cours 8 Calculs dans les diagrammes d'influence

Détermination de la stratégie optimale

Procédure similaire aux calculs dans les réseaux bayésiens :

- moraliser le réseau de valuation;
- supprimer les nœuds d'utilité (les lozanges);
- trianguler le réseau obtenu;
- créer un arbre de jonction;
- effectuer les calculs dans l'arbre de jonction.

Problème: contrairement aux réseaux bayésiens, pour la triangulation, la séquence d'élimination des nœuds est partiellement déterminée par des contraintes temporelles.

La phase de moralisation

Moralisation

Relier entre eux tous les parents d'un même nœud (que ce soient des nœuds de chance ou d'utilité).

il faut partir du réseau de valuation!!!

La triangulation, ça a du bon (1/2)

Les contraintes temporelles

Appelons D_1, \ldots, D_n les nœuds de décision C_1, \ldots, C_k les nœuds de chance

On peut partitionner $\{C_1, \ldots, C_k\}$ en des ensembles disjoints I_0, I_1, \ldots, I_n tels que I_k est l'ensemble des nœuds de chance observables entre les décisions D_k et D_{k+1} .

Cela induit un ordre partiel \ll temporel \gg sur les nœuds :

$$I_0 \prec D_1 \prec I_1 \prec \cdots \prec D_n \prec I_n$$
.

Triangulation

N'importe quelle séquence d'élimination respectant l'ordre partiel \prec peut être utilisée (on doit d'abord éliminer les nœuds de I_n , puis de I_{n-1} , etc).

La triangulation, ça a du bon (2/2)

- Après moralisation, on élimine les nœuds d'utilité ainsi que l'orientation des arcs.
- ▶ Ordre partiel : $\{B\} \prec D_1 \prec \{E, F\} \prec D_2 \prec \emptyset \prec D_3 \prec \{G\} \prec D_4 \prec \{A, C, D, H, I, J, K, L\}$

 \Longrightarrow ordre d'élimination : L, J, K, I, H, A, C, D, D_4 , G, D_3 , D_2 , F, E, D_1 , B

L'arbre de jonction (1/2)

Strong junction tree

C'est un arbre de jonction (donc vérifiant la propriété d'intersection courante), possédant une clique R appelée racine telle que pour tout couple (C_1, C_2) de cliques adjacentes, C_1 étant plus près de R que C_2 , il existe un ordre sur les nœuds de C_2 respectant l'ordre partiel \prec tel que les nœuds du séparateur $C_1 \cap C_2$ précèdent ceux de $C_2 \setminus C_1$ selon cet ordre.

Proposition

Dans un strong junction tree, les messages locaux à la Jensen ou Shafer-Shenoy permettent de calculer le maximum d'espérance d'utilité.

L'arbre de jonction (2/2)

Strong junction tree

Arbre de jonction et calculs

Exemple de construction d'un strong junction tree

ordre temporel : $A \prec D_1 \prec \{B,C\} \prec D_2 \prec \{F\} \prec D_3 \prec \{E,G\}$

Création du réseau de valuation

Moralisation du réseau de valuation

Suppression des nœuds d'utilité

Triangulation (1/10)

Triangulation: ordre: $A \prec D_1 \prec \{B,C\} \prec D_2 \prec \{F\} \prec D_3 \prec \{E,G\}$

ordre compatible : $A \prec D_1 \prec C \prec B \prec D_2 \prec F \prec D_3 \prec E \prec G$

Triangulation (2/10)

Triangulation (3/10)

Triangulation (4/10)

Triangulation (5/10)

Triangulation (6/10)

Triangulation (7/10)

Triangulation (8/10)

Triangulation (9/10)

Triangulation (10/10)

Exemple de construction d'un strong junction tree (fin)

Envoyer les messages dans le sens des flèches!

Bibliographie

- Cowell R.G., Dawid A.P., Lauritzen S.L. et Speigelhalter D.J. (1999) Probabilistic Networks and Expert Systems, Statistics for Engineering and Information Science, Springer
- ▶ Jensen F., Jensen F.V. et Dittmer S.L. (1994) « From Influence Diagrams to Junction Trees », Proceedings of Uncertainty in Artificial Intelligence
- ▶ Bielza C. et Shenoy P.P (1999) « A comparison of graphical techniques for asymmetric decision problems », Management Science, 45 :1552–1569
- Shenoy P.P. (2000) « Valuation network representation and solution of asymmetric decision problems », European journal of Operations Research, 121:579–608

Bibliographie sur les diagrammes asymétriques

- Nielsen T.D. et Jensen F.V. (1999)

 ≪ Welldefined Decision Scenarios

 », Proceedings of Uncertainty in Artificial Intelligence
- Nielsen T.D. et Jensen, F.V. (2000)

 ≪ Representing and solving asymmetric Bayesian decision problems

 Nielsen T.D. et Jensen, F.V. (2000)

 ≪ Representing and solving asymmetric Bayesian decision problems

 Nielsen T.D. et Jensen, F.V. (2000)

 ≪ Representing and solving asymmetric Bayesian decision problems

 Nielsen T.D. et Jensen, F.V. (2000)

 ≪ Representing and solving asymmetric Bayesian decision problems

 Nielsen T.D. et Jensen, F.V. (2000)

 ≪ Representing and solving asymmetric Bayesian decision problems

 Nielsen T.D. et Jensen, F.V. (2000)

 ≪ Representing and solving asymmetric Bayesian decision problems

 Nielsen T.D. et Jensen, F.V. (2000)

 Nielse