Physics 432/532: Cosmology Winter 2022 Prof. Michael S. Vogeley

Problem Set 1

1. Local Effects of Cosmological Constant?

If there really is a non-zero cosmological constant with $\Omega_{vac}=0.7$, what is the effect of this component of mass-energy density on motions in the Solar system? On our orbit around the Galaxy? Proceed by comparing this density with the average densities and accelerations in these systems.

- (a) Compute the equivalent mass density of the cosmological constant in SI units.
- (b) For the solar system, assume that the Sun dominates the mass (because it does) and use 1 AU as the characteristic radius. Compute the average density.
- (c) For the Galaxy, assume that the mass is 10^{11} solar masses within the Sun's orbit of 8.5kpc. Calculate the average mass density.
- (d) Applying Birkhoff's theorem (we can ignore gravitational acceleration from outer mass shells in a homogeneous medium), compute the ratios a_{vac}/a_{SS} and a_{vac}/a_{MW} . Could we detect the effects of vacuum energy? (Compare to the precision with which we know G.)

2. Robertson-Walker metric

Show that the Robertson-Walker metric

$$c^2 ds^2 = -c^2 dt^2 + a^2(t)[dr^2 + S_k^2(r)d\psi^2]$$

can also be written in the form

$$c^{2}ds^{2} = -c^{2}dt^{2} - a^{2}(t)\left[dx^{2}/(1 - k(x/R)^{2}) + x^{2}d\psi^{2}\right]$$

where x is a new radial coordinate, not the Cartesian coordinate. (Hint: You're allowed to work backwards from the second form.)

3. Particle Horizon

Show that the dominant form of mass-energy at early times must scale as $\rho \propto a^{-\alpha}$ with $\alpha>2$ for a particle horizon to exist (light travels a finite distance since the beginning of the universe). Follow the steps.

- (a) Starting from the fact that photons travel on null geodesics with ds=0 and $d\Psi=0$, using the spactime metric to write an integral equation for the comoving distance r that a photon travels between two times in the universe.
- (b) Make a change of variables of that integral from t to a and use the Friedmann equation with k=0 (justified because the universe is nearly flat at early times) and with density $\rho \propto a^{-\alpha}$ to rewrite the integral so the limits are the scale factors a(t) of the universe at two times and the integral depends on α .
- (c) For what conditions on α does this integral converge as $a(t_0) \to 0$?. Is this condition satisfied in a universe that contains matter, radiation, and vacuum energy? Explain by reference to how these components evolve with scale factor.

4. Evolution of Ω_{matter} , Ω_{vac}

Compute how the density parameters Ω_{matter} and Ω_{vac} evolve with time in different cosmologies and plot the results on a figure of Ω_{matter} vs. Ω_{vac} (like Fig. 5.6 in Ryden). In other words, for each choice of $\Omega_{matter}, \Omega_{vac}$ today, plot the trajectory of the model backwards in time to where it would lie in that same diagram at $t \approx 0$. On the plot, clearly indicate which end of each curve is now and which is at t=0. Pick models from all regions of the diagram and be sure to include the following (in other words, do more than just these):

$$\Omega_{matter} = 1, \Omega_{vac} = 0$$

$$\Omega_{matter} = 0.2, \Omega_{vac} = 0$$

$$\Omega_{matter} = 0.3, \Omega_{vac} = 0.7$$

Comment about what these results tell you about what the universe looks like at early times. (Hint for how to compute evolution of the Ω 's: Note how Ω depends on H and see eq. 5.81 in Ryden to see how H depends on the scale factor a. Thus, a mass-energy component Ω_i implicitly evolves with time because a=a(t) and so H=H(t).)

5. Baseball Universe

I'm in heaven; the universe is filled with baseballs! A regulation baseball has mass $m=0.145{\rm kg}$ and radius $r=0.0369{\rm m}$.

- (a) If non-relativistic baseballs are the only form of mass-energy, with critical density $\Omega=1$, what is the number density of baseballs in SI units (m^{-3}) ? In number per AU³?
- (b) At that density, what is the average distance (in meters) at which your line of sight intercepts a baseball?
- (c) Re-express your answer to (b) in units of the "Hubble distance" c/H_0 . Suppose that in this baseball universe our telescopes can see baseballs at a distance $c/H_0 \sim 4000 \mathrm{Mpc}$ (we would have to explain why they emit enough light to see them...). Does the transparency of the universe set a useful limit on the number density of baseballs?

6. Einstein's static universe

Consider Einstein's static universe, in which the attractive force of the matter density ρ is exactly balanced by the repulsive force of the cosmological constant, $\Lambda = 4\pi G \rho$.. Suppose that some fraction, f, of the matter is converted into radiation (by stars, for instance). Will the universe start to expand or contract? Follow the steps.

- (a) Write equations that xpress both the matter density and the cosmological constant as energy densities. Hint: Look at discussion at end of p. 64 in Ryden.
 - (b) Write equations for the pressures of the matter, radiation, and cosmological constant.
- (c) Write an equation for the acceleration of the universe in terms of the energy densities and pressures of matter, radiation, and cosmological constant.
- (d) Converting a fraction, f, of the matter to radiation, rewrite (c) in terms of f. Does the universe expand or contract? Explain physically why this happens.

EXTRA CREDIT (e) Given an energy density $\epsilon_m = \rho c^2$ in matter and energy density ϵ_r in radiation, what value of Λ would be required to make the universe static?