Question Number	Answer		Mark
12	Energy transferred from hot liquid = energy transferred to ice + energy transferred to cold water	(1)	
	[This may be implicit]		
	Use of $E = mc\Delta\theta$	(1)	
	Use of $E = mL$	(1)	
	Mass of ice required to cool drink to 58 °C is 2.4×10^{-2} kg Or Final temperature using 4 g of ice is 69 °C		
	Valid conclusion based on a consideration of their calculated value in comparison with a corresponding value in the question.	(1)	
		(1)	5
	Example of calculation		
	Energy transferred from hot liquid = energy transferred to ice + energy transferred to cold water		
	$0.275 \text{ kg} \times 3750 \text{ J kg}^{-1} \text{K}^{-1} \times (71.5 - 58.0) \text{K}$ = m × 3.34 × 10 ⁵ J kg ⁻¹ + m × 4190 J kg ⁻¹ K ⁻¹ × (58.0 – 0) K		
	$ \therefore 1.39 \times 10^4 \text{J} = \text{m} \times (3.34 \times 10^5 + 2.43 \times 10^5) \text{ J kg}^{-1} $		
	$ \therefore m = \frac{1.39 \times 10^4 \mathrm{J}}{5.77 \times 10^5 \mathrm{J kg^{-1}}} = 2.41 \times 10^{-2} \mathrm{kg} = 24 \mathrm{g} $		
	So 4 g would not bring the temperature below the ideal serving temperature.		
	Total for question 12		5