单向可控硅的结构和工作原理

一、结构和符号:

1、结构:

四层半导体

三个PN结

阳极A: 从P1引出

三个电极

阴极K: 从N2引出

控制极G: 从P2引出

阳极 N₁ 控制极 P2 **J**3 **N2** 阴极

2、符号:

图形符号:

文字符号: SCR, CT, KG等

二、工作原理

(B) 3V

6V **=**

1、演示实验:

SCR

6V=

SCR

	阳极A	阴极K	开关S	灯泡亮灭情况	工作特点
1	+	_	断开	不亮	只在阳极和阴极间加正向电压,可控硅 不导通
2		+		不亮	在阳极和阴极间加反向电压,可控硅 不导通
3	+	-	闭合	亮	在阳极A和阴极K间加反向电压,同时控制极加 正向触发电压,可控硅 <mark>导通</mark>
4	+	_	断开	亮	可控硅导通后,除去触发电压,继续导通

6V=

(A)

2、解释: 可控硅为什么具有上述四个工作特点?

这是由其内部结构决定的

3、小 结

- ①可控硅导通的条件:
 - A、在阳极和阴极之间加正向电压)
 - B、同时在控制极加正触发电压
- ②使导通的可控硅关断的方法:
 - A、减小阳极电流至一定值(维持电流)
 - B、切断阳极电源
- ③可控硅具有控制强电的作用

三、单向可控硅的主要参数:

主要参数	定义
额定正向平均电流	在规定的环境温度和散热条件下,允许通过阳极和阴极之间的电流平均值
维持电流	在规定的环境温度和控制极断开的条件下,保 持可控硅处于导通状态所需要的最小正向电流
控制极触发电压和电流	在规定的环境温度及一定的正向电压条件下, 使可控硅到导通控制极所需要的最小电压和电流
正向阻断峰值电压	控制极断开加正向电压,可控硅截止的状态称 正向阻断,此时加到可控硅上的最大正向电压
反向阻断峰值电压	控制极断开,可控硅加反向电压的状态,称为反向阻断,此时允许加到可控硅上的最大反向电压

四、总结

- 1、这节课我们讲了三个问题:
 - A、可控硅的结构与符号;
 - B、可控硅的工作原理;
 - C、可控硅的主要参数。
- 2、思考题:

A、单向可控硅有两种工作状态:导通和截止,二极管也有二种工作状态,导通和截止,那么单可控硅的工作状态和二极管的工作状态有什么不同?

答案: 可控硅的导通是可控的

思考题

B、分析下列两个电路,在开关S接通后又断开时,灯泡的明暗情况有何不同?(设两个电路元件参数完全

相同) SCR SCR (B图) (A图) 答案: