Outline

CS 331 — AVL Trees

Dr. Mattox Beckman

Illinois Institute of Technology Department of Computer Science

Spring, 2012

- Introduction
 - Objectives
- **Balancing Trees**
- Rotations

	← □ →	◆御 ▶ ◆ 恵 ▶ ◆ 恵 → り へで			
Dr. Mattox Beckman (IIT)	CS 331 — AVL Trees	Spring, 2012 1 / 16	Dr. Mattox Beckman (IIT)	CS 331 — AVL Trees	Spring, 2012 2 / 16
	Introduction Objectives			Introduction Objectives	
Objectives	Motivation				

Objectives

You should be able to...

- Explain why height-balanced trees are necessary.
- Explain how to perform two of the four kinds of rotations:
 - left, right
- Identify the proper kind of rotation for a particular situation.

Do you remember how long it takes...

- To insert an element into a BST on average?
- To insert an element into a BST worst case?
- To delete an element from a BST on average?
- To delete an element from a BST worst case?

Motivation

Some Good Insertions

Insert These Nodes

8 6 16 30 7 2 12

Do you remember how long it takes...

- To insert an element into a BST on average? // $\mathcal{O}(\lg n)$
- To insert an element into a BST worst case? // $\mathcal{O}(n)$
- To delete an element from a BST on average? // $\mathcal{O}(\lg n)$
- To delete an element from a BST worst case? // $\mathcal{O}(n)$

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees
Spring, 2012 4 / 16
Dr. Mattox Beckman (IIT)
CS 331 — AVL Trees
Spring, 2012
Introduction
Objectives
Objectives

Some Good Insertions

Some Good Insertions

Insert These Nodes 8 6 16 30 7 2 12 Insert These Nodes 8 6 16 30 7 2 12

8

CS 331 — AVL Trees

Some Good Insertions

Some Good Insertions

Insert These Nodes 8616307212

Insert These Nodes 8616307212

◆□▶◆□▶◆■▶◆■▶ ■ 900

◆ロ → ◆昼 → ◆ き → ● り へ ○

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees Objectives Introduction

Spring, 2012 5/16 Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees Introduction

Some Good Insertions

Some Good Insertions

Insert These Nodes 8616307212

Insert These Nodes 8616307212

Some Good Insertions

Some Good Insertions

Insert These Nodes 8 6 16 30 7 2 12

Insert These Nodes 8 6 16 30 7 2 12

CS 331 — AVL Trees

Introduction Objectives

◆□▶◆□▶◆壹▶ 壹 り900 Dr. Mattox Beckman (IIT)

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ② CS 331 — AVL Trees

Some Bad Insertions

Some Bad Insertions

Insert These Nodes

Dr. Mattox Beckman (IIT)

30 2 16 6 7 12 8

Insert These Nodes 30 2 16 6 7 12 8

30

Objectives

Introduction

6/16

Spring, 2012

Some Bad Insertions

Some Bad Insertions

Insert These Nodes 30 2 16 6 7 12 8

Insert These Nodes 30 2 16 6 7 12 8

◆□▶◆□▶◆■▶◆■▶ ■ 900

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ②

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees Introduction Objectives

Spring, 2012 6/16 Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees Introduction

Some Bad Insertions

Some Bad Insertions

Insert These Nodes 30 2 16 6 7 12 8

Insert These Nodes 30 2 16 6 7 12 8

CS 331 — AVL Trees

Spring, 2012 6 / 16

Some Bad Insertions

Some Bad Insertions

Insert These Nodes 30 2 16 6 7 12 8

Insert These Nodes 30 2 16 6 7 12 8

4□ > 4□ > 4□ > 4□ > 4□ > 4□

∢ロト∢部ト∢医ト∢医トー室

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

Spring, 2012 6/16 Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

Balancing Trees

Balancing Trees

Balance

Some Insertions, with Balances

• The balance of a node is the depth of the left subtree minus the depth of the right subtree.

- Depth is the longest path from the node to a leaf.
- Leaves always have balance of zero.

Insert These Nodes 30 2 16 32 37 12

Some Insertions, with Balances

Some Insertions, with Balances

Insert These Nodes 30 2 16 32 37 12

Insert These Nodes 30 2 16 32 37 12

◆□▶◆□▶◆壹▶ 壹 り900 ◆ロ → ◆昼 → ◆ き → ● り へ ○ Spring, 2012 8/16 Dr. Mattox Beckman (IIT) CS 331 — AVL Trees

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

Balancing Trees

Balancing Trees

Some Insertions, with Balances

Some Insertions, with Balances

Insert These Nodes 30 2 16 32 37 12

Insert These Nodes 30 2 16 32 37 12

CS 331 — AVL Trees

Spring, 2012 8 / 16

Some Insertions, with Balances

Some Insertions, with Balances

Insert These Nodes 30 2 16 32 37 12

Insert These Nodes 30 2 16 32 37 12

◆ロト ◆部 → ◆恵 → ・恵 ・ かなべ

Dr. Mattox Beckman (IIT)

CS 331 - AVL Trees

Spring, 2012

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

CS 331 — AVL Trees

Balancing Trees

8/16

Balancing Trees

Updating Balance During Add

Add Example 1

• Perform an add as normal, using recursion.

• The leaf will have balance zero.

Upon return:

- If you went left, increment your balance.
- If you went right, decrement your balance.
- If the balance becomes zero, stop updating balances. (Why?)
- If the balance is +/-1, return to the parent.
- If the balance is +/-2, rebalance the node.

Example

Insert a 1.

The node 1 goes to the left of 3.

Spring, 2012

Add Example 1

Add Example 1

Example

Insert a 1.

◆ロト ◆部 → ◆恵 → ・恵 ・ かなべ Dr. Mattox Beckman (IIT)

(34) 0

CS 331 — AVL Trees Spring, 2012 10/16 Balancing Trees

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees Balancing Trees

Add Example 1

Dr. Mattox Beckman (IIT)

3

(16) 1

(12) 0

Examples

Example

Insert a 1.

Example Insert a 33.

• The node 33 goes to the left of 34.

Examples

Examples

Example

Insert a 33.

Example

Insert a 33.

• Because it is a leaf, it's balance will be zero.

• 33 is the left child of 34, so increment 34's balance.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Spring, 2012

11/16

Dr. Mattox Beckman (IIT)

(12) 0

CS 331 — AVL Trees

(33) 0

Balancing Trees

Spring, 2012

Examples

Examples

Dr. Mattox Beckman (IIT)

Dr. Mattox Beckman (IIT)

Example

Insert a 33.

• 34 is the right child of 32, so decrement 32's balance. This node is out of balance, so we will rebalance here.

Example Insert a 33.

Here is the result of rebalancing. Let's talk about that next....

CS 331 — AVL Trees

Balancing Trees

Rotations Rotations

Effect of a rotation

Effect of a rotation

• This is a Right Rotation.

• What happens to the balance of the root?

• This is a Left Rotation. It should look familiar.

• What happens to the balance of the root?

Effects of Rotations

Implementing a Right Rotation

- A Left Rotation adds 2 to the balance of the node. Use it when the balance is −2.
- A Right Rotation subtracts 2 from the balance of the node. Use it when the balance is 2.
- The "heavy" part of the tree needs to be on the *outer* side for this to work.


```
curr.balance += 2;
curr.left.balance++;
tmp = curr.left;
curr.left =
    curr.left.right;
tmp.right = curr;
curr.parent = tmp;
```

Rotations Rotations

Implementing a Right Rotation

Implementing a Right Rotation


```
curr.balance += 2;
curr.left.balance++;
tmp = curr.left;
curr.left =
 curr.left.right;
tmp.right = curr;
curr.parent = tmp;
```



```
curr.balance += 2;
curr.left.balance++;
tmp = curr.left;
curr.left =
  curr.left.right;
tmp.right = curr;
curr.parent = tmp;
```

◆ロト ◆園 ト ◆夏 ト ◆夏 ト 夏 り へ ②

◆ロ → ◆昼 → ◆ き → ● り へ ○

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees Rotations

Spring, 2012 15 / 16 Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

Rotations

Implementing a Right Rotation


```
curr.balance += 2;
curr.left.balance++;
tmp = curr.left;
curr.left =
 curr.left.right;
tmp.right = curr;
curr.parent = tmp;
```


Implementing a Right Rotation

```
curr.balance += 2;
curr.left.balance++;
tmp = curr.left;
curr.left =
  curr.left.right;
tmp.right = curr;
curr.parent = tmp;
```

You have to update the parent's link also.

Rotations Rotations

Implementing a Right Rotation

Bad Insertions with Rotations

Insert These Nodes

123456


```
curr.balance += 2;
curr.left.balance++;
tmp = curr.left;
curr.left =
    curr.left.right;
tmp.right = curr;
curr.parent = tmp;
```

4□ ► 4₫ ► 4 분 ► 4 분 ► 9 < 0</p>

4□ > 4□ > 4 = > 4 = > = 900

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees
Rotations

Spring, 2012 15 / 16

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

Rotations

Spring, 2012

16 / 1

Bad Insertions with Rotations

Bad Insertions with Rotations

Insert These Nodes

123456

1 0

Insert These Nodes 1 2 3 4 5 6

CS 331 — AVL Trees

Spring, 2012

Rotations Rotations

Bad Insertions with Rotations

Bad Insertions with Rotations

Insert These Nodes

123456

Insert These Nodes 123456

• Try inserting the next two yourself before looking ahead!

◆□▶◆□▶◆壹▶ 壹 り900

◆ロ → ◆昼 → ◆ き → ● り へ ○

Dr. Mattox Beckman (IIT) CS 331 — AVL Trees Rotations

Spring, 2012 16 / 16

CS 331 — AVL Trees Dr. Mattox Beckman (IIT)

Rotations

Bad Insertions with Rotations

Bad Insertions with Rotations

Insert These Nodes 123456

Insert These Nodes 123456

Rotations Rotations

Bad Insertions with Rotations

Insert These Nodes 123456

• Try inserting the next two yourself before looking ahead!

Bad Insertions with Rotations

Insert These Nodes 123456

◆□▶◆□▶◆壹▶ 壹 り900 Dr. Mattox Beckman (IIT) CS 331 — AVL Trees Spring, 2012 16 / 16

Rotations

Dr. Mattox Beckman (IIT)

CS 331 — AVL Trees

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□

Spring, 2012

Bad Insertions with Rotations

Insert These Nodes 123456

