STA250 Probability and Statistics

Chapter 10 Notes

Hypothesis Testing

Asst. Prof. Abdullah YALÇINKAYA

Ankara University, Faculty of Science, Department of Statistics

STA250 Probability and Statistics

Reference Book

This lecture notes are prepared according to the contents of

"PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS by Walpole, Myers, Myers and Ye"

Definition

A hypothesis is a claim (assumption) about a population parameter.

Examples:

- Population mean
- The mean monthly cell phone bill of this city is $\mu = 100TL$
- Population proportion
- The proportion of adults in this city with cell phones is p = 0.68

Hypothesis Testing

- □ The objective of hypothesis testing is to verify the validity of a statement about a population parameter
- □ A procedure based on sample evidence and probability theory to determine whether the hypothesis is a reasonable statement.

Hypothesis Testing-Step 1

- □ State the null hypothesis (H₀) and the alternate hypothesis (H₁)
- Null Hypothesis: A statement about the value of a population parameter developed for the purpose of testing numerical evidence.
 - The null hypothesis is always includes the equal sign
 - For example: =, ≥, or ≤ will be used in H0
- Alternative Hypothesis: A statement that is accepted if the sample data provide sufficient evidence that the null hypothesis is false.
 - The alternate hypothesis <u>never</u> includes the equal sign
 - For example; \neq , <, or > is used in H1

Null Hypothesis, Ho

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- □ Always contains "=", "≤" or "≥" sign
- May or may not be rejected
 - Examples:
 - The average number of TV sets in U.S. Homes is equal to three (H_0 : $\mu = 3$)
 - STA 249 course midterm grade average is 50 (H_0 : $\mu = 50$).
- Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 3$$

Alternative Hypothesis, H₁

Is the opposite of the null hypothesis

- Examples:
 - The average number of TV sets in U.S. homes is not equal to 3 $(H_1: \mu \neq 3)$.
 - STA 249 course midterm grade average is smaller than 50 (H_1 : $\mu > 50$).
- Never contains the "=", "≤" or "≥" sign.
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Level of Significance, a- Step 2

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- \square Is designated by α , (level of significance)
- □ Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- □ Provides the critical value(s) of the test

Level of Significance and Rejection Region

 H_1 : $\mu \neq 3$

Two-tail test

Represents critical value

Rejection region is shaded

$$H_0$$
: $\mu \leq 3$

$$H_1$$
: $\mu > 3$

Upper-tail test

$$H_0$$
: $\mu \ge 3$

$$H_1$$
: $\mu < 3$

Lower-tail test

One-Tailed and Two-Tailed Tests

 H_0 : \geq 60,000 miles H_1 : \leq 60,000 miles with an $\alpha = .05$ Left-tailed test

 H_0 := \$65,000 per year H_1 : \neq \$65,000 per year with an α = .05 Two-tailed test

 H_0 : \leq 453 grams H_1 : > 453 grams with an $\alpha = .05$ Right-tailed test

Note that the total area in the normal distribution is 1.0000.

Test Statistic, Step 3

Then, select the test statistic

TEST STATISTIC A value, determined from sample information, used to determine whether to reject the null hypothesis.

In hypothesis testing for the mean, μ , when σ is known, the test statistic z is computed with the following formula

TESTING A MEAN,
$$\sigma$$
 KNOWN $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ (10–1)

We can determine whether the distance between \overline{x} and μ is statistically significant by finding the number of standard deviations \overline{x} is from μ

Step 4 of the Process

- Formulate the decision rule
- Critical Value: The dividing point between the region where the null hypothesis is rejected and the region where it is not rejected.
- The sampling distribution of the statistic z follows the normal distribution
- Here, an α of .05 is used in a one-tailed test
- The value 1.645 separates the regions where the null hypothesis is rejected and where it is not rejected
- ▶ The value 1.645 is the critical value

Step 5 and Step 6 of the Six-Step Process

Step 5 Make a decision

- First, select a sample and compute the value of the test statistic
- Compare the value of the test statistic to the critical value
- Then, make the decision regarding the null hypothesis

□ Step 6 Conclude(H₁) & Interpret the results

 What can we say or report based on the results of the statistical test?

Error is Making Decisions

- There are two types of error that can be made when testing a null hypothesis.
 - Type I error: Rejecting the null hypothesis when it is true.
 - Type II error: Accepting the null hypothesis when it is false.
 - We define $\alpha = P(type \ I \ error)$, and $\beta = P(type \ II \ error)$.
- In hypothesis testing, we generally want to minimize α , the probability of making a type I error.

Power of Test

- □ **The power of a test** is the probability of rejecting a null hypothesis that is false.
 - Power = $P(\text{Reject } H_0 \mid H_1 \text{ is true})$
- □ Power of the test increases as the sample size increases

Summary of hypothesis test outcomes:

Reality ⇒		
	H ₀ true	H_1 true
Decision ↓		
Do Not Reject H ₀	No Error (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (power = 1 - β)

Hypothesis Tests for the Mean

Hypothesis Tests for the Mean (σ Known)

Convert sample result (x̄) to a z value

p-value Approach to Testing

- A p-value is the lowest level (of significance) at which the observed value of the test statistic is significant.
- The approach is designed to give the user an alternative (in terms of a probability) to a mere "reject" or "do not reject" conclusion.
- Convert sample result (e.g.,) to test statistic (e.g., z statistic)
- Obtain the p-value For an upper tail test:

p - value =
$$P(Z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
, given that H_0 is true)

$$= P(Z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \mid \mu = \mu_0)$$

- \square Decision rule: compare the p-value to α

 - If p-value ≤ α, reject H₀
 If p-value > α, do not reject H₀

Example 1-1

Example 10.3: A random sample of 100 recorded deaths in the United States during the past year showed an average life span of 71.8 years. Assuming a population standard deviation of 8.9 years, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.

Solution:

- 1. H_0 : $\mu = 70$ years.
- 2. H_1 : $\mu > 70$ years.
- 3. $\alpha = 0.05$.
- 4. Critical region: z > 1.645, where $z = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$.
- 5. Computations: $\bar{x} = 71.8 \text{ years}$, $\sigma = 8.9 \text{ years}$, and hence $z = \frac{71.8 70}{8.9 / \sqrt{100}} = 2.02$.
- 6. Decision: Reject H_0 and conclude that the mean life span today is greater than 70 years.

The P-value corresponding to z=2.02 is given by the area of the shaded region in Figure 10.10.

Using Table A.3, we have

$$P = P(Z > 2.02) = 0.0217.$$

As a result, the evidence in favor of H_1 is even stronger than that suggested by a 0.05 level of significance.

Example 1-2

Figure 10.10: P-value for Example 10.3.

Example 2-1

Example 10.4: A manufacturer of sports equipment has developed a new synthetic fishing line that the company claims has a mean breaking strength of 8 kilograms with a standard deviation of 0.5 kilogram. Test the hypothesis that $\mu = 8$ kilograms against the alternative that $\mu \neq 8$ kilograms if a random sample of 50 lines is tested and found to have a mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance.

- Solution: 1. H_0 : $\mu = 8$ kilograms.
 - 2. H_1 : $\mu \neq 8$ kilograms.
 - 3. $\alpha = 0.01$.
 - 4. Critical region: z < -2.575 and z > 2.575, where $z = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$.
 - 5. Computations: $\bar{x} = 7.8$ kilograms, n = 50, and hence $z = \frac{7.8 8}{0.5/\sqrt{50}} = -2.83$.
 - 6. Decision: Reject H_0 and conclude that the average breaking strength is not equal to 8 but is, in fact, less than 8 kilograms.

Since the test in this example is two tailed, the desired P-value is twice the area of the shaded region in Figure 10.11 to the left of z = -2.83. Therefore, using Table A.3, we have

$$P = P(|Z| > 2.83) = 2P(Z < -2.83) = 0.0046,$$

which allows us to reject the null hypothesis that $\mu = 8$ kilograms at a level of significance smaller than 0.01.

Example 2-2

Figure 10.11: P-value for Example 10.4.

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

 H_0 : $\mu \le 52$ the average is not over \$52 per month

 H_1 : $\mu > 52$ the average is greater than \$52 per month (i.e., sufficient evidence exists to support the

manager's claim)

• Suppose that α = .10 is chosen for this test

Obtain sample and compute the test statistic

Suppose a sample is taken with the following

results: n = 64, $\overline{x} = 53.1$ ($\sigma = 10$ was assumed known)

Using the sample results,

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Reach a decision and interpret the result:

Do not reject H_0 since z = 0.88 < 1.28

i.e.: there is not sufficient evidence that the mean bill is over \$52

Example: p-Value Solution

(continued)

Calculate the p-value and compare to α

(assuming that $\mu = 52.0$)

$$P(\bar{x} \ge 53.1 | \mu = 52.0)$$

$$=P\left(z \ge \frac{53.1-52.0}{10/\sqrt{64}}\right)$$

$$=P(z \ge 0.88) = 1 - .8106$$

Do not reject H_0 since p-value = .1894 > α = .10

Next Lesson

Hypothesis Testing

See you@

