MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 2nd February, 2015 D1 - Lecture 12

- If W is a subspace of \mathbb{R}^n , then its orthogonal complement $W^{\perp} = N(A)$, where A is the matrix whose rows are basis vectors of W.
- If $x \in \mathbb{R}^n$, then x can be written uniquely as x = w + w', where $w \in W$ and $w' \in W^{\perp}$.
- If $\{w_1, w_2\}$ are basis of W, then an orthogonal basis of W is given by $\{w_1, w_2 \operatorname{proj}_{w_1} w_2\}$, where $\operatorname{proj}_{w_1} w_2 = \frac{w_1^T w_2}{w_1^T w_1} w_1$.
- If the system Ax = b is inconsistent, then least square solution \hat{x} is given by $A^T A \hat{x} = A^T b$.
- If $(A^T A)$ is invertible, then $\hat{x} = (A^T A)^{-1} A^T b$ and $\hat{b} = A\hat{x} = A(A^T A)^{-1} A^T b$ is the projection of b on C(A).
- The matrix P is called a **projection** matrix if P is symmetric and $P^2 = P$. Pb is the projection of b on to the column space of P. If $P = A(A^TA)^{-1}A^T$, then P is a projection matrix.

$$\bullet \ \ \, \boxed{N(A^TA) = N(A)}.$$

Clearly, $N(A) \subset N(A^T A)$. For converse, take $x \in N(A^T A)$. Now $A^T A x = 0 \Rightarrow x^T (A^T A x) = (Ax)^T (Ax) = ||Ax||^2 = 0$

Now
$$A'Ax = 0 \Rightarrow x'(A'Ax) = (Ax)'(Ax) = ||Ax||^2 = 0$$

 $\Rightarrow Ax = 0$
 $\Rightarrow x \in N(A)$.

- If A is $m \times n$, then $A^T A$ is $n \times n$. Since $N(A) = N(A^T A)$. By rank nullity theorem, rank $(A) = \operatorname{rank}(A^T A) = n \dim N(A)$.
- $A^T A$ is invertible \iff rank $(A^T A) = \text{rank}(A) = n$.
- If columns are A are linearly independent, then least square solution of Ax = b is given by $A^T A \hat{x} = A^T b \Rightarrow$

$$\hat{x} = (A^T A)^{-1} A^T b$$
 and orthogonal projection of b on $C(A)$ is

$$A\hat{x} = A(A^TA)^{-1}A^Tb.$$

Example - Best Straight-line fit

Question 1. We want to find the best straight line b = C + Dt which fits the data and gives least square error.

$$(t,b) = (-2,4), (-1,3), (0,1), (2,0).$$

We want to solve C - 2D = 4, C - D = 3, C = 1, C + 2D = 0.

The system
$$\begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \\ 0 \end{pmatrix}$$
, $Ax = b$ is inconsistent.

Find the least square solution by solving $A^T A \hat{x} = A^T b$.

Question 2. Find the best quadratic curve $b = C + Dt + Et^2$ which fits the above data and gives least square error.

We want to solve
$$C - 2D + 4E = 4$$
, $C - D + E = 3$, $C = 1$, $C + 2D + 4E = 0$.

Write it as Ax = b and find the least square solution \hat{x} .

Orthogonal columns

If the columns of $m \times n$ matrix A are linearly independent and orthogonal, then computation in least square problem becomes easy.

Assume v_1, v_2 are orthogonal and $A = (v_1 \ v_2)$. Then

$$A^TA = \begin{pmatrix} v_1^T \\ v_2^T \end{pmatrix} \begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} v_1^T v_1 & v_1^T v_2 \\ v_2^T v_1 & v_2^T v_2 \end{pmatrix} = \begin{pmatrix} \|v_1\|^2 & 0 \\ 0 & \|v_2\|^2 \end{pmatrix}.$$

Example:
$$\begin{pmatrix} -1 & 2 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

This is consistent only when a = c - 2b.

Since the column vectors are orthogonal, $\hat{x} = (A^T A)^{-1} A^T b$

$$\begin{pmatrix} \hat{x_1} \\ \hat{x_2} \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 8 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{1}{3}(-a+b+c) \\ \frac{1}{4}(a+c) \end{pmatrix}$$

M.K. Keshari

Orthogonal Matrix

If A is $m \times n$ matrix whose column vectors $(\in \mathbb{R}^m)$ form an *orthonormal set*, then

$$A^{T}A = \begin{pmatrix} v_{1}^{T} \\ \vdots \\ v_{n}^{T} \end{pmatrix} \begin{pmatrix} v_{1} & \dots & v_{n} \end{pmatrix} = \begin{pmatrix} v_{1}^{T}v_{1} & \dots & v_{1}^{T}v_{n} \\ \vdots & & \vdots \\ v_{n}^{T}v_{1} & \dots & v_{n}^{T}v_{n} \end{pmatrix} = I_{m}.$$

Definition. A square matrix A whose column vectors form an orthonormal set is called an **orthogonal** matrix.

- \bullet If Q is an orthogonal matrix, then
 - $Q^TQ = I = QQ^T$. (since Q^T is the inverse of Q)
 - $||Qx|| = \sqrt{(Qx)^T(Qx)} = \sqrt{x^TQ^TQx} = \sqrt{x^Tx} = ||x||.$
 - Row vectors of Q are orthonormal. It follows from $QQ^T = I$.

Examples of Orthogonal matrices:

Gram-Schmidt Process

If the set of vectors v_1, \ldots, v_r in \mathbb{R}^n are linearly independent, then we can find an orthonormal set of vectors q_1, \ldots, q_r such that $\operatorname{Span}\{v_1, \ldots, v_r\} = \operatorname{Span}\{q_1, \ldots, q_r\}$.

First find an othogonal set. Let $w_1 = v_1$, $w_2 := v_2 - \text{proj}_{w_1} v_2$.

Then $w_1 \perp w_2$ and $Span\{v_1, v_2\} = Span\{w_1, w_2\}$.

Let $c_1w_1 + c_2w_2$ be the projection of v_3 on Span $\{w_1, w_2\}$.

Then $v_3 - c_1w_1 - c_2w_2$ is orthogonal to Span $\{w_1, w_2\}$.

Therefore $w_1^T(v_3 - c_1w_1 - c_2w_2) = 0$ gives $c_1 = \frac{w_1^T v_3}{\|w_1\|^2}$.

Similarly $c_2 = \frac{w_2' \ v_3}{\|w_2\|^2}$. Therefore projection of v_3 on the space

Span $\{w_1, w_2\}$ is $\operatorname{proj}_{w_1} v_3 + \operatorname{proj}_{w_2} v_3$. Define

$$\begin{aligned} w_3 &= v_3 - \mathsf{proj}_{\mathsf{Span}\{w_1, w_2\}} v_3 = v_3 - \frac{w_1^T v_3}{\|w_1\|^2} w_1 - \frac{w_2^T v_3}{\|w_2\|^2} w_2. \\ &\{w_1, w_2, w_3\} \colon \mathsf{orthogonal\ set}, \, \mathsf{Span}\{w_1, w_2, w_3\} = \mathsf{Span}\{v_1, v_2, v_3\}. \end{aligned}$$

By induction,

$$w_r := v_r - \frac{w_1^T v_r}{\|w_1\|^2} w_1 - \frac{w_2^T v_r}{\|w_2\|^2} w_2 - \dots - \frac{w_{r-1}^T v_r}{\|w_{r-1}\|^2} w_{r-1}$$

Then $\{w_1, \ldots, w_r\}$ is an orthogonal set and $Span\{w_1, \ldots, w_r\} = Span\{v_1, \ldots, v_r\}$.

Now take
$$q_1 = \frac{w_1}{\|w_1\|}$$
, $q_2 = \frac{w_2}{\|w_2\|}$, ..., $q_r = \frac{w_r}{\|w_r\|}$.

Then $\{q_1,\ldots,q_r\}$ is an orthonormal set and

$$\mathsf{Span}\{v_1,v_2,\ldots,v_r\}=\mathsf{Span}\{q_1,q_2,\ldots,q_r\}.$$

Example

Let
$$S = \left\{ v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} -5 \\ 1 \\ 5 \\ -7 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 8 \end{pmatrix} \right\}$$

and $W = \operatorname{Span}(S)$. Find an orthonormal basis for W.

Verify that $\{v_1, v_2, v_3\}$ are linearly independent.

Hence S is a basis of W.

For linear independence, check that rank of the matrix $\begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ is 3.

Use Gram-Schmidt method, $w_1 = v_1$, $w_2 = v_2 - \frac{w_1' \ v_2}{\|w_1\|^2} w_1$

$$= v_2 - \frac{-15 + 1 - 5 - 21}{9 + 1 + 1 + 9} w_1 = v_2 - \frac{-40}{20} w_1 = v_2 + 2w_1. = \begin{pmatrix} 1 \\ 3 \\ 3 \\ -1 \end{pmatrix}$$

Recall
$$w_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 1 \\ 3 \\ 3 \\ -1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 8 \end{pmatrix}$.

(check $w_1^T w_2 = 0$).

Now
$$w_3 = v_3 - \frac{w_1^T v_3}{\|w_1\|^2} w_1 - \frac{w_2^T v_3}{\|w_2\|^2} w_2.$$

$$w_3 = v_3 - \frac{3+1+2+24}{20} w_1 - \frac{1+3-6-8}{20} w_2$$

$$= \begin{pmatrix} 1\\1\\-2 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 3\\1\\-1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\3\\3 \end{pmatrix} = \begin{pmatrix} -3\\1\\1 \end{pmatrix}$$

Check $w_1^T w_3 = 0$, $w_2^T w_3 = 0$.

Hence $\{w_1, w_2, w_3\}$ is an orthogonal basis of S. An orthonormal basis for S is $\{\frac{1}{\sqrt{20}}w_1, \frac{1}{\sqrt{20}}w_2, \frac{1}{\sqrt{20}}w_3\}$.