CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTICOS

PROFESOR: Ing. FLORES ALVAREZ ALEJANDRO

PROBLEMAS RESUELTOS DE INDUCTANCIA MUTUA Y AUTOINDUCTANCIA

Problema Nº 1

Determine la inductancia mutua entre una espira rectangular conductora y un alambre recto muy largo, como se muestra en la figura.

Resolución:

Para resolver este problema elegimos un sistema de coordenadas cilíndricas. Además, elijo como circuito (1) al hilo ∞ y como circuito (2) la espira. Asimismo asumo que por el circuito (1) circula una corriente I_1 (ver la figura mostrada a continuación).

Para calcular la inductancia mutua entre la espira rectangular conductora y el alambre recto muy largo, de manera directa utilizamos la siguiente ecuación:

$$L_{12} = \frac{N_2 \, \phi_{12}}{I_1} \quad \dots \quad (1)$$

Hallo $\phi_{\scriptscriptstyle{12}}$ (flujo ligado para una vuelta del circuito 1 sobre el circuito 2)

Se sabe:
$$\phi_{12} = \int_{S}^{\rightarrow} B_{1} \cdot dS_{2}$$
 . . . (2)

Se sabe que para un hilo ∞ , con corriente I_1 , la inducción magnética \vec{B}_1 , a una distancia r del hilo, viene dada por: $\vec{B}_1 = \frac{\mu_0 I_1}{2\pi\,r} \hat{a}_\phi$

De la figura: $d\vec{S}_2 = hdr \hat{a}_{\phi}$

Reemplazo $\overrightarrow{B_1}$ y $d\overrightarrow{S_2}$ en la ecuación (2):

$$\varnothing_{12} = \int \frac{\mu_0 I_1}{2\pi r} \hat{a}_{\phi} \cdot h \, dr \, \hat{a}_{\phi} = \frac{\mu_0 I_1 h}{2\pi} \int_{r=d}^{d+w} \frac{dr}{r}$$
$$\therefore \varnothing_{12} = \frac{\mu_0 I_1 h}{2\pi} \operatorname{Ln}\left(\frac{d+w}{d}\right)$$

Además, en nuestro caso: $N_2 = 1$ (una espira)

Reemplazando finalmente en la ecuación (1) tenemos que la inductancia mutua entre la espira rectangular conductora y el alambre recto muy largo es:

$$\therefore L_{12} = \frac{\mu_0 h}{2\pi} Ln \left(\frac{d+w}{d} \right)$$

Problema Nº 2

Una línea de transmisión coaxial llena de aire tiene un conductor interior sólido de radio a y un conductor externo muy delgado de radio interior b (ver figura). Determine la inductancia por unidad de longitud de la línea.

Resolución:

Para calcular la inductancia de una línea de transmisión coaxial o de hilos paralelos, elegimos primero un sistema de coordenadas cilíndricas.

A continuación hallo \vec{B} para cada región ($\rho < a \ y \ a < \rho < b$)

Sección transversal del cable coaxial

Aplicando la ley de Ampere se obtiene que para puntos ρ < a , la inducción magnética $\stackrel{\rightarrow}{B}$ es igual a:

$$\vec{B} = \frac{\mu_0 I \rho}{2\pi a^2} \hat{a}_{\phi}$$

Para puntos $a < \rho < b$, la inducción magnética $\stackrel{\rightarrow}{B}$ viene dada por:

$$\vec{B} = \frac{\mu_0 I}{2\pi\rho} \hat{a}_{\phi}$$

Cálculo de "L'" (Inductancia por unidad de longitud)

La inductancia por unidad de longitud está dada por el cociente entre la inductancia "L" y la unidad de longitud " ℓ ". Es decir:

$$L' = \frac{L}{\ell}$$
 ... (1)

Donde, por principio de superposición: L = L_{interna} + L_{externa} ... (2)

Para calcular la inductancia "L" aplico concepto de energía magnética $(W_{\scriptscriptstyle m})$, es decir utilizo:

$$L = \frac{2W_m}{I^2}$$
; $W_m = \frac{1}{2} \int_{V} \frac{B^2}{\mu} dV$

Luego, para la región interior (ρ < a) tenemos:

$$\begin{split} \circ \ L_{\text{int}} &= \frac{2}{I^2} \Bigg[\frac{1}{2\mu_0} \int\limits_{z=0}^{\ell} \int\limits_{\phi=0}^{2\pi} \int\limits_{\rho=0}^{a} \left(\frac{\mu_0 I \rho}{2\pi \ a^2} \right)^2 \rho \, d\rho \, d\phi \, dz \Bigg] \\ L_{\text{int}} &= \frac{\mu_0}{4\pi^2 a^2} \Bigg(\int\limits_{\rho=0}^{a} \rho^3 d\rho \, \Bigg) \Bigg(\int\limits_{\phi=0}^{2\pi} d\phi \, \Bigg) \Bigg(\int\limits_{z=0}^{\ell} dz \Bigg) \\ & \therefore L_{\text{int}} &= \frac{\mu_0 \ell}{2\pi} \Bigg(\int\limits_{z=0}^{\ell} dz \Big) \Bigg(\int\limits_{z=0}^{\ell} dz \Bigg) \end{split}$$

<u>Conclusión:</u> del resultado obtenido se puede concluir que la inductancia interna ($L_{interior}$) no depende del radio del conductor. Por lo tanto, para todo alambre muy largo se cumple que: $L = \frac{\mu_0 \ell}{8\pi}$

Para la región exterior $a < \rho < b$ tenemos:

$$\circ L_{\text{ext}} = \frac{2}{I^2} \left[\frac{1}{2\mu_0} \int_{z=0}^{\ell} \int_{\phi=0}^{2\pi} \int_{\rho=a}^{b} \left(\frac{\mu_0 I}{2\pi \rho} \right)^2 \rho \, d\rho \, d\phi \, dz \right]$$

$$L_{\text{ext}} = \frac{\mu_0}{4\pi^2} \left(\int_{\alpha=a}^{b} \frac{d\rho}{\rho} \right) \left(\int_{\phi=0}^{2\pi} d\phi \right) \left(\int_{z=0}^{\ell} dz \right) \implies L_{\text{ext}} = \frac{\mu_0 \ell}{2\pi} Ln \left(\frac{b}{a} \right)$$

Reemplazo L_{int} y L_{ext} en la ecuación (2):

$$L = \frac{\mu_0 \ell}{8\pi} + \frac{\mu_0 \ell}{2\pi} Ln \left(\frac{b}{a}\right)$$

Finalmente reemplazo en la ecuación (1) y obtengo la inductancia por unidad de longitud para un cable coaxial:

$$\therefore L' = \frac{\mu_0}{8\pi} + \frac{\mu_0}{2\pi} Ln \left(\frac{b}{a}\right)$$

Problema Nº 3

Determine la inductancia mutua entre dos espiras rectangulares coplanares con lados paralelos, como se muestra en la figura. Suponga que $L_1 >> L_2$ ($L_2 > b > d$).

Resolución:

Por condición del problema: $L_{\rm l}>>L_{\rm 2}$, entonces los lados de longitud $L_{\rm l}$ de la espira grande se pueden considerar como hilos infinitos, por lo tanto el sistema dado equivale al mostrado a continuación:

Asimismo:

- Elegimos un sistema de coordenadas cilíndricas y como circuito (1) a la espira de longitud L_1 , y como circuito (2) a la espira de longitud L_2 .
- Asumo que por el circuito (1) (hilos infinitos) circula una corriente I₁.

Hallo $\stackrel{\rightarrow}{B_1}$: (Densidad de flujo magnético debido al circuito (1) o hilos infinitos)

Por principio de superposición:

$$\overrightarrow{B}_1 = \overrightarrow{B}_{1'} + \overrightarrow{B}_{1''}$$

Donde:

$$\vec{B}_{1'} = \frac{\mu_0 I_1}{2\pi\rho} \hat{a}_{\phi} \qquad ; \qquad \vec{B}_{1''} = \frac{\mu_0 I_1}{2\pi\rho} (-\hat{a}_{\phi})$$

Luego:

$$\vec{B}_{1} = \frac{\mu_{0}I_{1}}{2\pi\rho} \hat{a}_{\phi} + \frac{\mu_{0}I_{1}}{2\pi\rho} (-\hat{a}_{\phi})$$

Hallo $\varnothing_{_{12}}$ (flujo ligado para una vuelta del circuito 1 sobre el circuito 2)

Se sabe:
$$\varnothing_{12} = \int\limits_{S_2} \overrightarrow{B}_1 \cdot d \vec{S}_2$$
 ; donde: $d \vec{S}_2 = L_2 d \rho \stackrel{\leftarrow}{a}_{\phi}$

$$\text{Luego: } \varnothing_{12} = \int\limits_{S_2} \frac{\mu_0 \mathbf{I}_1}{2\pi \; \rho} \, \hat{\mathbf{a}}_{\phi} \bullet \; \mathbf{L}_2 \mathrm{d}\rho \; \hat{\mathbf{a}}_{\phi} \; + \; \int\limits_{S_2} \frac{\mu_0 \mathbf{I}_1}{2\pi \; \rho} (-\hat{\mathbf{a}}_{\phi}) \bullet \; \mathbf{L}_2 \mathrm{d}\rho \; \hat{\mathbf{a}}_{\phi}$$

$$\emptyset_{12} = \frac{\mu_0 I_1 L_2}{2\pi} \left[\int_{d}^{d+b} \frac{d\rho}{\rho} - \int_{a+d}^{a+d+b} \frac{d\rho}{\rho} \right] = \frac{\mu_0 I_1 L_2}{2\pi} \left[Ln \left(\frac{d+b}{d} \right) - Ln \left(\frac{a+d+b}{a+d} \right) \right]$$

$$\therefore \varnothing_{12} = \frac{\mu_0 I_1 L_2}{2\pi} \left[Ln \left(\frac{(d+b)(a+d)}{d(a+d+b)} \right) \right]$$

Cálculo de "L₁₂" (inductancia mutua entre las dos espiras rectangulares)

Se cumple que:
$$L_{12} = \frac{N_2 \phi_{12}}{I_1} \dots$$
 (1)

Donde: $N_2 = 1$ (el circuito 2 es una espira por lo tanto tiene **una** vuelta) Reemplazando en (1), tenemos:

$$\therefore L_{12} = \frac{\mu_0 L_2}{2\pi} \left[Ln \left(\frac{(d+b)(a+d)}{d(a+d+b)} \right) \right]$$

Problema Nº 4

Determine la inductancia mutua entre un alambre recto muy largo y una espira conductora con forma de triangulo equilátero, como se ilustra en la figura.

Resolución:

Para resolver el problema elegimos un sistema de coordenadas cilíndricas.

Considero como circuito (1) al hilo ∞ (porque se conoce $\stackrel{\rightarrow}{B}$ a una cierta distancia del alambre) y como circuito (2) a la espira triangular. Además, asumo que por el circuito (1) circula una corriente I_1 (ver la figura).

Se sabe que el campo magnético \overrightarrow{B}_1 , debido al hilo ∞ con corriente I_1 , a una distancia ρ del hilo ∞ , viene dado por:

$$\vec{\mathbf{B}}_{1} = \frac{\mu_{0} \mathbf{I}_{1}}{2\pi \rho} \hat{\mathbf{a}}_{\phi}$$

Hallo $\varnothing_{_{12}}$ (flujo ligado para una vuelta del circuito 1 sobre el circuito 2)

Se sabe:
$$\varnothing_{12} = \int\limits_{S_2} \overset{\rightarrow}{B_1} \cdot d\vec{S}_2$$
 ; donde: $d\vec{S}_2 = 2(\rho - d)tg30^o d\rho \ \hat{a}_\phi$

Luego:
$$\varnothing_{12} = \frac{2}{\sqrt{3}} \int_{S_2} \frac{\mu_0 I_1}{2\pi \rho} \hat{a}_{\phi} \cdot (\rho - d) d\rho \hat{a}_{\phi} = \frac{\mu_0 I_1}{\sqrt{3}\pi} \int_{d}^{d + \frac{b}{2}\sqrt{3}} \frac{(\rho - d)}{\rho} d\rho$$

$$\Rightarrow \varnothing_{12} = \frac{\mu_0 I_1}{\sqrt{3}\pi} \left[\rho - dLn\rho \right]_{d}^{d + \frac{b}{2}\sqrt{3}} = \frac{\mu_0 I_1}{\sqrt{3}\pi} \left[\frac{b}{2} \sqrt{3} + dLn \left(\frac{2d}{2d + b\sqrt{3}} \right) \right]$$

Cálculo de "L₁₂" (inductancia mutua entre el alambre y la espira triangular):

Se sabe :
$$L_{12} = \frac{N_2 \phi_{12}}{I_1} \dots$$
 (1)

Donde: $N_2 = 1$

Reemplazando en (1), obtenemos finalmente que:

$$\therefore L_{12} = \frac{\mu_0}{\sqrt{3}\pi} \left[\frac{b}{2} \sqrt{3} + d Ln \left(\frac{2d}{2d + b\sqrt{3}} \right) \right]$$

Problema Nº 5

Determine la autoinductancia de una bobina toroidal con N vueltas de alambre devanado alrededor de un marco de aire con radio medio $\, r_0 \,$ y sección transversal circular de radio b. Obtenga una expresión aproximada suponiendo b $<< r_0 \,$.

Resolución:

Del enunciado del problema, la figura correspondiente a la sección transversal circular es:

A continuación se muestra un corte transversal de la bobina toroidal.

Cálculo de "L" (inductancia de la bobina toroidal)

Dada la simetría de la figura, para la resolución de este problema elegimos un sistema de coordenadas cilíndricas.

Hallo $\stackrel{\rightarrow}{\mathrm{B}}$ del Toroide.

Por Ley de Ampere: $\oint_{\mathcal{C}} \vec{B} \cdot \vec{d\ell} = \mu_0 I_{enc}$

Luego:
$$B(2\pi r) = \mu_0(NI) \rightarrow B = \frac{\mu_0 NI}{2\pi r}$$
 $\therefore \vec{B} = \frac{\mu_0 NI}{2\pi r} \hat{a}_{\phi}$

Hallo "
$$\varnothing$$
" aplicando: $\varnothing = \int_{S} \vec{B} \cdot d\vec{S}$ (1)

Encontramos \overrightarrow{dS} en la dirección \hat{a}_{ϕ} :

 $\angle d\vec{S} = 2\pi \ r' dr' \hat{a}_{\phi}$ Analizando la sección transversal del toroide (tomo como eje de referencia el centro de dicha sección) y por condición $\mbox{ del problema} \quad b << r_{_{\! 0}} \,, \quad \mbox{en} \quad \mbox{la} \quad \mbox{regi\'{o}} \mbox{n}$ $\label{eq:concluye} r_{_{\! 0}} - b < r < r_{_{\! 0}} + b \, \text{,} \quad \text{ se } \quad \text{ concluye}$

$$\stackrel{\rightarrow}{B}_{(r)} \approx \stackrel{\rightarrow}{B}_{(r_0)} = \; \frac{\mu_0 NI}{2\pi \; r_0} \; \hat{a}_{\phi} \label{eq:Bressel}$$

Reemplazando en (1):

$$\begin{split} \varnothing = \int & \frac{\mu_0 N I}{2\pi \, r_0} \, \, \hat{a}_{\phi} \bullet \, 2\pi r' dr' \, \, \hat{a}_{\phi} = \frac{\mu_0 N \, I}{r_0} \int\limits_0^b r' dr' = \frac{\mu_0 N \, I}{r_0} \Bigg(\frac{b^2}{2} \Bigg) \\ \Rightarrow & \varnothing = \frac{\mu_0 N \, I \, b^2}{2r_0} \, \, \text{(flujo ligado a una vuelta)} \end{split}$$

Luego, el flujo ligado a N vueltas o flujo total es igual a: $\Lambda = \frac{\mu_0 N^2 \; I \; b^2}{2 r_{_0}}$

Finalmente Hallo "L" (autoinductancia o inductancia de la bobina toroidal)

Sabemos:
$$L = \frac{\Lambda}{I}$$

Problema Nº 6

Alrededor de un marco toroidal de sección transversal rectangular con las dimensiones presentadas en la figura, se enrollan muy juntas N vueltas de alambre. Suponiendo que la permeabilidad del medio es μ_0 , determine la autoinductancia de la bobina toroidal.

Resolución:

Para la resolución de este problema elegimos un sistema de coordenadas cilíndricas.

Para calcular la autoinductancia del toroide, primero hallo \vec{B} para un Toroide.

Sección Transversal del Toroide

Por Ley de Ampere:
$$\oint_C \vec{B} \cdot d \vec{\ell} = \mu_0 I_{enc}$$

Luego: $B(2\pi r) = \mu_0(NI)$

$$\rightarrow B = \frac{\mu_0 NI}{2\pi r}$$

$$\therefore \vec{B} = \frac{\mu_0 NI}{2\pi r} \hat{a}_{\phi}$$

Hallo "∅" (flujo magnético ligado a una vuelta):

Se sabe: $\varnothing = \int\limits_{S} \vec{B}.\ d\vec{S}$; donde: $d\vec{S} = h dx\ \hat{a}_{\phi}$

 $\text{Luego: } \varnothing = \int\limits_{S} \frac{\mu_0 N I}{2\pi \ r} \ \hat{a}_{\phi}. \ \text{hdx } \hat{a}_{\phi} = \frac{\mu_0 N \ I \ h}{2\pi} \int\limits_{a}^{b} \frac{dr}{r}$

$$\emptyset = \frac{\mu_0 N I h}{2\pi} Ln \left(\frac{b}{a}\right)$$

Luego, el flujo ligado a N vueltas o flujo total es igual a: $\Lambda = \frac{\mu_0 N^2 \ I \ h}{2\pi} Ln \left(\frac{b}{a}\right)$

Hallo "L" (autoinductancia o inductancia del toroide)

Se cumple que: $L = \frac{\Lambda}{I}$... (1)

Reemplazando en (1) tenemos que la autoinductancia del toroide está dada por:

$$\therefore L = \frac{\mu_0 N^2 h}{2\pi} Ln \left(\frac{b}{a}\right)$$