เคมีอินทรีย์

- เป็นศาสตร์ศึกษาเกี่ยวกับสารประกอบอินทรีย์
- สารอินทรีย์พบในสิ่งมีชีวิต เช่น พืช และสัตว์ (เดิม)
- สามารถสังเคราะห์ได้โดยมนุษย์

ปี ค.ศ.1828 ฟรีดริช เวอเลอร์ (Friedrich Wohler)

$$NH_4OCN \xrightarrow{IM1} NH_2CONH_2$$
 แอมโมเนียมไซยาเนต ยูเรีย

สารประกอบอินทรีย์

สารประกอบที่มี C เป็นอค์ประกอบ ทั้งที่เกิดจากสิ่งมีชีวิต และจากการสังเคราะห์ ยกเว้น

- 1. สารที่เป็นอัญรูปของคาร์บอน เช่น เพชร แกรไฟต์ และ ฟลุเลอรีน
- 2. ออกไซด์ของคาร์บอน เช่น CO₂ CO
- 3. กรดคาร์บอนิก (H_2CO_3)
- 4. เกลือคาร์บอเนต และไฮโดรเจนคาร์บอเนต เช่น CaCO₃ NaHCO₃
- 5. เกลือออกซาเลต เช่น โซเดียมออกซาเลต Na₂C₂O₄
- 6. เกลือไชยาในต์ เช่น แอมโมเนียมไซยาเนต (KCN)
- 7. เกลือไซยาเนต เช่น โพแทสเซียมไทโอไซยาเนต (KSCN)

สารอินทรีย์ : ประกอบด้วย C H O N F Cl Br I และ P เป็นต้น

สารอินทรีย์ : ประกอบด้วย C และ H เท่านั้น เราเรียกว่า สารประกอบไฮโดรคาร์บอน เช่น

ALKANE Ethane CH₃CH₃

ไฮโดรคาร์บอนชนิดอื่มตัว (Saturated Hydrocarbon)

ALKENE

Ethylene CH₂=CH₂

ALKYNE

Acetylene CH≡CH

AROMATIC Benzene C₆H₆

ไฮโดรคาร์บอนชนิดไม่อื่มตัว (Unsaturated Hydrocarbon)

Benzene

ประเภทสารประกอบอินทรีย์ แบ่งตามโครงสร้างโมเลกุล มี 4 ประเภท คือ

พันธะของคาร์บอน

- พันธะของคาร์บอน ₆C การจัดเรียงอิเล็กตรอน

- อะตอมของคาร์บอนเกาะกันด้วยพันธะโคเวเลนต์ (covalent bond)

พันธะเดี่ยว (single bond)

พันธะคู่ (double bond)

พันธะสาม (triple bond)

สมบัติทั่วไปของสารอินทรีย์

- เดือดกลายเป็นไอ หรือบางครั้งสลายตัวที่อุณหภูมิต่ำกว่า 300 °C
- สารอินทรีย์ที่เป็นกลางจะละลายในน้ำน้อย หรือไม่ละลายยกเว้นสารอินทรีย์ที่สามารถ

- ละลายได้ดีในตัวทำละลายที่เป็นสารอินทรีย์ เช่น อีเทอร์ และแอลกอฮฮล์ เป็นต้น
- การละลายได้มากหรือน้อยขึ้นอยู่กับ หมู่ฟังก์ชัน (function group)

การเขียนสูตรโครงสร้างของ สารประกอบอินทรีย์

• สูตรโมเลกุล

• สูตรโครงสร้างถิวอิส

• สูตรโครงสร้างแบบเส้นและมุม

• สูตรโครงสร้างแบบย่อ

สูตรโมเลกุล	สูตรโครงสร้าง ลิวอิส	สูตรโครงสร้าง แบบย่อ	สูตรโครงสร้าง แบบเส้นและมุม
C ₄ H ₁₀			
	H C C H H H H H H H		
	н-с≡с-с-н Н		

สูตรโมเลกุล	สูตรโครงสร้าง ลิวอิส	สูตรโครงสร้าง แบบย่อ	สูตรโครงสร้าง แบบเส้นและมุม
	H H H H H-C-C-C-H H H H H-C-H		
	H-C-C-O-H H H		

สูตรโมเลกุล	สูตรโครงสร้าง ลิวอิส	สูตรโครงสร้าง แบบย่อ	สูตรโครงสร้าง แบบเส้นและมุม
	H H H—C—H H H H—C——C——C—OH H H H H		
	СН ₃ Н ₃ С—С=СН—СН ₂ —ОН		

ไอโซเมอร์ (isomer) : สารที่มีสูตรโมเลกุลเหมือนกัน แต่มีสูตรโครงสร้าง ต่างกัน

ไอโซเมอริซึม (isomerism)

ปรากฏการณ์ที่สารที่มีสูตรโมเลกุลเหมือนกัน แต่มีสูตรโครงสร้าง ต่างกันซึ่งอาจจะเป็นสารชนิดเดียวกันหรือต่างชนิดกันก็ได้

สมบัติของไอโซเมอร์ (isomer)

หมู่ฟังก์ชันเหมือนกัน จะมีสมบัติทางกายภาพ ต่างกัน แต่สมบัติทางเคมีเหมือนกัน

หมู่ฟังก์ชันต่างกัน พบว่ามีสมบัติทาง กายภาพ และสมบัติทางเคมีต่างกัน

สมบัติของไอโซเมอร์ (isomer)

ไอโซเมอร์ ที่คาร์บอนต่อกันเป็นโซ่สายยาว จะมีจุดเดือด จุดหลอมเหลว และความหนาแน่นสูงกว่าไอโซเมอร์ของสารอินทรีย์ ที่มีคาร์บอนต่อกันแตกกิ่ง ก้านสาขา เพราะไอโซเมอร์ที่คาร์บอนต่อกันเป็นโซ่สายยาวจะมีขนาดใหญ่ และมีพื้นที่ผิวมากกว่า ทำให้เกิดแรงดึงดูดระหว่างโมเลกุล คือ แรงแวนเดอร์วาลส์สูงกว่าไอโซเมอร์ที่คาร์บอนต่อกันมีกิ่งก้านสาขา

สูตรโครงสร้าง	โครงสร้างของสารประกอบ	จุดหลอมเหลว (°C)	จุดเดือด (°C)	ความหนาแน่น ที่ 20°C (g/cm³)
CH ₃ -CH ₂ -CH ₂ -CH ₃	عراج الم	-138.3	-0.5	0.573
CH ₃ I CH ₃ —CH-CH ₃	-	-159.4	-11.7	0.551

ชนิดของไอโซเมอร์

ไอโซเมอร์เชิงเรขาคณิต (geometrical isomer)

เป็นไอโซเมอร์ที่มีการจัดเรียงของหมู่แทนที่ในโครงสร้างที่เป็นวงหรือในพันธะคู่ต่างกัน เช่น ไอโซเมอร์แบบ cis – trans isomer ซึ่งเป็นการพิจารณาว่า H หรือหมู่ที่เหมือนกันอยู่ในระนาบเดียวกัน หรือต่างระนาบกัน (ล่างและบนระนาบของพันธะคู่)

cis- 2-butene

trans-2-butene

Optical isomer เป็นโมเลกุล 2 โมเลกุลที่มีสูตรเหมือนกัน มีโครงสร้างเป็นเงากระจกซึ่งกันและกัน แต่โครงสร้างทั้งสองไม่สามารถทับกันอย่างสนิท โมเลกุลทั้งสองจะเป็น Optical isomer หรือ Enantiomer

หลักการเขียนไอโซเมอร์

- 1. พิจารณาจากสูตรโมเลกุลก่อนว่าเป็นสารประเภทใด
- 2. เมื่อทราบว่าเป็นสารประเภทใดแล้วจึงนำมาเขียนไอโซเมอร์
- 3. ถ้าเป็นสารพวกโซ่เปิด (Open chain หรือ Acyclic) มักจะเริ่มเขียนไอโซเมอร์จากตัวที่มี C ต่อกันเป็นสายตรงยาวที่สุดก่อน หลังจากนั้นจึงลดความยาวของ C สายตรงลงครั้งละอะตอม
- 4. ในกรณีที่เป็นไฮโดรคาร์บอนแบบวง (Cyclic chain) มักจะเริ่มจากวงที่เล็กก่อน คือเริ่มจาก C 3 อะตอม แล้วจึงเพิ่มเป็น 4 อะตอม ตามลำดับ

เขียนไอโซเมอร์ของ C_4H_{10} (butane)

เขียนไอโซเมอร์ของ C_5H_{12} (pentane)

เขียนไอโซเมอร์ของ C_6H_{14} (hexane)

C₂H₄ ethene

C₃H₆ propene

C₄H₈ butene

เขียนไอโซเมอร์ของ C₄H₈ (บิวทีน)

เขียนไอโซเมอร์ของ C₄H₈ (ไซโคลบิวเทน)

ตัวอย่าง....จำนวนไอโซเมอร์ (isomer)

จำนวนไอโซเมอร์จะเพิ่มขึ้นเมื่อจำนวนคาร์บอนเพิ่มขึ้น เช่น

- C₅H₁₂ มี3 ไอโซเมอร์
 C₆H₁₄ มี5 ไอโซเมอร์
- C,H, มี 9 ไอโซเมอร์ C,H, มี 18 ไอโซเมอร์
- C₁₀H₂₀ มี 35 ไอโซเมอร์
 C₁₀H₂₂ มี 75 ไอโซเมอร์

ฝากไว้....ให้ฝึกทำ

เขียนไอโซเมอร์ ของ C₆H₁₂ ในโครงสร้าง

- 1) โซ่เปิด และมีพันธะคู่ระหว่าง C 1 พันธะ
- 2) โซ่ปิด และมีพันธะระหว่าง C เป็นพันธะเดี่ยวทั้งหมด

