EXAMPLES FOR ELASTO-PLASTIC MATERIAL BEHAVIOR

ECI280

Professor: Boris Jeremić

PhD student: Yuan Feng

02/09/2017

OVERVIEW

http://cml01.engr.ucdavis.edu/yuan/education_examples/

http://sokocalo.engr.ucdavis.edu/~jeremic/Real ESSI Simulator/

Nonlinear FEM Procedures:

First Level Iteration:

- 1. External Incremental Force.
- 2. Incremental Displacement from Tangent Stiffness and incr Force.
- 3. Incremental Strain from Incremental Displacement and strain-disp relation.
- 4. Incremental Stress from Incremental strain
- Internal Incremental Force from Incremental Stress at Gauss Sampling.
- 6. Use Step 1 and Step 5 to obtain the unbalanced Force.
- 7. Input unbalance to Step 1 Again.
- 8. Until unbalanced Force is within the Tolerance.

OVERVIEW

Nonlinear FEM Procedures:

Second Level Iteration:

1. Elastic Predictor 2. Plastic Corrector

Forward Euler Algorithm

OVERVIEW

Backward Euler Algorithm

- **Elastic Predictor**
 - > Elastic Stiffness
- > Plastic Corrector
 - > Yield Surface
 - ► Plastic Flow Rule
 - ▶ Hardening Law

ELASTO-PLASTIC MATERIALS

- **Elasticity**
- > Yield Surface
- > Plastic Flow Rule
- ► Hardening Law

ELASTO-PLASTIC MATERIALS

- ► Linear Elasticity
- ► Nonlinear Elasticity

> Show Examples

ELASTICITY

User-Input: Before the Translation

```
add material # 1 type linear_elastic_isotropic_3d
  mass_density = 2E3 * kg/m^3
  elastic_modulus = 2E7 * Pa
  poisson_ratio= 0.25 ;
```

DSL-Output: After the Translation

DOMAIN SPECIFIC LANGUAGE

EXECUTE ESSI BY COMMAND

essi -f input_filename.fei

ESSI: Earthquake Soil-Structure Interaction

FEI: Finite Element Interface

- > Elasticity
- > Yield Surface
- > Plastic Flow Rule
- ► Hardening Law

ELASTO-PLASTIC MATERIALS

- ➤ Von-Mises Yield Surface
- Drucker-Prager Yield Surface
- Hyperbolic Drucker-Prager Yield Surface

▶ Show Examples

YIELD SURFACE

HYPERBOLIC DRUCKER-PRAGER

HYPERBOLIC DRUCKER-PRAGER

- ➤ Elasticity
- > Yield Surface
- > Plastic Flow Rule
- ► Hardening Law

ELASTO-PLASTIC MATERIALS

- > Associative Plastic Flow Rule
- Non-associative Plastic Flow Rule

▶ Show Examples

PLASTIC FLOW RULE

Von-Mises

Drucker-Prager

 $p = -1/3 * (sigma_11 + sigma_22 + sigma_33)$

In Drucker-Prager associative plastic flow rule, should the plastic corrector be perpendicular to the yield surface in the p-q plane?

DRUCKER-PRAGER YIELD SURFACE

Reference:

Analytical CPP in energy-mapped stress space: application to a modified Drucker–Prager yield surface

- ➤ Elasticity
- > Yield Surface
- > Plastic Flow Rule
- ► Hardening Law

ELASTO-PLASTIC MATERIALS

- Isotropic Hardening Rule
- ➤ Kinematic Hardening Rule
- Armstrong-Frederick Hardening Rule
- Multi-Surface Hardening Rule

HARDENING LAW

Show Examples

ISOTROPIC & KINEMATIC HARDENING

MULTI-YIELD-SURFACE HARDENING LAW

MULTI-YIELD-SURFACE HARDENING LAW

MULTI-YIELD-SURFACE ALGORITHMS

- > Reference
- Prevost. JH. A simple plasticity theory for frictional cohesionless soils. 1985.

APPLICATION IN FINITE ELEMENT SOLID BRICK

Nonlinear FEM Procedures:

Second Level Iteration:

1. Elastic Predictor 2. Plastic Corrector

Forward Euler Algorithm

OVERVIEW

Backward Euler Algorithm

Nonlinear FEM Procedures:

First Level Iteration:

- 1. External Incremental Force.
- 2. Incremental Displacement from Tangent Stiffness and incr Force.
- 3. Incremental Strain from Incremental Displacement and strain-disp relation.
- 4. Incremental Stress from Incremental strain
- Internal Incremental Force from Incremental Stress at Gauss Sampling.
- 6. Use Step 1 and Step 5 to obtain the unbalanced Force.
- 7. Input unbalance to Step 1 Again.
- 8. Until unbalanced Force is within the Tolerance.

OVERVIEW

BRICK ELEMENT EXAMPLE

HDF5 OUTPUT:

Hierarchical Data Format

TableView - Gauss_Outputs - /Model/Elements/ - /home/yuan/													
<u>T</u> able													
	0	1	2	3	4								
0	0.0	1.137513	1.376223	-1.11500	7.44882								
1	0.0	0.0	0.0	0.0	0.0								
2	0.0	-4.53431	-9.06750	-1.35984	-1.8126								
3	0.0	-6.51230	-2.38659	7.003290	-1.6686								
4	0.0	6.193985	1.238644	1.857584	2.47606								
5	0.0	4.305602	-2.38858	-3.08127	-6.9362								
6	0.0	0.0	0.0	0.0	0.0								
7	0.0	0.0	0.0	0.0	0.0								
8	0.0	0.0	0.0	0.0	0.0								
9	0.0	0.0	0.0	0.0	0.0								
10	0.0	0.0	0.0	0.0	0.0								
11	0.0	0.0	0.0	0.0	0.0								
12	0.0	2.275026	2.752447	-2.23001	1.48976								
13	0.0	0.0	0.0	0.0	0.0								
14	0.0	-906.86237	-1813.501	-2719.6921	-3625.2								
15	0.0	-1.30246	-4.77318	1.400658	-3.3373								
16	0.0	1238.7971	2477.2886	3715.1687	4952.13								
17	0.0	8.611205	-4.77716	-6.16254	-1.3872								
18	0.0		1.039295		8.18403								
19	0.0	0.0	0.0	0.0	0.0								

Each Gauss Point has

- ▶ 18 Items * Number_of_Timestep
- > 18 items includes
 - ▶ 6 total strain
 - ▶ 6 plastic strain
 - ▶ 6 stress

- Order of output in every 6 output
 - Sigma_11
 - ▶ Sigma_22
 - ▶ Sigma_33
 - ▶ Sigma_12
 - ▶ Sigma_13
 - ▶ Sigma_23

GAUSS OUTPUT FORMAT

READ HDF5 BY PYTHON OR MATLAB

```
import numpy as np
import matplotlib.pyplot as plt
import h5py
h5in_filename = "vonMises_shearing.h5.feioutput"
h5in=h5py.File(h5in_filename,"r")
outputs_all=h5in['/Model/Elements/Gauss_Outputs'][()]
stress = outputs_all[16 , :-1]
strain = outputs_all[4 , :-1]
plt.plot(strain, stress)
```

```
function [strain] = h52strain(filename)
resultTr=h5read(filename,'/Model/Elements/Outputs');
result=resultTr';
strainAll=[];
for i=1:size(result,1)/18
strainAll=[strainAll;result(18*i-17:18*i-12,:)];
end
% Extract the first step output:
strainOne=strainAll(:,1);
strain=reshape(strainOne,[6,size(strainOne,1)/6]);
end
```

- 1. Forget to add confinement on the Drucker-Prager Materials.
- ▶ 2. Use load control with the perfectly plastic materials or materials with plateau.
- ▶ 3. Use large strain increment without subincrements.
 - > 3.1 Newton Algorithms requires a good initial guess
 - > 3.2 Infinitesimal Strain Assumptions

COMMON MODELING MISTAKES

The infinitesimal strain tensor is defined by

$$\varepsilon = \frac{1}{2}(u_{i,j} + u_{j,i}) \tag{1}$$

The actual strain tensor is defined by

$$e_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i} - u_{k,i}u_{k,j}) \tag{2}$$

Define the unit deformation is $u_{i,j} = u_{j,i} = u_{k,i} = u_{k,j} = d$.

The error of the infinitesimal strain tensor increases with the unit deformation d.

Table 1: Error increase with the unit deformation

d	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2
Strain	0.0198	0.0392	0.0582	0.0768	0.095	0.1128	0.1302	0.1472	0.1638	0.18
Infinitesimal Strain	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2
Error	1.01%	2.04%	3.09%	4.17%	5.26%	6.38%	7.53%	8.70%	9.89%	11.11%

INFINITESIMAL STRAIN ERROR ESTIMATION

http://cml01.engr.ucdavis.edu/yuan/education_examples/

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/

MATERIALS AVAILABLE

THANKS!