Leitner - Basic Category Theory - Problem solutions

Adam Barber

August 22, 2021

0.10

Let S be a set. The indiscrete topological space I(S) is the space whose set of points is S and whose only open subsets are \emptyset and S. To find a universal property satisfied by the space I(S) proceed as follows. With this topology any map from a topological space to S is continuous.

Parroting the wording of the question, let us rephrase this in universal parlance. Define a function $i: S \to I(S)$, by $i(s) = s, s \in S$. Then I(S) has the following property.

For all topological spaces X and all functions $f: X \to S$ there exists a unique continuous map $\bar{f}: X \to I(S)$. What it says is all maps into an indiscrete space are continuous. It also says that given S, the universal property determines I(S) and i, up to isomorphism.

0.11

The universal property that is satisfied by the pair $(ker(\theta), \iota)$ is depicted in the diagram below.

$$\ker(\theta) \xrightarrow{\iota} G \xrightarrow{\epsilon} H$$

$$\exists ! \widehat{f} \mid \qquad \qquad \downarrow f$$

$$F$$

The statement of the universal property is as follows. For any $f: F \to G$ such that $\theta \circ f = \epsilon \circ f$, there is a unique $\bar{f}: F \to ker(\theta)$ such that the diagram above commutes. That is $f = \iota \circ \bar{f}$.

0.13

(a) Choose $\phi(\sum_{i=1}^n a_i x^i) = \sum_{i=1}^n a_i r^i$. Then ϕ with $\phi(x) = r$ is a homomorphism that satisfies additive and multiplicative properties. To prove uniqueness assume there is another homomorphism ψ , with $\psi(x) = r$. Then $\psi(\sum_{i=1}^n a_i x^i) = \sum_{i=1} a_i \psi(x) = \sum_{i=1} a_i r^i$ by properties of a homomorphism. So $\psi = \phi$.

(b) $\iota \colon \mathbb{Z}[x] \to A$ maps $\sum_{i=1}^n p_i x^i$ to $\sum_{i=1}^n p_i a^i$, using $\iota(x) = a$, the multiplicative property of a homomorphism to get $\iota(x^i) = \iota(x)^i$, and the additive property to get $\iota(p_i)\iota(x)^i = p_i\iota(x)^i$ remembering p_i is in \mathbb{Z} .

Going in the direction $A \to \mathbb{Z}[x]$ we know as provided in (b) that, taking $R = \mathbb{Z}[x]$, and $\phi = \iota'$, there exists a unique ring homomorphism such that $\iota'(a) = x$. So ι' maps $\sum_{i=1}^n p_i a^i$ to $\sum_{i=1}^n p_i x^i$ and $\iota' \circ \iota = 1_{\mathbb{Z}[x]}$. Also using definitions of ι and ι' easily yields $\iota \circ \iota' = 1_A$.

0.14

(a) For the triangles below to commute, we need, as stated in the question $p_1 \circ f = f_1$ and $p_2 \circ f = f_2$.

$$V \xrightarrow{f} P \\ \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow X$$

$$V \xrightarrow{f} P \\ \downarrow \exists p_2 \\ Y$$

Choosing $P = X \times Y$, p_1 and p_2 as below makes the triangles commute.

$$p_1: X \times Y \to X$$

 $p_2: X \times Y \to Y$

(b) Proving uniqueness involves taking two arbitrary cones with the property stated in (a). Taking (P, p_1, p_2) and (P', p'_1, p'_2) we know from (a) that for all cones (V, f_1, f_2) there exists a unique linear map $f \colon V \to P'$ such that $p'_1 \circ f = f_1$, $p'_2 \circ f = f_2$. In this statement choose V = P', then referring to the triangles in (a), observe there exists a $f \colon P \to P'$ such that $p'_1 \circ f = p_1$, $p'_2 \circ f = p_2$.

Comment The choice of P and p notation hinted very heavily that this is a projection of a product.

(c) We need to define the cocone (Q, q_1, q_2) with the property, for all cocones (V, f_1, f_2) there exists a unique linear map $f: Q \to V$ such that $f \circ q_1 = f_1$ and

2

$$f \circ q_2 = f_2$$
. Choose $Q = X \times Y$, $q_1 \colon X \to X \oplus Y$, $q_2 \colon Y \to X \oplus Y$.

Comment This is the dual of the product in (b), the coproduct. Set equivalent is the disjoint union.

1.2.25

(a) Let $F: \mathcal{A} \times \mathcal{B} \to \mathcal{C}$ be a functor. We are given that for each A in \mathcal{A} there is a morphism $F^A: \mathcal{B} \to \mathcal{C}$ defined on objects B in \mathcal{B} by $F^A = F(A, B)$ and on maps g in \mathcal{B} by $F_A(g) = F(1_A, g)$. We need to prove F^A is a functor.

First, we need to show $F^A(g \circ \bar{g}) = F^A(g) \circ F^A(\bar{g})$.

$$F^{A}(g \circ \bar{g}) = F(1_{A}, g \circ \bar{g})$$

$$= F(1_{A}, g) \circ F(1_{A}, \bar{g})$$

$$= F^{A}(g) \circ F^{A}(\bar{g})$$

The second step above uses our formula from composition of a product category derived $\to 1.1.14$.

We also need

$$F^A(1_B) = F(1_A, 1_B) = 1_C$$

The identity maps because F is a functor $\mathcal{A} \times \mathcal{B} \to \mathcal{C}$. So F^A is a functor. Apply analogous reasoning for F_B .

(b) We are given $F: \mathcal{A} \times \mathcal{B} \to \mathcal{C}$ is a functor. The question asks us to show for all $A \in \mathcal{A}$ and all $B \in \mathcal{B}$

$$F^{A}(B) = F_{B}(A) \tag{1}$$

and if $f: A \to A'$ in \mathcal{A} and $g: B \to B'$ in \mathcal{B} then

$$F^{A'}(g) \circ F_B(f) = F_{B'}(f) \circ F^A(g).$$

In the following answers recall that:

$$F^{A}(g) = F(1_A, g)$$
$$F_{B}(f) = F(1_B, f)$$

Equation (1) is verified by basic checking. Consider the second equation above along with the diagram below.

$$(A,B) \xrightarrow{F_B(f)} (A',B)$$

$$\downarrow^{F^A(g)} \qquad \downarrow^{F^{A'}(g)}$$

$$(A,B') \xrightarrow{F_{B'}(f)} (A',B')$$

We know from Exercise 1.1.14 that in the product category represented by $\mathcal{A} \times \mathcal{B}$, maps compose in the following manner

$$(f,g)\circ(f',g')=(ff',gg')$$

We also know from the axioms of our functor F that different strings of maps under F from F(A, B) to F(A', B') are equal. So the above square commutes and we have the required equality

$$F^{A'}(g) \circ F_B(f) = F_{B'}(f) \circ F^A(g)$$

- (c) We need to prove there is a unique functor F, satisfying the conditions in (a.). Take families of functors F^A and F_B as in (b), which satisfy the below
 - If $f: A \to A'$ in $A, g: B \to B'$ in \mathcal{B} , then $F^{A'}(g) \circ F_B(f) = F_{B'}(f) \circ F^A(g)$
 - $F^A(B) = F_B(A)$ if $A \in \mathcal{A}, B \in \mathcal{B}$,

To begin, write

$$F = F^{A}(g) \circ F_{B}(f)$$
 for morphisms,
 $F = F^{A}(B)$ for objects.
 $= F_{B}(A)$
 $= F(A, B)$

We need to prove that F is a functor. We are given in this question that F_A ,

¹See Remarks 1.2.2 of the Leitner text

 $A \in \mathcal{A}$ and F_B , $B \in \mathcal{B}$ are functors.

$$\begin{split} F(f\circ\bar{f},g\circ\bar{g}) &= F_A(g\circ\bar{g})\circ F_B(f\circ\bar{f})\\ &= F_A(g)\circ F_A(\bar{g})\circ F_B(f)\circ F_B(\bar{f})\\ &= F_A(g)\circ F_{B'}(f)\circ F_A(\bar{g})\circ F_B(f) \text{ using result from (b.)}\\ &= F(f,g)\circ F(\bar{f},\bar{g}) \end{split}$$

Also,

$$F(1_A, 1_B) = F_A(1_A) \circ F_B(1_B)$$

= $1_{F_A(A)} \circ 1_{F_B(B)}$

So functions compose under the functor F, the identity maps, and all objects are mapped. So we have established F exists and is a functor. We still need to determine uniqueness. Given the property in (a)

$$F^{A}(B) = F_{B}(A)$$
$$= F(A, B)$$

Fixing an $A \in \mathcal{A}, B \in \mathcal{B}$ our functor maps the object (A, B) to F(A, B). So for each object mapping there is a unique F^A and F_B that interlock to produce F(A, B). Put another way, fix an object in $\mathcal{C}, F(A, B)$. Then out of our two families of functors $(F^A)_{A \in \mathcal{A}}, (F_B)_{B \in \mathcal{B}})$ there is only one choice in each family to yield the desired object F(A, B).