Struktura počítačů

Jan Outrata

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

přednášky

Číselné soustavy

Desítková soustava

Počítač = počítací stroj ... počítání s čísly (původně)

Člověk:

- deset hodnot a symbolů pro ně: číslice 0 až 9
- pro reprezentaci (zápis) čísla použití desítkové (dekadické) poziční číselné soustavy: číslo jako součet mocninné řady o základu (radixu) 10, zápis = posloupnost symbolů pro koeficienty řady, pozice (pořadí) symbolu určuje mocninu (řád)

$$(1024)_{10} = 1 \cdot 10^3 + 0 \cdot 10^2 + 2 \cdot 10^1 + 4 \cdot 10^0$$

 jiné číselné soustavy: dvanáctková (hodiny), šedesátková (minuty, sekundy), dvacítková (dřívější platidla) aj.

Dvojková soustava

Počítač:

- první (elektro)mechanické počítací stroje dekadické (tj. používající desítkovou soustavu) u součástí potřeba 10 stabilních stavů (pro deset hodnot)
- elektromechanické a elektronické součásti: nejsnadněji realizovatelné 2 stabilní stavy pro 2 hodnoty, symboly (číslice) 0 a 1 (⇒ digitální zařízení/elektronika)
- pro reprezentaci (zápis) čísla použití dvojkové (binární) poziční číselné soustavy: číslo jako součet mocninné řady o základu 2, zápis = posloupnost symbolů pro koeficienty, pozice symbolu určuje mocninu

$$(11)_{10} = (1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

■ další typy dat (čísla s řádovou čárkou, znaky a texty, obrázky, zvuky, videa atd.) odvozeny od (celých) čísel ⇒ binární reprezentace všech typů dat

Dvojková soustava

Počítač:

- první (elektro)mechanické počítací stroje dekadické (tj. používající desítkovou soustavu) – u součástí potřeba 10 stabilních stavů (pro deset hodnot)
- elektromechanické a elektronické součásti: nejsnadněji realizovatelné 2 stabilní stavy pro 2 hodnoty, symboly (číslice) 0 a 1 (⇒ digitální zařízení/elektronika)
- pro reprezentaci (zápis) čísla použití dvojkové (binární) poziční číselné soustavy: číslo jako součet mocninné řady o základu 2, zápis = posloupnost symbolů pro koeficienty, pozice symbolu určuje mocninu

$$(11)_{10} = (1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

další typy dat (čísla s řádovou čárkou, znaky a texty, obrázky, zvuky, videa atd.) odvozeny od (celých) čísel ⇒ binární reprezentace všech typů dat

Počítač pro člověka:

- použití (pozičních) číselných soustav o základu 2^k (\approx "kompromis")
 - osmičkové (oktalové): symboly (číslice) 0 až 7
 - šestnáctkové (hexadecimální): symboly (číslice) 0 až 9 a A až F

Reprezentace čísel dle základu

Věta (O reprezentaci přirozených čísel (včetně 0))

Libovolné přirozené číslo N (včetně 0) lze vyjádřit jako součet mocninné řady o základu $B \geq 2, B \in \mathbb{N}$:

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B^1 + a_0 \cdot B^0,$$

kde $0 \le a_i < B, a_i \in \mathbb{N}$ jsou koeficienty řady.

Číslo N se (v poziční číselné soustavě o základu B) zapisuje jako řetěz symbolů (číslic) S_i pro koeficienty a_i zleva v pořadí pro i od n-1 k 0:

$$(S_{n-1}S_{n-2}\dots S_1S_0)_B$$

Hodnota čísla vs. jeho zápis

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ – postupným přičítáním:

$$egin{aligned} N &= a_0 \\ B' &= B \\ extbf{for } i &= 1 extbf{ to } n-1 extbf{ do } \\ N &= N + a_i * B' \\ B' &= B' * B \end{aligned}$$

pro
$$(1024)_{10}$$
 $(B=10, n=4, a_3=1, a_2=0, a_1=2, a_0=4)$: $N=4, B'=10$ $i=1: N=24, B'=100$ $i=2: N=24, B'=1000$ $i=3: N=1024, B'=10000$

Hodnota čísla vs. jeho zápis

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ – postupným přičítáním:

```
\begin{split} N &= a_0 \\ B' &= B \\ \textbf{for } i &= 1 \textbf{ to } n-1 \textbf{ do} \\ N &= N + a_i * B' \\ B' &= B' * B \end{split}
```

```
\begin{aligned} &\text{pro } (1024)_{10} \; (B=10, n=4, a_3=1, a_2=0, a_1=2, a_0=4) \colon \\ &N=4, B'=10 \\ &i=1: N=24, B'=100 \\ &i=2: N=24, B'=1000 \\ &i=3: N=1024, B'=10000 \end{aligned}
```

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ (hodnoty) čísla N – postupným odečítáním:

```
B'=1, i=0 while B'*B \leq N do B'=B'*B i=i+1 for i to 0 do a_i=N/B' \qquad ; \text{celo}\check{\text{c}} \text{iseln} \acute{\text{e}} \text{d} \check{\text{e}} \text{len} \acute{\text{e}}  N=N-a_i*B' \qquad ; =N \bmod B' \text{ (zbytek)} B'=B'/B
```

```
\begin{array}{l} \text{pro } N=1024, B=10 \colon \\ B'=1, i=0 \\ 10 \leq 1024 \colon B'=10, i=1 \\ 100 \leq 1024 \colon B'=100, i=2 \\ 1000 \leq 1024 \colon B'=1000, i=3 \\ 10000 \not \leq 1024 \\ i=3 \colon a_i=1, N=24, B'=100 \\ i=2 \colon a_i=0, N=24, B'=10 \\ i=1 \colon a_i=2, N=4, B'=1 \\ i=0 \colon a_i=4, N=0, B'=0 \end{array}
```

Hodnota čísla vs. jeho zápis (rychleji)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$
$$= (\dots (\mathbf{a_{n-1}} \cdot \mathbf{B} + \mathbf{a_{n-2}}) \cdot \mathbf{B} + \dots + \mathbf{a_1}) \cdot \mathbf{B} + \mathbf{a_0}$$

Hodnota čísla vs. jeho zápis (rychleji)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$
$$= (\dots (\mathbf{a_{n-1}} \cdot \mathbf{B} + \mathbf{a_{n-2}}) \cdot \mathbf{B} + \dots + \mathbf{a_1}) \cdot \mathbf{B} + \mathbf{a_0}$$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ – postupným násobením:

$$N=a_{n-1}$$
 for $i=n-2$ to 0 do $N=N*B+a_i$

pro
$$(1024)_{10}$$
 $(B = 10, n = 4, a_3 = 1, a_2 = 0, a_1 = 2, a_0 = 4)$:
 $N = 1$
 $i = 2$: $N = 10$
 $i = 1$: $N = 102$
 $i = 0$: $N = 1024$

Hodnota čísla vs. jeho zápis (rychleji)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$
$$= (\dots (\mathbf{a_{n-1}} \cdot \mathbf{B} + \mathbf{a_{n-2}}) \cdot \mathbf{B} + \dots + \mathbf{a_1}) \cdot \mathbf{B} + \mathbf{a_0}$$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ – postupným násobením:

$$N=a_{n-1}$$
 for $i=n-2$ to 0 do
$$N=N*B+a_i$$

```
pro (1024)_{10} (B=10, n=4, a_3=1, a_2=0, a_1=2, a_0=4): N=1 i=2:N=10 i=1:N=102 i=0:N=1024
```

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ (hodnoty) čísla N – postupným dělením:

```
\begin{array}{l} a_0 = N \bmod B \\ i = 1 \\ \textbf{while } N \geq B \ \textbf{do} \\ N = N/B & \text{; celočíselné dělení} \\ a_i = N \bmod B & \text{; zbytek} \\ i = i+1 \end{array}
```

```
\begin{array}{l} \text{pro } N=1024, B=10: \\ a_0=4, i=1 \\ 1024 \geq 10: N=102, a_1=2, i=2 \\ 102 \geq 10: N=10, a_2=0, i=3 \\ 10 \geq 10: N=1, a_3=1, i=4 \\ 1 \not \geq 10 \end{array}
```

Převod zápisu čísla mezi soustavami

- I získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_{B_z}$ (v soustavě o základu B_z)
- 2 získání zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_{B_{na}}$ (hodnoty) čísla N (v soustavě o základu B_{na})
- jednodušší převod zápisu čísla v soustavě o základu B^k $(k \in \mathbb{N})$ na zápis v soustavě o základu B, a naopak:

každý symbol soustavy o základu B^k zapisující nějaké číslo nahradíme k-ticí symbolů soustavy o základu B zapisující stejné číslo, a naopak (k-tice symbolů v zápisu brány zprava, chybějící symboly nahrazeny 0)

pro
$$B=2, k=4,3,2,1$$
: $(4CD)_{16}=(2315)_8=(103031)_4=(010011001101)_2$

ÚKOL

- I Pro několik čísel zjistěte (hodnotu) čísla z jeho zápisů ve dvojkové, osmičkové, desítkové a šestnáctkové soustavě.
- Pro několik čísel zjistěte zápis (hodnoty) čísla ve dvojkové, osmičkové, desítkové a šestnáctkové soustavě.
- 3 Pro několik čísel převeďte zápis čísla mezi dvojkovou, osmičkovou a šestnáctkovou soustavou.

Počítač = digitální zařízení (2 stabilní stavy součástí) . . . základní operace dvouhodnotové ⇒ binární logika

- formální logický základ: výroková logika zkoumá pravdivostní hodnotu výroků (pravda/nepravda, spojky/operátory "neplatí, že" → operace negace ¬, "a současně platí" → konjunkce ∧, "nebo platí" → disjunkce ∨, "jestliže platí, pak platí" → implikace ⇒ aj.)
- výroky jako **logické výrazy** vyhodnocované na hodnoty (pravda/nepravda, 1/0)
- matematický aparát pro práci s dvouhodnotovými log. výrazy: Booleova algebra (binární/dvouhodnotová logika) (G. Boole, 1854) – použití i u množin
- fyzická realizace: (elektronické binární) logické obvody (C. E. Shannon, 1937) základ digitálních zařízení
- univerzální, teoreticky zvládnutá, efektivně realizovatelná logickými obvody

George Boole, zdroj

Claude Elwood Shannon, zdroj

Logická proměnná x

- veličina nabývající dvou možných diskrétních logických hodnot: 0 (nepravda) a I (pravda)
- lacktriangle definice: $x=\mathbf{I}$ jestliže $x \neq \mathbf{0}$ a $x=\mathbf{0}$ jestliže $x \neq \mathbf{I}$

Logická funkce $f(x_1, \dots, x_n)$

- funkce n logických proměnných x_1, \ldots, x_n (= n-ární funkce) nabývající dvou možných diskrétních hodnot $\mathbf{0}$ (nepravda) a \mathbf{I} (pravda)
- logická proměnná = logická funkce identity proměnné, skládání funkcí
- základní = **logické operace**

Logická proměnná x

- lacktriangle veličina nabývající dvou možných diskrétních logických hodnot: lacktriangle (nepravda) a lacktriangle (pravda)
- lacktriangle definice: $x=\mathbf{I}$ jestliže $x \neq \mathbf{0}$ a $x=\mathbf{0}$ jestliže $x \neq \mathbf{I}$

Logická funkce $f(x_1, \dots, x_n)$

- funkce n logických proměnných x_1,\ldots,x_n (= n-ární funkce) nabývající dvou možných diskrétních hodnot $\mathbf 0$ (nepravda) a $\mathbf I$ (pravda)
- logická proměnná = logická funkce identity proměnné, skládání funkcí
- základní = **logické operace**

Booleova algebra (binární logika)

- algebra ("matematika") logických proměnných a logických funkcí
- dvouhodnotová algebra, algebra dvou stavů
- lacktriangle relace rovnosti: f=g, právě když $(f=\mathbf{I} \ \mathsf{a} \ g=\mathbf{I})$ nebo $(f=\mathbf{0} \ \mathsf{a} \ g=\mathbf{0})$

3 základní:

Negace (inverze)

pravdivá, když operand nepravdivý, jinak nepravdivá

	-
x	\overline{x}
0	Ι
Ι	0
-	

• operátory: \overline{x} , NOT x, $\neg x$ (výrokově negace, algebraicky negace), \overline{X} (množinově doplněk)

Logický součin (konjunkce)

pravdivá, když oba operandy pravdivé, jinak nepravdivá

x	y	$x \cdot y$	
0	0	0	
0	I	0	
Ι	0	0	
Ι	Ι	I	

• operátory: $x \cdot y/xy$ (prázdný), x AND y, $x \wedge y$ (výrokově konjunkce, algebraicky průsek), $X \cap Y$ (množinově průnik)

Logický součet (disjunkce)

nepravdivá, když oba operandy nepravdivé, jinak pravdivá

\boldsymbol{x}	y	x+y
0	0	0
0	Ι	I
Ι	0	I
Ι	Ι	I

• operátory: x+y, x OR y, $x \lor y$ (výrokově disjunkce, algebraicky spojení), $X \cup Y$ (množinově sjednocení)

Logický výraz

- korektně vytvořená posloupnost (symbolů) logických proměnných a funkcí (operátorů) spolu se závorkami
- priority sestupně: negace, log. součin, log. součet
- = zápis logické funkce

Logická rovnice

- dva logické výrazy v relaci rovnosti =
- ekvivalentní úpravy = zachování (pravdivosti) rovnosti výrazů: např. negace obou stran, logický součin/součet obou stran se stejným výrazem, ..., log. funkce obou stran se stejnými ostatními operandy funkce
- NEekvivalentní úpravy: "krácení" obou stran o stejný (pod)výraz, např. x+y=x+z na y=z

Axiomy (Booleovy algebry)

■ komutativita:

$$x \cdot y = y \cdot x$$
 $x + y = y + x$

distributivita:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 $x + y \cdot z = (x+y) \cdot (x+z)$

■ identita/neutrálnost (existence neutrální hodnoty):

$$\mathbf{I} \cdot x = x \qquad \mathbf{0} + x = x$$

komplementárnost:

$$x \cdot \overline{x} = \mathbf{0}$$
 $x + \overline{x} = \mathbf{I}$

Vlastnosti základních logických operací

agresivita (nuly a jedničky):

$$\mathbf{0} \cdot x = \mathbf{0} \qquad \mathbf{I} + x = \mathbf{I}$$

idempotence:

$$x \cdot x = x$$
 $x + x = x$

asociativita:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 $x + (y + z) = (x + y) + z$

■ involuce (dvojí negace):

$$\overline{\overline{x}} = x$$

■ De Morganovy zákony:

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$
 $\overline{x + y} = \overline{x} \cdot \overline{y}$

absorpce:

$$x \cdot (x+y) = x$$
 $x + x \cdot y = x$

a další

Vlastnosti základních logických operací – použití

- důkazy: s využitím axiomů a již dokázaných vlastností, rozborem případů (přiřazením všech možných kombinací hodnot 0 a $\mathbf I$ proměnným)
- ekvivalentní úpravy logických výrazů pro jejich zjednodušování
- **.** . . .

Další operace

Implikace

nepravdivá, když první operand pravdivý a druhý nepravdivý, jinak pravdivá

x	y	$x \to y$	
0	0	I	
0	Ι	I	
Ι	0	0	
Ι	Ι	I	

 \blacksquare operátory: $x \to y, \ x \to y$ (výrokově i algebraicky implikace), $X \subseteq Y$ (množinově podmnožina)

Ekvivalence

pravdivá, když operandy mají stejnou hodnotu, jinak nepravdivá

x	y	$x \equiv y$
0	0	I
0	I	0
Ι	0	0
Ι	Ι	I

• operátory: $x\equiv y,\ x\ {\rm XNOR}\ y,\ x\equiv y$ (výrokově i algebraicky ekvivalence), $X\equiv Y$ (množinově ekvivalence nebo rovnost)

Nonekvivalence (negace ekvivalence, aritmetický součet modulo 2)

pravdivá, když operandy mají různou hodnotu, jinak nepravdivá

x	y	$x \oplus y$
0	0	0
0	Ι	I
Ι	0	I
Ι	Ι	0

• operátory: $x \oplus y$, $x ext{ XOR } y$, $x \not\equiv y$ (výrokově i algebraicky negace ekvivalence), $X \not\equiv Y$ (množinově negace ekvivalence)

Shefferova funkce (negace logického součinu)

nepravdivá, když oba operandy pravdivé, jinak pravdivá

x	y	$x \uparrow y$	
0	0	I	
0	Ι	I	
Ι	0	I	
Ι	Ι	0	

• operátory: $x \uparrow y$, x NAND y

Piercova funkce (negace logického součtu)

pravdivá, když oba operandy nepravdivé, jinak nepravdivá

x	y	$x \downarrow y$	
0	0	I	
0	Ι	0	
Ι	0	0	
Ι	Ι	0	

• operátory: $x \downarrow y$, x NOR y

Logické funkce

- zadání pravdivostní tabulkou:
 - \blacksquare úplně funkční hodnota $f(x_i)$ definována pro všech 2^n možných přiřazení hodnot proměnným $x_i, 0 \leq i < n$
 - neúplně funkční hodnota pro některá přiřazení není definována
- základní tvary (výrazu):
 - součinový (úplná konjunktivní normální forma, ÚKNF) log. součin log. součtů všech proměnných nebo jejich negací (úplných elementárních disjunkcí, ÚED)

$$(X_0 + \ldots + X_{n-1}) \cdot \ldots \cdot (X_0 + \ldots + X_{n-1})$$
 $X_i = x_i$ nebo $\overline{x_i}$ (literál)

■ součtový (úplná disjunktivní normální forma, ÚDNF) – log. součet log. součinů všech proměnných nebo jejich negací (úplných elementárních konjunkcí, ÚEK)

$$(X_0 \cdot \ldots \cdot X_{n-1}) + \ldots + (X_0 \cdot \ldots \cdot X_{n-1})$$
 $X_i = x_i$ nebo $\overline{x_i}$

Logické funkce

Převod log. funkce $f(x_i)$ na základní tvar (normální formu)

- ekvivalentními úpravami a doplněním chybějících proměnných nebo jejich negací
- tabulkovou metodou:
 - 1 řádky pro všechna možná přiřazení hodnot všem proměnným x_i funkce $(2^n \text{ pro } 0 \leq i < n)$
 - 2 pro řádky s $f(x_i)={f 0}/{f I}$ sestroj log. součet/součin všech x_i pro $x_i={f 0}/{f I}$ nebo $\overline{x_i}$ pro $x_i={f I}/{f 0}$
 - ${\tt 3}$ výsledná ÚKNF/ÚDNF je log. součinem/součtem těchto log. součtů/součinů (ÚED/ÚEK)

\boldsymbol{x}	y	z	f(x,y,z)	ÚED	ÚEK
0	0	0	0	x+y+z	
0	0	I	0	$x+y+\overline{z}$	
0	I	0	0	$x + \overline{y} + z$	
0	I	I	I		$\overline{x} \cdot y \cdot z$
Ι	0	0	0	$\overline{x} + y + z$	
Ι	0	I	I		$x \cdot \overline{y} \cdot z$
Ι	I	0	I		$x \cdot y \cdot \overline{z}$
Ι	I	I	I		$x \cdot y \cdot z$

ÚKNF
$$(f(x, y, z))$$
: $(x + y + z) \cdot (x + y + \overline{z}) \cdot (x + \overline{y} + z) \cdot (\overline{x} + y + z)$
ÚDNF $(f(x, y, z))$: $\overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$

ÚKOL

Převeďte několik log. funkcí se třemi a více proměnnými do ÚKNF a ÚDNF.

Logické funkce

Zjednodušení výrazu logické funkce

 optimalizace za účelem dosažení co nejmenšího počtu operátorů (v kompromisu s min. počtem druhů operátorů)

Algebraická minimalizace

$$\begin{array}{ll} f &=& \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z \\ & // \ \, \text{dvakrát přičteme} \ \, x \cdot y \cdot z \ \, \text{(idempotence)} \\ f &=& (\overline{x} \cdot y \cdot z + x \cdot y \cdot z) + (x \cdot \overline{y} \cdot z + x \cdot y \cdot z) + (x \cdot y \cdot \overline{z} + x \cdot y \cdot z) \\ & // \ \, \text{distributivita} \\ f &=& y \cdot z \cdot (\overline{x} + x) + x \cdot z \cdot (\overline{y} + y) + x \cdot y \cdot (\overline{z} + z) \ \, // \ \, \text{komplementárnost} \\ f &=& x \cdot y + y \cdot z + x \cdot z \end{array}$$

pro složitější výrazy intelektuálně náročná (podobně jako důkaz) – kdy jaké ekvivalentní úpravy?

Logické funkce

Zjednodušení výrazu logické funkce

Karnaughova metoda (Veitch diagram)

- nahrazení algebraických ekvivalentních úprav algoritmickými geometrickými postupy
- nalezení minimálního výrazu funkce v (neúplném) součtovém tvaru
- I pro n proměnných funkce tabulka s 2^n buňkami, v maximálně stejném počtu řádků a sloupců, reprezentujícími všechny možné log. součiny (ÚEK) základního součtového tvaru (ÚDNF), součiny reprezentované sousedními buňkami se liší právě v jednom literálu
- ${f 2}$ pro výraz funkce v ÚDNF tzv. **Karnaughova mapa (K-mapa)** = vyplnění tabulky ${f I}$ v buňkách reprezentujících ÚEK
- 3 nalezení minimálního počtu skupin buněk v mapě, tvořících maximální obdélníkové oblasti buněk obsahujících pouze I v počtu mocniny 2 (i jedna), a pokrývajících všechny I v mapě (skupiny se mohou překrývat a krajní buňky jsou také "sousední" v oblasti)
- 4 součiny, reprezentované buňkami ve skupinách, po vyřazení proměnných vyskytujících se i s jejich negací = log. součiny výsledného (neúplného) součtového tvaru

Zjednodušení výrazu logické funkce

Karnaughova metoda (Veitch diagram)

$$f = \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

	$\overline{x} \cdot \overline{y}$	$\overline{x} \cdot y$	$x \cdot y$	$x \cdot \overline{y}$
\overline{z}			Í	
z		I	(1)	I)

Obrázek: Karnaughova mapa

$$f = x \cdot y + y \cdot z + x \cdot z$$

pro složitější výrazy (funkcí více proměnných) výpočetně náročná – hledání skupin Další algoritmické metody: tabulační (Quine-McCluskey), branch-and-bound (Petrick), Esspreso logic minimizer aj.

ÚKOL

Pokuste se minimalizovat log. funkce z přechozího úkolu.

Věta (O počtu log. funkcí)

Existuje právě $2^{(2^n)}$ logických funkcí s n proměnnými (n-árních).

Věta (O počtu log. funkcí)

Existuje právě $2^{(2^n)}$ logických funkcí s n proměnnými (n-árních).

Funkce f^0 žádné proměnné (konstantní, nulární)

$$egin{array}{c|ccc} f_0 & f_1 \\ {f 0} & {f I} \end{array}$$

Funkce f^1 jedné proměnné (unární)

x	f_0 0	f_1 x	$\frac{f_2}{\overline{x}}$	f_3 \mathbf{I}
0	0	0	Ι	Ι
I	0	\mathbf{I}	0	I

Funkce f^2 dvou proměnných (binární)

x	y	f_0	f_1	f_2	f_3 x	f_4	f_5 y	$f_6 \oplus$	f ₇ +	f_8 \downarrow	$f_9 \equiv$	$\frac{f_{10}}{\overline{y}}$	f_{11}	$\frac{f_{12}}{\overline{x}}$	f_{13} \rightarrow	f_{14} \uparrow	f_{15} \mathbf{I}
0	0	0	0	0	0	0	0	0	0	I	I	I	I	I	I	I	I
0	I	0	0	0	0	I	I	I	I	0	0	0	0	I	I	I	I
I	0	0	0	I	I	0	0	I	I	0	0	I	I	0	0	I	I
I	I	0	I	0	I	0	I	0	I	0	I	0	I	0	I	0	I

Funkce více než dvou proměnných

pro n=3 (ternární funkce):

$$f(x, y, z) = x \cdot f(\mathbf{I}, y, z) + \overline{x} \cdot f(\mathbf{0}, y, z)$$

= $(\overline{x} + f(\mathbf{I}, y, z)) \cdot (x + f(\mathbf{0}, y, z))$

a podobně pro n>3

Funkce více než dvou proměnných

pro n=3 (ternární funkce):

$$f(x, y, z) = x \cdot f(\mathbf{I}, y, z) + \overline{x} \cdot f(\mathbf{0}, y, z)$$

= $(\overline{x} + f(\mathbf{I}, y, z)) \cdot (x + f(\mathbf{0}, y, z))$

a podobně pro n>3

Věta (O reprezentaci log. funkcí, Shannonův expanzní teorém)

Jakoukoliv logickou funkci libovolného počtu proměnných lze vyjádřit pomocí logických funkcí dvou proměnných (binárních, např. logických operací).

Úplný systém logických funkcí

- = množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných)
- → množina binárních log. funkcí (Věta o reprezentaci log. funkcí)
 - (1) negace \overline{x} , log. součin $x \cdot y$ a log. součet x + y
 - (2) negace \overline{x} a implikace $x \to y$
- a další

Úplný systém logických funkcí

- = množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných)
- → množina binárních log. funkcí (Věta o reprezentaci log. funkcí)
 - (1) negace \overline{x} , log. součin $x \cdot y$ a log. součet x + y
- (2) negace \overline{x} a implikace $x \to y$
- a další

Minimální úplný systém logických funkcí

- úplný systém, ze kterého nelze žádnou funkci vyjmout tak, aby zůstal úplný
- (1) NENÍ
- (2) JE
- (3) negace \overline{x} a log. součin $x \cdot y$
- (4) negace \overline{x} a log. součet x + y
- a další

Minimální úplný systém logických funkcí Jediná funkce:

- **Shefferova** ↑ (negace log. součinu)
- Piercova ↓ (negace log. součtu)

Minimální úplný systém logických funkcí

Jediná funkce:

- **Shefferova** ↑ (negace log. součinu)
- Piercova ↓ (negace log. součtu)

Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce

- vyjádření funkce v základním součtovém tvaru (ÚDNF)
- 2 zjednodušení ÚDNF funkce, např. pomocí Karnaughovy metody
- 3 aplikace De Morganových zákonů, involuce a idempotence pro úpravu výrazu do tvaru, který obsahuje pouze Shefferovy nebo pouze Piercovy funkce

Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce

$$\begin{array}{rcl} f & = & \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z \\ f & = & x \cdot y + y \cdot z + x \cdot z \\ f & = & \overline{\overline{x \cdot y} \cdot \overline{y \cdot z}} + x \cdot z \\ f & = & \overline{\overline{\overline{x} \cdot \overline{y} \cdot \overline{y \cdot z}}} \cdot \overline{x \cdot z} \\ f & = & \overline{\overline{\overline{x} \cdot \overline{y} \cdot \overline{y \cdot z}}} \cdot \overline{x \cdot \overline{y}} \cdot \overline{x \cdot z} \end{array}$$

$$f = (\overline{x} + y + z) \cdot (x + \overline{y} + z) \cdot (x + y + \overline{z}) \cdot (x + y + z)$$

$$f = (x + y) \cdot (y + z) \cdot (x + z)$$

$$f = \overline{\overline{x + y} + \overline{y + z}} \cdot (x + z)$$

$$f = \overline{\overline{\overline{x + y} + \overline{y + z}} + \overline{x + z}}$$

$$f = \overline{\overline{\overline{x + y} + \overline{y + z}} + \overline{x + z}}$$

ÚKOL

Vyjádřete log. operace negace, log. součin, log. součet, implikace, ekvivalence a nonekvivalence pomocí (1) Shefferovy funkce a (2) Piercovy funkce.

Fyzická realizace logických funkcí

- dříve pomocí **spínacích relé** a **elektronek**, plus pasivní součástky (rezistor aj.)
- dnes pomocí tranzistorů (a diod a pasivních součástek) v integrovaných obvodech: technologie RTL, DTL, TTL, CMOS, MOSFET aj.

Obrázek: Příklad realizace log. operací NAND a NOR (v rezistorovětranzistorové logice, RTL)

- logický člen, hradlo = realizace log. operace (pomocí integrovaného obvodu)
 - (binární) vstupy ~ log. proměnné i více než dvě (rozšíření binárních operací)
 - (binární) výstup ~ výsledek log. operace (funkční hodnota)
 - lacktriangle stavy (signály) na vstupech/výstupu = log. (binární) hodnoty 0/I míra informace s jednotkou 1 bit
- logický obvod = realizace (složitější) log. funkce nebo více funkcí současně symbolické značky log. členů ve schématech zapojení obvodu

Fyzická realizace logických funkcí

Obrázek: Symbolické značky logických členů (IEC)

Obrázek: Symbolické značky logických členů (tradiční, ANSI)

Fyzická realizace logických funkcí

$$f = \overline{\overline{\overline{x \cdot y \cdot \overline{y \cdot z} \cdot \overline{x \cdot y \cdot \overline{y \cdot z}} \cdot \overline{x \cdot z}}}$$

Obrázek: Schéma zapojení log. obvodu realizujícího log. funkci f pomocí log. členů realizujících log. operaci NAND

ÚKOL

Nakreslete schéma zapojení log. obvodu realizujícího log. operace NOT, AND, OR, implikace, ekvivalence a XOR pomocí log. členů realizujících operaci (1) NAND a (2) NOR.

Logické obvody

- jeden výstup = realizace jedné log. funkce
- \blacksquare více výstupů = realizace více log. funkcí současně \to realizace vícebitové log. funkce ${}^{\mathbf{m}}\mathbf{f}$
- n-tice vstupů \sim vícebitové (n-bitové) log. proměnné $^n\mathbf{x}=\mathbf{x_{n-1}}\ldots\mathbf{x_i}\ldots\mathbf{x_0} \to$ vícebitový (n-bitový) log. obvod

Logické obvody

- jeden výstup = realizace jedné log. funkce
- \blacksquare více výstupů = realizace více log. funkcí současně \to realizace vícebitové log. funkce ${}^{\mathbf{m}}\mathbf{f}$
- n-tice vstupů \sim vícebitové (n-bitové) log. proměnné $^n\mathbf{x}=\mathbf{x_{n-1}}\ldots\mathbf{x_i}\ldots\mathbf{x_0} \to$ vícebitový (n-bitový) log. obvod
- **kombinační**: stavy na výstupech obvodu (funkční hodnoty) závisí pouze na okamžitých stavech na jeho vstupech (hodnotách proměnných)
- sekvenční: stavy na výstupech obvodu (funkční hodnoty) závisí nejen na okamžitých stavech na jeho vstupech (hodnotách proměnných), ale i na předchozích stavech na vstupech

Kombinační logické obvody

- stavy na výstupech obvodu (funkční hodnoty) závisí pouze na okamžitých stavech na jeho vstupech (hodnotách proměnných)
- jedné kombinaci stavů na vstupech odpovídá jediná kombinace stavů na výstupech

Komparátor

- srovnává dvě hodnoty A a B na vstupech
- tři výstupy udávající pravdivost vztahů A < B, A > B a $A = B \Rightarrow$ tříbitová funkce $Y_{<} = Y(A < B), Y_{>} = Y(A > B), Y_{=} = Y(A = B)$:

$$\begin{split} Y_{<} &= \overline{A} \cdot B \quad Y_{>} = A \cdot \overline{B} \quad Y_{=} = A \cdot B + \overline{A} \cdot \overline{B} \\ Y_{<} &= \overline{\overline{\overline{A} \cdot B}} \quad Y_{>} = \overline{\overline{A \cdot \overline{B}}} \quad Y_{=} &= \overline{\overline{\overline{\overline{A} \cdot B} \cdot \overline{A \cdot \overline{B}}}} \end{split}$$

A	B	$Y_{<}$	$Y_{>}$	$Y_{=}$
0	0	0	0	Ι
0	Ι	I	0	0
Ι	0	0	I	0
Ι	I	0	0	I

Obrázek: Pravdivostní tabulka a schéma zapojení (jednobitového) komparátoru

Komparátor

• vícebitový: zřetězené zapojení jednobitových pro každý řád i vícebitových (n-bitových) hodnot $A=A_{n-1}\ldots A_i\ldots A_0$ a $B=B_{n-1}\ldots B_i\ldots B_0$ od nejvýznamnějšího n-1 po nejméně významný 0

Obrázek: Schéma zapojení čtyřbitového komparátoru

Dekodér

- nastaví (na ${\bf I}$) jeden z 2^n výstupů S_i odpovídající n-bitové hodnotě na adresním (řídícím) vstupu A
- např. dvoubitový (dvoubitový adresní vstup, 4 výstupy) ⇒ čtyřbitová funkce $S_0 = S(A = 00), S_1 = S(A = 10), S_2 = S(A = 01), S_3 = S(A = 11)$:

$$S_0 = \overline{A_0} \cdot \overline{A_1}$$
 $S_1 = A_0 \cdot \overline{A_1}$ $S_2 = \overline{A_0} \cdot A_1$ $S_3 = A_0 \cdot A_1$

A_0	A_1	S_0	S_1	S_2	S_3
0	0	I	0	0	0
Ι	0	0	Ι	0	0
0	$\mid \mathbf{I} \mid$	0	0	Ι	0
Ι	I $ $	0	0	0	I

Obrázek: Pravdivostní tabulka a schéma zapojení dvoubitového dekodéru

použití: dekódování adresy (řídící hodnoty) pro výběr např. místa v paměti (části obvodu)

Multiplexor

- předává na výstup Q hodnotu na jednom z 2^n datových vstupů D_j dle n-bitové hodnoty na adresním (řídícím) vstupu A
- \blacksquare vedle výstupu Q obvykle ještě negovaný (invertovaný) výstup \overline{Q}
- např. dvoubitový (4 datové vstupy, dvoubitový adresní vstup) realizuje funkci

$$Q = \overline{A_0} \cdot \overline{A_1} \cdot D_0 + A_0 \cdot \overline{A_1} \cdot D_1 + \overline{A_0} \cdot A_1 \cdot D_2 + A_0 \cdot A_1 \cdot D_3$$

A_0	A_1	Q
0	0	D_0
I	0	D_1
0	I	D_2
I	$\mid \mathbf{I} \mid$	D_3

Obrázek: Pravdivostní tabulka a schéma zapojení dvoubitového multiplexoru

použití: výběr (multiplexování) datových vstupů na základě adresy (řídící hodnoty)

Sčítačka

- (aritmeticky) sčítá dvě hodnoty A a B (plus přenos r_{i-1} z nižšího řádu) na vstupech, s přenosem r_i do vyššího řádu
- dva výstupy, pro součet S (aritmetický modulo 2) a přenos $r \Rightarrow$ dvoubitová funkce
- poloviční sčítačka (half adder) = bez přenosu z nižšího řádu:

$$S = A \oplus B$$
 $r = A \cdot B$

A	B	S	r
0	0	0	0
0	Ι	Ι	0
I	0	Ι	0
I	Ι	0	Ι

Obrázek: Pravdivostní tabulka a schéma zapojení (jednobitové) poloviční sčítačky

Sčítačka

■ plná sčítačka (full adder) = s přenosem r_{i-1} z nižšího řádu (součet S_i v řádu i a přenos r_i do vyššího řádu):

$$S_i = A_i \oplus B_i \oplus r_{i-1} \qquad r_i = A_i \cdot B_i + (A_i \oplus B_i) \cdot r_{i-1} \qquad (r_{-1} = 0)$$

A_i	B_i	r_{i-1}	S_i	r_i
0	0	0	0	0
0	Ι	0	I	0
I	0	0	I	0
I	I	0	0	Ι
0	0	\mathbf{I}	I	0
0	I	\mathbf{I}	0	I
I	0	I	0	Ι
I	I	\mathbf{I}	I	Ι

Obrázek: Pravdivostní tabulka a schéma zapojení (jednobitové plné) sčítačky (pro řád i)

Sčítačka

- vícebitová (ripple-carry adder): zřetězené zapojení jednobitových pro každý řád i vícebitových (n-bitových) hodnot $A=A_{n-1}\dots A_i\dots A_0$ a $B=B_{n-1}\dots B_i\dots B_0$ od nejméně významného 0 po nejvýznamnější n-1
- lacktriangle použití: (aritmetický) součet hodnot A a B (binárně reprezentovaných čísel = ve dvojkové soustavě), s přenosem do vyššího řádu

Obrázek: Schéma zapojení čtyřbitové sčítačky

Násobička

• (aritmeticky) násobí dvě hodnoty A a B na vstupech: $M = A \cdot B$ (jednobitově)

Násobička

- (aritmeticky) násobí dvě hodnoty A a B na vstupech: $M = A \cdot B$ (jednobitově)
- vícebitová: zapojení jednobitových násobiček a sčítaček pro dvojnásobný počet řádů vícebitových (n-bitových) hodnot $A=A_{n-1}\ldots A_i\ldots A_0$ a $B=B_{n-1}\ldots B_i\ldots B_0$:

$$M = (A_{n-1} \cdot 2^{n-1} + \dots + A_1 \cdot 2 + A_0) \cdot (B_{n-1} \cdot 2^{n-1} + \dots + B_1 \cdot 2 + B_0)$$

$$= A_{n-1} \cdot B_{n-1} \cdot 2^{2(n-1)} + \dots + (A_{n-1} \cdot B_1 + \dots + A_1 \cdot B_{n-1}) \cdot 2^{(n-1)+1} + (A_{n-1} \cdot B_0 + \dots + A_0 \cdot B_{n-1}) \cdot 2^{n-1} + \dots + (A_1 \cdot B_1 + \dots) \cdot 2^{1+1} + (A_1 \cdot B_0 + A_0 \cdot B_1) \cdot 2 + A_0 \cdot B_0$$

Násobička

- (aritmeticky) násobí dvě hodnoty A a B na vstupech: $M = A \cdot B$ (jednobitově)
- vícebitová: zapojení jednobitových násobiček a sčítaček pro dvojnásobný počet řádů vícebitových (n-bitových) hodnot $A=A_{n-1}\ldots A_i\ldots A_0$ a $B=B_{n-1}\ldots B_i\ldots B_0$:

$$M = (A_{n-1} \cdot 2^{n-1} + \dots + A_1 \cdot 2 + A_0) \cdot (B_{n-1} \cdot 2^{n-1} + \dots + B_1 \cdot 2 + B_0)$$

$$= A_{n-1} \cdot B_{n-1} \cdot 2^{2(n-1)} + \dots + (A_{n-1} \cdot B_1 + \dots + A_1 \cdot B_{n-1}) \cdot 2^{(n-1)+1} + (A_{n-1} \cdot B_0 + \dots + A_0 \cdot B_{n-1}) \cdot 2^{n-1} + \dots + (A_1 \cdot B_1 + \dots) \cdot 2^{1+1} + (A_1 \cdot B_0 + A_0 \cdot B_1) \cdot 2 + A_0 \cdot B_0$$

Obrázek: Schéma dvoubitového násobení a zapojení dvoubitové násobičky

ÚKOL

Nakreslete schéma zapojení log. obvodu představujícího "základ" aritmeticko-logické jednotky (ALU) procesoru, realizující aritmetické operace součtu a násobení a log. operace NAND a NOR dvou dvoubitových hodnot (binárně reprezentovaných čísel) na datových vstupech obvodu, kde prováděná operace je určena dvoubitovou hodnotou na řídícím vstupu obvodu.

Sekvenční logické obvody

- stavy na výstupech obvodu (funkční hodnoty) závisí nejen na okamžitých stavech na jeho vstupech (hodnotách proměnných), ale i na předchozích stavech na vstupech – zachyceny vnitřním stavem obvodu
- nutné identifikovat a synchronizovat stavy obvodu v čase
- čas: periodický impulzní signál = "hodiny" (clock), diskrétně určující okamžiky synchronizace obvodu

Obrázek: Časový signál "hodin" (clock)

Sekvenční logické obvody

- stavy na výstupech obvodu (funkční hodnoty) závisí nejen na okamžitých stavech na jeho vstupech (hodnotách proměnných), ale i na předchozích stavech na vstupech – zachyceny vnitřním stavem obvodu
- nutné identifikovat a synchronizovat stavy obvodu v čase
- čas: periodický impulzní signál = "hodiny" (clock), diskrétně určující okamžiky synchronizace obvodu

Obrázek: Časový signál "hodin" (clock)

→ zpětné vazby z (některých) výstupů na (některé) vstupy

Sekvenční logické obvody

Přenos dat (vícebitových hodnot):

- sériový: hodnoty 0/I (bity) postupně v čase za sebou, po jednom vodiči
- paralelní: bity zároveň v čase, po více vodičích
- úlohy transformace mezi sériovým a paralelním přenosem

Obrázek: Sériový a paralelní přenos dat

Klopné obvody (flip-flop)

- nejjednodušší sekvenční obvody
- astabilní: žádný stabilní stav, periodické překlápění výstupů z jednoho stavu do druhého ("kmitání"); použití jako generátory impulzů
- monostabilní: jeden stabilní stav na výstupech, po určitém řídícím signálu po definovanou dobu v nestabilním stavu; použití k vytváření impulzů dané délky
- bistabilní: oba stavy na výstupech stabilní, trvání jednoho dokud není určitým řídícím signálem překlopení do druhého; použití pro realizaci pamětí

Klopné obvody (flip-flop)

- nejjednodušší sekvenční obvody
- astabilní: žádný stabilní stav, periodické překlápění výstupů z jednoho stavu do druhého ("kmitání"); použití jako generátory impulzů
- monostabilní: jeden stabilní stav na výstupech, po určitém řídícím signálu po definovanou dobu v nestabilním stavu; použití k vytváření impulzů dané délky
- bistabilní: oba stavy na výstupech stabilní, trvání jednoho dokud není určitým řídícím signálem překlopení do druhého; použití pro realizaci pamětí

Řízení:

- lacktriangle asynchronně: signály/stavy (0 nebo I) na (datových) vstupech
- synchronně: (periodickým) signálem na hodinovém vstupu
- hladinou signálu (latch): horní (hodnota I) nebo dolní (0)
- **hranami** signálu: nástupní (0 o I u horní hladiny) nebo sestupní (0 o I u dolní hladiny)

Klopný obvod SR/RS

- nejjednodušší bistabilní, základ ostatních
- asynchronní vstupy S (Set) pro nastavení hodnoty (na I) a R (Reset) pro nulování hodnoty (na 0) na výstupu Q (v čase i)
- \blacksquare vedle výstupu Q obvykle ještě negovaný (invertovaný) výstup \overline{Q}
- při stavu $S = R = \mathbf{0}$ "pamatování" hodnoty na výstupu Q (a Q', v čase i)
- \blacksquare stav $S=R=\mathbf{I}$ "nedefinovaný" varianty preferující vstup S (= SR) nebo R (= RS)

Obrázek: Pravdivostní tabulka a schéma zapojení klopného obvodu SR/RS

Klopný obvod SR/RS

synchronní varianta s hodinovým (synchronizačním) vstupem CLK – "funkční" pouze při $CLK = \mathbf{I}$, jinak "pamatování" hodnoty na výstupu Q (a Q', v čase i):

S	R	CLK	Q_i	$\overline{Q_i}$
0	0	0	Q_{i-1}	$\overline{Q_{i-1}}$
0	Ι	0	Q_{i-1}	$\overline{Q_{i-1}}$
Ι	0	0	Q_{i-1}	$\overline{Q_{i-1}}$
Ι	Ι	0	Q_{i-1}	$\overline{Q_{i-1}}$
0	0	I	Q_{i-1}	$\overline{Q_{i-1}}$
0	Ι	I	0	I
Ι	0	I	I	0
Ι	Ι	\mathbf{I}	N/A	N/A

Obrázek: Pravdivostní tabulka a schéma zapojení klopného obvodu SR/RS s hodinovým vstupem CLK

 varianta Master-Slave: dva obvody SR/RS (s hodinovým vstupem, u druhého obvodu negovaný) za sebou, nastavení na vzestupnou hranu na hodinovém vstupu, výstup na sestupní

Klopný obvod D

- \blacksquare stav $S=R=\mathbf{I}$ u obvodu SR/RS nemůže nastat
- jednobitový paměťový člen

D	CLK	Q_i	$\overline{Q_i}$		0
0	0	Q_{i-1}	$\overline{Q_{i-1}}$		ă
I	0	Q_{i-1}	$\overline{Q_{i-1}}$	Y CLK TO	•
0	I	0	I	RSC	not (
I	\mathbf{I}	I	0	│ ─ └≫- └-	-(10)

Obrázek: Pravdivostní tabulka a schéma zapojení klopného obvodu D

 varianta Master-Slave: obvody D a SR/RS (s hodinovým vstupem, u druhého obvodu negovaný) za sebou, nastavení na vzestupnou hranu na hodinovém vstupu, výstup na sestupní

Klopný obvod JK

lacktriangle při stavu $S=R=\mathbf{I}$ u obvodu SR/RS invertuje výstup Q (a Q', v čase i)

J	K	CLK	Q_i	$\overline{Q_i}$
0	0	0	Q_{i-1}	$\overline{Q_{i-1}}$
0	Ι	0	Q_{i-1}	$\overline{Q_{i-1}}$
Ι	0	0	Q_{i-1}	$\overline{Q_{i-1}}$
Ι	Ι	0	Q_{i-1}	$\overline{Q_{i-1}}$
0	0	I	Q_{i-1}	$\overline{Q_{i-1}}$
0	Ι	I	0	I
Ι	0	I	I	0
Ι	Ι	I	$\overline{Q_{i-1}}$	Q_{i-1}

Obrázek: Pravdivostní tabulka a schéma zapojení klopného obvodu JK

Další sekvenční logické obvody

Paralelní registr (střádač)

- paměť pro vícebitovou hodnotu (dodanou paralelně na více vstupů)
- paralelní zapojení klopných obvodů D

Obrázek: Schéma zapojení čtyřbitového paralelního registru

Sériový (posuvný) registr

- paměť pro vícebitovou hodnotu dodanou sériově na (jednom) vstupu (synchronně po jednotlivých řádech)
- zřetězené zapojení klopných obvodů D
- použití pro transformaci sériových dat na paralelní

Obrázek: Schéma zapojení čtyřbitového sériového registru

Další sekvenční logické obvody

Čítač

- paměť počtu impulzů na hodinovém vstupu binárně reprezentovaný počet na vícebitovém výstupu
- zřetězené zapojení klopných obvodů JK

Obrázek: Schéma zapojení čtyřbitového čítače

Sériová sčítačka/násobička

- (aritmetické) sčítání/násobení hodnot dodaných sériově na vstupy (synchronně po jednotlivých řádech)
- zřetězené zapojení sériových registrů pro hodnoty a sčítačky/násobičky

ÚKOL

Nakreslete schéma zapojení log. obvodu realizujícího děličku frekvence signálu na hodinovém vstupu obvodu faktorem 1 (= původní frekvence), 2, 4 a 8, kde faktor je určen dvoubitovou hodnotou na řídícím vstupu obvodu.