Artificial Intelligence, Spring 2017

Homework 2 – Search

Xinglu Wang 3140102282 ISEE 1403, ZJU

1 Problem 1

Formulate the problem as a search problem, $M = \{0, 1, 2, 3\}$ denotes the number of missionaries on the left side of river, $C = \{0, 1, 2, 3\}$ denotes cannibals on the left side, $B = \{L, R\}$ denotes which side boat parks.

- Start state: (3, 3, *L*)
- Goal Test: Is state == (0, 0, R)
- State Space: All possible tuple (M, C, B), where $(M = C) \land (M = 0) \land (M = 3)$
- Successive function:
 - action: from (M, C, B) to (M', C', B'), satisfying

$$M' = M - 1 \lor M' = M - 2 \lor C' = C - 1 \lor C' = C - 2 \lor \begin{cases} C' = C - 1 \\ M' = M - 1 \end{cases}$$

$$B' = \begin{cases} L, & B = R \\ R, & B = L \end{cases}$$

$$(M' = C') \land (M' = 0) \land (M' = 3)$$

- costs: always 1.

The complete state space:

2 Problem 2

- a). If all costs is 1, the cheapest solution is exactly the shallowest solution, i.e. g(n) = depth(n). So uniform-cost search will become bread-first search.
- b). For best-first search, if f(n) = -depth(n), then it will choose the deepest from frontier first and become depth-first search
- c). If the heuristic function of A^* is h(n) = 0, then it will become uniform-cost search.

3 Problem 3

- **a).** branching factor b = 4.
- **b).** Since a step means |x| or |y| increase by 1, the final state satisfies $|x| + |y| = k \wedge |x| \le k \wedge |y| \le k$, which has 4k distinct states.
- c). Notation: frontier = set of nodes in frontier; | frontier | = number of nodes in frontier; Acc. | frontier | = number of nodes expanded. The -1 in tableau shows that I think the destination node will be 'unfortunately' evaluated at the last among the nodes with the same depth, do not need to be expand (just evaluate/test).

depth	frontier	frontier	Acc. frontier
d = 0	$\{(0,0)\}$	1	1-1
d = 1	$\{(0,1),(1,0),(-1,0),(0,-1)\}$	4	5 - 1
d = 2	$\{(-1,1),(1,1),(0,0),(0,2),,,\}$	16	21 - 1
•••	•••		
d = k		4^k	$\left(\sum_{n=0}^{k} 4^{k}\right) - 1$

Therefore, Acc. | frontier | = $-1 + \sum_{n=0}^{k} 4^k = (4^{k+1} - 4)/3 = (4^{x+y+1} - 4)/3$

d). Similarly,

depth	frontier	frontier	Acc. frontier
d = 0	$\{(0,0)\}$	1	1 – 1
	$\{(0,1),(1,0),(-1,0),(0,-1)\}$	4	5 - 1
d=2	$\{(x,y) \in \mathbb{R}^2; x + y = 2 \land x \le 2 \land y \le 2\}$	8	13 - 1
•••			_
d = k	$\{(x,y) \in \mathbb{R}^2; x + y = k \land x \le k \land y \le k\}$	4k	$-1 + \sum_{n=0}^{k} 4k$

Therefore, Acc. | frontier | = $-1 + \sum_{n=0}^{k} 4k = 2k(k+1) = 2(x+y)(x+y+1)$

- **e).** Yes, $h(n) = h^*(n)$ in this case and is admissible.
- **f).** A* will search the nodes 'towards' destination, i.e. $\{(a,b) \in \mathbb{R}^2; 0 \le a \le x \land 0 \le b \le y\}$. Totally, (x+1)(y+1)-1
- **g).** Yes, $h(n) \le h^*(n)$, since some links are removed.
- **h).** No, $\exists n, h(n) > h^*(n)$, if current node n is one of the ends of the added link.

4 Problem 4

Left: figure a for problem a. **Right**: figure b for problem b with backed-up values.

- **b.** Ref. to fig. b. Use back-up, we can get optimal value of all the parent nodes. As for "?" values, we copy the value from visited node. It is right because for player A, max(+1,?) = +1; for player B min(-1,?) = -1 and thus we can prune the infinite branch.
- c. Minmax algorithm fails because it use deep-first tree search and can go into infinite loop. The modified algorithm in b. can not always give optimal decision for all games with loop. For example, if this 4-square game becomes a 2×2 matrix game, initialled as

A reaching	getting value of
(0,0)	1
(0,1)	2
(1.0)	3

and B of the opposite value -1,-2,-3,-4.

 $\frac{}{B}$, and we define

Then we cannot decide the value of max(+1,?), max(+2,?), min(-1,?) and so on and especially min(?,?) and max(?,?). Therefore, just to copy from appeared value will fail.

4

d. First consider n is odd.

Proposition 4.1. *If n is odd, then there exists a optimal strategy for B to win.*

(1,1)

Proof. **1).** For n = 3, B will definitely win.

- 2). Assume n-2 is odd, and there exists a optimal strategy for B to win.
- **3).** For n > 3, after first round, $(S_A, S_B) = (2, n-1)$, the size of square is n-2. According to 2), there exists a strategy, s.t. $S_B = 2 \land S_A \le n-2$ after the round of B. Next round of A, $S_A \le n-1$ then next round of B, B can choose move left (s.t. $S_B = 1$) as its strategy and win. By induction, B will win when n is odd.

Similarly, if n is even, then there exists a optimal strategy for A to win.

5 Problem 5

a. Up Triangle means max player, and Down Triangle means min player. Note that circle means *stochastic* strategy set. Use back-up, we get

- **b.** Given leaves 1-6, we need to evaluate x_7 and x_8 . If $\min(x_7, x_8) > 3$ then the best move for max player won't be left. Given leaves 1-7, we do not need to evaluate x_8 . $0.5 \min(-1, x_8) + 0.5 * 0 \le -0.5$, the optimal move for max player keeps left.
- **c.** The value range for left-hand chance node: [0, 2]
- **d.** After evaluating x_5 the value range for right-hand chance node is [-2,0], definitely smaller than 1.5. Thus x_6, x_7, x_8 can be pruned.

