使用最新技术和总线进行高速、高吞吐量自动化测试

陈宇睿 NI技术市场工程师

议程

- 三大关键技术提升测试速度与吞吐量
 - PCI Express
 - 多核技术
 - FPGA
- · 软件定义自动化测试
 - 多线程激发多核潜能
 - 测试管理软件优化测试流程

PXI融合标准商业技术

控制器

- •嵌入式控制器,远程PC/Laptop, 机架式控制器
- 可运行标准软件

机箱—PXI背板

- PCI或者PCI Express总线
- 定时与同步

外围模块

•超过2,000种模块化仪器来自于60多家厂商

摩尔定律

集成电路上晶体管的数量每18个月将增加一倍

≈

处理器的性能每18个月将增加一倍

PXI遵照摩尔定律

PCI Express总线

FPGAs

ni.com/china 5

更高带宽&更佳的同步性能

PCI Express总线

多种总线对比

面向未来的测试

PCI Express总线技术拓展了应用范围

PCI Express传输速率

PCI Express Link	Generation	Theoretical Unidirectional Transfer Rates	Theoretical Bidirectional Transfer Rates
×4	Gen 1	1 GB/s	2 GB/s
×16	Gen 1	4 GB/s	8 GB/s
x4	Gen 2	2 GB/s	4 GB/s
x8	Gen 2	4 GB/s	8 GB/s
x16	Gen 2	8 GB/s	16 GB/s

PXIe-1085 机箱架构

PXI定时与同步特性

ni.com/china 11

NI定时与同步方式

NI提供高精度定时与同步模块

OCXO: NI PXIe-6674T

TCXO: NI PXIe-6672

50 ppb accuracy

Improve backplane 10 MHz reference clock to 0.5 Hz uncertainty

1 ppm accuracy

Improve backplane 10 MHz reference clock to 10 Hz uncertainty

使用LabVIEW与PXI进行蓝光播放机音视频的自动化测试

- 原测试系统: PC通过GPIB控制 示波器
 - 有限的通道数量
 - 高成本组建并行测试
- PXI系统: 软件定义的模块化仪器大大缩减了测试时间
 - 可同时并行测试多种音视频 输出、以太网、USB端口 以及其他接口

"新型质量检测系统在增加测试产能的同时最小化了测试时间,与此同时高度的自动化与稳定性可以保证全天24小时运转,极大的提高了生产测试效率"

—Koh Chee Lit, Sony EMCS

更强的数据处理能力

多核处理器

测试系统处理器性能

持续增强的处理性能

SYSmark 2007 Performance Benchmark

SYSmark is an industry-standard benchmark used to characterize the performance of business clients.

NI高性能嵌入式控制器

- 在紧凑的封装中提供从单核至四核 的处理性能
- · 高达8 GB/s 系统数据传输速率和4 GB/s单槽数据传输速率
- · NI PXI嵌入式控制器集成多种工业 总线接口:
 - ·包括GPIB, 串口与以太网口等。
- · 预安装Windows系统以及相关驱动

更高速数据流

PCI Express总线

数据流结构框图

Architecture of a Typical Data Streaming System

PXI系统数据流通路

PXIe-1085 Chassis with PXIe-8135 Embedded Controller

Total System Bandwidth = 12.8 GB/s

数据流通路瓶颈

Total System Bandwidth = 2.0 GB/s

模块间数据传输

NI PXI Express 模块化仪器

数据采集

波形/信号发生器

数字化仪

高速数字I/O

射频仪器

NI FlexRIO

高速数据存储

FPGAs 与 Peer-to-Peer数据流技术

FPGAs

什么是Peer-to-Peer(P2P)数据流技术?

模块之间直接的,点对点的数据传输,数据传输无需再经过主处理器或内存。PCI Express总线技术使这样的传输方式成为可能。

Peer-to-Peer (P2P)数据流技术

·方式 1: P2P 经 过嵌入式控制器 的芯片组或板载 开关组

• 方式 2: P2P 经 过机箱背板开 关组

P2P 数据流速率

•方式1(经由控制器芯片组)

Controller	With NI PXI Express Devices	Processor
NI PXIe-8130	640 MB/s	AMD Turion 64
NI PXIe-8133	842 MB/s	Intel Core i7

•方式2(经由机箱背板开关组)

Chassis	With NI PXI Express Devices	Number of Slots
NI PXIe-1075	842 MB/s	18
NI PXIe-1082	842 MB/s	8

NI FlexRIO P2P 构架

- •>800 MB/s 单方向
- •>700 MB/s 双方向

- •~10 µs 延迟
- •每个FPGA最高达16个通路

NI P2P 编程

FPGA #1 (写操作)

下一代射电天文接收机算法原型开发

使用基于PXI的仪器以及高速流盘技术

- 下一代射电仪器需要尽可能接近的对天线馈电进行数字化
 - 将射频至基带转换、模拟至数字转换以及铜导线至光纤转换集成一体
 - 校准和处理算法需要大量开发和测试
- 通过将数据流盘至磁盘,通过软件对结果进行后处理,这样可以 在完成复杂昂贵的FPGA实现之前, 对算法进行微调以得到最佳性能。

National Radio Astronomy Observatory

"使用NI数据采集和数据流盘硬件,,我们为DSSM和DOMT开发了标定和校正算法,相比使用实时硬件信号处理实际问题,我们的处理方法更有效、成本更低。"

—J. Richard Fisher, National Radio Astronomy Observatory

软件定义的自动化测试

多线程编程激发多核潜能

- 图形化的方法可以直观地实现多线程编程
- •可以自动创建多个线程
- 将特定的代码指定在特定的核上运行

利用多核技术提高测试速度的方式

使用NITestStand优化测试策略

- 最新的并行测试架构
 - 多线程执行引擎
 - · 内置资源分配、同步和自动调 度
 - 多线程安全的操作界面
- 无需专业的编程知识
- 其他功能
 - 可以重用任何语言编写的代码
 - 用户界面、报告生成

世界顶级的15家电子制造商中有14家使用了NI TestStand

NITestStand自动协调并行测试

■ C:\...\Examples\Auto Schedule\LabVIEW is Installed\AutoSchedule... AutoScheduled View: Main Setup Cleanup Parameters Locals Description Step Auto Schedule Timeout: <no timeout> **≜** Autoschedule DMM Test "DMM1" 自动协调 DMM Test Numeric Limit Test, 62 <= x <= 66, volt, DMM.vi ♦ End 自动 ≜ Autoschedule Scope Test "Scope" 协调组 自动协调 Scope Test Numeric Limit Test, $x \le 1.1$, volt, Scope.vi ♦ End ♠ End <End Group> < > '<End Group>' Selected Number of Steps: 8

并行测试应用演示

•自动化测试

- 1. HDMI测试
 - 。数字视频分析仪
- 2. 功耗测试
 - 。电源模块
 - 。数字万用表
- 3. GPS测试
 - 。射频仪器

顺序执行

42

并行执行

ni.com/china 43

自动协调并行执行

ni.com/china 44

总结: 软件定义的自动化测试

更多自动化测试与测量专题

- 11:15-12:00 会议厅3E《为自动化测试选择最佳软件工具》
- 11:15-12:00 黄河厅 《纵览新一代数据记录系统》
- 13:30-14:15 黄河厅《使用最新技术和总线进行高速、高吞吐量测试》
- · 13:30-14:15 会议厅3J 《从概念到原型-基于LabVIEW的软件无线电平台介绍》
- 14:30-15:15 国际厅《选择PXI平台的几点考虑》
- · 15:30-16:15 国际厅 《多通道数据采集与分析系统的构建要诀》
- 15:30-16:15 会议厅3J 《基于LabVIEW FPGA构建高速流盘应用》

