- 1	
Name:	Entry No.

CENTRE FOR ENERGY STUDIES Alternative Fuels for Transportation (ESL 875)

December 2, 2006

- Venue: IV-LT-2	Time: 10:30AM-12:30PM	Total Marks: 60
- venue: (v-1/1-2	I IIIIE: IU:SUAJVI-IZ:SUF IVI	I OLAI WIALKS: OU

- Ven	ue: IV-LT-2		Time: 10:30	0AM-12:30PM	I	Total Marks: 60
•	Note: Write the name	and entry numb	er in the questi	ion paper.		
•	1. Indicate if the	following states	nents are Tru	e (T) or False (I	?)	(20 marks)
_ i.	Diesel-fuelled engines	emit higher level	s of NO _X as co	mpared to petro-	-diesel ones ()	
ii.	Biodiesel possesses bet	ter lubricity than	conventional of	diesel ()		
- iii.	In hydrogen engine NO _X emissions tend to be higher than manifold injection configuration because of higher					ation because of higher
	combustion temperatur	e ()				
iv.	Biodiesel vehicles have	e lesser cold start	problems relat	tive to petro-dies	el ()	
v.	DME engine can have	the same NO _X en	nission level as	the Otto engine	with 3-way catalyti	ic converter ()
vi.	DME has a lower hea	ting value than	diesel			
vii.	DME has a higher	viscosity than	diesel and	hence does r	ot necessitate a	lubricant for engine
	applications					
viii.	Timed manifold inj	ection for hyd	rogen fuel u	itilization in S	S.I.engine is cons	sidered superior than
-	carburetion version in	n terms of comb	oustion and en	nission charact	eristics.	
- ix.	Hydrogen because o	f its low mini	num iginitio	n energy make	es it sometimes v	ery unsafe and needs
	special safety device	to be used for e	ngine applica	tions.		
х.	LPG has got a lower or	ctane rating comp	ared to premiu	ım petrol()		
xi.	Addition of methane to	LPG increases i	ts Octane numl	ber ()		
xii.	Amongst ULS Diesel,	Petrol and LPG,	ultra-low sulph	ur Diesel has the	e lowest tailpipe NC	Ox emissions. ()
xiii.	As compared with Pet	rol, LPG combus	tion enhances	the deposits of s	oot on combustion o	chamber walls ()
xiv.	Use of GTL in existing	vehicles gives s	ignificant emis	sion benefit in to	erms of PM, NOx, F	HC and CO()
XV.	It is essential to have a	cetane improver	for using DMI	E in engines. ()	
xvi.	LNG must be mainta	ined cold (at lea	ast below 117	K) to remain 1	iquid, independent	t of pressure
xvii.	As liquid, LNG is no	t explosive, but	LNG vapor i	is explosive wi	thin the flammabi	lity range when mixed
	with air.					
xviii.	LNG combustion red	luces NOX and	VOC, but inc	reases methane	emissions	
xix.	LPG combustion ens	ures high NOx	and particulat	te matter emiss	ions	
XX.	DME engine can hav	e the same NO	x emission lev	vel as the Otto	engine with 3-way	catalytic converter.

Name	Entry No
	2. Fill in the blanks with appropriate words (10 marks)
· i.	Flammability limits of hydrogen are in the range of% to% by volume whereas those of iso-octane
	are between% to% by volume.
ii.	Biodiesel has a cetane number in the range of
iii.	A neat biodiesel engine ensures approximately % reduction in sulphate emissions compared to
	conventional diesel.
iv.	Premixed hydrogen produces about % less power than iso-octane when both fuels are used in
_	stoichiometric proportions and at atmospheric manifold pressure.
v.	Cetane number of DME is of the order of
_vi.	The only pollutant of major concerns in hydrogen operated S.I. engine is
vii.	is the process by which vegetable oils can be made suitable for diesel engine applications.
viii.	Soot emissions from DME operated engines are generallythan a similar diesel operated engine.
ix.	When vaporized LNG burns only in concentrations of% to% when mixed with air.
х.	Stoichiometric A/F ratio of DME is about
xi.	LPG is predominantly a mixture of andin different proportions.
xii.	Octane rating of LPG is about as compared to for premium petrol
xiii.	Soot emissions from DME operated engines are generallythan a similar diesel operated engine.
xiv.	Premixed hydrogen produces about% less power than iso-octane when both fuels are used in
	stoichiometric proportions and at atmospheric manifold pressure.
	3. List out (18 marks)
	a. Two transportation fuels derived from Natural gas by physical operation:
	(i)
-	(ii)
	b. Two transportation fuels derived from Natural gas by chemical conversion:
	(i)
چ د	(ii)
	c. Two operating methods of lowering the NO _X emission level in a hydrogen engine:
* , *	(i)
	(ii)

- d. Two properties of DME which makes it superior than diesel for engine application.
 - (i)
 - (ii)
- e. Two commonly used methods through which hydrogen is being produced all over the world.
 - (i)
 - (ii)
- f. List out five significant measures adopted in India for control of vehicular emission.
 - (i)
 - (ii)
 - (iii)
 - (iv)
 - (v)
- g. List three significant features of LPG-Hydrogen combustion in automotive engines
 - (i)
 - (ii)
 - (iii)

4. Explain

(6 marks)

(i) "Regasification" in the context of LNG

(ii) Two methods to lower NOx emissions from hydrogen engine

(iii) Why it is possible to achieve ultra-lean hydrogen SI engine operation

5. Comment on the following

(6 marks)

a. Explain why no significant emission of PAH takes place with DME operation

b. Explain the phenomena of "Auto-refrigeration" and "Rapid Phase Transition" in respect of LNG

c. Discuss some GTL production technology indicating the key steps. Explain the advantages of GTL process from environment point of view.