National Institute of Technology, Delhi Name of the examination: B. Tech.

Course: Linear Algebra and Complex Analysis

Branch: EEE/ECE/CSE, II-Semester Course Code: MAL-151 Name of the Student:				Time Duration: 3 Hours Total Marks: 50 Roll No.:		
sor		question pape	er contains eig	ht (8) questions.	All questions are compu	
				,		
Qu	estion 1: Ans	swer all the fo	llowing questic	ons:	$[5 \times 2]$ -mark	
(A)	What is the (i) 1	value of $\lim_{z \to 0} \frac{z}{\overline{z}}$ (ii) -1	? (iii) 0	(iv) does no	t exists.	
(B)	direction?		• •	, where C is a un (iv) 1.	it circle $ z =1$ in positiv	
(C)	What is the in (i) 2!	residue of the $(ii) \pi i$	function $f(z) = (iii) \frac{1}{2!}$	$= ze^{\frac{1}{z}} \text{ at } z = 0?$ $(iv) \frac{1}{6}.$		
(D)	(i) $T(x,y) =$	Which of the following is an example of linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$? i) $T(x,y) = (2x+y,x+ y)$ (ii) $T(x,y) = (x+y,y+1)$ (iv) $T(x,y) = (5,-1)$.				
(<i>E</i>)	numbers?			pace over R , when (iv) does not e	wists.	
Que	estion 2: Ans	wer all the foll	lowing question	ns:	$[5 \times 2]$ -mark	
(i) S	Show that the	vectors $(1, 2, 3)$), $(3, -2, 1)$ an	d(1, -6, -5) are	linearly dependent in \mathbb{R}^3	
(ii)	Find the leng	th of orthogon	al projection o	of the vector $y =$	(7,6) onto $u=(4,2)$.	
(iii)	Determine w	here $f'(z)$ exis	ts and find its	value, where $f(z)$	$) = x^2 + iy^2.$	
(iv)	Evaluate the	contour integr	al $\int_{c_1} \frac{1}{z} dz$, whe	ere c_1 is $z = e^{i\theta}$,	$0 \le \theta \le \pi$.	
(v)]	Find the orde $\frac{z+4}{z^2+1} \text{ at } z =$		and the corre	sponding residue	for the function $f(z)$ =	

Question 3: Diagonalize the matrix, if possible
$$\begin{bmatrix} -1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
. 5-marks

Question 4: Find an orthogonal basis for the column space of the matrix

5-marks

$$\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$

Question 5: Find the integrals along the counterclockwise circles

[2+3]-marks

(i)
$$\int_{|z|=2021} \frac{e^{3z}}{3z-i} dz$$

$$(ii) \int_{|z|=2022} \frac{\cos z}{z^6} dz.$$

Question 6: Find the Laurent series of the function $f(z) = \frac{-1}{(z-1)(z-2)}$ in the domain 1 < |z| < 2.

Question 7: Find an analytic function f(z) = u(x,y) + v(x,y) corresponding to the real part $u(x,y) = x^3 - 3xy^2$.

Question 8: Find the singularities of the function $f(z) = \frac{ze^{\pi z}}{z^4 - 16} + ze^{\pi z}$ inside c and calculate corresponding residues, where c is the ellipse $9x^2 + y^2 = 9$ in positive direction. Then, evaluate the integration $\int_c f(z)dz$. [1 + 2 + 2]-marks