Important Concepts

- X⁺: Closure of an attribute set X
 - The set of all attributes that are determined by X
- F⁺: Closure of a dependency set F
 - The set of all dependencies that are implied from F
- $F_{min} = \{X_1 -> A_1, X_2 -> A_2, ..., X_n -> A_n\}$ is a minimum cover of F
 - A_i is a single attribute
 - No Y in X_i can be removed such that {X_i Y} -> Y
 - No X_i -> A_i can be removed such that F_{min} $\{X_i$ -> $A_i\}$ can still infer X_i -> A_i
- K: a key
 - A minimum set of attributes that determines all attributes

Schema Refinement and Normal Forms

- Given a design, how do we know it is good or not?
- What is the best design?
- Can a bad design be transformed into the best one? If cannot, how about 2nd best? ...

Normal Form and Normalization

A relation is said to be in a particular normal form if it satisfies a certain set of constraints.

- If a relation is in a certain normal form, we know what problems it has and what problems it does not have
 - Each normal form eliminates or minimizes certain kinds of problems
- Given a relation, the process of making it to be in certain normal form is called normalization
 - Typically this is done by breaking up the relation into a set of smaller relations that possess desirable properties.

Boyce-Codd Normal Form (BCNF)

A relation R is in BCNF if whenever an FD $X \rightarrow A$ holds in R, one of the following statements is true.

- $X \rightarrow A$ is a trivial FD.
- X is a superkey.

X→A is a trivial FD if A is a subset of X

BCNF allows no data redundancy

- If there is any non-trivial FD $X \rightarrow A$, then X must be a super key, i.e., $X^+ \rightarrow R$ (all attributes in R)
- Every non-key attributes describes nothing but some aspect of the key

Primary Key

- Key: minimal set of the fields of a relation that can uniquely identify a tuple
 - {SSN} is a key
 - If there's >1 key for a relation, one of the keys is chosen (by DBA) to be the primary key. The other keys are called candidate keys.
- Superkey: set of the fields of a relation that can uniquely identify a tuple
 - E.g., {SSN, Name, Age} is a superkey.
 - A key must be a super key, but not vice versa

Checking for BCNF Violations

- Let F be a set of FDs
- Remove all trivial FDs in F
- For each $X \rightarrow A$ in F, check if X is a super key
 - X is a super key if X⁺ contains all attributes in R

NOTE:

By default, we need to compute F^+ , but actually we don't have to. If every $X \rightarrow A$ in F satisfies BCNF, then it is impossible for F^+ to have an FD $Y \rightarrow B$ such that $Y \rightarrow B$ violates BCNF

Example 1:

- Schema: Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
- Constraints: ssn is the primary key and $Rating \rightarrow hrly_wages$

Example 2:

- Schema: R(<u>A</u>, B, C, D)
- Constraints: A is the primary key, B is a candidate key, is R a BCNF?

An alternative definition of BCNF

Original Definition

A relation R is in BCNF if whenever an FD $X \rightarrow A$ holds in R, one of the following statements is true.

- $X \rightarrow A$ is a trivial FD.
- X is a superkey.

An Alternative definition

Let R be a relation and F a minimum cover. R is in BCNF if for every dependency $X \rightarrow A$ in F, X must be a key.

Checking for BCNF Violations

- Let F be a set of FDs
- Make F a minimum cover
- For each $X \rightarrow A$ in F, check if X is a key
 - X is a key if X⁺ contains all attributes in R

- Let F be a set of FDs
- For each dependancy $X \rightarrow A$ in F
- Compute X⁺,
- check if either X⁺={X} or X⁺=R

Checking for BCNF Violations

Example 1:

- Schema: Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
- Constraints: ssn is the primary key and $Rating \rightarrow hrly_wages$

Example 2:

- Schema: R(<u>A</u>, B, C, D)
- Constraints: A is the primary key, B is a candidate key, is R a BCNF?

BCNF is the most desirable form --- from data redundancy perspective

A BCNF relation does not allow redundancy

- Every field of every tuple records a piece of information that cannot be inferred from the values in all other non-key fields
- If a relation is NOT in BCNF, redundancy exists

Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

If a relation is not in BCNF, can we make it BCNF?
This process of conversion is called normalization

A Motivation Example

Through decomposition, we can make each table to be in BCNF.

Semantically, one table describes employee, while the other table describes wages

Hourly_Emps

Constraints:

- *ssn* is the primary key
- Rating → hrly_wages

SSN	Name	Lot	Rd	W	Н
			d		
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps2

<u>S</u>	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

ssn is the primary key

Wages

<u>R</u> _	W
8	10
5	7

Rating → *hrly_wages*

Normalization through Decomposition

- A decomposition of a relation schema R
 - The replacement of the schema R by two or more relation schemas, each contains a subset of R and together include all attributes of R.
- A decomposition must ensure two properties:
 - Lossless join
 - Dependency preservation

Lossless Join Decomposition

 Decomposition of R into X and Y is a <u>lossless-join</u> decomposition if every instance in R can be recovered through a nature join between X and Y

Hourly_Emps2

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
23 1-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

<u>R</u> _	W	
8	10	
5	7	
)	/	

Wages

Nature join between X and Y:

For each record x_i in X and each record y_j in Y, "union" them into a record x_iy_i if they have the same value on their common attributes

SSN	Name	Lot	Rd	W	Н
			d		
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Lossless Join Decomposition: Property 1

<u>Property 1</u>: A decomposition of R into R1 and R2 has the lossless join property with respect to a set of FDs F of R if and only if either

$$R1 \cap R2 \rightarrow R1$$
 is in F⁺ or $R1 \cap R2 \rightarrow R2$ is in F⁺.

The common attribute must be a super key for either R1 or R2.

Lossless Join Decomposition: Property 2

- If (1) a decomposition of R into $\{R_1, ..., R_m\}$ the lossless join property with respect to a set of FDs F on R, and
- (2) a decomposition R_i into $\{Q_1, ..., \text{ and } Q_n\}$ has the lossless join property with respect to the projection of F on R_i .

then the decomposition of R into $\{R_1, R_2, ..., R_{i-1}, Q_1, ..., Q_n, R_{i+1}, ..., R_m\}$ of R has the lossless join property with respect to F.

Lossless Join Decomposition into BCNF relations

- 1. Set $D \leftarrow \{R\}$
- 2. <u>While</u> there is a relation schema Q in D that is not in BCNF <u>do</u> <u>begin</u>
 - Find a functional dependency $X \rightarrow Y$ in Q that violates BCNF;
 - Compute X⁺
 - Replace Q in D by two schemas (Q-X⁺) and (X⁺)
 end;

Q can be recovered by performing a nature join between $(Q-X^+)$ and (X^+) . Why?

 X is their common attribute set and X⁺ is a super key in one relation

Lossless Join Decomposition into BCNF relations

- 1. R can be recovered by joining R1 and R2, because
 - X is their common attribute set
 - X is a key in one relation
- 2. Check if R1 and R2 are in BCNF, decompose them if not
- 3. How to check Ri is in BCNF???
 - Need to know all dependencies on Ri
 - For each subset of Ri's attributes X, compute X⁺
 - Either X⁺=Ri (X being a super key) or
 - X⁺=X (X being non-key attributes)

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)
FDs = name→addr, name →favBeer, beerLiked→manf

- 1. Set $D \leftarrow \{R\}$
- 2. <u>While</u> there is a relation schema Q in D that is not in BCNF <u>do</u> <u>begin</u>
 - Find a functional dependency $X \rightarrow Y$ in Q that violates BCNF;
 - Compute X⁺
 - Replace Q in D by two schemas (Q-X⁺) and (X⁺)
 end;

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)
FDs = name→addr, name →favBeer, beerLiked→manf

Drinkers(name, addr, beersLiked, manf, favBeer)

- name→addr violates BCNF
- {name}+ = {name, addr, favBeer}

Drinkers1(name, addr, favBeer)

Drinkers2(name, beersLiked, manf)

- beersLiked->manf violates BCNF
- {beersLiked}+ = {name, beersLiked}

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)
FDs = name→addr, name →favBeer, beerLiked→manf

- The resulting decomposition of Drinkers
 - 1. Drinkers1(name, addr, favBeer)
 - 2. Drinkers3(beersLiked, manf)
 - 3. Drinkers4(name, beersLiked)
- Notes
 - Drinkers1 tells us about drinkers,
 - Drinkers3 tells us about beers, and
 - Drinkers4 tells us the relationship between drinkers and the beers they like.

Quick Review

1. BCNF

- For each non-trivial $X \rightarrow A$, X is a superkey
- Algorithms for checking BCNF
- 2. Lossless-join decomposition
 - Decomposition of R into X and Y is a lossless-join decomposition if every instance in R can be recovered through a nature join between X and Y
- 3. Algorithm for lossless-join decomposition into BCNF
 - 1. While there is a relation schema Q in D that is not in BCNF do
 - 2. <u>begin</u>
 - Choose a relation schema Q in D that is not in BCNF;
 - Find a functional dependency $X \rightarrow Y$ in Q that violates BCNF;
 - Compute X⁺
 - Replace Q in D by two schemas (Q-X⁺) and (X⁺) end;

What we have achieved so far: Given a relation R and a set of dependency FD, we can always perform lossless join decomposition on R such that each of the resulted smaller relations is in BCNF

How bout dependency? Unfortuantely, it may be lost

Example

R(ABC), $F = \{AB \rightarrow C, C \rightarrow A\}$

How bout dependency? Unfortuantely, it may be lost

Example

R(ABC),
$$F = \{AB \rightarrow C, C \rightarrow A\}$$

- Is it in BCNF? $C \rightarrow A$ violates
- Decompose R into $R_1(CA)$ and $R_2(BC)$
 - Is lossless-join decomposition?
 - Is $AB \rightarrow C$ preserved?

If a dependency is lost, we would have to perform a join to check integrity, which is expensive.

For example, when a new record (a_i, b_i, c_i) is inserted, we need to join R_1 and R_2 in order to check if two records having the same values of a_i and b_i have same value on c_i .

We Want Dependency Preservation

- When a dependency is lost, we need to perform join operation in order to check the constraint, which is expensive!
- Unfortunately, in general, there may not be a dependency preserving decomposition into BCNF.

Dependancy Preservation

R with a set of FDs F

Decomposition of R into R_1 and R_2 is dependency preserving if $(F_{R1} \cup F_{R2})^+ = F^+$

A Formal Definition: Dependancy Preservation

The projection of F on R_i (F_{R_i}) is defined as:

$$F_{Ri} = \{X \rightarrow Y \mid X \rightarrow Y \in F^+, X \cup Y \subseteq R_i\}$$

D={R₁,...,R_n} of R is dependency preserving with respect to F if $(\bigcup_{i=1}^n F_{Ri})^+ = F^+$, meaning that $(\bigcup_{i=1}^n F_{Ri})$ is equivalent to F.

THIRD NORMAL FORM (3NF)

A relation R is in 3NF if whenever an FD $X \rightarrow A$ holds in R, one of the following statements is true:

- $X \rightarrow A$ is a trivial FD, or
- X is a superkey, or
- A is part of some key

By making an exception for certain dependencies involving some key attributes, we can ensure that every relation schema can be decomposed into a collection of 3NF with two desirable properties: lossless-join and dependency-preserving.

3NF allows $X \rightarrow Y$ in two cases

Case 1: X is a proper subset of some key (partial dependency)

Case 2: X is not a proper subset of any key (*transitive* dependency)

as long as Y is part of some key

What problems with them?

- Partial dependency causes data redundancy
 - Since $X \rightarrow Y$ and X is not a key, X could be redundant, so Y.

- Transitive dependency $K \rightarrow X \rightarrow Y$ makes it impossible to record the values of (K, X, Y) unless all of them are known
 - Since $K \rightarrow X \rightarrow Y$, we cannot associate an X value with a K value unless we also associate an X value with Y value

Dependency-Preserving Decomposition

Inputs: A relation R with a set F_{min} of FDs that is a minimum cover D(R1, R2, ..., Rn) is a lossless-join decomposition of R

- 1. Find all dependencies in F that are not preserved
- 2. For each such dependency $X \rightarrow A$, create a relation schema XA and add it to the decomposition of R
 - Every dependency in F is now preserved

Proof: XA is in 3rd NF

- 1. X must be a key for XA
 - Since $X \rightarrow A$ is in a minimal cover, $Y \rightarrow A$ does not hold for any Y that is a subset of X
- 2. For any other dependencies hold over XA, say $Y \rightarrow Z$, in F_{min} , it must satisfy 3NF conditions
 - If Z is A, Y must be X
 - If Z is not A, Z must be part of X

Bottom-Up Approach (Synthesis): Lossless-Join and Dependency Preserving Decomposition into 3NF

- Given a relation R and a dependency set F
 - Find a minimum cover
 - For each dependency X-->A in F, make it a relation XA

R(ABCDE)

$$F=\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

Step 1: Find a minimum cover, $G = \{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$

Step 2: $R1(\underline{AC}E)$, $R2(\underline{E}D)$, $R3(\underline{A}B)$

Step 3: Is this a lossless-join decomposition?

Top-Down Approach: Lossless-Join and Dependency Preserving Decomposition into 3NF

- A. Lossless-Join Decomposition
- 1. Set $D \leftarrow \{R\}$, and make F a minimum cover
- 2. While there is a relation schema Q in D that is not in BCNF
 - Find a functional dependency $X \rightarrow Y$ in Q that violates BCNF;
 - Replace Q in D by two schemas (Q-Y) and (XUY)
- B. Dependency-Preserving Decomposition
- 1. Assume the decomposition is D(R1, R2, ..., Rn) and the FD sets are accordingly F1, F2, ..., and Fn (let their union be F')
- 2. For each dependency $X \rightarrow A$ in the original F (*needs to be a minimum cover*), check if it can be inferred from F'
 - If not, create a relation schema XA and add it to the decomposition of R

R(ABCDE) $F=\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$

Step 1: Lossless join decomposition

Step 2: Dependency preserving decomposition

Determine Normal Forms

- 1) BCNF
 - For each $X \rightarrow A$, is it a trivial dependency?
 - Is X a superkey?
- 2) 3NF
 - Suppose $X \rightarrow A$ violate BCNF
 - Is A part of some key?

Indicate the strongest normal form of each of the following relations

- R1(ABCDE) F1= $\{A \rightarrow B, C \rightarrow D, ACE \rightarrow ABCDE\}$
- R2(ABCEF) F2={AB \rightarrow C, B \rightarrow F, F \rightarrow E}
 - 1) BCNF
 - For each $X \rightarrow A$, is it a trivial dependency?
 - Is X a superkey?
 - 2) 3NF
 - Suppose X→A violate BCNF
 - Is A part of some key?

- Consider a relation R with five attributes: ABCDE. $F=\{A \rightarrow B, BC \rightarrow E, ED \rightarrow A\}$
 - Are {ECD}, {ACD}, {BCD} keys for R?
 - Is R in BCNF?
 - Is R in 3NF?

• Prove that, if R is in 3NF and every key is simple (i.e, a single attribute), then R is in BCNF

• Prove that, if R has only one key, it is in BCNF if and only if it is in 3NF.

Normalization Review

1. Functional Dependency

- a) Amstrong's axioms
- b) Attribute closure (A⁺)
- c) Dependency closure (F⁺)
- d) Minimum cover (F_{min})

2. Normal Forms

- a) BCNF
- b) 3NF

3. Decomposition

- a) Lossless join
- b) Dependency preserving