Metodi di Risoluzione degli Integrali

Tobia Sacchetto

September 1, 2025

1 Esercizio 1

1.1 Consegna

Preso dall'esercizio 8 della consegna. Calcolare una approssimazione del seguente integrale

$$\int_0^\pi \sin(x+1)dx$$

usando una formula di Gauss-Legendre a 4 punti. Fornire una stima dell'errore commesso in entrambe i casi (impostare il calcolo).

x_i	w_i
-0.861136	0.347855
-0.339981	0.652145
0.339981	0.652145
0.861136	0.347855

Fornire una stima dell'errore commesso (impostare il calcolo).

1.2 Svolgimento

Si ricorda che i w_i sono i pesi per il polinomio di Legendre di grado 4, mentre gli x_i sono le radici del polinomio sempre di 4^o grado di Legendre. Inoltre, il polinomio di Legendre vale solo per l'intervallo [-1,1] quindi si richiede di trovare una formula per andare dall'intervallo $[0,\pi]$ a [-1,1].

Si pone un ipotetico t come incognita che se x=0 lo porti a t=-1 e se si pone $x=\pi$ lo porti a t=1:

$$t = \frac{2x}{\pi} - 1$$

A questo punto si isola l'incognita che diventa:

$$x = \frac{\pi(t+1)}{2} \to dx = \frac{\pi}{2}dt$$

ora lo si sostituisce nell'integrale precedente:

$$\int_0^{\pi} \sin(x+1)dx = \int_{-1}^1 \sin(\frac{\pi}{2}(t+1)+1)\frac{\pi}{2}dt$$
$$= \frac{\pi}{2} \int_{-1}^1 \underbrace{\sin(\frac{\pi}{2}(t+1)+1)dt}_f$$

Ora si può vedere l'integrale secondo il metodo di Gauss-Legendre come una sommatoria che va da 1 fino al grado del polinomio (4 in questo caso) e che all'interno moltiplica pesi per la funzione con le radici:

$$\frac{\pi}{2} \int_{-1}^{1} f = \frac{\pi}{2} * \sum_{i=1}^{4} w_i f(x_i)$$

Si riporta di seguito un piccolo script MATLAB usato per i calcoli:

```
risultato=pi/2 * risultato

risultato=pi/2 * risultato

risultato=pi/2 * risultato

risultato=pi/2 * risultato
```

1.3 Risultato

Il risultato da console è:

```
risultato =

1.0805962416823

errore =

8.3701e-06
```

Il risultato ottenuto svolgendo l'integrale è:

$$\int_0^{\pi} \sin(x+1)dx = 2\cos(1) = 1.0806046117362794348018732$$

Si noti che il risultato è approssimato bene fino alla quarta cifra dopo la virgola. Per l'esattezza l'errore è 8.3701e-06, come calcolato con MATLAB

1.4 Calcolo dell'errore

Lo script precedente visualizzava anche l'errore che era stato commesso. Per impostare il calcolo dell'errore si prende la formula per il polinomio di grado 4 di Legendre:

$$p_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

e la si mette nella formula dell'errore, dove per ξ si intende un valore per la f, n=4= grado del polinomio, a=-1,b=1, w(x)=1 per le formule di

Legendre e
$$f = \sin(\pi/2 * (t+1) + 1)$$

$$E[f] = \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{b} w(x)p_{n}(x)^{2}dx$$

$$= \frac{f^{(8)}(\xi)}{(8)!} \int_{-1}^{1} w(x)p_{4}(x)^{2}dx$$

$$= \frac{f^{(8)}(\xi)}{(8)!} \int_{-1}^{1} (\frac{1}{8}(35x^{4} - 30x^{2} + 3))^{2}dx$$

$$= \frac{\max_{x \in [-1,1]} (\frac{\pi^{8} \sin(\frac{\pi(x+1)}{2} + 1)}{256})}{8!} \int_{-1}^{1} (\frac{1}{8}(35x^{4} - 30x^{2} + 3))^{2}dx$$

$$= \frac{37.0645}{(8)!} * \frac{2}{9}$$

$$= 2.0428e - 04$$

Di seguito viene visualizzata l'immagine della funzione f^8 per vedere visivamente il massimo.

Figure 1: Rappresentazione della funzione derivata 8^a

Si osserva che l'errore calcolato precedentemente nella funzione è più piccolo (8.3701e-06) ed effettivamente lo maggiora.

Per fare i calcoli è stato usato MATLAB. Di seguito lo script, il quale calcola il massimo della funzione, l'integrale e successivamente l'errore

```
close all clear all
```

```
% clc
% % Calcolo derivata 8
% % syms t
% f = sin(pi/2 *(t+1)+1);
% diff(f,8);
%
% Trovo il massimo
z = @(x)((pi^8*sin((pi*(x + 1))/2 + 1))/256); % la mia derivata :)
[x_max, f_max_neg] = fminbnd(@(x) -z(x), -1, 1);
fprintf('Il massimo della funzione e: %d\n', z(x_max));
% Visualizzo la mia funzione
x_vals = linspace(-2, 2, 1000);
y_vals = z(x_vals);
plot(x_vals,y_vals,'r');
%
% f = @(x)((1/8*(35*x^4-30*x^2+3))^2);
syms x
f = (1/8*(35*x^4-30*x^2+3))^2; % formula di legendre per il 40
grado
ris_int=int(f,x,-1,1); % risolvo l'integrale
errore=double(z(x_max)/factorial(8) * ris_int)
```

2 Esercizio 2

2.1 Consegna

Preso dall'esercizio 16: calcolare il seguente integrale

$$\int_0^1 \int_0^x \frac{y}{1+xy} dy dx$$

usando regole di integrazione lungo la direzione x e y e tecniche di Montecarlo. Confrontare i risultati ottenuti in termini di accuratezza e complessità.

2.2 Svolgimento

Esistono vari possibili modi per svolgerlo con il metodo di Montecarlo. Si elencano 2 metodologie:

2.2.1 Monte Carlo Crudo sul Dominio Triangolare

Si generano i punti (x,y) uniformemente distribuiti sul triangolo $0 \le y \le x \le 1$. L'integrale è approssimato moltiplicando la media dei valori della funzione per l'area del triangolo (0.5). È riportato lo script MATLAB che risolve l'integrale usando il metodo descritto precedentemente.

2.2.2 Montecarlo Sequenziale

Per ogni x si stima l'integrale interno $\int_0^x \frac{y}{1+xy} dy$ con Monte Carlo. Successivamente, si valuta anche l'integrale esterno usando i valori ottenuti. È mostrato lo script MATLAB che risolve l'integrale usando il metodo appena descritto.

```
close all
clear all
clc
N = 50000; % Campioni per l'integrale esterno
M = 50000; % Campioni per l'integrale interno
punti = rand(N, 1);
stima_integrale = 0;
```

2.3 Differenze e Risultato

Con entrambi i metodi si converge verso il valore 0.122 con un numero sufficiente di campioni. Mentre il primo metodo è più efficiente e semplice, il secondo è utile per integrali annidati ma richiede più calcoli(aumenta la complessità).

- Metodo 1: 0.122846151373576 con N = 50000
- Metodo 2: 0.122123789908462 con M = N = 25000
- Reale: 0.122350853765048690185910429818425125976915434672702343633207713...

I risultati (metodo 1 e 2) sono delle variabili aleatorie che cambiano casualmente di volta in volta che si lancia lo script, ma entrambe cercano di avvicinarsi al valore reale.

3 Esercizio 3

3.1 Consegna

Preso dall'esercizio 4:

Stimare quanti intervalli sono necessari nella formula composita dei trapezi per approssimare l'integrale

$$\int_0^2 \exp^{-x^2} dx$$

con un'errore che sia minore di 10^{-6} . Riprovare con il metodo di Romberg.

3.2 Svolgimento

Trapezzi Composta

La formula dei trapezzi composta è:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}(f(a) + 2\sum_{i=0}^{h-1} f(x_i) + f(b)) + E[f]$$

dove, $h=\frac{b-a}{n}$, n=numero di valutazioni di funzioni, errore $=E[f]=-\frac{(b-a)h^2}{12}f''(\eta)$ Si pone $f=e^{-x^2}dx$, quindi $f''=4x^2e^{-x^2}-2e^{-x^2}$. Si crea la disequazione:

$$|E[f]| \le (b-a)^3 \frac{M}{12n^2} = (b-a) \frac{h^2}{12} \max_{X \in [0,2]} |f''(X)| < 10^{-6}$$

Si effettua la sostituzione e si procede con i calcoli:

$$(2-0)\frac{\left(\frac{2-0}{n}\right)^2}{12} \max_{x \in [0,2]} |4x^2e^{-x^2} - 2e^{-x^2}| < 10^{-6}$$

$$\frac{\left(\frac{2}{n}\right)^2}{6} \max_{x \in [0,2]} |4x^2e^{-x^2} - 2e^{-x^2}| < 10^{-6}$$

$$\frac{2}{3n^2} \max_{x \in [0,2]} |4x^2e^{-x^2} - 2e^{-x^2}| < 10^{-6}$$

$$\frac{2}{3n^2} 2 < 10^{-6}$$

$$\frac{4}{3n^2} < 10^{-6}$$

$$\frac{4}{3 * 10^{-6}} < n^2$$

$$1155 \approx 1154.7005 \approx \sqrt{\frac{4}{3 * 10^{-6}}} < n$$

Lo script MATLAB utilizzato per il calcolo del massimo è riportato di seguito. Si visualizza graficamente la f''.

Figure 2: Rappresentazione della funzione

Come si può osservare il massimo è vicino a 2.

3.2.2 Formula Romberg

Per trovare l'errore di Romberg ci si dota di un paio di formule. Si mostra la tabella dell'algoritmo di Romberg:

Si ricordano un paio di informazioni. Il numero di iterazioni (k) è 5, ma nel trovare l'errore può anche non esserlo ed essere >5. $R_{k,k}$ converge

all'integrale come h_k^{2k} dove h è l'errore, b=2,a=0. Ora si pone:

$$h_k^{2k} \le 10^{-6}$$

$$\left(\frac{b-a}{2^{k-1}}\right)^{2k} \le 10^{-6}$$

$$\frac{2^{2k}}{2^{(k-1)2k}} \le 10^{-6}$$

$$2^{2k-(2k^2-2k)} \le 10^{-6}$$

$$2^{-2k^2+4k} \le 10^{-6}$$

$$\ln(2^{-2k^2+4k}) \le \ln(10^{-6})$$

$$-2k^2 + 4k \ln(2) \le -6\ln(10)$$

$$-2k^2 + 4k \le -6\frac{\ln(10)}{\ln(2)}$$

$$-2k^2 + 4k + 19.9316 \ge 0$$

Il risultato lo si può capire disegnando la funzione del polinomio nei punti in cui la funzione interseca l'asse delle x:

Figure 3: Rappresentazione della funzione

Il risultato di conseguenza è $k_1 = -2.311$ e $k_2 = 4.311$. Si prende il valore positivo e intero per eccesso dei risultati, quindi k = 5. La formula per trovare il numero di valutazioni di funzione è $2^{k-1} + 1$ che sostituendo diventa $2^4 + 1 = 17$. Ora per scrupolo si esegue uno script in MATLAB per

calcolare la tabella di Romberg e vedere se il numero i (dove $R_{i,i}$ il valore più accurato sulla tabella) sia $\geq k$ e il numero di funzione sia \geq del numero di funzioni che si è appena trovato.

```
close all
  clear
  clc
  %qua per trapezzi per trovare il massimo
  z=0(x)(abs(4*x^2*exp(-x^2) - 2*exp(-x^2)));
  [x_max, f_max_neg] = fminbnd(0(x) -z(x), -1, 1);
  fprintf('Il massimo della funzione f'' e: %d\n\n', z(x_max));
  %Romberg
  f = 0(x)(exp(-x.^2));
  tol=1e-6; %la nostra tolleranza
  a=0;b=2;
 m=inf; %numero di righe
  %si ferma lui quando trova la tolleranza giusta
20 [R,k,itf,vett_val]=romberg(f,a,b,tol,m);
21 disp(R)
 fprintf("\nIl valore e' stato trovato dopo %d iterazioni e
      ,2));
```

```
function [R,k,itf,vett_val]=romberg(f,a,b,tol,m)

h=b-a;
R(1,1)=h/2*feval(f,a)+feval(f,b);

vett_val=[a,b];
itf=2;
%M e' il numero delle righe
for k=2:m
%La mia tabella e' costruita per righe
R(k,1)=0.5*(R(k-1,1)+h*sum(feval(f,a+h/2:h:b-h/2))); %
quello che faccio e' partire da a+h/2 e andare fino a b
```

```
Il massimo della funzione f' e: 2.389485e+00
1.0183
                         0
0.8770
          0.8299
                         0
                                    0
                                              0
        0.8818
0.8806
                    0.8853
                                    0
                                                         0
0.8817
          0.8821
                    0.8821
                               0.8820
                                                         0
0.8820
          0.8821
                    0.8821
                               0.8821
                                         0.8821
                                                         0
0.8821
          0.8821
                    0.8821
                               0.8821
                                         0.8821
                                                   0.8821
Il valore e' stato trovato dopo 6 iterazioni e quindi dopo 33
   valutazioni di funzione
```

Come possiamo vedere $R_{i,i} = R_{6,6}$ e quindi i = 6 > k = 5 e di conseguenza il numero di valutazione di funzione 33 > 17.

4 Esercizio 4

4.1 Consegna

Preso dall'esercizio 3 del foglio. Applicare il metodo di Romberg agli integrali dell'esercizio precedente (esercizio 2 del foglio) valutando quante valutazioni di funzioni occorrono per ottenere la stessa tolleranza 10^{-5} Per scrupolo si

riportano gli integrali:

$$\int_{1}^{2} \frac{1}{x} dx$$

$$\int_{-1}^{1} \frac{1}{1+x^{2}} dx$$

$$\int_{0}^{2} \cos(x) dx$$

4.2 Svolgimento

4.2.1 primo integrale

Lo si svolge nel seguente modo:

$$h_k^{2k} = 10^{-5}$$

$$\left(\frac{b-a}{2^{k-1}}\right)^{2k} = 10^{-5}$$

$$\frac{1^{2k}}{2^{(k-1)2k}} = 10^{-5}$$

$$(2^{1-k})^{2k} = -5\ln(10)$$

$$2k(1-k) = -5\frac{\ln(10)}{\ln(2)}$$

$$-2k^2 + 2k + 16.61 = 0$$

$$k_1 = 3.43$$

$$k_2 = -2.43$$

Il valore che si mantiene è k_1 siccome positivo. Poichè la consegna chiede il numero di iterazioni esatto per avere una tolleranza di 10^{-5} allora lo si tiene così e non lo si approssima per eccesso ad un numero intero. Si calcola il numero di valutazioni di funzione: $2^{k-1} + 1 = 2^{2.43} + 1 = 6.3889$.

4.2.2 secondo e terzo integrale

Possiamo risolverli tutti e due con il seguente metodo:

$$h_k^{2k} = 10^{-5}$$

$$\left(\frac{b-a}{2^{k-1}}\right)^{2k} = 10^{-5}$$

$$\frac{2^{2k}}{2^{(k-1)2k}} = 10^{-5}$$

$$-2k^2 + 4k = -5\frac{\ln(10)}{\ln(2)}$$

$$2k^2 - 4k + 16.61 = 0$$

$$k_1 = -2.04$$

$$k_2 = 4.04$$

Si tiene solo k_2 perchè positivo. Valgono le stesse ipotesi descritte precedentemente col numero intero preso per eccesso. Si calcola il numero di valutazioni di funzione: $2^{k-1} + 1 = 2^{3.04} + 1 = 9.2821$.

4.3 Prova dei Risultati ottenuti

Adesso si prova a verificare se i risultati sono in linea con i valori ottenuti da MATLAB. Per trovare il numero di valutazione di funzioni si conosce la formula $2^{k-1}+1$. Si è fatto uso di un'apposita routine MATLAB, allegata al presente elaborato.

4.3.1 MATLAB

```
close all
clear
clc

f=@(x)(1./x);
tol=1e-5;m=inf;
b=2;a=1;

f
[R,k,itf,vett_val]=romberg(f,a,b,tol,m);
```

```
function [R,k,itf,vett_val]=romberg(f,a,b,tol,m)
h=b-a;
R(1,1)=h/2*feval(f,a)+feval(f,b);
vett_val=[a,b];
itf=2;
%M e' il numero delle righe
for k=2:m
    %La mia tabella e' costruita per righe
    R(k,1)=0.5*(R(k-1,1)+h*sum(feval(f,a+h/2:h:b-h/2))); %
        quello che faccio e' partire da a+h/2 e andare fino a b
        -h/2 con passo h
    itf=itf+2^{(k-2)};
    vett_val = [vett_val , a+h/2:h:b-h/2];
    for i=2:k
        %adesso lavoro sulla riga i
        R(k,i) = (4^{(i-1)} * R(k,i-1) - R(k-1,i-1)) / (4^{(i-1)}-1);
    if (abs(R(k,k)-R(k-1,k-1)) \le tol) %ho trovato la convergenza
        return
    end
    h=h/2; %aggiorno il passo
```

```
end
fprintf("Non ho trovato la convergenza\n");
```

4.3.2 Risultati

I risultati sono rispettivamente:

- Primo integrale con 15 \geq 3.43 iterazioni e con $2^{15-1}+1=16385 \geq$ 6.3889 numero di valutazione di funzione
- Secondo integrale con $6 \ge 4.04$ iterazioni e con $2^{6-1}+1=33 \ge 9.2821$. numero di valutazione di funzione
- Terzo integrale con $5 \ge 4.04$ iterazioni e con $2^{5-1}+1=17 \ge 9.2821$. numero di valutazione di funzione

Di conseguenza tutti i valora sopra riportati valgono.