Matematikos antrojo atsiskaitymo paruoštukas

Vektoriai

Skaliarinė sandauga $(\vec{a} \cdot \vec{b})$ $\vec{a} \cdot \vec{b} = \vec{a}.x \cdot \vec{b}.x + \vec{a}.y \cdot \vec{b}.y$ $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}, \vec{b})$ Panašu į kampą tarp \vec{a} ir \vec{b} .

Vektorinė sandauga
$$(\vec{a} \times \vec{b})$$

 $\begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}, \begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix}, \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$

Duoda lygiagretainio plotą ir, padalinus iš 2, trikampio plotą

Mišrioji sandauga $((\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}))$

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

Duoda Prizmės tūrį ir (padalinus iš 6) trikampės piramidės turį.

Plokštumos

Bendra lygtis: Ax + By + Cz + D = 0

Jei yra 3 taškai:

$$\overrightarrow{AM} = (x-1;y-2;z-3)$$

 $\overrightarrow{AB} = (4;5;6)$
 $\overrightarrow{AC} = (7;8;9)$
Po to skaičiuoti visų šitų

skaičių determinantą

Jei yra 2 taškai ir
$$\vec{s}$$
:
$$\overrightarrow{AM} = (x-1;y-2;z-3)$$

$$\overrightarrow{AB} = (4;5;6)$$

$$\vec{s} = (7;8;9)$$
Po to skaičiuoti visų šitų skaičių determinantą

Tiesės

Kanoninė lygtis: $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ Beje (l; m; n) yra \overrightarrow{s} (lygiagretus vektorius)

Parametrinė lygtis:
$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n} = t$$

$$\begin{cases} x = t + l \cdot x_0 \\ y = t + m \cdot y_0 \\ z = t + n \cdot z_0 \end{cases}$$

Kai taškas A ir
$$\vec{s}$$
:
$$A(...), M(x; y; z)$$

$$\vec{s}(...)$$

$$\frac{\overrightarrow{AM}_x}{\vec{s}_x} = ...$$
Kai 2 taškai:
$$A(...), B(...)$$

$$M(x; y; z)$$

$$\frac{\overrightarrow{AM}_x}{\vec{s}_x} = ...$$

Kai 2 plokštumos:

$$\begin{cases}
5x + 3y + 2z + 4 = 0 \\
2x + 8y - 9z - 10 = 0
\end{cases}$$

$$M_0(x_0, y_0, 0)$$

$$\begin{cases}
5x_0 + 3y + 2 \cdot 0 + 4 = 0 \\
2x_0 + 8y_0 - 9 \cdot 0 - 10 = 0
\end{cases}$$

$$\frac{x - x_0}{\begin{vmatrix} 3 & 2 \\ 8 & -9 \end{vmatrix}} = \frac{y - y_0}{\begin{vmatrix} 2 & 5 \\ -9 & 2 \end{vmatrix}} = \dots$$

Kampas tarp tiesės ir plokštumos: $\sin \varphi = \frac{\vec{s} \cdot \vec{n}}{|\vec{s}||\vec{n}|}$ Čia \vec{n} koordinates reikia paiimti iš plokštumos lygties, o \vec{s} yra tiesės kanoninės lygties apačioje(vardiklyje).

