Algoritmos y Estructura de Datos III – Sección TQ – 1er semestre

Ordenación externa

Prof. Cristian Cappo

abril/2018

Contenido

- Conceptos, motivación
- Problema 1: ordenar un archivo con muchos datos
- Problema 2: almacenar un gran cantidad de información y accederla eficientemente.
 - · B-Árboles
 - Estructura
 - Operaciones

Discos

- La memoria principal es limitada (MB a GB)
- La memoria caché aún más (KB a MB)
- Los discos sin embargo van de GB a TB y

hasta PB(experimentalmente)

- Su costo es bajo pero su problema es la baja velocidad
- Giran entre 5400
 y 15000 rpm

The IBM hard drive in 1956:

- * Stored 5 megabytes (MB)
- * Cost \$11,000 per megabyte
- * Was 60 inches long x 68 inches high x 29 inches deep
- * Weighed about 1 ton

https://www.backblaze.com/blog/94-trillion-petabyte/

Comparación de precios en almacenamiento

Tabla de comparación de Precios – US\$/MB

Medium	1996	1997	2000	2004	2006	2008	2011
RAM	\$45.00	7.00	1.500	0.3500	0.1500	0.0339	0.0138
Disk	0.25	0.10	0.010	0.0010	0.0005	0.0001	0.0001
USB drive	_	_	_	0.1000	0.0900	0.0029	0.0018
Floppy	0.50	0.36	0.250	0.2500	_	_	_
Tape	0.03	0.01	0.001	0.0003	_	_	_
Solid State	_	_	_	_	_	_	0.0021

Nota interesante: los ratios de tiempo, espacio y costo entre la memoria y el disco se han mantenido estables sorpresivamente por cerca de 20 años

Fuente: C. Shaffer. Data Structures and Algorithm Analysis (Java Edition). 2013

- El tiempo acceso a estos dispositivos varía:
 - Cache
 1 GHz (1,000,000,000)
 - Memoria principal (5-10 ns) 100 MHz(100,000,000)
 - Discos (9-10 ms) 100 Hz (100)
- El ratio es de 1 millón, es decir, el disco es 1 millón de veces más lento que la memoria RAM.

Valores aproximados del año 2011

- La memoria (en general) es direccionable por byte
 - Cada byte tiene su propia dirección
 - Cada byte puede ser accedido o modificado
- Para acceder a un bit, debe accederse al byte que lo contiene

- Los discos son bloque-direccionables
 - El tamaño del bloque es variable
 - Asumimos que los bloques son de 4 KBytes (para nuestros ejemplos)
- Para acceder a un byte de un bloque debe leerse el bloque entero que lo contiene.

- El controlador de I/O lee y escribe en el disco por bloques.
- El bloque es copiado a la memoria principal
 - DMA (Direct Memory Access)
- Para acceder a un byte del disco, el controlador debe leer el bloque entero de 4 KB (4096 bytes) (puede ser otros tamaños de bloque pero esto es lo usual)

Acceso a la memoria

- Cuando se da formato a un disco duro, se especifica (o se puede especificar) el tamaño de bloque.
- Todos los archivos ocupan un número entero de bloques
 - El último bloque puede ser parcialmente ocupado

```
C:> format d: /A:4096
C:> format d: /A:8192
C:> format d: /A:16K

# mkfs -t ext4 -b 1024 /dev/sdb1
# mkfs -r ext3 -b 2048 /dev/sdb2

Ejemplo en Windows (NTFS)

Ejemplo en Linux
```

- Por ejemplo, el archivo mostrado a la derecha tiene123.603 bytes
- Pero su tamaño en disco es 126.976 (31 * 4096)

- Consecuentemente
 - 3373 bytes no se utilizan
- En tamaños de bloque muy grande existe un desperdicio de espacio y en tamaños muy pequeños se aumenta la E/S

En resumen:

- Los discos son mucho, muchísimo más lentos, que la RAM.
- Los discos se dividen en bloques:
 - Por comodidad usamos 4 KB
- Acceder a un bloque entero tiene el mismo costo de acceder a un solo byte dentro del bloque.

Problema 1: Ordenar un archivo con muchos datos

¿Cómo puede ordenar un archivo que se encuentra en disco duro y que contiene, por ejemplo 7000000 de datos de personas (cedula, apellido, nombre, etc). Queremos la lista ordenada por apellido y nombre.

¿Cómo lo plantearía en lenguaje C?

Ejemplo utilizando la idea de MergeSort (MergeSort externo)

 Queremos ordenar la secuencia 36,17,28,23,20,13,14,15 que se encuentra en memoria.

Optimizaciones posibles a Mergesort externo

- Utilizar un algoritmo de ordenación interno al principio con un número de datos que puede leerse de una vez del disco.
- Podemos aumentar la cantidad de carreras (en vez de dos carreras que vimos en el ejemplo).
 Así se convierte en un algoritmo multicarreras.
- Hay muchas variantes pero todas son basadas en los siguientes dos pasos:
 - Partir el archivo en carreras iniciales
 - Combinar las carreras para formar un solo archivo ordenado

Problema 2: Almacenar gran cantidad de datos y accederlos de forma eficiente

- Suponga que nosotros queramos guardar una gran cantidad de datos ordenados.
- Consideremos 10⁹ ítems (1.000.000.000)
 - 4 byte de clave más el dato asociado
 - Asumimos que los punteros necesitan 4 bytes

Restricciones y asunciones

- Debemos guardar en disco duro
 - 32 bits solo puede acceder a 4 GB (teóricamente)
 (asumimos un máquina de 32 bits)
 - RAM es volátil
- Asumamos que el nodo raíz esta en memoria principal.
- Las direcciones de bloques son de 32 bits
- Tiempo de acceso a disco: 10 ms.

 Consideramos utilizar la estructura árbol para guardar esta información

- Hemos visto que en general acceder a un árbol balanceado es O(lg n).
- Consideramos para nuestro análisis
 - Un árbol binario de búsqueda
 - Un árbol M-ario
 - B-Arbol

BST

- Un BST con 10⁹ entradas tiene un *mínimo* de 29 de altura (lg₂ (10⁹)) = 29
- Solo los punteros requieren cerca de 8 GB
 - 32 bits solo accede a 4 GB.
- Es muy probable que dos nodos no se encuentren en el mismo bloque, entonces:
 - Acceder a las hojas requiere que 29 bloques sean copiados desde el disco duro
- Con 10 ms de tiempo de acceso, esto puede requerir cerca de 0,29 s (10*29/1000)

Árbol M-ario

- Consideremos un árbol M-ario
 - El BST hace que tengamos que leer demasiados bloques. Además podemos esperar lo peor, que no se encuentre balanceado.
 - Podemos tener más ramificaciones en el árbol, así tenemos menos altura en el árbol. Así, mientras un árbol binario perfecto de 31 nodos tiene 5 niveles, un árbol 5-ario de 31 nodos tiene sólo tres niveles.

Árbol M-ario

- Entonces un árbol M-ario permite ramificaciones de M hijos.
- A medida que el grado de ramificación aumenta, la profundidad disminuye.
- La altura de árbol binario completo es aproximadamente log₂ n, mientras que la altura de un árbol M-ario perfecto es aproximadamente log_M n.

- Continuando con el ejemplo, tratemos que colocar la mayor cantidad de claves y punteros en un bloque.
 - Clave tiene 4 bytes
 - Punteros tienen 4 Bytes (32 bits)
- Asumimos que un bloque tiene 4 KB
 - 4 KB / (4 Bytes + 4 Bytes) = 512
- Entonces podemos tener un nodo de 512 ramificaciones en cada bloque.

- Un árbol M-ario óptimo tiene una altura de $\log_{512} 10^9 = 3$
- Ahora las búsquedas requieren aprox. 30 ms, cerca de 10 veces más rápido que el BST.

Árbol M-ario realista

- Problema:
 - Solo guardamos clave y punteros
 - No guardamos otra información asociada
- En general querríamos guardar más información.

- Asumimos que queremos guardar
 - La clave de 4 bytes
 - Un puntero de 4 bytes (al bloque hijo), y 120 bytes de información
- Consecuentemente 4KB / 128 bytes = 32
- Cada bloque puede guardar 32 registros
 - Usamos un árbol M-ario de 32 ramificaciones.

Así, la máxima altura debería ser:

$$\log_{32} 10^9 = 5$$

 Esto incrementa el tiempo de búsqueda en 67% sobre un árbol M-ario de 512 ramificaciones.

Problema:

- Nosotros no queremos incrementar el tiempo de búsqueda.
- Cerca de 97 % de todos los registros están en las hojas. Por cada raíz existen 32 hijos (31/32).

Solución:

 Mover los datos (4 byte de clave y 120 bytes de información por registro) a las hojas.

Árbol M-ario realista

- Considere este árbol M-ario de 3 ramificaciones
 - Clave entera y datos

Árbol M-ario realista

 Movemos todos los datos a las hojas, pero necesitamos acceder a las hojas..

- Entonces, como dejamos todos los datos en las hojas, podríamos guardar más claves y punteros en los nodos internos.
- Tenemos pues, que los nodos internos pueden ser M-arios con más ramificaciones.

- Un árbol M-ario de ramificación 5
 - Guardamos la menor entrada de cada subárbol menos del primero.

Y podemos hacer en todos los niveles

- Buscar ahora es sencillo,
 - Encontrar las entradas 28 y 63.

B-Arbol

- Un árbol B (o B-Arbol) usa esta idea y
 - Propuesta originalmente por Rudolf Bayer y E. McCreight en el año 1972.
 - Agrega restricciones para asegurar el balance y la consistencia
- La meta es:
 - Minimizar el acceso a disco
 - Tener un tiempo de acceso uniforme
- Los datos son guardados en las hojas y los nodos internos forman un árbol M-ario.

- El tamaño de bloque puede afectar
 - La cantidad de datos que pueden ser guardados en las hojas
 - La elección de M para los nodos internos
- Maximizar la cantidad de datos que pueden ser guardados en un bloque (de 4 KB para nuestros ejemplos)

- Suponga que nuestra clave tiene 4 bytes y los datos tiene 124 bytes
- Un bloque de 4 KB guarda L=32 registros y requeriría:
 - $10^9/32 = 31.250.000$ bloques de hoja

- Vamos al nodo interno
- Ya que todos los datos están en la hoja, ahora solo necesitamos guardar:
 - Claves (que permitan la navegación)
 - Punteros

- Esto, dentro de los 4KB, nosotros podemos guardar 512 par de clave-puntero.
- Esto permite tener un árbol M-ario de 512 ramificaciones

- Mil millones de registros requieren:
 - $10^9/32 = 31.250.000$ bloques de hoja
 - Un árbol M-ario de 512 ramificaciones con altura log₅₁₂(10⁹/32) = 2.76 ≈ 3
 - El nivel más bajo tiene 512² hojas por 512-ario nodos para un total de 512³ = 134.217.728 direcciones.

- Cada acceso requiere tres accesos a disco o 30 ms.
 - La raíz siempre esta en memoria
 - Nosotros buscamos el hijo requerido

- Un B-Arbol es un árbol donde:
 - Todos los nodos hojas son arreglos de L registros ordenados por una clave.
 - Todos los nodos internos forman un árbol M-ario que guarda M-1 claves y M sub-arboles.

Además:

- Requerimos agregar la condición de que todos los bloques de las hojas tengan la misma altura
 - Esto garantiza el mismo tiempo de acceso para todos los registros.

- Un B-Arbol de altura 1 y 2
 - Con nodos internos de 32 ramificaciones
 - 8 registros por hoja M=32 L=8

- En muchos casos los nodos pueden no llenarse
 - Hojas parcialmente llenas
 - Nodos internos con menos de M sub-árboles
- Entonces, debemos agregar reglas que aseguren un balance razonable

- Definimos un B-Arbol de orden M como sigue:
 - Todos los datos se guardan en las hojas
 - Todas las hojas están
 - En el mismo nivel
 - Contienen entre \[\(\L/2 \] \] y L entradas
 - Es decir al menos medio llenos
 - L depende del tamaño del registro que se guardará y el tamaño del bloque.

- El nodo raíz puede ser
 - Un nodo hoja o
 - Un nodo interno M-ario que tiene entre 2 y M hijos
- Todos los otros nodos internos
 - Son M-arios entre M/2 a M hijos
 - Guardan M-1 claves para guiar la búsqueda donde k representa el menor valor en el sub-arbol k.

El mejor caso de nuestro ejemplo fue

$$\lfloor \log_{512} (10^9/32) \rfloor + 1 = 3$$

- Asumiendo el peor caso
 - Todos los nodos hojas son llenos a la mitad (16) y
 - Todos los nodos internos llenos a la mitad (256)
 - Entonces la altura del árbol sería

$$\lfloor \log_{256} (10^9/16) \rfloor + 1 = 4$$

 Nro. de registros para el mejor y peor caso con M=512 y L=32

ALTURA		
0		
1		
2		
3		
4		
5		
6		
7		
8		

REGISTROS	MEMORIA
32	$2^{12} \mathrm{B}$
1.64×10^{3}	2^{21} B
8.39×10^{6}	$2^{30}\mathrm{B}$
4.30×10^9	$2^{39}\mathrm{B}$
2.20×10^{12}	$2^{48}\mathrm{B}$
1.13×10^{15}	$2^{57} \mathrm{B}$
5.76×10^{17}	$2^{66}\mathrm{B}$
1.64×10^{20}	$2^{75} \mathrm{B}$
1.64×10^{23}	$2^{84} \mathrm{B}$

REGISTROS	MEMORIA
2	$2^{12} B$
32	$2^{20}\mathrm{B}$
8.19×10^{3}	$2^{28}\mathrm{B}$
2.10×10^{6}	$2^{36}\mathrm{B}$
5.37×10^{8}	$2^{44} \mathrm{B}$
1.37×10^{11}	$2^{52} \mathrm{B}$
3.52×10^{13}	$2^{60}\mathrm{B}$
9.01×10^{15}	$2^{68}\mathrm{B}$
2.31×10^{18}	$2^{76} \mathrm{B}$

- Los nodos hojas utilizan arreglos para guardar datos.
- El costo de manipular estos arreglos es O(L), sin embargo es ínfimo comparado con el acceso a disco.

B-Arbol - ejemplo

- Considere el siguiente B-Arbol
 - M=5 L=4

56 registros

- Buscamos el 19
 - 19 < 22 implica que el 19 esta en el primer sub-arbol
 - 19 > 17 implica que el 19 esta en el último sub-arbol
 - Un búsqueda binaria lo encuentra

Buscamos el 50

- 45 < 50 < 61 implica que el 50 esta en el 3er sub-arbol
- 49 < 50 < 54 implica que el 50 esta en el 2do sub-arbol
- Una búsqueda binaria no lo encuentra, por tanto no esta en el árbol

Buscamos el 80

- 80 > 61 implica que esta en el último sub-arbol
- 80 > 77 implica que esta en el último sub-arbol
- Una búsqueda binaria no lo encuentra y por tanto no esta en el árbol

- Búsqueda (resumen):
 - El nodo raíz siempre esta en memoria principal
 - Cada búsqueda requiere que dos bloques sean leídos a memoria
 - Si el dato asociado se encuentra, y se requiere modificarlo, solo un bloque debe ser guardado
 - Tiempo total: 20 ms (o 30 ms si se quiere grabar)

Inserción:

- Ocurre en los nodos hojas
- Puede causar que el nodo hoja tenga más de L entradas, entonces implica:
 - Partir el nodo hoja en dos bloques de hojas
 - Actualizar el padre

- Incrementar las entradas en el padre puede causar que tenga más de M entradas, implica:
 - Partir en dos
 - Actualizar su padre
 - Hacer recursivamente hasta la raíz, si es necesario.

- Inserción (ejemplo)
 - Insertar 6 requiere solo agregarlo en el primer bloque hoja

• Insertar 50 requiere agregarlo en el arreglo

- Inserción simple
 - Requiere dos accesos
 - Si el nodo hoja no esta lleno,
 - Requiere un tiempo O(L)
 - El nodo hoja debe guardarse
 - Tiempo total = 20 ms + 10 ms = 30 ms

 Insertar 18, el bloque hoja esta lleno, debemos partir.

- Actualizar el bloque hoja
- Actualizar el padre
- Grabar el nuevo bloque

- Insertar el 53
- Bloque hoja lleno, debemos partir

- Actualizar el bloque hoja
- Actualizar el padre
- Grabar el nuevo bloque hoja

- Un nivel de inserción, requiere:
 - 2 accesos
 - Una inserción O(L) en el bloque hoja
 - Una copia O(L)
- Cada nodo hoja tiene >= L/2 entradas
- Grabar el nodo original, el nuevo nodo y el padre modificado
- Tiempo total : 20 ms + 30 ms = 50 ms

- Dos niveles de inserción
 - Insertar el 29
 - Nodo hoja lleno, debemos partir

Nodo padre lleno, debemos partirlo

· La raíz debe ser actualizada

- Se requiere
 - 2 accesos
 - O(L) inserción
 - O(L) copia
- Cada bloque interno tiene >= M/2 entradas
- Debemos guardar ambas hojas, ambos nodos internos y la raiz
- Total de tiempo = 20 ms + 50 ms = 70 ms

- Insertar 67
- · La hoja esta llena, partimos en dos

· Padre esta lleno, lo partimos en dos

La raíz esta llena, partimos en dos

 Creamos una nueva raíz (aumenta la altura del árbol)

- Se requiere
 - 3 accesos
 - O(L) inserción
 - O(L) copia
- Cada nodo interno tiene >= M/2 entradas
- Nuevo bloque raíz tiene dos sub-arboles
- Debemos grabar 7 bloques (4 nuevos)
- Total tiempo = 30 ms + 70 ms = 100 ms

Eliminación

- Puede ocurrir que la condición en el nodo hoja sea violada < L/2 datos
- Tomar la hoja de un vecino
- Dos posible casos:
 - Juntos tienen <= L nodos : mezclarlos.
 - Juntos tienen > L nodos: redistribuirlos.

Eliminación:

- Juntando dos nodos puede causar en el padre una violación a la condición:
 - Si contiene < M/2 nodos
- Tomar un nodo interno del vecino
- Dos posibles casos:
 - Juntos tienen <= M nodos : se mezclan
 - Juntos tienen > M nodos: se redistribuyen
- Repetir lo mismo hacia la raíz, si es necesario

Eliminación (ejemplo)

- Eliminamos el 28
- El resto del bloque hoja tiene >= L/2 entradas

Por tanto, removemos el 28 del bloque hoja

- Removemos el 7
- El resto de su bloque tiene < L/2 entradas
- El bloque izq. tiene 4 entradas (redistribuimos)
- El bloque der tiene 3 entradas (mezclamos)

- Redistribuimos (optamos por)
- · Necesitamos actualizar el padre

- Removemos el 9
- El izq. y el der. tienen 3 entradas
- 3+1 <= L y por tanto nosotros mezclamos

- Necesitamos mezclar con el nodo izq.
- Y actualizar el padre

- Remover el 31
 - El resto tiene menos de L/2 entradas
 - Solo puedo acceder al nodo izq.
 - Debemos mezclar: 2+1 < L

- Debemos actualizar el padre
- Ahora el padre tiene < M/2 hijos
 - Dos opciones:
 - Redistribuir con el bloque izquierdo
 - Mezclar con el derecho

- Si redistribuimos con el bloque izquierdo, debemos:
 - Actualizar ambos padres
 - Actualizar la raíz

- Si mezclamos con el bloque derecho, debemos:
 - Actualizar el padre
 - Borrar el otro bloque
 - Actualizar la raíz

 Entonces, el número de hijos de la raíz disminuye.

- El B-Arbol original guarda información en todos los nodos.
- Los B-Arboles vistos aquí se llaman ocasionalmente B+Arbol (B+Tree)
 - El requerimiento de que se llene la mitad puede tornarse más estricto y requerir que se llene 2/3, de modo a aprovechar mejor el espacio:
 - Se llaman B*Arbol o B*Tree
 - Requieren redistribuciones y mezclas más complejas

Ejercicios sobre ordenación externa (en PDF)

Referencias

- Estructura de datos en Java, Mark A. Weiss. 2013. (cap. 19).
- Data Structures and Algorithm Analysis, Clifford Shaffer. 2013 (cap. 8).
- T. Cormen, C. Leiserson, R. Rivest y C. Stein. Introduction to algorithms. 3rd. edition. MIT Press. 2009. (cap.18).
- Para una discusión sobre los tipos de B-Arbol puede leer
 - D. Comer. "The Ubiquitous B-tree", Computing Surveys 11 (1979), 121-137.

Tarea #7

Ejercicio 1:

- Implementación de mergeSort externo en Java
- Evaluación de rendimiento
- Ejercicio 2 : dado el código BArbol
 - Convertir a Generic
 - Cambiar orden de ramificación
 - Pruebas de rendimiento, comparación con BST y AVL considerando penalización al acceso de un nodo.
 - Implementación de between y eliminar