MATEMATIKA DISKRIT

Matematika Komputasi

C. Kuntoro Adi, S.J. - 2020

Pertemuan 5: Fungsi

FUNGSI

- I. Pengantar
- 2. Fungsi pada Himpunan
- 3. Kesamaan Fungsi
- 4. Fungsi injektif, surjektif, bijektif
- 5. Inverse fungsi
- 6. Komposisi Fungsi
- 7. Fungsi dalam pemrograman

Pengantar

1. Fungsi didefinisikan pada Himpunan

• Fungsi f dari X ke Y didefinisikan sebagai berikut:

f adalah fungsi dari X ke Y $\Leftrightarrow (\forall x \in X)(\exists ! y \in Y) \text{ } f(x) = y$

Catatan:

- 1. Setiap elemen $x \in X$ memiliki kawan di Y (disebut f(x))
- 2. f(x) tunggal
- 3. Syarat fungsi terletak pada daerah asalnya (= X)

Contoh

• Manakah di antara relasi yang digambarkan di bawah ini yang merupakan fungsi dari $X = \{a, b, c\}$ ke $Y = \{1, 2, 3, 4\}$

Contoh

 $X = \{a, b, c\}$ ke $Y = \{1, 2, 3, 4\}$. Didefinisikan suatu fungsi $f: X \rightarrow Y$ dengan diagram panah pada gambar berikut.

- a. Tuliskan daerah asal (domain), kodomain dan range atau daerah hasil fungsi f
- b. Carilah f(a), f(b), f(c)

Beberapa fungsi yang sering digunakan

- Fungsi identitas
- f:X \rightarrow X; f(x) = x f: X \rightarrow Y; f(x) = yo \forall x \in X 2. Fungsi konstan
- 3. Fungsi floor f:R(riil) \rightarrow R(riil); f(x) = $\lfloor x \rfloor$ = bilangan bulat terbesar yang kurang atau sama dengan x Misal f(3,25)=3; f(-4,77)=-5; f(5)=5

Beberapa fungsi yang sering digunakan

4. Fungsi Hamming distance

Ukuran perbedaan, jarak antara 2 string biner yang memiliki panjang yang sama Didefinisikan H: $\Sigma n \times \Sigma n \rightarrow Z+$ (himpunan bilangan positip) H(s,t) = banyaknya posisi di mana s dan t memiliki nilai berbeda

Misal n = 5 maka: H(11111,00000) = 5 karena di semua posisi (=5) nilai kedua string berbeda H(11000,00010) = 3 karena kedua string berbeda di 3 posisi

5. Fungsi polynomial derajad n

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ ∀x∈R; dengan n bilangan bulat positip

Beberapa fungsi yang sering digunakan

Fungsi eksponensial
 Fungsi eksponensial dengan basis b
 adalah fungsi bilangan riil R ke

adalah fungsi bilangan riil R ke bilangan riil positip R+ yang didefinisikan sebagai berikut:

f: $R \rightarrow R +$ dengan $f(x) = b^x$, $\forall x \in R$ Jika b > I maka fungsi akan menaik, dan jika b < I fungsi akan menurun

Beberapa fungsi yang sering digunakan

7. Fungsi logaritma

Fungsi logaritma dengan basis b adalah fungsi bilangan riil R ke bilangan riil positip R+ yang didefinisikan sebagai berikut:

f: $R \rightarrow R+$ dengan $f(x) = b \log x, \forall x \in R$ Dalam ilmu computer, basis yang sering digunakan adalah basis b=2

2. Kesamaan Fungsi

f dan g adalah fungsi $X \rightarrow Y$. Fungsi f = g bila dan hanya bila f(x) = g(x)

Contoh:

$$f(x) = (x-1)(x-5)$$

 $g(x) = x^2 - 6x + 5$
Apakah $f(x) = g(x)$?!

3. Fungsi injektif, surjektif, bijektif

a. Fungsi injektif (one-to-one)

 $f: X \rightarrow Y$ adalah fungsi injektif bhb (bila dan hanya bila) $y \in Y$ paling banyak hanyak memiliki satu kawan di X

$$\Leftrightarrow$$
 $(\forall x_1, x_2 \in X) f(x_1) = f(x_2) \text{ maka } x_1 = x_2$
 \Leftrightarrow Kontra posisi: $x_1 \neq x_2 \text{ maka } f(x_1) \neq f(x_2)$

f:
$$X \rightarrow Y$$
 bukan fungsi injektif
($\exists x_1, x_2 \in X$) $f(x_1) = f(x_2); x_1 \neq x_2$

3. Fungsi injektif, surjektif, bijektif

Fungsi injektif (one-to-one)

Fungsi injektif

Bukan fungsi injektif

b. Fungsi surjektif (on-to)

f: $X \to Y$ adalah fungsi surjektif bhb setiap anggota Y memiliki kawan di X

$$(\forall y \in Y)(\exists x \in X) f(x) = y$$

 $f{:}\,X \to Y$ bukan fungsi surjektif bhb

$$(\exists y \in Y)(\forall x \in X) f(x) \neq y$$

Fungsi bijektif (korespondensi satu-satu)

4. Inverse Fungsi

f: $X \rightarrow Y$ suatu fungsi bijektif, dan $y \in Y$. Inverse fungsi dedefinisikan sebagai

$$f^{-1}(y)$$
 = elemen $x \in X$ sedemikian sehingga $f(x) = y$ atau

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

5. Komposisi Fungsi

- Jika ada beberapa fungsi, fungsi-fungsi tersebut bisa dikomposisikan untuk menghasilkan fungsi baru.
- Misalkan f: $X \rightarrow Y$ dan g: $Y' \rightarrow Z$ adalah fungsi dengan sifat kodomain $f(=Y) \subseteq$ domain g (=Y'). Didefinisikan komposisi fungsi g dan f (simbol gof) sebagai berikut:

$$(\forall x \in X)(g \circ f)(X) = g(f(x))$$

5. Komposisi Fungsi

$$(\forall x \in X)(g \circ f)(X) = g(f(x))$$

