清华大学统计学辅修课程

Design and Analysis of Experiments

Lecture 10 – Response Surface Methods & Designs

周在莹 清华大学统计学研究中心

http://www.stat.tsinghua.edu.cn

Outline

- ▶ Experiments with a single quantitative factor
 - > Regression model vs. fixed effect model
 - ➤ Model with non-linear terms
- ▶ One Quality Factor & One Quantitative Factor
 - > Regression on each level of one factor

Overview of Response Surface Methods

- ▶ The primary focus of previous lessons was factor screening
 - > Two-level factorials, fractional factorials being widely used
- ► The objective of Response Surface Methods (RSM) is <u>optimization</u>, finding the best set of factor levels to achieve some goal
 - > optimize an underlying process
 - > look for the factor level combinations that give us the maximum yield and minimum costs
 - > hit a target or aim to match some given specifications
- ▶ RSM dates from the 1950's. Early applications were found in the chemical industry
- ▶ Modern applications of RSM span many industrial and business settings

Response Surface Methodology

- ► Collection of mathematical and statistical techniques useful for the modeling and analysis of problems in which a response of interest is influenced by several variables
- ► Objective is to **optimize the response**
 - > Discover a proper region to carry out experiment
 - > Find the optimal combination of factors
 - > Use a small number of experiments
- Challenges
 - > The response surface can be high dimensional
 - > The shape of the surface is unknown
 - > The target region of factors is unknown

Illustration of a RS

$$y = f(x_1, x_2) + \varepsilon$$

where ε represents the noise or error observed in the response y

▶ The surface $E(y) \triangleq \eta = f(x_1, x_2)$ is called a response surface

A three-dimensional response surface showing the expected yield (η) as a function of temperature (x_1) and pressure (x_2)

清华大学统计学研究中心

A contour plot of a response surface

Three Basic Steps

- ► Factor screening Find $x_1, ..., x_k$
 - > Start with a large number of factors
 - > Select a few (\leq 5) important factors for response surface
- A series of 1st order experiments Find a suitable approximation for $y = f(x_1, ..., x_k)$
 - > Start from an initial configuration of the few selected factors
 - Move towards the region of the optimal configuration
- ▶ A 2st order experiment When curvature is found find a new approximation
 - > An additional experiment in the neighborhood of the optimal configuration
 - > Perform the "Response Surface Analysis"
 - > Help to find the optimal configuration

RSM Is a Sequential Procedure

- ► Sequential exploration of Response Surface
 - > Factor screening
 - > Finding the region of the optimum
 - ➤ Modeling & Optimization of the response

Models Available

Screening Response Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$

The single cross product factor represents the linear \times linear interaction component

▶ Steepest Ascent Model

Ignore cross products which gives an indication of the curvature of the response surface

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

▶ Optimization Model

When we think that we are somewhere near the 'top of the hill' we will fit a second order model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

RSM for 2 Factors

- ▶ Look at 2 dimensions easier to think about and visualize
- ► Imagine the ideal case where there is actually a 'hill' which has a nice centered peak
- ▶ Our quest, to find the values $X_1^{optimum}$ and $X_2^{optimum}$, where the response is at its peak
- ▶ We might have a hunch that the optimum exists in certain location. This would be good area to start some set of conditions
- ► Take natural units and then center and rescale them to the range from -1 to +1

'Climbing a hill' or 'Descending into a valley'

Steepest Ascent - The First Order Model

- ▶ When we are remote from the optimum, we usually assume that a first-order model is an adequate approximation to the true surface in a small region of the *x*'s
- ► A procedure for moving sequentially from an initial "guess" towards to region of the optimum
- The 1st order Taylor expansion $f(x_1, ..., x_k) \approx \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$
- Steepest ascent is a gradient procedure

$$\frac{\partial f}{\partial x_j} = \beta_j, j = 1, \dots, k$$

The steps along the path are proportional to the regression coefficients $\{\beta_i\}$

Note on the Steepest Ascent

- ▶ Q: Why is gradient the direction of steepest ascent?
- \triangleright A: For any arbitrary direction v, the rate of change along v is

$$\lim_{h \to 0} \frac{f(x + hv) - f(x)}{h} \approx \nabla f(x) \cdot v$$

We know from linear algebra that the dot product is maximized when the two vectors point in the same direction. This means that the rate of change along an arbitrary vector v is maximized when v points in the same direction as the gradient. In other words, the gradient corresponds to the rate of steepest ascent/descent

Steepest Ascent: Procedure

- Experiments are conducted along the path of steepest ascent until no further increase in response is observed
- ► Then a new first-order model may be fit, a new path of steepest ascent determined, and the procedure continued
- ► Eventually, the experimenter will arrive in the vicinity of the optimum. This is usually indicated by lack of fit of a first-order model
- ▶ At that time, additional experiments will be conducted to obtain a more precise estimate of the optimum

Steepest Ascent: Chemical Yield Example

- ► To maximize the yield of a chemical process
- ► Two controllable variables: reaction time(A) and reaction temperature(B)
- ► The region center: (35min, 155°F)
- ▶ It is unlikely that this region contains the optimum, so there is little curvature in the system and the first-order model will be appropriate, followed by the method of steepest ascent
- Now the fitted first-order model is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$= 40.44 + 0.775 x_1 + 0.325 x_2$$

Natural Variables		Coo Varia	Response	
ξ ₁	ξ_2	x_1	x_2	у
30	150	-1	-1	39.3
30	160	-1	1	40.0
40	150	1	-1	40.9
40	160	1	1	41.5
35	155	0	0	40.3
35	155	0	0	40.5
35	155	0	0	40.7
35	155	0	0	40.2
35	155	0	0	40.6

Check the Adequacy of the First-Order Model

- ▶ Before exploring along the path of steepest ascent, the adequacy of the first-order model should be investigated
- ▶ The 2^2 design with center points allows:
 - > 1. Obtain an estimate of error
 - > Use the replicates at the center
 - > 2. Check for interactions (cross-product terms) in the model

$$F = \frac{SS_{Interaction}}{Pure\ error}$$

- > 3. Check for quadratic effects (curvature)
 - > Compare the average response at the four points in the factorial with the average response at the center; the difference is a measure of curvature

Notes on Coef and SS

$$SS_C = \frac{(\sum_{i=1}^{a} c_i \bar{y}_{i.})^2}{\frac{1}{n} \sum_{i=1}^{a} c_i^2}$$

$$\hat{\beta}_{12} = \frac{1}{4}(1 \times 39.3 + 1 \times 41.5 - 1 \times 40.0 - 1 \times 40.9)$$

$$SS_{Interaction} = \frac{(1 \times 39.3 + 1 \times 41.5 - 1 \times 40.0 - 1 \times 40.9)^2}{4} = \hat{\beta}_{12}^2 S_{1212}$$

▶ β_{11} and β_{22} are the coefficients of the "pure quadratic" terms x_1^2 and x_2^2 Coefficients

> summary(
$$lm(y \sim x1 + x2 + I(x1^2) + I(x2^2), chem)$$
)

- $ightharpoonup \overline{y}_F \overline{y}_C$ is an estimate of $\beta_{11} + \beta_{22}$
- $\triangleright SS_{Pure\ Quadratic} = \frac{(\bar{y}_F \bar{y}_C)^2}{\frac{1}{n_F} + \frac{1}{n_C}}$

$$SS_{AB} = \frac{\left(\sum_{i=1}^{4} c_{i} \bar{y}_{i.}\right)^{2}}{4/n} = \frac{(ab + (1) - a - b)^{2}}{4n}$$

Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|)(Intercept) 40.46000 0.08355 484.282 7.13e-13 *** x10.77500 0.09341 8.297 0.000415 *** 0.32500 0.09341 3.479 0.017671 * x^2 -0.03500 0.12532 -0.279 0.791209 $I(x1^2)$ $I(x2^2)$ NA NA NA NA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1868 on 5 degrees of freedom Multiple R-squared: 0.9419, Adjusted R-squared: 0.907 F-statistic: 27.01 on 3 and 5 DF, p-value: 0.001624

Analysis for the First-Order Model

- > full <- $lm(y \sim x1 + x2 + I(x1*x2) + I(x1^2)$, chem)
- > summary(full)
- > anova(full)
- ▶ Both the interaction and curvature checks are not significant, whereas the *F*-test for the overall regression is significant
- ► Both regression coefficients are large relative to their standard errors

Analysis of Variance Table

Response: y

Coefficients:

Residual standard error: 0.2074 on 4 degrees of freedom Multiple R-squared: 0.9427, Adjusted R-squared: 0.8854 F-statistic: 16.45 on 4 and 4 DF, p-value: 0.009471

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_{0}	<i>P</i> -Value
Model (β_1, β_2)	2.8250	2	1.4125	47.83	0.0002
Residual	0.1772	6			
(Interaction)	(0.0025)	1	0.0025	0.058	0.8215
(Pure quadratic)	(0.0027)	1	0.0027	0.063	0.8142
(Pure error)	(0.1720)	4	0.0430		
Total	3.0022	8			

Decide the Direction

- $\hat{y} = 40.44 + 0.775x_1 + 0.325x_2$
- To move away from the design center $(x_1 = x_2 = 0)$ along the path of steepest ascent, we would move 0.775 units in the x_1 direction for every 0.325 units in the x_2 direction
- Thus, the path of steepest ascent passes through the point $(x_1 = x_2 = 0)$ and has a slope 0.325/0.775
- Use 5 minutes of reaction time as the basic step size, that is $\Delta x_1 = 1$ in the coded variable x_1
- Therefore, the steps along the path of steepest ascent are $\Delta x 1 = 1.0000$ and $\Delta x_2 = (0.325/0.775) = 0.42$

Get Moving

	Coded Variables		Natural Variables		Response
Steps	x_1	x_2	ξ_1	ξ_2	у
Origin	0	0	35	155	
Δ	1.00	0.42	5	2	
Origin $+ \Delta$	1.00	0.42	40	157	41.0
Origin $+2\Delta$	2.00	0.84	45	159	42.9
Origin $+ 3\Delta$	3.00	1.26	50	161	47.1
Origin $+ 4\Delta$	4.00	1.68	55	163	49.7
Origin $+ 5\Delta$	5.00	2.10	60	165	53.8
Origin + 6Δ	6.00	2.52	65	167	59.9
Origin + 7Δ	7.00	2.94	70	169	65.0
Origin $+ 8\Delta$	8.00	3.36	75	171	70.4
Origin $+ 9\Delta$	9.00	3.78	80	173	77.6
Origin + 10Δ	10.00	4.20	85	175	80.3
Origin + 11Δ	11.00	4.62	90	179	76.2
Origin + 12Δ	12.00	5.04	95	181	75.1

A new first-order model is fit around the point ($\xi 1 = 85$, $\xi 2 = 175$). The region of exploration for $\xi 1$ is [80, 90], and it is [170, 180] for $\xi 2$. Thus, the coded variables are $x_1 = (\xi_1 - 85)/5$, $x_2 = (\xi_2 - 175)/5$

清华大学统计学研究中心

Second First-Order Model

 \blacktriangleright Once again, a 2^2 design with five center points is used

Natural Variables		Co Vari	Response	
ξ_1	ξ_2	x_1	x_2	У
80	170	-1	-1	76.5
80	180	-1	1	77.0
90	170	1	-1	78.0
90	180	1	1	79.5
85	175	0	0	79.9
85	175	0	0	80.3
85	175	0	0	80.0
85	175	0	0	79.7
85	175	0	0	79.8

- ► The interaction and pure quadratic checks imply that the first-order model is not an adequate approximation
- ► This curvature in the true surface may indicate that we are near the optimum
- ▶ At this point, additional analysis must be done to locate the optimum more precisely

```
Analysis of Variance Table
```

```
Response: y
```


Path for Multiple Predictors

- ▶ Points on the path of steepest ascent are proportional to the magnitudes of the model regression coefficients
- ▶ The direction depends on the sign of the regression coefficient
- Step-by-step procedure:
- 1. Choose a step size in one of the process variables, say Δx_j . Usually, we would select the variable we know the most about, or we would select the variable that has the largest absolute regression coefficient $|\hat{\beta}_i|$
- 2. The step size in the other variables is $\Delta x_i = \frac{\widehat{\beta}_i}{\widehat{\beta}_j/\Delta x_j}$, $i \neq j$
- 3. Convert the Δx_i from coded variables to the natural variables

Second-Order Models in RSM

$$y = \beta_0 + \sum_{j=1}^k \beta_j x_j + \sum_{j=1}^k \beta_{jj} x_j^2 + \sum_{i < j}^k \beta_{ij} x_i x_j + \varepsilon$$

- ► These models are used widely in practice
- ► The Taylor series analogy
- ▶ Fitting the model is easy, some nice designs are available
- Optimization is easy
- ► There is a lot of empirical evidence that they work very well

2nd Order Approximation

The 2nd order Taylor expansion

$$f(x_1, ..., x_k) \approx \beta_0 + \sum_{j=1}^k \beta_j x_j + \sum_{j=1}^k \beta_{jj} x_j^2 + \sum_{i < j}^k \beta_{ij} x_i x_j$$

- ► Total curvature: $\sum_{i=1}^{k} \beta_{ii}$
- Matrix form:

2nd Order Approximation

► The 2nd order Taylor expansion

$$\hat{y}(x) = \hat{\beta}_0 + x^T b + x^T B x$$

 \triangleright SVD of B

$$B = P\Lambda P^T$$
, $PP^T = P^TP = I$, $\Lambda = diag\{\lambda_1, ..., \lambda_k\}$

► A more convenient form- <u>canonical form</u> of the model

$$\hat{y}(x) = \hat{\beta}_0 + w^T P b + w^T \Lambda w = \hat{\beta}_0 + w^T b^* + \sum_{j=1}^k \lambda_j w_j^2$$
where $w = P^T x$, $b^* = P b = (b_1^*, \dots, b_k^*)^T$

4 Possible Scenarios

- The 2nd order approximation $\hat{y}(x) = \hat{\beta}_0 + w^T P b + w^T \Lambda w = \hat{\beta}_0 + w^T b^* + \sum_{j=1}^k \lambda_j w_j^2$
- ► Possible scenarios
 - a) Elliptic system: $\lambda_j > 0$ or < 0 for all j
 - b) Hyperbolic system: some $\lambda_j > 0$, some $\lambda_j < 0$
 - c) Stationary ridge system: some $\lambda_j \approx 0$, and the experiment region is close to the center
 - d) Rising/falling ridge system: some $\lambda_j \approx 0$, and the experiment region is far away from the center

Illustration of a Surface with a Maximum

Illustration of a Surface with a Minimum

清华大学统计学研究中心

Illustrating of a Saddle Point (or Minimax)

A Graphical Illustration of Ridge Systems

清华大学统计学研究中心

Characterization of the Response Surface

- ▶ Find out where our stationary point is
- ► Find what type of surface we have
 - Graphical Analysis
 - Canonical Analysis
- ▶ Determine the sensitivity of the response variable to the optimum value
 - Canonical Analysis

Finding the Stationary Point

▶ After fitting a second order model take the partial derivatives with respect to the x_i 's and set to zero

$$\delta y / \delta x_1 = \ldots = \delta y / \delta x_k = 0$$

- Stationary point represents
 - > Maximum Point
 - > Minimum Point
 - > Saddle Point
- $\hat{y}(x) = \hat{\beta}_0 + x^T b + x^T B x$

$$\Rightarrow x_S = -\frac{1}{2}B^{-1}b$$

$$\hat{y}_S = \hat{\beta}_0 + \frac{1}{2} x_S^T b$$

Canonical Analysis

- Used for sensitivity analysis and stationary point identification
- First to transform the model into a new coordinate system with the origin at the stationary point x_s and then to rotate the axes of this system until they are parallel to the principal axes of the fitted response surface
- Based on the analysis of the transformed model

$$\hat{y}(x) = y_s + \sum_{j=1}^{\kappa} \lambda_j w_j^2$$

- Canonical model

Eigenvalues

- ► The nature of the response can be determined by the signs and magnitudes of the eigenvalues
 - > {e} all positive: a minimum is found
 - > {e} all negative: a maximum is found
 - > {e} mixed: a saddle point is found
- ► Eigenvalues can be used to determine the sensitivity of the response with respect to the design factors
- ➤ The response surface is steepest in the direction (canonical) corresponding to the largest absolute eigenvalue

Complete Experiment for the Example

- ► Continue the analysis of the chemical process
- ▶ Augment the design with enough points to fit a second-order model

Natural Variables		Coded '	Coded Variables		Responses			
ξ_1	ξ_2	x_1	x_2	y ₁ (Yield)	y ₂ (Viscosity)	y ₃ (Molecular Weight)		
80	170	-1	-1	76.5	62	2940		
80	180	-1	1	77.0	60	3470		
90	170	1	-1	78.0	66	3680		
90	180	1	1	79.5	59	3890		
85	175	0	0	79.9	72	3480		
85	175	0	0	80.3	69	3200		
85	175	0	0	80.0	68	3410		
85	175	0	0	79.7	70	3290		
85	175	0	0	79.8	71	3500		
92.07	175	1.414	0	78.4	68	3360		
77.93	175	-1.414	0	75.6	71	3020		
85	182.07	0	1.414	78.5	58	3630		
85	167.93	0	-1.414	77.0	57	3150		

In this second phase of the study, two additional responses were of interest: the viscosity(粘度) and the molecular weight (分子量)of the product

Central Composite Design (CCD)

- Focus on fitting a quadratic model to the yield response y_1
- > library(rsm)
- \rightarrow rs \leftarrow rsm(y1 \sim SO(x1, x2), chem)
- > summary(rs)

Results

Call:

 $rsm(formula = y1 \sim SO(x1, x2), data = chem)$

Estimate Std. Error t value Pr(>|t|) (Intercept) 79.939955 0.119089 671.2644 < 2.2e-16 *** x1 0.995050 0.094155 10.5682 1.484e-05 *** x2 0.515203 0.094155 5.4719 0.000934 *** x1:x2 0.250000 0.133145 1.8777 0.102519 x1^2 -1.376449 0.100984 -13.6303 2.693e-06 *** x2^2 -1.001336 0.100984 -9.9158 2.262e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9827, Adjusted R-squared: 0.9704

F-statistic: 79.67 on 5 and 7 DF, p-value: 5.147e-06

Analysis of Variance Table

Response: y1

Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 10.0430 5.0215 70.8143 2.267e-05
TWI(x1, x2) 1 0.2500 0.2500 3.5256 0.1025
PQ(x1, x2) 2 17.9537 8.9769 126.5944 3.194e-06
Residuals 7 0.4964 0.0709
Lack of fit 3 0.2844 0.0948 1.7885 0.2886
Pure error 4 0.2120 0.0530

Stationary point of response surface: x1 x2 0.3892304 0.3058466

Because both λ_1 and λ_2 are negative and the stationary point is within the region of exploration, we conclude that the stationary point is a maximum

Eigenanalysis: eigen() decomposition \$values [1] -0.9634986 -1.4142867

\$vectors

[,1] [,2] x1 -0.2897174 -0.9571122 x2 -0.9571122 0.2897174

- $x_s = (0.3892304, 0.3058466)$, $\xi 1 = 86.95 \approx 87$ minutes of reaction time and $\xi 2 = 176.53 \approx 176.5$ °F; $\hat{y}_s = \hat{\beta}_0 + \frac{1}{2}x_s^Tb = 80.5$
- The canonical form of the fitted model is $\hat{y}(x) = 80.5 0.963w_1^2 1.414w_2^2$

清华大学统计学研究中心

35

Response Surface & Contour Plots

- \triangleright contour(rs,~x1+x2, image = T)
- ightharpoonup persp(rs,~x1+x2, col = rainbow(50), zlab='Yield', contours = list(z='bottom'))

