#### https://youtu.be/EsLIm761q1M

블록체인의 난수 생성 취약점 해결을 위한

# 딥러닝 기반의 온-체인 난수 생성기

**DL-ORNG** 

**ZANMANG Boogies** 

김현지 임세진 윤세영









## 목차



블록체인에서의 난수 생성기

문제 정의, 기존 해결 방안 및 그에 대한 문제점



**DL-ORNG** 

필요성, 시스템 세부 사항 및 성능 분석



구현 및 적용 가능성

온-체인에서의 실현 가능성 확인



결론 및 기대 효과

블록체인 관점

블록체인 난제 해결 챌린지 입러닝 기반의 온-체인 난수생성기

#### 블록체인 상에서의 난수

## 난수

#### 난수의 조건

비편향성, 예측 불가능성

#### 난수 생성기의 종류

진짜 난수 생성기 (TRNG): 물리적 현상으로부터 얻음

유사 난수 생성기 (PRNG): 알고리즘에 의해 랜덤과 유사하게 생성

(결정론적, 패턴 존재)

#### 블록체인에서의 난수

#### 난수의 중요성

블록체인에서 난수는 매우 중요

따라서, 높은 난수성 및 신뢰성을 가진 난수가 필요

블록체인 난제 해결 챌린지 딥러닝 기반의 온-체인 난수생성기

#### 블록체인의 특성 상 난수 생성이 어려움

- ① 모든 내역이 공개되므로 악의적인 노드가 그 값들을 보고 유리하게 조작 가능
- ② 조작 방지를 위해 여러 노드의 값을 취합하는 방식 → 결국 마지막에 값을 보내는 노드가 조작 가능
- (3) 체인 내부 값 (ex:블록 해시)는 공개 및 결정된 값 → 이를 사용할 경우 난수의 조건인 예측 불가능성 만족 불가
- (4) 즉, 블록체인의 특성 (무결성, 투명성)으로 인해 난수 생성 시 문제 발생 → 예측 및 조작이 불가능한 난수 생성은 난제로 분류



블록 해시 1: 0x1234 -> 생성된 난수: 101011

블록 해시 2: 0x5678 -> 생성된 난수: 111111

아하..! 저 값을 넣으면 저런 난수가 나오는 구나











## 블록체인 상에서의 난수 생성 조건

비편향성, 예측 불가능성 +

일반적인 난수의 조건

조작 불가능성

블록체인을 위한 난수의 조건





## 현재 사용 중인 해결 방안



**Commit Reveal** 

VRF (Verifiable Random Function)

DAPP에서의 자체적 난수 생성 기능

각 플랫폼 및 DAPP에서 다양한 난수 생성 기능 제안

## 현재 사용 중인 해결 방안 분석

#### **Commit Reveal**

#### VRF (Verifiable Random Function)





(1) 오프-체인 + 온-체인 (오라클 사용)

- 각 노드가 난수 생성을 위해 어떤 값을 전송할 때 암호화해서 보냄 → 마지막 노드가 조작할 수 없음
- (2) 난수 생성 (오프-체인) → 오라클 → 검증 (온-체인)

③ 시간 및 메모리 비용이 큼 (오라클 방식보다 큰 비용)

의 위·변조 발생 가능성 존재 및 해당 값에 대한 신뢰가 어려움 → 온-체인에서의 검증 과정이 필요





4 따라서, 추가적인 시간 및 비용이 요구됨



악의적인 노드에 대응 불가 or 무결성 및 신뢰성 문제 발생

이를 해결하기 위해 비용 및 효율성 문제 발생

\*이외에도 DAPP에서 자체 제공하는 난수 생성 기능의 난수성 문제도 존재

## 딥러닝 기반의 온-체인 난수 생성기의 필요성

## 비편향성, 예측 불가능성, 조작 불가능성

블록체인을 위한 난수의 조건

#### + 현재 해결 방안들의 단점 보완

악의적 노드, 무결성 및 신뢰성, 비용 등의 문제 해결



블록체인 상에서의 난수 생성이라는 난제 해결을 위한

딥러닝 기반의 온-체인 난수 생성기 (DL-ORNG)

Deep Learning based On-chain RNG

#### 딥러닝 기반의 온-체인 난수 생성기의 필요성

온-체인

오프-체인 방식에서 필연적으로 발생하는 오라클 문제 해결 및 비효율성 감소

**DL-ORNG** 



기존 방법들의 한계점 보완

**딥러닝 난수생성기** 

높은 난수성, 빠른 속도, 경량화 된 모델 (적은 용량)

BLS 서명 적용

신뢰성 확보, 악의적 노드 문제 해결

## DL-ORNG를 위한 배경 지식 (딥러닝)

#### 딥러닝

- (1) 데이터에 대한 특징을 학습하여 다양한 예측 작업 가능
- (2) 여러 개의 노드로 구성된 레이어가 쌓여서 구성 (가중치로 연결)
- ③ 데이터는 딥러닝 모델에 입력, 모델은 그에 대한 <mark>예측 값</mark>을 출력 → 예측 값과 실제 정답 간의 차이를 계산 (손실)
- (4) 손실을 줄이기 위해 모델의 가중치가 갱신되며 학습



#### Generative Adversarial Network (GAN)

- 1 데이터를 생성해내는 딥러닝 모델
- Step 1. G : Seed로 부터 진짜 같은 가짜 데이터를 생성

   Step 2. D : G가 생성한 가짜를 진짜 데이터와 구별

   Step 3. G : D가 구별해내는지 보고 더 진짜처럼 만듦



#### DL-ORNG: 시스템 개요



BLS 서명 통해 온-체인 상에서 공정한 seed 생성

블록체인 난제 해결 챌린지 딥러닝 기반의 온-체인 난수생성기

#### DL-ORNG: 난수 생성

#### BLS 서명

- 악의적 노드가 존재하더라도 공정하게 seed 생성 가능
   → 신뢰성 확보
- 학습 시에는 BLS 서명 대신 Python의 난수 생성 함수 사용
   → 학습이 잘 이루어지는 랜덤 분포 사용 위해

BLS 서명

RNN등과 같이 많은 연산이 필요한 레이어 사용 X
 → 저전력 노드에서도 동작하도록 경량화

G

109920000-bit 까지 난수성 확보

Node 1  $S_1 \rightarrow \sigma_1$ Dense **Bitstring** Leaky ReLu 1001…10 Node 2 0011...01  $s_2 \rightarrow \sigma_2$ 개인키 \$ *k*명 이상 0101...10 서명할 경우 유효 난수열 (R) Node n $S_n \rightarrow \sigma_n$ 

## DL-ORNG: 난수 예측



## DL-ORNG: 블록체인 노드로의 배포

G 일반 딥러닝 모델

GL 저전력 딥러닝 모델 (모바일 및 임베디드 장치 (ex: 스마트폰) 를 위해 일반 모델을 변환)

- 노드에 학습이 완료된 딥러닝 모델을 배포하여 난수 생성
- 난수성이 충분히 확보된 상태로 배포되므로 추가 배포 필요 X
- 만약 다시 학습 시키고 싶다면?
   딥러닝 서버에서 새롭게 학습시킨 후 노드에 다시 배포



## DL-ORNG: 시연 영상



#### 생성된 난수 시각화



실제 생성된 난수 (Bitstring)

#### 생성된 난수 시각화



#### NIST SP 800-22 통계적 테스트 결과

• 개별 테스트

: Frequency, Runs 등과 같이 각 항목

• 테스트 인스턴스

: 모든 테스트는 여러 번 반복 시행 (각 시행 = 테스트 인스턴스)

#### SP 800-22 결과 화면

| ge | generator is 〈data/1.pi〉 테스트 인스턴스 (성공/전체) |     |     |     |   |     |    |   |          |         |    |                             |
|----|-------------------------------------------|-----|-----|-----|---|-----|----|---|----------|---------|----|-----------------------------|
| C1 | C2                                        | C   | 3 C | 4 ( | 5 | C6  | C7 | С | 8 C9 C10 | P-VALUI | E  | PROPORTION STATISTICAL TEST |
| 0  | 2                                         | 0 ( | ) 3 | 0   | 2 | 2 0 | 1  | 2 | 0.213309 | 10/10   | )  | Frequency 개별 테스트            |
| 0  | 1                                         | 0 3 | 3 0 | 1   | 1 | 1   | 2  | 1 | 0.534146 | 10/10   | )  | BlockFrequency              |
| 0  | 1                                         | 1 2 | 2 1 | 0   | 1 | 2   | 2  | 0 | 0.739918 | 10/10   | )  | CumulativeSums              |
| 1  | 1                                         | 1 1 | 0   | 1   | 2 | 2 2 | 1  | 0 | 0.911413 | 10/10   | )  | CumulativeSums              |
| 1  | 0                                         | 0 5 | 5 0 | 0   | 1 | 1   | 0  | 2 | 0.008879 | 10/10   | )  | Runs                        |
| 1  | 1                                         | 0 1 | 2   | 1   | C | ) 1 | 2  | 1 | 0.911413 | 10/10   | )  | LongestRun                  |
| 0  | 1                                         | 1 1 | 1   | 2   | 1 | C   | 0  | 3 | 0.534146 | 10/10   | )  | Rank                        |
| 2  | 3                                         | 1 2 | 2 1 | 1   | C | 0   | 0  | 0 | 0.350485 | 10/10   | )  | FFT                         |
| 1  | 1                                         | 1 ( | ) 1 | 3   | C | ) 1 | 1  | 1 | 0.739918 | 10/10   | )  | NonOverlappingTemplate      |
| 0  | 0                                         | 1 1 | 1 1 | 1   | 4 | 1 1 | 1  | 0 | 0.213309 | 10/10   | )  | OverlappingTemplate         |
| 1  | 0                                         | 0 ( | ) 1 | 2   | 1 | 0   | 3  | 2 | 0.350485 | 9/10    |    | Universal                   |
| 0  | 1                                         | 1 1 | 0   | 3   | 0 | ) ( | 4  | 0 | 0.035174 | 10/10   | )  | ApproximateEntropy          |
| 0  | 0                                         | 0 2 | 2 ( | 1   | 2 | 2 ( | 0  | 2 |          | 7/7     | Ra | ndomExcursions              |
| 0  | 0                                         | 0 1 | 1   | 0   | 0 | ) 2 | 2  | 1 |          |         |    | ndomExcursionsVariant       |
| 2  | 0                                         | 1 3 | 3 0 | 0   | 1 | C   | 1  | 2 | 0.350485 |         |    | Serial                      |
| 1  | 1                                         | 1 ( | ) 1 | 2   | C | 0   | 1  | 3 | 0.534146 |         |    |                             |
| 0  | 1                                         | 0 3 | 3 2 | 0   | 2 | 2 2 | 0  | 0 | 0.213309 | 10/10   | )  | LinearComplexity            |

난수성을 테스트 하기 위한 다양한 항목 존재

빈도수, 특정 패턴 반복 여부 등

 $F_1/\%$ : 실패한 테스트 인스턴스 비율 F%: 실패한 개별 테스트 수의 비율

|      | <i>F</i> <sub>I</sub> /% | F%   |
|------|--------------------------|------|
| 학습 전 | 98.8                     | 98.9 |
| 학습 후 | 1.09                     | 0.00 |

\*10번의 테스트에 대한 평균이며, 자세한 분석 결과는 [1]에 언급



#### 높은 난수성 확보

학습 후에는 대부분의 테스트 통과

- 실패한 테스트 인스턴스는 평균 1,09개
- 모든 개별 테스트 통과
- · 대부분의 PRNG보다 나은 성능 달성 [2]

블록체인 난제 해결 챌린지 딥러닝 기반의 온-체인 난수생성기

#### 블록체인 네트워크에 과부하를 주지 않는 경량 모델

| 처리량      | 대상 기기   | 모델 크기 |  |
|----------|---------|-------|--|
| 1.0 GB/s | 임베디드 기기 | 166KB |  |

- 다른 저전력 난수 생성기 (MPCG)에 비해 6.25배 빠른 속도
- 모바일 기기에서의 사진 한 장보다 작은 용량

#### DL-ORNG: 블록체인에서의 적용 가능성

- (1) 딥러닝 기반의 난수 생성기 구현 (완료) [1]
- (2) 해당 모델을 저전력 CI바이스를 위한 모델로 변환 (<del>완료</del>) [1]
- (3) 임베디드 프로세서 (Edge TPU) 상에서 동작 가능 확인 (완료) [1]
- 노드에서 딥러닝 모델을 실행할 수 있다면 실현 가능한 방법 (<mark>가능)</mark> → [3]에 따르면 각 노드는 본인의 로컬 모델을 가질 수 있으며, 학습 및 추론 가능 (이외에도 다수의 연구 존재)





따라서, 블록체인 네트워크에 실제로 적용 가능한 방안

#### DL-ORNG: 블록체인에서의 기대 효과

- · 블록체인에서 난수가 필요한 부분에 사용 가능
  - 합의 알고리즘 (검증자 무작위 선출)
  - 스마트 컨트랙트
  - 귀생성
- 블록체인의 안전성과 관련 있는 부분들이므로 신뢰성 확보 가능

- 경량 딥러닝 모델
  - 저전력 기기에서 동작 가능
  - 적은 메모리 차지
- 따라서 연산 및 메모리 과부하 X
  - 블록체인의 확장성 저하 X



- BLS 서명을 통한 공정하고 신뢰성 있는 난수 생성
- 높은 난수성으로 인한 안전성 확보
- 오프-체인 사용 X
  - 오라클 문제 해결 (조작 방지 → 신뢰성 확보)
  - 비용 절감

#### 결론

- Defi 난제 해결 가능
  - 스마트 컨트랙트 취약성 및 오라클 문제
- 전반적인 블록체인의 안전성 및 확장성 보장 가능

블록체인 난제 해결 챌린지 딥러닝 기반의 온-체인 난수생성기

딥러닝 기반의 온-체인 난수생성기

## 발표 들어주셔서 감사합니다.







