## 10 класс

Задача 1. Воднолыжник. Катер едет посередине прямого длинного канала фиксированной ширины с постоянной скоростью  $\upsilon$ . За катером на натянутом все время тросе длиной L курсирует от одного берега канала до другого воднолыжник. В момент времени, когда расстояние между лыжником и правым берегом увеличивалось со скоростью u, а трос составлял с направлением движения катера угол  $\alpha_0$ , спортсмен оторвался от воды.



Пренебрегая вертикальной составляющей скорости, найдите модуль скорости  $u_0$  спортсмена в этот момент? Какова в этот же момент сила натяжения троса T, если масса спортсмена m? На рисунке в качестве иллюстрации показан вид сверху в некоторый момент движения воднолыжника.

**Задача 2. Шайбу!** Шайба летит в сторону движущейся поступательно тяжёлой плиты так, что их плоскости параллельны. Вектор скорости шайбы составляет угол  $\phi = 30^{\circ}$  с нормалью к поверхности плиты. Происходит столкновение. Векторы скорости шайбы до и после столкновения одинаковы по модулю и перпендикулярны друг другу (см. рисунок). Кроме



того, они лежат в одной плоскости с вектором скорости плиты. Определите минимальное и максимальное значения коэффициента трения  $\mu$ , при которых возможно такое столкновение.

Задача 3. Девять резисторов. Электрическая цепь состоит из 9 резисторов и идеального вольтметра (см. рисунок). Сопротивление трех резисторов  $R_{\rm x}$ ,  $R_{\rm y}$  и  $R_{\rm z}$  неизвестны, сопротивления остальных:  $R_1=1$  кОм,  $R_2=2$  кОм,  $R_3=3$  кОм. При подключении источника с постоянным напряжением  $U_0=10$  В к точкам A и В вольтметр показывает  $U_1=4$  В, при подключении того же источника к точкам A и C показания вольтметра  $U_2=5$  В.



1) значения сопротивлений  $R_x$ ,  $R_y$  и  $R_z$ ;

Определите:

2) значения силы тока через источник при подключении его к точкам A и B ( $I_{AB}$ ) и к точкам A и C ( $I_{AC}$ ).

<sup>22</sup> января на портале <a href="http://abitu.net/vseros">http://abitu.net/vseros</a> будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Задача 4. На планете R19. В далеком космосе астронавты исследовали атмосферу планеты R19. Оказалось, что она очень похожа на атмосферу Земли: состоит из идеального газа с молярной массой  $\mu = 28$  г/моль и имеет схожую зависимость температуры от высоты (см. рис.). И даже ускорение свободного падения у поверхности R19 равно g = 9.9 м/с². Однако, атмосферное давление на уровне моря отличается от земного и равно  $p_0 = 500$  кПа. Определите по этим данным, пренебрегая изменением g с высотой, давление  $p_1$  и плотность  $p_1$  на высоте  $p_1 = 1.0$  км. Универсальная газовая постоянная  $p_2 = 8.31$  Дж/(моль·К).



Задача 5. Бусинка на кольце. На тонкое проволочное кольцо радиусом R свободно надета бусинка массой m. Кольцо неподвижно и расположено горизонтально в поле тяжести g. Коэффициент трения скольжения между бусинкой и кольцом равен  $\mu$ . В начальный момент времени бусинка движется со скоростью  $v_0$ .

- 1) Найдите модуль силы трения, действующей на бусинку, в начальный момент времени.
- 2) Найдите модуль полного ускорения бусинки в этот же момент.
- 3) Запишите выражение, позволяющее с погрешностью не более 2% найти путь бусинки за время, в течение которого ее скорость уменьшилась на 1%.

<sup>22</sup> января на портале <a href="http://abitu.net/vseros">http://abitu.net/vseros</a> будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.