НАУКА И БИЗНЕС: ПУТИ РАЗВИТИЯ

Раздел: Математические и инструментальные методы в экономике

УДК 681.5, 519.86

М.П. МАСЛАКОВ, С.В. КУЛАКОВА ФГБОУ ВО «Северо-Кавказский горно-металлургический институт (Государственный технологический университет)», г. Владикавказ

РАЗРАБОТКА МЕТОДА ПОСЛЕДОВАТЕЛЬНОПАРАЛЛЕЛЬНОЙ КОМПОЗИЦИИ МОДИФИЦИРОВАННЫХ СЕТЕЙ ПЕТРИ ДЛЯ ПОЛУЧЕНИЯ ПОЛНОЦЕННОЙ И АДЕКВАТНОЙ УПРАВЛЯЮЩЕЙ МОДЕЛИ СОСТАВЛЯЮЩИХ СЛОЖНЫЙ ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ОПЕРАЦИЙ

Ключевые слова: граф активности переходов; композиция модифицированных сетей Петри; сложный технологический процесс; управляющая модель.

Аннотация: В данной работе рассмотрена проблема создания управляющих моделей сложными технологическими процессами. Для решения обозначенной проблемы предложен метод последовательно-параллельной композиции модифицированных сетей Петри. Данный метод предназначен для объединения в единую управляющую модель составляющих сложный технологический процесс операций. За основу разработки метода были взяты декартово произведение множеств и имеющийся научный задел авторов работы. Предложенный метод проиллюстрирован на конкретном примере, адекватность функционирования получаемых моделей подтверждена результатами компьютерного моделирования.

Современные технологические процессы, реализующиеся на технологических объектах стекольной, пищевой, металлургической и т.п. промышленности, характеризуются высокой степенью сложности, которая определяется количеством оборудования и составляющих процесс операций, а также способами взаимодействия узлов объекта управления и операций процесса. При разработке систем управления вышеотмеченными процессами проектировщики должны отталкиваться не только от стан-

дартных методов проектирования, но и от технологических регламентов, которые должны реализовываться на объектах управления. Зачастую технологический процесс можно разделить на некоторое количество множеств его составляющих, которые должны функционировать, различным образом взаимодействуя друг с другом: параллельно, последовательно и/или последовательно-параллельно. Поэтому можно говорить о том, что одной из первоочередных задач при разработке алгоритмов управления является определение множеств, составляющих технологический процесс, с дальнейшей разработкой управляющих ими моделей. В данном ракурсе представляется актуальной задача разработки методов последовательно-параллельной композиции управляющих моделей, составляющих технологический процесс, для получения по итогу полноценной и адекватной управляющей модели всем процессом в соответствии с требуемым технологическим регламентом работы.

В работе [1] был предложен новый тип модификации сетей Петри для получения управляющих моделей как процесса управления, так и составляющих процесс. Полученная структура модифицированной сети Петри N позволяет описывать все многообразие возможных взаимодействий между технологическими операциями сложного технологического процесса ($N = < P_v, T, I, O, T_n^m, I_n^m, O_n^m, \mu_0, P_i, P_o, I_i, O_o >$).

В основу разработки метода последовательно-параллельной композиции для нового типа модифицированных сетей положено

Рис. 1. Модифицированная сеть N_1

Рис. 2. Модифицированная сеть N_2

декартово произведение множеств и научный задел, представленный в работах [2; 3]. Предложенный метод проиллюстрируем на следующем примере.

Пусть даны две модифицированные сети N_1 и N_2 (рис. 1–2). На рис. 1–2 для обеспечения наглядности не указаны отображения переходов в комплекты выходных позиций (выходные функции переходов), для сети N_1 эти отображения имеют вид: $O_{t1} = O_{t2} = O_{t4} = O_{t5} = \{P_{101}\};$ $O_{t3}^1 = O_{t3}^2 = O_{t3}^3 = O_{t3}^4 = \{P_{103}\};$ для сети N_2 : $O_{t1} = O_{t4} = O_{t5} = \{P_{201}\};$ $O_{t3} = O_{t6} = \{P_{202}\};$ $O_{t2}^1 = O_{t2}^2 = O_{t2}^3 = \{P_{203}\};$ зеленым цветом выделены связи между множеством входных пози-

ций P_i и переходами сети; розовым цветом выделены составные переходы сетей N_1 и N_2 .

Предложенный метод последовательнопараллельной композиции модифицированных сетей предполагает реализацию частичного декартова произведения первой сети на вторую [4], а если быть точнее, то этой операции подвергаются только множества входных P_i и выходных P_o позиций сетей.

На первом шаге определяется тип последовательно-параллельной композиции сетей N_1 и N_2 : по «общему входу», по «общему выходу», по «общим входу и выходу».

В зависимости от выбранного типа компо-

Раздел: Математические и инструментальные методы в экономике

Рис. 3. Сеть – композиция сетей N_1 и N_2

зиции выполняются следующие итерации.

1. Композиция по «общему входу». Множества входных P_i позиций сетей подвергаются операции декартова произведения множеств. В нашем примере: $P_{1i} \times P_{2i} = \{P_{1i1}, P_{1i2}\} \times \{P_{2i1}, P_{2i2}, P_{2i3}\} = (\{P_{1i1}, P_{2i1}\}; \{P_{1i1}, P_{2i2}\}; \{P_{1i1}, P_{2i3}\}; \{P_{1i2}, P_{2i1}\}; \{P_{1i2}, P_{2i3}\}, Oбозначим получившиеся пары как: <math>S_{pi1} = \{P_{1i1}, P_{2i1}\}; S_{pi2} = \{P_{1i1}, P_{2i2}\}; S_{pi3} = \{P_{1i1}, P_{2i3}\}; S_{pi4} = \{P_{1i2}, P_{2i1}\}; S_{pi5} = \{P_{1i2}, P_{2i2}\}; S_{pi6} = \{P_{1i2}, P_{2i3}\}. Получившееся множество <math>S_{pi} = \{S_{pi1}, S_{pi2}, S_{pi3}, S_{pi4}, S_{pi5}, S_{pi6}\}$ будет являться множеством входных позиций новой сети, являющейся композицией заданных.

Отображение множества входных позиций S_{pi} сети, являющейся композицией N_1 и N_2 определяется следующим образом. Каждая входная позиция S_{pin} включается во входную функцию перехода $I(TS_{pin})$ из множества переходов TS_{pi} . Множество TS_{pi} равномощно множеству S_{pi} , причем входные функции $I(TS_{pin})$ переходов равны одному и только одному элементу из множества S_{pi} , пересечение этих функций равно пустому множеству, а объединение — множеству S_{pi} . Выходные функции переходов $O(TS_{pin})$ множества TS_{pi} равны тем входным позициям

заданных сетей, которые по итогу декартова произведения образовали элементы множества S_{pi} .

Для нашего примера множество $TS_{pi} = \{TS_{pi1}, TS_{pi2}, TS_{pi3}, TS_{pi4}, TS_{pi5}, TS_{pi6}\};$ входные функции переходов множества TS_{pi} следующие: $I(TS_{pi1}) = \{S_{pi1}\};$ $I(TS_{pi2}) = \{S_{pi2}\};$ $I(TS_{pi3}) = \{S_{pi3}\};$ $I(TS_{pi4}) = \{S_{pi4}\};$ $I(TS_{pi5}) = \{S_{pi5}\};$ $I(TS_{pi6}) = \{S_{pi6}\};$ выходные функции переходов множества TS_{pi} : $O(TS_{pi1}) = \{P_{1i1}, P_{2i1}\};$ $O(TS_{pi2}) = \{P_{1i1}, P_{2i2}\};$ $O(TS_{pi3}) = \{P_{1i1}, P_{2i3}\};$ $O(TS_{pi4}) = \{P_{1i2}, P_{2i1}\};$ $O(TS_{pi5}) = \{P_{1i2}, P_{2i2}\};$

- 2. Композиция по «общему выходу» реализуется практически аналогично композиции по «общему входу». В итоге для нашего примера получаем:
- множество выходных позиций новой сети $S_{po} = \{S_{po1}, S_{po2}, S_{po3}, S_{po4}, S_{po5}, S_{po6}\}$, причем $S_{po1} = \{P_{1o1}, P_{2o1}\}; S_{po2} = \{P_{1o1}, P_{2o2}\}; S_{po3} = \{P_{1o1}, P_{2o3}\}; S_{po4} = \{P_{1o2}, P_{2o1}\}; S_{po5} = \{P_{1o2}, P_{2o2}\}; S_{po6} = \{P_{1o2}, P_{2o3}\};$
- множество переходов $TS_{po} = \{TS_{po1}, TS_{po2}, TS_{po3}, TS_{po4}, TS_{po5}, TS_{po6}\}.$

Мероприятия по определению отображения множества выходных позиций S_{po} идентичны мероприятиям по их определению для компози-

SCIENCE AND BUSINESS: DEVELOPMENT WAYS

Section: Mathematical and Instrumental Methods in Economics

ции по «общему входу», за исключением того, что каждая выходная позиция S_{pon} включается в выходную функцию перехода $O(TS_{pon})$ из множества переходов TS_{po} . Множество TS_{po} равномощно множеству S_{po} , причем выходные функции $O(TS_{pon})$ переходов равны одному и только одному элементу из множества S_{po} , пересечение этих функций равно пустому множеству, а объединение — множеству S_{po} . Входные функции переходов $I(TS_{pon})$ множества TS_{po} равны тем выходным позициям заданных сетей, которые по итогу декартова произведения образовали элементы множества S_{po} .

По примеру: выходные функции переходов множества TS_{po} следующие: $O(TS_{po1}) = \{S_{po1}\};$ $O(TS_{po2}) = \{S_{po2}\};$ $O(TS_{po3}) = \{S_{po3}\};$ $O(TS_{po4}) = \{S_{po4}\};$ $O(TS_{po5}) = \{S_{po5}\};$ $O(TS_{po6}) = \{S_{po6}\};$ входные функции переходов множества TS_{po} : $I(TS_{po1}) = \{P_{1o1}, P_{2o1}\};$ $I(TS_{po2}) = \{P_{1o1}, P_{2o2}\};$ $I(TS_{po3}) = \{P_{1o1}, P_{2o3}\};$ $I(TS_{po6}) = \{P_{1o2}, P_{2o1}\};$ $I(TS_{po5}) = \{P_{1o2}, P_{2o2}\};$ $I(TS_{po6}) = \{P_{1o2}, P_{2o3}\}.$

3. Композиция по «общему входу и выходу» – это объединение итераций композиций по «общему входу» и «общему выходу».

Крайней операцией метода последовательно-параллельной композиции модифицированных сетей Петри является построение искомой сети по полученным данным. Получившаяся сеть для рассматриваемого примера представлена на рис. 3 (выделение цветом не несет смысловой нагрузки, только для наглядности, для упрощения вида полученной сети, их структуры (рис. 1–2) представлены в виде блоков, а отображены лишь их множества входных и выходных позиций, сама сеть получена на основе композиции по «общему входу и выходу»).

В заключение необходимо отметить, что адекватность предложенного метода и получаемых на основе него управляющих моделей (сетей) подтверждена результатами компьютерного моделирования в *PIPE v* 4.3.0.

Статья подготовлена при финансовой поддержке $P\Phi\Phi U$ в рамках научного проекта № 16-38-00551 мол a.

Список литературы

- 1. Maslakov, M.P. Method of activity transition graphs conversion into modified Petri nets of technological processes / M.P. Maslakov, K.V. Antipov, A.Z. Dobaev // 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2017. P. 4.
- 2. Маслаков, М.П. Метод модификации сетей Петри для построения управляющих моделей сложных технологических процессов / М.П. Маслаков, А.Г. Дедегкаев // Перспективы науки. Тамбов : ТМБпринт. 2016. № 3(78). С. 39—45.
- 3. Maslakov, M.P. The activity count of transitions petri networks of technological processes / M.P. Maslakov, A.G. Dedegkaev, K.V. Antipov // Наука и технологии. 2016. № 3. С. 20–25.
- 4. Воронкова, О.В. Ключевые направления научных исследований в Российской Федерации / О.В. Воронкова // Наука и бизнес: пути развития. М.: ТМБпринт. 2014. № 5(35). С. 87–90.
- 5. Маслаков, М.П. Операции над сетями Петри / М.П. Маслаков, Д.П. Маслаков // Материалы Международной заочной научно-практической конференции «Физико-математические науки и информационные технологии: актуальные проблемы» (11 июня 2012 г.). Новосибирск : Сибирская ассоциация консультантов, 2012. С. 12–16.

References

- 2. Maslakov, M.P. Metod modifikacii setej Petri dlja postroenija upravljajushhih modelej slozhnyh tehnologicheskih processov / M.P. Maslakov, A.G. Dedegkaev // Perspektivy nauki. Tambov : TMBprint. 2016. № 3(78). S. 39–45.
- 3. Maslakov, M.P. The activity count of transitions petri networks of technological processes / M.P. Maslakov, A.G. Dedegkaev, K.V. Antipov // Nauka i tehnologii. − 2016. − № 3. − S. 20–25.
- 4. Voronkova, O.V. Kljuchevye napravlenija nauchnyh issledovanij v Rossijskoj Federacii / O.V. Voronkova // Nauka i biznes: puti razvitija. M. : TMBprint. 2014. № 5(35). S. 87–90.
- 5. Maslakov, M.P. Operacii nad setjami Petri / M.P. Maslakov, D.P. Maslakov // Materialy Mezhdunarodnoj zaochnoj nauchno-prakticheskoj konferencii «Fiziko-matematicheskie nauki i

НАУКА И БИЗНЕС: ПУТИ РАЗВИТИЯ

Раздел: Математические и инструментальные методы в экономике

informacionnye tehnologii: aktual'nye problemy» (11 ijunja 2012 g.). – Novosibirsk : Sibirskaja associacija konsul'tantov, 2012. – S. 12–16.

M.P. Maslakov, S.V. Kulakova

North Caucasus Mining and Metallurgical Institute (State Technological University), Vladikavkaz

Development of the Method for Serial-Parallel Composition of Modified Petri Nets to Obtain Full-Fledged and Adequate Operating Model of a Complex Process

Keywords: composition of modified Petri nets; transition activity graph; complex process; operating model.

Abstract: The article studies the problem of creating operating models for complex. The method of serial-parallel composition of modified Petri nets is offered for the solution of the designated problem. This method is designed to integrate into a single control model the components of a complex technological process. As a basis for the development of the method, the Cartesian product of sets and the existing research finding of the authors were taken. The proposed method is illustrated with a concrete example, the adequacy of the functioning of the obtained models is verified by the results of computer simulation.

© М.П. Маслаков, С.В. Кулакова, 2017