GY955 模块使用手册 V1.0

一、概述

GY955 是一款低成本 AHRS 模块。 工作电压 3-5v 功耗小,体积小。 其工作原理,是通过陀螺仪与 加速度传,磁场感器经过数据融合 算法最后得到直接的角度数据。 此模块,使用串口(TTL 电平) 通信方式。该产品精度高,稳定性高。 能够在任意位置得到准确的角度, 串口的波特率有 9600bps 与 115200bps 有连续输出与询问输出两种方式, 可适应不同的工作环境。 与所有的单片机及电脑连接。

提供 arduino, 51, stm32 单片机通讯程序, 不提供原理图及内部单片机源码。

二、 产品特点

- (1)、高性价比
- (2)、内置 MCU 计算角度
- (3)、体积小
- (4)、串口通信格式
- (5)、 配相应的上位机软件

三、产品应用

- (1)、手持式仪器仪表
- (2)、机器人导航、定位
- (3)、航行航模系统
- (4)、平衡车
- (5) 、天线俯仰定位

技术参数

名称	参数
测量范围	-180° ~ 180°
分辨率	0.01°
测量精度	2 °
重复精度	2 °
响应频率	100 HZ(115200bps)
工作电压	3~5 V
工作电流	15mA
工作温度	-20° ~ 85°
储存温度	-40° ~ 125°
尺寸	14.6mm×17.8mm

四、引脚说明

	•	
Pin1	VCC	电源+ (3v-5v)
Pin2	TX	串口 UART_TX (TTL 电平)
Pin3	RX	串口 UART_RX (TTL 电平)
Pin4	GND	电源地
Pin5	SI	保留,不要连接
Pin6	SR	保留,不要连接
Pin7	REST	BNO055 REST 引脚
Pin8	ADD	BNO055 I2C 地址引脚
PinA	SDA	BNO055 I2C 数据引脚
PinB	SCL	BNO055 I2C 时钟引脚

五、通信协议

❶,串口协议:

(1)、串口通信参数(默认波特率值 9600bps,可通过软件设定)

波特率: 9600 bps 校验位: N 数据位: 8 停止位: 1 波特率: 115200 bps 校验位: N 数据位: 8 停止位: 1

(2)、模块输出格式,每帧包含12个字节(十六进制):

①.Byte0: 0x5A 帧头标志 ②.Byte1: 0x5A 帧头标志

③.Byte2: 0x01 本帧数据类型(参考含义说明)

④.Byte3: 0x07 数据量

⑤.Byte4: 数据前高8位 $0x00\sim0xFF$ ⑥.Byte5: 数据前低8位 $0x00\sim0xFF$ ⑦.Byte6: 数据后高8位 $0x00\sim0xFF$ 8.Byte7: $0x00\sim0xFF$ 数据后低8位 9.Byte8: $0x00\sim0xFF$ 数据后高8位 10.Byte9: $0x00\sim0xFF$ 数据后低8位

①.Byte10: 0x00~0xFF 8位数据

①.Byte11: 0x00~0xFF 校验和(前面数据累加和,仅留低 8 位)

Byte2 代表的含义说明:

Byte2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
含义:	NC	NC	NC	Q4	YRP	GYR	MAG	ACC		
Bit7-Bit5	保留									
Bit4	Q4 代表四元数输出标志位。1:表示有四元数输出;0:表示无四元数输出。									
Bit3	YRP 代表欧拉角输出标志位。1:表示有欧拉角输出;0:表示无欧拉角输出。									
Bit2	GYR 代表陀螺仪输出标志位。1:表示有陀螺仪数据输出;0:表示无陀螺仪数据输出。									
Bit1	MAG 代表磁力计输出标志位。1:表示有磁力计数据输出;0:表示无磁力计数据输出。									
Bit0	ACC 代表加速度输出标志位。1:表示有加速度数据输出;0:表示无加速度数据输出。									

Byte10 代表的含义说明:

Byte10	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
含义:	SYS GYR			ΥR	AC	CC	MAG	
Bit7-Bit6	SYS 表示整个模块的精度: 0-3, 值越大越好, 当有磁性物体接近模块后, 精度将降低							
Bit5-Bit4	GYR 表示陀螺仪校准精度: 0-3, 值越大越好, 模块静止放置时将自动校准							
Bit3-Bit2	ACC 表示加速度计校准精度: 0-3, 值越大越好, 校准方法为分别缓慢将模块 6 个面水平静止一段时间							
Bit1-Bit0	MAG 表示磁力计校准精度: 0-3, 值越大越好, 校准方法为分别绕每个轴旋转或 8 字校准							

(3)、数据计算方法

①加速度计算方法(byte2&0x01=0x01 时):

ACC=高 8 位<<8) | 低 8 位 单位 m/s²

例:一帧数据

<5A-5A-01-07-03-27-FF-00-01-DD-F7-BA >

 $Acc_X=(0x03<<8)|0x27=807 (m/s^2)$

 $Acc_Y = (0xFF << 8) | 0x00 = -256 (m/s^2)$

 $Acc_Z = (0x01 << 8) | 0xDD = 477 (m/s^2)$

②磁力计数据计算方法(byte2&0x02=0x02 时):

例:一帧数据

< 5A-5A-02-07-FF-A0-FF-BD-FD-B5-F7-C1 >

Mag X=(0xFF<<8)|0xA0=-96 (LSB)

 $Mag_Y = (0xFF << 8) \mid 0xBD = -67 \text{ (LSB)}$

 $Mag_Z = (0xFD << 8) | 0XB5 = -587 (LSB)$

磁力计数据换算单位 1 μ T=16LSB

③陀螺仪数据计算方法(byte2&0x04=0x04 时):

例:一帧数据

<5A-5A-04-07-00-02-00-03-FF-FF-F7-B9>

 $Gyr_X = (0x00 << 8) | 0x02 = 2 \text{ (LSB)}$

 $Gyr_Y=(0x00<<8)|0x03=3 (LSB)$

Gyr $Z=(0xFF<<8) \mid 0xFF=-1(LSB)$

陀螺仪数据换算单位 1Dps=16LSB

④欧拉角计算方法(byte2&0x08=0x08 时):

例:一帧数据

<5A-5A-08-07-59-8D-17-25-03-8A-F7-69 >

Yaw = (0x59 << 8) | 0x8D = 22925 (LSB)

Roll = (0x17 < < 8) | 0x25 = 5925 (LSB)

 $Pitch=(0x03<<8) \mid 0X8A=906 \text{ (LSB)}$

欧拉角数据换算单位 1 度=100LSB

⑤四元数数据计算方法(byte2&0x10=0x10 时):

例:一帧数据

<5A-5A-10-09-0C-77-12-B6-F9-2C-1F-34-F7-87 >

 $Q1=(0x0C<<8) \mid 0x77=3191 \text{ (LSB)}$

 $Q2=(0x12<<8) \mid 0Xb6=4790 \text{ (LSB)}$

Q3 = (0xF9 < < 8) | 0X2C = -1748 (LSB)

 $Q4=(0x1F<<8) \mid 0X34=7988 \text{ (LSB)}$

四元数数据换算 1=10000LSB (即上传的数据被放大了 10000 倍)

注: 当多种数据输出时,数据的输出顺序为 ACC、MAG、GYR、YRP、Q4、SGAM(校准数据)

例如: 当 Byte2=0x18 时, bit4 为 1 表示有四元数输出, Bit3 为 1 表示有欧拉角输出。

下面解析一帧数据:

<5A-5A-18-0F-4E-CF-FE-CE-FE-AF-07-5F-FF-31-01-58-26-54-F3
-CD>

帧头: 5A5A

功能字节: 18 表示有四元数和欧拉角数据输出

数据量: 0F表示共15个数据

数据: 4ECF FECE FEAF 075F FF31 0158 2654 F3

根据数据输出的顺序得前 6 个字节为 YRP,接着的 8 个字节为 Q4,最后一个字节为模块的校准状态

Yaw=(0x4E<<8) | 0xCF=20175 (LSB) Roll=(0xFE<<8) | 0xCE=-306 (LSB) Pitch=(0xFE<<8) | 0XAF=-337 (LSB)

欧拉角数据换算单位 1 度=100LSB

 $Q1=(0x07<<8) \mid 0x5F=1887 \text{ (LSB)}$

 $Q2=(0xFF<<8) \mid 0X31=-207 \text{ (LSB)}$

 $Q3 = (0 \times 01 < < 8) \mid 0 \times 58 = 344 \text{ (LSB)}$

 $Q4=(0x26<<8) \mid 0X54=9812 \text{ (LSB)}$

四元数数据换算 1=10000LSB (即上传的数据被放大了 10000 倍)

SGAM=0xF3 即 SYS 校准精度为 3, GYR 校准精度为 3, ACC 校准精度为 0, MAG 校准精度为 3

- (4)、命令字节,由外部控制器发送至 GY-955 模块(十六进制)
 - 1、串口指令格式, 帧头: 0xA5 或 0XAA 指令格式: 帧头+指令+校验和(8bit)
 - 2、串口命令指令:
 - ①, 串口输出配置寄存器:

command	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bi				Bit1	Bit0		
输出命令	AUTO	100hz	50hz	Q4	EULER	GYRO	MAG	ACC
AUTO (默认 1)	1:上电后按照上次的输出配置输出; 0: 上电后不自动输出							
Bit6 (默认 0)	1: 连续	1: 连续输出频率约为 100hz; 0 为不配置(波特率为 115200 时)						
Bit5 (默认 1)	1: 连续	1: 连续输出频率约为 50hz; 0 为不配置 (波特率为 115200 时)						
Bit4 (默认 1)	1:输出[1:输出四元数数据; 0 为不输出四元数数据						
Bit3 (默认 1)	1:输出図	欠拉角数	据; 0 シ	内不输	出欧拉角数	汝据		
Bit2 (默认 1)	1:输出阵	Ż螺仪数	据; 0 シ	内不输	出陀螺仪数	汝据		
Bit1 (默认 1)	1:输出磁	兹力计数	据; 0 シ	内不输	出磁力计数	女据		
Bit0 (默认 1)	1:输出力	1速度计	数据;	0 为不	输出加速原	 		

命令格式: 0xAA+command+sum

例: bit7(Auto=1), bit5(50hz 输出频率=1),bit0(ACC=1)

发送命令: 0xAA+0xA1+0x4B, 表示连续输出加速度计数据, 重新上电后将自动连续输出加速度计数据

②,查询输出指令:

注:查询指令不掉电保存,如用查询输出,请注意在这之前是否配置了 command=0x00 ③,波特率配置:

0xA5+0xAE+0x53 ------9600 (默认) 0xA5+0xAF+0x54 ------115200

六、模块使用方法

模块数据更新频率约为 10hz;

该模块为串口输出模块和传感器芯片模式。

串口模式(默认): 焊点处于断开状态则为串口模式,使用该模块配套的上位机可方便 的对模块进行相应的设置;上位机使用前请先选择好端口和波特率,然后再点击

"打开串口"按钮;位于上位机"设置"页面,第二栏的 command 对应模块串口的 command 寄存器,在相应位置打勾,然后点右侧的"设置"按钮,即对模块进行了设置,模块将根据指令做出反应(具体参看 command 输出寄存器);使用者也可在 "发送指令框"输入相应指令,然后点击右侧的发送按钮即可,波特率更改方法同;

仅使用传感器芯片模式:将模块焊点焊接,模块上的BN0055 芯片共用IIC的SCL、SDA引脚,此模式下模块的MCU不对芯片进行设置和读取。此模式下请客户自行在网上查找BN0055 芯片的资料及程序,这里不再提供。

模块校准:模块校准是校准加速度计、陀螺仪和磁力计这三个传感器,它们的校准方法为:首先设置自动输出加速度计数据(随意一种数据都可以),然后静止水平放置模块,点击上位机"校准"按钮,然后观察模块精度变化,当精度都变成 0,等待 GYRO 精度为 3(说明喀仪已经校准好),绕三个轴转动,等待 MAG 精度为 3(说明磁力计校准好),最后分别把模块的 6个面朝上,静止放置 3 秒左右,当 ACC 精度为 3, SYS 精度为 3 表明模块校准完成。