## 10 Image Coding Standards

- 10.1 JPEG Standard
- 10.2 JPEG 2000 Standard
- 10.3 Coding Examples



### Rationale for Standards

#### Compatibility

- Standards guarantee data streams that are exchangeable between different devices and applications
- Independence of propriety solutions

#### Leading edge technology

- Major worldwide research and development is represented at standardization bodies like ITU and ISO/MPEG
- Standards provide reference points for expected quality

#### **Economy of scale**

 Standards permit common hardware/software to be used for a wide range of products, thus lowering the cost and shortening the development time

#### **Manufacturer competition**

- Exact coding algorithm not defined in a standard, only bit-stream syntax and decoder specification
- Performance of a standardized system is dependent on implementation



### 10.1 JPEG Standard

**JPEG** is an acronym for "Joint Photographic Experts Group"

#### International standard defined by ISO/IEC JTC1/SC29/WG10

- ISO International Organization for Standardization
- IEC International Electrotechnical Commission
- JTC Joint Technical Committee 1 (Information Technology)
- SC Subcommittee 29 (Coding of Audio, Picture, Multimedia and Hypermedia Information)
- WG Working Group 10 (Digital Coding and Compression of Still Pictures)
- Formal notation of JPEG is ISO/IEC 10918-1 (also published as ITU-T T.81)
- Work started in 1986, released in 1992

#### **Application areas**

- Widely used in digital cameras and for images on the world-wide web
- Motion-JPEG commonly employed for digital video editing



### JPEG Baseline System





### **Quantization Tables**

#### Recommended quantization tables for luminance and chrominance

- Each entry defines quantization step size for frequencies starting top left
- Values based on psychovisual threshold experiments
- Image adapted tables may be transmitted ahead of compressed data stream

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

| - 1 |    |    |    |    |    |    |    |    |
|-----|----|----|----|----|----|----|----|----|
|     | 17 | 18 | 24 | 47 | 99 | 99 | 99 | 99 |
|     | 18 | 21 | 26 | 66 | 99 | 99 | 99 | 99 |
|     | 24 | 26 | 56 | 99 | 99 | 99 | 99 | 99 |
|     | 47 | 66 | 99 | 99 | 99 | 99 | 99 | 99 |
|     | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
|     | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
|     | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
|     | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |

Q(k, l), Luminance

Q(k, l), Chrominance



### **Order of Quantized Transform Coefficients**

#### **Differential DC encoding**

 DC index of previous block is used to predict the DC index of the current block



Differential DC encoding

#### Zigzag scanning

 AC coefficients are converted into a one-dimensional sequence using zigzag scanning





## **Difference Magnitude Category for DC Coding**

| SSSS | DIFF values            |
|------|------------------------|
| 0    | 0                      |
| 1    | -1,1                   |
| 2    | -3,-2,2,3              |
| 3    | -74,47                 |
| 4    | -158,815               |
| 5    | -3116,1631             |
| 6    | -6332,3263             |
| 7    | -12764,64127           |
| 8    | -255128,128255         |
| 9    | -511256,256511         |
| 10   | -1 023512,5121 023     |
| 11   | -2 0471 024,1 0242 047 |



### **Table for Luminance DC Coefficient Differences**

| Category | Code length | Code word |
|----------|-------------|-----------|
| 0        | 2           | 00        |
| 1        | 3           | 010       |
| 2        | 3           | 011       |
| 3        | 3           | 100       |
| 4        | 3           | 101       |
| 5        | 3           | 110       |
| 6        | 4           | 1110      |
| 7        | 5           | 11110     |
| 8        | 6           | 111110    |
| 9        | 7           | 1111110   |
| 10       | 8           | 11111110  |
| 11       | 9           | 111111110 |



### **Joint Run-Level Coding**

- Specify run-length of AC coefficient using four bits "RRRR"
- Specify level of magnitude for subsequent coefficient using "SSSS" bits
- Joint Huffman coding of 8 bit value "RRRSSSS", last run signaled by EOB

| SSSS | AC coefficients    |
|------|--------------------|
| 1    | -1,1               |
| 2    | -3,-2,2,3          |
| 3    | -74,47             |
| 4    | -158,815           |
| 5    | -3116,1631         |
| 6    | -6332,3263         |
| 7    | -12764,64127       |
| 8    | -255128,128255     |
| 9    | -511256,256511     |
| 10   | -1 023512,5121 023 |



### **Table for Luminance AC Coefficient**

| Run/Size  | Code length | Code word        |
|-----------|-------------|------------------|
| 0/0 (EOB) | 4           | 1010             |
| 0/1       | 2           | 00               |
| 0/2       | 2           | 01               |
| 0/3       | 3           | 100              |
| 0/4       | 4           | 1011             |
| 0/5       | 5           | 11010            |
| 0/6       | 7           | 1111000          |
| 0/7       | 8           | 11111000         |
| 0/8       | 10          | 1111110110       |
| 0/9       | 16          | 1111111110000010 |
| 0/A       | 16          | 1111111110000011 |
| 1/1       | 4           | 1100             |
| 1/2       | 5           | 11011            |
| 1/3       | 7           | 1111001          |
| 1/4       | 9           | 111110110        |
| 1/5       | 11          | 11111110110      |
| 1/6       | 16          | 1111111110000100 |
| 1/7       | 16          | 1111111110000101 |
| 1/8       | 16          | 1111111110000110 |



## Sequential vs. Progressive Processing

**Sequential processing:** image is transmitted in scan line fashion from top left to bottom right







Progressive processing: image is transmitted from coarse to fine resolution using progressive encoding









### **JPEG Progressive Transmission**

#### **Spectral selection**

- 1st scan DC coefficients only
- 2nd to 64th scan AC-coefficients with increasing frequency

#### **Successive approximation**

- 1st scan DC coefficients only
- 2nd to 9th scan MSB to LSB of AC coefficients





Image as quantized coefficients

Spectral selection



### **JPEG Lossless Mode**

#### Linear prediction with Huffman coding of residual

- Predictor can be selected and signaled from set of 8 possibilities
- Less efficient than JPEG-LS



| Predictors for lossless coding |                                    |  |
|--------------------------------|------------------------------------|--|
| Selection<br>Value             | Prediction type                    |  |
| 0                              | no prediction                      |  |
| 1 2                            | $egin{array}{c} a \ b \end{array}$ |  |
| 3                              | c                                  |  |
| 4                              | a + b - c                          |  |
| 5                              | a + ((b - c)/2)                    |  |
| 6                              | b + ((a - c)/2)                    |  |
| 7                              | (a + b)/2                          |  |



### **JPEG Hierarchical Mode**

#### Multi-resolution encoding for hierarchical transmission of images

- Build image pyramid by horizontal and vertical downsampling with factor  $2^n \times 2^n$
- Encode lowest resolution image using conventional JPEG
- Upsample decoded image with factor 2×2 and use as prediction for the next encoding step





### **Motion JPEG**

#### **Simple method** for coding and transmission of video sequences

- Every single frame of a sequence is encoded using JPEG
- Typically applied for archiving video sequences for later frame based cutting and processing
- Usually restricted to the Baseline System
- ⇒ Motion JPEG is not standardized



### 10.2 JPEG2000

#### International standard defined by ISO/IEC JTC1/SC29/WG10

- Formal notation of JPEG2000 is ISO/IEC 15444-1 (also published as ITU-T T.800)
- Released in December 2000.

#### **Features**

- Improved compression efficiency (~30% less rate than JPEG)
- Embedded bit stream allowing progressive decoding
- Multiple resolution image coding
- Lossy to lossless coding
- Region of interest (ROI) coding

#### **Application areas**

- Digital cinema (DCI, "Digital Cinema Initiative")
- Storage of medical data sets (DICOM, "Digital Imaging and Com. in Medicine")



## JPEG 2000 Encoder Block Diagram



Basic principle: subband coding using discrete wavelet transform

- Optional tiling of image into rectangles for independent coding
- Two filters allowed in DWT
  - Reversible integer (5,3) filter for lossless coding capability
  - Daubechies (9,7) floating point filter for best compression efficiency
- Bitplane coding and RD optimal truncation using EBCOT algorithm ("Embedded block coding with optimal truncation")



### **JPEG2000 DWT Filters**

Normative symmetric filters in wavelet transform for image decomposition:



 For bi-orthogonal filter banks, synthesis filters are related to analysis filters by "alias cancellation" relation

$$g_0[n] = (-1)^n h_1[n-1]$$
  

$$g_1[n] = -(-1)^n h_0[n-1]$$

Synthesis filters can be derived from transmitted analysis filters



## JPEG 2000 Block-Based Entropy Coder

- Each subband is further broken down into blocks (32×32 or 64×64)
- Bit-plane of each block are coded depending on neighboring planes in a three pass process using EBCOT algorithm





Scalability by resolution or SNR



# 10.3 Coding Examples





JPEG
Compression ratio 1:81.8
PSNR = 20.9 dB

JPEG 2000 Compression ratio 1:80.9 PSNR = 21.7 dB



## **Coding Examples**





JPEG
Compression ratio 1:80.9
PSNR = 27.2 dB

JPEG 2000 Compression ratio 1:80.4 PSNR = 27.9 dB



## **Coding Examples**



JPEG coded: image size 768×512 pixel; 24 bit color, compression ratio 1:48



## **Coding Examples**



JPEG 2000 coded: image size 768×512 pixel; 24 bit color, compression ratio 1:48



### **RD Comparison JPEG vs. JPEG 2000**



