Московский Физико-Технический Институт

Кафедра мультимедийных технологий и телекоммуникаций

Расчёт КИХ-фильтра по заданным параметрам квадрата АЧХ

(Фильтр нижних частот)

Студентка: Маслова Е.М.

Группа: Б01-303

Преподаватель: Бахурин С.А.

Дата: 19 мая 2025 г.

Московский Физико-Технический Институт (МФТИ)

Содержание

1	Введение	2
2	Основная часть 2.1 Теоретические основы	3
3	Результаты 3.1 Обработка данных	4
4	Заключение	5

1 Введение

Зададим требования к квадрату модуля проектируемого КИХ фильтра (вариант 2):

Частота дискретизации $F_s=30$ к Γ ц

Тип фильтра: ФНЧ

Граничные чатсоты (в кГц):

 $f_p = 10$

$$f_s = 13$$

Неравномерность в полосе пропускания: $R_p=1$ дБ

Уровень подавления в полосе заграждения: $R_s = 60$ дБ.

<u>Цель работы</u>: спроектровать цифровой КИХ фильтр, удовлетворяющий приведённым требованиям.

2 Основная часть

2.1 Теоретические основы

Шаги проектрования КИХ-фильтра нижних частот:

- На основе требуемого подавления производим выбор окна сглаживания с достаточным уровнем боковых лепестков $\gamma_{sl} < R_s$
- Производим оценку порядка фильтра по приближенной формуле:

$$N \approx \frac{F_s R_s \cdot BW_0}{22\Delta f \cdot 2} \tag{1}$$

- Формируем частотную выборку и рассчитываем импульсную характеристику h_n фильтра порядка N.
- Применяем оконное сглаживание.
- Проверяем АЧХ и подстраиваем порядок фильтра при необходимости.

3 Результаты

3.1 Обработка данных

Последовательно выполним шаги, указанные в пункте "Теоретические основы":

- Выбираем окно Блэкмана, т.к. оно обеспечивает затухание $R_s=60~{
 m дB}$ в полосе заграждения.
- Оценка порядка фильтра по формуле (1): $N \approx 113$
- Производим расчет импульсной характеристики методом частотной выборки. Тогда частота fp приходится на $b_p = fp(N+1)/Fs = 14$ ДПФ бин, также формируем линейную ФЧХ. Визуализируем АЧХ полученного фильтра:

- Видим, что требования к квадрату AЧX выполняются с запасом, можем уменьшить порядок фильтра до N=38.
- Используя обратное ДП Φ , построим импульсную характеристику полученного фильтра.

4 Заключение

В ходе данной работы был спроектирован КИХ-фильтр нижних частот, квадрат модуля АЧХ которого удовлетворяет заданным требованиям, получена его импульсная характеристика.