CP

Maths																								
7	+ E	Big -	<u>I</u> nt	tege	rs																			
¥	· (-	TCD, Exte	. Lo	CM, ed	/	Eu E (1	icli ulio	dec	in	A	A lo	ุกห์ อกร์	₹th ths	m,	,			_			^/			
¥	5	ieve	of	· [Z V (a to	ost!	her	J62	a	nd	_	S	gor	ายท	tec	J	2	'e'	ve.				
*		Mod	Ju.	br		A	15H	, N~1	nai	μ, (`													
		*																						

Congruence Modulo m Definition: - two integers a and b are Congruent modulo on if they have Same remainder when divided by m. Denoted by a=b (mod m) reads as a is Congovent to b modulo m. Note: a = b (mod m) means a mod m = b mod m. $a = b \pmod{m}$ if m divides a - b. 4 Fermat's little Theorem Definition: - if P is a Prime number and 'a' is Positive integer not divisible by "P" Then $a^{P-1} \equiv l \pmod{P}$

Example 1: - Does format's theorem hold true for P= 5 and a = 2 ? a = 2Given P= 5 not divisible by parine condition is 02 16905 = 17.5 a = 1 (mod p) 25-1 = 1 (mod 5) 24 = ((mod 5) 16 = 1 (road 5) =) 16-1/05 = 1 1/5 Example 2: - P = 13 a= 11 not Divisible by P prine Codition 0 = a = 1 (mod P)

$$11^{3-1} = 1 \pmod{13}$$

* Multiplicative Inverse

 $5 \times 5^{-1} = 1$

$$A \times \frac{1}{A} = 1$$

$$A \times A^{-1} = 1$$
 $A \times A^{-1} = 1$
 $A \times A^{-1}$

Example
$$A = 2 \qquad n = 5$$

$$2x? \equiv 1 \pmod{5}$$

$$6 \equiv 1 \pmod{5}$$

$$6 \equiv 1 \pmod{5}$$

$$A = 3 \qquad n = 5$$

$$3x? \equiv 1 \pmod{5}$$

$$2x? \equiv 1 \pmod{5}$$

$$3x2 \equiv 1 \pmod{5}$$

$$A = 5 \qquad n = 10$$

$$5x? \equiv 1 \pmod{6}$$

$$Does rat have a roultiplicative Inverse Since
$$C(C)(A,n) = 1$$$$

P= 189+7 (cmod ro= least (way pour) (%/0 408 5-1-15 (a/b) /, or a./. m 4) b -2