# Sistema de Gerenciamento de Produção para Odous

Gustavo Delfino<sup>1</sup>, João Pedro Santana<sup>2</sup>, Júlia Medeiros<sup>3</sup> Matheus Caetano<sup>4</sup>, Rafael Caetano<sup>5</sup>

<sup>1</sup>Instituto de Ciências Exatas e Informática Pontifícia Universidade de Minas Gerais (PUC Minas) Belo Horizonte – MG – Brasil

 $\{1489062^1, 1494049^2, 1484258^3, 1498040^4, 1498866^5\}$ @sga.pucminas.br

**Resumo.** Este projeto propõe a criação de um sistema web para automatizar a gestão de ordens de produção, substituindo o atual controle baseado em planilhas Excel com macros VBA. O objetivo é tornar o processo mais eficiente, seguro e escalável.

# 1. Introdução

Nos últimos anos, a sustentabilidade tem sido um tema central nas discussões sobre desenvolvimento econômico e inovação empresarial. A crescente preocupação com os impactos ambientais e sociais tem levado empresas a buscarem soluções mais sustentáveis em suas operações. De acordo com o Relatório Mundial de Desenvolvimento Sustentável da Organização das Nações Unidas (ONU)[United Nations 2023], iniciativas que integram tecnologia e gestão eficiente têm sido fundamentais para atingir os Objetivos de Desenvolvimento Sustentável (ODS) [United Nations 2023], promovendo um crescimento equilibrado e reduzindo impactos negativos no meio ambiente.

Muitas empresas ainda enfrentam desafios relacionados à gestão eficiente de suas operações. A ausência de um sistema integrado de gerenciamento pode resultar em desperdícios de materiais, dificuldades no controle de estoque e ineficiências na alocação de recursos produtivos [MundialLog 2025]. A empresa em questão, especializada na fabricação de instrumentos cirúrgicos para oftalmologia, busca uma solução para otimizar a emissão e o controle de ordens de produção, garantindo um melhor acompanhamento de insumos e produtos, além do descarte adequado de materiais.

Diante desse cenário, este trabalho propõe o desenvolvimento e a implantação de um sistema web para automação da gestão de ordens de produção e controle de materiais. O sistema tem como premissa a otimização dos processos internos da empresa, promovendo maior eficiência, segurança e escalabilidade. Os objetivos específicos deste projeto são:

- analisar os desafios enfrentados na gestão da produção de instrumentos cirúrgicos oftalmológicos, com foco no controle de estoque, ordens de produção e desperdício de materiais;
- desenvolver um sistema de controle de produção com os seguintes módulos: controle de materiais, controle de lotes, controle de ordens de produção, rastreabilidade de produção e descarte de materiais, identificando seus benefícios e limitações em relação às necessidades da empresa;
- avaliar quantitativamente os ganhos de eficiência operacional com a utilização do sistema.

A relevância deste trabalho está na sua contribuição para um modelo de gestão mais eficiente e sustentável, alinhado às diretrizes globais de sustentabilidade. Além disso, ao integrar tecnologia e responsabilidade ambiental, o sistema proposto pode auxiliar empresas na redução de desperdícios e na melhora de sua eficiência operacional, promovendo boas práticas dentro do setor.

### 2. Referencial Teórico

A Extensão Universitária, que reforça o papel social da universidade ao integrar ensino, pesquisa e sociedade, promovendo inovação e sustentabilidade; a Odous Instrumentos, empresa parceira especializada em instrumentos cirúrgicos, cuja trajetória e valores destacam a busca por qualidade e eficiência operacional; os conceitos de Gestão da Produção e Controle de Estoque, baseados em autores como [Slack et al. 2013] e [Wild 2002], que embasam a necessidade de otimização de processos e redução de desperdícios; e Trabalhos Relacionados, como o estudo de [de Bessa e Tomás Antônio 2023], que demonstram os benefícios da automação de processos manuais, validando a proposta deste projeto. Essa base teórica justifica a relevância do sistema web desenvolvido, alinhando tecnologia, gestão eficiente e responsabilidade socioambiental.

#### 2.1. Extensão Universitária

A Extensão Universitária, como atividade-fim integrada ao Ensino e à Pesquisa, é um dos lugares de exercício da função social da PUC Minas. Ao possibilitar a articulação da academia com a sociedade, trabalha em prol da promoção da cidadania, da inclusão e do desenvolvimento social. Isso se reflete na formação cidadã e humanista discente e docente, na perspectiva de desenvolvimento integral do ser humano, missão primeira da Universidade.[PUC Minas 2025]

Este projeto demonstra consonância com a Agenda 2030 da ONU, particularmente com os ODS 9 (Indústria, Inovação e Infraestrutura) e 12 (Consumo e Produção Responsáveis). Ao desenvolver um sistema web que otimiza a gestão de produção, a iniciativa promove a modernização industrial (ODS 9.4) através da implementação de tecnologias limpas e processos eficientes. Simultaneamente, contribui para o ODS 12 ao viabilizar padrões de produção mais sustentáveis, reduzindo desperdícios de materiais (meta 12.2) e minimizando a geração de resíduos (meta 12.5). [United Nations 2023]

# 2.2. Odous Instrumentos

A Odous Instrumentos atua desde 1998 no comércio e fabricação de instrumentais cirúrgicos para oftalmologia, fundada a partir da união de dois amigos com vasta experiência neste segmento. Com sonho de empreender, eles idealizavam construir uma empresa que fosse reconhecida no mercado pela qualidade de seus produtos e que oferecesse o melhor ambiente de trabalho. Proporcionando o bem estar de todos e a satisfação de seus clientes e colaboradores.

A Odous Instrumentos enfrenta desafios significativos em sua operação diária, principalmente devido à falta de automação nos processos, que ainda são realizados manualmente e estão sujeitos a erros humanos. A dificuldade no controle de estoque é outro

obstáculo crítico, com uma rastreabilidade ineficiente de lotes que compromete a gestão de materiais. Além disso, a empresa depende exclusivamente de planilhas locais, o que representa riscos de perda de dados e falta de centralização das informações. Outro desafio relevante é a ausência de um controle adequado de resíduos, com a falta de um módulo específico para monitorar e reduzir desperdícios, aspecto essencial para alinhar suas operações às práticas de sustentabilidade.

# 2.3. Gestão da Produção e Controle de Estoque

A gestão da produção é um conjunto de atividades que visam planejar, organizar, dirigir e controlar os recursos produtivos de uma empresa, buscando otimizar a utilização de materiais, equipamentos e mão de obra [Slack et al. 2013].

O controle de estoque é uma das áreas críticas da gestão da produção. Ele envolve o monitoramento e a gestão dos materiais e produtos armazenados, visando garantir a disponibilidade dos itens necessários para a produção e evitar perdas por obsolescência ou deterioração [Wild 2002].

# 2.4. Trabalhos relacionados

trabalho Sistema Gerenciamento Caixa de de Fluxo de de Obras[de Bessa e Tomás Antônio 2023] propõe a automação do controle financeiro de uma empresa de construção civil, substituindo o uso de planilhas Excel por uma solução web que permite o gerenciamento de despesas, receitas e centros de custo. Assim como o sistema proposto neste trabalho, o projeto de Bessa e Campos busca melhorar a eficiência operacional e a gestão de recursos, com foco na centralização e automação de processos. Ambos os sistemas compartilham o objetivo de substituir métodos manuais por soluções tecnológicas que promovem maior controle e redução de desperdícios.

Outro trabalho relevante para esta pesquisa é o estudo de Martelli e Dandaro (2015), intitulado "Planejamento e Controle de Estoque nas Organizações", que aborda os principais conceitos, objetivos e ferramentas aplicadas à gestão de estoques em empresas de diferentes segmentos. O artigo destaca a importância de se manter um controle eficiente de materiais, utilizando métodos como o MRP I, MRP II e sistemas ERP, além de ferramentas como análise ABC, inventário físico e cálculo do ponto de pedido.

A dissertação de Ohashi (2017), intitulada "Método de Implantação de um Sistema de Gerenciamento de Conteúdo Corporativo (ECM) em Pequena e Média Empresa (PME)", apresenta uma metodologia para implantar sistemas ECM adaptados à realidade de PMEs, utilizando como base um modelo proposto para grandes empresas. Por meio de pesquisa-ação em uma empresa de médio porte, o autor destaca os principais desafios e fatores críticos de sucesso ao implementar soluções de gerenciamento de conteúdo, especialmente no contexto de gestão do conhecimento e controle de informações não estruturadas. Embora o foco do trabalho de Ohashi esteja voltado ao gerenciamento de conteúdo corporativo, observa-se uma conexão direta com este projeto, que propõe um sistema web para gerenciamento da produção e controle de estoque na empresa Odous Instrumentos. Ambos os trabalhos convergem na busca pela melhoria da gestão da informação e automatização de processos em ambientes empresariais, especialmente em empresas de pequeno e médio porte. O estudo de Ohashi reforça a importância da personalização de soluções tecnológicas segundo a realidade operacional da organização, aspecto também considerado fundamental na proposta deste sistema.

# 3. Metodologia

Este trabalho adotou a metodologia ágil Scrum para seu desenvolvimento, seguindo os princípios estabelecidos por [Schwaber and Sutherland 2017]. O projeto foi estruturado em cinco sprints sequenciais, com duração definida e objetivos específicos para cada ciclo. Cada sprint seguiu o ciclo tradicional de planejamento, execução, revisão e retrospectiva, mantendo o foco na entrega de valor contínuo para a Odous Instrumentos. A divisão em cinco sprints proporcionou um ritmo sustentável de trabalho e possibilitou a incorporação de feedbacks ao longo do desenvolvimento do sistema.

#### 3.1. SPRINT I

Durante a Sprint 1, foram realizadas diversas atividades fundamentais para a organização e estruturação do projeto. Inicialmente, foi feito o planejamento da Sprint 1, definindo as tarefas e distribuindo responsabilidades entre os membros da equipe.

Na parte documental, foram preenchidos tanto a Ata de Reunião quanto o Termo de Sigilo e a Ata de Acordo, garantindo o registro das decisões tomadas e a formalização dos compromissos entre os integrantes do time.

Em relação ao desenvolvimento do sistema, foram definidos os requisitos do sistema, estabelecendo as funcionalidades e necessidades que a aplicação deveria atender. Além disso, também foram escolhidas as tecnologias que seriam utilizadas no projeto, levando em consideração fatores como viabilidade, compatibilidade e experiência da equipe.

Outro ponto importante foi a estruturação da arquitetura do sistema, permitindo a organização das camadas e componentes necessários para o desenvolvimento eficiente do projeto. Por fim, foi realizado o planejamento da Sprint 2.

#### 3.2. SPRINT II

Durante a Sprint 2, a equipe avançou no desenvolvimento do projeto por meio da realização de diversas atividades essenciais. Para estruturar melhor o sistema, foram criados o Diagrama de Casos de Uso e o Diagrama Entidade-Relacionamento, garantindo uma modelagem clara dos requisitos e do banco de dados. Além disso, foram desenhados os protótipos das telas, permitindo uma visualização prévia da interface do sistema.

No aspecto organizacional, foi preenchida a Ata de Reunião, registrando as principais decisões e encaminhamentos do time. Também foi feita a organização do repositório no GitHub, garantindo a padronização do código e facilitando o controle de versões.

A equipe também trabalhou na implementação do sistema, desenvolvendo tanto o backend quanto o frontend. Como parte desse processo, foi criada a tela de login.

Além disso, foi feita a atualização da documentação do projeto, mantendo os registros técnicos e funcionais alinhados ao progresso do desenvolvimento. Outra iniciativa importante foi a criação e organização do projeto no Miro, facilitando a colaboração e o planejamento visual da equipe.

#### 3.3. SPRINT III

Durante a Sprint 3, a equipe concluiu com êxito todas as tarefas planejadas, avançando significativamente no desenvolvimento do sistema. Foram integradas as funcionalidades necessárias entre os módulos, garantindo a comunicação eficiente entre as diferentes

partes do projeto. Além disso, implementamos a tela de recuperação de senha, proporcionando aos usuários uma forma segura e intuitiva de redefinir suas credenciais de acesso.

Outro destaque foi a criação da tela de lotes de materiais, que permite o gerenciamento completo de cadastro, consulta e edição de lotes. Foi finalizado a tela de materiais, incluindo todas as funcionalidades previstas, como adição, remoção e atualização de itens. A tela de semiacabados foi desenvolvida para facilitar o rastreamento desses itens no processo produtivo, enquanto a tela de usuários possibilitou a administração de contas e perfis de acesso.

Por fim, organizamos o repositório no Github, padronizando branches, atualizando documentação e revisando commits para melhorar a clareza e rastreabilidade do projeto. Todas as tarefas foram concluídas dentro do prazo, sem impedimentos críticos, e as telas desenvolvidas seguem os padrões de usabilidade e design definidos.

### 3.4. SPRINT IV

Durante a Sprint 4, a equipe concentrou esforços na finalização e refinamento de funcionalidades fundamentais do sistema. Foram realizadas melhorias na interface do usuário, como a padronização da estilização do frontend, ajustes nos ícones e labels do menu lateral minimizado, bem como a criação e correção de telas importantes, incluindo a de perfil do usuário e a tela de recuperação de senha. Além disso, a equipe desenvolveu o dashboard (home), responsável por centralizar as principais informações do sistema de forma acessível e visualmente intuitiva.

No que diz respeito à navegação, foi realizada a reestruturação do routing entre as páginas principais do sistema (login, home, cookie, etc.), garantindo uma navegação mais fluida e lógica. Também foram feitos ajustes na página de créditos, que agora conta com a identificação dos desenvolvedores e um link no menu lateral.

Na camada de dados, foram solucionadas questões relacionadas ao CRUD de entidades que não exigem uma tabela própria, otimizando o modelo de dados e o uso de recursos no backend. Complementarmente, a equipe deu continuidade ao desenvolvimento das interfaces relacionadas à produção, finalizando os módulos de frontend das ordens de produção de produtos acabados e semiacabados, bem como seus respectivos lotes.

Outra atividade relevante foi a correção e atualização da documentação técnica e dos diagramas do sistema, alinhando-os às modificações implementadas nas últimas iterações. Essas atualizações garantiram a coerência entre o sistema e os artefatos documentais, assegurando uma base sólida para manutenções futuras e integração com novos membros da equipe.

Assim, a Sprint 4 foi marcada por um avanço expressivo na maturidade do sistema, tanto no que diz respeito à usabilidade quanto à robustez técnica, preparando o projeto para as etapas finais de testes e implantação.

# 3.5. SPRINT V

### 4. Resultados

Resultados do trabalho devem ser apresentados. Consiste da descrição técnica da solução desenvolvida. Use figuras e tabelas sempre que necessário. Todas as etapas descritas na

metodologia devem ter seus resultados apresentados aqui. Uma subseção para apresentar a empresa ou área pode ser uma opção adotada.

Devem ser incluídas informações que permitam caracterizar a arquitetura do software, seus componentes arquiteturais, tecnologias envolvidas, frameworks utilizados, etc.

Devem ser apresentados os artefatos criados para a solução do problema (ex. software, protótipos, especificações de requisitos, modelagem de processos, documentos arquiteturais, etc). Os artefatos não devem ser apresentados na íntegra, mas o texto deve apresentar o que foi feito como solução para o problema apresentado.

Deve ter no mínimo: lista de requisitos (pode ser uma tabela), diagrama de classe e modelo relacional do banco de dados.

Apresente também as telas da aplicação e uma explicação de como usá-las. O código fonte deve ser disponibilizado em um repositório público no GithubClassroom. O link para o repositório deve estar no Trabalho. Colocar também o link da aplicação.

Veja os exemplos de uso de Figuras e Tabelas. Todas as figuras e tabelas devem ser referenciadas no texto. Por exemplo, deve haver uma frase assim "A Figura 1 mostra ..." ou "A Tabela 1 mostra...



Figura 1. A typical figure

Link do vídeo:

Link do repositório:

Link da apresentação:

# 5. Conclusões e trabalhos futuros

A conclusão deve iniciar resgatando o objetivo do trabalho e os principais resultados alcançados. Em seguida, devem ser apresentados os trabalhos futuros.

Acrescentar aqui a tabulação da estatística de avaliação da aplicação (questionário de avaliação final da ferramenta).

Tabela 1. Variables to be considered on the evaluation of interaction techniques

|                                          | Chessboard<br>top view | Chessboard perspective view |
|------------------------------------------|------------------------|-----------------------------|
| Selection with side movements            | 6.02 ± 5.22            | 7.01 <u>+</u> 6.84          |
| Selection with in-<br>depth movements    | 6.29 <u>+</u> 4.99     | 12.22 <u>+</u> 11.33        |
| Manipulation with side movements         | 4.66 <u>+</u> 4.94     | 3.47 <u>+</u> 2.20          |
| Manipulation with in-<br>depth movements | 5.71 <u>+</u> 4.55     | 5.37 <u>+</u> 3.28          |

# Referências

- de Bessa e Tomás Antônio, L. V. P. (2023). Documentação de projeto para o sistema sistema de gerenciamento de fluxo de caixa de obras. Trabalho de conclusão de curso (tcc), PUC Minas. Versão 7.0.
- MundialLog (2025). Sistema de controle de estoque: O que é, como funciona e qual a melhor opção?
- PUC Minas (2025). Extensão universitária e compromisso social: Diretrizes institucionais. Belo Horizonte: Pró-Reitoria de Extensão.
- Schwaber, K. and Sutherland, J. (2017). *The Scrum Guide*. Scrum.org. Acessado em: [data de acesso].
- Slack, N., Chambers, S., and Johnston, R. (2013). Administração da produção. Atlas.
- United Nations (2023). Relatório mundial de desenvolvimento sustentável. Nações Unidas.
- Wild, T. (2002). Best practice in inventory management. Butterworth-Heinemann.