Université Orsay-Paris-Saclay

DM1 MEU202

Exercice 1 Soit $n \geq 2$ un entier et soit $A \in M_n(\mathbb{R})$. On rappelle que l'on note tA la transposée de A obtenue à partir de A en échangeant les lignes et les colonnes. On dit que A est symétrique si $A = {}^tA$ et on dit que A est antisymétrique si $-A = {}^tA$.

- 1. Montrer que l'ensemble S_n des matrices symétriques de taille n est un sev de $M_n(\mathbb{R})$ et que l'ensemble A_n des matrices anti-symétriques de taille n est un sev de $M_n(\mathbb{R})$.
- 2. Si n = 2 montrer que les matrices $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $E_{12} + E_{21} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ forment une base de S_2 . De même montrer que la matrice $E_{12} E_{21} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ est une base de A_2 .
- 3. Si $n \geq 3$ généraliser la question précédente en donnant une base de S_n et de A_n .
- 4. En utilisant une décomposition du type $A = \frac{1}{2}(A + {}^tA) + ??$ montrer que $M_n(\mathbb{R}) = S_n \oplus A_n$.

Exercice 2 Montrer qu'il n'existe pas d'appplication linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ telle que $\ker(f)$ est engendré par $u_0 := (1, 2, -1, 4)$ et $\operatorname{Im}(f)$ est le plan de \mathbb{R}^3 d'équation x + y + z = 0. (Indication : les coeff de l'équation du plan et les valeurs des coordonnées de u_0 n'ont aucune importance).

Exercice 3 Existe-t-il des application linéaires injectives de \mathbb{R}^2 dans \mathbb{R} ?

Exercice 4 Soit E un \mathbb{R} -ev de dimension 2. On suppose donné sur E deux bases : $\mathcal{B} := \{b_1, b_2\}$ et $\mathcal{C} := \{c_1, c_2\}$ telle que $b_1 = -c_1 + 4c_2$ et $b_2 = 5c_1 - 3c_2$.

- 1. Expliciter les matrices de changement de bases $P_{\mathcal{C},\mathcal{B}}$ et $P_{\mathcal{B},\mathcal{C}}$.
- 2. Soit $x \in E$ donné par $x = 5b_1 + 3b_2$. Donner les coordonnées de x dans la base C.

Exercice 5 Soient $a, b, c \in \mathbb{R}$ tous non nuls. Résoudre dans \mathbb{R} , l'équation d'inconnue x suivante :

$$\left| \begin{pmatrix} 1 & 1 & 1 & 1 \\ x & a & 0 & 0 \\ x & 0 & b & 0 \\ x & 0 & 0 & c \end{pmatrix} \right| = 0.$$

Exercice 6 Caractériser géométriquement dans \mathbb{R}^2 l'ensemble des couples $(\lambda, \mu) \in \mathbb{R}^2$ tels que les trois vecteurs $\begin{pmatrix} 2 \\ \mu \\ 1 \end{pmatrix}$, $\begin{pmatrix} \lambda \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} \mu \\ \lambda \\ 0 \end{pmatrix}$ ne forment pas une base.

1