Al Bootcamp

Multiclass Image Classification With CNNs

Module 19 Day 3

- 1 Understand branching in neural networks.
- 2 Apply branching to basic neural networks.
- 3 Understand the implications of softmax as an output activation function.
- 4 Apply softmax to a basic neural network.
- 5 Apply branching and softmax to a CNN for image classification.

Instructor **Demonstration**

Multiclass and Branching

Real-World Classification

Branched Network

In this activity, we will consider three scenarios and determine whether softmax or sigmoid is the best activation function choice.

Suggested Time:

10 Minutes

Scenario 1

A CNN is created to predict whether an image has one vegetable or multiple vegetables and whether the vegetables are green or red. These labels are in 4 columns: one_vegetable, multiple_vegetables, red, and green. If these columns are predicted using a single layer, which activation function would be best suited?

Click for answer

Scenario 2

A neural network is created to evaluate whether an item online will sell more, fewer, or the same number of units next month.

Each potential outcome has its own column.

Click for answer

Scenario 3

A neural network is designed to predict which group a flower belongs to: Species A, Species B, Species C, or Large petal variant (any species).

If these four columns are predicted using one layer, which activation function is best?

Click for answer

M M M M

In this activity, you will use Keras to build a non-sequential model with multiple branched outputs.

Suggested Time: 20 Minutes

M M M M

Break15 mins

In this activity, we will prepare the face images data for branched predictions on multiple columns.

Suggested Time:

30 Minutes

Challenges of Image Data

- 1 Noisy images
- 2 Variation
 - Intra-class variation
 - Scale variation
- 3 Computational expense

In this activity, you will use Keras to build a model to predict all the classes in the faces dataset.

Suggested Time:

25 Minutes

Time's up! Let's review

Module Review

Understanding image representations and multidimensional arrays

6 Augmenting images to increase the size of training data

2 Converting images to numbers

7 Evaluating softmax and sigmoid as activation functions

3 Importing, pickling, and unpickling image data

8 Coding a simple CNN for single classification

Preprocessing X and y data for image classification models

9 Coding a branched CNN for multiclassification

5 Understanding convolution and CNNs

Let's recap

- 1 Understand branching in neural networks.
- 2 Apply branching to basic neural networks.
- 3 Understand the implications of softmax as an output activation function.
- 4 Apply softmax to a basic neural network.
- 5 Apply branching and softmax to a CNN for image classification.

