MATH 340 - Lab Instructor: Valeria Barra LAB 7 Assignment DUE Tuesday 03-08-2016

Interpolation using Cubic Clamped Splines

We want to best approximate a given function f(x) on an interval [a, b]. In class you have seen how cubic splines are derived. We will find a cubic spline interpolating polynomial $P_S(x)$, clamped at the boundary of the domain. This means that we enforce a particular value for the slope (first derivative) at the endpoints of the domain, namely v_l and v_r , respectively given by:

$$f'(a) = v_l \qquad f'(b) = v_r \tag{1}$$

Problem 1)

Interpolate the function $f(x) = \frac{1}{1+25x^2}$ on [-1,1] with 11 equi-spaced points, using the built-in Matlab spline function. To use this command, you want to first define the set of discrete data points Xi, find the corresponding y-values Yi=f(Xi), and find the values v_l, v_r by differentiating the function f(x). Use the diff command that we have learnt in Matlab, do not calculate this by hand. Find the coefficients for the splines via the command cs = spline(Xi, $[v_l \ Yi \ v_r]$). Then, define a domain of points, e. g. using domain = linspace(a,b,101);, and finally find the interpolating polynomial with the command P=ppval(cs,domain);

After you have found your interpolating polynomial via the cubic splines, $P_S(x)$, plot it against the domain, and in the same figure plot also the actual function f(x) and the discrete points (x_i, y_i) . Also, plot in the same figure the 10^{th} -degree polynomial $P_L(x)$ found with equi-spaced Lagrange interpolation, and $P_C(x)$ found with the Chebyshev nodes.

To compare the performance of all the three methods, calculate for each of

them the error by

$$Err_S = \max_{x \in [a,b]} |f(x) - P_S(x)| \tag{2}$$

$$Err_L = \max_{x \in [a,b]} |f(x) - P_L(x)| \tag{3}$$

$$Err_C = \max_{x \in [a,b]} |f(x) - P_C(x)| \tag{4}$$

Rank the method performances from best to worst and comment on your results.