Прикладная статистика в машинном обучении

Домашнее задание #3

Дедлайн: 17 декабря, 23:59 МСК

Правила игры

- 1. Домашнее задание оценивается в 10 баллов.
- 2. Решения принимаются до **17 декабря 2020 года, 23:59 МСК** включительно. Работы, отправленные после дедлайна, не оцениваются.
- 3. Все решения нужно загрузить в личный репозиторий на GitHub Classroom.
- 4. Обе задачи экспериментальные, и их следует решать в Jupyter Notebook. Однако если вам кажется, что где-то нужно привести длинную теоретическую выкладку, то вы можете написать её от руки и отсканировать. В этом случае соберите все написанные вручную элементы в единый .pdf файл и также загрузите его в репозиторий.
- 5. Репозиторий должен содержать .ipynb-файл с решениями задач, который должен называться name_surname_hw3.ipynb. Если вы дополнительно загружаете .pdf файл с решениями от руки, то назовите ero add.pdf
- 6. Весь код должен быть написан на Python.
- 7. Разрешается использовать без доказательства любые результаты, встречавшиеся на лекциях или семинарах по курсу, если получение этих результатов не является вопросом задания.
- 8. Разрешается использовать любые свободные источники с указанием ссылки на них.
- 9. Плагиат не допускается. При обнаружении случаев списывания 0 за работу выставляется всем участникам нарушения, даже если можно установить, кто у кого списал.

Задача 1. Всё нормально! (5 баллов)

Майло Тэтч исследует выборку независимых одинаково распределённых случайных величин X_1, \ldots, X_n из нормального $\mathcal{N}(\mu, 1)$ распределения.

- а) Симулируйте такую выборку при $n=100, \mu=5.$
- b) Научный опыт Майло говорит, что $f(\mu)$ непременно равна 1^1 . Найдите апостериорную плотность $f(\mu|X)$ аналитически и постройте её график.
- с) Майло не хочет хранить апостериорную функцию плотности в явном виде и желает представить апостериорное распределение в виде массива чисел. Выберите любой способ сделать это и получите такой массив (размер массива на ваш вкус). Постройте гистограмму полученного массива и визуально оцените, насколько хорошо она приближает аналитическую апостериорную плотность.
- d) Майло считает, что недостаточно рассматривать только μ : требуется изучить и $\theta=e^{\mu}$. Найдите апостериорную плотность $f(\theta|X)$ аналитически и при помощи симуляций. Для симуляций используйте следующий алгоритм:
 - (a) Симулируйте Q_1, \ldots, Q_B из апостериорного распределения $\mu|X.$
 - (b) Рассчитайте $\gamma_i := e^{Q_i}$. Объявите $\gamma_1, \ldots, \gamma_B$ выборкой независимых одинаково распределённых случайных величин из апостериорного распределения $\theta|X$.
- е) Постройте 95%-ый байесовский доверительный интервал для μ .
- f) Постройте 95%-ый частотный доверительный интервал для μ .

(По мотивам: Wasserman, All of Statistics)

Задача 2. Необычная флора (5 баллов)

Оказавшись в Атлантиде, Майло Тэтч изучает местную флору. В частности, ему интересно, как влияют привычные удобрения на рост местного вида папоротников. Майло собирает случайную выборку из 500 папоротников и разделяет её на пять непересекающихся групп по 100 наблюдений в каждой. К четырём из них он применяет удобрения разных видов, а пятая группа объявляется контрольной. Результаты эксперимента приведены в таблице ниже. В первой строке указаны виды применяемых удобрений, а во второй – число растений, для которых наблюдались улучшения в росте.

Вид удобрения	Без удобрения	DAP	MAP	NPK	UAN
Улучшения в росте	42	37	17	74	44

- а) Сформулируйте гипотезы о наличии (отсутствии) эффекта действия каждого удобрения. Проверьте каждую гипотезу на уровне значимости 5%. Можно считать, что число наблюдений достаточно для применения асимптотических результатов. Для получения оценок используйте метод максимального правдоподобия.
- b) Проведите процедуру множественного тестирования методом Бонферрони. Изменились ли результаты? Напоминание: при полученной статистике z_{obs} p-value можно рассчитать как $2 \mathbb{P}\{Z \leqslant z_{obs}|H_0\}$ для двустороннего теста в случае симметричного распределения.
- с) Проведите процедуру множественного тестирования методом Бенджамини-Хохберга. Изменились ли результаты?
- d) Сделайте итоговый вывод о наличии эффекта действия каждого удобрения.
- е) Результаты тестирования удобрения МАР смутили Майло: они никак не согласовывались с его научным опытом. Поэтому для исследования эффекта действия этого удобрения Майло решил использовать байесовский подход. Пусть теперь p_{MAP} случайная величина, и Майло уверен, что $p_{MAP} \sim \mathrm{Beta}(\alpha,\beta)$. Найдите какую-нибудь (на ваш выбор) точечную байесовскую оценку параметра p_{MAP} . Прокомментируйте, насколько сильно различаются частотная и байесовская оценки и поясните почему.

 $^{^{1}}$ Кажется, что это весьма странное утверждение. Что именно оно означает, мы обсудим на последнем семинаре.