2012-XE-'53-65'

EE24BTECH11050 - Pothuri Rahul

Q. 10 - Q. 22 carry two marks each

10) Match the properties in Column I with the appropriate units in Column II

Column I	Column II
P. Thermal diffusivity	1. Hm^{-1}
Q. Fracture toughness	2. $m^2 s^{-1}$
R. Surface energy	3. Fm^{-1}
S. Magnetic permeability	4. $Nm^{-\frac{3}{2}}$
	$5 Im^{-2}$

- a) P-2,Q-5,R-4,S-1
- b) P-2,O-4,R-5,S-1

c) P-3,Q-4,R-5,S-3

1

d) P-5,O-4,R-2,S-3

11) Match the characterization techniques in Column I with Column II

Column I

- P. Scanning tunneling microscopy
- Q. Scanning electron microscopy
- R. Transmission electro microscopy
- S. Atomic force microscopy
- a) P-4, Q-2, R-5, S-1
- b) P-1, Q-3, R-4, S-5

Column II

1. Photocatalyst

4. Tough ceramic

- 1. No vacuum required
- 2. Backscattered electrons
- 3. Photoelectrons
- 4. Atomically sharp tip
- 5. Sub-Angstrom resolution
 - c) P-2, Q-4, R-1, S-5
 - d) P-5, Q-1, R-2, S-4

12) Match the materials in Column I with the applications in Column II Column I Column II

- P. Titanium diboride
- O. Molybdenum disilicide
- R. Hydroxyapatite
- S. Nanocrystalline titanium oxide
- 5. Artificial bone implant

2. Furnace heating element 3. Ultra high temperature material

- a) P-3,Q-4,R-5,S-1
- b) P-5,Q-3,R-2,S-1

- c) P-4,Q-3,R-1,S-5
- d) P-3,Q-2,R-5,S-1

13) Match the properties in column I with the options in Column II

Column I Column II

- P. Toughness 1. Resistance to plastic deformation
- Q. Resilience 2. Time dependent permanent deformation under constant load
- R. Creep 3. Total elongation at failure S. Hardness 4. Area under Stress-strain graph
 - 5. Area under the elastic part of the stress-strain curve

16) Calculate the saturation magnetization (M_{sat}) for bcc iron of lattice parameter 2.866Å.						
a) $0.76 \times 10^6 A/$	(m) b) $1.5 \times 10^6 A/m$	c) $3.15 \times 10^6 A/m$	n d) $4.73 \times 10^6 A/m$			
COMMON DATA QUESTIONS						
Common data questions for 17 and 18: A plain $0.45wt$.% carbon steel is cooled slowly from $900^{\circ}C$ to just below the eutetoid temperature $(723^{\circ}C)$ so that the following reaction occurs:						
	$\gamma(0.8wt.\%c) \leftrightarrow \alpha(0.00)$	$(2wt.\%c) + Fe_3C (6.6)$	67wt.%c)			
17) During cooling from $900^{\circ}C$ to $700^{\circ}C$, the proeutectoid α forms from γ . Find the volume % of proeutectoid α just below $723^{\circ}C$ for the steel.						
a) 44.9%	b) 66.1%	c) 55.1%	d) 34.9%			
18) Find the volume % of pearlite for the steel just below $723^{\circ}C$ for 0.45% carbon steel.						
a) 44.9%	b) 55.1%	c) 40.9%	d) 59.1%			
Common data questions for 19 and 20: A $20kN$ tensile load is applied axially to a steel bar of cross-section area $8cm^2$ and $1m$ length. The Young's modulus of steel (E_{steel}) is $200GPa$, and of aluminium (E_{Al}) is $70GPa$. The Poisson's ratio (v) can be taken as 0.3. 19) When the same load is applied to an aluminium bar, it is found to give same elastic strain as the steel. Calculate the cross-section area of the aluminium bar.						
a) $11.43cm^2$	b) $14.93cm^2$	c) 18.26 <i>cm</i> ²	d) 22.86 <i>cm</i> ²			
20) Calculate the final area of the steel bar after the deformation under the applied load of $20kN$.						

c) P-4,O-5,R-2,S-1

d) P-5,Q-4,R-3,S-2

d) 0.86

14) Determine the mole fraction of vinyl chloride in a copolymer of vinyl chloride (CH_2CHCl) and vinyl acetate $(CH_2 - CH - OCOCH_3)$ having molecular weight of

15) The electron concentration in an n-type semiconductor is $5 \times 10^{18}/m^3$. If the drift velocity of electrons is 100m/s in an electric fieldof 500V/m, calculate the

a) $0.16 \times 10^{-1} S/m$ b) $1.6 \times 10^{-1} S/m$ c) $2.50 \times 10^{-1} S/m$ d) $30.05 \times 10^{-1} S/m$

c) 0.70

10520g/mol and degree of polymerization of 160.

b) 0.30

conductivity of the semiconductor.

a) P-5,O-1,R-3,S-2

b) P-4,Q-3,R-2,S-1

a) 0.14

a) 7.9 <i>cm</i> ²	b) 9.7 <i>cm</i> ²	c) 7.0 <i>cm</i> ²	d) 8.1 <i>cm</i> ²
Linked Answe	r Questions		

Statement for Linked answer questions 21 and 22:

Chromium has the bcc structure with atomic diameter of 2.494Å

- 21) Calculate the lattice parameter of chromium assuming tight atomic bonding.
 - a) 1.442Å
- b) 2.880Å c) 4.323Å d) 5.764Å
- 22) Find the first diffraction peak position (2 θ) for Cu $K\alpha$ radiation with a wavelength of 1.54Å
 - a) 21.76°
- b) 33.05°
- c) 44.43°
- d) 66.10°