ИДЗ-19.1. Вариант 8:

37	49	43	31	44	38	40	31	28	43
32	44	47	29	51	25	43	38	41	32
38	24	49	40	32	34	31	28	37	46
41	35	43	25	37	46	38	24	41	50
38	29	41	32	34	49	44	37	31	47
50	34	25	37	40	32	35	28	44	43
46	37	41	35	29	43	38	31	26	34
49	32	46	26	38	35	40	51	37	46
37	25	40	34	24	44	32	28	34	38
44	34	29	47	37	49	43	35	47	50

Решение:

a)

Чтобы получить вариационный ряд, отсортируем по возрастанию:

24	24	24	25	25	25	25	26	26	28
28	28	28	29	29	29	29	31	31	31
31	31	32	32	32	32	32	32	32	34
34	34	34	34	34	34	35	35	35	35
35	37	37	37	37	37	37	37	37	37
38	38	38	38	38	38	38	38	40	40
40	40	40	41	41	41	41	41	43	43
43	43	43	43	43	44	44	44	44	44
44	46	46	46	46	46	47	47	47	47
49	49	49	49	49	50	50	50	51	51

б)

Найдём размах варьирования:

$$\omega=x_{max}-x_{min}=51-24=27$$

Величина одного интервала:

$$h = \frac{\omega}{9} = 3$$

Номер	Границы	Середина	Частота	Частость	Плотность частости
интервала	интервала	интервала	интервала	интервала	
1	[24-27)	25,5	9	0,09	0,03
2	[27-30)	28,5	8	0,08	0,026666667
3	[30-33)	31,5	12	0,12	0,04
4	[33-36)	34,5	12	0,12	0,04
5	[36-39)	37,5	17	0,17	0,056666667
6	[39-42)	40,5	10	0,1	0,033333333
7	[42-45)	43,5	13	0,13	0,043333333
8	[45-48)	46,5	9	0,09	0,03
9	[48-51]	49,5	10	0,1	0,033333333

Проверка:	100	1	

в) Построим полигон частот, гистограмму относительных частот и график эмпирической функции распределения:

г) Найдём выборочное среднее и дисперсию:

Номер	Границы	Середина	Частота	$n_i * x'_i$	$(x_i')^2$	$n_i * (x_i')^2$
интервала	интервала	интервала, x_i'	интервала, n _i			
1	[24-27)	25,5	9	229,5	650,25	5852,25
2	[27-30)	28,5	8	228	812,25	6498
3	[30-33)	31,5	12	378	992,25	11907
4	[33-36)	34,5	12	414	1190,25	14283
5	[36-39)	37,5	17	637,5	1406,25	23906,25
6	[39-42)	40,5	10	405	1640,25	16402,5
7	[42-45)	43,5	13	565,5	1892,25	24599,25
8	[45-48)	46,5	9	418,5	2162,25	19460,25
9	[48-51]	49,5	10	495	2450,25	24502,5
			100	3771	13196,25	147411

$$\bar{x} = \frac{1}{n} * \sum_{i=1}^{k} x_i' * n_i = 37,71$$

$$D_{\scriptscriptstyle B} = \frac{1}{n} * \sum_{i=1}^{k} {x_i'}^2 * n_i - \bar{x}^2 = 52,07$$

$$\sigma_{_{\mathrm{B}}}=\sqrt{D_{_{\mathrm{B}}}}=7,22$$

$$\widetilde{D}_{\scriptscriptstyle B} = \frac{n}{n-1} * D_{\scriptscriptstyle B} = 52,59$$

$$\widetilde{\sigma_{\scriptscriptstyle B}}=\sqrt{S^2}=7,25$$

д) Найдём теоретические частоты:

i	Xi	X _{i+1}	$x_i - \bar{x}$	$x_{i+1} - \bar{x}$	$z_i = \frac{x_i - \bar{x}}{\sigma_{_B}}$	$z_{i+1} = \frac{x_{i+1} - \bar{x}}{\sigma_{B}}$
1	24	27	-	-10,71	-	-1,48427
2	27	30	-10,71	-7,71	-1,48427	-1,06851
3	30	33	-7,71	-4,71	-1,06851	-0,65275
4	33	36	-4,71	-1,71	-0,65275	-0,23698
5	36	39	-1,71	1,29	-0,23698	0,178778
6	39	42	1,29	4,29	0,178778	0,594539
7	42	45	4,29	7,29	0,594539	1,010301
8	45	48	7,29	10,29	1,010301	1,426063
9	48	51	10,29	-	1,426063	-

Найдём теоретические вероятности:

i	z _i	z_{i+1}	$\Phi(z_i)$	$\Phi(z_{i+1})$	$P_i = \Phi(z_{i+1}) - \Phi(z_i)$	$n_i = 100 * P_i$
1	-	-1,48427	-0,5	-0,43113	0,068869	6,886871
2	-1,48427	-1,06851	-0,43113	-0,35735	0,073777	7,377705
3	-1,06851	-0,65275	-0,35735	-0,24304	0,114314	11,43143
4	-0,65275	-0,23698	-0,24304	-0,09367	0,149374	14,93745
5	-0,23698	0,178778	-0,09367	0,070944	0,164609	16,46093
6	0,178778	0,594539	0,070944	0,223924	0,15298	15,29805
7	0,594539	1,010301	0,223924	0,343824	0,1199	11,99002
8	1,010301	1,426063	0,343824	0,423075	0,07925	7,925043
9	1,426063	-	0,423075	0,5	0,076925	7,692509
					1	100

Вычислим наблюдаемое значение критерия Пирсона:

i	n _i	n'i	$n_i - n'_i$	$(n_i - n_i')^2$	$(n_i - n_i')^2$	n_i^2	n_i^2
					n' _i		$\overline{n'_i}$
1	9	6,886871	2,113129	4,4653137	0,648381	81	11,76151
2	8	7,377705	0,622295	0,387251	0,052489	64	8,674784
3	12	11,43143	0,568574	0,3232764	0,02828	144	12,59685
4	12	14,93745	-2,93745	8,6286102	0,577649	144	9,6402
5	17	16,46093	0,53907	0,2905963	0,017654	289	17,55672
6	10	15,29805	-5,29805	28,069296	1,834829	100	6,536782
7	13	11,99002	1,00998	1,0200603	0,085076	169	14,09506
8	9	7,925043	1,074957	1,1555329	0,145808	81	10,22076
9	10	7,692509	2,307491	5,3245139	0,692169	100	12,99966
	100	100			4,082334		104,0823

$$\chi^2_{\text{набл}} = 4,082334$$

Контроль:

$$104,0823 - 100 = 4,0823$$

По таблице:

 $\chi^2_{
m kp}=1$ 4,4 при lpha=0.025, и при количестве степеней свободы: ${
m k}=l-3=6$

Так как $\chi^2_{\text{кр}} > \chi^2_{\text{набл}}$, то гипотеза принимается.

е) Математическое ожидание покрывается доверительным интервалом:

$$(\bar{x} - \frac{\widetilde{\sigma_{\scriptscriptstyle B}}}{\sqrt{n}} t_{\gamma}; \bar{x} + \frac{\widetilde{\sigma_{\scriptscriptstyle B}}}{\sqrt{n}} t_{\gamma})$$

Так как $\gamma=0.9$, то $t_{\gamma}=1.65$,

Тогда доверительный интервал:

(36,2886; 39,1314)

Доверительный интервал для среднеквадратичного отклонения находится по формуле:

$$(\widetilde{\sigma_{\scriptscriptstyle B}}(1-q);\widetilde{\sigma_{\scriptscriptstyle B}}(1+q))$$

Для
$$n = 100$$
 и $\gamma = 0.95$:

$$q = 0.143$$

Значит доверительный интервал: