Problem Set 3

Zeshun Zong

In collaboration with Fiona, Shirley and Zunda

$$\mathbf{2} \quad D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Let
$$\det(\lambda I - D) = 0$$

$$\begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -2 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda^3 = 0$$

 \therefore Algebraic multiplicity is 3. The corresponding eigenvector is $\begin{vmatrix} 0 \end{vmatrix}$

∴Geometric multiplicity is 1.

4

i) Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $A^H = A$ implies that $b = \bar{c}$.

Recall that if $z \in \mathbb{C}$, then $z\bar{z} = |z|^2 \ge 0$

Now,
$$p(\lambda) = \lambda^2 - (a+d)\lambda + (ad-bc)$$

$$\Delta = (a+d)^2 - 4(ad-bc) = (a-d)^2 + 4b\bar{b} = (a-d)^2 + 4|b|^2 \ge 0$$

 \Rightarrow Real roots.

2 Suppose λ is an eigenvalue of A where $A^H = -A$. x is the corresponding eigenvector.

Then, $\langle Ax, x \rangle = \langle \lambda x, x \rangle = lambda \langle x, x \rangle$.

Also,
$$\langle Ax, x \rangle = \langle x, A^H x \rangle = \langle x, -Ax \rangle = -\langle x, \lambda x \rangle = -\lambda \langle x, x \rangle.$$

So we have $\bar{\lambda} = -\lambda$

 $\Rightarrow \lambda$ is pure imagery.

6 Suppose A is an upper triangular matrix.

$$\mathbf{A} = \begin{bmatrix} a_1 & & * \\ & a_2 & \\ & & \ddots & \\ 0 & & & a_n \end{bmatrix}$$

Then the characteristic polynomial is

$$\det(zI - A) = \begin{vmatrix} z - a_1 & & & * \\ & z - a_2 & & \\ & & \ddots & \\ 0 & & z - a_n \end{vmatrix} = \prod_{i=1}^n (z - a_i) = 0$$

Note that this polynomial has n zeros, which are $a_1, a_2, \ldots a_n$ respectively.

The case of upper triangular matrix is the same.

8

1 Since V = span(s), it suffices to show that the four vectors are linearly independent.

Let $a\sin(x) + b\cos(x) + c\sin(2x) + d\cos(2x) = 0$, $\forall x \in \mathbb{R}$.

Let
$$x = 0$$
: $b + d = 0$

Let
$$x = \frac{\pi}{2}$$
: $a - d = 0$

Let
$$x = \pi$$
: $-b + d = 0$

Let
$$x = \frac{\pi}{4}$$
: $a \sin(\frac{\pi}{4}) + b \cos(\frac{\pi}{4}) + c \sin(\frac{\pi}{2}) + d \cos(\frac{\pi}{2}) = 0$

From the above four conditions we can get a = 0, b = 0, c = 0, d = 0.

Since the only case that can let $a\sin(x) + b\cos(x) + c\sin(2x) + d\cos(2x) = 0$, $\forall x \in \mathbb{R}$. is when a = b = c = d = 0,

 \Rightarrow They are linearly independent.

$$\mathbf{2} \quad D = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

3
$$V_1 = \{\sin x, \cos x\}, V_2 = \{\sin 2x, \cos 2x\}$$

13 To diagonalize A, we first need to find eigenvalues and eigenvectors.

$$p(\lambda) = \lambda^2 - 1.4\lambda + 0.4 = 0$$

$$\Rightarrow \lambda_1 = 1, \lambda_2 = \frac{2}{5}$$

And
$$\Sigma_1 = span([2,1]^T), \Sigma_2 = span([1,-1]^T)$$

So A is semisimple.

Let
$$p = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$
, $then p^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$.
 $D = \begin{bmatrix} 1 & 0 \\ 0 & 0.4 \end{bmatrix}$
Then $D = p^{-1}Ap$.

15 Since $A \in M_n(\mathbb{F})$ is semisimple, we can diagonalize $A = pDp^{-1}$, where Dd is diagonalized, and $\{\lambda_i\}_{1}^n$ are the diagonal entries of D.

Now,
$$f(A) = f(pDp^{-1})$$

= $a_0I + a_1pDp^{-1} + \dots + a_npD^np^{-1}$
= $p[a_0I + a_1D + \dots + a_nD^n]p^{-1}$
= $pf(D)p^{-1}$

Observe that f(A) and f(D) are similar, so they have the same eigenvalues.

Also note that f(D) is also diagonal, so each entry along the diagonal is $f(D)_{ii} = a_0 + a_1 d_{ii} + \cdots + a_n d_{ii}^n = f(d_{ii})$, where $D = [d_{ij}]_{ij}$

Hence, the eigenvalues of f(D) are just its diagonals, which are $\{f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)\}$

16

$$\mathbf{1} \quad A = pD^{n}p_{-1} \\
= \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4^{n} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \\
\therefore \lim_{n \to \infty} A^{n} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \\
= \begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \\
\text{Let } B = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \text{ then it follows immediately from the definition of limit.}$$

2 The choice of norm does not affect the answer.

3 Let $f(x) = 3 + 5x + x^3$, then the eigenvalues of f(A) are $f(\lambda_1) = f(1) = 9$, $f(\lambda_2) = f(0.4) = 5.064$.

18 Take \vec{y} an eigenvector corresponding to λ . Then,

$$\begin{split} x^TAy &= x^T\lambda y = (\lambda x^Ty) \\ \Rightarrow x^TA &= \lambda x^T \end{split}$$

20 Let
$$B = U^H A U$$
, then,
 $B^H = U^H A^H U = U^H A U = B$, since $A^H = A$

24

$$1 \quad p(\vec{x}) = \frac{\langle x, Ax \rangle}{||x||^2}$$

Observe that the denominator is always a real number. Hence to show that $p(\vec{x}) \in \mathbb{R}$, $itsuffices to show that <math>\langle x, Ax \rangle \in \mathbb{R}$.

Now
$$\langle x, Ax \rangle = \langle A^H, x \rangle = -\langle Ax, x \rangle$$

Since by definition, $\langle x, Ax \rangle = \langle Ax, x \rangle$, we have $\langle Ax, x \rangle = \langle Ax, x \rangle \in \mathbb{R}$

This implies

$$\langle x, Ax \rangle \in \mathbb{R}$$

$$\Rightarrow p(x) \in \mathbb{R}$$

2 If
$$A^H = -A$$
, then

$$\langle x, Ax \rangle = \langle A^H, x \rangle = -\langle Ax, x \rangle$$

Also,
$$\langle x, Ax \rangle = \langle A\bar{x}, x \rangle$$

$$\therefore \langle A\bar{x}, x \rangle = -\langle Ax, x \rangle$$

This implies $\langle x, Ax \rangle = \bar{\langle Ax, x \rangle} \in \mathbb{C} \setminus \mathbb{R} \cup \{0\}$

Hence $p(\vec{x}) = \frac{\langle x, Ax \rangle}{||x||^2}$ is pure imaginary number.

25

1 Since $A \in M_n(\mathbb{C})$ is a normal matrix, its eigenspace $\{x_1, x_2, \dots, x_n\}$ spans \mathbb{C}^n .

Observe that $\forall j = 1, 2, \dots, n$,

$$(x_1x_1^H + x_2x_2^H + \dots + x_nx_n^H)x_j = x_1x_1^Hx_j + x_2x_2^Hx_j + \dots + x_nx_n^Hx_j = x_j$$

This holds for any j.

Since
$$\{x_1, x_2, \dots, x_n\}$$
 spans \mathbb{C}^n , $\forall \vec{v} = \mathbb{C}^n$, $\vec{v} = \sum a_i \vec{x}_i$

Let
$$B = x_1 x_1^H + x_2 x_2^H + \dots + x_n x_n^H$$
, then $B\vec{v} = \sum a_i B\vec{x}_i = \sum a_i \vec{x}_i = \vec{v}$.

Let $\vec{v} = \vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$ respective, then we get

$$Be_1 = e_1, Be_2 = e_2, \dots, Be_n = e_n$$

Hence B = I

2 Since A is a normal matrix and $\{x_1, x_2, \dots, x_n\}$ forms an orthonormal eigenbasis, A admits a diagonalization.

 $A = pDp - 1 = pDp^H$, where

$$p = [x_1, x_2, \dots, x_n] \quad D = \begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}$$

$$p^{-1} = p^H = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, since p is an orthonormal matrix.

Hence,
$$A = [x_1, x_2, \dots, x_n]$$

$$\begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix} \begin{bmatrix} x_1^H \\ x_2^H \\ \vdots \\ x_n^H \end{bmatrix} = \sum \lambda_i x_i x_i^H$$

27 Suppose
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \lambda_2 & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & & a_{nn} \end{bmatrix}$$
By definition, $\forall x, \quad x^H Ax > 0$
Now, let $x = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = e_i^{-1}$

Now, let
$$x = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = e_i^{-1}$$

then
$$e_1^H A e_1 = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} = a_{11} > 0$$

Similarly, let $x = e_2, e_3, \ldots, e_n$

we have $a_{22} > 0, a_{33} > 0, \dots, a_{nn} > 0$

Here all diagonal elements are positive and real.

28 Proof:

First we introduce the following lemmas used in the proof.

- Lemma 1: The diagonals of a positive semi-definite matrix are greater than or equal to zero. (Proof similar to exercise 4.27)
- Lemma 2: tr(AB) = tr(BA) (Proof can be found in Problem Set 2)
- Lemma 3: If $A \in M_n(\mathbb{F})$ is a positive semi-definite matrix, $D \in M_n(\mathbb{F})$ is a diagonal matrix with non-negative diagonals, then $0 \le tr(AD) \le tr(A)tr(D)$.

Proof. Suppose

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$D = \begin{bmatrix} d_{11} & & & \\ & d_{22} & & \\ & & \ddots & \\ & & & d_{nn} \end{bmatrix}$$

then $tr(AD) = \sum_{i=1}^{n} a_{ii} d_i \geq 0$, since $a_{ii} \geq 0$ and $d_i \geq 0$ for $\forall i$ $tr(A)tr(D) = (\sum_{i=1}^{n} a_{ii})(\sum_{i=1}^{n} d_i) = \sum_{i=1}^{n} a_{ii}d_i + \sum_{i \neq j} a_{ii}d_j \ge \sum_{i=1}^{n} a_{ii}d_i$

$$(2i) \circ (2i) \circ$$

Now since B is a positive semi-definite matrix, it admits a diagonalization s.t. $B = PDP^{-1} = PDP^{H}$, where

$$P = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

is an orthonormal eigenbasis,

$$D = \begin{bmatrix} d_{11} & & & \\ & d_{22} & & \\ & & \ddots & \\ & & & d_{nn} \end{bmatrix}$$

is diagonal matrix with $d_i \geq 0 \quad \forall i$.

Then
$$tr(AB) = tr(APDP^H) = tr(P^HAPD) \le tr(P^HAP)tr(D)$$

 $=tr(APP^H)tr(D)=tr(A)tr(D)=tr(A)tr(B).$

Meanwhile, $||AB||_F^2 = \text{tr}(AA^HBB^H) \le \text{tr}(AA^H) \text{tr}(BB^H) = ||A||_F ||B||_F^2$, which makes $||\cdot||_F$ a matrix norm.

31

1 Suppose A has rank r, then $A^{H}A$ is positive definite and has r distinct eigenvalues.

Let $s = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ be an orthonormal eigenspace of $A^H A$, and $\{\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2\}$ be the corresponding eigenvectors, where $\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_n^2$.

Since s spans \mathbb{F}^n , $\forall \vec{x} \in \mathbb{F}^n$, we have

$$\vec{x} = \sum_{i=1}^{n} c_i \vec{v_i}, c_I \in]mathbb{F}, \forall i, \text{ and }$$

$$||x||_2 = \sqrt{(\sum c_i v_i^T)(\sum c_i v_i)} = \sqrt{(\sum c_i^2)}$$

Hence if
$$||x||_2 = 1$$
, then $\sum_{i=1}^n c_i^2 = 1$

Hence if $||x||_2 = 1$, then $\sum_{i=1}^n c_i^2 = 1$ Now, observe that $||Ax||_2^2 = \langle Ax, Ax \rangle = (Ax)^H Ax = x^H A^H Ax$

$$= (\sum_{i=1}^{n} c_{i} \vec{v_{i}}^{H}) (A^{H} A) (\sum_{i=1}^{n} c_{i} \vec{v_{i}}^{i})$$

$$= (\sum_{i=1}^{n} c_{i} \vec{v_{i}}^{H}) (\sum_{i=1}^{n} c_{i} A^{H} A \vec{v_{i}}^{H})$$

$$= (\sum_{i=1}^{n} c_{i} \vec{v_{i}}^{H}) (\sum_{i=1}^{n} c_{i} A^{H} A \vec{v_{i}}^{H})$$

$$= (\sum_{i=1}^{n} c_i \vec{v_i}^H)(\sum_{i=1}^{n} c_i \vec{\sigma}^2 \vec{v_i}^H) = \sum_{i=1}^{n} c_i \vec{v_i}^H) = \sum_{i=1}^{n} c_i \vec{v_i}^H$$
 where $s = \{v_1, v_2, \dots, v_n\}$

Note that when $\sigma c_i^2 = 1$, and $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_n^2$,

$$\sum c_i^2 \sigma_i^2 \leq \sigma_1^2$$

Hence,
$$||A||_2^2 = \sup_{||x||_2=1} ||Ax||_2^2 = \sigma_1^2$$

$$\Rightarrow \|A\|_2 = \sigma_1$$

2 Since $A = U\Sigma V^H$

$$A^{-1} = (U\Sigma V^H)^{-1} = (V^H)^{-1}\Sigma^{-1}(U)^{-1} = V\Sigma^{-1}U^H$$

 \Rightarrow This is sti<u>l</u>l an SVD of A^{-1}

$$\Rightarrow$$
 This is still an SVD of A^{-1}
And $\Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma_1} & & & \\ & \ddots & & \\ & & \frac{1}{\sigma_n} \end{bmatrix}$

i.e. The singular values of $A^{-1}are$

$$\frac{1}{\sigma_1} \le \dots \le \frac{1}{\sigma_n}$$

By(1), $||A^{-1}||_2$ is the largest singular value of A^{-1} , i.e. $\frac{1}{\sigma_n}$

3 Since
$$A = U\Sigma V^H$$

$$A^H = (V^H)^H \Sigma^H U^H = V \Sigma^H U = V \Sigma U$$

 $\Rightarrow A^H$ and A has the same singular values.

So
$$||A^H||_2^2 = ||A||_2^2 = \sigma_1^2$$

 (A^T) is just A^H restricted on \mathbb{R} .

So
$$||A^T||_2^2 = ||A^H||_2^2$$

By the previous argument, we know that $A^H A$ has an orthonormal eigenbasis $\{v_1, v_2, \dots, v_n\}$, and $\forall \|x\|_2 = 1$, $\|A^H A x\|_2 = \|A^H A \sum c_i v_i\|_2 = \sqrt{(\sum c_i \sigma_i^2 v_i^T)(\sum c_i \sigma_i^2 v_i)} = \sqrt{\sum c_i \sigma_i^4} \le \sigma_1^2$

Hence
$$||A^H A||_2 = \sup_{||x||=1} ||A^H A x|| = \sigma_1^2$$

Hence
$$||A^H A||_2 = \sup_{\|x\|=1} ||A^H Ax|| = \sigma_1^2$$

It follows that $||A^H A||_2 = ||A||_2^2 = ||A^H||_2^2 = ||A^T||_2^2 = \sigma_1^2$

4 Lemma: Let Q be an orthonormal matrix, then $||AQ||_2 = ||A||_2$.

Proof. Let
$$S_1 = \{ ||AQ\vec{x}||, ||x||_2 = 1 \}, S_2 = \{ ||Ax||, ||x||_2 = 1 \}$$

Proof. Since Q is orthonormal, so Q is also invertible.

$$\forall s_1 \in S_1, \exists x, ||x|| = 1, \quad s.t. ||AQx||_2 = s_1$$

Now, let
$$y = Qx$$
, it follows that $||Qx|| = ||y||_2 = 1$

Since orthonormal matrix preserves length, $||Ay||_2 = ||AQx||_2 = s_1 \in S_2$

i.e.
$$S_1 \subset S_2$$

$$\forall s_2 \in S_2, \exists x, ||x||_2 = 1 \quad s.t. ||Ax||_2 = s_2$$

Now, let
$$y = Q^{-1}x$$
, then $||y||_2 = ||Q^{-1}x||_2 = 1$

Hence
$$||AQy||_2 = ||AQQ^{-1}x||_2 = ||Ax||_2 = s_2 \in S_1$$

i.e.
$$S_2 \subset S_1$$

$$\therefore \|AQ\|_2 = \sup S_1 = \sup S_2 = \|A\|_2$$

Now $||UAV||_2 = ||UA||_2$ by lemma since V is an orthonormal matrix.

$$\|UA\|_2 = \sup_{\|x\|_2 = 1} \sqrt{(UAx)^H (UAx)} = \sup_{\|x\|_2 = 1} \sqrt{x^H A^H U^H UAx}$$

$$= \sup_{\|x\|_2 = 1} \sqrt{\langle Ax, Ax \rangle} = \|A\|_2$$

Hence,
$$||UAV||_2 = ||UA||_2 = ||A||_2$$

32

- 1 We need the following lemmas:
- lemma 1: if $A, B \in M_n(\mathbb{F})$, then tr(AB) = tr(BA)
- lemma 2: $||A||_p^2 = tr(A^T A)$

Proof. let
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{1m} & \dots & a_{mn} \end{bmatrix}$$

Then
$$A^T = \begin{bmatrix} a_{11} & \dots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{mn} \end{bmatrix}$$

Observe that $(A^T A)_{nm} = a_{1n}^2 + a_{2n}^2 + \dots + a_{mn}^2$

$$\Rightarrow tr(A^T A) = ||A||_p^2$$

Now,
$$||UAV||_1^2 = tr((UAV)^T(UAV)) = tr(V^TA^TU^TUAV) = tr(V^TA^TAV) = tr(VV^TA^A) = tr(A^TA) = ||A||_1^2$$

 $\Rightarrow ||UAV||_2 = ||A||_2$

 ${\bf 2}$. Observe that $A=U\Sigma V^T,$ with U and V^T orthonormal and

$$\begin{split} \Sigma &= \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \\ & & 0 \end{bmatrix} \text{Now, } \|A\|_p^2 = tr(A^TA) = tr((U\Sigma V)^T(U\Sigma V)) = tr(U\Sigma^TU^TU\Sigma V^T) = tr(U\Sigma^2V^T) \\ &= tr(\Sigma^2) = \sum_{i=1}^r \sigma_i^2 \\ \text{Hence } \|A\|_p = \sqrt{\sum_{i=1}^r \sigma_i^2} \end{split}$$

33 Note that the Y^HAx will be a field element. Consider it as a linear map $Y^HAx: \mathbb{F} \to \mathbb{F}$, then the spectral norm of this map is:

$$||Y^H Ax||_2 = \sup_{f \in \mathbb{F}} \frac{||(Y^H Ax)f||_2}{||f||_2} = |Y^H Ax|$$

, where the first norm is spectral norm and the norm in fraction is the standard 2-norm.

36 One example can be
$$A = \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix}$$

36 One example can be
$$A = \begin{bmatrix} 4 & 0 \\ 3 & 5 \end{bmatrix}$$

then $A^T A = \begin{bmatrix} 25 & -15 \\ -15 & 25 \end{bmatrix}$
$$\det(A^T A - \lambda I) = \lambda^2 - 50\lambda + 400 = 0$$

$$\lambda_1 = 40, \lambda_2 = 10$$

Thus its singular value are $s_1 = \sqrt{40}, s_2 = \sqrt{10}$

To calculate its eigenvalues,

$$\det(A - \lambda I) = \lambda^2 - 9\lambda + 20 = 0$$

Thus its eigenvalues are $\lambda_1 = 4, \lambda_2 = 5$, which are different from its singular values.

(i) Suppose $U\Sigma V^H$ is an SVD of A, then $A^{\dagger} = V\Sigma^{-1}U^H$

$$AA^{\dagger}A = (U\Sigma V^H)(V\Sigma^{-1}U^H)(U\Sigma V^H) = U\Sigma V^H = A$$

$$A^{\dagger}AA^{\dagger} = (V\Sigma^{-1}U^H)(U\Sigma V^H)(V\Sigma^{-1}U^H) = V\Sigma^{-1}U^H = A^{\dagger}$$

 $(AA^{\dagger})^H = ((U\Sigma V^H)(V\Sigma^{-1}U^H))^H = U\Sigma^{-1}V^HV\Sigma U^H = UU^H = AA^{\dagger}$

(1V)
$$(A^{\dagger}A)^{H} = ((V\Sigma^{-1}U^{H})(U\Sigma V^{H}))^{H} = V\Sigma U^{H}U\Sigma^{-1}V^{H} = VV^{H} = A^{\dagger}A$$

```
(v)
By prop (iii) \Rightarrow AA^{\dagger} is hermitian.
Also by prop (i), AA^{\dagger}AA^{\dagger} = AA^{\dagger} \Rightarrow AA^{\dagger} is idempotent.

Next we will check whether \mathcal{R}(AA^{\dagger}) = \mathcal{R}(A).
It is trivially \mathcal{R}(AA^{\dagger}) \subset \mathcal{R}(A), and by prop(i) \Rightarrow \mathcal{R}(A) \subset \mathcal{R}(AA^{\dagger})
\Rightarrow \mathcal{R}(AA^{\dagger}) = \mathcal{R}(A)
(vi)
By prop (iv) A^{\dagger}A is hermitian.
Also by prop (ii) A^{\dagger}AA^{\dagger}A = A^{\dagger}A \Rightarrow A^{\dagger}A is idempotent

Next we will check whether \mathcal{R}(A^{\dagger}A) = \mathcal{R}(A^{H})
By prop (iv), AA^{\dagger} = (AA^{\dagger})^{H} = A^{H}(A^{\dagger})^{H} \implies \mathcal{R}(A^{\dagger}A) \subset \mathcal{R}(A^{H})
Then we take the hermitian of both sides of prop (i), we have (A^{\dagger}A)^{H}A^{H} = (A^{\dagger}A)^{H}A^{H}A^{H}A^{H} \Rightarrow \mathcal{R}(A^{H}) \subset \mathcal{R}(A^{\dagger}A)
\Rightarrow \mathcal{R}(A^{\dagger}A) = \mathcal{R}(A^{H})
```