Matemáticas III

Ecuaciones No Lineales Semana 08

Hermes Pantoja Carhuavilca

(hpantoja@utec.edu.pe)

Brigida Molina Carabaño

(bmolina@utec.edu.pe)

Rosulo Perez Cupe

(rperezc@utec.edu.pe)

Asistente: Victor Anhuaman

(vanhuaman@utec.edu.pe)

Temas

1 Localización de raices

2 Método de la Bisección

3 Método del Punto Fijo

Objetivo

Localizar y aproximar las soluciones de ecuaciones no lineales previa convergencia de cada método iterativo, así como también el error cometido en cada iteración.

Logros de Aprendizaje

- Localiza las soluciones de las ecuaciones no lineales.
- Aplica métodos iterativos para aproximar la solución de ecuaciones no lineales.
- Identifica la convergencia de los métodos iterativos. Calcula un estimado del error cometido.

Problema

Dada f una función real con valores reales (es decir $f : \mathbb{R} \to \mathbb{R}$) nos interesa encontrar al menos una raíz de la ecuación:

$$f(x) = 0$$

Es decir, interesa encontrar $\hat{x} \in \mathbb{R}$ tal que $f(\hat{x}) = 0$.

En algunos casos, la ecuación se puede resolver de forma analítica y obtener la solución exacta, pero para la gran mayoría de las ecuaciones, encontrar raices es complicado y debe hacerse de manera numérica.

Formalización de Contenidos

El método gráfico es útil porque proporciona un valor inicial a ser usado por otros métodos.

Ejemplo

Utilice un argumento geométrico(método gráfico) para garantizar la existencia de una única raíz negativa r

$$x^3+e^x=0$$

Continuación...

Si sabemos que la función f es continua en un intervalo [a,b] y sabemos que en ese intervalo tiene un cambio de signo

$$f(a)*f(b)<0$$

entonces podemos garantizar que existe al menos un valor $\hat{x} \in [a, b]$ tal que $f(\hat{x}) = 0$.

- La condición de continuidad es esencial para garantizar la existencia de una raíz.
- La condición de cambio de signo se puede relajar ligeramente a $f(a) * f(b) \le 0$ ya que en ese caso o a o b son raíces.

Continuación...

Observación:

Si f(a)f(b) > 0, entonces se puede dar diversas situaciones en el intervalo [a, b].

Método de la Bisección

- Comienza desde un intervalo [a, b] que contiene la raíz de la ecuación f(x) = 0, por lo que f(a)f(b) < 0, f es continua en [a, b].
- Se calcula el valor de la función en el punto medio, $x_0 = \frac{a_0 + b_0}{2}$ intervalo $[a_0, b_0]$.
- Si $f(x_0)$ tiene el mismo signo que $f(a_0)$ establecemos $a_1 = x_0$.
- Si $f(x_0)$ tiene el mismo signo que $f(b_0)$ establecemos $b_1 = x_0$.
- El procedimiento se repite, reduciendo a la mitad el intervalo $[a_0, b_0]$.
- Después de cada iteración, la amplitud del intervalo que contiene la raíz se reduce a la mitad.

Ejemplo

En cada iteración se busca el punto medio del intervalo y se selecciona un sub-intervalo que tenga un cambio de signo.

Tiempo de corrida

Condición de parada

Si $a=a_0$ y $b=b_0$ son los extremos originales del intervalo donde ocurre un cambio de signo, el ancho del intervalo después de n pasos es exactamente $\frac{b-a}{2^{n+1}}$. Para saber cuantos pasos hace el algoritmo debemos resolver

$$\frac{b-a}{2^{n+1}} \leq ToI.$$

Claramente $n \ge \frac{\ln\left(\frac{b-a}{2*70l}\right)}{\ln 2}$ por lo que podemos tomar a n como el menor valor entero de cumpla dicha desigualdad.

Ejemplo

P

Dada la ecuación no lineal

$$f(x) = x^3 + e^x = 0$$

Considerando que $r \in [-2; 0]$, halle una aproximación para r utilizando 3 iteraciones del método de bisección. Es decir una tabla con 4 filas. Haller el error en cada iteración.

Formalización de contenidos

Método del Punto Fijo

En esta parte consideraremos un método para determinar la solución de una ecuación que se puede expresar, para alguna función g, en la forma x=g(x). A una solución de esta ecuación se le llama **Punto Fijo** de la función g

Ejemplo

Dada la ecuación $x^3 + 4x^2 - 10 = 0$. Expresar la ecuación en la forma x = g(x)

$$x = g(x) = x - x^3 - 4x^2 + 10$$

$$z=g(x)=\left(\frac{10}{4+x}\right)^{1/2}$$

Solución

Ahora vamos a usar el proceso iterativo $x^{(n+1)} = g(x^{(n)}); \quad n = 0, 1, 2, ...$ en las expresiones a y b.

Tomamos como semilla $x^{(0)} = 1, 8$. Punto cercano a la raíz tomando en cuenta la gráfica de f(x).

ITERACION	a)	b)
0	1,8	1,8
1	-6,992	1,313064329
2	149,281087	1,371915816
3	-3415685,7	1,364380177
4		1,36533815
5		1,365216255
6		1,365231764
7		1,365229791

Interpretación Geométrica

Teorema del punto fijo

Sean $a, b \in \mathbb{R}$ tales que a < b y sea $g : [a, b] \to \mathbb{R}$ una función continua en [a, b] y derivable en $\langle a, b \rangle$ que satisface:

- **1** Se cumple |g'(x)| < 1 para cualquier $x \in \langle a, b \rangle$
- Para cualquier punto x en [a; b], se tiene que $g(x) \in [a, b]$.

Entonces existe un único punto $p \in \langle a, b \rangle$ tal que g(p) = p. Además, si $x^{(0)}$ es algún punto del intervalo [a, b], y la sucesión $\{x^{(k)}\}$ se construye de manera recursiva

$$x^{(k+1)} = g(x^{(k)}),$$

entonces la sucesión $\{x^{(k)}\}$ converge al punto fijo p de la función g.

Ejemplo

Example

La ecuación $x^2 - x = 0$, tiene en el intervalo [0.64; 1.44] una única raíz α .

- Verificar que α es un punto fijo de la función g(x) = x.
- Pruebe que la sucesión $\{x^{(n)}\}$ definida por

$$\begin{cases} x^{(0)} = 0.64 \\ x^{(n+1)} = \sqrt{x^{(n)}}, & n \ge 0 \end{cases}$$

Converge para α

Solución

Como α es raíz de la ecuación $x^2-x=0$ entonces $\alpha^2-\alpha=0$ De éste modo

$$\alpha^2 - \alpha = 0 \Leftrightarrow \alpha^2 = \alpha \Leftrightarrow \alpha = \sqrt{\alpha} = g(\alpha)$$

Por lo tanto α es punto fijo de la función $g(x) = \sqrt{x}$

(b) Es necesario verificar que la función $g(x) = \sqrt{x}$ satisface en el intervalo [0.64; 1.44] las condiciones del teorema del punto fijo.

 $g'(x) = \frac{1}{2\sqrt{x}}$. Se observa que g' es una función positiva y decreciente, por eso es fácil calcular el máximo de su valor absoluto:

$$k = \max_{x \in [0.64; 1.44]} |g'(x)| = g'(0.64) = \frac{1}{2 \times 0.8} = 0.625 < 1$$

Luego hay que demostrar que $g([0.64; 1.44]) \subset [0.64; 1.44]$. Calculemos los valores mínimo y máximo de g en el intervalo [0.64; 1.44]. Dado que g' > 0, la función g es creciente,

$$\min_{x \in [0.64; 1.44]} g(x) = g(0.64) = 0.8$$

$$\max_{x \in [0.64; 1.44]} g(x) = g(1.44) = 1.2$$

$$g([0.64; 1.44]) = [g(0.64), g(1.44)] = [0.8; 1.2]$$

Así que:

$$[0.8; 1.2] \subset [0.64; 1.44]$$

Por lo tanto, g tiene un único punto fijo en este intervalo.

Actividad 1

P1

Dada la ecuación no lineal

$$\frac{5x(1-x)}{2}=x$$

Responde las siguientes preguntas:

- i ¿Para qué valores de x es punto fijo de $g(x) = \frac{5x(1-x)}{2}$?
- ¿Podría asegurar la convergencia del método del punto fijo en el intervalo [0.5;0.68]?.
- Realice 03 iteraciones para aproximar la solución de la ecuación no lineal utilizando el método del punto fijo. Considere $x_0 = 0.5$

Actividad 2

La velocidad de ascenso (ν) de una nave espacial saliendo de la superficie terreste se puede aproximar por la siguiente expresión:

$$v = u \ln \left(\frac{M_0}{M_0 - ct} \right) + gt$$
, donde u : velocidad de escape de la nave; M_0 : masa de la nave a ser lanzado; c : tasa de consumo de combustible; g : acelaración gravitacional; y t : tiempo (medido a partir del lanzamiento). Considerando $u = 200 \ m/s$; $M_0 =$

1600 Kg, $g = 9.8 \, m/s^2$; $c = 27 \, Kg/s$. Utilizando el método del punto fijo determine el instante en que $\nu = 100 \, m/s$. Considere $t_0 = 7.4375 \, s$. ¿Es posible hallar una función iterativa que contenga la raíz de la ecuación ?

Gracias por su atención

