3. Rang i inverz

zadaci sa ispita

MI 2019 2

- 2. (10 bodova)
 - (a) Neka su A i B regularne matrice. Napišite i izvedite formulu u kojoj (AB)⁻¹ izražavamo preko A⁻¹ i B⁻¹.
 - (b) Zadane su matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Dokažite da su matrice A, B, C regularne te izračunajte $(A^{-1}B^{-1}C)^{-1}$.

(2) (a)
$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$$

 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$

(b)
$$det A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \cdot (-1) \\ + \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = 1 \cdot 1 \cdot 1 = 1 \neq 0$$

det B = 3.3.3 = 27 + 0, det C = 1.1.1 = 1 + 0 =) A, B, C regularne

$$(A^{-1}B^{-1}C)^{-1} = C^{-1}BA = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 8 & 9 \\ -1 & 0 & 1 \\ 3 & 3 & 6 \end{bmatrix}$$

MI 2019 3

3. (10 bodova) U ovisnosti o parametru $\alpha \in \mathbb{R}$ odredite najveći mogući broj linearno nezavisnih vektora među sljedećim vektorima

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ \alpha \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ \alpha \\ 1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha^2 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha & \alpha^{2} \\ \alpha & 1 & \alpha^{2} & \alpha^{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - 1 \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - 1 \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - 1 \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - 1 \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - 1 \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - 1 \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - \alpha \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - \alpha \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - \alpha \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{-1} & \alpha^{2} - \alpha \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{2} - \alpha & \alpha^{2} - \alpha \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha - 1 & \alpha^{2} - \alpha & \alpha^{2} - \alpha \\ 0 & 1 - \alpha & \alpha^{2} - \alpha & \alpha^{2} - \alpha \\ 0 & 1 -$$

1° K = 1

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & \times +1 \\ 0 & 0 & \times +1 & 2\times +1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & \times \\ 0 & 0 & \times +1 & \times \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & \times \\ 0 & 0 & \times +1 & \times \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -x+1 & 0 \\ 0 & 0 & 1 & \times \end{bmatrix}$$

JIR1 2019 1

- 1. (10 bodova)
 - (a) Odredite sve $a \in \mathbb{R}$ takve da je matrica

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ a & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

regularna.

(b) Neka je a_0 najmanji pozitivni cijeli broj za koji je matrica \mathbf{A} iz (a) podzadatka regularna. Za taj a_0 odredite sve matrice \mathbf{X} za koje vrijedi $\mathbf{A}\mathbf{X} = \mathbf{B}$, gdje je

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}.$$

$$det A = \begin{bmatrix} 0 & 1 & 2 \\ a & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \cdot (c^2) = \begin{bmatrix} 0 & 1 & 2 \\ a & 0 & 1 \\ 3 & 0 & -3 \end{bmatrix}$$

$$= -\begin{vmatrix} a & 1 \\ 3 & -3 \end{vmatrix} = 3a+3$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & -\frac{2}{3} & 0 & \frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & -\frac{2}{3} & 1 & \frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & -\frac{2}{3} & 1 & \frac{1}{3} \end{bmatrix}$$

JIR1 2019 2

2. (10 bodova) Zadane su matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ 0 & 3 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (a) Dokažite da su matrice B i A + B regularne.
- (b) Riješite matričnu jednadžbu

$$\mathbf{X} = \mathbf{A} \left[(\mathbf{A}^{-1} - \mathbf{B} \mathbf{X}^{-1}) \mathbf{B} + \mathbf{I} \right]^{-1} \mathbf{B}.$$

(2.) (a)
$$\det A = \begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \end{vmatrix} = -3 \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = 9 \neq 0$$

$$\det(A+B) = \begin{vmatrix} 2 & 2 & 1 \\ 2 & -2 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 1 \\ 4 & 0 & 0 \end{vmatrix} = -4 \neq 0$$

$$\det(A+B) = \begin{vmatrix} 2 & 2 & 1 \\ 2 & -2 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 1 \\ 4 & 0 & 0 \end{vmatrix} = -4 \neq 0$$

=) A = A+B su regularne matrice

(b)
$$X = A[(A^{-1} - BX^{-1})B + I]^{-1}B$$

$$X = A[(A^{-1} - BX^{-1})B + I]^{-1}B$$
 $A^{-1}XB^{-1} = [(A^{-1} - BX^{-1})B + I]^{-1}$

BX-1A = (A-1-BX-1)B+I BX-1A = A-1B - BX-1B+T

RX -1 A + BX -1 B = A -1 B + I

BX-1(A+6) = A-16 + A-1A

X-1 = B-1A-1 /-1

B-1 | BX-1 (A+B) = A-1 (B+A) (A+B)-1

 A^{-1} \ X = A\[(A^{-1} - BX^{-1})B + I\]^{-1}B \[\cdot B^{-1}\]

$$X^{-1} = B^{-1}A^{-1}BA^{-1} - X^{-1}BA^{-1} + B^{-1}A^{-1}$$

$$X^{-1} = B^{-1} \left[(A^{-1} - BX^{-1}) B + I \right] A^{-1}$$

$$Y^{-1} = B^{-1} \left[(A^{-1} - BX^{-1}) B + I \right] A^{-1}$$

X-1 = B-1A-1 /-1

 $X = AB = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & -2 \\ 0 & -3 & 0 \end{bmatrix}$

 $\chi^{-1}(I + BA^{-1}) = B^{-1}A^{-1}(BA^{-1} + I)$ $[-(I + BA^{-1})^{-1}]$

 $X = A[(A^{-1} - 6X^{-1})B + I]^{-1}B$

Z. macin

ZIR 2019 1

1. (10 bodova) Zadane su matrice

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} \quad \mathbf{i} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) Dokažite da su matrice A, B i A⁻¹ + I regularne.
- (b) Riješite matričnu jednadžbu

$$(AX)^{-1} + X^{-1} = B.$$

1. (a)
$$\det A = 2.4.2 = 16 \pm 0 \Rightarrow A \text{ regularna}$$

 $\det B = 1.1.1 = 1 \pm 0 \Rightarrow B \text{ regularna}$

$$\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\$$

$$\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 2 & 0 & 0 & 1 \\ 1 & 4 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 1 & 2 & 0 & 0 \\ 1 & 4 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{vmatrix} + \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1$$

$$=) \det \left(A^{-1} + I\right) = \left(\frac{1}{2} + 1\right) \left(\frac{1}{4} + 1\right) \left(\frac{1}{2} + 1\right) = \frac{45}{16} + 0$$

$$=) A^{-1} + I \quad \text{tegularize}$$

$$A^{-1} + I \quad \text{legularna}$$

$$(X)^{-1} + X^{-1} = B$$

=)
$$A^{-1} + I$$
 tegularna.
 $(A \times)^{-1} + \chi^{-1} = B$
 $\chi^{-1}A^{-1} + \chi^{-1} = B$
 $\chi^{-1}(A^{-1} + I) = B$

 $\begin{bmatrix} \frac{8}{2} & 0 & 0 \\ 0 & \frac{5}{4} & 0 \\ -\frac{4}{4} & 0 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & -\frac{3}{2} & 0 \\ 0 & \frac{5}{4} & 0 \\ -\frac{4}{14} & \frac{3}{2} & \frac{3}{2} \end{bmatrix}$

=)
$$\det (A^{-1} + I) = (\frac{1}{2} + 1)(\frac{1}{4} + 1)(\frac{1}{2} + 1) = \frac{45}{16} + 0$$

=) $A^{-1} + I$ legularna
(b) $(A \times)^{-1} + \times^{-1} = B$
 $X^{-1}A^{-1} + X^{-1} = B$

 $(A^{-1}+I)^{-1}(A^{-1}+I)^{-1}X=B^{-1}$

X = (A-1+I)B-1

MI 2020 3

- 3. (10 bodova)
 - (a) Neka su A i B regularne matrice. Napišite i izvedite formulu u kojoj (A · B)⁻¹ izražavamo preko A⁻¹ i B⁻¹.
 - (b) Zadane su matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad \mathbf{i} \quad \mathbf{B} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

Riješite matričnu jednadžbu $\mathbf{X}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{B}^{-1}$.

3. (a) Formula:
$$(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$$
. Izvod:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$

Gornji račun pokazuje željenu tvrdnju.

(b)
$$\mathbf{X}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{R}^{-1}$$

$$\mathbf{X}^{-1} = \mathbf{A} \cdot \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$$
$$\mathbf{X} = (\mathbf{A} \cdot \mathbf{B}^{-1} \cdot \mathbf{A}^{-1})^{-1} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A}^{-1}$$

Primijetimo da su A i B regularne matrice što nam opravdava sav gornji račun. Izračuna imo sada A⁻¹.

Izračunajmo sada
$$\mathbf{A}^{-1}$$
.

$$\begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 0 \\ 1 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 1 & 1 & : & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 0 \\ 0 & 1 & 0 & : & -1 & 1 & 0 \\ 0 & 1 & 1 & : & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 0 \\ 0 & 1 & 0 & : & -1 & 1 & 0 \\ 0 & 0 & 1 & : & 1 & -1 & 1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

JIR 2020 2

2. (10 bodova) Zadane su matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{i} \quad \mathbf{C} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (a) Pokažite da su matrice A, B i C regularne.
- (b) Riješite matričnu jednadžbu $\mathbf{X}^{-1} \cdot \mathbf{A} = \mathbf{B} \cdot \mathbf{C}^{-1}$.

$$\det B = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0,$$

$$\det C = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} \begin{vmatrix} 1 \cdot (-\frac{1}{2}) \\ + \frac{1}{2} \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 2 \end{vmatrix} = 6 \neq 0$$

$$\Rightarrow A_1B_1C \text{ so regular re watrice}$$

$$(6) X^{-1}A = B \cdot C^{-1} \qquad (A^{-1})$$

(a) $\det A = \begin{vmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & -1 \end{vmatrix} \xrightarrow{1/4} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -2 \end{vmatrix} = -4 + 0,$

$$X^{-1} = BC^{-1}A^{-1}$$
 $X = ACB^{-1}$

Raturamo

[1 1 0 1 1 0 0 7

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 0 & 1 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

 $= \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 0 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $=\begin{bmatrix} 2 & -1 & 2 \\ 0 & 3 & 0 \end{bmatrix}$

$$X = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

LJIR 2020 1

- 1. (10 bodova) Kažemo da je matrica $A \in \mathcal{M}_{nn}$ nilpotentna ako je $A^n = 0$.
 - (a) Odredite $\alpha, \beta \in \mathbb{R}$ takve da je matrica

$$\mathbf{A} = \begin{bmatrix} \alpha & 1 \\ 0 & \beta \end{bmatrix}$$

nilpotentna.

- (b) Dokažite da je matrica $\mathbf{A} \in \mathcal{M}_{22}$ nilpotentna ako i samo ako je matrica $\mathbf{I} + \mathbf{A}$ regularna i $(\mathbf{I} + \mathbf{A})^{-1} = \mathbf{I} \mathbf{A}$.
- (c) Ako je matrica A ∈ M₂₂ nilpotentna, dokažite da je zbroj elemenata na njezinoj glavnoj dijagonali jednak nuli.

(1.) (a)
$$A^2 = \begin{bmatrix} \alpha & 1 \\ 0 & \beta \end{bmatrix} \begin{bmatrix} \alpha & 1 \\ 0 & \beta \end{bmatrix} = \begin{bmatrix} \alpha^2 & \alpha + \beta \\ 0 & \beta^2 \end{bmatrix} = 0$$

$$\Rightarrow \begin{cases} \alpha^2 & = 0 \\ \alpha + \beta & = 0 \\ \beta^2 & = 0 \end{cases} \Rightarrow \alpha = \beta = 0$$

(b) Vocimo da je
$$(I+A)(I-A) = I-A+A-A^2 = I-A^2.$$

(*)

Dolle,

$$A \in \mathcal{M}_{22}$$
 wilpotentne (=) $A^2 = 0$
(=) $I - A^2 = I$

(=)
$$I-A^{\circ} = I$$

(=) $(I+A)(I-A) = I$
(=) $I+A$ regularne motion i $(I+A)^{-1} = I-A$

 $=) \begin{cases} \alpha^{2} + bc = 0 \\ b(a + d) = 0 \\ c(a + d) = 0 \\ bc + d^{2} = 0 \end{cases}$

 $A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^{2} + bc & b(a+d) \\ c(a+d) & bc + d^{2} \end{bmatrix} = 0$

Prosportavilus de je atd \$0. Tada iz druge

Utristavanjem u prvu i četvrtu jednalost dobivomo a2=d2=0, tj. a=d=0 pa a+d=0.

i trede jednalosti slijedi b = C=O.

Kontradilicija, dalele, atd = 0.

(c) Nesa je
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22}$$
 nilpotentra notrica. Imamo

LJIR 2020 2

2. (10 bodova) Odredite sve $\lambda \in \mathbb{R}$ za koje je broj linearno nezavisnih vektora u skupu

$$\left\{ \begin{bmatrix} 1\\\lambda\\\lambda \end{bmatrix}, \begin{bmatrix} 1\\\lambda^2\\\lambda^2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

najveći mogući.

2. Najveći birji kinearuo nezavistuh velitore među zedanima jedneki je rorgu metrice čizi su stupci (ili retci) zedani velitori:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2^2 & 1 \\ 2 & 2^2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2^2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2^2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2^2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2^2 & 1 \end{bmatrix}$$

Razbikujemo slučajene u ovisnost o A :

$$A = \begin{bmatrix} 3 & 3^2 & 1 \\ 3 & 3^2 & 1 \end{bmatrix} \underbrace{1 \cdot (-1)}_{1 \cdot (-1)} \sim \begin{bmatrix} 3 & 3^2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Razlikujemo slučejene u ovisnosti o : :$$

$$1^{\circ} : \Lambda = 1$$

$$A \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \Gamma(A) = 1$$

 $A \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \Gamma(A) = 2$ 3° 2+0,1 $A \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & \lambda(2-1) & 1-\lambda \\ 0 & 0 & 0 \end{bmatrix} \mid \lambda(2-1) \downarrow 0 \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -\frac{1}{\lambda} \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \Gamma(A) = 2$

> Dalde, u zadarow je skupu najská moguć broj linearno nezavisnih veletora jednole 2 i taj broj se postize ze sue AERY 13.

1 = (A) (O O O O A

MI 2021 3

3. (10 bodova) Odredite rang matrice **A** u ovisnosti o parametru $t \in \mathbb{R}$:

$$\mathbf{A} = \begin{bmatrix} 1 & t+1 & -1 \\ 2 & -2 & t \\ 1 & 11 & -8 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & t+1 & -1 \\ 2 & -2 & t \\ 1 & 11 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & t+1 & -1 \\ 2 & -2 & t \\ 1 & 10 & -8 \end{bmatrix} \sim \begin{bmatrix} 0 & t-10 & 7 \\ 0 & -24 & t+16 \\ 1 & 1 & -8 \end{bmatrix} \sim 24$$

$$\sim \begin{bmatrix} 0 & t-10 & \frac{7}{4} & \frac{1}{4} &$$

£2+6++8 = (++2)(++4)

70 t=-2 = 6 t=-4 ge r(A)=2

inode ge r(A)=3

LJIR 2021 1

1. (10 bodova) Neka su

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{i} \quad \mathbf{B} = \begin{bmatrix} 0 & 8 & 5 & 1 \\ 9 & 6 & 2 & 0 \\ 7 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}.$$

Pokažite da su A i B regularne matrice te riješite matričnu jednadžbu

$$B^{-1}X - (AB)^{-1} = B^{-1}$$
.

Racunawa

1. (10 bodova) Neka su

= 24 +0,

odalele slijedi da su A i B regularne.

Za zodanu matričnu jednadžbu imamo

B. \ B-1 (X-A-1) = B-1

T = 1 A - X Y = X + X = X

B-1X - (AB)-1 = B-1

B1X-B-1A-1=B-1

Pokažite da su A i B regularne matrice te riješite matričnu jednadžbu

 $det A = \begin{vmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix} = \begin{bmatrix} garnye & trolustoste \\ determinanta \\ \end{bmatrix} = 1^4 = 1 \neq 0,$

 $B^{-1}X - (AB)^{-1} = B^{-1}$.

- $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{i} \quad \mathbf{B} = \begin{bmatrix} 0 & 8 & 5 & 1 \\ 9 & 6 & 2 & 0 \\ 7 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

$$= \frac{1}{2} \times = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

JIR 2021 1

1. (10 bodova) Neka je X regularna matrica reda 5 i

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & -1 & -1 & -1 \\ -1 & 0 & -1 & -1 & -1 \\ -1 & -1 & 0 & -1 & -1 \\ -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & -1 & 0 \end{bmatrix}.$$

Pokažite da izraz $det(\mathbf{X}^{-1}\mathbf{A}^{5}\mathbf{X})$ ne ovisi o \mathbf{X} te ga izračunajte.

(10 bodova) Neka je X regularna matrica reda 5 i

$$\mathbf{A} = \begin{bmatrix} -1 & -1 & 0 & -1 & -1 \\ -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & -1 & 0 \end{bmatrix}$$
 Pokažite da izraz det $(\mathbf{X}^{-1}\mathbf{A}^{5}\mathbf{X})$ ne ovisi o X te ga izračunajte.

Prema Binet-Canalysieuron teoremu

$$det(X^{-1}A^{5}X) = det(X^{-1})det(A^{5})detX$$

= 1 det A) det X

Racunamo

$$\det A = \begin{bmatrix} 0 & -1 & -1 & -1 & -1 \\ -1 & 0 & -1 & -1 & -1 \\ -1 & -1 & 0 & -1 & -1 \\ -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} -4 & -4 & -4 & -4 & -4 \\ -1 & 0 & -1 & -1 & -1 \\ -1 & -1 & 0 & -1 & -1 \\ -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 & -1 \end{bmatrix}$$

= $\left[\frac{\text{didivera distribution}}{\text{det}}\right] = -4$ =) $\left(\frac{1}{2}\right)^{-1} \left(\frac{1}{2}\right)^{-1} = -1024$

ZIR 2021 1

- 1. (10 bodova)
 - (a) Matematičkom indukcijom dokažite sljedeću tvrdnju: determinanta matrice s dva jednaka retka je jednaka nuli.
 - (b) Koristeći (a) dokažite sljedeću tvrdnju: ako jednom retku matrice A dodamo neki drugi redak pomnožen s proizvoljnim skalarom i označimo novonastalu matricu s A', tada je

$$\det \mathbf{A} = \det \mathbf{A}'$$
.

2. (10 bodova) Riješite matričnu jednadžbu $(\mathbf{A} + \mathbf{I})\mathbf{X}^{-1} = \mathbf{A} + 2\mathbf{I}$, gdje je

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 5 \\ 1 & 0 & 3 \\ 2 & 4 & 5 \end{bmatrix}.$$

(10 bodova)

- (a) Matematičkom indukcijom dokažite sljedeću tvrdnju; determinanta matrice s dva jednaka retka je jednaka nuli.
- (b) Koristeći (a) dokažite sljedeću tvrdnju: ako jednom retku matrice A dodamo neki drugi redak pomnožen s proizvoljnim skalarom i označimo novonastalu matricu s A', tada je

$\det A = \det A'$.

$$e \neq i$$
, $e \neq j$, debivours
$$\det A = \sum_{n=1}^{n+1} a_{nn} \cdot (-1)^{e+l} M$$

$$\det A = \sum_{\ell=1}^{n} \alpha_{\ell \ell} (-1)^{\ell}$$

$$\det A = \sum_{\ell \geq 1} \alpha_{\ell \ell'} (-1)^{\ell'}$$
The A is to be and according primary

 $det A = \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_d + \lambda \vec{a}_d \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \\ \vec{a}_1 \\ \vdots \\ \vec{a}_d \end{bmatrix} + \lambda \begin{bmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_d \end{bmatrix} = \begin{bmatrix} druga je determinanta \\ prema (a) podrpodatku \\ jedrceka ruli \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_d \end{bmatrix} = det A.$

(*)

ZIR 2021 2

2. (10 bodova) Riješite matričnu jednadžbu $(\mathbf{A} + \mathbf{I})\mathbf{X}^{-1} = \mathbf{A} + 2\mathbf{I}$, gdje je

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 5 \\ 1 & 0 & 3 \\ 2 & 4 & 5 \end{bmatrix}.$$

$$-\mathbf{I})\mathbf{X}^{-1} = \mathbf{A} + 2\mathbf{I}$$
, gdje je

$$I X^{-1} = A + 2I$$
, gdje je

$$=$$
 A + 2I, gdje je

$$= A + 2I$$
, gdje je

$$^{1}=\mathbf{A}+2\mathbf{I},$$
 gdje je

$$\mathbf{C}^{-1} = \mathbf{A} + 2\mathbf{I}$$
, gdje je

$$\mathbf{I}^{-1} = \mathbf{A} + 2\mathbf{I}$$
, gdje je

$$\mathbf{C}^{-1} = \mathbf{A} + 2\mathbf{I}$$
, gdje je

2. (10 bodova) Riješite matričnu jednadžbu
$$(\mathbf{A}+\mathbf{I})\mathbf{X}^{-1}=\mathbf{A}+2\mathbf{I},$$
 gdje je
$$\mathbf{A}=\begin{bmatrix} -1 & 0 & 5\\ 1 & 0 & 3\\ 2 & 4 & 5 \end{bmatrix}.$$

(A+I) X-1 = A+2I

A+2T

 $X^{-1} = (A+I)^{-1}(A+ZI) / (A+ZI)$

 $(I+A)^{-1}(IS+A) = \left[(IS+A)^{-1}(I+A) \right] = X$

 $\begin{pmatrix}
1 & 0 & 5 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
2 & 4 & 7 & 0 & 0 & 1
\end{pmatrix}$ $\begin{pmatrix}
1 & 0 & 5 & 1 & 0 & 0 \\
0 & 2 & -2 & -1 & 1 & 0 \\
0 & 4 & -3 & -2 & 0 & 1
\end{pmatrix}$

 $\begin{bmatrix}
1 & 0 & 5 & | & 1 & 0 & 0 \\
0 & 2 & -2 & | & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -2 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 0 & 5 & | & 1 & 0 & 0 \\
0 & 2 & -1 & -3 & 2 \\
0 & 0 & 1 & 0 & -2 & 1
\end{bmatrix}$ |-(-5)

 $X = \begin{bmatrix} 1 & 10 & -5 \\ -\frac{1}{2} & -\frac{3}{2} & 1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 5 \\ 1 & 1 & 3 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 0 & -10 & 5 \\ \frac{1}{2} & \frac{5}{2} & -1 \\ 0 & 2 & 0 \end{bmatrix}$

$$^{-1} = \mathbf{A} + 2\mathbf{I}$$
, gdje je

MI 2022 3

3. (10 bodova) Zadana je matrica

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

- (a) Dokažite da se svaka regularna matrica može zapisati kao produkt elementarnih matrica.
- (b) Je li matrica A regularna? Obrazložite.
- (c) Zapišite matricu A kao produkt elementarnih matrica.

RJEŠENJE (a) Skripta.

(b) Kako je matrica A gornje trokutasta, lako se vidi da je det(A) = 6 ≠ 0, pa je A regularna. Ista tvrdnja slijedi iz (c) podzadatka: matrica A je umnožak elementarnih matrica, koje su regularne, pa je i A regularna.

(c) Pomnožimo li matricu A slijeva s elementarnom matricom E, rezultat je matrica EA dobivena primjenom elementarne transformacije, koja odgovara toj elementarnoj matrici, na retcima matrice A. Napravimo li k elementarnih transformacija na retcima, koje odgovaraju matricama E_1, \ldots, E_k , rezultat je matrica $E_k \ldots E_1 A$. Ako je $E_k \ldots E_1 A = I$, slijedi da je $E_k \ldots E_1$ inverz od A te vrijedi

$$A = (E_k \dots E_1)^{-1} = E_1^{-1} \dots E_k^{-1}$$
.

Kako je inverz elementarne matrice ponovno elementarna matrica, bit ćemo gotovi jednom kad pokažemo da je A ekvivalentna s jediničnom matricom.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prvo smo pomnožili drugi red s 1/2, što odgovara elementarnoj matrici $E_2(1/2)$. Potom smo pomnožili treći red s 1/3, što odgovara matrici $E_3(1/3)$. Zatim smo drugi redak pomnožen s -1 dodali prvom, što odgovara elementarnoj matrici $E_{21}(-1)$. Konačno, dodali smo treći redak pomnožen s -1 drugom retku, što odgovara matrici $E_{32}(-1)$. Stoga se gornji niz ekvivalencija može zapisati kao

$$E_{32}(-1)E_{21}(-1)E_3(1/3)E_2(1/2)A = I \implies$$

 $A = E_2(1/2)^{-1}E_3(1/3)^{-1}E_{21}(-1)^{-1}E_{32}(-1)^{-1} = E_2(2)E_3(3)E_{21}(1)E_{32}(1).$

LJIR 2023 3

3. (10 bodova)

Neka su $A, B \in M_n(\mathbb{R})$.

- (a) Ako je X = AB, dokažite da je X regularna ako i samo ako su i A i B regularne.
- (b) Ako je A regularna, dokažite da je i A^T regularna.
- (c) Ako je $x \in \mathbb{R}^n \setminus \{0\}$ takav da je Ax = 0, dokažite da je A singularna.
- (d) Ako su A i B regularne matrice koje komutiraju, dokažite da im i inverzne matrice komutiraju.

Zadatak 3.

RJEŠENJE a) Uz pomoć Binet-Cauchyjevog teorema imamo

$$det(X) = det(A)det(B)$$
.

Dakle, X je regularna akko je $\det(X) \neq 0$ akko je i $\det(A) \neq 0$ i $\det(B) \neq 0$ akko su i A i B regularne.

b) Pokazat ćemo da je $(A^T)^{-1} = (A^{-1})^T$:

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

 $(A^{-1})^{T}A^{T} = (AA^{-1})^{T} = I^{T} = I.$

c) Pretpostavimo da je A regularna. Tada je

što je kontradikcija.

d) Treba pokazati da je $A^{-1}B^{-1} = B^{-1}A^{-1}$. Množeći prvo dvaput slijeva, pa dvaput zdesna, imamo $AB = BA \implies B = A^{-1}BA \implies I = B^{-1}A^{-1}BA \implies A^{-1} = B^{-1}A^{-1}B \implies A^{-1}B^{-1} = B^{-1}A^{-1}$.

 $x = Ix = A^{-1}Ax = A^{-1}0 = 0.$

ZIR 2022 2

- 2. (10 bodova)
 - (a) Izrazite inverz umnoška regularnih matrica A i B preko A⁻¹ i B⁻¹ i dokažite tu formulu.
 - (b) Zadane su matrice

$$A = \begin{bmatrix} 1 & 0 & 5 & -2 \\ 0 & -1 & 4 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad i \quad B = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & 3 & -1 \\ 0 & 2 & -2 & -4 \\ 1 & -3 & -5 & -6 \end{bmatrix}.$$

Pokažite da su matrice A i B regularne te riješite matričnu jednadžbu

$$A(X^{-1}B^{-1}+I) = A + [B(BA^{-1}+I)]^{-1}.$$

Zadatak 2.

RJEŠENJE a) Vrijedi $(AB)^{-1} = B^{-1}A^{-1}$. Kako je matrično množenje asocijativno, vrijedi

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$
 te
 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$.

b) Matrica je regularna ako i samo ako joj je determinanta različita od nule. Determinanta od A je umnožak elemenata na dijagonali, što daje $\det A = -6 \neq 0$, dok je

$$\det B = (-1)^{4+1} \begin{vmatrix} 0 & 0 & 4 \\ 0 & 3 & -1 \\ 2 & -2 & -4 \end{vmatrix} = (-1) \cdot 2 \cdot (-1)^{3+1} \begin{vmatrix} 0 & 4 \\ 3 & -1 \end{vmatrix} = 24 \neq 0.$$

Dakle, obje matrice su regularne. Sada riješavamo matričnu jednadžbu.

$$A(X^{-1}B^{-1} + I) = A + [B(BA^{-1} + I)]^{-1}$$

 $AX^{-1}B^{-1} + A = A + (BA^{-1} + I)^{-1}B^{-1}$
 $AX^{-1}B^{-1} = (BA^{-1} + I)^{-1}B^{-1}$ (množimo zdesna s B)
 $AX^{-1} = (BA^{-1} + I)^{-1}$ (invertiramo)
 $XA^{-1} = BA^{-1} + I$ (množimo zdesna s A)
 $X = A + B \implies$

$$X = \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & -1 & 7 & 5 \\ 0 & 2 & 0 & -4 \\ 1 & -3 & -5 & -3 \end{bmatrix}.$$