

Low-Dimensional Spin Systems and Quantum Magnetism

S. M. Yusuf

Bhabha Atomic Research Centre, Mumbai Email: smyusuf@barc.gov.in

INDIAN ACADEMY OF SCIENCES, 84th Annual Meeting, BHU-Varanasi Nov 1- 3, 2018

Magnetic Phase Transitions

An ordered configuration of magnetic moments with a long correlation length

Absence or Presence of a LRO at a Finite T

VOLUME 17, NUMBER 22

PHYSICAL REVIEW LETTERS

28 November 1966

N. D. Mermin[†] and H. Wagner[‡]

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York

Spin/Space	d =1	d =2	d = 3
Ising	X	Yes	Yes
XY	X	Yes?	Yes
Heisenberg	X	X	Yes

Theorem of Mermin and Wagner

Magnetic properties dictated by the nature of exchange interactions

Quantum Fluctuations Quantum Phase Transitions Quantum Magnetization Plateau

Review Article:

APPLIED PHYSICS REVIEWS 4, 031303 (2017)

APPLIED PHYSICS REVIEWS

Neutron scattering of advanced magnetic materials

S. M. Yusuf^{a)} and Amit Kumar Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

(Received 23 February 2017; accepted 9 June 2017; published online 16 August 2017)

a)Email: smyusuf@barc.gov.in

Square-lattice spin system (CuBr)Sr₂Nb₃O₁₀

Square-lattice Spin ½ System **Layered Crystal Structure**

Tetragonal

P4/mmm

a = 3.888(1) Åc = 15.947(1) Å

S. M. Yusuf, A. K. Bera, et al. Phys. Rev. B 84, 064407 (2011)

C Ritter, S M Yusuf, et al. Phys. Rev. B 88, 104401 (2013)

Square-lattice spin system (CuBr)Sr₂Nb₃O₁₀

Commensurate in-plane Spiral Order

 $k = (0 \ 3/8 \ 1/2) \ 4a \times 8b$

 Cu^{2+} : 0.79(7) μ_B at 2 K

Quantum fluctuations.

2D $S = \frac{1}{2}$ AFM square lattice: $\sim 0.6 \mu_B$

S. M. Yusuf, et al. Phys. Rev. B 84, 064407 (2011)

Helical antiferro AF1, with $\kappa = [0 \ 3/8 \ 1/2]$

Second AFM, AF2, with $\kappa = [0 \ 1/3 \sim 0.46]$

Simple ferro phase with $\kappa = [0 \ 0 \ 0]$

S. M. Yusuf, A. K. Bera, et al. Phys. Rev. B 84, 064407 (2011)

C Ritter, S M Yusuf, et al. Phys. Rev. B 88, 104401 (2013)

S = 1/2 **Square-lattice**

At T=0 K

Schmalfuß et al., Phys. Rev. Lett. 97, 157201 (2006)

Cu b a $(CuBr)Sr_2Nb_3O_{10}$

Square-lattice System

S. M. Yusuf, et al, Phys. Rev. B84,064407(2011)

C Ritter, S M Yusuf, et al. Phys. Rev. B 88, 104401 (2013)

 Cu^{2+} : 0.79(7) μ_B at 2 K

Quantum fluctuations 2D $S = \frac{1}{2} AFM$ square lattice: ~0.6 μ_B

Our Research on Haldane chain compound

PHYSICAL REVIEW B 86, 024408 (2012)

Quantum phase transition from a spin-liquid state to a spin-glass state in the quasi-one-dimensional spin-1 system $Sr_{1-x}Ca_xNi_2V_2O_8$

A. K. Bera and S. M. Yusuf*

Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India (Received 21 September 2011; revised manuscript received 16 June 2012; published 9 July 2012)

- *Corresponding author: smyusuf@barc.gov.in
- ¹N. D. Mermin and H. Wagner, Phys. Rev. Lett. **17**, 1133 (1966).
- ²H. A. Bethe, Z. Phys. **71**, 205 (1931).
- ³H. J. Schulz, Phys. Rev. Lett. **77**, 2790 (1996).
- ⁴D. A. Tennant, T. G. Perring, R. A. Cowley, and S. E. Nagler, Phys. Rev. Lett. **70**, 4003 (1993).
- ⁵R. Caciuffo, L. Paolasini, A. Sollier, P. Ghigna, E. Pavarini, J. van den Brink, and M. Altarelli, Phys. Rev. B **65**, 174425 (2002).
- ⁶D. C. Dender, D. Davidovic, D. H. Reich, C. Broholm, K. Lefmann,
- and G. Aeppli, Phys. Rev. B 53 2583 (1996).
- ⁷F. D. M. Haldane, Phys. Rev. Lett. **50**, 1153 (1983).
- ⁸F. D. M. Haldane, Phys. Lett. **93A**, 464 (1983).

- ²⁶L.-P. Regnault, I. A. Zaliznyak, and S. V. Meshkov, J. Phys.: Condens. Matter 5 L677 (1993).
- ²⁷B. Pahari, K. Ghoshray, A. Ghoshray, T. Samanta, and I. Das, Physica B **395**, 138 (2007).
- ²⁸M. D. Mukadam, S. M. Yusuf, P. Sharma, and S. K. Kulshreshtha, J. Magn. Magn. Mater. **269** 317 (2004).
- ²⁹D. Petit, L. Fruchter, and I. A. Campbell, Phys. Rev. Lett. 83, 5130 (1999).
- ³⁶ J. R. L. de Almeida and D. J. Thoulese, J. Phys. A **11**, 983 (1978)
- ³¹Z. He, T. Taniyama, T. Kyomen, and M. Itoh, Phys. Rev. B 72, 172403 (2005).
- ³²S. Friedemann, T. Westerkamp, M. Brando, N. Oeschler, S. Wirth,

Quantum Spin-chain Systems: $Sr_{1-x}Ca_xNi_2V_2O_8$

Screw chains of edge-shared NiO_6 (Ni^{2+} ; $3d^8$, S=1) octahedra along c-axis.

Separated by nonmagnetic VO₄ (V5+; 3d0, S=0) tetrahedra & Sr2+

 $\Delta_{\rm gap} = 26.6(6) \text{ K}$ $J/k_{\rm B} = 106.4(2) \text{ K}$

Sakai-Takahashi Phase Diagram for weakly coupled 1D spin-chain with S = 1

Possibility of Quantum Phase Transition

- \triangleright Enhancement of J_{\perp}
- and/or Reduction in D

 $SrNi_2V_2O_8$, |D/J| = |(-0.56 meV)/(106.4 K = 9.17 meV)|= 0.06

T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990).

Concentration dependent Lattice Parameter

 $Sr_{1-x}Ca_xNi_2V_2O_8$

Sr²⁺:1.26 Å Ca²⁺: 1.12 Å

Decrease in the distances between screw chains

Spin-chain System $Sr_{1-x}Ca_xNi_2V_2O_8$

$$Sr_{0.95}Ca_{0.05}Ni_2V_2O_8$$

dc susceptibility

De Almeida – Thouless (AT)-type Phase boundary

$$Tg(0) = 7.6\pm0.1 \text{ K},$$
 $\beta = 1.47\pm0.03$ $\beta = 3/2$, predicted by the mean field theory for Ising spin-glass systems

A. K. Bera and S. M. Yusuf Phys. Rev. B. 86 024408 (2012)

ac susceptibility

Neutron diffraction of Sr_{1-x}Ca_xNi₂V₂O₈

Quantum Phase Transition

Quasi-1D S = 1 trimmer chain CaNi₃P₄O₁₄

Ni(1) site:

 $m_a = -0.13 \pm 0.06 \mu_B$ $m_a = 0.16 \pm 0.10 \mu_B$ $m_h = 0.18 \pm 0.10 \mu_B$ $m_c = 1.92 \pm 0.04 \mu_B$

Ni(2) site:

 $m_b = 0.18 \pm 0.10 \, \mu_B$ $m_c = 2.01 \pm 0.06 \mu_B$

 Ni^{2+} (3d⁸, S = 1)

AFM long-range ground state

 $a = 7.3091(8) A^{\circ}, b = 7.5574(9) A^{\circ}$ $c = 9.3545(11) A^{\circ}, \ \theta = 111.989(7)^{\circ}$

Counts / 640000 CNPO-N 0.5 1.0 1.5 2.0 2.5 3.0 3.5

 $Q(\mathring{A}^{-1})$

Monitor

A. K. Bera, S. M. Yusuf et. al., Phys. Rev. B 93, 184409 (2016)

A. K. Bera , S. M. Yusuf, et al. Phys. Rev. B 95, 094424 (2017)

Super cell 8×8×8 containing 3072 spins

Reverse Monte Carlo (RMC) analysis

c Ni(1) Ni(2) Ni(1)

Super cell 8×8×8 containing 3072 spins

1D short -range FM correlations along b-axis

A. K. Bera, S. M. Yusuf, et al. Phys. Rev. B 95, 094424 (2017)

Trimer chain compounds AM₃P₄O₁₄

(A = Ca, Ba, Sr, and M = Co, Mn, Ni)

Plateau state Mn (S=5/2)

No Plateau state Ni (S=1)

The 1/3- magnetization Plateau

A. K. Bera, S. M. Yusuf et al. Phys. Rev. B 97, 224413 (2018)

Spin = $\frac{1}{2}$ Trimer

Appears when the magnetization of the ground state Sz = ½ saturates.

Width of the Plateau state: from the saturation of the Sz=1/2 state to the crossover of Sz=1/2 to Sz=3/2 state.

Magnetization plateau

Excited state:

$$S = 3/2$$
, $S^z = \pm 3/2$, $\pm 1/2$

Ground state:

$$S = 1/2$$
, $S^z = \pm 1/2$

1D trimer spin-chain Compound CaNi₃P₄O₁₄

Exchange Interactions

Exchange	Neutron	
interaction	scattering	
(meV)		
7	-1.30±0.05	
J_1	(ferro)	
7	-1.05±0.05	
$oldsymbol{J_2}$	(ferro)	
7	0.9±0.1	
J_3	(anti-ferro)	
D	-0.25±0.02	

Inelastic neutron scattering

☐ Strong interchain interactions

$$H = J_1 \sum_{i} (\vec{S}_i \cdot \vec{S}_{i+1}) + J_2 \sum_{i} (\vec{S}_i \cdot \vec{S}_{i+1})$$
 Intra chain
$$+J_3 \sum_{ij} (\vec{S}_i \cdot \vec{S}_j)$$
 Inter chain
$$+\sum_{i} D(S_i^z)^2$$
 anisotropy

A. K. Bera, S. M. Yusuf et al. Phys. Rev. B 97, 224413 (2018)

Main Contributors

A. K. Bera

C. Ritter

Thank you