XYZ company manufactures filtered and unfiltered bottle waters. The amount of profit is \$18 for one filtered water bottle, and it is \$10 for unfiltered water bottle. The time in minutes it takes to manufacture and package each type is shown in the table below:

	Filtered	Unfiltered
Manufacture	12	6
Package	8	2

The company has at most 40 hours a week available in the manufacturing department and at most 20 hours a week available in the packaging department. The objective is to find the number of water bottles of each type to be produced to get the maximize profit?

- a) Formulate the LP problem above.
- b) Solve the problem by finding the Maximum profit (show the work)

Answer)

	Manufacture (2400)	Package (1200)	Profit \$
Filtered bottle	12	8	18
Unfiltered bottle	6	2	10

Objective evaluation / profit:

$$P = 18x + 10y$$

Constraints:

Solving for first constraint.

$$12x + 6y = 2400$$

When y = 0	When $x = 0$
12x = 2400	6y = 2400
x = 2400/12	y = 2400/6
x = 200	y = 400

Solving for second constraint.

$$8x + 2y = 1200$$

When $y = 0$	When $x = 0$
8x = 1200	2y = 1200
x = 1200/8	y = 1200/2
x = 150	y = 600

For C1:

X	Y
200	0
0	400

For C2:

X	Y
150	0
0	600

We get the following graph.

C1 and C2

The feasible region:

Using corner point principle.

POINT	P= 18x + 10y	PROFIT
(0,0)	18(0) + 10(0)	\$0
(0, 400)	18(0) + 10(400)	\$4000
(150, 0)	18(150) + 10(0)	\$2700
(100, 200)	18(100) + 10(200)	\$ 3800

Optimal solution is 0 filtered bottles and 400 un-filtered bottles for maximum profit.