Ayudantia 4:

Problema 1

Analice las siguientes series alternantes para ver si son convergentes o divergentes

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{2/n}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{8^n}$$

c)
$$\sum_{k=1}^{\infty} \frac{\cos(k\pi)}{k} \left(\pi - \arctan k\right)$$

Problema 2

Determine si la serie es absolutamente convergente, condicionalmente convergente o divergente

a)
$$\sum_{n=1}^{\infty} \frac{\sin(3n^3 + 1)}{n^2 + n + 1}$$

b)
$$\sum_{k=1}^{\infty} \left(\sqrt[k]{k} - 1 \right)^k$$

Problema 3

a) Demuestre que $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge para toda x.

b) Deduzca que $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ para toda x.

Problema 4

Si $\sum_{n=0}^{\infty} c_n 4^n$ es convergente, ¿se infiere que las siguientes series son convergentes?

a)
$$\sum_{n=0}^{\infty} c_n (-2)^n$$

b)
$$\sum_{n=0}^{\infty} c_n (-4)^n$$

Problema 5

Determine el radio de convergencia e intervalo de convergencia de la siguiente serie de potencias

a)
$$\sum_{n=2}^{\infty} \frac{b^n}{\ln n} (x-a)^n \qquad b > 0$$

b)
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2} \right) x^n$$

Problema 6* - Criterio de Raabe

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Definimos

$$\rho_n := n \left(\frac{|a_n|}{|a_{n+1}|} - 1 \right) .$$

Demuestre que la serie $\sum_{n=1}^{\infty} a_n$

- a) converge absolutamente si $\lim_{n\to\infty} \rho_n > 1$ (incluyendo el caso en que es $+\infty$),
- b) diverge si $\lim_{n\to\infty} \rho_n < 0$, y
- c) no converge absolutamente (esto es, la serie de $|a_n|$ diverge) si $0 \le \lim_{n \to \infty} \rho_n < 1$.

Además, muestre que no podemos concluir la convergencia de la serie de Basilea $\sum_{n=1}^{\infty} 1/n^2$ con el criterio de la razón, pero sí con el criterio de Raabe.

Pista para la parte a): puede usar que si $n \ge N$ y R > 1, existe una constante c > 0 tal que

$$\left(1 + \frac{R}{N}\right) \left(1 + \frac{R}{N+1}\right) \dots \left(1 + \frac{R}{n}\right) \ge cn^R.$$

Ejercicios propuestos

1. Pruebe si la series alternante para ver si es convergente o divergente

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \arctan n$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$$

d)
$$\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{2^n}$$

2. ¿Para cuáles enteros positivos k la serie siguiente es convergente?

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(kn)!}$$

- 3. Suponga que la serie $\sum a_n$ es condicionalmente convergente.
 - a) Demuestre que la serie $\sum n^2 a_n$ es divergente.
 - b) La convergencia condicional de $\sum a_n$ no es suficiente para determinar si $\sum na_n$ es convergente. Demuestre esto dando:
 - $\bullet\,$ un ejemplo de una serie condicionalmente convergente tal que $\sum na_n$ converge, y
 - un ejemplo donde $\sum na_n$ diverge.
- 4. Determine el radio de convergencia y el intervalo de convergencia de la

a)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

c)
$$\sum_{n=1}^{\infty} \frac{n^2 x^n}{2 \cdot 4 \cdot 6 \cdots (2n)}$$