INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS

Apuntes de Cálculo 3

Imparte la Dra. Laura Roció Gózalez

Autor: Francisco Alexis Franco Camacho

Febrero 2023

Índice general

1.	Intr	oducción	5
	1.1.	Objetivo	5
	1.2.	Temario	5
	1.3.	Bibliografía	6
	1.4.	Evaluación	6
		1.4.1. Quizes	6
2.	R^n	como espacio euclidiano.	7
		El espacio R^n	7
		2.1.1. Definición de la suma y multiplicación por escalar	7
		2.1.2. Tarea	7
	2.2.	Recordatorio/Repaso	10
3.	Res	ultados	13
	3.1.	Simulación de resultados	13
		3.1.1. Suposiciones	13
		3.1.2. Modelos	13
	3.2.	Resultados preliminares	13
	3.3.	Resultados postprocesados	13
		3.3.1. Valores atípicos	13
		3.3.2. Correlaciones	13
4.	Con	aclusiones	15

Introducción

1.1. Objetivo

Cálculo diferencial en varias variables de manera teórica y con aplicaciones.

1.2. Temario

- lacksquare R^n como espacio euclidiano
- Norma, distancia y desigualdad del triangulo.
- Conjuntos abiertos, cerrados.
- Conexidad.
- Sucesiones en \mathbb{R}^n .
- Convergencia, compacidad.
- Teorema de Bolzano-weirstrass.*
- Teorema de Heine-Borel.* *Propiedades de compacidad.
- Limite de transformaciones.
- Continuidad de transformación.
- Continuidad de inversa de transformación.
- La diferencial de una transformación.
- Transformaciones diferenciales.
- Regla de la cadena.
- Derivada direccional.

- Funciones clase C^n .
- Teorema de función inversa y Teorema de función implícita.
- Diferenciales de orden superior.
- Teorema de Taylor. Aplicaciones a máximos y mínimos.

1.3. Bibliografía

- Elementary Classical Analysis-Marsden and Hoffman.
- Mathematical Analysis, Apostol.
- Analysis on manifolds, Munkres.
- Mathematical Analysis, Rudin.*
- Calculus on manifolds, Spivak.* *Densos,

1.4. Evaluación

- Primer Parcial 25 %.
- Segundo Parcial 25 %.
- Tercer Parcial 25 %.
- Quizes 25 %.

1.4.1. Quizes

- Son de opción múltiple.
- \blacksquare Son sorpresa.
- Se elimina el Quiz que tenga la calificación mas baja.
- Se saca promedio al final del semestre.

\mathbb{R}^n como espacio euclidiano.

2.1. El espacio R^n .

Se define el n-espacio euclidiano de n-tuplas en R como:

$$R^n = \{(x_1, x_2, ..., x_n) \mid x_i \in R, 1 \le i \le n\}$$

Es decir:

$$R^n = R * R * R * \dots * R$$

Sea:

$$\overrightarrow{x} \in R^n$$

Entonces: \overrightarrow{x} es un punto en \mathbb{R}^n o un vector en el R-espacio vectorial.

2.1.1. Definición de la suma y multiplicación por escalar.

Sea:

$$\overrightarrow{x} = (x_1, x_2, ..., x_n) \in R^n$$

$$\overrightarrow{y} = (y_1, y_2, ..., y_n) \in R^n$$

$$\alpha \in R$$

Se define la suma:

$$\vec{x} + \vec{y} := (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

Se define la multiplicación por escalar:

$$\alpha \overrightarrow{x} := (\alpha x_1, \alpha x_2, ..., \alpha x_n)$$

2.1.2. Tarea

Demostrar que $(R^n, +, *)$ es un R-espacio vectorial de dimensión n.

Demostración de que \mathbb{R}^n es un espacio vectorial

Sean:
$$\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z} \in R^n$$

 $\overrightarrow{x} = (x_1, x_2, ..., x_n)$
 $\overrightarrow{y} = (y_1, y_2, ..., y_n)$
 $\overrightarrow{z} = (z_1, z_2, ..., z_n)$

1. $\forall \overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^n \longrightarrow \overrightarrow{x} + \overrightarrow{y} \in \mathbb{R}^n$

Demostración:

Como cada una de las entradas son números reales:

$$\longrightarrow (x_i + y_i) \in R, i = 1, 2, ..., n$$
$$\longrightarrow (\overrightarrow{x} + \overrightarrow{y}) \in R^n$$

2.
$$\forall \overrightarrow{x}, \overrightarrow{y} \in R^n \longrightarrow \overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$

Demostración:
 $\overrightarrow{x} + \overrightarrow{y} = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n)$
 $\overrightarrow{x} + \overrightarrow{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$
Por asociatividad en los reales

$$\overrightarrow{x} + \overrightarrow{y} = (y_1 + x_1, y_2 + x_2, ..., y_n + x_n)$$

$$\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$

3.
$$\forall \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z} \in \mathbb{R}^n \longrightarrow (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z} = \overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z})$$

Demostración:
 $(\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) + (z_1, z_2, ..., z_n)$
 $(\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z} = (x_1 + y_1 + z_1, x_2 + y_2 + z_2, ..., x_n + y_n + z_n)$
 $(\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z} = (x_1, x_2, ..., x_n) + (y_1 + z_1, y_2 + z_2, ..., z_n)$
 $(\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z} = \overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z})$

4. $\exists \ \overrightarrow{0} \in R^n \text{ tal que } \forall \overrightarrow{x} \in R^n \longrightarrow \overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$ Demostración:

Sea
$$\overrightarrow{0} = (0,0,...,0)$$

 $\overrightarrow{x} + \overrightarrow{0} = (x_1 + 0, x_2 + 0,..., x_n + 0)$
 $\overrightarrow{x} + \overrightarrow{0} = (x_1, x_2,..., x_n)$
 $\overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$

5. $\forall \overrightarrow{x} \in R^n \ \exists \ -\overrightarrow{x} \in R^n \ talque\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0} \ Existencia de inversos$ Demostración:

$$\overrightarrow{x} + (-\overrightarrow{x}) = (x_1, ..., x_n) + (-x_1, -x_2, ..., -x_n)
\overrightarrow{x} + (-\overrightarrow{x}) = (x_1 + (-x_1), x_2 + (-x_2), ..., x_n + (-x_n))
\overrightarrow{x} + (-\overrightarrow{x}) = (0, 0, ..., 0)
\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$$

6. Sea $\alpha, \beta \in R$ $\forall \overrightarrow{x} \in R^n \ y \ \alpha \in R \longrightarrow \alpha \overrightarrow{x} \in R^n$ Demostración: $\overrightarrow{x} = (x_1, ..., x_n), \ x_i \in R, \ i = 1, 2, ..., n$ $\alpha x_i \in R, \ i = 1, 2, ..., n$

$$\alpha \overrightarrow{x} = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$$

 $\longrightarrow \alpha \overrightarrow{x} \in \mathbb{R}^n$

7. $\forall \overrightarrow{x} \in \mathbb{R}^n \longrightarrow 1 * \overrightarrow{x} = \overrightarrow{x}$

Demostración:

$$1 * \overrightarrow{x} = 1 * (x_1, ..., x_n)$$

$$1 * \overrightarrow{x} = (1 * x_1, 1 * x_2, ..., 1 * x_n)$$

$$1 * \overrightarrow{x} = (x_1, x_2, ..., x_n)$$

$$1 * \overrightarrow{x} = \overrightarrow{x}$$

8. $\forall \alpha, \beta \in R \ y \ \overrightarrow{x} \in R^n \longrightarrow \alpha(\beta \overrightarrow{x}) = (\alpha \beta) \overrightarrow{x}$

Demostración:

$$\begin{split} \alpha(\beta\overrightarrow{x}) &= \alpha(\beta(x_1, x_2, ..., x_n)) \\ &= (\alpha(\beta x_1, \beta x_2, ..., \beta x_n)) \\ &= ((\alpha\beta)x_1, (\alpha\beta)x_2, ..., (\alpha\beta)x_n) \\ &= (\alpha\beta)(x_1, ..., x_n) \\ &= (\alpha\beta)\overrightarrow{x} \end{split}$$

9. $\forall \alpha, \beta \in R \ y \ \overrightarrow{x} \in R^n \longrightarrow (\alpha + \beta) \overrightarrow{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$ Demostración:

$$(\alpha + \beta)\overrightarrow{x} = (\alpha + \beta)(x_1, ..., x_n)$$

$$= ((\alpha + \beta)x_1, ..., (\alpha + \beta)x_n)$$

$$= (\alpha x_1 + \beta x_2, ..., \alpha x_n + \beta x_n)$$

$$= (\alpha x_1, ..., \alpha x_n) + (\beta x_1, ..., \beta x_n)$$

$$= \alpha(x_1, ..., x_n) + \beta(x_1, ...x_n)$$

$$= \alpha \overrightarrow{x} + \beta \overrightarrow{x}$$

10. $\forall \alpha \in R \ y \ \overrightarrow{x}, \overrightarrow{y} \in R^n \longrightarrow \alpha(\overrightarrow{x} + \overrightarrow{y}) = \alpha \overrightarrow{x} + \alpha \overrightarrow{y}$ Demostración:

$$\begin{split} \alpha(\overrightarrow{x}+\overrightarrow{y}) &= \alpha((x_1,...,x_n)+(y_1,...,y_n))\\ &= \alpha((x_1+y_1),...,(x_n+y_n))\\ &= (\alpha(x_1+y_1),...,\alpha(x_n+y_n))\\ &= ((\alpha x_1+\alpha y_1),...,(\alpha x_n+\alpha y_n))\\ &= (\alpha x_1,...,\alpha x_n)+(\alpha y_1,...,\alpha y_n)\\ &= \alpha(x_1,...,x_n)+\alpha(y_1,...,y_n)\\ &= \alpha\overrightarrow{x}+\alpha\overrightarrow{y} \end{split}$$

Demostración de que su dimensión es n

Definición:

```
Sea \overrightarrow{V}un F-e.v. con base finita \beta \longrightarrow dim(V) = |\beta| R^n tiene como base canonica: \beta = \{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)\} \longrightarrow dim(R^n) = n
```

2.2. Recordatorio/Repaso

En \mathbb{R}^2 teniamos nociones de distancia, Norma y producto interno.

Norma

 $\|\overrightarrow{x}\| = \sqrt{x_1^2 + x_2^2}$, es decir la longitud del vector.

Distancia

 $d(\overrightarrow{x}, \overrightarrow{y}) = \|\overrightarrow{x} * \overrightarrow{y}\| = \sqrt{(x_1 * y_1)^2 + (x_2 * y_2)^2}$ Es la distancia entre dos vectores.

Producto interno

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = x_1 y_1 + x_2 y_2$$

 $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = ||\overrightarrow{x}|| ||\overrightarrow{y}|| \cos \theta$

El producto interno nos da informacion sobre el angulo entre dos vectore: $\overrightarrow{a} : (\overrightarrow{A} : \overrightarrow{A}) = 0$ y $||\overrightarrow{A}|| \neq 0$

$$\operatorname{si} < \overrightarrow{x}, \overrightarrow{y} >= 0 \text{ y } \|\overrightarrow{x}\| \neq 0$$

 $\|\overrightarrow{y}\| \neq 0$

Entonces los vectores son ortoganales.

Propiedades del producto punto

1.
$$\overrightarrow{x} * \overrightarrow{y} = \overrightarrow{y} * \overrightarrow{x}$$

2.
$$(\alpha \overrightarrow{x}) * \overrightarrow{y} = \alpha (\overrightarrow{x} * \overrightarrow{y})$$

3.
$$\overrightarrow{x}(\overrightarrow{y_1} + \overrightarrow{y_2}) = \overrightarrow{x} * \overrightarrow{y_1} + \overrightarrow{x} * \overrightarrow{y_2}$$

4.
$$\overrightarrow{x} * \overrightarrow{x} > 0$$
; $\overrightarrow{x} * \overrightarrow{x} = 0 \longleftrightarrow \overrightarrow{x} = \overrightarrow{0}$

Observaciones

- Es posible definir otras normas, distancias o productos internos.
- Si tienes una norma puedes definir una distancia.
- Si tienes un producto interno puedes definir una norma.

¿Por que la ortogonalidad es importante?

Por que nos permite establecer bases sencillas de manipular.

11

Ejemplo

Sea $B = \{\overrightarrow{U_1}, \overrightarrow{U_2}\}$ una base ortogonal y unitaria de R^2

- \blacksquare B genera a R^2 (U_1 y U_2 son linealmente independientes), eso de la definicion de una base ortogonal.

Sea $\overrightarrow{X}=(x_1,x_2)\in R^2,\ \exists\ \alpha_1,\alpha_2\in R^2$ tal que $\overrightarrow{X}=\alpha_1\overrightarrow{U_1}+\alpha_2\overrightarrow{U_2}$

Por un lado considerar el Producto interno con $\overrightarrow{U_1}$

$$\begin{split} \langle \overrightarrow{X}, \overrightarrow{U_1} \rangle &= \langle \alpha_1 \overrightarrow{U_1} + \alpha_2 \overrightarrow{U_2}, \overrightarrow{U_1} \rangle \\ &= \alpha_1 \langle \overrightarrow{U_1}, \overrightarrow{U_1} \rangle + \alpha_2 \langle \overrightarrow{U_2}, \overrightarrow{U_1} \rangle \\ \longrightarrow \alpha_1 &= \langle \overrightarrow{X}, \overrightarrow{U_1} \rangle \end{split}$$

De manera similar:

$$\langle \overrightarrow{X}, \overrightarrow{U_2} \rangle = \alpha_2$$

Entonces podemos decir que:

$$\overrightarrow{X} = \langle \overrightarrow{X}, \overrightarrow{U_1} \rangle \overrightarrow{U_1} + \langle \overrightarrow{X}, \overrightarrow{U_2} \rangle \overrightarrow{U_2}$$

El espacio Euclidiano \mathbb{R}^n

Producto interno.

Definición: Se define el prod
cuto interno entre \overrightarrow{X} y $\overrightarrow{Y} \in R^n$ como:

$$R^{n} * R^{n} \longmapsto R$$
$$(\overrightarrow{x}, \overrightarrow{Y}) \longmapsto \langle \overrightarrow{X}, \overrightarrow{Y} \rangle := \sum_{i=1}^{n} X_{i} Y_{i}$$

Con:

$$\overrightarrow{X} = (x_1, ..., x_n)$$

$$\overrightarrow{Y} = (y_1, ..., y_n)$$

Intuitivamente: El producto interno nos da informacion de la nocion de ortogonalidad.

Teorema: Propiedades del Producto interno.

Sean
$$\overrightarrow{X}, \overrightarrow{Y}, \overrightarrow{Z} \in R^n$$
, $\alpha \in R$
1. $\langle \overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z} \rangle = \langle \overrightarrow{x}, \overrightarrow{y} \rangle + \langle \overrightarrow{x}, \overrightarrow{z} \rangle$
Demostración:

2.
$$\langle \overrightarrow{x}, \alpha \overrightarrow{y} \rangle = \alpha \langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle \alpha \overrightarrow{x}, \overrightarrow{y} \rangle$$

Demostración:
 $\langle \overrightarrow{x}, \alpha \overrightarrow{y} \rangle = \langle (x_1, ..., x_n), \alpha(y_1, ..., y_n) \rangle$
 $= \langle (x_1, ..., x_n), (\alpha y_1, ..., \alpha y_n) \rangle$
 $= \sum_{i=1}^n x_i(\alpha y_i) = \alpha \sum_{i=1}^n x_i y_i$
 $= \alpha \langle \overrightarrow{x}, \overrightarrow{y} \rangle$

Se puede probar facilmente la tercera igualdad, nota: Es mas facil usar la segunda igualdad previamente probada.

3.
$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle \overrightarrow{y}, \overrightarrow{x} \rangle$$

Demostración:
 $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle (x_1, ..., x_n), (y_1, ..., y_n) \rangle$
 $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \sum_{i=1}^n x_i y_i$
 $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \sum_{i=1}^n y_i x_i$
 $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle \overrightarrow{y}, \overrightarrow{x} \rangle$
4. $\langle \overrightarrow{x}, \overrightarrow{x} \rangle \geq 0$ y $\langle \overrightarrow{x}, \overrightarrow{x} \rangle = 0 \longleftrightarrow \overrightarrow{x} = \overrightarrow{0}$
Demostración:
 $\langle \overrightarrow{x}, \overrightarrow{x} \rangle = \sum_{i=1}^n x_i^2 \geq 0$
 $\langle \overrightarrow{x}, \overrightarrow{x} \rangle = 0 \longleftrightarrow x_i = 0 \ \forall \ 1 \leq i \leq n$

Observación:

Usando Las Propiedades 1 y 3:
$$<\overrightarrow{x}+\overrightarrow{y},\overrightarrow{z}>=<\overrightarrow{z},\overrightarrow{x}>+<\overrightarrow{z},\overrightarrow{y}>=<\overrightarrow{y},\overrightarrow{z}>+<\overrightarrow{y},\overrightarrow{z}>$$

Norma euclidiana

Se define la norma euclidiana de $\overrightarrow{x} \in R^n$, con $\overrightarrow{x} = (x_1, ..., x_n)$. Como una función:

$$\|\cdot\|: R^n \mapsto R^+ \cup \{0\}$$

$$\overrightarrow{x} \mapsto \|\overrightarrow{x}\| := \sqrt{x_1^2 + \ldots + x_n^2} = \sqrt{\langle \overrightarrow{x}, \overrightarrow{x} \rangle}$$

Intuitivamente: La norma euclidiana nos da informacion de la longitud del vector.

Teorema: Propiedades de la norma euclidiana.

Sean \overrightarrow{x} , $\overrightarrow{y} \in R^n$, $\alpha \in R$ con $\overrightarrow{x} = (x_1, ..., x_n)$ Entonces:

1.
$$\|\overrightarrow{x}\| \ge 0$$
 y $\|\overrightarrow{x}\| = 0 \longleftrightarrow \overrightarrow{x} = \overrightarrow{0}$

2.
$$\|\alpha \overrightarrow{x}\| = |\alpha| \|\overrightarrow{x}\|$$

3. Cauchy-Schwarz
$$|\langle \overrightarrow{x}, \overrightarrow{y} \rangle| \le ||\overrightarrow{x}|| ||\overrightarrow{y}||$$

4. Designaldad triangular
$$\|\overrightarrow{x} + \overrightarrow{y}\| \le \|\overrightarrow{x}\| + \|\overrightarrow{y}\|$$

Resultados

- 3.1. Simulación de resultados
- 3.1.1. Suposiciones
- 3.1.2. Modelos
- 3.2. Resultados preliminares
- 3.3. Resultados postprocesados
- 3.3.1. Valores atípicos
- 3.3.2. Correlaciones

Conclusiones