

Introduction to Analog Integrated Circuit Design

Fall 2023

MOST Physics

Yung-Hui Chung

MSIC Lab

DECE, NTUST

Understanding MOS Transistors

Quantum mechanics

Solid-state physics

Semiconductor device physics

Device modeling

Design of circuits

CMOS Transistors

Current formula

Basic Operation and MOS Physics

Short-Channel Effects

Second-Order Effects

Design of circuits, ...

Why CMOS?

MOS Device Structure

2D-device: planar CMOS transistors

Source/Drain: Diffusion

– Substrate/Well : p-sub/n-well

- Gate oxide: SiO2, t_{ox}

Poly Gate \rightarrow HKMG (High-K and Metal Gate) in nanometer CMOS

• 3D-device: FinFET MOS Transistors

MOS Device Structure

Basic p/nMOS Transistors (pMOST and nMOST in CMOS VLSI)

- Twin-Well Process
- Deep-Nwell Process

- Various device types (by its threshold voltage or ...):
 - SP_LVT; SP_RVT; SP_HVT; Zero-VT; Native; ...

FinFET (3D-MOS Transistors)

- L < 20 nm => FinFET era (TSMC, Samsung, Intel, ...)
- In fact, FinFET I/V characteristics are closer to square-law behavior, making our simple large-signal mode relevant again
- Channel width: $W = W_F + 2H_F \text{ (fixed)} \rightarrow W' = Nf*W$, Nf is # of Fins
- The spacing between the fins, $\mathbf{S}_{\mathbf{F}}$, also plays a significant role in the performance

FinFET (3D-MOS Transistors)

https://www.circuitbread.com/ee-faq/what-isa-finfet

FinFET Transistors: SEM Image

Tilt view SEM image of Samsung 14 nm FinFET transistors (Source: <u>Samsung 14 nm Exynos 7 7420 Logic</u> <u>Detailed Structural Analysis</u>, TechInsights)

FinFET Transistors: SEM Image

Plan view image of Samsung 14 nm FinFET transistors (Source: <u>Samsung 14 nm Exynos 7 7420 Logic</u> <u>Detailed Structural Analysis</u>, TechInsights)

$$V_{GS}$$
 vs. V_{DS}

A MOSFET Driven by a Gate Voltage

V_{GS} varies from zero to a high voltage:

- (a) Off region $(V_{GS} = 0)$
- (b) Subthreshold region $(V_{GS} < V_{TH})$
- (c) Neutralization point $(V_{GS} = V_{TH})$
- (d) Strong Inversion region $(V_{GS} > V_{TH} + 200 \text{mV})$

$$\frac{V_{TH}}{V_{TH}} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q)\ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

A MOSFET Driven by a Gate Voltage

Description in textbook,

$$V_{TH} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

where Φ_{MS} is the difference between the work functions of the polysilicon gate and the silicon substrate, $\Phi_F = (kT/q) \ln(N_{sub}/n_i)$, k is Boltzmann's constant, q is the electron charge, N_{sub} is the doping density of the substrate, n_i is the density of electrons in undoped silicon, Q_{dep} is the charge in the depletion region, and C_{ox} is the gate-oxide capacitance per unit area. From pn junction theory, $Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$,

MOSFET in "OFF" Region

V_{GS} is much less than V_{TH} :

- Some negative ions in channel region
- There is no active charges from source to drain
- The MOSFET can be seen disabled
- But, it is not really inactive => leakage issue

$$\frac{V_{TH}}{V_{TH}} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q)\ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

MOSFET in "Subthreshold" Region

V_{GS} is approaching to V_{TH} (from zero voltage):

- The "mobile" charges are negative ions, not electrons
- These negative ions are contributed from the psubstrate and attracted by a positive gate voltage

$$\frac{V_{TH}}{V_{TH}} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q)\ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

MOSFET at "Neutralization" State

V_{GS} is equal to V_{TH} :

- The attracted negative ions are equal to the majority carriers (positive ions). It means $V_{GS} = V_{TH}$
- Now, the position below gate oxide is floating => up is a Cox and down is a Cdep => CGB = ?

$$\frac{V_{TH}}{V_{TH}} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q) \ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

MOSFET in "Strong Inversion" Region 😭

V_{GS} is larger than V_{TH} by a certain voltage:

- The mobile charges are electrons, moved from source to drain. The conduction path is called "inversion channel".
- Inversion means the charges on the channel are "positive => negative"

$$\frac{V_{TH}}{V_{TH}} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q)\ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

MOSFET Summary by V_{GS}

- t_{ox} =20Å to get C_{ox} ~17.25fF/ μ m²
- Native device $(V_{TH} \sim 0)$, how?
 - Adjusting the doping (N_{sub}) to change V_{TH}

$$\frac{V_{TH}}{V_{TH}} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\Phi_F = (kT/q)\ln(N_{sub}/n_i)$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}}$$

PMOS have similar phenomenon but majority carrier is "hole"

MOSFET Summary by V_{GS}

While we ask "the MOSFET is at strong or weak inversion (or OFF) mode", it means **V**_{GS} is large or small

While we ask "the MOSFET is triode or saturation region", it means **V**_{DS} is large enough or not?

MOSFET: Drain Current

Channel Charge Model in triode region

(b)

Drift Velocity

$$v = \mu E$$

$$E(x) = -dV/dx$$

(a)

$$I = Q_d \cdot v$$

$$Q_d = WC_{ox}(V_{GS} - V_{TH})$$

$$Q_d(x) = WC_{ox}[V_{GS} - V(x) - V_{TH}]$$

where x: 0-L

 $I_D = -WC_{ox}[V_{GS} - V(x) - V_{TH}]v$

$$I_D = WC_{ox}[V_{GS} - V(x) - V_{TH}]\mu_n \frac{dV(x)}{dx}$$

$$\int_{x=0}^{L} I_D dx = \int_{V=0}^{V_{DS}} W C_{ox} \mu_n [V_{GS} - V(x) - V_{TH}] dV$$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Note:

 Q_d :線電荷 (Q/L)

MOSFET: Drain Current

Channel Charge Model in triode region

(a)

Drift Velocity

$$v = \mu E$$

$$E(x) = -dV/dx$$

This current conduction is true before pinch-off effect occurs!!

$$V_{DS} = V_{GS} - V_{TH}$$

$$I_{D, max} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

Channel Charge vs. V_{DS}

Pinch-off Behavior

Pinch-off Behavior

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

Channel Length Modulation

Deep Triode Region

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$I_D \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS}$$

$$R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

A voltage-controlled resistor

MOSFET as an Amplifier

g_m Representation

MOSFET: Second-Order Effects

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

Body Effect

$$-V_{TH} \sim f(V_{SB})$$

Channel-Length Modulation

$$-r_o \sim f(L, V_{DS})$$

Subthreshold Conduction

$$-V_{GS} \sim V_{TH}$$

Voltage Limitation

$$-$$
 High V_{DD}

Body Effect (1)

$$C_{ox} = C_{gate}/WL$$

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

$$\gamma = \sqrt{2q\epsilon_{si}N_{sub}}/C_{ox} \quad (\gamma = 0.3 \sim 0.4, \text{ by process})$$

An ideal voltage follower: Vin-Vout=constant

$$I_{1} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{out} - \underline{V_{TH}})^{2}$$

We may conclude that the body effect causes a nonlinear error (distortion) in this nMOST source follower

Channel-Length Modulation

 $L' = L - \Delta L$ (pinch-off effect)

$$\frac{1}{L'} = \frac{1}{L - \Delta L} = \frac{1}{L} \cdot \frac{1}{1 - \Delta L/L} \sim \frac{1}{L} \left(1 + \frac{\Delta L}{L} \right)$$

ΔL/L與V_{DS}有關

$I_D \sim \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) (1 + \lambda V_{DS})$$

$$= \sqrt{2\mu_n C_{ox}(W/L)I_D(1+\lambda V_{DS})}$$

an NFET with $W/L = 5 \mu \text{m}/40 \text{ nm}$ for $V_{GS} = 0.3 \text{ V} \cdots 0.8 \text{ V}$.

Subthreshold Conduction

 $I_D = 0$ if $V_{GS} < V_{TH}$? The answer is not!!

Subthreshold Current Model (by Foundry Device Model)

$$I_D = I_0 e^{\frac{V_{GS}}{\xi V_T}}$$

$$\frac{I_D}{\xi V_T} = \frac{2I_D}{V_{GS} - V_{TH}}$$
 $V_{GS} - V_{TH} = 2\xi V_T \sim 80 \text{ mV (@27°C)}$

$$\xi \sim 1.5 \qquad => \text{Subthreshold boundary}$$

Ξ*ξ* Xi

MOS Capacitor Model

空乏電容

$$C_1 = WLC_{ox}$$

平板電容
$$C_2 = WL\sqrt{q\varepsilon_{si}N_{sub}/(4\phi_F)}$$

$$C_3 = C_4 = WL_D C_{ox} = WC_{oy}$$

$$C_{j} = C_{j0} / \left(1 + V_{R} / \phi_{B}\right)^{m}$$

$$C_{jsw} = C_{jsw0} / \left(1 + V_{R} / \phi_{B}\right)^{m}$$

$$m = 0.3 \sim 0.4$$

MOS Capacitor Model

MOS Capacitor Model

$$C_{1} = WLC_{ox}$$

$$C_{2} = WL\sqrt{q\varepsilon_{si}N_{sub}/(4\varphi_{F})}$$

$$C_{3} = C_{4} = WL_{D}C_{ox} = WC_{oy}$$

$$C_j = C_{j0}/(1 + V_R/\varphi_B)^m$$

$$C_{jsw} = C_{jsw0}/(1 + V_R/\varphi_B)^m$$

$$m = 0.3 \sim 0.4$$

MOS Small-Signal Model

Reduction of gate resistance

Folding structure to reduce the gate resistance

- The resistance on drain and source can be reduced by the same concept!!
- Don't use too wide transistors. For example, W=20u, L=0.2u
- Using multiplier (m) or finger (nf) to implement a wide transistor

SPICE Models

NMOS	Model

LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
NSUB = 9e+14	LD = 0.08e - 6	UO = 350	LAMBDA = 0.1
TOX = 9e-9	PB = 0.9	CJ = 0.56e - 3	CJSW = 0.35e-11
MJ = 0.45	MJSW = 0.2	CGDO = 0.4e - 9	JS = 1.0e - 8
PMOS Model			
LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
NSUB = 5e+14	LD = 0.09e - 6	UO = 100	LAMBDA = 0.2
TOX = 9e-9	PB = 0.9	CJ = 0.94e - 3	CJSW = 0.32e-11

CGDO = 0.3e - 9

$$\gamma = \sqrt{2q\epsilon_{si}N_{sub}}/C_{ox}$$

$$C_{ox} = \varepsilon_{ox}/t_{ox}$$

$$C_j = C_{j0} / \left(1 + V_R / \phi_B\right)^m$$

$$C_{isw} = C_{isw0} / \left(1 + V_R / \phi_B\right)^m$$

$$m = 0.3 \sim 0.4$$

VTO: threshold voltage with zero V_{SB} (unit: V)

MJSW = 0.3

GAMMA: body-effect coefficient (unit: V1/2)

PHI: $2\Phi_F$ (unit: V)

MJ = 0.5

TOX: gate-oxide thickness (unit: m) NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V⁻¹)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m2)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

JS = 0.5e - 8

MOSFET as a Capacitor

Accumulation Strong Inversion Low-freq High-freq OVTH VGS Depletion cap included

Accumulation mode

Hole concentration is increased if V_{GS} is more negative (plate is formed by a hole layer)

• **Depletion** mode

 Hole concentration is decreased and electron concentration is increased if V_{GS} is from negative to positive (acts like a floating point)

Inversion mode

Inversion layer is formed to act as a plate. For high-frequency gate variations, layer is not formed in time (>1MHz); for low-freq gate variation, layer is always formed (<100Hz)

Non-Quasi Static (NQS) Effect

Appendix: MOSFET Simple Description

^{*}Physically, it is driven by "energy band model, changed by V_G "