Numerical methods

Fully numerical solutions, have 3 characteristies:
1) Divide domain into grid Qi
1) Diride domain into grid 2; 2) Di defines functional representation ? Di 3) define spatial/temporal
3) défine spatial/temporal
differential / integral operators Tu - Fui
What to look for?
1) fix maximum error at maximum dictance
2) model complexity (-> mishing)
3) practical needs: seisnograms, wavefield
4) how many processors to solve solution #procs
4) how many processors to solve solution Forces
5) ophnize input parameter period
6) run at higher resolution to validate fix distance rust
o wron

Strong is week form of the wave eguation:

$$\int \int_{t}^{2} u = \nabla \cdot T$$

 $\int \int_{t}^{2} u = \nabla \cdot T$ strong form (FD, PS)

Let's look 24

$$\int_{\Omega} w \cdot \nabla \cdot T \, dV = \int_{\Omega} w \cdot \nabla \cdot \left(c \cdot \nabla u \right) \, dV$$

$$= \int \hat{\mathbf{n}} \cdot \mathbf{T} \cdot \mathbf{w} \, dS = 0$$

 $= \int \hat{\mathbf{n}} \cdot \mathbf{T} \cdot \mathbf{w} \, dS \stackrel{!}{=} 0$ with stress-free boundary condition $\hat{\mathbf{n}} \cdot \mathbf{T} = 0 \text{ on } \partial \Omega$

$$\hat{n} \cdot T = 0$$
 on $\partial \Omega$

Finite volume methods: $\int D \cdot f \, dV = \int f \cdot \hat{n} \, dS$ 2i

volume

Surface

for each element

conforming

mesh

Finite

diffacence

(SEM)

The costs

Finite

volume

(DG)

Finite

Finite

Jenerating

(geometrical)

Hexibility & costs