

OS Deadlock/Starvation Quiz

Study online at quizlet.com/_3cc4oh

1. 4 Conditions	Mutual Exclusion, Hold and wait, No	12 Disadvantages	When conflict process releases everything
for deadlock	preemption, Circular wait	Disadvantages of Allowing	it owns and re-requests it, causing inefficiency. Also will not work if any processes share a priority level as the CPU won't know who to give the desired resource
2. Best option for Recovery	Combine them all (Trick question :P)	Preemption	
3. Best way to Avoid	Allow conditions 1-3 and make sure condition 4 can never happen. OS is responsible for		to.
Deadlock	checking to make sure deadlock can't happen before granting resource access	13. Disadvantages of Disallowing Hold and Wait	Inefficient, long waits occur, resources may remain allocated and unused for a long time, processes might not know what they
4. Circular Wait	Yielding to person to right at an intersection (rule of the road)	14. Disadvantages	need ahead of time
5. Circular wait	a chain of processes exists such that each process holds one or more resources needed by the next process in the chain	of Disallowing Mutual Exclusion	Simply inteasible in modern systems
6. Common detection algorithm	Uses same matrix A and vector V. Adds new matrix Q that is how much each process is requesting.	process that can run to completion	1. Subtract each row of [C-A] from the available vector.
	Initially consider all processes deadlocked, mark processes in A with all zeros (those can't deadlock, they aren't requesting anything)		2. Any process whose result row has values= 0 can run to completion
		16. Hold and Wait	a process can hold a resource and enter a wait state
	Find processes that are not requesting more than available, those are not deadlocked. Add these values to the allocated vector to keep track of what used and move to next process	17. IndirectDeadlockPrevention	Prevents conditions 1-3 (Mutual Exclusion, Hold and Wait, No Preemption).
		18. Methods of dealing with Deadlock	Prevention, Avoidance, Detection, & Recovery
7. Consumable Resources	Resources that are created and destroyed by one or more processes (e.g. producer	19. Mutual Exclusion	Only one process may use a resource at a time, other processes must wait
. Dandlada	consumer problem, interrupts, signals, messages, etc.)	20. No Preemption	resources can not be forcibly taken from a process
8. Deadlock	permanent blocking of a set of processes that either compete for system resources or communicate with each other	21. Options for Recovery	Abort all deadlocked processes.
 Deadlock Detection 	The OS periodically performs an algorithm that allows it to detect condition 4 (Circular Wait). This can be run every time a resource is requested, but tradeoff is more overhead		Backup deadlocked processes to a previously defined checkpoint, then restart them all
10. Direct Deadlock Prevention	Prevents Condition 4 (Circular Wait)		Start aborting deadlocked processes one by one until one is released
		22. Process initiation	(requires all information known ahead of time) Puts resources into 2 matrix, available
Disadvantage of Process initiation	not optimal, not efficient Assumes all processes will make max resource claims all at once	denial	or allocated. No process is allowed more than it needs and may only take as much as the total available for each resource
denial		23. Process initiation denial	Don't start a process if its demands might lead to a deadlock

24. Resource allocation denial	(aka banker's algorithm) define set of system states that the OS can use to determine what allocations are safe (not result in deadlock)
25. Resource allocation denial	Don't grant a resource to a process if doing so could lead to deadlock.
26. Reusable Resources	Used by one process at a time and not depleted by use (e.g. processor, I/O channel, main & secondary memory, files, etc.)
27. Safe state	state in which there is at least one sequence of resource allocation to process that does not result in deadlock (all processes can run to completion)
28. Two categories of resources that processes compete for	Reusable and Consumable