MODULE 11: The Internet Protocol Suite

Lecture 11.1 Transmission Control Protocol (TCP)

Prepared By:

- Scott F. Midkiff, PhD
- Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

Lecture 11.1 Objectives

- Describe the TCP service and its role in the TCP/IP protocol suite
- Provide an overview of TCP's functions, including multiplexing, error recovery, and flow and congestion control
- Describe the motivation for TCP connection establishment
- Show the TCP segment format

IP Layering

Overview of TCP

- TCP provides connection-oriented, reliable, byte-stream service
- TCP performs typical transport layer functions
 - Segmentation breaks message into segment, and merges messages to form larger segments
 - Error recovery built on top of unreliable IP service
 - End-to-end flow control to avoid buffer overflow at the receiver
 - Congestion control mechanism to avoid sending too much data into the network
 - Multiplexing and demultiplexing of application sessions

TCP Service

- Reliable
- Connection-oriented virtual circuit service
- Full duplex concurrent transfers can take place in both directions
- Stream-oriented users exchange streams of data bytes
- Buffered TCP accepts data and transmits when appropriate

TCP Addressing and Multiplexing

- TCP identifies connections as socket pairs
 - Socket address includes Internet address plus a port
 - Host Internet address provided to IP
 - Port uniquely identifies user or process ID on the host
- Example:
 - A connection to port 21 on 128.173.92.96 connects to an FTP server on the designated host
 - Port 21 is the "well known" port number for FTP

Reliable Data Transfer

- TCP is built on IP, an unreliable datagram service
 - IP can lose datagrams
 - IP can deliver datagrams out of order
- TCP uses a "sliding window" mechanism for error recovery
 - Operates at the byte level rather than on packets
 - Bytes are numbered sequentially
 - At most W outstanding (un-acknowledged) bytes at any one time
 - Sender will retransmit data if no ACK is received within a variable timeout period

TCP Flow Control

- Prevents sender from "swamping" receiver with data
 - Typical problem is a fast server sending data to a slow client
- TCP provides end-to-end flow control by varying the size of the sliding window
 - Limits amount of data that can be sent without an acknowledgment
 - Can lead to significant performance problems in high-bandwidth, high-latency networks

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

- Describe the TCP service and its role in the TCP/IP protocol suite
- Provide an overview of TCP's flow control, multiplexing, and error recovery functions

If you have any difficulties, please review the lecture video before continuing.

TCP Congestion Control

- Attempts to avoid or reduce congestion in the network
- Operates based on implicit feedback from the network
 - Segment delays
 - Lost segments
- Sender limits transmissions based on this feedback

TCP Connections

- TCP uses a "three-way handshake" (balanced protocol) to establish a connection
 - Either host can initiate a connection (or both can initiate a host simultaneously)
 - Peer-to-peer protocol
- Ensures that:
 - Both nodes are ready
 - Synchronizes per-byte sequence numbers needed for error recovery and flow control

TCP Segment Format

0	4 8		16	24	31
Source Port			Destination Port		
Sequence Number					
Acknowledgment Number					
HLen	Reserved	Code	Window		
	Checksum		Urgent Pointer		
TCP Options (if any)				Pado	ding
Data					

TCP: Selected Header Fields

- Source Port and Destination Port: identify applications at ends of the connection
- Sequence Number: position of the data in the sender's byte stream in bytes
- Acknowledgment Number: position of the byte that the source expects to receive next (valid if ACK bit set)
- Code Bits:
 - ACK acknowledgment
 - SYN, FIN used to set up and close a connection
- · Header Length: header size in 32-bit units
- Window: advertised window size in bytes

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

- Provide an overview of TCP's congestion control function
- Describe the motivation for TCP connection establishment
- Show the TCP segment format

If you have any difficulties, please review the lecture video before continuing.

Summary

- TCP provides transport layer services
- Connection-oriented, byte stream service
- Reliable service through use of a sliding window mechanism
- Connections are established using three-way handshake
- TCP segment format, including 20-byte header
- Specifies port numbers for multiplexing and demultiplexing
- Specifies sequence number, acknowledgement number, and window for error recovery and flow control

MODULE 11: The Internet Protocol Suite

Lecture 11.1 Transmission Control Protocol (TCP)

Prepared By:

- Scott F. Midkiff, PhD
- Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

