Tesi di Laurea

LA TRASFORMATA DI WINOGRAD NELLA TEORIA DEI CODICI CORRETTORI

Sebastiano Ferraris

Università degli studi di Torino Facoltà di Scienze Matematiche Fisiche Naturali Corso di laurea Magistrale in Matematica

$$\mathbb{F}[x] / (x^r - 1) \xrightarrow{\psi_4} \mathbb{F}C_r$$

$$\psi_2 \qquad \qquad \psi_3$$

 $\dot{\mathcal{V}_{r,\mathbb{F}}^c}$

 ψ_1

Prodotto di convoluzione dei vettori circolanti a, b:

$$(\mathbf{a} \star \mathbf{b})_i = \sum_{j \in \mathbb{Z}_r} a_j b_{i-j} \quad \forall i \in \mathbb{Z}_r$$

Prodotto di convoluzione dei vettori circolanti a. b:

$$(\mathbf{a} \star \mathbf{b})_i = \sum_{j \in \mathbb{Z}} a_j b_{i-j} \quad \forall i \in \mathbb{Z}_r$$

Per r=3 equivale a

$$\mathbf{a} \star \mathbf{b} = \begin{pmatrix} a_0 & a_1 & a_2 \end{pmatrix} \begin{pmatrix} b_0 & b_1 & b_2 \\ b_2 & b_0 & b_1 \\ b_1 & b_2 & b_0 \end{pmatrix}$$

Prodotto di convoluzione dei vettori circolanti a. b:

$$(\mathbf{a} \star \mathbf{b})_i = \sum_{j \in \mathbb{Z}_r} a_j b_{i-j} \quad \forall i \in \mathbb{Z}_r$$

Per r=3 equivale a

$$\mathbf{a} \star \mathbf{b} = \begin{pmatrix} a_0 & a_1 & a_2 \end{pmatrix} \begin{pmatrix} b_0 & b_1 & b_2 \\ b_2 & b_0 & b_1 \\ b_1 & b_2 & b_0 \end{pmatrix}$$

Tutte le strutture possiedono uno Shifter:

Strutture	$\mathcal{V}^c_{r,\mathbb{F}}$	$\mathcal{M}^c_{r,\mathbb{F}}$	$\mathbb{F}C_r$	$\mathbb{F}[x]/(x^r-1)$
Shifter	$(0,1,0,\ldots,0)$	s_n	\overline{g}	\overline{x}

Fattorizzazione di x^T-1 Ideali e Idempotenti Trasformata di Winograd Codici correttori Applicazioni

IL GRUPPO $Gal(\mathbb{F}(\xi),\mathbb{F})$ Orbite ed etichette teorema di fattorizzazion cardinalita' di \mathscr{L} fattorizzazione di $\mathcal{R}_{r,\mathbb{F}}$

Vogliamo scomporre x^r-1 su $\mathbb F$ nel prodotto dei polinomi minimi delle sue radici.

Teorema

Sia $\mathbb F$ campo perfetto, ξ radice primitiva r-esima dell'unità, $Gal(\mathbb F(\xi),\mathbb F)$, gruppo di Galois dell'estensione $\mathbb F(\xi)$ su $\mathbb F$, allora

- 1 Per ogni $\varphi \in Gal(\mathbb{F}(\xi), \mathbb{F})$, ξ e $\varphi(\xi)$ hanno lo stesso polinomio minimo.
- 2 Per ogni $t \in \mathbb{Z}_r$ e per ogni $\varphi \in Gal(\mathbb{F}(\xi), \mathbb{F})$, ξ^t e $\varphi(\xi^t)$ hanno lo stesso polinomio minimo.

Fattorizzazione di x^T-1 Ideali e Idempotenti Trasformata di Winograd Codici correttori Applicazioni

IL GRUPPO $Gal(\mathbb{F}(\xi),\mathbb{F})$ ORBITE ED ETICHETTE
TEOREMA DI FATTORIZZAZIONE
CARDINALITA' DI \mathscr{L} FATTORIZZAZIONE DI $\mathcal{R}_{n,n}$

$$E^{(r)} = \{\xi^j\}_{j=0}^{r-1} \cong \mathbb{Z}_r \qquad G \leq \mathbb{Z}_r^{\star} \qquad G \cong Gal(\mathbb{F}(\xi), \mathbb{F})$$

$$Gal(\mathbb{F}(\xi), \mathbb{F})) \times E^{(r)} \longrightarrow E^{(r)}$$

 $(\varphi_k, \xi^l) \longmapsto \varphi_k(\xi^l) = \xi^{lk}$

$$G \times \mathbb{Z}_r \longrightarrow \mathbb{Z}_r$$

 $(g, l) \longmapsto gl$

IL GRUPPO $Gal(\mathbb{F}(\xi),\mathbb{F})$ ORBITE ED ETICHETTE TEOREMA DI FATTORIZZAZIONE CARDINALITA' DI \mathscr{L} FATTORIZZAZIONE DI $\mathcal{R}_{r,\mathbb{F}}$

Teorema

Sia G definito come sopra. Due elementi l_1 ed l_2 di \mathbb{Z}_r sono nella stessa orbita della azione

$$G \times \mathbb{Z}_r \longrightarrow \mathbb{Z}_r$$

 $(g, l) \longmapsto gl$

se e solo se ξ^{l_1} e ξ^{l_2} hanno lo stesso polinomio minimo su \mathbb{F} .

Per trovare il gruppo $G \cong Gal(\mathbb{F}(\xi), \mathbb{F})$, sottogruppo di \mathbb{Z}_r^* :

$$\begin{array}{cccc} \mathbb{F} = \mathbb{Q} & \Longrightarrow & G = \mathbb{Z}_r^{\star} \\ \mathbb{F} = \mathbb{F}_q & \Longrightarrow & G \leq \mathbb{Z}_r^{\star} & |G| = per_{\mathbb{Z}_r^{\star}}(q) \end{array}$$

Definizione

$$t \in \mathbb{Z} \qquad Gal(\mathbb{F}(\xi), \mathbb{F}) \cong G \leq \mathbb{Z}_r^*$$

La classe ciclotomica $o(r, \mathbb{F})$ -orbita di t è definita come l'insieme

$$O_{r,\mathbb{F}}(t) = O(t) = \{gt \mod r \mid g \in G\} \subseteq \mathbb{Z}_r$$

Diciamo etichetta il più piccolo elemento di ogni orbita, e indichiamo l'insieme delle etichette con

$$\mathscr{L}_{r,\mathbb{F}} = \mathscr{L}$$

La cardinalità dell'orbita di t

$$m_{r,\mathbb{F}}(t) = m(t) = |O(t)|$$

coincide con il grado del polinomio minimo di $\boldsymbol{\xi}^t$

La cardinalità dell'insieme delle etichette

$$l_{r,\mathbb{F}} = l = |\mathcal{L}|$$

coincide con il numero di fattori irriducibili di $x^r - 1$

Teorema

Sia r intero positivo ed \mathbb{F} campo perfetto.

1 Ad ogni orbita O(v) corrisponde un polinomio irriducibile in $\mathbb{F}[x]$ definito da

$$M^{(v)}(x) = \prod_{t \in O(v)} (x - \xi^t)$$

2 La decomposizione in $\mathbb F$ di x^r-1 in fattori irriducibili è data da

$$x^r - 1 = \prod_{v \in \mathscr{L}} M^{(v)}(x)$$

IL GRUPPO $Gal(\mathbb{F}(\xi),\mathbb{F})$ ORBITE ED ETICHETTE TEOREMA DI FATTORIZZAZIONE CARDINALITA' DI \mathscr{L} FATTORIZZAZIONE DI $\mathcal{R}_{r,\mathbb{F}}$

Teorema

 \mathbb{F} campo perfetto, r intero positivo coprimo con p,

$$l_{r,\mathbb{F}} = \frac{1}{|G|} \sum_{g \in G} (g - 1, r)$$

Dimostrazione.

$$l = \frac{1}{|G|} \sum_{g \in G} |X_g| \qquad X_g = \{t \in \mathbb{Z}_r \mid gt = t \mod r\}$$
$$|X_g| = |\{t \mid gt \equiv t \mod r\} = (g - 1, r)$$

IL GRUPPO $Gal(\mathbb{F}(\xi), \mathbb{F})$ ORBITE ED ETICHETTE TEOREMA DI FATTORIZZAZIONE CARDINALITÀ' DI \mathscr{L} FATTORIZZAZIONE DI $\mathcal{R}_{r,\mathbb{F}}$

Teorema

 \mathbb{F} campo perfetto, r intero positivo ed

$$x^r - 1 = \prod_{v \in \mathscr{L}} M^{(v)}(x)$$

Allora vale l'isomorfismo di algebre

$$\mathbb{F}[x] / (x^r - 1) \cong \prod_{v \in \mathscr{C}} \mathbb{F}[x] / M^{(v)}(x)$$

Dimostrazione.

Definiamo γ trasformata di Winograd:

$$\gamma: \mathbb{F}[x] /_{x^r - 1} \longrightarrow \prod_{v \in \mathscr{L}} \mathbb{F}[x] /_{M^{(v)}(x)}$$
$$a(x) \longmapsto (a(x) \mod M^{(v)}(x))_{v \in \mathscr{L}}$$

Г

Ad esempio:

•
$$r=7$$
, $\mathbb{F}=\mathbb{Q}$, $G=\mathbb{Z}_7^*$

$$O(0) = \{0\}$$

 $O(1) = \{1, 2, 3, 4, 5, 6\}$

$$x^{7} - 1 = M^{(0)}(x)M^{(1)}(x) = \Phi_{1}(x)\Phi_{7}(x)$$
$$= (x - 1)(x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1)$$

•
$$r = 7$$
, $\mathbb{F} = GF(2)$ $G = \{1, 2, 4\} \triangleleft \mathbb{Z}_7^*$

$$O(0) = \{0\}$$
 $O(1) = \{1, 2, 4\}$
 $O(3) = \{3, 5, 6\}$

$$x^{7} - 1 = M^{(0)}(x)M^{(1)}(x)M^{(3)}(x)$$
$$= (x - 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

 $x^7 - 1$ si scompone in $\mathbb Q$ in due fattori irriducibili

$$\mathbb{Q}[x]/_{(x^7-1)} \cong \mathbb{Q}[x]/_{\Phi_1(x)} \times \mathbb{Q}[x]/_{\Phi_7(x)}$$

 x^7-1 si scompone in \mathbb{Z}_2 in tre fattori irriducibili

$$\mathbb{Z}_2[x] / (x^7 - 1) \cong \mathbb{Z}_2[x] / M^{(0)}(x) \times \mathbb{Z}_2[x] / M^{(1)}(x) \times \mathbb{Z}_2[x] / M^{(3)}(x)$$

IL GRUPPO $Gal(\mathbb{F}(\xi),\mathbb{F})$ ORBITE ED ETICHETTE
TEOREMA DI FATTORIZZAZIONE
CARDINALITA' DI \mathscr{L} FATTORIZZAZIONE DI \mathcal{R}_{r} . \mathbb{F}

Lemma

$$\forall v \in \mathscr{L} \qquad \mathbb{F}(\xi^v) \cong \frac{\mathbb{F}[x]}{M^{(v)}(x)}$$

Corollario

$$\mathbb{F}[x]\Big/_{(x^r-1)} \cong \prod_{v \in \mathscr{L}} \mathbb{F}[x]\Big/_{M^{(v)}(x)} \cong \prod_{v \in \mathscr{L}} \mathbb{F}(\xi^v)$$

Fattorizzazione di x^T-1 Ideali e Idempotenti Trasformata di Winograd Codici correttori Applicazioni L GRUPPO $Gal(\mathbb{F}(\xi),\mathbb{F})$ DRBITE ED ETICHETTE
'EOREMA DI FATTORIZZAZIONE
CARDINALITA' DI \mathscr{L}

FATTORIZZAZIONE DI $\mathcal{R}_{r,\mathbb{F}}$

$$\begin{split} \mu : \prod_{v \in \mathscr{L}} \mathbb{F}(\xi^v) &\longrightarrow \prod_{v \in \mathscr{L}} \mathbb{F}[x] \Big/_{M^{(v)}(x)} \\ (a(\xi^v))_{v \in \mathscr{L}} &\longmapsto (a(x) \mod M^{(v)}(x))_{v \in \mathscr{L}} \end{split}$$

$$\begin{array}{c|c}
\mathbb{F}[x] / (x^r - 1) & \xrightarrow{\psi_4} & \mathbb{F}C_r \\
\downarrow & & \downarrow \\
\psi_2 & & \downarrow \\
\psi_3 & & \downarrow \\
\mathcal{V}_{r,\mathbb{F}}^c & \xrightarrow{\psi_1} & \mathcal{M}_{r,\mathbb{F}}^c
\end{array}$$

Ideali

Teorema

$$\mathfrak{a} \leq \mathbb{F}[x]/(x^r-1)$$

se e solo se

$$\exists ! \ a(x), \quad a(x) \mid x^r - 1 \quad monico, \quad \mathfrak{a} = (a(x))$$

Teorema

sono biiezioni.

Ad esempio r=9, q=2: $G=\mathbb{Z}_9^{\star}$, $\mathscr{L}=\{0,1,3\}$:

$$M^{(0)}(x) = x + 1$$
$$M^{(1)}(x) = x^6 + x^3 + 1$$
$$M^{(3)}(x) = x^2 + x + 1$$

$$\begin{split} \mathfrak{a}_{\{0\}} &= (M^{(0)}(x)) = (x-1) \\ \mathfrak{a}_{\{1\}} &= (M^{(1)}(x)) = (x^6 + x^3 + 1) \\ \mathfrak{a}_{\{3\}} &= (M^{(3)}(x)) = (x^2 + x + 1) \\ \mathfrak{a}_{\{0,1\}} &= (M^{(0)}(x)M^{(1)}(x)) = (x^3 - 1) \\ \mathfrak{a}_{\{0,3\}} &= (M^{(0)}(x)M^{(3)}(x)) = (x^7 + x^6 + x^4 + x^3 + x + 1) \\ \mathfrak{a}_{\{1,3\}} &= (M^{(1)}(x)M^{(3)}(x)) = (x^8 + x^7 + \dots + x + 1) \\ \mathfrak{a}_{\{0,1,3\}} &= (M^{(0)}(x)M^{(1)}(x)M^{(3)}(x)) = (x^9 - 1) = (0) \\ \mathfrak{a}_{\emptyset} &= (1) \end{split}$$

Idempotenti

Definizione

$$a(x) \in \mathbb{F}[x] / (x^r - 1) \qquad a(x)^2 = a(x)$$

Proprietà

In $\prod_{v \in \mathscr{L}} \mathbb{F}(\xi^v)$ sono tutti e soli i vettori l-dimensionali di polinomi costituiti da 1 e da 0.

Idempotente minimale: $\mathbf{e}_j = (0, \dots, 0, 1, 0, \dots, 0)$ Idempotente minimale: $\hat{\mathbf{e}}_j = (1, \dots, 1, 0, 1, \dots, 1)$

Teorema

- **1** L'intero l, cardinalità dei fattori di x^r-1 in \mathbb{F}_q coincide con il numero degli idempotenti minimali e con il numero degli idempotenti massimali.
- 2 Gli idempotenti sono ortogonali: $e_i e_j = o$ per $i \neq j$.
- $oldsymbol{3}$ Gli idempotenti decompongono l'unità: $\sum_{i\in\mathscr{L}}\mathbf{e}_i=\mathtt{1}.$
- 4 Le combinazioni lineari di idempotenti generano tutti gli ideali.
- 5 Ogni elemento di $\prod_{v \in \mathscr{L}} \mathbb{F}(\xi^v)$ si decompone come combinazione lineare a coefficienti in \mathbb{F}_q degli idempotenti minimali.
- **6** (\mathbf{e}_j) è un ideale minimale, $(\hat{\mathbf{e}}_j)$ un ideale massimale.

Le immagini tramite γ degli elementi della base di $\mathbb{F}_2[x] \Big/_{(x^7-1)}$ sono

$$\gamma(x^{0}) = (1, 1, 1)$$

$$\gamma(x^{1}) = (1, x, x)$$

$$\gamma(x^{2}) = (1, x^{2}, x^{2})$$

$$\gamma(x^{3}) = (1, 1 + x^{2}, 1 + x + x^{2})$$

$$\gamma(x^{4}) = (1, 1 + x, x + x^{2})$$

$$\gamma(x^{5}) = (1, 1 + x + x^{2}, 1 + x^{2})$$

$$\gamma(x^{6}) = (1, x + x^{2}, 1 + x)$$

per

$$x^{7} + 1 = M^{(0)}(x)M^{(1)}(x)M^{(3)}(x)$$
$$= (x+1)(x^{3}+x+1)(x^{3}+x^{2}+1)$$

TDW, DEFINIZIONE PROPRIETA' DI Γ PROPRIETA' DI Δ

Algebra dei vettori circolanti concatenati

$$u, v \in \mathcal{L}$$
 $\mathbf{u} \in \mathcal{V}_{m(u), \mathbb{F}_q}^c, \mathbf{v} \in \mathcal{V}_{m(v), \mathbb{F}_q}^c$

$$concat(\mathbf{u}, \mathbf{v}) = (u_0, \dots, u_{d_1 - 1}, v_0, \dots, v_{d_2 - 1})$$

Algebra dei vettori circolanti concatenati:

$$\mathcal{V}_{r,\mathbb{F}_q}^{\mathscr{L}} = \coprod_{c \in \mathscr{L}} \mathcal{V}_{m(v),\mathbb{F}_q}^c = \{\mathbf{u} = concat(\mathbf{u}_0, \dots, \mathbf{u}_{max(\mathscr{L})}) \mid \mathbf{u}_v \in \mathcal{V}_{m(v),\mathbb{F}_q}^c \}$$

PROPRIETA' DI □
PROPRIETA' DI □

Teorema

Siano r e q fissati, $\mathcal{L}_{r,q}$ insieme delle etichette determinato dalla fattorizzazione di x^r-1 , allora

- ① $\mathcal{V}_{r,q}^{\mathscr{L}}$ è un'algebra isomorfa a $\mathcal{Q}_{r,q}$.
- 2 $\mathcal{V}_{r,q}^{\mathscr{L}}$ è un'algebra isomorfa a $\mathcal{P}_{r,q}$.

Corollario

Per ogni $v \in \mathscr{L}_{r,q}$ etichetta, $\mathcal{V}^c_{m(v),q}$ è un campo.

Corollario

Il prodotto di campi $\mathcal{V}_{r,q}^{\mathscr{L}}$ è un'algebra isomorfa a $\mathcal{V}_{r,q}^c$.

Definizione

La matrice della trasformazione γ fra le algebre

$$\mathbb{F}[x]/(x^r-1)$$
 e $\prod_{v\in\mathscr{L}} \mathbb{F}[x]/M^{(v)}(x)$

nelle rispettive rappresentazioni vettoriali

$$\mathcal{V}_{r,q}^c$$
 e $\mathcal{V}_{r,q}^{\mathscr{L}}$

è detta trasformata di Winograd

È indicata con Γ , e la sua inversa è indicata con Δ .

Le immagini tramite γ degli elementi della base di

$$\begin{split} \mathbb{F}_2[x] \Big/ (x^7-1) \text{ sono} \\ &\Gamma(1,0,0,0,0,0)^t = \gamma(x^0) = (1,1,1) = (1|1,0,0|1,0,0)^t \\ &\Gamma(0,1,0,0,0,0)^t = \gamma(x^1) = (1,x,x) = (1|0,1,0|0,1,0)^t \end{split}$$

$$\Gamma(0,0,1,0,0,0,0)^t = \gamma(x^2) = (1,x^2,x^2) = (1|0,0,1|0,0,1)^t$$

$$\Gamma(0,0,0,1,0,0,0)^t = \gamma(x^3) = (1,1+x^2,1+x+x^2) = (1|1,0,1|1,1,1)^t$$

$$\Gamma(0,0,0,1,0,0,0)^{t} = \gamma(x^{3}) = (1,1+x^{2},1+x+x^{2}) = (1|1,0,1|1,1,1)^{t}$$

$$\Gamma(0,0,0,0,1,0,0)^{t} = \gamma(x^{4}) = (1,1+x,x+x^{2}) = (1|1,1,0|0,1,1)^{t}$$

$$\Gamma(0,0,0,0,0,1,0)^{t} = \gamma(x^{5}) = (1,1+x+x^{2},1+x^{2}) = (1|1,1,1|1,0,1)^{t}$$

 $\Gamma(0,0,0,0,0,0,1)^t = \gamma(x^6) = (1,x+x^2,1+x) = (1|0,1,1|1,1,0)^t$

per

$$x^{7} + 1 = M^{(0)}(x)M^{(1)}(x)M^{(3)}(x)$$
$$= (x+1)(x^{3}+x+1)(x^{3}+x^{2}+1)$$

$$\Gamma = \begin{pmatrix} \Gamma^{(0)} \\ \Gamma^{(1)} \\ \Gamma^{(3)} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\Delta = \begin{pmatrix} \Delta^{(0)} \mid \Delta^{(1)} \mid \Delta^{(3)} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} \mid 1 & \frac{1}{1} \mid 1 & 1 & 0 & 0 \\ \frac{1}{1} \mid 0 & 1 & 1 & 1 & 1 & 1 \\ 1 \mid 1 & 0 & 0 \mid 0 & 1 & 1 & 1 \\ 1 \mid 1 & 0 & 1 \mid 0 & 1 & 0 & 1 \\ 1 \mid 1 & 0 & 1 \mid 0 & 1 & 0 & 1 \\ 1 \mid 1 & 1 \mid 0 \mid 0 & 0 & 0 & 1 \end{pmatrix}$$

Lemma

Il divisore $M^{(v)}(x)$ soddisfa l'eqazione

$$M^{(v)}(x) = x^{m(v)} - \sum_{j=1}^{m(v)} \Gamma_{m(v)-j,m(v)}^{(v)} x^{m(v)-j}$$

Teorema

Sia v appartenente all'insieme delle etichette $\mathcal{L}_{r,q}$, allora per ogni $i \in \{0, 1, \dots, m(v) - 1\}$ seque che

$$\Gamma_{i,j}^{(v)} = \delta_{i,j} \quad j \in \{0, 1, \dots, m(v) - 1\}$$

$$\Gamma_{i,n}^{(v)} = \sum_{k=1}^{m(v)} \Gamma_{m(v)-k, m(v)}^{(v)} \Gamma_{i,n-k}^{(v)} \quad \forall n \in \mathbb{Z}$$

Lemma

$$c(x) \in (M^{(v)}(x))$$
 se e solo se $\Gamma^{(v)}\mathbf{c}^t = 0$.

Dimostrazione.

Dato che

1
$$\eta^{(v)}(x^j) = \xi^{vj} = \sum_{i=0}^{m(v)-1} \Gamma_{i,j}^{(v)} \xi^{iv} \text{ per } j \in \mathbb{Z}_r.$$

- 2 Per $H^{(v)}$ matrice dell'epimorfismo $\eta^{(v)}$ si ha $\eta^{(v)}m(x)=H^{(v)}\mathbf{m}^t.$
- 3 $H = \Gamma$ per H e Γ matrici di trasformazione di η e γ .

allora vale la catena di biimplicazioni:

$$m(x) \in (M^{(v)}(x)) \iff (M^{(v)}(x)) \text{ divide } m(x) \iff m(\xi^v) = 0$$

 $\iff \eta^{(v)}m(x) = H^{(v)}\mathbf{m}^t = 0 \iff \Gamma^{(v)}\mathbf{m}^t = 0.$

Come determinare l'inversa di γ ?

$$\gamma^{-1}: \prod_{v \in \mathscr{L}} {\mathbb{F}[x]} /_{M^{(v)}(x)} \longrightarrow {\mathbb{F}[x]} /_{(x^r - 1)}$$
$$(a_v(x) \mod M^{(v)}(x))_{v \in \mathscr{L}} \longmapsto a(x)$$

a(x) è il risultato del sistema di congruenze $a(x)\equiv a_v(x) \mod M^{(v)}(x)$ ottenuto con il teorema cinese dei resti.

Proprietà

1 La prima colonna di ogni blocco $\Delta^{(v)}$ di Δ è l'idempotente miminale \mathbf{e}_v che genera l'ideale minimale

$$(\hat{M}^{(v)}(x)) = \left(\frac{1 - x^r}{M^{(v)}(x)}\right)$$

- 2 L'insieme $\{\Delta_{\sim,0}^{(v)}\}_{v\in\mathscr{L}}$ delle prime colonne di tutti i blocchi di Δ costituisce l'insieme di tutti gli idempotenti minimali che generano tutti gli ideali minimali.
- 3 $v \in \mathcal{L}, j \in \{0, 1, \dots, m(v) 1\}$:

$$\left(\Delta_{\sim,j}^{(v)}\right)^t \in \mathcal{V}_{m(v),q}^c \qquad \left(\Delta_{\sim,j}^{(v)}\right)^t = (0,1,0,\dots,0)^j \star \left(\Delta_{\sim,0}^{(v)}\right)^t$$

Proprietà

L'insieme dei vettori colonna $\{\Delta_{\sim,j}^{(v)}\}_{j=0}^{m(v)-1}$ determina una base dell'ideale $(M^{(v)}(x))$.

Proprietà

Esiste un altro modo per ricavare Δ , senza utilizzare il teorema cinese dei resti:

$$\Delta_{i,j} = \frac{1}{r} \sum_{k=1}^{m(v)-1} \Gamma_{k,j-i+k}^{(v)}$$

Coici Ciclici

Definizione

Un codice lineare C di lunghezza r (cioè sottospazio vettoriale di \mathbb{F}^r) si dice **ciclico** se è chiuso rispetto alla permutazione ciclica dei suoi elementi verso destra:

$$\mathbf{c} = (c_0, c_1, \dots, c_{r-1}) \in C \Longrightarrow (c_{r-1}, c_0, \dots, c_{r-2}) \in C$$

Teorema

Un codice lineare C di lunghezza r sull'alfabeto \mathbb{F}_q è ciclico se e solo se è un ideale di $^{\mathbb{F}[x]}\Big/_{(x^r-1)}$.

Fattorizzazione di x^T-1 Ideali e Idempotenti Trasformata di Winograd Codici correttori Applicazioni

La matrice di trasformazione fra lo spazio \mathbb{F}^r ed il codice ciclico (a(x)) è chiamata matrice generatrice ed è indicata con G. La matrice di trasformazione fra lo spazio \mathbb{F}^r ed il codice duale $(\hat{a}(x))$ è chiamata matrice di controllo ed è indicata con H.

Teorema

Sia a codice ciclico

$$c(x) \in \mathfrak{a} \iff H\mathbf{c}^t = \mathbf{0}^t$$

 $c(x) \in \mathfrak{a}^\perp \iff G\mathbf{c}^t = \mathbf{0}^t$

Applicazioni della trasformata di Winograd

nella teoria dei codici correttori

Consideriamo i risultati:

$$c(x) \in \mathfrak{a} \iff H\mathbf{c}^t = \mathbf{0}^t$$
$$c(x) \in \mathfrak{a}^\perp \iff G\mathbf{c}^t = \mathbf{0}^t$$
$$c(x) \in (M^{(v)}(x)) \iff \Gamma^{(v)}\mathbf{c}^t = \mathbf{0}^t$$

Teorema

Sia $v \in \mathcal{L}$, allora il codice ciclico massimale $\mathfrak{a} = (M^{(v)}(x))$ ha come matrice di controllo $\Gamma^{(v)}$, v-esimo blocco della trasformata di Winograd.

Teorema

Sia $v \in \mathcal{L}$, allora il codice ciclico minimale $(\hat{M}^{(-v)}(x))$ ha come matrice generatrice $\Gamma^{(v)}$ v-esimo blocco della trasformata di Winograd.

Corollario

Se le orbite dell'azione di $G\cong Gal(\mathbb{F}_q(\xi),\mathbb{F}_q)$, $G \unlhd \mathbb{Z}_r^{\star}$ su \mathbb{Z}_r sono autoconiugate (quindi $M^{(v)}(x) = M^{(-v)}(x)$) allora il codice massimale $(M^{(v)}(x))$ ed il codice minimale $(\hat{M}^{(v)}(x))$ sono legate dalla matrice $\Gamma^{(v)}$ che genera il primo ed è matrice di controllo per il secondo.

Possiamo generalizzare il risultato precedente considerando il codice ciclico generato da

$$a(x) = M^{(v_1)}(x) \cdot \dots \cdot M^{(v_k)}(x)$$

Corollario

$$A = (v_1, \dots, v_k) \subseteq \mathcal{L}$$
, allora

$$\Gamma^{(A)} = \left(egin{array}{c} \Gamma^{(v_1)} \ dots \ \Gamma^{(v_k)} \end{array}
ight)$$

è matrice di controllo del codice $\mathfrak{a}=(M^{(v_1)}(x)\cdots M^{(v_k)}(x))$ ed è matrice generatrice del codice $(M^{(-v_1)}(x)\cdots M^{(-v_k)}(x))^{\perp}$.

$$A=(v_1,\ldots,v_k)\subseteq \mathscr{L},\ \mathfrak{a}=(M^{(v_1)}(x)\cdot\cdots\cdot M^{(v_k)}(x)).$$
 L'immagine della parola $c(x)$ di \mathfrak{a} tramite γ è costituita da sottovettori circolanti nulli nei posti v_1,\ldots,v_k . Definiamo questi sottovettori **privi di informazione**.

$$\mathbf{c} \in \mathcal{V}_{r,q}^\mathscr{L} \mapsto \mathbf{c} \; \middle| \; \coprod_{v \in \mathscr{L} \setminus A} \mathcal{V}_{m(v),q}^c$$

Esempio

 $c(x)=1+x+x^2+x^5=(1,1,1,0,0,1,0)\in (M^{(0)}(x)M^{(1)}(x)).$ Tramite γ diventa:

$$\gamma(c(x)) = (0, 0, x^2) = (0|0, 0, 0|0, 0, 1)$$

Sarà sufficiente inviare il terzo blocco (0,0,1) invece della parola (1,1,1,0,0,1,0). In fase di decodifica si aggiungeranno i sottovettori privi di informazione e si applicherà Δ per ottenere (1,1,1,0,0,1,0).

Fonti principali:

- U. Cerruti, F. Vaccarino From Cyclotomic Extensions to Generalized Ramanuyan's Sum through the Winograd Transform, pre-print.
- Luigia Berardi, Algebra e teoria dei codici correttori, Franco angeli Editore 1994.
- Richard E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley publishing Company, 1984.
- Ian F. Blake, Ronald C. Mullin, The Mathematical Theory of Coding, Academic Press 1975.