Number Theopry HW4 - Part 1

M Bedir Tapkan

November 30, 2017

Solution 1

Solution 2

Solution 11

a:

b:
$$q|3^p + 1 \implies 3^p \equiv -1 \pmod{q}$$

Solution 12

From Fermat's Little Theorem we know that $a^{p-1} \equiv 1 \pmod{p}$. In our case it will be $3^{100} \equiv 1 \pmod{101}$ since 101 is a prime number.

We also know that:

$$3^{32,123,878,237,982,731,602} = 3^2 \times 3^{32,123,878,237,982,731,600} = 3^2 \times (3^{100})^{321,238,782,379,827,316} \\ (3^{100})^{321,238,782,379,827,316} \equiv 3^2 \times 1^{321,238,782,379,827,316} \\ (mod101) \equiv 9 \\ (mod101)$$

Solution 13

a:
$$1234 = 2^{10} + 2^7 + 2^6 + 2^4 + 2^1$$