

Extending Trusted Execution Environments in Architectural Simulators

Will Buziak

Iris Bahar

Tamara Silbergleit Lehman

Zach Moolman

Sam Thomas

Dept. of Computer Science

Dept. of Computer Science

Dept. of Electrical, Computer, & Energy Engineering

Dept. of Electrical, Computer, & Energy Engineering

Dept. of Computer Science

Colorado School of Mines Colorado School of Mines University of Colorado, Boulder

University of Colorado, Boulder

Brown University

Background

Trusted Execution Environments (TEEs) provide hardware guarantees that seek to protect the security and isolation of off-chip data.

This work outlines methods for implementing and evaluating contributions to open-source TEEs within architectural simulation.

Motivation

Simulation allows a shorter pipeline from design idea to implementation testing.

Achieving a baseline model is nontrivial, often allocating much of the development time to de-coupled, selfguided learning.

Keystone

implementations exist, but Keystone^[1] is a popular, open-source pre-existing with version many simulator components.

Keystone provides security through memory isolation, utilizing customized RISC-V hardware primitives.

For researchers wishing to continue developing Keystone components, contributions must also implement designs, built hardware on corrresponding ISA extensions.

gem5

Gem5^[2] presents architectural design from the bottom-up with ISA protocols, hardware descriptions and user-space benchmarking, enabling full-stack development.

In order to build Keystone in gem5, the developer must also make use of fullsystem resources.

To further protect state-of-the-art TEEs, we extend[3] Keystone to include secure memory protocols in the gem5 simulation environment.

Future Work

This work proposes a framework that aims to assist future developers to implement their contributions.

Our goal is to provide researchers with tools that expedite the development when working with TEEs, cycle primarily targeting:

- New researcher learning curve
- Novel contribution development time
- Testing methods

Bibliography

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn Song, Keystone: An Open Framework for Architecting Trusted Execution Environments, In *Fifteenth* European Conference on Computer Systems (EuroSys '20) 2020.

[2] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, and et. Al, The gem5 Simulator: Version 20.0+, (arXiv) 2007.

Zach Moolman and Tamara Silbergleit Lehman, Extending RISC-V Keystone to Include Efficient Secure Memory, In: Eighth Workshop on Computer Architecture Research with RISC-V (CARRV 2024)