

AIDD Program School

Son Ha

czodrowskilab.org

github.com/czodrowskilab

AIDD School

- <u>AIDD</u>: Advance machine learning for Innovative Drug Discovery EU program.
- School: Every 6 months, over 1 week of talks from research groups/companies.
- Everyone can join via Zoom.
- Powerpoints available online: https://ai-dd.eu/lectures

Talk Highlight

- Explainability for molecular neural network, Floriane Montanari
- Explainable AI (XAI):
 - Understands and interpret Machine Learning models.
 - Why? ML models are good at prediction, but notoriously hard to interpret
- Aim (in Drug Discovery):
 - Model debugging (is model learning what it is supposed to?)
 - How to modify the structure to improve desired properties.
- **Example 1**: Interpreting FNN on ECFP (upper figure).
 - o Prediction: Alcohol Group
 - Integrated Gradient helps identify which ecfp bits are important
 - <u>Red</u>: Responsible for positive prediction. <u>Blue</u>: negative
- Example 2: How Bayer checks model produce a good interpretation (lower figures)
 - Comparing 4 models and their interretation.
 - <u>Ask chemists</u> to choose which interpretation makes sense by a questionnaire.
 - Feedbacks from experts will be used to improve models.
- (Slides: https://ai-dd.eu/sites/default/files/school-2/Montanari_XAI.pdf)

Hackathon Highlight

#	Team	Members	Score	Entries	Last	Code
1	Sparse People		0.73336	6	15d	
2	DAMPP		0.73324	17	15d	
3	Winner, Winner, Chicken Dinner		0.72604	5	15d	
4	AnaVincenzoMikhailPaula	999	0.72450	6	15d	
Ħ	Naive MLP		0.70933			

- Goal: <u>Domain adaptation</u>: Building a model that withstands <u>domain shift</u>
- Domain shift: Compounds in the train set are from a completely <u>different chemical space</u> than test set.
- Fun fact: the best model is a <u>simple Logistic Regression</u> (with no tricks!)
- (Lesson: Don't count out ,simple' models!)

Thanks you for your attention!

czodrowskilab.org

