An Econometric Analysis of Obesity

Debarshi Dutta

Adult BMI and Obesity

- BMI* ratio of the weight (in Kg) and the square of height (in m)
 - Unit: kg/m²
- An adult is obese* if their calculated BMI is 30.0 or above.

BMI range	Category
<18.5	Underweight
18.5 - <25.0	Normal
25.0 - <30.0	Overweight
>=30.0	Obese

Obesity- an epidemic

- Obesity is recognized as a standalone disease by the CDC
- Leads to co-morbidities like
 - Type 2 diabetes and prediabetes
 - Cancer
 - Coronary Artery Disease (CAD)
- Obesity in children is rising as well
 - causes dyslipidemia, hypertension, and hyperinsulinemia later in life

Obesity- in numbers

- Prevalence in Adults*
 - 42.4% in 2017-2018.
 - Spike of ~12% from 1999–2000
 - Severe obesity increased from 4.7% to 9.2%
- Prevalence in Children*
 - $18.5\% = ^13.7$ million children and adolescents (aged 2-19)
- Obesity is expensive to treat (\$\$\$\$)
 - Estimated annual medical cost \$147 billion (2008)
 - +\$1,429 in average more than the non obese people/year

Motivation: What is the working hypothesis

- Who is most susceptible-
 - Low income households
 - Households with no cars
 - Low access to grocery stores
 - Families with children eligible for free lunch
 - Participants of the SNAP program
 - WIC participants

The Data

- The data is from the USDA ATLAS
- It is collected from multiple sources and cover a range of years and geographic levels.
- Obesity rates in the data set used in the paper are from 2010 released in 2011 by the USDA.
- The data comprises of two hundred and eleven variables in three categories-
 - Food Choices- the proximity of the population divided by counties to healthy, affordable food
 - Health and Well being- describes diabetes, and obesity rates
 - Community Characteristics- demography divided by age and race, income and poverty, metro and non metro status of a county, availability of recreational facilities.

The Data

Pre-Processing

- The data is available across multiple excel sheets.
- Was combined into one comma separated value file containing sixty six relevant columns
 - The general principle of operation for combining the data was, that after importing a spreadsheet, the feature correlation was collected.
 - The features with low correlation were dropped.
- Dependent variable- adult obesity rate*, is for the year 2010.
 - Any data after that year was dropped
 - For data missing for the year 2010, the available data closest to 2010 was used

Training and Testing

- EDA of Training Data
- Modeling
- Testing

Training and Testing

- EDA of Training Data
- Modeling
- Testing

EDA of Training Data

Outliers- using Histogram analysis

EDA of Training Data

- Correlation of the Adult Obesity Percent to Low income households
- All 'Access and Proximity' predictor variables with the exception of PCT_LACCESS_HHNV10 are highly correlated

EDA of Training Data

average of obesity rate for Persistent-poverty counties, 2010

average of obesity rate for Persistent-child-poverty counties, 2010

PCT_OBESE_ADULTS10	P	CT_	OB	ESE_	ADI	JLT	'S10)
--------------------	---	-----	----	------	-----	-----	-------------	---

	PERPOV10
30.072933	0
34.618504	1

PCT_OBESE_ADULTS10

PERCHLDPOV10		
29.774134	0	
22 277/70	4	

EDA of Training Data Test for Multicollinearity

Eigen values and Eigen Vectors were used

 The Eigen vectors were found for the features who Eigen values were close to zero

 epigen_value
 feature

 27
 0.000595
 PCT_WIC09

 28
 0.001541
 PCT_CACFP09

 29
 0.007749
 FOODINSEC_07_09

WIC participants (% pop), 2009

Child & Adult Care (% pop), 2009

Household food insecurity (%, three-year average), 2007-09

- Features with eigen vectors that are NOT close to zero i.e strong correlation
- The best feature was kept for testing and the rest were dropped

Training and Testing

- EDA of Training Data
- Modeling
- Testing

- Two modeling techniques used
 - Random Forest
 - Linear Regression

- Random Forest*
 - Used to find feature importance
 - Estimators (n) =100

	reatures	importance Score
23	PCT_FREE_LUNCH10	0.1057
47	NATAMEN	0.0962
15	PCT_SNAP09	0.0948
49	PCT_NHBLACK10	0.0788
14	PC_FSRSALES07	0.0614
51	PCT_NHASIAN10	0.0470
22	PCT_NSLP09	0.0418
12	FSRPTH07	0.0309
9	SNAPSPTH08	0.0305
52	PCT_NHNA10	0.0210

Features Importance Score

Linear Regression Model*

- Linear Regression Model with top 80% features from Random Forest
 - Top 80% of features by importance score
 - 22 features

Analysis

• Linear Regression Model without outliers

Training

• Training model performance comparison

	Model	n_features	MSE
5	Random Forest	63	5.418264
3	Linear Regression _all_features	63	8.619312
2	Linear Regression	22	7.660215
1	Linear Regression_no outliers	22	6.348386

Training and Testing

- EDA of Training Data
- Modeling
- Testing

Testing

- The trained model was tested with the all noncollinear features and best feature out of collinear feature set.
- MSE calculated 9.3571769776865317

Feature Selection

• Technique used - Recursive Feature Elimination*

31	FOODINSEC_CHILD_01_07
27	PCT_WIC09
29	FOODINSEC_07_09
17	SNAP_OAPP10
15	PCT_SNAP09
35	PCT_LOCLFARM07
37	VEG_FARMS07
12	FSRPTH07
22	PCT_NSLP09
47	NATAMEN
38	FRESHVEG_FARMS07
49	PCT_NHBLACK10
7	CONVSPTH07
50	PCT_HISP10
51	PCT_NHASIAN10
52	PCT_NHNA10
55	PCT_18YOUNGER10
56	MEDHHINC10
48	PCT_NHWHITE10
23	PCT_FREE_LUNCH10
Name:	Feature, dtype: object

Conclusion

- Counties with a high poverty rate have around 4-5% higher obesity rate than others.
- Percentage of students in a county who are eligible for free lunch program have the strongest correlation with a predictor variable, that is they are at a higher risk than others to be obese- which is the other hypothesis.
- The feature selection from the Linear Regression model shows that
 - child food insecurity percentage in households aggregated over the years 2001-07 is the highest ranked feature. This is significant because the response variable adult obesity rate for the year 2010.
 - Inferences made from the other top features such as- WIC participants from the year 2009, state widefood insecurity aggregated over 2007-09 and SNAP participants from year 2009 also verify the initial hypothesis

THANK YOU!