Elettronica 20 gennaio 2022

Del circuito seguente, con V_1 un generatore di tensione costante e v_{in} un generatore di tensione di piccolo segnale,

- 1) Calcolare il punto di lavoro in continua del transistor M_1 ;
- 2) Calcolare il guadagno di tensione $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^+ = -L^- = 12$$
V $M_I = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$

$$V_1 = 1$$
V $V_{DD} = 12$ V $C = \infty$

$$R_I = 1 \text{ k}\Omega$$
 $R_2 = 2 \text{ k}\Omega$ $R_D = 4 \text{ k}\Omega$ $R_L = 4 \text{ k}\Omega$

Elettronica 10 febbraio 2022

Del circuito seguente, con v_{in} un generatore di tensione di piccolo segnale, calcolare il guadagno di tensione $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^{+} = -L^{-} = 12V$$

$$M_I = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$$

$$V_{DD} = 10 \text{ V}$$

$$C = \infty$$

$$R_A = 7 \text{ k}\Omega$$
; $R_B = 3 \text{ k}\Omega$; $R_D = 2 \text{ k}\Omega$; $R_1 = 1 \text{ k}\Omega$; $R_2 = 1 \text{ k}\Omega$; $R_3 = 1 \text{ k}\Omega$; $R_4 = 9 \text{ k}\Omega$

Elettronica 5 aprile 2022

Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_O .

OA ideale con
$$L^{+} = -L^{-} = 10$$
V $Q_{I} = (K = 0.25 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$
 $V_{DD} = 10$ V $R_{D} = 5 \text{ k}\Omega$ $R_{S} = 1 \text{ k}\Omega$ $C = 1 \mu\text{F}$

Elettronica 15 giugno 2022

Del circuito seguente, determinare il valore della resistenza R_{pol} per avere una tensione di uscita continua V_{OUT} = -6V

OA ideale con
$$L^{+} = -L^{-} = 10$$
V $Q_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$
 $V_{DD} = 5$ V $R_{D} = 5 \text{ k}\Omega$ $R_{I} = 2.5 \text{ k}\Omega$

9 luglio 2022

- 1) Dato il circuito di figura, in cui v_{in} è un generatore di piccolo segnale determinare:
- •il punto di lavoro dei MOSFET;
- •il valore di V_{OUT} in continua;
- •il guadagno di tensione v_{out}/v_{in} a centro banda;

$$Q_{I} = \{k_{I} = 1 \text{ mA/V}^{2}, V_{tI} = 2\text{V}, \lambda = 0\},\$$
 $Q_{2} = \{k_{2} = 0.25 \text{ mA/V}^{2}, V_{t2} = -2\text{V}, \lambda = 0\}$
 $V_{DD} = 10\text{V}, \qquad R_{D} = 10\text{k}\Omega, \ R_{L} = 10\text{k}\Omega, \ C_{I} \to \infty$

Esercizio ELETTRONICA del 7/9/2022

1) Del circuito seguente, considerando in ingresso l'impulso di corrente riportato in figura, e considerando l'op-amp ideale (con $L^+ = -L^- = 12V$), calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

V1= 1V
$$C = 500 \text{ nF}$$

 $R_1 = 1 \text{ k}\Omega; \quad R_2 = 1 \text{ k}\Omega; \quad R_3 = 2 \text{ k}\Omega;$

Esercizio ELETTRONICA del 26/10/2022

1) Del circuito seguente, considerando in ingresso il segnale v_{IN} riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita v_{OUT} .

OA ideale con
$$L^{+} = -L^{-} = 12V$$
 $M_{I} = (K = 2 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$

$$V_{DD}=12V$$
, $R_1=1 k\Omega$, $R_S=2 k\Omega$, $R_D=2 k\Omega$, $R_L=4 k\Omega$, $C=10 nF$