0.1 相抵标准型及其应用

定理 0.1 (矩阵的相抵标准型)

对任意一个秩为r的 $m \times n$ 矩阵A, 总存在m 阶非异阵P和n 阶非异阵Q, 使得

$$PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

证明

命题 0.1 (矩阵的秩 1 分解)

求证: 秩等于r的矩阵可以表示为r个秩等于1的矩阵之和, 但不能表示为少于r个秩为1的矩阵之和.

证明 将A化为相抵标准型,即存在非异矩阵P及Q,使得

$$A = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q = P (E_{11} + E_{22} + \dots + E_{rr}) Q$$
$$= PE_{11}Q + PE_{22}Q + \dots + PE_{rr}Q.$$

于是记 $A_1 = PE_{11}Q$, $A_2 = PE_{22}Q$, \cdots , $A_r = PE_{rr}Q$, 则每个 A_i 的秩都等于 1. 故 A 可以化为 r 个秩等于 1 的矩阵之和.

若 $A = B_1 + B_2 + \dots + B_k$, k < r, 且每个 B_i 的秩都等于 1, 则由命题????可知 $r(A) \le r(B_1) + r(B_2) + \dots + r(B_k) = k$, 这与 r(A) = r 矛盾, 故不可能.

命题 0.2

设 A, B, C 分别为 $m \times n, p \times q$ 和 $m \times q$ 矩阵, $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$. 证明: $\mathbf{r}(M) = \mathbf{r}(A) + \mathbf{r}(B)$ 成立的充要条件是矩阵方程 AX + YB = C 有解, 其中 X, Y 分别是 $n \times q$ 和 $m \times p$ 未知矩阵.

筆记 证明必要性时不妨设的原因: 假设当
$$A = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$
, $B = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$ 时, 结论成立. 则当 $A \neq \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, $B \neq \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$ 时, 记 $A_1 = P_1 A Q_1 = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, $B_1 = P_2 B Q_2 = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}$, $C_1 = P_1 C Q_2$, $M_1 = \begin{pmatrix} A_1 & C_1 \\ O & B_1 \end{pmatrix}$.

$$\mathbf{r}(\boldsymbol{A}) = \mathbf{r}(\boldsymbol{P}_1 \boldsymbol{A} \boldsymbol{Q}_1) = \mathbf{r} \begin{pmatrix} \boldsymbol{I}_r & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix} = \mathbf{r}(\boldsymbol{A}_1), \quad \mathbf{r}(\boldsymbol{B}) = \mathbf{r}(\boldsymbol{P}_2 \boldsymbol{B} \boldsymbol{Q}_2) = \mathbf{r} \begin{pmatrix} \boldsymbol{I}_s & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix} = \mathbf{r}(\boldsymbol{B}_1),$$

$$\mathbf{r}(\boldsymbol{M}) = \mathbf{r} \begin{pmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{pmatrix} = \mathbf{r} \begin{pmatrix} \begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{P}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{pmatrix} \begin{pmatrix} \boldsymbol{Q}_1 & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{Q}_2 \end{pmatrix} \end{pmatrix} = \mathbf{r} \begin{pmatrix} \boldsymbol{P}_1 \boldsymbol{A} \boldsymbol{Q}_1 & \boldsymbol{P}_1 \boldsymbol{C} \boldsymbol{Q}_2 \\ \boldsymbol{O} & \boldsymbol{P}_2 \boldsymbol{B} \boldsymbol{Q}_2 \end{pmatrix} = \mathbf{r}(\boldsymbol{M}_1).$$

从而

$$r(\mathbf{M}) = r(\mathbf{A}) + r(\mathbf{B}) \Leftrightarrow r(\mathbf{M}_1) = r\begin{pmatrix} \mathbf{A}_1 & \mathbf{C}_1 \\ \mathbf{O} & \mathbf{B}_1 \end{pmatrix} = r(\mathbf{A}_1) + r(\mathbf{B}_1).$$

于是由假设可知
$$A_1X_1+Y_1B_1=C_1$$
 有解 X_1,Y_1 . 记 $X=Q_1X_1Q_2^{-1},Y=P_1^{-1}Y_1P_2$, 则
$$A_1X_1+Y_1B_1=C_1$$
 有解 X_1,Y_1 ⇔ $P_1AQ_1X_1+Y_1P_2BQ_2=P_1CQ_2$ 有解 X_1,Y_1 ⇔ $AQ_1X_1Q_2^{-1}+P_1^{-1}Y_1P_2B=C$ 有解 X_1,Y_1

1

$$\Leftrightarrow AX + YB = C \land partial part$$

故可以不妨设 $A = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}, B = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix}.$

证明 先证充分性. 设 $X = X_0, Y = Y_0$ 是矩阵方程 AX + YB = C 的解, 则将 M 的第一分块列右乘 $-X_0$ 加到第二分块列上, 再将第二分块行左乘 $-Y_0$ 加到第一分块行上, 可得分块对角阵 $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 于是 $\mathbf{r}(M) = \mathbf{r}\begin{pmatrix} A & O \\ O & B \end{pmatrix} = \mathbf{r}(A) + \mathbf{r}(B)$.

再证必要性. 设 $P_1AQ_1=\begin{pmatrix} I_r & O\\ O & O \end{pmatrix}$, $P_2BQ_2=\begin{pmatrix} I_s & O\\ O & O \end{pmatrix}$, 其中 P_1,Q_1,P_2,Q_2 为非异阵,r=r(A), s=r(B). 注意到问题的条件和结论在相抵变换: $A\mapsto P_1AQ_1$, $B\mapsto P_2BQ_2$, $C\mapsto P_1CQ_2$, $X\mapsto Q_1^{-1}XQ_2$, $Y\mapsto P_1YP_2^{-1}$ 下保持不变,故不妨从一开始就假设 $A=\begin{pmatrix} I_r & O\\ O & O \end{pmatrix}$, $B=\begin{pmatrix} I_s & O\\ O & O \end{pmatrix}$ 都是相抵标准型. 设 $C=\begin{pmatrix} C_1 & C_2\\ C_3 & C_4 \end{pmatrix}$, $X=\begin{pmatrix} X_1 & X_2\\ X_2 & X_4 \end{pmatrix}$, $Y=\begin{pmatrix} Y_1 & Y_2\\ Y_2 & Y_4 \end{pmatrix}$ 为对应的分块. 考虑 M 的如下分块初等变换:

$$M = \begin{pmatrix} I_r & O & C_1 & C_2 \\ O & O & C_3 & C_4 \\ O & O & I_s & O \\ O & O & O & O \end{pmatrix} \rightarrow \begin{pmatrix} I_r & O & O & O \\ O & O & O & C_4 \\ O & O & I_s & O \\ O & O & O & O \end{pmatrix},$$

由于 r(M) = r(A) + r(B) = r + s, 故 $C_4 = O$. 于是矩阵方程 AX + YB = C, 即

$$\begin{pmatrix} X_1 & X_2 \\ O & O \end{pmatrix} + \begin{pmatrix} Y_1 & O \\ Y_3 & O \end{pmatrix} = \begin{pmatrix} X_1 + Y_1 & X_2 \\ Y_3 & O \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ C_3 & O \end{pmatrix}$$

有解, 例如 $X_1 = C_1, X_2 = C_2, Y_1 = O, Y_3 = C_3$, 其余分块取法任意

命题 0.3 (行/列满秩矩阵性质)

由矩阵的相抵标准型可设A是 $m \times n$ 矩阵,则

- (2) 若 r(A) = m, 即 A 是行满秩阵, 则必存在秩等于 m 的 $n \times m$ 矩阵 C(列满秩), 使得 $AC = I_m$ (这样的矩阵 C 称为 A 的右逆).

证明

(1) 设P为m阶非异阵,Q为n阶非异阵,使得

$$PAQ = \begin{pmatrix} I_n \\ O \end{pmatrix},$$

因此 $(I_n, O)PAQ = I_n$, 即 $(I_n, O)PA = Q^{-1}$, 于是 $Q(I_n, O)PA = I_n$. 令 $B = Q(I_n, O)P$ 即可.

(2) 同理可证, 或者考虑 A' 并利用 (1) 的结论.

推论 0.1

列满秩矩阵适合左消去律,即若 A 列满秩且 AD=AE,则 D=E. 同理,行满秩矩阵适合右消去律,即若 A 行满秩且 DA=EA,则 D=E.

_