

The Relationship between Driver Performance and Traffic Environments using Functional Data Analysis

Jundi Liu¹, Erika Miller², and Linda Ng Boyle^{1,3}

¹Industrial & Systems Engineering, University of Washington, Seattle WA 98195

²Mechanical Engineering, Colorado State University, Fort Collins CO 80523

³Civil & Environmental Engineering, University of Washington, Seattle WA 98195

JSM 2019 Denver, CO, USA July 28, 2019

Introduction

Background

- Complex driving environments result in large variability in driving performance.¹
- Driving through tunnels can negatively impact the driver's workload and driving performance.²

Research Goal

 Examine the relationship of driver performance and traffic environments.

Methodology & Results

- Functional Data Analysis (FDA)
 - Capture trend in average speed profile

Methodology & Results

- Functional Principal Component Analysis (FPCA)
 - Locate variability in driving performance associated with traffic environment
 - First three explained 80.8% of the variability
 - FPCA Function 1
 - Most variation is on Open Road 3 and leaving tunnels.
 - FPCA Function 2
 - Most variation is in Tunnel A.
 - FPCA Function 3
 - Most variation occurs when entering the tunnels.

5000

10000

20000

25000

15000

Distance in 190 (feet)

Conclusions

- Drivers tend to slow down when they enter tunnels
- Drivers tend to speed up when they leave tunnels
- Different road conditions impact propensity to speed
- The FPCA reveals where differences in driving performance is most likely to be observed