Математические основы защиты информации и информационной безопасности

Отчет по лабораторной работе № 6 : Раложение чисел на множители.

Кейела Патачона, группа НПМмд-02-21

Содержание

1	Цель работы	4				
2	Выполнение работы $2.1 p$ —Метод Полларда	5 5 6 7 8				
3	Выводы	9				
Сп	Список литературы					

List of Figures

2.1	p —метод Полларда \ldots	6
2.2	Пример работы алгоритма $p-$ метода Полларда $\ldots \ldots \ldots$	7
2.3	Код программа 1	7
2.4	Разложение чисел 1	8
2.5	Разложение чисел 2	8

1 Цель работы

Построить алгоритм, реализующий разложение чисел на множетели.

2 Выполнение работы

Задача разложения на множители - одна из первых задач, использованных для построения криптосистем с открытым ключом. Задача разложения составного числа на множители формулируется следующим образом: для данного положительного целого числа n найти его каноническое разложение $n=p_1^{\ \alpha_1}p_2^{\ \alpha_2}...p_s^{\ \alpha_s}$, где p_i — попарно различные простые числа, $\alpha_i \geq 1$. На практике не обязательно находить каноническое разложение числа n. Достаточно найти его разложение на два нетривиальных сомложителя: $n=pq, 1\leq p\leq q< n$. Далее будем понимать задачу разложения именно в этом смысле.

2.1 p—Метод Полларда

Пусть n — нечетное составное число, $S=\{0,1,...,n-1\}$ и f:S o S — случайное отображение, обладающее сжимающими свойствами, например $f(x)=x^2+1 (mod n)$. Основная идея метода состоит в следующем. Выбираем случайный элемент $x_0\in S$ и строим последовательность $x_0,x_1,x_2,...$, определяемую рекуррентным соотношением

$$x_{i+1} = f(x_i)$$

где i>0, до тех пор, пока не найдем такие числа i,j, что i< j и $x_i=x_j$. Поскольку множество S конечно, такие индексы i,j существуют (последовательность «зацикливается»). Последовательность x_i будет состоять из «хвоста» $x_0,x_1,...,x_{i-1}$ длины $O\left(\sqrt{\frac{\pi n}{8}}\right)$ и цикла $x_i=x_j,x_{i+1},...,x_{j-1}$ той же длины.

2.2 Алгоритм, реализующий p-метод Полларда.

Вход. Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Выход. Нетривиальный делитель числа n.

- 1. Положить $a \leftarrow c, b \leftarrow c$.
- 2. Вычислить $a \leftarrow f(a) (mod \quad n), b \leftarrow f(f(b)) (mod \quad n)$
- 3. Найти $d \leftarrow \text{HOД}(a-b, n)$.
- 4. Если 1 < d < n, то положить $p \leftarrow d$ и результат p. При d = n результат: "Делитель не найден"; при d = 1 ввернуться на шаг 2.

Figure 2.1: p—метод Полларда

Пример Найти p—метод Полларда нетривиальный делитель числа n=1359331. Положим c=1 и $f(x)=x^2+5 (mod\ n)$. Работа алгоритма иллюстрируется следующей таблицей:

i	а	b	d=HOД(a-b,n)
	1	1	
2	6	41	1
2	41	123939	1
3	1686	391594	1
4	123939	438157	1
5	435426	582738	1
6	391594	1144026	1
7	1090062	885749	1181

Figure 2.2: Пример работы алгоритма p-метода Полларда

Таким образом, 1181 является нетривиальным делителем числа 1359331.

2.3 Метод квадратов. (Теорема Ферма о разложении)

Для любого положительного нечетного числа n, существует взаимно однозначное соответствие между множеством делителей числа n, не меньших, чем \sqrt{n} , и множеством пар s,t таких неотрицательных целых чисел, что $n=s^2-t^2$.

Пример. У числа 15 два делителя, не меньших, чем $\sqrt{15}$, - это числа 5 и 15. Тогда получаем два представления: 1. 15=pq=3*5, откуда $s=4,t=1,15=4^2-1^2$; 2. 15=pq=1*5, откуда $s=8,t=7,15=8^2-7^2$.

Figure 2.3: Код программа 1

2.4 Результаты работы

```
Enter the number to decompose: 1359331

a = 6 b = 41 d = 1

a = 41 b = 123939 d = 1

a = 1686 b = 391594 d = 1

a = 123939 b = 438157 d = 1

a = 435426 b = 582738 d = 1

a = 391594 b = 1144026 d = 1

a = 1090062 b = 885749 d = 1181

Нетривиальный делитель 1359331 : 1181

Decomposition of 1359331 :
1359331 = 1166^2 - 15^2

PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity\laboratory>
```

Figure 2.4: Разложение чисел 1

```
Enter the number to decompose: 15
a = 6 b = 11 d = 5

Нетривиальный делитель 15 : 5

Decomposition of 15 :
15 = 4^2 - 1^2

PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity\laboratory> & C:
rs/patat/Desktop/Master Rudn/Git_work/2021-2022/Cybersecurity/laboratory/lab06/task.py"
Enter the number to decompose: 31
a = 6 b = 10 d = 1
a = 10 b = 25 d = 1
a = 12 b = 12 d = 31

Нетривиальный делитель не найден

Decomposition of 31 :
31 = 16^2 - 15^2

PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity\laboratory>
```

Figure 2.5: Разложение чисел 2

3 Выводы

В ходе этой лабораторной работы, я изучил и построил алгоритм p- метода Полларда и научился разложение чисел на множетели и в виде разности квадратов.

Список литературы

1. Инструкция к лабораторной работе №6