

Andrzej M. Borzyszkowsk

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski PJATK/ Gdańsk

materiały dostępne elektronicznie http://szuflandia.pjwstk.edu.pl/~amb

Współbieżność

• Przykład: przelewanie pieniędzy z konta A na konto B, początkowe stany obu kont równe 100, więc suma 200:

czas	użytkownik 1	użytkownik 2
0 min	czyta konto A, wynik 100	
1 min		odejmuje 50 z konta A
2 min		dodaje 50 do konta B
3 min	czyta konto B, wynik 150	

- a więc użytkownik 1 sądzi, że na obu kontach jest razem 250

Transakcje

Współbieżność, c.d.

• Przykład: każdy z użytkowników dodaje swój wkład do konta, stan początkowy 50:

czas	użytkownik 1	użytkownik 2
0 min	czyta stan konta, wynik 50	
1 min		czyta stan konta, wynik 50
2 min	nowa wartość konta 110	
3 min		nowa wartość konta 125

- każdy z użytkowników sądzi, że nowa wartość konta jest powiększona o jego wpłatę, odp. 60 i 75 (i umożliwi w przyszłości wypłatę)

Relacyjne Bazy Danych

Współbieżność, III

• Przykład: przelew raz jeszcze

użytkownik 1 **SYSTEM** czas

1 min odejmuje 50 z konta A

2 min **AWARIA**

1 godz stan konta A pomniejszony o 50, stan konta B bez zmian

- tak więc suma obu kont będzie mniejsza niż przed awarią byłaby większa, gdyby przelew zacząć od wpłaty

Współbieżność - wyzwania

- Trzy problemy
 - niespójna analiza
 - utracona modyfikacja
 - niezatwierdzona wartość

Transakcja – niepodzielna jednostka działań

- albo wykonają się wszystkie operacja w transakcji, albo żadna
- tzn. nowe wartości muszą być zatwierdzone
- transakcja zajmuje zero czasu!

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Operacje na danych

- · Rodzaj operacji
 - odczyt read(X)
 - zapis write(X)
- Wielkość operacji
 - atomowa dana (komórka w tabeli)
 - wiersz tabeli (pojedyncza encja)
 - cała tabela
 - wielkość wyznaczona przez implementację (blok w systemie plików itp.)
- Również operacje zatwierdzenia (commit) i wycofania (rollback, abort)

Wycofanie transakcji – przyczyny

- Transakcja musi wykonać wszystkie operacje
 - a jeśli to niemożliwe, to musi wycofać już dokonane (rollback, undo)
- Przyczyny wycofania
 - przerwanie wykonania błędy pamięci, przesyłania danych, spowodowane poza SZBD
 - błędy operacji z transakcji, jawna operacja wycofania
 - konieczność spowodowana współbieżnością (o tym będzie wykład)
 - również upływ czasu powoduje wycofanie niezatwierdzonej transakcji
 - awarie trwałych danych (pamięć dyskowa, ...)

© Andrzej M. Borzyszkowski Relacyjne Bazy Danych

Andrzej M.

Relacyjne Bazy Danych

Borzyszkowski

Andrzej M.

Relacyjne Bazy Danych

Wycofanie transakcji – narzędzia

- Narzędzia wycofania
 - dziennik zapis każdego ruchu (start(T), read(T,X), write(T,X,old,new), commit(T), abort(T))
 - mogą być prostsze dzienniki
 - w razie wycofania transakcji dziennik posłuży do odtworzenia poprzedniego stanu
 - po zatwierdzeniu transakcji i utrwaleniu jej wyników fragmenty dziennika są usuwane
- Wycofanie transakcji jest co najmniej tak czasochłonne jak sama transakcja, a raczej dużo bardziej

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Transakcja – własności ACID

- Cztery własności charakteryzujące transakcje
 - A niepodzielność (atomic) transakcji nie da się podzielić na podoperacje
 - C spójność (consistency) po zatwierdzeniu transakcji (i po wycofaniu transakcji) baza danych jest w stanie spójnym, tak jak była przed rozpoczęciem transakcji
 - I odizolowanie (isolated) transakcja przebiega tak, jak by w danym momencie była jedyną transakcją w systemie
 - D trwałość (durable) zatwierdzenie transakcji oznacza, że jej wyniki są trwale widoczne w bazie

Wycofanie transakcji - wariacje

- Niektóre systemy przewidują ustawienie w transakcji punktów kontrolnych (savepoints)
 - wycofanie następuje do ostatniego takiego punktu
 - PostgreSQL od wersji 8.* posiada też to narzędzie
 - w zasadzie jest to sprzeczne z idea atomowości transakcji
- Transakcja może obejmować kilka systemów (long transaction)
 - zatwierdzanie dwufazowe: każdy z systemów posiada dziennik pozwalający odtworzyć stan poprzedni i nowy
 - jeśli wszystkie systemy zakończyły pomyślnie ten etap, koordynator zaleca przyjęcie nowego stanu, wpp. odtworzenie poprzedniego stanu przez wszystkie systemy
 - idea transakcji zależy mocno od pewności, że koordynator będzie w stanie skutecznie porozumieć się, ze wszystkimi uczestnikami

Przebiegi transakcji

- Przebieg (wykonanie, historia) transakcji T1,...,Tn
 - ciąg operacji z T1, ..., Tn, t.że operacje z każdej transakcji występują w przebiegu w tej samej kolejności co w transakcji
- Przykład (T1 i T2, czytają i zapisują X i Y, a=rollback)
 - r1(X);r2(X);w1(X);r1(Y);w2(X);w1(Y);
 - r1(X);w1(X);r2(X);w2(X);r1(Y);a1;
- Operacje w konflikcie
 - jeśli należą do różnych transakcji, oraz
 - dotyczą tego samego obiektu, oraz
 - co najmniej jedna z operacji zapisuje ten obiekt
- Przebieg nie musi koniecznie być ciągiem
 - musi być ustalona kolejność operacji w konflikcie
 - oraz kolejność operacji z jednej transakcji

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

Relacyjne Bazy

Przebiegi odtwarzalne

- Transakcja T1 czyta z transakcji T2 w danym przebiegu, jeśli
 - istnieje obiekt X, t.ż. w2(X) jest wcześniej niż r1(X)
- Przebieg jest odtwarzalny, jeśli
 - każda transakcja T1 czytająca z transakcji T2 jest zatwierdzona dopiero po zatwierdzeniu T2
 - kontrprzykład: r2(X);w2(X);r1(X);r2(Y);w1(X);c1;a2; T1
 odczytała X z T2, ale T2 została wycofana
- Problemy
 - utracona modyfikacja nadal możliwa
 - wycofania mogą powodować kolejne wycofania (kaskada):
 - r2(X);w2(X);r1(X);r2(Y);w1(X);a2;a1; po wycofaniu T2 okazało się, że przeczytana wartość X jest nieaktualna

Przebiegi odtwarzalne, c.d.

- Przebieg jest bez kaskad, jeśli
 - żadna transakcja nie czyta obiektów zapisanych przez niezatwierdzone inne transakcje
- Przebieg jest ścisły, jeśli
 - żadna transakcja nie czyta ani nie zapisuje obiektów zapisanych przez niezatwierdzone inne transakcje
- Dla przebiegu ścisłego odtwarzanie jest łatwe, wystarczy przywrócić poprzednią wartość obiektów
 - dla innych przebiegów istnieją algorytmy, ale prosty pomysł nie wystarcza
 - przykład: X=1: w1(X,5);w2(X,7);a1;c2; po wycofaniu T1
 przywracamy X=1, ale X powinno być 7

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

13

© Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Szeregowalność

- Przebieg jest sekwencyjny, jeśli transakcje wykonywane są po kolei, bez przeplatania operacji
 - przebieg jest szeregowalny, jeśli w pewnym sensie jest równoważny sekwencyjnemu
- Równoważność przebiegów
 - dają ten sam rezultat ale jak to sprawdzić?
 - operacje w konflikcie wykonywane są w tej samej kolejności
 - jest jeszcze trzecia definicja, mniej ograniczająca
- Przykład: r1(X);w1(X);r1(Y);w1(Y);r2(X);w2(X); T1 potem T2
 - r1(X);w1(X);r2(X);w2(X);r1(Y);w1(Y); równoważny, T1<T2
- r1(X);r2(X);w1(X);w2(X);r1(Y);w1(Y); nie jest szeregowalny, bo
 T2<T1<T2
- Przebieg jest szeregowalny, jeśli nie ma cyklu w grafie kolejności

SQL/ PostgreSQL

- BEGIN (można użyć BEGIN WORK) w SQL nie występuje, ponieważ każde wyrażenie SQL rozpoczyna transakcję
 - PostgreSQL transakcja rozciąga się na jedną instrukcję, jeśli ma być dłuższa, trzeba użyć BEGIN
- COMMIT (można użyć COMMIT WORK) zatwierdzenie kończy transakcję pozytywnie, wszystkie dane od tego momentu należy uważać za zatwierdzone, w szczególności dostępne dla innych transakcji
- ROLLBACK (również w wersji ROLLBACK WORK) wycofanie kończy transakcję niepowodzeniem, dane tymczasowe są przywrócone do poprzedniego stanu

14

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Transakcje w PostgreSQL

- PostgreSQL działa domyślnie w trybie chained (niejawnych transakcji), instrukcja jest całą transakcją chyba, że jest częścią bloku BEGIN ROLLBACK/COMMIT
 - np. SQL server Microsoftu wymaga podania SET IMPLICIT_TRANSACTIONS
 - standard SQL wymaga jawnego zakończenia transakcji
- Nie wolno zagnieżdżać transakcji
 - tzn. BEGIN musi mieć do pary COMMIT albo ROLLBACK nim nastąpi następny BEGIN
- Transakcje powinny być w miarę krótkie
 - w szczególności należy pilnować, by częścią transakcji nie był dialog z użytkownikiem – najpierw dane, potem transakcja

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski