Group Members

- Anoushka Martin
- Dev Dahiya
- Dhanush Krishna
- Drisya Mannikath
- Karthik Narayanan
- Mohammad Shamshuddin
- Sivaa Balamurugan
- Xec Abdul Kader

- 2022A9PS0129U
- 2022A7PS0319U 2022A7PS0302U
- 2022A9PS0254U
 - 2022A7PS0321U
- 2022A7PS0333U
- 2022A7PS0323U
- 2022A9PS0252U

Introduction

01 02 03

Background of the Study Objectives Scope

04 05

Limitations Methodology

Ba

Background of the Study

Objectives

Scobe

Analyze

various data leakage scenarios.

Investigate

the scope for using machine learning algorithms

Implement

risk management techniques to mitigate losses

Scobe

Deploy

appropriate models for relevant use cases.

Daemon Thread

algorithm to identify data leakage

Email Model

paired w/ a companion software for ease of access

File Versioning

Doesn't allow rollback to previous version, will have to re-upload.

Support for Large Scale

At the moment the model is targeted towards a smaller scale.

<u>LAPTOP</u> MOCKUP

This is what a user / admin would see when they use our model.

Python Daemon Threads:

- Background Thread
- Daemon vs Non-Daemon Threads
- Flow of Execution

Discussion

Data Leak Threats

Data Leak Incident

Data Leakage Prevention Techniques

Drawbacks of Existing Models

TECHNIQUE	ANALYSIS	CONS
COLLECTION INTERSECTION	CONTENT	HIGH COMPUTATION & STORAGE COSTS, INAPPLICABE TO EVOLVED OR OBFUSCATED DATA
MACHINE LEARNING	CONTENT/CONTEXT	LARGE TRAINING DATA, COMPLICATED
BEHAVIOUR ANALYSIS	CONTEXT	LARGE TRAINING DATA, HIGH FALSE POSITIVES
WATERMARKING	CONTEXT	VULNERABLE TO MALICIOUS REMOVAL OR DISTORTION
HONEYPOTS	CONTEXT	LIMITED APPLICATIONS

Conclusion

- Data leakage is a major security concern
- Caused by malicious outsiders or insiders
- Leaked information includes financial data, intellectual property and medical information
- Organizations should implement appropriate security measures

Conclusion

- Measures include access control mechanisms and user security awareness
- DLPD tools like encryption, firewalls, and antiviruses can help
- Detecting and preventing data leaks is an ongoing challenge that requires research and innovation

Recommendation

Collection **Intersection** Incurs significant processing and storage costs Watermarking Prone to Malicious Removal or **Tampering**

Behavioral Analysis

Requires large amounts of training data.

Machine Learning

옣

Lack of Transparency

Recommendation

The proposed model offers a comprehensive solution to the challenge of data leakage by incorporating user authentication, file management, periodic data leak checks as well as warning the admin via email when a leak has been detected.

We have gone one step ahead of our competition by integrating multiple functionalities within a single model, providing a more fuller and cost effective alternative, one stop solution to all your needs.

REFERENCES

- L. Cheng, F. Liu, and D. Yao, "Enterprise data breach: causes, challenges, prevention, and future directions," Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, vol. 7, no. 5, p. e1211, Sep. 2017, doi: 10.1002/widm.1211.
- V. Sundareswaran, "STUDY OF CYBERSECURITY IN DATA BREACHING,"
 ResearchGate, Mar. 2018, [Online]. Available:
 https://www.researchgate.net/publication/325300571_STUDY_OF_CYBERSECURITY_I
 N_DATA_BREACHING
- A. H. Juma'h and Y. Alnsour, "The effect of data breaches on company performance," International Journal of Accounting and Information Management, vol. 28, no. 2, pp. 275–301, Mar. 2020, doi: 10.1108/ijaim-01-2019-0006.

