Lógica CC

nome:	número						
	Grupo I						
(V) ou -0,25	rupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalad vamente. A cotação total neste grupo é no mínimo 0 valores.	erá 1	valor				
		V	F				
1.	Para todo o tipo de linguagem com um símbolo de relação binário R, x_1 é substituível sem captura de variáveis por qualquer L -termo em $\exists x_1 R(x_0, x_1) \land \exists x_0 \neg R(x_1, x_0)$.						
2.	Para todo o tipo de linguagem L que apenas contém uma constante e um símbolo de relação unário, existem 3×3^3 L -estruturas cujo domínio é $\{1,2,3\}$.						
3.	Para todo o tipo de linguagem L e para toda a L -fórmula φ e variável x , se φ é válida numa L -estrutura E , então $\forall x \varphi$ também é válida em E .						
4.	Para todo o tipo de linguagem L com um símbolo de relação unário R , a L -fórmula $\neg \exists x_0 (R(x_0) \land \neg R(x_0))$ é universalmente válida e não é instância de tautologias.						
5.	Para todo o tipo de linguagem que inclua = como símbolo de relação binário, $\exists x_0 \exists x_1 (x_1 = x_3 \land \neg x_2 = x_0)$ é uma forma normal prenexa logicamente equivalente a $(\exists x_2 x_2 = x_3) \land (\exists x_0 \neg x_2 = x_0)$.						
6.	Para todo o tipo de linguagem com símbolos de relação unários R e Q, o conjunto $\{\forall x_0(R(x_0) \vee Q(x_0)), \exists x_0 \neg R(x_0), \exists x_0 \neg Q(x_0)\}$ é semanticamente inconsistente.						
	Grupo II						

Nas questões 1(a), 2(a), 2(b), 2(c), 2(d) e 4, apresente a sua resposta no espaço disponibilizado a seguir à questão.

- 1. Seja L um tipo de linguagem cujos únicos símbolos de função são uma constante ${\bf c}$ e um símbolo de função binário ${\bf f}$.
 - (a) Indique todos os L-termos t tais que t tem no máximo três subtermos e VAR $(t) = \emptyset$ e apresente as respetivas sequências de formação.

Resposta:

(b) Sejam t', t'' dois L-termos e x, y duas variáveis distintas tais que $x \notin VAR(t'')$. Prove que, para todo o L-termo t, (t[t'/x])[t''/y] = (t[t''/y])[t'[t''/y]/x].

2. Considere o tipo de linguagem $L=(\{c,f\},\{=,R\},\mathcal{N})$ em que $\mathcal{N}(c)=0,\,\mathcal{N}(f)=2,\,\mathcal{N}(=)=2$ e $\mathcal{N}(R)=2$. Seja $E=(\mathbb{Z},\overline{})$ a L-estrutura tal que:

$$\overline{\mathsf{c}} = 0 \\ \overline{\mathsf{f}} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{\mathsf{f}}(z_1, z_2) = z_1 \times z_2$$

$$\overline{\mathsf{R}} = \{(z_1, z_2) \in \mathbb{Z}^2 : z_1 = z_2\}$$

e seja a a atribuição em E tal que $a(x_i) = i$, para todo $i \in \mathbb{N}_0$.

(a) Indique $f(x_1, f(x_2, c))[a]_E$. Justifique.

Resposta:

(b) Indique $(\forall x_1(f(x_1, x_2) = c \rightarrow (x_1 = c \lor x_2 = c)))[a]_E$. Justifique.

Resposta:

(c) Diga se a L-fórmula $(\forall x_1(f(x_1, x_2) = c \rightarrow (x_1 = c \lor x_2 = c)))$ é válida em E. Justifique. **Resposta:**

(d) Indique, sem justificar, uma L-fórmula válida em E que represente a afirmação: O produto de dois inteiros é positivo somente se esses inteiros são ambos positivos.

Resposta:

- 3. Seja L um tipo de linguagem com os símbolos de relação unários R e Q. Construa uma derivação em DN que mostre: $\forall x_0(R(x_0) \to Q(x_0)), \exists x_1 R(x_1) \vdash \exists x_1 Q(x_1).$
- 4. Sejam L um tipo de linguagem, φ e ψ L-fórmulas e x uma variável tal que $x \notin LIV(\psi)$. Prove que $(\exists x \varphi) \land \psi \models \exists x (\varphi \land \psi)$.

Resposta:

0-1~-	I.	II.1.	II.2.	II.3.	II.4.
Cotaçoes	6	2+2	1,5+2+1,75+1,25	1,75	1,75