PRODUCT DEMAND PREDICTION WITH MACHINE LEARNING

FEATURE ENGINEERING

1.Data Collection:

•Gather historical data on product demand. The dataset should contain information such as date, product attributes, sales quantity, price, promotions, and any other relevant data.

2. Data Preprocessing:

•Handle missing values, outliers, and format the data appropriately. Ensure that your data is in a structured format that can be used for analysis.

3. Time-Series Features:

•Extract relevant date-time features, such as day of the week, month, quarter, and year. Also, create lag features to capture historical demand patterns (e.g., demand from the previous day, week, or month).

Example: Creating lag features

data['lag_1'] = data['sales_quantity'].shift(1)

data['lag_7'] = data['sales_quantity'].shift(7)

4. Rolling Statistics:

• Calculate rolling statistics like moving averages to capture trends and seasonality.

Example: 7-day rolling average

data['7-day_avg'] =
data['sales_quantity'].rolling(window=7).mean()

5. Price and Promotion Features:

- Include information on price changes and promotion periods as binary flags or numeric variables.
- # Example: Creating a binary flag for promotions

 $data['promotion_flag'] = (data['promotion'] > 0).astype(int)$

6. Categorical Features:

•Encode categorical variables like product categories, store locations, or brands using techniques like one-hot encoding or label encoding.

7. External Data:

•Incorporate external data that might influence demand, such as economic indicators, weather data, or social media mentions.

8. Feature Scaling:

•Scale numerical features to have similar ranges using methods like Min-Max scaling or Z-score normalization

9. Data Splitting:

•Split the data into training, validation, and test sets while maintaining the time order. The training set should cover earlier time periods, and the test set should cover the most recent periods.

10. Model Selection: - Choose an appropriate machine learning model for demand prediction. Time series models (e.g., ARIMA, Prophet) or regression models (e.g., Linear Regression, Random Forest, XGBoost) are common choices.

11. Model Training: - Train the selected model using the training dataset. Be sure to provide the features you've engineered.

12. Model Evaluation: -

• Evaluate the model's performance on the validation or test set using relevant metrics, such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), or R-squared.

13. Hyperparameter Tuning: -

• Fine-tune the model's hyperparameters to optimize its performance.

14. Predictions and Deployment: -

 Use the trained model to make demand predictions for future time periods. Deploy the model in your business operations for real-time or batch forecasting.

15. Monitoring and Updating: -

• Continuously monitor the model's performance and update it as new data becomes available.

Coding:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

 $data = pd.read_csv('productdemand.csv')$

```
# Create a sample date column for demonstration
data['date'] = pd.date\_range(start='2023-01-01',
periods=len(data), freq='D'
# Extract and assign date features
data['year'] = data['date'].dt.year
data['month'] = data['date'].dt.month
data['day_of_week'] = data['date'].dt.dayofweek
data['day\_of\_month'] = data['date'].dt.day
# Print the updated data
print(data)
```

_										
	ID	Store ID	Total Price	Base Price	Units	Sold	date	year	month	Λ.
0	1	8091	99.0375	111.8625		20	2023-01-01	2023	1	
1	2	8091	99.0375	99.0375		28	2023-01-02	2023	1	
2	3	8091	133.9500	133.9500		19	2023-01-03	2023	1	
3	4	8091	133.9500	133.9500		44	2023-01-04	2023	1	
4	5	8091	141.0750	141.0750		52	2023-01-05	2023	1	
	day,	_of_week	day_of_month	Price Diffe	rence					
0		6	1	1	2.825					
1		0	2		0.000					
2		1	3		0.000					
3		2	4		0.000					
4		3	5		0.000					

Calculate the price difference
Odata['Price Difference'] = data['Base Price'] - data['Total Price']
Check the updated DataFrame

print(data)

	ID	Store ID	Total Price	Base Price	Units So	ld	date	year	month	1
0	1	8091	99.0375	111.8625		20	2023-01-01	2023	1	
1	2	8091	99.0375	99.0375		28	2023-01-02	2023	1	
2	3	8091	133.9500	133.9500		19	2023-01-03	2023	1	
3	4	8091	133.9500	133.9500		44	2023-01-04	2023	1	
4	5	8091	141.0750	141.0750		52	2023-01-05	2023	1	
	day	_of_week	day_of_month	Price Diffe	rence					
0		6	1	1	2.825					
1		0	2		0.000					
2		1	3		0.000					
3		2	4		0.000					
4		3	5		0.000					

Calculate store-level statistics

```
store_stats = data.groupby('Store ID').agg({'Total Price': ['mean',
'median', 'std'], 'Units Sold': 'sum'})
```

```
store_stats.columns = ['store_mean_price', 'store_median_price',
'store_price_std', 'store_total_units_sold']
# Merge store-level statistics back into the original dataset
```

data = data.merge(store_stats, on='Store ID', how='left')

Print the dataset with store-level statistics

print(data)

```
ID Store ID Total Price Base Price Units Sold store_mean_price_x \
   1
          8091
                    99.0375
                               111.8625
                                                 20
                                                                121.41
    2
          8091
                    99.0375
                                99.0375
                                                 28
                                                                121.41
2
   3
          8091
                   133.9500
                               133.9500
                                                 19
                                                                121.41
    4
          8091
                   133.9500
                               133.9500
                                                 44
                                                                121.41
    5
          8091
                   141.0750
                               141.0750
                                                 52
                                                                121.41
   store_median_price_x store_price_std_x store_total_units_sold x \
                                20.629305
0
                133.95
                                                               163
                133.95
                                                               163
                                20.629305
1
                133.95
                                20.629305
                                                               163
                133.95
                                20.629305
                                                               163
                133.95
                                20.629305
                                                               163
   store_mean_price_y store_median_price_y store_price_std_y \
0
              121.41
                                    133.95
                                                    20.629305
              121.41
                                    133.95
                                                    20.629305
              121.41
                                    133.95
                                                    20.629305
              121.41
                                    133.95
                                                    20.629305
              121.41
                                    133.95
                                                    20.629305
   store_total_units_sold_y
0
                       163
1
                       163
2
                       163
                       163
                       163
```

MODEL TRAINING:

• Train the selected model on the training dataset. from sklearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestRegressor

from xgboost import XGBRegressor

from statsmodels.tsa.arima.model import ARIMA

from fbprophet import Prophet

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

Example with a Random Forest model

 $model = RandomForestRegressor(n_estimators=100, random_state=0)$

model.fit(X_train, y_train)

```
#model training
```

Split the data into features and target

 $X = df[["Store\ ID",\ "Total\ Price",\ "Base\ Price"]]$

y = df["Units Sold"]

Split the data into training and testing sets

 $X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, y)$

```
# Create and train a linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Print the model coefficients
print("Model Coefficients:")
print("Intercept:", model.intercept_)
print("Coefficients:", model.coef_)
# Print the testing set
print("\nTesting Set:")
print(X_test)
```

Model Coefficients:

Intercept: -119723.07317719368

Coefficients: [14.80526018 -0.42193316 0.31835396]

Testing Set:

	Store ID	Total Price	Base Price
0	8091	99.0375	111.8625
5	8091	227.2875	227.2875
11	8095	98.3250	98.3250
1	8091	99.0375	99.0375

Visualize the scatter plot plt.scatter(y_test, y_pred) plt.xlabel("Actual Units Sold") plt.ylabel("Predicted Units Sold") plt.title("Scatter Plot of Actual vs. Predicted Units Sold") plt.show()

MODEL EVALUATION:

```
df = pd.DataFrame(data)
```

Split the data into features (X) and the target variable (y)

 $X = df[["Store\ ID",\ "Total\ Price",\ "Base\ Price"]]$

y = df["Units Sold"]

Split the data into a training set and a testing set

 $X_{train}, X_{test}, y_{train}, y_{test} = train_{test} split(X, y_{test})$

test_size=0.2, random_state=42)

Initialize and train a linear regression model

model = LinearRegression()

model.fit(X_train, y_train)

```
# Make predictions on the test set
```

 $y_pred = model.predict(X_test)$

Evaluate the model

 $mse = mean_squared_error(y_test, y_pred)$

 $r2 = r2_score(y_test, y_pred)$

print("Mean Squared Error:", mse)

print("R-squared:", r2)

Mean Squared Error: 2170.1240553918774

R-squared: -28.031759938352874

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read\_csv('productdemand.csv')
# Print the dataset
print("Dataset:")
print(data)
# Create a scatter plot of Total Price vs. Units Sold
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x="Total Price", y="Units Sold",hue="Store ID")
plt.title("Scatter Plot of Total Price vs. Units Sold")
plt.xlabel("Total Price")
plt.ylabel("Units Sold")
                                                                                                                                 24
plt.show()
```

 Dataset:							
	ID	Store ID	Total Price	Base Price	Units Sold		
0	1	8091	99.0375	111.8625	20		
1	2	8091	99.0375	99.0375	28		
2	3	8091	133.9500	133.9500	19		
3	4	8091	133.9500	133.9500	44		
4	5	8091	141.0750	141.0750	52		
150145	212638	9984	235.8375	235.8375	38		
150146	212639	9984	235.8375	235.8375	30		
150147	212642	9984	357.6750	483.7875	31		
150148	212643	9984	141.7875	191.6625	12		
150149	212644	9984	234.4125	234.4125	15		
[150150 rows x 5 columns]							

