МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МОРСЬКИЙ УНІВЕРСИТЕТ КАФЕДРА «ТЕХНИЧНА КІБЕРНЕТИКА ім. проф. Р.В. Меркта»

КУРСОВА РОБОТА

за дисципліною «Моделювання систем» за темою: «Дослідження динамічних систем з зосередженими параметрами»

	Студентки:	3 курсу 2 групи	[
	Напряму	підготовки:	0501 -
	Інформатик	а та обчислювал	іьна техніка
		сті: Комп'ютерн	
	Хмельницы	кого Богдана Ми	ихайловича
	Керівники:		
	проф. Челаб	бчі В.М.	
	ст. викл. Че	лабчі В.В.	
	Національна	шкала	
	Кількість бал	пів:	
	Оцінка: ЕСТ		
Ілени комісії			
	(підпис)	(П	(Б)
	(підпис)	(П	ТБ)

C.

3MICT

1 ІДЕНТИФІКАЦІЯ ЗВИЧАЙНОГО ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ПЕРШОГО	
ПОРЯДКУ	3
1.1 Вхідні дані для ідентифікації	3
1.2 Методика ідентифікації	4
2. МОДЕЛЮВАННЯ РОБОТИ ДИНАМІЧНОЇ СИСТЕМИ	10
2.1 Постановка задачі.	10
2.2 Приведення математичної моделі об'єкта до системи звичайних диференціальних	
рівнянь 1-го порядку	10
<u> 2.4 Рішення системи рівнянь (2.10) – (2.12) в середовищі Excel.</u>	11
2.5 Блок- схема алгоритму моделювання	13
2.6 Результати моделювання.	14
СПИСОК ЛІТЕРАТУРИ	16
ДОДАТКИ	17
Модулі задачі моделювання	17
Модулі задачі моделювання програми.	20

ІДЕНТИФІКАЦІЯ ЗВИЧАЙНОГО ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ПЕРШОГО 1 ПОРЯДКУ

1.1 Вхідні дані для ідентифікації

Таблица 1.1 – Вхідні дані

T			. 37	37			37	37	. 1		37	37
2 0,01 1,0438297 0,0390723 36 0,35 0,8354329 0,6198109 69 0,68 1,2608246 0,6581224 3 0,02 1,1120134 0,061946 37 0,36 0,7742955 0,6175001 70 0,69 1,3565532 0,717816 5 0,04 1,2141654 0,0754082 39 0,38 0,6828221 0,6279257 72 0,71 1,4113749 0,7243567 6 0,05 1,2678181 0,1060725 40 0,39 0,6112501 0,6719575 3 0,72 1,4647226 0,7207032 7 0,06 1,3088596 0,147335 41 0,4 0,6129789 0,637017 74 0,73 1,5148493 0,758949 8 0,07 1,344901 0,135163 42 0,41 0,532804 0,6471863 75 0,74 1,5135084 0,768956 9 0,08 1,385344 0,169297 43 0,42 0,5189427 0,652716 70												
3 0,02 1,1120134 0,061946 37 0,36 0,7742955 0,6175001 70 0,69 1,3565532 0,717816 4 0,03 1,1490787 0,0663293 38 0,37 0,7145714 0,6677159 71 0,7 1,3861702 0,7092534 5 0,04 1,2141654 0,0754082 39 0,38 0,6828221 0,6279257 72 0,71 1,4113749 0,7243567 6 0,05 1,2678181 0,1060725 40 0,39 0,6112501 0,6719575 73 0,72 1,4642726 0,7270276 7 0,06 1,3088596 0,147335 41 0,4 0,6129789 0,637017 74 0,73 1,5148493 0,758949 8 0,07 1,344901 0,135163 42 0,41 0,5328054 0,6471863 75 0,74 1,5135084 0,7649856 9 0,08 1,328344 0,169297 43 0,42 0,5189427 0,657786 76		_						-				
4 0,03 1,1490787 0,0663293 38 0,37 0,7145714 0,6677159 71 0,7 1,3861702 0,7092534 5 0,04 1,2141654 0,0754082 39 0,38 0,6828221 0,6279257 72 0,71 1,4113749 0,7243567 6 0,05 1,2678181 0,1060725 40 0,39 0,6112501 0,6719575 73 0,72 1,4647226 0,7207032 7 0,06 1,3088596 0,147335 41 0,4 0,6129789 0,637017 74 0,73 1,5135084 0,7649856 9 0,08 1,385344 0,1694297 43 0,42 0,5189427 0,657786 76 0,75 1,563128 0,77417154 10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,5663128 0,7771054 10 0,1 1,4162514 0,2180981 45 0,44 0,4842224 0,612617 78			-	-			-	-			-	
5 0,04 1,2141654 0,0754082 39 0,38 0,6828221 0,6279257 72 0,71 1,4113749 0,7243567 6 0,05 1,2678181 0,1060725 40 0,39 0,6112501 0,6719575 73 0,72 1,4647226 0,7207032 7 0,06 1,3088596 0,147335 41 0,4 0,6129789 0,637017 74 0,73 1,5148493 0,758949 8 0,07 1,344901 0,135163 42 0,41 0,5328054 0,6471863 75 0,74 1,5135084 0,7649856 9 0,08 1,385344 0,1694297 43 0,42 0,5189427 0,657786 76 0,75 1,5543831 0,7717154 10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,5612172 0,8717154 10 0,1 1,4163632 0,2452469 46 0,45 0,4642 0,632321 79				<u> </u>			-				-	<u> </u>
6 0,05 1,2678181 0,1060725 40 0,39 0,6112501 0,6719575 73 0,72 1,4647226 0,7207032 7 0,06 1,3088596 0,147335 41 0,4 0,6129789 0,637017 74 0,73 1,5148493 0,758949 8 0,07 1,344901 0,135163 42 0,41 0,5328054 0,6471863 75 0,74 1,5135084 0,7649856 9 0,08 1,385344 0,1694297 43 0,42 0,5189427 0,657786 76 0,75 1,5631383 0,7717154 10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,56612172 0,8271833 11 0,11 1,4162514 0,2180981 45 0,44 0,4842224 0,6126317 78 0,77 1,5612172 0,8271833 12 0,11 1,4316632 0,2452469 46 0,45 9,46422 0,632321 79<		<u> </u>				0,37			$\overline{}$	0,7	-	-
7 0,06 1,3088596 0,147335 41 0,4 0,6129789 0,637017 74 0,73 1,5148493 0,758949 8 0,07 1,344901 0,135163 42 0,41 0,5328054 0,6471863 75 0,74 1,5135084 0,7649856 9 0,08 1,385344 0,1694297 43 0,42 0,5189427 0,657786 76 0,75 1,5543831 0,7717154 10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,5663128 0,7767003 11 0,11 1,4162514 0,2180981 45 0,44 0,4842224 0,616317 78 0,77 1,5612172 0,8271833 12 0,11 1,4316632 0,2451409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636514 0,8161368 13 0,12 1,5333136 0,33249 50 0,49 0,4690697 0,632196 83 </td <td>5</td> <td>0,04</td> <td>1,2141654</td> <td>0,0754082</td> <td>39</td> <td>0,38</td> <td>0,6828221</td> <td>0,6279257</td> <td>72</td> <td>0,71</td> <td>1,4113749</td> <td>0,7243567</td>	5	0,04	1,2141654	0,0754082	39	0,38	0,6828221	0,6279257	72	0,71	1,4113749	0,7243567
8 0,07 1,344901 0,135163 42 0,41 0,5328054 0,6471863 75 0,74 1,5135084 0,7649856 9 0,08 1,385344 0,1694297 43 0,42 0,5189427 0,657786 76 0,75 1,5543831 0,7717154 10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,5663128 0,7767003 11 0,1 1,4162514 0,2180981 45 0,44 0,4842224 0,6126317 78 0,77 1,5612172 0,8271883 12 0,11 1,4316632 0,2452469 46 0,45 0,4642 0,632321 79 0,78 1,6108615 0,8453968 13 0,12 1,4712354 0,2751409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636314 0,8161368 14 0,13 1,5086873 0,2904362 48 0,47 0,4530446 0,60272852 <th< td=""><td>6</td><td>0,05</td><td>1,2678181</td><td>0,1060725</td><td>40</td><td>0,39</td><td>0,6112501</td><td>0,6719575</td><td>73</td><td>0,72</td><td>1,4647226</td><td>0,7207032</td></th<>	6	0,05	1,2678181	0,1060725	40	0,39	0,6112501	0,6719575	73	0,72	1,4647226	0,7207032
9 0,08 1,385344 0,1694297 43 0,42 0,5189427 0,657786 76 0,75 1,5543831 0,7717154 10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,5663128 0,7767003 11 0,1 1,4162514 0,2180981 45 0,44 0,4842224 0,6126317 78 0,77 1,5612172 0,8271883 12 0,11 1,4316632 0,2452469 46 0,45 0,4642 0,632321 79 0,78 1,6108615 0,8453968 13 0,12 1,4712354 0,2751409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636514 0,8161368 14 0,13 1,5686873 0,2904362 48 0,47 0,4530446 0,6027852 81 0,8 1,5833649 0,88161468 15 0,13 1,5231336 0,353249 50 0,49 0,4690697 0,635196 <th< td=""><td>7</td><td>0,06</td><td>1,3088596</td><td>0,147335</td><td>41</td><td>0,4</td><td>0,6129789</td><td>0,637017</td><td>74</td><td>0,73</td><td>1,5148493</td><td>0,758949</td></th<>	7	0,06	1,3088596	0,147335	41	0,4	0,6129789	0,637017	74	0,73	1,5148493	0,758949
10 0,09 1,4228938 0,1810277 44 0,43 0,5230714 0,6082972 77 0,76 1,5663128 0,7767003 11 0,1 1,4162514 0,2180981 45 0,44 0,4842224 0,6126317 78 0,77 1,5612172 0,8271883 12 0,11 1,4316632 0,2452469 46 0,45 0,4642 0,632321 79 0,78 1,6108615 0,8453968 13 0,12 1,4712354 0,2751409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636514 0,8161368 14 0,13 1,5086873 0,2904362 48 0,47 0,4530446 0,6027852 81 0,8 1,5833649 0,8813449 15 0,14 1,5334193 0,3327938 49 0,48 0,4493303 0,6033549 82 0,81 1,5457953 0,8653572 16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 <	8	0,07	1,344901	0,135163	42	0,41	0,5328054	0,6471863	75	0,74	1,5135084	0,7649856
11 0,1 1,4162514 0,2180981 45 0,44 0,4842224 0,6126317 78 0,77 1,5612172 0,8271883 12 0,11 1,4316632 0,2452469 46 0,45 0,4642 0,632321 79 0,78 1,6108615 0,8453968 13 0,12 1,4712354 0,2751409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636514 0,8161368 14 0,13 1,5086873 0,2904362 48 0,47 0,4530446 0,6027852 81 0,8 1,5833649 0,8813449 15 0,14 1,5334193 0,3327938 49 0,48 0,4493303 0,6033549 82 0,81 1,5457953 0,8653572 16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 83 0,82 1,5652519 0,8846871 17 0,16 1,5323827 0,3586452 51 0,5 0,4929819 0,6170002 <t< td=""><td>9</td><td>0,08</td><td>1,385344</td><td>0,1694297</td><td>43</td><td>0,42</td><td>0,5189427</td><td>0,657786</td><td>76</td><td>0,75</td><td>1,5543831</td><td>0,7717154</td></t<>	9	0,08	1,385344	0,1694297	43	0,42	0,5189427	0,657786	76	0,75	1,5543831	0,7717154
12 0,11 1,4316632 0,2452469 46 0,45 0,4642 0,632321 79 0,78 1,6108615 0,8453968 13 0,12 1,4712354 0,2751409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636514 0,8161368 14 0,13 1,5086873 0,2904362 48 0,47 0,4530446 0,6027852 81 0,8 1,5833649 0,8813449 15 0,14 1,5334193 0,3327938 49 0,48 0,4493303 0,6035196 83 0,82 1,5652519 0,8846871 16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 83 0,82 1,5652519 0,8846871 17 0,16 1,53233827 0,3586452 51 0,5 0,4929819 0,6170002 84 0,83 1,5583237 0,90035 18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85	10	0,09	1,4228938	0,1810277	44	0,43	0,5230714	0,6082972	77	0,76	1,5663128	0,7767003
13 0,12 1,4712354 0,2751409 47 0,46 0,4703599 0,6522161 80 0,79 1,5636514 0,8161368 14 0,13 1,5086873 0,2904362 48 0,47 0,4530446 0,6027852 81 0,8 1,5833649 0,8813449 15 0,14 1,5334193 0,3327938 49 0,48 0,4493303 0,6033549 82 0,81 1,5457953 0,8653572 16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 83 0,82 1,5652519 0,8846871 17 0,16 1,5323827 0,3586452 51 0,5 0,4929819 0,6170002 84 0,83 1,5583237 0,90035 18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85 0,84 1,5291522 0,8880562 19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 <td< td=""><td>11</td><td>0,1</td><td>1,4162514</td><td>0,2180981</td><td>45</td><td>0,44</td><td>0,4842224</td><td>0,6126317</td><td>78</td><td>0,77</td><td>1,5612172</td><td>0,8271883</td></td<>	11	0,1	1,4162514	0,2180981	45	0,44	0,4842224	0,6126317	78	0,77	1,5612172	0,8271883
14 0,13 1,5086873 0,2904362 48 0,47 0,4530446 0,6027852 81 0,8 1,5833649 0,8813449 15 0,14 1,5334193 0,3327938 49 0,48 0,4493303 0,6033549 82 0,81 1,5457953 0,8653572 16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 83 0,82 1,5652519 0,8846871 17 0,16 1,5323827 0,3586452 51 0,5 0,4929819 0,6170002 84 0,83 1,5583237 0,90035 18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85 0,84 1,5291522 0,8880562 19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 86 0,85 1,4526734 0,904949 20 0,19 1,4884771 0,4102042 54 0,53 0,539437 0,6346858 8	12	0,11	1,4316632	0,2452469	46	0,45	0,4642	0,632321	79	0,78	1,6108615	0,8453968
15 0,14 1,5334193 0,3327938 49 0,48 0,4493303 0,6033549 82 0,81 1,5457953 0,8653572 16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 83 0,82 1,5652519 0,8846871 17 0,16 1,5323827 0,3586452 51 0,5 0,4929819 0,6170002 84 0,83 1,5583237 0,90035 18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85 0,84 1,5291522 0,8880562 19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 86 0,85 1,4526734 0,904949 20 0,19 1,4884771 0,4102042 54 0,53 0,5394437 0,6346858 87 0,86 1,4508212 0,9155075 21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973	13	0,12	1,4712354	0,2751409	47	0,46	0,4703599	0,6522161	80	0,79	1,5636514	0,8161368
16 0,15 1,5231336 0,353249 50 0,49 0,4690697 0,635196 83 0,82 1,5652519 0,8846871 17 0,16 1,5323827 0,3586452 51 0,5 0,4929819 0,6170002 84 0,83 1,5583237 0,90035 18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85 0,84 1,5291522 0,8880562 19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 86 0,85 1,4526734 0,904949 20 0,19 1,4884771 0,4102042 54 0,53 0,5394437 0,6346858 87 0,86 1,4508212 0,9155075 21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973 88 0,87 1,394016 0,9202061 22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 8	14	0,13	1,5086873	0,2904362	48	0,47	0,4530446	0,6027852	81	0,8	1,5833649	0,8813449
17 0,16 1,5323827 0,3586452 51 0,5 0,4929819 0,6170002 84 0,83 1,5583237 0,90035 18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85 0,84 1,5291522 0,8880562 19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 86 0,85 1,4526734 0,904949 20 0,19 1,4884771 0,4102042 54 0,53 0,5394437 0,6346858 87 0,86 1,4508212 0,9155075 21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973 88 0,87 1,394016 0,9202061 22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 89 0,88 1,3607146 0,9313118 23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 <td< td=""><td>15</td><td>0,14</td><td>1,5334193</td><td>0,3327938</td><td>49</td><td>0,48</td><td>0,4493303</td><td>0,6033549</td><td>82</td><td>0,81</td><td>1,5457953</td><td>0,8653572</td></td<>	15	0,14	1,5334193	0,3327938	49	0,48	0,4493303	0,6033549	82	0,81	1,5457953	0,8653572
18 0,17 1,486268 0,40754 52 0,51 0,4665593 0,620838 85 0,84 1,5291522 0,8880562 19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 86 0,85 1,4526734 0,904949 20 0,19 1,4884771 0,4102042 54 0,53 0,5394437 0,6346858 87 0,86 1,4508212 0,9155075 21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973 88 0,87 1,394016 0,9202061 22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 89 0,88 1,3607146 0,9313118 23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 90 0,89 1,3246109 0,9701761 24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873	16	0,15	1,5231336	0,353249	50	0,49	0,4690697	0,635196	83	0,82	1,5652519	0,8846871
19 0,18 1,4974666 0,4237042 53 0,52 0,5115354 0,5834973 86 0,85 1,4526734 0,904949 20 0,19 1,4884771 0,4102042 54 0,53 0,5394437 0,6346858 87 0,86 1,4508212 0,9155075 21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973 88 0,87 1,394016 0,9202061 22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 89 0,88 1,3607146 0,9313118 23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 90 0,89 1,3246109 0,9701761 24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873 91 0,9 1,2211365 0,9825104 25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213	17	0,16	1,5323827	0,3586452	51	0,5	0,4929819	0,6170002	84	0,83	1,5583237	0,90035
20 0,19 1,4884771 0,4102042 54 0,53 0,5394437 0,6346858 87 0,86 1,4508212 0,9155075 21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973 88 0,87 1,394016 0,9202061 22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 89 0,88 1,3607146 0,9313118 23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 90 0,89 1,3246109 0,9701761 24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873 91 0,9 1,2211365 0,9825104 25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213 92 0,91 1,1975895 0,9815123 26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366	18	0,17	1,486268	0,40754	52	0,51	0,4665593	0,620838	85	0,84	1,5291522	0,8880562
21 0,2 1,4882327 0,4807286 55 0,54 0,5706555 0,6352973 88 0,87 1,394016 0,9202061 22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 89 0,88 1,3607146 0,9313118 23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 90 0,89 1,3246109 0,9701761 24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873 91 0,9 1,2211365 0,9825104 25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213 92 0,91 1,1975895 0,9815123 26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366 93 0,92 1,1207907 0,9946604 27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232	19	0,18	1,4974666	0,4237042	53	0,52	0,5115354	0,5834973	86	0,85	1,4526734	0,904949
22 0,21 1,4773056 0,4774635 56 0,55 0,6035223 0,5845371 89 0,88 1,3607146 0,9313118 23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 90 0,89 1,3246109 0,9701761 24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873 91 0,9 1,2211365 0,9825104 25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213 92 0,91 1,1975895 0,9815123 26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366 93 0,92 1,1207907 0,9946604 27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232 94 0,93 1,0774258 0,9469516 28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279	20	0,19	1,4884771	0,4102042	54	0,53	0,5394437	0,6346858	87	0,86	1,4508212	0,9155075
23 0,22 1,4216215 0,4951218 57 0,56 0,6711091 0,6353207 90 0,89 1,3246109 0,9701761 24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873 91 0,9 1,2211365 0,9825104 25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213 92 0,91 1,1975895 0,9815123 26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366 93 0,92 1,1207907 0,9946604 27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232 94 0,93 1,0774258 0,9469516 28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279 95 0,94 1,0178259 0,9615718 29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534	21	0,2	1,4882327	0,4807286	55	0,54	0,5706555	0,6352973	88	0,87	1,394016	0,9202061
24 0,23 1,3771712 0,5325666 58 0,57 0,6752865 0,6381873 91 0,9 1,2211365 0,9825104 25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213 92 0,91 1,1975895 0,9815123 26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366 93 0,92 1,1207907 0,9946604 27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232 94 0,93 1,0774258 0,9469516 28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279 95 0,94 1,0178259 0,9615718 29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534 96 0,95 0,9694682 0,9534277 30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642	22	0,21	1,4773056	0,4774635	56	0,55	0,6035223	0,5845371	89	0,88	1,3607146	0,9313118
25 0,24 1,3309465 0,5164106 59 0,58 0,731453 0,609213 92 0,91 1,1975895 0,9815123 26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366 93 0,92 1,1207907 0,9946604 27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232 94 0,93 1,0774258 0,9469516 28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279 95 0,94 1,0178259 0,9615718 29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534 96 0,95 0,9694682 0,9534277 30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642 97 0,96 0,887914 0,9792212 31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372	23	0,22	1,4216215	0,4951218	57	0,56	0,6711091	0,6353207	90	0,89	1,3246109	0,9701761
26 0,25 1,2970678 0,5394506 60 0,59 0,7684832 0,6179366 93 0,92 1,1207907 0,9946604 27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232 94 0,93 1,0774258 0,9469516 28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279 95 0,94 1,0178259 0,9615718 29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534 96 0,95 0,9694682 0,9534277 30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642 97 0,96 0,887914 0,9792212 31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372 98 0,97 0,8197896 0,9486557 32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563	24	0,23	1,3771712	0,5325666	58	0,57	0,6752865	0,6381873	91	0,9	1,2211365	0,9825104
27 0,26 1,2615024 0,5439639 61 0,6 0,8634238 0,6446232 94 0,93 1,0774258 0,9469516 28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279 95 0,94 1,0178259 0,9615718 29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534 96 0,95 0,9694682 0,9534277 30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642 97 0,96 0,887914 0,9792212 31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372 98 0,97 0,8197896 0,9486557 32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563 99 0,98 0,7821926 0,9811879 33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028	25	0,24	1,3309465	0,5164106	59	0,58	0,731453	0,609213	92	0,91	1,1975895	0,9815123
28 0,27 1,2230219 0,5511926 62 0,61 0,8762356 0,5960279 95 0,94 1,0178259 0,9615718 29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534 96 0,95 0,9694682 0,9534277 30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642 97 0,96 0,887914 0,9792212 31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372 98 0,97 0,8197896 0,9486557 32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563 99 0,98 0,7821926 0,9811879 33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028 100 0,99 0,6952411 0,9536714	26	0,25	1,2970678	0,5394506	60	0,59	0,7684832	0,6179366	93	0,92	1,1207907	0,9946604
29 0,28 1,1597515 0,572819 63 0,62 0,9264403 0,6361534 96 0,95 0,9694682 0,9534277 30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642 97 0,96 0,887914 0,9792212 31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372 98 0,97 0,8197896 0,9486557 32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563 99 0,98 0,7821926 0,9811879 33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028 100 0,99 0,6952411 0,9536714	27	0,26	1,2615024	0,5439639	61	0,6	0,8634238	0,6446232	94	0,93	1,0774258	0,9469516
30 0,29 1,1157716 0,5884251 64 0,63 1,0174929 0,6257642 97 0,96 0,887914 0,9792212 31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372 98 0,97 0,8197896 0,9486557 32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563 99 0,98 0,7821926 0,9811879 33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028 100 0,99 0,6952411 0,9536714	28	0,27	1,2230219	0,5511926	62	0,61	0,8762356	0,5960279	95	0,94	1,0178259	0,9615718
31 0,3 1,0847763 0,6211321 65 0,64 1,0733256 0,6601372 98 0,97 0,8197896 0,9486557 32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563 99 0,98 0,7821926 0,9811879 33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028 100 0,99 0,6952411 0,9536714	29	0,28	1,1597515	0,572819	63	0,62	0,9264403	0,6361534	96	0,95	0,9694682	0,9534277
32 0,31 1,0249699 0,631442 66 0,65 1,1304526 0,6280563 99 0,98 0,7821926 0,9811879 33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028 100 0,99 0,6952411 0,9536714	30	0,29	1,1157716	0,5884251	64	0,63	1,0174929	0,6257642	97	0,96	0,887914	0,9792212
33 0,32 0,9606958 0,6072525 67 0,66 1,1675822 0,6901028 100 0,99 0,6952411 0,9536714	31	0,3	1,0847763	0,6211321	65	0,64	1,0733256	0,6601372	98	0,97	0,8197896	0,9486557
	32	0,31	1,0249699	0,631442	66	0,65	1,1304526	0,6280563	99	0,98	0,7821926	0,9811879
	33	0,32	0,9606958	0,6072525	67	0,66	1,1675822	0,6901028	100	0,99	0,6952411	0,9536714
	34	0,33	0,890458	0,6312751								

де

Дані таблиці відображені на рис. 1.1.

τ - значення безрозмірного часу; X - значения впливу (в безрозмірному вигляді); Y - значения реакції об'єкта (у безрозмірному вигляді).

Рисунок 1.1 - 3алежність Y = f(x)

1.2 Методика ідентифікації

Проводиться ідентифікація звичайного лінійного диференціального рівняння (1.1)

$$A \cdot \frac{dY}{d\tau} + Y = k \cdot X \tag{1.1}$$

де т - час,

 $X(\tau)$ - вплив,

 $Y(\tau)$ - реакція об'єкта.

Для розв'язання задачі ідентифікації найчастіше вибирається метод найменших квадратів з апроксимацією залежностей $X=f(\tau)$ і $Y=f(\tau)$ при якому:

- 1) проводиться апроксимація залежностей X=f(t) і Y=f(t) на відрізках осі часу гладкими функціями (поліномів невисоких ступенів);
- 2) для моментів часу шляхом диференціювання апроксимуючих функцій визначаються похідні dX/dt , dY/dt .
- 3) значення функцій і похідних підставляються в идентифицируемое рівняння і визначається сума квадратів нев'язок лівої і правої частин рівняння δ для всіх розглянутих моментів часу;
- 4) значення коефіцієнтів идентифицируемого диференціального рівняння визначаються шляхом мінімізації суми квадратів нев'язок лівої і правої частин рівняння.

Мінімізацію значення функціоналу δ можна проводити ітераційним шляхом використовуючи методи спуску, але зручніше формувати систему лінійних алгебраїчних рівнянь, яка розв'язується прямими методами.

Для проведення ідентифікації використовується метод апроксимації на суміжних ділянках. Апроксимація залежності Y=f(t) здійснюється поліномами методом найменших квадратів.

$$Y(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + \dots + a_k \cdot t^k + \dots + a_{kn} \cdot t^{kn} = \sum_{k=0}^{kn} a_k \cdot t^k$$

$$Y'(t) = a_1 + 2 \cdot a_2 \cdot t + \dots + k \cdot a_k \cdot t^{k-1} + \dots + kn \cdot a_{kn} \cdot t^{kn-1} = \sum_{k=1}^{kn} k \cdot a_k \cdot t^{k-1}$$
(1.2)

де τ – незалежна змінна;

і – індекс моменту часу на осі основної незалежної змінної т;

 $\Delta \tau$ - відрізок часу, на якому проводиться апроксимація;

 $t = \tau - \tau_1$ - локальна (у межах из відрізка) координата часу;

j – індекс моменту часу на допоміжній осі незалежної змінної t (в межах локального відрізка часу).

Вираз для суми квадратів нев'язок з усіх розглянутих зон має вигляд:

$$S = \sum_{j=1}^{m} (A \cdot Y_{j}' + Y_{j} - k \cdot X_{j})^{2}$$
 (1.3)

где m – кількість розглянутих точок всій області визначення функції (включаючи всі виділені відрізки),

ј – індекс точки.

Необхідною умовою мінімуму функції δ є рівність нулю її частинних похідних:

$$\frac{\partial S}{\partial A} = 0, \quad \frac{\partial S}{\partial k} = 0.$$
 (1.4)

Підставивши вираз (1.3) (1.4) можна отримати систему лінійних алгебраїчних рівнянь (СЛАР) (1.5).

(1.5)

Розв'язавши систему лінійних алгебраїчних рівнянь (1.5) отримаємо значення **A**, **k**. Проведення ідентифікації відображено в таблиці 1.2.

Оцінка якості ідентифікації рівняння (1.1) проводиться порівнянням заданих значень Y і відновлених значень Ych. Значення Ych отримані при чисельному розв'язку рівняння (1.1) методом трапецій. Апроксимація відображена на рис. 1.2.

$$Y = -29,123758 x^5 + 66,880196 x^4 - 49,538905 x^3 + 11,184526 x^2 + 1,4841424 x + 0,0109203$$

$$R^2 = 0.994276$$

Оцінка якості ідентифікації наведена на рис.1.5.

Рисунок 1.3 – Результати тестування

Таблиця 1.2 - Ідентифікація ОДР першого порядку

i	τ	X	Y	Y'	$(Y')^2$	-X*Y'	X*X	-Y*Y'	X*Y	Ych
1	0	0,9935	0,0129	1,4841	2,2027	-1,474	0,9870	-0,019	0,0128	0,0129
2	0,01	1,0438	0,0391	1,6932	2,8671	-1,767	1,0896	-0,066	0,0408	0,0350
3	0,02	1,112	0,0619	1,8742	3,5126	-2,084	1,2366	-0,116	0,0689	0,0580
4	0,03	1,1491	0,0663	2,0286	4,1151	-2,331	1,3204	-0,135	0,0762	0,0815
5	0,04	1,2142	0,0754	2,1579	4,6564	-2,62	1,4742	-0,163	0,0916	0,1055
6	0,05	1,2678	0,1061	2,2636	5,1238	-2,87	1,6074	-0,24	0,1345	0,1302
7	0,06	1,3089	0,1473	2,3472	5,5092	-3,072	1,7131	-0,346	0,1928	0,1553
8	0,07	1,3449	0,1352	2,41	5,8082	-3,241	1,8088	-0,326	0,1818	0,1807
9	0,08	1,3853	0,1694	2,4535	6,0198	-3,399	1,9192	-0,416	0,2347	0,2062
10	0,09	1,4229	0,181	2,479	6,1456	-3,527	2,0246	-0,449	0,2576	0,2320
11	0,1	1,4163	0,2181	2,4878	6,1893	-3,523	2,0058	-0,543	0,3089	0,2574
12	0,11	1,4317	0,2452	2,4812	6,1565	-3,552	2,0497	-0,609	0,3511	0,2823
13	0,12	1,4712	0,2751	2,4604	6,0537	-3,62	2,1645	-0,677	0,4048	0,3071
14	0,13	1,5087	0,2904	2,4266	5,8886	-3,661	2,2761	-0,705	0,4382	0,3322
15	0,14	1,5334	0,3328	2,3811	5,6694	-3,651	2,3514	-0,792	0,5103	0,3573
16	0,15	1,5231	0,3532	2,3248	5,4046	-3,541	2,3199	-0,821	0,5380	0,3819
17	0,16	1,5324	0,3586	2,2589	5,1028	-3,462	2,3482	-0,81	0,5496	0,4059
18	0,17	1,4863	0,4075	2,1846	4,7723	-3,247	2,2090	-0,89	0,6057	0,4289
19	0,18	1,4975	0,4237	2,1027	4,4214	-3,149	2,2424	-0,891	0,6345	0,4509
20	0,19	1,4885	0,4102	2,0144	4,0576	-2,998	2,2156	-0,826	0,6106	0,4724
21	0,2	1,4882	0,4807	1,9205	3,6882	-2,858	2,2148	-0,923	0,7154	0,4932
22	0,21	1,4773	0,4775	1,822	3,3195	-2,692	2,1824	-0,87	0,7054	0,5134
23	0,22	1,4216	0,4951	1,7197	2,9575	-2,445	2,0210	-0,851	0,7039	0,5323
24	0,23	1,3772	0,5326	1,6146	2,607	-2,224	1,8966	-0,86	0,7334	0,5496

Продовження таблиці 1.2

	1	37	37	371	(371)2	374371	17 ± 17	X74X71	17417	37 . 1.
i 25	τ 0.24	1 2200	Y 0.5164	Y'	$(Y')^2$	-X*Y'	X*X	-Y*Y'	X*Y	Ych
25 26	0,24	1,3309 1,2971	0,5164	1,5075 1,399	2,2725 1,9573	-2,006 -1,815	1,7714 1,6824	-0,778 -0,755	0,6873	0,5655 0,5800
27	0,25	1,2615	0,5393	1,2901	1,6644	-1,627	1,5914	-0,702	0,6862	0,5800
28	0,20	1,2013	0,5512	1,1814	1,3956	-1,445	1,4958	-0,762	0,6741	0,6058
29	0,27	1,1598	0,5728	1,0735	1,1524	-1,245	1,3450	-0,615	-	0,6166
30	0,28	1,1158	0,5884	0,9671	0,9353	-1,079		-0,569		0,6260
31	0,23	1,0848	0,6211	0,8629		-0,936		-0,536		0,6343
32	0,31	1,025	0,6314	0,7614	-	-0,78			0,6472	0,6414
33	0,31	0,9607	0,6073	0,6631	0,4397	-0,637	0,9229	-0,403		0,6470
34	0,33	0,8905	0,6313	0,5685		-0,506		-0,359		0,6509
35	0,34	0,8757	0,6348	0,4782	0,2287	-0,419	0,7668	-0,304		0,6538
36	0,35	0,8354	0,6198	0,3925	-	-0,328		-0,243		0,6560
37	0,36	0,7743	0,6175	0,3119	0,0973	-0,241	0,5995	-0,193	0,4781	0,6570
38	0,37	0,7146		0,2367	0,056	-0,169				0,6567
39	0,38	0,6828	0,6279	0,1672	0,0279	-0,114		-0,105		0,6554
40	0,39	0,6113	0,672	0,1037	0,0108	-0,063	0,3736		0,4107	0,6529
41	0,4	0,613	0,637	0,0466		-0,029				0,6498
42	0,41	0,5328	0,6472	-0,004		0,0022				0,6458
43	0,42	0,5189	0,6578	-0,048		0,0249				0,6409
44	0,43	0,5231	0,6083	-0,085		0,0445			0,3182	0,6361
45	0,44	0,4842	0,6126	-0,115		0,0557	0,2345	0,0705	0,2966	0,6310
46	0,45	0,4642	0,6323	-0,138		0,0641	0,2155	0,0873	0,2935	0,6253
47	0,46	0,4704	0,6522	-0,154	0,0237	0,0724	0,2212	0,1004	0,3068	0,6197
48	0,47	0,453	0,6028	-0,163	0,0265	0,0737	0,2052	0,0981	0,2731	0,6141
49	0,48	0,4493	0,6034	-0,164	0,027	0,0739	0,2019	0,0992	0,2711	0,6083
50	0,49	0,4691	0,6352	-0,159	0,0253	0,0746	0,2200	0,101	0,2980	0,6030
51	0,5	0,493	0,617	-0,147	0,0215	0,0723	0,2430	0,0904	0,3042	0,5982
52	0,51	0,4666	0,6208	-0,127	0,0162	0,0594	0,2177	0,0791	0,2897	0,5935
53	0,52	0,5115	0,5835	-0,101	0,0103	0,0519	0,2617	0,0592	0,2985	0,5892
54	0,53	0,5394	0,6347	-0,069	0,0048	0,0372	0,2910	0,0438	0,3424	0,5857
55	0,54	0,5707	0,6353	-0,03	0,0009	0,0173	0,3256	0,0193	0,3625	0,5830
56	0,55	0,6035	0,5845	0,0143	0,0002	-0,009	0,3642	-0,008	0,3528	0,5811
57	0,56	0,6711	0,6353	0,0647	0,0042	-0,043	0,4504	-0,041	0,4264	0,5803
58	0,57	0,6753	0,6382	0,1204	0,0145	-0,081	0,4560	-0,077	0,4310	0,5804
59	0,58	0,7315	0,6092	0,1811	0,0328	-0,132	0,5350	-0,11	0,4456	0,5811
60	0,59	0,7685	0,6179	0,2464	0,0607	-0,189	0,5906	-0,152	0,4749	0,5828
61	0,6	0,8634	0,6446	0,3158	0,0998	-0,273	0,7455	-0,204	0,5566	0,5860
62	0,61	0,8762	0,596	0,389	0,1513	-0,341	0,7678	-0,232	0,5223	0,5902
63	0,62	0,9264	0,6362	0,4653	0,2165	-0,431	0,8583	-0,296	0,5894	0,5951

Продовження таблиці 1.2

	ттрод	овженн.	я таолит	ці і.∠						
i	τ	X	Y	Y'	$(Y')^2$	-X*Y'	X*X	-Y*Y'	X*Y	Ych
64	0,63	1,0175	0,6258	0,5442	0,2961	-0,554	1,0353	-0,341	0,6367	0,6013
65	0,64	1,0733	0,6601	0,6251	0,3908	-0,671	1,1520	-0,413	0,7085	0,6091
66	0,65	1,1305	0,6281	0,7075	0,5005	-0,8	1,2779	-0,444	0,7100	0,6179
67	0,66	1,1676	0,6901	0,7906	0,6251	-0,923	1,3632	-0,546	0,8058	0,6275
68	0,67	1,2149	0,6838	0,8739	0,7637	-1,062	1,4759	-0,598	0,8307	0,6378
69	0,68	1,2608	0,6581	0,9565	0,9149	-1,206	1,5897	-0,63	0,8298	0,6488
70	0,69	1,3566	0,7178	1,0378	1,077	-1,408	1,8402	-0,745	0,9738	0,6612
71	0,7	1,3862	0,7093	1,1168	1,2473	-1,548	1,9215	-0,792	0,9831	0,6746
72	0,71	1,4114	0,7244	1,1929	1,4231	-1,684	1,9920	-0,864	1,0223	0,6882
73	0,72	1,4647	0,7207	1,2652	1,6007	-1,853	2,1454	-0,912	1,0556	0,7024
74	0,73	1,5148	0,7589	1,3327	1,776	-2,019	2,2948	-1,011	1,1497	0,7174
75	0,74	1,5135	0,765	1,3945	1,9446	-2,111	2,2907	-1,067	1,1578	0,7325
76	0,75	1,5544	0,7717	1,4497	2,1015	-2,253	2,4161	-1,119	1,1995	0,7477
77	0,76	1,5663	0,7767	1,4972				-1,163	1,2166	0,7631
78	0,77	1,5612	0,8272	1,5361		-2,398	2,4374	-1,271	1,2914	0,7781
79	0,78	1,6109	0,8454			-2,521		-1,323	1,3618	0,7933
80	0,79	1,5637	0,8161	1,5835		-2,476	2,4450	-1,292	1,2762	0,8081
81	0,8	1,5834	0,8813	1,5899	2,5277	-2,517	2,5070	-1,401	1,3955	0,8222
82	0,81	1,5458	0,8654	1,583	2,506	-2,447	2,3895	-1,37	1,3377	0,8358
83	0,82	1,5653	0,8847	1,5619	2,4394	-2,445	2,4500	-1,382	1,3848	0,8488
84	0,83	1,5583	0,9003	1,5251	2,3259	-2,377	2,4284	-1,373	1,4030	0,8616
85	0,84	1,5292	0,8881	1,4714	2,165	-2,25	2,3383	-1,307	1,3580	0,8737
86	0,85	1,4527	0,9049	1,3995	1,9587			-1,267	1,3146	0,8843
87	0,86	1,4508	0,9155	1,3081	1,7112	-1,898	2,1049	-1,198	1,3282	0,8938
88	0,87	1,394	0,9202	1,1958	1,43		1,9433		1,2828	0,9024
89	0,88	1,3607	0,9313	1,0611	1,126	-1,444	1,8515	-0,988	1,2672	0,9098
90	0,89	1,3246	0,9702	0,9027	0,8148	-1,196	1,7546	-0,876	1,2851	0,9162
91	0,9	1,2211	0,9825	0,7189	0,5168	-0,878	1,4912	-0,706	1,1998	0,9210
92	0,91	1,1976	0,9815	0,5084	0,2584	-0,609	1,4342	-0,499	1,1754	0,9242
93	0,92	1,1208	0,9947	0,2694	0,0726	-0,302	1,2562	-0,268	1,1148	0,9262
94	0,93	1,0774	0,947	0,0006	3E-07	-0,001	1,1608	-0,001	1,0203	0,9268
95	0,94	1,0178	0,9616	-0,3	0,0899	0,3053	1,0360	0,2884	0,9787	0,9263
96	0,95	0,9695	0,9534	-0,634	0,4015	0,6143	0,9399	0,6041	0,9243	0,9246
97	0,96	0,8879	0,9792	-1,002	1,0046	0,8899	0,7884	0,9815	0,8695	0,9215
98	0,97	0,8198	0,9487	-1,408	1,9814	1,1539	0,6721	1,3353	0,7777	0,9168
99	0,98	0,7822	0,9812	-1,851	3,4277	1,4481	0,6118	1,8166	0,7675	0,9111
100	0,99	0,6952	0,9537	-2,335	5,4542	1,6237	0,4834	2,2272	0,6630	0,9041
	•			-	181,5	-129,1	135,25	-41,49	67,092	
					(Y') ²	-X*V'	X*X	_V*V'	X*V	

Початкова матриці

181,500	-129,084
-129,084	135,252

Вектор правої частини

-41,491	
67,092	

Зворотня матриця

0,0172	0,0164
0,0164	0,0230

Вектор рішення

$$Ych_{i} = D1 \cdot Ych_{i-1} + D2 \cdot \left(X_{i-1} + X_{i}\right) \qquad \qquad D1 = \frac{2 \cdot A - \Delta \tau}{2 \cdot A + \Delta \tau}, \quad D2 = \frac{k \cdot \Delta \tau}{2 \cdot A + \Delta \tau}$$

2. МОДЕЛЮВАННЯ РОБОТИ ДИНАМІЧНОЇ СИСТЕМИ

2.1 Постановка задачі.

Досліджується перехідний процес в системі, структура якої показана на рис. 2.1.

Рисунок 2.1 – Схема системи автоматичного регулювання (САР)

Система:

Математична модель об'єкта регулювания:

$$A \cdot \frac{d^2Y}{d\tau^2} + B \cdot \frac{dY}{d\tau} + Y = k_1 \cdot X + k_2 \cdot Z \tag{2.1}$$

початкові умови: $\tau = 0$ $Y = Y_0$, $F = F_0 = Y_0$.

регулятора:
$$C \cdot \frac{dZ}{d\tau} + Z = k_3 \cdot (Y - G) + k_4 \cdot \frac{d(Y - G)}{d\tau} + k_5 \cdot \int_0^{\Delta \tau} (Y - G) \cdot d\tau$$
 Математична модель (2.2)

початкові умови: $\tau = 0$ $Z = Z_0$.

2.2 Приведення математичної моделі об'єкта до системи звичайних диференціальних рівнянь 1-го порядку.

Вводиться нова змінна $F = dY/d\tau$.

В результаті отримуємо систему рівнянь:

$$\begin{cases} A \cdot \frac{dF}{d\tau} + B \cdot F + Y = k_1 \cdot X + k_2 \cdot Z \text{ початкові умови } \tau = 0, \ F = F_0 = Y'_0; \\ \frac{dY}{d\tau} = F \text{ початкові умови } \tau = 0, \ Y = Y_0; \\ C \cdot \frac{dZ}{d\tau} + Z = k_3 \cdot |Y - G| + k_4 \cdot \frac{d|Y - G|}{d\tau} + k_5 \cdot \int_0^{\Delta \tau} |Y - G| \cdot d\tau \text{ початкові умови } \tau = 0, \ Z = Z_0 \end{cases}$$
 (2.3)

2.3 Запис кінцево-різницевих аналогів диференціальних рівнянь

Використовується явна різницева схема:

$$A \cdot \frac{d^2Y}{d\tau^2} + B \cdot \frac{dY}{d\tau} + Y = k_1 \cdot X + k_2 \cdot Z \tag{2.4}$$

$$Y_{i} = Y_{i-1} + \Delta \tau \cdot F_{i-1}$$
 (2.5)

$$C \cdot \frac{Z_{i} - Z_{i-1}}{\Delta \tau} + Z_{i-1} = k_{3} \cdot (Y_{i-1} - G_{i-1}) + k_{4} \cdot \frac{(Y_{i} - Y_{i-1})}{\Delta \tau} - k_{4} \cdot \frac{(G_{i} - G_{i-1})}{\Delta \tau} + k_{5} \cdot \Delta \tau \cdot (Y_{i-1} - G_{i-1})$$
(2.6)

Після перетворень:

$$F_{i} = F_{i-1} \cdot \left(\frac{A - B \cdot \Delta \tau}{A}\right) + \left(-\frac{\Delta \tau}{A}\right) \cdot Y_{i-1} + \frac{\Delta \tau \cdot k_{1}}{A} \cdot X_{i-1} + \frac{\Delta \tau \cdot k_{2}}{A} \cdot Z_{i-1}$$

$$(2.7)$$

$$Y_{i} = Y_{i-1} + \Delta \tau \cdot F_{i-1}$$
 (2.8)

$$Z_{i} = Z_{i-1} \cdot \left(\frac{C - \Delta \tau}{C}\right) + Y_{i} \cdot \left(\frac{\left(k_{3} + k_{4}\right) \cdot \Delta \tau}{C}\right) + Y_{i-1} \cdot \left(\frac{\left(k_{5} \cdot \Delta \tau - k_{4}\right) \cdot \Delta \tau}{C}\right) + C$$

$$+ G_{i} \cdot \left(-\frac{\left(k_{3} + k_{4}\right) \cdot \Delta \tau}{C}\right) + G_{i-1} \cdot \left(\frac{\left(k_{4} - k_{5} \cdot \Delta \tau\right) \cdot \Delta \tau}{C}\right)$$

$$(2.9)$$

Після перетворень отримаємо в компактному запису:

$$F_{i} = F_{i-1} \cdot D1 + D2 \cdot Y_{i-1} + D3 \cdot X_{i-1} + D4 \cdot Z_{i-1}$$
(2.10)

$$Y_{i} = Y_{i-1} + \Delta \tau \cdot F_{i-1}$$
 (2.11)

$$Z_{i} = Z_{i-1} \cdot D5 + Y_{i} \cdot D6 + Y_{i-1} \cdot D7 + G_{i} \cdot D8 + G_{i-1} \cdot D9$$
(2.12)

де D1 =
$$\frac{\mathbf{A} - \mathbf{B} \cdot \Delta \tau}{\mathbf{A}}$$
, D2 = $-\frac{\Delta \tau}{\mathbf{A}}$, D3 = $\frac{\Delta \tau \cdot \mathbf{k}_1}{\mathbf{A}}$, D4 = $\frac{\Delta \tau \cdot \mathbf{k}_2}{\mathbf{A}}$, D5 = $\frac{\mathbf{C} - \Delta \tau}{\mathbf{C}}$,
$$D6 = \frac{\left(\mathbf{k}_3 + \mathbf{k}_4\right) \cdot \Delta \tau}{\mathbf{C}}$$
, D7 = $\frac{\left(\mathbf{k}_5 \cdot \Delta \tau - \mathbf{k}_4\right) \cdot \Delta \tau}{\mathbf{C}}$, D8 = $-\frac{\left(\mathbf{k}_3 + \mathbf{k}_4\right) \cdot \Delta \tau}{\mathbf{C}}$, D9 = $\frac{\left(\mathbf{k}_4 - \mathbf{k}_5 \cdot \Delta \tau\right) \cdot \Delta \tau}{\mathbf{C}}$. (2.13)

2.4 Рішення системи рівнянь (2.10) – (2.12) в середовищі Ехсеl.

Таблиця 2.1 - Початкові дані.

A=	2,186	k3=	1,5	a0=	2	b0=	1
B=	0,5	k4=	2	a1=	-0,01	b1=	-0,01
k1=	1,5	k5=	0	a2=	0,001	b2=	0
k2=	-1	$Y_0 =$	0,5	a3=	0		
C=	0,5	$F_0 = Y'_0 =$	0,5	a4=	0		
Δτ=	0,2	$Z_0 =$	0			•	

Таблиця 2.2 - Коефіцієнти для проведення моделювання системи.

D1=	0,95	D4=	-0,09	D7=	-0,8
D2=	-0,09	D5=	0,6	D8=	-1,4
D3=	0,14	D6=	1,4	D9=	0,8

Таблиця 2.3 – Моделювання системи в середовищі Ехсеl.

				•		
i	τ	X	G	Y	F	Z
0	0	2	1	0,5	0,5	0
1	0,2	1,998	0,998	0,6	0,7059	-0,1572
2	0,4	1,996	0,996	0,7412	0,9073	-0,1327
3	0,6	1,994	0,994	0,9226	1,0840	0,0243
4	0,8	1,993	0,992	1,1394	1,2215	0,2781
5	1	1,991	0,990	1,3837	1,3094	0,6001
6	1,2	1,989	0,988	1,6456	1,3412	0,9658
7	1,4	1,988	0,986	1,9139	1,3140	1,3524
8	1,6	1,987	0,984	2,1767	1,2279	1,7388
9	1,8	1,985	0,982	2,4222	1,0861	2,1055
10	2	1,984	0,980	2,6394	0,8946	2,4343
11	2,2	1,983	0,978	2,8184	0,6618	2,7096
12	2,4	1,982	0,976	2,9507	0,3978	2,9180
13	2,6	1,981	0,974	3,0303	0,1147	3,0499
14	2,8	1,980	0,972	3,0532	-0,1750	3,0986
15	3	1,979	0,970	3,0182	-0,4581	3,0617
16	3,2	1,978	0,968	2,9266	-0,7218	2,9405
17	3,4	1,978	0,966	2,7822	-0,9541	2,7401
18	3,6	1,977	0,964	2,5914	-1,1443	2,4694
19	3,8	1,976	0,962	2,3625	-1,2837	2,1405
20	4	1,976	0,960	2,1058	-1,3657	1,7680
21	4,2	1,976	0,958	1,8326	-1,3865	1,3687
22	4,4	1,975	0,956	1,5554	-1,3448	0,9606
23	4,6	1,975	0,954	1,2864	-1,2424	0,5622
24	4,8	1,975	0,952	1,0379	-1,0836	0,1917
25	5	1,975	0,950	0,8212	-0,8755	-0,1340
26	5,2	1,975	0,948	0,6461	-0,6273	-0,4001
27	5,4	1,975	0,946	0,5206	-0,3500	-0,5940
28	5,6	1,975	0,944	0,4506	-0,0562	-0,7068
29	5,8	1,976	0,942	0,4394	0,2409	-0,7331
30	6	1,976	0,940	0,4876	0,5278	-0,6712
31	6,2	1,976	0,938	0,5931	0,7917	-0,5236
32	6,4	1,977	0,936	0,7515	1,0203	-0,2966
33	6,6	1,978	0,934	0,9555	1,2034	-0,0002
34	6,8	1,978	0,932	1,1962	1,3323	0,3525
35	7	1,979	0,930	1,4627	1,4011	0,7459
36	7,2	1,980	0,928	1,7429	1,4066	1,1622
37	7,4	1,981	0,926	2,0242	1,3481	1,5829

Продовження таблиці 2.3

i	τ	X	G	Y	F	Z
38	7,6	1,982	0,924	2,2938	1,2283	1,9890
39	7,8	1,983	0,922	2,5395	1,0522	2,3620
40	8	1,984	0,920	2,7499	0,8278	2,6851
41	8,2	1,985	0,918	2,9155	0,5649	2,9436
42	8,4	1,987	0,916	3,0285	0,2755	3,1256
43	8,6	1,988	0,914	3,0836	-0,0275	3,2228
44	8,8	1,989	0,912	3,0781	-0,3304	3,2305
45	9	1,991	0,910	3,0120	-0,6195	3,1482
46	9,2	1,993	0,908	2,8881	-0,8815	2,9795
47	9,4	1,994	0,906	2,7118	-1,1045	2,7317
48	9,6	1,996	0,904	2,4909	-1,2783	2,4160
49	9,8	1,998	0,902	2,2352	-1,3949	2,0466

Рисунок 2.2 - Блок-схема процесса моделирования динамической системы явным методом

2.6 Результати моделювання.

Таблиця 2.4 - Результати моделювання в середовищі Qt

Tac	олиця 2.4	- Результати	і моделюваі	ння в середс	рвищі Qt	
i	τ	X	G	Y	F	Z
0	0	2	1	0,5	0,5	0
1	0,2	1,998	0,998	0,6	0,7059	-0,1572
2	0,4	1,996	0,996	0,7412	0,9073	-0,1327
3	0,6	1,994	0,994	0,9226	1,0840	0,0243
4	0,8	1,993	0,992	1,1394	1,2215	0,2781
5	1	1,991	0,990	1,3837	1,3094	0,6001
6	1,2	1,989	0,988	1,6456	1,3412	0,9658
7	1,4	1,988	0,986	1,9139	1,3140	1,3524
8	1,6	1,987	0,984	2,1767	1,2279	1,7388
9	1,8	1,985	0,982	2,4222	1,0861	2,1055
10	2	1,984	0,980	2,6394	0,8946	2,4343
11	2,2	1,983	0,978	2,8184	0,6618	2,7096
12	2,4	1,982	0,976	2,9507	0,3978	2,9180
13	2,6	1,981	0,974	3,0303	0,1147	3,0499
14	2,8	1,980	0,972	3,0532	-0,1750	3,0986
15	3	1,979	0,970	3,0182	-0,4581	3,0617
16	3,2	1,978	0,968	2,9266	-0,7218	2,9405
17	3,4	1,978	0,966	2,7822	-0,9541	2,7401
18	3,6	1,977	0,964	2,5914	-1,1443	2,4694
19	3,8	1,976	0,962	2,3625	-1,2837	2,1405
20	4	1,976	0,960	2,1058	-1,3657	1,7680
21	4,2	1,976	0,958	1,8326	-1,3865	1,3687
22	4,4	1,975	0,956	1,5554	-1,3448	0,9606
23	4,6	1,975	0,954	1,2864	-1,2424	0,5622
24	4,8	1,975	0,952	1,0379	-1,0836	0,1917
25	5	1,975	0,950	0,8212	-0,8755	-0,1340
26	5,2	1,975	0,948	0,6461	-0,6273	-0,4001
27	5,4	1,975	0,946	0,5206	-0,3500	-0,5940
28	5,6	1,975	0,944	0,4506	-0,0562	-0,7068
29	5,8	1,976	0,942	0,4394	0,2409	-0,7331
30	6	1,976	0,940	0,4876	0,5278	-0,6712
31	6,2	1,976	0,938	0,5931	0,7917	-0,5236
32	6,4	1,977	0,936	0,7515	1,0203	-0,2966
33	6,6	1,978	0,934	0,9555	1,2034	-0,0002
34	6,8	1,978	0,932	1,1962	1,3323	0,3525
35	7	1,979	0,930	1,4627	1,4011	0,7459
36	7,2	1,980	0,928	1,7429	1,4066	1,1622
37	7,4	1,981	0,926	2,0242	1,3481	1,5829
38	7,6	1,982	0,924	2,2938	1,2283	1,9890
39	7,8	1,983	0,922	2,5395	1,0522	2,3620
40	8	1,984	0,920	2,7499	0,8278	2,6851
41	8,2	1,985	0,918	2,9155	0,5649	2,9436
42	8,4	1,987	0,916	3,0285	0,2755	3,1256

Продовження таблиці 2.4

продовжения тасянці 2. т						
i	τ	X	G	Y	F	Z
43	8,6	1,988	0,914	3,0836	-0,0275	3,2228
44	8,8	1,989	0,912	3,0781	-0,3304	3,2305
45	9	1,991	0,910	3,0120	-0,6195	3,1482
46	9,2	1,993	0,908	2,8881	-0,8815	2,9795
47	9,4	1,994	0,906	2,7118	-1,1045	2,7317
48	9,6	1,996	0,904	2,4909	-1,2783	2,4160
49	9,8	1,998	0,902	2,2352	-1,3949	2,0466

Рисунок 2.4 – Результати тестування

СПИСОК ЛІТЕРАТУРИ

- 1. Методические указания разработанные кафедрой "Техническая кибернетика" и электронные документы методуказания к лабораторным работам по курсам "Численные методы" и "Моделирование систем".
- 2. Алабужев П.М.. Геронимус В.Б.. МинкевичЛ.М.. Шеховцов Б.А. Теория подобия и размерностей. Моделирование.-М.: Высшая школа. 1968.- 208 с.
- 3. Бронштейн И.Н.. Семендяев К.А. Справочник по математике для инженеров и учащихся втузовю -13-е изд.. исправленное.-М.: Наука. Гл.Ред. физ.-мат. лит.. 1986. -544 с.
- 4. Волков Е.А. Численние методо: Учебное пособие. М.: Наука. Главная редакция физико-математической литературы. 1982. 256 с.
- 5. Вычислительная техника и программирование. Часть 3 «Основы алгоритмизации. программирования и решения инженерных и зкономических задач на ЭВМ». Учебное пособие / Под общей редакцией проф. Меркта Р.В. Одесса: ОГМУ.2001. -86 с.
- 6. Годунов С.К., Рябенький В.С. Разностные схемы (введение в теорию). Учебное пособие. М: Наука. 1973.- 400 с.
- 7. Лебедев А.Н. Моделирование в научно-технических исследованиях. -М.: Радио и связь. 1989 -224 с
- 8. Львовский Е.Н. Статистические метода построения змпирических формул: Учеб. пособие для втузов. 2-е изд. .перераб. и доп. -М.:Высш. шк.. 1988. -239 с.
- 9. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик. Фортран и Паскаль. Томск: МП "Раско". 1991.-272 с.
- 10. Турчак Л.И. Основи численних методов: Учеб. Пособие. М.: Наука. Гл.ред.физ.-мат. лит.. 1987. 320 с.

ДОДАТКИ

Модулі задачі моделювання.

Класс MainWindow:

```
MainWindow::MainWindow(QWidget *parent) :
    QMainWindow (parent),
    ui(new Ui::MainWindow)
{
    ui->setupUi(this);
    build();
MainWindow::~MainWindow()
    delete ui;
void MainWindow::build()
    subLayout1=0;
    subLayout1 = new QCPLayoutGrid;
    ui->graph 1->plotLayout()->addElement(1, 0, subLayout1);
    subLayout1->setMargins(QMargins(5, 0, 5, 5));
    //subLayout1->clear();
    subLayout1->addElement(0, 0, ui->graph 1->legend);
    //ui->graph 1->legend->setVisible(false);
    ui->graph 1->legend->setVisible(true);
    ui->graph 1->legend->setFillOrder(QCPLegend::foColumnsFirst);
    QColor none; none.setRgb(255,255,255);
    QPen p; p.setColor(none);
    ui->graph 1->legend->setBorderPen(p);
    model=0;
    valueChanged=false;
    headerName<<"i"<<"τ"<<"X"<<"G"<<"Y"<<"F"<<"Σ";//<<"ΔY2"<<"δY1"<<"δY2";
    lebelObjName<<"\Dt"<\"n"<<"A"<<"B"<<"k1"<<"k2"<<"Y0"<<"F0=Y\'0";
    lebelRegName<<"C"<<"k3"<<"k4"<<"k5"<<"Z0";
    lebelXName<<"a0"<<"a1"<<"a2"<<"a3"<<"a4";
    lebelGName<<"b0"<<"b1"<<"b2";
    colColumn=headerName.length()-1;
    //
    tableRate=new QTableView();
    tableRate->setFont(QFont("Arial", 10, 5000));
    tableRate->verticalHeader()->hide();
    tableRate->horizontalHeader()->hide();
    ui->verticalLayout 4->addWidget(tableRate);
    ui->verticalLayout 4->setAlignment(Qt::AlignLeft);
    ui->verticalLayout 2->setAlignment(Qt::AlignTop);
    ui->verticalLayout 3->setAlignment(Qt::AlignTop);
    for(int i=0; i<lebelObjName.length(); i++)//MyLineEdit начинается с 0
        QHBoxLayout *hLayout = new QHBoxLayout();
        QLabel *label = new QLabel(QString("%1=").arg(lebelObjName[i] ));
        MyLineEdit *line = new MyLineEdit(lebelObjName[i]);
        line->setFixedWidth(50);
        linesObjValue.append(line);
        connect(line, SIGNAL(MySignal(MyLineEdit*))
,this,SLOT(lineChanged(MyLineEdit*)));
        hLayout->addWidget(label);
        hLayout->addWidget(line);
        hLayout->setAlignment(label,Qt::AlignLeft);
```

```
hLayout->setAlignment(line,Qt::AlignLeft);
        ui->verticalLayout 2->addLayout(hLayout);
    for(int i=0; i<lebelRegName.length(); i++)</pre>
        QHBoxLayout *hLayout = new QHBoxLayout();
        QLabel *label = new QLabel(QString("%1=").arg(lebelRegName[i] ));
        MyLineEdit *line = new MyLineEdit(lebelRegName[i]);
        line->setFixedWidth(50);
        //
        linesRegValue.append(line);
        //labelForKompetent.append(label);
        connect(line, SIGNAL(MySignal(MyLineEdit*))
,this,SLOT(lineChanged(MyLineEdit*)));
        hLayout->addWidget(label);
        hLayout->addWidget(line);
        hLayout->setAlignment(label,Qt::AlignLeft);
        hLayout->setAlignment(line,Qt::AlignLeft);
        ui->verticalLayout 2->addLayout(hLayout);
    for(int i=0; i<lebelXName.length(); i++)</pre>
        QHBoxLayout *hLayout = new QHBoxLayout();
        QLabel *label = new QLabel(QString("%1=").arg(lebelXName[i]));
        MyLineEdit *line = new MyLineEdit(lebelXName[i]);
        line->setFixedWidth(50);
        //
        linesXValue.append(line);
        //labelForKompetent.append(label);
        connect(line, SIGNAL(MySignal(MyLineEdit*))
,this,SLOT(lineChanged(MyLineEdit*)));
        hLayout->addWidget(label);
        hLayout->addWidget(line);
        hLayout->setAlignment(label,Qt::AlignLeft);
        hLayout->setAlignment(line,Qt::AlignLeft);
        ui->verticalLayout 3->addLayout(hLayout);
    for(int i=0; i<lebelGName.length(); i++)</pre>
        QHBoxLayout *hLayout = new QHBoxLayout();
        QLabel *label = new QLabel(QString("%1=").arg(lebelGName[i] ));
        MyLineEdit *line = new MyLineEdit(lebelGName[i]);
        line->setFixedWidth(50);
        linesGValue.append(line);
        //labelForKompetent.append(label);
        connect(line, SIGNAL(MySignal(MyLineEdit*))
,this,SLOT(lineChanged(MyLineEdit*)));
        //
        hLayout->addWidget(label);
        hLayout->addWidget(line);
        hLayout->setAlignment(label,Qt::AlignLeft);
        hLayout->setAlignment(line,Qt::AlignLeft);
        ui->verticalLayout 3->addLayout(hLayout);
    linesObjValue[0]->setText("0.2");//"\Delta \tau"
    linesObjValue[1]->setText("51");//"n"
    linesObjValue[2]->setText("2.186");//"A"
    linesObjValue[3]->setText("0.5");//"B"
    linesObjValue[4]->setText("1.5");//"k1"
    linesObjValue[5]->setText("-1");//"k2"
    linesObjValue[6]->setText("0.5");//"Y0"
```

```
linesObjValue[7]->setText("0.5");//"F0=Y\'0"
    linesRegValue[0]->setText("0.5");//"C"
    linesRegValue[1]->setText("1.5");//"k3"
    linesRegValue[2]->setText("2");//"k4"
    linesRegValue[3]->setText("0");//"k5"
    linesRegValue[4]->setText("0");//"Z0"
    linesXValue[0]->setText("2");//"a0"
    linesXValue[1]->setText("-0.01");//"a1"
    linesXValue[2]->setText("0.001");//"a2"
    linesXValue[3]->setText("0");//"a3"
    linesXValue[4]->setText("0");//"a4"
    linesGValue[0]->setText("1");//"b0"
    linesGValue[1]->setText("-0.01");//"b1"
    linesGValue[2]->setText("0");//"b2"
    rebuild();
void MainWindow::drawFirstG()
{//headerName<<"i"<<"t"<<"X"<<"G"<<"Y"<<"F"<<"Z";
    ui->graph 1->clearGraphs();//очищаем все графики
    ui->graph 1->addGraph();
    ui->graph 1->addGraph();
    ui->graph 1->addGraph();
    ui->graph 1->addGraph();
    ui->graph 1->addGraph();
    //Говорим, что отрисовать нужно график по нашим двум массивам х и у
    ui->graph 1->graph(0)->setData(valuesForTable[0], valuesForTable[1]);
    ui->graph 1->graph (1) ->setData(valuesForTable[0], valuesForTable[2]);
    ui->graph 1->graph(2)->setData(valuesForTable[0], valuesForTable[3]);
    ui->graph 1->graph(3)->setData(valuesForTable[0], valuesForTable[4]);
    ui->graph 1->graph(4)->setData(valuesForTable[0], valuesForTable[5]);
    ui->graph 1->graph(0)->setPen(QColor(0, 0, 0, 255));//задаем цвет точки
    ui->graph 1->graph(1)->setPen(QColor(0, 0, 0, 255));
    ui->graph_1->graph(2)->setPen(QColor(0, 0, 0, 255));
    ui->graph 1->graph(3)->setPen(QColor(0, 0, 0, 255));
    ui->graph 1->graph(4)->setPen(QColor(0, 0, 0, 255));
    //формируем вид точек
    ui->graph 1->graph(0)-
>setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssDiamond, 8));
    ui->graph_1->graph(1)-
>setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssSquare, 5));
   ui->graph_1->graph(2)-
>setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssTriangle, 5));
   ui->graph 1->graph(3)-
>setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssDisc, 5));
   ui->graph 1->graph(4)-
>setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssPlus, 5));
    //
    ui->graph 1->graph(0)->setName(headerName[2]);
    ui->graph 1->graph(1)->setName(headerName[3]);
    ui->graph 1->graph(2)->setName(headerName[4]);
    ui->graph 1->graph(3)->setName(headerName[5]);
    ui->graph 1->graph(4)->setName(headerName[6]);
    //Подписываем оси Ох и Оу
    ui->graph_1->xAxis->setLabel("τ");
    ui->graph 1->yAxis->setLabel("X, G, Y, F, Z");
    int N=valuesForTable[0].size();
    //Установим область, которая будет показываться на графике
   ui->graph 1->xAxis->setRange(valuesForTable[0][0], valuesForTable[0][N-
1] );//Для оси Ох
    double minY = valuesForTable[1][0], maxY = valuesForTable[1][0];
    for (int i=1; i<N; i++)
```

```
if (valuesForTable[1][i]<minY) minY = valuesForTable[1][i];</pre>
        if (valuesForTable[1][i]>maxY) maxY = valuesForTable[1][i];
        if (valuesForTable[2][i] < minY) minY = valuesForTable[2][i];</pre>
        if (valuesForTable[2][i]>maxY) maxY = valuesForTable[2][i];
        //
        if (valuesForTable[3][i]<minY) minY = valuesForTable[3][i];</pre>
        if (valuesForTable[3][i]>maxY) maxY = valuesForTable[3][i];
        if (valuesForTable[4][i]<minY) minY = valuesForTable[4][i];</pre>
        if (valuesForTable[4][i]>maxY) maxY = valuesForTable[4][i];
        if (valuesForTable[5][i]<minY) minY = valuesForTable[5][i];</pre>
        if (valuesForTable[5][i]>maxY) maxY = valuesForTable[5][i];
    ui->graph 1->yAxis->setRange(minY -0.2, maxY +0.2);//Для оси Оу
    ui->graph 1->plotLayout()->setRowStretchFactor(1, 0.001);
    ui->graph 1->replot();
    ui->graph 1->setFixedHeight(350);
void MainWindow::rebuild()
{
    model = new QStandardItemModel;
    QStandardItem *item;
    for(int i=0; i<colRow; i++)//нумерация первого стобца//пересестить в
calculate()//не является названием столбца
        rowName.append(QString().setNum(i));
    for (int i=0; i<colRow; i++)//homepa crpok
        QString s = rowName[i];
        item = new QStandardItem(s);
        item->setFont(QFont("Arial", 10, 6500));
        item->setEditable(false);
        item->setSelectable(false);
        item->setBackground(QBrush(QColor(250,230,170)));
        model->setItem(i+1, 0, item);
    for (int i=0; i<colColumn+1; i++)//названия столбцов
        QString s = headerName[i];
        item = new QStandardItem(s);
        item->setFont(QFont("Arial", 10, 6500));
        item->setEditable(false);
        item->setSelectable(false);
        item->setBackground(QBrush(QColor(250,230,170)));
        model->setItem(0, i, item);
    if(!valuesForTable.isEmpty())
        for (int i=0; i<colRow; i++)</pre>
            for(int j=0;j<colColumn; j++)</pre>
                item=0;
                for (int col = 4; col \geq 1; col--)
                    int num = pow(10, col-1);
                    float number = valuesForTable[j][i] * num;
                    if( abs( number - int(number) ) > 0.1 )
                         item = new
QStandardItem(QString().setNum(valuesForTable[j][i],'f',col));
                        break:
```

```
}
                if(item == 0)
                    item = new QStandardItem(QString().setNum(valuesForTable[j]
[i],'f',0));
                item->setEditable(false);
                item->setFont(QFont("Arial",10,6500));
                model->setItem(i+1, j+1, item);
        }
        drawFirstG();
    tableRate->setModel(model);
    for (int i=0; i < colColumn+1; i++)//
        tableRate->horizontalHeader()-
>setSectionResizeMode(i,QHeaderView::ResizeToContents);
    QSize size = getSize();//размер всей таблицы
    tableRate->setFixedWidth(size.width()+15);//15 для скролбара
    tableRate->setMaximumHeight(size.height());
    //tableRate->setFixedSize(getSize());
}
QSize MainWindow::getSize()
    QSize tableSize;
    int i=0;
    int height=0;
    int currentHeight=tableRate->rowHeight(i);
    while(currentHeight > 0)
        height+=currentHeight;
        currentHeight=tableRate->rowHeight(i);
    height+=i/2+1;
    i=0;
    int width=0;
    int currentWidth=tableRate->columnWidth(i);
    while(currentWidth > 0)
        width+=currentWidth;
        currentWidth=tableRate->columnWidth(i);
    width+=i/2+1;
    //width = tableCreterion->columnWidth(0)+20;
    tableSize.setHeight(height);
    tableSize.setWidth(width);
    return tableSize;
void MainWindow::calculate()
    colRow = UserValue["n"];//число строк
    double D1 = (UserValue["A"] - UserValue["B"] * UserValue["Δτ"]) /
UserValue["A"];
    double D2 = -UserValue["\Delta \tau"] / UserValue["A"];
    double D3 = UserValue["Δτ"] * UserValue["k1"] / UserValue["A"];
    double D4 = UserValue["Δτ"] * UserValue["k2"] / UserValue["A"];
    double D5 = ( UserValue["C"] - UserValue["\Delta \tau"] ) / UserValue["C"];
    double D6 = (UserValue["k3"] + UserValue["k4"] ) * UserValue["Δτ"] /
UserValue["C"];
    double D7 = (UserValue["k5"] * UserValue["\Delta \tau"] - UserValue["k4"]) *
UserValue["Δτ"] / UserValue["C"];
```

```
double D8 = -( UserValue["k3"] + UserValue["k4"] ) * UserValue["Δτ"] /
UserValue["C"];
    double D9 = ( UserValue["k4"] - UserValue["k5"] * UserValue["\Delta \tau"] ) *
UserValue["Δτ"] / UserValue["C"];
    qDebug() <<QString("D1 = %1").arg( D1);</pre>
    qDebug() <<QString("D2 = %1").arg( D2);</pre>
    qDebug() <<QString("D3 = %1").arg( D3);</pre>
    qDebug() <<QString("D4 = %1").arg( D4);</pre>
    qDebug() <<QString("D5 = %1").arg( D5);</pre>
    qDebug() <<QString("D6 = %1").arg( D6);</pre>
    qDebug() <<QString("D7 = %1").arg( D7);</pre>
    qDebug() <<QString("D8 = %1").arg( D8);</pre>
    qDebug() <<QString("D9 = %1").arg( D9);</pre>
    //headerName<<"i"<<"t"<<"X"<<"G"<<"Y"<<"F"<<"Z";
    double t=0;
    QVector<double> _FiColumn;//столбцы таблицы
    QVector<double> _YiColumn;
    QVector<double> _ZiColumn;
    QVector<double> _XColumn;
    QVector<double> _GColumn;
    QVector<double> _tiColumn;//время
    double _X=0;
    double G=0;
    FiColumn.append( UserValue["F0=Y\'0"] );//установка начальных значений
    YiColumn.append( UserValue["Y0"] );
    ______ZiColumn.append( UserValue["Z0"] );
    for(int i=0; i<lebelXName.length(); i++)</pre>
         X += UserValue[QString("a%1").arg(i) ] * pow(t, i);
     XColumn.append( X);
    for(int i=0; i<lebelGName.length(); i++)
         G += UserValue[QString("b%1").arg(i) ] * pow(t, i);
     GColumn.append( G);
     tiColumn.append(t);
    t+=UserValue["Δτ"];
    int num=1;
    while ( num < colRow )
         X = 0;
        for(int i=0; i<lebelXName.length(); i++)</pre>
            //QString s = QString("a%1").arg(i);
             _X += UserValue[QString("a%1").arg(i)] * pow(t, i);
        _{\rm XColumn.append(\ _X\ );}
         G = 0;
        for(int i=0; i<lebelGName.length(); i++)</pre>
             G += UserValue[QString("b%1").arg(i) ] * pow(t, i);
        _GColumn.append( _G );
        _FiColumn.append( _FiColumn[num-1] * _D1 + _D2 * _YiColumn[num-1] + _D3
* _XColumn[num-1] + _D4 * _ZiColumn[num-1] );
    __YiColumn.append( _YiColumn[num-1] + UserValue["Δτ"] * _FiColumn[num-
11);
         ZiColumn.append( ZiColumn[num-1] * D5 + YiColumn[num] * D6 +
YiColumn[num-1] * D7 + GColumn[num] * D8 + GColumn[num-1] * D9 );
         tiColumn.append(t);
        t+=UserValue["Δτ"];
        num++;
    valuesForTable.append( tiColumn);//"τ"
    valuesForTable.append( XColumn);//"X"
    valuesForTable.append( GColumn);//"G"
    valuesForTable.append( YiColumn);//"Y"
    valuesForTable.append( FiColumn);//"F"
    valuesForTable.append( ZiColumn);//"Z"
```

```
void MainWindow::start()
    foreach (QVector<double> collon, valuesForTable)
        collon.clear();
    }
    valuesForTable.clear();
    //
    if(isFull())//проверку сделать//ок
        calculate();//заполнение ответов для построения
    rebuild();
}
void MainWindow::lineChanged(MyLineEdit * 1E)
{
    if(valueChanged)
       return;
    QString id = lE->getID();
    bool ok;
    float f=lE->text().toFloat(&ok);
    if(lE->text().length() > 0 && ok)
        UserValue[id]=f;
    }
    else
        UserValue.remove(id);
        valueChanged=true;
        lE->setText("");
       valueChanged=false;
    start();
bool MainWindow::isFull()//ok
    int size = linesObjValue.size() + linesRegValue.size() +
            linesXValue.size() + linesGValue.size();
    if(UserValue.size() != size)
        return false;
   return true;
}
```

Інтерфейс розробленої програми.

