Contrôle continu à faire à la maison

Exercice 1 (Groupes à isomorphismes près). On admettra le théorème de Cauchy suivant: $si\ G$ est un groupe de cardinal fini n, alors, pour tout diviseur premier p de n, il existe un élément d'ordre p dans G.

- 1. Déterminer à isomorphisme près tous les groupes d'ordre 11. On justifiera soigneusement la réponse.
- 2. Vérifier l'énoncé du théorème de Cauchy pour le groupe $\mathbb{Z}/12\mathbb{Z}$.
- 3. Soit (G,*) un groupe abélien de cardinal 14.
 - (a) Démontrer qu'il existe un élément a d'ordre 7 et un élément $b \neq a$ d'ordre 2.
 - (b) Calculer l'ordre de l'élément a*b dans G (Justifier soigneusement la réponse).
 - (c) En déduire que G est isomorphe à $\mathbb{Z}/14\mathbb{Z}$. Qu'est-ce qui ne marche pas dans le raisonnement précédent si G n'est pas supposé abélien ?

Exercice 2. 1. Parmi les éléments de $\mathbb{Z}/8\mathbb{Z}$, lesquels engendrent $\mathbb{Z}/8\mathbb{Z}$?

- 2. Démontrer que $\mathbb{Z}/8\mathbb{Z}$ n'est pas isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (indication: on pourra utiliser l'ordre des éléments).
- 3. Existe-t-il $\sigma \in S_3$ tel que $S_3 = \langle \sigma \rangle$? (Justifier la réponse bien-sûr).

Exercice 3 (Ordre, morphismes.). 1. Donner deux groupes commutatifs non-isomorphes de cardinal 20. On répondra impérativement en donnant une justification.

- 2. Donner deux morphismes de groupes distincts de \mathbb{Z} vers $\mathbb{Z}/20\mathbb{Z}$. Justifier
- 3. Donner deux morphismes de groupes distincts de $\mathbb{Z}/10\mathbb{Z}$ vers $\mathbb{Z}/20\mathbb{Z}$ (Justifier la réponse!).

Exercice 4. On appelle $X = \{D_c, c \in \mathbb{R}\}$ l'ensemble des droites D_c d'équation x + y = c (avec c un réel).

- 1. Montrer que l'application $\mathbb{R} \times X \to X$ qui envoie $(\lambda, D_c = \{(x, y), x + y = c\})$ sur $\lambda \cdot D = \{(x, y), x + y = c + \lambda\}$ est une action du groupe $(\mathbb{R}, +)$ sur X.
- 2. Déterminer, pour tout $t \in \mathbb{R}$, le stabilisateur Stab_{D_t}.
- 3. Déterminer l'orbite de D_0 .

Exercice 5. On considère $X = \{f : \mathbb{R} \to \mathbb{R}\}$ et l'application $\rho : \mathbb{R}^* \times X \to X$ définie par $(\lambda, f) \mapsto (t \mapsto f(\lambda t))$.

- 1. Démontrer que ρ est une action à gauche de (\mathbb{R}^*, \times) sur X.
- 2. Déterminer Fix(-1).
- 3. Justifier qu'il n'existe pas de fonction f telle que $\operatorname{Stab}_f =]-\infty, 0[$ (on pourra utiliser les propriétés d'un stabilisateur).
- 4. Construire une fonction f telle que Stab_f est $]0, +\infty[$.