423 project

Chris Chen

1/20/2022

Preliminaries

```
library(tidyverse)
## - Attaching packages -
                                                                  - tidyverse 1.3.1 -
## / ggplot2 3.3.5 / purrr 0.3.4
## / tibble 3.1.6 / dplyr 1.0.7
## ✓ tidyr 1.1.4

✓ stringr 1.4.0

## ✓ readr 2.1.0
                      ✓ forcats 0.5.1
## - Conflicts -
                                                            - tidyverse_conflicts() —
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(expm)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Attaching package: 'expm'
## The following object is masked from 'package:Matrix':
##
##
       expm
```

```
library(ggplot2)
library(leaps)
library(RColorBrewer)
library(lmtest)

## Loading required package: zoo

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
```

Dataset

```
perfume = read.csv("noon_perfumes_dataset.csv")
sum(is.na(perfume))
```

```
## [1] 0
```

head(perfume)

X brand <int×chr></int×chr>	name <chr></chr>	old_price <dbl></dbl>	— -	ml concentration <int×chr></int×chr>	departme <chr></chr>
1 0 PACO RABANNE	1 Million Lucky	395	244.55	100 EDT	Men
2 1 Roberto Cavalli	Paradiso Assoluto	415	107.95	50 EDP	Women
3 2 S.T.Dupont	Royal Amber	265	186.90	100 EDP	Unisex
4 3 GUESS	Seductive Blue	290	103.20	100 EDT	Men
5 4 Roberto Cavalli	Uomo	260	94.95	50 EDP	Women
6 5 Roberto Cavalli	cavalli	260	94.95	50 EDP	Women
6 rows 1-10 of 16 column	S				

no empty value. good.

```
perfume = perfume %>%
 mutate(scent = ifelse(scents == "Arabian", "Oriental", scents))
p1 = subset(perfume, scent != "Vanilla" & scent != "Aromatic" & scent != "Musk" & scent
 != "Jasmine" & scent != "Floral and Oriental" & scent != "Rose, Floral" & scent != "San
dalwood" & scent != "Woody, Sweet" & scent != "Aromatic, Citrus" & scent != "Clean" & sce
nt != "Oriental, Floral" & scent != "Sweet Aromatic" & scent != "Woody And Spicy" & scen
t != "Woody, Musky")
p2 = p1 %>%
 mutate(conc = ifelse(concentration == "PDT", "EDT", concentration))
p2 = subset(p2, select = -c(concentration))
p3 = p2 %>%
 mutate(brands1 = ifelse(brand == "ST Dupont", "S.T.Dupont", brand)) %>%
 mutate(brands2 = ifelse(brands1 == "armani", "GIORGIO ARMANI", brands1)) %>%
 mutate(brands3 = ifelse(brands2 == "Genie Collection", "Genie", brands2)) %>%
 mutate(brands4 = ifelse(brands3 == "LANVIN PARIS", "LANVIN", brands3)) %>%
 mutate(brands5 = ifelse(brands4 == "Mont Blanc", "MONTBLANC", brands4)) %>%
```

mutate(brands = ifelse(brands6 == "YSL" | brands6 == "YVES", "Yves Saint Laurent", bra

mutate(brands6 = ifelse(brands5 == "marbert man", "Marbert", brands5)) %>%

as.numeric(num_seller_ratings)))

nds6))

```
## Warning in ifelse(grepl("K", num_seller_ratings),
## as.numeric(substring(num_seller_ratings, : NAs introduced by coercion
```

```
p5 = subset(p5, select = -c(num_seller_ratings))
```

```
# clean seller column
seller = as.vector(p5$seller)
seller = tolower(seller)
index_golden = which(grepl("golden", seller))
seller[index_golden] = "golden perfumes"
index_lolita = which(grepl("lolita", seller))
seller[index_lolita] = "lolita shop"
index_noon = which(grepl("noon", seller))
seller[index_noon] = "noon"
index_swiss = which(grepl("swiss", seller))
seller[index_swiss] = "swiss arabian perfumes"
index_pa = which(grepl("perfumes--addresses", seller))
seller[index_pa] = "perfumes"
index_ps = which(grepl("perfumes-shop", seller))
seller[index_ps] = "perfumes"
p6 = p5
p6$seller = seller
sb = c(48, 435, 651)
bf = c(109, 121, 470, 565, 576)
p6 = p6 %>%
 mutate(seller1 = ifelse(is.element(X, sb), "show biz", seller)) %>%
 mutate(sellers = ifelse(is.element(X, bf), "beauty fortune", seller))
p6 = subset(p6, select = -c(seller1, seller))
p6 = p6 %%
 filter(conc != "EDC")
```

```
base note = as.vector(p6$base note)
base note = tolower(base note)
base note = str replace all(base note, " and ", ",")
base note = str replace all(base note, " ", "")
base_note = str_replace_all(base_note, "vanille", "vanilla")
base_note = str_replace_all(base_note, "woodsynotes", "wood")
base note = str replace all(base note, "orrisroot", "orris")
base note = str replace all(base note, "woodsynote", "wood")
base_note = str_replace_all(base_note, "woodynotes", "wood")
base note = str replace all(base note, "woody", "wood")
base_note = str_replace_all(base_note, "cedarwood", "cedar")
base_note = str_replace_all(base_note, "virginiacedar", "cedar")
base_note = str_replace_all(base_note, "whitemusk", "musk")
base note = str replace all(base note, "tonkabeans", "tonka")
base_note = str_replace_all(base_note, "tonkabean", "tonka")
base_note = str_replace_all(base_note, "amberwood", "amber")
base note = str replace all(base note, "sandalwood", "sandal")
base_note = str_replace_all(base_note, "cashmerewood", "cashmere")
base note = str replace all(base note, "guaiacwood", "guaiac")
base_note = str_replace_all(base_note, "ambergris", "AMBERGRIS")
base note = str replace all(base note, "mustyoud", "oud")
base_note = str_replace_all(base_note, "naturaloudoil", "oud")
base_note = str_replace_all(base_note, "agarwood\\(oud\\)", "oud")
base_note = str_replace_all(base_note, "agarwood", "oud")
base note = str replace all(base note, "oudh", "oud")
p6$base note = base note
```

```
mid note = as.vector(p6$middle note)
mid note = tolower(mid note)
mid note = str replace all(mid note, " and ", ",")
mid_note = str_replace_all(mid_note, " ", "")
mid_note = str_replace_all(mid_note, "lily-of-the-valley", "lily")
mid note = str replace all(mid note, "orrisroot", "orris")
mid note = str replace_all(mid_note, "lilyofthevalley", "lily")
mid note = str replace all(mid note, "bulgarianrose", "rose")
mid_note = str_replace_all(mid_note, "africanorangeflower", "orangeblossom")
mid note = str replace all(mid note, "neroli", "orangeblossom")
mid_note = str_replace_all(mid_note, "jasminesambac", "jasmine")
mid_note = str_replace_all(mid_note, "wildjasmine", "jasmine")
mid_note = str_replace_all(mid_note, "wildjasmine", "jasmine")
mid note = str replace all(mid note, "blackpepper", "pepper")
mid note = str replace all(mid note,
                                     "pinkpepper", "pepper")
mid_note = str_replace_all(mid_note, "vanille", "vanilla")
mid note = str replace all(mid note, "tuberose", "TUBEROSE")
mid note = str replace all(mid note,
                                     "orrisroot", "ORRISROOT")
                                     "honeysuckle", "HONEYSUCKLE")
mid note = str replace all(mid note,
mid_note = str_replace_all(mid_note,
                                     "rosemary", "ROSEMARY")
                                     "violetleaf", "VIOLETLEAF")
mid note = str replace all(mid note,
mid note = str replace all(mid note, "clarysage", "CLARYSAGE")
mid note = str replace all(mid note,
                                     "oudh", "oud")
mid_note = str_replace_all(mid_note, "burningoud", "oud")
mid note = str replace all(mid note, "agarwood\\(oud\\)", "oud")
mid note = str replace all(mid note, "agarwood", "oud")
mid note = str replace all(mid note, "oudwood", "oud")
p6$middle note = mid note
```

```
p7 = p6 %>%
 filter(ml > 5)
# # add ordinal version of ml
# vol = as.vector(p7$ml)
# unique_vol = as.data.frame(vol) %>%
   group_by(vol) %>%
# summarise(count = n()) %>%
# subset(select = vol)
# unique_vol = as.vector(unique_vol$vol)
# order = vol
# rank = 0
# for (i in unique_vol) {
  rank = rank + 1
  index = which(vol == i)
   order[index] = rank
# }
# p7$ml_order = order
\# p7 = subset(p7, select = -c(ml))
p7 = p7 %>%
 mutate(gender = ifelse(department == "Kids Unisex", "Unisex", department)) %>%
 filter(middle_note != "shavingsoap")
```

```
perfume = subset(p7, select = -c(department, X, name, scents))
perfume = unique(perfume)
brand = as.vector(p7$brands)
brand = tolower(brand)
new_brands = as.data.frame(brand) %>%
  group_by(brand) %>%
 summarise(count = n()) %>%
  arrange(desc(count))
big_brands = new_brands[which(new_brands$count > 10), ]$brand
perfume = perfume %>%
 mutate(big_brand = ifelse(is.element(tolower(brands), big_brands), 1, 0))
perfume = subset(perfume, select = -c(brands))
perfume = perfume %>%
 mutate(is_noon = ifelse(tolower(sellers) == 'noon', 1, 0))
perfume = subset(perfume, select = -c(sellers))
get_notes = function(base, middle) {
 bnote = as.vector(unlist(strsplit(base, split = ",")))
 mnote = as.vector(unlist(strsplit(middle, split = ",")))
 return(union(bnote, mnote))
}
complexity = function(notes) {
 return(length(notes))
}
luxury = function(notes) {
  score = 0
  for (i in 1:length(notes)) {
    if (notes[i] == "musk" | notes[i] == "orris") { # 100-200
      score = score + 1
    } else if (notes[i] == "neroli" | notes[i] == "jasmine" | notes[i] == "sandal") { #
 200-400
      score = score + 2
    } else if (notes[i] == "rose" | notes[i] == "tuberose") { # 400-800
      score = score + 3
    } else if (notes[i] == "AMBERGRIS") { # 800-1200
      score = score + 4
    } else if (notes[i] == "oud") { # 1200-1600
      score = score + 5
    } else {
      score = score + 0
    }
  return(score)
}
```

```
N = nrow(perfume)
complex = lux = rep(0, N)
for (i in 1:N) {
   complex[i] = complexity(get_notes(perfume[i, ]$base_note, perfume[i, ]$middle_note))
   lux[i] = luxury(get_notes(perfume[i, ]$base_note, perfume[i, ]$middle_note))
}
comp_score = lux_score = rep(0, N)
for (i in 1:N) {
   x = complex[i]
   comp_score[i] = sum(complex <= x) / N * 100
   y = lux[i]
   lux_score[i] = sum(lux <= y) / N * 100
}
perfume = perfume %>%
   mutate(comp = complex)
# (comp_score * lux_score) / 100
```

```
rse = function(model) {
  sqrt(sum(model$residuals ^ 2) / model$df.residual)
}
r2 = function(model) {
  summary(model)$adj.r.squared
}
mse = function(model) {
 mean(model$residuals ^ 2)
}
ge = function(model) {
 n = nobs(model)
  ge = 2 * (rse(model) ^ 2) * length(model$coefficients) / n
  return(ge)
}
Cp.lm = function(mdl.list) {
 n = nobs(mdl.list[[1]])
 DoFs = sapply(mdl.list, function(mdl) { sum(hatvalues(mdl)) })
 MSEs = sapply(mdl.list, function(mdl) { mean(residuals(mdl)^2) })
 biggest = which.max(DoFs)
 sigma2.hat = MSEs[[biggest]]*n/(n-DoFs[[biggest]])
 Cp = MSEs + 2*sigma2.hat*DoFs/n
  return(Cp)
}
```

```
perfume = subset(perfume, select = -c(new_price, base_note, middle_note))
lm.1 = lm(old_price ~ ., data = perfume)
summary(lm.1)
```

```
##
## Call:
## lm(formula = old_price ~ ., data = perfume)
## Residuals:
##
      Min
              1Q Median
                              3Q
                                     Max
## -377.71 -147.39 -16.41 115.27 1441.45
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  6.634e+01 1.671e+02 0.397 0.691464
## ml
                  1.279e+00 3.548e-01 3.606 0.000331 ***
## item_rating
                  3.702e+00 1.412e+01 0.262 0.793250
## seller rating 5.571e+01 3.895e+01 1.430 0.153087
                 -1.275e+01 3.017e+01 -0.423 0.672596
## scentFloral
## scentFresh
                 -9.728e+01 4.215e+01 -2.308 0.021281 *
## scentFruity
                -5.955e+01 3.753e+01 -1.587 0.113008
## scentOriental -5.881e+01 3.575e+01 -1.645 0.100345
## scentSpicy
               -4.004e+01 3.322e+01 -1.205 0.228429
                 9.180e+00 3.024e+01 0.304 0.761549
## scentWoody
## concEDT
                 -1.457e+02 1.966e+01 -7.410 3.29e-13 ***
## num_sel_ratings -1.254e-03 9.611e-04 -1.305 0.192323
                 -1.179e+02 3.615e+01 -3.261 0.001160 **
## genderUnisex
## genderWomen
                 -1.588e+01 2.213e+01 -0.718 0.473214
## big brand
                 7.978e+01 1.597e+01 4.996 7.22e-07 ***
                 9.856e+01 9.317e+01 1.058 0.290441
## is noon
## comp
                 -3.123e+00 2.380e+00 -1.312 0.189851
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 216.3 on 781 degrees of freedom
## Multiple R-squared: 0.1371, Adjusted R-squared: 0.1194
## F-statistic: 7.755 on 16 and 781 DF, p-value: < 2.2e-16
```

```
# residual analysis
plot(lm.1, which = 4)
```



```
dwtest(lm.1, alternative = "two.sided")
```

```
##
## Durbin-Watson test
##
## data: lm.1
## DW = 1.916, p-value = 0.2273
## alternative hypothesis: true autocorrelation is not 0
```

```
set1 = lm.1$residuals[which(lm.1$fitted.values >= 300)]
set2 = lm.1$residuals[which(lm.1$fitted.values < 300)]
var.test(set1, set2)</pre>
```

```
##
## F test to compare two variances
##
## data: set1 and set2
## F = 1.39, num df = 499, denom df = 297, p-value = 0.001831
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.131064 1.699080
## sample estimates:
## ratio of variances
## 1.389972
```

```
perfume2 = perfume %>%
  filter(old_price < 930)</pre>
```

```
lm.2 = lm(old_price ~ ., data = perfume2)
summary(lm.2)
```

```
##
## Call:
## lm(formula = old_price ~ ., data = perfume2)
## Residuals:
##
      Min
              1Q Median
                              3Q
                                    Max
## -388.70 -132.69 -8.52 121.88 616.08
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 -4.924e+01 1.364e+02 -0.361 0.718195
## ml
                  1.170e+00 2.878e-01 4.065 5.30e-05 ***
## item_rating
                 6.780e+00 1.152e+01 0.589 0.556282
## seller rating 8.123e+01 3.181e+01 2.554 0.010849 *
## scentFloral -1.104e+01 2.451e+01 -0.451 0.652394
## scentFresh
                 -1.164e+02 3.440e+01 -3.383 0.000754 ***
## scentFruity
                 -6.434e+01 3.054e+01 -2.107 0.035429 *
## scentOriental -4.197e+01 2.897e+01 -1.449 0.147821
## scentSpicy
               -5.380e+01 2.697e+01 -1.995 0.046392 *
                 -2.651e+01 2.466e+01 -1.075 0.282736
## scentWoody
## concEDT
                 -1.201e+02 1.613e+01 -7.444 2.63e-13 ***
## num_sel_ratings -1.084e-03 7.783e-04 -1.393 0.164150
                 -1.570e+02 2.980e+01 -5.270 1.78e-07 ***
## genderUnisex
## genderWomen
                -2.308e+01 1.820e+01 -1.268 0.205283
## big brand
                 8.712e+01 1.306e+01 6.672 4.84e-11 ***
                 8.543e+01 7.543e+01 1.132 0.257784
## is noon
## comp
                 -4.513e+00 1.934e+00 -2.333 0.019893 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 175.1 on 767 degrees of freedom
## Multiple R-squared: 0.1923, Adjusted R-squared: 0.1754
## F-statistic: 11.41 on 16 and 767 DF, p-value: < 2.2e-16
```

```
# residual analysis
plot(lm.2)
```



```
dwtest(lm.2, alternative = "two.sided")
```

```
##
## Durbin-Watson test
##
## data: lm.2
## DW = 1.8785, p-value = 0.08476
## alternative hypothesis: true autocorrelation is not 0
```

```
set1 = lm.2$residuals[which(lm.2$fitted.values >= 300)]
set2 = lm.2$residuals[which(lm.2$fitted.values < 300)]
var.test(set1, set2)</pre>
```

```
##
## F test to compare two variances
##
## data: set1 and set2
## F = 1.0427, num df = 451, denom df = 331, p-value = 0.6874
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8515493 1.2727029
## sample estimates:
## ratio of variances
## 1.042677
```

```
##
## Call:
## lm(formula = old_price ~ big_brand + comp + item_rating + conc +
##
      ml + num_sel_ratings + gender + seller_rating + scent, data = perfume2)
##
## Residuals:
##
               1Q Median
      Min
                              3Q
                                     Max
## -388.54 -132.61 -7.18 122.82 617.14
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                -5.047e+01 1.364e+02 -0.370 0.711535
## big_brand
                 8.661e+01 1.305e+01 6.635 6.11e-11 ***
## comp
                  -4.504e+00 1.935e+00 -2.328 0.020175 *
## item rating
                  6.865e+00 1.152e+01 0.596 0.551454
## concEDT
                 -1.212e+02 1.610e+01 -7.527 1.46e-13 ***
## ml
                  1.164e+00 2.878e-01 4.043 5.81e-05 ***
## num_sel_ratings -2.269e-04 1.822e-04 -1.245 0.213372
## genderUnisex
                 -1.579e+02 2.980e+01 -5.298 1.53e-07 ***
                  -2.304e+01 1.821e+01 -1.265 0.206096
## genderWomen
## seller_rating 8.164e+01 3.181e+01 2.566 0.010466 *
## scentFloral -1.172e+01 2.451e+01 -0.478 0.632632
## scentFresh
                 -1.157e+02 3.440e+01 -3.365 0.000805 ***
## scentFruity
                -6.415e+01 3.054e+01 -2.101 0.036006 *
## scentOriental -4.053e+01 2.895e+01 -1.400 0.161917
                -5.251e+01 2.695e+01 -1.949 0.051710 .
## scentSpicy
                 -2.664e+01 2.467e+01 -1.080 0.280472
## scentWoody
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 175.1 on 768 degrees of freedom
## Multiple R-squared: 0.1909, Adjusted R-squared: 0.1751
## F-statistic: 12.08 on 15 and 768 DF, p-value: < 2.2e-16
```

anova(lm.2, lm.3)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	767	23519758	NA	NA	NA	NA
2	768	23559086	-1	-39328.1	1.282524	0.2577842
2 rows						

```
# yes
```

```
##
## Call:
## lm(formula = old_price ~ big_brand + comp + conc + ml + num_sel_ratings +
##
      gender + seller_rating + scent, data = perfume2)
##
## Residuals:
##
     Min 1Q Median
                           30 Max
## -392.0 -131.7 -5.2 124.8 617.7
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.279e+01 1.282e+02 -0.178 0.858964
## big_brand
                 8.682e+01 1.304e+01 6.656 5.33e-11 ***
                 -4.491e+00 1.934e+00 -2.323 0.020462 *
## comp
                 -1.217e+02 1.607e+01 -7.574 1.04e-13 ***
## concEDT
## ml
                  1.162e+00 2.877e-01 4.040 5.88e-05 ***
## num_sel_ratings -2.291e-04 1.821e-04 -1.258 0.208764
## genderUnisex -1.581e+02 2.978e+01 -5.309 1.44e-07 ***
## genderWomen -2.190e+01 1.810e+01 -1.210 0.226568
## seller_rating 8.252e+01 3.177e+01 2.598 0.009566 **
                -1.237e+01 2.447e+01 -0.506 0.613225
-1.165e+02 3.436e+01 -3.390 0.000734 ***
## scentFloral
## scentFresh
## scentFruity
                 -6.452e+01 3.052e+01 -2.114 0.034848 *
## scentOriental -4.094e+01 2.893e+01 -1.415 0.157398
                -5.217e+01 2.693e+01 -1.937 0.053079 .
## scentSpicy
## scentWoody
                 -2.661e+01 2.466e+01 -1.079 0.280857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 175.1 on 769 degrees of freedom
## Multiple R-squared: 0.1906, Adjusted R-squared: 0.1758
## F-statistic: 12.93 on 14 and 769 DF, p-value: < 2.2e-16
```

anova(lm.3, lm.4)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	768	23559086	NA	NA	NA	NA
2	769	23569977	-1	-10890.91	0.3550315	0.5514542
0	_					

2 rows

yes

```
##
## Call:
## lm(formula = old_price ~ big_brand + comp + conc + ml + gender +
##
      seller_rating + scent, data = perfume2)
##
## Residuals:
##
      Min
             10 Median
                             30
                                    Max
## -401.66 -131.55 -6.68 118.22 620.69
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                66.1517 107.0097 0.618 0.536637
## big brand
                 85.9311 13.0284 6.596 7.87e-11 ***
                           1.9342 -2.300 0.021694 *
## comp
                 -4.4495
## concEDT
               -121.6950 16.0785 -7.569 1.08e-13 ***
                           0.2874 3.979 7.57e-05 ***
## ml
                  1.1437
## genderUnisex -159.7660 29.7651 -5.368 1.06e-07 ***
## genderWomen -21.7679 18.1052 -1.202 0.229617
## seller rating 58.8679 25.6163 2.298 0.021826 *
## scentFloral -12.3393 24.4797 -0.504 0.614361
## scentFresh -115.8323 34.3721 -3.370 0.000789 ***
## scentFruity -64.5532 30.5335 -2.114 0.034821 *
## scentOriental -40.8892 28.9379 -1.413 0.158060
## scentSpicy
              -51.5216 26.9361 -1.913 0.056153 .
## scentWoody
                -26.3411 24.6668 -1.068 0.285910
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 175.1 on 770 degrees of freedom
## Multiple R-squared: 0.1889, Adjusted R-squared: 0.1752
## F-statistic: 13.79 on 13 and 770 DF, p-value: < 2.2e-16
```

```
anova(lm.4, lm.5)
```

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	769	23569977	NA	NA	NA	NA
2	770	23618485	-1	-48508	1.582634	0.2087635

2 rows

yes

```
##
## Call:
## lm(formula = old_price ~ big_brand + comp + conc + ml + gender +
##
      scent, data = perfume2)
##
## Residuals:
##
      Min
             1Q Median
                              30
                                    Max
## -390.30 -132.39 -3.85 126.65 613.28
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               293.1350 41.2872 7.100 2.84e-12 ***
## big brand
                           13.0150 6.803 2.06e-11 ***
                 88.5349
                            1.9378 -2.394 0.016900 *
## comp
                 -4.6393
## concEDT
               -123.0394 16.1124 -7.636 6.62e-14 ***
                           0.2874 4.153 3.65e-05 ***
                  1.1934
## ml
## genderUnisex -158.8406 29.8449 -5.322 1.35e-07 ***
## genderWomen -19.5736 18.1301 -1.080 0.280649
## scentFloral -11.9415 24.5470 -0.486 0.626767
## scentFresh -118.3690 34.4496 -3.436 0.000622 ***
## scentFruity -63.7574 30.6162 -2.082 0.037628 *
## scentOriental -38.2330 28.9949 -1.319 0.187692
## scentSpicy
               -52.7289
                            27.0056 -1.953 0.051239 .
## scentWoody
                -27.4623
                            24.7303 -1.110 0.267142
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 175.6 on 771 degrees of freedom
## Multiple R-squared: 0.1833, Adjusted R-squared: 0.1706
## F-statistic: 14.42 on 12 and 771 DF, p-value: < 2.2e-16
```

anova(lm.5, lm.6)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	770	23618485	NA	NA	NA	NA
2	771	23780473	-1	-161988.3	5.281076	0.02182561
2 rows	}					

no

```
##
## Call:
## lm(formula = old_price ~ big_brand + conc + ml + seller_rating +
##
      gender + scent, data = perfume2)
##
## Residuals:
##
      Min
              10 Median
                              30
                                    Max
## -402.45 -134.17 -2.55 120.68 641.36
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                30.0020 106.1437 0.283 0.77752
## big brand
                 90.4464 12.9155 7.003 5.46e-12 ***
                         16.0786 -7.740 3.13e-14 ***
## concEDT
               -124.4426
## ml
                 1.0706
                           0.2864 3.738 0.00020 ***
## seller rating 61.3847 25.6641 2.392 0.01700 *
## genderUnisex -158.7315 29.8444 -5.319 1.37e-07 ***
## genderWomen -22.2882 18.1541 -1.228 0.21993
## scentFloral -10.8546 24.5392 -0.442 0.65837
## scentFresh -113.6252
                            34.4542 -3.298 0.00102 **
## scentFruity -62.4752 30.6050 -2.041 0.04156 *
## scentOriental -42.8740 29.0054 -1.478 0.13978
## scentSpicy
               -49.8770
                            27.0014 -1.847 0.06510 .
## scentWoody
                -24.4305
                            24.7213 -0.988 0.32335
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 175.6 on 771 degrees of freedom
## Multiple R-squared: 0.1833, Adjusted R-squared:
## F-statistic: 14.42 on 12 and 771 DF, p-value: < 2.2e-16
```

anova(lm.5, lm.7)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	770	23618485	NA	NA	NA	NA
2	771	23780799	-1	-162314.2	5.2917	0.02169378
2 rows						

We cannot.

```
##
## Call:
## lm(formula = old_price ~ big_brand + conc + ml + comp + seller_rating +
##
      scent, data = perfume2)
##
## Residuals:
##
           1Q Median 3Q
                                   Max
## -360.11 -132.84 -3.47 127.08 635.37
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                32.9219 108.2072 0.304 0.76102
## big brand
                86.3603 13.2545 6.516 1.31e-10 ***
            -102.9945 14.6992 -7.007 5.32e-12 ***
## concEDT
## ml
                 1.1643
                           0.2885 4.036 5.99e-05 ***
## comp
               -4.2661
                           1.9676 -2.168 0.03045 *
## seller_rating 57.9550 26.0292 2.227 0.02627 *
## scentFloral -7.8200 24.3445 -0.321 0.74813
## scentFresh -108.3212 34.8832 -3.105 0.00197 **
## scentFruity -54.0073 30.7669 -1.755 0.07959 .
## scentOriental -49.1566 29.4035 -1.672 0.09497 .
## scentSpicy
              -44.6627 27.1583 -1.645 0.10047
## scentWoody -21.9729 24.9056 -0.882 0.37792
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 178.2 on 772 degrees of freedom
## Multiple R-squared: 0.158, Adjusted R-squared: 0.146
## F-statistic: 13.17 on 11 and 772 DF, p-value: < 2.2e-16
```

anova(lm.5, lm.8)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	770	23618485	NA	NA	NA	NA
2	772	24518186	-2	-899700.9	14.66584	5.610808e-07
2 rows	5					

We cannot.

```
##
## Call:
## lm(formula = old_price ~ big_brand + gender + comp + seller_rating +
      ml + scent, data = perfume2)
##
## Residuals:
##
      Min
             1Q Median
                             3Q
                                   Max
## -381.77 -132.91 -10.13 127.95 675.50
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.8480 109.7821 -0.418 0.67634
## big brand
                84.8390 13.4948 6.287 5.42e-10 ***
## genderUnisex -100.3190 29.7397 -3.373 0.00078 ***
               35.9366 17.0106 2.113 0.03496 *
## genderWomen
## comp
                           1.9981 -2.771 0.00572 **
                -5.5370
## seller rating 65.9226 26.5174 2.486 0.01313 *
                 0.8317 0.2946 2.823 0.00488 **
## ml
                18.2723 25.0091 0.731 0.46523
## scentFloral
## scentFresh
              -85.8633 35.3676 -2.428 0.01542 *
## scentFruity
                -30.8914 31.2911 -0.987 0.32384
## scentOriental 5.0601 29.3085 0.173 0.86297
               -34.3525 27.8029 -1.236 0.21699
## scentSpicy
               -2.0542 25.3342 -0.081 0.93539
## scentWoody
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 181.4 on 771 degrees of freedom
## Multiple R-squared: 0.1285, Adjusted R-squared: 0.115
## F-statistic: 9.477 on 12 and 771 DF, p-value: < 2.2e-16
```

anova(lm.5, lm.9)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	770	23618485	NA	NA	NA	NA
2	771	25375667	-1	-1757182	57.28691	1.077471e-13
2 row	'S					

No.

```
# remove scent?
lm.10 = lm(old_price ~ big_brand + gender + ml + conc + seller_rating + comp, data = per
fume2)
summary(lm.10)
```

```
##
## Call:
## lm(formula = old_price ~ big_brand + gender + ml + conc + seller_rating +
      comp, data = perfume2)
##
## Residuals:
##
              1Q Median
      Min
                              3Q
                                     Max
## -401.68 -132.00 -7.78 117.95 657.06
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                13.3073 105.0236 0.127
                                             0.8992
## big brand
                 85.8179
                           13.0461 6.578 8.76e-11 ***
## genderUnisex -151.7611 29.6931 -5.111 4.04e-07 ***
                -8.4502 16.2998 -0.518
## genderWomen
                                             0.6043
## ml
                  1.1538
                            0.2877 4.011 6.64e-05 ***
              -116.2215 15.7987 -7.356 4.81e-13 ***
## concEDT
                            25.7333 2.382
## seller_rating 61.2999
                                             0.0175 *
## comp
                -4.3263
                            1.9427 -2.227
                                             0.0262 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 176.5 on 776 degrees of freedom
## Multiple R-squared: 0.1697, Adjusted R-squared: 0.1622
## F-statistic: 22.66 on 7 and 776 DF, p-value: < 2.2e-16
```

anova(lm.5, lm.10)

	Res.Df <dbl></dbl>	RSS <dbl></dbl>	Df <dbl></dbl>	Sum of Sq <dbl></dbl>	F <dbl></dbl>	Pr(>F) <dbl></dbl>
1	770	23618485	NA	NA	NA	NA
2	776	24177525	-6	-559040.3	3.0376	0.006084229
2 rows						

```
# No.
```

```
# RSE
rses = c(rse(lm.1), rse(lm.2), rse(lm.3), rse(lm.4), rse(lm.5))
# R^2
r2s = c(r2(lm.1), r2(lm.2), r2(lm.3), r2(lm.4), r2(lm.5))
# MSE
mses = c(mse(lm.1), mse(lm.2), mse(lm.3), mse(lm.4), mse(lm.5))
# generalization error
ges = c(ge(lm.1), ge(lm.2), ge(lm.3), ge(lm.4), ge(lm.5))
# Marlow's Cp
Cps = Cp.lm(list(lm.1, lm.2, lm.3, lm.4, lm.5))
# AIC
aics = AIC(lm.1, lm.2, lm.3, lm.4, lm.5)[, 2]
```

Warning in AIC.default(lm.1, lm.2, lm.3, lm.4, lm.5): models are not all fitted ## to the same number of observations

```
# BIC
bics = BIC(lm.1, lm.2, lm.3, lm.4, lm.5)[, 2]
```

Warning in BIC.default(lm.1, lm.2, lm.3, lm.4, lm.5): models are not all fitted ## to the same number of observations

cannot remove scent, conc
metrics = data.frame(rses, r2s, mses, ges, Cps, aics, bics); metrics

rses <dbl></dbl>	r2s <dbl></dbl>	mses <dbl></dbl>	ges <dbl></dbl>	Cps <dbl></dbl>	aics <dbl></dbl>	bics <dbl></dbl>
216.3359	0.1194184	45804.19	1994.036	47798.23	10864.87	10949.14
175.1131	0.1754292	29999.69	1329.843	31993.73	10343.11	10427.07
175.1453	0.1751258	30049.85	1252.077	31926.59	10342.42	10421.71
175.0719	0.1758177	30063.75	1172.838	31823.19	10340.78	10415.41
175.1381	0.1751940	30125.62	1095.477	31767.77	10340.39	10410.36
rows						

```
## 5-fold CV
pre.ols = rep(0, nrow(perfume2))
pre.best = rep(0, nrow(perfume2))
folds = 5
sb = round(seq(0, nrow(perfume2), length = (folds + 1)))
for (i in 1:folds) {
 test = (sb[((folds + 1) - i)] + 1):(sb[((folds + 2) - i)])
 train = (1:nrow(perfume2))[-test]
 ## fit models
 fit.ols = lm(old_price ~ ., data = perfume2[train, ])
 fit.best = lm(old_price ~ big_brand + comp + conc + ml +
                  gender + seller_rating + scent, data = perfume2[train, ])
 ## create predictions
 pre.ols[test] = predict(fit.ols, newdata = perfume2[test, ])
 pre.best[test] = predict(fit.best, newdata = perfume2[test, ])
}
## Finally, compute the mean squared prediction error:
mean((perfume2$old_price - pre.ols) ^ 2)
```

```
## [1] 32890.85
```

```
mean((perfume2$old_price - pre.best) ^ 2)
```

```
## [1] 31796.32
```

```
price_by_scent = perfume2 %>%
  group_by(scent) %>%
  summarise(avg_price = mean(old_price))
count_by_scent = perfume2 %>%
  group_by(scent) %>%
  summarise(count = n())
scent_df = data.frame(price_by_scent, count_by_scent[, 2]); scent_df
```

scent <chr></chr>	avg_price <dbl></dbl>	count <int></int>
Citrus	317.9231	78
Floral	344.5989	266
Fresh	223.6600	40
Fruity	293.3083	66
Oriental	307.5211	83
Spicy	285.9680	97
Woody	305.5562	154

```
perfume3 = perfume2 %>%
  mutate(is.fresh = ifelse(scent == "Fresh", 1, 0)) %>%
  mutate(is.unisex = ifelse(gender == "Unisex", 1, 0))
lm.11 = lm(old_price ~ big_brand + conc + comp + seller_rating + ml + is.unisex + is.fre
sh, data = perfume3)
summary(lm.11)
```

```
##
## Call:
## lm(formula = old_price ~ big_brand + conc + comp + seller_rating +
##
      ml + is.unisex + is.fresh, data = perfume3)
##
## Residuals:
##
     Min
             1Q Median
                          30
                                Max
## -397.8 -130.0 -8.3 117.3 651.9
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  23.3471
                          104.0130 0.224 0.82246
## big brand
                  85.5629
                            12.9732 6.595 7.84e-11 ***
## concEDT
                           13.5369 -8.201 9.83e-16 ***
                -111.0210
## comp
                            1.9320 -2.298 0.02180 *
                  -4.4408
## seller rating 56.8586
                            25.5389 2.226 0.02628 *
## ml
                   1.2119
                            0.2797 4.332 1.67e-05 ***
## is.unisex
               -146.3030
                            27.4428 -5.331 1.28e-07 ***
## is.fresh
                -85.3706
                            28.5594 -2.989 0.00289 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 175.5 on 776 degrees of freedom
## Multiple R-squared: 0.1789, Adjusted R-squared: 0.1714
## F-statistic: 24.15 on 7 and 776 DF, p-value: < 2.2e-16
```

```
# residual analysis
plot(lm.11)
```


Im(old_price ~ big_brand + conc + comp + seller_rating + ml + is.unisex + i ...

Im(old_price ~ big_brand + conc + comp + seller_rating + ml + is.unisex + i ...

Im(old_price ~ big_brand + conc + comp + seller_rating + ml + is.unisex + i ...

Im(old_price ~ big_brand + conc + comp + seller_rating + ml + is.unisex + i ...

Im(old_price ~ big_brand + conc + comp + seller_rating + ml + is.unisex + i ...

```
dwtest(lm.11, alternative = "two.sided")
```

```
##
## Durbin-Watson test
##
## data: lm.11
## DW = 1.8654, p-value = 0.0573
## alternative hypothesis: true autocorrelation is not 0
```

```
set1 = lm.11$residuals[which(lm.11$fitted.values >= 300)]
set2 = lm.11$residuals[which(lm.11$fitted.values < 300)]
var.test(set1, set2)</pre>
```

```
##
## F test to compare two variances
##
## data: set1 and set2
## F = 0.94906, num df = 473, denom df = 309, p-value = 0.6078
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7729524 1.1602054
## sample estimates:
## ratio of variances
## 0.9490633
```

```
lm.12 = lm(old_price ~ ., data = perfume3)
lm.13 = lm(old_price ~ big_brand + comp + item_rating +
            conc + ml + num_sel_ratings +
            is.unisex + seller_rating + is.fresh, data = perfume3)
lm.14 = lm(old_price ~ big_brand + comp +
            conc + ml + num sel ratings +
            is.unisex + seller_rating + is.fresh, data = perfume3)
lm.15 = lm(old_price ~ big_brand + comp +
            conc + ml + is.unisex + seller_rating + is.fresh, data = perfume3)
# RSE
rses2 = c(rse(lm.12), rse(lm.13), rse(lm.14), rse(lm.15))
# R^2
r2s2 = c(r2(lm.12), r2(lm.13), r2(lm.14), r2(lm.15))
mses2 = c(mse(lm.12), mse(lm.13), mse(lm.14), mse(lm.15))
# generalization error
ges2 = c(ge(lm.12), ge(lm.13), ge(lm.14), ge(lm.15))
# Marlow's Cp
Cps2 = Cp.lm(list(lm.12, lm.13, lm.14, lm.15))
aics2 = AIC(lm.12, lm.13, lm.14, lm.15)[, 2]
# BIC
bics2 = BIC(lm.12, lm.13, lm.14, lm.15)[, 2]
# cannot remove scent, conc
metrics = data.frame(rses2, r2s2, mses2, ges2, Cps2, aics2, bics2); metrics
```

rses2 <dbl></dbl>	r2s2 <dbl></dbl>	mses2 <dbl></dbl>	ges2 <dbl></dbl>	Cps2 <dbl></dbl>	aics2 <dbl></dbl>	bics2 <dbl></dbl>
175.1131	0.1754292	29999.69	1486.2950	31329.53	10343.11	10427.07
175.5700	0.1711208	30431.66	786.3479	31213.92	10340.31	10391.62
175.4785	0.1719850	30439.21	706.9752	31143.25	10338.51	10385.15
175.5352	0.1714500	30498.18	628.8285	31123.99	10338.03	10380.01

4 rows

```
palette(brewer.pal(n = 12, name = "Paired"))

# Department
p7 %>%
  group_by(department) %>%
  summarise(count = n())
```

department <chr></chr>	count <int></int>
Kids Unisex	1
Men	378
Unisex	49
Women	461
4 rows	

```
dept_slice <- c(379, 50, 461)
lbls <- c("Men", "Unisex", "Women")
pie(dept_slice, labels = lbls, main="Pie Chart of Departments", col = c("#A6CEE3", "#fff
fff", "#CAB2D6"))</pre>
```

Pie Chart of Departments


```
# Brands
p3 %>%
group_by(brands) %>%
summarise(count = n())
```

brands <chr></chr>	count <int></int>
ADOLFO DOMINGUEZ	1
AIGNER	3
Ajmal	14
Al Fakhr	1
al raheeb	1
Al Rasasi	1
Alina Corel	5
Alrehab	2
AMOUAGE	3
ANGEL SCHLESSER	2
1-10 of 148 rows	Previous 1 2 3 4 5 6 15 Next

```
brand_slice <- perfume %>%
  group_by(big_brand) %>%
  summarise(count = n())
pie(brand_slice$count, labels = c("Niche", "Big Brands"), main="Pie Chart of Brand", col
= c("#CAB2D6", "#ffffff"))
```

Pie Chart of Brand


```
# Scent
scent_count <- perfume %>%
  group_by(scent) %>%
  summarise(count = n())
pie(scent_count$count, labels = scent_count$scent, main="Pie Chart of Scents", col = c(
"#A6CEE3", "#ffffff", "#CAB2D6", "#FFFF99", "#FDBF6F", "#FB9A99", "#B2DF8A"))
```

Pie Chart of Scents


```
scent_slice <- perfume3 %>%
  group_by(is.fresh) %>%
  summarise(count = n())
pie(scent_slice$count, labels = c("Others", "Fresh"), main="Pie Chart of Merged Scents",
col = c("#A6CEE3", "#fffffff"))
```

Pie Chart of Merged Scents


```
# Price
hist(perfume$old_price, main = "Histogram of Price", xlab = "Price", col = "#A6CEE3", br
eaks = 20)
```

Histogram of Price


```
# score
hist(perfume$comp, main = "Histogram of Score", xlab = "Score", col = "#CAB2D6")
```

Histogram of Score


```
# Seller
p1 %>%
  group_by(seller) %>%
  summarise(count = n())
```

seller <chr></chr>	count <int></int>
Abu Al Tayyeb Perfumes	11
Acacia Rose	5
Ahmed Mohamed Abbas Abbas Trading Est	1
Al-Najm	18
Alabeer	2
alkhalijiah perfume	4
alryhanaksa	1
AMLAQ	87
aRt Ti Ci	1
Asrar Aljamal	4

```
seller_slice <- perfume %>%
  group_by(is_noon) %>%
  summarise(count = n())
pie(seller_slice$count, labels = c("Non-noon", "Noon"), main="Pie Chart of Seller", col
  = c("#A6CEE3", "#ffffff"))
```

Pie Chart of Seller


```
# volume
p1 %>%
  group_by(ml) %>%
  summarise(count = n())
```

ml <int></int>	count <int></int>
1	1
2	10
5	7
15	1
25	7

ml <int></int>	count <int></int>
30	1
35	1
40	2
45	2
50	62
1-10 of 26 rows	Previous 1 2 3 Next

```
ml_count <- perfume %>%
  group_by(ml) %>%
  summarise(count = n())
barplot(ml_count$count, names.arg = ml_count$ml, main = "Barplot for Volume", xlab = "Volume", col = "#A6CEE3")
```

Barplot for Volume


```
# conc
conc_slice <- perfume %>%
  group_by(conc) %>%
  summarise(count = n())
pie(conc_slice$count, labels = conc_slice$conc, main="Pie Chart of Concentration", col = c("#CAB2D6", "#A6CEE3"))
```

Pie Chart of Concentration


```
# Item rating
hist(perfume$item_rating, col = "#A6CEE3", main = "Histogram of Item Rating", xlab = "It
em Rating")
```

Histogram of Item Rating


```
# seller rating
hist(perfume$seller_rating, col = "#CAB2D6", main = "Histogram of Seller Rating", xlab =
"Seller Rating")
```

Histogram of Seller Rating


```
# num seller rating
hist(perfume$num_sel_ratings, col = "#A6CEE3", main = "Histogram of Num Seller Rating",
xlab = "Num Seller Rating")
```

Histogram of Num Seller Rating


```
# Comp
hist(perfume$comp, breaks = 20, main = "Histogram of Complexity", xlab = "Complexity", c
ol = "#CAB2D6")
```

Histogram of Complexity


```
as.data.frame(base_note) %>%
  group_by(base_note) %>%
  summarise(count = n())
```

