

Creator's side

- Visual content simpler to create and share than ever before
- Easy-to-use tools for editing videos are already widely present

Creator's side

- Visual content simpler to create and share than ever before
- Easy-to-use tools for editing videos are already widely present

Creator's side

- Visual content simpler to create and share than ever before
- Easy-to-use tools for editing videos are already widely present

Analyst's side

- Some content is altered with malicious intents
- Few tools exist to automatically assess authenticity of video data

Creator's side

- Visual content simpler to create and share than ever before
- Easy-to-use tools for editing videos are already widely present

Analyst's side

- Some content is altered with malicious intents
- Few tools exist to automatically assess authenticity of video data

source: mediathek.zdf.de

Chroma keying

- One manipulation attack is chroma keying (e.g. greenscreening)
- If done well, forged video offers no visual clues on manipulation

Assumption

- Each camera has its own, unique, processing pipeline
- They introduce characteristic, high frequent noise, in each frame and over frames
- Often not visually perceivable

Camera unique components and settings/parameters

Introducing unique high frequent noise

Assumption

- Each camera has its own, unique, processing pipeline
- They introduce characteristic, high frequent noise, in each frame and over frames
- Often not visually perceivable
- Manipulations break those statistics or make them inconsistent

Camera unique components and settings/parameters

Introducing unique high frequent noise

Inconsistencies in noise patterns well exploited in different fields: For example, in "steganography" [1] or "forgery detection in images" [2]

^[1] J. Fridrich, J. Kodovský "Rich Models for Steganalysis of Digital Images", in *IEEE Transactions on Information Forensics and Security*, June 2012

^[2] D. Cozzolino, G. Poggi, L. Verdoliva, "Splicebuster: A new blind image splicing detector," in *IEEE International Workshop on Information Forensics and Security*, Nov. 2015

Inconsistencies in noise patterns well exploited in different fields: For example, in "steganography" [1] or "forgery detection in images" [2]

Common algorithm:

- 1. High-pass filtering input image I, returning residual image R, where image I has pixels at $I_{xy} \in [0|255]$
 - → retrieves noise domain

^[1] J. Fridrich, J. Kodovský "Rich Models for Steganalysis of Digital Images", in *IEEE Transactions on Information Forensics and Security*, June 2012

^[2] D. Cozzolino, G. Poggi, L. Verdoliva, "Splicebuster: A new blind image splicing detector," in *IEEE International Workshop on Information Forensics and Security*, Nov. 2015

Inconsistencies in noise patterns well exploited in different fields: For example, in "steganography" [1] or "forgery detection in images" [2]

Common algorithm:

- 1. High-pass filtering input image I, returning residual image R, where image I has pixels at $I_{xy} \in [0|255]$
 - → retrieves noise domain
- 2. Quantize and truncate: $R_{xy}^* = \min\{t, \max\{-t, round(\frac{R_{xy}}{g})\}$
 - \rightarrow large residuals (like edges) are all mapped to t or -t
 - \rightarrow the "interesting" coefficients lie between $[-t+1 \mid t-1]$

^[1] J. Fridrich, J. Kodovský "Rich Models for Steganalysis of Digital Images", in *IEEE Transactions on Information Forensics and Security*, June 2012

^[2] D. Cozzolino, G. Poggi, L. Verdoliva, "Splicebuster: A new blind image splicing detector," in *IEEE International Workshop on Information Forensics and Security*, Nov. 2015

Inconsistencies in noise patterns well exploited in different fields: For example, in "steganography" [1] or "forgery detection in images" [2]

Common algorithm:

- 1. High-pass filtering input image I, returning residual image R, where image I has pixels at $I_{xy} \in [0|255]$
 - → retrieves noise domain
- 2. Quantize and truncate: $R_{xy}^* = \min\{t, \max\{-t, round(\frac{R_{xy}}{q})\}$
 - \rightarrow large residuals (like edges) are all mapped to t or -t
 - \rightarrow the "interesting" coefficients lie between $[-t+1 \mid t-1]$
- 3. Build co-occurences of length d: $C_{nm} = \{R_{xy}^*, R_{xy+1}^*, ..., R_{xy+d}^*\}$
 - → incorporates neighborhood relationships

[2] D. Cozzolino, G. Poggi, L. Verdoliva, "Splicebuster: A new blind image splicing detector," in *IEEE International Workshop on Information Forensics and Security*, Nov. 2015

^[1] J. Fridrich, J. Kodovský "Rich Models for Steganalysis of Digital Images", in *IEEE Transactions on Information Forensics and Security*, June 2012

Grayscale input frame

Grayscale input frame

Grayscale input frame

Grayscale input frame

High-pass [1,-3,3,-1]

Co-occurrence matrix

Grayscale input frame

High-pass [1,-3,3,-1]

	-2	-1	0	1	2
-2	8087	1256	2317	2713	15095
-1	1163	947	12097	11592	2600
0	2147	11892	84896	10277	2475
1	2732	11587	10317	854	1255
2	15340	2755	2182	1316	8208

Co-occurrence matrix

Video:

- Enlarges feature space
 - → time offers new, third dimension
- Can be used to track motion by optical flow
 - → to align slided windows of features

Classification pipeline

Feature Extraction

- Histogram of co-occurrence residuals
- In different directions
- On sliding windows
- Optional: align features by "optical flow"

Classification

- Calculate mahalanobis distance
- Can be thresholded

Decision

- Frame authentic?
- Frames from same camera?

Training

Train on known pristine frames

Classification pipeline

Feature Extraction

- Histogram of co-occurrence residuals
- In different directions
- On sliding windows
- Optional: align features by "optical flow"

Classification

- Calculate mahalanobis distance
- Can be thresholded

Decision

- Frame authentic?
- Frames from same camera?

Training

Train on known pristine frames

Mahalanobis distance as heatmap

- Mahalanobis distances can be illustrated in heatmaps
- Objects spliced onto the background are revealed visually

Dataset

Evaluation

- Suggested method detects splicing reliable
- Incorporating optical flow to can improve results

Evaluation under compression

Secondary recompression of spliced material:

- Weakens its localization
- Detection results correlates (negatively) with compression factor

Related work

- Photo-response nonuniformity (PRNU) based:
 - PRUN is a profoundly unique pattern inherently present in any imaging device [1]
 - Also applied to localize video manipulations [2]

Example PRNU, amplified

[3] L. D'Amiano, D. Cozzolino, G. Poggi, L. Verdoliva: "Autoencoder with Recurrent Neural Networks for Video forgery detection", in IS&T Electronic Imaging: Media Watermarking, Security and Forensics, Feb. 2017

^[1] J. Lukás, J. Fridrich, M. Goljan, "Detecting digital image forgeries using sensor pattern noise," in *Proceedings of the SPIE*, vol. 6072, 2006 [2] W. Van Houten, Z. Geradts, "Source video camera identification for multiply compressed videos using sensor photo response non-uniformity" in *Proc. Of SPIE Security, Steganography, and Watermarking of Multimedia Contents IX*, Feb. 2007

Related work

- Photo-response nonuniformity (PRNU) based:
 - PRUN is a profoundly unique pattern inherently present in any imaging device [1]
 - Also applied to localize video manipulations [2]
- Autoencoder (AE) based [3]:
 - AEs are a special neural network architecture

Example PRNU, amplified

• Training subject to reconstruct input from compressed state z with little error as possible: $\min\{\mathcal{L}(f,\hat{f})\} \to \text{If new input differs, } \mathcal{L} \text{ becomes large}$

[1] J. Lukás, J. Fridrich, M. Goljan, "Detecting digital image forgeries using sensor pattern noise," in *Proceedings of the SPIE*, vol. 6072, 2006 [2] W. Van Houten, Z. Geradts, "Source video camera identification for multiply compressed videos using sensor photo response non-uniformity" in *Proc. Of SPIE Security, Steganography, and Watermarking of Multimedia Contents IX*, Feb. 2007 [3] L. D'Amiano, D. Cozzolino, G. Poggi, L. Verdoliva: "Autoencoder with Recurrent Neural Networks for Video forgery detection", in

IS&T Electronic Imaging: Media Watermarking, Security and Forensics, Feb. 2017

Comparison with other methods

- Suggested framework can produce better results then other works
- AE does not utilize information about movement in videos, like incorporating optical flow in the suggested framework
- PRNU might have difficulties to build a meaningful model from correlated frames

Summary and Outlook

Presented Algorithm:

- Distinguishes different noise distributions, present in a spliced video
- Tested successfully on green screen splicing
- Additional secondary compression influences performance

Future Work:

- Build up bigger database
- Apply algorithms to different kinds of forgeries
- Also apply to video source identification (e.g. on non-forged videos)

Thanks for your attention! Questions?

