CRDTs in Production

Dmitry Martyanov, Software Engineer @ PayPal

Geo-Distributed Datastore

Context

- More than 200 countries
- Regulatory requirements
- State Machine of Compliance Status
- Modified by multiple Actors

Shared Mutable State

Shared Mutable State

Mutex

Shared Mutable State

Mutex

Transactions

Geo-Distributed Datastore

Eventual Consistency

Distributed System

Distributed System

Distributed System

Affinity Based Approaches

Affinity Based Approaches

Coordinator Based Approaches

Consensus Based Approaches

Paxos, Raft, etc.

Service Stack

Service Stack

Service Stack

Conflict-free Replicated Data Types

CRDTs

commutative

Requirements:

- + Commutativity
- + Associativity
- + Exactly once delivery
- - Idempotence

convergent

Requirements:

- + Commutativity
- + Associativity
- + Idempotence
- - Exactly once delivery

Convergent CRDTs

- M(a, b) = M(b, a)
- M(M(a, b), c) = M(a, M(b, c))
- M(a, b) = M(M(a, b), b) = M(M(M(a, b), b), b)

Impacted Components for CRDTs

TIME


```
seat: {a<sub>1</sub>:12F}
                                              seat: {b<sub>1</sub>: 16D}
                                    XDR
seat: {
                                              seat: {
   b<sub>1</sub>: 16D,
                                                  b<sub>1</sub>: 16D,
                                                  a<sub>1</sub>: 12F
    a<sub>1</sub>: 12F
```

TIME

```
seat: {a<sub>1</sub>:12F}
                                                       seat: {b<sub>1</sub>: 16D}
                                             XDR
        seat: {
                                                       seat: {
t2
                                                         b<sub>1</sub>: 16D,
a<sub>1</sub>: 12F
            b<sub>1</sub>: 16D,
            a<sub>1</sub>: 12F
                                           Add-O
                                             Map
```

TIME

```
seat: {
  b<sub>1</sub>: 16D,
a<sub>1</sub>: 12F
        a1;b1
          Causality
```

Vector (cv)

```
seat: {
  b<sub>1</sub>: 16D,
  a<sub>1</sub>: 12F
      a1;b1
```

Causality Vector (cv)

12F is causal to 10A - we can drop 12F

10A is causal to 5C - we can drop 10A

```
seat: {
  b<sub>1</sub>: 16D,
  a<sub>1</sub>: 12F
      a1;b1
```

Causality Vector (cv)

12F is causal to 10A - we can drop 12F

10A is **NOT** causal to 5C - we can **NOT** drop 10A

```
seat: {
  b<sub>1</sub>: 16D,
  a<sub>1</sub>: 12F
       a1;b1
        Causality
        Vector (cv)
```

Client Operations:

GET(key): value => GET(key): (value, cv)

PUT(key, value) => PUT(key, value, cv)

```
seat: {
  b<sub>1</sub>: (16D, cv),
a<sub>1</sub>: (12F, cv)
        a1;b1
          Causality
          Vector (cv)
```

Client Operations:

GET(key): value => GET(key): (value, cv)

PUT(key, value) => PUT(key, value, cv)

Aerospike Datastore

TEROSPIKE

Aerospike Datastore

EROSPIKE

Aerospike Datastore

4EROSPIKE

1 User-Defined Functions

Bins 1
a1 (12F, _)

Bins 1

a

b

Bins	1	2
a1	(12F, _)	(12F, _)

Bins	1	2
b1		(10D, _)

a

b

Bins	1	2	3
a1	(12F, _)	(12F, _)	(12F, _)
b 1			(10D, _)

Bins	1	2	3
a1			(12F, _)
b 1		(10D, _)	(10D, _)

Bins	1	2	3	4
a1	(12F, _)	(12F, _)	(12F, _)	(12F, _)
b1			(10D, _)	(10D, _)
a2				(10F, a1)

Bins	1	2	3	4
a1			(12F, _)	(12F, _)
b1		(10D, _)	(10D, _)	(10D, _)

b

Bins	1	2	3	4	5
a1	(12F, _)	(12F, _)	(12F, _)	(12F, _)	(12F, _)
b1			(10D, _)	(10D, _)	(10D, _)
a2				(10F, a1)	(10F, a1)
a3					(5C, a2b1)

Bins	1	2	3	4	5
a1			(12F, _)	(12F, _)	(12F, _)
b1		(10D, _)	(10D, _)	(10D, _)	(10D, _)

b

Bins	1	2	3	4	5	6
a1	(12F, _)	(12F, _)	(12F, _)	(12F, _)	(12F, _)	(12F, _)
b1			(10D, _)	(10D, _)	(10D, _)	(10D, _)
a2				(10F, a1)	(10F, a1)	(10F, a1)
a3					(5C, a2b1)	(5C, a2b1)

Bins	1	2	3	4	5	6
a1			(12F, _)	(12F, _)	(12F, _)	(12F, _)
b1		(10D, _)				
a3						(5C, a2b1)

b

Learnings

• CRDTs allowed us to achieve convergent **predictable** state of our data

Learnings

- CRDTs allowed us to achieve convergent **predictable** state of our data
- Education about right trade-off between **Consistency** and **Correctness**

Learnings

- CRDTs allowed us to achieve convergent **predictable** state of our data
- Education about right trade-off between **Consistency** and **Correctness**
- · Do not underestimate concurrent data access

Caveat #1: CV Propagation

Caveat #1: CV Propagation

Caveat #2: Siblings Explosion

Caveat #3: Wait, Siblings?

Thanks!