

Investigating Brain-like CNNs and Consequences

IICCSSS Blitz Talk by Niranjan Rajesh

Contents

- Background
- Brain-like CNNs
- Adversarial Robustness
- Neural Manifolds

What is a CNN?

Filters and Feature Maps

(StatQuest)

Non-linearity and Pooling

(StatQuest)

Example Feature maps

block1_conv1

block2_conv1

block3_conv1

block4_conv1

block5_conv1

(Towards Data Science)

Finally

How is CNN vision different from humans?

Semantic Understanding

How is CNN vision different from humans?

Generalisation

How is CNN vision different from humans?

Adversarial Robustness

How is CNN vision different from humans?

VERY different

Brain-like CNNs

Bridging the gap?

Historical inspiration from Neuroscience

- Hubel and Wiesel (1959) Simple and Complex cells in the Cat Striate Cortex
- Fukushima (1980) the Neocognitron
- LeCun (1989) LeNet, the first 'convolutional' neural network
- AlexNet, VGGNet, ResNets, ...

Motivation for further alignment

- Huge gap between the performance of primate visual processing and state-of-the-art CNNs
- Models seem to be learning differently to primates space for improvement
- Can we turn back to neuroscience?

Benchmarking Neural Similarity

- Brain-Score (Schrimpf et al, 2020) a platform for neural and behavioural similarity benchmarks
 for Neural Networks
- How well do the internal representation of the network predict the internal representations of the primate visual system? Neural Predictivity
- How different is the *output* of the network to that of the primate visual system (erroring, etc.)?
 Behavioural Similarity

Benchmarking Neural Similarity

Benchmarking Neural Similarity

(Linsley et al, 2023)

Can models capture brain process similarity more stringently and not as a coincidence?

Mapping layers to brain regions

- What if we align a network to the neuroanatomy of a brain? **CORnet-S**
- CORnet-S criteria:
 - Predictivity
 - Compactness
 - Recurrence
- An honest and mechanistic model of the brain

(Kubilius et al, 2019)

Mapping layers to brain regions

(Kubilius et al, 2019)

Mapping layers to brain regions

Architectural constraints

- What if we 'fit' classical neuroscientific models of primate visual regions into CNNs **VOneNet**
- Modelled after the Linear-Nonlinear Poisson (LNP) Model of V1
- Approximates primate neural processing of images better than SOTA counterparts

(Dapello et al, 2020)

Representational Constraints

- What about simulating the architecture, the representational output of the systems are matched?
- Multi-loss setup:
 - Standard Categorical Cross-Entropy for ImageNet Classification
 - Centered Kernel Alignment (CKA) loss for 'IT' layer representation alignment

(Dapello et al, 2023)

Behavioural Constraints

- What about alignment at the 'final' level behaviour
- Aligning feature importance maps **Neural Harmonisation**

(Fel et al, 2022)

Behavioural Constraints

(Fel et al, 2022)

Adversarial Robustness

All these different constraints but one common consequence

Adversarial Attacks

Effects on Robustness

(Dapello et al, 2020)

Effects on Robustness

(Dapello et al, 2023)

Effects on Robustness

- Robustness to such attacks was not explicitly coded for. How did they arise?
- "Easy they are made to be more like the animal brain so of course they behave more like the animals in visual tasks"
- But **how?** What exactly is in the 'neural' code that achieves adversarial robustness?

What are Neural Manifolds

• Task-specific subspaces within the larger neural space

(Sadtler et al, 2014)

Within and outside manifold tasks

We can manipulate the neural space and investigate the effects on task performance

(Sadtler et al, 2014)

Investigation:

- Identification of CNN manifold through neural unit representations
- Compute higher dimensional 'positions' of representations of varied input within manifolds
- Manipulation of the neural space and manifold

Can we verify if the adversarial attacks are within the brain-nets' manifolds?

Implications:

- Manifold hypothesis holds some water
- Adversarial Robustness through manifold engineering
- Other 'traits' or skills?

Thank you

niranjanrajesho2@gmail.com niranjan.rajesh asp24@ashoka.edu.in

