PHYS465: Statistical Data Analysis in Physics

Week 3: Clustering and Classification

Mathew Smith and Brooke Simmons

mat.smith@lancaster.ac.uk

Physics Building; C46

Clustering "versus" Classification

Clustering

Find subtypes or groups that are not defined a priori based on measurements

→ "Unsupervised learning" or "Learning without labels"

Classification

Use a priori group labels in analysis to assign new observations to a particular group or class

- → Sometimes applied once some type of clustering has been applied; can be separate
- → "Supervised learning" or "Learning with labels"

So, how do we sort and label data?

A test dataset with known labels

```
# make 5 data subsets of size 50 points each
      = np.random.normal(-3.5, 0.1, size=n pts)
     = np.random.normal( 1., 1.0, size=n_pts)
v1
     = np.random.normal( 3.5, 0.1, size=n_pts)
x2
      = np.random.normal( 1., 1.0, size=n_pts)
# datasets 3 and 4 are concentric circles in overall distribution shape
xtemp = np.random.normal( 0., 0.75, size=n_pts*2)
ytemp = np.random.normal( 0., 0.75, size=n_pts*2)
rad1 = np.sqrt(xtemp**2 + ytemp**2)
     = np.argsort(rad1)
# it's not necessary to separate these into datasets 3 and 4 right here;
# this is now sorted so I could just do it with labelling later
# but it may help others follow along to be explicit that datasets
# 3 and 4 are quite artificially separated in this example
     = xtemp[i_r[:n_pts]]
x3
     = ytemp[i r[:n pts]]
y3
     = xtemp[i r[n pts:]]
     = ytemp[i_r[n_pts:]]
      = np.linspace(-3.25, 3.25, n pts)
      = (x5/2.)**2 - 4 + np.random.normal(0., 0.5, n_pts)
x = 11 = np.append(x1, [x2, x3, x4, x5])
y_{all} = np.append(y1, [y2, y3, y4, y5])
label_ones = np.ones_like(x1).astype(int)
data_u = np.array([x_all, y_all])
labels = np.append(label ones, [label ones+1, label ones+2,
                                label_ones+3, label_ones+4])
```


Clustering setup

Notation:

Given vectors $X = \{X_1, X_2, \dots, X_n\} \in \mathbb{R}^p$

- $\rightarrow n$ observations in p-dimensional space
- ightharpoonup variables/features/attributes indexed by $j=1,\ldots,\,p$: j^{th} variable is X_j
- \rightarrow observations indexed by $i=1,\ldots,n$: i^{th} variable is X_i

Goals and Limitations:

- Want to learn properties about the joint distribution P(X) of these vectors: organise, summarise, categorise, explain
- No direct measure of success (e.g., no notion of a misclassification rate) → successful if true structure is captured

General goals of clustering

Partition observations such that:

Observations within a cluster are similar

→ "Compactness" property

Observations in different clusters are non-similar

→ "Closeness" property

Typically want compact clusters that are well-separated

Dissimilarity Measure: within-cluster variation

→ Characterises degree of "closeness"

Dissimilarity matrix $m{D} = \{d_{ii'}\}$ such that $d_{ii} = 0$ and

$$d_{ii'}^j = d\left(x_{ij}, x_{i'j}\right)$$

Some examples of
$$d_{ii'}^j$$
 are $\left(x_{ij}-x_{i'j}\right)^2$ or $\left|x_{ij}-x_{i'j}\right|$

$$D_{ii'} = D\left(X_i, X_i'\right) = \sum_{j=1}^p w_j \cdot d_{ii'}^j \text{ where } w_j \text{ are weights and } \sum_{j=1}^p w_j = 1$$

Dissimilarity Measure: within-cluster variation

Total cluster variability
$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} D_{ii'}$$

$$= \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \left(\sum_{C(i')=k} D_{ii'} + \sum_{C(i')\neq k} D_{ii'} \right)$$

where C(i) = k is the assignment of observation i to cluster k

Total within-cluster variability:
$$\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} D_{ii'}$$

Total between-cluster variability:
$$\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')\neq k} D_{ii'}$$

K-Means Clustering

Main idea: partition observations in K separate clusters that do not overlap.

- Each observation is assigned to 1 cluster.
- No notion of strength of membership in the cluster.
- Must specify K in advance, and will always find K clusters.

K-Means Clustering: procedure

Goal: minimise total within-cluster scatter using

$$D_{ii'} = \sum_{i=1}^{p} \left(x_{ij} - x_{i'j} \right)^2 = \| X_i - X_{i'} \|^2$$

Note: K-means always uses this dissimilarity measure (no variations).

Then the within-cluster scatter is written as

$$\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} ||X_i - X_{i'}||^2 = \sum_{k=1}^{K} |C_k| \sum_{C(i)=k} ||X_i - \bar{X}_k||^2$$

where $\left| \left| C_k \right|$ is the number of observations in cluster C_k ,

with means
$$ar{m{X}}_k = \left(ar{X}_1^k, \, \ldots \, , ar{X}_p^k
ight)$$

K-Means Clustering: recipe

- 1. Pick K, the number of clusters.
- 2. Select *K* cluster centres (multiple ways to initiate these).
- 3. Iterate until members no longer switch clusters:
 - a. Assign each observation (data point) to its closest cluster centre.
 - b. Re-calculate cluster centres.

Python: sklearn.cluster.KMeans (scikit-learn.org)

Try it yourself: generate 3 random datasets (use <code>np.random.normal</code>), cluster them with K-means and K=3, then try moving the datasets closer together and farther apart and re-clustering, visualising every result, to help you understand how the algorithm works.

K-Means Clustering: recipe

- 1. Pick K, the number of clusters.
- 2. Select *K* cluster centres (multiple ways to initiate these).
- 3. Iterate until members no longer switch clusters:
 - a. Assign each observation (data point) to its closest cluster centre.
 - Re-calculate cluster centres.

Python: sklearn.cluster.KMeans (scikit-learn.org)

Try it yourself: generate 3 random datasets (use np.random.normal), cluster them with K-means and K=3, then try moving the datasets closer together and farther apart and re-clustering, visualising every result, to help you understand how the algorithm works.

Example:

```
import np.random.normal as normal
from sklearn.cluster import KMeans
n = 50
y = [-1., 1., 3]
data1 = np.array([normal(0.0, 1.0, size=n), normal(y[0], 0.1, size=n)])
data2 = np.array([normal(0.0, 1.0, size=n), normal(y[1], 0.1, size=n)])
data3 = np.array([normal(0.0, 1.0, size=n), normal(y[2], 0.1, size=n)])
data_play = np.vstack([data1.T, data2.T, data3.T])
kmeans = KMeans(n_clusters=3)
kmeans.fit(data_play)
```

K-Means Clustering: determining K

K-Means Clustering: determining K

Choose the k that has the last "significant" reduction in the within-groups sum-of-squares statistic (i.e., find the "elbow")

The statistic used can change depending on clustering method, but the concept is sound.

K-Means Clustering: Tips & Caveats

- Can be unstable; solution depends somewhat on the starting set of centres
 - finds local optima, but we may want the global optima
 - try starting with different centres, run at least 10 iterations to make sure you're not stuck in a local optimum
- Cluster assignments are strict: no notion of degree or strength of membership
- Possible lack of interpretability of centroids.
 - Centres are averages. Fine for clustering many things, but not all. Example: what if the observations are faces?

Hierarchical Clustering

Because you don't always want to determine K in advance: Start with each point as its own "cluster" and then group by similarities.

Hierarchical Partitioning vs Flat Partitioning

- Flat Partitioning (e.g., K-means clustering):
 - Partitions data into K partitions, where K is set in advance by the user
 - No sense of the relationships between clusters
- Hierarchical partitioning:
 - Generates a hierarchy of partitions; user selects which partition to use after the full hierarchy is created
 - $P_1 = 1$ cluster, ..., $P_n = n$ clusters ("agglomerative" clustering)
 - Partition P_i is the **union** of one or more clusters from Partition P_{i+1}

Hierarchical Clustering: recipe

Define a dissimilarity measure $d_{kk'}=d\left(C_k,C_{k'}\right)$ between clusters C_k and $C_{k'}$ as a function of distance between points in the clusters

- 1. Start with every observation in its own cluster
- 2. Find $\min \left(d\left(C_k, C_{k'} \right) \right)$ across all cluster pairs \longrightarrow merge C_k and $C_{k'}$
- 3. Repeat until only 1 cluster remains

- a. Read the dendrogram from the bottom up.
- b. If you change the dissimilarity measure, the distances (y-axis) in the dendrogram will change.

Hierarchical Clustering: recipe

Define a dissimilarity measure $d_{kk'}=d\left(C_k,C_{k'}\right)$ between clusters C_k and $C_{k'}$ as a function of distance between points in the clusters

- 1. Start with every observation in its own cluster
- 2. Find $\min\left(d\left(C_k,C_{k'}\right)\right)$ across all cluster pairs \longrightarrow merge C_k and $C_{k'}$
- 3. Repeat until only 1 cluster remains

Hierarchical Clustering: common distances

• **Single-linkage** clustering (friends-of-friends): the intergroup distance (y-axis on the dendrogram) is the smallest possible distance between clusters

$$d\left(C_{k}, C_{k'}\right) = \min_{x \in C_{k}, y \in C_{k'}} \left(d(x, y)\right)$$

• Complete-linkage clustering: intergroup distance is largest possible distance

$$d\left(C_{k}, C_{k'}\right) = \max_{x \in C_{k}, y \in C_{k'}} \left(d(x, y)\right)$$

• Average-linkage clustering: uses the average distance between clusters

$$d\left(C_{k}, C_{k'}\right) = \text{Ave}_{x \in C_{k}, y \in C_{k'}}\left(d(x, y)\right)$$

• Ward's clustering:

$$d(C_{k}, C_{k'}) = \frac{2(|C_{k}| \cdot |C_{k'}|)}{|C_{k}| + |C_{k'}|} ||\bar{X}_{C_{k}} - \bar{X}_{C_{k'}}||^{2}$$

Hierarchical Clustering: example dataset

- Given the different definitions of distance $d\left(C_k,C_{k'}\right)$ (see previous slide), we expect that the y-axis scales will be different.
- The user must choose a
 distance value at which to use
 the dendrogram to define
 cluster membership.
 Example: "choose d such that
 there are 4 clusters"

Hierarchical Clustering: choose d:K=4

- In the dendrograms, the amount by which you have to change the cutoff d to change K can vary greatly.
- In general, you want to choose a distance measure such that you can achieve clustering that is useful in your context (which sometimes means a target K) and robust to small changes in $d_{\rm cut}$.

Hierarchical Clustering: choose d:K=4

- For this dataset, you would probably choose the Average or Ward distance, but for the next dataset it might be different.
- Always consider your science goals and your specific data's properties.
- Try it yourself: is there a value of d for which you can recover the intrinsic K=5 of the data?

Hierarchical Clustering: choosing d

- Galaxy Zoo Bar Lengths: volunteers (citizen scientists) were asked to mark 2 lines: bar length & width
- Agglomerative clustering to combine volunteer marks (31 people looked at this image)
 - Assume volunteers haven't double-marked: $d_{\rm cut}$ chosen to be the highest value that **doesn't** combine 2 marks from the same volunteer into the same cluster. K=2 **not** directly enforced.
 - ullet Given these requirements, Ward distance chosen as best performing $d\left(C_{k},C_{k'}
 ight)$

Hierarchical Clustering: choosing d

- Galaxy Zoo Bar Lengths: volunteers (citizen scientists) were asked to mark 2 lines: bar length & width
- Agglomerative clustering to combine volunteer marks (31 people looked at this image)
 - Assume volunteers haven't double-marked: $d_{\rm cut}$ chosen to be the highest value that **doesn't** combine 2 marks from the same volunteer into the same cluster. K=2 **not** directly enforced.
 - ullet Given these requirements, Ward distance chosen as best performing $d\left(C_{k},C_{k'}
 ight)$

One more clustering algorithm: DBSCAN

Density-Based Spatial Clustering of Applications with Noise first published by Ester et al. (1996)

- Defines points as belonging to a cluster or outside a cluster (outliers) based on a distance threshold between points, arepsilon
- If a point q is within ε of a "core point" p, it is "directly reachable" from p.
- A point q is "reachable" from p if there is a path p_1, \ldots, p_n where $p_1 = p$ and $p_n = q$ and where each point p_{i+1} is directly reachable from p_i .
- Points not reachable from any other point are "outliers" or "noise points".
- Core points are defined as points where at least N_{\min} other points are directly reachable from the core point.
- N_{\min} (the minimum number of points required to form a cluster) and ε (the maximum separation between adjacent clustered points) are the only 2 parameters specified by the user.

DBSCAN: Advantages

- Don't need to know the number of clusters in advance
- Can find arbitrarily-shaped clusters
- Has a formalised definition of noise/outliers
- Requires only 2 parameters
- Mostly insensitive to the ordering of points in your array/database/table
- Can sometimes work out an optimal ε and N_{\min} in advance, if you know your data well enough.

DBSCAN: Disadvantages

- Points on the edge of a cluster can swap membership occasionally if they are in a different order in your array/database/table. Sometimes this might be an advantage, but it usually is an additional source of uncertainty.
- DBSCAN depends highly on the distance measure you use for ε .

Most common: Euclidean, e.g. $\sqrt{x^2 + y^2}$ in 2 dimensions.

For higher dimensional data, it can become almost impossible to find an acceptable value for $\ensuremath{\varepsilon}$.

Curse of dimensionality: as dimensionality increases, the volume of parameter space increases so rapidly that the data become very sparse and all objects appear dissimilar.

- Relies on the density being similar between real clusters: can't vary the combination of (ε,N_{\min}) across the dataset
- If you don't know the dataset well, choosing $(arepsilon,N_{\min})$ can be very challenging.

DBSCAN, with our example dataset

- While DBSCAN can have advantages over K-means and agglomerative hierarchical clustering, you still need to try different parameters and examine your data to choose the values that will provide accurate, robust cluster membership.
- To explore on your own: HDBSCAN (basically: like DBSCAN, but hierarchical)

Clustering Recap

- We have discussed "algorithmic clustering":
 - *K*-means
 - Hierarchical linkage (agglomerative)
 - DBSCAN
- We have not discussed "statistical clustering":
 - Parametric: associates a specific model with the density in each cluster (e.g., Gaussian, Poisson)
 - Non-parametric: examines contours of density to find cluster information (e.g., kernel density estimate)

There are many ways to cluster data, and we have covered the start of them.

Clustering and Classification

Clustering

Find subtypes or groups that are not defined a priori based on measurements

→ "Unsupervised learning" or "Learning without labels"

Classification

Use a priori group labels in analysis to assign new observations to a particular group or class

- → Sometimes applied once some type of clustering has been applied; can be separate
- → "Supervised learning" or "Learning with labels"

О	Class	Temperature	Apparent color	Hydrogen lines	Other noted spectral features
В	0	≥ 30,000 K	blue	Weak	ionized helium lines
A	В	10,000-30,000 K	blue white	Medium	neutral helium
F	Α	7,500–10,000 K	white to blue white	Strong	ionized calcium (weak)
	F	6,000-7,500 K	white	Medium	ionized calcium (weak)
G	G	5,200–6,000 K	yellowish white	Weak	ionized calcium (medium)
K	К	3,700–5,200 K	yellow orange	Very weak	ionized calcium (strong)
М	М	≤ 3,700 K	orange red	Very weak	Titanium oxide lines

Classification: the setup

Given vectors $X = \{X_1, X_2, \dots, X_n\} \in \mathbb{R}^p$ and qualitative class labels $Y = \{y_1, y_2, \dots, y_n\}$

- \longrightarrow let \hat{y}_i be the predicted label for observation i
- \longrightarrow our main interest is the probability space, $P\left(Y|X\right)$
- The classification training error rate is often estimated using a training dataset as

$$\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{I} \left(y_i \neq \hat{y}_i \right)$$

where $I(\cdot)$ is called the indicator function, and returns 1 or 0 for a label being True/False.

• The classification test error rate is often estimated using a test dataset, $(x_{\text{test}}, y_{\text{test}})$, as

$$E\left(\boldsymbol{I}\left(y_{\text{test}} \neq \hat{y}_{\text{test}}\right)\right)$$

Supervised classifiers try to minimise the training error. Good classifiers have small test errors.

Classification: some example classifiers

Bayes classifiers

Assign label to the class that has the largest probability $P\left(Y=j\mid X=x\right)$ for classes $j=1,\ldots,J$, assuming you know the distribution of $Y\mid X$ (which you sometimes don't)

K Nearest Neighbours (KNN)

Assign label based on the K observations in the training set that are "nearest" to it. Note: **not** the same K as K-means clustering.

Linear Classifiers

Decision boundary between classes is linear. ~Simple, but not good for all datasets. Ex: Logistic regression (binary), Linear Discriminant Analysis (multi-class)

Other Classifiers

Support Vector Machines: find the hyperplane that maximises the distance between classes Classification Trees: determine which variables are "best" at separating data into labelled groups, by partitioning the predictor space into hyper-rectangles. Often physically easier to interpret than other methods.

Convolutional Neural Networks: layers of matrices which iteratively operate on each other to minimise training loss. Can be very difficult to interpret why they make decisions.

Example: K Nearest Neighbours (KNN)

Main idea: an observation is classified based on the K observations in the training set nearest to that observation.

A probability of each class can be estimated by

$$P(Y=j|X=x) = \frac{1}{K} \sum_{i \in N(x)} I(y_i = j)$$

where, if there are N classes in the training set, $j=1,\ldots,N$, and I is the indicator function.

- There are K=3 nearest neighbours to the \mathbf{X} within the circle.
- The predicted class of X would be "blue square" because there are more blue square observations than green circles among the 3 NN.

K Nearest Neighbours (KNN): example data

- Numbered points show training data and true labels (data u).
- Coloured meshpoints show what the predicted label would be at that point, for each value of K (top centre).
- Smaller K is more likely to capture small-scale features, but risks overfitting.
- Larger *K* loses information about real class boundaries.

python:

sklearn.neighbors.KNeighborsClassifier

K Nearest Neighbours (KNN): real data

- Predicts a probability space for dialect usage
- Could be used to predict labels (was not, in this case)

Credit: Josh Katz, was North Carolina State University, now New York Times