2: Conditional Probability

Spring 2023

Matthew Blackwell

Gov 2002 (Harvard)

Roadmap

- 1. Conditional Probability
- 2. Bayes's Rule
- 3. Independence

1/ Conditional Probability

Conditional probability

- **Conditional probability**: if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on B having occurred.
- Examples:
 - What is probability of two states going to war if they are both democracies?
 - What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?
 - What is the probability that there will be a coup in a country conditional on having a presidential system?
- Conditional probability is the cornerstone of quantitative social science.

Conditional Probability definition

• Definition: If $\mathbb{P}(B) > 0$ then the **conditional probability** of *A* given *B* is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A|B)$ does **not**, in general, equal $\mathbb{P}(B|A)$.
 - P(smart | in gov 2002) is high
 - $\mathbb{P}(\text{in gov 2002} \mid \text{smart}) \text{ is low.}$
 - · There are many many smart people who are not in this class!
 - · Also known as the prosecutor's fallacy

Intuition

Examples

$$A = \{ \text{you get an A grade} \}$$
 $B = \{ \text{everyone gets an A grade} \}$

- If B occurs then A must also occur, so Pr(A|B) = 1.
 - Does this mean that Pr(B|A) = 1 as well?
- Now let $A = \{ you get a B grade \}.$
 - The intersection $A \cap B = \emptyset$, so that Pr(A|B) = 0.
 - Intuitively, it's because B occurring precludes A from occurring.

U.S. Senate example

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

- Choose one senator at random from this population
- What is the probability that a randomly selected Republican is a Woman:

•
$$\mathbb{P}(\text{Woman} \mid \text{Republican}) = \frac{\mathbb{P}(\text{Woman} \cap \text{Republican})}{\mathbb{P}(\text{Republican})} = \frac{9/100}{49/100} = \frac{9}{49} = 0.184$$

- · Choose two senators at random:
 - P(2 women | one draw is a woman)?
 - $\mathbb{P}(2 \text{ women } | \text{ one draw is a Liz Warren})$?

Conditional probabilities are probabilities

- Condition probabilities $\mathbb{P}(A|B)$ are valid probability functions:
 - 1. $\mathbb{P}(A|B) \ge 0$
 - 2. $\mathbb{P}(\Omega|B) = 1$
 - 3. If A_1 and A_2 are disjoint, then $\mathbb{P}(A_1 \cup A_2 | B) = \mathbb{P}(A_1 | B) + \mathbb{P}(A_2 | B)$
- \rightsquigarrow rules of probability apply to left-hand side of conditioning bar (A)
 - All probabilities **normalized** to event B, $\mathbb{P}(B \mid B) = 1$.
- Not for right-hand side, so even if B and C are disjoint,

$$\mathbb{P}(A|B\cup C)\neq \mathbb{P}(A|B)+\mathbb{P}(A|C)$$

Joint probabilities from conditionals

- Joint probabilities: probability of two events occurring (intersections)
 - Often replace \cap with commas: $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A, B, C)$
- Definition of conditional prob. implies:

$$\mathbb{P}(A \cap B) \equiv \mathbb{P}(A, B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$$

· What about three events?

$$\mathbb{P}(A, B, C) = \mathbb{P}(A)\mathbb{P}(B \mid A)\mathbb{P}(C \mid A, B)$$

• Generalize to the intersection of N events:

$$\mathbb{P}(A_1,\dots,A_N) = \mathbb{P}(A_1)\mathbb{P}(A_2\mid A_1)\mathbb{P}(A_3\mid A_1,A_2)\cdots\mathbb{P}(A_N\mid A_1,\dots,A_{N-1})$$

Joint probabilities, example

- Draw three cards at random from a deck without replacement.
- · What's the probability that we draw three Aces?

$$\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$$

- · What are these probabilities?
 - 4 Aces to pick out of 52 cards $\rightsquigarrow \mathbb{P}(Ace_1) = \frac{4}{52}$
 - 3 Aces left in the 51 remaining cards $\rightsquigarrow \mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1) = \frac{3}{51}$
 - 2 Aces left in the 50 remaining cards $\rightsquigarrow \mathbb{P}(Ace_3 \mid Ace_2 \cap Ace_1) = \frac{2}{50}$
- Thus, $\mathbb{P}(\mathrm{Ace}_1\cap\mathrm{Ace}_2\cap\mathrm{Ace}_3)=\frac{4}{52} imes\frac{3}{51} imes\frac{2}{50}=0.00018$

Probability of war resolution

- · Suppose we observed country-dyads over 3 years
- In each year the dyad can be at war (W_t) or at peace (P_t) .
- What's the probability that a war starts in year 1 ends after 2 years?

$$\mathbb{P}(\textit{W}_{1}, \textit{W}_{2}, \textit{P}_{3}) = \mathbb{P}(\textit{W}_{1})\mathbb{P}(\textit{W}_{2} \mid \textit{W}_{1})\mathbb{P}(\textit{P}_{3} \mid \textit{W}_{1}, \textit{W}_{2})$$

• Actual Research QuestionTM: modeling the continuation probability of war, $\mathbb{P}(W_2 \mid W_1)$ and the probability of conflict resolution, $\mathbb{P}(P_3 \mid W_1, W_2)$.

Law of Total Probability

- Often we only have disaggregated probabilities.
 - B = sampling a Trump supporter from either Cambridge or Somerville.
 - We know the prop. of Trump supporters in each city from precinct data.
 - How to calculate the overall probability of B?
- A **partition** is a set of mutually disjoint events whose union is Ω .
- The **law of total probability** (LTP) states if A_1, \dots, A_k is a partition:

$$\mathbb{P}(B) = \sum_{j=1}^{k} \mathbb{P}(B \mid A_j) \mathbb{P}(A_j)$$

- Overall probability = weighted sum of within-partition probabilities
- Weights are the probability of the particular partition

A mixture of cities

- Randomly drawing voters from either Cambridge or Somerville:
 - · Camb. had 50k voters and Somer. had around 40k, so:
 - Pr(Camb.) = 0.56 and so Pr(Somer.) = 0.44
- The state provides the following election results for each city:
 - Pr(Trump|Camb.) = 0.066
 - Pr(Trump|Somer.) = 0.103
- To get the overall turnout rate, $\mathbb{P}(\mathsf{Trump})$, we can apply the LTP:

$$\begin{aligned} \text{Pr}(\text{Trump}) &= \text{Pr}(\text{Trump}|\text{Camb.}) \, \text{Pr}(\text{Camb.}) + \text{Pr}(\text{Trump}|\text{Somer.}) \, \text{Pr}(\text{Somer.}) \\ &= 0.066 \times 0.56 + 0.103 \times 0.44 \\ &= 0.082 \end{aligned}$$

2/ Bayes's Rule

QAnon

You meet a man named Steve and he tells you that he is a Republican. You have been interested in meeting someone who believes in the QAnon conspiracy theory. Given what you know about Steve, would you guess that he believes in OAnon or not?

- Common response: probably believes in QAnon since believers tend to be Republicans.
- Base rate fallacy: ignores how uncommon QAnon believers are!

Visualizing QAnon support

Chance a random Republican believes QAnon =
$$\frac{\mathbb{P}(R|Q)\mathbb{P}(Q)}{\mathbb{P}(R|Q)\mathbb{P}(Q) + \mathbb{P}(R|\text{not }Q)\mathbb{P}(\text{not }Q)}$$

Bayes' rule

- Reverend Thomas Bayes (1701–61): English minister and statistician
- Bayes' rule: if $\mathbb{P}(B) > 0$, then:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B \mid A)\mathbb{P}(A) + \mathbb{P}(B \mid A^c)\mathbb{P}(A^c)}$$

Why is Bayes' rule useful?

- · What is the probability of some hypothesis given some evidence?
 - P(QAnon | Republican)?
- Often easier to know probability of evidence given hypothesis.
 - P(Republican | QAnon)
- Combine this with the prior probability of the hypothesis.
 - Prior: P(QAnon)
 - Posterior: P(QAnon | Republican)
- Applying Bayes' rule is often called updating the prior.
 - $\mathbb{P}(QAnon) \rightsquigarrow \mathbb{P}(QAnon \mid Republican)$
 - How does the evidence change the chance of the hypothesis being true?

Uses of Bayes' rule

- · Medical testing:
 - Want to know: P(Disease | Test Positive)
 - Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease})$ and $\mathbb{P}(\text{Disease})$
- · Predicting traits from names:
 - Want to know: P(African American | Last Name)
 - Have: $\mathbb{P}(\text{Last Name} \mid \text{African American})$ and $\mathbb{P}(\text{African American})$
- · Spam filtering:
 - Want to know: P(Spam | Email text)
 - Have: $\mathbb{P}(\mathsf{Email}\;\mathsf{text}\;|\;\mathsf{Spam})\;\mathsf{and}\;\mathbb{P}(\mathsf{Spam})$

Medical tests

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be PT.
- What's the probability you actually have COVID-19?
 - Let having COVID be labeled C.
 - Question: What is $\mathbb{P}(C \mid PT)$?
- Components for calculating Bayes' rule:
 - $\mathbb{P}(PT|C) = 0.8$: true positive rate
 - $\mathbb{P}(PT \mid C^c) = 0.005$: false positive rate
 - $\mathbb{P}(C) = 0.007$ rough prevalance of active COVID cases.

Applying Bayes' rule to COVID tests

• Use the law of total probability to get the denominator:

$$\begin{split} \mathbb{P}(PT) &= \mathbb{P}(PT \mid C) \mathbb{P}(C) + \mathbb{P}(PT \mid C^c) \mathbb{P}(C^c) \\ &= (0.8 \times 0.007) + (0.005 \times 0.993) \\ &= 0.011 \end{split}$$

· Now plug in all values to Bayes' rule:

$$\mathbb{P}(C \mid PT) = \frac{\mathbb{P}(PT \mid C)\mathbb{P}(C)}{\mathbb{P}(PT)} = \frac{0.8 \times 0.007}{0.0106} \approx 0.53$$

• If false positive rate goes up to 1% $\leadsto \mathbb{P}(C \mid PT) \approx 0.36$

3/ Independence

Independence

- Heart of Bayes's rule: knowing B occurs often changes probability of A.
 - What if B provides no information? → independence
- Two events A and B are **independent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
 - Sometimes written as $A \perp \!\!\! \perp B$
 - **Symmetric:** $A \perp \!\!\! \perp B$ equivalent to $B \perp \!\!\! \perp A$
 - · Events that are not independent are dependent.
- Important consequence: if $A \perp \!\!\! \perp B$ and $\mathbb{P}(B) > 0$ then:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

- Knowing B occurs has no impact on the probability of A.
- Works other way too: if P(A) > 0 and $A \perp \!\!\! \perp B \rightsquigarrow \mathbb{P}(B \mid A) = \mathbb{P}(B)$.
- Common misunderstanding: independent is different than disjoint!
 - Mutually exclusive events provide information!

Independence example

- If we have a gathering of size *n* drawn randomly from population of MA with current COVID infection rate of 1.37%, what's the probability someone in attendance is infected?
- When seeing "prob. of at least one" \rightsquigarrow work with complement:

```
\mathbb{P}(\text{At least one COVID case at gathering}) = 1 - \mathbb{P}(\text{No COVID cases at gathering})
```

Independence and random sampling

- How we draw the random sample matters:
 - Sample n > 1 with replacement \rightsquigarrow independent events
 - Sample n > 1 without replacement \rightsquigarrow dependent events
- Sampling with replacement *n* for gathering:

```
\mathbb{P}(\mathsf{No}\;\mathsf{COVID}\;\mathsf{cases}\;\mathsf{at}\;\mathsf{gathering}) \\ = \mathbb{P}(\mathsf{No}\;\mathsf{COVID}\;\mathsf{for}\;\mathsf{Person}\;\mathsf{1}\;\cap\cdots\cap\mathsf{No}\;\mathsf{COVID}\;\mathsf{for}\;\mathsf{Person}\;n) \\ = \mathbb{P}(\mathsf{No}\;\mathsf{COVID}\;\mathsf{for}\;\mathsf{Person}\;\mathsf{1}\;)\cdots\mathbb{P}(\mathsf{No}\;\mathsf{COVID}\;\mathsf{for}\;\mathsf{Person}\;n) \\ = (1-0.007)^n
```

· Using the complement:

```
\mathbb{P}(\text{At least one COVID case at gathering}) = 1 - (1 - 0.007)^n
```

- $n = 5 \rightsquigarrow \text{prob of } 0.035$
- $n = 100 \rightsquigarrow \text{prob of } 0.5$

Conditional independence

A and B are conditionally independent given E if

$$\mathbb{P}(A \cap B \mid E) = \mathbb{P}(A \mid E)\mathbb{P}(B \mid E)$$

- · Massively important in statistics and causal inference.
- Warning: independence \neq conditional independence.
 - Cond. ind. ⇒ ind.: flipping a coin with unknown bias.
 - Ind. ⇒ cond. ind.: test scores, athletics, and college admission.