NCERT Solutions for Class 10 Maths Chapter 7 - Coordinate Geometry

Chapter 7 - Coordinate Geometry Exercise Ex. 7.1

Solution 1
(i) Distance between two points (x, y,) and (x, y,)

(i) Distance between two points (x_1,y_1) and (x_2,y_2) is given by $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

Therefore distance between (2, 3) and (4, 1) is given by

$$D = \sqrt{(2-4)^2 + (3-1)^2} = \sqrt{(-2)^2 + (2)^2}$$
$$= \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$

(ii) Distance between (-5,7) and (-1,3) is given by

$$D = \sqrt{(-5 - (-1))^2 + (7 - 3)^2} = \sqrt{(-4)^2 + (4)^2}$$
$$= \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$$

(iii) Distance between (a,b) and (-a,-b)is given by

$$D = \sqrt{(a - (-a))^2 + (b - (-b))^2}$$
$$= \sqrt{(2a)^2 + (2b)^2} = \sqrt{4a^2 + 4b^2} = 2\sqrt{a^2 + b^2}$$

Concept Insights: In the ordered pair (a, b) order is important coordinate a represent x coordinate and b represent y coordinate

Solution 2

Distance between points (0,0) and (36,15)

Now Distance between two points (x_1,y_1) and (x_2,y_2) is given by $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$= \sqrt{(36 - 0)^2 + (15 - 0)^2} = \sqrt{36^2 + 15^2}$$

$$= \sqrt{1296 + 225} = \sqrt{1521} = 39$$

In section 7.2, A is (4,0) and B is (6,0).

$$AB^2 = (6 - 4)^2 - (0 - 0)^2 = 4$$

$$AB = 2$$

Three points are collinear if they lie on a line i.e one point lies in between any other two points.

Let A = (1,5), B = (2,3), c = (-2,-11)
Therefore AB =
$$\sqrt{(1-2)^2 + (5-3)^2} = \sqrt{5}$$

BC = $\sqrt{(2-(-2))^2 + (3-(-11))^2} = \sqrt{4^2 + 14^2} = \sqrt{16 + 196} = \sqrt{212}$
CA = $\sqrt{(1-(-2))^2 + (5-(-11))^2} = \sqrt{3^2 + 16^2} = \sqrt{9 + 256} = \sqrt{265}$

Here sum of the distances of any two points is not equal to third point Therefore points (1, 5), (2, 3) and (-2, -11) are not collinear.

Solution 4

Three non collinear points will represent the vertices of an isosceles triangle, if its two sides are of equal length.

Let
$$A = (5, -2)$$
, $B = (6, 4)$, $C = (7, -2)$

$$AB = \sqrt{(5-6)^2 + (-2-4)^2} = \sqrt{(-1)^2 + (-6)^2} = \sqrt{1+36} = \sqrt{37}$$

$$BC = \sqrt{(6-7)^2 + (4-(-2))^2} = \sqrt{(-1)^2 + (6)^2} = \sqrt{1+36} = \sqrt{37}$$

$$CA = \sqrt{(5-7)^2 + (-2-(-2))^2} = \sqrt{(-2)^2 + 0^2} = 2$$

Here AB = BC

As two sides are equal in length therefore ABC is an isosceles triangle.

Solution 5

From the figure coordinates of points A, B, C and D are A = (3, 4), B = (6, 7), C = (9, 4), D = (6, 1)

AB =
$$\sqrt{(3-6)^2 + (4-7)^2} = \sqrt{(-3)^2 + (-3)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$$

BC = $\sqrt{(6-9)^2 + (7-4)^2} = \sqrt{(-3)^2 + (3)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$
CD = $\sqrt{(9-6)^2 + (4-1)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$
AD = $\sqrt{(3-6)^2 + (4-1)^2} = \sqrt{(-3)^2 + (3)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$
Diagonal AC = $\sqrt{(3-9)^2 + (4-4)^2} = \sqrt{(-6)^2 + 0^2} = 6$
Diagonal BD = $\sqrt{(6-6)^2 + (7-1)^2} = \sqrt{0^2 + (6)^2} = 6$

Here, all sides of this square are of same length and also diagonals are of same length.

So, ABCD is a square and hence Champa was correct.

Concept Insight: For the Vertices of square all sides & both the diagonals are equal.

Solution 6

(i). Let,
$$A = (-1, -2)$$
, $B = (1, 0)$, $C = (-1, 2)$, $D(-3, 0)$
 $AB = \sqrt{(-1-1)^2 + (-2-0)^2} = \sqrt{(-2)^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$
 $BC = \sqrt{(1-(-1))^2 + (0-2)^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$
 $CD = \sqrt{(-1-(-3))^2 + (2-0)^2} = \sqrt{(2)^2 + (2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$
 $AD = \sqrt{(-1-(-3))^2 + (-2-0)^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$
Diagonal $AC = \sqrt{(-1-(-1))^2 + (-2-2)^2} = \sqrt{0^2 + (-4)^2} = \sqrt{16} = 4$
Diagonal $AC = \sqrt{(-1-(-3))^2 + (0-0)^2} = \sqrt{(4)^2 + 0^2} = \sqrt{16} = 4$

Here, all sides of this quadrilateral are of same length and also diagonals are of same length. So, given points are vertices of a square.

(ii) Let
$$A = (-3, 5)$$
, $B = (3, 1)$, $C = (0, 3)$, $D = (-1, -4)$
 $AB = \sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{(-6)^2 + (4)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$
 $BC = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{(3)^2 + (-2)^2} = \sqrt{9+4} = \sqrt{13}$
 $CD = \sqrt{(0-(-1))^2 + (3-(-4))^2} = \sqrt{(1)^2 + (7)^2} = \sqrt{1+49} = \sqrt{50} = 5\sqrt{2}$
 $AD = \sqrt{(-3-(-1))^2 + (5-(-4))^2} = \sqrt{(-2)^2 + (9)^2} = \sqrt{4+81} = \sqrt{85}$

Here all sides of this quadrilateral are of different length. So,

we can say that it is only a general quadrilateral not specific like square, rectangle etc.

(iii) Let
$$A = (4, 5), B = (7, 6), C = (4, 3), D = (1, 2)$$

$$AB = \sqrt{(4-7)^2 + (5-6)^2} = \sqrt{(-3)^2 + (-1)^2} = \sqrt{9+1} = \sqrt{10}$$

$$BC = \sqrt{(7-4)^2 + (6-3)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{9+9} = \sqrt{18}$$

$$CD = \sqrt{(4-1)^2 + (3-2)^2} = \sqrt{(3)^2 + (1)^2} = \sqrt{9+1} = \sqrt{10}$$

$$AD = \sqrt{(4-1)^2 + (5-2)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{9+9} = \sqrt{18}$$

$$Diagonal\ AC = \sqrt{(4-4)^2 + (5-3)^2} = \sqrt{(0)^2 + (2)^2} = \sqrt{0+4} = 2$$

$$Diagonal\ BD = \sqrt{(7-1)^2 + (6-2)^2} = \sqrt{(6)^2 + (4)^2} = \sqrt{36+16} = \sqrt{52} = 13\sqrt{2}$$

Here opposite sides of this quadrilateral are of same length but diagonals are of different length. So, given points are vertices of a parallelogram.

Concept Insight: Recall the properties of various quadrilaterals.

We have to find point on x axis. So, its y coordinate will be 0. Let point on x-axis be (x,0)

Distance between
$$(x, 0)$$
 and $(2, -5) = \sqrt{(x-2)^2 + (0-(-5))^2} = \sqrt{(x-2)^2 + (5)^2}$

Distance between
$$(x, 0)$$
 and $(-2, 9) = \sqrt{(x - (-2))^2 + (0 - (-9))^2} = \sqrt{(x + 2)^2 + (9)^2}$

By given condition these distances are equal in measure.

$$\sqrt{(x-2)^2 + (5)^2} = \sqrt{(x+2)^2 + (9)^2}$$
$$(x-2)^2 + 25 = (x+2)^2 + 81$$

$$x^2 + 4 - 4x + 25 = x^2 + 4 + 4x + 81$$

$$8x = 25 - 81$$

$$8x = -56$$

$$x = -7$$

Therefore the point is (-7, 0).

Solution 8

Given that distance between (2, -3) and (10, y) is 10

Therefore using distance formula $\sqrt{(2-10)^2+(-3-y)^2}=10$

$$\sqrt{(-8)^2 + (3+y)^2} = 10$$

$$64 + (y+3)^2 = 100$$

$$(y+3)^2 = 36$$

$$y+3 = \pm 6$$

$$y+3=6$$
 or $y+3=-6$

Therefore y = 3 or -9

Concept Insights: Any point on y axis will have \times coordinate zero.

Given Q (0, 1) is equidistant from P (5,
$$-3$$
) and R (x , 6) so PQ = QR

$$\sqrt{(5-0)^2 + (-3-1)^2} = \sqrt{(0-x)^2 + (1-6)^2}$$

$$\sqrt{(5)^2 + (-4)^2} = \sqrt{(-x)^2 + (-5)^2}$$

$$\sqrt{25+16} = \sqrt{x^2+25}$$

$$41 = x^2 + 25$$

$$16 = x^2$$

$$x = \pm 4$$

So, point R is (4, 6) or (-4, 6)

When point R is
$$(4, 6)$$

PR = $\sqrt{(5-4)^2 + (-3-6)^2} = \sqrt{1^2 + (-9)^2} = \sqrt{1+81} = \sqrt{82}$
QR = $\sqrt{(0-4)^2 + (1-6)^2} = \sqrt{(-4)^2 + (-5)^2} = \sqrt{16+25} = \sqrt{41}$

When point R is
$$(-4, 6)$$

PR = $\sqrt{(5-(-4))^2 + (-3-6)^2} = \sqrt{(9)^2 + (-9)^2} = \sqrt{81+81} = 9\sqrt{2}$
QR = $\sqrt{(0-(-4))^2 + (1-6)^2} = \sqrt{(4)^2 + (-5)^2} = \sqrt{16+25} = \sqrt{41}$

Solution 10

Point
$$(x, y)$$
 is equidistant from $(3, 6)$ and $(-3, 4)$

Point
$$(x, y)$$
 is equidistant from $(3, 6)$ and $(-3, 4)$
Therefore $\sqrt{(x-3)^2 + (y-6)^2} = \sqrt{(x-(-3))^2 + (y-4)^2}$

$$\sqrt{(x-3)^2 + (y-6)^2} = \sqrt{(x+3)^2 + (y-4)^2}$$

$$(x-3)^2 + (y-6)^2 = (x+3)^2 + (y-4)^2$$

$$x^{2} + 9 - 6x + v^{2} + 36 - 12v = x^{2} + 9 + 6x + v^{2} + 16 - 8v$$

$$36 - 16 = 6x + 6x + 12y - 8y$$

$$20 = 12x + 4y$$

$$3x + y = 5$$

Chapter 7 - Coordinate Geometry Exercise Ex. 7.2 Solution 1

Let P(x, y) be the required point. Using the section formula which says Coordinates of points P, dividing the line segment joining $A(x_1,y_1) \otimes B(x_2,y_2)$ internally in the ratio m:n

$$\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right), \text{ we get}$$

$$x = \frac{2 \times 4 + 3 \times (-1)}{2 + 3} = \frac{8 - 3}{5} = \frac{5}{5} = 1$$

$$y = \frac{2 \times (-3) + 3 \times 7}{2 + 3} = \frac{-6 + 21}{5} = \frac{15}{5} = 3$$

Therefore point is (1, 3).

Concept Insight: The key idea here is to identify m and n with point A & n with point B

Solution 2

Trisection means division into three equal parts. So we need to find two points such that they divide the line segment in three equal parts.

Let P (x_1, y_1) and Q (x_2, y_2) are the points of trisection of the line segment joining the given points i.e. AP = PQ = QB

Therefore point P divides AB internally in ratio 1:2

$$\begin{aligned} x_1 &= \frac{1 \times (-2) + 2 \times 4}{1 + 2}, \quad y_1 &= \frac{1 \times (-3) + 2 \times (-1)}{1 + 2} \\ x_1 &= \frac{-2 + 8}{3} = \frac{6}{3} = 2, \quad y_1 &= \frac{-3 - 2}{3} = \frac{-5}{3} \end{aligned}$$
 So, $P(x_1, y_1) = \left(2, -\frac{5}{3}\right)$

Point Q divides AB internally in ratio 2:1

$$x_2 = \frac{2 \times (-2) + 1 \times 4}{2 + 1}, \quad y_2 = \frac{2 \times (-3) + 1 \times (-1)}{2 + 1}$$

 $x_2 = \frac{-4 + 4}{3} = 0, \qquad y_2 = \frac{-6 - 1}{3} = \frac{-7}{3}$

$$Q(x_2, y_2) = \left(0, -\frac{7}{3}\right)$$

Concept Insights: Trisection means line segment divided into 3 equal parts (1:2 ratio)

Find coordinates of point P (divided into 1:2) ratio.

Now, find coordinates of point Q by applying section formula with ratio 2:1(PB divided into 1:1 ratio by point Q)

Solution 3

Given that Niharika posted the green flag at $\frac{1}{4}$ of the distance AD i.e. $\frac{1}{4} \times 100 = 25$ m

from the starting point of 2nd line.

So, coordinates of this point G is (2, 25).

Similarly Preet posted red flag at $\frac{1}{5}$ of the distance AD i.e. $\frac{1}{5} \times 100 = 20 \,\text{m}$ from

the starting point of 8th line.

So, coordinates of this point R is (8, 20).

Now distance between these flags by using distance formula = GR

$$= \sqrt{(8-2)^2 + (20-25)^2} = \sqrt{36+25} = \sqrt{61} \, m$$

Now the point at which Rashmi should post her blue flag is the midpoint of line joining these points. Let this point be A (x, y).

$$x = \frac{2+8}{2}$$
, $y = \frac{25+20}{2}$

$$x = \frac{10}{2} = 5$$
, $y = \frac{45}{2} = 22.5$

So,
$$A(x, y) = (5, 22.5)$$

So, Rashmi should post her blue flag at 22.5m on 5th line.

Solution 4

Let the ratio in which line segment joining (-3, 10) and (6, -8) is divided by point (-1, 6) is k:1.

So,
$$-1 = \frac{6k - 3}{k + 1}$$

$$-k - 1 = 6k - 3$$

$$7k = 2$$

$$k = \frac{2}{7}$$

Therefore the required ratio is 2:7.

Concept Insight: Assume the ratio as k:1 and not as m:n otherwise we will get one equation in two unknowns.

Solution 5

If the ratio in which P divides AB is k:1, then the co-ordinates of the point P will be

$$\left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right).$$

Let the ratio in which line segment joining A (1, -5) and (-4, 5) is divided by x axis bek: 1.

Therefore, coordinates of the point of division is $\left(\frac{-4k+1}{k+1}, \frac{5k-5}{k+1}\right)$

We know that y coordinate of any point on x axis is 0.

Therefore
$$\frac{5k-5}{k+1} = 0$$

Therefore x-axis divide it in ratio 1:1.

Division point
$$=$$
 $\left(\frac{-4(1)+1}{1+1}, \frac{5(1)-5}{1+1}\right) = \left(\frac{-4+1}{2}, \frac{5-5}{2}\right) = \left(\frac{-3}{2}, 0\right)$

Concept Insight: Assume the ratio as k:1 and not as m:n otherwise we will get one equation in two unknowns.

Use the fact that y coordinate is zero

Solution 6

Let (1, 2), (4, y), (x, 6) and (3, 5) are the coordinates of A, B, C, D vertices of a parallelogram ABCD.

Diagonals of a parallelogram bisects each other so, O is midpoint of AC and BD If O is midpoint of AC, then coordinate of O are

$$\left(\frac{1+x}{2}, \frac{2+6}{2}\right) \Rightarrow \left(\frac{x+1}{2}, 4\right)$$

If O is midpoint of BD, then coordinates of O are

$$\left(\frac{4+3}{2}, \frac{5+y}{2}\right) \Rightarrow \left(\frac{7}{2}, \frac{5+y}{2}\right)$$

Since both coordinates are of same point O.

Therefore
$$\frac{x+1}{2} = \frac{7}{2}$$
 and $4 = \frac{5+y}{2}$
 $x+1=7$ and $5+y=8$
 $x=6$ and $y=3$

Concept Insight:

Use the property of a parallelogram that the diagonals of a Parallelogram bisects each other for finding the values of a and y.

Solution 7

Let coordinates of point A be (x, y)

Mid point of diameter AB is the centre of circle (2, -3)

$$(2,-3) = \left(\frac{x+1}{2}, \frac{y+4}{2}\right)$$

$$\frac{x+1}{2}$$
 = 2and $\frac{y+4}{2}$ = -3

$$x + 1 = 4$$
 and $y + 4 = -6$

$$x = 3$$
 and $y = -10$

Therefore coordinates of A are (3, - 10)

Solution 8

coordinates of the point P(x, y) which divides the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$, internally, in the ratio $m_1 : m_2$ are

The coordinates of point A and B are (-2, -2) and (2, -4) respectively.

Since
$$AP = \frac{3}{7}AB$$

Therefore AP: PB = 3:4

So, point P divides the line segment AB in a ratio 3:4.

Coordinates of P =
$$\left(\frac{3 \times 2 + 4 \times (-2)}{3 + 4}, \frac{3 \times (-4) + 4 \times (-2)}{3 + 4}\right)$$

= $\left(\frac{6 - 8}{7}, \frac{-12 - 8}{7}\right)$
= $\left(-\frac{2}{7}, -\frac{20}{7}\right)$

From the figure we have points X, Y, Z are dividing the line segment in a ratio $1:3,\ 1:1,\ 3:1$ respectively.

Coordinates of X =
$$\left(\frac{1 \times 2 + 3 \times (-2)}{1 + 3}, \frac{1 \times 8 + 3 \times 2}{1 + 3}\right)$$

= $\left(-1, \frac{7}{2}\right)$
Coordinates of Y = $\left(\frac{2 + (-2)}{2}, \frac{2 + 8}{2}\right)$
= $(0, 5)$
Coordinates of Z = $\left(\frac{3 \times 2 + 1 \times (-2)}{3 + 1}, \frac{3 \times 8 + 1 \times 2}{3 + 1}\right)$
= $\left(1, \frac{13}{2}\right)$

Let (3,0), (4,5), (-1,4) and (-2,-1) are the vertices A, B, C, D of a rhombus ABCD.

Length of diagonal AC =
$$\sqrt{[3-(-1)]^2 + (0-4)^2}$$

= $\sqrt{16+16} = 4\sqrt{2}$
Length of diagonal BD = $\sqrt{[4-(-2)]^2 + [5-(-1)]^2}$
= $\sqrt{36+36} = 6\sqrt{2}$

Therefore area of rhombus ABCD =
$$\frac{1}{2} \times 4\sqrt{2} \times 6\sqrt{2}$$

= 24 square units

Concept Insights: Use the result Area of a rhombus = $\frac{1}{2}$ (product of its diagonals) and diagonals are formed by joining opposite vertices.

Chapter 7 - Coordinate Geometry Exercise Ex. 7.3 Solution 1

(i) Area of a triangle is given by - area of atriangle =
$$\frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$$
 area of given triangle = $\frac{1}{2} [2\{0 - (-4)\} + (-1)\{(-4) - (3)\} + 2(3 - 0)]$ = $\frac{1}{2} \{8 + 7 + 6\}$ = $\frac{21}{2}$ square units

(ii) Area of given triangle =
$$\frac{1}{2} \Big[(-5) \{ (-5) - (2) \} + 3 (2 - (-1)) + 5 \{ -1 - (-5) \} \Big]$$

= $\frac{1}{2} \{ 35 + 9 + 20 \}$
= 32 square units

Concept Insight:

Always remember that the coordinate points are rotating clockwise

$$(1 \rightarrow 2 \rightarrow 3)1$$
st term, $(2 \rightarrow 3 \rightarrow 1)$ 2nd term & $(3 \quad 1 \quad 2)$ 3rd term.

Also area of a region is always a positive quantity and hence absolute value must be taken.

Solution 2

(i) For collinear points, area of triangle formed by them is zero. So, for points (7, -2)(5, 1) and (3, k), area = 0

$$\frac{1}{2} \left[7\{1-k\} + 5\{k-(-2)\} + 3\{(-2)-1\} \right] = 0$$

$$7 - 7k + 5k + 10 - 9 = 0$$

$$-2k + 8 = 0$$

$$k = 4$$

(ii) For collinear points, area of triangle formed by them is zero.

So, for points (8, 1)
$$(k, -4)$$
, (2, -5), area = 0

$$\frac{1}{2} \left[8 \left\{ -4 - (-5) \right\} + k \left\{ (-5) - (1) \right\} + 2 \left\{ 1 - (-4) \right\} \right] = 0$$
8 - 6k + 10 = 0
6k = 18
k = 3

Concept Insight: Only three non collinear points can give a triangle.

Let vertices of the triangle be A (0, -1), B (2, 1), C (0, 3)Let D, E, F are midpoints of the sides of this triangle. Coordinates of D, E, and F are given by –

D =
$$\left(\frac{0+2}{2}, \frac{-1+1}{2}\right) = (1,0)$$

E = $\left(\frac{2+0}{2}, \frac{1+3}{2}\right) = (1,2)$
F = $\left(\frac{0+0}{2}, \frac{3-1}{2}\right) = (0,1)$

Area of a triangle =
$$\frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$$

Area of
$$\Delta DEF = \frac{1}{2} \left\{ 1 \left(2 - 1 \right) + 1 \left(1 - 0 \right) + 0 \left(0 - 2 \right) \right\}$$

$$= \frac{1}{2} \left(1 + 1 \right) = 1 \text{ square units}$$

Area of
$$\triangle ABC = \frac{1}{2} \Big[0(1-3) + 2\{3-(-1)\} + 0(-1-1) \Big]$$

= $\frac{1}{2} \{8\} = 4$ square units

Therefore the required ratio = 1:4

Let vertices of the quadrilateral be A (– 4, –2), B (–3, –5), C (3, –2) and D (2, 3). Join AC to form two triangles \triangle ABC and \triangle ACD

Area of a triangle =
$$\frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$$

Area of $\triangle ABC = \frac{1}{2} [(-4) \{ (-5) - (-2) \} + (-3) \{ (-2) - (-2) \} + 3 \{ (-2) - (-5) \}]$
= $\frac{1}{2} (12 + 0 + 9) = \frac{21}{2}$ square units
Area of $\triangle ACD = \frac{1}{2} [(-4) \{ (-2) - (3) \} + 3 \{ (3) - (-2) \} + 2 \{ (-2) - (-2) \}]$
= $\frac{1}{2} \{ 20 + 15 + 0 \} = \frac{35}{2}$ square units
Area of $\triangle ABCD = \text{area of } \triangle ABC + \text{area of } \triangle ACD$
= $\frac{21}{2} + \frac{35}{2} = 28 \text{ square units}$

Concept Insight: Join either point A & C or B & D (not both) Compute Area of triangle separately & then add.

Let vertices of the triangle be A (4, - 6), B (3, - 2), C (5, 2) Let D be the midpoint of side BC of \triangle ABC. So AD is the median in \triangle ABC.

Coordinates of point D =
$$\left(\frac{3+5}{2}, \frac{-2+2}{2}\right)$$
 = (4,0)

Area of a triangle =
$$\frac{1}{2} \{ \times_1 (y_2 - y_3) + \times_2 (y_3 - y_1) + \times_3 (y_1 - y_2) \}$$

Area of
$$\triangle ABD = \frac{1}{2} [(4)\{(-2) - (0)\} + (3)\{(0) - (-6)\} + (4)\{(-6) - (-2)\}]$$

= $\frac{1}{2}(-8 + 18 - 16) = -3$ square units

But area can not be negative. So area of AABD is 3 square units.

Area of
$$\triangle ADC = \frac{1}{2} [(4)(0-(2)) + (4)((2)-(-6)) + (5)((-6)-(0))]$$

= $\frac{1}{2}(-8+32-30) = -3 \text{ square units}$

But area can not be negative. So area of \triangle ADC is 3 square units. Clearly median AD has divided \triangle ABC in two triangles of equal areas.

Chapter 7 - Coordinate Geometry Exercise Ex. 7.4 Solution 1

If the ratio in which P divides AB is k: 1, then the coordinates of the point P will be

$$\left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$$

Let the given line divides the line segment joining the points A (2, -2) and B (3, 7) in a ratio k: 1.

The coordinates of the point of division = $\left(\frac{3 + 2}{k+1}, \frac{7 + 2}{k+1}\right)$

This point also lies on 2x + y - 4 = 0

$$2\left(\frac{3k+2}{k+1}\right) + \left(\frac{7k-2}{k+1}\right) - 4 = 0$$

$$\frac{6k+4+7k-2-4k-4}{k+1} = 0$$

$$9k-2=0$$

$$k = \frac{2}{9}$$

Solution 2

If the given points are collinear the area of triangle formed by these points will be 0.

Area of atriangle =
$$\frac{1}{2} \{ \times_1 (y_2 - y_3) + \times_2 (y_3 - y_1) + \times_3 (y_1 - y_2) \}$$

Area =
$$\frac{1}{2} [\times (2-0) + 1(0-y) + 7(y-2)]$$

$$0 = \frac{1}{2} [2x - y + 7y - 14]$$

$$0 = \frac{1}{2} [2x + 6y - 14]$$

$$2x + 6y - 14 = 0$$

$$x + 3y - 7 = 0$$

This is the required relation between x and y.

Let O (x, y) be the centre of circle. And let (6, -6), (3, -7) and (3, 3) are A, B, and C points on the circumference of circle.

$$OA = \sqrt{(x-6)^2 + (y+6)^2}$$

$$OB = \sqrt{(x-3)^2 + (y+7)^2}$$

$$OC = \sqrt{(x-3)^2 + (y-3)^2}$$

$$OA = OB \qquad (Radius of aircle)$$

$$\sqrt{(x-6)^2 + (y+6)^2} = \sqrt{(x-3)^2 + (y+7)^2}$$

$$x^2 + 36 - 12x + y^2 + 36 + 12y = x^2 + 9 - 6x + y^2 + 49 + 14y$$

$$-6x - 2y + 14 = 0$$

$$3x + y = 7 \qquad (1)$$

$$OA = OC \qquad (Radius of aircle)$$

$$\sqrt{(x-6)^2 + (y+6)^2} = \sqrt{(x-3)^2 + (y-3)^2}$$

$$x^2 + 36 - 12x + y^2 + 36 + 12y = x^2 + 9 - 6x + y^2 + 9 - 6y$$

$$-6x + 18y + 54 = 0$$

$$-3x + 9y = -27 \qquad (2)$$

Adding equation (1) and (2)

$$10y = -20$$

$$y = -2$$

From equation (1)

$$3x - 2 = 7$$

$$3x = 9$$

$$x = 3$$

So, the centre of circle is (3, -2)

Let \square ABCD be a square having (-1, 2), (3, 2) as vertices A and C respectively and (x, y), (x_1, y_1) be the coordinate of vertex B and D respectively. We know that the sides of a square are equal to each other

$$AB = BC$$

$$\sqrt{(x+1)^2 + (y-2)^2} = \sqrt{(x-3)^2 + (y-2)^2}$$

$$x^2 + 2x + 1 + y^2 - 4y + 4 = x^2 + 9 - 6x + y^2 + 4 - 4y$$

$$8x = 8$$

 $\times = 1$

We know that in a square all interior angles are of 90°.

So in AABC

$$AB^2 + BC^2 = AC^2$$

$$\left(\sqrt{\left(1+1\right)^{2}+\left(y-2\right)^{2}}\right)^{2}+\left(\sqrt{\left(1-3\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(3+1\right)^{2}+\left(2-2\right)^{2}}\right)^{2}$$

$$4 + y^{2} + 4 - 4y + 4 + y^{2} - 4y + 4 = 16$$

 $2y^{2} + 16 - 8y = 16$
 $2y^{2} - 8y = 0$
 $y(y - 4) = 0$
 $y = 0 \text{ or } 4$

We know that in a square diagonals are of equal length and bisect each other at 90°. Let O be the mid point of AC so it will also be the mid point of BD.

Coordinate of point O =
$$\left(\frac{-1+3}{2}, \frac{2+2}{2}\right)$$

$$\left(\frac{1+x_1}{2}, \frac{y+y_1}{2}\right) = (1,2)$$

$$\frac{1+x_1}{2} = 1$$

$$1+x_1 = 2$$

$$x_1 = 1$$

$$\frac{y+y_1}{2} = 2$$

$$y+y_1 = 4$$
If $y = 0$

$$y_1 = 4$$
If $y = 4$

$$y_1 = 0$$

So coordinates of other vertices are (1, 0)(1, 4)

Solution 5

(I) Taking A as origin, we will take AD as x axis and AB as y axis. Now we may observe that coordinates of point P, Q and R are (4, 6), (3, 2), (6, 5)

Area of triangle =
$$\frac{1}{2} \left[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right]$$

= $\frac{1}{2} \left[4(2-5) + 3(5-6) + 6(6-2) \right]$
= $\frac{1}{2} \left[-12 - 3 + 24 \right]$
= $\frac{9}{2}$ square units

(II) Taking C as origin and CB as x axis and CD as y axis the coordinates of vertices P, Q, R are (12, 2), (13, 6), (10, 3).

Area of triangle =
$$\frac{1}{2} \left[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 + y_2) \right]$$

= $\frac{1}{2} \left[12(6-3) + 13(3-2) + 10(2-6) \right]$
= $\frac{1}{2} \left[36 + 13 - 40 \right]$
= $\frac{9}{2}$ square units

Area of the triangle is same in both the cases.

Solution 6

Given:
$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4}$$

$$\Rightarrow \frac{AB}{AD} = \frac{AC}{AE} = 4$$

$$\Rightarrow \frac{AB - AD}{AD} = \frac{AC - AE}{AE} = 4 - 1$$

$$\Rightarrow \frac{BD}{AD} = \frac{EC}{AE} = \frac{3}{1}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AE}{EC} = \frac{1}{3}$$

So, D and E are two points on side AB and AC respectively such that they divide side AB and AC in the ratio 1:3

Coordinates of the point P(x,y) which divides the line segment joining the points points $A(x_1,y_1)$ and $B(x_2,y_2)$ internally in the ratio $m_1:m_2$ are

$$\left(\frac{m_1x_2+m_2x_1}{m_1+m_2},\frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$$

Coordinates of Point D =
$$\left(\frac{1 \times 1 + 3 \times 4}{1 + 3}, \frac{1 \times 5 + 3 \times 6}{1 + 3}\right)$$

= $\left(\frac{13}{4}, \frac{23}{4}\right)$

Coordinates of point E =
$$\left(\frac{1 \times 7 + 3 \times 4}{1 + 3}, \frac{1 \times 2 + 3 \times 6}{1 + 3}\right)$$

= $\left(\frac{19}{4}, \frac{20}{4}\right)$

Area of a triangle =
$$\frac{1}{2} \Big[\times_{\mathbf{1}} \big(y_2 - y_3 \big) + \times_2 \big(y_3 - y_1 \big) + \times_3 \big(y_1 - y_2 \big) \Big]$$

Area of
$$\triangle ADE = \frac{1}{2} \left[4 \left(\frac{23}{4} - \frac{20}{4} \right) + \frac{13}{4} \left(\frac{20}{4} - 6 \right) + \frac{19}{4} \left(6 - \frac{23}{4} \right) \right]$$
$$= \frac{1}{2} \left[3 - \frac{13}{4} + \frac{19}{16} \right] = \frac{1}{2} \left[\frac{48 - 52 + 19}{16} \right] = \frac{15}{32} \text{ square units}$$

Area of
$$\triangle ABC = \frac{1}{2} [4(5-2) + 1(2-6) + 7(6-5)]$$

= $\frac{1}{2} [12-4+7] = \frac{15}{2}$ square units

Clearly the ratio between the areas of \triangle ADE and of \triangle ABC is 1:16.

Solution 7

(i) Median AD of the triangle will divide the side BC in two equal parts. So D is the midpoint of side BC.

Coordinates of D =
$$\left(\frac{6+1}{2}, \frac{5+4}{2}\right) = \left(\frac{7}{2}, \frac{9}{2}\right)$$

(ii)Point P divides the side AD in a ratio 2:1.

Coordinates of P =
$$\left(\frac{2 \times \frac{7}{2} + 1 \times 4}{2 + 1}, \frac{2 \times \frac{9}{2} + 1 \times 2}{2 + 1}\right)$$

(iii)Median BE of the triangle will divide the side AC in two equal parts. So E is the midpoint of side AC.

Coordinates of E =
$$\left(\frac{4+1}{2}, \frac{2+4}{2}\right) = \left(\frac{5}{2}, 3\right)$$

Point Q divides the side BE in a ratio 2:1.

Coordinates of Q =
$$\left(\frac{2 \times \frac{5}{2} + 1 \times 6}{2 + 1}, \frac{2 \times 3 + 1 \times 5}{2 + 1}\right) = \left(\frac{11}{3}, \frac{11}{3}\right)$$

Median CF of the triangle will divide the side AB in two equal parts. So F is the midpoint of side AB.

Coordinates of F =
$$\left(\frac{4+6}{2}, \frac{2+5}{2}\right) = \left(5, \frac{7}{2}\right)$$

Point R divides the side CF in a ratio 2:1.

Coordinates of R =
$$\left(\frac{2 \times 5 + 1 \times 1}{2 + 1}, \frac{2 \times \frac{7}{2} + 1 \times 4}{2 + 1}\right) = \left(\frac{11}{3}, \frac{11}{3}\right)$$

Now we may observe that coordinates of point P, Q, R are same.

So, all these are representing same point on the plane i.e. centroid of the triangle.

(v) Now consider a triangle \triangle ABC having its vertices as A(x_1 , y_1), B(x_2 , y_2), and C(x_3 , y_3).

Median AD of the triangle will divide the side BC in two equal parts. So D is the midpoint of side BC.

Coordinates of D =
$$\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$$

Let centroid of this triangle is O.

Point O divides the side AD in a ratio 2:1.

Coordinates of O =
$$\left(\frac{2 \times \frac{X_2 + X_3}{2} + 1 \times X_1}{2 + 1}, \frac{2 \times \frac{Y_2 + Y_3}{2} + 1 \times Y_1}{2 + 1} \right)$$

$$= \left(\frac{X_1 + X_2 + X_3}{3}, \frac{Y_1 + Y_2 + Y_3}{3} \right)$$

Note:

Coordinates of the point P(x,y) which divides the line segment joining the points points $A(x_1,y_1)$ and $B(x_2,y_2)$ internally in the ratio $m_1:m_2$ are

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

Solution 8

Length of PQ =
$$\sqrt{(-1-2)^2 + \left(\frac{3}{2} - 4\right)^2} = \sqrt{9 + \frac{25}{4}} = \sqrt{\frac{61}{4}}$$

Length of QR = $\sqrt{(2-5)^2 + \left(4 - \frac{3}{2}\right)^2} = \sqrt{9 + \frac{25}{4}} = \sqrt{\frac{61}{4}}$
Length of RS = $\sqrt{(5-2)^2 + \left(\frac{3}{2} + 1\right)^2} = \sqrt{9 + \frac{25}{4}} = \sqrt{\frac{61}{4}}$
Length of SP = $\sqrt{(2+1)^2 + \left(-1 - \frac{3}{2}\right)^2} = \sqrt{9 + \frac{25}{4}} = \sqrt{\frac{61}{4}}$
Length of SP = $\sqrt{(2+1)^2 + \left(-1 - \frac{3}{2}\right)^2} = \sqrt{9 + \frac{25}{4}} = \sqrt{\frac{61}{4}}$
Length of PR = $\sqrt{(-1-5)^2 + \left(\frac{3}{2} - \frac{3}{2}\right)^2} = 6$
Length of QS = $\sqrt{(2-2)^2 + \left(4 + 1\right)^2} = 5$

Here all sides of given quadrilateral is of same measure but the diagonals are of different lengths. So, DPQRS is a rhombus.