Aprendizaje Supervisado ...

RoadMap

- Short review of topics from previous course
 Classification / Regression / Perceptron
- What supervised learning is
- SVMs
- Ensemble methods
 Bagging: Random Forests / Boosting
- Neural Networks

Motivation

Example 1

- A credit card company receives applications for new credit cards. Each one has information about an applicant:
 - salary
 - o age
 - marital status
 - Veraz
 - Credit report from BCRA
 - o ...
- Problem: determine if an application should be approved or rejected

Example 2

Problem: classify an email as SPAM or not

Describing the problem

 Data: A set of records (or samples, instances) described by n attributes: A1, A2, ... An and each sample is labelled with a class (Like SPAM or NOT) or a "score" (like the credit score)

 Goal: To learn a model (or a function) from the data that can be used to predict the labels that the records have (and labels for new unlabelled records)

Aprendizaje supervisado: regresión

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y está en $\mathbb{R}^n \to$ regresión

Aprendizaje supervisado: clasificación

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y es categórica \rightarrow clasificación

Aprendizaje supervisado: clasificación

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
 - \circ Si y es categórica \rightarrow clasificación

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

...

Aprendizaje supervisado

Elección de hiperparámetros

Dividir el conjunto total de ejemplos en tres subconjuntos

- Entrenamiento: aprendizaje de variables del modelo
- Validación: ajuste/elección de hiperparámetros
- **Test**: estimación <u>final</u> de la performance del modelo entrenado (y con hiperparámetros elegidos adecuadamente

El algoritmo del "perceptrón"

Propuesto por Rosemblatt en 1958

- El objetivo es encontrar un hiperplano de separación
 - Si los datos son linealmente separables, lo encuentra

Es un algoritmo online (procesa un ejemplo a la vez)

Muchas variantes ...

El algoritmo del "perceptrón"

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2)$...
- Una tasa de aprendizaje r

Algoritmo:

- Inicializar $w^{(0)} \in \mathbb{R}^n$
- Para cada ejemplo (x_i, y_i)
 - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
 - $\circ \quad \operatorname{Si} y_i' \neq y_i:$ $w^{(t+1)} \leftarrow w^{(t)} + r(y_i x_i)$

El algoritmo del "perceptrón"

Entrada:

- una secuencia de pares de entrenamiento $(x_1,y_1), (x_2,y_2) \dots$
- Una tasa de aprendizaje r (número pequeño y menor a 1)

Algoritmo:

- Inicializar $w^{(0)} \in \mathbb{R}^n$
- Para cada ejemplo (x_i, y_i)
 - \circ Predecir $y_i' = sign(w^T x_i)$
 - \circ Si $y_i' \neq y_i$: $w^{(t+1)} \leftarrow w^{(t)} + r(y_i x_i)$

Actualiza solo cuando comete un error

Error en positivos:

$$w^{(t+1)} \leftarrow w^{(t)} + r x_i$$

Error en negativos:

$$w^{(t+1)} \leftarrow w^{(t)} - r x_i$$

Si $y_i w^T x_i \le 0 \rightarrow \text{error}$ Slides from the previous

course

Demo Time (demo 1)

Support Vector Machines

linear function

 $f(x) = \langle w, x \rangle + b$

Whiteboard Time

•••

Support Vector Machines, Deriving the Equations

Support Vector Machines

Some Interesting Properties we have found:

• $w = \sum_i \alpha_i y_i x_i$

Just the points on the margin used to define the hyperplane

Demo Time (demo 2)

SVMs: slack variables

Demo Time (demo 3)

SVMs: Kernels

SVMs: Kernels

Whiteboard Time

SVMs: Kernels

Some common kernels:

- ullet Polynomial $K(x,z) = (1+\sum_j x_j z_j)^d$
- Radial Basis Functions (RBF aka Gaussian Similarity Functions)

$$K(x,z)=\exp(-(x-z)^2/2\sigma^2)$$

ullet Sigmoid K(x,z) = anh(c < x,z > +h)

Specific for certain types of problems

Demo Time (demo 4)

Multiclass SVMs

Multiclass SVMs: one vs the rest (one vs all)

• Training: how could we do it?

Multiclass SVMs: one vs the rest (one vs all)

Training: For M classes:
 construct a hyperplane between class k and the other M – 1
 classes => M SVMs

Classification: how could we do it?

Multiclass SVMs: one vs the rest

Training: For M classes:
 construct a hyperplane between class k and the other M – 1
 classes => M SVMs

 Classification: make M predictions (one for each SVMs) and find out the one getting more hits into its positive region.

Multiclass SVMs: one vs one (all vs all)

Training: For M classes:
 construct a hyperplane between class i and class j. => M(M-1)/2
 SVMs

• Classification: If f_{ij} is the classifier where i are the positive samples and j the negative ones,, the classification of x is given by

$$f(x) = \operatorname{argmin}_i(\sum_j f_{ij}(x))$$

Support Vector Regressions

- Idea based on support vectors like in SVMs, but now y_i is a real number.
- Uses soft margins in the regression process instead of classification
- Additional parameter ε, to compute the loss function

Support Vector Regressions

- Idea based on support vectors like in SVMs, but now y_i is a real number.
- Uses soft margins in the regression process instead of classification
- Additional parameter ε, to compute the loss function
- Not frequently used, logistic regression is more popular

Whiteboard Time

Decision Trees (review)

Decision Trees (review) Image by Yisong Yue

Demo Time (demo 5)

Ensemble Learning

- Generate a set of "learners" that, when combined, have higher accuracy.
- Assuming we have three learners: L1, L2, L3
- The predictions from them may differ
- What would we do? Who do we trust?
 - Believe the model that we know is best?
 - O Go with the majority?

Ensemble Learning

- An ensemble model is a model that is a combination of several different models
- Usually, an ensemble is more accurate than all its constituent models
- Why?
 - Intuition: "two know more than one"

- Given n classifiers m1, m2, ... mn
- Consider a new classifier M that, given a datum x, M computes m1(x), m2(x), ..., counts the predictions and returns the most predicted class
- How well would M work?

- To answer the question, let's make some assumptions:
 - All the classifiers m1, ..., mn are equally accurate (with p being their accuracy)
 - The errors in the classification made by each classifier are independent
 - P(mj wrong | mk wrong) = P(mj wrong)
- How well would M work?

- Example
 - \circ p = 0.8
 - \circ n = 5
 - P(majority of 5 models is correct) =

$$= {5 \choose 5}0.8^50.2^0 + {5 \choose 4}0.8^40.2^1 + {5 \choose 3}0.8^30.2^2$$

= 0.942

Need empirical validation if assumptions not valid

- Example
 - \circ p = 0.8
 - \circ n = 5
 - P(majority of 5 models is correct) =

$$= {5 \choose 5}0.8^50.2^0 + {5 \choose 4}0.8^40.2^1 + {5 \choose 3}0.8^30.2^2$$

= 0.942

Need empirical validation if assumptions not valid

Ensemble Learning

- We know how to build decision trees
- How can we build different trees for the same data?
 - This may result on the same tree
- Do we introduce some variations?

Bagging

- Let D be the dataset
- Repeat k times:
 - Create D' from D by randomly selecting |D| instances of D with replacement
 - Learn a new model m
- Return a model that selects the most frequent prediction among m1, ..., mk predictions

Bagging 3 xxxxxxxxx 4 ********* 5 ====== 3 xxxxxxxxx ****** 5 ====== vote count 5 ====== votes 3 xxxxxxxxx 4 ******** & decide 5 ====== vote 3 xxxxxxxxx 3 xxxxxxxxx 4 ******** 3 xxxxxxxxx 4 ********* 4 ********

Bagging for Decision Trees

- Bagging generally works well for unstable learners
 - A learner is unstable if small changes in the dataset can give very different resulting models
 - It turns out that decision tree learners are indeed unstable
- Disadvantage: learning k trees is k times as expensive as learning one tree

Random Forests

- Like bagging, with one improvement
 - For trees, ALL the features are considered to create a split node (inner node)
 - For random forests, at each node consider only M randomly chosen attributes (not all)
 - Usually take $M = \sqrt{\text{number of attributes}}$

Random Forests

Common Steps

- Build a random forest considering M attributes
- Predict the value of "Out-of-bag" samples using the random forest
- Estimate the accuracy
- Determine the optimal M (hyperparameter)

Random Forests

- Random Forests is one of the most efficient and most accurate learning methods to date (2008) (Caruana+: An empirical evaluation of supervised learning in high dimensions. ICML 2008)
- Easy to use with little parameter tuning
- Easy to debug, but, compared with Decision Trees, the model is less interpretable

Demo Time (demo 6)

Boosting

 Bagging goal: fit large trees to resampled versions of the training data, and classify by majority vote

 Boosting: fit large or small trees to "reweighted" versions of the training data and classify by weighted majority vote

Boosting

- Each model, defines the features that the next model will focus on
- Uses bootstrapping like bagging, but here we weight each sample of data
 - Some samples will be used more frequently
- Process:
 - Given a model, track the samples that are more "erroneous" and give them heavier weights (considered to be data that have more complexity and requires more steps)
 - Given a model, track the error rate so that better models are given more weights

Notation

Remember that we are given a set of labeled samples:

ullet m training samples: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots(x^{(m)},y^{(m)})\}$

 $ullet \quad X = [x^{(1)}x^{(2)}\dots x^{(m)}] \in \mathbb{R}^{n_x imes m}$

 $ullet \quad Y = [y^{(1)}y^{(2)}\dots y^{(m)}] \in \mathbb{R}^{1 imes m}$

Logistic Regression Review

Given x, we would like to find $\hat{y} = P(y = 1|x)$

What is the easiest way to transform x?

Logistic Regression Review

Given x, we would like to find $\hat{y} = P(y = 1|x)$

What is the easiest way to transform x?

$$\hat{y} = w^T x + b$$

But we would like \hat{y} to be a probability: $0 \le \hat{y} \le 1$

Sigmoid function

Cost function (for Logistic Regression)

- ullet m training samples: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots(x^{(m)},y^{(m)})\}$
- want to find: $\hat{y}^{(i)} pprox y^{(i)}$
- Popular loss function:

$$\mathcal{L}(\hat{y},y) = rac{1}{2}(\hat{y}-y)^2$$

Cost function (for Logistic Regression)

- m training samples: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots(x^{(m)},y^{(m)})\}$
- want to find: $\hat{y}^{(i)} pprox y^{(i)}$
- Popular loss function:

$$\mathcal{L}(\hat{y},y) = -[y\log\hat{y} + (1-y)\log{(1-\hat{y})}]$$

Cost function:

$$\mathcal{J}(w,b) = rac{1}{m} \sum_{i=1}^m \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Logistic Regression

$$z = w^T x + b$$

$$\hat{y} = \sigma(w^T x + b)$$
 (activation function; we usually use a instead of \hat{y})

$$\mathcal{L}(a,y) = -[y\log a + (1-y)\log (1-a)]$$

The goal is to minimize \mathcal{J} , to do so we compute

$$rac{\partial}{\partial w_1}\mathcal{J}(w,b) = rac{1}{m} \sum_{i=1}^m rac{\partial}{\partial w_1} \mathcal{L}(a^{(i)},y^{(i)})$$

Whiteboard Time

•••

Computation graph for backpropagation

&

Logistic Regression minimization

Logistic Regression Gradient Descent

Neural Networks

Neural Networks

Activation Functions

Sigmoid function (as in Logistic regression)

• tanh:
$$\frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

• Rectified Linear Unit (ReLU): max(0, x)

Leaky ReLU

Demo Time (demo 7)

Demo Time (demo 7)

How to split the data?

Train / Test / Validation

How to split the data?

Train / Test / Validation

• Now?

How to split the data?

Train / Test / Validation

- Now?
 - Too much data (> 10.000.000 samples)

How to split the data?

Train / Test / Validation

- Now?
 - Too much data (> 10.000.000 samples)

Make sure your train/ test / validation come from the same distribution

Rule of thumb to deal with bias/variance?

- High Bias:
 - Bigger Network
 - Different Network Architecture

- High Variance:
 - More data
 - Regularization
 - Different Network Architecture

Neural Networks

How to decide the size?

hidden layers

• # hidden units

What activation function to use

Neural Networks Regularization

Logistic regression:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}$$

Neural network:

$$h_{\Theta}(x) \in \mathbb{R}^{K} \quad (h_{\Theta}(x))_{i} = i^{th} \text{ output}$$

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log(h_{\Theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_{k}) \right]$$

$$+\frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

Neural Networks Dropout

(a) Standard Neural Net

(b) After applying dropout.

Neural Networks Momentum

Mini-batch Gradient Descent

- Gradient Descent optimization
 - with Momentum
 - RMSprop
 - Adam

