

Deeplearning

-ch13. CNN Architectures-

Industrial Management Engineering

2017.12.08 Jae Seung Song

CNN Architectures Contents

- 1. LeNet -5
- 2. AlexNet
- 3. GoogLeNet
- 4. ResNet

1. LeNet - 5

- Created by Yann leCun (1998).
- Define the concept of Convolutional Neural Network for first time.
- Imporve the problem of MLP that didn't consider topology variations of letters.
 (It takes lots of time.)
- The Purpose of MNIST classification

Table 13-1. LeNet-5 architecture

Layer	Туре	Maps	Size	Kernel size	Stride	Activation
Out	Fully Connected	-	10	-	-	RBF
F6	Fully Connected	-	84	_	-	tanh
CS	Convolution	120	1×1	5×5	1	tanh
S4	Avg Pooling	16	5×5	2×2	2	tanh
G	Convolution	16	10×10	5×5	1	tanh
S2	Avg Pooling	6	14×14	2×2	2	tanh
C1	Convolution	6	28×28	5×5	1	tanh
In	Input	1	32×32	-	-	_

Convolution layer: 3

Avg pooling: 2

Activation function: tanh or sigmoid function

Free parameter: 60,000

1. LeNet - 5

 $source: Gradient-Based\,Learning\,Applied\,to\,Document\,Recognition\,(IEEE\,1998)-Yann\,LeCun$

zero padding

• 28x28 ----> 32x32

- C3: only connected 4 maps (instead of all 6 maps)
- Cost function: Euclidan distance (Recently, CrossEntropy function preferred)

- Won ImageNet ILSVRC challenge 2012 (Alex Khrizevsky)
- Initiate GPU technology in CNN (parallel processing)
- A structure similar to LeNet-5 but more deeper, larger

Table 13-2. A	llexN	et archi	tecture
---------------	-------	----------	---------

Layer	Туре	Maps	Size	Kernel size	Stride	Padding	Activation
Out	Fully Connected	-	1,000	-	-	-	Softmax
F9	Fully Connected	-	4,096	_	-	_	ReLU
F8	Fully Connected	-	4,096	_	-	_	ReLU
C7	Convolution	256	13×13	3×3	1	SAME	ReLU
C6	Convolution	384	13×13	3×3	1	SAME	ReLU
CS	Convolution	384	13×13	3×3	1	SAME	ReLU
S4	Max Pooling	256	13×13	3×3	2	VALID	-
ß	Convolution	256	27 × 27	5×5	1	SAME	ReLU
S2	Max Pooling	96	27 × 27	3×3	2	VALID	_
C1	Convolution	96	55 × 55	11×11	4	SAME	ReLU
In	Input	3 (RGB)	224 × 224	_	_	_	_

Convolution layer : 5

Max pooling: 2

Activation function: ReLU

Freeparameter: 60,000,000

Performance details

- (1) Overlapped pooling
- (2) Two regularization approaches
 - a. Dropout
 - b. Data augmentation
- (3) Select ReLU activation function
 - -> Local response normalization

Performance details

(1) Overlapped pooling
Pooling is performed while overlapping. Use 3x3 kernel and 2 stride

Max Overapped method

Performance details

- (1) Two regularization approaches reduce overfitting!
 - a. Dropout (50 %)2 Fully connected layers were applied dropout process.
 - b. Data augmentation
 - 1) Rotating, Reversal.
 - 2) Change original ILSVRC 256x256 pixel images to 224x224 pixel data randomly. (e.g one image can make 2048 different images)
 - 3) Change light condition.

$$I_{xy} = [I_{xy}^R, I_{xy}^G, I_{xy}^B]^T + [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3][\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T$$
$$\alpha_i \sim N(0, 0.1)$$

Perform PCA analysis about RGB pixel values!

More than error rate 1%

Performance details

- (3) ReLU function
 - a. Improve learning performance (same performance as normalization!) Working effect of lateral inhibition similarly biological neuron.
 - b. Local response normalization Used in the 1st, 2nd convolution layers after.

Equation 13-2. Local response normalization

$$b_i = a_i \left(k + \alpha \sum_{j=j_{\text{low}}}^{j_{\text{high}}} a_j^2 \right)^{-\beta} \quad \text{with} \begin{cases} j_{\text{high}} = \min\left(i + \frac{r}{2}, f_n - 1\right) \\ j_{\text{low}} = \max\left(0, i - \frac{r}{2}\right) \end{cases}$$

 $\alpha, \beta, k r : hyperparameter$

- b_i is the normalized output of the neuron located in feature map i, at some row u
 and column v (note that in this equation we consider only neurons located at this
 row and column, so u and v are not shown).
- a_i is the activation of that neuron after the ReLU step, but before normalization.
- k, α , β , and r are hyperparameters. k is called the *bias*, and r is called the *depth radius*.
- f_n is the number of feature maps.

3. GoogLeNet (Inception V₁)

- Won ImageNet ILSVRC challenge 2014 (Christian Szegedy)
- More deeper than previous CNNs
- NetworkInNetwork(NIN) *Inception modules*
- Use parameter more efficiently

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

22 layers!

3. GoogLeNet (Inception V₁)

Performance details

(1) More deeper but lower parameter than previous CNNs

More deeper structure but Computional performance Better!

3. GoogLeNet (Inception V1)

Performance details

(2) Inception modules (NIN)

1x1 Convolutional layers: 4

3x3 Convolutional layers: 1

5x5 Convolutional layers: 1

3x3 Pooling layer: 1

1x1 Convolutional layer ??

3. GoogLeNet (Inception V1)

Performance details

(2) Inception modules (NIN)

1x1 Convolutional layer

a. 1x1 convolutional layer are configured to output maps fewer feature maps than their input.

grouping several similar feature maps
Can reduce the number of feature maps.

ex) if the number of input feature maps are 3 and the number of feature maps are 2, they can be decided by 2 feature maps by learned parameter

3. GoogLeNet (Inception V1)

Performance details

(3) Auxiliary classifier

Use only Training model.

3. GoogLeNet (Inception V₁)

Performance details

(3) Factorizing convolutions

Factorizing big filter can be reduce free parameters.

5x5 filter (25 parameters)

2 3x3 filters (9+9 parameters)

4. ResNet

- Won ImageNet ILSVRC challenge 2015 (kaiming He)
- 152 layers (extremely deep)
- Use skip connections(shortcut connections)

Figure 13-12. Residual learning

Target function is h(x)not f(x) = h(x) - x.

When NN's weights are close to zero, output values are almost 0. Then, Skip connection is applied.

It solves learning performance of extremely deep networks!

Thank you