C++ Programming II

Introduction to Standard Template Library. Overview STL Containers

C++ Programming II September 16, 2018

Prof. Dr. P. Arnold Bern University of Applied Sciences

▶ Standard Template Library

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Associative Set / Multiset

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

- ▶ Standard Template Library
- ▶ Containers

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers Unordered Set / Unordered Multiset

Container Adapters

- ▶ Standard Template Library
- Containers
- Sequential Containers

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

- Standard Template Library
- Containers
- ► Sequential Containers
 - Vecto
 - ▶ Deque
 - List
 - Array

► Associative Containers

- ► Set / Multiset
- Map / Multimap

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

Deque List

List

Associative Containers

Set / Multiset

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

- ▶ Standard Template Library
- Containers
- **▶** Sequential Containers
 - Vecto
 - Deque
 - List
 - Array
- ► Associative Containers
 - Set / Multise
 - ► Map / Multimap
- **▶** Unordered Containers
 - Unordered Set / Unordered Multiset

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

Deque List

List

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

ontainer Adapti

- Standard Template Library
- Containers
- Sequential Containers
- Associative Containers
- Unordered Containers
- Container Adapters

Lecture 2

Prof Dr P Arnold

of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multicot

Container Adapters

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Algorithms

► Standard Template Library

Containers

▶ Sequential Containers

- Vecto
- Dequ
- List
- Array

▶ Associative Containers

- Set / Multise
- Map / Multimar

Unordered Containers

- Unordered Set / Unordered Multiset
- ▶ Container Adapters
- Algorithms

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Library

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

From this ...

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers Vector

Deque List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

10

11

12

14

15

Lecture 2

Bern University of Applied Sciences

```
Standard Template
Library
```

Containers

Sequential Containers Vector

Deque List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Algorithms

... over this ...

STL

3

Motivation

```
size_t count_a(const std::vector<char> &vec)
{
    return std::count(vec.begin(), vec.end(), 'a');
}
```

.. to finally this

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

tandard Template

Containers

Sequential Containers

Vector Vector

Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

STL Intro

- The standard template library (STL) is a set of template classes and functions that supply the programmer with
 - 1. Containers for storing information
 - 2. Iterators for accessing the information stored
 - 3. **Algorithms** for manipulating the content of the containers

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standar

Containers

Sequential Containers

Sequentiai Containei Vector

Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers Unordered Set / Unordered

Unordered Set / Un Multiset

Container Adapters

- The standard template library (STL) is a set of template classes and functions that supply the programmer with
 - Containers for storing information
 - 2. Iterators for accessing the information stored
 - 3. **Algorithms** for manipulating the content of the containers

ightharpoonup N algorithms, M containers ightarrow N \cdot M implementations

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

tandard

Containers

Sequential Containers

Vector

List

LIST

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers

Unordered Set / Unordered

Container Adapters

- The standard template library (STL) is a set of template classes and functions that supply the programmer with
 - 1. Containers for storing information
 - 2. **Iterators** for accessing the information stored
 - 3. Algorithms for manipulating the content of the containers

N algorithms, M containers \rightarrow N + M implementations

Lecture 2

Prof Dr P Arnold

of Applied Sciences

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers

Unordered Set / Unordered Multicot

Container Adapters

```
#include <iostream>
#include <vector>
// Everything in STL Library is defined in the namespace std
using namespace std;
int main()
    // Container
    vector<int> vec:
    vec.push back(4);
   vec.push back(1);
    vec.push back(8); // vec{4, 1, 8}
    // Iterator
    vector<int>::iterator itr1 = vec.begin(); // Points to first
         element
    vector<int>::iterator itr2 = vec.end(); // Points to the
         spot afer the last element!
    for(vector<int>::iterator itr = itr1; itr!=itr2; ++itr)
        cout << *itr << " "; // Print out: 4 1 8
    // Algorithms work on iterators
    sort(itr1, itr2); // vec: {1, 4, 8}
    return 0:
```

Lecture 2

Prof Dr P Arnold

Bern University of Applied Sciences

tandard Te

Containers

Sequential Containers

squeritiai containei

Vector

Deque

List

Array

•

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

STI

Example of STL Work Flow

- ▶ The majority of our C++ programs should be using STL!
- Code reuse, no need to re-invent the wheel
- Efficiency Modern C++ compilers are tuned to optimize for C++ STL code
- Bullet proove
- less buggy
- clean and readable
- Best use of data structure and algorithms under the hood

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

brand

Containers

Sequential Containers

sequentiai Containei

Vector

Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Lecture 2

Prof. Dr. P. Arnold

Containers

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

Deque List

List

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Types

- Containers are STL classes that are used to store data. STL supplies three types of container classes:
 - 1. Sequential containers
 - 2. Associative containers
 - 3. Unordered containers
- In addition classes called *container adapters* with reduced functionality are provided

Lecture 2

Prof Dr P Arnold

of Applied Sciences

Standard Template Library

Sequential Containers Vector

Deque

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers Unordered Set / Unordered

Container Adapters

Algorithms

Multicot

Sequential Containers (array and linked list)

Sequential containers are characterized by a **fast insertion time**, but are relatively **slow in find operations**.

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

atainore

Sequential Containers Vector

Deque List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Multiset

Container Adapters

Sequential Containers (array and linked list)

Sequential containers are characterized by a **fast insertion time**, but are relatively **slow in find operations**.

std::vector - Operates like a dynamic array and grows only at the end

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

tainers

Sequential Containers Vector

Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Sequential Containers (array and linked list)

Sequential containers are characterized by a **fast insertion time**, but are relatively **slow in find operations**.

- std::vector Operates like a dynamic array and grows only at the end
- std::deque Similar to std::vector except that it allows for new elements to be inserted or removed at the beginning, too

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Ildilleis

Sequential Containers

Vector Deque

List

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Sequential Containers (array and linked list)

Sequential containers are characterized by a **fast insertion time**, but are relatively **slow in find operations**.

- std::vector Operates like a dynamic array and grows only at the end
- std::deque Similar to std::vector except that it allows for new elements to be inserted or removed at the beginning, too
- std::list Operates like a double linked list. Like a chain where an object is a link in the chain. You can add or remove links, i.e. objects at any position

Lecture 2

Prof. Dr. P. Arnold

of Applied Sciences

Standard Template Library

illali ici S

Sequential Containers

Vector Deque

List

У

Associative Containers Set / Multiset

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Multiset

Container Adapters

ontainer Adapte

Sequential Containers (array and linked list)

Sequential containers are characterized by a **fast insertion time**, but are relatively **slow in find operations**.

- std::vector Operates like a dynamic array and grows only at the end
- std::deque Similar to std::vector except that it allows for new elements to be inserted or removed at the beginning, too
- std::list Operates like a double linked list. Like a chain where an object is a link in the chain. You can add or remove links, i.e. objects at any position
- std::forward_list Similar to a std::list except that it is a singly linked list of elements that allows you to iterate only in one direction

Lecture 2

Prof. Dr. P. Arnold

Standard Template Library

Sequential Containers

Vector

List

Array

Associative Containers

Associative Contain Set / Multiset

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Multiset

Container Adapters

Sequential Containers (array and linked list)

Sequential containers are characterized by a **fast insertion time**, but are relatively **slow in find operations**.

- std::vector Operates like a dynamic array and grows only at the end
- std::deque Similar to std::vector except that it allows for new elements to be inserted or removed at the beginning, too
- std::list Operates like a double linked list. Like a chain where an object is a link in the chain. You can add or remove links, i.e. objects at any position
- std::forward_list Similar to a std::list except that it is a singly linked list of elements that allows you to iterate only in one direction
- std::array Fixed size array with the performance and accessibility of a C-style array with the benefits of a standard container, such as knowing its own size, supporting assignment, random access iterators, etc.

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers

Deque

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Associative Containers (binary trees)

Associative containers store data in a sorted fashion. This results in **slower insertion times**, but **optimized search performance**

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

stoinoro

Sequential Containers Vector

Deque

List Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Ontainer Adapt

Algorithms

Multicot

Associative Containers (binary trees)

Associative containers store data in a sorted fashion. This results in **slower insertion** times, but **optimized search performance**

std::set - Stores unique values sorted on insertion in a container featuring logarithmic complexity O(log n) Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

tainore

Sequential Containers

Vector

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Associative Containers (binary trees)

Associative containers store data in a sorted fashion. This results in **slower insertion** times, but **optimized search performance**

- std::set Stores unique values sorted on insertion in a container featuring logarithmic complexity O(log n)
- std::multiset Like set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique O(log n)

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers

Vector Deque

List

,

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Associative Containers (binary trees)

Associative containers store data in a sorted fashion. This results in **slower insertion** times, but **optimized search performance**

- std::set Stores unique values sorted on insertion in a container featuring logarithmic complexity O(log n)
- ightharpoonup std::multiset Like set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique $\mathcal{O}(\log n)$
- std::map Stores key-value pairs sorted by their unique keys in a container with logarithmic complexity O(log n)

Lecture 2

Prof. Dr. P. Arnold

of Applied Sciences

Standard Template Library

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Associative Containers (binary trees)

Associative containers store data in a sorted fashion. This results in **slower insertion** times, but **optimized search performance**

- std::set Stores unique values sorted on insertion in a container featuring logarithmic complexity O(log n)
- ightharpoonup std::multiset Like set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique $\mathcal{O}(\log n)$
- std::map Stores key-value pairs sorted by their unique keys in a container with logarithmic complexity O(log n)

Lecture 2

Prof. Dr. P. Arnold

of Applied Sciences

Standard Template Library

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Associative Containers (binary trees)

Associative containers store data in a sorted fashion. This results in **slower insertion** times, but **optimized search performance**

- std::set Stores unique values sorted on insertion in a container featuring logarithmic complexity O(log n)
- ightharpoonup std::multiset Like set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique $\mathcal{O}(\log n)$
- std::map Stores key-value pairs sorted by their unique keys in a container with logarithmic complexity O(log n)
- std::multimap Like map . Additionally, supports the ability to store key-value pairs where keys don't need to be unique. $\mathcal{O}(\log n)$

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

.

Sequential Containers

Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Unordered Containers (hash tables)

Associative containers store data in a sorted fashion. This results in **slower insertion times**, but **optimized search performance**

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers Vector

Deque

List Array

-9

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Unordered Containers (hash tables)

Associative containers store data in a sorted fashion. This results in **slower insertion** times, but **optimized search performance**

std::unordered_set - Stores unique values sorted on insertion in a container featuring near constant complexity O(1). Available starting C++11 Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

itainers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Unordered Containers (hash tables)

Associative containers store data in a sorted fashion. This results in **slower insertion times**, but **optimized search performance**

- std::unordered_set Stores unique values sorted on insertion in a container featuring near constant complexity O(1). Available starting C++11
- std::unordered_multiset Like unordered_set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique O(1)(since C++11)

Lecture 2

Prof. Dr. P. Arnold

Bern University

Standard Template Library

Sequential Containers

Sequentiai Container Vector

Deque

List

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Unordered Containers (hash tables)

Associative containers store data in a sorted fashion. This results in **slower insertion times**, but **optimized search performance**

- std::unordered_set Stores unique values sorted on insertion in a container featuring near constant complexity O(1). Available starting C++11
- std::unordered_multiset Like unordered_set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique O(1)(since C++11)
- std::unordered_map Stores key-value pairs sorted by their unique keys in a container with near constant complexity O(1)(since C++11)

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers

Vector

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Unordered Containers (hash tables)

Associative containers store data in a sorted fashion. This results in **slower insertion times**, but **optimized search performance**

- std::unordered_set Stores unique values sorted on insertion in a container featuring near constant complexity O(1). Available starting C++11
- std::unordered_multiset Like unordered_set. Additionally, supports the ability to store multiple items having the same value; that is, the value doesn't need to be unique O(1)(since C++11)
- std::unordered_map Stores key-value pairs sorted by their unique keys in a container with near constant complexity O(1)(since C++11)
- std::unordered_multimap Like unordered_map. Additionally, supports the ability to store key-value pairs where keys don't need to be unique $\mathcal{O}(1)$ (since C++11)

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers

Vector

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Container Adapters

Container adapters are variants of sequential and associative containers that have limited functionality and are intended to fulfill a particular purpose

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

ainers

Sequential Containers Vector

Deque

List

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

ontainer Adapt

Algorithms

Multicot

Container Adapters

Container adapters are variants of sequential and associative containers that have limited functionality and are intended to fulfill a particular purpose

std::stack - Stores elements in a LIFO (last-in-first-out) fashion, allowing elements to be inserted (pushed) and removed (popped) at the top Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

allicis

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Container Adapters

Container adapters are variants of sequential and associative containers that have limited functionality and are intended to fulfill a particular purpose

- std::stack Stores elements in a LIFO (last-in-first-out) fashion, allowing elements to be inserted (pushed) and removed (popped) at the top
- std::queue Stores elements in FIFO (first-in-first-out) fashion, allowing the first element to be removed in the order they're inserted

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers

Sequential Containers

Vector

Deque

List Array

у

Associative Containers

Set / Multiset Map / Multimap

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Container Adapters

Container adapters are variants of sequential and associative containers that have limited functionality and are intended to fulfill a particular purpose

- std::stack Stores elements in a LIFO (last-in-first-out) fashion, allowing elements to be inserted (pushed) and removed (popped) at the top
- std::queue Stores elements in FIFO (first-in-first-out) fashion, allowing the first element to be removed in the order they're inserted
- std::priority_queue Stores elements in a sorted order, such that the one whose value is evaluated to be the highest is always first in the queue

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Sequential Containers

Sequential Containers Vector

Deque

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Headers

In order to use STL containers you have to use the following headers:

```
#include <vector>
   #include <deque>
   #include <list>
                              // set and multiset
   #include <set>
                              // map and multimap
   #include <map>
   #include <unordered_set> // unordered_set/multiset
                              // unordered map/multimap
   #include <unordered map>
   #include <queue>
                               // queue / priority queue
   #include <stack>
   #include <iterator>
10
   #include <algorithm>
11
   #include <numeric>
                               // some numeric algorithms
   #include <functional>
```

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Science

Standard Template Library

Sequential Containers
Vector

Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Lecture 2

Prof. Dr. P. Arnold

Sequential Containers

Bern University of Applied Sciences

Standard Template Library

Containers
Sequential Containers

/ector

Deque List

Array

Associative Containers

Set / Multiset

Map / Multimap
Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Initializing Vectors

```
// empty vector of ints
   std::vector<int> vec1;
   std::vector<int> vec2(3);
                                            // 3 ints
   std::vector<int> vec2(3,10);
                                           // 3 ints with value 10
                                            // 4 ints: 1,2,3,4
   std::vector<int> vec3{1,2,3,4};
   std::vector<int> vec4(vec2.beqin(), vec2.end()); // via vec2
   std::vector<int> vec5(vec3);  // a copy of vec3
                                           // construct from arrays
   int myInt[] = \{1, 2, 3\};
   std::vector<int> vec6(myInt, myInt + sizeof(myInt)/sizeof(int));
10
```

Lecture 2

Prof Dr P Arnold

Standard Template Library

Containers

Sequential Containers

Deque List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers Unordered Set / Unordered Multicot

Container Adapters

Using Vectors

```
// vec.size() -> 0
   vector<int> vec;
   vec.push back(4);
   vec.push_back(1);
   vec.push_back(8); // vec{4, 1, 8}: vec.size() -> 3
   // Vector specific (random access)
   cout << vec[2]; // 8 (no range check)</pre>
   cout << vec.at(2); // 8 (throws exception out of range)</pre>
   for(int i = 0; i < vec.size(); ++i)
10
       cout << vec[i] << " "; // Random access possible</pre>
11
   vector<int>::iterator itr; // Create iterator
   for(itr = vec.begin(); itr!=vec.end(); itr++)
14
       cout << *itr << " ": // Recommended to use iterators:</pre>
15
                                // 1) Faster than random access:
16
                                 // 2) Universal way of container
                                 // traversing
18
19
                             // C++ 11 - Most convinient
   for(auto elem : vec)
20
       cout << elem << " ":
21
    // Vector is a dynamically allocated contigous array in memory
   int* p = &vec[0];
24
```

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Science:

Standard Template Library

Containers

Sequential Containers

Deque List

List

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Using Vectors

10

Properties of STL-Vector:

- fast insert/remove at end: $\mathcal{O}(1)$
- ightharpoonup slow insert/remove at the beginning and middle: $\mathcal{O}(n)$
- ▶ slow search: $\mathcal{O}(n)$

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque

List

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Using Vectors

vector

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque

List Array

ıy

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Multiset

Container Adapters

Performance

Vectors grow dynamically, and every vector has a specific size. When we add a new element to a vector, the computer reallocates memory and may even copy all of the vector elements into this new memory! This can cause a performance hit.

Lecture 2

Prof Dr P Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers Unordered Set / Unordered

Container Adapters

Algorithms

Multicot

Performance

Vectors grow dynamically, and every vector has a specific size. When we add a new element to a vector, the computer reallocates memory and may even copy all of the vector elements into this new memory! This can cause a performance hit.

 capacity() - returns the capacity of the vector, i.e. the number of elements that a vector can hold before a program must allocate more memory

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Multiset

Container Adapters

ontainer Adapt

Performance

Vectors grow dynamically, and every vector has a specific size. When we add a new element to a vector, the computer reallocates memory and may even copy all of the vector elements into this new memory! This can cause a performance hit.

- capacity() returns the capacity of the vector, i.e. the number of elements that a vector can hold before a program must allocate more memory
- size() returns the currently filled level, which is always equal to or less than the capacity

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque List

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

ontainer Adapt

Performance

Vectors grow dynamically, and every vector has a specific size. When we add a new element to a vector, the computer reallocates memory and may even copy all of the vector elements into this new memory! This can cause a performance hit.

- capacity() returns the capacity of the vector, i.e. the number of elements that a vector can hold before a program must allocate more memory
- size() returns the currently filled level, which is always equal to or less than the capacity
- reserve() increases the capacity of a vector to the number supplied as an argument

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers
Sequential Containers

Vector

Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

ontainer Adapt

Performance

Vectors grow dynamically, and every vector has a specific size. When we add a new element to a vector, the computer reallocates memory and may even copy all of the vector elements into this new memory! This can cause a performance hit.

- capacity() returns the capacity of the vector, i.e. the number of elements that a vector can hold before a program must allocate more memory
- size() returns the currently filled level, which is always equal to or less than the capacity
- reserve() increases the capacity of a vector to the number supplied as an argument

```
vector<int> v;
for(int i = 0; i < 1000; ++i)
v.push_back(i);</pre>
```

Requires 2-18 reallocations!

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Science

Standard Template Library

Sequential Containers

Deque List

Containers

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

ontainer Adap

Performance

Vectors grow dynamically, and every vector has a specific size. When we add a new element to a vector, the computer reallocates memory and may even copy all of the vector elements into this new memory! This can cause a performance hit.

- capacity () returns the capacity of the vector, i.e. the number of elements that a vector can hold before a program must allocate more memory
- size() returns the currently filled level, which is always equal to or less than the capacity
- reserve() increases the capacity of a vector to the number supplied as an argument

```
vector<int> v:
for(int i = 0; i < 1000; ++i)
    v.push back(i);
```

Requires 2-18 reallocations!

```
vector<int> v;
v.reserve(1000);
for(int i = 0; i < 1000; ++i)
    v.push back(i);
```

Reduces cost

Lecture 2

Prof Dr P Arnold

Standard Template Library

Sequential Containers

Deque List

Containers

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers Unordered Set / Unordered Multicot

Container Adapters

STL - Deque - Double-ended-queue

Usage

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers Unordered Set / Unordered Multiset

Container Adapters

STL - Deque - Double-ended-queue

Usage

Properties of STL-Deque:

- ightharpoonup fast insert/remove at beginning and end: $\mathcal{O}(1)$
- \triangleright slow insert/remove at the middle: $\mathcal{O}(n)$
- ▶ slow search: $\mathcal{O}(n)$
- Not contigous in memory

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List

Array
Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

STL - List Usage

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers
Vector

Deque

Array

Associative Containers

Set / Multiset
Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

ntainer Adapte

Algorithms

Multiset

STL - List

Usage

```
list<int> 1 = {5, 2, 9};
                                   // C++11 container initialisation
   1.push back(6);
                                   // 1: {5, 2, 9, 6}
   1.push front(4);
                                   // 1: {4. 5. 2. 9. 6}
   list<int>::iterator itr = find(1.begin(), 1.end(), 2); // itr-> 2
                                   // 1: {4, 5, 8, 2, 9, 6}
   1.insert(itr,8);
                                   // O(1), faster than vector
                                   // itr \rightarrow 9
   itr++;
                                   // 1: {4, 5, 8, 2, 6} O(1)
   1.erase(itr);
10
   // Main reason to use list:
11
   myIist1.splice(itr, myList2, itr a, itr b); // O(1)
12
```

Properties of STL-List:

- fast insert/remove at any place: $\mathcal{O}(1)$
- \triangleright slow search: $\mathcal{O}(n)$, slower than vector!
- no random access, no [] operator
- Not contigous in memory
- ▶ Unique killer feature is splice $\mathcal{O}(1)$

Lecture 2

Prof. Dr. P. Arnold

Bern University

Standard Template Library

Containers

Sequential Containers

Deque

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

STL - List

Usage

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers Vector

Deque

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

STL - Array

Usage

```
int a[3] = {3,4,5};
a.begin();  // not existing!
a.end();  // not existing!
a.size();  // not existing!
a.swap();  // not existing!

// Solution
array<int,3> b = {3,4,5};
b.end();
b.size();
b.swap();
```

Properties of STL-Array:

- Thin layer around C-Array
- Provides STL functionalty
- Size is fixed
- Size is deduced in the type: array<int, 3> is not the same type as array<int, 4>

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers Vector

Deque

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Associative Containers

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset
Map / Multimap

wap / widitiliap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

STL - Set / Multiset

- Implemented with binray tree (red-black tree 1)
- ▶ Always sorted, default criteria is <, but can be freely choosen

Lecture 2

Prof Dr P Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Associative Container
Set / Multiset

Map / Multimap

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

¹https://en.wikipedia.org/wiki/Red-black_tree

STL - Set / Multiset


```
set<int> myset;
myset.insert(3);  // myset: {3}
myset.insert(1);  // myset: {1, 3}
myset.insert(7);  // myset: {1, 3, 7}, O(log(n))

// Note: find function
set<int>::iterator it;
it = myset.find(7);  // O(log(n)), it points to 7

// Check insertion
pair<set<int>::iterator, bool> ret;
ret = myset.insert(3);  // no new element inserted

if (ret.second==false)
    it=ret.first;  // "it" now points to element 3
```

Properties of STL-Set:

- Sorting at insertion
- No dublicates allowed
- ▶ insert() $(\mathcal{O}(\log n))$
- insertion checkable
- ▶ Fast find() function availabe ($\mathcal{O}(\log n)$)

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

STL - Set / Multiset

Advanced properties of STL-Set:

- Fast insertion with hint $(\mathcal{O}(1))$
- erase() by iterator
- erase() by value!
- Note: set<int>::iterator are read only!
- ▶ Traversing is slow comp. to vector & deque
- No random access with [] operator

STL-Multiset

Multiset works the same as set, but allows dublicated items

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque

List

Associative Containers

Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

STL - Map / Multimap Usage

- Have key / value pairs
- Implemented with binray tree (red-black tree ¹)
- ▶ Always sorted, default criteria is <, but can be freely choosen
- Items are sorted by key

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

Deque

List

Array

Associative Containers

Set / Multiset
Map / Multimap

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

¹https://en.wikipedia.org/wiki/Red-black_tree

STL - Map / Multimap

Usage

6

8

10

12

14

```
map<char,int> mymap;

// Init
mymap.insert( pair<char,int>('a',100) );
mymap.insert( make_pair('z',200) ); // types detected

map<char,int>::iterator it = mymap.begin();
mymap.insert(it, pair<char,int>('b',300)); // "it" is a hint

it = mymap.find('z'); // O(log(n))

// showing contents:
for ( it=mymap.begin() ; it != mymap.end(); it++ )
cout << (*it).first << " => " << (*it).second << endl;</pre>
```

Properties of STL-Map:

- Sorting at insertion
- No dublicated keys allowed
- ▶ insert() $(\mathcal{O}(\log n))$
- insertion checkable
- **Fast** find() function availabe ($\mathcal{O}(\log n)$)

STL-Multimap

Multimap works the same as map, but allows dublicated keys

Lecture 2

Prof. Dr. P. Arnold

Bern University

Standard Template Library

Containers

Sequential Containers

Deque

List Array

Associative Containers

Set / Multiset

Unordered Containers
Unordered Set / Unordered
Multiset

Container Adapters

Lecture 2

Prof. Dr. P. Arnold

Unordered Containers

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset
Map / Multimap

Unordered Containers

Inordered Set / Unord

Container Adapters

Usage

- The order of elements is not defined and may change over time
- Implemented with hash tables (which is an array (buckets) of linked-list (entries))
- ▶ The hash function is used for insert and search
- Default hash function defined for fundamental types and string
- ightharpoonup Finding an element is very fast/ fastest among all containers ($\mathcal{O}(1)$)

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Science

Standard Template Library

Containers

Sequential Containers

Vector

Deque

List Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

and the second state of the second

Container Adapters

Usage

10

Properties of STL-Unordered Set:

- Sorting at insertion
- No subscript operator[] or at()
- No push_back(), push_front()
- Order of element values can not be changed

STL-Unordered Multiset

Unordered Multiset works the same as unorderd set, but allows dublicated values

Lecture 2

Prof. Dr. P. Arnold

Bern University

Standard Template Library

Containers

Sequential Containers

Deque List

List

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Container Adapters

Hash Collision

- In the worst case, all elements are inserted into one bucket!
- ▶ Search performance degrades from $\mathcal{O}(1) \to \mathcal{O}(n)$

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered

Container Adapters

Hash Collision

Hash specific API's


```
// Hash table specific APIs:
cout << "load_factor = " << myset.load_factor() << endl;
string x = "red";
cout << x << " is in bucket #" << myset.bucket(x) << endl;
cout << "Total bucket #" << myset.bucket_count() << endl;</pre>
```

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Deque List

Array

Map / Multimap

Associative Containers Set / Multiset

Unordered Containers

Unordered Colliganiers

Container Adapters

```
1 2 3 4 5 6 7 8 9 10 11 12
```

13

```
unordered_map<char,string> day = {{'S',"Sunday"},{'M',"Monday"}};

cout << day['S'] << endl;  // No range check
cout << day.at('S') << endl;  // Has range check

vector<int> vec = {1, 2, 3};
vec[5] = 5;  // Compile Error

day['W'] = "Wednesday";  // Inserting {'W', "Wednesday}
day.insert(make_pair('F', "Friday"));  // Insert {'F',"Friday"}

day.insert(make_pair('M', "MONDAY"));  // Fail to modify
day['M'] = "MONDAY";  // Succeed to modify
```

- Associative array can be implemented using map or multimap
 - 1. test
 - 2. Search time:

```
unordered_map: \mathcal{O}(1) map: \mathcal{O}(\log(n))
```

- 3. unordered map may degrade to $\mathcal{O}(n)$, map guarantees $\mathcal{O}(\log(n))!$
- ▶ To modify elements use subscript operator []
- This means the subscript operator provides a write access to the container

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Science

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

У

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Container Adapters

ontainer Adapti

STL - Unordered Map Example

Associative Array

9

10

11

▶ Use iterators to access read-only elements

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordere

Container Adapters

Lecture 2

Prof. Dr. P. Arnold

Container Adapters

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

ner Adapte

STL - Container Adapters

For special needs

Container Adapters are implemented using fundamental container classes, providing a restricted interface for special needs:

- stack: LIFO, push(), pop(), top()
- queue: FIFO, push(), pop(), front(), back()
- priority queue: first item always has the greatest priority, push(),
 pop(), top()

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers
Unordered Set / Unordered

Lecture 2

Prof. Dr. P. Arnold

Algorithms

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Multiset

Container Adapters

Standard Programming Requirements

STL algorithms supplies the programmer with the most common used requirements

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Multiset

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

Standard Programming Requirements

STL algorithms supplies the programmer with the most common used requirements

▶ std::find - Finds a value in a collection

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List

Array

Associative Containers

Set / Multiset

Map / Multimap Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Igorithms

Standard Programming Requirements

STL algorithms supplies the programmer with the most common used requirements

- std::find Finds a value in a collection
- std::find_if Finds a value in a collection on the basis of a specific user-defined predicate

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List Array

1

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Standard Programming Requirements

STL algorithms supplies the programmer with the most common used requirements

- std::find Finds a value in a collection
- std::find_if Finds a value in a collection on the basis of a specific user-defined predicate
- std::reverse Reverses a collection

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List

Array

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

mainer Adapte

Standard Programming Requirements

STL algorithms supplies the programmer with the most common used requirements

- std::find Finds a value in a collection
- std::find_if Finds a value in a collection on the basis of a specific user-defined predicate
- std::reverse Reverses a collection
- std::remove_if Removes an item from a collection on the basis of a user-defined predicate

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Igorithms

Standard Programming Requirements

STL algorithms supplies the programmer with the most common used requirements

- std::find Finds a value in a collection
- std::find_if Finds a value in a collection on the basis of a specific user-defined predicate
- std::reverse Reverses a collection
- std::remove_if Removes an item from a collection on the basis of a user-defined predicate
- std::transform Applies a user-defined transformation function to elements in a container

STL Algorithms

To use those algorithms include the standard header <algorithm>

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Multicot

Associative Containers

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Container Adapters

ntainer Adapter

```
Example - find
```

9

10

11

14

16

18

20

21

22

24 25

```
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
    // A dynamic array of integers
   vector<int> intArray;
    intArray.push back (50);
    intArray.push_back(2991);
   intArray.push back (23);
   intArray.push back (9999);
    // Find an element (say 2991) using the 'find' algorithm
    vector<int>::iterator elFound = find(intArray.begin(),
        intArray.end(), 2991);
    // Check if value was found
    if (elFound != intArray.end())
        // Determine position of element using std::distance
        int elPos = distance(intArray.begin(), elFound);
        cout << "Value "<< *elFound;
        cout << " found in the vector at position: " << elPos <<
            end1:
    return 0;
```

Prof Dr P Arnold

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers Unordered Set / Unordered Multicot

Container Adapters

Sequential Containers

Vector

Deque List

Library

Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers Unordered Set / Unordered Multicot

Container Adapters

STL Algorithms Example - find

```
#include <iostream>
   #include <vector>
   #include <algorithm>
   using namespace std;
   int main()
        // A dynamic array of integers
       vector<int> intArray;
9
        intArray.push back (50);
        intArray.push_back(2991);
10
       intArray.push back (23);
11
        intArray.push back (9999);
        // Use auto for convenience
14
        auto elFound = find(intArray.begin(), intArray.end(), 2991);
        // Check if value was found
16
        if (elFound != intArray.end())
18
            // Determine position of element using std::distance
19
            int elPos = distance(intArray.begin(), elFound);
20
            cout << "Value "<< *elFound:
21
            cout << " found in the vector at position: " << elPos <<
                 end1:
        return 0:
25
```

Choosing the right Container

- If you're developping a new application, your requirements might be satisfied by more than one STL container. Nevertheless, the wrong choice could result in performance issues and scalability bottlenecks
- Refer to the companion book to find a comprehensive list (p. 429)

Container	Advantages	Disadvantages
std::unordered_multiset (Associative Container)	Should be preferred over an unordered_set when you need to contain nonunique values too.	Elements are weakly ordered, so one cannot rely on their relative position within the con- tainer.
	Performance is similar to unordered_set, namely, constant average time for search, insertion, and removal of elements, independent of size of container.	
std::map (Associative Container)	Key-value pairs container that offers search performance proportional to the logarithm of number of elements in the container and hence often significantly faster than sequential containers.	Elements (pairs) are sorted on insertion, hence insertion will be slower than in a sequential container of pairs.
std::unordered_map. (Associative Container)	Offers advantage of near constant time search, insertion, and removal of elements independent of the size of the container.	Elements are weakly ordered and hence not suited to cases where order is important.
std::multimap. (Associative Container)	To be selected over std::map when requirements	Insertion of elements will be slower than in a sequential

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector

List Array

Associative Containers

Set / Multiset Map / Multimap

Unordered Containers

Unordered Set / Unordered Multiset

Container Adapters

Thank You Questions

Lecture 2

Prof. Dr. P. Arnold

Bern University of Applied Sciences

Standard Template Library

Containers

Sequential Containers

Vector Deque

List

Array

Associative Containers

ssociative Con

Set / Multiset

Map / Multimap

Unordered Containers
Unordered Set / Unordered

Unordered Se Multiset

Container Adapters

gorithms