Examen

1. Limites y sucesiones

a) Sea
$$f(x) = \begin{cases} x^2 \operatorname{si} x \in \mathbb{Q} \\ -x^2 \operatorname{si} x \notin \mathbb{Q} \end{cases}$$

Determinar el limite para $x \to 0$ y de ser asi calcularlo.

- Utilizamos el lema del Sandwich: Sea $f(x) \leq g(x) \leq h(x)$, $\forall x$, con $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$, entonces $\lim_{x \to a} g(x) = l$
- En este caso: $-|x^2| \le f(x) \le |x^2|$, ademas: $\lim_{x\to 0} -|x^2| = \lim_{x\to 0} |x^2| = 0$
- En consecuencia $\lim_{x\to 0} f(x) = 0$
- b) Considere una sucesion convergente de numeros reales: $\{a_n\}$ tal que $\{a_{2k}\} > 0$ y $\{a_{2k+1}\} < 0$, $\forall k \in \mathbb{N}$, probar que $\lim_{n \to \infty} a_n = 0$

Vamos a recordar utilizar lo siguiente: $\lim_{n\to\infty} a_n \Leftrightarrow (\lim_{k\to\infty} a_{2k} = \lim_{k\to\infty} a_{2k+1} = l)$

– Si consideramos: $a_n = \frac{1}{(-1)^n n}$, entonces toda sub-sucesion par sera positiva y la sub-sucesion impar sera negativa. por otro lado, como $\lim_{n\to\infty} \{a_{2k}\} = \lim_{n\to\infty} \{a_{2k+1}\} = 0$ luego la sucesion 'grande' converge.

Nota: Este resultado suge de la siguiente proposicion: Si $\lim_{n\to\infty} a_n = l$ y si b_j es una subsucesion de a_n entonces: $\lim_{j\to\infty} b_j = l$. En particular esto vale para si la sub-sucesion es de numeros pares como numeros impares. Sin embargo, el conjunto total de los numeros naturales esta compuesto de numeros pares o impares, siendo estos complementarios. De manera que las subsucesiones $\{b_{2k}\}$ y $\{b_{2k+1}\}$ son complementarias y juntas formal en conjunto $\{a_n\}$.

- 2. Teoremas Fuertes: Sea $g(x): \mathbb{R} \to \mathbb{R}$ continua y positiva tal que: $\lim_{x \to \pm \infty} g(x) = 0$:
 - a) Demostrar que g(x) esta acotada superiormente:
 - No vas a poder utilizar los teoremas fuertes porque estos se basan en un intervalo cerrado y acotado.
 - Como $\lim_{x\to\infty} f(x) = 0 \Leftrightarrow \forall \varepsilon > 0, \exists m/\sin x > m \Rightarrow |f(x) 0| < \varepsilon$
 - Como $\lim_{x \to \infty} f(x) = 0 \Leftrightarrow \forall \varepsilon > 0, \exists n / \text{si } x < n \Rightarrow |f(x) 0| < \varepsilon$
 - Consideramos el mismo ε , que el limite exista te asegura que existen n, m
 - Entonces para todo $\varepsilon > 0$, podemos definir los intervalos: $(-\infty, n), [n, m], (m, \infty)$
 - En los intervalos: $(-\infty,n)$ y (n,∞) tenemos que $-\varepsilon < f(x) < \varepsilon$, por lo cual f esta acotada
 - Resta nada mas ver si f esta acotada en [n,m], lo bueno es que aca ya podemos utilizar los teoremas fuertes. En particular, segundo teorema fuerte: Toda funcion continua, que se encuentre en un intervalo cerrado y acotado esta acotada superiormente. Supongamos que la cota superior es M.

1

- Basta entonces indicar una cota superior como $\max(M, \varepsilon)$
- b) Se puede afirmar que g(x) tiene un maximo en [-N, N] para cada $N \in \mathbb{N}$?
 - Si, eso nos lo asegura el Tercer Teorema Fuerte.
- 3. Significado de la derivada, representacion grafica.

Sea
$$f(x) = \frac{x^3}{x^2 + 1}$$

a) Determinar los puntos donde f(x) es creciente o decreciente.

$$- f'(x) = \frac{2x^2(x^2+1) - x^3(2x)}{(x^2+1)^2} = \frac{2x^4 + 2x^2 - 2x^4}{(x^2+1)^2} = \frac{2x^2}{(x^2+1)^2} > 0, \forall x$$

- En conclusion f es creciente en todo $\mathbb R$
- b) Encontrar los puntos criticos, determinar si son maximos, minimos o puntos de inflexion.
 - El unico punto donde f'(x) se anula es x=0
 - Como f es creciente, en todo $\mathbb R$ no queda mas que este punto sea de inflexion, por lo tanto debe verse el cambio de tendencia de concava a convexa.

- Calcule
$$f''(x) = \frac{4x(x^2+1)^2 - 2x^22(x^2+1)2x}{(x^2+1)^4} = \frac{(x^2+1)[4x^3+4x-8x^3]}{(x^2+1)^4} = \frac{4x-4x^3}{(x^2+1)^3} = \frac{4x-4x^3}{(x^2+1)^3}$$