Análise Numérica – ANN0001

Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas

Prof. Fernando Deeke Sasse Acadêmico Marlon Henry Schweigert

2017/1

Ponto Flutuante e Padrão IEEE 754

Converta os números 13.25 e 27.1 para o formato simples IEEE 754. Explicite o procedimento usado para chegar aos resultados, comente.

Resolução 13.25:

Inicialmente, precisamos do valor 13.25 em binário. Para o mesmo, converteremos a parte inteira (13) inicialmente:

13 = Ob 1101

Agora, devemos converter o pós ponto do número (0.25):

Número	(x2)	Inteiro
0.25	0.50	0
0.50	1.00	1
0	0	0

Logo, o pós ponto será .01. Concatenando-se a parte inteira e a parte fracionária, teremos:

13,25 = Ob 1101,01

De forma normalizada em base 2:

Ob $1101,01 = 1,10101 \times 2^3$.

Aplicando no padrão IEEE 754 simples, teremos 1 bit de sinal, 8 bits de Expoente, 1 bit de lixo, e 23 bits da fração.

Sinal	Expoente + 127	Lixo	Fração
1 bit	8 bits	1 bit	23 bits

Precisamos descobrir o valor do expoente em binário:

 $3 + 127 = 130 = Ob \ 10000010$

Então temos que 13.25 no padrão IEEE 754 é:

13.25 = Ob 0 10000010 x 10101000000000000000000

Ocultando o valor de lixo, isto é, o bit x:

Resolução 27.1:

Devemos converter a parte fracionária e decimal para binário:

27 = Ob 11011

Resto	x2	Inteiro
0.1	0.2	0
0.2	0.4	0
0.4	0.8	0
0.8	1.6	1
0.6	1.2	1
0.2	0.4	0
0.4	0.8	0
0.8	1.6	1
	•••	

Temos então uma repetição de valores:

$$0.1 = Ob.0001100110011... = Ob.0\overline{0011}$$

Então temos que 27.1 = Ob 11011.0 $\overline{0011}$

Normalizando, sabemos que este número é: $1.10110\overline{0011} \times 2^4$

O expoente somando-se á 127, é 131.

131 = Ob 10000011

Aplicando no padrão IEEE 754:

Ob 0 10000011 x 10110 00110011001100

Removendo da representação o bit de lixo, temos que:

 $27.1 = \text{Ob } 0\ 10000011\ 10110 \overline{001100110011001100}$

Com a presença da repetição, se faz necessário um arredondamento. Este pode ser feito para baixo (zero no bit menos significativo) ou para cima (um no bit menos significativo). Neste caso, o valor está abaixo do valor, logo arredondamos ele para cima:

 $27.1 = \text{Ob } 0\ 10000011\ 10110 \overline{00110011001100110}1$