## **Exploiting Spatiotemporal User Behaviours for User Linkage**

Wei Chen<sup>1</sup>, Hongzhi Yin<sup>2</sup>, Weiqing Wang<sup>2</sup> Lei Zhao<sup>1</sup>, Wen Hua<sup>2</sup>, Xiaofang Zhou<sup>2</sup>

<sup>1</sup> School of Computer Science and Technology, Soochow University, China <sup>3</sup> School of ITEE, The University of Queensland, Brisbane, Australia



#### **Outline**

- Introduction
- Problem Statement
- Feature Extraction
- Similarity Measure
- Experiments
- Conclusion

#### Introduction

- The proliferation of GPS-enabled devices and mobile techniques has led to the emergence of large amount of spatiotemporal information.
  - Trajectory data: adjacent points of a trajectory are sampled in a short time period.
  - Discrete check-in data in social network: the time between two check-ins is usually large.







#### Introduction

- Spatiotemporal data based studies:
  - Route planning in road networks
  - Activity trajectory recommendation
  - Understand human mobility pattern
  - \_ ....
  - Cross-domain user linkage with spatiotemporal data [1]
  - [1] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi.
     Linking users across domains with location data: Theory and validation. In WWW, 2016, pp. 707–719.

#### Introduction

• Cross-domain user linkage: link the same user across different domains



• Example: Facebook---Twitter

#### Spatiotemporal record

- A spatiotemporal record on both trajectory data and check-in data is defined as: d = (u, lat, lng, t)
- u: the unique id of a user
- lat: latitude of the record
- *lng*: longitude of the record
- t: timestamp of the record

#### Example

```
adnys.txt * ×
       34.0553261066,
                         118.246986866,
                                            07:50:224
adnys,
adnys, 34.0314662928,
                                            08:15:33↓
                         118.462771922,
adnvs. 38.5494890477.
                         121.740014302.
                                            12:29:09
adnys, 33.1258538651,
                         117.311940422,
                                            15:41:15↓
                                            06:27:12
       34. 259089,
                         116.867585778,
adnys,
adnys, 34.1838325292,
                         118.275179542,
                                            11:34:44
                         157.836713791,
adnys, 21.2819466313,
                                            16:26:08↓
       33. 9847729546.
                         118.449375629.
                                            |20:11:25 \downarrow
       37. 7896414689,
                         122.394288182,
                                            |21:43:17 \downarrow
```



- Two kinds of important data
  - Check-in data, which can be used to extract features directly.
  - Trajectory data, which needs preprocessing before extracting features.



Trajectory

- Stay point [2]: a stay point s stands for a geographic region where a user stayed over a certain time interval.
  - Given a trajectory  $\tau = (p_1, p_2, \cdots, p_n)$ , if there exists a group of consecutive points  $P = (p_i, p_{i+1}, \cdots, p_j)$  of  $\tau$  such that  $\forall i < k \le j$ ,  $Distance(p_i, p_k) \le \delta_d$  and  $|p_j, t p_k, t| \ge \delta_d$  then we have a stay point s in the form of

$$(s. lat, s. lng) = (\frac{\sum_{k=i}^{j} p_k. lat}{|P|}, \frac{\sum_{k=i}^{j} p_k. lng}{|P|})$$

 [2] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma. Mining interesting locations and travel sequences from GPS trajectories. In WWW, 2009, pp. 791-800.

- Stay region candidate point
  - Given a trajectory  $\tau = (p_1, p_2, \dots, p_n)$ , the start point  $p_1$ , the end point  $p_n$ , each point of P is defined as stay region candidate point, denoted as  $r_c$ .
- Example



- Semantics behind the check-ins and stay region candidate points:
  - Shopping mall
  - Home region
  - Work region
  - Bus station
  - \_ ....

• Formulation: Given user sets  $U_1 = \{u_{11}, u_{12}, \dots, u_{1n}\}$  and  $U_2 = \{u_{21}, u_{22}, \dots, u_{2m}\}$ , where each user is associated with a set of spatiotemporal records, we aim at finding linked user pairs across these two domains.



## User Linkage

- Extract features
- Measure user similarity

- Features
  - Stay region distribution
  - Global time distribution
  - Local time distribution

Stay region distribution [3]

$$- p = \sum_{j} \chi \left( d_{r_c^i, r_c^j} - d_c \right), \begin{cases} \chi(x) = 1, & \text{if } x < 0 \\ \chi(x) = 0, & \text{otherwise} \end{cases}$$

$$- \ \delta = \begin{cases} \min\limits_{\substack{p_{r_c^j} > p_{r_c^i} \\ r_c^j}} (d_{r_c^i, r_c^j}), \ if \ p_{r_c^j} > p_{r_c^i} \\ \max_{j} (d_{r_c^i, r_c^j}), \ otherwise \end{cases}$$

 [3] A. Rodriguez and A. Laio. Clustering by fast search and find of density peaks. Science, vol. 344, no. 6191, pp. 1492-1496, 2014.

Example



- Region weight calculation.
  - In real life, many people tend to visit popular areas, such as the downtown of a city, a large bus station, and a popular cinema.
     Obviously, the importance of the extracted stay regions are diverse.
  - Highlight the individual region.
  - Lighten the popular region.

• Region weight calculation.

(a) User Region

| User  | Region                 |  |  |  |
|-------|------------------------|--|--|--|
| $u_1$ | $(R_1^1,\cdots,R_1^l)$ |  |  |  |
| $u_2$ | $(R_2^1,\cdots,R_2^k)$ |  |  |  |
|       | • • •                  |  |  |  |
| $u_n$ | $(R_n^1,\cdots,R_n^m)$ |  |  |  |

Weight
$$\{\omega(R_1^1), \cdots, \omega(R_1^l)\}\}$$

$$\{(\omega(R_2^1), \cdots, \omega(R_2^k))\}$$

$$\cdots$$

$$\{\omega(R_n^1), \cdots, \omega(R_n^m)\}$$

$$\omega(R_1^i) = \frac{\frac{N}{1 + \sum S(R_1^i, R_o)}}{\sum \frac{N}{1 + \sum S(R_1^i, R_o)}}$$

Example



• Note: the points outside the region are omitted.

- Spatiotemporal features
  - Stay region distribution
  - Global time distribution
  - Local time distribution

#### Global time distribution

- We extract the temporal features from the global perspective, where the stay region factor is omitted.
- Given a set of stay region candidate points  $(r_c^1, r_c^2, \dots, r_c^n)$  of a user u, the Expectation Maximization (EM) algorithm is used to find optimal parameters with timestamp set  $(r_c^1, t, r_c^2, t, \dots, r_c^n, t)$ .

#### Example

```
adnys.txt * ×
                        118.246986866.
                                          07:50:22
      34.0553261066,
adnvs.
adnvs, 34.0314662928,
                                          08:15:33
                        118.462771922,
      38.5494890477,
                        121.740014302.
                                          12:29:09
adnvs.
       33. 1258538651.
                        117.311940422.
                                          15:41:15
adnvs.
adnys, 34.259089,
                        116.867585778,
                                          06:27:12
       34. 1838325292.
                        118. 275179542,
                                          11:34:44
adnys,
       21. 2819466313.
                        157.836713791,
                                          16:26:08
adnvs.
                                          20:11:25√
       33. 9847729546.
                        118.449375629.
       37. 7896414689.
                        122.394288182,
                                          21:43:17
```



- Global time distribution
  - E-step: the probability of the sample  $r_c^i$ . t generated by the cluster  $(\mu_k, \sum_k)$  is:

$$\gamma_{ik} = \frac{\alpha_k N(r_c^i.t|\mu_k, \Sigma_k)}{\sum_{j=1}^K \alpha_k N(r_c^i.t|\mu_j, \Sigma_k)}$$

 M-step: the maximum likelihood method is used to update model parameters as follows:

$$\alpha_k = \frac{1}{n} \sum_{i=1}^n \gamma_{ik}$$

$$\mu_k = \frac{\sum_{i=1}^n \gamma_{ik} r_c^i \cdot t}{\sum_{i=1}^n \gamma_{ik}}$$

$$\sum_k = \frac{\sum_{i=1}^n \gamma_{ik} (r_c^i \cdot t - \mu_k)^2}{\sum_{i=1}^n \gamma_{ik}}$$

#### • Global time distribution

(a) Time Cluster

| User  | Time Cluster           |
|-------|------------------------|
| $u_1$ | $(T_1^1,\cdots,T_1^l)$ |
| $u_2$ | $(T_2^1,\cdots,T_2^k)$ |
|       |                        |
| $u_n$ | $(T_n^1,\cdots,T_n^m)$ |

| Weight                                     |  |  |  |  |
|--------------------------------------------|--|--|--|--|
| $\{\omega(T_1^1),\cdots,\omega(T_1^l)\}$   |  |  |  |  |
| $\{(\omega(T_2^1),\cdots,\omega(T_2^k))\}$ |  |  |  |  |
|                                            |  |  |  |  |
| $\{\omega(T_n^1),\cdots,\omega(T_n^m)\}$   |  |  |  |  |



$$\omega(T_1^i) = \frac{\frac{N}{1 + \sum S(T_1^i, T_o)}}{\sum \frac{N}{1 + \sum S(T_1^i, T_o)}}$$

- Spatiotemporal features
  - Stay region distribution
  - Global time distribution
  - Local time distribution

- Local time distribution
  - We use the same method to extract time clusters and calculate corresponding weights in each stay region.
- Example



## User Linkage

- Extract feature
- Measure similarity

- Stay region similarity
  - Assume the stay regions of  $u_1$  and  $u_2$  are:

$$\{(R_1^1, \omega(R_1^1)), (R_1^2, \omega(R_1^2)), \cdots, (R_1^m, \omega(R_1^m))\}$$
  
$$\{(R_2^1, \omega(R_2^1)), (R_2^2, \omega(R_2^2)), \cdots, (R_2^n, \omega(R_2^n))\}$$

- The stay region similarity  $S(u_1, u_2)_r$  is defined as:

$$S(u_1, u_2)_r = \sum_{i=1}^m \sum_{j=1}^n S(R_1^i, R_2^j) \omega(R_1^i) \omega(R_2^j)$$

- Global time similarity.
  - Assume the global time clusters of  $u_1$  and  $u_2$  are:

$$\{(T_1^1, \omega(T_1^1)), (T_1^2, \omega(T_1^2)) \cdots, (T_1^k, \omega(T_1^k))\}$$

$$\{(T_2^1, \omega(T_2^1)), (T_2^2, \omega(T_2^2)) \cdots, (T_2^l, \omega(T_2^l))\}$$

- The global time similarity  $S(u_1, u_2)_t$  is defined as:

$$S(u_1, u_2)_t = \sum_{i=1}^k \sum_{j=1}^l S(T_1^i, T_2^j) \omega(T_1^i) \omega(T_2^j)$$

- Local time similarity.
  - Assume the time distribution in a stay region  $(R_1^i, \omega(R_1^i))$  of  $u_1$  is  $\{(T_1^1, \omega(T_1^1)), (T_1^2, \omega(T_1^2)) \cdots, (T_1^k, \omega(T_1^k))\}$ , in a stay region  $(R_2^j, \omega(R_2^j))$  of  $u_2$  is  $\{(T_2^1, \omega(T_2^1)), (T_2^2, \omega(T_2^2)) \cdots, (T_2^l, \omega(T_2^l))\}$ , the local time similarity in these two regions is defined as:

$$S(R_1^i, (R_2^j)\omega(R_1^i)\omega(R_2^j)\sum_{i=1}^k\sum_{j=1}^lS(T_1^i, T_2^j)\omega(T_1^i)\omega(T_2^j)$$

- The local time similarity between  $u_1$  and  $u_2$  is defined as:

$$S(u_1, u_2)_{rt} = \sum_{i=1}^{m} \sum_{j=1}^{n} (S(R_1^i, R_2^j) \omega(R_1^i) \omega(R_2^j) \sum_{i=1}^{k} \sum_{j=1}^{l} \cdot S(T_1^i, T_2^j) \omega(T_1^i) \omega(T_2^j))$$

• Finally, the similarity between  $u_1$  and  $u_2$  is defined as:



$$S(u_1, u_2) = S(u_1, u_2)_r + S(u_1, u_2)_t + S(u_1, u_2)_{rt}$$

#### Dataset

- Beijing Walk Trajectories (BJW) -- Beijing Car Trajectories (BJC)
- Foursquare (FS) -- Twitter (TW)
- Instagram (IT) -- Twitter (TW)

| Dataset | Domain     | Users | Trajectories | Locations/Check-ins |
|---------|------------|-------|--------------|---------------------|
| BJW-BJC | Walk       | 182   | 14337        | 2190957             |
|         | Car        | 182   | 5475         | 925380              |
| FS-TW   | Foursquare | 282   | -            | 7832                |
|         | Twitter    | 282   | -            | 88820               |
| IT-TW   | Instagram  | 1066  | -            | 283740              |
|         | Twitter    | 1066  | -            | 284051              |

- Compared methods:
  - GC: Each user is denoted by a set of grid cells.
    - Z. Li, B. Ding, J. H, R. Kays, P. Nye. Mining Periodic Behaviors for Moving objects. In KDD, 2010, pp. 1099-1108.
  - LT: Each user is presented by a set of bins.
    - C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi. Linking users across domains with location data: Theory and validation. In WWW, 2016, pp. 707–719.
  - STUL-S: A simplified version of STUL, where the extracted features are directly used to measure the user similarity.
  - Our approach:
    - STUL



- Evaluation metrics:
  - $precision = \frac{k}{n}$   $recall = \frac{k}{m}$

  - $F1 = \frac{2*Recall*Precision}{Recall*Precision}$

• Performance of the proposed algorithms in different datasets







• Performance of STUL w.r.t varied  $\theta$ 







• Performance of STUL w.r.t. varied cutoff distance







• Performance of STUL w.r.t. varied  $\xi$ 







#### **Conclusion**

- To connect the actually linked users from different domains with spatiotemporal data, we propose the novel model STUL.
  - From spatial perspective, a density-based method is developed to extract stay regions that a user will visit repeatedly.
  - From temporal perspective, we use GMM to extract the time distribution. Based on these features, we measure the similarity between users. The real-world dataset based experiments demonstrate the high performance of STUL.

# Thank You Q&A