

OSLO METROPOLITAN UNIVERSITY
STORBYLINIVERSITETET

Lowering the Barriers to Working with Public RIR-Level Data

Alfred Arouna^{1,2} Ioana Livadariu¹ Mattijs Jonker³ alfred@simula.no

¹Simula Metropolitan
²Oslo Metropolitan University
³University of Twente

July 24, 2023 • Applied Networking Research Workshop (ANRW) 2023 • San Francisco, USA (Hybrid)

Outline

- 1 Background
 - RIR System
 - RIR Core Functions
- 2 RIR Data
 - rDNS & WHOIS Data
 - Inconsistencies & Peculiarities
- 3 Consolidated RIR Data
 - Data Format
 - Example

Internet Resources Management: the RIRs System

Five Regional Internet Registries (RIRs).

Regional Internet Registry: Core Functions

Manage, distribute and register Internet Number Resources (IPV4 & IPv6 addresses and Autonomous System Numbers (ASNs).

Maintain directory services including Whois and routing registries.

Provide reverse DNS.

Support Internet infrastructure through technical coordination.

Facilitate community driven policy development process.

Regional Internet Registry: Core Functions

Manage, distribute and register Internet Number Resources (IPV4 & IPv6 addresses and Autonomous System Numbers (ASNs).

Maintain directory services including Whois and routing registries.

Provide reverse DNS.

Support Internet infrastructure through technical coordination.

Facilitate community driven policy development process.

Regional Internet Registry: Core Functions

RIR Data

rDNS zones: Support for Critical Internet Services

Example of snippets with unexpected RRs (209.in-addr.arpa from ARIN).

```
g.ns.157.16.209.in-addr.arpa.
                                   86400
                                              AAAA
                                                    2a01:4f8:c0c:72f4:0:0:0:1
                                          IN
2 g.ns.157.16.209.in-addr.arpa.
                                   86400
                                          ΙN
                                              Α
                                                     78.47.120.45
3 p.ns.157.16.209.in-addr.arpa.
                                   86400
                                              AAAA
                                                    2a00:a600:6:42:0:0:0:1
4 p.ns.157.16.209.in-addr.arpa.
                                                     209.16.157.42
                                   86400
                                          ΙN
5 v.ns.157.16.209.in-addr.arpa.
                                   86400
                                              AAAA
                                                    2001:19f0:7401:8a21:0:0:0:1
6 y.ns.157.16.209.in-addr.arpa.
                                   86400
                                                     95.179.232.160
                                          IN
```

Example of snippets with classless delegation (164.in-addr.arpa from RIPE).

```
1 191.39.215.164.in-addr.arpa. 86400 IN CNAME 191.128-191.39.215.164.in-addr. arpa. 2 128-191.39.215.164.in-addr.arpa. 86400 IN NS dns1.ficolo.net. 3 192.39.215.164.in-addr.arpa. 86400 IN CNAME 192.192-255.39.215.164.in-addr. arpa. 4 192-255.39.215.164.in-addr.arpa. 86400 IN NS ns1.shellit.org.
```

rDNS zones: Support for Critical Internet Services

Example of snippets with unexpected RRs (209.in-addr.arpa from ARIN).

```
g.ns.157.16.209.in-addr.arpa.
                                   86400
                                               AAAA
                                                     2a01:4f8:c0c:72f4:0:0:0:1
                                           IN
2 g.ns.157.16.209.in-addr.arpa.
                                   86400
                                          ΙN
                                              Α
                                                     78.47.120.45
3 p.ns.157.16.209.in-addr.arpa.
                                   86400
                                              AAAA
                                                     2a00:a600:6:42:0:0:0:1
4 p.ns.157.16.209.in-addr.arpa.
                                                     209.16.157.42
                                   86400
                                          ΙN
5 v.ns.157.16.209.in-addr.arpa.
                                   86400
                                              AAAA
                                                     2001:19f0:7401:8a21:0:0:0:1
6 y.ns.157.16.209.in-addr.arpa.
                                   86400
                                                     95.179.232.160
                                           IN
```

Example of snippets with classless delegation (164.in-addr.arpa from RIPE).

```
1 191.39.215.164.in-addr.arpa. 86400 IN CNAME 191.128-191.39.215.164.in-addr. arpa. 2 128-191.39.215.164.in-addr.arpa. 86400 IN NS dns1.ficolo.net. 164.215.39.128/26 192.39.215.164.in-addr.arpa. 86400 IN CNAME 192.192-255.39.215.164.in-addr. arpa. 4 192-255.39.215.164.in-addr.arpa. 86400 IN NS ns1.shellit.org. 164.215.39.192/26
```

rDNS zones: Support for Critical Internet Services

Example of snippets with unexpected RRs (209.in-addr.arpa from ARIN).

```
g.ns.157.16.209.in-addr.arpa.
                                 86400
                                                 2a01:4f8:c0c:72f4:0:0:0:1
                                           AAAA
2 g.ns.157.16.209.in-addr.arpa.
                                 86400
                                        ΙN
                                                 78.47.120.45
3 p.ns.157.16.209.in-addr.arpa.
                                 86400
                                           AAAA
                                                 2a00:a600:6:42:0:0:0:1
4 p.ns.157.16.209.in-addr.arpa.
                                                 209.16.157.42
                                 86400
5 v.ns.1
rDNS can be used to track lame delegation at the RIR level
```

or to map authoritative nameservers to prefixes.

Example of snippets with classless delegation (164.in-addr.arpa from RIPE).

```
1 191.39.215.164.in-addr.arpa. arpa. 2 128-191.39.215.164.in-addr.arpa. 86400 IN CNAME dns1.ficolo.net. 3 192.39.215.164.in-addr.arpa. 86400 IN CNAME arpa. 4 192-255.39.215.164.in-addr.arpa. 86400 IN NS ns1.shellit.org.
```

WHOIS: Information on Resources Registration

ARIN object using route attribute instead of inetnum.

```
1 [empty line]
                   173.245.144.0/20
2 route:
3 origin:
                    AS15065
4 descr:
                 3330 State Highway 11B,
                    P.O. Box 150
                    Nicholville NY 12965
                    United States
8 admin-c:
                   ANDER639-ARIN
9 tech-c:
                    ANDER639-ARIN
10 tech-c:
                    NFTWO3464-ARIN
11 tech-c:
                    NOC32314-ARIN
12 mnt-bv:
                   MNT-SLICCO-1
13 created:
                    2021-08-31T21:31:33Z
  last-modified:
                    2021-08-31T21:31:33Z
                    ARIN
15 Source:
16 [empty line]
```

LACNIC objects with custom inetnum notation.

```
1 [empty line]
               170.150.4/22
2 inetnum:
3 status:
                allocated
               Andradina
4 city:
5 country:
               BR
6 created:
               2016-06-01
7 changed:
               2020-03-11
8 source:
               LACNIC
9 [empty line]
                190.144/14
10 inetnum:
                allocated
11 status:
  city:
               Bogota
               CO
13 country:
14 created:
               2007-01-11
               2007-01-11
  changed:
16 source:
               LACNIC
17 [empty line]
```

WHOIS: Information on Resources Registration

ARIN object using route attribute instead of inetnum.

LACNIC objects with custom inetnum notation.

```
[empty line]
route: 173.245.144.0/20
origin: AS15065
descr WHOIS is widely used by r
```

```
1 [empty line]
2 inetnum: 170.150.4/22
3 status: allocated
4 city: Andradina
```

WHOIS is widely used by network researchers and operators, but it comes with some limitations.

```
admin-c:
                   ANDFR639-ARIN
9 tech-c:
                   ANDER639-ARIN
10 tech-c:
                   NFTWO3464-ARIN
  tech-c:
                   NOC32314-ARIN
12 mnt-bv:
                   MNT-SLICCO-1
13 created:
                   2021-08-31T21:31:33Z
  last-modified:
                   2021-08-31T21:31:33Z
                   ARIN
15 Source:
16 [empty line]
```

```
9 [empty line]
10 inetnum: 190.144/14
11 status: allocated
12 city: Bogota
13 country: CO
14 created: 2007-01-11
15 changed: 2007-01-11
16 source: LACNIC
17 [empty line]
```

RIRs Data Limitations: Inconsistencies and Peculiarities

≅ WHOIS

- One-off data.
- URLs variety.
- Objects & key inconsistency.

	Prefixes	Mnt.	Name	Created	Status
RIPE	inetnum	mnt-by	netname	created	status
ARIN	route	mnt-by	desc	created	N.A.
LACNIC	inetnum	N.A.	N.A.	created	status
APNIC	inetnum	mnt-by	netname	last-modified changed[0]	status
AFRINIC	inetnum	mnt-by	netname	changed[0]	status

■ rDNS Zones

- One-off data.
- Unexpected RRs.
- Not compliant with RFC 1035.

Consolidated RIR Data

Addressing Limitations: Consolidated Data

Consolidated and common format, interoperable and optimised (tiered – year, month, day – hierarchy) for large-scale analysis tool.

■ WHOIS + Statistics

- Longest prefix matching.
- Identifier: start and end address.
- Complementary data from delegation files.

■ rDNS Zones

- Domain to prefix.
- Identifier: start and end address.
- Classfull (<octet>) vs. classless (CNAME).

The data is available and further documented at https://rir-data.org

Examples: WHOIS and rDNS Consolidated Records

Identifier (WHOIS/rDNS)

Complentary (Delegation) Flag (Classless vs. classfull) Original (WHOIS/rDNS)

Example of WHOIS data.

```
{"prefixes": ["23.219.0.0/16"], "start_address": "23.219.0.0", "end_address": "23.219.25 5.255", "rfc_2317": false, "timestamp": 1684357200, "source": "ARIN", "af": 4, "rdns": {"name": ["219.23.in-addr.arpa."], "origin": ["23.in-addr.arpa."], "ttl": 86400, "rdclass": "IN", "rdatasets": {"NS": ["ns{1-8}.reverse.deploy.akamaitechnologies.com."]}}}
```

Example of rDNS data.

rDNS

- Identifier (start/end).
- Longitudinal.

- Public (since Nov 1, 2022).
- Interoperable and efficient.

The data is available and further documented at https://rir-data.org

Thanks

Backup Slides

Data Access

Direct Files Download

- a) Scraping files from base urls:
 https://data.rir-data.org/rir-data/rirs-rdns-formatted/type=enriched/https://data.rir-data.org/rir-data/whois-formatted/type=enriched/
- b) Files are organized in tiered (YYYY,MM, DD) hierarchy: /year=YYYY/month=MM/day=DD/hour={00|20}/
- c) File names are as follows:
- /all_rdns__pytricia_YYYYMMDD00_YYYYMMDD23_without_RRSIG_NSEC_DNSKEY.jsonl.bz2
- /all_objects_pytricia_inetnum_YYYYMMDD00_YYYYMMDD23.jsonl.bz2

```
# Using Wget
wget https://data.rir-data.org/rir-data/rirs-rdns-formatted/type=enriched/year=2023/
    month=01/day=01/hour=00/all_rdns__pytricia_2023010100_2023010123
    _without_RRSIG_NSEC_DNSKEY.jsonl.bz2
# Using Curl
curl -O https://data.rir-data.org/rir-data/whois-formatted/type=enriched/year=2023/
    month=01/day=01/hour=20/all_objects_pytricia_inetnum_2023010100_2023010123.
    jsonl.bz2
```

PySpark for large-scale data analysis

```
1 # Requirement: A running Hadoop cluster.
2 # Import required modules. Note that pySpark need s3a access modules.
3 # Create Spark configuration and initialize Spark Session.
4 spark = SparkSession.builder.config(conf=sparkConf).getOrCreate()
5 sc = spark.sparkContext
  # Read RIR rDNS data into DataFrame
8 my rir data df = spark.read.format("ison").option("basePath", "s3a://rir-data/rirs
      -rdns-formatted/type=enriched").load(
      ["s3a://rir-data/rirs-rdns-formatted/type=enriched/year=2023/month=05/day=31/"
10
11 my rir data df = my rir data df.persist(pyspark.StorageLevel.MEMORY AND DISK)
my rir data df.printSchema()
14 # Read WHOIS data into DataFrame
15 my whois data df = spark.read.format("json").option("basePath", "s3a://rir-data/
      whois-formatted/type=enriched").load(
      ["s3a://rir-data/whois-formatted/type=enriched/year=2023/month=05/day=31/"]
16
17
18 my whois data df = my whois data df.persist(pyspark.StorageLevel.MEMORY AND DISK)
  my whois data df.printSchema()
```