Matthias Fey

Motivation and Related Work

Graph Neural Networks (GNNs) iteratively update node features by aggregating localized information:

$$\vec{h}_{v}^{(t)} = f_{\mathbf{\Theta}}^{(t)} \left(\vec{h}_{v}^{(t-1)}, \left\{ \vec{h}_{w}^{(t-1)} \colon w \in \mathcal{N}(v) \right\} \right)$$

Empirically observed: gradually decreasing performance when deeply stacking those layers

Theoretically explained: varying speed of expansion due to structure-dependent influence radii

Jumping Knowledge (JK) enables deeper GNNs by layer-wise jump connections:

by Resource-Constrained Data Analysis

$$\vec{h}_v^{(final)} = g\left(\vec{h}_v^{(1)}, \dots, \vec{h}_v^{(T)}\right)$$

(e.g., concatenation, max-pooling, attention)

Model adapts the neighborhood size for each node as needed

Dynamic Neighborhood Aggregation (DNA)

JK does not prevent "washed out" representations in later layers Here: Allow jumps directly while aggregating information

each node can dynamically craft its own receptive field, e.g., aggregate local and global information from different branches

$$\vec{h}_{v}^{(t)} = f_{\mathbf{\Theta}}^{(t)} \left(\vec{h}_{v \leftarrow v}^{(t)}, \left\{ \vec{h}_{v \leftarrow w}^{(t)} \colon w \in \mathcal{N}(v) \right\} \right)$$

$$\vec{h}_{v \leftarrow w}^{(t)} = \text{Attention}\left(\mathbf{\Theta}_Q^{(t)} \vec{h}_v^{(t-1)}, \left[\vec{h}_w^{(1)}, \dots, \vec{h}_w^{(T)}\right]^{\top} \mathbf{\Theta}_K^{(t)}\right)$$

- Attention heads only have local influence on other heads
- Avoids overfitting while maintaining large feature dimensionality

Quantitative and Qualitative Evaluation on Transductive Benchmark Datasets

	Model	Cora	CiteSeer	PubMed	Cora Full
CCN	JK-None JK-Concat JK-Pool JK-LSTM	83.20 ± 0.98 83.99 ± 0.72 84.36 ± 0.62 80.46 ± 0.88	73.87 ± 0.81 73.77 ± 0.89 73.86 ± 0.97 72.92 ± 0.69	86.93 ± 0.25 87.52 ± 0.25 87.61 ± 0.27 87.38 ± 0.29	62.55 ± 0.60 65.62 ± 0.49 65.14 ± 0.81 55.39 ± 0.40
DNA	g = 1 $g = 8$ $g = 16$	83.88 ± 0.50 85.86 ± 0.45 86.15 ± 0.57	73.37 ± 0.83 74.19 ± 0.66 74.50 ± 0.62	87.80 ± 0.25 88.04 ± 0.17 88.04 ± 0.22	63.72 ± 0.44 66.50 ± 0.42 66.64 ± 0.47

	Model	Coauthor CS	Coauthor Physics	Amazon Computers	Amazon Photo
GCN	JK-None JK-Concat JK-Pool JK-LSTM	92.90 ± 0.14 95.44 ± 0.32 95.47 ± 0.21 94.40 ± 0.28	95.90 ± 0.16 96.71 ± 0.15 96.74 ± 0.17 96.55 ± 0.08	89.32 ± 0.20 90.27 ± 0.28 90.30 ± 0.37 90.06 ± 0.23	93.11 ± 0.27 94.74 ± 0.29 94.64 ± 0.24 94.54 ± 0.30
DNA	g = 1 $g = 8$ $g = 16$	94.02 ± 0.17 94.46 ± 0.15 94.64 ± 0.15	96.49 ± 0.10 96.58 ± 0.09 96.53 ± 0.10	90.52 ± 0.40 90.99 ± 0.40 90.81 ± 0.38	94.89 ± 0.26 94.96 ± 0.24 95.00 ± 0.19

DNA can aggregate localized information even from nodes far away!