PAPER

Compactness of Finite Union of Regular Patterns and Regular Patterns without Adjacent Variables

Naoto TAKETA[†], Nonmember, Tomoyuki UCHIDA[†], Takayoshi SHOUDAI^{††}, Satoshi MATSUMOTO^{†††}, Yusuke SUZUKI[†], and Tetsuhiro MIYAHARA[†], Members

A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language L(p) of a regular pattern p is the set of all constant strings obtained by replacing all variable symbols in the regular pattern p with constant strings. \mathcal{RP}^k denotes the class of all sets consisting at most k ($k \ge 2$) regular patterns. For sets of regular patterns P and Q which are in the class \mathcal{RP}^k , we write $P \subseteq Q$ if for any regular pattern $p \in P$ there exits a regular pattern $q \in Q$ that is a generalization of p. In 1998 Sato et al.[1] showed that the finite set $S_2(P)$ of symbol strings is a characteristic set of $L(P) = \bigcup_{p \in P} L(p)$, where $S_2(P)$ is obtained from $P \in \mathcal{RP}^k$ by substituting variables with symbol strings of at most length 2. Sato et al.[1] also showed that \mathcal{RP}^k has compactness with respect to containment, if the number of constant symbols is greater than or equal to 2k - 1. In this paper, we check the results of Sato et al.[1] and correct the error of the proof of their theorem. Further, we consider the set \mathcal{RP}_{NAV} of all non-adjacent regular patterns, which are regular patterns without adjacent variables, and show that the set $S_2(P)$ obtained from a set P in the class $\mathcal{R}\mathcal{P}^k_{NAV}$ of at most k $(k \geq 1)$ non-adjacent regular patterns is a characteristic set of L(P). Further we show that \mathcal{RP}_{NAV}^k has compactness with respect to containment if the number of constant symbols is greater than or equal to k+2. Thus we show that we can design an efficient learning algorithm of a finite union of pattern languages of non-adjacent regular patterns with the number of constant symbols which is smaller than the case of regular patterns.

key words: Regular Pattern Language, Compactness

1. Introduction

A pattern is a string consisting of constant symbols and variable symbols. For example, we consider constant symbols a, b, c and variable symbols x, y, then axbxcy is a pattern. \mathcal{P} denotes the set of all patterns. For a pattern $p \in \mathcal{P}$, the pattern language generated by p, denoted by L(p), or simply called a pattern language, is the set of all strings obtained by replacing all variable symbols with constant symbol strings, where the same variable symbol is replaced by the same constant string. For example the pattern language L(axbxcy) generated by the above pattern axbxcy denotes $\{aubucw \mid u \text{ and } w \text{ are constant strings that are not } \varepsilon\}$. A pattern where each variable symbol appears at most once is called a regular pattern. For example, a pattern axbxcy is not a regular pattern, but a pattern axbzcy with variable symbols x, y, z is a regular pattern. \mathcal{RP} denotes the set of

Manuscript received January 1, 2015.

Manuscript revised January 1, 2015.

†††Faculty of Science, Tokai University DOI: 10.1587/trans.E0.??.1

The results of this paper suggest efficient learning algorithms for the sets of regular patterns representing finite

all regular patterns. If a pattern $p \in \mathcal{P}$ is obtained from a pattern $q \in \mathcal{P}$ by replacing variable symbols in q with patterns, we say that q is a *generalization* of p and denote this by $p \leq q$. For example, a pattern q = axz is a generalization of a pattern p = axbxcy, because p is obtained from q by replacing the variable z in q with a pattern bxcy. So we write $p \leq q$. For patterns $p, q \in \mathcal{P}$, it is obvious that $p \leq q$ implies $L(p) \subseteq L(q)$. But, the converse, that is, the statement that $L(p) \subseteq L(q)$ implies $p \leq q$ does not always hold. With respect to this statement, Mukouchi[2] showed that if the number of constant symbols is greater than or equal to 3, for any regular pattern $p, q \in \mathcal{RP}$, $L(p) \subseteq L(q)$ implies $p \leq q$.

We denote by \mathcal{RP}^+ the class of all non-empty finite sets of regular patterns and by \mathcal{RP}^k the class of at most k ($k \ge 2$) regular patterns. For a set of regular patterns $P \in \mathcal{RP}^k$ we define $L(P) = \bigcup_{p \in P} L(p)$ and consider the class \mathcal{RPL}^k of regular pattern languages of \mathcal{RP}^k , where $\mathcal{RPL}^k = \{L(P) \mid$ $P \in \mathcal{RP}^k$ Let $P, Q \in \mathcal{RP}^k$ and $Q = \{q_1, \dots, q_k\}$. We denote by $P \sqsubseteq Q$ that for any regular pattern $p \in P$ there exists a regular pattern q_i such that $p \leq q_i$ holds. From definition, it is obvious that $P \subseteq Q$ implies $L(P) \subseteq L(Q)$. Then Sato et al.[1] shows that if $k \ge 3$ and the number of constant symbols is 2k-1 then the finite set $S_2(P)$ of constant symbols obtained from $P \in \mathcal{RP}^k$ by substituting variable symbols with constant strings of at most 2 length is a characteristic set of L(P), that is, for any regular pattern language $L' \in \mathcal{RPL}^k$, $S_2(P) \subseteq L'$ implies $L(P) \subseteq L'$. Thus they shows that the following three statements: (i) $S_2(P) \subseteq L(Q)$, (ii) $P \subseteq Q$ and (iii) $L(P) \subseteq L(Q)$ are equivalent. But the Lemma14 [1], which is used in this results, contains an error. In this paper we correct this lemma and give a correct proof showing the equivalence of the three statements shown in [1]. Sato et al.[1] shows that \mathcal{RP}^k has compactness with respect to containment if the number of constant symbols is greater than or equal to 2k - 1. On the contrary to this result, we show that the set $S_2(P)$ obtained from a set P in the class \mathcal{RP}_{NAV}^k of at most $k \ (k \ge 1)$ regular patterns having non-adjacent variables is a characteristic set of L(P). Further, we show that if the number of constant symbols is greater than or equal to k + 2 then \mathcal{RP}_{NAV}^k has compactness with respect to containment. In Table 1 we summarize the all results in this paper.

 $^{^\}dagger$ Graduate School of Information Sciences, Hiroshima City University

^{††}Department of Computer Science and Engineering, Fukuoka Institute of Technology

Table 1 The conditions of the number of constant symbols with respect to the compactness of inclusion

k	2	≥ 3
\mathcal{RP}^k	≥ 4	$\geq 2k-1$
\mathcal{RP}_{NAV}^k	≥ k + 2	

unions of languages and the sets of regular patterns having non-adjacent variables.

This paper is organized as follows. In Sect.2 as preparations, we give definitions of pattern languages, regular pattern languages and compactness, and then introduce the results of Sato et al.[1]. In Sect.3, we show that $S_2(P)$ is a characteristic set of L(P) in \mathcal{RPL}^k and \mathcal{RP}^k has compactness with respect to containment. In Sect.4, we propose regular patterns having non-adjacent variables, show that $S_2(P)$ obtained from a set P in \mathcal{RP}^k_{NAV} is a characteristic set of L(P), and \mathcal{RP}^k_{NAV} has compactness with respect to containment

2. Preliminaries

2.1 Basic definitions and notations

Let Σ be a non-empty finite set of constant symbols. Let X be an infinite set of variable symbols such that $\Sigma \cap X = \emptyset$ holds. Then, a *string* on $\Sigma \cup X$ is a sequence of symbols in $\Sigma \cup X$. Particularly, the string having no symbol is called the *empty string* and is denoted by ε . We denote by $(\Sigma \cup X)^*$ the set of all strings on $\Sigma \cup X$ and by $(\Sigma \cup X)^+$ the set of all strings on $\Sigma \cup X$ except ε , i.e., $(\Sigma \cup X)^+ = (\Sigma \cup X)^* \setminus \{\varepsilon\}$.

A pattern on $\Sigma \cup X$ is a string in $(\Sigma \cup X)^*$. Note that the empty string ε is a pattern on $\Sigma \cup X$. A pattern p is said to be regular if each variable symbol appears at most once in p. The length of p, denote by |p|, is the number of symbols in p. Note that $|\varepsilon| = 0$ holds. The set of all patterns and regular patterns are denoted by $\mathcal P$ and $\mathcal R\mathcal P$, respectively. For a set S, we denote by $\sharp S$ the number of elements in S. Let p,q be strings. If p and q are equal as strings, we denote it by p=q. We denote by $p\cdot q$ the string obtained from p and q by concatenating q after p. Note that for a string p and the empty string ε , $p\cdot \varepsilon = \varepsilon \cdot p = p$.

A substitution θ is a mapping from $(\Sigma \cup X)^*$ to $(\Sigma \cup X)^*$ such that (1) θ is a homomorphism with respect to string concatenation, i.e., $\theta(p \cdot q) = \theta(p) \cdot \theta(q)$ holds for patterns p and q, (2) $\theta(\varepsilon) = \varepsilon$ holds, (3) for each constant symbol $a \in \Sigma$, $\theta(a) = a$ holds, and (4) for each variable symbol $x \in X$, $|\theta(x)| \ge 1$ holds. Let x_1, \ldots, x_n are variable symbols and p_1, \ldots, p_n non-empty patterns. The notation $\{x_1 := p_1, \ldots, x_n := p_n\}$ denotes a substitution that replaces each variable symbol x_i with a non-empty pattern p_i for $i \in \{1, \ldots, n\}$. For a pattern p and a substitution $\theta = \{x_1 := p_1, \ldots, x_n := p_n\}$, we denote by $p\theta$ a new pattern obtained from p by replacing variable symbols x_1, \ldots, x_n in p with patterns p_1, \ldots, p_n according to θ , respectively.

For a pattern p and q, the pattern q is a *generalization* of p, or p is an *instance* of q, denoted by $p \leq q$, if there exists a substitution θ such that $p = q\theta$ holds. If $p \leq q$ and

 $p \succeq q$ hold, we denote it by $p \equiv q$. The notation $p \equiv q$ means that p and q are equal as strings except for variable symbols. For a pattern p, the pattern language of p, denoted by L(p), is the set $\{w \in \Sigma^* \mid w \preceq p\}$. For patterns p and q, it is clear that L(p) = L(q) if $p \equiv q$, and $L(p) \subseteq L(q)$ if $p \preceq q$. Note that $L(\varepsilon) = \{\varepsilon\}$. In particular, if p is a regular pattern, we say that L(p) is a regular pattern language. The set of all pattern languages and regular patterns languages are denoted by \mathcal{PL} and \mathcal{RPL} , respectively.

Lemma 1 (Mukouchi[2]): Let p and q be regular patterns. Then $p \leq q$ if and only if $L(p) \subseteq L(q)$.

Next, we consider unions of pattern languages. The class of all non-empty finite subsets of \mathcal{P} is denoted by \mathcal{P}^+ , i.e., $\mathcal{P}^+ = \{P \subseteq \mathcal{P} \mid 0 < \sharp P < \infty\}$. For a positive integer k (k > 0), the class of non-empty sets consisting of at most k patterns, i.e., $\mathcal{P}^k = \{P \subseteq \mathcal{P} \mid 0 < \sharp P \leq k\}$. We denote by \mathcal{PL}^k the class of unions of at most k pattern languages, i.e., $\mathcal{PL}^k = \{L(P) \mid P \in \mathcal{P}^k\}$, where $L(P) = \bigcup_{p \in P} L(p)$. In a similar way, we also define \mathcal{RP}^+ , \mathcal{RP}^k and \mathcal{RPL}^k . For P, Q in \mathcal{P}^+ , the notation $P \sqsubseteq Q$ means that for any $p \in P$ there is a pattern $q \in Q$ such that $p \preceq q$ holds. It is clear that $P \sqsubseteq Q$ implies $L(P) \subseteq L(Q)$. However, the converse is not valid in general.

2.2 Characteristic sets

Definition 1: Let C be a class of languages, L a language in C and S a non-empty finite subset of L. We say that S is a *characteristic* set of L within C if for any $L' \in C$, $S \subseteq L'$ implies $L \subseteq L'$.

Let n be a positive integer and p a regular pattern. We denote by $S_n(p)$ the set of all strings in Σ^* obtained by replacing all variable symbols in p with strings in Σ^+ of length at most n. Moreover, for a positive integer n and a set $P \in \mathcal{RP}^+$, let $S_n(P) = \bigcup_{p \in P} S_n(p)$. It is clear that $S_n(P) \subseteq S_{n+1}(P) \subseteq L(P)$ for any positive integer n.

Theorem 1 (Sato et al.[1]): Let k be a positive integer and $P \in \mathcal{RP}^k$. Then, there exists a positive integer n such that $S_n(P)$ is a characteristic set of L(P) within \mathcal{RPL}^k .

Sato et al.[1] showed that 2 is sufficient for the number n in the theorem above, under the assumption that the number of constants is not less than 2k - 1. Hence, in this paper, we consider a characteristic set $S_2(P)$ of L(P) within \mathcal{RPL}^k .

Theorem 2 (Sato et al.[1]): Let p, q, p_1 , p_2 , q_1 , q_2 , q_3 be regular patterns and x a variable symbol with $p = p_1 x p_2$ and $q = q_1 q_2 q_3$. Then $p \le q$ if the following three conditions are holds:

- (i) $p_1 \leq q_1 q_2$, (ii) $p_2 \leq q_2 q_3$,
- (iii) q_2 contains at least one variable symbol.

Lemma 2 (Sato et al.[1]): Suppose $\sharp \Sigma \geq 3$. Let p, p_1 , p_2 , q be regular patterns and x a variable symbol with $p = p_1 x p_2$. Let a, b and c be mutually distinct constant symbols. If $p_1 a p_2 \leq q$, $p_1 b p_2 \leq q$ and $p_1 c p_2 \leq q$, then $p \leq q$ holds.

Lemma 3 (Sato et al.[1]): Suppose $\sharp \Sigma \geq 3$. Let p_1, p_2, q_1, q_2 be regular patterns and x a variable symbol. Let a, b be constant symbols with $a \neq b$ and w a string in Σ^* . Let $p = p_1 AwxwBp_2$ and $q = q_1 AwBq_2$ be regular patterns that satisfy the following three conditions:

- (i) $p_1 \leq q_1$,
- (ii) $p_2 \leq q_2$,
- (iii) $(A, B) \in \{(a, b), (b, a)\}.$

If $p\{x := a\} \leq q$ and $p\{x := b\} \leq q$, then we have $p \not \leq q$.

From Lemma 2, the following lemma holds.

Theorem 3 (Sato et al.[1]): Let $\sharp \Sigma \geq 2k+1$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^k$. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_1(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Example 1 in [1] is given as a counter-example of Theorem 3.

From Theorem 3, we have the following corollary.

Corollary 1 (Sato et al.[1]): Let $\sharp \Sigma \geq 3$ and p, q regular patterns. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_1(p) \subseteq L(q)$$
, (ii) $p \leq q$, (iii) $L(p) \subseteq L(q)$.

2.3 Basic word equations

Proposition 1: Let w be a string of constant symbols in Σ and a, b constant symbols in Σ . If

$$wa = bw \tag{1}$$

holds, then a = b holds.

Proof. Since it is trivial we omit the proof.
$$\Box$$

Proposition 2: Let w be a string of constant symbols in Σ and a, b, c, d constant symbols in Σ . If

$$wda = bcw (2)$$

holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

Proof. We will prove this proposition by induction on |w|.

- |w| = 0, 1, 2, 3: it is straightforward to observe that $(b, c) \in \{(a, d), (d, a)\}$ holds.
- $|w| \ge 4$: We assume that for any string u with $0 \le |u| < n$, if uda = bcu holds, $(b, c) \in \{(a, d), (d, a)\}$ holds. Since the string w has a prefix bc and a suffix da, there exists a string u with |u| = |w| 4 < |w| such that w = bcuda holds. Since wda = bcw, we have bcudada = bcbcuda, and then uda = bcu. Thus, from the assumption, we get $(b, c) \in \{(a, d), (d, a)\}$.

From the above, we conclude that if wda = bcw holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

The conclusion from Proposition 2 shows that $(a, d) \in$

 $\{(b,c),(c,b)\}$. Therefore, if the equation daw = wbd holds, we arrive at the same conclusion.

Proposition 3: Let w, w' be strings of constant symbols in Σ and a, b, c, d constant symbols in Σ . If

$$wdaw' = w'bcw (3)$$

holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

Proof. We will prove this proposition by an induction on |w| + |w'|. Without loss of generality, we assume that $|w| \ge |w'|$ because, if |w| > |w'|, we arrive at the same conclusion that $(a, d) \in \{(b, c), (c, b)\}$ holds.

• $|w| \ge 0$ and |w'| = 0: Eq. (3) reduces to wda = bcw. By Proposition 2, $(b, c) \in \{(a, d), (d, a)\}$ holds.

We assume that for constant strings u and u' with |u| + |u'| < |w| + |w'|, if udau' = u'bcu holds, then $(b, c) \in \{(a, d), (d, a)\}$ holds. We divide the relations between |w| and |w'| into the following four cases:

- $0 < |w'| \le |w| \le |w'| + 1$: When either |w| = |w'| or |w| = |w'| + 1, Eq. (3) is illustrated in Figs. 1 and 2, respectively. If |w| = |w'|, (b, c) = (d, a) holds. If |w| = |w'| + 1, a = c and w = w'b = dw' hold. From Proposition 1, we deduce that b = d. Therefore, $(b, c) \in \{(a, d), (d, a)\}$ holds.
- $|w'| + 2 \le |w| \le 2|w'| 1$: In Eq. 3, since |wdaw'| =|w'bcw| = |w| + |w'| + 2, a suffix of w overlaps with a prefix of w, as illustrated in Fig. 3. That is, there exists a constant string u of length 2|w| - (|w| + |w'| +2) = |w| - |w'| - 2 such that u is both a prefix and a suffix of w. Since uda has a length of |w| - |w'|, it is also a prefix of w. Similarly, bcu is a suffix of w. Because $|w| - (|uda| + |bcu|) = 2|w| - |w'| \ge 1$, there exist a constant string u' of length 2|w'| - |w| such that w = udavbcu holds. Since w' is a suffix of w and |u'bcu| = (2|w'| - |w|) + 2 + (|w| - |w'| - 2) = |w'|,we have w' = u'bcu. Similarly, w' = udau'. Thus, we derive the equation u'bcu = udau'. Since |u| = $|w|-|w'|-2 \le |w|-3 < |w| \text{ and } |u'| = 2|w'|-|w| < |w|,$ i.e., |u| + |u'| < |w| + |w'|, the induction hypothesis on |u| + |u'| implies that $(b, c) \in \{(a, d), (d, a)\}$ holds.
- $2|w'| \le |w| \le 2|w'| + 3$: When |w| = 2|w'|, it is straightforward to observe that w = w'w'. Therefore, w'da = bcw' holds, as illustrated in Fig. 4. From Proposition 2, $(b,c) \in \{(a,d),(d,a)\}$ holds. When |w| = 2|w'| + i (i = 1,2,3), Eq. (3) is depicted in Figs. 5, 6, and 7, respectively. When |w| = 2|w'| + 2, it is clear that (b,c) = (d,a). When |w| = 2|w'| + 1 and |w| = 2|w'| + 3, Proposition 1 implies that (b,c) = (a,d) holds.
- $2|w'| + 4 \le |w|$: Since the strings w'bc and adw' are a prefix and a suffix of w, respectively, and |w'bc| + |adw'| = 2|w'| + 4, there exists a string u with $|u| \ge 0$ such that w = w'bcudaw' holds. From Eq. (3), w'bcudaw'daw' = w'bcw'bcudaw', i.e., udaw' = w'bcu holds, as illustrated in Fig. 8. Let

Fig. 1 Case |w| = |w'| in Proposition 3

Fig. 2 Case |w| = |w'| + 1 in Proposition 3

Fig. 3 Case $|w'| + 2 \le |w| \le 2|w'| - 1$ in Proposition 3

Fig. 4 Case |w| = 2|w'| in Proposition 3

Fig. 5 Case |w| = 2|w'| + 1 in Proposition 3

Fig. 6 Case |w| = 2|w'| + 2 in Proposition 3

Fig. 7 Case |w| = 2|w'| + 3 in Proposition 3

u' = w'. Since |u| + |u'| = |w| - (2|w'| + 4) + |w'| < |w| + |w'|, the induction hypothesis on |u| + |u'| implies that $(b, c) \in \{(a, d), (d, a)\}$ holds.

From the above, we conclude that if wdaw' = w'bcw, then $(b, c) \in \{(a, d), (d, a)\}$ holds.

Fig. 8 Case $2|w'| + 4 \le |w|$ in Proposition 3

3. Compactness for Sets of Regular Patterns

3.1 Compactness

In this section, we define the compactness of sets of regular patterns, formally. Then, if $\sharp \Sigma \geq 2k-1$ holds, we show that \mathcal{RP}^k has compactness with respect to the containment.

Definition 2: Let C be a subset of \mathcal{RP}^+ . For any regular pattern $p \in \mathcal{RP}$ and any set $Q \in C$, the set C said to have *compactness with respect to containment* if there exists a regular pattern $q \in Q$ such that $L(p) \subseteq L(q)$ holds if $L(p) \subseteq L(Q)$ holds.

Let $D \subset \mathcal{RP}$ with |D| = 2 or 3, and let p,q be regular patterns in \mathcal{RP} . In the following two subsections (Subsecs. 3.2 and 3.3), we provide the conditions on D under which the implication holds: if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$.

$$3.2 |D| = 2$$

Lemma 4 (Sato et al.[1]): Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and let p, q be regular patterns on Σ . Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol that does not appear in p and q:

(i)
$$D = \{ay, by\} (a \neq b),$$

(ii)
$$D = \{ya, yb\} (a \neq b)$$
.

Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$.

Proof. It is obvious if no variable symbol appears in p. Therefore, let $p = p_1 x p_2$, where p_i (i = 1, 2) is an empty symbol or a regular pattern on $\Sigma \cup X$, and x is a variable symbol. We assume that $p\{x := xy\} \not\preceq q$ in order to derive a contradictions. In the case of (ii), by reversing the strings p and q, we can prove that the assumption $p\{x := xy\} \preceq q$ leads to a contradiction, as in the case of (i). Therefore, in the following, we consider only the case of (i): $D = \{ay, by\}$ $(a \neq b)$.

Since $p\{x := xy\} \not \leq q$, $p_1ayp_2 \leq q$ and $p_1byp_2 \leq q$, there exist regular patterns q_1, q_2 on Σ such that $q = q_1ay_1wby_2q_2$ or $q = q_1by_1way_2q_2$ for some variable symbols y_1, y_2 ($y_1 \neq y_2$) and a constant string w ($|w| \geq 0$) from Theorem 2. When $q = q_1ay_1wby_2q_2$ holds, the following four conditions hold: For $y_1', y_2' \in X$,

(1)
$$p_1 \leq q_1$$
, (1') $p_2 \leq wby_2q_2$ or $p_2 \leq y_1'wby_2q_2$,

Fig. 9 Let $\Sigma = \{a,b,c,d,e,f,g\}$ and $p,q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. These figures (1) and (2) express two cases $D = \{ay,by\}$ and $D = \{ya,yb\}$, respectively. In these cases, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$ holds.

(2)
$$p_1 \le q_1 a y_1 w$$
, (2') $p_2 \le q_2$ or $p_2 \le y_2' q_2$.

From (2), there exist regular patterns p_1', p_1'' such that $p_1 = p_1'p_1'', p_1' \leq q_1a$ and $p_1'' \leq y_1w$ hold. Therefore, since $p = p_1xp_2 = p_1'p_1''xp_2$, if $p_2 \leq wby_2q_2$ of (1') holds, $p \leq q_1ap_1''xwby_2q_2 \equiv q\{y_1 := p_1''x\}$ holds. If $p_2 \leq y_1'wby_2q_2$ of (1') holds, $p \leq q_1ap_1''xy_1'wby_2q_2 = q\{y_1 := p_1''xy_1'\}$ holds. Thus, $p\{x := xy\} \leq q\{y_1 := p_1''xy_1'\}$ holds. Hence, $p \leq q$ holds. This contradicts the assumption. Therefore, we conclude that if $p\{x := r\} \leq q$ for all $r \in \{ay, by\}$ $(a \neq b)$, then $p\{x := xy\} \leq q$ holds.

Let p,q be regular patterns in \mathcal{RP} . In this paper, the statement like Lemma 4 is illustrated by a bipartite graph (Σ, Σ, E) where $E = \{(a,b) \in \Sigma \times \Sigma \mid p\{x := ab\} \leq q\}$. For example, the conditions (i) and (ii) in Lemma 4 are illustrated in (1) and (2) in Fig. 9, respectively.

$$3.3 |D| = 3$$

Lemma 5: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and p, q regular patterns on $\Sigma \cup X$. Let D be the following set of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q:

$$D = \{ya, bc, dy\} (b \notin \{a, d\} \text{ and } c \notin \{a, d\}).$$

Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$:

Proof. If no variable symbol appears in p, the statement holds trivially. Thus, for a variable symbol $x \in X$, let $p = p_1 x p_2$, where each p_i (i = 1, 2) is either an empty symbol or a regular pattern on $\Sigma \cup X$. We assume that $p\{x := xy\} \nleq q$ in order to derive a contradiction.

Since $p\{x := r\} \leq q$ for all $r \in D$, there are three strings of length 2 in q corresponding to ya, bc, dy. Note that the three strings may appear with partial overlaps. The symbols in D correspond to either a variable or a constant symbol in q. Let y_1, y_2, y_3 be variable symbols appearing in q. The strings ya and dy must correspond to the strings y_1a and dy_2 in q, respectively. There are three possible strings

in q that correspond to bc in $p\{x := bc\}$, as follows:

(a)
$$bc$$
, (b) y_3c , (c) by_3 .

Suppose that there exists (b) y_3c in q that corresponds to bc in $p\{x := bc\}$, i.e., there exist q_1 and q_2 , each of which is the empty string or a regular pattern on $\Sigma \cup X$, such that:

- (1) $p_1bcp_2 \leq q_1y_3cq_2$,
- (2) either $p_1 \leq q_1$ or $p_1 \leq q_1 y_3'$ for some variable symbol $y_3' \in X$, and
- (3) $p_2 \leq q_2$.

In this case, it is straightforward to see that $p\{x := yc\} = p_1ycp_2 \le q_1y_3cq_2$ also holds. Thus, both $p\{x := ya\} \le q$ and $p\{x := yc\} \le q$ hold. Since $c \ne a$, by (ii) in Lemma 4, $p\{x := xy\} \le q$ also holds. This contradicts the assumption. Similarly, the case (c) leads to a contradiction by (i) in Lemma 4. Therefore, in the following, we consider only case (a).

Since $p\{x := xy\} \not \leq q$ and the condition $b \notin \{a,d\}$ and $c \notin \{a,d\}$ hold, the regular pattern q can be expressed in one of the following forms: Let y_1,y_2 be distinct variable symbols in X and q_1,q_2,w,w' be either the empty string or a regular pattern on $\Sigma \cup X$.

- (a1) $q = q_1 AwBw'Cq_2$, where $\{A, B, C\} = \{y_1a, bc, dy_2\}$,
- (a2) $q = q_1 AwBq_2$, where $\{A, B\} = \{dy_1 a, bc\}$,
- (a3) $q = q_1 AwBq_2$, where $\{A, B\} = \{y_1 ay_2, bc\}$ $\{a = d\}$.

First, we consider case (a1).

Claim 1. $B \notin \{y_1a, dy_2\}.$

Proof of Claim 1. Suppose that $(A, B, C) = (dy_2, y_1a, bc)$. The following conditions must be satisfied: For $y'_1, y'_2 \in X$,

- (1) $p_1 \leq q_1$, (1') $p_2 \leq wy_1 aw'bcq_2$ or $p_2 \leq y'_2 wy_1 aw'bcq_2$,
- (2) $p_1 \leq q_1 dy_2 w$ or $p_1 \leq q_1 dy_2 w y'_1$, (2') $p_2 \leq w' b c q_2$,
- (3) $p_1 \leq q_1 dy_2 w y_1 a w'$, (3') $p_2 \leq q_2$.

When $p_2 \preceq wy_1aw'bcq_2$ in (1') holds, let $q_1' = q_1dy_2$, $q_2' = wy_1aw'$, $q_3' = bcq_2$. Since $p_1 \preceq q_1dy_2wy_1aw'$ holds from (3), both $p_1 \preceq q_1'q_2'$ and $p_2 \preceq q_2'q_3'$ hold, and q_2' contains a variable symbol. When $p_2 \preceq y_2'wy_1aw'bcq_2$ in (1') holds, let $q_1' = q_1d$, $q_2' = y_2wy_1aw'$, $q_3' = bcq_2$. Since $p_1 \preceq q_1dy_2wy_1aw'$ holds from (3), both $p_1 \preceq q_1'q_2'$ and $p_2 \preceq q_2'q_3'$ hold, and q_2' contains a variable symbol. In both cases, by Theorem 2, $p \preceq q$ holds. This contradicts the assumption that $p\{x := xy\} \not\preceq q$.

Similarly, we can show that any case where $(A, B, C) = (y_1a, dy_2, bc)$, (bc, y_1a, dy_2) , or (bc, dy_2, y_1a) also contradicts the assumption. Therefore, we have $B \notin \{y_1a, dy_2\}$. (*End of Proof of Claim*)

Claim 2.
$$(A, B, C) = (y_1a, bc, dy_2)$$
.

Proof of Claim 2. From *Claim* 1, we have B = bc. Suppose that $(A, B, C) = (dy_2, bc, y_1a)$, i.e., $q = q_1dy_2wbcw'y_1aq_2$ holds. Then, the following conditions must be satisfied: For

 $y_1', y_2' \in X$,

(1)
$$p_1 \leq q_1$$
,
 $p_2 \leq wbcw'y_1aq_2$ or
 $p_2 \leq y_2'wbcw'y_1aq_2$,

- (2) $p_1 \leq q_1 dy_2 w$, (2') $p_2 \leq w' y_1 a q_2$,
- (3) $p_1 \leq q_1 dy_2 wbcw'$ or (3') $p_2 \leq q_2$. $p_1 \leq q_1 dy_2 wbcw' y'_1$,

From $p_1 \leq q_1 dy_2 w$ in (2), p_1 is expressed as $p_1' p_1''$ for some p_1' and p_1'' , where $p_1' \leq q_1 d$ and $p_1'' \leq y_2 w$. When $p_2 \leq wbcw'y_1aq_2$ in (1'), we have $p=p_1xp_2=p_1'p_1''xp_2 \leq q_1dp_1''xwbcw'y_1aq_2=q\{y_2:=p_1''x\}$. Thus, $p\{x:=xy\} \leq q\{y_2:=p_1''xy\}$ holds. This contradicts the assumption that $p\{x:=xy\} \not\leq q$. When $p_2 \leq y_2'wbcw'y_1aq_2$ in (1'), we similarly have $p=p_1xp_2=p_1'p_1''xp_2 \leq q_1dp_1''xy_2'wbcw'y_1aq_2=q\{y_2:=p_1''xy_2'\}$. Thus, $p\{x:=xy\} \leq q\{y_2:=p_1''xy_2'\}$ holds. This also contradicts the assumption. Therefore, we conclude that $(A,B,C)=(y_1a,bc,dy_2)$. (End of Proof of Claim)

From *Claim* 2, The regular pattern q is expressed as $q_1y_1awbcw'dy_2q_2$, where $b \notin \{a,d\}$ and $c \notin \{a,d\}$. If $p\{x := xy\} \npreceq q$ holds, the following conditions must be satisfied: For $y'_1, y'_2 \in X$,

- (1) $p_1 \leq q_1$ or $p_1 \leq q_1 y_1'$, (1') $p_2 \leq wbcw'dy_2q_2$,
- (2) $p_1 \leq q_1 y_1 a w$, (2') $p_2 \leq w' d y_2 q_2$,
- (3) $p_1 \leq q_1 y_1 awbcw'$, (3') $p_2 \leq q_2 \text{ or } p_2 \leq y'_2 q_2$.

Claim 3. w and w' contain no variable symbols.

Proof of Claim 3. Let $q_1' = q_1y_1a$, $q_2' = wbcw'$, and $q_3' = dy_2q_2$. From (1') and (3), $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$. If q_2' contains a variable symbol, then by Theorem 2, $p \leq q$ holds. This contradicts the assumption. Therefore, w and w' contain no variable symbols. (*End of Proof of Claim*)

From Claim 3, w and w' are strings consisting of symbols in Σ . From (1') and (2'), wbcw'd and w'd are prefixes of p_2 , and from (2) and (3), awbcw' and aw are suffixes of p_1 . From these facts:

- |w| = |w'|: Directly, b = d and a = c hold.
- |w| = |w'| + 1: Also, a = b holds.
- |w| = |w'| + 2 Since awbcw' and aw are suffixes of p₁, and |w| ≥ 2, a is a suffix of w. From (1') and (2'), we have w = w'da. Furthermore, since awbcw' and aw are suffixes of p₁, it follows that w = bcw'. Thus, w'da = bcw' holds. From Proposition 2, (b, c) ∈ {(a, d), (d, a)} holds. Therefore, these cases contradict the conditions b ∉ {a, d} and c ∉ {a, d}.
- $|w| \ge |w'| + 3$: From (2) and (3), there exists a string w'' of length |w| |w'| 2 such that w = w''bcw' holds. Moreover, from (2) and (3), since |aw| < |wbcw'| and aw = aw''bcw', it follows that aw'' is a suffix of w. On the other hand, from (1') and (2'), w'd is a prefix of w. Since |w'd| + |aw''| = |w'| + |w''| + 2 = |w|, it follows that w = w'daw'' (Fig. 10). Therefore, w'daw'' = w''bcw' holds. From Proposition 3,

Fig. 10 Case (a1) in Lemma 5: Relation of strings w, w', and w''

 $(b,c) \in \{(a,d),(d,a)\}$ holds. This contradicts the conditions $b \notin \{a,d\}$ and $c \notin \{a,d\}$.

From the above, we conclude that all cases of (a1) contradict the assertion that $p\{x := xy\} \not \leq q$ and the conditions $b \notin \{a, d\}$ and $c \notin \{a, d\}$.

Second, for the case (a2), we suppose that $(A, B) = (dy_1a, bc)$, i.e., $q = q_1dy_1awbcq_2$ holds. Then, the following conditions must be satisfied for $y'_1 \in X$:

(1)
$$p_1 \leq q_1$$
, (1') $p_2 \leq awbcq_2$ or $p_2 \leq y'_1 awbcq_2$, (2) $p_1 \leq q_1 d$ or $p_2 \leq wbcq_2$, $p_1 \leq q_1 dy'_1$, (3) $p_1 \leq q_1 dy_1 aw$, (3') $p_2 \leq q_2$.

From $p_1 \leq q_1 dy_1 aw$ in (3), p_1 can be expressed as $p_1' p_1''$ for some p_1' and p_1'' , where $p_1' \leq q_1 d$ and $p_1'' \leq y_1 aw$. When $p_2 \leq awbcq_2$ in (1'), we have

$$p = p_1' p_1'' x p_2 \le q_1 dp_1'' x a w b c q_2 = q \{ y_1 := p_1'' x \}.$$

Thus, $p\{x := xy\} \le q\{y_1 := p_1''xy\}$ holds. This contradicts the assumption. When $p_2 \le y_1'awbcq_2$ in (1'), we similarly have

$$p = p_1' p_1'' x p_2 \le q_1 d p_1'' x y_1' w b c q_2 = q \{ y_1 := p_1'' x y_1' \}.$$

Thus, $p\{x := xy\} \le q\{y_1 := p_1''xyy_1'\}$ holds. This contradicts the assumption that $p\{x := xy\} \not\preceq q$. Similarly, we can show that the case $(A, B) = (bc, dy_1a)$ also contradicts the assumption.

Finally, we prove that for the case (a3), $p\{x := xy\} \le q$ holds. Suppose that $(A, B) = (y_1ay_2, bc)$, i.e., $q = q_1y_1ay_2wbcq_2$ holds. Then, the following conditions must be satisfied for $y_1' \in X$:

(1)
$$p_1 \leq q_1$$
 or $p_2 \leq y_2 w b c q_2$, $p_1 \leq q_1 y'_1$, (2) $p_1 \leq q_1 d y_1$, (2') $p_2 \leq w b c q_2$ or $p_2 \leq y'_2 w b c q_2$, (3) $p_1 \leq q_1 y_1 a y_2 w$, (3') $p_2 \leq q_2$.

Let $q_1' = q_1y_1a$, $q_2' = y_2w$, $q_3' = bcq_2$. From (3) and (1'), we have $p_1 \leq q_1'q_2'$ and $p_2 \leq q_2'q_3'$, respectively. Since q_2' contains a variable symbol, Theorem 2 implies that $p \leq q$ holds. This contradicts the assumption. Similarly, we can show that the case $(A, B) = (bc, y_1ay_2)$ also contradicts the

assumption.

From the above, we conclude that if $p\{x := r\} \leq q$ for all $r = \{ya, bc, dy\}$ ($b \notin \{a, d\}$ and $c \notin \{a, d\}$), then $p\{x := xy\} \leq q$ holds.

The condition in Lemma 5 is illustrated in four cases (3)–(6) in Fig. 11.

Lemma 6: Let Σ be an alphabet with $\sharp \Sigma \geq 3$ and let p, q be regular patterns on $\Sigma \cup X$. Let D be one of the following sets of regular patterns on $\Sigma \cup X$, where y is a variable symbol in X that does not appear in p and q.

- (i) $D = \{ya, bc, dy\}$ $(b = a, b \neq d, \text{ and } c \notin \{a, d\}),$
- (ii) $D = \{ya, bc, dy\}$ $(b \notin \{a, d\}, c \neq a, \text{ and } c = d).$

Then, if $p\{x := r\} \le q$ for all $r \in D$, it follows that $p\{x := xy\} \le q$.

In (i), we note that if b = d, then, because $p\{x := dy\} \le q$, $p\{x := bc\} \le q$ is always satisfied. In this sense, D essentially consists of only two elements. To avoid this, we assume $b \ne d$. In (ii), for the same reason, we assume $c \ne a$.

Proof. It is obvious if no variable symbol appears in p. Therefore, let $p = p_1 x p_2$, where p_i (for i = 1, 2) is either the empty string or a regular pattern, and x is a variable symbol. We assume that $p\{x := xy\} \not\preceq q$ in order to derive a contradiction. In the case of (ii), by reversing the strings p and q, we can prove that the assumption $p\{x := xy\} \preceq q$ leads to a contradiction, as in the case of (i). Therefore, in the following, we consider only the case of (i): $D = \{ya, bc, dy\}$ ($b = a, b \ne d$, and $c \notin \{a, d\}$).

The proof is almost the same as the proof of Lemma 5. Since $p\{x := r\} \leq q$ for all $r \in D$, there are three strings of length 2 corresponding to ya, bc, dy in q The symbols appearing in D correspond to either a variable or a constant symbol in q. Let y_1 and y_2 be variable symbols appearing in q. The strings ya and dy must correspond to the strings y_1a and dy_2 in q, respectively. For the same reasons stated at the beginning of Lemma 5, the string bc corresponds to the string bc in q as well. Let A, B, C be regular patterns on $\Sigma \cup X$, where $\{A, B, C\} = \{y_1a, ac, dy_3\}$. Since $p\{x := xy\} \nleq q$, q can be expressed in one of the following four forms: Let y_1, y_2 be distinct variable symbols in X, and q_1, q_2, w, w' either the empty string or a regular pattern on $\Sigma \cup X$. From the conditions b = a and $b \neq d$, it follows that $a \neq d$.

- (i1) $q = q_1 AwBw'Cq_2$, where $\{A, B, C\} = \{y_1 a, ac, dy_2\}$.
- (i2) $q = q_1 AwBq_2$, where $\{A, B\} = \{y_1 ac, dy_2\}$.
- (i3) $q = q_1 A q_2$, where $A = dy_1 ac$.

In cases (i1) and (i2), similar to Lemma 5, it is shown that $q = q_1y_1awacw'dy_2q_2$ and $q = q_1y_1acwdy_2q_2$, respectively, where w and w' contain no variable symbols.

First, we consider case (i1). For $q = q_1y_1awacw'dy_2q_2$, the following conditions must be satisfied:

- (1) $p_1 \leq q_1$, (1') $p_2 \leq wacw' dy_2 q_2$,
- (2) $p_1 \leq q_1 y_1 aw$, (2') $p_2 \leq w' dy_2 q_2$,

(3)
$$p_1 \leq q_1 y_1 a w a c w'$$
, (3') $p_2 \leq q_2$.

From (1') and (2'), wacw'd and w'd are prefixes of p_2 , and from (2) and (3), awacw' and aw are suffixes of p_1 . From these facts:

- |w| = |w'|: c = a holds.
- |w| = |w'| + 1: w = w'd = cw' holds. Thus, from Proposition 1, c = d holds.
- |w| = |w'| + 2: w = w' da = acw' holds. From Proposition 2, $c \in \{a, d\}$ holds.
- $|w| \ge |w'| + 3$: From (2) and (3), there exists a string w'' of length |w| |w'| 2 such that w = w''acw' holds. Moreover, from (2) and (3), since |aw| < |wacw'| and aw = aw''acw', it follows that aw'' is a suffix of w. On the other hand, from (1') and (2'), w'd is a prefix of w. Since |w'd| + |aw''| = |w'| + |w''| + 2 = |w|, we have w = w'daw''. Therefore, w'daw'' = w''acw' holds (Fig. 13). From Proposition 3, we have $c \in \{a, d\}$.
- |w'| = |w| + 1: From (1') and (2'), c = d holds.
- |w'| = |w| + 2: From (1') and (2'), d is a prefix of w'. Thus, from (2) and (3), w' = wac = daw holds. From Proposition 2, $c \in \{a, d\}$ holds.
- $|w'| \ge |w| + 3$: From (1') and (2'), there exists a string w'' of length |w| |w'| 2 such that w' = wacw'' holds. Moreover, from (1') and (2'), since |w'd| < |wacw'| and w'd = wacw''d, w'd is a prefix of w'. On the other hand, from (1') and (2'), aw'w is a suffix of w'. Since |w''d| + |aw| = |w'| + |w| + 2 = |w'|, we have w' = w''daw. Therefore, w''daw = wacw'' holds. From Proposition 3, we have $c \in \{a, d\}$.

All the cases contradict the condition $c \notin \{a, d\}$. Therefore, if $b = a, b \neq d$, and $c \notin \{a, d\}$ are satisfied, the case (i1) is impossible.

Second, we consider case (i2). For $q = q_1y_1acwdy_2q_2$, the following conditions must be satisfied:

- (1) $p_1 \leq q_1$, (1') $p_2 \leq cwdy_3q_2$,
- (2) $p_1 \leq q_1 y_1$, (2') $p_2 \leq w dy_3 q_2$,
- (3) $p_1 \leq q_1 y_1 a c w d y_3$, (3') $p_2 \leq q_2$.
- If |w| = 0, from (1') and (2'), the prefix of p₂ is cd and d. Thus, we have c = d.
- If |w| = 1, from (1') and (2'), the prefix of p_2 is cwd and wd. Thus, we have w = c = d.
- If $|w| \ge 2$, then from (1') and (2'), cwd and wd are prefixes of p_2 . Thus, we have cw = wd. From Proposition 2, c = d holds.

All of these cases do not meet b = a, $b \ne d$, and $c \notin \{a, d\}$. Therefore, if b = a, $b \ne d$, and $c \notin \{a, d\}$ are satisfied, the case (i2) is also impossible.

Finally, we consider case (i3). For $q = q_1 dy_1 acq_2$, the following conditions must be satisfied for $y'_1, y''_1 \in X$:

- (1) $p_1 \leq q_1 d$ or $p_1 \leq q_1 dy'_1$, (1') $p_2 \leq cq_2$,
- (2) $p_1 \leq q_1 dy_1$, (2') $p_2 \leq q_2$,

Fig. 11 Let $\Sigma = \{a, b, c, d, e, f, g\}$ and $p, q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. The figure (3) expresses case $D = \{ya, bc, dy\}$ in Lemma 5. The figures (4), (5), and (6) express three cases $D = \{ya, bc, ay\}$, $D = \{ya, bb, dy\}$, and $D = \{ya, bb, ay\}$, respectively. In these cases, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$ holds.

Fig. 12 Substitutions for p and each correspondence to q.

Fig. 13 Case (i1) in Lemma 6: Relation of strings w, w', and w''

(3)
$$p_1 \leq q_1$$
, (3') $p_2 \leq acq_2$ or $p_2 \leq y_1'' acq_2$.

For $p_1 \leq q_1 d$ in (1) and $p_2 \leq acq_2$ in (3'), $p = p_1 x p_2 \leq q_1 dx acq_2 \leq q\{y_1 := x\}$ holds. From this, we have $p\{x := xy\} \leq q\{y_1 := x\}$. This contradicts the assumption that $p\{x := xy\} \nleq q$. Similarly, we can show that the other cases of (1) and (3') also contradict the assumption.

From the above, we conclude that if $p\{x := r\} \le q$ for all $r \in \{ya, bc, dy\}$ $(b = a, b \ne d, \text{ and } c \notin \{a, d\})$, then

Fig. 14 Let $\Sigma = \{a,b,c,d,e,f,g\}$ and $p,q \in \mathcal{RP}$. We assume that the symbols in Σ are mutually distinct. The figures (7) and (8) express two cases $D = \{ya,ac,dy\}$ and $D = \{ya,bd,dy\}$ in Lemma 6, respectively. In these cases, if $p\{x:=r\} \preceq q$ for all $r \in D$, then $p\{x:=xy\} \preceq q$ holds

$$p\{x := xy\} \le q \text{ holds.}$$

The conditions (i) and (ii) in Lemma 6 are illustrated in the cases (7) and (8) in Fig. 14.

When the conditions of both Lemmas 5 and 6 are not satisfied, counterexamples can be constructed as follows:

Proposition 4: Let Σ be an alphabet with $\sharp \Sigma \geq 3$. For a variable symbol y, let $D = \{ya, bc, dy\}$ (b = a and c = d). There exist regular patterns p and q on $\Sigma \cup X$ such that $p\{x := r\} \leq q$ for any $r \in D$, but $p\{x := xy\} \not \preceq q$.

Proof. We provide an example to demonstrate this proposition. Let a, b, c, d, e be constant symbols in Σ , and let x, y, y_1, y_2 be variable symbols in X. Define the regular patterns p and q as follows:

```
p = eabcbcadabcbcadabcbcadade,

q = y_1 abcbcadabcbcadabcbcadady_2 (b = a and c = d).
```

Obviously $p\{x := xy\} \not\preceq q$ holds. For these p and q, the condition for Proposition 4 holds as follows (see also Fig. 12):

```
p \{x := ya\}
= (eabcbcadabcbcadabcbcadad)abcadadabcbcadade
= q\{y_1 := eabcbcadabcbcaday, y_2 := e\}
\leq q,
p \{x := bc\}
= (eabcbcad)abcbcadabcbcadad(abcbcadade)
= q\{y_1 := eabcbcad, y_2 := abcbcadade\}
\leq q,
p \{x := dy\}
= eabcbcadabcbcadad(ybcadadabcbcadade)
= q\{y_1 := e, y_2 := ybcadadabcbcadade\}
\leq q.
```

In Lemma 14 (ii) of [1], they stated that, when $\sharp \Sigma \geq 3$, for regular patterns p,q, if $p\{x:=r\} \leq q$ for any $r \in D$, then $p\{x:=xy\} \leq q$ holds, where $D=\{a_1b_1,a_2b_2,a_3b_3\}$ $\{a_i \neq a_j \text{ and } b_i \neq b_j \text{ for each } i,j \ (i \neq j,1 \leq i,j \leq 3)\}$. Unfortunately, there exist the following counterexamples of Lemma 14 (ii) of [1].

Example 1: Assume that $a_1 = b_2$ and $a_3 = b_1$ hold.

- (1) Let $p = ca_1x'a_3c$ and $q = xa_1a_3y$. It is clear that $\{x := xy\} \not \leq q$ holds. However, we can see that $p\{x' := a_1b_1\} \leq q$, $p\{x' := a_2b_2\} \leq q$ and $p\{x' := a_3b_3\} \leq q$ hold, since $p\{x' := a_1b_1\} = ca_1a_1b_1a_3c = q\{x := ca_1, y := a_3c\}$, $p\{x' := a_2b_2\} = ca_1a_2b_2a_3c = q\{x := ca_1a_2, y := c\}$ and $p\{x' := a_3b_3\} = ca_1a_3b_3a_3c = q\{x := c, y := b_3a_3c\}$ hold.
- (2) Let $p = cb_2a_1b_1b_2x'a_1b_1b_2a_3c$ and $q = xb_2a_1b_1b_2a_3y$. It is clear that $p\{x := xy\} \not \perp q$ holds. However, we have $p\{x' := a_1b_1\} \leq q$, $p\{x' := a_2b_2\} \leq q$, and $p\{x' := a_3b_3\} \leq q$, since $p\{x' := a_1b_1\} = cb_2a_1b_1b_2a_1b_1a_1b_1b_2a_3c = q\{x := cb_2a_1b_1, y := b_2a_3c\}$, $p\{x' := a_2b_2\} = cb_2a_1b_1b_2a_2b_2a_1b_1b_2a_3c = q\{x := cb_2a_1b_1b_2a_2, y := c\}$, and $p\{x' := a_3b_3\} = cb_2a_1b_1b_2a_3b_3a_1b_1b_2a_3c = q\{x := c, y := b_3a_1b_1b_2a_3c\}$ hold.

Lemma 7: Let $D = \{a_1b_1, a_2b_2, a_3b_3\}$, where $a_i \neq a_j$ and $b_i \neq b_j$ for each i, j ($i \neq j, 1 \leq i, j \leq 3$), $b_1 \neq a_2$ and $b_2 \neq a_3$. Let p, q be regular patterns such that a variable symbol y does not appear in p. Then, if $p\{x := r\} \leq q$ for all $r \in D$, then $p\{x := xy\} \leq q$.

Proof. It is obvious if the variable symbol x does not appear in p. Therefore, let $p=p_1xp_2$, where p_1,p_2 are regular patterns. We assume that $p\{x:=xy\} \not \leq q$ in order to derive the contradictions. Since $p\{x:=r\} \preceq q$ holds for any $r \in D$, the regular pattern q contains a_1b_1,a_2b_2 and a_3b_3 . We remark that a_i and b_j may be the same for $i,j(1 \leq i,j \leq 3)$. Since $p\{x:=r\} \preceq q$ for all $r \in D$ holds, there exist the following 10 cases (i)–(xv) for three regular patterns on Σ contained in q that correspond to three constant strings in D: Here, y_1, y_2, y_3 are variable symbols.

```
(i) a_1b_1, a_2b_2, a_3b_3 (vi) a_1b_1, y_1b_2, y_2b_3

(ii) a_1b_1, a_2b_2, a_3y_1 (vii) y_1b_1, y_2b_2, y_3b_3

(iii) a_1b_1, a_2b_2, y_1b_3 (viii) y_1b_1, y_2b_2, a_3y_3

(iv) a_1b_1, y_1b_2, a_3y_2 (ix) y_1b_1, a_2y_2, a_3y_3

(v) a_1b_1, a_2y_1, a_3y_2 (x) a_1y_1, a_2y_2, a_3y_3
```

For the case (iv), we can prove that $p\{x := xy\} \le q$ holds from Lemma **??**. For the cases (v)–(x), we can prove that $p\{x := xy\} \le q$ holds from Lemma **??**. Hence, for the cases (i)–(iii), we will prove that $p\{x := xy\} \le q$ holds.

(I) Case of (i), that are the cases that q contains a_1b_1, a_2b_2 and a_3b_3 :

We consider the following four cases (I-1)-(I-4) of q for some regular patterns q_1, q_2 and some constant strings w, w' ($|w| \ge 0$ and $|w'| \ge 0$):

```
(I-1) q = q_1 a_1 b_1 w a_2 b_2 w' a_3 b_3 q_2,

(I-2) q = q_1 a_1 b_1 a_3 b_3 q_2 (b_1 = a_2 and a_3 = b_2),

(I-3) q = q_1 a_1 b_1 b_2 w a_3 b_3 q_2 (b_1 = a_2),

(I-4) q = q_1 a_1 b_1 w a_2 b_2 b_3 q_2 (b_2 = a_3).
```

(I-1) Case of $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 b_3 q_2$: Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

```
(1) p_1 \preceq q_1 (1') p_2 \preceq wa_2b_2w'a_3b_3q_2

(2) p_1 \preceq q_1a_1b_1w (2') p_2 \preceq w'a_3b_3q_2

(3) p_1 \preceq q_1a_1b_1wa_2b_2w' (3') p_2 \preceq q_2
```

If |w| = |w'| holds, $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3). Then, $a_1b_1w = a_2b_2w'$. Hence, $a_1b_1 = a_2b_2$. This contracts the assumption of $a_1 \neq a_2$ and $b_1 \neq b_2$.

If |w|+1=|w'| holds, $wa_2b_2w'a_3b_3$ and $w'a_3b_3$ are the prefix of p_2 . If there exists a constant symbol w_1 such that $w'a_3b_3=ww_1a_3b_3$, then b_2 and a_3 are the same symbol from $wa_2b_2=ww_1a_3$. From the above conditions (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 . Then, there exists a constant symbol w_2 such that $w'=w_2w$, then b_2 and a_1 are the same symbol from $b_2w_2w=a_1b_1w$. Hence, from $b_2=a_3$, a_3 and a_1 are same symbol. This contradicts the assumption of $a_3 \neq a_1$.

If |w|+1 < |w'|, from the above (2) and (3), $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 . If there exists a constant string w_1 ($|w_1| \ge 2$) such that $w' = w_1w$, then a_1b_1 is the suffix of w_1 . From the above conditions (1') and (2'), $wa_2b_2w'a_3b_3$ and $w'a_3b_3$ are the prefix of p_2 . If there exist constant strings w_1 and w_2 such that $w' = w_1w = ww_2$ holds, then a_2b_2 and a_3b_3 are the suffix of w_1 from $|w_1| = |w_2|$

and $|ww_2a_3b_3| = |wa_2b_2w_1|$. Hence, $a_1b_1 = a_3b_3$. This contradicts the assumption of $a_1 \neq a_3$ and $b_1 \neq b_3$.

If |w| > |w'|, we can prove the contradiction in a similar way as $|w| \le |w'|$.

(I-2) Case of $q = q_1 a_1 b_1 a_3 b_3 q_2$ ($b_1 = a_2$ and $a_3 = b_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \le q_1$$
 (1') $p_2 \le a_3b_3q_2$

(2)
$$p_1 \leq q_1 a_1$$
 (2') $p_2 \leq b_3 q_2$

(3)
$$p_1 \leq q_1 a_1 b_1$$
 (3') $p_2 \leq q_2$

From the above conditions (2) and (3), since a_1b_1 and a_1 are the suffix of p_1 , $b_1 = a_1$ holds. From the assumption of $b_1 = a_2$, $a_1 = a_2$. This contradicts the assumption of $a_1 \neq a_2$.

(I-3) Case of $q = q_1 a_1 b_1 b_2 w a_3 b_3 q_2$ ($b_1 = a_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

$$(1) p_1 \leq q_1 \qquad \qquad (1') p_2 \leq b_2 w a_3 b_3 q_2$$

(2)
$$p_1 \leq q_1 a_1$$
 (2') $p_2 \leq w a_3 b_3 q_2$

(3)
$$p_1 \leq q_1 a_1 b_1 b_2 w$$
 (3') $p_2 \leq q_2$

If |w| = 0, i.e., w is the empty string, then a_1 and $a_1b_1b_2$ are the suffix of p_1 from the above conditions (2) and (3) and $b_2a_3b_3$ and a_3b_3 are the prefix of p_2 from the above conditions (1') and (2'). Since $b_2 = a_1$ and $b_2a_3 = a_3b_3$, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If $|w| \ge 1$, a_1 and $a_1b_1b_2w$ are the suffix of p_1 from the above conditions (2) and (3). Hence, the last symbol of w is a_1 . Moreover, $b_2wa_3b_3$ and wa_3b_3 are the prefix of p_2 from the above conditions (1') and (2'). Hence, the last symbol of w is a_3 . Therefore, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \ne a_3$.

(I-4) Case of $q = q_1 a_1 b_1 w a_2 b_2 b_3 q_2$ ($b_2 = a_3$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

$$(1) p_1 \leq q_1 \qquad \qquad (1') p_2 \leq w a_2 b_2 b_3 q_2$$

(2)
$$p_1 \leq q_1 a_1 b_1 w$$
 (2') $p_2 \leq b_3 q_2$

(3)
$$p_1 \leq q_1 a_1 b_1 w a_2$$
 (3') $p_2 \leq q_2$

If |w| = 0, i.e., w is the empty string, then a_1b_1 and $a_1b_1a_2$ are the suffix of p_1 from the above conditions (2) and (3) and $a_2b_2b_3$ and b_3 are the prefix of p_2 from the above conditions (1') and (2'). Since $b_1 = a_2$ and $a_2 = b_3$, then $b_1 = b_3$ holds. This contradicts the assumption of $b_1 \neq b_3$.

If $|w| \ge 1$, since a_1b_1w and $a_1b_1wa_2$ are the suffix of p_1 from the above conditions (2) and (3), the first symbol of w is b_1 . Moreover, since $wa_2b_2b_3$ and b_3 are the prefix of p_2 from the above conditions (1') and (2'), the first symbol of w is b_3 . Therefore, $b_1 = b_3$ holds. This contradicts the assumption of $b_1 \ne b_3$.

(II) Case of (ii) that q contains a_1b_1, a_2b_2 and a_3y : Let

A, B, C be distinct regular patterns in $\{a_1b_1, a_2b_2, a_3y\}$ such that $q = q_1AwBw'Cq_2$. Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \leq q_1$$
 (1') $p_2 \leq wBw'Cq_2$

(2)
$$p_1 \leq q_1 A w$$
 (2') $p_2 \leq w' C q_2$

(3)
$$p_1 \le q_1 AwBw'$$
 (3') $p_2 \le q_2$

If |w| = |w'|, then Aw and AwBw' are the suffix of p_1 from the above conditions (2) and (3). Hence, Aw = Bw' holds. This contradicts the assumption of $A \neq B$.

If $|w| \neq |w'|$, then we consider the two cases $A = a_3y$ and $B = a_3y$: In the case of $A = a_3y$, without losing generality, we assume that $B = a_1b_1$ and $C = a_2b_2$. Then, there exist regular patterns p'_1, p''_1 such that $p_1 = p'_1p''_1, p'_1 \leq q_1a_3$ and $p''_1 \leq yw$ from the above condition (2). Moreover, from the above condition (1'), $p = p_1xp_2 = p'_1p''_1xp_2 \leq q_1a_3p''_1xwa_1b_1w'a_2b_2q_2 = q_1a_3ywa_1b_1w'a_2b_2q_2\{y := p''_1x\} = q\{y := p''_1x\}$ holds. Hence, $p \leq q$ holds. This contracts the assumption. In the case of $B = a_3y$, without losing generality, we assume that $A = a_1b_1$ and $C = a_2b_2$. Let $q'_1 = q_1a_1b_1$, $q'_2 = wa_3yw'$, and $q'_3 = a_2b_2q_2$ such that q'_2 contains at most one variable symbol. Then, the above conditions (3) and (1') are represented by $p_1 \leq q'_1q'_2$ and $p_2 \leq q'_2q'_3$, respectively. From Theorem 2, $p \leq q$ holds. This contradicts the assumption.

Next, in the case of $C = a_3 y$, we consider the following five cases (II-1)–(II-5):

(II-1) $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 y q_2$,

(II-2) $q = q_1 a_1 b_1 b_2 y q_2$ ($a_2 = b_1$ and $a_3 = b_2$),

(II-3) $q = q_1 a_1 b_1 b_2 w a_3 y q_2$ ($b_1 = a_2$),

(II-4) $q = q_1 a_3 yw a_1 b_1 b_2 q_2$ ($b_1 = a_2$),

(II-5) $q = q_1 a_1 b_1 y w a_2 b_2 q_2$ ($b_1 = a_3$).

(II-1) Case of $q = q_1 a_1 b_1 w a_2 b_2 w' a_3 y q_2$: Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

$$(1) p_1 \leq q_1 \qquad \qquad (1') p_2 \leq w a_2 b_2 w' a_3 y q_2$$

(2)
$$p_1 \leq q_1 a_1 b_1 w$$
 (2') $p_2 \leq w' a_3 y q_2$

(3)
$$p_1 \leq q_1 a_1 b_1 w a_2 b_2 w'$$
 (3') $p_2 \leq q_2$

If |w|+1=|w'|, then $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3). Since there exists a constant symbol w_1 such that $w'=w_1w$ and $b_2w_1w=a_1b_1w$ hold, then $b_2=a_1$. Moreover, $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'). Since there exists a constant symbol w_2 such that $w'=ww_2$ and $wa_2b_2=ww_2a_3$ hold, then $b_2=a_3$. Thus, $a_1=a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If |w|+1 < |w'|, then $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3). Hence, a_1b_1 is the suffix of w_t . Moreover, $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'). Hence, there exist constant symbols w_1 and w_2 such that $w' = w_1w$, $w' = ww_2$ and $|a_2b_2w_1| = |w_2a_3| + 1$ hold. Thus, since the second-to-last symbol of w_1 is a_3 , $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If |w| = |w'| + 1, then $wa_2b_2w'a_3$ and $w'a_3$ are the

prefix of p_2 from the above conditions (1') and (2'). Since there exists a constant symbol w_1 such that $w = w'w_1$ and $w'w_1 = w'a_3$ hold, then $w_1 = a_3$ holds. Moreover, since $a_1b_1wa_2b_2w'$ and a_1b_1w are the suffix of p_1 from the above conditions (2) and (3), there exists a constant symbol w_2 such that $w = w_2w'$ and $|w_1a_2b_2w'| = |a_1b_1w_2w'|$ hold. Hence, $w_1 = a_1$ holds. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If |w| > |w'| + 1, since $wa_2b_2w'a_3$ and $w'a_3$ are the prefix of p_2 from the above conditions (1') and (2'), there exists a constant string w_1 such that $w = w'w_1$ and the first symbol of w_1 is a_3 . Moreover, since there exists a constant string w_2 such that $w = w_2w'$ and $|w_1a_2b_2| = |a_1b_1w_2|$ hold, a_1b_1 is the prefix of w_1 . Thus, $a_3 = a_1$ holds. This contradicts the assumption of $a_1 \neq a_3$.

(II-2) Case of $q = q_1a_1b_1b_2yq_2$ ($a_2 = b_1$ and $a_3 = b_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

$$(1) p_1 \le q_1 \qquad \qquad (1') p_2 \le b_2 y q_2$$

(2)
$$p_1 \le q_1 a_1$$
 (2') $p_2 \le y q_2$

(3)
$$p_1 \le q_1 a_1 b_1$$
 (3') $p_2 \le q_2$

From the above conditions (2) and (3), a_1b_1 and a_1 are the suffix of p_1 . Hence, $b_1 = a_1$ holds. Thus, from the assumption of $b_1 = a_2$, $a_1 = a_2$ holds. This contradicts the assumption of $a_1 \neq a_2$.

(II-3) Case of $q = q_1a_1b_1b_2wa_3yq_2$ ($b_1 = a_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \leq q_1$$
 (1') $p_2 \leq b_2 w a_3 y q_2$

(2)
$$p_1 \leq q_1 a_1$$
 (2') $p_2 \leq w a_3 y q_2$

(3)
$$p_1 \leq q_1 a_1 b_1 b_2 w$$
 (3') $p_2 \leq q_2$

If |w| = 0, i.e., w is the empty string, then a_1 and $a_1b_1b_2$ are the suffix of p_1 from the above conditions (2) and (3). Hence, $a_1 = b_2$ holds. Moreover, since b_2a_3 and a_3 is the prefix of p_2 , $b_2 = a_3$ holds. Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \neq a_3$.

If $|w| \ge 1$, since a_1 and $a_1b_1b_2w$ are the suffix of p_1 from the above conditions (2) and (3), the last symbol of w is a_1 . Moreover, since b_2wa_3 and wa_3 are the prefix of p_2 from the above conditions (1') and (2'), the last symbol of w is a_3 . Thus, $a_1 = a_3$ holds. This contradicts the assumption of $a_1 \ne a_3$.

(II-4) Case of $q = q_1 a_3 yw a_1 b_1 b_2 q_2$ ($b_1 = a_2$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

$$(1) p_1 \leq q_1 \qquad \qquad (1') p_2 \leq w a_1 b_1 b_2 q_2$$

(2)
$$p_1 \leq q_1 a_3 yw$$
 (2') $p_2 \leq b_2 q_2$

(3)
$$p_1 \leq q_1 a_3 yw a_1$$
 (3') $p_2 \leq q_2$

From the above condition (3), there exist regular patterns $p_1' \succeq p_1''$ such that $p_1 = p_1'p_1''$, $p_1' \preceq q_1a_3$ and

 $p_1'' \preceq ywa_1$ hold. Hence, since $p = p_1xp_2 = p_1'p_1''xp_2 \preceq q_1a_3p_1''xwa_1b_1b_2q_2 = q_1a_3yxwa_1b_1b_2q_2\{y := p_1''x\} = q\{y := p_1''x\}$, then $p \preceq q$ holds. Thus, this contradicts the assumption.

(II-5) Case of $q = q_1 a_1 b_1 y w a_2 b_2 q_2$ ($b_1 = a_3$): Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

(1)
$$p_1 \leq q_1$$
 (1') $p_2 \leq ywa_2b_2q_2$

(2)
$$p_1 \leq q_1 a_1$$
 (2') $p_2 \leq w a_2 b_2 q_2$

(3)
$$p_1 \le q_1 a_1 b_1 y w$$
 (3') $p_2 \le q_2$

There exist regular patterns q_1', q_2', q_3' such that $q_1' = q_1 a_1 b_1$, $q_2' = yw$, $q_3' = a_2 b_2 q_2$, from the above condition (3) $p_1 \le q_1' q_2'$ and from the above condition (1') $p_2 \le q_2' q_3'$ hold. Moreover, since q_2' contains the variable symbol $y, p \le q$ holds from Theorem 2. This contradicts the assumption.

(III) Case of (iii) that q contains a_1b_1, a_2b_2 and yb_3 : Let A, B, C be distinct regular patterns in $\{a_1b_1, a_2b_2, yb_3\}$ such that $q = q_1AwBw'Cq_2$. Assume that the following six conditions (1),(2),(3),(1'),(2'),(3') are hold.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

(1)
$$p_1 \leq q_1$$
 (1') $p_2 \leq wBw'Cq_2$

(2)
$$p_1 \leq q_1 A w$$
 (2') $p_2 \leq w' C q_2$

(3)
$$p_1 \le q_1 A w B w'$$
 (3') $p_2 \le q_2$

xxxxxxxxxxxxxxxxxxxxxx

Lemma 8: Let k be an integer with $k \ge 1$. Let Σ be an alphabet with $\sharp \Sigma = k+2$. Let $p \in \mathcal{RP}$ in which a variable symbol x appears, and let $Q \in \mathcal{RP}^k$. If for any string $w \in \Sigma^*$ with |w| = 2, there exists a regular pattern $q_w \in Q$ such that $p\{x := w\} \le q_w$ holds, then there exists a regular pattern $q \in Q$ such that $p\{x := xy\} \le q$ holds, where $q \in Q$ such that $q \in Q$ such that

Proof. Without loss of generality, we suppose that $\sharp Q = k$ holds. Otherwise, for some regular pattern q already in Q, we can add a new regular pattern q' equivalent to q, i.e., $q' \equiv q$, to Q repeatedly until $\sharp Q = k$ is satisfied. For any $q \in Q$, we define the sets $A(q), B(q) \subseteq \Sigma$ as follows:

$$A(q) = \{a \in \Sigma \mid p\{x := ay\} \le q, y \in X\},\$$

 $B(q) = \{b \in \Sigma \mid p\{x := yb\} \le q, y \in X\}.$

If there exists $q \in Q$ such that $|A(q)| \ge 2$ or $|B(q)| \ge 2$, from Lemma 4, $p\{x := xy\} \le q$ holds. Below, we suppose that $|A(q)| \le 1$ and $|B(q)| \le 1$. Let \emptyset be a constant symbol that is not a member in Σ . We define the functions $\sigma_A : Q \to \Sigma \cup \{\emptyset\}$ and $\sigma_B : Q \to \Sigma \cup \{\emptyset\}$ as follows:

$$\sigma_A(q) = \begin{cases} a & \text{if } A(q) = \{a\}, \\ \varnothing & \text{if } A(q) = \emptyset. \end{cases}$$

$$\sigma_B(q) = \begin{cases} b & \text{if } B(q) = \{b\}, \\ \emptyset & \text{if } B(q) = \emptyset. \end{cases}$$

Let $\Sigma = \{a, b, c, d, e, f, g\}, Q = \{q_1, q_2, q_3, q_4, q_5\}$. We set $A(q_1) = \{a\}$ and $B(q_1) = \{a\}$ $\{a\}$, and then $\sigma_A(q_1) = a$ and $\sigma_B(q_1) = a$, and so on. For each regular pattern q_i (i = 1, ..., 5), we represent a string $w \in \Sigma \cdot \Sigma$ satisfying that $p\{x := w\} \leq q_i$ by the edge between the left (first) and right (second) symbols of w. For example, the leftmost figure shows that $p\{x := ay\} \leq q_1$ and $p\{x := ya\} \leq q_1$ for a variable symbol y. We note that these figures may contain more edges than those illustrated. From these figures, we get $\ell_A = 1$, $\ell_B = 0$, and $Q^{(\emptyset,\emptyset)} = \{q_5\}$, $Q^{(\emptyset,\cdot)} = \{q_4\}$, $Q^{(\cdot,\emptyset)} = \{q_5\}$ $\{q_3\}, Q^{(\cdot,\cdot)} = \{q_1, q_2\}.$

Fig. 16 In the left figure, we aggregate all of the edges appearing in Fig. 15. For all $w = a'b' \in A' \cdot B'$, there must be a regular pattern q_i $(1 \le i \le 5)$ that satisfies that $p\{x := w\} \le q_i$.

The inverse functions of σ_A and σ_B are denoted by σ_A^{-1} and σ_B^{-1} , respectively. That is, for $a, b \in \Sigma \cup \{\emptyset\}$, let $\sigma_A^{-1}(a) = \{q \in Q \mid \sigma_A(q) = a\}$ and $\sigma_B^{-1}(b) = \{q \in Q \mid \sigma_B(q) = b\}$. We give an example in Fig. 15.

A and B denotes the following subsets of Σ :

$$A = \bigcup_{q \in Q \backslash \sigma_A^{-1}(\varnothing)} A(q), \ \ B = \bigcup_{q \in Q \backslash \sigma_B^{-1}(\varnothing)} B(q).$$

Then, let $A' = \Sigma \setminus A$ and $B' = \Sigma \setminus B$. For any $a, b \in \Sigma$, we use the following notations:

$$\ell_A = \sum_{a \in A} (\sharp \sigma_A^{-1}(a) - 1), \ \ell_B = \sum_{b \in B} (\sharp \sigma_B^{-1}(b) - 1).$$

These ℓ_A and ℓ_B represent the numbers of excess duplicate symbols in A and B. We easily see the following claim: Claim 1.

$$\begin{array}{l} \text{(i)} \ \, \sharp A + \sharp A' = \sharp B + \sharp B' = k + 2, \\ \text{(ii)} \ \, \sharp A + \ell_A + \sharp \sigma_A^{-1}(\varnothing) = \sharp B + \ell_B + \sharp \sigma_B^{-1}(\varnothing) = k. \end{array}$$

(ii)
$$\sharp A + \ell_A + \sharp \sigma_A^{-1}(\emptyset) = \sharp B + \ell_B + \sharp \sigma_B^{-1}(\emptyset) = k$$
.

Since $\sharp \Sigma = k + 2$ and $\sharp Q = k$, $\sharp A' \geq 2$ and $\sharp B' \geq 2$ hold. We partition Q into the following subsets:

$$\begin{split} &Q^{(\varnothing,\varnothing)} = \sigma_A^{-1}(\varnothing) \cap \sigma_B^{-1}(\varnothing), \\ &Q^{(\varnothing,\cdot)} = \sigma_A^{-1}(\varnothing) \cap (Q \setminus \sigma_B^{-1}(\varnothing)), \\ &Q^{(\cdot,\varnothing)} = (Q \setminus \sigma_A^{-1}(\varnothing)) \cap \sigma_B^{-1}(\varnothing), \\ &Q^{(\cdot,\cdot)} = (Q \setminus \sigma_A^{-1}(\varnothing)) \cap (Q \setminus \sigma_B^{-1}(\varnothing)). \end{split}$$

From the condition of this lemma, for any string $w \in \Sigma^*$ with |w| = 2, there exists a regular pattern $q_w \in Q$ such that $p\{x := w\} \leq q_w$ holds. In particular, for $w = a'b' \in A' \cdot B'$, we must have $q_w \in Q$ that satisfies that $p\{x := w\} \leq q_w$ (Fig. 16). It is easy to see that if $w \in (A \cdot B) \cup (A' \cdot B) \cup (A \cdot B')$, there exists a regular pattern $q_w \in Q^{(\varnothing,\cdot)} \cup Q^{(\cdot,\varnothing)} \cup Q^{(\cdot,\cdot)}$ such that $p\{x := w\} \leq q_w$ holds. The following two claims are proven from Lemmas 4 and 7:

Claim 2. If there exist $q \in Q^{(\emptyset,\emptyset)}$ and distinct 5 strings $w_i \in A' \cdot B'$ $(1 \le i \le 5)$ such that $p\{x := w_i\} \le q$ holds $(1 \le i \le 5)$, then $p\{x := xy\} \le q$ holds.

Claim 3. If there exist $q \in Q^{(\emptyset,\cdot)} \cup Q^{(\cdot,\emptyset)}$ and distinct 3 strings $w_i \in A' \cdot B'$ $(1 \le i \le 3)$ such that $p\{x := w_i\} \le q$ holds $(1 \le i \le 3)$, then $p\{x := xy\} \le q$ holds.

If there exist a regular pattern $q \in Q^{(\varnothing,\varnothing)} \cup Q^{(\varnothing,\cdot)} \cup Q^{(\cdot,\varnothing)}$ and enough strings $w \in A' \cdot B'$ such that either of the conditions of Claims 2 and 3 is satisfied, this lemma holds. Then, we assume that it is not the case.

Assumption 1. There is no regular pattern $q \in Q^{(\emptyset,\emptyset)}$ and 5 strings $w \in A' \cdot B'$ such that the condition of *Claim* 2 is satisfied and there is no regular pattern $q \in Q^{(\emptyset,\cdot)} \cup Q^{(\cdot,\emptyset)}$ and 3 strings $w \in A' \cdot B'$ such that the condition of *Claim* 3 is satisfied.

Let $\mathcal{L}_1 = \sharp \{ w \in A' \cdot B' \mid \exists q \in Q^{(\varnothing,\varnothing)} \cup Q^{(\varnothing,\cdot)} \cup Q^{(\varnothing,\cdot)} \}$ $Q^{(\cdot,\emptyset)}$ s.t. $p\{x := w\} \leq q\}$. Under Assumption 1, each $q \in Q^{(\emptyset,\emptyset)}$ has at most 4 strings $w \in A' \cdot B'$ such that the condition of *Claim* 2 is satisfied, and each $q \in Q^{(\emptyset,\cdot)} \cup Q^{(\cdot,\emptyset)}$ has at most 2 strings $w \in A' \cdot B'$ such that the condition of Claim 3 is satisfied. Then, by Claim 1,

$$\mathcal{L}_1 \le 4\sharp Q^{(\varnothing,\varnothing)} + 2\sharp Q^{(\varnothing,\cdot)} + 2\sharp Q^{(\cdot,\varnothing)}$$

$$= 2(\sharp Q^{(\varnothing,\varnothing)} + \sharp Q^{(\varnothing,\cdot)}) + 2(\sharp Q^{(\varnothing,\varnothing)} + \sharp Q^{(\cdot,\varnothing)})$$

$$= 2\sharp \sigma_A^{-1}(\varnothing) + 2\sharp \sigma_B^{-1}(\varnothing)$$

$$= 2(k - \sharp A - \ell_A) + 2(k - \sharp B - \ell_B)$$

$$= 2(\sharp A' - \ell_A - 2) + 2(\sharp B' - \ell_B - 2)$$

$$= 2(\sharp A' + \sharp B') - 2(\ell_A + \ell_B) - 8.$$

Next, we partition $Q^{(\cdot,\cdot)}$ into the following two subsets:

$$Q_1^{(\cdot,\cdot)} = \{ q \in Q^{(\cdot,\cdot)} \mid \sigma_A(q) \in B \text{ or } \sigma_B(q) \in A \},$$

$$Q_2^{(\cdot,\cdot)} = \{ q \in Q^{(\cdot,\cdot)} \mid \sigma_A(q) \in B' \text{ and } \sigma_B(q) \in A' \}.$$

We show the next two claims on $Q_1^{(\cdot,\cdot)}$ and $Q_2^{(\cdot,\cdot)}$:

Claim 4. If there exist $q \in Q_1^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that $p\{x := a'b'\} \leq q$ holds, then $p\{x := xy\} \leq q$ holds.

Proof of Claim 4. Suppose that both $\sigma_A(q) \in B$ and $\sigma_B(q) \in A$ hold. Then, since $a' \notin \{\sigma_A(q), \sigma_B(q)\} \subseteq A \cap B$ and $b' \notin \{\sigma_A(q), \sigma_B(q)\} \subseteq A \cap B$, from Lemma 5, $p\{x := xy\} \le q$ holds. Suppose that $\sigma_A(q) \in B$ and $\sigma_B(q) \in A'$. If $a' = \sigma_B(q)$, since $a' \in B$, $a' \ne b'$ holds. Since $\sigma_A(q) \in B$, $b' \ne \sigma_A(q)$ holds. That is, $a' = \sigma_B(q)$, $a' \ne \sigma_A(q)$, and $b' \notin \{\sigma_A(q), \sigma_B(q)\}$ hold. Therefore, from Lemma 6, $p\{x := xy\} \le q$ holds. If $a' \ne \sigma_B(q)$, since $b' \ne \sigma_A(q)$, from Lemma 5, $p\{x := xy\} \le q$ holds. Similarly, the case that $\sigma_A(q) \in B'$ and $\sigma_B(q) \in A$ is proven. (*End of Proof of Claim*)

Claim 5. If there exist $q \in Q_2^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that $(a' \neq \sigma_B(q) \text{ or } b' \neq \sigma_A(q))$ and $p\{x := a'b'\} \leq q$ hold, then $p\{x := xy\} \leq q$ holds.

Proof of Claim 5. When a' = b', since $\sigma_A(q) \neq \sigma_B(q)$, from Lemma 5, this claim holds. Similarly, when $a' \neq b'$, from Lemma 5 or Lemma 6, this holds. (*End of Proof of Claim*)

If there exist a regular pattern $q \in Q_2^{(\cdot,\cdot)}$ and a string $w \in A' \cdot B'$ such that the condition of *Claim* 5 is satisfied, this lemma holds. Then, we also assume that it is not the case.

Assumption 2. There is no $q \in Q_2^{(\cdot,\cdot)}$ and a string $a'b' \in A' \cdot B'$ such that the condition of *Claim* 5 is satisfied.

Let $\mathcal{L}_2 = \sharp \{a'b' \in A' \cdot B' \mid \exists q \in Q_2^{(\cdot,\cdot)} \text{ s.t. } p\{x := a'b'\} \leq q\}$. For any $a'b' \in A' \cdot B'$ and $q \in Q_2^{(\cdot,\cdot)}$, if $a' = \sigma_B(q)$ and $b' = \sigma_A(q)$ hold (it is the condition of Proposition ??), by considering the duplicate numbers ℓ_A and ℓ_B , we have the following inequality:

$$\mathcal{L}_2 \le \min\{\sharp A' + \ell_B, \sharp B' + \ell_A\}.$$

We show the last claim:

Claim 6. $\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2 \geq 2$.

Proof of Claim 6. First we prove the inequality when $\sharp A \le k-1$ and $\sharp B \le k-1$, i.e., $\sharp A' \ge 3$ and $\sharp B' \ge 3$ hold. Since $\mathcal{L}_2 \le \frac{1}{2}(\sharp A' + \sharp B' + \ell_A + \ell_B)$,

$$\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2$$

$$\geq \sharp A' \times \sharp B' - (2(\sharp A' + \sharp B') - 2(\ell_A + \ell_B) - 8)$$
$$-\frac{1}{2}(\sharp A' + \sharp B' + \ell_A + \ell_B)$$
$$= \sharp A' \times \sharp B' - \frac{5}{2}(\sharp A' + \sharp B') + \frac{3}{2}(\ell_A + \ell_B) + 8$$
$$= (\sharp A' - \frac{5}{2})(\sharp B' - \frac{5}{2}) + \frac{3}{2}(\ell_A + \ell_B) + \frac{7}{4} \geq 2.$$

When $\sharp A=k$ and $\sharp B\leq k$, i.e., $\sharp A'=2$ and $\sharp B'\geq 2$ hold, since $\ell_A=0$, $\mathcal{L}_1\leq 2\sharp B'-2\ell_B-4$ holds. Moreover, $\mathcal{L}_2\leq \min\{\sharp B',\ell_B+2\}$ holds. From $Claim\ 1$, $\ell_B+2=k-\sharp \sigma_B^{-1}(\varnothing)-\sharp B=\sharp B'-\sharp \sigma_B^{-1}(\varnothing)$ holds. Therefore, $\mathcal{L}_2\leq \ell_B+2$ holds. Thus,

$$\sharp A' \times \sharp B' - \mathcal{L}_1 - \mathcal{L}_2$$

$$\geq 2\sharp B' - (2\sharp B' - 2\ell_B - 4) - (\ell_B + 2)$$

$$= \ell_B + 2 \geq 2.$$

Similarly, the case when $\sharp A \leq k$ and $\sharp B = k$ is proven. (*End of Proof of Claim*)

Under Assumptions 1 and 2, from Claim 6, there exist at least two $w \in A' \cdot B'$ and a regular pattern $q \in Q_1^{(\cdot,\cdot)}$ such that the condition of Claim 4 is satisfied. Therefore, for such a regular pattern q, $p\{x := xy\} \leq q$ holds.

Lemma 9 (Sato et al.[1]): Let Σ be a finite alphabet with $\sharp \Sigma \geq 3$ and p,q regular patterns. If there exists a constant symbol $a \in \Sigma$ such that $p\{x := a\} \preceq q$ and $p\{x := xy\} \preceq q$, then $p \preceq q$ holds, where y is a variable symbol that does not appear in q.

From the Lemma 8 and Lemma 9, we have the following theorem.

Theorem 4: Let $k \ge 3$, $\sharp \Sigma \ge 2k - 1$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^k$. Then, the following (i),(ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. it is clear that (ii) implies (iii) and (iii) implies (i). From Theorem3, if $\sharp \Sigma \geq 2k+1$, then (i) implies (ii). Let $\sharp Q = k, \ p \in P, \ \sharp \Sigma = 2k-1 \ \text{or} \ 2k$. Then, we show that (i) implies (ii). It suffices to show that $S_2(p) \subseteq L(Q)$ implies $P \subseteq Q$ for any regular pattern $p \in \mathcal{RP}$. The proof is done by mathematical induction on n, where n is the number of variable symbols appears in p.

In case n = 0, $S_2(p) = \{p\}$. By (i), we have $\{p\} = L(Q)$. Thus, $p \le q$ for some $q \in Q$.

For $n \ge 0$, we assume that it is valid for any regular pattern p with n variable symbols. Let p be a regular pattern such that n + 1 variable symbols appear in p and $S_2(p) \subseteq L(Q)$.

We assume that $p \not\sqsubseteq Q$, that is, $p \not\preceq q_i$ for any $i \in \{1, ..., k\}$. Let $Q = \{q_1, ..., q_k\}$ and p_1, p_2 regular patterns, x a variable symbol with $p = p_1 x p_2$. For $a, b \in \Sigma$, let $p_a = p\{x := a\}$ and $p_{ab} = p\{x := ab\}$. Both p_a and p_{ab} have n variable symbols, respectively. Thus, $S_2(p_a) \subseteq L(Q)$ and $S_2(p_{ab}) \subseteq L(P)$ hold. By the induction hypothesis,

there exist $i, i' \in \{1, \dots, k\}$ such that $p_a \leq q_i$ and $p_{ab} \leq q_{i'}$. Let $D_i = \{a \in \Sigma \mid p\{x := a\} \leq q_i\}$ $(i = 1, \dots, k)$. We assume that $\sharp D_i \geq 3$ for some $i \in \{1, \dots, k\}$. By Lemma ??, we have $p \leq q_i$. This contradicts the assumption. Thus, we have $\sharp D_i \leq 2$ for any $i \in \{1, \dots, k\}$. If $\sharp \Sigma = 2k - 1$, then $\sharp D_i = 2$ or $\sharp D_i = 1$ for any $i \in \{1, \dots, k\}$. Moreover, If $\sharp \Sigma = 2k$, then $\sharp D_i = 2$ for any $i \in \{1, \dots, k\}$. Since $k \geq 3$, $2k + 1 \geq k + 2$ holds. By Lemma 8, there exists $i \in \{1, \dots, k\}$ such that $p\{x := xy\} \leq q_i$. Therefore, by Lemma 9, we have $p \leq q_i$. This contradicts the assumption. Thus, (i) implies (ii).

From Theorem 4, the following corollary holds.

Corollary 2: Let $k \ge 3$, $\sharp \Sigma \ge 2k - 1$ and $P \in \mathcal{RP}^+$. Then, $S_2(P)$ is a characteristic set for L(P) within \mathcal{RPL}^k .

Lemma 10 (Sato et al.[1]): Let $k \ge 3$ and $\sharp \Sigma \le 2k - 2$. Then, \mathcal{RP}^k does not have compactness with respect to containment.

Proof. Let $\Sigma = \{a_1, \ldots, a_{k-1}, b_1, \ldots, b_{k-1}\}$ and p, q_i regular patterns, $w_i \in \Sigma^*$ $(i = 1, \ldots, k-1)$ defined in a similar way to Example ??. Let $q_k = x_1 a_1 w_1 xyw_1 b_1 x_2$. Since $p\{x := a_i\} = x_1 a_1 w_1 a_i w_1 b_1 x_2 \preceq q_i$ and $p\{x := b_i\} = x_1 a_1 w_1 b_i w_1 b_1 x_2 \preceq q_i$ for any $i \in \{1, \ldots, k-1\}$, we have $S_1(p) \subseteq \bigcup_{i=1}^{k-1} L(q_i)$. For any $w \in \{s \in \Sigma^+ \mid |s| \ge 2\}$, $p\{x := w\} = x_1 a_1 w_1 ww_1 b_1 x_2 \preceq q_k$. Thus, we have $L(p) \subseteq L(Q)$. By Theorem 1, since $p \not\preceq q_i$, $L(p) \not\subseteq L(q_i)$ for any $i \in \{1, \ldots, k\}$. Therefore, \mathcal{RP}^k does not have compactness with respect to containment.

From Theorem 4 and Lemma 10, we have the following thorem.

Theorem 5: Let $k \ge 3$ and $\sharp \Sigma \ge 2k - 1$. Then, \mathcal{RP}^k has compactness with respect to containment.

In case k = 2, we have the following theorem.

Theorem 6: Let $\sharp \Sigma \geq 4$, $P \in \mathcal{RP}^+$ and $Q \in \mathcal{RP}^2$. The following (i), (ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. It is clear that (ii) implies (iii), and (iii) implies (i). Thus, we show that (i) implies (ii). It suffices to show that $S_2(p) \subseteq L(Q)$ implies $P \sqsubseteq Q$ for any regular pattern $p \in Q$ \mathcal{RP} . Let $Q = \{q_1, q_2\}$. The proof is done by mathematical induction on n, where n is the number of variable symbols appearing in p. In case n = 0, $p \in \Sigma^+$. Since $S_2(p) =$ $\{p\} \subseteq L(Q)$, we have $p \leq q$ for some $q \in Q$. For $n \geq 0$, we assume that it is valid for any regular pattern p with n variable symbols. Let p be a regular pattern such that n+1 variable symbols appear in p, and $S_2(p) \subseteq L(Q)$. We assume that $p \not \leq q_i$ (i = 1, 2). Let p_1, p_2 be regular patterns and x a variable symbol with $p = p_1 x p_2$. For $a, b \in \Sigma$, let $p_a = p\{x := a\}$ and $p_{ab} = p\{x := ab\}$. Note that p_a and p_{ab} have n variable symbols. Thus, by the assumption, $S_2(p_a) \subseteq L(Q)$ and $S_2(p_{ab}) \subseteq L(Q)$ implies $p_a \leq q_i$ and $p_{ab} \leq q_{i'}$ for some $i, i' \in \{1, 2\}$. Let $D_i = \{a \in \Sigma \mid$ $p\{x := a\} \leq q_i\}$ (i = 1, 2). By Lemma ??, if $\sharp D_i \geq 3$

for some $i \in \{1,2\}$, then $p \preceq q_i$. This contradicts that $p \npreceq q_i$ (i=1,2). Thus, we have $\sharp D_i \leq 2$ for any $i \in \{1,2\}$. Since $\sharp \Sigma \geq 4$, We consider that $\sharp D_1 = 2$ and $\sharp D_2 = 2$. From Lemma 8, $p\{x := xy\} \preceq q_i$ for some $i \in \{1,2\}$. From Lemma 9, we have $p \preceq q_i$ for some $i \in \{1,2\}$. This contradicts that $p \npreceq q_i$ (i=1,2). Therefore, (i) implies (ii). \square

The next example is a counter-example of Theorem 6.

Example 2: Let $\Sigma = \{a, b, c\}$, p, q_1 , q_2 regular patterns and x, x', x'' variable symbols such that p = x'axbx'', $q_1 = x'abx''$ and $q_2 = x'cx''$. Let $w \in \Sigma^+$. If w contains c, then $p\{x := w\} \leq q_2$. On the other hand, if w does not contain c, then $p\{x := w\} \leq q_1$. Thus, $L(p) \subseteq L(q_1) \cup L(q_2)$. However, $p \not \leq q_1$ and $p \not \leq q_2$.

From Theorem 6, we have that following two corollaries.

Corollary 3: Let $\sharp \Sigma \geq 4$ and $P \in \mathcal{RP}^+$. Then, $S_2(P)$ is a characteristic set for L(P) within \mathcal{RPL}^2 .

Corollary 4: Let $\sharp \Sigma \geq 4$. Then, \mathcal{RP}^2 has compactness with respect to containment.

4. Regular Pattern without Adjacent Variable Symbols

A regular pattern p is said to be a non-adjacent variable regular pattern (NAV regular pattern) if p does not contain consecutive variable symbols. For example, the regular pattern p = axybc is not a NAV regular pattern because xy is appeared in p. Let \mathcal{RP}_{NAV} be the set of all NAV regular patterns. Let \mathcal{RP}_{NAV}^+ be the set of all finite subsets S of \mathcal{RP}_{NAV} such that S is not the empty set, i.e., $\mathcal{RP}_{NAV}^+ = \{S \subseteq \mathcal{RP}_{NAV} \mid \sharp S \leq 1\},\$ and \mathcal{RP}_{NAV}^k the set of all subsets P of \mathcal{RP}_{NAV}^+ such that P consists of at most k ($k \ge 1$) NAV regular patterns, i.e., $\mathcal{RP}_{NAV}^k = \{ P \in \mathcal{RP}_{NAV}^+ \mid \sharp P \leq k \}.$ We can define the compactness with respect to containment for \mathcal{RP}_{NAV}^k in a similar way as Def.2. For any *NAV* regular pattern $p \in \mathcal{RP}_{NAV}$ and any set $Q \in \mathcal{RP}_{NAV}^k$ with $k \ (k \ge 1)$, the set \mathcal{RP}_{NAV}^k said to have compactness with respect to containment if there exists a NAV regular pattern $q \in Q$ such that $L(p) \subseteq L(q)$ holds if $L(p) \subseteq L(Q)$ holds. Then, we have the following Theorem

Theorem 7: For an integer k ($k \ge 2$), let $\sharp \Sigma \ge k + 2$, $P \in \mathcal{RP}^+_{NAV}$, $Q \in \mathcal{RP}^k_{NAV}$. Then, the following (i), (ii) and (iii) are equivalent:

(i)
$$S_2(P) \subseteq L(Q)$$
, (ii) $P \sqsubseteq Q$, (iii) $L(P) \subseteq L(Q)$.

Proof. From the definitions of \mathcal{RP}_{NAV}^+ and \mathcal{RP}_{NAV}^k , it is clear that (ii) implies (iii) and (iii) implies (i). Hence, we will show that (i) implies (ii) by mathematical induction on the number n of variable symbols that appear in a NAV regular pattern $p \in P$ as follows: If n = 0, then we have $S_2(\{p\}) = \{p\}$. Hence, $p \in L(Q)$. Therefore, there exists $q \in Q$ such that $p \preceq q$ holds.

If $n \ge 0$, we assume that the proposition holds for

```
q_1 = x' cadadaadacbadadaadacx'',
```

- $q_2 = x'badadaadacx''$,
- $q_3 = x'aadadx''$.

Fig. 17 NAV regular patterns p, q_1 , q_2 , and q_3

any regular NAV regular pattern containing $n \ge 0$ variable symbols. Let p be a NAV regular pattern containing n + 1variable symbols such that $S_2(\{p\}) \subseteq L(Q)$ holds and p contains a variable symbol x. There exist two NAV regular patterns p_1 , p_2 such that $p = p_1 x p_2$ holds. By the induction hypothesis, for any constant string $w \in \Sigma^*$ with |w| = 2, $\{p\{x := w\}\}\ \leq Q \text{ holds because } p\{x := w\} \text{ contains } n$ variable symbols. Hence, there exists a NAV regular pattern $q_w \in Q$ such that $p\{x := w\} \leq q_w$ holds. From Lemma 8, there exists a regular pattern $q \in Q$ such that $p\{x := xy\} \leq q$ holds, where y is a variable symbol that does not appear in q. This contradicts the condition $Q \in \mathcal{RP}_{NAV}^k$. Thus, we have that (i) implies (ii).

Corollary 5: Let $k \ge 2$, $\sharp \Sigma \ge k + 2$ and $P \in \mathcal{RP}^+_{NAV}$. Then, $S_2(P)$ is a characteristic set of \mathcal{RPL}_{NAV}^k .

Lemma 11: Let $k \ge 2$ and $\sharp \Sigma \le k + 1$. Then, \mathcal{RP}_{NAV}^k does not have compactness with respect to containment.

Let Σ be the set of k + 1 constant symbols a_1, \ldots, a_{k+1} , i.e., $\Sigma = \{a_1, \ldots, a_{k+1}\}$. We assume that for $i = 1, 2, ..., k, p\{x := a_i y\} \le q_i \text{ and } p\{x := y a_{i+1}\} \le$ q_i $(i=1,2,\ldots,k)$ hold. If $p\{x:=a_{k+1}a_1\} \leq q_1$ holds, $S_2(p)\backslash S_1(p)\subseteq \bigcup_{i=1}^k L(q_i)$ holds. This show that $L(p) \subseteq L(Q)$ holds. However, for i = 1, 2, ..., k, since $p \not \leq q_i$ holds, we have that $L(p) \not\subseteq L(q_i)$ holds. Hence, \mathcal{RP}_{NAV}^k does not have compactness with respect to contain-

Next, we give an example for Lemma 11 in Example 3.

Example 3: Let Σ be the set of four constant symbols a, b, c, d, i.e., $\Sigma = \{a, b, c, d\}$ and x, x', x'' three distinct variable symbols. Let p, q_1, q_2, q_3 be the NAV regular patterns given in Fig. 17. Then, we have $L(p) \subseteq$ $L(q_1) \cup L(q_2) \cup L(q_3)$. This show that for $P = \{p\}, Q =$ $\{q_1, q_2, q_3\}$, (iii) of Theorem 7 holds. However, since $p \not \leq q_1, p \not \leq q_2$ and $p \not \leq q_3$ hold, we have $P \not \sqsubseteq Q$, that is, (ii) of Theorem 7 does not hold.

From Theorem 7 and Lemma 11, we have the following

Theorem 8: Let $k \ge 2$ and $\sharp \Sigma \ge k + 2$. Then, the set \mathcal{RPL}_{NAV}^k has compactness with respect to containment.

5. Conclusion

In this paper, for an integer k ($k \ge 2$), we have shown the conditions on the number of constant symbols in Σ , summarized in Table 2, required for the classes \mathcal{RP}^k of all the set of k regular pattern languages and \mathcal{RP}_{NAV}^k of all the set

Table 2 The conditions on the number $\sharp \Sigma$ of constant symbols in Σ required for compactness with respect to containment.

Class	k = 2	$k \ge 3$
\mathcal{RP}^k	$\sharp \Sigma \geq 4$	$\sharp \Sigma \geq 2k-1$
$\mathcal{R}\mathcal{P}^k_{NAV}$	$\sharp \Sigma \geq k+2$	

of *k NAV* regular patterns to have compactness with respect to containment.

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (C) (Grant Numbers 19K12102, 19K12103, 20K04973, 21K12021, 22K12172) from Japan Society for the Promotion of Science (JSPS).

References

- M.Sato, Y.Mukouchi, D.Zheng, Characteristic Sets for Unions of Regular Pattern Languages and Compactness, in Proc. ALT '98, Springer LNAI 1501, pp.220-233, 1998.
- Y. Mukouchi, Characterization of Pattern Languages, in Proc. ALT '91, Ohmusha, pp.93-104, 1991.
- [3] K.Wright, Identification of Unions of Languages Drawn from an Identifiable Class, in Proc. COLT '89, Morgan Kaufmann, pp.328-333, 1989.
- [4] H. Arimura, T. Shinohara, S. Otsuki, Finding Minimal Generalizations for Unions of Pattern Languages and Its Application to Inductive Inference from Positive Data, in Proc. STACS '94, Springer LNCS 775, pp.649-660, 1994.
- [5] Y. Suzuki, T. Shoudai, T. Uchida and T. Miyahara, Ordered Term Tree Languages Which are Polynomial Time Inductively Inferable from Positive Data, Theoretical Computer Science, 350(1):63-90, 2006.
- [6] T. Uchida, T. Shoudai, S. Miyano, Parallel Algorithms for Refutation Tree Problem on Formal Graph Systems, IEICE Trans. Inf. & Syst., E78-D(2):99-112, 1995.