Image Denoising and Deblurring Applied Math 515 Final Project

Samuel Rudy, Kelsey Maass, Riley Molloy, and Kevin Mueller

March 12 2016

Contents

- Motivation
- De(noise/blur)ing Objective Functions
- 3 Optimization with L1 Wavelet Regularization
- Optimization with Total Variation Regularization
- Discussion

Image Denoising and Deblurring

Mathematical Formulation

- Blur: Ax is a discrete convolution of the true image with a Gaussian kernel (reflexive boundary conditions).
- Noise: w is noise drawn from a Gaussian or Student's t distribution

Naive Solution: $x = A^{-1}b$

True image

Blurred image

Recovered image

Naive Solution: $x = A^{-1}(b - w)$

True image

Blurred and noisy image

Recovered image

Since the blur operator is ill-conditioned, a better approach is to minimize a regularized loss function.

General Loss Function

$$L_b(x) = \underbrace{f(Ax - b)}_{\text{Fidelity term}} + \underbrace{\lambda R(x)}_{\text{Regularization}}$$

Fidelity Terms

$$f = egin{cases} \|\cdot\|_F^2 \ h_\gamma(\cdot) \ \gamma^{-1}\log(\cosh(\gamma\cdot)) \end{cases}$$

Regularization Terms

$$R = \begin{cases} \|Wx\|_1 \\ TV(x) \end{cases}$$

Fidelity Term Penalty Functions

Gaussian Noise

Need: strong mean-centered penalization \Rightarrow Frobenius

Student's t Noise

Need: less penalization of outliers ⇒ Huber

Image Assumptions and Regularizers

Our choices of regularizers assume that images are sparse in wavelet domains and that they are relatively smooth (low total variation). SPLIT THIS INTO 2 SLIDES

L1 Wavelet Regularization

Loss Function

$$L_b(x) = f(Ax - b) + \lambda ||Wx||_1$$

Proximal Gradient Step

$$x^{k+1} = \operatorname{prox}_{\alpha^{-1}\lambda \| W \cdot \|_1} \left(x^k - \alpha^{-1} A^T \nabla f (A x^k - b) \right)$$

Results: Gaussian Noise

Results: Student's t Noise

Choosing λ

Total Variation Regularization

Loss Function

$$L_b(x) = f(Ax - b) + \lambda \text{TV}(x) + \delta(x|[0,1])$$

Proximal Gradient Step

$$\begin{split} x^{k+1} &= \mathsf{prox}_{\alpha^{-1}(\lambda \| \cdot \|_{TV} + \delta_{[0,1]})} (\underbrace{x^k - \alpha^{-1} A^T \nabla f(Ax^k - b)}_{u^k}) \\ &= \underset{z}{\mathit{arg min}} \left(\| u^k - z \|_F^2 + \alpha^{-1} \lambda \| z \|_{TV} + \delta(z | [0,1]) \right) \\ &= P_{[0,1]} \left(\underset{z}{\mathit{arg min}} \left(\| u^k - z \|_F^2 + \alpha^{-1} \lambda \| z \|_{TV} \right) \right) \end{split}$$

Dual Form of Total Variation

A Few Definitions

- $\mathcal{P} = \{(p,q) \in \mathbb{R}^{(m-1) \times n} \times \mathbb{R}^{m \times (n-1)} : |p_{i,j}| \le 1, |p_{i,j}| \le 1\},$
- ullet $\mathcal{L}: \mathbb{R}^{(m-1) imes n} imes \mathbb{R}^{m imes (n-1)} o \mathbb{R}^{m imes n}$ such that

$$\mathcal{L}(p,q)_{i,j} = p_{i,j} + q_{i,j} - p_{i-1,j} - q_{i,j-1}$$

for
$$i = 1, ..., m, j = 1, ..., n$$
, and $p_{0,j} = p_{m,j} = q_{i,0} = q_{i,n} = 0$.

 \bullet P_C is the usual projection operator onto the set C

Total Variation

$$\mathrm{TV}(x) = \max_{p,q \in \mathcal{P}} T(x,p,q) \implies T(x,p,q) = \mathrm{Tr}(\mathcal{L}(p,q)^T x).$$

Dual Form of TV Denoising with $\|\cdot\|_F^2$

The problem:

$$\min_{x \in C} ||x - b||_F^2 + 2\lambda \text{TV}(x), C = [0, 1]$$

Dual problem:

$$\min_{(p,q)\in\mathcal{P}} \underbrace{-\|H_C(b-\lambda\mathcal{L}(p,q))\|_F^2 + \|b-\lambda\mathcal{L}(p,q)\|_F^2}_{h(p,q)}$$

$$H_C(x) = \underbrace{x - P_C(x)}_{\text{prox}}$$

Optimality conditions:

$$x = P_C(b - \lambda \mathcal{L}(p, q)).$$

Optimization of Dual Form

Problem Statement

$$\min_{\substack{(p,q) \in \mathcal{P} \\ (p,q)}} \left\{ \|b - \lambda \mathcal{L}(p,q)\|_F^2 - \|(I - P_{[0,1]})(b - \lambda \mathcal{L}(p,q))\|_F^2 \right\} \\
\min_{\substack{(p,q) \\ (p,q)}} \left\{ \underbrace{\|b - \lambda \mathcal{L}(p,q)\|_F^2 - \|(I - P_{[0,1]})(b - \lambda \mathcal{L}(p,q))\|_F^2}_{=h(p,q)} + \delta((p,q)|\mathcal{P}) \right\}$$

$$abla h(p,q) = -2\lambda \mathcal{L}^T P_{[0,1]}(b - \lambda \mathcal{L}(p,q))$$
Lipschitz with constant $\leq 16\lambda^2$
 \Rightarrow Use projected gradient

Optimization in Dual Form

Projection onto \mathcal{P}

Recal
$$\mathcal{P}=(p,q)\in[-1,1]^{m-1 imes n} imes[-1,1]^{m imes n-1}$$

$$P_{\mathcal{P}}(p,q) = (r,s) \text{ with } \left\{ egin{aligned} r_{ij} &= sgn(p_{ij})\min\{1,|p_{ij}|\} \ s_{ij} &= sgn(q_{ij})\min\{1,|q_{ij}|\} \end{aligned}
ight.$$

Projected Gradient Step

$$(p^{k+1},q^{k+1}) = P_{\mathcal{P}}\left((p^k,q^k) + rac{1}{8\lambda}\mathcal{L}^{\mathsf{T}}P_{[0,1]}(b-\lambda\mathcal{L}(p,q))
ight)$$

Monotone FISTA TV Regularization

$MFISTA(b, f, \lambda)$

$$\begin{split} y^1 &= x^0 = b; \ t^1 = 1 \\ \alpha &\geq Lip(\nabla f) \\ \text{for } k = 1 : N \ \text{do} \\ u^k &= y^k - \frac{A^T \nabla f(Ay^k - b)}{\alpha} \\ z^k &= FGP(u^k, \frac{\lambda}{2\alpha}) \\ x^k &= \underset{x \in \{x^{k-1}, z^k\}}{\operatorname{argmin}} \ L_b(x) \\ t^{k+1} &= \frac{1 + \sqrt{1 + 4t^{k^2}}}{2} \\ y^{k+1} &= x^k + \frac{t^k}{t^{k+1}} (z^k - x^k) \\ &+ \frac{t^{k-1}}{t^{k+1}} (z^k - x^k) \end{split}$$

end for

return x^N

$$\mathsf{FGP}(b,\lambda) \ (r_{ii}^1,s_{ii}^1) = (p_{ii}^0,q_{ii}^0) = 0; \ t^1 = 1$$

for
$$k = 1 : N$$
 do

$$(p^{k}, q^{k}) = P_{\mathcal{P}}\left((r^{k}, s^{k}) - \frac{\mathcal{L}^{T} P_{[0,1]}(b - \lambda \mathcal{L}(r^{k}, s^{k}))}{8\lambda}\right)$$

$$t^{k+1} = \frac{1 + \sqrt{1 + 4t^{k}^{2}}}{2}$$

$$(r^{k}, s^{k}) = (p^{k}, q^{k}) + \frac{t^{k} - 1}{t^{k+1}}(p^{k} - p^{k-1}, q^{k} - q^{k-1})$$

end for

return
$$P_{[0,1]}(b-\lambda\mathcal{L}(p^N,q^N))$$

Results: Gaussian Noise

Results: Student's t Noise

Conclusions

Wavelet vs. Total Variation

- Total variation seems to do better for high amounts of noise.
- How do they compare on timing???? Any advantages of Wavelet???

Frobenius vs Huber

- On Gaussian noise, the two are comparable.
- Huber outperforms Frobenius on noise with heavier tail.

Challenges

- Ideal parameter values change image to image.
- How can we quantitatively evaluate performance?
- How can we optimize parameters without performance metric?

Questions?

- Kelsey's book
 - Beck, A., Teboulle, M. (2009) *IEEE Trans. on Image Proc.* 18(11):2419-2434
- article on wavelet fista

