H9: wachtrijtheorie				
9.1 wachtrijtheorie in Fysica				
9.1.1 tijdsintervallen tussen toevallige gebeurtenissen				
probleemstelling tijdinterval	Voor een experiment waarbij evenementen voorkomen met een gemiddelde snelheid > stel er gebeuren λ evenementen per tijdseenheid > wssheid dat er in infinitesimaal tijdsinterval dt een evenement gebeurt is λdt			
	Nu: wat is de verdeling vd tijdsintervallen tss 2 opeenvolgende toevallige gebeurtenissen > veronderstel er was een evenement op t=0 > wat is de wssheid dat het eerstvolgende evenement binnen dt zal vallen, na tijd t > er moeten twee onafh. voorwaarden vervuld zijn: - er mogen geen evenementen vallen tss 0 en t > wordt gegeven door Poisson verdeling: > wssheid om 0 tellen te vinden met een gemiddelde λ t: $\mathcal{P}(0) = e^{-\lambda t} \frac{(\lambda t)^0}{0!}$ - er moet een evenement vallen in het volgende dt >> totale wssheid wordt: $I_1(t)dt = \mathcal{P}(0) \times \lambda dt$ of dus: $I_1(t) = \lambda e^{-\lambda t}$			
	merk op: eest waarschijnlijk interval is 0, ie: de modus > verwachtingswaarde voor gemiddelde tijd tss twee evenementen is 1/λ			
def: distributie voor N elementen	We kunnen het vorige nu uitbreiden naar N evenementen > distributie van intervallen tss een toevallig evenement en het Nde daaropvolgende is: $I_N(t) = \lambda \frac{(\lambda t)^{N-1} e^{-\lambda t}}{(N-1)!}$			
st: verwachtingswaarde en modus op I _N	De verwachtingswaarde voor $I_N(t)$ is: $\langle I_N \rangle = N/\lambda$ en de modus is: $\frac{dI_N(t)}{dt}\bigg _{t=t_m} = 0 \Rightarrow t_m = \frac{N-1}{\lambda}$			
9.1.2 dode tijd				
principe dode tijd	in elke detector is er een minimale tijd nodig tss twee evenementen opdat ze als afzonderlijk worden herkent > kan zijn door limiet of fysische principes of door elektronica van detector > deze tijd definiëren we als dode tijd			
principe paralyseerbaarheid	We moeten corrigeren voor deze dode tijd > maak onderscheid tss paralyseerbare en niet-paralyseerbare detectoren > definieer de volgende: - n als het echte aantal evenementen per tijdseenheid - m het verwerkte aantal per tijdseenheid - τ de individuele dode tijd van het systeem			
> def: niet-paralyseerbare detector	= detector waarbij er na elke meting een dode tijd met vaste lengte τ volgt > evenementen die tijdens dode tijd komen gaan verloren			
	De fractie van de tijd dat systeem dood is wordt gegeven door: $f_\tau = m\tau$ het aantal verloren evenementen wordt gegeven door nf_τ > dit moet gelijk zijn aan (n-m), dus we hebben:			
	$m = \frac{n}{1 + n\tau} \tag{1}$			

> def: paralyseerbare detector	evenementen die binnenkomen tijdens dode periode worden niet meegeteld > zorgen er wel voor dat dode tijd verder uitloopt met een tijd τ > dode periodes hebben dus geen vaste lengte
	Nu: m moet gelijk zijn aan aantal intervallen tss evenementen dat langer is dan τ > we kennen deze distributie al > wssheid voor intervallen langer dan τ is:
	$P_{t>\tau} = \int_{\tau}^{\infty} P_1(t)dt = e^{-n\tau}$
	totaal aantal dergelijke intervallen is gegeven door : $m=ne^{-n\tau} \tag{2} \label{eq:2}$
	Figuur 9.1: Illustratie van een niet-paralyseerbaar (boven) en paralyseerbaar (onder) meetsysteem. Op de middelste tijdsas wordt de aankomst van 11 toevallig verdeelde evenementen (\bullet) aangeduid. In het niet-paralyseerbare systeem worden 6 (\blacktriangledown) van de 11 evenementen geteld, terwijl er in het paralyseerbare door ophoping van dode tijd slechts 4 (\blacktriangle) gezien worden.
inalyse telkadans	We zien nu: - niet-par. systeem zal asymptotische waarde bereiken met telkadans 1/t - in par. systeem gaat telkadans door een maximum > voor zeer hoge inkomende snelheden wordt dode periode voortduren verlengt
	>> als men dus heel lage telsnelheden opmeet, moet opgelet worden of dit niet komt door een zeer hoge inkomende telsnelheid in paralyseerbaar systeem
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Figuur 9.2: Variatie van de waargenomen telsnelheid m als een functie van de echte telkadans n , voor verschillende dode tijden τ (links) en als een functie van de dode tijd τ voor een signaal telkadans $n=20$ Hz (rechts); streeplijn: niet-paralyseerbaar systeem; volle lijn: paralyseerbaar systeem; puntlijn: lage telsnelheid benadering
penadering bij lage inkomsnelheid	Voor lage telsnelheden kan men beide modellen benaderen door: $m pprox n(1-n au)$
neten van dode tijd	Gebruik de niet-lineariteit van uitdrukkingen (1) en (2) 1: triggers van twee verschillende bronnen > meet de telsnelheid voor elke afzonderlijk en de som van de twee
	2: gebruik een trigger met gekende vaste telsnelheid > bvb: een 100Hz trigger stuurt elke 10ms een gekend signaal > verschil tss aantal 100Hz trigger en 100 geeft de dode tijd van het systeem

9.1.3 wachtrijen	
voorbeeld principe wachtrij	Zei er een experiment waarbij evenementen op toevallig tijdstip binnenkomen > er is een gemiddelde kadans van λ_l per tijdseenheid
	Stel nu dat de tijd voor verwerken is toevallig verdeeld $>$ op elk ogenblik is er een conditionele wssheid λ_0 dt dat een evenement afgewerkt wordt en doorgegeven aan de computer
	>ie: evenementen komen ad random binnen en verwerkingstijd is exponentieel > dus: meeste evenm. worden snel verwerkt, maar er zijn enkele die veel tijd nemen > er kunnen gegevens verkoren gaan
	om dit te vermijden: gebruik een input buffer > in deze buffer wachten inkomende evenementen tot de processor vrij is > als inkomend evenement niet meer in buffer past, zal ze worden verwijderd ie: buffer overflow
	>> hoeveel evenm. N moet buffer kunnen bevatten zodat slechts een fractie L van inkomende evenementen verloren gaat?
evenwichtssituatie evenementen	Wanneer apparaat aangezet wordt zullen er fluctuaties zijn > na een tijd bereikt er een evenwichtssituatie
	in evenwicht is wssheid P _k dat zich k evenementen in de buffer bevinden constant in tijd > dit geldt voor elke k
	> wssheid om bij de buffer toe te voegen is gelijk aan kans om eruit te verwijderen> als aantal evenm. in buffer k is met 0<k<n, dan:<="" li=""></k<n,>
	$P_{k+1} \lambda_O dt + P_{k-1} \lambda_I dt = P_k(\lambda_I dt + \lambda_O dt)$
	Voor de speciale gevallen $k=0$ en $k=N$ geldt:
	$\begin{cases} P_1 \lambda_O dt = P_0 \lambda_I dt \\ P_{N-1} \lambda_I dt = P_N \lambda_O dt \end{cases}$
	De oplossing voor deze speciale gevallen is telkens de maat voor de belasting $\mathcal R$ van het systeem 1 .
	$rac{P_1}{P_0} = rac{P_N}{P_{N-1}} = rac{\lambda_I}{\lambda_O} \equiv \mathcal{R}$
	echter voor andere gevallen is oplossing niet zo duidelijk > algemene oplossing P _k =CR ^k met C en R onbekende constanten:
	$R^{k+1}\lambda_O + R^{k-1}\lambda_I = R^k(\lambda_I + \lambda_O)$
	hetgeen zich herleidt tot een eenvoudige vierkantsvergelijking
	$R^2 \lambda_O - R(\lambda_O + \lambda_I) + \lambda_I = 0$
	Deze vierkantsvergelijking heeft als oplossingen
	$\begin{cases} R = 1 \\ R = \frac{\lambda_I}{\lambda_O} \end{cases}$
	Waarbij de tweede de niet-triviale oplossing is > we kunnen nu C bepalen via de normeringsvoorwaarde:
	$P_{\leq N} = C \sum_{i=0}^{N} \mathcal{R}^i = 1 \qquad \longrightarrow \qquad C^{-1} = \sum_{i=0}^{N} \mathcal{R}^i$
	Het is eenvoudig na te gaan dat
	$(1-\mathcal{R})\sum_{i=0}^{N}\mathcal{R}^{i}=1-\mathcal{R}^{N+1}$

De week eid De det en la grang mantan in de huffen van maat Nijn ersen viekt eitten in	
De wssheid P_k dat er k evenementen in de buffer van maat N in evenwicht zitten is:	
$P_k = \frac{(1-\mathcal{R}) \mathcal{R}^k}{1-\mathcal{R}^{N+1}}$	
waarbij $R=\lambda_i/\lambda_0$ een maar voor de belasting van het systeem > de cumulatieve wssheid dat er zich ten hoogste k evenementen bevinden is:	
$P_{\leq k} = \sum_{i=0}^{k} P_i = \frac{1 - \mathcal{R}^{k+1}}{1 - \mathcal{R}^{N+1}}$	
De kans op verlies van elementen is precies P_N ie: de fractie vd tijd dat de buffer volledig gevuld is: $L=P_N=\frac{\mathcal{R}^N-\mathcal{R}^{N+1}}{1-\mathcal{R}^{N+1}}$	
> als evenm aankomt in deze tijd dan gaat deze verloren	
veronderstel N→∞ voor R<1 hebben we dan:	
$P_k = (1 - \mathcal{R}) \mathcal{R}^k \qquad P_{\leq k} = 1 - \mathcal{R}^{k+1}$	
De verwachtingswaarde en variantie vh aantal evenm voor oneindige buffer is: $< k >= \frac{\mathcal{R}}{1-\mathcal{R}} \qquad \qquad V(k) = \frac{\mathcal{R}}{(1-\mathcal{R})^2}$	
9.2 Markov ketens	
- Bernoulli keten: elke gebeurtenis wordt onafhankelijk beschouwd > vb: muntstuk gooien en resultaat opschrijven	
- Markov keten: uitkomst van poging hangt af van waar je bent > vb: bufferprobleem van daarnet	
- Conditionele kans: P(a b) is de wssheid om a te vinden als b waar is - Markov: is de wssheid om a te vinden (nieuwe toestand in systeem) als b al gebeurde	
>> verwissel deze twee niet	
eid	
Markov keten is een reeks toevallige variabelen $(\pi_n, n \in \mathbb{N})$ > modelleren dynamische evolutie vh systeem > wordt best beschreven via matrices	
Wssheidsverdeling ve systeem met m toestand wordt beschreven door een rijvector: > $P_i(t)$ de wssheid dat het systeem zich in toestand i op bepaalde stap t bevind $\pi_t = (P_1(t), P_2(t), \dots, P_m(t))$	
De elementen vd vector π_t liggen tss 0 en 1 en hun som is gelijk aan 1:	
$\sum_{i=1}^{m} P_i(t) = 1 \qquad \text{voor alle t}$	
= bevat als elementen λ_{ij} de wssheid voor een transitie van toestand i naar toestand j > beschrijft de evolutie van het systeem:	
λ_{12} λ_{14} λ_{14} λ_{11} λ_{21} λ_{21} λ_{23} λ_{13} λ_{31} λ_{41} λ_{41} λ_{41} λ_{41} λ_{43} λ_{43} λ_{43} λ_{43} λ_{43} λ_{43} λ_{43} λ_{43} λ_{44} λ_{41} λ_{41} λ_{42} λ_{43} λ_{44}	

entificeer t met het 'heden' lan is alle info van het systeem over het gedrag in de toekomst gegeven worden door: - de huidige toestand - de kennis dat het proces uit het verleden hier niets aan toevoegt impliceert dat de verblijftijd in een gegeven toestand een geheugenloze verdeling	
impliceert dat de verblijftijd in een gegeven toestand een geheugenloze verdeling	
moet hebben	
De verwachte toestand op de volgende stap is gegeven door: $\pi_{t+1}=\pi_t\Lambda$ > dus na k processen: $\pi_k=\pi_0\Lambda^k$.	
n wssheidsverdeling π vh systeem is een stationaire wssheid indien: $\pi=\pi\Lambda$ ysteem staat in evenwicht indien: $P_j(t+1)=\sum_{i=1}^m P_i(t)\lambda_{ij} \qquad \forall j$	
blijft in zn evenwichtsdistributie voor elke toekomstige t*>t met wssheidsverdeling: $\pi=(P_1,P_2,,P_m)$	

9.2.3 buffers en Markov ketens

buffer en Markov

In bufferprobleem hangt verandering van P_k af van P_k , P_{k+1} en P_{k-1}

> A heeft enkel niet-nul elementen op hoofddiagonaal en die er net boven en onder ie: is een tridiagonale matrix

neem aan dat de drie diagonalen gevuld zijn:

> is gelijkaardig aan bufferprobleem, maar λ hangt nu ook af van k

> we kunnen de wssheden P_k(t) bekijken:

$$\begin{cases} \frac{dP_k}{dt} = -\lambda_{I,k} P_k - \lambda_{O,k} P_k + \lambda_{I,k-1} P_{k-1} + \lambda_{O,k+1} P_{k+1} & (k > 0) \\ \frac{dP_0}{dt} = -\lambda_{I,0} P_0 + \lambda_{O,1} P_1 & (k = 0) \end{cases}$$

De oplossingen van deze vgl worden gegeven door de eigenwaarde en eigenvectoren van Λ te berekenen:

$$\Lambda = \begin{pmatrix} 1 - \lambda_{I,0} & \lambda_{I,0} & 0 & \cdots & \cdots & 0 \\ \lambda_{O,1} & 1 - \lambda_{I,1} - \lambda_{O,1} & \lambda_{I,1} & \cdots & \cdots & 0 \\ 0 & \lambda_{O,2} & 1 - \lambda_{I,2} - \lambda_{O,2} & \cdots & \cdots & 0 \\ & & & \ddots & & & \\ 0 & 0 & 0 & \cdots & 1 - \lambda_{I,N-1} - \lambda_{O,N-1} & \lambda_{I,N-1} \\ 0 & 0 & 0 & \cdots & \lambda_{O,N} & 1 - \lambda_{O,N} \end{pmatrix}$$

bekijk nu echter een systeem in evenwicht

> wssheden P_k zijn niet meer afhankelijk van de tijd

> is uitbreiding van bufferprobleem, nl: aankomst- en verwerkingstijd zijn afh van de lengte van de rij

st: evenwichtswssheden voor dit systeem De evenwichtswssheden, bij k≥1, voor deze situatie worden gegeven door:

$$P_k = \mathcal{R}_k P_0$$

met

$$\mathcal{R}_k = \frac{\prod_{i=0}^{k-1} \lambda_{I,i}}{\prod_{j=1}^{k} \lambda_{O,j}}$$

 P_0 volgt uit de normeringsvoorwaarde en is:

$$P_0 = \left[1 + \sum_{k=1}^{\infty} \mathcal{R}_k\right]^{-1}$$

vb:	afschrikkende	lengte

veronderstel dat een lange rij de klanten afschrikt

> tegelijk heeft de lengte van de rij geen invloed op de verwerkingskadans

> je kan dit modelleren via:

$$\lambda_{O,k} = \lambda_O \qquad \forall k \qquad \qquad \lambda_{I,k} = \frac{\lambda_I}{k+1}$$

Dit leidt tot

$$\mathcal{R}_k = \left(\frac{\lambda_I}{\lambda_O}\right)^k \prod_{i=0}^{k-1} \frac{1}{i+1} = \frac{\mathcal{R}^k}{k!}$$

met $\mathcal{R} = \lambda_I/\lambda_O$, en

$$P_0^{-1} = 1 + \sum_k \frac{\mathcal{R}^k}{k!} \approx e^{-\mathcal{R}} \qquad \longrightarrow \qquad P_0 = e^{-\mathcal{R}}$$

De oplossing wordt een Poisson verdeling

$$P_k = \frac{e^{-\mathcal{R}}\mathcal{R}^k}{k!}$$

Als we aannemen dat er altijd voldoende verwerkingseenheden (of kassa's) vrij zijn, dan hebben de tegengestelde situatie:

$$\lambda_{I,k} = \lambda_I \qquad \forall k \qquad \qquad \lambda_{O,k} = k\lambda_I$$

De oplossing is opnieuw de Poisson verdeling, precies dezelfde als in het voorgaande probleem.

vb: Quickline

Veronderstel dat er m servers zijn

> er is dus één wachtrij en verschillende servers

> in dit geval:

$$\lambda_{I,k} = \lambda_I \qquad \forall k$$

$$\lambda_{I,k} = \lambda_I \qquad \forall k \qquad \qquad \left\{ \begin{array}{ll} \lambda_{O,j} = j\lambda_O & j \leq m \\ \lambda_{O,j} = m\lambda_O & j > m \end{array} \right.$$

en neem nu:
$$\mathcal{R}=\lambda_I/(m\lambda_O).$$

aangezien het systeem twee werkwijzen bevat, nl: vrije servers en verzadiging > geeft de oplossing deze twee modes weer:

$$\begin{cases} P_k = m^k \frac{\mathcal{R}^k}{k!} P_0 & k \le m \\ P_k = m^m \frac{\mathcal{R}^k}{m!} P_0 & k > m \end{cases} \quad \text{met} \quad P_0 = \left[1 + \left(\sum_{i=1}^{m-1} \frac{(m\mathcal{R})^i}{i!} \right) + \frac{m^m}{m!} \frac{\mathcal{R}^m}{(1-\mathcal{R})} \right]^{-1}$$

> we kunnen dit vergelijken met situatie waarbij we me servers en m individuele wachtrijen hebben

Bekijk nu het geval waarbij m=2:

$$P_0 = \frac{(1 - \mathcal{R})}{(1 + \mathcal{R})}$$
 en $\langle k \rangle = \frac{2\mathcal{R}}{(1 - \mathcal{R}^2)}$

9.2.4 random walks

a) 1D random walk

concept random walk

Stel je hebt een lijn waarlangs een punt kan bewegen met discrete stappen

- > deze kunnen ofwel naar links ofwel naar rechts gaan
- > zij p_r en p_l resp. de kans om naar rechts en links te gaan

Vertrek vanuit de oorsprong en zet N stappen

> wat is de kans om n_r stappen naar rechts en n_l stappen naar links gezet te hebben? > we vinden:

$$p_l + p_r = 1 n_l + n_r = N$$

De kans om exact n_r stappen naar rechts te gaan is dan gegeven door de binomiale verdeling.

$$P(n_r) = p_r^{n_r} p_l^{n_l} \frac{N}{n_r! n_!!}$$

met als gemiddelde waarde < $n_r>=$ p_rN . Het gemiddelde aantal stappen naar links is ook < $n_l>=$ $N - \langle n_r \rangle = N(1 - n_r) = Nn_l$

De afstand d_N die na een gegeven aantal stappen afgelegd is, te meten vanuit het beginpunt is dan:

$$d_N = n_r - n_l = 2n_r - N$$

st: random walk met p _i =p _r = 1/2	Voor random walk met $p_l=p_r=1/2$ zijn de wssheden $P_N(d)$ om een bepaalde afstand d afgelegd te hebben na N stappen gelijk aan:
	$P_N(d) = \begin{cases} \frac{1}{2^N} C_{\frac{d+N}{2}}^N & d+N \text{ even} \\ 0 & d+N \text{ oneven} \end{cases}$
	> de verwachtingswaarde $\langle d_N \rangle$ hiervoor is 0
st: absolute verwachtingswaarde	De verwachtingswaarde voor de absolute afstand na N stappen is:
	$< d_N >=2^{-N}\sum_{d=-N,-(N-2),\dots}^{N}\frac{ d N!}{\left(\frac{N+d}{2}\right)!\left(\frac{N-d}{2}\right)!}$
	Indien $N=2J$ even is, krijgen we
	$< d_N > = \frac{2}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{2} + \frac{1}{2}N)}{\Gamma(\frac{1}{2}N)} = \frac{(N-1)!!}{(N-2)!!}$ (deven)
	waarbij we de dubbele faculteit gebruiken: $n!! = n(n-2)(n-4)\cdots$.
	Indien $N=2J-1$ oneven is, krijgen we
	$< d_N > = \frac{2}{\sqrt{\pi}} \frac{\Gamma(1+\frac{1}{2}N)}{\Gamma(\frac{1}{2}+\frac{1}{2}N)} = \frac{N!!}{(N-1)!!}$ (d oneven)
	> in de limiet voor grote N wordt dit:
	$< d_N >pprox \sqrt{rac{2N}{\pi}}$
	$< d_N >pprox \sqrt{rac{\pi}{\pi}}$
b) 2D random walk	
concept 2D random walk	Bekijk de 2D random walk als een som van N even lange vectoren in willekeurige richting
	> bekijk dit in het complex vlak, z=x+iy > elke stap wordt gegeven door $e^{i\theta}$ met θ uniform verdeeld tss 0 en 2π
	> positie z na N stappen is dan:
	N
	$z = \sum_{i=1}^{N} e^{i\theta_j}$
	j=1 en de absolute afstand:
	$ z ^2 = \sum_{j=1}^N e^{i\theta_j} \sum_{k=1}^N e^{-i\theta_k}$
	$= \sum_{i=1}^{N} \sum_{k=1}^{N} e^{i(\theta_j - \theta_k)}$
	J = N - 1
	$= N + \sum\limits_{j=1}^{N}\sum\limits_{k eq j}^{N}e^{i(heta_{j}- heta_{k})}$ en dus wordt:
	$< z ^2>=N+\left\langle \sum_{j=1}^N\sum_{k\neq j}^Ne^{i(heta_j- heta_k)} ight angle$
	Elke stap is onafhankelijk van de vorige, zodat θ_j en θ_k ongecorreleerde variabelen zijn. Daardoor valt de tweede term in de som hierboven weg, en dus:
	$< z ^2>=N (9.26)$
	wasin wa amiawu da /N afhanlaliilhaid tawwair-

waarin we opnieuw de \sqrt{N} afhankelijkheid terugzien.

>> in 2D rooster met $N\!\to\!\infty$ is wssheid om eender welk punt op het rooster te bereiken 1

> random walk heeft ook een wssheid 1 om in beginpunt aan te komen