

Hardware-efficient Stream Processing

Georgios Theodorakis, Panagiotis Garefalakis, Alexandros Koliousis, Holger Pirk,
Peter Pietzuch

Large-Scale Data & Systems (LSDS) Group Imperial College London

> http://lsds.doc.ic.ac.uk <grt17@imperial.ac.uk>

[Flink Forward Berlin 2018 - Tuesday, September 4, 2018]

It's a Streaming Problem!

High-throughput Processing

Low-latency results

Data-Intensive Applications

- Real-time analytics applications
- Personalised web services
- Network Monitoring
- Training machine learning models with large volumes of data

High-throughput & Result Freshness Matter!

Stream Processing

Distributed Streaming Engines

Exploit the aggregated throughput of many nodes

Nobody (yet!) ever got fired for using a Hadoop cluster

[HotCDP'12]

Or Flink & Spark...

2012 study of **MapReduce** workloads

- Microsoft: median job size < 14 GB
- Yahoo: median job size < 12.5 GB
- Facebook: 90% of jobs < 100 GB

The size of the workloads has changed, but so has the size/price of **memory**!

Many data-intensive jobs easily fit into **memory**It's **expensive** to scale-out in terms of hardware and engineering!

In many cases a single server is cheaper/more efficient than a cluster

Servers are becoming increasingly Heterogeneous

Slide courtesy of Torsten Hoefler (Systems Group, ETH Zürich)

Perfomance will only come from careful tailoring to the parallel hardware!

Parallelism of Heterogeneous Servers

Servers have many parallel CPU cores
Heterogeneous servers with GPUs common

New types of compute accelerators

Xeon Phi, TPUs, FPGAs, ...

Exploit previously unseen levels of parallelism

SABER: Hybrid Processing for CPUs & GPUs in a single node

How to get single node performance:

- (1) Parallelise computation to fit hardware capabilities
- (2) Fully utilise all heterogeneous processors independently of workload

- (1) Parallelise computation to fit hardware capabilities
- Decouple hardware/system parameters from processing semantics
- Task contains one or more window fragments
- Parallelise using task size that is best for hardware 5 tuples/task 15 13 12 3 2 size: 7 tuples slide: 2 tuples W_2 W_3

- (2) Fully utilise all heterogeneous processors independently of workload
- Hybrid processing model to achieve aggregate CPU/GPU throughput
- Fully utilise hardware parallelism with Heterogeneous Lookahead Scheduling (HLS)
- Hide data movements costs: pipeline the transfer between CPU & GPU

Single multicore server or multi-node cluster?

Can an efficient stream processing engine on a single server compete with popular distributed stream processing systems?

Yahoo! Streaming Benchmark

Advertisement Application: how many times a campaign has been seen in a tumbling window

Key limitations (also reported by Apache Flink, Apache Apex, Differential Dataflow):

- fails to capture the rich semantics of sliding window computation
- not computational intensive

Evaluating systems in **industry** (<u>Databricks</u>, <u>Data Artisans</u>)
& **academia** (<u>Drizzle</u> [SOSP'17], <u>Spark Streaming</u> [SIGMOD'18], <u>Chi</u> [VLDB'18])

Yahoo! Streaming Benchmark: Systems

- Apache Flink (1.3.2)
- Apache Spark Streaming (2.4.0)
- SABER: without GPU support
- StreamBox: a single-server implementation that emphasises out-of-order processing of data

Yahoo! Streaming Benchmark: Setup

- 6 servers (1 master and 5 slaves): 2 Intel Xeon E5-2660 v3 2.60 GHz
 CPUs
 - 20 physical CPU cores
 - 25 MB LLC
- 32 GB of memory
- 10 GigE connection between the nodes
- In-memory generation
- 8 cores per node

Comparing throughput in a single node

Reducing serialization & keeping data in LLC!

Single-Server vs Cluster Deployment

Single-Server vs Cluster Deployment

What is the COST of distribution? [HOTOS'15]

Let's set our baseline with a single-core implementation:

	Spark	Flink	SABER	Handwritten C++
Throughput (million tuples/ sec)	2	4.8	11.8	

Do better than LLC?

Pipeline Strategy [Hyper, VLDB'11]:

- keep data in CPU registers
- as many sequential operations as possible per tuple
- maximize data locality

What is the COST of distribution? [HOTOS'15]

Let's set our baseline with a single-core implementation:

	Spark	Flink	SABER	Handwritten C++
Throughput (million tuples/ sec)	2	4.8	11.8	39

Do better than LLC?

Pipeline Strategy [Hyper, VLDB'11]:

- keep data in CPU registers
- as many sequential operations as possible per tuple
- maximize data locality

More than 3x speedup!

Where does CPU time go?

"You can have a second computer once you've shown you know how to use the first one." – Paul Barham

Design Hardware-Conscious Streaming Systems!

- 1. highly efficient streaming operators
- just-in-time generation of platform-specific code for different architectures (CPUs, FPGAs, GPUs)
- compilation-based techniques to deal with memory stalls (data in CPU registers)
- hardware-oblivious primitives that optimise computation based on windows

Design Hardware-Conscious Streaming Systems!

1. highly efficient streaming operators

- just-in-time generation of platform-specific code for different architectures (CPUs, FPGAs, GPUs)
- compilation-based techniques to deal with memory stalls (data in CPU registers)
- hardware-oblivious primitives that optimise computation based on windows

Hardware-efficient Streaming Operators

Hammer Slide: Work- and CPU-efficient Streaming Window Aggregation [ADMS'18]:

- incremental computation for both invertible and non-invertible functions
- parallel processing within a slide (>1) with SIMD instructions
- bridge the gap between sliding and tumbling window computation

Hammer Slide: integration with SABER

Design Hardware-Conscious Streaming Systems!

1. highly efficient streaming operators

- just-in-time generation of platform-specific code for different architectures (CPUs, FPGAs, GPUs)
- compilation-based techniques to deal with memory stalls (data in CPU registers)
- hardware-oblivious primitives that optimise computation based on windows

Design Hardware-Conscious Streaming Systems!

1. highly efficient streaming operators

Thank You! Questions?

Our repository for Yahoo! Benchmark https://github.com/lsds/StreamBench

Georgios Theodorakis

http://lsds.doc.ic.ac.uk <grt17@imperial.ac.uk>