

# COSE474 Deep Learning Lecture 11: Recurrent Neural Networks (RNNs)

Seungryong Kim

Computer Vision Lab. (CVLAB)

Department of Computer Science and Engineering

Korea University

- Speech Recognition:
- Music Generation:
- Sentiment Classification:
- DNA Sequence Analysis:
- Machine Translation:
- Video Activity Recognition:
- Name Entity Recognition:



 $\longrightarrow$ 

"There is nothing to like in this movie."



Voulez-vous chanter avec moi?







Yesterday, Harry Potter met Hermione Granger.

"The quick brown fox jumped over the lazy dog."





**AGCCCCTGTGAGGAACTAG** 

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger.

#### Sequential Data Representation

Input data: a set of vectors  $\mathbf{x} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(T)})^{\mathrm{T}}$ 



ECG signal (3 channels)
100 samples/sec and acquire for 2 mins
-> 12,000 x 3 vector (*T*: 12,000)

$$\mathbf{x} = \left( \begin{pmatrix} 0.3 \\ 0.1 \\ 0.2 \end{pmatrix}, \begin{pmatrix} 0.5 \\ 0.6 \\ 0.4 \end{pmatrix}, \dots \right)^{\mathrm{T}}$$

#### Text sequential data representation

- Text data is represented by using a dictionary.
- Ex) The dictionary is built with the most frequently used 30,000 words [1].

#### Text representation using dictionary

- Bag-of-words (BoW)
- One hot code
- Word embedding

#### Bag-of-Words (BoW)

- Count the frequency of each word and express it as a vector of m dimensions.
- *m*: dictionary size

```
'April is the cruelest month' \rightarrow (0, ..., 0.2, ..., 0.2, ...)
```

• It is good for image retrieval but is not suitable for sequential data representation.

#### One Hot Code

• Each word is represented by  $m \times 1$  vector  $\rightarrow$  very inefficient.

'April is the cruelest month' 
$$\rightarrow ((0,0,1,0,0,0,\cdots)^T,(0,0,0,0,1,0,\cdots)^T,\cdots)^T$$

#### Word Embedding

- By analyzing the correlation between words in dictionary, convert the word into lower dimensional space
- Ex) word in 30,000 dimensions → converted into 620 dimension [1]

#### Word embedding using word2vec



- The order in which the features appear is important.
- Training sample may have different sizes
- Context dependency
  - In non-sequential data, covariance matrix indicates a correlation over features.
  - In sequential data, context dependency is important

She got up at lunch and ate breakfast, and he came back later.

Long-term dependency (Two distant words are correlated)

**Use LSTM for handling this!** 

#### "Vanilla" Neural Networks

#### one to one











e.g., Video classification on frame level





 We can process a sequence of vectors x by applying a recurrence formula at every time step:



**Notice:** the same function and the same set of parameters are used at every time step.





• The state consists of a single "hidden" vector h:



## RNN: Computational Graph



## RNN: Computational Graph

Re-use the same weight matrix at every time-step:



# RNN: Computational Graph- Many to Many



# RNN: Computational Graph- Many to One



## RNN: Computational Graph- One to Many



# (Example) Sequence to Sequence

"Many-to-One" + "One-to-Many"

Many-to-One: Encode input sequence in a single vector

**One-to-Many:** Produce output sequence from single input vector



#### Backpropagation through Time

 Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient:



# Truncated Backpropagation through Time

Run forward and backward through chunks of the sequence instead of whole sequence:



## Backpropagation through Time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps:



#### Backpropagation through Time

• Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps:



#### Recurrent Neural Networks Tradeoffs

#### **RNN Advantage:**

- Can process any length input.
- Computation for step t can (in theory) use information from many steps back.
- Model size does not increase for longer input.
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

#### **RNN Disadvantage:**

- Recurrent computation is slow.
- In practice, difficult to access information from many steps back.



$$\begin{aligned} \mathbf{h}_t &= \tanh(W_{\mathbf{h}\mathbf{h}} \mathbf{h}_{t-1} + W_{\mathbf{x}\mathbf{h}} \mathbf{x}_t) \\ &= \tanh\left((W_{\mathbf{h}\mathbf{h}} \quad W_{\mathbf{x}\mathbf{h}}) \begin{pmatrix} \mathbf{h}_{t-1} \\ \mathbf{x}_t \end{pmatrix}\right) \\ &= \tanh\left(W \begin{pmatrix} \mathbf{h}_{t-1} \\ \mathbf{x}_t \end{pmatrix}\right) \end{aligned}$$

#### Backpropagation from $h_t$

**to**  $h_{t-1}$  multiplies by W(actually  $W_{\rm hh}^T$ )



$$\begin{aligned} \mathbf{h}_t &= \tanh(W_{\mathbf{h}\mathbf{h}} \mathbf{h}_{t-1} + W_{\mathbf{x}\mathbf{h}} \mathbf{x}_t) \\ &= \tanh\left((W_{\mathbf{h}\mathbf{h}} \quad W_{\mathbf{x}\mathbf{h}}) \begin{pmatrix} \mathbf{h}_{t-1} \\ \mathbf{x}_t \end{pmatrix}\right) \\ &= \tanh\left(W \begin{pmatrix} \mathbf{h}_{t-1} \\ \mathbf{x}_t \end{pmatrix}\right) \end{aligned}$$

$$\frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} = \tanh'(W_{hh}\mathbf{h}_{t-1} + W_{xh}\mathbf{x}_t)W_{hh}$$

Bengio et al., "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. on NN, 1994 Pascanu et a., "On the difficulty of training recurrent neural networks," ICML, 2013 [slide courtesy: Stanford, CS231] 30



Bengio et al., "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. on NN, 1994 Pascanu et a., "On the difficulty of training recurrent neural networks," ICML, 2013



Bengio et al., "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. on NN, 1994 Pascanu et a., "On the difficulty of training recurrent neural networks," ICML, 2013



Bengio et al., "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. on NN, 1994 Pascanu et a., "On the difficulty of training recurrent neural networks," ICML, 2013 [slide courtesy: Stanford, CS231] 33

# Long Short Term Memory (LSTM)

#### Vanilla RNN

$$\mathbf{h}_{t} = \tanh\left(W\begin{pmatrix}\mathbf{h}_{t-1}\\\mathbf{X}_{t}\end{pmatrix}\right)$$

#### **LSTM**

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

# Long Short Term Memory (LSTM)



i: input gate, whether to write to cell

f: forget gate, whether to erase to cell

o: output gate, how much to reveal cell

**g**: Gate gate, how much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

#### LSTM Gradient Flow



Backpropagation from  $c_t$ to  $c_{t-1}$  only elementwise multiplication by f, no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

#### LSTM Gradient Flow

#### **Uninterrupted Gradient Flow!**



- Note that the gradient contains the f gate's vector of activations.
  - Allows better control of gradient values, using suitable parameter updates of the forget gate.
- Also notice that are added through the f, i, g, and o gates.
  - Better balancing of gradient values.

# Application: Image Captioning

• **Goal:** Generate a sentence depicting what is happening in the image (e.g., recognizing objects, behaviors, interactions, and so on)



 $(z_0, z_1, ..., z_T)$ : ground truth sentence

E: transformation matrix for word embedding

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax



image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096















a man wearing a blue shirt with his arms on the grass, a man holding a frisbee bat in front of a green field. a man throwing a frisbee in a green field. a boy playing ball with a disc in a field. a young man playing in the grass with a green ball.



a group of birds standing next to each other, a group of ducks that are standing in a row, a group of ducks that are standing on each other, a group of sheep next to each other on sand, a group of small birds is standing in the grass.



a red car on the side of the road in the small race. a truck driving uphill on the side of the road. a person driving a truck on the road. a small car driving down a dirt and water. a truck in a field of car is pulled up to the back.



a kite flying over the ocean on a sunny day. a person flying over the ocean on a sunny day. a person flying over the ocean on a cloudy day. a kite on the beach on the water in the sky. a large flying over the water and rocks.

# (Supp.) Other Methods for Sequences

- **GRU**
- Memory Networks

Cho et al., "Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation," EMNLP, 2014 Weston et al., "Memory Networks," ICLR, 201t5

## Summary

- RNNs allows a lot of flexibility in architecture design.
- Vanilla RNNs are simple but don't work very well.
- Common to use LSTM or GRU: their additive interactions improve gradient flow.
- Backward flow of gradients in RNN can explode or vanish.
   Exploding is controlled with gradient clipping.
   Vanishing is controlled with additive interactions (LSTM).
- Better/simpler architectures are a hot topic of current research.
- Better understanding (both theoretical and empirical) is needed.

### New Paradigms for Reasoning Over Sequences

- Vaswani et al., "Attention is all you need," NeurIPS, 2017.
- New "Transformer" architecture no longer processes inputs sequentially; instead it can operate over inputs in a sequence in parallel through an attention mechanism.
- Has led to many state-of-the-art results and pretraining in NLP, for more interest see e.g.,
  - Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," 2018



#### And now...



- Dosovitskiy et al., "An Image is Worth 16 x 16 words: Transformers for Image Recognition at Scale," ICLR, 2021.
- This paper shows that the reliance on CNNs in computer vision is not necessary and a pure structure in place.

#### And now...



#### Transformer Encoder



# Thank you! Q&A