STAT 510 Quiz 3

Juan Carlos Apitz

```
In [1]: # import libraries
   import pandas as pd
   from pandas import Series, DataFrame
   import numpy as np

import statsmodels.api as sm
   from statsmodels.formula.api import ols

import seaborn as sns
   import matplotlib.pyplot as plt
%matplotlib inline
```

Question 1

Part a.

Hald Data

For this data we begin by conducting a model selection analysis based on the \mathbb{R}^2 , adjusted \mathbb{R}^2 , the AIC, and Mallow's \mathbb{C}_p .

To construct all possible regression models, I wrote a script in python that produces the necesary results:

In [2]: run construct_models

These are the first few rows of the Hald dataset:

```
Y X1 X2 X3 X4
                            mean
   78.5
            26
0
         7
                6 60 95.423077
            29
   74.3
         1
                15 52
                       95.423077
1
  104.3
            56
                 8 20
                       95.423077
         11
3
         11
            31
                   47
   87.6
                 8
                        95.423077
4
   95.9
            52
                 6 33 95.423077
         7
```

The possible models are:

```
Y \sim X1 + X2 + X3 + X4
Y \sim X2 + X3 + X4
Y \sim X1 + X3 + X4
Y \sim X3 + X4
Y \sim X1 + X2 + X4
Y \sim X2 + X4
Y \sim X1 + X4
Y \sim X4
Y \sim X1 + X2 + X3
Y \sim X2 + X3
Y \sim X1 + X3
Y ~ X3
Y \sim X1 + X2
Y ~ X2
Y \sim X1
Y \sim mean
```

The following plots summarize our analysis:

In [3]: results_tbl

Out[3]:

	model	Р	R-sq	Adj. R-sq	AIC	Ср
0	model00	5	0.9824	0.9736	24.9443	3.0000
1	model01	4	0.9728	0.9638	28.5759	5.3375
2	model02	4	0.9813	0.9750	23.7276	1.4968
3	model03	3	0.9353	0.9223	37.8526	20.3731
4	model04	4	0.9823	0.9764	22.9739	1.0182
5	model05	3	0.6801	0.6161	58.6293	136.2259
6	model06	3	0.9725	0.9670	26.7417	3.4959
7	model07	2	0.6745	0.6450	56.8516	136.7308
8	model08	4	0.9823	0.9764	23.0112	1.0413
9	model09	3	0.8470	0.8164	49.0371	60.4377
10	model10	3	0.5482	0.4578	63.1167	196.0947
11	model11	2	0.2859	0.2210	67.0674	313.1543
12	model12	3	0.9787	0.9744	23.4200	0.6782
13	model13	2	0.6663	0.6359	57.1780	140.4864
14	model14	2	0.5339	0.4916	61.5195	200.5488
15	model15	1	0.0000	0.0000	69.4444	440.9167

In [4]: print 'The models to be considered are model 06: {} and model 12: {}.'.format(
 models[6], models[12])

The models to be considered are model 06: Y \sim X1 + X4 and model 12: Y \sim X1 + X2

The above analysis indicates that a model with p = 3 might be adequate. The corner principle plots indicate that , models with P > 3, do not produce improvements in R^2 , adjusted R^2 , the AIC, or Mallow's C_p . In particular, model 06: $Y=\beta_0+\beta_1X_1+\beta_2X_4+\epsilon$ and model 12: $Y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon$, shows high R^2 , low AIC and C_p that is small and relatively close to p=3. The other models with p=3, show large values of C_p which is an indication of bias, thus they will not be considered.

Part b.

Now we implement Forward, Backward, and Stepwise selection and compare with the results in a. above. For this I wrote the module mselector. The python code is included as an appendix.

Import mselector and create new dataset.

```
In [5]: import mselector as s

dfnew = df.iloc[:,:5]
```

Forward Selection

Run the froward selection algorithm:

In [6]: s.foresel(dfnew,'Y')

The optimal model is $Y \sim X4 + X1$

/home/jcapitz/anaconda/lib/python2.7/site-packages/scipy/stats/stats.py:1277: U
serWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=13
 "anyway, n=%i" % int(n))

Out[6]: OLS Regression Results

Dep. Variable:	Υ	R-squared:	0.972
Model:	OLS	Adj. R-squared:	0.967
Method:	Least Squares	F-statistic:	176.6
Date:	Tue, 01 Dec 2015	Prob (F-statistic):	1.58e-08
Time:	13:30:42	Log-Likelihood:	-29.817
No. Observations:	13	AIC:	65.63
Df Residuals:	10	BIC:	67.33
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	103.0974	2.124	48.540	0.000	98.365 107.830
X4	-0.6140	0.049	-12.621	0.000	-0.722 -0.506
X1	1.4400	0.138	10.403	0.000	1.132 1.748

Omnibus:	0.408	Durbin-Watson:	1.788
Prob(Omnibus):	0.816	Jarque-Bera (JB):	0.432
Skew:	-0.331	Prob(JB):	0.806
Kurtosis:	2.400	Cond. No.	97.0

Backward Selection

Run the backward selection algorithm:

In [7]: s.backsel(dfnew, 'Y')

The optimal model is Y \sim X2 + X1

Out[7]:

OLS Regression Results

Dep. Variable:	Υ	R-squared:	0.979
Model:	OLS	Adj. R-squared:	0.974
Method:	Least Squares	F-statistic:	229.5
Date:	Tue, 01 Dec 2015	Prob (F-statistic):	4.41e-09
Time:	13:30:42	Log-Likelihood:	-28.156
No. Observations:	13	AIC:	62.31
Df Residuals:	10	BIC:	64.01
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	52.5773	2.286	22.998	0.000	47.483 57.671
X2	0.6623	0.046	14.442	0.000	0.560 0.764
X1	1.4683	0.121	12.105	0.000	1.198 1.739

Omnibus:	1.509	Durbin-Watson:	1.922
Prob(Omnibus):	0.470	Jarque-Bera (JB):	1.104
Skew:	0.503	Prob(JB):	0.576
Kurtosis:	1.987	Cond. No.	175.

Stepwise Selection

Run the stepwise selection algorithm:

In [8]: s.stepwsel(dfnew, 'Y')

The optimal model is $Y \sim X1 + X2$

Out[8]:

OLS Regression Results

Dep. Variable:	Υ	R-squared:	0.979
Model:	OLS	Adj. R-squared:	0.974
Method:	Least Squares	F-statistic:	229.5
Date:	Tue, 01 Dec 2015	Prob (F-statistic):	4.41e-09
Time:	13:30:42	Log-Likelihood:	-28.156
No. Observations:	13	AIC:	62.31
Df Residuals:	10	BIC:	64.01
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	52.5773	2.286	22.998	0.000	47.483 57.671
X1	1.4683	0.121	12.105	0.000	1.198 1.739
X2	0.6623	0.046	14.442	0.000	0.560 0.764

Omnibus:	1.509	Durbin-Watson:	1.922
Prob(Omnibus):	0.470	Jarque-Bera (JB):	1.104
Skew:	0.503	Prob(JB):	0.576
Kurtosis:	1.987	Cond. No.	175.

Conclusion

Based on the results of the analysis in part a. and b. above the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$ seems most appropriate. In part a. this particular model shows high values of R^2 and adjusted- R^2 as well as low values of AIC and C_p statistics. In addition, both the backward selection and stepwise selection algorithms selected this particular model. In a sense, this result is satisfactory because the backward selection and the stepwise selection algorithm take into account interactions between the explanatory variables, which is the reason the stepwise algorithm "dropped" X_4 in favor of X_2 in the selection process. The reason this variable gets dropped is because of the correlation between X_2 and X_4 , which we can see in the graph below:

```
In [9]: plt.scatter(x=df['X4'], y=df['X2'])
    plt.title('Scatter Plot $X_2$ and $X_4$')
    plt.ylabel('$X_2$')
    plt.xlabel('$X_4$')
    plt.show()
```


Question 2

The DFFITS statistic is composed of two factors:

 $e_{i} \left[\frac{n - p - 1}{SSE(1 - h_{ii}) - e_{i}^{2}} \right]^{1/2}$ $\left(\frac{h_{ii}}{1 - h_{ii}} \right)^{1/2}$

and

The first factor, known as the Studentized Deleted Residual, is effective in capturing extreme Y observations. If and observation y_i is an outlier, this factor will be large in absolute value. Notice that the residual e_i , will also tend to be large.

The second factor is a function of the leverage h_{ii} , with the property that \$0

APPENDIX: Code

construct_models.py Script

```
In [ ]: #!/usr/bin/python
        # import libraries
        import pandas as pd
        from pandas import Series, DataFrame
        import numpy as np
        import statsmodels.api as sm
        from statsmodels.formula.api import ols
        import seaborn as sns
        import matplotlib.pyplot as plt
        # hald data
        filename = '~/Documents/LinearRegression/STAT510/quiz3/hald.txt'
        df = pd.read table(filename, delim whitespace=True)
        df['mean'] = np.mean(df['Y'])
        print 'These are the first few rows of the Hald dataset:'
        print ''
        print df.head()
        # powerset
        def powerset(seq):
            Returns all the subsets of this set. This is a generator.
            if len(seq) <= 1:
                yield seq
                yield []
            else:
                 for item in powerset(seq[1:]):
                     yield [seq[0]]+item
                     yield item
        v = [df.columns[i]  for i  in range(1,5)]
        r = [x for x in powerset(v)]
        # initialization
        n = len(df)
        modeldict = {'model15': ols(formula = 'Y ~ mean', data = df)}
        modelp = {'model15' : 1}
        paxis = [1]
        models = []
        rsqvals = [ols(formula = 'Y ~ mean', data = df).fit().rsquared]
        adj_rsqvals = [ols(formula = 'Y ~ mean', data = df).fit().rsquared_adj]
        aic = [n * np.log(ols(formula = 'Y ~ mean', data = df).fit().ssr) - n * np.log
        (n) + 2 * 1
        full mse = ols(formula = 'Y \sim X1 + X2 + X3 + X4', data = df).fit().mse resid
        Cp = [(ols(formula = 'Y \sim mean', data = df).fit().ssr/full mse) - n + 2 * 1]
        counter = 0
        for l in r[:-1]: # lists in r
            reg = 'Y \sim ' + l[0]
            pminus = len(l)
            p = pminus + 1
            for m in range(1,len(l)): # build each model l to input in ols
                 reg += ' + ' + l[m]
            if counter < 10:</pre>
                 modeldict['model' + '0' + str(counter)] = ols(formula = reg, data = df
        ) # create dict with model objects
                 modeln['model' + 'A' + str(counter)] = n
```

mselector.py Module

```
In [ ]: #!/usr/bin/python
        from statsmodels.formula.api import ols
        def foresel(df, response, alpha = 0.1):
             ''' Performs forward selection for regression.
            aras:
                 df = data frame with response and covariates
                 alpha = a float indicating confidence level
                 response = string that represents the response variable
                    e.g. 'Y'
            attributes:
                summary = ols(formula, data).fit().summary()
            # initial assignments
            covariates = set(df.columns)
             covariates.remove(response)
             candidates = []
            while True:
                 oldpval = alpha
                 rejects = set()
                 for variable in covariates:
                     candidatesubset = candidates + [variable]
                     formula = '{} ~ {}'.format(response, ' + '.join(candidatesubset))
                     pval = ols(formula,df).fit().pvalues[-1]
                     if pval < oldpval:</pre>
                         var2add = variable
                         oldpval = pval
                         optmodel = formula
                     else:
                         rejects.add(variable)
                 candidates.append(var2add)
                 covariates.remove(var2add)
                 if covariates == rejects:
                     print 'The optimal model is {}'.format(optmodel)
                     break
             return ols(optmodel,df).fit().summary()
        def backsel(df, response, alpha = 0.1):
            Performs backward selection for regression.
            args:
                 df = data frame with response and covariates
                 alpha = a float indicating confidence level
                 response = string that represents the response variable
                    e.g. 'Y'
            attributes:
                summary = ols(formula, data).fit().summary()
            # initial assignments
             covariates = set(df.columns)
             covariates.remove(response)
             formula = '{} ~ {}'.format(response,' + '.join(list(covariates)))
```