计算几何入门

同安第一中学 叶芃

2016年12月31日

大概就是让你解决一些几何类的问题。

大概就是让你解决一些几何类的问题。 大部分情况下实现难度远大于思维难度。

大概就是让你解决一些几何类的问题。 大部分情况下实现难度远大于思维难度。 往往还会遇到各种恶心的特殊情况以及精度问题。

大概就是让你解决一些几何类的问题。 大部分情况下实现难度远大于思维难度。 往往还会遇到各种恶心的特殊情况以及精度问题。 我们先从二维的计算几何开始讲起。

精度

先把精度问题讲在前头。

精度

先把精度问题讲在前头。

由于浮点运算带来的精度误差,我们不能像比较整数那样直接比较 两个浮点数是否相等。

精度

先把精度问题讲在前头。

由于浮点运算带来的精度误差,我们不能像比较整数那样直接比较两个浮点数是否相等。

解决方法是取一个 ε ,我们认为两个数a,b是相等的当且仅当|a-b| $< \varepsilon$ 。

点

我们知道,平面上的点P可以用二元组(x,y)来表示,且这些点的全体构成整个平面,即 $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}=\{(x,y)|x,y\in\mathbb{R}\}$

点

我们知道,平面上的点P可以用二元组(x,y)来表示,且这些点的全体构成整个平面,即 $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}=\{(x,y)|x,y\in\mathbb{R}\}$

点 (x_1, y_1) 与点 (x_2, y_2) 之间的距离为 $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

直线

在平面解析几何中,我们往往将一条直线表示 成 $Ax + By + C = 0(AB \neq 0)$ 的形式。

直线

在平面解析几何中,我们往往将一条直线表示

成 $Ax + By + C = 0(AB \neq 0)$ 的形式。

但在计算几何中,这么做往往要面对非常复杂的各种分类讨论。

直线

在平面解析几何中,我们往往将一条直线表示

成 $Ax + By + C = 0(AB \neq 0)$ 的形式。

但在计算几何中,这么做往往要面对非常复杂的各种分类讨论。

很多时候,我们会采用点+向量的形式来表示直线。(这并不是绝对的,有些时候上述形式或者其他形式也可能会让实现变得简单)

在数学上,常用有向线段来表示向量,有向线段的长度表示向量的 大小,有向线段的方向表示向量的方向。

在数学上,常用有向线段来表示向量,有向线段的长度表示向量的 大小,有向线段的方向表示向量的方向。

以A为起点,B为终点的有向线段表示的向量记为AB

在数学上,常用有向线段来表示向量,有向线段的长度表示向量的 大小,有向线段的方向表示向量的方向。

以A为起点,B为终点的有向线段表示的向量记为 \overrightarrow{AB}

| AB | 称为向量的长度或模。模为1的向量称为单位向量,模为0的向量称为零向量。

在数学上,常用有向线段来表示向量,有向线段的长度表示向量的 大小,有向线段的方向表示向量的方向。

以A为起点,B为终点的有向线段表示的向量记为 \overrightarrow{AB}

| AB | 称为向量的长度或模。模为1的向量称为单位向量,模为0的向量称为零向量。

在数学上我们认为向量只具有大小和方向两个要素。

在数学上,常用有向线段来表示向量,有向线段的长度表示向量的 大小,有向线段的方向表示向量的方向。

以A为起点,B为终点的有向线段表示的向量记为 \overrightarrow{AB}

| AB | 称为向量的长度或模。模为1的向量称为单位向量,模为0的向量称为零向量。

在数学上我们认为向量只具有大小和方向两个要素。

也就是说,对于一条有向线段,我们可以把它的起点移到原点,这样我们就可以用其终点的坐标来表示向量。

在数学上,常用有向线段来表示向量,有向线段的长度表示向量的 大小,有向线段的方向表示向量的方向。

以A为起点,B为终点的有向线段表示的向量记为AB

| AB | 称为向量的长度或模。模为1的向量称为单位向量,模为0的向量称为零向量。

在数学上我们认为向量只具有大小和方向两个要素。

也就是说,对于一条有向线段,我们可以把它的起点移到原点,这样我们就可以用其终点的坐标来表示向量。

所以我们平常写程序时点和向量都用(x,y)来表示。

向量的线性运算

向量的加减法:
$$(x_1, y_1) \pm (x_2, y_2) = (x_1 \pm x_2, y_1 \pm y_2)$$

向量的线性运算

向量的加减法: $(x_1, y_1) \pm (x_2, y_2) = (x_1 \pm x_2, y_1 \pm y_2)$ 向量与数的乘法: $\lambda(x, y) = (\lambda x, \lambda y)$

7 / 92

点积

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2)$$
。

点积

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2)_{\circ}$$

 $\vec{a} \cdot \vec{b} = |\vec{a}| \times |\vec{b}| \times \cos \theta = x_1 x_2 + y_1 y_2$

点积

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2),$$

 $\vec{a} \cdot \vec{b} = |\vec{a}| \times |\vec{b}| \times \cos \theta = x_1 x_2 + y_1 y_2$
其几何意义就是 \vec{a} 在 \vec{b} 上的投影乘以 $|\vec{b}|$

点积的性质

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

点积的性质

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

 $\lambda (\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b})$

点积的性质

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
$$\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b})$$
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c}$$

叉积

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2)$$
。

叉积

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2)_{\circ}$$

 $\vec{a} \times \vec{b} = |\vec{a}| \times |\vec{b}| \times \sin \theta = x_1 y_2 - x_2 y_1$

叉积

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2).$$
 $\vec{a} \times \vec{b} = |\vec{a}| \times |\vec{b}| \times \sin \theta = x_1 y_2 - x_2 y_1$ 其几何意义就是 \vec{a} 和 \vec{b} 所形成的平行四边形的有向面积。

叉积的性质

$$\vec{a} imes \vec{b} = -\vec{b} imes \vec{a}$$

叉积的性质

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

 $\lambda (\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$

叉积的性质

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

 $\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$
 $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

向量的旋转

考虑如何将向量旋转。

向量的旋转

考虑如何将向量旋转。 假设我们要将(x,y)逆时针旋转 θ 。

向量的旋转

考虑如何将向量旋转。

假设我们要将(x,y)逆时针旋转 θ 。

$$(x, y) \rightarrow (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$$

向量的极角

就是向量从x轴正半轴逆时针转过的角度。

向量的极角

就是向量从x轴正半轴逆时针转过的角度。

c++里叫做atan2(y,x)

为了方便程序的实现,我们定义向量和点的运算。

为了方便程序的实现,我们定义向量和点的运算。 点+向量=点

为了方便程序的实现,我们定义向量和点的运算。 点+向量=点 点-向量=点

为了方便程序的实现,我们定义向量和点的运算。 点+向量=点

点-向量=点

向量+向量=向量

为了方便程序的实现,我们定义向量和点的运算。 点+向量=点 点-向量=点 向量+向量=向量 向量-向量=向量

为了方便程序的实现,我们定义向量和点的运算。 点+向量=点 点-向量=点 向量+向量=向量 向量-向量=向量 点-点=向量

直线

有了上述的运算,我们可以用 $P + \lambda \vec{v} (\lambda \in \mathbb{R})$ 来表示一条直线。

同安第一中学 叶芃

直线

有了上述的运算,我们可以用 $P + \lambda \vec{v} (\lambda \in \mathbb{R})$ 来表示一条直线。这样表示的好处是不需要特殊处理斜率不存在的情况。

直线

有了上述的运算,我们可以用 $P + \lambda \vec{v}(\lambda \in \mathbb{R})$ 来表示一条直线。 这样表示的好处是不需要特殊处理斜率不存在的情况。 后面我们所有的直线都用这种形式来表示。

点到直线的距离

求点Q到直线 $P + \lambda \vec{v}$ 的距离。

点到直线的距离

求点
$$Q$$
到直线 $P + \lambda \vec{v}$ 的距离。
 $\vec{v} \times \overrightarrow{PQ}$

点到线段的距离

点到线段的距离

先用叉积判断垂足是否在线段上。

点到线段的距离

先用叉积判断垂足是否在线段上。

是的话即点到直线的距离, 否则必然是到某一端点的距离。

点到直线做垂足

求点Q在直线 $P + \lambda \vec{v}$ 上的垂足。

点到直线做垂足

求点
$$Q$$
在直线 $P + \lambda \vec{v}$ 上的垂足。
($P + k\vec{v} - Q$)· $\vec{v} = 0$

点到直线做垂足

求点
$$Q$$
在直线 $P + \lambda \vec{v}$ 上的垂足。
 $(P + k\vec{v} - Q) \cdot \vec{v} = 0$
解方程。

直线求交点

求直线 $P + \lambda \vec{u} = Q + \lambda \vec{v}$ 的交点。

直线求交点

求直线
$$P + \lambda \vec{u} = Q + \lambda \vec{v}$$
的交点。

$$(P + k\vec{u} - Q) \times \vec{v} = 0$$

直线求交点

求直线
$$P + \lambda \vec{u} = Q + \lambda \vec{v}$$
的交点。
 $(P + k\vec{u} - Q) \times \vec{v} = 0$
解方程。

判断点P是否在线段AB上。

同安第一中学 叶芃 计算几

20 / 92

判断点*P*是否在线段*AB*上。 线段不包括端点。

同安第一中学 叶芃

判断点P是否在线段AB上。

线段不包括端点。

$$\overrightarrow{PA} \times \overrightarrow{PB} = 0 \\ \bot \overrightarrow{PA} \cdot \overrightarrow{PB} < 0$$

判断点P是否在线段AB上。 线段不包括端点。

$$\overrightarrow{PA} \times \overrightarrow{PB} = 0 \perp \overrightarrow{PA} \cdot \overrightarrow{PB} < 0$$

包括端点?

判断线段AB和CD是否有交。

判断线段AB和CD是否有交。 线段不包括端点。

判断线段AB和CD是否有交。

线段不包括端点。

$$t_1 = \overrightarrow{AB} \times \overrightarrow{AC}, t_2 = \overrightarrow{AB} \times \overrightarrow{AD}$$

 $t_3 = \overrightarrow{CD} \times \overrightarrow{CA}, t_4 = \overrightarrow{CD} \times \overrightarrow{CB}$
 $t_1t_2 < 0 \pm t_3t_4 < 0$

判断线段AB和CD是否有交。

线段不包括端点。

$$t_{1} = \overrightarrow{AB} \times \overrightarrow{AC}, t_{2} = \overrightarrow{AB} \times \overrightarrow{AD}$$

$$t_{3} = \overrightarrow{CD} \times \overrightarrow{CA}, t_{4} = \overrightarrow{CD} \times \overrightarrow{CB}$$

$$t_{1}t_{2} < 0 \perp t_{3}t_{4} < 0$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

包括端点?

多边形

若干条线段首尾顺次连接形成的平面图形。

逆时针给定多边形各个顶点, 求面积。

逆时针给定多边形各个顶点,求面积。 凸多边形?

逆时针给定多边形各个顶点, 求面积。

凸多边形?

分成若干个三角形。

逆时针给定多边形各个顶点, 求面积。

凸多边形?

分成若干个三角形。

一般多边形怎么办?

逆时针给定多边形各个顶点, 求面积。

凸多边形?

分成若干个三角形。

一般多边形怎么办?

好麻烦的样子。

多边形求面积

逆时针给定多边形各个顶点, 求面积。

凸多边形?

分成若干个三角形。

一般多边形怎么办?

好麻烦的样子。

利用有向面积。

点在多边形内

判断点是否在多边形内部。

点在多边形内

判断点是否在多边形内部。 射线法。

点在多边形内

判断点是否在多边形内部。 射线法。

转角法。

点在凸多边形内部

快速判断点是否在凸多边形内部。

点在凸多边形内部

快速判断点是否在凸多边形内部。

将凸多边形按一个顶点切成若干三角形。

点在凸多边形内部

快速判断点是否在凸多边形内部。 将凸多边形按一个顶点切成若干三角形。 二分。

直线与多边形求交

好像没什么可说的。

同安第一中学 叶芃

直线与凸多边形求交

直线与凸多边形求交

二分求出两边的最远点。

直线与凸多边形求交

二分求出两边的最远点。 然后再二分一下。

凸集: 给定点集 $S \in \mathbb{R}^n$,若任意两点的连线均在点集内,即对于任意 $x, y \in S$ 均有 $\lambda x + (1 - \lambda)y \in S(\lambda \in [0, 1])$,则称S为凸集。

凸集:给定点集 $S \in \mathbb{R}^n$,若任意两点的连线均在点集内,即对于任意 $x, y \in S$ 均有 $\lambda x + (1 - \lambda)y \in S(\lambda \in [0, 1])$,则称S为凸集。对于给定的集合X,包含X的所有凸集的交集S称为X的凸包。

凸集:给定点集 $S \in \mathbb{R}^n$,若任意两点的连线均在点集内,即对于任意 $x,y \in S$ 均有 $\lambda x + (1-\lambda)y \in S(\lambda \in [0,1])$,则称S为凸集。对于给定的集合X,包含X的所有凸集的交集S称为X的凸包。说人话的话,就是拿一个尽量小的凸多边形来包住给定的所有点。

凸集: 给定点集 $S \in \mathbb{R}^n$,若任意两点的连线均在点集内,即对于任意 $x, y \in S$ 均有 $\lambda x + (1 - \lambda)y \in S(\lambda \in [0, 1])$,则称S为凸集。

对于给定的集合X,包含X的所有凸集的交集S称为X的凸包。

说人话的话,就是拿一个尽量小的凸多边形来包住给定的所有点。

也可以这么看: 把给定的每个点看成一个木桩。拿绳子从最外面把它们圈起来。

Graham扫描法。

Graham扫描法。

有极角序和水平序两种。

取出y坐标最小的点(有多个就取出其中x坐标最小的点)。

取出y坐标最小的点(有多个就取出其中x坐标最小的点)。 以该点为原点将其他点按极角排序。

取出y坐标最小的点(有多个就取出其中x坐标最小的点)。 以该点为原点将其他点按极角排序。 按顺序扫一遍,拿一个来维护当前点构成的凸包。

取出y坐标最小的点(有多个就取出其中x坐标最小的点)。 以该点为原点将其他点按极角排序。 按顺序扫一遍,拿一个来维护当前点构成的凸包。 每次加入的时候,如果栈顶凹进去的话,弹掉。

将所有点以x坐标为第一关键字, y坐标为第二关键字排序。

将所有点以x坐标为第一关键字, y坐标为第二关键字排序。 从1到n求一遍下凸壳。

将所有点以x坐标为第一关键字, y坐标为第二关键字排序。 从1到n求一遍下凸壳。 再从n到1求一遍上凸壳。

将所有点以x坐标为第一关键字, y坐标为第二关键字排序。 从1到n求一遍下凸壳。 再从n到1求一遍上凸壳。 求凸壳的方式和刚刚一样。

极角序代码比水平序短。

极角序代码比水平序短。

但极角序在排序时,若用叉积则常数较大,若用反三角则可能有精 度问题。

极角序代码比水平序短。

但极角序在排序时,若用叉积则常数较大,若用反三角则可能有精度问题。

且无法应对要求共线的情况。

极角序代码比水平序短。

但极角序在排序时,若用叉积则常数较大,若用反三角则可能有精度问题。

且无法应对要求共线的情况。 实际应用中多采用水平序。

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

对踵点

如果过凸多边形上的两个点,能够作两条平行的直线把整个凸多边 形夹在中间,那么这两个点称为对踵点。

用来求对踵点的算法。

同安第一中学 叶芃

用来求对踵点的算法。

考虑对踵点的定义,我们总可以旋转两条平行直线使得其中一条和 凸多边形的某条边重合。

用来求对踵点的算法。

考虑对踵点的定义,我们总可以旋转两条平行直线使得其中一条和 凸多边形的某条边重合。

枚举边,那么对踵点一定是离这条边最远的点。

用来求对踵点的算法。

考虑对踵点的定义,我们总可以旋转两条平行直线使得其中一条和 凸多边形的某条边重合。

枚举边,那么对踵点一定是离这条边最远的点。

点的位置是单调的,且对于固定的边,其距离是单峰的。

用来求对踵点的算法。

考虑对踵点的定义,我们总可以旋转两条平行直线使得其中一条和 凸多边形的某条边重合。

枚举边,那么对踵点一定是离这条边最远的点。

点的位置是单调的,且对于固定的边,其距离是单峰的。

于是就O(n)了。

最远点

给定点集X,求X中最远点对的距离。

最远点

给定点集X,求X中最远点对的距离。

求出凸包,注意到最远点一定是一对对踵点。

考虑一条直线
$$Ax + By + C = 0$$
,它将平面分成了两半,即 $Ax + By + C > 0$ 和 $Ax + By + C < 0$ 。

考虑一条直线Ax + By + C = 0,它将平面分成了两半,即Ax + By + C > 0和Ax + By + C < 0。 每一半都是一个半平面。

考虑一条直线
$$Ax + By + C = 0$$
,它将平面分成了两半,即 $Ax + By + C > 0$ 和 $Ax + By + C < 0$ 。每一半都是一个半平面。
$$Ax + By + C > 0$$
和 $Ax + By + C < 0$ 也是半平面。

考虑一条直线Ax + By + C = 0,它将平面分成了两半,

即
$$Ax + By + C > 0$$
和 $Ax + By + C < 0$ 。

每一半都是一个半平面。

$$Ax + By + C \ge 0$$
和 $Ax + By + C \le 0$ 也是半平面。

在程序中,因为我们是用 $P + \lambda \vec{v}$ 来表示直线,所以我们可以规定向量的某一侧为我们所描述的半平面。

给定若干个半平面, 求它们的交。

给定若干个半平面, 求它们的交。

暴力插入每一个半平面,每次与之前得到的交集求交,复杂度 $O(n^2)$

给定若干个半平面,求它们的交。

暴力插入每一个半平面,每次与之前得到的交集求交,复杂度 $O(n^2)$

将所有半平面按极角排序,按顺序加入。

给定若干个半平面,求它们的交。

暴力插入每一个半平面,每次与之前得到的交集求交,复杂度 $O(n^2)$

将所有半平面按极角排序,按顺序加入。

用双端队列维护当前的交集,每次插入要删去队尾和队头的某些半平面。

给定若干个半平面,求它们的交。

暴力插入每一个半平面,每次与之前得到的交集求交,复杂度 $O(n^2)$

将所有半平面按极角排序,按顺序加入。

用双端队列维护当前的交集,每次插入要删去队尾和队头的某些半平面。

细节较多,时间复杂度O(nlogn)

员

在同一平面内到定点的距离为定长的点的集合叫做圆。

圆

在同一平面内到定点的距离为定长的点的集合叫做圆。

第二定义:到两定点的距离之比为不等于1的常数的动点的轨

迹。(阿波罗尼斯圆)

圆

在同一平面内到定点的距离为定长的点的集合叫做圆。

第二定义: 到两定点的距离之比为不等于1的常数的动点的轨

迹。(阿波罗尼斯圆)

往往用圆心和半径来描述一个圆。

圆和直线的交点

求圆和直线的交点。

圆和直线的交点

求圆和直线的交点。

勾股定理or 算夹角。

圆和圆的交点

求圆和圆的交点。

圆和圆的交点

求圆和圆的交点。

求出公共弦or 算夹角。

过一点做圆的切线

过一点做圆的切线。

同安第一中学 叶芃

过一点做圆的切线

过一点做圆的切线。 算夹角。

两圆的公切线

求圆与圆之间的所有公切线。

两圆的公切线

求圆与圆之间的所有公切线。最多有四条。

给定n个圆,求并集的面积。

 $n \le 1000$

格林公式

安利一个好东西。

格林公式

安利一个好东西。

设闭区域D由分段光滑曲线L围成,函数P(x,y)与Q(x,y)在D上具有一阶偏导数,则有

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{L} P dx + Q dy$$

格林公式

安利一个好东西。

设闭区域D由分段光滑曲线L围成,函数P(x,y)与Q(x,y)在D上具有一阶偏导数,则有

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{L} P dx + Q dy$$

取P = -y, Q = x,就可以得到:

$$S_D = \frac{1}{2} \oint_L x \mathrm{d}y - y \mathrm{d}x$$

同安第一中学 叶芃

回到刚刚的题,我们考虑对 θ_1 到 θ_2 进行积分。

回到刚刚的题,我们考虑对 θ_1 到 θ_2 进行积分。

$$\begin{cases} x = x_0 + r \cos \theta \\ y = y_0 + r \sin \theta \end{cases}$$

直接带入公式:

直接带入公式:

$$S = \frac{1}{2} \int_{\theta_1}^{\theta_2} (x_0 + r \cos \theta) d(y_0 + r \sin \theta) - (y_0 + r \sin \theta) d(x_0 + r \cos \theta)$$

$$= \frac{r}{2} \int_{\theta_1}^{\theta_2} [(x_0 + r \cos \theta) \cdot \cos \theta + (y_0 + r \sin \theta) \cdot \sin \theta] d\theta$$

$$= \frac{r}{2} \int_{\theta_1}^{\theta_2} (x_0 \cos \theta + y_0 \sin \theta + r) d\theta$$

$$= \frac{r}{2} (r(\theta_2 - \theta_1) + r \cdot x_0 (\sin \theta_2 - \sin \theta_1) + r \cdot y_0 (\cos \theta_1 - \cos \theta_2))$$

同安第一中学 叶芃

时间复杂度 $O(n^2 log n)$

辛普森积分

用二次曲线的积分来拟合被积函数。

辛普森积分

用二次曲线的积分来拟合被积函数。

考虑三个点(a, f(a)), (b, f(b)), (c, f(c)),其中 $c = \frac{a+b}{2}$ 。

辛普森积分

用二次曲线的积分来拟合被积函数。

考虑三个点
$$(a, f(a)), (b, f(b)), (c, f(c)),$$
 其中 $c = \frac{a+b}{2}$ 。
由拉格朗日插值法,知:

$$f(x) = \frac{(x-b)(x-c)}{(a-b)(a-c)}f(a) + \frac{(x-a)(x-c)}{(b-a)(b-c)}f(b) + \frac{(x-b)(x-a)}{(c-b)(c-a)}f(c)$$

于是,
$$\int_a^b f(x) dx = \frac{1}{6}(b-a)(f(a)+f(b)+4f(c))$$

一些题目

接下来我们来讲几道题目。

射箭

n个靶子,每个靶子是一条竖直的线段。 从原点射出一条抛物线,要求这条抛物线穿过尽量多的靶子。 $n \leq 10^5$ 射箭

二分答案。

射箭

二分答案。

半平面交。

给定n个点,求最小的边界线,满足包住所有点,且到所有点的距离不小于L。

 $n \le 10^5$

求凸包, 然后加上一个圆。

给定n条线段,保证其中恰好有一对线段相交,请找出这对线段。 $n \leq 10^5$,不存在平行于y轴的线段。

如果没有相交,意味着对于任何一条平行于y轴的直线,所有与之相交的线段的上下关系不会改变。

如果没有相交,意味着对于任何一条平行于y轴的直线,所有与之相交的线段的上下关系不会改变。

考虑用一条平行于y轴的直线从 $-\infty$ 扫到 $+\infty$ 。

如果没有相交,意味着对于任何一条平行于y轴的直线,所有与之相交的线段的上下关系不会改变。

考虑用一条平行于y轴的直线从 $-\infty$ 扫到 $+\infty$ 。

考虑所有与这条直线相交的线段,如果一对线段相交,那么一定存在一个时刻他们是相邻的。

如果没有相交,意味着对于任何一条平行于y轴的直线,所有与之相交的线段的上下关系不会改变。

考虑用一条平行于y轴的直线从 $-\infty$ 扫到 $+\infty$ 。

考虑所有与这条直线相交的线段,如果一对线段相交,那么一定存在一个时刻他们是相邻的。

只需要找出所有线段的端点作为关键点,用set维护线段直接的关系,每次出现新的相邻线段就判断一下即可。

如果没有相交,意味着对于任何一条平行于y轴的直线,所有与之相交的线段的上下关系不会改变。

考虑用一条平行于y轴的直线从 $-\infty$ 扫到 $+\infty$ 。

考虑所有与这条直线相交的线段,如果一对线段相交,那么一定存在一个时刻他们是相邻的。

只需要找出所有线段的端点作为关键点,用set维护线段直接的关系,每次出现新的相邻线段就判断一下即可。

这种方法叫做扫描线。

圆的异或并

给定n个圆,两两不相交。 如果一片区域在奇数个圆内,就将其面积计入答案。 $n \le 2 \times 10^5$

圆的异或并

圆的关系构成一棵树。

圆的异或并

圆的关系构成一棵树。 还是扫描线。

最远点

给定n个点的凸多边形,求每个点的最远点。

 $n \le 10^5$

最远点

最远点并不一定是对踵点。

最远点

最远点并不一定是对踵点。

但单调性仍然满足,分治即可。

给定n个点,求其中最近点对的距离。

$$n \le 10^5$$

分治。

分治。

每次找出一条中间的分界线, 递归下去。

分治。

每次找出一条中间的分界线, 递归下去。

假设当前的答案为d,显然只需要考虑分界线附近 $\pm d$ 的带状区域。

分治。

每次找出一条中间的分界线,递归下去。

假设当前的答案为d,显然只需要考虑分界线附近±d的带状区域。

对于一个点,也只需考虑另一边纵坐标在其 $\pm d$ 范围内的点,这样的点不超过6个。

求多边形重心

给定一个质量均匀分布的简单多边形,求其重心。

 $n \leq 10^5$

求多边形重心

把多边形变成若干三角形。

求多边形重心

把多边形变成若干三角形。 求质点组重心。

最大内切圆

求凸多边形最大内切圆半径。

$$n \le 10^5$$

最大内切圆

二分答案, 半平面交。

小凸想跑步

给定一个n个点的凸多边形,在其中随机选择一个点,与所有点相连,得到n个三角形。

求这个点与0,1号点相连形成的三角形是这些三角形中面积最小的三角形的概率。 $n < 10^5$

小凸想跑步

考虑面积,得到n-1个不等式。

小凸想跑步

考虑面积,得到n-1个不等式。 半平面交。

给n个二维平面上的点,第i个点有 p_i 的概率出现在最终结果中。问最后存在于最终结果的点所构成的凸包的面积期望是多少。 $n \leq 50$

对每条边分开计算贡献。

对每条边分开计算贡献。

考虑一条边AB,出现在凸包上的概率为这条边的右边没有点。

对每条边分开计算贡献。

考虑一条边AB,出现在凸包上的概率为这条边的右边没有点。

 $n \leq 1000怎么做?$

给定n个点,有q次询问,每次询问取出其中若干个点构成一个简单多边形。

另外再给定m个点,每个点有权值。

对每次询问,求多边形内部点的权值。

不存在三点共线, $n, m \le 1000, q \le 10000$

考虑求面积的方法。

同安第一中学 叶芃

考虑求面积的方法。

如何快速求三角形内的点的权值和?

考虑求面积的方法。 如何快速求三角形内的点的权值和? 极角序+树状数组。

给定n个点,求一个半径最小的圆,使得它能覆盖所有的点。 $n \leq 10^6$

所求的圆是唯一的吗?

同安第一中学 叶芃

所求的圆是唯一的吗?

考虑二分答案,问题转换为n个圆是否有公共部分。

所求的圆是唯一的吗? 考虑二分答案,问题转换为*n*个圆是否有公共部分。 然后再二分一下。

所求的圆是唯一的吗? 考虑二分答案,问题转换为n个圆是否有公共部分。 然后再二分一下。

让我们来看一个更优秀的做法。

设这n个点分别为 $p_1,...,p_n$ 。

设这n个点分别为 $p_1, ..., p_n$ 。 设 C_i 为 $p_1, ..., p_i$ 的最小覆盖圆。

设这n个点分别为 $p_1, ..., p_n$ 。 设 C_i 为 $p_1, ..., p_i$ 的最小覆盖圆。 假设我们有了 C_{i-1} ,尝试往其中添加 p_i 。

设这n个点分别为 $p_1, ..., p_n$ 。 设 C_i 为 $p_1, ..., p_i$ 的最小覆盖圆。 假设我们有了 C_{i-1} ,尝试往其中添加 p_i 。

• p_i 在 C_{i-1} 中,则 $C_i = C_{i-1}$ 。

设这n个点分别为 $p_1,...,p_n$ 。 设 C_i 为 $p_1,...,p_i$ 的最小覆盖圆。 假设我们有了 C_{i-1} ,尝试往其中添加 p_i 。

- p_i 在 C_{i-1} 中,则 $C_i = C_{i-1}$ 。
- p_i 不在 C_{i-1} 中,我们不知道 C_i 是什么,但我们知道 p_i 一定在 C_i 的边界上。

设这n个点分别为 $p_1,...,p_n$ 。 设 C_i 为 $p_1,...,p_i$ 的最小覆盖圆。 假设我们有了 C_{i-1} ,尝试往其中添加 p_i 。

- p_i 在 C_{i-1} 中,则 $C_i = C_{i-1}$ 。
- p_i 不在 C_{i-1} 中,我们不知道 C_i 是什么,但我们知道 p_i 一定在 C_i 的边界上。

如何找到包含 $p_1, p_2, ..., p_{i-1}$ 且 p_i 在其边界上的最小覆盖圆呢?

令 C_i' 表示包含 $p_1,...,p_j$ 且 p_i 在其边界上的最小覆盖圆。

令 C_{i} 表示包含 $p_{1},...,p_{j}$ 且 p_{i} 在其边界上的最小覆盖圆。假设我们有了 C_{i-1} ,尝试往其中添加 p_{j} 。

令 C_j 表示包含 $p_1,...,p_j$ 且 p_i 在其边界上的最小覆盖圆。 假设我们有了 C_{j-1}' ,尝试往其中添加 p_j 。

• p_j 在 C'_{j-1} 中,则 $C'_j = C'_{j-1}$ °

令 C_{i} 表示包含 $p_{1},...,p_{j}$ 且 p_{i} 在其边界上的最小覆盖圆。 假设我们有了 C_{i-1} ,尝试往其中添加 p_{i} 。

- p_j 在 C'_{j-1} 中,则 $C'_j = C'_{j-1}$ °
- p_j 不在 C'_{j-1} 中,我们不知道 C'_j 是什么,但我们知道 p_j 一定在 C'_j 的边界上。

现在我们有了 p_i 和 p_j ,我们要求包含 p_1 ,..., p_{j-1} 且 p_i 和 p_j 在其边界上的最小覆盖圆。

现在我们有了 p_i 和 p_j ,我们要求包含 p_1 ,..., p_{j-1} 且 p_i 和 p_j 在其边界上的最小覆盖圆。

令 C_k'' 表示包含 $p_1,...,p_k$ 且 p_i 和 p_j 在其边界上的最小覆盖圆。

现在我们有了 p_i 和 p_j ,我们要求包含 p_1 ,..., p_{j-1} 且 p_i 和 p_j 在其边界上的最小覆盖圆。

令 C_k'' 表示包含 $p_1, ..., p_k$ 且 p_i 和 p_j 在其边界上的最小覆盖圆。 假设我们有了 C_{k-1}'' ,尝试往其中添加 p_k 。

现在我们有了 p_i 和 p_j ,我们要求包含 $p_1,...,p_{j-1}$ 且 p_i 和 p_j 在其边界上的最小覆盖圆。

令 C_k'' 表示包含 $p_1,...,p_k$ 且 p_i 和 p_j 在其边界上的最小覆盖圆。假设我们有了 C_{k-1}'' ,尝试往其中添加 p_k 。

• p_k 在 C''_{k-1} 中,则 $C''_k = C''_{k-1}$ 。

现在我们有了 p_i 和 p_j ,我们要求包含 $p_1,...,p_{j-1}$ 且 p_i 和 p_j 在其边界上的最小覆盖圆。

令 C_k'' 表示包含 $p_1, ..., p_k$ 且 p_i 和 p_j 在其边界上的最小覆盖圆。假设我们有了 C_{k-1}'' ,尝试往其中添加 p_k 。

- p_k 在 C''_{k-1} 中,则 $C''_k = C''_{k-1}$ 。
- p_k 不在 C''_{k-1} 中,那么 $C_k = p_i, p_j, p_k$ 三点构成的圆。

时间复杂度好像挺大啊?

同安第一中学 叶芃

时间复杂度好像挺大啊?

看见标题的随机两个字没有 $p_1,...,p_n$ 这个加入点的顺序是随机的。

时间复杂度好像挺大啊?

看见标题的随机两个字没有 $p_1,...,p_n$ 这个加入点的顺序是随机的。

思考一下我们在什么情况下会枚举k,只有当 p_j 不在 C'_{j-1} 中时我们才会枚举。

时间复杂度好像挺大啊?

看见标题的随机两个字没有 $p_1,...,p_n$ 这个加入点的顺序是随机的。

思考一下我们在什么情况下会枚举k,只有当 p_j 不在 C'_{j-1} 中时我们才会枚举。

这个的概率等于在 C_j' 中删除 p_j 时 C_j' 会变小的概率,即 $\frac{1}{j}$ 或 $\frac{2}{j}$

时间复杂度好像挺大啊?

看见标题的随机两个字没有 $p_1,...,p_n$ 这个加入点的顺序是随机的。

思考一下我们在什么情况下会枚举k,只有当 p_j 不在 C'_{j-1} 中时我们才会枚举。

这个的概率等于在 C_j 中删除 p_j 时 C_j 会变小的概率,即 $\frac{1}{j}$ 或 $\frac{2}{j}$ 那么这步的期望时间复杂度

为
$$rac{j-1}{j} imes O(1)+rac{1}{j} imes O(j)=O(1)$$
或 $rac{j-2}{j} imes O(1)+rac{2}{j} imes O(j)=O(1)$

- (ロ) (個) (E) (E) (E) の(C)

同样的考虑什么情况下会枚举j,可以得出外层的循环的期望时间复杂度也是O(1)的。

同样的考虑什么情况下会枚举j,可以得出外层的循环的期望时间复杂度也是O(1)的。

于是该算法的期望时间复杂度为O(n)

比二维计算几何多了一维。

比二维计算几何多了一维。 不少东西还是很相似的。

比二维计算几何多了一维。 不少东西还是很相似的。

我就懂一点点所以也讲不了太多。

比二维计算几何多了一维。

不少东西还是很相似的。

我就懂一点点所以也讲不了太多。

三条轴(x轴,y轴,z轴),每个点用实数三元组(x,y,z)表示

 $(\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = (x,y,z) | x,y,z \in \mathbb{R})$

比二维计算几何多了一维。

不少东西还是很相似的。

我就懂一点点所以也讲不了太多。

三条轴(x轴,y轴,z轴),每个点用实数三元组(x,y,z)表示

$$(\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = (x,y,z) | x,y,z \in \mathbb{R})$$

两点间距离公式为
$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

叉积

除了叉积之外其他运算跟二维的情况类似。

叉积

除了叉积之外其他运算跟二维的情况类似。 设两个向量 \vec{a} 与 \vec{b} 之间的夹角为 θ ,按如下方式确定向量 \vec{c} 。

- $|\vec{c}| = |\vec{a}||\vec{b}|\sin\theta$
- \vec{c} 的方向规定为同时垂直于 \vec{a} 与 \vec{b} ,并按 \vec{a} , \vec{b} , \vec{c} 的顺序构成右手系

叉积

除了叉积之外其他运算跟二维的情况类似。 设两个向量 \vec{a} 与 \vec{b} 之间的夹角为 θ ,按如下方式确定向量 \vec{c} 。

- $|\vec{c}| = |\vec{a}||\vec{b}|\sin\theta$
- \vec{c} 的方向规定为同时垂直于 \vec{a} 与 \vec{b} ,并按 \vec{a} , \vec{b} , \vec{c} 的顺序构成右手系则称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的叉积,即 $\vec{a} \times \vec{b} = \vec{c}$

叉积的坐标表示

设
$$\vec{a} = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}, \vec{b} = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}.$$

同安第一中学 叶芃

叉积的坐标表示

设
$$ec{a}=x_1oldsymbol{i}+y_1oldsymbol{j}+z_1oldsymbol{k}, ec{b}=x_2oldsymbol{i}+y_2oldsymbol{j}+z_2oldsymbol{k}.$$
则

$$ec{a} imes ec{b} = (x_1 i + y_1 j + z_1 k)(x_2 i + y_2 j + z_2 k)$$

= $(y_1 z_2 - z_1 y_2)i + (z_1 x_2 - x_1 z_2)j + (x_1 y_2 - y_1 x_2)k$

同安第一中学 叶芃

叉积的坐标表示

设
$$ec{a}=x_1oldsymbol{i}+y_1oldsymbol{j}+z_1oldsymbol{k}, ec{b}=x_2oldsymbol{i}+y_2oldsymbol{j}+z_2oldsymbol{k}.$$
则

$$\vec{a} \times \vec{b} = (x_1 i + y_1 j + z_1 k)(x_2 i + y_2 j + z_2 k)$$

= $(y_1 z_2 - z_1 y_2) i + (z_1 x_2 - x_1 z_2) j + (x_1 y_2 - y_1 x_2) k$

用行列式表示可能比较好记:

$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

其绝对值的几何意义是 \vec{a} , \vec{b} , \vec{c} 所成平行六面体的体积。

 $(\vec{a} \times \vec{b}) \cdot \vec{c}$

其绝对值的几何意义是 \vec{a} , \vec{b} , \vec{c} 所成平行六面体的体积。 正负取决于 \vec{a} , \vec{b} , \vec{c} 是否依次构成右手系。

$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

其绝对值的几何意义是 \vec{a} , \vec{b} , \vec{c} 所成平行六面体的体积。 正负取决于 \vec{a} , \vec{b} , \vec{c} 是否依次构成右手系。 用行列式表示可能比较好记:

$$\begin{array}{ccccc}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3
\end{array}$$

异面直线的距离

求两条异面直线之间的距离。

异面直线的距离

求两条异面直线之间的距离。 任取两点,拿体积算算。

点到平面的距离

平面的表示方法: 点+法向量

点到平面的距离

平面的表示方法:点+法向量 算投影

线面求交

一般情况下是一个点。

线面求交

一般情况下是一个点。

用上面的方法先搞出垂直向量证。

线面求交

一般情况下是一个点。 用上面的方法先搞出垂直向量 \vec{u} 。 设交点为 $P + \vec{v}_0$,则 $\vec{v}_0 \cdot \vec{u} = \vec{u}^2$

面面求交

一般情况下是一条线。

面面求交

一般情况下是一条线。

方向是 $v_1 \times \vec{v}_2$,然后用上面的方法随便找一个交点。

三维凸包

给出若干个点, 求它们的凸包。

三维凸包

给出若干个点,求它们的凸包。 $O(n^4)$ 暴力

三维凸包

给出若干个点, 求它们的凸包。

O(n4)暴力

随机增量法,每次删去所有的可视面并添加分界线到当前点的面。

球

跟圆差不多吧。

球跟直线的交

跟直线与圆的交点差不多。

球和平面的交

一般情况下是个圆。

球和平面的交

一般情况下是个圆。 跟刚刚也差不多。

球和球的交

应该也差不多。

谢谢大家

谢谢大家。