6.2.1 Receitas

As receitas r_t são dadas pela seguinte expressão:

$$r_t = n \times T_{tel} \times N \times C_{3min}$$

em que n é o número de canais telefónicos, neste caso n=1920, T_{tel} é o tráfego telefónico, N o número de chamadas de 3 minutos num ano e C_{3min} é o preço de cada chamada de 3 minutos.

$$N = \frac{365 \times 24 \times 60}{3} = 175200$$

$$T_{tel} = (0.2 + 0.02 \times t_i)$$
 Erlang

Considerando o Cash-Flow constante, $r_i - c_i$, as receitas terão que ser constantes o que associado a um tráfego telefónico crescente, tem associado uma descida dos preços das chamadas.

6.2.2 Despesas

As despesas d_t são dadas por:

$$d_t = 0.15 \times d_0 + T_{LB/ano}$$

6.2.3 Valor Residual

Para se conseguir alcançar um valor residual nulo ao fim de 25 anos:

$$d_0 = \sum_{t=1}^{25} \frac{r_t - d_t}{(1+i)^{t_t} \times (1+tir)^{t_t}}$$

$$r_t - d_t = c^{te} = d_0/t_r$$

O que implica $t_r = \sum_{t=1}^{25} \frac{1}{(1+i)^{t_t} \times (1+tir)^{t_t}} = 7.18736.$

Dessa forma sabemos, então, que $C_{3min} = \frac{d_0/t_r + 0.15 \times d_0 + T_{LB/ano}}{n \times (0.2 + 0.02 \times t_i) \times N}$ Então para o 1º ano:

Ligação	d_0	Despesa	$n \times T_{tel} \times N$	C_{3min}
[GHz]	[€]	[€]	[€]	[€cent]
6	375 361.70	75 695.84	74 004 480	0.17286
7	260 502.24	61 375.66	74 004 480	0.13191
8	375 376.61	70 680.50	74 004 480	0.16608
11	375 069.80	75 652.05	74 004 480	0.17274
13	260 007.73	53 358.39	74 004 480	0.12098

Pode-se então concluir o melhor projecto é que, para a faixa de 13 GHz com a utilização de antenas parabólicas de diâmetro 4.572 m e $\eta=55\%$ e sem diversidade usa repetidores passivos do tipo costas com costas. É no entanto de referir que o cálculo do custo das antenas, foi cálculado tendo em conta a fórmula presente no manual da disciplina que não tem em consideração o rendimento da antena. Se este for responsável por um grande aumento do preço das mesmas, deverá proceder-se à execução do projecto previsto para o feixe de 7 GHz com antenas de $\eta=50\%$ e em tudo o resto igual ao anterior citado.

Para as ligações dos 7 e 13 GHz, demonstra-se agora a evolução do custo das chamadas ao longo do período do projecto, 25 anos, incluíndo a taxa de inflação.

	7 GHz	13 GHz
$ t_i $	C_{3min}	C_{3min}
[ano]	[€cent]	[€cent]
1	0.16691	0.14460
2	0.15759	0.13652
3	0.14983	0.12980
4	0.14330	0.12415
5	0.13776	0.11935
6	0.13302	0.11524
7	0.12896	0.11172
8	0.12544	0.10868
9	0.12241	0.10605
10	0.11978	0.10377
11	0.11749	0.10179
12	0.11552	0.10008
13	0.11381	0.09860

	7 GHz	13 GHz
$ t_i $	C_{3min}	C_{3min}
[ano]	[€cent]	[€cent]
14	0.11234	0.09732
15	0.11108	0.09623
16	0.11001	0.09531
17	0.10912	0.09453
18	0.10838	0.09389
19	0.10778	0.09337
20	0.10731	0.09297
21	0.10697	0.09267
22	0.10673	0.09247
23	0.10660	0.09235
24	0.10657	0.09233
25	0.10663	0.09238

Voltamos a frisar que o projecto a escolher é o que corresponde à ligação dos 13 GHz e apenas se o rendimento das antenas for um factor decisivo no custo destas é que a ligação a implementar será a correspondente aos 7 GHz. No entanto foram efectuadas todas as contas para ambas as ligações.

7 Cálculo dos Azimutes e Ângulos de Fogo

Os azimutes são os ângulos que a o raio directo do feixe faz com a direcção do Norte geográfico. Cada antena tem um azimute associado.

O ângulo de fogo é o ângulo que o raio directo faz com a direcção horizontal correspondente à posição das antenas.

Estes factores são importantes para a correcta instalação das antenas por forma a tirar partido da direcção à qual corresponde o ganho máximo das mesmas.

ANEXO D - Calculo dos azimutes e dos ângulos de fogo das antenas

Para se especificar a orientação das antenas no local da ligação em feixes hertzianos no plano horizontal e no plano vertical face ao mastro, é necessário calcular respectivamente os azimutes e os ângulos de fogo.

Azimutes

Os azimutes representam o ângulo que as antenas fazem, em planta, entre o raio directo e o norte geográfico.

Para calcular os ângulos x e y, em cada um dos terminais, do arco de círculo máximo com o meridiano local, tem-se:

$$\tan\left(\frac{y-x}{2}\right) = \cot\left(\frac{\left|g_R - g_E\right|}{2}\right) \frac{\sin\left(\frac{t_R - t_E}{2}\right)}{\cos\left(\frac{t_R + t_E}{2}\right)} \quad \tan\left(\frac{y+x}{2}\right) = \cot\left(\frac{\left|g_R - g_E\right|}{2}\right) \frac{\cos\left(\frac{t_R - t_E}{2}\right)}{\sec\left(\frac{t_R + t_E}{2}\right)}$$

Sendo gE, gR as longitudes e tE, tR as latitudes dos terminais (emissor/receptor) do percurso.

Resolvendo as equações em ordem a x e y, tem-se:

$$y = \arctan\left(\cot\left(\frac{\left|g_R - g_E\right|}{2}\right) \frac{\sin\left(\frac{t_R - t_E}{2}\right)}{\cos\left(\frac{t_R + t_E}{2}\right)} + \arctan\left(\cot\left(\frac{\left|g_R - g_E\right|}{2}\right) \frac{\cos\left(\frac{t_R - t_E}{2}\right)}{sen\left(\frac{t_R + t_E}{2}\right)}\right)$$

$$x = \arctan\left(\cot\left(\frac{\left|g_R - g_E\right|}{2}\right) \frac{\cos\left(\frac{t_R - t_E}{2}\right)}{sen\left(\frac{t_R + t_E}{2}\right)} - \arctan\left(\cot\left(\frac{\left|g_R - g_E\right|}{2}\right) \frac{\sin\left(\frac{t_R - t_E}{2}\right)}{\cos\left(\frac{t_R + t_E}{2}\right)}\right)$$

Temos, assim, dois azimutes para cada par emissor-receptor (y e 360° - χ).

Asimbolo R: \$50-7

ANEXO - Cálculo dos ângulos de fogo

Numa ligação por feixes hertzianos, cada terminal encontra-se apontado em direcção a outro, segundo um determinado ângulo de fogo. Este pode ser calculado através da relação entre os ângulos que se encontram representados no Esquema 1.

Esquema 1: Representação dos ângulos de fogo numa ligação por feixes hertzianos entre dois pontos

Os ângulos α , ou ângulos de fogo, correspondem ao ângulo entre a tangente à superfície da terra (no ponto em que se encontra o terminal) e o raio do feixe. Por outro lado, os ângulos θ correspondem ao ângulo entre a tangente à superfície da terra e o plano horizontal, enquanto os ângulos i correspondem ao ângulo entre o feixe e o plano horizontal. Todos os ângulos são obtidos em graus.

O valor de θ_e , obtém-se através da seguinte expressão:

$$\theta_e = \tan^{-1}\left(\frac{d/2}{r}\right) * \frac{180}{\pi} \tag{31}$$

Através de (32) obtém-se o valor do ângulo i.

$$i = \tan^{-1}\left(\frac{h}{d}\right) * \frac{180}{\pi} \tag{32}$$

Por análise do Esquema 1, chega-se às equações (33) e (34) para o cálculo dos ângulos de fogo:

• Ângulo de fogo de emissão

$$\alpha_e = \theta_e - i \tag{33}$$

• Ângulo de fogo de recepção

$$\alpha_r = \theta_e - i \tag{34}$$

Por film tem-se que os ângulos de folgo são obtidos através da seguinte expressão.

Percurso: Barreiro – Santana –Sesimbra (Montagem Repetidor passivo costas com costas)

	Azimute
Barreiro	185° 21' 1.32"
Repetidor Passivo	5° 19' 12.29"
Repetidor Passivo	185° 21' 1.32"
Sesimbra	5° 19′ 22.23"

Tabela 23 – Ângulos de Azimute para as várias antenas

	Altura (cota + mastro)	Ângulo de Fogo
	(m)	
Barreiro	12 + 10	0° 28' 44.39"
Repetidor	205 + 10	- 0° 38' 6"
Passivo		
Repetidor	205 + 10	- 7° 19' 26.39"
Passivo		
Sesimbra	35 + 10	7° 19' 8.4"

Tabela 24 – Ângulos de Fogo para as várias antenas

Percurso: Barreiro – Santana –Sesimbra (Montagem Repetidor activo)

	Azimute
Barreiro	185° 21' 1.32"
Repetidor Passivo	5° 19' 12.29"
Repetidor Passivo	185° 21' 1.32"
Sesimbra	5° 19′ 22.23"

Tabela 25 – Ângulos de Azimute para as várias antenas

	Altura (cota + mastro) (m)	Ângulo de Fogo
Barreiro	12 + 10	0° 28' 44.39"
Repetidor	205 + 10	- 0° 38' 6"
Passivo		
Repetidor	205 + 15	- 7° 19' 26.39"
Passivo		
Sesimbra	35 + 15	7° 19' 8.4"

Tabela 26 – Ângulos de Fogo para as várias antenas

Percurso: Barreiro - Zambujal - Sesimbra (Montagem repetidor passivo de espelho plano)

Azimute		
Barreiro	189° 14' 1.27"	
Repetidor Passivo	9° 11' 10.59"	
Repetidor Passivo	116° 34' 1.29"	
Sesimbra	296° 36' 25.23"	

Tabela x – Ângulos de Azimute para as várias antenas

	Altura (cota + mastro)	Ângulo de Fogo
	(m)	
Barreiro	16 + 10	0° 25' 22.3"
Repetidor Passivo	213 + 15	- 0° 32' 45.79"
Repetidor Passivo	213 + 15	- 5° 14' 28.48"
Sesimbra	20 + 10	5° 13' 18.25"

Tabela x – Ângulos de Fogo para as várias antenas