METU EE7566 Electric Drives in Electric and Hybrid Electric Vehicles

Emine Bostanci

Office: C-107

Content

Power Converters

- Internal combustion engine
- Electric machines
- Hydrogen fuel cell
- Electrical-to-electrical
- Mechanical-to-mechanical
- Modes of BEV and HEV

Power Converters – Internal Combustion Engine (ICE)

Chemical reaction when gasoline as fuel used:

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O_2$$

Power Converters – Internal Combustion Engine (ICE)

4 stroke gasoline engine

a — straight engine

Animations:

http://auto.howstuffworks.com/engine1.htm http://auto.howstuffworks.com/engine2.htm https://en.wikipedia.org/wiki/Four-stroke_engine

Electric Machines Overview

<u>Electromagnetic torque</u>: Two magnetic fields try to align themselves, at least one of them should be controllable

<u>Reluctance torque:</u> System tries to decrease the reluctance, magnetic saliency and controllable magnetic field

Electric Machines Overview

No magnetic saliency

Single mag. saliency

Double mag. saliency

Double magnetic saliency

Switched reluctance machine (SRM)

No magnetic saliency

- Induction machine (IM)
- Round rotor synchronous machine (SM)
- Surface mount permanent magnet synchronous
 machine (SM-PMSM)

Single magnetic saliency

- Interior permanent magnet synchronous machine (IPMSM)
- Synchronous reluctance machine (SyncRel)
- Salient pole synchronous machines (SP-SM)
- ➤ The production of a constant average torque is that the stator and rotor fields are standing still to each other, independent of the type of the machine. If both fields (stator & rotor) are rotating at different speeds, a pulsating torque is produced.

Electric Machines Overview

a No magnetic saliency

c Single magnetic saliency

Single magnetic saliency

$$T = \frac{1}{2}i_2^2 \frac{\partial L_{22}}{\partial \theta} + i_1 i_2 \frac{\partial L_{12}}{\partial \theta}$$
(L₁₁ constant)

$$T = \frac{1}{2}i_1^2 \frac{\partial L_{11}}{\partial \theta} + i_1 i_2 \frac{\partial L_{12}}{\partial \theta}$$
 (L₂₂ constant)

Basic Stator and Rotor Configurations

Electric Machine Type		Rotor & Stator Configuration	i_1	i_2
Synchronous Machines	Cylindrical rotor	а	AC	DC or PM
	Salient pole	b	AC	DC
	Permanent magnet (surface mounted)	а	AC	PM
	Permanent magnet (interior)	b	AC	PM
	Synchronous reluctance	b	AC	=0
	Switched reluctance	d	AC	=0
Induction machine		а	AC	AC
DC machine		С	DC	AC
Universal machine		С	AC	AC

Can you distinguish the types of the machines above?

3-phase Rotating Field Machines

Surface mounted PM synchronous machine

Interior PM synchronous machine

Induction machine

Machines only with Reluctance Torque

Switched reluctance machine

Synchronous reluctance motor (Rotating Field)

Fuel: hydrogen and oxygen

 A fuel cell is a galvanic cell where chemical energy of a fuel is converted directly into electrical energy by means of electrochemical processes.

$$2H_2 + O_2 \longrightarrow 2H_2O$$

Anode reaction:

$$2H_2 \longrightarrow 4H^+ + 4e^-$$

Cathode reaction:

$$2H_2 + O_2 \longrightarrow 2H_2O$$

Anode reaction:

$$2H_2 \longrightarrow 4H^+ + 4e^-$$

Cathode reaction:

$$O_2 + 4e^- + 4H^+ \longrightarrow 2H_2O$$

https://en.wikipedia.org/wiki/Fuel_cell

Fuel cell type	Mobile ion	Operating temp.	Applications and notes
Alkaline (AFC)	OH-	50-200°C	Used in space vehicles, e.g. Apollo, Shuttle.
Proton exchange membrane (PEMFC)	H ⁺	30-100°C	Vehicles and mobile applications, and for lower power CHP systems
Direct methanol (DMFC)	H ⁺	20-90°C	Suitable for portable electronic systems of low power, running for long times
Phosphoric acid (PAFC)	H ⁺	~220°C	Large numbers of 200 kW CHP systems in use
Molten carbonate (MCFC)	CO ₃ ²⁻	∼650°C	Suitable for medium to large scale CHP systems, up to MW capacity
Solid oxide (SOFC)	O ²⁻	500-1000°C	Suitable for all sizes of CHP systems, 2 kW to multi MW

High temperature: to increase reaction speed

Proton exchange	H^+	30-100°C	Vehicles and mobile applications, and
membrane (PEMFC)			for lower power CHP systems

EV applications:

- Simple structure
- Solid electrolyte
- Low temperature
- High power density
- Good efficiency

- The fuel is supplied to the anode or positive electrode, where electrons are released from the fuel under catalyst.
- The electrons, under the potential difference between these two electrodes, flow through the external circuit to the cathode electrode or negative electrode, where, in combination with positive ions and oxygen, reaction products, or exhaust, are produced.

An **electrolyte** is necessary to conduct the ions from one electrode to the other, but not e⁻. A **catalyst** (Pt) speeds the reactions at low temperatures

Cell voltage characteristics:

Initial voltage drop: The activation energy required to drive the reactions at the electrodes, especially at the air cathode

Ohmic voltage drop: The resistance of the electrolyte and the electrodes causes a voltage drop that more or less follows Ohm's law

Rapid fall in voltage at higher currents: At very high currents, the air gets depleted of oxygen, as the electrodes are short of reactant.

Maximum efficiency limits:

Fuel cell efficiency is high at low current density, however in typical operation region efficiency is around 70%.

Cell level challenges:

- CO poisoning of membrane
 Hydrogen needs to be pure
- Aging
- Platinum price

https://www.fueleconomy.gov/feg/fcv_PEM.shtml

Power Converters – Fuel Cell Stack

To increase the output voltage, we need to stack the fuel cells.

Stack level changes:

- Stack management
- Keeping H₂ and O₂ separate
- Water management
 - Membrane needs to be humid but not wet
- Cooling channels to remove waste heat

Fuel cell

Power Converters – PEM Fuel Cell System

Fuel Cell of Toyota Mirai

Fuel Cell Stack of Toyota Mirai

2008 model fuel cell stack

New fuel cell stack (MIRAI)

Maximum Power
Volumetric power density
Cell number of cells
thickness of cell
flow channel

2008 FC –advanced 90kW 1.4kW/L, 0.83kW/kg 400 cells, dual line stack 1.68mm straight channel MIRAI FC stack
114kW
3.1kW/L, 2.0kW/kg
370 cells, single line stack
1.34mm
3D fine-mesh flow field

DC/DC converter

Voltage boost

System	THS		THSII	
Vehicle	Prius			SUV
E/G	1.5L			3.3L
Launch	1997	2000	2003	2005
DC Bus Voltage	About 274V		500V	650V
Max. Power	30 kW	33 kW	50 kW	123 kW
Max. Torque	305 Nm	350 Nm	400 Nm	333 Nm
Max. Speed	6000 rpm		6700 rpm	12400 rpm

DC/DC converter

- Voltage boost
- Connect two electric power sources
 - Fuel-cell stack and battery
 - Battery and supercapacitor
- Buck converter (isolated)

Example: Charging 12 V battery from high voltage battery

Inverters

Machine drive

Charger

Example on-board charger with galvanic isolation

Mechanical-to-mechanical Energy Converters

Gear box

- Manual
- Automatic
- Single or multi speed

Differential connecting driven wheels

One-speed gearbox

How a Differential works?

Mechanical-to-mechanical Energy Converters

Functions of differential:

- Allow connected wheels to rotate at different speeds
- Speed reduction at ring gear-pinion assembly
- Turn the power flow by 90 degrees

How a Differential works?

<u>Understanding Limited Slip Differential</u>

Modes – Battery Electric Vehicle

Modes – Battery Electric Vehicle with Range Extender

Power Management - Parallel-series Hybrid Electric Vehicle

Parallel-Series Hybrid Electric Drivetrain (with Torque and Speed Couplers)

- 1. Pure electric mode
- 2. Pure engine mode
- 3. Series hybrid mode
- 4. Series hybrid mode & charging
- 5. Parallel hybrid mode & charging
- 6. Regenerative braking mode
- 7. Battery charging at stand still

Power Management - Parallel-series Hybrid Electric Vehicle

Twindrive:

https://www.youtube.com/watch?v=oLEBREiPzFQ

Energy Management - Parallel-series Hybrid Electric Vehicle

Textbooks:

Ehsani, M. and Gao, Y. and Emadi, A., "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", 2nd Edition, CRC Press LLC, 2009.

Chau, K. T., "Electric Vehicle Machines and Drives: Design, Analysis and Application" Wiley-IEEE Press, August 2015.

Audi Quattro Eskimo | Commercial | HD Buying a Volkswagen from an old lady...

The future we're building -- and boring | Elon Musk (39:50 min) I am just trying to think about the future and not be sad!

<u>The Truth about Hydrogen</u>

Hydrogen Fuel Cell & Battery Electric Vehicles — Technology Rundown