

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/22
Paper 2		Octo	ober/November 2015
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional Ma	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 The structures of six substances are shown below.

Answer the following questions about these substances. Each substance may be used once, more than once or not at all.

(a) Which substance, A, B, C, D, E or F,

is a simple molecular compound,	[1]
is an alloy,	[1]
is a compound, whose aqueous solution gives a yellow precipitate on addition of aqueous silver nitrate,	[1]
is an atmospheric pollutant arising from reactions taking place in car engines,	[1]
is a diatomic molecule,	[1]
conducts electricity when molten but not when solid?	[1]
bstance A is an element.	
nat is meant by the term element?	
	is an alloy, is a compound, whose aqueous solution gives a yellow precipitate on addition of aqueous silver nitrate, is an atmospheric pollutant arising from reactions taking place in car engines, is a diatomic molecule,

(c) Substance **D** oxidises water to oxygen.

Complete the symbol equation for this reaction.

$$2F_2 + 2H_2O \rightarrow \dots HF + \dots$$

[Total: 9]

[2]

0620/22/O/N/15

2 A student measured the highest temperature reached when four different fuels were burned. He used the apparatus shown below.

((a)	The	same	amount	of	each	fuel	was	burne	d
٨	u	1110	Julio	annount	O.	Cacii	1001	was	Duille	,

Suggest **two** other things which the student should keep constant to make the experiment a fair test.

,	1	
:	2	
		[2]

(b)	Is burning an exothermic or an endothermic reaction?
	Give a reason for your answer.

[1]

(c) The table below shows the results.

fuel	molecular formula	initial temperature/°C	final temperature/°C
ethanol	C ₂ H ₆ O	23	44
hexane	C ₆ H ₁₄	17	46
pentane	C ₅ H ₁₂	22	48
propanol	C ₃ H ₈ O	21	45

(i)	Which fuel gave the highest temperature change?	
		[1]
(ii)	Which fuel has the highest relative molecular mass? You are not expected to do any calculations.	
		[1]

(d)	Met	thane is a fuel.					
	(i)	Draw the structo	ure of methane sh	nowing all atoms	and all bonds.		
							[1]
	(ii)	Which one of the Tick one box.	e following fuels	is largely methan	ie?		
			СО	al			
			fue	el oil			
			ga	soline			
			na	tural gas			[1]
(e)	Per	ntane and hexane	e belong to the sa	ame homologous	series.		
	(i)	How can you te	II this from their n	ames?			
							[1]
	(ii)	Complete the forbelow.	ollowing sentence	e about a homol	ogous series usino	g words from the	: list
		acidic	alcohol	compounds	density	different	
		elements	functional	masses	properties	solid	
		A homologous s	series is a family	of similar	with sim	ilar	
		due to the prese	ence of the same		. group.		[3]
							[ی]

[Total: 11]

^	The second second	Company and the state of	- £ _:			I	In a set of the second	the section and the	In a Lance
3	The order of	reactivity	OT ZINC,	magnesium,	caicium	and	parium	is snown	pelow

$$zinc
ightarrow magnesium
ightarrow calcium
ightarrow barium$$
least reactive $ightharpoonup most$ reactive

- (a) Equal-sized pieces of zinc, magnesium, calcium and barium are placed in water. Some observations from these reactions are shown in the table.
 - (i) Complete the box for barium.

metal	observations
zinc	no reaction with cold water
magnesium	gives a few bubbles with hot water, does not disappear
calcium	gives off bubbles steadily with cold water, gets smaller slowly
barium	

(ii) Give the name of a metal in the above table which is extracted by heating with carbon.

[1]

(iii) Suggest why barium cannot be extracted using carbon.

[1]

(b) Barium can be extracted by heating barium oxide with aluminium.

How does this equation show that barium oxide gets reduced?

4BaO + $2Al \rightarrow 3Ba + BaAl_2O_4$

(c) A solution of barium hydroxide is alkaline.

- (i) Describe how you would show that barium hydroxide solution is alkaline. [1]
- (ii) Complete the word equation for the reaction of barium hydroxide with hydrochloric acid.

[2]

(d) A student used the apparatus shown below to calculate the concentration of barium hydroxide solution.

(i)	Give the name of the piece of apparatus labelled A .	
		[1]

(ii) The hydrochloric acid is added to the barium hydroxide solution in the flask until the acid is in excess.

......[2]

(e) Complete the diagram below for the electrolysis of molten zinc chloride. Label the electrodes and the power source.

Describe how the pH of the solution changes as the acid is added.

[3]

[Total: 14]

4 A student investigated the reaction of lumps of iron with sulfuric acid.

$$Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$$

She used the apparatus shown below.

(a)	(i)	Describe how this apparatus can be used to investigate the rate of this reaction.	
			[3]
	(ii)	Describe how the rate of reaction would differ if smaller lumps of iron were used. All other conditions remain the same.	
			[1]
(b)	The	student investigated the effect of temperature on the reaction rate.	
	(i)	State three factors which the student should keep the same in each experiment.	
		1	
		2	
		3	
			[3]

(ii) The table shows how the rate of reaction changed with temperature.

temperature /°C	rate of reaction in cm³/s
20	2.2
30	4.4
40	8.8
50	17.6

	Use the information in the table to describe how the rate of reaction changed with temperature.
	[2]
(c)	Iron(II) sulfate can be prepared by adding excess iron to sulfuric acid.
	Describe how you could obtain pure dry crystals of iron(II) sulfate from the reaction mixture in the conical flask.
	[3]
	[Total: 12]

5

A cry	stal of sulfur melts when heated.	
	Explain, using the kinetic particle theory, the differences between the arrangement and most the particles in sulfur crystals and liquid sulfur.	tion
		[4]
(b) 3	Sulfur dioxide is an atmospheric pollutant.	
(i) Describe how sulfur dioxide is formed and how it gets into the atmosphere.	
		[2]
(i	i) What type of oxide is sulfur dioxide?	
		[1]
(ii	i) Flue gas desulfurisation removes sulfur dioxide from exhaust gases in factories.	
	Describe the process of flue gas desulfurisation.	
		[2]
(iv	y) Sulfur dioxide is also formed when copper is reduced by hot concentrated sulfuric aci	d.
	Complete the symbol equation for this reaction.	
	$Cu +H_2SO_4 \rightarrow CuSO_4 + SO_2 +H_2O$	[2]
(c) (Copper is a metal.	[4]
	Give two physical properties which are characteristic of all metals.	
	l	
2)	 [2]

(d) The table below gives some properties of some metals that are used to make electrical cables and wires.

metal	strength	electrical conductivity	melting point /°C	price \$/kg
aluminium	comparatively weak	good	660	1.5
copper	strong	very good	1093	29
steel	strong	fairly good	1535	2.1
silver	fairly strong	very good	962	635

(i)	Suggest why aluminium with a steel core is used for overhead power cables.	
		[2]
(ii)	Copper is used in electrical wiring in the home rather than silver.	
	Suggest why.	
		[1]
	[Total:	16]

6 Geraniol is a chemical found in rose petals. The structure of geraniol is shown below.

$$\begin{array}{c|ccccc} CH_3 & H & CH_3 \\ & | & | & | \\ C = C - CH_2 - CH_2 - C = C - CH_2 - OH \\ & | & | \\ CH_3 & & | & | \end{array}$$

- (a) (i) On the structure above, put a ring around the alcohol functional group. [1]
 - (ii) Is geraniol a saturated or an unsaturated compound? Give a reason for your answer.

.....[1]

(b) Geraniol can be extracted from rose petals by steam distillation using the apparatus shown below. The geraniol is carried off in small droplets with the steam.

(i) Give the name of the piece of apparatus labelled A.

.....[1]

(ii) The vapour at point **X** is a mixture of geraniol and steam.

Give **one** property of a mixture which distinguishes it from a compound.

[41]

(iii) The geraniol and water are collected in the beaker.

What information in the diagram above shows that geraniol is less dense than water?

.....

(c) Geraniol can also be extracted from rose petals by grinding the petals in ethanol.

((i)	Draw the structure of ethanol showing all atoms and all bonds.	
			[1]
(i	ii)	Complete the word equation for the complete combustion of ethanol.	
		ethanol + oxygen → +	
			[2]
(d) \	Wh	at is the percentage by volume of oxygen in the air?	
			[1]
			[Total: 9]
			[IOtal. 9]

7	Bervlli	um is	in Group	II and	Period 2	of the	Periodic	Table.
	DCI y III	aiii 10	ni Oloup	ii aiia	I CIIOG Z	- 01 1110	CITOGIO	TUDIC.

(a)	Describe the structure of a beryllium atom.
	In your answer, refer to

•	the type and	number	of each	subatomic	particle	present
---	--------------	--------	---------	-----------	----------	---------

• the charges on each type of subatomic particle,

•	the posi	tion of each	type of subatomic	particle in the atom.

[[
 151

(b) Part of the structure of beryllium chloride is shown below.

Be Be Be
$$Cl$$
 Cl Cl Cl Cl

Deduce the simplest formula for beryllium chloride.

(c) Beryllium carbide, Be₂C, reacts with water. Beryllium hydroxide and methane are formed.

$$Be_2C + 4H_2O \rightarrow 2Be(OH)_2 + CH_4$$

(i) Calculate the relative formula mass of beryllium hydroxide.

(ii) Describe **one** adverse effect of methane on the environment.

[1]

[Total: 9]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

Group	0	# He	20 Ne Neon 10	40 Ar Argon	84 Kry pton 36 Krypton		Rn Radon 86	_	175 Lu Im Lutetium 71	Lawrendum
	=		19 Fluorine	35.5 C1 Chlorine			At Astatine		173 Yb Ytterbium 70	Nobelium
	>		16 Oxygen	32 S Suffur	Selenium	128 Te Tellunum	Po Polonium 84		169 Tm Thulium	Mandelevium
	>		14 N itrogen 7	31 Phosphorus 15	AS Asenic				167 Er Erbium 68	Fm Fermium
	≥		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn 50	207 Pb Lead		165 Ho Holmium 67	Einsteinium
	≡		11 Boron	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T t Thallium		162 Dy Dysprosium 66	Cf
					65 Znc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	3 K
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium
					59 Nicke l	106 Pd Palladium	195 Pt Platinum 78		152 Eu Europium 63	Am
					59 Co Cobalt	Rhodium 45	192 Ir Iridium		Sm Samarium 62	
		T Hydrogen			56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 Unanium
					52 Cr Chromium 24	96 Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium
					51 V Vanadium 23	93 No Niobium	181 Ta Tantalum		140 Ce Cerium	232 Th
					48 T Titanium 22	2 r Zrconium 40	178 # Hafnium 72			nic mass bol
					Scandium 21	89 ×	139 La Lanthanum s	227 Ac Actinium †	series eries	 a = relative atomic mass X = atomic symbol b = profor (stomic) number
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	nthanoic ctinoid s	e ×
	_		7 Li Lithium 3	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 Lanthanoid series 190-103 Actinoid series	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.