Edge Computing

Lecture 04: Edge Systems: Design and Optimization

Recap

- The IoT Challenge
- Bandwidth, latency, throughput, pipeline
 - Generic metrics, must specify context,
 - e.g. Packet latency vs execution latency/time
 - e.g. Link throughput vs frame throughput (FPS)
- Example system architectures
 - Edge-heavy vs Cloud-heavy apps
- Close-the-loop: sensing, compute, actuation
 - Decision making

Agenda

- Edge System Design and Evaluation
- Edge System Optimization
- Multi-threading & Multi-processing
- Quiz 2

System Design Tips

- Component function
- Logical connection
- Draw a good diagram if possible

Situnayake, D., & Plunkett, J. (2023). Al at the Edge. O'Reilly

System Optimization: Evaluation Metric

- What to optimize?
- What do you care?
- How would you measure?

Metrics Google it!

System

- FPS
- Throughput
- Latency
- Memory
- Energy
- Thermal
- TOPS/FLOPS

Error

- loU
- Mean absolute error (MAE)
- Squared MSE/RMSE
- ADE (abs. distance error)

Accuracy

- Loss
- Confusion Matrix

	NO	NOISE	YES
NO	96.3%	0%	3.7%
NOISE	2.7%	95.9%	1.4%
YES	4.7%	0.9%	94.4%

- True/False Positive/Negative
- Precision & Recall
- RUC curve (TP vs FP)
- mAP (mean Average Precision)
 - Area under precision vs recall curve

Detection Task and Evaluation Metric

Task

Produce a set of boxes for the objects in the scene

Negative

Negative

Negative

IoU Threshold Set: [0.6, 0.7, 0.8, 0.9

Metric

- Intersection-over-Union (IoU)
- True/False Positives (TP/FP)
- True/False Negatives (TN/FN)
- Precision/Recall (P/R)
- PR Curve
- Average Precision (AP)

Optimization

- Design time
 - Topology, device, resource
- Deployment time
 - Evaluate system metrics
 - Workload balancing between edge and cloud
- Run time
 - Evaluate performance metrics at scale
 - Monitoring and supporting

Edge Device Optimization

Facing limits, what can we do?

- Establish baseline (existing technique, or naive implementation)
- Algorithm refinement
- Design tradeoff
- Implementation tailored to hardware

SIMD: Single Instruction/Multiple Data

Concurrency: Thread & Process

Google it!

Thread

0

Process

0

Concurrency: Thread & Process

- A thread is a sequence of instructions within a process. It can be thought of as a lightweight process. Threads share the same memory space.
- A process is an instance of a program running in a computer which can contain one or more threads. A process has its independent memory space.

Hyper-threading

- One form of multi-threading
- Each color is a process / thread
- Each box is an instruction.
- Frontend blends / reorders the instructions
- Core process instructions from different colors simultaneously
 - White boxes meaning empty resources

Multi-Threading & Multiprocess

Let's go to Colab: <u>Profiling performance.ipynb</u>

Summary

- Edge System Evaluation
 - System Metrics vs Performance Metrics
- Edge System Optimization
 - Architecture design
 - Device optimization
- Concurrency
 - SIMD
 - Threading & Multiprocessing

Next Lecture

- Basics of ML
- Lab 2: object detection
- ML footprint optimization: pruning and quantization