

Due Date: 23:59, Oct.28th, 2024

In order to get full marks, you shall write all the intermediate steps of calculation or proof unless otherwise indicated. This assignment covers content from chapter 1 to 3.

Exercise 1.1 (20%)

The current entering the positive terminal of a device is $i(t) = 2e^{-2t}mA$ and the voltage across the device is $v(t) = 15\frac{di}{dt}V$.

- (a) Find the total charge in the device at t = 3 s, q(0)=0.
- (b) Calculate the power absorbed P(t).
- (c) Determine the total energy absorbed in 5s.

Exercise 1.2 (20%) Please find the voltage v_1 and v_2 in the circuit below by using delta-to-wye transformation.

Exercise 1.3 (20%)

In the network graph below

- (a) Determine the number of branches, nodes and meshes.
- (b) Assuming all the resistor have the resistance of 5 ohm, calculate out v_{\triangle} and i_{\triangle}

Exercise 1.4 (10+10%)

(a) (10%) Using nodal analysis, find current i_0 in the circuit below.

(b) (10%) Obtain the node voltages v_1, v_2 , and v_3 in the circuit below.

Exercise 1.5 (10+10%)

(a) (10%) Use mesh analysis by inspection to find current i_1 , i_2 , i_3 and i_4 in the circuit below.

(b) (10%) Find current $I_1,\,I_2$ and I_3 in the circuit below.

