

Ciência dos Materiais A

Departamento de Ciência dos Materiais

Margarida Lima (mmal@fct.unl.pt), Rui Borges (rcb@fct.unl.pt);

Carmo Lança (mcl@fct.unl.pt)

Departamento de Química

Ana Rita Duarte (ard08968@unl.pt)

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

12 – Quais são as posições intersticiais de maior volume nas redes CCC e CFC? Calcular o raio máximo dos átomos que podem entrar nessas posições.

Resolução:

Cúbica de Faces Centradas (CFC)

Interstícios octaédricos

Interstícios tetraédricos

Interstício octaédrico

a = 2R + 2r

$$2\sqrt{2}R = 2R + 2r$$

$$2r = 2\sqrt{2}R - 2R$$

$$r = R(\sqrt{2} - 1)$$

$$\frac{r}{R} = 0,414$$

а

Na estrutura CFC

а

$$a = 2\sqrt{2}R$$

Interstício tetraédrico

$$d_f^2 = a^2 + a^2$$
 $d_f = \sqrt{2}a$
 $d_c^2 = a^2 + (\sqrt{2}a)^2 = 3a^2$ $d_c = a\sqrt{3}$

A distância entre R e r é igual a ¼ da diagonal do cubo

$$R + r = \frac{1}{4}d_c$$

$$R + r = \frac{1}{4}a\sqrt{3}$$

como
$$a = 2\sqrt{2}R$$

$$R + r = \frac{1}{4} \cdot 2\sqrt{2}R\sqrt{3} = \frac{\sqrt{6}}{2}R$$

$$R\left(\frac{\sqrt{6}}{2} - 1\right) = r$$

$$\frac{r}{R} = 0,225$$

Interstício octaédrico

Interstício tetraédrico

Interstício octaédrico

$$a = 2R + 2r$$

$$a = \frac{4\sqrt{3}}{3}R$$

$$2R + 2r = \frac{4}{\sqrt{3}}R$$

$$2R + 2r = \frac{4}{\sqrt{3}}R \qquad 2r = \frac{4\sqrt{3}}{3}R - 2R = \frac{4\sqrt{3}}{3}R - \frac{6}{3}R$$

$$2r = R\left(\frac{4\sqrt{3} - 6}{3}\right)$$

$$\frac{r}{R} = 0.155$$

Interstício tetraédrico

$$(R+r)^2 = \left(\frac{1}{4}a\right)^2 + \left(\frac{a}{2}\right)^2$$

$$(R+r)^2 = \frac{1}{16}a^2 + \frac{a^2}{4} = \frac{5}{16}a^2$$

e na rede CCC
$$a = \frac{4\sqrt{3}}{3}R$$

$$(R+r)^2 = \frac{5}{16}a^2$$

$$(R+r)^2 = \frac{5}{16} \left(\frac{4\sqrt{3}}{3}R\right)^2 = \frac{5}{3}R^2$$

$$R + r = \sqrt{\frac{5}{3}}R$$

$$r = R\left(\sqrt{\frac{5}{3}} - 1\right)$$

$$\frac{r}{R} = 0,291$$

13 – Calcule o raio do maior interstício na rede do ferro-γ (CFC). O raio atómico do ferro na rede CFC é 0,129 nm e os maiores interstícios surgem em posições do tipo $(\frac{1}{2},0,0)$;

 $(0,\frac{1}{2},0)$; $(0,0,\frac{1}{2})$, etc.

Resolução:

$$a = 2R + 2r$$

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

$$(2R)^2 = \left(\frac{1}{2}a\right)^2 + \left(\frac{1}{2}a\right)^2$$

$$2R = \frac{1}{\sqrt{2}}a \quad \text{ou} \quad a = 2\sqrt{2}R$$

$$2R + 2r = 2\sqrt{2}R$$

$$r = (\sqrt{2} - 1)R = 0.414R$$

a = 2R + 2r

$$r = 0.414 * 0.129 = 0.053 nm$$

14 – Nos metais de estrutura CFC o escorregamento dá-se em planos do tipo {111} ao longo de direções <110> paralelas a esses planos. Escreva todas as possíveis combinações plano direção de escorregamento para estes metais.

Resolução:

família de planos {111}

planos $(1 \ 1 \ 1)$ $(\bar{1} \ 1 \ 1)$ $(1 \ \bar{1} \ 1)$ $(1 \ 1 \ \bar{1})$

 $(\overline{1} \quad \overline{1} \quad 1) \quad (\overline{1} \quad 1 \quad \overline{1}) \quad (1 \quad \overline{1} \quad \overline{1}) \quad (\overline{1} \quad \overline{1} \quad \overline{1})$

As direções de escorregamento <110> são as direções mais compactas dos planos {111}

15 – Usando os dados da tabela, compare o grau de solubilidade no estado sólido dos seguintes elementos no cobre : Zn, Pb, Si, Ni, Al e Be.

Elemento	Raio atómico nm	Estrutura cristalina	electronegatividade	Valência
Cobre	0,128	CFC	1,8	+2
Zinco	0,133	HC	1,7	+2
Chumbo	0,175	CFC	1,6	+2, +4
Silício	0,117	Cúbica Diamante	1,8	+4
Níquel	0,125	CFC	1,8	+2
Alumínio	0,143	CFC	1,5	+3
Berílio	0,114	HC	1,5	+2

Resolução:

- Raio atómico < 15%
- Estrutura cristalina igual
- Eletronegatividade próximas
- Valência igual

Sistema Cu-Zn

$$diferença de raios atómicos = \frac{raio Zn - raio Cu}{raio Cu} x100$$
$$= \frac{0,133 - 0,128}{0,128} x100 = +3,9\%$$

Elemento	Raio atómico nm	Estrutura cristalina	electronegatividade	Valência
Cobre	0,128	CFC	1,8	+2
Zinco	0,133	HC	1,7	+2
Chumbo	0,175	CFC	1,6	+2, +4
Silício	0,117	Cúbica Diamante	1,8	+4
Níquel	0,125	CFC	1,8	+2
Alumínio	0,143	CFC	1,5	+3
Berílio	0,114	HC	1,5	+2

- Raio atómico < 15%
- Estrutura cristalina igual
- Eletronegatividade próximas
- Valência igual

Sistema	Diferença dos raios atómicos,	Diferença de electronegatividades	Grau de solubilidade	Solubilidade máxima observada, %at
Cu-Zn	+3,9	0,1	Alta	38,3
Cu-Pb	+36,7	0,2	Muito baixa	0,1
Cu-Si	-8,6	0	Moderada	11,2
Cu-Ni	-2,3	0	Muito alta	100
Cu-Al	+11,7	0,3	Moderada	19,6
Cu-Be	-10,9	0,3	Moderada	16,4

%at Solubilidade70-100 Muito alta30-70 Alta10-30 Moderada1-10 Baixa<1 Muito baixa