STA2201H Methods of Applied Statistics II

Monica Alexander

Week 5: Bayesian regression and Stan

Annoucements

- Assignment 1 being graded
- ► Assignment 2 coming soon (Bayesian inference)

Where are we at

- Bayesian inference revolves around inference based on the posterior
- Posterior usually hard to write down in closed form
- But as long as we can get a set of samples from posterior, we can do inference
- For most problems, we can construct an MCMC algorithm that can be used to generate samples from posterior distributions
- lots of standard software to run MCMC so that we (usually) don't have to code it ourselves
- We will be using Stan, which fits models using a version of HMC

Bayesian inference for regression models

Kid's scores

- Outcome is Kid's test scores
- ► Let's introduce a covariate/explanatory variable of Mom's IQ
- 1) Question / goal : Describe the association between kid's test scores and Mom's IQ

Scientific model

2) What is the Scientific model (how are these observed data generated?)

How does Mom's IQ influence Kid's score? If we think about this relationship causally

$$X \rightarrow Y$$

- ► Changing Mom's IQ would change Kid's test score, but not the other way around
- ► This is a scientific claim

Scientific model

Adding another piece to our scientific model

$$X \rightarrow Y \leftarrow U$$

"Kid's score is a function of Mom's IQ and other stuff" This implies we need to find some function Y = f(X, U). Let's assume Kid's score is a proportion of Mom's IQ plus the influence of unobserved causes

Statistical model

A reasonable model to consider is

$$y_i|\mu_i, \sigma \sim N\left(\mu, \sigma^2\right)$$

 $\mu_i = \alpha + \beta x_i$

where X_i is mother's IQ score. This is a simple linear regression model. We are primarily interested in obtaining estimates for the regression coefficients, α and β .

We need to put priors on σ (as before) but also α and β . Let's put

$$lpha \sim extstyle extstyle extstyle N(0, 100^2)$$
 $eta \sim extstyle exts$

Bayesian regression

- OLS or MLE finds estimates of the parameters that best fit the data
- Bayesian inference incorporates prior information about the parameters
- ► In Bayesian inference, the estimates are a compromise between the prior info and the data

Bayesian inference for linear regression

What does Bayesian inference get us that MLE doesn't?

- ► Inclusion of prior information:
 - we usually know something
 - makes inferences more stable, as the estimates are typically somewhere between the prior and what would be obtained from the data alone
- Propogation of uncertainty:
 - least squares gives us a point estimate
 - in Bayesian inference, we can summarize uncertainty using simulations from the posterior distribution

Posterior distribution

$$\Pr(\alpha, \beta, \sigma \mid Y_i, X_i) = \frac{\Pr(Y_i \mid X_i, \alpha, \beta, \sigma) \Pr(\alpha, \beta, \sigma)}{Z}$$

Note that α and β describe the line (conditional expectation) and σ describes the variation around the line

Prior predictive distributions

- Priors should express scientific knowledge, but "softly"
- Sigma must be positive
- ► Kid score on average increases with Mom IQ?
- **▶** ???

Idea of prior predictive distributions:

- We can understand the implications of priors through simulation: check that before the model sees data, it doesn't hallucinate impossible things.
- We can force the model to make predictions even before data.

Prior predictive distributions

- If we specify proper priors for all parameters in the model, our model is generative
- ➤ Yields a joint prior distribution on the parameters and data, and hence a prior marginal distribution for the data

Prior predictive distribution for new \tilde{y}

$$p(\tilde{y}) = \int_{\Theta} p(\tilde{y}, \theta) d\theta = \int_{\Theta} p(\tilde{y}|\theta) p(\theta) d\theta$$

In practice (in R) we can simulate values of θ from the prior distribution(s), and then simulate from the likelihood to generate values of \tilde{y} , and then look at the resulting distribution.

For now, I'm just going to generate values of the conditional expectation/linear predictor.

Make some lines

```
n <- 1000
alpha <- rnorm(n, 0, 100)
beta <- rnorm(n, 0, 10)
plot(NULL, xlim=c(20, 150), ylim = c(20, 150), xlab = "Mom IQ", ylab = "Kid score")
for (j in 1:50) abline(a = alpha[j], b = beta[j], col = 2, lwd = 2)</pre>
```


Sermon on priors (from Stat Rethinking)

- ► There are no correct priors, only scientifically justifiable priors
- ▶ Justify with information outside the data, like the rest of the model (eg the generative model)
- Priors are not so important in simple models
- Very important/useful in complex models
- Need to simulate and understand behavior

In Stan

```
data {
 int<lower=0> N; // number of kids
 int<lower=0> K; // number of covariates
 vector[N] y;
                       // scores
 matrix[N, K] X;
                        // design matrix
parameters {
 real alpha;
 vector[K] beta;
 real<lower=0> sigma;
transformed parameters {
model {
 //priors
 alpha ~ normal(0, 100);
 beta ~ normal(0, 1);
 sigma ~ normal(0,1);
 //likelihood
 y ~ normal(alpha + X*beta, sigma);
```

Fits comparison

```
summary(fit)$summary[c("alpha", "beta[1]"),]
##
                                        sd
                                                 2.5%
                                                             25%
                                                                       50%
                mean
                         se_mean
## alpha 25.6505410 0.160003162 5.86313286 13.9089387 21.7385364 25.7168057
## beta[1] 0.6113883 0.001591822 0.05795296 0.4977733 0.5744605 0.6107212
                 75%
                          97.5%
##
                                  n_eff
                                            Rhat
## alpha 29.3746990 37.3517609 1342.772 1.000457
## beta[1] 0.6493292 0.7283271 1325.446 1.000478
summarv(lm(kid score~mom ig, data = kidig))
##
## Call:
## lm(formula = kid_score ~ mom_iq, data = kidiq)
##
## Residuals:
              1Q Median 3Q
      Min
## -56.753 -12.074 2.217 11.710 47.691
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.79978   5.91741   4.36 1.63e-05 ***
## mom_iq
              0.60997 0.05852 10.42 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 18.27 on 432 degrees of freedom
## Multiple R-squared: 0.201. Adjusted R-squared: 0.1991
## F-statistic: 108.6 on 1 and 432 DF, p-value: < 2.2e-16
```

pairs(fit, pars = c("alpha", "beta[1]"))

What do we get

```
post_samples <- extract(fit)
length(post_samples)

## [1] 4

names(post_samples)

## [1] "alpha" "beta" "sigma" "lp__"</pre>
```

What do we get

```
dim(post_samples[["alpha"]])
## [1] 4000
post_samples[["alpha"]][1:5]
## [1] 27.58892 36.47942 17.22575 23.33283 28.06029
```

What do we get

hist(post_samples[["alpha"]])

Tidy version

```
library(tidybayes)
fit |>
    gather_draws(alpha)
```

```
## # A tibble: 4.000 x 5
## # Groups:
               .variable [1]
      .chain .iteration .draw .variable .value
##
      <int>
                  <int> <int> <chr>
                                         <dbl>
                                         26.0
##
                      1
                            1 alpha
##
                      2
                            2 alpha
                                         26.5
                      3
                            3 alpha
                                          26.3
##
                            4 alpha
                                          29.4
                            5 alpha
                                          30.6
                            6 alpha
                                          23.3
## 7
                            7 alpha
                                          20.9
                            8 alpha
                                          20.4
                            9 alpha
                                          22.4
## 10
                     10
                           10 alpha
                                          20.7
## # ... with 3,990 more rows
```

What can we do

- The data and model are combined to form a posterior distribution, which we typically summarize by a set of simulations of the parameters in the model
- We can propagate uncertainty in this distribution, that is, we can get simulation-based prediction for unobserved or future outcomes that accounts for uncertainty in the model parameters

With simulations, we can

- Visualize uncertainty in the regression line
- Get uncertainty for functions of parameters
- Make predictions based on new data points

The posterior is full of lines

Uncertainty about a function of parameters

For example, posterior samples for the ratio of α and β 400 -300 count 200 -100 -

ratio

Making predictions

Consider making a prediction of kid's score with a new observation of mother's IQ, x^{new} . We have

- the point prediction $\hat{\alpha} + \hat{\beta}x^{\text{new}}$
- ▶ the linear predictor with uncertainty $\alpha + \beta x^{\text{new}}$
 - propagates uncertainty in regression coefficients
 - represents the distribution of uncertainty about the expected value of y for new data points x^{new}
- ▶ the predictive distribution for a new observation $\alpha + \beta x^{\text{new}} + \text{error}$
 - represents uncertainty about a new observation y with predictor x^{new}

Predictions

Consider a new mother with an IQ of 110.

Point prediction: use medians of posterior samples for $\hat{\alpha}$ and $\hat{\textit{beta}}$

```
x_new <- 110
alpha_hat <- median(post_samples[["alpha"]])
beta_hat <- median(post_samples[["beta"]])
alpha_hat + beta_hat*x_new</pre>
```

```
## [1] 92.89614
```

Predictions

Linear predictor with uncertainty:

```
alpha <- post_samples[["alpha"]]
beta <- post_samples[["beta"]][,1]
lin_pred <- alpha + beta*x_new
hist(lin_pred)</pre>
```


Predictions

Predictive distribution for new observation:

```
sigma <- post_samples[["sigma"]]
y_new <- rnorm(n = length(sigma), mean = lin_pred, sd = sigma)
hist(y_new)</pre>
```


Can also do this within Stan

Can get posterior predictive distribution samples using the generated quantities block:

```
generated quantities{
  real y_new[1];
  y_new = normal_rng(alpha + x_new*beta, sigma);
}
```

Posterior predictive distribution

$$p(\tilde{y}|y) = \int_{\Theta} p(\tilde{y}|\theta, y) p(\theta|y) d\theta$$

- ▶ After we have seen the data and obtained the posterior distributions of the parameters, we can now use the posterior distributions to generate new data from the model.
- Given the posterior distributions of the parameters of the model, the posterior predictive distribution gives us some indication of what new data might look like, given the data and model.
- We can avoid performing the integration explicitly by generating samples from the posterior predictive distribution.

Posterior predictive distributions also important for model checking. More next week.

Posterior predictive distribution

Posterior predictive distribution for new \tilde{y}

$$p(\tilde{y}|y) = \int_{\Theta} p(\tilde{y}|\theta, y) p(\theta|y) d\theta$$

To obtain samples from this distribution, we need to

- Get posterior samples of our parameters $\theta^{(s)}$ (MCMC output!)
- For each posterior sample, we obtain one replicated dataset $\tilde{y}^{(s)}$ by sampling from the likelihood $p(\tilde{y}|\theta^{(s)})$. Can do this in R or within Stan.

Centering predictors to improve posterior geometries

Remember this

```
pairs(fit, pars = c("alpha", "beta"))
```


Centering

Summary of fit

```
summary(fit2)$summary[c("alpha", "beta[1]"),]
```

```
## mean se_mean sd 2.5% 25%

## alpha 86.7892184 0.0132815304 0.88159102 85.0690380 86.186347 86.7

## beta[1] 0.6110352 0.0009157762 0.05767691 0.5021104 0.570862 0.6

## 75% 97.5% n_eff Rhat

## alpha 87.3671882 88.5772355 4405.935 0.9993431

## beta[1] 0.6503686 0.7207103 3966.663 1.0000865
```

What's different? What's the same?

Now look at joint posteriors

pairs(fit2, pars = c("alpha", "beta"))

What do you notice? Why does this matter?

Centering predictors

- When the mean of the predictors is far away from zero, changes in the slope induce the opposite change in the intercept
- Hard to interpret what intercepts mean
- Harder to sample: reducing correlation may speed up convergence

Changing prior information

Changing prior information

What if we knew with relative certainty that there's a 1:1 correspondence between kid's score and mother's IQ? How would we encode this information?

Changing prior information

$$\beta \sim N(1, 0.01^2)$$

Let's fit this:

Summary of fit

```
summary(fit3)$summary[c("alpha", "beta[1]"),]
```

```
##
                                          sd
                                                   2.5%
                                                               25%
                                                                          50%
                          se_mean
                mean
## alpha 86.7825087 0.0118031292 0.728263738 85.3494689 86.2973942 86.7970300
## beta[1] 0.9845948 0.0001374247 0.009826061 0.9657328 0.9778366 0.9846424
##
                 75%
                         97.5%
                                  n_eff
                                            Rhat
## alpha 87.2743635 88.225777 3807.002 1.0004073
## beta[1] 0.9912788 1.003631 5112.450 0.9995584
```

Comparison with weakly informative priors

Comments

- Okay, maybe this was a bad decision in this context, but when might we want to consider more informative priors?
- Measurement error?
- Less data?
- Previous evidence?

Break the model

$$y_i|\mu_i, \sigma \sim N\left(\mu, \sigma^2\right)$$

 $\mu_i = \alpha + \beta_1 x_i + \beta_2 x_i$

Priors on β are improper: $p(\beta) \propto 1$

```
## Inference for Stan model: kid6.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
```

mean se mean sd 2.5% 25% 50%

25.42

alpha 25.20 0.85 4.96 15.61 21.81 ## beta[1] -1.47 19.41 42.31 -84.98 -22.88 -5.13

28.21

Samples were drawn using NUTS(diag_e) at Wed Feb 8 08:07:13 2023. ## For each parameter, n eff is a crude measure of effective sample size, ## and Rhat is the potential scale reduction factor on split chains (at

sigma 14.93 0.05 0.30 14.35

##

##

##

alpha

beta[1]

beta[2]

sigma

lp__

beta[2] 2.09

convergence, Rhat=1).

n eff Rhat

34 1.08

5 2.08

5 2 08

40 1.11

52 1.09

75%

19.40 42.29 -70.99 -31.47

lp_ -1606.74 0.16 1.18 -1609.82 -1607.20 -1606.42 -1605.93 -1605.46

post-warmup draws per chain=1000, total post-warmup draws=4000.

14.72

5.72

14.93

97.5%

36.22

85.67

32.12 71.61

15.14 15.52

23.50

Compare to weakly informative priors

Priors on eta are $eta \sim \textit{N}(0,1)$

```
 \begin{array}{lll} \mbox{data} & \leftarrow \mbox{list}(y = y, & & & \\ \mbox{N} & = \mbox{length}(y), & & & \\ \mbox{K} & = \mbox{2}, & & & \\ \mbox{X} & = \mbox{cbind}(as.matrix(kidiq$mom_iq), as.matrix(kidiq$mom_iq))) \\ \mbox{fit5} & \leftarrow \mbox{stan}(\mbox{file} = "kids3.stan", & & \\ \mbox{data} & = \mbox{data}) \end{array}
```

What do you think will happen?

Results

What is identifiable given the observed data?

Inference for Stan model: kids3.

```
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
           mean se mean
                                2.5%
                                         25%
                                                 50%
                                                         75%
                                                             97.5%
## alpha 25.81 0.55 5.79 13.80 22.01 25.92
                                                     29.67 36.87
## beta[1] 1.09 0.80 6.97 -12.55 -3.62 0.99 5.94 14.66
## beta[2] -0.48 0.79 6.97 -14.03 -5.31 -0.39 4.22 13.18
## sigma 18.27 0.06 0.65 17.08 17.83 18.22 18.66
                                                             19.65
## lp_ -1477.58 0.08 1.44 -1481.29 -1478.23 -1477.23 -1476.55 -1475.84
       n eff Rhat
##
## alpha 112 1.05
## beta[1] 77 1.07
## beta[2] 77 1.07
## sigma
         127 1.04
## lp__
           337 1.01
##
## Samples were drawn using NUTS(diag e) at Wed Feb 8 08:09:11 2023.
## For each parameter, n eff is a crude measure of effective sample size.
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

Traceplots

Summary

In any modeling problem:

- 1) Question/Goal
- 2) Scientific model
- 3) Statistical model

Bayesian inference for linear regression

- Focus on simulation-based inference and prediction, rather than point estimates
- Can simulate predictions even before seeing data
- Easy to propagate uncertainty to predictions, functions of estimated parameters

Lab: practice with kids dataset