# Ruth's GPS

Version 2: handles missing columns better

```
rm(list=ls())
library(dplyr)
library(lubridate)
setwd("~/WORKSHOP/GPS/")
df <- read.csv("DATA/AdvancedExport_2022-04-13 16_40_31Z.csv", header=TRUE)
# clean out columns with only NA
not_all_na <- function(x) any(!is.na(x))</pre>
not_any_na <- function(x) all(!is.na(x))</pre>
unique_names <- unique(df$UnitName)</pre>
unique_names
## [1] "Stenpikkere 860640050244062" "Strandskade 860640050251356"
   [3] "Landsvale 860640050251737"
                                       "Fjeldrype 860640050232018"
## [5] "Ravn 860640050244401"
                                       "Soekonge 300434066433690"
## [7] "Mallemuk 300434066431710"
                                       "Havoern 300434066437680"
                                       "Havterne 300434066435700"
## [9] "Ismaage 300434066437720"
## [11] "Edder 300434066433700"
```

# Define function to calculate speed

## read

```
statdat <- NULL
alldf <- NULL
ic <- 1
for (istat in unique_names)
{
   par(mfrow=c(3,3))
   idx <- which(df$UnitName == istat & df$Longitude < -65)
   df2 <- df[idx,] %% select(where(not_all_na))
   cnams <- colnames(df2)
   time <- as.POSIXct(df2$Timestamp.UTC,tz="UTC")
   idx <- which(time >= as.POSIXct("2022-03-19 00:00:00"))
   df2 <- df2[idx,]
   df2 <- na.omit(df2)</pre>
```

```
time <- as.POSIXct(df2$Timestamp.UTC,tz="UTC")</pre>
lon <- df2$Longitude</pre>
lat <- df2$Latitude</pre>
temperature <- df2$Temperature..C.</pre>
acceleration <- sqrt(df2$AccelerationX.g.^2+df2$AccelerationY.g.^2+df2$AccelerationZ.g.^2)
lightlevel <- df2$LightLevel</pre>
speed <- df2$"GPS.Speed.Km.h."</pre>
#velocity <- getVelocity(time,lon,lat)</pre>
plot(lon,lat,main=istat,pch=19,cex=0.2,type="b")
plot(time,lon,main=istat,pch=19,cex=0.2,type="b")
plot(time,lat,main=istat,pch=19,cex=0.2,type="b")
if (length(temperature > 3)) {plot(time,temperature,main=istat,pch=19,cex=0.2,type="b")}
if (length(speed > 3)) {plot(time,speed,main=istat,pch=19,cex=0.2,type="b")}
if (length(acceleration > 3)) {
 plot(time,acceleration,main=istat,pch=19,cex=0.2,type="b")
  abline(h=1,col=2,lwd=3)
if (length(lightlevel > 3)) {plot(time,lightlevel,main=istat,pch=19,cex=0.2,type="b")}
# the set_of_variables
set <- c("time","lon","lat","temperature","acceleration","leightlevel","speed")</pre>
df3 <- cbind.data.frame(time,lon,lat)</pre>
colnames(df3)[1] <- "POSIX"</pre>
if (length(temperature) == nrow(df3)){
                                           df3 <- cbind.data.frame(df3,temperature) }</pre>
if (length(acceleration) == nrow(df3)){      df3 <- cbind.data.frame(df3,acceleration) }</pre>
if (length(lightlevel) == nrow(df3)){
                                           df3 <- cbind.data.frame(df3,lightlevel) }</pre>
if (length(speed) == nrow(df3)){
                                    df3 <- cbind.data.frame(df3,speed) }</pre>
saveRDS(df3,paste0('OUTPUT/',istat,'.rds'))
```

## Stenpikkere 860640050244062

## Stenpikkere 860640050244062

## Stenpikkere 860640050244062







## Stenpikkere 860640050244062

# Stenpikkere 860640050244062

Stenpikkere 860640050244062







## Stenpikkere 860640050244062



## Strandskade 86064005025135

## Strandskade 86064005025135

## Strandskade 86064005025135







## Strandskade 86064005025135

## Strandskade 86064005025135

## Strandskade 86064005025135







## Strandskade 86064005025135



## Landsvale 860640050251737

# -69.5 -68.0 -66.5 -69.5 -68.0 -66.5

<u>a</u>t

## Landsvale 860640050251737



## Landsvale 860640050251737



## Landsvale 860640050251737

lon



## Landsvale 860640050251737



## Landsvale 860640050251737



## Landsvale 860640050251737









Fjeldrype 860640050232018



Fjeldrype 860640050232018



Fjeldrype 860640050232018



## Fjeldrype 860640050232018

















# Soekonge 300434066433690

# Soekonge 300434066433690

# Soekonge 300434066433690









## Mallemuk 300434066431710

## Mallemuk 300434066431710















# relative to Fjeldrype

## [1] 3

```
par(mfrow=c(4,3))
base_station <- readRDS("OUTPUT/Fjeldrype 860640050232018.rds")</pre>
alldf <- NULL
for (jstat in 1:length(unique_names))
  print(jstat)
  statname <- unique_names[jstat]</pre>
  print(statname)
  other <- readRDS(paste0("OUTPUT/",statname,".rds"))</pre>
  tmin <- max(c(min(base_station$POSIX),min(other$POSIX)))</pre>
  tmax <- min(max(base_station$POSIX),max(other$POSIX))</pre>
  idx <- which(base_station$POSIX >= tmin & base_station$POSIX <= tmax)</pre>
  base_station <- base_station[idx,]</pre>
  idx <- which(other$POSIX >= tmin & other$POSIX <= tmax)</pre>
  other <- other[idx,]
  #Interpolate to same times as in 'base_station'
  common_t <- base_station$POSIX</pre>
  lon other interp <- approx(other$POSIX,other$lon,base station$POSIX,na.rm=TRUE)$y
  lat_other_interp <- approx(other$POSIX,other$lat,base_station$POSIX,na.rm=TRUE)$y</pre>
  interp_lon <- na.omit(cbind.data.frame(common_t,lon_other_interp))</pre>
  colnames(interp lon) <- c("POSIX","lon i")</pre>
  interp_lat <- na.omit(cbind.data.frame(common_t,lat_other_interp))</pre>
  colnames(interp_lat) <- c("POSIX","lat_i")</pre>
  together <- merge(base_station,interp_lon,by="POSIX")</pre>
  together <- merge(together,interp_lat,by="POSIX")</pre>
  delta_lon <- together$lon_i-together$lon</pre>
  delta_lat <- together$lat_i-together$lat</pre>
  together <- cbind(together,delta_lon,delta_lat)</pre>
  saveRDS(together,paste0("OUTPUT/processed_",statname,".rds"))
  print(paste(statname,round(sd(together$delta_lon),4),round(sd(together$delta_lat),4)))
  plot(together$delta_lon,together$delta_lat,main=statname,xlab="offset lon",ylab="offset lat",pch=19,c
}
## [1] 1
## [1] "Stenpikkere 860640050244062"
## [1] "Stenpikkere 860640050244062 1.1906 0.0862"
## [1] 2
## [1] "Strandskade 860640050251356"
## [1] "Strandskade 860640050251356 1.1729 0.0864"
```

- ## [1] "Landsvale 860640050251737"
- ## [1] "Landsvale 860640050251737 1.1535 0.087"
- ## [1] 4
- ## [1] "Fjeldrype 860640050232018"
- ## [1] "Fjeldrype 860640050232018 0 0"
- ## [1] 5
- ## [1] "Ravn 860640050244401"
- ## [1] "Ravn 860640050244401 1.1784 0.0858"
- ## [1] 6
- ## [1] "Soekonge 300434066433690"
- ## [1] "Soekonge 300434066433690 7e-04 1e-04"
- ## [1] 7
- ## [1] "Mallemuk 300434066431710"
- ## [1] "Mallemuk 300434066431710 7e-04 1e-04"
- ## [1] 8
- ## [1] "Havoern 300434066437680"
- ## [1] "Havoern 300434066437680 7e-04 1e-04"
- ## [1] 9
- ## [1] "Ismaage 300434066437720"
- ## [1] "Ismaage 300434066437720 8e-04 3e-04"
- ## [1] 10
- ## [1] "Havterne 300434066435700"
- ## [1] "Havterne 300434066435700 7e-04 1e-04"
- ## [1] 11
- ## [1] "Edder 300434066433700"
- ## [1] "Edder 300434066433700 9e-04 2e-04"

