Dynamic Programming Part 2

Arnav Gupta

April 9, 2024

Contents

1.1 Idea	
2 Longest Common Subsequence 2 2.1 Bivariate Recurrence 2	
1 Longest Increasing Subsequence	
Input: an array A of n integers	
\mathbf{Output} : a longest increasing subsequence of A that doe not need to be contiguous	
Remark : there are 2^n subsequences	
1.1 Idea	
A longest increasing subsequence S ending at $A[i]$ looks like $S = [, A[j], A[i]]$ $s' + [A[i]].$	=
S' is a longest increasing subsequence ending at $A[j]$ or empty.	
Don't know j but can try all $j < i$ for which $A[j] < A[i]$.	
LongestIncreasingSubsequence(A[1n]): L[1] = 1 for i in range(2, n): L[i] = 1	
for j in range(1, i-1):	

return max entry in L

Runtime: $\Theta(n^2)$

Remark: the algorithm does not return the sequence itself, but could be modified to do so

2 Longest Common Subsequence

Input: arrays A and B of length n and m characters respectively

Output: the max length k of a common subsequence to A and B (no need to be contiguous)

Remark: there are 2^n subsequences in A and 2^m subsequences in B

2.1 Bivariate Recurrence

Definition: let M[i,j] be the longest subsequence between A[1..i] and B[1..j]

- M[0,j] = 0 for all j
- M[i,0] = 0 for all i
- M[i, j] is the max of up to 3 values:
 - -M[i,j-1] (don't use B[j])
 - -M[i-1,j] (don't use A[i])
 - -1 + M[i-1, j-1] if A[i] = B[j]

The algorithm computes all M[i,j] using 2 nested loops so runtime $\Theta(mn)$