HDF5 structure

hdf5_file["time"]
hdf5_file["spatial_var/u"]
hdf5_file["spatial_var/v"]
hdf5_file["spatial_var/h"]
hdf5_file["spatial_var/
manning_alpha"]
hdf5_file["spatial_var/bathy"]

hdf5_file.attrs['title']

Source HDF5

```
109 import h5py
110
111 inf = h5py.File(name = path, mode = "r")
```

Access spatial variables

hdf5_file["spatial_var"][nb_cell, nb_timestep]
[:,:]

time_index

Id of the timestep where the

Results have be written

["spatial_var"]["h"][:, time_index]

Cell index

Cell index correspondance

["spatial_var/h"][cell_index,:]

Examples

- All initiall values :
 - manning_true = hdf5_file["spatial_var/manning_alpha"][:,0]
- Values at first timestep
 - manning_true = hdf5_file["spatial_var/manning_alpha"][:,1]
- Values at nth timestep
 - manning_true = hdf5_file["spatial_var/manning_alpha"][:,n]
- n must be less than the number of writting time steps
 - n <= nb_timestep = len(hdf5_file["time"]-1)</pre>