L10. Bayesian Network

Probability + Statistics + Graph Theory

L7. Bayesian Network (Modeling)

- (Static) Bayesian Network
- Dynamic Bayesian Network

(Static) Bayesian Network

Degree of Belief and Probability

How to compare the plausibility of different statements?

 ${\it G}$: "we can be a billionaire if we go to graduate school" vs

S: "we can be a billionaire if we go to Samsung"

- If you believe G more than S, you can write G > S
- If you believe S more than G, you can write $G \prec S$
- If you have the same belief, you can write $G \sim S$

Assumptions about relationships of \succ and \sim

- Universal comparability : either G > S, G < S or $G \sim S$
- Transitivity: if G > S and S > V, then G > V

Due to the two assumptions, the degree of belief can be represented by a real-valued function:

- P(G) > P(S) if and only if G > V
- P(G) = P(S) if and only if $G \sim V$

Properties of probabilities for Bayesian Networks

We are going to use very simple probability theories to construct Probabilistic Graphical Model

conditional probability:

$$P(A|B) = \frac{P(B|A)}{P(B)}$$

Law of total probability :

$$P(A) = \sum_{B \in \mathcal{B}} P(A|B) P(B)$$
 or $P(A) = \int_{B} P(A|B) P(B) dB$

• Bayes' rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Introduction to Graph Theory

Graph

• A graph G consists of nodes (also called vertices) and edges (also called links) between the nodes.

A directed graph *G* consists of directed edges between nodes

An undirected graph *G* consists of undirected edges between nodes

Introduction to Graph Theory

Directed Acyclic Graph (DAG)

 A DAG is a graph G with directed edges (arrows on each link) between the nodes such that by following a path of nodes from one node to another along the direction of each edge no path will revisit a node.

Cyclic Graph

Acyclic Graph

- DAG will play a central role in modeling environments with many variables
 - → will be used for the belief networks
 - \rightarrow can encode the direction dependence between the parent nodes and child nodes.

Introduction to Graph Theory

Path

• A path $A \to B$ from node A to node B is a sequence of nodes that connects A to B

Ancestors

• In directed graph, the nodes A such that $A \to B$ and $B \not\to A$ are the ancestors of B

Descendants

• In directed graph, the nodes B such that $A \to B$ and $B \not\to A$ are the descendants of A

Representations

Edge list

$$L = \{(x_1, x_4), (x_2, x_4), (x_3, x_4), (x_1, x_8), (x_4, x_5), (x_4, x_6), (x_7, x_6)\}$$

7000100017

Adjacency matrix

$$x_5$$
 x_6
 \checkmark A path $x_1 \to x_6$ is $x_1 \to x_4 \to x_6$
 \checkmark The ancestors of x_6 are $ac(x_4) = \{x_1, x_2, x_3, x_4\}$
 \checkmark The descendants of x_2 are $dc(x_2) = \{x_4, x_5, x_6\}$
 \checkmark The parents of x_4 are $pa(x_4) = \{x_1, x_2, x_3\}$
 \checkmark The children of x_4 are $ch(x_4) = \{x_5, x_6\}$

Full Joint Distribution

Example distribution

Α	В	C	P(A, B, C)
0	0	0	0.08
0	0	1	0.15
0	1	0	0.05
0	1	1	0.10
1	0	0	0.14
1	0	1	0.18
1	1	0	0.19
1	1	1	0.11

- Binary variables: A, B, C (e.g., $A = 1 \ or \ 0$)
- 2^3 entities are required to construct the table
- $2^3 1$ independent parameters are required to fully specify the joint probability distribution
- $2^N 1$ parameters are required for N binary variables
- If each variable has M different choices, $M^N 1$ parameters are required

The number of parameters grows exponentially

→ Difficult to represent Probability distribution and learn the parameters from data

Full Joint Probability Distribution

- Binary variables: B, S, E, D, C (e.g., $B = 1 \ or \ 0$)
- 2⁵ entities are required to construct the table
- 2^5-1 independent parameters are required to fully specify the joint probability distribution
- $2^N 1$ parameters are required for N binary variables
- If each variable has M different choices, $M^N (M-1)$ parameters are required

The number of parameters grows exponentially

→ Difficult to represent Probability distribution and learn the parameters from data

A Bayesian network is a compact representation of a joint distribution

- A Bayesian Network introduces structure into a probabilistic model by using graphs to represent independence assumptions among the variables. For inferencing, it use statistics
- Provide a good representation to model the probabilistic structures between random variables.
 - Nodes represent random variables
 - Edges represent probabilistic dependency, namely conditional probability among variables
- Conditional independence described by the graph, greatly reduce the computational effort to learn the model and inferencing random variables.

A Bayesian network is a compact representation of a joint distribution

- Each node corresponds to a random variable
- Directed edges connect pairs of nodes, indicating direct probabilistic relationships
- $P(x_i|pa_{x_i})$ represents the probability distribution of x_i conditional on the parent nodes pa_{x_i} of X_i e.g., P(E|B,S): B and S are the parent nodes of E

The chain rule for Bayesian networks specifies how to construct a joint distribution from the local conditional probability distribution

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(x_i | pa_{x_i})$$
local conditional probability distribution

A Bayesian network is a compact representation of a joint distribution

Б	<u> </u>	P(B)	\leftarrow $P(B)$	(B)		(S) P	P(S)	E	В	S	P(E B,S)
		- (-)	I(D)	B		3 1	(3)	0	0	0	
1	L				4			1	0	0	
	•				E	P(E B,S)		0	0	1	
	ſ		1			*		1	0	1	
D	E	P(D E)	P(D E)	(D)		(C)	P(C E)	0	1	0	
0	0							1	1	0	
1	0							0	1	1	
0	1							1	1	1	
1	1										

- Chain rule: P(B, S, E, D, C) = P(B)P(S)P(E|B, S)P(D|E)P(C|E)
- Required independent parameters to fully specify the joint PDF

P(B): 1, P(S): 1, P(E|B,S): 4, P(D|E): 2, P(C|E): 2 (total 10 compared to $2^5-1=31$)

Formal Definition Bayesian Network

A Bayesian network (BN) is a distribution of the form

$$p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i | pa_{x_i})$$

- \checkmark pa_{xi} represents the parental variables of variable x_i
- ✓ BN is represented as a directed acyclic graph with an arrow pointing from a parent variable to child variable
- Every probability distribution can be written as a BN:

$$\begin{split} p(x_1,\dots,x_n) &= p(x_n|x_1,\dots,x_{n-1})p(x_1,\dots,x_{n-1}) \\ &= p(x_n|x_1,\dots,x_{n-1})p(x_{n-1}|x_1,\dots,x_{n-2})p(x_1,\dots,x_{n-2}) \\ &= p(x_1)\prod_{i=2}^n p(x_i|\mathrm{pa}_{x_{i-1}}) \end{split}$$

 The particular role of BN is that the structure of the DAG corresponds to a set of conditional independence assumptions, namely which ancestral parental variables are sufficient to specify each conditional probability table

Conditional Independence

Definition: Independence

$$X \perp Y$$

$$p(X,Y) = p(X)p(Y) \text{ for all states of } X,Y$$
 or equivalently
$$P(X|Y) = P(X)$$

Definition: Conditional Independence

$$X \perp Y|Z$$

$$p(X,Y|Z) = p(X|Z)p(Y|Z) \text{ for all states of } X,Y,Z$$
 or equivalently
$$P(X|Y,Z) = P(X|Z)$$

- \checkmark The two sets of variables X and Y are independent of each other provided we know the state of the set of variables Z
- \checkmark The information of Y does not give further information on X

V-structure (or collider)

$$p(x,y|z) = \frac{p(x,y,z)}{p(z)} = \frac{p(z)p(x|z)p(y|z)}{p(z)} = p(x|z)p(y|z)$$

$$p(x,y|z) = \frac{p(x,y,z)}{p(z)} = \frac{p(x)p(z|x)p(y|z)}{p(z)} = \frac{p(x,z)p(y|z)}{p(z)} = \frac{p(x,z)p(y|z)}{p(z)} = p(x|z)p(y|z)$$

$$p(x,y|z) = \frac{p(x,y,z)}{p(z)} = \frac{p(y)p(z|y)p(x|z)}{p(z)} = \frac{p(y,z)p(x|z)}{p(z)} = \frac{p(y,z)p(x|z)}{p(z)} = p(y|z)p(x|z)$$

$$p(x,y|z) = \frac{p(x,y,z)}{p(z)} = \frac{p(x)p(y)p(z|x,y)}{p(z)} \neq p(y|z)p(x|z)$$

BN with $x \to z \leftarrow y$ \checkmark x and y are unconditionally independent

 $\checkmark x$ and y are dependent conditional on z

V-structure (or collider)

p(x, y, z) = p(x|z)p(y|z)

Marginalization over z

Conditionalization on z

p(x, y, z) = p(z|x, y)p(x)p(y)

Marginalization over z

Conditionalization on z

Example: Wet Grass

$$R \in \{0,1\}: R = 1$$
 means that it has been raining

$$S \in \{0,1\}: S = 1$$
 Sprinkler is turned on

$$J \in \{0,1\}: J = 1$$
 Jack's grass is wet

$$T \in \{0,1\}: T = 1$$
 Tracey's grass is wet

Joint distribution based on chain rule

$$p(T,J,R,S) = p(T|J,R,S)p(J,R,S)$$

$$= p(T|J,R,S)p(J|R,S)p(R,S)$$

$$= p(T|J,R,S)p(J|R,S)p(R|S)p(S)$$

$$8 + 4 + 2 + 1 = 2^4 - 1 = 15 \text{ parameters are required}$$

Joint distribution conditional independence

$$p(T,J,R,S) = p(T|J,R,S)p(J|R,S)p(R|S)p(S)$$

$$= p(T|R,S) \times p(J|R) \times p(R) \times p(S)$$

$$= p(T|R,S)p(J|R)p(R)p(S)$$

Example: Wet Grass

Modeling

$$R \in \{0,1\}: R = 1$$
 means that it has been raining

$$S \in \{0,1\} : S = 1$$
 Sprinkler is turned on

$$J \in \{0,1\}: J = 1$$
 Jack's grass is wet

$$T \in \{0,1\}: T = 1$$
 Tracey's grass is wet

$$p(T,J,R,S) = p(T|R,S)p(J|R)p(R)p(S)$$

Tracey's Grass wet=1	Rain	Sprinkler
1	1	1
1	1	0
0.9	0	1
0	0	0

Jack's Grass wet=1	Rain
1	1
0.2	0

$$p(S=1)=0.1$$

$$p(R=1)=0.2$$

The tables and graphical structure fully specify the distribution

Example: Wet Grass

Inference

$$p(S = 1|T = 1) = \frac{p(S = 1, T = 1)}{p(T = 1)} = \frac{\sum_{J,R} p(T = 1, J, R, S = 1)}{\sum_{J,R,S} p(T = 1, J, R, S)}$$

$$= \frac{\sum_{J,R} p(J|R)p(T = 1|R, S = 1)p(R)p(S = 1)}{\sum_{J,R,S} p(J|R)p(T = 1|R, S)p(R)p(S)}$$

$$= \frac{\sum_{R} p(T = 1|R, S = 1)p(R)p(S = 1)}{\sum_{R,S} p(T = 1|R, S)p(R)p(S)} \quad \because \sum_{J} p(J|R) = 1$$

$$= \frac{0.9 \times 0.8 \times 0.1 + 1 \times 0.2 \times 0.1}{0.9 \times 0.8 \times 0.1 + 1 \times 0.2 \times 0.1 + 0 \times 0.8 \times 0.9 + 1 \times 0.2 \times 0.9} = 0.3382$$

$$p(S = 1|T = 1, J = 1) = \frac{p(S = 1, T = 1, J = 1)}{p(T = 1, J = 1)}$$

$$= \frac{\sum_{R} p(T = 1, J = 1)}{\sum_{R,S} p(T = 1, J = 1, R, S)}$$

$$= \frac{\sum_{R} p(J = 1|R)p(T = 1|R, S = 1)p(R)p(S = 1)}{\sum_{R,S} p(J = 1|R)p(T = 1|R, S)p(R)p(S)}$$

$$= \frac{0.0344}{0.2144} = 0.1604$$

The fact that Jack's grass is also wet increases the chance that the rain has played a role in making Tracey's grass wet

Example: Burglar Alarm

$$p(B, E, A, R) = p(A|B, E)p(R|E)p(E)p(B)$$

Alarm=1	Burglar	Earthquake
0.9999	1	1
0.99	1	0
0.99	0	1
0.0001	0	0

$$p(E = 1) = 0.01$$

$$p(E = 1) = 0.000001$$

$$p(B = 1|A = 1) = \frac{p(B, A = 1)}{p(A = 1)} = \frac{\sum_{E,R} p(B = 1, E, A = 1, R)}{\sum_{B,E,R} p(B, E, A = 1, R)}$$
$$= \frac{\sum_{E,R} p(A = 1|B = 1, E) p(R|E) p(E) p(B = 1)}{\sum_{B,E,R} p(A = 1|B, E) p(R|E) p(E) p(B)} \approx 0.99$$

$$p(B = 1|A = 1, R = 1) \approx 0.01$$

Conditional Independence

What causes the number of parameters to be reduced?

- → The conditional independence assumptions encoded by the structure of a Bayesian network
 - *X* and *Y* are independent if and only if

$$P(X,Y) = P(X)P(Y)$$
 or equivalently
$$P(X|Y) = P(X)$$

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(X)P(Y)}{P(Y)} = P(X)$$

X and Y are conditionally independent given Z if and only if

$$P(X,Y|Z) = P(X|Z)P(Y|Z)$$
 or equivalently
$$P(X|Z) = P(X|Y,Z)$$

Independence assumptions reduce the number of parameters used to represent a joint pdf

Conditional Independence examples

- C is independent of B given $E:(C\perp B|E)$
 - → Information about Battery failure does not affect my belief on communication loss if I already know (observed) the status of electrical system failure
- D is independent of S given $E:(D \perp S|E)$
 - → Information about Solar failure does not affect my belief on a trajectory deviation if I already know (observed) the status of electrical system failure

Conditional Independence examples

V-structure

- *B* is independent *S* (*E* is not observed)
 - → Knowing there is a battery failure does not affect my belief regarding solar panel failure
- B is dependent S given E
- → If there was an electrical system failure (observed) and there was no battery failure, there it is likely that a solar panel fails
- Influence flows only through $B \to E \leftarrow S$ when E is known

 Once a joint probability distribution is constructed, inference can be performed to determine the distribution over on or more unobserved variables given the values associated with a set of observed variables

 $P(B|d^1,c^1)$ Probability distribution of Battery failure Query variable

given the trajectory deviation and the communication loss

Evidence variable S : 1

: Hidden variables

How to compute $P(B|d^1, c^1)$?

Exact inference

$$P(b^1|d^1,c^1) \propto \sum_s \sum_e P(b^1,s,e,d^1,c^1)$$

$$= \sum_s \sum_e P(b^1)P(s)P(e|b^1,s)P(d^1|e)p(c^1|e) \quad \text{By conditional independence}$$

$$= P(b^1)\sum_e P(d^1|e)p(c^1|e)\sum_s P(s)P(e|b^1,s)$$

The number of terms to be added together can grow exponentially with the number of hidden variables

How to compute $P(B|d^1, c^1)$?

Variable Elimination

Conditional distributions are represented by the following tables

$$T_{1}(B)T_{2}(S)T_{3}(E,B,S)T_{4}(d^{1},E)T_{5}(c^{1},E)$$

$$T_{1}(B)T_{2}(S)T_{3}(E,B,S)T_{6}(E)T_{7}(E) \qquad \text{Observe evidence } (d^{1} \text{ and } c^{1})$$

$$T_{1}(B)T_{2}(S)T_{8}(B,S) \qquad T_{8}(B,S) = \sum_{e} T_{3}(e,B,S)T_{6}(e)T_{7}(e)$$

$$T_{1}(B)T_{9}(B) \qquad T_{9}(B) = \sum_{e} T_{2}(s)T_{8}(B,s)$$

Normalizing the product of the two factors ($T_1(B)$ and $T_9(B)$) results in $P(B|d^1,c^1)$

Variable elimination algorithm relies on heuristic ordering of variables to eliminate in sequence → Often linear but sometimes exponential

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

В	S	Е	D	С
1				

Sample from P(B)

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

В	S	Е	D	С
1	1			

Sample from P(S)

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

В	S	Е	D	С
1	1	1		

Sample from P(E|B = 1, S = 1)

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

В	S	Е	D	С
1	1	1	0	

Sample from P(D|E = 1)

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

В	S	Е	D	С
1	1	1	0	0

Sample from P(C|E=1)

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

$$P(b^{1}|d^{1},c^{1}) = 1/3$$

 $P(b^{0}|d^{1},c^{1}) = 2/3$

В	S	Е	D	С
1	1	1	0	0
0	1	0	,.··· 1 ·····	····•
1	0	1	1	1
0	1	0	0	1
0	1	1	1	1
0	1	0	0	1
0	0	0	1	0
0	1	1	1	0
0	1	0	1	1
			*.	

Three cases coincide observations d^1 , c^1

How to compute $P(B|d^1, c^1)$?

Approximate inference (Sampling based methods)

$$P(b^{1}|d^{1}, c^{1}) = 1/3$$

 $P(b^{0}|d^{1}, c^{1}) = 2/3$

В	S	Е	D	С
1	1	1	0	0
0	1	0	, <u>1</u>	Θ
1	0	1	1	1
0	1	0	0	1
0	1	1	1	1
0	1	0	0	1
0	0	0	1	0
0	1	1	1	0
0	1	0	1	1

Three cases coincide observations d^1 , c^1

How to compute $P(B|d^1, c^1)$?

Likelihood sampling

Algorithm 2.5 Likelihood-weighted sampling from a Bayesian network

```
1: function LikelihoodWeightedSample(B, o_{1:n})
          X_{1:n} \leftarrow a topological sort of nodes in B
 3:
           w \leftarrow 1
          for i \leftarrow 1 to n
 4:
                if o_i = NIL
 5:
                      x_i \leftarrow \text{a random sample from } P(X_i \mid \text{pa}_{x_i})
 6:
                else
 7:
                     x_i \leftarrow o_i \\ w \leftarrow w \times P(x_i \mid pa_{x_i})
 8:
 9:
          return (x_{1:n}, w)
10:
```


 $P(d^{1}|e^{0}) P(c^{1}|e^{0})$

В

$$P(b^1|d^1,c^1) = \frac{P(d^1|e^1) \; P(c^1|e^1)}{P(d^1|e^1) \; P(c^1|e^1) + P(d^1|e^1) \; P(c^1|e^1) + P(d^1|e^0) \; P(c^1|e^0)}$$

0

How to compute $P(B|d^1, c^1)$?

Likelihood sampling has a still problem!

Bayesian approach:

$$P(c^{1}|d^{1}) = \frac{P(d^{1}|c^{1})P(c^{1})}{P(d^{1}|c^{1})P(c^{1}) + P(d^{1}|c^{0})P(c^{0})}$$
$$= \frac{0.999 \times 0.001}{0.999 \times 0.001 + 0.001 \times 0.999}$$
$$= 0.5$$

To use likelihood weighting sampling approach:

$$c^{0}, c^{0}, \dots, c^{1}$$

$$P(d^{1}|c^{1}) = 0 \text{ because } c^{1} \text{ is not sampled due to the low prior}$$

Inference

How to compute $P(B|d^1, c^1)$?

Gibbs sampling, a kind of Markov chain Monte Carlo technique

- The sequence of samples forms a Markov chain
- In the limit, samples are drawn exactly from the joint distribution over the unobserved variables given the observations
- Simulate samples by sweeping through all the posterior conditionals, one random variables at a time

Algorithm: Gibbs sampler

Initialize $X^{(0)} \sim q(x)$

for iteration i = 1, ... do

$$x_{1}^{(i)} \sim P\left(X_{1} = x_{1} \middle| X_{2} = x_{2}^{(i-1)}, X_{3} = x_{3}^{(i-1)}, \dots, X_{D} = x_{D}^{(i-1)}\right)$$

$$x_{2}^{(i)} \sim P\left(X_{2} = x_{2} \middle| X_{1} = x_{1}^{(i)}, X_{3} = x_{3}^{(i-1)}, \dots, x_{D} = x_{D}^{(i-1)}\right)$$

$$x_{3}^{(i)} \sim P\left(X_{3} = x_{2} \middle| X_{1} = x_{1}^{(i)}, X_{2} = x_{2}^{(i)}, \dots, x_{D} = x_{D}^{(i-1)}\right)$$

$$\vdots$$

$$x_{D}^{(i)} \sim P\left(X_{D} = x_{D} \middle| X_{1} = x_{1}^{(i)}, X_{2} = x_{2}^{(i)}, \dots, X_{D-1} = x_{D-1}^{(i)}\right)$$

end for

Because samples from the early iterations are not from the target posterior, it is common to discard these samples "burn-in" period"

Inference

Sampling method comparisons

Jupyter Demo Simulation Wet grass (PyMC)

Bayesian networks can contain a mixture of both discrete and continuous variables

Wing span is a continuous variable and modeled as a Gaussian distribution

$$P(w) = N(w|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^2}$$

Bayesian networks can contain a mixture of both discrete and continuous variables

Whether a target is a military vehicle can be modeled with a single parameter θ

$$P(m^1) = \theta$$
$$P(m^0) = 1 - \theta$$

Bayesian networks can contain a mixture of both discrete and continuous variables

Radar cross section can be modeled as a conditional Gaussian

$$P(c|w,m) = \begin{cases} N(c|a_0w + b_0, \sigma_0^2) & \text{if } m = m^0 \\ N(c|a_1w + b_1, \sigma_1^2) & \text{if } m = m^1 \end{cases}$$

(Conditional linear Gaussian)

Bayesian networks can contain a mixture of both discrete and continuous variables

Logit model:

$$P(d^{1}|c) = \frac{1}{1 + \exp\left(-2\frac{c - \alpha}{\beta}\right)}$$

Probit model:

$$P(d^1|c) = \Phi\left(\frac{c - \alpha}{\beta}\right)$$

Bayesian Network for Classification

Naïve Bayes Model

Prior: P(C)

Class conditional distribution $P(O^i|C)$

$$P(C|O^{1:n}) = \frac{P(C, O^{1:n})}{P(O^{1:n})} = \frac{P(C) \prod_{i=1}^{n} P(O^{i}|C)}{P(O^{1:n})}$$

$$P(C|O^{1:n}) \propto P(C) \prod_{i=1}^{n} P(O^{i}|C)$$

$$P(C|O^{1:n}) \propto P(C) \prod_{i=1}^{n} P(O^{i}|C)$$

Structure learning

• Bayesian Score P(G|D) for a certain graph G given data D is defined as

$$P(G|D) = \frac{P(G)P(D|G)}{P(D)}$$
$$= \frac{P(G)\int_{\theta} P(D|\theta, G)P(\theta|G)d\theta}{P(D)}$$

• A Bayesian approach to structure learning involves finding the graph G that maximizes the Bayesian Score P(G|D) as

$$G^* = \operatorname*{argmax}_{G} P(G|D)$$

 Not feasible to enumerate every possible structure, so use local search for graph with largest Bayesian score **Dynamic Bayesian Network**

Dynamic Bayesian Network relates variables to each other over adjacent time steps.

Dynamic Bayesian Networks (temporal model)

- We are interested in reasoning about the state of the world as it evolves over time
- System state S_t is a snapshot of the relevant attributes of the system at time t
- Trajectory of states $S_1, ..., S_t$ represents the evolution of the target system
- $P(S_1, ..., S_t)$ is very complex probability space

→ we need a series of simplifying assumptions

Discrete-State Markov models

Consider a distribution over trajectories sampled over a prefix of time $t=1,\ldots,T$

$$P(S_1, S_2, ..., S_T) = P(S_1) \prod_{t=2}^{T} P(S_t | S_{1:t-1})$$

Cascade decomposition

Discrete-State Markov models

Consider a distribution over trajectories sampled over a prefix of time $t=1,\ldots,T$

$$P(S_1, S_2, ..., S_T) = P(S_1) \prod_{t=2}^{T} P(S_t | S_{1:t-1})$$
 Cascade decomposition

1. Markov Chain:

A Markov chain is defined on either discrete or continuous variables $S_{1:t}$ and the following conditional independence assumption holds:

$$P(S_t|S_1,...,S_{t-1}) = P(S_t|S_{t-1},...,S_{t-1})$$

where $L \ge$ is the order of the Markov chain. First order Markov chain can be represented

$$P(S_1, S_2, ..., S_T) = P(S_1) \prod_{t=2}^{T} P(S_t | S_{t-1})$$

the future is conditionally independent of the pas given the present: $(S^{t+1} \perp S^{(1:t-1)}|S^t)$

First Order Markov Chain

Second Order Markov Chain

Discrete-State Markov models

Consider a distribution over trajectories sampled over a prefix of time $t=1,\dots,T$

$$P(S_1, S_2, ..., S_T) = P(S_1) \prod_{t=2}^{T} P(S_t | S_{1:t-1})$$
 Cascade decomposition

1. Markov Chain:

A Markov chain is defined on either discrete or continuous variables $S_{1:t}$ and the following conditional independence assumption holds:

$$P(S_t|S_1,...,S_{t-1}) = P(S_t|S_{t-1},...,S_{t-1})$$

where $L \ge$ is the order of the Markov chain. First order Markov chain can be represented

$$P(S_1, S_2, ..., S_T) = P(S_0) \prod_{t=1}^{T} P(S_t | S_{t-1})$$

2. Stationary assumption

The state transition probability $P(S^{t+1}|S^t)$ is the same for all t

$$P(S^{t+1} = s' | S^t = s) = P(S' = s' | S = s)$$
 for any t

→The number of parameters are reduced substantially

Equilibrium and stationary distribution of a Markov chain

• The marginal $P(S_t)$ evolves through time. For discrete time,

$$P(S_t = i) = \sum_{j} P(S_t = i | S_{t-1} = j) P(S_{t-1} = j)$$

 \checkmark $P(S_t = i)$: the frequency that we visit state i at time t, given we started with a sample from $P(S_1)$ and subsequently repeatedly drew samples from the transition $P(S_T | S_{T-1})$

$$P(S_{t-1} = j) S_{t-1}^{j} P(S_t = i | S_{t-1} = j)$$

$$S_{t-1}^{i}$$

• Denoting $(\mathbf{p}_t)_i = P(S_t = i)$,

$$\mathbf{p}_t = \mathbf{M}\mathbf{p}_{t-1} = \mathbf{M}^{t-1}\mathbf{p}_1$$

• If, for $t \to \infty$, \mathbf{p}_t is independent of the initial distribution \mathbf{p}_1 , then \mathbf{p}_{∞} is called the equilibrium distribution of the chain, that is

$$\mathbf{p}_{\infty} = \mathbf{M}\mathbf{p}_{\infty}$$

Fitting Markov Models

Given a sequence $(S_1 = s_1, S_2 = s_2, ..., S_T = s_T)$, how to construct the transition matrix?

$$\theta_{i|j} = P(S_{\tau} = i|S_{\tau-1} = j) \propto \sum_{t=2}^{T} \mathbb{I}[S_{\tau} = i, S_{\tau-1} = j]$$

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_{1|1}\theta_{1|2}\theta_{1|3}\theta_{1|4}\theta_{1|5} \\ \theta_{2|1}\theta_{2|2}\theta_{2|3}\theta_{2|4}\theta_{2|5} \\ \theta_{3|1}\theta_{3|2}\theta_{3|3}\theta_{3|4}\theta_{3|5} \\ \theta_{4|1}\theta_{4|2}\theta_{4|3}\theta_{4|4}\theta_{4|5} \\ \theta_{5|1}\theta_{5|2}\theta_{5|3}\theta_{5|4}\theta_{5|5} \end{bmatrix}$$

State transition matrix

$$\sum_{i} \theta_{i|j} = 1$$

If we have
$$s_{1:t} = 1, 3, 2, 4, 1, 4, 3, 5, 1, 3, 4, 2, 1, 4, 4, 2, 4, 5, 1, 3, 3, 4, ...$$

$$\theta_{3|1} = \frac{3}{5}$$

Definition of Hidden Markov Models

- The Hidden Markov Model (HMM) defines a Markov chain on hidden variables $X_{1:t}$
- The observed variables are dependent on the hidden variables through an emission $P(Y_t|X_t)$

The joint distribution on the hidden variables and observations are

$$P(X_{1:t}, Y_{1:t}) = P(X_1)P(Y_1|X_1) \prod_{t=2}^{T} P(X_t|X_{t-1})P(Y_t|X_t)$$

• Transition distribution: For a stationary HMM the transition distribution $P(X_t|X_{t-1})$ is defined as the $H \times H$ matrix

$$M_{i,j} = P(X_t = i | X_{t-1} = j)$$

• Emission distribution: For a stationary HMM and emission distribution with discrete states $Y_t \in \{1, ..., V\}$, we define $V \times H$ matrix

$$O_{i,j} = P(Y_t = i | X_t = j)$$

Hidden Markov Model

The state variable X_t is discrete

• The state transition model P(X'|X) is usually sparse, \rightarrow can be represented as a directed graph

• The observation model : P(Y | X) can be deterministic or random

- Filtering (inferencing the present) $P(x_t|y_{1:t})$
- Prediction (inferencing the future) $P(x_t|y_{1:s})$ t>s
- Smoothing (inferencing the past) $P(x_t|y_{1:u})$ t < u
- Likelihood (inferencing the past) $P(x_{1:t})$
- Most likely hidden path (Viterbi alignment) $\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}|y_{1:t})$

- Filtering (inferencing the present) $P(x_t|y_{1:t})$
- Prediction (inferencing the future) $P(x_t|y_{1:s})$ t>s
- Smoothing (inferencing the past) $P(x_t|y_{1:u})$ t < u
- Likelihood (inferencing the past) $P(x_{1:t})$
- Most likely hidden path (Viterbi alignment) $\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}|y_{1:t})$

- Filtering (inferencing the present) $P(x_t|y_{1:t})$
- Prediction (inferencing the future) $P(x_t|y_{1:s})$ t>s
- Smoothing (inferencing the past) $P(x_t|y_{1:u})$ t < u
- Likelihood (inferencing the past) $P(x_{1:t})$
- Most likely hidden path (Viterbi alignment) $\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}|y_{1:t})$

- Filtering (inferencing the present) $P(x_t|y_{1:t})$
- Prediction (inferencing the future) $P(x_t|y_{1:s})$ t>s
- Smoothing (inferencing the past) $P(x_t|y_{1:u})$ t < u
- Likelihood (inferencing the past) $P(x_{1:t})$
- Most likely hidden path (Viterbi alignment) $\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}|y_{1:t})$

- Filtering (inferencing the present) $P(x_t|y_{1:t})$
- Prediction (inferencing the future) $P(x_t|y_{1:s})$ t>s
- Smoothing (inferencing the past) $P(x_t|y_{1:u})$ t < u
- Likelihood (inferencing the past) $P(x_{1:t})$
- Most likely hidden path (Viterbi alignment) $\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}|y_{1:t})$

• Filtering (inferencing the present) $P(x_t|y_{1:t})$

$$\begin{split} P(x_t|y_{1:t}) &= \frac{P(x_t,y_{1:t})}{P(y_{1:t})} \propto P(x_t,y_{1:t}) \\ P(x_t,y_{1:t}) &= \sum_{x_{t-1}} P(x_t,x_{t-1},y_{1:t-1},y_t) \\ &= \sum_{x_{t-1}} P(y_t|y_{1:t-1},x_t,x_{t-1})P(x_t|y_{1:t-1},x_{t-1})P(x_{t-1},y_{1:t-1}) \\ &= \sum_{x_{t-1}} P(y_t|x_t)P(x_t|x_{t-1})P(x_{t-1},y_{1:t-1}) & \text{``Conditional independence} \\ &= P(y_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1},y_{1:t-1}) \\ &= \sum_{x_{t-1}} P(x_t|x_t) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) \\ &= \sum_{x_{t-1}} P(x_t|x_t) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_{t-1}) P(x_t|x_t) P(x$$

Bayesian view

$$P(x_t|y_{1:t}) \propto \sum_{x_{t-1}} P(y_t|x_t) P(x_t|x_{t-1}) P(x_{t-1}|y_{1:t-1})$$

Regarded as likelihood

Modified prior distribution has an effect of removing all nodes in the graph before time t-1

Input and output hidden Markov Model (IOHMM)

The state transition model : $P(X_t|X_{t-1},A_t)$

The observation model : $P(Y_t|X_t, A_t)$

Continuous-state Markov models

- In many practical time series applications, the data is naturally continuous (i.e., variables are not discretized), particularly for models of the physical environment
- Restrict the form of the continuous transition $p(X_t|X_{t-1})$
- A simple yet powerful class of such transitions are the linear dynamical systems
- A deterministic linear dynamical system defines the temporal evolution of a vector x_t according to the discrete-time update equation

$$x_t = A_t x_{t-1}$$

where A_t is the transition matrix at time t

• If A_t is invariant with t, the process is called stationary or time-invariant

Observed linear dynamic system

• A stochastic linear dynamical system defines the temporal evolution of a vector x_t according to the discrete-time update equation

$$x_t = A_t x_{t-1} + \eta_t$$

where η_t is a noise vector sampled from a Gaussian distribution

$$\eta_t \sim N(\mu_t, \Sigma_t)$$

This is equivalent to a first-order Markov model with transition

$$p(x_t|x_{t-1}) = N(x_t|A_tx_{t-1} + \eta_t, \Sigma_t)$$

Auto-regressive models

A scalar time-invariant Auto-Regressive (AR) model is defined by

$$x_t = \sum_{l=1}^{L} a_l x_{t-l} + \eta_t, \qquad \eta_t \sim N(\mu, \sigma^2)$$

where $a = (a_1, a_2, ..., a_L)^T$ are AR coefficients and σ^2 is innovation noise.

As a belief network, the AR model can be written as an Lth-order Markov model:

$$p(x_{1:T}) = \prod_{t=1}^{T} p(x_t | x_{t-1}, \dots, x_{t-L}), \quad \text{with } x_i = 0 \text{ for } i \le 0$$

$$\hat{x}_{t-1} = (x_{t-1}, \dots, x_{t-L})$$

with
$$p(x_t|x_{t-1},...,x_{t-L}) = N(x_t|\sum_{l=1}^{L} a_l x_{t-l},\sigma^2) = N(x_t|a^T \hat{x}_{t-1},\sigma^2)$$

Similar to Bayesian Regression

- Heavily used in financial time series prediction, being able to capture simple trends in the data
- The AR coefficients form a compressed representation of the signal

Training Auto-regressive model

Maximum likelihood training of the AR coefficients is straightforward based on

$$\log p(x_{1:T}) = \log \prod_{t=1}^{T} p(x_t | x_{t-1}, ..., x_{t-L})$$

$$= \sum_{t=1}^{T} \log(x_t | \hat{x}_{t-1})$$

$$= -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (x_t - a^T \hat{x}_{t-1})^2 - \frac{T}{2} \log(2\pi\sigma^2)$$

• Differentiating w.r.t. a and equating to zero we arrive at

$$\sum_{t=1}^{T} (\mathbf{x}_t - a^T \hat{\mathbf{x}}_{t-1}) \hat{\mathbf{x}}_{t-1} = 0$$

$$\rightarrow a = \left[\sum_{t} \hat{\mathbf{x}}_{t-1} \hat{\mathbf{x}}_{t-1}^T \right]^{-1} \sum_{t} \mathbf{x}_t \hat{\mathbf{x}}_{t-1} \qquad \mathbf{x}_t : \text{target output (scalar)}$$

Similarly,

$$\sigma^2 = \frac{1}{T} \sum_{t=1}^{T} (x_t - a^T \hat{x}_{t-1})^2$$

Time-varying Auto-regressive model

Learning the AR coefficients as a problem in inference in a latent linear dynamical system (LDS):

$$x_t = \hat{x}_{t-1}^T a_t + \eta_t, \qquad \eta_t \sim N(0, \sigma^2)$$

which can be viewed as the emission distribution of a latent LDS in which the hidden variable is a_t and the time dependent emission matrix is given by \hat{x}_{t-1}^T

By placing a simple latent transition

$$a_t = a_{t-1} + \eta_t^a$$
, $\eta_t^a \sim N(0, \sigma_a^2 \mathbf{I})$

which encourages the AR coefficients to change slowly with time

Time-varying Auto-regressive model

Learning the AR coefficients as a problem in inference in a latent linear dynamical system (LDS):

$$x_t = \hat{x}_{t-1}^T a_t + \eta_t, \qquad \eta_t \sim N(0, \sigma^2)$$

which can be viewed as the emission distribution of a latent LDS in which the hidden variable is a_t and the time dependent emission matrix is given by \hat{x}_{t-1}^T

By placing a simple latent transition

$$a_t = a_{t-1} + \eta_t^a$$
, $\eta_t^a \sim N(0, \sigma_a^2 \mathbf{I})$

which encourages the AR coefficients to change slowly with time

• The joint distribution between the observation $x_{1:T}$ and the coefficients $m{a}_{1:t}$

$$p(a_{1:T}|x_{1:T}) \propto p(x_{1:T}, a_{1:T}) = \prod_{t=2}^{T} p(x_t|a_t, \hat{x}_{t-1}) p(a_t|a_{t-1})$$

then we can compute

$$a_{1:T}^* = \underset{a_{1:T}}{\operatorname{argmax}} p(a_{1:T} | x_{1:T})$$

from which the MAP estimates for the AR coefficients can be determined

Time-varying variance Auto-regressive model

 For some applications, particularly in finance, the variance can change with time due to volatility

$$x_t = \sum_{l=1}^L a_l x_{t-l} + \eta_t \,, \qquad \eta_t \sim N(0, \underline{\sigma_t^2})$$
 Time varying variance
$$\bar{x}_t = \sum_{l=1}^L a_l x_{t-l}$$

• The estimated time varying variance of noise can be computed

Auto Regressive Conditional Heteroscedasticity (ARCH)

$$\sigma_t^2 = \sigma_0 + \sum_{i=1}^{Q} \alpha_i (x_{t-i} - \bar{x}_{t-i})^2$$

Generalized ARCH model (GARCH)

$$\sigma_t^2 = \sigma_0 + \sum_{i=1}^{Q} \alpha_i (x_{t-i} - \bar{x}_{t-i})^2 + \sum_{i=1}^{P} \beta_i \sigma_{t-i}^2$$

Linear Gaussian State Space Model

- The latent LDS defines a stochastic linear dynamical system in a latent space on a sequence of states $x_{1:T}$
- Observations $y_{1:T}$ are used to infer the hidden states that tracks or explains the system evolution

Transition model : $x_t = A_t x_{t-1} + \eta_t^x$, $\eta_t^x \sim N(\bar{x}_t, \Sigma_t^x)$ Emission model : $y_t = B_t x_t + \eta_t^y$, $\eta_t^y \sim N(\bar{y}_t, \Sigma_t^y)$

 A_t : transition matrix B_t : emission matrix

 η_t^x transition noise vector with a hidden bias \bar{x}_t η_t^y emission noise vector with a hidden bias \bar{y}_t

Linear Gaussian State Space Model

- The latent LDS defines a stochastic linear dynamical system in a latent space on a sequence of states $x_{1:T}$
- Observations $y_{1:T}$ are used to infer the hidden states that tracks or explains the system evolution

Transition model :
$$p(x_t|x_{t-1}) = N(x_t|A_tx_{t-1} + \bar{x}_t, \Sigma_t^x), \quad p(x_1) = N(x_1|\mu_\pi, \Sigma_\pi)$$

Emission model : $p(y_t|x_t) = N(y_t|B_tx_t + \bar{y}_t, \Sigma_t^y)$

The first order Markov model is then defined as

$$p(x_{1:T}, y_{1:T}) = p(x_1)p(y_1|x_1) \prod_{t=2}^{T} p(x_t|x_{t-1})p(y_t|x_t)$$

Kalman Filter

Recall the filtering recursion for HMM:

$$P(x_t|y_{1:t}) \propto \sum_{x_{t-1}} P(y_t|x_t) P(x_t|x_{t-1}) P(x_{t-1}|y_{1:t-1})$$

For linear Gaussian State-space model, the recursion becomes

$$P(x_t|y_{1:t}) \propto \int_{x_{t-1}} P(y_t|x_t) P(x_t|x_{t-1}) P(x_{t-1}|y_{1:t-1}) \text{ for } t > 1$$

• Since the product of two Gaussians is another Gaussian, and the integral of a Gaussian is another Gaussian, $P(x_t|y_{1:t})$ is Gaussian:

$$P(x_t|y_{1:t})=N(x_t|f_t,F_t)$$

• Thus the recursion is for computing the mean f_t and the variance F_t for $P(x_t|y_{1:t})$ using f_{t-1} and the variance F_{t-1} for $P(x_{t-1}|y_{1:t-1})$

$$egin{array}{ccccc} f_{t-1} & & & & & f_t \ \hline F_{t-1} & & & & & & F_t \ \hline \end{array}$$

$$P(x_{t-1}|y_{1:t-1}) = N(x_{t-1}|f_{t-1}, F_{t-1}) P(x_t|y_{1:t}) = N(x_t|f_t, F_t)$$