BỘ KHOA HỌC VÀ CÔNG NGHỆ HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

BÁO CÁO BÀI TẬP

ASSIGNMENT 2

GVHD: TRẦN ĐÌNH QUẾ

LÓP CQ 03 – NHÓM 01

Họ và tên: Đỗ Ngọc Lâm

Mã sinh viên: B22DCCN476

Lóp: D22CNPM04

MỤC LỤC

DA	NH MỤC HÌNH ẢNH	3
INS	STRUCTIONS	4
1.	Loading the data	5
2.	Cleaning the data	6
3.	Examining the correlation between the features	8
4.	Training models (5 models) and explain metrics	10
5.	Visualize and show with 5 types of diagrams	13
6.	Selecting and saving best model	18
7.	Deploy on web via Flask and other technology	19

DANH MỤC HÌNH ẢNH

Hình 1. Load data	5
Hình 2. Cleaning data – 1 (Check for Nulls)	6
Hình 3. Cleaning the data -2 (Check for 0s and replace them with NaN)	6
Hình 4. Cleaning the data – 3 (Replace NaN with "mean" numbers)	7
Hình 5. Checking for correlation - 1	8
Hình 6. Checking for correlation – 2 (Heat map)	8
Hình 7. Checking for correlation – 3 (5 top correlational features)	9
Hình 8. Training models – 1 (Import libs and prepare data)	. 10
Hình 9. Training models – 2 (Define models)	. 10
Hình 10. Training models – 3 (Define models)	. 11
Hình 11. Training models – 3 (train models and select the best)	. 11
Hình 12. Bar chart – 1	. 13
Hình 13. Bar chart – 2	. 13
Hình 14. Line graph - 1 (ROC Curve)	. 14
Hình 15. Line graph – 2 (ROC Curve)	. 14
Hình 16. Radar chart – 1	. 15
Hình 17. Radar chart – 2	
Hình 18. Scatter plot – 1	. 16
Hình 19. Scatter plot - 2	
Hình 20. Boxplot	
Hình 21. Select and save best model	. 18
Hình 22. Code Flask for web deployment - 1	. 19
Hình 23. Code Flask for web deployment – 2	. 19
Hình 24. Code Flask for web deployment – 3	20
Hình 25. Code Flask for web deployment – 4	
Hình 26. Code Flask for web deployment – 5	
Hình 27. Code Flask for web deployment – 6	
Hình 28. Code Flask for web deployment – 7	
Hình 29. Code Flask for web deployment – 8	
Hình 30. Code Flask for web deployment – 9	
Hình 31. Code Flask for web deployment – 10	
Hình 32. Giao diện website – 1	
Hình 33. Giao diện website (kết quả)	
Hình 34. Log trên Jupyter Notebook (Hệ thống hoạt động tốt)	25

INSTRUCTIONS

//refer to Chap 12, textbook [1]

- 1. Load data. Cleaning data Present steps...and corresponding code
- 2. Select 5 features (not 3) and Using 5 models in Basic Machine
- 3. Evaluate and compare with metrics: accuracy, mae, mse, rmse. Explain metrics
- 4. Visualize and show with 5 types of diagrams
- 4. Select the best one for deploying on web
- 5. Deploy on web via Flask and other technology

1. Loading the data

- Tåi database diabetes.csv từ https://www.kaggle.com/uciml/pima-indians-diabetes-database
- Đọc file csv và kiểm tra infor

Hình 1. Load data

2. Cleaning the data

- Kiểm tra giá trị Null
- ⇒ Qua kiểm tra, không thấy có giá trị Null

Hình 2. Cleaning data – 1 (Check for Nulls)

- Kiểm tra giá trị "0"
- Nếu có, xử lí bằng cách thay thế các giá trị 0 bằng NaN rồi thay thế NaN bằng giá trị trung bình của từng cột .mean()

Hình 3. Cleaning the data -2 (Check for 0s and replace them with NaN)

 $Hinh\ 4$. Cleaning the data -3 (Replace NaN with "mean" numbers)

3. Examining the correlation between the features

- Kiểm tra tính tương quan giữa các chi tiết (features)

Hình 5. Checking for correlation - 1

Vẽ biểu đồ nhiệt (heatmap) tương quan

Hình 6. Checking for correlation – 2 (Heat map)

- Chọn ra 5 features có ảnh hưởng mạnh nhất đến outcomes

Hình 7. Checking for correlation – 3 (5 top correlational features)

⇒ TÙ KÉT QUẢ, ta thấy Glucose, BMI, Age, Pregnancies và SkinThickness là 5 chi tiết có tương quan cao nhất với Outcome

4. Training models (5 models) and explain metrics

- Import các thư viện cần thiết và chuẩn bị data

Hinh 8. Training models -1 (Import libs and prepare data)

 Huấn luyện theo 5 mô hình riêng biệt Logistic Regression, K-Nearest Neighbours (KNN), Support Vector Machines (SVM), Decision Tree, Random Forest với các tham số được cấu hình riêng biệt

Hình 9. Training models – 2 (Define models)

Hình 10. Training models – 3 (Define models)

- Tiến hành huấn luyện mô hình và đánh giá mô hình nào tốt nhất

Hình 11. Training models -3 (train models and select the best)

- ⇒ Kết quả: Logistic Regression có kết quả Accuracy tốt nhất (~77%)
- Giải thích Metrics
 - Accuracy: Đây là độ chính xác trung bình (do mình train 10 lần cross-validation). Accuracy = (số dự đoán đúng) / (tổng số mẫu). Acc dao động

- từ 0 đến 1 (Càng cao càng tốt). Ví dụ: LogReg (77%) nghĩa là cứ 100 trường hợp thì mô hình dự đoán đúng khoảng 77.
- MAE: Đây là sai số tuyệt đối trung bình, với bài toán phân loại (nhãn 0/1), đây là độ chênh lệch trung bình giữa xác suất dự đoán và nhãn thực tế. Ví dụ: 0.312 → Trung bình mô hình lệch khoảng 31%
- MSE: Đây là sai số bình phương trung bình. Trong phân loại nhị phân,
 MSE đo mức độ chênh lệch bình phương giữa xác suất dự đoán và nhãn thật.
- RMSE: Đây là căn bậc 2 của MSE. RMSE cho biết mức sai số trung bình của xác suất dự đoán so với nhãn thực tế.

5. Visualize and show with 5 types of diagrams

- Vẽ 5 loại biểu đồ

Hình 12. Bar chart − 1

Hình 13. Bar chart − 2

Hình 14. Line graph - 1 (ROC Curve)

Hình 15. Line graph – 2 (ROC Curve)

```
▼ Đỗ_Ngọc_Lâm_B22DCCN476
                                                                                                                                                                                                                                       요 ଓ I 🛊 O 🗈 🦓 ··· 🥠
C ດ (0 localhost:8888/notebooks/assignment_2/Đo້_Ngoc_Lâm_B22DCCN476.ipynb
                                                                                                                                                                                                                                                                        2
                      Jupyter Đỗ_Ngọc_Lâm_B22DCCN476 Last Checkpoint: 1 hour ago
                      File Edit View Run Kernel Settings Help
                      a + % a a b a c b Code
                                                                                                                                                                                                                     JupyterLab 💆 🐞 Python 3 (ipykernel) 🖱 🗏
                             [13]: # Đỗ Ngọc Lâm - B22DCCN476
# Radar chart so sánh 4 metrics trên từng model
                                                                                                                                                                                                                                         回个少去早會
                                        from math import pi
                                        # Chọn các metric để hiến thị
metrics = ["cv_accuracy_mean", "cv_mae", "cv_mse", "cv_rmse"]
                                       # Chuẩn hóa dữ (iệu về [0,1] để về đẹp (accuracy cao tót, lỗi thấp tốt + ta đảo chiều lỗi)

df_madar = cv_metrics_df.copy()

for m in ["cv_mae","cv_mse","cv_mse"]:

df_madar[m] = 1 - (df_madar[m] / df_madar[m].max()) # đảo chiều: cùng nhỏ cùng tốt + cùng gần 1
                                       # Cần lập lại cặt đầu tiên để khép vòng radar
categories = metrics
N = len(categories)
                                       angles = [n / float(N) * 2 * pi for n in range(N)]
angles += [angles[0]]
                                       plt.figure(figsize=(8,8))
ax = plt.subplot(111, polar=True)
                                       for i, row in df_radar.iterrows():
   values = row[metrics].tolist()
   values += [values[0]]
   ax.plot(rangles, values, marker='o', label=row["model"])
   ax.fil(angles, values, alpha=0.1)
                                       ax.set_xticks(angles[:-1])
ax.set_xticklabels(['Accuracy", "MAE (inv)", "MSE (inv)", "RMSE (inv)"])
ax.set_yticklabels(['])
blt.title("Radar Chart of CV Metrics (normalized)")
```

Hình 16. Radar chart – 1

Hình 17. Radar chart – 2

Hình 18. Scatter plot – 1

Hình 19. Scatter plot - 2

Hình 20. Boxplot

6. Selecting and saving best model

 Ở phần Huấn luyện mô hình → Logistic Regression là mô hình tốt nhất do đó chúng ta sẽ lưu mô hình Logistic Regression lại.

Hình 21. Select and save best model

7. Deploy on web via Flask and other technology

- Triển khai code Flask để triển khai website với giao diện dễ sử dụng

```
₹ Đỗ_Ngọc_Lâm_B22DCCN476
C ດ (0 localhost:8888/notebooks/assignment_2/Đo້_Ngọc_Lâm_B22DCCN476.ipynb
                                                                                                                                                       🔂 G | 🖆 O 🖻 🦓 ... 🥠
              Ç Jupyter Đỗ_Ngọc_Lâm_B22DCCN476 Last Checkpoint: 3 minutes ago
                                                                                                                                                                             2
              File Edit View Run Kernel Settings Help
                                                                                                                                                                           Trusted
              B + % □ □ ▶ ■ C → Code
                                                                                                                                            5. DEPLOY ON WEB WITH FLASK FOR THE BEST MODEL
                    [*]: # Đỗ Ngọc Lâm - B22DCCN476
                          from flask import Flask, request, jsonify import numpy as np import joblib
                         # ====== Load model ======
BUNDLE_PATH = "best_model.pk1"
bundle = joblib.load(BUNDLE_PATH)
model = bundle("model")
FEATURES = bundle("model")  # ['Glucose', 'BMI', 'Age', 'Pregnancies', 'SkinThickness']
                          app = Flask(__name__)
                          @app.route("/", methods=["GET"])
                          def index():
    # Trang chú dep + 35 fetch /predict
    return f"""
```

Hình 22. Code Flask for web deployment - 1

Hình 23. Code Flask for web deployment – 2

Hình 24. Code Flask for web deployment – 3

```
☆ ③ | ☆ ○ B 🖓 … 
Jupyter Đỗ_Ngọc_Lâm_B22DCCN476 Last Checkpoint: 5 minutes ago
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2
File Edit View Run Kernel Settings Help
JupyterLab ☐ # Python 3 (ipykernel) ① ■
                                      grad template-columns. repeat(5, 117);
}}
@media (max-width: 900px) {{
    .grid {{ grid-template-columns: 1fr 1fr; }}
}}
                                       @media (max-width: 560px) {{
    .grid {{ grid-template-columns: 1fr; }}
                                      .grad {{ grad-template-Columns: irr; }}
}}
.field label {{
    display:block; font-size:12px; color:var(--muted); margin-bottom:6px;
}}
                                          }}
input {{
width: 100%; padding: 10px 12px; border-radius: 12px;
border: 1px solid rgba(148,163,184,.25);
background: #0b1220; color: var(--text); outline: none;
                                         }}
.input:focus {{ border-color: var(--primary); box-shadow: 0 0 0 3px rgba(34,211,238,.18); }}
.actions {{ display:flex; gap:10px; padding: 0 24px 20px; flex-wrap: wrap; }}
                                              thn {{
border: none; border-radius: 12px; padding: 10px 14px; font-weight: 600; cursor: pointer;
background: var(--primary); color: #001018;
                                         }}
.btn.secondary {{ background: transparent; color: var(--text); border:1px solid rgba(148,163,184,.35); }}
                                          .our.sectionary ( background. transparent, color: var(--text), bord
result ({
padding: 18px 24px; border-top: 1px dashed rgba(148,163,184,.2);
display: grid; gap: 10px;
                                        dlsplay: Antifice John Spharity | Application | Appli
                                          .progress {{
height: 10px; background: #0b1220; border:1px solid rgba(148,163,184,.25); border-radius: 999px; overflow: hidden;
```

Hình 25. Code Flask for web deployment – 4

```
C ດ 🛈 localhost:8888/notebooks/assignment_2/Đổ_Ngọc_Lâm_B22DCCN476.ipynb

☆ ③ | ☆ ○ B 🐼 … 
                                                                ☐ Jupyter Đỗ_Ngọc_Lâm_B22DCCN476 Last Checkpoint: 6 minutes ago
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2
                                                                File Edit View Run Kernel Settings Help
                                                              a + % a a b ■ c b Code
                                                                                                                          progress {{
height: 18px; background: #8b1228; border:1px solid rgba(148,163,184,.25); border-radius: 999px; overflow: hidden;
                                                                                                                      height: 10px; Dackground: #0012c1, 00012c1, 0001
                                                                                                                                   We {{
margin: 0; padding: 12px; background: #8b1220; border-radius: 12px;
border:1px solid rgba(148,163,184,.2); font-size: 12px; overflow:auto;
                                                                                                                 }}
.small {{ font-size: 12px; color: var(--muted); }}
.footer {{ padding: 14px 24px; border-top:1px solid rgba(148,163,184,.15); color:var(--muted); font-size:12px; }}
</style>
                                                                                                                          <div class="card">
                                                                                                                                   <div class="card-header">
                                                                                                                                        <button class="btn secondary" onclick="checkHealth()">Check /health</button>
                                                                                                                                <div class="grid">
<div class="grid">
<div class="field">
<label>Glucose</label>Cinput id="g" class="input" type="number" step="1" min="0" value="120">
</div class="field">
<label>BMI</label>Cinput id="b" class="input" type="number" step="0.1" min="0" value="32.5">
</div class="field">
<label>Base<//div class="field">
<label>Base<//div class="field">
<label>Pregnancies</label>Cinput id="0" class="input" type="number" step="1" min="0" value="45">
</div class="field">
<label>Field">
<label>Field">
<label>Field">
<label>Cinput id="p" class="input" type="number" step="1" min="0" value="2">
</div class="field">
```

Hình 26. Code Flask for web deployment – 5

```
© | Co. | C
```

Hình 27. Code Flask for web deployment – 6

```
Comparison of the Comparison
```

Hình 28. Code Flask for web deployment – 7

```
₹ Đỗ_Ngọc_Lâm_B22DCCN476

☆ ③ | ☆ ○ B @ … 
C 6 localhost:8888/notebooks/assignment_2/Đỗ_Ngọc_Lâm_B22DCCN476.ipynb
                Jupyter Đỗ_Ngọc_Lâm_B22DCCN476 Last Checkpoint: 16 minutes ago
                File Edit View Run Kernel Settings Help
               JupyterLab 📑 🏺 Python 3 (ipykernel) 💍 🗏
                            }}
</script>
                            </html>
                            @app.route("/favicon.ico")
def favicon():
    return ("", 204)
                            @app.route("/health", methods=["GET"])
def health():
    return jsonify(("status": "ok", "model": type(model).__name__, "features": FEATURES))
                            @app.route("/predict", methods=["POST"])
def predict():
    """
                                POST JSON: {{ "Glucose":120, "BMI":32.5, "Age":45, "Pregnancies":2, "SkinThickness":23 }}
                                data = request.get_json(force=True) or {}
                                    x = np.array([[float(data.get(f, θ)) for f in FEATURES]], dtype=float)
                                except Exception as e:
    return jsonify({"error": f"Invalid input: {e}", "features_order": FEATURES}), 400
                                if hasattr(model, "predict_proba"):
    prob = float(model.predict_proba(x)[:, 1][0])
else:
    try:
```

Hình 29. Code Flask for web deployment – 8

```
C ດ (0 localhost:8888/notebooks/assignment_2/Đo້_Ngọc_Lâm_B22DCCN476.ipynb
                                                                                                                                                                                                       ☆ 3 4 0 B 
                                                                                                                                                                                                                                   2
                   Ç Jupyter Đỗ_Ngọc_Lâm_B22DCCN476 Last Checkpoint: 17 minutes ago
                   File Edit View Run Kernel Settings Help
                   B + % □ □ ▶ ■ C → Code
                                                                                                                                                                                       TOSI JSUN:
{{ "Glucose":120, "BMI":32.5, "Age":45, "Pregnancies":2, "SkinThickness":23 }}
                                       data = request.get_json(force=True) or {}
                                       data = requests
ry:
    x = np.array([[float(data.get(f, 0)) for f in FEATURES]], dtype=float)
except Exception as e:
    return jsonify(("error": f"Invalid input: {e}", "features_order": FEATURES}), 400
                                      if hasattr(model, "predict_proba"):
   prob = float(model.predict_proba(x)[:, 1][0])
                                       else
                                                 s = model.decision_function(x)
prob = float((s - s.min()) / (s.max() - s.min() + 1e-8))
                                            except Exception:

prob = float(model.predict(x)[0])
                                       pred = int(model.predict(x)[0])
                                       return jsonify({
    "prediction": pred,
    "probability_of_diabetes": prob,
    "features_order": FEATURES
                                  if __name__ == "__main__":
    # Trong notebook: set use_reloader=False
    app.run(host="0.0.0.0", port=5000, debug=True, use_reloader=False)
                                   * Serving Flask app '__main__'
* Debug mode: on
                                  WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
* Running on all addresses (0.0.0.0)
```

Hình 30. Code Flask for web deployment – 9

```
## Distriction | Distriction
```

Hình 31. Code Flask for web deployment – 10

⇒ Web chạy trên đường link: http://127.0.0.1:5000/

Hình 32. Giao diện website – 1

Hình 33. Giao diện website (kết quả)

```
© Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb

| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B22DCCN476 ipynb
| Collocalhost8888/nofebooks/assignment_2/06 Ngoc_Lim_B2
```

Hình 34. Log trên Jupyter Notebook (Hệ thống hoạt động tốt)