Příprava na cvičení: Algebra matic – Aplikace v Grafice a AI

Cíle Cvičení:

- 1. Procvičit základní operace s maticemi (sčítání, násobení skalárem, násobení matic).
- 2. Pochopit násobení matic jako skládání lineárních transformací.
- 3. Ukázat geometrický význam matic na příkladech relevantních pro **počítačovou grafiku a hry** (rotace, zkosení, reflexe).
- 4. Demonstrovat, jak algebra matic umožňuje efektivně reprezentovat a manipulovat s transformacemi, včetně nelineárního posunutí pomocí triku s homogenními souřadnicemi.

Rekapitulace z přednášek (04A, 04B):

- 1. Lineární zobrazení: $f(\sum a_i x_i) = \sum a_i f(x_i)$. Je jednoznačně určeno hodnotami na bázi.
- 2. Matice zobrazení $A: \mathbb{F}^s \to \mathbb{F}^r$: Sloupce matice A jsou obrazy vektorů kanonické báze, tj. $A = (A \cdot e_1, ..., A \cdot e_s)$.
- 3. **Násobení matice vektorem:** $A \cdot x = \sum_{j=1}^{s} x_j (A \cdot e_j)$. Toto je základní operace např. v neuronových sítích.
- 4. Operace s maticemi:
 - 1. Sčítání: Po složkách (jen pro matice stejných rozměrů).
 - 2. Násobení skalárem: Každá složka se násobí skalárem.
 - 3. Násobení matic (Skládání zobrazení): Pro $A: \mathbb{F}^s \to \mathbb{F}^p$ a $B: \mathbb{F}^p \to \mathbb{F}^r$ je součin $C = B \cdot A$ zobrazení $\mathbb{F}^s \to \mathbb{F}^r$.
- 5. **Vlastnosti:** Násobení je asociativní, ale obecně **není komutativní**. Jednotková matice E_n funguje jako neutrální prvek.

Problém 5.1.4 – Je posunutí lineární?

Zadání: Ať $f:\mathbb{R}^2 \to \mathbb{R}^2$ je zobrazení definované takto

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Ukažte, že f není lineární zobrazení.

Postup Řešení na Tabuli:

- 1. **Podmínka nulového vektoru:** Pro lineární zobrazení f musí platit f(o) = o.
- 2. Výpočet:

$$f\left(\begin{pmatrix}0\\0\end{pmatrix}\right) = \begin{pmatrix}0\\0\end{pmatrix} + \begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$$

3. **Závěr:** Protože $f((o)) \neq (o)$, zobrazení f není lineární.

Problém 5.1.2 – Zápis matice a výpočet obrazu vektoru

Zadání: Lineární zobrazení $M: \mathbb{R}^3 \to \mathbb{R}^4$ je určeno hodnotami:

$$M:e_1\mapsto\begin{pmatrix}3\\-2\\2\\2\end{pmatrix},\quad M:e_2\mapsto\begin{pmatrix}2\\-3\\5\\12\end{pmatrix},\quad M:e_3\mapsto\begin{pmatrix}-16\\2\\-4\\1\end{pmatrix}$$

(1) Zapište M jako matici. (2) Nalezněte funkční hodnotu M ve vektoru $\begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$.

Postup Řešení na Tabuli:

1. Sestavení matice: Sloupce matice jsou obrazy vektorů kanonické báze.

$$M = (M \cdot e_1, M \cdot e_2, M \cdot e_3) = \begin{pmatrix} 3 & 2 & -16 \\ -2 & -3 & 2 \\ 2 & 5 & -4 \\ 2 & 12 & 1 \end{pmatrix}$$

2. **Výpočet obrazu vektoru:** Obraz $M \cdot x$ je lineární kombinace sloupců matice M s koeficienty z vektoru x.

$$M \cdot \begin{pmatrix} -3\\2\\1 \end{pmatrix} = (-3) * \begin{pmatrix} 3\\-2\\2\\2 \end{pmatrix} + 2 * \begin{pmatrix} 2\\-3\\5\\12 \end{pmatrix} + 1 * \begin{pmatrix} -16\\2\\-4\\1 \end{pmatrix}$$
$$= \begin{pmatrix} -9+4-16\\6-6+2\\-6+10-4\\-6+24+1 \end{pmatrix} = \begin{pmatrix} -21\\2\\0\\19 \end{pmatrix}$$

Problém 5.1.6 - Rotace v Grafice a Herních Enginech

Zadání: Matice rotace v \mathbb{R}^2 je $R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Z geometrického faktu, že složení dvou rotací je opět rotace, musí platit $R_{\alpha} \cdot R_{\beta} = R_{\alpha+\beta}$. Odvoďte z této maticové rovnosti součtové vzorce pro $\sin(\alpha+\beta)$ a $\cos(\alpha+\beta)$.

Postup Řešení na Tabuli:

1. Vynásobení matic $R_{\alpha} \cdot R_{\beta}$:

$$R_{\alpha} \cdot R_{\beta} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$

$$= \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -\cos \alpha \sin \beta - \sin \alpha \cos \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \end{pmatrix}$$

2. Zápis matice $R_{\alpha+\beta}$:

$$R_{\alpha+\beta} = \begin{pmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix}$$

- 3. Porovnání položek z rovnosti $R_{\alpha} \cdot R_{\beta} = R_{\alpha+\beta}$:
 - 1. Položka (1,1): $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
 - 2. Položka (2,1): $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Problém 5.2.1 – Reflexe (Zrcadlení) a Algebra Matice

Zadání: Ukažte, že pro matici $A: \mathbb{R}^2 \to \mathbb{R}^2$ z rovnosti $A^2 = E_2$ neplyne nutně ani $A = E_2$, ani $A = -E_2$. Najděte příklad takové matice a vysvětlete její geometrický význam.

Postup Řešení na Tabuli:

- 1. **Hledáme geometrickou transformaci**, která je sama sobě inverzí. Kandidát: reflexe (zrcadlení).
- 2. Matice reflexe podle osy x:

1.
$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

2.
$$e_2=\begin{pmatrix}0\\1\end{pmatrix}\mapsto\begin{pmatrix}0\\-1\end{pmatrix}$$

3. Matice je $A=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$. Zjevně $A\neq E_2$ a $A\neq -E_2$.
3. **Ověření** $A^2=E_2$:

$$A^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2$$

4. Závěr: Našli jsme příklad. Geometricky: dvojí zrcadlení podle stejné osy je identita.

Problém 6.3.3 (Motivační Bonus) - Posunutí v Grafice pomocí Matic

Zadání: Vymyslete matici, která realizuje posunutí bodu $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ do bodu $\begin{pmatrix} x+a \\ y+b \\ 1 \end{pmatrix}$.

Postup Řešení na Tabuli:

- 1. **Motivace:** Posunutí není lineární, ale chceme ho reprezentovat maticí. Použijeme "trik" bod $\binom{x}{y}$ z \mathbb{R}^2 reprezentujeme jako vektor $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ z \mathbb{R}^3 (homogenní souřadnice).
- 2. **Cíl:** Hledáme matici Trozměrů 3×3 takovou, že:

$$T \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ 1 \end{pmatrix}$$

- 3. Odvození řádků matice T:
 - 1. První řádek výsledku: x + a = 1 * x + 0 * y + a * 1. Řádek je (1, 0, a).
 - 2. Druhý řádek výsledku: y+b=0*x+1*y+b*1. Řádek je (0,1,b).
 - 3. Třetí řádek výsledku: 1 = 0 * x + 0 * y + 1 * 1. Řádek je (0, 0, 1).
- 4. Výsledná matice posunutí (translace):

$$T_{a,b} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$$

5. Ověření:

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 1x + 0y + a * 1 \\ 0x + 1y + b * 1 \\ 0x + 0y + 1 * 1 \end{pmatrix} = \begin{pmatrix} x + a \\ y + b \\ 1 \end{pmatrix}$$

Funguje to. Tímto způsobem můžeme všechny 2D transformace (rotace, škálování, posunutí...) reprezentovat jako násobení matic 3×3 .