Déterminer la nature d'une série numérique.

Soit $(u_n)_n$ une suite de réels ou de complexes. On souhaite déterminer la nature de la **série** $\sum u_n$:

- $\boxed{1}$ Si la suite $(u_n)_n$ ne tend pas vers 0, alors la série $\sum u_n$ diverge grossièrement.
- $\boxed{2}$ $\sum u_n$ peut être un <u>exemple de référence</u> du cours : série géométrique, série de Riemann, série exponentielle.
- 3 $\sum u_n$ peut être une <u>série télescopique</u> : calculer S_N , étudier si $(S_N)_N$ a une limite finie, ou pas.
- 4 Si à partir d'un certain rang ou pour tout $n, u_n \ge 0$: Essayer...
 - a. Trouver un équivalent simple de $u_n:u_n\underset{n\to+\infty}{\sim}v_n$ avec $\sum v_n$ plus simple à étudier; appliquer le théorème d'équivalence.
 - b. Trouver v_n telle que $0 \le u_n \le v_n$ et $\sum v_n$ convergente, ou $0 \le v_n \le u_n$ et $\sum v_n$ divergente; appliquer le théorème de majoration/minoration. Si on trouve un o ou O, traduire en termes de majoration ou minoration.
 - c. En particulier : règle du $n^{\alpha}u_n$, à redémontrer à chaque fois.
 - d. Comparaison série-intégrale
 - e. Règle de d'Alembert si pour tout $n, u_n > 0$.
 - f. Si rien ne marche, étudier la convergence de (S_n) ... (majorée ou pas?)
- [5] Si à partir d'un certain rang ou pour tout $n, u_n \leq 0$: Étudier $\sum -u_n$, on est ramené au cas 4.
- $\boxed{6}$ Si le signe de la suite $(u_n)_n$ n'est pas constant. Essayer...
 - a. Montrer que $\sum |u_n|$ converge (convergence absolue, qui implique la convergence), on se ramène au cas 4.
 - b. CSSA.
 - c. Faire un $\underline{\mathrm{DL}}$ de u_n pour voir la série comme somme de plusieurs séries plus simples.
 - d. En dernier recours : étude directe de S_n
- [7] (rare) Repérer le produit de Cauchy de deux autres séries plus simples à étudier...