Instructor: Hassan M. Shanechi

Email: shanechi@iit.edu Phone: 312.567.3413 Fax: 312.567.8976 Office: Room 333 SH

Office Hours: My official office hours are 10:00-12:00, Mondays, Tuesdays, and

Wednesdays. However, you may call or e-mail me to arrange for any other

time or you may drop by any time my office door is open.

Hours: TR 08:35 – 09:50 am Room: Siegel Hall 118

Grading:

Lab 25%

Homework 15% (Late homework, up to one week, will be accepted for 50% of credit

except weeks prior to exams.)

Exam 1 15% Exam 2 15% Final Exam 30%

Reasonable accommodations will be made for students with documented disabilities. In order to receive accommodations, students must obtain a letter of accommodation from the Center for Disability Resources and make an appointment to speak with me as soon as possible. The Center for Disability Resources is located in the Life Sciences Building, room 218, 312-567-5744 or disabilities@iit.edu.

Text:

Fundamentals of Electric Circuits

By: C. K. Alexander and M. N. O. Sadiku

McGraw-Hill, 5th Edition 2012

References:

Basic Engineering Circuit Analysis

By: J. D. Irwin and R. M. Nelms

Wiley, 10th Edition 2011

Introduction to Electric Circuits

By: Dorf & Svoboda Wiley, 8th Edition 2010

Instructor: Hassan M. Shanechi

Email: shanechi@iit.edu Phone: 312.567.3413 Fax: 312.567.8976 Office: Room 333 SH

Office Hours: My official office hours are 10:00-12:00, Mondays, Tuesdays, and

Wednesdays. However, you may call or e-mail me to arrange for any other

time or you may drop by any time my office door is open.

Hours: TR 08:35 – 09:50 am

Room: Siegel Hall?

Grading:

Homework 20% (Late homework, up to one week, will be accepted for 50% of credit

except weeks prior to exams.)

Exam 1 20% Exam 2 20% Final Exam 40%

Reasonable accommodations will be made for students with documented disabilities. In order to receive accommodations, students must obtain a letter of accommodation from the Center for Disability Resources and make an appointment to speak with me as soon as possible. The Center for Disability Resources is located in the Life Sciences Building, room 218, 312-567-5744 or disabilities@iit.edu.

Text:

Fundamentals of Electric Circuits

By: C. K. Alexander and M. N. O. Sadiku McGraw-Hill, 5th Edition 2012

References:

Basic Engineering Circuit Analysis

By: J. D. Irwin and R. M. Nelms Wiley, 10th Edition 2011

Introduction to Electric Circuits

By: Dorf & Svoboda Wiley, 8th Edition 2010

ECE Undergraduate Course Objectives

Course Number: ECE 213

Course Name: Circuit Analysis II

Below are listed the objectives for this course as adopted by the ECE faculty.

After completing this course, the student should be able to do the following:

- 1. Demonstrate ability to analyze circuits using both phasor notation and sinusoidal functions of time.
- 2. Demonstrate ability to apply all circuit analysis techniques to the analysis of AC circuits.
- 3. Demonstrate ability to calculate instantaneous power, average power, and complex power in AC circuits; to determine RMS values of voltage and current; to apply the maximum power transfer theorem; and to correct the power factor in a circuit.
- 4. Demonstrate ability to work with three-phase circuits.
- 5. Demonstrate ability to analyze circuits containing mutual inductances and transformers.
- 6. Demonstrate ability to use Laplace transforms to solve AC circuits in the time and frequency domains.
- 7. Given a two-port network, calculate its admittance, impedance, hybrid, and transmission parameters.

ECE213-216 LECTURE SCHEDULE

Day	Date	<u>Topic</u>	<u>Text</u>
1	12-Jan	Introduction, Complex Numbers	
2	14-Jan	Laplace Transform Applications	16.1-2-3
3	19-Jan	Laplace Transform Applications (cont'd)	16.4
4	21-Jan	Laplace Transform Applications (cont'd)	16.5
5	26-Jan	Sinusoids, Phasors	9.1-2, 9.3-4
6	28-Jan	Impedance and Admittance, Kirchhoff's Laws	9.5-6-7
7	2-Feb	Sinusiodal Steady State Analysis, Nodal and Mesh	10.1-2-3
8	4-Feb	Superposition, Source Transformation, Thevenin and Norton	10.4-5-6
9	9-Feb	AC Steady State Analysis (cont'd)	10.7-8
10	10-Feb	Steady State Power Analysis	11.1-2-3-4
11	16-Feb	Steady State Power Analysis (cont'd)	11.5-6-7-8
12	18-Feb	Exam 1, Thursday, February 18	
13	23-Feb	Thre-phase Circuits	12.1-2-3-4-5
14	25-Feb	Thre-phase Circuits	12.6-7-9
15	1-Mar	Magnetically Coupled Circuits	13.1-2-3
16	3-Mar	Magnetically Coupled Circuits	13.4-5-8
17	8-Mar	Frequency Response	14.1
18	10-Mar	Frequency Response	14.2-3
	15-Mar	Spring Break	
	17-Mar	Spring Break	
19	22-Mar	Frequency Response, Bode Plots	14.4
20	24-Mar	Exam 2, Thursday March 24	
21	29-Mar	Frequency Response	14.5-6-7
22	31-Mar	Variable Frequency Networks (cont'd)	14.10-11
23	5-Apr	Fourier Series	17.1-2-3
24	7-Apr	Fourier Series	17.4
25	12-Apr	Fourier Series	17.5-6-7
26	14-Apr	Two Port Networks	19.1-2-3
27	19-Apr	Two Port Networks	19.4-5
28	21-Apr	Two Port Networks	19.7-8
29	26-Apr	Review	
30	28-Apr	Review	
	5/?/2014	Final Exam, Tuesday, May?	