### ГУАП

# Кафедра антенн и эксплуатации радиоэлектронной аппаратуры

Отчёт защищен с оценкой

Преподаватель

Должность, уч. степень, звание

подпись, дата

инициалы, фамилия

Отчёт о лабораторной работе №5:

ИССЛЕДОВАНИЕ ПОВЕРХНОСТЫХ ВОЛН, РАСПРОСТРАНЯЮЩИХСЯ ВДОЛЬ ПЛОСКИХ ЗАМЕДЛЯЮЩИХ СИСТЕМ.

Работу выполнил:

Студент

гр. 5025.

подпись, дата

инициалы, фамилия

#### Цели лабораторной работы.

Целью данной лабораторной работы является изучение поверхностных волн, способов возбуждения некоторых поверхностых волн, конструкций и принцыпов действия некоторых типов линий передачи поверхностных волн. Экспериментальное определение коэффициента замедления и поперечного коэффициента затухания поверхностной волны, распространяющейся вдоль диэлектрической пластины, расположенной на металлической подложке, коэффициента замедления и поперечного коэффициента затухания поверхностной волны, распространяющейся вдоль металлической гребенчатой (гофрированной) структуры.

#### Схема лабораторной работки.

Ниже представлена функциональная схема лабораторной установки для проведения данной лабораторной работы:



Pис. 6. Функциональная схема измерительной установки: I – генератор СВЧ; 2 – измерительная липия; 3 – возбуждающий руцор; 4 – дизмектрическая пластина; 5 – металлической скование; 6 – металлической скование; 6 – металлической скуман; 7 – гребенчатая структура; 8 – индикаторное устройство; 9 – механизм вертикального перемещения; 10 – измерительный усилитель; 10 – механизм горизонтального перемещения; 12 – измерительный усилитель; 10 – СВЧ-гракт, 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10 – 10

Поверхностные волны возбуждаются рупором 3, для согласования возбуждающего устройства устройства входящие в в полость рупора части ЛП (линии передачи) выполнены в виде клина длиной (2-3). Индикаторное устройство 8, предназначенное для измерения поперечного (в направлении нормали к поверхности ЛП) распределения напряжённости электрического поля, предсталяет из себя отрезок прямоугольного волновода, нагруженный на детекторную секцию, открытый конец волновода играет роль антенны. Индикаторное устройство 10, предназначенное для измерения продолного распределения напряжённости электрического поля, представляет из себя ассиметричный вибратор, нагруженный на детекторную секцию. Так же следует отметить, что оба детектора измеряют только вертикальную составляющую вектора электрической напряжённости. Измеритель 12 можно по очереди подключать к обеим индикаторным секциям 8 и 10 или к низкочастотному выходу волновой измерительной линии 2.

# Результаты измерений в таблицах.

| 1ый минимум(см)                 | 2ой минимум(см)                 | Зий минимум(см)                 |
|---------------------------------|---------------------------------|---------------------------------|
| $Z_{1.1} = 0.5 , Z_{1.2} = 1.1$ | $Z_{1.2} = 2.8 , Z_{1.2} = 3.5$ | $Z_{1.3} = 5.1 , Z_{1.3} = 5.8$ |
| $Z_{min1} = 0.75$               | $Z_{min2} = 3.25$               | $Z_{min3} = 5.5$                |

Таблица 1: Вычисление методом "вилки", для нахождения длины волны.

Ниже представлена формула для вычисления длины волны и вычисленное значение:

$$\Lambda_B = \frac{2 \cdot (Z_{min2} - Z_{min1}) + 2 \cdot (Z_{min3} - Z_{min2})}{2} = 2,375$$
 см

| Z,мм | $\gamma$       | $\sqrt{\frac{\gamma}{\gamma_{max}}}$ |
|------|----------------|--------------------------------------|
| 200  | $10 \cdot 2^3$ | 0.623                                |
| 203  | $25 \cdot 2^3$ | 1.000                                |
| 206  | $12 \cdot 2^3$ | 0.693                                |
| 209  | 12             | 0.245                                |
| 212  | 0              | 0.000                                |
| 215  | $28 \cdot 2^2$ | 0.748                                |
| 218  | $20 \cdot 2^3$ | 0.894                                |
| 221  | $10 \cdot 2^3$ | 0.632                                |
| 224  | 20             | 0.387                                |
| 227  | 0              | 0                                    |
| 230  | $17 \cdot 2^2$ | 0.583                                |
| 233  | $12 \cdot 2^3$ | 0.692                                |
| 236  | $36 \cdot 2^2$ | 0.848                                |
| 239  | $14 \cdot 2^1$ | 0.374                                |
| 242  | 0              | 0                                    |
| 245  | $10 \cdot 2^2$ | 0.447                                |
| 248  | $44 \cdot 2^2$ | 0.938                                |
| 251  | $34 \cdot 2^2$ | 0.825                                |
| 254  | $16 \cdot 2^1$ | 0.4                                  |
| 257  | 0              | 0                                    |
| 260  | $25 \cdot 2^1$ | 0.5                                  |

| Х,мм | $\gamma$       | $\sqrt{\frac{\gamma}{\gamma_{max}}}$ |
|------|----------------|--------------------------------------|
| 310  | $14 \cdot 2^5$ | 1.000                                |
| 312  | $12 \cdot 2^5$ | 0.926                                |
| 314  | $25 \cdot 2^4$ | 0.945                                |
| 316  | $10 \cdot 2^4$ | 0.598                                |
| 318  | $23 \cdot 2^3$ | 0.641                                |
| 320  | $13 \cdot 2^3$ | 0.482                                |
| 322  | $34 \cdot 2^2$ | 0.551                                |
| 324  | $20 \cdot 2^2$ | 0.423                                |
| 326  | $38 \cdot 2$   | 0.412                                |
| 328  | $10 \cdot 2$   | 0.211                                |
| 330  | 4              | 0.094                                |

| Z,мм | $\gamma$       | $\sqrt{\frac{\gamma}{\gamma_{max}}}$ |
|------|----------------|--------------------------------------|
| 200  | 34             | 0.595                                |
| 203  | $22 \cdot 2^1$ | 0.677                                |
| 206  | $15 \cdot 2^2$ | 0.791                                |
| 209  | $48 \cdot 2^1$ | 1.000                                |
| 212  | 42             | 0.661                                |
| 215  | 10             | 0.323                                |
| 218  | $8 \cdot 2^1$  | 0.408                                |
| 221  | $18 \cdot 2^1$ | 0.612                                |
| 224  | $24 \cdot 2^1$ | 0.707                                |
| 227  | 28             | 0.540                                |
| 230  | 10             | 0.323                                |
| 233  | $14 \cdot 2^1$ | 0.540                                |
| 236  | $34 \cdot 2^1$ | 0.842                                |
| 239  | $32 \cdot 2^1$ | 0.816                                |
| 242  | $12 \cdot 2^1$ | 0.5                                  |
| 245  | 26             | 0.520                                |
| 248  | 38             | 0.630                                |
| 251  | $14 \cdot 2^1$ | 0.540                                |
| 254  | $10 \cdot 2^1$ | 0.456                                |
| 257  | 14             | 0.382                                |
| 260  | 0              | 0                                    |

| Х,мм | $\gamma$         | $\sqrt{\frac{\gamma}{\gamma_{max}}}$ |
|------|------------------|--------------------------------------|
| 310  | $40 \cdot 2^4$   | 1.000                                |
| 312  | $30 \cdot 2^4$   | 0.866                                |
| 314  | $20 \cdot 2^4$   | 0.707                                |
| 316  | $8 \cdot 2^4$    | 0.447                                |
| 318  | $14 \cdot 2^3$   | 0.418                                |
| 320  | $20 \cdot 2^2$   | 0.354                                |
| 322  | $20 \cdot 2^{1}$ | 0.25                                 |
| 324  | 14               | 0.148                                |
| 326  | 0                | 0                                    |

## Расчёт $\xi$ и $\alpha$ .

$$\lambda_0 = \frac{\Lambda_B}{\sqrt{1 + \frac{\Lambda_B}{\lambda_{kp}}}} = 1.928$$

## Графики экспериментальной зависимости $\gamma$ .



Рис. 1: График зависимости напряженности в продольном сечении от расстояния Z.



Рис. 2: График зависимости напряженности в продольном сечении от расстояния X.

## Выводы по проделанной работе.

В результате выполнения данной лабораторной работы удалось вычислить значени длины волны на линии передачи, вычислить коэффициент затухания для продольного и поперечного сече-

| ний. Так же удалось построить графики практической зависимости напряжённости ${\bf E}$ от расстояния ${\bf Z}$ и ${\bf X}.$ |
|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |