Práctico de Variables Aleatorias

1) Considere la siguiente función de probabilidad de la v.a. X que indica número de defectos por cada 10 metros de tela sintética en rollos continuos de ancho uniforme:

Х	0	1	2	3	4
P(X=x)	0,41	0,37	K	0,05	0,01

- a) Obtenga el valor de "K".
- b) Grafique la función de probabilidad de la v.a. X.
- c) Obtenga la f.d.a. y grafíquela.
- d) A partir de la función obtenida en "b" calcule las siguientes probabilidades: $P(X \le 2)$, $P(1 \le X \le 3)$
- e) Obtenga $E^{(\chi)}$ y $V^{(\chi)}$.
- 2) Determine el valor de "c" de tal forma que cada una de las siguientes funciones sea función de probabilidad de la v.a. discreta X:
 - **a)** $p(x) = c(x^2 + 4)$ para x = 0, 1, 2, 3.

3) Suponga que el número de autos X, que pasan a través de una máquina lavadora, entre las 16 00 y las 17 00 horas de un día viernes determinado, tiene la siguiente función de probabilidad:

Х	4	5	6	7	8	9
P(X=x)	1	1	1	1	1	1
	/ 12	/ 12	/ 4	/ 4	/6	/6

Sea g(X)=2X-1, que representa la cantidad de dinero en dólares que el gerente del negocio le paga al encargado.

- a) Encuentre las ganancias esperadas en este período de tiempo en particular.
- b) ¿Cuál es la probabilidad de que pasen 9 autos el día viernes entre las 16 00 y las 17 00?
- c) Determine V(4+3X), V(4), E(6X), E(5+5X) y V(9x)
- d) Calcule P(X > 6), $P(X \le 8)$ y $P(5 < X \le 8)$
- 4) Considere una caja que contiene 4 fichas marcadas con los números 1, 2, 3 y 4, respectivamente.
 - a) Si se extrae una ficha al azar de la caja e Y es la v.a. que denota el número que ocurre, ¿cuál es la función de probabilidad para Y?
 - b) Si dos fichas se extraen de la caja sin reemplazo y Z es la v.a. que denota la suma de los números que ocurren. Determine la función de probabilidad de Z.
 - c) Si dos fichas se extraen con reemplazo y X es la suma de los cuadrados de los números que ocurren, determine la función de probabilidad para la v.a. X.

a) Fig. : Finish to distribution demodely (Fide) Fig. : $P(x \in A) = \int_{-\infty}^{x} f(x) dx$ (a.50 2: 0 5 x 6 1) Fig. : $\int_{-\infty}^{x} 0 dx = 0$ Fig. : $\int_{-\infty}^{x} 0 dx = 0$ Fig. : $\int_{-\infty}^{x} 0 dx = 0$ Fig. : $\int_{-\infty}^{x} 0 dx = \int_{0}^{x} \frac{1}{3} (1 - a^{2}) dx = \int_{0}^{x} 0 dx = 1$ Fig. : $\int_{-\infty}^{x} 0 dx = \int_{0}^{x} \frac{1}{3} (1 - a^{2}) dx = \int_{0}^{x} 0 dx = 1$ All the position is above point of the properties define the first (Fide) P(x \leq \frac{1}{3}\), \(\frac{1}\),			. 1				V	<u>'</u> 4 x +		224 224	225 14				
$F(x) : \int_{-\infty}^{x} 0 dy = 0$ $F(x) : \int_{-\infty}^{y} 0 dy = \int_{0}^{x} \frac{1}{3} (1 - u^{2}) dy = \int_{-\infty}^{y} 0 dy = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dx$ $F(x) = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dy = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dx = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dx$ $F(x) = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dx = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dx$ $F(x) = \int_{0}^{y} \frac{1}{3} (1 - u^{2}) dx$				awmodia	de (F.	da.)									
$F(x) = \int_{0}^{1/2} \frac{1}{3} \frac$			_ 0								,				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $			$\int_{0}^{1} \frac{4}{3} \left(1 - u^{2}\right) dt$	v 1 (o du	2					3	u - !	υ ⁴ 4	v	
e) $P(x \leq 1/2) = \int_{0}^{1/2} \frac{1}{5} (1-x^3) dx$ Peoplis Usando propiedades de Fey (Fda) $P(x \leq 1/2) = F(1/2) = \frac{1}{3} (1-x^3) dx$ $P(x > 3/4) = \frac{1}{3} - F(\frac{3}{4}) = F(\frac{3}{4}) - F(\frac{1}{4})$ $P(1/4 \leq x \leq 3/4) = F(\frac{3}{4}) - F(\frac{1}{4})$	0 4	x - x , , ,	(LD)) C \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								3	3	3		
$P(x > 3/4) : \int_{3/4}^{3/4} \frac{1}{3} (1-x^{3}) dx \qquad P(x > 3/4) = 1 - F(3/4)$ $P(x > 3/4) = F(3/4) = F(3/4) - F(3/4)$													مک		
$P(1/4 \le x < 3/4) \le \int_{3/4}^{3/4} \frac{1}{3} (9-x^3) dx$	P(x > 3/	$\frac{1}{3}$	(1-x3)dx		P(x:	3 /4) -	. 1 - !	F(3/)		3				
	? (1/4 c)	((3/4) :	3/4 (9-23)	d _x											

