Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лекция С3 Вычислимые и вычислимо перечислимые множества

Вадим Пузаренко

23 апреля 2020 г.

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$ — множество кортежей натуральных чисел. Тогда его характеристическая функция $\chi_A:\omega^n\to\omega$ определяется следующим образом:

$$\chi_A(k_1,\ldots,k_n) = egin{cases} 0, & \mathsf{если}\; (k_1,\ldots,k_n) \in A; \ 1, & \mathsf{если}\; (k_1,\ldots,k_n) \in \omega^n \setminus A. \end{cases}$$

Частичная характеристическая функция множества A $\chi_A^*:\omega^n\to\omega$ определяется следующим образом:

$$\chi_A^*(k_1,\ldots,k_n) = egin{cases} 0, & ext{если } (k_1,\ldots,k_n) \in A; \ \uparrow, & ext{если } (k_1,\ldots,k_n) \in \omega^n \setminus A. \end{cases}$$

Тогда
$$\delta \chi_A^* = A$$
.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$. Множество A называется **вычислимым**, если его характеристическая функция χ_A вычислима.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$. Множество A называется вычислимым, если его характеристическая функция χ_A вычислима.

Примеры

Следующие подмножества ω вычислимы (даже примитивно рекурсивны):

ω;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$. Множество A называется вычислимым, если его характеристическая функция χ_A вычислима.

Примеры

- ω;
- Ø;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$. Множество A называется вычислимым, если его характеристическая функция χ_A вычислима.

Примеры

- ω;
- Ø;
- {1, 2, 3, . . . , *n*} для любого *n*;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$. Множество A называется вычислимым, если его характеристическая функция χ_A вычислима.

Примеры

- ω;
- Ø:
- $\{1, 2, 3, \ldots, n\}$ для любого n;
- $\{n_1, \ldots, n_k\}$ для любых k, n_1, \ldots, n_k ;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A \subseteq \omega^n$. Множество A называется **вычислимым**, если его характеристическая функция χ_A вычислима.

Примеры

- ω;
- Ø;
- $\{1, 2, 3, \ldots, n\}$ для любого n;
- $\{n_1, \ldots, n_k\}$ для любых k, n_1, \ldots, n_k ;
- ω \ {1};

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A \subseteq \omega^n$. Множество A называется **вычислимым**, если его характеристическая функция χ_A вычислима.

Примеры

- ω;
- Ø:
- $\{1, 2, 3, \ldots, n\}$ для любого n;
- $\{n_1, \ldots, n_k\}$ для любых k, n_1, \ldots, n_k ;
- ω \ {1};
- $\omega \setminus \{1, 2, 3, ..., n\}$ для любого n;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $A\subseteq \omega^n$. Множество A называется вычислимым, если его характеристическая функция χ_A вычислима.

Примеры

- ω;
- Ø;
- $\{1, 2, 3, \ldots, n\}$ для любого n;
- $\{n_1, \ldots, n_k\}$ для любых k, n_1, \ldots, n_k ;
- ω \ {1};
- $\omega \setminus \{1, 2, 3, ..., n\}$ для любого n;
- $\omega \setminus \{n_1, \ldots, n_k\}$ для любых k, n_1, \ldots, n_k .

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

•
$$\{2 \cdot n | n \in \omega\}$$
;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

- $\{2 \cdot n | n \in \omega\}$;
- $\{k \cdot n | n \in \omega\}$, для любого $k \in \omega$;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

- $\{2 \cdot n | n \in \omega\}$;
- $\{k \cdot n | n \in \omega\}$, для любого $k \in \omega$;
- $\{n|n\in\omega, n$ простое число $\}$;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

- $\{2 \cdot n | n \in \omega\}$;
- $\{k \cdot n | n \in \omega\}$, для любого $k \in \omega$;
- $\{n | n \in \omega, n$ простое число $\}$;
- $\{(n,m)|(n,m)\in\omega^2, \ n|m\};$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

- $\{2 \cdot n | n \in \omega\}$;
- $\{k \cdot n | n \in \omega\}$, для любого $k \in \omega$;
- $\{n | n \in \omega, n$ простое число $\}$;
- $\{(n,m)|(n,m)\in\omega^2, n|m\};$
- $\{(n,m)|(n,m)\in\omega^2,\ n+m$ простое число $\};$

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Примеры

- $\{2 \cdot n | n \in \omega\}$;
- $\{k \cdot n | n \in \omega\}$, для любого $k \in \omega$;
- $\{n | n \in \omega, n$ простое число $\}$;
- $\{(n,m)|(n,m)\in\omega^2, n|m\};$
- $\{(n,m)|(n,m)\in\omega^2,\ n+m$ простое число $\};$
- ullet $\{(n,m)|(n,m)\in\omega^2,\ n,m-$ простые числа, $|n-m|=2\}.$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение 1

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно вычислимой, если выполняются следующие условия:

- $\{(m,n)|m\in A_n\}$ вычислимый предикат;
- ullet $n\mapsto |A_n|$ вычислимая функция.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение 1

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно вычислимой, если выполняются следующие условия:

- $\{(m,n)|m\in A_n\}$ вычислимый предикат;
- ullet $n\mapsto |A_n|$ вычислимая функция.

Определение 2

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно вычислимой**, если выполняются следующие условия:

- $\{(m,n)|m\in A_n\}$ вычислимый предикат;
- $n \mapsto \max(A_n \cup \{0\})$ вычислимая функция.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение 3

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** вычислимой, если выполняются следующие условия:

- $\{(m,n)|m\in A_n\}$ вычислимый предикат;
- существует вычислимая функция f(n) такая, что имеет место $(m \in A_n) \to (m \leqslant f(n))$, для всех $m, n \in \omega$.

Лекция СЗ
Зычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение 3

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}$ вычислимый предикат;
- ullet существует вычислимая функция f(n) такая, что имеет место $(m\in A_n) o (m\leqslant f(n))$, для всех $m,n\in\omega$.

Определение

Канонической нумерацией конечных множеств называется $\gamma(n)$, определяемая следующим образом: $\gamma(0) \leftrightharpoons \varnothing$; $\gamma(n) = \{x_1 < x_2 < \ldots < x_k\}$, если $n = 2^{x_1} + \ldots + 2^{x_k}$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение 3

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}$ вычислимый предикат;
- существует вычислимая функция f(n) такая, что имеет место $(m \in A_n) \to (m \leqslant f(n))$, для всех $m, n \in \omega$.

Определение

Канонической нумерацией конечных множеств называется $\gamma(n)$, определяемая следующим образом: $\gamma(0) \leftrightharpoons \varnothing$; $\gamma(n) = \{x_1 < x_2 < \ldots < x_k\}$, если $n = 2^{x_1} + \ldots + 2^{x_k}$.

Определение 4

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется **сильно** вычислимой, если существует вф f такая, что $A_n=\gamma(f(n))$ для всех $n\in\omega$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим

Предложение С13

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$$
.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Предложение С13

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$$
.

$(1 \Rightarrow 2)$

Первые условия совпадают, поэтому проверим справедливость второго условия. Пусть вычислимые функции $g(m)=|A_m|$ и h(n,m) таковы, что $h(n,m)=0\Leftrightarrow m\in A_n$. Определим сначала вспомогательную частично вычислимую функцию $\psi(n,k)$ такую, что $\psi(n,0)=0$, а при k>0 функция $\lambda k.\psi(n,k)$ перечисляет в порядке возрастания множество A_n ($n\in\omega$):

$$\begin{cases} \psi(n,0) = 0; \\ \psi(n,k+1) = \mu t [((k=0) \lor (t > \psi(n,k))) \land (t \in A_n)]. \end{cases}$$

Действительно, $q(n,k,z) = \mu t[(k \cdot (\mathbf{s}(z) - t)) + h(n,t) = 0] - \mathbf{q}$.в.ф. из определения примитивной рекурсии. Далее, $\max(A_n \cup \{0\}) = \psi(n,|A_n|)$.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

$$(2 \Rightarrow 3)$$

Как и в предыдущем случае, первые условия совпадают. Докажем справедливость второго условия. Однако второе условие выполняется, если в качестве функции f(n) взять $\max(A_n \cup \{0\})$, поскольку имеет место

$$(m \in A_n) \to (m \leqslant \max(A_n \cup \{0\})),$$

для всех $m,n\in\omega$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

$$(2 \Rightarrow 3)$$

Как и в предыдущем случае, первые условия совпадают. Докажем справедливость второго условия. Однако второе условие выполняется, если в качестве функции f(n) взять $\max(A_n \cup \{0\})$, поскольку имеет место

$$(m \in A_n) \to (m \leqslant \max(A_n \cup \{0\})),$$

для всех $m,n\in\omega$.

$$(3 \Rightarrow 4)$$

Пусть вычислимые функции g(n) и h(n,m) таковы, что $h(n,m)=0 \Leftrightarrow m\in A_n$, а g(n) удовлетворяет второму условию из

(3). Тогда
$$f(n) = \sum_{i=0}^{g(n)} (2^i \cdot \overline{sg}(h(n,i)))$$
 будет искомой.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

(4
$$\Rightarrow$$
 1)

Сначала докажем первое условие из (1). Действительно, $m \in \gamma(f(n)) \Leftrightarrow (\left \lfloor \frac{f(n)}{2^m} \right \rfloor)$ нечетно): $m \in \gamma(f(n)) \Rightarrow f(n) = \ldots + 2^m + \ldots = \ldots + 2^m \cdot (1 + 2 \cdot (\ldots))$ и $\sum_{i \in A_{f(n)}, i < m} 2^i < 2^m;$ $m \notin \gamma(f(n)) \Rightarrow f(n) = \ldots + \ldots = \ldots + 2^m \cdot (2 \cdot (\ldots))$ и $\sum_{i \in A_{f(n)}, i < m} 2^i < 2^m.$ Таким образом, $\chi_Q(n, m) = \overline{\mathrm{sg}}(rest(\left \lfloor \frac{f(n)}{2^m} \right \rfloor, 2))$, где $Q = \{(m, n) | m \in \gamma(f(n))\}.$ Далее, $m \in \gamma(f(n)) \Rightarrow m < 2^m \leqslant f(n)$, поэтому $|A_n| = \sum_{i=0}^{f(n)} \overline{\mathrm{sg}}(\chi_Q(i, n)).$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Множество $A \subseteq \omega^n$ называется **вычислимо перечислимым**, если $A(x_1, x_2, \dots, x_n) \Leftrightarrow \varphi(x_1, x_2, \dots, x_n) \downarrow$ для некоторой чвф φ .

Примеры

Следующие множества вычислимо перечислимы:

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Множество $A \subseteq \omega^n$ называется вычислимо перечислимым, если $A(x_1, x_2, \dots, x_n) \Leftrightarrow \varphi(x_1, x_2, \dots, x_n) \downarrow$ для некоторой чвф φ .

Примеры

Следующие множества вычислимо перечислимы:

- ω;
- $\{n\}$ для любого $n \in \omega$;
- $\{n_1, \ldots, n_k\}$ для любых $n_1, \ldots, n_k \in \omega$;

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Множество $A\subseteq \omega^n$ называется **вычислимо перечислимым**, если $A(x_1,x_2,\ldots,x_n)\Leftrightarrow \varphi(x_1,x_2,\ldots,x_n)\downarrow$ для некоторой чвф φ .

Примеры

Следующие множества вычислимо перечислимы:

- ω;
- $\{n\}$ для любого $n \in \omega$;
- $\{n_1, \ldots, n_k\}$ для любых $n_1, \ldots, n_k \in \omega$;
- $\{2 \cdot n | n \in \omega\}$;
- $\{k \cdot n | n \in \omega\}$, для любого $k \in \omega$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С7

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С7

$$2 \chi_A^*$$
 — ч.в.ф.;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С7

- χ_A* ч.в.ф.;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С7

- $oldsymbol{0}$ $A=\delta arphi$, arphi ч.в.ф.;
- $2 \chi_A^*$ ч.в.ф.;
- $A = \emptyset$ или $A = \rho f$, f -в.ф.;
- **3** A конечно или $A = \rho f$, f инъективная в.ф.;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С7

- $oldsymbol{0}$ $A=\delta arphi$, arphi ч.в.ф.;
- χ_A* ч.в.ф.;
- $A = \emptyset$ или $A = \rho f$, f в.ф.;
- **3** A конечно или $A = \rho f$, f инъективная в.ф.;
- ullet $A = \exists y Q(x,y), \ Q$ вычислимый предикат;

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С7

Для $A\subseteq\omega$ следующие утверждения эквивалентны:

- $oldsymbol{0}$ $A=\delta arphi$, arphi ч.в.ф.;
- χ_A* ч.в.ф.;
- $A = \emptyset$ или $A = \rho f$, f в.ф.;
- **③** A конечно или $A = \rho f$, f инъективная в.ф.;
- ullet $A = \exists y Q(x,y), \ Q$ вычислимый предикат;
- $m{O}$ существует сильно вычислимая последовательность $\{A_n\}_{n\in\omega}$ такая, что

$$\emptyset = A_0 \subseteq A_1 \subseteq \ldots \subseteq A_s \subseteq A_{s+1} \subseteq \ldots \subseteq \bigcup_s A_s = A;$$

• существует сильно вычислимая последовательность, удовлетворяющая условию (7) и дополнительно условию $|A_{s+1} - A_s| = 1, \ s \in \omega.$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

$$(1 \Rightarrow 2) \chi_A^*(x) = 0(\varphi(x)).$$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

$$(1 \Rightarrow 2) \chi_A^*(x) = 0(\varphi(x)). (2 \Rightarrow 1) \delta \chi_A^* = A.$$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

$$\begin{array}{l} (1\Rightarrow 2) \ \chi_A^*(x) = 0 (\varphi(x)). \ (2\Rightarrow 1) \ \delta\chi_A^* = A. \\ (2\Rightarrow 3) \ \psi(x) = x \cdot \mathbf{s}(\chi_A^*(x)) \ \text{if} \ \rho\psi = \delta\chi_A^* = A. \end{array}$$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство.

$$(1 \Rightarrow 2) \chi_A^*(x) = 0(\varphi(x)). (2 \Rightarrow 1) \delta \chi_A^* = A.$$

$$(2\Rightarrow 3) \ \psi(x) = x \cdot \mathrm{s}(\chi_A^*(x)) \ \mathrm{if} \ \rho \psi = \delta \chi_A^* = A.$$

 $(3\Rightarrow 4)$ Пусть $A\neq\varnothing$ и $x_0\in A$. Так как $\psi(x)$ частично вычислима, по теореме Клини о нормальной форме найдутся примитивно рекурсивные функция U и отношение T(x,y), для которых выполняется $\psi(x)=U(\mu y.T(x,y))$. Определим вспомогательную вф $f_1(x,s)$ следующим образом:

$$f_1(x,s) = egin{cases} U(\mu y \leqslant s.T(x,y)), & ext{если } \exists y \leqslant sT(x,y); \ x_0, & ext{если } orall y \leqslant s^{ op}T(x,y). \end{cases}$$

Таким образом, $A = \rho f$, где $f(x) = f_1(I(x), r(x))$ — вычислимая (даже примитивно рекурсивная) функция.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство.

$$(1 \Rightarrow 2) \chi_A^*(x) = 0(\varphi(x)). (2 \Rightarrow 1) \delta \chi_A^* = A.$$

$$(2 \Rightarrow 3) \ \psi(x) = x \cdot s(\chi_A^*(x)) \ \text{if} \ \rho \psi = \delta \chi_A^* = A.$$

 $(3\Rightarrow 4)$ Пусть $A\neq\varnothing$ и $x_0\in A$. Так как $\psi(x)$ частично вычислима, по теореме Клини о нормальной форме найдутся примитивно рекурсивные функция U и отношение T(x,y), для которых выполняется $\psi(x)=U(\mu y.T(x,y))$. Определим вспомогательную вф $f_1(x,s)$ следующим образом:

$$f_1(x,s) = egin{cases} U(\mu y \leqslant s.T(x,y)), & ext{если } \exists y \leqslant sT(x,y); \ x_0, & ext{если } orall y \leqslant s^{ op}T(x,y). \end{cases}$$

Таким образом, $A = \rho f$, где $f(x) = f_1(I(x), r(x))$ — вычислимая (даже примитивно рекурсивная) функция.

 $(5\Rightarrow 4)$ Если A бесконечно, то $A=\rho f$ для некоторой вычислимой функции f. Пусть теперь A конечно (скажем, $A=\{n_0,n_1,\ldots,n_k\}$). Тогда

$$f_0(x) = n_0 \cdot \overline{\operatorname{sg}}(x) + n_1 \cdot \overline{\operatorname{sg}}|x-1| + \ldots + n_{k-1} \cdot \overline{\operatorname{sg}}|x-(k-1)| + n_k \cdot \overline{\operatorname{sg}}(k-x)$$
 вычислима и $\rho f_0 = A$.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 $(4\Rightarrow 5)$ Пусть A бесконечно и пусть вф f такова, что $\rho f=A$. Возьмём вспомогательную функцию g, выдающую наименьшие f-номера элементов множества A в порядке возрастания:

$$\left[egin{array}{l} g(0)=0,\ g(n+1)=\mu t. [(t>g(n))\wedge orall i< t(f(i)
eq f(t))]. \end{array}
ight.$$
 Тогда $f_0(n)\leftrightharpoons f(g(n))$ вычислима, инъективна и $ho f_0=A$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 $(4 \Rightarrow 5)$ Пусть A бесконечно и пусть вф f такова, что $\rho f = A$. Возьмём вспомогательную функцию g, выдающую наименьшие f-номера элементов множества A в порядке возрастания: g(0) = 0. $g(n+1) = \mu t \cdot [(t > g(n)) \land \forall i < t(f(i) \neq f(t))].$ T огда $f_0(n) \leftrightharpoons f(g(n))$ вычислима, инъективна и $\rho f_0 = A$. $(4\Rightarrow 8)$ Если $A=\varnothing$, то положим $A_n=\varnothing$ для всех $n\in\omega$. Последовательность A_n сильно вычислима, поскольку $\chi_S(m,n)\equiv 1$, где $S = \{ \langle m, n \rangle | m \in A_n \}$, и $|A_n| = 0$. Нетрудно понять, что эта последовательность удовлетворяет посылке условия 8. Пусть теперь $A \neq \emptyset$; возьмём вф f из условия 4 (т.е. $\rho f = A$) и положим $A_n = \{m | \exists i < n (m = f(i))\}$. Последовательность $\{A_n\}_{n \in \omega}$ сильно вычислима, поскольку $S = \{\langle m, n \rangle | m \in A_n\}$ — вычислимое отношение $(m \in A_n \Leftrightarrow \exists i < n (m = f(i)))$, а функция $g(n) = \max(A_n \cup \{0\})$ также вычислима: g(0) = 0 $g(n+1) = \max\{g(n), f(n)\}.$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Покажем, что она удовлетворяет остальным условиям п. 8. $(A_0=\varnothing)\ m\in A_0\Rightarrow \exists i<0 (m=f(i)).$ $(A_s\subseteq A_{s+1})$ Пусть $x\in A_s$; тогда $x=f(i_0)$ для некоторого i< s; следовательно, $x=f(i_0)$, где $i_0< s+1$; тем самым, $x\in A_{s+1}$. $(A_s\subseteq A)$ Пусть $x\in A_s$; тогда $x=f(i_0)$ для некоторого $i_0< s$ и, следовательно, $x\in \rho f$; таким образом, $x\in A$. $(A\subseteq\bigcup_s A_s)$ Пусть $x\in A$; тогда $x=f(i_0)$ для некоторого i_0 ; в частности, $x\in A_{s_0}$ при $s_0=i_0+1$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Покажем, что она удовлетворяет остальным условиям п. 8. $(A_0=\varnothing)\ m\in A_0\Rightarrow \exists i<0 (m=f(i)).$ $(A_s\subseteq A_{s+1})$ Пусть $x\in A_s$; тогда $x=f(i_0)$ для некоторого i< s; следовательно, $x=f(i_0)$, где $i_0< s+1$; тем самым, $x\in A_{s+1}.$ $(A_s\subseteq A)$ Пусть $x\in A_s$; тогда $x=f(i_0)$ для некоторого $i_0< s$ и, следовательно, $x\in \rho f$; таким образом, $x\in A$. $(A\subseteq\bigcup_s A_s)$ Пусть $x\in A$; тогда $x=f(i_0)$ для некоторого i_0 ; в частности, $x\in A_{s_0}$ при $s_0=i_0+1$. $(8\Rightarrow 7)$ Очевидно.

Лекция СЗ Вычислимые и вычислимо перечислимые множества

Вадим Пузаренко

Доказательство (продолжение)

Покажем, что она удовлетворяет остальным условиям п. 8. $(A_0 = \varnothing) \ m \in A_0 \Rightarrow \exists i < 0 (m = f(i)).$ $(A_s \subseteq A_{s+1})$ Пусть $x \in A_s$; тогда $x = f(i_0)$ для некоторого i < s; следовательно, $x = f(i_0)$, где $i_0 < s+1$; тем самым, $x \in A_{s+1}$. $(A_s \subseteq A)$ Пусть $x \in A_s$; тогда $x = f(i_0)$ для некоторого $i_0 < s$ и, следовательно, $x \in \rho f$; таким образом, $x \in A$.

 $(A \subseteq \bigcup_s A_s)$ Пусть $x \in A$; тогда $x = f(i_0)$ для некоторого i_0 ; в частности, $x \in A_{s_0}$ при $s_0 = i_0 + 1$.

 $(8 \Rightarrow 7)$ Очевидно.

 $(7\Rightarrow 6)$ Действительно, $A=\exists yQ(x,y)$, где $Q=\{\langle x,y\rangle|x\in A_y\}$ вычислимо $(A=\bigcup_y A_y)$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 $(A_0 = \varnothing) \ m \in A_0 \Rightarrow \exists i < 0 (m = f(i)).$

 $(A_s \subseteq A_{s+1})$ Пусть $x \in A_s$; тогда $x = f(i_0)$ для некоторого i < s; следовательно, $x = f(i_0)$, где $i_0 < s+1$; тем самым, $x \in A_{s+1}$.

 $(A_s \subseteq A)$ Пусть $x \in A_s$; тогда $x = f(i_0)$ для некоторого $i_0 < s$ и, следовательно, $x \in \rho f$; таким образом, $x \in A$.

следовательно, $x \in \mu$, таким образом, $x \in A$. $(A \subseteq \bigcup_{c} A_{s})$ Пусть $x \in A$; тогда $x = f(i_{0})$ для некоторого i_{0} ; в

 $(A \subseteq \bigcup_s A_s)$ Пусть $x \in A$; тогда $x = f(i_0)$ для некоторого i_0 ; и частности, $x \in A_{s_0}$ при $s_0 = i_0 + 1$.

 $(8 \Rightarrow 7)$ Очевидно.

 $(7\Rightarrow 6)$ Действительно, $A=\exists yQ(x,y)$, где $Q=\{\langle x,y\rangle|x\in A_y\}$ вычислимо $(A=\bigcup_{\gamma}A_{\gamma}).$

 $(6\Rightarrow 1)$ Действительно, $A=\delta\psi$, где $\psi(x)=\mu y.Q(x,y)$ — чвф. Если $x\in A$, то $Q(x,y_0)$ для некоторого y; возьмём наименьшее такое $y_0=y$; следовательно, $\psi(x)\downarrow=y_0$. Если же $x\not\in A$, то не выполняется Q(x,y) ни для какого y и, следовательно, $\psi(x)\uparrow$. \square

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С18

Пусть $A \subseteq \omega^n$ — множество. Тогда A вычислимо перечислимо, если и только если $c^n(A)$ вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С18

Пусть $A \subseteq \omega^n$ — множество. Тогда A вычислимо перечислимо, если и только если $c^n(A)$ вычислимо перечислимо.

Доказательство.

 (\Rightarrow) Пусть $A \subseteq \omega^n$ вычислимо перечислимо; тогда $A = \delta \psi$ для некоторой чвф $\psi(x_1, x_2, \dots, x_n)$. Следовательно, $\psi_1(x) = \psi(c_{n,1}(x), c_{n,2}(x), \dots, c_{n,n}(x))$ также чвф и $c^n(A) = \delta \psi_1$;

тем самым, $c^n(A)$ — впм.

(\Leftarrow) Пусть $c^n(A) = \delta \psi$ для некоторой чвф $\psi(x)$; тогда $\psi_2(x_1,x_2,\ldots,x_n) = \psi(c^n(x_1,x_2,\ldots,x_n))$ также чвф и $A = \delta \psi_2$; таким образом, A - впм.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С19

Пусть $A\subseteq \omega$ — множество. Тогда A вычислимо перечислимо, если и только если $B=\{\langle k_1,k_2,\ldots,k_n\rangle|A(c^n(k_1,k_2,\ldots,k_n))\}$ вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С19

Пусть $A\subseteq \omega$ — множество. Тогда A вычислимо перечислимо, если и только если $B=\{\langle k_1,k_2,\ldots,k_n\rangle|A(c^n(k_1,k_2,\ldots,k_n))\}$ вычислимо перечислимо.

Доказательство.

 (\Rightarrow) Пусть $A\subseteq\omega$ вычислимо перечислимо; тогда $A=\delta\psi$ для некоторой чвф $\psi(x)$. Следовательно,

 $\psi_1(x_1,x_2,\dots,x_n)=\psi(c^n(x_1,x_2,\dots,x_n))$ также чвф и $B=\delta\psi_1$; тем самым, B — впм.

 (\Leftarrow) Пусть $B=\delta\psi$ для некоторой чвф $\psi(x_1,x_2,\ldots,x_n)$; тогда $\psi_2(x)=\psi(c_{n,1}(x),c_{n,2}(x),\ldots,c_{n,n}(x))$ также чвф и $A=\delta\psi_2$; таким образом, A— впм.

BM vs BПM

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Замечание

Трансформации, описанные в леммах C18 и C19, взаимно обратны. К примеру, $A \in \text{CEP}_k \overset{\text{C18}}{\mapsto} B \in \text{CEP}_1 \overset{\text{C19}}{\mapsto} C \in \text{CEP}_k$ и $A \in \text{CEP}_1 \overset{\text{C19}}{\mapsto} B \in \text{CEP}_k \overset{\text{C18}}{\mapsto} C \in \text{CEP}_1$ тождественны.

BM vs BПM

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Замечание

Трансформации, описанные в леммах C18 и C19, взаимно обратны. К примеру, $A \in \mathrm{CEP}_k \overset{\mathrm{C18}}{\mapsto} B \in \mathrm{CEP}_1 \overset{\mathrm{C19}}{\mapsto} C \in \mathrm{CEP}_k$ и $A \in \mathrm{CEP}_1 \overset{\mathrm{C19}}{\mapsto} B \in \mathrm{CEP}_k \overset{\mathrm{C18}}{\mapsto} C \in \mathrm{CEP}_1$ тождественны.

Лемма С20

Любое вычислимое множество вычислимо перечислимо.

BM vs BПM

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Замечание

Трансформации, описанные в леммах C18 и C19, взаимно обратны. К примеру, $A \in \text{CEP}_k \overset{\text{C18}}{\mapsto} B \in \text{CEP}_1 \overset{\text{C19}}{\mapsto} C \in \text{CEP}_k$ и $A \in \text{CEP}_1 \overset{\text{C19}}{\mapsto} B \in \text{CEP}_k \overset{\text{C18}}{\mapsto} C \in \text{CEP}_1$ тождественны.

Лемма С20

Любое вычислимое множество вычислимо перечислимо.

Доказательство.

Пусть $A\subseteq\omega^n$ — вычислимое множество. Тогда функция $\chi_A(x_1,x_2,\ldots,x_n)$ вычислима и, следовательно, $\chi_{c^n(A)}^*(x)=\mu y.[\chi_{c^n(A)}(c_{n,1}(x),c_{n,2}(x),\ldots,c_{n,n}(x))=0]$ — чвф. Таким образом, $c^n(A)$ — впм и, по лемме С19, множество A также является вычислимо перечислимым.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Тузаренко

Лемма С21

Пусть $A,B\subseteq \omega^n$ — вычислимо перечислимые множества. Тогда их пересечение $A\cap B$ также вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С21

Пусть $A, B \subseteq \omega^n$ — вычислимо перечислимые множества. Тогда их пересечение $A \cap B$ также вычислимо перечислимо.

Пусть
$$A,B\subseteq\omega^n$$
 — впм; тогда $A=\delta\varphi_1$, $B=\delta\varphi_2$, где $\varphi_1(x_1,x_2,\ldots,x_n)$, $\varphi_2(x_1,x_2,\ldots,x_n)$ — чвф. Тогда $A\cap B=\delta(\varphi_1\cdot\varphi_2)$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С21

Пусть $A,B\subseteq\omega^n$ — вычислимо перечислимые множества. Тогда их пересечение $A\cap B$ также вычислимо перечислимо.

Доказательство.

Пусть
$$A,B\subseteq\omega^n$$
 — впм; тогда $A=\delta\varphi_1,\ B=\delta\varphi_2,$ где $\varphi_1(x_1,x_2,\ldots,x_n),$ $\varphi_2(x_1,x_2,\ldots,x_n)$ — чвф. Тогда $A\cap B=\delta(\varphi_1\cdot\varphi_2).$

Лемма С22

Пусть $A\subseteq\omega^k$, $B\subseteq\omega^n$ — вычислимо перечислимые множества. Тогда их декартово произведение $A\times B$ также вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С21

Пусть $A, B \subseteq \omega^n$ — вычислимо перечислимые множества. Тогда их пересечение $A \cap B$ также вычислимо перечислимо.

Доказательство.

Пусть
$$A,B\subseteq\omega^n$$
 — впм; тогда $A=\delta\varphi_1,\ B=\delta\varphi_2$, где $\varphi_1(x_1,x_2,\ldots,x_n)$, $\varphi_2(x_1,x_2,\ldots,x_n)$ — чвф. Тогда $A\cap B=\delta(\varphi_1\cdot\varphi_2)$.

Лемма С22

Пусть $A \subseteq \omega^k$, $B \subseteq \omega^n$ — вычислимо перечислимые множества. Тогда их декартово произведение $A \times B$ также вычислимо перечислимо.

Доказательство.

Пусть $A \subseteq \omega^k$, $B \subseteq \omega^n$ — впм; тогда $A = \delta \varphi_1$, $B = \delta \varphi_2$, где $\varphi_1(x_1, x_2, \dots, x_k)$, $\varphi_2(x_1, x_2, \dots, x_n)$ — чвф. Тогда $A \times B = \delta(\varphi_1 \cdot \varphi_2)$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С23

Пусть $A,B\subseteq\omega^n$ — вычислимо перечислимые множества. Тогда их объединение $A\cup B$ также вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С23

Пусть $A, B \subseteq \omega^n$ — вычислимо перечислимые множества. Тогда их объединение $A \cup B$ также вычислимо перечислимо.

Доказательство.

Пусть $A,B\subseteq \omega^n$ — впм; тогда $c^n(A),\,c^n(B)$ также являются впм и, следовательно, $c^n(A)=\exists yQ_1(x,y),\,c^n(B)=\exists yQ_2(x,y)$, где Q_1 и Q_2 — вычислимые предикаты, и $c^n(A\cup B)=c^n(A)\cup c^n(B)=\exists y(Q_1(x,y)\vee Q_2(x,y))$. Таким образом, $c^n(A\cup B)$ — впм и, по лемме C18, $A\cup B$ также является впм.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С23

Пусть $A,B\subseteq\omega^n$ — вычислимо перечислимые множества. Тогда их объединение $A\cup B$ также вычислимо перечислимо.

Доказательство.

Пусть $A,B\subseteq \omega^n$ — впм; тогда $c^n(A),\,c^n(B)$ также являются впм и, следовательно, $c^n(A)=\exists yQ_1(x,y),\,c^n(B)=\exists yQ_2(x,y)$, где Q_1 и Q_2 — вычислимые предикаты, и $c^n(A\cup B)=c^n(A)\cup c^n(B)=\exists y(Q_1(x,y)\vee Q_2(x,y))$. Таким образом, $c^n(A\cup B)$ — впм и, по лемме C18, $A\cup B$ также является впм.

Лемма С24

Пусть $A \subseteq \omega^{n+1}$ — вычислимо перечислимое множество. Тогда его проекция $\exists y A(x_1, x_2, \dots, x_n, y)$ также вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство.

Пусть $A\subseteq \omega^{n+1}$; тогда $c^{n+1}(A)$ также является впм и, следовательно, $c^{n+1}(A)=\exists yQ(x,y)$, где Q — вычислимый предикат, и $c^n(\exists yA(x_1,x_2,\ldots,x_n,y))=\exists zQ(c(c^n(x_1,x_2,\ldots,x_n),I(z),r(z))).$ Таким образом, $c^n(\exists yA(x_1,x_2,\ldots,x_n,y))$ — впм и, по лемме C18, $\exists yA(x_1,x_2,\ldots,x_n,y)$ также является впм.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство.

Пусть $A\subseteq \omega^{n+1}$; тогда $c^{n+1}(A)$ также является впм и, следовательно, $c^{n+1}(A)=\exists yQ(x,y)$, где Q — вычислимый предикат, и $c^n(\exists yA(x_1,x_2,\ldots,x_n,y))=\exists zQ(c(c^n(x_1,x_2,\ldots,x_n),I(z),r(z)))$. Таким образом, $c^n(\exists yA(x_1,x_2,\ldots,x_n,y))$ — впм и, по лемме C18, $\exists yA(x_1,x_2,\ldots,x_n,y)$ также является впм.

Лемма С25

Пусть $A \subseteq \omega^{n+1}$ — впм. Тогда следующие множества также будут вычислимо перечислимыми:

- $\exists i \leqslant yA(x_1, x_2, \dots, x_n, i);$
- $\exists i < yA(x_1, x_2, \dots, x_n, i);$
- $\exists \forall i \leqslant yA(x_1, x_2, \dots, x_n, i);$
- $\forall i < yA(x_1, x_2, \dots, x_n, i).$

Лекция СЗ Вычислимые и вычислимо перечислимые множества

Вадим Пузаренко

Доказательство.

Tak kak

$$\exists i \leqslant y A(x_1, x_2, \dots, x_n, i) = \exists i [(i \leqslant y) \land A(x_1, x_2, \dots, x_n, i)],$$
 используя леммы C20, C21, C22, C24, заключаем, что $\exists i \leqslant y A(x_1, x_2, \dots, x_n, i)$ является впм.

- 2) Рассматривается аналогично предыдущему случаю.
- **3)** Пусть $A = \delta \varphi$, где $\varphi(x_1, x_2, ..., x_n, y)$ чвф. Тогда $\forall i \leqslant y A(x_1, x_2, ..., x_n, i) = \delta \varphi_1$, где

$$\varphi_1(x_1,x_2,\ldots,x_n,y)=\prod_{i=0}^y\varphi(x_1,x_2,\ldots,x_n,i).$$

- **4)** Заметим, что $\forall i < yA(x_1, x_2, \dots, x_n, i) = \forall i \leqslant y \Big((y > x_n, i) + y \Big)$
- $0) \wedge ((i \geqslant y 1) \vee A(x_1, x_2, \dots, x_n, i)))$. Остаётся применить леммы C20, C21, C22, C23 и п. 3.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С26

Пусть $A\subseteq \omega^n$ — впм и пусть $\psi_1,\,\psi_2,\,\ldots,\,\psi_n-k$ -местные чвф. Тогда $B=\{\langle x_1,x_2,\ldots,x_k\rangle|A(\psi_1(x_1,x_2,\ldots,x_k),\,\psi_2(x_1,x_2,\ldots,x_k),\ldots,\psi_n(x_1,x_2,\ldots,x_k))\}$ также является вычислимо перечислимым множеством.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С26

Пусть $A\subseteq \omega^n$ — впм и пусть $\psi_1,\,\psi_2,\,\ldots,\,\psi_n-k$ -местные чвф. Тогда $B=\{\langle x_1,x_2,\ldots,x_k\rangle|A(\psi_1(x_1,x_2,\ldots,x_k),\,\psi_2(x_1,x_2,\ldots,x_k),\ldots,\psi_n(x_1,x_2,\ldots,x_k))\}$ также является вычислимо перечислимым множеством.

Доказательство.

Пусть $A = \delta \varphi$, где $\varphi(y_1, y_2, \ldots, y_n)$ — чвф. Тогда $B = \delta \varphi_1$, где $\varphi_1(x_1, x_2, \ldots, x_k) = \varphi(\psi_1(x_1, x_2, \ldots, x_k), \psi_2(x_1, x_2, \ldots, x_k), \ldots, \psi_n(x_1, x_2, \ldots, x_k))$ — чвф. Таким образом, B также является впм.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лемма С26

Пусть $A\subseteq\omega^n$ — впм и пусть $\psi_1,\,\psi_2,\,\ldots,\,\psi_n-k$ -местные чвф. Тогда $B=\{\langle x_1,x_2,\ldots,x_k\rangle|A(\psi_1(x_1,x_2,\ldots,x_k),\,\psi_2(x_1,x_2,\ldots,x_k),\ldots,\psi_n(x_1,x_2,\ldots,x_k))\}$ также является вычислимо перечислимым множеством.

Доказательство.

Пусть $A = \delta \varphi$, где $\varphi(y_1, y_2, \ldots, y_n)$ — чвф. Тогда $B = \delta \varphi_1$, где $\varphi_1(x_1, x_2, \ldots, x_k) = \varphi(\psi_1(x_1, x_2, \ldots, x_k), \psi_2(x_1, x_2, \ldots, x_k), \ldots, \psi_n(x_1, x_2, \ldots, x_k))$ — чвф. Таким образом, B также является впм.

Лемма С27

Пусть $A \subseteq \omega^n$ — впм и пусть φ — n-местная чвф. Тогда $\varphi(A)$ также является вычислимо перечислимым множеством.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство.

Пусть множество A и функция φ удовлетворяют посылке. Тогда $c^n(A)$ и $\varphi_0(x)=\varphi(c_{n,1}(x),c_{n,2}(x),\ldots,c_{n,n}(x))$ также являются впм и чвф соответственно, что следует из лемм С18 и С14(1). Тогда $c^n(A)=\rho\psi$ для некоторой чвф $\psi(x)$ и $\varphi(A)=\rho\varphi_1$, где $\varphi_1(x)=\varphi_0(\psi(x))$ — чвф: действительно, $\varphi(A)=\varphi_0(c^n(A))$. Таким образом, $\varphi(A)$ — впм.

Теорема Поста

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С8

Пусть $A\subseteq\omega^n$. Тогда A вычислимо, если и только если A и $\bar{A}=\omega^n\setminus A$ вычислимо перечислимы.

Теорема Поста

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С8

Пусть $A\subseteq\omega^n$. Тогда A вычислимо, если и только если A и $\bar{A}=\omega^n\setminus A$ вычислимо перечислимы.

Доказательство.

(⇒) Непосредственно следует из того, что любое вычислимое множество вычислимо перечислимо (см. лемму С20), а также того, что класс вычислимых множеств замкнут относительно операции дополнения (см. предложение С3).

Теорема Поста

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С8

Пусть $A\subseteq\omega^n$. Тогда A вычислимо, если и только если A и $\bar{A}=\omega^n\setminus A$ вычислимо перечислимы.

Доказательство.

 (\Rightarrow) Непосредственно следует из того, что любое вычислимое множество вычислимо перечислимо (см. лемму C20), а также того, что класс вычислимых множеств замкнут относительно операции дополнения (см. предложение C3).

 (\Leftarrow) Пусть $A\subseteq \omega^n$ и $\overline{A}=\omega^n\setminus A$ — впм; тогда $c^n(A),c^n(A)=c^n(\overline{A})$ также будут впм. Следовательно, $c^n(A)$ и $\overline{c^n(A)}$ задаются сильно вычислимыми последовательностями $\{A_n\}_{n\in\omega}$ и $\{B_n\}_{n\in\omega}$. Определим $f(n)=\mu s[n\in A_s\cup B_s]$; функция f частично вычислима и всюду определена, поскольку $c^n(A)\cup \overline{c^n(A)}=\omega$. Далее, $n\in c^n(A)\Leftrightarrow n\in A_{f(n)}$ и, следовательно, $\chi_{c^n(A)}(n)=\chi_Q(n,f(n))$, где $Q=\{\langle n,s\rangle|n\in A_s\}$. Таким образом, $c^n(A)$ вычислимо, а вместе с ним и A (см. лемму C14(3)).

Основные принципы: Униформизация

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Основные принципы: Униформизация

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С9

Пусть $R\subseteq \omega^{n+1}$ — вп предикат. Тогда найдётся n-местная чвф ψ , униформизующая данный предикат, а именно, удовлетворяющая следующим условиям:

- $\delta \psi = \exists y R(x_1, x_2, \dots, x_n, y);$
- $\Gamma_{\psi} \subseteq R$ (другими символами, $\forall \langle x_1, x_2, \dots, x_n \rangle \in \delta \psi. R(x_1, x_2, \dots, x_n, \psi(x_1, x_2, \dots, x_n))$).

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С9

Пусть $R\subseteq \omega^{n+1}$ — вп предикат. Тогда найдётся n-местная чвф ψ , униформизующая данный предикат, а именно, удовлетворяющая следующим условиям:

- $\bullet \ \delta \psi = \exists y R(x_1, x_2, \dots, x_n, y);$
- $\Gamma_{\psi} \subseteq R$ (другими символами, $\forall \langle x_1, x_2, \dots, x_n \rangle \in \delta \psi. R(x_1, x_2, \dots, x_n, \psi(x_1, x_2, \dots, x_n))$).

Доказательство.

Пусть $R\subseteq \omega^{n+1}$ — вп предикат; по лемме C18, $c^{n+1}(R)\subseteq \omega$ является впм. Следовательно, $c^{n+1}(R)=\exists yQ(x,y)$ для некоторого вычислимого предиката Q(x,y). Значит, $R=\exists yQ(c^{n+1}(x_1,x_2,\ldots,x_n,x_{n+1}),y)$. Положим $\psi(x_1,x_2,\ldots,x_n)=I(\mu z.Q(c^{n+1}(x_1,x_2,\ldots,x_n,I(z)),r(z)))$. Покажем, что чвф ψ удовлетворяет заключению теоремы.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

$$\psi(x_1,x_2,\ldots,x_n)\downarrow\Leftrightarrow\exists yR(x_1,x_2,\ldots,x_n,y).\ (\Rightarrow)$$
 Пусть $\psi(x_1,x_2,\ldots,x_n)\downarrow=t_0$; тогда найдётся z_0 такое, что $\mu z.Q(c^{n+1}(x_1,x_2,\ldots,x_n,l(z)),r(z))=z_0$ и $l(z_0)=t_0$. Следовательно, существует z_0 такое, что $Q(c^{n+1}(x_1,x_2,\ldots,x_n,l(z_0)),r(z_0))$, откуда заключаем, что $R(x_1,x_2,\ldots,x_n,l(z_0))$. Таким образом, $\exists yR(x_1,x_2,\ldots,x_n,y)$.

Доказательство (продолжение)

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

$\psi(x_1, x_2, \dots, x_n) \downarrow \Leftrightarrow \exists y R(x_1, x_2, \dots, x_n, y).$ (\Rightarrow) Пусть $\psi(x_1, x_2, \dots, x_n) \downarrow = t_0$; тогда найдётся z_0 такое, что $\mu z. Q(c^{n+1}(x_1, x_2, \dots, x_n, l(z)), r(z)) = z_0$ и $l(z_0) = t_0$. Следовательно, существует z_0 такое, что $Q(c^{n+1}(x_1, x_2, \dots, x_n, l(z_0)), r(z_0))$, откуда заключаем, что $R(x_1, x_2, \dots, x_n, l(z_0))$. Таким образом, $\exists y R(x_1, x_2, \dots, x_n, y)$. (\Leftarrow) Пусть теперь $\exists y R(x_1, x_2, \dots, x_n, y)$; тогда $Q(c^{n+1}(x_1, x_2, \dots, x_n, y), t)$ для некоторых y и t. Возьмём z = c(y, t); далее, имеем $Q(c^{n+1}(x_1, x_2, \dots, x_n, l(z)), r(z))$ для

некоторого z. Выберем наименьшее $z_0 = z$, для которого

 $\psi(x_1, x_2, \dots, x_n) = I(\mu z. Q(c^{n+1}(x_1, x_2, \dots, x_n, I(z)), r(z))) = I(z_0).$

выполняется данное отношение. Тогда

Таким образом, $\psi(x_1, x_2, \dots, x_n) \downarrow$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 $\Gamma_{\psi}\subseteq R$. Пусть кортеж $\langle k_1,k_2,\ldots,k_n \rangle$ таков, что $\psi(k_1,k_2,\ldots,k_n)$ \downarrow ; покажем, что $R(k_1,k_2,\ldots,k_n,t_0)$, где $t_0=\psi(k_1,k_2,\ldots,k_n)$. Действительно, пусть z_0 таково, что $\mu z.Q(c^{n+1}(k_1,k_2,\ldots,k_n,l(z)),r(z))=z_0$; тогда $l(z_0)=t_0$ и $Q(c^{n+1}(k_1,k_2,\ldots,k_n,t_0),r(z_0))$. Следовательно, $Q(c^{n+1}(k_1,k_2,\ldots,k_n,t_0),y)$ для некоторого y; таким образом, $R(k_1,k_2,\ldots,k_n,t_0)$.

Основные принципы: Редукция

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Основные принципы: Редукция

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема о редукции

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С10

Каковы бы ни были впм A, B, найдутся впм A_0 и B_0 , удовлетворяющие следующим условиям:

- **2** $A_0 \cup B_0 = A \cup B$;
- $A_0 \cap B_0 = \varnothing.$

Теорема о редукции

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С10

Каковы бы ни были впм A, B, найдутся впм A_0 и B_0 , удовлетворяющие следующим условиям:

- ② $A_0 \cup B_0 = A \cup B$;
- $A_0 \cap B_0 = \varnothing.$

Доказательство.

Пусть A, B — впм; положим $R = (A \times \{0\}) \cup (B \times \{1\})$ (бинарный вп предикат). По теореме об униформизации (C9), существует чвф ψ такая, что $\delta \psi = \exists y R(x,y) = A \cup B$ и $\rho \psi \subseteq \{0;1\}$. Положим $A_0 = \psi^{-1}(0), B_0 = \psi^{-1}(1)$; тогда $A_0 \cap B_0 = \psi^{-1}(0) \cap \psi^{-1}(1) = \varnothing$, $A_0 \cup B_0 = \psi^{-1}(0) \cup \psi^{-1}(1) = \rho \psi = A \cup B$. Далее, $X \in A_0 \Rightarrow R(X,0) \Leftrightarrow X \in A$ и $X \in B_0 \Rightarrow R(X,1) \Leftrightarrow X \in B$.

Теорема о графике

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим

Теорема С11

Пусть $\psi(x_1, x_2, \dots, x_k)$ — частичная функция. Тогда ψ — чвф, если и только если

$$\Gamma_{\psi} = \{\langle x_1, x_2, \dots, x_k, y \rangle | \psi(x_1, x_2, \dots, x_k) = y \}$$
 — впм.

Теорема о графике

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Теорема С11

Пусть $\psi(x_1, x_2, \dots, x_k)$ — частичная функция. Тогда ψ — чвф, если и только если $\Gamma_{\psi} = \{\langle x_1, x_2, \dots, x_k, y \rangle | \psi(x_1, x_2, \dots, x_k) = y \}$ — впм.

Доказательство.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $\mathcal{S} \subseteq \mathcal{P}(\omega^n)$; предикат $R \subseteq \omega^{n+1}$ называется универсальным для семейства \mathcal{S} , если $\mathcal{S} = \{\lambda x_1 x_2 \dots x_n. R(e_0, x_1, x_2, \dots, x_n) | e_0 \in \omega\}$. Если \mathcal{S} — семейство всех k-местных вычислимо перечислимых множеств, то предикат R будем называть просто универсальным.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $\mathcal{S} \subseteq \mathcal{P}(\omega^n)$; предикат $R \subseteq \omega^{n+1}$ называется универсальным для семейства \mathcal{S} , если $\mathcal{S} = \{\lambda x_1 x_2 \dots x_n. R(e_0, x_1, x_2, \dots, x_n) | e_0 \in \omega\}$. Если \mathcal{S} — семейство всех k-местных вычислимо перечислимых множеств, то предикат R будем называть просто универсальным.

Теорема С12

Каково бы ни было $k \geqslant 1$, существует универсальный k+1-местный вычислимо перечислимый предикат.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $\mathcal{S} \subseteq \mathcal{P}(\omega^n)$; предикат $R \subseteq \omega^{n+1}$ называется универсальным для семейства \mathcal{S} , если $\mathcal{S} = \{\lambda x_1 x_2 \dots x_n. R(e_0, x_1, x_2, \dots, x_n) | e_0 \in \omega\}$. Если \mathcal{S} — семейство всех k-местных вычислимо перечислимых множеств, то предикат R будем называть просто универсальным.

Теорема С12

Каково бы ни было $k \geqslant 1$, существует универсальный k+1-местный вычислимо перечислимый предикат.

Доказательство.

Пусть $\varphi(x_0,x_1,\ldots,x_k)$ — универсальная чвф (см. теорему С5); положим $R=\delta\varphi$ и покажем, что R является универсальным k+1-местным вп предикатом.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Действительно, пусть $A\subseteq\omega^k$ — впм; тогда $A=\delta\psi$ для некоторой чвф $\psi(x_1,x_2,\ldots,x_k)$. Так как $\varphi(x_0,x_1,\ldots,x_k)$ — универсальная чвф, существует e_0 такое, что $\varphi(e_0,x_1,x_2,\ldots,x_k)=\psi(x_1,x_2,\ldots,x_k)$. Следовательно, $A=\{\langle x_1,x_2,\ldots,x_k\rangle|R(e_0,x_1,x_2,\ldots,x_k)\}$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Действительно, пусть $A\subseteq \omega^k$ — впм; тогда $A=\delta \psi$ для некоторой чвф $\psi(x_1,x_2,\ldots,x_k)$. Так как $\varphi(x_0,x_1,\ldots,x_k)$ — универсальная чвф, существует e_0 такое, что $\varphi(e_0,x_1,x_2,\ldots,x_k)=\psi(x_1,x_2,\ldots,x_k)$. Следовательно, $A=\{\langle x_1,x_2,\ldots,x_k\rangle|R(e_0,x_1,x_2,\ldots,x_k)\}$.

Следствие С3

Существует вычислимо перечислимое, но не вычислимое множество.

Лекция СЗ
Вычислимые
и вычислиме
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Действительно, пусть $A\subseteq \omega^k$ — впм; тогда $A=\delta \psi$ для некоторой чвф $\psi(x_1,x_2,\ldots,x_k)$. Так как $\varphi(x_0,x_1,\ldots,x_k)$ — универсальная чвф, существует e_0 такое, что $\varphi(e_0,x_1,x_2,\ldots,x_k)=\psi(x_1,x_2,\ldots,x_k)$. Следовательно, $A=\{\langle x_1,x_2,\ldots,x_k\rangle|R(e_0,x_1,x_2,\ldots,x_k)\}$.

Следствие С3

Существует вычислимо перечислимое, но не вычислимое множество.

Доказательство.

Пусть последовательность W_n вычислимо перечислимых множеств такова, что $R=\{\langle m,n\rangle|m\in W_n\}$ является универсальным бинарным вп предикатом. Покажем, что множество $A=\{n|n\in W_n\}$ удовлетворяет заключению следствия. Действительно, A вычислимо перечислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Допустим, что оно вычислимо; тогда по теореме Поста (С8),

 $\overline{A} = \{n | n
ot\in W_n\}$ также вп. Так как R является универсальным,

 $\overline{A}=W_{e_0}$ для подходящего e_0 . Тем самым,

 $e_0 \in W_{e_0} \Leftrightarrow e_0 \in \overline{A} \Leftrightarrow e_0 \not\in W_{e_0}$, противоречие.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Допустим, что оно вычислимо; тогда по теореме Поста (С8),

 $\overline{A} = \{n | n
ot\in W_n\}$ также вп. Так как R является универсальным,

 $\overline{A}=W_{e_0}$ для подходящего e_0 . Тем самым,

 $e_0 \in W_{e_0} \Leftrightarrow e_0 \in \overline{A} \Leftrightarrow e_0 \not\in W_{e_0}$, противоречие.

Теорема С13 (Мучник)

Существует бинарный вычислимо перечислимый предикат, универсальный для семейства всех вычислимых множеств (как подсемейства семейства всех вычислимо перечислимых множеств).

Лекция СЗ
Вычислимым
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 $\underline{\underline{\mathcal{H}}}$ опустим, что оно вычислимо; тогда по теореме Поста (С8),

 $\overline{A} = \{n | n
ot\in W_n\}$ также вп. Так как R является универсальным,

 $\overline{A}=W_{e_0}$ для подходящего e_0 . Тем самым,

 $e_0 \in W_{e_0} \Leftrightarrow e_0 \in \overline{A} \Leftrightarrow e_0
ot\in W_{e_0}$, противоречие.

Теорема С13 (Мучник)

Существует бинарный вычислимо перечислимый предикат, универсальный для семейства всех вычислимых множеств (как подсемейства семейства всех вычислимо перечислимых множеств).

Доказательство.

Пусть $\varphi(x_0,x_1)$ — чвф, универсальная для семейства всех чвф, принимающих значения $\subseteq \{0;1\}$. По теореме С11 и лемме С18, $c^3(\Gamma_\varphi)$ — впм.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Следовательно, существует сильно вычислимая последовательность $A_{\rm s}$ вычислимо перечислимых множеств, удовлетворяющая условию 8 теоремы С7, являющаяся сильной аппроксимацией для впм $c^3(\Gamma_{\varphi})$. В процессе конструкции будет строиться последовательность B_n множеств, удовлетворяющая следующим условиям:

- A) $R = \{\langle n, m \rangle | m \in B_n \}$ вп;
- **Б)** если $\varphi_n(x) \leftrightharpoons \lambda x. \varphi(n,x)$ всюду определена, то $\varphi_n = \chi_{B_n}$;
- B) если $\varphi_n(x)$ не является всюду определенной, то B_n конечно.

Из условий (A), (Б), (В) будет следовать, что R — вп предикат, универсальный для семейства всех вм. Действительно, R вп, по (A). Кроме того, для любого $n \in \omega$ множество B_n вычислимо: если φ_n всюду определена, то φ_n вычислима и $\varphi_n = \chi_{B_n}$; если же φ_n не является всюду определенной, то B_n конечно и, в частности, вычислимо. В обратную сторону, пусть C — вычислимое множество; тогда найдётся $n_0 \in \omega$, для которого выполняется $\varphi_{n_0} = \chi_C$; по (Б), $C = B_{n_0}$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Прежде, чем перейти к описанию конструкции, введём вспомогательные функции и множества: $\varphi_{n,s}$ — конечная функция с $\Gamma_{\varphi_{n,s}} = \{\langle m,k \rangle | c^3(n,m,k) \in A_s \};$ $k(n,s) = \max\{l | \forall i < l(i \in \delta \varphi_{n,s})\}; \ B_n = \bigcup_s B_{n,s};$ $R_s = \bigcup_n c(\{n\} \times B_{n,s}).$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Прежде, чем перейти к описанию конструкции, введём вспомогательные функции и множества: $\varphi_{n,s}$ — конечная функция с $\Gamma_{\varphi_{n,s}} = \{\langle m,k \rangle | c^3(n,m,k) \in A_s \};$ $k(n,s) = \max\{l | \forall i < l(i \in \delta \varphi_{n,s})\};$ $B_n = \bigcup_s B_{n,s};$ $R_s = \bigcup_n c(\{n\} \times B_{n,s}).$

КОНСТРУКЦИЯ

Шаг s. Для всех n и s положим $B_{n,s} = \{m < k(n,s) | \varphi_{n,s}(m) = 0\}.$

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Прежде, чем перейти к описанию конструкции, введём вспомогательные функции и множества: $\varphi_{n,s}$ — конечная функция с $\Gamma_{\varphi_{n,s}} = \{\langle m,k \rangle | c^3(n,m,k) \in A_s \};$ $k(n,s) = \max\{I | \forall i < I(i \in \delta \varphi_{n,s})\};$ $B_n = \bigcup_s B_{n,s};$ $R_s = \bigcup_n c(\{n\} \times B_{n,s}).$

КОНСТРУКЦИЯ

 $oxed{ extstyle Lar s.}$ Для всех n и s положим $B_{n,s} = \{m < k(n,s) | arphi_{n,s}(m) = 0\}.$

Докажем теперь справедливость пп. (A), (Б), (В). **A)** R_s — сильная аппроксимация для c(R). Действительно, пусть вф f_0 из определения 3(2), а именно, $m \in A_s \Rightarrow m \leqslant f_0(s)$ для всех m и s; тогда $m \in R_s \Rightarrow m \leqslant c(m, \varphi_{l(m)}(r(m))) = <math>c^3(l(m), r(m), \varphi_{l(m)}(r(m))) \in A_s \Rightarrow m \leqslant f_0(s)$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Далее, $m \in R_s \Leftrightarrow [(c^3(I(m), r(m), 0) \in A_s) \land (r(m) < k(I(m), s))]$, поэтому $\{\langle m, s \rangle | m \in R_s \}$ вычислимо. Следовательно, последовательность R_s сильно вычислима.

Лекция СЗ Вычислимые перечислимножества

Вадим Пузаренко

Доказательство (продолжение)

Далее, $m \in R_s \Leftrightarrow [(c^3(I(m), r(m), 0) \in A_s) \land (r(m) < k(I(m), s))],$ поэтому $\{\langle m,s\rangle|m\in R_s\}$ вычислимо. Следовательно, последовательность R_s сильно вычислима.

$$(R_0=arnothing)$$
 Действительно, $m\in R_0\Rightarrow c(m,0)\in A_0=arnothing$.

Лекция СЗ Вычислимые и вычислимо перечислимые множества

Вадим Пузаренко

Доказательство (продолжение)

Далее, $m \in R_s \Leftrightarrow [(c^3(l(m),r(m),0) \in A_s) \land (r(m) < k(l(m),s))]$, поэтому $\{\langle m,s \rangle | m \in R_s \}$ вычислимо. Следовательно, последовательность R_s сильно вычислима. $(R_0 = \varnothing)$ Действительно, $m \in R_0 \Rightarrow c(m,0) \in A_0 = \varnothing$. $(R_s \subseteq R_{s+1})$ Пусть $m \in R_s$; тогда (\imath) $c(m,0) \in A_s$ и, следовательно, $c(m,0) \in A_{s+1}$; $(\imath\imath)$ кроме того, $\delta \varphi_{n,s} \subseteq \delta \varphi_{n,s+1}$, поэтому $k(n,s) \leqslant k(n,s+1)$ для всех n; тем самым, $r(m) < k(l(m),s) \Rightarrow r(m) < k(l(m),s+1)$.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Далее, $m \in R_s \Leftrightarrow [(c^3(I(m),r(m),0) \in A_s) \land (r(m) < k(I(m),s))]$, поэтому $\{\langle m,s \rangle | m \in R_s \}$ вычислимо. Следовательно, последовательность R_s сильно вычислима. $(R_0 = \varnothing)$ Действительно, $m \in R_0 \Rightarrow c(m,0) \in A_0 = \varnothing$. $(R_s \subseteq R_{s+1})$ Пусть $m \in R_s$; тогда (\imath) $c(m,0) \in A_s$ и, следовательно, $c(m,0) \in A_{s+1}$; $(\imath\imath)$ кроме того, $\delta \varphi_{n,s} \subseteq \delta \varphi_{n,s+1}$, поэтому $k(n,s) \leqslant k(n,s+1)$ для всех n; тем самым, $r(m) < k(I(m),s) \Rightarrow r(m) < k(I(m),s+1)$. $(R_s \subseteq c(R))$ Пусть $m \in R_s$; тогда $r(m) \in B_{I(m),s}$ и, следовательно, $r(m) \in B_{I(m)}$; таким образом, $\langle I(m),r(m) \rangle \in R$ и $m = c(I(m),r(m)) \in c(R)$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Далее, $m \in R_s \Leftrightarrow [(c^3(I(m), r(m), 0) \in A_s) \land (r(m) < k(I(m), s))],$ поэтому $\{\langle m,s\rangle|m\in R_s\}$ вычислимо. Следовательно, последовательность R_s сильно вычислима. $(R_0 = \varnothing)$ Действительно, $m \in R_0 \Rightarrow c(m,0) \in A_0 = \varnothing$. $(R_s \subseteq R_{s+1})$ Пусть $m \in R_s$; тогда (i) $c(m,0) \in A_s$ и, следовательно, $c(m,0) \in A_{s+1}$; ($\imath\imath$) кроме того, $\delta\varphi_{n,s} \subseteq \delta\varphi_{n,s+1}$, поэтому $k(n,s) \leq k(n,s+1)$ для всех n; тем самым, $r(m) < k(l(m), s) \Rightarrow r(m) < k(l(m), s + 1).$ $(R_s \subseteq c(R))$ Пусть $m \in R_s$; тогда $r(m) \in B_{l(m),s}$ и, следовательно, $r(m) \in B_{l(m)}$; таким образом, $\langle l(m), r(m) \rangle \in R$ и $m = c(I(m), r(m)) \in c(R)$. $(c(R)\subseteq R_s)$ Пусть $m\in c(R)$; тогда $r(m)\in B_{l(m)}=\bigcup_s B_{l(m),s}$ и, следовательно, $r(m) \in B_{l(m),s_0}$ для подходящего s_0 . Таким образом, $m = c(I(m), r(m)) \in R_{s_0}$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

- **Б)** Если $\varphi_n(\mathsf{x})$ всюду определена, то $\varphi_n = \chi_{B_n}$. Сначала индукцией по $I \in \omega$ покажем, что для всех I выполняется $k(n,s) \geqslant I$ для подходящего s. Если I=0, то положим s=0. Предположим, что $k(n,s) \geqslant l_0$ для подходящего $s=s_0$. Так как $l_0 \in \delta \varphi_n$, найдётся шаг s_1 такой, что $l_0 \in \delta \varphi_{n,s_1}$. Далее, возьмём $s_2 = \max\{s_0,s_1\}$; тогда $k(n,s_2) \geqslant l_0+1$. Пусть теперь последовательность s_m такова, что $k(n,s_m) \geqslant m$; тогда если $\varphi_n(m)=0$, то $\varphi_{n,s_m}(m)=0$ и $m \in B_{n,s_m} \subseteq B_n$. Если же $\varphi_n(m)=1$, то $\varphi_{n,s}(m) \neq 0$ ни для какого s и, следовательно, $m \notin B_{n,s}$ для всех s; тем самым, $m \notin B_n$.
- В) Если $\varphi_n(x)$ не является всюду определенной, то B_n конечно. Пусть $\varphi_n(x)$ функция, не являющаяся всюду определённой. Пусть k_0 наименьшее число, для которого $\varphi_n(k_0) \uparrow$. Тогда $k(n,s) \leqslant k_0$ для всех s и, следовательно, $m \in B_n \Rightarrow m < k_0$. Таким образом, B_n конечно.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Следствие С4

Существует вычислимо перечислимое множество, не являющееся вычислимым.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Следствие С4

Существует вычислимо перечислимое множество, не являющееся вычислимым.

Доказательство.

Воспользуемся теоремой Поста (С8). Пусть R — вп предикат, универсальный для семейства всех вычислимых множеств. Покажем, что c(R) удовлетворяет заключению следствия. По лемме С18, множество c(R) вычислимо перечислимо. Из леммы С15(4) вытекает, что достаточно показать, что R не вычислимо. Действительно, если бы R было вычислимым, то $\chi_R(x_0,x_1)$ была чвф, универсальной для всех чвф, принимающих значения $\subseteq \{0;1\}$, что противоречило бы предложению С12.

Вычислимые множества

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Предложение С14

Для $A\subseteq\omega$ выполняются следующие условия:

- Множество A вычислимо и бесконечно, если и только если $A = \rho f$ для некоторой строго возрастающей вф f;
- ② Множество $A \neq \varnothing$ вычислимо, если и только если $A = \rho f$ для некоторой возрастающей вф f.

Вычислимые множества

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Предложение С14

Для $A\subseteq\omega$ выполняются следующие условия:

- ① Множество A вычислимо и бесконечно, если и только если $A = \rho f$ для некоторой строго возрастающей вф f;
- ② Множество $A \neq \varnothing$ вычислимо, если и только если $A = \rho f$ для некоторой возрастающей вф f.

Доказательство.

1) (\Rightarrow) Пусть A бесконечно и вычислимо; покажем, что функция, перечисляющая A в порядке строгого возрастания, вычислима. Действительно, пусть $A=\{a_0< a_1< a_2< \ldots < a_n< \ldots\};$ тогда $f(0)=a_0$,

$$f(x+1) = \mu y(y \in A \land (y > f(x)));$$

и, следовательно, вычислимая функция f перечисляет множество A в порядке строгого возрастания.

Вычислимые множества

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 (\Leftarrow) Воспользуемся теоремой Поста (C8). Так как $A=\rho f$ и f вычислима, множество A вп. Далее, $n\in\overline{A}\Leftrightarrow \forall y\leqslant n(f(y)\neq n)$, поэтому \overline{A} вп. Таким образом, A вычислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 (\Leftarrow) Воспользуемся теоремой Поста (С8). Так как $A=\rho f$ и f вычислима, множество A вп. Далее, $n\in\overline{A}\Leftrightarrow \forall y\leqslant n(f(y)\neq n)$, поэтому \overline{A} вп. Таким образом, A вычислимо.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

 (\Leftarrow) Воспользуемся теоремой Поста (C8). Так как $A=\rho f$ и f вычислима, множество A вп. Далее, $n\in\overline{A}\Leftrightarrow \forall y\leqslant n(f(y)\neq n)$, поэтому \overline{A} вп. Таким образом, A вычислимо.

2) (\Rightarrow) Если A бесконечно, то следует воспользоваться п. 1. Пусть теперь $A=\{a_0< a_1<\ldots< a_k\}$ конечно; тогда f(x)=

$$a_0 \cdot \overline{\operatorname{sg}}(x) + a_1 \cdot \overline{\operatorname{sg}}(|x-1|) + \ldots + a_{k-1} \cdot \overline{\operatorname{sg}}(|x-(k-1)|) + a_k \cdot \operatorname{sg}(\operatorname{s}(x) \stackrel{\bullet}{-} k)$$
 вычислима, возрастающая и $\rho f = A$.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

- (\Leftarrow) Воспользуемся теоремой Поста (C8). Так как $A=\rho f$ и f вычислима, множество A вп. Далее, $n\in \overline{A}\Leftrightarrow \forall y\leqslant n(f(y)\neq n)$, поэтому \overline{A} вп. Таким образом, A вычислимо.
- **2)** (\Rightarrow) Если A бесконечно, то следует воспользоваться п. 1. Пусть теперь $A=\{a_0< a_1<\ldots < a_k\}$ конечно; тогда f(x)=

$$a_0 \cdot \overline{\operatorname{sg}}(x) + a_1 \cdot \overline{\operatorname{sg}}(|x-1|) + \ldots + a_{k-1} \cdot \overline{\operatorname{sg}}(|x-(k-1)|) + a_k \cdot \operatorname{sg}(\operatorname{s}(x) - k)$$
 вычислима, возрастающая и $\rho f = A$.

(⇐) Сначала покажем, что функция, осуществляющая перечисление наименьших номеров в порядке строгого возрастания, вычислима:

$$g(0) = 0, g(x+1) = \mu y.[(y > g(x)) \land (f(y) > f(g(x)))].$$

Если A бесконечно, то g(x) всюду определена и, следовательно, $f_0(x) \leftrightharpoons f(g(x))$ вычислима; к тому же, $f_0(x)$ строго возрастающая и $\rho f_0 = A$, а из п. 1 следует, что A вычислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Если же
$$A=\{a_0< a_1<\ldots< a_k\}$$
 конечно, то функция $\chi_A(x)=\mathrm{sg}(|x-a_1|\cdot|x-a_2|\cdot\ldots\cdot|x-a_k|)$ вычислима, а следовательно, A также вычислимо.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Если же $A=\{a_0< a_1<\ldots< a_k\}$ конечно, то функция $\chi_A(x)=\mathrm{sg}(|x-a_1|\cdot|x-a_2|\cdot\ldots\cdot|x-a_k|)$ вычислима, а следовательно, A также вычислимо.

Теорема С14

Пусть A — бесконечное вычислимо перечислимое множество. Тогда существуют непересекающиеся бесконечные вычислимые множества $B_0, B_1 \subseteq A$.

Лекция СЗ Вычислимые и вычислимо перечислимые множества

Вадим Пузаренко

Доказательство (продолжение)

Если же $A=\{a_0< a_1<\ldots< a_k\}$ конечно, то функция $\chi_A(x)=\mathrm{sg}(|x-a_1|\cdot|x-a_2|\cdot\ldots\cdot|x-a_k|)$ вычислима, а следовательно, A также вычислимо.

Теорема С14

Пусть A — бесконечное вычислимо перечислимое множество. Тогда существуют непересекающиеся бесконечные вычислимые множества $B_0, B_1 \subseteq A$.

Доказательство.

Так как A — бесконечное впм, имеем $A = \rho f$ для некоторой инъективной вф f. Определим всполмогательную вф g(x):

$$\begin{cases}
g(0) = 0, \\
g(x+1) = \mu y.[(y > g(x)) \land (f(y) > f(g(x)))].
\end{cases}$$

 $ar{\mathsf{T}}$ огда вычислима функция $f_0(x) = f(g(x))$ строго возрастающая.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Положим $h_0(x)=f_0(2\cdot x+1)$ и $h_1(x)=f_0(2\cdot x)$. Данные функции вычислимы и, к тому же, строго возрастающие, поэтому $B_0=\rho h_0$ и $B_1=\rho h_1$ — вычислимые бесконечные множества, по предложению C14(1). Кроме того, $B_0\cap B_1=\varnothing$, что следует из свойства инъективности функции $f_0(x)$. Также имеем $B_0\cup B_1=\rho h_0\cup \rho h_1\subseteq \rho f_0\subseteq \rho f=A$. \square

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Положим $h_0(x)=f_0(2\cdot x+1)$ и $h_1(x)=f_0(2\cdot x)$. Данные функции вычислимы и, к тому же, строго возрастающие, поэтому $B_0=\rho h_0$ и $B_1=\rho h_1$ — вычислимые бесконечные множества, по предложению C14(1). Кроме того, $B_0\cap B_1=\varnothing$, что следует из свойства инъективности функции $f_0(x)$. Также имеем $B_0\cup B_1=\rho h_0\cup \rho h_1\subseteq \rho f_0\subseteq \rho f=A$. \square

Следствие С5

Пусть A — бесконечное вычислимо перечислимое множество. Тогда существует бесконечное вычислимое множество $B\subseteq A$ такое, что $A\setminus B$ бесконечно.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Положим $h_0(x)=f_0(2\cdot x+1)$ и $h_1(x)=f_0(2\cdot x)$. Данные функции вычислимы и, к тому же, строго возрастающие, поэтому $B_0=\rho h_0$ и $B_1=\rho h_1$ — вычислимые бесконечные множества, по предложению C14(1). Кроме того, $B_0\cap B_1=\varnothing$, что следует из свойства инъективности функции $f_0(x)$. Также имеем $B_0\cup B_1=\rho h_0\cup \rho h_1\subseteq \rho f_0\subseteq \rho f=A$. \square

Следствие С5

Пусть A — бесконечное вычислимо перечислимое множество. Тогда существует бесконечное вычислимое множество $B\subseteq A$ такое, что $A\setminus B$ бесконечно.

Доказательство.

Пусть A — бесконечное впм. Возьмём в качестве B множество B_0 . Тогда B вычислимо и бесконечно. Кроме того, $A\setminus B\supseteq B_1$, поэтому $A\setminus B$ бесконечно.

Основные принципы: Отделимость

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Основные принципы: Отделимость

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Непересекающиеся вычислимо перечислимые множества $A\subseteq \omega$ и $B\subseteq \omega$ называются вычислимо отделимыми, если существует вычислимое множество $C\subseteq \omega$ такое, что $A\subseteq C\subseteq \overline{B}$. В противном случае, A и B называются вычислимо неотделимыми.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Непересекающиеся вычислимо перечислимые множества $A\subseteq \omega$ и $B\subseteq \omega$ называются вычислимо отделимыми, если существует вычислимое множество $C\subseteq \omega$ такое, что $A\subseteq C\subseteq \overline{B}$. В противном случае, A и B называются вычислимо неотделимыми.

Теорема С15

Существует вычислимо неотделимая пара вычислимо перечислимых множеств.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Непересекающиеся вычислимо перечислимые множества $A\subseteq \omega$ и $B\subseteq \omega$ называются вычислимо отделимыми, если существует вычислимое множество $C\subseteq \omega$ такое, что $A\subseteq C\subseteq \overline{B}$. В противном случае, A и B называются вычислимо неотделимыми.

Теорема С15

Существует вычислимо неотделимая пара вычислимо перечислимых множеств.

Доказательство.

Пусть $\varphi(x,y)$ — чвф, универсальная для семейства всех частично вычислимых функций, принимающих значения $\subseteq \{0;1\}$. Положим $A_0=\{e|\varphi(e,e)\downarrow=1\}$ и $A_1=\{e|\varphi(e,e)\downarrow=0\}$ и докажем (методом от противного), что пара A_0 и A_1 вычислима неотделима.

Лекция СЗ
Зычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Допустим, что вм C отделяет A_0 от A_1 , а именно, $A_0 \subseteq C \subseteq \overline{A_1}$. Тогда χ_C — вф, принимающая значения 0 и 1. Значит, $\chi_C = \lambda x. \varphi(e_0, x)$ для подходящего e_0 , причём $\varphi(e_0, e_0) \downarrow$. Если $\varphi(e_0, e_0) = 1$, то $e_0 \in A_0$ и, слеІовательно, $e_0 \in C$, т.е. $\chi_C(e_0) = \varphi(e_0, e_0) = 0$; если же $\varphi(e_0, e_0) = 0$, то $e_0 \in A_1$ и, следовательно, $e_0 \not\in C$, т.е. $\chi_C(e_0) = \varphi(e_0, e_0) = 1$; в любом случае приходим к противоречию.

Лекция СЗ
Зычислимые
вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Допустим, что вм C отделяет A_0 от A_1 , а именно, $A_0 \subseteq C \subseteq \overline{A_1}$. Тогда χ_C — вф, принимающая значения 0 и 1. Значит, $\chi_C = \lambda x. \varphi(e_0, x)$ для подходящего e_0 , причём $\varphi(e_0, e_0) \downarrow$. Если $\varphi(e_0, e_0) = 1$, то $e_0 \in A_0$ и, слеІовательно, $e_0 \in C$, т.е. $\chi_C(e_0) = \varphi(e_0, e_0) = 0$; если же $\varphi(e_0, e_0) = 0$, то $e_0 \in A_1$ и, следовательно, $e_0 \not\in C$, т.е. $\chi_C(e_0) = \varphi(e_0, e_0) = 1$; в любом случае приходим к противоречию.

Следствие Сб

Существует вычислимо перечислимое, но не вычислимое множество.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Доказательство (продолжение)

Допустим, что вм C отделяет A_0 от A_1 , а именно, $A_0 \subseteq C \subseteq \overline{A_1}$. Тогда χ_C — вф, принимающая значения 0 и 1. Значит, $\chi_C = \lambda x. \varphi(e_0, x)$ для подходящего e_0 , причём $\varphi(e_0, e_0) \downarrow$. Если $\varphi(e_0, e_0) = 1$, то $e_0 \in A_0$ и, слеІовательно, $e_0 \in C$, т.е. $\chi_C(e_0) = \varphi(e_0, e_0) = 0$; если же $\varphi(e_0, e_0) = 0$, то $e_0 \in A_1$ и, следовательно, $e_0 \not\in C$, т.е. $\chi_C(e_0) = \varphi(e_0, e_0) = 1$; в любом случае приходим к противоречию.

Следствие С6

Существует вычислимо перечислимое, но не вычислимое множество.

Доказательство.

Пусть A_0 и A_1 — вычислимо неотделимая пара непересекающихся впм. Тогда A_0 вычислимо перечислимо; докажем (методом от противного), что оно не вычислимо. Действительно, если бы оно было вычислимым, пара A_0 отделялась бы от A_1 вычислимым множеством A_0 .

Основные принципы: Продолжимость

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Основные принципы: Продолжимость

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $\varphi(x)$ — частичная функция. Всюду определенная функция f(x) называется **продолжением функции** φ , если $\Gamma_{\varphi} \subseteq \Gamma_f$.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $\varphi(x)$ — частичная функция. Всюду определенная функция f(x) называется продолжением функции φ , если $\Gamma_{\varphi}\subseteq \Gamma_f$.

Теорема С16

Пусть A — впм и пусть A_s — сильная аппроксимация для A. Тогда $\psi(x)=\mu s[x\in A_s]$ имеет вычислимое продолжение, если и только если A вычислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Определение

Пусть $\varphi(x)$ — частичная функция. Всюду определенная функция f(x) называется **продолжением функции** φ , если $\Gamma_{\varphi} \subseteq \Gamma_f$.

Теорема С16

Пусть A — впм и пусть A_s — сильная аппроксимация для A. Тогда $\psi(x) = \mu s[x \in A_s]$ имеет вычислимое продолжение, если и только если A вычислимо.

Доказательство.

- (\Leftarrow) Пусть A вычислимо; тогда $f(x) \leftrightharpoons \mu s.[(x \not\in A) \lor (x \in A_s)]$ вычислима и $\Gamma_{\imath b} \subseteq \Gamma_f$.
- (\Rightarrow) Пусть f вычислимое продолжение функции ψ ; тогда $x \in A \Leftrightarrow x \in A_{f(x)}$ и, следовательно, A вычислимо.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Следствие С7

Существует частично вычислимая функция, не имеющая вычислимого продолжения.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Вадим Пузаренко

Следствие С7

Существует частично вычислимая функция, не имеющая вычислимого продолжения.

Доказательство.

Пусть A — вычислимо перечислимое, но не вычислимое множество (см., например, следствие C6). Возьмём сильную аппроксимацию A_s для множества A. Тогда частично вычислимая функция $\psi(x) \leftrightharpoons \mu s.[x \in A_s]$ не имеет вычислимого продолжения.

Лекция СЗ
Вычислимые
и вычислимо
перечислимые
множества

Спасибо за внимание.