Project-Midsem Report

-> DFT of an odd signal is purely imaginary 4 here odd since sin is odd/x(k)=x(N-K)

230 Oct. 1)

Odd Signals mod &

Def.

Ry(n) is an odd styral (mod r)

$$\iff$$

$$x_r(n) = \begin{cases} x_r(\gcd(n,r)), & \text{if } \frac{r}{\gcd(n,r)} \equiv 0 \bmod 4, \\ & \text{and } \frac{n}{\gcd(n,r)} \equiv 1 \bmod 4 \\ -x_r(\gcd(n,r)), & \text{if } \frac{r}{\gcd(n,r)} \equiv 0 \bmod 4, \ \forall n. \\ & \text{and } \frac{n}{\gcd(n,r)} \equiv 3 \bmod 4 \\ 0, & \text{elsewhere.} \end{cases}$$

Proporties:

From dar.,

for monzeno 2/(n), y=0 mod 4 w 4 (Y

X(n) is postatic with period Y

For
$$\chi_r(n+kr)$$
,
$$gcd(n+kr,r) = gcd(n+kr-kr,r)$$

$$= gcd(n,r)$$
by endids algo.

zy(n) is odd. (is) $\chi_{\gamma}(-n) = -\chi_{\gamma}(n)$ Pr. Su papar-

How many dishlict values can xx(n) take?

So here are certain limitations imposed on what values $\chi_r(n)$ could take cuz of alove.

Stree it is pentolic with period v, max. ho. of dishret values is 8.

But turns out, we can come up with a bather about why struct given in [6]'s paper.

The result is,

For a given r,

4/Y 4 Tran be written as a product of prime backonishs.

 $\gamma = 4 P_1 P_2 \cdots P_{no. d}$ prine factors

There are Z(x) dishhot valous which Xx(n) can hake, where,

 $Z(x) = (M_1+1)(M_2+1) \dots (M_{no,of}+1)$

So by Mis, (f x=4.

Z(x) = 1

 $y=8, \ Z(y)=2,$ etc.

Can be express xyon, additively as a sum of
Can be express xx(n) additively as a sum of simplex signals? - a natural question.
Well, yes. Similar to [6), we have,
$\chi_{\gamma}(n) = \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $ $= \sum_{\substack{l \in \mathbb{N} \\ d \geq 1}} \chi_{\gamma}(\frac{\gamma}{d}) \times h_{\gamma,d}(n) $
dzi > summing over the atmisses
Whlre
My, d is periodic in & & is defined for ne(0, r-1) as,
$h_{r,d}(n)$ $=\begin{cases} 1, & \text{if } \frac{r}{\gcd(n,r)} = d \equiv 0 \bmod 4, \frac{dn}{r} \equiv 1 \bmod 4 \\ -1, & \text{if } \frac{r}{\gcd(n,r)} = d \equiv 0 \bmod 4, \frac{dn}{r} \equiv 3 \bmod 4 \\ 0, & \text{otherwise.} \end{cases}$ $=\begin{cases} 1, & \text{if } \frac{r}{\gcd(n,r)} = d \equiv 0 \bmod 4, \frac{dn}{r} \equiv 1 \bmod 4 \\ 0, & \text{otherwise.} \end{cases}$
A simple rignal of 1,-1,0.
So, we have expressed our x(n) as a
So, we have expressed our x _r (n) as a saled our of simplex h _{r,d} (n) signals.
MOLIDO CIMI KON DO PLE
Clearly, h _{r,d} (n) signals are no read [6] paper's almody and r.
also odd mod r.
Sby our clem- Romally.
just one examine the two homulae. Chumma trivial.

NOW, we have (i). if dy = 1 mod 4, dy is of he form 4k+1 Too that case we want 1. we can write it as i. dup c. (i4/ct) = i x [= i-1 IV dy = 3 mod 4, dy = 4k+3. We want -1. we can write (1 as) $\frac{-du/v}{v \cdot i} = \frac{i}{-i} = -1$ 801

Our Job was to find DFT of 2x(n), which we have now expressed as a linear combination of h,d(n)'s.

So, since DFT is linear, if we can just find a near way to get DFT of how (11), we would be one step dose to being done. So,

DFT of hr,a(n) from our hypical DFT, This halahou $H_{r,d}(n) = \sum_{0 \le k \le r-1}^{-1} h_{r,d}(k) h_r^{-1}$ from what h_r^{-1} where $h_r^{-1} = 2\pi i l_r$ appecially with the appointe 12 km but mis is he one in the paper so want fush wrap your head around it. p 22. $H_{\gamma,d}(n) = i \cdot Z \cdot W_{\gamma} \cdot i \cdot V_{\gamma}$ from 0 = 0 mod 4 $W_{d} = 0$ $W_{d}^{1/4} = 0$ of of How? [god (d, k1)=1

Hrd(N) = 1. - 5000 My. (Md/4) K. $H_{\gamma,d}(n) = i \cdot \sum_{k} W_{k}^{-k}(n + \frac{d}{4})$ > ≤ \$(n) elements cuz addition of 0<k1<1d=0 md 4 gcd (d,k1)=1 This is banically an odd type of Pamayuyan $C_{\mathcal{A}}(n) = \overline{Z} W_{\mathcal{A}}^{-nU}$ parically some 0=U=d-1 are important in gcd (U/d) =1 Chack wikipedia enlers borier function $\varnothing(d)$ elements -) This is called he even ramanyjon 8mm. 80, notice similarity of Cu(n) & Hrd(n). Les con write, $(1+_{rd}(n)=i\cdot c_d(n+\frac{d}{4}), d\geq 1, d\equiv 0 \mod 4$ Allhough Cd(n) is an even function, G(n+4) when d=0 mod 4 ls an odd hunchien.

J Pr.

tion, $c_d(n+d/4)$ is an odd function of n if $d \equiv 0 \mod 4$. To show this, let y = n + d/4, so n - d/4 = y - d/2, and

$$c_d\left(-n + \frac{d}{4}\right) = c_d\left(n - \frac{d}{4}\right) = c_d\left(y - \frac{d}{2}\right)$$

$$= \sum_{\substack{0 \le U \le d-1 \\ \gcd(U,d) = 1}} W_d^{-(y - \frac{d}{2})U}$$

Simple

$$= \sum_{\substack{0 \le U \le d-1 \\ \gcd(U,d)=1}} \exp\left(\frac{-i2\pi \cdot \left(y - \frac{d}{2}\right)U}{d}\right)$$

$$\sum_{\substack{0 \le U \le d-1 \\ \gcd(U,d)=1}} \exp\left(\frac{-i2\pi y}{d} + i\pi U\right)$$

$$= \sum_{\substack{0 \le U \le d-1 \\ \gcd(U,d)=1}} \exp\left(\frac{-i2\pi y}{d}\right) \exp(i\pi U)$$

$$\gcd(\overline{U}, d) = 1$$
 and $d \equiv 0 \mod 4$
 $\Rightarrow U \equiv 1 \mod 2 \Rightarrow \exp(i\pi U) \equiv -1$

$$\therefore c_d \left(-n + \frac{d}{4}\right)$$

$$= \sum_{\substack{0 \le U \le d-1 \\ \gcd(U,d)=1}} \exp\left(\frac{-i2\pi y}{d}\right) \exp(i\pi U)$$

$$= -\sum_{\substack{0 \le U \le d-1\\ \gcd(U,d)=1}} \exp\left(\frac{-i2\pi y}{d}\right)$$

$$= -c_d(y) = -c_d\left(n + \frac{d}{4}\right).$$

The proof is complete.

notice how ruls is the only because de omod 4.

Otherwise, This wont be an odd further which which world hear that

We run into some

unneathers/house.

Very fascinating. This is partly why In our very fascinating in Waldern., we had to make sure we define it like mat so that 41%.

DFT of Xx(n)

Nou, why linearly of DFT 4 37,40

$$/\times_{r}(n) = i \cdot \sum_{\substack{d \mid r \\ d \geq 1}} \chi_{r}(\frac{r}{d}) \cdot C_{d}(n + \frac{d}{4})$$

$$\begin{array}{lll}
& \times_{Y}(n) \text{ is odd.} \\
& PF. \\
& \times_{Y}(-n) = i \sum_{\substack{d \mid Y \\ d \geq 1}} x_{Y}(\frac{x}{d}) \cdot C_{d}(-n+\frac{d}{4}) \\
& = -C_{d}(n+\frac{d}{4}) \\
& = -X_{Y}(n)
\end{array}$$

$$= -X_{Y}(n)$$
from papers.

So now, we only need to compute Z(n) unique values of $X_Y(n)$. There values are,

$$\times_{\gamma}\left(\frac{\gamma}{D}\right) = i \sum_{\substack{d \mid \gamma \\ d \equiv 0 \text{ mod } 4}} \chi_{\gamma}\left(\frac{\gamma}{d}\right) \cdot C_{d}\left(\frac{\gamma}{D} + \frac{d}{4}\right), \quad D > 1, \quad D \mid \gamma$$

$$(0)X'=(0-)YX \iff bbo\ 2i\ (n)_{Y}X'$$
; $O=(0)_{Y}X$, bnn

Ex:

As a concrete example, let us compute the $\tau(12)=2$ distinct Fourier coefficients for $x_{12}(n)$. Using (11), we have

$$X_{12}(0) = 0 = X_{12}(2) = X_{12}(4) = X_{12}(6)$$

$$= X_{12}(8) = X_{12}(10)$$

$$X_{12}(1) = X_{12}(5) = -X_{12}(7) = -X_{12}(11)$$

$$\Rightarrow = -2ix_{12}(1) - 2ix_{12}(3)$$

$$X_{12}(3) = -X_{12}(9) = -4ix_{12}(1) + 2ix_{12}(3).$$
 (12)

see paper.

NOW, we know how to calculate DFT of odd signals mad v (e) Xr(v).

What about the 'mverse?

IDFT of Xr(M)

We can we the some How Livean contribution decomposition approach as above 4 get a very similar expression but with a -ve sign & saling,

Our regular IDFT,

 $\chi_{\gamma}(n) = \frac{1}{\gamma} \sum_{k=0}^{\gamma-1} \chi_{\gamma}(n) W_{\gamma}^{nk}$

in DFT Le didn't do

After going hough a process similar to what we did to get our DFT, we get,

 $\frac{1}{\chi_{\gamma}(n)} = \frac{-i}{\gamma} \frac{1}{2} \frac{1}{2} \frac{\chi_{\gamma}(\frac{\gamma}{d}) \cdot C_{d}(n + \frac{d}{4})}{\frac{d\gamma}{d}}$ This is $d \equiv 0 \mod 4$ From our

from our DFT egn

Now, we have DF1& IDF1 for our odd signals nod r. The algo shiff ends here

In [6], we have some hity for even signals. What if we have a signal which is a

Sum of an odd mod x & an even mod x Sum of Even & Odd

Our next step is to study when we put together the even signals and odd signals \pmod{r} . Assume r=12; then from [6], the values of the even signal in its main period may be represented by a sequence of numbers of this form

$$\langle y_{12}(n), n=0\dots 11\rangle = \langle a,b,c,d,e,b,f,b,e,d,c,b\rangle \quad (15\text{-}1)$$
 and from (2)

$$\langle x_{12}(n), n = 0...11 \rangle$$

= $\langle 0, p, 0, q, 0, p, 0, -p, 0, -q, 0, -p \rangle$. (15-2)

Combining (15-1) and (15-2), we can get

$$\langle z_{12}(n), n = 0...11 \rangle$$

= $\langle a, p + b, c, q + d, e, p + b, f, b$
- $p, e, d - q, c, b - p \rangle$. (15-3)

As we can see, the values we can use are: a, p + b, c, q + d, e, f, b - p, d - q, eight distinct values in total. Compared with (15-1), which can only use six values, we find that (15-3) has 33% increase. As a matter of fact, when r is big, the values, or what we called *dimensions*, have nearly 100% increase from that in [6]. We use an example to demonstrate that. If $r = 2^n$, then, from [6], the dimensions are n + 1, but the odd part provides another n - 1 dimensions. So overall, it has 2n dimensions, which have increased by 100% when $n \gg 2$.

So, we see an increase in the po. of dishher value which makes sense.

no. of distinct values akon "dimensions"

Similarly,

if you take an even signal I add to it a

Circular shirked version of itself, its DFT Xx(n)

values will have more district values

(ie) dimensions.

Also in he paper we have, dinentions of even (odd netword = dinentions of circular shift retwood

Z-domain sepresulation of odd signals mad r is also given in the last section of the paper. But mis is not of our concern as Z-transforms are not there in our course of our main

To implement the DFT & IDFT algos given in the paper for odd signels want which are based on odd ramanyjon sums & to discuss how it works & why It is bether than just doing the normal DFT directly-

We have discussed how it works but we are yet to see why it is better than doing the mormal DFT directly.