Big Data

LAB-02

Timings: 11:30-2:30

Lab Protocols:

- 1. Carefully read and follow all instructions
- 2. You can search the basics of python, concepts, and syntax online
- 3. No evaluation would be done after Lab's timing. So, keep the track of time.
- 4. Do keep in mind that sharing the code, discussing it during lab or looking for online solution is highly unethical, and all actions would be considered as plagiarism.
- 5. Plagiarism will result in serious penalty

Task1 – Do some preprocessing steps on data. Visualize your results (10 Marks)

Part (A): (2 Marks)

Perform The following necessary tasks for data cleaning.

- 1. Load the csv file
- 2. Display last 10 rows
- 3. Count null values in data
- 4. Perform suitable action in null values (Justify it later)
- 5. Take care of any duplicate values
- 6. Remove any unnecessary feature from the data & convert string data to numbers.

Basics

Name	Usage	Comments
df.head()	Preview the first n (default=5)	Can define "n" by df.head(n
df.tail()	Preview the last n (default=5)	Can define "n" by df.tail(n)
df.sort_values()	Sort the data frame on a specific column	Can sort with multiple colur
df.columns	Display all column names	Can also set column names
df.dtypes	Display data types of the columns	Return a list of types
df.shape	Display the shape of the data frame	Return a tuple: (row_count,
df.describe()	Show basic stats of each column	Will show different stats for
s.value_counts()	Count occurrences of each value	Use df[''] to get a column

Cheat sheet

Name	Usage	Comments
s.isna()	Whether there are null values existing	Boolean
df.dropna()	Delete missing values	Can be applied on a series or
df.fillna()	Fill missing values with a certain value	Can be applied on a series or
df.drop_duplicates()	Delete all duplicated values	Can be applied on a series or

Hint:

```
df.drop(to_drop, inplace=True, axis=1)
or df.drop(columns=to_drop, inplace=True)
```

Python Axis:

Part (B): (3 Marks)

Compute PCA of the data to compute 2 dimensions.

Resource:

 $\frac{https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8}{ef87e7915b}$

Hint:

```
from sklearn.decomposition import PCA
pca = PCA()
components = pca.fit_transform(df)
c1=components[:,0]
c2=components[:,1]
```

Part (C): (5 Marks)

Show the results through visualization

Instructions of plotting Data: Use matplotlib's scatter plot for plotting. Use subplot functionality, make the subplot of size (6,6). Appropriate set labels to all axis and set label to complete scatter plot.

Hint

```
ax.scatter(c1, c2)
```

Task 2 - Apply Built in K mean Method

(15 Marks)

Part (A): (5 Marks)

Do k-mean clustering on the data and pick k centers with hit and trial method. Then Visualize the results by placing X at cluster centers. (Use the above Matplotlib functionality)

Part (B): (5 Marks)

Use TSNE for visualization (Note y= prediction of clusters)

https://www.datatechnotes.com/2020/11/tsne-visualization-example-in-python.html

example:

```
tsne = TSNE(n_components=2, verbose=1, random_state=123)
z = tsne.fit_transform(x)
```

Part (C): (10 Marks)

Do k-mean clustering on the data and pick k centers with elbow Method. Custom implement, within sum of square functionality

Formula= (point- center) **2 for every point Visualize the curve using matplotlib plotting.

Bonus – Do custom Implementation of k-mean algorithm

You can use pairwise_distacne_argmin functionality to generate pair wise distance

Hint1: (randomly sort data frame)

```
np.random.seed(42)
rndperm = np.random.permutation(df)
```

Keep Learning. Beauty in code comes with experience.