МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Домашнее задание №4. Расширение системы команд ЭВМ.

По дисциплине «Аппаратное обеспечение вычислительных систем» Вариант № 4

Выполнил студент группы №М3112

Тимофеев Вячеслав

Проверила

Шевчик

Санкт-Петербург 2024

Цель задания

Изучение микрокоманд базовой ЭВМ, микропрограмм выполнения отдельных команд, а так же овладение навыками составления микропрограмм для новых команд.

Часть I

Напишите последовательность адресов микрокоманд, которые должны быть выполнены при реализации заданного фрагмента программы, начинающегося с команды, расположенной по адресу 002 (перед выполнением программы исполняется команда "Пуск", очищающая аккумулятор и регистр переноса).

Адрес	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6
1	0	1	1	1	1	1
2	СМА	INC	DEC	ADD 01	+ BEQ 05	СМС
3	BMI 05	BLP 05	BMI 05	+ BPL 05	NOP	BCS 05
4	NOP	NOP	NOP	NOP	ADD Ø1	NOP
5	+ MOV 01	+ ADD 01	+ ADD 01	DEC	INC	+ ADC 01

Результат:

Команда	Машинный цикл	Последовательность адресов микрокоманд		
ADD 1 (4001)	 Выборка команды Исполнение Прерывание	89 01, 02, 03, 04, 05, 06, 07, 0C 1D, 1E, 1F, 20, 27, 28, 2B; 3C, 3D, 3E; 8F, 90, F5 88		
BPL 05 + (9005)	 Выборка команды Исполнение Прерывание	89 01, 02, 03, 04, 05, 06, 07, 08, 0C 1D, 2D, 30, 33, 34; 4A, 4B, 47, 48, 49; 8F, 90, F5 88		
NOP (F100)	-	Пропуск команды (из-за предыдущей)		
DEC (F900)	 Выборка команды Исполнение Прерывание	89 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A; 5E, 5F, 6C, 6F; 73, 74, 75; 8F, 90, F5 88		

Кроме того необходимо описать поля шести последних микрокоманд цикла "ИСПОЛНЕНИЕ" команды, отмеченной знаком +. Описания каждой микрокоманды выполнить в виде рисунков:

(Aдрес: 034) if PC[3] == 0 GOTO 004A

Горизонтальная схема: 824А0008

1000 0010 0100 1010 0000 0000 0000 1000

1 - Код операции

0001 - Проверочный регистр

0 - Бит сравнения

01001010 - Адрес перехода

0 - Проверочный бит

Вертикальная схема: C28F

1100 0010 1000 1111

1 - Код операции

0 - Бит сравнения

00 - Проверяемый регистр

0011 - Проверяемый бит

01001010 - Адрес перехода

(Адрес: 04A) if PC[2] == 1 GOTO 008F

Горизонтальная схема: 838F0004

1000 0011 1000 1111 0000 0000 0000 0100

1 - Код операции

0001 - Проверочный регистр

1 - Бит сравнения

0001111 - Адрес перехода

0 - Проверочный бит

Вертикальная схема: C28F

1100 0010 1000 1111

1 - Код операции

1 - Бит сравнения

00 - Проверяемый регистр

0010 - Проверяемый бит

10001111 - Адрес перехода

(Aдрес: 4B) if PC[3] == 0 GOTO 0047

Горизонтальная схема: 82470008

1000 0010 0100 0111 0000 0000 0000 1000

0 - Код операции

0010 - Проверочный регистр

0 - Бит сравнения

1000111 - Адрес перехода 0 - Проверочный бит

Вертикальная схема: 8347

1000 0011 0100 0111

1 - Код операции 0 - Бит сравнения 00 - Проверяемый регистр 0011 - Проверяемый бит 01000111 - Адрес перехода

(Адрес: 047) БР=0 +РД

Горизонтальная схема: 00000002

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010$

0 – Код операции 0010 - В1 РК==>АЛУ

Вертикальная схема: 0100

0000 0001 0000 0000

- 00 Код операции
- 00 Левый вход
- 00 Пустое место
- 01 Правый вход
- 00 Обратный код
- 00 Операция
- 00 Сдвиг
- 00 Память

(Адрес: 048) СК = БР

Горизонтальная схема: 00200000

 $0000\ 0000\ 0010\ 0000\ 0000\ 0000\ 0000\ 0000$

0 – Код операции 0010 - В21 БР==>СК

Вертикальная схема: 0100

0100 0000 0000 0100

- 01 Код операции
- 00 Пустое место
- 0 Включить прерывания
- 0 Выключить прерывания
- 0 Сброс готовности ВУ
- 0 Запуск контролера ВУ
- 00 Регистр С
- 0 Регистр N
- 0 Регистр Z
- 0 Остановочка
- 100 Выход АЛУ

(Адрес: 049) if PC[3] == 0 GOTO 008F

Горизонтальная схема: 828А0008

 $1000\ 0010\ 1000\ 1111\ 0000\ 0000\ 0000\ 1000$

- 1 Код операции
- 0001 Проверочный регистр
- 0 Бит сравнения
- 10001000 Адрес перехода
- 0 Проверочный бит

Вертикальная схема: 838F

1000 0011 1000 1111

- 1 Код операции
- 0 Бит сравнения
- 00 Проверяемый регистр
- 0011 Проверяемый бит
- 10001111 Адрес перехода

Часть II

А. Написать вертикальные микрокоманды

Написать завершающие вертикальные микрокоманды цикла "ИСПОЛНЕНИЕ" следующих команд:

Команда 7ХХХ

• 4 вариант - ЗАГРУЗКА ДОПОЛНИТЕЛЬНАЯ

(записать в аккумулятор дополнительный код содержимого ячейки, на которую указывает адресная часть команды);

Адрес	Микрокоманда	Комментарии
В0	0190	БР=0 + !РД + 1
B1	4075	C = BP[0]; N=BP < 0; Z=BP == 0; A = BP
B2	838F	if PC[3] == 0 GOTO 008F

Команда DXXX

Организовать переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если:

4 вариант - аккумулятор содержит число, меньшее чем -16384;

Адрес	Микрокоманды	Комментарии
D0	BF8F	if $A[15] == 0$ GOTO 008F
D1	FE47	if A[14] == 1 GOTO 0047
D2	0200	BP=0 +PK
D3	4004	CK = BP
D4	838F	If PC[3] == 0 GOTO 008F

Безадресные команды

• 4 вариант - запись единицы в аккумулятор(FC00);

Адрес	Микрокоманды	Комментарии
E0	E98F	if PK[9] == 1 GOTO 008F
E1	E88F	if PK[8] == 1 GOTO 008F
E2	0020	БР=0 & 0
E3	4035	N = BP < 0; Z = BP == 0; A = BP

E4	1010	$\mathbf{EP} = \mathbf{A} + 0 + 1$
E5	4035	N = BP < 0; Z = BP == 0; A = BP
E6	838F	If $PC[3] == 0$ GOTO $008F$

Б. Написать тестовые программы

Написать тестовые программы для проверки правильности исполнения всех трех синтезированных команд базовой ЭВМ и подготовиться к выполнению лабораторной работы №8. Тестовые программы должны отвечать следующим требованиям:

- 1. Для синтезированных арифметических и без адресных команд результат их выполнения должен быть зафиксирован в памяти базовой ЭВМ, а не только в регистрах,
- 2. Если проверяемая арифметическая или безадресная команда устанавливает признаки результата (C,Z,N), необходимо проверить правильную установку одного из них, используя соответствующую команду перехода. Результат проверки признака зафиксировать в памяти базовой ЭВМ,
- 3. Для синтезированных команд переходов необходимо проверить команду как при выполнении условия перехода, так и при его невыполнении. Результат проверки в обоих случаях зафиксировать в памяти базовой ЭВМ.

Таким образом, после выполнения правильно разработанной тестовой программы в автоматическом режиме в памяти базовой ЭВМ будет размещена информация, позволяющая однозначно подтвердить правильность выполнения синтезированной команды.

Команда - 7ххх

Адрес	Код	Мнемоника	Комментарии
010	FFFF	HZF	-1
011			Pезультат (correct = 0001)
012	F200	CLA	Очистка А
013	7010	HZA7 010	Синтетическая команда
014	3011	MOV 011	А в ячейку 011
15	F000	HLT	стоп ЭВМ

Команда - Dxxx

Адрес	Код	Мнемоника	Комментарии
10	0000		Результат fisrt (correct = 0001)
11	0000		Результат second (correct = 0000)
12	BFFC	BEQ (7FC)	Число < -16384
13	C004	BR 004	Число !< -16384
14	F200	CLA	Очистка А
15	3012	ADD 012	Ячейка 012 в А
16	D018	HZAD 018	Синтезированная команда

17	C01B	BR 01B	СК в 01В
18	F200	CLA	Очистка А
19	F800	INC	A++
01A	3010	MOV 010	А в ячейку 010
01B	F200	CLA	Очистка А
01C	3013	ADD 013	Ячейка 013 в А
01D	D01F	HZAD 01F	Синтезированная команда
01E	C022	BR 022	СК в 022
01F	F200	CLA	Очистка А
20	F800	INC	A++
21	3011	MOV 011	Ав 011
22	F000	HLT	Стоп ЭВМ

Команда - FC00

Адрес	Код	Мнемоника	Комментарии
10	0000	-	Результат (correct = 0001)
11	F200	CLA	Очистка А
12	FC00		Синтезированная команда
13	3010	MOV 010	А в ячейку 010
14	F000	HLT	Стоп ЭВМ

Вывод: В результате проведенной лабораторной работы было изучено функционирование микрокоманд базовой ЭВМ, проанализированы микропрограммы выполнения отдельных команд и освоены навыки составления микропрограмм для новых команд. Полученные знания позволяют глубже понять процессы работы вычислительных систем на уровне микроархитектуры, что важно для оптимизации процессов выполнения команд и повышения эффективности работы системы в целом.