PROBABILITY AND STATISTICS - PROBLEM SET 10

- 1. If X_1, \ldots, X_n is an independent sample of size n from a population defined by the pmf $f(x) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, where $0 < \theta < 1$, find the maximum likelihood estimator for θ .
- 2. Find the maximum likelihood estimator for θ in each of the following cases:
 - (a) $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, where $\theta > 0$. (b) $f(x;\theta) = \theta e^{-\theta x}$, x > 0, where $\theta > 0$.

 - (c) $f(x;\theta) = e^{-(x-\theta)}$, $x \ge \theta$, where θ is any real number. (d) $f(x;\theta) = \frac{1}{2}e^{-|x-\theta|}$, where θ is any real number.

 - (e) $f(x; \theta) = \frac{2x}{\alpha^2}$, $0 \leqslant x \leqslant \theta$, where $\theta > 0$.
- 3. Find the mles of θ_1 and θ_2 in each of the following cases:
 - (a) $X \sim N(\theta_1, \theta_2)$
 - (b) $f(x; \theta_1, \theta_2) = \frac{1}{\theta_2} e^{-\frac{(x-\theta_1)}{\theta_2}}, x > \theta_1$

where θ_1 is any real number and $\theta_2 > 0$.

- 4. Find the mle of θ in each of the following cases:
 - (a) $X \sim B(m, \theta)$.
 - (b) $X \sim \mathcal{P}(\theta)$.
 - (c) $X \sim B(\mu, \theta)$.
- 5. Let $X \sim U[0, \theta]$, where $\theta > 0$. Compute the mle for θ and show that it is unbiased.
- 6. Show that the sample mean is an unbiased and consistent estimator of population mean.
- 7. Show that sample variance is a biased but consistent estimator of the population variance.
- 8. Show that $Y = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ is an unbiased estimator of population variance.
- 9. Show that \overline{X} is an unbiased estimator of θ if the pdf of X is $f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 00, where $\theta > 0$. Also show that \overline{X} has variance $\frac{\theta^2}{n}$ and is therefore a consistent estimator.

- 10. Let Y_n be an unbiased estimator of θ , such that $V(Y_n) \to 0$ as $n \to \infty$. Then show that Y_n is consistent.
- 11. Find the same size n such that $P[\overline{X} 1 < \mu < \overline{X} + 1] = 0.9$, given that $X \sim N(\mu, 9)$.
- 12. If the observed value of the mean of a sample of size 20 from a population having distribution $N(\mu, 80)$ is $\overline{x}=81.2$, find a 95 percent confidence interval for the population mean.
- 13. If a random sample of size 17 from a normal distribution $N(\mu, \sigma^2)$ yields $\overline{x} = 4.7$ and $s^2 = 5.76$, determine a 90 percent confidence interval for μ .
- 14. A random sample of size from the distribution $N(\mu, \sigma^2)$ yields $s^2 = 7.63$. Determine a 95 percent confidence interval for σ^2 .
- 15. Find an approximate 95 percent confidence interval for the mean of a population having variance 100, if the sample size is 25.
- 16. A random sample of size 15 from a normal population with unknown mean and variance yields $\bar{x}=3.2$ and $s^2=4.24$. Determine a 95 percent confidence interval for σ^2 .
- 17. If a sample of size 15 from a population with distribution $N(\mu, \sigma^2)$ yields values $\sum_{i=1}^{15} X_i = 8.7$ and $\sum_{i=1}^{15} X_i^2 = 27.3$, obtain a 95 percent confidence interval for σ^2 .
- 18. Suppose that $X \sim N(8, \sigma^2)$, and the observed values of a sample are of size 9 from this population are 8.6, 7.9, 8.3, 6.4, 8.4, 9.8, 7.2, 7.8, and 7.5. Construct a 90 percent confidence interval for σ^2 .
- 19. Suppose that $X \sim N(\mu, 4)$. If $\overline{x} = 78.3$ with n = 25, obtain a 99 percent confidence interval for μ .