Lab2-report

计11班 周韧平 2021010699

任务六

网络拓扑

网络拓扑如图所示,增加了一个交换机和Router1端口用来管理对Server1的访问

领导人

设备名称	使用人/部门	域名
PC1	凯撒/元老院	192.168.1.2
Laptop2	执政官首府	192.168.2.3
PC3	部族会议所	192.168.3.2

联络人

设备名称	使用人/部门	域名
Laptop1	元老院	192.168.1.4
PC2	执政官首府	192.168.2.2
Laptop3	部族会议所	192.168.3.3

机密联络人

设备名称	使用人/部门	域名	
Server1	凯撒/元老院	192.168.4.3	

访问权限配置

访问权限配置如下

```
#Router1
1
 2
    #其它机构的所有成员可以访问联络人
    access-list 101 permit ip 192.168.2.0 0.0.0.255 192.168.1.4 0.0.0.0
 3
    access-list 101 permit ip 192.168.3.0 0.0.0.255 192.168.1.4 0.0.0.0
 4
    #其它机构的联络人可以访问本机构的所有成员
 5
 6
    access-list 101 permit ip 192.168.2.2 0.0.0.0 192.168.1.0 0.0.0.255
7
    access-list 101 permit ip 192.168.3.3 0.0.0.0 192.168.1.0 0.0.0.255
    #其他机构的领导人可以访问本机构的领导人
8
9
    access-list 101 permit ip 192.168.2.3 0.0.0.0 192.168.1.2 0.0.0.0
10
    access-list 101 permit ip 192.168.3.2 0.0.0.0 192.168.1.2 0.0.0.0
    #server1 可以联系 pc1
11
    access-list 101 permit ip 192.168.4.3 0.0.0.0 192.168.1.2 0.0.0.0
12
13
14
    #interface fa0/1
15
    ip access-group 101 out
    #pc1可以ping通server1
16
    access-list 102 permit ip 192.168.1.2 0.0.0.0 192.168.4.3 0.0.0.0
17
18
    access-list 102 permit ip 192.168.4.3 0.0.0.0 192.168.1.2 0.0.0.0
    #interface fa1/0
19
20
   ip access-group 102 out
```

```
1
   #Router2
   #其它机构的所有成员可以访问联络人
2
3
   access-list 103 permit ip 192.168.1.0 0.0.0.255 192.168.2.2 0.0.0.0
4
   access-list 103 permit ip 192.168.3.0 0.0.0.255 192.168.2.2 0.0.0.0
   #其它机构的联络人可以访问本机构的所有成员
5
   access-list 103 permit ip 192.168.1.4 0.0.0.0 192.168.2.0 0.0.0.255
6
7
   access-list 103 permit ip 192.168.3.3 0.0.0.0 192.168.2.0 0.0.0.255
8
   #其他机构的领导人可以访问本机构的领导人
   access-list 103 permit ip 192.168.1.2 0.0.0.0 192.168.2.3 0.0.0.0
9
   access-list 103 permit ip 192.168.3.2 0.0.0.0 192.168.2.3 0.0.0.0
10
11
   ip access-group 103 out
```

```
1
   #Router3
2
   #其它机构的所有成员可以访问联络人
3
   access-list 104 permit ip 192.168.1.0 0.0.0.255 192.168.3.3 0.0.0.0
4
   access-list 104 permit ip 192.168.2.0 0.0.0.255 192.168.3.3 0.0.0.0
   #其它机构的联络人可以访问本机构的所有成员
5
   access-list 104 permit ip 192.168.1.4 0.0.0.0 192.168.3.0 0.0.0.255
6
   access-list 104 permit ip 192.168.2.2 0.0.0.0 192.168.3.0 0.0.0.255
7
8
   #其他机构的领导人可以访问本机构的领导人
9
   access-list 104 permit ip 192.168.1.2 0.0.0.0 192.168.3.2 0.0.0.0
   access-list 104 permit ip 192.168.2.4 0.0.0.0 192.168.3.2 0.0.0.0
10
   ip access-group 104 out
11
```

权限控制效果展示

机构内部可以相互ping通

```
C: \ ping 192.168.1.4
Pinging 192.168.1.4 with 32 bytes of data:
Reply from 192.168.1.4: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.1.5
Pinging 192.168.1.5 with 32 bytes of data:
Reply from 192.168.1.5: bytes=3\overline{2} time=24ms \overline{TTL}=128
Reply from 192.168.1.5: bytes=32 time<1ms TTL=128
Reply from 192.168.1.5: bytes=32 time<1ms TTL=128
Reply from 192.168.1.5: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 24ms, Average = 6ms
```

```
Packet Tracer PC Command Line 1.0
C:\>ping 192.168.3.3

Pinging 192.168.3.3 with 32 bytes of data:

Reply from 192.168.3.3: bytes=32 time<lms TTL=128
Ping statistics for 192.168.3.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>ping 192.168.3.4

Pinging 192.168.3.4: bytes=32 time<lms TTL=128
Reply from 192.168.3.4: bytes=32 time<lms TTL=128
Reply from 192.168.3.4: bytes=32 time<lms TTL=128
Reply from 192.168.3.4: bytes=32 time<lms TTL=128
Ping statistics for 192.168.3.4:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```

```
Packet Tracer PC Command Line 1.0
C:\>192.168.2.3
Invalid Command.
C:\>ping 192.168.2.3
Pinging 192.168.2.3 with 32 bytes of data:
Reply from 192.168.2.3: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.2.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.2.4
Pinging 192.168.2.4 with 32 bytes of data:
Reply from 192.168.2.4: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.2.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>
```


机构内的其它成员,只能和联络人通信

```
Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2 bytes-32 timecime TT
Reply from 192.168.3.3 bytes-32 timecime TT
Reply from 192.168.3.3
```

领导人之间可以相互通信

特别的,只有PC1有对Server1的访问权限

任务七

使用CBAC过滤cimp报文,为PC1提供特殊权限

```
ip inspect name CBAC icmp

#interface fa1/0
ip inspect CBAC in
```

同时在Route2, Route3中添加两条权限,使得PC1可以访问机构内所有设备

```
1 access-list 103 permit ip 192.168.1.2 0.0.0.0 192.168.2.0 0.0.0.255
2 access-list 104 permit ip 192.168.1.2 0.0.0.0 192.168.3.0 0.0.0.255
```

可以看到,设置后PC1可以访问之前子网内的普通设备了

```
Ping statistics for 192.168.4.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\ ping 192.168.2.4
Pinging 192.168.2.4 with 32 bytes of data:
Request timed out.
Reply from 192.168.2.4: bytes=32 time<1ms TTL=126
Reply from 192.168.2.4: bytes=32 time<1ms TTL=126
Reply from 192.168.2.4: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.2.4:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss)
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.3.4
Pinging 192.168.3.4 with 32 bytes of data:
Reply from 192.168.3.4: bytes=32 time=32ms TTL=125
Reply from 192.168.3.4: bytes=32 time=1ms TTL=125
Reply from 192.168.3.4: bytes=32 time<1ms TTL=125
Reply from 192.168.3.4: bytes=32 time<1ms TTL=125
Ping statistics for 192.168.3.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 32ms, Average = 8ms
```

任务八

在搬迁之后,使用配置静态路由的方法将无法让各个权力机构正常通信,请简述原因

公网上一般无法做到直连路由,因此在没有进行地址转换的情况下,无法直接转发192.168.x.x/24这类的路由

配置过程: 首先用 no access-list 去掉原有的ACL配置,然后为Router1和Router2 添加 IPSec 配置,配置如下

```
1 #Router1
2 #Ethernet0/0
3 #ISAKMP配置
4 crypto isakmp policy 1
5 encryption 3des
```

```
6 hash md5
7
    authentication pre-share
8
    group 5
9
    exit
    crypto isakmp key zrp23 address 2.0.0.2
10
11
    #使用ACL对流量进行过滤
    access-list 101 permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255
12
   access-list 101 permit ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255
13
14
    access-list 101 permit ip 192.168.1.0 0.0.0.255 192.168.3.0 0.0.0.255
    access-list 101 permit ip 192.168.3.0 0.0.0.255 192.168.1.0 0.0.0.255
15
    #创建transform-set
16
17
   crypto ipsec transform-set zrp-vpn-set esp-3des esp-md5-hmac
18
   #创建MAP映射表
   crypto map zrp-vpn-map 1 ipsec-isakmp
19
20
   set peer 2.0.0.2
21 set transform-set zrp-vpn-set
22
    match address 101
23
    exit
   ip route 192.168.2.0 255.255.255.0 1.0.0.1
24
   ip route 192.168.3.0 255.255.255.0 1.0.0.1
25
26
   ip route 1.0.0.0 255.0.0.0 1.0.0.1
   #Ethernet0/0 端口绑定
27
28
   crypto map zrp-vpn-map
29
```

```
1 configure terminal
   #Ethernet0/0
 2
 3
    crypto isakmp policy 1
    encryption 3des
 4
    hash md5
 5
    authentication pre-share
 6
 7
    group 5
 8
    exit
9
    crypto isakmp key zrp23 address 1.0.0.2
    access-list 102 permit ip 192.168.2.0 0.0.0.255 192.168.1.0 0.0.0.255
10
11
    access-list 102 permit ip 192.168.3.0 0.0.0.255 192.168.1.0 0.0.0.255
    crypto ipsec transform-set zrp-vpn-set esp-3des esp-md5-hmac
12
13
    crypto map zrp-vpn-map 1 ipsec-isakmp
14
    set peer 1.0.0.2
15
    set transform-set zrp-vpn-set
    match address 102
16
    exit
17
    ip route 192.168.1.0 255.255.255.0 2.0.0.1
18
   ip route 192.168.3.0 255.255.255.0 10.0.2.1
19
20 #Ethernet0/0 端口绑定
21 | crypto map zrp-vpn-map
```

在添加IPSec配置后,可以看到两个区域内网的机构可以正常通信,包括Route1像Route2,Route3 ping以及反过来,"共和国"内网成功穿越公网

```
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.2.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
C:\>ping 192.168.3.2
```

```
C:\>ping 192.168.3.2

Pinging 192.168.3.2 with 32 bytes of data:

Reply from 192.168.3.2: bytes=32 time<1ms TTL=125
Reply from 192.168.3.2: bytes=32 time<1ms TTL=125
Reply from 192.168.3.2: bytes=32 time<1ms TTL=125
Reply from 192.168.3.2: bytes=32 time=1ms TTL=125
Ping statistics for 192.168.3.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

```
Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2; bytes=32 time<ins TTL=125
Reply from 192.168.1.2
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Reply from 192.168.1.2
Reply from 192.168.1.2
Reply from 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2; bytes=32 time<ins TTL=126
Reply from 192.168.1.2: bytes=32 time<ins TTL=126
```

通过仿真抓包分析,可以看到在经过路由器Route1和Route2时报文的Src和Dest IP地址均被替换为了公网IP,在公网传输后再修改回内网IP,**因此可以判断,IPsec使用的是隧道模式**,因为私网和私网间通过公网通信,需要插入新的报文头,将原有报文头封装为负荷

Bonus

静态NAT

设定场景: 部族会议所需要和外界的部族建立联系,首领听说NAT技术简单方便,想用这种技术建立私网和公网的联系,NAT地址分配如下

设备	私网地址	公网地址
PC3	192.168.3.2	131.92.0.2
Laptop3	192.168.3.3	131.92.0.3
PC5	192.168.3.4	131.92.0.4

下图为网络拓扑结构,其中Route3及其下面的为私网,Route6及其下面的为模拟的公网,PC0和Laptop0的公网地址分别为202.31.205.2,202.31.205.3

配置时只需要对Route3配置静态NAT设置,使私网和公网地址可以——映射

```
# Ethernet0/1
ip nat inside

# Ethernet1/0
ip nat outside

# 配置NAT映射
ip nat inside source static 192.168.3.2 131.92.0.2
ip nat inside source static 192.168.3.3 131.92.0.3
ip nat inside source static 192.168.3.4 131.92.0.4
```

配置后,公网和私网的设备可以相互ping通,不过私网是以NAT转换的地址出现在公网上

进一步通过仿真也可以观察到,经过Route3后,私网发出的报文源地址变为NAT翻译后的地址

动态NAT

```
# 删除之前的静态nat映射
2
   no ip nat inside source static 192.168.3.2 131.92.0.2
   no ip nat inside source static 192.168.3.3 131.92.0.3
3
   no ip nat inside source static 192.168.3.4 131.92.0.4
   # 定义访问控制列表
6
   access-list 101 permit ip 192.168.3.0 0.0.255 any
7
   # 定义公网地址池,命名为tribe
8
   ip nat pool tribe 131.92.0.2 131.92.0.4 netmask 255.255.255.0
9
   # 将列表和地址池关联
10
   ip nat inside source list 101 pool tribe
```

配置好后,再次尝试让内网和公网通信,可以看到,PC3,Laptop3,PC5的设备仍然可以拥有一个和外界ping的虚拟地址

但在加入PC6(私网地址192.168.3.6)后,尝试和外部通信时,动态NAT会为其从地址池中分配一个地址131.92.0.4

由于地址池中只有三个地址,因此当四个设备同时向公网发出ICMP包时,会因为无法分配足够多的地址而丢掉其中一个ICMP包(仿真结果中发自Laptop3的包被丢弃),等到另外三个设备完成通讯后,才可以为其分配NAT地址

	, ,	1		_
√is.	Time(sec)	Last Device	At Device	Type
	0.000		PC5	ICMP
	0.001	PC3	Switch2	ICMP
	0.001	Laptop3	Switch2	ICMP
	0.001	PC6	Switch2	ICMP
	0.001	PC5	Switch2	ICMP
	0.002	Switch2	Router3	ICMP
	0.002		Switch2	ICMP
	0.003	Switch2	Router3	ICMP
	2 222	D . A	D • • •	Cantured

```
C:\>ping 202.31.205.2
Pinging 202.31.205.2 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 202.31.205.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 202.31.205.2
Pinging 202.31.205.2 with 32 bytes of data:
Reply from 202.31.205.2: bytes=32 time<1ms TTL=126
Ping statistics for 202.31.205.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>
```

比较分析

静态NAT和动态NAT对比分析

通过以上实验可以看出,动态NAT允许多个内部私有IP地址共享少量的公共IP地址,有效节约了公共IP地址资源。同时动态NAT可以动态地分配公共IP地址,使得外部用户无法准确得知内部私有IP地址,增强了网络的安全性。而静态NAT虽然管理起来比较直观、容易维护,但不具备灵活的动态调整能力,难以应对网络拓扑结构变化,且可能造成地址资源的浪费。随着部落的扩大,内部设备数量增多,使用动态NAT势在必行!

NAT技术和VPN技术对比

NAT主要用于将私有IP地址转换为公共IP地址,以便内部网络与外部网络通信,同时也可以用于地址重用、端口映射等功能。VPN则主要用于加密传输数据、建立安全连接,可以实现跨地域、跨网络的安全访问。因此,NAT技术相对适用于小型局域网中(这么看来给部落使用还是十分合适的,但其它的机构就未必)而VPN则更适合在需要远程接入的大型企业或组织中,可以实现安全的远程访问和数据传输。总体来看,NAT技术在便捷性上略胜一筹,但VPN可以更好的确保网络安全