

#### BOUNDED LINEAR NORM

## Why

We can give the set of bounded linear functions between two norm spaces a norm.

## **Definition**

The *norm* of a bounded linear function is the smallest real number by which we can bound the result on a vector times the norm of that vector.

#### Notation

Let  $((V_1, F_1), |\cdot|_1)$  and  $((V_2, F_2), |\cdot|_2)$  be two norm spaces. Let  $f: V_1 \to V_2$  be linear and bounded. The norm of f is the smallest C so that

$$|f(v)|_2 \le C|v|_1.$$

# **Equivalent Formulation**

Proposition 1. Let  $((V_1, F_1), |\cdot|_1)$  and  $((V_2, F_2), |\cdot|_2)$  be two norm spaces. Let  $f: V_1 \to V_2$  bounded and linear. The norm of f is

$$\sup_{|x|_1=1} |f(x)|_2.$$

