Introduction to Optimization

Lecture 13: Constrained problems and optimality conditions.

From last class...

Linear programming and optimality conditions

We have

(LP)
$$\min_{\mathbf{x} \in \mathbb{D}^N} \{ c \cdot \mathbf{x} : A\mathbf{x} + \mathbf{s} = \mathbf{b}, \text{ and } \mathbf{s} \ge \mathbf{0} \}.$$

Primal-dual optimality conditions

Primal feasibility: Ax + s = b and $s \ge 0$.

Dual feasibility: $A^T y + c = 0$ and y > 0.

Complementarity: $y_i s_i = 0$ for i = 1, ..., M.

Write
$$K = N + M$$
 and $z = (x, s)^T$. Define $F : \mathbb{R}^K \to \mathbb{R} \cup \{+\infty\}$, $G : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ and $P \in \mathbb{R}^{K \times M}$ by

$$F(z) = c \cdot x + \iota_{\mathbb{R}^M_+}(s), \quad G(y) = \iota_{\{b\}}(y) \quad \text{and} \quad Pz = Ax + s,$$

respectively, so that (LP) consists in minimizing F(z) + G(Pz).

Write K = N + M and $z = (x, s)^T$. Define $F : \mathbb{R}^K \to \mathbb{R} \cup \{+\infty\}$, $G : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ and $P \in \mathbb{R}^{K \times M}$ by

$$F(z) = c \cdot x + \iota_{\mathbb{R}^M_+}(s), \quad G(y) = \iota_{\{b\}}(y) \quad \text{and} \quad Pz = Ax + s,$$

respectively, so that (LP) consists in minimizing F(z)+G(Pz). We compute

$$\partial F(z) = \left[\begin{array}{c} c \\ \partial \iota_{\mathbb{R}_+^M}(s) \end{array} \right]$$

Juan PEYPOUQUET Optimization 2023-2024 3 / 17

Write K = N + M and $z = (x, s)^T$. Define $F : \mathbb{R}^K \to \mathbb{R} \cup \{+\infty\}$, $G : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ and $P \in \mathbb{R}^{K \times M}$ by

$$F(z) = c \cdot x + \iota_{\mathbb{R}^M_+}(s), \quad G(y) = \iota_{\{b\}}(y) \quad \text{and} \quad Pz = Ax + s,$$

respectively, so that (LP) consists in minimizing F(z)+G(Pz). We compute

$$\partial F(z) = \begin{bmatrix} c \\ \partial \iota_{\mathbb{R}^M_+}(s) \end{bmatrix}, \quad \partial G(y) = \begin{cases} \emptyset & \text{if } y \neq b \\ \mathbb{R}^M & \text{if } y = b \end{cases}$$

Write K = N + M and $z = (x, s)^T$. Define $F : \mathbb{R}^K \to \mathbb{R} \cup \{+\infty\}$, $G : \mathbb{R}^M \to \mathbb{R} \cup \{+\infty\}$ and $P \in \mathbb{R}^{K \times M}$ by

$$F(z) = c \cdot x + \iota_{\mathbb{R}^M_+}(s), \quad G(y) = \iota_{\{b\}}(y) \quad \text{and} \quad Pz = Ax + s,$$

respectively, so that (LP) consists in minimizing F(z)+G(Pz). We compute

$$\partial F(z) = \left| \begin{array}{c} c \\ \partial \iota_{\mathbb{R}^M_+}(s) \end{array} \right|, \quad \partial G(y) = \left\{ \begin{array}{cc} \emptyset & \text{if} & y \neq b \\ \mathbb{R}^M & \text{if} & y = b \end{array} \right.$$

and

$$P^T y = \left[\begin{array}{c} A^T y \\ y \end{array} \right].$$

イロト (個) (注) (注) 注 りく()

3/17

Juan PEYPOUQUET Optimization 2023

Idea of the proof, continued

The primal-dual optimality conditions are

$$-P^T\hat{y} \in \partial F(\hat{z})$$
 and $\hat{y} \in \partial G(P\hat{x}),$

which we translate as

$$\begin{split} -P^T \hat{y} &\in \partial F(\hat{x}) &\Leftrightarrow -A^T \hat{y} = c, \quad \hat{s} \geq 0 \quad \text{and} \quad -\hat{y} \in \partial \iota_{\mathbb{R}^M_+}(\hat{s}). \\ \hat{y} &\in \partial G(P\hat{x}) &\Leftrightarrow A\hat{x} + \hat{s} = b, \quad \hat{y} \in \mathbb{R}^M. \end{split}$$

Idea of the proof, continued

The primal-dual optimality conditions are

$$-P^T\hat{y} \in \partial F(\hat{z})$$
 and $\hat{y} \in \partial G(P\hat{x}),$

which we translate as

$$\begin{split} -P^T \hat{y} \in \partial F(\hat{x}) & \Leftrightarrow & -A^T \hat{y} = c, \quad \hat{s} \geq 0 \quad \text{and} \quad -\hat{y} \in \partial \iota_{\mathbb{R}^M_+}(\hat{s}). \\ \hat{y} \in \partial G(P\hat{x}) & \Leftrightarrow & A\hat{x} + \hat{s} = b, \quad \hat{y} \in \mathbb{R}^M. \end{split}$$

On the other hand, $\hat{y} \in \partial \iota_{\mathbb{R}^M_+}(\hat{s})$ means that, for $i = 1, \ldots, M$, $\hat{y}_i = 0$ if $\hat{s}_i > 0$, and $\hat{y}_i \geq 0$ if $\hat{s}_i = 0$.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Distance from a plane to the origin

Distance from a plane to the origin

• Minimize distance to the origin

$$\sqrt{x^2 + y^2 + z^2}.$$

Distance from a plane to the origin

• Minimize distance to the origin

$$\sqrt{x^2 + y^2 + z^2}.$$

 $\ \ \, Equivalently, \ minimize$

$$x^2 + y^2 + z^2.$$

Distance from a plane to the origin

Minimize distance to the origin

$$\sqrt{x^2 + y^2 + z^2}.$$

Equivalently, minimize

$$x^2 + y^2 + z^2.$$

• Subject to the constraint

$$ax + by + cz - d = 0$$
.

Optimization problems with equality constraints

Let $f, h_1, h_2, \ldots, h_M \in \mathcal{C}^1(\mathbb{R}^N; \mathbb{R})$, and consider the constrained problem

$$\min_{x\in\mathcal{C}}f(x),$$

where the feasible set C is given by

$$C = \{x \in \mathbb{R}^N : h_m(x) = 0, \quad m = 1, \dots, M\}.$$

Optimization problems with equality constraints

Let $f, h_1, h_2, \ldots, h_M \in C^1(\mathbb{R}^N; \mathbb{R})$, and consider the constrained problem

$$\min_{x\in C}f(x),$$

where the feasible set *C* is given by

$$C = \{x \in \mathbb{R}^N : h_m(x) = 0, \quad m = 1, \dots, M\}.$$

A local solution (constrained minimizer) \hat{x} is regular if the set

$$V = \{\nabla h_1(\hat{x}), \nabla h_2(\hat{x}), \dots, \nabla h_M(\hat{x})\}\$$

is linearly independent.

Necessary conditions for optimality

Theorem (Lagrange Multiplier Theorem)

Let \hat{x} be a regular local minimizer of (\mathcal{P}) . There is a unique $\hat{\lambda} \in \mathbb{R}^M$, called Lagrange multiplier vector, such that

$$\nabla f(\hat{x}) + \sum_{m=1}^{M} \hat{\lambda}_m \nabla h_m(\hat{x}) = 0.$$

Necessary conditions for optimality

Theorem (Lagrange Multiplier Theorem)

Let \hat{x} be a regular local minimizer of (\mathcal{P}) . There is a unique $\hat{\lambda} \in \mathbb{R}^M$, called Lagrange multiplier vector, such that

$$\nabla f(\hat{x}) + \sum_{m=1}^{M} \hat{\lambda}_m \nabla h_m(\hat{x}) = 0.$$

If, in addition, $f, h_1, h_2, \ldots, h_M \in C^2(\mathbb{R}^N; \mathbb{R})$, then

$$y \cdot \left(\nabla^2 f(\hat{x}) + \sum_{m=1}^M \hat{\lambda}_m \nabla^2 h_m(\hat{x})\right) y \ge 0$$

for all $y \in V^{\perp}$.

• Pick x_k that minimizes

$$f_k(x) = f(x) + \frac{\varepsilon}{2} ||x - \hat{x}||^2 + \frac{k}{2} \sum_{m=1}^{M} ||h_m(x)||^2$$

over a small ball around \hat{x} .

8 / 17

Juan PEYPOUQUET Optimization 2023-:

• Pick x_k that minimizes

$$f_k(x) = f(x) + \frac{\varepsilon}{2} ||x - \hat{x}||^2 + \frac{k}{2} \sum_{m=1}^{M} ||h_m(x)||^2$$

over a small ball around \hat{x} .

• Let $k \to \infty$ and and use the optimality condition $\nabla f_k(x_k) = 0$ to deduce that $x_k \to \hat{x}$ and $kh_m(x_k) \to s_m$.

Juan PEYPOUQUET Optimization 2023-2024 8 / 17

• Pick x_k that minimizes

$$f_k(x) = f(x) + \frac{\varepsilon}{2} ||x - \hat{x}||^2 + \frac{k}{2} \sum_{m=1}^{M} ||h_m(x)||^2$$

over a small ball around \hat{x} .

- Let $k \to \infty$ and and use the optimality condition $\nabla f_k(x_k) = 0$ to deduce that $x_k \to \hat{x}$ and $kh_m(x_k) \to s_m$.
- Show that $\hat{\lambda}_m = s_m$ has the desired property.

Juan PEYPOUQUET Optimization 2023-

• Pick x_k that minimizes

$$f_k(x) = f(x) + \frac{\varepsilon}{2} ||x - \hat{x}||^2 + \frac{k}{2} \sum_{m=1}^{M} ||h_m(x)||^2$$

over a small ball around \hat{x} .

- Let $k \to \infty$ and and use the optimality condition $\nabla f_k(x_k) = 0$ to deduce that $x_k \to \hat{x}$ and $kh_m(x_k) \to s_m$.
- Show that $\hat{\lambda}_m = s_m$ has the desired property.
- Proceed analogously to obtain the second order condition.

Find the point in the plane ax + by + cz = d that is closest to the origin

9/17

Find the point in the plane ax + by + cz = d that is closest to the origin

• Minimize distance to the origin

$$\sqrt{x^2 + y^2 + z^2}.$$

9/17

Find the point in the plane ax + by + cz = d that is closest to the origin

Minimize distance to the origin

$$\sqrt{x^2 + y^2 + z^2}.$$

Equivalently, minimize

$$x^2 + y^2 + z^2.$$

Find the point in the plane ax + by + cz = d that is closest to the origin

Minimize distance to the origin

$$\sqrt{x^2 + y^2 + z^2}.$$

Equivalently, minimize

$$x^2 + y^2 + z^2.$$

Subject to the constraint

$$ax + by + cz - d = 0$$
.

Juan PEYPOUQUET

Optimization

2023-2024

Second order sufficient conditions

Theorem

Let $f, h_1, h_2, \ldots, h_M : \mathbb{R}^N \to \mathbb{R}$ be twice continuously differentiable, and let $\hat{\mathbf{x}} \in \mathbf{C}$ and $\hat{\lambda} \in \mathbb{R}^M$ satisfy

$$\nabla f(\hat{x}) + \sum_{m=1}^{M} \hat{\lambda}_m \nabla h_m(\hat{x}) = 0$$

and

$$y \cdot \left(\nabla^2 f(\hat{x}) + \sum_{m=1}^M \hat{\lambda}_m \nabla^2 h_m(\hat{x})\right) y > 0$$

for all $y \in V^{\perp} \setminus \{0\}$. Then, \hat{x} is a strict local minimizer of (\mathcal{P}) .

4 □ > 4 個 > 4 절 > 4 절 > 절

Break

Hydraulic Cylinder Design

Hydraulic Cylinder Design — Manufacturing Constraints

- Minimal force required
 - $f = \pi r^2 p \geq f_{min}$.

Hydraulic Cylinder Design - Manufacturing Constraints

- Minimal force required
 - $f = \pi r^2 p \geq f_{min}$.
- Maximal hoop stress

•
$$s = \frac{pr}{t} \le s_{max}$$

$Hydraulic\ Cylinder\ Design\ -\ Manufacturing\ Constraints$

- Minimal force required
 - $f = \pi r^2 p \geq f_{min}$.
- Maximal hoop stress

•
$$s = \frac{pr}{t} \le s_{max}$$

- Minimal thickness
 - \bullet $t \geq t_{min}$

Juan PEYPOUQUET

Optimization

2023-2024

Hydraulic Cylinder Design — Manufacturing Constraints

- Minimal force required
 - $f = \pi r^2 p \geq f_{min}$.
- Maximal hoop stress

•
$$s = \frac{pr}{t} \le s_{max}$$

- Minimal thickness
 - $t \geq t_{min}$
- Maximal pressure
 - $p \leq p_{max}$.

Juan PEYPOUQUET Optimization 2023-2024 13 / 17

$Hydraulic\ Cylinder\ Design\ -\ Optimization\ Problem$

- Minimize the total width 2(r+t)
- Subject to the constraints

•
$$pr - ts_{max} \leq 0$$

•
$$f_{min} - \pi r^2 p \le 0$$

•
$$t_{min} - t \leq 0$$

•
$$p - p_{max} \le 0$$
.

Inequality constraints

Let $f, g_j, h_m \in C^1(\mathbb{R}^N; \mathbb{R})$, and consider the constrained problem

$$\min_{x \in C} f(x),$$

where the feasible set C is now given by

$$C = \{ x \in \mathbb{R}^N : h_m(x) = 0, g_j(x) \le 0, \forall m, j \}.$$

Inequality constraints

Let $f, g_j, h_m \in C^1(\mathbb{R}^N; \mathbb{R})$, and consider the constrained problem

$$\min_{x \in C} f(x),$$

where the feasible set C is now given by

$$C = \{ x \in \mathbb{R}^N : h_m(x) = 0, g_j(x) \le 0, \forall m, j \}.$$

The set of active inequality constraints at a local solution \hat{x} is

$$A(\hat{x}) = \{ j : g_i(\hat{x}) = 0 \}.$$

Hydraulic Cylinder Design — Optimization Problem

- Minimize the total width 2(r+t)
- Subject to the constraints

•
$$pr - ts_{max} \leq 0$$

•
$$f_{min} - \pi r^2 p \le 0$$

•
$$t_{min} - t \leq 0$$

•
$$p - p_{max} \le 0$$
.

Necessary conditions for optimality

Theorem (Karush-Kuhn-Tucker conditions)

Let \hat{x} be a regular local minimizer of (\mathcal{P}) . There exist unique Lagrange multiplier vectors $\hat{\lambda} \in \mathbb{R}^M$ and $\hat{\mu} \in \mathbb{R}^J_+$, such that

$$\nabla f(\hat{x}) + \sum_{j=1}^{J} \hat{\mu}_j \nabla g_j(\hat{x}) + \sum_{m=1}^{M} \hat{\lambda}_m \nabla h_m(\hat{x}) = 0,$$

and $\hat{\mu}_j = 0$ for all $j \notin A(\hat{x})$, which means that $\hat{\mu}_j g_j(\hat{x}) = 0$ for all j.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

17 / 17

Juan PEYPOUQUET Optimization 2023-2024

Necessary conditions for optimality

Theorem (Karush-Kuhn-Tucker conditions)

Let \hat{x} be a regular local minimizer of (\mathcal{P}) . There exist unique Lagrange multiplier vectors $\hat{\lambda} \in \mathbb{R}^M$ and $\hat{\mu} \in \mathbb{R}^J_+$, such that

$$\nabla f(\hat{x}) + \sum_{j=1}^{J} \hat{\mu}_j \nabla g_j(\hat{x}) + \sum_{m=1}^{M} \hat{\lambda}_m \nabla h_m(\hat{x}) = 0,$$

and $\hat{\mu}_j = 0$ for all $j \notin A(\hat{x})$, which means that $\hat{\mu}_j g_j(\hat{x}) = 0$ for all j. If, in addition, $f, g_j, h_m \in \mathcal{C}^2(\mathbb{R}^N; \mathbb{R})$, then

$$y \cdot \left(\nabla^2 f(\hat{x}) + \sum_{m=1}^M \hat{\lambda}_m \nabla^2 h_m(\hat{x})\right) y \ge 0$$

for all $y \in \mathcal{V}^{\perp}$, where $\mathcal{V} = \{\nabla g_i(\hat{x}), \nabla h_m(\hat{x}), j \in A(\hat{x}), m = 1, \dots M\}$.