

Roadmap | Executive Diagram

Dataset Overview

• The dataset 48842 instances and 14 attributes relating to an adults.

Attributes include age, education, occupation, education number, race, etc.

• Our target attribute is whether the income is over or under \$50k.

We will be testing different features to reach an accurate prediction.

Teammate Names: Matthew Long, Bin Gui, Lance

Data Display

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours-per- week	native- country	50k
32556	27	Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech-support	Wife	White	Female	0	0	38	United-States	<=50K
32557	40	Private	154374	HS-grad	9	Married-civ- spouse	Machine-op- inspct	Husband	White	Male	0	0	40	United-States	>50K
32558	58	Private	151910	HS-grad	9	Widowed	Adm-clerical	Unmarried	White	Female	0	0	40	United-States	<=50K
32559	22	Private	201490	HS-grad	9	Never-married	Adm-clerical	Own-child	White	Male	0	0	20	United-States	<=50K
32560	52	Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec-managerial	Wife	White	Female	15024	0	40	United-States	>50K

Model Construction

Our first model was a decision tree. We tried to implement different features, but we found that education-num provided the highest accuracy. Other features, such as age and work hours, created much more expansive trees with lower accuracies.

Model Construction

Our second model was a logistic regression neural network. Similar to the decision tree, we tested different features. Since this model was a neural network, we also tried out different layers.

Performance

	Decision Tree			Logistic Regression				
	Feature 1	Feature 2	Feature 3	Feature 1	Feature 2	Feature 3		
Training	0.76	0.76	0.78	0.7587	0.7587	0.7772		
Validation	1	N/A		0.7566	0.7566	0.7770		
Test	0.76	0.76	0.79	0.7636	0.7627	0.7902		

Feature 1: Hours per week Feature 2: Age Feature 3: Education-num

Additional Performances

Logistic Regression: 0.841

Decision Tree: 0.843

Conclusions

- Both our models tied with a 79% accuracy rate for the test set.
- Feature 3 proved to be the most accurate in determining the target.
- Feature 1 and 2 performed nearly identically across both models.
- The outside source further demonstrated that both models produced similar results in terms of accuracy.
- From this project, we have learned that data, especially large sets, often form patterns when analyzed through machine learning models. The similarity between performances demonstrates how creating models can be unpredictable and sometimes no singular model is the "correct" choice.