No. 5505 Engineer's Computation Pad I SOIL COMPOSITION, ETC (4 pages + 3 sheets)

- 1. Background
 - 1.1 Soil Type
 - 1,2 Partile Sige & Shape
- 2. Soil Composition
 - 2.1 Silicate Francisco de
 - 2.2 Selicate Sheets = Clay Municiple
 - 2.3 Predominate Clay Menercla
- 3. Elactrical Natura of Maty Clay Particles
 - 3.1 Shape & Changes
 - 3.2 Diffuse Double Layer
- 4 Three Common Clay Minerals
 - 4.1 Na Kaolinita
 - 4.2 Na Illite
 - 4.3 Na Montmouloute
 - Sheets A, B & C = Soil Composition & Clay Ministry

II (LAY-WATER FORCES (8 pages + 2 shorts)

- 1. Water Vapor Sorption
 - 1.1 Water Content is Relative Humidity (RH)
 - 1.2 Capillary Pressure is Relative Humidity
 - 1.3 Mechanisms of Waln Vapor adsorption
 - 1.4 Measurement of Water Content
 - 1.5 Texaile Shength of Water

No. 5505 Engineer's Computation Pad II Cont.

2. Soil Suction

- 2.1 Ovarien
- 2.2. Components of Soil Suction
- 2.3 Mechanisms Causing Matrix Suction
- 2.4 Direct Lab Measurements of Soil Suction
- 2.5 Soil Scution Measurement Reprigue

3. Nature of Adsorbed Water

- 3.1 Total os Pressure Head & Attraction Pressure
- 3.2 Physical Properties of adonted Water

Sheets A 9B - Soil suction measurement kehniques

III INTERPARTICLE FORCES: Components & Interaction (4 pages 3 start)

- 31. Components of Effective Strass
 - 1.1 Physics-Chemical Effective Shess Egn
 - 1.2 Discussion

2. Particle Interaction

- 2.1 Energy Diagrams
- 22 Energy Diagram for Hypothetical Contact
- 2.3 Source of True Cohosian

Sheets A & B = long range DL forces; C . hypotherkul energy diagram

IV STRENGTH GENERATION IN SOILS (2 pages + 1 sheet)

- 1. Frictional Resistance
 - 1) Terzoghi-Bowden-Tabor adhesim Theory
 - 2) granular Sorls
 - 3) Cohesine soils
- 2. Cohesive Resistance

Sheet A: Fuching Questy

I MECHANISMS CONTROLLING COMPRESSIBILITY OF CLAYS (5 pages)

- 1. Background
 - 1) Refinition

2) Importance ? defention of initial fabric " distribution

3) Two models of clay compressibility (2 extremes)

· Mechanical = physical interaction with 0'= Fige (all contacts)

· Physico-Chemical · " " " " (all double layer)

- 2. Components of Volume Change (Table I)
 - 1) Elastie deformation
 - 2) Change in closest spacing
 - 3) Partule reorien tation
 - 4) Crushing
- 3 Examples of Factors Affecting Initial Fabric

VI SOIL STRUCTURE: EFFECTS OF CLAY TYPE AND ENVIRONMENTAL FACTORS (6 pages + Summary of 8 sheets)

1. Smedite

1.1 Na Montmorillonite

1-D & cluc data

1.2 Ca

1.3 CIOCU) Pata with 0 2 =0

1.4 Summay

2. Kaolinita

- 2,1 5 chematic
- 2.2 1-D Compression
- 2.3 Shength Date
- 2.4 Summary

3. Illite

- 3.1 Deposition: From to Sea with In Natural Clay
- 8.2 1-D Compression: Fractoriated Ulito
- 3.3 Shongth Date
- 4. Summary (Shie being prepared)

Sheets: MI-4 for montmoulloute; KI-3 for karlinete; II-3 for illete

VI CLASSIFICATION TESTS & RADIOGRAPHY

- 1) Specific grandy
- 2) Grain size dishibution
- 3) Atterberg limits
- 4) Summary plats
- 5) Plasticity chart
- 6) Correlations
- 7) Radiography

· Organic - Peat

+ 3 Sheets

I SOIL COMPOSITION, ETC

T. BACKGROUND

1.361 References

11-184

1.1 Soil Types

· Morganic - gravel (G) Sand (s)

Granular

Sut (M) Cohesine Clay (c)

How distinguish?

1) Gm 5

2) gran. vs. coh.

3) MNCC

II 1-1.2

1.2 A Particle Size & Shape & A Soil Types

· Decreasing particle size + decreasing & (moreasing 35A)

→ mereasing man He (Capillary pressure)

→ "" importance senface forces

- . Spheres to play shaped + larger differences in fatin
- . Both result from A mineral composition

2. SOIL COMPOSITION

II/-2

2,1 Silicate Frameworks (Sheet A)

1) Quarty Six Og 13 K Feldspar KAISi3 Og

4) Calcite . 5) Dolomite 3) Plagioclase Na al Si, 08 Ca alzsizog

Relative abundance in sand & sit size

Why weather resistant?

2.2 Silicatu Sheats = Clay Minerals (Sheets A, BSC)

1) Basic building block = 5:4010 OL4 (OH)12 - OHS Gorb Mab (OH)12 - OHS

- 2) 2 sheets/layer (7 Å) -> Karlinite, Halloysite =
- 3) 3 shuts / Layer (10A) + Mica, Illite, Montmoullmite, etc =

22-141 22-142 22-144

Order Order

(#) (-#0

1,361 References

2,3 Pradominete Clay Minerals (Very general)

- 1) Cold climates marine clays from glaciation with ellite } chlorite (BBC, quech clays of Canada (Scandanaxia)
- 2) Morderate to axid climates expansive class with smechte (evap. > rainfall) (S. afria, S. mid-west US)
- 3) Wet hopical + residual sinks with kaolini, halloyoite, al/Fe oxider (red) (Caribbean Islands)
- 3. ELECTRICAL NATURE OF PLATY CLAY PARTICLES

II 2 -1 {2

3.1 Shape & Charges

112-1.2

1) Why negative face Charge? 1

- 2) Edge change { effect of pH: how pH -> _ 2 Usually _
- 3) Overall change = ? Electrophoresis = Electrosmosis =

3,2 Diffusa Double Layer (1A = 10 mm)

II 2 - 2.2

in BULK pose water (M=moles/litu)

- 1) Defendin
- 2) Deby & thickness (tp) = distance between parallel plate II 2-2.2 (7a)... Condenses having the same To Electric potential (V) $t_D(A) = \frac{0.0199}{v} \sqrt{\frac{D \cdot r}{c_o}}$ V= (con valence T= temp. (OK) D = delectei constant = 80 H20 (for v+= 5-) Co = conc. cations = conc. anima (for v+ov)

* Beyond Stern layer (=5A); distance to C=Co approx, 2-3x to

1/30/99

1.361 Refer.

(3.2 Cont.)

to(A) at 20°C (293°K)

<u>D</u>	$C_{\alpha}(M)$	V=1	v: 2		
80 (Ho)	5 × 10-5	430	215		
00 111207	10-4	305	152		
	10-3	96	48		
	10-2	30	15		
	10-1	10	5		
20	10-4	152	76		
(alcohol)	10-2	15	7.5		

4. THREE COMMON CLAY MINERALS (Sheet C)

11-2.6,27

4.1 Na Kaolinita (Al), [Si], O10 (OH),

II 2 - 3.2

1) Structure

To due to: - Bonding due to :

2) Typical particle (H2) map to 2000

10,000 A = 1,4m

. 140 layers parkele

Halloysite =

- . SSA 2 = 10m2/g
- · 00 = 0.3 C/m2
- · EDGE effects

4.2 Na Illite K (al, Mg, Fe) 400 [Al, Si] B O20 (OH)4

1) Structure

Mica =

of due to: Bonding due to:

2) Typical particle (H2O)

1 mm.t = 400 Å 100Å

- · 10 layers/ particle
- . SSA = 80 m /g
- · 00 2 0.3 C/m2
- · EDGE + DL effects

Dia H20 = 3 Å = 3 × 10 mm = 0.3 mm

Carried And Andread

1/10/01

4.3 Na Montmorillonite (Alz, Mgo,) [Si] 020 (OH)4

1) Structure

9.6 Å] G

To due to:

Bonding due to:

2) Typical particle (H20)

10 A

= man t = 300 Å

1000 A*

- · Ilayer/particle
- · SSA ~ 800 m2/g
- · To = 0.1 C/m2
- · DL effects

NOTE: Part I will discuse how A pre-fleid composition change longs. properties of these 3 clay municip (K, I & M)

222 2222

1.361-1.366 Part II-1

Data on Common Clay Minerals

Dapt. of Civil Engineering M.I.T.

1.322 Soil Tachnology

CCL & RTM 9/65 3/95

Var	(00) P	No	γes No	%	Yes	1,5 No	0.75 Yes	%	
Ъ	1000	10-15	7.8	~2.2	2.2	51	0.75	1	sheets
(5) SSA	$\left(\frac{mag}{\cos\theta}\right)\left(\frac{m^2}{9}\right)\left(\frac{chorge}{\cos\lambda^2}\right)$	51-01	30-50 1.8	01-1	500- 700 whan expanded	80-	700 - 800	5-30	idra/ 3
(2) CEC	(<u>mag</u>)	~ €	~12	3-10	,50 ±20	57 52	95	2-40	Tetraho
Typical Particle CEC SSA T Var	Siza	de3-10µ t==-1,0d	20.000 10:00 1.5.1	Vary lorge	Yaria ble	Hokes 250,d	Sheuts +5,2d	Ploty Varioble 2-40	· Octahedrol & Tetrahedrol Sheets
Typicol	Shopa	Haxoganal de.3-10,2 sheets t= 3-1,6d	Hallow tubes	Ploty	sheets	Flakes	shects	Platy	· Octah
Interlayer	Banding	Secondary valence + H-bonding Strong	As above axcept weak if larger spocing	K-bonding + sac. vol. Very strang	Weak primary vel. (Ga.mg) + sec.vol. weak	K-bonding + sec vol. Fairly strong	weak secondony valenca	Anmay Valenca Via 8 tsheet	« capocity
Chorge	(meg/1009)	~2	8~	250	150±20	~150	001	200-250	on axchang
Isomorphaus	Substitution (meg/1009)	11 for 5; Mg for A! (~! in 400)	As obove	Altor Si (~/in4) Maybe Mg, Fa for Al	Mainty Alfarsi (-1 in 8) Also Mg. Fe for Al Al, Fe for Mg	Mointy Altorsi (1 in 6-8) Also Mg, Fa tor Al	Mointy MgforAl (-1 in 6)	Alfors: Fe, mg for Al Fe, Alformg	(2) CEC = cotion axchonge capacity
Structural Isomorphaus Chorga	Symbol		1,0 Post		1,0 Esret 79, Esret	K Jewel X		10 mm	charge/formula XIOS formula weight
Unit Call	Formula	(A1)4[5i]4O,0(0H)8	04/1/2/2000000 \$1.2/4/100000000000000000000000000000000000	K;(A))[A1,5;,JO2,(OH)	(Mg, AI, F), or + - H20. [Si, A] 8 020(0H), MP. S	K (A1, Mg, Fd, cor6 - [5:, N]8 0x0 (OH)4	Sodium Montmorillonita (Alzz Mg.) [52] 026046	(Mg, Al, Fel, orb [5i, Al]3-	(1) Charge dansity = charge Italia
	MINETO!	Kaolinita	Halloysita Dehydrated		Vermiculita	I IIIta (Hydraus mica)	Sodium	Chlorita	(I) Charge

3) 55A: specific surface orea (4) G = surface charge density

· Unit Layer = 2 or 3 sheets

· Particle = 2 Layers

Minarol Formula Wat.
Kaolinita 517
Tolc 750
Rrophyllita 710

1.322 2/ BUILDING	BLOCKS" = SHEL	MINERALOGY ETS COMPOSING T	THE LAYERS
Silica	Tetrohedra	Si4 010	()
Hydrous .	Gibbsite	Al4 (OH)12 - OH'S	G sheets
Óxides	Brucite	Mg6 (OH)12 - OH'S	B
Which she	nts combined in	n layer + nature of	of "glue" holding ent clay minerals
CLAY MINER	RALS OF PRIM	DE INTEREST	$(/A = 10^{-8} \text{cm} = 10^{-10} \text{m})$
Nama	Symbol	Glue Between Layer	s <u>Kemarks</u>
	- G	Hydrogen yan der Waals Strong	·Large hexagonal ·t≈ 1000 Å ·SSA≥ 10m²/g
S) Halloysite	Abova W/ HzO between some l	Much waaker ayers.	· Hollow tubes → low Yd · Drying → loss of bonded H20
s) Muscovite	88	Very strong K	 Vary large particles Raference for unit layer = 3 sheet
{ Isomorphoduring for	us substitution: mation - net no	Cations of lower vigative charge wit	ralance substituted } thin layers.
s) Illite	As above but: Gorb Less I.s.		. Flaky particles . t ≈ 100 Å . SSA ≈ 80 m²/g . Marine clays
S) Smectite = Montmorillonii	te se	If Na-than no bonding (Bantonita)	· Floky particles · t → 10 Å (1 layer) · SSA → 800m²/g · Axle grease