

Universität Freiburg Institut für Informatik Prof. Dr. Georg Lausen Io Taxidou Georges-Köhler Allee, Geb. 51 D-79110 Freiburg lausen@informatik.uni-freiburg.de taxidou@informatik.uni-freiburg.de

$\begin{array}{c} \hbox{\tt \"{U}bungen\ zur\ Vorlesung}\\ Datenbanken\ und\ Informations systeme\\ \hbox{\tt Wintersemester\ 2017/2018} \end{array}$

Ausgabe: 24.10.2017Abgabe: 30.10.2017, 12:00 Uhr

3. Aufgabenblatt: Relationale Algebra

Übung 1 (5 Punkte)

Sei R(X) ein Relationsschema und $X = \{A, B\}$ eine Attributmenge mit $dom(A) = \{1, 2, 3\}, dom(B) = \{a, b, c\}.$

- a) Geben Sie Tup(X) an.
- b) Wieviele mögliche Instanzen gibt es zu R?
- c) Sei nun dom(A) die Menge der natürlichen Zahlen und dom(B) unverändert.
 - (i) Wieviele mögliche Instanzen gibt es zu R?
 - (ii) Begründen oder widerlegen Sie die folgenden Aussagen:
 - 1. Wenn r Instanz von R, dann ist r endlich.
 - 2. Die Menge der möglichen Instanzen zu R ist nicht endlich.

Übung 2 (7 Punkte)

Betrachten Sie folgenden Relationen:

Welche Ergebnisse liefern die Ausdrücke der relationalen Algebra:

- a) $\pi[A,B](r)$
- b) $\sigma[C > 2](r)$
- c) $r \bowtie r$
- d) $r \bowtie s$
- e) $r \div t_1$
- f) $r \div t_2$
- g) $r \div t_1$ verwenden Sie hierfür den Algebraausdruck der die Division mittels Basisoperatoren realisiert.

Übung 3 (8 Punkte)

(a) Wieviel Tupel enthält der natürliche Verbund der folgenden zwei Relationen mit Schemata $R_1(A_1, A_2)$ und $R_2(A_2, A_1)$? Begründen Sie!

A_1	A_2			A_2	A_1
0	a			0	a
0	b			0	b
1	a			1	a
1	b	\triangleright	1	1	b
a	0			a	0
a	1			a	1
b	0			b	0
b	1			b	1

(b) Wieviel Tupel enthält der natürliche Verbund der folgenden drei Relationen mit Schemata $R_1(A_1, A_2)$, $R_2(A_2, A_3)$ und $R_3(A_3, A_1)$? Begründen Sie!

A_1	A_2		A_2	A_3	_	A_3	A_1
0	a		0	a		0	a
0	b		0	b		0	b
1	a		1	a		1	a
1	b	\bowtie	1	b	\bowtie	1	b
a	0		a	0		a	0
a	1		a	1		a	1
b	0		b	0		b	0
b	1		b	1		b	1

- (c) Betrachten Sie den natürlichen Verbund von Relationen mit Schemata $R_1(A_1, A_2), R_2(A_2, A_3), \ldots, R_n(A_n, A_1)$, wobei die einzelnen Relationen jeweils gleichen Inhalt haben wie unter (a) und (b). Es gelte $n \geq 2$. Beweisen oder widerlegen Sie die folgenden Aussagen:
 - (i) Für n=4 enthält der Verbund 32 Tupel.
 - (ii) Für $n \geq 4$ enthält der Verbund $8 \times 2^{n-2}$ Tupel.