Quantum Cryptanalysis on Lattices and Codes

Ph.D. defense

Johanna Loyer

Public-key cryptography

Factorization problem

Public-key cryptography

Factorization problem

[Sho94] Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring.

Leads for quantum-safe cryptography

Lattices Codes

Multivariate polynomials Isogenies

My contributions

Lattice-based cryptography:

- [CL21] Chailloux-Loyer. Lattice sieving via quantum random walks. (ASIACRYPT21)
- [CL23] Chailloux-Loyer. Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory. (PQCrypto23)

Code-based cryptography:

- [Loy23] Loyer. Quantum security analysis of Wave. (Submitted)
- [Wave] Banegas-Carrier-Chailloux-Couvreur-Debris-Gaborit-Karpman-Loyer-Niederhagen-Sendrier-Smith-Tillich.
 (NIST submission to the post-quantum cryptography standardization)

Wave quantum security

Wave quantum security

Syndrome Decoding problem

Public: matrix H and vector s with elements in $\{0, 1\}$, weight $w \in [0, n]$

Secret: $e \in \{0, 1\}^n$ such that:

Syndrome Decoding problem

Public: matrix H and vector s with elements in $\{0,1\}$, weight $w \in [0,n]$

Secret: $e \in \{0, 1\}^n$ such that:

- H structured matrix (U, U+V)
- digital signature: **Ternary**: $\{0, 1, 2\}$ instead of $\{0, 1\}$
 - Large weight w

Attacks on Wave

Key attack: Distinguish the secret key of from the uniform random

 \blacktriangleright Find e=(u,u) solution to the Syndrome Decoding problem.

Attacks on Wave

Key attack: Distinguish the secret key of from the uniform random

Find $\mathbf{e} = (\mathbf{u}, \mathbf{u})$ solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document that passes the authenticity test

ightharpoonup Find couple f s and f e=(f u,f u) solution to the Syndrome Decoding problem.

Attacks on Wave

Key attack: Distinguish the secret key of from the uniform random

ightharpoonup Find $\mathbf{e} = (\mathbf{u}, \mathbf{u})$ solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document that passes the authenticity test

 \triangleright Find couple **s** and **e** = (**u**, **u**) solution to the Syndrome Decoding problem.

Wave security

x bits of security: known attacks run in time $\geq 2^x$.

	Classical		Quantum	
NIST settings	Key attack	Forgery attack	Key attack	Forgery attack
(I)	138	129	80	78
(III)	206	194	120	117
(V)	274	258	160	156

Takeaway

Conclusion

- First quantum key attack against Wave
- Improvement of the quantum forgery attack
- NIST submission

Ongoing and future works

- Code sieving via quantum walks
 Collision finding and two filtering layers for code sieving [DEEK23]
- Optimal quantum algorithm for multiple collisions Extend [BCSS23] to all parameter ranges.
- 2^k-sieve with combined filtering techniques Trade-off from best memory to best time.

Thank you for your attention!

