PARALLEL REACTIVE CIRCUITS

AC CIRCUITS

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Phasor Diagram

Parallel R-L Circuit

Parallel R-C Circuit

Parallel R-L-C Circuit

Power Factor

PHASOR DIAGRAM

R-X-Z COMPLEMENT

Ohms (Ω)	Siemens (S)
Resistance R	Conductance $G = 1/R$
Reactance <i>X</i>	Susceptance $\beta = 1/X$
Impedance Z	Admittance $Y = 1/Z$

PHASOR DIAGRAM

Phasor diagram is a graphical representation of magnitude and phase relationship between sinusoidal quantities.

ADMITTANCE

The <u>admittance</u> (*Y*) represents the <u>total</u> ability offered by circuit elements (including resistance and reactance) to <u>conduct</u> alternating current (AC).

<u>Formula</u>

$$\Upsilon = \frac{1}{Z}$$

CAPACITIVE SUSCEPTANCE

The <u>capacitive susceptance</u> (β_C) represents the ability of <u>capacitor</u> to allow the flow of alternating current (AC).

<u>Formula</u>

$$\beta_C = \frac{1}{X_C}$$

INDUCTIVE SUSCEPTANCE

The <u>inductive susceptance</u> (β_L) represents the ability of <u>inductor</u> to allow the flow of alternating current (AC).

<u>Formula</u>

$$\beta_L = \frac{1}{X_L}$$

Circuit Diagram

<u>Formula</u>

$$Y = G + j\beta_L$$

Admittance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$i_o = i_R + ji_L$$

Current Phasor Diagram

TOTAL INDUCTANCE

Parallel network

In a parallel circuit, the <u>total inductance</u> (L_o) is analogous to the total resistance in parallel circuit.

<u>Formula</u>

$$\frac{1}{L_o} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \cdots + \frac{1}{L_n}$$

EXERCISE

A **120** V, **60** Hz source is connected to a parallel combination of **30** Ω resistor and **100** mH inductor.

Solution

Determine the following:

- a. Equivalent impedance (Z)
- b. Total current (i_0)
- c. Current through the resistor (i_R)
- d. Current through the inductor (i_L)

Circuit Diagram

<u>Formula</u>

$$Y = G + j\beta_C$$

Admittance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$i_o = i_R + ji_C$$

Current Phasor Diagram

TOTAL CAPACITANCE

Series network

In a parallel circuit, the <u>total capacitance</u> (C_o) is the <u>sum</u> of all individual capacitances.

<u>Formula</u>

$$C_o = C_1 + C_2 + C_3 \dots C_n$$

EXERCISE

A **120** *V*, **60** *Hz* source is connected to a parallel combination of **10** Ω and a **120** μ *F* capacitor.

Solution

Determine the following:

- a. Equivalent impedance (Z)
- b. Total current (i_0)
- c. Current through the resistor (i_R)
- d. Current through the capacitor (i_c)

Circuit Diagram

<u>Formula</u>

$$Y = G + j(\beta_C - \beta_L)$$

Admittance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$Y = G + j(\beta_C - \beta_L)$$

Admittance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$i_o = i_R + j(i_C - i_L)$$

Current Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$i_o = i_R + j(i_C - i_L)$$

Current Phasor Diagram

EXERCISE

A $\mathbf{50}~\Omega$ resistor, a $\mathbf{20}~mH$ coil and a $\mathbf{5}~\mu F$ capacitor are all connected in parallel across a $\mathbf{50}~V$, $\mathbf{100}~Hz$ supply.

Solution

Determine the following:

- a. Equivalent impedance (Z)
- b. Total current (i_0)
- c. Current through the resistor (i_R)
- d. Current through the inductor (i_L)
- e. Current through the capacitor (i_c)

POWER FACTOR

POWER FACTOR

<u>Power Triangle</u>

The <u>power factor</u> ($\cos \theta$) represents the ratio of true power to apparent power.

<u>Formula</u>

$$\cos \theta = \frac{P}{S}$$

TRUE POWER

<u>Power Triangle</u>

The <u>true power</u> (*P*) is the <u>actual power</u> consumed by resistive components of a circuit.

<u>Formula</u>

$$P = vi \cos \theta$$

unit: Watt (W)

REACTIVE POWER

Power Triangle

The <u>reactive power</u> (*Q*) is the power consumed by <u>inductive</u> or <u>capacitive</u> components of a circuit.

<u>Formula</u>

$$Q = vi \sin \theta$$

unit: Volt-Ampere Reactive (VAR)

APPARENT POWER

Power Triangle

The <u>apparent power</u> (*S*) is the vector sum of true power and reactive power, representing the <u>total</u> <u>power</u> supplied by the source.

<u>Formula</u>

$$S = P + jQ$$

$$S = vi$$

unit: Volt-Ampere (VA)

EXERCISE

A $\mathbf{50}~\Omega$ resistor, a $\mathbf{20}~mH$ coil and a $\mathbf{5}~\mu F$ capacitor are all connected in parallel across a $\mathbf{50}~V$, $\mathbf{100}~Hz$ supply.

Solution

Determine the following:

- a. The power factor ($\cos \theta$)
- b. The true power (*P*)
- c. The reactive power (Q)
- d. The apparent power (S)

LABORATORY

