

Roll Number:_____

Number of Pages: 02

Thapar Institute of Engineering and Technology, Patiala

Department of Computer Science and Engineering

END SEMESTER EXAMINATION

B. E. (Second Year):	Sem-II (2021/22)	Course Code: U	JCS415	
		Course Name:	Design and Analysis	of Algorithms
June 04, 2022	Saturday, 11:25 0	Hrs - 13:25 Hrs	Time: 2 Hours	s, M. Marks: 35
Name of Faculty:	Rajiv Kumar, Mar	ninder Kaur, Sh	reelekha Pandey, I	Rajesh Mehta,
**	Mamta Dabra, Yash	want Singh Patel,	, Vaibhav Pandey, Sh	ruti Aggarwal

Note: Attempt subparts of a question in sequence at one place. Assume missing data, if any, suitably.

Q1. Execute Ford Fulkerson Algorithm to find the maximum flow for a graph (Fig. 1). (7) Show all the intermediate stages of residual graph. What is the minimum cut corresponding to the obtained maximum flow? If each edge capacity in the graph (shown in Fig. 1) is increased by a value 1, then what will be the changed maximum flow?

- Q2. (a) State the differences between the 2-approximation and 3/2-approximation (1) algorithms for the traveling-salesman problem with the triangle inequality.
 - (b) Solve the following instance of the knapsack problem using the branch-and-bound technique. Draw the state-space tree which is generated while using the branch-and-bound technique.

Item	Weight	Value	
1	6	72	
2	7	63	Knapsack Capacity W = 12.
3	5	40	
4	4	12	

Q3. Apply dynamic programming approach to determine the cost and structure of all the possible optimal binary search trees for a set of n = 3 keys with the following probabilities:

	0	1	2	3
pi		4/17	1/17	4/17
qi	3/17	1/17	1/17	3/17

Q4. Instructor wants to schedule some final exams for CS courses with the following course numbers: C101, C112, C213, C224, C315, C326, C417, C428, and C439. Suppose that there is no student in common taking the following pairs of courses:

```
C101 - C315, C101 - C326, C101 - C428, C101 - C439

C112 - C213, C112 - C224, C112 - C315, C112 - C326, C112 - C417, C112 - C428

C213 - C112, C213 - C315, C213 - C439

C224 - C112, C224 - C315, C224 - C417, C224 - C428

C315 - C101, C315 - C112, C315 - C213, C315 - C224, C315 - C428

C326 - C101, C326 - C112

C417 - C112, C417 - C224, C417 - C428, C417 - C439

C428 - C101, C428 - C112, C428 - C224, C428 - C315, C428 - C417, C428 - C439

C439 - C101, C439 - C213, C439 - C417, C439 - C428
```

How many minimum exam slots are necessary to schedule exams? Give appropriate algorithm and show all intermediate steps involved by using that algorithm.

Q5. Write an efficient algorithm or pseudocode to compute the shift value using good suffix shift rule in the Boyer Moore string matching algorithm. It should include the required pre-processing logic along with the update in the shift value. Explain the proposed algorithm or pseudocode for the pattern "CTTACTTAC".

Note: The proposed algorithm or pseudocode can only take the pattern as an input argument. If needed then length of the pattern can also be considered as an input argument.

-----ALL THE BEST-----

R	toll No		,	Name: _				Grou	p:
		V 30	partment CS415: [of Com	•	ience & I	_		
			essional						
	ime.' 10 Mir								um Marks.' 10
a	Vote: All and nswers will Vrite the c	not be eva	luated. Us	se only ca	the spac	e provided abets (A/E	d for each 8/C/D) to r	n question record you	n. Overwritten ur responses.
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	
		1 mark	1 mark	1 mark	1 mark	2 mark	2 mark	2 mark	
Q1.	The time co			ine an aug O(E log		C. O(_	nm is $O(E ^2 \log V)$
Q2.	What is thusing back		ase time c	omplexity	for findi	ng all m-c	colorings	of a grapl	n with n vertices
	A. O(r	1)	В.	O(m ⁿ)		C. O(r	n×m)	D	. $O(n \times m^n)$
Q3.	The total n A. 63	umber of 1		e 4-queen 65	s state spa	C. 64			. 66
Q4.	A. It isB. It isC. It is	he following equal to the sequal to the sequence the sequal to the sequence the sequ	the number $\frac{1}{n+1} \binom{2n}{n}$.	r of ways	of multipl	ying (n+1)	matrices.		ith n nodes?
Q5.	Which one A. 5,3	of the foll ,8,4,7,1,6,2		es not prov 4,1,5,8,6			tion for 8-		oblem?

- Q6. For the given instance of 0/1 knapsack problem: Weight = [4,7,5,3], Value = [40,42,25,12] and Knapsack Capacity = 10, what would be the upper bound cost at the root of state space tree?
- Q7. The search cost for the binary search tree shown here with the following successful and unsuccessful search probabilities is

	0	1	2	3	4
pi		3	3	1	1
a:	2	3	1	1	1

