Problema de caminos con trancones

Lógica para ciencias de la computación

Juan Camilo Ruiz, Miguel Castillo 16 de septiembre de 2018

Universidad del Rosario

Problema

Considere un grafo el cual representa formas de moverse en una ciudad entre distintos puntos. Además en los lados que conectan dos puntos puede haber trancón o no. Suponga que una persona tolera máximo 2 trancones.

¿Existe algún camino por el cual la persona pueda moverse de un punto u a un punto v?

Figure 1: Situación inicial

Ejemplo

Por ejemplo, dado este grafo, suponga que la persona tolera máximo 1 trancón. Observe que para moverse del punto u al v el camino rojo no podría ser una opción ya que estaría atravesando 2 trancones y la persona no podría tolerarlo.

2

Ejemplo

En cambio, el camino azul podría ser una posibilidad para moverse del punto u al v, ya que la persona solo estaría tolerando un trancón.

3

Claves de representación 1/2

Primero etiquetamos a cada lado del grafo con una letra.

Claves de representación 2/2

Para cada lado hay dos letras proposicionales. La primera (p_1 , q_1 , r_2 , etc) es verdadera ssi decidí avanzar por ese lado y la segunda (p_2 , q_2 , r_2 , etc) es verdadera ssi hay trancón en ese lado.

Ejemplo

Si consideramos sólo el camino de arriba: p₁: decidí irme por el lado p q₁: decidí irme por el lado q r₁: decidí irme por el lado r ¬s₁: no decidí irme por el lado s $\neg t_1$: no decidí irme por el lado t $\neg x_1$: no decidí irme por el lado x (Y pasa lo mismo de las tres lineas anteriores con a_1 , b_1 y c_1) $\neg p_2$: no hay trancón en lado p $\neg q_2$: no hay trancón en lado q r_2 : hay trancón en lado r

Tipos de reglas

Regla 1:

No se pueden atravesar más trancones de los tolerados por la persona que está cruzando el camino.

Regla 2:

Si decido ir por un camino no puedo devolverme y no puedo tomar otro camino.

Regla 1 (1/2)

Supongamos que la persona sólo tolera 1 trancón.

Observe que una posible opción para cualquier camino es que ningún lado tenga trancón, es decir,

$$(\neg p_2 \land \neg q_2 \land \neg r_2) \lor (\neg s_2 \land \neg t_2 \land \neg x_2) \lor (\neg a_2 \land \neg b_2 \land \neg c_2).$$

Otra posible opción es cuando un sólo lado tiene trancón, como en el siguiente grafo:

Regla 1 (2/2)

Entonces ahí tendriamos que:

$$(\neg p_2 \land \neg q_2 \land r_2) \lor (\neg p_2 \land q_2 \land \neg r_2) \lor (p_2 \land \neg q_2 \land \neg r_2).$$

Observe que esto pasaría igual para cada uno de los caminos. Luego tendríamos que por cada camino hay 4 combinaciones posibles (cuando no hay trancón en ningún lado y las tres posibles de un trancón en un sólo lado). Por ende habrían 12 combinaciones posibles, teniendo en cuenta que la persona tolera máximo 1 trancón.

g

Regla 2 - formal

Si decidí irme por el camino de arriba:

$$(p_1 \wedge q_1 \wedge r_1) \rightarrow ((\neg s_1 \wedge \neg t_1 \wedge \neg x_1) \wedge (\neg a_1 \wedge \neg b_1 \wedge \neg c_1))$$

Si decidí irme por el camino del medio:

$$(s_1 \wedge t_1 \wedge x_1) \rightarrow ((\neg p_1 \wedge \neg q_1 \wedge \neg r_1) \wedge (\neg a_1 \wedge \neg b_1 \wedge \neg c_1))$$

Si decidí irme por el camino de abajo:

$$(a_1 \wedge b_1 \wedge c_1) \rightarrow ((\neg p_1 \wedge \neg q_1 \wedge \neg r_1) \wedge (\neg s_1 \wedge \neg t_1 \wedge \neg x_1))$$