Ejemplo 4

En el ejemplo anterior, hallar la variación de f en la dirección del vector $\mathbf{w} = (1, 1, 1)$.

Solución

w no es un vector unitario. Sustituyendo w por

$$\mathbf{v} = \frac{\mathbf{w}}{\|\mathbf{w}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

y procediendo como en el Ejemplo 3, obtenemos de nuevo, $2/\sqrt{3}$.

Direcciones de máximo crecimiento

A partir del Teorema 12 también podemos obtener el significado geométrico del gradiente:

Teorema 13 Supongamos que $\nabla f(\mathbf{x}) \neq \mathbf{0}$. Entonces $\nabla f(\mathbf{x})$ apunta en la dirección en la que f crece más rápidamente.

Demostración Si **n** es un vector unitario, la variación de f en la dirección **n** está dada por $\nabla f(\mathbf{x}) \cdot \mathbf{n} = ||\nabla f(\mathbf{x})|| \cos \theta$, donde θ es el ángulo entre **n** y $\nabla f(\mathbf{x})$. El máximo se alcanza cuando $\theta = 0$; es decir, cuando **n** y ∇f son paralelos (si $\nabla f(\mathbf{x}) = \mathbf{0}$, esta variación es 0 para todo **n**.)

En otras palabras, si deseamos movernos en una dirección en la que f se mueva más rápidamente, debemos hacerlo en la dirección $\nabla f(\mathbf{x})$. De forma análoga, si deseamos movernos en una dirección en la que f decrece más rápidamente, debemos hacerlo en la dirección $-\nabla f(\mathbf{x})$.

Ejemplo 5

¿En qué dirección, desde el punto $(0,1), f(x,y) = x^2 - y^2$ crece más rápidamente?

Solución

El gradiente es $\nabla f = 2x\mathbf{i} - 2y\mathbf{j}$, y, por tanto, en (0, 1), es

$$\nabla f|_{(0,1)} = -2\mathbf{j}.$$

Por el Teorema 13, f crece lo más rápidamente en la dirección $-\mathbf{j}$. ¿Por qué esta respuesta es coherente con la Figura 2.1.9?

Gradientes y planos tangentes a los conjuntos de nivel

Ahora vamos a hallar la relación entre el gradiente de una función f y sus superficies de nivel. El gradiente apunta en la dirección en la que los valores de f varían más rápidamente, mientras que una superficie de nivel descansa en las direcciones en las que no cambia en absoluto. Si f se comporta razonablemente bien, el gradiente y la superficie de nivel serán perpendiculares.