Numerical Analysis

UT Knoxville, Fall 2023, MATH 471

Ohannes Karakashian, Alex Zhang

August 26, 2023

Contents

1	Introduction					
	1.1	Calculus Review	2			
	1.2	Sequences	4			
In	dex		5			

Introduction

Numerical analysis studies algorithms that use numerical approximation, focused on practical use by computers rather than theoretical use by mathematicians. It covers:

- · computation, instabilities and rounding,
- solution of nonlinear equations and systems,
- interpolation and approximation by polynomials,
- · numerical differentiation and integration, and
- solution of initial and boundary value problems for ordinary differential equations.

To prime ourselves for numerical analysis, let's review some key concepts from previous math courses:

1.1 Calculus Review

Concepts from calculus play a key role in numerical techniques. Let's begin by reviewing some familiar theorems.

Theorem 1.1.1 ▶ Extreme Value Theorem

(Simplified) If f is continuous on a closed interval [a, b], then f attains an absolute maximum value and an absolute minimum value at some values x_0 and x_1 in [a, b].

(More formal) Suppose K is a nonempty and compact subset of \mathbb{R} , and suppose $f: K \to \mathbb{R}$ is continuous. Then:

- (a) f is bounded on K (that is, f[K] is bounded),
- (b) there exists $x_0 \in K$ such that $f(x_0) = \sup(f[K])$, and
- (c) there exists $x_1 \in K$ such that $f(x_1) = \inf(f[K])$.

Theorem 1.1.2 ▶ Intermediate Value Theorem

Suppose f is continuous on the closed interval [a, b]. Then for any function value y between the minimum and maximum function values from [a, b], there exists some x in

$$[a, b]$$
 where $f(x) = y$.

A notable application of the Intermediate Value Theorem is figuring out whether a polynomial function attains zero (i.e. whether a polynomial has a root). For example, let's consider the following polynomial:

$$f(x) = 2x^3 - 3x - 7$$

Using the Intermediate Value Theorem, all we need to do is find a value x_0 where $f(x_0) < 0$, and a value x_1 where $f(x_1) > 0$. Since polynomial functions are continuous, we can use the IVT to ensure that the polynomial has a root. For the above example, we can consider f(-1) = -2 and f(0) = 3. By the IVT, there must exist some $x \in [-1, 0]$ where f(x) = 0.

Moving on, let's recall the following two theorems related to derivatives:

Theorem 1.1.3 ▶ Rolle's Theorem

Let $a, b \in \mathbb{R}$ where a < b, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If f(a) = 0 and f(b) = 0, then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem 1.1.4 ▶ Mean Value Theorem

Let $a, b \in \mathbb{R}$ where a < b, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Intuitively, the Mean Value Theorem states the following: given any two points on a differentiable function's curve, there exists some x value where the tangent line at f(x) is the same slope as the slope between those two points.

One of the most important theorems in analysis is the following:

Theorem 1.1.5 ▶ Taylor's Theorem

Let n be a non-negative integer. Let $f:(a,b)\to\mathbb{R}$ be a function where $f^{(n+1)}(x)$ exists for any $x\in(a,b)$. Then, for any $c,x\in(a,b)$, there exists some number ζ between c and x such that:

$$f(x) = p_n + R_n(\zeta)$$

Here, $p_n(x)$ represents the Taylor polynomial of f:

$$p_n(x) = f(c) + f'(c)(x - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

And, $R_n(\zeta)$ represents the remainder (i.e. how far off the Taylor polynomial was to approximating the actual answer):

$$R_n(\zeta) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x-c)^{n+1}$$

The Taylor expansion is well-liked in numerical analysis since it can turn an incomputable function such as sine or cosine to a computable one (albeit, only an approximation). The above theorem gives us a formula for determining the inaccuracy of certain Taylor polynomial approximations of functions.

We use $|R_n(\zeta)|$ as the error term for how different the approximation is from the actual answer. In practical application, we often do not know the value for ζ . However, since the theorem states ζ is between c and x, it is easy to attain and upper and lower bound for ζ .

A Taylor polynomial's accuracy is good near the initial point c, but deteriorates farther from initial point. It's a consequence of the fact that all information about the approximated function f is coming from a single point of that function.

On the other hand, interpolation is not so accurate at any specific point, but it's often more accurate across a range of points.

1.2 Sequences

Many algorithms generate sequences. For example, consider Newton's method for calculating $\sqrt{3}$:

$$\begin{cases} x_{k+1} = \frac{x_k}{2} + \frac{3}{2x_k}, & k = 0, 1, 2, \dots \\ x_0 = 2 \end{cases}$$

In this course, we will use 0 to index the first element of a sequence.

This method works as this sequence (x_k) converges to $\sqrt{3}$. We can notate this as:

$$\lim_{k \to \infty} x_k = \sqrt{3}$$

Intuitively, this means that the numbers of the sequences gets closer to the limit $\sqrt{3}$ as k gets bigger. We formalize this idea in the following definition:

Definition 1.2.1 ► Convergence

We say a sequence x_n converges if: for any $\epsilon > 0$, there exists $K \in \mathbb{N}_0$ such that, for all $k \geq K$, $|x_k - L| < \epsilon$.

In practical applications, we want the sequence to converge quickly. The "speed" of convergence matters, especially in numerical analysis. For example, consider the following two sequences:

$$x_n = \frac{n}{n+1}$$
 and $y_n = 1 - 1/n^2$

Both of these sequences converge to 1. However, it might be intuitive to think that (y_n) converges "faster" than (x_n) . The problem is: how do prove that (y_n) converges "faster" than (x_n) ? And how do we quantify this? We may look at the progress achieved at each iteration of the sequence. More specifically, we can calculate:

$$\frac{|x_{n+1} - L|}{|x_n - L|}$$

where L is the limit of this sequence. The lower this expression evaluates, the "faster" or "better" the sequence.

Definition 1.2.2 ▶ Sublinear, linear, superlinear

Let x_n be a sequence that converges to L, and suppose that $\lim_{n\to\infty} \frac{|x_{n+1}-L|}{|x_n-L|} = \lambda$ where $0 \le \lambda \le 1$.

- If $\lambda = 1$, then (x_n) is *sublinear*.
- If $0 < \lambda < 1$, then (x_n) is *linear*.
- If $\lambda = 0$, then (x_n) is *superlinear*.

Although all three of these types are convergent, it is clear that a lower value of λ yields a more easily-computable sequence.

Index

Defi	initions		Theorems		
			1.1.1	Extreme Value Theorem	2
			1.1.2	Intermediate Value Theorem .	2
101	Convergence	5	1.1.3	Rolle's Theorem	3
1.2.1			1.1.4	Mean Value Theorem	3
122	Sublinear linear superlinear	5	115	Taylor's Theorem	3