Scientific Method

CSW

Susan Stepney

Department of Computer Science
University of York

Requirements

Was the project a success?

- Engineering project
 - requirements, design, build, test
 - evaluate: does it satisfy the requirements?
- Experimental project
 - hypothesis, design and perform experiment, results
 - evaluate: results confirm/reject the hypothesis?
- you have to be able to determine whether/how well you have answered the question
- · so ... you have to know what the question is!

Have a clear question

- clear statement of what you are trying to build/discover
 - implement "user friendly telepathic application interface"
 - investigate "all birds are white"
- posed in such a way that you can tell if you have answered it
 - requirement: "user friendly"
 - · how will you know if yours is?
 - all the birds you investigated were white swans
 - · what has your investigation shown?

Quantifying requirements (1)

- · all requirements must be testable
 - basis of acceptance tests in real life
 - basis of your project evaluation
- so quantify the requirement
- "high availability"
- "availability of 99.9%" ✓
 - (although still not perfect)
 - this quantification must not be arbitrary shorthand for "lots" or "very high"
 - it must be derived and justified

Quantifying requirements (2)

thinking about testability helps elicit the real requirement

- how would you test "easy to use"?
 - "the product shall be easy to use"
 - "the product shall be easy to use by the general public"
 - quantified: "85% of a representative sample group shall be able to successfully discover their bank balance on first use"

Design

Controlled experiment (1)

- you want to test if a new coding style improves readability
 - measuring readability of new style alone tells you nothing!
 - "82% of schizophrenics hear voices"
 - "98% of schizophrenics brush their teeth"
 - have to measure readability using both new and original style, to have something to compare, and to measure the effect

Controlled experiment (2)

- the control: the experiment in the original circumstances, or those with no change
- design of controls is difficult
 - "placebo effect" in medicine
 - patients given only dummy drug also get better!
 - "observer effect" in performance trials
 - · subjects do better just because they are being watched

Controlled experiment (3)

- make sure there isn't a "hidden" change
 - example: effect of vaccine on mice
 - control 0: no injection
 - control 1: inject with water
 - effect of being injected
 - inject with vaccine
 - effect of being injected with vaccine
 - example: effect on search algorithm of using information about its own performance
 - control 0 : no change
 - control 1: performance measuring code present, data gathered but not used
 - effect of presence of extra code and data
 - · performance data used
 - effect of using the data

Double blind experiment

- quantification does not always remove all subjectivity
- testing a subjective effect, like "readability"
 - control group : original style
 - experimental group: new style
 - subjective: knowledge of which style can influence answers
- so, perform "double blind"
 - neither experimenter nor subject know who is in the control and who in the experimental group
 - randomised allocation
 - look at membership after results have been collected
 - are the two groups significantly different?
 - · look at membership after results have been analysed
 - are there two populations that correspond to the two groups?
 - difficult to combine with "control O" style

The null hypothesis (1)

- a way of casting the question
- usually, H_0 is a statement of the status quo
 - the change has no effect
 - the new design process is no different from the old
 - the new parameter values give the same results as before
- · "universal" statements
 - impossible to prove true
 - no effect found, maybe because I haven't looked hard enough
 - but can be *rejected*
 - exhibit a counter-example
 - exhibit statistically significant evidence against
 - even then, reject only at a given confidence level
- · must be possible, at least in principle, to reject H₀

The null hypothesis (2)

- H₀ is assumed true unless data indicate otherwise
- the experiment is trying to reject the null hypothesis
 - H_0 = "all swans are white"
 - I see a black swan: H₀ rejected!
 - H_0 = "no effect on readability"
 - I see an improvement : H₀ rejected (at some *confidence level*)
- possible to reject, but not to prove, H_0
 - evidence that supports the hypothesis may just be a fluke
 - H_0 = "all swans are white"
 - I see a white swan : so what?
 - H_0 = "no effect on readability"
 - I see no effect: maybe it's too small an effect to be seen with this experiment?

"Does new style improve readability?"

- Null hypothesis H₀ = "no effect on readability"
- experimental design
 - trial new and old styles
 - controlled experiment
 - consider whether double-blind experiment is needed
 - gather statistics
 - this needs careful design!
 - analyse results
 - no significant effect on readability: H₀ not rejected

CSW: scientific method: 14

- improvement in readability: H₀ rejected
- decrease in readability: H₀ also rejected!

"Can reindeer fly?"

- Null hypothesis H₀ = "Reindeer cannot fly"
- experimental design
 - throw several reindeer off a roof
 - result: they all go splat on the ground
 - Ho not rejected
 - · this does not prove reindeer cannot fly
 - all you have shown is that:

```
"from this roof, on this day, under these weather conditions, these reindeer either could not, or chose not to, fly"
```

— [Christmas Guardian, 1980s]

- it is possible, in principle, to reject this H_0
 - by exhibiting a flying reindeer!

Sampling bias (1)

- usually experiment on a sample of entire population
 - look at colour of some birds, test new algorithm on some data, ...
 - need to pick this sample carefully
- are nearby stars more or less luminous than average?
 - H₀ = "distance has no effect on luminosity"
- · gather data sample, from a standard star catalogue
 - plot luminosity against distance
 - see a significant dependence on distance
 - · less luminous stars tend to be closer, more luminous further away
- not a real result : sample bias
 - can't see far away low luminosity stars, so not in catalogue
 - high luminosity stars are rare, so aren't many nearby
 - more volume of space further away than nearby $(4\pi r^2 dr)$

Sampling bias (2)

- sample not representative of the whole population
 - telephone polls: include only people with telephone (and no job ...)
 - most psychology studies done on
 - mentally ill people
 - psychology undergraduates
 - very few done on "ordinary" people!
 - most medical experiment control groups are white males
 - ethnic groups and women introduce "too much variability"!
 - split your data into two samples, to train and to evaluate
 - is the split representative?
 - don't just take the first part to train, last part to evaluate, in case data is in some kind of order
- need unbiased control / test / evaluation samples

Design to detect a difference

- problem too easy
 - control and your algorithm can solve it easily
 - everyone does equally well everyone gets an "A"
 - difficult to detect a difference
- problem too hard
 - neither the control nor your algorithm can solve it at all
 - everyone does equally badly everyone gets an "F"
 - difficult to detect a difference
- problem just right
 - · results spread across the whole measurement scale
 - designed to detect a difference

Compare like with like

- "my algorithm is better than X's"
 - cast as H₀ = "no different from X's"
 - my highly optimised algorithm is better than X's prototype implementation
 - mine worked better than X's the one time I ran it
 - I didn't dare try again, in case it didn't happen again
 - mine worked better than X's on this artificial problem
 - · which is highly unrepresentative of the real world use
 - over-simplified, inputs too small, unrepresentative synthetic data, ...
 - mine worked better on *this* problem than X's worked on *that* problem
 - and I had to search hard to find this problem

Evaluation and results

Independent evaluation data (1)

- hypothesis-generating data
 - data used to help suggest the hypothesis H₀
 - I tried a new coding style, and it seemed to improve readability
 - suggests H₀ = "style has no effect on readability"
 - do not use this data to reject H₀
 - because it was used to suggest H_0 in the first place, of course it will reject $H_0!$
- training data
 - data used to train your algorithm
 - cannot use this data to evaluate how well your algorithm works in general
 - because it might work on only its training data!
 - biased training set; "overfitting" the data; ...

Independent evaluation data (2)

- further independent test data
 - used to test H₀
 - used to evaluate the algorithm
- three sets of data
 - original data, partitioned into two sets
 - one used to train
 - second used to evaluate
 - then, third *independent* set, used to evaluate rigorously
 - recognising tanks

http://neil.fraser.name/writing/tank/

Results

- you do a well designed, controlled experiment, comparing like with like, properly evaluated
- you get statistically significant repeatable results
 - you successfully reject H_0
 - "my algorithm really is better than X's!"
 - you hope you're going to get a good project mark
 - provided you write it up well...
- · you don't get statistically significant repeatable results
 - you haven't rejected H_0 oximes
 - "I've no evidence that my algorithm is better than X's"
 - you fear you are going to get a dismal project mark ...

Understand your results

- actually, whichever result you get, it's not really that interesting, unless you can say why
 - asking "why?" leads to new questions and hypotheses
 - "it's better because ..."
 - "it's no better because ..."
 - "negative" results can be *more* interesting!
 - » presumably, you expected to reject H_0
 - » so now you've learned something
 - if you write-up the "negative" result well, you'll get good marks
- need new experiments, get new results
 - good answers to good questions should lead on to even more good questions

CSW: scientific method: 24

• science is an iterative "open" process

Repeatability (1)

- your results suggest new experiments
- you want to use your original results as a control
 - but you can't repeat them!
 - dependent on precise version of code you used
 - but you were gradually modifying it as time progressed
 - dependent on specific sample of data
 - but you've no record of which data sample you used
 - · dependent on the random selection of parameter values
 - but you've no record of which random seed you used
 - (if your results are too sensitive to parameters, you might need to think again)
- use version control
 - code, data sample, random seed, ...

Repeatability (2)

- someone else is running experiments
- they want to use your results as a control
 - but they can't repeat them!
- think about making your code and data available to others

CSW: scientific method: 26

- the Web makes this easier than it used to be

Scientific method: summary

- a clear question
 - a quantified testable hypothesis
- a well-designed experiment
 - control
 - null hypothesis
- an evaluated result
 - statistical significance [next lecture]
 - "why", as well as "what"
 - repeatable