Questions

Bookmark this page

Question 1

1 point possible (graded)

Give the Kendall notation of the following system where the service discipline is FIFO, the arrivals are Poisson and the service times are exponentially distributed with parameter μ (cf. Figure 1).

You	have	used	0	of	3
atte	mpts				

Save

Question 2

1 point possible (graded)

Consider a queue with no assumption about the arrival traffic, an infinite number of servers, an infinite buffer and exponentially distributed service times. Give the Kendall's notation of this queue.

○ M/M/1
○ G/M/1
○ M/M/∞
○ G/M/∞
○ M/M/1/∞
○ G/M/1/∞
○ G/G/1/∞
Submit
You have used 0 of 3 attempts

Question 3

Save

1 point possible (graded)

We consider a computer with a single CPU and a multitask operating system (i.e., it is able to process several programs in parallel and the processing capacity of the CPU is shared fairly among the different tasks).

We assume the number of programs to be potentially infinite on this computer. Program sizes are exponentially distributed (i.e., we assume that a program's execution time is exponentially distributed in the case where the program is executed alone on the computer). We have no knowledge about the arrival process of the programs.

We want to model the number of programs being executed simultaneously with a queueing system. What kind of queue can be used to model it?

Question 4

1 point possible (graded)

Consider an M/M/1 queue with arrival rate λ and service rate μ . Which of the following sentences is (are) true?

Submit

You have used 0 of 3 attempts

Save

Question 5

0.0/2.0 points (graded)

Which of the following quantities correspond to performance criteria?

- Mean sojourn time
- Mean arrival rate
- Mean throughput

■ Mean utilization rate	
Submit	
You have used 0 of 3 attempts	
Save	
Question 6	
0.0/1.0 point (graded)	
Consider a stable M/M/1 qu	eue.
The probability distribution of a limit distribution:	of the number of customers in the queue tends to
○ True.	
False.	
The number of customers in	n the queue tends to a finite limit:
True	
False	
The steady state depends of	on the initial state:
True.	
False.	

Submit					
You have used 0 of 3 attempts					
Save					
Question 7					
0.0/2.0 points (graded)					
Consider a post office with a single desk, which is modeled by an M/M/1 queue. The average number of arrivals per hour is 8 clients and the mean service time is 5 minutes.					
What is the probability of finding 0 client in the office?					
What is the probability of finding 1 client in the office?					
What is the probability of finding 2 clients in the office?					
What is the probability of finding 3 clients in the office?					

Submit You have used 0 of 3 attempts Save Question 8 0.0/2.0 points (graded) Consider a post office with a single desk, which is modeled by an M/M/1 queue. The average number of arrivals per hour is 8 clients and the mean service time is 5 minutes. What is the mean utilization rate of the queue? What is the mean queue length? What is the average response time (in hours)?

You have used 0 of 3 attempts

Submit

Question 9

0.0/2.0 points (graded)

On average, there are 1.5 clients per hour arriving at the dentist's office. The average duration of a consultation is 30 minutes. On average, there are 3 people in the waiting room at each time instant t. What is the total time clients spend in the office (in hours)?

Submit		
You have us attempts	ed 0 of 3	
Save		

Question 10

1 point possible (graded)

On average, there are two clients arriving per hour at the dentist's office. The average duration of the consultation is 20 minutes. On average, there are 3 people in the waiting room. Is it possible that this is an M/M/1 queue?

Question 12

attempts

Save

1 point possible (graded)

You have used 0 of 3

The M/M/1/K queue is:

- a pure loss system
- a pure waiting system
- both a waiting and loss system

Submit

You have used 0 of 3 attempts