

1

Bab 4 Diferensiasi

- **☑ 4.1 Persamaan Garis Singgung dan Kecepatan Sesaat**
- **☑ 4.2 Rumus Turunan Fungsi**
- **☑ 4.3 Turunan Fungsi Trigonometri**
- **✓ 4.4 Turunan tingkat tinggi**
- **☑ 4.5 Aturan Rantai**
- **☑ 4.6 Turunan Fungsi Implisit**

Daryono, Kalkulus 1: Bab 4 Diferensiasi

4.1 Persamaan Garis Singgung dan Kecepatan Sesaat

Diberikan y = f(x) dan garis k, l, g dan h yang diperlihatkan pada Gambar dibawah ini

• Gradien garis *k*:

$$m_{AB} = \frac{f(x_3) - f(x_0)}{x_3 - x_0}$$

• Gradien garis *l*:

$$m_{AC} = \frac{f(x_2) - f(x_0)}{x_2 - x_0}$$

Gradien garis g:

$$m_{AD} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

3

Bagaimana untuk gradien garis h, sebut m_h yang merupakan arah garis singgung dari y = f(x) di titik A yang mana nilai x_1 mendekati x_0 dan dapat dinyatakan sebaai berikut:

$$m_{AD} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} \tag{1}$$

Jika y = f(x) merupakan fungsi kecepatan dan dinyatakan dalam y = f(t) dengan t menyatakan waktu, maka kecepataan sesaat adalah:

$$v_{sesaat} = \lim_{t_1 \to t_0} \frac{f(t_1) - f(t_0)}{t_1 - t_0}$$
 (2)

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Perhatikan Persamaan (1), arah garis singgung kurva y = f(t) pada titik A dapat dinyatakan

$$m_{AD} = \frac{\Delta y_1}{\Delta x_1}$$

Jika $\Delta x = x_1 - x_0$; $x_1 = x_0 + \Delta x$, untuk $x_1 \to x_0$ dan berakibat $\Delta x \to 0$, maka:

$$\lim_{\Delta x \to 0} \frac{\Delta y_1}{\Delta x_1} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x_1) - f(x_0)}{\Delta x_1}$$
(3)

Untuk sebarang nilai x Persamaan (3) menjadi:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{4}$$

Persamaan (4) merupakan turunan/diferensiasi dari f(x)

Daryono, Kalkulus 1: Bab 4 Diferensiasi

5

5

Contoh 1.

Tentukan turunan $f(x) = x^2$

Jawab

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x^2 + 2x\Delta x + (\Delta x)^2) - x^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$

Contoh 2.

Tentukan turunan $f(x) = \sqrt{x}$

Jawab

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} \times \frac{\sqrt{x + \Delta x} + \sqrt{x}}{\sqrt{x + \Delta x} + \sqrt{x}} = \lim_{\Delta x \to 0} \frac{x + \Delta x - x}{\Delta x \left(\sqrt{x + \Delta x} + \sqrt{x}\right)}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x \left(\sqrt{x + \Delta x} + \sqrt{x}\right)} = \lim_{\Delta x \to 0} \frac{1}{\left(\sqrt{x + \Delta x} + \sqrt{x}\right)} = \frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-1/2}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

6

Jika fungsi f dapat diturunkan (diferensiabel) maka f kontinu, tetapi tidak berlaku sebaliknya artinya jika f kontinu belum tentu diferensiabel.

Suatu fungsi dapat diturunkan jika turunan kiri = turunan kanan $(f'_- = f'_+)$

Selidiki apakah f(x) = |x| fungsi kontinu dan diferensiabel di x = 0

$$f(x) = \begin{cases} x, & x \ge 0 \\ -x, & < 0 \end{cases}$$

Syarat kontinu

1.
$$f(0) = 0$$
 (ada)

2.
$$\lim_{x \to 0^{-}} (x) = 0$$
; $\lim_{x \to 0^{+}} x = 0$
 $\lim_{x \to 0^{-}} (x) = \lim_{x \to 0^{+}} x = 0$ (ada)

3.
$$f(0) = \lim_{x \to 0} f(x) = 0$$

$$f(x)$$
 kontinu di $x = 0$

f dapat diturunkan di x = 0 jika

Turunan kiri di x = 0 sama dengan turunan kanan di x = 0

Turunan kiri di x = 0

$$f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{-(0 + \Delta x) - (0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} = -1$$

Turunan kanan di x = 0

$$f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{(0 + \Delta x) - (0)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x}{\Delta x} = 1$$

Karena $f'_{-} \neq f'_{+}$ maka f tidak dapat diturunkan di x = 0

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Contoh 4.

7

Selidiki apakah
$$f(x) = \begin{cases} x^2 - 1, x \ge 2 \\ x + 1, x < 2 \end{cases}$$
 fungsi kontinu dan diferensiabel di $x = 2$

Jawab

$$f(x) = \begin{cases} x^2 - 1, & x \ge 2 \\ x + 1, & < 2 \end{cases}$$

Svarat kontinu

1.
$$f(2) = 3$$
 (ada)

2.
$$\lim_{x \to 2^{-}} (x+1) = 3$$
; $\lim_{x \to 2^{+}} (x^{2}-1) = 3$ sama $\lim_{x \to 2} f(x) = 3$ (ada)

3.
$$f(2) = \lim_{x \to 2} f(x) = 3$$

$$f(x)$$
 kontinu di $x = 2$

f dapat diturunkan di x = 2 jika

Turunan kiri di x = 2 sama dengan turunan kanan di x = 2

Turunan kiri di x = 2

$$f'_{-}(2^{-}) = \lim_{\Delta x \to 0^{-}} \frac{((2 + \Delta x) + 1) - (2 + 1)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{\Delta x}{\Delta x} = 1$$

Turunan kanan di x = 2

$$f'_{+}(2^{+}) = \lim_{\Delta x \to 0^{+}} \frac{(2 + \Delta x)^{2} - 1) - (2^{2} - 1)}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{3 + 4\Delta x + (\Delta x)^{2} - 3}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{\Delta x (4 + \Delta x)}{\Delta x} = 4$$

Karena $f'_{-} \neq f'_{+}$ maka f tidak dapat diturunkan di x = 2

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Contoh 4.

Selidiki apakah $f(x) = \begin{cases} x^2 - 1, x \ge 2 \\ x + 1, x < 2 \end{cases}$ fungsi kontinu dan diferensiabel di x = 2

Turunan f(x) di x = 3

$$f'_{+} = \lim_{\Delta x \to 0^{+}} \frac{(3 + \Delta x)^{2} - 1) - (3^{2} - 1)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{9 + 6\Delta x + (\Delta x)^{2} - 1 - (9 - 1)}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x (6 + \Delta x)}{\Delta x} = 6$$

$$f'_{-} = \lim_{\Delta x \to 0^{-}} \frac{(3 + \Delta x)^{2} - 1) - (3^{2} - 1)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{9 + 6\Delta x + (\Delta x)^{2} - 1 - (9 - 1)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{\Delta x (6 + \Delta x)}{\Delta x} = 6$$

$$f'_{-}(3) = f'_{+}(3) \rightarrow f(x)$$
 diferensiabel di $x = 3$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

9

4.2 Rumus Turunan fungsi

Rumus turunan dari fungsi

Diberikan fungsi y = f(x) kontinu disemua nilai x.

$$y = ax^n$$
, $a = \text{konstatnta}$; $\frac{dy}{dx} = nax^{n-1}$; $n = \text{bilangan riil}$
 $y = f(x) \pm g(x)$; $\frac{dy}{dx} = f'(x) \pm g'(x)$

$$y = f(x) \times g(x)$$
; $\frac{dy}{dx} = f'(x)g(x) + f(x)g'(x)$

$$y = \frac{f(x)}{g(x)}; g(x) \neq 0; \quad \frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Contoh 5.

Tentukan $\frac{dy}{dx}$

a.
$$y = 3x^4 - 2x^{-3} + \sqrt{x}$$

b.
$$y = (2x^3 - 3x)(x + 1)$$

c.
$$y = \frac{x^2 + 1}{x^2 - 1}$$

d.
$$y = \frac{2x}{(x^2-3)}$$

Jawab

a.
$$y = 3x^4 - 2x^{-3} + \sqrt{x}$$

$$\frac{dy}{dx} = 12x^3 + 6x^{-4} + \frac{1}{2}x^{-1/2} = 12x^3 + \frac{6}{x^4} + \frac{1}{2\sqrt{x}}$$

b.
$$y = (2x^3 - 3x)(x + 1)$$

$$\frac{dy}{dx} = (6x^2 - 3)(x + 1) + (2x^3 - 3x)(1)$$

$$= 6x^3 + 6x^2 - 3x - 3 + 2x^3 - 3x = 8x^3 + 6x^2 - 6x - 3$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

11

11

c.
$$y = \frac{x^2 + 1}{x^2 - 1}$$
; $x \neq 1$

$$\frac{dy}{dx} = \frac{(2x)(x^2 - 1) - (x^2 + 1)(2x)}{(x^2 - 1)^2} = \frac{2x^3 - 2x - 2x^3 - 2}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2}$$

d.
$$y = \frac{2x}{(x^2 - 3)}$$
; $x \neq \sqrt{3}$

$$\frac{dy}{dx} = \frac{(2)(x^2 - 3) - (2x)(2x)}{(x^2 - 3)^2} = \frac{2x^2 - 6 - 4x^2}{(x^2 - 3)^2} = \frac{-2x^2 - 6}{(x^2 - 1)^2}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

4.3 Turunan Fungsi Trigonometri

Diberikan $y = \sin x$ akan dicari turunan dari y, berdasarkan defenisi turunan:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sin(x) \cos(\Delta x) + \cos(x) \sin(\Delta x) - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sin(x) (\cos(\Delta x) - 1) + \cos(x) \sin(\Delta x)}{\Delta x}$$

$$= \sin x \left(\lim_{\Delta x \to 0} \frac{(\cos(\Delta x) - 1)}{\Delta x} + \cos(x) \lim_{\Delta x \to 0} \frac{\sin(\Delta x)}{\Delta x} \right)$$

$$= \sin x (0) + \cos x (1)$$

$$= \cos x$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

13

13

Untuk fungsi $y = \cos x$ dengan cara yang sama didapat

$$y = \cos x \rightarrow \frac{dy}{dx} = \sin x$$

Fungsi trigometri yang lain dengan menggunakan rumus turunan fungsi sin x dan $\cos x$.

$$y = \tan x = \frac{\sin x}{\cos x}$$

$$\frac{dy}{dx} = \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

$$y = \sec x = \frac{1}{\cos x}$$

$$\frac{dy}{dx} = \frac{0 \cos x - 1(-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \frac{\sin x}{\cos x} \frac{1}{\cos x} = \tan x \sec x$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Rumus turunan fungsi trigonometri

•
$$y = \sin x \rightarrow \frac{dy}{dx} = \cos x$$

•
$$y = \cos x \rightarrow \frac{dy}{dx} = -\sin x$$

$$y = \tan x \rightarrow \frac{dy}{dx} = \sec^2 x$$

$$y = \cot x \rightarrow \frac{dy}{dx} = -\csc^2 x$$

•
$$y = \sec x \rightarrow \frac{dy}{dx} = \tan x \sec x$$

•
$$y = \csc x \rightarrow \frac{dy}{dx} = -\cot x \csc x$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

15

15

Contoh 6.

$$y = \sin x \cos x \rightarrow \frac{dy}{dx} = \cos x \cos x + \sin x (-\sin x) = \cos^2 x - \sin^2 x = \cos 2x$$

$$y = \sin x \tan x \to \frac{dy}{dx} = \cos x \tan x + \sin x \sec^2 x = \cos x \frac{\sin x}{\cos x} + \sin x \frac{1}{\cos^2 x}$$
$$= \sin x + \tan x \sec x$$

$$y = \frac{1}{\sin x \cos x} = \frac{1}{\sin x} \frac{1}{\cos x} = \csc x \sec x$$
$$\frac{dy}{dx} = -\cot x \csc x \sec x + \csc x \tan x \sec x$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

4.4 Turunan tingkat tinggi

Diberikan y = f(x)

- Turunan dari y = f(x) terhadap x dinyatakan dengan y = f'(x) disebut turunan pertama
- Jika y = f'(x) diturunkan lagi terhadap x didapat: y = f''(x), turunan kedua
- Jika y = f''(x) diturunkan lagi terhadap x didapat: y = f'''(x), turunan ketiga dan seterusnya

Contoh 7.

- $f(x) = x^4 2x^3 + 5x$
- $f'(x) = 4x^3 6x^2 + 5$
- $f''(x) = 12x^2 12x$
- f'''(x) = 24x 12
- $f^{(iv)}(x) = 24$
- $f^{(v)}(x) = 0$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

L7

4.5 Aturan Rantai

Diberikan fungsi komposisi $(f \circ g)(x) = f(g(x))$, jika g(x) dapat diturunkan terhadap x dan f(x) dapat diturunkan terhadap g(x) dan bentuk fungsi komposisi dinyatakan dengan:

$$y = f(u)$$
; $u = g(x)$

maka turunan fungsi komposisi adalah:

$$\frac{dy}{dx} = \frac{dy}{du} \, \frac{du}{dx}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Contoh 8

Tentukan turunan dari fungsi yang diberikan

a.
$$y = (2x^3 - 1)^{10}$$

b.
$$y = \left(\frac{x^2 - 1}{x^2 + 1}\right)^{10}$$

c.
$$y = \sin 3x$$

d.
$$y = \tan^2 5x$$

e.
$$y = \cos\left(\sec\left(\frac{1+2x}{1-2x}\right)\right)$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

19

19

a.
$$y = (2x^3 - 1)^{10}$$

Misal: $u = 2x^3 - 10 \rightarrow \frac{du}{dx} = 6x^2$
 $y = u^{10} \rightarrow \frac{dy}{du} = 10u^9$
 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 10u^9 6x^2 = 10(2x^3 - 1)^9 6x^2 = 60x^2(2x^3 - 1)^9$

b.
$$y = \left(\frac{x^2 - 1}{x^2 + 1}\right)^{10}$$

Misal:
$$u = \frac{x^2 - 1}{x^2 + 1}$$
; $\frac{du}{dx} = \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$
 $y = u^{10}$; $\frac{dy}{du} = 10u^9$
 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 10u^9 \left(\frac{4x}{(x^2 + 1)^2}\right)$
 $= 10 \left(\frac{x^2 - 1}{x^2 + 1}\right)^9 \left(\frac{4x}{(x^2 + 1)^2}\right) = 40x \frac{(x^2 - 1)^9}{(x^2 + 1)^{11}}$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

c.
$$y = \sin 3x$$

Misal:

$$u = 3x$$
; $\frac{du}{dx} = 3$

$$y = \sin u$$
; $\frac{dy}{du} = \cos u$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = 3\cos u = 3\cos(3x)$$

d.
$$y = \tan^2 5x$$

Misal:

$$u = 5x$$
; $\frac{du}{dx} = 5$

$$v = \tan u ; \frac{dv}{du} = \sec^2 u$$

$$y = v^2$$
; $\frac{dy}{dv} = 2v$

$$\frac{dy}{dx} = \frac{du}{dx} \frac{dv}{du} \frac{dy}{dv} = 5 \sec^2 u(2v) = 10 \sec^2 5x \tan 5x$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

21

21

e.
$$y = \cos\left(\sec\left(\frac{1+2x}{1-2x}\right)\right) = \cos\left(\sec u\right)$$

Misal:

$$u = \frac{1+2x}{1-2x}; \frac{du}{dx} = \frac{2(1-2x)-(-2)(1+2x)}{(1-2x)^2} = \frac{4}{(1-2x)^2}$$

$$v = \sec u$$
; $\frac{dv}{du} = \sec u \tan u$

$$y = \cos v$$
; $\frac{dy}{dv} = -\sin v$

$$\frac{dy}{dx} = \frac{du}{dx} \frac{dv}{du} \frac{dy}{dv} = \frac{4}{(1-2x)^2} \sec u \tan u \ (-\sin v)$$

$$=\frac{4}{(1-2x)^2}\sec\left(\frac{1+2x}{1-2x}\right)\tan\left(\frac{1+2x}{1-2x}\right)\,\left(-\sin(\sec u)\right)$$

$$= \frac{-4}{(1-2x)^2} \sec\left(\frac{1+2x}{1-2x}\right) \tan\left(\frac{1+2x}{1-2x}\right) \left(\sin\left(\sec\left(\frac{1+2x}{1-2x}\right)\right)\right)$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Cara cepat

Mencari turunan fungsi dengan aturan rantai penyelesaian dengan pemisalan dimulai dari fungsi yang terdalam, sebaliknya aturan cepat fungsi yang diturunkan dimulai dari fungsi yang terluar. Sebagai ilustrasi diberikan

$$y = \tan(\sin(3x^2))$$

- Fungsi terluar adalah tan($\sin(3x^2)$) turunan: $\sec^2(\sin(3x^2)) \times (\text{turunan dalam})$
- Masuk ke fungsi dalam $sin(3x^2)$ turunan $sec^2(sin(3x^2)) \times (cos(3x^2)) \times (turunan dalam)$
- Masuk ke fungsi dalam $(3x^2)$ turunan $\sec^2(\sin(3x^2)) \times (\cos(3x^2)) \times (6x)$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

าว

23

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Latihan soal

Tentukan turunan dari fungsi yang diberikan dengan cara cepat

a.
$$y = (2x^3 - 1)^{10}$$

b.
$$y = \left(\frac{x^2 - 1}{x^2 + 1}\right)^{10}$$

c.
$$y = \sin 3x$$

d.
$$y = \tan^2 5x$$

e.
$$y = \cos\left(\sec\left(\frac{1+2x}{1-2x}\right)\right)$$

$$.e. \frac{dy}{dx} = -sin\left(\sec\left(\frac{1+2x}{1-2x}\right)\right)\sec\left(\frac{1+2x}{1-2x}\right)\tan\left(\frac{1+2x}{1-2x}\right)\left[\frac{2(1-2x)-(-2)(1+2x)}{(1-2x)^2}\right]$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

2 =

25

4.6 Turunan Fungsi Implisit

• Fungsi eksplisit adalah fungsi yang peubah x dan y dipisah dan dinyatakan dengan

$$y = f(x)$$

Contoh 9

a.
$$y = 3x^2 + x - 4$$

b.
$$y = \frac{x - 4}{2x}$$

Fungsi implisit adalah fungsi yang peubah x dan y tidak dipisah dan dinyatakan dengan

$$F(x,y)=0$$

Contoh 10

a.
$$3xy - 2x + 4 = 0$$
 ($fs implisit$) $\rightarrow y = \frac{2x-4}{3x}$ ($fs eksplisit$)

b.
$$sin(xy) = 2$$
 (fs implisit) $\rightarrow y = ?$ (tidak bisa dibuat fs eksplisit)

Bentuk fungsi eksplisit selalu bisa diubah ke fungsi implisit, tidak berlaku sebaliknya, artinya tidak semua fungsi implisit dapat diubah ke fungsi eksplisit.

Daryono, Kalkulus 1: Bab 4 Diferensiasi

Konsep dari turunan implisit

• y = 1 diturunkan terhadap x: $\frac{dy}{dx} = 0$; $y = 3x^2 \rightarrow \frac{dy}{dx} = 6x$

- $y^3 = 5$ diturunkan terhadap x: $3y^2 \frac{dy}{dx} = 0$
- $3x^2y^3 = 8$ diturunkan terhadap x: seolah olah bentuk perkalian fungsi

$$y = \sqrt[3]{\frac{8}{3x^2}} \qquad 6xy^3 + 3x^2 \left(3y^2 \frac{dy}{dx}\right) = 0$$

$$\leftrightarrow 6xy^3 + 9x^2y^2 \frac{dy}{dx} = 0$$

$$\leftrightarrow 9x^2y^2 \frac{dy}{dx} = -6xy^3$$

$$\leftrightarrow \frac{dy}{dx} = \frac{-6xy^3}{9x^2y^2}$$

$$\leftrightarrow \frac{dy}{dx} = \frac{-2y}{3x} = \frac{-2\left(\sqrt[3]{\frac{8}{3x^2}}\right)}{3x}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

27

27

Contoh 11

Tentukan $\frac{dy}{dx}$

a.
$$x^2 + y^2 = 9 \to y = \sqrt{9 - x^2} = (9 - x^2)^{1/2} \to \frac{dy}{dx} = \frac{1}{2}(9 - x^2)^{-\frac{1}{2}}(-2x) = \frac{-x}{\sqrt{9 - x^2}}$$

 $2x + 2y\frac{dy}{dx} = 0$; $2y\frac{dy}{dx} = -2x$; $\frac{dy}{dx} = \frac{-2x}{2y} = \frac{-x}{y} = \frac{-x}{\sqrt{9 - x^2}}$

b.
$$x^3 + y^3 = 3xy$$
,

Diubah kebentuk y = f(x) tidak bisa, hasil turunan ada peubah y

$$3x^{2} + 3y^{2} \frac{dy}{dx} = 3y + 3x \frac{dy}{dx} \leftrightarrow y^{2} \frac{dy}{dx} - x \frac{dy}{dx} = y - x^{2}$$
$$(y^{2} - x) \frac{dy}{dx} = y - x^{2} \leftrightarrow \frac{dy}{dx} = \frac{y - x^{2}}{y^{2} - x}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

c.
$$x^3y^2 - 5x^2y + x = 1$$

Diubah kebentuk y = f(x) tidak bisa, hasil turunan ada peubah y

$$x^{3}y^{2} - 5x^{2}y + x = 1 \to 3x^{2}y^{2} + x^{3}\left(2y\frac{dy}{dx}\right) - 5\left(2xy + x^{2}\frac{dy}{dx}\right) + 1 = 0$$

$$x^{3}2y\frac{dy}{dx} - 5x^{2}\frac{dy}{dx} = 10xy - 1 - 3x^{2}y^{2}$$

$$(2x^{3}y - 5x^{2}y^{2})\frac{dy}{dx} = 10xy - 3x^{2}y^{2} - 1$$

$$\frac{dy}{dx} = \frac{10xy - 3x^{2}y^{2} - 1}{(2x^{3}y - 5x^{2}y^{2})}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

20

29

d.
$$\cos(x^2y^2) = y \to -\sin(x^2y^2) \left(2xy^2 + 2x^2y\frac{dy}{dx}\right) = \frac{dy}{dx}$$

$$-\sin(x^2y^2)(2xy^2) - (\sin(x^2y^2)) \left(2x^2y\frac{dy}{dx}\right) = \frac{dy}{dx}$$

$$-(\sin(x^2y^2)) \left(2x^2y\frac{dy}{dx}\right) - \frac{dy}{dx} = (2xy^2)\sin(x^2y^2)$$

$$-[(2x^2y(\sin(x^2y^2)) + 1)] \left(\frac{dy}{dx}\right) = (2xy^2)\sin(x^2y^2)$$

$$\frac{dy}{dx} = -\frac{2xy^2\sin(x^2y^2)}{2x^2y(\sin(x^2y^2)) + 1}$$

Daryono, Kalkulus 1: Bab 4 Diferensiasi

30

NEXT APLIKASI TURUNAN

Daryono, Kalkulus 1: Bab 4 Diferensiasi

31