- A substance that has a fixed chemical composition throughout is called a *pure substance*.
- Water, nitrogen, helium, and carbon dioxide, for example, are all pure substances.
- A pure substance does not have to be of a single chemical element or compound.
- A mixture of various chemical elements or compounds also qualifies as a pure substance as long as the mixture is homogeneous.
- Air, for example, is a mixture of several gases, but it is often considered to be a pure substance because it has a uniform chemical composition.
- However, a mixture of oil and water is not a pure substance. Since oil is not soluble in water, it will collect on top of the water, forming two chemically dissimilar regions.

- A <u>mixture of two or more phases of a pure substance is still a pure substance</u> as long as the chemical composition of all phases is the same.
- A mixture of ice and liquid water, for example, is a pure substance because both phases have the same chemical composition.
- A mixture of liquid air and gaseous air, however, is not a pure substance since the composition of liquid air is different from the composition of gaseous air, and thus the mixture is no longer chemically homogeneous.
- This is due to different components in air condensing at different temperatures at a specified pressure.

Phases of a Pure Substance

- A *phase* is identified as having a distinct molecular arrangement that is homogeneous throughout and separated from the others by easily identifiable boundary surfaces.
- Even though there are three principal phases—solid, liquid, and gas—a substance may have several phases within a principal phase, each with a different molecular structure.
- Carbon, for example, may exist as graphite or diamond in the solid phase.

 Helium has two liquid phases; iron has three solid phases. Ice may exist at seven different phases at high pressures.

Solid

- The molecules in a solid are arranged in a threedimensional pattern (lattice) that is repeated throughout.
- Because of the small distances between molecules in a solid, the attractive forces of molecules on each other are large and keep the molecules at fixed positions.
- Note that the attractive forces between molecules turn to repulsive forces as the distance between the molecules approaches zero, thus preventing the molecules from piling up on top of each other.

The molecules in a solid are kept at their positions by the large springlike intermolecular forces.

- Even though the molecules in a solid cannot move relative to each other, they continually oscillate about their equilibrium positions. The velocity of the molecules during these oscillations depends on the temperature.
- At sufficiently high temperatures, the velocity (and thus the momentum) of the molecules may reach a point where the intermolecular forces are partially overcome and groups of molecules break away.
- This is the beginning of the melting process.

<u>Liquid</u>

- The molecular spacing in the liquid phase is not much different from that of the solid phase, except the molecules are no longer at fixed positions relative to each other and they can rotate and translate freely.
- In a liquid, the intermolecular forces are weaker relative to solids, but still relatively strong compared with gases.
- The distances between molecules generally experience a slight increase as a solid turns liquid, with water being a notable exception.

Gas

- In the gas phase, the molecules are far apart from each other, and a molecular order is nonexistent.
- Gas molecules move about at random, continually colliding with each other and the walls of the container they are in.
- Particularly at low densities, the intermolecular forces are very small, and collisions are the only mode of interaction between the molecules, which are at a considerably higher energy level than they are in the liquid or solid phases.
- Therefore, the gas must release a large amount of its energy before it can condense or freeze.

<u>Plasma</u>

- Plasma, according to natural science, is one of the four fundamental states of matter (the others being solid, liquid, and gas).
- When air or gas is ionized, plasma forms with similar conductive properties to that of metals.
- Plasma is the most abundant form of matter in the Universe, because most stars are in a plasma state.

Bose Einstein Condensation (BEC)

- A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero (that is, very near 0 K or −273.15 °C).
- Under such conditions, a large fraction of the bosons occupy the lowest quantum state, at which point quantum effects become apparent on a macroscopic scale.
- These effects are called macroscopic quantum phenomena.
- Although later experiments have revealed complex interactions, this state of matter was first predicted, generally, in 1924–25 by Satyendra Nath Bose and Albert Einstein.

Phase-Change Processes of Pure Substances (Water)

At 1 atm and 20°C, water exists in the liquid phase (compressed liquid).

At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (*saturated liquid*).

As more heat is transferred, part of the saturated liquid vaporizes (*saturated liquid-vapor mixture*).

At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized (*saturated vapor*).

As more heat is transferred, the temperature of the vapor starts to rise (*superheated vapor*).

T-v diagram for the heating process of water at constant pressure.

400

200

<u>Saturation Temperature and Saturation Pressure</u>

- At a given pressure, the temperature at which a pure substance changes phase is called the saturation temperature $T_{\rm sat}$.
- Likewise, at a given temperature, the pressure at which a pure substance changes phase is called the saturation pressure P_{sat} .

Saturation (boiling) pressure of water at various temperatures

Temperature, pressure, 7, °C P _{sat} , kPa -10 0.26 -5 0.40 0 0.61 5 0.87 10 1.23 15 1.71 20 2.34		Saturation
-10 0.26 -5 0.40 0 0.61 5 0.87 10 1.23 15 1.71	Temperature,	pressure,
-5 0.40 0 0.61 5 0.87 10 1.23 15 1.71	<i>T,</i> °C	P _{sat} , kPa
0 0.61 5 0.87 10 1.23 15 1.71	-10	0.26
5 0.87 10 1.23 15 1.71	-5	0.40
10 1.23 15 1.71	0	0.61
15 1.71	5	0.87
	10	1.23
20 2.34	15	1.71
	20	2.34
25 3.17	25	3.17
30 4.25	30	4.25
40 7.39	40	7.39
50 12.35	50	12.35
100 101.4	100	101.4
150 476.2	150	476.2
200 1555	200	1555
250 3976	250	3976
300 8588	300	8588

The *T-v* Diagram

The P-v Diagram

The P-T Diagram

The *P-v-T* Surface

P-v-T surface of a substance that *contracts* on freezing.

P-v-T surface of a substance that *expands* on freezing (like water).

Enthalpy

- In the analysis of certain types of processes, particularly in power generation and refrigeration, we frequently encounter the combination of properties u + Pv.
- For the sake of simplicity and convenience, this combination is defined as a new property, *enthalpy*, and given the symbol *h*:

```
Enthalpy H = U + PV (kJ)
Specific Enthalpy h = u + Pv (kJ/kg)
```


Saturated Liquid and Saturated Vapor States

 V_f = specific volume of saturated liquid

 v_g = specific volume of saturated vapor

 v_{fg} = difference between v_g and v_f (that is, $v_{fg} = v_g - v_f$)

Vapor Mixture

Quality (x)

$$x = \frac{m_{\text{vapor}}}{m_{\text{total}}}$$

$$m_{\rm total} = m_{
m liquid} + m_{
m vapor} = m_f + m_g$$

Quality is related to the horizontal distances on P-v and T-v diagrams.

$$x = \frac{v_{\text{avg}} - v_f}{v_{fg}}$$

$$v_{\text{avg}} = v_f + x v_{fg} \qquad (\text{m}^3/\text{kg})$$

$$u_{\text{avg}} = u_f + x u_{fg}$$
 (kJ/kg)

$$h_{\text{avg}} = h_f + x h_{fg}$$
 (kJ/kg)

Superheated Vapor

Compressed Liquid

Water Tables
(Saturated Water-Temperature Table)

Saturated water—Temperature table													
	Specific volume, m³/kg			Inte	Internal energy, kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg⋅K		
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor,	Sat. liquid, u _f	Evap.,	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap.,	Sat. vapor,	
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	9.024 8.899 8.780	
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.0152 7.8466 7.6832 7.5247	8.452 8.351 8.255	
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.3/10 7.2218 7.0769 6.9360 6.7989	7.989 7.908 7.829	
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.6655 6.5355 6.4089 6.2853 6.1647	7.611 7.543 7.478	
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	6.0470 5.9319 5.8193 5.7092 5.6013	7.295 7.238 7.182	
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.4956 5.3919 5.2901 5.1901 5.0919	7.026 6.977 6.929	

Water Tables
(Saturated Water-Pressure Table)

TABLE	A-5											
Saturate	ed water-	-Pressure t	able									
	<i>Specific volume,</i> m³/kg			Internal energy, kJ/kg			Enthalpy, kJ/kg					
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap.,	Sat. vapor, u _g	Sat. liquid, h _f	Evap.,	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
1.0	6.97	0.001000		29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.974
1.5	13.02	0.001001		54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.827
2.0	17.50	0.001001		73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.722
2.5	21.08	0.001002		88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.642
3.0	24.08	0.001003		100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.576
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.473
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.393
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.250
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.148
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.007
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.907
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.830
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.767
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.669
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.593
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.45!
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.35!
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.35!
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.28!
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.22:
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.17
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.12
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.08
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.05
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.02
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.993
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.965
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.940
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.917

<u>Water Tables</u> (Superheated Water)

TABLE A-6 Superheated water												
T	V	и	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg	u kJ/kg	kJ/kg	s kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	s kJ/kg⋅K	m ³ /kg	kJ/kg		kJ/kg·K
	P =	0.01 MP	a (45.81°	C)*	P =	0.05 MP	a (81.32°	C)	P = 0.10 MPa (99.61°C)			
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.7800
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.9800
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
P = 0.20 MPa (120.21°C)			P = 0.30 MPa (133.52°C)				P = 0.40 MPa (143.61°C)					
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402		2761.2	7.0792		2564.4	2752.8	
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132		2647.2	2860.9	
250	1.19890	2731.4		7.7100		2728.9	2967.9	7.5180		2726.4	2964.5	
300	1.31623	2808.8	3072.1	7.8941	0.87535		3069.6	7.7037	0.65489		3067.1	7.5677
400	1.54934	2967.2		8.2236	1.03155	2966.0	3275.5	8.0347		2964.9	3273.9	
500		3131.4		8.5153	1.18672		3486.6	8.3271		3129.8	3485.5	
600		3302.2		8.7793	1.34139	3301.6	3704.0	8.5915		3301.0	3703.3	
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345		3479.0	3927.6	
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605		3663.9	4158.9	
900	2.70656	3856.3	4397.7	9.4598		3856.0	4397.3	9.2725		3855.7	4396.9	
1000	2.93755	4054.8	4642.3	9.6599	1.95824		4642.0	9.4726		4054.3	4641.7	
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624		4259.2	4892.9	
1200	3.39938				2.26624		5150.2	9.8431		4470.2	5150.0	

Water Tables
(Compressed Liquid Water)

TABL	LE A-7											
Comp	ressed liqui	d water										
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	= 5 MPa	(263.94°C	:)	P =	10 MPa	(311.00°C)	P =	15 MPa	(342.16°	C)
Sat.	0.0012862		1154.5	2.9207	0.0014522		1407.9	3.3603	0.0016572		1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	
200	0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	
220 240	0.0011868 0.0012268		944.32 1037.7	2.5127 2.6983	0.0011809 0.0012192	934.01	945.82 1038.3	2.5037 2.6876	0.0011752 0.0012121	929.81	947.43 1039.2	2.4951 2.6774
260 280	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710 3.0565	0.0012560 0.0013096		1134.0 1233.0	2.8586
300					0.0013226 0.0013980		1235.0	3.0565	0.0013096		1338.3	3.0410 3.2279
320					0.0013980	1329.4	1343.3	3.2400	0.0013783		1454.0	3.4263
340									0.0014733		1592.4	3.4263
340									0.0016311			3.0555
			(365.75°C			<i>P</i> = 30	MPa			P = 50	MPa .	
Sat.	0.0020378		1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29		-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	
40	0.0009992		185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705
120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	1.4859
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	
160	0.0010886	665.28	687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	2.0790
200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628

EXAMPLE 3–1 Pressure of Saturated Liquid in a Tank

A rigid tank contains 50 kg of saturated liquid water at 90°C. Determine the pressure in the tank and the volume of the tank.

$$P = P_{\text{sat@90}^{\circ}C} \Rightarrow \text{Table A4}$$

$$\Rightarrow P = 70.183 \text{ kPa}$$

$$v = v_{f@90^{\circ}C} \Rightarrow \text{Table A4}$$

$$\Rightarrow v = 0.001036 \text{ m}^3/\text{kg}$$

$$V = mv$$

=
$$(50 \text{ kg})(0.001036 \text{ m}^3/\text{kg})$$
 $\Rightarrow V = 0.0518 \text{ m}^3$

$$\Rightarrow V = 0.0518 \text{ m}^3$$

EXAMPLE 3–3 Volume and Energy Change during Evaporation

A mass of 200 g of saturated liquid water is completely vaporized at a constant pressure of 100 kPa. Determine (a) the volume change and (b) the amount of energy transferred to the water.

a)
$$\Delta V = m v_{fg@100\text{kPa}} = m (v_g - v_f)$$
 (Table A5)
= $(0.2 \text{ kg})(1.6941 - 0.001043) \text{m}^3/\text{kg} = \mathbf{0.3386 m}^3$

b)
$$\Delta H = mh_{fg@100\text{kPa}}$$
 (Table A5)
= $(0.2 \text{ kg})(2257 \text{ kJ/kg}) = 451.5 \text{ kJ}$

EXAMPLE 3–4 Pressure and Volume of a Saturated Mixture

A rigid tank contains 10 kg of water at 90°C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank.

a)
$$P = P_{\text{sat@90}^{\circ}C} \Rightarrow \text{Table A4} \Rightarrow P = 70.183 \text{ kPa}$$

$$V = (10 \text{ kg})[0.001036 \text{ m}^3/\text{kg} + (0.2)(2.3593 - 0.001036)\text{m}^3/\text{kg}] = 4.73 \text{ m}^3$$

EXAMPLE 3–5 Properties of Saturated Liquid–Vapor Mixture

An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160 kPa. Determine (a) the temperature, (b) the quality, (c) the enthalpy of the refrigerant, and (d) the volume occupied by the vapor phase.

a)
$$v = \frac{V}{m} = \frac{0.080 \text{ m}^3}{4 \text{ kg}} = 0.02 \text{ m}^3/\text{kg}$$

@ 160 kPa (Table A12)
$$\begin{cases} v_f = 0.0007435 \text{ m}^3/\text{kg} \\ v_g = 0.12355 \text{ m}^3/\text{kg} \end{cases}$$

 \Rightarrow Saturated mixture region $v_f < v < v_g$

$$T = T_{\text{sat@160kPa}} = -15.60^{\circ}\text{C}$$

b)
$$x = ?$$

$$v = v_f + xv_{fg} \Rightarrow x = \frac{v - v_f}{v_{fg}} = \frac{v - v_f}{v_g - v_f}$$

$$x = \frac{0.02 \text{ m}^3/\text{kg} - 0.0007435 \text{ m}^3/\text{kg}}{0.12355 \text{ m}^3/\text{kg} - 0.0007435 \text{ m}^3/\text{kg}} = \mathbf{0.157}$$

- c) h = ? $h = h_f + xh_{fg}$ h_f , h_{fg} @160 kPa (Table A12) h = 31.18 kJ/kg + (0.157)(209.96 kJ/kg) =**64.1 kJ/kg**
- d) $V_g = ?$ $V_g = m_g v_g = x m v_g$ $V_g = (0.157)(4 \text{ kg})(0.12355 \text{ m}^3/\text{kg}) = \mathbf{0.0776 m}^3$

EXAMPLE 3–7 Temperature of Superheated Vapor

Determine the temperature of water at a state of P = 0.5 MPa and h = 2890 kJ/kg.

@
$$P=0.5$$
 MPa (Table A5), $h_g=2748.1$ kJ/kg $\Rightarrow h>h_g\Rightarrow$ Table A6, @ $P=0.5$ MPa

<i>T</i> (°C)	h (kJ/kg)
200	2855.8
T = ?	2890.0
250	2961.0

$$T = \frac{250 - 200}{2961.0 - 2855.8}(2890 - 2855.8) + 200$$

$$T = 216.25^{\circ}C$$

EXAMPLE 3–8 Approximating Compressed Liquid as Saturated Liquid

Determine the internal energy of compressed liquid water at 80°C and 5 MPa, using (a) data from the compressed liquid table and (b) saturated liquid data. What is the error involved in the second case?

a) @
$$T = 80$$
°C (Table A $- 4$), $P_{sat} = 47.416$ kPa \Rightarrow Compressed Liquid Water

From Table A7, @
$${P = 5 \text{ MPa} \atop T = 80^{\circ}\text{C}} u = 333.82 \text{ kJ/kg}$$

b) From Table A4, @
$$T = 80^{\circ}$$
C, $u \cong u_{f@80^{\circ}\text{C}} = 334.97 \text{ kJ/kg}$
% error = $\frac{334.97 - 333.82}{333.82} \times 100 = \textbf{0}.34 \%$

EXAMPLE 3–9 The Use of Steam Tables to Determine Properties

Determine the missing properties and the phase descriptions in the following table for water:

	T (°C)	P (kPa)	u (kJ/kg)	x	Phase description
a)		200		0.6	
b)	125		1600		
c)		1000	2950		
d)	75	500		0.0	
f)		850			

a)
$$P = 200 \text{ kPa}, x = 0.6, T = ?, u = ?, \text{Phase} = ?$$
Since we have quality (x) , then Phase = saturated liquid-vapor mixture

$$\Rightarrow T = T_{\text{sat@200kPa}} = \mathbf{120.21^{\circ}C} \text{ (Table A5)}$$
From Table A5, @ $P = 200 \text{ kPa}$, $\begin{cases} u_f = 504.5 \text{ kJ/kg} \\ u_f g = 2024.6 \text{ kJ/kg} \end{cases}$

$$\Rightarrow u = u_f + xu_f g$$

$$= 504.5 \text{ kJ/kg} + (0.6)(2024.6 \text{ kJ/kg})$$

$$= \mathbf{1719.26 \text{ kJ/kg}}$$

b)
$$T = 125^{\circ}\text{C}, u = 1600 \text{ kJ/kg}, P = ?, x = ?, \text{Phase} = ?$$

From Table A4, @ $T = 125^{\circ}\text{C}$ $\begin{cases} u_f = 524.83 \text{ kJ/kg} \\ u_g = 2534.3 \text{ kJ/kg} \end{cases}$
 $\Rightarrow u_f < u < u_g \Rightarrow \text{Phase} = \text{saturated liquid-vapor mixture}$
 $P = P_{\text{sat@125°C}} = 232.23 \text{ kPa} \text{ (Table A4)}$
 $x = \frac{u - u_f}{u_{fg}} = \frac{1600 - 524.83}{2009.5}$
 $x = 0.535$

c)
$$P = 1000 \text{ kPa}, u = 2950 \text{ kJ/kg}, T = ?, x = ?, \text{Phase} = ?$$
From Table A5, @ $P = 1 \text{ MPa}$ $\begin{cases} u_f \\ u_g \end{cases} = 761.39 \text{ kJ/kg}$ $\begin{cases} u_g \\ u_g \end{cases} = 2582.8 \text{ kJ/kg}$

$$\Rightarrow u_f < u_g < u \Rightarrow \text{Phase} = \text{superheated vapor} \Rightarrow \text{Not quality } (x)$$

<i>T</i> (°C)	u (kJ/kg)
350	2875.7
T = ?	2950.0
400	2957.9

$$T = \frac{400 - 350}{2957.9 - 2875.7} (2950 - 2875.7) + 350$$
$$T = 395.19^{\circ}C$$

d)
$$T = 75^{\circ}\text{C}$$
, $P = 500 \text{ kPa}$, $u = ?$, $x = ?$, Phase $= ?$
From Table A5, @ $P = 500 \text{ kPa}$, $T_{sat} = 151.83^{\circ}\text{C}$
 $\Rightarrow T < T_{\text{sat}}$ \Rightarrow Phase = compressed liquid \Rightarrow Not quality (x)

$$u \cong u_{f@T = 50^{\circ}C} = 313.99 \text{ kJ/kg}$$

e) P = 850 kPa, x = 0.0, T = ?, u = ?, Phase = ?Since we have quality x = 0.0, then **Phase = saturated liquid** $\Rightarrow T = T_{\text{sat@850kPa}} = 172.94^{\circ}\text{C}$ (Table A5) From Table A5, @ $P = 850 \text{ kPa}, u = u_f = 731.0 \text{ kJ/kg}$