MNN. Firemed abers com

## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the October/November 2012 series

## 9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 |                 |                                                                                                                  |                                                                                                                                                                                                                                            | Mark Scheme                                                                                                                                                                                               | Syllabus | Paper          |     |
|--------|-----------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----|
|        |                 |                                                                                                                  |                                                                                                                                                                                                                                            | GCE AS/A LEVEL – October/November 2012                                                                                                                                                                    | 9702     | 23             |     |
| 1      | (a) s           | spa                                                                                                              | cing =                                                                                                                                                                                                                                     | $= 380 \text{ or } 3.8 \times 10^2 \text{pm}$                                                                                                                                                             |          | B1             | [1] |
|        | ` ,             |                                                                                                                  |                                                                                                                                                                                                                                            | 1 × 3600<br>086 (0.0864) Ms                                                                                                                                                                               |          | B1             | [1] |
|        | ( <b>c</b> ) ti | ime                                                                                                              | e = di                                                                                                                                                                                                                                     | stance / speed = $\frac{1.5 \times 10^{11}}{3 \times 10^8}$                                                                                                                                               |          | C1             |     |
|        |                 |                                                                                                                  | = 50                                                                                                                                                                                                                                       | 00(s) = 8.3  min                                                                                                                                                                                          |          | A1             | [2] |
|        | ( <b>d</b> ) n  | nor                                                                                                              | nentu                                                                                                                                                                                                                                      | um and weight                                                                                                                                                                                             |          | B1             | [1] |
|        | (e) (           | (i)                                                                                                              | arro                                                                                                                                                                                                                                       | w to the right of plane direction (about 4° to 24°)                                                                                                                                                       |          | B1             | [1] |
|        | (               | ii)                                                                                                              | or us                                                                                                                                                                                                                                      | e diagram drawn<br>se of cosine formula $v^2 = 250^2 + 36^2 - 2 \times 250 \times 36 \times co$<br>solving $v = [(36\cos 45^\circ)^2 + (250 - 36\sin 45^\circ)^2]^{1/2}$                                  | s45°     | C1             |     |
|        |                 |                                                                                                                  | allov                                                                                                                                                                                                                                      | Itant velocity = 226 (220 – 240 for scale diagram) m s <sup>-1</sup> v one mark for values 210 to 219 or 241 to 250 m s <sup>-1</sup> se of formula ( $v^2$ = 51068) $v$ = 230 (226) m s <sup>-1</sup>    |          | A1             | [2] |
| 2      | (a) (           | (i)                                                                                                              | accelerations (A to B and B to C) are same magnitude accelerations (A to B and B to C) are opposite directions or both accelerations are toward B (A to B and B to C) the component of the weight down the slope provides the acceleration |                                                                                                                                                                                                           |          | B1             |     |
|        |                 |                                                                                                                  |                                                                                                                                                                                                                                            |                                                                                                                                                                                                           | B1<br>B1 | [3]            |     |
|        | (i              | ii)                                                                                                              |                                                                                                                                                                                                                                            | eleration = gsin15°<br>0 + ½ at <sup>2</sup> s = 0.26 / sin 15° = 1.0                                                                                                                                     |          | C1<br>C1       |     |
|        |                 |                                                                                                                  | <i>t</i> <sup>2</sup> =                                                                                                                                                                                                                    | $\frac{1.0 \times 2}{9.8 \times \sin 15^{\circ}}  t = 0.89 \mathrm{s}$                                                                                                                                    |          | A1             | [3] |
|        | (ii             | ii)                                                                                                              | V = 2                                                                                                                                                                                                                                      | $0 + g \sin 15t$ or $v^2 = 0 + 2g \sin 15 \times 1.0$<br>2.26 m s <sup>-1</sup> ng loss of GPE = gain KE can score full marks)                                                                            |          | C1<br>A1       | [2] |
|        |                 |                                                                                                                  |                                                                                                                                                                                                                                            | of GPE at A = gain in GPE at C or loss of KE at B = gain in GPE at C $h_2 = 0.26 \text{m}$ or $\frac{1}{2}  mv^2 = mgh$ $h_2 = 0.5 \times (2.26)^2 / 9.81 = 0.26 \text{m}$                                |          | B1             |     |
|        |                 |                                                                                                                  | $= H_2 = 0.26 \text{ in } 30^\circ = 0.52 \text{ m}$ $= 0.26 / \sin 30^\circ = 0.52 \text{ m}$                                                                                                                                             |                                                                                                                                                                                                           |          | A1             | [2] |
| 3      |                 | power is the rate of doing work or power = work done / time (taken) or power = energy transferred / time (taken) |                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |          | B1             | [1] |
|        | (b) (           |                                                                                                                  | resu<br>cons                                                                                                                                                                                                                               | ne speed increases drag / air resistance increases<br>Itant force reduces hence acceleration is less<br>stant speed when resultant force is zero<br>w one mark for speed increases and acceleration decre | ases)    | B1<br>B1<br>B1 | [3] |
|        |                 |                                                                                                                  |                                                                                                                                                                                                                                            | © Cambridge International Examinations 2012                                                                                                                                                               |          |                |     |

|   | Page 3                                                                                                                                                       |                                                                                                                      |                                             |                                                                       | Mark Sch                                |                                                                                                           | Syllabus            | Paper          |     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|----------------|-----|
|   |                                                                                                                                                              |                                                                                                                      | GCE AS/A LEVEL – October/November 2012 9702 |                                                                       |                                         | 9702                                                                                                      | 23                  |                |     |
|   | (ii) force from cyclist =<br>P = 12 × 48<br>P = 576 W                                                                                                        |                                                                                                                      | 12 × 48                                     | rag force / resi                                                      | stive force                             |                                                                                                           | B1<br>M1<br>A0      | [2]            |     |
|   | (iii) tangent drawn at speed = gradient values that show                                                                                                     |                                                                                                                      |                                             |                                                                       |                                         | tion between 0.44 to 0.4                                                                                  | 8 m s <sup>-2</sup> | M1<br>A1       | [2] |
|   | (                                                                                                                                                            | iv)                                                                                                                  | 600                                         | R = ma<br>/ 8 - R = 80<br>? = 75 - 40 = 3                             |                                         | [using P = 576] 576 / 8 · R = 72 – 40 = 32 N                                                              | – R = 80 × 0.5      | C1<br>C1<br>A1 | [3] |
|   | (                                                                                                                                                            | (v)                                                                                                                  | R/v                                         | 2 m s <sup>-1</sup> drag is 48<br>calculated as 4<br>consistent respo | and 4 or 4.4                            | rag is 35 or 32N<br>er <i>R</i> is proportional to <i>v</i> o                                             | r not               | В1             | [1] |
| 4 |                                                                                                                                                              | (a) e.m.f. = chemical energy to electrical energy p.d. = electrical energy to thermal energy idea of per unit charge |                                             |                                                                       |                                         |                                                                                                           |                     | M1<br>M1<br>A1 | [3] |
|   | (b)                                                                                                                                                          | E =                                                                                                                  | I (R                                        | +r) or $I = E/(R)$                                                    | + <i>r</i> ) (any su                    | bject)                                                                                                    |                     | B1             | [1] |
|   | (c)                                                                                                                                                          | (i)                                                                                                                  | E = 5                                       | 5.8 V                                                                 |                                         |                                                                                                           |                     | B1             | [1] |
|   | (                                                                                                                                                            | (ii)                                                                                                                 |                                             | $5.8 = 4 + 1.0 \times r$                                              |                                         | calculation with values fr                                                                                | om graph            | C1<br>A1       | [2] |
|   | (d)                                                                                                                                                          | (i)                                                                                                                  | P = 1<br>P = 2                              | <i>VI</i><br>2.9 × 1.6 = 4.6 (4                                       | l.64)W                                  |                                                                                                           |                     | C1<br>A1       | [2] |
|   | (ii) power from battery = $1.6 \times 5.8 = 9.28$ or efficiency = $VI/EI$ efficiency = $(4.64 / 9.28) \times 100 = 50 \%$ or $(2.9 / 5.8) \times 100 = 50\%$ |                                                                                                                      |                                             |                                                                       | C1<br>A1                                | [2]                                                                                                       |                     |                |     |
| 5 | (a)                                                                                                                                                          | trav                                                                                                                 | el thr                                      | rough a vacuum .                                                      | free space                              |                                                                                                           |                     | B1             | [1] |
|   | (b)                                                                                                                                                          | (i)                                                                                                                  | C : n                                       | name:<br>name:<br>name:                                               | microwaves<br>ultra-violet /<br>X –rays | wavelength: 10 <sup>-4</sup> to <b>UV</b> wavelength: 10 <sup>-7</sup> to wavelength: 10 <sup>-9</sup> to | 10 <sup>-9</sup> m  | B1<br>B1<br>B1 | [3] |
|   |                                                                                                                                                              | (ii)                                                                                                                 | f =                                         | $\frac{3\times 10^8}{500\times 10^{-9}}$                              |                                         |                                                                                                           |                     | C1             |     |
|   |                                                                                                                                                              |                                                                                                                      | f = 6                                       | 6(.0) × 10 <sup>14</sup> Hz                                           |                                         |                                                                                                           |                     | A1             | [2] |

|   | Page 4 |                                                                                                                                                                                                                 |                                                                                             | Mark Scheme                                                                                                                                                 | Syllabus | Paper    |     |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----|
|   |        |                                                                                                                                                                                                                 |                                                                                             | GCE AS/A LEVEL – October/November 2012                                                                                                                      | 9702     | 23       |     |
|   | (c)    |                                                                                                                                                                                                                 | vibrations are in one direction perpendicular to direction of propagation / energy transfer |                                                                                                                                                             |          | M1       |     |
|   |        | or good sketch showing this                                                                                                                                                                                     |                                                                                             |                                                                                                                                                             |          | A1       | [2] |
| 6 | (a)    | (i)                                                                                                                                                                                                             | elect                                                                                       | tron                                                                                                                                                        |          | B1       | [1] |
|   |        | (ii) any two: can be deflected by electric and magnetic fields or negatively charged / absorbed by few (1 – 4)mm of aluminum / 0.5 to 2 m or metres for range ir speed up to 0.99c / range of speeds / energies |                                                                                             |                                                                                                                                                             |          | air /    |     |
|   |        |                                                                                                                                                                                                                 | ·                                                                                           |                                                                                                                                                             |          | B2       | [2] |
|   | (iii)  |                                                                                                                                                                                                                 |                                                                                             | ay occurs and cannot be affected by external / environm<br>yo stated factors such as chemical / pressure / temperat                                         |          | B1       | [1] |
|   | (b)    |                                                                                                                                                                                                                 |                                                                                             | or superscript numbers<br>for subscript numbers                                                                                                             |          | B1<br>B1 | [2] |
|   | (c)    | ene                                                                                                                                                                                                             | ergy =                                                                                      | $5.7 \times 10^3 \times 1.6 \times 10^{-19} \ (= 9.12 \times 10^{-16} \ \text{J})$                                                                          |          | C1       |     |
|   |        | v <sup>2</sup> =                                                                                                                                                                                                | = 2 × 9.                                                                                    | $9.12 \times 10^{-16}$ $11 \times 10^{-31}$                                                                                                                 |          | C1       |     |
|   |        | v =                                                                                                                                                                                                             | 4.5 >                                                                                       | $< 10^7  \mathrm{m  s^{-1}}$                                                                                                                                |          | A1       | [3] |
|   | (d)    | 1 ne                                                                                                                                                                                                            | eutror<br>ecial o                                                                           | e 1 proton and 1 electron<br>n in hydrogen-2 and 2 neutrons in hydrogen-3<br>case: for one mark 'same number of protons / atomic nu<br>number of neutrons') | mber     | B1<br>B1 | [2] |