Table 5.11. Data set for Exercise 8.

Class	1	+	1	1	+	+	1	Ţ	+	+
Ö	П	П	0	0	Н	_	0	0	0	Н
В	0	0	-	0	0	0	_	0	\vdash	_
V	0	_	0	П	_	0	_	0	0	_
Instance	1	2	က	4	5	9	<u></u>	∞	6	10

- (b) Use the conditional probabilities in part (a) to predict the class label for a test sample (A = 1, B = 1, C = 1) using the naïve Bayes approach.
- (c) Compare P(A=1), P(B=1), and P(A=1,B=1). State the relationships between A and B.
- (d) Repeat the analysis in part (c) using P(A = 1), P(B = 0), and P(A = 1), P(B = 0), and P(A = 1)
- (e) Compare P(A = 1, B = 1|Class = +) against P(A = 1|Class = +) and P(B = 1|Class = +). Are the variables conditionally independent given the class?
- 9. (a) Explain how naïve Bayes performs on the data set shown in Figure 5.46.
- (b) If each class is further divided such that there are four classes $(A1,\ A2,\ B1,\ {\rm and}\ B2),$ will naïve Bayes perform better?
- (c) How will a decision tree perform on this data set (for the two-class problem)? What if there are four classes?
- 10. Repeat the analysis shown in Example 5.3 for finding the location of a decision boundary using the following information:
- (a) The prior probabilities are $P(\texttt{Crocodile}) = 2 \times P(\texttt{Alligator})$.
- (b) The prior probabilities are $P(\texttt{Alligator}) = 2 \times P(\texttt{Crocodile})$.
- (c) The prior probabilities are the same, but their standard deviations are different; i.e., $\sigma(\texttt{Crocodile}) = 4$ and $\sigma(\texttt{Alligator}) = 2$.
- 11. Figure 5.47 illustrates the Bayesian belief network for the data set shown in Table 5.12. (Assume that all the attributes are binary).
- (a) Draw the probability table for each node in the network.