Лекция 8. Свойства кривых второго порядка

#вшпи #аналитическая_геометрия #теория

Автор конспекта: Гридчин Михаил

Этот конспект сделан из уныния и отчаяния. Сделайте с ним что-нибудь. Пожалуйста.

Эллипс

Определение

Def. Из предыдущей лекции кривая второго порядка называется *эллипсом*, если в какойто системе координат эта кривая задаётся уравнением

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1,\quad a\geq b>0$$

Свойства

- Из уравнения напрямую следует, что оно определено для x, y: $|x| \le a$, $|y| \le b \implies$ эллипс *ограниченная* алгебраическая поверхность.
- Множество решений уравнений *не пустое*, $\forall x \exists y$.
- Симметрия относительно осей x и y (если заменить x на -x, то значение выражения не изменится осевая симметрия относительно x=0 и аналогично для $y \implies$ центральная симметрия)
- Если $a=b \implies$ окружность $x^2+y^2=a$. Пусть далее $a \neq b$. Введём обозначение:

$$c := \sqrt{a^2 - b^2}$$

А также

$$\epsilon := rac{c}{a}, \quad \epsilon$$
 - эксцентриситет, $\quad \epsilon = 0 \iff$ окружность

Очевидно, $c \ge 0$, $0 \le \epsilon < 1$. Выразим y через x:

$$y^2 = b^2 (1 - rac{x^2}{a^2}) = rac{b^2}{a^2} (a^2 - x^2) \ y = \pm rac{b}{a} (a^2 - x^2)$$

С учётом предыдущих свойств эллипс можно изобразить так:

канонический эллипс.рпд

(изображён эллипс $rac{x^2}{5^2} + rac{y^2}{4^2} = 1$)

Def. Точки F_1 и F_2 с координатами (c,0) и (-c,0) - фокусы эллипса

Def. Точки с координатами $(\pm a,0),(0,\pm b)$ - вершины эллипса

Def. Вертикальные прямые с координатами $\pm \frac{a}{\epsilon}$ - директрисы.

Найдём расстояние от точки M(x,y) до фокусов F_1 и F_2 .

$$MF_1^2 = (x-c)^2 + y^2 = (x-c)^2 + rac{b^2}{a^2}(a^2-x^2) = (x-c)^2 + b^2 - rac{b^2}{a^2}x^2 \ (c = \epsilon a)$$
 $MF_1^2 = \underbrace{x^2 - rac{b^2}{a^2}x^2}_{e^2x^2} - 2x\epsilon a + \underbrace{\epsilon^2 a^2 + b^2}_{a^2} = \epsilon^2 x^2 - 2x\epsilon a + a^2 = (a - \epsilon x)^2$

Аналогично $MF_2^2=(a+\epsilon x)^2$. Следовательно, $MF_1=|a-\epsilon x|=a-\epsilon x$, $MF_2=|a+\epsilon x|=a+\epsilon x$.

Сумма $MF_1 + MF_2 = 2a = const$

Найдём расстояние от точки M до положительной директрисы. Оно равно $MD_1=\frac{a}{\epsilon}-x$. Заметим, что отношение $\frac{MF_1}{MD_1}=\frac{a-\epsilon x}{\frac{a}{\epsilon}-x}=\frac{(a-\epsilon x)\epsilon}{a-\epsilon x}=\epsilon$. Таким образом, $\boxed{\frac{MF_1}{MD_1}-\epsilon}$

Таким образом, *эллипс* - это геометрическое место точек, отношение расстояния которых от фиксированной точки до фиксированной прямой постоянно и меньше 1.

Уравнение касательной к точке на эллипсе. Пусть дана точка $M(x_0,y_0)$ на эллипсе. Тогда уравнение касательной в точке M к эллипсу равно

$$\left\lceil rac{xx_0}{a^2} + rac{yy_0}{b^2} = 1
ight
ceil$$

 \square Уравнение касательной задаётся уравнением $y-y_0=y'(x_0)(x-x_0)$. Это уравнение не задаёт вертикальную касательную, поэтому проверим отдельно $x_0=\pm a$. Действительно,

$$\pm \frac{x}{a} = 1 \implies x = \pm a$$

Пусть теперь $x_0 \neq \pm a$. Тогда $y_0 \neq 0$. Продифференцируем по x каноническое уравнение эллипса:

$$egin{aligned} rac{x^2}{a^2} + rac{y^2}{b^2} &= 1 \ rac{2x_0}{a^2} + rac{2y_0 \cdot y'(x_0)}{b^2} &= 0 \ y'(x_0) &= -rac{b^2}{a^2} \cdot rac{x_0}{y_0} \end{aligned}$$

Получаем уравнение касательной:

$$y-y_0=rac{b^2}{a^2}\cdotrac{x_0}{y_0}(x_0-x) \ rac{yy_0-y^2}{b^2}=rac{x_0^2-xx_0}{a^2}\impliesrac{xx_0}{a^2}+rac{yy0}{b^2}=rac{x_0^2}{a^2}+rac{y_0^2}{b^2} =1$$

Оптическое свойство эллипса. Все лучи, отправленные из фокуса, придут во второй фокус за одинаковое время (то есть пройденные пути лучей равны).

 \square Пусть точка $M(x_0,y_0)$ принадлежит эллипсу. Ранее было показано, что $MF_1+MF_2=2a=const$. Покажем теперь, что угол между MF_1 и нормалью касательной (в точке M), равен углу между MF_2 и нормалью касательной (в точке M). То есть, что луч, выпущенный из одного фокуса, отразившись, придёт в другой фокус. Для этого достаточно показать, что равны косинусы этих углов, потому что оба угла <90 градусов. Из предыдущего свойства уравнение касательной в точке M равно

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$$

Поскольку мы работаем уже в ортонормированном базисе в прямоугольной декартовой системе координат, вектор нормали равен $\vec{n}(\frac{x_0}{a^2},\frac{y_0}{b})$. На этом моменте должен возникнуть логичный вопрос: куда направлен вектор \vec{n} ? Ответ: не имеет значения, поскольку тогда мы будем работать с тупыми углами до 180 градусов, на которых косинус монотонен. Итак, докажем, что

$$rac{(ec{n},\overrightarrow{MF_1})}{|ec{n}||MF_1|} = rac{(ec{n},\overrightarrow{MF_2})}{|ec{n}||MF_2|}$$

$$egin{aligned} rac{(ec{n}, \overrightarrow{F_1M})}{|ec{F_1M}|} &= rac{(ec{n}, \overrightarrow{F_2M})}{|ec{F_2M}|} \ rac{\overrightarrow{F_1M}(x_0-c,y_0), \quad \overrightarrow{F_2M}(x_0+c,y_0)}{|ec{n}(rac{x_0}{a^2},rac{y_0}{b})} \ &rac{(x_0-c)rac{x_0}{a^2}+rac{y_0^2}{b^2}}{a-\epsilon x_0} &= rac{(x_0+c)rac{x_0}{a^2}+rac{y_0^2}{b^2}}{a+\epsilon x_0} \ &rac{1-\epsilonrac{x_0}{a}}{a-\epsilon x} &= rac{1+\epsilonrac{x_0}{a}}{a+\epsilon x_0} &= rac{1}{a} \end{aligned}$$

Примечание: последнее свойство эллипса используется в аккустике.

Гипербола

Определение

Def. Из предыдущей лекции кривая второго порядка называется *гиперболой*, если в какой-то системе координат эта кривая задаётся уравнением

$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1, \quad a,b>0$$

Свойства

- Из уравнения напрямую следует, что $\forall y \exists x \implies$ гипербола *неограниченная* алгебраическая поверхность.
- Симметрия относительно осей x и y (если заменить x на -x, то значение выражения не изменится осевая симметрия относительно x=0 и аналогично для $y \implies$ центральная симметрия)
- Функция *определена* только для $x:|x|\geq a.$
- Для данного x выразим $y:y=\pm \frac{b}{a}\sqrt{x^2-a^2}.$
- Заметим, что $y=\pm rac{b}{a}x$ *асимптоты*. Это можно получить, как предел при $x o\infty$.

Положим c и ϵ как и с эллипсом

$$c:=\sqrt{a^2+b^2}$$
 Note: здесь знак "+", а не "-" $\epsilon:=rac{c}{a}, \quad \epsilon>1$

С учётом предыдущих свойств гиперболу можно изобразить так:

каноническая гипербола.png

(изображена гипербола $rac{x^2}{4^2} - rac{y^2}{3^2} = 1$)

Def. Точки A_1 и A_2 с координатами (a,0) и (-a,0) - вершины гиперболы.

Def. Точки F_1 и F_2 с координатами (c,0) и (-c,0) - фокусы гиперболы.

Def. Вертикальные прямые с координатами $\frac{a}{\epsilon}$ и $-\frac{a}{\epsilon}$ - директрисы.

Расстояния от точки $M(x_0,y_0)$ на гиперболе **до фокусов** F_1 и F_2 равны:

$$|MF_1|=|a-\epsilon x_0|$$

$$|MF_2|=|a+\epsilon x_0|$$

$$\left|MF_{1}-MF_{2}
ight|=2a$$

Доказательство аналогично доказательству свойства для эллипса.

Уравнение касательной к точке на гиперболе. Пусть дана точка $M(x_0,y_0)$ на гиперболе. Тогда уравнение касательной в точке M к гиперболе равно

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$$

Доказательство аналогично доказательству для эллипса.

Оптическое свойство гиперболы. Для произвольной точки M на гиперболе касательная в точке M делит угол F_1MF_2 пополам. Доказательство аналогично доказательству для эллипса.

Парабола

Определение

Def. Из предыдущей лекции кривая второго порядка называется *параболой*, если в какойто системе координат эта кривая задаётся уравнением

$$y^2=2px,\quad p>0$$

Свойства

- $x \ge 0$
- из уравнения напрямую следует, что $\forall x \geq 0 \exists y \implies$ парабола неограниченная алгебраическая поверхность.
- $y = \pm \sqrt{2px}$

С учётом предыдущих свойств параболу можно изобразить так:

(изображена парабола $y^2=2\cdot 4x$)

Def. Точка F с координатами $(rac{p}{2},0)$ - фокус параболы

Def. Точка (0,0) - *вершина* параболы.

Def. Вертикальная прямая с координатой $-\frac{p}{2}$ - ∂ upekmpuca параболы.

Пусть задана точка $M(x_0,y_0)$ на параболе, тогда:

$$MF = \sqrt{(x_0 - rac{p}{2})^2 + 2px_0} = \sqrt{x_0^2 + x_0 + rac{p^2}{4}} = x_0 + rac{p}{2}$$
 $MD = x_0 + rac{p}{2}$

Тогда MD=MF. Отсюда *определение*: парабола - это геометрическое место точек, равноудалённых от данной точки и данной прямой.

Оптическое свойство параболы. Выделенные углы равны. То есть касательная в точке M делит угол DMF пополам.