

COMPARAÇÃO DE ESTRATÉGIAS DE EXPLORAÇÃO DE UM AMBIENTE TIPO MALHA 2D POR MEIO DE SISTEMAS MULTIAGENTE COM BUSCA ON-LINE DFS.

Estudante: Emerson Felipe Da Costa Aguiar

Orientador(a): Cesar Augusto Tacla

Curso: Engenharia da Computação

Campus: Curitiba

Modalidade: PIBIC

Introdução

- A exploração eficiente de ambientes desconhecidos é um desafio enfrentado em diversas áreas como a robótica, inteligência artificial e até a exploração espacial.
- O algoritmo de busca online deep-first search (DFS) é uma abordagem interessante para enfrentar esse problema.

Introdução

 Porém, existe um detalhe nesse algoritmo: a escolha do próximo nó caso o nó atual tenha múltiplos filhos

 Essa decisão se torna importante quando aplicamos esse algoritmo em ambientes complexos. Dependendo da estratégia usada pode levar uma exploração mais ou menos eficiente do ambiente.

Objetivos

 Neste trabalho, investigamos diversas estratégias de exploração em ambientes complexos, utilizando um sistema multi-agente com agentes equipados com o algoritmo on-line DFS.

 Nosso objetivo é determinar qual estratégia se mostra mais eficaz em diferentes cenários e identificar as razões por trás desse desempenho.

Materiais e Métodos

- Foram construídos diversos ambientes simulados bidimensionais, utilizando a linguagem Python e a biblioteca Pygame, variando tanto o tamanho quanto a complexidade dos obstáculos.
- ambientes de 20x20, 55x55 e 90x90 espaços.
- ambientes de 55x55 com obstáculos em vertical, horizontal e diagonal.

Materiais e Métodos

- O objetivo dos agentes é percorrer cada área do ambiente ao menos uma vez.
- Com o intuito de atingir o objetivo, foram testadas diversas combinações de número de agentes e estratégias de tomada de decisão.
- Ao final da exploração completa do ambiente, o número total de passos dados pelos agentes será registrado para futuras comparações.

Estratégias usadas

- Os experimentos foram realizados com grupos de 8, 16 e 32 agentes.
- 1. Escolha randômica da próxima direção.
- 1. A escolha da mesma direção de acordo com a numeração do agente e então uma variação com pulos de 1 e 3 espaços em sentido horário e antihorário.
- 1. A escolha da mesma direção de acordo com a numeração do agente e então uma variação com pulos de 1, 3, 5 e 7 espaços.

Resultados em ambientes sem obstáculos

· Média dos experimento com a estratégia 1.

Número de agentes	Ambiente 20x20	Ambiente 55x55	Ambiente 90x90
8	4900,7	46904,2	144974,4
16	4276,1	57985,6	180602,8
32	6909,1	78214,1	196746,4

Experimento com a estratégia 2.

Número de agentes	Ambiente 20x20	Ambiente 55x55	Ambiente 90x90
8	8614	75736	215534
16	16747	151248	428490
32	9533	91135	268253

Experimentos com a estratégia 3.

Número de agentes	Ambiente 20x20	Ambiente 55x55	Ambiente 90x90
8	8614	75736	215534
16	5645	48079	138365
32	9525	91127	268245

Resultados em ambientes com obstáculos

Média dos experimento com a estratégia 1.

Número de agentes	Obstáculos horizontais	Obstáculos verticais	Obstáculos diagonais
8	118923,6	131251,2	165840,6
16	194800,6	221479,4	260737,8
32	365131,8	392796,2	417527

Experimento com a estratégia 2.

Número de agentes	Obstáculos horizontais	Obstáculos verticais	Obstáculos diagonais
8	137786	140019	159737
16	275570	275584	319473
<u>3</u> 2	105265	105273	123379

Experimentos com a estratégia 3.

Número de agentes	Obstáculos horizontais	Obstáculos verticais	Obstáculos diagonais
8	137786	140019	159737
16	73241	71151	61755
32	105257	105265	123371

Discussão/Desenvolvimento

• Os resultados experimentais demonstraram que, na maioria das situações para ambientes sem obstáculos, agentes que adotavam uma abordagem aleatória para a seleção de seus próximos passos superaram aqueles que empregam estratégias mais elaboradas.

Discussão/Desenvolvimento

• No entanto, a presença de obstáculos no ambiente revelou a fragilidade da estratégia aleatória, que, em muitas situações, não se mostrou tão eficiente quanto as demais.

Conclusão

- Com os resultados e discussões podemos concluir que a estratégia aleatória se mostrou particularmente vantajosa em ambientes que oferecem grande liberdade de movimento, sem a presença de obstáculos que possam restringir a exploração.
- Os experimentos também revelaram que um excesso de agentes pode aumentar o número total de passos para exploração do ambiente, indicando a existência de um ponto de saturação em relação ao número de agentes. A relação entre o número de agentes e a eficiência da exploração requer estudos mais detalhados e focada especificamente nesse aspecto.

Referências Bibliográficas

- Artificial Intelligence A Modern Approach : Stuart Russel; Peter Novrig
- An Introduction to Multiagent Systems : Michael Wooldridge

Agradecimentos

Agência de Fomento: Fundação Araucária

