

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 May 2001 (25.05.2001)

PCT

(10) International Publication Number
WO 01/35725 A1

(51) International Patent Classification⁷: **A01H 1/00, 5/00,**
C12N 5/04, 15/00, 15/82, C12P 21/02

CA 94611 (US). YU, **Guo-Liang** [CN/US]; 242 Gravatt
Drive, Berkeley, CA 94705 (US). **SAMAHY, Raymond**
[US/US]; 2224 Albert Lane, Capitola, CA 95010 (US).

(21) International Application Number: PCT/US00/31414

(74) Agent: **GUERRERO, Karen**; Mendel Biotechnology,
Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).

(22) International Filing Date:
14 November 2000 (14.11.2000)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:

60/166,228 17 November 1999 (17.11.1999) US
60/197,899 17 April 2000 (17.04.2000) US
60/227,439 22 August 2000 (22.08.2000) US

(71) Applicant (for all designated States except US):
MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375
Cabot Boulevard, Hayward, CA 94541 (US).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/35725 A1

(54) Title: **YIELD-RELATED GENES**

(57) Abstract: Recombinant polynucleotides and methods for modifying the phenotype of a plant are provided. In particular, the phenotype that is being modified is a plant's sugar-sensing characteristics.

YIELD-RELATED GENES**RELATED APPLICATION INFORMATION**

The present invention claims the benefit from US Provisional Patent Application Serial
5 Nos. 60/166,228 filed November 17, 1999 and 60/197,899 filed April 17, 2000 and "Plant Trait
Modification III" filed August 22, 2000.

FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

10

BACKGROUND OF THE INVENTION

Because sugars are important signaling molecules, the ability to control either the concentration of a signaling sugar or how the plant perceives or responds to a signaling sugar can be used to control plant development, physiology or metabolism. For example, the flux of sucrose (a disaccharide sugar used for systemically transporting carbon and energy in most plants) has been shown to affect gene expression and alter storage compound accumulation in seeds (Wobus et al (1999) *Biol. Chem.* 380:937-944). Manipulation of the sucrose signaling pathway in seeds may therefore cause seeds to have more protein, oil or carbohydrate, depending on the type of manipulation. Similarly, in tubers, sucrose is converted to starch which is used as an energy store.

It is thought that sugar signaling pathways may partially determine the levels of starch synthesized in the tubers (Zrenner et al. (1996) *Plant J.* 9:671-681). The manipulation of sugar signaling in tubers could lead to tubers with a higher starch content. Thus, manipulating the sugar signal transduction pathway may lead to altered gene expression to produce plants with desirable traits. In particular, manipulation of sugar signal transduction pathways could be used to alter source-sink relationships in seeds, tubers, roots and other storage organs leading to an increase in yield.

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways by modifying a plant's sugar-sensing characteristics and thereby, increasing the yield.

SUMMARY OF THE INVENTION

30 In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-35, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide

comprising a conservatively substituted variant of a polypeptide of (a); (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-35, or a complementary nucleotide sequence thereof; (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e); (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's sugar-sensing characteristics; (h) a nucleotide sequence having at least 34% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g); (j) a nucleotide sequence which encodes a polypeptide having at least 34% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; and (l) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-35. The recombinant polynucleotide may further comprise a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above described polynucleotides.

In a second aspect, the invention is an isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above.

In another aspect, the invention is a transgenic plant comprising one or more of the above described recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above described polypeptide. Further, the invention is a plant lacking a nucleotide sequence encoding a polypeptide described above. The plant may be a soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, or vegetable brassicas plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

5 In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

Furthermore, the invention relates to a method for producing a plant having improved sugar-sensing traits. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide 10 of the invention in a plant to produce a modified plant, and selecting the modified plant for modified sugar-sensing traits.

15 In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

20 25 In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

30 In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant sugar-sensing trait.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database; and, querying the sequence database with one or more target sequences corresponding to the one or

more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the
5 polynucleotides of the invention, or encoded polypeptides, to a modified plant sugar-sensing phenotype.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number (GID), whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.
10

Figure 2 provides a table of exemplary sequences that are homologous to other sequences provided in the Sequence Listing and that are derived from *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID),
15 identification of the homologous sequence, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 3 provides a table of exemplary sequences that are homologous to the sequences provided in Figures 1 and 2 and that are derived from plants other than *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), the unique GenBank sequence ID No. (NID), the probability that the comparison
20 was generated by chance (P-value), and the species from which the homologous gene was identified.

25

DETAILED DESCRIPTION

The present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants.

In particular, the polynucleotides or polypeptides are useful for modifying traits associated with a plant's sugar-sensing characteristics when the expression levels of the
30 polynucleotides or expression levels or activity levels of the polypeptides are altered. Sugars are central regulatory molecules that control aspects of physiology, metabolism and development. Therefore, the polynucleotides and polypeptides are useful for modifying the growth and germination rates of plants, photosynthesis, glyoxylate metabolism, respiration, starch and

sucrose synthesis and degradation, pathogen response, wounding response, cell cycle regulation, pigmentation, flowering and senescence of plants and for modifying sink-source relationships in seeds, tubers, roots and other storage organs leading to an increase in yield.

The polynucleotides of the invention encode plant transcription factors. The plant transcription factors are derived, e.g., from *Arabidopsis thaliana* and can belong, e.g., to one or more of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) *J. Biol. Chem.* 379:633-646); the MYB transcription factor family (Martin and Paz-Ares (1997) *Trends Genet.* 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) *J. Biol. Chem.* 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) *Mol. Gen. Genet.* 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) *Plant Cell* 4:1575-1588); the miscellaneous protein (MISC) family (Kim et al. (1997) *Plant J.* 11:1237-1251); the zinc finger protein (Z) family (Klug and Schwabe (1995) *FASEB J.* 9: 597-604); the homeobox (HB) protein family (Duboule (1994) *Guidebook to the Homeobox Genes*, Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) *Genes Dev.* 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) *Mol. Gen. Genet.* 1996 250:7-16); the NAM protein family; the IAA/AUX proteins (Rouse et al. (1998) *Science* 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) *Prot. Profile* 1:639-709); the DNA-binding protein (DBP) family (Tucker et al. (1994) *EMBO J.* 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) *FASEB J.* 8:192-200); the BPF-1 protein (Box P-binding factor) family (da Costa e Silva et al. (1993) *Plant J.* 4:125-135); and the golden protein (GLD) family (Hall et al. (1998) *Plant Cell* 10:925-936).

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e, expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like, or as substrates for cloning e.g., including digestion or ligation reactions, and for identifying exogenous or endogenous modulators of the transcription factors.

DEFINITIONS

A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotide residues, e.g., at least about 15 consecutive polymerized nucleotide residues, optionally at least about 30 consecutive nucleotides, at least about 50 consecutive 5 nucleotides. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide 10 optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, 15 e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic 20 acid.

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 25 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or 30 additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

The term "transgenic plant" refers to a plant that contains genetic material, not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeroplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation.

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

The phrase "ectopically expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

The term "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a DNA promoter region, an activation domain or a domain

for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a nucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least consecutive about 5 15 nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50, of any of the sequences provided herein.

The term "trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by available 10 biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield or pathogen tolerance.

"Trait modification" refers to a detectable difference in a characteristic in a plant 15 ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least 20 about a 70%, or at least about a 100%, or an even greater difference. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

Trait modifications of particular interest include those to seed (such as embryo 25 or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like; decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up 30 heavy metals; improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids),

glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition.

Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and

5 roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as
10 plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

POLYPEPTIDES AND POLYNUCLEOTIDES OF THE INVENTION

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides
15 encoding the polypeptides. These polypeptides and polynucleotides may be employed to modify a plant's sugar-sensing characteristics..

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized
20 to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening *Arabidopsis thaliana* and/or other plant cDNA libraries with probes corresponding to known
25 transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase
30 chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention were ectopically expressed in overexpressor or knockout plants and changes in the sugar-sensing characteristics of the plants were observed.

Therefore, the polynucleotides and polypeptides can be employed to improve the sugar-sensing characteristics of plants.

Making polynucleotides

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

A variety of methods exist for producing the polynucleotides of the invention. Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA ("Berger"); Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and Current Protocols in Molecular Biology, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger, Sambrook, and Ausubel, as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are

summarized in Cheng et al. (1994) *Nature* 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. *See, e.g., Ausubel,*

5 *Sambrook and Berger, all supra.*

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically ligated to produce a desired sequence, e.g., a polynucleotide encoding all or part of a

10 transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) *Tetrahedron Letters* 22:1859-69; and Matthes et al. (1984) *EMBO J.* 3:801-5. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered

15 from any of a number of commercial suppliers.

HOMOLOGOUS SEQUENCES

Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided in the Sequence Listing, derived from *Arabidopsis thaliana* or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn, potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, 25 pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and 30 peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus.

Transcription factors that are homologous to the listed sequences will typically share at least about 34% amino acid sequence identity. More closely related transcription factors can share at least about 50%, about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences.

5 Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the
10 listed sequences. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity.

15 Identifying Nucleic Acids by Hybridization

Polynucleotides homologous to the sequences illustrated in the Sequence Listing can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base 20 stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number), as described in more 25 detail in the references cited above.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined 30 ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For identification of less closely related homologues washes can

be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising the wash temperature and/or decreasing the concentration of SSC.

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the 5 coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique 10 coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radio active label, or the like.

15 Alternatively, transcription factor homologue polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise antibodies (monoclonal or 20 polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant 25 from which it is desired to clone additional transcription factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

SEQUENCE VARIATIONS

It will readily be appreciated by those of skill in the art, that any of a variety of 30 polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

5

Table 1

Amino acids			Codon					
Alanine	Ala	A	GCA	GCC	GCG	GCU		
Cysteine	Cys	C	TGC	TGT				
Aspartic acid	Asp	D	GAC	GAT				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	TTC	TTT				
Glycine	Gly	G	GGA	GGC	GGG	GGT		
Histidine	His	H	CAC	CAT				
Isoleucine	Ile	I	ATA	ATC	ATT			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	TTA	TTG	CTA	CTC	CTG	CTT
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	Pro	P	CCA	CCC	CCG	CCT		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGT
Serine	Ser	S	AGC	AGT	TCA	TCC	TCG	TCT
Threonine	Thr	T	ACA	ACC	ACG	ACT		
Valine	Val	V	GTA	GTC	GTG	GTT		
Tryptophan	Trp	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, 10 encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

In addition to silent variations, other conservative variations that alter one, or a 15 few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid 20

substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be
5 combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino
10 acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

15

20

25

30

15

Table 2

Residue	Conservative Substitutions
Ala	Ser
Arg	Lys
Asn	Gln; His
Asp	Glu
Gln	Asn
Cys	Ser
Glu	Asp
Gly	Pro
His	Asn; Gln
Ile	Leu, Val
Leu	Ile; Val
Lys	Arg; Gln
Met	Leu; Ile
Phe	Met; Leu; Tyr
Ser	Thr; Gly
Thr	Ser; Val
Trp	Tyr
Tyr	Trp; Phe
Val	Ile; Leu

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

FURTHER MODIFYING SEQUENCES OF THE INVENTION—MUTATION/ FORCED EVOLUTION

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence

5 Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences.

10 For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, e.g., by Stemmer (1994) Nature 370:389-391, and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

15 Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to 20 modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a 25 starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons 30 can also be modified to reflect host preference. For example, preferred stop codons for *S. cerevisiae* and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and *E. coli* prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

EXPRESSION AND MODIFICATION OF POLYPEPTIDES

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

Vectors, Promoters and Expression Systems

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

General texts which describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9: 957-962) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993) Bio/Technology 10: 667-674; Wan and Lemeaux (1994) Plant Physiol 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) Nature Biotech 14: 745-750).

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (*see, e.g.*, Odel et al. (1985) Nature 313:810); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977).

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, 5 vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known promoters have been characterized and can favorable be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 10 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the 2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) *Plant Mol Biol* 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), 15 promoters active in vascular tissue (Ringli and Keller (1998) *Plant Mol Biol* 37:977-988), flower-specific (Kaiser et al, (1995) *Plant Mol Biol* 28:231-243), pollen (Baerson et al. (1994) *Plant Mol Biol* 26:1947-1959), carpels (Ohl et al. (1990) *Plant Cell* 2:837-848), pollen and ovules (Baerson et al. (1993) *Plant Mol Biol* 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) *Plant Mol Biol* 39:979-990 or Baumann et al. (1999) *Plant Cell* 11:323- 20 334), cytokinin-inducible promoter (Guevara-Garcia (1998) *Plant Mol Biol* 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) *Plant Mol Biol* 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley et al. (1993) *Plant Mol Biol* 22: 13-23), light (e.g., the pea rbcS-3A 25 promoter, Kuhlemeier et al. (1989) *Plant Cell* 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) *Plant Cell* 3: 997); wounding (e.g., *wunI*, Siebertz et al. (1989) *Plant Cell* 1: 961); pathogens (such as the PR-1 promoter described in Buchel et al. (1999) *Plant Mol. Biol.* 40:387-396, and the PDF1.2 promoter described in Manners et al. (1998) *Plant Mol. Biol.* 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) *Plant Mol Biol* 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those 30 acting at senescence (An and Amazon (1995) *Science* 270: 1986-1988); or late seed development (Odell et al. (1994) *Plant Physiol* 106:447-458).

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant

genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

Specific initiation signals can aid in efficient translation of coding sequences.

5 These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be
10 separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

Expression Hosts

15 The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e, nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic
20 acids herein. The vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acids, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the
25 references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al.,
30 (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of *Agrobacterium*

tumefaciens or *A. rhizogenes* carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by *Agrobacterium tumefaciens*, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

5 The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cell expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants which include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

10 For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence 15 and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

20 Modified Amino Acids

Polypeptides of the invention may contain one or more modified amino acids.

The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

25 Non-limiting examples of a modified amino acid include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acids are replete throughout the 30 literature.

IDENTIFICATION OF ADDITIONAL FACTORS

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phenotype or trait of

interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired.

5 For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g., a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid

10 probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After identifying a promoter sequence, interactions between

15 the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify

20 molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any 25 method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions *in vivo* and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA 88, 9578-9582 and is commercially available 30 from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid

and the cDNA library are transformed into a strain of the yeast *Saccharomyces cerevisiae* that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

10 **IDENTIFICATION OF MODULATORS**

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) *Current Protocols in Molecular Biology*, John Wiley & Sons (1998). Such changes in the expression levels can be correlated with modified plant traits and thus identified molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

25 Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the 30 activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) 5 that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of 10 chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) *Nature Biotechnology*, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. *Science* (1996) 274:1520-1522 and U.S. Patent 5,593,853), 15 peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum *C&EN* Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

Preparation and screening of combinatorial or other libraries is well known to 20 those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, *Int. J. Pept. Prot. Res.* 37:487-493 (1991) and Houghton et al. *Nature* 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used.

In addition, as noted, compound screening equipment for high-throughput 25 screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of 30 modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

Indeed, entire high throughput screening systems are commercially available. These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s)

appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high
5 throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present
10 invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription
15 can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators which inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can
20 be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell, plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or
30 activity of a polynucleotide or polypeptide of the invention.

SUBSEQUENCES

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least

20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra- high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted *supra*.

5 Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization
10 protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain
15 reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, *supra*.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the
20 polypeptide sequence, or as probes for detecting a sequence of interest. A subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

PRODUCTION OF TRANSGENIC PLANTS

Modification of Traits

The polynucleotides of the invention are favorably employed to produce
25 transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the seed characteristics of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative
30 example of trait modification, improved sugar-sensing characteristics, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

Antisense and Cosuppression Approaches

In addition to expression of the nucleic acids of the invention as gene

replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997)

Antisense Technology: A Practical Approach IRL Press at Oxford University, Oxford, England.

10 In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to 15 modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be 20 transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various lengths can be utilized, preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and 25 improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

30 Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous

mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating its activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of *Agrobacterium tumefaciens*. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single transgene insertion event at the desired gene can be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific).

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) Nature 389:802).

A plant trait can also be modified by using the cre-lox system (for example, as described in US Pat. No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of

the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) *Nature* 390:698-701; Kakimoto et al. (1996) *Science* 274:982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

10 The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

15 Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic
20 plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledonous plants. Suitable protocols are available for *Leguminosae* (alfalfa, soybean, clover, etc.), *Umbelliferae* (carrot, celery, parsnip), *Cruciferae* (cabbage, radish, rapeseed, broccoli, etc.), *Cucurbitaceae* (melons and cucumber), *Gramineae* (wheat, corn, rice, barley, millet, etc.), *Solanaceae* (potato, tomato, tobacco, peppers, etc.), and various other crops. See
25 protocols described in Ammirato et al. (1984) *Handbook of Plant Cell Culture –Crop Species*. Macmillan Publ. Co. Shimamoto et al. (1989) *Nature* 338:274-276; Fromm et al. (1990) *Bio/Technology* 8:833-839; and Vasil et al. (1990) *Bio/Technology* 8:429-434.

30 Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated

transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and *Agrobacterium tumefaciens* mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

5 Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

10 Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

15 After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

INTEGRATED SYSTEMS—SEQUENCE IDENTITY

20 Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may be used to associate or link certain functional benefits, such improved sugar-sensing characteristics, with one or more identified sequence.

25 For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madison, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., *supra*.

A variety of methods of determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This latter approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an

expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (*see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915.*)

5 In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (*see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787*). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur
10 by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using
15 progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings
20 with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular phenotype or gene function. Typically, the system includes a user readable output element which displays an alignment produced by the alignment instruction set.

25 The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

30 Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is

provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

10

EXAMPLES

The following examples are intended to illustrate but not limit the present invention.

EXAMPLE I. FULL LENGTH GENE IDENTIFICATION AND CLONING

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the 15 *tblastn* sequence analysis program using default parameters and a P-value cutoff threshold of -4 or -5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription 20 factors.

Alternatively, *Arabidopsis thaliana* cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60° C) and labeled with ³²P 25 dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO₄ pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60 °C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60° C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA 30 library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the Marathon™ cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded

cDNA, blunting cDNA ends, followed by ligation of the Marathon™ Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

EXAMPLE II. CONSTRUCTION OF EXPRESSION VECTORS

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with SalI and NotI restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the *E. coli* strain DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma).

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

EXAMPLE III. TRANSFORMATION OF AGROBACTERIUM WITH THE EXPRESSION VECTOR

After the plasmid vector containing the gene was constructed, the vector was used to transform *Agrobacterium tumefaciens* cells expressing the gene products. The stock of *Agrobacterium tumefaciens* cells for transformation were made as described by Nagel et al. (1990) FEMS Microbiol Letts. 67: 325-328. *Agrobacterium* strain ABI was grown in 250 ml LB medium (Sigma) overnight at 28°C with shaking until an absorbance (A_{600}) of 0.5 – 1.0 was reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4° C. Cells were then

resuspended in 250 μ l chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 μ l chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 μ l and 750 μ l, respectively. Resuspended cells were then distributed into 40 μ l aliquots, quickly frozen in liquid nitrogen, and stored at -80°C.

5 *Agrobacterium* cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50 – 100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 10 8.0) was mixed with 40 μ l of *Agrobacterium* cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μ F and 200 μ F using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2 – 4 hours at 28°C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μ g/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28°C. 15 Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

EXAMPLE IV. TRANSFORMATION OF ARABIDOPSIS PLANTS WITH AGROBACTERIUM TUMEFACIENS WITH EXPRESSION VECTOR

After transformation of *Agrobacterium tumefaciens* with plasmid vectors containing the gene, single *Agrobacterium* colonies were identified, propagated, and used to transform *Arabidopsis* plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were inoculated with the colonies and grown at 28°C with shaking for 2 days until an absorbance (A_{600}) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1 25 X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μ M benzylamino purine (Sigma), 200 μ l/L Silwet L-77 (Lehle Seeds) until an absorbance (A_{600}) of 0.8 was reached.

Prior to transformation, *Arabidopsis thaliana* seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 μ E/m²/sec) at 22-23°C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

The pots were then immersed upside down in the mixture of *Agrobacterium* infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

EXAMPLE V. IDENTIFICATION OF ARABIDOPSIS PRIMARY TRANSFORMANTS

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into a solution containing 0.1% (v/v) Triton X-100 (Sigma) and 10 sterile H₂O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% 15 (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H₂O. The seeds were stored in the last wash water at 4° C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l 20 kanamycin). Seeds were germinated under continuous illumination (50-75 µE/m²/sec) at 22-23° C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T₁ generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

25 Primary transformants were crossed and progeny seeds (T₂) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

EXAMPLE VI. IDENTIFICATION OF ARABIDOPSIS PLANTS WITH TRANSCRIPTION FACTOR GENE KNOCKOUTS

The screening of insertion mutagenized *Arabidopsis* collections for null mutants in a known target gene was essentially as described in Krysan et al (1999) *Plant Cell* 11:2283-2290. Briefly, gene-specific primers, nested by 5-250 base pairs to each other, were designed from the 5' and 3' regions of a known target gene. Similarly, nested sets of primers were also created specific to each of the T-DNA or transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

15 EXAMPLE VII. IDENTIFICATION OF SUGAR-SENSING CHARACTERISTICS PHENOTYPE IN OVEREXPRESSOR OR GENE KNOCKOUT PLANTS

Experiments were performed to identify those transformants or knockouts that exhibited modified sugar-sensing. For such studies, seeds from transformants were germinated on media containing 5% glucose or 9.4% sucrose which normally partially restrict hypocotyl elongation. Plants with altered sugar sensing may have either longer or shorter hypocotyls than normal plants when grown on this media. Additionally, other plant traits may be varied such as root mass.

Table 3 shows the phenotypes observed for particular overexpressor or knockout plants and provides the SEQ ID No., the internal reference code (GID), whether a knockout or overexpressor plant was analyzed and the observed phenotype.

25

30

Table 3

SEQ ID No.	GID	Knockout (OE) or overexpressor KO)	Phenotype observed
1	G26	OE	Decreased germination and growth on glucose medium
3	G38	OE	Reduced germination on glucose medium
5	G43	OE	Decreased germination and growth on glucose medium
7	G207	OE	Decreased germination on glucose medium
9	G241	OE	Decreased germination and growth on glucose medium
11	G254	OE	Decreased germination and growth on glucose medium
13	G263	OE	Decreased root growth on sucrose medium
15	G308	OE	No germination on glucose medium
17	G536	OE	Decreased germination and growth on glucose medium
19	G680	OE	Reduced germination on glucose medium
21	G867	OE	Better seedling vigor on sucrose medium
23	G912	OE	Reduced cotyledon expansion in glucose
25	G996	OE	Reduced germination on glucose medium
27	G1068	OE	Reduced cotyledon expansion in glucose
29	G1337	OE	Decreased germination on sucrose medium

For a particular overexpressor that shows a less beneficial sugar-sensing characteristic, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows a less beneficial sugar-sensing characteristic, it may be more useful to select a plant with an increased expression of the particular transcription factor.

EXAMPLE VIII. IDENTIFICATION OF HOMOLOGOUS SEQUENCES

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) *J. Mol. Biol.* 215:403-410; and Altschul et al. (1997) *Nucl. Acid Res.* 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) *Proc. Natl. Acad. Sci. USA* 89: 10915-10919).

Identified *Arabidopsis* homologous sequences are provided in Figure 2 and included in the Sequence Listing. The percent sequence identity among these sequences is as low as 47% sequence identity. Additionally, the entire NCBI GenBank database was filtered for sequences from all plants except *Arabidopsis thaliana* by selecting all entries in the NCBI GenBank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (*Arabidopsis thaliana*). These sequences were compared to sequences representing genes of SEQ IDs Nos. 1-54 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs

Nos. 1-54, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6×10^{-40} . For up to ten species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 3.

5 In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 3 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 44%-79%; SEQ ID No. 3: 36%-72%; SEQ ID No. 5: 42%-67%; SEQ ID No. 7: 55%-82%; SEQ ID No. 9: 69%-84%;
10 SEQ ID No. 11: 57%-90%; SEQ ID No. 13: 48%-85%; SEQ ID No. 15: 38%-85%; SEQ ID No. 17: 77%-87%; SEQ ID No. 19: 42%-88%; SEQ ID No. 21: 54%-69%; SEQ ID No. 23: 34%-71%; SEQ ID No. 25: 55%-95%; SEQ ID No. 27: 54%-95%; SEQ ID No. 29: 37%-58%; SEQ ID No. 31: 42%-70%; SEQ ID No. 33: 46%-62%; SEQ ID No. 35: 64%-84%; SEQ ID No. 37: 57%-87%; SEQ ID No. 39: 40%-80%; SEQ ID No. 41: 56%-82%; SEQ ID No. 43: 64%-93%; SEQ ID
15 No. 45: 35%-86%; SEQ ID No. 47: 84%-91%; SEQ ID No. 49: 85%-91%; SEQ ID No. 51: 38%-89%; SEQ ID No. 53: 53%-75%; SEQ ID No. 55: 57%-72%; SEQ ID No. 57: 57%-69%; SEQ ID No. 59: 49%-86%; SEQ ID No. 61: 49%-78%; SEQ ID No. 63: 51%-86%; SEQ ID No. 65: 42%-72%; SEQ ID No. 67: 35%-69%; and SEQ ID No. 69: 36%-64%.

20 The polynucleotides and polypeptides in the Sequence Listing and the identified homologous sequences may be stored in a computer system and have associated or linked with the sequences a function, such as that the polynucleotides and polypeptides are useful for modifying the sugar-sensing characteristics of a plant.

25 All references, publications, patents and other documents herein are incorporated by reference in their entirety for all purposes. Although the invention has been described with reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention.

What is claimed is:

1. A transgenic plant with modified sugar-sensing characteristics, which plant comprises a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - 5 (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-35, or a complementary nucleotide sequence thereof;
 - (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
 - (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-35, or a complementary nucleotide sequence thereof;
 - 10 (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of 15 any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's sugar-sensing characteristics;
 - (h) a nucleotide sequence having at least 34% sequence identity to a nucleotide sequence of any of (a)-(g);
 - 20 (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 34% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35;
 - 25 (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; and
 - (l) a nucleotide sequence which encodes a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-35.
- 30 2. The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissue-active promoter operably linked to said nucleotide sequence.
3. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf,

banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, and vegetable brassicas.

5

4. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-35, or a complementary nucleotide sequence thereof;
- 10 (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
- (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-35, or a complementary nucleotide sequence thereof;
- (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
- 15 (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
- (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
- (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's sugar-sensing characteristics;
- 20 (h) a nucleotide sequence having at least 34% sequence identity to a nucleotide sequence of any of (a)-(g);
- (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
- 25 (j) a nucleotide sequence which encodes a polypeptide having at least 34% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35;
- (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; and
- 30 (l) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-35.

5. The isolated or recombinant polynucleotide of claim 4, further comprising a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence.

6. A cloning or expression vector comprising the isolated or recombinant polynucleotide of
5 claim 4.

7. A cell comprising the cloning or expression vector of claim 6.

8. A transgenic plant comprising the isolated or recombinant polynucleotide of claim 4.
10

9. A composition produced by one or more of:

- (a) incubating one or more polynucleotide of claim 4 with a nuclease;
- (b) incubating one or more polynucleotide of claim 4 with a restriction enzyme;
- (c) incubating one or more polynucleotide of claim 4 with a polymerase;
- 15 (d) incubating one or more polynucleotide of claim 4 with a polymerase and a primer;
- (e) incubating one or more polynucleotide of claim 4 with a cloning vector, or
- (f) incubating one or more polynucleotide of claim 4 with a cell.

10. A composition comprising two or more different polynucleotides of claim 4.
20

11. An isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide of claim 4.
25

12. A plant ectopically expressing an isolated polypeptide of claim 11.

13. A method for producing a plant having modified sugar-sensing characteristics, the method comprising altering the expression of the isolated or recombinant polynucleotide of claim 4 or the expression levels or activity of a polypeptide of claim 11 in a plant, thereby producing a modified plant, and selecting the modified plant for improved sugar-sensing characteristics
30 thereby providing the modified plant with a modified sugar-sensing characteristics.

14. The method of claim 13, wherein the polynucleotide is a polynucleotide of claim 4.

15. A method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of claim 4, the method comprising:

- (a) expressing a polypeptide encoded by the polynucleotide in a plant; and
- (b) identifying at least one factor that is modulated by or interacts with the polypeptide.

5

16. The method of claim 15, wherein the identifying is performed by detecting binding by the polypeptide to a promoter sequence, or detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system.

10 17. The method of claim 15, wherein the identifying is performed by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

18. A method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest, the method comprising:

- 15 (a) placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of claim 4; and,
- (b) monitoring one or more of:
 - (i) expression level of the polynucleotide in the plant;
 - (ii) expression level of the polypeptide in the plant;
 - 20 (iii) modulation of an activity of the polypeptide in the plant; or
 - (iv) modulation of an activity of the polynucleotide in the plant.

25 19. An integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of claim 4, or to a polypeptide encoded by the

20. The integrated system, computer or computer readable medium of claim 19, further comprising a link between said one or more sequence strings to a modified plant sugar-sensing characteristics phenotype.

30

21. A method of identifying a sequence similar or homologous to one or more polynucleotides of claim 4, or one or more polypeptides encoded by the polynucleotides, the method comprising:

- (a) providing a sequence database; and,

(b) querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

5

22. The method of claim 21, wherein the querying comprises aligning one or more of the target sequences with one or more of the one or more sequence members in the sequence database.

10 23. The method of claim 21, wherein the querying comprises identifying one or more of the one or more sequence members of the database that meet a user-selected identity criteria with one or more of the target sequences.

15 24. The method of claim 21, further comprising linking the one or more of the polynucleotides of claim 4, or encoded polypeptides, to a modified plant sugar-sensing characteristics phenotype.

25. A plant comprising altered expression levels of an isolated or recombinant polynucleotide of claim 4.

20

26. A plant comprising altered expression levels or the activity of an isolated or recombinant polypeptide of claim 11.

Figure 1

SEQ ID No.	GID	cDNA or protein	conserved domain
1	G26	cDNA	
2	G26	protein	67-134
3	G38	cDNA	
4	G38	protein	76-143
5	G43	cDNA	
6	G43	protein	104-172
7	G207	cDNA	
8	G207	protein	6-106
9	G241	cDNA	
10	G241	protein	14-114
11	G254	cDNA	
12	G254	protein	62-106
13	G263	cDNA	
14	G263	protein	15-105
15	G308	cDNA	
16	G308	protein	270-274
17	G536	cDNA	
18	G536	protein	226-233
19	G680	cDNA	
20	G680	protein	24-70
21	G867	cDNA	
22	G867	protein	59-124
23	G912	cDNA	
24	G912	protein	51-118
25	G996	cDNA	
26	G996	protein	14-114
27	G1068	cDNA	
28	G1068	protein	143-150
29	G1337	cDNA	
30	G1337	protein	9-75

Figure 2

SEQ ID No.	GID	homolog	cDNA or protein	conserved domain
31	G1141	homolog of G38	cDNA	
32	G1141	homolog of G38	protein	75-142
33	G46	homolog of G43	cDNA	
34	G46	homolog of G43	protein	107-175
35	G242	homolog of G207	cDNA	
36	G242	homolog of G207	protein	6-105
37	G227	homolog of G207	cDNA	
38	G227	homolog of G207	protein	13-112
39	G1307	homolog of G241	cDNA	
40	G1307	homolog of G241	protein	14-114
41	G1327	homolog of G241	cDNA	
42	G1327	homolog of G241	protein	14-116
43	G673	homolog of G254	cDNA	
44	G673	homolog of G254	protein	37-95
45	G307	homolog of G308	cDNA	
46	G307	homolog of G308	protein	323-339
47	G529	homolog of G536	cDNA	
48	G529	homolog of G536	protein	229-236
49	G531	homolog of G536	cDNA	
50	G531	homolog of G536	protein	227-234
51	G214	homolog of G680	cDNA	
52	G214	homolog of G680	protein	22-71
53	G1930	homolog of G867	cDNA	
54	G1930	homolog of G867	protein	59-124
55	G9	homolog of G867	cDNA	
56	G9	homolog of G867	protein	62-127
57	G993	homolog of G867	cDNA	
58	G993	homolog of G867	protein	69-134
59	G41	homolog of G912	cDNA	
60	G41	homolog of G912	protein	39-106
61	G40	homolog of G912	cDNA	
62	G40	homolog of G912	protein	45-112
63	G42	homolog of G912	cDNA	
64	G42	homolog of G912	protein	48-115
65	G1127	homolog of G1068	cDNA	
66	G1127	homolog of G1068	protein	103-110, 155-162
67	G2657	homolog of G1068	cDNA	
68	G2657	homolog of G1068	protein	116-129
69	G326	homolog of G1337	cDNA	
70	G326	homolog of G1337	protein	11-94, 354-400

Figure 3A

SEQ ID No.	GID	Genbank NID	P-value	Species
1	G26	4387560	6.00E-27	<i>Lycopersicon esculentum</i>
1	G26	9427282	1.60E-24	<i>Triticum aestivum</i>
1	G26	7206394	4.30E-24	<i>Medicago truncatula</i>
1	G26	7796858	5.40E-24	<i>Glycine max</i>
1	G26	7788764	6.40E-24	<i>Lotus japonicus</i>
1	G26	8098026	1.40E-20	<i>Hordeum vulgare</i>
1	G26	790362	1.80E-20	<i>Nicotiana tabacum</i>
1	G26	569065	2.60E-20	<i>Oryza sativa</i>
1	G26	3264766	3.60E-20	<i>Prunus armeniaca</i>
1	G26	7528275	6.20E-20	<i>Mesembryanthemum crystallinum</i>
3	G38	8346772	5.30E-47	<i>Catharanthus roseus</i>
3	G38	7205636	3.80E-45	<i>Medicago truncatula</i>
3	G38	7684799	2.80E-43	<i>Glycine max</i>
3	G38	9363798	4.80E-38	<i>Triticum aestivum</i>
3	G38	7777379	7.80E-38	<i>Lotus japonicus</i>
3	G38	8903111	1.10E-33	<i>Hordeum vulgare</i>
3	G38	568076	9.70E-28	<i>Oryza sativa</i>
3	G38	9434234	3.90E-19	<i>Lycopersicon esculentum</i>
3	G38	7324705	5.40E-16	<i>Lycopersicon pennellii</i>
3	G38	9298423	6.70E-16	<i>Sorghum bicolor</i>
5	G43	5760554	1.50E-29	<i>Glycine max</i>
5	G43	7778996	1.80E-29	<i>Lotus japonicus</i>
5	G43	5603736	5.00E-25	<i>Lycopersicon esculentum</i>
5	G43	6478844	1.00E-23	<i>Matricaria chamomilla</i>
5	G43	790361	1.60E-23	<i>Nicotiana tabacum</i>
5	G43	7528275	2.00E-23	<i>Mesembryanthemum crystallinum</i>
5	G43	9199136	2.30E-23	<i>Medicago truncatula</i>
5	G43	8980312	6.20E-23	<i>Catharanthus roseus</i>
5	G43	8809570	1.30E-22	<i>Nicotiana sylvestris</i>
5	G43	7627061	8.50E-22	<i>Gossypium arboreum</i>
7	G207	6529807	1.50E-63	<i>Lycopersicon esculentum</i>
7	G207	7564212	1.00E-57	<i>Medicago truncatula</i>
7	G207	7624453	1.60E-57	<i>Gossypium arboreum</i>
7	G207	5820271	6.50E-54	<i>Glycine max</i>
7	G207	7322467	3.40E-52	<i>Lycopersicon hirsutum</i>
7	G207	5045349	2.10E-46	<i>Gossypium hirsutum</i>
7	G207	8071527	2.60E-44	<i>Solanum tuberosum</i>
7	G207	7790004	3.70E-43	<i>Beta vulgaris</i>
7	G207	6325768	2.10E-40	<i>Lotus japonicus</i>
7	G207	286661	1.20E-36	<i>Oryza sativa</i>
9	G241	6552360	2.60E-54	<i>Nicotiana tabacum</i>
9	G241	6782745	2.20E-53	<i>Oryza sativa</i>
9	G241	8097368	5.70E-53	<i>Hordeum vulgare</i>
9	G241	20560	1.80E-52	<i>Petunia x hybrida</i>
9	G241	7217727	2.70E-52	<i>Sorghum bicolor</i>
9	G241	5891408	4.60E-52	<i>Lycopersicon esculentum</i>
9	G241	5139803	7.40E-52	<i>Glycine max</i>
9	G241	7560175	4.10E-50	<i>Medicago truncatula</i>
9	G241	8381332	1.40E-44	<i>Gossypium arboreum</i>
9	G241	4886263	1.20E-42	<i>Antirrhinum majus</i>
11	G254	5847380	2.00E-41	<i>Zea mays</i>
11	G254	7614730	2.90E-41	<i>Lotus japonicus</i>

Figure 3B

SEQ ID No.	GID	Genbank NID	P-value	Species
11	G254	9204594	4.80E-41	Glycine max
11	G254	9193761	6.70E-37	Medicago truncatula
11	G254	6907081	1.40E-35	Oryza sativa
11	G254	6976741	4.30E-33	Lycopersicon esculentum
11	G254	8903196	4.20E-31	Hordeum vulgare
11	G254	9424828	3.50E-25	Triticum aestivum
11	G254	6858452	3.40E-23	Sorghum bicolor
11	G254	3003284	0.00068	Mesembryanthemum crystallinum
13	G263	5821135	1.70E-73	Nicotiana tabacum
13	G263	19487	7.90E-69	Lycopersicon peruvianum
13	G263	662929	5.30E-65	Glycine max
13	G263	7766273	9.20E-49	Medicago truncatula
13	G263	7720908	3.60E-42	Lotus japonicus
13	G263	9303509	2.40E-37	Sorghum bicolor
13	G263	3326480	2.20E-36	Gossypium hirsutum
13	G263	8107182	5.10E-35	Lycopersicon esculentum
13	G263	8381330	7.00E-34	Gossypium arboreum
13	G263	4528238	6.60E-29	Citrus unshiu
15	G308	5640156	3.50E-162	Triticum aestivum
15	G308	5640154	2.30E-134	Zea mays
15	G308	6970471	4.20E-120	Oryza sativa
15	G308	7718432	8.70E-80	Medicago truncatula
15	G308	8330344	3.90E-76	Mesembryanthemum crystallinum
15	G308	5047560	1.50E-71	Gossypium hirsutum
15	G308	7588689	1.90E-68	Glycine max
15	G308	7623983	2.90E-62	Gossypium arboreum
15	G308	7780253	1.10E-57	Lotus japonicus
15	G308	6733213	3.70E-48	Lycopersicon esculentum
17	G536	2689478	9.50E-69	Nicotiana tabacum
17	G536	1773327	4.60E-68	Mesembryanthemum crystallinum
17	G536	2921511	5.30E-68	Fritillaria agrestis
17	G536	1575724	7.30E-68	Glycine max
17	G536	8515887	9.20E-68	Populus alba x Populus tremula
17	G536	6179980	1.70E-67	Lilium longiflorum
17	G536	1519250	8.60E-67	Oryza sativa
17	G536	1321992	4.30E-66	Solanum tuberosum
17	G536	7535681	9.50E-66	Sorghum bicolor
17	G536	555973	1.30E-65	Pisum sativum
19	G680	9258166	5.70E-36	Glycine max
19	G680	9255178	3.00E-29	Zea mays
19	G680	5274804	1.20E-27	Lycopersicon esculentum
19	G680	4974199	3.00E-22	Oryza sativa
19	G680	3325786	2.10E-21	Gossypium hirsutum
19	G680	9119112	1.30E-18	Medicago truncatula
19	G680	7660673	3.20E-17	Sorghum bicolor
19	G680	7243970	6.10E-16	Mentha x piperita
19	G680	3858093	2.10E-10	Populus balsamifera subsp. trichocarpa
19	G680	8845091	3.70E-10	Triticum aestivum
21	G867	7643366	1.80E-57	Medicago truncatula
21	G867	8329389	9.00E-51	Mesembryanthemum crystallinum
21	G867	8669779	2.20E-46	Glycine max
21	G867	9430646	5.70E-40	Lycopersicon esculentum
21	G867	8902194	1.20E-34	Hordeum vulgare

Figure 3C

SEQ ID No.	GID	Genbank NID	P-value	Species
21	G867	7722547	1.00E-33	<i>Lotus japonicus</i>
21	G867	7324245	3.10E-32	<i>Lycopersicon pennellii</i>
21	G867	8749037	1.10E-31	<i>Citrus x paradisi</i>
21	G867	6069643	2.50E-29	<i>Oryza sativa</i>
21	G867	9302986	1.40E-28	<i>Sorghum bicolor</i>
23	G912	5616085	8.60E-71	<i>Brassica napus</i>
23	G912	7410271	5.70E-46	<i>Lycopersicon esculentum</i>
23	G912	7719106	5.20E-43	<i>Medicago truncatula</i>
23	G912	6667103	2.30E-38	<i>Glycine max</i>
23	G912	6983854	1.30E-34	<i>Oryza sativa</i>
23	G912	7324530	1.00E-32	<i>Lycopersicon pennellii</i>
23	G912	8904571	9.20E-29	<i>Triticum aestivum</i>
23	G912	7740143	1.90E-28	<i>Lotus japonicus</i>
23	G912	7644788	2.10E-19	<i>Pinus taeda</i>
23	G912	5050536	9.20E-18	<i>Gossypium hirsutum</i>
25	G996	7566043	2.30E-65	<i>Medicago truncatula</i>
25	G996	7535969	1.00E-61	<i>Sorghum bicolor</i>
25	G996	7339127	1.80E-59	<i>Lycopersicon esculentum</i>
25	G996	6341619	5.60E-59	<i>Glycine max</i>
25	G996	8381332	7.20E-43	<i>Gossypium arboreum</i>
25	G996	5049507	5.00E-41	<i>Gossypium hirsutum</i>
25	G996	6850206	2.10E-40	<i>Oryza sativa</i>
25	G996	7776223	2.20E-40	<i>Lotus japonicus</i>
25	G996	19058	5.30E-39	<i>Hordeum vulgare</i>
25	G996	4680189	6.00E-39	<i>Oryza sativa</i> subsp. <i>indica</i>
27	G1068	7333976	1.70E-27	<i>Lycopersicon esculentum</i>
27	G1068	4405544	3.20E-27	<i>Glycine max</i>
27	G1068	7009437	5.50E-23	<i>Zea mays</i>
27	G1068	7536402	5.80E-23	<i>Sorghum bicolor</i>
27	G1068	3107210	7.20E-21	<i>Oryza sativa</i>
27	G1068	3819186	5.80E-18	<i>Hordeum vulgare</i>
27	G1068	7624850	8.40E-18	<i>Gossypium arboreum</i>
27	G1068	9411568	1.90E-13	<i>Triticum aestivum</i>
27	G1068	5419913	3.50E-13	<i>Lactuca sativa</i>
27	G1068	7721066	8.90E-13	<i>Lotus japonicus</i>
29	G1337	7410432	2.60E-41	<i>Lycopersicon esculentum</i>
29	G1337	3618319	1.10E-32	<i>Oryza sativa</i>
29	G1337	7571599	1.00E-28	<i>Medicago truncatula</i>
29	G1337	7685955	5.10E-27	<i>Glycine max</i>
29	G1337	7323708	2.60E-25	<i>Lycopersicon hirsutum</i>
29	G1337	4091805	1.00E-18	<i>Malus domestica</i>
29	G1337	6917805	4.80E-18	<i>Lycopersicon pennellii</i>
29	G1337	3341722	1.60E-17	<i>Raphanus sativus</i>
29	G1337	2303680	4.50E-17	<i>Brassica napus</i>
29	G1337	4557092	9.10E-17	<i>Pinus radiata</i>
31	G1141	8346772	9.90E-46	<i>Catharanthus roseus</i>
31	G1141	7205636	3.60E-40	<i>Medicago truncatula</i>
31	G1141	7590901	5.40E-40	<i>Glycine max</i>
31	G1141	7777379	6.10E-38	<i>Lotus japonicus</i>
31	G1141	9363798	8.00E-36	<i>Triticum aestivum</i>
31	G1141	8903111	6.10E-31	<i>Hordeum vulgare</i>
31	G1141	568076	1.00E-23	<i>Oryza sativa</i>
31	G1141	6527472	1.10E-17	<i>Lycopersicon esculentum</i>

Figure 3D

SEQ ID No.	GID	Genbank NID	P-value	Species
31	G1141	7324705	1.70E-16	<i>Lycopersicon pennellii</i>
31	G1141	7624302	1.80E-16	<i>Gossypium arboreum</i>
33	G46	5760554	4.00E-29	<i>Glycine max</i>
33	G46	7778996	4.20E-28	<i>Lotus japonicus</i>
33	G46	5050094	1.70E-26	<i>Gossypium hirsutum</i>
33	G46	790361	3.60E-26	<i>Nicotiana tabacum</i>
33	G46	5603736	7.30E-24	<i>Lycopersicon esculentum</i>
33	G46	7238955	1.20E-23	<i>Medicago truncatula</i>
33	G46	8809574	4.10E-23	<i>Nicotiana sylvestris</i>
33	G46	7528275	1.40E-22	<i>Mesembryanthemum crystallinum</i>
33	G46	8980312	1.60E-22	<i>Catharanthus roseus</i>
33	G46	6478844	2.40E-22	<i>Matricaria chamomilla</i>
35	G242	6529807	1.90E-70	<i>Lycopersicon esculentum</i>
35	G242	7624453	3.00E-63	<i>Gossypium arboreum</i>
35	G242	7564212	2.30E-62	<i>Medicago truncatula</i>
35	G242	5820271	3.70E-60	<i>Glycine max</i>
35	G242	7322467	1.10E-55	<i>Lycopersicon hirsutum</i>
35	G242	5045349	1.80E-51	<i>Gossypium hirsutum</i>
35	G242	8071527	6.80E-46	<i>Solanum tuberosum</i>
35	G242	7790004	7.40E-45	<i>Beta vulgaris</i>
35	G242	7746594	4.70E-41	<i>Lotus japonicus</i>
35	G242	286661	3.40E-39	<i>Oryza sativa</i>
37	G227	6529807	4.80E-67	<i>Lycopersicon esculentum</i>
37	G227	7624453	2.50E-66	<i>Gossypium arboreum</i>
37	G227	5045349	7.90E-65	<i>Gossypium hirsutum</i>
37	G227	7322467	8.00E-60	<i>Lycopersicon hirsutum</i>
37	G227	5820271	2.60E-59	<i>Glycine max</i>
37	G227	9199531	4.70E-57	<i>Medicago truncatula</i>
37	G227	8071527	9.30E-49	<i>Solanum tuberosum</i>
37	G227	7790004	8.30E-46	<i>Beta vulgaris</i>
37	G227	7746594	1.70E-45	<i>Lotus japonicus</i>
37	G227	286661	9.20E-37	<i>Oryza sativa</i>
39	G1307	8172759	2.90E-56	<i>Medicago truncatula</i>
39	G1307	5139807	1.60E-54	<i>Glycine max</i>
39	G1307	1370139	2.20E-47	<i>Lycopersicon esculentum</i>
39	G1307	1946264	6.20E-45	<i>Oryza sativa</i>
39	G1307	6552360	6.50E-45	<i>Nicotiana tabacum</i>
39	G1307	7500978	4.60E-39	<i>Gossypium arboreum</i>
39	G1307	7217727	8.70E-36	<i>Sorghum bicolor</i>
39	G1307	7746498	9.40E-34	<i>Lotus japonicus</i>
39	G1307	517491	9.90E-34	<i>Zea mays</i>
39	G1307	8097368	1.70E-33	<i>Hordeum vulgare</i>
41	G1327	5139803	1.10E-44	<i>Glycine max</i>
41	G1327	7560175	1.20E-44	<i>Medicago truncatula</i>
41	G1327	6782745	6.60E-44	<i>Oryza sativa</i>
41	G1327	5891408	2.30E-43	<i>Lycopersicon esculentum</i>
41	G1327	7217727	3.10E-43	<i>Sorghum bicolor</i>
41	G1327	20560	2.40E-41	<i>Petunia x hybrida</i>
41	G1327	6552360	5.40E-40	<i>Nicotiana tabacum</i>
41	G1327	8097368	9.80E-40	<i>Hordeum vulgare</i>
41	G1327	8381332	5.20E-39	<i>Gossypium arboreum</i>
41	G1327	9252441	1.60E-38	<i>Solanum tuberosum</i>
43	G673	6062169	4.90E-36	<i>Lycopersicon esculentum</i>

Figure 3E

SEQ ID No.	GID	Genbank NID	P-value	Species
43	G673	6907081	2.50E-35	Oryza sativa
43	G673	9205170	2.60E-28	Glycine max
43	G673	5847380	7.10E-26	Zea mays
43	G673	7614730	7.70E-26	Lotus japonicus
43	G673	9193761	3.40E-25	Medicago truncatula
43	G673	9424828	1.70E-24	Triticum aestivum
43	G673	8903196	3.40E-23	Hordeum vulgare
43	G673	6858452	2.80E-14	Sorghum bicolor
43	G673	3003284	1.50E-09	Mesembryanthemum crystallinum
45	G307	5640156	3.80E-151	Triticum aestivum
45	G307	5640154	1.00E-101	Zea mays
45	G307	6970471	1.70E-97	Oryza sativa
45	G307	7718432	4.00E-82	Medicago truncatula
45	G307	8330344	7.90E-78	Mesembryanthemum crystallinum
45	G307	5047560	1.00E-72	Gossypium hirsutum
45	G307	7588689	2.70E-69	Glycine max
45	G307	7623983	2.20E-64	Gossypium arboreum
45	G307	7780253	9.30E-59	Lotus japonicus
45	G307	6733213	1.90E-51	Lycopersicon esculentum
47	G529	1773327	8.80E-117	Mesembryanthemum crystallinum
47	G529	8515887	1.20E-115	Populus alba x Populus tremula
47	G529	6179980	2.30E-115	Lilium longiflorum
47	G529	2921511	2.40E-115	Fritillaria agrestis
47	G529	1575724	3.30E-115	Glycine max
47	G529	466335	2.80E-112	Lycopersicon esculentum
47	G529	1519250	4.10E-112	Oryza sativa
47	G529	2689478	2.20E-110	Nicotiana tabacum
47	G529	2266661	5.10E-109	Hordeum vulgare
47	G529	1321992	1.20E-108	Solanum tuberosum
49	G531	2921511	7.40E-109	Fritillaria agrestis
49	G531	6179980	2.30E-108	Lilium longiflorum
49	G531	1773327	4.50E-108	Mesembryanthemum crystallinum
49	G531	8515887	8.90E-108	Populus alba x Populus tremula
49	G531	2689478	2.10E-107	Nicotiana tabacum
49	G531	1575724	4.90E-107	Glycine max
49	G531	1519250	1.70E-106	Oryza sativa
49	G531	466335	1.20E-104	Lycopersicon esculentum
49	G531	1321992	1.10E-103	Solanum tuberosum
49	G531	2266661	1.60E-103	Hordeum vulgare
51	G214	8170933	8.80E-35	Lycopersicon esculentum
51	G214	9205339	1.20E-27	Glycine max
51	G214	8577344	1.80E-23	Zea mays
51	G214	9119112	2.40E-18	Medicago truncatula
51	G214	7660673	4.80E-15	Sorghum bicolor
51	G214	8213273	4.40E-14	Oryza sativa
51	G214	3325786	4.70E-10	Gossypium hirsutum
51	G214	9435251	1.50E-09	Hordeum vulgare
51	G214	9411569	6.80E-09	Triticum aestivum
51	G214	7614730	3.00E-07	Lotus japonicus
53	G1930	7643366	7.70E-57	Medicago truncatula
53	G1930	8329389	3.60E-47	Mesembryanthemum crystallinum
53	G1930	6069592	8.60E-47	Glycine max
53	G1930	9430646	6.60E-39	Lycopersicon esculentum

Figure 3F

SEQ ID No.	GID	Genbank NID	P-value	Species
53	G1930	7722547	3.80E-34	<i>Lotus japonicus</i>
53	G1930	7324245	9.20E-33	<i>Lycopersicon pennellii</i>
53	G1930	8902194	2.40E-31	<i>Hordeum vulgare</i>
53	G1930	9247126	5.90E-28	<i>Oryza sativa</i>
53	G1930	8749037	2.40E-27	<i>Citrus x paradisi</i>
53	G1930	9302986	6.40E-26	<i>Sorghum bicolor</i>
55	G9	7643366	5.40E-56	<i>Medicago truncatula</i>
55	G9	8669779	3.30E-50	<i>Glycine max</i>
55	G9	8329389	1.20E-48	<i>Mesembryanthemum crystallinum</i>
55	G9	7412012	1.20E-41	<i>Lycopersicon esculentum</i>
55	G9	8902194	6.60E-36	<i>Hordeum vulgare</i>
55	G9	7722547	2.10E-33	<i>Lotus japonicus</i>
55	G9	7324245	1.90E-32	<i>Lycopersicon pennellii</i>
55	G9	8749037	1.10E-31	<i>Citrus x paradisi</i>
55	G9	9247126	1.20E-29	<i>Oryza sativa</i>
55	G9	9302986	7.00E-29	<i>Sorghum bicolor</i>
57	G993	7643366	9.50E-59	<i>Medicago truncatula</i>
57	G993	8329389	8.10E-50	<i>Mesembryanthemum crystallinum</i>
57	G993	8669779	4.80E-49	<i>Glycine max</i>
57	G993	4384549	4.20E-40	<i>Lycopersicon esculentum</i>
57	G993	8902194	2.00E-34	<i>Hordeum vulgare</i>
57	G993	7719409	1.00E-32	<i>Lotus japonicus</i>
57	G993	8749037	4.10E-32	<i>Citrus x paradisi</i>
57	G993	9247126	1.00E-30	<i>Oryza sativa</i>
57	G993	7324245	1.20E-30	<i>Lycopersicon pennellii</i>
57	G993	9302986	9.10E-27	<i>Sorghum bicolor</i>
59	G41	5616085	6.30E-84	<i>Brassica napus</i>
59	G41	5603726	2.60E-50	<i>Lycopersicon esculentum</i>
59	G41	7719106	2.00E-43	<i>Medicago truncatula</i>
59	G41	6667103	1.60E-37	<i>Glycine max</i>
59	G41	6983854	1.80E-33	<i>Oryza sativa</i>
59	G41	7324530	9.50E-30	<i>Lycopersicon pennellii</i>
59	G41	8904571	2.70E-29	<i>Triticum aestivum</i>
59	G41	7740143	2.50E-26	<i>Lotus japonicus</i>
59	G41	7644788	3.40E-19	<i>Pinus taeda</i>
59	G41	7625186	6.50E-19	<i>Gossypium arboreum</i>
61	G40	5616085	7.70E-86	<i>Brassica napus</i>
61	G40	5603726	1.60E-50	<i>Lycopersicon esculentum</i>
61	G40	7719106	4.70E-42	<i>Medicago truncatula</i>
61	G40	6667103	1.10E-36	<i>Glycine max</i>
61	G40	6983854	4.70E-35	<i>Oryza sativa</i>
61	G40	8904571	3.50E-29	<i>Triticum aestivum</i>
61	G40	7324530	5.20E-29	<i>Lycopersicon pennellii</i>
61	G40	7740143	1.40E-25	<i>Lotus japonicus</i>
61	G40	7644788	1.80E-20	<i>Pinus taeda</i>
61	G40	7625186	5.70E-20	<i>Gossypium arboreum</i>
63	G42	5616085	8.60E-87	<i>Brassica napus</i>
63	G42	5603726	2.20E-53	<i>Lycopersicon esculentum</i>
63	G42	7719106	5.20E-43	<i>Medicago truncatula</i>
63	G42	6667103	6.00E-38	<i>Glycine max</i>
63	G42	6983854	1.10E-35	<i>Oryza sativa</i>
63	G42	8904571	5.50E-31	<i>Triticum aestivum</i>

Figure 3G

SEQ ID No.	GID	Genbank NID	P-value	Species
63	G42	7324530	8.30E-31	<i>Lycopersicon pennellii</i>
63	G42	7740143	1.90E-26	<i>Lotus japonicus</i>
63	G42	7644788	2.40E-20	<i>Pinus taeda</i>
63	G42	7625186	1.50E-19	<i>Gossypium arboreum</i>
65	G1127	6913305	2.60E-29	<i>Glycine max</i>
65	G1127	9280727	5.40E-27	<i>Oryza sativa</i>
65	G1127	2213533	7.00E-24	<i>Pisum sativum</i>
65	G1127	7009437	4.70E-23	<i>Zea mays</i>
65	G1127	7536402	5.00E-23	<i>Sorghum bicolor</i>
65	G1127	7333976	1.20E-20	<i>Lycopersicon esculentum</i>
65	G1127	3819186	6.20E-16	<i>Hordeum vulgare</i>
65	G1127	7624850	1.60E-15	<i>Gossypium arboreum</i>
65	G1127	4165182	2.80E-12	<i>Antirrhinum majus</i>
65	G1127	7765939	5.10E-09	<i>Medicago truncatula</i>
67	G2657	7238733	2.70E-66	<i>Medicago truncatula</i>
67	G2657	6846994	7.60E-55	<i>Glycine max</i>
67	G2657	7615218	1.10E-43	<i>Lotus japonicus</i>
67	G2657	9445090	4.00E-41	<i>Triticum aestivum</i>
67	G2657	7333102	3.20E-38	<i>Lycopersicon esculentum</i>
67	G2657	9252370	1.90E-27	<i>Solanum tuberosum</i>
67	G2657	5042437	5.90E-21	<i>Oryza sativa</i>
67	G2657	7536402	8.60E-20	<i>Sorghum bicolor</i>
67	G2657	7624850	2.20E-18	<i>Gossypium arboreum</i>
67	G2657	7009437	1.80E-16	<i>Zea mays</i>
69	G326	7410432	1.10E-37	<i>Lycopersicon esculentum</i>
69	G326	3618319	2.90E-32	<i>Oryza sativa</i>
69	G326	7571599	4.90E-30	<i>Medicago truncatula</i>
69	G326	7232283	6.30E-28	<i>Glycine max</i>
69	G326	7323708	6.00E-27	<i>Lycopersicon hirsutum</i>
69	G326	4091805	2.30E-19	<i>Malus domestica</i>
69	G326	6917805	6.50E-19	<i>Lycopersicon pennellii</i>
69	G326	3341722	2.50E-18	<i>Raphanus sativus</i>
69	G326	4557092	7.50E-18	<i>Pinus radiata</i>
69	G326	2303680	4.70E-17	<i>Brassica napus</i>

mbi19 Sequence Listing.ST25

Pro Glu His Ile Arg Val Asn Pro Thr Gln Leu Tyr Pro Ser Pro Ala			
130	135	140	
act tcc cat gat cgc att atc gtg aca cca cct agt cca cct cca cca		543	
Thr Ser His Asp Arg Ile Ile Val Thr Pro Pro Ser Pro Pro Pro Pro			
145	150	155	
att gct cct gac ata ctt ctt gat caa tat ggc cac ttt caa tct cga		591	
Ile Ala Pro Asp Ile Leu Leu Asp Gln Tyr Gly His Phe Gln Ser Arg			
160	165	170	
agt agt gat tcc agt gcc aac ttg tcc atg aat atg ctg tct tct tcg		639	
Ser Ser Asp Ser Ser Ala Asn Leu Ser Met Asn Met Leu Ser Ser Ser			
175	180	185	
tct tca tct ttg aat cat caa ggg cta aga cca aat ttg gag gat ggt		687	
Ser Ser Ser Leu Asn His Gln Gly Leu Arg Pro Asn Leu Glu Asp Gly			
190	195	200	205
gaa aac gtg aag aac att agt atc cac aaa cga cga aaa taa		729	
Glu Asn Val Lys Asn Ile Ser Ile His Lys Arg Arg Lys			
210	215		
catgttaatg gcataaaatat ctcttcgtcc aagttatcaa acgcattgac .ctccggcttt		789	
gatcatttta ggcgcttaat ctctttacga cttcatttttg gtagtctta aagagtctat		849	
ggagtgaggatt tagcttagaa tcagggctta tggatgaaaa atatataaaat tttgaacatg		909	
actatgcaga aatgggatga agactactta gcttggaaaa cgtcctgata ggtcatgacg		969	
actatatcca cagaagatga ccgacggaga caacaacatg cctcacctga tcgaccgatc		1029	
aaatgagata atgtgttgc acggaccggc ggatcaggtt gggtcgagta tatca		1084	

<210> 2
<211> 218
<212> PRT
<213> *Arabidopsis thaliana*
<400> 2

Met His Ser Gly Lys Arg Pro Leu Ser Pro Glu Ser Met Ala Gly Asn
1 5 10 15

Arg Glu Glu Lys Lys Glu Leu Cys Cys Cys Ser Thr Leu Ser Glu Ser
20 25 30

Asp Val Ser Asp Phe Val Ser Glu Leu Thr Gly Gln Pro Ile Pro Ser
35 40 45

Ser Ile Asp Asp Gln Ser Ser Ser Leu Thr Leu Gln Glu Lys Ser Asn
50 55 60

Ser Arg Gln Arg Asn Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys
65 70 75 80

Trp Ala Ala Glu Ile Arg Asp Pro Asn Lys Ala Ala Arg Val Trp Leu
85 90 95

Gly Thr Phe Asp Thr Ala Glu Glu Ala Ala Leu Ala Tyr Asp Lys Ala
100 105 110

Ala Phe Glu Phe Arg Gly His Lys Ala Lys Leu Asn Phe Pro Glu His
115 120 125

mbi19 Sequence Listing.ST25
 Ile Arg Val Asn Pro Thr Gln Leu Tyr Pro Ser Pro Ala Thr Ser His
 130 135 140

Asp Arg Ile Ile Val Thr Pro Pro Ser Pro Pro Pro Pro Ile Ala Pro
 145 150 155 160

Asp Ile Leu Leu Asp Gln Tyr Gly His Phe Gln Ser Arg Ser Ser Asp
 165 170 175

Ser Ser Ala Asn Leu Ser Met Asn Met Leu Ser Ser Ser Ser Ser Ser
 180 185 190

Leu Asn His Gln Gly Leu Arg Pro Asn Leu Glu Asp Gly Glu Asn Val
 195 200 205

Lys Asn Ile Ser Ile His Lys Arg Arg Lys
 210 215

<210> 3
<211> 1440
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (149)..(1156)
<223> G38

<400> 3	
gaggaaaaact cgaaaaagct acacacaaga agaagaagaa aagatacgag caagaagact	60
aaacacgaaa gcgatttatac aactcgaagg aagagacttt gattttcaaa tttcgcccc	120
tatagattgt gttgtttctg ggaaggag atg gca gtt tat gat cag agt gga Met Ala Val Tyr Asp Gln Ser Gly 1 5	172
gat aga aac aga aca caa att gat aca tcg agg aaa agg aaa tct aga Asp Arg Asn Arg Thr Gln Ile Asp Thr Ser Arg Lys Arg Lys Ser Arg 10 15 20	220
agt aga ggt gac ggt act act gtg gct gag aga tta aag aga tgg aaa Ser Arg Gly Asp Gly Thr Thr Val Ala Glu Arg Leu Lys Arg Trp Lys 25 30 35 40	268
gag tat aac gag acc gta gaa gaa gtt tct acc aag aag agg aaa gta Glu Tyr Asn Glu Thr Val Glu Val Ser Thr Lys Lys Arg Lys Val 45 50 55	316
cct gcg aaa ggg tcg aag aag ggt tgt atg aaa ggt aaa gga gga cca Pro Ala Lys Gly Ser Lys Lys Gly Cys Met Lys Gly Lys Gly Pro 60 65 70	364
gag aat agc cga ttt agt ttc aga gga gtt agg caa agg att tgg ggt Glu Asn Ser Arg Cys Ser Phe Arg Gly Val Arg Gln Arg Ile Trp Gly 75 80 85	412
aaa tgg gtt gct gag atc aga gag cct aat cga ggt agc agg ctt tgg Lys Trp Val Ala Glu Ile Arg Glu Pro Asn Arg Gly Ser Arg Leu Trp 90 95 100	460
ctt ggt act ttc cct act gct caa gaa gct gct tct gct tat gat gag Leu Gly Thr Phe Pro Thr Ala Gln Glu Ala Ala Ser Ala Tyr Asp Glu 105 110 115 120	508
gct gct aaa gct atg tat ggt cct ttg gct cgt ctt aat ttc cct cg Ala Ala Lys Ala Met Tyr Gly Pro Leu Ala Arg Leu Asn Phe Pro Arg 125 130 135	556

mbi19 Sequence Listing.ST25

tct gat gcg tct gag gtt acg agt acc tca agt cag tct gag gtg tgt Ser Asp Ala Ser Glu Val Thr Ser Thr Ser Gln Ser Glu Val Cys 140 145 150	604
act gtt gag act cct ggt tgt gtt cat gtg aaa aca gag gat cca gat Thr Val Glu Thr Pro Gly Cys Val His Val Lys Thr Glu Asp Pro Asp 155 160 165	652
tgt gaa tct aaa ccc ttc tcc ggt gga gtg gag ccg atg tat tgt ctg Cys Glu Ser Lys Pro Phe Ser Gly Gly Val Glu Pro Met Tyr Cys Leu 170 175 180	700
gag aat ggt gcg gaa gag atg aag aga ggt gtt aaa gcg gat aag cat Glu Asn Gly Ala Glu Glu Met Lys Arg Gly Val Lys Ala Asp Lys His 185 190 195 200	748
tgg ctg agc gag ttt gaa cat aac tat tgg agt gat att ctg aaa gag Trp Leu Ser Glu Phe Glu His Asn Tyr Trp Ser Asp Ile Leu Lys Glu 205 210 215	796
aaa gag aaa cag aag gag caa ggg att gta gaa acc tgt cag caa caa Lys Glu Lys Gln Lys Glu Gln Gly Ile Val Glu Thr Cys Gln Gln 220 225 230	844
cag cag gat tcg cta tct gtt gca gac tat ggt tgg ccc aat gat gtg Gln Gln Asp Ser Leu Ser Val Ala Asp Tyr Gly Trp Pro Asn Asp Val 235 240 245	892
gat cag agt cac ttg gat tct tca gac atg ttt gat gtc gat gag ctt Asp Gln Ser His Leu Asp Ser Ser Asp Met Phe Asp Val Asp Glu Leu 250 255 260	940
cta cgt gac cta aat ggc gac gat gtg ttt gca ggc tta aat cag gac Leu Arg Asp Leu Asn Gly Asp Asp Val Phe Ala Gly Leu Asn Gln Asp 265 270 275 280	988
ccg tac ccg ggg aac agt gtt gcc aac ggt tca tac agg ccc gag agt Arg Tyr Pro Gly Asn Ser Val Ala Asn Gly Ser Tyr Arg Pro Glu Ser 285 290 295	1036
caa caa agt ggt ttt gat ccg cta caa agc ctc aac tac gga ata cct Gln Gln Ser Gly Phe Asp Pro Leu Gln Ser Leu Asn Tyr Gly Ile Pro 300 305 310	1084
ccg ttt cag ctc gag gga aag gat ggt aat gga ttc ttc gac gac ttg Pro Phe Gln Leu Glu Gly Lys Asp Gly Asn Gly Phe Phe Asp Asp Leu 315 320 325	1132
agt tac ttg gat ctg gag aac taa acaaaacaat atgaagcttt ttggatttga Ser Tyr Leu Asp Leu Glu Asn 330 335	1186
tatggcatt aatccccaaa cgactgttga ttctctatcc gagtttagt gatataaaaa actacagaac acgttttttc ttgttataaaa ggtgaactgt atatatcgaa acagtgtat gacaatagag aagacaacta tagtttgtt gtctgcttct cttaagttgt tcttttagata tgttttatgt ttgttaacaa caggaatgaa taatacacac ttgtgaagct tttaaaaaaaa aaaaaaaaaaa aaaa	1246 1306 1366 1426 1440
<210> 4 <211> 335 <212> PRT <213> Arabidopsis thaliana	
<400> 4	
Met Ala Val Tyr Asp Gln Ser Gly Asp Arg Asn Arg Thr Gln Ile Asp 1 5 10 15	

mbil9 Sequence Listing ST25

Thr	Ser	Arg	Lys	Arg	Lys	Ser	Arg	Ser	Arg	Gly	Asp	Gly	Thr	Thr	Val
20			25										30		
Ala Glu Arg Leu Lys Arg Trp Lys Glu Tyr Asn Glu Thr Val Glu Glu															
	35			40									45		
Val Ser Thr Lys Lys Arg Lys Val Pro Ala Lys Gly Ser Lys Lys Gly															
	50			55									60		
Cys	Met	Lys	Gly	Lys	Gly	Gly	Pro	Glu	Asn	Ser	Arg	Cys	Ser	Phe	Arg
65			70										75		80
Gly Val Arg Gln Arg Ile Trp Gly Lys Trp Val Ala Glu Ile Arg Glu															
	85				90								95		
Pro Asn Arg Gly Ser Arg Leu Trp Leu Gly Thr Phe Pro Thr Ala Gln															
	100			105									110		
Glu	Ala	Ala	Ser	Ala	Tyr	Asp	Glu	Ala	Ala	Lys	Ala	Met	Tyr	Gly	Pro
115				120									125		
Leu	Ala	Arg	Leu	Asn	Phe	Pro	Arg	Ser	Asp	Ala	Ser	Glu	Val	Thr	Ser
130				135									140		
Thr	Ser	Ser	Gln	Ser	Glu	Val	Cys	Thr	Val	Glu	Thr	Pro	Gly	Cys	Val
145				150									155		160
His Val Lys Thr Glu Asp Pro Asp Cys Glu Ser Lys Pro Phe Ser Gly															
	165				170								175		
Gly	Val	Glu	Pro	Met	Tyr	Cys	Leu	Glu	Asn	Gly	Ala	Glu	Glu	Met	Lys
180				185									190		
Arg	Gly	Val	Lys	Ala	Asp	Lys	His	Trp	Leu	Ser	Glu	Phe	Glu	His	Asn
195				200									205		
Tyr	Trp	Ser	Asp	Ile	Leu	Lys	Glu	Lys	Glu	Lys	Gln	Lys	Glu	Gln	Gly
210				215									220		
Ile	Val	Glu	Thr	Cys	Gln	Gln	Gln	Gln	Asp	Ser	Leu	Ser	Val	Ala	
225				230									235		240
Asp	Tyr	Gly	Trp	Pro	Asn	Asp	Val	Asp	Gln	Ser	His	Leu	Asp	Ser	Ser
	245				250								255		
Asp	Met	Phe	Asp	Val	Asp	Glu	Leu	Leu	Arg	Asp	Leu	Asn	Gly	Asp	Asp
	260				265								270		
Val	Phe	Ala	Gly	Leu	Asn	Gln	Asp	Arg	Tyr	Pro	Gly	Asn	Ser	Val	Ala
	275				280								285		
Asn	Gly	Ser	Tyr	Arg	Pro	Glu	Ser	Gln	Gln	Ser	Gly	Phe	Asp	Pro	Leu
	290				295								300		
Gln	Ser	Leu	Asn	Tyr	Gly	Ile	Pro	Pro	Phe	Gln	Leu	Glu	Gly	Lys	Asp
305				310									315		320

mbi19 Sequence Listing.ST25

Gly Asn Gly Phe Phe Asp Asp Leu Ser Tyr Leu Asp Leu Glu Asn
325 330 335

```
<210> 5
<211> 909
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (38) .. (643)
<223> G43
```

mbi19 Sequence Listing.ST25

aagaactctt	gcaaaatatg	tactaaagag	ttcctgtAAC	aatggAACTT	ctgcgtttc	803										
tcttgctta	aagagcttaa	ggttctagaa	acaaaggTTCT	tgtccTTCG	gtttaaaaaa	863										
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	909										
<210> 6																
<211> 201																
<212> PRT																
<213> Arabidopsis thaliana																
<400> 6																
Met	Glu	Thr	Phe	Glu	Glu	Ser	Ser	Asp	Leu	Asp	Val	Ile	Gln	Lys	His	
1				5					10				15			
Leu	Phe	Glu	Asp	Leu	Met	Ile	Pro	Asp	Gly	Phe	Ile	Glu	Asp	Phe	Val	
				20				25				30				
Phe	Asp	Asp	Thr	Ala	Phe	Val	Ser	Gly	Leu	Trp	Ser	Leu	Glu	Pro	Phe	
				35			40				45					
Asn	Pro	Val	Pro	Lys	Leu	Glu	Pro	Ser	Ser	Pro	Val	Leu	Asp	Pro	Asp	
				50		55				60						
Ser	Tyr	Val	Gln	Glu	Ile	Leu	Gln	Met	Glu	Ala	Glu	Ser	Ser	Ser	Ser	
				65		70		75			80					
Ser	Ser	Thr	Thr	Thr	Ser	Pro	Glu	Val	Glu	Thr	Val	Ser	Asn	Arg	Lys	
				85			90				95					
Lys	Thr	Lys	Arg	Phe	Glu	Glu	Thr	Arg	His	Tyr	Arg	Gly	Val	Arg	Arg	
				100			105				110					
Arg	Pro	Trp	Gly	Lys	Phe	Ala	Ala	Glu	Ile	Arg	Asp	Pro	Ala	Lys	Lys	
				115			120				125					
Gly	Ser	Arg	Ile	Trp	Leu	Gly	Thr	Phe	Glu	Ser	Asp	Ile	Asp	Ala	Ala	
				130		135			140							
Arg	Ala	Tyr	Asp	Tyr	Ala	Ala	Phe	Lys	Leu	Arg	Gly	Arg	Lys	Ala	Val	
				145		150		155			160					
Leu	Asn	Phe	Pro	Leu	Asp	Ala	Gly	Lys	Tyr	Asp	Ala	Pro	Val	Asn	Ser	
				165			170			175						
Cys	Arg	Lys	Arg	Arg	Arg	Thr	Asp	Val	Pro	Gln	Pro	Gln	Gly	Thr	Thr	
				180			185			190						
Thr	Ser	Thr	Ser	Ser	Ser	Ser	Ser	Asn								
				195			200									
<210> 7																
<211> 1107																
<212> DNA																
<213> Arabidopsis thaliana																
<220>																
<221> CDS																
<222> (16)...(930)																
<223> G207																

mbi19 Sequence Listing.ST25

<400> 7		
aaaagatctg tttca atg gcg gat cgt gtt aaa ggt cca tgg agt caa gaa	51	
Met Ala Asp Arg Val Lys Gly Pro Trp Ser Gln Glu		
1 5 10		
gaa gat gag cag cta cga agg atg gtt gag aaa tac gga ccg agg aat	99	
Glu Asp Glu Gln Leu Arg Arg Met Val Glu Lys Tyr Gly Pro Arg Asn		
15 20 25		
tgg tct gcg att agc aaa tcg att cca ggt cga tct ggt aaa tcg tgt	147	
Trp Ser Ala Ile Ser Lys Ser Ile Pro Gly Arg Ser Gly Lys Ser Cys		
30 35 40		
aga tta cgt tgg tgt aat cag tta tct ccg gag gtt gag cat cgt cct	195	
Arg Leu Arg Trp Cys Asn Gln Leu Ser Pro Glu Val Glu His Arg Pro		
45 50 55 60		
ttc tcg ccg gag gaa gat gag act att gta acc gcc cgt gct cag ttt	243	
Phe Ser Pro Glu Glu Asp Glu Thr Ile Val Thr Ala Arg Ala Gln Phe		
65 70 75		
ggt aac aag tgg gcg acg att gct cgt ctt ctt aac ggt cgt acg gat	291	
Gly Asn Lys Trp Ala Thr Ile Ala Arg Leu Leu Asn Gly Arg Thr Asp		
80 85 90		
aac gcc gtt aaa aat cac tgg aac tct acg ctt aag agg aaa tgc acg	339	
Asn Ala Val Lys Asn His Trp Asn Ser Thr Leu Lys Arg Lys Cys Ser		
95 100 105		
gga ggt gtg gcg gtt acg acg gtg acg gag acg gag gaa gat cag gat	387	
Gly Gly Val Ala Val Thr Thr Val Thr Glu Thr Glu Glu Asp Gln Asp		
110 115 120		
cgg ccg aag aag agg aga tct gtt acg ttt gat cct gct ttt gct ccg	435	
Arg Pro Lys Lys Arg Arg Ser Val Ser Phe Asp Pro Ala Phe Ala Pro		
125 130 135 140		
gtg gat act gga ttg tac atg agt cct gag agt cct aac gga atc gat	483	
Val Asp Thr Gly Leu Tyr Met Ser Pro Glu Ser Pro Asn Gly Ile Asp		
145 150 155		
gtt agt gat tct acg acg att ccg tca ccg tcg tct cct gtt gct cag	531	
Val Ser Asp Ser Ser Thr Ile Pro Ser Pro Ser Ser Pro Val Ala Gln		
160 165 170		
ctg ttt aaa cca atg ccg att tcc ggc ggt ttt acg gtg gtt ccg cag	579	
Leu Phe Lys Pro Met Pro Ile Ser Gly Gly Phe Thr Val Val Pro Gln		
175 180 185		
ccg tta ccg gtt gaa atg tct tcg tct tcg gag gat cca cct act tcg	627	
Pro Leu Pro Val Glu Met Ser Ser Ser Glu Asp Pro Pro Thr Ser		
190 195 200		
ttg agt ttg tca cta cct gga gct gag aac acg agt tcg agc cat aac	675	
Leu Ser Leu Ser Leu Pro Gly Ala Glu Asn Thr Ser Ser Ser His Asn		
205 210 215 220		
aat aac aac aac gcg ttg atg ttt ccg aga ttt gag agt cag atg aag	723	
Asn Asn Asn Asn Ala Leu Met Phe Pro Arg Phe Glu Ser Gln Met Lys		
225 230 235		
att aat gta gag gag aga gga gga gga gaa gga cgt aga ggt gag	771	
Ile Asn Val Glu Glu Arg Gly Gly Gly Glu Gly Arg Arg Gly Glu		
240 245 250		
ttt atg acg gtg gtg cag gag atg ata aaa gct gaa gtg agg agt tac	819	
Phe Met Thr Val Val Gln Glu Met Ile Lys Ala Glu Val Arg Ser Tyr		
255 260 265		
atg gcg gaa atg cag aaa aca agt ggt gga ttc gtc gtc gga ggt tta	867	
Met Ala Glu Met Gln Lys Thr Ser Gly Gly Phe Val Val Gly Gly Leu		
270 275 280		

mbil9 Sequence Listing.ST25

tac gaa tcc ggc ggc aat ggt ggt ttt agg gat tgt gga gta ata aca Tyr Glu Ser Gly Gly Asn Gly Gly Phe Arg Asp Cys Gly Val Ile Thr 285 290 295 300	915
cct aag gtt gag tag ttttggttta gggtaaaaac ttgaatcgat tggggatttt Pro Lys Val Glu	970
 caagagcatt cattttggg gtttatggta aaattaaaaa caaaaacaaa atgtacagag gaattaaaaat ttctatggaa taatcttaaa tctcaaataat ttgttacttg ttttgggtat tcataaccaa aatcaaa	1030 1090 1107
 <210> 8 <211> 304 <212> PRT <213> Arabidopsis thaliana <400> 8	
Met Ala Asp Arg Val Lys Gly Pro Trp Ser Gln Glu Glu Asp Glu Gln 1 5 10 15	
Leu Arg Arg Met Val Glu Lys Tyr Gly Pro Arg Asn Trp Ser Ala Ile 20 25 30	
Ser Lys Ser Ile Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp 35 40 45	
Cys Asn Gln Leu Ser Pro Glu Val Glu His Arg Pro Phe Ser Pro Glu 50 55 60	
Glu Asp Glu Thr Ile Val Thr Ala Arg Ala Gln Phe Gly Asn Lys Trp 65 70 75 80	
Ala Thr Ile Ala Arg Leu Leu Asn Gly Arg Thr Asp Asn Ala Val Lys 85 90 95	
Asn His Trp Asn Ser Thr Leu Lys Arg Lys Cys Ser Gly Gly Val Ala 100 105 110	
Val Thr Thr Val Thr Glu Glu Asp Gln Asp Arg Pro Lys Lys 115 120 125	
Arg Arg Ser Val Ser Phe Asp Pro Ala Phe Ala Pro Val Asp Thr Gly 130 135 140	
Leu Tyr Met Ser Pro Glu Ser Pro Asn Gly Ile Asp Val Ser Asp Ser 145 150 155 160	
Ser Thr Ile Pro Ser Pro Ser Ser Pro Val Ala Gln Leu Phe Lys Pro 165 170 175	
Met Pro Ile Ser Gly Gly Phe Thr Val Val Pro Gln Pro Leu Pro Val 180 185 190	
Glu Met Ser Ser Ser Ser Glu Asp Pro Pro Thr Ser Leu Ser Leu Ser 195 200 205	
Leu Pro Gly Ala Glu Asn Thr Ser Ser Ser His Asn Asn Asn Asn 210 215 220 225 230 235 240 245 250	

mbi19 Sequence Listing.ST25

210 215 220
 Ala Leu Met Phe Pro Arg Phe Glu Ser Gln Met Lys Ile Asn Val Glu
 225 230 235 240

Glu Arg Gly Gly Gly Glu Gly Arg Arg Gly Glu Phe Met Thr Val
 245 250 255

Val Gln Glu Met Ile Lys Ala Glu Val Arg Ser Tyr Met Ala Glu Met
 260 265 270

Gln Lys Thr Ser Gly Gly Phe Val Val Gly Gly Leu Tyr Glu Ser Gly
 275 280 285

Gly Asn Gly Gly Phe Arg Asp Cys Gly Val Ile Thr Pro Lys Val Glu
 290 295 300

<210> 9
<211> 1046
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (46)..(867)
<223> G241

<400> 9
gaaaaacatt tcaacttctt ttatcagcaa tcacaaatca aagag atg gga aga gct 57
Met Gly Arg Ala
1

cca tgc tgt gag aag atg ggg ttg aag aga gga cca tgg aca cct gaa 105
Pro Cys Cys Glu Lys Met Gly Leu Lys Arg Gly Pro Trp Thr Pro Glu
5 10 15 20

gaa gat caa atc ttg gtc tct ttt atc ctc aac cat gga cat agt aac 153
Glu Asp Gln Ile Leu Val Ser Phe Ile Leu Asn His Gly His Ser Asn
25 30 35

tgg cga gcc ctc cct aag caa gct ggt ctt ttg aga tgt gga aaa agc 201
Trp Arg Ala Leu Pro Lys Gln Ala Gly Leu Leu Arg Cys Gly Lys Ser
40 45 50

tgt aga ctt agg tgg atg aac tat tta aag cct gat att aaa cgt ggc 249
Cys Arg Leu Arg Trp Met Asn Tyr Leu Lys Pro Asp Ile Lys Arg Gly
55 60 65

aat ttc acc aaa gaa gag gaa gat gct atc atc agc tta cac caa ata 297
Asn Phe Thr Lys Glu Glu Asp Ala Ile Ile Ser Leu His Gln Ile
70 75 80

ctt ggc aat aga tgg tca gcg att gca gca aaa ctg cct gga aga acc 345
Leu Gly Asn Arg Trp Ser Ala Ile Ala Ala Lys Leu Pro Gly Arg Thr
85 90 95 100

gat aac gag atc aac gta tgg cac act cac ttg aag aag aga ctc 393
Asp Asn Glu Ile Lys Asn Val Trp His Thr His Leu Lys Lys Arg Leu
105 110 115

gaa gat tat caa cca gct aaa cct aag acc agc aac aaa aag aag ggt 441
Glu Asp Tyr Gln Pro Ala Lys Pro Lys Thr Ser Asn Lys Lys Lys Gly
120 125 130

act aaa cca aaa tct gaa tcc gta ata acg agc tcg aac agt act aga 489
Thr Lys Pro Lys Ser Glu Ser Val Ile Thr Ser Ser Asn Ser Thr Arg
135 140 145

mbi19 Sequence Listing.ST25

agc gaa tcg gag cta gca gat tca tca aac cct tct gga gaa agc tta Ser Glu Ser Glu Leu Ala Asp Ser Ser Asn Pro Ser Gly Glu Ser Leu	150 155 160	537
ttt tcg aca tcg cct tcg aca agt gag gtt tct tcg atg aca ctc ata Phe Ser Thr Ser Pro Ser Thr Ser Glu Val Ser Ser Met Thr Leu Ile	165 170 175 180	585
agc cac gac ggc tat agc aac gag att aat atg gat aac aaa ccg gga Ser His Asp Gly Tyr Ser Asn Glu Ile Asn Met Asp Asn Lys Pro Gly	185 190 195	633
gat atc agt act atc gat caa gaa tgt gtt tct ttc gaa act ttt ggt Asp Ile Ser Thr Ile Asp Gln Glu Cys Val Ser Phe Glu Thr Phe Gly	200 205 210	681
gcg gat atc gat gaa agc ttc tgg aaa gag aca ctg tat agc caa gat Ala Asp Ile Asp Glu Ser Phe Trp Lys Glu Thr Leu Tyr Ser Gln Asp	215 220 225	729
gaa cac aac tac gta tcg aat gac cta gaa gtc gct ggt tta gtt gag Glu His Asn Tyr Val Ser Asn Asp Leu Glu Val Ala Gly Leu Val Glu	230 235 240	777
ata caa caa gag ttt caa aac ttg ggc tcc gct aat aat gag atg att Ile Gln Gln Glu Phe Gln Asn Leu Gly Ser Ala Asn Asn Glu Met Ile	245 250 255 260	825
ttt gac agt gag atg gaa ctt ctg gtt cga tgt att ggc tag Phe Asp Ser Glu Met Glu Leu Leu Val Arg Cys Ile Gly	265 270	867
aaccggcgaaa gaacaagatc tcttagccgg gctctagtttta acatgtttga ggagtaaaagt gaaatgggtgc aaatttagtttta aggctaagaa attcaaaagc ttttgtttac cgagaaaaaaa acacactcta actcttgatg tgatgttagttt agtgttattaa ttagaggctg cgttttcaa		927 987 1046
<210> 10 <211> 273 <212> PRT <213> <i>Arabidopsis thaliana</i>		
<400> 10		
Met Gly Arg Ala Pro Cys Cys Glu Lys Met Gly Leu Lys Arg Gly Pro 1 5 10 15		
Trp Thr Pro Glu Glu Asp Gln Ile Leu Val Ser Phe Ile Leu Asn His 20 25 30		
Gly His Ser Asn Trp Arg Ala Leu Pro Lys Gln Ala Gly Leu Leu Arg 35 40 45		
Cys Gly Lys Ser Cys Arg Leu Arg Trp Met Asn Tyr Leu Lys Pro Asp 50 55 60		
Ile Lys Arg Gly Asn Phe Thr Lys Glu Glu Asp Ala Ile Ile Ser 65 70 75 80		
Leu His Gln Ile Leu Gly Asn Arg Trp Ser Ala Ile Ala Ala Lys Leu 85 90 95		
Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp His Thr His Leu 100 105 110		

mbi19 Sequence Listing.ST25
115 120 125

Lys Lys Lys Gly Thr Lys Pro Lys Ser Glu Ser Val Ile Thr Ser Ser
130 135 140

Asn Ser Thr Arg Ser Glu Ser Glu Leu Ala Asp Ser Ser Asn Pro Ser
145 150 155 160

Gly Glu Ser Leu Phe Ser Thr Ser Pro Ser Thr Ser Glu Val Ser Ser
165 170 175

Met Thr Leu Ile Ser His Asp Gly Tyr Ser Asn Glu Ile Asn Met Asp
180 185 190

Asn Lys Pro Gly Asp Ile Ser Thr Ile Asp Gln Glu Cys Val Ser Phe
195 200 205

Glu Thr Phe Gly Ala Asp Ile Asp Glu Ser Phe Trp Lys Glu Thr Leu
210 215 220

Tyr Ser Gln Asp Glu His Asn Tyr Val Ser Asn Asp Leu Glu Val Ala
225 230 235 240

Gly Leu Val Glu Ile Gln Gln Glu Phe Gln Asn Leu Gly Ser Ala Asn
245 250 255

Asn Glu Met Ile Phe Asp Ser Glu Met Glu Leu Leu Val Arg Cys Ile
260 265 270

Gly

<210> 11
<211> 1391
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (15)..(923)
<223> G254

<400> 11
cgatttcgag ctct atg gtg tcc gta aac cct aga cct aag ggt ttt cca 50
Met Val Ser Val Asn Pro Arg Pro Lys Gly Phe Pro
1 5 10

gtt ttc gat tcc tcg aat atg agt tta cca agc tcc gat gga ttt ggt 98
Val Phe Asp Ser Ser Asn Met Ser Leu Pro Ser Ser Asp Gly Phe Gly
15 20 25

tcg att ccg gcc acg gga cgg acc agt acg gtg tcg ttt tct gag gat 146
Ser Ile Pro Ala Thr Gly Arg Thr Ser Thr Val Ser Phe Ser Glu Asp
30 35 40

ccg acg acg aag att ccg aag ccg tac aca atc aag aag tcg aga gag 194
Pro Thr Thr Lys Ile Arg Lys Pro Tyr Thr Ile Lys Lys Ser Arg Glu
45 50 55 60

aat tgg aca gat caa gag cac gat aaa ttt cta gaa gct ctt cac tta 242
Asn Trp Thr Asp Gln Glu His Asp Lys Phe Leu Glu Ala Leu His Leu
65 70 75

mbi19 Sequence Listing.ST25

ttc gat agg gat tgg aag aaa ata gaa gcc ttt gtt gga tca aaa aca Phe Asp Arg Asp Trp Lys Lys Ile Glu Ala Phe Val Gly Ser Lys Thr 80 85 90	290
gta gtt cag ata cga agc cac gct cag aaa tac ttt ctc aaa gtt cag Val Val Gln Ile Arg Ser His Ala Gln Lys Tyr Phe Leu Lys Val Gln 95 100 105	338
aag agt ggt gct aac gaa cat ctt cca ctt cct cga cct aag agg aaa Lys Ser Gly Ala Asn Glu His Leu Pro Leu Pro Arg Pro Lys Arg Lys 110 115 120	386
gcg agt cat cct tat cct ata aag gct cct aaa aat gtt gct tat acc Ala Ser His Pro Tyr Pro Ile Lys Ala Pro Lys Asn Val Ala Tyr Thr 125 130 135 140	434
tct ctc ccg tct tcg agt aca tta ccg ttg ctt gag cct ggt tat ttg Ser Leu Pro Ser Ser Thr Leu Pro Leu Leu Glu Pro Gly Tyr Leu 145 150 155	482
tat agc tct gat tcg aag tca ttg atg gga aac cag gct gtt tgt gca Tyr Ser Ser Asp Ser Lys Ser Leu Met Gly Asn Gln Ala Val Cys Ala 160 165 170	530
tct acc tct tct tcg tgg aat cat gaa tcg aca aat ctg cca aaa ccg Ser Thr Ser Ser Trp Asn His Glu Ser Thr Asn Leu Pro Lys Pro 175 180 185	578
gtg att gaa gag gaa ccg gga gtc tcg gcc acg gct cct ctc cca aat Val Ile Glu Glu Pro Gly Val Ser Ala Thr Ala Pro Leu Pro Asn 190 195 200	626
aat cgc tgc aga cag gaa gat aca gag agg gta cga gca gtg aca aag Asn Arg Cys Arg Gln Glu Asp Thr Glu Arg Val Arg Ala Val Thr Lys 205 210 215 220	674
cca aat aac gaa gaa agt tgt gaa aag cca cat aga gtg atg ccg aat Pro Asn Asn Glu Glu Ser Cys Glu Lys Pro His Arg Val Met Pro Asn 225 230 235	722
ttt gct gaa gtt tac agc ttc att gga agt gtc ttc gat ccc aac aca Phe Ala Glu Val Tyr Ser Phe Ile Gly Ser Val Phe Asp Pro Asn Thr 240 245 250	770
tca ggc cac ctc cag aga tta aag cag atg gat cca ata aat atg gaa Ser Gly His Leu Gln Arg Leu Lys Gln Met Asp Pro Ile Asn Met Glu 255 260 265	818
acg gtt ctt tta ctg atg caa aac ctg tct gta aat ctg aca agt ccc Thr Val Leu Leu Met Gln Asn Leu Ser Val Asn Leu Thr Ser Pro 270 275 280	866
gag ttt gca gag caa agg agg ttg ata tca tca tac agc gct aaa gct Glu Phe Ala Glu Gln Arg Arg Leu Ile Ser Ser Tyr Ser Ala Lys Ala 285 290 295 300	914
ttg aaa tag agatagaata aaacaataat gtaccttatg tgagatcaag Leu Lys	963
agacaatcat ccaaggctcg tatgcattgc ttggatttag gcctcggttt ctcactacag	1023
gagcagaacc aatcgaaag actcttagat ggctactgag ttgtggttt tatgtctctg	1083
taagtgcgg tggagcacac gtgttgtcc tgtcttggt atgtgtgtat agataataca	1143
aggtttgca gagtaaggc acagtttagct gcaagtgagt ttggatcaat cttaagatta	1203
aaaccctgag agtgagtgtc caaagagact gtgtaatatt ggtttggcgg tcagcagaag	1263
agttttgaag tgcacatcca gtttagtata acacgggtga agaaaaaggta aggttacaag	1323
tttagtttg aataattgtt tactcaaaaa atatgaatgt ataaagaata atcacttgag	1383
tcgcctta	1391

mbi19 Sequence Listing.ST25

<210> 12
<211> 302
<212> PRT
<213> Arabidopsis thaliana

<400> 12

Met Val Ser Val Asn Pro Arg Pro Lys Gly Phe Pro Val Phe Asp Ser
1 5 10 15

Ser Asn Met Ser Leu Pro Ser Ser Asp Gly Phe Gly Ser Ile Pro Ala
20 25 30

Thr Gly Arg Thr Ser Thr Val Ser Phe Ser Glu Asp Pro Thr Thr Lys
35 40 45

Ile Arg Lys Pro Tyr Thr Ile Lys Lys Ser Arg Glu Asn Trp Thr Asp
50 55 60

Gln Glu His Asp Lys Phe Leu Glu Ala Leu His Leu Phe Asp Arg Asp
65 70 75 80

Trp Lys Lys Ile Glu Ala Phe Val Gly Ser Lys Thr Val Val Gln Ile
85 90 95

Arg Ser His Ala Gln Lys Tyr Phe Leu Lys Val Gln Lys Ser Gly Ala
100 105 110

Asn Glu His Leu Pro Leu Pro Arg Pro Lys Arg Lys Ala Ser His Pro
115 120 125

Tyr Pro Ile Lys Ala Pro Lys Asn Val Ala Tyr Thr Ser Leu Pro Ser
130 135 140

Ser Ser Thr Leu Pro Leu Leu Glu Pro Gly Tyr Leu Tyr Ser Ser Asp
145 150 155 160

Ser Lys Ser Leu Met Gly Asn Gln Ala Val Cys Ala Ser Thr Ser Ser
165 170 175

Ser Trp Asn His Glu Ser Thr Asn Leu Pro Lys Pro Val Ile Glu Glu
180 185 190

Glu Pro Gly Val Ser Ala Thr Ala Pro Leu Pro Asn Asn Arg Cys Arg
195 200 205

Gln Glu Asp Thr Glu Arg Val Arg Ala Val Thr Lys Pro Asn Asn Glu
210 215 220

Glu Ser Cys Glu Lys Pro His Arg Val Met Pro Asn Phe Ala Glu Val
225 230 235 240

Tyr Ser Phe Ile Gly Ser Val Phe Asp Pro Asn Thr Ser Gly His Leu
245 250 255

Gln Arg Leu Lys Gln Met Asp Pro Ile Asn Met Glu Thr Val Leu Leu
260 265 270

mbi19 Sequence Listing.ST25

Leu Met Gln Asn Leu Ser Val Asn Leu Thr Ser Pro Glu Phe Ala Glu
275 280 285

Gln Arg Arg Leu Ile Ser Ser Tyr Ser Ala Lys Ala Leu Lys
290 295 300

```
<210> 13
<211> 1121
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (48)..(902)
<223> G263

mbi19 Sequence Listing.ST25

Pro	Glu	Gln	Ile	Asp	Lys	Met	Ile	Lys	Gly	Gly	Lys	Phe	Lys	Pro	Val	
200						205						210				
gag	tct	gac	gaa	gag	agt	gag	tgc	gaa	ggt	tgc	gac	ggc	ggc	gga	gga	728
Glu	Ser	Asp	Glu	Glu	Ser	Glu	Cys	Glu	Gly	Cys	Asp	Gly	Gly	Gly	Gly	
215						220						225				
gca	gag	gag	ggg	gta	ggt	gaa	gga	ttg	aaa	ttg	ttt	ggg	gtg	tgg	ttg	776
Ala	Glu	Glu	Gly	Val	Gly	Glu	Gly	Leu	Lys	Leu	Phe	Gly	Val	Trp	Leu	
230						235					240					
aaa	gga	gag	aga	aaa	aag	agg	gac	cg	gat	gaa	aag	aat	tat	gtg	gtg	824
Lys	Gly	Glu	Arg	Lys	Lys	Arg	Asp	Arg	Asp	Glu	Lys	Asn	Tyr	Val	Val	
245						250					255					
agt	ggg	tcc	cgt	atg	acg	gaa	ata	aag	aac	gtg	gac	ttt	cac	gcg	ccg	872
Ser	Gly	Ser	Arg	Met	Thr	Glu	Ile	Lys	Asn	Val	Asp	Phe	His	Ala	Pro	
260						265					270				275	
ttg	tgg	aaa	agc	agc	aaa	gtc	tgc	aac	taa	aaaaagagta	gaagactgtt					922
Leu	Trp	Lys	Ser	Ser	Lys	Val	Cys	Asn								
280																
caaaccagcg	tgtgacacgt	catcgacgac	gacgaaaaaaaa	atgatttaaa	aaactat	tttt										982
tttccgttaag	gaagaaaaagt	tat	ttttttatg	ttttaaaaag	gtgaagaagg	tccagaagga										1042
tcaacgcaaa	tatataaatg	gat	ttttcatg	tattatataa	tttaatttagt	gtattaagaa										1102
aataaaaacaa	aaaaaaa															1121
<210>	14															
<211>	284															
<212>	PRT															
<213>	Arabidopsis thaliana															
<400>	14															
Met	Thr	Ala	Val	Thr	Ala	Ala	Gln	Arg	Ser	Val	Pro	Ala	Pro	Phe	Leu	
1							5			10			15			
Ser	Lys	Thr	Tyr	Gln	Leu	Val	Asp	Asp	His	Ser	Thr	Asp	Asp	Val	Val	
					20		25					30				
Ser	Trp	Asn	Glu	Glu	Gly	Thr	Ala	Phe	Val	Val	Trp	Lys	Thr	Ala	Glu	
					35		40				45					
Phe	Ala	Lys	Asp	Leu	Leu	Pro	Gln	Tyr	Phe	Lys	His	Asn	Asn	Phe	Ser	
					50		55			60						
Ser	Phe	Ile	Arg	Gln	Leu	Asn	Thr	Tyr	Gly	Phe	Arg	Lys	Thr	Val	Pro	
					65		70			75			80			
Asp	Lys	Trp	Glu	Phe	Ala	Asn	Asp	Tyr	Phe	Arg	Arg	Gly	Gly	Glu	Asp	
					85		90			95						
Leu	Leu	Thr	Asp	Ile	Arg	Arg	Lys	Ser	Val	Ile	Ala	Ser	Thr	Ala		
					100		105			110						
Gly	Lys	Cys	Val	Val	Val	Gly	Ser	Pro	Ser	Glu	Ser	Asn	Ser	Gly	Gly	
					115		120			125						
Gly	Asp	Asp	His	Gly	Ser	Ser	Ser	Thr	Ser	Ser	Pro	Gly	Ser	Ser	Lys	
					130		135			140						

mbi19 Sequence Listing.ST25
 Asn Pro Gly Ser Val Glu Asn Met Val Ala Asp Leu Ser Gly Glu Asn
 145 150 155 160

Glu Lys Leu Lys Arg Glu Asn Asn Asn Leu Ser Ser Glu Leu Ala Ala
 165 170 175

Ala Lys Lys Gln Arg Asp Glu Leu Val Thr Phe Leu Thr Gly His Leu
 180 185 190

Lys Val Arg Pro Glu Gln Ile Asp Lys Met Ile Lys Gly Gly Lys Phe
 195 200 205

Lys Pro Val Glu Ser Asp Glu Glu Ser Glu Cys Glu Gly Cys Asp Gly
 210 215 220

Gly Gly Gly Ala Glu Glu Gly Val Gly Glu Gly Leu Lys Leu Phe Gly
 225 230 235 240

Val Trp Leu Lys Gly Glu Arg Lys Lys Arg Asp Arg Asp Glu Lys Asn
 245 250 255

Tyr Val Val Ser Gly Ser Arg Met Thr Glu Ile Lys Asn Val Asp Phe
 260 265 270

His Ala Pro Leu Trp Lys Ser Ser Lys Val Cys Asn
 275 280

<210> 15
 <211> 1951
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (196)..(1794)
 <223> G308

<400> 15
 agtaattttag tttttttttt ttttttttac aatttatttt gttatttagaa gtggtagtgg 60
 agtggaaaaaa caaatctaa gcagtccctaa ccgatccccg aagctaaaga ttcttcacct 120
 tcccaaataa agcaaaaacct agatccgaca ttgaaggaaa aaccttttag atccatctct 180
 gaaaaaaaaacc caacc atg aag aga gat cat cat cat cat caa gat aag 231
 Met Lys Arg Asp His His His His His Gln Asp Lys
 1 5 10

aag act atg atg atg aat gaa gaa gac gac ggt aac ggc atg gat gag 279
 Lys Thr Met Met Asn Glu Glu Asp Asp Gly Asn Gly Met Asp Glu
 15 20 25

ctt cta gct gtt ctt ggt tac aag gtt agg tca tcg gaa atg gct gat 327
 Leu Leu Ala Val Leu Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Asp
 30 35 40

gtt gct cag aaa ctc gag cag ctt gaa gtt atg atg tct aat gtt caa 375
 Val Ala Gln Lys Leu Glu Gln Leu Glu Val Met Met Ser Asn Val Gln
 45 50 55 60

gaa gac gat ctt tct caa ctc gct act gag act gtt cac tat aat ccg 423
 Glu Asp Asp Leu Ser Gln Leu Ala Thr Glu Thr Val His Tyr Asn Pro
 65 70 75

gcg gag ctt tac acg tgg ctt gat tct atg ctc acc gac ctt aat cct 471

mbi19 Sequence Listing.ST25

Ala Glu Leu Tyr Thr Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro		
80	85	90
ccg tcg tct aac gcc gag tac gat ctt aaa gct att ccc ggt gac gcg		519
Pro Ser Ser Asn Ala Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala		
95	100	105
att ctc aat cag ttc gct atc gat tcg gct tct tcg tct aac caa ggc		567
Ile Leu Asn Gln Phe Ala Ile Asp Ser Ala Ser Ser Asn Gln Gly		
110	115	120
ggc gga gga gat acg tat act aca aac aag cgg ttg aaa tgc tca aac		615
Gly Gly Gly Asp Thr Tyr Thr Asn Lys Arg Leu Lys Cys Ser Asn		
125	130	135
ggc gtc gtg gaa acc acc aca gcg acg gct gag tca act cgg cat gtt		663
Gly Val Val Glu Thr Thr Ala Thr Ala Glu Ser Thr Arg His Val		
145	150	155
gtc ctg gtt gac tcg cag gag aac ggt gtg cgt ctc gtt cac gcg ctt		711
Val Leu Val Asp Ser Gln Glu Asn Gly Val Arg Leu Val His Ala Leu		
160	165	170
ttg gct tgc gct gaa gct gtt cag aag gag aat ctg act gtg gcg gaa		759
Leu Ala Cys Ala Glu Ala Val Gln Lys Glu Asn Leu Thr Val Ala Glu		
175	180	185
gct ctg gtg aag caa atc gga ttc tta gct gtt tct caa atc gga gct		807
Ala Leu Val Lys Gln Ile Gly Phe Leu Ala Val Ser Gln Ile Gly Ala		
190	195	200
atg aga caa gtc gct act tac ttc gcc gaa gct ctc gcg cgg cgg att		855
Met Arg Gln Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg Ile		
205	210	215
tac cgt ctc tct ccg tcg cag agt cca atc gac cac tct ctc tcc gat		903
Tyr Arg Leu Ser Pro Ser Gln Ser Pro Ile Asp His Ser Leu Ser Asp		
225	230	235
act ctt cag atg cac ttc tac gag act tgt cct tat ctc aag ttc gct		951
Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe Ala		
240	245	250
cac ttc acg gcg aat caa gcg att ctc gaa gct ttt caa ggg aag aaa		999
His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Gln Gly Lys Lys		
255	260	265
aga gtt cat gtc att gat ttc tct atg agt caa ggt ctt caa tgg ccg		1047
Arg Val His Val Ile Asp Phe Ser Met Ser Gln Gly Leu Gln Trp Pro		
270	275	280
gcg ctt atg cag gct ctt gcg ctt cga cct ggt ggt cct cct gtt ttc		1095
Ala Leu Met Gln Ala Leu Ala Leu Arg Pro Gly Gly Pro Pro Val Phe		
285	290	295
ccg tta acc gga att ggt cca ccg gca ccg gat aat ttc gat tat ctt		1143
Arg Leu Thr Gly Ile Gly Pro Pro Ala Pro Asp Asn Phe Asp Tyr Leu		
305	310	315
cat gaa gtt ggg tgt aag ctg gct cat tta gct gag gcg att cac gtt		1191
His Glu Val Gly Cys Lys Leu Ala His Leu Ala Glu Ala Ile His Val		
320	325	330
gag ttt gag tac aga gga ttt gtg gct aac act tta gct gat ctt gat		1239
Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Thr Leu Ala Asp Leu Asp		
335	340	345
gct tcg atg ctt gag ctt aga cca agt gag att gaa tct gtt gcg gtt		1287
Ala Ser Met Leu Glu Leu Arg Pro Ser Glu Ile Glu Ser Val Ala Val		
350	355	360
aac tct gtt ttc gag ctt cac aag ctc ttg gga cga cct ggt gcg atc		1335
Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Pro Gly Ala Ile		
365	370	375

mbi19 Sequence Listing ST25

gat aag gtt ctt ggt gtg gtg aat cag att aaa ccg gag att ttc act Asp Lys Val Leu Gly Val Val Asn Gln Ile Lys Pro Glu Ile Phe Thr 385 390 395	1383
gtg gtt gag cag gaa tcg aac cat aat agt ccg att ttc tta gat cgg Val Val Glu Gln Glu Ser Asn His Asn Ser Pro Ile Phe Leu Asp Arg 400 405 410	1431
ttt act gag tcg ttg cat tat tac tcg acg ttg ttt gac tcg ttg gaa Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp Ser Leu Glu 415 420 425	1479
ggg gta ccg agt ggt caa gac aag gtc atg tcg gag gtt tac ttg ggt Gly Val Pro Ser Gly Gln Asp Lys Val Met Ser Glu Val Tyr Leu Gly 430 435 440	1527
aaa cag atc tgc aac gtt gtg gct tgt gat gga cct gac cga gtt gag Lys Gln Ile Cys Asn Val Val Ala Cys Asp Gly Pro Asp Arg Val Glu 445 450 455 460	1575
cgt cat gaa acg ttg agt cag tgg agg aac cgg ttc ggg tct gct ggg Arg His Glu Thr Leu Ser Gln Trp Arg Asn Arg Phe Gly Ser Ala Gly 465 470 475	1623
ttt gcg gct gca cat att ggt tcg aat gcg ttt aag caa gcg agt atg Phe Ala Ala Ala His Ile Gly Ser Asn Ala Phe Lys Gln Ala Ser Met 480 485 490	1671
ctt ttg gct ctg ttc aac ggc ggt gag ggt tat cgg ttg gag gag agt Leu Leu Ala Leu Phe Asn Gly Gly Glu Gly Tyr Arg Val Glu Glu Ser 495 500 505	1719
gac ggc tgt ctc atg ttg ggt tgg cac aca cga ccg ctc ata gcc acc Asp Gly Cys Leu Met Leu Gly Trp His Thr Arg Pro Leu Ile Ala Thr 510 515 520	1767
tcg gct tgg aaa ctc tcc acc aat tag atggtggttc aatgaattga Ser Ala Trp Lys Leu Ser Thr Asn 525 530	1814
tctgttgaac cggttatgtat gatagatttc cgaccgaagc caaactaaat cctactgttt ttccctttgt cacttgtaa gatcttatct ttcattatat taggtattt aaaaatttta atctcgcccta aattact	1874 1934
<210> 16 <211> 532 <212> PRT <213> Arabidopsis thaliana	
<400> 16	
Met Lys Arg Asp His His His His Gln Asp Lys Lys Thr Met Met 1 5 10 15	
Met Asn Glu Glu Asp Asp Gly Asn Gly Met Asp Glu Leu Leu Ala Val 20 25 30	
Leu Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Asp Val Ala Gln Lys 35 40 45	
Leu Glu Gln Leu Glu Val Met Met Ser Asn Val Gln Glu Asp Asp Leu 50 55 60	
Ser Gln Leu Ala Thr Glu Thr Val His Tyr Asn Pro Ala Glu Leu Tyr 65 70 75 80	
Thr Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro Pro Ser Ser Asn	

mbi19 Sequence Listing.ST25

85 90 95

Ala Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala Ile Leu Asn Gln
100 105 110

Phe Ala Ile Asp Ser Ala Ser Ser Ser Asn Gln Gly Gly Gly Asp
115 120 125

Thr Tyr Thr Thr Asn Lys Arg Leu Lys Cys Ser Asn Gly Val Val Glu
130 135 140

Thr Thr Thr Ala Thr Ala Glu Ser Thr Arg His Val Val Leu Val Asp
145 150 155 160

Ser Gln Glu Asn Gly Val Arg Leu Val His Ala Leu Leu Ala Cys Ala
165 170 175

Glu Ala Val Gln Lys Glu Asn Leu Thr Val Ala Glu Ala Leu Val Lys
180 185 190

Gln Ile Gly Phe Leu Ala Val Ser Gln Ile Gly Ala Met Arg Gln Val
195 200 205

Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg Ile Tyr Arg Leu Ser
210 215 220

Pro Ser Gln Ser Pro Ile Asp His Ser Leu Ser Asp Thr Leu Gln Met
225 230 235 240

His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe Ala His Phe Thr Ala
245 250 255

Asn Gln Ala Ile Leu Glu Ala Phe Gln Gly Lys Lys Arg Val His Val
260 265 270

Ile Asp Phe Ser Met Ser Gln Gly Leu Gln Trp Pro Ala Leu Met Gln
275 280 285

Ala Leu Ala Leu Arg Pro Gly Gly Pro Pro Val Phe Arg Leu Thr Gly
290 295 300

Ile Gly Pro Pro Ala Pro Asp Asn Phe Asp Tyr Leu His Glu Val Gly
305 310 315 320

Cys Lys Leu Ala His Leu Ala Glu Ala Ile His Val Glu Phe Glu Tyr
325 330 335

Arg Gly Phe Val Ala Asn Thr Leu Ala Asp Leu Asp Ala Ser Met Leu
340 345 350

Glu Leu Arg Pro Ser Glu Ile Glu Ser Val Ala Val Asn Ser Val Phe
355 360 365

Glu Leu His Lys Leu Leu Gly Arg Pro Gly Ala Ile Asp Lys Val Leu
370 375 380

mbi19 Sequence Listing.ST25

Gly	Val	Val	Asn	Gln	Ile	Lys	Pro	Glu	Ile	Phe	Thr	Val	Val	Glu	Gln
385				390				395						400	

Glu	Ser	Asn	His	Asn	Ser	Pro	Ile	Phe	Leu	Asp	Arg	Phe	Thr	Glu	Ser
							405		410				415		

Leu	His	Tyr	Tyr	Ser	Thr	Leu	Phe	Asp	Ser	Leu	Glu	Gly	Val	Pro	Ser
						420		425			430				

Gly	Gln	Asp	Lys	Val	Met	Ser	Glu	Val	Tyr	Leu	Gly	Lys	Gln	Ile	Cys
					435		440				445				

Asn	Val	Val	Ala	Cys	Asp	Gly	Pro	Asp	Arg	Val	Glu	Arg	His	Glu	Thr
					450		455			460					

Leu	Ser	Gln	Trp	Arg	Asn	Arg	Phe	Gly	Ser	Ala	Gly	Phe	Ala	Ala	Ala
					465		470		475		480				

His	Ile	Gly	Ser	Asn	Ala	Phe	Lys	Gln	Ala	Ser	Met	Leu	Leu	Ala	Leu
					485			490			495				

Phe	Asn	Gly	Gly	Glu	Gly	Tyr	Arg	Val	Glu	Glu	Ser	Asp	Gly	Cys	Leu
					500			505			510				

Met	Leu	Gly	Trp	His	Thr	Arg	Pro	Leu	Ile	Ala	Thr	Ser	Ala	Trp	Lys
					515		520			525					

Leu	Ser	Thr	Asn
		530	

<210>	17
<211>	768
<212>	DNA
<213>	Arabidopsis thaliana

<220>	
<221>	CDS
<222>	(1)..(768)
<223>	G536

<400>	17														
atg	tcg	aca	agg	gaa	gag	aat	gtt	tac	atg	gcg	aaa	tta	gcc	gaa	caa
Met	Ser	Thr	Arg	Glu	Glu	Asn	Val	Tyr	Met	Ala	Lys	Leu	Ala	Glu	Gln
1				5					10			15			48

gct	gaa	cgt	tac	gaa	gaa	atg	gtt	gaa	ttc	atg	gag	aaa	gtt	gcg	aaa
Ala	Glu	Arg	Tyr	Glu	Glu	Met	Val	Glu	Phe	Met	Glu	Lys	Val	Ala	Lys
							20		25			30			96

act	gtt	gat	gtt	gag	gaa	ctt	tca	gtt	gaa	gag	agg	aat	ctt	ctc	tct
Thr	Val	Asp	Val	Glu	Glu	Leu	Ser	Val	Glu	Glu	Arg	Asn	Leu	Leu	Ser
							35		40		45				144

gtt	gct	tac	aag	aac	gtg	att	gga	gcg	aga	aga	gct	tcg	tgg	aga	atc
Val	Ala	Tyr	Lys	Asn	Val	Ile	Gly	Ala	Arg	Arg	Ala	Ser	Trp	Arg	Ile
							50		55		60				192

att	tct	tcg	att	gag	cag	aaa	gaa	gag	agc	aaa	ggg	aac	gaa	gat	cat
Ile	Ser	Ser	Ile	Glu	Gln	Lys	Glu	Glu	Ser	Lys	Gly	Asn	Glu	Asp	His
							65		70		75		80		240

gtt	gct	att	atc	aag	gat	tac	aga	gga	gag	att	gaa	tcc	gag	ctt	agc
Val	Ala	Ile	Ile	Lys	Asp	Tyr	Arg	Gly	Glu	Ile	Glu	Ser	Glu	Leu	Ser
							85		90		95				288

mbi19 Sequence Listing.ST25

aaa atc tgt gat ggg att ttg aat gtt ctt gaa gct cat ctt att cct Lys Ile Cys Asp Gly Ile Leu Asn Val Leu Glu Ala His Leu Ile Pro 100 105 110	336
tct gct tca cca gct gaa tct aaa gtg ttt tat ctt aag atg aag ggt Ser Ala Ser Pro Ala Glu Ser Lys Val Phe Tyr Leu Lys Met Lys Gly 115 120 125	384
gat tat cat agg tat ctt gct gag ttt aag gct ggt gct gaa agg aaa Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Ala Gly Ala Glu Arg Lys 130 135 140	432
gaa gct gct gaa agc act ttg gtt gct tac aag tct gct tcc gac att Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala Ser Asp Ile 145 150 155 160	480
gcc act gct gag tta gct cct act cac ccg ata agg ctt ggt ctt gca Ala Thr Ala Glu Leu Ala Pro Thr His Pro Ile Arg Leu Gly Leu Ala 165 170 175	528
ctc aac ttc tct gtg ttt tac tat gaa atc ctc aac tcg cct gat cgt Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser Pro Asp Arg 180 185 190	576
gct tgc agc ctc gca aag cag gcg ttt gat gat gca atc gct gag tta Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Asp Ala Ile Ala Glu Leu 195 200 205	624
gat aca ttg ggt gag gaa tca tac aag gac agt aca ctg att atg cag Asp Thr Leu Gly Glu Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln 210 215 220	672
ctt ctt aga gac aat ctc act ctc tgg act tca gat atg act gac gaa Leu Leu Arg Asp Asn Leu Thr Leu Trp Thr Ser Asp Met Thr Asp Glu 225 230 235 240	720
gca gga gat gag att aag gag gca tca aag ccc gat ggt gcc gag taa Ala Gly Asp Glu Ile Lys Glu Ala Ser Lys Pro Asp Gly Ala Glu 245 250 255	768

<210> 18
<211> 255
<212> PRT
<213> Arabidopsis thaliana

<400> 18

Met Ser Thr Arg Glu Glu Asn Val Tyr Met Ala Lys Leu Ala Glu Gln
1 5 10 15

Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met Glu Lys Val Ala Lys
20 25 30

Thr Val Asp Val Glu Glu Leu Ser Val Glu Glu Arg Asn Leu Leu Ser
35 40 45

Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser Trp Arg Ile
50 55 60

Ile Ser Ser Ile Glu Gln Lys Glu Glu Ser Lys Gly Asn Glu Asp His
65 70 75 80

Val Ala Ile Ile Lys Asp Tyr Arg Gly Glu Ile Glu Ser Glu Leu Ser
85 90 95

Lys Ile Cys Asp Gly Ile Leu Asn Val Leu Glu Ala His Leu Ile Pro
100 105 110

mbil9 Sequence Listing.ST25

Ser Ala Ser Pro Ala Glu Ser Lys Val Phe Tyr Leu Lys Met Lys Gly
 115 120 125

Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Ala Gly Ala Glu Arg Lys
 130 135 140

Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala Ser Asp Ile
 145 150 155 160

Ala Thr Ala Glu Leu Ala Pro Thr His Pro Ile Arg Leu Gly Leu Ala
 165 170 175

Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser Pro Asp Arg
 180 185 190

Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Asp Ala Ile Ala Glu Leu
 195 200 205

Asp Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln
 210 215 220

Leu Leu Arg Asp Asn Leu Thr Leu Trp Thr Ser Asp Met Thr Asp Glu
 225 230 235 240

Ala Gly Asp Glu Ile Lys Glu Ala Ser Lys Pro Asp Gly Ala Glu
 245 250 255

<210> 19
<211> 2526
<212> DNA
<213> *Arabidopsis thaliana*
<220>
<221> CDS
<222> (338)...(2275)
<223> G680

<400> 19
cagttatctt cttccttctt ctctctgttt tttaaattta ttttagaga attttttttg 60
tttgcttcc gatttgatta ttccggaa cgatgacttc tccgggagt tcccggtgag 120
atgataagtc agattgcata ctgtctcct ccatggctac tctcaagggt tttggctgcg 180
gtggattcgt ttgggttctc tagaatctaa agaggttac acaacggct tgcaatttga 240
aaactttcat gtttggggag atcaaagatg gtttctttt tatactttac ttgttagaga 300
ggatttgaag cagcgaatag ctgcaaccgg tcctgtt atg gat act aat aca tct 355
Met Asp Thr Asn Thr Ser
1 5

gga gaa gaa tta tta gct aag gca aga aag cca tat aca ata aca aag 403
Gly Glu Glu Leu Leu Ala Lys Ala Arg Lys Pro Tyr Thr Ile Thr Lys
10 15 20

cag cga gag cga tgg act gag gat gag cat gag agg ttt cta gaa gcc 451
Gln Arg Glu Arg Trp Thr Glu Asp Glu His Glu Arg Phe Leu Glu Ala
25 30 35

ttg agg ctt tat gga aga gct tgg caa cga att gaa gaa cat att ggg 499
Leu Arg Leu Tyr Gly Arg Ala Trp Gln Arg Ile Glu Glu His Ile Gly
40 45 50

mbi19 Sequence Listing.ST25

aca aag act gct gtt cag atc aga agt cat gca caa aag ttc ttc aca Thr Lys Thr Ala Val Gln Ile Arg Ser His Ala Gln Lys Phe Phe Thr 55 60 65 70	547
aag ttg gag aaa gag gct gaa gtt aaa ggc atc cct gtt tgc caa gct Lys Leu Glu Lys Glu Ala Glu Val Lys Gly Ile Pro Val Cys Gln Ala 75 80 85	595
ttg gac ata gaa att ccg cct cct cgt cct aaa cga aaa ccc aat act Leu Asp Ile Glu Ile Pro Pro Arg Pro Lys Arg Lys Pro Asn Thr 90 95 100	643
cct tat cct cga aaa cct ggg aac aac ggt aca tct tcc tct caa gta Pro Tyr Pro Arg Lys Pro Gly Asn Asn Gly Thr Ser Ser Gln Val 105 110 115	691
tca tca gca aaa gat gca aaa ctt gtt tca tcg gcc tct tct tca cag Ser Ser Ala Lys Asp Ala Lys Leu Val Ser Ser Ala Ser Ser Gln 120 125 130	739
ttg aat cag gcg ttc ttg gat ttg gaa aaa atg ccg ttc tct gag aaa Leu Asn Gln Ala Phe Leu Asp Leu Glu Lys Met Pro Phe Ser Glu Lys 135 140 145 150	787
aca tca act gga aaa gaa aat caa gat gag aat tgc tcg ggt gtt tct Thr Ser Thr Gly Lys Glu Asn Gln Asp Glu Asn Cys Ser Gly Val Ser 155 160 165	835
act gtg aac aag tat ccc tta cca acg aaa caq gta agt ggc gac att Thr Val Asn Lys Tyr Pro Leu Pro Thr Lys Gln Val Ser Gly Asp Ile 170 175 180	883
gaa aca agt aag acc tca act gtg gac aac gcg gtt caa gat gtt ccc Glu Thr Ser Lys Thr Ser Thr Val Asp Asn Ala Val Gln Asp Val Pro 185 190 195	931
aag aag aac aaa gac aaa gat ggt aac gat ggt act act gtg cac agc Lys Lys Asn Lys Asp Lys Asp Gly Asn Asp Gly Thr Thr Val His Ser 200 205 210	979
atg caa aac tac cct tgg cat ttc cac gca gat att gtg aac ggg aat Met Gln Asn Tyr Pro Trp His Phe His Ala Asp Ile Val Asn Gly Asn 215 220 225 230	1027
ata gca aaa tgc cct caa aat cat ccc tca ggt atg gta tct caa gac Ile Ala Lys Cys Pro Gln Asn His Pro Ser Gly Met Val Ser Gln Asp 235 240 245	1075
ttc atg ttt cat cct atg aga gaa act cac ggg cac gca aat ctt Phe Met Phe His Pro Met Arg Glu Glu Thr His Gly His Ala Asn Leu 250 255 260	1123
caa gct aca aca gca tct gct act act aca gct tct cat caa gcg ttt Gln Ala Thr Thr Ala Ser Ala Thr Thr Ala Ser His Gln Ala Phe 265 270 275	1171
cca gct tgt cat tca cag gat gat tac cgt tcg ttt ctc cag ata tca Pro Ala Cys His Ser Gln Asp Asp Tyr Arg Ser Phe Leu Gln Ile Ser 280 285 290	1219
tct act ttc tcc aat ctt att atg tca act ctc cta cag aat cct gca Ser Thr Phe Ser Asn Leu Ile Met Ser Thr Leu Leu Gln Asn Pro Ala 295 300 305 310	1267
gct cat gct gca gct aca ttc gct gct tcg gtc tgg cct tat gcg agt Ala His Ala Ala Ala Thr Phe Ala Ala Ser Val Trp Pro Tyr Ala Ser 315 320 325	1315
gtc ggg aat tct ggt gat tca tca acc cca atg agc tct tct cct cca Val Gly Asn Ser Gly Asp Ser Ser Thr Pro Met Ser Ser Pro Pro 330 335 340	1363
agt ata act gcc att gcc gct gct aca gta gct gct gca act gct tgg Ser Ile Thr Ala Ile Ala Ala Ala Thr Val Ala Ala Thr Ala Trp	1411

mbi19 Sequence Listing.ST25

345	350	355														
tgg gct tct cat gga ctt ctt cct gta tgc gct cca gct cca ata aca																
Trp	Ala	Ser	His	Gly	Leu	Leu	Pro	Val	Cys	Ala	Pro	Ala	Pro	Ile	Thr	1459
360	365								370							
tgt gtt cca ttc tca act gtt gca gtt cca act cca gca atg act gaa																
Cys	Val	Pro	Phe	Ser	Thr	Val	Ala	Val	Pro	Thr	Pro	Ala	Met	Thr	Glu	1507
375	380				385				390							
atg gat acc gtt gaa aat act caa ccg ttt gag aaa caa aac aca gct																
Met	Asp	Thr	Val	Glu	Asn	Thr	Gln	Pro	Phe	Glu	Lys	Gln	Asn	Thr	Ala	1555
									400					405		
ctg caa gat caa acc ttg gct tcg aaa tct cca gct tca tca tct gat																
Leu	Gln	Asp	Gln	Thr	Leu	Ala	Ser	Lys	Ser	Pro	Ala	Ser	Ser	Ser	Asp	1603
								410	415				420			
gat tca gat gag act gga gta acc aag cta aat gcc gac tca aaa acc																
Asp	Ser	Asp	Glu	Thr	Gly	Val	Thr	Lys	Leu	Asn	Ala	Asp	Ser	Lys	Thr	1651
								425	430				435			
aat gat gat aaa att gag gag gtt gtt act gcc gct gtg cat gac																
Asn	Asp	Asp	Lys	Ile	Glu	Glu	Val	Val	Val	Thr	Ala	Ala	Val	His	Asp	1699
								440	445				450			
tca aac act gcc cag aag aaa aat ctt gtg gac cgc tca tcg tgt ggc																
Ser	Asn	Thr	Ala	Gln	Lys	Asn	Leu	Val	Asp	Arg	Ser	Ser	Cys	Gly	1747	
					455			460		465				470		
tca aat aca cct tca ggg agt gac gca gaa act gat gca tta gat aaa																
Ser	Asn	Thr	Pro	Ser	Gly	Ser	Asp	Ala	Glu	Thr	Asp	Ala	Leu	Asp	Lys	1795
					475			480					485			
atg gag aaa gat aaa gag gat gtg aag gag aca gat gag aat cag cca																
Met	Glu	Lys	Asp	Lys	Glu	Asp	Val	Lys	Glu	Thr	Asp	Glu	Asn	Gln	Pro	1843
					490			495					500			
gat gtt att gag tta aat aac cgt aag att aaa atg aga gac aac aac																
Asp	Val	Ile	Glu	Leu	Asn	Asn	Arg	Lys	Ile	Lys	Met	Arg	Asp	Asn	Asn	1891
					505			510					515			
agc aac aac aat gca act act gat tcg tgg aag gaa gtc tcc gaa gag																
Ser	Asn	Asn	Asn	Ala	Thr	Thr	Asp	Ser	Trp	Lys	Glu	Val	Ser	Glu	Glu	1939
					520			525					530			
ggt cgt ata gcg ttt cag gct ctc ttt gca aga gaa aga ttg cct caa																
Gly	Arg	Ile	Ala	Phe	Gln	Ala	Leu	Phe	Ala	Arg	Glu	Arg	Leu	Pro	Gln	1987
					535			540		545				550		
agc ttt tcg cct caa gtg gca gag aat gtg aat aga aaa caa agt																
Ser	Phe	Ser	Pro	Pro	Gln	Val	Ala	Glu	Asn	Val	Asn	Arg	Lys	Gln	Ser	2035
					555			560					565			
gac acg tca atg cca ttg gct cct aat ttc aaa agc cag gat tct tgt																
Asp	Thr	Ser	Met	Pro	Leu	Ala	Pro	Asn	Phe	Lys	Ser	Gln	Asp	Ser	Cys	2083
					570			575					580			
gct gca gac caa gaa gga gta atg atc ggt gtt gga aca tgc aag																
Ala	Ala	Asp	Gln	Glu	Gly	Val	Val	Met	Ile	Gly	Val	Gly	Thr	Cys	Lys	2131
					585			590					595			
agt ctt aaa acg aga cag aca gga ttt aag cca tac aag aga tgt tca																
Ser	Leu	Lys	Thr	Arg	Gln	Thr	Gly	Phe	Lys	Pro	Tyr	Lys	Arg	Cys	Ser	2179
					600			605					610			
atg gaa gtg aaa gag agc caa gtt ggg aac ata aac aat caa agt gat																
Met	Glu	Val	Lys	Glu	Ser	Gln	Val	Gly	Asn	Ile	Asn	Asn	Gln	Ser	Asp	2227
					615			620		625				630		
gaa aaa gtc tgc aaa agg ctt cga ttg gaa gga gaa gct tct aca tga																
Glu	Lys	Val	Cys	Lys	Arg	Leu	Arg	Leu	Glu	Gly	Glu	Ala	Ser	Thr	635	
									640					645		
cagacttgga ggtaaaaaaaaaacatccac attttatca atatcttaa atcttagtgtt																

mbi19 Sequence Listing.ST25

agtagttgc ttctccaatc tttatgaaag agactttaa ttttccttcc gaacatttct	2395
tgggtcatgt caggttctgt accatattac cccatgtctt gtctcttgct tctgttgt	2455
tatgctactt gtggctata tgtcatctgc tactactgtt aattaaccat taagcaatgg	2515
atttgtcttt a	2526

<210> 20
<211> 645
<212> PRT
<213> Arabidopsis thaliana

<400> 20

Met Asp Thr Asn Thr Ser Gly Glu Glu Leu Leu Ala Lys Ala Arg Lys			
1	5	10	15

Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Asp Glu His		
20	25	30

Glu Arg Phe Leu Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Arg		
35	40	45

Ile Glu Glu His Ile Gly Thr Lys Thr Ala Val Gln Ile Arg Ser His		
50	55	60

Ala Gln Lys Phe Phe Thr Lys Leu Glu Lys Glu Ala Glu Val Lys Gly			
65	70	75	80

Ile Pro Val Cys Gln Ala Leu Asp Ile Glu Ile Pro Pro Pro Arg Pro		
85	90	95

Lys Arg Lys Pro Asn Thr Pro Tyr Pro Arg Lys Pro Gly Asn Asn Gly		
100	105	110

Thr Ser Ser Ser Gln Val Ser Ser Ala Lys Asp Ala Lys Leu Val Ser		
115	120	125

Ser Ala Ser Ser Ser Gln Leu Asn Gln Ala Phe Leu Asp Leu Glu Lys		
130	135	140

Met Pro Phe Ser Glu Lys Thr Ser Thr Gly Lys Glu Asn Gln Asp Glu			
145	150	155	160

Asn Cys Ser Gly Val Ser Thr Val Asn Lys Tyr Pro Leu Pro Thr Lys		
165	170	175

Gln Val Ser Gly Asp Ile Glu Thr Ser Lys Thr Ser Thr Val Asp Asn		
180	185	190

Ala Val Gln Asp Val Pro Lys Lys Asn Lys Asp Lys Asp Gly Asn Asp		
195	200	205

Gly Thr Thr Val His Ser Met Gln Asn Tyr Pro Trp His Phe His Ala		
210	215	220

Asp Ile Val Asn Gly Asn Ile Ala Lys Cys Pro Gln Asn His Pro Ser			
225	230	235	240

mbi19 Sequence Listing.ST25

Gly Met Val Ser Gln Asp Phe Met Phe His Pro Met Arg Glu Glu Thr
 245 250 255

His Gly His Ala Asn Leu Gln Ala Thr Thr Ala Ser Ala Thr Thr Thr
 260 265 270

Ala Ser His Gln Ala Phe Pro Ala Cys His Ser Gln Asp Asp Tyr Arg
 275 280 285

Ser Phe Leu Gln Ile Ser Ser Thr Phe Ser Asn Leu Ile Met Ser Thr
 290 295 300

Leu Leu Gln Asn Pro Ala Ala His Ala Ala Ala Thr Phe Ala Ala Ser
 305 310 315 320

Val Trp Pro Tyr Ala Ser Val Gly Asn Ser Gly Asp Ser Ser Thr Pro
 325 330 335

Met Ser Ser Ser Pro Pro Ser Ile Thr Ala Ile Ala Ala Ala Thr Val
 340 345 350

Ala Ala Ala Thr Ala Trp Trp Ala Ser His Gly Leu Leu Pro Val Cys
 355 360 365

Ala Pro Ala Pro Ile Thr Cys Val Pro Phe Ser Thr Val Ala Val Pro
 370 375 380

Thr Pro Ala Met Thr Glu Met Asp Thr Val Glu Asn Thr Gln Pro Phe
 385 390 395 400

Glu Lys Gln Asn Thr Ala Leu Gln Asp Gln Thr Leu Ala Ser Lys Ser
 405 410 415

Pro Ala Ser Ser Ser Asp Asp Ser Asp Glu Thr Gly Val Thr Lys Leu
 420 425 430

Asn Ala Asp Ser Lys Thr Asn Asp Asp Lys Ile Glu Glu Val Val Val
 435 440 445

Thr Ala Ala Val His Asp Ser Asn Thr Ala Gln Lys Lys Asn Leu Val
 450 455 460

Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Gly Ser Asp Ala Glu
 465 470 475 480

Thr Asp Ala Leu Asp Lys Met Glu Lys Asp Lys Glu Asp Val Lys Glu
 485 490 495

Thr Asp Glu Asn Gln Pro Asp Val Ile Glu Leu Asn Asn Arg Lys Ile
 500 505 510

Lys Met Arg Asp Asn Asn Ser Asn Asn Ala Thr Thr Asp Ser Trp
 515 520 525

Lys Glu Val Ser Glu Glu Gly Arg Ile Ala Phe Gln Ala Leu Phe Ala

mbi19 Sequence Listing.ST25

530	535	540
Arg Glu Arg Leu Pro Gln Ser Phe Ser Pro Pro Gln Val Ala Glu Asn		
545	550	555
560		
Val Asn Arg Lys Gln Ser Asp Thr Ser Met Pro Leu Ala Pro Asn Phe		
565	570	575
Lys Ser Gln Asp Ser Cys Ala Ala Asp Gln Glu Gly Val Val Met Ile		
580	585	590
Gly Val Gly Thr Cys Lys Ser Leu Lys Thr Arg Gln Thr Gly Phe Lys		
595	600	605
Pro Tyr Lys Arg Cys Ser Met Glu Val Lys Glu Ser Gln Val Gly Asn		
610	615	620
Ile Asn Asn Gln Ser Asp Glu Lys Val Cys Lys Arg Leu Arg Leu Glu		
625	630	635
640		
Gly Glu Ala Ser Thr		
645		
<210> 21		
<211> 1281		
<212> DNA		
<213> Arabidopsis thaliana		
<220>		
<221> CDS		
<222> (64)..(1098)		
<223> G867		
<400> 21		
cacaacacaa acacatttct gtttctcca ttgtttcaaa ccataaaaaa aaacacagat 60		
taa atg gaa tcg agt agc gtt gat gag agt act aca agt aca ggt tcc 108		
Met Glu Ser Ser Val Asp Glu Ser Thr Thr Ser Thr Gly Ser 5 10 15		
atc tgt gaa acc ccg gcg ata act ccg gcg aaa aag tcg tcg gta ggt 156		
Ile Cys Glu Thr Pro Ala Ile Thr Pro Ala Lys Lys Ser Ser Val Gly 20 25 30		
aac tta tac agg atg gga agc gga tca agc gtt gtg tta gat tca gag 204		
Asn Leu Tyr Arg Met Gly Ser Gly Ser Ser Val Val Leu Asp Ser Glu 35 40 45		
aac ggc gta gaa gct gaa tct agg aag ctt ccg tcg tca aaa tac aaa 252		
Asn Gly Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser Lys Tyr Lys 50 55 60		
ggg gtg gtg cca caa cca aac gga aga tgg gga gct cag att tac gag 300		
Gly Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln Ile Tyr Glu 65 70 75		
aaa cac cag cgc gtg tgg ctc ggg aca ttc aac gaa gac gaa gcc 348		
Lys His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu Asp Glu Ala 80 85 90 95		
gct cgt gcc tac gac gtc gcg gtt cac agg ttc cgt cgc cgt gac gcc 396		
Ala Arg Ala Tyr Asp Val Ala Val His Arg Phe Arg Arg Asp Ala 100 105 110		
gtc aca aat ttc aaa gac gtg aag atg gac gaa gac gag gtc gat ttc 444		
Val Thr Asn Phe Lys Asp Val Lys Met Asp Glu Asp Glu Val Asp Phe		

mbi19 Sequence Listing.ST25

115	120	125	
ttg aat tct cat tcg aaa tct gag atc gtt gat atg ttg agg aaa cat			492
Leu Asn Ser His Ser Lys Ser Glu Ile Val Asp Met Leu Arg Lys His			
130	135	140	
act tat aac gaa gag tta gag cag agt aaa cgg cgt cgt aat ggt aac			540
Thr Tyr Asn Glu Glu Leu Glu Gln Ser Lys Arg Arg Arg Asn Gly Asn			
145	150	155	
gga aac atg act agg acg ttg tta acg tcg ggg ttg agt aat gat ggt			588
Gly Asn Met Thr Arg Thr Leu Leu Thr Ser Gly Leu Ser Asn Asp Gly			
160	165	170	175
gtt tct acg acg ggg ttt aga tcg gcg gag gca ctg ttt gag aaa gcg			636
Val Ser Thr Thr Gly Phe Arg Ser Ala Glu Ala Leu Phe Glu Lys Ala			
180	185	190	
gta acg cca agc gac gtt ggg aag cta aac cgt ttg gtt ata ccg aaa			684
Val Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys			
195	200	205	
cat cac gca gag aaa cat ttt ccg tta ccg tca agt aac gtt tcc gtg			732
His His Ala Glu Lys His Phe Pro Leu Pro Ser Ser Asn Val Ser Val			
210	215	220	
aaa gga gtg ttg ttg aac ttt gag gac gtt aac ggg aaa gtg tgg agg			780
Lys Gly Val Leu Leu Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg			
225	230	235	
ttc cgt tac tcg tat tgg aac agt agt cag agt tat gtt ttg act aaa			828
Phe Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys			
240	245	250	255
ggg tgg agc agg ttc gtt aag gag aag aat cta cgt gct ggt gac gtg			876
Gly Trp Ser Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val			
260	265	270	
gtt agt ttc agt aga tct aac ggt cag gat caa cag ttg tac att ggg			924
Val Ser Phe Ser Arg Ser Asn Gly Gln Asp Gln Gln Leu Tyr Ile Gly			
275	280	285	
tgg aag tcg aga tcc ggg tca gat tta gat gcg ggt cgg gtt ttg aga			972
Trp Lys Ser Arg Ser Gly Ser Asp Leu Asp Ala Gly Arg Val Leu Arg			
290	295	300	
ttg ttc gga gtt aac att tca ccg gag agt tca aga aac gac gtc gta			1020
Leu Phe Gly Val Asn Ile Ser Pro Glu Ser Ser Arg Asn Asp Val Val			
305	310	315	
gga aac aaa aga gtg aac gat act gag atg tta tcg ttg gtg tgt agc			1068
Gly Asn Lys Arg Val Asn Asp Thr Glu Met Leu Ser Leu Val Cys Ser			
320	325	330	335
aag aag caa cgc atc ttt cac gcc tcg taa caactttct tcttttttt			1118
Lys Lys Gln Arg Ile Phe His Ala Ser			
340			
tcttttgtt tttataat tttaaaaac tccatttcg ttttttttat ttgcattcggt			1178
ttcttttttc ttgtttacca aaggttcatg agttgtttt ttgttattga tgaactgtaa			1238
attttattta taggataaat ttaaaaaaaaaaaaaaaaaaa aaa			1281
<210> 22			
<211> 344			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 22			
Met Glu Ser Ser Ser Val Asp Glu Ser Thr Thr Ser Thr Gly Ser Ile			
1	5	10	15

mbi19 Sequence Listing.ST25

Cys Glu Thr Pro Ala Ile Thr Pro Ala Lys Lys Ser Ser Val Gly Asn
20 25 30

Leu Tyr Arg Met Gly Ser Gly Ser Ser Val Val Leu Asp Ser Glu Asn
35 40 45

Gly Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser Lys Tyr Lys Gly
50 55 60

Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln Ile Tyr Glu Lys
65 70 75 80

His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu Asp Glu Ala Ala
85 90 95

Arg Ala Tyr Asp Val Ala Val His Arg Phe Arg Arg Arg Asp Ala Val
100 105 110

Thr Asn Phe Lys Asp Val Lys Met Asp Glu Asp Glu Val Asp Phe Leu
115 120 125

Asn Ser His Ser Lys Ser Glu Ile Val Asp Met Leu Arg Lys His Thr
130 135 140

Tyr Asn Glu Glu Leu Glu Gln Ser Lys Arg Arg Arg Asn Gly Asn Gly
145 150 155 160

Asn Met Thr Arg Thr Leu Leu Thr Ser Gly Leu Ser Asn Asp Gly Val
165 170 175

Ser Thr Thr Gly Phe Arg Ser Ala Glu Ala Leu Phe Glu Lys Ala Val
180 185 190

Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys His
195 200 205

His Ala Glu Lys His Phe Pro Leu Pro Ser Ser Asn Val Ser Val Lys
210 215 220

Gly Val Leu Leu Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg Phe
225 230 235 240

Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys Gly
245 250 255

Trp Ser Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val Val
260 265 270

Ser Phe Ser Arg Ser Asn Gly Gln Asp Gln Gln Leu Tyr Ile Gly Trp
275 280 285

Lys Ser Arg Ser Gly Ser Asp Leu Asp Ala Gly Arg Val Leu Arg Leu
290 295 300

Phe Gly Val Asn Ile Ser Pro Glu Ser Ser Arg Asn Asp Val Val Gly
305 310 315 320

mbil9 Sequence Listing.ST25

Asn Lys Arg Val Asn Asp Thr Glu Met Leu Ser Leu Val Cys Ser Lys
325 330 335

Lys Gln Arg Ile Phe His Ala Ser
340

<210> 23
<211> 724
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (20)..(694)
<223> G912

```

<400> 23
catcttatcc aaagaaaaaa atg aat cca ttt tac tct aca ttc cca gac tcg      52
          Met Asn Pro Phe Tyr Ser Thr Phe Pro Asp Ser
          1       5           10

```

```

ttt ctc tca atc tcc gat cat aga tct ccg gtt tca gac agt agt gag    100
Phe Leu Ser Ile Ser Asp His Arg Ser Pro Val Ser Asp Ser Ser Glu
          15      20      .      25

```

tgt tca cca aag tta gct tca agt tgt cca aag aaa cga gct ggg agg	148
Cys Ser Pro Lys Leu Ala Ser Ser Cys Pro Lys Lys Arg Ala Gly Arg	
30 35 40	

aag aag ttt cgt gag aca cgt cat ccg att tac aga gga gtt cgt cag	196
Lys Lys Phe Arg Glu Thr Arg His Pro Ile Tyr Arg Gly Val Arg Gln	
45 50 55	

agg aat tct ggt aaa tgg gtt tgt gaa gtt aga gag cct aat aag aaa 244
 Arg Asn Ser Gly Lys Trp Val Cys Glu Val Arg Glu Pro Asn Lys Lys
 60 65 70 75

tct agg att tgg tta ggt act ttt ccg acg gtt gaa atg gct gct cgt . . . 292
Ser Arg Ile Trp Leu Gly Thr Phe Pro Thr Val Glu Met Ala Ala Arg
80 85 90

gct cat gat gtt gct gct tta gct ctt cgt ggt cgc tct gct tgt ctc	340	
Ala His Asp Val Ala Ala Leu Ala Leu Arg Gly Arg Ser Ala Cys Leu		
95	100	105

```

aat ttc gct gat tct gct tgg cgg ctt cgt att cct gag act act tgt      388
Asn Phe Ala Asp Ser Ala Trp Arg Leu Arg Ile Pro Glu Thr Thr Cys
   110          115          120

```

```

cct aag gag att cag aaa gct gcg tct gaa gct gca atg gcg ttt cag      436
Pro Lys Glu Ile Gln Lys Ala Ala Ser Glu Ala Ala Met Ala Phe Gln
   125          130          135

```

aat gag act acg acg gag gga tct aaa act gcg gcg gag gca gag gag 484
Asn Glu Thr Thr Thr Glu Gly Ser Lys Thr Ala Ala Glu Ala Glu Glu
140 145 150 155

gcg gca ggg gag ggg gtg agg gag ggg gag agg agg gcg gag gag cag
 Ala Ala Gly Glu Gly Val Arg Glu Gly Glu Arg Arg Ala Glu Glu Gln 532
 160 165 170

```

aat ggt ggt gtg ttt tat atg gat gat gag gcg ctt ttg ggg atg ccc      580
Asn Gly Gly Val Phe Tyr Met Asp Asp Glu Ala Leu Leu Gly Met Pro
175          180          185

```

aac ttt ttt gag aat atg gcg gag ggg atg ctt ttg ccg ccg ccg gaa 628
Asn Phe Phe Glu Asn Met Ala Glu Gly Met Leu Leu Pro Pro Pro Glu
190 195 200

gtt ggc tgg aat cat aac gac ttt gac gga gtg ggt gac gtg tca ctc 676

mbi19 Sequence Listing .ST25

Val	Gly	Trp	Asn	His	Asn	Asp	Phe	Asp	Gly	Val	Gly	Asp	Val	Ser	Leu
205						210				215					

tgg agt ttt gac gag taa tttttggct cttttctgg ataataagtt	724
Trp Ser Phe Asp Glu	
220	

<210> 24
<211> 224
<212> PRT
<213> Arabidopsis thaliana

<400> 24

Met	Asn	Pro	Phe	Tyr	Ser	Thr	Phe	Pro	Asp	Ser	Phe	Leu	Ser	Ile	Ser
1					5			10				15			

Asp	His	Arg	Ser	Pro	Val	Ser	Asp	Ser	Ser	Glu	Cys	Ser	Pro	Lys	Leu
					20			25			30				

Ala	Ser	Ser	Cys	Pro	Lys	Lys	Arg	Ala	Gly	Arg	Lys	Lys	Phe	Arg	Glu
					35		40			45					

Thr	Arg	His	Pro	Ile	Tyr	Arg	Gly	Val	Arg	Gln	Arg	Asn	Ser	Gly	Lys
					50		55		60						

Trp	Val	Cys	Glu	Val	Arg	Glu	Pro	Asn	Lys	Lys	Ser	Arg	Ile	Trp	Leu
					65		70		75		80				

Gly	Thr	Phe	Pro	Thr	Val	Glu	Met	Ala	Ala	Arg	Ala	His	Asp	Val	Ala
					85			90		95					

Ala	Leu	Ala	Leu	Arg	Gly	Arg	Ser	Ala	Cys	Leu	Asn	Phe	Ala	Asp	Ser
					100			105		110					

Ala	Trp	Arg	Leu	Arg	Ile	Pro	Glu	Thr	Thr	Cys	Pro	Lys	Glu	Ile	Gln
					115		120		125						

Lys	Ala	Ala	Ser	Glu	Ala	Ala	Met	Ala	Phe	Gln	Asn	Glu	Thr	Thr	Thr
					130		135		140						

Glu	Gly	Ser	Lys	Thr	Ala	Ala	Glu	Ala	Ala	Gly	Glu	Gly	Glu	Gly
					145		150		155		160			

Val	Arg	Glu	Gly	Glu	Arg	Arg	Ala	Glu	Glu	Gln	Asn	Gly	Gly	Val	Phe
					165			170		175					

Tyr	Met	Asp	Asp	Glu	Ala	Leu	Leu	Gly	Met	Pro	Asn	Phe	Phe	Glu	Asn
					180			185		190					

Met	Ala	Glu	Gly	Met	Leu	Leu	Pro	Pro	Pro	Glu	Val	Gly	Trp	Asn	His
					195			200		205					

Asn	Asp	Phe	Asp	Gly	Val	Gly	Asp	Val	Ser	Leu	Trp	Ser	Phe	Asp	Glu
					210		215		220						

<210> 25
<211> 1082
<212> DNA
<213> Arabidopsis thaliana

mbi19 Sequence Listing.ST25

mbi19 Sequence Listing .ST25

cag caa att caa gag agt aac tac aac aat tca aca ttc ttt gga aat Gln Gln Ile Gln Glu Ser Asn Tyr Asn Asn Ser Thr Phe Phe Gly Asn 260 265 270	874
ggg aat ctg aat tgg gga tta aca atg gag gaa aat caa aat cca ttc Gly Asn Leu Asn Trp Gly Leu Thr Met Glu Glu Asn Gln Asn Pro Phe 275 280 285 290	922
aca ata tcg aat cat tca aat tcg tcc tta tac agt gat ata aaa tca Thr Ile Ser Asn His Ser Asn Ser Leu Tyr Ser Asp Ile Lys Ser 295 300 305	970
gag acc aat ttt ttt ggc aca gag gct aca aat gtt ggt atg tgg cca Glu Thr Asn Phe Phe Gly Thr Glu Ala Thr Asn Val Gly Met Trp Pro 310 315 320	1018
tgt aac cag ctt cag cct cag caa cat gca tat ggc cat ata taa Cys Asn Gln Leu Gln Pro Gln Gln His Ala Tyr Gly His Ile 325 330 335	1063
atcttcttgt atattataa	1082
<210> 26	
<211> 336	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 26	
Met Gly Arg His Ser Cys Cys Tyr Lys Gln Lys Leu Arg Lys Gly Leu 1 5 10 15	
Trp Ser Pro Glu Glu Asp Glu Lys Leu Leu Arg Tyr Ile Thr Lys Tyr 20 25 30	
Gly His Gly Cys Trp Ser Ser Val Pro Lys Gln Ala Gly Leu Gln Arg 35 40 45	
Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp 50 55 60	
Leu Lys Arg Gly Ala Phe Ser Gln Asp Glu Glu Asn Leu Ile Ile Glu 65 70 75 80	
Leu His Ala Val Leu Gly Asn Arg Trp Ser Gln Ile Ala Ala Gln Leu 85 90 95	
Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Leu Trp Asn Ser Cys Leu 100 105 110	
Lys Lys Lys Leu Arg Leu Arg Gly Ile Asp Pro Val Thr His Lys Leu 115 120 125	
Leu Thr Glu Ile Glu Thr Gly Thr Asp Asp Lys Thr Lys Pro Val Glu 130 135 140	
Lys Ser Gln Gln Thr Tyr Leu Val Glu Thr Asp Gly Ser Ser Ser Thr 145 150 155 160	
Thr Thr Cys Ser Thr Asn Gln Asn Asn Thr Asp His Leu Tyr Thr 165 170 175	

mbi19 Sequence Listing.ST25

Gly	Asn	Phe	Gly	Phe	Gln	Arg	Leu	Ser	Leu	Glu	Asn	Gly	Ser	Arg	Ile
180							185					190			
Ala Ala Gly Ser Asp Leu Gly Ile Trp Ile Pro Gln Thr Gly Arg Asn															
195					200						205				
His His His His Val Asp Glu Thr Ile Pro Ser Ala Val Val Leu Pro															
210					215						220				
Gly Ser Met Phe Ser Ser Gly Leu Thr Gly Tyr Arg Ser Ser Asn Leu															
225					230					235			240		
Gly Leu Ile Glu Leu Glu Asn Ser Phe Ser Thr Gly Pro Met Met Thr															
245					250						255				
Glu His Gln Gln Ile Gln Glu Ser Asn Tyr Asn Asn Ser Thr Phe Phe															
260					265						270				
Gly Asn Gly Asn Leu Asn Trp Gly Leu Thr Met Glu Glu Asn Gln Asn															
275					280					285					
Pro Phe Thr Ile Ser Asn His Ser Asn Ser Ser Leu Tyr Ser Asp Ile															
290					295						300				
Lys Ser Glu Thr Asn Phe Phe Gly Thr Glu Ala Thr Asn Val Gly Met															
305					310					315			320		
Trp Pro Cys Asn Gln Leu Gln Pro Gln Gln His Ala Tyr Gly His Ile															
325					330						335				
<210> 27															
<211> 1606															
<212> DNA															
<213> Arabidopsis thaliana															
<220>															
<221> CDS															
<222> (150)..(1310)															
<223> G1068															
<400> 27															
gagagttgtt agctagctca cacgcttcg cttaaaactc aaaaacctgc actttctcg															
ctatttctc ggcatttcgt aaacagaaaa gtgggtctcc aagaaaatta ccctaaattt															
acaaaagattc atactttctt ccaccccca atg gat tcc aga gag atc cac cac															
Met Asp Ser Arg Glu Ile His His															
1 5															
caa caa cag caa caa caa caa caa cag cag cag cag caa caa cag															
Gln															
10 15 20															
caa cat cta caa caa cag caa caa cca ccg cca ggg atg tta atg agt															
Gln His Leu Gln Gln Gln Gln Pro Pro Pro Gly Met Leu Met Ser															
25 30 35 40															
cac cac aat tcc tac aat cga aac cct aac gcc gcc gct gtt tta															
His His Asn Ser Tyr Asn Arg Asn Pro Asn Ala Ala Ala Val Leu															
45 50 55															
atg ggt cac aac acc tcc aca tct caa gct atg cat caa aga tta cct															
Met Gly His Asn Thr Ser Thr Ser Gln Ala Met His Gln Arg Leu Pro															
60 65 70															

mbi19 Sequence Listing.ST25

ttt ggt ggt tct atg tca ccg cat cag cct caa caa cat cag tat cat Phe Gly Gly Ser Met Ser Pro His Gln Pro Gln Gln His Gln Tyr His 75 80 85	413
cat cct cag cct cag caa cag ata gat cag aag act ctt gaa tct ctt His Pro Gln Pro Gln Gln Ile Asp Gln Lys Thr Leu Glu Ser Leu 90 95 100	461
gga ttt cct act tcg cct ctt tct gct tct aat tct tac ggt ggt Gly Phe Pro Thr Ser Pro Leu Pro Ser Ala Ser Asn Ser Tyr Gly Gly 105 110 115 120	509
gga aat gaa gga ggt ggt ggt gat agc gcc gga gct aat gct aac Gly Asn Glu Gly Gly Gly Asp Ser Ala Gly Ala Asn Ala Asn 125 130 135	557
tct tcc gat cca cct gct aaa cgg aac aga gga cgt cct cct ggc tcc Ser Ser Asp Pro Pro Ala Lys Arg Asn Arg Gly Arg Pro Pro Gly Ser 140 145 150	605
ggt aag aag cag ctc gat gct tta gga gga aca gga gga gtt ggg ttc Gly Lys Lys Gln Leu Asp Ala Leu Gly Gly Thr Gly Gly Val Gly Phe 155 160 165	653
acg cct cat gtc att gag gtt aaa aca gga gag gac ata gct acg aag Thr Pro His Val Ile Glu Val Lys Thr Gly Glu Asp Ile Ala Thr Lys 170 175 180	701
ata ttg gcg ttt acg aac caa ggg cca cgc gca atc tgt att ctc tca Ile Leu Ala Phe Thr Asn Gln Gly Pro Arg Ala Ile Cys Ile Leu Ser 185 190 195 200	749
gct aca gga gct gta act aat gtg atg ctt cgt caa gct aac aat agc Ala Thr Gly Ala Val Thr Asn Val Met Leu Arg Gln Ala Asn Asn Ser 205 210 215	797
aat cct act gga act gtt aag tat gag ggc cga ttt gaa atc att tct Asn Pro Thr Gly Thr Val Lys Tyr Glu Gly Arg Phe Glu Ile Ile Ser 220 225 230	845
ctg tca ggt tct ttc ttg aat tct gag agt aat ggt act gtg acc aaa Leu Ser Gly Ser Phe Leu Asn Ser Glu Ser Asn Gly Thr Val Thr Lys 235 240 245	893
act ggt aac ttg agt gtg tcg ctg gct gga cac gaa ggc cgg att gtg Thr Gly Asn Leu Ser Val Ser Leu Ala Gly His Glu Gly Arg Ile Val 250 255 260	941
ggt gga tgt gtt gat gga atg cta gta gct gga tca caa gtc cag gtc Gly Gly Cys Val Asp Gly Met Leu Val Ala Gly Ser Gln Val Gln Val 265 270 275 280	989
att gtg gga agc ttt gta cca gat gga agg aag cag aaa caa agt gcg Ile Val Gly Ser Phe Val Pro Asp Gly Arg Lys Gln Lys Gln Ser Ala 285 290 295	1037
ggg cgt gct cag aat act ccg gag cca gct tca gca cca gcc aat atg Gly Arg Ala Gln Asn Thr Pro Glu Pro Ala Ser Ala Pro Ala Asn Met 300 305 310	1085
ttg agc ttt ggt ggt gtt gga ccg gga agc cct cga tct caa gga Leu Ser Phe Gly Gly Val Gly Pro Gly Ser Pro Arg Ser Gln Gly 315 320 325	1133
caa caa cac tcg agc gag tca tca gag gaa aac gaa agt aat tct ccg Gln Gln His Ser Ser Glu Ser Ser Glu Glu Asn Glu Ser Asn Ser Pro 330 335 340	1181
ttg cac cgt aga agc aac aac aac agc aac aat cat ggg ata ttt Leu His Arg Arg Ser Asn Asn Asn Ser Asn Asn His Gly Ile Phe 345 350 355 360	1229
gga aac tct aca cct caa ccg ctt cac caa att cct atg cag atg tac Gly Asn Ser Thr Pro Gln Pro Leu His Gln Ile Pro Met Gln Met Tyr	1277

mbil9 Sequence Listing.ST25

365	370	375
cag aat ctc tgg cct ggc aac agt cct caa taa acagatggtt catgggtcaa Gln Asn Leu Trp Pro Gly Asn Ser Pro Gln 380 385		1330
gatttgaccg ggtttgcttc tctgttcctt ttgacacatc tctccatcg atttatctct ataaaagtaga ttgagctctc ttactctctc atcttcttct cctttactat ttctcttaaa tttagcttg gtttagata aatagagaga gagagacatg ttaagtaggt ttcaaattca atcttgccta gtttgttct tagtagttc ttttgattgt gatgatcata aagacttgg ctttttctcc tatattcaac gaattatcca cttaa		1390 1450 1510 1570 1606
<210> 28 <211> 386 <212> PRT <213> Arabidopsis thaliana		
<400> 28		
Met Asp Ser Arg Glu Ile His His Gln Gln Gln Gln Gln Gln Gln 1 5 10 15		
Gln Gln Gln Gln Gln Gln Gln Gln His Leu Gln Gln Gln Gln Gln 20 25 30		
Pro Pro Pro Gly Met Leu Met Ser His His Asn Ser Tyr Asn Arg Asn 35 40 45		
Pro Asn Ala Ala Ala Ala Val Leu Met Gly His Asn Thr Ser Thr Ser 50 55 60		
Gln Ala Met His Gln Arg Leu Pro Phe Gly Gly Ser Met Ser Pro His 65 70 75 80		
Gln Pro Gln Gln His Gln Tyr His His Pro Gln Pro Gln Gln Ile 85 90 95		
Asp Gln Lys Thr Leu Glu Ser Leu Gly Phe Pro Thr Ser Pro Leu Pro 100 105 110		
Ser Ala Ser Asn Ser Tyr Gly Gly Asn Glu Gly Gly Gly Gly 115 120 125		
Asp Ser Ala Gly Ala Asn Ala Asn Ser Ser Asp Pro Pro Ala Lys Arg 130 135 140		
Asn Arg Gly Arg Pro Pro Gly Ser Gly Lys Lys Gln Leu Asp Ala Leu 145 150 155 160		
Gly Gly Thr Gly Gly Val Gly Phe Thr Pro His Val Ile Glu Val Lys 165 170 175		
Thr Gly Glu Asp Ile Ala Thr Lys Ile Leu Ala Phe Thr Asn Gln Gly 180 185 190		
Pro Arg Ala Ile Cys Ile Leu Ser Ala Thr Gly Ala Val Thr Asn Val 195 200 205		

mbi19 Sequence Listing.ST25

Met Leu Arg Gln Ala Asn Asn Ser Asn Pro Thr Gly Thr Val Lys Tyr
 210 215 220

Glu Gly Arg Phe Glu Ile Ile Ser Leu Ser Gly Ser Phe Leu Asn Ser
 225 230 235 240

Glu Ser Asn Gly Thr Val Thr Lys Thr Gly Asn Leu Ser Val Ser Leu
 245 250 255

Ala Gly His Glu Gly Arg Ile Val Gly Gly Cys Val Asp Gly Met Leu
 260 265 270

Val Ala Gly Ser Gln Val Gln Val Ile Val Gly Ser Phe Val Pro Asp
 275 280 285

Gly Arg Lys Gln Lys Gln Ser Ala Gly Arg Ala Gln Asn Thr Pro Glu
 290 295 300

Pro Ala Ser Ala Pro Ala Asn Met Leu Ser Phe Gly Gly Val Gly Gly
 305 310 315 320

Pro Gly Ser Pro Arg Ser Gln Gly Gln Gln His Ser Ser Glu Ser Ser
 325 330 335

Glu Glu Asn Glu Ser Asn Ser Pro Leu His Arg Arg Ser Asn Asn Asn
 340 345 350

Asn Ser Asn Asn His Gly Ile Phe Gly Asn Ser Thr Pro Gln Pro Leu
 355 360 365

His Gln Ile Pro Met Gln Met Tyr Gln Asn Leu Trp Pro Gly Asn Ser
 370 375 380

Pro Gln
 385

<210> 29
 <211> 1630
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (97)..(1398)
 <223> G1337

<400> 29
 aatggatttg tcatcattct tctcacccgtc ctttagtctct gaaaataaat tctgattttg 60

atttcgaaatt ttagggattt tgagagagag tcagtt atg agt agt tcg gag aga 114
 Met Ser Ser Ser Glu Arg
 1 5

gta ccg tgc gat ttc tgc ggc gag cgt acg gcg gtt ttg ttt tgt aga 162
 Val Pro Cys Asp Phe Cys Gly Glu Arg Thr Ala Val Leu Phe Cys Arg
 10 15 20

gcc gat acg gcg aag ctg tgt ttg cct tgt gat cag caa gtt cac acg 210
 Ala Asp Thr Ala Lys Leu Cys Leu Pro Cys Asp Gln Gln Val His Thr
 25 30 35

mbi19 Sequence Listing.ST25

gcg aat ctg ttg tcg agg aag cac gtc cgt cga tct cag atc tgc gat aat Ala Asn Leu Leu Ser Arg Lys His Val Arg Ser Gln Ile Cys Asp Asn 40 45 50	258
tgc ggt aac gag cca gtc tct gtt cgg tgt ttc acc gat aat ctg att Cys Gly Asn Glu Pro Val Ser Val Arg Cys Phe Thr Asp Asn Leu Ile 55 60 65 70	306
ttg tgt cag gag tgt gat tgg gat gtt cac gga agt tgt tca gtt tcc Leu Cys Gln Glu Cys Asp Trp Asp Val His Gly Ser Cys Ser Val Ser 75 80 85	354
gat gct cat gtt cga tcc gcc gtc gaa ggt ttt tcc ggt tgt cca tcg Asp Ala His Val Arg Ser Ala Val Glu Gly Phe Ser Gly Cys Pro Ser 90 95 100	402
gcg ttg gag ctt gct gtc tta tgg gga ctt gat ttg gag caa ggg agg Ala Leu Glu Leu Ala Ala Leu Trp Gly Leu Asp Leu Glu Gln Gly Arg 105 110 115	450
aaa gat gaa gag aatcaa gtt ccg atg atg gcg atg atg gat aat Lys Asp Glu Glu Asn Gln Val Pro Met Met Ala Met Met Met Asp Asn 120 125 130	498
ttc ggg atg cag ttg gat tct tgg gtt ttg gga tct aat gaa ttg att Phe Gly Met Gln Leu Asp Ser Trp Val Leu Gly Ser Asn Glu Leu Ile 135 140 145 150	546
gtt ccc agc gat acg acg ttt aag aag cgt gga tct tgt gga tct agt Val Pro Ser Asp Thr Thr Phe Lys Lys Arg Gly Ser Cys Gly Ser Ser 155 160 165	594
tgt ggg agg tat aag cag gta ttg tgt aag cag ctt gag gag ttg ctt Cys Gly Arg Tyr Lys Gln Val Leu Cys Lys Gln Leu Glu Leu Leu 170 175 180	642
aag agt ggt gtt gtc ggt ggt gat ggc gat gat ggt gat cgt gac cgt Lys Ser Gly Val Val Gly Gly Asp Gly Asp Gly Asp Arg Asp Arg 185 190 195	690
gat tgt gac cgt gag ggt gct tgt gat gga gat gga gat gga gaa gca Asp Cys Asp Arg Glu Gly Ala Cys Asp Gly Asp Gly Glu Ala 200 205 210	738
gga gag ggg ctt atg gtt ccg gag atg tca gag aga ttg aaa tgg tca Gly Glu Gly Leu Met Val Pro Glu Met Ser Glu Arg Leu Lys Trp Ser 215 220 225 230	786
aga gat gtt gag gag atc aat ggt ggc gga gga gga gga gtt aac cag Arg Asp Val Glu Ile Asn Gly Gly Gly Gly Val Asn Gln 235 240 245	834
cag tgg aat gct act act aat cct agt ggt ggc cag agt tct cag Gln Trp Asn Ala Thr Thr Asn Pro Ser Gly Gly Gln Ser Ser Gln 250 255 260	882
ata tgg gat ttt aac ttg gga cag tca cgg gga cct gag gat acg agt Ile Trp Asp Phe Asn Leu Gly Gln Ser Arg Gly Pro Glu Asp Thr Ser 265 270 275	930
cga gtg gaa gct gca tat gta ggg aaa ggt gct gct tct tca ttc aca Arg Val Glu Ala Ala Tyr Val Gly Lys Gly Ala Ala Ser Ser Phe Thr 280 285 290	978
atc aac aat ttt gtt gac cat atg aat gaa act tgt tcc act aat gtg Ile Asn Asn Phe Val Asp His Met Asn Glu Thr Cys Ser Thr Asn Val 295 300 305 310	1026
aaa ggt gtc aaa gag att aaa aag gat gac tac aag cga tca act tca Lys Gly Val Lys Glu Ile Lys Lys Asp Asp Tyr Lys Arg Ser Thr Ser 315 320 325	1074
ggc cag gta caa cca aca aaa tct gag agc aac aat cgt cca att acc Gly Gln Val Gln Pro Thr Lys Ser Glu Ser Asn Asn Arg Pro Ile Thr 330 335 340	1122

mbi19 Sequence Listing.ST25

ttt ggc tct gag aaa ggt tcg aac tcc tcc agt gac ttg cat ttc aca 1170
Phe Gly Ser Glu Lys Gly Ser Asn Ser Ser Ser Asp Leu His Phe Thr
345 350 355

gag cat att gct gga act agt tgt aag acc aca aga cta gtt gca act 1218
 Glu His Ile Ala Gly Thr Ser Cys Lys Thr Thr Arg Leu Val Ala Thr
 360 365 370

```

aag gct gat ctg gag cgg ctg gct cag aac aga gga gat gca atg cag      1266
Lys Ala Asp Leu Glu Arg Leu Ala Gln Asn Arg Gly Asp Ala Met Gln
375          380          385          390

```

cgt tac aag gaa aag agg aag aca cgg aga tat gat aag acc ata agg 1314
 Arg Tyr Lys Glu Lys Arg Lys Thr Arg Arg Tyr Asp Lys Thr Ile Arg
 395 400 405

tat gaa tcg agg aag gca aga gct gac act agg ttg cgt gtc aga ggc 1362
 Tyr Glu Ser Arg Lys Ala Arg Ala Asp Thr Arg Leu Arg Val Arg Gly
 410 415 420

aga ttt gtg aaa gct agt gaa gct cct tac cct taa ccttaagttt 1408
Arg Phe Val Lys Ala Ser Glu Ala Pro Tyr Pro
425 430

```
tttcacatag gcttcctttt agctacaaac ttagttactt tttttactcc actgcctcat 1468  
aaatgtacag accggctctcg tttcatctgg ccgcccctct tgttttattg ccttatctgg 1528  
ccctttatg taccttggaa tcttatctag tttaaaaaag attgtaacct tctagaaaac 1588  
catattctgt tgacagtata tacatgtcta tccaagcaaa aa 1630
```

<210> 30
<211> 433
<212> PRT.
<213> *Arabidopsis thaliana*

<400>

Met Ser Ser Ser Glu Arg Val Pro Cys Asp Phe Cys Gly Glu Arg Thr
 1 5 10 . . 15

Ala Val Leu Phe Cys Arg Ala Asp Thr Ala Lys Leu Cys Leu Pro Cys
20 25 30

Asp Gln Gln Val His Thr Ala Asn Leu Leu Ser Arg Lys His Val Arg
35 40 45

Ser Gln Ile Cys Asp Asn Cys Gly Asn Glu Pro Val Ser Val Arg Cys
50 55 60

Phe Thr Asp Asn Leu Ile Leu Cys Gln Glu Cys Asp Trp Asp Val His
65 70 75 80

Gly Ser Cys Ser Val Ser Asp Ala His Val Arg Ser Ala Val Glu Gly
85 90 95

Phe Ser Gly Cys Pro Ser Ala Leu Glu Leu Ala Ala Leu Trp Gly Leu
100 105 110

Asp Leu Glu Gln Gly Arg Lys Asp Glu Glu Asn Gln Val Pro Met Met
115 120 125

Ala Met Met Met Asp Asn Phe Gly Met Gin Leu Asp Ser Trp Val Leu
130 135 140

mbi19 Sequence Listing.ST25

Gly Ser Asn Glu Leu Ile Val Pro Ser Asp Thr Thr Phe Lys Lys Arg
145 150 155 160

Gly Ser Cys Gly Ser Ser Cys Gly Arg Tyr Lys Gln Val Leu Cys Lys
165 170 175

Gln Leu Glu Glu Leu Leu Lys Ser Gly Val Val Gly Gly Asp Gly Asp
180 185 190

Asp Gly Asp Arg Asp Arg Asp Cys Asp Arg Glu Gly Ala Cys Asp Gly
195 200 205

Asp Gly Asp Gly Glu Ala Gly Glu Gly Leu Met Val Pro Glu Met Ser
210 215 220

Glu Arg Leu Lys Trp Ser Arg Asp Val Glu Glu Ile Asn Gly Gly Gly
225 230 235 240

Gly Gly Gly Val Asn Gln Gln Trp Asn Ala Thr Thr Thr Asn Pro Ser
245 250 255

Gly Gly Gln Ser Ser Gln Ile Trp Asp Phe Asn Leu Gly Gln Ser Arg
260 265 270

Gly Pro Glu Asp Thr Ser Arg Val Glu Ala Ala Tyr Val Gly Lys Gly
275 280 285

Ala Ala Ser Ser Phe Thr Ile Asn Asn Phe Val Asp His Met Asn Glu
290 295 300

Thr Cys Ser Thr Asn Val Lys Gly Val Lys Glu Ile Lys Lys Asp Asp
305 310 315 320

Tyr Lys Arg Ser Thr Ser Gly Gln Val Gln Pro Thr Lys Ser Glu Ser
325 330 335

Asn Asn Arg Pro Ile Thr Phe Gly Ser Glu Lys Gly Ser Asn Ser Ser
340 345 350

Ser Asp Leu His Phe Thr Glu His Ile Ala Gly Thr Ser Cys Lys Thr
355 360 365

Thr Arg Leu Val Ala Thr Lys Ala Asp Leu Glu Arg Leu Ala Gln Asn
370 375 380

Arg Gly Asp Ala Met Gln Arg Tyr Lys Glu Lys Arg Lys Thr Arg Arg
385 390 395 400

Tyr Asp Lys Thr Ile Arg Tyr Glu Ser Arg Lys Ala Arg Ala Asp Thr
405 410 415

Arg Leu Arg Val Arg Gly Arg Phe Val Lys Ala Ser Glu Ala Pro Tyr
420 425 430

Pro

mbi19 Sequence Listing.ST25

<210> 31
<211> 1413
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (208)..(1200)
<223> G1141

<400> 31		
gtctttacaa aaagaaaaaga aaaaagagac gctagaaaga acgcgaaagc ttgcgaagaa	60	
gatttgctt tgatcgactt aacacgaaca acaaacaaca tctgcgtat aaagaagaga	120	
ttttgccta aataaagaag agattcgact ctaatccctgg agttatcatt cacgatagat	180	
tcttagattt cgactataaa gaagaag atg gct gta tat gaa caa acc gga acc	234	
Met Ala Val Tyr Glu Gln Thr Gly Thr		
1 5		
gag cag ccg aag aaa agg aaa tct agg gct cga gca ggt ggt tta acg	282	
Glu Gln Pro Lys Lys Arg Lys Ser Arg Ala Arg Ala Gly Gly Leu Thr		
10 15 20 25		
gtg gct gat agg cta aag aag tgg aaa gag tac aac gag att gtt gaa	330	
Val Ala Asp Arg Leu Lys Lys Trp Lys Glu Tyr Asn Glu Ile Val Glu		
30 35 40		
gct tcg gct gtt aaa gaa gga gag aaa ccg aaa cgc aaa gtt cct gcg	378	
Ala Ser Ala Val Lys Glu Gly Glu Lys Pro Lys Arg Lys Val Pro Ala		
45 50 55		
aaa ggg tcg aag aaa ggt tgt atg aag ggt aaa gga gga cca gat aat	426	
Lys Gly Ser Lys Lys Gly Cys Met Lys Gly Lys Gly Pro Asp Asn		
60 65 70		
tct cac tgt agt ttt aga gga gtt aga caa agg att tgg ggt aaa tgg	474	
Ser His Cys Ser Phe Arg Gly Val Arg Gln Arg Ile Trp Gly Lys Trp		
75 80 85		
gtt gca gag att cga gaa ccg aaa ata gga act aga ctt tgg ctt ggt	522	
Val Ala Glu Ile Arg Glu Pro Lys Ile Gly Thr Arg Leu Trp Leu Gly		
90 95 100 105		
act ttt cct acc gcg gaa aaa gct gct tcc gct tat gat gaa gcg gct	570	
Thr Phe Pro Thr Ala Glu Lys Ala Ala Ser Ala Tyr Asp Glu Ala Ala		
110 115 120		
acc gct atg tac ggt tca ttg gct cgt ctt aac ttc cct cag tct gtt	618	
Thr Ala Met Tyr Gly Ser Leu Ala Arg Leu Asn Phe Pro Gln Ser Val		
125 130 135		
ggg tct gag ttt act agt acg tct agt caa tct gag gtg tgt acg gtt	666	
Gly Ser Glu Phe Thr Ser Thr Ser Ser Gln Ser Glu Val Cys Thr Val		
140 145 150		
gaa aat aag gcg gtt tgt ggt gat gtt tgt gtg aag cat gaa gat	714	
Glu Asn Lys Ala Val Val Cys Gly Asp Val Cys Val Lys His Glu Asp		
155 160 165		
act gat tgt gaa tct aat cca ttt agt cag att tta gat gtt aga gaa	762	
Thr Asp Cys Glu Ser Asn Pro Phe Ser Gln Ile Leu Asp Val Arg Glu		
170 175 180 185		
gag tct tgt gga acc agg ccg gac agt tgc acg gtt gga cat caa gat	810	
Glu Ser Cys Gly Thr Arg Pro Asp Ser Cys Thr Val Gly His Gln Asp		
190 195 200		
atg aat tct tcg ctg aat tac gat ttg ctg tta gag ttt gag cag cag	858	
Met Asn Ser Ser Leu Asn Tyr Asp Leu Leu Glu Phe Glu Gln Gln		

mbi19 Sequence Listing.ST25

205	210	215	
tat tgg ggc caa gtt ttg cag gag aaa gag aaa ccg aag cag gaa gaa Tyr Trp Gly Gln Val Leu Gln Glu Lys Glu Lys Pro Lys Gln Glu Glu 220 225 230 235 240 245			906
gag gag ata cag caa cag caa cag gaa cag caa cag caa cag ctg caa Glu Glu Ile Gln Gln Gln Gln Glu Gln Gln Gln Gln Gln Leu Gln 235 240 245			954
ccg gat ttg ctt act gtt gca gat tac ggt ttg cct ttg tct aat gat Pro Asp Leu Leu Thr Val Ala Asp Tyr Gly Trp Pro Trp Ser Asn Asp 250 255 260 265			1002
att gta aat gat cag act tct ttg gat cct aat gag tgc ttt gat att Ile Val Asn Asp Gln Thr Ser Trp Asp Pro Asn Glu Cys Phe Asp Ile 270 275 280			1050
aat gaa ctc ctt gga gat ttg aat gaa cct ggt ccc cat cag agc caa Asn Glu Leu Gly Asp Leu Asn Glu Pro Gly Pro His Gln Ser Gln 285 290 295			1098
gac caa aac cac gta aat tct ggt agt tat gat ttg cat ccg ctt cat Asp Gln Asn His Val Asn Ser Gly Ser Tyr Asp Leu His Pro Leu His 300 305 310			1146
ctc gag cca cac gat ggt cac gag ttc aat ggt ttg agt tct ctg gat Leu Glu Pro His Asp Gly His Glu Phe Asn Gly Leu Ser Ser Leu Asp 315 320 325			1194
att tga gagttctgag gcaatgggcc tacaagacta caacataatc tttggattga Ile 330			1250
tcataggaga aacaagaaaat aggtgttaat gatctgattc acaatgaaaa aatatttaat aactctatag tttttgtct ttccttgat catgaactgt tgcttctcat ctattgagtt aatatagcga atagcagagt ttctctcata aaaaaaaaaaaa aaa			1310 1370 1413
<210> 32			
<211> 330			
<212> PRT			
<213> <i>Arabidopsis thaliana</i>			
<400> 32			
Met Ala Val Tyr Glu Gln Thr Gly Thr Glu Gln Pro Lys Lys Arg Lys 1 5 10 15			
Ser Arg Ala Arg Ala Gly Gly Leu Thr Val Ala Asp Arg Leu Lys Lys 20 25 30			
Trp Lys Glu Tyr Asn Glu Ile Val Glu Ala Ser Ala Val Lys Glu Gly 35 40 45			
Glu Lys Pro Lys Arg Lys Val Pro Ala Lys Gly Ser Lys Lys Gly Cys 50 55 60			
Met Lys Gly Lys Gly Pro Asp Asn Ser His Cys Ser Phe Arg Gly 65 70 75 80			
Val Arg Gln Arg Ile Trp Gly Lys Trp Val Ala Glu Ile Arg Glu Pro 85 90 95			
Lys Ile Gly Thr Arg Leu Trp Leu Gly Thr Phe Pro Thr Ala Glu Lys 100 105 110			

mbi19 Sequence Listing.ST25

Ala Ala Ser Ala Tyr Asp Glu Ala Ala Thr Ala Met Tyr Gly Ser Leu
 115 120 125

Ala Arg Leu Asn Phe Pro Gln Ser Val Gly Ser Glu Phe Thr Ser Thr
 130 135 140

Ser Ser Gln Ser Glu Val Cys Thr Val Glu Asn Lys Ala Val Val Cys
 145 150 155 160

Gly Asp Val Cys Val Lys His Glu Asp Thr Asp Cys Glu Ser Asn Pro
 165 170 175

Phe Ser Gln Ile Leu Asp Val Arg Glu Glu Ser Cys Gly Thr Arg Pro
 180 185 190

Asp Ser Cys Thr Val Gly His Gln Asp Met Asn Ser Ser Leu Asn Tyr
 195 200 205

Asp Leu Leu Leu Glu Phe Glu Gln Gln Tyr Trp Gly Gln Val Leu Gln
 210 215 220

Glu Lys Glu Lys Pro Lys Gln Glu Glu Glu Ile Gln Gln Gln Gln
 225 230 235 240

Gln Glu Gln Gln Gln Gln Leu Gln Pro Asp Leu Leu Thr Val Ala
 245 250 255

Asp Tyr Gly Trp Pro Trp Ser Asn Asp Ile Val Asn Asp Gln Thr Ser
 260 265 270

Trp Asp Pro Asn Glu Cys Phe Asp Ile Asn Glu Leu Leu Gly Asp Leu
 275 280 285

Asn Glu Pro Gly Pro His Gln Ser Gln Asp Gln Asn His Val Asn Ser
 290 295 300

Gly Ser Tyr Asp Leu His Pro Leu His Leu Glu Pro His Asp Gly His
 305 310 315 320

Glu Phe Asn Gly Leu Ser Ser Leu Asp Ile
 325 330

<210> 33
<211> 818
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (18)..(641)
<223> G46

<400> 33
ttctctcttt cgtaaaa atg gcg agt ttt gag gaa agc tct gat ttg gaa 50
Met Ala Ser Phe Glu Glu Ser Ser Asp Leu Glu
1 5 10

gct ata cag agc cat ctc tta gaa gac ttg ttg gtt tgt gat ggt ttc 98
Ala Ile Gln Ser His Leu Leu Glu Asp Leu Leu Val Cys Asp Gly Phe

mbil9 Sequence Listing.ST25

15	20	25	
atg gga gat ttt gac ttc gat gct tct ttt gtc tca gga ctt tgg tgt Met Gly Asp Phe Asp Phe Asp Ala Ser Phe Val Ser Gly Leu Trp Cys 30 35 40			146
ata gaa cca cac gtt cct aaa caa gaa cct gat tct cca gtt ctt gat Ile Glu Pro His Val Pro Lys Gln Glu Pro Asp Ser Pro Val Leu Asp 45 50 55			194
ccg gat tct ttc gtc aac gag ttc ttg caa gtg gaa ggg gaa tca tca Pro Asp Ser Phe Val Asn Glu Phe Leu Gln Val Glu Gly Glu Ser Ser 60 65 70 75			242
tca tca tca tca cca gag ctg aat tca tcg tca tca aca tat gag act Ser Ser Ser Pro Glu Leu Asn Ser Ser Ser Thr Tyr Glu Thr 80 85 90			290
gat cag agt gtg aaa aag gca gag agg ttc gaa gaa gta gat gct Asp Gln Ser Val Lys Lys Ala Glu Arg Phe Glu Glu Val Asp Ala 95 100 105			338
aga cat tac cga gga gtg agg cga agg ccg tgg ggg aaa ttt gca gca Arg His Tyr Arg Gly Val Arg Arg Pro Trp Gly Lys Phe Ala Ala 110 115 120			386
gag att cga gat cca gca aag aaa gga tca aga atc tgg cta gga aca Glu Ile Arg Asp Pro Ala Lys Lys Gly Ser Arg Ile Trp Leu Gly Thr 125 130 135			434
ttt gag agt gat gtt gat gct gca aga gcc tat gac tgt gca gct ttc Phe Glu Ser Asp Val Asp Ala Ala Arg Ala Tyr Asp Cys Ala Ala Phe 140 145 150 155			482
aag ctc cgg gga aga aaa gcc gtg ctc aac ttc cct ctt gac gcc ggg Lys Leu Arg Gly Arg Lys Ala Val Leu Asn Phe Pro Leu Asp Ala Gly 160 165 170			530
aaa tat gaa gct cca gcg aat tca gga agg aaa agg aag aga agt gat Lys Tyr Glu Ala Pro Ala Asn Ser Gly Arg Lys Arg Lys Arg Ser Asp 175 180 185			578
gtg cat gaa gag ctt caa aga act cag agc aat tca tct tca tct tcc Val His Glu Glu Leu Gln Arg Thr Gln Ser Asn Ser Ser Ser Ser Ser 190 195 200			626
tgt gat gca ttt tag catattaaga gtgtgagcag tttccttaag ttgtataaag Cys Asp Ala Phe 205			681
taattgtaca gaggaaacga attgtgtagg tttagtgtgc ttgcaagttg caacaaatgt gtatggatgt tctgtttctt catgtcccta agatttagaa acatcttctt attccaaga aaaaaaaaaaaa aaaaaaaaaa			741 801 818
<210> 34 <211> 207 <212> PRT <213> <i>Arabidopsis thaliana</i>			
<400> 34			
Met Ala Ser Phe Glu Glu Ser Ser Asp Leu Glu Ala Ile Gln Ser His 1 5 10 15			
Leu Leu Glu Asp Leu Leu Val Cys Asp Gly Phe Met Gly Asp Phe Asp 20 25 30			
Phe Asp Ala Ser Phe Val Ser Gly Leu Trp Cys Ile Glu Pro His Val 35 40 45			

mbi19 Sequence Listing.ST25

Pro Lys Gln Glu Pro Asp Ser Pro Val Leu Asp Pro Asp Ser Phe Val
 50 55 60

Asn Glu Phe Leu Gln Val Glu Gly Glu Ser Ser Ser Ser Ser Pro
 65 70 75 80

Glu Leu Asn Ser Ser Ser Thr Tyr Glu Thr Asp Gln Ser Val Lys
 85 90 95

Lys Ala Glu Arg Phe Glu Glu Glu Val Asp Ala Arg His Tyr Arg Gly
 100 105 110

Val Arg Arg Arg Pro Trp Gly Lys Phe Ala Ala Glu Ile Arg Asp Pro
 115 120 125

Ala Lys Lys Gly Ser Arg Ile Trp Leu Gly Thr Phe Glu Ser Asp Val
 130 135 140

Asp Ala Ala Arg Ala Tyr Asp Cys Ala Ala Phe Lys Leu Arg Gly Arg
 145 150 155 160

Lys Ala Val Leu Asn Phe Pro Leu Asp Ala Gly Lys Tyr Glu Ala Pro
 165 170 175

Ala Asn Ser Gly Arg Lys Arg Lys Arg Ser Asp Val His Glu Glu Leu
 180 185 190

Gln Arg Thr Gln Ser Asn Ser Ser Ser Ser Cys Asp Ala Phe
 195 200 205

<210> 35
<211> 1195
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (66)..(983)
<223> G242

<400> 35
ctctcaaaac caaaaatcaact aaagaggaga agattgctaa agtttgataa aacattccaa 60

aatca atg gct gat agg atc aaa ggt cca tgg agt cct gaa gaa gac gag 110
Met Ala Asp Arg Ile Lys Gly Pro Trp Ser Pro Glu Glu Asp Glu
1 5 10 15

cag ctt cgt agg ctt gtt aaa tac ggt cca aga aac tgg aca gtg 158
Gln Leu Arg Arg Leu Val Val Lys Tyr Gly Pro Arg Asn Trp Thr Val
20 25 30

att agc aaa tct att ccc ggt aga tcg ggg aaa tcg tgt cgt tta cgg 206
Ile Ser Lys Ser Ile Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg
35 40 45

tgg tgc aac cag ctt tcg ccg caa gtt gag cat cgg ccg ttt tcg gct 254
Trp Cys Asn Gln Leu Ser Pro Gln Val Glu His Arg Pro Phe Ser Ala
50 55 60

gag gaa gac gag acg atc gca cgt gct cac gct cag ttc ggg aat aaa 302
Glu Glu Asp Glu Thr Ile Ala Arg Ala His Ala Gln Phe Gly Asn Lys
65 70 75

mbi19 Sequence Listing ST25

tgg gcg acg att gct cgt ctt ctc aac ggt cgt acg gac aac gcc gtg Trp Ala Thr Ile Ala Arg Leu Leu Asn Gly Arg Thr Asp Asn Ala Val 80 85 90 95	350
aag aat cac tgg aac tcg acg ctc aag agg aaa tgc ggc ggt tac gac Lys Asn His Trp Asn Ser Thr Leu Lys Arg Lys Cys Gly Gly Tyr Asp 100 105 110	398
cat cgg ggt tac gat ggt tcg gag gat cat cgg cgg gtt aag aga tcg His Arg Gly Tyr Asp Gly Ser Glu Asp His Arg Pro Val Lys Arg Ser 115 120 125	446
gtg agt gcg gga tct cca cct gtt act ggg ctt tac atg agc cca Val Ser Ala Gly Ser Pro Pro Val Val Thr Gly Leu Tyr Met Ser Pro 130 135 140	494
gga agc cca act gga tct gat gtc agt gat tca agt act atc ccg ata Gly Ser Pro Thr Gly Ser Asp Val Ser Asp Ser Ser Thr Ile Pro Ile 145 150 155	542
tta cct tcc gtt gag ctt ttc aag cct gtg cct aga cct ggt gct gtt Leu Pro Ser Val Glu Leu Phe Lys Pro Val Pro Arg Pro Gly Ala Val 160 165 170 175	590
gtg cta ccg ctt cct atc gaa acg tcg tct ttt tcc gat gat cca ccg Val Leu Pro Leu Pro Ile Glu Thr Ser Ser Phe Ser Asp Asp Pro Pro 180 185 190	638
act tcg tta agc ttg tca ctt cct ggt gcc gac gta agc gag gag tca Thr Ser Leu Ser Leu Pro Gly Ala Asp Val Ser Glu Glu Ser 195 200 205	686
aac cgt agc cac gag tca acg aat atc aac aac acc act tcg agc cgc Asn Arg Ser His Glu Ser Thr Asn Ile Asn Asn Thr Thr Ser Ser Arg 210 215 220	734
cac aac cac aac aat acg gtg tcg ttt atg ccg ttt agt ggt ggg ttt His Asn His Asn Asn Thr Val Ser Phe Met Pro Phe Ser Gly Gly Phe 225 230 235	782
aga ggt gcg att gag gaa atg ggg aag tct ttt ccc ggt aac gga ggc Arg Gly Ala Ile Glu Glu Met Gly Lys Ser Phe Pro Gly Asn Gly Gly 240 245 250 255	830
gag ttt atg gcg gtg caa gag atg att aag gcg gaa gtg agg agt Glu Phe Met Ala Val Val Gln Glu Met Ile Lys Ala Glu Val Arg Ser 260 265 270	878
tac atg acg gag atg caa cgg aac aat ggt ggc gga ttc gtc gga gga Tyr Met Thr Glu Met Gln Arg Asn Asn Gly Gly Phe Val Gly Gly 275 280 285	926
ttc att gat aat ggc atg att ccg atg agt caa att gga gtt ggg aga Phe Ile Asp Asn Gly Met Ile Pro Met Ser Gln Ile Gly Val Gly Arg 290 295 300	974
atc gag tag acaaagttagattatttagaa aactgtttaa attggagaag Ile Glu 305	1023
aagaaaaatg ctctgtttt ttctcccttg gattaggctt aagaattttg ggtttaagg aaatgtatag aggaatcga gtgaacaaag ctcgagagct ggggacgttg tgacgaagac gaagatcaaa ttctcttaa gctattcagg aaaataaaat aaatttttat tt	1083 1143 1195
<210> 36 <211> 305 <212> PRT <213> <i>Arabidopsis thaliana</i>	
<400> 36	

Met Ala Asp Arg Ile Lys Gly Pro Trp Ser Pro Glu Glu Asp Glu Gln

mbil9 Sequence Listing.ST25

1	5	10	15
Leu Arg Arg Leu Val Val Lys Tyr Gly Pro Arg Asn Trp Thr Val Ile			
20	25	30	
Ser Lys Ser Ile Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp			
35	40	45	
Cys Asn Gln Leu Ser Pro Gln Val Glu His Arg Pro Phe Ser Ala Glu			
50	55	60	
Glu Asp Glu Thr Ile Ala Arg Ala His Ala Gln Phe Gly Asn Lys Trp			
65	70	75	80
Ala Thr Ile Ala Arg Leu Leu Asn Gly Arg Thr Asp Asn Ala Val Lys			
85	90	95	
Asn His Trp Asn Ser Thr Leu Lys Arg Lys Cys Gly Gly Tyr Asp His			
100	105	110	
Arg Gly Tyr Asp Gly Ser Glu Asp His Arg Pro Val Lys Arg Ser Val			
115	120	125	
Ser Ala Gly Ser Pro Pro Val Val Thr Gly Leu Tyr Met Ser Pro Gly			
130	135	140	
Ser Pro Thr Gly Ser Asp Val Ser Asp Ser Ser Thr Ile Pro Ile Leu			
145	150	155	160
Pro Ser Val Glu Leu Phe Lys Pro Val Pro Arg Pro Gly Ala Val Val			
165	170	175	
Leu Pro Leu Pro Ile Glu Thr Ser Ser Phe Ser Asp Asp Pro Pro Thr			
180	185	190	
Ser Leu Ser Leu Ser Leu Pro Gly Ala Asp Val Ser Glu Glu Ser Asn			
195	200	205	
Arg Ser His Glu Ser Thr Asn Ile Asn Asn Thr Thr Ser Ser Arg His			
210	215	220	
Asn His Asn Asn Thr Val Ser Phe Met Pro Phe Ser Gly Gly Phe Arg			
225	230	235	240
Gly Ala Ile Glu Glu Met Gly Lys Ser Phe Pro Gly Asn Gly Gly Glu			
245	250	255	
Phe Met Ala Val Val Gln Glu Met Ile Lys Ala Glu Val Arg Ser Tyr			
260	265	270	
Met Thr Glu Met Gln Arg Asn Asn Gly Gly Phe Val Gly Gly Phe			
275	280	285	
Ile Asp Asn Gly Met Ile Pro Met Ser Gln Ile Gly Val Gly Arg Ile			
290	295	300	

mbi19 Sequence Listing.ST25

Glu
305

<210> 37
<211> 989
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (21)...(983)
<223> G227

<400> 37

gtaccgtcga	cgatccggcg	atg tca aac ccg acc cgt aag aat atg gag agg	53
		Met Ser Asn Pro Thr Arg Lys Asn Met Glu Arg	
1		5	10
att aaa ggt cca tgg agt cca gaa gat gat ctg ttg cag agg ctt			101
Ile Lys Gly Pro Trp Ser Pro Glu Glu Asp Asp Leu Leu Gln Arg Leu			
15	20	25	
gtt cag aaa cat ggt ccg agg aac tgg tct ttg att agc aaa tca atc			149
Val Gln Lys His Gly Pro Arg Asn Trp Ser Leu Ile Ser Lys Ser Ile			
30	35	40	
cct gga cgt tcc ggc aaa tct tgt cgt ctc cgg tgg tgt aac cag cta			197
Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp Cys Asn Gln Leu			
45	50	55	
tct ccg gag gta gag cac cgt gct ttt tcg cag gaa gaa gac gag acg			245
Ser Pro Glu Val Glu His Arg Ala Phe Ser Gln Glu Glu Asp Glu Thr			
60	65	70	75
att att cga gct cac gct ccg ttt ggt aac aag tgg gct acg atc tct			293
Ile Ile Arg Ala His Ala Arg Phe Gly Asn Lys Trp Ala Thr Ile Ser			
80	85	90	
cgt ctt ctc aat gga cga acc gat aac gct atc aag aat cat tgg aac			341
Arg Leu Leu Asn Gly Arg Thr Asp Asn Ala Ile Lys Asn His Trp Asn			
95	100	105	
tcg acg ctg aag cga aaa tgc agc gtc gaa ggg caa agt tgt gat ttt			389
Ser Thr Leu Lys Arg Lys Cys Ser Val Glu Gly Gln Ser Cys Asp Phe			
110	115	120	
ggg ggt aat gga ggg tat gat ggt aat tta gga gaa gag caa ccg ttg			437
Gly Gly Asn Gly Gly Tyr Asp Gly Asn Leu Gly Glu Glu Gln Pro Leu			
125	130	135	
aaa cgt acg gcg agt ggt ggt ggt gtc tcg act ggc ttg tat atg			485
Lys Arg Thr Ala Ser Gly Gly Gly Val Ser Thr Gly Leu Tyr Met			
140	145	150	155
agt ccc gga agt cca tcg gga tct gac gtc agc gag caa tct agt ggt			533
Ser Pro Gly Ser Pro Ser Gly Ser Asp Val Ser Glu Gln Ser Ser Gly			
160	165	170	
ggg gca cac gtg ttt aaa cca acg gtt aga tct gag gtt aca ggg tca			581
Gly Ala His Val Phe Lys Pro Thr Val Arg Ser Glu Val Thr Ala Ser			
175	180	185	
tcg tct ggt gaa gat cct cca act tat ctt agt ttg tct ctt cct tgg			629
Ser Ser Gly Glu Asp Pro Pro Thr Tyr Leu Ser Leu Ser Leu Pro Trp			
190	195	200	
act gac gag acg gtt cga gtc aac gag ccg gtt caa ctt aac cag aat			677
Thr Asp Glu Thr Val Arg Val Asn Glu Pro Val Gln Leu Asn Gln Asn			
205	210	215	
acg gtt atg gac ggt ggt tat acg gcg gag ctg ttt ccg gtt aga aag			725
Thr Val Met Asp Gly Gly Tyr Thr Ala Glu Leu Phe Pro Val Arg Lys			
220	225	230	235

mbi19 Sequence Listing.ST25

gaa gag caa gtg gaa gta gaa gaa gaa gct aag ggg ata tct ggt Glu Glu Gln Val Glu Glu Glu Ala Lys Gly Ile Ser Gly 240~ 245 250	773
gga ttc ggt ggt gag ttc atg acg gtg gtt cag gag atg ata agg acg Gly Phe Gly Gly Glu Phe Met Thr Val Val Gln Glu Met Ile Arg Thr 255 260 265	821
gag gtg agg agt tac atg gct gat tta cag cga gga aac gtc ggt ggt Glu Val Arg Ser Tyr Met Ala Asp Leu Gln Arg Gly Asn Val Gly Gly 270 275 280	869
agt agt tct ggc ggc gga ggt ggc ggt tcg tgc atg cca caa agt gta Ser Ser Ser Gly Gly Gly Ser Cys Met Pro Gln Ser Val 285 290 295	917
aac agc cgt cgt gtt ggg ttt aga gag ttt ata gtg aac caa atc gga Asn Ser Arg Arg Val Gly Phe Arg Glu Phe Ile Val Asn Gln Ile Gly 300 305 310 315	965
att ggg aag atg gag tag gcggcc Ile Gly Lys Met Glu 320	989

<210> 38
<211> 320
<212> PRT
<213> Arabidopsis thaliana

<400> 38

Met Ser Asn Pro Thr Arg Lys Asn Met Glu Arg Ile Lys Gly Pro Trp 1 5 10 15
--

Ser Pro Glu Glu Asp Asp Leu Leu Gln Arg Leu Val Gln Lys His Gly 20 25 30

Pro Arg Asn Trp Ser Leu Ile Ser Lys Ser Ile Pro Gly Arg Ser Gly 35 40 45

Lys Ser Cys Arg Leu Arg Trp Cys Asn Gln Leu Ser Pro Glu Val Glu 50 55 60

His Arg Ala Phe Ser Gln Glu Glu Asp Glu Thr Ile Ile Arg Ala His 65 70 75 80
--

Ala Arg Phe Gly Asn Lys Trp Ala Thr Ile Ser Arg Leu Leu Asn Gly 85 90 95

Arg Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Leu Lys Arg 100 105 110
--

Lys Cys Ser Val Glu Gly Gln Ser Cys Asp Phe Gly Gly Asn Gly Gly 115 120 125
--

Tyr Asp Gly Asn Leu Gly Glu Glu Gln Pro Leu Lys Arg Thr Ala Ser 130 135 140
--

Gly Gly Gly Val Ser Thr Gly Leu Tyr Met Ser Pro Gly Ser Pro 145 150 155 160
--

Ser Gly Ser Asp Val Ser Glu Gln Ser Ser Gly Gly Ala His Val Phe .165 170 175

mbi19 Sequence Listing.ST25

Lys Pro Thr Val Arg Ser Glu Val Thr Ala Ser Ser Ser Gly Glu Asp
 180 185 190

Pro Pro Thr Tyr Leu Ser Leu Ser Leu Pro Trp Thr Asp Glu Thr Val
195 200 205

Arg Val Asn Glu Pro Val Gln Leu Asn Gln Asn Thr Val Met Asp Gly
210 215 220

Gly Tyr Thr Ala Glu Leu Phe Pro Val Arg Lys Glu Glu Gln Val Glu
 225 230 235 240

Val Glu Glu Glu Glu Ala Lys Gly Ile Ser Gly Gly Phe Gly Gly Glu
245 250 255

Phe Met Thr Val Val Gln Glu Met Ile Arg Thr Glu Val Val Arg Ser Tyr
 260 265 270

Met Ala Asp Leu Gln Arg Gly Asn Val Gly Gly Ser Ser Ser Gly Gly
275 280 285

Gly Gly Gly Ser Cys Met Pro Gln Ser Val Asn Ser Arg Arg Val
290 295 300

Gly Phe Arg Glu Phe Ile Val Asn Gln Ile Gly Ile Gly Lys Met Glu
305 310 315 320

```
<210> 39
<211> 994
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (140)..(889)
<223> G1307

```

<400> 39
cccttattgg gcntnancgn ccnccccggca ggtctagnnn tnancgcccg cgtccttctn      60
ccattttacn cncttgcnge ccacccttgt atntcntttt nttnngtgtnn ttttcntga      120
ggggggcaacg gaaaaaaaga atg gga aga gca cca tgt tgt gag aaa atg ggg      172
          Met Gly Arg Ala Pro Cys Cys Glu Lys Met Gly
          1           5           10

gtg aag aga gga cca tgg act cct gaa gaa gat caa atc ttg atc aat      220
Val Lys Arg Gly Pro Trp Thr Pro Glu Glu Asp Gln Ile Leu Ile Asn
          15           20           25

```

tat att cat ctt tat ggt cat tct aat tgg cga gct ctc cca aaa cac
 Tyr Ile His Leu Tyr Gly His Ser Asn Trp Arg Ala Leu Pro Lys His 268
 30 35 40

```

gca ggt tta ctt aga tgt ggg aaa agt tgc aga ctt ggt tgg atc aat      316
Ala Gly Leu Leu Arg Cys Gly Lys Ser Cys Arg Leu Gly Trp Ile Asn
   45          50          55

```

tat ctt aga cca gac att aaa cgt ggc aat ttc act cct caa gaa gaa 364
 Tyr Leu Arg Pro Asp Ile Lys Arg Gly Asn Phe Thr Pro Gln Glu Glu
 60 65 70 75

caa act att atc aat ctg cat gaa agc tta ggc aac aqa tqq tct aca 412

mbi19 Sequence Listing ST25

Gln Thr Ile Ile Asn Leu His Glu Ser Leu Gly Asn Arg Trp Ser Ala			
80	85	90	
att gct gca aaa ttg ccg gga cga acc gac aat gaa ata aaa aat gtt			460
Ile Ala Ala Lys Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val			
95	100	105	
tgg cac act cat ttg aag aaa aga ctc agc aaa aat cta aac aat ggc			508
Trp His Thr His Leu Lys Lys Arg Leu Ser Lys Asn Leu Asn Asn Gly			
110	115	120	
gga gac acc aaa gac gtt aac gga att aac gag acc aca aat gaa gac			556
Gly Asp Thr Lys Asp Val Asn Gly Ile Asn Glu Thr Thr Asn Glu Asp			
125	130	135	
aaa gga tct gtg ata gtc gac aca gcc tct tta caa caa ttt tct aat			604
Lys Gly Ser Val Ile Val Asp Thr Ala Ser Leu Gln Gln Phe Ser Asn			
140	145	150	155
agt att aca aca ttt gat att tca aat gat aac aag gac gat att atg			652
Ser Ile Thr Thr Phe Asp Ile Ser Asn Asp Asn Lys Asp Asp Ile Met			
160	165	170	
tcg tac gag gat att tct gcc ttg ata gat gat agt ttt tgg tcg gac			700
Ser Tyr Glu Asp Ile Ser Ala Leu Ile Asp Asp Ser Phe Trp Ser Asp			
175	180	185	
gtc ata tcg gta gat aat tcg aat aag aat gag aag aag ata gag gat			748
Val Ile Ser Val Asp Asn Ser Asn Lys Asn Glu Lys Lys Ile Glu Asp			
190	195	200	
tgg gaa gga ttg atc gat aga aat agt aaa aaa tgt agc tat agt aat			796
Trp Glu Gly Leu Ile Asp Arg Asn Ser Lys Lys Cys Ser Tyr Ser Asn			
205	210	215	
tct aag ttg tat aat gat gac atg gag ttt tgg ttt gat gtt ttc act			844
Ser Lys Leu Tyr Asn Asp Asp Met Glu Phe Trp Phe Asp Val Phe Thr			
220	225	230	235
agt aat cgt aga att gag gaa ttt tcc gac ata ccc gag ttt taa			889
Ser Asn Arg Arg Ile Glu Glu Phe Ser Asp Ile Pro Glu Phe			
240	245		
ttttgatttt gattttgtgt tgaaaaatgc gttaagactt tgaaagtctt tttgtaatcc			949
aaatgaataa attccttttc tttttaaaaa aaaaaaaaaa aaaaa			994
<210> 40			
<211> 249			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 40			
Met Gly Arg Ala Pro Cys Cys Glu Lys Met Gly Val Lys Arg Gly Pro			
1	5	10	15
Trp Thr Pro Glu Glu Asp Gln Ile Leu Ile Asn Tyr Ile His Leu Tyr			
20	25	30	
Gly His Ser Asn Trp Arg Ala Leu Pro Lys His Ala Gly Leu Leu Arg			
35	40	45	
Cys Gly Lys Ser Cys Arg Leu Gly Trp Ile Asn Tyr Leu Arg Pro Asp			
50	55	60	
Ile Lys Arg Gly Asn Phe Thr Pro Gln Glu Gln Thr Ile Ile Asn			
65	70	75	80

mbi19 Sequence Listing.ST25

Leu	His	Glu	Ser	Leu	Gly	Asn	Arg	Trp	Ser	Ala	Ile	Ala	Ala	Lys	Leu
				85				90						95	

Pro	Gly	Arg	Thr	Asp	Asn	Glu	Ile	Lys	Asn	Val	Trp	His	Thr	His	Leu
				100			105				110				

Lys	Lys	Arg	Leu	Ser	Lys	Asn	Leu	Asn	Asn	Gly	Gly	Asp	Thr	Lys	Asp
				115			120				125				

Val	Asn	Gly	Ile	Asn	Glu	Thr	Thr	Asn	Glu	Asp	Lys	Gly	Ser	Val	Ile
				130		135			140						

Val	Asp	Thr	Ala	Ser	Leu	Gln	Gln	Phe	Ser	Asn	Ser	Ile	Thr	Thr	Phe
				145		150			155			160			

Asp	Ile	Ser	Asn	Asp	Asn	Lys	Asp	Asp	Ile	Met	Ser	Tyr	Glu	Asp	Ile
				165			170				175				

Ser	Ala	Leu	Ile	Asp	Asp	Ser	Phe	Trp	Ser	Asp	Val	Ile	Ser	Val	Asp
				180			185				190				

Asn	Ser	Asn	Lys	Asn	Glu	Lys	Ile	Glu	Asp	Trp	Glu	Gly	Leu	Ile
				195			200				205			

Asp	Arg	Asn	Ser	Lys	Lys	Cys	Ser	Tyr	Ser	Asn	Ser	Lys	Leu	Tyr	Asn
				210		215						220			

Asp	Asp	Met	Glu	Phe	Trp	Phe	Asp	Val	Phe	Thr	Ser	Asn	Arg	Arg	Ile
		225		230			235				240				

Glu	Glu	Phe	Ser	Asp	Ile	Pro	Glu	Phe						
				245										

<210> 41
<211> 891
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)..(891)
<223> G1327

atg	ggg	aaa	gga	aga	gca	cca	tgc	tgc	gac	aag	aac	aaa	gtg	aag	aga	48
Met	Gly	Lys	Gly	Arg	Ala	Pro	Cys	Cys	Asp	Lys	Asn	Lys	Val	Lys	Arg	
1					5			10				15				

ggg	cca	tgg	agc	cct	caa	gaa	gat	ctc	act	ctc	act	ttt	att	caa	96	
Gly	Pro	Trp	Ser	Pro	Gln	Glu	Asp	Leu	Thr	Leu	Ile	Thr	Phe	Ile	Gln	
		20			25			30								

aaa	cat	ggc	cat	caa	aac	tgg	aga	tct	ctt	ccc	aag	ctt	gct	gga	ttg	144
Lys	His	Gly	His	Gln	Asn	Trp	Arg	Ser	Leu	Pro	Lys	Leu	Ala	Gly	Leu	
					35		40			45						

ttg	aga	tgt	ggg	aaa	agt	tgc	cga	cta	aga	tgg	ata	aac	tat	ctg	aga	192
Leu	Arg	Cys	Gly	Lys	Ser	Cys	Arg	Leu	Arg	Trp	Ile	Asn	Tyr	Leu	Arg	
		50				55			60							

ccg	gac	gtg	aag	cga	ggc	aac	ttt	agc	aaa	aag	gag	gaa	gat	gct	atc	240
Pro	Asp	Val	Lys	Arg	Gly	Asn	Phe	Ser	Lys	Lys	Glu	Glu	Asp	Ala	Ile	
		65			70			75			80					

mbi19 Sequence Listing.ST25

att cac tac cat caa acc ctt gga aac aag tgg tca aag atc gcg tcc Ile His Tyr His Gln Thr Leu Gly Asn Lys Trp Ser Lys Ile Ala Ser 85 90 95	288
tcc ttg ccg gga aga act gac aac gag atc aaa aac gtg tgg aac acg Phe Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp Asn Thr 100 105 110	336
cat ctc aag aaa cga ctc act cca tct tct tct tca tcc ctc tct His Leu Lys Lys Arg Leu Thr Pro Ser Ser Ser Ser Ser Leu Ser 115 120 125	384
agc act cat gac caa agc aca aaa gca gat cat gac aag aac tgt gac Ser Thr His Asp Gln Ser Thr Lys Ala Asp His Asp Lys Asn Cys Asp 130 135 140	432
ggg gct caa gaa gaa ata cat tca ggg tta aat gag agc caa aac tca Gly Ala Gln Glu Glu Ile His Ser Gly Leu Asn Glu Ser Gln Asn Ser 145 150 155 160	480
gct act tcg tca cat cac caa ggc gag tgt atg cac aca aaa cca gag Ala Thr Ser Ser His His Gln Gly Glu Cys Met His Thr Lys Pro Glu 165 170 175	528
ctt cat gag gtt aat gga ctc aac gag atc cag ttc ctg ctc gac cat Leu His Glu Val Asn Gly Leu Asn Glu Ile Gln Phe Leu Leu Asp His 180 185 190	576
gat gac ttt gat gat ata acc tct gag ttt ctt cag gat aac gat atc Asp Asp Phe Asp Asp Ile Thr Ser Glu Phe Leu Gln Asp Asn Asp Ile 195 200 205	624
tta ttt ccg cta gac tct ctt cat aac cac caa act cac att tca Leu Phe Pro Leu Asp Ser Leu Leu His Asn His Gln Thr His Ile Ser 210 215 220	672
acc caa gaa atg act cga gag gta acc aaa tcg caa tca ttt gat cat Thr Gln Glu Met Thr Arg Glu Val Thr Lys Ser Gln Ser Phe Asp His 225 230 235 240	720
cct caa ccg gat atc cca tgc gga ttt gaa gac aca aac gaa gaa tcc Pro Gln Pro Asp Ile Pro Cys Gly Phe Glu Asp Thr Asn Glu Ser 245 250 255	768
gac ttg agg aga cag ctg gtt gaa tca acc aca cct aac aat gag tac Asp Leu Arg Arg Gln Leu Val Glu Ser Thr Thr Pro Asn Asn Glu Tyr 260 265 270	816
gac gag tgg ttc aac ttc att gac aac caa act tac ttt gat gat ttt Asp Glu Trp Phe Asn Phe Ile Asp Asn Gln Thr Tyr Phe Asp Asp Phe 275 280 285	864
aat ttc gtc gga gaa gta tgt cta tga Asn Phe Val Gly Glu Val Cys Leu 290	891
<210> 42	
<211> 296	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 42	
Met Gly Lys Gly Arg Ala Pro Cys Cys Asp Lys Asn Lys Val Lys Arg 1 5 10 15	
Gly Pro Trp Ser Pro Gln Glu Asp Leu Thr Leu Ile Thr Phe Ile Gln 20 25 30	
Lys His Gly His Gln Asn Trp Arg Ser Leu Pro Lys Leu Ala Gly Leu 35 40 45	

mbi19 Sequence Listing.ST25

Leu Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg
 50 55 60

Pro Asp Val Lys Arg Gly Asn Phe Ser Lys Lys Glu Glu Asp Ala Ile
 65 70 75 80

Ile His Tyr His Gln Thr Leu Gly Asn Lys Trp Ser Lys Ile Ala Ser
 85 90 95

Phe Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp Asn Thr
 100 105 110

His Leu Lys Lys Arg Leu Thr Pro Ser Ser Ser Ser Ser Leu Ser
 115 120 125

Ser Thr His Asp Gln Ser Thr Lys Ala Asp His Asp Lys Asn Cys Asp
 130 135 140

Gly Ala Gln Glu Glu Ile His Ser Gly Leu Asn Glu Ser Gln Asn Ser
 145 150 155 160

Ala Thr Ser Ser His His Gln Gly Glu Cys Met His Thr Lys Pro Glu
 165 170 175

Leu His Glu Val Asn Gly Leu Asn Glu Ile Gln Phe Leu Leu Asp His
 180 185 190

Asp Asp Phe Asp Asp Ile Thr Ser Glu Phe Leu Gln Asp Asn Asp Ile
 195 200 205

Leu Phe Pro Leu Asp Ser Leu Leu His Asn His Gln Thr His Ile Ser
 210 215 220

Thr Gln Glu Met Thr Arg Glu Val Thr Lys Ser Gln Ser Phe Asp His
 225 230 235 240

Pro Gln Pro Asp Ile Pro Cys Gly Phe Glu Asp Thr Asn Glu Glu Ser
 245 250 255

Asp Leu Arg Arg Gln Leu Val Glu Ser Thr Thr Pro Asn Asn Glu Tyr
 260 265 270

Asp Glu Trp Phe Asn Phe Ile Asp Asn Gln Thr Tyr Phe Asp Asp Phe
 275 280 285

Asn Phe Val Gly Glu Val Cys Leu
 290 295

<210> 43
 <211> 1237
 <212> DNA
 <213> *Arabidopsis thaliana*

<220>
 <221> CDS
 <222> (73)...(954)
 <223> G673

mbi19 Sequence Listing.ST25

<400> 43	tctctctcta accccttctc tcttcagtct ctctctctc agacgatctc tatcttgaat	60
aaaataccga ta atg acc tca acc aat ccg gtg gtc gcc gaa gta ata ccg	Met Thr Ser Thr Asn Pro Val Val Ala Glu Val Ile Pro	111
1 5 10		
gct gaa act tct aca gat gct aca gag acg acg att gca acg acg gaa	Ala Glu Thr Ser Thr Asp Ala Thr Glu Thr Thr Ile Ala Thr Thr Glu	159
15 20 25		
gct ggt gaa gca ccg gag aag aag gtg agg aaa gct tat aca atc acc	Ala Gly Glu Ala Pro Glu Lys Lys Val Arg Lys Ala Tyr Thr Ile Thr	207
30 35 40 45		
aag tct aga gag agt tgg act gaa gga gaa cac gac aag ttt ctg gaa	Lys Ser Arg Glu Ser Trp Thr Glu Gly Glu His Asp Lys Phe Leu Glu	255
50 55 60		
gct ctt caa ttg ttt gat cgt gac tgg aaa aag ata gaa gat ttt gtt	Ala Leu Gln Leu Phe Asp Arg Asp Trp Lys Lys Ile Glu Asp Phe Val	303
65 70 75		
ggt tca aag aca gtt att cag atc agg agc cat gcc caa aaa tac ttt	Gly Ser Lys Thr Val Ile Gln Ile Arg Ser His Ala Gln Lys Tyr Phe	351
80 85 90		
cta aag gtc caa aaa aat ggg act tta gca cat gtt cca ccc cct agg	Leu Lys Val Gln Lys Asn Gly Thr Leu Ala His Val Pro Pro Pro Arg	399
95 100 105		
cct aag cgc aaa gct gct cat cca tat cct caa aag gca tcg aaa aat	Pro Lys Arg Lys Ala Ala His Pro Tyr Pro Gln Lys Ala Ser Lys Asn	447
110 115 120 125		
gct caa atg tcg ctt cac gtt tcc atg tcc ttt cct act caa ata aat	Ala Gln Met Ser Leu His Val Ser Met Ser Phe Pro Thr Gln Ile Asn	495
130 135 140		
aac ctg cct gga tat act cca tgg gat gat gat aca tct gca ttg tta	Asn Leu Pro Gly Tyr Thr Pro Trp Asp Asp Asp Thr Ser Ala Leu Leu	543
145 150 155		
aac att gct gta agt ggg gtt att cca cca gaa gat gaa ctt gat act	Asn Ile Ala Val Ser Gly Val Ile Pro Pro Glu Asp Glu Leu Asp Thr	591
160 165 170		
ctt tgt gga gca gaa gtt gat gtt gga tca aat gac atg ata agt gaa	Leu Cys Gly Ala Glu Val Asp Val Gly Ser Asn Asp Met Ile Ser Glu	639
175 180 185		
act agt cct tca gca tct ggt atc gga agc tca agc aga aca cta tca	Thr Ser Pro Ser Ala Ser Gly Ile Gly Ser Ser Arg Thr Leu Ser	687
190 195 200 205		
gat tct aag ggt ttg aga ctg gcg aaa caa gct ccc tca atg cat ggt	Asp Ser Lys Gly Leu Arg Leu Ala Lys Gln Ala Pro Ser Met His Gly	735
210 215 220		
ctt cct gat ttt gct gag gtt tat aac ttc att ggg agt gtg ttc gat	Leu Pro Asp Phe Ala Glu Val Tyr Asn Phe Ile Gly Ser Val Phe Asp	783
225 230 235		
cct gac agc aaa ggc cgc atg aaa aag ctc aag gaa atg gat cct ata	Pro Asp Ser Lys Gly Arg Met Lys Lys Leu Lys Glu Met Asp Pro Ile	831
240 245 250		
aat ttc gaa act gtt ttg ctg ttg atg aga aac ctc aca gtg aac ttg	Asn Phe Glu Thr Val Leu Leu Met Arg Asn Leu Thr Val Asn Leu	879
255 260 265		
tca aac cct gac ttt gaa cct act tct gaa tat gtt gat gct gca gag	Ser Asn Pro Asp Phe Glu Pro Thr Ser Glu Tyr Val Asp Ala Ala Glu	927

270	275	mbil9 Sequence Listing.ST25 280	285
gaa ggt cat gaa cac tta agc tct tag ctgtttgtgc actcaacaag Glu Gly His Glu His Leu Ser Ser 290			
ttatatatct ttcttgacgac ttcttgctcg caacaactct ctaccagcta tcaaattgcac cgtacggttg ttgtctgagg agaacataac tgagtgcgtcg tcacaaaacaa gaggaacata tgcagttcg gtcagaacca gtcgtgtgaa tggtagatat atgtatgtgt gtgttagaaaa tggttaccaa ttgttatcttc tttttgataa ttatttttc atgcctttg taatatgtaa gtttcttaa aaaaaaaaaaaa aaa			
1237			
<210> 44			
<211> 293			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 44			
Met Thr Ser Thr Asn Pro Val Val Ala Glu Val Ile Pro Ala Glu Thr 1 5 10 15			
Ser Thr Asp Ala Thr Glu Thr Thr Ile Ala Thr Thr Glu Ala Gly Glu 20 25 30			
Ala Pro Glu Lys Lys Val Arg Lys Ala Tyr Thr Ile Thr Lys Ser Arg 35 40 45			
Glu Ser Trp Thr Glu Gly Glu His Asp Lys Phe Leu Glu Ala Leu Gln 50 55 60			
Leu Phe Asp Arg Asp Trp Lys Lys Ile Glu Asp Phe Val Gly Ser Lys 65 70 75 80			
Thr Val Ile Gln Ile Arg Ser His Ala Gln Lys Tyr Phe Leu Lys Val 85 90 95			
Gln Lys Asn Gly Thr Leu Ala His Val Pro Pro Pro Arg Pro Lys Arg 100 105 110			
Lys Ala Ala His Pro Tyr Pro Gln Lys Ala Ser Lys Asn Ala Gln Met 115 120 125			
Ser Leu His Val Ser Met Ser Phe Pro Thr Gln Ile Asn Asn Leu Pro 130 135 140			
Gly Tyr Thr Pro Trp Asp Asp Asp Thr Ser Ala Leu Leu Asn Ile Ala 145 150 155 160			
Val Ser Gly Val Ile Pro Pro Glu Asp Glu Leu Asp Thr Leu Cys Gly 165 170 175			
Ala Glu Val Asp Val Gly Ser Asn Asp Met Ile Ser Glu Thr Ser Pro 180 185 190			
Ser Ala Ser Gly Ile Gly Ser Ser Ser Arg Thr Leu Ser Asp Ser Lys 195 200 205			

mbi19 Sequence Listing.ST25

Gly Leu Arg Leu Ala Lys Gln Ala Pro Ser Met His Gly Leu Pro Asp
210 215 220

Phe Ala Glu Val Tyr Asn Phe Ile Gly Ser Val Phe Asp Pro Asp Ser
225 230 235 240

Lys Gly Arg Met Lys Lys Leu Lys Glu Met Asp Pro Ile Asn Phe Glu
245 250 255

Thr Val Leu Leu Leu Met Arg Asn Leu Thr Val Asn Leu Ser Asn Pro
260 265 270

Asp Phe Glu Pro Thr Ser Glu Tyr Val Asp Ala Ala Glu Glu Gly His
275 280 285

Glu His Leu Ser Ser
290

<210> 45
<211> 1764
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)...(1764)
<223> G307

<400> 45
atg aag aga gat cat cac caa ttc caa ggt cga ttg tcc aac cac ccc 48
Met Lys Arg Asp His His Gln Phe Gln Gly Arg Leu Ser Asn His Gly
1 5 10 15

act tct tct tct tca tca atc tct aaa gat aag atg atg atg gtg 96
Thr Ser Ser Ser Ser Ser Ile Ser Lys Asp Lys Met Met Met Val.
20 25 30

aaa aaa gaa gaa gac ggt gga ggt aac atg gac gac gag ctt ctc gct 144
Lys Lys Glu Glu Asp Gly Gly Asn Met Asp Asp Glu Leu Leu Ala
35 40 45

gtt tta ggt tac aaa gtt agg tca tcg gag atg gcg gag gtt gct ttg 192
Val Leu Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu
50 55 60

aaa ctc gaa caa tta gag acg atg atg agt aat gtt caa gaa gat ggt 240
Lys Leu Glu Gln Leu Glu Thr Met Met Ser Asn Val Gln Glu Asp Gly
65 70 75 80

tta tct cat ctc gcg acg gat act gtt cat tat aat ccg tcg gag ctt 288
Leu Ser His Leu Ala Thr Asp Thr Val His Tyr Asn Pro Ser Glu Leu
85 90 95

tat tct tgg ctt gat aat atg ctc tct gag ctt aat cct cct ctt 336
Tyr Ser Trp Leu Asp Asn Met Leu Ser Glu Leu Asn Pro Pro Leu
100 105 110

ccg gcg agt tct aac ggt tta gat ccg gtt ctt cct tcg ccg gag att 384
Pro Ala Ser Ser Asn Gly Leu Asp Pro Val Leu Pro Ser Pro Glu Ile
115 120 125

tgt ggt ttt ccg gct tcg gat tat gac ctt aaa gtc att ccc gga aac 432
Cys Gly Phe Pro Ala Ser Asp Tyr Asp Leu Lys Val Ile Pro Gly Asn
130 135 140

gcg att tat cag ttt ccg gcg att gat tct tcg tct tcg tcg aat aat 480
Ala Ile Tyr Gln Phe Pro Ala Ile Asp Ser Ser Ser Ser Asn Asn

mbil9 Sequence Listing.ST25

145	150	155	160	
cag aac aag cgt ttg aaa tca tgc tcg agt cct gat tct atg gtt aca Gln Asn Lys Arg Leu Lys Ser Cys Ser Ser Pro Asp Ser Met Val Thr				528
165	170	175		
tcg act tcg acg ggt acg cag att ggt gga gtc ata gga acg acg gtg Ser Thr Ser Thr Gly Thr Gln Ile Gly Gly Val Ile Gly Thr Thr Val				576
180	185	190		
acg aca acc acc acg aca acg acg gcg gcg gct gag tca act cgt tct Thr Thr Thr Thr Thr Ala Ala Ala Glu Ser Thr Arg Ser				624
195	200	205		
gtt atc ctg gtt gac tcg caa gag aac ggt gtt cgt tta gtc cac gcg Val Ile Leu Val Asp Ser Gln Glu Asn Gly Val Arg Leu Val His Ala				672
210	215	220		
ctt atg gct tgt gca gaa gca atc cag cag aac aat ttg act cta gcg Leu Met Ala Cys Ala Glu Ala Ile Gln Gln Asn Asn Leu Thr Leu Ala				720
225	230	235	240	
gaa gct ctt gtg aag caa atc gga tgc tta gct gtg tct caa gcc gga Glu Ala Leu Val Lys Gln Ile Gly Cys Leu Ala Val Ser Gln Ala Gly				768
245	250	255		
gct atg aga aaa gtg gct act tac ttc gcc gaa gct tta gct cgg cgg Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg				816
260	265	270		
atc tac cgt ctc tct ccg ccg cag aat cag atc gat cat tgt ctc tcc Ile Tyr Arg Leu Ser Pro Pro Gln Asn Gln Ile Asp His Cys Leu Ser				864
275	280	285		
gat act ctt cag atg cac ttt tac gag act tgt cct tat ctt aaa ttc Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe				912
290	295	300		
gct cac ttc acg gcg aac caa gcg att ctc gaa gct ttt gaa ggt aag Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu Gly Lys				960
305	310	315	320	
aag aga gta cac gtc att gat ttc tcg atg aac caa ggt ctt caa tgg Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu Gln Trp				1008
325	330	335		
cct gcg ctt atg caa gct ctt gcg ctt cga gaa gga ggt cct cca act Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Gly Pro Pro Thr				1056
340	345	350		
ttc cgg tta acc gga att ggt cca ccg gcg ccg gat aat tct gat cat Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Pro Asp Asn Ser Asp His				1104
355	360	365		
ctt cat gaa gtt ggt tgt aaa tta gct cag ctt gcg gag gcg att cac Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala Ile His				1152.
370	375	380		
gta gaa ttc gaa tac cgt gga ttc gtt gct aac agc tta gcc gat ctc Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala Asp Leu				1200
385	390	395	400	
gat gct tcg atg ctt gag ctt aga ccg agc gat acg gaa gct gtt gcg Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Asp Thr Glu Ala Val Ala				1248
405	410	415		
gtg aac tct gtt ttt gag cta cat aag ctc tta ggt cgt ccc ggt ggg Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Pro Gly Gly				1296
420	425	430		
ata gag aaa gtt ctc ggc gtt gtg aaa cag att aaa ccg gtg att ttc Ile Glu Lys Val Leu Gly Val Val Lys Gln Ile Lys Pro Val Ile Phe				1344
435	440	445		
acg gtg gtt gag caa gaa tcg aac cat aac gga ccg gtt ttc tta gac				1392

mbi19 Sequence Listing.ST25

Thr Val Val Glu Gln Glu Ser Asn His Asn Gly Pro Val Phe Leu Asp			
450	455	460	
cgg ttt act gaa tcg tta cat tat tat tcg act ctg ttt gat tcg ttg			1440
Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp Ser Leu			
465	470	475	480
gaa gga gtt ccg aat agt caa gac aaa gtc atg tct gaa gtt tac tta			1488
Glu Gly Val Pro Asn Ser Gln Asp Lys Val Met Ser Glu Val Tyr Leu			
485	490	495	
ggg aaa cag att tgt aat ctg gtg gct tgt gaa ggt cct gac aga gtc			1536
Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp Arg Val			
500	505	510	
gag aga cac gaa acg ttg agt caa tgg gga aac cgg ttt ggt tcg tcc			1584
Glu Arg His Glu Thr Leu Ser Gln Trp Gly Asn Arg Phe Gly Ser Ser			
515	520	525	
ggt tta gcg ccg gca cat ctt ggg tct aac gcg ttt aag caa gcg agt			1632
Gly Leu Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln Ala Ser			
530	535	540	
atg ctt ttg tct gtg ttt aat agt ggc caa ggt tat cgt gtg gag gag			1680
Met Leu Leu Ser Val Phe Asn Ser Gly Gln Gly Tyr Arg Val Glu Glu			
545	550	555	560
agt aat gga tgt ttg atg ttg ggt tgg cac act cgc cca ctc att acc			1728
Ser Asn Gly Cys Leu Met Leu Gly Trp His Thr Arg Pro Leu Ile Thr			
565	570	575	
acc tcc gct tgg aaa ctc tcg acg gcg gcg cac tga			1764
Thr Ser Ala Trp Lys Leu Ser Thr Ala Ala His			
580	585		
<210> 46			
<211> 587			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 46			
Met Lys Arg Asp His His Gln Phe Gln Gly Arg Leu Ser Asn His Gly			
1	5	10	15
Thr Ser Ser Ser Ser Ser Ile Ser Lys Asp Lys Met Met Met Val			
20	25	30	
Lys Lys Glu Glu Asp Gly Gly Asn Met Asp Asp Glu Leu Leu Ala			
35	40	45	
Val Leu Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu			
50	55	60	
Lys Leu Glu Gln Leu Glu Thr Met Met Ser Asn Val Gln Glu Asp Gly			
65	70	75	80
Leu Ser His Leu Ala Thr Asp Thr Val His Tyr Asn Pro Ser Glu Leu			
85	90	95	
Tyr Ser Trp Leu Asp Asn Met Leu Ser Glu Leu Asn Pro Pro Pro Leu			
100	105	110	
Pro Ala Ser Ser Asn Gly Leu Asp Pro Val Leu Pro Ser Pro Glu Ile			
115	120	125	

mbi19 Sequence Listing ST25

Cys	Gly	Phe	Pro	Ala	Ser	Asp	Tyr	Asp	Leu	Lys	Val	Ile	Pro	Gly	Asn
130						135							140		
Ala Ile Tyr Gln Phe Pro Ala Ile Asp Ser Ser Ser Ser Asn Asn															
145						150					155			160	
Gln Asn Lys Arg Leu Lys Ser Cys Ser Ser Pro Asp Ser Met Val Thr															
						165					170			175	
Ser Thr Ser Thr Gly Thr Gln Ile Gly Gly Val Ile Gly Thr Thr Val															
						180				185			190		
Thr Thr Thr Thr Thr Thr Ala Ala Ala Glu Ser Thr Arg Ser															
						195				200			205		
Val Ile Leu Val Asp Ser Gln Glu Asn Gly Val Arg Leu Val His Ala															
						210				215			220		
Leu Met Ala Cys Ala Glu Ala Ile Gln Gln Asn Asn Leu Thr Leu Ala															
						225				230			235		240
Glu Ala Leu Val Lys Gln Ile Gly Cys Leu Ala Val Ser Gln Ala Gly															
						245				250			255		
Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg															
						260				265			270		
Ile Tyr Arg Leu Ser Pro Pro Gln Asn Gln Ile Asp His Cys Leu Ser															
						275				280			285		
Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe															
						290				295			300		
Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu Gly Lys															
						305				310			315		320
Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu Gln Trp															
						325				330			335		
Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Pro Pro Thr															
						340				345			350		
Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Pro Asp Asn Ser Asp His															
						355				360			365		
Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala Ile His															
						370				375			380		
Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala Asp Leu															
						385				390			395		400
Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Asp Thr Glu Ala Val Ala															
						405				410			415		
Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Pro Gly Gly															
						420				425			430		

mbi19 Sequence Listing.ST25

Ile Glu Lys Val Leu Gly Val Val Lys Gln Ile Lys Pro Val Ile Phe
435 440 445

Thr Val Val Glu Gln Glu Ser Asn His Asn Gly Pro Val Phe Leu Asp
450 455 460

Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp Ser Leu
465 470 475 480

Glu Gly Val Pro Asn Ser Gln Asp Lys Val Met Ser Glu Val Tyr Leu
485 490 495

Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp Arg Val
500 505 510

Glu Arg His Glu Thr Leu Ser Gln Trp Gly Asn Arg Phe Gly Ser Ser
515 520 525

Gly Leu Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln Ala Ser
530 535 540

Met Leu Leu Ser Val Phe Asn Ser Gly Gln Gly Tyr Arg Val Glu Glu
545 550 555 560

Ser Asn Gly Cys Leu Met Leu Gly Trp His Thr Arg Pro Leu Ile Thr
565 570 575

Thr Ser Ala Trp Lys Leu Ser Thr Ala Ala His
580 585

```
<210> 47
<211> 990
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (?)..(813)
<223> G529

aag tta gcc gag caa gct gag cgt tac gag gaa atg gtt gag ttc atg 96
 Lys Leu Ala Glu Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met
 15 20 25 30

gag aaa gtt gca aag acc gtg gag acc gag gaa ctt act gtt gaa gag 144
Glu Lys Val Ala Lys Thr Val Glu Thr Glu Glu Leu Thr Val Glu Glu
35 40 45

```

agg aat ctc ttg tct gtt gct tac aag aac gtg att ggt gct agg aga 192
Arg Asn Leu Leu Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg
      50          55          60

```

gct tct tgg agg att atc tct tcc att gag cag aag gaa gat agc agg 240
Ala Ser Trp Arg Ile Ile Ser Ser Ile Glu Gln Lys Glu Asp Ser Arg
65 . 70 75

ggc aac agt gat cat gtt tcg att atc aag gat tac aga ggc aag att 288
Gly Asn Ser Asp His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile

mbi19 Sequence Listing.ST25

80	85	90	
gaa act gag ctc agc aag att tgt gat ggc att ttg aac ctt ctt gag Glu Thr Glu Leu Ser Lys Ile Cys Asp Gly Ile Leu Asn Leu Leu Glu 95 100 105 110			336
gct cat ctc att cct gct tct ttg gct gag tcc aaa gtt ttt tac Ala His Leu Ile Pro Ala Ala Ser Leu Ala Glu Ser Lys Val Phe Tyr 115 120 125			384
ctg aag atg aag gga gat tat cat cgg tac ctt gct gaa ttc aag act Leu Lys Met Lys Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr 130 135 140			432
ggt gct gag agg aaa gaa gct gat gag agc act ctt gtt gcc tac aag Gly Ala Glu Arg Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys 145 150 155			480
tct gct cag gat att gct ctt gct gat ctg gct ccc act cac cca atc Ser Ala Gln Asp Ile Ala Leu Ala Asp Leu Ala Pro Thr His Pro Ile 160 165 170			528
aga ctg ggg ctt gct ctt aac ttc tct gtt ttc tac tat gag att ctc Arg Leu Gly Leu Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu 175 180 185 190			576
aac tca tct gat cgt gcg tgt agt ctc gca aag cag gct ttt gat gag Asn Ser Ser Asp Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Glu 195 200 205			624
gca atc tcg gag cta gac aca ttg gga gag gaa tca tac aag gac agt Ala Ile Ser Glu Leu Asp Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser 210 215 220			672
aca ttg atc atg cag ctt ctc cgt gac aat ctc acc ctc tgg act tct Thr Leu Ile Met Gln Leu Leu Arg Asp Asn Leu Thr Leu Trp Thr Ser 225 230 235			720
gac ctc aat gac gaa gct ggt gat gat atc aag gaa gcc ccg aaa gag Asp Leu Asn Asp Glu Ala Gly Asp Asp Ile Lys Glu Ala Pro Lys Glu 240 245 250			768
gtg cag aaa gtt gat gaa caa gcc caa cca cca cct tcg cag tga Val Gln Lys Val Asp Glu Gln Ala Gln Pro Pro Pro Ser Gln 255 260 265			813
taaaatcaga tccatggaat gatttgaga caaaaagata tatggcttgg ttctgtgttt ttaaacagaa aaaaaccttg tagttcctt aaacatgggc tgttagttcc ttaaacatgg atttgttagta gtaattgttag ctgcattgatt tggtatcga tggtaaaaaa aaaaaaaaaa			873 933 990
<210> 48 <211> 268 <212> PRT <213> Arabidopsis thaliana			
<400> 48			
Met Ser Ser Asp Ser Ser Arg Glu Glu Asn Val Tyr Leu Ala Lys Leu 1 5 10 15			
Ala Glu Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met Glu Lys 20 25 30			
Val Ala Lys Thr Val Glu Thr Glu Glu Leu Thr Val Glu Glu Arg Asn 35 40 45			
Leu Leu Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser 50 55 60			

mbi19 Sequence Listing.ST25

Trp Arg Ile Ile Ser Ser Ile Glu Gln Lys Glu Asp Ser Arg Gly Asn
 65 70 75 80

Ser Asp His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile Glu Thr
 85 90 95

Glu Leu Ser Lys Ile Cys Asp Gly Ile Leu Asn Leu Leu Glu Ala His
 100 105 110

Leu Ile Pro Ala Ala Ser Leu Ala Glu Ser Lys Val Phe Tyr Leu Lys
 115 120 125

Met Lys Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr Gly Ala
 130 135 140

Glu Arg Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala
 145 150 155 160

Gln Asp Ile Ala Leu Ala Asp Leu Ala Pro Thr His Pro Ile Arg Leu
 165 170 175

Gly Leu Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser
 180 185 190

Ser Asp Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Glu Ala Ile
 195 200 205

Ser Glu Leu Asp Thr Leu Gly Glu Ser Tyr Lys Asp Ser Thr Leu
 210 215 220

Ile Met Gln Leu Leu Arg Asp Asn Leu Thr Leu Trp Thr Ser Asp Leu
 225 230 235 240

Asn Asp Glu Ala Gly Asp Asp Ile Lys Glu Ala Pro Lys Glu Val Gln
 245 250 255

Lys Val Asp Glu Gln Ala Gln Pro Pro Ser Gln
 260 265

<210> 49
 <211> 1069
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (70)..(867)
 <223> G531

<400> 49
 ccacgcgtcc gcgacaaatc cctaattcca aaatcctctc ggatctaaaa gagtgtgtga 60

taacataag atg tcg tct tct cgg gaa gag aat gtg tac tta gcc aag tta 111
 Met Ser Ser Ser Arg Glu Glu Asn Val Tyr Leu Ala Lys Leu
 1 5 10

gct gag caa gct gaa cgt tat gag gaa atg gtt gag ttc atg gag aaa 159
 Ala Glu Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met Glu Lys
 15 20 25 30

mbi19 Sequence Listing.ST25

gtt gca aag act gtt gac acc gat gag ctt act gtc gaa gag aga aac Val Ala Lys Thr Val Asp Thr Asp Glu Leu Thr Val Glu Glu Arg Asn 35 40 45	207
ctc ttg tct gtc tac aag aac gtc att ggt gct agg aga gtc tcc Leu Leu Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser 50 55 60	255
tgg agg atc ata tct tcc att gaa cag aag gaa agc aga gga aac Trp Arg Ile Ile Ser Ser Ile Glu Gln Lys Glu Glu Ser Arg, Gly Asn 65 70 75	303
gat gat cat gtt tcc att atc aag gac tac aga gga aag atc gaa act Asp Asp His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile Glu Thr 80 85 90	351
gaa ctc agc aaa atc tgt gat gga ata ctc aat ctt ctg gat tct cac Glu Leu Ser Lys Ile Cys Asp Gly Ile Leu Asn Leu Leu Asp Ser His 95 100 105 110	399
ctt gtt ccc act gca tct ttg gcc gag tcc aaa gtc ttt tac ctc aaa Leu Val Pro Thr Ala Ser Leu Ala Glu Ser Lys Val Phe Tyr Leu Lys 115 120 125	447
atg aaa gga gat tac cac agg tac ctt gct gag ttt aag act gga gct Met Lys Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr Gly Ala 130 135 140	495
gag agg aaa gaa gct gct gag agc act ctg gtt gct tac aag tca gct Glu Arg Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala 145 150 155	543
cag gat att gca ctt gct gat tta gct cct act cat ccg att aga ctg Gln Asp Ile Ala Leu Ala Asp Leu Ala Pro Thr His Pro Ile Arg Leu 160 165 170	591
gga ctt gct ctt aac ttc tct gtc ttc tac tac gag att ctc aac tca Gly Leu Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser 175 180 185 190	639
cct gat cgt gcc tgc agt ctc gca aaa cag gct ttt gat gag gcc att Pro Asp Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Glu Ala Ile 195 200 205	687
tct gag ctg gat aca tta gga gaa tca tac aaa gac agt acg ttg Ser Glu Leu Asp Thr Leu Gly Glu Ser Tyr Lys Asp Ser Thr Leu 210 215 220	735
ata atg caa ctt ctc cgt gac aat ctg acc ctt tgg aac tct gac atc Ile Met Gln Leu Leu Arg Asp Asn Leu Thr Leu Trp Asn Ser Asp Ile 225 230 235	783
aat gat gag gcg ggc ggt gat gag atc aag gag gcg tca aaa cat gag Asn Asp Glu Ala Gly Gly Asp Glu Ile Lys Glu Ala Ser Lys His Glu 240 245 250	831
ccg gaa gag ggg aaa cca gct gag aca ggg cag tga ccagagagag Pro Glu Glu Gly Lys Pro Ala Glu Thr Gly Gln 255 260 265	877
agggagagac atttctaagt atgtatggta tggatttcc aaaaacatat gatatgatta ggggatttgt agaagcagag agaaaagatct ttatgttatt ttctccaaaa atctctgttc cctttttttt ttatgggtt attaaagctg tttgagtcca aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa	937 997 1057 1069
<210> 50 <211> 265 <212> PRT <213> <i>Arabidopsis thaliana</i>	
<400> 50	

mbi19 Sequence Listing.ST25

Met Ser Ser Ser Arg Glu Glu Asn Val Tyr Leu Ala Lys Leu Ala Glu
1 5 10 15

Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met Glu Lys Val Ala
20 25 30

Lys Thr Val Asp Thr Asp Glu Leu Thr Val Glu Glu Arg Asn Leu Leu
35 40 45

Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser Trp Arg
50 55 60

Ile Ile Ser Ser Ile Glu Gln Lys Glu Glu Ser Arg Gly Asn Asp Asp
65 70 75 80

His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile Glu Thr Glu Leu
85 90 95

Ser Lys Ile Cys Asp Gly Ile Leu Asn Leu Leu Asp Ser His Leu Val
100 105 110

Pro Thr Ala Ser Leu Ala Glu Ser Lys Val Phe Tyr Leu Lys Met Lys
115 120 125

Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr Gly Ala Glu Arg
130 135 140

Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala Gln Asp
145 150 155 160

Ile Ala Leu Ala Asp Leu Ala Pro Thr His Pro Ile Arg Leu Gly Leu
165 170 175

Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser Pro Asp
180 185 190

Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Glu Ala Ile Ser Glu
195 200 205

Leu Asp Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser Thr Leu Ile Met
210 215 220

Gln Leu Leu Arg Asp Asn Leu Thr Leu Trp Asn Ser Asp Ile Asn Asp
225 230 235 240

Glu Ala Gly Gly Asp Glu Ile Lys Glu Ala Ser Lys His Glu Pro Glu
245 250 255

Glu Gly Lys Pro Ala Glu Thr Gly Gln
260 265

<210> 51
<211> 2240
<212> DNA
<213> Arabidopsis thaliana

<220>

mbi19 Sequence Listing.ST25

<221> CDS
<222> (238) .. (2064)
<223> G214

<400>	51					
tgagatttct	ccatttcgt	agtttctgg	ctctttctt	tgttcattg	atcaaaagca	60
aatcaactct	tcttcttctt	cttctcgatt	tcttactgtt	ttcttatcca	acgaaatctg	120
gaattaaaaa	tggaatcttt	atcgaatcca	agctgatTTT	gttctttca	ttgaatcatc	180
tctctaaagt	ggaattttgt	aaagagaaga	tctgaagttt	tgttagaggag	ctttagtg	237
atg gag aca aat tcg tct gga gaa gat ctg gtt att aag act cgg aag	Met Glu Thr Asn Ser Ser Gly Glu Asp Leu Val Ile Lys Thr Arg Lys	285				
1	5	10	15			
cca tat acg ata aca aag caa cgt gaa agg tgg act gag gaa gaa cat	Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Glu His	333				
20	25	30				
aat aga ttc att gaa gct ttg agg ctt tat ggt aga gca tgg cag aag	Asn Arg Phe Ile Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Lys	381				
35	40	45				
att gaa gaa cat gta gca aca aaa act gct gtc cag ata aga agt cac	Ile Glu Glu His Val Ala Thr Lys Thr Ala Val Gln Ile Arg Ser His	429				
50	55	60				
gct cag aaa ttt ttc tcc aag gta gag aaa gag gct gaa gct aaa ggt	Ala Gln Lys Phe Phe Ser Lys Val Glu Lys Glu Ala Glu Ala Lys Gly	477				
65	70	75	80			
gta gct atg ggt caa gcg cta gac ata gct att cct cct cca cgg cct	Val Ala Met Gly Gln Ala Leu Asp Ile Ala Ile Pro Pro Pro Arg Pro	525				
85	90	95				
aag cgt aaa cca aac aat cct tat cct cga aag acg gga agt gga acg	Lys Arg Lys Pro Asn Asn Pro Tyr Pro Arg Lys Thr Gly Ser Gly Thr	573				
100	105	110				
atc ctt atg tca aaa acg ggt gtg aat gat gga aaa gag tcc ctt gga	Ile Leu Met Ser Lys Thr Gly Val Asn Asp Gly Lys Glu Ser Leu Gly	621				
115	120	125				
tca gaa aaa gtg tcg cat cct gag atg gcc aat gaa gat cga caa caa	Ser Glu Lys Val Ser His Pro Glu Met Ala Asn Glu Asp Arg Gln Gln	669				
130	135	140				
tca aag cct gaa gag aaa act ctg cag gaa gac aac tgt tca gat tgt	Ser Lys Pro Glu Glu Lys Thr Leu Gln Glu Asp Asn Cys Ser Asp Cys	717				
145	150	155	160			
ttc act cat cag tat ctc tct gct gca tcc tcc atg aat aaa agt tgt	Phe Thr His Gln Tyr Leu Ser Ala Ala Ser Ser Met Asn Lys Ser Cys	765				
165	170	175				
ata gag aca tca aac gca agc act ttc cgc gag ttc ttg cct tca cgg	Ile Glu Thr Ser Asn Ala Ser Thr Phe Arg Glu Phe Leu Pro Ser Arg	813				
180	185	190				
gaa gag gga agt cag aat aac agg gta aga aag gag tca aac tca gat	Glu Glu Gly Ser Gln Asn Asn Val Arg Lys Glu Ser Asn Ser Asp	861				
195	200	205				
ttg aat gca aaa tct ctg gaa aac ggt aat gag caa gga cct cag act	Leu Asn Ala Lys Ser Leu Glu Asn Gly Asn Glu Gln Gly Pro Gln Thr	909				
210	215	220				
tat ccg atg cat atc cct gtg cta gtg cca ttg ggg agc tca ata aca	Tyr Pro Met His Ile Pro Val Leu Val Pro Leu Gly Ser Ser Ile Thr	957				
225	230	235	240			
agt tct cta tca cat cct cct tca gag cca gat agt cat ccc cac aca		1005				

mbi19 Sequence Listing.ST25

Ser Ser Leu Ser His Pro Pro Ser Glu Pro Asp Ser His Pro His Thr			
245	250	255	
gtt gca gga gat tat cag tcg ttt cct aat cat ata atg tca acc ctt		1053	
Val Ala Gly Asp Tyr Gln Ser Phe Pro Asn His Ile Met Ser Thr Leu			
260	265	270	
tta caa aca ccg gct ctt tat act gcc gca act ttc gcc tca tca ttt		1101	
Leu Gln Thr Pro Ala Leu Tyr Thr Ala Ala Thr Phe Ala Ser Ser Phe			
275	280	285	
tgg cct ccc gat tct agt ggt ggc tca cct gtt cca ggg aac tca cct		1149	
Trp Pro Pro Asp Ser Ser Gly Ser Pro Val Pro Gly Asn Ser Pro			
290	295	300	
ccg aat ctg gct gcc atg gcc gca gcc act gtt gca gct gct agt gct		1197	
Pro Asn Leu Ala Ala Met Ala Ala Ala Thr Val Ala Ala Ser Ala			
305	310	315	320
tgg tgg gct gcc aat gga tta tta cct tta tgt gct cct ctt agt tca		1245	
Trp Trp Ala Ala Asn Gly Leu Leu Pro Leu Cys Ala Pro Leu Ser Ser			
325	330	335	
ggt ggt ttc act agt cat cct cca tct act ttt gga cca tca tgt gat		1293	
Gly Gly Phe Thr Ser His Pro Pro Ser Thr Phe Gly Pro Ser Cys Asp			
340	345	350	
gta gag tac aca aaa gca agc act tta caa cat ggt tct gtg cag agc		1341	
Val Glu Tyr Thr Lys Ala Ser Thr Leu Gln His Gly Ser Val Gln Ser			
355	360	365	
cga gag caa gaa cac tcc gag gca tca aag gct cga tct tca ctg gac		1389	
Arg Glu Gln Glu His Ser Glu Ala Ser Lys Ala Arg Ser Ser Leu Asp			
370	375	380	
tca gag gat gtt gaa aat aag agt aaa cca gtt tgt cat gag cag cct		1437	
Ser Glu Asp Val Glu Asn Lys Ser Lys Pro Val Cys His Glu Gln Pro			
385	390	395	400
tct gca aca cct gag agt gat gca aag ggt tca gat gga gca gga gac		1485	
Ser Ala Thr Pro Glu Ser Asp Ala Lys Gly Ser Asp Gly Ala Gly Asp			
405	410	415	
aga aaa caa gtt gac cgg tcc tcg tgt ggc tca aac act ccg tcg agt		1533	
Arg Lys Gln Val Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Ser			
420	425	430	
agt gat gat gtt gag gcg gat gca tca gaa agg caa gag gat ggc acc		1581	
Ser Asp Asp Val Glu Ala Asp Ala Ser Glu Arg Gln Glu Asp Gly Thr			
435	440	445	
aat ggt gag gtg aaa gaa acg aat gaa gac act aat aaa cct caa act		1629	
Asn Gly Glu Val Lys Glu Thr Asn Glu Asp Thr Asn Lys Pro Gln Thr			
450	455	460	
tca gag tcc aat gca cgc cgc agt aga atc agc tcc aat ata acc gat		1677	
Ser Glu Ser Asn Ala Arg Arg Ser Arg Ile Ser Ser Asn Ile Thr Asp			
465	470	475	480
cca tgg aag tct gtg tct gac gag ggt cga att gcc ttc caa gct ctc		1725	
Pro Trp Lys Ser Val Ser Asp Glu Gly Arg Ile Ala Phe Gln Ala Leu			
485	490	495	
ttc tcc aga gag gta ttg ccg caa agt ttt aca tat cga gaa gaa cac		1773	
Phe Ser Arg Glu Val Leu Pro Gln Ser Phe Thr Tyr Arg Glu Glu His			
500	505	510	
aga gag gaa gaa caa caa caa caa gaa caa aga tat cca atg gca ctt		1821	
Arg Glu Glu Glu Gln Gln Gln Glu Gln Arg Tyr Pro Met Ala Leu			
515	520	525	
gat ctt aac ttc aca gct cag tta aca cca gtt gat gat caa gag gag		1869	
Asp Leu Asn Phe Thr Ala Gln Leu Thr Pro Val Asp Asp Gln Glu Glu			
530	535	540	

mbi19 Sequence Listing.ST25

aag aga aac aca gga ttt ctt gga atc gga tta gat gct tca aag cta Lys Arg Asn Thr Gly Phe Leu Gly Ile Gly Leu Asp Ala Ser Lys Leu 545 550 555 560	1917
atg agt aga gga aga aca ggt ttt aaa cca tac aaa aga tgt tcc atg Met Ser Arg Gly Arg Thr Gly Phe Lys Pro Tyr Lys Arg Cys Ser Met 565 570 575	1965
gaa gcc aaa gaa agt aga atc ctc aac aac aat cct atc att cat gtg Glu Ala Lys Glu Ser Arg Ile Leu Asn Asn Asn Pro Ile Ile His Val 580 585 590	2013
gaa cag aaa gat ccc aaa cgg atg cgg ttg gaa act caa gct tcc aca Glu Gln Lys Asp Pro Lys Arg Met Arg Leu Glu Thr Gln Ala Ser Thr 595 600 605	2061
tga gactctattt tcatctgatc tgttgttgtt actctgtttt taagtttca	2114
agaccactgc tacatttct ttttcttttg aggccctttgtt atttgttcc ttgtccatag	2174
ttttcctgta acatttgact ctgtattttt caacaaatca taaaactgtttt aatctttttt	2234
tttcca	2240
 <210> 52	
<211> 608	
<212> PRT	
<213> Arabidopsis thaliana	
 <400> 52	
Met Glu Thr Asn Ser Ser Gly Glu Asp Leu Val Ile Lys Thr Arg Lys 1 5 10 15	
Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Glu Glu His 20 25 30	
Asn Arg Phe Ile Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Lys 35 40 45	
Ile Glu Glu His Val Ala Thr Lys Thr Ala Val Gln Ile Arg Ser His 50 55 60	
Ala Gln Lys Phe Phe Ser Lys Val Glu Lys Glu Ala Glu Ala Lys Gly 65 70 75 80	
Val Ala Met Gly Gln Ala Leu Asp Ile Ala Ile Pro Pro Pro Arg Pro 85 90 95	
Lys Arg Lys Pro Asn Asn Pro Tyr Pro Arg Lys Thr Gly Ser Gly Thr 100 105 110	
Ile Leu Met Ser Lys Thr Gly Val Asn Asp Gly Lys Glu Ser Leu Gly 115 120 125	
Ser Glu Lys Val Ser His Pro Glu Met Ala Asn Glu Asp Arg Gln Gln 130 135 140	
Ser Lys Pro Glu Glu Lys Thr Leu Gln Glu Asp Asn Cys Ser Asp Cys 145 150 155 160	
Phe Thr His Gln Tyr Leu Ser Ala Ala Ser Ser Met Asn Lys Ser Cys 165 170 175	

mbil9 Sequence Listing .ST25

Ile Glu Thr Ser Asn Ala Ser Thr Phe Arg Glu Phe Leu Pro Ser Arg
180 185 190

Glu Glu Gly Ser Gln Asn Asn Arg Val Arg Lys Glu Ser Asn Ser Asp
195 200 205

Leu Asn Ala Lys Ser Leu Glu Asn Gly Asn Glu Gln Gly Pro Gln Thr
210 215 220

Tyr Pro Met His Ile Pro Val Leu Val Pro Leu Gly Ser Ser Ile Thr
225 230 235 240

Ser Ser Leu Ser His Pro Pro Ser Glu Pro Asp Ser His Pro His Thr
245 250 255

Val Ala, Gly Asp Tyr Gln Ser Phe Pro Asn His Ile Met Ser Thr Leu
260 265 270

Leu Gln Thr Pro Ala Leu Tyr Thr Ala Ala Thr Phe Ala Ser Ser Phe
275 280 285

Trp Pro Pro Asp Ser Ser Gly Gly Ser Pro Val Pro Gly Asn Ser Pro
290 295 300

Pro Asn Leu Ala Ala Met Ala Ala Ala Thr Val Ala Ala Ala Ser Ala
305 310 315 320

Trp Trp Ala Ala Asn Gly Leu Leu Pro Leu Cys Ala Pro Leu Ser Ser
325 330 335

Gly Gly Phe Thr Ser His Pro Pro Ser Thr Phe Gly Pro Ser Cys Asp
340 345 350

Val Glu Tyr Thr Lys Ala Ser Thr Leu Gln His Gly Ser Val Gln Ser
355 360 365

Arg Glu Gln Glu His Ser Glu Ala Ser Lys Ala Arg Ser Ser Leu Asp
370 375 380

Ser Glu Asp Val Glu Asn Lys Ser Lys Pro Val Cys His Glu Gln Pro
385 390 395 400

Ser Ala Thr Pro Glu Ser Asp Ala Lys Gly Ser Asp Gly Ala Gly Asp
405 410 415

Arg Lys Gln Val Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Ser
420 425 430

Ser Asp Asp Val Glu Ala Asp Ala Ser Glu Arg Gln Glu Asp Gly Thr
435 440 445

Asn Gly Glu Val Lys Glu Thr Asn Glu Asp Thr Asn Lys Pro Gln Thr
450 455 460

Ser Glu Ser Asn Ala Arg Arg Ser Arg Ile Ser Ser Asn Ile Thr Asp
465 470 475 480

mbi19 Sequence Listing.ST25

Pro Trp Lys Ser Val Ser Asp Glu Gly Arg Ile Ala Phe Gln Ala Leu
 485 490 495

Phe Ser Arg Glu Val Leu Pro Gln Ser Phe Thr Tyr Arg Glu Glu His
 500 505 510

Arg Glu Glu Glu Gln Gln Gln Glu Gln Arg Tyr Pro Met Ala Leu
 515 520 525

Asp Leu Asn Phe Thr Ala Gln Leu Thr Pro Val Asp Asp Gln Glu Glu
 530 535 540

Lys Arg Asn Thr Gly Phe Leu Gly Ile Gly Leu Asp Ala Ser Lys Leu
 545 550 555 560

Met Ser Arg Gly Arg Thr Gly Phe Lys Pro Tyr Lys Arg Cys Ser Met
 565 570 575

Glu Ala Lys Glu Ser Arg Ile Leu Asn Asn Asn Pro Ile Ile His Val
 580 585 590

Glu Gln Lys Asp Pro Lys Arg Met Arg Leu Glu Thr Gln Ala Ser Thr
 595 600 605

<210> 53
<211> 1155
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (76)..(1077)
<223> G1930

<400> 53
attcacatataaatcttc aagatttcac aattttcttg tgatttctc tcagtttctt 60
atttcgtttc ataac atg gat gcc atg agt agc gta gac gag agc tct aca 111
Met Asp Ala Met Ser Ser Val Asp Glu Ser Ser Thr
1 5 10

act aca gat tcc att ccg gcg aga aag tca tcg tct ccg gcg agt tta 159
Thr Thr Asp Ser Ile Pro Ala Arg Lys Ser Ser Pro Ala Ser Leu
15 20 25

cta tat aga atg gga agc gga aca agc gtg gta ctt gat tca gag aac 207
Leu Tyr Arg Met Gly Ser Gly Thr Ser Val Val Leu Asp Ser Glu Asn
30 35 40

ggc gtc gaa gtc gaa gtc gaa gcc gaa tca aga aag ctt cct tct tca 255
Gly Val Glu Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser
45 50 55 60

aga ttc aaa ggt gtt cct caa cca aat gga aga tgg gga gct cag 303
Arg Phe Lys Gly Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln
65 70 75

att tac gag aaa cat caa cgc gtg tgg ctt ggt act ttc aac gag gaa 351
Ile Tyr Glu Lys His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu
80 85 90

gac gaa gca gct cgt gct tac gac gtc gcg gct cac cgt ttc cgt ggc 399
Asp Glu Ala Ala Arg Ala Tyr Asp Val Ala Ala His Arg Phe Arg Gly
95 100 105

mbi19 Sequence Listing.ST25

cgc gat gcc gtt act aat ttc aaa gac acg acg ttc gaa gaa gag gtt Arg Asp Ala Val Thr Asn Phe Lys Asp Thr Thr Phe Glu Glu Glu Val 110 115 120	447
gag ttc tta aac gcg cat tcg aaa tca gag atc gta gat atg ttg aga Glu Phe Leu Asn Ala His Ser Lys Ser Glu Ile Val Asp Met Leu Arg 125 130 135 140	495
aaa cac act tac aaa gaa gag tta gac caa agg aaa cgt aac cgt gac Lys His Thr Tyr Lys Glu Leu Asp Gln Arg Lys Arg Asn Arg Asp 145 150 155	543
ggg aac gga aaa gag acg acg gcg ttt gct ttg gct tcg atg gtg gtt Gly Asn Gly Lys Glu Thr Thr Ala Phe Ala Leu Ala Ser Met Val Val 160 165 170	591
atg acg ggg ttt aaa acg gcg gag tta ctg ttt gag aaa acg gta acg Met Thr Gly Phe Lys Thr Ala Glu Leu Leu Phe Glu Lys Thr Val Thr 175 180 185	639
cca agt gac gtc ggg aaa cta aac cgt tta gtt ata cca aaa cac caa Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys His Gln 190 195 200	687
gcg gag aaa cat ttt ccg tta ccg tta ggt aat aat aac gtc tcc gtt Ala Glu Lys His Phe Pro Leu Pro Leu Gly Asn Asn Asn Val Ser Val 205 210 215 220	735
aaa ggt atg ctg ttg aat ttc gaa gac gtt aac ggg aaa gtg tgg agg Lys Gly Met Leu Leu Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg 225 230 235	783
ttc cgt tac tct tat tgg aat agt agt caa agt tat gtg ttg acc aaa Phe Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys 240 245 250	831
ggg tgg agt aga ttc gtt aaa gag aag aga ctt tgt gct ggt gat ttg Gly Trp Ser Arg Phe Val Lys Glu Lys Arg Leu Cys Ala Gly Asp Leu 255 260 265	879
atc agt ttt aaa aga tcc aac gat caa gat caa aaa ttc ttt atc ggg Ile Ser Phe Lys Arg Ser Asn Asp Gln Asp Gln Lys Phe Phe Ile Gly 270 275 280	927
tgg aaa tcg aaa tcc ggg ttg gat cta gag acg ggt cgg gtt atg aga Trp Lys Ser Lys Ser Gly Leu Asp Leu Glu Thr Gly Arg Val Met Arg 285 290 295 300	975
ttg ttt ggg gtt gat att tct tta aac gcc gtc gtt gta gtg aag gaa Leu Phe Gly Val Asp Ile Ser Leu Asn Ala Val Val Val Lys Glu 305 310 315	1023
aca acg gag gtg tta atg tcg tcg tta agg tgt aag aag caa cga gtt Thr Thr Glu Val Leu Met Ser Ser Leu Arg Cys Lys Lys Gln Arg Val 320 325 330	1071
ttg taa taacaattta acaacttggg aaagaaaaaa aagctttttg attttaattt Leu	1127
 ctcttcaacg ttaatcttgc tgagatta	1155

<210> 54
<211> 333
<212> PRT
<213> *Arabidopsis thaliana*

<400> 54

Met Asp Ala Met Ser Ser Val Asp Glu Ser Ser Thr Thr Thr Asp Ser
1 5 10 15

mbil9 Sequence Listing .ST25

Ile	Pro	Ala	Arg	Lys	Ser	Ser	Ser	Pro	Ala	Ser	Leu	Leu	Tyr	Arg	Met
20					25								30		
Gly	Ser	Gly	Thr	Ser	Val	Val	Leu	Asp	Ser	Glu	Asn	Gly	Val	Glu	Val
35					40							45			
Glu	Val	Glu	Ala	Glu	Ser	Arg	Lys	Leu	Pro	Ser	Ser	Arg	Phe	Lys	Gly
50					55							60			
Val	Val	Pro	Gln	Pro	Asn	Gly	Arg	Trp	Gly	Ala	Gln	Ile	Tyr	Glu	Lys
65					70						75		80		
His	Gln	Arg	Val	Trp	Leu	Gly	Thr	Phe	Asn	Glu	Glu	Asp	Glu	Ala	Ala
85					90							95			
Arg	Ala	Tyr	Asp	Val	Ala	Ala	His	Arg	Phe	Arg	Gly	Arg	Asp	Ala	Val
100					105							110			
Thr	Asn	Phe	Lys	Asp	Thr	Thr	Phe	Glu	Glu	Val	Glu	Phe	Leu	Asn	
115					120						125				
Ala	His	Ser	Lys	Ser	Glu	Ile	Val	Asp	Met	Leu	Arg	Lys	His	Thr	Tyr
130					135						140				
Lys	Glu	Glu	Leu	Asp	Gln	Arg	Lys	Arg	Asn	Arg	Asp	Gly	Asn	Gly	Lys
145					150					155		160			
Glu	Thr	Thr	Ala	Phe	Ala	Leu	Ala	Ser	Met	Val	Val	Met	Thr	Gly	Phe
165					170							175			
Lys	Thr	Ala	Glu	Leu	Leu	Phe	Glu	Lys	Thr	Val	Thr	Pro	Ser	Asp	Val
180					185						190				
Gly	Lys	Leu	Asn	Arg	Leu	Val	Ile	Pro	Lys	His	Gln	Ala	Glu	Lys	His
195					200						205				
Phe	Pro	Leu	Pro	Leu	Gly	Asn	Asn	Asn	Val	Ser	Val	Lys	Gly	Met	Leu
210					215						220				
Leu	Asn	Phe	Glu	Asp	Val	Asn	Gly	Lys	Val	Trp	Arg	Phe	Arg	Tyr	Ser
225					230					235		240			
Tyr	Trp	Asn	Ser	Ser	Gln	Ser	Tyr	Val	Leu	Thr	Lys	Gly	Trp	Ser	Arg
245					250						255				
Phe	Val	Lys	Glu	Lys	Arg	Leu	Cys	Ala	Gly	Asp	Leu	Ile	Ser	Phe	Lys
260					265						270				
Arg	Ser	Asn	Asp	Gln	Asp	Gln	Lys	Phe	Phe	Ile	Gly	Trp	Lys	Ser	Lys
275					280						285				
Ser	Gly	Leu	Asp	Leu	Glu	Thr	Gly	Arg	Val	Met	Arg	Leu	Phe	Gly	Val
290					295						300				
Asp	Ile	Ser	Leu	Asn	Ala	Val	Val	Val	Lys	Glu	Thr	Thr	Glu	Val	
305					310					315		320			

mbi19 Sequence Listing.ST25

Leu Met Ser Ser Leu Arg Cys Lys Lys Gln Arg Val Leu
325 330

<210> 55
<211> 1246
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (81)..(1139)
<223> G9

<400> 55
 gtgtttcttc tttctgctaa aaggttataa ttttggttc ttgggttgg gagaatcttc
 aagaaaactga aacaaagaaa atg gat tct agt tgc ata gac gag ata agt tcc
 Met Asp Ser Ser Cys Ile Asp Glu Ile Ser Ser
 1 5 10
 tcc act tca gaa tct ttc tcc gcc acc acc gcc aag aag ctc tct cct
 Ser Thr Ser Phe Ser Ala Thr Thr Ala Lys Lys Leu Ser Pro
 15 20 25
 161
 cct ccc gcg gcg tta cgc ctc tac cgg atg gga agc ggc ggg agc
 Pro Pro Ala Ala Leu Arg Leu Tyr Arg Met Gly Ser Gly Gly Ser
 30 35 40
 209
 agc gtc gtg ttg gat ccc gag aac ggc cta gag acg gag tca cga aag
 Ser Val Val Leu Asp Pro Glu Asn Gly Leu Glu Thr Glu Ser Arg Lys
 45 50 55
 257
 cta cca tct tca aaa tac aaa ggt gtt gtt cct cag cct aac gga aga
 Leu Pro Ser Ser Lys Tyr Lys Gly Val Val Pro Gln Pro Asn Gly Arg
 60 65 70 75
 305
 tgg gga gct cag atc tac gag aag cac caa cga gta tgg ctc ggg act
 Trp Gly Ala Gln Ile Tyr Glu Lys His Gln Arg Val Trp Leu Gly Thr
 80 85 90
 353
 .
 ttc aac gag caa gaa gaa gct gct cgt tcc tac gac atc gca gct tgt
 Phe Asn Glu Gln Glu Ala Ala Arg Ser Tyr Asp Ile Ala Ala Cys
 95 100 105
 401
 aga ttc cgt ggc cgc gac gcc gtc gtc aac ttc aag aac gtt ctg gaa
 Arg Phe Arg Gly Arg Asp Ala Val Val Asn Phe Lys Asn Val Leu Glu
 110 115 120
 449
 gac ggc gat tta gct ttt ctt gaa gct cac tca aag gcc gag atc gtc
 Asp Gly Asp Leu Ala Phe Leu Glu Ala His Ser Lys Ala Glu Ile Val
 125 130 135
 497
 gac atg ttg aga aaa cac act tac gcc gac gag ctt gaa cag aac aat
 Asp Met Leu Arg Lys His Thr Tyr Ala Asp Glu Leu Glu Gln Asn Asn
 140 145 150 155
 545
 aaa cgg cag ttg ttt ctc tcc gtc gac gct aac gga aaa cgt aac gga
 Lys Arg Gln Leu Phe Leu Ser Val Asp Ala Asn Gly Lys Arg Asn Gly
 160 165 170
 593
 tcg agt act act caa aac gac aaa gtt tta aag acg tgt gaa gtt ctt
 Ser Ser Thr Thr Gln Asn Asp Lys Val Leu Lys Thr Cys Glu Val Leu
 175 180 185
 641
 ttc gag aag gct gtt aca cct agc gac gtc ggg aag cta aac cgt ctc
 Phe Glu Lys Ala Val Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu
 190 195 200
 689
 gtg ata cct aaa caa cac gcc gag aaa cac ttt ccg tta ccg tca ccg
 Val Ile Pro Lys Gln His Ala Glu Lys His Phe Pro Leu Pro Ser Pro
 205 210 215
 737

mbi19 Sequence Listing ST25

tca ccg gca gtg act aaa gga gtt ttg atc aac ttc gaa gac gtt aac Ser Pro Ala Val Thr Lys Gly Val Leu Ile Asn Phe Glu Asp Val Asn 220 225 230 235	785
ggt aaa gtg tgg agg ttc cgt tac tca tac tgg aac agt agt caa agt Gly Lys Val Trp Arg Phe Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser 240 245 250	833
tac gtg ttg acc aag gga tgg agt cga ttc gtc aag gag aag aat ctt Tyr Val Leu Thr Lys Gly Trp Ser Arg Phe Val Lys Glu Lys Asn Leu 255 260 265	881
cga gcc ggt gat gtt act ttc gag aga tcg acc gga cta gag cgg Arg Ala Gly Asp Val Val Thr Phe Glu Arg Ser Thr Gly Leu Glu Arg 270 275 280	929
cag tta tat att gat tgg aaa gtt cgg tct ggt ccg aga gaa aac ccg Gln Leu Tyr Ile Asp Trp Lys Val Arg Ser Gly Pro Arg Glu Asn Pro 285 290 295	977
gtt cag gtg gtg gtt cgg ctt ttc gga gtt gat atc ttt aat gtg acc Val Gln Val Val Val Arg Leu Phe Gly Val Asp Ile Phe Asn Val Thr 300 305 310 315	1025
acc gtg aag cca aac gac gtc gtg gcc gtt tgc ggt gga aag aga tct Thr Val Lys Pro Asn Asp Val Val Ala Val Cys Gly Gly Lys Arg Ser 320 325 330	1073
cga gat gtt gat gat atg ttt gcg tta cgg tgt tcc aag aag cag cgc Arg Asp Val Asp Asp Met Phe Ala Leu Arg Cys Ser Lys Lys Gin Ala 335 340 345	1121
ata atc aat gct ttg tga catatccct tttccgattt tatgctttcg Ile Ile Asn Ala Leu 350	1169
tttttaatt ttttttttg tcaagttgtg taggttgta ttcatgctag gttgtattta ggaaaagaga taagacc	1229
	1246
<210> 56	
<211> 352	
<212> PRT	
<213> <i>Arabidopsis thaliana</i>	
<400> 56	
Met Asp Ser Ser Cys Ile Asp Glu Ile Ser Ser Ser Thr Ser Glu Ser 1 5 10 15	
Phe Ser Ala Thr Thr Ala Lys Lys Leu Ser Pro Pro Pro Ala Ala Ala 20 25 30	
Leu Arg Leu Tyr Arg Met Gly Ser Gly Gly Ser Ser Val Val Leu Asp 35 40 45	
Pro Glu Asn Gly Leu Glu Thr Glu Ser Arg Lys Leu Pro Ser Ser Lys 50 55 60	
Tyr Lys Gly Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln Ile 65 70 75 80	
Tyr Glu Lys His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Gln Glu 85 90 95	
Glu Ala Ala Arg Ser Tyr Asp Ile Ala Ala Cys Arg Phe Arg Gly Arg 100 105 110	

mbi19 Sequence Listing.ST25

Asp Ala Val Val Asn Phe Lys Asn Val Leu Glu Asp Gly Asp Leu Ala
 115 120 125

Phe Leu Glu Ala His Ser Lys Ala Glu Ile Val Asp Met Leu Arg Lys
 130 135 140

His Thr Tyr Ala Asp Glu Leu Glu Gln Asn Asn Lys Arg Gln Leu Phe
 145 150 155 160

Leu Ser Val Asp Ala Asn Gly Lys Arg Asn Gly Ser Ser Thr Thr Gln
 165 170 175

Asn Asp Lys Val Leu Lys Thr Cys Glu Val Leu Phe Glu Lys Ala Val
 180 185 190

Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys Gln
 195 200 205

His Ala Glu Lys His Phe Pro Leu Pro Ser Pro Ser Ala Val Thr
 210 215 220

Lys Gly Val Leu Ile Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg
 225 230 235 240

Phe Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys
 245 250 255

Gly Trp Ser Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val
 260 265 270

Val Thr Phe Glu Arg Ser Thr Gly Leu Glu Arg Gln Leu Tyr Ile Asp
 275 280 285

Trp Lys Val Arg Ser Gly Pro Arg Glu Asn Pro Val Gln Val Val Val
 290 295 300

Arg Leu Phe Gly Val Asp Ile Phe Asn Val Thr Thr Val Lys Pro Asn
 305 310 315 320

Asp Val Val Ala Val Cys Gly Gly Lys Arg Ser Arg Asp Val Asp Asp
 325 330 335

Met Phe Ala Leu Arg Cys Ser Lys Lys Gln Ala Ile Ile Asn Ala Leu
 340 345 350

<210> 57
 <211> 1239
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (6)..(1091)
 <223> G993

<400> 57
 caaat atg gaa tac agc tgt gta gac gac agt agt aca acg tca gaa tct
 Met Glu Tyr Ser Cys Val Asp Asp Ser Ser Thr Thr Ser Glu Ser

50

mbi19 Sequence Listing.ST25

1	5	10	15	
ctc tcc atc tct act act cca aag ccg aca acg acg acg gag aag aaa Leu Ser Ile Ser Thr Thr Pro Lys Pro Thr Thr Thr Glu Lys Lys 20 25 30				98
ctc tct tct ccg ccg gcg acg tcg atg cgt ctc tac aga atg gga agc Leu Ser Ser Pro Pro Ala Thr Ser Met Arg Leu Tyr Arg Met Gly Ser 35 40 45				146
ggc gga agc agc gtc gtt ttg gat tca gag aac ggc gtc gag acc gag Gly Gly Ser Ser Val Val Leu Asp Ser Glu Asn Gly Val Glu Thr Glu 50 55 60				194
tca cgt aag ctt cct tcg tcg aaa tat aaa ggc gtt gtg cct cag cct Ser Arg Lys Leu Pro Ser Ser Lys Tyr Lys Gly Val Val Pro Gln Pro 65 70 75				242
aac gga aga tgg gga gct cag att tac gag aag cat cag cga gtt tgg Asn Gly Arg Trp Gly Ala Gln Ile Tyr Glu Lys His Gln Arg Val Trp 80 85 90 95				290
ctc ggt act ttc aac gag gaa gaa gct gcg tct tct tac gac atc Leu Gly Thr Phe Asn Glu Glu Glu Ala Ala Ser Ser Tyr Asp Ile 100 105 110				338
gcc gtg agg aga ttc cgc ggc cgc gac gcc gtc act aac ttc aaa tct Ala Val Arg Arg Phe Arg Gly Arg Asp Ala Val Thr Asn Phe Lys Ser 115 120 125				386
caa gtt gat gga aac gac gcc gaa tcg gct ttt ctt gac gct cat tct Gln Val Asp Gly Asn Asp Ala Glu Ser Ala Phe Leu Asp Ala His Ser 130 135 140				434
aaa gct gag atc gtg gat atg ttg agg aaa cac act tac gcc gat gag Lys Ala Glu Ile Val Asp Met Leu Arg Lys His Thr Tyr Ala Asp Glu 145 150 155				482
ttt gag cag agt aga cgg aag ttt gtt aac ggc gac gga aaa cgc tct Phe Glu Gln Ser Arg Arg Lys Phe Val Asn Gly Asp Gly Lys Arg Ser 160 165 170 175				530
ggg ttg gag acg gcg acg tac gga aac gac gct gtt ttg aga gcg cgt Gly Leu Glu Thr Ala Thr Tyr Gly Asn Asp Ala Val Leu Arg Ala Arg 180 185 190				578
gag gtt ttg ttc gag aag act gtt acg ccc acg gac gtc ggg aag ctg Glu Val Leu Phe Glu Lys Thr Val Thr Pro Ser Asp Val Gly Lys Leu 195 200 205				626
aac cgt tta gtg ata ccg aaa caa cac gcg gag aag cat ttt ccc tta Asn Arg Leu Val Ile Pro Lys Gln His Ala Glu Lys His Phe Pro Leu 210 215 220				674
ccg gcg atg acg acg gcg atg ggg atg aat ccc tct ccc acg aaa ggc Pro Ala Met Thr Thr Ala Met Gly Met Asn Pro Ser Pro Thr Lys Gly 225 230 235				722
gtt ttg att aac ttg gaa gat aga aca ggg aaa gtt tgg cgg ttc cgt Val Leu Ile Asn Leu Glu Asp Arg Thr Gly Lys Val Trp Arg Phe Arg 240 245 250 255				770
tac agt tac tgg aac acg agt caa agt tac gtt ttg acc aag ggc tgg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys Gly Trp 260 265 270				818
agc cgg ttc gtt aaa gag aag aat ctt cga gcc ggt gat gtt tgg Ser Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val Val Cys 275 280 285				866
ttc gag aga tca acc gga cca gac cgg caa ttg tat atc cac tgg aaa Phe Glu Arg Ser Thr Gly Pro Asp Arg Gln Leu Tyr Ile His Trp Lys 290 295 300				914
gtc cgg tct agt ccg gtt cag act gtt ctt cta ttc gga gtc aac				962

mbi19 Sequence Listing.ST25

Val	Arg	Ser	Ser	Pro	Val	Gln	Thr	Val	Val	Arg	Leu	Phe	Gly	Val	Asn
305					310					315					
att	tcc	aat	gtg	agt	aac	gag	aaa	cca	aac	gac	gtc	gca	gta	gag	tgt
Ile	Phe	Asn	Val	Ser	Asn	Glu	Lys	Pro	Asn	Asp	Val	Ala	Val	Glu	Cys
320					325					330				335	
gtt	ggc	aag	aag	aga	tct	cgg	gaa	gat	gat	ttg	ttt	tcg	tta	ggg	tgt
Val	Gly	Lys	Lys	Arg	Ser	Arg	Glu	Asp	Asp	Leu	Phe	Ser	Leu	Gly	Cys
										340	345		350		
tcc	aag	aag	cag	gcg	att	atc	aac	atc	ttg	tga	caaattcttt	ttttttggtt			1111
Ser	Lys	Lys	Gln	Ala	Ile	Ile	Asn	Ile	Leu						
					355				360						
tttttcttca	atttgtttct	ccttttcaa	tattttgat	tgaaatgaca	agttgtaaat										1171
taggacaaga	caagaaaaaa	tgacaactag	acaaaaatagt	ttttgtttaa	aaaaaaaaaa										1231
aaaaaaaaa															1239
<210>	58														
<211>	361														
<212>	PRT														
<213>	Arabidopsis thaliana														
<400>	58														
Met	Glu	Tyr	Ser	Cys	Val	Asp	Asp	Ser	Ser	Thr	Thr	Ser	Glu	Ser	Leu
1					5					10					15
Ser	Ile	Ser	Thr	Thr	Pro	Lys	Pro	Thr	Thr	Thr	Thr	Glu	Lys	Lys	Leu
						20				25					
Ser	Ser	Pro	Pro	Ala	Thr	Ser	Met	Arg	Leu	Tyr	Arg	Met	Gly	Ser	Gly
							35		40			45			
Gly	Ser	Ser	Val	Val	Leu	Asp	Ser	Glu	Asn	Gly	Val	Glu	Thr	Glu	Ser
							50		55			60			
Arg	Lys	Leu	Pro	Ser	Ser	Lys	Tyr	Lys	Gly	Val	Val	Pro	Gln	Pro	Asn
							65		70			75			80
Gly	Arg	Trp	Gly	Ala	Gln	Ile	Tyr	Glu	Lys	His	Gln	Arg	Val	Trp	Leu
							85		90			95			
Gly	Thr	Phe	Asn	Glu	Glu	Glu	Ala	Ala	Ser	Ser	Tyr	Asp	Ile	Ala	
							100		105			110			
Val	Arg	Arg	Phe	Arg	Gly	Arg	Asp	Ala	Val	Thr	Asn	Phe	Lys	Ser	Gln
								115			120		125		
Val	Asp	Gly	Asn	Asp	Ala	Glu	Ser	Ala	Phe	Leu	Asp	Ala	His	Ser	Lys
								130		135			140		
Ala	Glu	Ile	Val	Asp	Met	Leu	Arg	Lys	His	Thr	Tyr	Ala	Asp	Glu	Phe
								145		150			155		160
Glu	Gln	Ser	Arg	Arg	Lys	Phe	Val	Asn	Gly	Asp	Gly	Lys	Arg	Ser	Gly
								165		170			175		
Leu	Glu	Thr	Ala	Thr	Tyr	Gly	Asn	Asp	Ala	Val	Leu	Arg	Ala	Arg	Glu
								180		185			190		

mbi19 Sequence Listing.ST25

Val Leu Phe Glu Lys Thr Val Thr Pro Ser Asp Val Gly Lys Leu Asn
 195 200 205

Arg Leu Val Ile Pro Lys Gln His Ala Glu Lys His Phe Pro Leu Pro
 210 215 220

Ala Met Thr Thr Ala Met Gly Met Asn Pro Ser Pro Thr Lys Gly Val
 225 230 235 240

Leu Ile Asn Leu Glu Asp Arg Thr Gly Lys Val Trp Arg Phe Arg Tyr
 245 250 255

Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys Gly Trp Ser
 260 265 270

Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val Val Cys Phe
 275 280 285

Glu Arg Ser Thr Gly Pro Asp Arg Gln Leu Tyr Ile His Trp Lys Val
 290 295 300

Arg Ser Ser Pro Val Gln Thr Val Val Arg Leu Phe Gly Val Asn Ile
 305 310 315 320

Phe Asn Val Ser Asn Glu Lys Pro Asn Asp Val Ala Val Glu Cys Val
 325 330 335

Gly Lys Lys Arg Ser Arg Glu Asp Asp Leu Phe Ser Leu Gly Cys Ser
 340 345 350

Lys Lys Gln Ala Ile Ile Asn Ile Leu
 355 360

<210> 59
 <211> 803
 <212> DNA
 <213> *Arabidopsis thaliana*

<220>
 <221> CDS
 <222> (35) .. (658)
 <223> G41

<400> 59
 ctgtatcaatg aactcatttt ctgccttttc tgaa atg ttt ggc tcc gat tac gag
 Met Phe Gly Ser Asp Tyr Glu
 1 5

cct ccg gtt tcc tca ggc ggt gat tac agt ccg aag ctt gcc acg agc
 Ser Pro Val Ser Ser Gly Gly Asp Tyr Ser Pro Lys Leu Ala Thr Ser
 10 15 20

cgc ccc aag aaa cca gcg gga agg aag aag ttt cgt gag act cgt cac
 Cys Pro Lys Lys Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg His
 25 30 35

cca att tac aga gga gtt cgt caa aga aac tcc ggt aag tgg gtg tgg
 Pro Ile Tyr Arg Gly Val Arg Gln Arg Asn Ser Gly Lys Trp Val Cys
 30 45 50

gag ttg aga gag cca aac aag aaa acg agg att tgg ctc qqq act ttc

mbi19 Sequence Listing.ST25

Glu	Leu	Arg	Glu	Pro	Asn	Lys	Lys	Thr	Arg	Ile	Trp	Leu	Gly	Thr	Phe	
60						65						70				
caa	acc	gct	gag	atg	gca	gct	cgt	gct	cac	gac	gtc	gcc	gcc	ata	gct	295
Gln	Thr	Ala	Glu	Met	Ala	Ala	Arg	Ala	His	Asp	Val	Ala	Ala	Ile	Ala	
75							80					85				
ctc	cgt	ggc	aga	tct	gcc	tgt	ctc	aat	ttc	gct	gac	tcg	gct	tgg	cgg	343
Leu	Arg	Gly	Arg	Ser	Ala	Cys	Leu	Asn	Phe	Ala	Asp	Ser	Ala	Trp	Arg	
90						95						100				
cta	cga	atc	ccg	gaa	tca	acc	tgt	gcc	aag	gaa	atc	caa	aag	gcg	gcg	391
Leu	Arg	Ile	Pro	Glu	Ser	Thr	Cys	Ala	Lys	Glu	Ile	Gln	Lys	Ala	Ala	
105						110						115				
gct	gaa	gcc	gcf	ttg	aat	ttt	caa	gat	gag	atg	tgt	cat	atg	acg	acg	439
Ala	Glu	Ala	Ala	Leu	Asn	Phe	Gln	Asp	Glu	Met	Cys	His	Met	Thr	Thr	
120						125						130			135	
gat	gct	cat	ggf	ctt	gac	atg	gag	gag	acc	ttg	gtg	gag	gct	att	tat	487
Asp	Ala	His	Gly	Leu	Asp	Met	Glu	Thr	Leu	Val	Glu	Ala	Ile	Tyr		
140						145						150				
acg	ccg	gaa	cag	agc	caa	gat	gcf	ttt	tat	atg	gat	gaa	gag	gcf	atg	535
Thr	Pro	Glu	Gln	Ser	Gln	Asp	Ala	Phe	Tyr	Met	Asp	Glu	Glu	Ala	Met	
155						160						165				
ttg	ggg	atg	tct	agt	ttg	ttg	gat	aac	atg	gcc	gaa	ggg	atg	ctt	tta	583
Leu	Gly	Met	Ser	Ser	Leu	Leu	Asp	Asn	Met	Ala	Glu	Gly	Met	Leu	Leu	
170						175						180				
ccg	tcg	ccg	tcg	gtt	caa	tgg	aac	tat	aat	ttt	gat	gtc	gag	gga	gat	631
Pro	Ser	Pro	Ser	Val	Gln	Trp	Asn	Tyr	Asn	Phe	Asp	Val	Glu	Gly	Asp	
185						190						195				
gat	gac	gtg	tcc	tta	tgg	agc	tat	taa	aattcgattt	ttatccat						678
Asp	Asp	Val	Ser	Leu	Trp	Ser	Tyr									
200						205										
ttttggattt	atagcttttt	atacatttga	tcctttttta	gaatggatct	tcttcttttt											738
ttggttgtga	gaaaacgaatg	taaatggtaa	aagttgtgt	caaatgc当地	tgttttttag											798
tgcag																803

<210> 60
<211> 207
<212> PRT
<213> Arabidopsis thaliana

<400> 60

Met Phe Gly Ser Asp Tyr Glu Ser Pro Val Ser Ser Gly Gly Asp Tyr
1 5 10 15

Ser Pro Lys Leu Ala Thr Ser Cys Pro Lys Lys Pro Ala Gly Arg Lys
20 25 30

Lys Phe Arg Glu Thr Arg His Pro Ile Tyr Arg Gly Val Arg Gln Arg
35 40 45

Asn Ser Gly Lys Trp Val Cys Glu Leu Arg Glu Pro Asn Lys Lys Thr
50 55 60

Arg Ile Trp Leu Gly Thr Phe Gln Thr Ala Glu Met Ala Ala Arg Ala
65 70 75 80

His Asp Val Ala Ala Ile Ala Leu Arg Gly Arg Ser Ala Cys Leu Asn
85 90 95

mbil9 Sequence Listing.ST25

Phe Ala Asp Ser Ala Trp Arg Leu Arg Ile Pro Glu Ser Thr Cys Ala
 100 105 110

Lys Glu Ile Gln Lys Ala Ala Glu Ala Ala Leu Asn Phe Gln Asp
 115 120 125

Glu Met Cys His Met Thr Thr Asp Ala His Gly Leu Asp Met Glu Glu
 130 135 140

Thr Leu Val Glu Ala Ile Tyr Thr Pro Glu Gln Ser Gln Asp Ala Phe
 145 150 155 160

Tyr Met Asp Glu Glu Ala Met Leu Gly Met Ser Ser Leu Leu Asp Asn
 165 170 175

Met Ala Glu Gly Met Leu Leu Pro Ser Pro Ser Val Gln Trp Asn Tyr
 180 185 190

Asn Phe Asp Val Glu Gly Asp Asp Asp Val Ser Leu Trp Ser Tyr
 195 200 205

<210> 61
<211> 929
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (164)..(805)
<223> G40

<400> 61
cttggaaaaag aatctacctg aaaaagaaaaaa aaagagagag agatataaat agctttacca 60
agacagatata ctatctttt attaatccaa aaagactgag aactcttagta actacgtact 120
acttaaacct tatccagttt cttgaaaacag agtactctga tca atg aac tca ttt 175
Met Asn Ser Phe
1

tca gct ttt tct gaa atg ttt ggc tcc gat tac gag cct caa ggc gga 223
Ser Ala Phe Ser Glu Met Phe Gly Ser Asp Tyr Glu Pro Gln Gly Gly
5 10 15 20

gat tat tgt ccg acg ttg gcc acg agt tgt ccg aag aaa ccg gcg ggc 271
Asp Tyr Cys Pro Thr Leu Ala Thr Ser Cys Pro Lys Lys Pro Ala Gly
25 30 35

cgt aag aag ttt cgt gag act cgt cac cca att tac aga gga gtt cgt 319
Arg Lys Lys Phe Arg Glu Thr Arg His Pro Ile Tyr Arg Gly Val Arg
40 45 50

caa aga aac tcc ggt aag tgg gtt tct gaa gtg aga gag cca aac aag 367
Gln Arg Asn Ser Gly Lys Trp Val Ser Glu Val Arg Glu Pro Asn Lys
55 60 65

aaa acc agg att tgg ctc ggg act ttc caa acc gct gag atg gca gct 415
Lys Thr Arg Ile Trp Leu Gly Thr Phe Gln Thr Ala Glu Met Ala Ala
70 75 80

cgt gct cac gac gtc gct gca tta gcc ctc cgt ggc cga tca gca tgt 463
Arg Ala His Asp Val Ala Ala Leu Ala Leu Arg Gly Arg Ser Ala Cys
85 90 95 100

ctc aac ttc gct gac tcg gct tgg cgg cta cga atc ccg gag tca aca 511

mbi19 Sequence Listing.ST25

Leu Asn Phe Ala Asp Ser Ala Trp Arg Leu Arg Ile Pro Glu Ser Thr			
105	110	115	
tgc gcc aag gat atc caa aaa gcg gct gct gaa gcg gcg ttg gct ttt			559
Cys Ala Lys Asp Ile Gln Lys Ala Ala Ala Glu Ala Ala Leu Ala Phe			
120	125	130	
caa gat gag acg tgt gat acg acg acc acg aat cat ggc ctg gac atg			607
Gln Asp Glu Thr Cys Asp Thr Thr Thr Asn His Gly Leu Asp Met			
135	140	145	
gag gag acg atg gtg gaa gct att tat aca ccg gaa cag agc gaa ggt			655
Glu Glu Thr Met Val Glu Ala Ile Tyr Thr Pro Glu Gln Ser Glu Gly			
150	155	160	
gcg ttt tat atg gat gag gag aca atg ttt ggg atg ccg act ttg ttg			703
Ala Phe Tyr Met Asp Glu Glu Thr Met Phe Gly Met Pro Thr Leu Leu			
165	170	175	180
gat aat atg gct gaa ggc atg ctt tta ccg ccg ccg tct gtt caa tgg			751
Asp Asn Met Ala Glu Gly Met Leu Leu Pro Pro Pro Ser Val Gln Trp			
185	190	195	
aat cat aat tat gac ggc gaa gga gat ggt gac gtg tcg ctt tgg agt			799
Asn His Asn Tyr Asp Gly Glu Gly Asp Gly Asp Val Ser Leu Trp Ser			
200	205	210	
tat taa tattcgatag tcgttccat ttttgacta tagttgaaa atattctagt			855
Tyr			
tcctttttt agaatggttc cttcatttta ttttatttta ttgttgtaga aacgagtgga			915
aaataattca atac			929
<210> 62			
<211> 213			
<212> PRT			
<213> Arabidopsis thaliana			
<400> '62			
Met Asn Ser Phe Ser Ala Phe Ser Glu Met Phe Gly Ser Asp Tyr Glu			
1	5	10	15
Pro Gln Gly Gly Asp Tyr Cys Pro Thr Leu Ala Thr Ser Cys Pro Lys			
20	25	30	
Lys Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg His Pro Ile Tyr			
35	40	45	
Arg Gly Val Arg Gln Arg Asn Ser Gly Lys Trp Val Ser Glu Val Arg			
50	55	60	
Glu Pro Asn Lys Lys Thr Arg Ile Trp Leu Gly Thr Phe Gln Thr Ala			
65	70	75	80
Glu Met Ala Ala Arg Ala His Asp Val Ala Ala Leu Ala Leu Arg Gly			
85	90	95	
Arg Ser Ala Cys Leu Asn Phe Ala Asp Ser Ala Trp Arg Leu Arg Ile			
100	105	110	
Pro Glu Ser Thr Cys Ala Lys Asp Ile Gln Lys Ala Ala Glu Ala			
115	120	125	

mbi19 Sequence Listing.ST25

Ala	Leu	Ala	Phe	Gln	Asp	Glu	Thr	Cys	Asp	Thr	Thr	Thr	Asn	His
130					135								140	

Gly	Leu	Asp	Met	Glu	Glu	Thr	Met	Val	Glu	Ala	Ile	Tyr	Thr	Pro	Glu
145				150					155				160		

Gln	Ser	Glu	Gly	Ala	Phe	Tyr	Met	Asp	Glu	Glu	Thr	Met	Phe	Gly	Met
					165			170				175			

Pro	Thr	Leu	Leu	Asp	Asn	Met	Ala	Glu	Gly	Met	Leu	Leu	Pro	Pro	Pro
						180		185				190			

Ser	Val	Gln	Trp	Asn	His	Asn	Tyr	Asp	Gly	Glu	Gly	Asp	Gly	Asp	Val
						195		200			205				

Ser	Leu	Trp	Ser	Tyr
			210	

<210>	63
<211>	908
<212>	DNA
<213>	Arabidopsis thaliana

<220>	
<221>	CDS
<222>	(119)..(769)
<223>	G42

<400>	63					
cctgaactag	aacagaaaaga	gagagaaaact	attattttag	caaaccatac	caacaaaaaa	60
gacagagatc	tttttagttac	ctttagccagt	ttttagaaac	agagtactct	tctgatca	118
atg aac tca ttt tct gct ttt tct gaa atg ttt ggc tcc gat tac gag	Met Asn Ser Phe Ser Ala Phe Ser Glu Met Phe Gly Ser Asp Tyr Glu	1	5	10	15	166

tct tcg gtt tcc tca ggc ggt gat tat att ccg acg ctt gcg agc agc	Ser Ser Val Ser Ser Gly Gly Asp Tyr Ile Pro Thr Leu Ala Ser Ser	20	25	30	35	214
---	---	----	----	----	----	-----

tgc ccc aag aaa ccg gcg ggt cgt aag aag ttt cgt gag act cgt cac	Cys Pro Lys Lys Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg His	35	40	45	50	262
---	---	----	----	----	----	-----

cca ata tac aga gga gtt cgt cgg aga aac tcc ggt aag tgg gtt tgt	Pro Ile Tyr Arg Gly Val Arg Arg Asn Ser Gly Lys Trp Val Cys	50	55	60	65	310
---	---	----	----	----	----	-----

gag gtt aga gaa cca aac aag aaa aca agg att tgg ctc gga aca ttt	Glu Val Arg Glu Pro Asn Lys Lys Thr Arg Ile Trp Leu Gly Thr Phe	65	70	75	80	358
---	---	----	----	----	----	-----

caa acc gct gag atg gca gct cga gct cac gac gtt gcc gct tta gcc	Gln Thr Ala Glu Met Ala Ala Arg Ala His Asp Val Ala Ala Leu Ala	85	90	95	100	406
---	---	----	----	----	-----	-----

ctt cgt ggc cga tca gcc ttt ctc aat ttc gct gac tcg gct tgg aga	Leu Arg Gly Arg Ser Ala Cys Leu Asn Phe Ala Asp Ser Ala Trp Arg	100	105	110	115	454
---	---	-----	-----	-----	-----	-----

ctc cga atc ccg gaa tca act tgc gct aag gac atc caa aag gcg gcg	Ile Arg Ile Pro Glu Ser Thr Cys Ala Lys Asp Ile Gln Lys Ala Ala	115	120	125	130	502
---	---	-----	-----	-----	-----	-----

gct gaa gct gcg ttg gcg ttt cag gat gag atg tgt gat gcg acg acg	Ala Glu Ala Ala Leu Ala Phe Gln Asp Glu Met Cys Asp Ala Thr Thr	130	135	140	145	550
---	---	-----	-----	-----	-----	-----

mbi19 Sequence Listing.ST25

gat cat ggc ttc gac atg gag gag acg ttg gtg gag gct att tac acg 598
 Asp His Gly Phe Asp Met Glu Glu Thr Leu Val Glu Ala Ile Tyr Thr
 145 150 155 160

gcg gaa cag agc gaa aat gcg ttt tat atg cac gat gag gcg atg ttt 646
 Ala Glu Gln Ser Glu Asn Ala Phe Tyr Met His Asp Glu Ala Met Phe
 165 170 175

gag atg ccg agt ttg ttg gct aat atg gca gaa ggg atg ctt ttg ccg 694
 Glu Met Pro Ser Leu Leu Ala Asn Met Ala Glu Gly Met Leu Leu Pro
 180 185 190

ctt ccg tcc gta cag tgg aat cat aat cat gaa gtc gac ggc gat gat 742
 Leu Pro Ser Val Gln Trp Asn His Asn His Glu Val Asp Gly Asp Asp
 195 200 205

gac gac gta tcg tta tgg agt tat taa aactcagatt attatccat 789
 Asp Asp Val Ser Leu Trp Ser Tyr

210 215

ttttagtac gatactttt attttattat tattttaga tcctttta gaatggatc 849

tncattatgt ttgtaaaact gagaaacgag tgtaaattaa attgattcag tttcagtat 908

<210> 64
 <211> 216
 <212> PRT
 <213> Arabidopsis thaliana

<400> 64

Met Asn Ser Phe Ser Ala Phe Ser Glu Met Phe Gly Ser Asp Tyr Glu
 1 5 10 15

Ser Ser Val Ser Ser Gly Gly Asp Tyr Ile Pro Thr Leu Ala Ser Ser
 20 25 30

Cys Pro Lys Lys Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg His
 35 40 45

Pro Ile Tyr Arg Gly Val Arg Arg Arg Asn Ser Gly Lys Trp Val Cys
 50 55 60

Glu Val Arg Glu Pro Asn Lys Lys Thr Arg Ile Trp Leu Gly Thr Phe
 65 70 75 80

Gln Thr Ala Glu Met Ala Ala Arg Ala His Asp Val Ala Ala Leu Ala
 85 90 95

Leu Arg Gly Arg Ser Ala Cys Leu Asn Phe Ala Asp Ser Ala Trp Arg
 100 105 110

Leu Arg Ile Pro Glu Ser Thr Cys Ala Lys Asp Ile Gln Lys Ala Ala
 115 120 125

Ala Glu Ala Ala Leu Ala Phe Gln Asp Glu Met Cys Asp Ala Thr Thr
 130 135 140

Asp His Gly Phe Asp Met Glu Glu Thr Leu Val Glu Ala Ile Tyr Thr
 145 150 155 160

Ala Glu Gln Ser Glu Asn Ala Phe Tyr Met His Asp Glu Ala Met Phe
 165 170 175

mbi19 Sequence Listing.ST25

Glu Met Pro Ser Leu Leu Ala Asn Met Ala Glu Gly Met Leu Leu Pro
180 185 190

Leu Pro Ser Val Gln Trp Asn His Asn His Glu Val Asp Gly Asp Asp
195 200 205

Asp Asp Val Ser Leu Trp Ser Tyr
210 215

```
<210> 65
<211> 1407
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (191)..(1351)
<223> G1127

<400>	65																
gacagactct	ctctgtatgt	gtgcgagaag	cgagaagcga	gagagagaga	gagagagttg	60											
ttagctcaca	cgc	tttctct	attttctcg	aattcacaaa	acagaaagt	tcatc	ttta	120									
cgagaattaa	gcc	gaaagaa	acaatcttg	agtttgattt	cttcttcc	ccttctct	ccttctct	180									
ctctgtctca	atg	gat	tcc	aga	gac	atc	cca	ccg	tca	cat	aac	cag	ctt	229			
	Met	Asp	Ser	Arg	Asp	Ile	Pro	Pro	Ser	His	Asn	Gln	Leu				
	1					5					10						
caa	cca	cca	ccg	gga	atg	tta	atg	tct	cat	tac	cgt	aac	cct	aac	gcc	277	
Gln	Pro	Pro	Pro	Gly	Met	Leu	Met	Ser	His	Tyr	Arg	Asn	Pro	Asn	Ala		
	15				20						25						
gcc	gct	tca	cca	tta	atg	gtt	ccc	act	tcc	aca	tct	caa	ccg	att	caa	325	
Ala	Ala	Ser	Pro	Leu	Met	Val	Pro	Thr	Ser	Thr	Ser	Gln	Pro	Ile	Gln		
	30				35					40				45			
cac	cct	cgt	ctt	cct	ttt	ggc	aat	caa	caa	caa	tct	caa	acg	ttt	cat	373	
His	Pro	Arg	Leu	Pro	Phe	Gly	Asn	Gln	Gln	Gln	Ser	Gln	Thr	Phe	His		
	50				55								60				
cag	cag	caa	caa	caa	atg	gat	cag	aag	act	ctt	gaa	tct	ctt	gga	421		
Gln	Gln	Gln	Gln	Gln	Met	Asp	Gln	Lys	Thr	Leu	Glu	Ser	Leu	Gly			
	65				70						75						
ttt	gg	gt	gat	gga	tca	cct	tct	tct	caa	ccg	atg	cga	ttc	ggg	atc	469	
Phe	Gly	Asp	Gly	Ser	Pro	Ser	Ser	Gln	Pro	Met	Arg	Phe	Gly	Ile	Asp		
	80				85						90						
gat	cag	aat	cag	caa	ctg	caa	gtg	aag	aag	aag	cga	gga	agg	ccg	aga	517	
Asp	Gln	Asn	Gln	Gln	Leu	Gln	Val	Lys	Lys	Lys	Arg	Gly	Arg	Pro	Arg		
	95				100						105						
aa	g	at	act	cct	gat	ggt	agc	att	gct	tta	ggt	tta	gct	cct	acg	tct	565
Lys	Tyr	Thr	Pro	Asp	Gly	Ser	Ile	Ala	Leu	Gly	Leu	Ala	Pro	Thr	Ser		
	110				115					120				125			
cct	ctt	ctc	tct	gca	gct	tct	aat	tct	tac	ggt	gag	ggt	ggt	gtt	gga	613	
Pro	Leu	Leu	Ser	Ala	Ala	Ser	Asn	Ser	Tyr	Gly	Gl	Gly	Gly	Val	Gly		
	130				135									140			
at	agt	ggt	gga	aat	gga	aac	tct	gtt	gat	cca	cct	gtt	aaa	cgt	aac	661	
Asp	Ser	Gly	Gly	Asn	Gly	Asn	Ser	Val	Asp	Pro	Pro	Val	Lys	Arg	Asn		
	145				150								155				
ga	gga	agg	cct	cct	ggt	tct	agt	aag	aaa	cag	ctt	gat	gct	tta	gga	709	
Arg	Gly	Arg	Pro	Pro	Gly	Ser	Ser	Lys	Lys	Gln	Leu	Asp	Ala	Leu	Gly		
	160				165								170				

mbi19 Sequence Listing .ST25

gga act tca gga gtt ggg ttt aca cct cat gtc att gaa gtg aac aca Gly Thr Ser Gly Val Gly Phe Thr Pro His Val Ile Glu Val Asn Thr 175 180 185	757
gga gag gac ata gcg tca aag gtg atg gct ttt tcg gat caa ggg tca Gly Glu Asp Ile Ala Ser Lys Val Met Ala Phe Ser Asp Gln Gly Ser 190 195 200 205	805
aga aca att tgt att ctc tct gca agt ggt gca gtt tct aga gtg atg Arg Thr Ile Cys Ile Leu Ser Ala Ser Gly Ala Val Ser Arg Val Met 210 215 220	853
ctt cgt caa gct tct cat tct agt gga atc gtt act tat gag gga cga Leu Arg Gln Ala Ser His Ser Gly Ile Val Thr Tyr Glu Gly Arg 225 230 235	901
ttt gag atc att act ctc tca ggc tca gtc ttg aat tat gag gta aat Phe Glu Ile Ile Thr Leu Ser Gly Ser Val Leu Asn Tyr Glu Val Asn 240 245 250	949
ggc tcc acc aac aga agt ggt aac ttg agt gtg gct ttg gct gga cct Gly Ser Thr Asn Arg Ser Gly Asn Leu Ser Val Ala Leu Ala Gly Pro 255 260 265	997
gat ggc ggc atc gta ggt ggc agt gta gtt ggt aat cta gta gct gca Asp Gly Gly Ile Val Gly Gly Ser Val Val Gly Asn Leu Val Ala Ala 270 275 280 285	1045
aca caa gtc cag gtg ata gtg gga agc ttt gtt gca gaa gca aag aaa Thr Gln Val Gln Val Ile Val Gly Ser Phe Val Ala Glu Ala Lys Lys 290 295 300	1093
ccg aaa caa agt agt gtt aac att gct cgg ggg cag aat cct gaa ccg Pro Lys Gln Ser Ser Val Asn Ile Ala Arg Gly Gln Asn Pro Glu Pro 305 310 315	1141
gct tca gcg ccg gct aac atg ttg aac ttt gga tca gtc tct caa gga Ala Ser Ala Pro Ala Asn Met Leu Asn Phe Gly Ser Val Ser Gln Gly 320 325 330	1189
cca tcg agc gag tca tca gaa gag aat gag agc ggt tct cct gca atg Pro Ser Ser Glu Ser Ser Glu Glu Asn Glu Ser Gly Ser Pro Ala Met 335 340 345	1237
cac cgt gac aat aat aat ggg ata tat gga gct caa caa caa caa His Arg Asp Asn Asn Gly Ile Tyr Gly Ala Gln Gln Gln Gln 350 355 360 365	1285
caa caa cct ctt cat cct cat cag atg caa atg tac caa cat ctt tgg Gln Gln Pro Leu His Pro His Gln Met Gln Met Tyr Gln His Leu Trp 370 375 380	1333
tct aat cat ggt caa taa aatgaagcgg aaattaattt gtttccgttt Ser Asn His Gly Gln 385	1381
tggttacggt tatgggttga tttctt	1407

<210> 66
<211> 386
<212> PRT
<213> Arabidopsis thaliana

<400> 66

Met Asp Ser Arg Asp Ile Pro Pro Ser His Asn Gln Leu Gln Pro Pro
1 5 10 15

Pro Gly Met Leu Met Ser His Tyr Arg Asn Pro Asn Ala Ala Ser
20 25 30

mbil9 Sequence Listing.ST25

Pro	Leu	Met	Val	Pro	Thr	Ser	Thr	Ser	Gln	Pro	Ile	Gln	His	Pro	Arg
35							40						45		
Leu Pro Phe Gly Asn Gln Gln Ser Gln Thr Phe His Gln Gln Gln															
50						55					60				
Gln Gln Gln Met Asp Gln Lys Thr Leu Glu Ser Leu Gly Phe Gly Asp															
65						70				75			80		
Gly Ser Pro Ser Ser Gln Pro Met Arg Phe Gly Ile Asp Asp Gln Asn															
85						90				95					
Gln Gln Leu Gln Val Lys Lys Lys Arg Gly Arg Pro Arg Lys Tyr Thr															
100						105				110					
Pro Asp Gly Ser Ile Ala Leu Gly Leu Ala Pro Thr Ser Pro Leu Leu															
115						120				125					
Ser Ala Ala Ser Asn Ser Tyr Gly Glu Gly Val Gly Asp Ser Gly															
130						135				140					
Gly Asn Gly Asn Ser Val Asp Pro Pro Val Lys Arg Asn Arg Gly Arg															
145						150			155			160			
Pro Pro Gly Ser Ser Lys Lys Gln Leu Asp Ala Leu Gly Gly Thr Ser															
165						170			175						
Gly Val Gly Phe Thr Pro His Val Ile Glu Val Asn Thr Gly Glu Asp															
180						185			190						
Ile Ala Ser Lys Val Met Ala Phe Ser Asp Gln Gly Ser Arg Thr Ile															
195						200			205						
Cys Ile Leu Ser Ala Ser Gly Ala Val Ser Arg Val Met Leu Arg Gln															
210						215			220						
Ala Ser His Ser Ser Gly Ile Val Thr Tyr Glu Gly Arg Phe Glu Ile															
225						230			235			240			
Ile Thr Leu Ser Gly Ser Val Leu Asn Tyr Glu Val Asn Gly Ser Thr															
245						250			255						
Asn Arg Ser Gly Asn Leu Ser Val Ala Leu Ala Gly Pro Asp Gly Gly															
260						265			270						
Ile Val Gly Gly Ser Val Val Gly Asn Leu Val Ala Ala Thr Gln Val															
275						280			285						
Gln Val Ile Val Gly Ser Phe Val Ala Glu Ala Lys Lys Pro Lys Gln															
290						295			300						
Ser Ser Val Asn Ile Ala Arg Gly Gln Asn Pro Glu Pro Ala Ser Ala															
305						310			315			320			
Pro Ala Asn Met Leu Asn Phe Gly Ser Val Ser Gln Gly Pro Ser Ser															
325						330			335						

mbi19 Sequence Listing.ST25

Glu Ser Ser Glu Glu Asn Glu Ser Gly Ser Pro Ala Met His Arg Asp
340 345 350

Asn Asn Asn Gly Ile Tyr Gly Ala Gln Gln Gln Gln Gln Gln Gln Gln Pro
355 360 365

Leu His Pro His Gln Met Gln Met Tyr Gln His Leu Trp Ser Asn His
370 375 380

Gly Gln
385

```
<210> 67
<211> 1020
<212> DNA
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (1)..(1020)
<223> G2657

mbil9 Sequence Listing.ST25

180	185	190	
cca cct ggc tcg gtg gtt agc ctt cac ggc cgg ttt gaa atc ctc tct Pro Pro Gly Ser Val Val Ser Leu His Gly Arg Phe Glu Ile Leu Ser 195 200 205			624
ctt tcg gga tct ttc ttg cct ccg cct gcg ccg cct gca gcc acc gga Leu Ser Gly Ser Phe Leu Pro Pro Ala Pro Pro Ala Ala Thr Gly 210 215 220			672
cta agc gtt tac cta gcc gga gga caa ggg cag gtc gtt gga ggt agt Leu Ser Val Tyr Leu Ala Gly Gly Gln Gly Gln Val Val Gly Gly Ser 225 230 235 240			720
gtg gtg gga cct ttg ttg tgt tcg ggt cct gtg gtg gtt atg gcg gct Val Val Gly Pro Leu Leu Cys Ser Gly Pro Val Val Val Met Ala Ala 245 250 255			768
tct ttt agc aat gcg gcg tac gaa agg ctg cct ttg gaa gaa gat gag Ser Phe Ser Asn Ala Ala Tyr Glu Arg Leu Pro Leu Glu Asp Glu 260 265 270			816
atg cag acg cca gtt caa gga ggc ggt gga gga gga ggt ggt ggt Met Gln Thr Pro Val Gln Gly Gly Gly Gly Gly Gly Gly Gly 275 280 285			864
gga atg gga tct ccc ccg atg atg gga cag caa gaa gct atg gca gct Gly Met Gly Ser Pro Pro Met Met Gly Gln Gln Ala Met Ala Ala 290 295 300			912
atg gcg gct caa gga cta cca ccg aat ctt ctt ggt tcg gtt cag Met Ala Ala Ala Gln Gly Leu Pro Pro Asn Leu Leu Gly Ser Val Gln 305 310 315 320			960
ttg cca ccg cca caa cag aat gat cag cag tat tgg tct acg ggt cgg Leu Pro Pro Pro Gln Gln Asn Asp Gln Gln Tyr Trp Ser Thr Gly Arg 325 330 335			1008
cca ccg tat tga Pro Pro Tyr			1020

<210> 68
<211> 339
<212> PRT
<213> *Arabidopsis thaliana*

<400> 68

Met Asp Pro Val Gln Ser His Gly Ser Gln Ser Ser Leu Pro Pro Pro
1 5 10 15

Phe His Ala Arg Asp Phe Gln Leu His Leu Gln Gln Gln Gln His
20 25 30

Gln Gln Gln His Gln Gln Gln Gln Gln Phe Phe Leu His His
35 40 45

His Gln Gln Pro Gln Arg Asn Leu Asp Gln Asp His Glu Gln Gln Gly
50 55 60

Gly Ser Ile Leu Asn Arg Ser Ile Lys Met Asp Arg Glu Glu Thr Ser
65 70 75 80

Asp Asn Met Asp Asn Ile Ala Asn Thr Asn Ser Gly Ser Glu Gly Lys
85 90 95

Glu Met Ser Leu His Gly Glu Gly Ser Gly Gly Gly Ser

mbi19 Sequence Listing.ST25

100	105	110
 Gly Glu Gln Met Thr Arg Arg Pro Arg Gly Arg Pro Ala Gly Ser Lys 115 120 125		
 Asn Lys Pro Lys Ala Pro Ile Ile Thr Arg Asp Ser Ala Asn Ala 130 135 140		
 Leu Arg Thr His Val Met Glu Ile Gly Asp Gly Cys Asp Ile Val Asp 145 150 155 160		
 Cys Met Ala Thr Phe Ala Arg Arg Gln Arg Gly Val Cys Val Met 165 170 175		
 Ser Gly Thr Gly Ser Val Thr Asn Val Thr Ile Arg Gln Pro Gly Ser 180 185 190		
 Pro Pro Gly Ser Val Val Ser Leu His Gly Arg Phe Glu Ile Leu Ser 195 200 205		
 Leu Ser Gly Ser Phe Leu Pro Pro Pro Ala Pro Pro Ala Ala Thr Gly 210 215 220		
 Leu Ser Val Tyr Leu Ala Gly Gly Gln Gly Gln Val Val Gly Gly Ser 225 230 235 240		
 Val Val Gly Pro Leu Leu Cys Ser Gly Pro Val Val Val Met Ala Ala 245 250 255		
 Ser Phe Ser Asn Ala Ala Tyr Glu Arg Leu Pro Leu Glu Glu Asp Glu 260 265 270		
 Met Gln Thr Pro Val Gln Gly Gly Gly Gly Gly Gly Gly Gly Gly 275 280 285		
 Gly Met Gly Ser Pro Pro Met Met Gly Gln Gln Gln Ala Met Ala Ala 290 295 300		
 Met Ala Ala Ala Gln Gly Leu Pro Pro Asn Leu Leu Gly Ser Val Gln 305 310 315 320		
 Leu Pro Pro Pro Gln Gln Asn Asp Gln Gln Tyr Trp Ser Thr Gly Arg 325 330 335		
 Pro Pro Tyr		
 <210> 69		
<211> 1558		
<212> DNA		
<213> Arabidopsis thaliana		
 <220>		
<221> CDS		
<222> (191)..(1396)		
<223> G326		
 <400> 69		

mbi19 Sequence Listing.ST25

caattaatga	catcttcttc	ttctccttcc	actgcaaaac	cgaaagcttg	agacttttag	60	
attatgtcta	tgtcatcttc	ttcttcttcc	atcgatca	tcatcacctt	tcgtcatctt	120	
gatcttattc	tccactgtat	aaaatcagcg	agatttaag	ggatttgtaa	ggtaccatct	180	
taaacacaaa	atg ggt act tct	act aca gag	agt gtg	gtg gcg	tgt gaa	229	
Met	Gly	Thr Ser	Thr Thr	Glu Ser	Val Val	Ala Ala	
1	5	10	10	10	10	Cys Glu	
ttt tgc	ggc gag aga acg	gctt ctg	ttt tgt	aga gcc	gat acg gcg	277	
Phe	Cys	Gly	Glu Arg	Thr Ala	Val Leu	Phe Cys Arg	
15	20	25	25	25	25	Ala Asp Thr Ala	
aag ctt	tgt ttg cct tgc	cag cac	gtg cac	tcg gcg	aat ctt ctc	325	
Lys	Leu	Cys	Leu Pro	Cys Asp	Gln His	Val His Ser	
30	35	40	40	45	45	Ala Asn Leu Leu	
tcg agg aag cat	gtt cgt tct	cag atc	tgc tat	gtt aac	tgt agc aaa gag	373	
Ser	Arg	Lys	His Val	Arg Ser Gln	Ile Cys Asp	Asn Cys Ser Lys Glu	
50	55	60	60	60	60		
ccg gtg tcc	gtt aca gat	aat ctc	gtt ttg	tgt cag	gag Pro Val Ser Val Arg Cys Phe Thr Asp Asn Leu Val	421	
65	70	75	75	75	75	Cys Gln Glu	
tgt gat tgg	gat gtt cac gga	agg acg	tgt tcc	tcc tcc	gcg acg cat gaa	469	
Cys	Asp	Trp	Asp Val His	Gly Ser Cys Ser	Ser Ala Thr His	Glu	
80	85	90	90	90	90		
cgc tcc	gcc gtg gaa	ggg ttt tca	ggt tgt	cct tcg	gtt ttg gag ctt	517	
Arg	Ser	Ala Val	Glu Gly	Phe Ser Gly	Cys Pro Ser Val	Leu Glu Leu	
95	100	105	105	105	105		
gct gct	gtg tgg gga	atc gat	tta aag	ggt aag	aag aaa gaa gat gac	565	
Ala	Ala	Val Trp	Gly Ile	Asp Leu	Lys Gly Lys Lys	Glu Asp Asp	
110	115	120	120	125	125		
gaa gac	gaa ttg act	aag aat	ttt ggg atg	ggg ttg gat	tcg tgg ggt	613	
Glu	Asp	Glu	Leu Thr	Lys Asn Phe	Gly Met Gly	Leu Asp Ser Trp Gly	
130	135	140	135	140	140		
tct gga	tct aac atc	gtt caa	gaa ctg	att gtt	cct tat gat	661	
Ser	Gly	Ser Asn	Ile Val	Gln Glu	Leu Ile Val	Pro Tyr Asp Val Ser	
145	150	155	150	155	155		
tgc aaa aag	caa agc ttt	agc ttt	ggg agg	tct aag	cag gta	709	
Cys	Lys	Gln Ser	Phe Ser	Phe Gly	Arg Ser Lys	Gln Val Val Phe	
160	165	170	165	170	170		
gaa cag	cgtt ttt	act ttt	ggc ttc	gtt gaa	ggc gaa gga gag	757	
Glu	Gln	Leu	Glu	Leu Lys	Arg Gly Phe Val	Glu Gly Glu Gly Glu	
175	180	185	180	185	185		
att atg	gtt ccg gag	ggg atc	aat ggc	ggg gga	ggc agc att	805	
Ile	Met	Val Pro	Glu Gly	Ile Asn Gly	Gly Ser Ile Ser Gln Pro		
190	195	200	195	200	205		
tct ccg acg	acg tcg ttt	act tct	ttg ctt	atg tct	caa agt ctt tgt	853	
Ser	Pro	Thr	Thr Ser	Phe Thr	Ser Leu	Met Ser Gln Ser Leu Cys	
210	215	220	215	220	220		
ggt aat	ggg atg	caa tgg	aat gct	act aat	cat agc	901	
Gly	Asn	Gly	Met	Gln Trp	Asn Ala	Thr Asn His Ser Thr Gly Gln Asn	
225	230	235	225	230	235		
act cag	ata tgg	gat ttt	aac ttg	gga cag	tcg agg aac	949	
Thr	Gln	Ile Trp	Asp Phe	Asn Leu	Gly Gln Ser Arg Asn Pro Asp Glu		
240	245	250	245	250	250		
cct agt	cca gtc	gaa act	aaa ggc	tct act	ttc aca	997	
Pro	Ser	Pro	Val	Glu Thr	Lys Gly Ser Thr Phe	Thr Phe Asn Asn Val	
255	260	265	260	265	265		
act cat	ctc aag	aac gat	acc cga	acc acc	aat atg	aat gct ttc aaa	1045

mbi19 Sequence Listing ST25

Thr His Leu Lys Asn Asp Thr Arg Thr Thr Asn Met Asn Ala Phe Lys		
270 275 280 285		
gag agt tac cag gag gat tcc gtc cac tca act tct acc aag gga cag		1093
Glu Ser Tyr Gln Glu Asp Ser Val His Ser Thr Ser Thr Lys Gly Gln		
290 295 300		
gaa aca tct aag agc aac aat att cct gct gcc att cac tcg cat aaa		1141
Glu Thr Ser Lys Ser Asn Asn Ile Pro Ala Ala Ile His Ser His Lys		
305 310 315		
agt tct aac gac tcc tgt ggc ttg cat tgc acg gaa cat att gct att		1189
Ser Ser Asn Asp Ser Cys Gly Leu His Cys Thr Glu His Ile Ala Ile		
320 325 330		
act agt aat aga gcc aca aga ttg gtg gcg gta acg aat gct gat cta		1237
Thr Ser Asn Arg Ala Thr Arg Leu Val Ala Val Thr Asn Ala Asp Leu		
335 340 345		
gag cag atg gca cag aac aga gat aat gct atg cag cgg tac aag gaa		1285
Glu Gln Met Ala Gln Asn Arg Asp Asn Ala Met Gln Arg Tyr Lys Glu		
350 355 360 365		
aag aag aaa acg cgg aga tat gat aag acc ata aga tat gaa acg agg		1333
Lys Lys Lys Thr Arg Arg Tyr Asp Lys Thr Ile Arg Tyr Glu Thr Arg		
370 375 380		
aag gcg aga gcc gag acc agg ttg cgt gtt aag ggc aga ttt gtg aaa		1381
Lys Ala Arg Ala Glu Thr Arg Leu Arg Val Lys Gly Arg Phe Val Lys		
385 390 395		
gct aca gat cct tag atgtctctcc acgttaggtt ttacatttg aatcctaagt		1436
Ala Thr Asp Pro		
400		
taggaacttt ttttgtttt tctactttca actaccgtt aaatgtaaat gatcgatctt		1496
cagctgcata atgtgtggcc agattttgc aattttacg tttaaccttc taaaaaaaaaa	1556	
aa	1558	
<210> 70		
<211> 401		
<212> PRT		
<213> Arabidopsis thaliana		
<400> 70		
Met Gly Thr Ser Thr Thr Glu Ser Val Val Ala Cys Glu Phe Cys Gly		
1 5 10 15		
Glu Arg Thr Ala Val Leu Phe Cys Arg Ala Asp Thr Ala Lys Leu Cys		
20 25 30		
Leu Pro Cys Asp Gln His Val His Ser Ala Asn Leu Leu Ser Arg Lys		
35 40 45		
His Val Arg Ser Gln Ile Cys Asp Asn Cys Ser Lys Glu Pro Val Ser		
50 55 60		
Val Arg Cys Phe Thr Asp Asn Leu Val Leu Cys Gln Glu Cys Asp Trp		
65 70 75 80		
Asp Val His Gly Ser Cys Ser Ser Ser Ala Thr His Glu Arg Ser Ala		
85 90 95		
Val Glu Gly Phe Ser Gly Cys Pro Ser Val Leu Glu Leu Ala Ala Val		
100 105 110		

mbi19 Sequence Listing.ST25

Trp Gly Ile Asp Leu Lys Gly Lys Lys Glu Asp Asp Glu Asp Glu
115 120 125

Leu Thr Lys Asn Phe Gly Met Gly Leu Asp Ser Trp Gly Ser Gly Ser
130 135 140

Asn Ile Val Gln Glu Leu Ile Val Pro Tyr Asp Val Ser Cys Lys Lys
145 150 155 160

Gln Ser Phe Ser Phe Gly Arg Ser Lys Gln Val Val Phe Glu Gln Leu
165 170 175

Glu Leu Leu Lys Arg Gly Phe Val Glu Gly Glu Gly Glu Ile Met Val
180 185 190

Pro Glu Gly Ile Asn Gly Gly Ser Ile Ser Gln Pro Ser Pro Thr
195 200 205

Thr Ser Phe Thr Ser Leu Leu Met Ser Gln Ser Leu Cys Gly Asn Gly
210 215 220

Met Gln Trp Asn Ala Thr Asn His Ser Thr Gly Gln Asn Thr Gln Ile
225 230 235 240

Trp Asp Phe Asn Leu Gly Gln Ser Arg Asn Pro Asp Glu Pro Ser Pro
245 250 255

Val Glu Thr Lys Gly Ser Thr Phe Thr Phe Asn Asn Val Thr His Leu
260 265 270

Lys Asn Asp Thr Arg Thr Thr Asn Met Asn Ala Phe Lys Glu Ser Tyr
275 280 285

Gln Glu Asp Ser Val His Ser Thr Ser Thr Lys Gly Gln Glu Thr Ser
290 295 300

Lys Ser Asn Asn Ile Pro Ala Ala Ile His Ser His Lys Ser Ser Asn
305 310 315 320

Asp Ser Cys Gly Leu His Cys Thr Glu His Ile Ala Ile Thr Ser Asn
325 330 335

Arg Ala Thr Arg Leu Val Ala Val Thr Asn Ala Asp Leu Glu Gln Met
340 345 350

Ala Gln Asn Arg Asp Asn Ala Met Gln Arg Tyr Lys Glu Lys Lys Lys
355 360 365

Thr Arg Arg Tyr Asp Lys Thr Ile Arg Tyr Glu Thr Arg Lys Ala Arg
370 375 380

Ala Glu Thr Arg Leu Arg Val Lys Gly Arg Phe Val Lys Ala Thr Asp
385 390 395 400

Pro

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/31414

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A01H 1/00, 5/00; C12N 5/04, 15/00, 15/82; C12P 21/02
US CL : 435/69.1, 320.1, 410, 419, 468; 800/278, 284, 287, 290

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/69.1, 320.1, 410, 419, 468; 800/278, 284, 287, 290

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
East, USPAT; STN, Agricola, Biosis, CaPlus, Embase; Sequence Search of SEQ ID NOS. 1 & 2

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	AOYAMA, T. et al. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco, The Plant Cell, November 1995, Vol. 7, pages 1773-1785, entire document.	1-10, 13, 25
---		-----
Y	1785, entire document.	11, 12, 26
X	BELLIS, L.D. et al. Distinct cis-acting sequences are required for the germination and sugar responses of the cucumber isocitrate lyase gene. Gene 1997, Vol. 197, pages 375-378, entire document.	1-10, 13, 25
X	KIM, S. et al. Sugar response element enhances wound response of potato proteinase inhibitor II promoter in transgenic tobacco. Plant Mol. Biol. 1991, Vol. 17, pages 973-983, entire document.	1-10, 13, 25
Y	Database Genbank on NCBI, US National Library of Medicine, (Bethesda, MD, USA), No. U78721, LIN, X. et al. 'Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana' 5 April 2000, especially bases 14,116-14,895.	1-10, 13, 25

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

23 February 2001 (23.02.2001)

Date of mailing of the international search report

04 APR 2001

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703)305-3230

Authorized officer

David Kruse

TERRY J. DEY
PARALEGAL SPECIALIST
TECHNOLOGY CENTER 1800

Telephone No. 703-308-TECHNOLOGY CENTER 1800

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/31414

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim Nos.: 14 & 24
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-13, 25 and 26; SEQ ID NOs 1 & 2

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/31414

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I-XXXV, claim(s) 1-13 and 25-26, drawn to a transgenic plant having modified seed characteristics, polynucleotides and vectors for producing said transgenic plant and a method of making said transgenic plant. Applicant must elect one pair of sequences (one nucleic acid and the corresponding amino acid translation) to be examined, *i.e.* SEQ ID NO: 1 and 2 in Group I, SEQ ID NO: 3 and 4 in Group II, SEQ ID NO: 5 and 6 in Group III, etc.

Group XXXVI, claim(s) 15-17, drawn to a method of identifying a factor that is modulated.

Group XXXVII, claims(s) 18, drawn to a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide.

Group XXXVIII, claims(s) 19 and 20, drawn to an integrated computer system.

Group XXXIV, claim(s) 21-23, drawn to a method for identifying a polynucleotide sequence comprising selecting a nucleic acid sequence from a database that meets a selected sequence criteria.

The inventions listed as Groups I-XXXIV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions listed as Groups I-XXXIX do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I-XXXV are drawn to a transgenic plant and a method of producing said plant with a nucleic acid sequence. The methods of Groups I-XXXV differ from each other in that they are directed to a plant transformation method and transgenic plant with a structurally and functionally distinct nucleic acid sequence which encodes a structurally and functionally distinct amino acid sequence. In addition, Groups XXXVI, XXXVII and XXXIX are different methods from any of Groups I-XXXV in that they have different method steps and different end products, and Group XXXVIII requires a computer system. Thus, there is no single special technical feature, which links the inventions of Groups I-XXXIX under PCT Rule 13.2.

This Page Blank (uspto)