BUISNESS REPORT 2023 REAL ESTATE

DATA ANALYSIS

TERRO'S REAL ESTATE AGENCY

ANALYSED BY
B. GUNAL

1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

Summary statistics of crime rate

CRIME_RATE				
Mean	4.871976			
Standard Error	0.12986			
Median	4.82			
Mode	3.43			
Standard	2.921132			
Deviation				
Sample Variance	8.533012			
Kurtosis	-1.18912			
Skewness	0.021728			
Range	9.95			
Minimum	0.04			
Maximum	9.99			
Sum	2465.22			
Count	506			

In the crime rate variables, the skewness is positively skewed. So, the most of the outliers falls on positive side.

The kurtosis is negative. So, this is platy Kurtic.

Summary statistics of distance

DISTANCE				
Mean	9.549407			
Standard Error	0.387085			
Median	5			
Mode	24			
Standard	8.707259			
Deviation				
Sample Variance	75.81637			
Kurtosis	-0.86723			
Skewness	1.004815			
Range	23			
Minimum	1			
Maximum	24			
Sum	4832			
Count	506			

In the distance variable the skewness is positively skewed. So, the most of the houses have a distance of less than 9.54 kilo meters form the highway road.

The kurtosis is negative so this is a "platykurtic".

Summary statistics of Average room

AVG_ROOM				
Mean	6.284634387			
Standard Error	0.031235142			
Median	6.2085			
Mode	5.713			
Standard Deviation	0.702617143			
Sample Variance	0.49367085			
Kurtosis	1.891500366			
Skewness	0.403612133			
Range	5.219			
Minimum	3.561			
Maximum	8.78			
Sum	3180.025			
Count	506			

Due to positive skewness most of the house should be less than 6 average rooms

The kurtosis is positive so this is a "Leptokurtic".

Summary statistics of LSTAT

LSTAT					
Mean	12.65306				
Standard Error	0.317459				
Median	11.36				
Mode	8.05				
Standard Deviation	7.141062				
Sample Variance	50.99476				
Kurtosis	0.49324				
Skewness	0.90646				
Range	36.24				
Minimum	1.73				

Maximum	37.97
Sum	6402.45
Count	506

Due to positively skewed the average lower status of the population must be less than 12.6%

2. Plot a histogram of the Av_ Price variable. What do you infer?

From the above Histogram chart, we conclude that,

- ➤ The highest number of houses from a range of average price between 22 to 25 and in that range we have around 133 houses.
- ➤ The lowest number of houses from a range of average price between 38 to 49 and we have a smaller number of houses in that particular range.
- ➤ 10 to 13 and 26 to 29 range of average price have a same count of houses. Nearly 32 houses in that range.

3. Compute the covariance matrix. Share your observations.

	CRIME_R ATE	AGE	INDUS	NOX	DISTANC E	TAX	PTRATIO	AVG_RO OM	LSTAT	AVG_PRI CE
CRIME_R	8.51614									
ATE	7873									
AGE	0.56291	790.792								
	5215	4728								
INDUS	-	124.267	46.9714							
	0.11021	8282	2974							
	5175									
NOX	0.00062	2.38121	0.60587	0.01340						
	5308	1931	3943	1099						
DISTANC	-	111.549	35.4797	0.61571	75.6665					
E	0.22986	9555	1449	0224	3127					
	0488									
TAX	-	2397.94	831.713	13.0205	1333.11	28348.6				
	8.22932	1723	3331	0236	6741	236				
	2439									
PTRATIO	0.06816	15.9054	5.68085	0.04730	8.74340	167.820	4.67772			
	8906	2545	4782	3654	249	8221	6296			
AVG_RO	0.05611	-	-	-	-	-	-	0.49269		
OM	7778	4.74253	1.88422	0.02455	1.28127	34.5151	0.53969	5216		
		803	5427	4826	7391	0104	4518			
LSTAT	-	120.838	29.5218	0.48797	30.3253	653.420	5.77130	-	50.8939	
	0.88268	4405	1125	9871	9213	6174	0243	3.07365	7935	
	0362							4967		
AVG_PRI	1.16201	-	-	-	-	-	-	4.48456	-	84.4195
CE	224	97.3961	30.4605	0.45451	30.5008	724.820	10.0906	5552	48.3517	5616
		5288	0499	2407	3035	4284	7561		9219	

• I have computed the covariance matrix for all the variables and I observe that if we got a positive value then that is a directly proportional and if we got a negative value then that is an inversely proportional.

From the above covariance matrix table,

- ➤ Distance is inversely proportional to average price
- Average room is directly proportional to average price
- > PTRATIO is directly proportional to LSTAT

4) Create a correlation matrix of all the variables (Use Data analysis tool pack)

a) Which are the top 3 positively correlated pairs and b) Which are the top 3 negatively correlated pairs.

From the above correlation matrix table these are the top 3 positively correlated pairs

- 0.910228 positively correlated between Tax and Distance
- 0.763651 positively correlated between Indus and NOx
- 0.73147 positively correlated between Age and NOx

	CRIME_ RATE	AGE	INDUS	NOX	DISTAN CE	TAX	PTRATI O	AVG_RO OM	LSTAT	AVG_P RICE
CRIME_	1									
RATE										
AGE	0.00685 9463	1								
INDUS	-	0.64477	1							
	0.00551	8511								
	0651									
NOX	0.00185 0982	0.73147 0104	0.76365 1447	1						
	-	0.45602	0.59512	0.61144	1					
DISTAN	0.00905	2452	9275	0563						
CE	5049									
TAX	-	0.50645	0.72076 018	0.66802	0.91022 8189	1				
	0.01674 8522	5594	018	32	8189					
PTRATI	0.01080	0.26151	0.38324	0.18893	0.46474	0.46085	1			
0	0586	5012	7556	2677	1179	3035				
AVG_R	0.02739	-	-	-	-	-	-	1		
OOM	616	0.24026	0.39167 5853	0.30218 8188	0.20984 6668	0.29204 7833	0.35550 1495			
		4931	0.60379	0.59087	0.48867	0.54399	0.37404		1	
LSTAT	0.04239	0.60233 8529	9716	8921	6335	3412	4317	0.61380	1	
	8321	6329						8272		
AVG_PR	0.04333	-	-	-	-	-	-	0.69535	-	1
ICE	7871	0.37695	0.48372 516	0.42732 0772	0.38162 6231	0.46853 5934	0.50778 6686	9947	0.73766 2726	
		4565	510	3772	3231	3334	3080		2720	

5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.

a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?

Regression Statistics	
Multiple R	0.737663
R Square	0.544146
Adjusted R Square	0.543242
Standard Error	6.21576
Observations	506

From the above regression summary output table

R square value is 0.54 and Adjusted R square value is 0.543

From the above table

LSTAT coefficient value is negative. So, if the LSTAT is increased then the Average price is decreased.

	Coefficients	Standard	t Stat	P-value	Lower 95%	Upper 95%
		Error				
Intercept	34.55384088	0.562627355	61.41514552	3.7431E-236	33.44845704	35.65922472
LSTAT	-0.950049354	0.038733416	-24.52789985	5.0811E-88	-1.0261482	-0.873950508

From the above chart we conclude that,

- After 25 and Below 5 the residual errors are to be Upper biased
- Between 5 to 25 the residual errors to be Biased and near to the linear line

b) Is LSTAT variable significant for the analysis based on your model?

	Coefficients	Standard	t Stat	P-value	Lower 95%	Upper 95%
		Error				
Intercept	34.55384088	0.562627355	61.41514552	3.7431E-236	33.44845704	35.65922472
LSTAT	-0.950049354	0.038733416	-24.52789985	5.0811E-88	-1.0261482	-0.873950508

Yes, LSTAT VARIABLE is significant for the analysis in this module.

6. Build a new Regression model including LSTAT and AVG_ROOM together as independent variables and AVG_PRICE as dependent variable.

a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging Undercharging?

Regression statistics for previous model

Regression Statistics	
Multiple R	0.799100498
R Square	0.638561606
Adjusted R Square	0.637124475
Standard Error	5.540257367
Observations	506

	Coefficients
Intercept	-1.358272812
AVG_ROOM	5.094787984
LSTAT	-0.642358334

OBSERVATION

1.Regression equation:

Y = (-1.358272812) + 5.094787984*AVG ROOM+(0.642358334) *LSTAT

2. Y = (-1.358272812) + 5.094787984*7+(-0.642358334) *20

AVG PRICE OF HOUSE	\$1,000.00
AVG_ROOM	7
LTSAT	20
PREDICTING AVG_PRICE	\$21,458.08

^{*} The company has quoted a value of 30000 USD for this locality

- * In this model, we used the regression equation to predict the AVG_PRICE for 7 rooms (on an average) and has a value of 20 for L-STAT, the value is \$21,458.08, which the company is overcharging.
- 7, Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted R square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

Regression Statistics	
Multiple R	0.832979
R Square	0.693854
Adjusted R	0.688299
Square	
Standard Error	5.134764
Observations	506

Since the Adjusted R Square value is 0.688299 it is above 50%. So, we conclude that this Regression model to be a good one.

Intercept	29.24131526
Adjusted R Square	0.688298647

variable	Insignificant
CRIME_RATE	0.534657201

variable	significant
Intercept	2.53978E-09
AGE	0.012670437
INDUS	0.03912086
DISTANCE	0.008293859
TAX	0.000137546
NOX	0.000251247
PTRATIO	6.58642E-15
AVG_ROOM	3.89287E-19
LSTAT	8.91071E-27

variable	significant
Intercept	2.53978E-09
AGE	0.012670437
INDUS	0.03912086
DISTANCE	0.008293859
TAX	0.000137546
NOX	0.000251247
PTRATIO	6.58642E-15
AVG_ROOM	3.89287E-19
LSTAT	8.91071E-27

OBSERVATION

- * In this model, adjusted R square is 68.82% which will give more impact to the AVG_PRICE.
- *CRITERIA: In this model, the significance should be less than 0.05. And the insignificance should be greater than 0.05.
- * Except CRIME_RATE(INSIGNIFICANCE), all other independent variable is significance.
- * INDUS has more significance compared to other independent variables.
- * LSTAT has less significance compared to other independent variables.
- * In this model, AVG_ROOM has higher coefficients (4.125) compared to other variables which means AVG_ROOM has higher weightage for predicting AVG_PRICE.
- 8, Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

Regression Statistics	
Multiple R	0.832835773
R Square	0.693615426
Adjusted R Square	0.688683682
Standard Error	5.131591113
Observations	506

B) OBSERVATION

In this model, Adjusted R square value is 68.86 %which gives more impact in AVG_PRICE predicting.

- * In this model, R square value is 68.86% which gives more impact to AVG_PRICE compared to previous model, because in previous model more variables are taken for predicting the value of AVG_PRICE, but in this model less variable are taken.
- * This model has better performance compared to previous model

variable	Coefficients
NOX	-10.27270508
PTRATIO	-1.071702473
LSTAT	-0.605159282
TAX	-0.014452345
AGE	0.03293496
INDUS	0.130710007
DISTANCE	0.261506423
AVG_ROOM	4.125468959
Intercept	29.42847349

- The Coefficient of NOX value is negative, which tends to decrease in AVG PRICE
- D)REGRESSION EQUATION

Y =INTERCEPT + 0.03*AGE+0.13*INDUS-10*NOX+0.26*DISTANCE *0.014*TAX+1.07*PTRATIO+4.12*AVG_ROOM-0.6*LSTAT

RECOMMENDATION:

- The most relevant price for the house should be lies between \$21-25k.
- AVG_PRICE has high positive correlation with the AVG_ROOM. so if the AVG_ROOM increases AVG_PRICE will increase.

LSTAT has low negative correlation with AVG_PRICE

- REGRESSION EQUATION: Y = (-1.358272812) +
 5.094787984*AVG_ROOM+(-0.642358334) *LSTAT
- So, if LSTAT decreases the AVG_PRICE will increase.

