f'(-0.2474)} \approx -0.20$$

$$x_4 = -0.20 - \frac{f(-0.20)}{f'(-0.20)} \approx -0.20$$

所以 $x^* \approx -0.20$ 。

【例2】造平方根表。用牛顿迭代法计算 \sqrt{a} (其中a>0)

解 令 $x = \sqrt{a}$,则 $x^2 - a = 0$,求 \sqrt{a} 等价于求方程 $f(x) = x^2 - a = 0$

的正实根。因为f'(x)=2x,由牛顿迭代公式得

$$x_{k+1} = x_k - \frac{x_k^2 - a}{2x_k} = \frac{1}{2}(x_k + \frac{a}{x_k}), \ k = 0, 1, 2, \dots$$

计算结果

例如:我师,精确到10-6.

预初始值 众。= lo,

VIII ~ |0,723805

<u>k</u>	\mathcal{X}_k
0	10
1	10.750000
2	10.723837
3	10.723805
4	10.723805

牛顿法的计算步骤:

步骤1 准备 选定初始近似值 x_0 ,计算 $f_0=f(x_0)$, $f'_0=f'(x_0)$. 步骤2 迭代 按公式 $x_1=x_0-f_0/f'_0$,迭代一次,得新的近似值 x_1 ,计算 $f_1=f(x_1)$, $f'_1=f'(x_1)$.

步骤3 控制 如果 x_1 满足 δ $< \varepsilon_1$ 或 $|f_1| < \varepsilon_2$,则终止迭代,以 x_1 作为所求的根;否则转步骤4. 此处 ε_1 , ε_2 是允许误差,而

$$\delta = \begin{cases} \begin{vmatrix} x_1 - x_0 \\ x_1 - x_0 \end{vmatrix}, & |x_1| < C, \\ \frac{|x_1 - x_0|}{|x_1|}, & |x_1| \ge C. \end{cases}$$
其中 C 是取绝对误差或相对误差的控制常数,一般可取 C =1.

步骤4 修改 如果迭代次数达到预先指定的次数N.或者 f'_1 =0,则方法失败; 否则以 (x_1,f_1,f'_1) 代替 (x_0,f_0,f'_0) 转步骤2继续迭代.

Newton法优点: 收敛快, 稳定性好, 精度高;

Newton法缺点:

- 1.每步迭代都要计算 $f(x_k)$ 及 $f'(x_k)$,计算量较大,且有时 $f'(x_k)$ 计算比较困难;
- 2.初始值 x_0 只有在根s的附近才能保证收敛.

(1) 简化牛顿法,也称平行弦法,其迭代公式为

$$x_{k+1} = x_k - Cf(x_k)$$
 $C \neq 0, k = 0,1,\dots$ (4.7)

迭代函数为 $\varphi(x)=x-Cf(x)$.

在(4.7)中取 $C=1/f'(x_0)$,则称为简化牛顿法,这类方法计算量省,但只有线性收敛.

其几何意义是用平行弦与x轴交点作为x*的近似,见右图.

(2) 牛顿下山法,牛顿法收敛性依赖初值 x_0 的选取,如果 x_0 偏离所求根 x^* 较远,则牛顿法可能发散.

注: Newton's Method收敛性依赖于xo的选取.

牛顿下山法:目的是解决初值的选取范围太小这一困难

例如:用牛顿法求解方程 $x^3-x-1=0$. 此方程在x=1.5附近的一个根 x^* .

解: 设取迭代初值 $x_0=1.5$,用牛顿迭代法公式

$$x_{k+1} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}.$$
 (1)

 $\varphi(x) = x - \frac{f(x)}{f'(x)}$

计算得 x_1 =1.34783, x_2 =1.32520, x_3 =1.32472.

迭代3次得到的结果 x_3 有6位有效数字.

但是,如取 x_0 =0.6,用(1)式迭代1次得 x_1 =17.9.

这个结果反而比 x_0 =0.6更偏离了所求的根x*=1.32472.

为了防止迭代发散,对迭代过程再附加一项要求,即具有单调性.

$$|f(x_{k+1})| < |f(x_k)|. \tag{2}$$

满足这项要求的算法称为下山法.

将牛顿法与下山法结合起来使用,即在下山法保证函数值稳定下降的前提下,用牛顿法加快收敛速度.为此,我们将牛顿法的结果

$$\overline{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

与前一项的近似值x,适当加权平均作为新的改进值

$$x_{k+1} = \lambda \overline{x}_{k+1} + (1 - \lambda)x_k, \qquad (3)$$

构造迭代格式为: $x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$

称为牛顿下山法.

构造迭代格式为:
$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

其中的参数满足: $|f(x_{k+1})| < |f(x_k)|$

这个方法称为牛顿下山法。其中的参数称为下山因子: $0 < \varepsilon_{\lambda} \le \lambda \le 1$

选择下山因子时从 $\lambda=1$ 开始,逐次将 λ 减半进行试算,直到能使下降条件(2)成立为止.

牛顿下山法当 $\lambda \neq 1$ 时,只有线性收敛速度,但对初值的选取却放的相当宽。

例如,前面的方程 $f(x) = x^3 - x - 1 = 0$ 的一个根为 $x^* = 1.32472$,若取初值

$$x_0 = 0.6$$
,用牛顿法 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 17.9$,反而比 $x_0 = 0.6$ 更偏离根 x^* 。 若改用牛顿下山法 $x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$ $(k = 0,1,2,...)$ 计算,仍取 $x_0 = 0.6$,试算求出下降条件 $\begin{pmatrix} \chi_0 & \lambda^{-1} & \chi_1 \\ \chi_0 & \lambda^{-1} & \chi_1 \end{pmatrix}$ $\begin{pmatrix} \chi_1 & \chi_2 \\ \chi_1 & \chi_2 \end{pmatrix}$ $\begin{pmatrix} \chi_1 & \chi_2 \\ \chi_1 & \chi_2 \end{pmatrix}$ $\begin{pmatrix} \chi_1 & \chi_2 \\ \chi_1 & \chi_2 \end{pmatrix}$

$$x_0 = 0.0$$
, 风景水田下降駅杆 $a_0 = 0.0$, k λ x_k $f(x_0)$ $f(x_$

由此可见,牛顿下山法使迭代过程收敛加速。

一般情况下,只要能使条件选择 $|f(x_{k+1})| < |f(x_k)|$ 成立,则可得到极限

$$\lim_{k\to\infty}f(x_k)=0,$$

从而使数列 $\{x_k\}$ 收敛.

二、求方程m重根的Newton迭代法

$$f(s) = f'(s) = \dots = f^{(m-1)}(s) = 0$$
, $f^{(m)}(s) \neq 0$ $f(x), f'(x), f''(x)$ Æs ÆTaylor Æ.

$$f(x) = \frac{f^{(m)}(\xi_1)}{m!}(x-s)^m, f'(x) = \frac{f^{(m)}(\xi_2)}{(m-1)!}(x-s)^{m-1}, f''(x) = \frac{f^{(m)}(\xi_3)}{(m-2)!}(x-s)^{m-2}$$

$$\varphi(x) = x - \frac{f(x)}{f'(x)} \qquad \varphi(s) = \lim_{x \to s} \varphi(x) = \lim_{x \to s} \left[x - \frac{(x-s)f^{(m)}(\xi_1)}{mf^{(m)}(\xi_2)} \right] = s \quad 2. \quad \varphi(s) = s,$$

$$3. |\varphi'(s)| < 1,$$

$$\varphi'(s) = \lim_{x \to s} \varphi'(x) = \lim_{x \to s} \frac{f(x)f''(x)}{[f'(x)]^2} = \lim_{x \to s} \frac{(m-1)f^{(m)}(\xi_1)f^{(m)}(\xi_2)}{m[f^{(m)}(\xi_2)]^2} = 1 - \frac{1}{m}$$

所以只要 x_0 充分接近s,牛顿迭代法就收敛,Newton迭代法降为一阶!

改进办法一

$$\tilde{\varphi}(x) = x - \frac{\tilde{m}f(x)}{f'(x)} \in C(B_s(s))$$

$$\tilde{\varphi}(s) = \lim_{x \to s} \tilde{\varphi}(x) = \lim_{x \to s} \left[x - \frac{(x - s)f^{(m)}(\xi_1)}{f^{(m)}(\xi_2)} \right] = s$$

$$\tilde{\varphi}'(s) = \lim_{x \to s} \tilde{\varphi}'(x) = \lim_{x \to s} [1 - m + \frac{mf(x)f''(x)}{[f'(x)]^2}] = 0$$

$$x_{k+1} = x_k - \frac{mf(x_k)}{f'(x_k)}$$
 为二阶收敛

改进办法二

在重根时,一般m我们是不知道的,此时考虑函数 $u(x) = \frac{f(x)}{f'(x)}$

这是,f(x)的m重零点转化为u的单零点;对u(x)实施Newton法:

迭代函数为
$$\varphi(x) = x - \frac{u(x)}{u'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

于是得到迭代公式:
$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

此方法不管根的重数,至少二阶收敛!

【例3】已知方程

$$f(x) = x^4 - 1.4x^3 - 0.48x^2 + 1.408x - 0.512 = 0$$

有一个三重根 s=0.8 这里

$$f'(x) = 4x^3 - 4.2x^2 - 0.96x + 1.408$$

 $f''(x) = 12x^2 - 8.4x - 0.96$

如果使用 Newton 法(4.7)进行迭代,并取初始值 $x_0=1$,则有

越往后收敛越慢。如果使用迭代公式(4.9),也取初始值 $x_0=1$,则有

$$(\chi_{k+1} = \chi_{k} - \frac{f(\chi_{k})f'(\chi_{k})}{[f'(\chi_{k})]^{2} - f(\chi_{k})f''(\chi_{k})} \qquad x_{1} = 0.794 \ 019 \ 933$$

$$x_{2} = 0.799 \ 962 \ 734$$

$$x_{3} = 0.800 \ 019 \ 389$$

收敛得非常快。

三、割线法

Newton迭代法需要计算f(x)的一阶导数,对复杂的函数,特别是多元隐函数,求导数或偏导数是一个相对繁琐和复杂的,往往采用近似计算的办法!

在Newton迭代法中用 $f(x_k) - f(x_{k-1})$ 来近似f(x)在 x_k 处的一阶

导数,由此得到的算法叫割线法。

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

割线法的几何表示

割线法在求 x_{k+1} 时要用到前面两步的结果 x_k, x_{k+1} . 需两个初值 x_0, x_1 ,而牛顿切线法在计算 x_{k+1} 时,只用到前一步 x_k 的值。

四、割线法的收敛性

引理: 设f(s) = 0, 在s的某领域 $[s - \delta, s + \delta]$ 内f''(x)连续, $f'(x) \neq 0$, 又设 x_{k-1} , $x_k \in [s - \delta, s + \delta]$ 且 x_{k-1} , x_k , s互异,记 $e_k = s - x_k$, 则有

$$e_{k+1} = s - x_{k+1} = e_k e_{k-1} \left[-\frac{f''(\eta_k)}{2f'(\xi_k)} \right]$$

其中 x_{k+1} 是由割线法产生, η_k , ξ_k 在 $min(x_{k-1},x_k,s)$ 与 $max(x_{k-1},x_k,s)$ 之间。

定理: 设f(s) = 0,在s的某领域内f''(x)连续, $f'(x) \neq 0$,则存在 $\delta > 0$,当 $x_{-1}, x_0 \in I_{\delta} = [s - \delta, s + \delta]$ 时,则由割线法产生的序列 $\{x_k\}$ 收敛于s,且收敛速度的阶至少为1.618。

用割线法求方程 $x-\ln x=2$ 在区间 $(2,\infty)$ 内的根,要求 $\frac{|x_k-x_{k-1}|}{|x_k|}<10^{-8}$ 。

前已分析,所求根位于区间(2,4)内。迭代公式为

$$x_{k+1} = x_k - \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} f(x_k) \quad (k = 0, 1, \dots)$$

其中 $f(x)=x-\ln x-2$ 。取 $x_{-1}=2$, $x_0=4$, 迭代结果见表 4-5。 x_5 已达到精度要求, 故方程 的根 s≈3.146 193 221。

k	x_k	$f(x_k)$
-1	2.000 000 000	-0.693 147 180
0	4.000 000 000	0. 613 705 638
1	3.060 788 438	-0.057 884 104
2	3. 141 738 781	-0.003 037 617
3	3. 146 222 134	0.000 019 723
4	3. 146 193 211	-0.6×10^{-8}
5	3. 146 193 221	0.0

简单进代法:线性收拾(15次) 分件顿进代法·平为收敛(4次) 割线迭代法·中二·618(5次)

五、单点割线法 在割线法中,用固定点 $(x_0, f(x_0))$ 代替 $(x_{k-1}, f(x_{k-1}))$

在Newton迭代法中用 $f(x_k) - f(x_0)$ 来近似f(x)在 x_k 处的一阶

由此得到的算法叫单点割线法 $x_{k+1} = x_k$

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_0)}{f(x_k) - f(x_0)}$$

定理4.9 设函数f(x)在区间[a,b]上存在二阶连续导数,且满足条件:

- (1) f(a)f(b) < 0; (保证有根)
- (2) f''(x)在区间[a,b]上不变号; (凸凹性不变)
- (3) 当 $x \in [a,b]$ 时, $f'(x) \neq 0$; (不存在极值的情况)
- (4) $x_0, x_1 \in [a,b], f(x_0)f''(x_0) > 0, f(x_0)f(x_1) < 0,$

(对初值迭代后,不会溢出或超出定义域,根要介于 x_0 , x_1 之间)则由单点割线法产生的序列 $\{x_k\}$ 收敛于方程f(x)=0在[a,b]上的

则由中总制线公广生的厅外 $\{x_k\}$ 收敛丁刀柱 $\{(x)=0$ 在[u,v]上的唯一的根s,并且收敛速度是一阶的。

例 5 用单点割线法求方程 $x-\ln x=2$ 在区间 $(2,\infty)$ 内的根,要求 $\frac{|x_k-x_{k-1}|}{|x_k|} < 10^{-8}$ 。

$$\mathbf{f}(x) = x - \ln x - 2$$
 满足

(1)
$$f(2)f(4) < 0$$
;

(2) 当
$$x \in [2,4]$$
时 $,f''(x) > 0;$

(3) 在区间[2,4]上
$$f'(x) \neq 0$$
;

$$(4) f(4)f''(4) > 0$$
.

$$\frac{\chi_{0}=2}{\chi} \qquad f(x)=2-\ln^{2}-2=-\ln^{2}x$$

$$f'=1-\frac{1}{\chi}, \quad f''=\frac{1}{\chi^{2}}$$

所以,选 $x_0 = 4$, $x_1 = 2$, 由单点割线法(4.13)产生的序列 $\{x_k\}$ 必收敛于方程在[2,4]内的 根 s。迭代结果见表 4-6。x₈ 已满足精度要求,故方程的根为 s \approx 3. 146 193 219。

表 4-6 例 5 计算结果

k	x_k	$f(x_k)$
0	4.000 000 000	0. 613 705 638
1	2,000 000 000	-0.693 147 180
2	3.060 788 439	-0.057 884 103
3	3. 141 738 781	-0.003 037 617
4	3. 145 965 936	-0.000 155 040
5	3.146 181 637	-0.7902×10^{-5}
6	3.146 192 630	-0.402×10^{-6}
7	3. 146 193 191	-0.20×10^{-7}
8	3.146 193 219	-0.1×10^{-8}

作业

❖课后习题1、2、4、5、7、9

本讲课程结束

北京航空航天大学数学科学学院

