Part IB — Complex Methods Example Sheet $2\,$

Supervised by Prof. Haynes (P.H.Haynes@damtp.cam.ac.uk) Examples worked through by Christopher Turnbull

 $Lent\ 2018$

(i)

$$z/\log(1+z) = z \left[z - \frac{z^2}{2} + \frac{z^3}{3} - \dots \right]^{-1}$$
$$= \left[1 - \frac{z}{2} + \frac{z^2}{3} - \dots \right]^{-1}$$
$$= \left(1 - \frac{z}{2} \right)^{-1} + O(z^2)$$
$$= 1 + \frac{z}{2} + O(z^2)$$

Owing to the $\log(1+z)$ term, this series expansion converges if |z| < 1.

(ii)

$$(\cos z)^{1/2} - 1 = \left[1 - \frac{z^2}{2} + \frac{z^4}{4!} - \cdots\right]^{1/2} - 1$$
$$= \left(1 - \left(\frac{z^2}{2!} - \frac{z^4}{4!}\right)\right)^{1/2} - 1 + O(z^6)$$
$$= -\frac{1}{4}z + \frac{5}{96}z^4 + O(z^6)$$

Converges for all $z \in \mathbb{C}$.

(iii) For $|e^z| < 1 \iff |e^x e^{iy}| < 1 \iff x < 0$, we have, comparing coefficients of powers of z,

$$\log(1+e^z) = e^z - \frac{e^{2z}}{2} + \frac{e^{3z}}{3} - \frac{e^{4z}}{4} + \cdots$$

$$= \underbrace{\left(1 - \frac{1}{2} + \frac{1}{3} - \cdots\right)}_{=\log 2} + (1 - 1 + 1 - 1 + \cdots) z$$

$$+ \frac{1}{2} (1 - 2 + 3 - 4 + \cdots) z^2 + \frac{1}{3!} \left(1^2 - 2^2 + 3^2 - 4^2 + \cdots\right) z^3 + O(z^4)$$

And if x > 0, have

$$\log(1+e^z) = \log(e^z(1+e^{-z})) = z + e^{-z} - \frac{e^{-2z}}{2} + \frac{e^{-3z}}{3} - \frac{e^{-4z}}{4} + \cdots$$

$$= \underbrace{\left(1 - \frac{1}{2} + \frac{1}{3} - \cdots\right)}_{=\log 2} + (1 - 1 + 1 - 1 + \cdots) z$$

$$+ \frac{1}{2} (1 - 2 + 3 - 4 + \cdots) z^2 + \frac{1}{3!} (1^2 - 2^2 + 3^2 - 4^2 + \cdots) z^3 + O(z^4)$$

(iv)

$$\begin{split} e^{e^z} &= 1 + e^z + \frac{1}{2!}e^{2z} + \frac{1}{3!}e^{3z} + \cdots \\ &= \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots\right) + \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots\right)z \\ &+ \frac{1}{2!}\left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots\right)z^2 + \cdots \end{split}$$

which seems to be valid for all z.

Using partial fractions,

$$\frac{1}{(z-a)(z-b)} = \frac{1}{a-b} \left(\frac{1}{z-a} - \frac{1}{z-b} \right)$$

Have 0 < |a| < |b|. In the region |z| < |a|, we have no singularities, ie our function is analytic here, and we can calculate the Taylor series about $z_0 = 0$. Note that (for |z| < |a|)

$$\frac{1}{z-a} = -\frac{1}{a} \left(1 - \frac{z}{a} \right)^{-1} = -\sum_{n=0}^{\infty} \frac{1}{a^{n+1}} z^n$$

Hence

$$\frac{1}{(z-a)(z-b)} = -\frac{1}{a-b} \sum_{n=0}^{\infty} \left(\frac{1}{a^{n+1}} - \frac{1}{b^{n+1}} \right) z^n$$

In the region |a| < |z| < |b| we can determine a Laurent series for $\frac{1}{z-a}$ in this annulus, (but $\frac{1}{z-b}$ still has a Taylor series). Note that

$$\frac{1}{z-a} = \frac{1}{z} \left(1 - \frac{a}{z} \right)^{-1} = \sum_{m=0}^{\infty} \frac{a^m}{z^{m+1}} = \sum_{n=-\infty}^{-1} a^{-n-1} z^n.$$

Hence

$$\frac{1}{(z-a)(z-b)} = \frac{1}{a-b} \left(\sum_{n=-\infty}^{-1} a^{-n-1} z^n + \sum_{n=0}^{\infty} \frac{1}{b^{n+1}} z^n \right)$$

Finally, in the region |z| > |b|, this is an annulus, that goes from |b| to infinity. So it has a Laurent series, given by

$$\frac{1}{(z-a)(z-b)} = \frac{1}{a-b} \left(\sum_{n=-\infty}^{-1} (a^{-n-1} + b^{-n-1}) z^n \right)$$

We note that $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ has zeros at $e^{2iz} = 1$ ie. $z = n\pi$ for integer n. The annulus $0 < |z| < \pi$ contains no singularities, thus there exists a Laurent series for $\sin z$ in this annulus.

$$\csc^{2} z = \left[\left(z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots \right) \left(z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots \right) \right]^{-1}$$

$$= \left[z^{2} - \frac{z^{4}}{3} + \frac{z^{6}}{60} - \dots \right]^{-1}$$

$$= z^{-2} \left[1 - \frac{1}{3} z^{2} + \frac{1}{60} z^{4} - \dots \right]^{-1}$$

Not sure how to do the binomial expansion in a valid way. Next part, if $0 < |z| < \pi$.

$$g(z) = f(z) - z^{2} - \frac{1}{\pi^{2}} \left(1 + \frac{z}{\pi} \right)^{-2} - \frac{1}{\pi^{2}} \left(1 - \frac{z}{\pi} \right)^{-2}$$

Can see z^{-2} term is removed by $f(z) - z^{-2}$, hence we $a_n = 0$ for all n < 0, and can remove the singularity at z = 0 by setting

$$G(z) = \begin{cases} g(z) & \text{if } z \neq 0\\ \text{constant term in } g(z) & \text{if } z = 0 \end{cases}$$

Not sure why $z = |\pi|$ is fine?

f(z) has a zero of order N at $z = z_0$ if $0 = f(z_0) = f'(z_0) = \cdots = f^{N-1}(z_0)$, but $f^{(N)}(z_0) \neq 0$.

If there is a N > 0 such that $a_n = 0$ for all n < -N but $a_{-N} \neq 0$, then f has a pole of order N at z_0 .

Not sure.

Write

$$f(z) = (z - z_0)^N G(z)$$

for some G with $G(z_0) \neq 0$. Then $\frac{1}{G(z)}$ has a Taylor series about z_0 , and then the result follows.

- (i) $\frac{1}{z^3(z-1)^2}$ has isolated singularities at z=0 and z=1.
- (ii) $\tan z$ has isolated singularities at $z = (n + \frac{1}{2})\pi$.
- (iii) $\sinh z$ has zeros where $\frac{1}{2}(e^z-e^{-z})=0$, i.e. $e^{2z}=1$, i.e. $z=n\pi i$, where $n\in\mathbb{Z}$. Hence $z\coth z$ has isolated singularities here.
- (iv) $\frac{e^z-e}{(1-z)^3}$ has a singularity at z=1,
- (v) $\exp(\tan z)$ has singularities $z = \frac{\pi}{2} + n\pi$.
- (vi) $\sinh \frac{z}{z^2-1}$ has singularities at $z=\pm 1$
- (vii) $\log(1+e^z)$ has singularities $z=(1+2n)i\pi$.
- (viii) $\tan(z^{-1})$ has singularities $1/(\frac{\pi}{2}+n\pi)=\frac{2}{\pi(2n+1)}$.

Firstly $\int_{-1}^{1} z \, dz$ evaluated along γ_1 , the straight line from -1 to +1 is simply $\begin{bmatrix} \frac{z^2}{2} \end{bmatrix}_{-1}^1 = 0.$ We integrate along the semicircular contour by making the substitution $z = e^{i\theta},\,\mathrm{d}z = ie^{i\theta}\,d\theta.$ Then

$$\int_{\gamma_2} z \, dz = \int_{\pi}^{0} e^{i\theta} \cdot ie^{i\theta} \, d\theta$$
$$= \int_{\pi}^{0} ie^{2i\theta} \, d\theta$$
$$= \left[\frac{1}{2}e^{2i\theta}\right]_{\pi}^{0}$$
$$= 0$$

Next, consider

$$I_3 = \oint_{\gamma_3} \bar{z} \, \mathrm{d}z, \quad I_4 = \oint_{\gamma_4} \bar{z} \, \mathrm{d}z$$

where γ_3 is the unit circle |z|=1, and γ_4 is the translated unit circle |z-1|=1. For I_3 we again make the substitution $z=e^{i\theta}$, $\mathrm{d}z=ie^{i\theta}$ $d\theta$, so

$$I_3 = \int_0^{2\pi} e^{-i\theta} i e^{i\theta} d\theta$$
$$-2\pi$$

For I_4 we make the substitution $z = 1 + e^{i\theta}$, $dz = ie^{i\theta}$ $d\theta$, so

$$I_4 = \int_0^{2\pi} (1 + e^{-i\theta}) i e^{i\theta} d\theta$$
$$= \int_0^{2\pi} i (1 + e^{i\theta}) d\theta$$
$$= 2\pi i$$

At a *simple* pole, the residue is given by

$$\mathop{\rm res}_{z=z_0} f(z) = \lim_{z \to z_0} (z - z_0) f(z).$$

Hence

(i)

$$\operatorname{res}_{z=z_0} f(z)/(z-z_0) = \lim_{z \to z_0} f(z)
= f(z_0)$$

(ii)

$$\operatorname{res}_{z=z_0} f(z)/g(z) = \lim_{z \to z_0} (z - z_0) f(z)/g(z)$$
$$= f(z_0)$$

(iii)

Proposition. At a pole of order N, the residue is given by

$$\lim_{z \to z_0} \frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}} (z - z_0)^N f(z).$$

Proof. We can simply expand the right hand side to obtain

$$\lim_{z \to z_0} \frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}} (z - z_0)^N \left(\frac{a_{-N}}{(z - z_0)^N} + \dots + \frac{a_{-2}}{z - z_0}^2 + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots \right)$$

$$\lim_{z \to z_0} \frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}} \left(a_{-N} + a_{-N+1}(z - z_0) + \dots + a_{-1}(z - z_0)^{N-1} + a_0(z - z_0)^N + \dots \right)$$

$$\lim_{z \to z_0} \frac{1}{(N-1)!} \left((N-1)! a_{-1} + N! a_0(z - z_0) + \dots \right)$$

$$= \lim_{z \to z_0} (a_{-1} + N a_0(z - z_0) + \dots)$$

$$= a_{-1}$$

as required.

We now compute the residues of the poles given in question 5.

(i) We can use the fact that f has a pole of order 3 at z = 0. So we can use the formula to obtain

$$\mathop{\rm res}_{z=0} f(z) = \lim_{z \to 0} \frac{1}{2!} \frac{\mathrm{d}^2}{\mathrm{d}z^2} (z^3 f(z)) = \lim_{z \to 0} \frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}z^2} \frac{1}{(z-1)^2} = \frac{1}{2}.$$

We shall evaluate

$$I = \int_{\gamma} \frac{z^n \, \mathrm{d}z}{(z - a)(z - a^{-1})},$$

where γ is the unit circle. Making the substitution $z=e^{i\theta}$ and traversing anticlockwise from z=1 gives

$$I = \int_0^{2\pi} \frac{e^{in\theta}}{(e^{i\theta} - a)(e^{i\theta} - a^{-1})} ie^{i\theta} d\theta$$
$$= \int_0^{2\pi} \frac{ie^{in\theta}}{e^{i\theta} - a - a^{-1} + e^{-i\theta}} d\theta$$
$$= -ia \int_0^{2\pi} \frac{\cos n\theta + i\sin n\theta}{1 - 2a\cos \theta + a^2} d\theta$$

Now evaluating I by the residue theorem, the poles of the integrand are at $z_0 = a$ and $z_1 = a^{-1}$, with z_1 lying inside the contour with residue

$$\frac{a^{-n+1}}{1-a^2}$$

Hence we get

$$I = 2\pi i \frac{a^{-n+1}}{1 - a^2}$$

We shall evaluate

$$I = \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1 + x + x^2},$$

Consider

$$\oint_{\gamma} \frac{\mathrm{d}z}{1+z+z^2},$$

where γ is the contour "closing in the upper-half plane", shown: from -R to R along the real axis (γ_0) , then returning to -R via a semicircle of radius R in the upper half plane (γ_R) .

Now we have

$$\frac{1}{1+z+z^2} = \frac{1}{(z-z_0)(z-\bar{z_0})}.$$

where $z_0 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. So the only singularity enclosed by γ is a simple pole at $z = z_0$, where the residue is

$$\lim_{z \to z_0} \frac{1}{z - \bar{z_0}} = -\frac{1}{\sqrt{3}i}.$$

Hence

$$\int_{\gamma_0} \frac{\mathrm{d}z}{1+z+z^2} + \int_{\gamma_R} \frac{\mathrm{d}z}{1+z+z^2} = \int_{\gamma} \frac{\mathrm{d}z}{1+z+z^2} = 2\pi i \cdot -\frac{1}{\sqrt{3}i} = -\frac{2\sqrt{3}}{3}\pi.$$

Let's now look at the terms individually. We know

$$\int_{\gamma_0} \frac{\mathrm{d}z}{1+z^2} = \int_{-R}^R \frac{\mathrm{d}x}{1+x^2} \to I$$

as $R \to \infty$. Also,

$$\int_{\gamma_R} \frac{\mathrm{d}z}{1+z^2} \to 0$$

as $R \to \infty$ (see below). So we obtain in the limit

$$I+0=-\frac{2\sqrt{3}}{3}\pi.$$

So

$$I = -\frac{2\sqrt{3}}{3}\pi.$$

Finally, we need to show that the integral about γ_R vanishes as $R \to \infty$. We can also do this informally, by writing

$$\left| \int_{\gamma_R} \frac{\mathrm{d}z}{1+z+z^2} \right| \leq \pi R \sup_{z \in \gamma_R} \left| \frac{1}{1+z+z^2} \right| = \pi R \cdot O(R^{-2}) = O(R^{-1}) \to 0.$$

we want to integrate

$$I = \int_0^\infty \frac{x^{a-1}}{1+x} \, \mathrm{d}x,$$

with 0 < a < 1 so that the integral converges. We need a branch cut for z^{a-1} . We take our branch cut to be along the positive real axis, and define

$$z^{\alpha} = r^{\alpha} e^{i\alpha\theta},$$

where $z = re^{i\theta}$ and $0 \le \theta < 2\pi$. We use the following keyhole contour:

This consists of a large circle C_R of radius R, a small circle C_{ε} of radius ε , and the two lines just above and below the branch cut. We will simultaneously take the limit $\varepsilon \to 0$ and $R \to \infty$.

We have four integrals to work out. The first is

$$\int_{\gamma_R} \frac{z^{a-1}}{1+z} \, \mathrm{d}z = O(R^{a-2}) \cdot 2\pi R = O(R^{a-1}) \to 0$$

as $R \to \infty$. To obtain the contribution from γ_{ε} , we substitute $z = \varepsilon e^{i\theta}$, and obtain

$$\int_{2\pi}^{0} \frac{\varepsilon^{a-1} e^{i(a-1)\theta}}{1 + \varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta = O(\varepsilon^{a-1}) \to 0.$$

Finally, we look at the integrals above and below the branch cut. The contribution from just above the branch cut is

$$\int_{\varepsilon}^{R} \frac{x^{a-1}}{1+x} \, \mathrm{d}x \to I.$$

Similarly, the integral below is

$$\int_{R}^{\varepsilon} \frac{x^{a-1}e^{2a\pi i}}{1+x} \, \mathrm{d}x \to -e^{2a\pi i}I.$$

So we get

$$\oint_{\gamma} \frac{z^{(a-1)}}{1+z} dz \to (1 - e^{2a\pi i})I.$$

All that remains is to compute the residues. The only pole is the simple pole at z=-1, with residue

$$(-1)^{a-1}$$

Hence we know

$$(1 - e^{2a\pi i})I = 2\pi i ((-1)^{a-1}).$$

In other words, we get

$$e^{a\pi i}\frac{1}{2i}(e^{-a\pi i}-e^{a\pi i})I=\pi(-1)^{a-1}e^{-\pi ai}$$

Thus we have

$$I = \frac{\pi}{\sin \pi a}$$

Not too sure about these trigonometric integrals, but will attempt before supervision. $\,$

Consider the integral

$$\int_{\gamma} \frac{\cot z}{z^2 + \pi^2 a^2} \, \mathrm{d}z,$$

where γ is the square contour shown with corners at $(N + \frac{1}{2})(\pm 1 \pm i)$, where N is a large integer, avoiding the singularities

There are simple poles at $z = n\pi$, $n \in \mathbb{Z} \setminus \{0\}$, with residues $\frac{1}{(n^2 + a^2)\pi}$, and a two poles at $z = \pm i\pi a$ with residue $-\frac{1}{\pi a} \coth \pi a$ each. It turns out the integrals along the sides all vanish as $N \to \infty$ (see later). So we know

$$2\pi i \left(2\sum_{n=1}^{N} \frac{1}{(n^2 + a^2)\pi} - \frac{2}{\pi a} \coth \pi a\right) \to 0$$

as $N \to \infty$. In other words,

$$\sum_{n=1}^{N} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth \pi a.$$

[Not sure of the details of calculating these residues...] Hence all that remains is to show that the integrals along the sides vanish. On the right-hand side, we can write $z = N + \frac{1}{2} + iy$. Then

$$|\cot z| = \left|\cot\left(\left(N + \frac{1}{2}\right) + iy\right)\right| = |-\tan iy| = |\tanh y| \le 1.$$

So $\cot \pi z$ is bounded on the vertical side. Since we are integrating $\frac{\cot \pi z}{z^2 + \pi^2 a^2}$, the integral vanishes as $N \to \infty$.

Along the top, we get $z = x + (N + \frac{1}{2})i$. This gives

$$|\cot z| = \frac{\sqrt{\cosh^2\left(N + \frac{1}{2}\right) - \sin^2 x}}{\sqrt{\sinh^2\left(N + \frac{1}{2}\right) + \sin^2 x}} \le \coth\left(N + \frac{1}{2}\right) \le \coth\frac{1}{2}.$$

So again $\cot \pi$ is bounded on the top side. So again, the integral vanishes as $N \to \infty.$

Similarly the left and bottom boundary both vanish too, hence the required result.