

Document And Report Documentation Page Submitted as edoc_1075730062

Report	Documentation Page		Form Approved OMB No. 0704-0188		
reviewing the collection of in- information, including sugges Operations and Reports, 1215 that notwithstanding any other	formation. Send comments regarding this b tions for reducing this burden, to Washingt Jefferson Davis Highway, Suite 1204, Ast	urden e on Hea ngton '	e 1 hour per response, including the time for ing the data needed, and completing and estimate or any other aspect of this collection odquarters Services, Directorate for Information VA 22202-4302. Respondents should be aware penalty for failing to comply with a collection		
1. REPORT DATE 13 MAR 2003	2. REPORT TYPE N/A	3. D.	3. DATES COVERED		
4. TITLE AND SUBTITLE Matched Subspace Detectors for Stochastic Signals			5a. CONTRACT NUMBER		
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZA Mission Research Cor _l University	TION NAME(S) AND ADDRESS(ES) poration and Colorado State		8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
2. DISTRIBUTION/AVAILAB Approved for public re	ILITY STATEMENT lease, distribution unlimited				
3. SUPPLEMENTARY NOTES		s colo	or images.		
4. ABSTRACT					
5. SUBJECT TERMS					
. SECURITY CLASSIFICATION OF: 17. 18			19a. NAME OF RESPONSIBLE		

a. REPORT unclassified	0. 1B0 114 -	c. THIS PAGE unclassified	LIMITATION OF ABSTRACT	NUMBER OF PAGES 17	PERSON Patricia Mawby, EM 1438 PHONE: (703) 767-9038 EMAIL: pmawby@dtic.mil
				L	Standard

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

pwd: cannot determine current directory!

Matched Subspace Detectors for Stochastic Signals*

Todd McWhorter
Mission Research Corporation
mcwhorter@aster.com

Louis Scharf
Colorado State University
scharf@engr.colostate.edu

*This work supported by ONR contracts N00014-00-C-00145 and N00014-01-1-1019-P0001

Matched Subspace Detectors for Stochastic Signals*

Mission Research Corporation mcwhorter@aster.com Todd McWhorter

scharf@engr.colostate.edu Colorado State University Louis Scharf

*This work supported by ONR contracts N00014-00-C-00145 and N00014-01-1-1019-P0001

Problem Statement

The goal is to design detectors for stochastic signals or secondorder signals.

Extension of the first-order matched subspace detectors of Scharf and Friedlander.

We assume various states of knowledge about the parameters σ^2 and β ,

 $n \sim CN(0, \sigma^2 I)$

 θ : f(θ ; β) ex. $\theta \sim GN(0,R_{\theta\theta})$

Pre-Processing

- In order to be invariant to the interference statistics, the data are projected into the space orthogonal to the interference.
- The data are then decomposed into their signal and noise components.
- The signal component is denoted by the vector z and the noise component is denoted by the vector w.

$$G = (I - P_S)H$$

$$z = (H^{*}(I-P_{S})H)^{-1/2}H^{*}(I-P_{S}) y$$

= (G'G)^{-1/2}G* y

Alamander of Conference

Hypotheses

The "noise" vector w is distributed as a white complex Gaussian vector regardless of which hypothesis is in effect.

$$f(\mathbf{w}) = \frac{1}{(\pi \sigma^2)^{N-p}} e^{-\frac{\mathbf{w}^* \mathbf{w}}{\sigma^2}}$$

- Define $\phi = (G^*G)^{1/2}\theta$.
- $f(\mathbf{z} \mid \phi) = \frac{1}{(\pi \sigma^2)^p} e^{-\frac{1}{\sigma^2} ||\mathbf{z} \phi||^2}$
 - When signal is present the data vector z is distributed:
- $f(\mathbf{z} \mid \phi = 0) = \frac{1}{(\pi \sigma^2)^n} e^{-\frac{\mathbf{z}^* \mathbf{z}}{\sigma^2}}$ When signal is not present the data vector z is distributed:

Likelihood Ratio

$$l(\mathbf{z} \mid \phi; \sigma^2) = \frac{f(\mathbf{z} \mid \phi; \sigma^2)}{f(\mathbf{z} \mid \phi = 0; \sigma^2)}$$

$$= \exp\left(\frac{\mathbf{z}^* \mathbf{z}}{\sigma^2}\right) \times \exp\left(-\frac{1}{\sigma^2} ||\mathbf{z} - \phi||^2\right)$$

hinovideally to Go Plane

Unconditional Likelihood Ratio

The unconditional likelihood ratio can be written as

$$l(\mathbf{z}; \sigma^2, \beta) = \exp\left(\frac{\mathbf{z}^* \mathbf{z}}{\sigma^2}\right) \times \int \exp\left(-\frac{\|\mathbf{z} - \phi\|^2}{\sigma^2}\right) f_{\phi}(\phi; \beta) d\phi$$

The log-likelihood ratio becomes

$$s(\mathbf{z}; \sigma^2, \beta) = \frac{\mathbf{z}^* \mathbf{z}}{\sigma^2} + \ln \int \exp\left(-\frac{|\mathbf{z} - \phi||^2}{\sigma^2}\right) f_{\phi}(\phi; \beta) d\phi$$

$$= \frac{\mathbf{y}^* \mathbf{P}_{\mathbf{G}} \mathbf{y}}{\sigma^2} - p_r(\mathbf{z}; \sigma, \beta)$$

Matched Subspace Detector

Resolution Penalty

- The resolution penalty occurs because we presume to know something about the coordinate vector θ .
- If z is far from the "favored" orientation defined by θ then the penalty is larger than if the converse were true.

$$p_r(\mathbf{z}; \sigma^2; \beta) = -\ln \int \exp(-\frac{||\mathbf{z} - \phi||^2}{\sigma^2}) f_{\phi}(\phi; \beta) d\phi$$

Gaussian Coordinate Vectors

- Suppose $\phi \sim \text{CN}(0, R_{\phi \phi})$.
- Write the eigenvalue decomposition of R as:

$$R_{\phi\phi} = (G^*G)^{1/2} R_{\theta\theta}(G^*G)^{1/2} = VD^2V^*$$

$$V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_p]; \ unitary$$

$$D^2 = diag[\beta_1^2, \beta_2^2, \dots, \beta_p^2]$$

· Define the resolved signal-plus-noise to noise ratios:

$$r_i = 1 + \frac{\beta_i^2}{\sigma^2}$$

Gaussian Penalty Term

After some algebra the penalty term can now be written as

$$p_r(\mathbf{z}; \sigma^2, \beta^2) = -\ln \int \exp(-\frac{\|\mathbf{z} - \phi\|^2}{\sigma^2}) \frac{1}{\pi^p det(R_{\phi\phi})} \exp(-\phi^* R_{\phi\phi}^{-1} \phi) d\phi$$
$$= \sum_{i=1}^p \ln(\eta_i) + \sum_{i=1}^p \frac{(\mathbf{z}^* P_{v_i} \mathbf{z}/\sigma^2)}{\tau_i}$$

This result implies that if the estimated signal-plus-noise to noise ratio (z $P_{v(i)}$ z/ σ^2) in the resolved subspace defined by v_i greatly exceeds r_i , then the penalty is large because of this mismatch. mismatch.

Unknown Signal Power and Orientation

- Suppose that when signal is present we do not know R
- Recall the penalty term is

• Kecall the penalty term is
$$p_r(\mathbf{z};\sigma^2;\beta^2) = -\ln\int \exp(-\frac{\|\mathbf{z}-\phi\|^2}{\sigma^2}) \frac{1}{\pi^p det(R_{\phi\phi})} \exp(-\phi^* R_{\phi\phi}^{-1}\phi) d\phi$$
 $\mp \sum_{i=1}^p \ln(r_i) + \sum_{i=1}^p \frac{(\mathbf{z}^* P_{\mathbf{v},\mathbf{z}}/\sigma^2)}{r_i}$

· The estimates of the signal-plus-noise to noise ratios are

$$r_i = max(1, \mathbf{z}^* P_{\mathbf{v}_i} \mathbf{z}/\sigma^2)$$

• We assume that r₁≥1 in the sequel

Estimating Orientation

- The estimates of \mathbf{r}_i in the previous slide depend on the orientation of the vectors \mathbf{v}_i .
- We want to minimize

$$\prod_{i=1}^{p} \frac{\mathbf{z}^* P_{\mathbf{v}_i} \mathbf{z}}{\sigma^2}$$

We must also satisfy the constraints

$$\sum_{i=1}^{p} \frac{\mathbf{z}^* P_{\mathbf{v}_i \mathbf{z}}}{\sigma^2} = \frac{\mathbf{z}^* \mathbf{z}}{\sigma^2}$$

Mission Research Corporation

Intermediate Orientation Solution

The solution to this optimization problem is

$$r_i = \frac{\mathbf{z}^* P_{v_i} \mathbf{z}}{\sigma^2} = 1$$
 for $i = 1, 2, ..., p - 1$
 $r_p = \frac{\mathbf{z}^* P_{v_p} \mathbf{z}}{\sigma^2} = \frac{\mathbf{z}^* \mathbf{z}}{\sigma^2} - (p - 1)$

- The question remains: Is there a decomposition of $\langle G \rangle$ that has the above properties?
- The answer is yes.

Orientation Solution

- Solve for v_p first.
- Choose a v_p on the spherical invariance set defined by

$$\frac{\mathbf{z}^* P_{\mathbf{v_p}} \mathbf{z}}{\sigma^2} = \frac{\mathbf{z}^* \mathbf{z}}{\sigma^2} - (p-1).$$

Repeat this procedure in the spaces

 $\langle A_{p-1} \rangle, \langle A_{p-2} \rangle, 6, \langle A_1 \rangle$

Has norm o²(p-1)

Compressed Likelihood

Compressing the likelihood ratio with this solution gives the

$$s(\mathbf{z}; \sigma^2, \hat{R}_{\phi\phi}) = rac{\mathrm{y}^* P_H \mathrm{y}}{\sigma^2} + \left[\ln(rac{\mathrm{y}^* P_H \mathrm{y}}{\sigma^2}) - constants
ight]$$

This statistic is a monotonic function of the matched subspace detector. We can therefore use the MSD as the detection statistic

$$s = \frac{y^* P_H y}{\sigma^2}$$

Then the result for 2nd-order models is the same as for 1st-order models.

Unknown Noise Power

In the case of unknown noise power the GLRT detector can be written as a sum of the CFAR matched subspace detector and a penalty term

$$s(\mathbf{z}; \hat{\sigma}^2, \hat{R}_{\phi\phi}) = \ln(1+\tilde{s}) + [\ln(\tilde{s}) - donstants]$$

We can equivalently use the statistic $z=-\mathrm{y}^*P_H\mathrm{y}.$

$$\hat{\sigma} = \frac{y^* P_H y}{\hat{\sigma}^2};$$
 $\hat{\sigma}^2 = \frac{1}{N + p} y^* (I - P_H) y$

These detectors are identical to the 1st-order results.

Rank-One Assumptions

- Here we assume that the signal subspace is rank-one.
- The complex-valued signal amplitude is written in polar form

$$heta = Me^{j\phi}$$

- Assume that the phase and magnitude are uncorrelated and that the phase is uniformly distributed over [0, 2π).
- Assume that the signal magnitude has a generalized Rayleigh

Detectors with Known Noise

- L=0. This is the previous results with complex Gaussian amplitudes.
- $\ln \left[\sum_{k=0}^{L} \frac{binom(L,k)}{k!} \left(\frac{(\mathbf{y}^*P_h\mathbf{y}/\sigma^2)(r-1)}{r} \right)^k \right]$ $p_T = (L+1)\ln(r) + \frac{(y^*P_h y/\sigma^2)}{r}$ L ≠ 0. The penalty function is
- Minimize the penalty term with respect to r=1+ β^2/σ^2 .
- Compress the likelihood function with this term to obtain $s=rac{y^*P_by}{\sigma 2}-p_r(\hat{r}).$

$$s = \frac{y^* P_h y}{\sigma^2} - p_r(\hat{r}).$$

