Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Primer Parcial

Nombre y Apellido:

Instrucciones Generales

• Realizar cada ejercicio en una hoja separada.

Práctica 1: Sucesiones y Series Numéricas

1) Estudiar el carácter de las siguientes series:

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{1}{n^2} - \frac{1}{n} \right)$$
 b) $\sum_{n=0}^{\infty} \frac{2^n - 3^{n+1}}{4^n}$

b)
$$\sum_{n=0}^{\infty} \frac{2^n - 3^{n+1}}{4^n}$$

Práctica 2: Errores Numéricos

2) Sean $x_A = 1,00050$ e $y_A = 0,999092$, valores exactos. Considere las expresiones matemáticamente equivalentes:

$$u = x^3 + y^3$$
, $y w = (x+y)(x^2 - xy + y^2)$.

Si utiliza en la evaluación de cada una de las expresiones anteriores aritmética decimal de redondeo a 4 dígitos en cada etapa del cálculo, ¿qué valores numéricos se obtendrán en cada una de las expresiones? ¿En qué caso se comete menor error?

Práctica 3: Resolución de ecuaciones no lineales

- 3) Sea $f(x) = x^4 x^3 + 2x 1$.
 - a) Pruebe que f(x) tiene al menos una raíz en el intervalo [0,1].
 - b) Aplique 3 iteraciones del método de la bisección en el intervalo [0, 1].
 - c) Dé una cota del error cometido respecto de la última iteración.
 - d) ¿Qué número de iteraciones garantiza obtener una raíz en el intervalo [0, 1] con una precisión de 5 dígitos?

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Primer Parcial

Nombre y Apellido:

Instrucciones Generales

Realizar cada ejercicio en una hoja separada.

Práctica 1: Sucesiones y Series Numéricas

1) Estudiar el carácter de las siguientes series:

a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $x \in [-1, 1]$ b) $\sum_{n=1}^{\infty} \frac{n^3 + 2n - 1}{n^2 - 1 + n^3}$

b)
$$\sum_{n=1}^{\infty} \frac{n^3 + 2n - 1}{n^2 - 1 + n^3}$$

Práctica 2: Errores Numéricos

2) Calcule x+y+z de las dos formas matemáticamente equivalentes, x+(y+z) y (x+y)+z, con x = 516000, y = 2460, z = 60. Realizar el cálculo usando una mantisa de 3 dígitos con redondeo. Justifique adecuadamente cuál de las dos formas matemáticas tiene mayor precisión.

Práctica 3: Resolución de ecuaciones no lineales

- 3) Sea $f(x) = x^3 x^2 + 2x 3$.
 - a) Pruebe que f(x) tiene al menos una raíz en el intervalo [1, 2].
 - b) Analizando la ecuación de punto fijo x = g(x) = x + cf(x), determine un valor adecuado de $c \in \mathbb{R}$, tal que (i) se demuestre que f(x) tiene una única raíz en [1,2], y (ii) se demuestre que la iteración de punto fijo $x_{k+1} = g(x_k)$ converge a dicha raíz para cualquier valor inicial $x_0 \in [1, 2]$.

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Segundo Parcial

Nombre y Apellido:

Instrucciones Generales

- Realizar cada ejercicio en una hoja separada.
- En caso de utilizar funciones realizadas en Scilab se pide:
 - Indicarlo por escrito en la hoja correspondiente al ejercicio en que se utilizó Scilab.
 - Entregar los archivos de Scilab utilizados incluyendo (i) el código de las funciones empleadas, y (ii) en forma comentada el llamado a dichas funciones y la respuesta obtenida.

Práctica 4: Resolución de sistemas de ecuaciones lineales - Métodos directos

1) Considerar el sistema disperso

$$\begin{pmatrix} 1 & \mathbf{a}^{\mathsf{T}} \\ \mathbf{a} & \mathbf{I} \end{pmatrix} \begin{pmatrix} x \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} b \\ \mathbf{c} \end{pmatrix}, \tag{1}$$

donde $\mathbf{a} \in \mathbb{R}^{n-1}$ con $\|\mathbf{a}\| < 1$. Se desea resolver el sistema disperso (1) para lo cual se considerarán dos posibles factorizaciones de Cholesky. La primera factorización es

$$\left(\begin{array}{cc} 1 & \mathbf{a}^\mathsf{T} \\ \mathbf{a} & \mathbf{I} \end{array}\right) = \left(\begin{array}{cc} 1 & \mathbf{0}^\mathsf{T} \\ \mathbf{a} & \mathsf{R}_{22}^\mathsf{T} \end{array}\right) \left(\begin{array}{cc} 1 & \mathbf{a}^\mathsf{T} \\ \mathbf{0} & \mathsf{R}_{22} \end{array}\right), \quad \mathrm{donde} \ \ \mathbf{I} - \mathbf{a}\mathbf{a}^\mathsf{T} = \mathsf{R}_{22}^\mathsf{T} \mathsf{R}_{22}.$$

Reordenando las ecuaciones como

$$\left(\begin{array}{cc} \mathbf{I} & \mathbf{a} \\ \mathbf{a}^\mathsf{T} & 1 \end{array}\right) \left(\begin{array}{c} \mathbf{v} \\ x \end{array}\right) = \left(\begin{array}{c} \mathbf{c} \\ b \end{array}\right),$$

obtenemos la segunda factorización de Cholesky,

$$\left(\begin{array}{cc} \mathbf{I} & \mathbf{a} \\ \mathbf{a}^\mathsf{T} & 1 \end{array}\right) = \left(\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{a}^\mathsf{T} & \sqrt{1-\mathbf{a}^\mathsf{T}\mathbf{a}} \end{array}\right) \left(\begin{array}{cc} \mathbf{I} & \mathbf{a} \\ \mathbf{0}^\mathsf{T} & \sqrt{1-\mathbf{a}^\mathsf{T}\mathbf{a}} \end{array}\right)$$

- a) Verificar que ambas factorizaciones de Cholesky son correctas.
- b) Seleccionar un vector pleno $\mathbf{a} \in \mathbb{R}^5$ con $\|\mathbf{a}\| < 1$, y para dicho vector obtener ambas factorizaciones de Cholesky.
- c) ¿Cuál de las dos factorizaciones permitiría resolver el sistema disperso (1) en forma más eficiente? Justificar.

Práctica 5: Resolución de sistemas de ecuaciones lineales - Métodos iterativos

2) Sea $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. Se llaman menores principales de A a los números M_i que son los determinantes de las submatrices de A formadas por las primeras i filas y las primeras i columnas de A. Es claro que $M_1 = a_{11}$ y $M_n = |A| = \det(A)$. Una matriz A es definida positiva si es simétrica y se cumple que sus menores principales son positivos.

1

Considerar el sistema Ax = b:

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right)$$

- a) Determinar la matriz de iteración del método de Jacobi
- b) Hallar los autovalores de la matriz del ítem anterior y probar, en este caso particular, que si la matriz A es simétrica y definida positiva, entonces el método de Jacobi converge.

Práctica 6: Aproximación de autovalores

3) Probar, basándose en el teorema de Gerschgorin, que la matriz:

$$\left[\begin{array}{cccc}
10 & 1 & 0 & 0 \\
3 & 0 & 1 & 2 \\
1 & 1 & -3 & 1 \\
1 & 0 & 1 & -4
\end{array}\right]$$

tiene al menos dos autovalores reales.

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Segundo Parcial

Nombre y Apellido:

Instrucciones Generales

- Realizar cada ejercicio en una hoja separada.
- En caso de utilizar funciones realizadas en Scilab se pide:
 - Indicarlo por escrito en la hoja correspondiente al ejercicio en que se utilizó Scilab.
 - Entregar los archivos de Scilab utilizados incluyendo (i) el código de las funciones empleadas, y (ii) en forma comentada el llamado a dichas funciones y la respuesta obtenida.

Práctica 4: Resolución de sistemas de ecuaciones lineales - Métodos directos

1) La matriz tridiagonal A que se muestra a continuación puede servir para calcular la conducción de calor no estacionaria en una barra para la cual las temperaturas en sus puntos $p_1, ..., p_5$ cambian con el tiempo.

La constante c de la matriz depende de la naturaleza física de la barra, de la distancia Δx entre los puntos de la barra, y del tiempo Δt que transcurra entre mediciones sucesivas de temperatura. Suponga que para k=0,1,2,..., un vector $\mathbf{x}^{(k)}$ en \mathbb{R}^5 enlista las temperaturas en el tiempo $t_k=k\Delta t$. Si ambos extremos de la barra se mantienen a 0 °C, entonces los vectores de temperatura satisfacen la ecuación

$$\mathbf{A}\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}, \quad k = 0, 1, ...,$$

donde

$$\mathsf{A} = \begin{pmatrix} (1+2c) & -c \\ -c & (1+2c) & -c \\ & -c & (1+2c) & -c \\ & & -c & (1+2c) & -c \\ & & & -c & (1+2c) \end{pmatrix}$$

- a) Programe una función en Scilab que dado un escalar c devuelva la matriz A definida arriba.
- b) Encuentre la factorización LU de A cuando c=1.
- c) Suponga que c=1 y $\mathbf{x}^{(0)}=(10,12,12,12,10)^\mathsf{T}$. Use la factorización LU de A para encontrar las distribuciones de temperatura $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$ y $\mathbf{x}^{(4)}$.

Práctica 5: Resolución de sistemas de ecuaciones lineales - Métodos iterativos

2) Considere el siguiente sistema de ecuaciones

$$\begin{cases}
10x_1 - x_2 + 2x_3 = 6 \\
-x_1 + 11x_2 - x_3 + 3x_4 = 25 \\
2x_1 - x_2 + 10x_3 - x_4 = -11 \\
3x_2 - x_3 + 8x_4 = 15
\end{cases}$$

- a) Pruebe que los métodos de Gauss-Seidel y Jacobi convergen para cualquier valor inicial $\mathbf{x}^{(0)} \in \mathbb{R}^4$.
- b) Programe un función en Scilab que dado un vector inicial $\mathbf{x}^{(0)}$, resuelva el sistema anterior por el método de Jacobi y cuente la cantidad de iteraciones. Resuelva el sisitema con una tolencia de 10^{-5} y vector inicial $\mathbf{x}^{(0)} = (0,0,0,0)^{\mathsf{T}}$.
- c) Repita el ítem anterior con el método de Gauss-Seidel. ¿Cuál método realiza menos iteraciones?

Práctica 6: Aproximación de autovalores

3) Consideremos la matriz

$$A = \left(\begin{array}{rrrr} 9 & 1 & -2 & 1 \\ 0 & 8 & 1 & 1 \\ -1 & 0 & 7 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right).$$

Aplique el método de la potencia a A con dos estimaciones iniciales distintias del vector inicial, una tolerancia de 10^{-5} y una cantidad máxima de iteraciones de 100.

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Tercer Parcial

Nombre y Apellido:

Instrucciones Generales

- Realizar cada ejercicio en una hoja separada.
- En caso de utilizar funciones realizadas en Scilab se pide:
 - Indicarlo por escrito en la hoja correspondiente al ejercicio en que se utilizó Scilab.
 - Entregar los archivos de Scilab utilizados incluyendo (i) el código de las funciones empleadas, y (ii) el llamado a dichas funciones y en forma comentada la respuesta obtenida.

Práctica 7: Interpolación polinomial y aproximación de funciones

1) Consideremos la siguientes siguiente tabla que muestra el promedio mensual de la temperatura (°C) mínima y máxima en la ciudad de Rosario durante el año 2022¹.

Mes	Ene22	Feb22	Mar22	Abr22	May 22	Jun22	Jul22	Ago22	Sep22	Oct22
Max.	32.9	30.8	26.4	24.2	19.2	16.5	19.3	21	23	26.2
Mín.	19.5	15.5	13.1	9.8	5.7	2.2	5.3	4.7	6	10.5

Sea $p_n(x)$ el polinomio de aproximación de mínimos cuadrados de grado menor o igual a n que se obtiene de tomar para $x_1 = 1$ el valor promedio de temperatura máxima en Ene22, para $x_2 = 2$ el valor de la máxima en Feb22, etc. Dicho polinomio se puede obtener como solución del problema de mínimos cuadrados

$$A^TAx = A^Tb$$

donde

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{10} & x_{10}^2 & \dots & x_{10}^n \end{bmatrix}$$
(1)

- a) Obtenga los polinomios de aproximación de mínimos cuadrados $p_3(x)$, $p_5(x)$, $p_7(x)$ y $p_9(x)$ invirtiendo la matriz A^TA utilizando la función inv de Scilab. Grafique en el mismo gráfico los 4 polinomios obtenidos usando un espaciado de 0.1. En el mismo gráfico grafique los puntos de la tabla.
- b) Obtenga los polinomios de aproximación de mínimos cuadrados $p_3(x)$, $p_5(x)$, $p_7(x)$ y $p_9(x)$ aplicando la factorización QR al problema de mínimos cuadrados. Para ello, utilice la función qr de Scilab y obtenga la solución invirtiendo la matriz R usando la función inv de Scilab. Grafique en un nuevo gráfico los 4 polinomios obtenidos usando un espaciado de 0.1 junto con los puntos de la tabla.

¹https://datos.rosario.gob.ar/ambiente/clima-e-hidrologia

- c) Explique cualquier discrepancia observada en los polinomios obtenidos en los items a) y b). ¿Tuvo alguna dificultad en obtener las soluciones de mínimos cuadrados por alguno de los métodos?
- d) ¿Cuál de los cuatro polinomios emplearía para aproximar los datos? Justificar.

Práctica 8: Integración numérica

- **2)** Se sabe que $\ln 2 = \int_{1}^{2} \frac{1}{x} dx$.
 - a) Calcule una aproximación de $\ln 2$ usando el método compuesto del trapecio para 4 subintervalos.
 - b) Determine la cantidad de subintervalos necesaria para que el error sea menor que 10^{-6} .

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Tercer Parcial

Nombre y Apellido:

Instrucciones Generales

- Realizar cada ejercicio en una hoja separada.
- En caso de utilizar funciones realizadas en Scilab se pide:
 - Indicarlo por escrito en la hoja correspondiente al ejercicio en que se utilizó Scilab.
 - Entregar los archivos de Scilab utilizados incluyendo (i) el código de las funciones empleadas, y (ii) el llamado a dichas funciones y en forma comentada la respuesta obtenida.

Práctica 7: Interpolación polinomial y aproximación de funciones

1) La regresión lineal de mínimos cuadrados se puede extender a datos que dependen de dos o más variables (regresión lineal multivariable). Si la variable dependiente es y y las variables independientes son x y v, los datos se pueden aproximar mediante una función de la forma

$$f(x,v) = a + bx + cv$$

- a) Para este caso, exprese en forma vectorial el sistema de ecuaciones a resolver para hallar la solución de mínimos cuadrados.
- b) Obtenga la aproximación lineal de mínimos cuadrados que ajusta el siguiente conjunto de datos:

X	V	У
0	0	1.42
0	1	1.85
1	0	0.78
2	0	0.18
2	1	0.60
2	2	1.05

c) Grafique los datos en 3D utilizando la función scatter3 de Scilab.

Utilizando el comando

grafique en el mismo gráfico el plano f(x,v)=a+bx+cv, obtenido por mínimos cuadrados, utilizando la función plot3d de Scilab.

Práctica 8: Integración numérica

2) Se desea aproximar mediante el método compuesto de Simpson la siguiente integral:

$$I = \int_{1}^{3} e^{x} \sin x \ dx$$

- a) Sabiendo que para la función $f(x) = e^x \sin x$ se cumple $|f^4(x)| < 30$ en el intervalo [1, 3], encuentre el número de subintervalos n tal que el error de aproximación no sea mayor que 10^{-4} .
- b) Determine el valor aproximado de I mediante el método compuesto de Simpson utilizando el número de subintervalos determinado en el item anterior.