Def. 1 Пусть $X = \{x_i\}_{i=1}^{\infty}$ - множество переменных, $C = \{c_i\}_{i=1}^{\infty}$ - множество констант. \mathbb{F} -множество формул, такое что:

- 1. $c_i \in \mathbb{F}$;
- $2. x_i \in \mathbb{F};$
- 3. $\forall f, g \in \mathbb{F} \Rightarrow \forall (f, g), \land (f, g), \neg f \in \mathbb{F}$.

Def. 2 Уравнением e называется пара (f_1, f_2) , где $f_1, f_2 \in \mathbb{F}$.

Е- множество всех уравнений.

Уравнение называется **простейшим**, если оно имеет вид (x_i, f) , где f - произвольная формула или (c_i, f) , где $f != x_i, \forall j \in \mathbb{N}$.

Def. 3 *P*-множество предикатов, такое что:

- 1. $f == g \in P$;
- $2. f \subset g \in P;$
- 3. $f = !! g \in P$.

Def. 4 *U*- множество условий, таких что:

- 1. TRUE, FALSE, $NOTDEF \in U$
- $2. p \in U$, где $p \in P$;
- 3. $\forall u_1, u_2 \in U \Rightarrow \forall (u_1, u_2), \land (u_1, u_2), \bar{u}_1 \in U.$

Def. 5 Деревом называется $T = (V, \phi, \psi, \alpha, \beta)$, где:

V - множество вершин,

 $\phi: V \to (V \times V) \cup \ V \cup \emptyset$ - функция потомков;

 $\psi:V o V\cup\emptyset$ - функция предков;

 $\alpha:V \to U$ - функция условия;

 $\beta:V \to \{e_i\}_{i=1}^n \cup \emptyset, n \in \mathbb{N}, e \in E$ - функция уравнений.

Алгоритм 1 Алгоритм сведения уравнения к системе простейших уравнений:

Шаг 1. а) Если $e = (\land (f,g), \land (u,v))$, то выполняем шаг 1 для $e_1 = (f,u)$ и $e_2 = (g,v)$. Результат решений объединяем;

- б) Если $e = (\lor(f,g),\lor(u,v))$, то выполняем шаг 1 для $e_1 = (f,u)$ и $e_2 = (g,v)$. Результат решений объединяем;
 - в) Если $e = (\neg f, \neg u)$, то выполняем шаг 1 для $e_1 = (f, u)$;
 - г) Если e -простейшее, то результат - e;
 - д) Если $e = (f, x_i)$, то результат (x_i, f) ;
 - е) Если $e = (f, c_i)$, то результат (c_i, f) ;

ж) Если не выполнены пункты а) — е), то результатом является \emptyset .

Def. 6 $Vars: F \rightarrow 2^X$, такая что:

- 1. $Vars(x_i) = \{x_i\};$
- 2. $Vars(c_i) = \emptyset;$
- 3. $Vars(\lor(f,g)) = Vars(f) \cup Vars(g);$
- 4. $Vars(\land(f,g)) = Vars(f) \cup Vars(g);$
- 5. $Vars(\bar{f}) = Vars(f)$.

Def. 7 Простейшее уравнение называется **разрешимым** если:

- 1. $e = (c_i, c_i), \forall i \in \mathbb{N};$
- 2. $e = (x_i, f) \Leftrightarrow x_i \notin Vars(f)$.

Алгоритм 2 Алгоритм подстановки переменной (x_i, f) в другое уравнение g:

Шаг 1. а) Если $g = x_i$, то ответ f;

- б) Если $g = \neg u$, то ответ $\neg l$, где l подстановка (x_i, f) в u;
- в) $\vee(f,g)$, то ответ $\vee(l,t)$, где l подстановка (x_i,f) в u,t подстановка (x_i,f) в g;
- г) \wedge (f,g), то ответ \wedge (l,t), где l подстановка (x_i,f) в u,t подстановка (x_i,f) в g;
 - д) Если $g = c_i$, то ответ c_i ;
 - e) Если $g = x_j, i \neq j$, то ответ x_j .

Алгоритм 3 Алгоритм выражения переменных через константы и другие переменные:

- Шаг 1. Применяем Алгоритм 1, в случае \emptyset , выразить ничего нельзя. Переходим к шагу 2.
- Шаг 2. Если среди уравнений вида: $e=(c_i,f), \forall i\in\mathbb{N},$ все разрешимые, то удаляем их из системы и переходим к шагу 3, иначе ничего нельзя выразить.
- Шаг 3. Если у нас есть уравнения вида: $e_1 = (x_i, f)$ и $e_2 = (x_i, f)$, то удаляем e_2 , переходим к шагу 3, иначе переходим к шагу 4.
- Шаг 4. Если у нас есть уравнения вида: $e_1 = (x_i, f)$ и $e_2 = (x_i, g)$, то удаляем e_2 , и переходим к шагу 1 для уравнения $e_3 = (g, f)$. Иначе переходим к шагу 5.

Шаг 5. Если оставшиеся уравнения разрешимы, то переходим к шагу 6, иначе ничего нельзя выразить.

Шаг 6. Если у нас есть уравнения вида: $e_1 = (x_i, f)$ и $e_2 = (x_j, g)$,где $x_j \in Vars(f)$, то по Алгоритму 2, подставляем в уравнение e_1 выражение для x_j и переходим к шагу 5.

Иначе выводим систему выражения переменных.

Def. 8 Пусть TRUE - истина, FALSE - ложь, NOTDEF - неопределенность.

Алгоритм 4 Алгоритм проверки синтаксического равенства f == g при известных $X_i = \{x_{i_1}, \dots, x_{i_n}\}$:

Шаг 1. Решаем уравнение (f,g) по Алгоритму 1. Получаем $T = \{t_i\}_{i=1}^n$ - систему простейших. Если $T = \emptyset$, то FALSE.

Шаг 2. $\forall i$ удаляем $c_i = c_i$;

 $\forall i$ удаляем $x_i = x_i$

Если $\exists x_j \in X_i$, то по Алгоритму 2 подставляем x_j в уравнение $e = (x_j, f)$ и переходим к шагу 1 Алгоритма 4 для e. Результат объединяем, иначе переходим к шагу 3.

Шаг 3. Если $T=\emptyset$ - TRUE, иначе NOTDEF

Алгоритм 5 Алгоритм проверки подформульного предиката $f \subset g$ при известных $X_i = \{x_{i_1}, \dots, x_{i_n}\}$:

Шаг 1. Применяем Алгоритм 4 к f == g. Пусть q_1 её результат.

Если $q_1 = TRUE$, то выводим TRUE, иначе переходим к шагу 2.

Шаг 2.а) Если $g=c_i$, то выводим q_1 ;

- б) Если $g = x_i$, то выводим q_1 ;
- в) Если $g = \neg h$, то применяем Алгоритм 5 к $f \subset h$ и получаем результат q_2 . Если $q_2 = TRUE$, то выводим TRUE, если q_1 или q_2 равны NOTDEF, то выводим NOTDEF, иначе выводим FALSE.
- г) Если $g = \vee (h_1h_2)$ или $g = \wedge (h_1h_2)$, то применяем Алгоритм 5 к $f \subset h$ и получаем результат q_2 . Если $q_2 = TRUE$, то выводим q_2 , иначе применяем Алгоритм 5 к $f \subset h_2$ и получаем результат q_3 . Если $q_3 = TRUE$, то выводим TRUE. Если одна из $q_1, q_2, q_3 = NOTDEF$, то выводим NOTDEF. Иначе, выводим FALSE.

Алгоритм 6 Алгоритм проверки функционального равенства происходит перебором. **Def. 9** Вершина дерева v называется **вершиной уравнений**, если $\phi(v) = w, w \in V$, где V из **Def.5**.

Def. 10 Вершина дерева v называется выходом, если $\phi(v) = \emptyset$.

Def. 11 Вершина дерева v называется **вершиной условия**, если $\phi(v) = (w, w'), \ w, w' \in V.$

Def. 12 Вершина дерева v называется **корнем дерева**, если $\psi(v) = \emptyset$.

Алгоритм 7 Алгоритм проверки условий для оставшихся уравнений: Элементарные эквивалентности:

```
1) u \wedge FALSE \equiv FALSE;

2) u \wedge TRUE \equiv u;

3) u \vee FALSE \equiv u;

4)u \vee TRUE \equiv TRUE;

5)u \wedge \neg u \equiv FALSE;

6)u \vee \neg u \equiv TRUE;
```

- $7)\neg\neg u \equiv u;$
- $8)u \wedge (u \vee v) \equiv u;$
- $9)u \lor (u \land v) \equiv u;$
- $(10)u \lor u \equiv u;$
- $11)u \wedge u \equiv u$.

По эквивалентностям упрощаем условие, пока это возможно. Затем по Алгоритму 4, Алгоритму 5, Алгоритму 6 находим значения для всех выражений. Если все значения TRUE, то возвращаем TRUE. Если все значения FALSE, то возвращаем FALSE. Если \exists значения одновременно TRUE и FALSE, то возвращаем NOTDEF.

Алгоритм 8 Алгоритм разрешения последующих условий относительно данной вершины условия:

Пусть v текущая вершина условия. Пусть $\phi(v) = (v_1, v_2)$. Пусть $\phi(w) = (w_1, w_2)$. Применяем шаг 1 и шаг 2 соотвественно к вершинам v_1, v_2

Шаг 1. а) Если текущая вершина w - вершина уравнений, то применяем шаг 1 к вершине $\phi(w)$.

б) Если текущая вершина w - вершина условия, то проверяем условие $\wedge(\alpha(v),\alpha(w))$ по Алгоритму 7. Если результат - TRUE, то "отрезаем правую ветку"вершины w и применяем шаг 1 к w_1 . Если результат -

FALSE, то "отрезаем левую ветку" вершины w и применяем шаг 1 к w_2 . Если результат - NOTDEF, то применяем шаг 1 к w_1 и w_2 .

- Шаг 2. а) Если текущая вершина w вершина уравнений, то применяем шаг 2 к вершине $\phi(w)$.
- б) Если текущая вершина w вершина условия, то проверяем условие $\vee(\alpha(v),\alpha(w))$ по Алгоритму n_1 . Если результат TRUE, то "отрезаем правую ветку"вершины w и применяем шаг $2 \times w_1$. Если результат FALSE, то "отрезаем левую ветку"вершины w и применяем шаг $2 \times w_2$. Если результат NOTDEF, то применяем шаг $2 \times w_1$ и w_2 .

Алгоритм 9 Алгоритм согласования выражения всех переменных уравнения e:

Пусть есть n выражений, добавляем в каждое выражение переменные, выраженные в уравнении e. Затем проверяем на противоречивость все n выражений, как в Алгоритме 3. Если получили противрочение во всех n системах, то удаляем уравнение, иначе оставляем только непротиврочевые выражения.

Алгоритм упрощения дерева 1

Пусть v - текущая вершина. Начиная с корня дерева, выполняем следующие шаги:

- Шаг 1. а) Если v вершина условия, то применяем Алгоритм n_1 к $\alpha(v)$, если TRUE, то "отрезаем правую ветку". Если FALSE, то "отрезаем левую ветку". Иначе, при переходе в "левую ветку"рассматриваем только те выражения, которые дали TRUE на данном условии, а при переходе в "левую ветку"рассматриваем только те выражения, которые дали FALSE на данном условии. Далее переходим к шагу 2.
- б) Если v вершина уравнений, то пусть $\beta: V \to \{e_i\}_{i=1}^n, n \in \mathbb{N}, e \in E$, тогда $\forall i$,где $1 \leq i \leq n$ выражаем переменные по Алгоритму 3. Если e_i не разрешимо, то удаляем это уравнение. Далее по Алгоритму 8 проверяем условие $\alpha(v)$ для оставшихся уравнений. Удаляем уравнения, для которых условие не выполнено. Далее переходим к Шагу 3.
- Шаг 2. Применяем Алгоритм 8 (конъюнкция двух условий). Пусть $\phi(v) = (w, w')$, тогда применяем шаг 1 к вершинам w, w'.
- Шаг 3. Применяем Алгоритм 9 на согласование всех выражений. Применяем шаг 1 к вершине $\phi(v)$.