Quiz 3

TOTAL POINTS 15

Following is the derivation of Fourier transform of rect function.

(fpoint)

1 point

$$rect(x) = \begin{cases} 1, for|x| < \frac{1}{2} \\ 0, for|x| > \frac{1}{2} \end{cases}$$

Q. Fill in the blank.

$$FT\{rect(x)\} = \int_{-\infty}^{\infty} rect(x)e^{-j2\pi ux} dx$$

$$= \int_{-1/2}^{1/2} e^{-j2\pi ux} dx$$

$$= \frac{1}{j2\pi u} e^{-j2\pi ux} \Big|_{-1/2}^{1/2}$$

$$= \boxed{\qquad} \frac{e^{j\pi u} - e^{-j\pi u}}{2j}$$

$$= \frac{\sin(\pi u)}{\pi u} = sinc(u)$$

- π₀
- 0 ‡
- \bigcirc 2π

2. Consider the complex exponential signal

$$f(x) = e^{j2\pi u_0 x}$$

- Q. What is its Fourier transform?
- \bigcirc sinc $(u u_0)$
- $\delta(u-u_0)$
- $\bigcirc \quad \frac{\sin(u+u_0)+\sin(u-u_0)}{2}$
- \bigcirc $\delta(u+u_0)$

4. Choose the correct 2D Fourier transform of the Image A.

- 5. Following is the proof of one of the properties of Fourier transform.
 - Q. Choose one which connects i) the property and ii) corresponding contents in blank correctly.

If
$$FT(f(x,y)) = F(u,v)$$
,

$$FT(f(ax,by)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(ax,by)e^{-j2\pi(ux+vy)}dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(ax,by)e^{-j2\pi\left|\frac{u(ax)}{2},\frac{\tau(by)}{2}\right|}dxdy\frac{1}{ab}d(ax)d(by)$$

$$= \frac{1}{|ab|} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y,q)e^{-j2\pi\left|\frac{u(ax)}{2},\frac{\tau(by)}{2}\right|}dydq$$

$$= \frac{1}{|ab|}F(\frac{u}{a},\frac{v}{b})$$

- \bigcirc Translation, $\frac{\pi}{4}p + \frac{\pi}{4}q$
- Scaling, (ua)p+(vb)q
- \bigcap translation, (na)p + (nb)q
- Scaling, ³/₂p + ²/₃q
- What is Fourier transform of x(t)=e^{-at}-u(t), where u(t) represents the unit step function and a>0? 1 point
 - 1/(a+j2πu)
 - a/(a j2πu)
 - 1/(a–j2πu)
 - a/(a+j2πu)
- Choose the one that correctly fills the parentheses.

1 point

(fpont)

When the maximum bandwidth of a signal f(x) is SkHz, the sampling period should be () for a sampled signal of f(x) to be free from aliasing.

- Ionger than 0.1 ms
- oshorter than 0.1 ms
- shorter than 0.2 ms
- Olonger than 0.2 ms

12. Sala	ert a statement about Fourier transform that is not true.	1 points
0	Reversing the polarity of the time for a time-domain signal reverses the polarity of the frequency of its Fourier transform.	
•	$\label{eq:condition} If E(u,v) and E^a[-u,v) are Fourier transforms of foxy) and f^a[x,y], then E[u,v] equals to E^a[-u,v] for a complex valued ff[x,y].$	
0	If a signal can be represented by product of two functions seperable by two independent variables, its Fourier transform can also be represented by product of two functions separable by the two independent variables.	
0	Fourier transform is a linear operator.	
13. W	which is the Fourier transform pair of $\frac{\sin(\pi t)}{\pi t}$? (i.e., $\mathrm{x}(t) \leftrightarrow \mathrm{X}(u)$)	1 point
	$\delta(u)$	
0	$\delta(u)$ $u(u)$	
0	$\delta(u)$ $u(u)$ $e^{-j2\pi ut}$	
	u(u)	1 point
14. Sampl	$u(u)$ $e^{-j2\pi ut}$	1 point
14. Sampl	$u(u)$ $e^{-j2\pi ut}$ ding is a kind of a digitization of continuous signals into discrete signals which can be used with computers.	1 point
14. Sampl	$u(u)$ $e^{-j2\pi ut}$ ding is a kind of a digitization of continuous signals into discrete signals which can be used with computers.	
14. Sampl	$u(u)_{e}-j2\pi ut$ Iling is a kind of a digitization of continuous signals into discrete signals which can be used with computers. True	
14. Sampl	$u(u)_{e}-j2\pi ut$ Iling is a kind of a digitization of continuous signals into discrete signals which can be used with computers. True	
14. Sample 15. Which is 16. Whi	$u(u)_{e}-j2\pi ut$ Iling is a kind of a digitization of continuous signals into discrete signals which can be used with computers. True	