PYP Answer - MA2101 AY1516Sem2

Ma Hongqiang

September 15, 2017

1. The characteristic polynomial of A is

$$p(x) = |xI - A| = \det \begin{pmatrix} x & -2 \\ -2 & x - 3 \end{pmatrix} = (x - 4)(x + 1)$$

So the eigenvalues of A are 4 or -1. Solving (xI - A)v = 0 for eigenvalues x = 4, -1 respectively, we have $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ associated with x = 4 and $v = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ associated with x = -1. So

$$D = \begin{pmatrix} 4 & \\ & -1 \end{pmatrix}$$

and

$$P = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$

2. Let $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = Y = PZ = \begin{pmatrix} 1 & 1 \\ 1 & \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$. So Y' = PZ' and we note that

$$\begin{cases} y_1 = z_1 + z_2 \\ y_2 = z_1 \end{cases}$$

and PZ' = APZ, which implies $Z' = P^{-1}APZ = \begin{pmatrix} 2 & 1 \\ & 2 \end{pmatrix} Z$. Therefore,

$$\begin{cases} z_1' = 2z_1 + z_2 & (1) \\ z_2' = 2z_2 & (2) \end{cases}$$

Solving (2),

$$z_2 = Ae^{2x}$$

and solving (1) using hint,

$$z_1 = Axe^{2x} + Be^{-2x}$$

Substituting back, we have

$$\begin{cases} y_1 = Axe^{2x} + Ae^{2x} + Be^{-2x} \\ y_2 = Axe^{2x} + Be^{-2x} \end{cases}$$

- 3. (a) We show that $T^{-1}(W)$ respects additiona and scalar multiplication. For $u_1, u_2 \in T^{-1}(W)$ and $c \in F$, we have $T(u_1), T(u_2) \in W$, and $T(u_1 + u_2) \in W$, so $u_1 + u_2 \in T^{-1}(W)$. Also, $cT(u_1) \in W$ and $T(cu_1) \in W$, so $cu_1 \in T^{-1}(W)$, by definition of $T^{-1}(W)$.
 - (b) $\dim U = \operatorname{rank} T + \operatorname{nullity} T = \dim V + \operatorname{nullity} T$, by the rank nullity theorem and surjectivity of T.

Now consider $T|_{T^{-1}W}: T^{-1}(W) \to W$. This is again surjective, and together with the rank nullity theorem we have

$$\dim T^{-1}(W) = \operatorname{rank} T \mid_{T^{-1}(W)} + \operatorname{nullity} T \mid_{T^{-1}(W)} = \dim W + \operatorname{nullity} T \mid_{T^{-1}(W)}$$

Combining these we get,

$$\dim U + \dim W = \dim V + \dim T^{-1}(W) + \text{nullity} T - \text{nullity} T \mid_{T^{-1}(W)}$$

However, we know that $\operatorname{nullity} T = \operatorname{nullity} T \mid_{T^{-1}(W)} \operatorname{because } 0 \in W.$ Hence, we prove the result.

4. (a) Suppose $Qv = \lambda v$, then

$$\langle Qv, Qv \rangle = \langle \lambda v, \lambda v = \lambda \overline{\lambda} \langle v, v \rangle$$

Since Q is orthogonal, we have

$$\langle Qv, Qv \rangle = \langle QQ^tv, v \rangle = \langle v, v \rangle$$

Hence, $\lambda \overline{\lambda} = 1$ for all eigenvalue λ . And since the determinant of a real matrix must have real coefficients, by Fundamental Theorem of Algebra, it consists of at least 1 real root, and for that real root, we have $\lambda^2 = 1$.

- (b) False, consider $\begin{pmatrix} 1 & & \\ & \cos\theta & -\sin\theta \\ & & \sin\theta & \cos\theta \end{pmatrix}$, which has 1 real and 2 complex eigenvalue, so $\lambda^2 \neq 1$ for those two imaginery eigenvalues.
- 5. (a) Suppose $v_1, v_2 \in W^{\perp}$ and $c \in \mathbb{R}$. We shall show that W^{\perp} respects addition and scalar multiplication.

Addition Since $v_1, v_2 \in W^{\perp}$, $\langle v_i, w \rangle = 0$ for i = 1, 2. So $\langle v_1 + v_2, w \rangle = 0$, and therefore, $v_1 + v_2 \in W^{\perp}$.

Scalar Multiplication We note that $c\langle v_1, w \rangle = 0$ gives $\langle cv_1, w \rangle = 0$, so $cv_1 \in W^{\perp}$.

- (b) Yes. For any $v \in W^{\perp}$, i.e., $\langle v, w \rangle = 0$, we want to show that $T(v) \in W^{\perp}$, i.e., $\langle T(v), w \rangle = 0$. Note $\langle T(v), w \rangle = \langle v, T^*(w) \rangle = \langle v, w' \rangle$ for all $w \in W$ since W is T^* invariant. And since $v \in W^{\perp}$, $\langle T(v), w \rangle = 0$ for all $w \in W$, and this proves the claim.
- (c) Let V be 2×1 real matrix, and inner product be the dot product. Let $T(v) = \begin{pmatrix} 1 & 3 \\ & 2 \end{pmatrix}$ and thus $T^* = \begin{pmatrix} 1 \\ 3 & 2 \end{pmatrix}$. $W = \operatorname{Span}\{\begin{pmatrix} 1 \\ -3 \end{pmatrix}\}$ and $W^{\perp} = \operatorname{Span}\{\begin{pmatrix} 3 \\ 1 \end{pmatrix}\}$. However, $T^*\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 11 \end{pmatrix} \not\in W^{\perp}$. Hence, the claim is false.

6. Basically f(x) kills A. Also, as A is self adjoint, A is diagonalisable, so the minimum polynomial has at most degree 1 for each factor. Therefore, possible $m_A(x)$ are

$$m_A(x) = x - 1$$

$$m_A(x) = x - 2$$

$$m_A(x) = x - 3$$

$$m_A(x) = (x - 1)(x - 2)$$

$$m_A(x) = (x - 1)(x - 3)$$

$$m_A(x) = (x - 2)(x - 3)$$

$$m_A(x) = (x - 1)(x - 2)(x - 3)$$

- 7. (a) For any $k_m \in K_m$, $T^m(k_m) = 0$, therefore, $T^{m+1}(k_m) = T(0) = 0$. So $k_m \in K_{m+1}$ and therefore $K_m \subseteq K_{m+1}$.
 - (b) dim K_r admits a non-decreasing sequence as r increases. And we require, dim $K_r \le \dim K_{r+1} \le \dim K_{r+2} \le \cdots \le \dim V$. Therefore, there is at most dim V strict inequality. Therefore, after some $r \ge 1$, $K_r = K_{r+s}$ for all $s \ge 1$.
 - (c) No. Let V be the vector space of infinite sequence of real numbers (x_0, x_1, x_2, \ldots) , under componentwise addition and scalar multiplication. The linear transformation is the right shift operator $T: (x_0, x_1, x_2, \ldots) \mapsto (0, x_0, x_1, \ldots)$. Consider $v = T^s(1, 0, 0, 0, \ldots) \in K_s$ but not in K_{s+1} , as the s+1th coordinate in v is 1 but that in K_{s+1} can only be 0. Therefore, $K_s \neq K_{s+1}$ for all $s \geq 1$.
- 8. (a) No. A is not necessarily self-adjoint. Let $A = \begin{pmatrix} 1 & 0.5 \\ 0.3 & 1 \end{pmatrix}$.
 - bi By Principal Axis Theorem, we can take orthonormal basis B such that $[A]_B$ is diagonal: $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$. Therefore, we can choose $[G]_B = \operatorname{diag}(\lambda_i^{\frac{1}{4}},\ldots,\lambda_n^{\frac{1}{4}})$.
 - bii By Principal Axis Theorem, $A = PDP^*Q^*DQ$ where D is diagonal. Write $D = M^2$, where $M_{ii} = D_{ii}^{\frac{1}{2}}$ for i = 1, ..., n with 0 on other entries. Then $A = Q^*MMQ = Q^*M * MQ = (MQ)^*MQ = H^*H$.