Uma regra geral para a utilização de FeSi como desoxidante de aços UBC acalmados ao alumínio

Hiuller C. Araujo

Resumo

A utilização do FeSi como desoxidante foi introduzida em abril de 2012 para auxiliar na redução do consumo de alumínio nas corridas AA-UBC. A análise de 5386 corridas produzidas em 2013 mostrou que a decisão quanto à utilização do FeSi foi tomada corretamente em 71,1% das corridas. Um modelo de classificação binário baseado na técnica de regressão logística binária foi desenvolvido para auxiliar na decisão quando à utilização do FeSi. Foi utilizado como limiar a probabilidade para a qual o modelo apresentava o máximo valor do escore *F*, função da precisão e da exaustividade do modelo. A estimativa para a taxa de acerto do novo modelo é de 87,5%.

A utilização da liga FeSi com 75% de silício foi introduzida em abril de 2012 para reduzir o consumo de alumínio nos aços acalmados ao alumínio (AA) produzidos no desgaseificador RH. Esta técnica permitiu reduzir o consumo de alumínio de 3,1 kg/t para 2,4 kg/t^[1]. A justificativa econômica reside na diferença de custo entre as ligas. Apesar de possuir um custo menor, a desoxidação com FeSi gera menos calor, o que pode ser um complicador pois não é vantajoso utilizar o FeSi quando levar a um aquecimento posterior do aço. Se for preciso aquecer o aço com oxigênio após a desoxidação haverá perda de limpidez pela geração tardia de inclusões de alumina. Se, por outro lado, nenhum aquecimento for necessário então haverá um ganho de qualidade pois a geração total de alumina será menor.

No final de 2103, foi detectado que o consumo de alumínio nos aços UBC (Ultra Baixo Carbono) havia retornado ao patamar anterior ao projeto de redução de consumo de alumínio [2]. Uma investigação [3] mostrou que a proporção de corridas caiu de 47% em janeiro para 25% em novembro de 2013.

Para otimizar a utilização do FeSi propõe-se um critério objetivo baseado dos resultados das corridas de 2013. Um modelo matemático para a tomada de decisão sobre quando utilizar o FeSi foi desenvolvido utilizando a técnica de regressão logística binária.

Métodos

Para auxiliar a tomada de decisão quanto a utilização do FeSi foi implementado um algorítmo de classificação baseado na técnica de regressão logistica binária é encontrar o conjunto de coeficientes para uma equação linear que melhor ajusta o logarítmo das chances em favor de um evento. No problema da utilização da liga de FeSi o evento é a utilização da liga. A definição de chance

dada de acordo com a Equação (1):

$$c = \frac{p}{1 - p'},\tag{1}$$

onde c é a chance e p é a probabilidade a favor do evento. De acordo com a Equação (1), para um evento muito provável quando $p \to 1$ então $c \to c$; e para um evento improvável $c \to 0$.

A forma elementar para o modelo de regressão logística é dada pela Equação (2):

$$\ln\left(\frac{p}{1-p}\right) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n, \quad (2)$$

onde $a_0, a_1, ..., a_n$ são os parâmetros a serem ajustados e $x_1, x_2, ..., x_n$ são os valores das n variáveis explicativas escolhidas para realização da regressão.

As variáveis escolhidas para realização da regressão logística foram: (1) Temperatura do último Celox antes da desoxidação, em °C; (2) Concentração de oxigênio livre do último celox antes da desoxidação, em ppm; (3) Temperatura de liberação (última medição da corrida), em °C.

Figura 1: Medição Celox anterior à desoxidação: (a) corridas ideais e (b) corridas com correção.

Foram coletadas 5386 corridas AA-UBC que foram, então, classificadas em duas categorias: (a) corridas ide-

ais onde a decisão foi acertada e (b) corridas em que a decisão não foi acertada. A Tabela (1) apresenta um resumo dos critérios que utilizados para classificar as corridas e o número de observações em cada caso. Nas corridas em que não houve aquecimento ou resfriamento, a decisão foi considerada acertada independente desta ter sido em favor do FeSi ou não. Nas corridas em que, após a desoxidação houve aquecimento e resfriamento foi considerado erro. Também configura acerto as corridas sem FeSi e com aquecimento e as com FeSi seguido de resfriamento.

Na Figura (1) são apresentadas as últimas medições Celox antes da desoxidação com seus valores de temperatura e concentração de oxigênio livre nos eixos vertical e horizontal, respectivamente separado em dois casos: no painel (a) as corridas em que a decisão foi tomada corretamente segundo os critérios apresentados na Tabela (1) e em (b) as corridas em que a decisão não foi tomada corretamente.

Tabela 1: Critérios para classificação das corridas entre corridas ideais (a) e corridas indesejáveis (b) e o número de corridas em cada caso.

Desoxidante	Sopro	Canivete	Ambos	Nenhum
Al	(a) 1920	(b) 479	(b) 217	(a) 811
FeSi	(b) 735	(a) 585	(b) 123	(a) 516

Para o treinamento do modelo de tomada de decisão, foram utilizadas as 3832 corridas em que a decisão foi acertada. Os valores ótimos para os parâmetros do modelo foram obtidos utilizando o pacote estatístico de código livre *RStudio* juntamente com a linguagem de programação R^[5]. Foi utilizada a função glm() para encontrar o conjunto de coeficientes que minimiza o erro quadrático médio.

Figura 2: Probabilidade, p calculado com base na chances prevista pela regressão logística binária e resultado real da utilização do FeSi (cores).

2. Resultados

O resultado da aplicação da função glm() aos dados de treinamento é sumarizado na Tabela (2). Os valores de Z apresentados juntamente com os valores dos parâmetros dão uma indicação de quão extremos são os valores dos parâmetros em relação ao acaso.

Tabela 2: Coeficientes do modelo de regressão logística binária juntamente com o valor de Z.

Coeficiente	Valor	Z
(intercepto)	-1.497	-1.019
Temperatura	2.072×10^{-1}	28.199
Oxidação	8.345×10^{-3}	21.499
Temp. Liberação	-2.013×10^{-1}	-18.401

Os valores listados na Tabela (2) foram utilizados com os dados de treinamento para calcular a chance de acerto na tomada de decisão. A chance calculada desta maneira foi utilizada para se obter o valor da probabilidade de utilização correta de FeSi utilizando a Equação (1). A probabilidade de utilização correta juntamente com a decisão real é mostrada na Figura (2). Fica evidente na Figura (2) que a aplicação do modelo de regressão logística consegue de fato separar as corridas com e sem a utilização de FeSi. Quando o valor calculado para a chance c é próximo de zero a melhor decisão é utilizar somente alumínio e quando o valor de *c* é próximo de um a melhor decisão é pela utilização da liga FeSi. Para valores intermediários de p há um confundimento aparente. Portanto, para permitir a utilização do modelo na prática é preciso determinar um valor limiar de p para separar as duas regiões. A escolha do valor limiar de p, p_1 requer que seja definido um critérnio objetivo de precisão para o modelo de classificação.

Figura 3: Valor do escore F para diferentes valores de p_l . O valor ótimo para p_l é aquele que maximiza o escore F.

Um critério comumente usado para avaliar a qualidade de um modelo de classificação binário é o da precisão/exaustividade^[6]. Este critério implica na escolha do valor p_l tal que a função F é maximizada, onde:

$$F = 2 \times \frac{pr}{p+r},\tag{3}$$

onde p é a precião do modelo e r é a exaustividade. Mais detalhes sobre o escore F podem ser encontrados em outra parte $^{[6]}$.

A determinação do valor ótimo de p_l foi realizado de modo iterativo no ambiente RStudio. Foram calculados os escores F para valores de p_l entre 0,1 e 1,0 com passo de 0,01 juntamente com a função optimize(). A Figura (3) mostra a relação entre o escore F e o valor limiar de p. O valor obtido para p_l foi de 0,3627243.

A proporção atual de acertos na decisão de utilizar ou não o FeSi foi calculada com base na Tabela (1) onde o total de corridas classificadas como (a) foi dividido pelo número total de corridas. O percentual atual de acertos foi de 71,1% dos casos. A aplicação do modelo de classificação binário nos dados de treinamento resultou em um acerto de 87,5%.

A Equação (4) é usada para representar as regiões de decisão para temperaturas de liberação fixas. Esta relação foi obtida manipulando-se a Equação (2).

$$T = \frac{1}{a_1} \left[\ln \left(\frac{p_l}{1 - p_l} \right) - a_0 - a_2 O - a_3 T_l \right], \quad (4)$$

onde T é a temperatura do Celox antes de desoxidar em ${}^{\circ}$ C, T_l é a temperatura de liberação em ${}^{\circ}$ C e O é a concentração de oxigênio libre em ppm. A Figura (4) é a representação da Equação (4) para algumas temperaturas. O FeSi deverá ser utilizado sempre que a medição Celox anterior à desoxidação estiver acima da curva de nível correspondente à temperatura de liberação desejada.

Figura 4: Curvas de iso temperatura de liberação: usar FeSi sempre que o Celox medido antes da desoxidação estiver acima da respectiva curva de nível.

3. Conclusão

Foi desenvolvido um modelo de classificação baseado na técnica de regressão logística binária para decidir com base na última medição Celor antes da desoxidação e na temperatura de liberação desejada quando utilizar a liga FeSi para pré-desoxidação de aços AA no desgaseificador RH.

O valor limiar para a razão de chance foi escolhido pela maximização da função F que representa a média harmônica entre a precisão e exaustividade [6]. A taxa de acerto do modelo foi estimada em 87,5% com os dados de treinamento o que representa um potencial de melhoria diante do patamar atual de 71,1%.

4. Referências

- [1] USIMINAS. Ferramenta de acompanhamento do projeto de redução do consumo de alumínio. 2012.
- [2] USIMINAS. Painel de indicadores da gerência de convertedores. 2013.
- [3] USIMINAS. Proporção de corridas RH com FeSi. 2013.
- [4] WIKIPEDIA. Logistic Wiregression kipedia, The Free Encyclopedia. 2013. [Accessado 30/12/2013]. Disponível em em: .
- [5] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2013. Disponível em: http://www.R-project.org/.
- [6] WIKIPEDIA. Precision and recall Wikipedia, The Free Encyclopedia. 2013. [Accessado em 27/12/2013]. Disponível em: http://en.wikipedia.org/wiki/Precision_and_recall>.