ARMY MISSILE COMMAND REDSTONE ARSENAL AL DIRECTED E--ETC F/G 20/5 COMPILATION OF ATOMIC AND MOLECULAR DATA REVELANT TO GAS LASERS--ETC(11) DEC 80 E W MCDANIEL, M R FLANNERY, E W THOMAS AD-A101 037 DRSMI-RH-81-4-VOL-8 UNCLASSIFIED NL 1 of 4

TECHNICAL REPORT RH-81-4

COMPILATION OF ATOMIC AND MOLECULAR DATA RELEVANT TO GAS LASERS

VOLUME VIII

E. W. McDaniel, M. R. Flannery, and E. W. Thomas School of Physics, Georgia Institute of Technology Atlanta, Georgia 30332

S. T. Manson Physics Department, Georgia State University Atlanta, Georgia 30303

J. W. Gallagher Joint Institute for Laboratory Astrophysics University of Colorado Boulder, Colorado 80302

T. A. Barr, Jr. and T. G. Roberts Directed Energy Directorate US Army Missile Laboratory

December 1980

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35809

Approved for public rélease; Distribution unlimited.

DTIC FILE COPY

FORM 1021, 1 JUL 79 PREVIOUS EDITION IS OBSOLETE

81 7 02 077

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	ORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
Technical Repen		100 NO. 3. RECIPIENT'S CATALOG NUMBER
A. TITLE (and Subsets)	ATOMIC AND MOLECULAR DATA	5. TYPE OF REPORT & PERIOD COVERED
RELEVANT TO GAS	S LASERS VOLUME VIII	Technical Fita 6. PERFORMING ORG. REPORT NUMBER
The second secon	manufacture of the second section (1997) and the second second section (1997) and the second second section (1997) and the second secon	
S.T./Manson, J. and T.G. Robert	•	8. CONTRACT OR GRANT NUMBER(*)
Commander, US /	Army Missile Command , Redstone Arsenal, AL 35898	10. PROGRAM ELÉMENT, PROJECT, TASK AREA & MORK UNIT NUMBERS
Commander, US A	ICE NAME AND ADDRESS Army Missile Command,	December 980
ATTN: DRSMI-RF	P, Redstone Arsenal, AL 35898	13. NUMBER OF PAGES
14. MONITORING AGEN	CY NAME & ADDRESS(II different from Controlling (Office) 15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING
17. DISTRIBUTION STAT	EMENT (of the abstract entered in Block 20, if diffe	erent from Report)
18. SUPPLEMENTARY N	OTES	
See Volume VI		
Excitation Ionization	o on reverse elde il necessary and identify by block Laser pumping mechanisms Heavy Nuclides Light nuclides	High energy electron beams High energy ion beams
20. ASSTRACT COMME	on reverse side if necessary and identify by block :	number)
This volume series that pre gas lasers. Vo Rare Gas-Rare G Volumes III, IV	and the succeeding volume are	the seventh and the eighth in a and development in the field of compilation of Data Relevant to mer Lasers", December 1977.
,,		ACT CONTINUED ON BACK)
	(ADSTR	THE CONTINUED ON DUCK)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

24-212

500

ABSTRACT (CONTINUED)

Species Index for Volumes I-V of the Compilation of Data Relevant to Gas Lasers", September 1979. These six volumes, authored by E.W. McDaniel and other personnel at Georgia Tech, Georgia State University, the Joint Institute of Laboratory Astrophysics (JILA), and the Army Missile Command (MICOM), were published as MIRADCOM Technical Report H-78-1 at Redstone Arsenal, Alabama.

Volumes I and II were prepared in the context of the two most-used techniques for gas laser pumping: electrical discharges and high intensity high energy electron and ion beams. Heavy emphasis was placed on the rare gases and halogens (atoms, molecules, and ions), and the rare gas-halides, although a significant amount of material on other species was included. Volumes III, IV, and V contain much information relevant to e'ectrical discharges and high intensity, high energy electron and ion beams, but are oriented toward a third pumping technique: nuclear pumping. Since nuclear reactions may also become interesting in some form of hybrid laser where the excitation and ionization produced by the reaction products might be used to supply electrons for an electrical discharge laser or an initiator for a pulsed chemical laser, or as an initiator and sustainer for a continuous wave (CW) chemical laser; data relevant to these systems was also included.

The present volumes serve to update most of the areas covered in the previous documents. Those areas not treated here are considered to have been adequately dealt with earlier, as far as immediate data needs are concerned. However, even in those areas where new data are not presented here, references are given to past volumes in order to facilitate access to the previous data. Another function of the present work is to expand somewhat the scope of our data coverage, both with respect to atomic and molecular structural properties and with respect to atomic collisions. New species and sets of collision partners that have recently assumed importance are treated here, and other systems that may become important in the gas laser contex are given attention. A significant amount of new material is also added to the chapter on surface impact phenomena, partly because of current interest in hollow-cathode lasers.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This volume and the succeding volume are the seventh and the eighth in a series that presents data relevant to research and development in the field of gas lasers. Volumes I and II are entitled, "Compilation of Data Relevant to Rare Gas-Rare Gas and Rare Gas-Monohalide Excimer Lasers", December 1977. Volumes III, IV, and V comprise a "Compilation of Data Relevant to Nuclear-Pumped Lasers", December 1978. Volume VI provides a "Cumulative Reactant Species Index for Volumes I-V of the Compilation of Data Relevant to Gas Lasers", September 1979. These six volumes, authored by E.W. McDaniel and other personnel at Georgia Tech, Georgia State University, the Joint Institute of Laboratory Astrophysics (JILA), and the Army Missile Command (MICOM), were published as MIRADCOM Technical Report H-78-1 at Redstone Arsenal, Alabama.

Volumes I and II were prepared in the context of the two most-used techniques for gas laser pumping: electrical discharges and high intensity, high energy electron and ion beams. Heavy emphasis was placed on the rare gases and halogens (atoms, molecules, and ions), and on the rare gas-halides, although a significant amount of material on other species was included. Volumes III, IV, and V contain much information relevant to electrical discharges and high intensity, high energy electron and ion beams, but are oriented toward a third pumping technique: nuclear pumping. Since nuclear reactions may also become interesting in some form of hybrid laser where the excitation and ionization produced by the reaction products might be used to supply electrons for an electrical discharge laser or an initiator for a pulsed chemical laser, or as an initiator and sustainer for a continuous wave (CW) chemical laser; data relevant to these systems was also included.

The present volumes serve to update most of the areas covered in the previous documents. Those areas not treated here are considered to have been adequately dealt with earlier, as far as immediate data needs are concerned. Such areas include all nuclear processes, and atomic collisions occurring at "high" energies, i.e., above about 100 eV impact energy. However, even in those areas where new data are not presented here, references are given to past volumes in order to facilitate access to the previous data. Attention should also be called to another document that may prove useful to those requiring data--"Bibliography: Sources of Information on Phenomena of Interest in Gas Laser Research and Development", Technical Report RH-77-1, by E.W. McDaniel, H.W. Ellis, F.L. Eisele, and M.G. Thackston, January 1977, US Army Missile Command, Redstone Arsenal, Alabama. A second, updated edition of this bibliography will be published early in 1981.

Another function of the present volume is to expand somewhat the scope of our data coverage, both with respect to atomic and molecular structural properties and with respect to atomic collisions (by the

latter term, we mean two- and three- body collisions between electrons, ions, atoms, molecules, and photons at impact energies sufficiently low that nuclear forces are unimportant). New species and sets of collision partners that have recently assumed importance are treated here, and other systems that may become important in the gas laser context are given attention. A significant amount of new material is also added to the chapter on surface impact phenomena, partly because of current interest in hollow-cathode lasers.

In conclusion, we wish to thank C.F. Barnett, former Director of the Controlled Fusion Atomic Data Center at the Oak Ridge National Laboratory, and E.C. Beaty, Chief of the Information Center at JILA, for their cooperation and the use of their facilities. In certain areas, our work would have been immensely more difficult without their assistance. Chapter D on photon collision processes in gases was put together with the aid of several scientists. Particularly significant were the contributions of Dr. Joseph Berkowitz, of Argonne National Laboratory, whose book Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, New York, 1979) provided us with a wealth of references and critically evaluated data on atoms and molecules. We gratefully acknowledge being allowed access to the manuscript prior to publication, as well as Dr. Berkowitz providing us with a number of large-size versions of figures from his book. In addition, we acknowledge the contributions of Professor C.E. Brion, of the University of British Columbia, for providing us with a complete set of reprints, spanning a decade, of his very extensive work on partial and total cross sections of atoms and molecules. Also, the expert help of Professor H.W. Ellis, of Eckerd College, St Petersburg, Florida, on the transport properties of electrons, ions, and neutrals in gases is gratefully acknowledged.

C. ELECTRON-HEAVY PARTICLE COLLISIONS

CONTENTS

C-1.	Electron Scattering: Elastic, Total, and Momentum Transfer	2898
C-2.	Excitation by Electron Impact	291
	Dissociation by Electron Impact	
C-4.	Ionization by Electron Impact	296
C-5.	Electron-Ion Recombination	2996
C-6.	Negative Ion Formation by Electron Impact	2998

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

C-1. ELECTRON SCATTERING: ELASTIC, TOTAL, AND MOMENTUM TRANSFER

CONTENTS

C-1.1.	of electrons in Ne	2899
C-1.2.	Semi-empirical (average) cross sections for elastic scattering of electrons in Ar	2900
C-1.3.	Semi-empirical (average) cross sections for elastic scattering of electrons in Kr	2901
C-1.4.	Semi-empirical (average) cross sections for elastic scattering of electrons in Xe	2902
C-1.5.	Cross sections for elastic scattering for electrons incident on $\mbox{\rm Hg}\ldots$	2903
C-1.6.	Semi-empirical total scattering cross sections for electrons incident on Ne	2904
C-1.7.	Semi-empirical total scattering cross sections for electrons incident on Ar	2905
C-1.8.	Semi-empirical total scattering cross sections for electrons incident on Kr	2906
C-1.9.	Semi-empirical total scattering cross sections for electrons incident on Xe	2907
C-1.10.	Cross sections for total scattering of electrons incident on Hg	2908
C-1.11.	Calculated cross sections for total scattering of electrons incident on CO_2	2909
C-1.12.	Calculated cross sections for total scattering of electrons incident on OCS	2910
C-1.13.	Calculated cross sections for total scattering of electrons incident on CS2	2911
C-1.14.	Cross sections for total scattering of electrons incident on CH_4	2912
C-1.15.	Cross sections for total scattering of electrons incident on CH_4	2913
C-1.16.	Cross sections for total scattering of electrons incident on SF	2914

Tabular and Graphical Data C-1.1. Semi-empirical (average) cross sections for elastic scattering of electrons in Ne.

Electron Energy	Cross Section	Electron Energy	Cross Section	
eV	10-16 _{cm} 2	eV	10 ⁻¹⁶ cm ²	
20 30 40 50 60 70 80 90	3.444 3.170 2.999 3.030 2.912 2.797 2.680 2.563 2.447	200 300 400 500 700 1000 2000 3000	1.398 1.120 0.9003 0.7620 0.6191 0.4556 0.2856 0.2095	
150	1.735			

Reference: F. J. de Heer, R. H. J. Jansen, W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Tabular and Graphical Data C-1.2. Semi-empirical (average) cross sections $\qquad \qquad \text{for elastic scattering of electrons in Ar.}$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10-16 _{cm} 2
20 30 40 50 60 70 80 90 100	20.76 13.95 9.510 7.743 6.799 6.147 5.489 5.010 4.861	200 300 400 500 750 1000 2000 3000	3.201 2.467 2.116 1.886 1.493 1.274 0.8037 0.5741

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Tabular and Graphical Data C-1.3. Semi-empirical (average) cross sections for elastic scattering of electrons in Kr.

		Energy	Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
20 30 40 50 100	20.11 13.74 10.58 9.090 6.109 4.391 3.677	300 400 500 1000 2000 3000	3.164 2.721 2.373 1.695 1.126 0.9417

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Tabular and Graphical Data C-1.4. Semi-empirical (average) cross sections $for\ elastic\ scattering\ of\ electrons\ in\ Xe.$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10-16 _{cm} 2
20 30 60 100 150 200 300	27.66 26.75 4.587 4.825 4.385 4.724 3.834	400 500 700 1000 2000 3000	3.752 3.338 2.834 2.395 1.649 1.379

Cont. Next Column

Reference : F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B $\underline{12}$, 979 (1979).

Tabular Data C-1.5. Cross sections for elastic scattering for electrons incident on Hg.

Electron Energy eV	Cross Section $10^{-16} \mathrm{cm}^2$	
300	4.76	
400	3.86	
500	3.33	

Reference: K. Jost, and B. Ohnemus, Phys. Rev. A $\underline{19}$, 611 (1979).

Tabular and Graphical Data C-1.6. Semi-empirical total scattering cross sections for electrons incident on ${\sf Ne}$.

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁰ em ²	eV	10 ⁻¹⁶ em ²
20	3,444	200	2.234
30	3.360	300	1.854
40	3.377	400	1.544
50	3.548	500	1.336
60	3.540	700	1.088
70	3.506	1000	0.8236
80	3.439	2000	0.4979
90	3.360	3000	U.3632
100	3.265		
150	2.590		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Tabular and Graphical Data C-1.7. Semi-empirical total scattering cross sections for electrons incident on Ar.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-16} \mathrm{cm}^2$	eV	$10^{-16} \mathrm{cm}^2$
20	21.92	150	6.931
30	16.33	200	5.981
40	12.76	300	4.707
50	11.15	400	3.996
60	10.25	500	3.503
70	9.700	1000	2.229
80	9.003	2000	1.350
90	8.538	3000	0.9717
100	8.278		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Tabular and Graphical Data C-1.8. Semi-empirical total scattering cross sections for electrons incident on Kr.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	еV	10-16 _{cm} 2
20 30 40 50 100 150 200	22.00 17.42 14.92 13.64 10.71 8.684 7.298	300 400 500 1000 2000 3000	6.096 5.234 4.497 3.050 1.912 1.517

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B. <u>12</u>, 979 (1979).

Tabular and Graphical Data C-1.9. Semi-empirical total scattering cross sections for electrons incident on Xe.

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
еV	10^{-16} cm ²	e\	10 ⁻¹⁶ cm ²
20	30.86	400	7.158
30	32.01	500	6.261
60	10.32	700	5.153
100	10.67	1000	4.167
150	9.944	2000	2.686
200	9.588	3000	2.132
300	7.785		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B $\underline{12}$, 979 (1979).

Tabular and Graphical Data C-1.10. Cross sections for total scattering of electrons incident on Hg.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁰ cm ²	eV	10-16 cm ²	e۷	10-16 _{cm} 2
J.10	15 (4.0	63.6	40	21.5
J.20	189	5.0	53.6	50	21.1
0.30	246	6.0	43.9	60	19.8
U. ¥U	265	7.0	35.6	70	17.9
0.50	201	8.0	30.9	80	17.5
0.60	240	y.U	27.9	100	16.5
U.7U	228	10.0	25.2	200	11.1
0.80	213	11	24.3	300	8.76
0.90	197	12	22.2	400	6.75
1.00	184	15	19.5	50u	5.80
2.0	ز 11	20	13.8		
3.0	dī.1	30	21.9		

Cont. Next Column Cont. Next Column

Reference: K. Jost and B. Ohnemus, Phys. Rev. A $\underline{19}$ 611 (1979).

Tabular and Graphical Data C-1.11. Calculated cross sections for total scattering of electrons incident on ${\rm CO}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
e√	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
v.1v1	120	3.37	33.6	17.0	14.2
0.127	105	3.42	33.4	18.5	14.1
U.164	91.2	3.47	32.2	21.0	13.9
J.222	76.8	3.60	28.5	23.9	13.7
0.291	02.7	3.66	25.2	25.5	13.5
u. <u>3</u> 80	50.6	3.83	21.5	27.0	13.4
0.505	38.8	3.94	18.8	27.8	13.6
0.675	29.0	4.02	16.7	28.3	13.9
0.841	23.3	4.22	14.5	28.7	14.2
1.10	17.8	4.47	12.8	29.3	14.4
1.38	13.8	4.73	11.7	29.9	14.1
1.69	11.1	4.95	11.1	30.6	13.7
1.97	9.70	5.19	10.9 10.8	31.4 34.2	13.3 12.7
2.13	9.17	5.52			
2.26	8.97	5.93	10.9 11.2	39.2 47.6	12.1 11.2
2.30	8.48	6.45 7.47	11.8	54.6	10.6
2.51 2.64	9.23 9.83	8.34	12.1	65.7	9.82
2.79	12.1	9.37	12.3	78.2	9.24
2.92	14.9	10.8	12.4	98.1	8.58
3.05	19.4	11.8	12.3	90.1	0.90
3.13	24.0	12.3	12.5		
3.19	28.3	13.3	12.9		
3.24	30.9	14.2	13.3		
3.20	32.3	15.1	13.7		
3.31	33.1	16.0	14.0		

Cont. Next Column Cont. Next Column

Reference: M. G. Lynch, D. Dill, J. Siegel, and J. L. Dehmer, J. Chem. Phys. <u>71</u>, 4249 (1979).

Tabular and Graphical Data C-1.12. Calculated cross sections for total scattering of electrons incident on OCS.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
еV	$10^{-16} cm^2$	еV	10^{-16}cm^2	еV	10-16 _{cm} 2
0.0739 0.108 0.148 0.215 0.259 0.321 0.388 0.482 0.537 0.569 0.605 0.640 0.674 0.691 0.701 0.701	304 228 174 119 97.5 75.6 60.1 46.3 40.6 38.7 38.4 39.3 46.0 62.9 82.2 94.2	0.718 0.743 0.758 0.788 0.881 0.976 1.09 1.18 1.28 1.64 1.98 2.26 2.58 2.87 3.10	55.4 43.3 36.4 31.3 24.2 21.7 19.9 18.1 17.8 18.9 22.3 33.4 35.6 36.7	4.56 5.25 6.00 7.47 8.55 9.76 11.1 11.7 12.7 15.5 20.7 25.4 31.7 39.4 56.9 74.9	31.8 29.9 29.0 29.4 30.3 31.3 30.5 30.6 28.4 25.2 21.7 19.4 16.4 14.8
0.708 0.718	81.0 66.5	3.61 4.01	36.4 34.6	96.6	13.3

Reference: M. G. Lynch, D. Dill, J. Siegel, and J. L. Dehmer, J. Chem. Phys. <u>71</u>, 4249 (1979).

Tabular and Graphical Data C-1.13. Calculated cross sections for total scattering of electrons incident on ${\rm CS}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
еV	$10^{-16} \mathrm{cm}^2$	eV	10-16 _{cm} 2	eV	10-16 _{cm} 2
0.170	143	1.24	66.7	6.87	38.2
0.213	112	1.28	59.3	8.04	38.2
0.272	87.1	1.31	52.3	9.59	38.9
0.316	73.7	1.34	48.3	11.7	39.8
0.373	62.8	1.36	43.6	12.7	40.0
0.441	52.4	1.39	39.8	15.2	38.2
0.502	45.5	1.44	36.7	17.3	36.9
0.581	39.4	1.50	33.7	19.3	35.8
0.662	35.5	1.57	32.1	21.8	33.4
0.717	34.0	1.63	31.4	23.5	32.0
0.758	33.4	1.71	31.0	24.6	29.9
0.817	33.5	1.83	31.0	26.2	28.9
0.858	34.0	2.01	32.1	31.5	26.3
0.907	35.0	2.32	33.8	38.6	23.1
0.958	37.7	2.70	34.4	46.3	20.2
1.06	47.7	3.23	34.5	55.7	17.7
1.09	53.9	3.80	34.6	72.4	16.2
1.12	59.8	4.28	34.6	82.8	15.5
1.14	64.0	4.76	35.1	96.6	14.3
1.17	66.3	5.17	36.6		
1.19	69.6	5.60	38.1		
1.21	69.9	6.05	38.6		

Cont. Next Column

Reference: M. G. Lynch, D. Dill, J. Siegel, and J. L. Dehmer, J. Chem. Phys. <u>71</u>, 4249 (1979).

2911

Tabular and Graphical Data C-1.14. Cross sections for total scattering of electrons incident on ${\rm CH_4}.$

(0 - 2 eV)

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10 ⁻¹⁶ em ²	eV	10 ⁻¹⁶ cm ²
0.036	1.98	0.91	1.49
0.073	1.52	1.1	1.85
0.12	0.651	1.4	2.45
0.16	0.397	1.7	3.16
0.22	0.282	2.0	3.95
0.24	0.318	2.5	5.08
0.33	0.443	2.7	5.77

Reference: E. Barbarito, M. Basta, M. Calicchio, and G. Tessari, J. Chem. Phys. 71, 54 (1979).

Tabular and Graphical Data C-1.15. Cross sections for total scattering of electrons incident on $\text{CH}_\Delta.$

(0 - 16 eV)

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ em ²	еV	10 ⁻¹⁶ cm ²
0.081 0.090 0.15 0.29 0.58 1.1 1.5 2.4 3.4	1.9 1.1 0.64 0.55 0.92 1.8 2.7 4.6 6.8 9.5	5.2 6.2 7.1 7.9 8.9 11 13 14	13 16 17 17 17 16 15 14

Reference: E. Barbarito, M. Basta, M. Calicchio, G. Tessari, J. Chem. Phys 71, 54 (1979).

Tabular and Graphical Data C-1.16. Cross sections for total scattering of electrons incident on ${\rm SF}_6$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	еV	10-16 _{em} 2
0.508 0.528 0.545 0.558 0.580 0.597 0.640 0.665 0.708 0.777 0.815 0.886 0.948	36.8 36.5 36.1 35.6 34.4 33.5 32.0 30.9 29.4 28.5 27.7 26.7 25.4 24.5 23.6	4.31 4.67 4.93 5.18 5.46 5.77 5.99 6.39 6.76 6.86 7.10 7.66	21.9 22.3 22.9 23.8 25.2 26.4 27.4 28.5 29.0 29.2 29.3 29.3 29.3	12.5 12.8 13.0 13.4 13.7 14.8 15.4 16.4 17.5 18.8 21.4 23.3 25.0 26.3	29.8 28.6 27.3 25.8 25.0 24.9 24.9 25.1 25.3 25.7 26.4 27.6 27.8
1.10 1.17 1.24 1.35 1.46 1.52 1.81 1.98 2.16 2.33 2.49 2.73 2.90 3.14 3.36 3.70	22.6 22.2 22.0 21.7 21.5 21.5 21.7 22.0 22.3 22.5 22.6 22.6 22.5 22.3 22.1	7.96 8.26 8.91 9.27 9.49 9.78 10.1 10.4 11.0 11.5 11.6 11.6 11.7 11.8 12.0	28.3 27.7 26.9 26.3 26.1 26.0 26.1 26.4 27.4 28.1 29.9 30.8 31.1 31.2 31.3	28.1 30.2 33.2 37.3 42.0 47.0 53.2 56.1 59.7 63.8 67.5 71.4 77.7 83.7 91.4	27.9 28.0 27.9 27.9 27.6 27.6 27.4 27.1 26.5 26.0 25.6 24.2 23.5 22.8

Reference: R. E. Kennerly, R. A. Bonham, and M. McMillan, J. Chem. Phys. <u>70</u>, 2039 (1979).

C-2. EXCITATION BY ELECTRON IMPACT

CONTENTS

C-2.1.	Semi-empirical cross sections for electron-impact excitation of Ne	2916
C-2.2.	Semi-empirical cross sections for electron-impact excitation of Ar	2917
C-2.3.	Semi-empirical cross sections for electron-impact excitation of Kr	2918
C-2.4.	Semi-empirical cross sections for electron-impact excitation of Xe	2919
C-2.5.	Cross sections for electron-impact excitation of Hg	2920
C-2.6.	Cross sections for electron-impact excitation of Hg atoms to the 6 3P_1 state	2920
C-2.7.	Cross sections for electron-impact excitation of He atoms to high-Rydberg states	2921
C-2.8.	Cross sections for electron-impact excitation of Ne atoms to high-Rydberg states	2922
C-2.9.	Cross sections for electron-impact excitation of Ar atoms to high-Rydberg states	2923
C-2.10.	Cross sections for electron-impact excitation of Kr atoms to high-Rydberg states	2924
C-2.11.	Cross sections for electron-impact excitation of Xe atoms to high-Rydberg states	2925
C-2.12.	Cross sections for $v = 0$ to 1 vibrational excitation in CO by electron impact	2926
C-2,13.	Rate coefficients for electron-impact depopulation of excited states of He as a function of principal quantum number	2927
C-2.14.	Rate coefficients for electron-impact depopulation of He(n=10) as a function of electron temperature	2928
C-2.15.	Calculated cross sections for electron-impact deexcitation of excimer states of KrF	2929
C-2.16.	Calculated cross sections for electron-impact deexcitation of excimer states of KrF	2930
C-2.17.	Calculated cross sections for electron-impact deexcitation of excimer states of XeF	2931
C-2.18.	Calculated cross sections for electron-impact deexcitation of excimer states of XeF	2932
C-2.19.	Calculated rate coefficients for electron-impact deexcitation of excimer states of KrF	2933
C-2.20.	Calculated rate coefficients for electron-impact deexcitation of excimet states of XeF	2933

Tabular and Graphical Data C-2.1. Semi-empirical cross sections for electron $impact\ excitation\ of\ Ne\,.$

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10-16 _{cm} 2	e∜	10 ⁻¹⁶ cm ²
30	0.1005	400	0.08311
40	0.1354	500	0.07110
50	0.1594	600	0.06236
υU	0.1704	700	0.05545
7 u	0.1704	800	0.05049
δÚ	u.1660	903	0.04618
90	v.1616	1000	0.04262
100	0.1594	2000	0.02465
150	0.1407	3000	0.01796
200	0.1309	4000	0.01421
300	0.1011		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B $\underline{12}$, 979 (1979).

Tabular and Graphical Data C-2.2. Semi-empirical cross sections for electron impact excitation of ${\sf Ar.}$

Electron Energy	Cross Section	Electron Gnergy	Cross Section
eV	10-10 em2	eV	15-16 cm²
20	U.5UJ5	400	0.3324
JU	0.7446	500	0.2020
40	U.7303	660	0.2467
50	0.7701	700	0.2193
60	0.7555	ತೆಚಚ	0.1903
7 U	J.7373	900	6.130g
ას	0.7191	1000	0.160)
90	J.7002	2000	U.U.JU.5
100	0.7009	3000	0.06917
150	0.6469	4000	0.05461
200	∪. 5377		
300	0.4003		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B $\underline{12}$, 979 (1979).

Tabular and Graphical Data C-2.3. Semi-empirical cross sections for electron impact excitation of Kr.

Electron Energy	Cross Section	Electron energy	Cross Section
e∀	1u-10cm2	eV	10 ⁻¹⁶ em ²
	U.720	400	0.398
30	0.903	500	0.330
40	1.000	600	0.291
50	0.977	700	0.255
00	0.949	000	0.230
7 u	0.927	900	U.213
άu	0.907	1000	0.199
90	649.0	2000	0.112
100	0.032	3000	0.0818
150	U.750	4000	0.0638
200	0.622		
300	0.479		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

 $\label{thm:continuous} \mbox{Tabular and Graphical Data C-2.4.} \quad \mbox{Semi-empirical cross sections for electron} \\ \mbox{impact excitation of Xe.}$

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
20	0.840	400	0.465
30	1.34	500	0.395
40	1.32	600	0.344
50	1.27	700	0.302
60	1.23	800	0.277
70	1.21	900	0.252
80	1.18	1000	0.231
90	1,16	2000	0.132
100	1.13	3000	0.0952
150	0.924	4000	0.0745
200	0.770		
300	0.568		

Reference: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Tabular Data C-2.5. Cross sections for electronimpact excitation of Hg

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
300	1.32
400	1.06
500	.90

Reference: K. Jost and B. Ohnemus, Phys. Rev A $\underline{19}$, 611, (1979).

Tabular Data C-2.6. Cross Section for electronimpact excitation of Hg atoms to the 6 $^3\mathrm{P}_1$ state.

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
50	.434 <u>+</u> .04

Reference: R. D. Kaul, J. Opt. Soc. Am. 69, 150 (1979).

Tabular and Graphical Data C-2.7. Cross sections for electron-impact excitation of He atoms to high-Rydberg states.

e + He + He**

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10-16 _{cm} 2	еV	10-16 _{cm} 2	eV	10-16 cm2
24	0.010	73	0.68	200	0.50
27	0.030	82	0.68	210	0.49
27	0.067	90	0.67	220	0.46
28	0.33	99	0.67	240	0.44
29	0.53	110	0.65	260	0.44
29	0.57	120	0.62	270	0.42
32	0.60	130	0.61	280	0.41
39	0.63	140	0.59	290	0.40
39 48	0.66	150	0.57	300	0.38
55	0.68	170	0.54		
64	0.69	190	0.52		

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, Phys. Rev. A 20, 71 (1979).

Tabular and Graphical Data C-2.8. Cross sections for electron-impact excitation of Ne atoms to high-Rydberg states

e + Ne + 1	∙e**
------------	------

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	eγ	10 ⁻¹⁶ cm ²
17	0.0031	160	0.49
22	0.020	180	0.45
23	0.058	220	0.41
25	0.32	250	0.37
30	0.50	270	0.35
38	0.61	300	0.33
48	0.66		
57	0.67		
68	0.67		
84	0.64		
100	0.61		
120	0.56		

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, Phys. Rev. A 20, 71 (1979).

Tabular and Graphical Data C-2.9. Cross sections for electron-impact excitation of Ar atoms to high-Rydberg states.

e + Ar + Ar**

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10-16cm ²	eV	10 ⁻¹⁶ cm ²
17	0,077	88	1.6
18	0.68	100	1.5
19	2.9	130	1.3
20	4.0	170	1.1
22	4.6	210	0.92
25	5.0	250	0.78
29	5.2	290	0.70
35	4.8	300	0.69
39	4.0		
49	2.6		
58	2.1		
71	1.9		

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, Phys. Rev A 20, 71 (1979).

Tabular and Graphical Data C-2.10. Cross sections for electron-impact excitation of Kr atoms to high-Rydberg states

e	+	Kr	*	Kr**
•	,	1/1		I/ I

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	еV	10-16 _{cm} 2
16	0.096	120	1.8
17	1.6	150	1.6
17	3.2	170	1.4
18	3.8	190	1.4
19	4.3	220	1.2
25	4.4	260	1.1
32	4.0	280	1.1
40	3.2	300	0.98
54	2.7		
66	2.4		
82	2,2		
100	2.0		

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, Phys. Rev. A 20, 71 (1979).

Tabular and Graphical Data C-2.11. Cross sections for electron-impact excitation of Xe atoms to high-Rydberg states.

e + Xe + Xe**

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	еV	10-16 _{cm} 2
11	0	91	4.9
14	0.46	100	4.7
14	4.5	120	4.4
15	8.0	140	4.1
15	10	160	3.8
18	11	190	3.5
24	9.6	220	3.3
29	7.6	240	3.0
33	6.2	280	2.7
44	5.7	300	2.4
61	5.6		
78	5.1		

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, Phys. Rev. A 20, 71 (1979).

Tabular and Graphical Data C-2.12. Cross sections for $v=0 \rightarrow 1$ vibrational excitation in CO by electron impact.

Integral cross section

Momentum-transfer cross section

lectron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁹ cm ²	eV	10 ⁻¹⁹ em ²
3.U	365	3.0	300
5.0	10+	5.0	85.0
9.0	24.1	9.0	20.3
20	96.7	20	93.4
30	20.6	30	ટે1ે. મ
50	7.57	りじ	7.97
75	5.42	75	4.21
100	7.03	1 มน	6.48

Tabular and Graphical Data C-2 13. Rate Coefficients for electron impact depopulation of excited states of He as a function of principal quantum number.

Quantum Number	kate Coef
	10 ⁻⁵ cm ³ /sec
გ	1.46
ÿ	2.87
10	5.10
1.1	7.86
1.4	10.8
13	15.9
14	16.9
14	1.1ع
16	26.2
17	31.2

Reference F Devos, J Boulmer, 1 -F Delpech, J Physique (Paris) 40, 215 (1979),

Tabular and Graphical Data C-2.14. Rate coefficients for electron-impact depopulation of He(n=10) as a

function of e	lectron	temperat	ure
---------------	---------	----------	-----

Temperature	Rate Coef
°к	10 ⁻⁴ cm ³ /sec
394 500 596 714 906 1120 1310 1590 1920 2320	0.516 0.532 0.677 0.770 0.913 1.15 1.19 1.40 1.32

Reference: F. Devos, J. Boulmer, and J. -F. Delpech, J. Physique (Paris) 40, 215 (1979).

Tabular and Graphical Data C-2.15. Calculated cross sections for electronimpact deexcitation of excimer states of KrF

e + KrF(B) + KrF(X) e + KrF(D) + KrF(X)

lectron Energy	Cross Section	Electron Energy	Cross Section
еV	10-16 _{cm} 2	еV	16 ⁻¹⁶ cm ²
0.12	9.70	0.10	5.11
0.42	6.37	0.18	3.87
1.1	4.37	0.39	2.40
1.9	3.47	1.0	1.59
2.5	3.19	1,7	1.19
5.0	2.76	2.6	1.02
7.5	2.49	5.0	0.865
10.0	2.26	7.6	0.778
13	2.07	10.0	0.696
15	1.86	12	0.614

Reference: A. U. Hazi, T.N. Rescigno, and A. E. Orel, Appl. Phys. Lett. 35, 477 (1979).

Tabular and Graphical Data C-2.16. Calculated cross section for electronimpact deexcitation of excimer states of ${\rm KrF.}$

e + KrF(C)	→ KrF(A)	e + KrF(D) → KrF(A)	e + KrF(B) + KrF(A)
Electron bnergy	Orous Section	Electron Energy	Cross Section	Electron Energy	Cross Section
63 N	1.5-16 _{em} 2	eV	10 ⁻¹⁶ em²	eV	10 ⁻¹⁶ em2
0.0004 0.12 0.34 0.35 1.0 0.5 4.4 1.6 1.6 1.6	1.77 1.70 0.853 0.503 0.903 0.395 0.337 0.337 0.305 0.274	0.00010 0.27 1.3 2.5 3.7 5.0 7.5 10 13	0.961 0.463 0.245 0.189 0.166 0.156 0.143 0.132 0.122 0.112	0.041 0.50 1.3 2.5 5.0 7.5 10.0 12	0.910 0.359 0.244 5.187 5.155 6.146 5.126 9.115 9.115

Reference A. U. Hazi, T. N. Rescigno, and A. E. Orel, Appl. Pays Lett. 35, 477 (1979).

Tabular and Graphical Data C-2.17. Calculated cross sections for electronimpact deexcitation of excimer states of XeF

 $e + XeF(B) \rightarrow XeF(X)$

 $e + XeF(D) \rightarrow XeF(X)$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.0006 0.11 0.33 0.75 1.4 2.5 5.0 7.6 10 13	8 59.0 25.9 16.9 12.2 9.30 7.95 6.39 5.37 4.78 4.25 3.92	0.00010 0.095 0.28 0.66 1.4 2.5 5.0 7.6 10 13	16.7 10.3 6.01 4.26 3.10 2.46 2.06 1.83 1.67 1.55

Reference: A. U. Hazi, T. N.Rescigno, and A. E. Orel, Appl. Phys. Lett. 35, 477 (1979).

Tabular and Graphical Data C-2.18. Calculated cross sections for electronimpact deexcitation of excimer states of XeF

e + XeF(C) + XeF(A)	e + XeF(D) + XeF(A)	e + XeF(B) + XeF(A)
	(-) (100 (11)	c . ner (b) . ner (n)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	еV	10-16 _{cm} 2	eV	10-16 cm2
0.033	15.2	0.027	3.14	0.043	2.95
0.17	7.72	0.17	1.72	0.17	1.69
0.49	4.50	0.36	1.25	0.49	1.10
0.92	3.37	0.98	0.823	1.2	0.722
1.6	2.63	1.7	0.652	2.0	0.604
2.5	2.29	2.5	0.590	2.5	0.568
5.0	1.70	5.0	0.492	5.0	0.436
7.6	1.35	7.6	0.421	7.6	0.355
10	1.16	10	0.377	10	0.301
13	1.03	13	0.349	13	0.267
15	0.931	15	0.321	15	0.242
15	0.931	15	0.321	15	

Reference: A. U. Hazi, T. N. Rescigno, and A. E. Orel, Appl. Phys. Lett. 35, 477 (1979).

Tabular Data C-2.19. Calculated rate coefficients for electron impact deexcitation of excimer states of KrF in units of $10^{-9} {\rm cm}^3/{\rm sec}$ (taken

	from Fig.	4 of the	reference).	
Transition	Electron Energy (eV)	1	2	4
В - Х		27	30	31
D - X		9.0	9.7	10
C - A		3.4	3.7	3.8
D - A		1.6	1.8	1.9

Tabular Data C-2.20. Calculated rate coefficients for electron-impact deexcitation of excimer states of XeF in units of $10^{-9} {\rm cm}^3/{\rm sec}$ (taken from Fig. 5 of the reference).

Transition	Electron Energy (eV)	1	2	4	
В - Х		66	71	74	
D - X		21	23	24	
C - A		18	19	20	
D - A		4.8	5.1	5.5	
B - A		4.5	4.9	4.9	

Reference: A. U. Hazi, T.N. Rescigno, and A. E. Orel, Appl. Phys. Lett. $\underline{35}$ 477 (1979).

C-3. DISSOCIATION BY ELECTRON IMPACT

CONTENTS

C-3.1.	Calculated cross sections for electron-impact dissociation of $F_2,\ldots,2936$
C-3.2.	Cross sections for electron-impact dissociation of HC1 to form excited fragments
C-3.3.	Cross sections for electron-impact dissociation of HBr to form excited fragments
C-3,4,	Cross sections for electron-impact dissociation of H ₂ O to form excited fragments
C-3,5.	Cross sections for electron-impact dissociation of H ₂ S to form excited fragments
C-3.6.	Cross sections for electron-impact dissociation of NH ₃ to form excited fragments
C-3.7.	Cross sections for electron-impact dissociation of CF ₄ to form excited fragments
C-3.8.	Cross sections for electron-impact dissociation of CF ₃ H to form excited fragments
C-3.9.	Cross sections for electron-impact dissociation of CF ₃ H to form excited fragments
C-3.10.	Cross sections for electron-impact dissociation of CF ₃ C1 to form excited fragments
C-3.11.	Cross sections for electron-impact dissociation of CF_2Cl_2 to form excited fragments
C-3.12.	Cross sections for electron-impact dissociation of CFCl ₃ to form excited fragments
C-3.13.	Total dissociation cross sections for electrons incident on C_2D_6 2948
C-3.14.	Ratio of total dissociation cross sections for C_2H_6 to that of C_2D_6
C-3.15.	Cross sections for electron-impact dissociation of propylene to form excited fragments
C-3.16.	Cross sections for electron-impact dissociation of propane to form excited fragmen's
C-3.17.	Cross sections for electron-impact dissociation of 1-butene to form excited fragments
C-3.18.	Cross sections for electron-impact dissociation of n-butane to form excited fragments
C-3.19.	Cross sections for electron-impact dissociation of H ₂ to form high-Rydberg fragments
C-3.20.	Cross sections for electron-impact dissociation of D ₂ to form high-Rydberg fragments
C-3.21.	Cross sections for electron-impact dissociation of N $_2$ to form high-Rydberg fragments
C-3.22.	Cross sections for electron-impact dissociation of CO to form high-Rydberg fragments
C-3.23.	Cross sections for electron-impact dissociation of CO ₂ to form high-Rydberg fragments

C-3.24.	Cross sections for electron-impact dissociation of CH ₄ to form high-Rydberg fragments	2 9 58
C-3.25.	Cross sections for electron-impact dissociation of CH ₄ to form high-Rydberg fragments	2959
C-3.26.	Cross sections for electron-impact dissociation of C2H6 to form high-Rydberg fragments	2960
C-3.27.	Cross sections for electron-impact dissociation of C ₃ H ₄ to form high-Rydberg fragments	2961
C-3.28.	Cross sections for electron-impact dissociation of C ₂ H ₆ to form high-Rydberg fragments	2962
	Cross sections for electron-impact dissociation of C ₃ H ₆ to form high-Rydberg fragments	
C-3.30.		
C-3.31.	Cross sections for electron-impact dissociation of C ₃ H ₈ to form high-Rydberg fragments	
	Cross sections for electron-impact dissociation of C ₆ H ₁₄ to form high-Rydberg fragments	

Tabular and Graphical Data C-3.1. Calculated cross sections for electron impact dissociation of ${\bf F}_2$ (Distorted wave model with static exchange)

Electron Energy	Cross Section Tu ⁻¹⁶ cm ²
5.2 7.2 15 25 25 30 40	0.368 0.374 0.314 0.219 0.173 0.119 0.0830 0.0752

Reference: A. W. Fliflet, V. McKoy, and T. N. Rescigno, Phys. Rev. A 21, 788 (1980).

Tabular and Graphical Data C-3.2. Cross sections for electron-impact dissociation of HCl to form excited fragments.

e + HCl + H (656.3 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10^{-18} cm ²
20	v.265	400	1,57
30	1.51	500	1.27
40	4.62	600	1.07
50	5.66	700	0.932
60	5.64	800	0.803
70	5.49	900	0.714
80	5.30	1000	0.638
9 u	5.07	1200	0.531
100	4.88	1500	0.432
150	3.98	1700	0.381
200	2.85	2000	0.324
300	2.03		

Cont. Next Column

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 40, 157 (1979)

Tabular and Graphical Data C-3.3. Cross sections for electron-impact dissociation of HBr to form excited fragments

e + HBr + H (656.3 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10-18 cm ²	eV	10-18 _{cm} 2
20	J.110	400	2.32
30	1.05	500	1.85
40	5.82	600	1.55
50	7.47	700	1.33
60	ø.13	800	1.17
70	8.21	900	1.03
80	8.02	1000	0.941
90	7.69	1200	0.780
100	7.14	1500	0.624
150	5.47	1700	U.545
200	4.37	2000	0.464
300	3.01		

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 40, 157 (1979).

Labular and Graphical Data (0.5×0.0080) estions for electron-emparation of $H_{p}(r)$ to form excited transmit

e + Hio + Hickory com

www.thun unengy		i en tront Literatur	
• • •	10-10-60	•	, - ·
		4	
50	1.0	4.	• •
4	1.60		
*, c		*	
	. • 1		
îs.	t. t.	¥ , .	1
O.C.	* • * t.	1	
4.40	5.09	1	"
1	1.1.	1800	
100	4.11	17	.465
4. 4.15	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		19 miles
30%	4		

mit . Hixto politico

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 40, 157 (1939).

Tabular and Graphical Data C-3.5 — Cross sections for electron-impact dissociation of $\rm H_2S$ to form excited fragments.

 $e + H_2S + H_1(656 - 3 nm)$

, restron Lineray	Jeotian Jeotian	nie tron nierzy	dross Dection	
e-∀	110em*	ev	10 ⁻¹⁸ em2	
	1.0.	400	1.50	
1	4.51	900	1.50	
4 5	6.5%	650	1.26	
***	1.37	1	1.08	
100	1.5.	300	945	
	. 4	100	9.54	
2.0	* 5	1,00	J. 754	
	50,000	1200		
15.50	0.16	* 12 W Lin	りょりいし	
1	4.51	1/00	446	
	5.75	2000	J. 57	
1-1	. 4 3		<i></i>	

Cast. West of Lamb

Reference G. R. Mohlmann and F J de Heer, Chem. Phys. 40, 157 (1979).

labular and Graphical Data C-3-6. Cross sections for electron-impact dissociation of NH $_3$ to form excited fragments

£,	٠	NH 3	٠	Ħ	(656	3	nm)
----	---	------	---	---	------	---	-----

	* 1.3 * 1. 5	mae than Interval	üruss Jestisk
t •	1 - 1	•••	15-1663
			1.45
			1.1
** .		•	4
			• 1 · 0
	· . / .		1.0
		1 -	4.55.5
		1, .	2.512
	4.1	1	. 4 %
1 .	4.11	15.	2.11/
* .	5 • 2 •	17.00	2 . 54 /
+ + +'	€ • ₹ 5	2000	C. C. 977
10	1.9/		

into as xt or came

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 40, 157 (1979).

Tabular and Graphical Data C-3.7. Cross sections for electron-impact dissociation of ${\rm CF}_4$ to form excited fragments.

۵	+	CF.	+	F	(739.	8	nm)
•	•	U . /.		•	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	,

rlectron rnergy	Cross Section	Electron Energy	Cross Section
e∜	10 ⁻¹⁹ cm ²	eV	10-19cm2
 40	1.23	700	1.85
60	2.79	900	1.76
50	3.05	900	1.56
100	4.10	1000	1.23
150	4.54	1200	1.15
200	4.43	1500	0.943
300	1.24	1700	0.779
400	2.03	2000	0.656
500	2.38		
600	2.13		

cont. Hext Column

Reference: H. A. van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. 35, 51 (1978).

Tabular and Graphical Data C-3 8. Cross sections for electron-impact dissociation of CF $_3\mathrm{H}$ to form excited fragments

e	ŧ	CF	H	٠	F.	(7	39	. 8	nm)
---	---	----	---	---	----	----	----	-----	-----

instruction	r , 30 \sim $t + r$	nlect no n anendy	urosa Seution
er vi	15-17000	e√	11 *0<
90	J.51	100	1.1
	1.7	200	1.7
2.	v • 5e	300	1.5
160	3.3	1300	1.5
1999	9.5	1.00	1.1
e to to	4.7	1500	0.10
55.1	3.5	1700	J.74
400	ა. ∪	2000	J. 61.
200	د . :		
543	- • U		

Reference: H. A. van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. 35, 51 (1978).

Tabular and Graphical Data C-3.9. Cross sections for electron-impact dissociation of CF $_3\mathrm{H}$ to form excited fragments.

 $e + CF_3H + H (486.1 nm)$

lectron Energy	Cross Section	Electron Energy	i trodu Dech soti
еV	10 ⁻¹⁹ cm²	e∀	ru-lagra
40	2.0	750	£ • €
60	4.7	ರಿಬಳ	2.1
00	5.5	900	1.7
100	2.7	1000	1.7
150	5.2	1200	1.5
200	4.7	1500	1.2
100	3.0	1700	1.1
400	3.3	Z 000	0.97
500	2.8		
600	2.7		

Reference: H. A. van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. $\underline{35}$ 51 (1978).

Tabular and Graphical Data C-3.10. Cross Sections for electron-impact dissociation of ${\tt CF_3C1}$ to form excited fragments.

e	+	CF ₃ C1	+	C1	(837	. 5	nm)
---	---	--------------------	---	----	------	-----	-----

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10-18cm2	eV	10-18 _{cm} 2
40	1.3	700	1.1
60	1.8	800	0.97
80	1.9	900	0.91
100	1.9	1000	0.82
150	1.8	1200	0.70
200	1.7	1500	0.55
300	1.5	1700	0.51
400	1.3	2000	0.46
500	1.2		
600	1.1		

Reference: H. A. van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. $\underline{35}$, 51 (1978).

Tabular and Graphical Data C-3.11. Cross sections for electron-impact dissociation of ${\rm CF_2Cl_2}$ to form excited fragments. ${\rm e} + {\rm CF_2Cl_2} + {\rm Cl} \ (837.5 \ {\rm nm})$

Electron	Cross Section	Electron Energy	Cross Section
eV	10-18 cm ²	eV	10-18 _{em} 2
40 00 50 100 150 200 300 400 500	2.1 2.6 2.9 2.9 2.2 1.6 1.5	700 800 900 1000 1200 1500 1700 2000	1.1 0.96 0.90 0.78 0.04 0.52 0.46 0.41

Reference: H. A. van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. 35, 51 (1978).

Tabular and Graphical Data C-3.12. Cross sections for electron-impact dissociation of CFCl3 to form excited fragments.

e	+	CFC13	+	Cl	(837.5	nm)
---	---	-------	---	----	--------	-----

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10-18cm ²	eV	10- ¹⁸ cm ²
40	3.1	700	1.5
60	4.1	800	1.4
50	4.5	900	1.2
100	4.5	1000	1.1
150	3.9	1200	0.90
200	3.3	1500	0.77
300	2.4	1700	0.63
400	2.3	2000	0.54
500	1.8		
600	1.7		

Reference: H. A. van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. 35, 51 (1978).

Tabular and Graphical Data C-3.13. Total dissociation cross sections for electrons incident on C_2D_6 . $e + C_2D_6 \rightarrow product ions$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-10} cm ²	еV	10-16cm ²
15	1.30	150	7.10
20	3.20	180	6.90
25	4.00	200	6.70
30	5.60	250	6.40
นี้อั	6.40	300	6.00
50	7.00	350	5.60
60	7.40	400	5.30
70	7.60	450	4.90
80	7.65	500	4.60
90	7.60	550	4.30
100	7.50	600	4.10
130	7.30		

Tabular Data C-3.14. Ratio of total dissociation cross sections for $^{\rm C}_2{\rm H}_6$ to that of $^{\rm C}_2{\rm D}_6$.

Electron Energy	Ratio	Electron Energy	Ratio
eV		eV	
50 100 150 200	1.14 1.07 1.07 1.03	300 400 500 600	1.06 1.05 1.14 1.11

Tabular and Graphical Data C-3.15. Cross sections for electron-impact ${\rm dissociation\ of\ propylene\ to\ form\ excited\ fragments.}$

 $e + C_3H_6 + H (486.1 nm)$

nlectron nnergy	Cross Section	Electron Energy	Cross Section
eΨ	16 ⁻¹ ∮em²	еV	10*19em2
	3.7	3UJ	2.2
10.	4.,	300	1.5
100	5.1	460	1.5
رے ا	4.5	450	1.4
150	4.5	000	1.3
200	3.0		
250	₹.7		

Reference: J. M. Kurepa and M. D Tasic, Chem. Phys. $\underline{38}$, 361 (1979).

Tabular and Graphical Data C-3.16. Cross sections for electron-impact dissociation of propane to form excited fragments.

 $e + C_3H_8 + H (486.1 nm)$

blectron bnergy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁹ cm ²	e۷	10 ⁻¹⁹ cm ²
50.0 75.0 100 125 150 200 250	3.5 4.6 4.7 4.8 4.0	300 350 400 450 500	2.6 2.2 1.8 1.7 1.6

Reference: J. M. Kurepa and M. D. Tasic, Chem. Phys. 38, 361 (1979).

 $e + C_4H_8 + H (486.1 nm)$

lectron Energy	Cross Section	Electron Energy	Cross Section
e v	10-19cm2	еV	10-19 cm ²
∪ 	2.0	300	1.2
75.0	j. U	350	1.00
100	3.3	400	0.90
125	3.4	450	0.80
150	3.1	500	0.60
200	2.3		
ن ر ^{ائ} ے	1.6		

Reference: J. M. Kurepa and M. D. Tasic, Chem. Phys. $\underline{38}$, 361 (1979).

Tabular and Graphical Data C-3.18. Cross sections for electron-impact dissociation of n-butane to form excited fragments.

$$e + C_4H_{10} + H (486.1 nm)$$

∟lectron ⊆nergy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁹ en²	e V	10 ⁻¹⁹ em ²
50.0	2.4	300	1.4
75.0	2.6	350	1.2
100	2.0	400	1.1
125	6.7	450	1.00
150	2.4	900	0.90
200	1.0		
250	1.6		

Reference: J. M. Kurepa and M. D. Tasic, Chem. Phys. $\underline{38}$, 361 (1979).

Tabular and Graphical Data C-3.19. Cross sections for electron-impact dissociation of $\rm H_2$ to form high-Rydberg fragments. $\rm e + \rm H_2 + \rm H^{***}$

Electron	Cross
Energy	Section
еV	10 ⁻¹⁶ cm ²
21	0.0014
51	0.094
74	0.14
99	0.14
150	0.12
200	0.099
250	0.083
300	0.072

Reference: J. A. Schiavone, S. M. Tarr and R. S. Freund, J. Chem. Phys. <u>70</u>, 4468 (1979).

Tabular and Graphical Data C-3.20. Cross sections for electronimpact dissociation of \mathbf{D}_2 to form high-Rydberg fragments.

$$e + p_2 + p^{**}$$

Electron	Cross
Energy	Section
еV	10 ⁻¹⁶ cm ²
21	0.00046
50	0.083
73	0.12
100	0.13
125	0.12
150	0.10
200	0.083
250	0.066

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund. J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.21. Cross sections for electron-impact dissociation of N $_2$ to form high-Rydberg fragments. $e + N_2 + N^{**}$

Electron Energy	Cross Section
еV	10-16 _{cm} 2
31	0.012
50	0.26
76	1.2
100	1.6
125	1.6
150	1.5
200	1.3
250	1.1
300	0.96

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.22. Cross sections for electronimpact dissociation of CO to form high-Rydberg fragments.

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
30 40 51 77 100 125 150 200 250 300	0.0080 0.20 0.49 1.3 1.6 1.5 1.3 1.1

Reference: J. A. Schiavone, S.M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

 $\label{label} \mbox{ Fabular and Graphical Data C-3.23. Cross sections for electron-impact dissociation of <math>\mbox{CO}_2$ to form high-Rydberg fragments.}

$$e + co_2 + o^{**}$$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
31	0.016
4 y	0.50
77	2.1
100	3.2
135	3.6
150	3.6
200	3.3
250	2.9
300	2.6

Reference. J. A. Schiavone, S.M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979)

Tabular and Graphical Data C-3.24. Cross sections for electron-impact dissociation of CH_4 to form high-Rydberg fragments. $e + CH_4 + H^{**}$

Electron Energy	Cross Section
28	0.00045
50	0.97
76	1.6
100	1.7
125	1.6
150	1.4
500	1.2
250	0.92
300	0.72

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.25. Cross sections for electron-impact dissociation of ${\rm CH_4}$ to form high-Rydberg fragments. $e + {\rm CH_4} + {\rm C}^{***}$

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁰ cm ²	eV	10 ⁻¹⁶ cm ²
18 22	0.0018 0.0082	110 120 140	0.36 0.36
26 35 45	0.021 0.060 0.11	160 180	0.35 0.33 0.29
59 67 77	0.20 0.27 0.32	220 260 280	0.26 0.23 0.22
87 97 100	0.34 0.36 0.36	300	0.20

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.26. Cross section for electron-impact dissociation of ${\rm C_2H_4}$ to form high=Rydberg fragments. ${\rm e} + {\rm C_2H_4} + {\rm H}^{\star\star}$

Electron Energy	Cross Section 10 ⁻¹⁶ cm ²
28 51 75 100 125 150 200 250 300	0.0065 1.1 2.1 2.5 2.5 2.4 2.1 1.8

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.27. Cross sections for electron-impact dissociation of C_3H_4 to form high-Rydberg fragments. $e + C_3H_4 + \mu^{***}$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
32 50 76 100 125 150 200 250 300	0.0050 0.85 2.5 3.0 3.0 2.8 2.3 1.8

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.28. Cross sections for electron-impact dissociation of C_2H_6 to form high-Rydberg fragments. $e + C_2H_6 \rightarrow H^{**}$

Electron	Cross
Energy	Section
еV	10-16 _{cm} 2
	0.0035
27	0.0035
51	1.1
74	2.4
100	2.9
125	2.9
150	2.7
200	2.3
250	1.9
300	1.7

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. $\underline{70}$, 4468 (1979).

Tabular and Graphical Data C-3.29. Cross sections for electron-impact dissociation of C_3H_6 to form high-Rydberg fragments. $e + C_3H_6 + H^{***}$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
35	0.024
51	0.27
75	0.91
100	1.3
125	1.4
150	1.4
200	1.2
250	1.1
300	0.95
~	

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

Tabular and Graphical Data C-3.30 Cross sections for electron-impact dissociation of C_4H_6 to form high-Rydberg fragments. $e + C_4H_6 \rightarrow H^{**}$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
36 51 75 100 125 150 200 250 300	0.0095 0.35 1.6 2.2 2.3 2.2 1.9 1.6

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 20, 4468 (1979).

Tabular and Graphical Data C-3.31. Cross sections for electron-impact dissociation of ${\rm C_3H_8}$ to form high-Rydberg fragments. ${\rm e} + {\rm C_3H_8} + {\rm H}^{***}$

Electron Energy	Cross Section
eV	10-16 _{cm} 2
30 42 51 76 100 125 150 200 250 300	0.0076 0.11 0.42 1.7 2.4 2.5 2.5 2.1 1.7

Reference: J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. <u>70</u>, 4468 (1979).

Tabular and Graphical Data C-3.32. Cross sections for electron-impact dissociation of $C_6\mathrm{H}_{14}$ to form high-Rydberg products. $\mathrm{e} + C_6\mathrm{H}_{14} + \mathrm{H}^{***}$

Electron Energy	Cross Section
еV	10-16 cm ²
25	0.00
50	0.12
74	0.79
100	1.6
125	1.9
150	2.0
200	1.8
250	1.5
300	1.3

Reference: J. A. Schiavone, S.M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).

C-4. IONIZATION BY ELECTRON IMPACT

CONTENTS

C-4.1.	Cross sections for electron-impact ionization of He 2968
C-4.2.	Gross ionization cross sections for electrons incident on Ne 2969
C-4.3.	Gross ionization cross sections for electrons incident on Ar 2970
C-4.4.	Gross ionization cross sections for electrons incident on Kr 2971
C-4.5.	Gross ionization cross sections for electrons incident on Xe 2972
C-4.6.	Ratio of count ionization to gross ionization cross sections for noble-gas atoms
C-4.7.	Calculated cross sections for electron impact ionization of excited states of Ne
C-4.8.	Calculated cross sections for electron-impact ionization of excited states of Ar
C-4.9.	Calculated cross sections for electron-impact ionization of excited states of Kr
C-4.10.	Calculated cross sections for electron-impact ionization of excited states of Xe
C-4.11.	Calculated cross sections for electron-impact ionization of excited states of Cd
C-4.12.	Cross sections for electron-impact ionization of Hg
C-4.13.	Calculated cross sections for electron-impact ionization for excited states of Hg
C-4.14.	Cross sections for electron-impact ionization of C^{2+}
C-4.15.	Cross sections for electron-impact ionization of NO
C-4.16.	Cross sections for electron-impact ionization of $N_2 0 \dots 2985$
C-4.17.	Cross sections for electron-impact ionization of CH_4 2986
C-4.18.	Cross sections for electron-impact ionization of $\mathrm{C_2H_4}$ 2987
C-4.19.	Cross sections for electron-impact ionization of ${\rm SF}_6$ 2988
C-4.20.	Cross sections for electron-impact ionization of CO_2^+ ions
C-4.21.	Appearance potentials for electron-impact ionization of rare-gas dimers
C-4.22.	Cross sections for electron-impact detachment from F $^{-}$
C-4.23.	Cross sections for electron-impact detachment from 0
C-4.24.	Cross sections for electron-impact detachment from 0 $^{-}$
C-4.25.	Cross sections for electron-impact detachment from C^{-}
C-4.26.	Cross sections for electron-impact detachment from C

Tabular and Graphical C-4.1. Cross sections for electron impact ionization of He.

 $\sigma_{gross} = \frac{r_n \sigma_n}{n}$ $\sigma_{count} = \frac{r_n \sigma_n}{n}$ $\sigma_n = cross \ section \ for \ n\text{-fold ionization}$

lieatron Energy	Cross Section	Electron Energy	Cross Section
eV	10-16 _{em} 2	eV	10-16 _{cm} 2
500	0.167	500	0.166
700	0.146	700	0.145
1000	0.121	1000	0.121
1500	0.0828	1500	0.0825
2 ນີ້ປີບໍ່	0.0699	2000	0.0696
2500	0.0560	2500	0.0557
รูปี่บับ	0.0494	3000	0.0492
1500	0.0427	3500	0.0426
4000	0.0388	4000	0.0386
4500	0.0348	4500	0.0347
5000	0.0314	5000	0.0313

Reference: P. Nagy, A. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249 (1980).

Tabular and Graphical Data C-4.2. Gross ionization cross sections $\qquad \qquad \text{for electrons incident on Ne.}$

$$\sigma_{gross} = \sum_{n} n \sigma_{n}$$

Ref. 1, Experimental average

Electron	Cross
Energy	Section
2110. 63	
еV	10 ⁻¹⁶ em ²
30	0.1106
40	0.2421
50	0.3595
60	0.4575
70	0.5376
80	0.5978
90	0.6460
100	0.6745
150	0.7403
500	0.7381
300	0.6720
400	0.5947
500	0.5323
600	0.4757
700	0.4334
800	0.3973
900	0.3654
1000	0.3405
2000	0.1967
3000	0.1430
4000	0.1131

Ref, 2		
Electron Energy	Cross Section	
eV	10-16 _{cm} 2	
500 700 1500 1500 2000 2500 3000 3500 4000 4500 5000	0.515 0.409 0.320 0.238 0.185 0.158 0.135 0.120 0.107 0.0973 0.0898	

Reference 1: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B <u>12</u>, 979 (1979).

Reference 2: P. Nagy, A. Skutlartz, and V. Schmidt, J. Phys. B <u>13</u>, 1249 (1980).

Tabular and Graphical Data C-4.3. Gross ionization cross sections for electrons incident on Ar.

$$\sigma_{gross} = \sum_{n} \sigma_{n}$$

Experimental average

et. I, Expe	rimental average	···c		
Electron Energy	Cross Section	Electron Energy	Cro Sect	
еV	10 ⁻¹⁶ cm ²	еV	10-16	
	0.6437	500	0	
20	1,838	700	0	
30	2.463	1000	0	
40	2.652	1500	U	
50	2.732	2000	i)	
60	2.890	2500	0	
70	2.887	3000	0	
80	2.940	5500	0	
90	2.859	4000	0	
100 150	2.651	4500	0	
200	2.398	5000	0	
300	1.960			
400	1.004			
500	1.435			
600	1,226			
700	1.094			
800	1,000			
900	0.9232			
1000	0.8501			
5000	0.4875			
3000	Ű. 3548			
,000	• • • • • • • • • • • • • • • • • • • •			

Ref	. 2
Electron Energy	Cross Section
еV	10-16 _{cm} 2
500 700 1000 1500 2000 2500 3000 5500 4500 5000	0.515 0.409 0.320 0.238 0.185 0.158 0.135 0.120 0.107 0.0973 0.0898

Reference 1: F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B 12, 979 (1979). Reference 2: P. Nagy, A. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249 (1980).

Tabular and Graphical Data C-4.4. Gross ionization cross sections for electrons incident on Kr.

σ_{gross} = Σnσ_n

Ref. 1, Experimental average

Ref. 2

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ em ²	eV	10^{-16}cm^2
20	1.169	500	2.21
30	2.696	700	1.65
40	3.338	1000	1.30
50	3.679	1500	0.961
60	3.934	2000	0.763
70	4.105	2500	0.620
80	4.172	3000	0.542
90	4.141	3500	0.474
100	4.1-7	4000	0.425
150	3.805	4500	0.388
200	3.408	5000	0.353
300	2.798		
400	2.417		
500	2.087		
600	1.886		
700	1.706		
800	1.557		
900	1.434		
1000	1.342		
2000	0.7913		
3000	0.5866		
4000	0.4640		

Reference 1. F. J. deHeer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B, 979 (1979).

Reference 2. P. Nagy, A. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249 (1980).

Tabular and Graphical Data C-4.5. Gross ionization cross sections for electrons incident on Xe.

 $\sigma_{\text{gross}} = \sum_{n} \sigma_{n}$

Ref. 1, Experimental average

nderst non	dross
contrategy	Section
500	E. C. 1 (1)
+-V	10-16 em
1 -	0.4554
	2.364
* 1	3.106
43	4.477
	4.847
£ 44	9.076
1 2	0.180
	7 · . 7 · ·
14.3	5.379
11.0	5-56+
	5 . 44 to
, or.	4.850
3	4.057
400	3.50d 5
* 2 - 1 %;	3.055
500	d.726
7002	497
3 C L	L . L 40
4.14	San Star
1090	1.941
C 1500 c.	1.15)
50 Ca	0.8537
4 4 4	0.6770

Ref. 2

Electron Energy	Tross Section
₽¥	1.5-16 _{0m} /
1.49	2.92
700	1 1
10.50	1.73
1500	1.34
7,000	1.59
,450o	0.911
₹₩₩	U.781
44.70	0.637
4600	O. land
4500	0.564
5.750	0.516

Reference I., F. J. defleer, R. H. J. Jansen, and W. van der Kaav. J. Phys. B 12, 979 (1979).

Peference J., F. Namy, A. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249 (1980).

Tabular Data C-4.6. Ratio of count ionization to gross ionization cross sections for noble gas atoms.

$$\|\sigma\|_{g,t, 0, s, \mathbf{S}} \ \simeq \ \underset{n}{\Sigma}_{n, \sigma}$$

$$\sigma_{count} = \sum_{n=n}$$

 $\sigma_{\rm n}$ cross section for n-fold ionization

Electron Energy (eV)	Ne	Ar	Kr	Хe
30)	1	1		1.0
40	1	ļ	1.0	.97
50	1	1	. 972	.93
60	1	. 995	. 924	. 886
.10	1	. 986	. 905	. 873
80	, 9927	. 968	. 90	.86
9()	. 9851	. 959	. 89	. 85
100	. 9771	. 9498	. 8817	. 846
150	. 9646	. 9396	.887	.8510
200	. 9548	. 9353	. 88	.8443
300	. 9416	. 9342	. 869	.8337
400	. 9420	. 9305	. 875	. 8395
500	. 9450	. 9297	. 86	. 8276
b00	. 9524	.9280	. 8667	.8195
700	. 9527	. 9278	. 8662	.8068
800	. 9548	. 9275	. 8478	.7914
9()()	. 9553	. 9277	.8629	. 7925
1000	. 9556	. 9269	.8612	. 7937
2000	. 9526	. 9225	.8519	.7814
3000	. 9493	. 9216	. 8416	.7704
4 (00)0	. 9586	. 9197	. 8299	. 7582

Reference. F. J. de Heer, R. H. J. Jansen, and W. van der Kaay, J. Phys. B $\underline{12}$, 979 (1979).

Tabular and Graphical Data C-4.7. Calculated cross sections for electron-impact ionization of excited states of Ne $\,$

N	e(3s)	Ne	(3p)
Electron Energy	Cross Section	Electron Energy	Cross Section
еV	$10^{-16} \mathrm{cm}^2$	еV	10-16 _{em} 2
5.4	1.48	3.4	4.47
5.5	1.82	3.5	5.51
5.8	2.31	3.6	7.06
6.2	2.96	3.9	9.77
6.7	3.65	4.4	12.9
7.5	4.36	5.1	15.4
.9.1	5.41	6.1	17.0
11	5.68	7.1	17.6
12	5.76	.9.3	17.1
14	5.68	13	14.6
17	5.47	19 28	12.0
20	5.14		9.55
23	4.85	37	7.60
58	4.41	50	5.90
34	3.91	67	4.66
39	3.54	100	3.28
49	3.06		
60	2.64		
74	2.23		
100	1.68		

Tabular and Graphical Data C-4.8. Calculated cross sections for electron-impact ionization of excited states of Ar.

Ar(4s)		Ar(4s)		A	r(4p)
Electron Energy	Cross Section	Electron Energy	Cross Section		
еV	$10^{-16} \mathrm{cm}^2$	еV	10 ⁻¹⁶ em ²		
4.6 4.8 5.0 5.3 6.3 6.9 7.8 8.8 10 12 15 17 20 25 32 40 52 70 98	2.01 2.55 3.24 3.98 5.16 6.08 6.78 7.39 7.71 7.88 7.74 7.4: 6.94 6.37 5.59 4.81 4.19 3.50 2.76 2.10	3.0 3.2 3.5 3.5 3.5 5.4 6.3 7.0 12 15 20 25 31 39 49 62 83 99	5.43 6.81 8.93 12.8 16.6 19.0 20.6 21.2 20.8 19.0 17.0 15.4 13.1 11.1 9.38 8.02 6.68 5.42 4.28 3.67		

Reference: H. A. Hyman, Phys. Rev. A 20, 855 (1979).

Tabular and Graphical Data C-4.9. Calculated cross sections for electron-impact ionization of excited states of Kr.

Kr(5s)		Kr	(5p)
Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	еV	10-16 _{cm} 2
4.5	2.16	2.8	6.01
4.5	2.70	2.8	7.93
4.7	3.63	3.0	10.4
5.2	4.79	3.4	14.7
5.6	5.81	4.0	19.1
6.1	6.63	4.4	21.5
6.7	7.44	5.2	23.1
7.7	8.26	6.3	23.5
8.9	8.58	7.6	22.8
10	8.65	9.6	21.0
12	8.36	13	18.0
15	7.79	20	14.3
19	7.11	26	11.8
24	6.39	38	8.80
31	5.51	52	6.85
39	4.68	67	5.45
51	3.84	82	4.58
62	3.32	99	3.92
79	2.67		
99	2.17		

Tabular and Graphical Data C-4.10. Calculated cross sections for electron-impact ionization of excited states of Xe.

Xe(6p) Xe		Ke(6p)	
Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	e V	10 ⁻¹⁶ cm ²
4.2 4.3 4.7 5.3 6.1 7.0 8.2 9.6 11 14 17 22 27 38 50 61 74 86	2.32 2.97 4.35 5.96 7.27 8.12 8.58 8.68 8.50 8.05 7.42 6.69 5.84 4.82 4.00 3.49 3.02 2.65 2.34	2.7 2.8 3.1 3.5 3.8 4.2 5.1 6.2 7.3 8.5 9.9 12 16 19 25 30 37 47 58 71 83	6.54 8.49 10.9 14.9 18.9 21.7 23.3 25.5 25.0 24.0 22.2 20.0 17.4 15.3 12.8 11.2 9.31 7.76 6.55 5.46 4.73 4.07

Tabular and Graphical Data C-4.1la. Calculated cross sections for electron-impact ionization of excited states of Cd.

 $Cd(5p^{-3}P)$ $Cd(6s^{-3}S)$

04(3)	, .,		
Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10-16 _{cm} 2	e۷	10-16 _{cm} 2
5.8 5.9 6.2 6.7 7.5 9.2 11 13 16 22 31 40 55 71 99	1.67 2.14 2.84 3.75 4.94 6.20 6.67 6.72 6.59 6.07 5.12 4.47 3.61 3.04 2.34	2.8 2.9 3.1 3.8 4.7 5.3 6.2 7.2 8.4 9.7 12 16 21 28 36 48 63 80 98	5.21 6.71 8.772 11.6 15.3 17.6 19.2 20.2 20.3 19.6 18.7 16.8 14.5 12.3 9.96 6.62 5.29 4.37 3.63

Tabular and Graphical Data C-4.11b. Calculated cross sections for electron-impact ionization of excited states of Cd.

Cd(6p) ³ P)	Cd(5d ³ D)	
Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	eV	10-16 _{cm} 2
1.9 1.9 2.0 2.5 3.5 3.4.1 6.6.4 114 194 350 288 98	12.5 16.4 23.1 29.9 37.5 48.6 46.8 48.6 49.3 49.5 48.2 44.1 39.3 34.2 29.6 24.0 19.7 14.5 11.2 9.17 7.49 6.18	1.7 1.8 2.1 3.0 3.6 4.8 6.2 8.2 12 17 23 34 52 76	16.6 24.1 39.5 52.1 61.8 64.5 62.3 57.7 52.0 42.4 32.8 26.5 13.6 9.69 7.25

Reference: H. A. Hyman, Phys. Rev. A 20, 855 (1979).

Tabular Data C-4.12. Cross Sections for electron impact $ionization \ of \ Hg \,.$

Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²
300	3.14
400	2.66
500	2.32

Reference: K. Jost and B. Ohnemus, Phys. Rev. A $\underline{19}$ 611 (1979).

Tabular and Graphical Data C-4.13a. Calculated cross sections for electron-impact ionization for excited states of ${\rm Hg.}$

Hg(6p ³P) Hg(7s ³S)

Electron Gross Electron Gross Energy Section

eV 10⁻¹⁶cm² eV 10⁻¹⁶cm²

5.9 1.51 2.9 4.72
5.10 5.86

eV	10 ⁻¹⁶ em²	eV 	10-, em
5.9	1.61	2.9	4.72
6.1	2.03	3.0	5.86
6.5	2.92	3.1	7.34
7.1	3.88	3.4	9.87
7.9	4.90	3.9	13.2
9.0	5.68	4.6	16.3
16	0.20	5.4	18.4
12	6.37	6.2	19.0
1.4	6.39	7.4	18.8
16	b.27	9.0	18.1 16.8
19	5.99	11	
23	5.59	14	15.1
29	5.07	17	13.6 11.5
38	4.37	22	9.70
4.7	3.85	28 38	7.60
62	3.21		6.15
81	2.71	50 75	4.40
33	2.36		3.50
		99	J.JU

Tabular and Graphical Data C-4.13b. Calculated cross sections for electron-impact ionization for excited states of ${\rm Hg}\,.$

Hg(7p ³ P)		Hg (6d ³ D)
Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
1.9 2.0 2.2 2.4 2.8 3.3 3.6 4.3 5.0 6.3 8.3 11 15 21 27 61 80 100	13.3 18.4 25.2 32.2 42.1 48.6 50.7 52.0 51.2 48.1 42.6 37.2 30.3 23.8 19.7 16.0 12.7 9.95 7.90 6.36	1.8 1.8 2.0 2.2 2.7 3.2 3.7 4.3 5.3 6.6 8.2 11 16 23 34 47 63 81 98	17.1 22.8 31.5 43.9 59.1 68.0 67.1 64.3 59.6 54.6 46.0 34.7 25.8 14.0 10.9 8.67 7.22

Tabular and Graphical Data C-4.14. Cross sections for electron-impact ionization of c^{2+} . $e + c^{2+} + c^{3+} + e + e$

$$e + c^{2+} + c^{3+} + e + e$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm
37.1	. 02	68	9.32
41	. 00	78	10.42
42	. 58	88	11.52
43	. 47	98	11.33
44	. 57	123	12.16
45	. 92	148	12.31
46	1.04	198	11.78
47	2.05	248	10.98
48	2.66	298	9.85
49	3.03	398	8.50
50	3.09	498	7.70
52	4.18	598	6.64
54	4.95	698	6.13
58	6.35	848	5.38
63	7.40	998	4.87

Reference: P. R. Woodruff, M. C. Hublet, M. F. A Harrison, and E. Brook,

J. Phys. B <u>11</u>, L679 (1978).

Tabular and Graphical Data C-4.15. Cross sections for electron-impact ionization of NO. $e \, + \, \text{NO} \, + \, 2e \, + \, \text{NO}^{\frac{1}{4}}$

in other by a contract of the first of the f	rana ar trop	Electron Liberry	orons omation	alectron Enercy	Cross Section
***	1 = 15 en/	٧٠٠	110 em'	e∜	10 ⁻¹⁰ em
4	114	34.7	1.57	145	3.09
1	. 1/.	12.00	1.05	15 ú	ئ.∪ئ
	0.07/3	54.0	1.77	160	3.04
	0.0450	5 L • 9	1.57	150	2.36
11.	of the	10.9	1.94	200	2.86
1	4. 4. 4	40.0	2.99	250	2.65
٠	.1.1	45.0	2.31	30u	c • 45
	6.154	J ₩ • □	43 د ء	350	2.27
1	v	99.0	c.01	400	2.11
	v. 50	50.0	2.74	450	1.90
1	30 9	65.7	₹.5€	500	1.56
1	0.411	70.0	J. 31	うりし	1.75
1	5.4t.1	75.€	6.91	600	1.67
1	6 . Sec. 1	50.9	5.04	050	1.59
16.00	J. 945	35.0	5.57	700	1.51
1.1	v.585	90.0	3.12	750	1.45
17.	.00.0	95.0	3.13	500	1.39
1	5.6.4	$1 \psi \phi$	5.14	⋨ り∪	1.33
: .	5.75!	165	3.15	300	1.25
1	/3:	110	3.15	950	1.24
19.3	u • I7 •	115	5.15	1600	1.21
• 57	ر ائ. ،	120	5.14		
	0.101	125	3.14		
	1.11	130	3.12		
21.20	1.20	135	3.11		
	1.40	140	3.10		

Just - eext oulumn

Jont. Next Jolamn

Reference: D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

Tabular and Graphical Data C-4.16. Cross sections for electron-impact ionization of π_2^0 . $e + N_2 0 + 2e + N_2 0^{\dagger}$

ыlectron ыперду	Cross Section	Electron Energy	Cross Section	Electron chergy	invac Destini
eV	10-10 cm2	e√	1J-16 _{cm} 2	64	1., - 1 to 2 min
14.5	V.0537	40	1ز.،	200	9.18
14.5	0.1.1	0 . ر⁴4	وؤ.ه	300	4
15.0	0.193	グリ・ロ	z.∂1	350	7.
19.5	J.199	25.0	3.01	ر, ن 4	8.53
10.0	0.233	5 to . to	ე.10	450	6 7
16.5	ひょこめひ	65.0	5.30	500	2.12
17.0	U.31,	10.0	5.44	シンロ	2.03
17.5	0.302	15.0	5.53	toolo	1.47
10.0	0.404	ر. ن ف	5.61	じっし	1.3
10.5	6.471	#*y • /	5.00	750	1.7.
11.0	0.496	10.0	1.70	750	
19.5	J.551	15.0	5.75	ນີ້ ປ	1.0
c1.6	4.723	100	5.75	55v	1.55
a 1.5	J.781	1 75	1.70	ي وال	1.50
<0.0	0.345	110	5.77	960	1,45
66.7	U.393	115	5.75	1505	1.42
∪.وت	V.959	120	3.70		
63.5	1.01	125	3.77		
. 4	1.07	1კი	3.70		
60.0	1.23	135	3.75		
23.∪	1.47	140	3.73		
30.0	1.64	145	3.71		
ب، ∠ز	1.00	150	3.70		
ل، ≓ر	4 و . 1	160	3.64		
35.0	2.07	100	3.00		
30.V	2.11	200	3.45		

Cont. Next Column Cont

Reference: D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965)

Tabular and Graphical Data C-4.17. Cross sections for electron-impact ionization of CH_4 .

blectron Energy	Gross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
€ ∜	10 ⁻¹⁰ em2	eV	10-10 _{em} 2	еV	10-16 cm2
13.7	0.0343	35.0	2.41	200	3.01
14.0	0.0739	40.0	5.0≥	250	2.72
14.5	0.130	45.0	5. ≥ 1	300	2.49
15.0	0.190	jù.∪	5.30	350	2.27
15.5	0.275	55.0	3.48	400	2.09
10.0	U.361	60.0	3.50	450	1.94
10.5	445.ن	65.0	3.62	500	1.83
17.0	0.531	70.0	3.65	550	1.72
17.5	0.010	75.0	3.60	600	1.63
10.0	0.706	80.0	3.70	650	1.54
13.5	0.793	ძნ.შ	3.70	700	1.47
٠,٠١	0.000	90.0	3.70	750	1.40
19.5	0.977	95.0	3.68	800	1.54
21.0	1.24	100	3.66	850	1.28
21.5	1.34	105	3.63	900	1.24
£2.0	1.42	110	5.02	950	1.21
66.5	1.50	115	3.59	1000	1.18
ن.زن	1.50	120	3.50		
د ځ د ک	1.05	125	3.52		
24.U	1.72	130	3.48		
د ت . ن	1.97	135	3.45		
63.0	£.2U	140	3.41		
30.0	2.30	145	კ.38		
32.0	2.54	15บ	$\bar{3} \cdot \bar{3} 3$		
ن 4 و	2.00	166	3.25		
30.0	∠.74	130	3.12		

Reference: U. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

ARMY MISSILE COMMAND REDSTONE ARSENAL AL DIRECTED E--ETC F/6 20/5 COMPILATION OF ATOMIC AND MOLECULAR DATA REVELANT TO BAS LASERS--ETC(1)) DEC 80 E M MCDANIEL, M R FLANMERY, E W THOMAS

NL A0-A101 037 UNCLASSIFIED 2 10 4

Tabular and Graphical Data C-4.18. Cross sections for electron-impact ionization of C2H4.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
10.5	0.0114	21.5	2.00	75.0	5.76
11.0	0.0449	22.0	2.09	80.0	5.80
11.5	U.U871	22.5	2.13	85.0	5.83
12.0	0.134	23.0	2.27	90.0	5.83
12.5	٥ . 193	23.5	2.35	95.0	5.83
13.0	0.263	24.0	2.44	100	5.79
13.5	U.345	26.0	2.95	105	5.77
14.0	0.431	28.0	3.25	110	5.74
14.5	0.533	30.0	3.52	115	5.70
15.0	0.642	32.0	3.76	120	5.66
15.5	U.752	34.0	3.98	125	5.61
16.0	0.861	36.0	4.10	130	5.56
16.5	0.959	38.0	4.35	135	5.51
17.0	1.06	40.0	4.50	140	5.42
17.5	1.16	45.0	4.50	145	5.39
18.0	1.27	50.0	5.07		
18.5	1.37	55.0	5.29		
19.0	1.49	60.0	5.47		
19.5	1.59	£ . 0	5.61		
21.0	1.90	70.0	5.69		

Reference: D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

Tabular and Graphical Data C-4.19. Cross sections for electron-impact ionization of SF_6 .

lectron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
e v	10-10 _{em} 2	eV	10-16 cm ²	eV	10 ⁻¹⁶ cm ²
16.5	0.0202	34.0	2.70	115	6.79
17.0	U.U352	36.0	3.04	120	6.36
17.5	0.0554	38.0	3.26	125	6.87
13.0	0.0836	40.0	3.47	130	6.88
15.5	J.110	45.0	3.79	135	6,92
19.0	0.155	50.0	4.35	140	6,93
13.5	0.194	55.0	4.81	145	0.94
21.0	1 (و و ، ن	60.0	5.09	150	6.97
≥1.5	0.392	65.0	5.34	160	6.97
66.0	0.450	70.0	5.05	180	6.76
4 d . 5	U.537	75.0	5.77	200	6.03
∪ • ۇ ≟	0.621	dU.0	5.95	250	6.45
23.0	u.713	d5.U	b.14	300	5.09
<4.U	0.020	90.0	0.25		
20.0	1.26	95.0	6.42		
∠8.U	1.50	100	6.53		
30.0	1.93	105	6.63		
52.V	2.31	110	6.71		

Cont. Next Column

Reference: D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

Tabular and Graphical Data C-4.20. Cross sections for electron-impact ionization of ${\rm CO_2}^+$ ions.

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	$10^{-17} \mathrm{cm}^2$	еV	10^{-17} cm ²
24.90	0.126	124.5	3.95
26.50	0.326	166.0	3.96
27.40	0.450	232.4	3.47
29.00	0.626	232.4	3.58
29.00	0.662	332.0	2.91
33.20	1.24	456.5	2.37
41.50	2.13	622.5	2.18
49.80	2.64	830.0	1.66
58.10	3.08		
83.00	3.72		

Reference: A. Muller, E. Salzborn, R. Frodl, R. Becker, and H. Klein, J. Phys. B 13, L221 (1980).

Tabular Data C-4.21. Appearance potentials for electron-impact ionication of rare-gas dimers.

Dimer	Appearance Potential (eV)
Ar ₂	15.2 ± 0.2
ArKr	14.0 ± 0.2
Kr ₂	13.45 ± 0.3
KrXe	12.2 ± 0.2
Xe ₂	11.75 ± 0.3

Reference: H. Helm, K. Stephan and T. D. Mark, Phys. Rev. A 19, 2154 (1979).

Tabular and Graphical Data C-4.22. Cross sections for electron-impact detachment from \mathbf{F}^{-} .

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	еV	10-16 _{cm} 2
1غ.2	1.03	98.0	2.60
18.0	1.63	148	2.40
23.0	1.92	197	2.11
28.0	2.23	247	1.80
33.0	2.33	296	1.62
38.0	2.44	396	1.37
48.0	2.ó5	495	1.16
58.U	2.71	595	1.04
68.0	2.74	794	0.840
68.0	2.71	990	0.730
83.0	2.67		
90.0	2.62		

Reference: B. Peart, R. Forrest, and K. T. Dolder, J. Phys. B 12, L115 (1979).

Tabular and Graphical Data C-4.23. Cross sections for electron-impact detachment from 0^- . Inclined beams

90% confidence limits of random error

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10^{-16} cm ²	eV	10-16 _{cm} 2	e V	10 ⁻¹⁶ cm ²
3.28	0.640	20.5	5.27	27.3	5.72
5.37	1.48	21.4	5.46	27.5	5.81
7.62	2.83	22.1	5.78	29.1	6.12
10.6	4.35	22.8	5.89	30.7	6.19
12.8	5.21	24.4	5.97	32.1	6.29
15.2	5.54	25.2	6.10	32.5	6.28
16.7	5.61	26.0	6.34	36.9	6.03
18.1	5.78	26.3	5.82		
19.0	5.90	26.8	6.08		
19.6	5.24	26.7	5.48		

Reference: B. Peart, R. A. Forrest, and K. Dolder, J. Phys. B $\underline{12}$, 2735 (1979).

Tabular and Graphical Data C-4.24 Cross sections for electronimpact detachment from σ .

£lectron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
10.3 13.3 15.3 16.3 18.3 18.3 18.8 19.3 20.3 23.3 26.1 28.1 33.3 38.0 48.0	4.51 5.54 5.63 5.18 5.56 5.51 5.44 6.26 6.18 6.48 6.29	58.0 98.0 98.0 108 148 197 296 396 495 595 694 794	5.85 5.64 5.16 4.88 4.80 4.09 3.71 2.88 2.28 1.89 1.62 1.45 1.33
58.0	6.05		

Reference: B. Peart, R. Forrest, and K. T. Dolder, J. Phys. B 12, 847 (1979).

Tabular and Graphical Data C-4.25. Cross sections for electronimpact detachment from C^- .

Inclined beams

90% confidence limits of random error

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁵ cm ²	еV	10 ⁻¹⁵ cm ²
11.6 13.0 14.4 15.2 15.9 17.4 18.1 18.9	2.14 2.15 2.16 2.09 1.99 2.01 2.17 1.99 1.86 2.00	20.4 20.9 21.9 22.7 23.5 25.0 26.5 28.1 31.2	1.95 1.91 2.01 2.00 1.97 1.81 1.77 1.75

Reference: B. Peart, R. A. Forrest, and K. Dolder, J. Phys. B $\underline{12}$, 2735 (1979).

Tabular and Graphical Data C-4.26. Cross sections for electronimpact detachment from \mbox{C}^{-1} .

Llectron	Cross	Electron	Cross
Energy	Section	Energy	Section
Energy	26661011	Lifet 83	00001011
еV	10 ⁻¹⁶ cm ²	eV	10-16 cm ²
10.2	17.9	98.0	9.97
13.2	17.9	107	9.96
15.7	17.4	148	7.55
18.2	18.5	197	6.23
23.2	17.8	296	4.87
28.0	16.7	396	3.87
38.0	15.1	495	3.22
48.0	14.2	595	2.70
53.0	13.3	794	2.07
63.0	12.4	990	1.73
78.0	11.6		
88.0	10.8		

Reference: B. Peart, R. Forrest, and K. T. Dolder, J. Phys. B 12, 847 (1979).

C-5. ELECTRON-ION RECOMBINATION

CONTENTS

C-5.1.	Cross sections for dissociative recombination of electrons
	with H ₃ ⁺ to form H ⁻

Tabular and Graphical Data C-5.1. Cross sections for dissociative recombination of electrons with H $_3^{-1}$ to form H $_3^{-1}$.

$$e + H_3^+ + H^- + H_2^-$$

Electron	Cross
Energy	Section
·· V	10 ⁻¹⁹ em?
2.64	0.421
3.75	4.30
3.91	7.80
4.85	12.5
6.34	15.4
7.47	10.5
8.51	15.3
9.09	17.3
10.2	10.4
11.7	8.08
13.2	5.51

Reference: B. Peart, R. A. Forrest, and K. Delder, J. Phys. B 12, 3441 (1979)

C-6. NEGATIVE ION FORMATION BY ELECTRON IMPACT

CONTENTS

C-6.1.	Cross sections for dissociative attachment of electrons to $N_2 0 \dots $	2999
C-6.2.	Total electron attachment cross sections for ${\tt CCl}_3{\tt F},\ldots\ldots$	3000
C-6.3.	Total electron attachment cross sections for ${\tt GCl}_2{\tt F}_2,\ldots,$	3001
C-6.4.	Total electron attachment cross sections for \mathtt{CClF}_3	3002
C-6.5.	The effect of vibrational and rotational excitation on threshold	
	dissociative attachment cross sections	
	in ${ m H}_2$ and ${ m D}_2$	3003
C-6.6.	Increase in dissociative attachment cross sections in ${\rm SF}_6$ due to	
	vibrational excitation of the gas prior to the collision	3005

Tabular and Graphical Data C-6.1. Cross sections for dissociative attachment of electrons to $\rm N_2O_{\odot}$

$$e + N_2O + N_2 + O^-$$

Temperature	Rate
	Constant

К	10 ⁻¹⁵ cm ³ /mole-sec
323	30.0
311	13.5
295	4.80
275	2.30
261	0.580

Reference: H. Shimamori and R. W. Fessenden, J. Chem. Phys. 70, 1137 (1979).

Tabular and Graphical Data C-6.2. Total electron attachment cross sections for $\text{CCl}_{\,3}F.$

ainetron unergy	oross pertion	Electron Energy	Cross Section
e√	10-15 cm²	eV	10 ⁻¹⁶ cm ²
0.040	13.0	0.50	5.19
U.U9U	9.10	∪. '5'5	5.44
0.000	0.46	U. UU	5.83
J.070	5.04	0.05	6.32
₩ . J8J	4.27	0.70	6.67
J.10	راه. د	J.75	6.70
c.12	4.24	U.8U	6.47
0.14	5.12	0.05	5.99
u.10	0.34	Ü.9Ü	5.36
u.10	1.69	0.95	4.59
0.20	9.20	1.00	3.15
0.25	9.40	1.1	1,56
0.30	0.55	1.2	0.390
U.35	7.02	1.3	J.0500
0.40	5.07		
0.45	5.36		

Cont. Next Column

Reference: D. L. McCorkle, A. A. Christodoulides, L. G. Christophorou, and I. Szamrej, J. Chem. Phys. <u>72</u>, 4049 (1980).

Tabular and Graphical Data C-6.3. Total electron attachment cross sections for ${\rm CCl}_2{\rm F}_2$.

Llectron Energy	Uross Section	Electron Energy	Cross Section
еV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ em ²
0.040	0.600	0.50	0.220
0.050	1.80	0.55	230
0.060	3.13	0.60	0.260
0.070	3.40	0.05	0.340
0.080	2.07	0.70	0.440
0.10	1.18	0.75	0.570
0.12	0.040	0.60	U.70ũ
0.14	340 ن	U.85	0.820
0.10	0.240	0.90	0.090
u.18	0.230	U.95	0.890
0.20	U.320	1.00	0.700
0.25	0.410	1.1	0.350
0.30	0.550	1.2	0.0700
0.35	J.490		
0.40	0.350		
0.45	J.260		

Cont. Next Column

Reference: D. L. McCorkle, A. A. Christodoulides, L. G. Christophorou, and I. Szamrej, J. Chem. Phys. <u>72</u>, 4049 (1980).

Tabular and Graphical Data C-6.4. Total electron attachment cross sections for ${\tt CClF_3}$.

Electron Energy	Cross Section	Electron Energy	Cross Section
еV	$10^{-16} \mathrm{cm}^2$	еV	10^{-16} cm ²
0.85 0.90 0.95 1.00	0.0200 0.0300 0.0400 0.0800	1.4 1.5 1.6	2.09 1.33 0.570 0.250
1.1 1.2 1.3	0.180 0.630 1.60	1.8	0.160

Cont. Next Column

Reference: D. L. McCorkle, A. A. Christodoulides, L. G. Christophorou, and I. Szamrej,
J. Chem. Phys. <u>72</u>, 4049 (1980).

Tabular Data C-6.5. The effect of vibrational and rotational excitation on threshold dissociative attachment cross sections in ${\rm H}_2$ and ${\rm D}_2$

Tabular Data C-6.5a. Experimental ratio of threshold dissociative attachment cross sections for vibrationally excited molecules to that for molecules in the vibrational ground state.

	н ₂			D ₂
	Internal Energy	$\sigma_{DA}^{V}/\sigma_{DA}^{V=0}$	Internal Energy	$\sigma_{\mathrm{DA}}^{\mathrm{v}}/\sigma_{\mathrm{DA}}^{\mathrm{v}=0}$
v	eV		eV	
1	. 49	32.	. 36	42.
2	. 98	560	. 70	900.
3	1.44	5.6×10^3	1.05	1.2×10^4
4	1.86	3.8×10^4	1.36	1.0×10^{5}
5			1.67	7.2 × 10 ⁵

Tabular Data C-6.5b. Experimental ratio of threshold dissociative attachment cross sections for rotationally excited molecules to that for molecules in the rotational ground state.

		H ₂
j	Internal Energy eV	$\sigma_{DA}^{j}/\sigma_{DA}^{j=0}$
5	. 23	1.6
7	. 41	4.2

Ground-state dissociative attachment cross sections at 300° K, taken from G. Schulz and R. K. Asundi, Phys. Rev. <u>158</u>, 25 (1967)

$$\sigma_{DA}(H_2) = 1.6 \times 10^{-21} \text{ cm}^2$$

$$\sigma_{\rm DA}(D_2) = 8 \times 10^{-24} \, \rm cm^2$$

Reference: M. Allan and S. F. Wong, Phys. Rev. Lett 41, 1791 (1978).

Could take the month of the state of the shold dissociative it adjusts consistent to without conally excited relectles to their formula to the vibration of the vibration of counds to the vibration of the state.

		₩,,	trin exprise l	
	internal Emarks	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ettet 47	
			€ 7	
	. V	and the second second		
	· · · · · · · · · · · · · · · · · · ·	1.1	i 1	• ,
	774	, 8 1 -	. 7	4.5
	1 :		14.	1
	3 +0	1 × 5 1:		1.1 4.4
	1 59	7 1 × 11	1 (46)	y & 1:
•			1.68	,

Reference to R. Bardsley and J. M. Wadehra, Phys. Rev. A 25, 1,98 (1979).

Tabular and Graphical Data C-6.6. Increase in dissociative attachment $_{\rm cross}$ sections in ${\rm SF}_{\tilde{6}}$ due to vibrational excitation of the gas prior to the collision.

Temperature dependence of the cross section for dissociative attachment to ${\rm SF}_6$ to form ${\rm SF}_5$. Taken from Fig. 1 of the reference.

Temperature ("K)	Electron Energy (eV)	0	0.1	0.2	0.3
				<i>.</i> ,	
300		6.5	3.6	5.4	6.4
3 30		8.3	5.0	6.4	7.5
355		14.	7.0	8.6	9.3
420		44.	16.	15.	-
50 0		130.	29.	19.	-
607		290.	43.	23.	_
740		490.	76.	30.	-
880		780.	-	-	-

Laser enhancement of dissociative attachment cross section for electrons on $^{32}{\rm SF}_6$ to produce $^{32}{\rm SF}_5^{-1}$. The radiation selectively excites the v_3 vibrational mode of $^{32}\mathrm{SF}_6$ to produce the enhanced signal.

Reference C. L. Chen and P. J. Chantry, J. Chem. Phys. 71, 3897 (1979). 3005

D. PHOTON COLLISION PROCESSES IN GASES

CONTENTS

		Page
D-1.	Photoabsorption and Photoionization Cross Section of Atoms and Positive Atomic Ions	3007
D-2.	Photoabsorption, Photoionization, and Photodissociation Cross Sections of Molecules and Positive Molecular Ions (Monomers)	302 9
D-3.	Photoabsorption, Photoionization, and Photodissociation Cross Sections of Molecules and Positive Molecular Ions (Excimers and Dimers)	3106
D-4.	Photodetachment, Photodissociation, and Photodestruction of Negative Ions	3118
D-5.	Free-Free Absorption Coefficients (No new data to report. For previous data see V.2, pp. 692-693)	

The data presented in this chapter either extend or supersede the data given previously in Chapter D of Volume II, pages 639-713, and Volume IV, pages 1917-2078.

ACKNOWLEDGEMENTS

This chapter on photon collision processes in gases was put together with the aid of a number of scientists. Particularly significant were the contributions of Dr. Joseph Berkowitz, of Argonne National Laboratory, whose book Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, New York, 1979) provided us with a wealth of references and critically evaluated data on atoms and molecules. We gratefully acknowledge being allowed access to the manuscript prior to publication as well as Dr. Berkowitz providing us with a number of large-size versions of figures from his book.

In addition we acknowledge the contributions of Professor C.E. Brion, of the University of British Columbia, for providing us with a complete set of reprints, spanning a decade, of his very extensive work on partial and total cross sections of atoms and molecules.

D-1. PHOTOABSORPTION AND PHOTOIONIZATION CROSS SECTION OF ATOMS AND POSITIVE ATOMIC IONS

	CONTENTS	Page
D-1.1.	Theoretical Photoionization Cross Section of Atomic H	3009
D-1.2.	Branching Ratios and Partial Cross Section for the Photoionization of Ar 3s	3010
D-1.3.	Ratio of Direct Double Photoionization to Single Ionization for Xe	3011
D-1.4.	Total Photoionization Cross Section for $C(^3P)$, $C(^1D)$, and $C(^1S)$	3012
D-1.5.	Partial Photoionization Cross Section for $C(^1S)$ Leaving the Ion in the a) $2s^22p^2P$, b) $2s^2p^2$, c) $2s^2p^2$, and d) $2s^2p^2$, States	3013
D-1.6.	Partial Photoionization Cross Section for $C(^3P)$ Leaving the Ion in the a) $2s^22p$ 2P , b) $2s$ $2p^2$ 4P , c) $2s$ $2p^2$ 2D , d) $2s$ $2p^2$ 2S , and e) $2s$ $2p^2$ 2P , States	3014
D-1.7.	Partial Photoionization Cross Section for $C(^1D)$ Leaving the Ion in the a) $2s^2$ $2p$ 2P , b) $2s$ $2p$ 2D , c) $2s$ $2p$ 2S , and d) $2s$ $2p$ 2P , States	3015
D-1.8.	Theoretical Total Photoionization Cross Section for N(*S) in Length (L) and Velocity (V) Formulations in Two Theoretical Approximations Compared with Various Other Experimental and Theoretical Results	3016
D-1.9.	Photoionization Cross Section of $N(^4S)$ to $N^+(^3P)$ Corresponding to the Ejection of a 2p Electron and the Various N^+ States Corresponding to Ejection of a 2s Electron in Length (L) and Velocity (V)	3017
D-1.10.	Photoionization Cross Section of Ground State N(4 S) in the Neighborhood of the (2s2p 3 5 S)np 4 P Autoionizing Series	3018
D-1.11.	Photoionization Cross Section for Atomic O. (a) Total Cross Section, Dashed Line is Averaged Over Resonances, Points are Experimental, (b), (c), (d) are Details of the Resonance Regions	3019
D-1.12.	Photoionization Cross Section for the Ground (³ P) State of 0 into the Ground (⁴ S) of 0 ⁺	3020
D-1.13.	Photoionization Cross Section for the Ground ³ P State of Atomic O to the ² D° State of O ⁺	3021

		Page
D-1.14.	Photoionization Cross Section for the Ground 3P State of Atomic O to the $^2P^\circ$ State of 0^+	3022
D-1.15.	Photoionization Cross Sections and Branching Ratios in Various Theoretical Approximations for Cl	3023
D-1.16.	Photoabsorption Cross Sections for Atomic Hg	3024
D-1.17.	Relative Photoionization Cross Section of Atomic Hg	3025
D-1.18.	Photoionization Cross Sections for Singly Charged Positive Ions	3026
D-1.19.	Photoionization Cross Sections for Singly Charged Positive Ions	3027
D-1.20.	Photoionization Cross Section for Na ⁺	3028
D-1.21.	Photoionization Cross Section of the Ground State ³ P° of Ne II	3028
D-1.22.	Photoionization Cross Section of the Ground State ³ P of Ne III	3028

Graphical Data D-1.1 Theoretical Photoionization Cross Section of Atomic H.

Tabular Data D-1.2 Branching Ratios and Partial Cross Section for the Photoionization of Ar 3s

Energy	Measured	· -		Total	Argon 3s	
loss (eV)	intensity ratio ^b 3s/3p	<i>3s</i>	3p	photoionization cross-section (Mb) ^d	photoionizatione cross-section a (Mb)	
32.8	0.031	0.030 (6)	0.970 (6)	16.7	0.500 (100)	
33.8	0.023	0.022 (9)	0.978 (10)	14.2	0.310 (127)	
35.8	0.023	0.022 (8)	0.978 (10)	9.4	0.210 (75)	
37.8	0.012	0.016 (10)	0.983 (13)	5.9	0.094 (59)	
39.8	0.000	0.000 (4)	1.000 (4)	3.7	0.000 (14)	
41.8	0.012	0.011 (11)	0.989 (11)	2.2	0.024 (24)	
44.8	0.061	0.057 (43)	0.943 (44)	1.25	0.070 (53)	
46.8	0.103	0.093 (35)	0.907 (46)	0.97	0.091 (34)	
49.8	0.124	0.102 (40)	0.826 (59)	0.92	0.094 (37)	
51.8	0.129	0.106 (68)	0.782 (65)	1.01	0.110 (70)	
54.8	0.164	0.123 (28)	0.754 (40)	1.19	0.146 (33)	
59.8	0.226	0.155 (38)	0.685 (38)	1.37	0.213 (52)	
64.8	0.267	0.177 (35)	0.658 (42)	1.45	0.257 (51)	
69.8	0.266	0.177 (37)	0.664 (48)	1.48	0.262 (55)	
74.8	0.223	0.153 (68)	0.687 (68)	1.48	0.227 (101)	

Values in parentheses represent the uncertainties in the derived quantities.

This represents the $3s/3\rho$ intensity ratio corrected for analyzer transmission efficiency.

⁴ From data of West and Marr

Note: The value in parentheses represent the uncertainties.

These data were taken from K. H. Tan and C. E. Brion, J. Reference: Electron Spectrosc. 13, 77 (1978) except for the total cross section which was taken from J. B. West and G. V. Marr, Proc. Roy. Soc. A 349, 397 (1976).

^c Branching ratio $(3s) = 3s/(3s + 3p + 2^+)$ etc. The data for multiple ionization are taken from ref. 30. This correction has been made above 46.8 eV.

[•] $\sigma(Mb) = 1.0975 \times 10^{2} (df/dE) (eV)^{-1}$.

Graphical Data D-1.3

Ratio of direct double photoionization to single ionization for $\ensuremath{\mathsf{Xe}}$

Total chotoionization cross section for C(3 P) C(1 D), and C(1 S).

Graphical Data D-1.4

Graphical Data D-1.5

Partial photoionization cross section for C(1 S) leaving the ion in the a) $2s^22p\ ^2P$, b) $2s\ 2p^2\ ^2D$, c) $2s\ 2p^2\ ^2S$, and d) $2s\ 2p^2\ ^2P$ states.

Graphical Data D-1.6

Partial photoionization cross section for C(3P) leaving the ion in the a) $2s^22p$ 2P , b) 2s $2p^2$ 4P , c) 2s $2p^2$ 2D , and d) 2s $2p^2$ 2S , and e) 2s $2p^2$ 2F states.

Graphical Data D-1.7

Partial photoionization cross section for C(1D) leaving the ion in the a) 2s 2 2p 2 P, b) 2s 2p 2 PD, c) 2s 2p 2 PS, and d) 2s 2p 2 PS states.

Graphical Data D-1.8

Theoretical total photoionization cross section for N("S) in length (L) and velocity (V) formulations in two theoretical approximations compared with various other experimental and theoretical results.

Graphical Data D-1.9

Photoionization cross section of N(4 S) to N 4 (4 P) corresponding to the ejection of a 2p electron and the various N 4 states corresponding to ejection of a 2s electron in length (L) and velocity (V).

Graphical Data D-1.10

Photoionization cross section of ground state N('S) in the neighborhood of the (2s2p - S)np 'P autoionizing series.

Photoionization cross section for atomic O. (a) Total cross section, dashed line is everaged over resonances, points are experimental, (b), (c), (d) are details of the resonance regions.

Graphical Data D-1.11

Graphical Data U-1.12

Photoionization cross section for the ground ('P) state of 0 into the ground ('S) of $0^{+}. \\$

Graphical Data D-1.13

Photoionization cross section for the ground 'P state of atomic O to the 'D' state of \textbf{O}^{\top} .

Graphical Data D-1.14

Photoionization cross section for the ground $^{\circ}P$ state of atomic 0 to the $^{\circ}P^{\circ}$ state of $0^{+}.$

Tabular Data D-1.15

Photoionization Cross Sections and Branching Patios in Various Theoretical Approximations for C

Sum of the 3p - kd, ks cross sections at various energies (in 10^{-48} cm²).

		With relaxat	ion effects		Without relaxation effects				
Photon	Lowest-	order HF	Corr	elated ^a	Lowest-	order HF	Correlated *		
energy (eV)	Length	Velocity	Length	Velocity	Length	Velocity	Length	Velocity	
16,62	56,14	37,05	35.91	34,00	60,40	43.06	39.40	35.99	
15	51,66	33,30	36.13	34.71	51.10	35,60	40.10	36,36	
20	42,60	26.41	35,38	31,62	35.79	25.92	39.35	35.49	
21.2	37.22	22,46	34.32	30.10	32.45	21.11	37.51	34.02	
23	29.95	17.32	32.06	29.57	24.33	15.17	33,94	30.55	
25	23.17	12.71	28.45	23.34	16.97	10.13	27.52	24.87	
27	17.51	9.11	24.17	21.46	11.31	6.49	20.33	18.3h	
30	11.03	5.30	17.40	12.89	5.87	3.18	11.52	10.37	
32	7.75	3,54	13.01	10.94	3.64	1 95	7.17	6.44	
35	4 45	1.89	7.87	5.16	1 69	0.92	3.19	2.85	
40	1.61	0.70	2.83	2.19	0.68	0.50	0.93	0.65	
45	0.57	0.36	0.85	0.68	0.42	0.45	0.38	0.3⊱	

^aIncludes correlations from coupled-equations method.

Ratios of the ^{4}D and ^{4}S cross sections to ^{5}P at various energies

				^{1}D ra	tio				
Photon		With relaxat	ion effects			Without relaxation effects			
energy	Lowest-	order HF	Correlated		Lowest-	order HF	Correlated b		
(eV)	Length	Velocity	Length	Velocity	Length	Velocity	Length	Velocity	
18	0.82	0.97	0,66	0.69	1.1	1.2	0.79	0.85	
19	0.67	0.82	0.66	0.68	0.95	1 1	0.77	0.80	
20	0.55	0.70	0.67	0.70	0.63	0.96	0.75	0.50	
21.2	0.45	0.5%	0.6h	0.72	0.70	0.83	0.74	0.79	
22	0.40	0.53	0.70	0.74	0.63	0.76	0.74	0.79	
23	0.35	0.47	0.72	0.76	0.55	0.65	0.74	0.78	
				¹S ra	ti o				
1×	0.24	0.25	0.11	0.14	0.32	0.31	0.15	0.15	
19	0.15	0.20	0.11	0.13	0.27	0.25	0.14	0.16	
20	0.14	0.16	0.11	0.13	0.22	0.24	0.14	0.16	
21.2	0.11	0.13	0.11	0.12	0.18	0.20	0.13	0.14	
2 2	0.09	0.12	0.11	0.12	0.15	0.17	0.12	0.14	
23	40.0	0.10	0.11	0.12	0.13	0.15	0.12	0.13	

Reterior et l'Italia data une tion E.R. Brown, S.L. Carter, and H.P. Felly, etc., etc., 4 (2), 1981 (1985).

Graphical Data D-1.16
Photoabsorption cross sections for atomic Hg.

Graphical Data D-1.1/
Relative photoionization cross section of atomic Hg

Tabular Data D-1.18

Photoionization Cross Sections for Singly
Charged Positive Ions

ну	L1+	=-	BE +	8+		HA	C +	N+	D+		
6	0.000E	G C	0.000E 00	C.000E	00	15		0.000E 00	0.000E 00		00
7	0.000E		0.000E 00			20	0.000E 00	0.000E 00	0.000E 00	0.000E	00
8			0.000E 0			25	3.405E 00	0.000E 00	0.000E 00	3000.0	00
9			0.0001 0			30	2.38 8E 00	6.071E 00	0. 000E 00	0.000E	00
10			0.0001 0			35		4.808E 00	0. 000E 00	0.000E	
_	•••••	• -									
15	0.000E	00	0.000t 0	0.00CE	00	40	2.751E 00	5.190E 00	6. 571E 00	8.177E	
20	0.000E	00	1.398E 00	0.000E	oc	45		4.350E 00			
25	0.000E	00	1.054E 00	2.259E	00	50	1.910E 00	3.670E 00	5.862E 00	6.827E	00
30	0.000£		8.055E-0			60	1.395E 00	2.674E 00	4.473E 00	6.307E	00
35	0.000€					70	1.059E 00	2.009E 00	3.442E 00	5.115E	00
40	2 2205		A 0.055 0	1 1045	00	80	8.284Fm01	1.550E 00	2.688E 00	4.137E	00
	0.000E		4.985E-0			90	6.636E-01	1.225E 00	2. 132E 00		
4.5			4.027 E-D			100	5.413E#01		1.719E 00		
50	0.000£		3.304E-0			100	3.4136801	4.040E#UL	1. 1146 00	2.1446	00
60	0.000E	CC	2.310t-0	L 6.95%E	-01						
70	0.000€	οc	1.6856-0	5.368E	-01						
80	2.5548	00	1.2696-0	4.2426	-01						
90		-	9.812E-0								
100			7.7046-0								

H¥	NE+	NA+	MG+	AL+	\$1+	P +	S +
15	0.000E 00	0.0COE 00	0.000E 00	0.000E 00	1.206E 00	0.000 E 00	0.000E 00
20	0.000E 00	0.000E 00	2.541E-01	4.400E-01	2.455Er01	1.272E 00	0.000E 00
25	0.000E 00	0.000E 00	2.279E-01	4.709E-01	6.216E-01	4 .0 92 E-01	1.192E 00
30	0.000E 00	0.000E 00	1.954E-01	4.438E=01	6.751E-01	8.118E+01	5.453E-01
35	0.000E 00	0.000E 00	1.664E-01	4.020E-01	6.854E-01	8.878 E-GL	9.730E-01
40	0.000E 00	0.000E 00	1.422E#01	3.600E-01	6.679E-01	9.291E+01	1.068E 00
45	8.100E 00	0.000E 00	1.226E-01	3.221E-01	6.362E-01	9.359E-01	1.135E 00
50	7.846E 00	7.014E 00	1.0676#01	2.890E301	5.980ET01	9.185E-01	1.166E 00
60	6.925E 00	8. 166E 00	8.287E-02	2.359E-01	5.177E-01	8.441E-01	1.146E 00
70	6.576E 00	7.811E 00	6.289E 00	1.9606401	4.425E-01	7.488 E-01	1.065E 00
80	5.594E 00	7.401E 00	6.854E 00	1.654E-01	3.767E-01	6.527£-01	9.592E-01
90	4.720E 00	6.333E CO	6.557E 00	5.409E 00	3.211E-01	5.649E-01	8.505E-01
100	3.972E 00	5.363E 00	6.55 SE 00	5.769E 00	2.750E-01	4.886E-01	7.490E-01

Accuracy: These theoretical data should be good to 20 except near

thresholds where they were scmewhat worse.

Reference: The above data were taken from R. F. Reilman and S. T.

Manson, Astrophysical Jour. Supp. 40, 815 (1979).

Tabular Data D-1.19 Photoionization Cross Sections for Singly Charged Positive Ions

HV	CL+	A+	K+	CA+	sc+	†I+	···
15	Q.000E 00	0.000E 00	0.000E 00	2.036E#01	3.066E 00	1.6506_C1	1.416Ea01
20	0.000E 00	0.000E 00	G. 000E OC	1.729E-C1	3.311E 00	5.100E CO	5.680E 00
25	3.782E Q0	0.000E 00	C. QOOE OO	1.4C0E-01	3.144E 00	5.396E QO	6.573E 00
30	1.145E 00	3.034E CO	C- 000E OC	1.142E-01	2.786E 00	5.181E CO	6.822E 00
35	0.018Eg01	1.133E 00	2.605E 00	9.480Em02	2.399E 00	4.713E CO	6.587E 00
40	1.0986 00	7.584ë-01	1. 240E 00	6.015E-02	2.052E 00	4.188E 00	6.108E 00
45	1.207E 00	1.189E 00	9.036Eg01	1.228E 00	1.757E 00	3.694E 00	5.555E 00
50	1.29 6E 00	1.3C8E 00	1. 341E OC	1.019E 00	2.558E 00	3.252E 00	5.016E 00
60	1.37 OE 00	1.486E 00	1.588E 00	1.604E 00	2.C36E 00	3.354E CO	4.963E 00
70	1.342E 00	1.543E 00	1.709E 00	1.780E 00	2.380E 00	2.872E CO	4.054E 00
80	1.2578 00	1.511£ 00	1.708E OC	1.862E 00	2.316E 00	3.025E 00	3.536E 00
90	1.148E 00	1.428£ 00	1.641E 00	1.847E 00	2.234E 00	2.8C3E 00	3.560E 00
100	1.033E 00	1.319E 00	1. 546E 00	1.774E 00	2.117E 00	2.604E 00	3.239E 00

CR+	MN+	FE+	CC+	HA	NI+	CU+	ZH+
8.59AF 00	9-2286-02	0-000E 00	0.000£ 00	20	8.5226-02	7.056E 00	5. 552Em02
				25	4.970E 00	7.969E 00	8. 250E-02
				30	6.263E 00	8.766E 00	5. 151E 00
				35	7.451E 00	9.429E 00	6. 248E OC
							7. 282E 00
9.116E 00	8.336E 00	8.335E 00	7.9878 00	40	0.3082 00	7.7100 00	11 2022 00
8.A17E 00	8.462F 00	8.812E 00	8.743E 00	45	9.005E 00	1.022E Q1	4. 148E 00
				50	9.306E 00	1.034E Q1	8.792E 00
				50	9.219E 00	1.020E 01	9.410E OC
							9. 371E 00
7.194E 00	6.881E 00						
5.559E CO	6.742E 00	7.072 E 00	7.988E 00	80	1.4015 00	9.414F CD	8. 999E OC
		4 8435 00	3 100E 00	90	7.876F 00	8.832£ 00	6.499E 00
							7. 950E 00
4.567E 00				100	7.1046 00	1.0745 00	1. 1706 00
4.101E CO	4.882E 00	5.412E 00	6.292E 00				
	8.594E 00 9.152E 00 9.410E 00 9.397E 00 9.116E 00 7.986E 00 7.304E 00 7.194E 00	8.594E 00 9.228E-02 9.152E 00 1.303E-01 9.410E 00 6.603E 00 9.397E 00 7.728E 00 9.116E 00 8.336E 00 7.986E 00 8.247E 00 7.304E 00 7.847E 00 7.194E 00 6.881E 00 5.559E 00 5.740E 00 4.753E 00 5.058E 00	8.594E 00 9.228E-02 0.000E 00 9.152E 00 1.303E-01 1.160E-01 9.410E 00 6.603E 00 6.095E 00 9.397E 00 7.728E 00 7.408E 00 9.116E 00 8.336E 00 8.335E 00 8.617E 00 8.462E 00 8.812E 00 7.304E 00 8.247E 00 8.870E 00 7.194E 00 6.881E 00 7.951E 00 5.559E 00 6.742E 00 7.072E 00 4.753E 00 5.740E 00 6.862E 00 4.753E 00 5.058E 00 6.048E 00	8.594E 00 9.228E-02 0.000E 00 0.000E 00 9.152E 00 1.303E-01 1.160E-01 1.009E-01 9.410E 00 6.603E 00 7.408E 00 5.514E 00 9.397E 00 7.728E 00 7.408E 00 6.870E 00 9.116E 00 8.336E 00 8.335E 00 7.987E 00 7.986E 00 6.247E 00 8.8696E 00 9.120E 00 7.304E 00 7.847E 00 8.708E 00 9.120E 00 7.194E 00 6.881E 00 7.991E 00 5.731E 00 5.559E 00 6.742E 00 7.072E 00 7.988E 00 4.753E 00 5.740E 00 6.862E 00 7.199E 00 4.753E 00 5.058E 00 6.048E 00 6.993E 00	8.594E 00 9.228E-02 0.000E 00 0.000E 00 20 9.152E 00 1.303E-01 1.160E-01 1.009E-01 25 9.410E 00 6.603E 00 6.095E 00 5.514E 00 30 9.397E 00 7.728E 00 7.408E 00 6.870E 00 35 9.116E 00 8.336E 00 8.335E 00 7.987E 00 40 8.617E 00 8.462E 00 8.812E 00 8.743E 00 40 8.617E 00 8.462E 00 8.812E 00 8.743E 00 50 7.986E 00 8.247E 00 8.896E 00 9.120E 00 50 7.304E 00 7.847E 00 8.708E 00 5.18CE 00 50 7.194E 00 6.881E 00 7.951E 00 5.731E 00 70 5.559E 00 6.742E 00 7.072E 00 7.988E 00 80	8.594E 00 9.228E-02 0.000E 00 0.000E 00 20 8.522E-02 9.152E 00 1.303E-01 1.100E-01 1.009E-01 25 4.970E 00 9.410E 00 6.603E 00 6.095E 00 5.514E 00 30 6.263E 00 9.397E 00 7.728E 00 7.408E 00 6.870E 00 35 7.451E 00 9.116E 00 8.336E 00 8.335E 00 7.987E 00 40 8.388E 00 8.388E 00 8.388E 00 7.986E 00 8.247E 00 8.896E 00 9.120E 00 50 9.306E 00 7.304E 00 7.847E 00 8.708E 00 9.120E 00 50 9.306E 00 7.194E 00 6.881E 00 7.951E 00 8.731E 00 70 8.670E 00 5.559E 00 6.742E 00 7.072E 00 7.988E 00 80 7.987E 00 4.753E 00 5.740E 00 6.862E 00 7.199E 00 90 7.876E 00 4.567E 00 5.058E 00 6.048E 00 6.993E 00 100 7.109E 00	8.594E 00 9.228E-02 0.000E 00 0.000E 00 20 8.522E-02 7.056E 00 9.152E 00 1.303E-01 1.160E-01 1.009E-01 25 4.970E 00 7.969E 00 9.410E 00 6.603E 00 6.095E 00 5.514E 00 30 6.263E 00 8.766E 00 9.397E 00 7.728E 00 7.408E 00 4.870E 00 35 7.451E 00 9.429E 00 9.116E 00 8.336E 00 8.335E 00 7.987E 00 40 8.388E 00 9.916E 00 8.617E 00 8.462E 00 8.812E 00 8.743E 00 45 9.005E 00 1.022E 01 7.986E 00 8.247E 00 8.896E 00 9.120E 00 50 9.306E 00 1.024E 01 7.304E 00 7.847E 00 8.708E 00 9.120E 00 50 9.306E 00 1.020E 01 7.194E 00 6.881E 00 7.951E 00 8.731E 00 6.731E 00 7.987E 00 8.670E 00 9.664E 00 5.559E 00 6.742E 00 7.072E 00 7.988E 00 80 7.987E 00 8.919E 00 4.753E 00 5.740E 00 6.862E 00 7.199E 00 90 7.876E 00 8.832E 00 4.567E 00 5.058E 00 6.048E 00 6.993E 00 100 7.109E 00 7.854E 00

Accuracy: These theoretical data should be good to $\pm 20\%$ except near

thresholds where they were somewhat worse.

Reference: The above data were taken from R. F. Reilman and S. T. Manson, Astrophysical Jour. Supp. 40, 815 (1979).

Tabular Data D-1.20 Photoionization Cross Section for Na⁺

Threshold values of σ (Ne II, $^2P^o \rightarrow Ne$ III, S_iL_i) in megabarns.

S,L,	$E(S,L_i)$	² P° → ³ P	$^{2}P^{o} \rightarrow ^{1}D$	$^{2}P^{o} \rightarrow {}^{1}S$	² P° → ³ P°	$^{2}P^{o} \rightarrow {}^{1}P^{o}$	Total
³p	0.0	5.80		_	_	_	5.80
'D	0.2326	4.52	3.58		_	_	8.10
¹S	0.5051	4.91	3.17	0.48	_	_	8.56
3p0	1.8614	4.15	2.71	0.47	0.48	_	7.80
1po	2.6350	3.40	2.14	0.38	0.45	0.07	6.43

Graphical Data D-1.21 Photoionisation cross section of the ground state ²P° of Ne II. The averaged value obtained by numerical integration over the resonances 3d", 5d' and 6s' is 6·37 Mb.

Graphical Data D-1.22 Photoionisation cross section of the ground state 'P of Ne III. The averaged value over the resonance 5d' is 3.95 Mb and the averaged value over the resonances 8s" and 7d" is 4.75 Mb.

Reference: The above theoretical data were taken from A. K. Pradhan, J. Phys. B $\overline{12}$, $\overline{3317}$ (1979).

D-2. PHOTOABSORPTION, PHOTOIONIZATION, AND PHOTODISSOCIATION CROSS SECTION OF MOLECULES AND POSITIVE MOLECULAR IONS (MONOMERS)

	CONTENTS	Page
D-2.1.	Photoabsorption and Photoionization Oscillator Strengths (Cross Sections) for H ₂	3033
D-2.2.	Photoabsorption Oscillator Strength (Cross Section) for H_2	3034
D-2.3.	Photofragmentation Ratios for H_2 and D_2	3035
D-2.4.	Photoabsorption Cross Sections for N_2 , CO, NO, O_2 , and N_2O	3036
D-2.5.	Quantum Yield of Ionization, η_1 for θ_2	3037
D-2.6.	Cross Section for Photodissociative Production of $O(^1D)$ from Vibrationally Excited and Room Temperature O_3	3038
D-2.7.	Quantum Yield of Ionization, γ_1 , for N_2	3039
D-2.8.	Branching Ratios in the Photoionization of ${\rm N}_2$	3040
D-2.9.	Theoretical Total and Partial Photoionization Cross Sections of F_2 for Production of Various States of F_2^+	3041
D-2.10.	Photoabsorption Cross Section of CO	3042
D-2.11.	Quantum Yield of Ionization, q, for CO	3043
D-2.12.	Branching Ratios in the Photoionization of CO	3044
D-2.13.	Partial Photoionization Cross Sections and Branching Ratios for Production of Various States of CO_2^+ in the Photoionization of CO_2	3045
D-2.14.	Photoabsorption Cross Section of CO ₂	3046
D-2.15.	Photoabsorption and Partial Photoionization Oscillator Strengths (Cross Sections) for CO ₂	3047
D-2.16.	Photoabsorption and Photofragmentation Oscillator Strengths (Cross Sections) for CO ₂	3048
D-2.17.	Quantum Yield of Ionization for CO ₂	3049
D-2.18.	Photoabsorption Cross Section for $N_2\theta$	3050
D-2.19.	Photoabsorption and Partial Photoionization Oscillator Strengths (Cross Sections) for $N_2 0 \dots$	3051
D-2.20.	Photoabsorption and Photofragmentation Oscillator Strengths (Cross Sections) for N_10	3052

		Page
D-2.21.	Quantum Yield of Ionization for $N_{\mathbb{P}}0$	3053
D-2.22.	Photoabsorption and Photoionization Efficiency of N $_20$ and CO $_2$	3054
D-2.23.	Photoelectron Branching Ratios () for Various States in the Photoionization of $N_2\theta$ and $C\theta_2$	3055
D-2.24.	Photoionization Branching Ratios for CO_2 and $\mathrm{N}_2\mathrm{O}$	3056
D-2.25.	Photoabsorption Cross Section for NO	3057
D-2.26.	Photoabsorption Cross Section of NO	3058
D-2.27.	Quantum Yield of Ionization for NO	3059
D-2.28.	Photoabsorption and Photofragmentation Oscillator Strengths (Cross Sections) for $H_2 0 \dots$	3060
D-2.29.	Quantum Yield of Ionization for $\mathrm{H}_2\mathrm{O}$	3061
D-2.30.	Partial Photoionization Oscillator Strengths (Cross Sections) for the Valence Orbitals of $\rm H_2O$	3062
D-2.31.	Spectroscopy Data for $H_2 O$	3063
D-2.32.	Photoabsorption Cross Section of SF_{ϵ}	3064
D-2.33.	Photoabsorption Cross Section of $\mathrm{NH_3}$	3065
D-2.34.	Photoabsorption (σ) and Photoionization (σ) Cross Sections for NH $_3$	3066
D-2.35.	Photoabsorption (σ_a) and Photoionization (σ_i) Cross Sections for NH $_3$	3067
D-2.36.	Photoionization Cross Section for NH_3	3068
D-2.37.	Photoabsorption and Partial Photoionization Oscillator Strengths (Cross Sections) for NH_3	3069
D-2.38.	Photoabsorption and Photoionization Oscillator Strenghts (Cross Sections) for NH_3	30 7 0
D-2.39.	Photoelectron Branching Ratios (%) for Various States in the Photoionization of NH_3	3071
D-2.40.	Quantum Yield of Ionization for $\ensuremath{\text{NH}}_3$	3072
D-2.41.	Photoabsorption Cross Section for CH ₄	3073
D-2.42.	Photoabsorption Cross Section of CH.	207/

		Fage
D-2.43.	Quantum Yield of Ionization for CH,	3975.
D-2.44.	Partial Photoionization Uscillator Strengths (Cross Sections) for Production of the $(1t_z)^{-1}$ and $(2a_z)^{-1}$ States of CH, t in the Photoionization of CH,	307 6
0-2.45.	Photoabsorption Cress Section of (_H	307.7
D-2.46.	Quantum Yield of Ionization, η_i , for C.H.	3075
0-2.47.	Photoabsorption Cross Section of $C_1H_{\lambda_1}$	3079
D-2.48.	Quantum Yield of Ionization for $C_1 H_{\tau_1}$	3080
D-2.49.	Photoabsorption Cross Section of C.H	3081
D-2.50.	Photoabsorption Cross Section for C.H. in the Threshold Region .	3082
D-2.51.	Quantum Yield of Ionization, n _i , for C ₂ H ₄	3083
D-2.52.	Photoabsorption Cross Sections of the Alkanes	3084
D-2.53.	Photoabsorption Cross Section of $C_cH_{\tilde{c}}$	3085
0-2.54.	Photoionization Cross Section of C_cH_c for Production of the Lowest Three and Four States of $C_cH_c^+$	3086
D-2.55.	Photoionization Cross Section of $C_\alpha H_\epsilon$ for Production of $C_\alpha H_\epsilon^{+}$	3087
D-2.56.	Quantum Yield of Ionization, η_i , for C_iH_i	3088
D-2.57.	Cross Sections for Various Emissions from HCN Photodissociation	3089
D-2.58.	Photoabsorption Cross Section of HCN with the Positions of Various Electronic States Indicated	3089
D-2.59.	Photoionization Cross Sections for Various Channels in H ₂ CO · H ₂ CO ⁺ Vertical Transitions	3090
D-2.60.	Photoabsorption Cross Section of HONO, (Nitric Acid)	3091
D-2.61.	Photoabsorption Cross Section for CH ₃ OH	3042
D-2.62.	Absorption Spectrum of a) $CF_3NO(g)$ at $295^\circ K$, b) $CC1_5NO(g)$ at $295^\circ K$, and c) $CC1_3NO_1(g)$ at $295^\circ K$	3093
D-2.63.	Photodissociation Cross Sections for Three Trimethylbenzene Isomers	3094
D-2.64.	Relative Photoabsorption Cross Section of Br. Decomposed into $X \rightarrow B$, $X \rightarrow A$, and $X \rightarrow {}^{1}\Pi_{1}$	3045

		Page
Dept. ton.	Relative Photoioni, ation Cross, Sections of Co. For Froduction of Jacins, Lons,	4.3 **
()-,',n6.	Relative Photoionization From Sections of Notion Froduction of Various Ions	309 7
υ+ζ.b/.	Relative Photocontzation Cross Sections of CH for Froduction of Various lons	3090
()-,1, to*	Relative Photoionization (ross, Section of SE, for Production of Various lons)	50)(++
0-11,69	Kelative Photoionization Cross Section of CH OH for Production of Various Ions	31(1)
D-2.70.	Relative Photoionization Efficiency for C 7 Production and CEC. + in the Photoionization of CEC.	31(1)
D-2.71.	Relative Photoionization Cross Sections for CH.COCH. and CD COCD.	ş‡0,
D-2.72.	Relative Photodissociation (ros: Section of θ *	3103
D-2.73.	Relative Photodissociation Cross Section of (L.Br $^+$ 0° $^+$ + Br	3104
D-2.74.	Relative Photodissociation Cross Section of CELT*-CE* * 1	s155

Tabular Data D-2.1
Photoabsorption and Photoionization Oscillator
Strengths (Cross Sections) for H.

	$f^{n,j}(10) \ge c$	V ')		f ^m (10 - 2 e	\mathbf{V}^{-1})		$f^{(0)}(10^{-2} c)$	V 1)
E(cV)	Absorption	н;	E(eV)	Absorption	H;	E(eV)	Absorption	H;
100	OUN		20	645	6.82	4()	(1-99	0.89
10.5	0.26		21	6.25	613	42	0.84	0.75
110	1 70		22	5.51	5.40	44	0.71	0.63
115	7.66		23	4 92	4 82	46	0.65	0.5k
120	20.7		24	4 38	4.30	4×	0.61	0.54
12.5	34 (25	3.92	3 83	50	0.48	0.42
NO.	32.5		26	3.49	3.42	52	0.41	0:36
13.5	21.2		27	3.24	3.15	54	0.39	0.34
14-0	14.9		28	2 89	2.81	56	0.32	0.28
145	13.8		29	2.68	2.58	58	0.33	0.28
150	13.3	() 53	30	2.46	2.35	60	0.24	0.20
15.5	12.6	471	31	2 27	2.15	62	0.23	0.20
160	11.7	K 68	32	2.06	193	64	0.23	0.20
16.5	10-8	9 74	33	1 90	1 76	66	0-21	0.18
17:0	10.1	963	34	1 72	1.58	68	0-19	0.17
17.5	9.58	9.60	35	1.55	1.36	70	0-16	0:14
180	883	8.91	36	1.39	1.18			
18 5	8/25	8.50	37	1 31	1 14			
190	7.85	7.97	38	1 29	1.04			
19.5	7.25	7:41	39	1-10	0.94			

Peference: These data were taken from C. Backx, G.R. Wight, and M.J. Van der Wiel, J. Phys. B <u>9</u>, 315 (1976).

Graphical Data D-2.2 Photoabsorption oscillator strength (cross section) for ${\rm Hz}$.

F(cN)	1 - 10 1			H1 H2 (* 10 ⁻²)	$\frac{\mathbf{D}^{*}\mathbf{D}}{\mathbf{D}^{*}}$			
180		0.20	22.0	2 (14	0.66	t ti	4 44	2.15
18.2	0.72	0.29	22.2	1.96	0.65	11	4.36	3.21
18.4	117	0.31	22.4	1.87	0.76	3.2	6.96	4 1x
186	1.08	() 5.1	22.6	197	0.55	11	74.	692
18 ×	143	0.53	22 K	1.92	() 5%	34	K 65	K 443
190	1.52	0.52	23.0	1.95	0.7k	35	9.49	8.68
192	1.57	1165	23.2	1.85	0.52	36.	9.29	8.25
194	1.59	0.48	23.4	2.08	0.84	3.	746	117
196	1 70	0.60	23.6	2.21	() 79	18	אַד ר	707
19 X	1.86	0.48	23 K	2:03	0.76	19	8 74	K (14
20-0	1.72	0.70	24 ()	2.00	0.67	411	9 94	9.21
20.2	J-90	(+64	24.2	1.98	0.88	45	12.1	114
20.4	1 94	0 74	24.4	204	0-60	50	136	11.7
20.6	1 79	0.60	24.6	2.12	0.89	55	15.4	12 ×
20.8	1.88	0.75	24.8	2.23	0:56	60	168	134
21:0	1.86	0.62	250	2.04	0.85	65	144	13.8
21.2	1.88	0.64	26.0	2.21	0.94	70	17.6	14 k
21.4	1.94	0.63	270	2.46	1.12			
21.6	192	0-76	28.0	3.22	1.56			
21.8	192	0.77	29.0	192	185			

Reference: These data were taken from C. Backx, G.R. Wight, and M.J. Van der Wiel, J. Phys. B 9, 315 (1976).

Tabular Data D-2.4
Photoabsorption Cross Sections for N , CO, NO, O , and N O

		Utons	Cross Section (Mr. 110 2000)				
41 X	`	(()	NO	\mathbf{O}	× ()		
N	0.18		0.29	(),	15.75		
5.5	0.25		11.35	0.4	0.47		
tree	0.52		0.46	0.57	Di Di		
* "	(i) (i)		0.54	10.73	ti - 5		
*(-	0.46		0.65	11.57	11 5 5		
•	11 * *		to Ta	100	1 (14		
X 1	0.64		0.97	12)	1.20		
**	Ep. 28] (x -	1 38	1.4		
Qt.	0.95		1.20	1.50	l fu		
ųš.	11.98		1.46	1.18	1.51		
(No.	1.11		141	1 44	2008		
Sec	3 (m)	17	₹ . ≱.	4 (4)	5.181		
**	1.14	4.14	44.	5.40	SURI		
71.	3 9 0	4 11	< (15	545	" ()		
*1	4.40	4.87	5.70	643	X 200		
ÇH -	414	٠.	630	*	14 NO		
CM +	8.30	* UK	- (R)	8.40	1.1.20		
*+1	6.40	6.60	~ ~ `	9.15	12.60		
20	1.25	7.28	8.50	4 % .	1. 5		
i.	× 100	, .	9.30	10.88	! 、4		
400	★ 18	× titi	10.15	13.30	(4.30)		
`	4 411	4.34	1:08	12.15	14 '		
tsi	ا ^د به	41	1 : 20	1300	15.30		
5.	100	accept	1200	1.4 %()	18.38		
L .	10.75	100 3r	12.45	14 50	16 (0)		
SH .	10.45	Fra. No.	1.7 60	15.10	1 To No.		
	100.75	1, 10	12.	15.40	1 1 80		
11.1	11.25	11.86	1 + 40	1505	18.00		
'a .	11.04	[* 9n	114.	15.4	1 to the s		
Kr.)	1.160	12.32	14.40	16.26	20.00		
40) t car	12	15 (1)	16.65	21.75		

According to The quoted accuracy is 10° absolute and 2° relative.

Reference: The Colorad R.C. Colorad R.C. Dexfer. J. Phys. B 11. (1978):

Graphical Data D-2.5 Quantum yield of ionization, \cdot , for 0 .

Graphical Data D-2.6

Cross section for photodissociative production of $\theta(\,\cdot\,|\,)$ from vibrationally excited and room temperature θ .

Smartin Vield of ionization, -, for N

Jabular Data D-2.8

Branching Ratios in the Photoionization of 4

Energy loss	Flectronic	Oscillator strength				
1 ()	$V^*\Sigma_{\mathbf{z}}$	4411,	$B \cong i^{+}$	1	$\langle \Sigma_{\mathbf{k}} \rangle \mathcal{Z}_{V_{\mathbf{k}}}$	1 photoaborption eV, 1
18	34.8	65.2				0.227
19	32.7	673				0.217
20	37,8	56.5	5.7			0.206
21	36 ()	56.3				0.200
2.2	34 ()	57 ()	9.0			0.20*
23	32 3	58 h	9.1			0.225
24	35 ()	56(1)	α_0			0.219
25	30 5	5) 5	9.0			0.212
3 -	41.6	51.6	6.8			0.207
30	43.1	17.9	9.0			0.189
11	36.1	19 O	11.9	3.0		0.156
15	11.9	51.0	12.8	4.4		0.141
1 -	31-3	419	11.6	5.3		0.129
10	28.0	50.4	123	9ા		0.112
42	26.7	44-1	11.5	94	8.2	0.105
15	26.1	45.5	93	ς,-	12 7	0.097
4"	28.1	42.0	10.1	4.5	15.4	0.097
50	20.5	36.3	11.0	6,4	19.9	0.090

Partial Oscillator Strengths for individual ionic states can be obtained from the product of the branching ratio (given in) and the fivalue given in the last column of the table. Oscillator strengths in (eV)⁻¹ can be converted into cross sections in Mb (10⁻¹ cm.) by multiplying by 109.75.

Reference: The above data were taken from A. Hammett, W. Stoll, and C.E. Brion, J. Electron Spectrosc. 8, 367 (1976).

Graphical Data D-2.9

Theoretical total and partial photoionization cross sections of ${\rm F_2}$ for production of various states of ${\rm F_2}^+.$

Graphical Data D-2.10 Photoabsorption cross section of CO.

Graphical Data D-2.11 Quantum yield of ionization, γ_1 , for CO.

Tabular Data D-2.12

Branching Ratios in the Photoionization of CO

Energy loss	Electron	ic state of	Electronic state of CO							
E(cV)	$\chi^2\Sigma$	A211	$B^{2}\Sigma$	$C^2\Sigma^{+}$	И′	$2\Sigma_L O 2s$	fo for total 1 photoabsorption (eV)-1			
18	50	50				-	0.231			
19	44	56					0.215			
20	41.5	58.5					0.213			
21	34.0	57.4	8.6				0.218			
22	29.8	60.1	10.1				0.219			
25	33.0	51.0	16.0				0.210			
27	27.7	48.0	19.2	5.1			0.203			
30	23.5	46.0	26.5	4.0			0.171			
33	18.9	47.3	29.8	4.0			0.154			
35	17.2	43.8	28.8	3.4	6.8		0.142			
38	15.7	45.9	27.4	3.1	7.9		0.129			
40	15.8	46.5	26.5	2.7	8.5		0.122			
42	14.5	44.2	23.8	2.4	6.7	8.4	0.116			
45	14.7	41.0	23.0	2.9	7.0	11.4	0.110			
47	15.2	39.8	22.8	2.7	7.0	12.5	0.103			
50	13.0	39.6	24.2	2.8	7.0	13.4	0.097			

Note:

Partial oscillator strengths for individual ionic states can be obtained from the product of the branching ratio (given in %) and the fo value given in the last column of the table. Oscillator strengths in (eV)-1 can be converted into cross sections in Mb ($10^{-18}~\rm cm^2$) by multiplying by 109.75.

Reference:

The above data were taken from A. Hamnett, W. Stoll, and C.E. Brion, J. Electron Spectrosc. 8, 367 (1976).

Graphical Data D-2.13

Partial photoionization cross sections and branching ratios for production of various states of ${\rm CO2}^+$ in the photoionization of ${\rm CO}_2$.

Tabular Data D-2.15

Chotoalsorption and Partial Photionization Oscillator * trengths (Cross Sections) for CO

Trans	Partia) oscilla	c or strictly the (10) $\frac{d}{dt}$ eV^{-1}	•		Total
(eV)	$\nabla^2 n_g$	$A^2\Pi_u + B^2\Sigma_u$	$(-2\Sigma_{\rm g})$	Lotal ML I	photoabsorption (10 $^{-2}$ eV $^{-1}$)
21.2	9.37	22.07	2.00		33.44
22	8.41	21/03	2.59		32.35
23	9.117	17.85	3 33		30.25
24	10/20	16. 33	2.62		29.16
? \	9.94	14 91	2 76		2" 61
21	965	14 08	2.34	1.08	27.15
27	9.44	14/02	2.70	1.08	26 97
28	8.20	13.17	3.69	1 31	26.33
29	8 115	12.98	3.38	1.56	25 97
3 m	7.40	12.50	3.32	2.30	25.51
11	7.60	12.27	3.68	1 71	24.51
3.2	7.41	11.61	3.71	1 98	24 69
34	7 7 7	10.62	3.86	1.93	24 15
3e.	7.24	10.38	3 14	3 14	24-15
38	6.25	10.05	3 12	3.12	22.32
40	5.81	8.82	2.61	2.81	20 06
41	5.90	8.19	1.90	3 04	19.04
42	5.41	7.75	1.80	2.89	18.04
44	4 89	6 K S	1.63	2 93	16.31
44.	4 34	6.42	1 19	2.99	14 94
48	4 14	5.76	1.03	3 69	14 76
50	4 ()5	5.50	1.30	3.63	14 49
5.2	3.89	4.89	1.15	4.46	14 40
5.4	3.34	4 74	1.26	4.60	13.94
56	3.56	4.36	1.32	3.84	13.21
5 %	3.37	3.84	1.20	3.73	12.03
60	2.87	3.31	1.10	3.74	11.02

 $\sigma(\mathrm{Mb}) = 109.75~\mathrm{d}\,t~\mathrm{d}I/(\mathrm{eV}^{-1})$

Note: MET refers to multiple electron transitions.

Reference: These data were taken from C.E. Brion and K.H. Tan, Chem.

Phys. 34, 141 (1978).

Tabular Data D-2.16

Photoabsorption and Photofragmentation Oscillator Strengths (Cross Sections) for CO:

Energy (eV)	lonisation efficiency	Oscillator str	rength (+ 10°	2 eV-1)			
		absorption	co;	co.	o.	(~	co;
8		0.5					•
4		0.9					
10		1.4					
11		170					
1.2	0	32.3	0				
1.3	0.02	48 3	0.97				
14	0.19	52 0	9.80				
15	0.63	24 3	15 2				
16	0.69	28 5	19.5	0			
17	0.81	330	26.4	0.05	0		
18	0 93	30.6	28 1	0.05	0.03		
19	1.05	32.0	33.0	0.11	0.15		
20	1.02	32.0	31.7	0.05	0.62		
21	1.02	32 5	31.5	0.27	1.10		
22	1.01	32.3	30.7	0.38	1.24		
23	1.03	30 4	29.2	0.41	1 38		
24	1.05	27.8	26 7	0 77	1.46		
25	1.01	27.8	25.0	0.11	1.60		
26	1 02	27 1	23.8	1.62	1.88		
27	0.95	26.8	21.1	2.22	1.94	0	
28	0.98	26 4	20.6	2.90	2.15	0.04	
29	0 96	25.9	19.3	3.11	2.27	0.02	
30	0.96	25 8	18.8	3.26	2 49	0.13	
31	0.95	25.2	18.5	3 11	2.57	0 24	
32	0 99	23 6	17.7	2.94	2 65	0 44	0.02
33 34	0 9 ?	23.3	16 4	2.69	2.62	0 72	0.02
35 35	1 03	22 9	16 6	2.78	2.93	1.13	0.01
36	1 03	22 0	15.7	2.59	2 97	1.39	0
37	0.99	22 3	15.0	2.34	3.07	1.56	0.01
38	1.02	21.6	14.7	2.35	3.15	1.70	-0.03
39	1.01	21.0	14.2	2.14	3.23	1.79	-0.02
40	0.96	20.5	13.7	2.01	3.19	1.75	0.02
41	1.00	20 2 19 4	12.9	1.83	2.97	1.61	0.02
42	1.01	18.6	13.0	1.76	2.95	1.53	0.06
43	0 94	17.9	12.8	1.66	2.78	1.41	0.07
44	1.00	17.0	11.6	1.50	2.37	1.18	0 07
45	0.98	16 4	11.9 11.3	1.48	2.31	1.16	0.10
46	1.00	15.8	11.1	1.41 1.42	2.16	1.09	0 07
47	0 94	15.2	10.0	1.29	2.07	1.09	0 10
48	0.98	15.3	10.4	1.33	1.90 2.07	0.96	0.07
49	0.97	14.6	9.63	1.34	2.03	1.07	0.10
5 0	0.98	148	9.48	1.46	2.24	1 05	0 09
51	0 99	14.8	9.36	1.56	2.38	1.20	0.09
52	1.01	14 3	8.90	1.55	2.38	1.25	0 09
53	1.0?	13.2	7.85	1.61	2 45	1.33 1.35	0 12
56	0 94	129	7.35	1.48	2.53	1.33	0 11
58	1.03	12 1	6.75	1.53	2.58	1.45	0.13
60	0.96	116	5.99	1.34	2.30	1.30	0 16
62	[1 00]	10.0	5.44	1.16	2.09	1.16	D 14
64	(1 00)	9.07	4.93	1.10	1.89	1.03	0 15 0 11
66	[1.00]	8 78	4.62	0.99	1.84	0.99	
68	[1.00]	8.41	4.63	0.96	1.77	0.94	0 12 0 12
70	[1 00]	7.82	4.30	0.91	1.67	0.88	0.08
72	[1 00]	7.82	4.09	0.86	1.62	0.87	0.09
74	[1.00]	7.02	3.79	0.80	1.53	0.81	0.07
76	[1.00]	6.63	3.56	0.73	1.47	0.77	0 11
78	[1 00]	6 30	3.30	0.73	1 47	0.74	0.08
80	H 00]	6.02	3.16	0.68	1.40	0.71	0 07
		· · · — — · · · · ·					

 $\sigma(10^{-18} \text{ cm}^2) = 109.75 \text{ df/dF (eV}^{-1})$

Reference: These data were taken from A.P. Hitchcock, C.E. Brion, and M.J. Van der Wiel, Chem. Phys. 45, 461 (1980).

Graphical Data D-2.17

Quantum yield of ionization for CO. .

Tabular Data D-2.19

Photoabsorption and Partial Photoionization Oscillator Strengths (Cross Sections) for N₀0

Literax	Partial oscil	lator strength (10	-2 eV -1)				Total absorption
1. 1	\times ² π	$A^2\Sigma^+$	B ² 11	C22+	24 eV	Lotal MET	(10 ⁻² eV ⁻¹
; •	23.22	18.24					41 46
19	15.58	15.21	6.30				37.08
196	14.80	12.63	9.02				36.08
21.2	1166	8.34	8.67	5.00			33.35
22	10.55	6 08	8.32	7 ()3			31.98
23	9.86	5.68	8 07	6.28			29.89
24	9.73	5.44	7.73	6.00			28.61
25	10.20	5.10	7.65	4.54	0.85	0.85	28/34
26	957	4.92	7.11	4 37	1 64	1.64	27 33
	9.78	4 88	7.06	4.35	1.36	1 36	27.15
28	y	4 51	6.90	3.97	1.86	1.86	26.51
29	8.89	4 97	6.80	3.66	1 82	1.82	26.15
	8.80	4.65	6.72	3.63	1.81	2 3 2	25.88
1(1		4.56	6.33	3.54	1.52	2 28	25.33
3.2	8 6 l 8 4 l	3.72	6.20	3.72	1.73	2.72	24 78
34	7.34	3.02	5.40	3.02	1.08	3.02	21.59
ih		2.95	4 33	2.75	1.18	2.95	1968
18	6.89	2.81	4.11	2.61	0.75	2.99	18 68
411	6.35	2.32	3.75	2.50	1.43	3.22	17.86
41	6.25	2.64	3.52	2.63	1.06	2.82	17.59
4.2	6 16	2.20	3.39	2.54	0.85	3 56	16.95
44	5.26	2.20	3.02	2.38	0.95	3.17	15.85
46	5.08		2.65	2.33	0.62	3.43	15.58
48	5.14	2 02	2.67	2.08	0.59	3.86	14.85
511	4.60	1.63	2.43	2 15	0.57	3 43	14.31
×2	4 44	1.86		2.07	0.97	3.72	13.76
54	4.26	1.51	2.20	1.69	0.52	3.88	12.94
56	3.63	1.55	2.20	1.60	0.46	3.67	11.48
5%	3 22	1.15	1.95		0.66	3.83	10.93
6.0	2.95	0.98	1 75	1.42	0.00	5.05	

(1Mb) 109 75 dr dF (eV 1).

Note: MET refers to multiple electron transitions.

Reference: These data were taken from C.E. Brion and K.H. Tan, Chem. Phys. 34, 141 (1978).

Tabular Bata Deliver Photoabsorption and enstote amentation Oscillator

odrenaths (Grass Gertian A ter 🐪 O)

Error	1 . e' ie	erse da la		**			
		b' •	X	~	***	4	•
		;' ·					
		,	•				
•	F 1	1.	1 -	•			
	* -	4.7 47					
,			24				
. •				4.1			
1.0	. •	4.			1		
	98 98 98	-4 .	. * .	1 ** 12 *	2 %* 2 3 * 2 4 *	. *	
		1 + 4	10.0	(2 B	2.31		4.00
		· . •	15.5	i, kr	. 4*	1.4.	
- "	•	•	15.7	2.41	2 *	10.50	
			14	3 - 4+			
14 25 24	1		11	4.6	11,		
1			1.	9.4		11.61	
24	- 1	26 -	L	4 44		11.19	
14		24	1.2	4 14		1.84	1
•	1	21	11 N	h ha	1.54		1.4
	. 4	27.8	11.2	# 1r	3.6	•	1
	11 11	2.		44	4 1 5	11 K #	14.
	1 - 1	34	10 45 10 45	- 7	12,		
7	6.4	24 :	9.94	* i.	4.14	1.1-5	
S.F	1 14	21.4	9.8+	• , -	2.84	1.14	: 2 - : 1 *
	194	2: 4	6.16	6.16	2.4+	. 😼	2.44
Us.	1 -1 -	20.8	9 (+1	t. 4 -	2.42		2 /-
10	1 (*-	14 (8.15	60.	2.24	Kir ji kir	::-
4:	0.04	19 7 18 7	7.76	5 6 E 5 8 E	2 (4		
	1.06	17.1	- (A	5.32	19	0.28	
41	0.98	16	6 74	5.15	1.81	11.25	; 6.
44	0.94	16.3	6.56	491	1 24	0.74	: 4
44	1.03	16 (6.65	5.16	1.6	43 °#	2.4.4
44	1 02	16 1	6.59	494	18.	· R.	2 # 2 #
4	3.02	16.1	6.51	4.91	1 8 .	i. R4	2.4
44	0.95	15.5	5 72	4 44	1.60	/ Ar	2 1
40	(1 9 k	14 8 15 U	5 67	4 4 i 4 3 h	164	() h r () h r	2 14
ξ.	0.99	15.0	5.56 5.34	4 18	164	0.94	2.0
• .	1 00	14 3	5 13	412	16.	1	1.4
s.,	1.02	139	5 01	4.04	1.56	3 - 44	2 +4
44	0.96	13.8	4 56	3.26	1.48	5.98	2.16
51	1.02	13.6	4.73	3 95	1.54	1.00	2.54
56	1.06	12 1	4.50	3 8 4	14:	1 4	3.50
4 *	0.95	12 4	3 96 1 87	3.3	1.41	1.41	2 1
·#	1 113	11.9	1 19 19	: 16	. 14	0.45	
	1 10	11.5	101	1 16	i.e.	4.45	
7	la se	100	154	1.7			
n.	[] ×+	FEE B	1.58	2.4	1.27	0.83	2.23
	11 (9)	19.4	1.40	: 84	1.1	4) R i	
44	į birbet	\$11.1	3.28	2.19	1.07	41.73	
, 4	[] -N1	9 KI	1.24 1.24	1 17	1 (H)	0 Ro	1.86
n.A	[3 -#1- [3 -#1"	881	121	264	0.88	0.68	1 86
	11 10	R 26	: 13	2.29	- 84	0.70	1 4.3
- 2	11.0	1 9 2	2.62	2.23	(* R *	11.5%	1.62
*4	1.0	* 24	: :	2 #	K4	11.64	: < =

Weference: These data were taken from A.P. Hitchcock, E.E. Brion, and M.T. Van der Wiel, Chem. Phys. 45, 461 (1900).

Contract to grave a

Oraphical Data D-2.21

Quantum vield of ionization for N O.

Tabular Data D-2.23 Photoelectron Branching Ratios (%) for Various States in the Photoionization of $\rm N_2O$ and $\rm CO_2$

Energy (eV)	X ² H	$A^2\Sigma^+$	Β²Π	$C^2\Sigma^+$	24 eV	Total MET	Energy (eV)	X²π _g	A ² Π _υ + Ι	$B^2\Sigma_{\nu} C^2\Sigma_{g}$	Total MET
17.1	56	44	_	_	_		21.2	28	66	6	
19.0	42	41	17	-	_	-	22	26	65	8	-
19.6	41	35	25	-	_	-	23	30	59	11	
21.2	35	25	26	15	_	-	24	35	56	9	
22	33	19	26	22	_		25	36	54	10	
23	33	19	27	21	_	-	26	36	52	9	4
24	34	19	27	21	_		27	35	52	10	4
25	36	18	27	16	3	3	28	31	50	14	5
26	35	18	26	16	6	6	29	31	50	13	6
27	36	18	26	16	5	5	30	29	49	13	9
28	36	17	26	15	7	7	31	31	46	15	7
29	34	19	26	14	7	7	32	30	47	15	8
30	34	18	26	14	7	9	34	32	44	16	8
32	34	18	25	14	6	9	36	30	43	13	13
34	34	15	25	15	7	11	38	28	45	14	14
36	34	14	25	14	5	14	40	29	44	13	14
38	35	15	22	14	6	15	41	31	43	10	16
40	34	15	22	14	4	16	42	30	43	10	16
41	35	13	21	14	8	18	44	30	42	10	18
4.2	35	15	20	15	6	16	46	29	43	8	20
44	31	13	20	15	5	21	48	28	39	7	25
46	32	14	19	15	6	20	50	28	38	9	25
48	33	13	17	15	4	22	52	27	34	8	31
50	31	11	18	14	4	26	54	24	34	9	33
52	31	13	17	15	4	24	56	27	33	10	29
54	31	11	16	15	7	27	58	28	32	10	31
56	28	12	17	13	4	30	60	26	30	10	34
58	28	10	17	14	4	32				••	
60	27	9	16	13	6	35					

MET refers to multiple electron transitions. Note:

Reference: These data were taken from C.E. Brion and K.H. Tan, Chem. Phys. $\underline{34}$, 141 (1978).

Graphical Data D-2.24 $\label{eq:photoionization} \mbox{ Photoionization branching ratios for $CO_{2^{\prime}}$ and $N_{2}O$. }$

Tabular Data D-2.25

Photoabsorption Cross Section for NO (Units of 10⁻¹³ cm²)

z(Å)	$\sigma(\mathbf{M}\mathfrak{b})$	z(Å)	$\sigma(Mb)$	∠(A)	σι M hi
672.5	18.9	600.0	24.2	1100	2 08
668.0	19.2	575.0	24.2	100.0	1.68
660.0	19.8	550.0	24.4	90,0	1.33
657.5	20.1	525 ()	24.2	80.0	1 01
656.5	21.2	500.0	237	70.0	0.74
6541)	20.3	475 ()	230	60.0	0.51
6535	21.0	4500	21.2	50.0	0.33
6510	23.4	4250	20.0	40.0	0.19
650.0	22.8	4000	18.8	35.0	0.136
646.5	21.9	375.0	17.5	30.0	0.77
640.0	21.4	350.0	15.8	25.0	0.50
630.0	21.3	325.0	14.5	20.0	0.68
625.0	21.5	300.0	13.2	15.0	0.33
622.0	21.9	275.0	12.0	9.89	0.109
619.0	22.8	250.0	10.5	8.265	0.067
617.0	23.7	225.0	8.8	6 199	0.030
616.0	24 7	200.0	6.98	4 153	0.0091
615.0	25.9	190.0	6.35	3.10	0.0038
614.0	25.6	180.0	5.75	2.48	0.0020
613.0	23.7	170.0	5.15	2.066	0.0011
611.0	22.8	160.0	4.57	1.550	0.0003
610.0	22.5	150.0	4 01	1.240	0.000
607.5	22 X	140.0	3.49	0.827	0.0001
60Ki 5	23.6	1300	2.98	0.62	() (KKK
603.5	23.2	120.0	2.51		

Reference: These data were taken from J. Berkowitz, <u>Photoabsorption</u>, <u>Photoionization</u>, and <u>Photoelectron Spectroscopy</u> (Academic Press, New York, 1979).

Graphical Data D-2.27 Quantum yield of ionization for NO.

Jahalan Data N-2.23

Photoabsorption and Phototragmentation Oscillator Strengths (Cross Sections) for H.O.

 Energy	Licenste r	Oscalianianistra	engrhijs Fel	V 1		
ieV.	eth univer	absorption	$H_{\frac{1}{2}}O^{\bullet}$	OH.	H*	111
6		1.2				
•		2 **				
×		1.85				
4		5.32				
1 -		7 46	£1			
11	t)	8.4	(+ (+ 4 *			
12	0.03	114	4 (11)			
14	0.23	15.	B 4			
14	0.75	18.1	11.30			
10	10.16	iri	1 4 444	0	4.0	
17	0.74	18.8	13.90	ti .	,	
18	0.82	191	14.30	1.74	6 %	
19	0.94	26 6	13 m	5.30	Er fo	
20	0.96	196	12.10	5.40	1 11	
21	0.98	18.7	11.80	5.17	1 44	
22	0.97	18 3	11.40	4.91	1.53	(·
23	1.02	16.8	11.10	4.67	147	(-
24	1 (96)	15.5	16.70	4.41	1 35	0.00
25	1.02	15.4	11:30	4 1 7	1.27	44 44
26	1.06	15.1	9.411	3.94	1.24	bus
2 7	0.34	14.6	9.67	3.78	1.17	from Lag
28	1 00	14 [9 30	3 6 4 3 44	111	h
24	1.03	13.4	8 90 8 40	3.23	1 12	6.1.5
30	1 (1)	12 6 12 2	8 00	2 9 "	1.06	
31	0 99 0 98	11.9	7.70	2 88	1.60	6.42
32 33	0.96	11.7	7.40	2 69	1.01	0
33 34	0 97	11.2	7.00	2 54	1.14	0.15
35	0.98	10.7	6.76	2.45	1.16	1.16
36	(94	10.6	6.40	2 27	1 13	0.12
37	0 9 -	9.86	6.10	2 16	1.12	0.17
38	1.02	9.20	5.96	2.13	1 14	1.19
39	1.01	8.90	5.70	1 98	1 14	(+) N
40	1 01	8 70	5.50	1 92	1.16	0.19
41	1.00	8 40	5 30	1 84	1 16	0.26
42	0.98	8 20	5 00	1 73	1 11	
43	0.95	8 10 7 60	4.80 4.70	1 49	1 OR	11.2
44	(199 (197	7.50	4.50	1 54	1 05	0.2
46	0.98	210	4.30	1 44	1.01	0.18
47	097	7.10	4 20	1 44	1.04	0.20
48	0.95	6.90	4.00	1.32	1.02	0.25
49	0.96	6.70	3.90	1 33	1.00	0.20
50	0.92	6.70	3.70	1.26	() 94	0.20
51	0.96	F 3	3.60	1.20	1 (4	9.24
52	0 94	6 27	3.50	117	1.04	0.25
53	1.02	5.67	1.40	111	1.03	0.25
54	1.01	5.45	3.20	1 (M	1 46	1-19
55	0 99	5 11	1.10	1 0 3	11.99	() *
56	1 00	5.15	\$ J411	1.00	0.91	() y
5.3	0.96	5.26	2.90	(1.96 () 43	(1.9.1 (1.94	
58	() 95	5.11 5.11	2.80	0.41	0.44	1.9
59	0.91		2.6.1	0.89	(i M9	1.1.
 60	0.94	4 9+	• **			

#3 g(f0:18 cm2) + 109 75 dr d/ (eV-1)

Reference: These data were taken from F. Tan, C.E. Brion, Ph. E. Van der Leeuw, and M.J. Van der Wiel, Chem. Phys. 29, 399 (1979).

Graphical Data D-2.29

Quantum yield of ionization for H₂0.

Tabular Data D-2.30 Partial Photoionization Oscillator Strengths (Cross Sections) for the Valence Orbitals of $${\rm H_2O}$$

Energy (eV)	Oscillator strength (10 ⁻² eV ⁻¹) a)			
	1b ₁	3a ₁	1b ₂	2a ₁
16.5	6.06	7.40		
17.5	7.13	7.73	6.44	
22.5	5.67	5.29		
23.5	5.50	4.96	6.05	
24.5	5.15	4.83	6.01	
25.5	5.07	4.65	5.64	
26.5	4.43	4.60	5.63	
27.5	4.61	4.56	5.23	
28.5	4.37	4.35	5.19	
29.5	3.94	3.73	5.22	
30.5	3.98	3.79	4.73	
31.5	3.89	3.41	4.60	
32.5	3.92	3.31	4.34	
34.5	3.26	2.96	3.43	0.96
36.5	3.37	2.70	3 00	0.96
37.5	3.13	2.59	2.73	1.02
38.5	291	2.60	2.72	0.86
39.5	3.05	2.55	2.44	0.86
40.5	2.78	2.32	2.58	0.92
41.5	2.68	2 15	2.61	0.77
42.5	2.71	2 30	2.09	0.85
43.5	2.61	2.18	1.97	0.90
44.5	2.35	2.04	2.12	0.93
45.5	2.27	2.09	1.98	0.75
46.5	2.18	1.87	1.88	0.91
47.5	2.12	1.86	1.78	0.88
48.5	2.14	1.76	1.81	0.81
49.5	2.08	1.80	1.61	0.82
50.5	1.91	1.80	1.62	0.87
51.5	2.01	1.82	1.46	0.79
52.5	2.11	1.66	1.42	0.89
53.5	1.72	1.34	1.50	0.87
54.5	1.62	1.62	1.37	0.76
55.5	1.57	1.49	1.34	0.84
56.5	1.60	1.47	1.32	0.64
57.5	1.45	1.49	1.24	0.80
58.5	1.51	1.40	1.31	0.68
60.5	1.32	1.22	1.31	0.87

 $a)_{\sigma}(10^{-18} \text{ cm}^2) \approx 109.75 \text{ d}f/\text{d}E \text{ (eV}^{-1}).$

Reference: These data were taken from K. Tan, C.E. Brion, Ph. E. Van der Leeuw, and M.J. Van der Wiel, Chem. Phys. 29, 299 (1978).

Photoionisation branching ratios for formation of electronic states of $\mathrm{H}_2\mathrm{O}^*$.

Partition of total oscillator strength for consistion over molecular and fragment ion formation (a) Contributions to H_2O^* (b) Contributions to OH^* and H^* from the $1b_2$ state (c) Contributions to H^* and O^* from the $2a_1$ state

Photoabsorption oscillator strength of H₂O.

Photoionisation efficiency of H₂O.

I ractional abundances of the fragment ions formed from photoionisation of $H_2\,O$.

Graphical Data D-2.31 Spectroscopy Data for H₂O.

Reference: These data were taken from K. Tan, C.E. Brion, Ph. E. Van der Leeuw, and M.J. Van der Wiel, Chem. Phys. <u>29</u>, 229 (1978).

Graphical Data D-2.32

Photoabsorption cross section of SF,.

Photoabsorption cross section of NH3.

Graphical Data D-2.33

Graphical Data D-2.34

Photoabsorption (σ) and photoionization (σ_1) cross sections for NH+.

Photoabsorption ($\epsilon_{\mathbf{a}}$) and photofonization (ϵ_{ij}) cross sections for NH..

Graphical Data D-2.35

PHOTON ENERGY (IN ev)

Construction of the second seco

Tabular Data D-2.37 $\hbox{Photoabsorption and Partial Photoionization Oscillator Strengths (Cross Sections) for NH_3 }$

Energy(eV)	Oscillator Strengths (eV-1)c			Absorption
	3a1	1e	2a ₁	df_0/dE^s
15	0.065 ^{ts}		-	0.303
16	0.065		_	0.315
17	0.063	_		0.312
18	0.062	0.193	_	0.298
19	0.057	0.234	_	0.291
20	0.055	0.217		0.272
21	0.052	0.209	-	0.261
22	0.049	0.196	Married Marrie	0.245
23	0.050	0.183	_	0.233
24	0.048	0.170		0.220
25	0.048	0.154	_	0.202
27	0.047	0.133		0.180
30	0.041	0.111		0.152
32	0.036	0.093	0.006	0.135
34	0.029	0.079	0.013	0.121
36	0.026	0.070	0.013	0.109
38	0.026	0.065	0.011	0.102
40	0.021	0.056	0.010	0.087
42	0.021	0.047	0.011	0.079
44	0.017	0.044	0.011	0.072
46	0.017	0.939	0.010	0.066
48	0.017	0.032	0.010	0.058
50	0.017	0.028	0.011	0.056

^a Total orption oscillator strength

Reference: These data are from C.E. Brion, A. Hamnett, G.R. Wight, and M.J. Van der Wiel, J. Electron Spectrosc. 12, 323 (1977).

^b df^i/dE for $3a_1$ can still be computed below 19 eV where $\eta_i < 1$ from the raw data using df_0/dE and the ionization data where $\eta_i = 1$.

Partial ionization cross-sections (Mb) may be obtained by multiplying by a factor 109.75.

Tabular Data D-2.38

Photoabsorption and Photoionization Oscillator Strengths (Cross Sections) for NH₃

Energy (eV)	$f^{(0)}$ (eV 1)		Fragment NH; (%)			
	Absorption	NH,	NH;	NH.	N.	Н.
10	0 110					
11	0-204	0.060				
12	0-204	0-087				
13	0-162	0.083				
14	0-240	0.091				
15	0.303	0.121	0			
16	0-315	0.137	24			
17	0.312	0.114	100			
8	0-298	0.107	158			
9	0-291	0.106	170			
20	0.272	0.099	173	0.2		
21	0-261	0.096	168	0.2		
22	0-245	0.090	164	0.2		
23	0-233	0.085	164	0.2		0.5
<u>.</u> 4	0 220	0.081	163	0.3		0-8
:5	0.202	0.075	167	1.2		1.2
26	0-192	0.074	161	2.1		1.5
:7	0.180	0-068	154	4.4		3.0
8	0:166	0.065	156	5.5	0.2	5.2
9	0-162	0.059	158	6.8	0.3	6.9
0	0-152	0.057	153	7 7	0.5	9.4
1	0-141	0.054	154	8.5	0.7	97
2	0-135	0.050	148	8.8	1:0	11.6
3	0-127	0.048	146	9.2	1.2	12.6
4	0121	0.045	145	9.8	1.7	14-4
5	0110	0.042	146	11.1	2.2	17-1
6	0 109	0.039	141	106	1.9	17:5
7	0 105	0.038	142	11.8	2 1	17.9
8	0 102	0.036	141	12.0	2.2	19-4
9	0-092	0.033	141	12.8	2.0	20.5
)	0-087	0-032	139	13.3	2.5	24 7
<u> </u>	0.086	0.030	141	14:0	3.1	23.5
2	0-079	0.029	138	14.4	27	25.8
3	0-075	0 027	137	14.9	2.8	27-3
4	9.072	0.026	136	15.4	3.0	28 8
5	0-069	0.024	139	16.7	3:2	32.4
5	0.066	0.023	136	16:3	3.4	30 7
7	0-062	0.022	137	17-1	3.4	314
8 9	0-058	0.021	135	17:7	3.3	33.3
)	0-059	0.020	136	19-4	3.8	34.2
,	0.056	0.019	135	19.2	3.8	4 0 0
	0-054	0.018	133	198	4 4	37-8
<u>!</u> }	0-053	0-017	133	19-3	4.0	38.2
, }	0-051	0.017	134	21.3	4-3	41-0
•	0-049 0-045	0-016	132	21-4	4 2	38.9
, 5	0-045 0-044	0.015	136	23.1	4:5	46 6
)	0-044	0.015	132	21.8	5:0	43-0
3	0-039	0-014	130	24 1	5 3	44.9
)	0-039	0.013	129	22.5	5.5	46-0
,)	0-042	0.013	131	25:0	5.6	49 4
	U-U-12	0.012	129	23.2	5.7	49.2

Note: $\sigma(10^{-18} \text{ cm}^2) = 109.75 \text{ x f}^{\circ} (\text{eV}^{-1})$

Reference: These data are from G.R. Wight, M.J. Van der Wiel, and C.E. Brion, J. Phys. B <u>10</u>, 1863 (1977).

Tabular Data D-2.39

Photoelectron Branching Ratios () for Various

Photoelectron Branching Ratios () for Various States in the Photoionization of NE

Energy(eV)	<i>3a</i> ₁	<i>1e</i>	$2a_{\perp}$
18	24.3	75.7	
19	19.5	80.5	•
20	20.1	7 9.9	
21	20.1	79.9	-
22	20.2	7 9.8	
23	21.3	78.7	
24	22.6	77.4	
25	23.6	76.4	a.
27	26.3	73.7	B.
30	27.2	72.8	a
32	26.4	69.2	4.4
34	23.6	65.3	11.0
36	24.0	64.2	11.7
38	25.4	64.2	10.4
40	24.1	64.1	11.7
42	27.2	59.0	13.8
44	23.4	61.4	15.2
46	25.6	59.0	15.5
48	28.8	54.4	16.7
50	29.6	50.8	19.6

^a Not measured.

Reference: These data are from C.E. Brion, A. Hamnett, G.R. Wight, and M.J. Van der Wiel, J. Electron Spectrosc. 12, 323 (1977).

Suantum yield of ionization for $^{
m NH}_3.$

Tabular Data D-2.41 Photoabsorption Cross Section for $\mathrm{CH}_{\mathbf{i}_4}$

∠(A)	$\sigma(\mathbf{M}\mathbf{h})$	∠(Å)	$a(\mathbf{M}\mathbf{b})$
216	0.263	425.0	160
31.4	0.850	450.0	18.6
40.96	1.06	475.0	21.0
44.4	0.0617	500.0	23.2
64 35	0.148	525.0	25.2
72.20	0.205	5500	28.0
81.98	0.276	575.0	30.3
108.65	0.550	600.0	33.0
139.50	1.049	625.0	34.5
164 60	1.532	650.0	36.0
1903	2.19	6750	38.0
250.5	4.31	700.0	40.0
		725.0	44.0
275.0	5.35	250.0	46.0
300.0	69	775.0	46.5
325.0	8.5	800.0	48.0
350.0	10.2	825.0	48.0
375 ()	12.0	850.0	49 ()
400.0	140	875.0	51.0
		900.0	51.0
		925 0	51.0
		950.0	47.5
		975.0	41.5
		985 0	39.0

Reference: These data were taken from J. Berkowitz, <u>Photoabsorption</u>, <u>Photoionization</u>, <u>and Photoelectron Spectroscopy</u> (Academic Press, New York, 1979).

Photoabsorption cross section of CH4.

Graphical Data D-2.44

Partial photoionization oscillator strengths (cross sections) for production of the (lt $_2$)⁻¹ and (2a $_1$)⁻¹ states of CH $_4$ ⁺ in the photoionization of CH $_4$.

Graphical Data D-2.45 $Photoabsorption\ cross\ section\ of\ C_2H_2.$

Graphical Data D-2.45 Quantum yield of ionization, n_1 , for C_2H_2 .

Graphical Data D-2."7 Photuabsorption cross section of C2H4.

Smaphical Data D-2.49 Clantum yield of ionization for CpH4.

Photoabsorption cross section of GMG.

Graphical Data D-2.50

Photoabsorption cross section for $\mathbb{C}[H]$ in the threshold region.

ARMY MISSILE COMMAND REDSTONE ARSENAL AL DIRECTED E--ETC F/6 20/5 COMPILATION OF ATOMIC AND MOLECULAR DATA REVELANT TO GAS LASERS--ETC(11) DEC 80 E W MCDANIEL, M R FLANMERY, E W THOMAS DESMI-RH-81-9-YOL-8 AD-A101 037 UNCLASSIFIED NL 3 0 4 40 4101037

Graphical Data D-2.51 $\label{eq:Quantum point} Quantum \ \mbox{yield of ionization, n_1, for C_2H_6.}$

Graphical Data D-2.52
Photoabsorption cross sections of the alkanes

Graphical Data D-2.53 Photoabsorption cross section of C₆H₆.

Photoionization cross section of C_6H_6 for production of the lowest three and four states of $C_6H_6^{-1}$.

Graphical Data D-2.58 $Photoionization \ cross \ section \ of \ C_6H_6 \ for \ production \ of \ C_6H_6^+.$

Graphical Data D-2.56 $\label{eq:partial} \mbox{Quantum yield of ionization, $\eta_{\mbox{\scriptsize i}}$, for C_6H_6.}$

Graphical Data D-2.57 Cross sections for various emissions from HCN photodissociation.

Graphical Data D-2.58

Photoabsorption cross section of HCN with the positions of various electronic states indicated.

Photoionization cross sections for various channels in $\rm H_2CO \, \rightarrow \, H_2CO^+$ vertical transitions.

Graphical Data D-2.60 ${\it Photoabsorption\ cross\ section\ of\ HONO_2\ (nitric\ acid)}$

Photoabsorption section for $\mathrm{CH_3OH}.$

Graphical Data D-2.62 Absorption of spectrum of CF3NO(g), CC ℓ_3 NO(g) and CC ℓ_3 NO ℓ_2 (g) at 295 0 K. Reference: These data are from T.D. Allston, M.L. Fedyk, and G.A. Takacs, Chem. Phys. Lett. <u>60</u>, 97 (1978).

Graphical Data D-2.63

Photodissociation cross sections for three trimethylbenzene isomers

Graphical Data D-2.64

Relative photoabsorption cross section of Bry decomposed into X+B ,X+A ,and X $\to^1\pi_{1:i}$

Graphical Data D-2.65

Relative photoionization cross sections of CO_2 for production of various ions.

Graphical Data D-2.66

Relative photoionization cross sections of $\ensuremath{\text{N}}_20$ for production of various ions.

Relative photolonization cross sections of $\mathsf{C}_2\mathsf{H}_2$ for production of various lons. Graphical Data D-2.67

Relative photoionization cross section of ${\rm SF}_6$ for production of various ions.

Graphical Data D-2.69

Relative photoionization cross section of $\ensuremath{\text{CH}_3\text{OH}}$ for production of various ions.

Relative photoionization efficiency for C_ℓ production and ${\sf CFC}_\ell 2^4$ in the photoionization of ${\sf CFC}_\ell 3.$ Graphical Data D-2.70

Graphical Data D-2.71 Relative photoionization cross sections for $\rm CH_3COCH_3$ and $\rm CD_3COCD_3$.

Graphical Data D-2.72 Relative Photodissociation cross section of ${\rm O_2}^+.$

Graphical Data D-2.73 $\mbox{Relative photodissociation cross section of $CF_3Br^+ \rightarrow CF_3^+$ + Br. }$

Graphical Data D-2.74 Relative photodissociation cross section of ${\rm CF_3I}^+ \to {\rm CF_3}^+ + {\rm I.}$

D-3. PHOTOABSORPTION, PHOTOIONIZATION, AND PHOTODISSOCIATION CROSS SECTION OF MOLECULES AND POSITIVE MOLECULAR IONS (DIMERS AND EXCIMERS)

	CONTENTS	Page
D-3.1.	Vertical Photoionization Cross Section of the $^1\Sigma_{\mu}^{+}$ Excimer State of Ar ₂ Calculated at R = 4.8a $_0$	3107
D-3.2.	Relative Photoionization Cross Sections for ${\rm CO_2}$ Monomers and Dimers at 245°K	3108
D-3.3.	Relative Photoionization Cross Sections for Various Dimers (Clusters) of CH_3COCH_3 and CD_3COCD_3	3109
D-3.4.	Photoabsorption Cross Section for Kr ₂ ⁺	3110
D-3.5.	Photodissociation Cross Sections of ${\rm Ne_2}^+, {\rm Ar_2}^+, {\rm Kr_2}^+, {\rm and}$ ${\rm Xe_2}^+$ Dimer Ions	3111
D-3.6.	Photodissociation Cross Sections of ${\rm Ar_2}^+, {\rm Kr_2}^+, {\rm and} {\rm Xe_2}^+$ Dimer Ions	3112
D-3.7.	Photodissociation Cross Sections for ${\rm Ar_2}^+$	3113
D-3.8.	Photodissociation Cross Sections for Xe_2^+	3114
D-3.9.	Photodissociation Cross Sections for $\mathrm{Kr_2}^+$	3115
D-3.10.	Partial Photodissociation Cross Section for HeH $^+$ by Electronic Excitation from the Vibrational Level (a) v = 0 and (b) v = 8 (with j = 1)	3116
D-3.11.	Partial Photodissociation Cross Section for HeH ⁺ by Vibrational Excitation from the Vibrational Level $v = 8$ (with $j = 1$)	3117

Graphical Data 3.1

Vertical photoionization cross section of the $^{1}\Sigma_{\mu}^{+}$ excimer state of Ar_2 calculated at R = 4.8a_0.

Relative photoionization cross sections for CO monomers and dimers at 245K.

Graphical Data D-3.2

Graphical Data D-3.3

Relative photoionization cross sections for various dimers (clusters) of $\rm CH_3COCH_3$ and $\rm CD_3COCD_3$

^raphical Data D-3.4 Photoabsorption cross section for $\mathrm{Kr_2}^+$.

Tabular Data D-3.5 Photodissociation Cross Sections of $\mathrm{Ne_2}^+$, $\mathrm{Ar_2}^+$, $\mathrm{Kr_2}^+$, and $\mathrm{Xe_2}^+$ Dimer Ions

λ (Å)	Ne ₂ +	Ar ₂ *	Kr ₂ ⁺	Xe ₂ ⁺
5309	_,	< 0.012	0.033 ± 0.004	0,028 ± 0,005
5208		< 0.028	0.026 ± 0.006	0.022 ± 0.004
4825		0.024 ± 0.012	0.100 ± 0.014	0.102 ± 0.011
4762	< 0.11	0.035 ± 0.016	0.122 ± 0.013	0.147 ± 0.016
4680		0.082 ± 0.022	0.203 ± 0.022	0.244 ± 0.024
4579		0.130 ± 0.012	0.39 ± 0.03	0.64 ± 0.03
4131	< 0.09	1.05 ± 0.10	3.18 ± 0.28	5.50 ±0.55
4067		1.60 ± 0.17	3.63 ± 0.37	7.32 ± 1.33
(3569	1.93 ± 0.20	13.3 ± 1.1	24.8 ± 1.9	29.6 ±2.0
3507				

Note: $\mathrm{Ne_2}^+$ and $\mathrm{Ar_2}^+$ were measured at 10 Td, and $\mathrm{Kr_2}^+$ and $\mathrm{Xe_2}^+$ at 20 Td.

Reference: These data were taken from L. C. Lee and G. P. Smith, Phys. Rev. A $\underline{19}$, 2329 (1979).

Photodissociation cross sections of ${\rm Ar_2}^+$, ${\rm Kr_2}^+$, and ${\rm Xe_2}^+$ dimer ions.

Graphical Data D-3.6

Graphical Data D-3.7 $Photodissociation \ cross \ sections \ for \ Ar2^{\overset{\ }{+}}.$

Graphical Data D-3.8

Photodissociation cross section for $\mathrm{Kr2}^{+}$.

Graphical Data D-3.9

Photodissociation cross sections for ${\rm Xe_2}^+$.

Graphical Data D-3.10

Partial photodissociation cross section for HeH^{\dagger} by electronic excitation from the vibrational level (a) v = 0 and (b) v = 8 (with j = 1).

Graphical Data D-3.11

Partial photodissociation cross section for HeH^{\dagger} by vibrational excitation from the vibrational level v = 8 (with j = 1).

D-4. PHOTODETACHMENT, PHOTODISSOCIATION, AND PHOTODESTRUCTION OF NEGATIVE IONS

	CONTENTS	Page
D-4.1.	Photodetachment Cross Section for 0^- Placed on an Absolute Scale by Normalization to 0^- and 0_2^-	3119
D-4.2.	Photodetachment Cross Sections for OH and OD Measured in $\rm O_2$ and He	3120
D-4.3.	Photodetachment Cross Section for ${\rm O_2}^-$ Placed on an Absolute Scale by Normalizing to D ⁻ and O ⁻	3121
D-4.4.	Photodetachment Cross Section for Thermal NO $_2^-$ and NO $_2^- \cdot H_2O$	3122
D-4.5.	Measured and Calculated Photodissociation Cross Section for C ℓ_2 –	3123
D-4.6.	Photodissociation Cross Section for Cl_2^-	3124
D-4.7.	Photodestruction Cross Section of 0_3^- , the Predominant Process Observed is Photodissociation into $0^- + 0_2$	3125
D-4.8.	Photodestruction Cross Section for 0_3^-	3126
D-4.9.	Photodestruction Cross Section for 0_4^-	3127
D-4.10.	Photodestruction Cross Section for 0_2 -•N0	3128
D-4.11.	Photodestruction Cross Section for 0_2 ${}^{-} \cdot H_2 0$	3129
D-4.12.	Photodestruction Cross Section for 0_3 $\overline{\ }\cdot\ H_20$	3130
D-4.13.	Photodestruction Cross Section Upper Limits for NO_2^- , NO_3^- , O_2^- • NO , and Hydrates	3131
D-4.14.	Photodestruction Cross Sections for Cl_2^- , $Cl0^-$, Cl_3^- , and Br Cl_2^-	3132
D-4.15.	Photodestruction Cross Section for CLO	3133

Graphical Data D-4.1

Photodetachment cross section for 0 placed on an absolute scale by normalization to D and 0. .

Graphical D-4.2

Photodetachment cross sections for OH- and OD- measured in $\mathbf{O}_{\mathcal{P}}$ and He.

Graphical Data D-4.3

Photodetachment cross section for $0.\overline{}$ placedon an absolute scale by normalizing to DT and OT.

Graphical Data D-4.4

Photodetachment cross section for thermal $\mathrm{NO_2}^-$ and $\mathrm{NO_2}^-.\mathrm{H_2O}.$

Graphical Data D-4.5

Measured and calculated photodissociation cross section for $\ensuremath{\text{CF}}_2.$

Graphical Data D-4.6

Photodissociation cross section for $\mathrm{C}\ell_2^{-}.$

Graphical Data D-4./

Photodestruction cross section of 0_3^- . The predominant process observed is photodissociation into $0^- + 0_2$.

Graphical Data D-4.8

Photodestruction cross section for 03^- .

Graphical Data D-4.9

Photodestruction cross section for ${\bf 0_4}^{-}$.

Graphical Data D-4.11

Photodestruction cross section for ${\rm O_2}^{-} \cdot \ {\rm H_2O}.$

Graphical Data D-4.12

Photodestruction cross section for 0_3 ${}^{\text{-}} \cdot \text{H}_2 0$.

E (eV)	λ (Å)	NO ₂	$NO_2 \cdot H_2O$	NO5	NO3 · H2O	O ₂ · NO	05 · NO · H2C
1.503	8250					< 0.087	< 0.072
1.653	7500		< 0.041				< 0.036
1.746	7100					< 0,054	
2.335	530 9	< 0,02 9	< 0.014	< 0,011	< 0.10		
2.381	5208	0.023 ± 0.009	< 0.026	< 0,054	< 0.10		
2.569	4825		< 0.046	< 0.075	< 0.22		
2.603	4762		< 0.095	< 0.092	< 0.12		
2.649	4680		< 0.071	< 0.106	< 0.16		
2.708	4579		< 0.045				
3.001	4131		0.16 ± 0.03	< 0.074	< 0.10		
3.479	3564		1.23 ± 0.16	0,10±0.03	0.41±0.08		
3.535	3507		1, 50 10, 10	.,	5 0. 00		

Reference: The above data were taken from G. P. Smith, L. C. Lee, and P. C. Cosby, J. Chem. Phys. 71, 4468 (1979).

Tabular Data D-4.14 Photodestruction Cross Sections for $C\ell_2^-$, $C\ell_1^-$, $C\ell_2^-$, and Br $C\ell_2^-$

λ (Δ)	Cl	cio-	$C1_3^*$	BrCl
3507, 35691	35, 1 : 3, 0	3.06+0.32	6 72+0,65	3.29+0.25
4067	14.9 - 1.1	3, 49 ± 0, 82		
4131	10. 5: 0.4	3,64 + 0,30	0.79+0.07	0.94 ± 0.20
4579	3, 55 ± 0, 42			
4650	2.41 + 0.28	2.77 ± 0.32	. 0.3	0.30+0.12
4762	1.64 - 0.19	1,75 : 0,25		0.24
4765	1.85 ± 0.20			
4825	1,46 - 0,18	1,44+0,24		
4550	1, 19 - 0, 13	1.62 ± 0.27		
4965	0.99 ± 0.12			
5145	0.43 + 0.06	0.82 ± 0.32		
5208	0.39 ± 0.05	0,60 : 0,11		· 0,14
5309	0.28 ± 0.03	0, 44 ± 0, 06	0.15	· 0, 08
56×2	0.11+0.05	0.23		
6471	0, 25 + 0, 03	0.11+0.05	< 0.02	· 0, 03
6764	0.37 ± 0.04			
7525	0, 51 + 0, 06	0.01		

Reference: The above data were taken from L. C. Lee, G. P. Smith, J. T. Moseley, P. C. Cosby, and J. A. Guest, J. Chem. Phys. 70, 3237 (1979).

Graphical Data 0-4,15

is the factor of the control of the section for $c \in \Omega^{\infty}_{+}$

E. TRANSPORT PROPERTIES OF ELECTRONS, IONS, AND NEUTRALS IN GASES CONTENTS

		Page
E-1.	Transport Properties of Electrons	3136
E-2.	Transport Properties of Ions	3142
E-3.	Transport Properties of Neutrals	
	(No new entries here.)	

See Chapter E in Vol. II and Chapter E in Vol. V for data.

I. TRANSPORT PROPERTIES OF ELECTRONS, IONS,

AND NEUTRALS IN GASES

General References

- W. P. Allis, "Motions of Ions and Electrons," in S. Flügge (Ed.), "Encyclopedia of Physics Vol. XXI, Electron Emission, Gas Discharges 1," pg. 383, Springer-Verlag, Berlin (1956).
- C. F. Barnett, E. W. McDaniel, E. W. Thomas, et. al., "Bibliography of Atomic and Molecular Processes" (1950-1980), Oak Ridge National Laboratory, Oak Ridge, Tennessee. Categorized according to kind of collision, process, or property. Information concerning procurement available from D. H. Crandall, P. O. Box X, Bldg. 6003, Oak Ridge National Laboratory, Oak Ridge, Tennessee. 37830.
- L. G. Christophorou, "Atomic and Molecular Radiation Physics," Willey, New York (1971).
- F. W. McDaniel, "Collision Phenomena in Ionized Gases," Wiley, New York (1964).

Acknowledgement: It is a pleasure to acknowledge the expert help of Professor Harry W. Ellis in the preparation of this chapter.

E-1. TRANSPORT PROPERTIES OF ELECTRONS

CONTENTS

Definitions au	nd Relationships	Page 3137
General Refere	ences	3138
Table E-1.1.	Sources of Electron Mobility Data Not Presented in Previous Volumes	3139
References to	Sources in Table E-1.1.	3140
.abl	Sources of Electron Diffusion Data Not Crescuted in Previous Volumes	3141
deferences to	Sources in Table E-1.2,	3141

Definitions and Relationships

- Print velocity of electrons—average velocity along the field direction in a gas exposed to a constant, uniform electric field ϵ , γ is usually expressed in units of cm/sec.
- E. Mobility of the electrons, defined by $K = v_d/E$. K is usually expressed in em²/V-sec.
- Fig. electron energy parameter * ratio of the electric field intensity to the ran number density. E/N is usually expressed in units of $V \sim m^2$, or in Townsends, where 1 Td * 10^{-17} V-cm².
 - Id Unit of E/N, the "Townsend" $\approx 10^{-17} \text{ V-cm}^2$.
 - D Diffusion coefficient of the electrons. A scalar at low E/N, D is then related to the mobility by the Einstein (or Nernst-Townsend) relation k = eD/kT, where T is the gas temperature, e the electronic charge, and k the Pelizzanni constant. At higher E/N, D is a tensor quantity.
- $D_{\rm T}$. The component of the diffusion tensor perpendicular to the electric field.
- D_{L} The component of the diffusion tensor parallel to the electric field.

 b_T/E and b_L/E are measures of the average electron energy at a given E/N. In the limit E/N \star 0, D_L = D_T = D, the scaler diffusion coefficient.

- . The first Townsend ionization coefficient. Usually it is expressed as $\sqrt{2}$, which then has units of cm².
- a. The electron attachment coefficient, usually expressed as a/N, which has units of \mbox{cm}^2 .

for electrons in a given gas at a given temperature, \mathbf{v}_d , NK, ND_L, ND_T, \pm /N, \pm /N, and the average electron energy are functions of E/N alone, N being the gas number density.

Before about 1970, the energy parameter was usually expressed in terms of E/p, where p is the gas pressure in units of torr. To convert from E/p to E/N, one may use the relation

E/N (in Td) $= (1.0354 + T + 10^{-2})$ (E/p) where T is the gas temperature.

General References

- E. C. Beaty, J. Dutton, and L. C. Pitchford, "A Bibliography of Electron Swarm Data", JLLA Information Center Report No. 20, Univ. of Colorado, Boulder, Colo. 80303. Dec. 1, 1979. 240 pages.
- J. Dutton, "A Survey of Electron Swarm Data," J. Phys. Chem. Ref. Data 4, No. 3, 577-856 (1975).
- A. Gilardini, "Low Energy Collisions in Gases," Wiley, New York (1972).
- L. G. H. Huxley and R. W. Crompton, "The Diffusion and Drift of Electrons in Gases," Wiley, New York (1974).
- H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," Vol. 1, Clarendon, Oxford (1969).
- H. S. W. Massey, "Negative Ions," Cambridge University Press, New York (1976).
- A. von Engel, "Ionization in Gases by Electrons in Electric Fields," in S. Flügge (Ed.), "Encyclopedia of Physics Vol. XXI Electron Emission, Gas Discharges 1," 504, Springer-Verlag, Berlin (1956).
- J. M. Meek and J. D. Craggs, "Electrical Breakdown of Gases," Wiley, New York (1976).
- S. L. Lin, R. E. Robson, and E. A. Mason, "Moment Theory of Electron Drift and Diffusion in Neutral Gases in an Electrostatic Field," Jour. Chem. Phys. 71, 3483 (1979).

Table E-1.1. Sources of Electron Mobility Data Not Presented in Previous Volumes.*

ELECTRON MOBILITY

Gas	Est. Gas Temp ([©] K)	Approx. E/N (Td)	Ref.
Cs	310 - 414 566 - 725	4 - 110 1 - 50	10 2
Hg	468 - 608	0.07 - 14	8
Na	724 - 862	2 - 70	8
Т1	1213 - 1273	0.6 - 15	8
Xe (high dens	sity) 163 - 288	$10^{-4} - 0.2$	6
CH ₄ (high der	nsity) 91 - 193	$10^{-4} - 0.2$	5
BF ₃	300	5 - 70	1
$C_n^{H}_{2n+2}$ (n = 2,3,4)	298 - 673	0.01 - 10	7
с(сн ₃) ₄	298 - 673	0.01 - 10	7
cc1F ₃	300	2 - 30	3
сн ₂ с1 ₂	300	2 - 30	3
сн ₃ с1	300	2 - 30	3
с ₂ н ₅ с1	300	2 - 30	3
C ₄ H ₉ Br	300	2 - 30	3
He - F ₂ MIX	300	3 - 15	9
N ₂ - CO ₂ MIX	300	3 - 93	11
Xe - CF ₄ MIX	296	0.3 - 10	4
Xe-C ₂ H ₂ MIX	296	0.3 - 10	4
Xe-CF ₄ -C ₂ H ₂	MIX 296	0.3 - 10	4

^{*}A substantial amount of electron swarm data has already been presented in previous volumes: see pages 717-732 of Vol. II and pages 2081-2108 of Vol. V.

References to Sources in Table E-1.1

- . L. M. Chanin and R. D. Steen, Phys. Rev. 136, Al38 (1964).
- 3. L. G. Christophorou and A. A. Christodoulides, J. Phys. B $\underline{2}$, 71 (1969).
- 4 L. G. Christophorou, D. V. Maxey, D. L. McCorkle, and J. G. Carter, Nucl. Instrum. and Methods 171, 491 (1980).
- > N. Gee and G. R. Freeman, Phys. Rev. A 20, 1152 (1979).
- S. Huang and G. R. Freeman, J. Chem. Phys. 68, 1355 (1978).
- D. L. McCorkle, L. G. Christophorou, D. V. Maxey, and J. G. Carter, J. Phys. B 11, 3067 (1978).
- 8. Y. Nakamura and J. Lucas, J. Phys. D 11, 325 (1978).
- 9. K. J. Nygaard, J. Fletcher, S. R. Hunter, and S. R. Foltyn, Appl. Phys. Lett. 32, 612 (1978).
- 10. H. T. Saelee and J. Lucas, J. Phys. D 12, 1275 (1979).
- R. A. Sierra, H. L. Brooks, and K. J. Nygaard, Appl. P .. Lett. 35, 764 (1979).

Table E-1.2. Sources of Electron Diffusion Data Not Presented in Previous Volumes.

ELECTRON DIFFUSION

Gas	Data	Approx. E/N (Td)	Ref.
Не	D_{T}/K , \sqrt{N}	3 - 847	1
Ar	D_{T}/K , α/N	8 - 1271	1
CO	D _T /K	5 - 350	3
NO	D_{T}/K , α/N	56 - 1412	1
co_2	D _T /K	5 - 180	3
	D _T /K,	30 - 5000	2
CH ₄	$D_{\mathrm{T}}^{\prime}/K$, α/N	14 - 5650	1

References to Sources in Table E-1.2.

- 1. C. S. Lakshminarasimha and J. Lucas, J. Phys. D <u>10</u>, 313 (1977).
- 2. J. Lucas and H. N. Kucukarpaci, J. Phys. D $\underline{12}$, 703 (1979).
- 3. W. Roznerski and J. Mechlinska-Drewko, Phys. Lett. 70A, 271 (1979).

E-2. TRANSPORT PROPERTIES OF IONS

CONTENTS

		Page
Definitions and	d Relationships	3143
General Referen	nces	3144
Table E-2.1.	Sources of Ion Mobility Data Not Presented in Previous Volumes	3146
References to	Sources in Table E-2.1	3151
Table E-2.2.	Sources of Ion Diffusion Data Not Presented in Previous Volumes	3153
References to	Sources in Table E-2.2	3153
Table E-2.3.	References to Ion Transport Data Appearing in Compilations I and II [Atomic Data and Nuclear Data Tables 17, 177(1976); 22, 179 (1978)]	3154
Update of Refer	rences in Compilation II	3156

Definitions and Relationships

- v_d = Drift velocity of ion = average velocity of drift of ion along field lines in a gas exposed to a constant, uniform electric field E. v_d is usually expressed in cm/sec.
- K = Mobility of ion, defined by the equation \vec{v}_d = $K \cdot \vec{E}_s K \cdot \vec{E}_s$ usually expressed in cm²/V-sec.
- $K_{ij} = Reduced mobility of ion = mobility of ical reduced to S.T.P., defined by the equation$

$$K_{o} = \frac{P}{760} \frac{273.16}{T} K$$

where p is the gas pressure in torr and T is the gas temperature in degrees Kelvin at which K was measured.

- $P_o = Reduced pressure = \frac{273.16}{T}P$.
- E/N = Ionic energy parameter = ratio of electric field intensity to gas number density. E/N is usually expressed in units of $(\text{volts/cm}) / (1/\text{cm}^3) = \text{V} \text{cm}^2$.
- $K_{o}(0)$ = Zero-field reduced mobility = K_{o} in the limit E/N \cdot 0.
 - Td = Unit of E/N, the "Townsend" = 10^{-17} V cm².
 - $v_d = 0.0269 \cdot (E/N) \cdot K_o$, where v_d is in 10^4 cm/sec, E/N is in Td, and K_o is in cm /V sec.

 - DL = (Scalar) longitudinal diffusion coefficient = coefficient of diffusion along electric field.

In the limit E/N + 0, D_{L} = D_{T} = D, the scaler diffusion coefficient.

For a particular ionic species in a given gas at a given temperature, $v_{\rm d}$, NK, ND, ND, and the average ionic energy are functions of E/N alone.

Ceneral References

- H. W. Ellis, R. V. Pai, I. R. Gatland, E. W. McDaniel, R. Wernlund, and M. J. Cohen, "Ion (deatity and Transport Properties in CO_j Over a Wide Pressure Range," J. Chem. Phys. 64, 3935 (1976).
- H. W. Ellis, F. L. Eisele, and E. W. McDaniel, "Temperature Dependent Mobilities of Negative Ions in N_2 and 0_2 ," Jour. Chem. Phys. 69, 4710 (1978).
- 1. R. Catland, "Analysis for for Drift Tube Experiments," in E. W. McDaniel and M. R. C. McDowell (Eds.), "Case Studies in Atomic Physics," 4, 3/1, North-Holland, Amsterdam (1975).
- 1. R. Gatland, W. F. Morrison, H. W. Ellis, M. G. Thackston, E. W. McDaniel, M. H. Alexander, L. A. Vichland, and E. A. Mas a, "The Li⁺-He Interaction Potential," Jour. Chem. Phys. 66, 5121 (1977).
- I. R. Gatland, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel, "Mobilities and Interaction Potentials for Cs⁺-Ar, Cs⁺-Kr, and Cs⁺-Xe," Jour. Chem. Phys. 68, 2775 (1978).
- I. R. Gatland, D. R. Lamm, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel, "Mobilities and Interaction Potentials ter Rb⁺-Ar, Rb⁺-Kr, and Rb⁺-Xe," Jour. Chem. Phys. 69, 4951 (1978).
- S. L. Lin and J. N. Bardsley, "Monte Carlo Simulation of Ion Motion in Drift Tubes," Jour. Chem. Phys. 66, 435 (1977).
- S. L. Lin and E. A. Mason, "Influence of Resonant Charge Transfer on Ion Mobility," J. Phys. B. 12, 783 (1979).
- S. L. Lin, L. A. Viehland, and E. A. Mason, "Three-Temperature Theory of Gaseous Ion Transport," Chem. Phys. 37, 411 (1979).
- H. S. W. Massey, "Electronic and Ionic Impact Phenomena," Vol. 3, Clarendon, Oxford (1971).
- H. S. W. Massey, "Negative Ions," Cambridge University Press, New York (1976).
- E. w. McDaniel and E. A. Mason, "The Mobility and Diffusion of Ions in Gases," Wiley, New York (1973).
- L. A. Viehland and E. A. Mason, "Caseous Ion Mobility in Electric Fields of Arbitrary Strength," Annals of Physics 91, 499 (1975).

General References (Cont.)

- L. A. Viehland and E. A. Mason, "On the Choice of Buffer Gas Mixtures for Drift-Tube Studies of Ion-Neutral Reactions," Jour. Chem. Phys. 70, 2262 (1979).
- L. A. Viehland and S. L. Lin, "Application of the Three-Temperature Theory of Gaseous Ion Transport," Chem. Phys. 43, 135 (1979).
- L. A. Viehland and E. A. Mason, "Gaseous fon Mobility and Diffusion in Electric Fields of Arbitrary Strength," Annals of Physics 110, 287-328 (1978).
- L. A. Viehland, E. A. Mason, W. F. Morrison, and M. E. Flannery, "Tables of Transport Collision Integrals for (n,6,4) Ion-Neutral Potentials," Atomic Bata and Nuclear Data Tables 16, 495 (1975).
- D. R. Lamm, M. G. Thackston, F. L. Eisele, H. W. Ellis, J. R. Twist, M. M. Pope, I. R. Gatland, and E. E. McDaniel, "Mobilities and Interaction Potentials for E' Ar, K⁺ Kr, and K⁺ ve", Jour. Chem. Phys., in press.
- E. A. Maron, L. A. Viebland, P. W. Effis, D. E. James, and E. W. McDaniel, "The Modilities of P[†] Tons in Not Gare", Press Unids 18, 1070 (1975).
- M. C. Tha kston, F. L. Fisele, W. M. Pope, H. W. Ellis, E. W. McDaniel, and I. R. Gatland, "Mobility of Cli lons in Xe Cas and the Cli Xe Interaction Potential", Jour. Chem. Phys. 74, (1980).
- L. A. Viebland, S. I. Lin, and E. A. Mason, "Kinetic Theory of Drift Tube Experiments with Polyatomic Species," to be published.

Data Compilations

- I. H. W. Illis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, "Transport Properties of Caseous Lons Over a Wide Energy Range," Atomic Data and Su Tear Data Tables 17, 177-210 (1976).
- II. B. W. Elli, J. V. M. Daniel, D. L. Albritton, L. A. Viehland, S. L. Lin, and E. A. Maren, "Francient Disportion of Cameous lons Over a Wide Energy Physics and E. J. Marin, and C. J. Nuclear Data Tables 22, 179-217 (1985).
- Miller Scheduler and Control of the Control of t

Table E-2.1. Sources of Ion Mobility Data Not Presented in Previous Volumes.*

Ions in Helium

Ion	Gas Temp (°K)	Approx. E/N (Td)	Ref(s).
н+	300	5 ~ 60	17
D^+	300	5 - 70	. 17
He ⁺	77 - 700	low-field	5, 28, 3 0
Li ⁺	20 - 500	low field	16
C ⁺	297	5 - 110	9
Na ⁺	90 - 480	low field	32
s ⁺	297	5 - 110	9
Ti ⁺	300	low field	18
Cd ⁺	526	low field	20
Cs ⁺	80 - 490	low field	32
Th ⁺	300	low field	18
Ne ⁺⁺	300	15 - 90	19
Ar ⁺⁺	305	10 - 100	19
Kr ⁺⁺	305	10 - 90	19
Xe ⁺⁺	302	10 - 90	19
Не ⁺ ₂	293 120 - 700	5 - 40 low field	15 30
Ne_2^+	300 77 - 300	5 - 50 low field	3 8
HeNe ⁺	?	low field	33
$(CH_n)^+$ (n = 1,2,	300 3,4,5)	5 - 100	36
$SO_2F_2^-$	300	low field	31
$SO_2F_2 \cdot (SO_2F_3)$	300	low field	31
$F^{-} \cdot (SF_{6})$	300	low field	31

^{*}A substantial amount of ion swarm data has already been presented in previous volumes: see pages 733-748 of Vol. II and pages 2109-2116 of Vol. V.

Table E-2.1 (continued)
ION MOBILITY

Ions in Neon

Ion	Gas	Temp	("K)	Appı	cox. E/I	(Td)	Ref(s).
He ⁺	77,	200,	300	low	field		8
Ne ⁺	77,	200,	300	low	field		5
Ar ⁺		77		10	- 20		15
Xe ⁺		303		20	- 140		19
Xe ⁺⁺		303		20	- 140		19
He_2^+		300		5	- 50		3
Ne_2^+	77,	77 200,	300		- 55 field		15 5
N_2^+		300		low	field		24
				Ions in Argon			
Ar ⁺	77,	77 200,	300		- 90 field		15 5
K ⁺	291,	400,	460	low	field		16
Ar ⁺⁺	77,	200,	300	low	field		5
н+		300		10	- 110		25
ArH ⁺		300		30	- 110		25
Ar_2^+		77		50	- 100		15
н ₃ 0 ⁺ ·(н ₂ 0	••	337		low	field		38
n = 1,2,3							
ReO_3^-		295		15	- 200		4
$Re0_4^-$		295			- 200		4
$(WO_3)_n$ n = 1,2,3		295		25	- 160		4
н ₃ о+		337		30	- 110		38

Ions in Krypton

Ion	Gas Temp ([€] K)	Approx, E/N (Td)	Ref(s).
Li ⁺	291	low field	26, 37
Na ⁺	300	5 - 500	35
RF +	195 - 495	low field	16
Kr.	295	5 - 170	1.
	Ions i	n Xenon	
f. t	291	low field	.16 . 37
,	300	5 - 500	1.7
Cs [†]	200 - 450	low field	16
Ke.	300 200 - 300	40 - 230 low field	$\frac{2}{14}$
Хе [†]	200 - 300	low field	14
	<u>Ions i</u>	n Hydrogen	
H ⁺ ₃	77, 195, 300	low field	6
H_3O^+	300	5 - 140	6, 13

Table E-2.1 (continued)

ION MOBILITY

Ions in Nitrogen

Ion	Gas Temp (°K)	Approx. E/N (Td)	Ref(s).
Na ⁺	291	low field	26, 37
o_{2}^{+}	300 - 640	low field	10
NO ⁺	300 - 640	low field	10
C1	340 - 470	low field	12
$C1\frac{7}{2}$	300 - 470	low field	12
NO ₂	215 - 675	low field	11
NO_3^2	215 - 675	low field	11
co_3^{-}	215 - 675	low field	11
3	<u>Ion</u>	s in Oxygen	
Na ⁺	304	5 - 500	34
C1-	330 - 470	low field	12
$C1_2^-$	300 - 470	low field	12
04	300	low field	27
co_3^-	300 - 470	low field	12
SF ₅	300	low field	31
SF ₆	300	low field	31
	Ions ir	n Carbon Dioxide	
Li ⁺	? 307	35 - 350 25 - 900	21 34
02+	?	40 - 400	21
NO ⁺	?	30 - 400	21

Ions in Methane

Ion	Gas Temp (*K)	Approx. E/N (Td)	Ref(s).
Li ⁺	304	10 - 600	34
SF ₅	300	low field	31
SF ⁻	300	low field	31
ŭ	Ions in Su	lfur Hexafluoride	
SF ₅	300	5 - 140	29
SF ₆	300	5 - 140	29
$SF_6^- \cdot (SF_6)$	300	20 - 120	29
$SF_6 \cdot (SF_6)_2$	300	20 - 120	29
	Ions i	n Metal Vapors	
Ion - Gas	Gas Temp (°K	Approx. E/N (Td)	Ref(s).
Rb [↓] - Rb	621	85 - 340	23
Rb_2^+ - Rb	621	85 - 340	23
Cs ⁺ - Cs	580 - 650	20 - 480	7, 23
Cs ⁺ ₂ - Cs	580 - 650	60 - 480	7, 23
Hg ⁺ - Hg	350 500	low field 210 - 570	1 22
Hg ₂ +	500	110 - 325	22

References to Sources in Table E-2.1.

Ion Mobility References

- 1. M. A. Biondi, Phys. Rev. 90, 730 (1953).
- 2. M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).
- 3. M. A. Biondi and L. M. Chanin, Phys. Rev. 122, 843 (1961).
- 4. R. E. Center, J. Chem. Phys. 56, 371 (1972).
- 5. L. M. Chanin and M. A. Biondi, Phys. Rev. 106, 473 (1957)
- 6. L. M. Chanin, Phys. Rev. 123, 526 (1961).
- 7. L. M. Chanin and R. D. Steen, Phys. Rev. 132, 2554 (1963).
- 8. G. E. Courville and M. A. Biondi, J. Chem. Phys. 37,.616 (1962).
- 9. I. Dotan, F. C. Fehsenfeld, and D. L. Albritton, J. Chem. Phys. <u>71</u>, 4762 (1979).
- 10. F. L. Eisele, H. W. Ellis, and E. W. McDaniel, J. Chem. Phys. <u>70</u> 5924 (1979).
- 11. F. L. Eisele, M. D. Perkins, and E. W. McDaniel, J. Chem. Phys. 73, 2517 (1980).
- 12. H. W. Ellis, F. L. Eisele, and E. W. McDaniel, J. Chem. Phys. $\underline{69}$. 4710 (1978).
- 13. I. A. Fleming, R. J. Tunnicliffe, and J. A. Rees, J. Phys. B 2, 780 (1969).
- 14. H. Helm, Phys. Rev. A 14, 680 (1976).
- 15. H. Helm and M. T. Elford, J. Phys. B 11, 3939 (1978).
- 16. K. Hoselitz, Proc. Roy. Soc. (London) A177, 200 (1941).
- 17. F. Howorka, F. C. Fehsenfeld, and D. L. Albritton, J. Phys. B <u>12</u>, 4189 (1979).
- 18. R. Johnsen, F. R. Castell, and M. A. Biondi, J. Chem. Phys. $\underline{61}$, 5404 (1974).
- 19. R. Johnsen and M. A. Biondi, Phys. Rev. A 20, 221 (1979).
- 20. M. Kamin and L. M. Chanin, Appl. Phys. Lett. 29, 756 (1976).
- 21. T. Koizumi, N. Kobayashi, and Y. Kaneko, J. Phys. Soc. Japan <u>43</u>, 1465 (1977).
- 22. F. R. Kovar, Phys. Rev. 133, A681 (1964).
- 23. Y. Lee and B. H. Mahan, J. Chem. Phys. 43, 2016 (1965).
- 24. T. D. Mark and H. J. Oskam, Z. Physik 247, 84 (1971).
- 25. K. B. McAfee, D. Sipler, and D. Edelson, Phys. Rev. 160, 130 (1967).

ION MOBILITY

References (continued)

- 26. E. W. McDaniel and E. A. Mason, <u>The Mobility and Diffusion of Ions in Gases</u>, (Wiley, New York, 1973).
- 27. L. G. McKnight and J. M. Sawina, Phys. Rev. A $\underline{4}$, 1043 (1971).
- 28. O. J. Orient, Can. J. Phys. <u>45</u>, 3915 (1967).
- 29. P. L. Patterson, J. Chem. Phys. <u>53</u>, 696 (1970).
- 30. P. L. Patterson, Phys. Rev. A 2, 1154 (1970).
- 31. P. L. Patterson, J. Chem. Phys. <u>56</u>, 3943 (1972)
- 32. A. F. Pearce, Proc. Roy. Soc. (London) A155, 490 (1936).
- 33. G. F. Sauter, R. A. Gerber, and H. J. Oskam, Physica 32, 1921 (1966).
- 34. N. Takata, Phys. Rev. A 14, 114 (1976).
- 35. M. G. Thackston, M. S. Sanchez, G. W. Neeley, W. M. Pope, F. L. Eisele, I. R. Gatland, and E. W. McDaniel, J. Chem. Phys. 77, 2011 (1980).
- 36. R. Thomas, J. Barassin, and A. Barassin, Int. J. Mass Spectrom. and Ion Phys. <u>31</u>, 227 (1979).
- 37. A. M. Tyndall, <u>The Mobility of Positive Ions in Gases</u>, Cambridge University Press (1938).
- 38. C. E. Young, D. Edelson, and W. E. Falconer, J. Chem. Phys. <u>53</u>, 4295 (1970).

Table E-2.2. Sources of lon Diffusion Data Not Presented in Previous Volumes.

ION DIFFUSION

Ion - Gas	Measured Quantity	Gas Temp (°K)	Approx. E/N (Td)	Ref.
He ⁺ - He	D	293	low field	2
He ₂ - He	D	293	low field	2
$(CH_n)^+$ - He n = 0,1,2,3,4,5	$^{ m D}_{ m L}$	300	5 - 100	4
Na ⁺ - Kr	$\mathtt{D}_{\mathtt{L}}$	300	5 - 500	3
Na ⁺ - Xe	$\mathtt{D}_{\mathtt{L}}$	300	5 - 400	3
$N_3^+ - N_2$	D_{T}	300	10 - 100	1
N_4^+ - N_2	$D_{\overline{\mathbf{T}}}$	300	10 - 100	1
$o_2^+ - o_2^-$	$\mathtt{D}_{\widetilde{\mathbf{T}}}$	300	10 - 500	1
co ⁺ ·co - co	$D_{\overline{\mathbf{T}}}$	300	10 - 130	1

References to Sources in Table E-2.2

- 1. S. R. Alger, T. Stefansson, and J. A. Rees, J. Phys. B <u>11</u>, 3289 (1978).
- 2. R. Deloche, P. Monchicourt, M. Cheret, and F. Lambert, Phys. Rev. A $\underline{13}$, 1140 (1976).
- 3. M. G. Thackston, M. S. Sanchez, G. W. Neeley, W. M. Pope, F. L. Eisele, I. R. Gatland, and E. W. McDaniel, J. Chem. Phys. 73, 2012 (1980).
- 4. R. Thomas, J. Barassin, and A. Barassin, Intl. J. Mass Spectrom. and Ion Physics 31, 227 (1979).

Modellitles (K)

```
Ar in Ar. 1 - pg. 196
                                    Cs^{+} in Ar. II - pg. 193
                                                                      Hg<sup>+</sup> in Ne. I - pg. 195
      in He. I - pg. 185
                                         in CO. II - pg. 204
                                                                      H<sub>2</sub>O<sup>+</sup> in He. II - pg. 188
 Ar<sup>2+</sup> in Ar. I pg. 196
                                                                      H<sub>3</sub>O<sup>+</sup> in He. II - pg. 188
                                         in CO2. II - pg. 204
 Ar2+(10) in Ar. II - pg. 195
                                         in H<sub>2</sub>. II - pg. 200
                                                                            in N<sub>2</sub>. II - pg. 201
Ar^{2+}(^{3}F) in Ar. II pg. 195
                                         in He. II - pg. 187
                                                                      H<sub>3</sub>O<sup>+</sup>·H<sub>2</sub>O in He. II - pg. 188
Ar_2^+ in Ar. I - pg. 198
                                         in Kr. II - pg. 196
                                                                                 in N2. II - pg. 201
ArH+ in He. I - pg. 187
                                         in N<sub>2</sub>. II - pg. 201
                                                                      H<sub>3</sub>0<sup>+</sup>·2H<sub>2</sub>0 in He. II - pg. 188
Br In Ar. II - pg. 194
                                        in Ne. II - pg. 191
                                                                                  in N<sub>2</sub>. II - pg. 201
     in He. II - pg. 190
                                        in O_2. II - pg. 203
                                                                      I- in Ar. II - pg. 194
C^{+} in (0, I = pg. 208
                                         in Xe. II - pg. 198
                                                                         in He. II - pg. 190
CH5 fn He, I - pg, 190
                                    D^{+} in D_{2}. I - pg. 202
                                                                      K<sup>+</sup> in Ar. I - pg. 197
C_2H_2^- in He. I + pg. 192
                                        in He. I - pg. 184
                                                                         in CH4. II - pg. 204
CH_{3}O_{2}^{+} in He. I - pg. 190
                                       in Ne. I - pg. 195
                                                                         in CO. I - pg. 207
Ct in Ar. II (2) - pg. 194
                                    D_3^+ in D_2. I - pg. 202
                                                                         in CO<sub>2</sub>. I - pg. 209
     in He. I = 190, II = 190
                                   F in Ar. II - pg. 194
                                                                         in D<sub>2</sub>. I - pg. 203
     in Kr. II - pg. 196
                                       in He. II - pg. 190
                                                                         in H<sub>2</sub>. I - pg. 202
     in Ne. II - pg. 192
                                       in Kr. II - pg. 196
                                                                         in He. I - pg. 183
     in Xe. II - pg. 198
                                       in Xe. II - pg. 198
                                                                         in N_2. I - pg. 204
CO^{+} in CO. I - pg. 207
                                   H^{+} in H_{2}. I - pg. 200
                                                                         in NO. I - pg. 208
     in He. I - pg. 186
                                       in He. I - pg. 184
                                                                         in Ne. I - pg. 195
CO<sub>2</sub>+ in Ar. I - pg. 198
                                       in Ne. I - pg. 194
                                                                         in 0_2. I - pg. 205
      in He. I - pg. 188
                                   H^- in H_2. I - pg. 200
                                                                         in Xe. II - pg. 197
      in N_2: I = 204, II (2) 203
                                      in He. I - pg. 190
                                                                      Kr+ in Ar. II - pg. 193
      in Ne. II - pg. 193
                                   \mathrm{H_2}^+ in He. I - pg. 186
                                                                           in He. II - pg. 187
CO_3 in Ar. I - pg. 199
                                   {\rm H_3}^+ in {\rm H_2}. I - pg. 200
                                                                           in Kr. I - pg. 199, II-195
      in CO<sub>2</sub>. I - pg. 209
                                        in He. I - pg. 187
                                                                      Kr<sup>+</sup> in Kr. II - pg. 196, 197
      in He. I - pg. 192
                                   He+ in He. I - pg. 184
                                                                      Kr in N<sub>2</sub>. II - pg. 202
      in 0_2. I - pg. 206
                                   He^{2+} in He. II - pg. 189
                                                                      Kr<sub>2</sub><sup>+</sup> in Kr. I - pg. 200
CO_4^- in O_2. I - pg. 207
                                   He_2 in He. I - pg. 186
                                                                      Kr^{2+}(A) in Kr. II - pg. 197
C_2O_2^+ in CO. I - pg. 207
                                                                      Kr^{2+}(R) in Kr. II - pg. 197
                                   HeH in He. II - pg. 189
COH+ in Ar. I - pg. 198
                                   Hg<sup>+</sup> in Ar. I - pg. 197
                                                                     Li<sup>+</sup> in Ar. I - pg. 196
      in He. I - pg. 188
                                        in He. I - pg. 185
                                                                          in D<sub>2</sub>. I - pg. 202
```

Note: I refers to Ellis, et al., ADNDT <u>17</u>, 177 (1976); II to Ellis, et. al., ADNDT <u>22</u>, 179 (1978).

Table E-2.3 (continued)

Mobilities (K) (continued)

Li ⁺ in H ₂ . I - pg. 201	NH ₄ ⁺ in He. I - pg. 189	03 in He. I - pg. 191
in He. I - pg. 183	in N ₂ . I - pg. 205	in O ₂ . I - pg. 206
in N ₂ . II - pg. 200	N_2H^+ in N_2 . I- 203, II-202	04^{+} in 02 . I - pg. 205
in Ne. I - pg. 194	NO ⁺ in He. I - pg. 187	OH in He. I - pg. 191
in O ₂ . II - pg. 203	in NO. I - pg. 208	0 ₂ H ⁺ in He. I - pg. 138
N ⁺ in N ₂ . I - pg. 204	NO ⁺ ·H ₂ O in He. I - pg. 189	$0_2H_2^+$ in He. I - pg. 189
in He. I - pg. 184	N ₂ 0 ⁺ in Ar. II - pg. 193	Rb ⁺ in Ar. I - pg. 197
N2 ⁺ in He. I - pg. 186	in He. II - pg. 189	in CO ₂ . I - pg. 208
in N ₂ . I - pg. 202	N_2O^+ in N_2 . II - pg. 202	in H ₂ . II - pg. 200
N_3^+ in N_2 . I - pg. 204	in Ne. II - pg. 191	
N4 ⁺ in N2. II - pg. 202	NO ₂ in He. I - pg. 192	in He. I - pg. 83
Na ⁺ in Ar. I - pg. 196	$N_2O_2^+$ in NO. I - pg. 201	in Kr. II - pg. 195
in CO ₂ . I - pg. 209	N ₂ OH ⁺ in Ar. I - pg. 199	in N ₂ . II - pg. 200
in D ₂ . I - pg. 202		in Ne. I - pg. 194
in H ₂ . I - pg. 201	in He. I - pg. 189 O ⁺ in Ar. I - pg. 197	in O ₂ . II - pg. 203
in He. I - pg. 183		in Xe. II - pg. 198
in Ne. I - pg. 194	in He. I - pg. 185	SF5 in He. I - pg. 193
Ne ⁺ in He. II - pg. 187	0 in CO ₂ . I - pg. 209	SF ₆ in He. I - pg. 193
in Ne. I - pg. 195	in He. I - pg. 191	S03 in He. I - pg. 193
	in O ₂ . I - pg. 206	SO ₂ F in He. I - pg: 192
$Ne^{+}(^{2}P_{1_{2}})$ in Ne. II - pg. 191	02 ⁺ in Ar. I - pg. 198	U ⁺ in He. I ~ pg. 185
$Ne^{+}(^{2}P_{3/2})$ in Ne. II - 191	in He. I - pg. 187	Xe ⁺ in He. II- pg. 187
$Ne^{2+}(^{1}D)$ in Ne. II - pg. 192	in 0 ₂ . I - pg. 205	$Xe^{+}(^{2}P_{1_{2}})$ in Xe. II- pg. 199
$Ne^{2+}(^{1}S)$ in Ne. II - pg. 192	0 ₂ in He. I - pg. 190	$Xe^{+(2}P_{3/2})$ in Xe. II - pg. 199
$Ne^{2+(^{3}P)}$ in Ne. II - pg. 192	in O ₂ . I - pg. 206	Xe ²⁺ (A) in Xe. II - pg. 199
Ne ₂ ⁺ in He. I - pg. 193	0 ₃ - in Ar. I - pg. 199	Xe ²⁺ (B) in Xe. II - pg. 199
NH ₃ ⁺ in He. I - pg. 188		

Longitudinal Diffusion Coefficients (D_L)

```
Cf in Ar. II - pg. 208
                                   Cs^+ in CO_2. II - pg. 215
                                                                    D<sup>+</sup> in D<sub>2</sub>. II - pg. 211
     in Kr. II - pg. 209
                                       in H<sub>2</sub>. II - pg. 211
                                                                    D in D<sub>2</sub>. II - pg. 212
     in Ne. II - pg. 207
                                       in He. II - pg. 206
                                                                    D_3^+ in D_2. II - pg. 212
     in Xe. II - pg. 210
                                       in Kr. II - pg. 209
                                                                    F in Kr. II - pg. 209
CO<sup>+</sup> in CO. II - pg. 214
                                       in N<sub>2</sub>. II - pg. 212
                                                                       in Xe. II - pg. 210
Cs<sup>+</sup> in Ar. II - pg. 208
                                       in Ne. II - pg. 207
                                                                    H^+ in H_2. II - pg. 210
  · in CO. II - pg. 214
                                       in 0<sub>2</sub>. II - pg. 213
                                                                    H in H2. II - pg. 211
                                       in Xe. II - pg. 210
```

Table E-2.3 (concluded)

Longitudinal Diffusion Coefficients (DL) (continued)

H_3^+ in H_2^- II - pg. 211	Li ⁺ in Ar. II - pg. 207	0 in 0 ₂ . I' - pg. 213
K ⁺ in Ar. II - pg. 208	in H ₂ . II - pg. 210	0_2^+ in 0_2^- . II - pg. 213
in CO. II - pg. 214	in He. II - pg. 206	0_2^- in 0_2 . II - pg. 214
in CO ₂ . II - pg. 215	in Ne. II - pg. 206	Rb ⁺ in Ar. II - pg. 208
in H ₂ . II - pg. 211	N^+ in N_2 . II - pg. 212	in CO ₂ . II - pg. 215
in He. II - pg. 206	N_2 in N_2 . II - pg. 213	in H ₂ . II - pg. 211
in Kr. II - pg. 208	Na ⁺ in Ar. II - pg. 208	in He. II - pg. 206
in N ₂ . II - pg. 212	in CO ₂ . II - pg. 215	in Kr. II - pg. 209
in Ne. II - pg. 207	in H ₂ . II - pg. 210	in N ₂ . II - pg. 212
in NO. II - pg. 214	in He. II - pg. 206	in Ne. II - pg. 207
in 0 ₂ . II - pg. 213	in Ne. II - pg. 207	in 0 ₂ . II - pg. 213
in Xe. II - pg. 209	NO ⁺ in NO. II - pg. 214	in Xe. II - pg. 209

Transverse Diffusion Coefficients $(D_{_{\rm T}})$

H_3^+ in H_2 . II - pg. 216	K ⁺ in N ₂ . II - pg. 216	N_2^+ in N_2 . II - pg. 216
K ⁺ in H ₂ . II - pg. 216	N^+ in N_2 . II - pg 216	0_2^+ in 0_2^- . II - pg. 216

Update of References in Compilation II [ADNDT 22, 179 (1978)]

References for Table I

- M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis and E. W. McDaniel, J. Chem. Phys. 73, 1477 (1980).
- 8. I. R. Gatland, D. R. Lamm, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis and E. W. McDaniel, J. Chem. Phys. <u>69</u>, 4951 (1978).
- 9. I. R. Gatland, et al., to be published.
- 14. R. Johnsen and M. A. Biondi, Phys. Rev. A 20, 221 (1979).
- 26. M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis, E. W. McDaniel and I. R. Gatland, J. Chem. Phys. 70, 3996 (1979); 73, (1980).

References for Table II

- 3. F. L. Eisele, M. G. Thackston, W. M. Pope, H. W. Ellis and E. W. McDaniel, J. Chem. Phys. 70, 5918 (1979).
- W. M. Pope, F. L. Eisele, M. G. Thackston and E. W. McDaniel, J. Chem. Phys. 69, 3874 (1978).
- 22. M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis and E. W. McDaniel, J. Chem. Phys. 73, 1477 (1980).

F. INTERACTIONS WITH STATIC ELECTRIC AND MAGNETIC FIELDS

(No new entries here. See Vol. II for data.)

G. PARTICLE PENETRATION IN GASES (IONS, NEUTRALS, AND ELECTRONS)

(No new entries here. See Vols. II and V for data.)

H. PARTICLE AND PHOTON INTERACTIONS WITH SOLIDS

	CONTENTS	page
H-1.	Sputtering	3159
н-2.	Secondary Electron Emission by Electron Impact	_
	(No new entries here.)	
	Secondary Electron Emission by Ion Impact	
H-4.	Electron Reflection from Surfaces	• -
	(No new entries here.)	
	Reflection of lons from Surfaces	
н-6.	Photoemission of Electrons from Surfaces	
	(No new entries here).	

H-1. THUTTERING

CONTENTS

	Page
Sputtering by Light Ion (H ⁺ , D ⁺ , He ⁺)	3160
Ta, W, Au	3162
General Formula for Modelling Sputter Yield for Light Ion Impact	3168
Sputtering by Ne $^+$, Ar $^+$, Kr $^+$ and Xe $^+$ on Be	3170
Sputtering by Ar^+ , Kr^+ and Xe^+ on C	3171
Sputtering by Ne^+ , Ar^+ , Kr^+ , Xe^+ , $A\ell^+$ on $A\ell$	3172
Sputtering by Ar ⁺ , Kr ⁺ , Xe ⁺ on Ti	3173
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ , Hg ⁺ on V	3174
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on Cr	31/5
Sputtering by Hg^+ on Cr	3176
Sputtering by N ⁺ , Ne ⁺ , Ar ⁺ on Fe	3176
Sputtering by Kr ⁺ , Xe ⁺ , Cs ⁺ , Hg ⁺ on Fe	3177
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ , Ni ⁺ on Ni	3178
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on Cu	3179
Sputtering by Cu ⁺ , Hg ⁺ , Pb ⁺ on Cu	3180
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on Mo	3181
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on Pd	3182
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on Ag	3183
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ , Hg ⁺ on Ta	3184
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on W	3185
Sputtering by Ne ⁺ , Ar ⁺ , Kr ⁺ , Xe ⁺ on Au	3186
Semi-Empirical Formulation for Sputtering Yield due to Heavy Particle Impact	3187
	3192
	General Formula for Modelling Sputter Yield for Light Ion Impact

INTRODUCTION

Sputtering Yield. Is defined as the number of target atoms removed per projectile atom incident. It is measured as a function of incident projectile energy and as a function of projectile incidence angle on the surface. Unless otherwise indicated the yields presented are for normal incidence.

Angular Dependence. Yield increases rapidly with increasing incidence angle (measured between projectile impact direction and target surface normal. For heavy particles (mass > 4 anu)—the vield Y increases as

$$Y(\theta) = Y(0) \frac{1}{\cos \theta}$$

where v is incidence angle and Y(0) is the yield at normal incidence ($v=0^{\circ}$).

State of the Sputtered Species. From a monatomic target the ejected particles are generally neutral atoms with small fractions of ions and multimers (10^{-2} to 10^{-3}) of each species may be excited. While there is much information on charge and quantum states this is poorly digested and is not reproduced here.

Energy of Sputtered Species. For heavy particle impact where ejection results from a collision cascade the yield of sputtered particles Y(E) as a function of ejected particle energy E often follows the equation

Y(E)
$$\alpha = \frac{1}{(E+E_B)^2} + \frac{1}{(1+E/E_B)}$$

Here \mathbf{E}_{B} is the binding energy of the ejected atom while it was in the lattice, and may be approximated by sublimation energy found in many standard reference books.

Topographical Changes. It is well known that sputtering of a surface cause changes to topography resulting in such features as cones, ripples and faceted pits. Cones are due sometimes to impurity particles having a low sputtering coefficient which protects the underlying substrate. These various features are also often associated with preferential etching of different crystallographic faces of polycrystalline materials. Selective etching at grain boundaries and defects is also known.

Sputtering of Alloys and Compounds. The data we present are for monatomic (generally metallic) polycrystalline matals. In the sputtering of alloys or compounds one anticipates first a deplet of the component(s) exhibiting the highest sputtering yield leading the control surface composition. Thus yield measured by weight loss is a functor of projectile dose. Also for compounds there may be a very high yield of molecules. Thus one cannot necessarily estimate yield from an alloy or compound by some average of the yields measured for the constituents in monatomic targets.

Effects of Ambient Atmosphere. An ambient atmosphere of reactive species (e.g. oxygen or hydrocarbons) produces substantial changes to the fluxes of sputtered ions and sputtered excited species. However, such an atmosphere does not appear to substantially change the flux of sputtered atoms which represents the bulk of ejected material. Thus the sputtering yields are not greatly influenced by the ambient atmosphere. Non reactive gases do not appear to

influence yield nor distribution of quantum states.

Semi-empirical Formulae to Estimate Yield. Sputtering yield is related to energy transfer to the lattice which causes atoms from the surface to aquire sufficient energy to overcome their binding to the solid and thereby escape. Thus yield should be related to stopping power, particle masses, projectile impact energy and target binding energy. A number of semi-empirical formulations have been devised to represent sputtering yield. Not only are they more convenient than raw data for modelling purposes but they also permit estimates for projectile target combinations that have not yet been subjected to experimental study. We discuss such formulae in sections H-1.13 and H-1.32.

Data Presented Here. Due to space limitations we present only a small fraction of the available sputtering yield data. Further lata in graphical and tabular form can be found in the reviews listed below. Also the semi-empirical formulations given in sections H-1.13 and H-1.32 can be utilized.

Reviews and Data Compilations.

- N. Matsumami, Y. Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, F. Morita and R. Shimizu. Energy Dependance of Sputtering Yields of Monatomic Solids. Institute of Plasma Physics, Nagoya University Nagoya Japan. Report No., 1873-24-14 (June 1980).
- J. Roth, J. Bohdansky, W. Ottenberger. <u>Data on Low Energy Light Ion Sputtering.</u> Mix-Planck Institut (Mr.Pl. 18m) physik, Garching, W. Germany. (Unpublished report dated May 1979).
- C. F. Barnett, J. A. Rav, E. Ricci, M. I. Wilker, E. W. McDaniel, E. W. Thomas, H. B. Gilbody. "Atomic Data for controlled Fusion Research". Oak Ridge National Laboratory Report ORNL-5207, 1977. (See Volume II, Section D).
- R. Behrisch (Ed). Sputtering by Ion Bombardment.. To be published as a book in the series "Topics of Applied Physics" by Springer-Verlag, Heidelberg.
- A. R. Erauss and R. B. Wright. J. Nucl. Mat. 89, 229 (1980). (A bibliography of data on kinetic energy and mass distribution of sputtered particles).

H, D, $^{b}_{\rm He}$. The solid curves are a fit calculated from Energy dependence of the sputtering yield of Be with Eq. 1 of Table H-1.13

Reference: 162

He. The sputtering yields for different kinds of graphite Energy dependence of the sputtering yield of C with H, D, vary widely according to their structure and orientation. Here only data for pyrolytic carbon (Union Graphite) are reported. For sputtering with D and H, an increase of Graphical Data H-1.2

the sputtering yield at elevated temperatures ($\sim 500^{\rm o}{\rm C})$

curves, are a fit calculated from Eq.1. of Table H-1.13 due to chemical effects has been observed. The solid

References: 1,3,465.

Energy dependence of the sputtering yield of T. with H Eq. 1 of Table H-1.13; the line for D is interpolated and $^4\mathrm{He}$. The solid curves are a fit calculated from Graphical Data H-1.4 by the same formulation.

Energy dependence of the sputtering yield of Al with H, D, He. The solid curves are a fit calculated from Eq. 1 Table H-1.13

Reference: 1,6

Graphical Data H-1.3

Reference: 1,547.

SPUTTERING YIELD (ATOMS/10N)

Graphical Data H-1.6

Energy dependence of the sputtering yield of Fe with H, D and He. The solid curves are a fit calculated from Eq. 1 of Table H-1.13

Energy dependence of the sputtering yield of V with H and 4 He. The solid curves are a fit calculated

from Eq. 1 of Table H-1.13.

Reference: 1

Graphical Data H-1.5

Reference: 1.

Graphical Data H-1.8

Energy dependence of the sputtering yield of 2r with H and He. The solid curves are a fit calculated from Eq. 1 of Table H-1.13

Energy dependence of the sputtering yield of Ni with

H, D, He and Ni. The solid curves are a fit

calculated from Eq. 1 of Table H-1.13

Reference: 1,8,9

Reference: 1,10.

D, and $^4_{\rm He}$. The solid curves are a fit calculated from Eq. 1 of Table H-1.13. Energy dependence of the sputtering yield of Ta with H, Graphical Data H-1.10

Energy dependence of the sputtering yield of Mo with

H, D, He, He. The solid curves are a fit

calculated from Eq. 1 of Table H-1.13

Reference: 1,11

Energy dependence of the sputtering yield of Au with H, D, $^3\mathrm{He}$ and $^4\mathrm{He}$. The solid curves are a fit calculated from Eq. 1. of Table H-1.13. D, He and O. The dashed curves indicate an additional lower surface binding energy than tungsten atoms. The be due to sputtering of tungsten oxide molecules with sputtering mechanism at low energies in a background pressure of 8 \cdot 10^{-5} Torr 0_2 . This mechanism might orlid and dashed curves are a fit calculated from

Reference: 1,11.

Eq. 1 of Table H-1.13, Reference: 1,5

Tabular Data R-1.13

Semi-Empirical Formulation for Sputtering

Yields Due to Light Particle Impact

Symbols

M₁ projectile mass (amu)

 M_2 target atom mass (amu)

E projectile energy (eV)

Eth threshold energy of the sputtering process (eV)

 E_{B} surface binding energy of the target atom (eV).

Yield Expression

where

$$Y = 6.4 \cdot 10^{-3} \, M_2 \, \gamma^{5/3} \, \left(\frac{E}{E_{th}} \right)^{1/4} \, \left(1 - \frac{1}{E/E_{th}} \right)^{7/2} \quad \text{atoms/ion}$$

$$\gamma = \frac{4 \, M_1 \, M_2}{(M_1 + M_2)^2} \tag{1}$$

.

 $E_{\mbox{th}}$ - take from empirical values tabulated on the left or see note 4 below

Limitations

$$M_1/M_2 < 0.4$$

Accuracy

Represents empirical data to within +25%.

Source

J. Roth, J. Bohdansky, W. Oltenberger Data on Light Ion Sputtering, Max-Planck Institut für Plasmaphysik, Garching May 1979 (Unpublished report).

H. L. Bay, J. Roth, J. Bohdansky. J. Appl. Phys. 48, 4722 (1977).

Threshold energy in eV

ton	н	D	He ³	He 4
arget			<u> </u>	
A1	53	34		20.5
Au	184	94	60	44
Be	27.5	24		33
c	9.9	11		16
Fe	6.1	40	!	35
Mo	164	86	45	19
Ni	4 ?	32.5		20
Si	24.5	17.5		14
Ta	460	235		100
Ti	43.5	1		22
v	76		1	27
W	400	175		100
Zr		1		60

J. Bohdansky, J. Roth, M. L. Bay (to be published).

Notes

- 1) While this formulation has been developed primarily to represent yields for light ion impact it is also successful for sputtering of Ni by heavy ions within the limitations stated above.
- 2) The formulation is particularly accurate close to threshold.
- 3) At energies in excess of the range stated under "limitations" the empirical data scatters above the values given by the formulation.
- 4) Values of E th for use in this formula should be taken from the table given above; these are values obtained by fitting to the data. For other cases one could estimate E_{th} as $E_B/\gamma(1-\gamma)$ where E_B is the binding energy. In turn E_B can be equated to the sublimation energy (e.g. JANAF Thermo-Chemical Tables, ed. D. R.Stull, H. Prophet, NSRDS-NBS 37), expressed in eV.

Graphical Data H-1.14

Energy dependence of the sputtering yield for Ne⁺, Ar⁺, Kr⁺ & Xeⁱ impact on Be. The solid line is a best fit to the data by Eq. 1 of H-1.32. From Ref. 12.

Graphical Data H-1.15

Energy dependence of the sputtering yield for Ar^+ , Kr^+ and Xe^+ impact on C. The solid line is a best fit of Eq. 1 (section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.17

Energy dependence of the sputtering yield for Ar^+ , Kr^+ and Xe^+ impact on Ti. The solid line is a best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

5 10³

5 10²

5 104

31/4

ENERUT LVI

Graphical Data H-1.20 Energy dependence of the sputtering yield for Hg⁺ impact on Cr. The solid line is a best fit of Eq. 1 (Section H-1, to the data. From Ref. 12.

Graphical Data H-1.21

Energy dependence of the sputtering yield for N^+ , Ne^+ and Ar^+ impact on Fe. The solid line is a best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12

Graphical Data H-1.22

Energy dependence of the sputtering yield for Kr^+ , Xe^+ , Cs^+ and Hg^+ impact on Fe. The solid line is a best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.23

Energy dependence of the

Energy dependence of the sputtering yield for Ne⁺, Ar⁺, Kr⁺, Xe⁺ and Ni⁺ impact on Ni. The solid line in the best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.24

Energy dependence of the sputtering yield for Ne⁺, Ar⁺, Kr⁺ and Xe⁺ impact on Cu. The solid line is the best fit of Eq. 1 (section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.25

Energy dependence of the sputtering yield for Cu⁺, Hg⁺ and Pb⁺ impact on Cu. The solid line is the best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.26

Energy dependence of the sputtering yield for Ne⁺, Ar⁺, Kr⁺ and Xe⁺ impact on Mo. The solid line is the best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.27

Energy dependence of the sputtering yield for Ne^+ , Ar^+ , Kr^+ and Xe^+ impact on Pd. The solid line is the best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.28

Energy dependance of the sputtering yield for Ne⁺, Ar⁺, Kr⁺ and Xe⁺ impact on Ag. The solid line is the best fit of Eq. 1 (Section H-1.32) to the data. From Ref. 12.

Graphical Data H-1.30

Energy dependence of the sputtering yield for Ne, Ar, Kr and Xe impact on W. The solid line is the best fit of Eq. 1. (Section H-1. 32) to the data. From Ref. 12.

Tabular Data H-1.32

Semi-Empirical Formulation for Sputtering Yields

due to Heavy Particle Impact

Symbols

E = Projectile energy (eV)

 $E_{\rm th}^{-}$ Threshold energy for sputtering (found by fitting to the data) (eV).

P = Dimensionless factor found by fitting to the data.

Reduced elastic stopping cross section, dimensionless. (Expressed in analytical form below).

 ϵ = Reduced energy, dimensionless.

A factor related to nuclear charge and mass of projectile and target; given in tabular form (eV $^{-1}$)

Yield Expression.

$$Y = P - S_{n} \left\{ 1 - \left(\frac{E_{th}}{E} \right)^{\frac{1}{2}} \right\}$$
 atoms/ion (1)
$$S_{n} = \frac{3.441 \sqrt{\epsilon} \log(\epsilon + 2.718)}{1 + 6.355 \sqrt{\epsilon} + \epsilon(-1.708 + 6.882 \sqrt{\epsilon})}$$
 (2)

where

$$S_{n} = \frac{3.441 \sqrt{\epsilon} \log(\epsilon + 2.718)}{1 + 6.355 \sqrt{\epsilon} + \epsilon(-1.708 + 6.882 \sqrt{\epsilon})}$$
(2)

$$\varepsilon = C_e E$$
 (3)

The factors P and $E_{\mbox{\scriptsize th}}$ are found by fitting the equations to the available data; the factor C is computed. All three factors are tabulated on a subsequent

Limitations.

Formulation has been tested for a variety of projectile target combinations and exhibits no obvious limitations. For light ion impact (H^+ , D^+ , He^+) at low energies (10 keV and below) the formulation of section H-1.13 fits the data better. The formulation appears to be inadequate close to threshold (see note 3 below).

Accuracy.

Represents empirical data to better than ±25%.

Source.

N. Matsunami, Y. Yamanura, Y. Itikawa, N. Itoh, K. Kazumata, S. Miyagawa, K. Morita, and N. Shimizu. "Energy Dependence of Sputtering Yields of Monatomic Solids". Institute of Plasma Physics, Nagoya University, Nagoya, Japan. Report No. IPPJ-AM-14. To be published in Radiation Effects Letters.

Notes.

(1) The fitted curve represented by Eq. 1 is shown in the Graphical Data H-1.15 through H-1.31 by the solid line.

- (2) The formulation for Y is similar to that by Sigmund [Phys. Rev. 184, 383 (1969) and 187, 768 (1969)] Sigmund gives anaytical forms of the constant P but does not include the threshold energy factor (essentially Sigmund has $E_{\rm th}=0$).
- (3) The values for threshold energy obtained from the fit of Eq. 1 to the data differ from those given in H-1.13 for the cases where comparison is possible; they also disagree badly with theoretical values. The implication is that this equation is inadequate close to threshold.

Tabular Data H-1.32 (continued)

Empirical parameters for the sputtering equation of Matsunami et al. $\,$

Į,	Projectile				يد	Projectile			
Target	oje				Target	oje			
Ta	Pr	0	P		Ta	Pr	$c_{\mathbf{e}}$	P	£th
	•••	C _e 1.389E~3		E th 89.52	ርቱ	не	1.999E-4	0.7059	74.16
ве	He	9.382E~5	0.9835 2.682	98.27		No	2.712E-5	6.471	62.70
	Ne Ne	2.715E~5	3.620	73.10		Ar	1.093E-5	9.284	41.79
	Ar			89.39		Kr	3.239E-6	19.10	66.76
	Kr	5.988E~6 2.360E~6	5.346	138.8		Xe	1.4985-6	30.33	34.17
	Хe	2.3006-0	7.536	130.0		Чg	6.727E-7	21.28	96.33
c	D	2.239E-3	0.1092	31.88		-			
С	Ď	9.196E-4	0.4505	167.4	Fe	Не	1.814E-4	0.5890	67.71
	He	2.184E~5	6.768	348.9		N	4.053E-5	5.994	407.7
	Ar Kr	5.010E-6	1.936	93.73		Ne	2.509E-5	4.504	35.85
	Хe	2.007E-6	1.485	18.07		Ar	1.025E-5	9.133	52.56
		8.189E-7	12.44	286.5		Kr	3.134E-6	17.23	81.77
	Hg	0.1096-7	12,44	200.5		Хe	1.440E-6	27.00	96.42
a 1	uо	4.085E-4	0.9009	151.4		Cs	1.396E-6	37.56	348.9
ΑI	He	4.489E-5	4.565	93.17		Нg	6.515E-7	29.28	164.7
	Ne Al	2.895E~5	4.748	39.44		Pb	6.162E-7	38.45	25.37
	Ar	1.592E~5	6.936	71.28					
		4.177E-6	11.85	81.07	Co	не не	1.734E-4	0.5597	89.25
	K.r	1.775E-6		86.28		Ne	2.430E-5	6.902	81.92
	Xe	7.556E-7	15.34			Ar	1.002E-5	11.64	65.54
	Нg	7.336E-7	23.74	133.6		Co	5.260E-6	5.886	41.87
e i	u.	3 740E-4	0 4075	05 03		Kr	3.098E-6	15.47	86.61
21	He	3.740E-4	0.4875	85.02 90.95		Хe	1.433E-6	22.70	82.71
	Ne	4.183E-5	2.835			Hg	6.515E-7	34.86	146.8
	Ar Kr	1.497E-5 3.964E-6	3.987	64.20		,			
	Χe	1.692E-6	6.912 11.59	92.71	N	iН	3.573E-4	0.05155	82.13
	Pb	6.810E-7		159.3 2.435		D	3.514E-4	0.1168	58.71
	FD	0.0102-7	15.52	2.433		Нe		0.5689	54.52
Tri	Не	2.221E-4	0.2605	56.38		0	3.139E-5	1.670	82.86
1.4	Ne	2.944E-5	2.725	61.79		Ne	2.322E-5	5.311	39.09
		1.168E-5		57.15		Ar		12.69	53.94
	Ar Kr	3.450E-6	3.933 6.948	86.89		Ni		10.43	52.65
	Хe	1.556E-6	10.37	118.6		Kr		17.53	75.63
	Hg	6.933E-7	13.84	106.2		Xe	1.371E-6	24.35	93.92
	9	0.7332 .	13,04	100.2		Hg	6.239E-7	36.43	115.4
v	Нe	2.108E-4	0.2536	90.93		-			
•	Ne	2.840E-5	3.415	79.57					
	Ar	1.139E-5	3.899	44.73					
	Kr	3.409E-6	8.466	79.38					
	Хe	1.548E-6	12.38	83.06					
	Hg	6.936E-7	19.18	160.2					
	ng	0.7300-7	17.10	*****					

Tabular Data H-1.32 (continued)

Empirical parameters for the sputtering equation of Matsunami et al.

	le I					1e			
e t	Projectile				Target	Projectile			
Target	roj				arg	ro	$c_{\mathbf{e}}$	P	E _{th}
H	Ď.	$c_{e}^{}$	P	E _{th}	40 H		2.119E-4	8.914E-3	327
Cu	מ	3.366E-4	0.2694	405.3	*10	D	2.098E-4	0.01602	131.5
	He	1.589E-4	0.3420	49.10		Не	1.006E-4	0.1457	99.28
	N	3.629E-5	4.756	22.06		Ne	1.565E-5	3.848	59.02
	Ne	2.269E-5	9.678	37.07		Ar	6.980E-6	5.405	39.32
	Ar	9.477E-6	16.01	33.93		Kr	2.396E-6	9.982	44.13
	Cu	4.452E-6	22.27	14.46		Хe	1.179E-6	19.59	73.07
	Kr	2.980E-6	31.52	56.50		Cs	1.146E~6	31.21	253.7
	Хe	1.391E-6	49.07	79.97		Hg	5.659E~7	19.81	135.0
	Cs	1.350E-6	68.60	186.1		Pb	5.374E-7	31.26	135.1
	Нq	6.375E-7	63.21	122.1					
	₽b	6.035E-7	68.25	111.3	Ru	Ne	1.490E~5	4.774	72.74
						Ar	6.696E-6	10.55	58.70
Ge	He	1.411E-4	0.3502	79.96		Kr	2.323E-6	21.83	86.21
	Ne	2.073E-5	5.178	67.53		Хe	1.152E-6	28.50	91.43
	Ar	8.850E-6	8.296	29.12					
	ĶĽ	2.862E-6	14.82	72.07	Rh	Нe	9.221E-5	0.2683	90.57
	Хe	1.358E-6	20.54	83.73		Ne	1.454E-5	6.251	75.52
	Нa	6.310E-7	24.89	110.8		Ar	6.549E-6	13.88	68.49
						Kr	2.281E-6	24.30	76.39
Zr	He	1.0695-4	0.1647	163.3		Хe	1.133E-6	31.30	80.13
	Li	6.788E-5	0.6151	101.8		Hg	5.485E-7	41.58	96.42
	Мe	1.648E-5	3.008	70.90					
	Ar	7.294E-6	6.061	53.12	Pd	Нe	8.973E-5	0.6540	75.61
	Kr	2.477E-6	6.196	60.16		Ne	1.422E-5	6.440	41.67
	Xe 	1.211E-6 5.777E-7	12.75	99.15		Ar	6.435E-6	13.96	41.77
	Нa	5.///[-/	12.60	91.80		Kr	2.256E-6	28.52	49.03
	. 5	2 1628-4	0.03504	ra 17		Хe	1.126E-6	43.72	63.04
NI	מ כ	2.163E~4	0.02584	52.37		Hg	5.468E-7	52.60	78.25
	He	1.036E-4 6.585E-5	0.2386	191.0					
	Li No	1 (025-5	0.8341	125.0	Ag	H	1.831E-4	0.1271	268.3
	Ne		2.896	63.97		D	1.815E-4	0.2666	44.60
	Ar		7.456	75.26		Ne	1.387E-5	13.09	45.34
	Kr		10.75	90.38		Ar	6.292E-6	24.67	23.39
	Nb v-		10.39	367.5		Kr	2.212E-6	60.33	84.88
	Xe		25.50	207.5		Ag	1.443E-6	89.25	89.07
	Cs		22.39	4.010		Хe	1.106E-6	94.51	95.93
	Hg	5.690E-7	12.41	105.9		Hg	5.384E-7	140.	123.6

Tabular Data H-1.32 (continued)

Empirical parameters for the sputtering equation of Matsunami et al. $\ensuremath{\text{a}}$

Target	Projectile	ر	р	P		Target	Projectile	С ₍ ,	L,	^E th
Sn	Ar	J.982E-6		Eth		ζr	Не	4.6642~	0.0791	8 18 .1
	Sn	1.249E-6		51.82			Ne			64.22
		_	20.60	56.43			Ar			57.87
Нf	Ne	8.665E-6	3.125				Kr	1.518E-6		74.44
	Ar	4.172E-6					Хe	8.169E-7	42.31	92.65
	Kr	1.608E-6	,,,,,	•			Нд	4.268E~7	46.20	38.30
	Хe	8.578E-7		68.16						
	Нg	4.44CE-7	22.56	118.3		Ρt	He	4.588E-5	0.2193	179.3
			22,50	109.0		1	Ne	7.900E~6		56.34
Тa	Ne	8.527E-6	2,457	F4 64		i	Ar	3.837E-6		54.99
	Ar	4.112E-6	5.801	54.64		1	Kr	1.501E-6	32.93	83.10
	Kr	1.589E-6	17,35	50.15		>	Кe	8.093E~7	50.28	92.13
;	Xe	8.488E-7	22.93	81.60		F	łg	4.236E-7	67.79	112.3
E	Ħg	4.402E-7	19.56	86.49						
			13.30	99.34	2	Au A	ſ	9.300E-5	0.05583	372.9
W F	ie	4.908E-5	0.0571	3 165.3		D	1	9.253E~5		152.0
N		8.395E-6	3.031	57.92		Н	e	4.513E-5	0.4742	68.88
A	r	4.054E-6	7.493	65.92		N		1.169E-5	4.327	30.89
K	r	1.571E-6	16.32	73.80		N	9	7.780E-6	7.831	28.05
X	е	8.408E-7	32.15	95.61		A:	r	3.783E~6	26.05	62.12
C	s	8.191E-7	30.21	51.47		K		1.482E-6		97.73
н	g (4.369E-7	16.31	92.18		Χ¢		8.003E-7	126.0	105.2
				72.10		Āι		4.259E-7		120.7
Re Ne	2 8	3.264E-6	3.864	77.98		Нg	Ţ	4.194E-7	134.6	3€.26
Aı	: 3	3.996E-6	11.18	71.67						
Кı	- 1	.552E-6	24.96	85.87	Th	Ne.		6.688E-6	3.436	32.55
Χc	2 8	.319E-7	33.11	96.64		Ar		3.300E-6	7.758	53.79
Hg	4	.330E-7	32.46	105,6		Kr		l.325E-6	20.21	78.22
						Хe	7	7.292E-7	29.34	83.14
s He		.744E-5	0.1555	187.0						
Ne	8	.144E-6	3.839	80.74	Ü	Ne		.517E-6	5.003	70.40
Ar		.946E-6	12.11	84.66		Ar		.223E-6	11,29	63.84
Kr		.537E-6	25.67	91.50		Κr		.299E-6	27.14	75.83
Χe	8.	.261E-7	35.74	95.12		Хe		.169E-7	27.44 1	22.3
						Hq	3	.844E-7	35.55	63.23

REFERENCES

- J. Roth, J. Bohdansky and W. Ottenberger, "Data on Low Energy Light Ion Sputtering" Max Planck Institut fur Plasma Physik. Report No. IPP 9/26 May 1979.
- 2. J. Roth, J. Bohdansky, R. S. Blewer, W. Ottenberger, J. Borders. J. Nucl. Mat. 85&86, 1077 (1979).
- 3. R. Behrisch, J. Bohdansky, G. H. Oetjen, J. Roth, G. Schilling and H. Verbeek, J. Nucl. Mat. 60, 321 (1976).
- 4. J. Roth, J. Bohdansky, W. Poschenrieder, and M. K. Sinha, J. Nucl. Mat. <u>63</u>, 222 (1976).
- 5. J. Roth, J. Bohdansky, P. A. Martinelli, Proc. Int. Conf. on Ion Beam Modification of Materials, Budapest, Sept. 1979.
- 6. J. Bohdansky, J. Roth, J. Brossa, J. Nucl. Mat. 85 & 86, 1145 (1979).
- 7. J. Bohdansky, J. Roth, M. K. Sinha, W. Ottenberger, J. Nucl. Mat. <u>63</u>, 115 (1976).
- 8. J. Bohdansky, H. L. Bay, J. Roth., Proc. 7th Int. Vacuum Congress and 3rd Int. Conf. on Solid Surfaces, Vienna, (1977) (Pub. Pergammon Press. Oxford 1977) p. 1509.
- 9. E. Hechtl, H. L. Bay, J. Bohdansky, Appl. Phys. 16, 147 (1978).
- J. Bohdansky, J. Roth, W. P. Poschenrieder, Inst. Phys. Conf. Ser. <u>28</u>, 307 (1976).
- 11. H. L. Bay, J. Roth, J. Bohdansky, J. Appl. Phys. 48, 4722 (1977).
- 12. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kamazuma, S. Miyagawa, K. Morita and R. Shimizu. "Energy Dependence of Sputtering Yields of Monatomic Solids". Institute of Plasma Physics, Nagoya University, Japan. Report No. IPPJ-AM-14, June 1980.
- 13. N. Laegreid, and G. K. Wehner, J. Appl. Phys. 32, 365 (1961).
- 14. H. Fetz and H. Oechsner, 6th Int. Conf. on Ioniz. Phenom. Gases. Paris (1963) (ed. P. Hubert and E. Cremieu-Alcan, Pub. SERMA Paris 1963) Vol. II page 39.
- 15. D. Rosenberg and G. K. Wehner, J. Appl. Phys. 33, 1842 (1962).
- 16. G. Betz, R. Dobrozemaky, F. P. Vishbook and H. Wotke. 9th Int. Conf. on Phenom. in Ioniz. Gases, Bucharest (1969) (pub. Editura Academiei Republicii Socialiste Romania, Bucharest, Roumania) p. 91.
- 17. O. Almen and G. Bruce, Nucl. Instr. Method. 11, 257 (1961).

- 18. C. Fert, N. Colombie, B. Fagot and P. V. Chuong, <u>Le Bombardement Ionique</u>, (Editions du Centre Nationale de la Recherche Scientifique, Paris, France 1962) p. 67.
- 19. W. H. Hayward, and A. R. Wolter, J. Appl. Phys. 40, 2911 (1969).
- 20. R. V. Stuart and G. K. Wehner, J. Appl. Phys. 33, 2345 (1962).
- 21. W. O. Hofer, and H. Liebl, Ion Beam Surface Layer Analysis, Karlsruhe (1976).
- 22. W. O. Hofer, H. L. Bay, P. J. Martin, J. Nucl. Mater. 76 & 77, 156 (1978).
- 23. G. K. Wehner, Phys. Rev. 108, 35 (1957).
- 24. G. K. Wehner, D. Rosenberg, J. Appl. Phys. 32, 887 (1961).
- 25. O. Almen, G. Bruce. Trans. Vac. Symp. Washington D. C. (1961) p. 245 (see also Nucl. Instrum. and Methods 11, 257 (1961) and 11, 279 (1961)).
- 26. G. K. Wehner, Phys. Rev. 112, 1120 (1958).
- 27. R. V. Stuart, G. K. Wehner, Phys. Rev. Lett. 4, 409 (1960).
- 28. M. Bader, F. C. Wittebone and T. W. Snouse, NASA Tech. Report. R 105 (1961).
- 29. H. Patterson, D. H. Tomlin, Proc. Roy. Soc. London A265, 474 (1962).
- 30. V. K. Koshkim, J. A. Rysov, I. I. Shkarban, and B. M. Gourmin. 9th Int. Conf. on Phenom. in Ioniz. Gases. Bucharest (1969) (Pub. Editura Academiei Republicii Socialiste Romania, Bucharest, Roumania) p. 92.
- 31. G. K. Wehner, J. Appl. Phys. 30, 1762 (1959).
- 32. S. G. Askerov and L. A. Sena, Soviet Phys. Solid State 11. 1288 (1969).
- 33. G. Holmen and O. Almen Arkiv for Physik. 40, 429 (1969).
- 34. H. L. Bay, J. Bohdansky, and E. Hechtl, Rad. Effects. 41, 77 (1979).
- 35. A. Fontell and E. Arminen. Can. J. Phys. 47, 2405 (1969).
- 36. S. D. Dahlgren and E. D. McClanahan, J. Appl. Phys. 43, 1514 (1972).
- 37. P. K. Rol, J. M. Fluit and J. Kistemaker, Physica 26, 1000 (1960).
- 38. O. C. Yonts, O. E. Normand, and D. E. Harrison. J. Appl. Phys. <u>31</u>, 447 (1960).
- 39. G. K. Wehner, R. V. Stuart and D. Rosenberg. General Mills Report No. 2243 (1961).
- 40. C. H. Weijsenfeld, Thesis, University of Utrecht 1966.
- 41. M. I. Guseva, Soviet Physics, Solid State 1, 1410 (1960).

100 to 10

- 42. B. Perovic, and B. Cobie, 5th Int. Conf. on Ioniz. Phenom. in Gases, Munich 1961 (North Holland Pub. Co. Amsterdam 1962) p. 1165.
- 43. A. L. Southern, W. R. Willis and M. T. Robinson, J. Appl. Phys. <u>34</u>, 153 (1963).
- K. Akaishi, A. Miyahara, Z. Kabeya, S. Skenobu, M. Komizo and T. Gotol, J. Vac. Soc. Japan 20, 161 (1977).
- 45. P. Keywell, Phys. Rev. 102, 690 (1956).
- 46. H. Ismail, Rev. Phys. Appl. 5, 759 (1970).
- 47. B. Emmoth, T. Fried and M. Braun, J. Nucl. Mater, 76 & 77, 129 (1978).
- 48. C. E. Ramer, M. A. Narasimham, H. K. Reynolds, and J. C. Allred, J. Appl. Phys. 35, 1673 (1964).
- 49. K. Wittmaack. Surf. Sci. 53, 626 (1975).
- 50. V. K. Meyer, and A. Guntherschulze. Z. Phys. 71, 19 (1931).
- 51. O. Almen, and G. Bruce. Nucl. Instr. Meth. 11, 279 (1961).
- J. N. Smith, C. H. Meyer, and J. K. Layton, Trans. Am. Nucl. Soc. 22, 29 (1975). Also: J. N. Smith, C. H. Meyer and J. K. Layton, J. Appl. Phys. 46, 4291 (1975).
- J. S. Colligon and R. W. Bramham. "Atomic Collisions Phenomena in Solids," (Noth Holland Pub. Co. Amsterdam 1970) p. 258.
- 54. H. H. Andersen, and H. L. Bay. Rad. Effects 19, 139 (1973).
- 55. E. P. Eernisse. Appl. Phys. Lett. 29, 14 (1976).
- 56. N. Colombie. Thesis, Univ. Toulouse (1964).
- 57. J. S. Colligon, M. H. Patel. Rad. Effects. 32, 193 (1977).
- 58. H. H. Andersen and H. L. Bay, J. Appl. Phys. <u>46</u>, 1919 (1975). Ibid <u>46</u>, 2416 (1975).
- T. Nenadovic and Z. Jurela. Phenom. Ioniz. Gases, Bucharest (1969).
 (Editura, Academiei Republicii Socialiste Romania, Bucharest, Roumania)
 p. 90.

H-3. SECONDARY ELECTRON EMISSION BY ION IMPACT

CONTENTS

Page

Introduction

- H-3.1 Secondary Electron Emission Coefficient for Various
- H-3.3 Secondary Electron Emission Coefficients for H^+ , H_2^+ , H_3^+ , He^+ , Ne $^+$ and Ar $^+$ on Au and W.....
- H-3.4 Secondary Electron Emission Coefficients for Ar Impact on Mo, Ta, Zr, A/, Cu and Ni.....

INTRODUCTION

This section updates Section H-3 of Technical Report H-78-1 "Compilation of Data Relevant to Rare Gas and Rare Gas - Monohalide Excimer Lasers. Volume II" (U.S. Army Missile Research and Development Command, Redstone Arsenal, Alabama, December 1977). For low energy impact of light projectiles the earlier compilation cited above remains quite adequate as there has been no significant additional data. What we show here is some additional data for projectile energies of 500eV and greater. Data given are for normal incidence on polycrystalline targets. Some excellent data on single crystal targets is given in reference 4 but not reproduced here.

References.

- (1) E. V. Alonso, R. A. Baragiola, J. Ferron, M. M. Jakas and A. Olivia Florio, Phys. Rev. B 22, 80 (1980).
- (2) G. D. Magnuson and C. E. Carston, Phys. Rev. <u>129</u>, 2403 (1963).
- (3) Norbert Stiller, Thesis, University of Giessen, West Germany, August 1979.
- (4) C. E. Carlston, G. D. Magnuson, P. Mahadevan and D. E. Harrison, Phys. Rev. 139, A729 (1965).
- (5) R. A. Baragiola, E. V. Alonso, A. O. Florio, Phys. Rev. B 19, 121 (1978).

Graphical Data H-3.1. Secondary electron emission coefficient for various ions on Az as a function of projectile velocity. From Ref. 1.

Graphical Data H-3.2. Secondary electron emission coefficients for Ne⁺, Ar⁺, Kr⁺ and Xe⁺ impact on Mo and Cu. From Ref. 2

Graphical Data H-3.3 Secondary electron emission coefficient for H+, H₂+, H₃+, He+, Ne+ and Ar+ on Au and W as a function of impact velocity. From Ref. 3 Includes also data from Ref. 5

Graphical Data H-3.4. Secondary electron emission coefficients for Ar⁺ impact on Mo, Ta, Zr, Al, Cu and Ni. From Ref. 2.

H-5. ION REFLECTION FROM SURFACES

CONTENTS

	Page
Introduction	. 3199
Tabular Data H-5.1. Reflection of light ions (H, D, He)	. 3200
Graphical Data H-5.2 Reflection Coefficients (H, D, T, He)	. 3202
Graphical Data H-5.2. Reflection Coefficients of heavy ions	. 3203

INTRODUCTION

This section presents data on coefficents for reflection of ions from surfaces as the ratio of particles reflected (ions plus atoms, integrated over all exit angles and energies) to particles incident. This supplements coverage of such processes given previously as section H-5 of Technical Report H-78-1, "Compilation of Data Relevant to Rare Gas-Rare Gas and Rare Gas - Monohalide Excimer Lasers Volume II" (U.S. Army, Missile Research and Development Command, Redstone Arsenal, Alabama, December 1977). For light ion impact (H,D,He) there is excellent coverage due in large measure to the need for such data in the Fusion Energy Program. We provide an extensive presentation of data and indicate a reliable method for interpolating values for cases that have not yet been considered (H-5.1). For heavier species we provide what little data are in the literature (H-5.2). For heavy projectiles at low energies one might make order to magnitude estimates by using some average of the data given by the scaling procedure of H-5.1.

Tabular Data H-5.1. Reflection of Light Ions (H,D,He).

A substantial quantity of experimental data is available which agrees well with theoretical predictions. There is no evidence that the reflection coefficient for an incoming ion (e.g. H^+) is any different from that for the corresponding atom (e.g. H).

It is most convenient to plot the reflection coefficient R_N^{-} (particles reflected, integrated over all exit angles and energies : by particles incident) as a function of the reduced energy ϵ defined as follows:

$$\epsilon = \frac{M_2}{M_1 + M_2} \frac{a}{Z_1 Z_2 e^2} E$$

Lindhard has chosen for 's' the Thomas-Fermi screening length a_{TF}

$$a_{TF} = 0.4685 \left(z_1^{2/3} + z_2^{2/3} \right)^{-1/2}$$

 $\rm Z_1$ and $\rm Z_2$ are the charges and $\rm M_1$ and $\rm M_2$ are the masses of the ion and the target atom. Fig the electron charge.

With
$$e^2 = 14.39 \text{ eV } \%$$
 one gets
$$= 32.55 \cdot \frac{M_2}{M_1 + M_2} \cdot \frac{1}{Z_1 Z_2 (Z_1^{2/3} + Z_2^{2/3})^{1/2}} \cdot \text{E(keV)} = \varepsilon_L \text{E(keV)}$$
 (1)

In the following figure we show theoretical model calculations of R_N plotted as a function of reduced energy ε , for a variety of projectile-target combinations. We choose to present theory rather than experiment because it covers a greater energy range particularly down to low energies. Experiment is in good agreement with theory as is shown in the primary references given below.

To obtain R_N for a projectile-target combination given on the graph the factor \cdot_L should be identified from the table, the reduced energy of interest should be computed and the relevant R_N read from the graph. For a projectile-target combination not on the graph the factor ϵ_L should be calculated from the formulae given above, the reduced energy of interest ϵ evaluated and data points read from the graph for a target of nuclear charge closest to that of interest. For compounds one may estimate R_N by evaluating the reflection coefficients for each constituent atomic species and take a sum weighted according to the atomic composition of the target compound or alloy.

This scaling procedure should provide adequate estimates of R, to within a factor of two, except for low Z targets (e.g. C) where the error will be larger. The data obtained by this procedure will be appropriate to normal incidence on a polycrostalline target.

Reference. (i) The graph is taken from: W. Eckstein and H. Verbeek "Data on Light Ion Reflection", Report IPP 9/32 (Max Planck Institut für Plasma Physik, Garching, West Germany, August 1979. This report contains extensive theoretical and experimental data gathered from various published and unpublished sources.

The theoretical simulation is by the MARLOWE code described most fully in: M. T. Pobinson and I. M. Torrens, Phys. Rev. B9, 5008 (1974). See also S. Oen, and M. T. Robinson, Mucl. Instr. and Methods 132, 647 (1976).

Target ato	m		ε _L							
Element	2 2	M ₂	Н	D	Т	³ He	4 He			
С	6	12.0	2.414	2.242	2.092	0.9814	0.9200			
Al	13	26.98	0.9449	0.9123	0.8819	0.4223	0.4087			
Si	14	28.09	0.8604	0.8318	0.8050	0.3862	0.3742			
Ti	22	47.90	0.4871	0.4774	0.4680	0.2266	0.2222			
Fe	26	55.85	0.3934	0.3866	0.3800	0.1845	0.1814			
Ni	28	58.69	0.3575	0.3516	0.3459	0.1682	0.1655			
Cu	29	63.54	0.3420	0.3368	0.3317	0.1614	0.1590			
Nb	41	92.91	0.2188	0.2165	0.2142	0.1047	0.1037			
Мо	42	95.95	0.2121	0.2099	0.2078	0.1016	0.1006			
Ag	47	107.87	0.1832	0.1816	0.1799	0.08814	0.08735			
Ta	73	180.95	0.1032	0.1026	0.1021	0.05024	0.04997			
W	74	183.92	0.1014	0.1008	0.1003	0.04937	0.04911			
Au	79	197.0	0.09305	0.09258	0.09212	0.04538	0.04515			

Table showing computed ϵ_L factors for H,D, ^3He and ^4He impact on a variety of targets.

Calculated particle reflection coefficients for several ion-target combinations versus the reduced energy ϵ . Reproduced from reference (i). Fig. H-5.2:

Graphical Data H-5.2. Reflection coefficients for heavy particle scattering from surfaces.

a) K and Na impact on Ag and Au shown as a function of reduced energy (defined by Eq. 1 of preamble to Graphical Data H-5.1). J. Bottiger et. al., Radiation Effects, 11, 133 (1971).

b) Impact of 60 keV Na, K (written Ka), Br, Rb and Cs on Al, Cu, Ag and Au shown for each projectile as a function of target to projectile mass ratio (M_2/M_1) . J. Bottinger et. al., Nucl. Instr. Meth. 170, 499 (1980).

I. SECONDARY ELECTRON SPECTRA CONTENTS

		Pā	ige
I - 1.	Energy Spectra of Secondary Electrons from Electron Impact Ionization	3	205
I - 2.	Energy Spectra of Secondary Electrons from Proton Impact Ionization	3	207
I - 3.	Energy Spectra of Secondary Electrons from Heavy Particle Impact Ionization	3	214

(data presented in this chapter either extend or supersede the data given previously in Chapter I of Volume $\,$ V, pages 2241-2374.)

I - 1. ENERGY SPECTRA OF SECONDARY ELECTRONS FROM ELECTRON IMPACT IONIZATION

	Page
I-1.1	
Secondary Electron Energy Spectra for	
Electron Impact Ionization of CO_2	. 3206

Tabular Data I-2.1 Single Differential Cross Section (Secondary Electron Spectra) for $e^- + CO_2$ Collisions (Units of 10^{-18} cm²/eV)

Secondary Electron	Primary Electron Energy (eV)							
Energy (eV)	50	100	200	400				
1	16.08	22.38	15.66	12.65				
2	25.47	27.62	19.29	12.50				
3	23.37	26.62	20.12	14.44				
4	16.57	19.94	17.52	11.43				
5	14.60	17.53	10.44	10.51				
6	13.51	14.90	12.90	9.32				
8	12.79	12.85	10.64	7.70				
10	12.50	10.12	8.76	6.30				
12	11.26	8.55	7.39	5.47				
15	9.61	8.18	5.77	4.52				
20		6.18	4.46	3.26				
25		4.18	3.22	2.38				
30		3.14	2.57	1.76				
35	' '	2.87	1.77	1.32				
40	,	2.65	1.32	1.04				
50	ļ		0.81	0.687				
55			0.54	0.401				
30	į		0.49	0.277				
00				0.188				
20	!!!			0.137				
40) •			0.131				
50				0.129				
30				0.123				

Accuracy: The quoted uncertainty in these data is $\pm 17^{\circ\prime}$

Reference: These data were taken from T.W. Shyn and W.E. Sharn, Phys. Rev. A 20, 2332 (1979).

I - 2. ENERGY SPECTRA OF SECONDARY ELECTRONS FROM PROTON IMPACT IONIZATION

	Page
I-2,1	
Secondary Electron Energy Spectra for	
Proton Impact Ionization of Ar	Ā

Tabular Data I-2.1

Single Differential Cross Section (Secondary Electron Spectra) for H^+ + Ar Collisions (Units of cm^2/eV)

ENERGY (EV)	5 keV	ENERGY	10 keV	20 keV	ENERGY (EV)	50 keV
	6.44-1R	(EA)	•		1.	3.24-17
1 · 2 ,	8.72-18	1.	7.14-18	2.44-17	ž.	2.91-17
3.	8.44-18	2.	1.10-17	2.30-17	ž.:	2.55-17
4.	7.27-18	3.	1.35-17	2.25-17	.	2.22-17
	6.25-14	4.	1.26-17	2.06-17	3:	2.09-17
5.	6.25-1-	5.	1.16-17	1.89-17	,	2.09-17
6.	5.57-18	6.	1.06-17	1.70-17		1.60-17
7.	5.82-1A	7.	9.92-18	1.60+17	7.	1.68-17
8.	4.43-1A	6.	0.40-18	1.40-17	●.	1.53-17
ė.	3.85-1A	9.	7.68-1A	1.36-17	9.	1.44-17
10.	4.46-18	10.	7.36-18	1.27-17	10.	1.32-17
11.	4.25-18	12.	6.13-18	1.15-17	12.	1.19-17
12	3.24-1 F	14.	5.29-1A	9.28-18	14.	9.98-1 R
13	3.14-18	16.	4.81-18	8.09-1A	16.	9.07-1A
iš	3.26-1 P	18.	2.69-18	6.12-1A	18.	7.56-18
. 5	4,47-1A	20.	2.06-1A	5.13-1A	20.	6.80-1 A
• • •	·	20.	2.00-1H	31.10-1H		
16.	4.38-1 R	22.	1.64-18	4.43-18	25 .	5.32-1A
17	1.75-1A	24.	1.31-18	3.75-1A	30.	4.24-1 R
10	8.14-19	26	1.03-18	3.18-18	35 .	3.36-1 A
19	6.59-19	26.	8.35-19	2.77-18	40.	2.72-1A
20 .	5.46-19	30.	6.78-19	2.42-1A	50 .	1.79-1 A
22.	3.94-19	32.		2.06-1 R	75.	6.58-19
24	2.65-19	34.	5.41-19	1.80-1A	100.	2.35-19
26	2.10-19	34. 36.	4.33-19	1.58-18	125.	8.25-20
	1.59-19		3.48-19	1.38-18	150.	3.08-20
20 30	1.08-19	38.	2.80-19		175.	1.52-20
J.	1.00-14	40.	2.23-19	1.18-1R	2.2.	
32	6.19+2n	45.	1.32-19	8.22-19	200.	1.05-20
34	6.36-2n	50.	8.10-2n	5.83-19	225.	3.38-21
₹6	3.78-2n	55.	5.06-2n	4.06-19		

Note: "Energy (eV)" refers to secondary electron energy and the keV energies, atop the data columns, refer to the incident H⁺ energies.

Accuracy: The estimated uncertainty in these data is 20% except near threshold (<10 eV) where it may be higher.

Tabular Data I-2.1 (continued)

Single Differential Cross Section (Secondary

Electron Spectra) for H⁺ + Ar Collisions

(Units of cm²/eV)

ELECT FON			Prote	on Energy	/ (keV)		•	
(ET)	5	7	10	15	20	30	50	70
1,5	2.31-17	2.48-17	2.38-17	2.36-17	2.87-17	2.77-17	2.52-17	2.67-17
2.0	2. 27-17	2,19-17	2.40-17	2.49-17	3.03-17	2.86-17	2.67-17	2.72-17
3.0	1.62-17	1,90-17	2.14-17	2.38-17	2.80-17	2.46-17	2.46-17	2.51-17
5.0	9.95-18	1. 27-17	1,51-17	1.88-17	2.33-17	2.24-17	2.67-17	2.07-17
7, 5	6.19-18	d.94-18	1. 17-17	1.54-17	1.98-17	2.01-17	1.85-17	1.64-17
10.6	1.95-18	6.19-18	8.51-18	1,17-17	1,60-17	1.75-17	1,6(-17	1.58-17
15.0	3.00-18	4.20-18	5, 35-18	7.43-18	9.71-18	1, 26-17	1. 21-17	1, 14-17
20.0	7.47-19	1.33-18	2.43-18	3.74-18	5.44-14	7.60-18	H.∂∠-1⊣	8.34-18
30.C	1.50-19	3.36-19	7.64-19	1.56-18	2.36-19	3.75-18	5.18-18	5.28-18
50.0	5.05-20	2.69-20	8.93-20	2.66-19	5.07-1+	1.14-18	1,87-10	2.25-18
75.0	1.21-20	6.69-21	1.18-20	3.57-20	8.60-20	2.87-19	6.61-14	9.03-19
160.C	2.01-21	2.01-21	4.32-21	8.75-21	1.61-20	7.05-20	2.47-17	4.05-19
136.0	2.42-21	9.57-22	1.33-21	2. 39-21	2.94-21	1.32-20	7.28-27	1.62-19
160.0	1.55-21	9.34-23	4.60-22	1.03-21	9.93-22	3.34-21	2.07-20	6.56-20
200.0	1.55-22	6.75-22	2.01-22	4.11-22	5.56-22	2. 11-21	7.34-21	2.45-20
250.0		4.51-23	1.89-22	1.38-22	3.11-23	3.03-22	4.29-22	3.16-21
300.C			4.07-24			5.99-23	7.46-23	8. 16-22

Note: "Energy (eV)" refers to secondary electron energy.

Accuracy: The estimated uncertainty in these data is 20% except near threshold (<10 eV) where it may be higher.

Tabular Data I-2.1 (continued) Single Differential Cross Section (Secondary Electron Spectra) for H⁺ + Ar Collisions (Units of cm²/eV)

Proton Energy (keV)

ZWERGY (EV)	50	100	150	200	250	300	EMERGT (ET)
					•		
1.0	4.36-17	2. 14-17	1.74-17	1.40-17	1.47-17	1. 10-17	1 . C
1.3	4.35-17	2.14-17	1. 75-17	1.43-17	1. 10 - 17	1.12-17	1.1
1.6	2.34-17	2, 13-17	1, 27-17	1,46-17	1.317	1,14-17	1.6
4.0	4.34-17	2.13-17	1,60-17	1,50-17	1.36-17	1, 17-17	2.0
2.5	2.29-17	2.13-17	1.83-17	1,54-17	1, 11-17	1.20-17	4.5
ن , ر	4.27-17	2, 12-12	3.47-17	1,59-17	1.44-11	1.23-17	1.0
٠.0	4. 19-17	2.06-17	1.07-17	1.64-17	1.44-17	1.27-17	4.0
5.0	2.66-17	1, 92-17	1,77-17	1.56-17	1, 39-17	1.24-17	۲.٥
6. 0	1.96-17	1.79-17	1,67-17	1.49-17	1.31-17	1.19-17	4.0
8.0	1.63-17	1,56-17	1, 46-17	1, 32-17	1.19-17	1,08-17	8.0
10.0	1,52-17	1.46-17	1, 34-17	1.43-17	1, 16 - 17	5.69-16	10.0
11.0	1.31-17	1, 18-17	1.66-17	9.79-18	t,41-1t	7.67-18	13.0
10.0	1. 12- 17	9.61-18	8.24-16	7.35-18	6.35-16	5.47-18	10.0
20.0	6.76-1E	7. ≥5-18	5.99-16	5,13-14	4. 37-10	3. BC - 18	20.0
45.0	6.05-18	5.46-18	4.34-16	3.57-18	4.96-16	2.53-10	45.0
30.0	4.89-18	4.44-18	3.45-18	4.77-18	4.48-18	1, 92-18	16.0
40.0	3.09-16	3.27-18	2.46-18	1.92-1t	1, 55-18	1.29-18	wu.0
50.0	1,94-18	2.41-18	1.84-18	1.41-18	1.13-1e	9.36-19	50.0
6 L . Ú	1. 46-18	1,71-18	1.41-16	1.07-18	8.54-19	7.05-19	e
80.3	5.57-19	9.32-19	8.50-19	7.12-19	5.60-19	4.66-19	80.0
100.0	2.45-19	5.62-19	5.67-19	4.97-19	3.56-15	3.24-14	106.0
130.0	6.83-20	2.75-19	J. 15-19	4.89-19	2.51-19	2. 11-19	1,0.6
160.0	4.66-46	1.41-19	1,96-19	1,94-19	1.72-19	1,54-19	160.3
260	7.921	7.28-10	1.36-19	1.65-19	1.69-15	1.72-19	200.0
450.0	6.84-22	1.36-2C	4.3t-2C	5.86-20	5.74-20	5.05-20	250.0
30ú.C	3.23-22	3.60-21	1.86-20	3.46-àC	3.65-2U	3.36-20	100.0
350.0	1,82-22	1.37-21	7.61-21	1.78-26	2.34-20	4.34-26	150.0
•60.0	9.67-23	2.97-22	4.42-21	9.05-21	1.45-26	1.64-20	4CC
453.0	6.39-23	1.52-22	8.55-22	4.16-21	6.75-21	1.69-26	450.0
503.0	3.66-23	8.08-23	3.47-24	1,79-21	4,94-21	7.41-41	506.0
550.0	2.37-23	6.42-23	1.62-42	6.04-22	2.50-21	4.86-21	550.0
600.U	2.09-23	3.51-23	8.44-23	3.46-22	1.32-21	3.0C-21	600.0
650.0	1.57-23	1.95-23	5.70-43	1,74-22	6.53-24	1.74-21	650.0
700.0	9.79-24	1,16-23	4.05-23	1.61-22	1.23-22	9. 27-22	700.0
750.0	5.55-24	8.36-24	4.77-43	6.573	1.78-22	5.40-44	750.0
800.0	3.43-24	6.91-24	1.03-23	4,73-23	1.69-22	2.98-22	800.0
#50.0	3, 19-24	4.67-24	1.31-23	3.54-43	6.88-23	1.69-22	850.0
900.0	5.44-24	1,23-24	1.08-23	2.65-23	4.34-23	9.93-23	9.0.0
950.0	8.18-24	8.03-45	7.76-24	4.04-23	3.61-23	6.35-23	950.0
1000.C	7.36-24	2.34-24	5.17-24	1.61-23	2.44-23	4.77-23	1660.6

Note: "Energy (eV)" refers to secondary electron energy.

Accuracy: The estimated uncertainty in these data is 20% except near threshold (<10 eV) where it may be

higher.

Reference: These data were taken from M. E. Rudd, L. H. Toburen,

and N. Stolterfoht, Atomic Data and Nuclear Data

Tables 23, 405 (1979).

Tabular Data I-2.1 (continued)

Single Differential Cross Section (Secondary

Electron Spectra) for H⁺ + Ar Collisions

(Units of cm²/eV)

	0.25		0.3		0.5		1.0
EHERGY	Mev	ENERGY	MeV	ENERGY	MeV	EMERGM	MeV
(Ev)	1	(EA)		(EV)		(EA)	
1.	1 4 7-1	<u>1</u> .	1.36-17	1.	1.07-17	1.	6.81-18
2.	57-	2.	1.43-17	2.	1.12-17	2.	6.76-1 R
6	1 79-1	••	1.42-17	4.	1.08-17	4.	6 10-1 F
8.	1 /2-17	6 .	1 . 26 - 17	6.	9.23-16	8. 8.	5.25-1A
0.	• 65		1.12-17	8.	8 21-18	• .	4.82-1A
10.	1 17-11	10.	1.90-17	10.	7.34-18	10.	4.31-1A
15.	6 - 5 - 9	12.	8.62-18	15.	5.01-18	15.	2.63-1A
50.	4	14.	6.96-18	20.	2.81-18	20.	1.40-1A
30.	2 - 1 1 - 1 F	16.	5.73-18	25.	1.74-18	25.	8.13-19
40.	1 4 - 0	18.	4.69-18	30.	1.22-18	50.	2.84-19
5¢.	1 0 R	20 .	3.89-18	40.	7.96-19	100.	1.04-19
60	8 '	25	2.53-18	90.	5.86-19	125.	7.44-2n
70.	6 * 1 * 1 *	50.	9.59-19	75.	3.15-19	150.	6.17-20
60.	5 44-19	79.	5.26-19	100.	2.03-19	175.	6.92-20
90.	4 53-19	100.	3.30-19	190.	1.10-19	200.	1.45-19
100.	3.16-19	150.	1.73-19	200.	1.73-19	250.	2.15-20
125.	2 59-14	200.	1.79-19	250.	3.76-20	300.	1.52-20
150.	1 83-19	250.	5.55-20	300.	2.56-20	400.	8.90-21
200.	1 63-19	300.	3.66-20	400.	1.38-20	500.	5.75-21
250.	5 6-21	350.	2.57-20	500.	8.12-21	750.	2.40-21
300.	3 17-20			750.	3.00-21	1000.	1.32-21
350	2 45-10	400. 500.	1.83-20	1000.	8.88-22	1250.	8.23-22
400.	1.54-2*		6 60-21 3.38-21	1200.	1.85-22	1500.	5.46-22
450.	9 54-2:	600. 700.	1 02-21	1400.	2.83-23	1750.	3.82-22
500.	5.26-2:	800.	2.25-22	1600.	8.35-24	2000.	2.08-22
600.	1 .24-2.	900.	4 11-23	1800.	2.54-24	2500.	2.08-23
700.	2 32-12	1006,	2.42-24	2000.	2 20-26	3000.	3.06-24
800.	3.96-21					3500.	2.68-25
900.	3 87-74						

Note: "Energy (eV)" refers to secondary electron energy and the MeV energies, atop the data columns, refer to the incident H^+ energies.

Accuracy: The estimated uncertainty in these data is 20% except near threshold (~10 eV) where it may be higher.

Tabular Data I-2.1 (continued)
Single Differential Cross Section (Secondary
Electron Spectra) for H^+ + Ar Collisions
(Units of cm^2/eV)

	1.5		2.0		3.0	3.67	4.2
ENERGY	MeV	ENERG /	MeV	ENERGY	MeV	MeV	MeV
(Ev		(EV)		(EV)			
1	5 04-18	15 .	1.28-1 P	15	1 - 51 - 1 a	8.87-19	: 03-1A
2.	5.10-18	20.	9.61-19	20.	6.68-10	5 . 51 - 1 9	4 94-19
4.	4.88-18	30 .	3.92-19	30	2.88-19	2 23-19	1 42-19
6	4.47-18	40.	2.67-19	40.	2.06-19	1.56-19	1.03-19
8	4 12-18	50.	2 09-19	50.	1.57-19	1.23-19	7.91 20
			•				7.41 2
10.	3.55-18	75 .	1 - 15 - 1 9	75.	8 91-20	7.08-2n	4.67-29
15.	2 04-18	100.	7.37->r	100.	5.78-2n	4 52-20	2.91-20
20.	1.04-18	125.	5 30->n	125.	4.20-20	3 22-20	2.29-20
25 .	6 04-19	150	4.55->n	150.	3.51-20	2 84-20	2.47-20
30	4.37-19	175.	5.44-2n	175.	4 45-21	3-68-2n	2.37-21
40							
40 .	3.00-19	200.	2.16-19	200.	9.65-2n	9.26-20	4.98-20
90 .	2.18-19	250.	1.52-2n	250.	1.23-20	9.08-21	7 15-21
75	1.25-19	300.	1.06-25	300.	8 32 -21	6.16-21	5.14-21
100	8.20-20	400.	6.07-21	400	4.93-21	3.52-21	2.90-21
125 .	5.88+20	500.	3.94-21	500.	3 . 25 - 21	2.23-21	1.96-21
200.	1.32-19						
250.	1.68-20	600.	2.56-21	600.	2.22-21	1.96-21	1.37-71
500.	4.47-21	700.	1.86-21	800.	1 27-21	7.72-22	7.90-22
750.	1.83-21	800.	1.43-21	1000.	7.53-22	5.04-22	4.94-77
1000	1.01-21	900.	1.12-21	1250	4.77.22	3.33-22	3.04-22
,,,,,	1.01-21	1000.	8.60-27	1500.	3.17-2"	2.29.22	2.08-77
1250.	6.36-22	1250.	5.40-22	2000.	1-82-22		
1500	4.38-22	1500.	3.75-22	2000. 2500.	1.21-22	1.16-22	1.14-22
1750	3.22-22	2000.	2.31-22	3000.	8.14-21	7.85-21	7.57-23
2000.	2.43-22	2500.	1.52-22	3500.	5.11-23	5.42-23	5.21-23
2500.	1 - 51 - 22	3000.	6.93-23	4000.	3.06-23	3.52-23	3.08-23
	-	3000.	0.10-2.	7000.	3. 40-73	2.15-73	2.45-23
3000.	7.32-23	3500.	5.71-23	4500.	1.50-23	1.95-23	2 24-23
3500.	1.29-23	4000.	2.21-23	50-00	• · · • · / 3	2.63-24	1.67-23
		4500.	4.80-24	5500.		2.09-24	9.06-24
		. 200.		-,40.		4.07-74	7.00-74

Note: "Energy (eV)" refers to secondary electron energy and the MeV energies, atop the data columns, refer to the incident H^+ energies.

Accuracy: The estimated uncertainty in these data is 20% except near threshold (<10 eV) where it may be higher.

Tabular Data I-2.1 (concluded)

Single Differential Cross Section (Secondary

Electron Spectra) for H^+ + Ar Collisions

(Units of cm^2/eV)

		Proton	Energy (Me	V)	
ENERGY (EV)	0.3	0.4	0.5	4.2	5.0
1.17	2.44-17			5.30-18	6.18-18
1.36	4.45-17			5.46-18	5.49-18
1.50	2.41-17			5.27-10	5.22-10
1.05 2.15	2.21-17 2.06-17			4.67-18 4.40-10	4.86-18 4.43-18
2.51	1.90-17			4,27-10	4.54-10
2.93	1.01-17			1.89-18	4.36-18
3.41	1.70-17			3.70-10	4.61-18
3.90 4.64	1.61-17	1.40-17	1.09~17	3.62-18 3.69-18	4.20-18
5.41	· ·				3.76-18
6.31	1.41-17	1.20-17	1.11-17	3.69-1# 3.83-18	3.41-10
7.36	1.19-17	1.03-17	9.24-14	3.47-18	2.96-10
8.58	1.09-17	1.01-17	8.50-18	2,99-10	2.04-10
10.0	9.02-18	0.71-18	7.01-10	2.60-18	1.90-18
11.7	0.14-10	7.79-10	6.91-18	2.16-10	1.01-10
13.6	6.35-10	6.UW-18	5.47-18	1.58-18	1.39-18
15.8	3.02-18	4.84-18	4.42-10	1.20-18	7.02-19
21.5	2.93-10	3.52-18 2.62-18	3.22-10 2.28-10	5.60-19	4.68-19
25.1	2.24-10	1.95-18	1.67-18	3.46-19	2.09-19
29.3	1.80-18	1.51-10	1.20-10	2.49-19	2.21-19
34.1	1.42-14	1.20-18	9.91-19	1.06-19	1.57-19
39.8 46.4	1.14-18	9.71-19 7.77-19	0.00-19 6.47-19	1.46-19 1.29-19	1.40-19
54.1	7.12-19		4.94-19		0.10-20
63.1	5.62-19	6.06-19 6.74-19	3,88-19	9.26-2u 7.58-20	6.59-20
73.6	4.30-19	3.72-19	3.04-19	6.07-20	5.24-20
#5.8	3.43-19	2.07-19	2.30-19	4.63-20	4.71-20
100.	2.64-19	7.29-19	1.78-19	3.68-20	3.46-20
117.	2.11-19	1.79-19	1.45-19	2.97+20	2.36-20
136.	1.70-19	1.41-19	1.14-19	2.40-20	2.00-20
158. 185.	1.44-19	1.15-19	9.28-20 9.27-20	2.25-20	2.05-20 2.86-20
215.	7.01-20	1.12-19	4.65-20	2.90-20 1.J1-40	8.13-21
251.	4.82-20	4.30-20	3.34-20	6.67-21	5.98-21
29).	1.46-20	1.08-20	2.34-20	4.92-21	1.06-21
341.	2.44-20	2.22-20	1.47-20	3.41-21	2.78-21
190. 464.	1.65-20	1.50-20 1.11-26	1.20-20 8.41-21	2.67-21 1.75-21	2.09-21 1.40-21
541.	5.62-21		6.31-21		1.12-21
631.	2.44-21	8.28-21 5.92-21	4.50-21	1.30-21	0.30-22
736.	7.13-22	3.37-21	3.12-21	7.00-22	5.39-22
858.	1.83-22	1.30-41	1.02-21	5.04-22	3.61-22
1000.	6.32-23	1.24-13	0.22-22	4.41-22	2.94-22
1166.	3.10-23	0.07-23	2.29-22	1.44-22	2.40-22
1359. 1505.		3.20-23	5.55-21	2.53-22	1.90~22
1905.				1.63-22	7.55-21
2154.				7.20-23	5.53-21
2512.				5.70-23	5.10-23
2929.				3.54-23	3.16-23
3415. 3901.				2.42-23	
J701. 4642.				1.00-23	
				1.02-23	

Note: "Energy (eV)" refers to secondary electron energy.

Accuracy: The estimated uncertainty in these data is 20% except near threshold (<10 eV) where it may be higher.

I - 3. ENERGY SPECTRA OF SECONDARY ELECTRONS FROM HEAVY - PARTICLE IMPACT IONIZATION

<u>I</u> -3.1	Page
Secondary Electron Energy Spectra for H Impact Ionization of He	3215
I-3.2 Secondary Electron Energy Spectra for H Impact Ionization of He	3216
I-3.3 Comments and References	3217

Tabular Data I-3.1

Single Differential Cross Section (Secondary Electron Spectral) for H + He Collisions

(Units of m^2/eV)

Electron energy	15 keV	20 keV	30 keV	50 keV	70 keV	100 ke¥	150 keV
1.5	1.19-21	8.15-22	8.00-22	6.97-22	7.27-22	6.24-22	5.07-22
2.0	1.06-21	7.83-22	6.69-22	5.88-22	5.64-22	5.40-22	4.16-22
3.0	1.16-21	8.29-22	6.35-22	5.55-22	4.09-22	3.68-22	3.47-22
5.0	1.06-21	8.63-22	6.87-22	4.76-22	3.56-22	2.72-22	2.11-22
7.5	8.08-22	8.05-22	7.48-22	4.97-22	3.34-22	2.36-22	1.44-22
10.0	5.52-22	6.58-22	6.89-22	4.84-22	3.17-22	2.10-22	1.25-22
15.0	2.45-22	3.44-22	5.53-22	4.75-22	3.23-22	1.97-22	1.01-22
20.0	1.27-22	1.91-22	3.19-22	4.41-22	3.44-22	1.98-22	9.34-23
30.0	4.63-23	7.46-23	1.31-22	2.83-22	3.15-22	2.09-22	9.23-23
50.0	7.46-24	1.42-23	2.93-23	7.63-23	1.31-22	1.90-22	9.65-23
75.0	1.13-24	2.57-24	6.02-24	2.14-23	3.97-23	7.10-23	1.01-22
100.0	1.90-25	4.78-25	1.69-24	6.48-24	1.47-23	2.77-23	4.65-23
130.0		7.62-26	4.31-25	1.62-24	5.27-24	1.10-23	1.72-23
160.0				5.30-25	1.84-24	4.70-24	7.23-24
200.0					4.51-25	1.58-24	2.78-24
250.0					7.77~26	4.45-25	1.17-24
300.0					1.93-26	1.26-25	4.21-25

Accuracy: The quoted overall uncertainty is +17% above 30 keV increasing to +25% at 15 keV with additional uncertainties for the lower electron energies (<10 eV).

Reference: The data were taken from M. E. Rudd, J. S. Risley, J. Fryar, and R. C. Rolfes, Phys. Rev. A 21, 506 (1980).

Single differential cross section (secondary electron spectrum) for H^o + He collisions. These data were taken from M. E. Rudd, J. S. Risley, J. Fryar, and R. G. Rolfes, Phys. Rev. A $\underline{21}$, 506 (1980).

Comments and References

In addition to the data presented in this section, there is also recent data on the energy and angular distribution of secondary electrons (double differential cross sections) in several cases, but no integration over the angle to obtain single differential cross sections was reported. The systems studied are:

- 0^{+n} (n = 4 8) + 0₂; N. Stolterfoht, D. Schneider, D. Buren, H. Weiman, and J. S. Risley, Phys. Rev. Lett. 33, 59 (1974).
- He⁺ + Ar; M. Sataka, K. Okuno, J. Urakwa, and N. Oda, in <u>XI International Conference on the Physics of Electronics and Atomic Collisions, Abstracts of Papers</u> (The Society for Atomic Collision Research, Japan, 1979), pp. 620-621.
- He⁺ + He₂, He; N. Oda and F. Nishimura, in <u>XI International Conference</u> on the Physics of Electronics and Atomic Collisions, Abstracts of Papers (The Society for Atomic Collision Research, Japan, 1979), pp. 622-623.
- He + He; J. Friar, M. E. Rudd, and J. S. Risley, in <u>X International Conference on the Physics of Electronic and Atomic Collisions</u>, <u>Abstracts of Papers</u> (Commissariat A L'Energie Atomique, Paris, 1977), p. 984; and M. E. Rudd, J. S. Risley, and J. Fryar, <u>ibid.</u>, p. 986.
- He⁺, He⁺⁺ + He; Ne; Ar; L. H. Toburen and W. E. Wilson, in X International Conference on the Physics of Electronic and Atomic Collisions, Abstracts of Papers (Commissariat A L'Energie Atomique, Paris, 1977), p. 1006.
- C⁺ + He, Ne, Ar, CH₄; L. H. Toburen, in <u>XI International Conference on the Physics of Electronic and Atomic Collisions, Abstracts of Papers</u> (The Society for Atomic Collisions Research, Japan, 1979), pp. 630-631.
- C⁺ⁿ (n = 1 3) + Ar; L. H. Toburen, in <u>Proceedings of the Fifth Conference</u> on the Use of Small Accelerators, IEEE Transactions on Nuclear Science NS 26 (1979) 1056.
- 0^{\dagger} , N^{\dagger} + Ar; N. Stolterfoht and D. Schneider, in <u>Proceedings of the Fifth Conference on the Use of Small Accelerators</u>, IEEE Transactions on Nuclear Science NS-26 (1979) 1130.
- Kr⁺ⁿ + Kr; Yu. S. Gordeev, P. H. Woerlee, H. de Waard, and F. W. Saris, in XI International Conference on the Physics of Electronic and Atomic Collisions, Abstracts of Papers (The Society for Atomic Collision Research, Japan, 1979), pp. 746-747.

Li⁺ + He; A. Yagishita, H. Oomoto, K. Wakaya, H. Suzuki, and F. Koike, J. Phys. B 11, L111 (1968).

 Li^{\dagger} + Ne; P. Bisgaard, J. Østgaard Olsen, and N. Andersen, J. Phys. B $\underline{13}$, 1403 (1980).

 Ne^{+n} (n = 1 - 4) + He, Ne, Ar, Kr; P. H. Woerlee, T. M. El Sherbini, F. J. de Heer, and F. W. Saris, J. Phys. B <u>12</u>, L235 (1979).

J. NUCLEAR DATA

(No new entries here. See Vol. V for data.)

DISTRIBUTION

	No. of Copies
School of Physics Georgia Institute of Technology ATTN: Dr. E. W. McDaniel K. J. McCann Dr. F. L. Eisele E. W. Thomas Dr. W. M. Pope Dr. M. R. Flannery Atlanta, Georgia 30332	50 10 10 10 10 10
Joint Institute for Laboratory Astrophysics University of Colorado ATTN: J. W. Gallagher J. R. Rumble E. C. Beaty Boulder, Colorado 80302	10 10 10
Eckerd College ATTN: Dr. H. W. Ellis St. Petersburg, Florida 33733	10
Physics Department Georgia State University ATTN: S. T. Manson Atlanta, Georgia 30303	10
Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
Director Ballistic Missile Defense Advanced Technology Center ATTN: ATC, Mr. J. D. Carlson ATC-0, Mr. W. Davies Mr. G. Sanmann Mr. J. Hagefstration -T, Dr. E. Wilkinson -R, Mr. Don Schenk P. O. Box 1500 Huntsville, Alabama 35807	
Defense Advanced Research Project 1400 Wilson Boulevard ATTN: Director, Laser Division Arlington Virginia 22209	1

	No. of Copies
Lawrence Livermore Laboratory P. O. Box 808	
ATTN: Dr. Joe Fleck Dr. John Emmet]
Livermore, California 94550	1
Los Alamos Scientific Laboratory P. O. Box 1663	
ATTN: Dr. Keith Boyer (MS 550) Los Alamos, New Mexico 87544	1
Central Intelligence Agency	
ATTN: Mr. Julian C. Nall (OSI/PSTD) Washington, D.C. 20505	1
US Army Research Office	
ATTN: Dr. Robert Lontz P. O. Box 12211	. 2
Research Triangle Park, North Carolina 27709	
DRSMI-LP, Mr. Voigt	1
-R, Dr. McCorkie	1
-RR, Dr. Hartman	i
-RH, Dr. Honeycutt	i
Mr. Cason	7
Dr. Roberts (Additional Distribution) -RPR	485
-RPT, (Record Set)	3
-RPT. (Reference Conv)	1

•

END DATE FILMED 7

DTIC