Rajiv Gandhi University of Knowledge Technologies Department of ECE.

Eigen values and Eigen vectors

Answer the following questions. Each question carries ONE mark.

1. Find the coordinates a, b, c if $\alpha = (1, -2, -5)$ can be expressed as the linear combination of the vectors $e_1 = (1, 1, 1), e_2 = (1, 2, 3), e_3 = (2, -1, -1)$

A.
$$a = -6, b = 3, c = 1$$

B.
$$a = -6, b = 3, c = 2$$

C.
$$a = -6, b = 3, c = 3$$

D.
$$a = -6, b = 3, c = 4$$

2. The vectors (x_1, y_1) and (x_2, y_2) of $\mathbb{R}^2(\mathbb{R})$ are Linearly dependent if

A.
$$x_1x_2 + y_1y_2 = 0$$

B.
$$x_1x_2 - y_1y_2 = 0$$

C.
$$x_1y_2 - x_2y_1 = 0$$

D.
$$x_1y_2 + x_2y_1 = 0$$

3. Which of the following is true?

A. Every subset of L.I set is L.I

B. every super of L.D set L.D

C. s is a subspace of V(F)iffL(s) = s

D. ALL

4. GATE. The eigen values of the matrix $A = \left[\begin{array}{cc} a & 1 \\ a & 1 \end{array} \right]$ is

A.
$$(a+1), 0$$

B.
$$a, 0$$

C.
$$2(a-1), 0$$

D.
$$0, 0$$

5. GATE. The number of positive characteristics the matrix $A = \begin{bmatrix} a & 1 \\ a & 1 \end{bmatrix}$ is

A. 1

- B. 2
- C. 3
- D. Cannot be found
- 6. GATE. The eigen values of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$ is
 - A. 1, 2, 3
 - B. -1, -2, -3
 - C. 0, -1, 7
 - D. 0, 2, 4
- 7. GATE. The eigen values of the matrix $A=\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array}\right]$ is
 - A. 0, 0, 0
 - B. 0, 0, 0
 - C. 0, 0, 3
 - D. 1, 1, 1
- 8. GATE. If the vector $A = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ is an eigen vector of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ then one of the eigen value of A is
 - A. 1
 - B. 2
 - C. 4
 - D. 5
- 9. GATE. The eigen values of the matrix $A = \begin{bmatrix} 1 & 2 & 34 & 49 \\ 0 & 2 & 43 & 94 \\ 0 & 0 & -2 & 104 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
 - A. 1, 2, -2, -1
 - B. -1, -2, -2, -1
 - C. 1, 2, 2, 1
 - D. None
- 10. GATE. The sum of the eigen values of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ is

- A. 5
- B. 7
- C. 9
- D. 18
- 11. GATE. The eigen values of the matrix A are 15, 3, 0. $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$, the value of the determinant of a matrix is
 - A. 20
 - B. 10
 - C. 0
 - D. -10
- 12. GATE. For the matrix $A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, one of the eigen value is -2. Which of the following is an eigen vector?
 - A. $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$
 - B. $\begin{bmatrix} -3\\2\\-11 \end{bmatrix}$ C. $\begin{bmatrix} 1\\-2\\3 \end{bmatrix}$ D. $\begin{bmatrix} 2\\-5\\0 \end{bmatrix}$
- 13. GATE. If The trace and determinant of a 2×2 matrix are -2, -35 the the eigen values are
 - A. 5, -7
 - B. -1,35
 - C. 9, -7
 - D. 17.2, -2

- 14. GATE. The smallest eigen value of the matrix $A = \begin{bmatrix} 3 & 5 & 2 \\ 5 & 12 & 7 \\ 2 & 7 & 5 \end{bmatrix}$,
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 15. GATE. The value of x for which the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 9 & 7 & 13 \\ -6 & -4 & -9 + x \end{bmatrix}$, has 0 as an eigen value
 - A. 3
 - B. 2
 - C. 1
 - D. 4
- 16. GATE. Suppose that the eigen values of matrix A are 1, 2, 4. Then the determinant of $(A^{-1})^T$ is
 - A. 8
 - B. $\frac{1}{8}$
 - C. -8
 - D. $-\frac{1}{8}$
- 17. GATE. Let $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, and $B = A^3 A^2 4A + 5I$ where I is the 3×3 identity matrix. Then the determinant of B is
 - A. 4
 - B. 3
 - C. 2
 - D. 1
- 18. GATE. The diagonal elements of a 3×3 are -10, 5, 0 respectively. If two of its eigen values are -15 each then the third eigen value is
 - A. 50
 - B. 0

- C. 25
- D. -25
- 19. Let A be a 3 × 3 matrix whose eigen values are -1, 1, 2. Then the value of α, β, γ such that $A^{-1} = \alpha A^2 + \beta A + \gamma$
 - A. $-\frac{1}{2}$, 1, $\frac{1}{2}$
 - B. $-\frac{1}{2}, -1, \frac{1}{2}$
 - C. $\frac{1}{2}$, -1, $-\frac{1}{2}$
 - D. $\frac{1}{2}$, 1, $-\frac{1}{2}$
- 20. Let A ba 5×5 matrix whose characteristic polynomial is given by $(\lambda 2)^3(\lambda + 2)^2$. If A is diagonalizable then the value of α, β are
 - A. $-\frac{1}{2}$, 0
 - B. $\frac{1}{4}$, 0
 - C. $\frac{1}{2}$, 1
 - D. $\frac{1}{4}$, -1
- 21. Match the following matrices of the eigen values
 - 1 . Symmetric Matrix
 - 2. Skew- Symmetric Matrix
 - 3. Hermition Matrix
 - 4. Skew-hermition matrix
 - 5. Orthogonal and unitary matrix

- A) Unit modules
- B) Rational Numbers
- C) Reals
- D)Zeros
- E) Zero or purely imaginary
- F) Complex Numbers

A.
$$1, 3 - C, 2 - D, 4 - E, 5 - A$$

B.
$$1, 3 - C, 2 - F, 4 - E, 5 - B$$

C.
$$1, 3 - C, 2 - B, 4 - E, 5 - F$$

D.
$$1, 3 - C, 2 - D, 4 - F, 5 - A$$

- 22. Which of the following is true?
 - A. If A is a hermition matrix then iA is skew-hermition
 - B. If A is skew-hermition matrix then iA is hermition

- C. If A is symmetric then $A + A^T$ is symmetric
- D. If A is symmetric then $A A^T$ is skew-symmetric
- E. All
- 23. Which of the following is not true?
 - A. The eigen values of a idempotent matrices are 0,1
 - B. The eigen values of an involutary matrices are 1, -1
 - C. The eigen values of a nilpotent matrices are zeros
 - D. None

	Answers																					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
В	С	D	Α	D	В	С	D	A	В	С	D	A	A	С	В	D	С	Α	В	A	Е	D