

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИСТОЧНИКИ СВЕТА ДЛЯ ИЗМЕРЕНИЙ ЦВЕТА

ТИПЫ. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ. МАРКИРОВКА

FOCT 7721—89

Издание официальное

۹.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИСТОЧНИКИ СВЕТА ДЛЯ ИЗМЕРЕНИЙ ЦВЕТА

Типы. Технические требования. Маркировка

FOCT

Illuminants for colour measurements. Types. Technical requirements. Marking

7721---89

ОКП 44 3490

Срок действия

с 01.07.90 до 01.07.2000

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на источники света для освещения образцов материалов при измерениях их цвета.

1. ТИПЫ

Настоящий стандарт устанавливает следующие типы стандартных источников света:

а) А— газополная электрическая лампа накаливания с коррелированной цветовой температурой излучения T=2856 K (приложение 1).

Воспроизводит условия искусственного освещения электрическими лампами накаливания;

б) В — источник света Λ в комбинации с точно определенным жидкостным или стеклянным светофильтром, предназначенным для создания излучения с коррелированной цветовой температурой T = 4874 K (приложение 1).

Воспроизводит условия прямого солнечного освещения;

в) С — источник света A в комбинации с точно определенным жидкостным или стеклянным светофильтром, предназначенным для создания излучения с коррелированной цветовой температурой T = 6774 K (приложение 1).

Воспроизводит условия освещения рассеянным дневным све-

TOM;

г) D_{65} — должен воспроизводить излучение с коррелированной цветовой температурой T = 6504 K (приложение 1).

Воспроизводит условия освещения усредненным дневным светом*. Используется для измерения цвета люминесцирующих образцов.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Источники света A, B, C и D_{65} должны быть аттестованы по координатам цветности x, y, определенным в системе цветовых координат X, Y, Z, установленной MKO в 1931 г., и должны соответствовать значениям, указанным в табл. 1. При этом допускается отклонение координат цветности от номинального значения в пределах ± 0.02 .

Таблипа 1

Источники света	Координать	ы цветности
источники света	x	у
A B C D ₆₅	0,448 0,348 0,310 0,313	0,407 0,352 0,316 0,329

2.2. При создании источников света типов В и С допускаемое отклонение координат цветности источника света А от значений, указанных в табл. 1, в пределах $\pm 0,003$.

2.3. Напряжение и ток источников света А, В и С следует конт-

ролировать приборами класса не ниже 0,2 по ГОСТ 8711. 2.4. Технические требования к светофильтрам

2.4.1. Жидкостный светофильтр должен быть составлен из двух растворов, которые заполняют каждый свое отделение двойной кюветы из бесцветного химически стойкого оптического стекла. Толщина слоя каждой жидкости должна быть (10±0,05) мм.

Растворы жидкостных светофильтров должны иметь состав, приведенный в табл. 2.

Таблица 2

Раствор	Состав раствора		я источника ета
Гиствор	Состав раствора	В	С
1	Сульфат меди CuSO ₄ ·5H ₂ O, г Маннит С ₆ H ₈ (OH) ₆ , г Пиридин С ₅ H ₅ N, см ³	2,452 2,452 30,0	3,412 3,412 30,0
2	Дистиллированная вода, см³ Кобальт-аммоний сульфат CoSO ₄ (NH ₄) ₂ ·SO ₄ ·6H ₂ O, г	1000,0	30,0 1000,0 30,58

^{*} В настоящее время нет рекомендации Международной комиссии по освещению (МКО) для воспроизведения стандартного источника D_{65} .

Продолжение табл. 2

Раствор	Состав раствора		я источника вета
		В	С
	Сульфат меди CuSO ₄ ·5H ₂ O, г Серная кислота (плотность 1,835 г/см³),	16,11	22,52
	г Дистиллированная вода, см ³	10,0 1000,0	10,0 1000,0

- 2.4.2. Растворы следует приготовлять заново через 2 мес из химически чистых реактивов.
- 2.4.3. Стеклянные светофильтры могут быть трех категорий: I категории должны изготовляться из четырех склеенных плоскопараллельных пластинок цветного стекла марок ПС5, ПС14, СЗС17 и ЖС4 по ГОСТ 9411—81:

II и III категорий — должны изготовляться из трех склеенных плоскопараллельных пластинок цветного стекла марок ПС5, ПС14 и СЗС17 по ГОСТ 9411—81.

Способ определения толщины компонентов, при которых составной светофильтр в сочетании с источником света А воспроизводит источники света В и С, приведен в приложении 2*.

2.4.4. Предельные отклонения координат цветности источников Δx , Δy , рассчитанные для конкретного светофильтра, от значений, указанных в табл. 1, коэффициенты пропускания светофильтра τ_{Φ} и их предельные отклонения $\Delta \tau_{\Phi}$ приведены в табл. 3. Совокупность указанных параметров определяет категорию светофильтра.

Таблица 3

Источ- ники света	Қате- гория фильтра	Предельные отклонения $\Delta x,\; \Delta y$	τ _ф , %, не менее	Δτ _ф , %, не мен ее
В	I	$\pm 0,005$ при условии, что — $0,001 \leqslant \Delta x^{\mathrm{B}}$ —		
С	II III	$-\Delta y^{\text{B}} \leqslant 0.002$ ± 0.008 ± 0.012 ± 0.005 при условии, что $\pm 0.001 \leqslant \Delta x^{\text{c}}$	13,5 18,0 23,0	-2.0 -3.0 -3.0
J	III	±0,001 mp yellollin, 110 ±0,001 dx = −Δye ≤0,002 ±0,010 ±0,015	7,5 9,0 12,0	-1,0 $-1,5$ $-2,0$

3. МАРКИРОВКА

3.1. Маркировка ламп накаливания, применяемых в источниках света типов A, B, C, D_{65} , должна содержать порядковый номер по системе предприятия-изготовителя.

^{*} Допускаются другие способы определения, обеспечивающие выполнение требований настоящего стандарта.

3.2. Стеклянные светофильтры должны маркироваться порядковым номером и обозначением типа источника (В или С).

3.3. Қаждый источник света должен быть снабжен свидетельством о метрологической аттестации согласно ГОСТ 8.326, удостоверяющим его качество и соответствие требованиям настоящего стандарта.

Свидетельство должно содержать:

тип и номер лампы накаливания;

значения напряжения и тока питания лампы;

погрешность воспроизведения координат цветности;

обозначение настоящего стандарта;

дату поверки источника;

наименование предприятия-изготовителя, его местонахождение

(город) или условный адрес.

3.4. Каждый светофильтр должен сопровождаться документом, удостоверяющим его качество и соответствие требованиям настоящего стандарта.

Документ должен содержать:

тип и номер светофильтра;

координаты цветности светофильтра x, y и координату цвета y;

погрешность измерения по координатам цветности x, y и по координате цвета y для источника света типа A; дату выпуска светофильтра.

ОТНОСИТЕЛЬНОЕ СПЕКТРАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ ИЗЛУЧЕНИЯ Φ_{λ} СТАНДАРТНЫХ ИСТОЧНИКОВ СВЕТА ТИПОВ A, B, C и D_{85}

Таблица 4

				таблица 4
Длина волны λ, нм	Φ Α λ	Φ ^B _λ	Φ°C	Φ ^D ₆₅ *
300 305 310 315 320 325 330 335 340 345 350 365 370 375 380 385 400 405 410 115 420 425 430 445 440 445 450 455 460 475 480 475 480 485 490 495	0,93 1,13 1,36 1,62 1,93 2,27 2,66 3,10 3,59 4,14 4,74 5,14 6,15 6,95 7,82 8,77 9,79 10,90 12,09 13,36 14,71 16,15 17,68 19,29 21,00 22,79 24,67 26,64 28,70 30,85 33,09 35,41 37,82 48,25 51,04 53,91 56,85	0,00 0,00 0,00 0,00 0,02 0,26 0,50 1,45 2,40 4,00 5,60 7,60 9,60 12,40 15,20 18,80 22,40 26,85 31,30 36,18 41,30 46,62 52,10 57,70 63,20 68,37 73,10 77,31 80,80 83,44 85,40 86,88 88,30 90,08 92,00 93,75 95,20 96,23 96,50 95,71 94,20	0,00 0,00 0,00 0,00 0,01 0,20 0,40 1,55 2,70 4,85 7,00 9,95 12,90 17,20 21,40 27,50 33,00 39,92 47,40 55,17 63,30 71,81 80,60 89,53 98,10 105,80 112,40 117,75 121,50 123,45 124,00 123,45 124,00 123,60 123,10 123,80 124,09 123,90 122,92 120,70 116,90 112,10	0,03 1,7 3,3 11,8 20,2 28,6 37,1 38,5 39,9 42,4 44,9 45,8 46,6 49,4 52,1 51,0 50,0 52,3 54,6 68,7 82,8 87,2 91,5 92,4 93,4 90,0 86,7 95,8 104,9 111,0 117,4 117,8 116,4 114,9 115,4 115,9 112,4 108,8 109,1 109,4
500	59,86	· .,= ·	,	,-

Продолжение табл. 4

			11 000	олжение таол. 4
Длина волны λ, нм	Φ Α λ	Φλ	Φ λ .	Φ λ Δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ
505 510 515 520 525 530 535 540 545 550 565 570 575 580 585 590 605 610 615 620 625 630 635 640 645 650 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745	62,93 66,06 69,25 72,50 75,79 79,13 82,52 85,95 89,41 92,91 96,44 100,00 103,58 107,18 110,80 114,44 118,08 121,73 125,39 129,04 132,70 136,34 139,99 143,62 147,23 150,83 154,42 157,98 161,51 165,03 168,51 171,96 175,38 178,77 182,12 185,43 188,70 191,93 195,12 198,26 201,36 204,41 207,41 210,36 213,26 216,12 218,92 221,66 224,36	92,37 90,70 89,65 89,50 90,43 92,20 94,46 96,90 99,16 101,00 102,20 102,80 102,92 102,60 101,90 101,00 100,07 99,20 98,44 98,00 98,08 98,50 99,06 99,70 100,36 101,00 101,56 102,20 103,05 103,90 104,59 165,00 105,08 104,90 104,55 103,90 104,80 104,90 104,80 104,80 104,80 104,80 105,88 104,90 104,80 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 104,90 105,88 105,80 105,80	106,98 102,30 98,81 96,90 96,78 98,00 99,94 102,10 103,95 105,20 105,67 105,30 104,11 102,30 100,15 97,80 95,43 93,20 91,22 89,70 88,83 88,40 88,19 88,10 88,10 88,7,86 87,86 87,86 87,99 88,20 87,99 88,20 87,99 88,20 87,90 87,22 86,30 87,90 87,43 87,43 87,40	108,6 107,8 106,3 104,8 106,3 107,7 106,0 104,4 104,2 104,0 102,0 96,3 96,1 95,8 92,2 88,7 89,4 90,0 89,8 89,6 88,6 87,7 85,0 83,3 83,5 83,7 81,8 80,0 80,1 80,2 81,2 82,3 80,0 80,1 80,2 81,2 82,3 86,7 70,6 71,6 71,6 71,6 71,6 71,6 71,6 71,6 71
750 755	227,00 229,58	85,20 84,80	59,20 58,50	63,6 55,0

Продолжение табл. 4

Длина волны λ, нм	Φ Å	Φ_{λ}^{B}	Φ ^C _λ	$\Phi_{\lambda}^{\mathrm{D}_{65}*}$
760	232,11	84,70	58,10	46,4
765	234,59	84,90	58,00	56,6
770	237,01	85,40	58,20	66,8
775	239,36	86,10	58,50	65,1
780	241,67	87,00	59,10	63,4
785	243,91	l –		63,8
790	246,11			64,3
795	248,24		_	61,9
800	250,32		—	59,5
805	252,33	_		55,8
810	254,30		_	52,0
815	256,20	<u> </u>	_	54,7
820	258,06	_	_	57,4
825	259,90		_	58,8
830	261,59	-	-	60,3

^{*} В настоящее время нет рекомендации МКО для воспроизведения стандартного источника $D_{65}.$

ПРИЛОЖЕНИЕ 2 Справочное

СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ КОМПОНЕНТОВ СТЕКЛЯННЫХ СВЕТОФИЛЬТРОВ

1. Определение показателей поглощения стекол марок Π C 5, Π C 14, C3C 17, \mathcal{K} C 4—по Γ OCT 9411 для изготовления светофильтров

Для определения показателей поглощения $K_1(\lambda)$, $K_2(\lambda)$, $K_3(\lambda)$, $K_4(\lambda)$ стекол марок ПС 5, ПС 14, СЗС 17, ЖС 4 необходимо:

а) из каждой марки стекла изготовить образцы — плоскопараллельные по-

лирозанные пластины толщиной (10±1) мм.

Из стекол марок ЖС 4 и СЗС 17 дополнительно изготовить пластины толщиной (3 ± 0.5) мм для определения показателя поглощения в областях большой оптической плотности 380-420 нм — для первого стекла и 600-780 нм — для второго.

Погрешность измерения толщины изготовленных пластин не должна превышать $\pm 0{,}005$ мм;

б) измерить коэффициенты пропускания изготовленных пластин с помощью спектрофотометра с двойной монохроматизацией света.

Составить таблицу коэффициента пропускания $\tau(\lambda)$ пластин для волн длин

380, 390, ..., 780 нм через 10 нм.

Перевести полученные значения $\tau(\lambda)$ в значения оптической плотности $D'(\lambda)$ по табл. 5;

в) определить оптическую плотность $D''(\lambda)$ массы стекла внесением поправки $D_{,\rho}$ на отражение света от двух поверхностей по формуле:

$$D''(\lambda) = D'(\lambda) - D_{\rho}$$
 , (1) где D_{ρ} (ПС 5) = 0,057, D_{ρ} (СЗС 17) = 0,037, D_{ρ} (ПС 14) = 0,033, D_{ρ} (ЖС 4) = 0,052.

Примечание. В скобках указана марка стекла, к которому относится поправка $D_{\,0}\,$;

r) определить спектральные показатели поглощения каждого стекла $K(\lambda)$ по формуле

$$K(\lambda) = \frac{D''(\lambda)}{l} , \qquad (2)$$

где l — толщина пластины, мм.

Если полученные значения $K(\lambda)$ удовлетворяют требованиям на стекла I и II категорий по ГОСТ 9411, то из исследованного стекла изготавливают пластины (компоненты) сложного светофильтра требуемых размеров.

2. Определение толщины компонентов светофильтров

Толщина компонента из стекла марки ЖС 4 установлена равной 1 мм. Толщины компонентов из стекол марок ПС 5, ПС 14, СЗС 17 для фильтров источников В и С определяют:

для фильтров I категории по формуле

$$K_1(\lambda)l_1 + K_2(\lambda)l_2 + K_3(\lambda)l_3 = D(\lambda) - K_4(\lambda), \tag{3a};$$

для фильтров II и III категорий без стекла марки ЖС 4 по формуле

$$K_1(\lambda) l_1 + K_2(\lambda) l_2 + K_3(\lambda) l_3 = D(\lambda),$$
 (36),

где l_1 , l_2 , l_3 — толщины стекол марок ПС 5, ПС 14, СЗС 17 рассчитываемого светофильтра, а $D(\lambda)$ — оптическая плотность светофильтров источников света типов В или С, приведенные в табл. 6.

Оптическая плотность $D(\lambda)$, используемая при расчете толщины компонентов стеклянных светофильтров, воспроизводящих источники света типов В и С (для трех категорий фильтров).

Таблица, связывающая оптическую плотность D с коэффициентом пропускания τ

Таблица 5 D* 0,000 0.001 0.002 0,003 0,004 0,005 0,006 0.007 800.0 0.009 1,0000 0,9977 0,9954 0,9931 0,9908 0,9885 0,9863 0,9840 0,9817 0,9795 0,00 $\begin{array}{c} 0.9772 \ | \ 0.9750 \ | \ 0.9727 \ | \ 0.9705 \ | \ 0.9688 \ | \ 0.9660 \ | \ 0.9638 \ | \ 0.9616 \ | \ 0.9594 \ | \ 0.9572 \ | \ 0.9550 \ | \ 0.9528 \ | \ 0.9506 \ | \ 0.9484 \ | \ 0.9462 \ | \ 0.9441 \ | \ 0.9419 \ | \ 0.9397 \ | \ 0.9376 \ | \ 0.9354 \ | \ 0.9333 \ | \ 0.9311 \ | \ 0.9290 \ | \ 0.9268 \ | \ 0.9247 \ | \ 0.9226 \ | \ 0.9204 \ | \ 0.9183 \ | \ 0.9162 \ | \ 0.9141 \ | \ 0.9481 \ | \ 0.9162 \ | \ 0.9181 \ | \ 0.9162 \ | \ 0.9181 \ | \ 0.9162 \ | \ 0.9181 \ | \ 0.9162 \ | \ 0.9181 \ | \ 0.9162 \ | \ 0.9181 \ | \ 0.9181 \ | \ 0.9162 \ | \ 0.9181 \ |$ 0,01 0,02 0.03 0.9120|0.9099|0.9078|0.9057|0.9036|0.9016|0.8995|0.8974|0.8954|0.8933 0,04 0,8912 0,8892 0,8872 0,8851 0,8831 0,8810 0,8790 0,8770 0,8750 0,8730 0,05 0,8710 0,8690 0,8670 0,8650 0,8630 0,8610 0,8590 0,8570 0,8551 0,8431 0.06 0,8511 | 0,8492 | 0,8472 | 0,8453 | 0,8433 | 0,8414 | 0,8395 | 0,8375 | 0,8356 | 0,8337 0,07 0,8318 0,8298 0,8279 0,8260 0,8241 0,8222 0,8203 0,8185 0,8166 0,8147 80.0 0.8128 | 0.8110 | 0.8091 | 0.8072 | 0.8054 | 0.8035 | 0.8017 | 0.7998 | 0.7980 | 0.7962 0,09 0,10 0,11 0,12 0,7413 0,7396 0,7379 0,7362 0,7345 0,7328 0,7311 0,7294 0,7278 0,7261 0.13 0,7244 0,7228 0,7211 0,7194 0,7178 0,7161 0,7145 0,7128 0,7112 0,7096 0.14 0.15 0,16 0,17 0,6607 0,6592 0,6577 0,6561 0,6561 0,6531 0,6531 0,6516 0,6501 0,6486 0,6471 0,6487 0,6482 0,6427 0,6412 0,6397 0,6383 0,6368 0,6353 0,639 0,6324 0,6310 0,6295 0,6281 0,6266 0,6252 0,6237 0,6223 0,6209 0,6194 0,6180 0,6166 0,6152 0,6138 0,6123 0,6109 0,6095 0,6081 0,6067 0,6063 0,6033 0,6339 0.18 0,19 0,20 0,21 0,22 $0.2\bar{3}$ 0,24 0,25 0.5495 0.5483 0.5470 0.5458 0.5445 0.5432 0.5420 0.5407 0.5395 0.5383 0,26 $\begin{array}{c} 0.5450 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.54600 \ 0.546$ 0,27 0,28 0,29 0,30 0,4898 | 0,4887 | 0,4875 | 0,4864 | 0,4853 | 0,4842 | 0,4831 | 0,4819 | 0,4808 | 0,4797 0,31 0,4785 0,4775 0,4764 0,4753 0,4742 0,4732 0,4721 0,4710 0,4699 0,4688 0,32 $\begin{array}{c} 0,4767 \\ 0,4667 \\ 0,4656 \\ 0,4550 \\ 0,4550 \\ 0,4550 \\ 0,4539 \\ 0,4529 \\ 0,4519 \\ 0,4519 \\ 0,4519 \\ 0,4519 \\ 0,4508 \\ 0,4498 \\ 0,4487 \\ 0,4477 \\ \end{array}$ 0,33 0,34 0,35 0,36 0.37 0,38

Продолжение табл. 5

		1					۲	OOOMAL	nue Iu	$On. \ \mathcal{I}$
D*	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,49 0,50 0,51 0,52 0,53 0,54 0,55 0,56 0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,65 0,665 0,665 0,667	0,4074 0,3981 0,3890 0,3802 0,3715 0,3631 0,3548 0,3467 0,3388 0,3311 0,3236 0,3162 0,3090 0,2951 0,2884 0,2884 0,2692 0,2630 0,2512 0,2512 0,2455 0,2399 0,2344 0,2291 0,2291 0,22138 0,2138	0,4064 0,3972 0,3881 0,3793 0,3707 0,3622 0,3540 0,3459 0,3381 0,3304 0,3228 0,3155 0,3083 0,3013 0,2944 0,2877 0,2812 0,2506 0,2506 0,2506 0,2449 0,2593 0,2339 0,2339 0,2339 0,22386 0,22386 0,22383 0,2133	0,4055 0,3963 0,3873 0,3784 0,3698 0,3614 0,3532 0,3451 0,3296 0,3221 0,3148 0,3076 0,2938 0,2871 0,2679 0,2679 0,26618 0,2559 0,2559 0,2509 0	0,4046 0,3954 0,3864 0,3776 0,3690 0,3606 0,3524 0,3443 0,3365 0,3289 0,3214 0,3140 0,3069 0,2991 0,2931 0,2673 0,2673 0,2673 0,2612 0,2553 0,2495 0,2438 0,2382 0,2382 0,2328 0,2275 0,2223 0,2213 0,2123	0,4036 0,3945 0,3855 0,3855 0,3767 0,3681 0,3597 0,3516 0,3357 0,3281 0,3286 0,2189 0,2992 0,2667 0,2729 0,2667 0,2547 0,2489 0,2432 0,2377 0,2323 0,2218 0,2218	0,4027 0,3935 0,3846 0,3758 0,3589 0,35507 0,3428 0,3350 0,3273 0,3199 0,3126 0,2917 0,2851 0,2786 0,2723 0,2661 0,2660 0,2541 0,2483 0,2427 0,2317 0,2317 0,2213 0,2163 0,2163	0,4018 0,3926 0,3837 0,3664 0,3581 0,3499 0,3420 0,3342 0,3266 0,3192 0,3119 0,3048 0,2979 0,2911 0,2814 0,2780 0,2716 0,2655 0,2535 0,2535 0,2477 0,2421 0,2366 0,2312 0,2259 0,2259 0,22158 0,2109	0,4009 0,3917 0,3828 0,3741 0,3656 0,3573 0,3491 0,3341 0,3334 0,3112 0,3041 0,2972 0,2904 0,2838 0,2773 0,2710 0,2649 0,2529 0,2472 0,2415 0,2360 0,2307 0,2203 0,2153 0,2154	0,008 0,3999 0,3908 0,3819 0,3732 0,3648 0,3564 0,3483 0,3404 0,3327 0,3105 0,3034 0,2965 0,2897 0,2831 0,2767 0,2704 0,2642	0,3090 0,3899 0,3889 0,3811 0,3724 0,3639 0,3556 0,3475 0,3396 0,3170 0,3097 0,3027 0,2958 0,2636 0,2576 0,2518 0,2460 0,2404 0,2350 0,2296 0,2296 0,2214 0,2294 0,2133 0,2143
0,63 0,64 0,65 0,666 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80 0,81	0,2344 0,2291 0,2293 0,2239 0,2138 0,2138 0,2089 0,2042 0,1995 0,1905 0,1905 0,1862 0,1778 0,1738 0,1738 0,1660 0,1662 0,1625 0,1625 0,1625 0,1649 0,1649	0,2339 0,2286 0,2284 0,2234 0,2133 0,2133 0,2084 0,2037 0,1991 0,1945 0,1991 0,1858 0,1816 0,1774 0,1734 0,1694 0,1656 0,1585 0,1585 0,1585	0,2333 0,2280 0,2228 0,2228 0,2228 0,2128 0,2128 0,2079 0,1986 0,1941 0,1897 0,1897 0,1870 0,1770 0,1730 0,1690 0,1652 0,1654 0,1578 0,1578 0,1578 0,1578	0,2328 0,2275 0,2275 0,2273 0,2273 0,2075 0,2075 0,1982 0,1982 0,1982 0,1849 0,1849 0,1867 0,1766 0,1766 0,1766 0,1766 0,1768 1,1648 0,1687 0,1687 0,1687 0,1688 0,	0,2323 0,2270 0,2270 0,2218 0,2168 0,2168 0,2178 0,2070 0,1977 0,1932 0,1977 0,1845 0,1845 0,1722 0,1683 0,1722 0,1683 0,1644 0,1607 0,1607 0,1535 0,1535	0,2317 0,2265 0,2213 0,2163 0,2163 0,2163 0,2018 0,2018 0,1972 0,1928 0,1884 0,1841 0,1679 0,1758 0,1679 0,1641 0,1663 0,1567 0	0,2366 0,2312 0,2238 0,2258 0,2158 0,2109 0,2061 0,2014 0,2014 0,1968 0,1968 0,1975 0,1754 0,1754 0,1754 0,1754 0,1637 0,1637 0,1637 0,1637 0,1637 0,1638	0,2360 0,2367 0,2254 0,2203 0,2153 0,2153 0,2164 0,2009 0,1919 0,1875 0,1791 0,1750 0,1771 0,1673 0,1631 0,1631 0,1631 0,1636 0,1636 0,1636	0,2355 0,2301 0,2249 0,2148 0,2198 0,2199 0,2099 0,2051 0,1959 0,1914 0,1871 0,1746 0,1787 0,1746 0,1667 0,1669 0,1656 0,1556	0,2350 0,2296 0,2294 0,2143 0,2193 0,2194 0,2094 0,2000 1,1954 0,1916 0,1866 0,1824 0,1782 0,1742 0,1762 0,1663 0,1663 0,1658 0,1589
0,83 0,84 0,85 0,86 0,87 0,88),1479 (),1445 (),1413 (),1380 (),1349 (0,1510 0,0,1476 0,0,1442 0,0,1409 0,0,1377 0,1346 0,0,1315 0,	0,1507 0 $0,1472 0$ $0,1439 0$ $0,1406 0$ $0,1374 0$ $0,1343 0$ $0,1312 0$	0,1503 0,1469 0,1435 0,1403 0,1371 0,1309 0	$0,1500 \mid 0,1466 \mid 0,1432 \mid 0,1400 \mid 0,1368 \mid 0,1306 \mid 0$	0,1496 0 0,1462 0 0,1429 0 0,1396 0 0,1365 0 0,1334 0	0,1493 0 0,1459 0 0,1426 0 0,1393 0 0,1361 0 0,1330 0	0,1489 (0 ,1455 (0 ,1422 (0 ,1390 (0 ,1358 (0 ,1327 (0	0,1486 0,1452 0,1419 0,1387 0,1355 0,1324),1449),1416),1384),1352 ,1321

Продолжение табл. 5

Таблина 6

D*	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,91 0,92 0,93 0,94 0,95 0,96 0,97	0,1230 0,1202 0,1175 0,1148 0,1122 0,1096 0,1072 0,1047 0,1023	0,1256 0,1227 0,1199 0,1172 0,1145 0,1119 0,1094 0,1069 0,1045 0,1021 0,0998	0,1225 0,1197 0,1169 0,1143 0,1117 0,1091 0,1067 0,1042 0,1019	0,1222 0,1194 0,1167 0,1140 0,1114 0,1089 0,1064 0,1040 0,1016	0,1219 0,1191 0,1164 0,1138 0,1112 0,1086 0,1062 0,1038 0,1014	0,1216 0,1188 0,1161 0,1135 0,1109 0,1084 0,1059 0,1035	0,1213 0,1186 0,1159 0,1132 0,1107 0,1081 0,1057 0,1033 0,1009	0,1211 0,1183 0,1156 0,1130 0,1104 0,1079 0,1054 0,1030	0,1208 0,1180 0,1153 0,1127 0,1102 0,1076 0,1052 0,1028	0,1205 0,1178 0,1151 0,1125 0,1099 0,1074 0,1049 0,1026

^{*} В графе D приведены два первых знака десятичной части оптической плотности, а в головке — ее третий знак. На пересечении строк и столбцов приведены коэффициенты пропускания, соответствующие этим плотностям. Целая единица оптической плотности уменьшает коэффициент пропускания в 10 раз.

Оптическая плотность $D(\lambda)$ светофильтров источников света типов В и С

			Оптическая	плотность	D (λ)	
Длина волны	І кат	егория	II кат	гегория	III ка	тегория
λ, нм	В	С	В	С	В	С
380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570	0,448 0,394 0,359 0,338 0,329 0,336 0,358 0,439 0,476 0,512 0,555 0,611 0,670 0,716 0,741 0,755 0,771 0,775 0,771	0,551 0,488 0,444 0,419 0,409 0,420 0,453 0,505 0,566 0,618 0,668 0,728 0,806 0,889 0,952 0,986 1,004 1,025 1,057 1,099	0,328 0,274 0,239 0,218 0,209 0,216 0,238 0,376 0,319 0,356 0,392 0,435 0,491 0,550 0,596 0,621 0,635 0,651 0,675	0,471 0,408 0,364 0,339 0,329 0,340 0,373 0,425 0,486 0,538 0,588 0,648 0,726 0,809 0,872 0,906 0,924 0,945 0,977 1,019	0,228 0,174 0,139 0,118 0,109 0,116 0,138 0,176 0,219 0,256 0,292 0,335 0,391 0,450 0,496 0,521 0,521 0,555 0,555 0,555	0,351 0,288 0,244 0,219 0,209 0,253 0,365 0,366 0,418 0,528 0,606 0,689 0,752 0,786 0,880 0,880 0,825 0,857

Продолжение табл. 6

590 0,896 1,189 0,776 1,109 0,676 0,9 600 0,927 1,236 0,807 1,156 0,707 1,0 610 0,949 1,266 0,829 1,186 0,729 1,0 620 0,966 1,292 0,846 1,212 0,746 1,0 630 0,982 1,312 0,862 1,232 0,762 1,1 640 0,996 1,333 0,876 1,253 0,776 1,1		[Оптическая	плотность 1	Ο (λ)	
590 0,896 1,189 0,776 1,109 0,676 0,9 600 0,927 1,236 0,807 1,156 0,707 1,0 610 0,949 1,266 0,829 1,186 0,729 1,0 620 0,966 1,292 0,846 1,212 0,746 1,0 630 0,982 1,312 0,862 1,232 0,762 1,1 640 0,996 1,333 0,876 1,253 0,776 1,1		І кат	I категория	II кат	гегория	III ka	тегория
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	л, нм	В	c c	В	С	В	С
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750	0,927 0,949 0,966 0,982 0,996 1,008 1,022 1,039 1,059 1,084 1,109 1,136 1,162 1,189 1,215 1,232	27	0,807 0,829 0,846 0,862 0,876 0,888 0,902 0,919 0,939 0,964 0,989 1,016 1,042 1,069 1,095 1,112	1,156 1,186 1,212 1,232 1,253 1,272 1,291 1,316 1,329 1,379 1,414 1,448 1,490 1,523 1,558 1,581	0,707 0,729 0,746 0,762 0,776 0,788 0,802 0,819 0,839 0,864 0,889 0,916 0,942 0,969 0,995 1,012	0,989 1,036 1,066 1,092 1,112 1,133 1,152 1,171 1,196 1,209 1,259 1,259 1,328 1,370 1,403 1,438 1,438

Толщину компонентов фильтров рассчитывают методом наименьших квадратов, для чего следует составить три уравнения типа 3а или 36:

$$a_{11}I_1 + a_{12}I_2 + a_{13}I_3 = d_1;$$

$$a_{21}I_1 + a_{22}I_2 + a_{23}I_3 = d_2;$$

$$a_{31}I_1 + a_{32}I_2 + a_{33}I_3 = d_3;$$
где
$$a_{11} = \sum_{\lambda} [K_1(\lambda)]^2; \ a_{12} = a_{21} = \sum_{\lambda} K_1(\lambda)K_2(\lambda);$$

$$a_{13} = a_{31} = \sum_{\lambda} K_1(\lambda)K_3(\lambda); \ a_{22} = \sum_{\lambda} [K_2(\lambda)]^2;$$

$$a_{23} = a_{32} = \sum_{\lambda} K_2(\lambda)K_3(\lambda); \ a_{33} = \sum_{\lambda} [K_3(\lambda)]^2;$$

$$d_1 = \sum_{\lambda} K_1(\lambda) [D(\lambda) - K_4(\lambda)]$$

$$\lambda$$

$$d_2 = \sum_{\lambda} K_2(\lambda) [D(\lambda) - K_4(\lambda)]$$

$$d_3 = \sum_{\lambda} K_3(\lambda) [D(\lambda) - K_4(\lambda)]$$

$$d_1 = \sum_{\lambda} K_1(\lambda)D(\lambda)$$

$$d_2 = \sum_{\lambda} K_2(\lambda)D(\lambda)$$

$$d_3 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_3 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_1 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_2 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

$$d_3 = \sum_{\lambda} K_3(\lambda)D(\lambda)$$

Форма таблицы для расчета коэффициентов по формуле 4 Таблица 7

Длина волны λ, нм	<i>K</i> ₁ (λ)	<i>K</i> ₂ (λ)	· K ₃ (λ)	<i>K</i> ₁ (λ) ²	$K_2(\lambda)^2$	K ₃ (λ) ²	$K_1(\lambda) \times K_2(\lambda)$	$K_2(\lambda) \times K_3(\lambda)$	$K_1(\lambda) \times K_3(\lambda)$
380 390					,				
770 780			,						
780 ∑ 380				a ₁₁	a ₂₂	a ₃₃	a_{i2}	a_{23}	a_{13}

Продолжение табл. 7

Длина волны А, нм	$K_1(\lambda)[D(\lambda)-K_1(\lambda)]$	$K_2(\lambda)[D(\lambda)-K_4(\lambda)]$	$K_3(\lambda)[D(\lambda)-K_4(\lambda)]$
380 390 770 780	•		
780 ∑ 380	d_1	d_2	d_3

Толщины l_1 , l_2 , l_3 компонентов светофильтра находят из выражений:

где $\Delta = a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31}) + a_{13}(a_{21}a_{32}-a_{22}a_{31}).$

Оптическую плотность $D_{\Phi}(\lambda)$ полученного светофильтра определяют по формуле

$$D_{\Phi}(\lambda) = K_1(\lambda) l_1 + K_2(\lambda) l_2 + K_3(\lambda) l_3 + K_4(\lambda) l_4 + 0.047.$$
 (6)

Для расчета координат цвета светофильтра оптическую плотность $D_{\Phi}(\lambda)$,

полученную по формуле (6), переводят в коэффициенты пропускания $\tau_{\Phi}(\lambda)$ по табл. 5.

Координаты цвета X_{Φ} , Y_{Φ} , Z_{Φ} полученного составного светофильтра при источнике света типа A рассчитывают по формулам:

$$X_{\Phi} = \sum_{\lambda} \Phi_{\lambda}^{A} \overline{x(\lambda)} \tau_{\Phi}(\lambda); \tag{7}$$

$$\tau_{\Phi} = Y_{\Phi} = \sum_{\lambda} \Phi_{\lambda}^{A} \overline{y}(\lambda) \tau_{\Phi}(\lambda); \tag{8}$$

$$Z_{\Phi} = \sum_{\lambda} \Phi_{\lambda}^{A} \overline{z}(\lambda) \tau_{\Phi}(\lambda), \tag{9}$$

где произведения

$$\Phi_{\lambda}^{A} \overline{x(\lambda)}$$
, $\Phi_{\lambda}^{A} \overline{y(\lambda)}$, $\Phi_{\lambda}^{A} \overline{z(\lambda)}$ берутся из табл. 8.

Координаты цветности x_{Φ} , y_{Φ} вычисляют по формулам:

$$x_{\Phi} = \frac{X_{\Phi}}{X_{\Phi} + Y_{\Phi} + Z_{\Phi}} ; \tag{10}$$

$$y_{\Phi} = \frac{Y_{\Phi}}{X_{\Phi} + Y_{\Phi} + Z_{\Phi}} \ . \tag{11}$$

Координаты цветности x, y источника конкретизируются типом индекса источника, например $x^{\rm B},\ y^{\rm B},\ x^{\rm C},\ y^{\rm C}.$

Таблица 8 **аблица для ра**счета координат цвета

гаолица для расчета координат цвета							
	Исто	Источник света типа А			Источник света типа В		
Длина волны 2, нм	$\overline{x} \cdot \Phi_{\lambda}^{A}$	<u>y</u> · Φ ^A λ	$\overline{z} \cdot \Phi_{\lambda}^{A}$	$\overline{x} \cdot \Phi_{\lambda}^{B}$	$y \cdot \Phi_{\lambda}^{B}$	$\overline{z} \cdot \Phi_{\lambda}^{B}$	
380	0,0010	0,0000	0,0048	0,0025	0,0000	0,0164	
390	0,0046	0,0001	0,0219	0,0123	0,0003	0,0870	
400	0,0193	0,0005	0,0916	0,0558	0,0014	0,2650	
410	0,0688	0,0019	0,3281	0,2091	0,0057	0,9970	
420	0,2666	0,0080	1,2811	0,8274	0,0248	3,9750	
430	0,6479	0,0265	3,1626	1,9793	0,0810	9,6617	
440	0,9263	0,0609	4,6469	2,6889	0,1768	13,4883	
450	1,0320	0,1167	5,4391	2,7460	0,3105	14,4729	
460	1,0207	0,2098	5,8584	2,4571	0,5050	14,1020	
470	0,7817	0,3624	5,1445	1,7297	0,8018	11,3825	
480	0,4242	0,6198	3,6207	0,8629	1,2609	7,3655	
490	0,1604	1,0398	2,3266	0,2960	1,9190	4,2939	
500	0,0269	1,7956	1,5132	0,0437	2,9133	2,4552	
510	0,0572	3,0849	0,9674	0,0810	4,3669	1,3694	
520	0,4247	4,7614	0,5271	0,5405	6,0602	0,6709	
530	1,2116	6,3230	0,3084	1,4555	7,5959	0,3705	
540	2,3142	7,5985	0,1625	2,6899	8,8322	0,1889	
550	3,7329	8,5707	0,0749	4,1838	9,6060	0,0840	
5 60	5,5086	9,2201	0.0357	5.8385	9,7722	0.0378	

Продолжение табл. 8

	Источ	Источник света типа А			Источник света типа В		
Длина волны А, нм	$\bar{x} \cdot \Phi_{\lambda}^{A}$	$\overline{y} \cdot \Phi_{\lambda}^{A}$	$\overline{z} \cdot \Phi_{\lambda}^{A}$	$\overline{x} \cdot \Phi_{\lambda}^{B}$	$y \cdot \Phi_{\lambda}^{B}$	$\overline{z} \cdot \Phi \stackrel{B}{\lambda}$	
570 580	7,5710 9,7157	9,4574 9,2257	0,0209 0,0170	7,4723 8,8406	9,3341 8,3947	0,0206 0,0154	
590	11,5841	8,5430	0,0130	9,7329	7,1777	0,0109	
600	12,7103	7,5460	0,0096	9,9523	5,9086	0,0075	
610 620	12,6768 11.3577	6,3599 5.0649	0,0044 0,0020	9,4425 8,1290	4,7373 3,6251	0,0033 0.0014	
630	8,9999	3,7122	0.0000	6,2135	2,5629	0.0000	
640	6,5487	2,5587	0,0000	4,3678	1,7066	0,0000	
650	4,3447	1,6389	0,0000	2,8202	1,0638	0,0000	
660	2,6234	0,9706	0,0000	1,6515	0,6110	0,0000	
670 680	1,4539 0,7966	0,5327 0,2896	0,0000	0,8796 0,4602	0,3223 0,1673	0,0000	
690	0,4065	0,1467	0,0000	0,2218	0,0801	0,0000	
700	0,2067	0,0744	0,0000	0,1065	0,0384	0,0000	
710 720	0,1108	0,0398	0,0000	0,0538	0,0193	0,0000	
720	0,0556	0,0195 0,0100	0,0000	0,0253 0,0120	0,0089 0,0043	0.0000	
740	0,0144	0,0062	0,0000	0,0058	0,0025	0,0000	
750	0,0063	0,0021	0,0000	0,0024	0,0008	0,0000	
760 770	0,0032	0,0011	0,0000	0,0012	0,0004	0,0000	
770 780	0,0011 0,0000	0,0000 0,0000	0,0000	0,0004 0.0000	0,0000 0,0000	0,0000 0,0000	
Координата	109,8450	100,0000	35,5824	99,0915	100,0000	85,3094	
цвета	(X^{A})	$(Y^{\mathbf{A}})$	$(Z^{\mathbf{A}})$	(X^{B})	(Y^{B})	(Z ^B)	

Продолжение табл. 8

_					11 po	оолжение	140n. 0
		Источник света типа С			Источник света типа D_{65}		
	Длина волны 2, нм	$\overline{x} \cdot \Phi_{\lambda}^{C}$	<u>y</u> . Ф ^C _λ	$\overline{z} \cdot \Phi_{\lambda}^{C}$	$\overline{x} \cdot \Phi_{\lambda}^{D_{65}}$	$y \cdot \Phi_{\lambda}^{D_{65}}$	z · Φ λ De5
	380	0,0036	0,0000	0,0164	0,0066	0,0000	0,0307
	390	0,0183	0,0004	0,0870	0,0217	0,0005	0,1038
	400	0,0841	0,0021	0,3992	0,1120	0,0031	0,5320
	410	0,3180	0,0087	1,5159	0,3766	0,0104	1,7958
	420	1,2623	0,0378	6,0646	1,1840	0,0352	5,6878
	430	2,9913	0,1225	14,6019	2,3292	0,0952	11,3679
	440	3,9741	0,2613	19,9357	3,4574	0,2283	17,3426
	450	3,9191	0,4432	20,6551	3,7223	0,4207	19,6199
	460	3,3668	0,6920	19,3235	3,2416	0,6688	18,6070
	470	2,2878	1,0605	15,0550	2,1246	0,9894	13,9998

Продолжение табл. 8

	Источник света типа С Источник света типа D_{65}					uno Di
	источник света типа С			источник света типа D ₆₅		
Длина волны λ, нм	$x \cdot \Phi_{\lambda}^{C}$	$y \Phi_{\lambda}^{C}$	$z \cdot \Phi_{\lambda}^{C}$	$x \cdot \Phi_{\lambda}^{D_{65}}$	y · Φ D ₆₅	z · Φ λ D65
480	1,1038	1,6129	9,4220	1,0485	1,5245	8,9165
490	0,3639	2,3591	5,2789	0,3294	2,1415	4,7895
500	0,0511	3,4077	2,8717	0,0507	3,3438	2,8158
510	0,0898	4,8412	1,5181	0,0948	5,1311	1,6138
520	0,5752	6,4491	0,7140	0,6278	7,0411	0,7755
530	1,5206	7,9357	0,3871	1,6867	8,7852	0,4301
540	2,7858	9,1470	0.1956	2,8689	9,4248	0,2005
550	4,2833	9,8343	0,0860	4,2652	9,7922	0,0856
560	5,8782	9,8387	0,0381	5,6257	9,4155	0,0369
570	7,3230	9,1476	0,0202	6,9448	8,6753	0,0191
580	8,4141	7,9897	0,0147	8,3066	7,8869	0,0154
590	8,9878	6,6283	0,0101	8,6143	6,3539	0,0092
600	8,9536	5,3157	0,0067	9,0463	5,3740	0,0068
610	8,3297	4,1788	0,0029	8,5008	4,2648	0,0025
620	7,0604	3,1485	0,0012	7,0906	3,1619	0,0017
630	5,3212	2,1948	0,0000	5,0638	2,0889	0,0000
640	3,6882	1,4411	0,0000	3,5475	1,3862	0,0000
650	2,3531	0,8876	0,0000	2,1462	0,8100	0,0000
660	1,3589	0,5028	0,0000	1,2515	0,4629	0,0000
670	0,7113	0,2606	0,0000	0,6807	0,2492	0,0000
680	0,3657	0,1329	0,0000	0,3468	0,1260	0,0000
690	0.1721	0,0621	0,0000	0,1497	0,0541	0,0000
700	0,0806	0,0290	0,0000	0,0772	0,0278	0,0000
710	0,0398	0,0143	0,0000	0,0408	0,0148	0,0000
720	0,0183	0,0064	0,0000	0,0169	0,0058	0,0000
730	0,0085	0,0030	0,0000	0,0093	0,0033	0,0000
740	0,0040	0,0017	0,0000	0,0050	0,0021	0,0000
750	0,0017	0,0006	0,0000	0,0018	0,0006	0,0000
760	0,0008	0,0003	0,0000	0,0009	0,0004	0,0000
770	0,0003	0,0000	0,0000	0,0006	0,0000	0,0000
780	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Координата	98,0699	100,0000	118,2216	95,0158	100,0000	108,8062
цвета	(X ^c)	(Y ^c)	(Z ^c)	(X D ₆₅)	(Y D ₆₅)	(Z ^{D₆₅})

Значения отклонений координат цветности определяют по формулам:

 $\Delta x^{\rm B} = x_{\ \ \Phi}^{\rm B} - x^{\rm B}$ и $\Delta y = y_{\ \ \Phi}^{\rm B} - y^{\rm B}$ — для светофильтра источника света типа B; (12) $\Delta x^{\rm C} = x_{\ \ \Phi}^{\rm C} - x^{\rm C}$ и $\Delta y^{\rm C} = y_{\ \ \Phi}^{\rm C} - y_{\Phi}$ — для светофильтра источника света типа C.

^{3.} Введение поправки на толщины компонентов светофильтра

C. 17 **FOCT 7721-89**

Если отклонения координат цветности $\Delta x^{\mathsf{B}} \Delta y^{\mathsf{B}}$ или $\Delta x^{\mathsf{C}} \Delta y^{\mathsf{C}}$, определенные по формулам (12), превышают установленный допуск (табл. 3), толщины компонен $rob\ l_1,\ l_2,\ l_3$ светофильтров должны быть изменены на значения $\Delta l_1,\ \Delta l_2,\ \Delta l_3.$

Для этого необходимо:

1) исходную плотность $D(\lambda)$, использованную при расчете толщин компонентов светофильтра, изменить на постоянное значение ΔD^{B} или ΔD^{C} в соответствии со следующими формулами:

для светофильтров I категории:

для светофильтра источника света типа В:

$$\Delta D^{\rm B} = \frac{y_{\Phi}^{\rm B} - x_{\Phi}^{\rm B} - 0{,}004}{0.070}$$
;

для светофильтра источника света типа С:

$$\Delta D^{\rm c} = \frac{y_{\Phi}^{\rm C} - x_{\Phi}^{\rm C} - 0{,}006}{0.072}$$
;

для светофильтров II категории:

для светофильтра источника света типа В:

$$\Delta D^{\rm B} = \frac{y_{\,\Phi}^{\,\rm B} - 0.361}{0.044} \; ;$$

для светофильтра источника света типа С:

$$\Delta D^{\rm c} = \frac{y_{\Phi}^{\rm C} - 0.325}{0.052}$$
;

для светофильтров III категории:

для светофильтра источника света типа В:

$$\Delta D^{\rm B} = \frac{y_{\,\Phi}^{\,\rm B} - 0.366}{0.044}$$
;

для светофильтра источника света типа С:

$$\Delta D^{c} = \frac{y_{\Phi}^{C} - 0.330}{0.052} .$$

2) Определить изменения толщин Δl_1 , Δl_2 , Δl_3 компонентов светофильтра из выражений (5), заменяя в них l_1 , l_2 , l_3 на Δl_1 , Δl_2 , Δl_3 , а значения d_1 , d_2 , d_3 на Δd_1 , Δd_2 , Δd_3 , согласно следующим выражениям:

для светофильтра источника света типа В:

$$\Delta d_1 = \Delta D^{\mathrm{B}} \sum_{\lambda} K_1(\lambda),$$

$$\Delta d_2 = \Delta D^{\mathrm{B}} \sum_{\lambda} K_2(\lambda),$$

$$\Delta d_3 = \Delta D^{\mathrm{B}} \sum_{\lambda} K_2(\lambda).$$

$$\Delta d_3 = \Delta D^{\mathrm{B}} \sum_{\lambda} K_3(\lambda);$$

для светофильтра источника света типа С:

$$\Delta d_1 = \Delta D^{\mathsf{c}} \sum_{\lambda} K_1(\lambda),$$

$$\Delta d_2 = \Delta D^{\mathsf{c}} \sum_{\lambda} K_2(\lambda),$$

$$\Delta d_2 = \Delta D^{\mathsf{c}} \sum_{\lambda} K_2(\lambda),$$

$$\Delta d_3 = \Delta D^{\mathsf{C}} \sum_{\lambda} K_3(\lambda).$$

3) Определить толщины l'_1 , l'_2 , l'_3 компонентов нового светофильтра, а также его координаты цветности $(x_{\Phi}^B)'$, $(y_{\Phi}^B)'$ или $(x_{\Phi}^C)'$, $(y_{\Phi}^C)'$ и коэффициент пропускания $(\tau_{\Phi}^B)'$ или $(\tau_{\Phi}^C)'$ по формулам:

$$l'_1 = l_1 + \Delta l_1,$$

 $l'_2 = l_2 + \Delta l_2,$
 $l'_3 = l_3 + \Delta l_3;$

для светофильтра источника света типа В:

$$(x_{\Phi}^{B})' = x_{\Phi}^{B} + 0.026\Delta D^{B},$$

$$(y_{\Phi}^{B})' = y_{\Phi}^{B} - 0.044\Delta D^{B},$$

$$(\tau_{\Phi}^{B})' = \tau_{\Phi}^{B} \cdot T^{\alpha};$$

для светофильтра источника света типа С:

$$(x_{\Phi}^{C})' = x_{\Phi}^{C} + 0.020\Delta D^{c},$$

$$(y_{\Phi}^{C})' = y_{\Phi}^{C} - 0.052\Delta D^{c},$$

$$(\tau_{\Phi}^{C})' = \tau_{\Phi}^{C} \cdot T^{a},$$

$$-\lg T = |\Delta D^{a}|;$$

$$-\lg T = |\Delta D^{c}|.$$

где

Множитель T следует определить из табл. 5. Показатель степени α при T равен ± 1 и совпадает по знаку с $D^{\rm B}$ или с $D^{\rm C}$.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ИСПОЛНИТЕЛИ

- Э. В. Кувалдин, канд. техн. наук; Е. А. Иозеп, канд. техн. наук; В. И. Беликов; Л. В. Демкина; О. А. Цаплина; Н. С. Шандин
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.06.89 № 2207
- Срок проверки 1993 г.
- 4. Стандарт соответствует рекомендации РССЭВ 2265—69, кроме п. 3.2
- 5. Взамен ГОСТ 7721—76
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ΓΟCT 8.326—78	3.3
ΓΟCT 8711—78	2.3
ΓΟCT 9411—81	2.4.3, приложение 2

Редактор В. М. Лысенкина Технический редактор Э. В. Митяй Корректор Л. В. Сницарчук

Сдано в наб. 21.07.89 Подп. в печ. 23.10.89 1,25 усл. п. л. 1,25 усл. кр.-отт. 1,29 уч.-изд. л. Тир. 5000 Цена 5 к.