Auxiliary Procedures and Context Arguments

Exercise 1.14

Theorem Given the assumption $0 \le n < length(v)$, partial-vector-sum computes $\sum_{i=0}^{i=n} v_i$.

Proof: The proof is by induction on n. We take IH(n) to be that the procedure partial-vector-sum satisfies its contract given that $0 \le n < length(v)$, where v is a vector.

Where n=0, we have (partial-vector-sum v 0) $=\sum_{i=0}^{i=0} v_0$.

Let n be an integer such that IH(n-1) holds. We need to show that IH(n-1) implies IH(n).

We have that IH(n-1) states that (partial-vector-sum v (- n 1)) computes $\sum_{i=0}^{i=n-1} v_i$. When we add v_n to this summation, we get

$$\sum_{i=0}^{i=n-1} v_i + v_n = \sum_{i=0}^{i=n} v_i,$$

which is IH(n). This completes of the proof of the claim that IH(n) holds and therefore completes the induction. \Box