Лабораторная работа №16

Имитационное моделирование

Волгин Иван Алексеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

3.1	Код. Две очереди, первая стратегия	8
3.2	Отчет. Две очереди, первая стратегия	9
3.3	Код. Две очереди, вторая стратегия	10
3.4	Отчет. Две очереди, творая стратегия	10
3.5	Код. Подбор кол-ва КПП, первая стратегия	12
3.6	Отчет. Подбор кол-ва КПП, первая стратегия	13
3.7	Код. Подбор кол-ва КПП, вторая стратегия, З КПП	14
3.8	Отчет. Подбор кол-ва КПП, вторая стратегия, 3 КПП	14
3.9	Код. Подбор кол-ва КПП, вторая стратегия, 4 КПП	15
3.10	Отчет. Подбор кол-ва КПП, вторая стратегия, 4 КПП	15

Список таблиц

3.1	Сравнение стратегий	11	Ĺ
-----	---------------------	----	---

1 Цель работы

Релизовать с помощью gpss моедль двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

- 1. Реализовать с помощью gpss модель с двумя очередями
- 2. Реализовать с помощью gpss моедль с одной очередью.
- 3. Реализовать с помощью gpss другие модели и определить оптимальное количество очередей.

3 Выполнение лабораторной работы

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей: 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска; 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, μ = 1 мин, μ = 7 мин.

Сначала я релизовал модель с двумя очередями и первой стратегией (рис. 3.1). Получил такой результат (рис. 3.2)

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2 TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl 1, Obsl 2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZ\overline{E} punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Код. Две очереди, первая стратегия

	GPSS World	Simulation Repo	rt - Untitle	ed Model 1.1.1	
	суббо	га, мая 24, 2025	21:39:30		
	START TIME 0.000	END TIME 10080.000	BLOCKS FA	ACILITIES STO	RAGES 0
	NAME OBSL_1 OBSL_2 OTHER1 OTHER2 PUNKT1 PUNKT2	10 10 10	VALUE 5.000 11.000 000.000 001.000 003.000 002.000		
LABEL	1 2 3	BLOCK TYPE GENERATE TEST TEST	5853 5853 4162	0 0	0 0 0
OBSL_1	6 7 8 9	TRANSFER QUEUE SEIZE DEPART ADVANCE RELEASE TERMINATE	2541 2541 2541 2540	0 387 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OBSL_2	11 12 13 14 15 16	QUEUE SEIZE DEPART ADVANCE RELEASE TERMINATE GENERATE TERMINATE	2925 2537 2537 2537 2536 2536	0 388 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FACILITY PUNKT2 PUNKT1		UTIL. AVE. T 0.996 3 0.997 3			
QUEUE OTHER1 OTHER2	MAX C 393 393	ONT. ENTRY ENTRY 387 2928 1 388 2925 1	(0) AVE.CON 2 187.098 2 187.114	I. AVE.TIME 644.107 644.823	AVE.(-0) RETRY 646.758 0 647.479 0

Рис. 3.2: Отчет. Две очереди, первая стратегия

Далее нужно было реализовать модель также с двумя очередями, но по второй стратегии. Я написал данный код (рис. 3.3) и, скомпилировав его, получил следующий отчет (рис. 3.4)

```
punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other;
ENTER punkt,1;
DEPART Other;
ADVANCE 4,3;
LEAVE punkt,1;
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.3: Код. Две очереди, вторая стратегия

```
GPSS World Simulation Report - Untitled Model 1.2.1
                  суббота, мая 24, 2025 21:43:38
           START TIME
                               END TIME BLOCKS FACILITIES STORAGES
                             10080.000
             0.000
                                           9 0
             NAME
                                         VALUE
          OTHER
                                      10001.000
          PUNKT
                                      10000.000
                    LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
 LABEL
                         GENERATE 5719
QUEUE 5719
ENTER 5051
                                                           0 0
668 0
                        QUELL
ENTER
DEPART
ADVANCE
LEAVE
TERMINATE
CENERATE
                                           5051
                                           5051
                                           5049
                         TERMINATE
                  MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 668 668 5719 4 344.466 607.138 607.562 0
QUEUE
STORAGE
                  CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
 PUNKT
                                        5051 1 2.000 1.000
                              ASSEM CURRENT NEXT PARAMETER VALUE
FEC XN PRI
                    BDT
        0
0
0
0
                                      0
5
5
                  10080.466
                             5721
  5051
                  10081.269
10083.431
                              5051
  5052
                              5052
                  20160.000
```

Рис. 3.4: Отчет. Две очереди, творая стратегия

Теперь составляю сравнительную таблицу.

Таблица 3.1: Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает.

Далее нужно было подобрать оптимальное количество пропускных пунктов (1-4) для каждой стратегии.

Чтобы проверить первую стратегию я написал такой код (рис. 3.5) и получил следующие результаты (рис. 3.6)

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.5,a,b
       TRANSFER 0.5, Obsl_1, Obsl_2
       TRANSFER 0.5, Obs1_3, Obs1_4
; Моделирование работы пункта 1
Obsl_1 QUEUE Other1
       SEIZE punktl
       DEPART Other1
        ADVANCE 4,3
       RELEASE punktl
        TERMINATE
; Моделирование работы пункта 2
Obs1_2 QUEUE Other2
        SEIZE punkt2
        DEPART Other2
        ADVANCE 4,3
        RELEASE punkt2
       TERMINATE
; Моделирование работы пункта 3
Obsl_3 QUEUE Other3
       SEIZE punkt3
       DEPART Other3
        ADVANCE 4,3
       RELEASE punkt3
       TERMINATE
; Моделирование работы пункта 4
Obsl_4 QUEUE Other4
        SEIZE punkt4
        DEPART Other4
        ADVANCE 4,3
        RELEASE punkt4
        TERMINATE
; Задание условий остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; Остановить моделирование
START 1 ; Запуск процедуры моделирования
```

Рис. 3.5: Код. Подбор кол-ва КПП, первая стратегия

суббота, мая 24, 2025 21:55:02							
	START TIME		ME BLOCKS F	ACILITIES	STORAGES 0		
	0.000	10000.0	00 00	-	•		
	NAME		VALUE				
	A		3.000				
	В		4.000				
	OBSL 1		5.000				
	OBSL 2		11.000				
	OBSL_3		17.000				
	OBSL_4		23.000				
	OTHER1		10006.000				
	OTHER2		10004.000				
	OTHER3		10002.000				
	OTHER4		10000.000				
	PUNKT1 PUNKT2		10007.000				
	PUNKT3		10003.000				
	PUNKT4		10003.000				
	201112		200021000				
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT CO	UNT RETRY		
	1	GENERATE	5622	0	0		
	2	TRANSFER	5622	0	0		
A	3	TRANSFER	2831	0	0		
В	4	TRANSFER	2791	0	0		
OBSL_1	5	QUEUE	1465	0	0		
	6	SEIZE	1465	0	0		
	7	DEPART	1465	0	0		
	8	ADVANCE RELEASE	1465	1	0		
	10	TERMINATE	1464 1464	0	0		
OBSL 2	11	QUEUE	1366	0	0		
0555_2	12	SEIZE	1366	0	0		
	13	DEPART	1366	0	o		
	14	ADVANCE	1366	0	o		
	15	RELEASE	1366	0	0		
	16	TERMINATE	1366	0	0		
OBSL_3	17	QUEUE	1378	0	0		
	18	SEIZE	1378	0	0		
	19	DEPART	1378	0	0		
	20	ADVANCE	1378	0	0		
	21	RELEASE	1378	0	0		
OBST 4	22	TERMINATE	1378	0	0		
OBSL_4	23 24	QUEUE SEIZE	1413 1413	0	0		
	24 25	DEPART	1413	0	0		
	25	DEFARI	1413	1	0		

Рис. 3.6: Отчет. Подбор кол-ва КПП, первая стратегия

После эксперимента, выяснилось, что для первой стратегии оптимальное количество КПП - 4.

Далее я переш к подбору кол-ва КПП для второй стратегии. Вариант с одим КПП оказался плохим. Вариант с двумя КПП был проверен еще в начале работы. Так что переходим к варианту с тремя КПП. Для этго я написал такой код (рис. 3.7) и получил следующий отчет (рис. 3.8)

```
рипкt STORAGE 3 ; прибытие автомобилей

GENERATE (Exponential(1, 0, 1.75)) ; моделирование работы пункта 1

QUEUE Other ; присоединение к очереди 1

ENTER punkt ; занятие пункта 1

DEPART Other ; выход из очереди 1

ADVANCE 4,3 ; обслуживание на пункте 1

LEAVE punkt ; освобождение пункта 1

TERMINATE ; автомобиль покидает систему

; задание условий остановки процедуры моделирования

GENERATE 10080 ; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

TERMINATE 1 ; остановить моделирование

START 1 ; запуск процедуры моделирования
```

Рис. 3.7: Код. Подбор кол-ва КПП, вторая стратегия, 3 КПП

```
1
               GPSS World Simulation Report - Untitled Model 1.2.1
                     суббота, мая 24, 2025 21:58:23
                              END TIME BLOCKS FACILITIES STORAGES 10080.000 9 0 1
                                                VALUE
                NAME
                                   10001.000
            OTHER
            PUNKT
                                           10000.000
 LABEL
                      LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
                       OUEUE
          MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
12 0 5683 2521 1.063 1.885 3.388 0
STORAGE
                   CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 5683 1 2.243 0.748 0 0
FEC XN PRI BDT ASSEM CURRENT NEX
5680 0 10080.434 5680 5 6
5683 0 10080.631 5683 5 6
5685 0 10082.068 5685 0 1
5684 0 10085.592 5684 5 6
5686 0 20160.000 5686 0 8
                                   ASSEM CURRENT NEXT PARAMETER VALUE
```

Рис. 3.8: Отчет. Подбор кол-ва КПП, вторая стратегия, 3 КПП

Далее нужно проверить тоже самое, но с четыремя пропускными пунктами. Я реализовал модель (рис. 3.9) и получил такой отчет (рис. 3.10)

```
рunkt STORAGE 4 ; прибытие автомобилей

GENERATE (Exponential(1, 0, 1.75)) ; моделирование работы пункта 1

QUEUE Other ; присоединение к очереди 1

ENTER punkt ; занятие пункта 1

DEPART Other ; выход из очереди 1

ADVANCE 4,3 ; обслуживание на пункте 1

LEAVE punkt ; освобождение пункта 1

TERMINATE ; автомобиль покидает систему

; задание условий остановки процедуры моделирования

GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели

TERMINATE 1; остановить моделирование

START 1 ; запуск процедуры моделирования
```

Рис. 3.9: Код. Подбор кол-ва КПП, вторая стратегия, 4 КПП

```
GPSS World Simulation Report - Untitled Model 1.3.1
                          суббота, мая 24, 2025 21:59:37
                                       END TIME BLOCKS FACILITIES STORAGES 10080.000 9 0 1
                   0.000
                    NAME
                                                           VALUE
               OTHER
                                                   10001.000
                            LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
 LABEL
                                   GENERATE 5719
QUEUE 5719
                                    QUEUE
                                    ENTER
                                                              5719
                                                             5719 0

5719 0

5719 4

5715 0

5715 0

1 0
                                 ENIEK 5/19
DEPART 5719
ADVANCE 5719
LEAVE 5715
TERMINATE 5715
GENERATE 1
TERMINATE 1
             MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 7 0 5719 4356 0.194 0.341 1.431 0
                       CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 4 0 0 4 5719 1 2.253 0.563 0 0
STORAGE
FEC XN PRI BDT ASSEM CURRENT 5718 0 10082.346 5718 5 5717 0 10082.412 5717 5 5719 0 10083.393 5719 5 5721 0 10084.393 5721 0 5720 0 10085.162 5720 5 5722 0 20160.000 5722 0
                                           ASSEM CURRENT NEXT PARAMETER VALUE
                                         5720
5722
                          20160.000
```

Рис. 3.10: Отчет. Подбор кол-ва КПП, вторая стратегия, 4 КПП

В итоге стало ясно, что для второй стратегии оптимальным решением является З КПП

4 Выводы

В ходе этой лабораторной работы я релизовал с помощью gpss моедль двух стратегий обслуживания и оценил оптимальные параметры.