Random walks and branching processess

Bo Friis Nielsen¹

¹DTU Informatics

02407 Stochastic Processes 2, September 8 2020

DTU

Bo Friis Nielsen

Random walks and branching processess

Simple random walk with two reflecting barriers 0 and N

$$\mathbf{P} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ q & 0 & p & \dots & 0 & 0 & 0 \\ 0 & q & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \dots & q & 0 & p \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{vmatrix}$$

$$T = \min\{n \ge 0; X_n \in \{0, 1\}\}$$

$$u_k = \mathbb{P}\{X_T = 0 | X_0 = k\}$$

DTU

Discrete time Markov chains

Today:

- Random walks
- First step analysis revisited
- Branching processes
- Generating functions

Next week

- Classification of states
- Classification of chains
- Discrete time Markov chains invariant probability distribution

Two weeks from now

► Poisson process

Bo Friis Nielsen

Random walks and branching processess

Solution technique for $u'_k s$

$$u_k = pu_{k+1} + qu_{k-1}, k = 1, 2, ..., N-1,$$

 $u_0 = 1,$
 $u_N = 0$

Rewriting the first equation using p + q = 1 we get

$$(p+q)u_k = pu_{k+1} + qu_{k-1} \Leftrightarrow$$

$$0 = p(u_{k+1} - u_k) - q(u_k - u_{k-1}) \Leftrightarrow$$

$$x_k = (q/p)x_{k-1}$$

with
$$x_k = u_k - u_{k-1}$$
, such that

$$x_k = (q/p)^{k-1} x_1$$

Recovering u_k

$$x_1 = u_1 - u_0 = u_1 - 1$$

 $x_2 = u_2 - u_1$
 \vdots
 $x_k = u_k - u_{k-1}$

such that

$$u_1 = x_1 + 1$$

 $u_2 = x_2 + x_1 + 1$
 \vdots
 $u_k = x_k + x_{k-1} + \dots + 1 = 1 + x_1 \sum_{i=0}^{k-1} (q/p)^i$

Bo Friis Nielsen

Random walks and branching processess

Direct calculation as opposed to first step analysis

$$P = \left| \left| \begin{array}{cc} Q & R \\ 0 & I \end{array} \right| \right|$$

$$P^2 = \left| \left| \begin{array}{cc} Q & R \\ 0 & I \end{array} \right| \left| \left| \left| \begin{array}{cc} Q & R \\ 0 & I \end{array} \right| \right| = \left| \left| \begin{array}{cc} Q^2 & QR + R \\ 0 & I \end{array} \right| \right|$$

$$P^n = \left\| \begin{array}{cc} Q^n & Q^{n-1}R + Q^{n-2}R + \cdots + QR + R \\ 0 & I \end{array} \right\|$$

$$W_{ij}^{(n)} = \mathbb{E}\left[\sum_{\ell=0}^{n}\mathbb{1}(X_{\ell}=j)|X_0=i\right], \text{ where } \mathbb{1}(X_{\ell}) = \left\{egin{array}{ll} 1 & ext{if } X_{\ell}=j \\ 0 & ext{if } X_{\ell}
eq j \end{array}
ight.$$

Values of absorption probabilities u_k

From $u_N = 0$ we get

$$0 = 1 + x_1 \sum_{i=0}^{N-1} (q/p)^i \Leftrightarrow x_1 = -\frac{1}{\sum_{i=0}^{N-1} (q/p)^i}$$

Leading to

$$u_k = \left\{ egin{array}{ll} 1 - (k/N) = (N-k)/N & ext{when } p = q = rac{1}{2} \ rac{(q/p)^k - (q/p)^N}{1 - (q/p)^N} & ext{when } p
eq q \end{array}
ight.$$

Bo Friis Nielsen

Random walks and branching processess

Expected number of visits to states

$$W_{ij}^{(n)} = Q_{ij}^{(0)} + Q_{ij}^{(1)} + \dots Q_{ij}^{(n)}$$

In matrix notation we get

$$W^{(n)} = I + Q + Q^2 + \cdots + Q^n$$

$$= I + Q \left(I + Q + \cdots + Q^{n-1} \right)$$

$$= I + QW^{(n-1)}$$

Elementwise we get the "first step analysis" equations

$$W_{ij}^{(n)} = \delta_{ij} + \sum_{k=0}^{r-1} P_{ik} W_{kj}^{(n-1)}$$

Ξ

≡

Limiting equations as $n \to \infty$

$$W = I + Q + Q^2 + \cdots = \sum_{i=0}^{\infty} Q^i$$

 $W = I + QW$

From the latter we get

$$(I-Q)W=I$$

When all states related to Q are transient (we have assumed that) we have

$$\mathbf{W} = \sum_{i=0}^{\infty} \mathbf{Q}^i = (\mathbf{I} - \mathbf{Q})^{-1}$$

With $T = \min\{n \ge 0, r \le X_n \le N\}$ we have that

$$W_{ij} = \mathbb{E}\left[\sum_{n=0}^{T-1} \mathbb{1}(X_n = j) \middle| X_0 = i\right]$$

Bo Friis Nielsen

Random walks and branching processess

Absorption probabilities

$$U_{ij}^{(n)} = \mathbb{P}\{T \le n, X_T = j | X_0 = i\}$$
 $U^{(1)} = R = IR$
 $U^{(2)} = IR + QR$
 $U^{(n)} = (I + Q + \dots + Q^{(n-1)}R = W^{(n-1)}R)$

Leading to

$$U = WR$$

Absorption time

$$\sum_{n=0}^{T-1} \sum_{j=0}^{r} \mathbb{1}(X_n = j) = \sum_{n=0}^{T-1} \mathbb{1} = T$$

Thus

$$\mathbb{E}(T|X_0 = i) = \mathbb{E}\left[\sum_{j=0}^r \sum_{n=0}^{T-1} \mathbb{1}(X_n = j) \ X_0 = i\right]$$

$$= \sum_{j=0}^r \mathbb{E}\left[\sum_{n=0}^{T-1} \mathbb{1}(X_n = j | X_0 = i)\right]$$

$$= \sum_{j=0}^r W_{ij}$$

In matrix formulation

$$v = W1$$

where $v_i = \mathbb{E}(T|X_0 = i)$ as last week, and **1** is a column vector of ones.

Bo Friis Nielsen

Random walks and branching processess

DTU

≡

Conditional expectation discrete case (2.1)

$$\mathbb{P}\{Y = y | X = x\} = \frac{\mathbb{P}\{X = x, Y = y\}}{\mathbb{P}\{X = x\}}$$
$$\mathbb{E}[Y = y | X = x] = \sum_{y} y \mathbb{P}\{Y = y | X = x\}$$

 $h(x) = \mathbb{E}[Y = y | X = x]$ is a function of x, thus h(X) is a random variable, which we call $\mathbb{E}[Y = y | X]$. Now

$$\mathbb{E}[h(X)] = \sum_{x} \mathbb{P}\{X = x\}h(x) = \sum_{x} \mathbb{P}\{X = x\} \sum_{y} y \mathbb{P}\{Y = y | X = x\}$$

$$= \sum_{X} \sum_{Y} y \mathbb{P}\{X = x\} \frac{\mathbb{P}\{X = x, Y = y\}}{\mathbb{P}\{X = x\}} = \sum_{X} \sum_{Y} y \mathbb{P}\{X = x, Y = y\}$$
$$= \mathbb{E}[Y] = \mathbb{E}\{\mathbb{E}[Y|X]\}, \quad (\mathbb{E}[g(Y)] = \mathbb{E}\{\mathbb{E}[g(Y)|X]\})$$

Ξ

$\mathbb{V}\operatorname{ar}[Y] = \mathsf{E}\left[Y^2\right] - \mathsf{E}\left[Y\right]^2 = \mathbb{E}\left\{\mathbb{E}\left[Y^2|X\right]\right\} - \mathsf{E}\left[Y\right]^2$ $= \mathbb{E}\{\mathbb{V}\operatorname{ar}[Y|X] + \mathbb{E}[Y|X]^2\} - \mathbb{E}\{\mathbb{E}[Y|X]\}^2$

 $= \mathbb{E}\{\mathbb{V}\operatorname{ar}[Y|X]\} + \mathbb{E}\{\mathbb{E}[Y|X]^2\} - \mathbb{E}\{\mathbb{E}[Y|X]\}^2\}$ $\mathbb{E}\{\mathbb{V}ar[Y|X]\} + \mathbb{V}ar\{\mathbb{E}[Y|X]\}$

DTU

Bo Friis Nielsen

Random walks and branching processess

Branching processes

$$X_{n+1} = \xi_1 + \xi_2 + \cdots + \xi_{X_n}$$

where ξ_i are independent random variables with common propability mass function

$$\mathbb{P}\{\xi_i=k\}=p_k$$

From a random sum interpretation we get

$$\mathbb{E}(X_{n+1}) = \mu \mathbb{E}(X_n) = \mu^{n+1}$$

$$\mathbb{V}ar(X_{n+1}) = \sigma^2 \mathbb{E}(X_n) + \mu \mathbb{V}ar(X_n) = \sigma^2 \mu^n + \mu^2 \mathbb{V}ar(X_n)$$

$$= \sigma^2 \mu^n + \mu^2 (\sigma^2 \mu^{n-1} + \mu^2 \mathbb{V}ar(X_{n-1}))$$

Random sum (2.3)

$$X = \xi_1 + \dots + \xi_N = \sum_{i=1}^N \xi_i$$

where N is a random variable taking values among the non-negative integers; with

$$\mathbb{E}(N) = \nu, \mathbb{V}ar(N) = \tau^2, \mathbb{E}(\xi_i) = \mu, \mathbb{V}ar(\xi_i) = \sigma^2$$

$$\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|N)) = \mathbb{E}(N\mu) = \nu\mu$$

$$\mathbb{V}\operatorname{ar}(X) = \mathbb{E}(\mathbb{V}\operatorname{ar}(X|N)) + \mathbb{V}\operatorname{ar}(\mathbb{E}(X|N))$$

$$= \mathbb{E}(N\sigma^2) + \mathbb{V}\operatorname{ar}(N\mu) = \nu\sigma^2 + \tau^2\mu^2$$

Bo Friis Nielsen

Random walks and branching processess

Extinction probabilities

Define N to be the random time of extinction (*N* can be defective - i.e. $\mathbb{P}\{N=\infty\}>0$)

$$u_n = \mathbb{P}\{N \le n\} = \mathbb{P}\{X_N = 0\}$$

And we get

$$u_n = \sum_{k=0}^{\infty} p_k u_{n-1}^k$$

DTU

The generating function - an important analytic tool

- Manipulations with probability distributions
- Determining the distribution of a sum of random variables
- Determining the distribution of a random sum of random variables
- Calculation of moments
- Unique characterisation of the distribution
- Same information as CDF

DTU

Bo Friis Nielsen

Random walks and branching processess

The sum of iid random variables

Remember Independent Identically Distributed $S_n = X_1 + X_2 + \dots + X_n = \sum_{i=1}^n X_i$ With $p_x = P\{X_i = x\}$, $X_i \geq 0$ we find for n = 2 $S_2 = X_1 + X_2$ The event $\{S_2 = x\}$ can be decomposed into the set $\{(X_1 = 0, X_2 = x), (X_1 = 1, X_2 = x - 1), \dots (X_1 = i, X_2 = x - i), \dots (X_1 = x, X_2 = 0)\}$ The probability of the event $\{S_2 = x\}$ is the sum of the probabilities of the individual outcomes.

Generating functions

$$\phi(s) = \mathbb{E}\left(s^{\xi}\right) = \sum_{k=0}^{\infty} p_k s^k, \qquad p_k = \frac{1}{k!} \left. \frac{\mathsf{d}^k \phi(s)}{\mathsf{d}s^k} \right|_{s=0}$$

Moments from generating functions

$$\left. \frac{\mathsf{d}\phi(s)}{\mathsf{d}s} \right|_{s=1} = \sum_{k=1}^{\infty} p_k k s^{k-1} \right|_{s=1} = \mathbb{E}(\xi)$$

Similarly

$$\left. \frac{\mathsf{d}^2 \phi(s)}{\mathsf{d}s^2} \right|_{s=1} = \sum_{k=2}^{\infty} p_k k(k-1) s^{k-2} \bigg|_{s=1} = \mathbb{E}(\xi(\xi-1))$$

a factorial moment

$$Var(\xi) = \phi''(1) + \phi'(1) - (\phi'(1))^2$$

Bo Friis Nielsen

Random walks and branching processess

Sum of iid random variables - continued

The Probability of outcome $(X_1 = i, X_2 = x - i)$ is $P\{X_1 = i, X_2 = x - i\} = P\{X_1 = i\}P\{X_2 = x - i\}$ by independence, which again is $p_i p_{x-i}$. In total we get

$$P\{S_2 = x\} = \sum_{i=0}^{x} p_i p_{x-i}$$

≡

Generating function - one example

Binomial distribution

$$p_k = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\phi_{bin}(s) = \sum_{k=0}^n s^k p_k = \sum_{k=0}^n s^k \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (sp)^k (1-p)^{n-k} = (1-p+ps)^n$$

DTU

Bo Friis Nielsen

Random walks and branching processess

And now to the reason for all this ...

The convolution can be tough to deal with (sum of random variables)

Theorem

If X and Y are independent then

$$\phi_{X+Y}(s) = \phi_X(s)\phi_Y(s)$$

where $\phi_X(s)$ and $\phi_Y(s)$ are the generating functions of X and Y

A probabilistic proof (which I think is instructive)

$$\phi_{X+Y}(s) = \mathbb{E}\left(s^{X+Y}\right) = \mathbb{E}\left(s^X s^Y\right) = \mathbb{E}\left(s^X\right) \mathbb{E}\left(s^Y\right) = \phi_X(s)\phi_Y(s)$$

Generating function - another example

Poisson distribution

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$\phi_{poi}(s) = \sum_{k=0}^{\infty} s^k p_k = \sum_{k=0}^{\infty} s^k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(s\lambda)^k}{k!}$$

$$= e^{-\lambda} e^{s\lambda} = e^{-\lambda(1-s)}$$

טווט

Bo Friis Nielsen

Random walks and branching processess

Sum of two Poisson distributed random variables

$$X \sim P(\lambda)$$
 $Y \sim P(\mu)$ $Z = X + Y$ $\phi_X(s) = e^{-\lambda(1-s)}$ $\phi_Y(s) = e^{-\mu(1-s)}$ $\left(\mathbb{P}\{X = x\} = p_X = \frac{\lambda^X}{x!}e^{-\lambda}\right)$

And we get

$$\phi_{Z}(s) = \phi_{X}(s)\phi_{Y}(s) = e^{-\lambda(1-s)}e^{-\mu(1-s)} = e^{-(\lambda+\mu)(1-s)}$$

Such that

$$Z \sim P(\lambda + \mu)$$

Sum of two Binomial random variables with the same ρ

$$X \sim B(n,p) \qquad Y \sim B(m,p) \qquad Z = X + Y$$

$$\phi_X(s) = (1 - p + ps)^n \qquad \left(\mathbb{P}\{X = x\} = p_x = \binom{n}{x} p^x (1 - p)^{n-x} \right)$$

And we get

$$\phi_{Z}(s) = \phi_{X}(s)\phi_{Y}(s) = (1-p+ps)^{n}(1-p+ps)^{m} = (1-p+ps)^{n+m}$$

Such that

$$Z \sim B(n+m,p)$$

DTU

Bo Friis Nielsen

Random walks and branching processess

Generating function - the geometric distribution

$$\phi_{geo}(s) = \sum_{x=1}^{\infty} p_x = (1 {\scriptstyle \ \ } p)^{x-1} p$$

$$= \sum_{x=1}^{\infty} s^x p_x = \sum_{x=1}^{\infty} s^x (1-p)^{x-1} p$$

$$= \sum_{x=1}^{\infty} s(s(1-p))^{x-1} p$$

A useful power series is:

$$\sum_{i=0}^{N} a^{i} = \begin{cases} \frac{1-a^{N+1}}{1-a} & N < \infty, a \neq 1 \\ N+1 & N < \infty, a = 1 \\ \frac{1}{1-a} & N = \infty, |a| < 1 \end{cases}$$

And we get
$$\phi_{geo}(s) = \frac{sp}{1 - s(1 - p)}$$

Poisson example

$$X \sim P(\lambda)$$
 $\phi_X(s) = e^{-\lambda(1-s)}$ $\left(P\{X = x\} = p_X = \frac{\lambda^X}{x!}e^{-\lambda}\right)$ $\phi'(s) = -(-\lambda)e^{-\lambda(1-s)} = \lambda e^{-\lambda(1-s)}$

And we find

$$E(X) = \phi'(1) = \lambda e^0 = \lambda$$

$$\phi''(s) = \lambda^2 e^{-\lambda(1-s)}$$

$$V(X) = \phi''(1) + \phi'(1) - (\phi'(1))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

=

Bo Friis Nielsen

Random walks and branching processess

Generating function for random sum

$$h_X(s) = g_N(\phi(s))$$

Applied for the branching process we get

$$\phi_n(s) = \phi_{n-1}(\phi(s))$$

Generating function for the sum of independent random variables

$$X$$
 with pdf p_X Y with pdf q_y $Z = X + Y$ what is $r_Z = P\{Z = z\}$? $P\{Z = z\} = r_z = \sum_{i=0}^{z} p_i q_{z-i}$

Theorem

(23) page 153 If X and Y are independent then

$$\phi_{X+Y}(s) = \phi_X(s)\phi_Y(s)$$

where $\phi_X(s)$ and $\phi_Y(s)$ are the generating functions of X and Y

DTU

Bo Friis Nielsen

Random walks and branching processess

Sum of k geometric random variables with the same p

More generally - sum of k geometric variables

$$p_X = \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} (1-p)^{x-k} p^k \qquad \phi_X(s) = \left(\frac{sp}{1-s(1-p)}\right)^k$$

Sum of two geometric random variables with the same \boldsymbol{p}

$$X \sim geo(p)$$
 $Y \sim geo(p)$ $Z = X + Y$
 $\phi_X(s) = \frac{sp}{1-s(1-p)}$ $\phi_Y(s) = \frac{sp}{1-s(1-p)}$ $\left(P\{X = x\} = p_x = (1-p)^{x-1}p\right)$

And we get

$$\phi_{Z}(s) = \phi_{X}(s)\phi_{Y}(s) = rac{sp}{1-s(1-p)}rac{sp}{1-s(1-p)} = \left(rac{sp}{(1-s(1-p))}
ight)^{2}$$

The density of this distribution is

$$P{Z = z} = h(z) = (z - 1)(1 - p)^{z-2}p^2$$

Negative binomial.

DTU

Bo Friis Nielsen

Random walks and branching processess

Characteristic function and other

- ▶ Characteristic function: $\mathbb{E}(e^{itX})$
- ▶ Moment generating function: $\mathbb{E}(e^{\theta X})$
- ▶ Laplace Stieltjes transform: $\mathbb{E}(e^{-sX})$

EXAMPLE: (exponential)

$$\mathbb{E}\left(\boldsymbol{e}^{\theta X}\right) = \int_{0}^{\infty} \boldsymbol{e}^{\theta X} \lambda \boldsymbol{e}^{-\lambda X} \mathrm{d} X = \frac{\lambda}{\lambda - \theta}, \theta < \lambda$$