jméno a příjmení	login	

IMA1, zadání M

1	9	3	1 1	5	6	Σ
1	4	9	-	9	0	

Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek. Každý příklad je za 15 bodů. V případě, že 3 nebo více příkladů bude hodnoceno 0 body, bude celá písemka hodnocena 0 body bez ohledu na ostatní příklady.

Povolená pomůcka je jeden list papíru formátu A4 popsaný jakkoli a čímkoli (tento list neodevzdávejte). Jiné pomůcky (např. kalkulačka) nejsou povoleny.

- 1. Určete definiční obor funkce $f(x) = \frac{1}{\ln(x+2-\sqrt{x^2-1})}$ a najděte všechna $x \in \mathbb{R}$, pro která je f(x) > 0.
- **2.** Nakreslete grafy funkcí f a g, pro které platí:
 - a) $D(f) = \mathbb{R}$, asymptota v $-\infty$ má předpis 2y x = 2, $\lim_{x \to \infty} f(x) = 2$, f(0) = 1, f'(0) = 0, f(-1) = f(1) = 0, $\lim_{x \to -1^{-}} f(x) = \lim_{x \to 1^{-}} f(x) = \infty$, $f'_{+}(-1) = f'_{+}(1) = \infty$.
 - **b)** $D(g) = \mathbb{R}, g \text{ je spojitá}, \lim_{x \to 3} \frac{g(x) g(3)}{x 3} = \frac{1}{2}.$
- 3. Najděte všechny tečny grafu funkce $f(x) = \ln(5 x^2)$, které jsou rovnoběžné s přímkou $y = -\frac{x}{2} + \frac{1}{3}$.
- **4.** Vypočtěte integrál $\int x \sin(4x \sqrt{3}) dx$.
- 5. Určete obsah plochy mezi osou x a grafem funkce $f(x) = \frac{1}{x+2} \frac{2}{2x+5}$ na intervalu $(0, \infty)$.
- **6. a)** Načrtněte funkci, pro kterou neplatí následující tvrzení: Jestliže bod c je inflexním bodem funkce f, potom f''(c) = 0.
 - b) Napište, jakou vlastnost funkce g popisuje následující tvrzení, a tvrzení znegujte: $\forall x, y \in D(g) \colon x > y \Rightarrow g(x) \neq g(y)$.
 - c) Rozhodněte o pravdivosti následujícího tvrzení (v případě nepravdivého tvrzení udejte protipříklad, v případě pravdivého tvrzení uveďte stručné zdůvodnění): Jestliže je funkce f spojitá na intervalu $\langle a,b\rangle$ a platí $f(a)\cdot f(b)<0$, potom na intervalu $\langle a,b\rangle$ má rovnice f(x)=0 lichý počet kořenů.