

Laporan Tugas Kelompok Analisis Data Kategori B Regresi Logistik Biner

Disusun Oleh:

Bunga Tata Arinda 06211840000044 Haiva Qurrota A'yun 06211840000045 Lidya Cahya Aurellia 06211840000054

Dosen Pengampu:

Dr. Purhadi, M.Sc.

Program Studi Sarjana Departemen Statistika Fakultas Sains Dan Analitika Data Institut Teknologi Sepuluh Nopember Surabaya 2021

Daftar Isi

Halaman Judul	i
Daftar Isi	ii
Daftar Tabelii	ii
A. Sumber Data	1
B. Variabel yang Digunakan	1
C. Langkah Analisis	2
D. Analisis dan Pembahasan	2
1. Uji Independensi	2
2. Uji Multikolinearitas	3
3. Uji Signifikansi Parameter Secara Serentak	4
4. Uji Signifikansi Parameter Secara Parsial	5
5. Estimasi Parameter Regresi Logistik Biner	6
6. Uji Kesesuaian Model	6
7. Analisis Ketepatan Klasifikasi Model Regresi Logistik Biner	7
Lampiran	9
Lampiran 1 Uji Independensi	9
Lampiran 2 Uji Multikolinieritas	1
Lampiran 3 Uji Signifikansi Parameter Secara Serentak	2
Lampiran 4 Uji Signifikansi Parameter Secara Parsial dan Estimasi Parameter	2
Lampiran 5 Uji Kesesuaian Model	2
Lampiran 6 Analisis Ketepatan Model	2

Daftar Tabel

Tabel 1 Variabel Penelitian	1
Tabel 2 Uji Independensi	
Tabel 3 Keputusan Uji Independensi	
Tabel 4 Uji Multikolinearitas	4
Tabel 5 Keputusan Uji Multikolinearitas	4
Tabel 6 Uji Serentak	4
Tabel 7 Keputusan Uji Serentak	5
Tabel 8 Uji Parsial	5
Tabel 9 Keputusan Uji Parsial	5
Tabel 10 Odds Ratio	6
Tabel 11 Uji Kesesuaian Model	7
Tabel 12 Keputusan Uji Kesesuaian Model	7
Tabel 13 Ketepatan Klasifikasi	7

A. Sumber Data

Data yang digunakan dalam tugas ini adalah data sekunder yang diperoleh dari tugas akhir yang berjudul "Pemodelan Kasus Stroke Berdasarkan Jenisnya Menggunakan Analisis Regresi Logistik Biner di Rumah Sakit Umum Haji Surabaya" dari mahasiswa Departemen Statistika Bisnis, Institut Teknologi Sepuluh Nopember (ITS) Surabaya tahun 2017.

B. Variabel yang Digunakan

Terdapat 9 variabel yang digunakan dalam tugas ini dimana variabel jenis stroke sebagai variabel respon dan 8 variabel lainnya sebagai variabel prediktor yang ditunjukkan dalam tabel sebagai berikut.

Variabel	Keterangan	Skala Data	Kategori		
Y	Jenis Stroke	Nominal	[1] Hemoragik		
1	Jeins Stioke	Nommai	[2] Iskemik		
X_1	Jenis Kelamin	Nominal	[1] Perempuan		
$\mathbf{\Lambda}_1$	Jems Keramin	Nommai	[2] Laki-laki		
X_2	Usia	Rasio	-		
			[1] Normal		
X_3	Status Hipertensi	Ordinal	[2] Hipertensi perbatasan		
			[3] Hipertensi		
X_4	Cretes District Malitan	Nominal	[1] Non diabetes melitus		
Λ_4	Status Diabetes Melitus	Nommai	[2] Diabetes melitus		
X_5	Ctatus Himanical actanal	Nominal	[1] Non Hiperkolesterol		
Λ_5	Status Hiperkolesterol	Nommai	[2] Hiperkolesterol		
X_6	Diviouat Stroka Valuarea	Nominal	[1] Tidak ada riwayat stroke		
Λ_6	Riwayat Stroke Keluarga	Nommai	[2] Ada riwayat stroke		
			[1] Berat badan kurang		
X_7	IMT	Ordinal	[2] Kisaran normal		
			[3] Obesitas		
X_8	Status Marakak	Nominal	[1] Tidak Merokok		
Λ_8	Status Merokok Nominal	Status Wetokok Notfillia	Status Microron Mollillia	Nommai	[2] Merokok

Tabel 1 Variabel Penelitian

Definisi operasional variabel prediktor dicatat pada saat pasien stroke rawat inap di Rumah Sakit Umum Haji periode Januari sampai dengan Desember 2016 yaitu sebagai berikut.

1. Usia (X_2)

Usia pasien dicatat pada saat pasien stroke masuk rawat inap di Rumah Sakit Umum Haji Surabaya.

2. Status Hipertensi (X₃)

Pasien stroke yang memiliki tekanan darah sistolik dibawah 130 mmHg dikatakan normal. Jika tekanan darah sistolik antara 130-139 mmHg dikatakan hipertensi perbatasan Apabila tekanan darah sistolik lebih besar atau samadengan 140 mmHg dikatakan hipertensi.

3. Status Diabetes Melitus (X₄)

Pasien stroke dengan nilai "kadar gula darah acak" lebih dari atau sama dengan 200 mg/dL dinyatakan mengidap diabetes melitus, sedangkan jika nilai "kadar gula darah acak"

kurang dari 200 mg/dL dinyatakan non diabetes melitus. Kadar gula darah acak adalah hasil pemeriksaan glukosa pada suatu hari tanpa memperhatikan waktu makan terakhir.

4. Status Hiperkolesterol (X₅)

Pasien dengan total kolesterol kurang dari 200 mg/dL dikatakan tidak mengidap hiperkolesterol (non hiperkolesterol). Apabila total kolesterol pasien lebih dari atau samadengan 200 mg/dL dinyatakan mengidap hiperkolesterol.

5. Riwayat Stroke Keluarga (X₆)

Pasien stroke dinyatakan ada riwayat stroke keluarga apabila orang tua pasien sedang menderita atau pernah menderita stroke.

6. IMT (X₇)

Pasien stroke dengan IMT kurang dari 18,5 dinyatakan berat badan kurang, apabila IMT pasien stroke antara 18,5- 23 maka dinyatakan kisaran normal, jika IMT pasien stroke antara lebih besar dari 23 maka dinyatakan obesitas.

7. Status Merokok (X₈)

Pasien dikatakan perokok apabila pasien penderita stroke yang masih menjadi perokok ataupun pernah menjadi perokok dan tercatat dalam riwayat rekam medik pasien.

C. Langkah Analisis

Langkah analisis yang dilakukan dalam penelitian mengenai faktor-faktor yang memengaruhi kasus jenis stroke di RSU Haji Surabaya adalah sebagai berikut.

- 1. Mengumpulkan data
- 2. Menguji asumsi independensi dan multikolinearitas
- 3. Menaksir parameter model regresi logistik biner
- 4. Menguji signifikansi parameter secara serentak
- 5. Menguji signifikansi parameter secara parsial
- 6. Mendapatkan model regresi logistik biner
- 7. Menguji kesesuaian model regresi logistik biner
- 8. Menganalisis ketepatan klasifikasi
- 9. Menarik kesimpulan

D. Analisis dan Pembahasan

1. Uji Independensi

Uji independensi dilakukan untuk mengetahui hubungan antara variabel respon (Y) yaitu jenis stroke dengan variabel prediktor yaitu jenis kelamin (X_1) , usia (X_2) , status hipertensi (X_3) , status diabetes melitus (X_4) , status hiperkolesterol (X_5) , riwayat stroke keluarga (X_6) , IMT (X_7) , dan status merokok (X_8) .

Hipotesis

H₀: Tidak terdapat hubungan antara variabel Y dengan variabel X

H₁: Terdapat hubungan antara variabel Y dengan variabel X

Taraf Signifikansi

$$\alpha = 15\% = 0.15$$

Statistik Uji

$$X_{hitung}^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

Dimana E_{ii} dihitung dengan rumus sebagai berikut.

$$E_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$$

Tabel 2 Uji Independensi

Variabel	X_{hit}^{2}
Jenis Kelamin [X ₁]	4,048
Usia [X ₂]	44,045
Status Hipertensi [X ₃]	4,062
Status Diabetes Melitus [X ₄]	0,005
Status Hiperkolesterol [X ₅]	1,875
Riwayat Stroke Keluarga [X ₆]	0,000
$IMT[X_7]$	2,783
Status Merokok [X ₈]	0,633

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 3 Keputusan Uji Independensi

Table Hepatasan egi maepenaensi					
Variabel	X_{hit}^2	df	$X^{2}_{(d\!f;lpha)}$	Keputusan	
Jenis Kelamin [X ₁]	4,048	1	2,072	Tolak H ₀	
Usia $[X_2]$	44,045	1	2,072	Tolak H ₀	
Status Hipertensi [X ₃]	4,062	2	3,794	Tolak H ₀	
Status Diabetes Melitus [X ₄]	0,005	1	2,072	Gagal Tolak H ₀	
Status Hiperkolesterol [X ₅]	1,875	1	2,072	Gagal Tolak H ₀	
Riwayat Stroke Keluarga [X ₆]	0,000	1	2,072	Gagal Tolak H ₀	
$IMT[X_7]$	2,783	2	3,794	Gagal Tolak H ₀	
Status Merokok [X ₈]	0,633	1	2,072	Gagal Tolak H ₀	

Kesimpulan yang dapat diambil yaitu variabel prediktor yang memiliki hubungan dengan variabel respon yaitu jenis kelamin (X_1) , usia (X_2) , dan status hipertensi (X_3) .

2. Uji Multikolinearitas

Uji multikolinearitas dilakukan untuk mengetahui hubungan antar variabel prediktor yang berupa data kategorik.

Hipotesis

H₀: Tidak terdapat multikolinearitas antar variabel prediktor

H₁: Terdapat multikolinearitas antar variabel prediktor

Taraf Signifikansi

$$\alpha = 15\% = 0.15$$

Statistik Uji

$$X_{hitung}^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

dimana E_{ij} dihitung dengan rumus sebagai berikut.

$$E_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$$

Tabel 4 Uji Multikolinearitas

Interaksi	X_{hit}^2
Jenis Kelamin*Status Hipertensi	1,005

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 5 Keputusan Uji Multikolinearitas

Interaksi	X_{hit}^{2}	df	$X^{2}_{(df;lpha)}$
Jenis Kelamin*Status Hipertensi	1,005	2	3,794

Keputusan yang dapat diambil adalah gagal tolak H_0 karena $X_{hit}^2 < X_{(df;\alpha)}^2$ yaitu 1,005 < 3,794 sehingga kesimpulannya adalah tidak terdapat multikolinearitas antar variabel prediktor.

3. Uji Signifikansi Parameter Secara Serentak

Uji signifikansi parameter secara serentak bertujuan untuk mengetahui secara bersamasama apakah variabel prediktor berpengaruh terhadap model.

Hipotesis

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$

 H_1 : Minimal terdapat satu $\beta_j \neq 0$; j = 1, 2, 3

Taraf Signifikansi

$$\alpha = 15\% = 0.15$$

Statistik Uji

$$G = -2\ln\frac{\left(\frac{n_1}{n}\right)^{n_i}\left(\frac{n_0}{n}\right)^{n_0}}{\sum_{i=1}^{n}\pi_i^{y_i}\left(1-\pi_i\right)^{(1-y_i)}}$$

dimana nilai G mengikuti distribusi Chi-Squared.

Tabel 6 Uji Serentak
$$X_{hit}^2$$
df P -value $9,623$ 4 $0,047$

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 7 Keputusan Uji Serentak

X_{hit}^2	df	$X^{2}_{(d\!f;lpha)}$	P-value
9,623	4	6,745	0,047

Keputusan yang dapat diambil adalah tolak H_0 karena $X_{hit}^2 > X_{(df;\alpha)}^2$ yaitu 9,623 > 6,745 sehingga kesimpulannya adalah variabel prediktor berpengaruh signifikan terhadap variabel respon secara bersama-sama (serentak).

4. Uji Signifikansi Parameter Secara Parsial

Uji signifikansi parameter secara parsial bertujuan untuk mengetahui variabel prediktor yang berpengaruh terhadap model.

Hipotesis

$$H_0: \beta_i = 0$$

$$H_1: \beta_j \neq 0 ; j = 1, 2, 3$$

Taraf Signifikansi

$$\alpha = 15\% = 0.15$$

Statistik Uji

$$W^2 = \frac{\beta_j^2}{SE(\beta_j)^2}$$

Tabel 8 Uji Parsial

Variabel	Kategori	Wald	df	P-value
Jenis Kelamin [X ₁]	Laki-laki	3,054	1	0,081
Usia [X ₂]	-	2,076	1	0,150
Status Hipertensi [X ₃]	Hipertensi Perbatasan	2,973	1	0,085
	Hipertensi	1,628	1	0,202

Daerah Kritis: Tolak H₀ jika $W_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 9 Keputusan Uji Parsial

Variabel	Kategori	Wald	df	$X^{2}_{(d\!f;lpha)}$	P-value	Keputusan
Jenis Kelamin [X ₁]	Laki-laki	3,054	1	2,072	0,081	Tolak H ₀
Usia [X ₂]	-	2,076	1	2,072	0,150	Tolak H ₀
Status Hipertensi [X ₃]	Hipertensi Perbatasan	2,973	1	2,072	0,085	Tolak H ₀
_	Hipertensi	1,628	1	2,072	0,202	Gagal Tolak H ₀

Kesimpulan yang dapat diambil adalah variabel prediktor yang berpengaruh signifikan terhadap variabel respon secara univariat adalah variabel jenis kelamin (X_1) , usia (X_2) , dan status hipertensi (X_3) .

Estimasi Parameter Regresi Logistik Biner

Berdasarkan hasil pengujian asumsi independensi dan multikolinearitas, variabel yang digunakan pada analisis regresi logistik biner adalah variabel respon (jenis stroke) dengan variabel prediktor yaitu jenis kelamin (X_1) , usia (X_2) , dan status hipertensi (X_3) . Fungsi logit yang didapatkan adalah sebagai berikut.

$$g(x) = -2,625 + 0,953X_{1(1)} + 0,032X_2 + 1,569X_{3(1)}$$

Interpretasi koefisien parameter pada fungsi logit biner menggunakan odds ratio. Variabel yang diinterpretasikan adalah variabel prediktor yang signifikan dari hasil uji parsial.

Variabel **Odds Ratio** Kategori 2,594 Jenis Kelamin [X₁] Laki-laki 1,033 Usia [X₂] Status Hipertensi [X₃] Hipertensi Perbatasan 4,800

Tabel 10 Odds Ratio

Interpretasi dari nilai *odds ratio* adalah sebagai berikut.

- Laki-laki berpotensi terserang stroke iskemik 2,594 kali lebih besar daripada perempuan.
- 2. Setiap pertambahan usia 1 tahun pada seseorang maka akan meningkatkan potensi terserang stroke iskemik 1,033 kali lebih besar daripada terserang stroke hemoragik.
- Seseorang yang memiliki status hipertensi dengan golongan hipertensi perbatasan berpotensi terkena stroke iskemik 4,8 kali lebih besar dari seseorang bertekanan darah normal.

Model regresi logistik biner adalah sebagai berikut.

$$\pi(x) = \frac{\exp(g(x))}{1 + \exp(g(x))}$$

$$= \frac{\exp(-2,625 + 0,953X_{1(1)} + 0,032X_2 + 1,569X_{3(1)})}{1 + \exp(-2,625 + 0,953X_{1(1)} + 0,032X_2 + 1,569X_{3(1)})}$$

Uji Kesesuaian Model

Uji kesesuaian model digunakan untuk mengetahui apakah model yang dihasilkan berdasarkan regresi logistik multivariat atau serentak sudah layak.

Hipotesis

- H₀: Model sesuai (tidak terdapat perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model)
- H₁: Model tidak sesuai (terdapat perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model)

Taraf Signifikansi

$$\alpha = 15\% = 0.15$$

Statistik Uji

$$C = \sum_{k=1}^{g} \frac{\left(o_k - n_k \overline{\pi}_k\right)^2}{n_k \overline{\pi}_k \left(1 - \overline{\pi}_k\right)}$$

dimana nilai C mengikuti distribusi Chi-Squared.

Tabel 11 Uji Kesesuaian Model

X_{hit}^{2}	df	P-value
7,345	7	0,394

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 12 Keputusan Uji Kesesuaian Model

	X_{hit}^2	df	$X^{2}_{(d\!f;lpha)}$	P-value
7	7,345	7	10,748	0,394

Keputusan yang diambil adalah gagal tolak H_0 karena $X_{hit}^2 < X_{(df;\alpha)}^2$ yaitu 7,345 < 10,748 sehingga kesimpulannya adalah model telah sesuai atau tidak ada perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model.

7. Analisis Ketepatan Klasifikasi Model Regresi Logistik Biner

Analisis ketepatan klasifikasi bertujuan untuk mengetahui proporsi kasus yang tepat diklasifikasikan melalui model regresi logistik biner.

Tabel 13 Ketepatan Klasifikasi

Observasi	Predi	Total	
	Hemoragik	Iskemik	Total
Hemoragik	7	15	22
Iskemik	3	50	53
Total	10	65	75

Total Akurasi =
$$\frac{7+50}{7+15+3+50} x100\%$$

= 76%

Hasil perhitungan diatas menunjukkan bahwa data kasus stroke yang tepat diklasifikasikan oleh model regresi logistik biner sebesar 76%.

E. Kesimpulan

Dari hasil analisis pasien stroke rawat inap di Rumah Sakit Umum Haji Surabaya didapatkan bahwa variabel jenis kelamin (X_1) , usia (X_2) , dan status hipertensi (X_3) memengaruhi jenis stroke yang diderita pasien. Model regresi logistik biner yang terbentuk yaitu $g(x) = -2,625+0,953X_{1(1)}+0,032X_2+1,569X_{3(1)}$ dengan ketepatan klasifikasi sebesar

76%. Probabilitas seseorang yang memiliki status hipertensi dengan golongan hipertensi perbatasan terkena stroke iskemik 4,8 kali lebih besar dari seseorang yang memiliki tekanan darah normal. Setiap pertambahan usia 1 tahun pada seseorang maka akan meningkatkan probabilitas terserang stroke iskemik 1,033 kali lebih besar daripada terserang stroke hemoragik. Berdasarkan jenis kelamin, laki-laki memiliki probabilitas terserang stroke iskemik 2,594 kali lebih besar daripada perempuan.

Lampiran

Lampiran 1 Uji Independensi

1. Jenis Stroke dan Jenis Kelamin

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	4.048 ^a	1	.044		
Continuity Correction ^b	3.078	1	.079		
Likelihood Ratio	4.017	1	.045		
Fisher's Exact Test				.070	.040
Linear-by-Linear Association	3.994	1	.046		
N of Valid Cases	75				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.09.

2. Jenis Stroke dan Umur

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	44.045 ^a	38	.231
Likelihood Ratio	53.676	38	.047
Linear-by-Linear Association	3.003	1	.083
N of Valid Cases	75		

a. 78 cells (100.0%) have expected count less than 5. The minimum expected count is .29.

3. Jenis Stroke dan Status Hipertensi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	4.062 ^a	2	.131
Likelihood Ratio	3.847	2	.146
Linear-by-Linear Association	.850	1	.357
N of Valid Cases	75		

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.64.

b. Computed only for a 2x2 table

4. Jenis Stroke dan Status Diabetes Melitus

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.005ª	1	.945		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.005	1	.945		
Fisher's Exact Test				1.000	.611
Linear-by-Linear Association	.005	1	.945		
N of Valid Cases	75				

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.11.

5. Jenis Stroke dan Status Hiperkolesterol

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.875 ^a	1	.171		
Continuity Correction ^b	1.241	1	.265		
Likelihood Ratio	1.913	1	.167		
Fisher's Exact Test				.207	.132
Linear-by-Linear Association	1.850	1	.174		
N of Valid Cases	75				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.68.

6. Jenis Stroke dan Riwayat Stroke Keluarga

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.000ª	1	.994		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.000	1	.994		
Fisher's Exact Test				1.000	.607
Linear-by-Linear Association	.000	1	.994		
N of Valid Cases	75				

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.99.

b. Computed only for a 2x2 table

b. Computed only for a 2x2 table

b. Computed only for a 2x2 table

7. Jenis Stroke dan IMT

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	2.783 ^a	2	.249
Likelihood Ratio	2.971	2	.226
Linear-by-Linear Association	2.703	1	.100
N of Valid Cases	75		

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.35.

8. Jenis Stroke dan Status Merokok

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.633ª	1	.426		
Continuity Correction ^b	.179	1	.672		
Likelihood Ratio	.603	1	.437		
Fisher's Exact Test				.467	.325
Linear-by-Linear Association	.625	1	.429		
N of Valid Cases	75				

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.93.

Lampiran 2 Uji Multikolinieritas

1. Jenis Kelamin dan Status Hipertensi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	1.005 ^a	2	.605
Likelihood Ratio	.993	2	.609
Linear-by-Linear Association	.919	1	.338
N of Valid Cases	75		

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 3.72.

b. Computed only for a 2x2 table

Lampiran 3 Uji Signifikansi Parameter Secara Serentak

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	9.623	4	.047
	Block	9.623	4	.047
	Model	9.623	4	.047

Lampiran 4 Uji Signifikansi Parameter Secara Parsial dan Estimasi Parameter

Variables in the Equation

								95% C.I.for EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 a	X1(1)	.953	.545	3.054	1	.081	2.594	.891	7.554
	X2	.032	.022	2.076	1	.150	1.033	.988	1.079
	Х3			2.986	2	.225			
	X3(1)	1.569	.910	2.973	1	.085	4.800	.807	28.552
	X3(2)	.996	.781	1.628	1	.202	2.708	.586	12.507
	Constant	-2.625	1.553	2.857	1	.091	.072		

a. Variable(s) entered on step 1: X1, X2, X3.

Lampiran 5 Uji Kesesuaian Model

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	7.345	7	.394

Lampiran 6 Analisis Ketepatan Model

Classification Table^a

			Predicted				
	Υ		Percentage				
Observed		Hemoragik	Iskemik	Correct			
Step 1	Υ	Hemoragik	7	15	31.8		
		Iskemik	3	50	94.3		
	Overall P	ercentage			76.0		

a. The cut value is .500