Contributeurs

Rappels

Rappel : Série de Taylor

La série de Taylor de $(1-t)^{-r}$ est $\sum_{i=0}^{\infty} {r+i-1 \choose i} t^i$.

Rappel: Théorème du binôme

Pour $n \in \mathbb{N}$, $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.

Variables aléatoires

Notions aléatoires

Notion d'expérience aléatoire

Cadre dans lequel on observe différentes actions dues au hasard.

Notation

- ω Le *résultat* d'une expérience aléatoire, alias *épreuve* ou *issue*.
- Ω L'ensemble des résultats possibles.
- \rightarrow Il s'ensuit que $\omega \in \Omega$.
- > Par exemple, pour le lancer d'un dé où l'on désire savoir le résultat $\Omega = \{\text{pile}, \text{face}\}.$
- \rightarrow On dénote par $\mathcal{P}(\Omega)$ l'ensemble de toutes les parties de Ω .

Notion d'événement aléatoire

Événement lié à une certain expérience aléatoire.

Un événement est tout **sous-ensemble** de Ω . Par exemple, pour l'expérience aléatoire de jeter un dé on a que l'ensemble des résultats possibles $\Omega = \{1,2,3,4,5,6\}$. L'événement A « obtenir un nombre pair » s'écrit $A = \{2,4,6\}$. De ceci on déduit qu'à toute propriété définie sur Ω , on associe un sous-ensemble de Ω composé de tous les ω qui vérifient la propriété.

Algèbre de Boole des événements

Algèbre de Boole (« boolean algebra ») des événements

La classe \mathcal{E} des événements est l'**algèbre de Boole de parties de** Ω , si elle contient Ω et est stable par intersection, réunion et complémentation.

Note On dit habituellement algèbre plutôt qu'algèbre de Boole.

Opérations logiques

Les opérations logiques que l'on peut effectuer sur les événements sont :

- 1. Soit les événements $A \subset \Omega$ et $B \subset \Omega$, alors :
 - $A \cup B$ est un événement réalisé ssi **au moins un** des deux est réalisé.
 - > $A \cap B$ est un événement réalisé ssi **les deux** sont réalisés simultanément.
- 2. \emptyset est un événement qui ne peut être réalisé appelé l'événement impossible. À chaque expérience, Ω est toujours réalisé et appelé l'événement certain.
- 3. $A \subset \Omega$ est un événement.
 - > Le complément A^c ou \overline{A} est appelé événement contraire de A et se réalise si $\omega \notin A$.
- 4. La **différence de deux événements** A et B est $A \setminus B = A \cap B^c$ se réalise si A est réalisé mais pas B.
- 5. La **différence symétrique** de A et B est $A\Delta B = (A \setminus B) \cup (B \setminus A)$ se réalise si l'un des deux événements est réalisé mais pas l'autre.
- 6. Si, $\forall n \in \mathbb{N}$, l'événement A_n représente « **gagner** n **matchs** », alors
 - $\supset \bigcup_{n=1}^{\infty} A_n$ représente « gagner au moins un match ».
 - $\rightarrow \bigcap_{n=1}^{\infty} A_n^c$ représente « ne pas gagner de matchs ».
- 7. Deux événements sont **incompatibles** si $A_1 \cap A_2 = \emptyset$
 - > On peut aussi dire que les parties de Ω représentées par A_1 et A_2 sont disjointes.
 - > Si deux événements sont incompatibles, on a une somme au lieu d'une réunion avec $A_1 \cup A_2 = A_1 + A_2$ si $A_1 \cap A_2 = \emptyset$.
- 8. Si les événements de la suite $(A_i)_{i\in\mathbb{I}}$ forment une **partition** de Ω , on dit que ses événements $(A_i)_{i\in\mathbb{I}}$ forment un **système exhaustif** de Ω .
- 9. La suite d'événements $(A_n)_{n \in \mathbb{N}^*}$ est :

croissante ssi $A_1 \subset A_2 \subset \dots$

décroissante ssi $A_1 \supset A_2 \supset \dots$

- 10. Si la suite $(A_n)_{n \in \mathbb{N}^*}$ est une suite d'événements d'un ensemble Ω, on représente que :
 - une infinité de A_n est réalisé en écrivant que, quel que soit le rang $k \in \mathbb{N}^*$, il existe des événements de rang supérieur (à k) qui sont réalisés :

$$\bigcap_{k=1}^{\infty} \cup_{n=k}^{\infty} A_n .$$

un nombre fini de A_n est réalisé en écrivant qu'il existe un rang tel qu'à partir de ce rang, tous les événements réalisés sont les contraires des événements A_n : $\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n^c$.

■ Limites de suite d'événements

Soit $(A_n)_{n\in\mathbb{N}^+}$ une suite d'événements de Ω . On défini les limites inf et sup d'événements par :

$$A_* = \lim\inf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

$$A^* = \limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$$

De plus, si les ensembles A_* et A^* coïncident, alors on écrit $A=A_*=A^*=\lim_{n\to\infty}A_n$.

Propositions

Soit $(A_n)_{n\in\mathbb{N}^+}$ une suite d'événements de Ω .

i) Si
$$A_1 \subset A_2 \subset \dots$$
 alors $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$.

ii) Si
$$A_1 \supset A_2 \supset \dots$$
 alors $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$

Espaces probabilisables

\square Power set \mathcal{P}

Le « power set » \mathcal{P} est l'ensemble de tous les sous-ensembles d'un ensemble Ω ; il est plus facile de donner un exemple que d'expliquer en mots.

Exemple de « power set »

Soit l'ensemble $\Omega = \{a, b, c\}$, alors $\{c\}$ $\{a\}, \{b\}, \{c\}$ $\{a, b\}, \{a, c\}, \{b, c\}$ $\{a, b, c\}$

Pour un ensemble de n éléments, il y aura 2^n sous-ensembles possibles. Ceci découle du binaire! Voir cette page pour plus d'information.

Note En anglais, on appelle la tribu \mathcal{A} composée des « *events* » le « *event space* » et l'ensemble Ω composé des « *outcomes* » le « *sample space* ».

Tribu d'événements

La tribu (ou $\sigma\text{-alg\`ebre})$ sur un ensemble Ω est un ensemble $\mathcal A$ de parties de Ω tel que :

- i) $\Omega \in \mathcal{A}$.
- ii) Si $A \in \mathcal{A}$, alors $A^c \in \mathcal{A}$.
- iii) $\forall (A_n)_{n\in\mathbb{N}^*}$ une suite d'éléments de \mathcal{A} , alors l'événement $\bigcup_{n=1}^{\infty}A_n\in\mathcal{A}$.

Espace probabilisable (ou mesurable)

Le couple (Ω,\mathcal{A}) composé d'un ensemble Ω et une tribu \mathcal{A} sur $\Omega.$

Les éléments de Ω sont appelés *éventualités* (« *outcomes* ») et les éléments de \mathcal{A} *événements* (« *events* »).

> En anglais, on dit « measurable space ».

Visualisation

Voici une visualisation de ce que représente l'espace mesurable :

On peut donc visualiser les 3 conditions dans la définition de la tribu. L'ensemble Ω est contenu, tous les événements possibles (alias toutes les combinaisons de $\{a,b,c\}$ possibles) sont contenus et tous leurs compléments sont contenus. Finalement, toute union d'événements sera contenue dans la tribu!

Propriétés de la tribu

Soit A une tribu sur Ω . Alors :

- a) $\emptyset \in \mathcal{A}$.
- b) $\forall A_1, \dots, A_k \in \mathcal{A}$, alors $\bigcup_{i=1}^k A_i \in \mathcal{A}$ et $\bigcap_{i=1}^k A_i \in \mathcal{A}$.

- c) $\forall (A_n)_{n\in\mathbb{N}^*}$ suite d'événements de \mathcal{A} , alors $\bigcap_{n\in\mathbb{N}^*} A_n \in \mathcal{A}$.
- d) $\forall (A_n)_{n \in \mathbb{N}^*}$ suite d'événements de \mathcal{A} , alors $\liminf A_n \in \mathcal{A}$
- e) $\forall (A_n)_{n \in \mathbb{N}^*}$ suite d'événements de \mathcal{A} , alors $\limsup A_n \in \mathcal{A}$

Note Voir la page 19 des notes de cours du chapitre 1 pour les preuves.

Variables aléatoires

Variable aléatoire

On définit une **variable aléatoire** comme une *fonction mesurable*. Pour ce faire, on défini 2 espaces mesurables :

- 1. On pose que le premier est (Ω, A) .
- 2. On pose que le deuxième est tout ensemble E et sa tribu $\mathcal{E}:(E,\mathcal{E})$.
 - > Habituellement, on pose que $E = \mathbb{R}$ et que $\mathcal{E} = \mathcal{B}(\mathbb{R})$.

Une fonction mesurable est une fonction qui associe les éléments de Ω aux éléments de E avec quelques propriétés additionnelles. On note qu'en associant les éléments de E, la fonction associe les *éventualités* et non les *événements* aux éléments de E.

On désire avoir une correspondance entre les événements réalisés de \mathcal{A} et l'ensemble transformé d'événements \mathcal{E} . Pour ce faire, on impose que la variable aléatoire (alias, la fonction mesurable) $X:\Omega\to E$ est définie telle que l'image réciproque $X^{-1}(B)$ sur Ω de tout ensemble $B\in\mathcal{E}$ sur E:

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}, \forall B \in \mathcal{E} .$$

Donc, une **variable aléatoire réelle** est toute application à valeurs réelles $X:\Omega\to\mathbb{R}$ telle que, \forall intervalle B de \mathbb{R} , $\{X\in B\}=X^{-1}(B)$ soit un événement de la tribu \mathcal{A} .

Visualisation

On peut visualiser que l'événement B, où $B \in \mathcal{E}$, a un réciproque $X^{-1}(B)$ où $X^{-1}(B) \in \mathcal{A}$.

En posant $E = \mathbb{R}$ et $\mathcal{E} = \mathcal{B}(\mathbb{R})$, on obtient la *tribu borélienne*.

■ Tribu borélienne

La tribu borélienne $\mathcal{B}_{\mathbb{R}}$ est la plus petite tribu de \mathbb{R} qui contient tous ses intervalles. Les éléments de $\mathcal{B}_{\mathbb{R}}$ sont appelés les *boréliens* de \mathbb{R} .

Pour une v.a. réelle X, $\forall B \in \mathcal{B}_{\mathbb{R}}$ on a $X^{-1}(B) \in \mathcal{A}$.

Bref, $(\Omega, \mathcal{A}) \stackrel{X}{\to} (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. On dit que la tribu $X^{-1}(\mathcal{B}_{\mathbb{R}})$ sur Ω est la *tribu des événements engendrés par* X.

Probabilités

Mesure

Pour un espace mesurable (Ω, \mathcal{A}) , une fonction $\mathbb{P} : \mathcal{A} \to [0, \infty]$ s'appelle une **mesure** sur (Ω, \mathcal{A}) si :

- 1. Elle attribue une masse de zéro à l'ensemble vide : $\mathbb{P}(\emptyset) = 0$
- 2. Elle est « countably additive » : $P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i}), \forall A_{i} \in \mathcal{A}$.

■ Mesure de probabilité

Pour un espace probabilisable (Ω, \mathcal{A}) , on appelle *probabilité* sur (Ω, \mathcal{A}) toute application $P : \mathcal{A} \to [0,1]$ telle que :

- i) $P(\Omega) = 1$.
- ii) $\forall (A_n)_{n\in\mathbb{N}^*}$ d'événements deux à deux disjoints, $P\left(\bigcup_{n\in\mathbb{N}^*}A_n\right)=\sum_{n\in\mathbb{N}^*}P(A_n).$

La mesure de probabilité est donc une mesure qui est **restreint** sur [0,1].

Espace probabilisé

Le triplet (Ω, \mathcal{A}, P) s'appelle un **espace probabilisé** et est composé de :

- Ω Le « sample space ».
- ${\cal A}\ \ Le$ « event space ».
- P La mesure de probabilité.
- > En anglais, on dit « probability space ».

Visualisation

Voici une visualisation de ce que représente l'application ${\cal P}$:

On peut donc visualiser les 2 conditions dans la définition de l'espace probabilisé. La probabilité d'observer l'ensemble Ω est de 1 car il contient tous les événements possibles. La probabilité d'un événement sera contenu entre 0 et 1 ce qui veut dire que la probabilité de quelques événements *disjoints* correspond à la somme des probabilités.

On complète la notion précédente sur l'espace borélien avec $(\Omega, \mathcal{A}, P) \xrightarrow{X} (\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P_X)$ où P_X est appelée loi de probabilité de X. On définit $P_X(B) = P(X \in B) = P(X^{-1}(B))$.

Propriétés des probabilités

Soit (Ω, \mathcal{A}, P) un espace probabilisé. Alors :

- a) $P(\emptyset) = 0$.
- b) Si A et B sont des événements disjoints, alors $P(A \cup B) = P(A) + P(B)$
- c) Si A et B sont des événements quelconques, alors $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- d) Si A et B sont des événements tels que A \subset B, alors $P(B \setminus A) = P(B) P(A)$ et $P(A) \leq P(B)$.
- e) $\forall A \in \mathcal{A}, P(A^c) = 1 P(A)$.

- f) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements quelconques, alors $P\left(\bigcup_{n\in\mathbb{N}^*}A_n\right)\leq\sum_{n\in\mathbb{N}^*}P(A_n)$.
- g) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements tels que $A_n\downarrow\emptyset$, alors $P(A_n)\downarrow 0$.
- h) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements tels que $A_n\downarrow A$, alors $P(A_n)\downarrow P(A)$.
- i) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements tels que $A_n\uparrow A$, alors $P(A_n)\uparrow P(A)$.

Lemmes de Borel-Cantelli

Lemme de Borel-Cantelli (1ère partie)

Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements telle que : $\sum_{n=1}^\infty P(A_n) < \infty$, alors

$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, alors

$$P\left(\limsup_{n\to\infty}A_n\right)=0.$$

Probabilité conditionnelle

☐ Formule de Bayes (2 événements)

Soit un espace probabilisé (Ω, \mathcal{A}, P) , A et B deux événements de \mathcal{A} tels que $\Pr(A) \neq 0$, $\Pr(A^C) \neq 0$ et $\Pr(B) \neq 0$. Alors :

$$Pr(A \setminus B) = \frac{Pr(B|A) Pr(A)}{Pr(B|A) Pr(A) + Pr(B|A^C) Pr(A^C)}$$

☐ Théorème des probabilités totales

Soit un espace probabilisé (Ω, \mathcal{A}, P) et $(A_i)_{i \in \mathbb{N}}$ une partition de Ω telle que $\forall i, \Pr(A_i) \neq 0. \text{ Alors, } \forall B \in \mathcal{A}, \Pr(B) = \sum_{i \in \mathbb{N}} \Pr(B|A_i) \Pr(A_i).$

☐ Formule de Bayes (*n événements*)

Soit un espace probabilisé (Ω, \mathcal{A}, P) et $(A_i)_{i=1,2,\dots,n}$ une partition **finie** de Ω telle que $\forall i$, $\Pr(A_i) \neq 0$. Alors, $\forall B \in \mathcal{A}$ tel que $\Pr(B) \neq 0$, $\Pr(A_i|B) = \frac{\Pr(B|A_i) \Pr(A_i)}{\sum_{j=1}^n \Pr(B|A_j) \Pr(A_j)}$

$$Pr(A_i|B) = \frac{Pr(B|A_i) Pr(A_i)}{\sum_{j=1}^{n} Pr(B|A_j) Pr(A_j)}$$

Indépendance

Indépendance (2 événements)

Soit un espace probabilisé (Ω, \mathcal{A}, P) , A et B deux événements de \mathcal{A} . Alors A et B sont indépendants pour la probabilité P si et seulement si

$$Pr(A \cap B) = Pr(A) Pr(B)$$

Il est important de bien saisir que le notion d'indépendance n'est pas intrinsèque aux événements, mais dépend de la probabilité P choisie sur (Ω, \mathcal{A}) . Deux événements peuvent êtres indépendants pour une probabilité, mais être dépendants pour une autre.

- ✓ Propriétés (2 événements)
- 1 A^C et B sont indépendants.
- 2 A et B^C sont indépendants.
- 3 A^C et B^C sont indépendants.

Indépendance (n événements)

Soient (A_1, \ldots, A_n) un *n*-uple d'événements. On dit qu'ils sont **indépen**dants, ou mutuellement indépendants, si et seulement si $\forall k = 1, ..., n$, si \forall sous-ensemble $(A_{i_1}, \ldots, A_{i_k})$ de k événements choisis parmi les (A_1,\ldots,A_n) , on a $\Pr(A_{i_1}\cap\cdots\cap A_{i_k})=\Pr(A_{i_1})\times\cdots\times\Pr(A_{i_k})$

Indépendance (suite d'événements)

Soit un espace probabilisé (Ω, A, P) , et une suite d'événements indépen-

dants
$$(A_n)_{n\in\mathbb{N}^*}$$
 de \mathcal{A} . Alors on a $\Pr\left(\bigcap_{n\in\mathbb{N}^*}A_n\right)=\lim_{k\to\infty}\prod_{n=1}^k\Pr(A_n)$.

Lemme de Borel-Cantelli (2ème partie)

Soit (Ω, \mathcal{A}, P) un espace probabilisé, et une suite d'événements $(A_n)_{n \in \mathbb{N}^*}$ indépendants de \mathcal{A} telle que $\sum_{n=1}^{\infty} \Pr(A_n) = \infty$, alors $\Pr(\limsup_n A_n) = 1$

Fonction de répartition

Mesure image

La mesure image, ou « $pushforward\ measure$ » en anglais, est obtenue « $by\ pushing$ » une mesure d'un espace mesurable à un autre avec une fonction mesurable.

Loi de probabilité

La mesure image de P par X, notée P_X , s'appelle la loi de probabilité de X.

■ Fonction de répartition

Pour une mesure de probabilité P_X , on a que $\forall x \in \mathbb{R}$ la fonction F est définie comme $F(x) = P_X(] - \infty, x])$. Cette fonction a les propriétés suivantes :

- 1) *F* est croissante au sens large.
- 2 *F* est continue à droite.
- 3 $\lim_{x\to\infty} F(x) = 1$ et $\lim_{x\to-\infty} F(x) = 0$.

Note Il y a une relation biunivoque entre les mesures de probabilités sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ et les fonctions de répartition.

Classification des lois de probabilité sur la tribu borélienne

Pour une probabilité P sur $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$, on classifie les lois de probabilités en 2 groupes :

1 Diffus

On dit que P est diffuse si $\forall x \in \mathbb{R}, P(x) = 0$.

Discrète

On dit que P est discrète s'il existe un ensemble au plus dénombrable S tel que P(S) = 1 .

Cependant, si P désigne une probabilité sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ ni diffuse ni discrète, alors $\exists \alpha \in]0,1[$, P_1 une loi discrète et P_2 une loi diffuse tel que $P = \alpha P_1 + (1-\alpha)P_2$.

Variable aléatoire discrète

Toute variable aléatoire X telle qu'il existe un sous-ensemble fini ou dénombrable S_X (ou tout simplement S) de $\mathbb R$ vérifiant $P(\{X \in S\} = 1.$ On peut donc définir $S = \{x \in \mathbb R : P_X(\{x\}) = P((\{X = x\}) > 0\}$. Donc, on note $p_x = P((\{X = x\}) = P_X(\{x\})$

Loi continue

Une mesure de probabilité absolument continue est une mesure de probabilité de la forme $P(B) = \int_B f(x) dx \quad \forall B \in \mathcal{B}_{\mathbb{R}}$ où f est une densité de probabilité. C'est-à-dire, une fonction définie sur \mathbb{R} satisfaisant aux conditions :

- $1 \quad f(x) \ge 0 \ \forall x \in \mathbb{R},$
- $\int_{-\infty}^{\infty} f(x) dx = 1$

Toute variable aléatoire X telle qu'il existe un sous-ensemble fini ou dénombrable S_X (ou tout simplement S) de $\mathbb R$ vérifiant $P(\{X \in S\} = 1$. On peut donc définir $S = \{x \in \mathbb R : P_X(\{x\}) = P((\{X = x\}) > 0\}$. Donc, on note $p_x = P((\{X = x\}) = P_X(\{x\})$

Moments et transformations de variables

Cas discret

Espérance

Sous réserve d'existence, l'*espérance mathématique* ou la *moyenne* de X est le nombre $E[X] = m_X = \sum_k x_k P(X = x_k)$.

✓ Invariance à la translation ou multiplication par un scalaire

Pour $a, b \in \mathbb{R}$, $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$.

▼ Espérance d'une puissance s

Sous réserve d'existence, $E[X^s] = \sum_{x \in S} x^s P_X(x)$

Variance

Sous réserve d'existence, la **variance** de X est le nombre Var(X) ou σ_X^2 où $Var(X) = E\left[(X - E[X])^2\right] = \sum_{x \in S} (x - m_X)^2 P(X = x)$. On peut également réécrire $E\left[(X - E[X])^2\right] = E\left[X^2\right] - (E[X])^2$.

▼ Translation ou multiplication par un scalaire

Pour $a,b\in\mathbb{R}$, $\operatorname{Var}(aX+b)=a^2\operatorname{Var}(X)$. Donc, contrairement à l'espérance, la variance n'est **pas** invariante à la translation ou multiplication par un scalaire.

Moment centré et réduit de puissance s

Sous réserve d'existence, le **moment centrée** s de X est $\mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^{s}\right]$.

■ Variable aléatoire réelle centrée

Sous réserve d'existence de la moyenne, toute variable dont la moyenne est nulle.

■ Variable aléatoire réelle réduite

Sous réserve d'existence de la moyenne, toute variable de variance 1.

Donc, la variable aléatoire réelle **centrée et réduite** est, sous réserve d'existence, toute variable de moyenne nulle et de variance 1.

Covariance

La covariance entre deux variables X et Y est $Cov(X,Y) = E\left[(X - E[X])(Y - E[Y])\right]$.

Vecteur

Espérance d'un vecteur

Soit un vecteur aléatoire de n v.a. discrètes $X = (X_1, \ldots, X_n)$. Sous réserve d'existence de $E[X_i]$ pour $i = 1, 2, \ldots, n$, l'**espérance mathématique** de X est le n-uple $(E[X_1], \ldots, E[X_n])$.

Espérance de la somme

Si l'espérance mathématique du vecteur X existe, alors l'espérance mathématique de la somme $X_1+\cdots+X_n$ est $E[X_1+\cdots+X_n]=E[X_1]+\cdots+E[X_n]$.

▼ Espérance du produit

Si l'espérance mathématique du vecteur X existe, et que les **composantes du vecteur sont indépendantes**, alors l'espérance mathématique du produit $X_1 \times \cdots \times X_n$ est $E[X_1 \times \cdots \times X_n] = E[X_1] \times \cdots \times E[X_n]$.

Matrice de variances-covariances d'un vecteur

Si elle existe, la matrice de variances-covariances d'un vecteur aléatoire (X_1,\ldots,X_n) est définie par le terme général $\forall i,j$ t.q. $1 \leq i,j \leq n$: $\boxed{Cov(X_i,X_j) = \mathbb{E}\left[(X_i - \mathbb{E}[X_i])\left(X_j - \mathbb{E}[X_j]\right)\right]}.$

✓ Variance de la somme

Si le vecteur aléatoire X est composé de v.a.r. discrètes **indépendantes**, dont le moment d'ordre 2 existe, alors la variance de la somme $\sigma^2_{X_1+\cdots+X_n}=\sigma^2_{X_1}+\cdots+\sigma^2_{X_n}$.

Autres mesures

Coefficient de corrélation de Pearson

Soit le couple de v.a.r. (X,Y), possédant des variances non nulles, le **coefficient de corrélation** de X et de Y est le nombre $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X\sigma_Y}$.

Cas continu

Espérance

Si X est une v.a.r. à densité f, alors l'*espérance mathématique*, sous réserve d'existence, est le nombre $E[X] = \int_{\mathbb{R}} x f(x) dx$.

▼ Espérance d'une fonction *g* de *X*

Si la loi P_X de X est **absolument continue** et de densité f, alors, sous réserve d'existence, $E[g \circ X] = E[g(X)] = \int_{\mathbb{R}} g(x) f(x) dx$.

Variance

Par l'inégalité $|x| < x^2 + 1$, si $\mathrm{E}[X^2] < \infty$ alors $\mathrm{E}[X] = m$ est définie. Sous réserve d'existence, la **variance** de X est donc $\mathrm{Var}(X) = \int_{\mathbb{R}} (x-m)^2 f(x) dx$.

Vecteur

on dénote $M = \mathrm{E}[XX^{\top}]$ et $\sigma_X = \mathrm{E}[(X - E[X])(X - E[X])^{\top}]$

Lois conditionnelles continues

On dénote la distribution conditionnelle de X par Y comme $f_X^{\{Y=y\}}(x) = \frac{f(x,y)}{g(y)}$.

$$f_X^{\{Y=y\}}(x) = \frac{f(x,y)}{g(y)}$$

Fonction génératrice des moments

Pour la somme
$$S_n = X_1 + \cdots + X_n$$
, $M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(t)$.
$$E[X^n] = \frac{d^n}{dt^n} M_X(t) \Big|_{t=0}.$$

$$E[X^n] = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0}.$$

Calcul de lois

Quelques inégalités classiques

Inégalité de Schwartz

Si $E[X^2]$ et $E[Y^2]$ existent, alors E[XY] existe et $E[|XY|] \le \sqrt{E[X^2]} \sqrt{E[Y^2]}$.

Inégalité de Tchebychev

Soit X une v.a.r. positive et g une application strictement croissante de \mathbb{R}^+ dans \mathbb{R}^+ telle que $\mathrm{E}[g(X)]$ existe, alors $\Pr(X \ge \alpha) \le \frac{\mathrm{E}[g(X)]}{\sigma(\alpha)}$ $\forall \alpha > 0$.

Inégalité de Markov

Soit *X* une v.a.r. positive et intégrable, alors $\Pr(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha} \quad \forall \alpha > 0$.

Inégalité de Bienaymé-Tchebychev

Soit *X* une v.a.r. de carré intégrable, alors $\Pr(|X - E[X]| \ge \alpha) \le \frac{V(X)}{\alpha^2}$ $\forall \alpha > 0$.

Inégalité de Jensen (cas unidimensionnel)

Rappel: Fonction convexe

Une fonction g définie sur un intervalle ouvert I et à valeurs réelles est dite convexe ssi $\forall a, b \in I \text{ et } \lambda \in [0,1]$, $g(\lambda a + (1 - \lambda)b) \le \lambda g(a) + (1 - \lambda)g(b)$.

Soient *I* un intervalle ouvert et $g: I \to \mathbb{R}$, une fonction convexe. Soit *X* une v.a. à valeurs dans I. Alors, $g(E[X]) \leq E[g(X)]$. Soit X une v.a.r. de carré intégrable, alors $\Pr(|X - E[X]| \ge \alpha) \le \frac{V(X)}{\alpha^2}$ $\forall \alpha > 0$

Inégalité de Jensen (cas multidimensionnel)

Rappel: Fonction convexe multivariée

On pose que, $\forall \gamma \in (0,1)$, pour deux points $x,y \in \mathbb{R}^k$: $\gamma x + (1 - \gamma)y = (\gamma x_1 + (1 - \gamma)y_1 + \dots + \gamma x_k + (1 - \gamma)y_k)^t.$

Un sous-ensemble $C \in \mathbb{R}^k$ est *convexe* si $\forall x,y \in C$ et $\gamma \in$ [0,1]: $\gamma x + (1-\gamma)y \in C$. Une fonction réelle φ définie sur un ouvert convexe C est convexe si $\forall x,y \in C$ et $\gamma \in [0,1]$: $\varphi(\gamma x + (1 - \gamma)y) \le \gamma \varphi(x) + (1 - \gamma)\varphi(y)$.

Soit un vecteur aléatoire X à valeurs dans un ouvert convexe $C \in \mathbb{R}^k$ ayant une espérance E[X]. Soit φ une fonction convexe sur C, telle que $E[\varphi(X)]$ existe. Alors, $\varphi(E[X]) \leq E[\varphi(X)]$.

Également, sous les mêmes hypothèses, si ${\cal B}$ \subset $\varphi(E[X|\mathcal{B}]) \leq E[\varphi(X)|\mathcal{B}]$.

Inégalité de Hölder

Soient les nombres conjugués p et q>1 tels que $\frac{1}{p}+\frac{1}{q}=1$. Si $\mathrm{E}[X^p]$ et

 $E[Y^q]$ existent, alors E[XY] existe, et $E[|XY|] \le E[|X|^p]^{1/p} E[|Y|^q]^{1/q}$

Note Si p = q = 2, on retrouve *l'inégalité de Schwartz*.

Convergences stochastiques

\square Convergence L^r

La séquence $(X_n)_{n\in\mathbb{N}}$ converge dans L^r si $\lim_{n\to\infty}\mathbb{E}\left[|X_n-X|^r\right]=0$ où les moments absolus $\mathbb{E}[|X_n|^r]$ et $\mathbb{E}[|X|^r]$ existent. On dit que c'est la convergence dans le r^e moyenne. On appelle X la limite des X_n .

Convergence presque sûre

Convergence presque sûre

Soit $(X_n)_{n\geq 1}$ une suite de v.a. définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mu)$. On dit que la suite de v.a. $(X_n)_{n\geq 1}$ converge presque sûrement vers la v.a. X ssi $P(\{\omega\in\Omega:X_n(\omega)\to X(\omega)\})$.

On écrit habituellement $X_n \xrightarrow{p.s.} X$.

▼ Conditions équivalentes

Soit $(X_n)_{n\geq 0}$ une suite de v.a. définies sur un espace probabilisé (Ω, \mathcal{A}, P) , X une v.a. définie sur (Ω, \mathcal{A}, P) . On suppose que (X_n) et X sont P-presque sûrement finies . Ces conditions sont équivalents :

- 1 $(X_n) \rightarrow X$ *P*-presque sûrement (*P*-p.s.)
- $(2) P(X_n \to X) = 1$
- 3 $P\left(\bigcap_{\varepsilon>0}\bigcup_{n\geq 0}\bigcap_{k\geq n}\{X_k-X\}<\varepsilon\right)=1.$

Convergence en probabilité

Convergence en probabilité

Soit une suite $(X_n)_{n\geq 1}$ de v.a. définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On dit que cette somme converge en probabilité vers X si $\forall \varepsilon > 0$:

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0 \text{ ou } \lim_{n\to\infty} P(|X_n-X|<\varepsilon)=1.$$

On écrit habituellement $X_n \stackrel{P}{\longrightarrow} X$.

Note Pour le cas multivarié, on pose que les vecteurs aléatoires $(X_n)_{n\in\mathbb{N}}$ et X sont définis sur le même espace probabilisé (Ω, \mathcal{A}, P) , et à valeurs dans $(\mathbb{R}^p, \mathcal{B}_{\mathbb{R}^p})$. Puis, la suite de vecteurs $(X_n)_{n\in\mathbb{N}}$ converge en probabilité vers

X si pour toute composante i: i = 1, ..., p, on a $X_{i,n} \xrightarrow[n \to \infty]{P} X_i$

Théorème de Slutsky

Soit les vecteurs aléatoires $(X_n)_{n\in\mathbb{N}}$ et X définis sur le même espace probabilisé (Ω, \mathcal{A}, P) , et à valeurs dans $(\mathbb{R}^p, \mathcal{B}_{\mathbb{R}^p})$. On suppose que la suite de vecteurs $(X_n)_{n\in\mathbb{N}}$ converge en probabilité vers X. Soit g une application

continue de \mathbb{R}^p dans \mathbb{R}^q . On a alors $g(X_n) \xrightarrow[n \to \infty]{P}$.

Convergence en moyenne quadratique

Convergence en moyenne quadratique

La convergence en moyenne quadratique, alias la convergence au sens de

$$L^2$$
, implique que $X_n \xrightarrow[n \to \infty]{m.q.} a$ ssi $E[X_n] \xrightarrow[n \to \infty]{} a$ et $Var(X_n) \xrightarrow[n \to \infty]{} 0$.

Rapports

Convergence des lois de probabilité