MathTools HW 5

- 1. **Complex matrices.** Recall that the standard inner product on \mathbb{C}^n (over the complex numbers) is $\langle x,y\rangle = \sum_{i=1}^n x_i \overline{y}_i$, where \overline{y}_i is the complex conjugate of y_i . For $A \in M_{n \times n}(\mathbb{C})$, denote by A^* the hermitian conjugate: $(A^*)_{ij} = \overline{A_{ji}}$ (in words: take both transpose and complex conjugates).
 - (a) Prove that for any $x, y, \langle Ax, y \rangle = \langle x, A^*y \rangle$.
 - (b) Let A be hermitian, meaning that $A = A^*$. Prove that
 - i. If λ is an eigenvalue of A, then it is real ($\lambda \in \mathbb{R}$).
 - ii. If u_1, u_2 are eigenvectors corresponding to different eigenvectors $\lambda_1 \neq \lambda_2$, then $\langle u_1, u_2 \rangle = 0$.
- 2. **The power method.** Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix. As usual, denote its eigenvalues in decreasing order: $\lambda_1 \geq \lambda_2 \geq \dots \lambda_n$. Let u_1, \dots, u_n be an orthonormal basis of corresponding eigenvectors.

Suppose that $\lambda_1 > \max_{i=2,\dots,n} |\lambda_i|$ (notice the absolute value).

(a) (Warm up). Let $x \in \mathbb{R}^n$ have $|\langle x, u_1 \rangle| > 0$. Prove that

$$\lim_{t \to \infty} \frac{x^{\top} A^{2t+1} x}{\|A^t x\|_2^2} = \lambda_1.$$

(b) **Power iterations.** Let $x^{(0)} \in S^{n-1}$ with $|\langle x^{(0)}, u_1 \rangle| > 0.1$ be a *unit vector* Consider the sequence $x^{(t)}$ defined by

$$x^{(t+1)} = \frac{Ax^{(t)}}{\|Ax^{(t)}\|_2}.$$

Prove that $\lim_{t\to\infty} |\langle x^{(t)}, u_1 \rangle| = 1$ and $\lim_{t\to\infty} ||Ax^{(t)}||_2 = \lambda_1$.

Hint: Consider the sequence $b_t = 1 - \langle x^{(t)}, u_1 \rangle^2$; it is always $b_t \geq 0$, and you need to show that $b_t \to 0$. Find an upper bound on b_{t+1} in terms of b_t . Remember that $||x^{(t)}||_2^2 = 1$ throughout the entire dynamic; it might also be useful to expand this in the basis u_1, \ldots, u_n .

(c) **Random initialization.** Let k be a parameter. Sample $x^{(0)} \in [-1,1]^n$ to have i.i.d. coordinates, so that each $x_i^{(0)}$ is uniform in $\{-1,-1+\frac{1}{k},\ldots,-\frac{1}{k},0,\frac{1}{k},\ldots,1-\frac{1}{k},1\}$.

Show that $Pr(\langle x^{(0)}, u_1 \rangle = 0) = O(1/k)$. In particular, assuming k is large enough, $x^{(0)}$ is with high probability a good initialization for the power method.

¹Notation: S^{n-1} stands for the Euclidean unit sphere in \mathbb{R}^n , that is, $\|x^{(0)}\|_2 = 1$.

- 3. The spectrum of a graph. Let G be a d-regular graph and denote by A_G its adjacency matrix.
 - (a) Prove that $|\lambda_i| \leq d$ for all eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ of A_G .

Hint: For an eigenvector u, consider the vertex i such that $|u_i|$ is maximal.

Recall we've shown in class d is an eigenvalue; thus, $\lambda_1 = d$.

- (b) Suppose that G has ℓ connected components. Show that the multiplicity of the eigenvalue d is exactly ℓ .
 - In particular, if *G* is connected, we get $\lambda_i < d$ for all i = 2, ..., n.
- (c) Prove that -d is an eigenvalue of G if and only if G has a **bipartite** connected component.

Hint: Let u be an eigenvalue with eigenvector -d. Use the signs of its entries to define a partition of the vertices in two parts.

- In particular, this shows that if *G* is connected and not bipartite, then $|\lambda_i| < d$ for all i = 2, ..., d, as claimed in class.
- (d) Suppose that *G* is bipartite. Prove that if λ is an eigenvalue, then so is $-\lambda$.
- 4. The spectrum of a graph examples. Find the spectrum (eigenvalues) of the followings graphs:
 - (a) K_n : the complete graph on n vertices.
 - (b) $K_{n,n}$: a bipartite graph on 2n vertices, each of whose sides has size n, and there is an edge between every vertex v on the right and w on the left.
 - (c) $K_{n,m}$: a complete bipartite graph with *uneven* sides, one with size n and the other m.