OFC: n = c/19 $n, \sin \phi_1 = n_2 \sin \phi_2$ (Snell's Law) $\theta_c = \sin^{-1}(n_2/n_1)$ 1 Power Law for ref. index ! (GIF) $n_1 \left[1 - 2\Delta \left(\frac{r}{a} \right)^{\alpha} \right]^{1/2} \left[r e \right]$ n(r) = $n, (1-2\Delta) \approx n, (1-\Delta)$ $NA = \sin \alpha = \sqrt{n_1^2 - n_2^2}$ when $n_1 \approx n_2$: $NA = N_1 \sqrt{2}A$ $\Delta = n_1 - n_2$ Oa = Sin (NA): Merédional Da = sin (NA/cos?) : skew Normalized Freq of V- Number: $V = 2 \pi a \sqrt{n_1^2 - n_2^2}$

Modes M & V²/2. (step Index)

d = 1 (Triangular Index) $\begin{bmatrix} d & V^2 & d = 1 & (1) & (1) & (1) & (1) & (1) & (2$ $(3^2/W^2)$ Mode Field Diameter E(r) = ED e 12) MFD 2 Wo Width $2W_0 = 2 \int_{-\infty}^{\infty} r^3 t^2(r) dr$ $\int_{r}^{\infty} F^{2}(r) dr$ 13) Fiber Beat Length $Lp = 2\pi / \beta$ propagation Module 2: $P(z) = P(0)e^{-d\rho z}$ $\alpha_{DB} = \frac{10}{2} \log \left[\frac{P(0)}{P(z)} \right]$ 1 d DB = 0-4 4.343 dp (km-1) AT = Ln, A RMS O = ATM

Optical Derivation: Phase Velocity, Group Velocity, d (2π n₁/λ 2-TT n1

$$v_{g} = -\frac{2\pi c}{\lambda^{2}} \cdot \left(\frac{d\beta}{d\lambda}\right)^{-1}$$

$$= -\frac{2\pi c}{\lambda^{2}} \cdot \left(\frac{2\pi \cdot d(n, /\lambda)}{d\lambda}\right)^{-1}$$

$$= -\frac{2\pi c}{\lambda^{2}} \cdot \left(\frac{d(n, /\lambda)}{d\lambda}\right)^{-1}$$

$$= -\frac{c}{\lambda^{2}} \cdot \left(\frac{\lambda n_{1}' - n_{1}(1)}{\lambda^{2}}\right)^{-1}$$

$$= -\frac{f}{\lambda^{2}} \cdot \left(\frac{\lambda dn_{1} - n_{1}}{\lambda^{2}}\right)^{-1}$$

Group Delay:
$$T_g = \frac{1}{\sqrt{g}}$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$T_m = \frac{L}{C} \left(\frac{n_1 - \lambda dn_1}{d\lambda} \right)$$

$$\frac{d \operatorname{Im}}{d \lambda} = \frac{-L}{C} \left(\frac{d^2 \operatorname{n}_1}{d \lambda^2} \right)$$

$$\sigma m = \sigma_{\lambda} \cdot \frac{L}{c} \left[\frac{\lambda \cdot d^{2} n_{1}}{d \lambda^{2}} \right]$$
Material Dispersion Parameter:

$$M = \frac{1}{L} \frac{dTm}{d\lambda}$$

$$= \frac{\lambda}{c} \left| \frac{d^2 n_1}{d n^2} \right| ps / (km - nm)$$

$$b(n_1 - n_2) = \beta / k - n_2$$

$$\beta = bk (n_1 - n_2) + k n_2$$

$$Multiply + Divide by n_1$$

$$\beta = n_2 k \left[b \Delta + 1 \right] \Delta = \frac{n_1 - n_2}{n_1}$$

$$Twg = \frac{L}{C} \left[\frac{n_2 + n_2}{\Delta} \Delta \frac{d(kb)}{dk} \right]$$

$$V = \frac{2\pi a}{\Delta} \cdot NA$$

$$\approx kan_1 \sqrt{2\Delta}$$

$$Twg = \frac{L}{C} \left[\frac{n_2 + n_2}{\Delta} \Delta \frac{d(Vb)}{\Delta V} \right]$$

$$\sigma_{Wg} = \frac{dwg}{d\lambda} \int_{\Delta} \sigma_{\lambda}$$

$$= L \left| \frac{dTwg}{dV} \right| \sigma_{\lambda}$$

$$\sigma_{Wg} = \frac{n_2 L\Delta \sigma_{\lambda}}{C\lambda} \cdot V \frac{d^2(Vb)}{dV^2}$$