

Universidad Europea del Atlántico

Loyda Leticia Alas Castaneda loyda.alas@uneatlantico.es

Tecnología y Estructura de Ordenadores

Circuitos Lógicos

Circuitos Secuenciales Síncronos

Son aquellos CSS en los que las salidas sólo **cambian en instantes de tiempo** gobernados por pulsos de otro circuito que recibe el nombre de reloj.

Ejemplos de CSS: Contadores síncronos, registros, detectores de secuencias.

Máquina de estados finitos

Líneas de variables de estado

Circuitos Secuenciales Síncronos

Señal de reloj (ck)

Son aquellos CSS en los que las salidas sólo cambian en instantes de tiempo gobernados por pulsos de otro circuito que recibe el nombre de reloj.

Circuitos Secuenciales Síncronos

Forma de Ondas

Tc: Período de reloj

Circuitos Secuenciales Asíncronos

Son aquellos CS en los que las salidas no dependen de una relación temporal

fija.

Ejemplos de CSA: Contadores asíncronos.

Clasificación

Síncronos

- Señal de reloj global
- Facilidad de diseño
- Velocidad limitada

Asíncronos

- No existe señal de reloj global
- Dificultad de diseño

Latch

Latches

El *latch* (cerrojo) es un tipo de dispositivo de almacenamiento temporal de dos estados (biestable).

Latch S-R y $\overline{S} - \overline{R}$

Un latch S-R (Set-Reset) con entrada activa a nivel ALTO se compone de dos puertas NOR acopladas

Un latch \bar{S} – \bar{R} con entrada activa a nivel BAJO está formado por dos puertas NAND conectadas.

- (a) Latch S-R con entrada activa a nivel ALTO.
- (b) Latch S-R con entrada activa a nivel BAJO.

Latches

El *latch* (cerrojo) es un tipo de dispositivo de almacenamiento temporal de dos estados (biestable).

Latch S-R y $\overline{S} - \overline{R}$

Un latch S-R (Set-Reset) con entrada activa a nivel ALTO se compone de dos puertas NOR acopladas

Un latch \bar{S} – \bar{R} con entrada activa a nivel BAJO está formado por dos puertas NAND conectadas.

(a) Latch S-R con entrada activa a nivel ALTO

(b) Latch S-R con entrada activa a nivel BAJO

Biestable - SR

S= set

R = reset

Q = salida

 \overline{Q} = salida negada

Análisis

 $Q(t+1) = \overline{R + /Q(t)}$

 $/Q(t+1) = \overline{S + Q(t)}$

	Ri	Q(t)	10(1)	Q(1+1)	/Q(Y+1)
0	0	0	0	1	- 1
0	0	0	1	0	- 1
0	0	1	0	1	. 0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	. 0	.0
٥	1	1	1	0	0
1	0	0	0	1	.0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	Û
1	1.	0	Ó	0	0
1	1	0	1	0	. 0
1	1	1	0	0	. 0
1	1	1	1	0	0

(a) Latch S-R con entrada activa a nivel ALTO

Biestable - SR

S= set

R = reset

Q = salida

 \overline{Q} = salida negada

S	R	$\overline{oldsymbol{ec{Q}}}$	Q
0	0	No varía	No varía
0	1	1	0
1	0	0	1
1	1	Entrada no permitida	Entrada no permitida

(a) Latch S-R con entrada activa a nivel ALTO

Biestable - SR

```
S = set
R = reset
Q = salida
\overline{Q} = salida negada
```


Biestable - SR

S= set

R = reset

Q = salida

 \overline{Q} = salida negada

(b) Latch S-R con entrada activa a nivel BAJO

Biestable - SR

S= set

R = reset

Q = salida

 \overline{Q} = salida negada

<u>s</u>	R	$\overline{m{ec{Q}}}$	Q
0	0	Entrada no permitida	Entrada no permitida
0	1	0	1
1	0	1	0
1	1	No varía	No varía

(b) Latch S-R con entrada activa a nivel BAJO

Biestable - \overline{S} - \overline{R} Diagrama de pines

Biestable - $\overline{S} - \overline{R}$

Diagrama de transiciones

Biestable - RS con reloj

<u>s</u>	\overline{R}	$\overline{m{ec{Q}}}$	Q
0	0	Entrada no permitida	Entrada no permitida
0	1	0	1
1	0	1	0
1	1	No varía	No varía

S	R	$\overline{m{Q}}$	Q
0	0	No varía	No varía
0	1	1	0
1	0	0	1
1	1	Entrada no permitida	Entrada no permitida

Si CK=0 S' y R'= 11 es un RS sin CK, mantiene el estado.

Si CK=1. La salida depende de R y S.

CK=1 Reloj activo.

CK=1 RS =00 S' R'=11 Mantiene el estado.

Biestable - Tipos de entradas CLK

Biestable - JK

Se comporta igual que el RS pero la entrada 11 ya no es una entrada de inestabilidad, es Q(t+1)=Q(t)', además está gobernada por un reloj.

CLK	J	K	Q(t)	Q(t+1)	
0/1/↓	Χ	Х	Х	Q(t)	Mant.
1	0	0	0	0	Mant.
1	0	0	1	1	Plant.
1	0	1	0	0	Docat
1	0	1	1	0	Reset
1	1	0	0	1	C - I
1	1	0	1	1	Set
1	1	1	0	1	Tour
1	1	1	1	0	Inv.

Biestable - JK

Se comporta igual que el RS pero la entrada 11 ya no es una entrada de inestabilidad, es Q(t+1)=Q(t)', además está gobernada por un reloj.

	Entr	adas	Sali	das	
J	K	CLK	Q	$\bar{\varrho}$	Comentarios
0	0	1	Q ₀	\overline{Q}_0	No cambio
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	Q_0	\overline{Q}_0	Basculación

↑ = transición del reloj de nivel BAJO a nivel ALTO

Q₀ = nivel de salida previo a la transición del reloj

Biestable - JK

Biestable - JK

Biestable - D

Biestable - D

Biestable - D

CLK	D	Q(t)	Q(t+1)	
0/1/↓	Χ	Х	Q(t)	Mant.
1	0	0	0	
1	0	1	1	Reset
1	1	0	1	Set
1	1	1	1	361

Biestable - D

Biestable - D

Almacenador por excelencia ya que no cambia la información.

Tabla Característica

Ck	D	Q _{n+1}
0	X	Qn
1	0	0
1	1	1

Biestable - D

Biestable - T

Se construye con un biestable JK uniendo sus entradas.

CLK	T	Q(t)	Q(t+1)			_
0/1/↓	Χ	X	Q(t)	Mant.	7'	(
1	0	0	0	for the second	→>crk	
1	0	1	1	Mant.		ς
1	1	0	1	Tmv		
1	1	1	0	Inv.		

Biestable - T

Se construye con un biestable JK uniendo sus entradas.

CLK	T	Q(t+1)	
0/1/↓	X	Q(t)	Mant.
1	0	Q(t)	Mant.
1	1	/Q(t)	Inv.

T	Q_{n+1}
0	Qn
1	\overline{Q}_{n}

Biestable - T

Se construye con un biestable JK uniendo sus entradas.

Resumen de FlipFlops

RS, D, JK, T

Tipo Toggle

quier tipo básico.

Tipo D

RS con flanco

RS con flanco

D con flanco

D con flanco

JK con flanco

JK con flanco

T con flanco

T con flanco

Contadores

Un **contador** en es un circuito secuencial construido a partir de biestables y puertas lógicas capaz de almacenar y contar los impulsos (a menudo relacionados con una señal de reloj), el cómputo se realiza en código binario, es decir 0 y 1.

Contadores síncronos

SOLO PERMITEN UN CAMBIO DE ESTADO MARCADO POR UNA SEÑAL DE UN RELOJ (CLK). DONDE Q SERAN LAS SALIDAS DEL CIRCUITO SECUENCIAL Y T2 SERA UNA PUERTA LOGICA (AND)QUE DARA SEÑAL DE ENTRADA A FF2

Contador asíncrono binario de 2 bits

Impulso de reloj	Q_1	Q_2
Inicialmente	0	0
1	0	1
2	1	0
3	1	1
4 (nuevo ciclo)	0	0

Contador asíncrono binario de 3 bits

Impulso de reloj	Q_2	Q_1	Q_0
Inicialmente	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8 (nuevo ciclo)	0	0	0

Contador de décadas asíncrono

Contador módulo 12 con reiniciación asíncrono

Contador síncrono 2 bits

Contador síncrono 3 bits

Impulso de reloj	Q_2	Q_1	Q_0
Inicialmente	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8 (nuevo ciclo)	0	0	0

Contador síncrono 4 bits

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits 1 - **Diagrama de estados**

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits

2 - Tabla de estado siguiente

Q2	Q1	Q0	Q2	Q1	QU
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits

3 - Tabla de transiciones JK

Transiciones de salida $Q_N \qquad Q_{N+1}$	Entradas de	ир-нор <i>К</i>
0 -> 0	0	X
0	1	X
1 → 0	X	1
1	X	0
Q _N : estado actual	•	
Q _{N+1} : siguiente estado		
X: condición "indiferente"		

\$7	\$1
S6	S2
S5 S4	S3

Q2	Q1	Q0	Q2	Q1	Q0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits

4 - Mapas de Karnaugh

Transiciones de salida $Q_N = Q_{N+1}$	Entradas de	l flip-flop
0 0	0	x
0 0		
0	1	X
1> 0	X	1
1> 1	X	0

	Q0		
	JO	0	1
0201	00	1	X
Q2Q1	01	1	Χ
	11	1	Χ
	10	1	Χ

	1)	Q0	
	КО	0	1
0201	00	X	1
Q2Q1	01	Х	1
	11	Х	1
	10	Х	1

Q2	Q1	Q0	Q2	Q1	Q0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits

4 - Mapas de Karnaugh

Q_N	nes de salida Q_{N+1}	Entradas de J	K K
0 —	→ 0	0	X
0 —	→ 1	1	X
1	→ 0	X	1
1 —	→ 1	X	0
Q_N : estado a Q_{N+1} : siguie		•	
	"indiferente"		

	33	Q0	
	J1	0	1
0201	00	0	1
Q2Q1	01	X	Х
	11	X	Х
	10	0	1

	3	Q0	
	K1	0	1
0201	00	X	X
Q2Q1	01	0	1
	11	0	1
	10	X	Х

Q2	Q1	Q0	Q2	Q1	Q0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits

4 - Mapas de Karnaugh

Q_N	nes de salida Q_{N+1}	Entradas de J	1 пр-пор <i>К</i>
0 —	→ 0	0	X
0 -	→ 1	1	X
1	▶ 0	X	1
1	→ 1	X	0
Q _N : estado ac		•	
Q_{N+1} : siguier X: condición			

		Q0	
	J2	0	1
0201	00	0	0
Q2Q1	01	0	
	11	X	X
	10	X	Х

	33	Q0	
	K2	0	1
Q2Q1	00	X	X
Q2Q1	01	X	X
	11	0	1
	10	0	0

Q2	Q1	Q0	Q2	Q1	Q0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Diseño de contadores síncronos

Ejercicio - implementar contador síncrono 3 bits **5 - Expresiones lógicas**

Transiciones de salida Q_N Q_{N+1}	Entradas del flip-flo J K
0> 0	0 X
0	1 X
1 → 0	X 1
1	X 0
Q _N : estado actual	•
Q_{N+1} : siguiente estado	
X: condición "indiferente"	

Q2	Q1	Q0	Q2	Q1	Q0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Ejercicio - implementar contador síncrono 3 bits 6 - **Circuito lógico**

1. Diagrama de estados

2. Tabla de estado siguiente

Estado actual			Esta	do sigu	iente
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

3. Tabla de transiciones

Transiciones de salida		Entradas de	l flip-flop
Q_N	Q_{N+1}	J	K
0 —	→ 0	0	X
0 —	→ 1	1	X
1	→ 0	X	1
1	→ 1	X	0

Q_N: estado actual

QN+1: siguiente estado

X: condición "indiferente"

Estado actual		Esta	do sigu	iente	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

4. Mapas de Karnaugh

5. Expresiones lógicas para las entradas

$$J_0 = Q_2 Q_1 + \overline{Q}_2 \overline{Q}_1 = \overline{Q}_2 \oplus \overline{Q}_1$$

$$K_0 = Q_2 \overline{Q}_1 + \overline{Q}_2 Q_1 = Q_2 \oplus Q_1$$

$$J_1 = \overline{Q}_2 Q_0$$

$$K_1 = Q_2 Q_0$$

$$J_2 = Q_1 \overline{Q}_0$$

$$K_2 = \overline{Q}_1 \overline{Q}_0$$

Diseño de contadores síncronos

6. Implementación del contador

$$J_0 = Q_2 Q_1 + \overline{Q}_2 \overline{Q}_1 = \overline{Q}_2 \oplus \overline{Q}_1$$

$$K_0 = Q_2 \overline{Q}_1 + \overline{Q}_2 Q_1 = Q_2 \oplus Q_1$$

$$J_1 = \overline{Q}_2 Q_0$$

$$K_1 = Q_2 Q_0$$

$$J_2 = Q_1 \overline{Q}_0$$

 $K_2 = \overline{Q}_1 \overline{Q}_0$

Dudas...

Loyda Alas loyda.alas@uneatlantico.es

www.linkedin.com/in/loyda-alas