Feuille_4 Math_103

Rappel de cours:

•

Exercice 4.1

4.1.1

$$A = \begin{vmatrix} 1 & -1 & 2 & 0 \\ 2 & 1 & 1 & 3 \\ 1 & 2 & -1 & 3 \end{vmatrix}$$

4.1.2

On a

$$C_1 = \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix}, C_2 = \begin{vmatrix} -1 \\ 1 \\ 2 \end{vmatrix}, C_3 = \begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}, C_4 = \begin{vmatrix} 0 \\ 3 \\ 3 \end{vmatrix},$$

La première ligne peut être formée en soustrayant la ligne l_2 et la ligne l_3 . Donc, le rang de (l_1, l_2, l_3) est égal au rang de (l_2, l_3) . Les lignes l_2, l_3 sont indépendante (non propotionnelle). Donc, le rang de (S) est 2.

Trouver relation de dépendance entre C_1, C_2 et C_3 :

$$aC_1 + bC_2 + cC_3 = 0$$

$$\begin{cases}
a + 2b + c &= 0 \\
-a + b + 2c &= 0 \\
2a + b - c &= 0
\end{cases}$$

$$\begin{cases}
a + 2b + c &= 0 \quad l_1 \\
3b + 3c &= 0 \quad l_1 + l_2 \\
3b + 3c &= 0 \quad 2l_1 - l_3
\end{cases}$$

$$\begin{cases}
a &= c \\
b &= -c
\end{cases}$$

Une relation de dépendance entre C_1, C_2 et C_3 est: $C_1 - C_2 + C_3 = 0$.

Trouver relation de dépendance entre C_1, C_2 et C_3 :

$$aC_{1} + bC_{2} + cC_{4} = 0$$

$$\begin{cases}
a + 2b + c &= 0 \\
-a + b + 2c &= 0 \\
3b + 3c &= 0
\end{cases}$$

$$\begin{cases}
a + 2b + c &= 0 \quad l_{1} \\
3b + 3c &= 0 \quad l_{1} + l_{2} \\
3b + 3c &= 0 \quad l_{3}
\end{cases}$$

$$\begin{cases}
a = c \\
b = -c
\end{cases}$$

Une relation de dépendance entre C_1, C_2 et C_4 est: $C_1 - C_2 + C_4 = 0$.

QED