Part VII. (Bonus) LR Parsing

LR-Parser

- Let G = (N, T, P, S) be a CFG, where $N = \{A_1, A_2, \dots, A_n\}, T = \{a_1, a_2, \dots, a_m\}$
- LR-parser is a EPDA, M, with states $Q = \{q_0, q_1, ..., q_k\}$, where q_0 is the start state.
- M is based on LR table that has these two parts
 - 1) Action part
 - 2) Go-to part

Action Part & Go-to Part

Action Part:

$$\alpha[q_i, a_i] = 1$$
 or 2 or 3 or 4

- 1) sq: s = shift, $q \in Q$
- 2) rp: $\mathbf{r} = r$ educe, $p \in P$
- **3) : success**
- 4) blank: error

Go-to Part:

$$\beta[q_i, A_j] = 1 \text{ or } 2$$

- 1) $q: q \in Q$
- 2) blank

LR-Parser: Algorithm

- Input: LR-table for $G = (N, T, P, S); x \in T^*$
- Output: Right parse of x if $x \in L(G)$; otherwise, error
- Method:
- push($\langle \$, q_0 \rangle$) onto pushdown; *state* := q_0 ;
- repeat
 - let a = the current token case $\alpha[state, a]$ of:
 - sq: push($\langle a, q \rangle$) & read next a from input string & state := q;
 - rp: replace the pushdown top

$$\langle ?,q \rangle \langle X_1,? \rangle \langle X_2,? \rangle ... \langle X_n,? \rangle$$
 with $\langle A, state \rangle$ where $p:A \to X_1 X_2 ... X_n \in P$ and $state := \beta[q,A]$ & write p to output;

- ©: success
- blank: error

until success or error

$$K = (N, T, P, S)$$
, where $N = \{S, A\}$, $T = \{i, o, (,)\}$, $P = \{1: S \rightarrow SoA, 2: S \rightarrow A, 3: A \rightarrow i, 4: A \rightarrow (S)\}$

LR-table for K:

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

St.	Input	Enter	Rule
	St.	St. Input	St. Input Enter

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$ $\langle \$, 0 \rangle \langle i, 3 \rangle$	0 3	ioi\$ oi\$	$\alpha[0, i] = s3$ $\alpha[3, o] = r3$	$3:A \rightarrow i$

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$ $\langle \$, 0 \rangle \langle i, 3 \rangle$	0 3	ioi\$ oi\$	$\alpha[0, i] = s3$ $\alpha[3, o] = r3$ $\beta[0, A] = 2$	$3: A \rightarrow i$

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3:A \rightarrow i$
(4.0) (4.0)		• 4	$\beta[0, A] = 2$ $\alpha[2, o] = r2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$ \alpha[2, o] = r2$	$2: S \to A$

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3:A \rightarrow i$
			$\beta[0,A]=2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r2$ $\beta[0, S] = 1$	$2: S \to A$
			$[\beta[0,S]=1]$	

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3: A \rightarrow i$
(4.0) (4.0)		a. da	$\beta[0,A]=2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \to A$
/\$\ \O\ /\C \ 1\	1	• 	$\beta[0, S] = 1$ $\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	<i>oi</i> \$	$\alpha[1, o] = so$	

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3: A \rightarrow i$
(ф. 6) (4. 6)		• 4	$\beta[0,A]=2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \to A$
/\$ 0\/C 1\	1	2 \$	$\beta[0, S] = 1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	6	oi\$ i\$	$\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle$	U	lφ	$\alpha[6, i] = s3$	

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\begin{array}{l} \alpha[3, o] = \mathbf{r}3 \\ \beta[0, A] = 2 \end{array}$	$3: A \rightarrow i$
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \rightarrow A$
		·	$\beta[0,S]=1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	oi\$	$\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle$	6	<i>i</i> \$	$\alpha[6, i] = s3$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle i, 3 \rangle$	3	\$	$\alpha[3,\$]=r3$	$3:A \rightarrow i$

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$ $\langle \$, 0 \rangle \langle i, 3 \rangle$	0 3	ioi\$ oi\$	$\alpha[0, i] = s3$ $\alpha[3, o] = r3$ $\beta[0, A] = 2$	$3:A \rightarrow i$
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$ $\beta[0, S] = 1$	$2: S \to A$
$ \begin{array}{c} \langle \$, 0 \rangle \langle S, 1 \rangle \\ \langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \\ \langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \end{array} $	1 6	oi\$ i\$	$\alpha[1, o] = \mathbf{s}6$ $\alpha[6, i] = \mathbf{s}3$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle i, 3 \rangle$	3	5	$\alpha[3, \$] = r3$ $\beta[6, A] = 7$	$3:A \rightarrow i$

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3:A \rightarrow i$
			$\beta[0,A]=2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \to A$
			$\beta[0,S]=1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	oi\$	$\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle$	6	<i>i</i> \$ \$	$ \alpha[6, i] = s3$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle i, 3 \rangle$	3	\$	$\alpha[3, \$] = r3$	$3: A \rightarrow i$
			$\beta[6,A]=7$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle A, 7 \rangle$	7	\$	$\alpha[7, \$] = \mathbf{r}1$	$1: S \rightarrow SoA$

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3: A \rightarrow i$
(\$\dot\)		• 4	$\beta[0,A]=2$	
$\langle\$,0\rangle\langle A,2\rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \to A$
/ ((A) (C) (1)	1	• 	$\beta[0, S] = 1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	<i>oi</i> \$	$\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle$	6	<i>i</i> \$	$\alpha[6, i] = s3$	7. A
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle i, 3 \rangle$	3	\$	$\alpha[3, \$] = r3$	$3:A \rightarrow i$
/\$ 0\/\$ 1\/a 6\/ <i>\</i> 7\	7	\$	$\beta[6, A] = 7$ $\alpha[7, \$] = r1$	$1: S \rightarrow SoA$
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle A, 7 \rangle$	/	Ψ	$\beta[0, S] = 1$	$1.5 \rightarrow 50A$
			[p[0, b] - 1]	

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3	<i>oi</i> \$	$\alpha[3, o] = r3$	$3:A \rightarrow i$
			$\beta[0,A]=2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \to A$
			$\beta[0,S]=1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	oi\$ i\$	$\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle$	6	i\$	$\alpha[6, i] = s3$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle i, 3 \rangle$	3	\$	$\alpha[3, \$] = r3$	$3:A \rightarrow i$
	l _	.	$\beta[6,A]=7$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle A, 7 \rangle$	7	\$	$\alpha[7, \$] = r1$	$1: S \to SoA$
(4. 0) (6. 4)		.	$\beta[0,S]=1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	\$	$\alpha[1, \$] = \odot$	

Rules: 1: $S \rightarrow SoA$, 2: $S \rightarrow A$, 3: $A \rightarrow i$, 4: $A \rightarrow (S)$

Pushdown	St.	Input	Enter	Rule
$\langle \$, 0 \rangle$	0	ioi\$	$\alpha[0, i] = s3$	ı
$\langle \$, 0 \rangle \langle i, 3 \rangle$	3		$\alpha[3, o] = r3$	
			$\beta[0,A]=2$	
$\langle \$, 0 \rangle \langle A, 2 \rangle$	2	<i>oi</i> \$	$\alpha[2, o] = r^2$	$2: S \rightarrow A$
(d. 0) (Q. 1)		• c h	$\beta[0, S] = 1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$		<i>oi</i> \$	$\alpha[1, o] = s6$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle$	6	<i>i</i> \$	$\alpha[6, i] = s3$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle i, 3 \rangle$	3	\$	$\alpha[3, \$] = r3$	$3:A \rightarrow i$
	l _	.	$\beta[6,A]=7$	
$\langle \$, 0 \rangle \langle S, 1 \rangle \langle o, 6 \rangle \langle A, 7 \rangle$	7	\$		$1: S \rightarrow SoA$
			$\beta[0,S]=1$	
$\langle \$, 0 \rangle \langle S, 1 \rangle$	1	\$	$ \alpha[1,\$]=\odot$	
				Success
				Right parse: 323

Construction of LR Table: Introduction

• One parsing algorithm but many algorithms for the construction of LR table.

Basic algorithms for the construction of LR table:

- 1) Simple LR (SLR): the least powerful, but simple and few states
- 2) Canonical LR: more powerful, but many states
- 3) Lookahead LR (LALR): the best because the most powerful and the same number of states as SLR

Extended Grammar with a "Dummy Rule"

Gist: Grammar with special "starting rule"

Definition: Let
$$G = (N, T, P, S)$$
 be a CFG, $S' \notin N$.
Extended grammar for G is grammar $G' = (N \cup \{S'\}, T, P \cup \{S' \rightarrow S\}, S')$.

Why a dummy rule? When $S' \rightarrow S$ is used and the input token is endmarker, then syntax analysis is successfully completed.

Example:

$$K = (N, T, P, S)$$
, where $N = \{S, A\}$, $T = \{i, o, (,)\}$, $P = \{1: S \rightarrow SoA, 2: S \rightarrow A, 3: A \rightarrow i, 4: A \rightarrow (S)\}$

Extended grammar for K:

$$H = (N, T, P, S')$$
, where $N = \{S', S, A\}$, $T = \{i, o, (,)\}$, $P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}$

Construction of LR Table: Items

Gist: Item is a rule of CFG with • in the right-hand side of rule.

Definition: Let G = (N, T, P, S) be a CFG, $A \rightarrow x \in P$, x = yz. Then, $A \rightarrow y \cdot z$ is an *item*.

Example: Consider $S \rightarrow SoA$

All items for $S \rightarrow SoA$ are:

$$S \rightarrow \bullet SoA, S \rightarrow S \bullet oA, S \rightarrow So \bullet A, S \rightarrow SoA \bullet$$

Meaning: $A \rightarrow y \bullet z$ means that if y appears on the pushdown top and a prefix of the input is eventually reduced to z, then yz = x as a handle can be reduced to A according to $A \rightarrow x$.

Closure of Item: Algorithm

Note: Closure(*I*) is the set of items defined by the following algorithm:

- Input: G = (N, T, P, S); item I
- Output: Closure(I)
- Method:
- $Closure(I) := \{I\};$
- Apply the following rule until Closure(I) cannot be changed:
 - if $A \to y \bullet Bz \in Closure(I)$ and $B \to x \in P$ then add $B \to \bullet x$ to Closure(I)

Closure of Item: Example 1/2

```
H = (N, T, P, S'), where N = \{S', S, A\}, T = \{i, o, (, )\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}
```

Task: Closure(I) for $I = S' \rightarrow \bullet S$

$$Closure(I) := \{S' \rightarrow \bullet S\}$$

- 1) $S' \rightarrow \bullet S \in Closure(I) \& S \rightarrow SoA \in P$: $add S \rightarrow \bullet SoA \text{ to } Closure(I)$ $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA\}$
- 2) $S' \rightarrow \bullet S \in Closure(I) \& S \rightarrow A \in P$: $add S \rightarrow \bullet A \text{ to } Closure(I)$ $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A\}$

Closure of Item: Example 2/2

```
H = (N, T, P, S'), where N = \{S', S, A\}, T = \{i, o, (, )\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}
```

- 3) $S \rightarrow \bullet A \in Closure(I) \& A \rightarrow i \in P$: $add A \rightarrow \bullet i \text{ to } Closure(I)$ $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i\}$
- 4) $S \rightarrow \bullet A \in Closure(I) \& A \rightarrow (S) \in P$: add $A \rightarrow \bullet (S)$ to Closure(I)

Summary:

 $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}$

Set $\Theta_U(I)$ for grammar G

Gist: For a symbol U and set of items I, $\Theta_U(I)$ denotes union of all closures of the form $Closure(A \to yU \bullet z)$, where $A \to y \bullet Uz$ is in I.

Definition: Let G = (N, T, P, S) be a CFG, I be a set of items, and $U \in T \cup N$. Then, $\Theta_U(I) = \{j: j \in Closure(A \rightarrow yU \bullet z), A \rightarrow y \bullet Uz \in I\}$

Set $\Theta_U(I)$ for grammar G

Gist: For a symbol U and set of items I, $\Theta_U(I)$ denotes union of all closures of the form $Closure(A \to yU \bullet z)$, where $A \to y \bullet Uz$ is in I.

Definition: Let G = (N, T, P, S) be a CFG, I be a set of items, and $U \in T \cup N$. Then, $\Theta_{I}(I) = \{j: j \in Closure(A \rightarrow yU \bullet z), A \rightarrow y \bullet Uz \in I\}$

Set $\Theta_U(I)$ for grammar G

Gist: For a symbol U and set of items I, $\Theta_U(I)$ denotes union of all closures of the form $Closure(A \to yU \bullet z)$, where $A \to y \bullet Uz$ is in I.

Definition: Let G = (N, T, P, S) be a CFG, I be a set of items, and $U \in T \cup N$. Then, $\Theta_U(I) = \{j: j \in Closure(A \rightarrow yU \bullet z), A \rightarrow y \bullet Uz \in I\}$

Example:

```
H = (N, T, P, S'), where N = \{S', S, A\}, T = \{i, o, (, )\}, P = \{0: S' \rightarrow S, 1: S \rightarrow SoA, 2: S \rightarrow A, 3: A \rightarrow i, 4: A \rightarrow (S)\}, I = \{S \rightarrow So \bullet A, S \rightarrow \bullet A, A \rightarrow \bullet (S)\}
```

Task: $\Theta_{A}(\mathbf{P})$

 $Closure(S \rightarrow SoA \bullet) \cup Closure(S \rightarrow A \bullet) = \{S \rightarrow SoA \bullet, S \rightarrow A \bullet\}$

Task: $\Theta_{(I)}$

 $Closure(A \rightarrow (\bullet S)) = \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}$

Set Θ_G for Grammar G

Note: Set Θ_G for grammar G is the set of sets of items defined by the following algorithm:

- Input: Extended G = (N, T, P, S')
- Output: Θ_G for grammar G
- Method:
- $\Theta_G := \{Closure(S' \rightarrow \bullet S)\};$
- for each $I \in \Theta_G$ and $U \in N \cup T$ if $\Theta_U(I) \neq \emptyset$ then include set $\Theta_U(I)$ into Θ_G

Set Θ_G : Example

```
H = (N, T, P, S'), where N = \{S', S, A\}, T = \{i, o, (,)\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}
```


Naming of members in set Θ_G

Name the elements of Θ_G as I_0 to I_n , where n+1 is number of elements in Θ_G . The member with $S' \to \bullet S$ is I_0 .

Construction of LR-table: SLR Algorithm

- Input: Extended $G = (N, T, P, S'); \Theta_G;$ Follow(A) for all $A \in N$
- Output: LR-table for G (α = Action part, β = Go-to part)
- Method:
- $StatesOfTable := \Theta_G$; $StartState := Closure(S' \rightarrow \bullet S)$;
- for each $x \in \Theta_G$ do
- for each $I \in x$ do
 - case I of
 - $I = A \rightarrow y \bullet Xz$, where $X \in N$: $\beta[x, X] := \Theta_X(x)$
 - $I = A \rightarrow y \bullet Xz$, where $X \in T$: $\alpha[x, X] := s\Theta_X(x)$
 - $I = S' \rightarrow S \bullet : \alpha[x, \$] := \bigcirc$
 - $I = A \rightarrow y$ $(A \neq S')$: for each $a \in Follow(A)$ do $\alpha[x, a] := rp$, where p is a label of rule $A \rightarrow y$

Construction of LR-table: Example 1/5

```
\begin{split} \Theta_{H} &= \{I_{0} : \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{1} : \{S' \rightarrow S \bullet, S \rightarrow S \bullet oA\}, I_{2} : \{S \rightarrow A \bullet\}, I_{3} : \{A \rightarrow i \bullet\}, \\ I_{4} : \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{5} : \{A \rightarrow (S \bullet), S \rightarrow S \bullet oA\}, I_{6} : \{S \rightarrow So \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{7} : \{S \rightarrow SoA \bullet\}, I_{8} : \{A \rightarrow (S) \bullet\}\} \end{split}
```

Task: LR-table for K

Construction of LR-table: Example 2/5

```
\begin{split} &\Theta_{H} = \{I_{0}: \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ &I_{1}: \{S' \rightarrow S\bullet, S \rightarrow S\bullet oA\}, I_{2}: \{S \rightarrow A\bullet\}, I_{3}: \{A \rightarrow i\bullet\}, \\ &I_{4}: \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ &I_{5}: \{A \rightarrow (S\bullet), S \rightarrow S\bullet oA\}, I_{6}: \{S \rightarrow So\bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ &I_{7}: \{S \rightarrow SoA\bullet\}, I_{8}: \{A \rightarrow (S)\bullet\}\} \end{split}
```

Task: LR-table for K

Construction of LR-table: Example 3/5

```
\Theta_{H} = \{I_{0}: \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, I_{1}: \{S' \rightarrow S \bullet, S \rightarrow S \bullet oA\}, I_{2}: \{S \rightarrow A \bullet\}, I_{3}: \{A \rightarrow i \bullet\}, I_{4}: \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, I_{5}: \{A \rightarrow (S \bullet), S \rightarrow S \bullet oA\}, I_{6}: \{S \rightarrow So \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, I_{7}: \{S \rightarrow SoA \bullet\}, I_{8}: \{A \rightarrow (S) \bullet\}\}
```

Task: LR-table for *K*

Construction of LR-table: Example 4/5

```
\begin{split} \Theta_{H} &= \{I_{0} : \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{1} : \{S' \rightarrow S \bullet, S \rightarrow S \bullet oA\}, I_{2} : \{S \rightarrow A \bullet\}, I_{3} : \{A \rightarrow i \bullet\}, \\ I_{4} : \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{5} : \{A \rightarrow (S \bullet), S \rightarrow S \bullet oA\}, I_{6} : \{S \rightarrow So \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{7} : \{S \rightarrow SoA \bullet\}, I_{8} : \{A \rightarrow (S) \bullet\}\} \end{split}
```

Task: LR-table for *K*

Construct the rest analogically.

$$A \rightarrow i \in I_3$$
, $Follow(A) = \{o, \},$ \$:
 $\alpha[I_3, o] = \alpha[I_3,] = \alpha[I_3, $] := r3$

Construction of LR-table: Example 5/5

Final LR-table for *K*

	α					β	
	i	0	()	\$	S	\boldsymbol{A}
I_0	SI_3		SI_4			I_1	I_2
I_1		\mathbf{SI}_6			\odot		
I_2		r2		r2	r2		
I_3		r3		r3	r3		
I_4	SI_3		SI_4			I_5	I_2
I_5		$\mathbf{s}I_6$		SI_8			_
I_6	SI_3	Ü	SI_4	O .			I_7
I_7		r1	_	r1	r1		-
I_8		r4		r4	r4		

Renaming the states

Rename the states:

Old	New
I_0	0
I_1	1
I_2	2
I_3	3
I_4	4
I_5	5
I_6	6
I_7	7
I_8	8

LR-table for *K* with the renamed states:

α	i	0)	\$
0	s 3		s4		
1		s6			
2		r2		r2	r2
3		r3		r3	r3
4	s 3		s4		
5		s6		s8	
6	s 3		s4		
7		r1		r1	r1
8		r4		r4	r4

β	S	\boldsymbol{A}
0	1	2
1		
2		
2 3 4 5		
4	5	2
5		
		7
6 7 8		
8		