Application Report

如何将 CCS 3.x 工程迁移至最新的 Code Composer Studio™ (CCS)

DSP Processors

摘要

本应用报告介绍了将可能在多年前开发的 Code Composer Studio™ 旧工程迁移到最新 CCS 和工具的要点。本文主要以 DSP 处理器为例进行阐述,但报告中的方法也可能适用于其他处理器。

内容

1 简介	2
2 CCS 迁移	
2.1 弃用通知	
2.2 CCS 内的 CCS 培训	
2.3 CCS 旧工程导入向导	
3 DSP/BIOS 与 SYS/BIOS	
3.1 将旧工程迁移到最新工具	
4 工具链: CGT、编译器、链接器	
5 RTSC 和 XDC	
6 COFF 与 ELF	6
7 Processor SDK	
8 NDK 迁移	9
9 参考文献	10
10 修订历史记录	10
插图清单	
图 2-1. TI Resource Explorer 中的 CCS 培训	3
图 2-2. 关于调试主题的 CCS 培训	
图 5-1. XDC 用户	
图 7-1. 最大化重复使用软件	
图 7-2. 典型开发流程	

商标

Code Composer Studio[™] are trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

1 简介

这里并没有将 CCS 3.x 工程迁移到最新版本的常规步骤。所需步骤将取决于所涉及的器件以及所涉及的软件包。总体而言,建议注意以下几点:

- CCS 迁移
- DSP/BIOS 到 SYS/BIOS
- 工具链:编译器、链接器
- RTSC 和 XDC
- COFF与ELF
- Processor SDK
- NDK 迁移

2 CCS 迁移

Code Composer Studio 下载

授权: CCS V7 和更高版本均为技术软件公开可用 (TSPA)。CCS V4、V5、V6、V7、V8、V9 全都是免费的。

2.1 弃用通知

- Code Composer Studio 的所有 32 位版本都已被弃用。
 - Windows 从 CCSv9.0.0 开始
 - Linux 从 CCSv6.2.0 开始
 - macOS 从未有 32 位版本
- 64 位 CCS 版本不支持 Spectrum Digital XDS510USB JTAG 调试器和任何其他 32 位仿真器。
- CCSv8 的发行版不再支持 Ubuntu 14.04。
- CCSv8 的发行版不再支持 Ubuntu 12.04LTS。
- CCSv7 的发行版不再支持 Windows XP。

Eclipse 是计算机编程中使用的集成开发环境 (IDE),包含一个基本工作区和一个用于定制环境的可扩展插件系统。Eclipse 主要是用 Java 编写的。

CCS v3 迁移到 CCS v5

www.ti.com.cn CCS 迁移

2.2 CCS 内的 CCS 培训

现在,Code Composer Studio 的培训材料已集成到 CCS 内的 Resource Explorer 中或 dev.ti.com 中。在 "Development Tools" → "Integrated Development Environments" → "Code Composer Studio" 部分下,您可以浏览适用于 CCS 的所有培训材料,包括讲座、培训模块和视频。

依次点击 "View" 和 "Resource Explorer"。 图 2-1 显示了 CCS v9.3 的屏幕截图。

图 2-1. TI Resource Explorer 中的 CCS 培训

正在调试中:

- ▼ 🗖 Code Composer Studio
 - Product Page
 - Downloads
 - Release Notes
 - c Linux Host Support
 - User's Guide
 - Support
 - 🕶 🗀 Debug
 - Documents
 - Quick Tips
 - ▼ Training
 - Serial Wire Output (SWO) Trace Workshop
 - Trace Visualization Toolkit Workshop
 - Debug Server Scripting (DSS) Fundamentals Workshop
 - ு 调试服务器脚本(DSS)入门教程
 - Debug Server Scripting (DSS) (YouTube)
 - Multiple devices in the same target configuration (YouTube)
 - Using real-time mode to debug c2000 program in Flash (YouTube)
 - Detecting stack overflow on MSP430 (YouTube)
 - Advanced Event Triggering
 - Enhanced Emulation Module (EEM)
 - ▶ Energy Trace
 - Trace with Keystone Devices
 - Trace with AM335x Devices
 - Profiling with CCS

 - Linux Debugging with CCS
 - Real-Time Debug with CCS
 - Instrumentation Trace Macrocell (ITM)

图 2-2. 关于调试主题的 CCS 培训

CCS v4 中引入了基于 Eclipse 的框架。

www.ti.com.cn CCS 迁移

2.3 CCS 旧工程导入向导

有关 CCS 旧工程导入向导的更多详细信息,请参阅 https://software-dl.ti.com/ccs/esd/documents/ccs_legacy-project-import.html。

3 DSP/BIOS 与 SYS/BIOS

- TI-RTOS (SYS/BIOS) 发行版
- 《SYS/BIOS (TI-RTOS 内核)用户指南》

有关 TI-RTOS 下载信息,请参阅 https://software-dl.ti.com/dsps/dsps_registered_sw/sdo_sb/targetcontent/bios/index.html。

3.1 将旧工程迁移到最新工具

这里有一份介绍如何从 DSP/BIOS 迁移到 SYS/BIOS 的迁移指南。从"变化内容"角度来看,您会发现该指南很有用。如需了解更多信息,请参阅《将 DSP/BIOS 5 应用迁移到 SYS/BIOS 6》。

TI-RTOS 培训系列入门

4工具链:CGT、编译器、链接器

适用于德州仪器 (TI) 处理器的代码生成工具:下载

CCS 已附带 TI 编译器,但每个都有固定版本。

C6000 CGT v8.3 是一个新的编译器:

- v8.3 仅在 ELF EABI 模式下支持 C6400+、C6740 和 C6600
- v8.3 支持 C++14 标准 ISO/IEC 14882:2014,而不再支持 C++03
- 旧版编译器生成的 C++ obj 代码与 v8.0+ RTS obj 库不兼容
- v8.3 提供与 v7.4 相当的性能。性能可能因应用而异
- v7.4.x 将继续支持(长期)ELF EABI 或 COFF ABI 模式下的所有处理器版本

符合以下条件的客户应使用 CGT v8.3:

- 使用 OpenCL、OpenMP 或 HPC-MCSDK 开发新应用
- 开发的新应用会利用仅在 v8.0 及更高版本中可用的新编译器功能 (例如,本机向量类型)

符合以下条件的客户应使用 CGT v7.4.x:

- 维护一个您不希望或不需要在近期内过渡到 v8.3 的现有代码库
- 开发新的应用或维护使用 COFF ABI 的现有应用
- 在 C6200、C6400、C6700、C6700+或 Tesla 上开发新的应用或维护现有应用

您可以将旧版本的编译工具与更高版本的 CCS 一起使用。

旧版本的编译器不会随附 CCS;必须另行安装。可以直接单独安装,也可以直接从 CCS IDE 安装旧版本:安装新软件。

5 RTSC 和 XDC

实时软件组件 (RTSC) 工程提供了基础工具和低级运行内容,以便使用面向所有嵌入式平台的 C 语言进行基于组件的开发。使用 RTSC, 我们可以享受 RTSC 更高级别的编程和更高级别的性能。

RTSC 工程的起点将包括德州仪器 (TI) 当前免费提供的 XDC (eXpress DSP Components) 工具。XDC 工具产品包含创建、测试、部署、安装和使用 RTSC 组件所需的所有工具。

XDC 的主要好处是它可以标准化目标内容的交付,并使目标内容更容易包含在应用中。

XDC 用户分为开发者,我们称之为"消费者"和"生产者"。消费者集成内容包:将 DSP 算法、器件驱动程序、TCP/IP 堆栈、实时操作系统等集成到应用程序中。生产者创建消费者使用的包。

图 5-1. XDC 用户

XDC"包"是一个指定的文件集合,其中的文件形成一个进行版本控制、更新和从生产者到消费者传递的单元。每个包都体现为文件系统中的一个特别命名的目录(及其内容)。包是在整个生命周期中管理内容的焦点。所有包都是作为一个单元进行编译、测试发布和部署。

此处是链接: https://www.eclipse.org/rtsc/, 点击 "User's Guide"。

概述: http://rtsc.eclipseprojects.io/docs-tip/Overview of RTSC。

XDC 发行版: http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/。

通常,所有 RTSC 工程也是 CCS 工程。唯一的区别是它们使用 SYSBIOS、TI-RTOS 或依赖于 RTSC 组件的 SDK。

6 COFF 与 ELF

术语 ABI 代表应用程序二进制接口。ABI 指定编译器和链接器应如何处理各种事项,例如寄存器分配、调用约定、类型大小和目标文件格式。ABI 指定的约定可以将单独编译的目标文件和库链接在一起,形成一个内聚的可执行文件。2010 年推出了名为 EABI(嵌入式应用程序二进制接口)的 ABI。

COFF ABI 和 EABI 之间的主要(但不是唯一的)区别是目标文件格式。COFF ABI 使用 COFF(通用对象文件格式),而 EABI 使用 ELF(可执行连接格式)。

支持 EABI 的 C6000 编译器的第一个版本是 7.2.0 版。支持 COFF ABI 的最后一个版本是 7.4.24 版。

可执行连接格式 (ELF) 比通用对象文件格式 (COFF) 具有更多的调试功能。

www.ti.com.cn Processor SDK

关于如何从 COFF ABI 更改为 EABI:

• 首先,请确保您的所有库以及工程所依赖的任何其他软件都具有 EABI 变体。如果没有,则不能使用这些库,或只能继续停留于 COFF ABI。

TI 编译器开关: --abi=eabi 或 - abi=coffabi。

无法将 COFF 和 ELF 目标文件链接在一起。

有关将您自己的代码从 COFF ABI 迁移到 EABI 的信息,请参阅 C6000 EABI 迁移 Wiki。

7 Processor SDK

如需查看发行版信息,请参阅 E2E 主题: Sitara 和 DSP 软件公告。

NOTE

要即时获取最新的错误修复和特性,建议点击 SDK 下载页面上的"Alert Me",以便在发布新的 SDK 时获得电子邮件通知。

推荐的做法是,在下载 SDK 的特定产品页面上,点击"Alert Me"以便在新版本发布时获得自动电子邮件通知。 有用的 SDK 培训材料位于: Processor SDK 培训系列。

特别是以下内容对于 RTOS 很有用: 1.5 使用 Processor SDK RTOS 进行应用开发的说明

图 7-1 展示了如何保护嵌入式开发人员在现有 TI 器件上的软件投资,因为未来 TI SoC 平台的所有软件版本都将使用这种软件方法。从应用角度来看,即使基础 SoC 不同,功能 CSL 和 LLD 的 API 接口也会保持不变,因此,即使基础软件可能不同,也可以重复使用应用软件。凭借这种软件方法,曾经开发过 TI 处理器软件的应用程序开发人员无需重新学习使用 TI 软件的知识。

图 7-1. 最大化重复使用软件

图 7-2 显示了软件开发人员在使用 Processor SDK RTOS 时将经历的典型应用开发流程。当您浏览演示文稿时,此开发流程将针对每个阶段的培训流程提供更多细节。

通常,您首先购买一个已验证处理器功能的评估平台,然后下载主机上所需的软件环境以便开始相关开发。

拥有评估模块后,您需要执行一些常见的硬件设置步骤,以便在评估平台上运行软件。例如,通过连接仿真器来设置开发环境,这可能会涉及连接电缆,以便通过通用异步接收器/发送器 (UART)、USB 接口进行连接。通常,EVM 套件随附有快速入门指南说明,其中提供了设置 EVM 并在平台上即开即用演示的步骤。

设置好硬件来运行软件后,请完成设置主机开发环境的过程,然后运行一些简单的示例代码以验证 EVM 是否正常运行。例如,在内核上运行 hello world 示例,学习运行 RTOS 应用并检查 EVM 上的一些基本功能,例如使用通用输入/输出 (GPIO) 来闪烁 LED 以及检查 EVM 上的 UART、USB 和网络连接。

在 EVM 上检查了基本功能之后,建议运行 Processor SDK 中提供的例程。这些例程集成了 SDK 的多个组件,并通过创建实际系统用例来突出器件功能。

SDK 中包含使用驱动程序进行应用开发的更多详细信息。这里讨论了 SDK 中的一些关键元素,这些元素将帮助您创建自己的应用。

还讨论了从 TI 评估平台迁移到定制应用板时的应用程序可移植性方面,并介绍了 Processor SDK 的组件,使软件更易于移植。

最后,了解在迁移到定制平台后如何定制软件,并提供一些有助于系统集成的指导。

图 7-2. 典型开发流程

www.ti.com.cn NDK 迁移

8 NDK 迁移

可在已安装的 Processor SDK 包中找到 NDK 迁移指南。例如:C:/ti/ndk_3_61_01_01/docs/ndk/ NDK 2 to 3 Migration Guide.html。

在 BIOS 配置上需要保留一些重要的配置。例如,在 C6657 平台上:

```
/* 加载 CSL 包 */
                                     = "c6657";
var devType
var Csl
                                     = xdc.useModule('ti.csl.Settings');
                                     = devType;
Csl.deviceType
                                     = true;
Csl.useCSLIntcLib
/* 加载 OSAL 包 */
var osType = "tirtos"
var Osal = xdc.useModule('ti.osal.Settings');
Osal.osType = osType;
/* 加载 QMSS 包 */
var Qmss
                                 xdc.loadPackage('ti.drv.qmss');
/* 加载 EMAC 包 */
var Emac = xdc.loadPackage('ti.drv.emac');
Emac.Settings.socType = devType;
var socType
                    = "c6657";
                   = xdc.loadPackage('ti.transport.ndk.nimu');
var Nimu
Nimu.Settings.socType = socType;
** 使用此加载通过 RTSC 来配置 NDK 2.2 及更高版本。在以前版本的
** NDK 中,不支持 RTSC 配置,应将此内容注释掉。
* /
var Ndk
             = xdc.loadPackage('ti.ndk.config');
             = xdc.useModule('ti.ndk.config.Global');
var Global
** 这允许创建检测信号(轮询功能),但不生成堆栈线程
** 在 cdoc (帮助文件) 中查看可以配置哪些 CfqAddEntry 项。** 我们规定在主要任务线程 hpdspuaStart 中自行配置时,不
** 创建任何堆栈线程(服务)。
*/
Global.enableCodeGeneration = false;
```

9参考文献

- 培训
- 处理器 E2E 论坛
- 适用于 OMAPL138 处理器且支持 Linux 和 TI-RTOS 的 Processor SDK
- 适用于 66AK2Ex 处理器的 Processor SDK 支持 Linux 和 TI-RTOS
- 适用于 66AK2Gx 处理器的 Processor SDK 支持 Linux 和 TI-RTOS
- 适用于 66AK2HX 处理器的 Processor SDK 支持 Linux 和 TI-RTOS
- TMS320C6657产品文件夹
- TMS320C6678产品文件夹
- 德州仪器 (TI): 《SYS/BIOS (TI-RTOS 内核)用户指南》
- 德州仪器 (TI): 《将 DSP/BIOS 5 应用迁移到 SYS/BIOS 6》

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

C	nanges from Revision	* (May 2020) to Revision A (February 2021)	Page
•	更新了整个文档的表、	图和交叉参考的编号格式	

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司