Отображения

19 октября • 8 класс

Правила. Пятёрки получат те, кто до 25 октября включительно наберут 15 баллов. По умолчанию каждый пункт каждой задачи ст**о**ит 1 балл. Удачи!

Задачи на разбор

Определение. *Отображение* f множества X в множество Y — правило, сопоставляющее *каждому* элементу $x \in X$ *ровно один* элемент $f(y) \in Y$. Синоним: функция f из X в Y. Обозначение: $f: X \to Y$.

Пример 1. X=Y — любое множество, f(x)=x. Такое отображение называется **тож- дественным** и обозначается $\mathbb{1}_X$.

Пример 2. $X = \{$ московские школьники $\}$, $Y = \{$ школы в Москве $\}$, f(x) = школа, в которой учится x.

Пример 3. $X = \{$ точки плоскости $\}$, $Y = \{$ точки плоскости $\}$,

f = поворот относительно начала координат на угол 37° .

Пример 4. $X = \{$ вещественные числа $\}$, $Y = \{$ вещественные числа $\}$, $f(x) = x^2$.

Пример 5. $X = \{$ натуральные числа $\}, Y = \{$ вещественные числа $\}, f(x) = x.$

Пример 6. $X = \{$ слушатели нашего кружка $\}$, $Y = \{$ вещественные числа $\}$, f(x) =рейтинг x.

Определение. Отображение $f\colon X\to Y$ называется: **сюръективным**, если в каждый элемент кто-то переходит —

$$\forall y \in Y (\exists x \in X (f(x) = y));$$

инъективным, если разные элементы переходят в разные —

$$\forall x_1, x_2 \in X(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2));$$

биективным или взаимно-однозначным, если выполнено и то, и другое.

Задача 1. Какие из отображений в примерах (а) сюръективны; (b) инъективны; (c) биективны?

Решение:

Пример 1. f биективно.

Пример 2. f сюръективно, но не инъективно. В самом деле, в каждой московской школе есть хотя бы один ученик, причём в некоторых из них (скорее всего, во всех) учится больше одного ученика.

Пример 3. f биективно. Это частный случай задачки из позапрошлого листка по движениям плоскости.

Пример 4. f не сюръективно и не инъективно. В самом деле, в отрицательные числа никто не переходит (так как квадрат числа всегда положительный) и квадраты разных чисел могут быть одинаковыми ($2^2 = (-2)^2$).

Пример 5. f инъективно, но не сюръективно. В самом деле, разные натуральные числа тавтологически являются разными действительными числами. Однако, не всякое действительное число является натуральным.

Пример 6. f не инъективно и не сюръективно. В самом деле, на момент написания этого текста, у Семёна и Ивана одинаковый рейтинг (28%), значит f не инъективно. Рейтинга 100500% ни у кого нет, значит f не сюръективно.

Определение. Композиция отображений $f: X \to Y$ и $g: Y \to Z$ — отображение (обратите внимание на поядок!) $g \circ f: X \to Z$, определённое следующей формулой

$$\forall x \in X \quad (g \circ f)(x) = g(f(x)).$$

Задача 2. Докажите, что композиция отображений ассоциативна.

Решение: Напомним, что ассоциативность означает $f_1 \circ (f_2 \circ f_3) = (f_1 \circ f_2) \circ f_3$. Чтобы показать равенство отображений, нужно показать что они действуют одинаково на каждый элемент. Для произвольного x имеем

$$(f_1 \circ (f_2 \circ f_3))(x) = f_1((f_2 \circ f_3)(x)) = f_1(f_2(f_3(x))) = ((f_1 \circ f_2)(f_3(x))) = ((f_1 \circ f_2) \circ f_3)(x),$$
 что и требовалось.

Задача 3. Правда ли, что композиция двух биекций — биекция?

Решение: Пока без комментариев:)

Определение. Отображение $g\colon Y\to X$ называется **правым обратным** к $f\colon X\to Y$, если $f\circ g=\mathbb{1}_Y$. Отображение $g\colon Y\to X$ называется **левым обратным** к $f\colon X\to Y$, если $g\circ f=\mathbb{1}_X$.

Задача 4. Предъявите пример (a) правого обратного к отображению из примера 2; (b) левого обратного к отображению из примера 5.

Peшение: (a) Достаточно взять любое отображение из Y в X, переводящее каждую школу в какого-нибудь ученика этой школы. Например, первого по алфавиту в журнале или седьмого по росту. (b) Достаточно взять любое отображение из вещественных чисел в натуральные, не меняющее натуральные числа. Например:

$$g(y) = egin{cases} y, & \text{если } y$$
 — натуральное $1, & \text{иначе} \end{cases}$

 \Box

Задача 5. Покажите, что всякое сюръективное отображение имеет правое обратное.

Решение: Хотим построить правое обратное к отображению $f\colon X\to Y$. Для любого $y\in Y$ обозначим через $f^{-1}(y)$ слой отображения f над y, то есть множество всех таких $x\in X$, что f(x)=y. Например, слои отображения из примера 2 — множества школьников, обучающихся в одной конкретной школе. Сюръективность отображения f обозначает, что все наши слои непусты. Теперь выберем любым образом по элементу $x\in f^{-1}(y)$ в каждом таком слое и положим g(y)=x. Это задаст нам некоторое отображение $g\colon Y\to X$. Легко видеть, что оно правое обратное, как и требовалось.

Для любознательных: для бесконечных множеств этот выбор по элементу в каждом слое не так безобиден, как может показаться. Возможность этого выбора постулируется в математике отдельной аксиомой — аксиомой выбора.

Задача 6. Покажите, что всякое не инъективное отображение не имеет левого обратного. (Другими словами: если у отображения f есть левое обратное, то f инъективно).

Решение: От противного: пусть у $f\colon X\to Y$ есть левое обратное $g\colon Y\to X$, но f не инъективно. Тогда есть два разных элемента $x_1,x_2\in X$, такие что $f(x_1)=f(x_2)$. Тогда имеем

$$x_1 = \mathbb{1}_X(x_1) = g(f(x_1)) = g(f(x_2)) = \mathbb{1}_X(x_2) = x_2,$$

что противоречит предположению.

Задачи для самостоятельного решения

Задача 1. Пусть |X|=n. Сколько существует биекций $f\colon X\to X$?

- **Задача 2.** Пусть |X| = n, |Y| = k.
- (a) Сколько различных отображений $f: X \to Y$ существует?
- (b) Сколько из них инъективных?
- (с, 3 балла) Сколько из них сюръективных?

Задача 3. Правда ли, что композиция отображений коммутативна?

Задача 4. Правда ли, что:

- (а) композиция двух сюръекций сюръекция?
- (b) композиция двух инъекций инъекция?
- (с) композиция двух биекций биекция?

Задача 5. Покажите, что отображение:

- (а, 2 балла) сюръективно тогда и только тогда, когда имеет правое обратное;
- (b, 2 балла) инъективно тогда и только тогда, когда имеет левое обратное.

Задача 6. Пусть отображение f имеет правое обратное g и левое обратное h. Докажите, что (a) g=h и (b) f биективно.

Задача 7. Пусть $X = \{1, 2, 3, 4\}$ в $Y = \{a, b\}$.

- (a) Опишите все отображения из X в Y и посчитайте, сколько правых обратных у каждого из них.
- (b) Опишите все отображения из Y в X и посчитайте, сколько левых обратных у каждого из них.

Задача 8. Пусть \mathbb{R} — множество вещественных чисел. Какие из следующих отображений $f \colon \mathbb{R} \to \mathbb{R}$ инъективны? Сюръективны?

- (a) f(x) = x + 7;
- (b) f(x) = 3x 5;
- (c) f(x) = |x|;
- (d) $f(x) = x^3$;
- (e, 2 балла) $f(x) = x^3 x$;
- (f, 2 балла) $f(x) = 2^x$.