Tuesday, December 13, 2022

.0242 = 1.93×

4X=1.1 cm = .011 m

X= .0125 = 1.25 cm

27 cm Short or .27m

2.2-.27=1.93m

 $V_f^2 - V_1^2 = 20 - X$

 $V_{F}^{2}-0=2(-9.8)(1.93)$

 $V_f^2 = 37.828$

V= 6.15

Equations +for+Physi...

 $\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$

Possible useful equations for Physics 1250

4		
$\Delta v = a \Delta t$		
$v_f^2 - v_i^2 = 2a\Delta x$		
$\vec{r} = (r\cos\theta)\hat{\imath} + (r\sin\theta)\hat{\jmath}$		
$\vec{v} = \frac{d\vec{x}}{dt}, \ \vec{a} = \frac{d\vec{v}}{dt}$		
$\Sigma \vec{F} = \vec{F}_{net} = m\vec{a}$		
$\vec{F}_{12} = \vec{F}_{net} = ma$ $\vec{F}_{12} = -\vec{F}_{21}$		
$ \begin{aligned} F_{12} &= -F_{21} \\ W &= mg \text{ (weight)} \end{aligned} $		
$F_G = GM_1M_2/r^2$		
$F_G = GM_1M_2/T^2$ $F_S = -k\Delta x \text{ (spring force)}$		
$f_k = \mu_k N$ (kinetic friction)		
$f_s \le \mu_s N$ (static friction)		
$a_c = \frac{v^2}{r}$ (centripetal acceleration)		
$W = \vec{F} \cdot \Delta \vec{x}$		
$K = \frac{1}{2}mv^2$		
$U_g = mgy$, $U_s = \frac{1}{2}kx^2$		
$W_{net} = \Delta K = K_f - K_i$		
$K_i + U_i + W = K_f + U_f$		
$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v} \text{(Power)}$		
at		
$\Delta p = F\Delta t$ (change of momentum)		
$\Sigma \vec{F} = \vec{F}_{net} = d\vec{p}/dt$		
$\vec{p} = m\vec{v}, \vec{p}_i = \vec{p}_f$		
$m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f}$		
$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i}$		
$v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i}$		
$ax^2 + bx + c = 0$		
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
v^2		
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $a_c = \frac{v^2}{r} = \omega^2 r$		

ossible useful equations for Physics 1250			
$s = \theta r$, $\omega r = v$, $\alpha r = a$	$P = \frac{F}{A}$		
$\Delta\omega = \alpha\Delta t$	$P_{bottom} = \rho g h + P_{top}$		
$\Delta\theta = \omega \Delta t + \frac{1}{2}\alpha \Delta t^2$	$F_{buoyancy} = \rho g V_{disp}$		
$\omega_f^2 - \omega_i^2 = 2\alpha\Delta\theta$	$P + \frac{1}{2}\rho v^2 + \rho gy = constant$		
$x_{com} = \frac{\Sigma_i m_i r_i}{\Sigma_i m_i}$	Av = constant		
$I = \Sigma_i m_i r_i^2$	$Q = mC\Delta T, Q = mL$		
$I = I_{com} + MD^2$	$\Delta L = \alpha L_i \Delta T$		
$I_{rod\ com} = \frac{1}{12}Ml^2 I_{rod\ end} = \frac{1}{3}Ml^2$	$PV = nRT, \frac{P_i V_i}{T_f} = \frac{P_f V_f}{T_f}$		
$I_{ring} = MR^2$, $I_{disk} = \frac{1}{2}MR^2$	$\Delta U = \frac{3}{2} nR \Delta T, \ \Delta U = \frac{5}{2} nR \Delta T$		
$I_{disk\ hollow} = \frac{1}{2}M(R_1^2 + R_2^2)$	$\Delta U = \frac{1}{2} R K \Delta I, \Delta U = \frac{1}{2} R K \Delta I$ $\Delta U = Q + W_{on Gas}$		
$I_{solid\ sphere} = \frac{2}{5}MR^2$	$\Delta U = Q - W_{by Gas}$		
$I_{sphereshell} = \frac{2}{3}MR^2$	$W_{on Gas} = -P\Delta V$		
$\vec{\tau} = I\vec{\alpha}$	$W_{on Gas} = -nRT \ln \left(\frac{V_f}{V_s} \right)$		
$\vec{\tau} = \vec{r} \times \vec{F}$	$C_v = \frac{3}{2}R, C_P = \frac{5}{2}R$		
$\tau = rF \sin \theta$	$Q = nC_v \Delta T, Q = nC_v \Delta T$		
$\Sigma \vec{\tau} = d\vec{L}/dt$	$m = \frac{N}{NA}M = nM, n = \frac{N}{NA}$		
$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{V}$	A		
$L = rmV \sin \phi$	$T_F = T_C \times 1.8 + 32^{\circ}F$		
$\vec{L} = I \vec{\omega}$	$T_K = T_C + 273.15^{\circ}C$		
$E_{mech} = K_{rot_{com}} + K_{trans} + U$	$u' = \frac{u - v}{1 - \frac{uv}{c^2}}, \ u = \frac{u' + v}{1 + \frac{vu'}{c^2}}, \ \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$		
$K_{rot} = \frac{1}{2}I\omega^2$, V c2		
2	$\Delta t = \gamma \Delta t_p, \ L = \frac{L_p}{\gamma}$		
$\frac{d^2x}{dt^2} = -\omega^2 x$	$\Delta x' = \gamma (\Delta x - v \Delta t)$		
$x(t) = A\cos(\omega t + \phi_0)$	$\Delta t' = \gamma \left(\Delta t - \frac{v}{c^2} \Delta x \right)$		
$v(t) = n\cos(\omega t + \phi_0)$ $v(t) = -\omega A \sin(\omega t + \phi_0)$	$\Delta x = \gamma (\Delta x' + v \Delta t')$		
$a(t) = -\omega^2 A \cos(\omega t + \phi_0)$	$\Delta t = \gamma (\Delta t' + \frac{v}{c^2} \Delta x')$		
$v_{max} = \omega A$, $a_{max} = \omega^2 A$			
$\omega = \frac{2\pi}{T} = 2\pi f, \ f = \frac{1}{T}$	$g = 9.8 m/s^2$		
'- ·	$c = 3.00 \times 10^8 \text{m/s}$		
$\omega = \sqrt{\frac{k}{m}}, \ \ \omega = \sqrt{\frac{g}{l}}$	$R = 8.31 J/mol \cdot K$ $N_A = 6.022 \times 10^{23}$		
$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{m}{k}}$	$1 atm = 1.013 \times 10^5 (Pa)$		
, , ,	$1(Pa) = 1 N/m^2$		
$\frac{1}{2}kA^2 = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$	$\rho_{water} = 1000 \ kg/m^3$		
$\omega^2(A^2 - x^2) = v^2$, water		