Rank-65921 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

 $(\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0)$

The point rank of the equation over GF(2) is 65921

General information

Number of lines	6
Number of points	11
Number of singular points	1
Number of Eckardt points	1
Number of double points	6
Number of single points	3
Number of points off lines	1
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{6}
Type of lines on points	$3, 2^6, 1^3, 0$

Singular Points

The surface has 1 singular points:

$$0: P_{13} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_2 = \mathbf{Pl}(1, 0, 0, 0, 1, 0)_{10}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \mathbf{Pl}(0,0,1,0,1,0)_{12}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0,0,1,1,1,1)_{32}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{24} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{24} = \mathbf{Pl}(1,0,1,1,1,1)_{33}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(1,1,1,1,1,1)_{18}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \mathbf{Pl}(1,1,0,1,1,1)_{31}$$

Rank of lines: (2, 5, 12, 24, 17, 23)

Rank of points on Klein quadric: (10, 12, 32, 33, 18, 31)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_{13} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1). T = -1$$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_{10} = (0,1,0,1) = \ell_0 \cap \ell_5$$

$$P_{12} = (0,0,1,1) = \ell_1 \cap \ell_2$$

$$P_5 = (1,1,0,0) = \ell_2 \cap \ell_3$$

$$P_{14} = (0, 1, 1, 1) = \ell_3 \cap \ell_4$$

 $P_8 = (1, 1, 1, 0) = \ell_4 \cap \ell_5$

Single Points

The surface has 3 single points:

The single points on the surface are:

0:
$$P_4 = (1, 1, 1, 1)$$
 lies on line ℓ_2
1: $P_9 = (1, 0, 0, 1)$ lies on line ℓ_4

2: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 1 points not on any line: The points on the surface but not on lines are:

$$0: P_6 = (1, 0, 1, 0)$$

Line Intersection Graph

$$\begin{array}{c|c} 012345 \\ \hline 0 & 010001 \\ 1 & 101101 \\ 2 & 010100 \\ 3 & 011011 \\ 4 & 000101 \\ 5 & 110110 \\ \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Lin	$e \mid \ell_1$	ℓ_5
in poin	$t \mid P_0$	P_{10}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5
in point	P_0	P_{12}	P_{13}	P_{13}

Line 2 intersects

Line	ℓ_1	ℓ_3
in point	P_{12}	P_5

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5
in point	P_{13}	P_5	P_{14}	P_{13}

Line 4 intersects

Line	ℓ_3	ℓ_5
in point	P_{14}	P_8

Line 5 intersects

Li	ne	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in poi	$_{ m nt}$	P_{10}	P_{13}	P_{13}	P_8

The surface has 11 points:

The points on the surface are:

$$0: P_0 = (1, 0, 0, 0) 1: P_4 = (1, 1, 1, 1)$$

$$4: P_8 = (1, 1, 1, 0) 5: P_9 = (1, 0, 0, 1)$$

8:
$$P_{12} = (0, 0, 1, 1)$$

9: $P_{13} = (1, 0, 1, 1)$

$$2: P_5 = (1, 1, 0, 0)$$

$$6: P_{10} = (0, 1, 0, 1) 7: P_{11} = (1, 1, 0, 1)$$

10:
$$P_{14} = (0, 1, 1, 1)$$

$$3: P_6 = (1,0,1,0)$$

$$7 \cdot P_{11} = (1 \ 1 \ 0 \ 1)$$