Proposons deux methodes:

1° methode:

$$g'(t) = \frac{1}{n} \sum_{i=1}^{p} m_i \left(-2(\pi_i - t) \right)$$

$$= -2 \frac{1}{n} \sum_{i=1}^{p} m_i \left(m_i - t \right)$$

$$= -2 \left[\frac{1}{n} \sum_{i=1}^{p} m_i x_i - t \sum_{i=1}^{p} m_i \right]$$

$$= -2 \left(\overline{x} - t \right)^n$$

$$\Rightarrow g'(k) = 0 \iff t = \overline{x}$$

$$g'(k) = 0 \iff t = \overline{x}$$

$$g'(k) = 0 \iff t = \overline{x}$$

$$f'(k) = 0 \iff t = \overline{x}$$

¿ éme methode :

Developpions g ent:

$$g(t) = \frac{1}{m} \sum_{i=1}^{2} m_i (x_i^2 - 2t n_i + t^2)$$

$$= \frac{1}{n} \sum_{i=1}^{2} m_i n_i^2 - 2t \sum_{i=1}^{2} m_i x_i + t^2 \sum_{i=1}^{2} m_i$$

$$= t^2 - 2t \overline{x} + \overline{x}^2$$

$$= (t^2 - 2t \overline{x} + \overline{x}^2) + \overline{x}^2 - \overline{x}^2$$

 $= (t-\bar{a})^2 + V(a)$

 $g(t) \geq V(n)$ ct g(t) = V(x) pour $k = \pi$. $(t - \pi)^2$ est positif et minimal pour $t = \pi$

$$(9,9,0,10,19,19,19)$$

$$(\gamma_{c}) = (9,9,0,10,10,10)$$

$$moy = 13,42$$
 $med_q = 10$
 $moy = 6,14$ $med_q = 10$

$$(b_i) = (0,0,0,0,80,70,70) \quad \text{moy} = 8,57 \quad \text{med} = 0$$

$$(b_i) = (0,0,0,15,15,15,15) \quad \text{moy} = 8,57 \quad \text{med}_2 = 15$$

ni	1	3	4	5
en.	52:	58.	15	5
M.	52	80	95	100

22 53
1 1-
47 100

$$=\frac{3+4}{2}$$

(5)
$$y_i = n_i - 2003$$
 dors $(y_i) = (-3, -2, -1, 0, 1, 2, 3)$

$$V_y = \overline{y^2} = \frac{1}{7} (9 + 4 + 1 + 0 + 1 + 4 + 9) = \frac{28}{7} = 4 (v_x = \overline{y^2} - \overline{x}')$$

EX3

i	4	2	3	4	5	6	7	8	9	10	11	Somme
DC.	4	5	6	7	8	9	10	11	13	14	15	
Mi	5	5	4	4	4	3	1	4	2	1	1	35
No	5	10	14	18	22	25	27	31	33	34	35	
M. A.	20	25	74	29	37	27	90	40	16	14	15	275
m. x.	80	125	144	196	256	243	700	484	338	196	225	2487

6

med = 18 = 7

(3) la médione ne change par si on modifie les valours extrêmes on extremeles.

6) nême reponse: changer en en modifier. las valours extremales raisonablement (sons et deposser la mediane) ne change pres la mediane,

Esi on ougmente toutes les notes de m points, la médians des frantevienra 6+ m (pour 3 proints, la nouvelle médianne est 10)

1 Dans ce quas m = 34, Med = xix + xis = 7+8

(4) EIQ = P3-Q1 = 10-5 = 5 est l'ecort-interquartile.

 $5 = \frac{\sum_{i=1}^{n} m_i x_i}{m} = \frac{275}{35} = 7,86$

 $V = x^2 - (\bar{x})^2 = \frac{2}{7} mini^2 - (7,86)^2 = 71,05 - 7,86 = 9,32$

5 = VV = 3,05

$$\bar{X} = \frac{1}{N_1 + N_2} \sum_{w \in \Omega} \chi(w)$$

$$\overline{X}_{1} = \frac{A}{N_{1}} \sum_{w \in \Omega_{1}} X_{1}(w)$$

$$\overline{X}_{e} = \frac{1}{N_{e}} \sum_{w \in \Omega_{e}} X_{z} (w)$$

Pone
$$\overline{X} = \frac{1}{N_1 + N_2} \left(\sum_{w \in \Omega_1} X_1(w) + \sum_{w \in \Omega_2} X_2(w) \right)$$

$$= \frac{N_1 \overline{X_1} + N_2 \overline{X_2}}{N_1 + N_2}$$

E (TITILITY)

A = (1-5) 1- 6!