Qn	Solutions
1	$\frac{4x}{x^2 - 2x - 4} > -x$
	$\Rightarrow \frac{4x}{x^2 - 2x - 4} + x > 0$
	$\Rightarrow \frac{x(x^2 - 2x - 4) + 4x}{x^2 - 2x - 4} > 0$
	x^2-2x-4
	$\Rightarrow \frac{x(x^2 - 2x)}{(x - 1)^2 - 5} > 0$
	$(x-1)^2 - 5$
	$\Rightarrow \frac{x^2(x-2)}{(x-1-\sqrt{5})(x-1+\sqrt{5})} > 0$
	$\rightarrow \frac{1}{(x-1-\sqrt{5})(x-1+\sqrt{5})} > 0$
	- + + - +
	$1-\sqrt{5}$ 0 2 $1+\sqrt{5}$
	$\Rightarrow 1 - \sqrt{5} < x < 2 \text{ or } x > 1 + \sqrt{5} \text{ and } x \neq 0$
2	$(i) \qquad \frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = \frac{4}{\left(t+1\right)^3}$
	$dt^2 = (t+1)^3$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{2}{\left(t+1\right)^2} + A$
	$dt \qquad (t+1)^2$
	$x = \frac{2}{t+1} + At + B$
	l+1
	When $t = 0$, $x = 3$
	$3=2+B \implies B=1$
	$S-Z+B \longrightarrow B-1$
	Hence $x = \frac{2}{t+1} + At + 1$
	t+1
	(ii)
	$\begin{array}{c} x \\ A \end{array} \qquad \begin{array}{c} x \\ A > 0 \end{array}$
	(0,3)
	x=1, A=0
	$\longrightarrow t$
	x = At + 1, A < 0
	` `

Page 1 of 11

	2015 NYJC JC2 Prelim Exam 9740/1 Solutions
Qn	Solutions
3(i)	P
	4r
	r 1
	O A
	$OA = r \cos \theta$
	$AP = r\sin\theta$
	$OQ = x - r\cos\theta$
	By Pythagoras Theorem,
	$AP^2 + AQ^2 = PQ^2$
	$\Rightarrow r^2 \sin^2 \theta + (x - r \cos \theta)^2 = 16r^2$
	$\Rightarrow x - r\cos\theta = \sqrt{16r^2 - r^2\sin^2\theta} \text{(since } x - r\cos\theta > 0\text{)}$
	$\Rightarrow x = r \left(\cos \theta + \sqrt{16 - \sin^2 \theta} \right)$
	Alternative solution
	Using Cosine rule,
	$\left(4r\right)^2 = r^2 + x^2 - 2rx\cos\theta$
	$x^2 - 2rx\cos\theta = 15r^2$
	$\left(x - r\cos\theta\right)^2 - r^2\cos^2\theta = 15r^2$
	$\left(x - r\cos\theta\right)^2 = 15r^2 + r^2\cos^2\theta$
	$\left(x - r\cos\theta\right)^2 = 15r^2 + r^2\left(1 - \sin^2\theta\right)$
	$\left(x - r\cos\theta\right)^2 = r^2 \left(16 - \sin^2\theta\right)$
	$x - r\cos\theta = r\sqrt{16 - \sin^2\theta} \text{ (Since } x - r\cos\theta > 0\text{)}$
	$\therefore x = r \left(\cos \theta + \sqrt{16 - \sin^2 \theta} \right)$
3(ii)	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}t}$
	$= r \left(-\sin\theta + \frac{1}{2} \left(16 - \sin^2\theta \right)^{-\frac{1}{2}} \left(-2\sin\theta\cos\theta \right) \right) \frac{d\theta}{dt}$
	$= -r\sin\theta \left(1 + \frac{\cos\theta}{\sqrt{16 - \sin^2\theta}}\right) \frac{d\theta}{dt}$

Qn	Solutions Solutions		
	Given that $\frac{d\theta}{dt} = 0.5 \text{ rad/s}$ and when $\theta = \frac{2\pi}{3}$,		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -r\left(\frac{\sqrt{3}}{2}\right)\left(1 + \frac{\left(-\frac{1}{2}\right)}{\sqrt{16 - \left(\frac{3}{4}\right)}}\right)\left(\frac{1}{2}\right) \approx -0.378r \text{ cm/s}$		
	P is moving towards O at a rate of $0.378r$ cm/s.		
4	(a) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a} \Rightarrow \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{a} = 0 \Rightarrow 2\mathbf{a} \times \mathbf{b} = 0 \therefore \mathbf{a} \times \mathbf{b}$ is the zero vector.		
	(a) Since the vector perpendicular to both \mathbf{a} (\overrightarrow{OA}) and \mathbf{b} (\overrightarrow{OB}) is also perpendicular to \mathbf{c} \overrightarrow{OC} , ($\mathbf{a} \times \mathbf{b}$). $\mathbf{c} = 0$ implies that the four points are coplanar.		
	Vector normal to plane $ABC = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}$		
	Equation of plane ABC is $\mathbf{r} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} = 0$		
	Cartesian equation is $5x-2y+z=0$		
	Foot of perpendicular of P to plane ABC is given by $ \overrightarrow{FP} = \left(\overrightarrow{OP} \cap \hat{\mathbf{n}}\right) \hat{\mathbf{n}} = \frac{\overrightarrow{OP} \cap \left(\begin{array}{c} 5 \\ -2 \\ 1 \end{array}\right) \left(\begin{array}{c} 5 \\ -2 \\ 1 \end{array}\right)}{\sqrt{30}} = \frac{1}{2} \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} $		
	$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PQ}$ $= \overrightarrow{OP} + 2\overrightarrow{PF}$ $= \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} - \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$		

Or	Solutions 2015 NYJC JC2 Prelim Exam 9740/1 Solutions
Qn 5 (i)	
3(1)	$f(r-2) = \frac{1}{2r-4+1} = \frac{1}{2r-3}$
	$f(r-2)-f(r) = \frac{1}{2r-3} - \frac{1}{2r+1} = \frac{1+3}{(2r-3)(2r+1)} = \frac{4}{(2r-3)(2r+1)}$
	(2r-3)(2r+1) $(2r-3)(2r+1)$
5(ii)	$\frac{1}{1\times 5} + \frac{1}{3\times 7} + \frac{1}{5\times 9} + \dots = \frac{1}{4} \sum_{r=2}^{n+1} (f(r-2) - f(r))$
	$1 \times 5 3 \times 7 5 \times 9 \qquad 4 \sum_{r=2}^{\infty} (1(r-2) - 1(r))$
	$=\frac{1}{4}\left[f\left(0\right)-f\left(2\right)\right]$
	-
	+f(1)-f(3)
	+ f(2) - f(4)
	:
	f(x, 2) f(x, 1)
	+ f(n-3) - f(n-1)
	+ f(n-2) - f(n)
	$+\operatorname{f}\left(n-1\right)-\operatorname{f}\left(n+1\right)$
	$1_{G(2)}$
	$= \frac{1}{4} [f(0) + f(1) - f(n) - f(n+1)]$
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 1 1
	$= \frac{1}{4} \left[1 + \frac{1}{3} - \frac{1}{2n+1} - \frac{1}{2n+3} \right]$
	1 1 $(2n+3+2n+1)$
	$=\frac{1}{3}-\frac{1}{4}\left(\frac{2n+3+2n+1}{(2n+1)(2n+3)}\right)$
	$=\frac{1}{3}-\frac{n+1}{(2n+1)(2n+3)}$
F(***)	
5(iii)	As $n \to \infty$, $\frac{n+1}{(2n+1)(2n+3)} \to 0$, therefore the series converges.
	The sum to infinity = $\frac{1}{3}$
7 () >	
5(iv)	$\frac{3}{5^2} + \frac{3}{7^2} + \frac{3}{9^2} + \dots < \frac{3}{1 \times 5} + \frac{3}{3 \times 7} + \frac{3}{5 \times 9} + \dots = 3\left(\frac{1}{3}\right) = 1$
	$5^2 7^2 9^2 \qquad 1 \times 5 3 \times 7 5 \times 9 \qquad (3)$
6(i)	$p^2 = (1 - p)^2 + 2$
0(1)	$R^2 = \left(h - R\right)^2 + r^2$
	$R^2 = h^2 - 2hR + R^2 + r^2$
	$\therefore r^2 = 2hR - h^2 \text{(shown)}$

Qn	2015 NYJC JC2 Prelim Exam 9740/1 Solutions Solutions
6(ii)	Let <i>V</i> be the volume of the cone.
	$V = \frac{1}{3}\pi r^2 h$
	3
	$\frac{1}{2}$
	$= \frac{1}{3}\pi \left(2Rh - h^2\right)h = \frac{2}{3}\pi Rh^2 - \frac{1}{3}\pi h^3$
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{4}{3}\pi Rh - \pi h^2$
	dh = 3
	dV
	For max. volume, set $\frac{dV}{dh} = 0$.
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{4}{3}\pi Rh - \pi h^2 = 0$
	an = 3
	I(4, p, I)
	$h\left(\frac{4}{3}R - h\right) = 0$
	$h = 0$ (rejected) or $h = \frac{4}{3}R$
	,
	When $h = \frac{4}{3}R$,
	$d^2V = 4 - R = 2 - I$
	$\frac{\mathrm{d}^2 V}{\mathrm{d}h^2} = \frac{4}{3}\pi R - 2\pi h$
	$=\frac{4}{3}\pi R - 2\pi \left(\frac{4}{3}R\right) = -\frac{4}{3}\pi R < 0$
	1
	The volume of the cone is a maximum when $h = \frac{4}{3}R$.
6(iii)	$r^2 = 2hR - h^2$
	$=2\left(\frac{4}{3}R\right)R - \left(\frac{4}{3}R\right)^2 = \frac{8}{9}R^2$
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 9 \end{pmatrix}$
	$\left(\frac{2\sqrt{2}}{2}R\right)$
	$\therefore r = \frac{2\sqrt{2}}{2}R \ (\because r > 0) \ \text{Ratio} \ \frac{r}{r} = \frac{3}{2}$
	$\therefore r = \frac{2\sqrt{2}}{3}R (\because r > 0) \text{Ratio } \frac{r}{h} = \frac{\left(\frac{2\sqrt{2}}{3}R\right)}{\left(\frac{4}{3}R\right)} = \frac{\sqrt{2}}{2}$ $f'(0) = 2, a = \frac{f''(0)}{2!} \text{and} b = \frac{f'''(0)}{3!}$ $(1+2x)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0 (1)$ When $x = 0$, from (1), we have
7(i)	f''(0) = 2 $f'''(0)$ $f'''(0)$
	$1 \cdot (0) = 2, a = \frac{1}{2!} \text{and} b = \frac{1}{3!}$
	$(1+2x)^{d^2y} + 2^{dy} = 0$ (1)
	$\left(1+2x\right)\frac{dx^2}{dx^2}+2\frac{dx}{dx}-0$
	When $x = 0$, from (1), we have

Qn	Solutions 2015 NYJC JC2 Prelim Exam 9/40/1 Solutions	
QII		
	f''(0) + 2f'(0) = 0	
	\Rightarrow f "(0) = -2 f'(0) = -2(2) = -4	
	$\therefore a = -\frac{4}{21} = -2 \text{ (shown)}$	
	2:	
	Differentiate (1) w.r.t. x:	
	$(1+2x)\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + 2\frac{d^2y}{dx^2} = 0$	
	$\frac{(1+2x)}{dx^3} + 2\frac{1}{dx^2} + 2\frac{1}{dx^2} = 0$	
	$(1 2) d^3y d^2y 2$	
	$(1+2x)\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} = 0$ (2)	
	When $x = 0$, from (1), we have	
	f'''(0) + 4f''(0) = 0	
	\Rightarrow f "'(0) = -4f"(0) = -4(-4) = 16	
	$\therefore b = \frac{16}{3!} = \frac{8}{3}$	
7 (ii)	3: 3	
	$\frac{2x - 2x^2 + \frac{8}{3}x^3}{\sqrt[3]{8+x}}$	
	$\sqrt[3]{8+x}$	
	$= \left(2x - 2x^2 + \frac{8}{3}x^3\right) \left(8 + x\right)^{-\frac{1}{3}}$	
	$\left[-\left(2x-2x+\frac{\pi}{3}x\right)(8+x)\right]^{3}$	
	$= \left(2x - 2x^2 + \frac{8}{3}x^3\right)\left(8\right)^{-\frac{1}{3}}\left(1 + \frac{x}{8}\right)^{-\frac{1}{3}}$	
	$= \frac{1}{2} \left(2x - 2x^2 + \frac{8}{3}x^3 \right) \left(1 + \left(-\frac{1}{3} \right) \left(\frac{x}{8} \right) + \frac{\left(-\frac{1}{3} \right) \left(-\frac{4}{3} \right)}{2!} \left(\frac{x}{8} \right)^2 + \dots \right)$	
	$=\frac{1}{2}\left(2x-2x^2+\frac{8}{8}x^3\right)\left(1+\left(-\frac{1}{2}\right)\left(\frac{x}{2}\right)+\frac{3}{2}\left(\frac{x}{2}\right)^2+\right)$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$= \left(x - x^2 + \frac{4}{3}x^3\right) \left(1 - \frac{1}{24}x + \frac{1}{288}x^2 + \dots\right)$	
	$\approx x - \frac{1}{24}x^2 + \frac{1}{288}x^3 - x^2 + \frac{1}{24}x^3 + \frac{4}{3}x^3$	
	$=x-\frac{25}{24}x^2+\frac{397}{288}x^3$	
8	(i) $6x-6=3(2x+2)-12$	
	A = 3, B = -12	

	2015 NYJC JC2 Prelim Exam 9740/1 Solutions	
Qn	Solutions	
	$\int_0^1 \frac{6x - 6}{x^2 + 2x + 5} dx = \int_0^1 \frac{3(2x + 2) - 12}{x^2 + 2x + 5} dx$	
	$=3\int_0^1 \frac{2x+2}{x^2+2x+5} dx -12\int_0^1 \frac{1}{(x+1)^2+2^2} dx$	
	$= \left[3\ln\left x^2 + 2x + 5 \right - 6\tan^{-1}\left(\frac{x+1}{2}\right) \right]_0^1$	
	$= \left[3\ln 8 - 6\tan^{-1} 1\right] - \left[3\ln 5 - 6\tan^{-1} \frac{1}{2}\right]$	
	$= 3 \left(\ln \frac{8}{5} - \frac{\pi}{2} + 2 \tan^{-1} \frac{1}{2} \right)$	
	(ii)	
	$y = \frac{6 x - 6}{\frac{x^2 + 2 x }{x^2 + 2 x } + 5}$	
	Required area $= -\int_{-1}^{1} \frac{6 x - 6}{x^2 + 2 x + 5} dx$	
	$= -2 \int_0^1 \frac{6x - 6}{x^2 + 2x + 5} \mathrm{d} x$	
	$= -6\left(\ln\frac{8}{5} - \frac{\pi}{2} + 2\tan^{-1}\frac{1}{2}\right)$	
9(a)	(i) $x_5(x_{21}) = 4096 \implies ar^4(ar^{20}) = 4096 \implies a^2r^{24} = 4096\cdots(1)$	
	$ar^{12} = \sqrt{4096} = 64$	
	$\sum_{k=1}^{25} \log_4 x_k = \log_4 x_1 + \log_4 x_2 + \log_4 x_3 + \dots + \log_4 x_{25}$	
	$= \log_4(x_1 x_2 x_3 x_{25})$	
	$= \log_4\left(a(ar)(ar^2)(ar^{24})\right)$	
	$= \log_4\left(a^{25}r^{1+2++24}\right)$	
	$= \log_4\left(a^{25}r^{\frac{25(24)}{2}}\right)$	
	$= \log_4\left(a^{25}r^{25\times 12}\right)\cdots(2)$	

		2 Prelim Exam 9740/1 Solutions		
Qn	Solutions	10.)		
	$= \log_4 \left(ar^{12} \right)^{25} = 25 \log_4 \left(ar^{12} \right)$			
	$= 25\log_4(64) = 25\log_4(4^3)$			
	$=25 \times 3 = 75$			
	(ii) $y_n - y_{n-1} = \log_4(x_n) - \log_4(x_{n-1}) =$	$=\log_4\frac{X_n}{Y}$		
	$=\log_4 \frac{ar^{n-1}}{ar^{n-2}} = \log_4 r$ is a constant free from n .			
	Hence, $\{y_n\}$ is an arithmetic seq	uence.		
	(b) Let the amount of oil mined in	the first year be a .		
	The maximum total amount of oil mi	ined		
	$= a + 0.94a + 0.94^2a + 0.94^3a + \dots$			
	$= \frac{a}{1 - 0.94} \square 16.66a < 17a$			
	Let <i>n</i> be the number of year at which	the mine will be in operation.		
	$\frac{a(1-0.94^n)}{1-0.94} > 16a$	$\frac{(1-0.94^n)}{1-0.94} > 16$		
	$\Rightarrow 0.94^n < 0.04$	$n = \frac{(1-0.94^n)}{1-0.94}$		
	$\Rightarrow n > \frac{\lg 0.04}{\lg 0.94} \approx 52.02$			
	Smallest n is 53.	53 16.03915		
	The mine will be closed in the 53th year. Therefore, the mine will be closed in 2049.			
10	(-1,0) O $(1,0)$	y = x $y = x$		

	2015 NYJC JC2 Prelim Exam 9740/1 Solutions
Qn	Solutions
(i)(a)	$y = \frac{1}{f(x)}$ $x = -1$ 0 $x = 1$ x
(i)(b)	y = 1 $x = -1$ $y = 1$ $x = -1$ $y = -1$
(ii)	$x^{2} - y^{2} = 1 \xrightarrow{T_{x} \text{ by } 2} (x - 2)^{2} - y^{2} = 1$ $\xrightarrow{S_{y} \text{ by } \frac{1}{2}} (x - 2)^{2} - \frac{y^{2}}{\left(\frac{1}{2}\right)^{2}} = 1$ $\xrightarrow{T_{y} \text{ by } -6} (x - 2)^{2} - \frac{(y + 6)^{2}}{\left(\frac{1}{2}\right)^{2}} = 1$
11(i)	$w_1 = e^{\frac{\pi i}{4}}, w_2 = e^{\frac{\pi i}{8}}, w_3 = e^{\frac{\pi i}{16}}, w_4 = e^{\frac{\pi i}{32}}$
11(ii)	Note that $\theta_1 = \frac{\pi}{4}$ and $\arg(w_{n+1}) = \frac{1}{2}\arg(w_n)$. Thus $\theta_{n+1} = \frac{1}{2}\theta_n$. Since $\frac{\theta_{n+1}}{\theta_n} = \frac{1}{2}$ for all $n \ge 1$, thus θ_n is a geometric sequence with common ratio $\frac{1}{2}$.
	$\sum_{n=1}^{\infty} \theta_n = \frac{\theta_1}{1 - \frac{1}{2}} = \frac{\pi}{2}$

Or	2015 NYJC JC2 Prelim Exam 9740/1 Solutions Solutions	
Qn 11(iii)	Solutions	
11(III)	By (i), $ w_3 = w_4 = 1$. Thus the origin satisfies the equation $ z - w_3 = z - w_4 $. Thus the locus of	
	points satisfying the equation $ z - w_3 = z - w_4 $ passes through the origin.	
	Let α be the angle between the line and the positive real axis. Since the perpendicular bisector is	
	also the angle bisector,	
	$\alpha = \frac{1}{2} \left(\frac{\pi}{16} + \frac{\pi}{32} \right) = \frac{3\pi}{64}$.	
	2(16 32) 64	
	Thus the exact Cartesian equation is $y = x \tan\left(\frac{3\pi}{64}\right)$.	
	Thus the exact curtesian equation is $y = x \tan \left(\frac{1}{64} \right)$.	
12(a)	$\mathbf{r} \Box (\mathbf{r} - \mathbf{a}) = 0 \Rightarrow \overrightarrow{OP} \Box \overrightarrow{AP} = 0 \text{ ie, } \Box OPA = 90^{\circ}$	
	Therefore, the locus of P is a sphere with OA as diameter.	
12(b)	(-3) (2)	
	Observe that $\begin{pmatrix} -3 \\ 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -5 \\ 6 \end{pmatrix}$ are not parallel since they are not a constant multiplier of one another. By	
	2 and 3 are not paramet since they are not a constant manapher of one another. By	
	equating l_1 and l_2 , $\begin{pmatrix} -3\lambda \\ 7+2\lambda \\ 6+2\lambda \end{pmatrix} = \begin{pmatrix} -3+2\mu \\ 6-5\mu \\ -4+6\mu \end{pmatrix}$, use the first two equations to solve for λ and μ and	
	equating l_1 and l_2 , $ 7+2\lambda = 6-5\mu $, use the first two equations to solve for λ and μ and	
	$(6+2\lambda)$ $(-4+6\mu)$	
	substitute into the third equation to show that there is no unique solutions for λ and μ . Therefore,	
	the two lines are skew.	
	Let $\overrightarrow{OP_1} = \begin{pmatrix} -3\lambda \\ 7+2\lambda \\ 6+2\lambda \end{pmatrix}$ and $\overrightarrow{OP_2} = \begin{pmatrix} -3+2\mu \\ 6-5\mu \\ -4+6\mu \end{pmatrix}$ for particular values of λ and μ .	
	Let $OP_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$(6+2\lambda)$ $(-4+6\mu)$	
	Therefore, $\overline{P_1P_2} = \begin{pmatrix} -3+2\mu+3\lambda\\ -1-5\mu-2\lambda\\ -10+6\mu-2\lambda \end{pmatrix}$.	
	Therefore, $P_1P_2 = \begin{vmatrix} -1-5\mu-2\lambda \end{vmatrix}$.	
	$\left(-10+6\mu-2\lambda\right)$	
	Vector normal to l_1 and l_2 is $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$.	
	(1)	
	Since $\overrightarrow{P_1P_2}$ is perpendicular to both l_1 and l_2 , we have $k \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 + 2\mu + 3\lambda \\ -1 - 5\mu - 2\lambda \\ -10 + 6\mu - 2\lambda \end{pmatrix}$	
	Since P_1P_2 is perpendicular to both l_1 and l_2 , we have $k \mid 2 \mid = \mid -1 - 5\mu - 2\lambda \mid$	
	$(1) (-10+6\mu-2\lambda)$	

Qn	Solutions
	Solving for the SLE, $\begin{pmatrix} 2k-2\mu-3\lambda\\ 2k+5\mu+2\lambda\\ k-6\mu+2\lambda \end{pmatrix} = \begin{pmatrix} -3\\ -1\\ -10 \end{pmatrix}$, we have $k=-2$, $\lambda=-1$ and $\mu=1$.
	Therefore, $\overrightarrow{OP_1} = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$ and $\overrightarrow{OP_2} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$.
	$P_1 P_2 = \begin{vmatrix} 2 \\ 2 \\ 1 \end{vmatrix} = 2 \times \sqrt{2^2 + 2^2 + 1^2} = 6 \text{ (AG)}$