

(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° de publication :

(à n'utiliser que pour les

2 665 654

commandes de reproduction)

N° d'enregistr ment national :

90 10213

(51) Int CI⁵: B 22 D 17/10, 17/12

(12) DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 09.08.90.
- (30) Priorité :

- 71 Demandeur(s): ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS A.R.M.I.N.E.S. FR.
- 72 Inventeur(s) : Collot Jean.
- 43 Date de la mise à disposition du public de la demande : 14.02.92 Bulletin 92/07.
- Liste des documents cités dans le rapport de recherche : Se reporter à la fin du présent fascicule.
- Références à d'autres documents nationaux apparentés :
- 73) Titulaire(s) :
- Mandataire: Cabinet Michel Bruder Conseil en Brevets d'Invention.
- 64 Machine de coulée sous pression d'un alliage métallique à l'état thixotropique.
- 67) L'invention concerne un appareil destiné à des usinages dans l'espace à une profondeur réglée à l'aide de gabarits, comprenant: un corps (1) composé de deux éléments (8, 9) coulissant en opposition à l'effet de moyens élastiques et apte à porter un outil de perçage (2) avec un certain jeu, l'un des éléments (8) étant pourvu d'accouplements (12) en vue de son assemblage sur une machineoutil, et l'autre (9) étant pourvu d'un dispositif d'appui comportant un guidage de perçage; des moyens élastiques aptes à maintenir l'outil centré sur ces deux éléments; caractérisé en ce que la course relative entre les deux éléments coulissants (8, 9) est supérieure à la course de percée de l'outil (2). Diverse variantes sont proposées.

La présente invention concerne une machine de coulée sous pression, à chambre froide, permettant de réaliser le moulage de pièces métalliques sans porosité à partir d'un alliage métallique à l'état thixotropique.

On sait qu'au cours d'une opération de coulée d'un alliage, lorsque l'alliage liquide passe à l'état solide, il apparaît, dans celui-ci, un retrait qui provoque des porosités, des retassures et des fissurations de la pièce moulée. L'une des techniques utilisée pour éviter ce type d'inconvénient consiste à réaliser, à partir de l'alliage métallique en fusion, une suspension ou une gelée thixotrope, c'est-à-dire à l'état mi-liquide mi-solide, et à couler ensuite sous pression cette gelée thixotrope dans un moule.

La présente invention a pour but de fournir une 15 machine de coulée sous pression qui permet de réaliser, au cours d'un cycle relativement court, toutes les opérations conduisant à la formation d'une gelée thixotrope et la coulée finale de celle-ci, ce qui permet d'obtenir des pièces moulées sans porosité dans des conditions particulièrement 20 économiques.

A cet effet cette machine de coulée sous pression, à chambre froide, permettant de réaliser le moulage de pièces sans porosité à partir d'un alliage métallique à l'état thixotropique, est caractérisée en ce qu'elle comprend trois 25 sections disposées les unes à côté des autres, à savoir une refroidissement, comprenant lingotière de une refroidie par circulation d'un fluide, une section réchauffage et une section d'injection, ces trois sections respectifs alignés internes présentant des volumes 30 longitudinalement pour constituer un canal de traitement

continu, et au moins un piston mobile longitudinalement dans ce canal de traitement, ce piston servant de fond pour le la section de lingotière de de la volume interne remplissage avec le métal pendant son refroidissement, 5 liquide, intervenant éventuellement pour transporter dans la section de réchauffage, le lingot formé après refroidissement et intervenant pour la coulée sous pression, dans la section d'injection, du lingot réchauffé se présentant sous la forme de gelée thixotrope.

On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention, en référence au dessin annexé sur lequel :

La figure l est une vue en coupe axiale et verticale d'une machine de coulée sous pression, à chambre froide, 15 suivant l'invention, ses divers éléments constitutifs étant représentés lors de la première étape de coulée de l'alliage liquide.

Les figures 2,3,4,5 et 6 sont des vues en coupe axiale et verticale simplifiées, illustrant les positions des 20 divers éléments constitutifs de la machine, au cours des étapes suivantes jusqu'à la coulée d'une pièce métallique.

La figure 7 est une vue en coupe axiale et verticale d'une variante d'exécution d'une machine de coulée sous pression, à chambre froide, du type horizontal, en position 25 de départ c'est-à-dire lors du déversement de l'alliage métallique liquide.

Les figures 8,9,10,11,12 et 13 sont des vues en coupe axiale et verticale de la machine de la figure 7 représentée au cours des étapes successives du processus de fabrication 30 d'une pièce métallique moulée.

La figure 14 est une vue en coupe axiale et verticale d'une autre variante d'exécution d'une machine de coulée sous pression, à chambre froide, du type vertical, en position de départ c'est-à-dire lors du chargement de la lingotière en 5 métal liquide.

Les figures 15 et 16 sont des vues en coupe axiale et verticale partielles de la machine de la figure 14, respectivement au cours de l'étape de réchauffage et de l'étape d'injection.

La machine de coulée sous pression, à chambre froide, 10 qui est représentée sur la figure 1, est du type vertical et elle comprend successivement, de haut en bas, une section supérieure A de refroidissement d'un métal liquide l déversé dans cette section, une section intermédiaire d'injection C 15 et une section inférieure de réchauffage B. La section supérieure de refroidissement A comprend une lingotière 2 dans laquelle est déversé le métal liquide l qui peut être, par exemple, un alliage de magnésium AZ91 à 700°C. La paroi de la lingotière 2 contient des canaux 3 parcourus par un 20 fluide de refroidissement, tel que de l'eau froide, circulant suivant le trajet indiqué par les flèches. Le métal liquide l est déversé à partir d'une goulotte d'alimentation 4 et il remplit le volume ou alésage interne 5 de la lingotière, en refroidi đе liquide qui est métal formant un bain 25 progressivement pour donner lieu ultérieurement à un lingot. Le métal liquide se trouvant dans la lingotière 2 est retenu, 6, coulissant inférieur un piston par verticalement dans l'alésage 5 d la lingotière 2 et dont la surface supérieure est revêtue d'une galette 7 en un matériau 30 résistant à la chaleur, telle qu'une galette de céramique.

Au-dessus de la lingotière 2 et dans l'axe de celle-ci se trouve, un piston supérieur 8 qui est solidaire d'une tige de piston verticale 8a, s'étendant vers le haut et mobile dimensions transversales dont les verticalement. et 5 correspondent à celles de l'alésage 5 de la lingotière 2 de telle façon que le piston supérieur 8 puisse coulisser étroitement dans cet alésage. De préférence l'orifice de sortie de la goulotte 4 d'alimentation en métal liquide 1 et le piston 8 sont logés à l'intérieur d'une enceinte 9 dans 10 laquelle est introduit un gaz protecteur ou un mélange de gaz protecteur approprié.

La lingotière 2 présente, à son extrémité inférieure, une bride périphérique 11 par laquelle elle est assemblée, au moyen d'organes de fixation non représentés, 15 interposition d'une garniture isolante annulaire 12, avec une bride périphérique supérieure 13 d'une chambre d'injection cylindrique 14 située sous la lingotière 2 et faisant partie de la section d'injection C. Cette chambre d'injection 14 présente un volume interne ou alésage 15 qui la traverse de 20 part en part, axialement qui s'étend vers le bas dans le prolongement de l'alésage 5 de la lingotière supérieure 2 et qui a les mêmes dimensions que celui-ci. Des pions de centrage 16 sont avantageusement engagés en travers đе l'interface entre les deux brides 11,13 et à travers 25 garniture isolante 12. Le piston inférieur 6 est prolongé vers le bas par une tige de piston 6a qui s'étend à travers toute la section intermédiaire d'injection C et à travers la section inférieure de réchauffage B, comme il apparaît sur la figure 1. La tige de piston 6a est actionnée, à son extrémité 30 inférieure, par des moyens non représentés lui permettant

d'effectuer un mouvement axial alternatif à travers sections A,C et B de la machine. Dans la paroi cylindrique de chambre d'injection 14 sont logées des la résistances chauffantes 17 dont les fils d'alimentation électrique 18 5 sortent à l'extrémité inférieure de la paroi de la chambre 14 en passant à travers une chambre annulaire 19 disposée sous l'extrémité inférieure de la chambre d'injection 14. Dans cette chambre annulaire 19 circule un flux de gaz de refroidissement, tel que l'azote, lequel pénètre dans la 10 chambre par un orifice d'entrée 21 et en sort par un orifice chambre d'injection intermédiaire 14 est chauffée à une température qui est fonction de la nature du métal devant être coulé et qui est voisine de 250°C dans le cas où le métal est un alliage de magnésium AZ91 (à 9% 15 d'aluminium et 1% de zinc).

Dans la partie inférieure de la paroi latérale de la chambre d'injection 14 est logée une buse d'injection 23 débouchant dans l'alésage 15 de la chambre d'injection 14 et communiquant avec l'empreinte d'un moule en deux parties 24.

20 Ce moule 24 comprend un demi-moule fixe femelle 24a, formé latéralement dans la surface externe de la paroi de la chambre d'injection 14, et un demi-moule mâle 24b mobile horizontalement et radialement. Le demi-moule mâle mobile 24b comporte des résistances chauffantes 25 maintenant le moule 25 24 sensiblement à la même température que la chambre d'injection 14, c'est-à-dire à environ 250°C dans l'exemple considéré. Il porte également des éjecteurs 26 assurant l'éjection de la pièce moulée.

La chambre d'injection 14 est prolongée vers le bas 30 par un tube de quartz 27 de diamètre interne plus grand que

celui du piston 6 et de l'alésage 15 et se raccordant à celui-ci par l'intermédiaire d'une section d'entrée 28 de l'alésage 15 qui est tronconique et convergente vers le haut, c'est-à-dire vers l'alésage 15. Dans le tube de quartz 27 5 débouche un conduit latéral 29 relié à une source d'un mélange de gaz protecteur tel que CO₂, Ar, SF₆ (un mélange préféré comprend, en volume, 50% de CO₂, 4000 ppm de SF₆ et le reste, soit environ 50%, en Ar). Ce mélange gazeux forme ainsi une enceinte protectrice à l'intérieur du tube de 10 quartz 27 et de la chambre d'injection 14. A l'endroit de la section inférieure de réchauffage B le tube de quartz 27 est entouré par une bobine externe de chauffage par induction 30.

D'après la description qui précède, on voit que les volumes internes 5 de la lingotière 2 et 15 de la chambre 15 d'injection 14 et celui du tube de quartz 27 sont alignés verticalement et jointifs en constituant en quelque sorte un canal de traitement vertical continu.

On décrira maintenant le cycle de fonctionnement de la machine de coulée sous pression décrite ci-dessus.

Dans la position de départ (figure 1) qui correspond au remplissage de la lingotière 2 en métal liquide 1, le piston supérieur 8 est placé au-dessus de la goulotte 4 d'alimentation du métal liquide 1 et le piston inférieur 6, avec sa galette isolante en céramique 7, se trouve dans sa position extrême supérieure dans laquelle il est engagé dans la partie inférieure de la lingotière 2. Le métal liquide 1 qui est à une température de l'ordre de 700°C, est déversé dans la lingotière 2 et il forme une masse liquide qui se refroidit progressivement, du fait que la paroi de la 1 lingotière 2 est refroidie par la circulation d'eau dans les

conduits 3.

Lorsque la masse de métal liquide désirée a été déversée dans la lingotière 2, on arrête le déversement du métal liquide 1, on escamote éventuellement la goulotte 5 d'alimentation 4 et on fait descendre le piston supérieur 8 pour l'engager dans la partie supérieure de la lingotière (figure 2). Le piston 8 comprime alors le métal liquide en train de se refroidir et on obtient ainsi, par cette trempe, un lingot L à structure dendritique fine.

10 Une fois que le lingot L a été solidifié, il est éjecté de la lingotière 2 par le piston supérieur 8 qui est alors déplacé vers le bas, en étant accompagné dans ce même mouvement par le piston inférieur 6. Autrement dit le lingot L, toujours maintenu entre les deux pistons 6 et 8, est amené 15 à descendre et à passer à travers la totalité de lingotière 2 puis de la chambre d'injection 14 pour arriver dans la section inférieure de réchauffage B, à l'intérieur du tube de quartz 27 et de la bobine de chauffage par induction 30 (figure 3). Le piston supérieur 8 est séparé de la surface 20 supérieure du lingot et il est placé à la base de la chambre d'injection 14. La bobine de chauffage par induction 30 est alors alimentée électriquement en courant alternatif de manière à provoquer un réchauffement du lingot L à une température voisine de 580°C si bien que le lingot ainsi 25 réchauffé L1 se trouve mis dans un état de gelée thixotrope de structure semi-solide, d'aspect globulaire. La structure pâteuse particulière ainsi obtenue se prête particulièrement bien à une injection sous pression.

Au cours de l'étape suivante (figure 4), le piston 30 inférieur 6, équipé de la galette isolante en céramique 7,

remonte rapidement (à une vitesse de l'ordre de 1 à 2 mètres par seconde) et il fait remonter ainsi le lingot Ll pour le placer à l'intérieur de la chambre d'injection 14. La section 28 de l'alésage 15 facilite d'entrée tronconique 5 l'introduction du lingot Ll dans la chambre d'injection 14. Préalablement le piston supérieur 8 a été remonté jusqu'à une position dans laquelle il sert de butée pour le mouvement ascendant du lingot Ll, de manière à arrêter ce mouvement ascendant lorsque la base du lingot Ll se trouve sensiblement 10 en regard de la buse d'injection 23.

Au cours de l'étape suivante (figure 5) le piston supérieur 8 est abaissé, alors que le piston inférieur 6 est maintenu fixe si bien que le lingot Ll, à l'état de gelée thixotrope, est comprimé dans l'alésage 15 de la chambre 15 d'injection 14. Le métal pâteux constituant le lingot Ll est alors injecté à travers la buse 23, dans l'empreinte du moule 24 toujours chauffé, de même que la chambré d'injection 14, à une température de 250°C environ.

Au cours de la dernière étape (figure 6) le moule 24 20 s'ouvre, par un mouvement horizontal et radial du demi-moule mâle mobile 24a vers l'extérieur, et les éjecteurs 26 assurent le démoulage de la pièce P ainsi formée. Après l'éjection et l'évacuation de cette pièce P, le moule 24 se referme, le demi-moule mâle mobile 24b s'engageant dans le 25 demi-moule femelle fixe 24a prévu dans la paroi de la chambre d'éjection 14. Parallèlement, après la fin de l'opération d'injection, le piston inférieur 6 est déplacé vers le haut, de manière que sa galette isolante en céramique supérieure 7 fasse un peu saillie au-dessus de la surface supérieure de la 2, ce qui permet d'éjecter la galette 30 lingotière

constituant le résidu du lingot Ll après coulée.

Dans la machine de coulée sous pression du type vertical qui a été décrite, les sections de refroidissement A, d'injection C et de réchauffage B sont prévues 5 successivement dans cet ordre, de haut en bas. Toutefois une telle disposition n'est pas limitative et la section de réchauffage B pourrait se trouver en position intermédiaire, juste en-dessous de la section de refroidissement supérieur A et au-dessus de la section d'injection C se trouvant alors en position inférieure.

La figure 7 représente une machine de coulée sous pression suivant l'invention du type horizontal, c'est-à-dire laquelle le métal liquide ou pâteux est horizontalement entre les diverses sections à savoir 15 section de refroidissement A située à gauche, la section de réchauffage intermédiaire B et la section d'injection C située à droite. Dans ce cas le métal liquide 1 est déversé, à partir de la goulotte d'alimentation 4, dans une lingotière 2, refroidie par une circulation d'eau, située dans la partie 20 gauche de la machine sur la figure 7. Dans cette lingotière 2 sont montés à coulissement horizontal deux pistons droit 6 et qauche 8 qui sont respectivement analogues aux pistons machine verticale inférieur 6 et supérieur 8 de la représentée sur la figure 1. Le piston droit 6 est prolongé 25 vers la droite par une tige de piston 6a qui s'étend à travers toute la machine. La chambre d'injection 14 est située dans la partie droite de la machine et son alésage 15 qui s'étend horizontalement, est aligné avec l'alésage 5 de la lingotière 2. Un tube de quartz 31 s'étend horizontalement 30 et coaxialement pour relier les deux alésages 5 et 15.

L'intérieur du tube de quartz 31 est relié à une source d'un mélange gazeux protecteur, par l'intermédiaire d'un conduit 29, et le tube 31 est entouré, sur une partie de sa longueur, par une bobine de chauffage par induction 30. La chambre 5 d'injection 14 comporte, comme dans le cas la machine verticale, une buse d'injection 23, reliée au moule 24 et débouchant dans l'alésage 15. Par ailleurs l'une de parois est creusée de l'empreinte du demi-moule fixe 24a qui constitue, avec le demi-moule mobile 24b, le moule 10 correspondant à la pièce que l'on désire obtenir. Le moule 24 peut être prévu sur la face supérieure de la d'injection 14, comme il est représenté sur la figure 7 ou, mieux encore, sur une paroi latérale et verticale. La chambre d'injection 14 et le moule 24 sont chauffés, au moyen des 15 résistances respectives 17,25, à une température de l'ordre de 250°C.

La figure 7 représente la machine horizontale en position de départ, c'est-à-dire pendant le déversement du métal liquide 1 dans la partie de l'alésage 5 comprise entre 20 les deux pistons 6 et 8. Une fois la masse de liquide désirée obtenue dans la lingotière 2, on arrête le déversement du métal liquide 1 et on déplace le piston gauche 8 vers la droite de manière à comprimer le métal liquide et former un lingot L à structure dendritique fine dans la partie droite 25 de la lingotière 2, entre les deux pistons 6 et 8 (figure 8). Après le moulage et le refroidissement du lingot, on déplace les deux pistons 6 et 8 vers la droite (figure 9) de manière à amener le lingot L refroidi, à structure fine, dans la zone du tube de quartz 31 se trouvant à l'intérieur de la bobine 30 de chauffage par induction 30. On écarte ensuite les deux

pistons 6 et 8, en laissant le lingot en place et on alimente la bobine 30 en courant électrique alternatif. Il en résulte un réchauffage du lingot à une température de 580°C environ, ce qui a pour effet de donner un lingot Ll à l'état de gelée 5 thixotrope (figure 10). Une fois cet état atteint, on déplace le piston gauche 8 vers la droite de manière à faire passer le lingot Ll dans la section d'injection B, c'est-à-dire dans l'alésage 15 de la chambre d'injection 14 (figure 11). Préalablement le piston droit 6 est immobilisé, dans le fond 10 de l'alésage 15 de la chambre d'injection 14, dans une position telle que, lorsque le lingot Ll, repoussé par le piston gauche 8, vient en contact avec lui, la partie du lingot Ll adjacente au piston gauche 8 se trouve sensiblement en regard de la buse d'injection 23. Le piston gauche 8 est 15 ensuite immobilisé alors que le piston droit 6 est déplacé vers la gauche. Une pression est ainsi exercée sur le lingot Ll à l'état pâteux, qui se trouve être comprimé entre le piston fixe 8 et le piston mobile 6. Le métal pâteux s'écoule alors à travers la buse d'injection 23 vers et dans le moule 20 24, pour remplir l'empreinte de ce moule (figure 12). Une fois l'injection terminée (figure 13) le moule 24 s'ouvre, la pièce moulée P est éjectée du moule au moyen des éjecteurs 26 et les deux pistons 6 et 8 reviennent en position de départ. Seule reste en contact avec le piston droit 6 une mince 25 galette de métal L2 dont l'épaisseur est de l'ordre d'un millimètre.

On décrira maintenant, en se référant aux figures 14 à 16, une autre variante de la machine de coulée sous pression du type vertical suivant l'invention. Dans cette 30 variante la section de refroidissement A dans laquelle est

L, position formé lingot de départ se trouve en la section de réchauffage В en position inférieure, section d'injection C position intermédiaire et la en supérieure. Dans ce cas la machine comporte uniquement le 5 piston inférieur 6 qui est mobile verticalement à travers la lingotière inférieure 2, le tube de quartz intermédiaire 27 qui est entouré de la bobine 30 de chauffage par induction, et la chambre d'injection supérieure 14. Dans cette forme d'exécution particulière l'alésage 15 đе la chambre 10 d'injection débouche directement, à son extrémité supérieure, à l'intérieur d'un moule 32 placé horizontalement sur la partie supérieure de la machine. L'intérieur du moule 32 est avantageusement relié à une source de dépression 33, au moyen d'une canalisation 34.

L'alimentation de la lingotière inférieure 2 en métal liquide est réalisée à partir d'une enceinte 34 contenant un bain de métal liquide 35 et qui est mise sous pression par un générateur de gaz sous pression 36 relié à l'enceinte 34 par une canalisation 37. L'intérieur de l'enceinte 34 communique 20 par un conduit 38 avec un orifice 39 d'admission du métal liquide, prévu dans la paroi de la lingotière 2 et débouchant dans l'alésage 5 de celle-ci.

Au début d'un cycle de coulée, la lingotière 2 est remplie de la masse de métal liquide désirée, dans l'alésage 25 5, au-dessus du piston 6 qui se trouve juste en-dessous de l'orifice 39 d'admission du métal liquide. Cette alimentation en métal liquide s'effectue sous l'effet de la pression régnant dans l'enceinte 34, pression qui est suffisamment élevée pour faire remonter le métal liquide dans le conduit 30 38 et dans la lingotière 2, jusqu'au niveau désiré.

Comme précédemment la masse de métal liquide se trouvant dans la lingotière 2 se refroidit progressivement et le lingot L ainsi formé est ensuite déplacé vers le haut par le piston 6, pour venir se placer dans la section de 5 réchauffage B, c'est-à-dire dans le tube à quartz 27 au niveau de la bobine de chauffage par induction 30 (figure 15). Après passage à l'état de gelée thixotrope le lingot L1 est déplacé additionnellement vers le haut, dans l'alésage 15 de la chambre d'injection 14, et le métal pâteux est alors 10 injecté sous pression, sous l'action du seul piston inférieur 6, dans l'empreinte du moule 32 (figure 16). Pendant cette injection l'intérieur du moule 32 est avantageusement mis en dépression par les moyens 33,34. Après l'injection le piston 6 redescend en position de départ dans laquelle il se trouve 15 prêt pour un nouveau cycle opératoire.

REVENDICATIONS

- 1.- Machine de coulée sous pression, à chambre froide, permettant de réaliser le moulage de pièces sans à l'état alliage métallique partir d'un porosité à 5 thixotropique, caractérisée en ce qu'elle comprend trois sections disposées les unes à côté des autres, à savoir une section de refroidissement (A), comprenant une lingotière (2) refroidie par circulation d'un fluide, une section réchauffage (B) et une section d'injection (C), ces trois 10 sections (A,B,C) présentant des volumes internes respectifs (5,27,15) alignés longitudinalement pour constituer un canal de traitement continu, et au moins un piston (6) mobile longitudinalement dans ce canal de traitement (5,15,27), ce piston (6) servant de fond pour le volume interne (5) de la 15 lingotière (2) de la section de refroidissement (A), pendant liquide, intervenant le métal remplissage avec son de éventuellement pour transporter, dans la section réchauffage (B), le lingot formé après refroidissement et intervenant pour la coulée sous pression, dans la section 20 d'injection (C), du lingot réchauffé se présentant sous la forme de gelée thixotrope.
- 2.- Machine suivant la revendication l caractérisée en ce que la section d'injection (C) est située entre la section de refroidissement (A) et la section de réchauffage
 25 (B) et un joint isolant thermiquement (12) est interposé entre la section de refroidissement (A) et la section d'injection (C).
- 3.- Machine suivant la revendication l caractérisée en ce que la section de réchauffage (B) est disposée entre la 30 section de refroidissement (A) et la section d'injection (C).

- Machine suivant l'une quelconque des revendications précédentes caractérisée en ce que les trois sections (A,B,C) sont disposées yerticalement, les unes audessus des autres, la section de refroidissement (A) étant en 5 position extrême supérieure, et elle comporte deux pistons mobiles verticalement suivant le même axe, à savoir un piston supérieur (8) et un piston inférieur (6), le volume interne lingotière (2) constituant section de de la la refroidissement (A) étant situé sous une goulotte (4) de 10 déversement du métal liquide (1).
- 5.- Machine suivant la revendication 4 caractérisée en ce que l'orifice de sortie de la goulotte (4) d'alimentation en métal liquide (1) et le piston supérieur (8) sont logés à l'intérieur d'une enceinte (9) dans laquelle 15 se trouve un mélange de gaz protecteur.
- quelconque 6.-Machine suivant l'une des revendications 4 et 5 caractérisée en ce que la section d'injection (C) comporte une chambre d'injection (14) avec un volume interne (15) faisant partie du canal de traitement et 20 dans lequel débouche une buse d'injection (23) reliée à un moule (24) en deux parties, comportant un demi-moule fixe (24a) formé dans la paroi latérale de la chambre d'injection et un demi-moule (24b) mobile horizontalement (14)radialement.
- des Machine suivant 1'une quelconque 25 revendications 1 à 3 caractérisée en ce que les sections de refroidissement (A), de réchauffage (B) et d'injection (C) se positions inférieure, trouvent respectivement en intermédiaire et supérieure, elle comporte un seul piston (6) lingotière de section 30 mobile verticalement, la la

- 8.- Machine suivant la revendication 7 caractérisée en ce que l'intérieur du moule (32) est relié à une source de 10 dépression (33).
- 9.- Machine suivant l'une quelconque des revendications 1 à 3 caractérisée en ce que les sections de refroidissement (A), de réchauffage (B) et d'injection (C) sont alignées horizontalement, elle comporte deux pistons 15 (6,8) mobiles horizontalement et la section d'injection (C) comprend un moule (24) en deux parties disposé sur la surface supérieure ou sur une surface latérale et verticale de la machine, ce moule (24) communiquant avec une buse d'injection (23) débouchant dans le volume interne (15) de la chambre 20 d'injection (14) de la section d'injection (C).
- quelconque des 10.-Machine suivant l'une revendications précédentes caractérisée en ce que la section de réchauffage (B) comprend un tube en quartz (27) aligné (5,15)sections de volumes internes des les avec 25 refroidissement (A) et d'injection (C), d'un diamètre interne un peu supérieur à celui du piston (6) se déplaçant à travers lui, et qui est entouré par une bobine de chauffage par induction (30).
- 11.- Machine suivant la revendication 10 caractérisée 30 en ce que des moyens (29) sont prévus pour introduire, à

- l'intérieur du tube en quartz (27), un mélange de gaz protecteur.
- 12.-Machine suivant. l'une quelconque des revendications précédentes caractérisée en ce qu'à son entrée 5 qui est située du côté de la section de réchauffage (B), la chambre d'injection (14) de la section d'injection (C) présente section d'entrée une đе forme tronconique convergeant en direction du volume interne (15) de la chambre d'injection (14).
- 10 13.-Machine suivant l'une quelconque des revendications précédentes caractérisée qu'elle comporte des résistances chauffantes (17,25) logées dans la paroi đе la chambre d'injection (14) de la d'injection (C) et dans la partie mobile (24b) du moule (24).
- 14.- Machine suivant la revendication 13 caractérisée en ce que les fils d'alimentation électrique (18) des résistances chauffantes (17) qui sont placées dans la paroi de la chambre d'injection (14), traversent une chambre (19) dans laquelle circule un gaz de refroidissement tel que 20 l'azote.

2/5

FIG. 4

FIG.5

FIG. 9

2665654

N° d'enregistrement national

INSTITUT NATIONAL

de la

PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FR 9010213 FA 447552

Catégorie	Citation du document avec indication, en cas des parties pertinentes	de besoin, concernée de la dem examinée	ande
Υ	US-A-4 687 042 (K.P. YOUNG) * revendications 1-3 *	1	
Y	DE-C-2 514 355 (SOCIETE DE VI L'ALUMINIUM PECHINEY) * revendication 2 *	ENTE DE 1	
Y	EP-A-0 242 347 (CENTRE DE REC * abrégé *	CHERCHES) 1	
A	US-A-4 345 637 (M.C. FLEMING: * abrégé *	S) 1	
Α	E. BRUNHUBER: "GIESSEREI LEXI édition, page 260, 1988, Fach Schiele & Schön GMBH, Berlin, * page 260, les deux colonnes	verlag DE	
A	EP-A-0 380 900 (BATTELLE MEMO	ORIAL 1	
	* revendications 1,2 *		DOMAINES TECHNIQUE RECHERCHES (Int. Cl.5)
			B 22 D 17/00 C 22 C 1/00
		ment de la recherche	Examinateur SOLDSCHMIDT G
Y: par au A: per	CATEGORIE DES DOCUMENTS CITES cticulièrement pertinent à lui seul cticulièrement pertinent en combinaison avec un tre document de la même catégorie tinent à l'encontre d'au moins une revendication arrière-plan technologique général	T: théorie ou principe à la bas E: document de brevet bénéfic à la date de dépôt et qui n's de dépôt ou qu'à une date p D: cité dans la demande L: cité pour d'autres raisons	iant d'une date antérieure a été publié qu'à cette date