End-Term Examination (CBCS)(SUBJECTIVE TYPE)(OffLine) Course Name: Software Engineering, Semester: II (May, 2024)

Subject Code: MCA 106	Subject: Software Engineering
Time :3 Hours	Maximum Marks :60
Note:Q. 1 is compulsory. Attempt one	guestion each from the Units I, II, III & IV.

Q1		(4*5		
		=20)		
	 a) What are the characteristics of a good design? Describe different type coupling and cohesion. 	s of		
	b) Discuss the Data Dictionary and Decision Table with appropriate notations			
	and suitable examples.			
	c) Distinguish between verification and validation.			
	d) What is Adaptive and Corrective Maintenance?			
	e) What are the possible reasons for software failure?			
	UNIT-I	(5.5)		
Q2	a) Why are models important in software engineering work? Do we	(5,5)		
	always need them? Discuss.	P 1		
	b) Discuss in which situation Agile Model will be preferred over other	Eq. (4)		
	SDLC Models.	(10)		
Q3	Assume that you are a project manager of two projects with the	(10)		
	following characteristics:			
	Project 1. A complex real-time system whose requirements can be			
	relatively easily identified and are stable.			
	relatively easily identified and are stable.			
	Project 2. A web-site for a local library. Requirements are vague and are		8.7	
	likely to change in the future.			
	micry to sharings in the ratio		4.7	
	Consider also the following software development approaches/models:		3.1 F	
	waterfall, incremental, prototyping, spiral and component based			
	development. Which of the above models would you choose for each of			
	your projects? Your choices should be properly justified.			
	UNIT-II	L		
24	(a) Describe how software requirements are documented? State the	(10)		
	importance of documentation.			
	(b) Draw an ER Diagram for a University Academic System. Make all		aller in	
	necessary assumption and write them clearly.			
25	(a) "Non-functional requirements are also essential for customer	(10)		
	satisfaction"-Justify this statement with suitable justification.		7 - 17 4	
	(b) Create a Data Flow Diagram for Food Ordering System in a			
	Restaurant.			
	UNIT-III			
16	A software has to be developed for automating the manual library of a	(10)		
16	University. The system should be stand alone in nature. It should be			
		-	4 ,	
	designed to provide functionalities as explained: Issue of Books, Return			
	of Books, Query Processing and Report Generation. Generate following			
	diagram for this (make necessary assumptions):			

End-Term Examination (CBCS)(SUBJECTIVE TYPE)(OffLine)

	i) Use – Case Diagram		
	ii) Class Diagram		
Q7	(a) What is black box testing? Is it necessary to perform this?	(5,5)	
	Explain various test activities.		
	(b) Differentiate the terms: Error, Bug, Defect, Fault, Failure		
	UNIT-IV		
Q8	Consider a project with the following domain characteristics: Number of	(10)	
	Inputs = 30, Number of Outputs = 62, Number of user Inquiries = 24,		
	Number of files = 8 and Number of external interfaces = 2. Assume that		
	all the complexity adjustment values are average. Also, assume outputs,		
	queries, files function point attributes are of low complexity and all		
	other function points attributes are of medium complexity. The		
	complexity adjustment value for factor 1 is set to 3 because the SRS	-	
	requires that the software product has only a good degree of data		
	communication; factor 2 is set to 2 because the SRS emphasizes for		
	heavy use of configuration; factor 5 is set to 3 because the module has	197	18.0
	medium level of complex processing; factors 10 and 11 are set to 4 and		<u> </u>
	2 respectively because the module is always on-line but needs only few		
	updates; factor 3, 4 6,7,8,9,12,13,14 are set to 4, 3,2, 3,4,3,4,3,2		
	respectively based on their estimated level of complexity or demand.		
		1 1	
	i) What is the Adjusted Function Points (AFP) for the above project?		
	ii) Calculate the estimated schedule time in person-months assuming	-	
	that the total lines of code in the application is approx. 15K.		
9	Write short notes on:	(10)	
	i) Function Point		
	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		r (d)
	ii) COCOMO		