TD 3. Nouvelles fonctions usuelles.

Exercice 1. Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{ch}(x) \geq 1 + \frac{x^2}{2}$.

Exercice 2. Soient a et x deux réels.

Calculer, pour tout
$$n \in \mathbb{N}$$
, $C_n = \sum_{k=0}^n \operatorname{ch}(a+kx)$ et $S_n = \sum_{k=0}^n \operatorname{sh}(a+kx)$.

Exercice 3. Résoudre ch(x) = 2.

Exercice 4. 1) (Une formule de trigonométrie hyperbolique) Calculer, pour tout $t \in \mathbb{R}$, $2 \operatorname{sh}(t) \operatorname{ch}(t)$.

2) (Application) Soit
$$x \in \mathbb{R}$$
. Calculer, pour tout $n \in \mathbb{N}^*$: $u_n = \prod_{k=1}^n \operatorname{ch}\left(\frac{x}{2^k}\right)$.

Exercice 5. Étudier les fonctions suivantes, et tracer leurs courbes représentatives :

$$f: x \longmapsto \operatorname{Arccos}(\cos(x)), g: x \longmapsto \operatorname{Arcsin}(\sin(x)) h: x \longmapsto \operatorname{Arctan}(\tan(x)).$$

Exercice 6. On pose $f(x) = Arcsin\left(\frac{2x}{1+x^2}\right)$.

- 1°) Déterminer le domaine de définition D de f.
- **2°**) Soit $x \in D$. Comment poser θ pour avoir $x = \tan\left(\frac{\theta}{2}\right)$? Exprimer alors f(x) en fonction de θ .
- 3°) À l'aide de l'expression trouvée précédemment, simplifier f.

Exercice 7. On pose $f(x) = Arcsin\left(\frac{x}{\sqrt{x^2+1}}\right)$

- a) Déterminer l'ensemble de définition de la fonction f, et son domaine de dérivabilité.
- b) Calculer f'.
- c) En déduire une expression simple de f.
- d) Retrouver ce résultat par une méthode similaire à celle de l'exercice précédent.

Exercice 8. Montrer que pour tout $x \ge 0$, Arctan $(\operatorname{sh}(x)) = \operatorname{Arccos}\left(\frac{1}{\operatorname{ch}(x)}\right)$.

Exercice 9. Résoudre dans \mathbb{R} : a) $2 \operatorname{Arctan} x = \operatorname{Arcsin} x$ b) $\operatorname{Arccos}(x) = \operatorname{Arcsin}(2x)$.

Exercice 10. On considère l'équation : (E) : $Arctan(x-1) + Arctan(x+1) = \frac{\pi}{4}$.

- 1°) Démontrer que l'équation (E) admet une unique solution.
- 2°) La déterminer.

Exercice 11. Donner les domaines de définition, de dérivabilité et calculer les dérivées de $f: x \mapsto \operatorname{Arctan}\left(\frac{1}{2x^2}\right)$ et $g: x \mapsto \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right)$. Que peut-on en déduire?