Gov 50: 7. Observational Studies

Matthew Blackwell

Harvard University

Roadmap

1. Observational Studies

1/ Observational Studies

Do newspaper endorsements matter?

- · Can newspaper endorsements change voters' minds?
- Why not compare vote choice of readers of different papers?
 - Problem: readers choose papers based on their previous beliefs.
 - Liberals \rightsquigarrow New York Times, conservatives \rightsquigarrow Wall Street Journal.
- Could do a lab experiment, but there are concerns over external validity
- Study for today: British newspapers switching their endorsements.
 - Some newspapers endorsing Tories in 1992 switched to Labour in 1997.
 - **Treated group**: readers of Tory \rightarrow Labour papers.
 - Control group: readers of papers who didn't switch.

Observational studies

- · Example of an observational study:
 - · We as researchers observe a naturally assigned treatment
 - Very common: often can't randomize for ethical/logistical reasons.
- Internal validity: are the causal assumption satisfied? Can we interpret
 this as a causal effect?
 - · RCTs usually have higher internal validity.
 - Observational studies less so, because pre-treatment variable may differ between treatment and control groups
- External validity: can the conclusions/estimated effects be generalized beyond this study?
 - RCTs weaker here because often very expensive to conduct on representative samples.
 - Observational studies often have larger/more representative samples that improve external validity.

Confounding

- **Confounder**: pre-treatment variable affecting treatment & the outcome.
 - Leftists (X) more likely to read newspapers switching to Labour (T).
 - Leftists (X) also more likely to vote for Labour (Y).
- Confounding bias in the estimated SATE due to these differences
 - $\overline{Y}_{control}$ not a good proxy for $Y_i(0)$ in treated group.
 - one type: **selection bias** from self-selection into treatment

Research designs

- · How can we find a good comparison group?
- · Depends on the data we have available.
- Three general types of observational study reseach designs:
 - Cross-sectional design: compare outcomes treated and control units at one point in time.
 - 2. **Before-and-after design**: compare outcomes before and after a unit has been treated, but need over-time data on treated group.
 - 3. **Difference-in-differences design**: use before/after information for the treated and control group; need over-time on treated & control group.

Cross-sectional design

- · Compare treatment and control groups after treatment happens.
 - Readers of switching papers vs readers of non-switching papers in 1997.
- Treatment & control groups assumed identical on average as in RCT.
 - · Sometimes called unconfoundedness or as-if randomized.
- · Cross-section comparison estimate:

$$\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{control}}^{\text{after}}$$

· Could there be confounders?

Statistical control

- Statistical control: adjust for confounders using statistical procedures.
 - · Can help to reduce confounding bias.
- · One type of statistical control: subclassification
 - · Compare treated and control groups within levels of a confounder.
 - Remaining effect can't be due to the confounder.

Before-and-after comparison

- Compare readers of party-switching newspapers before & after switch.
- · Advantage: all person-specific features held fixed
 - · comparing within a person over time.
- · Before-and-after estimate:

$$\overline{Y}_{treated}^{after} - \overline{Y}_{treated}^{before}$$

- Threat to inference: time-varying confounders
 - Time trend: Labour just did better overall in 1997 compared to 1992.

Differences in differences

- Key idea: use the before-and-after difference of control group to infer what would have happend to treatment group without treatment.
- · DiD estimate:

$$\underbrace{\left(\overline{Y}_{\text{treated}}^{\text{after}} - \overline{Y}_{\text{treated}}^{\text{before}}\right)}_{\text{trend in treated group}} - \underbrace{\left(\overline{Y}_{\text{control}}^{\text{after}} - \overline{Y}_{\text{control}}^{\text{before}}\right)}_{\text{trend in control group}}$$

- · Change in treated group above and beyond the change in control group.
- · Parallel time trend assumption
 - Changes in vote of readers of non-switching papers roughly the same as changes that readers of switching papers would have been if they read non-switching papers.
 - Threat to inference: non-parallel trends.

Summarizing approaches

1. Cross-sectional comparison

- · Compare treated units with control units after treatment
- · Assumption: treated and controls units are comparable
- Possible confounding

2. Before-and-after comparison

- Compare the same units before and after treatment
- Assumption: no time-varying confounding

3. Differences-in-differences

- · Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding.
- All rely on assumptions that can't be verified to handle confounding.
- RCTs handle confounding by design.

Causality understanding check

