Algorithmic Challenges: Knuth-Morris-Pratt Algorithm

Michael Levin

Higher School of Economics

Algorithms on Strings
Data Structures and Algorithms

Outline

- 1 Exact Pattern Matching
- 2 Safe Shift
- 3 Prefix Function
- 4 Computing Prefix Function
- 5 Knuth-Morris-Pratt Algorithm

Exact Pattern Matching

Input: Strings T (Text) and P (Pattern).

Output: All such positions in T (Text) where P (Pattern) appears as a

substring.

(For all strings in this module we use 0-based indices)

Slide the Pattern down Text

- Slide the Pattern down Text
- Running time $\Theta(|T||P|)$

а	b	r	а	С	а	d	а	b	r	а
а	b	r	а							

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
а	b	r	а							

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
a	b	r	a							

```
0 1 2 3 4 5 6 7 8 9 10
a b r a c a d a b r a
a b r a
```

```
0 1 2 3 4 5 6 7 8 9 10
a b r a c a d a b r a
a b r a
```

```
0 1 2 3 4 5 6 7 8 9 10
a b r a c a d a b r a
a b r a
```

```
0 1 2 3 4 5 6 7 8 9 10
a b r a c a d a b r a
a b r a
```

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
			а	b	r	а				

0	1	2	3	4	5	6	7	8	9	10
а	b	r	a	С	а	d	а	b	r	а
			a	b	r	a				

а

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
				а	b	r	а			

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
					а	b	r	а		

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	a	d	а	b	r	а
					a	b	r	а		

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
						а	b	r	а	

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
						а	b	r	а	

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	а
							а	b	r	а

0	1	2	3	4	5	6	7	8	9	10
а	b	r	а	С	а	d	а	b	r	a
							а	b	r	a

а	b	r	а	С	а	d	а	b	r	a
	h									

а	b	r	a	С	а	d	а	b	r	а
_	h	r	_							

a	b	r	a	С	а	d	а	b	r	a
а	b	r	а							

а	b	r	a	С	а	d	а	b	r	a
а	b	r	а							
		h		_						

a	b	r	a	С	a	d	а	b	r	a
a	b	r	а							

a	b	r	а	С	а	d	а	b	r	а
а	b	r	а							

a	b	r	а	С	a	d	a	b	r	а
а	b	r	а							

a	b	r	а	С	а	d	a	b	r	а
а	b	r	а							

a

a	b	r	а	С	а	d	а	b	r	а
а	b	r	а							

a

a	b	r	a	С	a	d	a	b	r	a
			а	b	r	а				

a b c d a b c d a b e f

a b c d a b e

a b c d a b c d a b e f

a b c d a b e f

a b c d a b c d a b e f

a b c d a b e

a b c d a b c d a b e f

a b c d a b c d a b e f

a b c d a b e f

a b a b a b a b a b e f

a b a b a b e

a b a b a b a b a b e f

a b a b a b e

a b a b a b a b a b e f

a b a b a b e

a b a b a b a b a f

a | b | a | b | a | b | e | f

a b a b a b a b a b e f

a b a b a b e f

a b a b a b a b a f

a b a b a b e t

a b a b a b a b a f

a b a b a b e f

a b a b a b a b e f

a b a b a b e f

Definitions

Definition

Border of string S is a prefix of S which is equal to a suffix of S, but not equal to the whole S.

Example

"a" is a border of "arba"

"ab" is a border of "abcdab"

"abab" is a border of "ababab"

"ab" is not a border of "ab"

 \blacksquare Find longest common prefix u

- Find longest common prefix *u*
- Find w the longest border of u

- Find longest common prefix *u*
- Find w the longest border of u

- Find longest common prefix u
 Find w the longest border of u
- Move P such that prefix w in P aligns with suffix w of u in T

- Find longest common prefix *u*
 - Find w the longest border of u
- Move P such that prefix w in P aligns with suffix w of u in T

■ Now you know we can skip some of the

comparisons

- Now you know we can skip some of the comparisons
- But we shouldn't miss any of the pattern occurrences in the text

- Now you know we can skip some of the comparisons
- comparisonsBut we shouldn't miss any of the
- But we shouldn't miss any of the pattern occurrences in the text

■ Is it safe to shift the pattern this way?

Outline

- 1 Exact Pattern Matching
- 2 Safe Shift
- 3 Prefix Function
- 4 Computing Prefix Function
- 5 Knuth-Morris-Pratt Algorithm

Suffix notation

Definition

Denote by S_k suffix of string S starting at position k.

Examples

$$S = \text{``abcd''} \Rightarrow S_2 = \text{``cd''}$$

 $T = \text{``abc''} \Rightarrow T_0 = \text{``abc''}$
 $P = \text{``aa''} \Rightarrow P_1 = \text{``a''}$

Lemma

Lemma

Lemma

Lemma

Suppose P occurs in T in position i between k and start of suffix w

Suppose P occurs in T in position i between k and start of suffix w

- Suppose P occurs in T in position i between k and start of suffix w
- Then there is prefix v of P equal to suffix in u, and v is longer than w

- Then there is prefix v of P equal to suffix in u, and v is longer than w
- $lackbox{v}$ is a border longer than $oldsymbol{w}$, but $oldsymbol{w}$ is longest border of $oldsymbol{u}$ contradiction

 Now you know it is possible to avoid many of the comparisons which Brute

Force algorithm does

- Now you know it is possible to avoid many of the comparisons which Brute Force algorithm does
- But how to determine the best pattern

shifts?

Outline

- Exact Pattern Matching
- 2 Safe Shift
- 3 Prefix Function
- 4 Computing Prefix Function
- 5 Knuth-Morris-Pratt Algorithm

Prefix function

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a b s 0 0 1 2 3 4 0 1 1 2

Prefix function

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a b s 0 0 1 2 3 4 0 1 1 2

Prefix function

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a b s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a a b s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a a s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a a b s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a a b s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a b s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a a b s 0 0 1 2 3 4 0 1 1 2

Definition

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example P a b a b a b c a a b s 0 0 1 2 3 4 0 1 1 2

Definition

Evanala

Prefix function of a string P is a function s(i) that for each i returns the length of the longest border of the prefix P[0..i].

Example											
P	а	Ь	а	b	а	b	С	а	а	Ь	
S	0	0	1	2	3	4	0	1	1	2	

P[0..i] has a border of length s(i+1)-1

Proof

P[0..i] has a border of length s(i+1)-1

Proof

■ Take the longest border w of P[0..i + 1]

P[0..i] has a border of length s(i+1)-1

Proof

- Take the longest border w of P[0..i + 1]
- Cut the last character from w it's a border of P[0..i] now

P[0..i] has a border of length s(i+1)-1

Proof

- Take the longest border w of P[0..i + 1]
- Cut the last character from w it's a border of P[0..i] now

Corollary

 $s(i+1) \leq s(i)+1$

Enumerating borders

Lemma

If s(i) > 0, then all borders of P[0..i] but for the longest one are also borders of P[0..s(i) - 1].

Let u be a border of P[0..i] such that |u| < s(i)

- Let u be a border of P[0..i] such that |u| < s(i)
- Then u is both a prefix and a suffix of P[0..s(i) 1]

- Let u be a border of P[0..i] such that |u| < s(i)
- Then u is both a prefix and a suffix of P[0..s(i) 1]
- $u \neq P[0..s(i) 1]$, so u is a border of P[0..s(i) 1]

Enumerating borders

Corollary

All borders of P[0..i] can be enumerated by taking the longest border b_1 of P[0..i], then the longest border b_2 of b_1 , then the longest border b_3 of b_2 , ..., and so on.

$$s(i + 1) = |some\ border\ of\ P[0..s(i) - 1]| + 1$$

■ Now you know lots of properties of

prefix function

- Now you know lots of properties of
- prefix function

■ But how to compute all of its values??

Outline

- Exact Pattern Matching
- 2 Safe Shift
- 3 Prefix Function
- 4 Computing Prefix Function
- 5 Knuth-Morris-Pratt Algorithm

P	a	b	a	b	a	b	С	а	a	b
5										

Р	а	b	а	b	а	b	С	а	а	b
S										

P	а	b	а	b	а	b	С	а	а	b
5	0									

P	a	b	а	b	а	b	С	а	а	b
S	0									

P	a	b	а	b	а	b	С	а	а	b
s	0									

P	а	b	а	b	а	b	С	а	а	b
5	0									

P	а	b	а	b	а	b	С	а	а	b
s	0	0								

P	a	b	а	b	а	b	С	а	а	b
s	0	0								

Р	a	b	a	b	а	b	С	а	а	b
S	0	0								

P	a	b	а	b	а	b	С	а	а	b
s	0	0	1							

P	a	b	а	b	а	b	С	а	а	b
S	0	0	1							

Р	a	b	а	b	а	b	С	а	а	b
S	0	0	1							

P	а	b	а	b	а	b	С	а	а	b
S	0	0	1	2						

Р	a	b	а	b	а	b	С	а	а	b
S	0	0	1	2						

P	а	b	а	b	а	b	С	а	а	b
S	0	0	1	2						

Р	a	b	a	b	а	b	С	а	а	b
S	0	0	1	2	3					

P	a	b	a	b	а	b	С	а	а	b
s	0	0	1	2	3					

P	a	b	a	b	а	b	С	а	а	b
s	0	0	1	2	3					

P	a	b	a	b	а	b	С	а	а	b
S	0	0	1	2	3	4				

Р	a	b	a	b	а	b	С	а	а	b
5	0	0	1	2	3	4				

P	a	b	a	b	а	b	С	а	а	b
s	0	0	1	2	3	4				

P	a	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4				

P	a	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4				

P	а	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4				

P	а	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4				

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a

    s
    0
    0
    1
    2
    3
    4
    0
    ...
```

P	а	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4	0			

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a
    b

    s
    0
    0
    1
    2
    3
    4
    0
    0
```

P	a	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4	0	1		

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a
    b

    s
    0
    0
    1
    2
    3
    4
    0
    1
    1
```

P	a	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4	0	1		

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a

    s
    0
    0
    1
    2
    3
    4
    0
    1
```

P	а	b	а	b	а	b	С	а	а	b
s	0	0	1	2	3	4	0	1		

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a
    b

    s
    0
    0
    1
    2
    3
    4
    0
    1
    1
```

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a

    s
    0
    0
    1
    2
    3
    4
    0
    1
    1
```

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    b

    s
    0
    0
    1
    2
    3
    4
    0
    1
    1
```

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a
    b

    s
    0
    0
    1
    2
    3
    4
    0
    1
    1
    2
```

```
    P
    a
    b
    a
    b
    a
    b
    c
    a
    a

    s
    0
    0
    1
    2
    3
    4
    0
    1
    1
    2
```

ComputePrefixFunction(P)

 $s \leftarrow$ array of integers of length |P| $s[0] \leftarrow 0$, border $\leftarrow 0$ for *i* from 1 to |P|-1:

else:

return s

border $\leftarrow 0$ $s[i] \leftarrow border$

while (border > 0) and $(P[i] \neq P[border])$: $border \leftarrow s[border - 1]$ if P[i] == P[border]: $border \leftarrow border + 1$

ComputePrefixFunction(P)

```
s \leftarrow \text{array of integers of length } |P|
s[0] \leftarrow 0, border \leftarrow 0
for i from 1 to |P|-1:
```

border $\leftarrow 0$ $s[i] \leftarrow border$

return s

while (border > 0) and $(P[i] \neq P[border])$: $border \leftarrow s[border - 1]$ if P[i] == P[border]:

 $border \leftarrow border + 1$ else:

ComputePrefixFunction(P)

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
for i from 1 to |P|-1:
```

else:

return s

border $\leftarrow 0$ $s[i] \leftarrow border$

 $border \leftarrow s[border - 1]$ if P[i] == P[border]:

 $border \leftarrow border + 1$

while (border > 0) and $(P[i] \neq P[border])$:

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
for i from 1 to |P|-1:
```

 $border \leftarrow s[border - 1]$

 $border \leftarrow border + 1$

else:

return s

border $\leftarrow 0$ $s[i] \leftarrow border$

if P[i] == P[border]:

while (border > 0) and ($P[i] \neq P[border]$):

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
for i from 1 to |P|-1:
```

while (border > 0) and ($P[i] \neq P[border]$): $border \leftarrow s[border - 1]$

border $\leftarrow 0$ $s[i] \leftarrow border$

return s

if P[i] == P[border]: $border \leftarrow border + 1$

else:

 $s \leftarrow$ array of integers of length |P| $s[0] \leftarrow 0$, border $\leftarrow 0$ for *i* from 1 to |P|-1:

 $s[i] \leftarrow border$

return s

while (border > 0) and ($P[i] \neq P[border]$): $border \leftarrow s[border - 1]$

if P[i] == P[border]: $border \leftarrow border + 1$

else:

border $\leftarrow 0$

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
for i from 1 to |P|-1:
```

while (border > 0) and $(P[i] \neq P[border])$: $border \leftarrow s[border - 1]$

if P[i] == P[border]:

else:

border $\leftarrow 0$ $s[i] \leftarrow border$

return s

 $border \leftarrow border + 1$

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
for i from 1 to |P|-1:
```

border $\leftarrow 0$ $s[i] \leftarrow border$

return s

 $border \leftarrow s[border - 1]$ if P[i] == P[border]:

 $border \leftarrow border + 1$ else:

while (border > 0) and $(P[i] \neq P[border])$:

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
```

for *i* from 1 to |P|-1: $border \leftarrow s[border - 1]$

if P[i] == P[border]: $border \leftarrow border + 1$

else:

return s

border $\leftarrow 0$ $s[i] \leftarrow border$

while (border > 0) and $(P[i] \neq P[border])$:

```
s \leftarrow array of integers of length |P|
s[0] \leftarrow 0, border \leftarrow 0
```

for *i* from 1 to |P|-1: while (border > 0) and $(P[i] \neq P[border])$:

 $border \leftarrow s[border - 1]$ if P[i] == P[border]: $border \leftarrow border + 1$

else:

border $\leftarrow 0$

 $s[i] \leftarrow border$

return s

 $s \leftarrow$ array of integers of length |P| $s[0] \leftarrow 0$, border $\leftarrow 0$ for *i* from 1 to |P|-1:

else:

return s

border $\leftarrow 0$ $s[i] \leftarrow border$

while (border > 0) and $(P[i] \neq P[border])$: $border \leftarrow s[border - 1]$ if P[i] == P[border]: $border \leftarrow border + 1$

Lemma

The running time of ComputePrefixFunction is O(|P|).

Everything but for inner while loop is O(|P|) initialization plus O(|P|) iterations of the for loop with O(1) assignments on each iteration

- Everything but for inner while loop is O(|P|) initialization plus O(|P|) iterations of the for loop with O(1) assignments on each iteration
- Now we will bound the number of the while loop iterations by O(|P|)

(continued)

border can increase at most by 1 on each iteration of the for loop

- border can increase at most by 1 on each iteration of the for loop
- In total, **border** is increased O(|P|) times

- border can increase at most by 1 on each iteration of the for loop
- In total, **border** is increased O(|P|) times
- border is decreased at least by 1 on each iteration of the while loop

- border can increase at most by 1 on each iteration of the for loop
- In total, **border** is increased O(|P|) times
- border is decreased at least by 1 on each iteration of the while loop
- border ≥ 0

- border can increase at most by 1 on each iteration of the for loop
- In total, *border* is increased O(|P|) times
- border is decreased at least by 1 on each iteration of the while loop
 - **■** *border* ≥ 0
- So there are O(|P|) iterations of the while loop

Now you know how to compute prefix function in linear time

- Now you know how to compute prefix
- function in linear time

■ But how to find pattern in text??

Outline

- Exact Pattern Matching
- 2 Safe Shift
- 3 Prefix Function
- 4 Computing Prefix Function
- 5 Knuth-Morris-Pratt Algorithm

To search for pattern P in text T:

• Create new string S = P + '\$' + T,

where '\\$' is a special character absent from both P and T

To search for pattern P in text T:

■ Compute prefix function s for string S

To search for pattern P in text T:

■ Compute prefix function s for string S
■ For all positions i such that i > |P| and s(i) = |P|, add i - 2|P| to the output

Compute prefix function s for string S
For all positions i such that i > |P| and s(i) = |P|, add i - 2|P| to the output

To search for pattern P in text T:

To search for pattern P in text T:

■ Compute prefix function s for string S
■ For all positions i such that i > |P| and s(i) = |P|, add i - 2|P| to the output

To search for pattern P in text T:

Algorithm

To search for pattern *P* in text *T*:

• Compute prefix function *s* for *s*

Compute prefix function s for string SFor all positions i such that i > |P| and s(i) = |P|, add i - 2|P| to the output

Explanation

- For all i, $s(i) \le |P|$ because of the special character '\$'
- If i > |P| and s(i) = |P|, then P = S[0..|P| 1] = S[i |P| + 1..i] = T[i 2|P|..i |P| 1]
- If s(i) < |P|, no full occurrence of |P| ends in position i

 $S \leftarrow P + \$ + T$ $s \leftarrow \text{ComputePrefixFunction}(S)$

for i from |P| + 1 to |S| - 1: if s[i] == |P|: result.Append(i-2|P|)

return result

result \leftarrow empty list

$$S \leftarrow P + '\$' + T$$

 $s \leftarrow \text{ComputePrefixFunction(S)}$
 $\text{result} \leftarrow \text{empty list}$

 $S \leftarrow P + \$ + T$ $s \leftarrow \text{ComputePrefixFunction}(S)$ result \leftarrow empty list

 $S \leftarrow P + \$ + T$ $s \leftarrow \text{ComputePrefixFunction}(S)$ result ← empty list

$$S \leftarrow P + '\$' + T$$

 $s \leftarrow \text{ComputePrefixFunction(S)}$
 $\text{result} \leftarrow \text{empty list}$

 $S \leftarrow P + \$ + T$ $s \leftarrow \text{ComputePrefixFunction}(S)$ result \leftarrow empty list

 $S \leftarrow P + '\$' + T$ $s \leftarrow \text{ComputePrefixFunction(S)}$ $\text{result} \leftarrow \text{empty list}$

for i from |P|+1 to |S|-1:

if s[i] == |P|:

result.Append(i-2|P|)

Lemma

The running time of Knuth-Morris-Pratt algorithm is O(|P| + |T|).

Proof

■ Building string S is O(|P| + |T|)

Lemma

The running time of Knuth-Morris-Pratt algorithm is O(|P| + |T|).

Proof

- Building string S is O(|P| + |T|)
- Computing prefix function is O(|S|) = O(|P| + |T|)

Lemma

The running time of Knuth-Morris-Pratt algorithm is O(|P| + |T|).

Proof

- Building string S is O(|P| + |T|)
- Computing prefix function is O(|S|) = O(|P| + |T|)
- The for loop runs

Conclusion

- Can search pattern in text in linear time
- Can compute prefix function of a string in linear time
- Can enumerate all borders of a string