课程编号: 07000150

北京理工大学 2008-2009 学年第二学期 《微积分 A》(下)期末考试试卷(A 卷)

班级	
	、填空(每小题 4 分, 共 28 分)
1.	经过点 $M(3,2,-1)$,且与 x 轴, y 轴, z 轴正向的方向角分别为 $\frac{\pi}{3},\frac{\pi}{4},\frac{2\pi}{3}$ 的直线的
	标准方程为
2.	曲线 $\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$ 在点 (1,3,4) 处的法平面 π 的方程为
	原点到平面 π 的距离 $d=$
3.	设 $u(x,y,z)=x^yz$,则梯度 gradu =,散度
	div(gradu) =
4.	设 L 为 $x^2 + y^2 = a^2$ 正向,则曲线积分 $\oint_L \frac{xdy - ydx}{x^2 + y^2} = \underline{\qquad}$.
5.	设 \sum 为上半球面 $z = \sqrt{R^2 - x^2 - y^2}$,则 $I = \iint_{\Sigma} (x + y + z) dS =$
6.	将 $I = \int_0^{2a} dx \int_0^{\sqrt{2ax-x^2}} f(x,y)dy$ 转化为极坐标系下的累次积分(先 ρ 后 θ),
	$I = \underline{\hspace{1cm}}$.
7.	设级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^p} \ln(1 + \frac{1}{\sqrt{n}})$, 当 p 满足 时级数绝对收敛.
	当 <i>p</i> 满足 时级数收敛.
=	、(8分) 求函数 $z = x^3 + y^3 - 3xy$ 的极值点和极值.
三	、(12 分)设 Ω 是由圆锥面 $z = \sqrt{x^2 + y^2}$ 与抛物面 $z = 2 - x^2 - y^2$ 所围成的均匀

(1) 求Ω的表面积;

立体(密度 $\mu=1$).

- (2) 求 Ω 绕z轴的转动惯量.
- 四、(8 分) 若 $(3xy^2 y^m)dx + (3x^ny 3xy^2)dy$ 是某二元函数的全微分,求m,n的值,并对上述m,n的值计算曲线积分

$$I = \int_{L} (3xy^{2} - y^{m}) dx + (3x^{n}y - 3xy^{2}) dy$$
, 其中 L 是摆线 $x = a(t - \sin t)$, $y = a(1 - \cos t)$ 从 $t = 0$ 到 $t = \pi$ 的一段.

- 五、(8分) 将函数 $f(x) = \frac{1}{x(x-2)}$ 展开成 x-3 的幂级数,并指出收敛域.
- 六、(10 分) 计算曲面积分 $I = \iint_{\Sigma} \frac{(x^2z+1)dxdy + y^2xdydz + z^2ydzdx}{x^2 + y^2 + z^2}$, 其中 Σ 是下半球面 $z = -\sqrt{R^2 x^2 y^2}$ 的上侧.
- 七、(10分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n} x^n$ 的收敛域及和函数.
- 八、 $(8 \, \mathcal{G})$ 设 S(x) 是函数 $f(x) = \pi + x$ $(0 \le x \le \pi)$ 的以 2π 为周期的余弦级数的和函数. 求 S(x) $(x \in [\pi, 2\pi]$ 的表达式及 S(-5) 的值,并求出此余弦级数的系数.
- 九、(8 分)设u = f(x, y, z), 其中 f 有连续偏导数,且 $\frac{f'_x}{x} = \frac{f'_y}{y} = \frac{f'_z}{z}$.
 - (1) 将x,y,z换成球坐标,求u = f(x,y,z)的表达式;
 - (2) 求 $\frac{\partial u}{\partial \theta}$, $\frac{\partial u}{\partial \varphi}$, 并证明u 仅为r的函数,(其中 $r = \sqrt{x^2 + y^2 + z^2}$).