

ARIMA: Auto-Regressive Integrated Moving Average

- ARIMA: Auto-Regressive Integrated Moving Average
- ARIMA has three parameters
 - AR Lags of the stationarized series demonstrating autocorrelation
 - I No of times series needs to be differentiated for stationarity
 - MA Order of the forecast errors

1. Check if the series is stationary

- 1. Check if the series is stationary
- 2. Find the value of d required to make series stationary

- 1. Check if the series is stationary
- 2. Find the value of d required to make series stationary
- 3. Find the value of p and q using the ACF and PACF plots

- 1. Check if the series is stationary
- 2. Find the value of d required to make series stationary
- 3. Find the value of p and q using the ACF and PACF plots
- 4. Build ARIMA model

- 1. Check if the series is stationary
- 2. Find the value of d required to make series stationary
- 3. Find the value of p and q using the ACF and PACF plots
- 4. Build ARIMA model
- 5. Make predictions

Notebook

SARIMA

- ARIMA model takes the past values to make forecast
- SARIMA Seasonal ARIMA
- Includes an additional component of seasonality

- Parameters of SARIMA model:
 - o (p, d, q)
 - o (P, D, Q, m)

- Parameters of SARIMA model:
 - o (p, d, q) -> similar to ARIMA parameters
 - p : Auto regressive term
 - d: difference
 - q: Moving average term

- Parameters of SARIMA model:
 - o (P, D, Q, m)
 - P: Seasonal Auto-regressive term
 - D: Seasonal difference value
 - Q: Seasonal Moving average term
 - m: number of time steps for a single period

ACF and PACF plots of stationary series

Thank You

