# Applying decision intelligence to an industrial filtration system

K.C. Lewis

Johns Hopkins University Applied Physics Laboratory Force Projection Sector October 10, 2023

# Critical Systems Thinking [Jackson, 2019]

#### **Designed to**

- incorporate progress made in systems thinking over many decades
- avoid the biases of looking through just one lens
- leverage other approaches, such as decision intelligence, strategic options, system dynamics, etc

Critical Systems Thinking is a meta-framework for choosing the best combination of approaches for a given scenario

#### Decision Intelligence [Pratt and Malcolm, 2023]

#### **Designed to**

- enhance decision making in mission-centric scenarios
- avoid common pitfalls of group-based problem solving
- optimize use of decision assets (data mining, simulations, etc)

We sketch an end-to-end application of Decision Intelligence, showing how it can empower decision makers by leveraging decision assets as effectively as possible.

# Objective statement for a hypothetical shipping company

"How can we improve the efficiency of our contaminant filtering systems?"

We frame the objective more precisely by answering questions such as...

- who has the authority to make the decisions?
- who has responsibility for the outcomes?
- what are the hard constraints?

### **Brainstorming outcomes**

# Putting ourselves in the decision maker's position, we could try to...

- reduce total cost of running the systems
- increase the volumetric flow rate of purified fluid

# **Brainstorming actions**

#### Actions that might get us to those goals:

- use different filter designs
- optimize maintenance
- purge filters with chemical treatments
- increase pressure differential to eject more biomass

### Causal decision diagram



#### Monte Carlo simulations

81.421259

55.662005

34.294490

157,423867

9996

9997

9998

9999

| p<br>part type | rob_fail loss | _low loss | _high | mu      | sigma                | avg_loss                 |
|----------------|---------------|-----------|-------|---------|----------------------|--------------------------|
| A A            | 0.27          | 100       |       |         | 0.804719             | 312.254137               |
| B              | 0.20<br>0.10  | 200<br>50 |       |         | 0.693147<br>L.242453 | 508.406997<br>364.343198 |
| D              | 0.40          | 300       |       |         | 0.255413             | 399.823581               |
|                |               |           |       |         |                      |                          |
| part type      | А             |           | В     |         | C                    | D                        |
| 0              | 133.138376    | 586.5     | 80191 | 250.750 | 436 37               | 7.407511                 |
| 1              | 314.436230    | 279.4     | 69400 | 114.405 | 700 36               | 2.264175                 |
| 2              | 635.124213    | 1104.6    | 41780 | 64.635  | 782 37               | 9.896570                 |
| 3              | 407.367765    | 242.5     | 83823 | 923.240 | 703 41               | 3.527680                 |
| 4              | 210.812443    | 195.3     | 95831 | 84.716  | 6073 43              | 2.981676                 |
|                |               |           |       |         |                      | $\wedge$                 |
| 9995           | 719.786273    | 598.0     | 75628 | 34.988  | 3016 25              | 6.209784                 |

302.370980

187,528988

374.896988

625.370196

381.321068

306.192447

461.879103

577.357937

554.909411

198.887214

1608.923678

1077.561133

# System dynamics



$$\dot{C} = \delta V - \mu MC$$

#### System vector field



# Sample machine parts/maintenance data

| pump type | filter type | maintenance schedule | ••• | longevity |
|-----------|-------------|----------------------|-----|-----------|
| 1         | 1           | 0                    |     | 5         |
| 0         | 1           | 1                    |     | 2         |
| 1         | 0           | 0                    | ••• | 5         |

#### Decision tree classifier



#### How well do the models do?

Both the decision tree and the neural net perform at around 64% accuracy, with similar confusion matrices:



Figure: Confusion matrices for decision tree (left) and neural net (right) classifiers.

#### **Summary**

- Critical systems thinking is a general framework for systems thinking that encourages tailoring other approaches
- On of those of sub-frameworks, Decision Intelligence (DI), is an especially powerful approach for mission-centric problem-solving
- Using DI, we can create a causal decision diagram (CDD) as the basis of a decision model
- Machine learning models and other assets support the links in the CDD, which can be converted into a "digital twin" if the benefits of doing so outweigh costs
- We can use the resulting decision model as a collaborative and iterative approach for making complex, goal-directed decisions

#### References



MC Jacson (2019)

Critical Systems Thinking and the management of complexity Wiley



LY Pratt and NE Malcom (2023)

The Decision Intelligence handbook: practical steps for evidence-based decisions in a complex world *O'Reilly* 

# The End

Questions? Comments?