Week 8

Friendship network - undirected graph People liking someone - directed graph

a --- b

Directed graph

E = {(a, b)} (different from (b, a))

All possible cities in India.

direct roads blw cities

Multigraph (multiple edges)

* Network of people: telephone conversation

A call 2 hows B weight of friendship

Between two people: Edge and value (Weighted graph)

- Simple graph is birectional (arrows on both heads = no arrows)
- Directed graphs w/ multiple edges blw vertices: directed multigraph.

Graph Representations

a. Adjacency Matrix Representation

How to represent this as a matrix?

	a	b 1 0 1	c				
a	0	1	1		10	1	1 0
h	1	0	1	*	1	0	1
					L1	1	0]
C	1 1	1	0				mat

0: 2 vertices are not connected

1: 2 vertices are connected

matrix for complete graph.

(ADJACENCY MATRIX)

b. Incidence Matrix Representation

A vertex and the edges its connected to

	e,	e2	е3	C4	62
a	1	0	1	0	0
Ь	1	1	0	0	0
C	0	1	1	1	1
d	0	0	0	0	1
u	0	0	0	1	0

(INCIDENCE MATRIX)

I Isomorphism

ISO MORPHIC

same different

$$b \stackrel{a}{\longrightarrow} c \cong \stackrel{1}{\swarrow} \stackrel{1}{\longrightarrow} 3$$

If G and H are isomorphic graphs, then $|V_G| = |V_H|$, $|E_G| = |E_H|$

degree sequence of G = degree sequence of H.

If one of these 3 is not true, then G and H are not isomorphic.

Example:

$$|V| = 7$$
, $|E| = 8$
 $<4.3, 2.2, 2.1, 1 >$

.. Not isomorphic

moba- set been estant to

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) NOT ISOMORPHIC

Graphs are not isomorphic.

They appear the same, but there are structural differences.

Isomorphism:

G (V, E) G'(V', E')

Bijection which preserves the edges

$$f(a) = 1$$

 $f(b) = 2$
 $f(c) = 3$
 $f(d) = 4$

$$f(a) = 1$$

 $f(b) = 2$
 $f(c) = 4$

Complement of a Graph

Remove the edges if present, include if not present.

G°:

Self Complement:

If G is a simple undirected graph, then for any vertex V, $\deg_{\alpha} V + \deg_{\overline{\alpha}} V = n-1$

If $\deg_a V = k$, in \overline{G} , the k edges are not there. $\therefore \deg_a V + \deg_{\overline{a}} V = n-1$

Cs: Same as Cs

SELF COMPLEMENT

When a graph is disconnected, its complement is always connected.

Connected Graph: Given any two vertices, there is a path blw them.

Disconnected Graph: There is at least a pair of vertices, where there is no path.

Given a vertex in C, and a vertex in C_2 , there is a path from u to v in the complement Path from x to $y: x-\alpha-y$

Complement of disconnected graph: connected

Which is more? Disconnected or Connected Graphs?

All possible simple graphs on 10 nodes is $2^{\binom{10}{2}}$

Show that there are more disc connected graphs than disconnected graphs.

- " Each disconnected graph's complement is a connected graph.
- · number of connected graphs > number of disconnected graphs.

IV. Bipartite Graphs

BIPARTITE GRAPHS
2 partitions

Edges are always across partitions.

(4-cycle in a bipartite graph)

Can you find a 3-cycle in a Biportite graph?

It needs an edge within the partition for a Δ to be formed. \Box ... Not possible.

- → Is a C4 possible?
 Yes
- → Is a Cr possible?
 No.

Bipartite graphs can not have odd cycles.

Q. Does no odd cycles in a graph implies that it can be a Bipartite graph?

Li

L3

- Levels automatically arranged in two parts.

Yes, the statement is true

V. Eulerian Graph

- A graph is called a Eulerian Graph if we:
- or circuit - start from a node
- → visit all the edges
- come back to the same node
- without going through an edge more than once.

A graph is called an Eulerian Graph if it contains an Eulerian circuit.

Eulerian Trail: Start anywhere, traverse all the edges, end anywhere

Eulerian graph/ X

Litmus Test for Eulerian Graph

Degree of every node should be even. Then, the graph is Eulerian.

Why degree ?

Entering and leaving a node requires two edges (thus two degree), hence, we need In degree to enter and leave any (and each) node in the graph, so that it can be Eulerian

-> Skipping the degree proof for now.

Let G be a connected graph with exactly two vertices of odd degree. Then, there exists an Eulerian trail in G.

Now, degrees of a & b become odd. From a to a, we now have an Eulerian circuit

a-x-..-b is an Open Eulerian Trail.

On removing x, it still is an Eulerian trail. Hence Proved.

VI. Hamiltonian Graph

A graph where one can go through all the vertices, without repeating vertices or edges more than once is called a Hamiltonian Graph.

X Hamiltonian graph

A graph must have a Hamiltonian cycle in order to be called a Hamiltonian graph.

Given a graph G, every vertex has <u>degree > 1/2</u>, then the graph has a <u>Hamiltonian</u> cycle.

Boof: Result on Connectedness:

Graph G: deg V ≥ 1/2

(Every single vertex is adjacent to half the vertex set)

Then, G is connected

Proof by Contradiction:

Assume graph is disconnected. Then it has at least 2 components.

m, m₂

 $m_1 + m_2 = n$

Let's say n = 100, $m_1 = 60$, $m_2 = 40$ (let's say) $m_1 = 39$, $m_2 = 61$

When $m_1 = 60$, degree can be 59 maximum $m_2 = 40$, degree can be 39 maximum 2 = 10

 $m_1 = 50$ $m_2 = 50$ degree can be maximum 49

violate deg $\geq \frac{n}{2}$

Whenever degree of every of vertex is at least 1/2, the graph is connected.

Skipping the degree proof for now.

Summary of Results:

- 1. deg V > 1/2, graph is connected
- 2 Path of length 3 (P4)

Given a graph G, if there is a cycle of length k (Cx), then you can find a path of length at least k+1. (k must be < n)

VII Dirac's Theorem:

Whenever, for t v & V, deg v > 1/2, then there is a Hamiltonian cycle.

1. Graph is connected (implication)

Consider a path u, u, u, u, uk which is the longest path.

k = n will not be true if H. cycle doesn't exist.

If k < n

u,, u2, u3,..., u480 (say)

t

degree = 50 degree = 50 (say)

 $u, - x - y - u_{80} \rightarrow Always possible because,$

For every vertex that u, is adjacent to, if predecessor of u, is not adjacent to uzo, then, the number of nodes > 100, which is not true. u, cannot be adjacent to anything outside u, uz, uz, uz, ..., uzo.

If this structure is not true, then there are 100 vertices, which is a contradiction Contradiction that this path was longest. Longest path should be of 100 vertices.

Hence, the above structure is a cycle. (Proved)

Note: Dirac's theorem is the sufficient condition for a graph G on n vertices to be Hamiltonian. However, a graph caneti be a Hamiltonian graph without satisfying Dirac's Theorem.

Ore's Theorem:

For any two vertices x and y, if $\deg x + \deg y \geq n$ then, there is a Hamiltonian cycle.

Whenever Dirac's theorem is true > Ore's theorem is true

talks about more graphs / is more general,

Eulerian & Hamiltonian Graphs - Relation

They're independent of each other.

Can there be graphs which are both Eulerian & Hamiltonian?

Yes. Cn is both Eulerian & Hamiltonian, and more graphs can be, we'll have to check

VIII. Planar Graph

A graph is planar if we can draw it on a plane, such that edges don't interest

Thus this is a planar graph

Thus, planar graph is a graph in which edges do not intersect.

Examples:

Any tree is a planar graph

April to promise

star graph on 5 vertices V

pendant vertex Thus, planor -

Try different ways around. Graph is non-planar.

Planar graph V

Planar graph

V-E+R=2:

3 vertices 3 edges 2 regions

4 vertices 5 edges 3 regions

here, 4-5+3=2

here, 3 - 3 + 2 = 2or, V-E+R=2

here also, 12 - 15 + 5 = 2

IVI = 12 IEI = 15

here, 5-4+2=3V-E+R doesn't hold bue

The formula holds true only for connected for planar graphs.

Proof of V-E+R=2 Using Induction:

If, IV1 = 5

IR1 = 3

V-E+R=2

If, |v| = 6

IEI = 7

IR1 = 3

V-E+R = 2

we increase an edge, a vortex also increases. we increase an edge, a region also increases.

Hence, V-E+R=2 remains true.

Famous Non-planar Graphs:

k_{3,3} k₅

Litmus Test for Planarity:

- → If a graph is planar, V-E+R=2
- → 3r ≤ 2e

$$3(4) = 12$$
, $2(14) \Rightarrow 12 < 28$ or $3r < 2e$

$$R_1 \rightarrow 4$$
, $R_2 \rightarrow 3$, $R_3 \rightarrow 7$, $R_4 \rightarrow 12$
at least 3 edges / region

If total number of regions = r There are at least 3r regions edges.

$$3r \le (4+3+7+12)^{-1}$$

Since each edge is counted at least 1 and at most 2 times.

$$2 = V - E + \gamma , \quad \gamma \le \frac{2e}{3}$$

$$\Rightarrow$$
 2 \le v-e + $\frac{2e}{3}$

$$\Rightarrow 2 \leq v - \frac{e}{3}$$

3 Utilities Problem - Revisited

houses utili.

- . .
- . .

Contract Contract San Jan Contract

X

Construct roads to all three utilities from each house, such that the roads do not intersect. (Not possible).

The required structure will be which is a Bipartite graph.

A Bipartite can never have an odd cycle.

Triangle is never visible.

3r 5 2e might hold true if this is a planar graph.

For a Bipartite graph, 4r ≤ 2e.

If the graph is planar, then

- not true

Graph is non-planar.

Hence, the roads can't be constructed

Complete Graph w/ 5 Vertices (kg) is Non-Planar

Assume ke is planar.

$$v-e+r=2$$

Hence, ks is non-planar.

X Coloring

vertex = prisoners

What is the min number of prison cells required, so that no two enemies belong to the same cell?

Proper Coloring: Assign with minimum number of colors, colors to the vertices; such that no two adjacent vertices have the same coloring.

to color a graph properly Minimum number of colors — Chromatic number

A graph G is 3-colorable if 3 colors are sufficient to color it properly.

Examples on Proper Coloring:

(a star graph is always 2-colorable)

chromatic number = 2

(kn requires n colors to color it properly, because every vertex is adjacent to every other vertex)

6 (2+e-v) 6 PE

Hence, to is non-plange

prirola

chromatic number = 5

ks: 2 .5

(k, requires 1 color to color it properly)

Bipartite graph:

(A Bipartite graph is always 2 - colorable)

C3: = k3, chromatic number = 3

C4:

chro matic number = 2

(Cn, when n is even, is two colorable) (Cn, when n is odd, 3 colors are required)

of which a come and on best a damper du more to come that the whole

chromatic number = 3

(Peterson graph)

3 - colorable