Tópicos de Matemática

Licenciatura em Matemática - 1° ano

exame de recurso - 30 jan 2018

- 1. Diga, justificando, se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Sejam p,q e r proposições. Se as proposições $r\Rightarrow (p\vee q)$ e $r\wedge q$ são verdadeiras, então, a proposição p é falsa.
 - (b) Sejam A e B conjuntos não vazios. Então, $R=\omega_{A\backslash B}\cup\omega_{B\backslash A}\cup\omega_{A\cap B}$ é uma relação de equivalência em $A\cup B$.
 - (c) Sejam (A, \leq) um c.p.o. e $X \subseteq A$. Se existe $\sup X$ e $\sup A \setminus X$, então, existe $\sup A$.
 - (d) Sejam A, B e C conjuntos. Se $A \not\sim B$ então $A \times C \not\sim B \times C$.
- 2. Dê exemplo de, ou justifique que não existe:
 - (a) de conjuntos A e B tais que $\{1,\emptyset\}\cap A\in B$ e $\{1,\emptyset\}\cup A\subseteq B$;
 - (b) um conjunto A e uma função $f:A \to \mathcal{P}(A)$ sobrejetiva;
 - (c) uma relação de equivalência \mathcal{R} em $A=\{1,2,3,4,5\}$ tal que $\{(1,3),(2,4)\}\in\mathcal{R}\neq\omega_A$;
 - (d) um conjunto A tal que $A \times \{1, 2\} \subseteq \{1, 2\}$.
- 3. Usando indução matemática, prove que, para todo o natural $n \geq 1$, $\sum_{k=0}^{n} \frac{1}{2^k} = 2 \frac{1}{2^n}$.
- 4. Considere a aplicação $f: \mathbb{N} \times \mathbb{Z} \to \mathbb{Z}$, definida por f(n,x) = n + x, para todos $n \in \mathbb{N}$, $x \in \mathbb{Z}$.
 - (a) Determine f(A), sabendo que $A = \{(|x|, x) \mid x \in \mathbb{Z} \setminus \{0\}\}.$
 - (b) Se $B = \{7\}$, determine $f^{\leftarrow}(B)$. Justifique.
 - (c) Diga, justificando, se f é sobrejetiva e/ou é injetiva.
 - (d) Seja θ a relação binária em $\mathbb N$ definida por

$$n \theta m \Leftrightarrow (\exists x \in \mathbb{Z}) f(n,1) = f(m,x).$$

Prove que θ é uma relação de equivalência em \mathbb{N} e determine $[1]_{\theta}$.

- 5. Considere o c.p.o. (A, \leq) definido pelo seguinte diagrama de Hasse:
 - (a) Indique, caso exista:
 - i. Maj $\{5,4\}$ e sup $\{5,4\}$;
 - ii. $\inf \emptyset \in \sup \emptyset$;
 - iii. um subconjunto X de A tal que (X, \leq_X) admite 3 elementos maximais e 3 elementos minimais.
 - (b) Justifique que (A, \leq) não é um reticulado.

Duração: 2h30mn

Cotação: 1. 4×1.0

- **2.** 4×1.0
- **3.** 1.5
- **4.** $3 \times 1.5 + 2.0$
- **5.** 4×1.0