[4]

- Q.6 i. An air plane travels at a Mach number of 1.5 at an elevation where the temperature is -37°C. Determine the velocity of plane.
 - ii. In a convergent-divergent nozzle the steam enters at 15 bar and 300°C and leaves at a pressure of 2 bar. The inlet velocity of the steam is 150 m/s. Find the required throat area and exit area of the nozzle. Take mass flow rate of steam as 1 kg/s and nozzle efficiency as 93%. Assume C_{p-steam} = 2.4 kJ/kgK.
- OR iii. Write short notes on:
 - (a) Mach Angle and Mach cone, (b) Supersonic diffuser

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

8

Faculty of Engineering

End Sem (Even) Examination May-2019 ME3CO09 Energy Conversion - I

Programme: B.Tech. Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note: (a) All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

		se of steam tables is permitted		
Q.1	i.	The function of a fusible plug is to (a) Superheat the steam (b) Extinguish the fire (c) Maintain constant temperature		
	(d) Increase flue gas temperatureii. The natural draught is produced by			1
	11.	(a) Fan before the furnace	•	1
		(c) Chimney height	(d) Compressor	
	iii. In regenerative Rankine cycle, the feed water is heated by			1
		(a) Exhaust steam	(b) Condensed water	
		(c) Bled off steam	(d) Fresh steam	
	iv. The ratio of pump work to turbine work is known as			1
		(a) Back work ratio	(b) Heat rate of boiler	
		(c) Rankine efficiency	(d) Isentropic efficiency	
	V.	In a condenser		1
	(a) The temperature of hot fluid increases(b) The temperature of cold fluid decreases			
		luid remains constant		
	(d) None of thesevi. Air leakage in the condenser reduces			1
	,	(a) Friction	(b) Turbine output	-
		(c) Velocity	(d) Vibration	
		-		РΤО

P.T.O.

	vii.	(a) Very high speed			
		(b) Very low speed			
		(c) Speed doesn't matter			
		(d) First at low speed then at high speed			
	viii.	The isothermal efficiency of a reciprocating air compressor can be improved by the use of			
		(a) Water jacketing (b) External fins			
		(c) Intercooler (d) All of these			
	ix.	Nozzle efficiency is defined as the	1		
		(a) Ratio of actual enthalpy drop to isentropic enthalpy drop			
	(b) Ratio of isentropic enthalpy drop to actual enthalpy drop (c) Product of isentropic enthalpy drop, and actual enthalpy drop				
		х.	Flow of fluid is called transonic when	1	
		(a) $M = 1$ (b) $M < 1$ (c) $M > 1$ (d) $0.8 < M < 1.2$			
Q.2	i.	Draw a well labelled diagram of La Mont Boiler.	3		
	ii.	A 40 cm high chimney is discharging flue gases at 350°C, when			
	the ambient temperature is 30°C. The quantity of air supplied				
	18 kg per kg of fuel burnt. Determine:				
		(a) Draught produced in mm of water,			
		(b) Equivalent draught in metres of hot gas column.			
		(c) Efficiency of chimney, if minimum temperature of artificial draught is 150°C and c _p of flue gases is 1.005 kJ/kgK.			
OR	iii. A boiler generates 8 kg of steam per kg of fuel burnt at a pres				
	1111	of 12 bar from feed water entering at 80°C. The boiler is 75%	7		
		efficient and its factor of evaporation is 1.15. Calculate:			
		(a) Degree of superheat of steam generated			
		(b) Calorific value of fuel.			
		Take c _p of superheated steam as 2.3 kJ/kgK.			
Q.3	i.	What is the physical significance of isentropic efficiency of a	2		
		steam turbine? What does its value suggest?			

ii. In a Rankine cycle, the steam at inlet to a turbine is dry sat at a pressure of 35 bar and the exhaust pressure is 0. Calculate:			8
		(a) Pump work (b) Turbine work	
		(c) Rankine efficiency (d) Condenser heat flow	
		Assume mass flow rate of 9.5 kg/s.	
OR	iii.	Explain the following; with the help of schematic diagram, T-s	8
		plot and thermal analysis of the cycle:	
		(a) Reheat Rankine cycle (b) Regenerative Rankine cycle	
Q.4	i.	Differentiate between Jet Condensers and Surface Condensers.	3
	ii.	A vacuum of 710 mm of Hg was recorded in a condenser when the barometer reads 755 mm of Hg. The temperature of the condensate was 25°C. Calculate the pressure of steam and air in	7
		the condenser assuming their specific volumes to be same. Also	
OD		calculate mass of air per kg of steam and vacuum efficiency.	_
OR	iii.	Explain the working and construction of an Induced-draft cooling tower with the help of labelled diagram. Also state its advantages	7
		over Natural- draft cooling tower.	
Q.5	i.	Why does a reciprocating compressor termed as a positive displacement machine?	2
	ii.	A single acting, single cylinder reciprocating air compressor has a	8
		cylinder diameter of 200 mm and a stroke of 300 mm. Air enters	
		the cylinder at 1 bar; 27°C. It is then compressed polytropically to	
		8 bar using index of compression 1.3. If the speed of compressor is 250 rpm, calculate the mass of air compressed per minute, and	
		power required in kW. Assume negligible clearance volume.	
OR	iii.	An ideal single-stage, single acting reciprocating air compressor	8
		has a displacement volume of 14 litres and a clearance volume of	
		0.7 litres. It receives air at a pressure of 1 bar and delivers at 7 bar.	
		For compression, pv ^{1.3} =C and re-expansion is adiabatic. Calculate	
		the net indicated work of a cycle.	

P.T.O.

Marking Scheme ME3CO09 Energy Conversion - I

Q.1	i.	The function of a fusible plug is to		1	
		(b) Extinguish the fire			
	ii.	The natural draught is produced by		1	
		(c) Chimney height			
	iii.	In regenerative Rankine cycle, the feed water is	heated by	1	
		(c) Bled off steam			
	iv.	The ratio of pump work to turbine work is known	vn as	1	
		(a) Back work ratio			
	v.	In a condenser		1	
		(c) The temperature of hot fluid remains consta	nt		
	vi.	Air leakage in the condenser reduces			
		(b) Turbine output			
	vii.	For isothermal compression in a compressor, it should run at 1			
		(b) Very low speed			
	viii.	The isothermal efficiency of a reciprocating air	compressor can be	1	
		improved by the use of			
		(d) All of these			
	ix.	Nozzle efficiency is defined as the			
		(a) Ratio of actual enthalpy drop to isentropic e	nthalpy drop		
	x. Flow of fluid is called transonic when				
		(d) $0.8 < M < 1.2$			
Q.2	i.	Draw a well labelled diagram of La Mont Boile	er.	3	
		With 1-4 labelled parts	1 mark		
		5-8 parts +	1 mark		
		9+ parts +	1 mark		
	ii.	Draught produced in mm of water = 0.2267 mn	n 3 marks	7	
	Equivalent draught in metres of hot gas column = 0.37915 m				
			2 marks		
		Efficiency of chimney= 0.00185	2 marks		
ΟD		Step marking should be given	41	7	
OR	iii.	Degree of superheat= 62.3°C CV of fuel= 27661.22 kJ/kg	4 marks 3 marks	7	
		Step marking should be given	3 marks		
		Step marking should be given			
Q.3	i.	Physical significance of isentropic efficiency of	f a steam turhine	2	
Q.5	ii.	Pump work= 33.63 kW	1 mark	8	
	111.	T-S / H-S diagram	1 mark	U	
		Turbine work= 7482.58 kW	2 marks		
		Efficiency = 0.3078	2 marks		
		Q _{condenser} = 16750 kW	2 marks		
		Step marking should be given			

OR	iii. Explain the following; with the help of schematic diagram, T-s ploand thermal analysis of the cycle:		iagram, T-s plot	8
		(a) Reheat Rankine cycle		
		Diagram	1 mark	
		T-s plot	1 mark	
		Analysis and theory	2 marks	
		(b) Regenerative Rankine cycle		
		Diagram	1 mark	
		T-s plot	1 mark	
		Analysis and theory	2 marks	
Q.4	i.	Differentiate between Jet Condensers and Surface	Condensers.	3
		0.5 mark for each point	(0.5 mark * 6)	
	ii.	Calculate mass of air per kg of steam and vacuum	efficiency.	7
		$P_{\text{steam}} = 3.17 \text{ kPa}$	2 marks	
		$P_{air} = 2.83 \text{ kPa}$	2 marks	
		m_a = 0.0143 kg/kg of steam	2 marks	
		$\eta_{\text{vacuum}} = 0.964$	1 mark	
		Step marking should be given		
OR	iii.	Induced-draft cooling tower		7
		Explanation	3 marks	
		Diagram	3 marks	
		Advantages	1 mark	
Q.5	i.	Reciprocating compressor termed as a positive	e displacement	2
		machine		
	ii.	Assume negligible clearance volume.		8
		$\dot{m}_a = 2.74 \text{ kg/min}$	4 marks	
		Power = 10.49 kW	4 marks	
0.0		Step marking should be given		0
OR	iii.	Calculate the net indicated work of a cycle.		8
		PV diagram	2 marks	
		Numerical	6 mrks	
Q.6	i.	Determine the velocity of plane.		2
ii. Find the required throat area and exit area of the		ozzle.	8	
		Throat area = 585.5 mm^2	4 marks	
		Exit area = 882 mm^2	4 marks	
OR	iii.	Write short notes on:		8
		(a) Mach Angle and Mach cone,	4 marks	
		(b) Supersonic diffuser	4 marks	
		. , . 1		
