Data Mining: Classification: Model Evaluation

CS4821 – CS5831 Laura Brown

Some slides adapted from: A. Moore, E. Alpaydin, G. Piatetsky-Shapiro; Han, Kamber, & Pei; C.F. Aliferis; S. Russell; D. Klein; L. Kaebling; A. Mueller; P. Smyth; C. Volinsky; Tan, Steinbach, & Kumar; J. Taylor; G. Dong;

Model Evaluation

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

Classification Process

Given a collection of records (training set)

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$$
 where

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip})$$

- Each record contains a vector of attributes, and a class label, y ∈ Y
- Use the data, \mathcal{D} , to find a model for the class label as a function of the attributes

$$\hat{f}(\mathbf{x}): \mathbb{R}^p \mapsto \mathcal{Y}$$

• Use the model, \hat{f} , to predict class for new data $\hat{y} = \hat{f}(x_n)$

Generalization and Overfitting

- A model should learn something about the data beyond the specific examples it has been presented (training data, the data to build a model)
- The model should be able to predict the correct output for a new samples (not only previously seen examples) – this is the property of generalization
- Overfitting: Model is too complex and matches training data well, but not on new data
- Underfitting: Model is too simple and performs poorly overall

So Far: Train-Test Split

Complexity and Generalization

Conditions for Generalization

- 1. Information for predictions needs to be encoded in the training data
- 2. The training data should be large and varied to capture the variability in the underlying process/distribution
- 3. The new data run through the model should be generated from the same process as the training data

Bias – Variance Decomposition

- The generalization error can be broken down into two parts:
 - Gen. Error as MSE = Variance + Bias²
- Bias: error from the difference between the model's predictions and the true targets
 - High bias -> model with few parameters
 - Low bias -> model with many parameters
- Variance: measure of spread, how much does the estimator vary with a new data set?
 - High variance -> model with many parameters
 - Low variance -> model with few parameters

Complexity and Generalization

Generalization and Overfitting

- How to avoid overfitting?
 - Use analysis methods that intrinsically generalize well
 - Pursue simple models / classifiers for small samples
 - Fit parameters in data separate from data used to estimate generalization error
 - Add a penalty term that corrects for optimism
 - regularization

Data Partitioning – Holdout Set

- randomly split data into training and test sets
 - Many splits can be used: 60/40, 70/30, 75/25, 80/20
 - Ensure split is stratified for unbalanced data sets
- build a model on train set
 - Find the model parameters, build a decision tree, learn the artificial neural network
- evaluate on test set

Limitations of Holdout Set

 Many models have hyper-parameters to select, e.g., k for KNN, or we want to choose between a KNN and DT model

 If we want to select the best k, learn a model for each value of k on the training set, and evaluate it on the test set

What's the issue?

Limitations on Holdout Set

 Assumes we know "real" generalization; instead we have noisy estimate from test set

Threefold Split –Validation Set

- For many models we have:
 - Parameters to specify a particular model
 - Hyperparameters options for the model, learning process
- What should we learn where?
 - Learn parameters on training data
 - Tune hyperparameters on validation set
 - Estimate generalization performance on test data

Training Data

Validation Data

> Test Data

Threefold Split – Best Practice

- Use Three Sets:
 - Training set model building
 - Validation set model selection
 - Test set model evaluation

Threefold Split

 Use validation set to select hyper-parameter; test set provides unbiased estimate of generalization performance

Only use the test set once!

Threefold Split

- Whenever evaluating more than one model, you want to use a threefold split (or a variant)
- Still aspects to improve?
 - What if we change the split (use a different random state)? We can end up with different results
 - Ideally, we want hyperparameter selection and estimate of generalization not to be impacted by the initial split
 - A large variance among data splits is a bad sign

K-fold Cross-Validation

- Cross-validation replaces a split of data with multiple different splits.
 - Splitting data into parts repeatedly
- Most common type of cross-validation is kfold cross-validation.
 - Split data into *k* disjoint parts (*k*=5, *k*=10) of about equal size
- Often applied to training/validation split

K-fold Cross-Validation

- For each split:
 - Train on training set (green)
 - Validation to evaluate the model
- Aggregate performance (mean / median)

K-Fold Cross-Validation

Benefits:

- Robust estimates
- Each sample is used exactly once in a validation set
- Disadvantages:
 - Computational cost
 Building models multiple times
 - Result is not a single model, this produces k models

Cross-Validation + test set

- First, split into train/test sets
- Then, run cross-validation
 - For each combination of hyperparameters, train model, evaluate it on validation set
- Select best hyper-parameters on average*
- Build a new model using best hyper-parameters on full training set
- Evaluate on test set

Grid Search vs. Cross-Validation

 Cross-validation is method to robustly evaluate a particular model

 Grid Search is a technique to tune hyperparameters of a particular model (bruteforce search)

Overall **BEST PRACTICE** Process

LOOCV – Leave-one-out-Cross-Validation

- LOOCV
 - number of folds = n, # of training instances
- Properties
 - gives good performance estimate
 - computationally expensive
 - non-stratified sample
- Limitations
 - Should only be run on very small data sets

k₁ x k₂ cross validation

- Repeated cross validation
 - replicate k₂ fold cross validation, k₁ times
 - gives reliable estimates of performance
- Examples:
 - 5 x 2 c.v.
 - 10 x 10 c.v.
- Limitations:
 - computational cost

Nested Cross-Validation

- Nested Cross-validation performs crossvalidation for both the train/validation split but also the train/test split
- Not commonly used:
 - Computational expense (another for loop added)
 - It doesn't result in a single model
 - End up with different models for each split, that can have different "best" hyper-parameters
- Result is an estimate of how well a given model generalizes if the hyper-parameters are found using the inner method (e.g., grid search)
 - Is Method A better than B if both are properly tuned?

Summary

- We need to be able to select hyperparameters and among different models.
- Use a three-stop process of training, validation, and testing on separate subsets of the data.
- Cross-validation adds robustness (and computational cost)
- Typically, use cross-validation + grid search to tune hyper-parameters.

Model Evaluation

Supervised Learning Problems

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

Metrics for Performance Evaluation

- Predictive capability of binary classification model
- Example Data

Input			Actual Class	Predicted Class	Correct?	
0	1	45	small	1	1	Yes
1	3	24	medium	0	0	Yes
1	2	31	large	0	1	No
0	1	48	medium	1	0	No
•••				•••		

Classification Evaluation: Confusion Matrix

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Actual Class

Predicted Class

	Fraud	No Fraud
Fraud	0	0
No Fraud	10	990

Classification Evaluation: Accuracy

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Accuracy

$$\frac{Num.\,of\,\,correct\,\,classifications}{Num.\,of\,\,total\,\,classifications} = \frac{TP + TN}{TP + FP + FN + TN}$$

Limits of Accuracy

- Consider a binary classification problem
 - number of 0 class examples = 9990
 - number of 1 class examples = 10

- Model may always predict class 0,
 - Accuracy = 9990 / 10000 = 99.9%

Classification Evaluation: Error Rate

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Error Rate

$$\frac{Num.\,of\,\,errors}{Num.\,of\,\,total\,\,classifications} = 1 - accuracy = \frac{FP + FN}{TP + FP + FN + TN}$$

Classification Evaluation: Precision

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Precision – num. samples predicted positive that really are? TP

$$Precision = \frac{TP}{TP + FP}$$

Classification Evaluation: Recall

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Recall – num. samples really +, that you predicted?

$$Recall = \frac{TP}{TP + FN}$$

Classification Evaluation: Sensitivity

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	Α-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Sensitivity – true positive rate

$$Sensitivity = \frac{TP}{TP + FN}$$

Classification Evaluation: Specificity

- M model predicted class / outcome
- A actual class / outcome

		Actual C			
		A+	A-		
Model	M+	TP	FP	TP + FP	
Outcome	M-	FN	TN	FN + TN	
		TP + FN	FP + TN	n	

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Specificity – true negative rate, proportion of TN found

$$Specificity = \frac{TN}{FP + TN}$$

Classification Evaluation: PPV

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model Outcome	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Positive Predictive Value (PPV) – precision

$$PPV = Precision = \frac{TP}{TP + FP}$$

Classification Evaluation: NPV

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

Negative Predictive Value (NPV)

$$NPV = \frac{TN}{TN + FN}$$

Classification Evaluation: F₁-measure

- M model predicted class / outcome
- A actual class / outcome

		Actual C		
		A+	A-	
Model	M+	TP	FP	TP + FP
Outcome	M-	FN	TN	FN + TN
		TP + FN	FP + TN	n

- TP-true positive
- TN-true negative
- FP-false positive
- FN-false negative

F₁-measure – harmonic mean of precision and recall

$$F_{1} = \frac{2 \times precision \times recall}{precision + recall}$$

Classification Evaluation: ROC

- ROC Receiver Operating Characteristic Curve
 - visualizes the trade-off between positive hits and false alarms
 - plots sensitivity vs. 1-specificity, or tp-rate (y-axis) vs. fp-rate (x-axis)
- A curve is formed by changing the threshold of the model

Classification Evaluation: ROC

Class	+	-	+	-	-	-	+	-	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal

Diagonal line:

Random guessing

Classification Evaluation: AUC

- AUC may be used to compare performance of two methods, select parameters for a single model
- Must still pay attention to Occam's Razor

Regression Evaluation: Loss or Error

- Metrics for regression
- 0/1 Loss

$$\sum_{i=1}^{n} \frac{0}{1} \quad if \text{ pred. outcome=actual outcome}$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1} \quad otherwise$$

L1 loss

$$\frac{1}{n} \sum_{i=1}^{n} |(pred.outcome_i - actual outcome_i)|$$

Mean squared error (MSE), quadratic loss

$$\frac{1}{n} \sum_{i=1}^{n} (pred.outcome_i - actual outcome_i)^2$$