

رسوميات حاسوبية المحاضرة: 7

 $\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$ مصفوفة ثلاثة أبعاد متجانسة

أنواع التحويلات:

Min.

1) الانسحاب Translate:

 $\begin{array}{c|c}
dy \\
\hline
(2,2) \\
x' = x + dx
\end{array}$

x' = x + dx

dx = 1

dy = 2

y' = y + dy

يعطى تابع الانسحاب أو النقل بالشكل التالي:

$$T = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + dx \\ y + dy \\ 1 \end{bmatrix}$$

2) الدوران Rotate:

NOTE: تكون θ موجبة اذا كان الدوران عكس عقارب الساعة.

وتكون θ سالبة اذا كان الدوران باتجاه عقارب الساعة. (دائماً الدوران بالنسبة للمبدأ) يعطى تابع الدوران بالشكل التالى:

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \sin \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

إذا كانت $\theta = 0$ فإن:

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

أي لم يحدث دوران وهذا مطابق للواقع.

مثال: دوران 90^0 بعكس عقارب الساعة.

رسوميات حاسوبية

المحاضرة: 7

3) قياس (تكبير\تصغير) scale:

NOTE: إذا كان التكبير على محور x يساوي التكبير على محور y يبقى الشكل محافظاً على نفسه ولكن حجمه يضاعف

$$\begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (لم يتشوه الشكل) unform $\Leftarrow sx = sy$

• التحويلات التي تحافظ على التوازي (الشكل نفسه): 1) الانسحاب

(sx = sy التكبير التصغير (في حال) (3 2) الدوران

• في حال تطبيق الانسحاب على مثلث:

$$T = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix} = T \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

النقاط القديمة النقاط الجديدة

• تطبيق عن تحويلات شكل واحد:

مثال: تابع التحويل النهائي:

NOTE: نبدأ الكتابة من اليمين الى اليسار

Bite

رسوميات حاسوبية

المحاضرة: 7

 $(6,3) \leftarrow (2,6)$ مثال: المطلوب: [1] انسحاب النقطة

[2] دوران بزاویة 90^0 (عکس عقارب الساعة).

من هنا نبدأ الكتابة:

$$Comob\ Matrix = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & +4 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$2 \qquad 1$$

مصفوفة النقط الابتدائية

$$\begin{bmatrix} 0 & -1 & 3 \\ 1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \\ 1 \end{bmatrix}$$
 النقطة النهائية

للتأكد:

$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \\ 1 \end{bmatrix}$$

NOTE: إذا كان الدوران مع عقارب الساعة نعوض الزاوية سالبة:

- للتعامل مع: Object نأخذ نقطة مرجعية، نجري انسحاب لتصبح على مبدأ الاحداثيات ثم نقوم بالعمليات المطلوبة.
 - نستطیع أخذ أي نقطة من الشكل.

رسوميات حاسوبية المحاضرة: 7

Mir.

نجرب انسحاب:

مثال:

تعيده لمكانه الأصلي: ((انسحاب عكسي))

رسوميات حاسوبية

$$combo = \begin{bmatrix} & +2 \\ +2 \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & \dots \\ \vdots & & \end{bmatrix} \begin{bmatrix} & -2 \\ -2 \\ & -1 \end{bmatrix}$$

2

تدوير

3

انسحاب عكسي

انسحاب

1

4) الانعكاس RELFLECTION:

يعتبر من التحويلات.

لدينا: 1- الانعكاس على المحور x

2- الانعكاس على المحور y

3- الانعكاس على المبدأ

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• الانعكاس على مستقيم:

لدينا الخطوات التالية: أو لا نوجد b بتعويض $\chi=0$ بمعادلة المستقيم 1) انسحاب b إلى المبدأ:

$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{bmatrix}$$

رسوميات حاسوبية المحاضرة: 7

$$x$$
 على x $=$ x

$$(x)$$
 (3) (x) (4) (x) (5) (x) (6) (x) (7) (x) (7) (x) (8) (x) (8) (x) (9) (x) (9) (x) (9) (x) (10) (x) (10)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & +b \\ 0 & 0 & 1 \end{bmatrix}$$

$$combo = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & +b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & \dots & \dots \\ \sin\theta & \dots & \dots \\ 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{bmatrix}$$
 it is a single probability of the combon of

تطبیق:

المستقيم	دي (شاقولي)	عمو	أفقي	
y = x+2	x =2		y=2	
$x=0$ $y=2$ $m = \tan \theta = 1 \Rightarrow$	2,0	•		_ →
$\theta = 45$ $y = mx + b$	$\begin{bmatrix} & +2 \\ 0 \\ +1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} -2\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & +2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0 0 1 -2 0 1

Bits

رسوميات حاسوبية

المحاضرة: 7

القص shear: (تشقه الأشكال)

عندما تتغير الأبعاد على xيكون القص على x. عندما تتغير الأبعاد على y يكون القص على y. عندما تتغير الأبعاد على x و y يكون القص عليهما.

• القص بالاتجاه x يعطى بالعلاقة التالية:

$$\begin{bmatrix} 1 & sh \ x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
مصفوفة التحويل

معامل القص:

$$shx = \frac{x' - x}{y} = \frac{2 - 0}{1} = 2$$
$$\Rightarrow x' = x + y \, shx$$

NOTE: بالامتحان (عند القص) تعطي الشكل القديم و الشكل الجديد ونحن نكتب المصفوفات.

عندما لا يتم قص $x = 0 \iff x' - x = 0$ المصفوفة الواحدية.

القص بالاتجاه y يعطى بالعلاقة التالية:

مصفوفة التحويل
$$\begin{bmatrix} 1 & 0 & 0 \ shy & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

NOTE: القص بالنسبة للمستقيم غير مطلوبة لأنها نفس المصفوفة

الأسالية

$$shy = \frac{y'-y}{x} \Rightarrow y' = y + x. shy$$
 معامل القص:

أعضاء الفريق

والفريق التدقيقي

رها الديبو علا زلط روان درويش

ر ∠الفريق الدراسي-

عبدالوهاب كعكة سهام البيوش ملك المصري روان درويش ملك قرعيش سلوى حمامي راما بابنسي لبنى صاري إسراء حاج موسى

وي الفريق التقني

صفوان الحجي عبدالوهاب كعكة محمد حذيفة أصيل رغد الداهودي

