浙江大学

本科实验报告

课程名称:	计算机逻辑设计基础
姓 名:	刘晨
学 院:	计算机科学与技术学院
系:	图灵 1901
专业:	计算机科学与技术
学 号:	3190104666
指导教师:	董亚波

2020 年 10月 3日

浙江大学实验报告

课程名称:计算机逻辑设	计基础		_实验类型:	综合
实验项目名称:基本开关	电路			
学生姓名:刘晨	_ 专业:	图灵班	学号: <u>319</u>	0104666
同组学生姓名: 曲字阳,任翼	指导老	师:董亚波		_
	2020 年 9	目 24 日		

- 一、实验目的和要求
- 1.掌握逻辑开关电路的基本结构
- 2.掌握二极管导通和截止的概念
- 3.用二极管、三极管构成简单逻辑门电路
- 4.掌握最简单的逻辑门电路构成
- 二、实验内容和原理

内容:

- 用二极管实现正逻辑与门,并测量输入输出电压参数,分析其逻辑功能
- 用二极管实现正逻辑或门,并测量输入输出电压参数,分析其逻辑功能
- 用三极管反向特性实现正逻辑非门,测量输入输出电压参数,分析其逻辑功能
- 采用前面的与门和非门实现与非门,测量输入输出电压参数,分析其逻辑功能
- 三极管极性测量

原理:

半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点。往 纯净的半导体中掺入某些杂质,会使它的导电能力明显改变。在一块半导体单晶 上一侧掺杂成为 P 型半导体,另一侧掺杂成为 N 型半导体,两个区域的交界 处就形成了一个特殊的薄层, 称为 PN 结。. PN 结外加正向电压时处于导通状态, PN 结加反相电压时截止。

PN 结的伏安特性曲线如下图:

而三极管为 PNP 或者 NPN 型,有把电流放大的作用,其伏安特性曲线如下:

根据伏安特性曲线,在不同的电压下电流有非常大的不同,所以分为高电平和低电平。高电平是逻辑 1,低电平是逻辑 0.

逻辑电平	V_{CC}/V	V_{OH}/V	V_{OL}/V	$V_{I\!H}/V$	$V_{I\!L}/V$	说明
TTL	5.0	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	输入脚悬
LVTTL	3.3	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	空时默认
LVTTL	2.5	≥ 2.0	≤ 0.2	≥ 1.7	≤ 0.7	为高电平
CMOS	5.0	≥ 4.45	≤ 0.5	≥ 3.5	≤ 1.5	
LVCMOS	3.3	≥ 3.2	≤ 0.1	≥ 2.0V	≤ 0.7	輸入阻抗 非常大
LVCMOS	2.5	≥ 2.0	≤ 0.1	≥ 1.7	≤ 0.7	
RS232	12~15	-3 ~ -15	3~15	-3 ~ -15	3~15	负逻辑

三、实验过程和数据记录

实验过程:

在实验箱中通过导线连接电路,检查二极管、电源电压和极性、电阻 信等是否连接正确;

Vcc 接实验箱中+5V 直流电源;

输入高低电平通过开关 S1~S6 产生。输入 A,B 的不同电平组合,用 万用表或实验箱中的直流电压表测量 A,B 及对应输出 F 的电压值。最后判断逻辑关系是否满足相应的逻辑关系,来判断实验结果是否正确。

以上四图分别为与门,或门,非门,与非门的逻辑电路。

实验数据如下:

A 逻辑值	B 逻辑值	VA/V	$V_{ m B}/{ m V}$	$V_{ m F}/{ m V}$	F 逻辑值(与门)
0	0	0.11	0.11	0.6	0
0	1	0.13	4.82	0.66	0
1	0	4.82	0.13	0.66	0
1	1	4.82	4.82	4.82	1

A 逻辑值	B 逻辑值	VA/V	$V_{ m B}/{ m V}$	$V_{ m F}/{ m V}$	F 逻辑值(或门)
0	0	0.09	0.09	0.00	0
0	1	0.09	3.39	2.87	1
1	0	3.39	0.09	2.87	1
1	1	3.96	3.96	3.45	1

A 逻辑值	VA/V	$V_{ m F}/{ m V}$	F 逻辑值(非门)
0	0.09	4.86	1
1	2.76	0.00	0

A 逻辑值	B 逻辑值	VA/V	$V_{ m B}/{ m V}$	V _F /V	F 逻辑值(与非门)
0	0	0.09	0.09	4.73	1
0	1	0.10	4.88	4.42	1
1	0	4.88	0.10	4.42	1
1	1	4.86	4.86	0.02	0

三极管极性测量:

将万用表功能量程开关置于 " ▼ "位置,用红黑表笔判断被测三极管是 PNP 还是 NPN 型,确定基极 b

将万用表功能量程置于"hFE"位置,把三极管插入面板上三极管测试插座,基极 b 要插对,集电极 c 和发射极 e 随便插

从显示屏上读取 hFE 近似值,若该值较大(约 100),说明三级管 c,e 极与插座上的 c,e 极对应;若该值很小,说明这时的三极管 c,e 极插反,应把 c,e 极对调后再读取 hFE 值

hFE 值: $\beta = 314$ (正向) $\beta = 10$ (反向)

四、实验结果分析

1.与门是实现逻辑"乘"运算的电路,有两个以上输入端一个输出端(一般电路都只有一个输出端,ECL 电路则有二个输出端)。只有当所有

输入端都是高电平(逻辑"1")时,该电路输出才是高电平(逻辑"1"), 否则输出为低电平(逻辑"0")。

- 2. 或门是实现逻辑加的电路,又称逻辑和电路,简称或门。此电路有两个以上输入端,一个输出端。只要有一个或几个输入端是 "1",或门的输出即为 "1"。而只有所有输入端为 "0"时,输出才为 "0"
- 3.非门是实现逻辑代数非的功能,即输出始终和输入保持相反。当输入端为高电平(逻辑"1")时,输出端为低电平(逻辑"0");反之, 当输入端为低电平(逻辑"0")时,输出端则为高电平(逻辑"1")。
- 4.与非门是与门和非门的结合,先进行与运算,再进行非运算。与非运算输入要求有两个,如果输入都用 0 和 1 表示的话,那么与运算的结果就是这两个数的乘积。如 1 和 1 (两端都有信号),则输出为 0; 1 和 0,则输出为 1; 0 和 0,则输出为 1。与非门的结果就是对两个输入信号先进行与运算,再对此与运算结果进行非运算的结果。简单说,与非就是先与后非。
- 5.该三极管为 NPN 型。