Dokumentacja

Mateusz Wezdeńko

Index: 304124

Zadanie 2.2

Test nr 1:

Test ten pokazuje poprawne działanie algorytmu ewolucyjnego. Użyta funkcja w tym przykładzie to:

$$f(x,y) = \frac{1}{x^2 + y^2 + 1}$$

Sprawdzamy czy dla trzech typów selekcji populacja będzie oscylowała wokół punktu (0, 0), gdzie znajduje się maksimum globalne tej funkcji:

Użyte parametry:

Rozmiar populacji: 20
Ilość generacji: 800
Punkt startowy: (5, 5)
Szansa na mutację: 10%
Sigma mutacji: 0.2

Wyniki:

Średnia wartość parametrów ostatniej generacji:

	ruletkowa	turniejowa	progowa
Х	0,23	0,00	0,02
у	-0,16	-0,02	0,00

Rozmieszczenie osobników wszystkich generacji:

Algorytm ewolucyjny działa dla wszystkich trzech selekcji, gdyż populacje stabilizują się w punkcie (0, 0), gdzie znajduje się maksimum.

Test nr 2:

Test ten sprawdza wyniki dla różnych typów selekcji z zastosowaniem różnych ilości generacji.

Przykładowym problemem w tym teście będzie znalezienie maksimum funkcji:

$$f(a,b,c,d) = \frac{1}{(a+2)^2 + (b-5)^2 + (c+3)^4 + d^2 + 1}$$

Użyte parametry:

Rozmiar populacji: 20
Punkt startowy: (5, 5)
Szansa na mutację: 10%
Sigma mutacji: 0.2

Średnia wartość parametrów ostatniej generacji:

liczba generacji	zmienna	ruletkowa	turniejowa	progowa
	a	-0.99	-2.05	-2.01
200	b	2.77	5.03	4.95
200	С	-2.37	-3.01	-3.25
	d	-0.81	-0.01	0.02
	а	-2.13	-2.08	-2.03
600	b	4.52	5.1	5.02
000	С	-3.09	-3.14	-3.01
	d	-0.04	0.01	0.0
	а	-1.95	-1.92	-2.01
1000	b	5.08	4.96	5.01
1000	С	-3.43	-3.0	-3.09
	d	0.37	0.01	0.0

Wnioski:

• Selekcja ruletkowa przy małej szansie na mutacje, oraz przy małym sigma mutacji potrzebuje największej ilości generacji by osiągnąć maksimum.

Test nr 3:

Test ten sprawdza wyniki dla różnych typów selekcji z zastosowaniem różnych wartości sigma dla mutacji. Zastosowana zostanie ta sama funkcja z testu nr 1.

Użyte parametry:

Rozmiar populacji: 20
Ilość generacji: 500
Punkt startowy: (5, 5)
Szansa na mutację: 10%

Średnia wartość parametrów ostatniej generacji:

sigma mutacji	zmienna	ruletkowa	turniejowa	progowa
0.05	х	4,71	0,00	0,00
0.03	У	4,76	0,01	0,00
0.2	х	-0,19	0,04	0,02
0.2	у	0,03	0,01	-0,02
1	х	0,02	0,55	-0,06
1	у	0,31	0,16	-0,04

Rozmieszczenie osobników wszystkich generacji:

Wnioski:

- Duże wartości sigma powodują że osobniki szybciej docierają do maksimum
- Dla dużych wartości sigma obszar w jakim populacja stabilizuje się jest większy przez co wyniki są mniej dokładne
- Wzrost wartości sigma powoduje zwiększenie rozrzutu osobników