

10607004

HEAD ACTUATOR MECHANISM OF DISC-RECORDING/REPRODUCING APPARATUS

Patent Number: JP9082052

Publication date: 1997-03-28

Inventor(s): SATO TOSHIKUNI

Applicant(s): TOSHIBA CORP

Requested Patent: JP9082052

Application Number: JP19950231624 19950908

Priority Number(s):

IPC Classification: G11B21/21; G11B21/02

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of damages because of a collision between a head (slider) and a disc as much as possible, by realizing a structure for easing shocks to the head (slider) when shocks are applied from the outside.

SOLUTION: The mechanism is provided with a shock restraint member which is constituted so that a position of the center of gravity of the mechanism is in the vicinity of a boundary between a head arm 5 (mount 4) and a load beam 3. When a main component constituting a suspension mechanism 13 is the first load beam 3, the shock restraint member is a second load beam 6 integrally extended from the first load beam 3. The second load beam 6 has a load member 7 of a metallic member or the like for applying a predetermined load. In this structure, since the center of gravity of the mechanism is in the vicinity of the boundary of the head arm 5 and load beam 3, the center of an acceleration of shocks when shocks are applied, becomes rotational center of a slider 1, so that the slider 1 is refrained from jumping.

Data supplied from the esp@cenet database - I2

特開平9-82052

(43)公開日 平成9年(1997)3月28日

(51) Int. C l. ⁶ G 1 1 B 21/02	識別記号 6 0 1	府内整理番号 9559-5 D	F I G 1 1 B 21/02	技術表示箇所 C 6 0 1 B
---	---------------	--------------------	-------------------------	------------------------

審査請求 未請求 請求項の数 10 O L (全 9 頁)

(21)出願番号 特願平7-231624

(22)出願日 平成7年(1995)9月8日

(71)出願人 000003078
株式会社東芝
神奈川県川崎市幸区堀川町72番地
(72)発明者 佐藤 俊邦
東京都青梅市末広町2丁目9番地 株式会社
東芝青梅工場内
(74)代理人 弁理士 鈴江 武彦

(54)【発明の名称】ディスク記録再生装置のヘッドアクチュエータ機構

(57)【要約】 (修正有)

【課題】外部からの衝撃印加に対して、ヘッド（スライダ）に対する衝撃を緩和する構造を実現して結果的にヘッド（スライダ）とディスクとの衝突による損傷の発生を最小限にする。

【解決手段】機構の重心位置がヘッドアーム5（マウント4）とロードビーム3との境界近傍になるような構造を構成する衝撃抑制用部材を有する。衝撃抑制用部材は、サスペンション機構13を構成する主構成要素を第1のロードビーム3とした場合に、この第1のロードビーム3に一体的に延長された第2のロードビーム6である。第2のロードビーム6には、所定の荷重を与えるための金属部材等からなる荷重部材7を設ける。このような構造により、機構の重心位置をヘッドアーム5とロードビーム3との境界近傍にして、衝撃印加による衝撃加速度の中心をスライダ1の回転中心にさせ、スライダ1の跳躍を抑制できる。

(B)

1

【特許請求の範囲】

【請求項1】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えてるロードビーム部材と、

前記ロードビーム部材を支持し、前記ロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、

前記ロードビーム部材に結合または一体化された部材であって、前記ヘッドアーム部材と前記ロードビーム部材との境界近傍が重心位置となるような構造を構成する衝撃抑制用部材とを具備したことを特徴とするヘッドアクチュエータ機構。

【請求項2】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えてる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍であって、前記境界近傍が重心位置となるような構造を構成し前記第1のロードビーム部材に一体化された延長部となる第2のロードビーム部材とを具備したこととするヘッドアクチュエータ機構。

【請求項3】 前記衝撃抑制用部材は、前記ロードビーム部材に一体化された延長部と前記延長部に所定の荷重を加えるための荷重部材とからなることを特徴とする請求項1記載のヘッドアクチュエータ機構。

【請求項4】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えてる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍が重心位置となるような構造を構成し、前記第1のロードビーム部材に一体化された延長部となる第2の

2

ロードビーム部材であって、前記ヘッドアーム部材の一方または両方の側部側まで延長された第2のロードビーム部材とを具備したことを特徴とするヘッドアクチュエータ機構。

【請求項5】 前記第2のロードビーム部材に設けられて、前記境界近傍の重心位置となる構造を構成すると共に、前記第1のロードビーム部材に支持された前記ヘッドに対する荷重を調整するための荷重部材を有することを特徴とする請求項2または請求項4記載のヘッドアクチュエータ機構。

【請求項6】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えてる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍で、前記第1のロードビーム部材に一体化された延長部となる第2のロードビーム部材と、前記衝撃印加時に、前記第2のロードビーム部材の先端部と接触して衝撃を緩和させるための緩衝部材とを具備したことを特徴とするヘッドアクチュエータ機構。

【請求項7】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えてる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍で、前記第1のロードビーム部材に一体化された延長部となる第2のロードビーム部材であって、前記ヘッドアーム部材の一方または両方の側部側まで延長された第2のロードビーム部材と、

前記ヘッドアーム部材の一方または両方の側部側に配置されて、前記衝撃印加時に前記第2のロードビーム部材の先端部と接触して衝撃を緩和させるための緩衝部材とを具備したことを特徴とするヘッドアクチュエータ機構。

【請求項8】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半

50

径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えていたる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍で、前記第1のロードビーム部材に一体的に結合された延長部となる第2のロードビーム部材と、

前記ヘッドアーム部材の表面上に配置されて、前記衝撃印加時に前記第2のロードビーム部材の先端部と接触して衝撃を緩和させるための緩衝部材とを具備したことを特徴とするヘッドアクチュエータ機構。

【請求項9】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えていたる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍で、前記第1のロードビーム部材に一体的に結合された延長部となり、先端部が摩擦係数の大きい材質からなる第2のロードビーム部材と、

前記衝撃印加時に、前記第2のロードビーム部材の先端部と接触して発生する摩擦により衝撃力を発散させるような部材とを具備したことを特徴とするヘッドアクチュエータ機構。

【請求項10】 データの記録再生を行なうヘッドをディスク上に所定の間隔を有して支持し、前記ディスクの半径方向に移動させるディスク記録再生装置のヘッドアクチュエータ機構であって、

前記ヘッドを支持するサスペンション機構を構成し、前記ディスクの方向に荷重を与えていたる第1のロードビーム部材と、

前記第1のロードビーム部材を支持し、前記第1のロードビーム部材と比較して剛性が高い材質からなり、前記ヘッドに対して移動力を伝達するヘッドアーム部材と、前記ヘッドに対する衝撃印加時に回転中心となり、前記ヘッドアーム部材と前記第1のロードビーム部材との境界近傍で、前記第1のロードビーム部材に一体的に結合された延長部となり、先端部が摩擦係数の大きい材質からなる第2のロードビーム部材と、

前記ヘッドアーム部材の表面上に形成されたエリアであって、前記衝撃印加時に、前記第2のロードビーム部材の先端部と接触して発生する摩擦により衝撃力を発散させるよう表面粗さの大きい接触面部とを具備したことを特徴とするヘッドアクチュエータ機構。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、例えばハードディスク装置等のディスク記録再生装置において、ヘッドを支持してディスクの半径方向に移動させるヘッドアクチュエータ機構に関する。

【0002】

【従来の技術】 従来、例えばハードディスク装置(HDD)等のディスク記録再生装置は、ヘッドにより記録媒体であるディスクの記録面に対して、データの記録再生を行なう。

【0003】 HDDでは、ヘッドアクチュエータ機構(キャリッジ機構)が設けられている。この機構により、ヘッドはディスクのデータ記録面に対して、所定の間隔を以て浮上した状態で支持されて、ディスクの半径方向に移動(回転移動)するように構成されている。ヘッドアクチュエータ機構は、ディスクの記録面毎にヘッドを有するため、通常では複数のヘッドを有する。即ち、3枚のディスクを使用するHDDは6個のヘッドを備えている。

【0004】 各ヘッドは、図10(A)に示すように、スライダ1と称するセラミック材質等の支持体に実装されている。このスライダ1は、薄板材のロードビーム3とフレクシャ部材(板ばね部材)2とからなるサスペンション機構13により支持されている。

【0005】 ロードビーム3は、同図(B)に示すように、先端部でフレクシャ部材2を介してスライダ1を支持し、ディスクの方向(矢印)に荷重を加えている。この荷重により、スライダ1はディスクに対して安定に浮上した状態を維持する。なお、スライダ1は、ディスクの高速回転運動により発生する空気動圧により浮上する空気軸受浮上機構により浮上する。ロードビーム3は、マウント部材4を介してヘッドアーム5に固定されている。

【0006】 ヘッドアーム5は、ロードビーム3より高い剛性の材質(金属)からなり、図示しないボイスコイルモータ機構(VCM)に結合している。ヘッドアーム5は、VCMの駆動力を伝達して、スライダ1をディスクの半径方向に回転移動させる。

【0007】 ところで、特に小型のHDDはパーソナルコンピュータ等に内蔵されて使用されることが多いため、外部から衝撃を受けやすい環境にある。外部から衝撃が印加されたとき、前述のヘッドアクチュエータ機構では、スライダ1がディスクから離れる方向に力が作用することがある。

【0008】このような状態では、図10(A), (B)に示すように、ロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aを中心とした回転モーメントが発生し、スライダ1は瞬間にディスクから跳躍する。そして、サスペンション機構13の反力により、スライダ1が元の位置に復帰する方向に作用して、スライダ1がディスク面に衝突する事態が発生する。

【0009】

【発明が解決しようとする課題】前述のようにHDD等のヘッドアクチュエータ機構では、外部から衝撃が印加されたときに、ヘッドを実装しているスライダ1がディスクに衝突する事態が発生することがある。衝撃が大きい場合には、スライダ1との衝突により、ディスクの記録面に損傷(打痕傷)を与えることになる。

【0010】このような衝撃印加によるメカニズムとして、ヘッドアクチュエータ機構の重心がスライダ1(即ち、ヘッド)の近傍になる構造であるため、衝撃加速度の中心が重心であるスライダ1に加わる。このため、スライダ1がディスクから跳躍し、その反動でディスクに衝突する。

【0011】このような問題点を解消するために、従来ではロードビーム3の長さを短縮したり、スライダ1の重量を軽くさせて、スライダ1に与える前記の回転モーメントを小さくするような対策が考えられている。しかし、構造的な理由により必ずしも適切な対策とはいえない、十分な耐衝撃性能を得ることができない。

【0012】本発明の目的は、HDD等のヘッドアクチュエータ機構において、外部からの衝撃印加に対して、衝撃を緩和する構造を実現して、結果的にヘッド(スライダ)とディスクとの衝突による損傷の発生を最小限にすることにある。

【0013】

【課題を解決するための手段】本発明は、一般的に剛体に衝撃が印加されたときに、衝撃加速度の中心が重心に加わることと等価であるという原理に基づいて、機構の重心位置がヘッドアーム(マウント)とロードビームとの境界近傍になるような構造を構成する衝撃抑制用部材を有するヘッドアクチュエータ機構である。

【0014】衝撃抑制用部材は、サスペンション機構を構成する主構成要素を第1のロードビームとした場合に、この第1のロードビームに一体的に延長された第2のロードビームである。また、第2のロードビームには、所定の荷重を与えるための金属部材等からなる荷重部材が設けられている。

【0015】このような構造により、機構の重心位置をヘッドアーム(マウント)とロードビームとの境界近傍にして、衝撃印加による衝撃加速度の中心を、ヘッド

(スライダ)の回転中心にさせる。したがって、衝撃印加時に作用するヘッド(スライダ)の回転モーメントを

小さくして、スライダの跳躍を抑制することができる。

【0016】

【発明の実施の形態】以下図面を参照して本発明の実施の形態を説明する。

(第1の実施形態の構造) 図1は第1の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図および側断面図である。

【0017】本実施形態の機構は、特に小型のHDDに適用し、前述のVCMによりヘッドをディスク(図1(B)の10)の半径方向に回転移動させるロータリ型アクチュエータ機構を想定している。

【0018】本機構は、図1(A), (B)に示すように、ヘッドを実装したスライダ1と、サスペンション機構13を構成するロードビーム3と、フレクシャ部材(板ばね部材)2と、ヘッドアーム5とを有する。スライダ1は、セラミック材質等のヘッド支持体であるが、ヘッドと一体的構造要素と想定する。

【0019】ロードビーム3は薄板材からなり、図1(B)に示すように、先端部でフレクシャ部材2を介してスライダ1を支持し、ディスク10の方向に荷重を加えている。この荷重により、スライダ1はディスクに対して安定に浮上した状態を維持する。さらに、ロードビーム3はマウント部材4を介してヘッドアーム5に固定されている。

【0020】ヘッドアーム5は、ロードビーム3より高い剛性の材質(金属)からなり、図示しないボイスコイルモータ機構(VCM)に結合している。ヘッドアーム5は、VCMの駆動力を伝達して、スライダ1をディスク10の半径方向に回転移動させる。

【0021】さらに、本機構は、図1(A)に示すように、ロードビーム3にはほぼ中央部からロードビーム延長部(第2のロードビームに相当する)6が一体的に形成されている。このロードビーム延長部6は、ヘッドアーム5の先端部に形成された切欠き部5bまで延長しており、先端部に所定の重量を有する金属体7を載置している。

【0022】金属体7は、ロードビーム延長部6の先端部に固定されて、ディスク10の方向に重量に従った荷重を与える荷重部材である。このロードビーム延長部6と金属体7は、機構の重心位置をロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aの近傍に設定するよう設けられた構造要素である。

(第1の実施形態の作用効果) このような構造の機構において、前述したように、HDDに対して外部から衝撃が印加された場合(例えは物が衝突したような事態)、その衝撃印加に伴う衝撃加速度は機構の重心位置に作用する。

【0023】従来の機構では、その重心がスライダ1の近傍にあるため、スライダ1に対してディスク10から

離れる方向に力が作用し、スライダ1が跳躍するような事態が発生する。このとき、ディスク、ヘッドアーム5、マウント部材4は、ロードビーム3と比較して剛性が高いため、衝撃力による変位量は小さい。

【0024】このため、剛性の低いロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aを回転中心として、スライダ1に回転モーメントが作用する。これにより、スライダ1がディスクから離れるように跳躍する。そして、ロードビーム3による荷重と衝撃加速度により発生する力とが合致して、スライダ1は瞬間に静止し、その後に衝撃加速度の減少に伴ってディスクの方向に移動（降下）し、ディスク面に衝突することになる。

【0025】そこで、本実施形態は、機構の重心位置をロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aの近傍にする構造により、衝撃印加に伴う衝撃加速度を回転中心に作用させることになる。

【0026】したがって、外部から衝撃が印加されても、マウント部材4との境界線5aを回転中心とした回転モーメントが非常に小さく、スライダ1の回転運動は抑制された状態となる。即ち、スライダ1は、ディスク10から離れる方向に跳躍するような事態とはならないため、ディスク10に対して衝突するようなこともない。

【0027】なお、本実施形態において、ロードビーム延長部6の重量により機構の重心位置をロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aの近傍に設定できれば、金属体7を不要にすることができる。しかし、ロードビーム3によりスライダ1に作用する荷重とのバランスを考慮した場合に、ロードビーム延長部6と共に、金属体7を設けて荷重の調整を行なう方が望ましい。

（第2の実施形態）図2（A）、（B）は第2の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図および側断面図である。

【0028】第2の実施形態は、ロードビーム3と一緒に形成されて、ヘッドアーム5の両サイドに配置される各ロードビーム延長部6a、6bを設けた構造である。各ロードビーム延長部6a、6bには、それぞれ金属体7a、7bが固定されている。

【0029】このような第2の実施形態の構造においても、前述の第1の実施形態のように、機構の重心位置をロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aの近傍である回転中心に設定することができる。したがって、外部からの衝撃印加に伴って、スライダ1に発生する衝撃作用を大幅に緩和することができる。

【0030】また、第2の実施形態の構造の場合には、第1の実施形態とは異なり、ヘッドアーム5の先端部に

切欠き部5bを設ける必要はない。

（第3の実施形態）図3は第3の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図である。

【0031】第3の実施形態は、ロードビーム3と一緒に形成されて、ヘッドアーム5の一方のサイド側に配置されるロードビーム延長部6aを設けた構造である。ロードビーム延長部6aには金属体7aが固定されている。

【0032】このような第3の実施形態の構造においても、前述の第1の実施形態のように、機構の重心位置をロードビーム3とヘッドアーム5との境界近傍、実際にはマウント部材4との境界線5aの近傍である回転中心に設定することができる。したがって、外部からの衝撃印加に伴って、スライダ1に発生する衝撃作用を大幅に緩和することができる。

【0033】また、第3の実施形態の構造の場合には、第2の実施形態とは異なり、ロードビーム延長部6aが一方のみであるため（非対称形状）、重心位置が偏っている構造となる。しかし、スライダ1の跳躍方向に対する衝撃の緩和効果は同様であり、またその直角方向に対する衝撃力に対してはスライダ1の剛性で十分対処できると考えられるため差支えない。

（第4の実施形態）図4（A）、（B）は第4の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図および側断面図である。

【0034】第4の実施形態は、前述の第1の実施形態の構造において、図4（B）に示すように、マウント部材4に緩衝用部材（例えばゴム材質または樹脂材質の部材）8を設けた構造である。

【0035】緩衝用部材8は、衝撃印加のない通常の状態では、ロードビーム延長部6の先端部との間に微小な隙間を有し、衝撃印加時にロードビーム延長部6がディスク10の方向に回転したときにその先端部と接触するように配置されている。

【0036】このような構造であれば、ロードビーム延長部6に金属体7を設けない等の理由により、機構の重心位置が必ずしも回転中心の近傍にならない場合でも、スライダ1に対する衝撃を緩和させることができる。

【0037】即ち、HDDに対して外部から衝撃が印加された場合に、マウント部材4との境界線5aを回転中心として、スライダ1がディスクから離れるように跳躍したと想定する。

【0038】このとき、本実施形態では、ロードビーム延長部6がディスク10の方向に回転するよう作用するため、ロードビーム延長部6の先端部がマウント部材4の緩衝用部材8に接触することになる。

【0039】したがって、スライダ1に作用した衝撃力は緩衝用部材8との接触により、大半が拡散される（吸収される）ような事態となる。この後、スライダ1がディスク10の方向に移動（降下）して、ディスク10に

衝突することになるが、そのときの衝突に伴う衝撃力は非常に小さくなっている。これにより、結果的にスライダ1とディスク10との衝撃を緩和し、ディスク10に損傷が発生するような事態を防止することができる。

(第5の実施形態) 図5は第5の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図である。

【0040】第5の実施形態は、第3の実施形態と第4の実施形態とを組み合わせた応用形態に相当する。即ち、ヘッドアーム5の一方のサイド側に配置されるロードビーム延長部6aの先端部が、衝撃印加時にマウント部材4に設けられた緩衝用部材8に接触するような構造である。

【0041】緩衝用部材8は、ヘッドアーム5の一方のサイド側に延長されたマウント部材4上に配置されており、衝撃印加のない通常の状態では、ロードビーム延長部6aの先端部との間に微小な隙間を有するように設けられている。

【0042】このような第5の実施形態の構造の場合でも、前述の第4の実施形態と同様の作用効果を得ることができる。

(第6の実施形態) 図6(A), (B)は第6の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図および側断面図である。

【0043】第6の実施形態は、第4の実施形態の応用形態に相当するものであり、図6(A)に示すように、緩衝用部材8をヘッドアーム5に設けた構造である。ロードビーム延長部6は、衝撃印加のない通常の状態では、図6(B)に示すように、緩衝用部材8との間に微小な隙間を有するように構成されている。衝撃印加時には、ロードビーム延長部6は、ディスク10の方向に回転したときに、その先端部が緩衝用部材8に接触する。

【0044】このような構造の場合でも、前述の第4の実施形態と同様に、スライダ1に作用した衝撃力は緩衝用部材8との接触により、大半が拡散されて、結果的にスライダ1とディスク10との衝撃を緩和し、ディスク10に損傷が発生するような事態を防止することができる。

【0045】なお、第6の実施形態の構造であれば、ロードビーム延長部6の折り曲げ角度等を調整する必要があるが、ヘッドアーム5の先端部に切欠き部5bを設ける必要はない。

(第7の実施形態) 図7は、第7の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図である。

【0046】第7の実施形態は、第5の実施形態と第6の実施形態とを組み合わせた応用形態に相当する。即ち、緩衝用部材8は、ヘッドアーム5の一方のサイド側(例えばディスクの外周側)に延長された延長部5c上に配置されている。

【0047】ロードビーム延長部6bは、衝撃印加のない通常の状態では、その先端部と緩衝用部材8との間に

微小な隙間を有するように構成されている。このような構造の場合でも、第5の実施形態と同様に、衝撃印加時には、ロードビーム延長部6bの先端部が緩衝用部材8に接触して、結果的にスライダ1とディスク10との衝撃を緩和することができる。

(第8の実施形態) 図8(A), (B)は第8の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図および側断面図である。

【0048】第8の実施形態は、前述の第4の実施形態の構造において、ロードビーム延長部6の先端部として、プラスチック等の摩擦係数の大きい有機材料からなる先端部材6cを設けた構造である。さらに、図8(B)に示すように、先端部材6cは、マウント部材4の所定のエリアと接触するように配置されている。

【0049】マウント部材4の所定のエリアの表面は、表面の凹凸状態が激しい、即ち表面粗さの大きい面となるように形成されている。このような構造であれば、HDDに対して外部から衝撃が印加された場合に、前述したように、マウント部材4との境界線5aを回転中心として、スライダ1がディスクから離れるように跳躍したと想定する。

【0050】このとき、本実施形態では、ロードビーム延長部6がディスク10の方向に回転するように作用し、ロードビーム延長部6の先端部材6cがマウント部材4の所定のエリアに接触した状態で摺動することになる。

【0051】したがって、ロードビーム延長部6の先端部材6cとマウント部材4との間で摩擦が発生して、この摩擦によりスライダ1に作用した衝撃力が発散されることになる。この後、スライダ1がディスク10の方向に移動(降下)して、ディスク10に衝突することになるが、そのときの衝突に伴う衝撃力は非常に小さくなっている。これにより、結果的にスライダ1とディスク10との衝撃を緩和し、ディスク10に損傷が発生するような事態を防止することができる。

(第9の実施形態) 図9は、第9の実施形態に関するヘッドアクチュエータ機構の要部を示す斜視図である。

【0052】第9の実施形態は、前述の第8の実施形態の応用形態に相当する。即ち、第9の実施形態は、ヘッドアーム5の一方のサイド側に延長した延長部5dを形成し、ロードビーム延長部6aの先端部として、前述の先端部材6cと同様の摩擦係数の大きい先端部材6dを設けた構造である。

【0053】ヘッドアーム5の延長部5dは、前述のマウント部材4の所定のエリアと同様に、表面粗さの大きい表面に形成されている。このような構造の場合でも、前述の第8の実施形態と同様に、衝撃印加時には、ロードビーム延長部6の先端部材6dとヘッドアーム5の延長部5dとの間で摩擦が発生して、この摩擦によりスライダ1に作用した衝撃力が発散されることになる。した

11

がって、結果的にスライダ1とディスク10との衝撃を緩和し、ディスク10に損傷が発生するような事態を防止することができる。

【0054】

【発明の効果】以上詳述したように本発明によれば、HDD等のヘッドアクチュエータ機構において、外部からの衝撃印加時に、ヘッド（スライダ）に対する衝撃を緩和する構造を実現することができる。したがって、衝撃印加時に、ヘッド（スライダ）がディスクから跳躍し、その反動でディスクに衝突するような事態が発生しても、その衝突の衝撃を緩和できるため、結果的にヘッド（スライダ）とディスクとの衝突による損傷の発生を最小限にすることが可能である。

【図面の簡単な説明】

【図1】本発明の第1の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図2】第2の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図3】第3の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図4】第4の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図5】第5の実施形態に関するヘッドアクチュエータ

12

タ機構の要部を示す図。

【図6】第6の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図7】第7の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図8】第8の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

【図9】第9の実施形態に関するヘッドアクチュエータ機構の要部を示す図。

10 【図10】従来のヘッドアクチュエータ機構の要部を示す図。

【符号の説明】

1…スライダ（ヘッド支持体）

2…フレクシャ部材

3…ロードビーム（第1のロードビーム）

4…マウント部材

5…ヘッドアーム

6…ロードビーム延長部（第2のロードビーム）

7…金属体（荷重部材）

20 8…緩衝用部材

10…ディスク

13…サスペンション機構

【図1】

(A)

(B)

【図2】

(A)

(B)

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

