

MSc Project Outside Course Scope

Trace inequalities and Stahl's theorem

Date: August 2, 2025

Advisor: Søren Eilers

Department of Mathematical Sciences]

Author(s): [Valdemar Skou Knudsen]

Title and subtitle: [Trace inequalities and Stahl's theorem]

Description: The recently proven BMV conjecture (now known as Stahl's theorem) rep-

resents a class of Hermitian matrix Trace formulae in terms of the Laplace transform of a positive measure, and yields a number of interesting trace inequalities. In this project we detail a proof of the theorem and discuss

corollaries using Bernstein's theorem for monotone functions.

Advisor: [Søren Eilers]

1 Bernstein's theorem on monotone functions

Definition 1. A function $f \in \mathcal{C}([0,\infty)) \cap \mathcal{C}^{\infty}((0,\infty))$ is said to be completely monotone if $(-1)^n f^{(n)}(t) \geq 0$ for all $n \geq 0$ and t > 0.

Theorem 1.1. f is completely monotone if and only if it is the Laplace transform of a finite Borel measure μ on $[0, \infty)$, i.e. if and only if

$$\forall x \in [0, \infty), \quad f(x) = \int_{[0, \infty)} e^{-xt} d\mu(t).$$

Proof. We proceed with the forward implication. Let t > 0 be arbitrary. Since $(-1)^n g^{(n)}$ is non-negative and non-increasing, averaging and iterating yields:

$$(-1)^{n}g^{(n)}(t) \leq \frac{2}{t} \int_{t/2}^{t} (-1)^{n}g^{(n)}(t) dt$$

$$= \frac{2}{t} |g^{(n-1)}(t) - g^{(n-1)}(t/2)|$$

$$\leq \frac{2}{t} (|g^{(n-1)}(t)| + |g^{(n-1)}(t)|)$$

$$\leq \frac{1}{t^{n}} \sum_{k=0}^{n} C_{k}g(t/2^{k}) \leq \frac{1}{t^{n}} \sum_{k=0}^{n} C_{k}g(0),$$

where $C_k \in \mathbb{R}$ for all k. In particular this means that $g^{(n)}(t) = o(1/t^n)$ for $t \to \infty$. Now, since $g(+\infty) := \lim_{t \to \infty} g(t)$ exists, iteratively integrating by parts (the boundary terms vanish due to the previous calculation) yields:

$$g(x) - g(+\infty) = -\int_{x}^{\infty} g'(t) dt$$

$$= -(t - x)g'(t) \mid_{x}^{\infty} + \int_{x}^{\infty} (t - x)g''(t) dt$$

$$= \frac{(-1)^{n+1}}{n!} \int_{x}^{\infty} (t - x)^{n} g^{(n-1)}(t) dt$$

$$= \frac{(-1)^{n+1}}{(n-1)!} \int_{x/n}^{\infty} (1 - \frac{x}{tn})^{n} (nt)^{n} g^{(n+1)}(nt) dt$$

$$= \int_{0}^{\infty} \varphi_{n}(xt) d\sigma_{n}(t),$$

where $\varphi_n(x) = (1 - x/n)^n \mathbb{1}_{[0,n]}(x)$ and

$$\sigma_n(t) = \frac{1}{(n-1)!} \int_{1/t}^{\infty} (ns)^n |g^{(n+1)}(ns)| \, ds.$$

Now, $\sigma_n(t)$ is increasing for all $n \in \mathbb{N}$, and integration by parts again yields:

$$\lim_{t \to \infty} \sigma_n(t) = \frac{1}{(n-1)!} \int_0^\infty (ns)^n |g^{(n+1)}(ns)| \, ds = g(0) - g(+\infty) < \infty,$$

which means that σ_n has an uniform upper bound, and hence admits a convergence subsequence $\sigma_{n_k} \to \sigma$ to some non-negative function. Monotone convergence then yields:

$$g(x) - g(+\infty) = \lim_{k \to \infty} \int_0^\infty \varphi n_k(xt) \, d\sigma_{n_k}(t) = \int_0^\infty d\sigma(t),$$

and rearranging with $\mu := \sigma + g(+\infty)\delta_0$ completes the proof (the converse follows directly from Leibniz integral rule).

2 Stahl's theorem

Theorem 2.1. Suppose that $A, B \in \mathbb{R}^{n \times n}$ are Hermitian matrices, with B positive definite. Then the function $f(t) = tr(e^{A-Bt})$ is the Laplace transform of a finite Borel measure on $[0, \infty)$, i.e.

$$\forall t \in [0, \infty), \quad f(t) = \int_{[0, \infty)} e^{-xs} d\mu(s).$$

We may freely assume $B = \operatorname{diag}(b_n, \ldots, b_1)$ is diagonal with decreasing eigenvalues $b_n > \ldots > b_1 > 0$. Indeed, B is unitarily diagonalizable by some matrix T_0 , and we easily see that e^{A-Bt} has the same eigenvalues as $T_0 * e^{A-Bt}T_0$. Furthermore, since A - Bt is also Hermitian, it is unitarily diagonalizable by some matrix T_1 , i.e. $T_1 * (A - Bt)T_1 * = \operatorname{diag}(\lambda_1(t), \ldots, \lambda_n(t))$, with eigenvalues determined by the multi-variable equation $\operatorname{det}(\lambda I - A + tB) = 0$. Taking t out of the determinant and substituting t = 1/t, t = 1/t, t = 1/t, we obtain an equation of the form

$$0 = \det(yI + B - xA) = \prod_{i=1}^{n} (y + b_j - xa_{j,j}) + O(x^2),$$

which implies that we may consider $\lambda(t)$ as a multi-valued function with n holomorphic branches; its natural domain is a Riemann surface S with n sheets laid over the Riemann sphere. Each branch λ_j satisfies $\lambda_j(t) = -b_j t + a_{j,j} + o(1/t)$ for $t \to \infty$. By definition of trace we have that:

$$f(t) = \sum_{j=1}^{n} e^{\lambda_j(t)}.$$

We need a technical result on these functions:

Lemma 2.2. Let $\lambda_1, \ldots, \lambda_n$ be the n holomorphic branches defined above, and let $g \in \mathcal{H}(\mathbb{C})$. Then

$$h(z) := \sum_{j=1}^{n} g(\lambda_j)$$

is an entire function.

Proof. Indeed, the function holomorphic in an open set containing \mathbb{R} , and since it uniquely extends everywhere on \mathbb{C} , it follows from the monodromy principle that f is entire.

We now define an explicit formula for the positive measure in Stahl's theorem:

$$d\mu(s) := \left(\sum_{j=1}^{n} e^{a_{j,j}} \delta_{b_j}(s) + w(s)\right) ds,$$

where ds is the Lebesgue measure and

$$w(s) := -\sum_{j:b_j < s} \operatorname{res}_{\infty} e^{\lambda_j(\zeta) + s\zeta} = \frac{1}{2\pi i} \sum_{j:b_j < s} \int_C e^{\lambda_j(\zeta) + s\zeta} d\zeta,$$

for some sufficiently large circle C centered at the origin.

Proof of equality: First observe that Lemma 2.2 implies that w(s) = 0 for $s > b_n$ (and trivially also for $s < b_n$). We directly compute the Laplace transform of w:

$$\int_0^\infty e^{-st} w(s) \, ds = \sum_{k=1}^{n-1} \int_{b_k}^{b_{k+1}} e^{-st} w(s) \, ds =: \sum_{k=1}^{n-1} I_k(t).$$

Let t > 0 be fixed. Since λ_j is holomorphic in some open set containing \mathbb{R} we may deform, without changing the value of $I_k(t)$, the circle C in such a way so that it does not contain the positive ray. Changing the order of summation and integration yields:

$$\sum_{k=1}^{n-1} I_k(t) = \sum_{k=1}^{n-1} \int_{b_k}^{b_{k+1}} \sum_{j=1}^k \frac{1}{2\pi i} \int_{C'} e^{\lambda_j(\zeta) + s(\zeta - t)} d\zeta ds$$

$$= \sum_{j=1}^{n-1} \frac{1}{2\pi i} \int_{C'} e^{\lambda_j(\zeta)} \int_{b_j}^{b_n} e^{s(\zeta - t)} ds d\zeta$$

$$= \sum_{j=1}^{n-1} \frac{1}{2\pi i} \int_{C'} e^{\lambda_j(\zeta)} (e^{b_n(\zeta - t)} - e^{b_j(\zeta - t)}) \frac{d\zeta}{\zeta - t}.$$

Now, Lemma 2.2 again implies that:

$$\sum_{j=1}^{n-1} \int_{C'} e^{\lambda_j(\zeta)} e^{b_n(\zeta-t)} \frac{d\zeta}{\zeta-t} = 0.$$

Writing $\lambda_j(zeta) = -b_j\zeta + a_{j,j} + r_j(\zeta)$ where $r_j(\zeta) \to 0$ for $\zeta \to \infty$, applying the Cauchy integral formula on the unbounded domain defined by C' then yields for all $j = 1, \ldots, n-1$:

$$-\frac{1}{2\pi i} \int_{C'} e^{\lambda_j(\zeta) + b_j(\zeta - t)} \frac{d\zeta}{\zeta - t} = -\frac{e^{a_{j,j} - b_j t}}{2\pi i} \int_{C'} e^{r_j(zeta)} \frac{d\zeta}{\zeta - t}$$
$$= e^{a_{j,j} - b_j t} (e^{r_j(t)} - \lim_{\zeta \to \infty} e^{r_j(\zeta)})$$
$$= e^{\lambda_j(t)} - e^{-b_j t a_{j,j}}.$$

Summation over j, and comparing to the measure μ defined above completes the proof of equality. Proof of positivity: Recall first that we only need to show $w(s) \geq 0$, and that this is trivial for $s \notin [b_1, b_n]$. So let s be fixed with $b_k < s < b_{k+1}$. Recall the natural domain of the full derivative function λ is a Riemann surface S with n sheets over the Riemann sphere $\overline{\mathbb{C}}$. Let $\pi: S \to \overline{\mathbb{C}}$ be the projection map. The asymptotic expressions above imply that there exists an R > 0 such that the functions $\lambda_j(\zeta) + s\zeta = (s - b_j)\zeta + \ldots$ are holomorphic for $|\zeta| > R$ and with positive derivatives for $j \leq k$ and negative derivatives for j > k. In particular, $g(p) := \lambda(p) + s\pi(p)$ for $p \in S$ is a meromorphic 1-form. Increasing R as necessary, we may also assume that $\operatorname{sign}(Im(\lambda_j(\zeta) + s\zeta)) = \operatorname{sign}(Im\zeta)$ for $|\zeta| > R/2$ and $j \leq k$ and likewise $\operatorname{sign}(Im(\lambda_j(\zeta) + s\zeta)) = -\operatorname{sign}(Im\zeta)$ for j > k. We choose the circle $C = \{\zeta \in \mathbb{C} : |\zeta| = R\}$ to define the function w. Consider now the open sets:

$$D^{+} = \{ p \in S : |\pi(p)| < R, Im(\pi(p)) > 0, Im(\lambda(p) + s\pi(p)) > 0 \},$$

$$D^{-} = \{ p \in S : |\pi(p)| < R, Im(\pi(p)) < 0, Im(\lambda(p) + s\pi(p)) < 0 \},$$

and the set $D = \operatorname{Int}(\overline{D^-} \cup \overline{D^+})$. The pre-image $\pi^{-1}(C)$ consists of n disjoint circles $C_j \subseteq S$, which we label in accordance with the branch functions λ_j . It follows from our choice of R > 0 that $C_j \in \partial D$ for $j \leq k$ and $C_j \cap \overline{D} = \emptyset$ for j > k. Let $D_1 \subseteq D$ be a (connected) component of D. It is a Riemann surface of finite type, and hence its boundary can be parameterized by a family smooth curves $(\gamma_n)_{n=1}^{\infty}$. We need a technical result on these boundary curves:

Lemma 2.3. No curve $\gamma \in (\gamma_n)_{n=1}^{\infty}$ can project into the open upper or lower half-plane.

Proof. Suppose without loss of generality that gamma projects into the upper half-plane. The Cauchy-Riemann equations directly imply that Reg has constant tangential derivative along γ , which contradicts the fact that Reg is single-value on the closed curve γ .

Since λ is holomorphic on D_1 , the maximum principle ensures that there is a circle C_j with $C_j \subseteq D_1$. In order to prove positivity we assert that:

$$w(s) = \sum_{\substack{D_1 \subseteq D \\ D \text{ connected}}} \sum_{j: C_j \subseteq \partial D_1} \int_{C_j} e^{\lambda(p) + s\pi(p)} d\pi(p),$$

so it suffices to prove that each integral of this form is positive. The part of ∂D_1 that projects into C is exactly the circle C_j . The remainder is by definition projected into $\{\zeta : |\zeta| < R\}$, and since g is holomorphic in D_1 we have:

$$\int_{\partial D_1} e^{g(p)} d\pi = 0,$$

and it therefore suffices to show negativity of the part of ∂D_1 which projects into $\{\zeta : |\zeta| < R\}$. To show this, let γ be an arbitrary boundary curve which projects into $\{\zeta : |\zeta| < R\}$. By Lemma 2.3, γ intersects the real line and is therefore split into two pieces γ^+ and γ^- which project into the upper and lower half-plane, respectively. Furthermore, since γ is mapped to itself by the involution induced by complex conjugation, we also have that the pieces γ^+ and γ^- are symmetric. Writing out $e^g = e^{\text{Re}g}(\cos \text{Im}g + i \sin \text{Im}g)$ and since Img = 0 and Reg is increasing by construction, we conclude that $t \mapsto e^{g(\gamma(t))}$ is real and increasing. Combining all this, and using integration by parts, we conclude that:

$$\frac{1}{2\pi i} \int_{\gamma} e^{g(p)} d\pi(p) = \frac{1}{2\pi i} \left(\int_{\gamma^{+}} + \int_{\gamma^{-}} \right) (d\xi(t) + id\eta(t))$$

$$= \frac{1}{\pi} \int_{\gamma^{+}} e^{g(\gamma(t))} d\eta(t)$$

$$= -\frac{1}{\pi} \int_{\gamma^{+}} \eta(t) d(e^{g(\gamma(t))}) < 0.$$

Summation over all curves γ which project into $\{\zeta : |\zeta| < R\}$ then yields the desired negativity, completing the proof.

The Bernstein theorem then implies the positivity $\text{Tr}(e^{A-Bt}) \geq 0$, and similar inequalities for the (higher) derivatives. In particular, the trace derivative formula implies that if AB = BA then we have $\text{Tr}(Be^{A-Bt}) \geq 0$. It is worth noting that inequalities of this type has applications in eigenvalue problems in mathematical physics, although this is beyond the scope of this report.