Finding epimerphisms from f.p. g to a finite H.

If $q:g \longrightarrow H$ epi, $h \in H \implies$ $q_h:g \longrightarrow H , g \longmapsto h'q_g h \text{ is an epimorphism as well}$

=> we want to find φ up to an inver automorphism. let $g=\langle S|R\rangle$ and let $h_i=\varphi(s_i)$.

we need to pick the desired cfh.

1) fix $h_1 = \phi(s_1)$ as a fixed representative from carjugacy class of h_1 .

=> potential h belong to CH(h1) = C1

2) we want to fix the conjectors of $\varphi(s_k)$ up to elt of C_1 .

let r be a representative of conjugacy class of k_2 .

i.e. $\pi^H = C_H(r) \backslash H$.

act on 1th through C1 ~>

this reduces the choice of he to a
representative of double coset CHC1) H/C1.

3) we want to choose conjecters of q(s,) up to elt in

representative of double coset $C_{H}(v) H/C_{H}(h_{1},h_{2}).$

INPU	: • G=	<01R>	- a f.	p. gran	p
		a fivile			•
Outpu	- · · L - /			isms	g -> H
begi					
	- 17				•
c	CH = list	of repres	entative	s of w	mjugory clo
	= 101				
	or hy in	cal H	11 imag	e of s	4
-	f	e col#	11 imera	e of s),
	for gr	e com	ه صحد مدر کرد	eo. I di	ves of cose
				3000,000	C (21)
		r d e Z			$C_{\mu}(g_{i})^{\dagger}$
	,	h2 = g2	2.		
		,			
		0			
	•	for gn	e col H	•	cosets of CH(gn)\H
		20n - /	list ot v	eps of	cosets of
		lac d			CH (du)
		ger a	m ED,	٠.	
		Mn	= gn	f	4. (0 14
		åf	rshome	morph	ism (g, H
			0	٤ .	<h,,hn< td=""></h,,hn<>
		:	push	Ch,,	hu) to L
		end			
		ind '			
		•			ism (G, H, <h,,hn) ha) to L</h,,hn)
	e len	el			
	end end efun L				
Q. A	etun L				
KM PX					

Quolient subgroups
Defn: Let G be a fig. group, It a (finite) group
cp: g > H a homomorphism.
for U < H we say that
$(\varphi, u) := \{ g \in G : \varphi(g) \in u \} = \varphi'(u)$
is a quotient subgroup.
Idea: compute everything in it as long as it is possible:
possible:
• So lest it $g \in q(u)$ if $q(g) \in U$.
If q is an epimorphism
of a is an epimerphism g a giw is the same as # a utt
g () 15 Ave so
this set
qu'is of finite
index
we can find schreier generators
siri siri for q'(u).

loset enumeration: The Handord is so called Todd - coxeler algorithm. We'll hopefully cover it leter when Automote are introduced. Subgroup presentations Let Fm & g be a quotient homomorphism, i.e. G = < x, ..., x, 1 x, ..., xx, Let H<G, [G:H]=n <00.

let t1=1, t2, ..., to be a transversal for HG.

Denok by Siis = tix; (tix;) the Schreier generators. if $t_a = t_k \times_c \Rightarrow s_{k,c} = t_k \times_c (\overline{t_k \times_c})^{-1}$

= fe & (ta) = 1.

so there are at least n-1 redundant generators (coming from to=1).

Let $U \leq F$ be $\pi^{-1}(H)$. HWELL => T(W) EH i.e. T(W) can be rewritten with sijs.

. non-reducedant ones

u ---> H = < sii 1 ... > rewriting y Ton 7
map Free (5i,i)

Theorem: Let g = (SIR), H<g of finite rdex. Let T = (1=t1,..., tn) be a framoersal for H. Let $S' = \{s_{i,j} = t_i \times_j (t_i \times_j)^T : s_{i,j} \neq 1, |s_i \leq n\}$ · H = < 51) (Schreier) Let True (s') → H. then her The = < tot! tet, reR) is. It can be presented as K sloppy (I' | tit : ter, rep) Proof: $\pi_{H}(\bar{t} + \bar{t}') = 1 \implies$ the presented group maps onto H. <u>Sim:</u> Suy relation between Sij is visible in the quotient of Free (5"). Fru(S) Tig G W = Tig(H)

H

W - 1 three rewriting Free(5) ->> < 5'1.-- > w' can be written in "old way" i.e. replacing Jij by to x tix; EU < Free (1).

because $\pi_{g}(v) = \chi(\pi(\psi(v))) = 1$ (graduat of conjugates of relations). >> v= Tb rb Consider re, rER, ce Free(s).

I(c) can be witten as h.ti = ti'h' for thus re = (tirti) "(h)

i.e.

13 an H-conjugate of something that was already frivial the G.

lorollary: & (finite index) subgroup of Fm 1s free (on n.(m-1)-1 generators).

Proof: follow the procedure and since $R = \emptyset$ there are no relations for H.

Note: we have $n \cdot (m-1) - 1$ generators in S and $m \cdot k$ relations. Those are rather large numbers.

-> Apply Tietre transformations to shorten the presentation.

Abelian qualients and a lest for finikness. Determine the "largest" abelian quatient. Let Fm Tog le a finte presentation. Let N = <xixxy 1x, ye Fm> < Fm then $\pi(V) = \langle abab | a, b \in G \rangle = G' = clerived$ subgroup then Fm/kerop/N = g/q' => G/G' has "abelianized" presentation for G. write each relator of g as ri=g1 g2 ... gm thus we obtain a matrix: $R' = \begin{bmatrix} e_n & e_{12} & \dots & e_{1m} \\ e_{21} & e_{22} & \dots & e_{2m} \\ \vdots & & & & & \\ e_{k_1} & e_{k_2} & \dots & e_{k_m} \end{bmatrix}$ row operations on \mathbb{R}^1 : (R1) $\tau_i \rightarrow \tau_i \, \tau_i^{\pm 1}$ - replacing one relation by a produt (R2) Ti - inverting a relation colum operations on R' (C1) gi - gigj - (replace a generator by a product (C2) gi - gi' - invert or generator.

· Use these operations to bring R' into "Smith Normal form" «ildin for 1sism $S = \left\{ \begin{array}{c} \alpha_{1} & 0 \\ 0 & \alpha_{N} \\ 0 & 0 \end{array} \right\}$ $\alpha_i \ge 1$ => G/G' = PCx; @ Z/Bg B=min(k-v,m-v) Corollary: if By>0 => G is infinite. · the same is fine if for H < g (of finite index, eq. given by a quotient subgrap) By is > 0.

General procedure: . find a subgroup H < g of small index · déférmine BH

· of BH = 0 repeat with different H.