PATENT SPECIFICATION

966.814

Date of Application and filing Complete Specification: August 16, 1962.

No. 31463/62

Application made in United States of America (No. 133,792) on August 25, 1961.

Complete Specification Published: August 19, 1964.

© Crown Copyright 1964.

-C3 P (10A, 10C6B, 10C8B, 10C8C, 10C12A, 10C13A, 10C13B, 10C13C, 10C14A, 10C14B, 10C15, 10C18, 10D4A, 10D5, 10K10): B2 B (4E1A1, 4E1A2, 4E1BY, 4E1C1, 4E2B, 4E2Y, 4E3C, 4E6A, 4E7A1, 4E7A2, 4E7A3, 4E7AX, 4E7AY, 4E7B1, 4E7B2, 4E8D, 4E8F, 4E8X, 4E9J, 4E9K, 4E9M, 4E0D, 4E0O2, 4E0O2), 62 T (6E1, 6H, 6T2E, 6T4, 6T2E) Index at Acceptance:-4E9P, 4E9Q3, 4E9Q12, 4E9QY); C3 T (6F1, 6J1, 6J3E, 6J4, 6J6).

International Classification:—C 08 f (B 05, C 08 g).

COMPLETE SPECIFICATION

NO DRAWINGS

Perfluorocarbon Polymer Coating Compositions

We, E.I. DU PONT DE NEMOURS AND COMPANY, a corporation organized and existing under the laws of the State of Delaware, United States of America, of Wilmington, 5 State of Delaware, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed to be particularly described in and 10 by the following statement:-

This invention relates to coating compositions and to articles coated therewith. More particularly, this invention relates to modified aqueous dispersion coating compositions 15 having a combination of a perfluorocarbon polymer and a heat-convertible organopolysiloxane resin as the essential organic filmforming materials.

Tetrafluoroethylene polymers character-20 ized by superior heat and chemical resistance have found extensive use as speciality coatings where these properties are particularly important. Another important characteristic of the perfluorocarbon polymer is the release 25 properties, i.e. anti-adhesion or low order of adhesion between the perfluorocarbon polymer and another film-forming material ordinarily adhesive in contact therewith. This property has lead to extensive use of 30 coatings formulated with the perfluorocarbon polymer as anti-stick or release coatings for die molds, extrusion dies, cookie tins, bread pans, and, more recently, non-stick fry pans and other anti-stick cooking

The aforementioned advantageous characteristics of the perfluorocarbon polymers present significant application problems. Because of the chemical inertness, the per-40 fluorocarbon polymers cannot be ordinarily

35 utensils.

applied in solution form for lack of an adequate solvent for the polymer. A convenient method for applying the perfluorocarbon polymer as a coating is in the form of an aqueous suspensoid of colloidal par- 45 ticles thereof. Such an aqueous dispersion is applied to a heat-resistant substrate, the applied coating is dried by volatile loss of water and other ordinarily volatile components of the liquid composition, and the 50 resulting dry coating which ordinarily lacks adequate continuity is heated at an elevated temperature to fuse the deposited particles

of the perfluorocarbon polymer.

The heat resistance of the perfluorocarbon 55 polymer necessitates a high baking temperature to accomplish fusion of the colloidal particles to a continuous film. With tetrafluoroethylene polymer, baking tempera-tures are ordinarily in the range of 675°F 60 to 775°F. With interpolymers of hexafluoropropylene and tetrafluoroethylene, such as defined in Specification No. 829,600, somewhat lower baking temperatures can be used. e.g., temperatures ordinarily in the range of 65 550°F to 650°F.

Unless the substrate to be coated initially surface irregularities to promote mechanical anchorage of the perfluorocarbon polymer coating, the substrate is treated 70 either chemically to etch the surface or mechanical anchorage of the coating in compensation for the anti-stick properties of the coating. While anti-adhesion is a desirable characteristic for many purposes, it 75 is a disadvantage for many other potential uses for the perfluorocarbon polymer coat-With composite finishing systems in which the perfluorocarbon polymer coating is the undercoat and another organic coating 80 is applied thereover, the anti-adhesion characteristics of the perfluorocarbon polymer inhibits adequate intercoat anchorage. For example, with electrical assemblies fabricated with wire electrically insulated with a layer of perfluorocarbon polymer, anti-adhesion and lubricity of the insulation present serious handling problems, and it is highly desirable to impregnate or encapsulate the electrical assembly with an insulating varnish or encapsulating composition which adheres to the perfluorocarbon insulation and provides rigidity to the assembly.

Another characteristic of the perfluoro-

Another characteristic of the perfluorocarbon polymers which is disadvantageous to many uses is softness which permits it to be easily abraded or cut through in hand-

ung.

A further characteristic which is disad20 vantageous is the necessity of applying the coating at a relatively thin dry coating weight, e.g., at a fractional mil coating thickness, and applying a plurality of coats to obtain the desirable useful thickness. Primers 25 having perfluorocarbon polymer as the essential organic film-forming material ordinarily are applied satisfactorily at dry film thickness up to about 6.0 mil per coat. Topcoats are ordinarily applied adequately at about 30 0.5 mil to about 2 mils per coat.

We have found that one or more of the aforementioned disadvantages associated with the use of the perfluorocarbon polymer as a coating material are overcome by suitable modification of the aqueous suspensoid of the perfluorocarbon polymer with a heat-convertible organopolysiloxane resin and chromic acid, and, if desired, an inorganic polybasic oxy-acid of phosphorus or sulphur.

The present invention accordingly comprises a water-dilutable aqueous dispersion coating composition consisting essentially

or:—

55

(A) colloid particles of at least one per-45 fluorocarbon polymer, said polymer being tetrafluoroethylene polymer or hexafluoropropylene/tetrafluoroethylene interpolymer, dispersed in an aqueous continuous phase,

(B) a solution of a heat convertible (as 50 herein defined) organo-polysiloxane resin containing structural units of the formula:

in which R and R', which may be the same or different (and which may vary from one structural unit to another), are monovalent 60 hydrocarbon radicals in a water-immiscible organic solvent therefore as a dispersed

phase,

(C) a sufficient quantity of one or more water-soluble anionic surfactants to maintain 65 the stability of the dispersion of the per-

fluorocarbon polymer and the solution of organo-polysiloxane in the continuous aqueous phase, and

(D) chromic acid.

Pigment may be present in the coating 70 composition in proportions up to 500 parts by weight per 100 parts total weight of the perfluorocarbon polymer and the organc-polysiloxane resin.

In the following description, reference is 75 made to the polybasic oxy-acid component and it is to be understood that this essentially comprises chromic acid and may, if desired, additionally include an oxy-acid of phosphorus or sulphur.

Useful proportions of the organopolysiloxane resin are in the range of from 3 parts to 100 parts per 100 parts by weight of the perfluorocarbon polymer, preferably 10-35 parts of the organopolysiloxane resin. 85

Useful proportions of the polybasic inorganic oxy-acid are in the range of from 5 parts to 200 parts by weight, including at least 5 parts of chromic acid, per 100 parts total weight of the perfluorocarbon polymer 90 and the organopolysiloxane resin. However, no significant advantage is seen in using more than 100 parts of the oxy-acids on the indicated basis. Preferred proportions of the oxy-acid are in the range of 20 to 65 95 parts on the indicated basis. The oxy-acid components can be solely chromic acid or oxy-acid mixtures of chromic acid and another of the identified inorganic oxy-acids, which mixture provides at least 5 parts of 100 chromic acid per 100 parts of the perfluorocarbon polymer and the organopolysiloxane resin. Preferably the oxy-acid mixtures contain at least 10 parts of chromic acid per 100 parts by weight of the acid mixture, the 105 mixture being preferably composed of chromic acid and orthophosphoric acid. The orthophosphoric acid is preferably in the proportion of 50 to 150 parts per 100 parts by weight of chromic acid. 110

The total proportion of surfactant component, including surfactant introduced to stabilize the aqueous suspensoid of the perfluorocarbon polymer, surfactant introduced to emulsify or disperse the solution of the organopolysiloxane in the continuous aqueous phase, and surfactant introduced to facilitate dispersing the pigment, ordinarily is at least 3 parts and ordinarily does not exceed 50 parts per 100 parts by weight of the perfluorocarbon polymer. Presence of an anionic surfactant is preferred and it is ordinarily present in the proportion of at least 2 parts per 100 parts of the perfluorocarbon polymer, preferably in the range of 125 5 to 20 parts. A non-ionic surfactant may be present in combination with the anionic surfactant in proportions up to above 40 parts, preferably 5 to 30 parts per 100 parts of the perfluorocarbon polymer. Presence 130

of the non-ionic surfactant provides the aqueous dispersion with an advantageous increase in body.

Aqueous suspensoids of tetrafluoroethy-5 lene polymer useful in this invention are described, for example, in Specification No. 631,570. Concentrated aqueous suspensoids of colloidal particles of tetrafluoroethylene polymer, such as described in Specification 10 No. 631,504, are especially useful as raw materials preparing the coating compositions of this invention. Such aqueous suspensoids are commercially available and ordinarily contain a surfactant, e.g., anionic sodium 15 lauryl sulfate or non-ionic "Triton" X-100 (trade mark) in the proportion of about 2 to 6 parts per 100 parts of the perfluorocarbon polymer as a stabilizer for the suspensoid. Interpolymers of hexafluoropropy-20 lene and tetrafluoroethylene useful in the preparation of the coating compositions of this invention are described in Specification No. 829,600. Aqueous suspensoids of these interpolymers are commercially available 25 and ordinarily contain a non-ionic surfactant, e.g., "Triton" X-100 octylphenoxypolyethanoxyethanol in the proportion of about 3 to 6 parts per 100 parts by weight of the perfluorocarbon interpolymer. Commercially 30 available aqueous suspensoids of these perfluorocarbon polymers ordinarily contain up to about 60% by weight of the polymer.

When mixtures of the perfluorocarbon polymers are used, ordinarily at least 5 parts

35 of the tetrafluoroethylene polymer and at least 10 parts of the interpolymer are necessary for an effective contribution per 100 parts of the perfluorocarbon polymer mixture.

The heat-convertible organopolysiloxane resin, the second essential component of the coating composition is organic-solvent-soluble in the non-converted state and is water-dispersible. The expression "heat-45 convertible" is used herein in relation to the organopolysiloxane resin, to refer to such resins which, when deposited as a thin coat on a heat-resistant substrate and heated at temperatures in the range of about 2.10°F 50 to about 750°F, yield smooth continuous films which are substantially insoluble in solvents contained in the starting solution of the organopolysiloxane resin. Useful organopolysiloxane resins contain structural units 55 of the formula:

wherein R- and R'- represent monovalent hydrocarbon radicals; the polysiloxane may be, and preferably is, made of up of a combination of a number of struc-55 tural units of this formula which have dif-

ferent R and R' substituents. The R and R' substituents are usually a combination of alkyl and aryl radicals with methyl-phenylpolysiloxanes being preferred; the preferred polysiloxane resins contain the methyl and 70 phenyl radicals in the proportion of from 1 to 2 per silicon atom in the siloxane molecule. It is also preferred that the methylphenylpolysiloxane resins should contain from 0.5 to 2 methyl substituents per phenyl 75 substituent. Useful organopolysiloxane resins and the process for their preparation are described in U.S. Patent 2,258,222. Organopolysiloxane resins useful in formulating the coating compositions of this 80 invention are commercially available under the following designations: (Dow Corning) DC-801, DC-803, DC-805, DC-806, and DC-840 silicone resins; (General Electric) SR-82, SR-112, SR-02, SF-69 and Silicone 85 Resin 81727; and (Union Carbide and Carbon) Silicone Resins R-62 and R-64.

As indicated hereinbefore, the proportion of organopolysiloxane resin can range up to 100 parts per 100 parts by weight of the per- 90 fluorocarbon polymer, at least 3 parts of organopolysiloxane being required to provide an effective contribution. The preferred proportion is 10 to 35 parts, and while higher proportions up to 100 parts provide useful 95 compositions, they do not usually have the desired balance of properties. In this range of higher proportions of the organopolysiloxane resin, the resulting coating lacks the

desired toughness.

The organopolysiloxane resin is ordinarily used in the form of a solution of the resin in a volatile liquid water-immiscible organic solvent for the organopolysiloxane resin. Any organic solvent which is ordinarily 105 used in paint, varnish and lacquer formulations which is a solvent for the organopolysiloxane resin and which is characterized by water-immiscibility to provide dispersibility in water can be used to prepare the 110 solution of the organopolysiloxane resin. Such solvents can be hydrocarbons, esters, ketones, ethers, and mixtures thereof. Hydrocarbons are preferred solvents, e.g., toluol, xylol, benzene, high solvency pet- 115 roleum naphthas, mineral spirits, hexane, cyclohexane, and the like. The solution of the resin can have a content of up to about 75% by weight of the organopolysiloxane resin, the resin concentration ordinarily being 120 in the range of 20 to 60% by weight of the solution. Useful solutions of the resin can have a resin concentration of 10% or even lower when it is desirable to increase the proportion of solvent dispersed in the con- 125 tinuous aqueous phase. Ordinarily the organic solvent does not exceed a proportion of about 40% based on the total weight of the coating composition. Preferred proportions are in the range of 5% to 25%. Use 130

100

of a high proportion of solvent reflects a reduction in the content of the film-forming components of the coating composition which in turn ordinarily reflects a reduc-

tion in the coating weight per coat.

The third essential component of the aqueous dispersion coating composition is the water-soluble surfactant which includes an anionic surfactant. The useful propor-10 tions of the surfactant are recited hereinbefore. Sodium alkyl sulfates having 10 to 18 carbon atoms in the alkyl substituent are representative for stabilizing the aqueous suspensoid of the perfluorocarbon resin, 15 sodium lauryl and sulfate being especially While the aqueous suspensoid of the perfluorocarbon resin may supply a substantial proportion of the anionic surfactant, the content thereof can be supplemented 20 with additional surfactant which may be anionic or non-ionic. Preferably the supplemental surfactant is a combination of anionic and non-ionic surfactants. The anionic surfactant can be a sodium alkyl sulfate or an 25 alkyl surfonate salt, each having 10 to 18 carbon atoms in the alkyl substitutent, or an alkyl-arylsulfonate, e.g., a dialkylanph-thalene sulfonate having 3 or 4 carbon atoms in each alkyl substituent. Sodium sulfonates 30 of a plurality of naphthene units condensed with formaldehyde are particularly useful as the anionic surfactant for dispersing the pigment in an aqueous medium. Non-ionic surfactants, e.g., "Triton" X-100 octylphen-35 oxypolyethanoxyethanol, are ordinarily preferred in dispersing the pigment in a nonaqueous medium.

Useful non-ionic surfactants which can be included in combination with the anionic 40 surfactants are represented by polyethanoxyethers of alkyl phenols, alcohols or mercaptans, and polyethanoxy esters of hydrophonbic fatty acids and polypropylene ether esters of such fatty acids. Preferred non-45 ionic species are alkylphenoxypolyethanoxyethanols having 7 to 12 carbon atoms in the alkyl substituent and from 8 to 15 moles of ethylene oxide con-

densed per mole of alkylphenol.

The fourth essential component of the coating composition is chromic acid, or a mixture of chromic acid with at least one polybasic oxy-acid of phosphorous or sulfur, such acid mixtures preferably including the 55 tribasic orthophosphoric acid in combina-tion with chromic acid. For calculating purposes, chromic acid as referred to throughout the specification and claims is identified as CrO, which in the aqueous medium yields 60 chromic acid. Typical polybasic acids which can be used in combination with the chromic acid include orthophosphoric, pyrophosphoric, sulfuric and sulfurous acids. These polybasic acids enhance the curing of the 65 organopolysiloxane resin and in crosslinking

the polysiloxane resin, at least a portion of the oxy-acid, especially orthophosphoric and chromic acids, apparently reacts with the polysiloxane resin to become an integral part of the resulting crosslinked resin. While 70chromic acid can be used as the sole polybasic oxy-acid component, a mixture of chromic acid and the tribasic orthophos-phoric acid is preferred. As stated hereinbefore, the proportion of oxy-acid preferably 75 is in the range of 20 to 65 parts per 100 parts total weight of the perfluorocarbon polymer and the organopolysiloxane resin.

Pigments and extenders can be present in the coating composition in proportions up to 80 500 parts per 100 parts total weight of the persiuorocarbon polymer and the organopolysiloxane resin. Useful pigments and extenders are necessarily substantially non-reactive with the oxy-acid component of the 85 composition. Metal oxides, chromates, silicates, sulfates, phosphates, carbon black, colloidal silica and montmorillonite clays are typical materials useful for pigmentation. Metal hydroxide and metal carbonate pig- 90 ments can be used at low acid concentrations where moderate reactivity of the pig-

ment can be tolerated.

Preferred proportions of total pigment range from 10 parts to 150 parts per 100 95 parts total weight of the perfluorocarbon resin and the organopolysiloxane resin. Within the range of up to 50 parts of total pigment, the finished deposited from the coating composition and cured exhibits ad- 100 vantageous retention of properties ordinarily attributed to the presence of the perfluorocarbon resin and further exhibits improved hardness, improved film-build, improved abrasion resistance and improved adhesion. 105 When the pigmentation is in the range above 50 parts, the contribution of the perfluorocarbon polymer to the film properties are proportionately decreased with increasing proportions of pigmentation, but this in- 110 crease in pigmentation in combination with the oxy-acid cured organopolysiloxane resin reflects further improvement in film-build, hardness, abrasion resistance, and adhesion. These more highly pigmented compositions 115 are advantageously bondable with other organic coatings which ordinarily do not adhere adequately to tetrafluorocarbon polymer and hexafluoropropylene-tetrafluoroethylene interpolymer substrates.

Still other modifiers in addition to the aforementioned essential components may be present in the coating composition, but their presence is not essential to accomplishment of the objectives of this invention. 125 Bodying agents, e.g., methyl cellulos, dimethyl, dioctyl ammonium bentonite clay, high molecular weight carboxylic vinyl polymers; flow control agents; and other additives can be included in ordinary small pro- 130

portions necessary to accomplish their purpose.

Coating compositions of this invention are applicable at concentrations ranging up to 70% by weight of solids, including the oxyacid component as part of the solids content which is deposited from the composition as a finish. The coatings are usually applied at a solids content of at least 20% by weight, preferably at 30% to 60% by weight. However, for some purposes, application at 10% or even as low as 5% by weight is considered to be practical. Inasmuch as the compositions have a continuous aqueous phase and are water-dilutable, water is used to thin high solids compositions to lower concentrations of solids.

The coating compositions of this invention are prepared by blending a preformed 20 solution of the organopolysiloxane resin in a water-immiscible solvent with an aqueous suspensoid of the perfluorocarbon resin in the presence of a water-soluble surfactant including an anionic species to thereby form a 25 dispersion having a continuous aqueous phase and the solution of the organopolysiloxane resin as a dispersed phase, and thereafter blending the inorganic polybasic oxy-acid component with the resulting 30 aqueous dispersion. Preferably, the solution of the organopolysiloxane resin is predispersed in water in the presence of a watersoluble surfactant and the resulting aqueous dispersion is blended with the aqueous suspensoid of the perfluorocarbon resin. Blending can be by an ordinary means, but 35 pensoid of high speed mixing and heavy duty mixing usually is avoided because of adverse effects on the stability of the aqueous suspensoid of 40 the perfluorocarbon polymer.

When the composition is pigmented, the pigment is initially dispersed in either an aqueous medium or non-aqueous liquid medium in the presence of a surfactant to 45 facilitate wetting of the pigment. The resulting pigment dispersion is blended with the aqueous dispersion of the solution of the organopolysiloxane resin and the aqueous suspensoid of the perfluorocarbon polymer. 50 Preferably, the pigment is predispersed in a non-aqueous liquid medium comprising essentially a soluble surfactant and a solution of the organopolysiloxane resin in a

water-immiscible organic solvent therefor.

55 However, water and the soluble surfactant alone or an aqueous dispersion of the organic solution of the organopolysiloxane resin can be used as the initial dispersion medium for the pigment.

60 Minimum mechanical working of the aqueous suspensoid of the perfluorocarbon resin is desired for stability reasons and consequently, the pigment preferably is not initially dispersed in the presence of the 65 aqueous suspensoid of the perfluorocarbon

resin. The preformed aqueous pigment dispersion is merely blended with the aqueous suspensoid.

Ancillary components can be included in either the aqueous suspensoid of the per-70 fluorocarbon polymer, the aqueous dispersion of the solution of the organopolysiloxane resin, the preformed pigment dispersion, or any combination of these three, according to the ordinary techniques of 75 adding these components. Ordinarily, these ancillary components are modifiers for the aqueous suspensoid of the perfluorocarbon polymer and are added directly thereto or to any combination which includes the suspen-80 soid.

As indicated hereinbefore, two main categories of compositions evolve from this invention, i.e., those having high retention of the perfluorocarbon polymer characteristics 85 with significant improvements and those in which the improvements predominate with the contribution of the perfluorocarbon polymer being of less importance. An important consideration of the compositions of this 90 invention is that high temperature baking or even heating to fusion temperature of the perfluorocarbon polymer is not necessary to the deposition of useful finishes. The deposited coating will cure by simply air- 95 drying at ambient temperature, e.g., the coatings dry tack-free in one hour at 77°F. Moderate force drying temperatures can be used, e.g., the coatings dry tack-free in 10 minutes at 180°F. In the absence of high 100 temperature baking and the use of fusion temperatures, the resulting finishes do not develop optimum properties attributed to the characteristics of the perfluorocarbon poly-Where these optimum properties are 105 desired, baking temperatures in the range of 675°F to 775°F, preferably 5 to 25 minutes at 750°F, are used to cure compositions in which the perfluorocarbon polymer is tetrafluoroethylene polymer. Somewhat lower 110 temperatures are used when the perfluorocarbon polymer is an interpolymer of hexafluoropropylene and tetrafluoroethylene or mixtures thereof with the tetrafluoroethylene polymer, e.g., baking temperatures in the 115 range of 550°F to 650°F, preferably 5 to 25 minutes at 625°F.

In the absence of fusion of the colloidal particles of the perfluorocarbon polymer in the deposited finish, these particles exist in 120 a film-forming matrix of the cured organopolysiloxane/oxy-acid combination substantially as perfluorocarbon colloidal pigment particles rather than as film-forming material. Such uncoalesced or unfused particles of perfluorocarbon polymer continue to contribute some of their advantageous characteristics to the properties of the finish. Intermediate baking temperatures such as from 250°F to 425°F ordinarily used com- 130

mercially for curing conventional baking finishes can be used in curing the finishes of this invention to enhance the cure of the organopolysiloxane resin and facilitate respectations of surfactant, but such curing temperatures do not enhance the contribution of the perfluorocarbon polymer in the absence of fusion.

Coating compositions of this invention 10 formulated with a high relative proportion of the perfluorocarbon polymer and low pigmentation or unpigmented, e.g., below about 50 parts of pigment per 100 parts total weight of the perfluorocarbon polymer and 15 the organopolysiloxane resin are preferably cured at a temperature sufficient to fuse the colloidal particles of the perfluorocarbon polymer. With coating compositions of this invention formulated with the perfluoro-20 carbon polymer moderately or highly modified with pigment and having substantial proportions of the organopolysiloxane resin as film-forming material, adequate curing is accomplished with ordinary moderate baking 25 temperatures or even by air-drying at ambient temperatures. Baking of these compositions at higher temperatures sufficient to fuse the perfluorocarbon polymer particles does not significantly enhance the properties 30 of the finish contributed by the perfluorocarbon polymer. Advantages of moderate baking over air-drying of the invention coatings reside in enhanced adhesion, hardness, and abrasion resistance and reduced water-

35 sensitivity. The coating compositions of this invention can be applied by any of the conventional coating techniques such as by spraying, brushing, dipping or roller coating. 40 coating compositions can be applied to any of a wide variety of substrates. While the substrate is preferably heat-resistant, e.g., iron, steel, copper, bronze, brass, nickel, aluminum, tungsten, titanium and alloys of 45 the indicated metals, glass and other ceramic materials, to accommodate fusion temperatures for the perfluorocarbon polymer, innumerable other less heat-resistant substrates, e.g., wood, paper, textiles, rubber 50 synthetic elastomers and the like, can be coated with the invention compositions in consideration of curing the deposited coating composition at moderate baking temperatures or even at ambient temperatures 55 such as 77°F. A limitation is that the substrate be tolerant of exposure to the aqueous

composition containing the oxy-acid.

Compositions of this invention are applicable in substantially thick coats, e.g., up to about 5 mils dry thickness per coat. Such film thicknesses are significantly thicker than are applicable with conventional coatings formulated with aqueous suspensoids of the perfluorocarbon polymer or interpolymers.

55 The relative increase in thickness is at least

50% greater, the increase ordinarily being 100% or more. These finishes cured at fusion temperature exhibit retention of the desirable properties attributed to the contribution of the fused perfluorocarbon polymer, i.e., heat, chemical, and electrical resistance and durability, when the coating composition is either a clear formulation or pigmented up to about 50 parts of pigment on the indicated basis. In addition, these 75 cured finishes exhibit the advantageous improvements of significantly enhanced hardness, abrasion resistance and adhesion.

Baked finishes and air-dry finishes of the invention compositions in which the proportion of pigment is in the range of 50 to 500 parts, per 100 parts total weight of the perfluorocarbon polymer and the organopolysiolane resin, exhibit the same advantageous improvements, but the contributive 85 characteristics of the perfluorocarbon polymer are diminished with decreasing relative proportions of the perfluorocarbon polymer.

The complete liquid coating compositions are characterized by limited package stabil- 90 ity, particularly when the proportoin of the oxy-acid component is high. Because of the potential instability, the coating composition is preferably packaged as a two-package combination having a stable 95 aqueous solution of the oxy-acid component in one package and a stable aqueous dispersion constituting the balance of the composition in the second package. Appropriate proportions of the contents of the two pack- 100 ages are simply mixed together to complete the composition. If desired, the composition can be packaged with a greater plurality of component packages which are simply blended to complete the formulation, e.g., a 105 three-package combination is feasible which the aqueous oxy-acid is in one package, the stable aqueous suspensoid of the perfluorocarbon polymer in the second package, and the clear or pigmented aqueous dis- 110 persion of the solution of the organopolysiloxane resin in the third package. In combining the three packages, it is preferred to initially combine packages two and three and then blend in package one, although the 115 acid can be blended separately with either package two or package three before the entire combination is combined.

The following examples are intended to illustrate this invention and not to limit it in 120 any way. Parts and percentages are by weight unless otherwise indicated.

EXAMPLE 1

irst Partion	Turis U.	
	Weight	125
Cr ₂ O ₃ Chromium Oxide Pigment	31.8	
TiO ₂ Titanium Oxide Pigment	18.2	
DC-801 Organopolysiloxane Resin		
Solution, 60% in Xylol	14.6	

Parts h.

"Triton" X-100 Octoylpheno	
polyethanoxyethanol	xy-
Jou Industrial 10°	7.3
Toluol	54.0
5 Second P	
5 Second Portion	9.1
Aqueous Sodium I	
Solution, 23%	ate
"Triton" X-100 Non-ionic Si	36.9
factant Non-ionic Si	ur-
10 Water	20.0
	52.0
DC-801 Organopolysiloxane Res	53.0
Solution, 60% in Xylol	10
	6.5
Solution, 50% in Xylol	ın
	7.6
Aqueous Suspensoid of Teta	_
fluoresthed of Teta	ra `
fluoroethylene Polymer—600	V.
Polymer and 3 Parts of Sodium Lauryl Sulfata Parts of Sodium	70 72
	π
the Polymer Polymer	
water	142.0
Fourth Portion	25.0
Water	
Chromin A	15.0
Chromic Acid CrO ₃ 99.5+% Orthophosphoric Asia 10.5+%	13.5
25 Orthophosphoric Acid 85%	
	13.5
The essential components:	468.0
The essential components in this c	composi-
30 - 10 10 10 WS	1 -4-
	Parts by
(A) m	Luis Dy
	Waint
(A) Tetrafluoroethylene Polymer	Weight
(A) Tetrafluoroethylene Polymer (B) Organopolysiloxane Recine	85
(C) Surfactants (A Resins	85 15
(C) Surfactants—(Anionic	85 15 11.0
(C) Surfactants—(Anionic	85 15 11.0 27.3
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(Cro	85 15 11.0 27.3
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H.PO	85 15 11.0 27.3 13.5
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H.PO	85 15 11.0 27.3 13.5
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H.PO	85 15 11.0 27.3 13.5
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H.PO	85 15 11.0 27.3 13.5
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (CrO ₃ (E) Pigment (H ₂ PO ₄ There are 17.7 parts of the organ carbon polymer (C) Surfactants—(Anionic (Non-ionic (CrO ₃ (H ₂ PO ₄ (H ₂ PO ₄ There are 17.7 parts of the organ carbon polymer (Carbon polymer (Carbon polymer (Carbon polymer) (C) Surfactants—(Anionic (Cro ₃ (Non-ionic (Cro ₃ (Cro ₃ (Cro ₃ (Cro ₃ (Cro ₄ (Cro ₄ (Cro ₃ (Cro ₄	85 15 11.0 27.3 13.5 11.5 50 appoly-fluoro-
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (E) Pigment There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant parts of the per	85 15 11.0 27.3 13.5 11.5 50 appoly-fluoro-
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (Non-ionic (Non-ionic (Polybasic Oxy-acids—(CrO ₃ (E) Pigment (H ₂ PO ₄ There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant per 100 parts of the per surfactant per 100 parts of the perfluc	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total
(C) Surfactants—(Anionic (Non-ionic (Nappo) (Non-ionic	85 15 11.0 27.3 13.5 11.5 50 10 poly-fluoro- of total procar- nixture
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (E) Pigment (H ₃ PO ₄ (H) ₄ PO ₅ (E) Pigment (H ₃ PO ₆ (H) ₅ PO ₆ (E) Pigment (H ₃ PO ₆ (H) ₅ PO ₆ (E) Pigment (H ₃ PO ₆ (H) ₅ PO ₆ (E) Pigment (H ₃ PO ₆ (E) Pigment (H) ₅ PO ₆	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (E) Pigment There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts surfactant per 100 parts of the perfluction bon polymer of which surfactant in about 13 parts are the anionic surfact There are 25 parts of the oxy-acid 100 parts total	85 11.0 27.3 13.5 11.5 50 aopoly-fluoro- of total brocar- aixture aixture
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (E) Pigment There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactant There are 25 parts of the oxy-acid 100 parts total weight of the perfluctor polymer and the	85 11.0 27.3 13.5 11.5 50 aopoly-fluoro- of total brocar- aixture aixture ds per
(C) Surfactants—(Anionic (Non-ionic (Nappo) (H ₂ PO ₂ There are 17.7 parts of the organ carbon polymer. There are 45 parts of the perfluction about 13 parts are the anionic surfactant in about 13 parts are the anionic surfactant There are 25 parts of the oxy-aci (100 parts total weight of the perfluoroopolymer and the	85 11.0 27.3 13.5 11.5 50 aopoly-fluoro- of total brocar- aixture aixture ds per
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄ (E) Pigment (H ₂ PO ₄ (85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total procar- nixture ant. ds per carbon
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (CrO ₃)) (D) Polybasic Oxy-acids—(CrO ₃) (E) Pigment (H ₃ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant nabout 13 parts are the anionic surfactant. There are 25 parts of the oxy-acid 100 parts total weight of the perfluction polymer and the organopolysiloxane of There are 50 parts of pigment perfluctions.	85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total procar- nixture ant, ds per carbon resin.
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃))) (E) Pigment (H ₃ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactant. There are 25 parts of the oxy-action polymer and the organopolysiloxane of the perfluction parts total weight of the perfluction polymer and the organopolysiloxane of the perfluction polymer and the perfluction of the perfluction polymer and the perfluction of the pe	85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total procar- nixture ant, ds per carbon resin. or 100 arbon
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄ (E) Pigment (H ₂ PO ₄ (85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orocar- nixture ant, ds per carbon resin. r 100 arbon esin.
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃))) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactar There are 25 parts of the oxy-action polymer and the organopolysiloxane in There are 50 parts of pigment per parts total weight of the perflucroc polymer and the organopolysiloxane in The ingredients of the first portion mixed and then bell with	15. 11.0 27.3 13.5 11.5 50 nopoly-fluoro-of total procaraixture ant. ds per carbon resin. r 100 arbon eesin. n are
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃ (E) Pigment (H ₂ PO ₄ (E) Pigment (A) Pig	85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total procar- nixture ant. ds per carbon resin. r 100 arbon esin. n are
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃ (E) Pigment (H ₂ PO ₄ (E) Pigment (A) Pigment (A) Surfactant per 100 parts of the perfluction (about 13 parts are the anionic surfactant per 100 parts of the perfluctor (B) Polymer are 25 parts of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer are 17.7 parts of the perfluctor (B) Polymer are 19.0 parts of the perfluctor	85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total procar- nixture ant. ds per carbon resin. r 100 arbon esin. n are about
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃ (E) Pigment (H ₂ PO ₄ (E) Pigment (A) Pigment (A) Surfactant per 100 parts of the perfluction (about 13 parts are the anionic surfactant per 100 parts of the perfluctor (B) Polymer are 25 parts of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer and the organopolysiloxane parts total weight of the perfluctor (B) Polymer are 17.7 parts of the perfluctor (B) Polymer are 19.0 parts of the perfluctor	85 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total procar- nixture ant. ds per carbon resin. r 100 arbon esin. n are about
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (E) Pigment (H ₂ PO ₄ (E) Pigment (A) Surfactant per 100 parts of the perfluction polymer of which surfactant nabout 13 parts are the anionic surfactant (B) Pigment (A) Surfactants—(A) Polymer are the are 25 parts of the perfluction polymer and the organopolysiloxane in parts total weight of the perfluction (B) Polymer and the organopolysiloxane in the ingredients of the first portion mixed and then ball mill ground for 172 hours to disperse the pigment. The gredients of the second portion are in the second portion ar	85 11.0 27.3 11.5 11.5 50 nopoly-fluoro- of total orixture ant. ds per carbon resin. r 100 arbon esin. n are about the incomplete in
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₃ PO ₄ (E) Pigment (Pigment)	85 11.0 27.3 11.5 11.5 50 11.5 11.5 total procar- inture int. ds per arbon resin. r 100 arbon esin. n are about le in- uixed g the
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃ (H ₃ PO ₄))) (E) Pigment (H ₃ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant nabout 13 parts are the anionic surfactant 100 parts total weight of the perfluction polymer and the organopolysiloxane of the parts total weight of the perfluction parts total weight of the perfluction parts total weight of the perfluction of polymer and the organopolysiloxane of the ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase.	85 11.0 27.3 11.5 11.5 50 nopoly-fluoro- of total orocar- nixture nixture arbon resin. r 100 arbon esin. n are about le in- thixed g the s the
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (Non-ionic (Po) Polybasic Oxy-acids—(CrO ₃ (H ₃ PO ₄) (E) Pigment (H ₃ PO ₄ There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of the perfluction polymer of which surfactant nabout 13 parts are the anionic surfactant open 100 parts of the oxy-acid 100 parts total weight of the perfluction polymer and the organopolysiloxane of There are 50 parts of pigment per parts total weight of the perfluction of polymer and the organopolysiloxane of The ingredients of the first portion mixed and then ball mill ground for 72 hours to disperse the pigment. The gredients of the second portion are in the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 to polymer tible.	85 11.0 27.3 11.5 11.5 50 nopoly-fluoro- of total brocar- nixture ands per carbon resin. r 100 arbon esin. n are about in in are about g the s the s the s are
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (Non-ionic (CrO ₃)) (E) Pigment (H ₃ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactation parts total weight of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment per parts total weight of the perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 172 hours to disperse the pigment. The second portion are in the second portion are in the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-802 methyl-phenylpolysilor in the second polysiloxane resins in solution in the second polysiloxane resins a dispersed phase. DC-801 and DC-802 methyl-phenylpolysiloxane resins in solution in the second polysiloxane resins in solution in the second polysiloxane resins a dispersed phase. DC-801 and DC-802 methyl-phenylpolysiloxane resins in solution in the second polysiloxane resins in solution in the second polysiloxane resins a dispersed phase. DC-801 and DC-802 methyl-phenylpolysiloxane resins in solution in the second polysiloxane resins a second polysiloxane resins in solution in the second polysiloxane resins a second polysiloxane resins in solution in the second polysilox and polysiloxane resins in solution in the second polysilox and polysiloxane resins in solution in the second polysilox and polysil	85 15 11.0 27.3 13.5 11.5 50 appoly-fluoro- of total brocar- aixture ant, ds per carbon resin, r 100 arbon resin, n are about in in are about in are about in
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactation polymer and the organopolysiloxane in There are 25 parts of the oxy-acid 100 parts total weight of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 72 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-801 and DC-801 in xylol is chart in xylol. DC-801 at	11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orocar- nixture ant. ds per carbon resin. r 100 arbon esin. n are about le in- nixed g the s the s the s the s tare 60%
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactar 100 parts total weight of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment per parts total weight of the perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 heat-convertible methyl-phenylpolysilor resins in solution in xylol. DC-801 at 25°C in the rapper 100 parts of the oxy-acid to polymer and the organopolysiloxane resins in solution in xylol. DC-801 at 25°C in the rapper 100 parts of the oxy-acid to polymer and the organopolysiloxane resins a dispersed phase.	11.0 27.3 11.5 11.5 10.5 10.5 10.5 10.5 10.5 10.5
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactar 100 parts total weight of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment per parts total weight of the perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 heat-convertible methyl-phenylpolysilor resins in solution in xylol. DC-801 at 25°C in the rapper 100 parts of the oxy-acid to polymer and the organopolysiloxane resins in solution in xylol. DC-801 at 25°C in the rapper 100 parts of the oxy-acid to polymer and the organopolysiloxane resins a dispersed phase.	11.0 27.3 11.5 11.5 10.5 10.5 10.5 10.5 10.5 10.5
(C) Surfactants—(Anionic (Non-ionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ siloxane resin per 100 parts of the per carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfacts. There are 25 parts of the oxy-acid 100 parts total weight of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment per parts total weight of the perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 heat-convertible methyl-phenylpolysilo foi in xylol is characterized by a viscosit 25°C in the range of D to L Gardner-Frederick.	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total oriocar- nixture ant. ds per carbon resin. or 100 arbon resin. or 100 arbon gesin. or 100 arbon fesin. or 100 arb
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactar of the perfluction polymer and the organopolysiloxane of the parts total weight of the perfluction polymer and the organopolysiloxane of the ingredients of the first portion mixed and then ball mill ground for 172 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 resins in solution in xylol. DC-801 at the range of D to L Gardner-Fescale and DC-803 at 50% in xylol is characterized by a viscosit terized by a viscosit terized by a viscosit of the second portion of the content of the perfluction of polymer and the organopolysiloxane of the instruction of the perfluction of the perflucti	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orixture ant. ds per carbon resin. r 100 arbon esin. n are nixed g the s the s the y at o y at o y at o
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactant polymer and the organopolysiloxane in There are 25 parts of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 resins in solution in xylol. DC-801 at 125°C in the range of D to L Gardner-Ferized by a viscosity of D to H. Then the second D to T. Then the second D to H. Then the second D to T. Then the second D to T	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orixture ant. ds per carbon resin. r 100 arbon esin. n are nixed g the s the s the y at o y at o y at o
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactant polymer and the organopolysiloxane in There are 25 parts of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 resins in solution in xylol. DC-801 at 125°C in the range of D to L Gardner-Ferized by a viscosity of D to H. Then the second D to T. Then the second D to H. Then the second D to T. Then the second D to T	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orixture ant. ds per carbon resin. r 100 arbon esin. n are nixed g the s the s the y at o y at o y at o
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactar of the perfluction polymer and the organopolysiloxane of the parts total weight of the perfluction polymer and the organopolysiloxane of the ingredients of the first portion mixed and then ball mill ground for 172 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 resins in solution in xylol. DC-801 at the range of D to L Gardner-Fescale and DC-803 at 50% in xylol is characterized by a viscosit terized by a viscosit terized by a viscosit of the second portion of the content of the perfluction of polymer and the organopolysiloxane of the instruction of the perfluction of the perflucti	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orixture ant. ds per carbon resin. r 100 arbon esin. n are nixed g the s the s the y at o y at o y at o
(C) Surfactants—(Anionic (Non-ionic (D) Polybasic Oxy-acids—(CrO ₃ (H ₂ PO ₄) (E) Pigment (H ₂ PO ₄) There are 17.7 parts of the organ carbon polymer. There are 45 parts of surfactant per 100 parts of the perfluction polymer of which surfactant in about 13 parts are the anionic surfactant polymer and the organopolysiloxane in There are 25 parts of the perfluction polymer and the organopolysiloxane in There are 50 parts of pigment perfluction polymer and the organopolysiloxane in The ingredients of the first portion mixed and then ball mill ground for 12 hours to disperse the pigment. The gredients of the second portion are in solution of organopolysiloxane resins a dispersed phase. DC-801 and DC-803 resins in solution in xylol. DC-801 at 125°C in the range of D to L Gardner-Ferized by a viscosity of D to H. Then the second D to T. Then the second D to H. Then the second D to T. Then the second D to T	85 15 11.0 27.3 13.5 11.5 50 nopoly-fluoro- of total orixture ant. ds per carbon resin. r 100 arbon esin. n are nixed g the s the s the y at o y at o y at o

This coating composition is applied as a single thick coat of about 1 mil to the interior surface of an aluminum ice cube tray and the applied coating is cured by heating for about 6 minutes at 725°F. The resulting 70 coating is hard, abrasion-resistant, and adherent to the metal. Another ice cube tray is coated with an ordinary commercially available "Teflon" (trade mark) TFE perfluorocarbon resin primer at about 0.3 mil 75 and topcoat of about 0.7 mil, and cured under the same conditions. The resulting composite coating is relatively soft, is easilyabraded or scratched, and is weakly anchored to the substrate. The combination 80 of primer and topcoat provides about the same coating thickness as the single coat of the invention composition. The two trays are filled with water and placed in a freezer to produce ice. Release properties relative 85 to ice are satisfactory, the Example 1 coating being rated only slightly less effective than the comparative coating.

The composition of Example 1 is applied as a single coat of about 1 mil to the baking 90 surfaces of an electric grill for frying pan-cakes and baking waffles and over a portion of the coated area is applied an ordinary clear coating of tetrafluoroethylene polymer composition. The coatings are cured and 95 fused by heating for about 20 minutes at 725°F. A comparative grill is coated with a two-coat system of ordinary "Teflon" primer and clear "Teflon" topcoat, and over a portion of the coated area is applied 100 a coat of the composition of Example 1. The coatings on the comparative grill are cured under the same conditions. The coated area having solely the cured coating of Example 1 exhibits the same characteris- 105 tics as indicated for the coated ice cube tray, and the coated area having solely the comparative combination primer-topcoat finish exhibits the same deficiencies noted for the ice cube tray similarly coated. An im- 110 proved bondage is observed at the interface between the invention finish and the comparative clear tetrafluoroethylene polymer

Use of the coated grills for frying pancake 115 batter and baking waffles reveals no significant difference in the release properties of the respective coated areas in reference to releasing the baked products from the grills. A particular advantage of the area coated 120 with the Example 1 composition is that it is harder and less easily marked when abraded with a metal spatula or pancake turner in comparison with the area coated with the ordinary perfluorocarbon polymer finish. 125

EXAMPLE 2

First Portion
Toluol

Parts by Weight

A B C
12.7 20.0 41.5

	"Triton" X-100 Non-	Example 2C composition exhibits inferior	
	ionic Surfactant 3.0 4.6 9.5	release properties and is softened by the hot	
	DC-803 Organopolysil-	grease and easily separated from the metal	
	oxane Resin Solution—	after about one month of daily use, indicat-	
5		ing a diminution of the tetrafluoroethylene	70
,	TiO ₂ Pigment 32.0 50.0 103.0	polymer properties to the coating in com-	
	Second Portion	parison with the ordinary tertafluoroethylene	
	DC-801 Organopolysil-	polymer comparative coating. However,	
	oxane Resin solution—	the invention composition is harder and	
10		more abrasion-resistant than the compara-	75
10	DC-803 Organopolysil-	tive coating.	
	oxane Resin Solution—	The desirable heat resistance, chemical	
	—50% in Xylol 8.8 7.6 8.0	resistance, and release properties characteris-	
	—50% in Xylol 8.8 7.6 8.0 "Triton" X-100 Non-	tic of tetrafluoroethylene polymer are re-	
	ionic Surfactant 10.0 10.0 —	stored to the finish when the compositions	80:
15		of Examples 2A and 2B are used respec-	
	Xylol 40.0 20.0 — Aqueous Sodium Lauryl	tively in place of 2C. The cured composi-	
	Sulfate Solution —	tions of 2A and 2B exhibit significant im-	
	23% 47.7 46.9 47.0	provement over the ordinary tetrafluoroethy-	
-00	23 /0	lene polymer coatings in reference to hard-	85
20	Water 23.1 43.2 48.5 Third Portion	ness and abrasion resistance.	
	Aqueous Suspensoid of	Aluminum and steel panels are primed	
	Tetrafluoroet h y l e n e	with the Example 2C composition at about	
	Polymer — 60% Plus	1 mil dry thickness. One set of panels is	
05	3 Parts of Sodium	cured by air-drying overnight and a second	90 [.]
25	Lauryl Sulfate per 100	set is cured by heating for 20 minutes at	
	Parts of Polymer 145 145 133	715°F. Ordinary baking finishes formulated	
	Fourth Portion	respectively with epoxypolyether resins, urea-	
	Chromic Acid Flake	formaldehyde resins, melamine-formaldehyde	
20	99.5+% CrO ₃ 24.0 24.0 24.0	resins, drying oil-modified alkyd resins, and	95
30	Orthophosphoric Acid—	vinvl resins are applied at a coating thick-	
	85% 19.0 19.0 19.0	ness of about 1 mil over the air-dry primer	
	70 0 104 0 143 0	and fused primer, and then the respective	
	Water 70.0 104.0 142.0	topcoats are baked according to their ordin-	
25	450.0 512.0 606.0	ary baking schedules. The cured finishes	100
35	The composition ratios are:	adhere well to both the air-dried primer and	
	2A 2B 2C	the fused primer of Example 2C. Use of	
	Tetrafluoroethylene Poly-	this and like compositions of this invention	
	mer 87.0 87.0 80.0	provide an opportunity of preparing com-	105
10	Organopoly siloxane	posite finishes which include a perfluorocar-	102
40	Resin 12.5 13.3 20.0	bon polymer layer and which exhibit inter-	
	Surfactant 26.6 27.0 22.7	coat adhesion between this layer and an-	
	Oxy-acid 40 40 40	other layer of organic film-forming material	
	Pigment 32 50 100	which ordinarily does not adhere well to	
45	These respective compositions are pre-	ordinary tetrafluoroethylene polymer coat-	HO
73	pared by the same technique as described	ings.	
	for Example 1. The fourth portion is with-	WYZ ATANT E 2	
	held and blended with the combined pre-	EXAMPLE 3	
	ceding portions immediately prior to appli-	D-man h.v.	
50	cation	Parts by	
-	About one-half the surface of an alumi-	First Portion Weight	115
	num griddle is prime-coated with an ordin-		113
	ary tertafluoroethylene polymer primer 500-	"Triton" X-100 Non-ionic Sur- factant 9.0	
	204 at about 0.4 mil and baked for 20		
55	minutes at 715°F. To this primed surface is	DC-803 Organopolysiloxane Resin Solution, 50% in Xylol 23.2	
	applied an ordinary tetrafluoroethylene poly-	201412011, 0 1 /0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120
	mer topcoat 851-221 at about 0.8 mil, over	Ti ₂ O Pigment 100.0	120
	the remaining half the surface with about	Second Portion	
	1 inch overlap of the primed surface, the	DC-801 Organopolysiloxane Resin Solution, 60% in Xylol 7.0	
61	composition of Example 2C is applied at	Doramon, 00 /0 111 11-31-1	
٥.	about 1.2 mils. The topcoats are flash-dried	DC-803 Organopolysiloxane Resin Solution 50% in Xylol 8.4	125
	for 15 minutes at 170°F and then cured by	501411011, /0	12.
	heating for 25 minutes at 750°F.	Aqueous Sodium Lauryi Sulfate	
	Eggs are fried in bacon grease using the	501411011, 20 /4	
6:	coated griddle. The area coated with the	Water 53.3	
	·		

Third Portion	-
A arrange	polymer finishes.
Aqueous Suspenoid of Tetra-	
"dolocilly lelie Polymor (Aa)	EXAMPLE 4
LIUS J FAIIS OF SAddings I a 1	This composition is prepared identical with
5 Sulfate per 100 Porte of D	
Sulfate per 100 Parts of Polymer 67.0	
danger onshellstill Ut Have	portion consists of 125 parts of the aqueous 70 suspensoid of the perfluorocarbon interpolymer and the suspensoid of the suspe
fluoropropylene / Tetrafluoro-	polymer and the permuorocarbon inter-
onlyione litterpolymer — 600/	
1 143 U Falls of "Trifon" V 100	
per 100 Paris of Internalymen can	This composition is applied at the dist
Fourth Portion 67.0	
Chromic Acid	to aluminium and steel panels. After two
Orthophography 25.8	hours air drying, the dry coatings exhibit
Orthophosphoric Acid—85% 25.8 Water 25.8	fair to good adhesion to dry coatings exhibit
15 78.4	fair to good adhesion to the substrates. After curing for 20 minutes at 6500F discountry.
13	curing for 20 minutes at 650°F the coatings
The composition 537.0	DOUG GUILLION IN THE CHARLES ON
I II CUIII DOSITION to prepared 1	
essential difference between this composition	
20 and the preseding of ween this composition	n fluorccarbon interpolymer.
	micronymer
fluoroethylene homopolymer. The interpoly	I- Toluoi Weight
25 mer is commercially excitated interpoly	'- "Triton" X-100 Non-ionic Sur-
	- DC-803 Organopolysis 7.8 90
	DC-803 Organopolysiloxane Resin
Inc latios in this composition	~ 0.201011, JU % III X VIOI 10 A
	1102 Figurent
Organopolysiloxane Regin	Second Forlion
	DC-801 Organopolysiloxane Resin 95
Oxy-acid 19.8	
Pigment 47.8	DC-803 Organopolysiloxane Resin
This costing 100	Solution 500/ in 75 1
This coating is applied to a series of	Solution, 50% in Xylol 14.6
thicknesses ranging from 0.5 to 4 mils per dry coat. One series of coated	. 5014404, 00% in 1011101 40%
	riqueous Sodium Laurvi Sulfata
mitted to air-dry. A second series of the	20 min Water 60 7
primed panels is permitted to air-dry for 40 about 6 minutes then coated with	A-100 Non-ionia C
40 about 6 minutes, then coated with an ordinary tetrafluoroethylene polymera.	factant factant
ary tetroflyonostic coated with an ordin-	Toluol 24.5
ary tetrafluoroethylene polymer topcoat com- position at about 1 mil thickers	Water 63.7 105
position at about 1 mil thickness, and then cured by baking for 10 mil thickness.	Third Postions 136.3
cured by baking for 10 minutes at 750°F. A third series of the primed series at 750°F.	Third Portion 136.3
A third series of the primed panels is heated	Aqueous Suspensoid of Terta-
	muotochiylelle Polymer — Koo/
ordinary tetraffuoroethylans and coated with the	Plus 3 Parts of Sodium Lauryl
ordinary tetrafluoroethylene polymer coating composition and heated for lower coating	Sulfate per 100 Parts of the
750°F monted for 10 minutes at	polymer and rule of the
The adhesion of the air-dried primer coat to the respective substrates is	Fourth Portion 323.0
so to the addression of the air-dried primer coat	Chromio A =: 1
	Chromic Acid Orthophorehani
range of good to very good. The adhesion	Stanophospitoric Acid—85% 510 115
good. The composite finish of the Example 3 composition as a primer and the Example	117.5
3 composition as a primary of the Example	1000
3 composition as a primer and a topcoat of 55 the ordinary tetrafluorochyl	The ratios in this area 1050.0
55 the ordinary tetrafluoroethylene polymer composition is rated very good for	The ratios in this composition are as follows:
composition is rated very good for adhesion to the substrates and rated good for adhesion	
to the substrates and rated good for adhesion adhesion when the primer is significant.	
	Olganopolysiloxane Resin
composite finish is cured as a unit. The	Surfactants
	Oxy-acide 54.2
over the fused primer topcoat applied	Pigment 94
of : Printer Callotts & lesser degree	This composition is present to 85 125
of intercoat adhesion. These finishes and	
combination finishes provide Links and	
which cannot be accompished with one and	
65 two coats of ordinary tetrafluoroethylene	such that one a volume basis, one quart of
teiramuoroethylene	the fourth portion is blended with a quart or
•	the fourth portion is blended with one gallon 130

of the combined first three portions to complete the final composition. The final composition has a useful pot-life of about 6 hours, pot-life to coagulation being about 36

At curing temperatures below about 650°F, the cure of the film depends on a time-temperature reaction between the reactive organopolysiloxane resin and the oxy-10 acids, i.e., chromic and phosphoric acids. The hardness and hydrophobic properties of

the applied coating increase as the time and temperature of the cure is increased up to about 750°F. The coating air-dries satis-15 factorily at ambient temperatures, e.g., 77°F.

At drying temperatures in the range of 70°F to 125°F, hardness, adhesion and hydrophobic properties are improved by exposure of the coating to sunlight or to ultraviolet 20 light.

composite finishes of ordinary topcoats on tetrafluoroethylene polymer applied over the Example 5 composition as a primer unfused, and the composite 25 finish cured at fusion temperature, exhibit good adhesion of the topcoat. Intercoat adhesion is inferior when the primer is initially fused and then topcoated with an ordinary tetrafluoroethylene polymer coating.

EXAMPLE 6

		Parts b
	First Portion	Weigh
	Carbon Black Pigment	77
	Aluminum Silicate Extended Pig	•
35	ment	1.5
• •	Water	15.6
	Anionic Surfactant-Sodium Sul	
	fonate of Naphthalene/Formal	•
	dehyde Condensate	0.8
40	Second Portion	u. 0
_X	DC-803 Organopolysiloxane Resin	1
	Solution, 50% in Xylol	40.0
	Toluol	- 86 8
	"Triton" X-100 Non-ionic Sur-	. 00.0
45	factant	20.0
	Water	100.0
	Third Portion	100.0
	Perfluorocarbon Interpolymer Sus-	
	pensoid, 55%	254.4
50	Tetrafluoroethylene Polymer Sus-	234.4
	pensoid, 60%	233.2
	Fourth Partion	233.2
	Chromic Acid	160.0
	Orthophosphoric Acid	40.0
55	Water	40.0
		40.0
	1	0.000
		000.0

The perfluorocarbon interpolymer suspensoid is 55% interpolymer in water commer-60 cially available as "Teflon" TE-9500 perfluorocarbon polymer suspensoid containing about 6 parts of "Triton" X-100 and 0.75 part of fluorocarbon surfactant per 100 parts of the interpolymer. The tetrafluoroethylene 65 polymer suspensoid is at 60% concentration prepared by electrodecantation from the commercially available 34% suspensoid, and having a content of 3 parts of sodium lauryl sulfate per 100 parts of polymer in the aqueous medium.

The first portion is pebble mill ground for 30,000 cycles. The second portion is emulsified, blended with the first portion, and the third portion blended therewith. The fourth portion is blended with the premixed first 75 three portions immediately prior to application.

The ratios of the components are: Perfluorocarbon Polymer Organopolysiloxane Resin 20.0 80 Surfactant 34.5 Oxy-acids 194.0 Pigment 9.2

This composition is sprayed on steel panels at a dry film thickness of about 1 mil 85 and cured by heating for 15 minutes at 750°F. The resulting cured finish is rated as good in reference to adhesion, cohesion, hardness and flexibility and very good in general appearance, exhibiting significant 90 improvement over an ordinary tetrafluoroethylene polymer primer applied at about 0.5 mil thickness.

Example 6A is prepared identical with that of Example 6 except that the ortho- 95 phosphoric acid is omitted. The properties of the resulting finish cured under the same conditions are comparable with those of the Example 6 composition except that adhesion is rated second best, but better than that of 100 the comparative tertafluoroethylene polymer

Example 6B is likewise prepared identical with that of Example 6 except sulfuric acid replaces the orthophosphoric acid. The 105 cured finish from this composition is rated comparable with that from Example 6A, indicating that the dibasic sulfuric acid is not as effective as the tribasic phosphoric acid in combination with the chromic acid.

Example 6C is prepared identical with Example 6 except that the chromic acid is omitted. The cured finish from this composition exhibits good adhesion, but in the absence of the chromic acid, only minor 115 improvement in cohesion, hardness, and flexibility is registered over the ordinary tetrafluoroethylene polymer primer.

Example 6D is prepared identical with the composition of Example 6 except that the 120 chromic acid content is 10 parts. The cured finish from this composition exhibits good adhesion and significant improvement over the Example 6C cured finished in reference to hardness, cohesion and flexibility.

WHAT WE CLAIM IS: 1. A water-dilutable aqueous dispersion coating composition consisting essentially of:

(A) colloid particles of at least one perfluorocarbon polymer, said polymer being 130

125

tetrafluoroethylene polymer or hexafluoropropylene/tetrafluoroethylene interpolymer, dispersed in an aqueous continuous phase.

(B) a solution of a heat-convertible (as berein defined) organo-polysiloxane resin containing structural units of the formula:

40 -Si-O-R'

in which R and R', which may be the same or different (and which may vary from one structural unit to another), are monovalent hydrocarbon radicals in a water-immiscible organic solvent therefore as a dispersed phase,

(C) a sufficient quantity of one or more water-soluble anionic surfactants to maintain 20 the stability of the dispersion of the perfluorocarbon polymer and the solution of organo-polysiloxane in the continuous aqueous phase, and

(D) chromic acid.

2. A coating composition according to claim 1, which also includes one or more non-ionic water-soluble surfactants.

3. A coating composition according to claim 1 or 2, which also includes a poly30 basic oxy-acid of phosphorus or sulphur.

4. A coating composition according to any of claims 1 to 3 in which from 50% to 100% of the hydrocarbon radicals in the polysiloxane are methyl and phenyl radicals.

5. A coating composition according to claim 4, in which the ratio of methyl to phetyl radicals in the polysiloxane is from 0.5:1 to 2:1.

6. A coating composition according to any of claims 1 to 5 in which the organopolysiloxane is present in the proportion of from 3 to 100 parts per 100 parts by weight of the perfluorocarbon polymer.

7. A coating composition according to 45 any of claims 1 to 6, containing a mixture of chromic acid and orthophosphoric acid, the proportion of chromic acid being at least 5 parts per 100 parts total weight of the perfluorocarbon polymer and the organo50 polysiloxane resin and the total proportion

of chromic acid and orthophosphoric acid being up to 200 parts on said basis.

8. A coating composition according to claim 7, in which the oxy-acid mixture consists of 50 to 150 parts of orthophosphoric acid per 100 parts of chromic acid, the total proportion of the two oxy-acids being up to 100 parts on the indicated basis.

A coating composition according to any
 of claims 1 to 8, containing from 3 to 50 parts of surfactant per 100 parts by weight of perfluorocarbon polymer.

10. A coating composition according to any of claims 1 to 9, in which a mixture of 65 a sodium alkyl sulphate and an alkylphen-

oxypolyethanoxyethanol is used as the surfactant.

11. A composition according to any of claims 1 to 10, which also contains up to 500 parts of pigment per 100 parts total 70 weight of the perfluorocarbon polymer and the organopolysiloxane resin.

12. A composition according to claim 11, containing from 10 to 150 parts by weight of pigment on the indicated basis.

13. A coating composition according to claim 1 in which the constituents are present in the following proportions:

(A) Perfluorocarbon Polymer
(B) Organopolysiloxane Resin having structural units of the formula:

Parts by Weight 80
100

in which R and R', which 90 may be the same or diferent (and which may vary from one structural unit to another) are monovalent hydrocarbon radicals. 95 from 50% to 100% of which one are methyl and phenyl radicals, the ratio of the methyl to phenyl radicals being from 0.5:1 100 to 2:1 10 to 35

(C) Mixed Surfactant:
sodium alkyl sulphate
alkylphenoxypolethanoxyethanol

(D) Chromic acid and, if desired,

polybasic oxy-acid of phosphorous or sulphur 20 to 65 the proportion for (D) and (E) being based 110 on 100 parts total waith of (A) being based 110.

on 100 parts total weight of (A) plus (B).

14. A composition according to any of claims 1 to 13, in which a mixture of 5 to 90 parts by weight of tetrafluoroethylene polymer and 95 to 10 parts by weight of 115 hexafluoroethylene/tetrafluoroethylene interpolymer is used as the perfluorocarbon polymer.

15. As an article of manufacture, a heat-resistant substrate having, as a finish there- 126 on, at least one dry coat of the composition claimed in any of claims 1 to 14.

16. As an article of manufacture, a heatresistant substrate having, as a finish thereon, at least one fused dry coat of the composition claimed in any of claims 1 to 14.

17. As an article of manufacture, a heat-resistant substrate having a dry coat of the composition claimed in any of claims 1 to 14 as a primer coat, and superimposed there- 130

on, at least one dry coat of a coating composition comprising a heat-convertible resin as the essential organic film-forming material. 18. A method of preparing a coating 5 composition which comprises mixing a solution of a heat-convertible as herein defined organopolysiloxane resin in a water-immiscible solvent therefor with water in the presence of a surfactant, thereby forming a 10 dispersion of said solution of resin as the dispersed phase in a continuous aqueous phase, blending the resulting aqueous dispersion with an aqueous suspensoid of colloidal particles of a perfluorocarbon poly-15 mer, said polymer being tetrafluoroethylene polymer or hexafluoropropylene/tetrafluoroethylene interpolymer, in the presence of an anionic surfactant, and thereafter blending chromic acid and, if desired, a polybasic 20 oxy-acid of phosphorus or sulphur, the

essential components being in the proportion of:

Parts by
Weight

25 (A) Perfluorocarbon Polymer

100

 (B) Organopolysiloxane Resin
 (C) Surfactant, including at least 2 parts of anionic species

species 3 to 50
30 (D) Chromic acid, and if
present, other oxy-acid 5 to 200
the proportion of oxy-acid being based on
100 parts total weight of (A) plus (B).

19. A method according to claim 18 which includes the further step of dispersing pigment in a liquid medium in the presence of a surfactant soluble in the liquid medium and blending the resulting dispersed pigment with the aqueous dispersion of the solution of said organopolysiloxane resin and the 40 aqueous suspensoid of said perfluorocarbon polymer, the proportion of pigment being up to 500 parts by weight per 100 parts total weight of said perfluorocarbon polymer and said organopolysiloxane resin.

20. A method according to claim 19, in which said pigment is dispersed in a solution of said organopolysiloxane resin in a water-immiscible organic solvent therefor and containing a soluble surfactant.

21. A water-dilutable aqueous dispersion coating composition according to claim 1 substantially as herein described in any of the Examples.

22. A method of preparing a coating composition according to Claim 18 substantially as herein described in any of the Examples.

A. A. THORNTON & CO., Chartered Patent Agents, Northumberland House, 300-306 High Holborn, London, W.C.1. For the Applicants.

Berwick-upon-Tweed: Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd.—1964
Pablished at The Patent Office, 25 Southampton Buildings, London, W.C.2 from which copies may be obtained.

3 to 100