Venezdí 15/10/2021

DEFINIZIONE: Sia $f: A \subset \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$ punto oli accumulazione per A: Si dice che f(x) ha la proprietà P definitivamente per $x \to x_0$ se $\exists U$ intorno di $x_0 + c$. f(x) ha la proprietà $P: \forall x \in A \land (U \setminus \{x_0\})$.

(DEFINIZIONE ALTERNATION DI LIMITE!)

$$f(x) \rightarrow l \text{ per } x \rightarrow x_0 \text{ se } \forall V \text{ informo } di l,$$

$$f(x) \in V \text{ definitivamente } \text{ per } x \rightarrow x_0.$$

· ES: f: R\{0} → R. f(x) = 1.

Vole:
$$|f(x)| < \frac{1}{10}$$
 definitionmente, per $x \to +\infty$.

Posso scepliere
$$V = (10, +\infty)$$
 e vale the $|f(x)| \le \frac{1}{10}$, $\forall x > 10$, owers $\forall x \in V$.

TEOREMA: PERMANENZA DEL SEGNO

Sia $f: A \subset \mathbb{R} \longrightarrow \mathbb{R}$, $x_0 \in \mathbb{R}$ punto di accumulazione di ASe vale lim f(x) f(x) f(x) allora f(x) f(x) definitivamente per $x \to x_0$

(666346410)

DIMOSTRAZIONE: Sia l:= lim fix 70. Dalla definizione di limite (supponendo l ++0), com $\mathcal{E} = \mathcal{E}$, dato $\mathcal{V} = (\mathcal{L} - \mathcal{L}, \mathcal{L} + \mathcal{L}) = (0, 2\mathcal{L})$, \mathcal{F} \mathcal{V} intermo di x_0 t.c. $f(x) \in V$ per $A \land (U \setminus \{x_0\})$, ma $f(x) \in V = 7$ $f(x) \neq 0$ (Attentione & "z") osserwazione: Se lim z' o, mon \bar{e} deto the f(x) z o definitivamente per $x \to x_0$. Infatti: se lim f(x) = 0 mon saprummo se $f(\bar{e})$ positiva o megativa vicino a D. AMMMAA ... CORONARIO: Sia $f: A \subset \mathbb{R} \to \mathbb{R}$, $X_0 \in \overline{\mathbb{R}}$ punto di accumulazione per X.

Se $f(x) \stackrel{\mathcal{L}(\Delta)}{=} 0$ definitivamente per $X \to X_0$ e se $\exists \lim_{X \to X_0} f(x)$, allora $\lim_{X \to X_0} f(x) = \lim_{X \to X_0} f(x)$ ollora l zo. NIMOSTRAZIONE: Per anurolo, se fosse l <0, per il teorema della permanenza del segno, assumoummo f(x) < 0 definitivamente per $x \rightarrow x_0$. Ma questo contraddice f(x) zo definitivamente per $x \to x_0$. TEOREMA: CONFRONTO Siano f, g: $A \subset \mathbb{R} \to \mathbb{R}$, $x \circ \in \mathbb{R}$ punto di accumulatione pere A. $l_{i}:=\lim_{x\to\infty} f(x)$, $l_{z}:=\lim_{x\to\infty} g(x)$. Supponionno de $f(x) \in g(x)$ definitivoumente pere $x\to x \circ x$. Allora l, \le lz. DIMOSTRAZIONE: Per amurdo ipotizzionno che li >lz. Siano VI intorno di li e Vz intormo di la t.c. V, 1 Vz + Ø. In particulare 9,742 Yg, EV, c Ygz eV2.

· ldem con h: 3 Uz intorno di xo t.c. hx, e V Vx e t 1(Uz){xo}	
Per l'ipotesi (11 (teorema dei due carabinieri), $\exists V_0$ intereno di X_0 $\dagger .c.$ $f(x) \leq g(x) \leq h(x)$ per $X \in A$ $h(V_0 \setminus \{x_0\})$.	
Sia $V:=V_0 \wedge V_1 \wedge V_2 \wedge \mathcal{V}$ Allora per $x \in A \wedge (V \setminus \{x_0\})$: $f(x) \in V$, $h(x) \in V$, $\omega \wedge f(x) = g(x) \in \Lambda(x) = 7$ $g(x) \in V$.	
· ES: lim Sim x = ? " LIMITE NOTEVOLE",	
(1) Singolvemente: $\lim_{x\to 0} \sin x = 0$, $\lim_{x\to 0} x = 0$.	
$S_{io} \times \epsilon \left(o_{i} \frac{\pi}{2}\right),$	
Sin x ton x	
O cos x b A	
I Tziangoli ODC e OÂB somo simili. =7 $\overline{AB} = \frac{\sin x}{\cos x} = \tan x$. Abbiamo che:	
D × 7 Sim ×	
(Quinol(:)	
• $area (o \hat{A} B) = \overline{o A} \cdot \overline{A B} = 1 \cdot tan \times 2$	
orea $(OAC) = \frac{x}{2}$ Quindi, $OAC < OAB = 7 \times = area (OAC) < area (OAB) = tom x.$	
Quindi sin x < tan x , 2 V x & (0, II).	

Diviolo per "sim x" 1 2 x 2 1. Elevo alla "-1": 17 Sim x 7 cos x Q Sia cos x che sim x v somo pari. Quindi & vale ambe per x & (II,0) =7 Vale the cosx < sim x < 1 definitivamente per x >0. Sceoliendo $V = \begin{pmatrix} -\frac{77}{2}, \frac{77}{2} \end{pmatrix}$, dico che lim $f(x) = 1 = \lim_{x \to 0} h(x)$. =7 Dal teoreme dei corabinieri: lim g(x) = lim sinx = 1 • ES: Da limite notevole $\frac{1}{2} \times \frac{1}{2}$ | per $\times \to 0$ | Seque anche $\frac{1}{2} \times \frac{1}{2} \times \frac$ • ES: $lim tan \times = lim tan \times$ OSSETULZIONE: lim sin x = sin xo, Y xo e R. ("NON CENTRA" CON 1 ZIMITI NOTEUDI) Allo stesso modo. · lim cos x = cos x. ∀x ∈ R · $\lim_{x \to x_0} \alpha^x = \alpha^{x_0}$ • $\lim_{x \to x_0} \log_a x = \log_a x_0 \quad \forall x \in \mathbb{R}$ (Von la dimostriama) Idem per tan, arctan, cotan, x.M. Vedremo che questo è un modo per dire che quinte funcioni somo continue. · Es: lim x sim x Se chiamo $x \cdot \sin L = g(x)$ ho che: $f(x) = -|x| \leq g(x) \leq |x| = h(x) \langle - \rangle$

 $\lim_{x \to 0} f(x) = 0 = \lim_{x \to 0} h(x) = 7 \lim_{x \to 0} g(x) = 0$ h(x)osservatione: Esiste una versione semplificata del teoreme dei du carobinieri mel coso in aui; ·) f(x) = g(x) definitivamente pere x > x0; •) $\lim_{x \to x_0} \int_{-\infty}^{\infty} (x) = +\infty$ Allora Dim g(x) = +00 Se: .) g x) ≤ h x) definitivamente per x → xo ·) Rim h(x) = - 0; Allora lim $f(x) = -\infty$. • ES: $\lim_{x \to +\infty} (x^2 + \cos x)$. $g(x) = \frac{x^2 - 1}{f(x)}$ perché $\cos x = 1$. $\lim_{x \to 1} (x^2 - 1) = +\infty - 1 = +\infty = 7$ $\lim_{x \to 7} g(x) = +\infty$ × →+∞ Per cara: continuare esercisi su disuguagliante.

Pierluigi Covone - 15.10.2021