

REC'D PCT/GB 2003 003810
01 MAR 2005

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 17 NOV 2003
WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed *Stephen Hardley*
Dated 13 October 2003

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

Patents Form 1/77

Patents Act 1977
(Rule 16)02SEP02 E744955-1 D02884
P01/7700 0.00-0220242.2**Request for grant of a patent**

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form.)

The Patent Office

- 2 SEP 2002

Cardiff Road
Newport,
South Wales
NP10 8QQ**1. Your reference**

P32127-/CMU/RTH/RMC

2. Patent application number*(The Patent Office will fill in this part)*

0220242.2

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)

AorTech International plc
Phoenix Crescent
Strathclyde Business Park
Bellshill
Lanarkshire, ML4 3NJ

Patents ADP number *(if you know it)*

7728249001

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

"Blood Regulation Device"

5. Name of your agent *(if you have one)*

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

Scotland House
165-169 Scotland Street
Glasgow
G5 8PL

Patents ADP number *(if you know it)*

1198015

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and *(if you know it)* the or each application number

Country

Priority application number
*(if you know it)*Date of filing
*(day / month / year)***7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application**

Number of earlier application

Date of filing
*(day / month / year)***8. Is a statement of inventorship and of right to grant of a patent required in support of this request? *(Answer 'Yes' if:***

Yes

- a) *any applicant named in part 3 is not an Inventor, or*
- b) *there is an Inventor who is not named as an applicant, or*
- c) *any named applicant is a corporate body.*

See note (d).

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description

15

Claim(s)

Abstract

Drawing(s)

6

8✓

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right
to grant of a patent (Patents Form 7/77)Request for preliminary examination
and search (Patents Form 9/77)Request for substantive examination
(Patents Form 10/77)Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature Murgitroyd & Company Date
02 September 2002
Murgitroyd & Company12. Name and daytime telephone number of
person to contact in the United Kingdom

ROISIN MCNALLY

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 "Blood Regulation Device"

2

3 The present invention relates to a conduit for
4 connecting a first coronary compartment to a second
5 coronary compartment such that blood can flow from
6 the first compartment to the second compartment with
7 a minimum of blood reflux from the second
8 compartment back into the first compartment. In
9 particular the conduit can connect the left
10 ventricle of the heart to a coronary artery such
11 that blood is able to flow from the left ventricle
12 of the heart into the coronary artery and that
13 reflux of blood from the coronary artery back into
14 the left ventricle of the heart via the conduit is
15 minimised.

16

17 Coronary artery disease is a major problem throughout
18 the world, particularly in Western society.
19 Coronary arteries as well as other blood vessels can
20 become clogged with plaque, impairing the efficiency
21 of the heart's pumping action. This can lead to
22 heart attacks, angina and death.

23

1 A number of methods are used to treat clogged
2 coronary arteries such as bypass operations or
3 balloon angioplasty.

4

5 In bypass operations one or more venous segments are
6 inserted between the aorta and the coronary arteries
7 to bypass the blocked portion of the coronary artery
8 such that an unobstructed flow of blood and thus
9 blood supply to the heart is achieved. More than
10 500,000 bypass procedures are performed in the US
11 every year.

12

13 However bypass surgery is a very intrusive procedure
14 requiring expensive and time-consuming surgery.
15 During a bypass operation an incision is made
16 through the patient's skin and the patient is placed
17 on a bypass pump such that the heart can be operated
18 on while it is not beating. A saphenous vein graft
19 is harvested from a patient's leg and the vein is
20 then grafted into position between the aorta and the
21 coronary artery to allow unobstructed blood flow.
22 This surgery is both traumatic to the patient and
23 requires a substantial period of time in hospital
24 and prolonged convalescence.

25

26 As indicated above, balloon angioplasty may be used
27 to treat coronary artery plaque occlusion. In this
28 case a deflated balloon catheter is placed within
29 the narrowed segment of the artery and then the
30 balloon is inflated to a high pressure, transmitting
31 circumferential pressure and compressing the plaque.

32

1 Although this procedure is minimally invasive, this
2 procedure can only be used in a limited number of
3 circumstances.

4

5 In addition to the two techniques discussed above,
6 which have been traditionally used to treat coronary
7 artery occlusion, a more recent procedure allows a
8 stent to be positioned between the coronary artery
9 and the left ventricle side of the heart such that
10 blood can flow unobstructed from the left ventricle
11 of the heart to the coronary artery, bypassing the
12 occluded portion of the coronary artery. The stent
13 may be positioned between the left ventricle of the
14 heart and the coronary artery using a less invasive
15 procedure than that required for coronary bypass
16 surgery.

17

18 Typically the stent is a conduit with a passage
19 extending longitudinally therethrough. Generally a
20 stent is cylindrical in shape.

21

22 A disadvantage of providing a stent extending from
23 the left ventricle of the heart to the coronary
24 artery is that blood may reflux from the coronary
25 artery back into the left ventricle of the heart.
26 Such refluxes of blood are undesirable.

27

28 Some reports relating to operations designed to
29 revascularise the myocardium direct from the cavity
30 of the left ventricle have indicated that due to the
31 backflow of oxygenated blood back into the left
32 ventricle chamber of the heart during diastole, the

1 myocardium may receive an inadequate supply of
2 blood, leading to it becoming ischemic. Some
3 studies have suggested that measurement of the blood
4 flow during systole and the backflow during diastole
5 indicates that only a 30 percent net flow rate of
6 blood from the left ventricle chamber into the
7 artery is achieved following introduction of a stent
8 between the two compartments.

9

10 Strategies to overcome such reflux of blood have
11 included providing a stent with a lining formed from
12 a section of blood vessels, such as a vein taken
13 from a patient. The harvesting of a vein from a
14 patient requires invasive surgery and means that the
15 patient is subjected to additional trauma.

16

17 However, it would be of benefit if a mechanical
18 solution to the reflux of blood could be found which
19 could be effected without substantially increasing
20 the size of the stents currently provided, their
21 cost, ease of fitting and use.

22

23 According to a first aspect of the present invention
24 there is provided a conduit capable of extending
25 from a first coronary compartment to a second
26 coronary compartment the conduit enabling the
27 passage of blood from the first compartment to the
28 second compartment wherein the conduit comprises a
29 valve formed from resilient material which is
30 capable of adopting open and closed positions
31 wherein movement of blood from the first compartment
32 to the second compartment urges the valve towards

1 the open position enabling blood flow from the first
2 compartment into the second compartment and in a
3 closed position the valve restricts the passage of
4 blood from the second compartment to the first
5 compartment.

6

7 A coronary compartment is defined as any organ or
8 any structure of the circulatory system including
9 artery, vein, chamber of the heart or blood vessel.

10

11 At rest the conduit is ellipsoidal shape in cross-
12 section and this shape restricts blood flow from the
13 second coronary compartment into the first coronary
14 compartment.

15

16 Preferably movement of blood from the first
17 compartment to the second compartment urges the
18 resilient material of the valve to adopt a
19 substantially more circular cross-section thereby
20 enabling blood to flow from the first coronary
21 compartment into the second coronary compartment.

22

23 Alternatively the valve may comprise at least two
24 leaflets which at rest are urged towards each other
25 such that the passage of blood from the second
26 compartment into the first compartment is minimised,
27 and in this embodiment movement of blood from the
28 first compartment to the second compartment urges
29 the leaflets of the valve to move apart from each
30 other enabling the passage of blood from the first
31 compartment to the second compartment.

32

1 Preferably the conduit comprises a first end and a
2 second end, the first end of the conduit being
3 located at the first coronary compartment and the
4 second end of the conduit being located at the
5 second coronary compartment the valve being located
6 at the second end of the conduit.

7

8 Alternatively the valve may be located at the first
9 end of the conduit

10

11 Preferably the valve is integral to the conduit.

12

13 Preferably the first coronary compartment is a first
14 portion of a blood vessel and the second coronary
15 compartment is a second portion of the same blood
16 vessel.

17

18 For example a first coronary compartment may be a
19 first portion of an ascending venous structure such
20 as the saphenous vein or such and the second
21 coronary compartment is a second portion of the same
22 ascending venous structure. If the region between
23 the first and second portions of the femoral artery
24 is damaged or occluded a stent may be located
25 between the first and second portions to enable the
26 movement of blood from the first portion to the
27 second portion.

28

29 Alternatively the first coronary compartment is a
30 chamber of the heart and the second coronary
31 compartment is a blood vessel.

32

1 More preferably the first coronary compartment is
2 the left ventricle chamber of the heart and the
3 second coronary compartment is the coronary artery.

4

5 Thus a conduit as described by the present invention
6 can be used to enable the movement of blood from a
7 proximal position to a distal position in the same
8 or different coronary compartment.

9

10 Preferably the conduit is comprised of a suitable
11 rigid biocompatible metal including, stainless
12 steel, spring steel and Nitinol and a flexible
13 resilient material.

14

15 Preferably the flexible resilient material is a
16 suitable biostable biocompatible polymer.

17

18 Preferably the flexible resilient material includes
19 Elast-Eon™, Biomeric or Biospan. .

20

21 Details of the polymer Elast-Eon™ can be found in
22 WO98/13405, WO92/00338, WO92/09467, WO99/01496.

23

24 Preferably a plurality of conduits are
25 longitudinally aligned to allow the flow of blood
26 from a first conduit to a second adjacent conduit.

27

28 Preferably the conduit is collapsible such that it
29 can be suitably placed in the body and then extended
30 from its collapsed position to a fully extended
31 position using a catheter.

32

1 The conduit can be placed by suitable minimally
2 invasive techniques such as percutaneous delivery.

3
4 Alternatively the conduit is constructed of material
5 with memory such that once suitably placed in the
6 body it extends from a collapsed position to a fully
7 extended position.

8
9 Preferably the conduit is two to fifteen millimetres
10 in diameter.

11
12 An embodiment of the present invention will now be
13 described by way of example only with reference to
14 the accompanying figures in which;

15
16 Figure 1 is an illustration of a conduit
17 extending from the left ventricle of the heart
18 into the coronary artery,

19
20 Figure 2 is an enlarged view of a conduit
21 connecting the left ventricle of the heart to
22 the coronary artery,

23
24 Figure 3 is an illustration of a conduit
25 wherein a second end of the conduit is in a
26 closed position,

27
28 Figure 4 (A) is an illustration of an
29 embodiment of the conduit in a collapsed form,
30 (B) is an illustration of the conduit in an
31 expanded form,

32

1 Figure 5 is an illustration of the conduit
2 where a second end of the conduit is in an open
3 position, and

4

5 Figure 6 is an illustration of at least two
6 stents aligned along their longitudinal axes
7 such that blood can flow from the lumen of a
8 first stent to the lumen of a second adjacent
9 stent.

10

11 As shown in figure 1 the coronary artery 10 is known
12 to branch off the aorta 12 and be positioned along
13 the external surface of the heart wall 14.

14

15 Following oxygenation of the blood, the oxygenated
16 blood flows from the heart 16 into the aorta 12 and
17 onto the rest of the body. Some of the oxygenated
18 blood is circulated along the coronary artery 10 in
19 order to oxygenate the muscles of the heart. In
20 some individuals an occlusion is formed within the
21 coronary artery due to plaque build up. These
22 occlusions can lead to a variety of symptoms and
23 diseases ranging from mild angina to heart attack.

24

25 In order to overcome the occlusion within the
26 coronary artery and to restore the flow of
27 oxygenated blood through the coronary artery it is
28 possible to bypass the blocked portion of the
29 coronary artery by providing a stent or a conduit 18
30 which extends from the left ventricle 20 of the
31 heart into the coronary artery 10, as shown in
32 figure 2. Location of the stent 18 as shown in

1 figure 2 allows blood to flow unobstructed from the
2 left ventricle 20 of the heart to the coronary
3 artery 10.

4

5 Overcoming occlusions of the coronary artery 10
6 using a stent 18 is preferable to traditional bypass
7 surgery in that the stent 18 may be located and
8 fitted using minimally invasive techniques.

9 Generally the stents used to connect the left
10 ventricle 20 of the heart to the coronary artery 10
11 are conduits formed by hollow tubes comprising
12 biocompatible material such as titanium alloys,
13 nickel alloys or biocompatible polymers. These
14 tubes may be provided and located between the left
15 ventricle 20 of the heart and the coronary artery 10
16 in a collapsed position and when suitably located
17 extended from a collapsed position to a fully
18 extended position using an inflatable catheter or
19 other method.

20

21 Although such stents allow the flow of blood from
22 the left ventricle 20 of the heart into the coronary
23 artery, a backflow of blood from the coronary artery
24 10 can also occur as no means are present in the
25 lumen of such a stent 18 to prevent the backflow of
26 blood.

27

28 As shown in figure 3, the stent of the present
29 invention is provided with valve means 22, one
30 example of the valve means being a portion of
31 flexible resilient material located at the second
32 end 24 of the stent. This flexible resilient

11

1 material is preferably integral with the rest of the
2 stent.

3

4 As shown in an embodiment of a stent in figure 4 the
5 valve may be created by extension of the stent from
6 the collapsed position.

7

8 In this embodiment, in a collapsed position, as
9 shown in figure 4a the resilient material, held by
10 two support elements 21, forms a cylindrical
11 aperture 28. On extension of the stent, the
12 resilient material may be pulled by the support
13 elements 21 extending from the rigid biocompatible
14 metal portion 23 of the stent 18. The pulling of
15 the resilient material on extension of the collapsed
16 internal metal/Nitinol structure of the stent urges
17 the aperture formed by the resilient material to an
18 ellipsoidal shape in cross-section. The ellipsoidal
19 aperture restricts blood flow from the second
20 coronary compartment into the first coronary
21 compartment and thus the valve created is in a
22 closed position.

23

24 It is envisaged that the stent may be located with
25 the resilient material being urged to a closed
26 position without the need to extend the stent
27 structure. In addition, different methods of urging
28 the resilient material to a closed position
29 following extension of a stent structure from a
30 collapsed position can be envisaged.

31

1 At rest, when blood is not being pushed from the
2 first end 26 of the stent towards the second end of
3 the stent 24, the flexible resilient material adopts
4 a closed position as shown in figure 3 minimising
5 the passage of blood from the second end 24 to the
6 first end 26 of the stent 18. In the closed
7 position the second end 24 of the stent 18 adopts an
8 ellipsoidal shape such that area of the aperture 28
9 through which blood can flow is reduced to less than
10 10 percent of the area of the aperture 28 in the
11 open position of the valve. The adoption of the
12 ellipsoidal shape restricts the backflow of blood
13 from the coronary artery 18 to the left ventricle 20
14 of the heart. Typically the reflux of blood through
15 the valve in the closed position is less than 25
16 percent that which would be expected if the valve
17 was in the open position.

18

19 During systole, contraction of the heart, the blood
20 is pumped by the heart through the stent 18 from the
21 first end 26 located at the left ventricle 20 of the
22 heart towards the second end 24 of the stent located
23 at the coronary artery. On contraction of the
24 heart, the blood of the left ventricle of the heart
25 is moved into the stent promoting the valve to move
26 from an ellipsoidal shape (closed position) toward a
27 circular shape (open position). The movement of the
28 resilient material in this manner, from an
29 ellipsoidal shape (closed position) toward a
30 circular shape (open position), increases the area
31 of the aperture 28 through which the blood can flow
32 from the first compartment (in this case the left

1 ventricle of the heart) into the second compartment
2 (the coronary artery) and allows the unobstructed
3 flow of blood through the valve.

4

5 As the pressure of the blood flow through the valve
6 decreases the resilient material is urged by the
7 material and in particular embodiments the
8 supporting elements of the rigid portion of the
9 stent to cause the valve to adopt a resting state,
10 wherein the aperture of the valve into the coronary
11 artery forms an ellipsoidal shape. This change in
12 shape of the aperture reduces the area of the
13 aperture located at the second compartment and
14 minimises the blood flow from the coronary artery
15 into the left ventricle of the heart.

16

17 It can also be envisaged that at least two stents
18 can be aligned along their longitudinal axes such
19 that blood can be communicated from the lumen of a
20 first stent to the lumen of a second adjacent stent.
21 By aligning several stents together, blood may be
22 moved from a first proximal position to a second
23 distal position, either between two different
24 coronary compartments such as the left ventricle of
25 the heart and a coronary artery or within the same
26 blood vessel such as a blood vessel.

27

28 By aligning a number of stents along their
29 longitudinal axis it is possible to allow blood flow
30 to be effected over a relatively large distance. In
31 addition as each of the stents comprise valve means,
32 the stent more closely mimics the situation in

1 actual veins preventing the backflow of blood and
2 allowing blood to be moved upwards. An example of
3 when the blood may be required to be moved upwards
4 is in the leg of a patient when said patient is
5 standing. The alignment of two stents along their
6 longitudinal length such that the passages or lumens
7 of the stents communicate with each other is shown
8 in figure 6.

9
10 The valves present on each of the stents allow blood
11 to be pushed through the valve on contraction of the
12 heart, but minimise the backward movement of the
13 blood during diastole. This allows blood to be
14 moved up the leg and through the body.

15

16 It can be appreciated that various improvements and
17 modifications can be made without departing from the
18 scope of the present invention. In particular it
19 can be envisaged that the valve means may be formed
20 from at least two leaflets which in a resting
21 position are urged towards each other minimising
22 blood flow from the second coronary compartment into
23 the first coronary compartment. However, on
24 movement of blood from the first compartment to the
25 second compartment, these leaflets may be pushed
26 apart from each other, enabling blood flow from the
27 first compartment into the second compartment.

28 During diastole the two leaflets of the valve will
29 be urged towards each other due to the resilience of
30 the material, and in particular embodiments the
31 supporting elements of the rigid portion of the
32 stent reducing the aperture through which blood can

15

- 1 flow and minimising reflux of blood from the second coronary compartment into the first coronary compartment.
- 2
- 3
- 4

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5.

Figure 6.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.