EE25BTECH11064 - Yojit Manral

Question:

The value of p such that the vector $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ is an eigenvector of the matrix $\begin{pmatrix} 4&1&2\\p&2&1\\14&-4&10 \end{pmatrix}$ is ____ .

Solution:

→ If the vector is an eigenvector for the matrix, it satisfies

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

$$\begin{pmatrix} 12\\p+7\\36 \end{pmatrix} = \lambda \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 (3)

 \rightarrow Putting $\lambda = 12$ to satisfy (3), we get

$$\implies p + 7 = 24 \tag{5}$$

$$\implies p = 15 \tag{6}$$