Amortized Analysis

Amortized Analysis: Example

• Suppose you are at point m on a number line of length n.

You must go to 0, then to n, then back to m

Amortized Analysis: Example

Amortized Analysis: Example

- Can we do better?
 - Distance from m to 0 and from n to m are not independent!
 - Their sum is always n
 - Can get a tighter bound: 2n steps

Amortized Analysis: Definition

- The amortized cost of a sequence of n operations is the average cost per operation, for the worst-case sequence
 How is this different from the expected running
 - time analysis that we saw before (e.g., Quicksort)?

equivalently, report the the the total cost for the sequence, taking dependencies into baccount

Amortized Analysis: Basic Idea

- Keep a bank:
 - When you perform a cheap operation, put the savings in the bank
 - When you perform an expensive operation, use your savings to pay for it
- Just make sure that it never goes negative!

In-Class Exercise: Getting a Cup of Coffee

- Suppose there is a coffee-pot in some room
- People come and pour a cup of coffee; if the coffee-pot is empty, they have to make a new pot of coffee before they pour.
- Each pot contains 10 cups.
- Pouring a cup takes 1 unit of time \(\lambda \lambd
- Brewing a new pot takes 10 units of time
- What is the worst-case running time for getting one cup of coffee? The amortized running time?

Getting a Cup of Coffee

CIS 675

Getting a Cup of Coffee

Getting a Cup of Coffee

- Extensible array: don't need to specify size at creation, only insertion allowed
 - Initially allocate 1 element / vait of 5p ale
 - Whenever array of size k gets full, allocate 2k units of space and copy the old data over
- How long does it take to insert n elements?

- Standard analysis: 5/1 5/1 Each insertion takes O(n) in the worst case: O(1) to
 - insert and $\heartsuit(n)$ to copy elements to new array
- insert and some There are *n* insertions

 Total O(n²)

 (n+1)

- Amortized analysis: The topy lexpand
 - Suppose writing an element costs \$1
 - Every time we insert an element, we will pay \$3: \$1 for insertion, \$2 for the bank
 - If we need to double the array, use money from the bank to pay for it

$$\frac{3}{3} | \frac{1}{5} | + \frac{5}{1} | = 2$$

$$\frac{3}{5} | + \frac{5}{1} | = 3$$

$$\frac{1}{5} | + \frac{5}{1} | = 3$$

$$\frac{1}{5} | + \frac{5}{1} | = 2$$

$$\frac{3}{5} | + \frac{5}{1} | = 2$$

$$\frac{1}{5} | + \frac{5}{1$$

$$\frac{-5151+59=5}{5151}$$

$$\frac{-5151}{5151}$$

If array is currently of size $k = 2^p$, how much money is needed to pay for doubling it?

\$1 to copy each element

How much money was added to the bank since

In-Class Exercise: Binary Counter

- Suppose you have a binary array
- You are using it as a counter:
 - In each increment, increase value by 1
 - E.g., [0, 0, 1, 1, 1, 0, 1] -> [0, 0, 1, 1, 1, 1, 0]
- If there are n increments, and in the worst case, each might require changing all values, running

time =
$$O(A)$$
 (og N OIIII)
 $N \cdot 5$ (log N) $= O(N \log N)$ 10000

In-Class Exercise: Binary Counter

- Suppose you have a binary array
- You are using it as a counter:
 - In each increment, increase value by 1 | \$2 n
 - E.g., [0, 0, 1, 1, 1, 0, 1] -> [0, 0, 1, 1, 1, 1, 0]
- Suppose that it costs \$1 to flip a bit
- Keep a "bank" for each bit
- Suppose whenever you flip a bit from 0 to 1, you pay \$2: \$1 to flip, \$1 to that bit's bank, I -> O Flip, bake from
- Perform amortized running-time analysis

operations.

anortized

inclement - \$2

In-Class Exercise: Binary Counter

1. What is the algorithm for incrementing a binary counter? -start at rightmost bit, if 1, Flip to 0 and move left -continue til we Find a 0, Flip to 1 and stop Littou many D-11 Flips can be in an increment? How many 1-30 Alips?

1 -> \$2 > \$1 For filly until ited yest of \$1

3. If a bit is currently set to 1, what was the last thing done to it? How much is in its bank?

O-11 Flip

Binary Counter: Another Solution

- Jight. Wast
- Over *n* increments, how often do we flip the first bit? \cap
- How often do we flip the second bit? \(\square \)
- How often do we flip the k^{th} bit? $\binom{2}{2}$
- What is the total running time?

$$00111$$
 01000
 111