import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

//matplotlib inline
sns.set(style="whitegrid")

In [2]: df = pd.read_csv('train.csv')
 df.head()

Out[2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [29]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	891 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	891 non-null	object			
dtynes float64(2) int64(5) object(5)						

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [30]: df.describe()

Out[30]:	
----------	--

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.361582	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.019697	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75 %	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [31]: df.isnull().sum()

```
Out[31]: PassengerId
                          0
         Survived
                          0
         Pclass
                          0
         Name
                          0
         Sex
                          0
                          0
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          0
         Cabin
                        687
         Embarked
                          0
         dtype: int64
In [26]: df['Survived'].value_counts().plot(kind='bar', title='Survival Count')
         #Observation:
         #The number of passengers who did not survive is higher than those who did. This indicates a survival rate of approxi
```

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x211e27c2508>


```
In [27]: df['Pclass'].value_counts().plot(kind='bar', title='Passenger Class Count')
#Observation:
#Most passengers were in 3rd class, followed by 1st and 2nd class. This suggests that the Titanic carried more econom
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x211e282d3c8>

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x211df8c7cc8>

In [24]: df['Age'].plot(kind='hist', bins=20, title='Age Distribution')

#Observation:

#The age distribution is right-skewed. Most passengers were between 20 and 40 years old. There were few infants and 6

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x211e1724888>

In [25]: sns.boxplot(x='Fare', data=df)
#Observation:
#The fare distribution shows a lot of outliers. Most fares are below 100, but some go beyond 500, indicating premium-

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x211e28ed1c8>

In [21]: sns.countplot(data=df, x='Pclass', hue='Survived')
#Observation:
#Passengers in 1st class had the highest survival rate. Most passengers in 3rd class did not survive.

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x211e143b108>

In [22]: sns.countplot(data=df, x='Sex', hue='Survived')
#Observation:
#Female passengers had a significantly higher survival rate compared to males. "Women and children first" policy seen

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x211e166b0c8>

In [23]: sns.countplot(data=df, x='Embarked', hue='Survived')
 #Observation:
 #Passengers who embarked from Cherbourg (C) had higher survival rates, possibly indicating more first-class travelers

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x211e16cec08>

In [19]: sns.boxplot(x='Survived', y='Age', data=df)
#Observation:
#Survivors had a slightly lower average age. Many children and young adults survived compared to older passengers.

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x211e1347a08>

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x211e14926c8>

In [16]: sns.pairplot(df[['Survived', 'Pclass', 'Age', 'Fare']], hue='Survived')
#Observation:
#Clear separation between higher fares and survival status. Pclass and Fare show strong patterns in survivor distribution.

Out[16]: <seaborn.axisgrid.PairGrid at 0x211e04ccb48>

In [17]: sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
#Observation:
#The most positively correlated variable with survival is Fare (0.26), while Pclass has a moderate negative correlation.

Out[17]: <matplotlib.axes. subplots.AxesSubplot at 0x211e0d73408>


```
In [14]: df['Age'].fillna(df['Age'].median(), inplace=True)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)

In []: #Summary:
#Most survivors were women and passengers from Pclass 1.
#Higher fare was associated with better survival chances.
#Sex, Pclass, and Fare are key predictors of survival.
#Age has a slight influence; children had better chances.
#Missing values in Age, Cabin, and Embarked must be addressed.
```