Université des Sciences et de la technologie Houari Boumediene Physique 3 (VOM), Examen de rattrapage, Samedi 08 Mai 2021, Durée 1 heure

Exercice 1 (10 points): Système libre et forcé à un degré de liberté Une tige homogène de masse M=2Kg et de longueur L=6a, pivote sans frottement autour d'un axe fixe passant par le point O distant de a=10 cm du centre de gravité G. l'extrémité de la tige est reliée au point A à deux bâtis, le bâtis B_1 par l'intermédiaire d'un ressort de constante de raideur K et le bâtis B_2 par un amortisseur de coefficient d'amortissement α (Figure 1). A l'équilibre la tige est en position verticale. On considèrera uniquement les oscillations de faible amplitude.

2- Lorsque la tige est écartée de sa position d'équilibre, puis lâchée sans vitesse initial, elle prend un mouvement oscillatoire amorti de pseudo période $T_a = 0.6$ s.

On constate au bout de 2 pseudos périodes que l'élongation des oscillations à diminuée de 70 % de l'élongation initiale. Calculer la valeur du coefficient d'amortissement α et en déduire la valeur de K.

3- Le bâtis B2 est maintenant soumis à un mouvement horizontal et harmonique : $s(t) = S_0 \sin \omega t$ (Figure 2). Etablir l'équation du mouvement.

Figure 1

Figure 2

4- Donner l'amplitude de l'angle d'écart θ de la tige en régime permanent. Puis pour $\omega = \omega_0$ donner l'expression de la réponse du système en fonction de K, S_0 , ω_0 , ω , a et δ

Exercice 2 (10 points) : Système libre et forcé à deux degrés de liberté

Le système représenté sur la Figure 3, est constitué par une masse 2m reliée à un bâti fixe B_1 par un ressort de raideur K. Un ressort de raideur K_0 , la relie à un cylindre plein et homogène, de masse M, de rayon R qui peut osciller sans frottement autour de son axe de révolution horizontal (O). Ce dernier est relié à un bâti fixe B_2 par un une masse m avec un ressort intermédiaire de constante de raideur K. on considérera les mouvements de faibles amplitudes.

- 1- En posant $m = \frac{M}{2}$, $X_2 = R\theta$. Etablir les équations du mouvement en X_1 et X_2 .
- 2- Calculer les pulsations propres ω_1 et ω_2 du système mécanique.
- 3- On remplace le ressort entre la masse m et le bâti B_2 par un amortisseur de coefficient de frottement visqueux α et On applique une force sinusoïdale horizontale (F(t)= F_0 sin ω t) sur le cylindre (Figure 4). Etablir les équations du mouvement en X_1 et X_2 .
- 4- On suppose que $\omega_0 = \sqrt{\frac{K}{M}}$ et $K_0 = K$; Trouver la solution de $\dot{X}_1(t)$ et $\dot{X}_2(t)$ en régime permanent pour : $\omega = \omega_0$.

Université des Sciences et de la technologie Houari Boumediene Physique 3 (VOM), Solution de l'Examen de Rattrapage, Samedi 08 Mai 2021

Exercice 1 (10 points) : Système libre à un degré de liberté

1-
$$T = \frac{1}{2}J_{(\Delta)}\dot{\theta}^2 = 2Ma^2\dot{\theta}^2$$
; $U = \frac{1}{2}(16a^2k + mga)\theta^2$ et $D = 4\alpha\dot{\theta}^2$. (3 points)

Le lagrangien $L = 2Ma^2\dot{\theta}^2 - \frac{1}{2}(16ka^2 + Mga)\theta^2$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \dot{\theta}} = -\frac{\partial D}{\partial \dot{\theta}} \qquad 4Ma^2\ddot{\theta} + 16\alpha a^2\dot{\theta} + (16Ka^2 + Mga)\theta = 0 \qquad \qquad \ddot{\theta} + 4\frac{\alpha}{M}\dot{\theta} + (\frac{4k}{M} + \frac{g}{4a})\theta = 0$$

2- D =
$$\frac{1}{2} \ln \frac{100}{30} = 0.6$$
 $\delta = \frac{2\alpha}{M} = \frac{D}{T_a} = 1 \text{ s}^{-1}$ $\alpha = \frac{DM}{2T_a} = 1 \text{ kg.s}^{-1}$ (3 points)

$$\omega_a^2 = \omega_0^2 - \delta^2$$
 $\omega_0^2 = \omega_a^2 + \delta^2 = (\frac{2\pi}{T_a})^2 + (\frac{D}{T_a})^2 = 10,5 \text{ rd.s}^{-1}$ $K = \frac{M}{4}(\omega_0^2 - \frac{g}{a}) = 42.62 \text{ N/m}$

$$3-D = \frac{1}{2}\alpha(4\alpha\dot{\theta} - \dot{s}(t))^2 \qquad \frac{d}{dt}\frac{\partial L}{\partial\dot{\theta}} - \frac{\partial L}{\partial\theta} = -\frac{\partial D}{\partial\dot{\theta}}$$
 (2 points)

$$4Ma^2\ddot{\theta} + 4\alpha a^2\dot{\theta} + (16Ka^2 + 4Mga)\theta = a\alpha S_0 \cos \omega t \qquad \qquad \ddot{\theta} + \frac{\alpha}{M}\dot{\theta} + (4\frac{k}{M} + \frac{g}{a})\theta = \frac{\alpha\omega S_0}{4Ma}sin\omega t$$

$$4-\theta_p(t) = \theta(\omega)\cos(\omega t + \emptyset) \qquad \theta(\omega) = \frac{\frac{\alpha\omega S_0}{4Ma}}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}} \qquad \theta_{max}(\omega) = \frac{\frac{\alpha\omega S_0}{4Ma}}{2\delta\sqrt{\omega_0^2 - \delta^2}} \qquad (2 \text{ points})$$

Exercice 2 (10 points): Système libre et forcé à deux degrés de liberté

1-
$$T = \frac{1}{2}(M)\dot{x}_1^2 + \frac{1}{2}j_0\dot{\theta}^2 + \frac{1}{2}m\dot{x}_2^2$$
; $j_0 = \frac{MR^2}{2}$ $T = \frac{1}{2}M(\dot{x}_1^2 + \dot{x}_2^2)$

$$U = \frac{1}{2}kx_1^2 + \frac{1}{2}k_0(x_1 - x_2)^2 + \frac{1}{2}kx_2^2$$

$$\begin{cases}
M\ddot{x}_1 + (K + K_o)x_1 - K_ox_2 = 0 \\
M\ddot{x}_2 + (K + K_o)x_2 - K_ox_1 = 0
\end{cases}$$
(3 points)

2-
$$\omega_1^2 = \frac{K}{M}$$
 $\omega_2^2 = \frac{K+2K_o}{M}$ (2 points)
 $3 D = \frac{1}{2} \alpha \dot{x}_2^2$

$$\begin{cases}
M\ddot{X}_1 + (K + K_o)X_1 - K_oX_2 = 0 \\
M\ddot{X}_2 + \alpha \dot{X}_1 + (K + K_o)X_2 - K_oX_1 = R F(t)
\end{cases}$$
(2 points)

4- Pour
$$\omega_o = \sqrt{\frac{K}{M}}$$
 et $K = K_o$; On trouve: $\ddot{X}_1 + 2\omega_0^2 X_1 - \omega_0^2 X_2 = 0$
 $\ddot{X}_2 + \frac{\alpha}{M} \dot{X}_2 + \omega_0^2 (X_2 - X_1) = \frac{R}{M} F(t)$

On pose que:
$$\dot{X}_r(t) = \overline{\dot{X}_r}e^{j\omega t}$$
 $\frac{d\dot{X}_r}{dt} = j\omega\dot{X}_r(t)$ $\int \dot{X}_r dt = \frac{-j\dot{X}_r(t)}{\omega}$ $r = 1,2$

Pour $\omega = \omega_o$; On trouve à partir de :

Première équation :
$$j\omega \dot{X}_1 + j\omega \dot{X}_2 = 0$$
 $\dot{X}_1 = \dot{X}_2$

Deuxième équation :
$$\dot{X}_1(t) = \dot{X}_2(t) = \frac{jRF_0}{-M\omega + j\alpha} e^{j\omega t}$$
 (3 points)