ИВТ-19 Основы программирования

Контрольная работа 1

Часть В

Выполнять следует только тот вариант задания, справа от которого красным цветом указано нужное число.

1. Введите с клавиатуры вещественные числа a, b и выведите решение неравенства: найдите вариант с k — ваш номер в списке группы

ax < b	159 13172125
$ax \leqslant b$	2 6 10 14 18 22 26
ax > b	3 7 11 15 19 23
$ax \geqslant b$	4812162024

в виде X>2, или X<=3.52 и т. п. Если решения нет, выведите NO SOLUTION, если годится любое число, выведите ANY NUMBER.

2. ПРИБАВЬТЕ К ЧИСЛУ k ИЗ ПРЕДЫДУЩЕГО ЗАДАНИЯ НО-МЕР СВОЕЙ ГРУППЫ. Выполняйте вариант с новым k

Вводите целые числа, до тех пор, пока не будет введено число -1. Само число -1 также включается в рассмотрение. Выведите для рассматриваемой последовательности:

число положительных нечетных элементов	2 9 16 23
число положительных четных элементов	3 10 17 24
число неотрицательных нечетных элементов	4 11 18 25
число неотрицательных четных элементов	5 12 19 26
число отрицательных нечетных элементов	6 13 20 27
число отрицательных четных элементов	7 14 21
число неположительных нечетных элементов	8 15 22

Нечетные числа — это $\pm 1, \pm 3 ...$, четные — это $0, \pm 2, \pm 4$, ldots .

3. ПРИБАВЬТЕ К ЧИСЛУ k ИЗ ПРЕДЫДУЩЕГО ЗАДАНИЯ НО- МЕР СВОЕЙ ГРУППЫ. Выполняйте вариант с новым k

Будет введено число n, затем ровно n целых чисел. Определите

число отрезков строгого убывания	3 8 13 18 23 28
число отрезков строгого возрастания	4 9 14 19 24 29
максимальную длину убывающего отрезка	5 10 15 20 25 30
число отрезков неубывания	6 11 16 21 26
число отрезков невозрастания	7 12 17 22 27

в этой последовательности. Рассматривать только максимальные отрезки. Пример: в массиве 5 3 2 2 8 9 0 убывающим отрезком является 5 3 2, но не 5 3, а неубывающим отрезком 2 2 8 9, но не 2 8 9. Число отрезков неубывания в этом примере — четыре.