tree

March 21, 2024

[1]:	pregnant	glucose	bp	skin	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
					•••				
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

[768 rows x 9 columns]

```
[2]: #split dataset in features and target variable
  feature_cols = ['pregnant', 'insulin', 'bmi', 'age', 'glucose', 'bp', 'pedigree']
  X = pima[feature_cols].values # Features
  y = pima.label # Target variable

# Split dataset into training set and test set
```

[2]: ((768, 7), (537, 7))

```
[3]: # Create Decision Tree classifer object
clf = DecisionTreeClassifier()

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)

y_test.mean(), y_pred.mean()
```

[3]: (0.36796536796536794, 0.3246753246753247)

```
[4]: # Model Accuracy, how often is the classifier correct?
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.6363636363636364

[5]:


```
[6]: # Create Decision Tree classifer object
clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)

# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.7705627705627706

[7]:

