1

26.06.2018 תאריך הבחינה:

שם המרצה: פיודור פקוביץ

שם הקורס: חדו"א 2 להנדסת תעשיה וניהול

מס' הקורס: 201.1.9621

מסי הקודט: 2018. שנה: 2018, סמסטר: ב ,מועד א

משך הבחינה: 3 שעות

אוניברסיטת בן גוריון בנגב

מדור בחינות

יש לענות על כל 6 שאלות הבאות ללא בחירה בדפים המיועדים לכך בלבד. לטיוטה להשתמש רק במחברת המצורפת לשאלון הזה. מחברת טיוטה עוברת לגריסה. על תשובותיכם להיות ברורות ומנומקות היטב. יש להסביר את מהלך הפתרון ולציין את המשפטים והטענות עליהם אתם מסתמכים.

בהצלחה!

שאלה 1 א) (10 נק') מצא שטח של התחום המוגדר על ידי תנאים $x^2+2x+y^2 \ge 0$, $x^2+4x+y^2 \le 0$,

> ב) (6 נק') החלף סדר אינטגרציה באינטגרל $\int_{0}^{1} \int_{-2\sqrt{x}}^{2\sqrt{x}} f(x, y) \, dy \, dx$

$$(x+1)^{2}+y^{2} \ge 1$$

 $(x+2)^{2}+y^{2} \le 4$
 $y \le -x$

$$S = \int_{4}^{3\pi} \left(\frac{3\pi}{2} - \frac{3\pi}{4} \right) \cdot \frac{r^{3}}{3} = \frac{3\pi}{4} - (2 - \frac{1}{3})$$

$$= \frac{3\pi}{4} - \frac{3}{3} = \underline{nGe}$$

$$= \frac{3\pi}{4} - \frac{3}{3} = \underline{560}$$

S S f(x,y) dy dx

$$y = y \times x$$

$$\begin{array}{ll}
y = 2\sqrt{x} \\
y = -2\sqrt{x}
\end{array} \quad \left(y^{\frac{3}{2}} 4x\right)$$

$$= \int_{-2}^{2} \int_{y^2}^{4} f(x,y) dx dy$$

שאלה 3 א) (9 נק') מצא מינימומים ומקסימומים מקומיים של הפונקציה א) $(2x^4+v^4-x^2-2)v^2$

ב) (9 נק') מצא את הערך המקסימלי והערך המינימלי של הפונקציה y=4 ו- $y=x^2$ ו- y=4

$$f = \partial x^{4} + y^{4} - x^{2} - \partial y^{3}$$

$$f'_{x} = 8x^{3} - \partial x = 0 \quad y^{3} - x = 0 \quad x(4x^{2} - x) = 0 \quad y^{3} - y = 0$$

$$f'_{y} = 4y^{3} - 4y = 0 \quad y^{3} - y = 0 \quad y(y^{2} - x) = 0 \quad y^{3} - y = 0$$

$$(0, \pi) \quad (0, -\pi) \quad (0, 0)$$

$$(\frac{1}{2}, \pi) \quad (\frac{1}{2}, -\pi) \quad (\frac{1}{2}, 0) \quad f''_{xx} = \partial 4x^{3} - \partial x = 0$$

$$(-\frac{1}{3}, \pi) \quad (-\frac{1}{3}, -\pi) \quad (-\frac{1}{2}, 0) \quad f''_{xy} = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial y^{3} - y \quad \Delta = 0$$

$$|\partial y^{3} - y| = 1\partial$$

 $\int_{-\frac{1}{2}}^{\frac{1}{2}} (-\frac{1}{2}, -1) = 4 > 0$ $(-\frac{1}{2}, -1)$ min

 $f''_{xx}(0,0) = -2<0$ (0,0) max

א) (9 נק') חשב את המרחק מנקודה M = (0,0,1) לישר

l על ישר M על של הנקודה M על ישר

M(0,0,1) $\int_{-1}^{2} \int_{X+\partial Z=0}^{X+y-z=1}$

ek 4

$$\vec{p} = (1,1,-1) \times (1,0,2) = \begin{vmatrix} \vec{i} & \vec{j} & k \\ 1 & 1 & -1 \\ 1 & 0 & 2 \end{vmatrix} = \vec{i} \cdot 2 - \vec{j}(2+1) + k(-1) = (2,-3,-1)$$

$$\int X+y-z=1$$

 $(x+az=0)$ $-y+3z=-1$ $y=3z+1$ $x=-az$ $(-at,3t+1,t)$

M (0,1,0) of paper

$$\widetilde{M_0M} = (0, -1, 1)$$
 $M_0M \times P = \begin{vmatrix} i & j & k \\ 0 & -1 & 1 \\ 0 & -3 & -1 \end{vmatrix} = i(1+3)-j(-2)+k(2)$
 $= (4, 3, 3)$

$$d = \frac{|(4,2,2)|}{|(2,-3,-1)|} = \frac{\sqrt{4^2 + 2^2 + 2^2}}{\sqrt{2^2 + 3^2 + 1}} = \frac{\sqrt{24}}{\sqrt{14}}$$

M 9 (-2t,3tm,t): l & M & & D. D. 4

QM · P= O PDIKA

$$|4t=-2 \ t=-\frac{1}{7} \ (\frac{2}{7}, \frac{4}{7}, \frac{-1}{7})=q=669$$

שאלה 5 א) (10 נק') חשב נפח של הגוף החסום ע''י משטחים z+2y=2, z=2y, $y=\frac{x^2}{2}$

$$2y)^{\frac{1}{2}} \int_{0}^{1} a^{-4}y \, dxdy = 2 \int_{0}^{1} (y - y^{2}) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y^{2} \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y - y \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y - y \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y - y \right) \int_{0}^{1/2} a^{-4}y \, dxdy = 2 \int_{0}^{1} \left(y - y - y - y \right) \int_{0}^{1/2} a$$

א) (8 נק') עבור אילו ערכים של cy=y(x) מגדירה פונקציה סתומה $x^y=y^x$ מגדירה (8 נק') המשוואה $(x,y) \to (0,0)$ $\frac{x^2 + Cy^2}{x^2 - Cy^2}$ 06.6 Und K-D IBS Kd flats $\int y = kx$ $\int y$ GSAID GIIG RAIL C=0 $\lim_{x \to a} \frac{x^a}{x^a} = 1$ °C=0 Nox .3282 C=0 ·2 .6 $x^{y}=y \times y=y(x) f(x,y)=x-y = 0 = 0 = 0 f=e^{y\ln x}-e^{x\ln y}$ $y'_{x} = \frac{F'_{x}}{F'_{y}} = \frac{y^{x} \ln y - x^{y} \cdot \frac{y}{x}}{x^{y} \cdot \ln x - y^{x} \cdot \frac{x}{x}}$ $y'(1) = \frac{1 \cdot \ln x - 1 \cdot x}{1 \cdot \ln x - 1 \cdot x} = \frac{-1}{-1} = 1$ $F_{x}' = X^{9} \cdot (y | nx)_{x}' - y^{x} (x | ny)_{x}' = X^{9} \cdot \frac{y}{x} - y^{x} \cdot | ny$ $F_{y}=X^{y}$, $(y\ln x)_{y}'-y^{x}(x\ln y)_{y}'=X^{y}$. $\ln x-y^{x}\cdot\frac{x}{y}$