

Московский Физико-Технический Институт

Отчет по эксперименту

4.4.3. Изучение призмы с помощью гониометра

Цель работы

Знакомство с работой гониометра, исследование дисперсии стеклянной призмы и определение характеристик призмы как спектрального прибора.

В работе используются

Гониометр, ртутная лампа, призма, стеклянная плоскопараллельная пластинка, призменный уголковый отражатель.

Теоретическая сводка

Гониометр используется для точного определения углов, а значит с его помощью можно точно определять показатели преломления и преломляющие угла призм и кристаллов, измерять длины волн спектральных линий и прочее. Например, показатель преломления удобно определять по углу наименьшего отклонения. При это показатель преломления определяется формулой

$$n = \frac{\sin\frac{\alpha + \delta}{2}}{\sin\frac{\alpha}{2}},\tag{1}$$

где α — преломляющий угол призмы, δ — угол минимального отклонения, n — показатель преломления.

Если n_F — показатель преломления голубой линии водорода, n_D — показатель преломления желтого дублета натрия, n_C — показатель преломления красной линии водорода, то можно определить

$$D = n_F - n_C \tag{2}$$

$$\nu = \frac{n_D - 1}{n_F - n_C} \tag{3}$$

Также можно оценить разрещающую способность призмы по дисперсионной кривой (графику зависимости n от λ)

$$R = \frac{\lambda}{\delta\lambda} = b\frac{dn}{d\lambda} \tag{4}$$

где $\delta\lambda$ — минимальный интервал длин волн из криетрия Релея, b — размер основания призмы.

Ход работы

Юстриовка гониометра настроили зрительную трубу, предметный столик, коллиматор, входную щель, начало отсчета. В общем, настроили все, что смогли. При этом ноль отсчета углов составляет 193°11′23″. Установили призму.

Измерение преломляющего угла для этого установим трубу последовательно перпегдикулярно обеим преломляющим гранями призмы, измерив углы, соответствующие этим положениям (193°11′23″ и 76°9′45″). По ним можем определить преломляющий угол призмы $\alpha = 62^{\circ}58'22''$.

Минимальный угол отклонения для этого снача найдем спектр, получаемый с помощью призмы. Затем настроим на него зрительную трубу и измерим минимум отклонения для каждой из спектральных линий. Результаты занесем в табл. 1.

Таблица 1: Координаты спектральных линий

Nº	K_1	K_2	1	2	
δ	139°06′39″	138°26′07″	137°50′03″	137°48′06″	
$N_{\overline{0}}$	3	4	5	6	

Пользуясь формулой (1), рассчитаем показатели преломления n для всех значений угла из табл. 1. Результаты представлены в табл. 2.

Таблица 2: Показатели преломления

$N_{\overline{0}}$	K_1	K_2	1	2	3	4	5	6
λ , HM	690.7	623.4	579.1	577.0	546.1	491.6	435.8	404.7
n	1.6329	1.6388	1.6440	1.6443	1.6488	1.6597	1.6774	1.6932

Погрешность измерения считаем за $0^{\circ}0'1''$. При этом погрешность измерений n слишком мала, а потому не учитывется.

Теперь построим дисперсионную кривую (рис. 1).

Рис. 1: Дисперсионная кривая

Из графика получаем $n_D=1.6428,\ n_F=1.6614,\ n_C=1.6359.$ По формуле (2) находим D=0.0255. По формуле (3) нахоим число Аббе $\nu=28.5.$ По этим параметрам можем предположить, что исследуемая призма сделана из тяжелого флинта (рис. 2).

Рис. 2: Диаграмма Аббе для стекол[1]

Длина основания призмы равна b=73 мм. Из графика минимальное значение $\frac{dn}{d\lambda}=8.767\cdot 10^4$. Тогда по формуле (4) можем найти $R\approx 3400$. При этом $R\approx 300$, если считать по измерениям желтого дублета ($\delta\lambda=20\cdot 10^{-10}$ м). Отсюда реальный рабочий размер основания призмы составляет 3 мм. Также определим угловую дисперсию по измерениям для желтого дублета $d\phi/d\lambda=0.03\,^\circ$ /нм.

Вывод

Мы исследовали призму с использованием гониометра:

- посторили ее дисперсионную кривую (рис. 1)
- \bullet определили среднюю дисперсию D=0.0255
- определили число Аббе $\nu = 28.5$
- определили характерные показатели преломления $n_D=1.6428,\ n_F=1.6614,\ n_C=1.6359$

По этим данным определили, что скорее всего призма изготовлена из тяжелого флинта. Также оценили разрешающую способность призмы $R \approx 300$ по желтому дублету и $R \approx$

6300 по углу наклона дисперсионной кривой. Отсюда сделали вывод, что реальный рабочий размер основания призмы значительно отличается от измеренного непосредственно. Также оценили угловую дисперсию призмы $d\phi/d\lambda=0.03$ °/нм.

Рис. 3: Фотографии спектра ртутной лампы

Рис. 4: Фотографии спектра ртутной лампы

Литература

1. The Properties of Optical Glass. Schott Series on Glass and Glass Ceramics. 1998. ISBN 978-3-642-63349-2.