PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-115692

(43)Date of publication of application: 18.04.2003

(51)Int.CI.

HO5K 9/00 H01F 1/00

H01F 1/18 **HO3H** 7/01

(21)Application number : 2001-308998

(71)Applicant: TDK CORP

(22)Date of filing:

04.10.2001

(72)Inventor: AKINO NAOHARU

HASHIMOTO YASUO CHO TSUTOMU

KAYA GASHIYO

(54) NOISE ABSORPTION DEVICE FOR MOUNTING CABLE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a small-sized and light-weight noise absorption device for mounting a cable by using a soft magnetic metal thin film layer formation film laminated body provided with a performance capable of suppressing and blocking noise, having a high impedance from an MHz band to a GHz

SOLUTION: A surface of a cylindrical soft magnetic metal thin film layer formation film laminated body 12 composed by stacking a plurality of annular soft magnetic metal thin film layer formation films 11 is coated with an insulator 13 and a cylindrical structure is attained.

LEGAL STATUS

[Date of request for examination]

03.09.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003—115692

(P2003-115692A)

(43)公開日 平成15年4月18日(2003.4.18)

(51) Int. Cl. 7	識別記号	FI 产マコード (参考)		
H05K 9/00		H05K 9/00 L 5E040		
H01F 1/00		HO1F 1/18 5E041		
1/18		HO3H 7/01 Z 5E321		
нозн 7/01		H01F 1/00 C 5J024		
		審査請求 未請求 請求項の数11 〇L (全11頁)		
(21)出願番号	特願2001-308998(P2001-308998)	(71)出願人 000003067		
		ティーディーケイ株式会社		
(22)出願日	平成13年10月4日(2001.10.4)	東京都中央区日本橋1丁目13番1号		
		(72)発明者 秋野 直治		
		千葉県柏市柏の葉一丁目2番9号		
		(72)発明者 橋本 康雄 東京都中央区日本橋一丁目13番1号ティー		
		ディーケイ株式会社内		
		(74)代理人 100079290		
		弁理士 村井 隆		
		月在工 13分 医		
		最終頁に続く		
		<u> </u>		

(54) 【発明の名称】ケーブル装着用ノイズ吸収装置

(57)【要約】

【課題】 MHz帯からGHz帯にわたり高インピーダンスを有し、ノイズを抑圧、阻止できる性能を備えた軟磁性金属薄膜層形成フィルム積層体を用いることで、小形、軽量なケーブル装着用ノイズ吸収装置を得る。

【解決手段】 環状の軟磁性金属薄膜層形成フィルム11を複数枚積層してなる筒状軟磁性金属薄膜層形成フィルム積層体12の表面を、絶縁物13で被覆し、筒状構造する。

【特許請求の範囲】

【請求項1】 環状の軟磁性金属薄膜層形成フィルムを 複数枚積層してなる筒状軟磁性金属薄膜層形成フィルム 積層体の表面を、絶縁物で被覆したことを特徴とするケ ーブル装着用ノイズ吸収装置。

1

【請求項2】 2個以上の環連鎖状の軟磁性金属薄膜層 形成フィルムを複数枚積層してなる筒連鎖状軟磁性金属 薄膜層形成フィルム積層体の表面を、絶縁物で被覆した ことを特徴とするケーブル装着用ノイズ吸収装置。

【請求項3】 ロの字状の軟磁性金属薄膜層形成フィル 10 ムを複数枚積層してなる角筒状軟磁性金属薄膜層形成フィルム積層体の表面を、絶縁物で被覆したことを特徴とするケーブル装着用ノイズ吸収装置。

【請求項4】 2個以上の口の字連鎖状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる角筒連鎖状軟磁性金属薄膜層形成フィルム積層体の表面を、絶縁物で被覆したことを特徴とするケーブル装着用ノイズ吸収装置。

【請求項5】 半環状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる半筒状軟磁性金属薄膜層形成フィ 20 ルム積層体の組を、開閉自在の絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材が閉じたときに前記半筒状軟磁性金属薄膜層形成フィルム積層体の組が環状閉磁路を構成することを特徴とするケーブル装着用ノイズ吸収装置。

【請求項6】 2個以上の半環連鎖状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる半筒連鎖状軟磁性金属薄膜層形成フィルム積層体の組を、開閉自在の絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材が閉じたときに前記半筒連鎖状軟磁性金属薄膜層形成フィルム 30積層体の組が環連鎖状閉磁路を構成することを特徴とするケーブル装着用ノイズ吸収装置。

【請求項7】 コの字状の軟磁性金属薄膜層形成フィルムを複数枚積層してなるコの字状軟磁性金属薄膜層形成フィルム積層体の組を、開閉自在の絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材を閉じたときに前記コの字状軟磁性金属薄膜層形成フィルム積層体の組が角筒状閉磁路を構成することを特徴とするケーブル装着用ノイズ吸収装置。

【請求項8】 2個以上のコの字連鎖状の軟磁性金属薄 40 膜層形成フィルムを複数枚積層してなるコの字連鎖状軟 磁性金属薄膜層形成フィルム積層体の組を、開閉自在の 絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材を 閉じたときに前記コの字連鎖状軟磁性金属薄膜層形成フィルム積層体の組が角筒連鎖状閉磁路を構成することを 特徴とするケーブル装着用ノイズ吸収装置。

【請求項9】 前記軟磁性金属薄膜形成フイルムは絶縁 樹脂フィルム上に軟磁性金属薄膜を被着形成したもので ある請求項1,2,3,4,5,6,7又は8記載のケ ーブル装着用ノイズ吸収装置。 【請求項10】 前記軟磁性金属薄膜形成フイルムは絶縁樹脂フィルム上に軟磁性金属薄膜を複数層形成したものであり、各軟磁性金属薄膜の層間に絶縁膜が介在している請求項1,2,3,4,5,6,7又は8記載のケーブル装着用ノイズ吸収装置。

【請求項11】 前記軟磁性金属薄膜が下地導体薄膜上に形成されてなる請求項9又は10記載のケーブル装着用ノイズ吸収装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ケーブル周囲に装着して電磁妨害雑音(以降ノイズと称する)を抑圧する装置に係り、特に、デジタル機器を始めとした電子機器の電源ライン、機器間を結ぶ信号ライン、制御ライン等のケーブル上を伝導するノイズを抑圧すると共に、ケーブルを通して外部から侵入するノイズが機器内に伝導するのを阻止する軟磁性金属薄膜層形成フィルムを用いた小形で軽量なケーブル装着用ノイズ吸収装置に関する。【0002】

【従来の技術】電子機器におけるノイズの発生の抑圧、ノイズの侵入の阻止を図るために、機器の電源ライン、機器間を結ぶ信号ライン、制御ライン等のケーブルに装着する構造のノイズ吸収装置における従来例として、CoZrNb/SiO。多層膜を用いたチューブ状の磁性体をケーブルの周囲に装着する構造(1994年電子情報通信学会春季大会B-273:従来例1とする)、他の従来例として互いに着脱自在に組み合わされる一対のフェライトをケーブルの周囲に装着する構造(実公昭62-14770号:従来例2とする)が公示されている。

【0003】図14は、機器の電源ライン、機器間を結ぶ信号ライン、制御ライン等のケーブルの周囲に装着して用いるノイズ吸収装置5の一例を示し、ヒンジ部を有するプラスチック製ケース1で一対の半円環状(半円筒形状)のフェライト2を保持し、ケーブル3をフェライト2の内周に嵌めてプラスチック製ケース1を閉じることで、一対の半円環状(半円筒形状)のフェライト2を突き合わせ状態として閉ループの磁路をケーブル3の周囲に構成するものである。

【0004】図15は図14に示した如きノイズ吸収装置5の使用例であり、この図ではパーソナルコンピュータと周辺端末機器(キーボード、CRTディスプレイ、プリンター、MOドライバー等)とを接続しているケーブルにノイズ吸収装置5をそれぞれ装着した構成を示している。

[0005]

【発明が解決しようとする課題】近年、パーソナルコン ピュータ用のCPUのクロック周波数が1GHzを超 え、CPUを搭載するマザーボードのクロック周波数が 50 200MHzを超える等、デジタル回路を使用するIT 機器の電気信号はますます高速化してきている。加えて、こうした機器においては、消費電力を低減させるために駆動電源の低電圧化が進められてきている。このような背景のもと、機器におけるノイズの発生の抑圧、ノイズの侵入の阻止がますます重要になってきている。他方、パーソナルコンピュータと周辺端末機器に例を見るように電子機器の軽薄短小化がますます進んできている。

【0006】上述のように、電子機器の回路動作が高周 波化するのに従い、発生、漏出するノイズの周波数成分 10 はGHz帯に迄及ぶようになってきており、更に、外部 から誘導、侵入するノイズもGHz帯に迄及んでいる。 このような背景下において、従来例1に示されているC oZrNb/SiO2多層膜を用いたチューブ状の磁性 体では、リアクタンス成分XL(複素比透磁率の実数部 (μr') に依存) が図16のように、10MHz付近 で抵抗成分R (複素比透磁率の虚数部 (μ r") に依 存)より小さくなり、GHz帯におけるノイズの抑制機 能を期待できなくなる。更に、スピネル型結晶構造のN i-Znフェライトでは、図17に示した試料の複素比 20 透磁率の周波数特性からみるように、MHz帯で透磁率 の分散(複素比透磁率の実数部(μ r')の消失、続い て虚数部 (μ r") の消失) が生じ、GΗ z 帯における ノイズの抑制機能を期待できなくなる。加えて、上述の ように電子機器の軽薄短小化の流れの中、こうした機器 に使われる電子部品にも軽薄短小化が求められ、ケーブ ルに装着して使われるノイズ吸収装置にあってもその例 外ではない。しかしながら、図17に示したフェライト の複素比透磁率の周波数特性に見るように、MHz帯以 上におけるノイズの抑制に効果をもたらす実数部 (μ r') が急激に低下するため、ノイズ抑制機能を維持す るためにはノイズ吸収装置は勢い大型化してしまう。

【0007】本発明の第1の目的は、上記の点に鑑み、MH2帯からGH2帯にわたり高インピーダンスを有し、ノイズを抑圧、阻止できる性能を備えた軟磁性金属薄膜層形成フィルム積層体を用いたケーブル装着用ノイズ吸収装置を提供することにある。

【0008】本発明の第2の目的は、機器の小形化に伴い、求められる軽薄短小化に対応した小形、軽量なノイズ吸収装置を軟磁性金属薄膜層形成フィルム積層体の使 40 用により、実現することにある。

【0009】本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。

[0010]

【課題を解決するための手段】上記目的を達成するために、本願請求項1の発明に係るケーブル装着用ノイズ吸収装置は、環状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる筒状軟磁性金属薄膜層形成フィルム積層体の表面を、絶縁物で被覆したことを特徴としている。

【0011】本願請求項2の発明に係るケーブル装着用 50

ノイズ吸収装置は、2個以上の環連鎖状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる筒連鎖状軟磁性 金属薄膜層形成フィルム積層体の表面を、絶縁物で被覆 したことを特徴としている。

【0012】本願請求項3の発明に係るケーブル装着用ノイズ吸収装置は、ロの字状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる角筒状軟磁性金属薄膜層形成フィルム積層体の表面を、絶縁物で被覆したことを特徴としている。

【0013】本願請求項4の発明に係るケーブル装着用 ノイズ吸収装置は、2個以上の口の字連鎖状の軟磁性金 属薄膜層形成フィルムを複数枚積層してなる角筒連鎖状 軟磁性金属薄膜層形成フィルム積層体の表面を、絶縁物 で被覆したことを特徴としている。

【0014】本願請求項5の発明に係るケーブル装着用ノイズ吸収装置は、半環状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる半筒状軟磁性金属薄膜層形成フィルム積層体の組を、開閉自在の絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材が閉じたときに前記半筒状軟磁性金属薄膜層形成フィルム積層体の組が環状閉磁路を構成することを特徴としている。

【0015】本願請求項6の発明に係るケーブル装着用ノイズ吸収装置は、2個以上の半環連鎖状の軟磁性金属薄膜層形成フィルムを複数枚積層してなる半筒連鎖状軟磁性金属薄膜層形成フィルム積層体の組を、開閉自在の絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材が閉じたときに前記半筒連鎖状軟磁性金属薄膜層形成フィルム積層体の組が環連鎖状閉磁路を構成することを特徴としている。

30 【0016】本願請求項7の発明に係るケーブル装着用 ノイズ吸収装置は、コの字状の軟磁性金属薄膜層形成フ ィルムを複数枚積層してなるコの字状軟磁性金属薄膜層 形成フィルム積層体の組を、開閉自在の絶縁物保持部材 にそれぞれ設け、前記絶縁物保持部材を閉じたときに前 記コの字状軟磁性金属薄膜層形成フィルム積層体の組が 角筒状閉磁路を構成することを特徴としている。

【0017】本願請求項8の発明に係るケーブル装着用ノイズ吸収装置は、2個以上のコの字連鎖状の軟磁性金属薄膜層形成フィルムを複数枚積層してなるコの字連鎖状軟磁性金属薄膜層形成フィルム積層体の組を、開閉自在の絶縁物保持部材にそれぞれ設け、前記絶縁物保持部材を閉じたときに前記コの字連鎖状軟磁性金属薄膜層形成フィルム積層体の組が角筒連鎖状閉磁路を構成することを特徴としている。

【0018】本願請求項9の発明に係るケーブル装着用ノイズ吸収装置は、請求項1,2,3,4,5,6,7 又は8において、前記軟磁性金属薄膜形成フイルムは絶縁樹脂フィルム上に軟磁性金属薄膜を被着形成したものであることを特徴としている。

【0019】本願請求項10の発明に係るケーブル装着

用ノイズ吸収装置は、請求項1,2,3,4,5,6, 7又は8において、前記軟磁性金属薄膜形成フイルムは 絶縁樹脂フィルム上に軟磁性金属薄膜を複数層形成した ものであり、各軟磁性金属薄膜の層間に絶縁膜が介在し ていることを特徴としている。

【0020】本願請求項11の発明に係るケーブル装着 用ノイズ吸収装置は、請求項9又は10において、前記 軟磁性金属薄膜が下地導体薄膜上に形成されてなること を特徴としている。

[0021]

【発明の実施の形態】以下、本発明に係るケーブル装着 用ノイズ吸収装置の実施の形態を図面に従って説明す る。

【0022】本発明の上記目的を達成するため、本発明 に係るケーブル装着用ノイズ吸収装置の各実施の形態で は、絶縁樹脂フィルムの片面上にメッキ、蒸着、スパッ タ、CVD等の工法により軟磁性金属薄膜を形成した軟 磁性金属薄膜層形成フィルムを円環状、2個以上の円環 連鎖状、口の字状、2個以上の口の字連鎖状等の形状に 打ち抜き加工した軟磁性金属薄膜層形成フィルムを複数 20 枚積層した後、表面を絶縁物で被覆する構成とするか、 あるいは絶縁樹脂フィルムの片面上に軟磁性金属薄膜を 形成した軟磁性金属薄膜層形成フィルムを半円環状、2 個以上の半円環連鎖状、コの字状、2個以上のコの字連 鎖状等の形状に打ち抜き加工した軟磁性金属薄膜層形成 フィルムを複数枚積層した後、開閉自在(着脱自在な場 合も含む) の絶縁物保持部材にそれぞれ設け、該絶縁物 保持部材が閉じた時に、円環状、円環連鎖状、口の字 状、2個以上の口の字連鎖状等の閉磁路を形成する構成 としている。

【0023】前記軟磁性金属薄膜を形成するための軟磁 性金属として選ばれるのは、Fe, Co, Niの何れか を主成分とする合金で、例えばFe-Ni合金、Fe-Co合金、Co-Ni合金を用いることができ、とくに 製造が容易なパーマロイ系、抵抗率の比較的大きいCo 系アモルファス薄膜等が挙げられる。また、軟磁性金属 薄膜の厚みは所要周波数範囲でのスキンデプスより薄い 厚さとし、好ましくは1µm以下とする。

【0024】前記絶縁樹脂フィルムには、ポリイミド樹 脂、ポリアミド樹脂、フッ素樹脂等の耐熱性樹脂を用い 40 ることができる。前記絶縁樹脂フィルムに、前記軟磁性 金属薄膜をメッキ、蒸着、スパッタリング、CVD等の 方法によって形成するが、メッキの場合、軟磁性金属薄 膜を電気メッキするための下地としてニッケル、銅等の 導体薄膜を無電解メッキで前記絶縁樹脂フイルムに形成 する。

【0025】上記のように作製された軟磁性金属薄膜層 形成フィルムを円環状、2個以上の円環連鎖状、口の字 状、2個以上の口の字連鎖状等の形状に打ち抜き加工し

を絶縁物で被覆した後、電子機器の電源ライン、信号ラ イン、制御ライン等のケーブルへ挿入、固定することに より、小形で、軽量なノイズ吸収装置が形成される。該 ノイズ吸収装置の働きにより、該ケーブル上を伝導する ノイズを抑圧すると共に、該ケーブルを通して外部から 侵入するノイズを阻止するものである。

【0026】また、該軟磁性金属薄膜層形成フィルムを 半円環状、2個以上の半円環連鎖状、コの字状、2個以 上のコの字連鎖状等の形状に打ち抜き加工した軟磁性金 10 属薄膜層形成フィルムを複数枚積層した後、開閉自在

(着脱自在な場合も含む) の絶縁物保持部材にそれぞれ 設け、電子機器の電源ライン、信号ライン、制御ライン 等ケーブルの周囲において該絶縁物保持部材が閉じるこ とにより、円環状、円環連鎖状、口の字状、2個以上の 口の字連鎖状等の閉磁路をもつ、小形で、軽量なノイズ 吸収装置が形成される。該ノイズ吸収装置の働きによ り、該ケーブル上を伝導するノイズを抑圧すると共に、 該ケーブルを通して外部から侵入するノイズを阻止する ものである。

【0027】まず、本発明に係るケーブル装着用ノイズ 吸収装置の各実施の形態において使用する軟磁性金属薄 膜層形成フィルムの構成の具体例を図2(A),(B) で説明する。

【0028】図2(A)の軟磁性金属薄膜層形成フィル ムは、単層の軟磁性金属薄膜を有するものであって、絶 縁樹脂フィルム6の上面に、所要周波数範囲でのスキン デプスより薄い厚さ (好ましくは1μm以下) の軟磁性 金属薄膜7を形成したものである。絶縁樹脂フィルム6 としては例えば厚さ10μmのポリアミド樹脂製の絶縁 樹脂フィルムを使用でき、前記軟磁性金属薄膜7は例え ばメッキ法により被着形成した厚さ 0.5 μmの81重 量%Ni-19重量%Feの軟磁性金属薄膜である。メ ッキ法により形成した軟磁性金属薄膜 (81重量%Ni -19重量%Fe)の材料定数(複素比透磁率)の周波 数特性は図3に示すとおりであり、周波数1GHzにお いて複素比透磁率の実数部 (μ r') は約70、虚数部 $(\mu r")$ は約130を、1.8 GHz における $\mu r'$ は約60、 μ r"は約140を示した。

【0029】図2(B)の軟磁性金属薄膜層形成フィル ムは、複数層の軟磁性金属薄膜を有するものであって、 絶縁樹脂フィルム6の上面に、所要周波数範囲でのスキ ンデプスより薄い厚さ(好ましくは1μm以下)の軟磁 性金属薄膜7を複数層に積層形成したもので、各々の軟 磁性金属薄膜7の層間に絶縁膜8を介在させたものであ る。前記絶縁膜8は、樹脂フィルム、樹脂系粘着材、樹 脂系熱融着材あるいはアルミナ、シリカ等のセラミック 等が選ばれる。また、絶縁破壊防止の観点から100オ ングストローム以上の厚さを必要とするができるだけ薄 いことが望ましい。図2(B)の場合、絶縁膜8を薄く た軟磁性金属薄膜層形成フィルムを複数枚積層し、表面 50 形成することで、軟磁性金属薄膜層形成フィルムの積層 体に占める軟磁性金属薄膜の層数を増加させることが可能である。

【0030】次に、図2(A)又は(B)に示した軟磁性金属薄膜層形成フィルムを使用した本発明に係るケーブル装着用ノイズ吸収装置の第1の実施の形態を図1

(A),(B)で説明する。図1(A)はケーブル装着用ノイズ吸収装置10の正断面図、(B)は同側断面図であり、このケーブル装着用ノイズ吸収装置10は、図2(A)又は(B)の軟磁性金属薄膜層形成フィルムを円環状に打ち抜き加工した円環状軟磁性金属薄膜層形成フィルム11を複数枚積層、固着して成る円筒状軟磁性金属薄膜層形成フィルム積層体12の表面を絶縁物13を用いて被覆、成型したものである。

【0031】このノイズ吸収装置10の円筒穴部14に、電源ライン、信号ライン、制御ライン等のケーブルのいずれかを挿入することにより、当該ケーブル上を伝導するノイズを抑圧すると共に、当該ケーブルを通して外部から侵入するノイズを阻止することができる。このノイズ吸収装置10の装着位置は任意であるが、例えば図15に示した位置等が挙げられる。

【0032】図4(A),(B)は本発明に係るケーブル装着用ノイズ吸収装置の第2の実施の形態であって、図4(A)はケーブル装着用ノイズ吸収装置20の正断面図、(B)は同側断面図であり、このケーブル装着用ノイズ吸収装置20は、図2(A)又は(B)の軟磁性金属薄膜層形成フィルムを2個以上の円環連鎖状に打ち抜き加工した円環状軟磁性金属薄膜層形成フィルム21を複数枚積層、固着して成る円筒連鎖状軟磁性金属薄膜層形成フィルム積層体22の表面を絶縁物23を用いて被覆、成型したものである。

【0033】このノイズ吸収装置20の各円筒穴部24に、電源ライン、信号ライン、制御ライン等のケーブルのいずれかを挿入することにより、各円筒穴部24に通されたケーブル群上を伝導するノイズを抑圧すると共に、ケーブル群を通して外部から侵入するノイズを阻止することができる。

【0034】図5(A),(B)は本発明に係るケーブル装着用ノイズ吸収装置の第3の実施の形態であって、図5(A)はケーブル装着用ノイズ吸収装置30の正断面図、(B)は同側断面図であり、このケーブル装着用40ノイズ吸収装置30は、図2(A)又は(B)の軟磁性金属薄膜層形成フィルムを口の字状に打ち抜き加工した口の字状軟磁性金属薄膜層形成フィルム31を複数枚積層、固着して成る角筒状軟磁性金属薄膜層形成フィルム積層体32の表面を絶縁物33を用いて被覆、成型したものである。

【0035】このノイズ吸収装置30の角筒穴部34 に、電源ライン、信号ライン、制御ライン等のケーブル のいずれかを挿入することにより、当該ケーブル上を伝 導するノイズを抑圧すると共に、当該ケーブルを通して 50 外部から侵入するノイズを阻止することができる。

【0036】図6(A),(B)は本発明に係るケーブル装着用ノイズ吸収装置の第4の実施の形態であって、図6(A)はケーブル装着用ノイズ吸収装置40の正断面図、(B)は同側断面図であり、このケーブル装着用ノイズ吸収装置40は、図2(A)又は(B)の軟磁性金属薄膜層形成フィルムを2個以上の口の字連鎖状に打ち抜き加工した口の字連鎖状軟磁性金属薄膜層形成フィルム41を複数枚積層、固着して成る角筒連鎖状軟磁性金属薄膜層形成フィルム41を複数枚積層、固着して成る角筒連鎖状軟磁性金属薄膜層形成フィルム積層体42の表面を絶縁物43を用いて被覆、成型したものである。

【0037】このノイズ吸収装置40の各角筒穴部44に、電源ライン、信号ライン、制御ライン等のケーブルのいずれかを挿入することにより、各角筒穴部44に通されたケーブル群上を伝導するノイズを抑圧すると共に、ケーブル群を通して外部から侵入するノイズを阻止することができる。

【0038】図7(A),(B),(C)は本発明に係るケーブル装着用ノイズ吸収装置の第5の実施の形態であって、図7(A)はケーブル装着用ノイズ吸収装置50の開いた状態の正断面図、(B)は同じく閉じた状態の正断面図、(C)は開いた状態の側面図であり、図2

(A) 又は(B) の軟磁性金属薄膜層形成フィルムを半円環状に打ち抜き加工した軟磁性金属薄膜層形成フィルム51を複数枚積層、固着して成る半円環状軟磁性金属薄膜層形成フィルム積層体52A,52Bの組を開閉自在の絶縁物保持部材53にそれぞれ設けたものである。ここで、絶縁物保持部材53は、半ケース54A,54B、これらを開閉自在に連結するヒンジ部55、半ケースを閉じた状態に保持する係止部56,57とをプラスチック等で成型したものであり、半ケース54Aに半円環状軟磁性金属薄膜層形成フィルム積層体52Aが収納固着され、半ケース54Bに半円環状軟磁性金属薄膜層形成フィルム積層体52Bが収納固着される。前記係止部56には例えば係止穴61が、係止部57には例えば係止凸部62が形成されている。

【0039】そして、絶縁物保持部材53を開いた状態で、電源ライン、信号ライン、制御ライン等のケーブルのいずれかを半円環状軟磁性金属薄膜層形成フィルム積層体52A,52Bの内周に設けて挟持した後、絶縁物保持部材53を閉じることにより、つまり係止部56の係止穴61に、係止部57の係止凸部62を嵌合することにより、半筒状軟磁性金属薄膜層形成フィルム積層体52A,52Bの組が円環状閉磁路を構成でき、前記ケーブル上を伝導するノイズを抑圧すると共に、前記ケーブルを通して外部から侵入するノイズを阻止することができる。

【0040】この第5の実施の形態では、第1の実施の 形態の効果に加えて、各種機器とケーブルとの接続後で あってもケーブル装着用ノイズ吸収装置50を装着可能 な利点がある。

【0041】図8(A),(B),(C)は本発明に係る ケーブル装着用ノイズ吸収装置の第6の実施の形態であ って、図8(A)はケーブル装着用ノイズ吸収装置70 の開いた状態の平断面図、(B)は同じく閉じた状態の 平断面図、(C)は正断面図であり、図2(A)又は

9

(B) の軟磁性金属薄膜層形成フィルムを2個以上の半 円環連鎖状に打ち抜き加工した軟磁性金属薄膜層形成フ ィルム71を複数枚積層、固着して成る半円環連鎖状軟 磁性金属薄膜層形成フィルム積層体72A, 72Bの組 10 を開閉自在の絶縁物保持部材73にそれぞれ設けたもの である。ここで、絶縁物保持部材73は、半ケース74 A, 74B、これらを開閉自在に連結するヒンジ部7 5、半ケースを閉じた状態に保持する係止部76,77 とをプラスチック等で成型したものであり、半ケース7 4 Aに半円環連鎖状軟磁性金属薄膜層形成フィルム積層 体72Aが収納固着され、半ケース74Bに半円環連鎖 状軟磁性金属薄膜層形成フィルム積層体 7 2 B が収納固 着される。前記係止部76には例えば係止穴81が、係 止部77には例えば係止凸部82が形成されている。

【0042】そして、絶縁物保持部材73を開いた状態 で、電源ライン、信号ライン、制御ライン等のケーブル のいずれかを半円環連鎖状軟磁性金属薄膜層形成フィル ム積層体72A、72Bの各内周にそれぞれ設けて挟持 した後、絶縁物保持部材73を閉じることにより、つま り係止部76の係止穴81に、係止部77の係止凸部8 2を嵌合することにより、半円環連鎖状軟磁性金属薄膜 層形成フィルム積層体72A,72Bの組が円環連鎖状 閉磁路を構成でき、各穴に挿通されたケーブル群上を伝 導するノイズを抑圧すると共に、前記ケーブル群を通し 30 て外部から侵入するノイズを阻止することができる。

【0043】この第6の実施の形態では、第2の実施の 形態の効果に加えて、各種機器とケーブルとの接続後で あってもケーブル装着用ノイズ吸収装置70を装着可能 な利点がある。

【0044】図9(A),(B),(C)は本発明に係る

ケーブル装着用ノイズ吸収装置の第7の実施の形態であ って、図9(A)はケーブル装着用ノイズ吸収装置90 の開いた状態の正断面図、(B)は同じく閉じた状態の 正断面図、(C)は開いた状態の側面図であり、図2 (A) 又は(B) の軟磁性金属薄膜層形成フィルムをコ の字状 (口の字を2分割した形状) に打ち抜き加工した 軟磁性金属薄膜層形成フィルム91を複数枚積層、固着 して成るコの字状軟磁性金属薄膜層形成フィルム積層体 92A, 92Bの組を開閉自在の絶縁物保持部材93に それぞれ設けたものである。ここで、絶縁物保持部材9 3は、半ケース94A、94B、これらを開閉自在に連 結するヒンジ部95、半ケースを閉じた状態に保持する 係止部96,97とをプラスチック等で成型したもので フィルム積層体92Aが収納固着され、半ケース94B にコの字状軟磁性金属薄膜層形成フィルム積層体92B が収納固着される。前記係止部96には例えば係止穴1 01が、係止部97には例えば係止凸部102が形成さ れている。

【0045】そして、絶縁物保持部材93を開いた状態 で、電源ライン、信号ライン、制御ライン等のケーブル のいずれかをコの字状軟磁性金属薄膜層形成フィルム積 層体92A、92Bの内周に設けて挟持した後、絶縁物 保持部材93を閉じることにより、つまり係止部96の 係止穴101に、係止部97の係止凸部102を嵌合す ることにより、コの字状軟磁性金属薄膜層形成フィルム 積層体92A, 92Bの組が角筒状閉磁路を構成でき、 前記ケーブル上を伝導するノイズを抑圧すると共に、前 記ケーブルを通して外部から侵入するノイズを阻止する ことができる。

【0046】この第7の実施の形態では、第3の実施の 形態の効果に加えて、各種機器とケーブルとの接続後で あってもケーブル装着用ノイズ吸収装置90を装着可能 20 な利点がある。

【0047】図10(A),(B),(C)は本発明に係 るケーブル装着用ノイズ吸収装置の第8の実施の形態で あって、図10(A)はケーブル装着用ノイズ吸収装置 110の開いた状態の平断面図、(B) は同じく閉じた 状態の平断面図、(C)は正断面図であり、図2(A) 又は(B)の軟磁性金属薄膜層形成フィルムを2個以上 のコの字連鎖状に打ち抜き加工した軟磁性金属薄膜層形 成フィルム111を複数枚積層、固着して成るコの字連 鎖状軟磁性金属薄膜層形成フィルム積層体112A, 1 12日の組を開閉自在の絶縁物保持部材113にそれぞ れ設けたものである。ここで、絶縁物保持部材113 は、半ケース114A, 114B、これらを開閉自在に 連結するヒンジ部115、半ケースを閉じた状態に保持 する係止部116、117とをプラスチック等で成型し たものであり、半ケース114Aにコの字連鎖状軟磁性 金属薄膜層形成フィルム積層体112Aが収納固着さ れ、半ケース114日にコの字連鎖状軟磁性金属薄膜層 形成フィルム積層体112Bが収納固着される。前記係 止部116には例えば係止穴121が、係止部117に 40 は例えば係止凸部112が形成されている。

【0048】そして、絶縁物保持部材113を開いた状 態で、電源ライン、信号ライン、制御ライン等のケープ ルのいずれかをコの字連鎖状軟磁性金属薄膜層形成フィ ルム積層体112A, 112Bの各内周にそれぞれ設け て挟持した後、絶縁物保持部材113を閉じることによ り、つまり係止部116の係止穴121に、係止部11 7の係止凸部122を嵌合することにより、コの字連鎖 状軟磁性金属薄膜層形成フィルム積層体112A, 11 2 Bの組が角筒連鎖状閉磁路を構成でき、各穴に挿通さ あり、半ケース94Aにコの字状軟磁性金属薄膜層形成 50 れたケーブル群上を伝導するノイズを抑圧すると共に、

11

前記ケーブル群を通して外部から侵入するノイズを阻止 することができる。

【0049】この第8の実施の形態では、第4の実施の 形態の効果に加えて、各種機器とケーブルとの接続後で あってもケーブル装着用ノイズ吸収装置110を装着可 能な利点がある。

【0050】上述の図1、図4乃至図10の各実施の形態に示したように電子機器の電源ライン、機器間を結ぶ信号ライン、制御ライン等のケーブルに軟磁性金属薄膜層形成フィルム積層体を用いたノイズ吸収装置を装着す 10ることにより、ノイズ抑制効果が大きい、小形で軽量なコモンモードチョークが形成されることになる。

【0051】尚、第1の実施の形態では円環状の軟磁性 金属薄膜層形成フィルムの積層体を用いたが、長円環状 乃至楕円環状の軟磁性金属薄膜層形成フィルムの積層体 を用いることもできる。

【0052】また、電子機器や機器内のプリント回路基板への固定方法に関して、軟磁性金属薄膜層形成フィルム積層体の表面に形成する絶縁物、あるいは、2分割した軟磁性金属薄膜層形成フィルム積層体の組を収納する 20

開閉自在の絶縁物保持部材に固定用凸起部を設けてもよい。また、第5乃至第8の実施の形態では絶縁物保持部材は半ケースをヒンジ部で連結して開閉自在としたが、ヒンジ部を用いずに半ケース同士を着脱自在(相互に嵌合自在)とすることで、開閉自在な絶縁物保持部材を実現してもよい。

12

【0053】本発明に係る軟磁性金属薄膜層形成フィルム積層体を用いたケーブル装着用ノイズ吸収装置の例として図11に示した外観のノイズ吸収装置及び従来例であるフェライトを用いた同様外観のノイズ吸収装置の両者について、ノイズの抑圧効果に寄与するインピーダンスの周波数特性の評価を試みた。

【0054】試料として円筒状のフェライトコア及び軟磁性金属薄膜層形成フィルム積層体(但し図2(A)の構成のものを積層したもの)を用いた。フェライトコア及び軟磁性金属薄膜層形成フィルム積層体の材質、形状寸法(内径、外径、長さ)、重量を以下の表1に示す。【0055】

【表1】

評価政料	材質	特性 於 1GHz	寸法(mm) 内径×外径×長さ
フェライト	Ni-Za ¾	μτ': 1.4 μτ': 11.4	3×7×6
金属磁性薄膜	Ni-Fe メッキ膜 樹脂フィルム上	με ² : 69.7 με ² : 130	3×7×6

【0056】上記表1に示した内径3㎜、外径7㎜、長さ6㎜の試料のインピーダンス特性をインピーダンス/マテリアル・アナライザを用いた1ターン法により測定した。

【0057】図12は、円筒状フェライトコアのインピーダンス特性の測定データを、図13は、円筒状軟磁性 金属薄膜層形成フィルム積層体のインピーダンス特性の 測定データをそれぞれ示す。これらの図中、R:抵抗成分、X:リアクタンス成分、Z:インピーダンスである。これらの測定データの対比によれば、周波数1.8 GHzにおける円筒状軟磁性金属薄膜層形成フィルム積層体のインピーダンス値は円筒状フェライトコアのイン ピーダンス値に比べて約5倍であり、ノイズをより効果的に抑圧し得ることがわかる。

【0058】更に、実現するインピーダンス値を同一とした場合、円筒状軟磁性金属薄膜層形成フィルム積層体(軟磁性金属薄膜の正味体積は21分の1)の体積は円筒状フェライトコアに比べて約5分の1となり、小形、軽量化を図り得ることがわかる。

【0059】以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。

[0060]

【発明の効果】以上の説明から明らかなように、本発明 に成る軟磁性金属薄膜層形成フィルム積層体を用いたケ ーブル装着用ノイズ吸収装置によれば、電子機器の電源 30 ライン、機器間を結ぶ信号ライン、制御ライン等のケー ブルに装着することで、該ケーブル上を伝導するノイズ を抑圧するとともに、ケーブルを通して外部から侵入す るノイズが機器内に伝導、侵入するのを阻止することが でき、特に、GHz帯でノイズの吸収と係わりを持つ複 素比透磁率が大きな軟磁性金属薄膜層形成フィルム積層 体を用いることにより、GH2帯でのインピーダンス値 を高くして、ノイズ吸収効果の増大を図ることができ る。更に、軟磁性金属薄膜層形成フィルム積層体の層数 を増やすことによって、コモンモードチョークの回路定 40 数を大きくでき、抑制対象とするノイズの周波数をGH z帯に止まらず、MHz帯にまで低くさせ得ることは、 当該事業者においては容易に類推し得ることである。加 えて、軟磁性金属薄膜層形成フィルム積層体を用いるこ とにより、従来例に比べて小形、軽量化を達成し得る。

【図面の簡単な説明】

【図1】本発明に係るケーブル装着用ノイズ吸収装置の 第1の実施の形態であって、(A)は正断面図、(B) は側断面図である。

【図2】本発明の各実施の形態において使用する軟磁性 50 金属薄膜層形成フィルムの構成の具体例であって、

(A) は軟磁性金属薄膜が単層の場合、(B) は複数層 の場合をそれぞれ示す拡大断面図である。

【図3】図2の軟磁性金属薄膜層の複素比透磁率の周波 数特性例を示すグラフである。

【図4】本発明に係るケーブル装着用ノイズ吸収装置の 第2の実施の形態であって、(A)は正断面図、(B) は側断面図である。

【図5】 本発明に係るケーブル装着用ノイズ吸収装置の 第3の実施の形態であって、(A)は正断面図、(B) は側断面図である。

【図6】本発明に係るケーブル装着用ノイズ吸収装置の 第4の実施の形態であって、(A)は正断面図、(B) は側断面図である。

【図7】 本発明に係るケーブル装着用ノイズ吸収装置の 第5の実施の形態であって、(A) は開いた状態の正断 面図、(B)は閉じた状態の正断面図、(C)は開いた 状態の側面図である。

【図8】 本発明に係るケーブル装着用ノイズ吸収装置の 第6の実施の形態であって、(A) は開いた状態の平断 面図、(B)は閉じた状態の平断面図、(C)は正断面 20 図である。

【図9】 本発明に係るケーブル装着用ノイズ吸収装置の 第7の実施の形態であって、(A) は開いた状態の正断 面図、(B)は閉じた状態の正断面図、(C)は開いた 状態の側面図である。

【図10】本発明に係るケーブル装着用ノイズ吸収装置 の第8の実施の形態であって、(A)は開いた状態の平 断面図、(B)は閉じた状態の平断面図、(C)は正断 面図である。

【図11】測定試料としたノイズ吸収装置の外観を示す 30 14,24,34,44 穴部 斜視図である。

【図12】従来例のノイズ吸収装置で用いた円筒状フェ ライトコアのインピーダンス特性の測定データを示すグ ラフである。

【図13】本発明に係る試料としての円筒状軟磁性金属 薄膜層形成フィルム積層体のインピーダンス特性の測定 データを示すグラフである。

14

【図14】機器の電源ライン、機器間を結ぶ信号ライ ン、制御ライン等のケーブルの周囲に装着して用いるノ イズ吸収装置の一例を示す斜視図である。

【図15】機器の電源ライン、機器間を結ぶ信号ライ ン、制御ライン等のケーブルの周囲におけるノイズ吸収 装置の使用例を示す斜視図である。

【図16】CoZrNb/SiO2多層膜を用いたチュ ープ状磁性体のインピーダンスの周波数特性例を示すグ ラフである。

【図17】フェライトの複素比透磁率の周波数特性例を 示すグラフである。

【符号の説明】

1 ケース・

2 フェライト

3 ケーブル

5, 10, 20, 30, 40, 50, 70, 90, 11

0 ノイズ吸収装置

6 絶縁樹脂フィルム

7 軟磁性金属薄膜

8 絶縁膜

11, 21, 31, 41, 51, 71, 91, 111 軟磁性金属薄膜層形成フィルム

12, 22, 32, 42, 52A, 52B, 72A, 7 2B, 92A, 92B, 112A, 112B 軟磁性金 属薄膜層形成フィルム積層体

13, 23, 33, 43 絶縁物

53,73,93,113 絶縁物保持部材

54A, 54B, 74A, 74B, 94A, 94B, 1 14A、114B 半ケース

[図1]

【図2】

19 106 開始(MHz)

フロントページの続き

(72)発明者 長 勤 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内

(72)発明者 賀屋 雅部 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 Fターム(参考) 5E040 CA13

5E041 CA06

 $5E321 \ BB23 \ BB25 \ BB51 \ BB53 \ BB55$

CC16 GG09 GG11

5J024 AA01 DA04 DA29 DA31 DA32

EA08