Statistical Learning for Data Mining

*

Class Imbalance

^{*}George Runger 2019

• Data sets can differ dramatically in the counts of instances in classes

N 0 Class 0 initial data

• For example: Among 1000 patients, 900 normal, 100 ill Among 10000 manufactured parts: Class 1 initial 9900 conform, 70 marginal, 30 fail to conform

N 1

 Accuracy scores can mislead us when class imbalance is present

^{*}George Runger 2019

 For example, in the table below, if all parts are classified as Class 0, regardless of predictor attribute values, accuracy is 90%

	Predicted	
Actual	Class 1	Class 0
Class 1	0	100
Class 0	0	900

 For unbalanced data, another measure is balanced error rate (BER)

$$BER = (FPR + FNR)/2$$

For the table above
 $BER = (0+1)/2 = 0.5$

 Two common approaches to handle class imbalance are: weight instances or adjust training data

^{*}George Runger 2018

- Common to weight instances from a class inversely proportional to the class proportion
 - Weight instances so that the weight totals for each class are equal
- For example:

Class 0 800 instances, Class 1 200 instances Class 0 weights = 1, Class 1 weights = 4

Could also use Class 0 weights = 2, Class
 1 weights = 8

^{*}George Runger 2018

- Easiest to assign weight 1 to majority class
- Among 10000 manufactured parts: 9900 conform, 70 marginal, 30 fail to conform
 Class conform weight = 1
 Class marginal weight = 9900/70
 Class fail to conform weight = 9900/30

^{*}George Runger 2018

- Algorithms can often be adapted for weights $w_i, i = 1, 2, ..., N$ applied to instances
- Consider squared error loss $\sum_{i=1}^{N} (y_i \hat{y}_i)$ Modify to $\sum_{i=1}^{N} w_i (y_i - \hat{y}_i)$
- Consider log-likelihood $\sum_{i=1}^{N}$ likelihood (\vec{x}_i, y_i) Modify to $\sum_{i=1}^{N} w_i$ likelihood (\vec{x}_i, y_i)
- Consider proportions for impurity indices For example, weights on 7 instances: Class 0: 1, 1, 1, 1, 1; Class 1: 2.5, 2.5 Unweighted estimate of Class 0 proportion $p_0 = 5/7$ Weighted estimate of Class 0 proportion $p_0 = \frac{1+1+1+1+1}{1+1+1+1+1+1+2.5+2.5} = 5/10$

^{*}George Runger 2019

- Another approach to class imbalance is to adjust the training data through sampling
- Upsample to the count of the largest class

Upsample:

 Randomly sample with replacement from smaller classes to count of instances in the maximum class

^{*}George Runger 2019

 Downsample to the count of the smallest class

^{*}George Runger 2019

- Up and down sampling are simple approaches
 Can be applied to the data before models
 are generated
- Because of the random sampling, replicates of the samples and models are useful to evaluate the results
 - E.g., maybe 10 replicates
 - For an ensemble model, different samples can be selected for each base learner (considered a way to regularize the model)
- Models are trained with up or down sampling, but accuracy, balanced error rate, and other measures are usually evaluated from un-adjusted data

^{*}George Runger 2019

 For example, after a method to adjust for class imbalance is applied, the previous table might be changed to one such as

	Predicted	
Actual	Class 1	Class 0
Class 1	70	30
Class 0	180	720

• Accuracy is reduced to 790/1000 = 79%, but BER improved to BER = (180/900 + 30/100)/2 = 0.25

^{*}George Runger 2018