Geometric Deep Learning Self-Study Group

Session 1 August 11, 2025

Aaron Margolis https://armargolis.github.io/

Why Geometric Deep Learning?

Figure 9: The 5G of Geometric Deep Learning: grids, groups & homogeneous spaces with global symmetry, graphs, geodesics & metrics on manifolds, and gauges (frames for tangent or feature spaces).

Computer Vision uses grids

000000000 222222122 3 3 3 3 3 3 3 3 44444444 55555555 6 6 6 6 6 6 6 6

Natural Vision uses Spheres

GDL: Mathematicians vs Practitioners

[Submitted on 7 Jul 2016 (v1), last revised 11 Jul 2016 (this version, v2)]

Persistent Homology on Grassmann Manifolds for Analysis of Hyperspectral Movies

Sofya Chepushtanova, Michael Kirby, Chris Peterson, Lori Ziegelmeier

The existence of characteristic structure, or shape, in complex data sets has been recognized as increasingly important for mathematical data analysis. This realization has motivated the development of new tools such as persistent homology for exploring topological invariants, or features, in large data sets. In this paper we apply persistent homology to the characterization of gas plumes in time dependent sequences of hyperspectral cubes, i.e. the analysis of 4-way arrays. We investigate hyperspectral movies of Long-Wavelength Infrared data monitoring an experimental release of chemical simulant into the air. Our approach models regions of interest within the hyperspectral data cubes as points on the real Grassmann manifold G(k,n) (whose points parameterize the k-dimensional subspaces of \mathbb{R}^n), contrasting our approach with the more standard framework in Euclidean space...

https://arxiv.org/abs/1607.02196

Finding the Data of Interest in a 4D Dataset

References and Resources

Main Reference:

Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković

https://geometricdeeplearning.com/book/ We'll use the chapters rather than the big pdf

For September 1: Introduction https://geometricdeeplearning.com/book/introduction.html

Lecture: "ICLR 2021 Keynote: GDL: The Erlangen Programme of ML by M Bronstein"

https://www.youtube.com/watch?v=w6Pw4MOzMuo

For September 22: Graphs https://geometricdeeplearning.com/book/graphs.html

Lecture: "Deep learning on graphs: successes, challenges | GNN | M Bronstein"

https://www.youtube.com/watch?v=PLGcx65MhCc

Additional References:

Mathematical Foundations of Geometric Deep Learning by Borde and Bronstein

https://www.arxiv.org/abs/2508.02723

Introduction to Geometric Deep Learning by Patrick Nicolas

https://patricknicolas.substack.com/p/introduction-to-geometric-deep-learning

Further Reading:

Valence Labs Graph Learning on Wednesdays

https://portal.valencelabs.com https://sites.google.com/view/graph-learning-on-weds

Session Outline

Felix Klein vs. Dmitri Mendeleev The 5Gs: Grids, Groups, Graphs, Geodesics and Gauges

Group Discussion

Geometric Deep Learning on Microscopy Q&A

Periodic Table vs. Underlying Structure

Mendeleev's Periodic Table (1869)

H 1.01 III IV VI VII **Be** 9.01 **B** 10.8 F 19.0 N 6.94 12.0 14.0 16.0 Na Mg 24.3 AI Si P S CI VIII 23.0 27.0 28.1 32.1 31.0 35.5 K Ca Ti Cr 52.0 Mn Fe Co 58.9 39.1 40.1 50.9 54.9 55.9 58.7 **Cu** 63.5 **Zn** 65.4 **Br** 79.9 **Se** 79.0 **As** 74.9 Sr **Y** 88.9 **Zr** 91.2 Mo 95.9 Rb Nb Ru Rh Pd 85.5 87.6 92.9 101 103 106 **Sb** 122 **Ag** 108 Cd In Sn Te 128 119 127 112 115 Pt Ce Ba **La** 139 Ta W Os 133 137 181 184 194 192 195 **Hg** 201 Pb 207 Bi 209 Au 197 204 U 238 Th 232

Atomic orbitals m-eigenstates and superpositions

Periodic Table of Machine Learning

MNIST: Convolutional Neural Networks (aka Grid Learning)

https://www.kaggle.com/code/gpreda/simple-introduction-to-cnn-for-mnist-99-37

Layer (type)	Output Shape	Param #
conv2d (Conv2D) batch_normalization (BatchNo conv2d_1 (Conv2D) batch_normalization_1 (Batch conv2d_2 (Conv2D) max_pooling2d (MaxPooling2D) batch_normalization_2 (Batch dropout (Dropout) conv2d_3 (Conv2D) max_pooling2d_1 (MaxPooling2) batch_normalization_3 (Batch conv2d_4 (Conv2D) dropout_1 (Dropout) flatten (Flatten) dense (Dense) dropout_2 (Dropout) dense_1 (Dense)	(None, 28, 28, 32) (None, 26, 26, 32) (None, 26, 26, 32) (None, 13, 13, 32) (None, 6, 6, 32) (None, 6, 6, 32) (None, 6, 6, 32) (None, 3, 3, 64) (None, 1, 1, 64) (None, 1, 1, 64) (None, 1, 1, 64)	320 128 9248 128 25632 0 128 0 18496 0 256 36928 0 0 8320 0

Total params: 100,874 Trainable params: 100,554 Non-trainable params: 320

Softmax function for multiclass classification problems

Everything is a vector space (but not a Euclidean one)

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Closeness to the "gender" vector

•	
$\overrightarrow{\operatorname{she}} - \overrightarrow{\operatorname{he}}$	92%
$\overrightarrow{\operatorname{her}} - \overrightarrow{\operatorname{his}}$	84%
$\overrightarrow{\mathrm{woman}} - \overrightarrow{\mathrm{man}}$	90%
$\overrightarrow{\mathrm{Mary}} - \overrightarrow{\mathrm{John}}$	75%
$\overrightarrow{\text{herself}} - \overrightarrow{\text{himself}}$	93%
$\overrightarrow{\operatorname{gal}} - \overrightarrow{\operatorname{guy}}$	85%
$\overrightarrow{\text{girl}} - \overrightarrow{\text{boy}}$	90%
$\overrightarrow{\text{female}} - \overrightarrow{\text{male}}$	84%

https://arxiv.org/pdf/1607.06520

Deep Learning on Symmetric non-Euclidean Spaces

https://en.wikiversity.org/wiki/Symmetric_group_S4#/media/File:Symmetric_group_4; Cayley_graph_4,9.svg

https://research.google/blog/scalable-spherical-cnns-for-scientific-applications/

Graph Neural Networks

https://arxiv.org/abs/2211.11583

https://arxiv.org/abs/2108.09638

Example of Geodesics and Gauges: Satellite Data

https://ceos.org/document_management/Virtual_Constellations/AC-VC/Meetings/AC-VC-19/presentations/Present ations%20PDF/2.%20Wed%2025%20Oct%202023%20-%20TRACE%20GASES%20AND%20AEROSOLS%20AIR%20QUALITY/We-01_Liu_TEMPO_v1.pdf

Example of Geodesics and Gauges: Apple Vision Pro

The Vision Pro looks down to capture mouth movements but shows forward angle

Thoughts? Questions?

Next Meeting (September 1)

Introduction https://geometricdeeplearning.com/book/introduction.html
Lecture: "ICLR 2021 Keynote: GDL: The Erlangen Programme of ML by M Bronstein"
https://www.youtube.com/watch?v=w6Pw4MOzMuo

To present, fill out this form:

https://docs.google.com/forms/d/e/1FAlpQLSfjuvRWuHfQ9M11uz9PUnq 3j trOAcTyDG2a 5yPoMvMWgfLQ/viewform?usp=header

Additional Reference:

Mathematical Foundations of Geometric Deep Learning by Borde and Bronstein https://www.arxiv.org/abs/2508.02723

Introduction to Geometric Deep Learning by Patrick Nicolas https://patricknicolas.substack.com/p/introduction-to-geometric-deep-learning