Supplementary Materials to Factorized Asymptotic Bayesian Inference for Factorial Hidden Markov Models

March 18, 2014

Lemma 1. Suppose y_n is the sum of n independent Bernoulli r.v. z_1, \dots, z_n , i.e. $y_n = \sum_{i=1}^n z_i$, and $\bar{y}_n = E[y_n] = \sum_{i=1}^n \bar{z}_i$. Suppose further that \bar{y}_n is O(n), i.e., $\exists \epsilon \in (0,1), s.t. \forall n, \bar{y}_n > \epsilon n$.

Then in the Taylor series of $y_n \log y_n$ expanded around \bar{y}_n : 1) the second order term $\frac{1}{2\bar{y}_n}(y_n - \bar{y}_n)^2$ has expectation $\frac{1}{2\bar{y}_n}\sum_{i=1}^n(\bar{z}_i - \bar{z}_i^2)$, which is in the interval [0,0.5]; 2) when $n \to \infty$, the expectation of the residual $R_2(\bar{y}_n)$ of the above approximation will tend to 0above approximation will tend to 0.

- 1) By straightforward computation, we can prove $\mathbb{E}\left[\frac{1}{2\bar{y}_n}(y_n-\bar{y}_n)^2\right] = \frac{1}{2\bar{y}_n}\sum_{i=1}^n(\bar{z}_i-\bar{y}_n)^2$ \bar{z}_i^2). As $\forall i, 0 \le \bar{z}_i^2 \le \bar{z}_i \le 1$, then $\mathbb{E}\left[\frac{1}{2\bar{y}_n}(y_n - \bar{y}_n)^2\right] \le \frac{1}{2\bar{y}_n} \sum_{i=1}^n \bar{z}_i = 0.5$.
 - 2) The absolute value of the residual

$$\left| R_2(\bar{y}_n) \right| = \left| \sum_{m=3}^{\infty} \frac{(-1)^m}{m! \bar{y}_n^{m-1}} (y_n - \bar{y}_n)^m \right| < \bar{y}_n \sum_{m=3}^{\infty} \frac{1}{m!} \frac{|y_n - \bar{y}_n|^m}{\bar{y}_n^m}. \tag{1}$$

Therefore

$$\left| \mathbb{E} \left[R_2(\bar{y}_n) \right] \right| \le \mathbb{E} \left[\left| R_2(\bar{y}_n) \right| \right] < \bar{y}_n \sum_{m=3}^{\infty} \frac{1}{m!} \frac{\mathbb{E} \left[|y_n - \bar{y}_n|^m \right]}{\bar{y}_n^m}. \tag{2}$$

Inside each term of the summation,

$$E[|y_{n} - \bar{y}_{n}|^{m}] = \sum_{r_{1} + \dots + r_{n} = m} {m \choose r_{1}, \dots, r_{n}} \prod_{i=1}^{n} E[(z_{i} - \bar{z}_{i})^{r_{i}}] \\
\leq \sum_{r_{1} + \dots + r_{n} = m} {m \choose r_{1}, \dots, r_{n}} \prod_{i=1}^{n} \left| E[(z_{i} - \bar{z}_{i})^{r_{i}}] \right| \\
= \sum_{u=1}^{\lfloor m/2 \rfloor} \sum_{r_{1} + \dots + r_{u} = m \atop \forall r_{1} + \dots + r_{u} = m} {m \choose r_{1}, \dots, r_{u}} \sum_{(a_{1}, \dots, a_{u})} \prod_{i=1}^{u} \left| E[(z_{a_{i}} - \bar{z}_{a_{i}})^{r_{i}}] \right|, \quad (3)$$

where u is the number of non-zero r_i , (a_1, \dots, a_u) are a tuple of distinct integers in the range $1 \le a_i \le n$, and $\lfloor m/2 \rfloor$ is the floor of m/2.

The last equality in (??) holds since $\forall i, \mathrm{E}[z_i - \bar{z}_i] = 0$, and thus $\prod_{i=1}^u \left| \mathrm{E}[(z_{a_i} - \bar{z}_{a_i})^{r_i}] \right| > 0$ only when all $r_i \geq 2$. Consequently, $u \leq \lfloor m/2 \rfloor$.

For any i, $\left| \mathrm{E}[(z_i - \bar{z}_i)^{r_i}] \right| = \left| (1 - \bar{z}_i) \bar{z}_i^{r_i} + (-1)^{r_i} (1 - \bar{z}_i)^{r_i} \bar{z}_i \right| \leq (1 - \bar{z}_i) \bar{z}_i^2 + (1 - \bar{z}_i)^2 \bar{z}_i = \bar{z}_i (1 - \bar{z}_i) < 1$. Further, the number of all possible tuples (a_1, \dots, a_u) is $n \cdots (n - u + 1)$. Thus,

$$E[|y_{n} - \bar{y}_{n}|^{m}]
< \sum_{u=1}^{\lfloor m/2 \rfloor} \sum_{\substack{r_{1} + \dots + r_{u} = m \\ \forall r_{1} \geq 2}} {m \choose r_{1}, \dots, r_{u}} \frac{1}{u!} n \cdots (n - u + 1)
< n^{\lfloor m/2 \rfloor} \sum_{u=1}^{m} \sum_{\substack{r_{1} + \dots + r_{u} = m \\ \forall r_{1} \geq 1}} {m \choose r_{1}, \dots, r_{u}} \frac{1}{u!}
< n^{\lfloor m/2 \rfloor} \sum_{u=1}^{m} \sum_{\substack{r_{1} + \dots + r_{u} = m \\ \forall r_{1} \geq 1}} {m \choose r_{1}, \dots, r_{u}}$$

$$(4)$$

$$< n^{\lfloor m/2 \rfloor} \sum_{\substack{r_1 + \dots + r_m = m \\ \forall r_i > 0}} {m \choose r_1, \dots, r_m}$$
 (5)

$$=n^{\lfloor m/2\rfloor}m^m. (6)$$

The inequality from (4) to (5) is because each solution of the equation $r_1 + \cdots + r_u = m, 1 \le u \le m, \forall r_i \ge 1$, is a solution of $r_1 + \cdots + r_m = m, \forall r_i \ge 0$, by simply letting $r_{u+1} = \cdots = r_m = 0$.

simply letting $r_{u+1} = \cdots = r_m = 0$. Inside (5), $\binom{m}{r_1, \dots, r_u}$ counts the number of ways of splitting m different balls into m groups, each having r_i balls. When the tuple (r_1, \dots, r_m) goes through all the solutions of $r_1 + \dots + r_m = m$, the sum is the number of ways of splitting m different balls into m groups arbitrarily. Obviously the count is m^m .

It is known that

$$m! > m^m e^{-m}, \forall m \in \mathcal{N}.$$
 (7)

Applying (6) and (7) onto (2), we obtain

$$\left| \operatorname{E} \left[R_{2}(\bar{y}_{n}) \right] \right| < \bar{y}_{n} \sum_{m=3}^{\infty} \frac{1}{m!} \frac{n^{\lfloor m/2 \rfloor} m^{m}}{\bar{y}_{n}^{m}}$$

$$< \bar{y}_{n} \sum_{m=3}^{\infty} \frac{n^{\lfloor m/2 \rfloor} e^{m}}{\bar{y}_{n}^{m}} < \bar{y}_{n} \sum_{m=3}^{\infty} \frac{n^{\lfloor m/2 \rfloor} e^{m}}{\epsilon^{m} n^{m}}$$

$$= \bar{y}_{n} \sum_{m=3}^{\infty} \frac{e^{m}}{\epsilon^{m} n^{\lceil m/2 \rceil}} < n \left(\frac{e^{3}}{\epsilon^{3} n^{2}} + \sum_{m=4}^{\infty} \left(\frac{e}{\epsilon \sqrt{n}} \right)^{m} \right)$$

$$= \frac{e^{3}}{\epsilon^{3} n} + \frac{e^{4}}{\epsilon^{4} n - \epsilon^{3} e \sqrt{n}}.$$
(8)

So when $n \to \infty$, $\left| \mathbb{E} \left[R_2(\bar{y}_n) \right] \right| \to 0$.