This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(FAX)03 3459 1582

P. 038/044

Searching PAJ

Prior Art 3

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

01-148343

(43)Date of publication of application: 09.06.1989

(51)Int.CI.

B01J 23/76 B01J 23/56 C01B 3/40

(21)Application number: 62-304736

(71)Applicant: RES DEV CORP OF JAPAN

SHIMA KENJI

(22)Date of filing:

02.12.1987

(72)Inventor: SHIMA KENJI

(54) CATALYST FOR PRODUCTION OF SYNTHESIS GAS

(57)Abstract:

PURPOSE: To inhibit the deposition of carbon, to facilitate the control of the ratio of H2 to CO and to increase the rate of conversion by using a group VIII element and the oxide of a rare earth element as active components to produce a catalyst for production of synthesis

CONSTITUTION: A group VIII element and the oxide of a rare earth element are used as active components and impregnation, coprecipitation, thermal decomposition, mixing or other preparation method is adopted to produce a catalyst for production of synthesis gas. The group VIII element may be Fe, Co, Ni, Pt, Pd, Rh, Ru or Ir but one or more among Rh, Ru and Ni are preferably used. The rare earth element may be La, Sm, Ce, Y, Eu, Gd, Yb or Tb. The pref. amt. of the group VIII element used is 0.01W80wt%, especially 0.1W50wt% of the amt. of the catalyst.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

Prior Art 3

@日本国特許庁(JP)

10 特許出與公開

 図Int.CI.*
 識別記号
 庁内整理番号
 母公開 平成1年(1989)6月9日

 B 61 J 23/76 23/56 C 01 B 3/40
 Z-8017-4G 2-8017-4G 8518-4G 等査請求 未請求 発明の数 I (全6頁)

砂発明の名称 合成ガス製造用触媒

ூ特 頤 昭62-304736

会出 顧 昭62(1987)12月2日

砂発 明 者 志 摩 賢 二 茨城県土浦市小松2−10−1 三菱モンサント化成小松寮砂出 顧 人 新技術 開発 事業 団 東京都千代田区永田町2丁目5番2号

の出 頤 人 志 摩 賢 二 茨城県土浦市小松2~10~1 三菱モンサント化成小松寮 の代 理 人 弁理士 西澤 利夫

引 編 書

1. 発明の名称

合成ガス製造用機度 2、特許益収の説明

(1) 第74 終元業とお土類元素酸化物とを活性 成分として含有することを特徴とする合成ガス製 適用触媒。

3.発明の詳細な説明

(技術分野)

この発明は、合成ガス製造用無線に関するものである。さらに詳しくは、この発明は、新規な活性成分組成物からなる一盤化臭気および水素の合成ガスを、高収率、高速状率で製造することのできる触媒に関するものである。...

(骨处技術)

健来、以化水素を放料として分泌ガスを製造する方法においては、第77歳元素のNiを担体に抵抗させた触媒が広く用いられてきている。

しかしながら、この従来の方法においては、触

選上に皮米が折出し其いという問題があった。この問題点を解決するためには原有ガス中の本意気 (H₂ O) / 皮素 (C) のモル比を大きくしなければならず、プロセスの経済性が起いという欠点があった。また、製造されるガス中には本素 (H₂) が高速度に含まれることになるため、工業用に使用することのできる H₂ / CO(モルいて の合成ガスを、一般の反応プロセスにおいて 効率的に製造することは困難でしある。

これらの欠点を充限するために、 別化水金取料を二酸化炭率と反応させて改賞し、 合成ガスに変換することが試みられてもいるが、 従来知られている触媒では反応活性が低くて実用的でないのが 辺状である。

(発明の自的)

この発明は、以上の通りの事情に鑑みてなされたものであり、従来の合成ガスの製造方法、およびそのための検索の欠点を改善し、提業新選が生じにくく、H₂ / C O 比の朝鮮が容易な、資活性、高選択性の類似な合成ガス製造用の触媒を提供す

.

(2)

特周平1-148343(2)

ることを目的としている。

(発明の関示)

この発明の合成ガス製剤用触症は、上記の目的を実現するために、 が確接元素と 布上無元素 酸化物と を活性成分として合有することを特徴としている。

活性成分として用いる節型核元素としては、 Pe、Co、Ni、Pt、Pd、Rh、Ru、 1rなどがあるが、これらのうち、特に、Rh、 Ru、Niの一種または二額以上を用いるのが好ましい。 希土類元素做化物としては、La、Sm、 Ce、Y、Bu、Gd、Yb、Tbなどの希土類 元素の酸化物の一種または二種以上のものを用いることとする。この場合は、希土類元素做化物は、 離解の製体としての機器を果たすこともできる。

類智裁元素と希土類元素酸化物とを活性成分とするこの発明の合成ガス製造削離級には、さらに 強文な担体成分、たとえば、Alg O3 などを使用することもできる。

触媒は、従来公知のものをはじめとして、合泛

学的学術の制限を受けるので、実用上は、350 で以上、さらに好ましくは500で以上の温度で 反応を実施する。一方、高温級では熱による無様 の劣化が生じるので、好ましくは900で以下の 温度において反応を実施する。

な気反応の圧力としては、防災の0~100kg / 目視反とすることができる。

また、反応級料としての飲化水素については、 その種類に格別の限定はなく、広報な変化水素を 法、共沈法、共分解法、混合法をどの領域法を通 宜に用いて関連することができる。毎日終元案の 無理に対する使用及は、対象とする反応の条件等 により異なるが、一般的には、触媒の毒土類元素 酸化物、さらに他の担体成分を加えたものの重型 に対して、約 0.01 ~8 0 型量米、より好ましく は、 0.1~5 0 重量米の範囲とする。

この触媒を用いて合成ガスを製造するにあたっては、 灰化水素気料を改気するために、 二酸化及素 または水薫気。 あるいはその混合物を用いて 反応を行うことができる。 この他に、 空衆、 ヘリウムなどの不活性ガスが混入していてもよい。

通常の合成ガス関連プロセスにおいては、触媒の酸化を防止するために少量の水梁を反応ガス中に汲入して、触媒の酸化劣化を防止することを行う場合があるが、この発明の触媒の場合にはこのような必要はない。この発明の触媒の場合には、原理終元素の酸化が起こりにくいので、酸素の共存下においても反応を行うことができる。

災化水素の改貫反応においては、低温では熱力

用いることができる。たとえば催化天然ガス、液 化石油ガス、ナフサ等が例示される。

以上の通りのこの発明の触媒を用いることに よって、炭素析出が著しく抑制された。 H₂ / C O比の制御が良好な高収率および高速状率での 合成ガス製造が可能となる。

次にこの発明の実施例を承し、さらに詳しくこの発明について説明する。もちろん、この発明は、以下の実施例によって限定されるものではない。 実施例 1

解散ニッケル 1.55 まを含む10 m 水溶液に散化イットリウム20 m を加え、設計しながら過俗上で乾燥させる。一吸100℃の温度で乾燥した後に、空気中で500℃の温度に5時間放成した。

Ni-Y₂O₃ 触紙を得た(触媒A)。

災故例 2~7

一 実維例 1 の酸化イットリウムに代えて、酸化スカンジウム、酸化ランタン、酸化ユウロピウム、酸化ガドリニウム、酸化テルピウム、酸化イッテルピウムを各々用い、実験例 1 と同様にして、次

持屈平1-148343(3)

の触媒を得た。

NI-Sc₂O₃ (独然B.)

Ni-La₂O₃ (触媒C)

Ni-Eu₂O₃ (胜版D)

Ni-Gd₂O₃ (触媒B)

NI-Tb₄O₇ (触媒F)

Ni-Yb,Og (胎盤G)

比較例 1~2

実施例1の放化イットリウムの代わりに、単体 としてシリカおよびマグネシアを用い、同様にし て、次の比較別触媒を製造した。

NI-SIO, (胚盤H)

NJ-MgO (触媒I)

·比較例 3

項酸ニッナル15.5mおよびアルミナ20mを用いて、Ni含有量16重量%の

N1-A12 O3 (触媒J)

肤底を製造した。

CH₄ とCO₂ との反応を行う、その結果を表 1 C示した。

実施例9の触媒A~Gに比べて、はるかに反応性が劣ることがわかる。

实施贸10

(3) 实施例 8

N 1 - A 1 2 O 3 触収に、酸化イットリウムを 1 : 1 の混乱比で物理的に混合して、

NI-Al2O3-Y2O3 (M媒K)

触媒を得た。

実施例 9

実識例1~7によって調製した触媒A~Gを、水米気流中で、500で、2時間選売して活性を 処理する。次いで、この触媒50をを1ccの石灰 砂で希釈し、CH₄ /CO₂ /N₂ 比が1/1/ 1の混合ガスを30 NTP=/分で供給する。 この反応の結果を次の表1に示した。収率およ びH₂ /CO比ともに、低めて優れていることが

なお、COおよびH₂の収率は、次の算定式に よる。

CO収率 -- CO/(CH₄ + CO₂·)(供給) × 100 H₂ 収率 -- H₂ /(2× CH₄)(供給) × 100 比較例 4

実権例9と同様にして、触媒H~Jを用いて

は: 1.8単型%>1 (無償3を除く)

特間平1-148343(4)

(で) (で) (で) (NI-T2 03) 700 (NI-T2 03) 700 (NI- Sc2 03) 700 (NI- Sc2 03) 700 (NI- Su2 03) 700 (NI- Su2 03) 700 (NI- Su2 03) 700 (NI- Yb2 03) 700 (N	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	22.3 22.3 22.7 22.7	CO 22 22 22 22 22 22 22 22 22 22 22 22 22	H.	뉙
4 (NI-Y2 03) (NI-Y2 03) (NI-SC2 05)	2.2 50.3 50.1 50.1 50.1 50.1	21.6 54.9 53.0 24.7	22.4 53.9 83.7	•	
(MI-72 03) (MI-52 03) (MI-12 03) (MI-12 03) (MI-104 03) (MI-104 03) (MI-105 03)	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	54.9 83.0 24.7 82.2	\$3.9 83.7	~: ::	5.5
(MI-72 03) (MI-562 03) (MI-13 03) (MI-13 03) (MI-13 03) (MI-13 03) (MI-13 03) (MI-13 03)	8. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	83.0 24.7 62.2	83.7	12.3	0.70
(NI - SC ₂ O ₃) (NI - SC ₂ O ₃)	35.8 2.2 2.2 3.3	24.7		Ξ.	6.49
(NI- 5c ₂ 0 ₃) (RI- 1a ₂ 0 ₃) (RI- 1a ₂ 0 ₃) (RI- 1b ₄ 0 ₃)	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	62.2	22.0	19.7	4.49
(N1- 1a ₂ 0 ₃) (N1- 1a ₂ 0 ₃) (N1- 0a ₂ 0 ₃) (N1- 1b ₄ 0 ₇) (N1- 1b ₂ 0 ₃) (N1- 1b ₂ 0 ₃)	2.2		57.6	48.2	0.88
(KI - 132 03) (KI - 102 03) (KI - 104 07) (KI - 102 03) (KI - 102 03) (KI - 102 03)	53.B	31.3	28.2	.5 	0.54
(M- E ₂₂ 0 ₃) (M- E ₄₂ 0 ₃) (M- B ₄ 0 ₇) (M- Tb ₂ 0 ₃) (M- Tb ₂ 0 ₃)		64.5	62.1	£8.7	0.80
(NI- Fb ₂ 0 ₃) E (NI- 6d ₂ 0 ₃) R (NI- 1b ₄ 0 ₇) G (NI- 4b ₂ 0 ₃) (NI- 4b ₂ 0 ₃)	47.2	52.6	21.4	19.1	9.76
(MI-642 63 1 (MI-104 67) (MI-105 03) (MI-109) (MI-109)	æ. æ.	65.3	83.9	₹. 2.	69.0
(MI-10 ₄ 0 ₃) (MI-10 ₄ 0 ₇) (MI-10 ₂ 0 ₃) (MI-10 ₂ 0 ₃)	51.0	50.7	51.2	38.4	0.73
(((((((((((((((((((78.5	82.5	72.9	0.88
(NI-104 07) 4 H (NI-8102) (NI-490)	33.0	30.4	25.1	12.8 10.8	6.50
(NI-Yb ₂ 0 ₃) 4 H (NI-S10 ₂)	<u> </u>	64.5	59.1	#:B	0.70
4 H H (NI-8102)	17.5	23.8	20.3	9.0	9.5
4 H (MI-810g)	57.8	61.2	81.3	45.5	
	7:3	14.2	12.6	÷.6	9.3
_	8.8	12.9	12,1	-	8° '0
J 600	12.6	1 8.8	16.3	 -:	0.50
英壮居1 0 Ni- A) ₂ 0 ₃ 600	=	45.2	13.0	30.9	6.71

実施例 11

実施例1で興襲した触媒A50mを石英砂 8.5 ccで治収し、活性化した。

 CH_4 $/H_2$ O/N_2 比が 1/2/1 の混合ガスを 4O N TP 耐 / 分で 供給 する。

この反応の結果は次の表2に示した。

 H_2 、COの収率および H_2 /CO比ともに、 比較例に比べてはるかに使れている。

H-00 61 5

比較例2および3で調製した触媒1...Jを用いて、実施例11と同様にして反応を行った。 競媒話性は、実施例11に比べて劣っている。

CH ₄ CO CO ₂ H ₂ 66.7 31.5 31.9 52.0 87.6 61.6 26.1 71.9 18.2 13.6 28.1 35.7 64.9 59.8 29.0 66.6 57.9 32.9 32.3 48.4 66.3 57.1 23.8 66.7		a	탶	遊	既化申 (%)	8	以第 {%}		H, /CO
(RI-V ₂ O ₃) 600 66.7 31.5 33.9 52.0 5 103 87.6 61.6 26.1 71.9 5 1 600 38.2 13.6 28.3 35.7 6 1 100 64.9 59.8 20.0 66.6 3 600 58.0 22.9 32.3 40.4 8 3 700 86.3 57.3 23.6 66.7		·		(၁)	CH	ဌ	203	±~	#
5 1 600 38.2 13.6 28.3 35.7 (MI-NO) 100 84.9 58.8 28.0 66.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	来临例11	Y		909	56.7	# 2.5	33.9	\$2.0	5.0
5 1 600 18.2 13.6 28.3 35.7 (M1-M0) 700 84.9 59.8 29.0 66.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(AI-Y,	- ¹ 0	2	97.6	9∵8	28.	71.9	3.2
700 64.9 59.8 20.0 66.6 60.6 60.6 58.0 22.9 32.3 46.4 700 84.3 57.1 23.8 69.7		7		\$	38.2	2.6	28.3	35.7	6.7
52.6 22.9 32.3 48.4 700 88.3 57.3 28.6 66.7		(Ni-Hg0	_	2	64.9	55. 55.	29.0	89.	7.7
700 88.3 57.3 28.8 68.7		-		ŝ	58.0	22.9	32.3	8	
		=======================================	2 63 1	8	E. 33	57.3	23.8	2.	3,5

MU: 1.6度是%N: 50m(A) 1.8度度5Kg 200m(I) 1.6度度%N: 50m(J) (5)

特開平1-148343(5)

突旋例 1 2

触録Aを20mm用い、CH₄ /CO₂ /N₂ を、 各々10/30/10 NTPM/分で供給する。

700℃の反応温度において、次の度れた妖績 を切た。

CH, 帐化毕 78%

CO₂ 転化學 40%

合成ガス

н,

1 6 vo 1 %

CO

35 VO 1 %

実路例 13

触媒A200~を用いて、ペンタン/CO, /N₂ を、各々5/25/10 NTPd/分で 供給する.

700℃の反応温度において、次の受れた収績

CH4 低化率 98%

CO₂ 板化率 75%

合成ガス

反応に先立って、水梁気流中で300℃の温度で 1 時間温元する。この活性化処理した触線 1 0 mc を石英砂1 ccで拾収し、C H 4 / C O 2 / N 2 比 が1/1/1の混合ガスを30 NTP=/分で

この区域の結果は、表3に示した。優れた成绩 を得た。

比較例 8

比較例 6.7の触媒所、Oを用いて、実態例 16と同様にして反応を行った。

Нż

2 9 vo 1 %

6 0 va 1 %

突他例 14

塩化ロジウム 0.20 gを含む10gの水器液に、 酸化イットリウム20gを加え、実施例1と何様 にして、触症を異数した.

Rh-Y, O3 触媒(連蝶し)を得た。

比較歸 6

散化イットリウムに代えてアルミナを用いた駄 鑑(触媒制)を製造した。

突維例 15

塩化ロジウムに代えて、塩化ルテニワム 0.26 gを狙い、実経第14と同様にして、 RuーY₂ O₃ 触媒(触媒N)を得た。

配化イットリウムの代わりにアルミナを用いて、 実施例15と同様にして、RローAI2〇1 触媒 (触媒の)を要違した。

突 放 例 16

契維例148上び15で調整した触媒し、Nを

数据	部院	在沿到	(米)	な	8	H, /0
	<u>ည</u>	TH2	coo	03	æ~	.#
7	905	5.1	16.5	5.5	2	2.0
Rh-Y2 03 }	600	28.6 40,0	40,0	33,5	21.1	2
×	800	8.8	11.8		3	0.55
Rb- At 2 03)	600	21.0	9.92	13.1	13.7 16.1	0.59
Z	500	1.1	8.5	3.2	3	
(Bu-Y ₂ 0 ₃)	95	6,3	15.8	12.5	*:	# C
0	905	0.2	9'E	Ξ	3	9.21
[Ru- 412 03)	8	9.5	3.2	1, 3	6.2	0.15

大概超光結性化:300℃、1時間 {Rh} 0.5重量% Rh. Ru

500または600℃、1時間(Ru)

(FAX)03 3459 1582

P. 044/044

(6)

特周于1-148343 (6)

(見切の効果)

この発明によって、以上群しく説明した通り、 転化中、収率ともに優れ、かつ、H₂ /CO比も 良好な高価性合成ガス製造用触媒が実現される。

代租人 弁理士 西 課 羽 失