StuDocu.com

Homework 2 - September 15, 2016. Questions.

Intermediate Statistics (Carnegie Mellon University)

Homework 2 36-705

Due: Thursday Sept 15 by 3:00

1. Let X have mean 0. We say that X is sub-Gaussian if there exists $\sigma > 0$ such that

$$\log\left(\mathbb{E}[e^{tX}]\right) \le \frac{t^2\sigma^2}{2}$$

for all t.

- (i) Show that X is sub-Gaussian if and only if -X is sub-Gaussian.
- (ii) Let X have mean μ . Suppose that $X \mu$ is sub-Gaussian. Show that

$$\mathbb{P}(|X - \mu| \ge t) \le 2e^{-t^2/(2\sigma^2)}$$
.

Remark: When people say "X is sub-Gaussian" they often mean that " $X - \mu$ is sub-Gaussian."

(iii) Suppose that X is sub-Gaussian. Show that, for any p > 0,

$$\mathbb{E}[|X|^p] \le p2^{p/2}\sigma^p\Gamma(p/2).$$

2. Let X_1, \ldots, X_n be iid, with mean μ , $Var(X_i) = \sigma^2$ and $|X_i| \leq c$. Bernstein's inequality says that

$$\mathbb{P}\left(|\overline{X}_n - \mu| > t\right) \le 2\exp\left\{-\frac{nt^2}{2\sigma^2 + 2ct/3}\right\}.$$

Suppose that $\sigma^2 = O(1/n)$. Use Bernstein's inequality to show that $\overline{X}_n - \mu = O_P(1/n)$.

- 3. Prove or disprove the following:
 - (i) If $X_n = O_P(a_n)$ and $Y_n = O(b_n)$ then $X_n + Y_n = O_P(a_n b_n)$.
 - (ii) If $X_n = o_P(a_n)$ and $Y_n = o_P(b_n)$ then $X_n + Y_n = o_P(\min\{a_n, b_n\})$.
 - (iii) If $X_n = o_P(a_n)$ and $Y_n = O_P(b_n)$ then $X_n/Y_n = o_P(a_n/b_n)$.
 - (iv) If $X_n = O_P(a_n)$ and $Y_n = O_P(b_n)$ then $X_n Y_n = o_P(a_n b_n)$.
- 4. Let $U \sim \text{Unif}(0,1)$. Let $Y = F^{-1}(U)$ where F is a continuous cdf on the real line. Show that the distribution of Y is F.

1