plain [L] UNIT Electronics - Development [C] 2025-07-21 [R] Page 1 of $\ref{eq:condition}$ ssymb

Technical Documentation

Development Project - Prototype Phase

TECHNICAL DATASHEET

Hardware Documentation & Development Specifications

ICP-10111 Sensor de Presión Barométrica

Módulo Sensor Ambiental de Alta Precisión

Part Number: ICP-10111-001

 Revision:
 Rev. 1.0

 Document Date:
 2025-07-21

DOCUMENT INFORMATION

Document Type	Technical Datasheet	
Classification	Development Documentation	
Project Phase	Prototype & Development	
Technical Author	Equipo de Ingeniería DevLab	
Review Status	Draft - Under Development	
Distribution	Internal Development Team	

DEVELOPMENT NOTICE

This document describes a prototype hardware module under development. Specifications are preliminary and subject to change during development process.

Not intended for production use without further validation and testing.

UNIT Electronics

 $\label{lem:condition} \mbox{Hardware Development \& Prototyping}$ $\mbox{Development Project - Contact: info@unitelectronics.com}$

© 2025 Development documentation - All specifications are preliminary

PROJECT INFORMATION & DEVELOPMENT STATUS

REVISION HISTORY

Rev.	Date	Author	Description of Changes	
1.0	2025-07-21	Equipo de Ingeniería DevLab	Initial development documentation	

DEVELOPMENT STATUS

• Project Phase: Prototype Development

• Hardware Status: Functional prototype completed

• Testing Status: Basic functionality verified

• Documentation: Preliminary specifications

• Certification: Not yet initiated

FUTURE COMPLIANCE TARGETS

• Design Guidelines: Following IPC-2221 recommendations

• Environmental Goals: RoHS compliance preparation

• Safety Considerations: Basic safety guidelines applied

• EMC Preparation: Layout considerations for future testing

• Quality Process: Development best practices

DEVELOPMENT NOTICES

Project Status:

This hardware module is currently in the prototype development phase. All specifications and characteristics described in this document are preliminary and based on initial testing and design calculations.

Disclaimer:

The information in this document represents the current state of development and is provided for development team reference only. Specifications may change as the project progresses through design validation and testing phases.

Usage Notice:

This prototype is intended for development, testing, and evaluation purposes only. It is not suitable for production applications without further development, validation, and appropriate certifications.

This document follows general technical documentation practices and represents current development status as of the revision date

Contents

1	Doc	umentación de Hardware	4
	1.1	Descripción General	4
	1.2	Características Principales	4
2	Har	dware	4
	2.1	Especificaciones Técnicas	4
		2.1.1 Especificaciones del Sensor	4
		2.1.2 Especificaciones de Alimentación	4
	2.2	Distribución de Pines	5
	2.3	Dimensiones	6
	2.4	Topología	7
	2.5	Interfaces de Comunicación	7
		2.5.1 Interfaz I2C	7
		2.5.2 Especificaciones de Interfaz Digital	8
	2.6	Características Físicas	8
		2.6.1 Información del Encapsulado	8
		2.6.2 Especificaciones Ambientales	8
	2.7	Soporte de Software	8
		2.7.1 Entorno de Desarrollo	8
		2.7.2 Librerías Principales	8
	2.8	Aplicaciones	9
	2.9	Seguridad y Cumplimiento	9
		2.9.1 Certificaciones	9
		2.9.2 Características de Seguridad	9
	2.10	Referencias	9
	2.11	Información de Pedidos	0
	2.12	Esquemáticos	0

List of Figures

1	Diagrama de Pines	5
2	Dimensiones	6
3	Topología	7
4	Esquemático del Circuito	10

List of Tables

2	Especificaciones técnicas	4
3	Especificaciones técnicas	4
4	Especificaciones técnicas	6
5	Especificaciones técnicas	7
6	Especificaciones técnicas	8
7	Especificaciones técnicas	8
8	Especificaciones técnicas	10

1 Documentación de Hardware

1.1 Descripción General

El módulo sensor de presión barométrica ICP-10111 es un sensor ambiental compacto con capacidades integradas de monitoreo ambiental, diseñado para aplicaciones IoT y mediciones atmosféricas precisas.

1.2 Características Principales

- Sensor de presión ICP-10111 (Alta precisión)
- Sensor ambiental BME688 (Temperatura, humedad, gas)
- Modos de bajo consumo energético
- Conectividad I2C/QWIIC
- Factor de forma compacto con orificios castellanos

2 Hardware

2.1 Especificaciones Técnicas

2.1.1 Especificaciones del Sensor

Parámetro	Valor	Unidad	Notas
Rango de Presión	300-1250	hPa	Presión absoluta
Precisión de Presión	± 0.4	hPa	A 25
Rango de Temperatura	-40 a + 85		Rango de operación
Rango de Humedad	0-100	Interfaz	I2C
-	Compatible QWIIC		'

Table 2: Especificaciones técnicas

2.1.2 Especificaciones de Alimentación

Parámetro	Mín	Típ	Máx	Unidad	Condiciones
Voltaje de Alimentación	3.0	3.3	5.0	V	Operación Normal
Corriente Activa	-	1.2	2.0	mA	Medición continua
Corriente en Reposo	-	0.1	0.5	μA	Modo standby
Salida del Regulador	-	1.8	-	V	LDO interno

Table 3: Especificaciones técnicas

2.2 Distribución de Pines

PINOUT

Description:

Figure 1: Diagrama de Pines

Etiqueta	Función	Notas	
VCC	Alimentación	3.3V o 5V	
GND	Tierra	Tierra común para todos los componentes	
SDA	Datos I2C	Línea de datos serie	
SCL	Reloj I2C	Línea de reloj serie	

Table 4: Especificaciones técnicas

2.3 Dimensiones

Figure 2: Dimensiones

2.4 Topología

JP1
Top View of Board Topology

Figure 3: Topología

Ref.	Descripción
IC1	Sensor de Presión Barométrica ICP-10111
IC2	Sensor Ambiental BME688
L1	LED de Encendido
U1	Regulador ME6206A18XG 1.8V
JP1	Orificios Castellanos de 2.54 mm
J1	Conector QWIIC (JST paso 1 mm) para I2C

Table 5: Especificaciones técnicas

2.5 Interfaces de Comunicación

2.5.1 Interfaz I2C

• **Dirección**: 0x63 (ICP-10111), 0x77 (BME688)

• Velocidad: Estándar (100 kHz), Rápido (400 kHz)

• Características: Conector compatible QWIIC

• Resistencias Pull-up: $4.7k\Omega$ integradas

2.5.2 Especificaciones de Interfaz Digital

• Niveles Lógicos: Compatible CMOS 3.3V

• Entrada Alta: 2.0V mínimo

• Entrada Baja: 0.8V máximo

• Corriente de Salida: 4mA típico

2.6 Características Físicas

2.6.1 Información del Encapsulado

Parámetro	Valor	Unidad
Tipo de Encapsulado	PCB Personalizado	-
Dimensiones	$25.4 \times 15.24 \times 3.2$	mm
Montaje	Orificios castellanos	Paso 2.54mm
Peso	2.1	g

Table 6: Especificaciones técnicas

2.6.2 Especificaciones Ambientales

Parámetro	Mín	Máx	Unidad	Condiciones
Temperatura de Operación	-40	+85		Precisión completa
Temperatura de Almacenamiento	-55	+125		-
Humedad	0	100	Rango de Presión	300
1250	hPa	Presión absoluta		'

Table 7: Especificaciones técnicas

2.7 Soporte de Software

2.7.1 Entorno de Desarrollo

• Arduino IDE: Soporte completo de librería

• ESP-IDF: Integración de driver nativo

• PlatformIO: Soporte multiplataforma

• CircuitPython: Librería Python disponible

2.7.2 Librerías Principales

- Driver del sensor de presión ICP-10111
- Librería del sensor ambiental BME688
- Protocolos de comunicación I2C
- Filtrado y calibración de datos

2.8 Aplicaciones

El módulo ICP-10111 es ideal para:

1. Monitoreo Meteorológico

- Medición de presión atmosférica
- Determinación de altitud
- Sistemas de predicción meteorológica

1. Sensores Ambientales IoT

- Automatización de edificios inteligentes
- Monitoreo agrícola
- Evaluación de calidad del aire

1. Dispositivos Portátiles

- Rastreadores de fitness
- Dispositivos de navegación al aire libre
- Control de altitud de drones

2.9 Seguridad y Cumplimiento

2.9.1 Certificaciones

- RoHS: Cumple con directiva de la UE
- REACH: Cumple con regulación de la UE
- CE: Compatibilidad electromagnética

2.9.2 Características de Seguridad

- Protección ESD: ± 2 kV HBM en todos los pines
- Protección de Polaridad Inversa: Integrada
- Protección Térmica: Monitoreo de rango de operación

2.10 Referencias

- Hoja de Datos ICP-10111
- Hoja de Datos BME688
- Hoja de Datos Regulador ME6206

2.11 Información de Pedidos

Número de Parte	Descripción	Empaque	MOQ
ICP10111-001	Módulo Estándar	Individual	1
ICP10111-DEV	Kit de Desarrollo	Caja de Kit	1
ICP10111-BULK	Pedido en Lote	Bandeja	100

Table 8: Especificaciones técnicas

2.12 Esquemáticos

Figure 4: Esquemático del Circuito

Para soporte técnico e información adicional, visita nuestro sitio web o contacta a nuestro equipo de ingeniería.

UNIT Electronics 2025-07-21 Page 10 of 10