Eigenproblems II: Computation

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Setup

$$A \in \mathbb{R}^{n \times n}$$
 symmetric $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^n$ eigenvectors $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|$ eigenvalues

Setup

$$A \in \mathbb{R}^{n \times n}$$
 symmetric $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^n$ eigenvectors $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|$ eigenvalues

Review (Spectral Theorem): What do we know about the eigenvectors?

Usual Trick

$$\vec{v} \in \mathbb{R}^n$$

$$\downarrow \downarrow$$

$$\vec{v} = c_1 \vec{x}_1 + \dots + c_n \vec{x}_n$$

Observation

$$A^{k}\vec{v} = \lambda_{1}^{k} \left(c_{1}\vec{x}_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} c_{1}\vec{x}_{2} + \dots + \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} c_{n}\vec{x}_{n} \right)$$

For Large k

$$A^k ec{v} pprox \lambda_1^k ec{x}_1$$
 (assuming $|\lambda_2| < |\lambda_1|$)

Power Iteration

$$\vec{v}_k = A\vec{v}_{k-1}$$

Power Iteration

$$\vec{v}_k = A\vec{v}_{k-1}$$

Question: What if $|\lambda_1| > 1$?

Other Eigenvalues

$$\vec{w}_k = A\vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Normalized Power Iteration

Multiple Eigenvalues

$$\vec{w}_k = A\vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Question: Which norm?

Eigenvalues of Inverse Matrix

$$A\vec{v} = \lambda \vec{v} \implies A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$$

Eigenvalues of Inverse Matrix

$$A\vec{v} = \lambda \vec{v} \implies A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$$

Question:

What is the largest-magnitude eigenvalue?

Power Iteration

Inverse Iteration

$$\vec{w}_k = A^{-1} \vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Inverse Iteration

$$\vec{w}_k = A^{-1} \vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Question: How to make faster?

Inverse Iteration with LU

Solve
$$L\vec{y}_k = \vec{v}_{k-1}$$

Solve $U\vec{w}_k = \vec{y}_k$
Normalize $\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$

Eigenvalues of Inverse Matrix

$$A\vec{v} = \lambda \vec{v} \implies (A - \sigma I)\vec{v} = (\lambda - \sigma)\vec{v}$$

Power Iteration

Shifted Inverse Iteration

To find eigenvalue closest to σ :

$$\vec{v}_{k+1} = \frac{(A - \sigma I)^{-1} \vec{v}_k}{\|(A - \sigma I)^{-1} \vec{v}_k\|}$$

Power Iteration

Heuristic: Convergence Rate

$$A^{k}\vec{v} = \lambda_{1}^{k} \left(c_{1}\vec{x}_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} c_{1}\vec{x}_{2} + \dots + \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} c_{n}\vec{x}_{n} \right)$$

Strategy for Better Convergence

Find σ with

$$\left| \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma} \right| < \left| \frac{\lambda_2}{\lambda_1} \right|$$

Power Iteration

Least-Squares Approximation

If \vec{v}_0 is approximately an eigenvector:

$$\arg\min_{\lambda} \|A\vec{v}_0 - \lambda\vec{v}_0\|^2 = \frac{\vec{v}_0^{\top} A\vec{v}_0}{\|\vec{v}_0\|_2^2}$$

Rayleigh Quotient Iteration

$$\sigma_k = \frac{\vec{v}_{k-1}^{\top} A \vec{v}_{k-1}}{\|\vec{v}_{k-1}\|_2^2}$$

$$\vec{w}_k = (A - \sigma_k I)^{-1} \vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Rayleigh Quotient Iteration

$$\sigma_k = \frac{\vec{v}_{k-1}^{\top} A \vec{v}_{k-1}}{\|\vec{v}_{k-1}\|_2^2}$$

$$\vec{w}_k = (A - \sigma_k I)^{-1} \vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Efficiency per iteration vs. number of iterations?

Unlikely Failure Mode for Iteration

What is \vec{v}_0 ?

Unlikely Failure Mode for Iteration

Multiple Eigenvalues

•00000

What is \vec{v}_0 ?

What happens when

$$\vec{v}_0 \cdot \vec{x}_1 = 0$$
?

Bug or Feature?

- **1.** Compute \vec{x}_0 via power iteration.
- **2.** Project \vec{x}_0 out of \vec{v}_0 .
- **3.** Compute \vec{x}_1 via power iteration.
- **4.** Project span $\{\vec{x}_0, \vec{x}_1\}$ out of \vec{v}_0 .
- **5.** · · ·

Bug or Feature?

- **1.** Compute \vec{x}_0 via power iteration.
- **2.** Project \vec{x}_0 out of \vec{v}_0 .
- **3.** Compute \vec{x}_1 via power iteration.
- **4.** Project span $\{\vec{x}_0, \vec{x}_1\}$ out of \vec{v}_0 .
- **5.** · · ·

Assumption: A is symmetric.

Do power iteration on $P^{T}AP$ where P projects out known eigenvectors.

Deflation

Modify A so that power iteration reveals an eigenvector you have not yet computed.

000000

Similar matrices

Two matrices A and B are similar if there exists T with $B = T^{-1}AT$.

000000

Similar matrices

Two matrices A and B are similar if there exists T with $B = T^{-1}AT$.

Proposition

Similar matrices have the same eigenvalues.

Householder Asymmetric Deflation

$$H\vec{x}_1 = \vec{e}_1$$
 $\implies HAH^{\top}\vec{e}_1 = HAH\vec{e}_1 \text{ by symmetry}$
 $= HA\vec{x}_1 \text{ since } H^2 = I$
 $= \lambda_1 H\vec{x}_1$
 $= \lambda_1 \vec{e}_1$

Householder Asymmetric Deflation

00000

$$HAH^{\top} = \left(\begin{array}{cc} \lambda_1 & \vec{b}^{\top} \\ \vec{0} & B \end{array}\right)$$

Similarity transform of $A \implies$ same eigenvalues.

Power Iteration

Householder Asymmetric Deflation

Multiple Eigenvalues

00000

$$HAH^{\top} = \left(\begin{array}{cc} \lambda_1 & \vec{b}^{\top} \\ \vec{0} & B \end{array}\right)$$

Similarity transform of $A \implies$ same eigenvalues. Do power iteration on B.

<warning> Justin's favorite algorithm. Ever. </warning>

Conjugation without Inversion

$$Q^{-1} = Q^{\top}$$

$$\implies Q^{-1}AQ = Q^{\top}AQ$$

Power Iteration

Conjugation without Inversion

$$Q^{-1} = Q^{\top}$$

$$\implies Q^{-1}AQ = Q^{\top}AQ$$

But which *Q*?

Should involve matrix structure but be easy to compute.

Power Iteration

Experiment

Other Eigenvalues

$$A = QR$$
$$Q^{-1}AQ = ?$$

QR Iteration

$$A_1 = A$$
Factor $A_k = Q_k R_k$
Multiply $A_{k+1} = R_k Q_k$

$$A_{\infty} = Q_{\infty} R_{\infty} = R_{\infty} Q_{\infty}$$

- Eigenvalues of R_{∞} along the diagonal and are eigenvalues of A_{∞} $(R_{\infty}Q_{\infty})$
- Eigenvalues of A_{∞} are those of A

