# High Precision Spectroscopy of <sup>177</sup>HfF+ and <sup>179</sup>HfF+



William R. Ballard

Pomona College Claremont, CA

## Motivation

Why do we observe more matter than antimatter?

Why do we observe more matter than antimatter?

Violation of Charge
Conjugation and
Parity (CP) Symmetry

Baryonic
Asymmetry

Why do we observe more matter than antimatter?

Violation of Charge
Conjugation and
Parity (CP) Symmetry

Baryonic
Asymmetry

The Standard Model (SM) does **not** contain sufficient CP Violation

Where are new sources of CP Violation?

Where are new sources of CP Violation?

A non-zero electron Electric Dipole Moment ( $d_e$ ) would represent a violation of T = CP symmetry.

Where are new sources of CP Violation?

A non-zero electron Electric Dipole Moment ( $d_e$ ) would represent a violation of T = CP symmetry.

Standard Model  $|d_e| < 10^{-38}$ 

e cm

Where are new sources of CP Violation?

A non-zero electron Electric Dipole Moment ( $d_e$ ) would represent a violation of T = CP symmetry.

Standard Model  $|d_e| < 10^{-38}$ 

Supersymmetry  $|d_e| < 10^{-27}$ 

e cm

Where are new sources of CP Violation?

A non-zero electron Electric Dipole Moment ( $d_e$ ) would represent a violation of T = CP symmetry.

Standard Model  $|d_e| < 10^{-38}$ 

Supersymmetry  $|d_e| < 10^{-27}$ 

e cm

Beams of ultra-cold molecules provide optimal testing grounds to search for the signature of the eEDM:

Where are new sources of CP Violation?

A non-zero electron Electric Dipole Moment ( $d_e$ ) would represent a violation of T = CP symmetry.

Standard Model  $|d_e| < 10^{-38}$ 

Supersymmetry  $|d_e| < 10^{-27}$ 

e cm

Beams of ultra-cold molecules provide optimal testing grounds to search for the signature of the eEDM:

$$\Delta E = -d_e \mathcal{E}_{\text{eff}}$$

 $\mathcal{E}_{\text{eff}}$ 

Effective electric field experienced by a valence electron

Where are new sources of CP Violation?

A non-zero electron Electric Dipole Moment ( $d_e$ ) would represent a violation of T = CP symmetry.

Standard Model  $|d_e| < 10^{-38}$ 

Supersymmetry  $|d_e| < 10^{-27}$ 

e cm

Beams of ultra-cold molecules provide optimal testing grounds to search for the signature of the eEDM:

$$\Delta E = -d_e \mathcal{E}_{\text{eff}}$$

 $\mathscr{E}_{\mathrm{eff}}$ 

Effective electric field experienced by a valence electron

Dr. Eric Cornell's group at JILA in Colorado is probing HfF+

Experimental Advantages of HfF+



Experimental Advantages of HfF+

(1) Ease of constructing traps



Experimental Advantages of HfF+

- (1) Ease of constructing traps
- (2) Long interrogation times



Experimental Advantages of HfF+

Theoretical Advantages of HfF+

- (1) Ease of constructing traps
- (2) Long interrogation times



Experimental Advantages of HfF+

- (1) Ease of constructing traps
- (2) Long interrogation times

Theoretical Advantages of HfF+

Parity Non-Conserving (PNC) effects are enhanced in <sup>177</sup>HfF+ and <sup>179</sup>HfF+ due to **deformed nuclei** 



What are the physical consequences of the highly deformed nuclei of the odd isotopologues of HfF+?

(Gordy, 1984)

Non-spherical distribution of nuclear charge

Nuclear Quadrupole

Moment

Non-spherical distribution of nuclear charge

Nuclear Quadrupole

Moment

$$\mathbf{F} = \mathbf{J} + \mathbf{I}$$

J Molecular Rotational Angular Momentum

Nuclear Spin

$$F = J + I, J + I - 1, ..., |J - I|$$

Non-spherical distribution of nuclear charge

Nuclear Quadrupole Moment

$$\mathbf{F} = \mathbf{J} + \mathbf{I}$$

J Molecular Rotational Angular Momentum

I Nuclear Spin

$$F = J + I, J + I - 1, ..., |J - I|$$

$$E_Q = -eQqY(J, I, F)$$



$$\mathbf{F} = \mathbf{J} + \mathbf{I}$$

J Molecular Rotational Angular Momentum

I Nuclear Spin

$$F = J + I, J + I - 1, ..., |J - I|$$

$$E_{Q} = - eQqY(J,I,F)$$
 Interaction



$$\mathbf{F} = \mathbf{J} + \mathbf{I}$$

J Molecular Rotational Angular Momentum

I Nuclear Spin

$$F = J + I, J + I - 1, ..., |J - I|$$

 $E_{Q} = -eQqY(J, I, F)$ 

Energy of Quadrupole Interaction

dependent on Quantum Numbers

Parameter



$$\mathbf{F} = \mathbf{J} + \mathbf{I}$$

J Molecular Rotational Angular Momentum

I Nuclear Spin

$$F = J + I, J + I - 1, ..., |J - I|$$

Parameter dependent on Quantum Numbers

Energy of Quadrupole Interaction

$$E_Q = -eQqY(J, I, F)$$

Asymmetric Shape of Nucleus and Elec. Field Gradient



$$\mathbf{F} = \mathbf{J} + \mathbf{I}$$

J Molecular Rotational Angular Momentum

I Nuclear Spin

$$F = J + I, J + I - 1, ..., |J - I|$$



Rotational levels will split due to quadrupole interaction





$$^{177}$$
HfF<sup>+</sup>  $I = 7/2$ 



Nuclear Quadrupole Hyperfine Structure for J = 0→1 Rotational Transition in Ground Vibrational State of <sup>177</sup>HfF+

Objective: Predict frequencies of these three hyperfine transitions

## Method



#### Output

B (Rotational Constant)

SPCAT

**Output** 

**B** (Rotational Constant)

D (Centrifugal Distortion)



Output

B (Rotational Constant)

D (Centrifugal Distortion)

eQq (Electric Quadrupole Hyperfine Constant)

SPCAT

#### Output

B (Rotational Constant)

D (Centrifugal Distortion)

eQq (Electric Quadrupole Hyperfine Constant)

SPCAT

| Calculated by               | MHz              |                  |
|-----------------------------|------------------|------------------|
| A. Petrov et. al            | eQq <sub>0</sub> | eQq <sub>2</sub> |
| <sup>177</sup> <b>HfF</b> + | -2100            | 110              |
| <sup>179</sup> <b>HfF</b> + | -2400            | 125              |

#### Output

B (Rotational Constant)

D (Centrifugal Distortion)

eQq (Electric Quadrupole Hyperfine Constant)



| Calculated by                | MHz              |                  |
|------------------------------|------------------|------------------|
| A. Petrov et. al             | eQq <sub>0</sub> | eQq <sub>2</sub> |
| <sup>177</sup> HfF+          | -2100            | 110              |
| <sup>179</sup> H <b>f</b> F+ | -2400            | 125              |

## Calculation of B and D Parameters for <sup>177</sup>HfF+ and <sup>179</sup>HfF+

- ◆ Analyze JILA's high precision data on <sup>180</sup>HfF+ (Cossel, 2012) to calculate B<sub>180</sub> and D<sub>180</sub> for ground vibrational state of <sup>180</sup>HfF+.
- ◆ Use isotopic scaling relationships (Drouin, 2001) to calculate B and D for odd isotopologues ¹¹⁻¹HfF⁺ and ¹¹⁻¹HfF⁺.

$$\frac{B_{177}}{B_{180}} = \left(\frac{\mu_{180}}{\mu_{177}}\right)$$

$$\mu_{177}$$
 Reduced Mass of  $^{177}$ HfF+

$$\frac{D_{177}}{D_{180}} = \left(\frac{\mu_{180}}{\mu_{177}}\right)^2$$

$$\mu_{180}$$
 Reduced Mass of  $^{180}$ HfF+

HfO

**HfO** 

(1) Isoelectronic to HfF+

#### **HfO**

- (1) Isoelectronic to HfF+
- (2) Studied extensively

#### **HfO**

- (1) Isoelectronic to HfF+
- (2) Studied extensively
- ◆ Use isotopic scaling relationships to calculate B and D for ¹77Hf¹6O and ¹79Hf¹6O.

#### **HfO**

- (1) Isoelectronic to HfF+
- (2) Studied extensively
- ◆ Use isotopic scaling relationships to calculate B and D for ¹77Hf¹6O and ¹79Hf¹6O.
- ◆ Predict quadrupole splitting for ¹¹७Hf¹6O ¹¹७Hf¹6O and compare to measured values.

(Lesarri, 2002)

#### **HfO**

- (1) Isoelectronic to HfF+
- (2) Studied extensively
- ◆ Use isotopic scaling relationships to calculate B and D for <sup>177</sup>Hf<sup>16</sup>O and <sup>179</sup>Hf<sup>16</sup>O.
- ◆ Predict quadrupole splitting for <sup>177</sup>Hf<sup>16</sup>O <sup>179</sup>Hf<sup>16</sup>O and compare to measured values.

| <sup>177</sup> Hf <sup>16</sup> O | MHz                     |                       |              |
|-----------------------------------|-------------------------|-----------------------|--------------|
| Hyperfine<br>Transition           | Calculated<br>Frequency | Observed<br>Frequency | Calc. – Obs. |
| F = 7/2 ← 7/2                     | 22312.4895              | 22312.4512            | 0.0383       |
| F = 9/2 ← 7/2                     | 23459.8427              | 23459.8047            | 0.0380       |
| F = 5/2 ← 7/2                     | 23804.1560              | 23804.1172            | 0.0388       |

(Lesarri, 2002)

#### **HfO**

- (1) Isoelectronic to HfF+
- (2) Studied extensively
- ◆ Use isotopic scaling relationships to calculate B and D for ¹¹७Hf¹6O and ¹¹७Hf¹6O.
- ◆ Predict quadrupole splitting for ¹¹७Hf¹6O ¹¹७Hf¹6O and compare to measured values.

| <sup>177</sup> Hf <sup>16</sup> O | MHz                     |                       |              |
|-----------------------------------|-------------------------|-----------------------|--------------|
| Hyperfine<br>Transition           | Calculated<br>Frequency | Observed<br>Frequency | Calc. – Obs. |
| F = 7/2 ← 7/2                     | 22312.4895              | 22312.4512            | 0.0383       |
| F = 9/2 ← 7/2                     | 23459.8427              | 23459.8047            | 0.0380       |
| F = 5/2 ← 7/2                     | 23804.1560              | 23804.1172            | 0.0388       |

| <sup>179</sup> Hf <sup>16</sup> O | MHz                     |                       |              |
|-----------------------------------|-------------------------|-----------------------|--------------|
| Hyperfine<br>Transition           | Calculated<br>Frequency | Observed<br>Frequency | Calc. – Obs. |
| F = 9/2 ← 9/2                     | 22244.9685              | 22244.9570            | 0.0115       |
| F = 11/2 ← 9/2                    | 23478.1362              | 23478.1250            | 0.0112       |
| F = 7/2 ← 9/2                     | 23762.1896              | 23762.1777            | 0.0119       |

(Lesarri, 2002)

## Predictions of Hyperfine Transitions in <sup>177</sup>HfF+ and <sup>179</sup>HfF+

| <sup>177</sup> HfF <sup>+</sup> |                               |  |
|---------------------------------|-------------------------------|--|
| Hyperfine<br>Transition         | Calculated<br>Frequency (MHz) |  |
| F = 7/2 ← 7/2                   | 18007.8775                    |  |
| F = 9/2 ← 7/2                   | 18412.7680                    |  |
| F = 5/2 ← 7/2                   | 18533.4282                    |  |

| <sup>179</sup> HfF <sup>+</sup> |                               |  |
|---------------------------------|-------------------------------|--|
| Hyperfine<br>Transition         | Calculated<br>Frequency (MHz) |  |
| F = 9/2 ← 9/2                   | 17968.1161                    |  |
| F = 11/2 ← 9/2                  | 18408.1104                    |  |
| F = 7/2 ← 9/2                   | 18508.7038                    |  |

#### References

- P. Aggarwal, H. L. Bethlem, A. Borschevsky, M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann, T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Willmann, and A. Zapara, Eur. Phys. J. D, 72, 197 (2018).
- [2] A. E. Leanhardt, J. L. Bohn, H. Loh, P. Maletinsky, E. R. Meyer, L. C. Sinclair, R. P. Stutz, and E. A. Cornell, J. Mol. Spectrosc. **270**, 1 (2011).
- [3] D. DeMille, F. Bay, S. Bickman, D. Kawall, D. Krause Jr., S. E. Maxwell, and L. R. Hunter, Phys. Rev. A **61**, 052507 (2000).
- [4] L. V. Skripnikov, A. N. Petrov, A. V. Titov, and V. V. Flambaum, Phys. Rev. A 99, 012517 (2019).
- [5] Cornell Group EDM with HfF+ (Gen I & II), https://jila.colorado.edu/bec/CornellGroup/hff/index.html.
- [6] W. Gordy and R. L. Cook, in: *Microwave Molecular Spectra*, (John Wiley & Sons, New York, 1984), pp. 391-449.
- [7] A. N. Petrov, L. V. Skripnikov, A. V. Titov, and V. V. Flambaum, Phys. Rev. A 98, 042502 (2018).
- [9] K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, J. Ye, Chem. Phys. Lett. 546, 1 (2012).
- [10] B. J. Drouin, C. E. Miller, H. S. P. Müller, E. A. Cohen, J. Mol. Spectrosc. 205, 128 (2001).
- [11] A. Lesarri, R. D. Suenram, and D. Brugh, J. Chem. Phys. **117**, 21 (2002).