Übungsblatt 4

Übungsgruppe Metcalfe

Daniel Schubert Anton Lydike

Mittwoch 20.11.2019

Aufgabe 1) __ /1p.

Wir verwenden folgende Markierungen: Escape-Sequenzen in Grün und Flags in Blau.

- a) Jede beliebiebe Bit-Zeichen-Kombination der darüberliegenden Schicht L3 muss sich in den Nutzdaten übertragen lassen. Nutzdatensymbole ≠ Steuersymbole.
- b) Richtig
 - Falsch
 - Falsch, ESC-Bytes werden verwendet um flags im Nutzdatenfeld zu kodieren
 - Falsch, Bit-Stuffing ist eine Art Steuerzeichen in den Nutzdaten zu kodieren und fügt nach n aufeinanderfolgenden einsen eine null ein.
- c) 01111110 001111100011111010 01111110

Aufgabe 2) ___/1p.

- a) Falsch
 - Richtig
 - Falsch
- b) Berechnung der Checksumme:

101101100000:10011	=
:10011	= 1
=0010111	= 10
:10011	= 101
=0010000	= 1010
:10011	= 10101
=00011000	= 1010100
<u>:10011</u>	= 10101001
=01011	= 10101001
Checksumme ist 01011	= 10101001

Gesicherte Bitfolge:

1011 0110 01011

c) Empfänger teilt durch Checksumme und kann anhand des Restes sehen, ob Übertragung erfolgreich war.

Aufgabe 3) $_/1p.$

a) ARQ Selective-Repeat:

- b) n = 3
 - Da 5 rahmen überprüft werden müssen, muss bis 5 gezählt werden. Dafür sind 3 bits notwendig.
- c) Das Bandbreite-Verzögerungs-Produkt (bandwidth-delayproduct) wird aus der Bandbreite un der Ausbreitungszeit berechnet.

BDP =
$$t_{\text{ausbreitung}} \cdot \mathbf{R}$$

d) Da Verarbeitungszeit vernachlässigbar ist, ergibt sich folgende formel für die gesamte Übertragungszeit in abhängigkeit der Rahmenlänge L (in bits):

$$t_{\rm send} = \frac{\rm L}{1~\rm Gbps} = \frac{\rm L}{10^9~\rm bps}$$

Wir wollen nun, dass wir 80% prozent der zeit senden, also dass das verhältnis von Sendezeit $t_{\rm send}$ zu Wartezeit $t_{\rm wait} = 2 \cdot D/v = 10^{-6}$ s größer als 0.8 ist.

$$\frac{\mathbf{R} \cdot t_{\text{send}}}{\mathbf{R} \cdot t_{\text{wait}}} > 0.8 \Leftrightarrow \frac{\frac{\mathbf{L}}{10^9 \text{ bps}}}{10^{-6} \text{ s}} > 0.8$$
$$\Leftrightarrow \frac{\mathbf{L}}{10^3 \text{ b}} > 0.8$$
$$\Leftrightarrow \mathbf{L} > 0.8 \cdot 10^3 \text{ b} = 800 \text{ b} = 100 \text{ B}$$

Gesamtpunkte:

__ /3p.