

哈希表又称散列表, 四大存储结构中的一种

顺序表存储结构

链接表存储结构

索引表存储结构

散列表存储结构

哈希表存储的基本思路

- □ 哈希函数 , 散列函数
 - 一一个函数h(key),用于根据关键字key,计算得到一个内存单元的地址(或称下标)loc
- □ 哈希表 (Hash Table), 散列表
 - 应 要存储的对象个数为n,设置一个长度为m(m≥n)的连续内存单元,将关键字k_i(0≤i≤n-1)存储到地址为h(k_i)的内存单元中。
 - 应 h(k_i)称为哈希地址/散列地址
- □ 哈希函数构造方法
 - □ 直接定址法
 - △ 除留余数法
 - □ 数字分析法
 - *□*

用哈希函数h将关键字映射到散列表中

哈希冲突

□ 术语

- □ 对于两个关键字 k_i 和 k_j , $i \neq j$, 且 $k_i \neq k_j$, 但有 $h(k_i) = h(k_i)$, 这种现象叫做哈希冲突。
- 这种具有不同关键字而具有相同哈希地址的对象称做"同义词",引起的冲突称作同义词冲突。

□ 冲突中的两难

同义词冲突很难避免,除非关键字的变化区间 小于等于哈希地址的变化区间,而这种情况当 关键字取值不连续时是非常浪费存储空间的。

例:取h(i)=i

应 通常 , 关键字的取值区间远大于哈希地址的变化区间。

□ 冲突解决方法

- △ 开放定址法
- 应 拉链法
- *□*

哈希函数构造法(1):直接定址法

- □ 构造哈希函数的目标
 - 使得到的哈希地址,尽可能均匀地分布在n个连续内存单元地址上,同时使计算过程 尽可能简单,以达到尽可能高的时间效率。
- □ 直接定址法思想
 - □ 以关键字k本身或关键字加上某个数值常量c作为哈希地址的方法。
- □ 直接定址法的哈希函数:
- □ 例
 - 应 h(学号)=学号-201001001
- □ 评价
 - 应 这种哈希函数计算简单,并且不可能有冲突发生。
 - □ 适用关键字的分布基本连续的场合
 - □ 若关键字分布不连续,将造成内存单元的大量浪费。

201001001 张三 201001003 李四	学号	其他	
201001025 £ £.	201001001		
[1]	###	###	
[2]	201001003		
不可能有冲突发生。			
	201001025		
内存单元的大量浪费。 []			

哈希函数构造法(2):除留余数法

- □ 除留余数法思想
 - □ 用关键字k除以p(某个不大于哈希表长度m的数), 所得的余数作为哈希地址
- □ 除留余数法的哈希函数

h(k)=k mod p (mod为求余运算, p≤m) p最好是质数 (素数)

□ 例

数据表

区号	城市名	说明
010	Beijing	首都
021	Shanghai	直辖市
027	Wuhan	湖北省省会
029	Xian	陕西省省会
025	Nanjing	江苏省省会

区号	010	021	027	029	025
VAL(区号)	10	21	27	29	25
H(key)	3	0	6	1	4

城市哈希表

区号	城市名	说明
021	Shanghai	直辖市
029	Xian	陕西省省会
010	Beijing	首都
025	Nanjing	江苏省省会
027	Wuhan	湖北省省会

h(区号)=VAL(区号) mod 7 3

5

6

4

地址

例 除留余数法

□ 问题

□ 假设哈希表长度m=13,采用除留余数法哈希函数建立如下关键字集合的哈希表: {16,74,60,43,54,90,46,31,29,88,77}。

□解:

n=11 , m=13

确定除留余数法的哈希函数为:h(k)=k mod p

p的选择:应为小于等于m的素数,假设p取值13。则有:

$$h(16)=3$$
 $h(74)=9$, $h(60)=8$, $h(43)=4$, $h(54)=2$, $h(90)=12$, $h(46)=7$, $h(31)=5$, $h(29)=3$, $h(88)=10$, $h(77)=12$,

注意:存在冲突。

哈希函数构造法(3): 数字分析法

- □ 数字分析法思想
 - □ 提取关键字中取值较均匀的数字位作 为哈希地址的方法
- □ 做法
 - □ 适合于所有关键字值都已知的情况, 并需要对关键字中每一位的取值分布 情况进行分析。
- □ 例如
 - △ 有一组关键字,如右
 - 分析:每个关键字从左到右的第1、2 、3位和第6位取值较集中,不宜作为 哈希函数,剩余的第4、5、7和8位取 值较分散,可根据实际需要取其中的 若干位作为哈希地址。
 - □ 方案: 取最后两位作为哈希地址

学号	其他
92317602	•••
923268 <mark>75</mark>	
92739628	
92343634	
92706816	
92774638	
92381262	
92394220	

	学号	其他
[2]	92317602	
[16]	92706816	
[20]	92394220	
[28]	92739628	

哈希冲突解决

- □ 冲突与哪些因素有关?
 - □ 与装填因子有关
 - □ 与所采用的哈希函数有关
 - 若哈希函数选择得当,就可使哈希地址尽可能均匀地分布在哈希地址空间上,从而减少冲突的发生;
 - 若哈希函数选择不当,就可能使哈希地址集中于某些区域,从而加大冲突的发生。
 - □ 与解决冲突的哈希冲突函数有关
 - □ 哈希冲突函数选择的好坏也将减少 或增加发生冲突的可能性。

装填因子α= 哈希表中已存入的元素数n 哈希地址空间大小m

- a 越小,冲突的可能性就越小;
- α越大(最大可取1),冲突的可能性就越大

a 越小,存储空间的利用率就越低 反之,存储空间的利用率也就越高

对策:

既兼顾减少冲突的发生, 又兼顾提高存储 空间的利用率

α一般控制在0.6~0.9的范围内

哈希冲突解决方法(1): 开放定址法

- □ 思想
 - □ 以发生冲突的哈希地址为自变量,通过某种哈希冲突函数得到一个新的空闲的哈希地址

□ 线性探测法

- ─ 线性探测法是从发生冲突的地址(设为d)开始,依次探测d的下一个地址,直到找到一个空闲单元为止(当m≥n时一定能找到一个空闲单元)
- □ 当到达下标为m-1的哈希表表尾时,下一个 探测的地址是表首地址0
- 线性探测法的数学递推描述公式为:
 d₀=h(k)
 d_i=(d_{i-1}+1) mod m (1≤i≤m-1)

□ 平方探测法

- □ 设发生冲突的地址为d,则平方探测法的探测序列为: d±1², d±2², ...。
- □ 平方探测法的数学描述公式为:
- rightharpoonup d₀=h(k)
- □ 评价
 - 平方探测法是一种较好的处理冲突的方法,可以避免出现堆积问题。
 - ◎ 它的缺点是不能探测到哈希表上的所有单元,但至少能探测到一半单元。

例 除留余数法定址,线性探测法解决冲突

探测1次 [0] 77 □ 问题 [1] □ 假设哈希表长度m=13,采用除留余数法哈希函数建立如 下关键字集合的哈希表: [2] 54 {16,74,60,43,54,90,46,31,29,88,77}. [3] 16 □ 解: [4] 43 n=11 , m=13[5] 31 确定除留余数法的哈希函数为:h(k)=k mod p 探测3次 [6] 29 p的选择:应为小于等于m的素数,假设p取值13,有: [7] 46 h(16)=3 h(74)=9, h(60)=8, h(43)=4, [8] 60 h(54)=2, h(90)=12, h(46)=7, h(31)=5, h(29)=3, h(88)=10, h(77)=12 [9] 74 [10] 88 $d_{i}=(d_{i-1}+1) \mod m$ [11] [12] 90

哈希冲突解决方法(2): 拉链法

- □思想
 - 应 拉链法是把所有的同义词用单链表链接起来的方法。
- □ 例
 - ☆ 采用除留余数法哈希函数建立如下关键字集合的哈希表: {16,74,60,43,54,90,46,31,29,88,77}
 - □ 用拉链法解决冲突
- □ 优点
 - ☆ 简单 , 无堆积现象
 - □ 动态分配存储灵活
 - ☆ 节省空间(数据规模大时)
 - □ 删除节点方便
- □ 缺点
 - △ 指针需要额外空间(数据少时)

