Power Spectral Density and LTI Filters

Edoardo Vergerio

March 2024

Introduction

This document wants to fully show the mathematical elements and derivations necessary to compute the power spectral density at the output of an LTI filter when a stationary random process is at its input. Beware that, despite the huge effort to produce an error-free document, some might still be present.

Please, if you find something that is not correct, contact edoardo@veredo.net

Contents

1	Probability concepts		
	1.1	Covariance	1
		Autocovariance function	
	1.3	Wide-Sense Stationary process	2
	1.4	Autocorrelation function	2
		Power of a stationary process	
	1.6	Power spectral density	3
2	Line 2.1	ear filtering of stochastic processes Filter Theorem	3
3	\mathbf{Use}	ful Fourier properties	5

1 Probability concepts

In order to achieve the objective of this document it is useful to recall some probability concepts.

1.1 Covariance

Given any given two given variables, X and Y, we can define the covariance $C_{ov}[X,Y]$ as:

$$C_{ov}[X,Y] = E[(X - E[X])(Y - E[Y])]$$
 (1)

The covariance is used to describe how the two variables behave with respect to their average value:

- if $C_{ov}[X,Y] > 0$ then the two variables move in the same direction i.e. if X is getting larger than E[X], then Y will do the same. This holds also if X (or Y) evolves to values smaller than the respective average.
- if $C_{ov}[X,Y] < 0$ then the two variables evolve in opposite directions i.e. if Y (or X) increases above its average, then X (or Y) will decrease.
- if $C_{ov}[X,Y] = 0$ then the two variables do not evolve consistently together.

We can expand the previous definition into a more compact form:

$$C_{ov}[X,Y] = E[XY + E[X]E[Y] - XE[Y] - E[X]Y]$$
(2)

$$= E[XY] - E[X]E[Y] \tag{3}$$

Now, recall the definition of the variance of a random variable Var(X):

$$Var(X) = E[(X - E(X))^2]$$
(4)

$$= E[X^2 - 2XE[X] + E^2[X]]$$
 (5)

$$= E[X^2] - E^2[X] \tag{6}$$

Therefore, we can relate *variance* and *covariance* as follows:

$$Var(X) = C_{ov}[X, X] \tag{7}$$

1.2 Autocovariance function

The autocovariance function of a random process X(t) is a function of two times t and $s = t+\tau$. This function specifies the covariance between the value of the process at time t and the value at time s.

$$C_X(s,t) = C_{ov}[X(t), X(s)]$$
(8)

As showed before, we can obtain the variance of the random process X(t) using the covariance function, infact:

$$Var(X(t)) = C_{ov}[X(t), X(t)] = C_X(t, t)$$
 (9)

Example: consider a (discrete) white noise process $\{W[n]\}$ consisting of independent identically distributed (i.i.d) random variables with variance $\sigma^2 = Var(W[n])$. We can now compute the covariance between $W[n_1]$ and $W[n_2]$ using the previous definition:

$$C_{ov}[W(n_1), W(n_2)] = E[W(n_1)W(n_2)] - E[W(n_1)]E[W(n_2)]$$
(10)

Remembering that $W[n_1]$ and $W[n_2]$ are i.i.d random processes, the above relation yields:

$$C_{ov}[W(n_1), W(n_2)] = \begin{cases} 0 & n_1 \neq n_2 \\ \sigma^2 & n_1 = n_2 \end{cases}$$
 (11)

Rewriting this result with only one expression, we would get:

$$C_{ov}[W(n_1), W(n_2)] = \sigma^2 \delta(n_1 - n_2)$$
 (12)

1.3 Wide-Sense Stationary process

A random process X(t) is said to be wide-sense stationary (WSS) if its mean and its autocovariance function are invariant under time shifts, that is:

- the mean value $\mu_X(t) \equiv \mu_X$ is a constant
- $C_X(s,t)$, the autocovariance function, only depends on $\tau = s t$, where s and t are two different time instants.

1.4 Autocorrelation function

The autocorrelation function $R_x(s,t)$ of a random process X(t) is a function of two times s and t:

$$R_x(s,t) = E[X(s)X(t)]$$
(13)

If we recall the autocovariance function in its compact form:

$$C_{ov}[X(s), X(t)] = E[X(s)X(t)] - E[X(s)]E[X(t)]$$
(14)

Then it is immediate to write:

$$R_x(s,t) = E[X(s)X(t)] = C_{ov}[X(s), X(t)] + E[X(s)]E[X(t)]$$
(15)

$$= C_X[s,t] + \mu_x^2 \tag{16}$$

For a WSS process, the autocorrelation only depends on the time difference $\tau = s - t$:

$$R_X(\tau) = C_X[\tau] + \mu_x^2 \tag{17}$$

1.5 Power of a stationary process

The instantaneous power of any given signal X(t) is defined as:

$$P_X(t) = X(t)^2 (18)$$

If the signal X(t) is a random process, it is useful to define its expected power:

$$E[X(t)^2] (19)$$

The expected power of a random process can be linked to the autocorrelation function, infact:

$$E[X(t)^{2}] = E[X(t)X(t)] = R_{X}(t,t)$$
(20)

Note that the autocorrelation function written as $R_X(t,t)$ is equivalent to $R_X(0)$, since the time difference $\tau = 0$.

Example: consider a (discrete) white noise process {W[n]} consisting of i.i.d random variables such that $\mu_W = E[W(n)]$ and $Var(W[n]) = \sigma^2$. We can write that:

$$R_W(k) = C_W[k] + \mu_W^2$$
 (21)
= $\sigma^2 \delta(k) + \mu_W^2$ where $k = n_1 - n_2$ (22)

$$= \sigma^2 \delta(k) + \mu_W^2 \quad \text{where } k = n_1 - n_2$$
 (22)

Therefore

$$E[W(n)^{2}] = R_{W}(0) = C_{W}[0] + \mu_{W}^{2} = \sigma^{2}\delta(0) + \mu_{W}^{2} = \sigma^{2} + \mu_{W}^{2}$$
(23)

Power spectral density 1.6

The power spectral density (PSD) $S_X(f)$ of a stationary random process $\{X(t)\}$ is the Fourier transform of the autocorrelation function $R(\tau)$.

$$R_X(\tau) \stackrel{\mathscr{F}}{\Longrightarrow} S_X(f)$$
 (24)

An equivalent definition is the following:

$$E[X(t)^{2}] = R_{X}(0) = \int_{-\infty}^{+\infty} S_{X}(f)df$$
 (25)

Which means that the integral of the power spectral density in the frequency interval $(-\infty, \infty)$ must return the signal expected power.

2 Linear filtering of stochastic processes

Consider a stochastic process X(t) is filtered through an LTI filter with unit-impulse response h(t). If we define Y(t) as the output of the filter, then we have that:

$$Y(t) = \int_{-\infty}^{+\infty} h(u)X(t - u)du = h(t) * X(t)$$
 (26)

$$\begin{array}{c|c} & LTI \\ \hline X(t) & h(t) & \hline \\ Y(t) \\ \hline \end{array}$$

Compute the expected value of the output:

$$E[Y(t)] = E\left[\int_{-\infty}^{+\infty} h(u)X(t-u)du\right] = \int_{-\infty}^{+\infty} h(u)E[X(t-u)]du = h(t) * E[X(t)]$$
 (27)

if X(t) is a WSS process, then E[X(t)] is a constant, therefore:

$$E[Y(t)] = \mu_x \int_{-\infty}^{+\infty} h(u)du \tag{28}$$

Compute the *crosscorrelation* between input (WSS) and output:

$$R_{XY}(\tau) = E[X(t)Y(t+\tau)] \tag{29}$$

$$= E[X(t) \int_{-\infty}^{+\infty} h(u)X(t+\tau-u)du]$$
(30)

$$= \int_{-\infty}^{+\infty} h(u)E[X(t)X(t+\tau-u)]du \tag{31}$$

$$= \int_{-\infty}^{+\infty} h(u)R_X(\tau - u)du \tag{32}$$

$$= h(\tau) * R_X(\tau) \tag{33}$$

Compute the autocorrelation of the output

$$R_Y(\tau) = E[Y(t)Y(t+\tau)] \tag{34}$$

$$= E\left[\int_{-\infty}^{+\infty} h(u)X(t-u)du \int_{-\infty}^{+\infty} h(v)X(t+\tau-v)dv\right]$$
 (35)

$$= \int_{-\infty}^{+\infty} h(u) \int_{-\infty}^{+\infty} h(v) E[X(t-u)X(t+\tau-v)] dv du$$
 (36)

$$= \int_{-\infty}^{+\infty} h(u) \int_{-\infty}^{+\infty} h(v) R_X(\tau - v + u) dv du$$
 (37)

$$= \int_{-\infty}^{+\infty} h(u)R_{XY}(\tau + u)du \tag{38}$$

$$= h(-\tau) * R_{XY}(\tau) \tag{39}$$

$$= h(-\tau) * h(\tau) * R_X(\tau) \tag{40}$$

2.1 Filter Theorem

Let X(t) be a stationary random process with power spectral density $S_X(f)$. If X(t) is passed through an LTI filter with impulse response h(t), then the output process Y(t) has PSD:

$$S_Y(f) = |H(f)|^2 S_X(f)$$
 (41)

Proof: From the definition of autocorrelation, we know that:

$$R_X(\tau) = C_X(\tau) + \mu_X^2 \tag{42}$$

but also, we previously saw that, after passing though an LTI filter, the autocorrelation of the output $R_Y(\tau)$ can be written as:

$$R_Y(\tau) = h(-\tau) * h(\tau) * R_X(\tau)$$
(43)

$$= h(-\tau) * h(\tau) * \left(C_X(\tau) + \mu_X^2\right) \tag{44}$$

The PSD of Y(t) is defined as the Fourier transform of its autocorrelation function, therefore:

$$S_Y(f) = \mathscr{F}[R_Y(\tau)] \tag{45}$$

$$S_Y(f) = H(-f) \cdot H(f) \cdot S_X(f) = H^*(f)H(f)S_X(f)$$
(46)

$$S_Y(f) = |H(f)|^2 S_X(f)$$

$$\tag{47}$$

3 Useful Fourier properties

In the following some useful properties of Fourier transforms are reported:

$$h(t) \stackrel{\mathscr{F}}{\Longrightarrow} \int_{-\infty}^{+\infty} h(t)e^{-j\omega t}dt = H(f) \tag{48}$$

$$h(-t) \stackrel{\mathscr{F}}{\Longrightarrow} \int_{-\infty}^{+\infty} h(-t)e^{-j\omega t}dt = \int_{-\infty}^{+\infty} h(\tau)e^{j\omega\tau}d\tau = H(-f)$$
 (49)

$$h^*(t) \stackrel{\mathscr{F}}{\Longrightarrow} \int_{-\infty}^{+\infty} h^*(t)e^{-j\omega t}dt = H^*(-f) \tag{50}$$

$$H(f) = \int_{-\infty}^{+\infty} h(t)e^{-j\omega t}dt$$
 (51)

$$H(-f) = \int_{-\infty}^{+\infty} h(t)e^{j\omega t}dt \tag{52}$$

$$H^*(f) = \int_{-\infty}^{+\infty} h^*(t)e^{j\omega t}dt \tag{53}$$

Only if h(t) is real then $H(-f) = H^*(f)$