0.1 Esercizio 1

$$max x_1 + x_2 (1)$$

$$x_1 + x_2 \le 2 \tag{2}$$

$$2x_1 - x_2 \le 0 \tag{3}$$

$$x_1 \ge 0 \tag{4}$$

$$x_2 \ge 0 \tag{5}$$

0.2 Esercizio 2

$$max x_1 + x_2 (6)$$

$$x_1 + x_2 - x_3 = 2 (7)$$

$$2x_1 - x_2 \le 0 \tag{8}$$

$$x_1, x_2 \ge 0 \tag{9}$$

$$x_3 \le 0 \tag{10}$$

Cambio il segno di x_3 .

$$max x_1 + x_2 \tag{11}$$

$$x_1 + x_2 + x_3 = 2 (12)$$

$$2x_1 - x_2 \le 0 \tag{13}$$

$$x_1, x_2, x_3 \ge 0 \tag{14}$$

Trasformo il vincolo 2) che ha = in due vincoli \geq , \leq , e cambio il primo per renderlo in forma di \leq .

$$max x_1 + x_2 \tag{15}$$

$$-x_1 - x_2 - x_3 \le -2 \tag{16}$$

$$x_1 + x_2 + x_3 \le 2 \tag{17}$$

$$2x_1 - x_2 \le 0 \tag{18}$$

$$x_1, x_2, x_3 \ge 0 \tag{19}$$

Creo tre variabili slack: x_4, x_5, x_6 .

$$max x_1 + x_2 (20)$$

$$-x_1 - x_2 - x_3 + x_4 = -2 (21)$$

$$x_1 + x_2 + x_3 + x_5 = 2 (22)$$

$$2x_1 - x_2 + x_6 = 0 (23)$$

$$x_1, x_2, x_3 \ge 0 \tag{24}$$

$$x_4, x_5, x_6 \ge 0 \tag{25}$$

Creo il vincolo con Z per rappresentare la funzione obiettivo.

$$max Z$$
 (26)

$$Z = x_1 + x_2 \tag{27}$$

$$-x_1 - x_2 - x_3 + x_4 = -2 (28)$$

$$x_1 + x_2 + x_3 + x_5 = 2 (29)$$

$$2x_1 - x_2 + x_6 = 0 (30)$$

$$x_1, x_2, x_3 \ge 0 \tag{31}$$

$$x_4, x_5, x_6 \ge 0 \tag{32}$$

Iterazione 0 Imposto le variabili x_1 , x_2 e x_3 a 0, inserendole come variabili non di base. Le variabili della base di partenza sono Z, x_4 , x_5 , x_6 . La tabella di partenza e':

Iterazione 1 Seleziono la variabile x_1 come variabile entrante, perche' il suo coefficiente nella riga 0 e' positivo e non esiste un'altra variabile nella stessa riga con un coefficiente positivo piu' grande.

Nella colonna x_1 le righe (2, 3) hanno coefficienti strettamente positivi, quindi riduco i termini noti di conseguenza.

Risultano rispettivamente (2, 0). Seleziono la riga 3, che ha il coefficiente e' il piu' piccolo.

Moltiplico la riga 3 per $\frac{1}{2}$ per trasformare il numero pivot in 1.

Quindi ricalcolo le altre righe di conseguenza.

Iterazione 2 Seleziono la variabile x_2 come variabile entrante, perche' il suo coefficiente nella riga 0 e' positivo e non esiste un'altra variabile nella stessa riga con un coefficiente positivo piu' grande.

Nella colonna x_2 solo la riga 2 ha un coefficiente strettamente positivo, quindi riduco i termini noti di conseguenza.

Moltiplico la riga 2 per 2 per trasformare il numero pivot in 1.

base	eq	\mathbf{Z}	x_1	x_2	x_3	x_4	x_5	x_6	termine noto
\mathbf{Z}	0	1	0	$\frac{1}{2}$	0	0	0	$-\frac{1}{2}$	0
x_4	1	0	0	$-\frac{3}{2}$	-1	1	0	$\frac{1}{2}$	-2
x_5	2	0	0	1	2	0	2	-1	4
x_6	3	0	1	$-\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0

Quindi ricalcolo le altre righe di conseguenza.

ba	se	eq	\mathbf{Z}	x_1	x_2	x_3	x_4	x_5	x_6	termine noto
Z	7	0	1	0	$\frac{1}{2}$	0	0	0	$-\frac{1}{2}$	0
x	4	1	0	0	$-\frac{3}{2}$	-1	1	0	$\frac{1}{2}$	-2
x	5	2	0	0	1	2	0	2	-1	4
x	6	3	0	1	$-\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0