0.1. Introducción

FALTA LA INTRODUCCIÓN AY CHE!!!!!!!

0.2. Oscilador

Para realizar el muestreo y las subsiguientes mediciones se requiere diseñar un oscilador con frecuencia y duty cycle variable. El diseño elegido es el siguiente:

Figura 1: Oscilador con ajuste de frecuencia y duty cycle independientes.

Este permite, con los valores tomados mostrados a continuación, variar la frecuencia entre $\approx 9.66kHz$, levemente menor a la frecuencia de corte de nuestro filtro anti-alias, y 25kHz, logrando traspasar a la frecuencia de Nyquist en un 25 %. Además, este circuito permite configurar el duty cycle de la señal entre $\approx 1\,\%$ y $\approx 99\,\%$ con máxima frecuencia y entre $\approx 5\,\%$ y $\approx 95\,\%$ con mínima frecuencia. Existe como se puede ver una muy pequeña interacción entre el ajuste de frecuencia y duty cycle, lo que genera que los límites del duty cycle se achiquen al disminuir la frecuencia, pero a fines prácticos se la consideró insignificante dado que los límites mínimos se cumplen.

Los valores tomados se detallan a continuación:

Componente	Valor
R_1	$10 \ k\Omega$
R_2	$10 \ k\Omega$
R_3	$2.2~k\Omega$
RP_{freq}	$4 \ k\Omega$
RP_{DT}	$45~k\Omega$
C_1	10 nF
C_2	1 nF

Tabla 1: Componentes del oscilador.

Los resultados del oscilador, con una alimentación de 5V se muestran a continuación:

