목차

- 1. 서론
 - 1.1 주제 선정 이유
 - 1.2 데이터 수집
 - 1.3 데이터 소개
- 2. 분석
 - 2.1 데이터 전처리
 - 2.2 분산분석
 - 2.3 주성분 분석
- 3. 결론

1. 서론

1.1 주제 선정 이유

2020년 1분기, 코로나로 인해 전 세계 증시가 큰 폭으로 하락하였다. 코스피 지수 역시 1400p까지 하락한 모습을 보였으며, 이에 많은 개인투자자들이 주식시장에 대거 유입되었다. 코로나 확산이 장기화되면서 개인투자자들이 기관과 외국인에 맞서 주식을 대거 매입하면서 '동학개미운동'이라는 신조어까지 생겨났다. 이후 코스피가 사상 최고치를 기록하며 많은 사람들이 주식투자에관심을 가지게 된 만큼 우리 조는 2020년 한 해 동안 유가증권시장에 상장된 종목들을 대상으로성과를 분석하여 어떠한 특성을 가진 종목에 투자했었을 때, 성과가 좋았는지 분석하고자 하였다.

1.2 데이터 수집

코스피에 상장된 종목들의 데이터를 분석하기 위해 한국거래소(KRX)에 상장된 종목들의 데이터를 수집하고자 하였다. Python을 이용하여 크롤링하였으며, pykrx패키지를 사용하였다. 유가증권시장에 상장된 2566개 종목 중 시가총액 상위 2000여개 종목의 데이터를 수집하였으며, 이 중 표본기간 중 거래정지 등의 이유로 수집이 어려운 종목들을 제외한 1939종목의 데이터를 수집하였다.


```
a=df.index.values
stock code=a.tolist()
res = pd.DataFrame()
i = 1
for ticker in stock code[:1000]:
    try:
        df = stock.get_market_ohlcv_by_date(fromdate="20191201", todate="20210521", ticker=ticker)
        df1 = stock.get_market_cap_by_date(fromdate="20191201", todate="20210521", ticker=ticker)
                     stock.get_market_fundamental_by_date(fromdate="20191201", todate="20210521",
ticker=ticker)
        df = pd.concat([df, df1, df3], axis=1)
        df = df.assign(종목코드 = ticker, 종목명 = stock.get_market_ticker_name(ticker), brand = i)
        res = pd.concat([res, df], axis=0)
    except Exception:
        pass
    else:
        i = i+1
        time.sleep(1)
res = res.reset index()
res
res.to_excel("stock_data.xlsx")
```

1.3 데이터 소개

데이터 분석을 위해 종속변수 5개와 설명변수 6개를 설정하였다. 종속변수로는 로그수익률, 일 중변동성, 역사적변동성, 회전율, 거래량 지표를 사용하였으며, 설명변수로는 시가총액, 주가, 배당수익률, PER, PBR, 분기를 사용하였다.

로그수익률(x1): 전일대비 주가 상승률(%)

일중변동성(x2): Garman and Klass가 On the estimation of security price volatilities from historical data(1980)에서 산출한 1 일 단위 변동성(%)

역사적변동성(x3): 20일간 로그수익률을 사용하여 산출한 20일 역사적변동성(%)

회전율(x4): 시가총액 대비 거래대금으로 높을수록 유동성이 높음(%)

거래량(x5): 대표적인 유동성 지표

시가총액(x6): 시가총액이 높을수록 우량주

주가(7): 2018년 투자접근성을 높이고자 삼성전자 1주당 50주로 액면분할을 한 사례가 있음. 이에 착안하여 1주당 주가

수준 차이에 의한 투자성과 차이를 분석하고자 주가를 설명변수에 포함

배당수익률(x8): 주가대비 배당액

PER(x9): 일반적으로 PER이 높을수록 주가가 고평가 상태 PBR(x10): 일반적으로 PBR이 높을수록 주가가 고평가 상태

분기(x11) : 1분기~4분기

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N
1			로그수익률	일중변동성	역사적변동	회전율	거래량	시가총액	주가	배당수익률	per	pbr	투자시기	
2	날짜	brand	x1	x2	x 3	x4	x5	x6	x7	x8	x 9	x10	x11	
3	2020-01-02 00:00:00	1	-1.08109	5.060883	23.19961	0.218389	12993228	3295320	55200	2.57	8.54	1.56	1	
4	2020-01-03 00:00:00	1	0.542007	11.9741	22.55646	0.259628	15422255	3313229	55500	2.55	8.59	1.57	1	
5	2020-01-06 00:00:00	1	0	7.939681	22.01331	0.171271	10278951	3313229	55500	2.55	8.59	1.57	1	
6	2020-01-07 00:00:00	1	0.539085	12.69468	21.94247	0.168179	10009778	3331139	55800	2.54	8.64	1.58	1	
7	2020-01-08 00:00:00	1	1.776246	12.56297	21.92404	0.392511	23501171	3390836	56800	2.49	8.79	1.61	1	
8	2020-01-09 00:00:00	1	3.119837	15.13593	23.46881	0.401052	24102579	3498293	58600	2.42	9.07	1.66	1	
9	2020-01-10 00:00:00	1	1.524162	13.96759	23.65701	0.26615	16000170	3552021	59500	2.38	9.21	1.68	1	
10	2020-01-13 00:00:00	1	0.836825	11.92207	23.6599	0.189224	11359139	3581870	60000	2.36	9.29	1.7	1	
11	2020-01-14 00:00:00	1	0	12.57147	22.63455	0.285186	16906295	3581870	60000	2.36	9.29	1.7	1	
12	2020-01-15 00:00:00	1	-1.68071	5.21816	22.70753	0.240334	14300928	3522172	59000	2.4	9.13	1.67	1	
13	2020-01-16 00:00:00	1	2.840625	12.20545	24.26505	0.238019	14381774	3623658	60700	2.33	9.39	1.72	1	
14	2020-01-17 00:00:00	1	0.983614	15.58283	21.49588	0.269046	16025661	3659477	61300	2.31	9.49	1.73	1	
15	2020-01-20 00:00:00	1	1.778543	12.04807	21.623	0.209669	12528855	3725144	62400	2.27	9.66	1.77	1	
16	2020-01-21 00:00:00	1	-1.61554	7.486081	22.63541	0.187424	11142693	3665446	61400	2.31	9.5	1.74	1	
17	2020-01-22 00:00:00	1	1.455159	10.63017	22.83144	0.253788	15339565	3719175	62300	2.27	9.64	1.76	1	
18	2020-01-23 00:00:00	1	-2.43716	10.69938	24.68993	0.251353	14916555	3629628	60800	2.33	9.41	1.72	1	
19	2020-01-28 00:00:00	1	-3.34479	10.85416	27.79713	0.397228	23664541	3510232	58800	2.41	9.1	1.66	1	
20	2020-01-29 00:00:00	1	0.508907	10.88809	27.76745	0.276447	16446102	3528141	59100	2.4	9.15	1.67	1	
21	2020-01-30 00:00:00	1	-3.2677	2.030962	29.80096	0.352274	20821939	3414716	57200	2.48	8.85	1.62	1	
22	2020-01-31 00:00:00	1	-1.40847	11.49736	29.90054	0.336474	19749457	3366957	56400	2.51	8.73	1.6	1	
23	2020-02-03 00:00:00	1	1.408474	9.351743	29.95347	0.396532	23995260	3414716	57200	2.48	8.85	1.62	1	
24	2020-02-04 00:00:00	1	2 029710	17 86662	31 /0656	0.361/07	21800102	3516202	58900	2.4	0.12	1.67	1	

2. 분석

2.1 데이터 전처리

수집한 1939종목 중 우선주와 같이 PER, PBR과 같은 펀더멘탈을 산출할 수 없는 종목과 결측 데이터를 보유한 종목을 제외한 총 1827개 종목에 대한 분석을 실시하고자 하였다. 먼저 6개의 설명변수들이 연속형 변수들이므로 다음과 같은 기준으로 범주화 하였다.

구분	시가총액	주가	배당수익률	PER	PBR	분기
1	10조원 이상	10만원 이상	0%	0	1미만	1분기
2	1조원 이상	5만원 이상	0%대	0초과 10미만	1이상 2미만	2분기
3	5000억원 이상	3만원 이상	1%대	10이상 20미만	2이상 3미만	3분기
4	2000억원 이상	1만원 이상	2%대	20초과 40미만	3이상	4분기
5	1000억원 이상	5천원 이상	3% 이상	40이상 80미만		
6	1000억원 미만	5천원 이하		80이상		

	brand	기업명 x1			x4			х7	х8	х9	x10 :	x11
1	1	삼성전자 -2.512819e-01					_	2	4	2	2	1
2	1	삼성전자 1.648068e-01					_	2	4	3	2	2
3	1	삼성전자 1.521471e-01				19770543.48	_	2	4	3	2	3
4	1	삼성전자 5.419079e-01					_	2	4	4	2	4
5	2	SK하이닉스 -1.966282e-01				4513227.37	_	2	3	2	2	1
6	2	SK하이닉스 3.504670e-02					_	2	3	4	2	2
7	2	SK하이닉스 -2.032849e-02			0.5316977		_	2	3	4	2	3
8	2	SK하이닉스 5.640921e-01						2	3	4	2	4
9	3	NAVER -1.494077e-0	1 12.07082	4 32.0106	4 0.3654189	9 602649.0			-		4	1
10	3	NAVER 7.400823e-0	1 14.60128	7 50.1196	0 0.6286049	9 1033917.4	14 1	. 1	-	_	4	2
11	3	NAVER 1.637477e-0							-	_		3
12	3	NAVER -2.226648e-0	2 10.55365	7 30.8523	9 0.4599357	755031.9	92 1	. 1	. 2	5	4	4
13	4	LG화학 -6.478394e-02	2 13.922033	52.04404	0.7608337	535761.0	2 1	1	3	3	2	1
14	4	LG화학 7.788746e-01					0 1	1	2	5	2	2
15	4	LG화학 4.495032e-01	L 13.988257	52.91047	1.0532735	743672.1	71	1	2	6	3	3
16	4	LG화학 3.787921e-01	L 12.803410	45.18906	0.6567303	465672.6	4 1	1	2	6	4	4
17	5	삼성바이오로직스 1.729135e-01 1	L3.207224 4	2.91263 0	.3263935	216273.68	1	1 :	16	,	4	1
18	5	삼성바이오로직스 7.785556e-01 1	L4.781913 5	6.06388 0	.5630436	373209.77	1	1 :	16	,	4	2
19	5	삼성바이오로직스 -1.815179e-01 1	LO.958374 3	4.02902 0	.2816622	186120.05	1	1 :	16	,	4	3
20	5	삼성바이오로직스 2.949232e-01 1	11.533459 3	9.09447 0	.2300666	152473.49	1 :	1 :	16	,	4	4
21	6	카카오 2.085691e-02	13.086836	33.84514	0.8601520	745821.8	5 1	3	2	6	3	1
22	6	카카오 8.893029e-01	14.734323	45.66822	1.4496436	1267973.0	5 1	3	2	6	4	2
23	6	카카오 4.834642e-01	13.631452	41.06622	1.3447136	1183983.64	1 1	2	2	1	4	3
24	6	카카오 1.087518e-01	10.794887	32.43657	0.6869152	606558.84	1 1	2	2	1	4	4
25	7	현대차 -4.941772e-01	12.116666	40.84478	0.7237621	1543928.74	1 1	1	5	3	1	1
26	7	현대차 1.584290e-01	12.203752	51.55885	0.8132853	1739071.00	1	2	5	3	1	2
27	7	현대차 9.416985e-01	15.062255	50.97332	1.3200897	2828334.83	l 1	1	4	3	1	3
28	7	현대차 1.195193e-01	11.233452	32.47110	0.9490005	2030623.33	l 1	1	4	3	1	4
29	8	삼성SDI 3.046497e-02	2 14.507782	51.32343	1.0125071	694390.1	8 1	1	2	4	2	1
30	8	삼성SDI 6.771462e-01	L 14.215718	64.47610	1.1099051	763604.8	4 1	1	2	5	2	2
31	8	삼성SDI 2.751758e-01	L 13.174819	41.32211	0.7844805	539813.9	1 1	1	2	5	3	3
32	8	삼성SDI 6.076203e-01	12.501826	37.02776	0.6166078	425320.3	1 1	1	2	6	3	4
33	9	셀트리온 3.794004e-01	13.863502	40.05892	0.9011255	1169187.81	. 1	1	1	6	4	1
34	9	셀트리온 4.751817e-01	15.235024	63.28134	1.2457896	1642046.11	. 1	1	1	6	4	2

이후, 위 데이터의 이상치를 제거하고 파워변환을 통한 전처리 과정을 진행하여 데이터 분석에 용이하게 데이터를 가공하였다.

종속변수(x1~x5)의 히스토그램은 다음과 같다.(이상치 제거 X)

각 종속변수별 이상치를 제거한 후 히스토그램은 다음과 같다.

각 종속변수별 파워변환 후 히스토그램은 다음과 같다.

2.2 분산분석

1) 시가총액(x6)에 대한 분석

시가총액(x6) 수준에 따른 x1~x5의 평균이 동일한지 알아보기 위해 일원배치 다변량 분산분석을 실시하였다. 일원배치 다변량 분산분석 결과는 다음과 같다.

p-value가 유의수준 0.05보다 작아 "5개의 종속 변수의 평균 간 차이가 없다"는 귀무가설 H0가 기각된다. 이후 LSD.test를 진행하였으며, 결과는 다음과 같다.

로그수익률(x1)	일중변동성(x2)	역사적변동성(x3)	
\$groups x1 groups 1 0.11456890 a 4 0.07464685 a 2 0.06738177 ab 3 0.06384624 ab 5 0.05893998 ab 6 0.03535422 ab	\$groups x2 groups 6 14.74044 a 5 14.33587 b 4 14.06783 c 3 13.69318 d 2 13.23971 e 1 12.23891 f	\$groups x3 groups 6 23.59369 a 5 23.19710 ab 4 22.87938 bc 3 22.37046 cd 2 21.97982 d 1 19.31110 e	

회전율(x4)	거래량(x5)	x6의 최대유의선형결합
\$groups x4 groups 6 1.0854780 a 5 1.0712972 a 4 1.0315139 b 3 0.9884376 c 2 0.9604911 c 1 0.8811553 d	\$groups x5 groups 1 56.26238 a 2 48.70286 b 5 44.85824 c 6 44.44186 cd 3 42.99060 de 4 42.68689 e	\$vectors [,1] [1,] -0.18029644 [2,] 0.11307030 [3,] -0.03449558 [4,] 0.97641604 [5,] -0.01140538

시가총액이 큰 우량기업일수록 일중변동성과 역사적변동성이 작게 나타났다. 시가총액이 낮은 기업일수록 회전율이 큰 것으로 나타났는데, 이는 거래대금을 시가총액으로 나눈 회전율의 특성 상 시가총액이 낮을수록 회전율이 크게 나온 것으로 예상된다. 시가총액이 가장 큰 1그룹과 2그룹의 로그수익률 및 거래량이 비교적 크게 나타났다.

최대유의선형결합에서 가장 중요한 변수는 회전율(x4)로 나타났다.

2) 주가(x7)에 대한 분석

주가(x7) 수준에 따른 x1~x5의 평균이 동일한지 알아보기 위해 일원배치 다변량 분산분석을 실시하였다. 일원배치 다변량 분산분석 결과는 다음과 같다.

```
Df Wilks approx F num Df den Df Pr(>F)
x7 5 0.72263 86.155 25 23568 < 2.2e-16 ***
Residuals 6348
```

p-value가 유의수준 0.05보다 작아 "5개의 종속 변수의 평균 간 차이가 없다"는 귀무가설 H0가 기각된다. 이후 LSD.test를 진행하였으며, 결과는 다음과 같다.

로그수익률(x1)	일중변동성(x	2)	역사적변동성(x3)		
\$groups		\$groups		\$groups		
x1 gr	oups	x2 gr	oups	x3 groups		
2 0.10227287	a	6 14.58565	a.	4 23.99266	a	
3 0.10049958	a	4 14.52628	a	6 23.32884	b	
4 0.08615391	a	5 14.20123	b	5 23.09083	b	
1 0.07686117	a	3 13.65713	C	3 22.26798	C	
5 0.06238144	a	1 12.83051	d	1 20.45106	d	
6 0.00931552	b	2 12.73548	d	2 19.69876	d	
회전율(x4)		거래량(x5)		x7의 최대유의선학	ອ결합 형결합	

\$groups	\$groups	\$vectors
x4 groups 5 1.0768265 a 4 1.0703136 a 6 1.0639306 a 3 1.0072099 b 1 0.9096206 c 2 0.8988685 c	x5 groups 6 52.24758 a 5 43.94492 b 4 42.09444 c 3 38.76280 d 1 33.22280 e 2 31.87858 e	[,1] [1,] 0.23845583 [2,] -0.16473245 [3,] 0.04316339 [4,] 0.95589427 [5,] -0.02012721

주가에 대한 분석에서 눈에 띄는 변수는 변동성(x2, x3)과 유동성(x4, x5)이다. 주가가 높은 그룹 (1~3)의 변동성이 비교적 낮은 모습을 보이며, 반대로 주가가 낮은 그룹(4~6)은 유동성이 큰 모습을 보였다. 이는 1주당 주식가격이 낮을수록 접근성이 높아져 거래가 활발히 이뤄지며, 이에 따라 주가가 낮은 그룹의 변동성이 높은 그룹보다 비교적 높게 나타난 것이라 예상된다. 실제로 삼성 전자는 2018년 4월 액면분할을 통해 투자 접근성을 높여 삼성전자 주식거래의 유동성을 높이고 자 한 사례가 있다.

최대유의선형결합에서 가장 중요한 변수는 회전율(x4)로 나타났다.

3) 배당수익률(x8)에 대한 분석

배당수익률(x8) 수준에 따른 x1~x5의 평균이 동일한지 알아보기 위해 일원배치 다변량 분산분석을 실시하였다. 일원배치 다변량 분산분석 결과는 다음과 같다.

p-value가 유의수준 0.05보다 작아 "5개의 종속 변수의 평균 간 차이가 없다"는 귀무가설 H0가 기각된다. 이후 LSD.test를 진행하였으며, 결과는 다음과 같다.

로그 수익률(x1)	일중 변동성(x2)	역사적변동성(x3)
\$groups x1 groups 2 0.14176379 a 3 0.07208532 b 1 0.04838188 b 4 0.04331353 b 5 -0.02239840 c	\$groups x2 groups 1 15.20769 a 2 14.61835 b 3 14.01915 c 4 13.50636 d 5 12.21516 e	\$groups x3 groups 1 25.38520 a 2 24.32507 b 3 22.42428 c 4 20.92000 d 5 18.19081 e
회전율(x4)	거래량(x5)	x8의 최대유의선형결합

\$groups		\$groups		\$vectors
x4 gr	oups	x5 gr	oups	[,1]
1 1.1278736 2 1.1276697	a a	1 51.69766 2 45.54917	a h	[1,] 0.414711694 [2,] -0.284150901
3 1.0306302	b	3 41.24162	c	[3,] 0.032734600
4 0.9617249	C	4 38.54914	d	[4,] -0.863794636
5 0.8503706	d	5 35.23091	е	[5,] -0.007729746

배당수익률이 가장 높은 5그룹(3% 이상)의 경우, 로그수익률이 음수로 나타나며 가장 저조한 수익률을 기록했다. 배당수익률이 낮은 그룹일수록 변동성과 유동성이 높았으며, 수익률 또한 상승하는 경향을 보였다.

일반적으로 고배당주는 기업의 영업이익을 주주에게 환원하는 성향이 강하여 안정적인 배당을 기대할 수 있지만, 그만큼 미래 성장성이 제한적일 가능성이 크다. 반면, 저배당주는 재투자를 우선시하는 성장형 기업이 많아 높은 유동성과 변동성을 보였지만 장기적으로 높은 수익률을 기록할 가능성이 크다.

이러한 결과는 배당수익률이 높은 종목이 안정적인 투자처라는 기존 통념과 다소 차이가 있으며, 투자 전략 수립 시 배당수익률뿐만 아니라 성장성과 변동성을 함께 고려해야 함을 시사한다.

위 결과를 바탕으로, 배당수익률 그룹별 로그수익률, 변동성, 회전율을 비교한 그래프를 아래에 제시한다. 본 연구는 배당 전략을 활용한 투자 전략 수립 및 리스크 조절에 참고할 수 있는 지표로 활용 가능하다.

4) PER(x9)에 대한 분석

PER(x9) 수준에 따른 x1~x5의 평균이 동일한지 알아보기 위해 일원배치 다변량 분산분석을 실시하였다. 일원배치 다변량 분산분석 결과는 다음과 같다.

p-value가 유의수준 0.05보다 작아 "5개의 종속 변수의 평균 간 차이가 없다"는 귀무가설 H0가 기각된다. 이후 LSD.test를 진행하였으며, 결과는 다음과 같다.

로그수익률(x1)	일중변동성(x2)	역사적변동성(x3)		
\$groups	\$groups	\$groups		
x1 groups	x2 groups	x3 groups		
6 0.13065042 a	1 15.18648 a	6 25.15395 a		
5 0.10806123 ab	6 14.86545 b	1 25.00084 a		
4 0.09955675 ab	5 14.75056 b	5 24.60000 a		
3 0.07066809 b	4 14.40619 c	4 23.31157 b		
1 0.02275330 c	3 13.87348 d	3 22.16945 c		
2 0.01270684 c	2 13.15257 e	2 20.58447 d		
회전율(x4)	거래량(x5)	x9의 최대유의선형결합		
\$groups	\$groups	\$vectors		
x4 groups	x5 groups	[,1]		
6 1.1609763 a	6 52.32000 a	[1,] -0.58793790		
5 1.1209037 b	1 50.76795 a	[2,] 0.40645896		
1 1.1089935 bc	5 47.90738 b	[3,] -0.07512620		
4 1.0919292 c	4 44.64551 c	[4,] 0.69512632		
3 1.0223550 d	3 41.61434 d	[5,] 0.01660097		
2 0.9274704 e	2 38.26579 e	23,3 31323331		

PER이 낮은 기업일수록 변동성과 유동성이 작게 나타났다. 그룹1은 PER이 0인 그룹으로 PER이 가장 낮지만 PER=시가총액 / 순이익 이므로 그룹1은 저평가 상태가 아닌 순이익 0 이하인 적자 기업으로 분류된다. 분석결과 PER이 높은 그룹(4~6)의 수익률이 비교적 높게 나타났으며, 변동성과 유동성도 높은 것으로 나타났다.

최대유의선형결합에서 가장 중요한 변수는 회전율(x4)과 로그수익률(x1)으로 나타났다.

5) PBR(x10)에 대한 분석

PBR(x10) 수준에 따른 x1~x5의 평균이 동일한지 알아보기 위해 일원배치 다변량 분산분석을 실시하였다. 일원배치 다변량 분산분석 결과는 다음과 같다.

p-value가 유의수준 0.05보다 작아 "5개의 종속 변수의 평균 간 차이가 없다"는 귀무가설 H0가 기각된다. 이후 LSD.test를 진행하였으며, 결과는 다음과 같다.

로그수익률(x1)	일중변동성(x2)	역사적변동성(x3)
\$groups x1 groups 4 0.13045699 a 3 0.06823245 b 2 0.06432323 b 1 0.01965514 c	\$groups x2 groups 4 15.45603 a 3 14.77477 b 2 14.52001 c 1 13.39306 d	\$groups x3 groups 4 26.30785 a 3 24.51650 b 2 23.76400 c 1 20.82827 d
회전율(x4)	거래량(x5)	x10의 최대유의선형결합
\$groups x4 groups 4 1.1705532 a 3 1.1360672 b 2 1.0981273 c 1 0.9421122 d	\$groups x5 groups 4 49.55667 a 3 48.77536 a 2 47.04514 b 1 40.07296 c	\$vectors [,1] [1,] -0.084044021 [2,] 0.040676286 [3,] -0.003190146 [4,] 0.995618016 [5,] -0.004078178

PBR이 높은 기업일수록 모든 종속변수(x1~x5)가 높게 나타났다. PER과 PBR이 낮을수록 주가가 저평가 상태에 있음을 의미한다. PER과 PBR이 높은 업종은 IT, 바이오, 제약과 같은 고부가 가치기업이다. 이들 기업은 미래에 기대가치가 높기에 현재실적대비 주가가 고평가 된다는 특징이 있다. 작년 한해동안 코로나로 인해 큰 주가하락이 있었지만 코로나 회복에 대한 기대감과 더불어 많은 자금이 증시로 유입되면서 증시가 사상 최고가를 기록하기도 하였다. 작년 한해동안 성과를 분석하였을 때, PER과 PBR이 높은 주식의 수익률 및 유동성이 높게 나타났지만 그만큼 변동성도 크게 나타난 모습이다.

최대유의선형결합에서 가장 중요한 변수는 회전율(x4)로 나타났다.

6) 분기(x11)에 대한 분석

PER(x9) 수준에 따른 x1~x5의 평균이 동일한지 알아보기 위해 일원배치 다변량 분산분석을 실시하였다. 일원배치 다변량 분산분석 결과는 다음과 같다.

p-value가 유의수준 0.05보다 작아 "5개의 종속 변수의 평균 간 차이가 없다"는 귀무가설 H0가 기각된다. 이후 LSD.test를 진행하였으며, 결과는 다음과 같다.

로그수익률(x1)	일중변동성(x2)	역사적변동성(x3)	
\$groups x1 groups 2 0.3830962 a 4 0.1727287 b 3 0.1664154 b 1 -0.4879392 c	\$groups x2 groups 2 15.23454 a 1 14.41385 b 3 14.07007 c 4 13.19715 d	\$groups x3 groups 2 26.90159 a 1 23.25580 b 3 22.39553 c 4 19.62436 d	
회전율(x5)	거래량(x6)	x11의 최대유의선형결합	
\$groups x4 groups 3 1.0834952 a 2 1.0622083 b 4 1.0583912 b 1 0.9848693 c	\$groups x5 groups 3 46.59544 a 2 45.53277 ab 4 45.22930 b 1 41.24904 c	\$vectors [,1] [1,] 0.4369764484 [2,] -0.0925471131 [3,] -0.0172703910 [4,] 0.8945323787 [5,] -0.0004151778	

분석결과 1분기의 수익률, 유동성이 다른 분기에 비해 가장 낮은 것을 볼 수 있다. 2020년 1분 기는 코로나로 인해 주가가 하락한 시기이다. 따라서 증시가 침체되어 수익률과 유동성이 가장 낮은 시기로 보인다. 수익률과 변동성이 가장 큰 시기는 2분기로 코스피가 연중 최저점을 찍은 1분기를 지나 주가가 이전 수준으로 회복하는 기간이었다. 유동성이 가장 큰 시기는 3분기로 나타났으며, 변동성이 가장 작은 시기는 4분기였다. 4분기는 코스피 지수가 연중 가장 큰 폭으로 상승한 시기였다. 하지만 변동성이 가장 작은 시기로 나타났는데, 이는 코스피 지수가 시가총액 가중 평균 방식이기에 상위 우량주에 편향된 성격을 띠기 때문으로 예상된다.

실제로 4분기 데이터를 대상으로 로그수익률을 종속변수, 시가총액을 설명변수로 한 일원배치 일변량 분산분석 결과 시가총액이 높은 1그룹과 2그룹의 로그수익률이 가장 크게 나타났다.

최대유의선형결합에서 가장 중요한 변수는 회전율(x4)과 로그수익률(x1)으로 나타났다.

일원배치 일변량 분산분석(4분기 데이터 : x1~x6)					
Df Wilks approx F num Df den Df Pr(>F) x6 5 0.72513 21.518 25 5952.7 < 2.2e-16 *** Residuals 1606	\$groups x1 groups 1 0.2808200 a 2 0.2239869 a 6 0.1832725 ab 4 0.1783269 ab 5 0.1468392 b 3 0.1393324 b				

2.3 주성분 분석

독립변수들 간 상관관계를 확인하기 위해 상관행렬 plot을 그려보았으며, 주성분 분석 시행결과 분산비율은 다음과 같았다.

주성분 분석 시행 후 분산비율을 확인하였으며, 분산 1이 넘는 PC1과 PC2 두개의 주성분변수를 결정하였다. PC1과 PC2 두개의 변수로 약 74.36% 설명이 가능하다.

biplot확인 결과 PC1에서는 x2(일중변동성), x3(역사적변동성), x4(회전율)이 상대적으로 큰 영향을 미치고 이는 PC1이 변동성과 유동성에 대한 지표라고 볼 수 있다. PC2에서는 x5(거래량) 상대적으로 가장 큰 영향을 미치는 변수이고 거래량에 대한 지표라고 볼 수 있다.

기존변수와 주성분 점수는 다음과 같다.

	기존변수와 주성분점수						
70	brand	기업명 x1 x2 x3 x4 x5 PC1 PC2					
1	1	삼성전자 -2.512819e-01 11.238987 33.21986 0.4154745 24784526.84 0.9474152926 -5.266858560					
2	1	삼성전자 1.648068e-01 10.681619 37.66597 0.3614445 21570588.05 0.7480686347 -4.324603423					
3	1	삼성전자 1.521471e-01 9.695329 28.14375 0.3318704 19770543.48 0.2529024568 -4.046595743					
4	1	삼성전자 5.419079e-01 10.494756 24.85571 0.3713184 22196522.64 0.7345229810 -4.360828251					
5	2	sk하이닉스 -1.966282e-01 12.580678 38.87025 0.6203346 4513227.37 -0.6444659909 -0.917932382					
6	2	5K하이닉스 3.504670e-02 11.107617 48.03786 0.6015350 4378000.44 -0.7142897234 -0.696820260					
7	2	sk하이닉스 -2.032849e-02 9.965695 27.38062 0.5316977 3865252.30 -1.2894448545 -0.810605101					
8	2	sk하이닉스 5.640921e-01 12.581989 35.74899 0.5246104 3824908.26 -0.4798849273 -0.372555178					
9	3	NAVER -1.494077e-01 12.070824 32.01064 0.3654189 602649.02 -1.2133871628 -0.123770699					
10	3	NAVER 7.400823e-01 14.601287 50.11960 0.6286049 1033917.44 -0.1032654491 0.456912721					
11	3	NAVER 1.637477e-01 12.624565 37.95314 0.6352146 1042693.05 -0.8490356358 0.004339325					
12	3	NAVER -2.226648e-02 10.553657 30.85239 0.4599352 755031.92 -1.4387773047 -0.117201954					
13	4	LG화학 -6.478394e-02 13.922033 52.04404 0.7608337 535761.02 -0.5368641592 0.116384754					
14	4	LG화학 7.788746e-01 14.029245 60.69141 0.8481770 599999.90 -0.0700235159 0.645533425					
15	4	LG화학 4.495032e-01 13.988257 52.91047 1.0532735 743672.17 -0.2793589885 0.354202389					
16	4	LG화학 3.787921e-01 12.803410 45.18906 0.6567303 465672.64 -0.6887471173 0.309777066					
17		삼성바이오로직스 1.729135e-01 13.207224 42.91263 0.3263935 216273.68 -0.7725076203 0.247313736					
18		삼성바이오로직스 7.785556e-01 14.781913 56.06388 0.5630436 373209.77 -0.0410277984 0.674286966					
19	_	삼성바이오로직스 -1.815179e-01 10.958374 34.02902 0.2816622 186120.05 -1.4474863002 -0.045704829					
20	5	삼성바이오로직스 2.949232e-01 11.533459 39.09447 0.2300666 152473.49 -1.1014564610 0.280001970					
21	6	한카오 2.085691e-02 13.086836 33.84514 0.8601520 745821.85 -0.8862577526 -0.053410726					
22	6	카카오 8.893029e-01 14.734323 45.66822 1.4496436 1267973.05 -0.0003137229 0.416448436					
23	6	한칸오 4.834642e-01 13.631452 41.06622 1.3447136 1183983.64 -0.4338392561 0.159701245					
24	6	카카오 1.087518e-01 10.794887 32.43657 0.6869152 606558.84 -1.3205234821 -0.006581617					
25	7	현대자 -4.941772e-01 12.116666 40.84478 0.7237621 1543928.74 -1.0902189707 -0.452087221					
26	7	현대자 1.584290e-01 12.203752 51.55885 0.8132853 1739071.00 -0.6560347640 -0.039120953					
27	7	현대자 9.416985e-01 15.062255 50.97332 1.3200897 2828334.81 0.2942023955 0.173559904					
28	7	현대자 1.195193e-01 11.233452 32.47110 0.9490005 2030623.31 -1.0782011838 -0.306397659					
29	8	삼성SDI 3.046497e-02 14.507782 51.32343 1.0125071 694390.18 -0.3696040219 0.125300201					

다음은 상위 5개 기업의 분기별 평균값을 요약한 것이다.

기업명	x1 (로그수익률)	x2 (일중변동성)	x3 (역사적변동성)	x4 (회전율)	x5 (거래량)	PC1	PC2
	\ · · · _ /	(2000)	(7/17/200)	(되는 = /	(गवाठ)		
삼성전자	0.155730	10.716423	30.398185	0.36137	22,585,54	0.79549	4.06456
				4	4.09	0	9
SK 하이닉스	0.440296	12.552845	35.765410	0.55307	41,744,22	0.43181	0.33735
				0	7.49	0	9
NAVER	0.462449	12.581157	37.824373	0.62088	1,029,184	0.12980	0.46192
				1	.75	8	3
LG 화학	0.682089	12.545102	35.821262	0.33512	754,971.4	0.14294	0.20697
				9	5	5	8
삼성바이오	0.785740	14.646382	36.859640	0.44048	152,510.5	0.24151	0.67480
로직스				8	7	4	1

삼성전자와 SK 하이닉스는 낮은 변동성(x2, x3)과 높은 거래량(x5)을 기반으로 안정적인 장기투자에 적합한 대형주로 나타났다.

NAVER 는 유동성(x4)과 변동성이 다소 높은 특성을 보여, 단기 매매 전략에 유리한 것으로 보인다.

LG 화학은 높은 로그수익률(x1)과 안정된 변동성을 겸비하여 안정성과 수익성을 모두 고려한 투자에 적합하다.

삼성바이오로직스는 높은 변동성과 낮은 거래량을 가진 고위험-고수익 종목으로, 공격적인 성장주 투자에 적합하다고 나타났다.

		PC1 오름차순 정렬					
	brand	기업명 x1 x2 x3 x4 x5 PC1 PC2					
1	1534	동방아그로 0.041504603 6.988533 7.258589 0.07542872 10290.0656 -2.502005 -0.155776450					
2	925	진로발효 0.026919230 7.142507 7.820328 0.05510184 3645,9016 -2.473486 -0.154869151					
3	942	신라교역 -0.071935687 7.446860 8.592808 0.17278573 27689 3934 -2.432066 -0.209950947					
4	1271	신흥 -0.008542941 7.585793 6.661868 0.02853326 2751.4688 -2.423769 -0.178151886					
5	875	동일산업 0.156246196 7.194744 6.579791 0.19597980 4770.7377 -2.422452 -0.099669739					
6	456	퍼시스 0.030340759 7.513987 8.575081 0.02712107 3118.6719 -2.395697 -0.140637625					
7							
	925						
8	520	세아홀딩스 -0.685054076 7.882615 23.159517 0.08426881 3373.2742 -2.383746 -0.409839118					
9	1190	미창석유 0.108011933 7.571506 8.284566 0.03178156 554.1475 -2.360337 -0.098923143					
10	1389	인천도시가스 0.003281972 7.702972 11.667555 0.05341917 2338.2951 -2.325639 -0.127483678					
11	1389	인천도시가스 -0.322414035 8.306509 13.667206 0.03546096 1553.8548 -2.309023 -0.283307769					
12	821	일신방직 -0.713634964 8.766199 17.906943 0.11419451 2750.6774 -2.303927 -0.462503866					
13	1645	삼화왕관 0.023045475 8.179583 7.393980 0.08341101 1766.6066 -2.288752 -0.149463182					
14	1453	신영와코루 -0.563802381 8.442375 19.044411 0.19210525 1728.5645 -2.285874 -0.376229557					
15	1190	미창석유 0.082606618 7.969332 11.211377 0.03355349 584.5156 -2.255513 -0.082910870					
16	520	세아홀딩스 -0.028549635 8.075997 15.099836 0.01065663 426.1250 -2.224258 -0.108508232					
17	1526	삼양옵틱스 0.078503734 8.120435 10.255160 0.35538035 35971.4590 -2.214554 -0.113722119					
18	1281	승일 0.022276794 8.297150 11.350781 0.13454447 8265.2295 -2.207277 -0.117605016					
19	390	빙그레 -0.053661192 8.049118 16.105320 0.23464072 23109.8197 -2.204904 -0.128882956					
20	456	퍼시스 0.059107226 8.485712 9.011434 0.01065055 1222.7869 -2.202173 -0.108263386					
21	405	신영증권 -0.268768373 8.533015 17.044036 0.07081882 6642.3871 -2.196912 -0.223932994					
22	576	농심홑딩스 0.064804654 8.059524 14.310637 0.12994388 6050.5410 -2.194039 -0.070174553					
23	1111	미원화학 0.129452920 7.752514 17.607390 0.05944403 1312.0820 -2.185911 -0.004796734					
24	41	KT -0.496182030 8.125202 21.916931 0.33506418 875631.6452 -2.183351 -0.507401289					
25	557	LG헬로비전 0.002113919 8.103731 14.021884 0.33988143 262583.3607 -2.172324 -0.170490339					
26	1779	금비 -0.533311674 9.213045 17.822199 0.10912355 1062.4516 -2.156906 -0.357009570					
27	1047	노루홀딩스 -0.028857420 8.626700 12.501012 0.06360588 8477.4688 -2.155076 -0.129007047					
28	107	에스원 -0.047520552 8.243342 17.236554 0.18862817 71686.6230 -2.149974 -0.121440281					
29	719	крх홀딩스 -0.506055343 9.208727 18.997165 0.03717583 1569.8710 -2.136573 -0.328480124					
30	884	제주은행 -0.829224457 9.502825 23.451752 0.09404880 30241.2097 -2.132636 -0.474641221					
31	1442	천일고속 -0.485653375 8.972765 22.413458 0.05017220 720.1935 -2.123324 -0.290441634					
32	1389	인천도시가스 0.063914841 8.560386 13.116877 0.10497936 4472.5000 -2.121390 -0.073767948					
33	1111	미원화학 0.130996529 8.330668 15.102925 0.07156896 1575.6562 -2.113580 -0.019640698					
34	389	매일유업 -0.247450493 8.725995 18.962922 0.32512267 25486.6094 -2.105227 -0.208451920					
35	1452	정상제이엘에스 0.058270389 8.684379 11.479702 0.32264836 50746.6393 -2.102527 -0.109302031					
	PC2 오름차순 정렬						

	brand	기업명	x1 x2 x3 x4 x5 PC1 P	C2
1	1824		-0.74573379 14.364130 74.32177 9.2823332 75506611 7.4863172 -16.2116.	
2			1.34318274 20.525326 99.22914 31.4942354 75683875 11.4697128 -15.796732	
3	1311	서울식품	0.71427048 15.211040 59.10149 19.8597168 67270286 7.9903753 -14.2664	
4	584	에스맥	0.22491987 19.367090 108.74243 25.3701950 62787104 9.2618209 -13.3619	
5	1027	이화전기	0.46021238 14.967808 57.54100 7.7090372 54251551 5.6385387 -11.1393.	
6	566	이아이디	0.44327285 18.013549 90.15681 8.2106664 48840209 6.1665530 -9.7127	
7	584	에스맥	0.40597675 16.335694 70.38861 16.7397706 43105372 5.6719519 -9.1043	
8	499	이트론	0.09681598 18.224854 98.34366 12.4067033 43063842 5.9588285 -8.8060	
9	185		13.76644086 41.650637 395.33562 66.6742106 4831850 9.7912232 -8.06133	
10	846	KEC	1.34764793 20.541679 120.81056 33.1472872 38818490 8.3527929 -7.927	
11	531	초록뱀미디어	0.97591330 17.698629 66.70625 29.3064246 35064278 6.2751410 -7.67862	
12	1311	소 ~ 급하다이 서울식품	-0.31250041 15.904541 63.28457 10.7382702 34512540 3.9360841 -7.4942	
13	979	시르기미	1.68200857 22.932760 116.02611 90.6547141 24621097 11.9126679 -7.3616	
14	400	 신성이엔지	0.84458299 17.947696 96.13631 18.3828588 36147225 5.9482660 -7.22711	
15	851	오성첨단소재	0.96358470 19.801142 113.93572 48.4037060 30672899 8.3690927 -7.18526	
16	481	케이피엠테크	1.97653224 21.440057 118.64614 30.6310702 36063265 8.2607047 -6.89342	
17	1103	게이피금네그	0.01819491 24.115205 163.36741 52.2247166 26819727 9.4280342 -6.5910	
18	1094	연구 ¬ 한솔홈데코	0.67043892 18.603687 88.47521 35.8245814 28053349 6.4608184 -6.46735	
19	531	한글놈네고 초록뱀미디어	0.71534285 18.288628 82.70784 33.6757952 28285725 6.1953537 -6.44847	
20	312	오목됩미디어 우리기술투자		_
			1.18759396 19.610382 103.45076 35.5834074 29401024 7.1589143 -6.30922	
21	469	SK증권	-0.30209524 11.363465 67.66067 6.1582560 29369313 2.3201394 -6.2153	
22	544	남선알미늄	0.36282274 17.345737 86.06468 25.5018401 27761113 5.2583790 -6.14783	
23	536	알체라	-1.46442115 39.712861 244.99812 103.7281280 13718470 15.5939838 -6.0862	
24	1329	웰크론	1.29563026 22.832688 138.58850 76.3587180 21083348 10.6254645 -5.9926	
25	1405		-1.78227061 22.644284 127.66938 19.4631383 24436272 5.2340485 -5.94526	
26	1311		0.14075621 14.036427 54.72962 8.2122658 27427781 2.7638158 -5.7349	
27	481		0.48246658 18.344391 122.87395 19.9065007 25970002 5.0418713 -5.65635	
28	594		0.94827662 18.121667 100.17416 11.0907551 29619066 4.8841985 -5.4307	
29	1		-0.25128194 11.238987 33.21986 0.4154745 24784527 0.9474153 -5.2668	
30	531		0.20178761 17.568807 75.33764 26.0943159 21512586 4.3827478 -5.26612	
31			0.04077584 16.509007 83.32925 12.2972294 25050549 3.6680784 -5.195871	
32	891		0.33693279 19.356386 103.57099 38.6727631 20400160 6.1695561 -5.03135	
33			0.25754437 15.310952 67.77196 10.7936760 23982330 3.0911560 -4.932801	
34	856	게온 	0.69855562 20.589835 90.78333 33.7488049 21254357 6.0527045 -4.8850	
35	800	시노펙스	0.76268880 18.287789 94.31908 29.9475979 21510656 5.4357607 -4.7280	
36	469	SK증권	0.88039585 14.880176 62.34181 5.3728667 25164373 2.8627029 -4.6427	
37	400	신성이엔지	0.68572404 18.301856 90.80842 12.7010422 23539771 4.2265564 -4.45086	
38	870	KNN	0.34091293 17.482693 100.56389 16.7822651 22068842 4.2585790 -4.441	
39	462	에이프로젠제약	0.24725064 19.095519 103.64214 9.9811023 23378090 4.1647869 -4.41698	-
40	1336	위지트	1.23407450 17.590796 80.57568 26.1623875 21472526 4.9939680 -4.4152	
41	1	삼성전자	0.54190787 10.494756 24.85571 0.3713184 22196523 0.7345230 -4.3608	28

3. 결론

- 1. 2020년 주식시장 분석 결과, 시가총액이 높은 우량주일수록 변동성이 낮았으며, 주가가 낮은 종목은 높은 유동성을 보였다. 이는 시장의 일반적인 흐름이 2020년 코로나 사태 속에서도 유지되었음을 의미한다.
- 2. 배당수익률이 높은 종목은 변동성이 낮았으나, 수익률과 유동성 또한 저조했다. 이는 배당 중심 투자 전략이 안정성을 제공하지만, 단기 수익률 관점에서는 저배당주 대비 매력도가 낮을 수 있음을 시사한다.
- 3. PER과 PBR이 높은 그룹은 높은 수익률과 유동성을 기록했으나, 변동성 또한 크게 나타났다. 이는 2020년 시장에서 고평가된 성장주가 강세를 보였으며, 개인투자자의 공격적인 투자 성향이 반영된 결과로 해석된다.
- 4. 2분기의 투자성과가 전반적으로 우수했으나, 우량주 투자자는 4분기에 더 나은 성과를 기록하였다. 이는 경기 회복 기대감이 반영된 시장 흐름과 맞물려 있으며, 분기별 투자 성과 차이를 고려한 전략 수립이 필요함을 보여준다.

본 연구는 2020년 코로나 사태라는 특수한 상황에서 도출된 분석 결과로, 향후 동일한 패턴이 지속될 것이라 단정하기는 어렵다. 그러나, 본 분석을 통해 성장형 기업과 배당 중심 기업의 특성을 비교하고, 투자자의 리스크 성향에 따른 포트폴리오 전략 수립에 활용할 수 있는 유의미한 기준을 제시할 수 있다.

```
R 분석코드
```

```
rm(list=ls())
stock <-read.csv("stock_data.csv", header=T, fileEncoding = "euc-kr")
stock %>% str
stock
for(i in 8:13){
  stock[,i] < -as.factor(stock[,i])
}
#데이터의 히스토그램 확인
par(mfrow=c(2,3),family="AppleGothic") #맥 한글깨짐 방지
stock[,3] %>% hist(main="로그수익률")
stock[,4] %>% hist(main="일중변동성")
stock[,5] %>% hist(main="역사적변동성")
stock[,6] %>% hist(main="유동성")
stock[,7] %>% hist(main="거래량")
#이상치 제거 + 히스토그램 확인
stock2<-filter(stock,x4<20 & x3<100 & x1>-3 & x1<3 & x5<3500000)
par(mfrow=c(2,3),family="AppleGothic") #맥 한글깨짐 방지
stock2[,3] %>% hist(main="로그수익률")
stock2[,4] %>% hist(main="일중변동성")
stock2[,5] %>% hist(main="역사적변동성")
stock2[,6] %>% hist(main="유동성")
stock2[,7] %>% hist(main="거래량")
#파워변환
stock2<-mutate(stock2,x3=x3^0.8,x4=x4^0.2,x5=x5^0.3)
par(mfrow=c(2,3),family="AppleGothic") #맥 한글깨짐 방지
stock2[,3] %>% hist(main="로그수익률") #x1 음수포함 변환x
stock2[,4] %>% hist(main="일중변동성")
stock2[,5] %>% hist(main="역사적변동성")
stock2[,6] %>% hist(main="유동성")
stock2[,7] %>% hist(main="거래량")
#x6 시가총액
mst1 < -manova(as.matrix(stock2[,3:7])~x6,data=stock2)
mst1 %>% summary(test='Wilks')
N=dim(stock2)[1]
W=(N-1)*cov(mst1$residuals)
B=(N-1)*cov(mst1\$fitted.values)
solve(W)%*%B %>% eigen
(x1 < -LSD.test(aov(x1 \sim x6, data = stock2), "x6", p.adj = 'none', group = T))
(x2 < -LSD.test(aov(x2 \sim x6, data = stock2), "x6", p.adj = 'none', group = T))
(x3 < -LSD.test(aov(x3 \sim x6, data = stock2), "x6", p.adj = 'none', group = T))
```

```
(x4 < -LSD.test(aov(x4 \sim x6, data = stock2), "x6", p.adj = 'none', group = T))
(x5 < -LSD.test(aov(x5 \sim x6, data = stock2), "x6", p.adj = 'none', group = T))
#x7 주가
mst2<-manova(as.matrix(stock2[,3:7])~x7,data=stock2)
mst2 %>% summary(test='Wilks')
N=dim(stock2)[1]
W=(N-1)*cov(mst2$residuals)
B=(N-1)*cov(mst2\$fitted.values)
solve(W)%*%B %>% eigen
(x1 < -LSD.test(aov(x1 \sim x7, data = stock2), "x7", p.adj = 'none', group = T))
(x2 < -LSD.test(aov(x2 \sim x7, data = stock2), "x7", p.adj = 'none', group = T))
(x3 < -LSD.test(aov(x3 \sim x7, data = stock2), "x7", p.adj = 'none', group = T))
(x4 < -LSD.test(aov(x4 \sim x7, data = stock2), "x7", p.adj = 'none', group = T))
(x5 < -LSD.test(aov(x5 \sim x7, data = stock2), "x7", p.adj = 'none', group = T))
#x8 배당수익률
mst3<-manova(as.matrix(stock2[,3:7])~x8,data=stock2)
mst3 %>% summary(test='Wilks')
N=dim(stock2)[1]
W=(N-1)*cov(mst3$residuals)
B=(N-1)*cov(mst3\$fitted.values)
solve(W)%*%B %>% eigen
(x1 < -LSD.test(aov(x1 \sim x8, data = stock2), "x8", p.adj = 'none', group = T))
(x2 < -LSD.test(aov(x2 \sim x8, data = stock2), "x8", p.adj = 'none', group = T))
(x3 < -LSD.test(aov(x3 \sim x8, data = stock2), "x8", p.adj = 'none', group = T))
(x4 < -LSD.test(aov(x4 \sim x8, data = stock2), "x8", p.adj = 'none', group = T))
(x5 < -LSD.test(aov(x5 \sim x8, data = stock2), "x8", p.adj = 'none', group = T))
#x9 per
mst4<-manova(as.matrix(stock2[,3:7])~x9,data=stock2)
mst4 %>% summary(test='Wilks')
N=dim(stock2)[1]
W=(N-1)*cov(mst4$residuals)
B=(N-1)*cov(mst4\$fitted.values)
solve(W)%*%B %>% eigen
(x1 < -LSD.test(aov(x1 \sim x9, data = stock2), "x9", p.adj = 'none', group = T))
(x2 < -LSD.test(aov(x2 \sim x9, data = stock2), "x9", p.adj = 'none', group = T))
(x3 < -LSD.test(aov(x3 \sim x9, data = stock2), "x9", p.adj = 'none', group = T))
(x4 < -LSD.test(aov(x4 \sim x9, data = stock2), "x9", p.adj = 'none', group = T))
(x5 < -LSD.test(aov(x5 \sim x9, data = stock2), "x9", p.adj = 'none', group = T))
mst5<-manova(as.matrix(stock2[,3:7])~x10,data=stock2)
mst5 %>% summary(test='Wilks')
N=dim(stock2)[1]
```

```
W=(N-1)*cov(mst5$residuals)
B=(N-1)*cov(mst5$fitted.values)
solve(W)%*%B %>% eigen
(x1 < -LSD.test(aov(x1 \sim x10,data=stock2),"x10",p.adj = 'none',group=T))
(x2 < -LSD.test(aov(x2 \sim x10,data=stock2),"x10",p.adj = 'none',group=T))
(x3 < -LSD.test(aov(x3 \sim x10,data = stock2),"x10",p.adj = 'none',group = T))
(x4 < -LSD.test(aov(x4 \sim x10,data=stock2),"x10",p.adj = 'none',group=T))
(x5 < -LSD.test(aov(x5 \sim x10,data=stock2),"x10",p.adj = 'none',group=T))
#x11 투자시기
mst6 < -manova(as.matrix(stock2[,3:7]) \sim x11,data = stock2)
mst6 %>% summary(test='Wilks')
N=dim(stock2)[1]
W=(N-1)*cov(mst6$residuals)
B=(N-1)*cov(mst6$fitted.values)
solve(W)%*%B %>% eigen
(x1 < -LSD.test(aov(x1 \sim x11, data = stock2), "x11", p.adj = 'none', group = T))
(x2 < -LSD.test(aov(x2 \sim x11, data = stock2), "x11", p.adj = 'none', group = T))
(x3 < -LSD.test(aov(x3 \sim x11,data=stock2),"x11",p.adj = 'none',group=T))
(x4 < -LSD.test(aov(x4 \sim x11, data = stock2), "x11", p.adj = 'none', group = T))
(x5 < -LSD.test(aov(x5 \sim x11, data = stock2), "x11", p.adj = 'none', group = T))
#주성분 분석
#상관행렬 플랏
stock[,3:7] %>% cor %>% ggcorrplot(lab = T)
#분산 비율
prcomp(stock[,3:7],scale=T) %>% summary
#screeplot
screeplot(a,type='l',main="")
abline(h=1)
screeplot(a,main = "")
#eigenvalue와 주성분점수
a<-prcomp(stock[,3:7],scale=T)
a$x
#biplot
biplot(a,c(1,2))
#주성분점수
b < -cbind(stock[,1:7],a$x[,1:2])
arrange(b,PC1)
arrange(b,PC2)
```