AMA2222 Lab7 (week 8)

7 The number of permutations of r out of n distinct elements is given by:

$$P_r^n = \frac{n!}{(n-r)!} = n \times (n-1) \times ... \times (n-r+1)$$

where n! is the factorial of n.

$$n! = n \times (n-1) \times ... \times 3 \times 2 \times 1$$

- (i) Write a function called "factorial" that reads a positive integer n and return n!.
- (ii) Write a function called "permute" that reads two positive integers n, r and returns P_r^n . You may assume $n \ge r$. You can make use of factorial or otherwise.
- (iii) Using the function defined in (ii), write a program that displays P_r^n in table form as follows:

1									
2	2								
3	6	6							
4	12	24	24						
5	20	60	120	120					
6	30	120	360	720	720				
7	42	210	840	2520	5040	5040			
8	56	336	1680	6720	20160	40320	40320		
9	72	504	3024	15120	60480	181440	362880	362880	
10	90	720	5040	30240	151200	604800	1814400	3628800	3628800