

(11) Publication number:

63071625 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 61216047

(51) Intl. Cl.: G01K 17/00

(22) Application date: 16.09.86

(30) Priority:

(43) Date of application

publication:

01.04.88

(84) Designated contracting

states:

(71) Applicant: MITSUBISHI HEAVY IND LTD

(72) Inventor: NAITO SHUZO
AIKI HIDETOSHI

(74) Representative:

(54) MEASURING DEVICE FOR HEAT ABSORTION QUANTITY OF HEAT CONDUCTION PIPE

(57) Abstract:

PURPOSE: To estimate the heat absorption quantity of the whole furnace water-cooled wall by calculating exit enthalpy by a computing element from the detected value of a pressure gauge and a thermometer for a heat conduction pipe for measurement, calculating entrance enthalpy from the detected values of a pressure gauge and a thermometer close to an entrance pipe, and calculating the heat sbsorption quantity from both enthalpy values and the detected value of a flow meter.

CONSTITUTION: A flow rate is detected by the flow meter 11 so as to find the heat absorption of the furnace water-cooled wall 2. Further, the entrance enthalpy is found from the pressure and temperature detected by the pressure gauge 12 and thermometer 13 because of subcool water, but the exit enthalpy is in a saturation area. For the purpose, a control valve 10 is provided on the entrance side of the heat conduction pipe 5 for measurement to reduce the flow rate and them the exit side is held in an overheat steam state. Consequently, the enthalpy of steam

on the exit side is found from the pressure and temperature detected by the pressure gauge 6 and thermometer 7. The heat absorption quantity of this pipe is found from this value, entrance enthalpy, and flow rate. For the purpose, the heat conduction pipe 5 for measurement is provided on the representative part of the furnace water-cooled wall 2 where heat is absorbed to estimate the heat absorption quantity of the whole furnace water-cooled wall.

COPYRIGHT: (C)1988,JPO&Japio

19日本国特許庁(JP)

① 特許出願公開

母 公 開 特 許 公 報 (A) 昭63-71625

@Int_Cl_4

識別記号

庁内整理番号

43公開 昭和63年(1988) 4月1日

G 01 K 17/00

7269-2F

審査請求 未請求 発明の数 1 (全3頁)

母発明の名称 伝熱管の熱吸収量計測装置

②特 願 昭61-216047

愛出 願 昭61(1986)9月16日

砂発 明 者 内 藤 修 三 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会

社内

⑫発 明 者 相 木 英 鋭 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会

社内

⑪出 顋 人 三菱重工業株式会社

東京都千代田区丸の内2丁目5番1号

砂復代理人 弁理士 木村 正巳 外1名

明細音

1発明の名称

伝熱管の熱吸収量計測装置

2 特許請求の範囲

入口管寄せと出口管寄せとの間に配置した計測用伝熱管と、この計測用伝熱管に設置した制御弁、圧力計、温度計及び温度計と、前記計測用伝熱管の圧力計と温度計からの検出値から出して生を算出するとともに、前記入口で寄出して生なりに、前記入口で寄出して変けれらの検出値から入口に最計からの検出値がら入口に最計からの検出である。 を発出する。 を算出する。 を表質を表質を表質を表して なる伝熱管の 熱吸収量を関計測装置。

3 発明の詳細な説明

産業上の利用分野

本発明は、原動機製品のポイラにおける伝熱管、 珠に貫流ポイラにおける最り運転時火炉水冷壁の 熱吸収量を計測する装置に関する。

従来の技術

第2図は従来例を示し、火炉01の水冷壁(蒸発器)02の入口管寄せ03と出口管寄せ04との間にコントロールチューブ05が配置されているととも部分には正力計06及び温度計07が設置され、一方の8が設置され、一方の3側部分にはオリフィス(又は手動弁)08が設置され、圧力計06及び温度計07は演算器09に接続されている。コントロールチューブ05は火炉水冷壁02の複数に分けられた各グループに1本コープに1を開発の19にて火炉水冷壁02の急激な熱吸収を検知する。

発明が解決しようとする問題点

このような従来例では、しかし、コントロール チューブは流蛩、エンタルピが測定されていない ために熱吸収量の計測ができず、したがって火炉 水冷壁全体の熱吸収録も推定できない問題があっ t: .

また、コントロールチューブは流量調節機能がないので、熱吸収の急激な増加に伴なうメタル温度の上昇を防止するためには、燃料及び給水量を変化させる手段しかなく、したがってコントロールチューブを保護することにより他の伝熱面まで影響を与える問題もあった。

問題点を解決するための手段

本発明は、このような従来の問題点を解決するために、入口管寄せと出口管寄せとの間に針角に、この計測用伝熱管に制御は、この計測用伝熱管を配置し、この計測と設置した。から過算とは、からは、からは、からには、からには、からのである。

作用

て、演算器 9 が設けられ、この演算器は、計測用 伝熱管 5 の圧力計 6 と温度計 7 からの検出値から 出口エンタルビを算出するとともに、入口管寄せ 3 の圧力計 12 と温度計 13 からの検出値 から入口エ ンタルビを算出し、これら両エンタルビと流量計 11 からの検出値とから無吸収量を算出し、かっそ の出力信号によって制御 10 を適宜制御できるよ うになっている。

このような手段によれば、したかって、計測用 伝熱管の熱吸収量を連続かつ自動的に計測し、これにより火炉水冷壁全体の熱吸収量を推定することができる。また、制御弁により計測用伝熱管内 流量を制御して、その出口での過熱度調節及び加熱のメタル温度上昇防止をなすことができる。

実施例

以下図面を参照して本発明の一実施例について詳述する。

第1図において、火炉1の水冷壁(蒸発管)2 (水冷壁全体又は複数のグループに分割されたもの)の入口管寄せ3と出口管寄せ4との間には計 測用伝熱管5が配置されている。この計測用伝熱 管は火炉水冷壁2を構成する伝熱管の1本でもある。

しかして、計測用伝熱管 5 の出口管寄せ 4 側部分には圧力計 6 及び温度計 7 が設置され、一方入口管寄せ 3 側部分には制御弁 10 及び流量計 11が設置されている。また、この入口管寄せ 3 には、他の圧力計 12 及び温度計 13が設置されている。そし

また制御弁10にて計測用伝熱管内流量を制御できるので、メタル温度の過上昇時には、流量増によって対処し、メタル保護上十分に信頼性を高くすることができる。各測定器の計測数値はリアルタイムで演算器9にて演算され、自動かつ連続の収量の測定が可能となる。そして、出口側の水の状態は全て推定できる。

なお、以上述べたと同様なシステムにより、 凝 縮器の場合における放熱量を自動かつ連続的に計 測することもできる。

発明の効果

以上詳述したように、本発明によれば、計測用 伝熱管の熱吸収量を自動かつ連続的に計測することができるので、火炉水冷壁全体の熱吸収量の推 定を簡単に行なうことができ、また計測用伝統 内流量を制御弁にて制御してメタル保護上も信頼 性の高いシステムとすることができる。しかも、 制御弁、流量計は一相域に設置されエロージョン 上も問題なしとすることができる。

4 図面の簡単な説明

第1図は本発明による伝熱管の熱吸収量計測装置の一例を示す図、第2図は従来例を示す図である。

1・・火炉、2・・火炉水冷壁、3・・入口管寄せ、4・・出口管寄せ、5・・計測用伝熱管、6・・圧力計、7・・温度計、9・・演算器、10・・制御弁、11・・流量計、12・・圧力計、13・・温度計。

復代理人 木 村 正 巳(ほかし名)

1: 大杉

2: 火炉水冷壁 3:入0管寄亡

4:出 D 管寄也 5:計測用位熱管

6: 圧力計

7: 温度訂 9: 演算器

10: 新御弁 11: 汽型計

12: 压力計 13: 温度計