

Melon Playlist Continuation

2016010736 최우철

2021210088 허지혜

2019010718 강수연

대회 설명

- 플레이리스트에 있는 곡들과 유사한 노래들을 추천해주는 모델을 만드는 것이 목표!
- 플레이리스트에 수록된 곡과 태그의 절반 또는 전부가 숨겨져 있을 때,
 주어지지 않은 곡들과 태그를 예측한다

추천 시스템

추천시스템이란?

: 사용자에게 상품을 제안하는 SW 도구이자 기술

ex) 상품, 음악, 온라인 뉴스 추천 등 다양한 의사결정과 연관

추천 시스템

VS

협업필터링 기반 추천시스템

사용자가 이전에 구매한 상품 중에서 좋아하는 상품들과 유사한 상품들을 추천하는 방법

컨텐츠(Items)

벡터(Vector)

컨텐츠 기반 추천시스템

유사도 함수

유클리디안 유사도

코사인 유사도

거리 중심

방향성 중심

평가 함수(NDCG)

Cumulative Gain(CG)

$$Set A = [2, 3, 3, 1, 2]$$

$$Set B = [3, 3, 2, 2, 1]$$

Cumulative
$$Gain(CG) = \sum_{i=1}^{n} relevance_i$$

$$CG_A = 2 + 3 + 3 + 1 + 2 = 11$$

$$CG_B = 3 + 3 + 2 + 2 + 1 = 11$$

Discounted Cumulative Gain(DCG)

$$DCG = \sum_{i=1}^{n} \frac{relevance_i}{log_2(i+1)} DCG = \sum_{i=1}^{n} \frac{2^{relevance_i} - 1}{log_2(i+1)}$$

$$DCG_A = \frac{2}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{3}{\log_2(3+1)} + \frac{1}{\log_2(4+1)} + \frac{2}{\log_2(5+1)} \approx 6.64$$

$$DCG_B \ = \ \tfrac{3}{log_2(1+1)} + \tfrac{3}{log_2(2+1)} + \tfrac{2}{log_2(3+1)} + \tfrac{2}{log_2(4+1)} + \ \tfrac{1}{log_2(5+1)} \approx 7.14$$

$$DCG_A < DCG_B$$

평가 함수(NDCG)

Normalized Discounted Cumulative Gain(NDCG)

Recommendations Order = [2, 3, 3, 1, 2] Ideal Order = [3, 3, 2, 2, 1]

$$DCG = \frac{2}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{3}{\log_2(3+1)} + \frac{1}{\log_2(4+1)} + \frac{2}{\log_2(5+1)} \approx 6.64$$

$$iDCG = \frac{3}{log_2(1+1)} + \frac{3}{log_2(2+1)} + \frac{2}{log_2(3+1)} + \frac{2}{log_2(4+1)} + \frac{1}{log_2(5+1)} \approx 7.14$$

$$NDCG = \frac{DCG}{iDCG} = \frac{6.64}{7.14} \approx 0.93$$

_____ 컨텐츠 기반 추천시스템(TF-IDF)

특정 문서에서만 자주 등장하는 단어를 찾아서 문서 내 단어의 가중치를 계산하는 방법

- TF : 특정 문서에서 특정 단어의 등장 횟수

- DF: 특정 단어가 등장한 문서의 수

- IDF : DF에 반비례하는 수

- TF-IDF: TF와 IDF를 곱해준 값

컨텐츠 기반 추천시스템(TF-IDF)

TF

과일이 길고 노란 먹고 바나나 사과 싶은 저는 좋아요

문서10	0	0	1	0	1	1	0	0	
문서2 0	0	0	1	1	0	1	0	0	
문서3 0	1	1	0	2	0	0	0	0	
문서41	0	0	0	0	0	0	1	1	

DF

과일이 길고 노란 먹고 바나나 사과 싶은 저는 좋아요

총합1 1 1 2 3 1 2 1 1

컨텐츠 기반 추천시스템(TF-IDF)

TF-IDF

단어 IDF(역 문서 빈도)

과일이 ln(4/(1+1)) = 0.693147

길고 ln(4/(1+1)) = 0.693147

노란 ln(4/(1+1)) = 0.693147

먹고 ln(4/(2+1)) = 0.287682

바나나 ln(4/(3+1)) = 0

사과 ln(4/(1+1)) = 0.693147

싶은 ln(4/(2+1)) = 0.287682

저는 ln(4/(1+1)) = 0.693147

좋아요 ln(4/(1+1)) = 0.693147

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	0.2876	0	0.6931	0.2876	0	0
문서2	0	0	0	0.2876	0	0	0.2876	0	0
문서3	0	0.6931	0.6931	0	0	0	0	0	0

문서1 문서2 문서3 문서4

0.6931 0.6931

코사인 유사도 사용

문서4 0.6931 0

0

문서11	0.5061	. 0	0
문서2 0.5061	1	0	0
문서3 0	0	1	0
문서4 0	0	0	1

컨텐츠 기반 추천시스템(Word2Vec)

CBOW : 주변 단어(맥락)를 통해서 중심 단어를 채우는 방법 Skip-gram : 중심 단어를 통해서 주변 단어를 채우는 방법

컨텐츠 기반 추천시스템(Word2Vec)

CBOW

컨텐츠 기반 추천시스템(Word2Vec)

Skip-gram

협업필터링 기반 추천시스템

사용자의 구매 패턴이나 평점을 가지고 다른 사람들의 구매 패턴, 평점을 통해서 추천을 하는 방법

- User-based collaborative filtering : 사용자의 구매 패턴(평점)과 유사한 사용자를 찾아서 추천 리스트 생성
- Item-based collaborative filtering : 특정 사용자가 준점수간의 유사한 상품을 찾아서 추천 리스트 생성

협업필터링 기반 추천시스템(KNN)

아이템1 아이템2 아이템3 아이템4 아이템5 아이템6

사용자17	6	7	4	5	4
사용자2 6	7	?	4	3	4
사용자3 ?	3	3	1	1	?
사용자4 1	2	2	3	3	4
사용자5 1	?	1	2	3	3

협업필터링 기반 추천시스템(KNN)

User-based collaborative filtering

	평균	Cosine(i, 3)	Pearson(i, 3)
사용자1	5.5	0.956	0.894
사용자2	4.8	0.981	0.939
사용자3	2	1.0	1.0
사용자4	2.5	0.789	-1.0
사용자5	2	0.645	-0.817

	아이템1	아이템6	평균	Pearson (i, 3)
사용자1	7	4	5.5	0.894
사용자2	6	4	4.8	0.939
사용자3	3.35	0.86	2	1.0
사용자4	1	4	2.5	-1.0
사용자5	1	3	2	-0.817

협업필터링 기반 추천시스템(KNN)

Item-based collaborative filtering

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6
사용자1	7	6	7	4	5	4
사용자2	6	7	?	4	3	4
사용자3	3	3	3	1	1	1
사용자4	1	2	2	3	3	4
사용자5	1	?	1	2	3	3
Cosine(1, j)	1	0.735	0.912	-0.848	-0.813	-0.990
Cosine(6, j)	-0.990	-0.622	-0.912	0.829	0.730	1
21 - 13			- 11 1	100		

$$\hat{r}_{31} = \frac{3 * 0.735 + 3 * 0.912}{0.735 + 0.912} = 3$$

$$\hat{r}_{36} = \frac{1 * 0.829 + 1 * 0.730}{0.829 + 0.730} = 1$$

두 개의 행렬을 동시에 최적화하는 방법

Minimize
$$J = \frac{1}{2}||R - UV^T||^2$$

subject to:

No constraints on U and V

 $S = \{(i, j) : r_{ij} \text{ is observed}\}$

$$\text{Minimize } J = \frac{1}{2} \sum_{(i,j) \in S} e_{ij}^2 = \frac{1}{2} \sum_{(i,j) \in S} \left(r_{ij} - \sum_{s=1}^k u_{is} \cdot v_{js} \right)^2$$

subject to:

No constraints on U and V

$$\frac{\partial J}{\partial u_{iq}} = \sum_{j:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-v_{jq}) \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}$$

$$= \sum_{j:(i,j)\in S} (e_{ij})(-v_{jq}) \quad \forall i \in \{1 \dots m\}, q \in \{1 \dots k\}$$

$$\frac{\partial J}{\partial v_{jq}} = \sum_{i:(i,j)\in S} \left(r_{ij} - \sum_{s=1}^{k} u_{is} \cdot v_{js} \right) (-u_{iq}) \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

$$= \sum_{i:(i,j)\in S} (e_{ij})(-u_{iq}) \quad \forall j \in \{1 \dots n\}, q \in \{1 \dots k\}$$

Matrix Factorization

Regularization

1. User Latent 와 Item Latent의 임의로 초기화

User Latent	(U)		Item Latent (V)의 Transpos	e				
0.5756	1.4534		0.3668	-1.1078	1.4593		-0.2819	0.6663	1.498
		np.dot	-0.3392	0.8972	0.4528	=	0.3403	-0.8728	-0.842
-0.199	-1.218		0.3332	0.0372	0.4320		0.8384	-2.5933	4.200
							0.8354	-2.2043	-1.192
2.7297	0.48								
-0.039	-2.506								

0.5756 1.4534 -0.199 -1.218 2.7297 0.48 -0.039 -2.506

0.3668	-1.1078	1.4593
-0.3392	0.8972	0.4528

2. Gradient Descent 진행

?	3	2	-0.2819	0.6663	1.4981
5	1	2	0.3403	-0.8728	-0.8421
4	2	1	0.8384	-2.5933	4.2008
2	?	4	0.8354	-2.2043	-1.1928

1.5574
-1.218
0.48
-2.506

0.3668	-1.0401	1.4593
-0.3392	1.0663	0.4528

-0.3647	1.1967	1.3560
0.3403	-0.8728	-0.8421
0.8384	-2.5933	4.2008
0.8354	-2.2043	-1.1928

0.4928	1.5711
-0.199	-1.218
2.7297	0.48
-0.039	-2.506

0.3668	-1.0401	1.4729
-0.3392	1.0663	0.5027

3. 모든 평점에 대해서 반복 (epoch: 1) - ?를제외한모든 평점에 대해서 진행

?	3	2	
5	1	2	
4	2	1	
2	?	4	

-0.3522	1.1628	1.5157
0.3403	-1.0924	-0.9057
0.8384	-2.3273	4.2620
0.8354	-2.6308	-1.3184

0.4927	1.5711
-0.015	-1.101
2.3345	0.5363
0.2363	-2.464

0.7858	-0.4137	1.0724
-0.6250	1.0040	-0.3381

3. 모든 평점에 대해서 반복 (epoch: 1) - ?를제외한모든 평점에 대해서 진행

?	3	2
5	1	2
4	2	1
2	?	4

-0.5947	1.3736	-0.0028
0.6763	-1.0994	0.3561
1.4991	-0.4721	2.3222
1.7260	-2.5722	1.0869

4. 2~3의 과정을 10번 반복 (epoch: 10)

?	3	2	
5	1	2	
4	2	1	
2	?	4	

평점이 높은 1번 상품은 1번 유저에게 추천 o

2.7458	2.4147	0.3873
4.2476	0.5806	2.8256
3.9181	2.3825	1.3030
2.4323	-1.9994	3.2637

평점이 낮은 2번 상품은 4번 유저에게 추천 x

1.6462	1.0993	2.1118	0.8951	0.9768
1.6740	-1.072	-0.6646	0.8560	-1.1103
2.0550	0.6342			
0.3135	-2.663			

협업필터링 기반 추천시스템(ALS)

두 행렬 중 하나를 고정, 나머지 행렬을 반복하면서 최적화

2. 아이템 행렬을 고정하고 사용자 행렬을 최적화 $u_i = (V^T \times V + \lambda I)^{-1} \times V^T \times R_i$.

1. 초기 아이템, 사용자 행렬을 초기화

User Latent	
0.5756	1.4534
-0.199	-1.218
2.7297	0.48
-0.039	-2.506

Item Latent º	Transpose	
0.3668	-1.1078	1.4593
-0.3392	0.8972	0.4528

0.3151	3.2962	모든 Row에 대해서 진행 $u_1 = (V^T \times V + \lambda I)^{-1} \times V^T \times R_1 = [0.3151, 3.2962]$
1.1118	0.5423	
0.3225	0.9144	
2.1187	1.8521	

3. 사용자 행렬을 고정하고 아이템 행렬을 최적화
$$v_i = (U^T \times U + \lambda I)^{-1} \times U^T \times R_{ij}$$

모든 Row에 대해서 진행
$$v_1 = (U^T \times U + \lambda I)^{-1} \times U^T \times R_{\cdot 1} = [1.9557, -0.0900]$$

Matri

Matrix Factorization

평가를 내리지 않은 user-item의 빈 공간을 Model-Based-Learning으로 채워 넣는 것

- 유저/아이템간 유사도를 이용하는 Memory-based 와는 달리, 행렬 인수분해라는 수학적 방법으로 접근.
- 행렬이 두 개의 하위행렬로 분해 가능하며, 다시 곱해져서 원래 행렬과 동일한 크기의 단일 행렬이 될 수 있는 성질을 사용했다.

Matrix Factorization

- 일반적으로 작은 수 $\mathbf{k}(\approx 10)$ 를 고정 후, 각 유저의 \mathbf{u} 를 \mathbf{k} 차원 벡터 x_u 로 요약 후, 아이템 i를 \mathbf{k} 차원 벡터 y_i 로 요약
- $x_1, ..., x_n \in \mathbb{R}^k$ 가 유저들에 대한 factor, $y_1, ..., y_m \in \mathbb{R}^k$ 가 아이템에 대한 factor들이 되게 한다.
- 그 후 Matrix X,Y를 다음과 같이 정의한다.

$$X = \begin{bmatrix} 1 & 1 \\ 1 & \cdots & 1 \end{bmatrix} \quad Y = \begin{bmatrix} 1 & \cdots & 1 \\ y & \cdots & y_m \end{bmatrix}$$

- Claim : $R \approx X^T Y =$ 추정
- → 목적함수 최소화 및 최적의 X,Y를 찾는 최적화 문제로 변경

$$\min_{\substack{X,Y \text{ ru; observed}} } \sum_{i=1}^{N} (r_{ui} - \chi_{u}^{T}y_{i})^{2} + \lambda (\sum_{u} ||\chi_{u}||^{2} + \sum_{i=1}^{N} ||y_{i}||^{2})$$

Mat

Matrix Factorization

- 목적함수는 볼록하지 않다. (∵ র্ম yi term) 경사 하강법 사용시 속도도 느리고, iteration cost도 많이 든다.
- Variable X set 고정 후, 상수 취급 시, 목적 함수는 Y의 convex function이 되고, 반대 경우도 가능하다.
- 결론적으로 Y를 고정후 X 최적화, X 고정후 Y 최적화 한다.
- 이를 수렴할 때 까지 반복한다. 이 과정을 ALS라 한다.

Alternating Least squares

- 계산비용 분석 x_u 를 업데이트시 $O(n_u k^2 + k^3)$ 의 비용이 듦. n_u : 유저 u가 rating한 item 수 y_i 업데이트시 $O(n_i k^2 + k^3)$ 이 듦. n_i : 아이템 i에 rating한 user 수
- X,Y를 계산 하고나면, x_u , y_i 를 다른 학습 알고리즘 feature로 사용해 이 feature들과 다른 feature들을 합쳐 다른 예측 알고리즘에 활용한다.

Alternating Least squares

One of decomposion of M

 $M = UV^T U = mxd V = nxd$, d는 arbitrary한 dimention

$$Min \mid M-UV^{T}^2$$
 : 최소 제곱 오차 $\begin{bmatrix} U_i^T \\ \vdots \\ U_{n}^T \end{bmatrix} V_j = \begin{bmatrix} m_{ij} \\ \vdots \\ m_{nj} \end{bmatrix} V_j : 최소제율하로 찾는다.$

반대로, Ư[[Vi ... Vu] = [Yī ... Yīn]

만약 씨 가 충분히 클 경우, playlist i 안의 song j를 예측 가능.

Collective Matrix factorization

현재 우리는 songs와 tags를 동시 예측을 해야함. 같은 제한사항에서 제시된 두 행렬을 ALS를 사용해 해결.

$$M_{song} = \begin{array}{c} \text{playlist} \\ \vdots \\ \text{playlist} \\ \text{m} \end{array} \qquad \begin{array}{c} \text{Song I } \cdots \\ \text{Song I} \end{array} \qquad \begin{array}{c} \text{Song I } \cdots \\ \text{Song I} \end{array} \qquad \begin{array}{c} \text{Song I } \cdots \\ \text{Mag} \\ \vdots \\ \text{playlist} \\ \text{playlist} \\ \text{m} \end{array} \qquad \begin{array}{c} \text{Tag I} \\ \vdots \\ \text{playlist} \\ \text{playlist} \\ \text{m} \end{array} \qquad \begin{array}{c} \text{Tag I} \\ \vdots \\ \text{playlist} \\ \text{m} \end{array} \qquad \begin{array}{c} \text{Tag I} \\ \vdots \\ \text{mod I} \\ \text{playlist} \\ \text{m} \end{array} \qquad \begin{array}{c} \text{Tag I} \\ \vdots \\ \text{mod I} \\ \text{playlist} \\ \text{mod I} \\$$

min (II Usong Vsong T - Msong II + II Utag Vtag T - Mtag II), min 안의 식을 ①이라 두자.

 U_{song} , U_{tag} 가 유사하다고 다음과 같이 제한하자. $\|V_{song}$, - V_{tag} , $\|^2 \le \lambda$

정규화 form을 다음과 같이 둔다. Mīn (χείδοφι tag) || Ux Vx^T- Mx || + || Usong - Uτος || *) Or λ=Ο Usong = Uτος = U

위 form을 통해 ①식 = (U [V song] - [Msong Mrttg]) 을 얻는다.

이를 통해 어떤 코드가 오던 ALS를 통해 문제를 해결 가능하다.

EDA 코드

train.json

1) 데이터 불러오기

```
In [2]: import pandas as pd
        train = pd.read_json('train.json', typ = 'frame')
In [3]: train.head()
Out [3]:
          tags
                                                                 plyIst_title
                                                                                         songs
                                                                                                                        like_cnt updt_date
                                                                                         [525514, 129701, 383374, 562083,
                                                                                                                                2013-12-19
        0 [락]
                                                                  여행같은 음악
                                                                                         297861, 13954...
                                                                                                                                 18:36:19.000
                                                                                                                                2014-12-02
                                                                                         [432406, 675945, 497066, 120377,
        1 [추억, 회상]
                                                          10532 요즘 너 말야
                                                                                         389529, 24427...
                                                                                                                                 16:19:42.000
                                                                  편하게, 잔잔하게 들을 수 있 [83116, 276692, 166267, 186301,
                                                                                                                                2017-08-28
        2 [까페, 잔잔한]
                                                                                          354465, 256598...
                                                                                                                                07:09:34.000
                                                                  크리스마스 분위기에 흠뻑 취 [394031, 195524, 540149, 287984,
         [연말, 눈오는날, 캐럴, 분위기, 따듯한, 크리스마스캐럴, 겨
                                                                                                                                2019-12-05
          울노래, 크리스마스...
                                                                  하고 싶을때
                                                                                         440773, 10033...
                                                                                                                                15:15:18.000
                                                                                         [159327, 553610, 5130, 645103,
                                                                                                                                2011-10-25
        4 [댄스]
                                                          27616 추억의 노래 ㅋ
                                                                                         294435, 100657,...
                                                                                                                                 13:54:56.000
```

```
In [4]: train.shape
Out [4]: (115071, 6)
In [5]: train.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 115071 entries, 0 to 115070
        Data columns (total 6 columns):
             Column
                           Non-Null Count
                                            Dtype
         0
                           115071 non-null
                                            object
             tags
                           115071 non-null
             id
                                          int64
             plyIst title 115071 non-null object
             songs
                           115071 non-null object
             like_cnt
                           115071 non-null
                                          int64
         5 updt_date
                           115071 non-null object
        dtypes: int64(2), object(4)
        memory usage: 5.3+ MB
```


train.json

2) id+song, id+tag만 추출해 DataFrame 생성

EDA 코드

train.json

3) 생성한 DataFrame 확인

In [10]: plyIst_tag_map

Out [10]:

	id	tags
0	61281	락
1	10532	추억
2	10532	회상
3	76951	까페
4	76951	잔잔한
476326	131982	퇴근길
476327	100389	노래추천
476328	100389	팝송추천
476329	100389	팝송
476330	100389	팝송모음

476331 rows × 2 columns

```
In [18]: train_song_cnt = plyIst_song_map.songs.nunique()
train_tag_cnt = plyIst_tag_map.tags.nunique()

print("곡 수 : %s" %train_song_cnt)
print("태그 수 : %s" %train_tag_cnt)
```

곡 수 : 615142 태그 수 : 29160

train.json

4) 워드 크라우드 그리기

```
In [27]: from pandas.plotting import register_matplotlib_converters
         import seaborn as sns
         import matplotlib.pyplot as plt
         import matplotlib as mpl
         import matplotlib.pyplot as plt
         import matplotlib.font_manager as fm
         font_path = 'C:/WINDOWS/FONTS/BATANG.TTC'
         font_name = fm.FontProperties(fname=font_path, size=10).get_name()
         plt.rc('font', family=font_name, size=12)
         plt.rcParams["figure.figsize"] = (20, 10)
         register_matplotlib_converters()
         mpl.font_manager._rebuild()
         mpl.pyplot.rc('font', family='NanumGothic')
         from wordcloud import WordCloud
         # 태그 별 매핑 빈도 수 저장
         tag_cnt = plyIst_tag_map.groupby('tags').tags.count().reset_index(name = 'mapping_cnt')
         tag_cnt['tags'] = tag_cnt['tags'].astype(str)
         tag_cnt['mapping_cnt'] = tag_cnt['mapping_cnt'].astype(int)
         # 빈도 수가 1000회 이상인 태그만 저장
         tag_cnt = tag_cnt[tag_cnt['mapping_cnt'] >= 1000]
         word_count = list(zip(tag_cnt['tags'], tag_cnt['mapping_cnt']))
         wc = WordCloud(font_path = font_path, background_color = 'white', max_words = 100, width = 450, height = 450)
         wc.generate_from_frequencies(dict(word_count)).to_image()
```


EDA 코드

train.json

5) 수록곡 분포 시각화

```
In [28]: # 1. id 별로 리스트 뜯어보기
plyIst_song_cnt = pd.DataFrame(plyIst_song_map.groupby('id').songs.nunique())
# 2-1. grid setting
grid_list = [i*2 for i in range(1, 101)]
# 2-2. plotting
plt.hist(plyIst_song_cnt['songs'], grid_list, color = "lightgrey", edgecolor = "black")
plt.show()
```


In [32]: round(plyIst_song_cnt.describe(),2)

Out [32]:

	songs
count	115071.00
mean	45.94
std	43.95
min	1.00
25%	19.00
50%	30.00
75%	54.00
max	200.00

플레이리스트 별 수록된 곡 수의 분포를 아이디 별로 살펴보니 평균 약 46개의 곡이 리스트 안에 수록되어 있으며 최대 수록곡은 200곡이 있다.

train.json

6) 태그 분포 시각화

```
In [33]: # 1. 플레이리스트 별 때핑 태그 수 count 테이블 생성: plyIst_tag_cnt
plyIst_tag_cnt = pd.DataFrame(plyIst_tag_map.groupby('id').tags.nunique())

# 2. plotting
plt.hist(plyIst_tag_cnt['tags'], range(1, 12), color = "lightgrey", edgecolor = "black")
plt.show()
```


In [34]: round(plyIst_tag_cnt.describe(),2)

Out [34]:

	tags
count	115071.00
mean	4.14
std	3.07
min	1.00
25%	2.00
50%	3.00
75%	6.00
max	11.00

플레이리스트 당 태그는 평균 4개 이며 가장 많은 태그 수는 11개이다.

train.json

7) 많이 매핑된 상위 태그 50개 시각화

```
In [35]: # 1. unnest 데이터프레임인 plyIst_tag_map 테이블에서 태그 이름 정렬 후 list로 묶기
plyIst_tag_list_sort = plyIst_tag_map sort_values(by = ['id', 'tags']).groupby('id').tags.apply(list).reset_index(name = 'tag_list')
# 2. 집계를 위해 1번 테이블에서 list 타입을 문자열 타입으로 변경
plyIst_tag_list_sort['tag_list'] = plyIst_tag_list_sort['tag_list'].astype(str)
# 3. 태그 리스트 별 메핑되는 플레이리스트 수 집계 테이블 생성 : tag_list_plyIst_cnt
tag_list_plyIst_cnt = plyIst_tag_list_sort.groupby('tag_list').id.nunique().reset_index(name = 'plyIst_cnt')
# 4. 매필 수 기준 상위 50개 필터링
tag_list_plyIst_cnt = tag_list_plyIst_cnt.nlargest(50, 'plyIst_cnt')
# 5. plotting
plt.figure(figsize = (11, 15))
tag_list_plyIst_cnt_plot = sns.barplot(y = 'tag_list', x = 'plyIst_cnt', data = tag_list_plyIst_cnt, color = 'grey')
tag_list_plyIst_cnt_plot.set_title('매핑된 태그 리스트 상위 50개')
tag_list_plyIst_cnt_plot.set_xlabel('대핑된 플레이리스트 수')
tag_list_plyIst_cnt_plot.set_xlabel('대핑된 플레이리스트 수')
plt.show()
```



```
1) 필요한 패키지 불러오기

# -*- coding: utf-8 -*-

import copy

import random

# fire 패키지는 파이썬에서 모든 객체를 command line interface로 만들어준다.

import fire

import numpy as np

# 같은 폴더에 arena_util.py에서 함수 호출

from arena_util import load_json

from arena_util import write_json
```

2) main

```
109 if __name__ == "__main__":
110 fire.Fire(ArenaSplitter)
```


3) Run method

```
# run method 지정해주기
                                         # train, val 나눈 데이터 json 파일 작성
def run(self, fname):
                                         print("Original train...")
   # raondom shuffle 때문에 seed 지정
                                         write json(train, "orig/train.json")
   random.seed(777)
                                         print("Original val...")
   print("Reading data...\n")
                                         write json(val, "orig/val.json")
   # ison 파일 불러오기
   playlists = load_json(fname)
   # 불러온 파일 순서 섞기
                                         print("Masked val...")
   random.shuffle(playlists)
                                         # masking 작업
   print(f"Total playlists: {len(playlists)}")
                                         val q, val a = self. mask data(val)
   print("Splitting data...")
                                         write json(val q, "questions/val.json")
   # split
                                         write json(val a, "answers/val.json")
   train, val = self._split_data(playlists)
```


3) Run method

```
<arena._util.py>
                                               def Load_json(fname):
# run method 지정해주기
                                                   with open(fname, encoding="utf-8") as f:
def run(self, fname):
                                                        json_obj = json.load(f)
   # raondom shuffle 때문에 seed 지정
                                                    return ison_obi
   random.seed(777)
   print("Reading data...\n")
   # json 파일 불러오기
   playlists = load json(fname)
                                                          def _split_data(self, playlists):
   # 불러온 파일 순서 섞기
                                                              tot = len(playlists)
   random.shuffle(playlists)
                                                              # 8:2로 나누기
   print(f"Total playlists: {len(playlists)}")
                                                              train = playlists[:int(tot*0.80)]
                                                              val = playlists[int(tot*0.80):]
   print("Splitting data...")
   # split
                                                              return train, val
   train, val = self._split_data(playlists)
```



```
# 속해져 있으면 error 발생
raise TypeError
# 부모 directory 경로 설정
parent = os.path.dirname(fname)
# 새로운 경로 만들기
distutils.dir_util.mkpath("./arena_data/" + parent)
with io.open("./arena_data/" + fname, "w", encoding="utf-8") as f:
    json_str = json.dumps(data, ensure_ascii=False, default=_conv)
    f.write(json_str)
```

```
# train, val 나눈 데이터 json 파일 작성
print("Original train...")
write_json(train, "orig/train.json")
print("Original val...")
write_json(val, "orig/val.json")

print("Masked val...")
# masking 작업
val_q, val_a = self._mask_data(val)
write_json(val_q, "questions/val.json")
write_json(val_a, "answers/val.json")
```


코드

Split_data.py

```
def mask data(self, playlists):
    playlists = copy.deepcopy(playlists)
    tot = len(playlists)
    song_only = playlists[:int(tot * 0.3)] # 곡만 존재
    song and tags = playlists[int(tot * 0.3):int(tot * 0.8)] # 곡, 태그 둘 다 존재
    tags only = playlists[int(tot * 0.8):int(tot * 0.95)] # 태그만 존재
   title_only = playlists[int(tot * 0.95):] # 제목만 존재
   print(f"Total: {len(playlists)}, "
         f"Song only: {len(song_only)}, "
         f"Song & Tags: {len(song and tags)}, "
         f"Tags only: {len(tags_only)}, "
         f"Title only: {len(title_only)}")
    song_q, song_a = self._mask(song_only, ['songs'], ['tags'])
    songtag_q, songtag_a = self._mask(song_and_tags, ['songs', 'tags'], [])
    tag_q, tag_a = self._mask(tags_only, ['tags'], ['songs'])
   title_q, title_a = self._mask(title_only, [], ['songs', 'tags'])
    q = song_q + songtag_q + tag_q + title_q
    a = song_a + songtag_a + tag_a + title_a
    # random하게 섞기
    shuffle_indices = np.arange(len(q))
    np.random.shuffle(shuffle_indices)
    q = list(np.array(q)[shuffle_indices])
    a = list(np.array(a)[shuffle_indices])
   return q, a
```

```
def mask(self, playlists, mask cols, del cols):
   # 깊은 복사 : 내부에 객체들까지 모두 새롭게 copy
   q pl = copy.deepcopy(playlists)
   a_pl = copy.deepcopy(playlists)
   for i in range(len(playlists)):
       # 삭제할 컬럼
       for del_col in del_cols:
           q pl[i][del col] = []
           if del col == 'songs':
               # 상위 100개 곡 추출
               a_pl[i][del_col] = a_pl[i][del_col][:100]
           elif del col == 'tags':
               # 상위 10개 태그 추출
               a_pl[i][del_col] = a_pl[i][del_col][:10]
       # masking
       for col in mask cols:
           mask_len = len(playlists[i][col])
           mask = np.full(mask len, False)
           # 절반은 true, 절반은 false
           mask[:mask_len//2] = True
           np.random.shuffle(mask)
           q_pl[i][col] = list(np.array(q_pl[i][col])[mask])
           a pl[i][col] = list(np.array(a pl[i][col])[np.invert(mask)])
```

return q pl, a pl

데이터를 불러와서 train, val 나누는데 Mask 작업을 같이 해준다.

1) 필요한 패키지 불러오기

```
# -*- coding: utf-8 -*-
import fire
from tqdm import tqdm

from arena_util import load_json
from arena_util import write_json
from arena_util import remove_seen
from arena_util import most_popular
```

2) main

```
# MostPopular이 class로 정의되어있는데하나의 클래스를 interpreter 형식으로 인식시켜주게 만들어준다.
# interpreter란 사용자가 입력한 소스 코드를 실행하는 환경을 뜻한다.
if __name__ == "__main__":
    fire.Fire(MostPopular)
```


3) Run method

```
# train_fname=train.json, question_fname=val.json

def run(self, train_fname, question_fname):
    print("Loading train file...")
    train = load_json(train_fname)

    print("Loading question file...")
    questions = load_json(question_fname)

    print("Writing answers...")
    answers = self_generate_answers(train, questions)
    write_json(answers, "results/results.json")
```

```
def load_ison(fname):
         with open(fname, encoding="utf-8") as f:
              json_obj = json.load(f)
         return ison_obi
def write_json(data, fname):
   def _conv(o):
      # isinstance는 첫번째 객체가 뒤에 타입에 속해있는지 확인한다.
      # o라는 객체가 numpy 배월 int32, int84 타일에 속해있는지 확인한다
      if isinstance(o, (np.int64, np.int32)):
          return int(o)
      # 李胡君 있으면 error 발생
      raise TypeError
   # 부모 directory 경로 설정
   parent = os.path.dirname(fname)
   # 새로운 결로 만들기
   distutils.dir_util.mkpath("./arena_data/" + parent)
   with io.open("./arena_data/" + fname, "w", encoding="utf-8") as f:
      json_str = json.dumps(data, ensure_ascii=False, default=_conv)
      f.write(json_str)
```



```
47 def most_popular(playlists, col, topk_count):
class MostPopular:
                                                                 # 리스트 개수 세기
                                                                 c = Counter()
                                                           49
   def generate answers(self, train, questions):
                                                           50
                                                                  # 각 플레이리스트마다 컬럼을 count 시켜서 업데이트 해주기
       # 빈도수가 가장 높은 값을 출력한다.
                                                                  for doc in playlists:
                                                                     c.update(doc[col])
       _, song_mp = most_popular(train, "songs", 200)
                                                                  # most_common : 빈도수 높은것부터 출력
                                                           53
       _, tag_mp = most_popular(train, "tags", 100)
                                                                  # topk : 반환형이 (song,게수) 의 tuple 형태
                                                           54
                                                           55
                                                                 topk = c.most_common(topk_count)
                                                           56
                                                                  return c, [k for k, v in topk]
       answers = []
       for q in tqdm(questions):
          answers.append({
                                                           40 def remove_seen(seen, 1):
              "id": q["id"].
                                                                   # set 자료구조를 통해 중복을 제거한다.
                                                            41
                                                           42
                                                                   seen = set(seen)
              "songs": remove seen(q["songs"], song mp)[:100],
                                                           43
                                                                   #실제 데이터에는 없는 태그와 수록곡을 불러온다.
              "tags": remove_seen(q["tags"], tag_mp)[:10],
                                                                   return [x for x in | if not (x in seen)]
                                                           44
          })
```

return answers # question에 적힌 노래를 제외한 상위를 불러오기

Train data를 불러오고 val data를 불러와 답을 작성하는 파일이다.

Genre_most_popular.py

```
1) 필요한 패키지 불러오기
```

```
# -*- coding: utf-8 -*-
from collections import Counter

import fire
from tqdm import tqdm

from arena_util import load_json
from arena_util import write_json
from arena_util import remove_seen
from arena_util import most_popular
```

```
2) main

if __name__ == "__main__":
    fire.Fire(GenreMostPopular)
```


Genre_most_popular.py

3) Run method

```
def run(self, song_meta_fname, train_fname, question_fname):
    print("Loading song meta...")
    song_meta_json = load_json(song_meta_fname)

    print("Loading train file...")
    train_data = load_json(train_fname)

    print("Loading question file...")
    questions = load_json(question_fname)

    print("Writing answers...")
    answers = self._generate_answers(song_meta_json, train_data, questions)
    write_json(answers, "results/results.json")
```



```
def _generate_answers(self, song_meta_json, train, questions):
   # key를 song id value를 해당 song id에 대한 정보로 dictionary 생성
   song meta = {int(song["id"]): song for song in song meta json}
   # 상위 200개 곡
   song_mp_counter, song_mp = most_popular(train, "songs", 200)
   # 상위 100개 태그
   tag_mp_counter, tag_mp = most_popular(train, "tags", 100)
   song mp per genre = self. song mp per genre(song meta, song mp counter)
   answers = []
   for a in tadm(questions):
       genre counter = Counter()
           for sid in q["songs"]:
               for genre in song_meta[sid]["song_gn_gnr_basket"]:
                    genre counter.update({genre: 1})
           top genre = genre counter.most common(1)
           # 가장 인기있는 장르가 존재하면
           if len(top genre) != 0:
               # 해당 장르에서 가장 많이 등장한 song 추천
               cur songs = song mp per genre[top genre[0][0]]
           else:
               # 아니면 가장 많이 등장한 노래 추천
               cur_songs = song_mp
           answers.append({
                "id": q["id"],
                "songs": remove_seen(q["songs"], cur_songs)[:100],
                "tags": remove_seen(q["tags"], tag_mp)[:10]
           3)
```

return answers

```
47 def most_popular(playlists, col, topk_count):
        # 리스트 개수 세기
49
        c = Counter()
        # 각 플레이리스트마다 컬럼을 count 시켜서 업데이트 해주기
50
51
        for doc in playlists:
            c.update(doc[col])
53
        # most_common : 빈도수 높은것부터출력
54
        # topk : 반환형이 (song.개수) 의 tuple 형태
        topk = c.most_common(topk_count)
55
56
        return c, [k for k, v in topk]
  class GenreMostPopular:
      def _song_mp_per_genre(self, song_meta, global_mp):
         res = \{\}
         # key는 song meta에 있던 genre, value는 해당 genre에 속한 id값
         for sid, song in song_meta.items():
            for genre in song['song gn_gnr_basket'];
                res.setdefault(genre, []).append(sid)
         for genre, sids in res.items():
            # Before: res {genre : song id}
            # After: res {genre : Counter(song_id : 州今)}
            res[genre] = Counter({k: global_mp.get(int(k), 0) for k in sids})
            # 가장 많은 상위 200개 song_id만 추출
            res[genre] = [k for k, v in res[genre].most common(200)]
```

return res

코드 결과

In [3]: results = pd.read_json("results.json")

In [2]: import pandas as pd

In [4]: results

Out [4]:

	id	songs	tags
0	147640	[348200, 443914, 362966, 518420, 553171, 44016	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
1	149981	[213435, 222305, 383011, 166761, 701801, 49996	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
2	82689	[663256, 140867, 177460, 554751, 686809, 41328	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
3	39967	[443914, 518420, 704707, 588471, 326204, 45566	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
4	7531	[144663, 675115, 396828, 701557, 520093, 65049	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
23010	7433	[696494, 202185, 571790, 595181, 52192, 29793,	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
23011	112943	[144663, 116573, 357367, 366786, 654757, 13314	[기분전환, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤, 카페]
23012	134619	[357367, 174749, 461341, 169984, 348200, 50503	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 밤, 추억]
23013	113348	[144663, 349492, 675115, 463173, 396828, 42155	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]
23014	132400	[705515, 321724, 335757, 205939, 650367, 15464	[기분전환, 감성, 휴식, 발라드, 잔잔한, 드라이브, 힐링, 사랑, 새벽, 밤]

23015 rows × 3 columns

결과 평가 지표

nDCG로 모델 성능 평가

```
sample score
   Music nDCG: 0.165272
   Tag nDCG: 0.329114
   Score: 0.189849
def idcg(self, 1):
   return sum((1.0 / np.log(i + 2) for i in range(1)))
def __init__(self):
   self. idcgs = [self._idcg(i) for i in range(101)]
def _ndcg(self, gt, rec):
   dcg = 0.0
   for i, r in enumerate(rec):
       if r in gt:
           dcg += 1.0 / np.log(i + 2)
   return dcg / self._idcgs[len(gt)]
```

```
music_ndcg = 0.0
    tag ndcg = 0.0
    for rec in rec_playlists:
        gt = gt_dict[rec["id"]]
        music_ndcg += self._ndcg(gt["songs"], rec["songs"][:100])
        tag_ndcg += self._ndcg(gt["tags"], rec["tags"][:10])
    music_ndcg = music_ndcg / len(rec_playlists)
    tag_ndcg = tag_ndcg / len(rec_playlists)
    score = music_ndcg * 0.85 + tag_ndcg * 0.15
    return music_ndcg, tag_ndcg, score
def evaluate(self, gt_fname, rec_fname):
    try:
        music_ndcg, tag_ndcg, score = self._eval(gt_fname, rec_fname)
        print(f"Music nDCG: {music ndcg:.6}")
        print(f"Tag nDCG: {tag ndcg:.6}")
        print(f"Score: {score:.6}")
    except Exception as e:
        print(e)
```


val[(val['tags']+val['songs']).map(len) == 0]

	tags	id	plyIst_title	songs	like_cnt	updt_date		
1	[]	131447	앨리스테이블	0	1	2014-07-16 15:24:24.000	t	
9	[]	142007	기분 좋은 재즈와 함께 만드는 달달한 하루	0	0	2015-06-22 09:11:02.000	Ī	
35	[]	65114	■■■■ 사랑,그리고이별 ■■■■	0	6	2010-10-27 10:34:34.000	1	
57	[]	87700	마쉬멜로우같은 멜로우한 음악	0	6	2016-01-14 10:19:30.000	1	
71	D	35271	공부와 독서를 위한 #Newage	0	10	2020-01-17 15:46:20.000	9	
							1	
22903	0	140513	10년이 지나 들어도 좋은 감성 Ballad	0	405	2016-01-11 10:58:05.000	8	
22920	[]	124704	가사의 의미와 뜻은모른다!! 오직 멜로디로만 선곡한 팝송!!	0	27	2016-02-05 12:31:59.000	1	
22981	D	13045	13045 * 카페 느낌 샹송♭		38	2011-07-12 00:58:39.000	1	
22991	[]	[] 32537 컨트리 황제 조니 캐시가 선 레코드 시절 발표한 : 기 대표작		0	28	2019-06-17 14:22:48.000		
22996		86721	해 저무는 밤	0	5	2016-04-27 15:32:55.000		

train.tail()

	tags	id	plyIst_title	songs	like_cnt	updt_date
115066	[록메탈, 밴드사운드, 록, 락메탈, 메탈, 락, extreme]	120325	METAL E'SM #2	[429629, 441511, 612106, 516359, 691768, 38714	3	2020-04-17 04:31:11.000
115067	[일렉]	106976	빠른 리스너를 위한 따끈 따끈한 최신 인기 EDM 모음!	[321330, 216057, 534472, 240306, 331098, 23288	13	2015-12-24 17:23:19.000
115068	[담시, 가족, 눈물, 그리 움, 주인공, 나의_이야 기, 사랑, 친구]	11343	#1. 눈물이 앞을 가리는 나의_이야기	[50512, 249024, 250608, 371171, 229942, 694943	4	2019-08-16 20:59:22.000
115069	[잔잔한, 버스, 퇴근버스, Pop, 풍경, 퇴근길]	131982	퇴근 버스에서 편히 들으 면서 하루를 마무리하기 에 좋은 POP	[533534, 608114, 343608, 417140, 609009, 30217	4	2019-10-25 23:40:42.000
115070	[노래추천, 팝송추천, 팝 송, 팝송모음]	100389	FAVORITE POPSONG!!!	[26008, 456354, 324105, 89871, 135272, 143548,	17	2020-04-18 20:35:06.000

- 1. 데이터를 보면 제목만 주어지고 songs 와 tags에 대한 정보가 전혀 없는 경우가 있다.
- 2. Tags와 플레이리스트를 보면 제목에 있는 단어를 그대로 tags에 넣는 경우가 많기 때문에 단어를 파악할 필요가 있다.
- 3. 따라서 데이터의 제목을 활용하여 전처리를 해보자!


```
import json
import pandas as pd

with open("/content/gdrive/My Drive/project_data/train.json",'r',encoding='utf-8',errors='ignore') as
F:
    data = json.load(F)
    train = pd.DataFrame(data)

with open("/content/gdrive/My Drive/project_data/val.json",'r',encoding='utf-8',errors='ignore') as F:
    data = json.load(F)
    val = pd.DataFrame(data)
print(train.shape)
```

```
print(train.shape)
print(val.shape)
```

(115071, 6) (23015, 6)

```
import json
import re
from collections import Counter
from typing import *

import matplotlib.pyplot as plt
import numpy as np
from khaiii import KhaiiiApi
```

```
def re_sub(series: pd.Series) -> pd.Series:
   series = series.str.replace(pat=r'[¬-ㅎ]', repl=r'', regex=True) # ㅋ 제거용
   series = series.str.replace(pat=r'[^\#\#s]', repl=r'', regex=True) # 与今是자 제거
   series = series.str.replace(pat=r'[]{2,}', repl=r'', regex=True) # 골백 제거
   series = series.str.replace(pat=r'[#u3000]+', repl=r'', regex=True) # u3000 제2/
   return series
def flatten(list of list : List) -> List:
   flatten = [j for i in list_of_list for j in i]
   return flatten
def get_token(title: str, tokenizer)-> List[Tuple]:
   if len(title)== 0 or title== ' ': # 제목이 골백인 경우 tokenizer에러 발생
       return []
   result = tokenizer.analyze(title)
   result = [(morph.lex, morph.tag) for split in result for morph in split.morphs] # (형태소, 품사) 튜플의 리스트
   return result
def get_all_tags(df) -> List:
   tag_list = df['tags'].values.tolist()
   tag list = flatten(tag list)
   return tag list
```

```
tokenizer = KhaiiiApi()
all_tag = get_all_tags(train)
token_tag = [get_token(x, tokenizer) for x in all_tag] # 태그를 형태소 분석
```


[634861, 270738,

449477, 56342...

MOONLIGHT

163936, 692209, 0

[일렉트로니카, 포크, 메탈,

락, 댄스, 인디]

	tags	id	plyIst_title	songs	like_cnt	updt_date	ply_token			Part of	Speech - Tags
0,000	[락]	61281	여행같은 음악	[525514, 129701, 383374, 562083, 297861, 13954	71	2013-12-19 18:36:19.000	[(여행, NNG), (음 악, NNG)]		JKB - VA -		
	[추억, 회상]	10532	요즘 너 말야	1432406 675945			[(요즘,		NA -		
	[까페, 잔잔한]	76951	편하게 잔잔하 게 들을 수 있는 곡								
	[연말, 눈오는날, 캐럴, 분위기, 따듯한, 크리스마스캐럴, 겨울노래, 크리스마스,	147456	크리스마스 분 위기에 흠뻑 취 하고 싶을때		_					05이다.	
	[댄스]	27616	추억의 노래					tags 성 개선면		도보다 높다. 좋다	
	[운동, 드라이브, Pop, 트로피 컬하우스, 힐링, 기분전환, 2017, 팝, 트렌	69252	2017 Pop Trend		•	_		" – –	"	, ,	· · · · · · · · · · · · · · · · · · ·
	[짝사랑, 취향저격, 슬픔, 고 백, 사랑, 이별]	45339	짝사랑고백사링 이별슬픔 감성 을 자극하는곡 들								150000 200000 250000 Usage
	2						(곡, NNG)]	,	워디	ᄉ ᄇ서으 쉐 너 +ノ	aac에 가자 자주 드
	[잔잔한, 추억, 희상]	36557	멍청이 내맘도 몰라	[496913, 632529, 501426, 515574, 411161, 10341	5	2008-09-23 22:32:02.000	[(맘, NNG)]				ags에 가장 자주 등 두고 나머지를 제기
ĺ			DANCING IN	[634861, 270738.				a .	하	H tags에 대하 예를	측옥 식시

2019-11-30 21:17:59.000 [(01, SN)]

한 채 tags에 대한 예측을 실시

```
# 필요한거 import

from implicit.evaluation import *

from implicit.als import AlternatingLeastSquares as ALS

from implicit.bpr import BayesianPersonalizedRanking as BPR

import numpy as np

import os

os.environ['KMP_DUPLICATE_LIB_OK']='True'

from sklearn.utils import shuffle

from scipy.sparse import *
```

```
# 파일 둘러오기
import pandas as pd
os.chdir('c:/temp')
tr = pd.read_json("train.json")
te = pd.read_json("val.json")
```

```
# 태그랑 언급횟수 딕셔너리로 저장
ret = []
for tag in tr.tags.tolist():
  ret += tag
from collections import Counter
r = dict(Counter(ret))
```

```
# 내림차순 정렬
r = sorted(r.items(), key=lambda x: -x[1])
```

```
# 삼위권 태그 추출
top_tags = [x[0] for x in r[:1000]]
```

```
# train, val 안 songs, tags, ids 리스트로 변환
tr_songs = tr.songs.tolist()
te_songs = te.songs.tolist()
tr_tags = tr.tags.tolist()
te tags = te.tags.tolist()
te ids = te.id.tolist()
```

```
# tr 변수에 view, tag_to_idx 값 추가
from itertools import groupby
tr = []
iid to idx = \{\}
tag_to_idx = {}
idx = 0
for i, I in enumerate(tr_songs):
    view = 1
   for item id in view:
        if item id not in iid to idx:
           iid_to_idx[item_id] = idx
           idx += 1
   view = [iid_to_idx[x] for x in view]
   tr.append(view)
idx = 0
n items = len(iid to idx)
for i, tags in enumerate(tr_tags):
   for tag in tags:
                                              # tr변수 내 데이터 섞기
       if tag not in tag_to_idx:
           tag to idx[tag] = n items + idx
           idx += 1
n_tags = len(tag_to_idx)
# n_items = len(iid_to_idx)
# n_tags = len(tag_to_idx)
```

```
# te변수에 ret 추가
from itertools import groupby
te = []
idx = 0
for i, I in enumerate(te songs):
   view = L
   ret = []
   for item_id in view:
       if item_id not in iid_to_idx:
           cont inue
       ret.append(iid_to_idx[item_id])
   te.append(ret)
idx = 0
for i, tags in enumerate(te_tags):
   ret = []
   for tag in tags:
        if tag not in tag to idx:
           cont inue
       ret.append(tag)
   te[i].extend([tag to idx[x] for x in ret])
```

```
tr = shuffle(tr)
                                         # 데이터 목서너리화
tr[i].extend([tag_to_idx[x] for x in tags] idx_to_iid = {x:y for(y,x) in iid_to_idx.items()}
                                          idx_to_tag = {(x - n_items):y for(y,x) in tag_to_idx.items()}
```

```
# 최소행을 생성
from scipy.sparse import csr_matrix

tr_csr = csr_matrix(tr.astype(float), (n_tags,n_items))
te_csr = csr_matrix(te.astype(float), (n_tags,n_items))

# tr_osr = rec_util.lil_to_csr(tr, (len(tr), n_tags + n_items))
# te_csr = rec_util.lil_to_csr(te, (len(te), n_tags + n_items))
```

```
# 희소행렬 행방향으로 붙이기

import scipy.sparse

r = scipy.sparse.vstack([te_csr, tr_csr])

r = csr_matrix(r)
```

```
# als 모델링
als_model = ALS(factors=128, regularization=0.08)
als_model.fit(r.T * 15.0)
```

```
# 적용
item_model = ALS(use_gpu=False)
tag_model = ALS(use_gpu=False)
item_model.user_factors = als_model.user_factors
tag_model.user_factors = als_model.user_factors
```

item_model.item_factors = als_model.item_factors[:n_items]
tag_model.item_factors = als_model.item_factors[n_items:]

```
# 학습된 추천 아이템, 태그 저장
item_ret = []
tag_ret = []
from tadm.auto import tadm
for u in tgdm(range(te csr.shape[0])):
    item_rec = item_model.recommend(u, item_rec_csr, N=100)
    item_rec = [idx_to_iid[x[0]] for x in item_rec]
    tag_rec = tag_model.recommend(u, tag_rec_csr, N=100)
    tag_rec = [idx_to_tag[x[0]] for x in tag_rec if x[0] in idx_to_tag]
    item ret.append(item rec)
    tag ret.append(tag rec)
tag model.item factors
array([[ 3.55746090e-01, -5.69548428e-01, -5.59754260e-02, ....
        4.83457536e-01, 1.95368275e-01, 1.14752978e-01],
      [ 1.13077201e-01, 4.99642581e-01, 1.01401411e-01, ....
        8.70525062e-01, 5.08861303e-01, 4.67959046e-01],
      [ 1.34080434e-02, 5.13347864e-01, 1.56607270e-01, ...,
        6.01837337e-01. 4.08071131e-01. 3.32719356e-011.
      [-5.10524551e-04. 3.28546972e-04. 8.81741638e-04. ....
        8.72330857e-04, 1.68862971e-04, 1.18788111e-03],
      [ 9.88858286e-04, 1.02399255e-03, 3.29685328e-03, ...,
        1.42479164e-03. -1.69632386e-03. -1.65981124e-031.
      [ 9.73270435e-05, 1.62653669e-04, -2.30579590e-05, ...,
        1.98975016e-04. 2.20649337e-04. -1.06205756e-04]]. dtype=float32)
```

결론

활동을 통해 얻은 경험

- 1. 추천 알고리즘에 대해 알아보고 싶었는데 팀 프로젝트를 계기로 공부하게 되어서 좋았다.
- 2. json 파일 다루는 방법 말고도 처음 보는 모델 과 평가 기준 등등을 알게 되어서 신기하다.
 - 3. 추천 알고리즘 관련 이론 및 수학적 지식을 코드로 작성해 보면서 실력 향상에 도움이 됨.

아쉬운 점

- 1. 여러가지 feature들을 담은 데이터들이 많았는데, 주로 train, test 데이터만 쓴 것 같아서 아쉬웠다.
 - 2. 처음 공부하는 추천 알고리즘이었는데 처음부터 난이도가 높은 주제를 다뤄서 스스로 해결하지 못한 점이 아쉬웠다.

Reference

- [1] Train.json EDA, https://arena.kakao.com/forum/topics/191
- [2] collaborative filtering, https://arena.kakao.com/forum/topics/227
- [3] Matrix factorization, https://arena.kakao.com/forum/topics/200
- [4] baseline code, https://github.com/kakao-arena/melon-playlist-continuation
- [5] study baseline code, https://bladejun.tistory.com/21