203A Question Bank

John Friedman

April 7, 2024

1. (Final 2023): Let $X_n \sim N(0,1)$ if n is odd, and $X_n \sim N(0,n)$ if n is even. Is $X_n = O_p(1)$?

Solution: No. The definition of $O_p(1)$ is that $\lim_{n\to\infty} P(|X_n| \leq B) = 1$ for all B. In this case, the limit is not 1 for any B. Note: I'm not sure I like this solution.

2. (Final 2023): Suppose that $X_1, X_2, ...$ are iid such that their common MGF is

$$E[exp(tX_i)] = (\frac{1}{1-t})^2$$

Let $F_n(x) \equiv P(\frac{1}{n} \sum_{i=1}^n X_i^2 \le x)$. What is $\lim_{n\to\infty} F_n(1)$?

Solution: First note that the MGF is that of an exponential distribution with $\lambda=1$. The mean of an exponential distribution is $\frac{1}{\lambda}=1$. The variance is $\frac{1}{\lambda^2}=1$. Since $Var(X)=E[X^2]-E[X]^2$ That implies $E[X^2]=2$. Now we use the fact that $\lim_{n\to\infty}F_n(1)\equiv\lim_{n\to\infty}P(\frac{1}{n}\sum_{i=1}^nX_i^2\leq 1)=P(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nX_i^2\leq 1)=P(E[X^2]\leq 1)$. Since $E[X^2]=2$, the answer is 0. Note: I'm not sure I like this solution.

3. (Final 2023): Suppose that X has the CDF equal to $\Lambda(t) = \frac{exp(t)}{1+exp(t)}$. Let $X_n \equiv cos(X/n)$. What is $\lim_{n\to\infty} E[cos(X_n)]$?

Solution: (CHECK)

4. (Final 2023): Let X_1 denote a random sample of (size 1) from $N(1,\theta)$. We have $H_0: \theta = 4$ and $H_1: \theta = 9$. You decided to use the Neyman-Pearson test of size 5%. If you observe $X_1 = 6$, do you reject H_0 or not?

Solution: We do not reject H_0 .

- 1. identify our test statistic: $Z = (X_1 \mu)/\sigma = (6-1)/4 = 5/4$
- 2. find the critical value: $z_{\alpha} = 1.645$
- 3. compare the test statistic to the critical value: $5/4 \le 1.645$. So we do not reject H_0 .

1

5. (Final 2023): Suppose that X_n is a sequence of random variables such that $\sqrt{n}(X_n - 1)$ converges in distribution to N(0, 1). By the multivariate delta method, we can see that

$$\begin{pmatrix} \sqrt{n}(X_n^3 - \mu_1) \\ \sqrt{n}(\ln(X_n) - \mu_2) \end{pmatrix} \xrightarrow{d} N \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \begin{pmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{pmatrix}$$

for some $\mu_1, \mu_2, \sigma_{1,1}, \sigma_{1,2}, \sigma_{2,1}, \sigma_{2,2}$, and $\sigma_{1,2}$. What are their numerical values?

Solution: (TODO) The multivariate delta method:

if
$$\sqrt{n}(X_n - \theta) \xrightarrow{d} N(0, \Sigma)$$

then $\sqrt{n}(h(X_n) - h(\theta)) \xrightarrow{d} N(0, H\Sigma H')$
where $H = \frac{\partial h(t)}{\partial t'}\Big|_{t=\theta}$

6. (Final 2023): Suppose that a random sample X_1 of size 1 where X_i $N(\mu, 1)$. We want to test the null hypothesis $\mu = 0$ versus $H_1 : \mu > 0$. We will reject the null if $X_1 > c$. Suppose that c was chosen such that the size of the test is 2.5%. For what value of μ is the power of the test 5%?

Solution: The power of a test is the probability of correctly rejecting the null hypothesis. In this case, we know that c=1.96 as the null hypothesis is $X \sim N(0,1)$ and $Pr(\text{reject null if null is correct}) = 1 - \Phi(1.96) = .025$

$$Pr(x + \mu > 1.96) = Pr(x > 1.96 - \mu)$$

$$= 1 - Pr(x \le 1.96 - \mu)$$

$$= 1 - \Phi(1.96 - \mu) = .05$$

$$\implies .95 = \Phi(1.96 - \mu)$$

$$= 1.645 = 1.96 - \mu$$

$$\implies \mu = 1.96 - 1.645 = .315$$

- 7. (Final 2023): Let X_1 denote a random sample (of size 1) from a Poisson distribution with mean equal to θ . We would like to test $H_0: \theta = 5$ against $H_1: \theta \neq 5$.
 - (a) Suppose that $X_1=25$ What is the value of the LR statistic? Hint 1: The PDF of the Poisson Distribution with mean equal to θ is given by $f(x;\theta)=\frac{\theta^x e^{-\theta}}{x!}$ Hint 2: $\ln 5=1.6094$

Solution: (CHECK)

1. The MLE of θ is $\hat{\theta} = X_1 = 25$ Note: I forgot how to calculate MLE

2. The Likelihood ratio statistic is:

$$LR = -2\ln(\frac{L(\theta_0)}{L(\hat{\theta})})$$

$$= -2\ln(\frac{L(5)}{L(25)})$$

$$= -2\ln(\frac{5^25e^{-5}}{25^25e^{-25}})$$

$$= -2\ln(\frac{5^25}{25^25})$$

$$= 50\ln(5) - 50$$

$$= 50(1.6094) - 50$$

$$= 30.47$$

(b) Do you reject or accept the null at the 5% significance level?

Solution: (CHECK) if $LR > \chi^2_{\alpha}$ then reject the null. In this case, if $X \sim \chi^2(1) \implies P(X > 1.96^2) = 5\%$. Since $30.47 > 1.96^2$, we reject the null.

8. (Final 2023): Suppose that $X_1,...,X_{10}$ are iid N(0,1). Let $\bar{X}=\frac{1}{10}\sum_{i=1}^{10}X_i$. What is $E[\bar{X}^2(\sum_{i=1}^n(X_i-\bar{X})^2)]$?

Solution: (CHECK) Note: that I am confused whether it is the $E[X]^2$ or $E[X^2]$ for \bar{X}^2 .

$$Var(X) = E[X^{2}] - E[X]^{2} = 1 \implies E[X^{2}] = 1$$

$$E[\bar{X}^{2}(\sum_{i=1}^{n} (X_{i} - \bar{X})^{2})] = \bar{X}^{2}E[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2})]$$

$$= \bar{X}^{2}E[Var(X)]$$

$$= \bar{X}^{2}E[1] = \bar{X}^{2}$$

$$= 0$$

- 9. (Final 2018): Let X have the uniform distribution over the (0,1) interval
 - (a) Calculate $E[\log(X)]$

Solution: Use integration by parts: $E[\log(X)] = \int_0^1 \log(x) dx = x \log(x) - x \Big|_0^1 = 0 - 1 = -1$.

(b) Calculate $\log E[X]$

Solution: $E[X] = \int_0^1 x dx = 1/2$. So $\log E[X] = \log(1/2) = -\log(2)$.

(c) Which is bigger?

Solution: $\log E[X] = -\log(2) > -1 = E[\log(X)]$. So $\log E[X]$ is bigger.

(d) Now let g denote some positive valued strictly increasing function defined on (0,1). Let Y=g(X). Between $E[\log(Y)]$ and $\log(E[Y])$, which one is bigger? Or does the answer depend on g? Note that there are only three choices.

Solution: Jensen's inequality says that $\phi(E[X]) \leq E[\phi(X)]$ for a convex function ϕ . Since log is concave, we have that $\log(E[Y]) \geq E[\log(Y)]$. So $\log(E[Y])$ is bigger.

Note: Concavity is the tricky part here. You can convert log into a convex function by multiplying the log by -1, which makes it convex. Then you can apply Jensen's inequality.

10. (Final 2018): Suppose that the support of Y is $\{0,1\}$, and $Pr[Y=1|X]=\Phi(X'\beta)$ where Φ is the standard normal cdf. We know that $Pr[Y=1|(X_1,X_2)=(2,1)]=.5$ and $Pr[Y=1|(X_1,X_2)=(2,2)]=.975$. What is the value of $\beta=(\beta_1,\beta_2)'$?

	$\Psi(x)$	varue
	$\Phi(0)$	0.5
	$\Phi(0.253)$	0.6
	$\Phi(0.534)$	0.7
:	$\Phi(0.842)$	0.8
	$\Phi(1.282)$	0.9
	$\Phi(1.645)$	0.95
	$\Phi(1.960)$	0.975
	$\Phi(2.576)$	0.995

The Phi scores you may want to use are:

Solution: $\beta_1 = -.98$ and $\beta_2 = 1.96$

We have $Pr[Y=1|(2,1)] = \Phi(2\beta_1 + \beta_2) = .5$ and $Pr[Y=1|(2,2)] = \Phi(2\beta_1 + 2\beta_2) = .975$. We can take the inverse of Φ using the table above. So we have $2\beta_1 + \beta_2 = 0$ and $2\beta_1 + 2\beta_2 = 1.960$. By subtraction, we get $\beta_2 = 1.96$. We then solve for β_1 using the first equation to get $\beta_1 = -.98$.

11. (Final 2018): Let $X_1, ..., X_n$ be a random sample of size n from N(3,2), and let \bar{X} denote the sample average. what is the asymptotic distribution of $\sqrt{n}(\bar{X}^2 - 9)$? Your answer should be numerical.

Solution: We use the Delta method: $\sqrt{n}[g(\bar{X}) - g(a)] \stackrel{d}{\to} N(0, g'(a)^2 \sigma^2)$ where $g(x) = x^2$ and a = 3. So g'(a) = 6 and $\sigma^2 = 2$. So the answer is N(0, 72).

12. (Final 2018): Let X_n denote a sequence of random variables such that the PDF f_n of X_n is given by

$$f_n(x) = \frac{1}{2n} \mathbb{1}(|X| \le n)$$

(a) Let $0 < B < \infty$ be given what is $\lim_{n \to \infty} P(|X_n| \le B)$?

Solution: $\lim_{n\to\infty} P(|X_n| \le B) = \lim_{n\to\infty} \int_{-B}^{B} \frac{1}{2n} dx = \lim_{n\to\infty} \frac{B}{n} = 0$ Note: I'm not sure I like this solution.

(b) Is $X_n = O_p(1)$?

Solution: X_n is not bounded in probability. The definition of bounded in probability is $\lim_{n\to\infty} P(|X_n| \leq B) = 1$, which is not the case here.

13. (Final 2018, 2019) Suppose that X and ϵ are independent N(0,1) variables. Let $Y = X + \epsilon$ What is the correlation between X^2 and Y

Solution: The correlation is zero. I'll write the algebra down later.

- 14. (Final 2018, 2019): True or False
 - (a) If $X_n = a + o_p(1)$, then $E[X_n] = a + o(1)$

Solution: (ASK)

(b) If $X_n = a + o_p(1)$, then $X_n^2 = a^2 + o_p(1)$

Solution: True

$$X_n^2 = (a + o_p(1))^2$$

$$= a^2 + (2a)o_p(1) + o_p(1)$$

$$= a^2 + o_p(1)$$

Since a constant times $o_p(1)$ is $o_p(1)$, and since $o_p(1) + o_p(1) = o_p(1)$.

(c) If $X_n \xrightarrow{d} N(0,1)$, then $E[X_n] = o(1)$

Solution: (ASK)

(d) If $X_n \xrightarrow{d} N(0,1)$, then $E[X_n^2] = 1 + o(1)$

Solution: (ASK)

(e) If $X_n \xrightarrow{d} N(0,1)$, $\chi_n^2 \xrightarrow{d} \chi^2(1)$

Solution: True. Using the continuous mapping theorem we know that if $X_n \xrightarrow{d} X$ and g is a continuous function, then $g(X_n) \xrightarrow{d} g(X)$. In this case, $g(x) = x^2$ is continuous, so $X_n^2 \xrightarrow{d} \chi^2(1)$.

15. (Final 2019): Suppose that $Z \sim N(0,1)$, and let $X_n = Z^2 1(|Z| \ge \frac{1}{n})$. What is $\lim_{n \to \infty} E[X_n]$?

Solution: (Check)

$$\lim_{n \to \infty} E[X_n] = E[\lim_{n \to \infty} X_n] = E[\lim_{n \to \infty} Z^2 1(|Z| \ge \frac{1}{n})] = E[Z = 2] = \chi^2(1) = 1$$

16. (Final 2019): Let $X_1, ..., X_n$ be a random sample of size n from $N(\mu, 1)$, and let \bar{X} denote the sample average.

(a) Compute $\sup_{\mu<0} \lim_{n\to\infty} P(\sqrt{n}\bar{X} > 1.645)$

Solution:

$$\begin{split} \sup_{\mu < 0} \lim_{n \to \infty} P(\sqrt{n}\bar{X} > 1.645) &= \sup_{\mu < 0} \lim_{n \to \infty} P(\sqrt{n}(\bar{X} - \mu) > 1.645 - \sqrt{n}\mu) \\ &= \sup_{\mu < 0} \lim_{n \to \infty} P(Z > 1.645 - \sqrt{n}\mu) \\ &= 0 \end{split}$$

(b) $\lim_{n\to\infty} \sup_{\mu<0} P(\sqrt{n}\bar{X} > 1.645)$

Solution:

$$\begin{split} &\lim_{n \to \infty} sup_{\mu < 0} P(\sqrt{n}(\bar{X} - \mu) > 1.645 - \sqrt{n}\mu) \\ &= \lim_{n \to \infty} sup_{\mu < 0} P(Z > 1.645 - \sqrt{n}\mu) \\ &= \lim_{n \to \infty} P(Z > 1.645) \\ &= 1 - \Phi(1.645) \\ &= 1 - .95 = .05 \end{split}$$

17. (Final 2019) Let X_n denote a sequence of random variables such that the PDF f_n of X_n is given by

$$f_n(x) = \frac{1}{4}1(n \le |x| \le n+1) + \frac{1}{4}1(|x| \le 1)$$

(a) Let $1 < B < \infty$ be given what is $\lim_{n \to \infty} P(|X_n| \le B)$?

Solution:

$$\lim_{n \to \infty} P(|X_n| \le B) = \int_{-1}^{1} \frac{1}{4} dx = \frac{1}{2}$$

(b) Is $X_n = O_p(1)$?

Solution: No. The definition of $O_p(1)$ is that $\lim_{n\to\infty} P(|X_n| \leq B) = 1$ for all B. In this case, the limit is 1/2.

- 18. (Final 2019, 2021) Consider $X_1,...,X_n$ iid $N(\mu,\sigma^2)$ We assume that $\sigma^2=1$ We have $H_0:\mu=0$ vs $H_1:\mu>0$ Suppose that C is a critical region such that (1) the test of the form "Reject H_0 if $(X_1,...,X_n)\in C$ " is the uniformly most powerful test; and (2) the probability of rejecting H_0 when $\mu=0$ is 5%
 - (a) Provide a mathematical characterization of rejecting H_0 of such a test as a function of n and $\mu > 0$

Solution:

(b) What is the power of the test when $\mu = .1645$ and n = 100?

Solution:

19. (Final 2021) Suppose that $X_1, X_2, ...$ are iid such that $X_i = 0$ with probability 1/2, and $X_i = 2$ with probability 1/2. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, and $F_n(x) \equiv P(\frac{1}{n} \sum_{i=1}^n X_i \le x)$. What is $\lim_{n \to \infty} F(1.1)$?

Solution:

$$E[X_i] = 0(1/2) + 2(1/2) = 1$$

$$\lim_{n \to \infty} F(1.1) = P(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i \le 1.1)$$

$$= P(1 \le 1.1) = 1$$

20. (Final 2021) Suppose that X has the CDF equal to

$$Pr[X \le x] = \frac{exp(x)}{1 + exp(x)} \equiv \Lambda(x)$$

Let $\Phi(.)$ denote the CDF of N(0,1), and let Φ^{-1} denote its inverse. $Y \equiv \Phi^{-1}(\Lambda(X))$. What is $E[Y^4]$?

Solution:

- 21. (Final 2021) Consider $X_1, ..., X_n$ iid N(0,1). Let $Y_n = 1(\bar{X}_n \ge 1)$.
 - (a) What is $E[Y_n]$?

Solution:

(b) What is $Var(Y_n)$?

Solution:

(c) What is the probability limit of Y_n ?

Solution:

- 22. (Final 2021) Suppose that $X_1, ..., X_4$ are iid and their common distribution is uniform $(0, \theta)$, i.e. their common PDF f(x) is equal to $1(0 < x < \theta)$. We have $H_0: \theta = 1$ vs $H_1: \theta = 2$. Suppose that you decided to reject H_0 if $\max(X_1, ..., X_4) > 1$
 - (a) What is the size of the test?

Solution: Size is the probability of rejecting the null when the null is true. In this case, $P(\max(X_1,...,X_4) > 1 | \theta = 1) = 0$ since under the null hypothesis, the maximum value of X_i is 1.

(b) What is the power of the test? Hint: $P(\max(X_1, ..., X_4) \le 1) = P[X_1 \le 1, X_2 \le 1, X_3 \le 1, X_4 \le 1]$

Solution: The power of a test is the probability of correctly rejecting the null hypothesis. In this case, the power is $P(\max(X_1,...,X_4)>1|\theta=2)=1-P(\max(X_1,...,X_4)\leq 1|\theta=2)=1-P[X_1\leq 1,X_2\leq 1,X_3\leq 1,X_4\leq 1|\theta=2]=1-(1/2)^4=15/16$

23. (Final 2021) Let $X_1, ..., X_n$ be a random sample of size n from N(0,1). For any positive integer k, let $m_k = E[X_i^k]$ and $\hat{m_k} = \frac{1}{n} \sum_{i=1}^n X_i^k$. Assuming that $E[|X_i^k|] < \infty$ for all k, derive the asymptotic distribution $\sqrt{n}(\hat{m_k}^{1/2} - m_k^{1/2})$. The asymptotic distribution is normal with mean zero, so your job is to derive the numerical value of the asymptotic variance. Hint: the MGD of N(0,1) is $exp(t^2/2)$.

Solution:

24. (Final 2021) Let $X_1, ..., X_5$ denote a random sample from $N(\theta, 1)$. We would like to test $H_0: \theta = 5$ against $H_1: \theta \neq 5$. If $X_1 = 2, X_2 = 3, X_3 = 4, X_4 = 5, X_5 = 6$, what is the LR statistic?

Solution: First, note that the MLE of θ is $\hat{\theta} = \bar{X} = 4$. The likelihood ratio statistic is:

$$\begin{split} LR &= -2\ln(\frac{L(\theta_0)}{L(\theta_1)}) \\ &= -2\ln(\frac{L(5)}{L(4)}) \end{split}$$

Note that $L(\theta) = \prod_{i=1}^{n} f(x; \theta)$ so the above equation simplifies to:

$$\frac{e^{-.5\sum_{i=1}^{n}(x_i-5)^2}}{e^{-.5\sum_{i=1}^{n}(x_i-4)^2}}$$
$$\frac{e^{1/2(-15)}}{e^{1/2(-10)}}$$
$$= 5$$

25. (Final 2022) Let $X_n \sim b(n, \frac{q}{n})$ for some q > 0. Is $X_n = O_p(1)$

Solution: Yes. $X_n = O_p(1)$ if $\lim_{n\to\infty} P(|X_n| \le B) = 1$ for some finite B.

26. (Final 2022) Let Y_n denote the maximum of a random sample of size n from a uniform (0,1) distribution. What is $\lim_{n\to\infty} Pr[Y_n \leq 0.9]$?

Solution: 0. As n approaches infinity, the maximum value of a sample from a uniform distribution approaches 1.

27. (Final 2022) Let $\Lambda(t) \equiv \frac{exp(t)}{1+exp(t)}$ denote the CDF of the logistic distribution (with location and scale parameters equal to 0 and 1, although these particular details are irrelevant for this question). Let X_n denote a sequence of random variables such that the CDF F_n of X_n is given by $F_n(x) = \Lambda(nx)$. What is $\lim_{n\to\infty} E[\cos(X_n)]$?

Solution:

28. (Final 2022) Let X_1 denote a random sample (of size 1) from $\mathcal{N}(0, \sigma^2)$. We have null hypothesis $H_0: \mu = 1$ and alternative hypothesis $H_1: \mu = 9$. You decided to use the Neyman-Pearson test of size 5%. If you observe $X_1 = 2.5$, do you reject H_0 or not? Your answer should be either Reject or Do not reject.

Solution:

TODO

29. (Final 2022) Suppose that X_n is a sequence of random variables such that $\sqrt{n}(X_n - 1)$ converges in distribution to N(0, 1). By the multivariate delta method, we can see that

$$\begin{pmatrix} \sqrt{n}(X_n^2 - \mu_1) \\ \sqrt{n}(\ln(X_n) - \mu_2) \end{pmatrix} \xrightarrow{d} N \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, & \begin{pmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{pmatrix} \end{bmatrix}$$

for some $\mu_1, \mu_2, \sigma_{1,1}, \sigma_{1,2}, \sigma_{2,1}, \sigma_{2,2}$, and $\sigma_{1,2}$. What are their numerical values?

Solution:

30. (Final 2022) Let X denote a random sample (of size 1) from a distribution with the PDF equal to $\lambda exp(-\lambda x)1(x>0)$. We have $H_0L\lambda=1$ and $H_1:\lambda<1$. Suppose that C is a critical region such that (1) the test of the form "Reject H_0 if $X_1 \in C$ " is the uniformly most powerful test; and (2) the probability of rejecting H_0 when $\lambda=1$ is α . What is the power of your test when $\lambda=1/2$ and $\alpha=5\%$

Solution:

- 31. (Final 2022) Let X denote a random sample (of size 1) from a distribution with the PDF equal to $\lambda \exp(-\lambda x)1(x>0)$. We would like to test $H_0: \lambda=1$ against $H_1: \lambda\neq 1$. Suppose that X=e
 - (a) What is the value of the LR statistic?

Solution:

(b) Do you reject or accept the null at the 5% significance level? You may use the approximation e=2.7183

Solution:

32. (Final 2022) Let (X,Y) be a two dimensional random vector with the joint PDF $f_{X,Y}(x,y) = 4e^-2y1(y > x > 0)$. Let $(\alpha,\beta) \equiv argmin_{a,b}E[(Y-(a+bX))^2]$ What is (α,β) ? Hint: a small number of students may find it useful to know that $\int_0^\infty x^m \lambda e^(-\lambda x) dx = \frac{m!}{\lambda^m}$

- 33. (Final 2015) Suppose that X_n is a sequence of random variables such that $\sqrt{n}(X_n-3) \xrightarrow{d} N(0,1)$
 - (a) What is the asymptotic distribution of $\sqrt{n}(X_n^2 9)$?

Solution: (Verified) By the delta method $\sqrt{n}(g(X_n) - g(a)) \xrightarrow{d} N(0, g'(a)^2 \sigma^2)$. In this case, $g(x) = x^2$ and a = 3. So g'(a) = 6 and $\sigma^2 = 1$. So the answer is N(0, 36)

(b) What is the asymptotic distribution of $(\sqrt{n}(X_n-3))^2$?

Solution: (Verified) A standard normal distribution squared is a chi-squared distribution. So the answer is $\chi^2(1)$

34. (Final 2015) Let F(y|x) denote the conditional CDF of Y given X i.e. $F(y|x) = Pr[Y \le y|X = x]$. Suppose that F(y|x) is continuous and strictly increasing in y for all x in the support of X. Let V = F(Y|X). (It is not F(Y|x)). Derive the conditional distribution of V given x. Prove that V and X are independent.

Solution: