大数据分析与知识发现实验报告

西安交通大學

Kmeans 算法设计和实现

自动化 94--胡欣盈--2194323176

目 录

一 、	实验目的	3
_,	算法原理	3
三、	实验内容与结果	4
	(1) 数据集介绍与预处理	4
	(2) 算法编写	5
	(3) 调用与结果	7
	3.3.1 指定初始聚类中心	7
	3.3.2 随机产生初始聚类中心	8
四、	实验结果分析	9
	(1) K 值的影响	9
	(2) 算法优缺点分析	10
五、	实验总结	10

一、实验目的

- 1、编写 K-means 算法实现对某数据集的聚类,对不同 K 值的聚 类准确度进行比较;
 - 2、通过实验加强对 k-means 聚类算法的理解,提升实践能力。

二、算法原理

Kmeans 算法是最常用的聚类算法,主要思想是:在给定 K 值和 K 个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。

算法流程图与伪代码如下图所示,算法主要通过循环实现,停止 迭代的条件是均值向量不再更新。循环主体是:将数据点分配到距离 最短的聚类中心的簇中,更新聚类中心,然后再次进行分配。

输入: 样本集 $D = \{x_1, x_2, x_3, \dots, x_m\}$; 聚类簇数k.

过程:

1: 从D中随机选择k个样本作为初始均值向量 $\{\mu_1,\mu_2,\mu_3,\dots,\mu_k\}$

2: repeat

 $3: \Leftrightarrow C_i = \varnothing (1 \leqslant i \leqslant k)$

4: **for** j=1,2,...,m **do**

5: 计算样本 x_j 与各均值向量 $\mu_i(1\leqslant i\leqslant k)$ 的距离: $d_{ji}=\|x_j-\mu_i\|_2$;

6: 根据距离最近的均值向量确定 x_j 的簇标记: $\lambda_j = argmin_{i \in \{1,2,3,...,k\}} d_{ji}$;

7: 将样本 x_j 划入相应的簇: $C_{\lambda_i} = C_{\lambda_i} \cup \{x_j\}$;

8: end for

9: for i=1,2,...,k do

10: 计算新均值向量: $\mu_i^{'}=rac{1}{|C_i|}\sum_{x\in Ci}x$;

11: if $\mu_i^{'}
eq \mu_i$ then

12: 将当前均值向量 μ_i 更新为 μ_i'

13: **else**

14: 保持当前均值不变

15: end if

16: end for

17: until 当前均值向量均未更新

输出: 簇划分 $C = \{C_1, C_2, \ldots, C_k\}$

三、实验内容与结果

(1) 数据集介绍与预处理

实验中使用的是 Iris 数据集(安德森鸢尾花卉数据集)进行聚类并计算聚类的准确率。Iris 包含 150 个样本,每个样本包含了花萼长度、花萼宽度、花瓣长度、花瓣宽度四个特征(前 4 列),也包含了品种信息,即目标属性(第 5 列,也叫 target 或 label)。

为方便使用 Iris 数据集经过了一些整理,这里将最后一列的带字符串的标签 Iris-setosa, Iris-versicolor, Iris-virginica 分别用数字 1, 2, 3 代替并移到了第一列。整理后的部分数据集如下图所示。

4	A	В	C	D	E	
1	1	5. 1	3. 5	1. 4	0.2	
2	1	4.9	3	1.4	0.2	
3	1	4. 7	3. 2	1. 3	0.2	
4	1	4.6	3. 1	1.5	0.2	
5	1	5	3. 6	1.4	0.2	
6	1	5. 4	3. 9	1.7	0.4	
7	1	4.6	3. 4	1.4	0.3	
8	1	5	3. 4	1.5	0.2	
9	1	4. 4	2. 9	1.4	0.2	

(2) 算法编写

为了方便应用我们将其编写为一个 M 函数 KMeans(),输入输出参数如下表所示,关键代码如下图所示:

输	λ	输出			
Data	不带分类标号的 数据	Idx	返回的分类标号		
K	分类数	centroids	每一类的中心		
iniCentriods	自行指定初始聚 类中心	Distance	类内总距离		
Iterations	迭代次数				

```
### 送代

for iter=1:iterations

pre_centroids=centroids;% 上一次求得的中心位置

tags=zeros(numOfData, K);

### 寻找最近中心,更新中心

for i=1:numOfData

D=zeros(1, K);% 每个数据点与每个聚类中心的标准差

Dist=D;

### 计算每个点到每个中心点的标准差

for j=1:K

Dist(j)=norm(data(i,:)-centroids(j,:),2);
end

[minDistance, index]=min(Dist);% 寻找距离最小的类别索引

tags(i, index)=1;% 标记最小距离所处的位置(类别)

end
```

```
%% 取均值更新聚类中心点
for i=1:K
   if sum(tags(:,i))~=0
       % 未出现空类, 计算均值作为下一聚类中心
       for j=1:numOfAttr
          centroids(i, j)=sum(tags(:, i). *data(:, j))/sum(tags(:, i));
       end
   else % 如果出现空类,从数据集中随机选中一个点作为中心
       randidx = randperm(size(data, 1));
       centroids(i,:) = data(randidx(1),:);
       tags(randidx,:)=0;
       tags(randidx, i)=1;
   end
end
if sum(norm(pre_centroids-centroids, 2))<0.001 % 不断迭代直到位置不再变化
   break;
end
```

```
%% 计算输出结果
 Distance=zeros (numOfData, 1);
 Idx=zeros (numOfData, 1);
for i=1:numOfData
    D=zeros(1, K);%每个数据点与每个聚类中心的标准差
    Dist=D:
    % 计算每个点到每个中心点的标准差
    for j=1:K
        Dist(j)=norm(data(i,:)-centroids(j,:),2);
    end
    [distance, idx]=min(Dist);% 寻找距离最小的类别索引
    distance=Dist(idx):
    Distance(i)=distance;
    Idx(i)=idx;
 end
 Distance=sum(Distance, 1);% 计算类内总距离
 end
```

(3) 调用与结果

3.3.1 指定初始聚类中心

读取 Iris 数据集,自行指定初始聚类中心调用前面编写的 KMeans 函数进行聚类,然后计算聚类的准确率,其代码如下

```
clear
data=load('Iris .txt');
data=data(:,2:end);

matrix=[5.9016, 2.7484, 4.3935, 1.4339; 6.8500, 3.0737, 5.7421, 2.0711; 5.0060, 3.4280, 1.4620, 0.2460];
[Idx, C, distance]=KMeans(data, 3, matrix, 500);
Distance=sum(distance)

cl=Idx(1:50, 1); c2=Idx(51:100, 1); c3=Idx(101:150, 1);
accuracy=(sum(c1==mode(Idx(1:50, 1)))+sum(c2==mode(Idx(51:100, 1)))+sum(c3==mode(Idx(101:150, 1))))/150
```

准确率的计算:因为不能直接用 KMeans 计算后得到的标号跟原数据集中的标号对比计算准确率,KMeans 只需要也只能将那些"相似"的数据点聚集到一类中,而给这一类数据的标号却是可能跟原数据集不同的。采用一个简单的方法,从原数据集的标签可以看出第1-50 个数据点为一类(Iris-setosa),第 51-100 为一类(Iris-versicolor),第 101-150 为一类(Iris-virginica),因此只需确定每 50 个数据点中的聚类标号是不是一致。取它们之中数目最多的标号作为正确的个数,最终比上数据集的总数即为准确率。以上代码运行结果如下所示。

97.3259 accuracy = 0.8933

3.3.2 随机产生初始聚类中心

KMeans 算法本身思想比较简单,但是合理的确定 K 值和 K 个初始类簇中心点对于聚类效果的好坏有很大的影响。最简单的确定初始类簇中心点的方法是随机产生数据大小范围内的 K 个点作为初始的簇类中心点。随机产生初始点并进行测试的程序代码如下,改变 K 值运行几次以下代码,可以看出由于初始点事随机选取的每次运行得到的结果有所差异。

```
data=load('Iris .txt');
       data=data(:, 2:end);
      K=2:
       %% 产生随机初始点
       [numOfData, numOfAttr]=size(data); % numOfData是数据个数, numOfAttr是数据维数
      centroids=zeros(K, numOfAttr);
                                                                                                                           % 随机初始化,最终迭代到每一类的中心位置
     maxAttr=zeros(numOfAttr); % 每一维最大的数
minAttr=zeros(numOfAttr); % 每一维最小的数
□ for i=1:numOfAttr
                  maxAttr(i)=max(data(:,i)); % 每一维最大的数
                  minAttr(i)=min(data(:,i)); % 每一维最小的数
                                  centroids(j,i)=maxAttr(i)+(minAttr(i)-maxAttr(i))*rand(); % 随机初始化,选取每一维[min max]中初始化
                   end
  end
       [Idx, C, distance]=KMeans(data, K, centroids, 500);% 调用KMeans
      Distance=sum(distance)% 计算类内距离之和
      %% 计算准确率
      c1=Idx(1:50, 1);c2=Idx(51:100, 1);c3=Idx(101:150, 1);
       \label{eq:curacysum}  \mbox{Accuracysum} (\mbox{c1==mode}(\mbox{Idx}(1:50,1))) + \mbox{sum}(\mbox{c2==mode}(\mbox{Idx}(51:100,1))) + \mbox{sum}(\mbox{c3==mode}(\mbox{Idx}(101:150,1)))) / \mbox{numOfData} ) = \mbox{numOfData} = \mbox{numOf
```

四、实验结果分析

(1) K 值的影响

调整 k 值,观察指标变化如下图所示。当 K 值与实际类别相差较多时,聚类精确度意义不大,随着 K 增大,类内距离有减小的趋势,这与经验相符。

4	Α	В	С	D	E	F	G	Н	1	J
1	K值	2	3	4	5	6	7	8	9	10
2	Distance	128. 4042	97.3462	83. 7862	79. 7956	69.9787	68. 2824	66. 7804	70.4228	65. 2892
3	Accuracy	0.98	0.8867	0.72	0.7	0.5267	0.6267	0.56	0.4933	0.54

Accuracy

(2) 算法优缺点分析

K-Means 的主要优点有:

- 1) 原理比较简单,实现也是很容易,收敛速度快。
- 2) 聚类效果较优。
- 3) 算法的可解释度比较强。
- 4) 主要需要调参的参数仅仅是簇数 k。

K-Means 的主要缺点有:

- 1) K 值的选取不好把握。
- 2) 对于不是凸的数据集比较难收敛。
- 3)如果各隐含类别的数据不平衡,比如各隐含类别的数据量 严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。
 - 4) 采用迭代方法,得到的结果只是局部最优。
 - 5) 对噪音和异常点比较的敏感。

五、实验总结

通过本次实验,我对 K-means 算法有了更深入的了解,通过编程实现 K-means 和 K-means++算法,以对安德森鸢尾花卉数据集进行聚类分析。通过比较不同 k 值情况下的聚类结果,更深入的理解了 K 值选取对 K-means 聚类的影响,更加清晰了 K-means 算法的优缺点及适用情况。