[20] 3) Implement the following arithmetic function using subroutines as a technique for efficient coding. The only input to the function is variable (a) that is initialized in register R4 at the beginning of the program to 5 and maintained thereafter. The X calculation result is stored in R5. The final answer, F, is stored in R7.

$$F = (\frac{4X + 40}{2})$$
 where $X = \sum_{i=0}^{i=|a|} (2(i!))$

[12] 3.a) Write an MSP430 assembly language program that implements the above function using subroutines for Multiplication and Factorial. The overall program structure is given in the skeleton below, which is available on Canvas as well. Please note that the multiply subroutine is included in the skeleton code. Please review how it works:

RESET StopWDT	mov.w mov.w	#STACK_EN #WDTPW+WDTH	D,SP ;Initialize stack pointer OLD,&WDTCTL ;Stop WDT
LAB2	mov.w	#5, R4	;Load "a" into R4
CLEAR	clr clr clr	R5 R6 R7	;clear the entire register ;clear the entire register ;clear the entire register
XCALC			<pre>;the X calculation part of your program ;taking value of R4 as an input ;and returning result X in R5</pre>
FCALC			<pre>;the final part of your program ;taking inputs from R5 ;and returning result F in R7</pre>
MainLoop	jmp	Mainloop	;Infinite Loop
MULT			;Included in the skeleton code

- [4] Main Program [3] XCALC, [1] FCALC
- [8] Factorial Subroutine

	CDA3331C •	Intro to	Microcomputers	
•	CDASSSIC •	miro to	Microcomputers	•

Lab Assignment

Grade:

/20

Name/Semester:

[2] 3.b) Run your program and verify the results by examining registers

R4 = (a) =
$$\frac{5}{300}$$
, in decimal = $\frac{5}{300}$
R5 = (X) = $\frac{3}{300}$, in decimal = $\frac{3}{300}$

[2] 3.c) Manually change the contents of R4 to 5, a new input value for variable a. Run your program and observe the results

R4 = (a) =
$$\bigcirc$$
, in decimal = \bigcirc 6
R5 = (X) = \bigcirc 5 \bigcirc 7, in decimal = \bigcirc 7 \bigcirc 7

[2] 3.d) Manually change the contents of R4 to -7, a new input value for variable a. Run your program and observe the results

and observe the results
$$R4 = (a) = \frac{FFFG}{A}, \text{ in decimal } = \frac{1}{A}$$

$$R5 = (X) = \frac{2F3Y}{A}, \text{ in decimal } = \frac{1}{A}$$

[2] 3.e) what is the maximum value of "a" that the function can execute correctly and why?

6	because	9016	0	Y	ea(h
7	17 370PS al answel do	pecperly	exe	(uting) and
Fic	Sal answer do	iesut exe	cute i-	t light	
<u> </u>	my mar c	·			