

- ® BUNDESREPUBLIK
 DEUTSCHLAND
- [®] Off nl gungsschrift
- _® DE 40 29 650 A 1

DEUTSCHES

PATENTAMT

- ② Aktenzeichen:
- P 40 29 650.4
- Anmeldetag: 19. 9. 90
- Offenlegungstag: 26. 3. 92

51) Int. Cl.5:

C 07 D 239/46

C 07 D 239/70 C 07 D 239/84

C 07 D 239/86 C 07 D 401/12

C 07 D 403/12 C 07 D 405/12 C 07 D 413/12 C 07 D 417/12

C 07 D 491/048 C 07 D 495/04 A 01 N 43/54 E 40 29 650 A

// C07D 521/00 (C07D 491/048,239:00,307:00) (C07D 495/04,239:00,333:00,335:00) (C07D 239/46,213:04,209:04,215:58, 279:16, 265:36,309:02,333:04)C09D 5/14,C10M 133/40,C10N 30:16 (A01N 43/54,57:00,47:10,55:04,53:00,37:52)

(1) Anmelder:

Hoechst AG, 6230 Frankfurt, DE

2 Erfinder:

Minn, Klemens, Dr., 6234 Hattersheim, DE; Braun, Peter, Dr., 6500 Mainz, DE; Sachse, Burkhard, Dr., 6233 Kelkheim, DE; Wicke, Heinrich, Dr., 6239 Eppstein, DE

(3) 2-Anilino-pyrimidine, Verfahren zu ihrer Herstellung, sie enthaltene Mittel und ihre Verwendung als Fungizide

Beschreibung

2-Anilino-pyrimidine, Verfahren zu ihrer Herstellung, sie enthaltene Mittel und ihre Verwendung als Fungizide.

2-Anilino-pyrimidin-Derivate sind bekannt als wirksame Komponenten in fungiziden Mitteln (vergl. GB 12 45 085, DD 1 51 404, DD 2 36 667, EP 2 34 136, EP 2 24 339, EP 2 70 111, JP 61/015 877, EP 1 35 472, AU 85/43988, EP 2 95 210, EP 3 10 550).

Die Wirkung dieser Derivate ist jedoch insbesondere bei niedrigen Aufwandmengen nicht immer befriedigend, häufig ist auch das Artenspektrum nicht ausreichend.

Es wurden neue 2-Anilino-pyrimidin-Derivate gefunden, die vorteilhafte Wirkungen bei der Bekämpfung eines breiten Spektrums phytopatogener Pilze, insbesondere bei niedrigen Dosierungen aufweisen.

Gegenstand der vorliegenden Erfindung sind daher Verbindungen der Formel I

worin

 R^1 = Wasserstoff, Halogen, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, Cyano- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, Halo- $(C_1 - C_4)$ -alkylthio, Halo- $(C_1 - C_4)$ -alkylthio- $(C_1 - C_4)$ -alkyl, (C_1-C_4) -Alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -Alkylamino, (C_1-C_4) -Dialkylamino, (C_3-C_9) -Cycloalkylamino, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkylamino- (C_1-C_4) -alkyl, (C₃-C₉)-Cycloalkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl, (C_3-C_4) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Haloalkylcarbonyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Alkyla-alkoxycarbonyl, (C_1-C_4) -Alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-alkyla-alkylcarbonyl, (C_1-C_4) -Alkyla-al minocarbonyl, $(C_1 - C_4)$ -Haloalkylaminocarbonyl, $(C_1 - C_4)$ -Alkoxycarbonyl- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl-(C1-C4)-alkyl, gegebenenfalls substituiertes Phenylketo- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylmercapto-(C₁ - C₄)-alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylamino- (C_1-C_4) -alkyl, Phenoxyphenyl- (C_1-C_4) -alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann,

R¹ und R⁹ gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern,

 R^2 = Wasserstoff, Formyl, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, Cyano- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl, Halo- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl, substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylamino- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenyletil

bis zu dreifach durch Halogen, Ester, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, (C1-C4)-Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert sein kann, R³, R⁴, R⁵ = unabhängig voneinander Wasserstoff, Halogen, Hydroxy, Amino, Nitro, Cyano, Thiocyano, (C_1-C_4) -Alkyl, Cyano- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylamino, (C_1-C_4) -Dialkylamino, (C_1-C_4) -Alkylcarbonylamino, Halo- (C_1-C_4) -alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkyl- (C_1-C_4) -Alky thio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkylthio- (C_1-C_4) -Alkylthiokinyl, $(C_1 - C_4)$ -Alkylamino- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Dialkylamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkylamino-kyl, wobei die cyclischen Reste bis zu dreifach durch $(C_1 - C_4)$ -Alkyl substituiert sein können, $(C_1 - C_4)$ -Alkoxycarbonyl- $(C_1 - C_4)$ -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C₁ - C₄)-Dialkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Haloalkylcarbonyl, (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alxoxycarbonyl, (C_1-C_4) -Alxoxycarbonyl, alkoxycarbonyl, $(C_1 - C_4)$ -Alkylthiocarbonyl, $(C_1 - C_4)$ -Haloalkylthiocarbonyl, Aminocarbonyl, $(C_1 - C_4)$ -Alkylaminocarbonyl, (C1-C4)-Haloalkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl-(C₁-C₄)-alkyl, gegebenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylmercapto- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylamino-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxyphenyl-(C₁-C₄)-alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C1-C4)-Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann. R³, R⁴ und/oder R⁵ gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P oder mit 4 bis 10 Ringgliedern, R² und R³ und/oder R⁴ gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern, R^6 , R^6 = unabhängig voneinander Wasserstoff, $(C_1 - C_9)$ -Alkyl, Cyano- $(C_1 - C_4)$ -alkyl, Halo- $(C_1 - C_4)$ -alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -alkyl, (C_3-C_6) -Alkinyl, (C_1-C_4) -alkyl, (C_3-C_6) -Cycloalkylamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkyl, $(C_3 - C_9)$ -Cycloalkyl- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Heterocycloalkyl- $(C_1 - C_4)$ -alkyl, wobei die cyclischen Reste bis zu dreifach durch $(C_1 - C_4)$ -Alkyl substituiert sein können, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl-(C1-C4)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylamino- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenoxyphenyl-(C1-C4)-alkyl, gegebenenfalls substituierter 5- oder 6gliedriger Heteroatomat, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil (Heteroaromat) bis zu dreifach durch Halogen, Ester, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann. R⁶ und R⁷ gegebenenfalls zusammen einen gesättigten oder teilweise ungesättigten Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern bilden, R^8 = Wasserstoff, Halogen, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, Cyano- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkylthio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio- (C_1-C_4) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino-(C₁-C₄)-alkyl, (C₃-C₉)-Cycloalkylamino-(C₁-C₄)-alkyl, wobei ein C-Atom gegebenenfalls durch die Heteroatome O oder N substituiert sein kann, (C3-C3)-Cycloalkyl, (C3-C3)-Cycloalkyl-(C1-C4)-alkyl, (C3-C3)-Heterocycloalkyl- $(C_1 - C_4)$ -alkyl, wobei die cyclischen Reste bis zu dreifach durch $(C_1 - C_4)$ -Alkyl substituiert sein können, $(C_1 - C_4)$ -Alkoxycarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Alkylaminocarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Dialkylaminocarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Alkylcarbonyl, $(C_1 - C_4)$ -Haloalkylcarbonyl, $(C_1 - C_4)$ -Alkoxycarbonyl, (C_1-C_4) -Haloalkoxycarbonyl, (C_1-C_4) -Alkylthiocarbonyl, (C_1-C_4) -Haloalkylthiocarbonyl, Aminocarbonyl, bonyl, (C₁-C₄)-Alkylaminocarbonyl, (C₁-C₄)-Haloalkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituit en Phenoxy, gegebenenfalls substituit en Phenoxy, gegebenenfalls substituit en Phenoxy, gegebenenfalls subst stituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylmercapto- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylketo- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl- (C_1-C_4) -alkyl, gegebenenfalls substituierter 5- oder 6gliedriger Heteroaromat, gegebenenfalls substituiertes Phenylamino- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxyphenyl- (C_1-C_4) -alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil (Heteroaromat) bis zu dreifach durch Halogen, Ester, $(C_1 - C_4)$ -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R^9 = Halogen, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_9)$ -Alkoxy, Hydroxy- $(C_1 - C_4)$ -alkyl, Dihydroxy- $(C_1 - C_4)$ -alkyl, Cyano- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl,

 $\begin{array}{lll} (C_1-C_4)-Alkylthio, & Halo-(C_1-C_4)-alkylthio, & Halo-(C_1-C_4)-alkylthio-(C_1-C_4)-alkyl, & (C_1-C_4)-Alkylthio-(C_1-C_4)-alkyl, & (C_1-C_4)-Alkylthio-(C_1-C_4)-alkyl, & (C_2-C_6)-Alkenyl, & (C_2-C_6)-Alkinyl, & (C_1-C_4)-Alkylamino, & (C_1-C_4)-Dialkylamino, & (C_1-C_4)-Alkylamino, & (C_1-C_4)-Alkylamino-(C_1$

lamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkyl, $(C_3 - C_9)$ -Cycloalkyl- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Heterocycloalkyl- $(C_1 - C_4)$ -alkyl, wobei die cyclischen Reste bis zu dreifach durch $(C_1 - C_4)$ -Alkyl substituiert sein können, $(C_1 - C_4)$ -Alkoxycarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Alkylaminocarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Alkylaminocarbonyl- $(C_1 - C_4)$ -Alkylaminocarbonyl, $(C_1 - C_4)$ -Alkylaminocarbonyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenoxy- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylteil bis zu dreifach durch Halogen, Säureester, Ester, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Baloalkyl, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$

n = eine Zahl von 0 bis 8 bedeuten, sowie deren Säureadditionssalze.

In Formel I bedeutet

R¹ bevorzugt Wasserstoff, Halogen, (C₁—C₄)-Alkyl, Hydroxy-(C₁—C₄)-alkyl, Perhalo-(C₁—C₄)-alkyl,

(C₁—C₄)-Alkoxy, (C₁—C₄)-Alkoxy-(C₁—C₄)-alkyl, Halo-(C₁—C₄)-alkoxy-(C₁—C₄)-alkyl, (C₁—C₄)-Alkylthio,

(C₁—C₄)-Alkylthio-(C₁—C₄)-alkyl, (C₂—C₆)-Alkenyl, (C₂—C₆)-Alkinyl, (C₁—C₄)-Alkylamino, (C₁—C₄)-Dialkylamino,

(C₃—C₉)-Cycloalkylamino-(C₁—C₄)-alkyl, (C₃—C₉)-Cycloalkyl, (C₃—C₉)-Cycloalkyl-(C₁—C₄)-alkyl,

(C₃—C₉)-Heterocycloalkyl-(C₁—C₄)-alkyl, wobei die cyclischen Reste bis zu dreifach durch (C₁—C₄)-Alkyl

substituiert sein können, (C₁—C₄)-Alkylcarbonyl, (C₁—C₄)-Alkoxycarbonyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-(C₁—C₄)-alkyl, gegebenenfall

Cyano substituiert sein kann. R^1 ist insbesondere Wasserstoff, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, besonders bevorzugt Wasserstoff.

 R^2 ist bevorzugt Wasserstoff, Formyl, (C_1-C_4) -Alkyl, Cyano- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, Perhalo- (C_1-C_4) -alkylthio, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_3-C_4) -Dialkylamino- (C_1-C_4) -alkyl, (C_3-C_4) -Alkyl, (C_3-C_4) -Alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Alkoxycarbonyl, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -Alkylcarbonyl, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -Alkyl, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -Alkyl, gegebenenfalls substituiertes Phenylketo- (C_1-C_4) -Alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann, insbesondere Wasserstoff, (C_1-C_4) -Alkyl oder Formyl, besonders bevorzugt Wasserstoff oder CHO, und

R³, R⁴, R⁵ bedeuten bevorzugt unabhängig voneinander Wasserstoff, Halogen, Hydroxy, Amino, Nitro, Cyano, Thiocyano, (C_1-C_4) -Alkyl, Cyano- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylamino, (C_1-C_4) -Biakyl, Hydroxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkylthio, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl,

(C₁—C₄)-Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann. R³, R⁴ und/oder R⁵ können zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10 Ringgliedern bilden und

R² und R³ und/oder R⁴ können zusammen einen gesättigten, teilweise ungesättigten Carbocyclus oder Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10, insbesondere 5 oder 6 Ringgliedern bilden.

R³, R⁴, R⁵ ist insbesondere unabhängig voneinander Wasserstoff, Chlor, Brom, (C₁ – C₄)-Alkyl oder (C₁ – C₄)

R⁶, R^7 sind bevorzugt unabhängig voneinander Wasserstoff, $(C_1 - C_9)$ -Alkyl oder durch Halogen, $(C_1 - C_4)$ -Alkyl oder $(C_1 - C_4)$ -Alkoxy gegebenenfalls substituiertes Phenyl, insbesondere Wasserstoff oder $(C_1 - C_4)$ -Alkyl, besonders bevorzugt Wasserstoff,

 R^6 und R^7 können zusammen einen gesättigten oder teilweise ungesättigten Carbocyclus oder Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10, insbesondere 5 oder 6 Ringgliedern bilden, R^8 ist bevorzugt Wasserstoff, Halogen, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl,

 (C_1-C_4) -Alkylthio, Perhalo- (C_1-C_4) -alkylthio, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy- (C_1-C_4) -Alkyl- (C_1-C_4) -Alkoxy- $(C_1-C_$

Insbesondere ist $R^8 = Wasserstoff, Iod, (C_1 - C_4) - Alkyl, Di - (C_1 - C_4) - alkylamino - (C_1 - C_4) - alkyl oder durch Halogen, (C_1 - C_4) - Al$ kyl oder (C1-C4)-Alkoxy gegebenenfalls substituiertes Phenyl, besonders bevorzugt Wasserstoff. R^9 ist bevorzugt Halogen, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_9)$ -Alkoxy, Hydroxy- $(C_1 - C_4)$ -alkyl, Dihydroxy- $(C_1 - C_4)$ -alkyl. $Cyano-(C_1-C_4)-alkyl, \ Halo-(C_1-C_4)-alkyl, \ (C_1-C_4)-alkoxy-(C_1-C_4)-alkyl, \ Halo-(C_1-C_4)-alkoxy-(C_1-C_4)-alkyl, \ Halo-(C_1-C_4)-alkyl, \ Halo-(C_1-C_4)-alkyl,$ kyl, (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkylthio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkylamino, (C_1-C_4) -Dialkylamino, (C_3-C_9) -Cycloalkylamino, (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkylam (C_3-C_9) -Cycloalkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- (C_1-C_4) -alkyl, $no-(C_1-C_4)-alkyl$, (C_3-C_9) -Cycloalkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C₁-C₄)-Alkyl substituiert sein können, (C₁-C₄)-Alkylcarbonyl, (C1-C4)-Alkoxycarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl $-(C_1-C_4)$ -alkyl, gegebenenfalls substituiertes Phenoxy- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenyl-(C1-C4)-alkoxy, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkyl alkoxy oder einfach durch Nitro oder Cyano substituiert sein kann. R^9 ist insbesondere Halogen, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, Phenyl- (C_1-C_4) -alkoxy, Cyano- (C_1-C_4) -alkyl oder $(C_1 - C_4)$ -Alkoxycarbonyl- $(C_1 - C_4)$ -alkyl, besonders bevorzugt Br oder OCH₃. R1 und R9 können zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder

X ist bevorzugt O oder NH und n ist eine Zahl von 0 bis 4, insbesondere 0 oder 1.

Halo bedeutet in den einzelnen Substituenten ein- oder mehrfach durch Halogenatome substituiert.

Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10, insbesondere 5 oder 6 Ringgliedern bilden,

Zur Herstellung der Säureadditionssalze der Verbindungen der Formel I kommen folgende Säuren in Frage: Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäure, Salpetersäure, Schwefelsäure, mono- oder bifunktionelle Carbonsäuren und Hydroxycarbonsäuren wie Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Citronensäure, Salicylsäure, Sorbinsäure oder Milchsäure sowie Sulfonsäuren wie p-Toluolsulfonsäure oder 1,5-Naphthalindisulfonsäure. Die Säureadditionsverbindungen der Formel I können in einfacher Weise nach den üblichen Salzbildungsmethoden, z. B. durch Lösen einer Verbindung der Formel I in einem geeigneten organischen Lösungsmittel und Hinzufügen der Säure, erhalten werden und in bekannter Weise, z. B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.

Die Pyrimidine der Formel I können nach verschiedenen mehrstufigen Verfahren hergestellt werden. Man erhält die erfindungsgemäßen Verbindungen, indem man Verbindungen der Formel II

R¹⁰

N N

(II)

R¹

R²

Hal

worin Hal=Cl oder Br und $R^{10}=(C_1-C_4)$ -Alkylthio, im Phenylteil durch Halogen, (C_1-C_4) -Alkyl oder (C_1-C_4) -Alkoxy gegebenenfalls substituiertes Phenyl- (C_1-C_4) -alkylthio, S oder den Rest III

 $\begin{array}{c}
R^{2} \\
R^{3} \\
R^{5}
\end{array}$ 60

bedeuten, mit Verbindungen der Formel IV

65

10

25

30

$$\begin{array}{c}
R^{6} \\
| \\
HX - C - (CH_{2})_{n} - C \equiv C - R^{4} \\
| \\
R^{7}
\end{array} (IV)$$

umsetzt und, falls R¹⁰ eine von der Formel III abweichende Bedeutung hat, anschließend die erhaltenen Verbindungen im Rest R¹⁰ oxidiert und die entstandenen Oxidationsprodukte mit Verbindungen der Formel V

5

zu den Endprodukten der Formel I mit R^{10} = Rest der Formel III umsetzt sowie gegebenenfalls, wenn R^8 = H, den Wasserstoff gegen Halogene austauscht.

Die Ausgangsstoffe der Formel I erhält man nach einer Anzahl literaturbekannter Verfahren.

Durch Kondensation geeigneter 3-Ketocarbonsäureester mit Thioharnstoff, S-alkylierten Thioharnstoffen, Guanidin oder Guanidinderivaten, wobei sie in reiner Form oder in situ aus ihren Salzen freigesetzt eingesetzt werden können, ohne Lösungsmittel oder in einem geeigneten aprotischen oder protischen Lösungsmittel (Wasser, niedere Alkohole), bei Temperaturen von 0°C bis 160°C, bevorzugt bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Lösungsmittels, in Gegenwart einer geeigneten Base, wie Alkalicarbonate (Na₂CO₃ oder K₂CO₃) oder Alkalialkoholate (NaOMe oder NaOEt), zu entsprechenden 4-Pyrimidinonen.

Die Modifizierung bekannter Pyrimidinone oder Mercaptopyrimidinone erfolgt dagegen mit einem Alkylierungsmittel, wie Alkylhalogenide (z. B. Methyljodid) oder Alkylsäureester (z. B. Dimethylsulfat, Phosphorsäuretrimethylester), unter Verwendung einer Base, beispielsweise NaOH oder Triethylamin, in einem geeigneten protischen oder aprotischen Lösungsmittel (DMF, Acetonitril, Wasser) bei Temperaturen von 0°C bis 260°C, bevorzugt im Temperaturbereich zwischen 50°C und der Siedetemperatur des Lösungsmittels.

 R^{11} steht in diesem und in den folgenden Formelschemata für (C_1-C_4) -Alkyl, (C_1-C_4) -Alkyl-phenyl, im Phenylteil durch Halogen, (C_1-C_4) -Alkyl oder (C_1-C_4) -Alkoxy gegebenenfalls substituiertes (C_1-C_4) -Alkyl-phenyl.

Für die Herstellung der Pyrimidine der Formel II mit R⁹ = X = Halogen ist die Umsetzung geeigneter 4-Pyrimidinone mit elementaren Halogenen in einem aprotischen oder protischen Lösungsmittel wie Essigsäure zu bevorzugen (Beilstein, 3/4. Ergänzungswerk, Band 25, S. 56).

35

45

10

20

35

55

Verbindungen der Formeln II mit R¹ = Wasserstoff können in Anlehnung an entsprechende Literaturvorschriften (Beilstein, 3/4. Ergänzungswert, Band 25, S. 279) 2stufig in einem Eintopfverfahren hergestellt werden. Zunächst werden in einem inerten Lösungsmittel wie Toluol, THF, Dioxan oder Diethylether entsprechende Carbonsäurederivate mit einer geeigneten Base, im allgemeinen mit Alkalihydrid (NaH) oder Alkalialkoholat (NaOMe) anionisiert und dann mit einem Ameisenester formyliert.

Die anschließende Kondensation kann mit Thioharnstoff, S-alkylierten Thioharnstoffen, Guanidin oder Guanidinderivaten erfolgen, wobei diese in reiner Form oder in situ, mittels Basen (Alkoholate wie NaOMe) aus ihren Salzen freigesetzt, eingesetzt werden können. Als besonders für die Kondensation geeignet haben sich protische Lösungsmittel, insbesondere niedere Alkohole, erwiesen.

Die so erhaltenen 4-Pyrimidinone können mit überschüssigem POCl₃ (POBr₃) ohne Lösungsmittel in einem gegen POCl₃ (POBr₃) inertem Lösungsmittel oder in einem basischen Lösungsmittel wie DMF ohne oder mit einem Säurefänger, wie N,N-Dimethylanilin in 0,001 bis 2 Moläquivalenten, vorzugsweise 0,02 Äquivalenten, bei Temperaturen von 50°C bis 110°C, vorzugsweise bei der Siedetemperatur des POCl₃ (POBr³), in die entsprechenden 4-Halogenpyrimidine überführt werden (vergl. Beilstein, Hauptwerk, Band 25, S. 372, Beilstein, 3/4. Ergänzungswerk, Band 23, S. 2471).

Die Verbindungen der Formel II sind größtenteils bekannt bzw. können in analoger, dem Fachmann geläufiger Weise hergestellt werden. Die Umsetzung von II und IV (mit X = O oder S) erfolgt in Abhängigkeit von der Reaktivität der Derivate in einem inerten Lösungsmittel (Toluol, THF) bei Temperaturen von 0°C bis 150°C, vorzugsweise von 25°C bis 50°C (vergl. Comprehensive Heterocyclic Chemistry, A. R. Katritzky, C. W. Rees, Pergamon Press, Oxford, New York, 1984, Vol. 3, S. 100).

In analoger Weise kann man auch entsprechende Amine der Formel IV (mit X = NH oder $N-(C_1-C_4)-Alkyl$) in geeigneten Lösungsmitteln wie DMF, Acetonitril oder DMSO mit 4-Halogenpyrimidinen umsetzen, wobei hier die entstehende HCl (HBr) mit einer Base, z. B. Triethylamin, abgefangen werden sollte.

Sofern die zur Synthese der erfindungsgemäßen Verbindungen benötigten, den Rest III

enthaltenden Pyrimidin-Derivate der Formel II nicht zur Verfügung stehen, kann man diesen Rest nachträglich in die zunächst erhaltenen Umsetzungsprodukte von II (mit R¹0 ≠ Rest der Formel III) und IV einführen. Hierzu

kann bei entsprechenden 2-Alkylmercaptopyrimidinen die schwefeltragende Gruppe oxidiert werden. Die Oxidation kann nach üblichen Verfahren mit einem geeigneten Oxidationsmittel wie Peroxide (z. B. H₂O₂), Permanganat, Perbenzoesäuren oder mit einer Mischung aus Kaliumperoxomonosulfat, 2KHSO₅, KHSO₄ und K₂SO₄ in einem Lösungsmittel oder Lösungsmittelgemisch (z. B. Wasser, Essigsäure, Methanol) oxidiert werden (vergl. Comprehensive Heterocyclic Chemistry, A. R. Katritzky, C. W. Rees, Pergamon Press, Oxford, New York, 1984, Vol. 3, S. 96; D. J. Brown, B. T. England, J. Chem. Soc. [C] [1971], 256). Die Oxidation kann auch mittels Katalysatoren gestartet oder beschleunigt werden.

Im nächsten Schritt kann der Austausch der Sulfonylgruppe gegen Anilinderivate erfolgen. In einem inerten Lösungsmittel, beispielsweise Toluol oder THF, wird das Anilin-Derivat mittels einer Base, vorzugsweise Alkalihydrid, insbesondere NaH, anionisiert. Die Reaktion mit dem Pyrimidin erfolgt dann bei Temperaturen von 0°C bis 100°C, wobei zur Vermeidung von Nebenreaktionen, insbesondere für die Fälle, in denen die Verbindungen der Formel I mit R¹ und R¹² = Halogen oder eine Gruppe mit einer Doppel- oder Dreifachbindung bedeuten, möglichst niedrige Temperaturen anzustreben sind. Ähnliche Verfahren sind in der Literatur beschrieben (vergl. Comprehensive Heterocyclic Chemistry, A. R. Katritzky, C. W. Rees, Pergamon Press, Oxford, New York, 1984, Vol. 3, S. 97).

30 O R¹

$$O = S - R^{11}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

R¹² steht in diesem und in den folgenden Formelschemata für Halogen, insbesondere Chlor, oder

$$\begin{array}{ccc}
 & R^{6} \\
 & | \\
 & | \\
 & C - (CH_{2})_{n} - C \equiv C - R^{4} \\
 & | \\
 & R^{7}
\end{array}$$

Für Verbindungen der Formel I mit R² = CHO kann der Substituent einer Protonenkatalyse in einem geeigneten Lösungsmittel (z. B. HCl in EtOH) abgespalten werden.

lst in den erfindungsgemäßen Verbindungen R¹²=Halogen, kann der oben beschriebene Austausch des Halogens unter entsprechenden Bedingungen als letzter Schritt vorgenommen werden. Für den Fall, daß in Verbindungen der Formel I R²=CHO ist, erfolgt bereits hier die Abspaltung der Formylgruppe.

Eine Methode zur Modifizierung von Edukten zur Herstellung von Verbindungen der Formel I ist die Übergangsmetall-katalysierte Arylierung der Alkinylfunktion (vergl. M. Fieser, L. F. Fieser, Reagents für Organic Synthesis, John Wiley and Sons, New York, 1977, Vol. 6, S. 59ff.). So kann man beispielsweise in Mischungen aus inerten und basischen Lösungsmitteln oder in basischen Lösungsmitteln (Triethylamin) Alkine mit halogenierten (jodierten) Aromaten oder Heteroaromaten zur Reaktion bringen, wobei bevorzugt Pd-Katalysatoren verwendet werden.

20

Die erfindungsgemäßen Verbindungen der Formel I können zum Schutz verschiedener Kulturpflanzen gegen pathogene Mikroorganismen, insbesondere Fungi, eingesetzt werden, wobei sie sich durch eine besonders hohe Kulturpflanzenverträglichkeit auszeichnen. Sie besitzen vorteilhafte präventive und systemische Eigenschaften. Bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich auch erfolgreich kurativ bekämpfen. Durch Besprühen, Bestäuben oder andere Applikationen mit Wirkstoffen der Formel I können Pflanzen und bestehende oder zuwachsende Pflanzenteile vor auftretenden Schädlingen geschützt werden. Sie eignen sich auch als Beizmittel zur Behandlung von Saatgut und Stecklingen zum Schutz vor Pilzinfektionen sowie im Erdboden auftretende pathogene Pilze. Das Wirkungsspektrum der beanspruchten Verbindungen erfaßt eine Vielzahl verschiedener wirtschaftlich bedeutender, phytopathogener Pilze, wie Alternaria mali, Botrytis cinerea, benzimidazol- und/oder dicarboximidsensible und resistente Stämme, Sclerotinia sclerotinorium sowie weitere Grauschimmelarten, Cercospora beticola, Ceratobasidium cerealis, Erysiphe graminis, Erysiphe graminis hordei, Erysiphe chichoracearum sowie andere Echte Mehltauarten, Fusarium culmorum und andere Fusariumarten, Moniliniaarten, Leptosphaeria nodorum sowie andere Septoriaarten und blattfleckenverursachende Arten, Pellicularia sasakii, Piricularia oryzae und andere Reispilzarten, Phytophthora infestans, Phytophtora capsici und verschiedene andere Kraut- und Knollenfäulepilze, Plasmopara viticola, Pseudopernospora cubensis und weitere Pernospora oder falsche Mehltauarten, Pseudocercosporella herpotrichoides und verschiedene andere Augenflecken bzw. Halmbruch verursachende Pilzarten, Puccinia recondita und verschiedene andere Rostpilze, Pyrenophora teres und andere Drechslerarten, Ustilagoarten, Venturia inaequalis und Schorfarten, wobei jedoch die Wirkung gegen Ascomyceten und Deuteromyceten und insbesondere gegen BCM-resistente Pseudocercosporella-herpotrichoides-Stämme hervorzuheben ist.

Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, beispielsweise als Holzschutzmittel, als Konservierungsmittel in Anstrichfarben, in Kühlschmiermittel für die Metallbearbeitung oder als Konservierungsmittel in Bohr- und Schneidölen.

Gegenstand der Erfindung sind auch Mittel, die die Verbindungen der Formel I neben geeigneten Formulierungshilfsmitteln enthalten. Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel I im allgemeinen zu 1 bis 95 Gew.-%.

Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EG), wäßrige Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser-Verlag München, 4. Aufl. 1986; van Falken-

berg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Konservierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatz-

stoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in:

Watkins, "Handbook of Insecticide Dust Diluents and Carrier", 2nd Ed., Darland Books, Galdwell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry, 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide 1", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell, Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als

Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z. B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenolsulfonate und Dispergiermittel, z. B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z. B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt.

Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calciumsalze wie Ca-dodecylbenzolsulfonat oder nichtionogene Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolester, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Sorbitanfettsäureester, Polyoxyethylensorbitan-Fett-

säureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z. B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Poryphillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z. B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise – gegebenenfalls in Mischung mit Düngemitteln – granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-,

Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z. B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser.

Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u. a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z. B. von 0,005 bis 10,0 kg/ha, vorzugsweise liegt sie jedoch im Bereich von 0,01 bis 5 kg/ha.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen entweder allein oder in Kombination mit weiteren, literaturbekannten Fungiziden angewendet werden.

Als literaturbekannte Fungizide, die erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind beispielsweise folgende Produkte zu nennen: Imazalil, Prochloraz, Fenapanil, SSF 105, Triflumizol, PP 969, Flutriafol, BAY-MEB 6401, Propiconazol, Etaconazol, Diclobutrazol, Bitertanol, Triadimefon, Triadimenol, Tebuconazole, Fluotrimazol, Tridemorph, Dodemorph, Fenpropimorph, Falimorph, Dimethomorph, S-32165, Chlobenzthiazone, Parinol, Buthiobat, Fenpropidin, Triforine, Fenarimol, Nuarimol, Triarimol, Ethirimol, Dimethirimol, Bupirimate, Rabenzazole, Tricvclazole, Fluobenzimine, Pyroxyfur, NK-483, PP-389, Pyroquilon, Hymexazole, Fenitropan, UHF-8227, Cymoxanil, Dichlofunanid, Captafol, Captan, Folpet, Tolyfluanid, Chlorothalonil, Etridiazol, Iprodione (Formel II), Procymidon, Vinclozol, Metomeclan, Myclozolin, Dichlozolinate, Fluorimide, Drazoxolan, Chinomethionate, Nitrothalisopropyl, Dithianon, Dinocap, Binapacryl, Fentinacetate, Fentinhydroxide, Carboxin, Oxycarboxin, Pyracarolid, Methfuroxam, Fenfura, Furmecyclos, Benodanil, Mebenil, Mepronil, Flutalanil, Fuberidazole, Thiabendazole, Carbendazim, Benomyl, Thiofante, Thiofanatemethyl, CGD-95340 F, IKF-1216, Mancoczeb, Maneb, Zineb, Nabam, Thiram, Probineb, Prothiocarb, Propamocarb, Dodine, Guazatine, Dicloran, Quintozene, Chloroneb, Tecnazene, Biphenyl, Anilazine, 2-Phenylphenol, Kupferverbindungen wie Cu-oxychlorid, Oxine-Cu, Co-oxide, Schwefel, Fosethylaluminium, Natriumdodecylbenzolsulfonat, Natrium-dodecylsulfat, Natrium-C13/C15-alkoholethersulfonat, Natrium-cetostearylphosphatester, Dioctylnatriumsulfosuccinat, Natrium-isopropylnaphthalinsulfonat, Natrium-methylenbisnaphthalinsulfonat, Cetyl-trimethyl-ammoniumchlorid.

Salze von langkettigen primären, sekundären oder tertiären Aminen, Alkyl-propylenamine, Lauryl-pyridinium-bromid, ethoxylierte quaternierte Fettamine, Alkyl-dimethyl-benzylammoniumchlorid und 1-Hydroxyethyl-

2-alkyl-imidazolin.

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in CH. R. Worthing, U. S. B. Walker, The Pesticide Manual, 7. Auflage (1983), British Crop Protection Council, beschrieben sind

Darüber hinaus können die erfindungsgemäßen Wirkstoffe, insbesondere die der aufgeführten Beispiele, in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Akaraziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u. a. Bevorzugte Mischungspartner sind:

1. aus der Gruppe der Phosphorsäureester

Azinphos-ethyl, Azinphos-methyl, 1-(4-Chlorphenyl)-4-(O-ethyl, S-propyl)-phosphoryl-oxypyrazol (TIA-230), Chlorpyrifos, Coumaphos, Demeton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoat, Ethoprophos, Etrimfos, Fenitrothion, Fenthion, Heptenphos, Parathion, Parathion-methyl, Phosalon, Pirimiphosethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulprofos, Triazophos, Tichlorphon.

2. aus der Gruppe der Carbamate

Aldicarb, Bendiocarb, BPMC (2-(1-Methylpropyl)phenylmethylcarbamat), Butocarboxim, Butoxicarboxim, Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Primicarb, Promecarb, Propoxur, Thiodicarb.

3. aus der Gruppe der Carbonsäureester

Allethrin, Alphamethrin, Bioallethrin, Bioresmethrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin, Deltamethrin, 2,2-Dimethyl-3-(2-chlor-2-trifluormethylvinyl)cyclopropancarbonsäure-(alphacyano-3-phenyl-2-methyl-benzyl)ester (FMC 54800), Fenpropathrin, Fenfluthrin, Fenvalerat, Flucythrinate, Flumethrin, Fluvalinate, Permethrin, Resmethrin, Tralomethrin.

4. aus der Gruppe der Formamidine

Amitraz, Chlordimeform.

5. aus der Gruppe der Zinnverbindungen

Azocyclotin, Cyhexatin, Fenbutatinoxid.

6. Sonstige

Abamektin, Bacillus thuringiensis, Bensultap, Binapacyl, Bromopropylate, Buprofecin Camphechlor, Cartap, Chlorbenzialate, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlofentezine, Cyclopropancarbonsäure-(2-naphthylmethyl)-ester (Ro 12-0470), Cyromacin, DDT, Dicofol, N-(3,5-Dichlor-4-(1,1,2,2-tetrafluoroethoxy)phenylamino)-carbonyl)-2,6-difluorbenzamide (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,2-thiazol-2-ylidene)-2,4-xylidine, Dinobuton, Dinocap, Endosulfan, Fenoxycarb, Fenthiocarb, Flubenzimine, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramethylnon (AC 217 300), Ivermectin, 2-Nitro-methyl-4,5-dihydro-6H-thiazin (SD 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,3-thiazinan-3-yl-carbamaldehyde (WL 108 477), Propargite, Teflubenzuron, Tetradifon, Tetrasul, Thicyclam, Triflumaron, Kernpolyeder- und Granuloseviren.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren, die Wirkstoffkonzentration der Anwendungsformen kann von 0,0001 bis zu 100 Gew.-% Wirkstoff, vorzugsweise von 0,001 bis 1 Gew.-%, liegen. Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weisen.

Nachfolgende Beispiele dienen zur Erläuterung der Erfindung.

A. Formulierungsbeispiele

a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.

b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.

c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew.-Teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.

d) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew.-Teilen Wirkstoff, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol (10 AeO) als Emulgator.

e) Ein Granulat läßt sich Herstellen aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30% und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig.

Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5% und der des inerten Trägermaterials ca. 95% des fertigen Granulats.

65

10

15

25

40

B. Chemische Beispiele

Beispiel 1

5-Methoxy-N-phenyl-4-propinyloxy-2-pyrimidinamin und N-Formyl-5-methoxy-N-phenyl-4-propinyloxy-2-pyrimidinamin

R = H: Verbindung Nr. 1 R = CHO: Verbindung Nr. 276

Zu 30 g NaH (80% in Mineralöl) in 600 ml abs. THF tropfte man 15% einer Mischung aus 118 g Ameisensäureethylester und 104 b Methoxyessigsäuremethylester und erwärmte das Reaktionsgemisch gelinde, bis eine Wasserstoffentwicklung festzustellen war. Den restlichen Anteil der obigen Mischung tropfte man anschließend so zu, daß die Reaktionstemperatur bei 35-40°C lag und eine mittlere Wasserstoffentwicklung beobachtet wurde. Hierbei bildete sich ein schwer rührbares Reaktionsgemisch. Nach Stehenlassen des Gemischs über 16 Stunden gab man 600 ml Isopropanol, 54 g Natriummethanolat und 153 g S-Methylisoharnstoffsulfat hinzu und erhitzte dieses Reaktionsgemisch 120 Minuten unter Rückfluß, wobei das THF teilweise abdestilliert wurde. Anschließend destillierte man die Lösungsmittel ab und nahm den Rückstand in Wasser auf, säuerte mit Essigsäure an und erhielt nach dem Abfiltrieren 133 g (84%) 5-Methoxy-2-methylthio-4-(1H)-pyrimidinon, Smp.: 190-195°C.

In 600 ml POCl₃ und 20 ml N,N-Dimethylanilin erhitzte man 209 g 5-Methoxy-2-methylthio-4-(1H)-pyrimidinon unter Rückfluß. Nach vollständiger Lösung des Pyrimidions (ca. 60 Minuten) destillierte man bei ca. 200 mm Hg das POCl₃ ab, nahm in Methylenchlorid auf und hydrolysierte, wusch die organische Phase neutral, trocknete diese und destillierte das Lösungsmittel ab (Sdp.: 110-114°C/0,2 mm Hg). Man erhielt 192 g (84%) 4-Chlor-5-methoxy-2-methylthiopyrimidin, Smp.: 74°C.

Zu 7,5 g NaH (80% in Mineralöl) in 200 ml abs. THF tropfte man 14 g Propinylalkohol, rührte eine Stunde und gab dann 38,1 g 4-Chlor-5-methoxy-2-methylthiopyrimidin hinzu. Nach 16 Stunden hydrolysierte man, extrahierte mit Essigester oder Methylenchlorid, wusch die organische Phase, trocknete diese und erhielt nach Abdestillieren des Lösungsmittels 38,6 g (92%) 5-Methoxy-2-methylthio-4-propinyloxypyrimidin, Smp.: 82°C.

Man suspendierte 80,3 g einer Mischung aus Kaliumperoxomonosulfat, 2 KHSO₅, KHSO₄ und K₂SO₄ in einer Mischung aus jeweils 100 ml Methanol, Wasser und Essigsäure, gab unter Rühren 21 g 5-Methoxy-4-propinyloxy-2-methylthiopyrimidin hinzu. Nach Abklingen der exothermen Reaktion (ca. 1 Stunde) extrahierte man mit reichlich Methylenchlorid, wusch die organische Phase und erhielt nach dessen Trocknung und Abdestillieren des Lösungsmittels 21,3 g (88%) 5-Methoxy-2-methylsulfonyl-4-propinyloxypyrimidin, Smp.: 131°C.

Zu 1,3 g NaH (80% in Mineralöl) in 100 ml abs. Toluol gab man 5,3 g Formanilid, rührte ca. 1 Stunde, gab dann 9,7 g 5-Methoxy-2-methylsulfonyl-4-propinyloxypyrimidin hinzu und rührte weitere 16 Stunden. Nach dem Hydrolysieren trennte man die organische Phase ab, extrahierte die wäßrige Phase mit Essigester, trocknete die vereinigten organischen Phasen und destillierte das Lösungsmittel ab. Das erhaltene Produktgemisch trennte man säurenchromatographisch mit Essigester und Heptan (4:6) als Laufmittel. Man erhielt als erste Fraktion 1,4 g (14%) 5-Methoxy-N-phenyl-4-propinyloxy-2-pyrimidinamin, Smp.: 139—141°C, und als 2. Fraktion 3,0 g (26%) N-Formyl-5-methoxy-N-phenyl-4-propinyloxy-2-pyrimidinamin, Smp.: 78—82°C.

5

10

15

20

Beispiel 2

2-(4-Chloranilino)-5-methoxy-4-propinyloxypyrimidin

25

40

50

55

60

65

Verbindung Nr. 121

Zu 16,5 g NaH (80% in Mineralöl) in 300 ml abs. THF tropfte man 30% einer Mischung aus 59,2 g Ameisensäureethylester und 52,0 g Methoxyessigsäuremethylester und erwärmte das Reaktionsgemisch gelinde, bis eine Wasserstoffentwicklung festzustellen war. Die restlichen 70% der obigen Mischung tropfte man anschließend so zu, daß die Reaktionstemperatur bei 35-40° C lag und eine mittlere Wasserstoffentwicklung beobachtet wurde. Hierbei bildete sich ein schwer rührbares Reaktionsgemisch. Nach Stehenlassen des Gemischs über 16 Stunden gab man 300 ml Isopropanol, 27,1 g Natriummethanolat und 116 g 4-Chlorphenylgunanidin-nitrat hinzu und erhitzte dieses Reaktionsgemisch 120 Minuten unter Rückfluß, wobei das THF teilweise abdestilliert wurde. Anschließend destillierte man die Lösungsmittel ab und nahm den Rückstand in Wasser auf, säuerte mit Essigsäure an und erhielt nach Abfiltrieren 110 g (89%) 2-(4-Chloranilino)-5-methoxy-4-(1H)-pyrimidinon, Smp.: 214-217° C.

In 250 ml POCl₃ und 10 ml N,N-Dimethylanilin erhitzte man 50,4 g 2-(4-Chloranilino)-5-methoxy-4-(1H)-pyrimidinon unter Rückfluß. Nach vollständiger Lösung des Pyrimidions (ca. 60 Minuten) destillerte man bei ca. 200 mm Hg das POCl₃ ab, nahm in Methylenchlorid auf und hydrolysierte, wusch die organische Phase neutral, trocknete diese und destillierte das Lösungsmittel ab. Nach der Reinigung durch Säulenchromatographie, mit Essigester und Heptan (7:3) als Laufmittel, erhielt man 7,5 g (13%) 4-Chlor-2-(4-chloranilino)-5-methoxy-pyrimidin, Smp.: 178-179°C.

Zu 1,0 g NaH (80% in Mineralöl) in 100 ml abs. THF tropfte man 1,8 g Propinylalkohol, rührte eine Stunde und gab dann 6,0 g 4-Chlor-2-(4-chloranilino)-5-methoxy-pyrimidin hinzu. Nach 16 Stunden hydrolysierte man, extrahierte mit Essigester oder Methylenchlorid, wusch die organische Phase, trocknete diese und erhielt nach Abdestillieren des Lösungsmittels und Reinigung durch Säulenchromatographie, mit Essigester und Heptan (7:3) als Laufmittel, 1,8 g (28%) 2-(4-Chloranilino)-5-methoxy-4-propinyloxypyrimidin, Smp.: 138-140°C.

Beispiel 3

5-Brom-N-phenyl-4-propinylamino-2-pyrimidinamin und 5-Brom-N-formyl-N-phenyl-4-propinylamino-2-pyrimidinamin

R = H: Verbindung Nr. 195 R = CHO: Verbindung Nr. 292

R CHO. Velonidang Nt. 22

Zu 200 g NaOH in 1200 ml Wasser gab man 171 g 2-Thiouracil (97%), tropfte dann 164 g (123 ml) Dimethylsulfat hinzu und erhitzte 90 Minuten unter Rückfluß. Nach dem Abkühlen des Reaktionsgemisches säuerte man mit konz. Salzsäure bis pH 1 an und erhielt durch Abfiltrieren 161,4 g (87%) 2-Methylmercapto-4-(1H)-pyrimidinon, ?mp.: 197 – 200°C.

In 800 ml Essigsäure legte man 142,2 g 2-Methylmercapto-4-(1H)-pyrimidinon vor und tropfte 159,8 g Brom in das Gemisch. Nach 16 Stunden gab man das Reaktionsgemisch auf 3 kg Eiswasser und erhielt nach Abfiltrieren 201 g (90%) 5-Brom-2-methylmercapto-4-(1H)-pyrimidinon, Smp.: 243—245°C.

In 250 ml POCl₃ und 3 ml N,N-Dimethylanilin erhitzte man 59,5 g 5-Brom-2-methylmercapto-4-(1H)-pyrimidinon unter Rückfluß. Nach vollständiger Lösung des Pyrimidions (ca. 60 Minuten) destillierte man bei ca. 200 mm Hg das POCl₃ ab, nahm in Methylenchlorid auf und hydrolysierte, wusch die organische Phase neutral, trocknete diese und destillierte das Reaktionsprodukt (Sdp.: 74-77°C/0,2 mm Hg). Man erhielt 60 g (90%) 5-Brom-4-chlor-2-methylmercapto-pyrimidin, Smp.: 43-44°C.

In 100 ml Dimethylformamid wurden 19,2 g 5-Brom-4-chlor-2-methylmercapto-pyrimidin und 9,2 g Propinyla-minhydrochlorid vorgelegt und 20,2 g (28 ml) Triethylamin zugetropft. Nach 16 Stunden (DC-Umsatzkontrolle) destillierte man das Lösungsmittel weitestgehend ab, hydrolysierte und nahm in Methylenchlorid auf. Nach Waschen, Trocknen und Einengen der organischen Phase erhielt man nach Reinigung durch Säulenchromatographie, mit Essigester zu Heptan (1:1) als Laufmittel, 19,0 g (92%) 5-Brom-2-methylmercapto-4-propinylaminopyrimidin, Smp.: 127 – 129° C.

Man suspendierte 32 g einer Mischung aus Kaliumperoxomonosulfat, 2 KHSO₅, KHSO₄ und K₂SO₄ in einer Mischung aus jeweils 50 ml Methanol, Wasser und Essigsäure und gab unter Rühren 12,5 g 5-Brom-2-methylmercapto-4-propinylaminopyrimidin hinzu. Nach Abklingen der exothermen Reaktion (ca. 1 Stunde) extrahierte man mit reichlich Methylenchlorid, wusch die organische Phase und erhielt nach Trocknen und Abdestillieren des Lösungsmittels 9,1 g (65%) 5-Brom-2-methylsulfonyl-4-propinylaminopyrimidin, Smp.: 146 − 148°C.

Zu 0,9 g NaH (80% in Mineralöl) in 100 ml abs. Toluol gab man 4,2 g Formanilid, rührte ca. 1 Stunde, gab dann 7,1 g 5-Brom-2-methylsulfonyl-4-propinylaminopyrimidin hinzu und rührte weitere 16 Stunden. Nach dem Hydrolisieren trennte man die organische Phase ab, extrahierte die wäßrige Phase mit Essigester, trocknete die vereinigten organischen Phasen und destillierte das Lösungsmittel ab. Das erhaltene Produktgemisch trennte man säulenchromatographisch, mit Essigester und Heptan (1:1) als Laufmittel. Man erhielt als erste Fraktion 1,0 g (11%) 5-Brom-N-phenyl-4-propinylamino-2-pyrimidinamin, Smp.: 168°C, und als 2. Fraktion 3,7 g (37%) 5-Brom-N-formyl-N-phenyl-4-propinylamino-2-pyrimidinamin, Smp.: 146°C.

65

60

5

10

15

20

Beispiel 4

5-Brom-N-phenyl-4-(3-(4-tert.-butylphenyl)-propinylamino)-2-pyrimidinamin

Verbindung Nr. 243

In 30 ml Triethylamin wurden 3,8 g 5-Brom-N-phenyl-4-propinylamino-2-pyrimidinamin, 0,07 g Bis-(triphenylphospin)-palladiumdichlorid und 0,01 g Kupfer-(I)-jodid vorgelegt und 3,9 g 4-tert.-Butyljodbenzol zugetropft. Nach 16 Stunden wurde die Hauptmenge Triethylamin abdestilliert, der Rückstand in Methylenchlorid aufgenommen und mit Wasser gewaschen, getrocknet und eingeengt. Nach Reinigung mittels Säulenchromatographie, Essigester und Heptan (1:1) als Laufmittel, erhielt man 2,2 g (40%) 5-Brom-N-phenyl-4-(3-(4-tert.-butylphenyl)-propinylamino)-2-pyrimidinamin, Smp.: 167—169°C.

Beispiel 5

5-Brom-2-(3-methoxyanilino)-4-propinyloxypyrimidin

40

65

Verbindung Nr. 245

Man suspendierte 246 g einer Mischung aus Kaliumperoxomonosulfat, 2 KHSO₅, KHSO₄ und K₂SO₄ in einer Mischung aus jeweils 200 ml Methanol, Wasser und Essigsäure und gab unter Rühren 63,5 g 5-Brom-4-chlor-2-methylmercapto-pyrimidin hinzu. Nach Abklingen der exothermen Reaktion (ca. 1 Stunde) extrahierte man

mit reichlich Methylenchlorid, wusch die organische Phase und erhielt nach Trocknung und Abdestillieren des Lösungsmittels 71 g (99%) 5-Brom-4-chlor-2-methylsulfonyl-pyrimidin, Smp.: 105-109°C.

Zu 0,9 g NaH (80% in Mineralöl) in 100 ml abs. Toluol gab man 4,5 g 3-Methoxyformylanilin, rührte ca. 1 Stunde, gab dann 6,1 g 5-Brom-4-chlor-2-methylsulfonyl-pyrimidin dazu und rührte weitere 16 Stunden. Nach dem Hydrolysieren trennte man die organische Phase ab, extrahierte die wäßrige Phase mit Essigester, trocknete die vereinigten organischen Phasen und destillierte das Lösungsmittel ab. Man erhielt 7,6 g (99%) festes 5-Brom-4-chlor-N-formyl-N-phenyl-2-pyrimidinamin, welches ohne weitere Reinigung eingesetzt werden konnte.

Zu 1,1 g NaH (80% in Mineralöl) in 100 ml abs. THF tropfte man 2,1 g Propinylalkohol, rührte eine Stunde und gab dann 6,7 g 5-Brom-4-chlor-N-formyl-N-phenyl-2-pyrimidinamin hinzu. Nach 16 Stunden hydrolysierte man, extrahierte mit Essigester oder Methylenchlorid, wusch die organische Phase, trocknete diese und erhielt nach Abdestillieren des Lösungsmittels und Reinigung durch Säulenchromatographie, mit Essigester und Heptan (1:1) als Laufmittel, 3,0 g (46%) 5-Brom-2-(3-methoxyanilino)-4-propinyloxypyrimidin, Smp.: 138—140° C.

Beispiel 6

15

20

25

30

35

60

65

2-(4-Chloranilino)-4-propinyloxy-7,8-dihydro-6H-thiopyrano-[2,3-d]-pyrimidin

Verbindung Nr. 340

In 200 ml Wasser wurden 15,1 g 2,4,5,6-Tetrahydro-thiopyran-3-on-2-carbonsäureethylester, 18,6 g 4-Chlorphenyl-guanidinnitrat und 8,5 g wasserfreies Natriumcarbonat 4 Tage gerührt. Bei neutralem pH-Wert filtrierte man ab und erhielt 20,0 g (85%) 2-(4-Chloranilino)-1,6,7,8-tetrahydro-thiopyrano-[2,3-d]-pyrimidin-4-on, Smp.: 238-240°C.

In 100 ml POCl₃ und 3 ml N,N-Dimethylanilin erhitzte man 19,8 g 2-(4-Chloranilino)-1,6,7,8-tetrahydro-thiopyrano-[2,3-d]-pyrimidin-4-on unter Rückfluß. Nach vollständiger Lösung des Pyrimidinons (ca. 60 Minuten) destillierte man bei ca. 200 mm Hg das POCl₃ ab, nahm in Methylenchlorid auf und hydrolysierte, wusch die organische Phase neutral, trocknete und destillierte das Lösungsmittel ab. Nach säulenchromatographischer Trennung, mit Essigester und Heptan (1:1) als Laufmittel, erhielt man 4,8 g (23%) 4-Chlor-2-(4-chloranilino)-7,8-dihydro-6H-thiopyrano-[2,3-d]pyrimidin als Öl.

Zu 0,9 g NaH (80% in Mineralöl) in 100 ml abs. THF tropfte man 1,7 g Propinylalkohol, rührte eine Stunde und gab dann 4,8 g 4-Chlor-2-(4-chloranilino)-7,8-dihydro-6H-thiopyrano-[2,3-d]-pyrimidin hinzu. Nach 16 Stunden hydrolysierte man, extrahierte mit Essigester oder Methylenchlorid, wusch die organische Phase, trocknete diese und erhielt nach Abdestillation des Lösungsmittels und Reinigung durch Säulenchromatographie, mit Essigester und Heptan (1:1) als Laufmittel. 1,8 g (36%) 2-(4-Chloranilino)-4-propinyloxy-7,8-dihydro-6H-thiopyrano-[2,3-d]-pyrimidin, Smp.: 106-108°C.

Entsprechend der oben aufgeführten Beispiele können die in den Tabellen 1,2 und 3 genannten Verbindungen hergestellt werden.

	Physikal. Konst. (Smp. P Cl)	139-141												5
	c	0	0	0	0	0	0	0	0	0	0	0	0	10
	×	0	0	0	0	0	0	0	0	0	0	0	0	15
	.	0СН,	осн	осн	осн	осн,	осн	ОСН	осн,	осн,	осн,	осн,	ОСИ	20
	~	Ŧ	н	I	Ξ	r	I	=	I	Ι	CH,	Br	-	25 30
Tabelle 1	^ر ۳	H	CH,	СН	\bigcirc	*	•(С,Н,	С,Н,	сн,сн,осн,сн,	×	I	x	35
-	· *	H	I	CH,	Œ	(CH ₃),	(CH ₂),	Ŧ	I	сн,сн,	Ξ	Ħ	I	40
	~ ~ .													45
	,	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\Diamond	\bigcirc	\bigcirc	50
	~ ~	н	I	I	I	x	I	I	Ξ	Ŧ	I	I	I	55
	ōx.	н	I	=	Ξ	I	I	Ŧ	Ξ	I	Ŧ	Ŧ	I	60
	Bsp. Nr.	_	7	٣	4	\$	9	7	œ	6	10	Ξ	12	65

5	Physikal. Konst. (Smp. I° C))	134-137	85 – 98										
٠	e	0	0	0	0	0	0	0	0	0	0	0	0
10	×	0	0	0	0	0	Ħ	ΗZ	HZ	Ξ Z	ΞZ	ΞZ	ΞZ
15	·												
20	ъ.	ОСН,—	0СН,	осн,	осн	осн,	осн,	осн,	осн,	осн,	осн	осн,	осн,
25													
30	ж •	Ŧ	I	I	Ξ	CH,	E	I	Ξ	I	Ξ	I	Ξ
35	.	Ŧ	I	СН,	СН,	x	×	СН	СН	\bigcirc	. 4	ξ(C,H,
40 45	4	I	Ħ	H	CH,	Ŧ	н	I	СН	Ħ	(CH ₁),	(CH ₃₎	x
50	R,	\Diamond		\Diamond									
55	R ²	н	Ŧ	H	I	I	Ħ	Ξ	I	Ħ	Ξ	I	Ξ
60	-av	I	сн,осн,	сн, осн,	сн,осн,	сн,осн,	I	I	Ξ	I	Ξ	H	I
65	Bsp. Nr.	13	14	15	16	17	18	61	20	21	22	23	24

Bsp.	ă.	~	* * * * * * * * * * * * * * * * * * *	*	ھ	<u>-</u>		2	×	e	Physikal. Konst. (Smp. (° C])
25	Ξ	Ŧ		Ŧ	C,H,	π		осн,	Ŧ	0	
56	=	I	\Diamond	сн,сн,	сн,сн,осн,сн,	π.		осн,	Ξ	0	
72	≖ .	I	\Diamond	Ξ	Ξ	CH,		осн,	ΞZ	0	
28	Ŧ	Ξ	\Diamond	I	Ξ	B		0СН,	Ξ	0	
29	I	Ŧ	\Diamond	I	I	-		0СН,	Ĭ	0	
30	Ξ	Ŧ	\Diamond	Ξ	I	Ξ		0СН₁—О	ΞZ	0	
31	снюсн	I		I	x	I		осн,	ΞZ	0	
32	сн,осн,	I	\Diamond	Ξ	СИ,	H		осн,	I Z	0	
33	сн,осн,	Ξ	\Diamond	CH,	СН,	x		осн,	ΞZ	0	
34	сн,осн,	Ξ	\Diamond	=	Ŧ	СН,		осн,	ΞZ	0	
35	I	I	\Diamond	Ξ	x	Ŧ		0С,Н,	¥	0	
36	Ŧ	Ξ	\Diamond	I	СН,	Œ		0С,Н,	ΞZ	0	
	60 65	55	45 50	40	35	30	25	15	10		5

5	Physikal. Konst. (Smp. (° CJ)												
	-	0	0	0	0	0	0	0	0	0	0	0	0
10	×	ΞZ	Ŧ	ΗZ	ĭ	H Z	ΞZ	ΞZ	ΞZ	Ξ	ΞZ	z	ΞZ
15												\Diamond	
20	چ	n-OC,H,	n-OC,H,	0С,Н,	OC,H,	ос,н,	0C,H,	0С,Н,	t-0C,H,	0С,Н,	0С,Н,	O(CH ₂),—	1-0C,H,
25													
30	a	H	II.	×	x	I	Ξ	I	CH,	Ä	-	×	x
35	,¤	CH,	\bigcirc	_		C,H,	C,H,	сн,сн,осн,сн,	x	x	x	x	I
40	a a	CH,	Ħ	(CH ₂),	(CH ₃),	I	Ħ	снусну	Ħ	H	x	Ŧ	I
45													
	,	0	\Diamond	\Diamond	\Diamond		\Diamond	\Diamond	\Diamond	\bigcirc	\Diamond	\Diamond	\Diamond
55	د	Ŧ	I	I	I	I	Ħ	I	I	I	I	I	I
60	-w	н	I	Ŧ	Œ	Ξ	×	I	Ŧ	x	I	×	сн,осн,
65	Bsp. Nr.	37	38		40	14	42	43	44	45	46	47	8

Bsp. Nr.	<u>a</u>	ž	,	* *	~ ~	<u>.</u>	ؿ		×	c	Physikal. Konst. (Smp. (* C])
49	снюсн	Ŧ		Ŧ	СН,	Ŧ	0С,Н,	£.	Ŧ	0	
20	сн,осн,	I	\Diamond	СН,	CH,	x .	n-0C ₆ H ₁₃	έH ₁₃	ΞZ	0	
51	сн,осн,	I	\Diamond	Ξ	I	CH,	0С,Н,	£,	ΞZ	0	
52	=	I	\Diamond	x	I	Ŧ	0C,H,	ł,	0	0	
53	I	I	\Diamond	H	СН	Ξ	n-0C,H,	,H;	0	0	
54	Ŧ	I	\Diamond	CH,	CH,	I	0С,Н,	÷	0	0	
55	I	æ	\Diamond	π	\bigcirc	Ξ	0С,Н,	.	0	0	
56	I	I	\Diamond	(CH ₂),	194	I	n-0C,H,	ŧ,	0	0	
57	Ŧ	Ħ	\Diamond	(CH ₃),	(6)	I	0С,Н,	÷	0	0	
28	Ξ	×	\Diamond	Ŧ	С,Н,	=	;0C,H,	JH,	0	0	
59	X	Ξ	\Diamond	I	C,H,	Ξ	0С,Н,	Ť	0	0	
09	I	r	\Diamond	СН,СН	сн,сн,осн,сн,	Ξ	n-0C,H,	÷,	0	0	
	60 65	55	50	40 45	35	30	25	15	10		5

5	Physikal. Konst. (Smp. (° C])												
	c	0	0	0	0	0	0	0	0	0	0	0	0
10	×	0	0	0	0	0	0	0	0	0	0	0	0
15					\Diamond				\Diamond				
20	я	n-0C ₆ H ₁₃	0C,H,	0С,Н,		ОС,Н,	t-0C,H,	0С,Н,		ОСН	осн,	осн,	ОСН
25													
30	R	СН,	Š	¬	æ	7	Ξ	Ξ	СН	\bigcirc	\bigcirc	\bigcirc	Çz
35	R	н	포	H	I	I	СН,	СН	=	×	CH,	CH,	\bigcirc
40	, x	Н	Ξ	Ħ	Ξ	Ξ	I	СН,	I	I	· Ħ	CH,	I
50	R ¹		\Diamond		\Diamond	\Diamond	\Diamond		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond
55	K	H	I	I	Ξ	I	Ξ	H	x	H	I	I	Ξ
60		н	x	Ŧ	I	сн,осн,	сн,осн,	сн,осн,	сн,осн,	I	=	I	I
65	Bsp.	19	62	63	64	99	99	29	89	69	70	11	72

1 01	1	~	í æ	*		, a			6				
**************************************	, ", ", ", ", ", ", ", ", ", ", ", ", ",	A. B.		4		۷ .	4		¥		*	c	Physikal. Konst. (Smp. (* C)
н н					(CH ₁),			+ 0CH,	СН,		0	0	
н н		\bigcirc			(CH ₁₎				осн	_	0	0	
ф т		\Diamond		I		С,Н,	\bigcirc		осн,	_	0	0	
н		\Diamond		I		С,Н,	\bigcirc		осн,		0	0	
Н н		\bigcirc		S	н,сн,о	сн,сн,осн,сн,			осн,	-	0	0	
H H		\Diamond		Ξ		I			осн		0	0	
н н		\bigcirc		Ξ		I	. O	. 5	осн,		z	0	
T H		\Diamond		Ξ		×		-СН,	С,Н,		0	0	
ф н		\Diamond		Ξ		I	\bigcirc		оснусн		0	0	
сн,осн, н		\Diamond		Ξ	_	Ξ			осн		0	0	
50 55 60		50		45	40	35	30	25	20	15	10		5

5	Physikal. Konst. (Smp. [° C])				149								
•	c .	0	0	0	0	0	0	0	0	0	0	0	0
10	×	0	0	z	0	0	0	0	0	0	0	0	0
15													
20	a	ОСН	0СН,	осн,	Ä	ğ	ĕ	ă	ğ	ā	B	ğ	ĕ
25													
30	*		\bigcirc	\bigcirc	Ξ.	×	Ξ	Ŧ	x	x	Ŧ	I	I
35	ζ۳	СН,	СН,	I	×	CH,	СН	\bigcirc			С,Н,	C,H,	сн,сн,осн,сн,
40 45	å	Ŧ	СН,	=	I	×	СН,	I	(CH ₂),	(CH ₁),	Ŧ	I	сн,сн,
50	R, R,		\Diamond	\bigcirc	\bigcirc	\Diamond	\Diamond		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond
55	R.	Ŧ	r	I	I	I	I	Ξ	Ξ	I	Ξ	Ι	I
60	<u>-</u> R	сн,осн, н	сн,осн,	СН,ОСН,	Ŧ	工	I	<u>,</u> ==	x	×	×	=	Ŧ
~	Bsp. Nr.	83	8 4	88	98	87	88	68	06	16	92	93	94

R ² R ⁶ R ⁷ R ⁸	R ⁶ R ⁷	R ²		#2 #2		R ₉	×	E	Physikal. Konst. (Smp. (° CJ)
н <equation-block> н н сн,</equation-block>	н	н		СН		æ	0	0	
н н в	エ	エ		&		ă	0	0	
н н			Ħ	<u> </u>		ä	0	0	
н н н	Ħ	Ħ		I		-	0	0	
сн,осн, н	H	Ħ		x		ĕ	0	0	
сн,осн, н	н сн,	CH,		I		Æ	0	0	
сн,осн, н	сн, сн,	СН,		I	_	ă	0	0	
сн,осн, н 🔘 н н н с	H	Œ		J	CH,	æ	0	0	
н н н	# #	±	A	æ A		СН,	0	0	138
н н	н н	×		I		СН,СН,СН,	0	0	120
н н	H H	Ŧ		I	_	0СН,	0	0	
н н н	н н	=		I	_	CH,	0	0	
35 40 45 50	35 40 45	35	35		30	20	10		5

	Physikal. Konst. (Smp. (° CJ)							_	771-571			
5	Phy Kon (Sm					86		%	17.5			
		0	0	0	0	0	0	0	0	0	0	0
10												
	×	0	0	0	,0	0	0	0	0	0	0	0
15											- -	÷
		<u></u>							H,	Ξ	-0CF	-0CF
20		СН,СН,СН,	<u>.</u>	_	<u>~</u>				сн,соосн,	сн,соосн,	C — C — OCH,	С—С—ОСН, С—ОСН,
	°~	СН,С	n-C,H,	осн,	0С,Н,	СН,	CH_3	ت ت	СН,С	СН,С	ပ် <u>—</u> ပ်	. ∴=∴
25												
30	<u>-</u>	ェ	I ·	T .	Ξ	Ξ	x	Ξ	Ξ	Ξ		Ξ
35		_			_	_	CH,	r	_	_	-	r
40	<u>~</u>	Ŧ	I	I	I	H	J	–	I	Ŧ	I	-
40		_				_	_	_	_	_	_	_
45	2	Ξ	Ξ	I	王	I	I	I	I	I	Ξ	I
73										=	=	
50	* * * * * * * * * * * * * * * * * * *		\Diamond	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge	Ţ	Š	\wedge
			\bigcirc	\bigcirc								
55												
	ãz.	Ξ	I	I	I	Ξ	Ξ	Ξ	工	I	I	Œ
60					\bigcirc							
	i	ř	CJH,	'n,	ž	H.	£	Ŧ.	£	Ŧ.	116 СН,	СН,
65	<u>-</u> œ	ري	<u>-</u>	<u>-</u> :	IJ	ت ت	IJ	Ö	Ü	ت ت	Ö	Ü
	Bsp. Nr.	107	108	601	110	==	112	113	114	115	116	117

B S D	-z	~ ~	R. R.	*	<u>"</u> x	-z	8ء	*	c	Physikal. Konst. (Smp. [* C])
81-18	СН	I		=	Ŧ	±	CH,CONH,	0	0	
119	119 CH,	Ξ	\Diamond	Ħ	x	H .	CH,CH,CN	0	0	112-113
120	СН	x	\Diamond	Ξ	x	# .	сн,сн,соосн,	0	0	
121	Ξ	z		I	ĸ	Ŧ	осн,	0	0	138-140
122	x	I	<u>5</u>	I	СН,	I	0С,Н,	0	0	
123	I	Ξ		Ŧ	I	Ξ	осн,	0	0	
124	Œ	I	, .	Ξ	I	I	осн,	0	0	
125	Ξ	≖		Ξ	Ŧ	I	0СН,	0	0	
126	æ	I	О си,	I	I	=	0СН,	0	0	
127	I	_ =	сн, сн,	Ξ	Ξ	x	ОСН,	0	0	
	60 65	55	50	45	35 40	30	20	10		5

5	Physikal Konst. (Smp. (* C])						
		0	0	0	0	0	0
10		0	0	0	0	0	0
15	×		J	3	J	J	J
20	~ .	ОСН,	0СН,	ОСН	осн,	п-ОС,Н,	0С,Н,
25							
30	<u>a</u>	Ξ	x	.	Ξ	н	Ξ
35	, a	五	Ħ	x	Ξ	I	Ξ
40	å	王	Ŧ	x	Ξ	Ξ	I
45							
50	R, R,) У—си,			CH, CH,	. ^ ⁵	├ ├ 0-сн,
55	\heartsuit	£	ਰੂ ੱ	E E E E	ב <u>ר</u>	\bigcirc	0
60	~	I	Ξ	Ξ	Ξ	Ξ	I
65	-æ	I	I	x	I	x	=
	B Sp.	128	129	130	131	132	133

Physikal. Konst. (Smp. P C))							5
	0	0	•	0	0	0	3
						_	10
×	O	0	0	0	0	0	15
·	_		2	. 5	. 2		
~	ОСН	ОСН	ОСН	осн,	оси,	ō	20
	,						25
- <u>-</u> -	Ξ	=	Ħ	Ξ	I	СН,	
							30
-œ	Ŧ	I	×	СН,	C,H,	±	35
ž	±	I	Ξ	Ħ	Ξ	Ξ	40
	·						45
			(H ₃)2				
R, R,	CH, CH,	CH,	ОСН(СН,)		^		50
						\equiv \frac{\pi}{2} \left(\frac{\pi}{2} \left(\frac{\pi}{2} \frac{\pi}{2} \right) \frac{\pi}{2} \left(\frac{\pi}{2} \p	55
R2	Ŧ	x	x	I	I	=	
~	<u>-</u>		-	-	-	-	60
~	±	Ξ	Ξ	±	Ξ	×	65
Bsp.	134	135	136	137	138	139	

5	Physikal. Konst. (Smp. P CJ)									
	e e	•	0	0	0	0	0	0	0	0
10	×	0	•	0	0	0	0	0	0	0
15										
20	ů.	OC,H,	осн,	0С,Н,	ğ	Ä	ă	ă	ĕ	Ā
25										
30	ж Т	王		I	I	I	Ξ	Ξ.	Ŧ	I
35	, a	Ħ	СН,	Ξ	x	CH,	x	I	I	×
40	A A	140 H H OCH,	СН,	Ħ	н	I	Ξ	I	I	x
45										
50	R, R,	осн,	CH,	Сн,	, CI	CI	-c-		\Diamond	人 CH,
55	Ø	OCH,	Ó £		0		2	(O)	. 10	\bigcirc
60	<u>a</u>	π	×	I	I	I	Ξ	Ħ	Ξ	=
65	.	I	Ξ	I	I	I	Œ	Ή	I	x
	Bsp. Z.	140	141	142	143	144	145	146	147	148

Bsp. Nr.	-ac	ÇK.	R,		*	, a	R	R		×	c	Physikal. Konst. (Smp. [° CJ)
149	王	五	сн, сн,		Ŧ	Ŧ	=	E E	·	0	0	
150	I	Ξ	CH,		I	Ξ	±	Ä		0	0	
151	Ξ	= .	Ę Ó Ę		×	I	Ξ	Ä		0	0	
152	=	I	CH,		x	±	Ξ	<u>ā</u>	_	0	0	
153	I	±	H,C CH,	rî rî	I	±	π	&		0	0	
154	x	±			I	I	I	ă		0	0	138-140
	65	60	50	45	40	35	30	25	15	10		5

5	Physikal. Konst. (Smp. [° C])		168-170		165-166		124–125								
	e		0		0		0		0		0	0		0	
10					_		_		•		_	0		0	
15	×		0		0		0		0		0	J		J	
13															
20	å		Ā		B		Ä.		Æ		B	ፙ		ă	
25														_	
	~		=		Ξ		Ξ		I		Ξ	¥		CH,	
30															
35	ج. ا		I		Ŧ		I		Ħ		СН,	С,Н,		Ŧ	
40	*		Ħ	*	I		I		H		Ŧ	I		Ŧ	
45															
45	·									य					
50			∕-осн,	÷.		сн,		СН,		осн(сн)у				<u>ı.</u>	
	R. R.	٥		5		ر ر	\bigcirc	/		ō	\bigcirc	\bigcirc	СН		
55	Y		\Diamond		\Diamond	ゔ゙	•	CH,	•	,	\Rightarrow	\Diamond	\	\Diamond	_ <u>_</u>
60	R,		I		I		Ξ		Ξ		Ξ	I		I	
	-æ		I		I		I		Ŧ		Ŧ	I		π	
65	Bsp. Nr.		155		156		157		158		159	091		191	

Bsp. Nr.		~	R' R'		Ž.	<u>~</u>	2		2	×	c .	Physikal. Konst. (Smp. [° C])
162	н	π	осн, осн,		π	. =	Ξ		ă	0	0	
163	I	I	CH		сн,	C H ,	-		ă	0	0	
164	I	r	CH, CH,	,	×	I	Ξ		Æ	0	0	
165	I	I	\Diamond		Ξ	Ξ	.		осн	0	-	134
991	I	I	\Diamond		I	Ŧ	Ξ		осн	0	7	
167	Ξ	Ξ	\Diamond		I	Ξ	I		осн,	0	ю	
168	I	I	\Diamond		Ξ	I	Ξ		0СН,	0	4	
691	I	Ξ			I	Ŧ	=		0СН,	0	~	
170	Œ	x	CI CI		Ŧ	Ξ	x		осн,	0	-	
171	Ξ	Ξ	ci O		Œ	Ξ	Ξ		осн,	0	7	
•	65	60	50 55	45	40	35	30	25	15	10		5

5	Physikal. Konst. (Smp. [° C])														
	c	4	-	7		-		7		3		-			-
10		0	0	0		0		0		0		0			0
15	*		Ü	J				J							
20	<u>*</u>	0С,Н,	0C,H,	осн,		ОСН		СН,		n-C,H,		осн,			осн,
25															
30	<u>.</u>	I	x	x		I		Ŧ		I		Ξ			Ξ
35	R,	π	H	Ξ		I		Ξ		x		I			I
40	R ⁶	н	Ħ	I		H		×		I		I			I
45															
50	R, 		<u>"</u>	<u>"</u>]	осн(сн)		осн(сн³)		осн(сн»)	•		\Diamond	\	сн,	\Diamond
55	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\bigcirc	\bigcirc				\Diamond			H,C—		Н,С—	CH,	0
60	ж 2	H	Ξ	Ξ		I		Ŧ		I		H			I
	<u>-</u> x	H	I	×		I		=		I		I			H
65	Bsp. Nr.	172	173	174		371		176		771		178			179

Bsp.	- x	, w	R,		, w		R,	**	å.		×	- A 40	Physikal. Konst. (Smp. (* CJ)
180	王	Ŧ			Ξ		Ŧ.	王	盗		0	-	
181	I	E	\bigcirc		H		I	Ξ	Ā		0	7	
182	I	H	\bigcirc		Ξ		I	Ħ	B		0	æ	
183	I	I	\bigcirc		Ξ		I	H	Ä		0	4	
184	Ħ	×	\bigcirc		I		=	I	B		0	\$	
185	Ξ	I	\bigcirc		Ξ		×	II	-		0		
186	I	Ξ		5	Ξ		I	I	5		0	7	
187	×	I	\bigcirc	ت ت	Ξ		x	Ξ	ă		0	4	
188	×	H		ند	Ħ		I	I	7		0	-	
189	Ξ	I		-F)СН(СН ₃),	æ		I	Ħ	ت ت	_	0	2	
190	Ξ	I		\bigcirc	Ξ		Ŧ	Ħ	Ā		0		
0.0	65	60	55	45 50		40	30	25		15	10	5	

5	Physikal. Konst. (Smp. (° CJ)										891				
			7		٣		-			-	0	. 0	0	0	0
10											HZ	×	×	I	¥
15	*		0		0		0			0	Z	Ä	Ħ.	Ħ	Ħ
13															
20	<u>م</u>		巌		盎		Ä			B	ä	ĕ	ğ	Br	Ā
25	<u>~</u>		Ξ		I		I			Ξ	Ħ	Ξ	Ξ	Œ	I
30				·										\wedge	
	ج		Ħ		Ξ		Ħ			Ή	Ξ	CH,	сн,	\bigcirc	
35															(CH,)
40	* *		Ŧ		X		Ξ			×	I	x	СН,	Ξ	9
45		СН,		. 4 (1)											
50	R	оснски	•	(посн(сн))	•	/	\bigcirc	\	CH,	\triangle	^	^	^	•	^
			\bigcirc	\	\bigcirc	H ₃ C —		H,C —	CH,	\Diamond	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
55															
60	~		H		I		I			Ξ	I	Ξ	Η	H	I
	-œ		Ŧ		x		I			H	Ξ	H	I	=	Ŧ
65			191		192		£			4	195	9	7	∞	ē.
İ	g ž		19		18		193			194	19	196	197	198	199

Bsp.	-R	R.	R, R,		**	<u>ب</u>	. A		. A	*		Physikal. Konst. (Smp. [° C])
200	н	Ξ			(CH ₂),		ェ		ž	ŦZ	0	
201	Ŧ	I	\Diamond	_	×	C,H,	Ξ		Ā	H Z	0	
202	×	I	\Diamond	_	ĸ	C,H,	Ξ		ğ	Ξ	0	
203	I	I	\Diamond	•	сн,сн,осн,сн,	,сн,	I		ā	ΞZ	0	
204	I	I	\Diamond	_	×	Ξ	СН,	Ŧ	ā	ΞZ	0	
205	r	I	\Diamond		æ	Ξ	ă		Ā	ΞZ	0	
206	π	I	\Diamond		Ħ	I	~		ă	H Z	0	
207	Ħ	Ŧ	\Diamond		Ħ	Ξ	I			H	0	
208	сн,осн,	Ξ	\Diamond		Ħ	I	Ξ		B	ΗZ	0	
509	сн,осн,	x	\bigcirc		E	CH,	I		Æ	ΞZ	0	
210	сн,осн,	H	\Diamond		СН,	CH,	I		ĕ	ΞZ	0	
211	сн,осн,	Ξ	\Diamond		I	I	Ö	СН,	Ā	ĭ	0	
65	60	55	50	45	35 40	•	30	25	15	10		5

5	Physikal. Konst. (Smp. (° C!)	170-172							
	c	0	0	<		0	0	0	0
10	*	HN	H	ĭ	Ξ Z	ΞZ	¥	Ξ	H Z
15,									\Diamond
20	å	0СН,	0С,Н,	OCH	0СН,	0С,Н,	ОСН	0СН,	
25	**	Ŧ	Ħ	π	. #	Ŧ	· エ	I	Ŧ
30									
35	æ	Ŧ	СН	#	=	Ξ	H	Ξ	ж
40	ؠ	Ξ	Ħ	I	Ξ	×	Ξ	I	π
45									
50	R, R,		© O	- T	j		CH,	CH, CH,	219 н н ССН,
55	1		\	S	\	u,	<u> </u>	O	O
60	. . %	Ξ	I	Ξ	Ξ	I	Ξ	Ξ	x ·
	R.	Ħ	Ŧ	Ξ	Ξ	I	Ξ	Ξ	I
65	Bsp. Nr.	212	213	214	215	216	217	218	219

Bsp.	~ ~	چ.	R, R,	å.	Ĉć.	ac.	ge.	×	n Physikal. Konst. (Smp. P Cl)
220	Ŧ	±	CH,	Ŧ	Ξ	Ξ	осн,	ΞZ	0
. 221	I	I		I	=	I	осн,	#Z	•
222	±	x	H,C CH,	r	=	±	осн,	ΞZ	o
223	x	æ	, o	π	I	I	осн,	Ξ Z	0
224	Ħ	x	О − осн,	r	×	x	SCH,	ΞZ	0
225	I	I	i d	±	Ŧ	Ξ	$\bigcup_{\mathbf{z}}$	ΞZ	0
65		60	45 50 55	40	30 35	25	15	10	5

5	Physikal. Konst. (Smp. [º C])							
	· c	0	0	0	0	0	0	0
10	×	Ξ Z	ΞZ	H Z	Ξ Z	포	ΞŽ	ΞŽ
15								
20	ş.	CH, CH,	СН,	ОСН	0С,Н,	0С,Н,	осн,	осн
25	ъ.	Ξ	Ŧ	H	π	сн,	×	CH,
30		-						
35	æ	Ξ	I	CH,	C,H,	±	±	СН,
40	4	Ξ	Ξ	¥	Ŧ	· エ	¤	СН
45								
50	R¹ K¹	CI CH,	OC(CH ₁)	$\hat{\mathcal{A}}$			HS HS	
55	Y	ַבּר יַבּי בּי	ز	\	$\vee\vee$	~ \ _ '	•	\checkmark
60	. R.	±	I	Ξ	Ξ	x	I	Ξ
	<u>-</u>	I	x	I	· Ħ	π	×	Ŧ
65	Bsp. Nr.	226	722	228	229	230	231	232

5	Physikal. Konst. (Smp. (° C))		138-139								
	c	0	0	0	0	0	0	0	0	0	0
10 .	×	ΞZ	ĭ	ΞZ	ΞZ	ΗZ	# Z	I Z	X Z	ΞZ	ĭ
15											
20	.	ĕ	Ä	ĕ	ă	æ	ă	Æ	Ä	Å	ĕ
25		OCH,	$\rightarrow \bigcirc$	Z	\bigcirc	<u>.</u> 2	ت. •	Y Y	CF,		
30	<u>-</u>				\otimes	СН,	CH,	ż 🏑	I	I	Ι
35	<u>"</u>	Ŧ	Ξ	Ħ	×	СН	СН	×	I	CH	Ξ
40	*	H	x	I	I	I	сн,	I	I	Ξ	x
45											5
50	R,		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond			CI CI	
55		\	V	~	~	~	~	V	~		
60	~	Ξ	I	Ξ	I	I	Ξ	Ŧ	I	I	X
65	<u>-</u> w	Ŧ		Ξ	CH,	CH,	СН,	СН,	×	Ħ	=
	BSD. Nr.	244	245	246	247	248	249	250	251	252	253

Physikal. Konst. (Smp. (° CJ)								_
· e	0	0	0	0	0	0	0	5
								10
×	HZ	X Z	I Z	I Z	I	I	I Z	
								15
				·				
2	盡	ă	Ā	ă	ğ	ğ	Ä	20
								25
<u>~</u>	_ _	=	I	I	I	I	x	30
٣.	ェ	I	=	I	エ	I	I	35
								40
*	×	I	I	x	Ŧ	x	±	40
			-					45
			f f	•	СН,			
,	Ţ	\triangle	人 E	$Y \cap Y$		\Diamond	- ^ -	50
	() "\	(0)		i e	/\(\frac{1}{2}\)	£ (5) £	CH, CH,	
}								55
~	Ξ	Ξ	I	Ξ	I	Ξ	Ξ	60
	_		_	_	_	_	-	,
~	Ξ	I	I	I	Ξ.	I	×	65
Bsp.	254	255	256	257	258	259	260	

5	Physikal. Konst. (Smp. (* C)			117-120	174-176		130-132		
	c		0	0	0	0	0	0	0
10									
15	×		H	ΞŽ	HZ.	ž	I Z	Ξ Z	ΞZ
20	r r		ğ	æ	Ä	ă	ĕ	Ā	Ä
25									
30	a a		±	Ξ	I	Ξ	×	Ξ	I
35			±	¥	I	I	x	Ξ	C H ,
40	å.		I	r	I	= .	I	I	Ħ
45		сн,	, CH		_			۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲	
50	R. R.	H,C	CH.	٥ ٥ ٥	(С. с.н.) С.н.	Q z	CH, CH,	(посиси)	\Diamond
	~		I	H	I	I	Ξ	x	· =
60	a		pdns		-	-	144	-	
65	ž		Ξ	I	ĸ	=	æ	Ŧ	×
	B Sp.		261	262	263	264	265	266	267

	<u>-</u>	R ²	1	.	a a	' '	г	, a		×		Physikal. Konst. (Smp. [° C])
	x	π	Ô√5		Ξ	С,Н,	Ŧ	Br		HX	0	
	I	Ξ	· `	-ғ , осн,	I	± .	CH,	č a		Ξ.	0	
	≖.	I	, ch,	f	×	I	I	š		ΞZ	0	
	x	I	\(\) ₹	, CH,	сн,	CH,	7	æ		ΞZ	0	
	I	æ		-сн,	×	#	Ξ	В		ΗZ	0	
	Ξ	СНО			π	Ŧ	I	СН		0	0	16
	I	СНО			×	Ŧ	I	сн,сн,сн,	ع	0	0	71
	I	СНО			×	×	Ξ	СН,СН(СН)	4.	0	0	
	I	СНО	\Diamond	•	x	I	I	0СН,		0	0	78-82
65		60	50	45	40	35	30	20 25	15	10		5

5	Physikal. Konst. (Smp. [° C])			63-64	99-59	58	95-100			80-82	77-80		
	-	0	0	0	-	0	0	0	0	0	0	0	0
10	×	0	0	0	0	0	0	0	0	0	0	0	0
15										\bigcirc			
20	~	ОСИ	осн,	OCH,	осн,	осн,	OCH,	осн	0СН,	ОСН,—	осн,	осн	0СН,
25						N-CH,							
30	2	ж	Ŧ	±	Ŧ	CH_1-N	CH,	쩚	-	×	Ŧ	Ħ	z
35	ac	76	ις.	x	I	I	I	Ξ	I	I	I	СH,	СН
40	<u>*</u>	(CH ₂),	(CH ₂),	I	Ŧ	Ξ	Ŧ	I	Ħ	×	Ξ	H	CH,
45	R . R .		\bigcirc	\Diamond	\bigcirc	\bigcirc	\Diamond	\bigcirc	\Diamond	\bigcirc	\Diamond	\bigcirc	\bigcirc
50			Y	Y	Y	Y	Y	Y	Y	Ÿ	Ÿ	Ÿ	Ÿ
55	Ĉĸ	сн,	CH,	СН,	CH,	CH,	СНО						
60											сн,осн,	сн,осн,	сн,осн,
65	- ~	Ï	Ξ	I	I	I	Ŧ	I	Ħ	x	CH,	СН	СН
	Bsp.	772	278	279	280	281	282	283	284	285	268	287	288

Bsp.	<u>.</u> .	<u>م</u>	R. R.	å	°ac	F.	್ಜ	×	· c	Physikal. Konst. (Smp. I° CJ)
289	СН,ОСН,	СНО		×	I	сн,	осн	0	0	
290	×	СНО	\Diamond	I	x	#	ă	0	0	108-109
291	I	СНО		Ξ	СН,	=	Br	0	0	
292	I	СНО	\Diamond	×	СН,	Ŧ	B	¥Z	0	146
293	Ŧ	СНО	\Diamond	Ξ	\bigcirc	н	ă	0	0	
294	I	СНО		(CH ₁),		I	B	0	0	
295	I	СНО	\Diamond	(CH ₂),		I	B	0	0	
296	×	СНО	\Diamond	ж	C ₂ H ₅	r	ă	0	0	
297	I	СНО	\Diamond	Ή	C,H,	Ξ	ĕ	0	0	
298	Ħ	СНО	\Diamond	сн,сн,осн,сн,	сн,сн,	Ŧ	ă	0	0	
299	I	СНО	\Diamond	Ŧ	x	СН,	Br	0	0	
300	I	СНО	\bigcirc	I	×	83	Ŗ	0	0	
65	60	55	45 50	40	35	25	20	10		5

5	Physikal. Konst. (Smp. P CJ)												
	٠_	0	0	0	0	0	0	-	7	m	4	ν.	-
10													
	×	0	Z .	0	0	0	0	0	0	0	0	0	0
15												•	~
20	ž	五	菡	盡	卢	Ä	ਛ	ОСН	осн,	ОСН	осн,	ОСН	0С,Н,
25							_ ~						
	*	-	I	Ħ	Ξ	I	СН	I	Ξ	I	I	Ξ	Ξ
30													
35	æ	Ŧ	I	Ξ	СН,	СН	I	I	I	I	エ	Ξ	Ξ
40	å	Ŧ	Ŧ	I	I	СН	Ξ	I	Ξ	Ξ	Ξ	Ħ	Ξ
45	א א א	_	I I			_				•	•	•	ت ل
50	\(\omega\)												
	•		·	•		-						-	
55	~	ЭНО	ЭНО	ЭНО	ЭНО	ЭНО	ЭНО	ЭНО	ЭНО	ЭНО	СНО	СНО	CHO
60	oc .	0	O	J	O	J	J	J	J	J	J		J
60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	±	Ŧ	СН,	сн,	СН,	CH,	x	I	I	Ξ	I	×
65	-		_	-	-	_							
	B S S S S S S S S S S S S S S S S S S S	301	302	303	304	305	306	307	308	309	310	311	312

Bsp.	_~	"Z			**	, w	ž		ę w	×	·	Physikal. Konst. (Smp. (° Cl)
313	H	CHO		13	=	=	=		OC.H.	C	,	
7.					: 5	: :	: :			· (
315					c =				200 och	> 0	4 -	
316	: =	СНО		. i <u>i</u>	: =	: =	: #		0СН,) 0	. 2	
317	I	СНО		, осн(сн,),	=	Ξ	I		ĕ	0	-	
318	Ξ	CHO		ОСН(СН,)	Ξ	Ξ	.		Ā	0	7	
319	I	СНО		осн(сн,),	I	I	.		ă	0	æ	
320	Ŧ	СНО) D'H	\bigcirc	π	.	Ξ		ū	0	-	
	=	Çn Ş	H,C	CH,	כ	2	2		5	c	-	
65	60	55	50	40 45		35	30	25	15	10	•	5

5	Physikal Konst. (Smp. [° C])	101-102									
		0	0	0	0	0	0	0	0	0	0
10	×	0	I Z	0	0	ΞZ	0	s	Ξ	S	S
15											
20	å	CH,	CH,	CH,	CH,	СН,	Ξ	I	I	×	I
25	a.	H	Ξ	CH,	I	¥	I	I	H	I	I
30	~ ~	н	I	·	СН	Ξ	×	Ξ	CH,	Ξ	x
35	ž	H	I	Ŧ	Ξ	x	r	I	Ŧ	π	=
40											
45	**************************************		\Diamond		\bigcirc		\bigcirc	\bigcirc		\bigcirc	
50											
55	<u>ج</u>	СНО	СНО	СНО	СН,	СН,	CH,	СН,	СНО	СН	CH3
60	, W	Ή,	сн,	CH,	СН,	·С,Н,	$CH_{2} \longrightarrow$	сн,	С,Н,	×	I
65	Bsp. R.	322 C	323 C	324 C	325 C	326 n-C,H,	327 C	328 C	329 (330 F	331 F

				Tabelle 2					
Bsp. Žr.	R ¹ /R ⁹	R ²	R, R,	ž V	<u>س</u>	<u>-</u>	×	e	Physikal. Konst. (Smp. (° CJ)
332	(СН ₁),	H		H	¥	±	0	0	128
333	(СН ₂),	I		H	Ξ	I	0	0	
334	(CH ₂),	x	\Diamond	I	СН,	Ξ	0	0	
335	(CH ₃),	I	\Diamond	I	x	I	0	0	
336	(CH ₂),	Ħ	\Diamond	Ŧ	Ξ	Ħ	0	-	
337	сн, sc н,	Ξ	\Diamond	æ	×	Ξ	0	0	
338	СН, SCH,	I		x	Ŧ	Ŧ	0	-	
339	сн,осн,	I	\Diamond	·	x	I	0	0	
340	(CH ₃),S	Ξ		æ	Ħ	æ	0	0	106-108
341	S _t (CH ₃)s	=	\Diamond	Ξ	СН,	I	0	0	
342	(CH ₂),S	Ξ	D — CI	Ŧ	Ŧ	I	0	0	
65	55 60	50	40 45	30 35	25	20	15	. 10	5

5	Physikal. Konst. (Smp. P C))			153-155								
10	c	0	0	0	0	0	0	1	0	-	0	0
15	*	0	0	0	ΞZ	ΗZ	ΞZ	ΞZ	H Z	¥	ΞZ	Ŧ
20	g a	H	Ξ	π	Ŧ	Ξ	I	I	I	I	I	E
25	æ	æ	x	Ξ	æ	сн,	Ξ	Ŧ	I	I	I	I
30	å.	· •	I	Ξ	Ŧ	r	Ŧ	Ŧ		Ŧ	×	I
35	-		_	_	_	_	_	_	_	_		_
40	ج ا ج ج	Y	,		-CI							
45				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
50	R ₂	Ŧ	I	I	I	H	r	Ξ	I	I	H	I
55									7	~	-	
60	R'/R*	S(CH _{J)} ,	о4"нэ)	\bigcirc	(CH ₂)3	(CH ₃),	(CH ₃)	(CH ₂),	сн, всн,	сн,ѕсн,	сн,осн,	(CH ₂),S
65	Bsp. Nr.	343	344	345	346	347	348	349	350	351	352	353

Bsp.	R'/R'	R.	R, R,	ž	~ <u>~</u>	Z.	×		Physikal. Konst. (Smp. [° C])
354	(CH ₃),S	æ		Ŧ	СН,	±	ΞZ	0	
355	(CH ₂),S	Ŧ		Ŧ	Ŧ	×	H	0	
356	S(CH ₂),	Ξ	O—CH(CH ₃)	=	×	±	Ŧ	0	
357	(СН,),О	Œ	\Diamond	×	H	I	ΞZ	0	
358	(CH ₂),	I	\Diamond	Ξ	Ŧ	I	S	0	
359	(CH ₁),	π	\Diamond	·	×	Ξ	S	0	
360	(CH ₁),	СНО	\Diamond	x	Ŧ	I	ΗX	0	134
361	(CH ₃),	CH,	CI CI	¥	I	Ŧ	χ	0	
362	(CH,)	СНО	\Diamond	Ŧ	СН,	×	0	0	
363	(СН;)	СНО		Ŧ	Ŧ	Ŧ	0	0	
364	(СН ₁),	СНО	\Diamond	I	×	×	0	-	
65	55 60	50	35 40 45	30	25	20	15	10	5

5	Physikal. Konst. (Smp. (° C])								
10	c	0	1	0	0	0	0	0	0
15	×	0	0	ΗZ	H Z	0	ΞZ	ĭ	Ĭ
20	<u>~</u>	H	Ŧ	Ξ	π	Ξ	Ξ	x	Ξ
25	~	н	I	Ŧ	r	СН,	Ŧ	Ξ	I
30		·							
35	å	=	Ħ	I	I	=	I	I	H
40	•.						ت ت		O-CH(CH _J)
45	, K. J. K.	\Diamond	\bigcirc	\bigcirc	\Diamond	\bigcirc			
50	R 2	C,H,	СН,	СНО	CH,	сн,	CH,	СН,	СНО
55	~		J	J	,	ŭ		•	
60	R'/R*	СН,8СН,	сн,ѕсн,	сн,осн,	(CH ₂),S	(CH ₁),S	(CH ₂),S	S(CH ₃),	(CH ³)O
65	Bsp. Nr.	365	366	367	368	369	370	37.1	372

					Tabelle 3	ا ۔				٠	
Bsp. Nr.	R ¹ /R ²	<u> </u>	R' X—R'	4	ر م	a a		چ 4	×	c	Physital. Konst. (Smp. (° C))
373	æ		S CH,	포	Ŧ	Ξ		осн,	0	0	
374	СН,			Ξ	I	I		Ā	0	0	
375	±			.	Ξ	×		ĕ	ΞZ	0	
376	СН,ОСН,		. ○ z-	π	æ	æ		осн,	0	0	
37.7	С,Н,		∞ _z-	Ξ	Ŧ	Ŧ		осн,	0	0	
65	60	55	45 50	40	35	30	25	20	15	10	5

5	Physika). Konst. (Smp. P CJ)					
10	٠	0	•	0	0	0
15	×	0	Ξ.	0	0	0
20	°K	осн,	0С,Н,	B	0С,Н,	осн
25						
30	ž	± ·	· x	I	×	I
35	, K	±	±	π	ĸ	π.
40	3	Ξ	Ξ	I	x	I
45		5	Ö			
50	R,	» Z-	N Z -			 z
55	T	0	0			
60	R ¹ /R ²	π	π	п	I	x
65	Bsp. Nr.	378	379	380	381	382

=	1		•		
Physikal. Konss. (Smp. lº C])	139	109	107-109		5
· c	0	-	0		10
*	0	0	0		15
	осн,	0СН,	осн,		20
æ	0	0	0		25
			CH,-N		30
<u>~</u>	Η .	=	S		35
æ	¥	I	Œ		
**	Ξ	Ξ	I		40
					45
	z-	- z-	z		50
	_	—			55
R¹/R³	×	΄ π	æ		60
R BS p. Nr.	383	384	385		65

C. Biologische Beispiele

Beispiel 1

Weizenpflanzen der Sorte "Diplomat" wurden ca. 4 Wochen nach Aussaat mit wäßrigen Suspensionen der erfindungsgemäßen Verbindungen tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wäßrigen Sporensuspension von Pseudocercospeorella herbotrichlorides inokuliert. Die Pflanzen wurden danach bei 16 bis 18°C und ca. 90 bis 100% rel. Luftfeuchte gehalten.

Nach einer Inkubationszeit von ca. 4 Wochen konnte die Befallsauswertung der Versuchspflanzen vorgenommen werden. Der Wirkungsgrad wurde aus dem Befallsgrad im Vergleich zu den unbehandelten, infizierten Kontrollpflanzen ermittelt und ist in Tabelle 4 wiedergebeben.

Tabelle 4

	Verbindungen	Wirkungsgrad	gegenüber Pseudocercosporella	
	gem. Beispiel		s in % bei ppm Wirkstoff	
		250	125	60
20				
	1	100	100	100
	14	100	100	100
	86	100	100	100
	103	100	100	95
25	104	100	97	_
	111	100	100	80
	113	100	96	85
	165	100	100	100
	195	100	100	100
30	273	100	100	98
	274	100	100	100
	276	100	100	100
	286	100	100	_
	290	100	100	100
35	292	100	100	80
	303	100	100	_
	322	100	100	97
	332	100	95	-
40	unbehandelte, infizierte Pflanzen		0	

Patentansprüche

1. Verbindungen der Formel I

worin

45

50

55

60

65

 $R^1 = \text{Wasserstoff, Halogen, } (C_1 - C_4) - \text{Alkyl, Hydroxy-} (C_1 - C_4) - \text{alkyl, Dihydroxy-} (C_1 - C_4) - \text{alkyl, Cyano-} (C_1 - C_4) - \text{alkyl, Halo-} (C_1 - C_4) - \text{alkyl, } (C_1 - C_4) - \text{alkoxy-} (C_1 - C_4) - \text{alkyl, Halo-} (C_$

 $koxy-(C_1-C_4)-alkyl, (C_1-C_4)-Alkylthio, Halo-(C_1-C_4)-alkylthio, Halo-(C_1-C_4)-alkylthio-(C_1-C_4)-alkyl,$ $(C_1 - C_4)$ -Alkylthio- $(C_1 - C_4)$ -alkyl, (C_2-C_6) -Alkinyk, (C₁-C₄)-Alkylamino, (C_2-C_6) -Alkenyl, (C_1-C_4) -Dialkylamino, (C_3-C_9) -Cycloalkylamino, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- (C_1-C_4) -Dialkylamin mino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkylamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkyl, $(C_3 - C_9)$ -Cycloalkyl (C_1-C_4) -alkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch $(C_1 - C_4)$ -Alkyl substituiert sein können, $(C_1 - C_4)$ -Alkylaminocarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Dialkylaminocarbonyl- $(C_1 - C_4)$ -alkyl, $(C_1 - C_4)$ -Alkylcarbonyl, $(C_1 - C_4)$ -Haloalkylcarbonyl, $(C_1 - C_4)$ -Alkoxycarbonyl, (C_1-C_4) -Haloalkoxycarbonyl, (C_1-C_4) -Alkylthiocarbonyl, (C_1-C_4) -Haloalkylthiocarbonyl, Aminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylketo-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylamino- $(C_1 - C_4)$ -alkyl, Phenoxyphenyl- $(C_1 - C_4)$ -alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann, und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R¹ und R⁹ gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern, R^2 = Wasserstoff, Formyl, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, Cyano- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkylthio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) Alkinyl, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkylamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkyl, $(C_3 - C_9)$ -Cycloalkyl (C₁-C₄)-alkyl, (C₃-C₉)-Heterocycloalkyl-(C₁-C₄)-alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Haloalkylcarbonyl, $(C_1 - C_4)$ -Alkoxycarbonyl, $(C_1 - C_4)$ -Haloalkoxycarbonyl, $(C_1 - C_4)$ -Alkylthiocarbonyl, (C_1-C_4) -Haloalkylthiocarbonyl, Aminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -Haloalkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl-(C1-C4)-alkyl, gegebenenfalls substituiertes Phenylamino-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxyphenyl-(C₁-C₄)-alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C1-C4)-Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann, und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R3, R4, R5 = unabhängig voneinander Wasserstoff, Halogen, Hydroxy, Amino, Nitro, Cyano, Thiocyano, (C_1-C_4) -Alkyl, Cyano- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylamino, (C_1-C_4) -Dialkylamino, (C_1-C_4) -Alkylcarbonylamino, Halo- (C_1-C_4) -alkyl, Hydroxy- (C_1-C_4) -alkyl, Dihydroxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkoxy- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -alkylthio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Haloal- (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Haloalkoxycarbonyl, (C_1-C_4) -Alkylthiocarbonyl, kylcarbonyl. (C_1-C_4) -Haloalkylthiocarbonyl, Aminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Haloalkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-(C1-C4)-alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenf gebenenfalls substituiertes Phenyloxycarbonyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenylamino- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxyphenyl- (C_1-C_4) -alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C1-C4)-Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R3, R4 und/oder R5 gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P oder mit 4 bis 10 Ringgliedern, R² und R³ und/oder R⁴ gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern, R^6 , R^7 = unabhängig voneinander Wasserstoff, $(C_1 - C_9)$ -Alkyl, Cyano- $(C_1 - C_4)$ -alkyl, Halo- $(C_1 - C_4)$ -alkyl, $Hydroxy-(C_1-C_4)-alkyl, Dihydroxy-(C_1-C_4)-alkyl, (C_1-C_4)-alkoxy-(C_1-C_4)-alkyl, Halo-(C_1-C_4)-alkoxy-(C_1-C_4)-alkyl, Halo-(C_1-C_4)-alkyl, Halo (C_1-C_4)$ -alkyl, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -bialkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -alk (C_3-C_9) -Cycloalkylamino- (C_1-C_4) -alkyl, (C_3-C_9) -Cycloalkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -alkyl,

5

10

15

25

30

35

40

45

50

55

60

 (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylamino- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenoxyphenyl- (\tilde{C}_1-C_4) -alkyl, gegebenenfalls substituierter 5- oder 6gliedriger Heteroaromat, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil (Heteroaromat) bis zu dreifach durch Halogen, Ester, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, $(C_1 - C_4)$ -Haloalkyl, $(C_1 - C_4)$ -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R⁶ und R⁷ gegebenenfalls zusammen einen gesättigten oder teilweise ungesättigten Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern bilden, $R^8 = Wasserstoff$, Halogen, $(C_1 - C_4)$ -Alkyl, Hydroxy- $(C_1 - C_4)$ -alkyl, Dihydroxy- $(C_1 - C_4)$ -alkyl, Cyano- (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl, Halo- (C_1-C_4) -alk (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkylthio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_4) -Alkylamino- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylamino- $(C_1 - C_4)$ -alkyl, $(C_3 - C_9)$ -Cycloalkylamino- $(C_1 - C_4)$ -alkyl, wobei ein C-Atom gegebenenfalls durch die Heteroatome O oder N substituiert sein kann, $(C_3 - C_9)$ -Cycloalkyl, $(C_3 - C_9)$ -Cycloalkyl, $(C_3 - C_9)$ -Cycloalkyl, $(C_1 - C_4)$ -alkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Haloalkylcarbonyl, $(C_1 - C_4)$ -Alkoxycarbonyl, $(C_1 - C_4)$ -Haloalkoxycarbonyl, $(C_1 - C_4)$ -Alkylthiocarbonyl, (C_1-C_4) -Haloalkylthiocarbonyl, Aminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Haloalkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl- (C_1-C_4) -alkyl, gegebenenfalls substituiertes Phenyl- (C_1-C_4) -alkyl benenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls sub gebenenfalls substituiertes Phenyloxycarbonyl-(C1-C4)-alkyl, gegebenenfalls substituiertes 5- oder 6gliedriger Heteroaromat, gegebenenfalls substituiertes Phenylamino-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxyphenyl-(C1-C4)-alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil (Heteroaromat) bis zu dreifach durch Halogen, Ester, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_4)$ -Alkoxy, $(C_1 - C_4)$ -Alkylthio, (C₁-C₄)-Haloalkyl, (C₁-C₄)-Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R^9 = Halogen, $(C_1 - C_4)$ -Alkyl, $(C_1 - C_9)$ -Alkoxy, Hydroxy- $(C_1 - C_4)$ -alkyl, Dihydroxy- $(C_1 - C_4)$ -alkyl, Cyano- $(C_1 - C_4)$ -alkyl, $(C_$ kyl, (C_1-C_4) -Alkylthio, Halo- (C_1-C_4) -alkylthio, Halo- (C_1-C_4) -alkylthio- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio-(C_1-C_4)-alkyl, (C_2-C_6)-Alkenyl, (C_2-C_6)-Alkinyl, (C_1-C_4)-Alkylamino, (C_1-C_4)-Dialkylamino, (C_3-C_9)-Cycloalkylamino, (C_1-C_4)-Alkylamino-(C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkylamino-(C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkylamino-(C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituiert sein können, (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Dialkylaminocarbonyl- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Haloalkylcarbonyl, (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Haloalkoxycarbonyl, (C_1-C_4) -Alkylthiocarbonyl, (C_1-C_4) -Haloalkylthiocarbonyl, Aminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Haloalkylaminocarbonyl, (C_1-C_4) -Haloalkylaminocarbonyl, (C_1-C_4) -Haloalkylaminocarbonyl, (C_1-C_4) -Alkylaminocarbonyl, (C_1-C_4) -Alkylaminoc carbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenyl-(C1-C4)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenylmercapto- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenylketo- $(C_1 - C_4)$ -alkyl, gegebenenfalls substituiertes Phenyloxycarbonyl-(C₁-C₄)-alkyl, gegebenenfalls substituiertes Phenoxyphenyl- (C_1-C_4) -alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Säureester, Ester, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann, R¹ und R⁹ gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocyclus oder Heterocyclus mit den Heteroatomen O, N, S, Si oder P mit 4 bis 10 Ringgliedern bilden,

X = O, S, NH oder N-($C_1 - C_4$)-Alkyl und

n = eine Zahl von 0 bis 8 bedeuten, sowie deren Säureadditionssalze.

2. Verbindungen der Formel I gemäß Anspruch I, worin R^1 = Wasserstoff, Halogen, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, Perhalo- (C_1-C_4) -alkyl, (C_1-C_4) -Alkyl, Hydroxy- (C_1-C_4) -alkyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkylamino- (C_1-C_4) -Alkylamino- (C_1-C_4) -Alkylamino- (C_1-C_4) -Alkylamino- (C_1-C_4) -Alkylamino- (C_1-C_4) -Alkyl, (C_3-C_9) -Cycloalkylamino- (C_1-C_4) -Alkyl, (C_3-C_9) -Cycloalkyl- (C_1-C_4) -Alkyl, (C_3-C_9) -Heterocycloalkyl- (C_1-C_4) -Alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4) -Alkyl substituierts sein können, gegebenenfalls substituiertes Phenoxy, Phenoxyphenyl- (C_1-C_4) -Alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann, und Halo in den Substituenten ein- oder mehrfach durch Halogenatome

substituiert bedeuten kann,

```
(C_1-C_4)-Alkylthio, Perhalo-(C_1-C_4)-alkylthio, (C_1-C_4)-Alkylamino-(C_1-C_4)-alkyl, (C_1-C_4)-bialkylamino-(C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkylamino-(C_1-C_4)-alkyl, (C_3-C_9)-Heterocycloalkyl-(C_1-C_4)-alkyl, wobei die cyclischen Reste bis zu dreifach durch (C_1-C_4)-Alkyl substituiert sein können, (C_1-C_4)-Alkoxy-
  carbonyl-(C_1 - C_4)-alkyl, (C_1 - C_4)-Alkylcarbonyl, (C_1 - C_4)-Alkoxycarbonyl, gegebenenfalls substituiertes
  Phenyl, gegebenenfalls substituiertes Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkyl, gegebenenfalls substituiertes Phenoxy, gege-
  benenfalls substituiertes Phenoxy-(C_1 - C_4)-alkyl, gegebenenfalls substituiertes Phenylketo-(C_1 - C_4)-alkyl,
  wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen,
  Ester, (C_1 - C_4)-Alkyl, (C_1 - C_4)-Alkoxy, (C_1 - C_4)-Alkylthio, (C_1 - C_4)-Haloalkyl, (C_1 - C_4)-Haloalkoxy oder
  einfach durch Nitro oder Cyano substituiert sein kann, und Halo in den Substituenten ein- oder mehrfach
 durch Halogenatome substituiert bedeuten kann,
  R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> = unabhängig voneinander Wasserstoff, Halogen, Hydroxy, Amino, Nitro, Cyano, Thiocyano,
 (C_1-C_4)-Alkyl, Cyano-(C_1-C_4)-alkyl, (C_1-C_4)-Alkoxy, (C_1-C_4)-Alkylamino, (C_1-C_4)-Dialkylamino, Ha-
 lo-(C_1-C_4)-alkyl,  (C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkyl, (C_3-C_9)-Heterocycloalkyl-(C_1-C_4)-alkyl, wobei die cyclischen Reste
 bis zu dreifach durch (C_1-C_4)-Alkyl substituiert sein können, (C_1-C_4)-Alkoxycarbonyl-(C_1-C_4)-alkyl,
 (C_1-C_4)-Alkylaminocarbonyl-(C_1-C_4)-alkyl, (C_1-C_4)-Alkylcarbonyl, (C_1-C_4)-Alkoxycarbonyl, Amino-
 carbonyl, (C_1-C_4)-Alkylaminocarbonyl, gegebenenfalls \ substituiertes \ Phenyl, gegebenenfalls \ substituiertes
 Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes Phenoxy-
 (C_1-C_4)-alkyl, gegebenenfalls substituiertes Phenylketo-(C_1-C_4)-alkyl, wobei unter gegebenenfalls substi-
 tuiert zu verstehen ist, daß der Phenylteil bis zu dreifach durch Halogen, Ester, (C_1 - C_4)-Alkyl, (C_1 - C_4)-Al-
 koxy, (C_1-C_4)-Alkylthio, (C_1-C_4)-Haloalkyl, (C_1-C_4)-Haloalkoxy oder einfach durch Nitro oder Cyano
 substituiert sein kann, und Halo in den Substituenten ein- oder mehrfach durch Halogenatome substituiert
 bedeuten kann,
 R3, R4 und/oder R5 gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen
 Carbocyclus oder Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10 Ringgliedern,
 R<sup>2</sup> und R<sup>3</sup> und/oder R<sup>4</sup> gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten Carbocyclus
 oder Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10 Ringgliedern,
 R^5, R^7 = unabhängig voneinander Wasserstoff, (C_1-C_2)-Alkyl, durch Halogen, (C_1-C_4)-Alkyl oder
 (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, gegebenenfalls substituiertes Phenyl,
 R<sup>6</sup> und R<sup>7</sup> gegebenenfalls zusammen einen gesättigten oder teilweise ungesättigten Carbocyclus oder
 Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10 Ringgliedern,
 R^8 = \text{Wasserstoff, Halogen, } (C_1 - C_4) - \text{Alkyl, Hydroxy-} (C_1 - C_4) - \text{alkyl, Dihydroxy-} (C_1 - C_4) - \text{alkyl, Dihydroxy-} (C_1 - C_4) - \text{Alkylthio, Perhalo-} (C_1 - C_4) - \text{Alkylthio, } (C_2 - C_6) - \text{Alkenyl, } (C_2 - C_6) - \text{Alkinyl, } (C_1 - C_4) - \text{Alkylamino-} (C_1 - C_4) - \text{Alky
 (C_1-C_4)-alkyl, (C_1-C_4)-Dialkylamino-(C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkylamino-(C_1-C_4)-alkyl, wobei ein
 C-Atom gegebenenfalls durch die Heteroatome O oder N substituiert sein kann, (C_3-C_9)-Cycloalkyl,
 (C_3-C_9)-Cycloalkyl-(C_1-C_4)-alkyl, (C_3-C_9)-Heterocycloalkyl-(C_1-C_4)-alkyl, wobei die cyclischen Reste
 bis zu dreifach durch (C_1 -C_4)-Alkyl substituiert sein können, gegebenenfalls substituiertes Phenyl, gegebe-
 nenfalls substituierter 5- oder 6gliedriger Heteroaromat, wobei unter gegebenenfalls substituiert zu verste-
 hen ist, daß der Phenylteil (Heteroaromat) bis zu dreifach durch Halogen, Ester, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl,
(C_1-C_4)-Alkoxy, (C_1-C_4)-Alkylthio, (C_1-C_4)-Haloalkyl, (C_1-C_4)-Haloalkoxy oder einfach durch Nitro
 oder Cyano substituiert sein kann, und Halo in den Substituenten ein- oder mehrfach durch Halogenatome
 substituiert bedeuten kann,
 R^9 = Halogen, (C_1 - C_4)-Alkyl, (C_1 - C_9)-Alkoxy, Hydroxy-(C_1 - C_4)-alkyl, Dihydroxy-(C_1 - C_4)-alkyl, Cy-
ano-(C_1-C_4)-alkyl, Halo-(C_1-C_4)-alkyl, (C_1-C_4)-Alkoxy-(C_1-C_4)-alkyl, Halo-(C_1-C_4)-alkoxy-(C_1-C_4)-alkyl, (C_1-C_4)-Alkylthio, Halo-(C_1-C_4)-alkylthio, Halo-(C_1-C_4)-alkylthio, Halo-(C_1-C_4)-Alkylthio, (C_2-C_6)-Alkinyl, (C_1-C_4)-Alkylamino, (C_1-C_4)-Dialkylamino, (C_3-C_6)-Cycloalkylamino
no, (C_1 - C_4)-Alkylamino-(C_1 - C_4)-alkyl, (C_1 - C_4)-Dialkylamino-(C_1 - C_4)-alkyl, (C_3 - C_9)-Cycloalkylamino-
(C_1-C_4)-alkyl, (C_3-C_9)-Cycloalkyl, (C_3-C_9)-Cycloalkyl-(C_1-C_4)-alkyl, (C_3-C_9)-Heterocycloalkyl-
(C<sub>1</sub>-C<sub>4</sub>)-alkyl, wobei die cyclischen Reste bis zu dreifach durch (C<sub>1</sub>-C<sub>4</sub>)-Alkyl substituiert sein können,
(C_1-C_4)-Alkylcarbonyl, (C_1-C_4)-Alkoxycarbonyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls
substituiertes Phenyl-(C_1 - C_4)-alkyl, gegebenenfalls substituiertes Phenoxy, gegebenenfalls substituiertes
Phenoxy-(C_1 - C_4)-alkyl, wobei unter gegebenenfalls substituiert zu verstehen ist, daß der Phenylteil bis zu
dreifach durch Halogen, Ester, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Alkylthio, (C<sub>1</sub>-C<sub>4</sub>)-Haloalkyl,
(C<sub>1</sub>-C₄)-Haloalkoxy oder einfach durch Nitro oder Cyano substituiert sein kann, und Halo in den Substitu-
enten ein- oder mehrfach durch Halogenatome substituiert bedeuten kann,
R1 und R9 gegebenenfalls zusammen einen gesättigten, teilweise ungesättigten oder aromatischen Carbocy-
clus oder Heterocyclus mit den Heteroatomen O, N oder S mit 4 bis 10 Ringgliedern,
X = O oder NH und
                                                                                                                                                                                                    60
n = eine Zahl von 0 bis 4 bedeuten, sowie deren Säureadditionssalze.
3. Verbindung der Formel I gemäß den Ansprüchen 1 oder 2, worin
R^1 = Wasserstoff, (C_1 - C_4)-Alkyl oder (C_1 - C_4)-Alkoxy-(C_1 - C_4)-alkyl,
R^2 = Wasserstoff, (C_1 - C_4)-Alkyl oder Formyl,
R^3, R^4, R^5 = unabhängig voneinander Wasserstoff, Chlor, Brom, (C_1 - C_4)-Alkyl oder (C_1 - C_4)-Alkoxy,
                                                                                                                                                                                                    65
R<sup>2</sup> und R<sup>3</sup> gegebenenfalls zusammen einen Teil eines gesättigten, teilweise ungesättigten Carbocyclus oder
Heterocyclus mit den Heteroatomen O, N oder S mit 5 oder 6 Ringgliedern,
```

 R^6 , R^7 = unabhängig voneinander Wasserstoff oder $(C_1 - C_4)$ -Alkyl,

 R^6 und R^7 gegebenenfalls zusammen einen Teil eines gesättigten, teilweise ungesättigten Carbocyclus mit den Heteroatomen O, N oder S mit 5 oder 6 Ringgliedern,

 R^8 = Wasserstoff, Jod, $(C_1 - C_4)$ -Alkyl, Di- $(C_1 - C_4)$ -alkylamino- $(C_1 - C_4)$ -alkyl, ($C_5 - C_7$)-Cycloalkylamino- $(C_1 - C_4)$ -alkyl, oder durch Haogen, $(C_1 - C_4)$ -Alkyl oder $(C_1 - C_4)$ -Alkoxy, gegebenenfalls substituiertes Phenyl,

 R^9 = Halogen, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, Phenyl- (C_1-C_4) -alkoxy, Cyano- (C_1-C_4) -alkyl, oder (C_1-C_4) -Alkoxycarbonyl- (C_1-C_4) -alkyl,

R¹ und R⁹ gegebenenfalls zusammen einen Teil eines gesättigten oder ungesättigten Carbocyclus mit 5 oder 6 Ringgliedern, bei dem ein Kohlenstoff durch S substituiert sein kann,

X = O oder NH und

5

10

15

20

25

30

35

40

45

50

55

60

65

n = 0 oder 1 bedeuten.

4. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3, worin R^1 = Wasserstoff, R^2 = Wasserstoff oder CHO, R^3 , R^4 , R^5 = unabhängig voneinander Wasserstoff, F, Cl oder OCH₃, R^6 und R^7 = Wasserstoff, R^8 = Wasserstoff und R^9 = Br oder OCH₃, R^8 = Sauerstoff oder Stickstoff und R^8 = 0 oder 1 bedeuten.

5. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man Verbindungen der Formel II

worin

Hal = Cloder Br und

 $R^{10} = (C_1 - C_4)$ -Alkylthio, im Phenylteil durch Halogen, $(C_1 - C_4)$ -Alkyl oder $(C_1 - C_4)$ -Alkoxy gegeber...1-falls substituiertes Phenyl- $(C_1 - C_4)$ -alkylthio, S oder den Rest III

bedeuten, mit Verbindungen der Formel IV

$$HX - C - (CH_2)_n - C \equiv C - R^{\epsilon} \quad (IV)$$

umsetzt und, falls R¹⁰ eine von der Formel III abweichende Bedeutung hat, anschließend die erhaltenen Verbindungen im Rest R¹⁰ oxidiert und die entstandenen Oxidationsprodukte mit Verbindungen der Formel V

zu den Endprodukten der Formel I mit $R^{10} = Rest$ der Formel III umsetzt sowie gegebenenfalls, wenn $R^8 = H$, den Wasserstoff gegen Halogene austauscht.

6. Fungizide Mittel, dadurch gekennzeichnet, daß sie eine wirksame Menge einer Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 4 enthalten.

7. Verwendung von Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 4 zur Bekämpfung von Schadpilzen.

8. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 4 appliziert.

- Leerseite -