3.5 ПОВНІ СИСТЕМИ ФУНКЦІЙ

3.5.1 Функції, що зберігають нуль та одиницю

Булева функція $f(x_1, x_2, ..., x_n)$ називається **функцією, що зберігає 0**, якщо на нульовому наборі вона дорівнює 0: f(0, 0, ..., 0) = 0.

Булева функція $f(x_1, x_2, ..., x_n)$ називається **функцією, що зберігає 1**, якщо на одиничному наборі вона дорівнює 1: f(1,1, 1) = 1.

Функції $x \wedge y$ і $x \vee y$ зберігають 0, оскільки $0 \wedge 0 = 0$ і $0 \vee 0 = 0$. Крім того, дані функції також зберігають 1, оскільки $1 \wedge 1 = 1$ і $1 \vee 1 = 1$. Функція \overline{x} не зберігає 0 і не зберігає 1, оскільки $\overline{0} = 1$, $\overline{1} = 0$.

Приклад. Визначте, чи зберігає 0 та 1 функція $f(x, y, z) = x \vee y \overline{z}$.

Розв'язок. Перевіримо значення даної функції на нульовому та одиничному наборах.

$$f(0, 0, 0) = 0 \lor \overline{0} \land \overline{0} = 0 \lor 1 \land 1 = 0 \lor 1 = 1,$$

 $f(1, 1, 1)=1 \lor \overline{1} \land \overline{1} = 1 \lor 0 \land 0 = 1 \lor 0 = 1.$

Отже, дана функція зберігає 1 і не зберігає 0.

3.5.2 Монотонні функції

Розглянемо важливий клас булевих функцій — монотонні булеві функції. Для цього введемо відношення домінування (різновид порядку), яке будемо позначати символом ≤.

Нехай $\alpha=(\alpha_1,\,\alpha_2,...,\alpha_n)$ та $\beta=(\beta_1,\,\beta_2,...,\beta_n)$ – будь-які набори. Для двох наборів $\alpha=(\alpha_1,\,\alpha_2,...,\alpha_n)$ та $\beta=(\beta_1,\,\beta_2,...,\beta_n)$ виконується **відношення передування** $\alpha\leq\beta$, якщо $\alpha_1\leq\beta_1,\,\alpha_2\leq\beta_2,...,\alpha_n\leq\beta_n$.

Приклад. Набори $\alpha=(0,1,0,1)$ та $\beta=(1,1,0,1)$ знаходяться у відношенні передування, тобто значення набору не зменшується $\alpha \leq \beta$, оскільки $0 \leq 1, \ 1 \leq 1, \ 0 \leq 0, \ 1 \leq 1.$

Якщо хоча б для однієї пари (α_i, β_i) відношення $\alpha_i \leq \beta_i$ не виконується, то відповідні їм набори α та β у відношенні порядку не беруть участі, тобто ϵ непорівнянними, наприклад, (0, 1) і (1, 0).

Булева функція f називається **мономонною**, якщо для будь-яких пар наборів значень змінних $(\alpha_1, \alpha_2, ..., \alpha_n)$ та $(\beta_1, \beta_2, ..., \beta_n)$, для яких виконується відношення $(\alpha_1, \alpha_2, ..., \alpha_n) \leq (\beta_1, \beta_2, ..., \beta_n)$, правильна і нерівність $f(\alpha_1, \alpha_2, ..., \alpha_n) \leq f(\beta_1, \beta_2, ..., \beta_n)$.

Приклад. Дослідити на монотонність функції $f(x, y) = x \wedge y$, $g(x, y) = x \oplus y$.

 $\underline{Poзв'язок}$. Для функції f(x, y) запишемо всі набори значень змінних, для яких виконується відношення порядку, визначимо значення функції на даних наборах і порівняємо їх:

$$(0, 0) \le (0, 1),$$
 $f(0, 0) = 0,$ $f(0, 1) = 0,$ $f(0, 0) \le f(0, 1).$

$$(0, 0) \le (1, 0), \quad f(0, 0) = 0, \ f(1, 0) = 0, \quad f(0, 0) \le f(1, 0).$$

$$(0, 0) \le (1, 1), \quad f(0, 0) = 0, \ f(1, 1) = 1, \quad f(0, 0) \le f(1, 1).$$

$$(0, 1) \le (1, 1), \quad f(0, 1) = 0, \ f(1, 1) = 1, \quad f(0, 1) \le f(1, 1).$$

$$(1, 0) \le (1, 1), \quad f(1, 0) = 0, \ f(1, 1) = 1, \quad f(1, 0) \le f(1, 1).$$

Отже, функція $f(x, y) = x \wedge y$ є монотонною. Аналогічно проведемо дослідження функції g(x, y).

$$(0, 0) \le (0, 1), g(0, 0) = 0, g(0, 1) = 1, g(0, 0) \le g(0, 1).$$

$$(0, 0) \le (1, 0), \quad g(0, 0) = 0, \ g(1, 0) = 1, \ g(0, 0) \le g(1, 0).$$

$$(0, 0) \le (1, 1), \quad g(0, 0) = 0, \ g(1, 1) = 0, \quad g(0, 0) \le g(1, 1).$$

$$(0, 1) \le (1, 1), \quad g(0, 1) = 1, \quad g(1, 1) = 0, \quad g(0, 1) \ge g(1, 1).$$

Функція $g(x, y) = x \oplus y$ не є монотонною.

Приклад. Дослідити на монотонність функцію

$$h(x, y, z) = x \vee y \overline{z}$$
.

Розв'язок. Побудуємо діаграму Хассе для інтерпретацій:

При переході від інтерпретації (010) до (011) функція зменшує значення, отже функція не ϵ монотонною.

Теорема. Булева функція, відмінна від констант 0 і 1, ε монотонною, якщо і тільки якщо вона припускає зображення формулою булевої алгебри без заперечень.

Приклад. Визначити, чи ϵ функція

$$f(x, y, z, t) = (\overline{x} \vee \overline{y}) \rightarrow (z \vee t)$$

монотонною.

<u>Розв'язок</u>. Виразимо f(x, y, z, t) через елементарні функції булевої алгебри: $(\bar{x} \vee \bar{y}) \to (z \vee t) = xy \vee z \vee t$.

Одержана формула булевої алгебри не містить заперечень, отже функція f(x,y,z,t) є монотонною.

3.5.3 Повнота та замкненість

Будь-яка логічна функція може бути зображена за допомогою операцій булевої алгебри або алгебри Жегалкіна. А чи існують інші множини операцій, за допомогою яких можна визначити будь-яку булеву функцію? Які властивості вони мають?

Замиканням множини Σ булевих функцій називається множина [Σ], що складається з функцій, які можна одержати суперпозицією функцій з Σ .

Якщо $\Sigma = [\Sigma]$, то множина булевих функцій Σ називається *замкненим класом*.

Система булевих функцій $\Sigma = \{f_1, f_2, ..., f_n\}$ називається **функціонально повною**, якщо її замикання є множиною всіх можливих булевих функцій, що залежать від будь-якого числа змінних.

Для перевірки повноти системи функцій застосовують теорему Поста.

Теорема Поста (критерій повноти Поста). Для того, щоб система булевих функцій $\Sigma = \{f_1, f_2, ..., f_n\}$ була повною, необхідно і достатньо, щоб вона містила:

- 1) хоча б одну функцію, що не зберігає нуль;
- 2) хоча б одну функцію, що не зберігає одиницю;
- 3) хоча б одну несамодвоїсту функцію;
- 4) хоча б одну немонотонну функцію;
- 5) хоча б одну нелінійну функцію.

Інакше кажучи, для повноти системи функцій необхідно і достатньо, щоб для кожного з п'яти замкнених класів T_0 , T_1 , S, M, L вона містила функцію, яка цьому класу не належить.

Класи функцій. Існують п'ять класів булевих функцій: T_0 , T_1 , S, M, L, які називають класами Поста:

 T_0 — клас функцій, що зберігають нуль;

 T_1 — клас функцій, що зберігають одиницю;

S — клас самодвоїстих функцій;

M — клас монотонних функцій;

L — клас лінійних функцій.

Кожний із класів Поста замкнений.

Жоден із класів Поста не вкладається в інший.

Одна і та ж функція може мати кілька властивостей.

<u>Наслідок 1</u>. Доповнення будь-якого з класів Поста функцією, що не входить в цей клас, перетворить таку систему булевих функцій на функціонально повну. Інших класів з такою властивістю не існує.

Повна система булевих функцій називається *нескоромною*, якщо з неї не можна виключити жодної функції без втрати властивості повноти.

<u>Наслідок 2</u>. Максимальна кількість булевих функцій у нескоротній функціонально повній системі дорівнює чотирьом, мінімальна – одній.

Приклад. Перевірити, чи ϵ задані функції лінійними, монотонними, самодвоїстими, чи зберігають 0 та/або 1. Зробити висновок щодо функціональної повноти заданого набору функцій

$$xy \lor xz \lor yz$$
, $x \oplus y \oplus z$, 1.

<u>Розв'язання.</u> Для перевірки повноти даної системи функцій складемо таблицю Поста. Для цього необхідно з'ясувати, чи належать функції $\phi_1 = xy \lor xz \lor yz$, $\phi_2 = x \oplus y \oplus z$, $\phi_3 = 1$ до кожного з класів Поста.

1) Дослідимо функцію φ_1 .

Складемо таблицю істинності функції $\varphi_1(x, y, z) = xy \lor xz \lor yz$.

X	y	Z	xy	XZ	yz	φ_1
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

1.1) Булеву функцію $f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ називають **функцією, що зберігає 0**, якщо на нульовому наборі вона дорівнює 0: f(0, 0, ..., 0) = 0.

Функція зберігає нуль, оскільки $\phi_1(0,0,0) = 0$.

1.2) Булеву функцію $f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ називають **функцією, що** зберігає 1, якщо на нульовому наборі вона дорівнює 1: f(1, 1, ..., 1) = 1.

Функція зберігає одиницю, оскільки $\phi_1(1,1,1) = 1$.

1.3) *Самодвоїстієть*. Функцію $f^*(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ називають д**воїстою** до функції $f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, якщо $f^*(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) = \overline{f(\overline{\mathbf{x}_1}, \overline{\mathbf{x}_2}, ..., \overline{\mathbf{x}_n})}$.

Функцію, що двоїста сама собі, тобто $f = f^*$, називають **самодвоїстою**.

Щоб побудувати таблицю істинності функції, що двоїста даній, необхідно побудувати таблицю істинності заданої функції, кожне значення булевої функції замінити на протилежне і записати одержаний стовпчик у зворотній послідовності.

Для стовпця значень функції $\phi_1 = (00010111)$ генеруємо набір протилежних (інверсійних) значень (11101000). Записавши його у зворотній послідовності, одержимо стовпчик значень двоїстої функції

X	у	Z	φ_1	ϕ_1^*
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

 $\phi_1 = \phi_1^*, \,\,$ отже, $\,\,\phi_1 \,\,\varepsilon$ самодвоїстою функцією.

1.4) **Монотонність**. Нехай $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ та $\beta = (\beta_1, \beta_2, ..., \beta_n)$ – будьякі набори. Для двох наборів $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ та $\beta = (\beta_1, \beta_2, ..., \beta_n)$ виконується відношення передування, якщо $\alpha_1 \leq \beta_1, \alpha_2 \leq \beta_2, ..., \alpha_n \leq \beta_n$. Наприклад, набори $\alpha = (0, 1, 0, 1)$ й $\beta = (1, 1, 0, 1)$ знаходяться у відношенні передування, тобто значення набору не зменшується. Набори (0, 1) та (1, 0) не знаходяться у відношенні передування.

Функцію $f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ називають **мономонною**, якщо для будь-яких двох наборів α і β , що знаходяться у відношенні передування (тобто значення набору не зменшується), справджується нерівність $f(\alpha) \leq f(\beta)$.

Для перевірки монотонності функції ϕ_1 побудуємо діаграму Хассе (гіперкуб):

Таким чином, функція є монотонною, оскільки для всіх порівнюваних наборів $(a_1,a_2,a_3) \le (b_1,b_2,b_3)$ виконується нерівність $f(a_1,a_2,a_3) \le f(b_1,b_2,b_3)$ (інакше кажучи, на всіх зростаючих наборах функція не є спадаючою).

1.5) **Лінійність**. Булеву функцію називають *лінійною*, якщо її поліном Жегалкіна не містить кон'юнкцій змінних.

Щоб перевірити, чи ε функція ϕ_1 лінійною, побудуємо поліном Жегалкіна методом трикутника.

X	y	Z	000	001	010	011	100	101	110	111
0	0	0	0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	1	0	1	
0	1	0	0	1	0	0	1	1		
0	1	1	1	1	0	1	0			
1	0	0	0	1	1	1				
1	0	1	1	0	0					
1	1	0	1	0						
1	1	1	1							

Таким чином, $\phi_1(x, y, z) = yz \oplus xz \oplus xy$. Оскільки поліном Жегалкіна містить кон'юнкції змінних, то функція не ϵ лінійною.

2) Складемо таблицю істинності функції $\varphi_2(x, y, z) = x \oplus y \oplus z$.

X	у	Z	$x \oplus y$	ϕ_2	ϕ_2^*
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

- 2.1) Функція зберігає нуль, оскільки $\phi_2(0,0,0) = 0$.
- 2.2) Функція зберігає одиницю, оскільки $\phi_2(1,1,1)=1$.
- 2.3) Самодвоїстість. $\phi_2 = \phi_2^*$, отже, ϕ_2 є самодвоїстою функцією.
- 2.4) Монотонність.

Побудуємо діаграму Хассе (гіперкуб):

Таким чином, наприклад $(0,0,1) \le (0,1,1)$, а $g_2(0,0,1) \ge g_2(0,1,1)$, тобто функція g_2 не ϵ монотонною.

- 2.5) Функція $\phi_2(x, y, z) = x \oplus y \oplus z$ є лінійною, оскільки задається поліномом Жегалкіна, що не містить кон'юнкцій змінних.
- 3) Функція $\phi_3 = 1$ не зберігає константу 0, є несамодвоїстою, монотонною й лінійною.

Щоб перевірити, чи виконуються для скінченної системи функцій $\{\phi_1,...,\phi_n\}$ умови теореми Поста, складають *таблицю Поста*. Її рядки позначають функціями системи, а стовпці — назвами п'яти основних замкнених

класів. У клітках таблиці Поста ставлять знак "+" або "-" залежно від того, чи належить функція відповідному замкненому класу.

За результатами досліджень складемо таблицю Поста:

	T_0	T_1	S	М	L
$\phi_1 = xy \lor xz \lor yz$	+	+	+	+	
$\varphi_2 = x \oplus y \oplus z$	+	+	+	_	+
$\varphi_3 = 1$	_	+	_	+	+

За теоремою Поста для повноти системи функцій необхідно і достатньо, щоб у кожному стовпці таблиці Поста стояв хоча б один знак "—".

Таким чином, заданий набір функцій не ϵ функціонально повним, оскільки не містить хоча б одну функцію, що не зберіга ϵ одиницю.