TD7. Variance et Fonctions génératrices I

Exercice 1. On lance une pièce de monnaie (la probabilité d'obtenir pile étant $p \in]0,1[)$ jusqu'à l'obtention du première pile. Soit N la variable aléatoire représentant le nombre de lancers nécessaire. Si N=n, on relance ensuite n fois la pièce et on appelle X la variable aléatoire représentant le nombre de piles obtenu.

- a) Déterminer la loi de N, celle du couple (N, X), puis la loi de X.
- b) Montrer que X a même loi que le produit de deux variables indépendantes Y et Z telles que Y suive une loi de Bernoulli et Z une loi géométrique de même paramètre.
- c) En déduire que l'espérance et la variance de X.

Exercice 2. Soit $n \in \mathbb{N}^*$. Soit $(U_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi uniforme sur [1, n]. Pour $i \in [1, n]$, on définit

$$X_i^{(m)} = \begin{cases} \operatorname{card}\{k \in [1, m] : U_k = i\}, & \text{si } m \ge 1, \\ 0, & \text{si } m = 0. \end{cases}$$

- a) Quelle est la loi de $X_i^{(m)}$ pour $i \in [1, n]$ et $m \ge 1$.
- b) Soit $m \ge 1$ et $i, j \in [1, n]$ avec $i \ne j$. Calculer la covariance des variables aléatoire $X_i^{(m)}$ et $X_i^{(m)}$. Sont-elles indépendantes?
- c) Soit $\lambda > 0$ et N une variable aléatoire suivant une loi de Poisson de paramètre λ , indépendante des variables U_k . On pose pour $i \in [\![1,n]\!]$,

$$Y_i = X_i^{(N)}.$$

- i) Déterminer, en fonction de λ et n, la loi de Y_i pour $i \in [1, n]$.
- ii) Déterminer la loi conjointe de (Y_1, \ldots, Y_n) .

Exercice 3. [Fonction génératrices] Pour tout variable aléatoire X à valeurs dans \mathbb{N} , on appelle fonction génératrice de X la fonction G_X définie par $G_X(t) = \mathbb{E}(t^X)$.

a) Montrer que $G_X(t)$ est bien définie si et seulement si, la série $\sum_{n=0}^{+\infty} \mathbb{P}(X=n)t^n$ converge absolument et on a

$$G_X(t) = \sum_{n=0}^{+\infty} \mathbb{P}(X=n)t^n.$$

b) Montrer que $G_X(t)$ est définie et lisse sur]-1,1[, continue sur [-1,1].

c) Montrer que une variable aléatoire X à valeurs dans $\mathbb N$ est d'espérance finie si, et seulement si, G_X est dérivable (à gauch) en 1 et l'on a

$$\mathbb{E}(X) = G_X'(1).$$

d) Montrer que une variable aléatoire X à valeurs dans \mathbb{N} possède un moment d'ordre r si, et suelement si, G_X est r-fois dérivable (à gauch) en 1. On a alors

$$\mathbb{E}(X(X-1)\cdots(X-r+1)) = G_X^{(r)}(1).$$

e) Soit X et Y deux variables aléatoires indépendantes à valeurs dans \mathbb{N} . Montrer que, pour tout réel t tel que $G_X(t)$ et $G_Y(t)$ sont définis, $G_{X+Y}(t)$ est défini et

$$G_{X+Y}(t) = G_X(t)G_Y(t).$$