Message Authentication Codes and Collision-Resistant Hash Functions

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2021

Outline

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- 4 Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Integrity and Authentication

The Syntax of MAC

- key k, tag t, a bit b means valid if b = 1; invalid if b = 0.
- **Key-generation** algorithm $k \leftarrow \text{Gen}(1^n), |k| \ge n$.
- Tag-generation algorithm $t \leftarrow \mathsf{Mac}_k(m)$.
- **Verification** algorithm $b := Vrfy_k(m, t)$.
- Message authentication code: $\Pi = (Gen, Mac, Vrfy)$.
- Basic correctness requirement: $Vrfy_k(m, Mac_k(m)) = 1$.

Security of MAC

- Intuition: No adversary should be able to generate a valid tag on any "new" message¹ that was not previously sent.
- Replay attack: Copy a message and tag previously sent. (excluded by only considering "new" message)
 - Sequence numbers: receiver must store the previous ones.
 - Time-Stamps: sender/receiver maintain synchronized clocks.
- Existential unforgeability: Not be able to forge a valid tag on any message.
 - **Existential forgery**: at least one message.
 - **Selective forgery**: message chosen *prior* to the attack.
 - Universal forgery: any given message.
- Adaptive chosen-message attack (CMA): be able to obtain tags on *any* message chosen adaptively *during* its attack.

¹A stronger requirement is concerning *new message/tag pair*.

Definition of MAC Security

The message authentication experiment Macforge_{A,Π}(n):

- $1 k \leftarrow \operatorname{Gen}(1^n).$
- **2** \mathcal{A} is given input 1^n and oracle access to $\mathsf{Mac}_k(\cdot)$, and outputs (m,t). $\mathcal Q$ is the set of queries to its oracle.
- $\mbox{3 Macforge}_{\mathcal{A},\Pi}(n) = 1 \iff \mbox{Vrfy}_k(m,t) = 1 \, \wedge \, m \notin \mathcal{Q}.$

Definition 1

A MAC Π is existentially unforgeable under an adaptive CMA if \forall PPT \mathcal{A} , \exists negl such that:

$$\Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

Questions

Suppose $\langle S, V \rangle$ are CMA-secure, are $\langle S', V' \rangle$ secure?

- $S'_{k_1,k_2}(m) = (S_{k1}(m), S_{k_2}(m))$ $V'_{k_1,k_2}(m, (t_1, t_2)) = V_{k1}(m, t_1) \wedge V_{k_2}(m, t_2)$
- $S_k'(m) = (S_k(m), S_k(m))$ $V_k'(m, (t_1, t_2)) = \left\{ \begin{array}{l} V_k(m, t_1) & \text{if } t_1 = t_2 \\ 0 & \text{otherwise} \end{array} \right.$
- $S'_k(m) = (S_k(m), S_k(0^n))$ $V'_k(m, (t_1, t_2)) = V_k(m, t_1) \wedge V_k(0^n, t_2)$
- $S_k'(m) = S_k(m), \ V_k'(m,t) = \left\{ \begin{array}{ll} V_k(m,t) & \text{if } m \neq 0^n \\ 1 & \text{otherwise} \end{array} \right.$
- $S_k'(m) = S_k(m)$ without the LSB $V_k'(m,t) = V_k(m,t\|0) \ \lor \ V_k(m,t\|1)$
- $S'_k(m) = (S_k(m), m), V'_k(m, (t_1, t_2)) = V_k(m, t_1) \land t_2 = m$

MAC Applications ²

- Browser cookie: includes a MAC tag of the user's account generated by the web server, against the attacker forging others' cookies.
- TCP SYN cookie: The server's initial sequence number includes a MAC tag of the client's IP address, port number and some other values generated by the server, against "half-open" DDoS attack in TCP handshake.
- Timed one-time passwords: $p = \operatorname{Mac}_k(T)$, where k is the key shared between the user and the service provider, T is the current date + time (usually rounded to the nearest 30 seconds.) The attacker who learns the current p can not gain access to your account in the future.

²from The Joy of Cryptography

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Constructing Secure MACs

Construction 2

- \blacksquare F is PRF. |m|=n.
- $\operatorname{Gen}(1^n)$: $k \leftarrow \{0,1\}^n$ u.a.r.
- $\blacksquare \operatorname{\mathsf{Mac}}_k(m) \colon t := F_k(m).$
- $\qquad \text{Vrfy}_k(m,t) \colon 1 \iff t \stackrel{?}{=} F_k(m).$

Theorem 3

If F is a PRF, Construction is a secure fixed-length MAC.

Lemma 4

Truncating MACs based on PRFs: If F is a PRF, so is $F_k^t(m) = F_k(m)[1, \ldots, t]$.

Proof of Secure MAC from PRF

Idea: Show Π is secure unless F_k is not PRF by reduction.

Proof.

D distinguishes F_k ; \mathcal{A} attacks Π .

Proof of Secure MAC from PRF (Cont.)

Proof.

(1) If true random f is used, t=f(m) is uniformly distributed.

$$\Pr[D^{f(\cdot)}(1^n) = 1] = \Pr[\mathsf{Macforge}_{A\ \tilde{\Pi}}(n) = 1] \leq 2^{-n}.$$

(2) If F_k is used, conduct the experiment $\mathsf{Macforge}_{\mathcal{A},\Pi}(n)$.

$$\Pr[D^{F_k(\cdot)}(1^n) = 1] = \Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}(n) = 1] = \varepsilon(n).$$

According to the definition of PRF,

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \ge \varepsilon(n) - 2^{-n}.$$

Extension to Variable-Length Messages

For variable-length messages, would the following suggestions be secure?

- Suggestion 1: XOR all the blocks together and authenticate the result. $t := \mathsf{Mac}_k'(\oplus_i m_i)$.
- Suggestion 2: Authenticate each block separately. $t_i := \text{Mac}'_k(m_i)$.
- Suggestion 3: Authenticate each block along with a sequence number. $t_i := \mathsf{Mac}_k'(i||m_i)$.

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Constructing Fixed-Length CBC-MAC

Modify CBC encryption into CBC-MAC:

- Change random IV to encrypted fixed 0^n , otherwise: Q: query m_1 and get (IV, t_1) ; output $m_1' = IV' \oplus IV \oplus m_1$ and $t' = \underline{\hspace{1cm}}$.
- Tag only includes the output of the final block, otherwise: Q: query m_i and get t_i ; output $m_i' = t_{i-1}' \oplus t_{i-1} \oplus m_i$ and $t_i' = \underline{\hspace{1cm}}$.

Constructing Fixed-Length CBC-MAC (Cont.)

Construction 5

- a PRF F and a length function ℓ . $|m| = \ell(n) \cdot n$. $\ell = \ell(n)$. $m = m_1, \ldots, m_\ell$.
- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$ u.a.r.
- lacksquare Mac $_k(m)$: $t_i:=F_k(t_{i-1}\oplus m_i), t_0=0^n$. Output $t=t_\ell$.
- $Vrfy_k(m,t)$: $1 \iff t \stackrel{?}{=} Mac_k(m)$.

Theorem 6

If F is a PRF, Construction is a secure **fixed-length** MAC.

Not for variable-length message:

Q: For one-block message m with tag t, adversary can append a block ____ and output tag t.

Secure Variable-Length MAC

- Input-length key separation: $k_{\ell} := F_k(\ell)$, use k_{ℓ} for CBC-MAC.
- **Length-prepending**: Prepend m with |m|, then use CBC-MAC.

■ Encrypt last block (ECBC-MAC): Use two keys k_1, k_2 . Get t with k_1 by CBC-MAC, then output $\hat{t} := F_{k_2}(t)$.

Q: To authenticate a voice stream, which approach do you prefer?

MAC Padding

Padding must be invertible!

$$m_0 \neq m_1 \Rightarrow \mathsf{pad}(m_0) \neq \mathsf{pad}(m_1).$$

ISO: pad with "100...00". Add dummy block if needed.

Q: What if no dummy block?

CMAC (Cipher-based MAC from NIST): $key = (k, k_1, k_2)$.

- No final encryption: extension attack thwarted by keyed XOR.
- No dummy block: ambiguity resolved by use of k_1 or k_2 .

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Defining Hash Function

Definition 7

A hash function (compression function) is a pair of PPT algorithms (Gen, H) satisfying:

- a key $s \leftarrow \mathsf{Gen}(1^n)$, s is **not kept secret**.
- $\blacksquare H^s(x) \in \{0,1\}^{\ell(n)}$, where $x \in \{0,1\}^*$ and ℓ is polynomial.

If H^s is defined only for $x\in\{0,1\}^{\ell'(n)}$ and $\ell'(n)>\ell(n)$, then (Gen, H) is a **fixed-length** hash function.

Defining Collision Resistance

- **Collision** in H: $x \neq x'$ and H(x) = H(x').
- Collision Resistance: infeasible for any PPT alg. to find.

The collision-finding experiment $\mathsf{Hashcoll}_{\mathcal{A},\Pi}(n)$:

- $1 s \leftarrow \mathsf{Gen}(1^n).$
- **2** \mathcal{A} is given s and outputs x, x'.

Definition 8

 Π (Gen, H^s) is **collision resistant** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{Hashcoll}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$$

Weaker Notions of Security for Hash Functions

- **Collision resistance**: It is hard to find $(x, x'), x' \neq x$ such that H(x) = H(x').
- Second pre-image resistance: Given s and x, it is hard to find $x' \neq x$ such that $H^s(x') = H^s(x)$.
- Pre-image resistance: Given s and $y = H^s(x)$, it is hard to find x' such that $H^s(x') = y$.

Questions

H is CRHF. Is H' CRHF?

$$\blacksquare H'(m) = H(m) \oplus H(m \oplus 1^{|m|})$$

$$H'(m) = H(m) || H(0)$$

$$H'(m) = H(m) || H(m)$$

$$\blacksquare H'(m) = H(m) \oplus H(m)$$

$$H'(m) = H(m[0, ..., |m| - 2])$$

$$\blacksquare \ H'(m) = H(m\|0)$$

Applications of Hash Functions

- Fingerprinting and Deduplication: H(alargefile) for virus fingerprinting, deduplication, P2P file sharing
- Merkle Trees:

```
H(H(H(file1), H(file2)), H(H(file3), H(file4))) fingerprinting multiple files / parts of a file
```

- **Password Hashing**: (salt, H(salt, pw)) mitigating the risk of leaking password stored in the clear
- **Key Derivation**: H(secret) deriving a key from a high-entropy (but not necessarily uniform) shared secret
- **Commitment Schemes**: H(info) hiding the committed info; binding the commitment to a info

The "Birthday" Problem

The "Birthday" Problem

Q: "What size group of people do we need to take such that with probability 1/2 some pair of people in the group share a birthday?" **A**: 23.

Lemma 9

Choose q elements y_1, \ldots, y_q u.a.r from a set of size N, the probability that $\exists i \neq j$ with $y_i = y_j$ is $\operatorname{coll}(q, N)$, then

$$\operatorname{coll}(q, N) \le \frac{q^2}{2N}.$$

$$\operatorname{coll}(q, N) \ge \frac{q(q-1)}{4N} \quad \text{if } q \le \sqrt{2N}.$$

$$\operatorname{coll}(q, N) = \Theta(q^2/N)$$
 if $q < \sqrt{N}$.

The length of hash value should be long enough.

Constructing "Meaningful" Collisions

How many different meaningful sentences are in the below paragraph?

It is hard/difficult/challenging/impossible to imagine/believe that we will find/locate/hire another employee/person having similar abilities/skills/character as Alice. She has done a great/super job.

The Merkle-Damgård Transform

Construction 10

Construct **variable-length** CRHF (Gen, H) from fixed-length (Gen, h) (2ℓ bits $\rightarrow \ell$ bits, $\ell = \ell(n)$):

- Gen: remains unchanged
- \blacksquare H: key s and string $x \in \{0,1\}^*$, $L = |x| < 2^{\ell}$:
 - $B := \lceil \frac{L}{\ell} \rceil$ (# blocks). **Pad** x with **0s**. ℓ -bit blocks x_1, \ldots, x_B . $x_{B+1} := L$, L is encoded using ℓ bits
 - $lacksymbol{z}_0 := IV = 0^\ell$. For $i=1,\ldots,B+1$, compute $z_i := h^s(z_{i-1} \| x_i)$

Security of the Merkle-Damgård Transform

Theorem 11

If (Gen, h) is a fixed-length CRHF, then (Gen, H) is a CRHF.

Proof.

Idea: a collision in H^s yields a collision in h^s .

Two messages $x \neq x'$ of respective lengths L and L' such that $H^s(x) = H^s(x')$. # blocks are B and B'.

 $x_{B+1} := L$ is necessary since **Padding with 0s** will lead to the same input with different messages.

- $L \neq L': z_B || L \neq z_{B'} || L'$

So there must be $x \neq x'$ such that $h^s(x) = h^s(x')$.

Security on MD transform variations in Homework.

CRHF from Block Cipher

Davies-Meyer (SHA-1/2, MD5)

$$h_i = F_{m_i}(h_{i-1}) \oplus h_{i-1}$$

Miyaguchi-Preneel (Whirlpool)

$$h_i = F_{h_{i-1}}(m_i) \oplus h_{i-1} \oplus m$$

Theorem 12

If F is modeled as an ideal cipher, then Davies-Meyer construction yields a CRHF.

Q: what if $h_i = F_{m_i}(h_{i-1})$ without XOR with h_{i-1} ?

Q: what if F is not ideal such that $\exists x, F_k(x) = x$?

Cryptographic Hash Functions: SHA-1 and MD5

SHA-1: MD5:

A,B,C,D and E are 32-bit words of the state; F is a nonlinear function that varies; $\ll n$ denotes a left bit rotation by n places; W_t/M_t is the expanded message word of round t; K_t is the round constant of round t; \boxplus denotes addition modulo 2^{32} .

- Finding a collision in 128-bit MD5 requires time $2^{20.96}$
- lacksquare Finding a collision in 160-bit SHA-1 requires time 2^{51}

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- 4 Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Hash-based MAC (HMAC)

Construction 13

 $(\widetilde{\operatorname{Gen}},h)$ is a fixed-length CRHF. $(\widetilde{\operatorname{Gen}},H)$ is the Merkle-Damgård transform. IV, opad (0x36), ipad (0x5C) are fixed constants of length n. HMAC:

- $Gen(1^n)$: Output (s,k). $s \leftarrow \widetilde{Gen}, k \leftarrow \{0,1\}^n$ u.a.r
- $\blacksquare \ \mathsf{Mac}_{s,k}(m) \colon t := H^s_{IV} \Big((k \oplus \mathsf{opad}) \| H^s_{IV} \big((k \oplus \mathsf{ipad}) \| m \big) \Big)$
- lacksquare Vrfy_{s,k}(m,t): $1 \iff t \stackrel{?}{=} \mathsf{Mac}_{s,k}(m)$

Security of HMAC

Theorem 14

$$G(k)\stackrel{\text{def}}{=} h^s(IV\|(k\oplus \operatorname{opad}))\|h^s(IV\|(k\oplus \operatorname{ipad}))=k_1\|k_2$$
 (Gen, h) is CRHF. If G is a PRG, then HMAC is secure.

Before HMAC's $H^s(k||H^s(k||x))$, a common mistake was to use:

- $H^s(k||x)$: Vulnerable to length extension attack. Given $H^s(k||x)$ and the length of x, get the valid tag $H^s(k||x||x')$ for a new message x||x'.
- $H^s(x||k)$: A collision in the weak hash function has a collision in the MAC.
- $H^s(k||x||k)$: Some known vulnerabilities with this approach, even when two different keys are used.

Security of HMAC (Cont.)

- HMAC is an industry standard (RFC2104)
- HMAC is faster than CBC-MAC
- Verification timing attacks: Keyczar crypto library (Python): def Verify(key, msg, sig_bytes): return HMAC(key, msg) == sig_bytes The problem: implemented as a byte-by-byte comparison
- In Xbox 360, a difference of 2.2 milliseconds between rejection times of i vs. i + 1 bytes.
- Don't implement it yourself

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 HMAC
- 6 Information-Theoretic MACs

Definition of Information-Theoretic MAC Security

It is impossible to achieve "perfect" MAC, as the adversary can output a valid tag with probability $1/2^{|t|}$ at least.

The one-time MAC experiment Macforge $^{1-\text{time}}_{4 \text{ II}}$:

- 1 $k \leftarrow \mathsf{Gen}$.
- 2 \mathcal{A} outputs a message m', and is given a tag $t' \leftarrow \mathsf{Mac}_k(m')$, and outputs (m,t).

Definition 15

A MAC Π is **one-time** ε **-secure** if \forall PPT \mathcal{A} :

$$\Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}^{1-\mathsf{time}} = 1] \leq \varepsilon.$$

Construction of Information-Theoretic MACs

Definition 16

A function $h \colon \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ is a **Strongly Universal Function** (SUF) if for all distinct $m, m' \in \mathcal{M}$ and all $t, t' \in \mathcal{T}$, it holds that:

$$\Pr[h_k(m) = t \wedge h_k(m') = t'] = 1/|\mathcal{T}|^2.$$

where the probability is taken over uniform choice of $k \in \mathcal{K}$.

Construction 17

- Let $h: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ be an SUF.
- Gen: $k \leftarrow \{0,1\}^n$ u.a.r.
- $\blacksquare \mathsf{Mac}_k(m) \colon t := h_k(m).$
- Vrfy $_k(m,t)$: $1 \iff t \stackrel{?}{=} h_k(m)$. (If $m \notin \mathcal{M}$, then output 0.)

Construction of An SUF

Theorem 18

For any prime P, the function h is an SUF:

$$h_{a,b}(m) \stackrel{\mathsf{def}}{=} [a \cdot m + b \mod p]$$

Proof.

 $h_{a,b}(m)=t$ and $h_{a,b}(m')=t'$, only if $a\cdot m+b=t \mod p$ and $a\cdot m'+b=t' \mod p$. We have $a=[(t-t')\cdot (m-m')^{-1} \mod p]$ and $b=[t-a\cdot m \mod p]$, which means there is a unique key (a,b). Since there are $|\mathcal{T}|^2$ keys,

$$\Pr[h_k(m) = t \land h_k(m') = t'] = \frac{1}{|\mathcal{T}|^2}.$$

Security of Construction from An SUF

Theorem 19

If h is an SUF, Construction is a $1/|\mathcal{T}|$ -secure MAC.

Proof.

We assume that A is deterministic without loss of generality. The adversary receives tag t' for the message m', where m' is fixed.

$$\begin{split} \Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}^{1-\mathsf{time}} = 1] &= \sum_{t' \in \mathcal{T}} \Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}^{1-\mathsf{time}} = 1 \wedge h_k(m') = t'] \\ &= \sum_{t' \in \mathcal{T}} \Pr[h_k(m) = t \wedge h_k(m') = t'] \\ &= \sum_{t' \in \mathcal{T}} \frac{1}{|\mathcal{T}^2|} = \frac{1}{|\mathcal{T}|} \end{split}$$

Limitations on Information-Theoretic MACs

Any ℓ -time 2^{-n} -secure MAC requires keys of length at least $(\ell+1)\cdot n$.

Theorem 20

Let Π be a 1-time 2^{-n} -secure MAC where all keys are the same length. Then the keys must have length at least 2n.

Proof.

Let $\mathcal{K}(t)\stackrel{\mathrm{def}}{=}\{k|\mathrm{Vrfy}_k(m,t)=1\}$. For any t, $|\mathcal{K}(t)|\leq 2^{-n}\cdot |\mathcal{K}|$. Otherwise, (m,t) would be a valid forgery with probability at least $|\mathcal{K}(t)|/|\mathcal{K}|>2^{-n}$. The probability that \mathcal{A} outputs a valid forgery is at least

$$\sum_t \Pr[\mathsf{Mac}_k(m) = t] \cdot \frac{1}{|\mathcal{K}(t)|} \geq \sum_t \Pr[\mathsf{Mac}_k(m) = t] \cdot \frac{2^n}{|\mathcal{K}|} = \frac{2^n}{|\mathcal{K}|}$$

As the probability is at most 2^{-n} , $|\mathcal{K}| \geq 2^{2n}$. Since all keys have the same length, each key must have length at least 2n.

Summary

- adaptive CMA, replay attack, birthday attack
- existential unforgeability, collision resistance
- CBC-MAC, CRHF, Merkle-Damgård transform, NMAC, HMAC
- information-theoretic MAC