1. Let $g: \mathbb{R}^m \to \mathbb{R}$ be a twice differentiable function, $A \in \mathbb{R}^{m \times n}$ be any matrix, and h be the composition g(Ax), then we have two simple generalizations of the chain rule that combine linear algebra with calculus:

$$\nabla h(x) = A^T \nabla g(Ax)$$

and

$$\nabla^2 h(x) = A^T \nabla^2 q(Ax) A.$$

(a) Show what happens when you apply the above chain rules to the special case

$$h(x) = g(a^T x)$$

where a is a vector and $g: \mathbb{R} \to \mathbb{R}$ is a univariate function. Given $h(x) = g(a^T x)$, let $z = a^T x$, where $z \in \mathbb{R}$ is a scalar. We compute the gradient and Hessian as desired:

i. For Gradient:

Using the Chain Rule:

$$\nabla h(x) = A^T \nabla g(Ax)$$

Substituting $A = a^T$, we have:

$$a \cdot g'(a^T x)$$

ii. For Hessian:

Using the Chain Rule:

$$\nabla^2 h(x) = A^T \nabla^2 g(Ax) A$$

Since $g(Ax) = g(a^Tx)$ and $\nabla^2 g(Ax)$ for a univariate g is $g''(a^Tx)$, we get:

$$\nabla^2 h(x) = aa^T g''(a^T x)$$

(b) Compute the gradient and hessian of the regularized logistic regression objective:

$$\left(\sum_{i=1}^{n} \log(1 + \exp(a_i^T x)) - b^T A x\right) + \lambda ||x||^2$$

where a_i denote the rows of A.

The objective function for this problem is:

$$\left(\sum_{i=1}^{n} \log(1 + \exp(a_i^T x)) - b^T A x\right) + \lambda ||x||^2$$

i. For Gradient:

The gradient of each term:

• For $\sum_{i=1}^{n} \log(1 + \exp(a_i^T x))$, the gradient is:

$$\nabla \left(\log(1 + \exp(a_i^T x)) \right) = \frac{\exp(a_i^T x)}{1 + \exp(a_i^T x)} a_i$$

Summing over i:

$$\nabla \left(\sum_{i=1}^{n} \log(1 + \exp(a_i^T x)) \right) = A^T \begin{bmatrix} \frac{\exp(a_1^T x)}{1 + \exp(a_1^T x)} \\ \frac{\exp(a_2^T x)}{1 + \exp(a_2^T x)} \\ \vdots \\ \frac{\exp(a_n^T x)}{1 + \exp(a_n^T x)} \end{bmatrix}$$

- For $-b^T A x$, the gradient is $-A^T b$.
- For $\lambda ||x||^2$, the gradient is $2\lambda x$.

Combining, we get:

$$\nabla \left(\left(\sum_{i=1}^{n} \log(1 + \exp(a_i^T x)) - b^T A x \right) + \lambda ||x||^2 \right) = A^T \begin{vmatrix} \frac{\exp(a_1^T x)}{1 + \exp(a_1^T x)} \\ \frac{\exp(a_2^T x)}{1 + \exp(a_2^T x)} \\ \vdots \\ \frac{\exp(a_n^T x)}{1 + \exp(a_n^T x)} \end{vmatrix} - A^T b + 2\lambda x$$

ii. For Hessian:

The Hessian of each term:

• For $\sum_{i=1}^{n} \log(1 + \exp(a_i^T x))$, the Hessian is:

$$\nabla^2 (\log(1 + \exp(a_i^T x))) = \frac{\exp(a_i^T x)}{(1 + \exp(a_i^T x))^2} a_i a_i^T$$

Summing over i:

$$\nabla^{2} \left(\sum_{i=1}^{n} \log(1 + \exp(a_{i}^{T} x)) \right) = A^{T} \operatorname{diag} \left(\begin{bmatrix} \frac{\exp(a_{1}^{T} x)}{1 + \exp(a_{1}^{T} x)} \\ \frac{\exp(a_{2}^{T} x)}{1 + \exp(a_{2}^{T} x)} \\ \vdots \\ \frac{\exp(a_{n}^{T} x)}{1 + \exp(a_{n}^{T} x)} \end{bmatrix} \odot \left(1 - \begin{bmatrix} \frac{\exp(a_{1}^{T} x)}{1 + \exp(a_{1}^{T} x)} \\ \frac{\exp(a_{2}^{T} x)}{1 + \exp(a_{2}^{T} x)} \\ \vdots \\ \frac{\exp(a_{n}^{T} x)}{1 + \exp(a_{n}^{T} x)} \end{bmatrix} \right) A$$

- For $-b^T Ax$, the Hessian is 0.
- For $\lambda ||x||^2$, the Hessian is $2\lambda I$.

Combining, we get:

$$\nabla^{2} \left(\left(\sum_{i=1}^{n} \log(1 + \exp(a_{i}^{T} x)) - b^{T} A x \right) + \lambda \|x\|^{2} \right) =$$

$$A^{T} \operatorname{diag} \left(\begin{bmatrix} \frac{\exp(a_{1}^{T} x)}{1 + \exp(a_{1}^{T} x)} \\ \frac{\exp(a_{2}^{T} x)}{1 + \exp(a_{2}^{T} x)} \\ \vdots \\ \frac{\exp(a_{n}^{T} x)}{1 + \exp(a_{n}^{T} x)} \end{bmatrix} \odot \begin{pmatrix} 1 - \begin{bmatrix} \frac{\exp(a_{1}^{T} x)}{1 + \exp(a_{1}^{T} x)} \\ \frac{\exp(a_{2}^{T} x)}{1 + \exp(a_{2}^{T} x)} \\ \vdots \\ \frac{\exp(a_{n}^{T} x)}{1 + \exp(a_{n}^{T} x)} \end{bmatrix} \right) A + 2\lambda I$$

$$(1)$$

(c) Compute the gradient and hessian of the regularized Poisson regression objective:

$$\left(\sum_{i=1}^{n} \exp(a_i^T x) - b^T A x\right) + \lambda ||x||^2$$

where a_i denote the rows of A.

The objective function for this problem is:

$$\sum_{i=1}^{n} \exp(a_i^T x) - b^T A x + \lambda ||x||^2$$

i. For Gradient:

The gradient of each term:

• For $\sum_{i=1}^{n} \exp(a_i^T x)$, the gradient is:

$$\nabla \left(\sum_{i=1}^{n} \exp(a_i^T x) \right) = A^T \exp(Ax) ,$$

where $\exp(Ax)$ is the vector with entries $\exp(a_i^T x)$.

- For $-b^T A x$, the gradient is: $\nabla (-b^T A x) = -A^T b$.
- For $\lambda ||x||^2$, the gradient is: $\nabla(\lambda ||x||^2) = 2\lambda x$.

Combining, we get:

$$\nabla \left(\sum_{i=1}^{n} \exp(a_i^T x) - b^T A x + \lambda ||x||^2 \right) = A^T \exp(Ax) - A^T b + 2\lambda x$$

ii. For Hessian:

The Hessian of each term:

• For $\sum_{i=1}^{n} \exp(a_i^T x)$, the Hessian is:

$$\nabla^2 \left(\sum_{i=1}^n \exp(a_i^T x) \right) = A^T \operatorname{diag}(\exp(Ax)) A ,$$

where $\exp(Ax)$ is the vector with entries $\exp(a_i^T x)$.

• For $-b^T Ax$, the Hessian is:

$$\nabla^2(-b^T A x) = 0$$

• For $\lambda ||x||^2$, the Hessian is:

$$\nabla^2(\lambda ||x||^2) = 2\lambda I$$

Combining, we get:

$$\nabla^2 \left(\sum_{i=1}^n \exp(a_i^T x) - b^T A x + \lambda ||x||^2 \right) = A^T \operatorname{diag}(\exp(Ax)) A + 2\lambda I$$

(d) Compute the gradient and hessian of the regularized 'concordant' regression objective

$$||Ax - b||_2 + \lambda ||x||_2$$
.

Give conditions that ensure that the gradient and Hessian of this objective exist at a point x. We have that the Gradient is:

$$\nabla(\|Ax - b\|_2 + \lambda \|x\|_2) = \frac{A^T(Ax - b)}{\|Ax - b\|_2} + \lambda \frac{x}{\|x\|_2}$$

We have that the Hessian is:

$$\nabla^{2}(\|Ax - b\|_{2} + \lambda \|x\|_{2}) = \frac{1}{\|Ax - b\|_{2}} \left(A^{T}A - \frac{A^{T}(Ax - b)(Ax - b)^{T}A}{\|Ax - b\|_{2}^{2}} \right) + \frac{\lambda}{\|x\|_{2}} \left(I - \frac{xx^{T}}{\|x\|_{2}^{2}} \right)$$

We also need the conditions that:

- $Ax \neq b$ so that $||Ax b||_2 \neq 0$
- $x \neq 0$ so that $||x||_2 \neq 0$

- 2. Show that each of the following functions is convex.
 - (a) Indicator function to a convex set: $\delta_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C. \end{cases}$

The indicator function $\delta_C(x)$ is defined as:

$$\delta_C(x) = \begin{cases} 0 & \text{if } x \in C, \\ \infty & \text{if } x \notin C. \end{cases}$$

To verify convexity, we must show that for all $\theta \in [0,1]$ and any points $x_1, x_2 \in \mathbb{R}^n$, the following holds:

$$\delta_C(\theta x_1 + (1 - \theta)x_2) \le \theta \delta_C(x_1) + (1 - \theta)\delta_C(x_2).$$

Case 1: $x_1 \in C$ and $x_2 \in C$

If $x_1, x_2 \in C$, then by convexity of C, $\theta x_1 + (1 - \theta)x_2 \in C$. Hence, $\delta_C(\theta x_1 + (1 - \theta)x_2) = 0$. Since $\delta_C(x_1) = \delta_C(x_2) = 0$, the inequality becomes $0 \le \theta \cdot 0 + (1 - \theta) \cdot 0 = 0$, which holds.

Case 2: At least one of x_1 or x_2 is not in C

Suppose $x_1 \notin C$. Then $\delta_C(x_1) = \infty$, and the right-hand side of the inequality becomes ∞ , which is trivially satisfied. Similarly, if $x_2 \notin C$, the right-hand side again becomes ∞ . Thus, the inequality holds regardless.

Conclusion: Since the inequality holds in all cases, the indicator function $\delta_C(x)$ is convex.

(b) Support function to any set:

$$\sigma_C(x) = \sup_{c \in C} c^T x.$$

The support function is defined as:

$$\sigma_C(x) = \sup_{c \in C} c^T x$$

We must verify that:

$$\sigma_C(\theta x_1 + (1 - \theta)x_2) \le \theta \sigma_C(x_1) + (1 - \theta)\sigma_C(x_2)$$

For any $x_1, x_2 \in \mathbb{R}^n$, we have that:

$$\sigma_C(\theta x_1 + (1 - \theta)x_2) = \sup_{c \in C} c^T(\theta x_1 + (1 - \theta)x_2)$$

By linearity of the inner product:

$$c^{T}(\theta x_{1} + (1 - \theta)x_{2}) = \theta(c^{T}x_{1}) + (1 - \theta)(c^{T}x_{2})$$

Taking the supremum over $c \in C$, we get

$$\sigma_C(\theta x_1 + (1 - \theta)x_2) = \sup_{c \in C} [\theta(c^T x_1) + (1 - \theta)(c^T x_2)]$$

Since sup is subadditive and homogeneous:

$$\sup_{c \in C} \left[\theta(c^T x_1) + (1 - \theta)(c^T x_2) \right] \le \theta \sup_{c \in C} (c^T x_1) + (1 - \theta) \sup_{c \in C} (c^T x_2)$$

Thus:

$$\sigma_C(\theta x_1 + (1 - \theta)x_2) \le \theta \sigma_C(x_1) + (1 - \theta)\sigma_C(x_2)$$

proving convexity.

- (c) Any norm (see Chapter 1 of Boyd and Vandenbergh for the definition of a norm). A norm $\|\cdot\|$ satisfies:
 - i. $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0
 - ii. $||x + y|| \le ||x|| + ||y||$
 - iii. $\|\alpha x\| = |\alpha| \|x\|$

We can use the Triangle Inequality and the fact that the norm is absolutely scalable, we have that:

$$\|\lambda x + (1 - \lambda)y\| \le \|\lambda x\| + \|(1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\|$$

where $\lambda \in [0,1]$. Thus, we have shown that any norm is convex.

3. Prove the Cauchy Schwartz inequality: For any inner product $\langle \cdot, \cdot \rangle$ and vectors x, y,

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Proof. If x = 0 or y = 0, then both sides of our inequality equal 0 and thus our desired inequality holds. Thus, we proceed by stating $x \neq 0$ and $y \neq 0$. Consider the orthogonal decomposition

$$x = \frac{\langle x, y \rangle}{\|y\|^2} y + z$$

where z is orthogonal to y where $z = x - \frac{\langle x, y \rangle}{\|y\|^2} y$. By the Pythagorean Theorem,

$$||x||^2 = \left\| \frac{\langle x, y \rangle}{||y||^2} y \right\|^2 + ||z||^2$$
$$= \frac{|\langle x, y \rangle|^2}{||y||^2} + ||z||^2$$
$$\geq \frac{|\langle x, y \rangle|^2}{||y||^2}$$

Multiplying both sides of this inequality by $||y||^2$ gives us: $||x||^2 ||y||^2 \ge |\langle x, y \rangle|^2$.

Now, we take the square root of each side to state: $||x|| ||y|| \ge |\langle x, y \rangle|$.

This is the same as $|\langle x, y \rangle| \le ||x|| ||y||$.

Therefore, we have $|\langle x, y \rangle| \le ||x|| \, ||y||$ as desired.

4. Prove that for any twice differentiable function f,

$$f(x+u) = f(x) + \int_0^1 \langle \nabla f(x+tu), u \rangle dt$$

Hint: What is the analogous statement for functions of one variable?

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Define g(t) = f(x + tu), where $t \in [0, 1]$. Observe that g(t) is a composition of f with the line segment parametrized by x + tu, and hence g is differentiable on [0, 1].

By the chain rule, we have that

$$g'(t) = \langle \nabla f(x + tu), u \rangle$$

Applying the Fundamental Theorem of Calculus to g(t) over [0,1], we obtain:

$$g(1) - g(0) = \int_0^1 g'(t) dt$$

Substituting g(1) = f(x+u), g(0) = f(x), and $g'(t) = \langle \nabla f(x+tu), u \rangle$, we have:

$$f(x+u) - f(x) = \int_0^1 \langle \nabla f(x+tu), u \rangle dt$$

Rearranging, we find:

$$f(x+u) = f(x) + \int_0^1 \langle \nabla f(x+tu), u \rangle dt$$

Thus, we have proven that for any twice differentiable function f,

$$f(x+u) = f(x) + \int_0^1 \langle \nabla f(x+tu), u \rangle dt$$

5. Suppose that $\nabla f(x)$ is β – Lipschitz, meaning that for all x, y,

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$$

(a) Prove that

$$f(x+u) \le f(x) + \langle \nabla f(x), u \rangle + \frac{\beta}{2} ||u||^2 dt$$

Hint: Upper bound the integral above with the absolute value of the integrand, then add and subtract $\nabla f(x)$ and apply Cauchy Schwartz.

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function, and assume that f is β – smooth meaning that its gradient is Lipschitz continuous with parameter β :

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|, \quad \forall x, y \in \mathbb{R}^n$$

This implies that f satisfies the inequality:

$$f(x+u) \le f(x) + \langle \nabla f(x), u \rangle + \frac{\beta}{2} ||u||^2, \quad \forall x, u \in \mathbb{R}^n$$

We take the steps:

i. Start with Taylor Expansion: By Taylor's Theorem, we have:

$$f(x+u) = f(x) + \langle \nabla f(x), u \rangle + \int_0^1 \langle \nabla f(x+tu) - \nabla f(x), u \rangle dt$$

ii. Bound the Integral: Using the Lipschitz continuity of the gradient:

$$\|\nabla f(x+tu) - \nabla f(x)\| \le \beta \|tu\| = \beta t \|u\|$$

which implies:

$$|\langle \nabla f(x+tu) - \nabla f(x), u \rangle| \le ||\nabla f(x+tu) - \nabla f(x)|| \cdot ||u|| \le \beta t ||u||^2$$

iii. Integrate:

$$\int_0^1 \beta t \|u\|^2 dt = \frac{\beta}{2} \|u\|^2$$

iv. Combine Terms:

$$f(x+u) \le f(x) + \langle \nabla f(x), u \rangle + \frac{\beta}{2} ||u||^2$$

Thus, the inequality is proven.

(b) What can you say when $u = -s\nabla f(x)$ We start by simply substituting $u = -s\nabla f(x)$ into the inequality:

$$f(x - s\nabla f(x)) \le f(x) + \langle \nabla f(x), -s\nabla f(x) \rangle + \frac{\beta}{2} \|-s\nabla f(x)\|^2$$

This simplifies to:

$$f(x - s\nabla f(x)) \le f(x) - s\|\nabla f(x)\|^2 + \frac{\beta}{2}s^2\|\nabla f(x)\|^2$$

For small s the descent term $-s\|\nabla f(x)\|^2$ dominates ensuring $f(x-s\nabla f(x)) < f(x)$. As s increases, the quadratic term $\frac{\beta}{2}s^2\|\nabla f(x)\|^2$ may dominate potentially leading to an increase in f(x). This highlights the importance of selecting an appropriate step size s when dealing with gradient descent.

- 6. Contraction Mapping Theorem:
 - (a) Let $0 < \rho < 1$. We call a function $F : \mathbb{R}^n \to \mathbb{R}^n$ a contraction with parameter ρ if for all $x, y \in \mathbb{R}^n$, $||F(x) F(y)|| \le \rho ||x y||$. Prove that any contraction with parameter $\rho < 1$ has a unique fixed point, that is, that there exists $x \in \mathbb{R}^n$ such that F(x) = x.

Hint: For existence, consider the sequence $x_k = F(x_{k-1})$, starting from any initial point x_0 . Prove that this is a Cauchy sequence, and then use completeness of \mathbb{R}^n . This proof actually shows something even stronger, that iterating the map F, starting from any initial condition, converges to the unique fixed point of F.

To prove that any contraction $F: \mathbb{R}^n \to \mathbb{R}^n$ with parameter $0 < \rho < 1$ has a unique fixed point, we will have to:

- Prove existence of a fixed point
- Prove that such a fixed point is unique
- i. Step 1: Existence of a Fixed Point
 - A. Defining the sequence x_k :

We define the sequence x_k by choosing an arbitrary initial point $x_0 \in \mathbb{R}^n$ and iterating the contraction map F:

$$x_k = F(x_{k-1}), \quad \text{for } k \ge 1$$

B. Showing that x_k is a Cauchy sequence:

$$||x_k - x_{k-1}|| = ||F(x_{k-1}) - F(x_{k-2})||$$
 (True for any $k \ge 1$)
 $||x_k - x_{k-1}|| \le \rho ||x_{k-1} - x_{k-2}||$ (Using the contraction property of F)
 $||x_k - x_{k-1}|| \le \rho^{k-1} ||x_1 - x_0||$ (Done by iterating this inequality)

So from $||x_k - x_{k-1}|| = ||F(x_{k-1}) - F(x_{k-2})||$, we can get to $||x_k - x_{k-1}|| \le \rho^{k-1} ||x_1 - x_0||$. Next, we consider the distance between two points x_m and x_n in the sequence, where m > n. Using the triangle inequality, we have:

$$||x_m - x_n|| \le ||x_m - x_{m-1}|| + ||x_{m-1} - x_{m-2}|| + \dots + ||x_{n+1} - x_n||$$

Applying the contraction inequality to each term, we have:

$$||x_m - x_n|| \le \rho^{m-1} ||x_1 - x_0|| + \rho^{m-2} ||x_1 - x_0|| + \dots + \rho^n ||x_1 - x_0||$$

Factor out $||x_1 - x_0||$ and simplify the geometric sum:

$$||x_m - x_n|| \le ||x_1 - x_0|| \sum_{k=n}^{m-1} \rho^k = ||x_1 - x_0|| \rho^n \frac{1 - \rho^{m-n}}{1 - \rho}$$

As $m \to \infty$ and $n \to \infty$, the tail of this geometric series tends to zero because $0 < \rho < 1$. Therefore, x_k is a Cauchy sequence.

C. Using completeness of \mathbb{R}^n :

Since x_k is Cauchy and \mathbb{R}^n is complete, the sequence x_k converges to some point $x^* \in \mathbb{R}^n$. That means we have:

$$x_k \to x^*$$
 as $k \to \infty$

D. Showing that x^* is a fixed point of F:

We proceed by showing that x^* is a fixed point of F.

Taking the limit as $k \to \infty$ in the recursive relation $x_k = F(x_{k-1})$, we get:

$$x^* = \lim_{k \to \infty} x_k$$

Note that as $x_k = F(x_{k-1})$ for $k \ge 1$, we can substitute $\lim_{k \to \infty} x_k$ as $\lim_{k \to \infty} F(x_{k-1})$. Also, note that F is continuous.

Thus:

$$x^* = \lim_{k \to \infty} F(x_{k-1})$$

Since F is continuous, this implies:

$$x^* = F(x^*)$$

Thus, x^* is a fixed point of F.

ii. Step 2: Proving that our fixed point is unique: Next, we proceed by proving our fixed point is unique.

Proof. Suppose x^* and y^* are two fixed points chosen arbitrarily of F. This means $F(x^*) = x^*$ and $F(y^*) = y^*$.

We want to show that $x^* = y^*$.

Using the definition of F being a contraction:

$$||F(x) - F(y)|| < \rho ||x - y||$$
, for all $x, y \in \mathbb{R}^n$,

we substitute x^* and y^* into this inequality:

$$||F(x^*) - F(y^*)|| \le \rho ||x^* - y^*||$$

Since $F(x^*) = x^*$ and $F(y^*) = y^*$, the left-hand side simplifies to:

$$||x^* - y^*|| \le \rho ||x^* - y^*||$$

Rearranging this inequality gives:

$$(1-\rho)||x^*-y^*|| \le 0$$

Since $1 - \rho > 0$, which we can get from $0 < \rho < 1$, the only way this inequality can hold is if:

$$||x^* - y^*|| = 0$$

Thus, $x^* = y^*$, proving that the fixed point is unique as x^* and y^* are chosen arbitrarily. \square

We have shown that iterating the map F starting from any initial condition, converges to a unique fixed point of F.

(b) What is the gradient of $f(x) = \frac{1}{2}x^T Ax - x^T b$?

$$\nabla f(x) =$$

$$\nabla \left(\frac{1}{2}x^T A x - x^T b\right) =$$

$$\nabla \left(\frac{1}{2}x^T A x\right) - \nabla x^T b =$$

$$\nabla \left(\frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j\right) - b =$$

$$\frac{1}{2}\sum_{j=1}^n A_{kj} x_j + \frac{1}{2}\sum_{i=1}^n A_{ik} x_i - b =$$

$$\sum_{j=1}^n A_{kj} x_j - b =$$

$$Ax - b$$

So, $\nabla f(x) = Ax - b$.

- (c) Consider the map F(x) = x s(Ax b), for symmetric positive definite matrices A. Under what conditions on s and A is F a contraction? What are the fixed points of F? Hint: You may want to consider the eigenvalue decomposition of A.
 - i. Step 1:

A point x^* is a fixed point of F if: $F(x^*) = x^*$

$$F(x^*) = x^*$$

$$x^* = x^* - s(Ax^* - b)$$
 (Substituting $F(x^*)$ as $F(x) = x - s(Ax - b)$)
$$s(Ax^* - b) = 0$$

$$Ax^* - b = 0$$
 (As $s \neq 0$ as it is our step size)
$$Ax^* = b$$

$$x^* = A^{-1}b$$

Going into more detail why $s \neq 0$:

If s = 0, F(x) would reduce to the identity map F(x) = x, which cannot contract distances and has no fixed point dynamics. By having $s \neq 0$, we thus make sure that we can have iterative behavior and thus have F(x) actually be a contraction. Furthermore, if s = 0, F(x) would not contract distances, and thus, the iterative process $F(x_k)$ would never converge.

- ii. Step 2: Contraction Property
 - A. Applying the Definition of Contraction:

A map F(x) is a contraction if there exists $0 < \rho < 1$ such that:

$$||F(x) - F(y)|| \le \rho ||x - y||, \quad \forall x, y$$

For the given F(x), let us analyze:

$$||F(x) - F(y)|| = ||(x - s(Ax - b)) - (y - s(Ay - b))||$$

Simplifying:

$$||F(x) - F(y)|| = ||x - y - s(Ax - Ay)||$$

Factor out x - y:

$$||F(x) - F(y)|| = ||(I - sA)(x - y)||,$$

where I is the identity matrix.

B. Using the definition of the spectral norm:

We will proceed by using the key idea that Contraction depends on the spectral norm of I - sA.

The Euclidean norm satisfies:

$$||F(x) - F(y)|| \le ||(I - sA)|| ||x - y||$$
,

where ||(I - sA)|| is the spectral norm or largest eigenvalue in magnitude of I - sA.

For F to be a contraction, we require:

$$||(I - sA)|| < 1$$

iii. Step 3: Analyze the Spectral Norm of I - sA

Since A is symmetric positive definite, it has an eigenvalue decomposition of $A = Q\Lambda Q^T$, where Q is an orthogonal matrix meaning that $Q^TQ = I$ and $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ contains the eigenvalues of A, which are all positive meaning that $\lambda_i > 0$ for our Matrix A.

This means:

$$I - sA = Q(I - s\Lambda)Q^T$$

The eigenvalues of I - sA are $1 - s\lambda_i$ for i = 1, 2, ..., n. The spectral norm of I - sA is:

$$\|(I-sA)\| = \max_i |1-s\lambda_i|$$

For F to be a contraction, we require:

$$\max_{i} |1 - s\lambda_i| < 1$$

iv. Step 4: Solving for s

For all i, it follows:

$$|1-s\lambda_i|<1$$
 (Condition that was figured out as necessary in previous step) $-1<1-s\lambda_i<1$ (Definition of absolute value inequality) $0< s\lambda_i<2$

Since $\lambda_i > 0$ for all i, this implies: $0 < s < \frac{2}{\lambda_{\text{max}}}$, where $\lambda_{\text{max}} = \max_i \lambda_i$ is the largest eigenvalue of A.

Thus, we have that F is a contraction if $0 < s < \frac{2}{\lambda_{\text{max}}}$, where λ_{max} is the largest eigenvalue of A, and the unique fixed point of F is $x^* = A^{-1}b$.

(d) Fixed step size gradient descent, defined by the iteration $x_{k+1} = x_k - s\nabla f(x)$, can be seen as a fixed point iteration algorithm, iterating the map $F(x) = x - s\nabla f(x)$. What are the fixed points of F in terms of f?

Now let $f(x) = \frac{1}{2}x^T Ax - x^T b$. What can you conclude about the convergence of gradient descent with step size s applied to f? What choice of step size s minimizes the contraction constant ρ of F?

A fixed point x^* of F(x) satisfies:

$$F(x^*) = x^*$$

$$x^* = x^* - s\nabla f(x^*)$$

$$s\nabla f(x^*) = 0$$

$$\nabla f(x^*) = 0$$
(Substituting $F(x^*)$ as $F(x) = x - s\nabla f(x)$)
$$(As $s \neq 0$ as it is our step size)$$

Going into more detail why $s \neq 0$:

If s = 0, F(x) would reduce to the identity map F(x) = x, which cannot contract distances and has no fixed point dynamics. By having $s \neq 0$, we thus make sure that we can have iterative behavior and thus have F(x) actually be a contraction. Furthermore, if s = 0, F(x) would not contract distances, and thus, the iterative process $F(x_k)$ would never converge.

Note that the fixed points of F(x) correspond to the critical points of f(x), or in other words, where the gradient of f(x) vanishes.

The Gradient of $\frac{1}{2}x^TAx - x^Tb$:

$$\nabla \left(\frac{1}{2}x^T A x - x^T b\right) =$$

$$\nabla \left(\frac{1}{2}x^T A x\right) - \nabla x^T b =$$

$$\nabla \left(\frac{1}{2}\sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j\right) - b =$$

$$\frac{1}{2}\sum_{j=1}^n A_{kj} x_j + \frac{1}{2}\sum_{i=1}^n A_{ik} x_i - b =$$

$$\sum_{j=1}^n A_{kj} x_j - b =$$

$$Ax - b$$

So, the Gradient of $\frac{1}{2}x^TAx - x^Tb$ is Ax - b.

Now, we substitute Ax - b, which is $\nabla \left(\frac{1}{2}x^TAx - x^Tb\right) =$, into F(x):

$$F(x) = x - s\nabla f(x)$$

$$F(x) = x - s(Ax - b)$$

Now, by using fixed point analysis, we find that $x^* = x^* - s(Ax^* - b)$. Thus, $s(Ax^* - b) = 0$. Remember that $s \neq 0$. Thus, we have that $Ax^* - b = 0$. $Ax^* = b$. Thus, $x^* = A^{-1}b$.

Now, we aim to show that this x^* is unique:

Assume x^* and y^* are two fixed points of F(x) chosen arbitrarily. This means:

$$F(x^*) = x^*$$
 and $F(y^*) = y^*$

Substituting F(x) = x - s(Ax - b) into these definitions, we have:

$$x^* = x^* - s(Ax^* - b)$$
 and $y^* = y^* - s(Ay^* - b)$

We can simplify this down to state:

$$s(Ax^* - b) = 0$$
 and $s(Ay^* - b) = 0$

As $s \neq 0$,

$$Ax^* = b$$
 and $Ay^* = b$

We can subtract equations:

$$Ax^* - Ay^* = b - b$$
$$A(x^* - y^*) = 0$$

Note that A is symmetric positive definite. This means it is invertible. Thus, we have that $x^* - y^* = 0$. This means $x^* = y^*$. Since $x^* = y^*$, and our fixed points were chosen arbitrarily, this means our fixed point x^* is unique.

The convergence of gradient descent depends on the contraction property of F(x). To analyze this, consider:

$$||F(x) - F(y)|| = ||(I - sA)(x - y)||$$

The map F(x) is a contraction if ||(I-sA)|| < 1, where ||(I-sA)|| is the spectral norm, or largest eigenvalue in magnitude, of I-sA.

We now continue on with Spectral Analysis:

Since A is symmetric positive definite, it has an eigenvalue decomposition of $A = Q\Lambda Q^T$, where Q is an orthogonal matrix meaning that $Q^TQ = I$ and $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ contains the eigenvalues of A, which are all positive meaning that $\lambda_i > 0$ for our Matrix A.

This means:

$$I - sA = Q(I - s\Lambda)Q^{T}$$

The eigenvalues of I - sA are $1 - s\lambda_i$ for i = 1, 2, ..., n. The spectral norm of I - sA is:

$$||(I - sA)|| = \max_{i} |1 - s\lambda_{i}|$$

For F to be a contraction, we require:

$$\max_{i} |1 - s\lambda_i| < 1$$

For all i, it follows:

$$|1-s\lambda_i|<1$$
 (Condition that was figured out as necessary in previous step)
 $-1<1-s\lambda_i<1$ (Definition of absolute value inequality)
 $0< s\lambda_i<2$

Since $\lambda_i > 0$ for all i, this implies: $0 < s < \frac{2}{\lambda_{\text{max}}}$, where $\lambda_{\text{max}} = \max_i \lambda_i$ is the largest eigenvalue of A

Thus, it follows:

- Gradient descent converges for $0 < s < \frac{2}{\lambda_{\text{max}}}$.
- The rate of convergence depends on the contraction constant $\rho = ||(I sA)||$.

We now consider the Optimal step size to minimize ρ . To minimize the contraction constant $\rho = \|(I - sA)\| = \max_i |1 - s\lambda_i|$, consider the eigenvalues $1 - s\lambda_i$. The goal is to minimize the largest deviation from 0. Note that the worst case eigenvalue is either $(1 - s\lambda_{\max})$ or $(1 - s\lambda_{\max})$. Thus, to balance between these, we try to minimize our contraction constant ρ . The contraction constant ρ is determined by the spectral norm of I - sA. It is

$$\rho = \|(I - sA)\|$$

Remember that

$$||(I - sA)|| = \max_{i} |1 - s\lambda_i|,$$

where λ_i are the eigenvalues of A, and s > 0. Thus,

$$\rho = \max_{i} |1 - s\lambda_i|$$

If s < 0, the eigenvalues $1 - s\lambda_i$ grow arbitrarily large in magnitude since $\lambda_i > 0$ leading to divergence rather than contraction. If s = 0, the iteration becomes stagnant meaning that there is no movement and thus, no optimization occurs. Thus, we proceed by having s > 0.

So, we proceed with $\rho = \max_{i} |1 - s\lambda_{i}|$, where λ_{i} are the eigenvalues of A, and s > 0. The goal is to minimize ρ , which governs the convergence rate of F(x).

The map F(x) = x - s(Ax - b) corresponds to a fixed point iteration:

$$F(x_k) = x_{k+1}$$

$$x_{k+1} = x_k - s\nabla f(x_k)$$

Thus, we have that

$$F(x_k) = x_k - s\nabla f(x_k)$$

Recall that $f(x) = \frac{1}{2}x^T Ax - x^T b$ and $\nabla f(x) = Ax - b$.

We analyze F(x) in terms of its spectral properties. The eigenvalues of I - sA are:

$$\mu_i = 1 - s\lambda_i, \quad i = 1, 2, \dots, n ,$$

where λ_i are eigenvalues of A.

We have ρ of F(x), where ρ is the spectral norm of I - sA. Thus, we have:

$$\rho = \max_{i} |1 - s\lambda_i|$$

To minimize ρ , we will prove why we want $1 - s\lambda_i = 0$ for all eigenvalues λ_i

Proof. Gradient descent converges if the map F(x) satisfies the contraction condition:

$$||F(x) - F(y)|| \le \rho ||x - y||$$
, where $\rho < 1$

The spectral norm of I - sA determines ρ :

$$\rho = \max_{i} |1 - s\lambda_i|$$

The contraction constant ρ represents the largest deviation of the eigenvalues of I-sA from 0. To minimize ρ , we aim to make:

$$1 - s\lambda_i = 0$$
, for all i

If $1 - s\lambda_i = 0$ for all i, then:

$$\mu_i = 0, \quad \forall i$$

This means the spectral norm of I - sA becomes:

$$||(I - sA)|| = \max_{i} |\mu_{i}| = 0$$

When ||(I - sA)|| = 0, the map F(x) becomes:

$$F(x) = 0(x - y)$$

which collapses all points to the unique fixed point $x^* = A^{-1}b$ in a single step as F(x) = 0 when this happens. Thus, this is the fastest possible convergence.

Thus, we have proven why to minimize ρ , we will want $1 - s\lambda_i = 0$ for all eigenvalues λ_i .

The contraction constant ρ for the gradient descent map F(x) is determined by the spectral norm of I - sA given by:

$$\rho = \max_{i} |1 - s\lambda_i|$$

This ensures that the convergence rate is governed by the step size s and the eigenvalue distribution of A. For optimal convergence, we minimize ρ by carefully choosing s to balance the contraction along the directions in which the matrix A stretches or compresses vectors.

To minimize ρ we must balance between the two extreme eigenvalues of I - sA:

$$|1 - s\lambda_{\text{max}}|$$
 and $|1 - s\lambda_{\text{min}}|$

To balance such extremes, we require

$$|1 - s\lambda_{\max}| = |1 - s\lambda_{\min}|$$

This equation ensures that neither extreme eigenvalue dominates ρ . Breaking the absolute values into cases, there are two possibilities:

i.
$$1 - s\lambda_{\text{max}} = -(1 - s\lambda_{\text{min}})$$

ii.
$$1 - s\lambda_{\text{max}} = 1 - s\lambda_{\text{min}}$$

We will briefly explain the trivial case where $1 - s\lambda_{\text{max}} = 1 - s\lambda_{\text{min}}$:

Here, we see that $\lambda_{\max} = \lambda_{\min}$. In this case, because $\lambda_{\max} = \lambda_{\min}$, we have that all eigenvalues of A are equal. This means $I - sA = (1 - s\lambda)I$. Note that for this case, we can say λ to mean an eigenvalue of A as all eigenvalues are equal in this case. Thus, for the trivial case, the contraction constant, ρ , is automatically minimized since all eigenvalues are equal, and no balancing is required.

We now look at the non trivial case: $1 - s\lambda_{\text{max}} = -(1 - s\lambda_{\text{min}})$. In this case, we have that:

$$1 - s\lambda_{\max} = -(1 - s\lambda_{\min})$$

$$1 - s\lambda_{\max} = -1 + s\lambda_{\min}$$

$$2 = s\lambda_{\max} + s\lambda_{\min}$$

$$2 = s(\lambda_{\max} + \lambda_{\min})$$

$$s = \frac{2}{\lambda_{\max} + \lambda_{\min}}$$

Thus, in this case, we have minimized ρ appropriately as desired.

In Summary:

- We have our fixed point $x^* = A^{-1}b$.
- Gradient descent converges for $0 < s < \frac{2}{\lambda_{\max}}$. The rate of convergence depends on the contraction constant $\rho = \|(I sA)\|$.
- \bullet We have that for non trivial cases: $s=\frac{2}{\lambda_{\max}+\lambda_{\min}}$