## 4. CLASSIFICATION

## **Clustering and Classification**

Given a dataset of *objects* described by *attributes*, build a model that assigns objects to a *class* (or label)



## **Clustering and Classification**

Given a dataset of *objects* described by *attributes*, build a model that assigns objects to a *class* 



#### **Classification Problem**

**Input**: set of objects with categorical/numerical attributes and one class label

**Output**: A model that returns the class label given the object attributes

 Model is a function represented as rules, decision trees, formulae

Classification belongs to supervised ML

Objects have class information

## **Classification: General Approach**

Model is learnt from a set of objects with known labels: **training set** 

The quality of the model is evaluated by comparing the predicted class labels with those from a set of objects with known labels: **test set** 

Test set is independent of training set,
 otherwise over-fitting will occur

The model is applied to data with unknown labels: **prediction** 

## **Classification: Training**



| NAME | RANK           | YEARS | TENURED |
|------|----------------|-------|---------|
| Mike | Assistant Prof | 3     | no      |
| Mary | Assistant Prof | 7     | yes     |
| Bill | Professor      | 2     | yes     |
| Jim  | Associate Prof | 7     | yes     |
| Dave | Assistant Prof | 6     | no      |
| Anne | Associate Prof | 3     | no      |

Categorical attribute

Numerical Class label attribute

Classification
Algorithms

Classifier
(Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 6

## **Classification: Model Test and Usage**



| NAME    | RANK           | YEARS | TENURED |
|---------|----------------|-------|---------|
| Tom     | Assistant Prof | 2     | no      |
| Merlisa | Associate Prof | 7     | no      |
| George  | Professor      | 5     | yes     |
| Joseph  | Assistant Prof | 7     | yes     |

Tenured?



YES

#### Classification: Problem Formulation

#### **Problem**

Given a database D with n data items described by d categorical/numerical attributes and one categorical attribute (class label C)

**Find** 

A function  $f: X^d \rightarrow C$ 

rules decision tree formula

Such that

classifies *accurately* the items in the *training* set *generalises* well for the (unknown) items in the *test* set

## **Characteristics of Classification Methods**

#### Predictive accuracy

#### Speed and scalability

- Time to build the model
- Time to use the model
- In memory vs. on disk processing

#### Robustness

Handling noise, outliers and missing values

#### Interpretability

- Understanding the model and its decisions (black box)
   vs. white box
- Compactness of the model

## If a classifier has 75% accuracy, it means that ...

- A. It correctly classifies75% of the data items in the training set
- B. It correctly classifies 100% of the data items in the training set but only 75% in the test set
- C. It correctly classifies 75% of the data items in the test set
- D. It correctly classifies 75% of the unknown data items



## **Decision Trees**

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

- Nodes are tests on a single attribute
- Branches are attribute values
- Leaves are marked with class labels



some columns are not used

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

## **Decision Tree Induction: Algorithm**

Tree construction (top-down divide-and-conquer strategy)

- At the beginning, all training samples belong to the root
- Examples are partitioned recursively based on a selected "most discriminative" attribute
- Discriminative power determined based on information gain (ID3/C4.5)

#### Partitioning stops if

todo: understand all

- All samples belong to the same class → assign the class label to the leaf
- There are no attributes left → majority voting to assign the class label to the leaf
- There are no samples left

## **Example: Decision Tree Induction**

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| ≥40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

buys\_computer is always yes if 31 < age < 40



## **Example: Decision Tree Induction**

| 44   | income  | student | credit_rating | buys_computer |
|------|---------|---------|---------------|---------------|
| <=30 | high    | no      | fair          | no            |
| <=30 | high    | no      | excellent     | no            |
|      | 88      |         | 559           |               |
| >40  | medium  | no      | fair          | yes           |
| >40  | low     | yes     | fair          | yes           |
| >40  | low     | yes     | excellent     | no            |
|      |         |         | 638696        |               |
| <=30 | medium  | no      | fair          | no            |
| <=30 | low     | yes     | fair          | yes           |
| >40  | medium  | yes     | fair          | yes           |
| <=30 | medium  | yes     | excellent     | yes           |
|      | 5555555 |         | 94493999      |               |
|      | 7787    |         | 599           |               |
| >40  | medium  | no      | excellent     | no            |



©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 14

## **Example: Decision Tree Induction**

| 385  | income     | student | credit_rating | buys_computer  |
|------|------------|---------|---------------|----------------|
| <=30 | high       | no      | fair          | no             |
| <=30 | high       | no      | excellent     | no             |
|      | 898        |         | 100           | 36             |
| >40  | medium     | no      | fair          | yes            |
| >40  | low        | yes     | fair          | yes            |
| >40  | low        | yes     | excellent     | no             |
|      | 1000       |         | excellent     | 86             |
| <=30 | medium     | no      | fair          | no             |
| <=30 | low        | yes     | fair          | yes            |
| >40  | medium     | yes     | fair          | yes            |
| <=30 | medium     | yes     | excellent     | yes            |
|      | 50,640,600 |         | excellen      | ( <del>-</del> |
|      | bres.      |         | 599           | 100            |
| >40  | medium     | no      | excellent     | no             |

todo: when do you partition at a deeper level? here only 1 level of partition max

Age?

<=30
31..40

Student?

yes

Credit rating?

no

yes

tis

Classification - 15

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

#### **Attribute Selection**

At a given branch in the tree, the set of samples S to be classified has P positive and N negative instances

The entropy of the set S is Entropy of set is the entropy of the label

$$H(P, N) = -\frac{P}{P+N} \log_2 \frac{P}{P+N} - \frac{N}{P+N} \log_2 \frac{N}{P+N}$$

Note

$$H(P, N) = 0 \rightarrow \text{no uncertainty}$$

$$H(P, N) = 1 \rightarrow maximal uncertainty$$

#### Entropy always computed wrt label



| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

$$H_S = H(9, 5) = 0.94$$

Entropy of set = entropy of label (buys\_computer)

Age 
$$[<=30]$$
  $H(2,3) = 0.97$ 

Age [31...40] H(4, 0) = 0

Age [>40] H(3, 2) = 0.97

Income [high] H(2, 2) = 1

Income [med] H(4, 2) = 0.92

Income [low] H(3, 1) = 0.81

Student [yes] H(6, 1) = 0.59

Student [no] H(3, 4) = 0.98

Rating [fair] H(6, 2) = 0.81

Rating [exc] H(3, 3) = 1

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 17

Entropies are all computed wrt label

## **Attribute Selection: Example**

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

$$H_s = H(9, 5) = 0.94$$

$$H_{Age} = p([<=30]) \cdot H(2, 3) + p([31...40]) \cdot H(4, 0) + p([>40]) \cdot H(3, 2) =$$
  
= 5/14 \cdot 0.97 + 4/14 \cdot 0 + 5/14 \cdot 0.97 = 0.69

$$H_{Income}$$
 = p([high]) · H(2, 2) + p([med]) · H(4, 2) + p([low]) · H(3, 1) =   
= 4/14 · 1 + 6/14 · 0.92 + 4/14 · 0.81 = 0.91

$$H_{Student} = p([yes]) \cdot H(6, 1) + p([no]) \cdot H(3, 4) = 7/14 \cdot 0.59 + 7/14 \cdot 0.98 = 0.78$$

$$H_{Rating} = p([fair]) \cdot H(6, 2) + p([exc]) \cdot H(3, 3) = 8/14 \cdot 0.81 + 6/14 \cdot 1 = 0.89$$

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 18

conditional entropy = probability of being in that subgroup x entropy of subgroup

we split using the attribute with the smallest uncertainty.

conditional entropy = probability of being in that subgroup x entropy of subgroup

## **Attribute Selection: Information Gain**

Attribute A partitions S into  $S_1$ ,  $S_2$ , ...  $S_v$ Entropy of attribute A is

$$H(A) = \sum_{i=1}^{v} \frac{P_{i} + N_{i}}{P + N} H(P_{i}, N_{i})$$

The information gain obtained by splitting S using A is

$$Gain(A) = H(P, N) - H(A)$$

H(P,N) = total / true uncertainty H(A) = uncertainty of category

Gain(Age) = 
$$0.94 - 0.69 = 0.25$$
  
Gain(Income) =  $0.94 - 0.91 = 0.03$   
Gain(Student) =  $0.94 - 0.78 = 0.16$   
Gain(Rating) =  $0.94 - 0.89 = 0.05$ 

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

#### ← split on age

if H(A) = H(P,N), then gain = 0

if the uncertainty of the attribute is equal to the uncertainty of S, then gain is 0

the attribute has no impact on classification

Information Gain = Entropy of set before splitting - Entropy of set we split at

- Entropy of set before splitting is a "constant"
- We wanna reduce uncertainty so we choose the splitting attribute that has the lowest entropy

# Given the distribution of positive and negative samples for attributes $A_1$ and $A_2$ , which is the best attribute for splitting?

| $A_1$          | Р | N |
|----------------|---|---|
| a              | 2 | 2 |
| b              | 4 | 0 |
|                |   |   |
| A <sub>2</sub> | Р | N |
| x              | 3 | 1 |
| y<br>y         | 3 | 1 |

- A. A1
- B. A2
- C. They are the same
- D. There is not enough information to answer the question

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis



## **Pruning**

The construction phase does not filter out noise → **overfitting** 

#### **Pruning strategies**

- Stop partitioning a node when large majority of samples is positive or negative, i.e., N/(N+P) or P/(N+P) > 1 - ε
- Build the full tree, then replace nodes with leaves labelled with the majority class, if classification accuracy does not change todo: build full tree?
- Apply Minimum Description Length (MDL) principle

## **Minimum Description Length Pruning**

Let  $M_1$ ,  $M_2$ , ...,  $M_n$  be a list of candidate models (i.e., trees). The best model is the one that minimizes

$$L(M) + L(D|M)$$

#### where

- L(M) is the length in bits of the description of the model (#nodes, #leaves, #arcs ...)
- L(D|M) is the is the length in bits of the description of the data when encoded with the model (#misclassifications)

## **Extracting Classification Rules from Trees**

Represent the knowledge in the form of IF-THEN rules

- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction

## Rules are easier for humans to understand Example

```
IF age = "<=30" AND student = "no"

IF age = "<=30" AND student = "yes"

IF age = "31...40"

IF age = ">40" AND credit_rating = "excellent"

THEN buys_computer = "yes"

THEN buys_computer = "no"
```

#### **Decision Trees: Continuous Attributes**

With continuous attributes we can not have a separate branch for each value

- use binary decision trees

## Binary decision trees

- For continuous attributes A a split is defined by val(A) < X</li>
- For categorical attributes A a split is defined by a subset X ⊆ domain(A)

## **Example: Binary Decision Tree**

| rid | Age | Саг Туре | Risk |
|-----|-----|----------|------|
| 0   | 23  | family   | High |
| 1   | 17  | sports   | High |
| 2   | 43  | sports   | High |
| 3   | 68  | family   | Low  |
| 4   | 32  | truck    | Low  |
| 5   | 20  | family   | High |
|     |     |          |      |

(a) Training Set



## **Splitting Continuous Attributes**

## **Approach**

- Sort the data according to attribute value
- Determine the value of X which maximizes information gain by scanning through the data items

  X is the continuous attribute (eq age)

Only if the class label changes, a relevant decision point exists



©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 26

Top Row Example: Age, we split at 25 because all labels are high

Here, we need to decide whether to split using age or car type.

- For each attribute, we find the interval that maximizes information gain
- We pick the attribute that results in the highest information gain



©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

family

High

Classification - 27

## **Scalability of Continuous Attribute Splits**

## Naive implementation

 At each step the data set is split in subsets that are associated with a tree node

#### **Problem**

- For evaluating which attribute to split, data needs to be sorted according to these attributes
- Becomes dominating cost

## **Scalability of Continuous Attribute Splits**

Idea: Presorting of data and maintaining order throughout tree construction

- Requires separate sorted attribute tables for each attribute
   Updating attribute tables
  - Attribute used for split: splitting attribute table straightforward
  - Other attributes
    - Build Hash Table associating tuple identifiers (TIDs) of data items with partitions
    - Select data from other attribute tables by scanning and probing the hash table

todo

## **Example**

#### Attribute lists for node 0

#### Class Tid Age 17 High 1 20 High 23 High Low 43 High 2 68 3 Low



#### hash table

| 0 | L |
|---|---|
| 1 | L |
| 2 | R |
| 3 | R |
| 4 | R |
| 5 | L |

age hash table

Attribute lists for node I

Age Class Tid

17 High 1

| Car Type | Class | Tid |
|----------|-------|-----|
| family   | High  | 0   |
| sports   | High  | 1   |
| family   | High  | 5   |

High

High

5

20

23



Attribute lists for node 2

probe

| Age | Class | Tid |  |
|-----|-------|-----|--|
| 32  | Low   | 4   |  |
| 43  | High  | 2   |  |
| 68  | Low   | 3   |  |

| Car Type | Class | Tid |
|----------|-------|-----|
| sports   | High  | 2   |
| family   | Low   | 3   |
| truck    | Low   | 4   |

## When splitting a continuous attribute, its values need to be sorted ...

- A. to avoid overfitting
- B. to prune the data
- C. to define a binary split condition
- D. to accelerate tree induction



## **Characteristics of Decision Tree Induction**

## Strengths

- Automatic feature selection
- Minimal data preparation
- Non-linear model
- Easy to interpret and explain

#### Weaknesses

- Sensitive to small perturbation in the data
- Tend to overfit
- Have to be re-trained from scratch with new data

## **Decision Tree Induction: Properties**

Model: flow-chart like tree structure

Score function: classification accuracy

Optimisation: top-down tree construction + pruning

Data Management: avoiding sorting during splits

## **Classification Algorithms**

Decision tree induction is a (well-known) example of a classification algorithm

#### **Alternatives**

- Basic methods: Naïve Bayes, kNN, logistic regression, ...
- Ensemble methods: random forest, gradient boosting, ...
- Support vector machines
- Neural networks: CNN, rNN, LSTM, ...

After a weak learner is added, the data are reweighted: examples that are misclassified gain weight and examples that are classified correctly lose weight. Thus, future weak learners focus more on the examples that previous weak learners misclassified.

#### **Ensemble Methods**

#### Idea

- Take a collection of simple or weak learners
- Combine their results to make a single, strong learner
   Types
- Bagging: train learners in parallel on different samples of the data, then combine outputs through voting or averaging sampling with replacement
- Stacking: combine model outputs using a secondstage learner like linear regression
- Boosting: train learners on the filtered output of other learners

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 35

#### **Random Forests**

Learn K different decision trees from independent samples of the data (bagging)

 vote between different learners, so models should not be too similar

Aggregate output: majority vote

## Why do Ensemble Methods Work?

Assume there are 25 base classifiers

- Each classifier has error rate = 0.35
- Assume classifiers are independent

Probability that the ensemble classifier makes a

wrong prediction

$$P(\text{wrong prediction}) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$



Tan, Steinbach, Kumar

©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 37

## **Sampling Strategies**

Two sampling strategies

## Sampling data

 select a subset of the data → Each tree is trained on different data

## Sampling attributes

 select a subset of attributes → corresponding nodes in different trees (usually) don't use the same feature to split

## **Random Forests: Algorithm**

- 1. Draw K bootstrap **samples of size N** from original dataset, with replacement (bootstrapping) [all attributes taken]
- 2. While constructing the decision tree, select a random set of **m attributes** out of the p attributes available to infer split (feature bagging)

  some attributes taken

#### Typical parameters

- m ≈ sqrt(p), or smaller
- K≈500

## **Illustration of Random Forests**



©2018, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis

Classification - 40

## The computational cost for constructing a RF with K as compared to constructing K decision trees on the same data

- A. is identical
- B. is on average larger
- C. is on average smaller

we use lesser attributes. lesser branches



#### **Characteristics of Random Forests**

## Strengths

- Ensembles can model extremely complex decision boundaries without overfitting
- Probably the most popular classifier for dense
   data (<= a few thousand features)</li>
- Easy to implement (train a lot of trees)
- Parallelizes easily, good match for MapReduce

#### **Characteristics of Random Forests**

#### Weaknesses

- Deep Neural Networks generally do better
- Needs many passes over the data at least the max depth of the trees
- Relatively easy to overfit hard to balance accuracy/fit tradeoff

#### References

#### **Textbook**

Jiawei Han, Data Mining: concepts and techniques,
 Morgan Kaufman, 2000, ISBN 1-55860-489-8

#### References

- Leo Breiman (2001) "Random Forests" Machine Learning, 45, 5-32.
- Shafer, John, Rakesh Agrawal, and Manish Mehta.
   "SPRINT: A scalable parallel classifier for data mining." *Proc. 1996 Int. Conf. Very Large Data Bases*. 1996.