Application No.: 10/568,616

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

(currently amended): A curable composition comprising:

an organic-a polyoxypropylene polymer (A) which has on average 1.1 to 5 groups per one molecule thereof each-represented by the general formula (1) and has one or more silicon-containing functional groups capable of cross-linking by forming siloxane bonds:

$$-NR^{1}-C(=0)-$$
 (1)

wherein R¹ is a hydrogen atom, or a substituted or unsubstituted monovalent organic group; and a tin carboxylate (B),

an amine compound as a component (C),

a filler, and

a plasticizer,

wherein the carbon atom adjacent to the carbonyl group of the tin carboxylate (B) is a quaternary carbon atom,

an amount of the tin carboxylate (B) is 0.5 to 10 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A).

an amount of the component (C) is 0.1 to 5 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A),

an amount of the filler is 10 to 200 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A), and

Application No.: 10/568,616

an amount of the plasticizer is 20 to 100 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A).

2.-3. (canceled).

(currently amended): A curable composition comprising:

an-organic-a polyoxypropylene polymer (A) which has on average 1.1 to 5 groups per one molecule thereof each-represented by the general formula (1) and has one or more siliconcontaining functional groups capable of cross-linking by forming siloxane bonds:

$$-NR^{1}-C(=0)$$
- (1)

wherein R¹ is a hydrogen atom, or a substituted or unsubstituted monovalent organic group; and a component (B) which is a carboxylic acid,

an amine compound as a component (C),

a filler, and

a plasticizer,

wherein the carbon atom adjacent to the carbonyl group of the carboxylic acid is a quaternary carbon atom,

an amount of component (B) is 0.5 to 10 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A).

an amount of the component (C) is 0.1 to 5 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A).

an amount of the filler is 10 to 200 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A), and

Application No.: 10/568,616

an amount of the plasticizer is 20 to 100 parts by weight in relation to 100 parts by weight of the polyoxypropylene polymer (A).

5, to 18 (canceled).

- 19. (previously presented): The curable composition according to claim 1, wherein the organie-polyoxypropylene polymer (A) has on average 1.5 to 2 groups per one molecule thereof each-represented by the general formula (1).
- 20. (previously presented): The curable composition according to claim 1, wherein the <u>polyoxypropylene organie-polymer</u> (A) is produced by following production methods (a) or (b):

the production method (a) in which an excessive amount of a polyisocyanate compound

(E) is reacted with an organic-a polyoxypropylene polymer (D) having active hydrogencontaining groups at the terminals thereof to convert the polyoxypropyleneorganic polymer (D)
into a polymer having isocyanate groups at the terminals of the polyurethane main chain thereof,
and thereafter, or at the same time, the whole isocyanate groups or a part of the isocyanate
groups are reacted with the W group of a silicon compound (F) represented by formula (7) to
produce the polyoxypropylene.organic-polymer (A):

$$W-R^5-SiR^4_{3-c}X_c$$
 (7)

wherein R⁴ is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by (R')₃SiO₂, and when there are two or more R⁴s, they may be the same or different from each

Application No.: 10/568,616

other; R' represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and 3 R's may be the same or different from each other; X represents a hydroxy group or a hydrolyzable group, and when there are two or more Xs, they may be the same or different from each other; c represents an integer of 1 to 3; R⁵ is a divalent organic group; and W is an active hydrogen-containing group selected from the group consisting of a hydroxy group, a carboxyl group, a mercapto group and a primary or secondary amino group; or

the production method (b) in which an hydrolyzable silicon group-containing isocyanate compound (G) represented by formula (8) is reacted with the <u>polyoxypropylene organic-polymer</u> (D) having active hydrogen-containing groups at the terminals thereof to produce the <u>polyoxypropylene organic-polymer</u> (A):

$$0=C=N-R^5-SiR^4_{3-c}X_c$$
 (8)

wherein R4, R5, X and c are the same as described above.

- 21, and 22, (canceled).
- 23. (previously presented): The curable composition according to claim 4, wherein the organic-polyoxypropylene polymer (A) has on average 1.5 to 2 groups per one molecule thereof each-represented by the general formula (1).
- 24. (previously presented): The curable composition according to claim 2019, wherein R⁵ is a substituted or unsubstituted divalent <u>hydrocarbon hydrogen containing</u> group having 1 to 20 carbon atoms.

Application No.: 10/568,616

 $25. \qquad \text{(new):} \ \ \, \text{The curable composition according to claim 1, wherein the tin} \\ \text{carboxylate (B) is tin neodecanoate.}$

(new): The curable composition according to claim 4, wherein the component
 (B) is needecanoic acid.