

Molecular Orbital Theory

MO generated by Linear Combination of Atomic Orbitals (LCAO)

$$\Psi_{+} = c_A \Psi_A + c_B \Psi_B$$

Energy =
$$E_+$$

$$\Psi_{-} = c_A \Psi_A - c_B \Psi_B$$

$$Energy = E_1$$

For
$$H_2^+$$
: $c_A = c_B = 1$

Energy = E_{-} $d = E_{-}$ $d = E_{-}$ $d = E_{-}$ $d = E_{-}$

Molecular Orbital Theory

$$H_2^+$$
 $\Psi_+ = c_A \Psi_A + c_B \Psi_B$
 $\Psi_- = c_A \Psi_A - c_B \Psi_B$
Energy = E₊
Energy = E₋

- For H_2^+ : $c_A = c_B = 1$
- As the atoms approach one another the energy of Ψ_+ falls at first, reaching a minimum at R = 2.5 a₀ (145 pm) before rising steeply
- If electron placed in this orbital, it is favorable for two atoms to come together until 2.5 a₀, at which point energy is minimum: called *Bonding Orbital*
- As the atoms approach one another the energy of Ψ₋ simply rises
- If electrons were placed in this orbital it would be disadvantageous in energy terms: called Anti-Bonding Orbital

Contour plots of bonding and antibondina MO's

Contour plots of bonding and anti-V-2.500 rz 6ao

Iso-surface representation of bonding and anti-bonding MO's

Iso-surface representation of bonding and anti-bonding MO's

$$R = 4 a_0$$

$$R = 2.5 a_0$$

Overlap and Overlap Integral

- As R decreases, MO's shift in energy further away from energy of AO's
- Calculations complicated- useful guide to the strength of the interaction of AO's (hence energy shift of MO's) can be obtained by looking at overlap integral (S)
- Overlap integral between two AO's is determined by multiplying together two AO wavefunctions, and then taking the integral of the products
- Recall: Integral of a function is the area under the curve of the function

Overlap Integral depends on RAB

Overlap Integral
$$S_{AB}(R) = \langle \psi_1 | \psi_2 \rangle = \int \psi_1 \psi_2 d\tau$$

- Plot of overlap integral S(R) for two 1s orbitals as a function of R
- S(R) is the integral of the product of the two wavefunctions, which in this case is the area under the graph of this product

Overlap Integral and Bond Length

Overlap Integral depends on RAB $2p_z+1s$ 1s+1s $-2p_x+2p_x$ (lateral)

Overlap Integral: Symmetry

Overlap Integral
$$S_{AB}(R) = \langle \psi_1 | \psi_2 \rangle = \int \psi_1 \psi_2 d\tau$$

Overlapped area of 2 Wave-functions (can have +/- values)

Have to consider extent (amount) of both positive and negative contributions!

 \rightarrow S is a qualitative measure of bond strength \rightarrow If S>>0; electron delocalized over molecule \rightarrow S(R) = 0 \rightarrow bond formation cannot occur