Training Error versus Test error

- Recall the distinction between the *test error* and the *training error*:
- The *test error* is the average error that results from using a statistical learning method to predict the response on a new observation, one that was not used in training the method.
- In contrast, the *training error* can be easily calculated by applying the statistical learning method to the observations used in its training.
- But the training error rate often is quite different from the test error rate, and in particular the former can dramatically underestimate the latter.

Training- versus Test-Set Performance

More on prediction-error estimates

- Best solution: a large designated test set. Often not available
- Some methods make a mathematical adjustment to the training error rate in order to estimate the test error rate. These include the Cp statistic, AIC and BIC. They are discussed elsewhere in this course
- Here we instead consider a class of methods that estimate
 the test error by holding out a subset of the training
 observations from the fitting process, and then applying the
 statistical learning method to those held out observations

Validation-set approach

- Here we randomly divide the available set of samples into two parts: a *training set* and a *validation* or *hold-out set*.
- The model is fit on the training set, and the fitted model is used to predict the responses for the observations in the validation set.
- The resulting validation-set error provides an estimate of the test error. This is typically assessed using MSE in the case of a quantitative response and misclassification rate in the case of a qualitative (discrete) response.

The Validation process

A random splitting into two halves: left part is training set, right part is validation set

Example: automobile data

- Want to compare linear vs higher-order polynomial terms in a linear regression
- We randomly split the 392 observations into two sets, a training set containing 196 of the data points, and a validation set containing the remaining 196 observations.

Left panel shows single split; right panel shows multiple splits

Drawbacks of validation set approach

- the validation estimate of the test error can be highly variable, depending on precisely which observations are included in the training set and which observations are included in the validation set.
- In the validation approach, only a subset of the observations — those that are included in the training set rather than in the validation set — are used to fit the model.
- This suggests that the validation set error may tend to overestimate the test error for the model fit on the entire data set.

Drawbacks of validation set approach

- the validation estimate of the test error can be highly variable, depending on precisely which observations are included in the training set and which observations are included in the validation set.
- In the validation approach, only a subset of the observations — those that are included in the training set rather than in the validation set — are used to fit the model.
- This suggests that the validation set error may tend to overestimate the test error for the model fit on the entire data set. Why?

K-fold Cross-validation

- Widely used approach for estimating test error.
- Estimates can be used to select best model, and to give an idea of the test error of the final chosen model.
- Idea is to randomly divide the data into K equal-sized parts. We leave out part k, fit the model to the other K-1 parts (combined), and then obtain predictions for the left-out kth part.
- This is done in turn for each part k = 1, 2, ..., K, and then the results are combined.

K-fold Cross-validation in detail

Divide data into K roughly equal-sized parts (K = 5 here)

Validation	Train	Train	Train	Train
------------	-------	-------	-------	-------

The details

- Let the K parts be $C_1, C_2, \ldots C_K$, where C_k denotes the indices of the observations in part k. There are n_k observations in part k: if N is a multiple of K, then $n_k = n/K$.
- Compute

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} MSE_k$$

where $MSE_k = \sum_{i \in C_k} (y_i - \hat{y}_i)^2 / n_k$, and \hat{y}_i is the fit for observation i, obtained from the data with part k removed.

The details

- Let the K parts be $C_1, C_2, \ldots C_K$, where C_k denotes the indices of the observations in part k. There are n_k observations in part k: if N is a multiple of K, then $n_k = n/K$.
- Compute

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} MSE_k$$

where $MSE_k = \sum_{i \in C_k} (y_i - \hat{y}_i)^2 / n_k$, and \hat{y}_i is the fit for observation i, obtained from the data with part k removed.

• Setting K = n yields n-fold or leave-one out cross-validation (LOOCV).