AMENDMENTS TO THE CLAIMS

1.-25. (**Cancelled**)

26. (Currently amended) A method for controlling <u>termitespests</u>, said method comprising exposing said <u>termitespests</u> to a <u>pesttermite</u>-controlling effective amount of a compound of formula (I) or a tautomer thereof or a composition comprising at least one compound of formula (I) or a tautomer thereof:

$$\begin{array}{c} R_1 \\ Y \end{array} \begin{array}{c} R_2 \\ 10 \end{array} \begin{array}{c} R_3 \\ 1 \end{array} \begin{array}{c} (1) \\ 1 \end{array}$$

wherein:

X is selected from =O, S or N-R₄; and Y is hydrogen or hydroxyl; or Y is =O and X is OH and ---- at positions 9 and 10 of the ring system is a double bond;

when _____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

when ____ is a double bond attached to Y, Y is O;

when $\frac{-----}{C_{2}}$ is a single bond attached to R_{1} , the substituent R_{1} has a stereochemistry syn to substituents R_{2} and R_{3} and R_{1} is selected from the group-consisting of H, OH, SH, C_{1} - C_{10} -alkyl, C_{2} - C_{10} - C_{3} _alkenyl, C_{2} - C_{10} -alkynyl, C_{6} - C_{10} -aryl, C_{7} - C_{12} -arylalkyl, C_{8} - C_{13} -arylalkenyl, C_{3} - C_{6} eyeloalkyl, C_{3} - C_{6} -eyeloalkenyl, C_{4} - C_{10} -eyeloalkylalkyl, C_{4} - C_{10} -eyeloalkenylalkyl, C_{3} - C_{10} -heterocyclylalkyl, C_{5} - C_{13} -heterocyclylalkenyl, C_{1} - C_{10} -alkoxy, C_{2} - C_{10} -alkylthio, C_{2} - C_{10} -alkenylthio, $[C(R_{7})_{2}]_{n}$ halo, $[C(R_{7})_{2}]_{n}(C=O)R_{6}$, $[C(R_{7})_{2}]_{n}(C=S)R_{6}$, $[C(R_{7})_{2}]_{n}N(R_{4})_{2}$, $[C(R_{7})_{2}]_{n}(C=NR_{4})R_{6}$, $[C(R_{7})_{2}]_{n}NO_{2}$ -and- $[C(R_{7})_{2}]_{n}NR_{4}OR_{8}$, which is

when $\underline{\text{-----}}$ is a double bond attached to R_1 , R_1 is $\underline{CR_{1a}R_{1b}}$ wherein R_{1a} and R_{1b} are independently selected from $\underline{C_1}$ - $\underline{C_3}$ alkyl, which is

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_4 - C_{10} -cycloalkenylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_4 - C_{10} -alkoxy, C_2 - C_{10} -alkenyloxy, C_4 - C_{10} -alkenyloxy, C_4 - C_{10} -alkylthio, C_2 - C_{10} -alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C=S) R_6 , $[C(R_7)_2]_n$ (C=S) R_6 , $[C(R_7)_2]_n$ (C=NR4) R_6 , $[C(R_7)_2]_n$ (C=S) R_6 , $[C(R_7)_2]_n$ NR4O R_8 ;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} -alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_1 - C_{10} -alkoxy and C_2 - C_{10} -alkenyloxy;

 $R_{5} \text{ is selected from the group consisting of } H, C_{1}\text{-}C_{10} \text{-}alkyl, C_{2}\text{-}C_{10} \text{-}alkenyl, } C_{6}\text{-}C_{10} \text{-}aryl, C_{7}\text{-}C_{12}$ $arylalkyl, C_{8}\text{-}C_{13} \text{-}arylalkenyl, } C_{3}\text{-}C_{6} \text{-}cycloalkyl, } C_{2}\text{-}C_{6} \text{-}cycloalkenyl, } C_{4}\text{-}C_{10} \text{-}cycloalkylalkyl, } C_{3}\text{-}C_{10} \text{-}heterocyclylalkyl, } C_{5}\text{-}C_{13} \text{-}heterocyclylalkenyl, } (C=O)R_{6}, PO_{3}R_{8}, SO_{3}R_{8}$ $and SO_{2}R_{8};$

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_4 - C_{10} alkenylthio, C_4 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 $R_7 \text{ is selected from the group consisting of H, halogen, } OR_5, SR_5, N(R_4)_2, (C=O)R_6, (C=S)R_6, C_1-C_{10}-\text{alkyl}, -C_2-C_{10}-\text{alkenyl}, -C_6-C_{10}-\text{aryl}, -C_3-C_{10}-\text{heterocyclyl}, -C_3-C_6-\text{cycloalkyl}, -C_7-C_{12} \\ \text{arylalkyl}, -C_4-C_{12}-\text{heterocyclylalkyl}, -C_4-C_{10}-\text{cycloalkylalkyl}, -C_8-C_{13}-\text{arylalkenyl}, -C_5-C_{13} \\ \text{heterocyclylalkenyl}, \text{ and } NO_2;$

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_4 - C_{10} -cycloalkylalkenyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heteocyclylalkyl and C_5 - C_{13} -heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

27. (Currently amended) A method according to claim 26 wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H<u>or OH</u>, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂-and $[C(R_7)_2]_n$ NR₄OR₈;

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, $-C_2$ - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_4 - C_{10} -cycloalkylalkyl, C_4 - C_{10} -cycloalkenylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_4 - C_{10} -alkoxy, C_2 - C_{10} -alkenyloxy, C_4 - C_{10} -alkylthio, C_2 - C_{10} -alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C=S) $[C(R_7)_2]_n$

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

R₅ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, (C=O)R₆, PO₃R₈, SO₃R₈

and SO₂R₈;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_4 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_6 -cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_4 - C_{10} alkenylthio, C_4 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_3 - C_{10} -heterocyclyl, C_3 - C_6 -cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_4 - C_{10} -cycloalkylalkyl, C_8 - C_{13} -arylalkenyl, and NO_2 ;

 $R_8 \text{ is-selected-from-the-group-consisting-of-H, C_4-C_{10}-alkyl, C_2-C_{10}-alkenyl, C_6-C_{10}-aryl, C_7-C_{12}-arylalkenyl, C_3-C_6-cycloalkyl, C_3-C_6-cycloalkenyl, C_4-C_{10}-cycloalkylalkenyl, C_5-C_{10}-cycloalkylalkenyl, C_3-C_{10}-heterocyclyl, C_4-C_{12}-heteocyclylalkyl-and C_5-C_{13}-heterocyclylalkenyl;$

n is 0 or an integer selected from 1 to 5;

----- represents a single or double bond; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

28. (Cancelled)

29. (Currently amended) A method according to claim 26, wherein at least one compound of formula (I) is a compound of formula (III):

wherein

 $R_{11} \ is \ selected \ from \ the \ group \ consisting \ of \ C_2-C_{10}-\underline{C_3} \ alkenyl, \ C_7-C_{12} \ arylalkyl, \ C_6-C_{12} \ heteroarylalkyl \ and \ C_2-C_{10} \ alkenyloxy \ wherein \ each \ C_2-C_{10} \ alkenyl \ or \ C_2-C_{10} \ alkenyloxy \ is \ optionally \ substituted \ with 1 to 3 halo, hydroxy, thiol or nitro \ groups, \ which \ is$; and

 R_{12} and R_{13} are independently selected from the group-consisting-of-H,- C_1 - C_{10} alkyl,- C_2 - C_{10} alkyl,- C_3 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} -arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} -heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 30. (Cancelled)
- 31. (**Previously presented**) A method according to claim 26 wherein at least one compound of formula (I) is eremophilone.
- 32. (Cancelled)
- 33. (Withdrawn Currently amended) A method according to claim 26 wherein at least one compound of formula (I) is a compound of formula (IV):

$$R_{21}$$
 R_{22}
 R_{23}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{24}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}

wherein R_{21} is C_3 alkenyl, which is ; and ; and R_{22} and R_{23} are independently selected from the group consisting of-H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclylalkenyl, C_4 - C_{10} alkenylthio, C_4 - C_{10} alkylthio, C_4 - C_{10} alkenylthio, C_4 - C_{10} alkylthio, C_4 - C_{10} alkylthio,

heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_4 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_4 - C_{10} alkenylthio, C_4 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_3 - C_{10} -heterocyclyl, C_3 - C_6 -cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_4 - C_{10} -cycloalkylalkyl, C_8 - C_{13} -arylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_4 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_4 - C_{10} -cycloalkylalkenyl, C_5 - C_{10} -beterocyclyl, C_4 - C_{12} -beteocyclylalkyl and C_5 - C_{13} -beterocyclylalkenyl; and

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

- 34. (Cancelled)
- 35. (Cancelled)
- 36. (Withdrawn) A method according to claim 26 wherein at least one compound of formula (I) is 8-hydroxy-1(10)dihydroeremophilone.
- 37. (Cancelled)
- 38. (Withdrawn Currently amended) A method according to claim 26 comprising at least one compound of formula (V):

$$R_{31}$$
 R_{32}
 R_{33}
 R_{33}
 R_{31}
 R_{32}
 R_{33}
 R_{32}
 R_{33}
 R_{34}
 R_{35}

 $\label{eq:consisting} \begin{tabular}{ll} wherein R_{31} is selected from the group consisting of C_2-C_{10} \underline{C}_3 alkenyl, C_7-C_{12} arylalkyl, C_6-C_{12} heteroarylalkyl- and $-C_2$-C_{10}- alkenyloxy- wherein each $-C_2$-C_{10}- alkenyloxy- is optionally substituted with 1-to 3-halo, hydroxy, thiol- or nitro-groups, which is $$$; and $$$$

 R_{32} and R_{33} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkyl, C_3 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} -arylalkyl, C_3 - C_{10} eycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} -heteroarylalkyl and C_1 - C_{10} -alkoxy, wherein each C_1 - C_{10} -alkyl and C_1 - C_{10} -alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

39. (Cancelled)

- 40. (Withdrawn) A method according to claim 26 wherein at least one compound of formula (I) is 8-hydroxyeremophila-1,11-dienone.
- 41. (**Previously presented**) A method according to claim 26 wherein the composition comprises an extract containing at least one compound of formula (I) obtained from a volatile oil bearing plant from the Myoporaceae family.

42. (Cancelled)

43. (Cancelled)

- 44. (**Currently amended**) A method according to claim 26 wherein the <u>pesttermite</u>-controlling effective amount is a <u>pesticidally termite-killing</u> effective amount.
- 45. (**Currently amended**) A method according to claim 26 wherein the pest<u>termite</u>-controlling effective amount is a <u>pesttermite</u>-repelling effective amount.

46. (**Currently amended**) A method according to claim 26 wherein the <u>pesttermite</u>-controlling effective amount is an antifeedant effective amount.

- 47. (Canceled)
- 48. (Canceled)
- 49. (Canceled)
- 50. (Canceled)
- 51. (Canceled)
- 52. (Currently amended) A method according to claim 26 wherein pests-termites are exposed to the pesttermite-controlling effective amount of a compound of formula (I) or a composition comprising at least one compound of formula (I) by applying the compound or composition to a site of infestation, a potential site of infestation, a habitat of the pest-termite or a potential habitat of the pesttermite.
- 53. (**Previously presented**) A method according to claim 52 wherein the compound or composition is applied to a surface or impregnated into a material or article of manufacture.
- 54. (**Previously presented**) A method according to claim 53 wherein the compound or composition is applied to a surface by spraying, coating or painting the surface.
- 55. (**Previously presented**) A method according to claim 54 wherein the surface is a soil surface, timber, buildings, wooden articles of manufacture or a physical barrier.
- 56. (**Previously presented**) A method according to claim 55 wherein the material or article of manufacture is soil, timber, timber or wooden products or buildings or parts of buildings.
- 57. (**Previously presented**) A method according to claim 52 wherein the compound or composition is applied in a band or furrow around a site of infestation or potential infestation or is mixed with a layer of soil at a site of infestation or a potential site of infestation.

58.-78. (**Cancelled**)

79. (Currently amended) A method of combating an already existing wood associated pest termite infestation comprising applying at least one compound of formula (I) or a tautomer thereof or a composition comprising at least one compound of formula (I) or a tautomer thereof to a wood associated pest termite affected surface, wherein the compound of formula (I) is as defined in claim 26.

80.-82. (Cancelled)

83. (Withdrawn - New) A method according to claim 26 wherein at least one compound of formula (I) is 9-hydroxy-7(11),9-eremophiladien-8-one.