CSC2516 - Homework II

Sergio E. Betancourt (998548585) 2019-02-11

Part 2

(a) Goal: Specify hyperparameters $(\alpha_A, \beta_1, \beta_2, \epsilon_A)$ that make Adam equivalent to RMSprop with $(\alpha_R, \gamma, \epsilon_R)$.

Note that RMSprop divides the learning rate by a weighted average of the squared gradient plus a dampener. To adapt Adam to perform RMSprop, we simply let the Adam hyperparameters be:

$$\beta_1 = 0$$
, $\beta_2 = \gamma$, $\alpha_A = \alpha_B$, and $\epsilon_A = \epsilon_B$.

The above means that we eliminate the first time scale and let $\mathbf{m}_t \leftarrow \mathbf{g}_t$.

(b) Goal: Specify hyperparameters $(\alpha_A, \beta_1, \beta_2, \epsilon_A)$ that make Adam equivalent to Momentum SGD with (μ, α_S) .

Note that momentum SGD does not make use of a second timescale with respect to the squared gradient term \mathbf{g}_t^2 . Therefore, Adam is equivalent to momentum SGD when we take away Adam's $\mathbf{v_t}$ update rule, leaving it as initialized $\forall t, \mathbf{v_t} = 0$ and elevate the dampener to 1 to prevent division by 0 and undesired scaling.

Thus, the right parameters are:

$$\alpha_{\mathbf{A}} = \alpha_{\mathbf{S}}, \ \beta_{\mathbf{1}} = \mu, \ \beta_{\mathbf{2}} = 1, \ \text{and} \ \epsilon_{\mathbf{A}} = 1.$$

(c) Goal: Show that $\epsilon_A = 0 \implies \text{Adam algorithm is invariant to re-scaling.}$

First, denote $\tilde{\mathcal{J}}(\theta_t) = C \cdot \mathcal{J}(\theta_t)$, assuming C > 0, and let $\epsilon_A = 0$ and $\tilde{\theta}_0 = \theta_0$. Note that $\nabla \tilde{\mathcal{J}}(\theta_t) = C \cdot \nabla \mathcal{J}(\theta_t)$. Then, for t=1,

$$\begin{aligned} \tilde{\mathbf{g}}_1 \leftarrow \nabla \tilde{\mathcal{J}}(\theta_0) \\ \tilde{\mathbf{m}}_1 \leftarrow (1 - \beta_1) \tilde{\mathbf{g}}_1 \ , \ \tilde{\mathbf{v}}_1 \leftarrow (1 - \beta_2) \tilde{\mathbf{g}}_1^2 \\ \tilde{\theta}_1 \leftarrow \tilde{\theta}_0 + \alpha_A \tilde{\mathbf{m}}_1 / \sqrt{\tilde{\mathbf{v}}_1} \end{aligned}$$

but $\tilde{\mathbf{m}}_1/\sqrt{\tilde{\mathbf{v}}_1} = \frac{(1-\beta_1)\tilde{\mathbf{g}}_1}{\sqrt{(1-\beta_2)\tilde{\mathbf{g}}_1^2}} = \frac{C}{|C|} \cdot \frac{(1-\beta_1)\mathbf{g}_1}{\sqrt{(1-\beta_2)\mathbf{g}_1^2}} = \mathbf{m}_1/\sqrt{\mathbf{v}_1}$, given $\frac{C}{|C|} = 1$. Then $\tilde{\mathbf{m}}_1 = C\mathbf{m}_1$ and $\tilde{\mathbf{v}}_1 = C^2\mathbf{v}_1$, and thus $\tilde{\theta}_1 = \theta_1$.

Now, assume the above holds for t = k for induction. Explicitly, assume

$$\tilde{\theta}_k = \theta_k$$
, given $\tilde{\theta}_{k-1} = \theta_{k-1}$ and $\tilde{\mathbf{m}}_k / \sqrt{\tilde{\mathbf{v}}_k} = \mathbf{m}_k / \sqrt{\mathbf{v}_k}$
where $\tilde{\mathbf{m}}_k = C\mathbf{m}_k$ and $\tilde{\mathbf{v}}_k = C^2\mathbf{v}_k$

Consider t = k + 1:

$$\begin{split} \tilde{\mathbf{g}}_{k+1} \leftarrow \nabla \tilde{\mathcal{J}}(\theta_k) \\ \tilde{\mathbf{m}}_{k+1} \leftarrow \beta_1 \tilde{\mathbf{m}}_k + (1-\beta_1) \tilde{\mathbf{g}}_{k+1} \ , \ \tilde{\mathbf{v}}_{k+1} \leftarrow \beta_2 \tilde{\mathbf{v}}_k + (1-\beta_2) \tilde{\mathbf{g}}_{k+1}^2 \\ \tilde{\theta}_{k+1} \leftarrow \tilde{\theta}_k + \alpha_A \tilde{\mathbf{m}}_{k+1} / \sqrt{\tilde{\mathbf{v}}_{k+1}} \end{split}$$

We have:

$$\tilde{\mathbf{m}}_{k+1} \leftarrow \beta_1 \tilde{\mathbf{m}}_k + (1 - \beta_1) \tilde{\mathbf{g}}_{k+1} \qquad \tilde{\mathbf{v}}_{k+1} \leftarrow \beta_2 \tilde{\mathbf{v}}_k + (1 - \beta_2) \tilde{\mathbf{g}}_{k+1}^2
= C\beta_1 \mathbf{m}_k + (1 - \beta_1) C \mathbf{g}_{k+1} \qquad = C^2 \beta_2 \mathbf{v}_k + (1 - \beta_2) C^2 \mathbf{g}_{k+1}
= C(\beta_1 \mathbf{m}_k + (1 - \beta_1) \mathbf{g}_{k+1}) \qquad = C^2 (\beta_2 \mathbf{v}_k + (1 - \beta_2) \mathbf{g}_{k+1})
= C \mathbf{m}_{k+1} \qquad = C^2 \mathbf{v}_{k+1}$$

and thus,

$$\tilde{\mathbf{m}}_{k+1}/\sqrt{\tilde{\mathbf{v}}_{k+1}} = \mathbf{m}_{k+1}/\sqrt{\mathbf{v}_{k+1}} \implies \tilde{\theta}_{k+1} \leftarrow \theta_k + \alpha_A \mathbf{m}_{k+1}/\sqrt{\mathbf{v}_{k+1}}$$

resulting in $\tilde{\theta}_{k+1} = \theta_{k+1}$. Therefore, Adam with $\epsilon_A = 0$ is invariant to re-scaling.