Reaktor

Predictive analytics: hands-on session

Dev day 4.10.2013 Helsinki, Finland

What is predictive analytics?

Analytics

- Actionable information from observations
- Summaries, causality, predictions, graphs, ...

Predictive Analytics

- Predict future, unseen, or results of actions
- Models, often probabilistic, are fitted to data
- Statistics, machine learning, data mining

Predictive analytics in practice

- Problem definition with business understanding
- Data collection
- Data preparation and exploration
- Modeling and evaluation
- Deployment
- Real world applications:
 - Customer relationship management: Netflix
 - Health care: Patients at risk of getting disease
 - Finance: Risk and fraud detection

The Wine data

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

© 2011 Tournesol, Creative Commons Attribution-ShareAlike

- Chemical measurements of variants of the Portuguese <u>"Vinho Verde"</u> wine
- For 1599 red and 4898 white wines
- Objective: Predict the color of wine based on the chemical measurements (see right panel)
- Notice: No data about grapes, brand, selling price etc. available

© Reaktor 2013

Know your problem and data

- Modeling requires context knowledge
 - Understand the domain
 - Get familiar with data
 - identify problems with quality
 - discover possibilities and limitations
 - summary statistics and visualization
 - Iterate over various models

Insight to the data

- To make models, you need to know your data.
- Summary statistics
 - Mean (average)
 - Standard deviation
 - Quantiles
- Histogram
 - Estimate of the probability distribution
 - pH outside the range 2.9–
 3.6 is uncommon

Insights continued

- Left: Histograms separately for red and white wines (1D)
- Right: A scatter plot
 - Not only variation but also covariation of two variables (2D)
- How about visualization in higher dimensions?

Hands on

The first session: Data exploration

- Read data from the file
- Plot histograms of all variables
- Plot histograms by wine type
- Select two variables
- Create a scatter plot using selected variables
- See the script hands-on.py

Modeling: Logistic regression

- Objective: Find decision boundary to classify new samples
- To create a model:
 - Select a model class
 - Fit the model: Maximize the probability of the observed data (maximum likelihood)
- Output:
 - Probability of measurements representing a red wine
 - If probability > 0.5, the sample is classified as red wine

Logistic regression

The conditional probabilities depend on *the linear* combination of variables. By inverse logit (ilogit) the outputs are *limited to the range* [0,1].

$$p(y=1|x,w) = ilogit(x^Tw)$$

where
$$\operatorname{ilogit}(u) = \frac{1}{1 + e^{-u}}$$

The model parameters are optimized by maximizing the probability of observed data. The maximum likelihood cost function is

$$\max_{w} \prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

© Reaktor 2013

Hands-on continued

- The second session: Model fitting
 - Continue with the selected two variables
 - 1st model: A linear decision boundary
 - Visualize the result
 - 2nd model: A non-linear decision boundary
 - Create non-linearities using products and powers of the original variables
 - Visualize the result
 - See the script hands-on.py

Model selection continues...

- How to tell whether a model is good or not?
- The figure on the right visualizes a decision boundary. Is it a good classification rule?
- How to select a model out of numerous possibilities?
- The objective: The model is supposed to generalize well, i.e. it should provide as accurate predictions as possible for new data (=data that was not used when fitting the model)

- Divide the data randomly to different parts:
 - Training data set: used to fit the model, i.e. optimize the parameters
 - Validation/test data set: used to evaluate prediction accuracy

Hands on continued

- The third session: Model selection and evaluation
 - Start by dividing the data set into two parts
 - Implement a process to test different models, e.g.
 - The best 2 variables out of available 11
 - With different nonlinear terms
 - The best K variables out of available 11
 - Find a model that generalizes well
 - Apply automated model selection
 - Hints in the end of the script hands-on.py

Summary

- A classification problem was introduced
- The session covered
 - Data insights
 - Model fitting
 - Model selection and evaluation
- In general, the presented process can be applied to any modeling task
- Two possible solutions

- Using two variables with quadratic transformations: test accuracy 95%
- Using all the available variables and fitting with <u>regularization</u>
 - The model uses a linear combination of 8 variables with test accuracy 99.5%
- Feedback: Github issue tracking or firstname.lastname@reaktor.fi