Discussion 6D

Tarang Srivastava - CS70 Summer 2020

Mini Review

Quick Double Integral Practice

$$\int_{0}^{1} \int_{0}^{2} (x^{2}y + e^{y}) dx dy$$

$$\int_{0}^{1} \frac{8}{3} y + 2 e^{y} dy$$

$$2 e^{-2} \frac{2}{3}$$

$$2 e^{-2} \frac{2}{3}$$

Lecture Highlights

Let X and Y be two continuous random variables. Then the joint density function $f_{X,Y}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies:

and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy dx = 1$$

$$f_{X,Y}(x,y) \ge 0 \quad \forall x,y \in \mathbb{R}$$

and

$$f_{X,Y}(x,y) \ge 0 \qquad \forall x,y \in \mathbb{R}$$

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y) \subset CDF$$

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

Lecture Highlights (Conditional PDFs)

For any y with $f_{\nu}(y) > 0$, the conditional distribution of X given

$$Y = y$$
 is defined as:

$$f_{x|y} := \frac{f_{x,y}(x,y)}{f_y(y)}$$

Fx, y

When Y is continuous, even though P(Y = y) = 0, if $f_y(y) > 0$, then:

$$P(a \le X \le b|Y = y) = \int_a^b f_{x|y}(x|y)dx$$

Recovering individual PDFs

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Independent case

Let X and Y be two continuous random variables. X and Y are independent if:

 $f_{x,y}(x,y) = f_x(x)f_y(y)$

for all x, y.

Since $f_{x,y}(x,y) = f_{x|y}(x|y)f_y(y)$, this implies $f_{x|y}(x|y) = f_x(x)$.

The joint probability density function of two random variables X and Y is given by f(x,y) = Cxy for $0 \le x \le 1, 0 \le y \le 2$, and 0 otherwise (for a constant C).

- (a) Find the constant C that ensures that f(x,y) is indeed a probability density function.
- (b) Find $f_X(x)$, the marginal distribution of X.
- (c) Find the conditional distribution of Y given X = x.
- (d) Are *X* and *Y* independent?

F(x, y) = F(x). f(y)

The joint probability density function of two random variables X and Y is given by f(x,y) = Cxy for $0 \le x \le 1, 0 \le y \le 2$, and 0 otherwise (for a constant C).

(a) Find the constant C that ensures that f(x,y) is indeed a probability density function.

$$C = 1$$
 = $\int_{0}^{1} \int_{0}^{2} Cny dx dy$

(a) Since f(x,y) is a probability density function, it must integrate to 1. Then:

$$1 = \int_0^1 \int_0^2 Cxy \, dy \, dx = \int_0^1 2Cx \, dx = C$$

Therefore, C = 1.

(b) Find $f_X(x)$, the marginal distribution of X.

$$F_{X}(x) = \int_{0}^{2} xy dy$$

$$= 2x$$

$$0 \le x \le 1$$

(b) To get the marginal distribution of X, we integrate the joint distribution with respect to Y. So:

$$f_X(x) = \int_0^2 f(x, y) dy = \int_0^2 xy dy = 2x$$

This is the marginal distribution for $0 \le x \le 1$.

(c) Find the conditional distribution of Y given X = x.

$$f_{\gamma|_{\mathcal{X}}} = \frac{g}{2}$$

$$F_{X}(x) = 2x$$

(c) The conditional distribution of Y given by

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{xy}{2x} = \frac{y}{2}$$

(d) Are X and Y independent?

$$f_{Y|X} = f_{Y}$$

$$= \int_{0}^{1} xy \, dx = \frac{y}{2}$$

$$p_{M}(c)$$

Independence !

(d) The conditional distribution of Y given X = x does not depend on x, so they are independent.

Alternatively, you could find the marginal distribution of *Y* and see it is the same as the conditional distribution of *Y*:

$$f_Y(y) = \int_0^1 f(x, y) dx = \int_0^1 xy dx = \frac{y}{2}$$

Notice that since X and Y are independent, $f_X(x)f_Y(y) = xy = f_{X,Y}(x,y)$, i.e. the product of the marginal distributions is the same as the joint distribution.

You have two spinning wheels, each having a circumference of 10 cm with values in the range \geq [0, 10) marked on the circumference. If you spin both (<u>independently</u>) and let X be the position of the first spinning wheel's mark and Y be the position of the second spinning wheel's mark, what is the probability that $X \ge 5$, given that $Y \ge X$?

$$\mathbb{P}[X \ge 5 \mid Y \ge X] = \frac{\mathbb{P}[Y \ge X \cap X \ge 5]}{\mathbb{P}[Y > X]}.$$

 $\mathbb{P}[Y \ge X] = 1/2$ by symmetry. To find $\mathbb{P}[Y \ge X \cap X \ge 5]$, it helps a lot to just look at the picture of the probability space and use the continuous uniform law $\mathbb{P}[A] = (\text{area of } A)/(\text{area of } \Omega)$. We are interested in the relative area of the region bounded by x < y < 10, 5 < x < 10 to the entire square bounded by 0 < x < 10, 0 < y < 10.

$$\mathbb{P}[Y \ge X \cap X \ge 5] = \frac{5 \cdot 5/2}{10 \cdot 10} = \frac{1}{8}.$$
 So $\mathbb{P}[X \ge 5 \mid Y \ge X] = (1/8)/(1/2) = 1/4$.

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let $U = \min\{X,Y\}$, $V = \max\{X,Y\}$, and W = V - U.

- (a) Compute $\mathbb{P}(U > t, X \leq Y)$, for $t \geq 0$.
- (b) Use the previous part to compute $\mathbb{P}(X \leq Y)$. Conclude that the events $\{U > t\}$ and $\{X \leq Y\}$ are independent.
- (c) Compute $\mathbb{P}(W > t \mid X \leq Y)$.
- (d) Use the previous part to compute $\mathbb{P}(W > t)$.
- (e) Calculate $\mathbb{P}(U > u, W > w)$, for w > u > 0. Conclude that U and W are independent. [Hint: Think about the approach you used for the previous parts.]

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let U = $\min\{X,Y\}$, $V = \max\{X,Y\}$, and W = V - U.

(a) Compute $\mathbb{P}(U > t, X \leq Y)$, for $t \geq 0$.

$$\mathbb{P}(U > t, X \le Y) = \mathbb{P}(t < X \le Y) = \int_{t}^{\infty} \int_{x}^{\infty} f_{X,Y}(x, y) \, dy \, dx$$

$$= \int_{t}^{\infty} \int_{x}^{\infty} \lambda_{X} \exp(-\lambda_{X} x) \lambda_{Y} \exp(-\lambda_{Y} y) \, dy \, dx$$

$$= \lambda_{X} \lambda_{Y} \int_{t}^{\infty} \exp(-\lambda_{X} x) \cdot \frac{\exp(-\lambda_{Y} x)}{\lambda_{Y}} \, dx = \lambda_{X} \int_{t}^{\infty} \exp(-(\lambda_{X} + \lambda_{Y}) x) \, dx$$

$$= \frac{\lambda_{X}}{\lambda_{Y} + \lambda_{Y}} \exp(-(\lambda_{X} + \lambda_{Y}) t).$$

$$f_{xy} = f_{x} \circ f_{y}$$

$$\chi \angle \vee$$

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let $U = \min\{X,Y\}$, $V = \max\{X,Y\}$, and W = V - U.

(b) Use the previous part to compute $\mathbb{P}(X \leq Y)$. Conclude that the events $\{U > t\}$ and $\{X \leq Y\}$ are independent.

(b) Take t = 0.

$$\mathbb{P}(X \leq Y) = \frac{\lambda_X}{\lambda_X + \lambda_Y}.$$

Since *X* and *Y* are independent exponentials, $U = \min\{X,Y\} \sim \text{Exponential}(\lambda_X + \lambda_Y)$. So, $\mathbb{P}(U > t) = \exp(-(\lambda_X + \lambda_Y)t)$, and therefore we have $\mathbb{P}(U > t, X \leq Y) = \mathbb{P}(X \leq Y)\mathbb{P}(U > t)$.

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let $U = \min\{X,Y\}$, $V = \max\{X,Y\}$, and W = V - U.

(c) Compute $\mathbb{P}(W > t \mid X \leq Y)$.

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let $U = \min\{X,Y\}$, $V = \max\{X,Y\}$, and W = V - U.

(d) Use the previous part to compute $\mathbb{P}(W > t)$.

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let $U = \min\{X,Y\}, V = \max\{X,Y\}, \text{ and } W = V - U$.

(e) Calculate $\mathbb{P}(U > u, W > w)$, for w > u > 0. Conclude that U and W are independent. [Hint: Think about the approach you used for the previous parts.]