Klasifikacija zapisa fonokardiograma na normalne i abnormalne

JOSIP KIRALJ DAJANA JERONČIĆ

PRIRODOSLOVNO-MATEMATIČKI FAKULTET, ZAGREB

Opis problema i skup podataka

Fonokardiogram (PCG)

Zvuk kao rezultat vibracija nastalih zatvaranjem srčanih zaliska

Skup podataka

- Podijeljen u 6 dijelova
- 3240 snimaka trajanja 5 120 sekundi

Skup podataka

- Nebalansiran skup
- Šumovite snimke

Segmentacija i logistička regresija

- VREMENSKE ZNAČAJKE -

Springerova segmentacija

 Zasniva se na skrivenom semi-Markovljevom modelu

 Viterbijev algoritam za dekodiranje najizglednijeg slijeda stanja

Značajke

- m RR
- sd RR
- m_IntS1
- sd_IntS1
- m_IntS2
- sd_IntS2
- m_IntSys
- sd_IntSys
- m_IntDia
- sd_IntDia

- m_Ratio_SysRR
- sd_Ratio_SysRR
- m_Ratio_DiaRR
- sd_Ratio_DiaRR
- m_Ratio_SysDia
- sd_Ratio_SysDia
- m_Amp_SysS1
- sd_Amp_SysS1
- m_Amp_DiaS2
- sd_Amp_DiaS2

Rezultati

20 značajki				
Actual\ Predicted	Normal	Abnormal		
Normal	498	253		
Abnormal	48	147		

Se = 75.38%

$$Sp = 66.31\%$$

$$Macc = 70.85\%$$

12 značajki				
Actual\ Predicted	Normal	Abnormal		
Normal	505	246		
Abnormal	46	149		

$$Se = 76.41\%$$

$$Sp = 67.24\%$$

$$Macc = 71.83\%$$

Konvolucijska neuronska mreža

- MEL FREQUENCY SPECTRAL COEFFICIENTS -

Arhitektura mreže

• 23,038,432 parametara

Conv2d – Relu – Dropout – MaxPooling2d – Conv2d – Relu – Dropout

- MaxPooling2d - Flatten - Dense - Relu - Dropout - Dense - Relu -

- Dropout - Dense - Softmax

Arhitektura mreže

Priprema podataka

rješavanje problema nebalansiranosti skupa – undersampling

računanje značajki

- MFSC Mel-frequency spectral coefficients MFCC bez diskretne kosinusove transformacije
- Delta
- o Delta delta

Značajke

 Značajke se dijele u okvire 128x128 (64ms, nepotpune okvire popunimo sa 0)

• Normalizacija :
$$x \to \frac{x-xmin}{xmax-xmin}$$

Podaci su potom promiješani

Prilagodba parametara

Learning rate optimizacijskog algoritma - 0.0001,
0.00001 i 0.000001

- Dropout parametar vrijednost u skupu [0.1,0.5]
- *Parametar regularizacije* (*l*2) 0.001, 0.0001,0.0001
- Weight initializiation "orthogonal" i "uniform".
- Adam, SGD, RmsProp

Ostali parametri

- Training set 1740 normalna i 1558 abnormalna okvira
- Validation set 423 normalna i 359 abnormalna okvira
- Treniranje mreža kroz 200 epoha
- Evaluacija temeljem funkcije gubitka i preciznosti na evaluacijskom skupu
- Funkcija gubitka- cross entropy

4 najbolja modela

Dropout	l.rate	optimizer	Regularization	init	Loss	Acc
0.1 0.2 0.3 0.4	0.00001	Adam	0.0001	ortho	0.258	0.92
0.1 0.2 0.4 0.4	0.00001	Adam	0.0001	ortho	0.243	0.92
0.25 0.25 0.25 0.25	0.00001	Adam	0.0001	ortho	0.27	0.91
0.2 0.2 0.3 0.3	0.000001	Adam	0.0001	ortho	0.255	0.92

Krivulje učenja

Klasifikacija signala

• Izračunaju se značajke i napravi podjela u okvire

Klasificiraju se okviri

Klasa signala – najčešća klasa među okvirima

Smanjuje se utjecaj šuma na klasifikaciju!

Rezultati

- Sensitivity 0.778
- Specificity 0.867
- Mean accuracy =0.8225

Se	Sp	MAcc
0.942	0.778	0.860
0.869	0.849	0.859
0.874	0.829	0.852
0.863	0.826	0.845
0.884	0.804	0.844
0.768	0.912	0.841
0.727	0.952	0.839

Moguća poboljšanja

- Drugačiji pristup problemu nebalansiranosti skupa podataka
- Prvo klasifikacija po kvaliteti signala, a zatim po abnormalnosti
- Duže treniranje modela povećati broj epoha
- Daljnje eksperimentiranje s hiperparametrima modela
- Korištenje više optimizacijskih algoritama, smanjivanje parametra za optimizaciju