a

Ultra Low Power Rail-to-Rail Output Operational Amplifier

Preliminary

OP186

FEATURES

Low Supply Current: 4 µA Max Single-Supply Operation: 2.7 to 12 Volts Wide Input Voltage Range Rail-to-Rail Output Swing No Phase Reversal

APPLICATIONS
Comparator
Battery Powered Instrumentation
Safety Monitoring
Remote Sensors
Low Voltage Strain Gage Amplifiers

GENERAL DESCRIPTION

The OP186 is a single **ultra low power** single-supply, amplifier featuring rail-to-rail outputs. Specified at 3 volt, and **5 volt single supply** as well as ±5 volt dual supplies, it is guaranteed to operate from as low as 2.7 volts.

Fabricated on Analog Device's CBCMOS process, the OP186 features a bipolar input and an output that swings to within millivolts of the supplies and continues to sink or source current all the way to the supplies.

Applications for these amplifiers include safety monitoring, portable equipment, battery and power supply control, and as signal conditioning and interface for transducers in very low power systems.

The output's ability to swing rail-to-rail and not increase supply current when the output is driven to a supply, enables the OP186 to be used as a comparator in very low power systems.

The OP186 is specified over the extended industrial (-40° to +125°C) temperature range. The OP186 is available in the SOT23 package.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

5-Lead SOT (RT Suffix)

OP186

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}				4	mV
, , , , , , , , , , , , , , , , , , ,		$-40^{\circ} \le T_A \le +125^{\circ} C$				mV
Input Bias Current	I_B	11		3.2		nA
•		$-40^{\circ} \le T_A \le +125^{\circ}C$				nA
Input Offset Current	I _{OS}	11				nA
•	0.5	-40°≤T _A ≤ +125°C				nA
Input Voltage Range		A	0		2	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0$ to 2.0V				dB
-		$-40^{\circ} \le T_A \le +125^{\circ} C$				dB
Large Signal Voltage Gain	A_{VO}	$R_L = 1M\Omega$, $V_O = 0.3$ to 2.7V				V/mV
	,,,	$-40^{\circ} \le T_A \le +125^{\circ}C$				V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$					μV/°C
Bias Current Drift	$\Delta I_{B}/\Delta T$					pA/°C
Offset Current Drift	$\Delta I_{OS}/\Delta T$					pA/°C
OUTPUT CHARACTERISTICS	Διος/Δ1					pru C
Output Voltage High	V _{OH}	$R_L = 100 k\Omega$ to Gnd.	2.95	2.99		v
Output Voltage High	▼ OH	-40°C to +125°C	2.90	2.98		v
Output Voltage Low	V_{OL}	$R_L = 100k\Omega$ to V+	2.50	10		mV
Output Voltage 20 W	, OL	-40°C to +125°C		10	35	mV
Short Circuit Limit	I_{SC}	10 0 10 1123 0		±2		mA
	50	-40°C to +125°C				mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7V \text{ to } 12 \text{ V}$				dB
		$-40^{\circ} \le T_A \le +125^{\circ} C$				dB
Supply Current/Amplifier	I_{SY}	-40°≤T _A ≤+125°C		4		μА
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 50 \text{pF}$		28		V/ms
Turn On Time		$A_{V} = 1, V_{O} = 1$				μs
Turn On Time		$A_V = 20, V_O = 1$				μs
Settling Time	t _s	To 0.01%				μs
Gain Bandwidth Product	GBP					kHz
Phase Margin	Øo					degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 to 10 Hz				μV_{p-p}
Voltage Noise Density	e _n	f = 1kHz		110		nV/√Hz
Current Noise Density	i _n					pA/√Hz

OP186

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V_{OS}	Note 2			4	mV
		$-40^{\circ} \le T_A \le +125^{\circ} C$			1.0	mV
Input Bias Current	I_B			3.2		nA
		$-40^{\circ} \le T_A \le +125^{\circ} C$				nA
Input Offset Current	I_{OS}			0.1	8	nA
		$-40^{\circ} \le T_A \le +125^{\circ} C$			16	nA
Input Voltage Range			0		4	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0$ to $4.0V$	76			dB
		$-40^{\circ} \le T_A \le +125^{\circ} C$	76			dB
Large Signal Voltage Gain	A_{VO}	$R_L = 1 \text{ M}\Omega$, $V_O = 0.5 \text{ to } 4.5 \text{V}$				V/mV
		$-40^{\circ} \le T_A \le +125^{\circ} C$				V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ} \le T_A \le +125^{\circ} C$				μV/°C
Bias Current Drift	$\Delta I_B/\Delta T$					pA/°C
Offset Current Drift	$\Delta I_{OS}/\Delta T$					pA/°C
OUTPUT CHARACTERISTICS	- 03					1
Output Voltage High	V_{OH}	$R_{L} = 100 k\Omega$ to Gnd.	4.95	4.99		V
	On	-40°C to +125°C	4.90	4.98		V
Output Voltage Low	$V_{ m OL}$	$R_L = 100k\Omega$ to V+,		4.5	10	mV
-		-40°C to +125°C			35	mV
Short Circuit Limit	I_{SC}			±2		mA
		-40°C to +125°C				mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7V \text{ to } 12V$	76	96		dB
		$-40^{\circ} \le T_A \le +125^{\circ} C$	76	95		dB
Supply Current/Amplifier	I_{SY}	$-40^{\circ} \le T_A \le +125^{\circ} C$		3.5		μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 50 \text{pF}$		26		V/ms
Gain Bandwidth Product	GBP					kHz
Phase Margin	Øо					degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 to 10 Hz				μV _{p-p}
Voltage Noise Density	e _n	f = 1 kHz		110		nV/√Hz
Voltage Noise Density	e _n	f = 10 kHz				nV/√Hz
Current Noise Density	in					pA/√Hz

NOTE 1: +5 volt specifications are guaranteed by +3 and ±5 volt testing.

Note 2: V_{OS} is tested under a no load condition.

OP186

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V_{OS}				4	mV
		$-40^{\circ} \le T_A \le +125^{\circ}C$				mV
Input Bias Current	I_B			3.2		nA
		$-40^{\circ} \le T_A \le +125^{\circ} C$				nA
Input Offset Current	I _{OS}			0.1	8	nA
		$-40^{\circ} \le T_A \le +125^{\circ} C$			16	nA
Input Voltage Range			-5		+4	V
Common-Mode Rejection	CMRR	$V_{CM} = -5.0$ to +4.0V	75			dB
		$-40^{\circ} \le T_A \le +125^{\circ} C$	67			dB
Large Signal Voltage Gain	A_{VO}	$R_L = 1 \text{ M}\Omega$, $V_O = \pm 4.0 \text{V}$,		6.5		V/mV
		$-40^{\circ} \le T_A \le +125^{\circ} C$				
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	1				μV/°C
Bias Current Drift	$\Delta I_B/\Delta T$					pA/°C
Offset Current Drift	$\Delta I_{OS}/\Delta T$					pA/°C
OUTPUT CHARACTERISTICS	03					1
Output Voltage Swing	V_{O}	$R_L = 100 k\Omega$ to Gnd.	±4.93	±4.99		V
		-40°C to +125°C	±4.90	±4.98		V
Short Circuit Limit	I_{SC}					mA
		-40°C to +125°C				mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = \pm 25.V$ to $\pm 6V$	76			dB
		$-40^{\circ} \le T_A \le +125^{\circ}C$	70			dB
Supply Current/Amplifier	I_{SY}	$V_O = 0V$		3.3	5	μΑ
		$-40^{\circ} \le T_A \le +125^{\circ}C$				μΑ
DYNAMIC PERFORMANCE						
Slew Rate	±SR	$R_{L} = 100 \text{ k}\Omega, C_{L} = 50 \text{pF}$		35		V/ms
Saturation Recovery Time						ms
Gain Bandwidth Product	GBP			58		kHz
Phase Margin	Øо			56		degrees
NOISE PERFORMANCE						***
Voltage Noise	e _{n p-p}	0.1 to 10 Hz				μV_{p-p}
Voltage Noise Density	e _n	f = 1kHz		110		nV/√Hz
Voltage Noise Density	e _n	f = 10kHz		80		nV/√Hz
Current Noise Density	in					pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+16V
Input Voltage	
Differential Input Voltage	±3.5V
Output Short-Circuit Duration to Gnd ¹	Indefinite
Storage Temperature Range	
RT Package	65°C to +150°C
Operating Temperature Range	
OP186G	40°C to +125°C
Junction Temperature Range	
RT Package	65°C to +150°C
Lead Temperature Range (Soldering, 60 sec.)	+300°C

Package Type	$\theta_{\mathrm{JA}}^{-1}$	$\theta_{ m JC}$	Units
5-Lead SOT23 (RT)			°C/W

NOTES

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
OP186GRT	-40°C to +125°C	5-Lead SOT23	RT-5

OP186 -5- REV. -0.1 02/21/97

 $^{^{1}}$ θ_{JA} is specified for the worst case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for SOT packages.