$S = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} + \frac{1}{3} \ r \cdot \left(4 \ \partial_{\beta} \mathcal{A}_{\alpha i \theta} - 2 \ \partial_{\beta} \mathcal{A}_{\alpha \theta i} + 2 \ \partial_{\beta} \mathcal{A}_{i \theta \alpha} - \partial_{i} \mathcal{A}_{\alpha \beta \theta} + \partial_{\theta} \mathcal{A}_{\alpha \beta i} - 2 \ \partial_{\theta} \mathcal{A}_{\alpha i \beta} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta i} - \frac{1}{2}$ $r \cdot \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{i} \mathcal{A}_{\beta \theta}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} - 2 \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} + \\ \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \partial_{\theta} \mathcal{A}_{i \beta}^{\ \theta} - 2 \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} \partial_{\theta} \mathcal{A}_{i \beta}^{\ \theta} + 8 \ \partial_{\beta} \mathcal{A}_{i \theta \alpha} \partial^{\theta} \mathcal{A}^{\alpha\beta i} \right) +$ $r \cdot \left(\partial_{i} \mathcal{A}_{\theta \kappa}^{\ \kappa} \partial^{\theta} \mathcal{A}^{\alpha i}_{\alpha} - \partial_{\theta} \mathcal{A}_{i \kappa}^{\ \kappa} \partial^{\theta} \mathcal{A}^{\alpha i}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha i \theta} - 2 \ \partial^{\theta} \mathcal{A}^{\alpha i}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}_{i \theta}^{\ \kappa} - \partial_{\kappa} \mathcal{A}_{\theta i}^{\ \kappa} \right) \right) [t, \ \kappa, \ y, \ z] \ dz \ dy \ dx \ dt$

0

o⁻σ∥ †

0 0

 $k^2 r$.

 $^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$

 $^{1^{+}}\sigma^{\perp}$ $^{+}$

 $\mathbf{1}^{+}_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$

 $^{1^{-}}\sigma^{\parallel}\uparrow^{\alpha}$

 $^{1^{-}}\sigma^{\perp}$ $^{\alpha}$

 $\mathbf{1}^{\scriptscriptstyle{-}}_{\scriptscriptstyle{\boldsymbol{\cdot}}}\tau^{\parallel} \uparrow^{\alpha}$

 $\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$

0 0 0

Wave operator

PSALTer results panel

 $k^2 \left(r_{.} + 2 r_{.} \right)$

0

0

0

0

0

0

0

0

0

0

0

 $2^+ \sigma^{\parallel} \uparrow^{\alpha\beta}$

 $2^+_{\bullet}\tau^{\parallel} \uparrow^{\alpha\beta}$

 $^{2^{-}}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$

 $2^{+}_{\bullet}\sigma^{\parallel}{}_{\alpha\beta} \quad 2^{+}_{\bullet}\tau^{\parallel}{}_{\alpha\beta} \quad 2^{-}_{\bullet}\sigma^{\parallel}{}_{\alpha\beta\chi}$

0

Multiplicities

Source constraints

Spin-parity form Covariant form

	open (ATX)	
Θ ⁺ _• τ == Θ	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==\partial_{\beta}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha}_{\alpha}$	1
⁰⁺ _• σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1
1- _τ [⊥] α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1- _t ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
1-σ ¹ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$	3
1 _• τ αβ == 0	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	
1. σ ¹ == 0	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$2^{-}_{\bullet}\sigma^{\parallel}^{\alpha\beta\chi} = 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$	5
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\delta} =$	
	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{ \delta}^{ \epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{ \delta}$	
2 _* _τ ^{αβ} == 0	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + \\$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi}$	
	Total expected gauge generators:	

(There are no massive particles)

Massless spectrum

(Not yet implemented in PSALTer)

Gauge symmetries

<u>Unitarity</u> conditions

$\left(r_{.3} < 0 \&\&\left(r_{.5} < -\frac{r_{.}}{2} \parallel r_{.5} > -2 r_{.3}\right)\right) \parallel \left(r_{.3} > 0 \&\&-2 r_{.3} < r_{.5} < -\frac{r_{.3}}{2}\right)$

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)