CSM 165: Discrete Mathematics for Computer Science

Chapter 2: Set Theory

Isaac Afari Addo <addoisaacafari@gmail.com>
National Institute for Mathematical Science (NIMS) - Ghana
Department of Mathematics, KNUST
Kumasi-Ghana.

Content

Introduction

Representation of Sets

Operations on Sets

Set Identities

CSM 165: Discrete Mathematics Chapter 2: Set Theory, 19/02/2021

Definition 1

A set a **well-defined** collection of distinct objects, called **elements** or **members** of the set.

A set is said to **contain** its elements.

Set are usually denoted by capital letters.

Elements of the set are represented by small letters

We write $\mathbf{a} \in \mathbf{A}$ to denote that a is an element of the set A.

The notation $\mathbf{a} \notin \mathbf{A}$ denotes that a is not an element of the set A.

Representation of Sets

1. **Roster Form**: By listing elements in braces {}, separated by comma.

Example: $A = \{a, e, i, o, u\}, B = \{0, 2, 4, 6, 8, 10\}$

Set-Builder Form: By using statements depicting properties or relations among members.

Example:

 $A = \{x \mid x \text{ is a vowel in English alphetic series}\}$ $B = \{x : x \text{ is an even number less than } 12\}$

Example 1

- 1. $\mathbb{N} = \{1, 2, 3, ...\}$, the set of natural numbers
- 2. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$, the set of integers
- 3. $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, the set of positive integers
- 4. $\mathbb{Q} = \{\frac{p}{q} | p, q \in \mathbb{Z}, \text{ and } q \neq 0\}$, the set of rational numbers

19/02/2021

5. $R = \{x : x \text{ is a real number}\}\$, the set of real numbers

Definition 2

The **empty set** or the **null set** is a set that has no element, denoted by \emptyset or $\{\}$

Definition 3

A set with only one element is called a **singleton set**.

Example 2

- 1. $A = \{1\}$
- 2. $B = \{\emptyset\}$

Definition 4 (Subsets)

The set A is a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

OR

 $B \supseteq A$ (B is a superset of A)

NB: $A \subseteq B$ if and only if the quantification $\forall x (x \in A \rightarrow x \in B)$ is true

Properties

- 1. Reflexivity: $A \subseteq A$
- 2. **Transitivity:** $(A \subseteq B) \land (B \subseteq C) \rightarrow (A \subseteq C)$

Definition 5

Two sets are equal if and only if they have the same elements.

If A and B are sets, then A and B are equal if and only $\forall x (x \in A \leftrightarrow x \in B)$.

OR

Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$

We write A = B if A and B are equal sets.

CSM 165: Discrete Mathematics Chapter 2: Set Theory, 19/02/2021

Equal Sets

Properties:

- 1. Reflexive: A = A
- 2. Symmetric: $A = B \rightarrow B = A$
- 3. **Transitive:** $(A = B) \land (B = C) \rightarrow (A = C)$

Example 3

- 1. Sets {1,3,5} and {3,5,1} are equal.
- 2. If $A = \{a, e, i, o, u\}$ and $B = \{u, e, i, o, a\}$ then A = B.

Exercise A:

Let $A = \{\{1,2\},3,4,5,6\}$, $B = \{1,2,3,4,5\}$. Determine whether each of the following is true/false

- 1. $\{1,2\} \in B$
- 2. A = B
- $3. A \subseteq B$
- $4. B \subseteq A$

Definition 6

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the **cardinality** of S.

The cardinality of S is denoted by |S|

A set is said to be **infinite** if it is not finite.

Definition 7

Given a set S, the power set of S is the set of all subsets of the set S.

The power set of S is denoted by $\mathcal{P}(S)$ *.*

NB: the empty set and the set itself are members of this set of subsets.

If a set has n elements, then its power set has 2^n elements.

Example 4

What is the power set of each of the following sets?

- (a) $A=\{0, 1, 2\}$
- (b) $B=\{\emptyset\}$
- (c) $C=\{\emptyset, \{\emptyset\}\}$

Cartesian Products

Definition 8

The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, . . . , and a_n as its nth element.

The ordered n-tuples $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ if and only if $a_i = b_i \ \forall i = 1, 2, ..., n$

Definition 9

Let A and B be sets. The Cartesian product of A and B, denoted b $y A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Cartesian Products

Example 5

(i) What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

Solution:

$$A \times B = (1, a), (1, b), (1, c), (2, a), (2, b), (2, c).$$

(ii)

Cartesian Product

Definition 10

The Cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered n-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to A_i for i = 1, 2, ..., n:

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$

Example 6

What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\}$, $B = \{1, 2\}$, and $C = \{0, 1, 2\}$? **Solution**

$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}.$$

Operations on Sets

Definition 11

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B.

$$A \cup B = \{x | x \in A \lor x \in B\}$$

CSM 165: Discrete Mathematics Chapter 2: Set Theory, 19/02/2021

Operations on Sets

Definition 12

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

$$A \cap B = \{x | x \in A \land x \in B\}$$

Operations on Sets

 $A \cap B$

 $A \cup B$

If A_1, A_2, \dots, A_n are subsets of the universal sets then,

$$\bigcup_{k=0}^{n} A_{k} = A_{1} \cup A_{2} \cup \dots \cup A_{n}$$

$$\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup \cdots \cup A_n \quad \text{and } \bigcap_{k=1}^{n} A_k = A_1 \cap A_2 \cap \cdots \cap A_n$$

Example 7

Let
$$A = \{1, 2, 3, 4, 5, 6, 7\}$$
, $B = \{1, 3, 5, 6, 8\}$, $C = \{2, 4, 5, 6, 9\}$, then

$$A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A \cap B \cap C = \{5,6\}$$

Difference of two Sets

Definition 13

Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B.

$$A - B = \{x | x \in A \land x \notin B\}$$

Example 8

The difference of $\{1,3,5\}$ and $\{1,2,3\}$ is the set: $\{1,3,5\} - \{1,2,3\} = \{5\}$

Principle of Inclusion & Exclusion

Let A and B be two finite sets in a universal set U. If A and B are disjoint, then

$$|A \cup B| = |A| + |B| \tag{1}$$

Theorem 1

If A and B are finite sets, then

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Similarly for three finite sets:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

CSM 165: Discrete Mathematics Chapter 2: Set Theory, 19/02/2021

Principle of Inclusion & Exclusion

Theorem 2

If $A_1, A_2, ..., A_n$ are finite sets, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i \le j \le n} |A_i \cap A_j| +$$

$$\sum_{1 \le i \le j \le k \le n} |A_i \cap A_j \cap A_k| - \dots +$$

$$(-1)^{n+1}|A_1 \cap A_2 \cap \cdots \cap A_n| \qquad (2)$$

Computer Representation of Sets

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $A = \{2, 4, 5, 7, 9\}$ and $B = \{1, 3, 4, 6, 7\}$, then $A \cap B = \{4, 7\}$ and $A \cup B = \{1, 2, 4, 5, 6, 7, 9\}$

U	1	1	1	1	1	1	1	1	1	1
A	0	1	0	1	1	0	1	0	1	0
В	1	0	1	1	0	1	1	0	0	0
$A \cup B$	1	1	0	1	1	1	1	0	1	0
$A \cap B$	0	0	0	1	0	0	1	0	0	0

Set Identities

Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

Set Identities

$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

CSM 165: Discrete Mathematics Chapter 2: Set Theory, 19/02/2021

End of Lecture

Questions...???

Thanks

Reference Books

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", Tata Mcgraw Hill, New Delhi, India, seventh Edition, 2012.
- 2. J. P. Tremblay, R. Manohar, "Discrete Mathematical Structures with Applications to Computer Science", Tata Mc Graw Hill, India, 1st Edition, 1997.

CSM 165: Discrete Mathematics Chapter 2: Set Theory, 19/02/2021