Printed Pages: 3

NBC-101

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 294101												
Roll No.												

MCA

(SEM. I) (ODD SEM.) THEORY EXAMINATION, 2014-15

MATHEMATICS-I

Time: 3 Hours [Total Marks: 100

Note: Attempt All Questions. All Questions carry equal marks

- 1 Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) State Euler's theorem for partial differentiation of a homogeneous function. Verify it for the function

$$f(x, y) = \log\left(\frac{x^4 + y^4}{x + y}\right).$$

- (b) State Leibnitz's theorem for successive differentiation of the product of two differentiable functions. Hence find the n^{th} differential coefficient of $x^n \log x$.
- (c) Trace the curve $r = a(1 + \cos \theta)$.

- Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) Find the Expansion of the function $\log(1+e^y)$ in power of x up to five terms.
 - (b) Find the maximum or minimum of $x^4 v^4 2x^2 + 4xv 2v^2$
 - (c) If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$ and $w = \frac{xy}{z}$, then find the value of $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
- 3 Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) Using elementary transformation find the inverse

of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 11 \\ 13 & 17 & 19 \end{bmatrix}$$
.

(b) Find the eigne values and eigne vector of the matrix

$$\begin{bmatrix} 7 & 11 \\ 17 & 23 \end{bmatrix}.$$

(c) Define the rank and nullity of a linear transformation. Find the rank and nullity of the linear transformation $T...R^3 \rightarrow R^3$ defined by

$$T(X,Y,Z) = (X+Y,Y+Z,Z+X).$$

- 4 Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) Evaluate $\iint x^2 + y^2$ over the first quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (b) Define Gamma and Beta function. Prove that $\beta(m, n) = \frac{|(m)|(n)|}{|(m+n)|}$
 - (c) Find the volume of a segment of height h of a sphere of radius a.
- 5 Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) Define the gradient, divergence and curl, Find the divergence and curl of the vector function.

$$f(x, y, z) = xy i + yzj + zx k$$

(b) State Grean's theorem. Verify it in xy-plane for $\int_C (xy+y^2) dx + x^2 dy$. Where C is the closed curve

of the region bounded by y = x and $y = x^2$.

- (c) Define the solenoidal and irrotational vectors. Find the values of a so that the following vector function f(x, y, z) = zi + xj + ay k:
 - (i) is solenoidal
 - (ii) is irrotational.

294101] 3 [175]