方程组描述

该方程组用于求解发射端位置 (x,y)、发射端朝向 β 、第一个反射面参数 a 和 b、第二个反射面参数 p 和 q。已知参数包括接收端位置 (x_0,y_0) 、接收端朝向 α 、到达角 ϕ_1,ϕ_2,ϕ_3 、路径长度差 K_1,K_2 和正弦差 D_1,D_2 。

方程 1: 直接路径到达角方程(基于 ϕ_1)

$$(y_0 - y) - \tan(\alpha + \phi_1)(x_0 - x) = 0 \tag{1}$$

方程 2: 第一个反射路径到达角方程 (基于 ϕ_2)

反射点 $S_1 = (x_{s1}, y_{s1})$ 在第一个反射面 y = ax + b 上。方向向量从 S_1 到接收端为 $(x_0 - x_{s1}, y_0 - y_{s1})$,全局到达角为 $\alpha + \phi_2$:

$$(y_0 - y_{s1}) - \tan(\alpha + \phi_2)(x_0 - x_{s1}) = 0$$
(2)

其中,反射点 S_1 通过发射端 E = (x, y) 和接收端关于第一个反射面的镜像点 $M_1 = (x_{m1}, y_{m1})$ 计算:

$$k_1 = \frac{y_0 - ax_0 - b}{1 + a^2} \tag{3}$$

$$x_{m1} = x_0 + 2ak_1 \tag{4}$$

$$y_{m1} = y_0 - 2k_1 \tag{5}$$

参数 t 满足:

$$x_{s1} = x + t(x_{m1} - x) (6)$$

$$y_{s1} = y + t(y_{m1} - y) (7)$$

且 $y_{s1} = ax_{s1} + b$, 解得:

$$t = \frac{ax + b - y}{(y_{m1} - y) - a(x_{m1} - x)}$$
(8)

方程 3: 第一个反射路径长度差方程(基于 K_1)

直接路径长度 $a_{\text{direct}} = \sqrt{(x_0-x)^2+(y_0-y)^2}$,第一个反射路径长度 $L_1 = \text{distance}(E,S_1) + \text{distance}(S_1,R)$:

$$\sqrt{(x_{s1} - x)^2 + (y_{s1} - y)^2} + \sqrt{(x_0 - x_{s1})^2 + (y_0 - y_{s1})^2} - \sqrt{(x_0 - x)^2 + (y_0 - y)^2} = K_1$$
 (9)

方程 4: 第一个反射路径发射端离开角正弦差方程(基于 D_1)

$$\sin(\tan 2(y_0 - y, x_0 - x) - \beta) - \sin(\tan 2(y_{s1} - y, x_{s1} - x) - \beta) = D_1$$
(10)

方程 5: 第二个反射路径到达角方程(基于 ϕ_3)

反射点 $S_2 = (x_{s2}, y_{s2})$ 在第二个反射面 y = px + q 上。方向向量从 S_2 到接收端为 $(x_0 - x_{s2}, y_0 - y_{s2})$,全局到达角为 $\alpha + \phi_3$:

$$(y_0 - y_{s2}) - \tan(\alpha + \phi_3)(x_0 - x_{s2}) = 0$$
(11)

其中,反射点 S_2 通过发射端 E = (x, y) 和接收端关于第二个反射面的镜像点 $M_2 = (x_{m2}, y_{m2})$ 计算:

$$k_2 = \frac{y_0 - px_0 - q}{1 + p^2} \tag{12}$$

$$x_{m2} = x_0 + 2pk_2 (13)$$

$$y_{m2} = y_0 - 2k_2 (14)$$

参数 s 满足:

$$x_{s2} = x + s(x_{m2} - x) (15)$$

$$y_{s2} = y + s(y_{m2} - y) (16)$$

且 $y_{s2} = px_{s2} + q$,解得:

$$s = \frac{px + q - y}{(y_{m2} - y) - p(x_{m2} - x)} \tag{17}$$

方程 6: 第二个反射路径长度差方程(基于 K2)

直接路径长度 a_{direct} 同上,第二个反射路径长度 $L_2 = \text{distance}(E, S_2) + \text{distance}(S_2, R)$:

$$\sqrt{(x_{s2} - x)^2 + (y_{s2} - y)^2} + \sqrt{(x_0 - x_{s2})^2 + (y_0 - y_{s2})^2} - \sqrt{(x_0 - x)^2 + (y_0 - y)^2} = K_2$$
 (18)

方程 7: 第二个反射路径发射端离开角正弦差方程 (基于 D_2)

$$\sin(\tan 2(y_0 - y, x_0 - x) - \beta) - \sin(\tan 2(y_{s2} - y, x_{s2} - x) - \beta) = D_2$$
(19)