$MTH215A - 2019-20 \star ASSIGNMENT - 1$

- 1. Let $a, b, c, d, x \in \mathbb{Z}$ such that $a \mid b$ and $c \mid d$. Show that
 - (a) (1) $x \mid 0$ and $1 \mid x$ (2) $0 \mid x$ iff x = 0 (3) $a \mid bx$.
 - (b) (1) $x \mid x$ (2) if $x \mid y$ and $y \mid z$ then $x \mid z$ (3) if $x \mid y$ and $y \mid x$ then $x = \pm y$.
 - (c) (1) $ax \mid bx$ (2) $ac \mid bd$ (3) $a^n \mid b^n$ for all $n \in \mathbb{N}$.
- 2. Let $a, b, x, y, x_1, \ldots, x_k \in \mathbb{Z}$.
 - (a) Let $d = \gcd(x_1, \ldots, x_k)$. Then $\gcd(x_1/d, \ldots, x_k/d) = 1$.
 - (b) If $gcd(x_1, x) = \cdots = gcd(x_k, x) = 1$ then $gcd(x_1 \cdots x_k, x) = 1$.
 - (c) If x_1, \ldots, x_k are pairwise coprime then $gcd(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k, x_i) = 1$ for all $i = 1, \ldots, k$.
 - (d) If gcd(a, b) = 1 and $x \mid a$ and $y \mid b$ then the gcd(x, y) = 1.
- 3. $a, b, c, d, x, y \in \mathbb{Z}$ and let $n \geq 2$ be an integer such that $a \equiv b \pmod{n}$ and $a \equiv b \pmod{n}$. Show that
 - (a) (1) $x \equiv x \pmod{n}$ (2) $a + x \equiv b + x \pmod{n}$ (3) $ax \equiv bx \pmod{n}$.
 - (b) (1) $a + c \equiv b + d \pmod{n}$ (2) $ac \equiv bd \pmod{n}$ (3) $a^k \equiv b^k \pmod{n}$ for all $k \in \mathbb{N}$.
- 4. Let $p \ge 5$ be an odd prime. Then $p \equiv \pm 1 \pmod{n}$ for n = 2, 3, 4 & 6.
- 5. Let $n \in \mathbb{Z}$. Then $n^2 \equiv 0$ or $1 \pmod{3}$.
- 6. For $n \in \mathbb{Z}$, prove that $3n^2 1$ can never be a perfect square.
- 7. For $n \ge 1$ prove that $6 \mid n(7n^2 + 5)$.
- 8. For an odd integer n, show that 16 $n^4 + 4n^2 + 11$.
- 9. Show that the product of n consecutive integers is divisible by n!.
- 10. Let $p \ge 5$ be a prime. Show that $p^2 + 2$ is composite. (Hint: $3 \nmid p$.)
- 11. Let $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1. Show that $gcd(a^k, b^l) = 1$ for all $k, l \ge 1$.
- 12. For every $n \in \mathbb{Z}$, $n \neq \pm 1$, show that $n^4 + 4$ is composite.
- 13. For every composite integer n > 4, $n \mid (n-1)!$.
- 14. **Bertrand's Postulate.** For every n > 1 there exists a prime p such that $n . Verify this for <math>n \le 4000$.
- 15. Using Bertrand's Postulate, show that n! can not be a perfect square for n > 1.
- 16. Show that every integer n > 11 is a sum of two composites.

- 17. Let p_n denote the *n*th prime in increasing order, that is, $2 = p_1 < p_2 < \cdots < p_n$ and there is no prime between p_n and p_{n+1} . Show that $\sum_{i=1}^n \frac{1}{p_i}$ is not an integer.
- 18. Find all the pairs of primes p, q such that p q = 3.
- 19. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ be a nonzero polynomial, where a_i are integers and $n \ge 1$. Show that there are integers m such that f(m) is composite.
- 20. Show that there are infinitely many primes of form 6n + 5.
- 21. Given an integer n > 0, find an integer m > 1 such that $k \mid n^m n$ for every $1 \le k \le n$ and $\gcd(k, n) = 1$.
- 22. Find all the solutions of $x^{13} + 12x \equiv 0 \pmod{13}$.
- 23. Let p > 2 be a prime. Show that $\frac{1}{1} \frac{1}{2} + \frac{1}{3} \dots \frac{1}{p-1} = \frac{a}{(p-1)!}$, where $a \equiv \frac{2-2^p}{p} \pmod{p}$.
- 24. Let p be a prime such that $p \equiv 1 \pmod{4}$. Show that there exist $a \in \mathbb{Z}$ such that $a^2 + 1 \equiv 0 \pmod{p}$.
- 25. Let $n \geq 2, k$ be an integers, $1 \leq k < n$; and p be a prime. Let $\alpha \geq 0$ be such that $p \mid \binom{n}{k}$. Show that $\alpha = \sum_{i \geq 1} \left([n/p^i] [k/p^i] [(n-k)/p^i] \right)$ and that $p^{\alpha} \leq n$.
- 26. Let $n \in \mathbb{N}$. Show that $\binom{2n+1}{n} \leq 2^{2n}$ and $\binom{2n}{n} \geq 4^{n-1}/2n$.
- 27. Let $n \in \mathbb{N}$ and let p be a prime such that $n+1 . Show that <math>p \mid \binom{2n+1}{n}$.
- 28. For every x > 0, let f(x) denote the product of all prime less that or equal to x. If no such prime exists the put f(x) = 1.
 - (a) Let f(x) = f([x]) and for $x \ge 2$, f(x) = f(q) where q is the largest prime less than or equal to x.
 - (b) For every $n \in \mathbb{N}$ show that $f(n) \leq 4^{n-1}$. Hence, show that $f(x) \leq 4^{x-1}$ for all x > 0.
- 29. For all $x \in \mathbb{R}, x \ge 1$ show that $x \le 2^x$.
- 30. Let $n \ge 10$ be an integer such that there is no prime in (n, 2n). Let $\binom{2n}{n} = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, where $p_1 < \dots < p_r$ are primes and $\alpha_i \ge 1$. Show that
 - (a) $\sqrt{2n} < 2n/3$.
 - (b) For every $i, p_i \leq 2n/3$. Furthermore, $\alpha_i = 1$ whenever $\sqrt{2n} < p_i \leq 2n/3$.
 - (c) $\prod_{p_i \le \sqrt{2n}} p_i^{\alpha_i} \le (2n)^{\sqrt{2n}}$.
 - (d) $4^{n-1}/(2n) \le {2n \choose n} \le (2n)^{\sqrt{2n}} \times 4^{(2n/3)-1}$. Hence, conclude that $n \le 4000$.