11	10	A farmer is fencing a paddock using P metres of fencing. The
	b	paddock is to be in the shape of a sector of a circle with
		radius r and sector θ in radians, as shown in the diagram.

- Show that the length of fencing required to fence the (i) perimeter of the paddock is $P = r(\theta + 2)$.
- Show that the area of the sector is $A = \frac{1}{2}Pr r^2$. (ii)

2

State Mean:

0.73/1

0.41/1

0.57/2

0.20/1 0.08/2

1

1

1

2

- Find the radius of the sector, in terms of P, that will maximize the area (iii) of the paddock.
- Find the angle θ that gives the maximum area of the paddock. (iv)
- Explain why it is only possible to construct a paddock in the shape of a (v) sector if $\frac{P}{2(\pi+1)} < r < \frac{P}{2}$.
- (i) Using arc length = $r\theta$ $P = r + r + r\theta$ $= 2r + r\theta$ $= r(\theta + 2)$
- $P = r(\theta + 2)$ from (i) (ii) $P = r\theta + 2r$ $r\theta = P - 2r$ $\theta = \frac{P - 2r}{r}$

Using area of sector = $\frac{1}{2}r^2\theta$ $A = \frac{1}{2}r^2 \times \frac{P - 2r}{r}$ $= \frac{1}{2}Pr - r^2$

$$A = \frac{1}{2}Pr - r^{2}$$
(iii)
$$A = \frac{1}{2}Pr - r^{2}$$

$$\frac{dA}{dr} = \frac{1}{2}P - 2r = 0$$

$$2r = \frac{P}{2}$$

$$r = \frac{P}{4}$$

$$\frac{d^{2}A}{dr^{2}} = -2 < 0, \therefore \text{ maximum}$$

 \therefore max when $r = \frac{P}{4}$

(v)

Subs
$$r = \frac{P}{4}$$
 in $P = r(\theta + 2)$
$$P = \frac{P}{4} (\theta + 2)$$

 $4 = \theta + 2$ $\theta = 2$

: angle is 2 radians

When
$$\theta > 0$$
, and from (i),
as $P = r(\theta + 2)$
 $\therefore P > 2r$

2r < P

Also, $\theta < 2\pi$, and again from (i),

as
$$P = r(\theta + 2)$$

$$P > r(2\pi + 2)$$

$$P > 2r(\pi+1)$$

$$r > \frac{P}{2(\pi+1)}$$
 (2)

From (1) and (2),

$$\frac{P}{2(\pi+1)} < r < \frac{P}{2}$$

Board of Studies: Notes from the Marking Centre

Candidates are reminded that when a question asks to 'show' a result, they are required to demonstrate clear and logical working. When asked to 'explain', candidates should support their answer with a mathematical argument.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

HSC Worked Solutions projectmaths.com.au

- (i) The majority of responses included the correct formula.
- (ii) The most popular and succinct approach involved stating the formula for the area of a sector and substituting θ in terms of r and P from part (i). Those who started with the given result A = ¹/₂Pr-r² and substituted the result from part (i) quite often found the resulting algebraic manipulation difficult.
- (iii) The majority of candidates recognised the need to use calculus in this question. The most common and successful method was to solve $\frac{dA}{dr} = 0$ for r, then test by the second derivative. Candidates who used the first derivative test often omitted or struggled to find first derivative values for $r < \frac{P}{4}$ and $r > \frac{P}{4}$. A number of candidates appeared to ignore the given direction involving r and P and tried to maximise an area expressed in terms of θ and either P or r. This involved rigorous algebra.
- (iv)Many candidates struggled to determine θ correctly. A significant number used calculus for a second time and maximised the expression for area in terms of θ .
- (v) This was a challenging question, with very few responses demonstrating a quality argument. Many candidates manipulated the given result and produced equations or inequations to support the situation. However, they often did not validate their findings. Those who commenced with a restriction on θ, A or P were generally much more successful. A common and succinct method was to state the domain 0 < θ < 2π for a sector to exist and use the expression for θ from part (i). Many explanations lacked reasoning and some candidates presented only a circular argument involving a suggested constraint.</p>

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/