

Integrating BioGears Simulations and Electronic Health Records (EHR)

Christie Burris, Steven White, Adam Amos-Binks, Austin Baird

March 18, 2020

© 2018 Applied Research Associates, Inc.

INFRASTRUCTURE ENERGY & ENVIRONMENT

HEALTH SOLUTIONS

Digital Twin: Sensor-simulation trade-off

Functional

Social

Biology

"Biology easily has 500 years of exciting problems to work on" – Donald Knuth

© 2016 Applied Research Associates, Inc.

Current State of Predictive Modeling

Machine Learning Modeling

- 4TDS
- Image classification
- Observational data analysis

Mechanistic Modeling

- BioGears
- Physics/first-principles based
- Differential Equation solvers

The future of data-driven healthcare is a combined modeling strategy

Machine Learning Modeling

- Learn first-principles
- Reduce computation time
- Increase expert trust

Mechanistic Modeling

Pros: driven by first principles

Cons: slow, limited in scope

Pros: Speed

Cons: not driven by first principles, requires large amounts of data

4TDS Goal & Strategy

Goal: Improve quality and efficiency of medic performance in combat casualty care using health IT and data analytics

Strategy

Feature engineering to capture physiology changes

4TDS data: Electronic Health Records (EHR)

- Comprehensive medical history of a patient across multiple healthcare admissions
- Designed for billing purposes

Challenges

Long Term Collaboration Goal

Improve 4TDS Machine Learning Model

Supplement positive septic shock class with data from BioGears

ARA is positioned to develop new tools

- Collect output data from BioGears scenarios
- Use to enhance 4TDS dataset

BioGears

Mech. modeling expertise

Development resources

Initial Feasibility Studies

BioGears / EHR integration

 Can we generate BioGears simulations that match the trends and level of variation in real ICU patients?

BioGears / Machine Learning integration

 Can we generate BioGears simulations that span the solution space of the underlying physiology model?

Creating a dataset of BioGears simulations

Example / Howto – Patient Generation

Input

.csv file with rows denoting scenario parameters

- Length of scenario
- Severity of infection
- Min inhibitory concentration
- Time of first antibiotic dose
- Frequency of subsequent doses
- Patient state file

Output

.csv of data requests for each scenario passed from input

From start to dataset

- Induce septic shock
- Create variation in simulated vitals
- Add complexities (comorbidities, preexisting conditions)

Preprocessing

Howto

- Generate patient files
- Run sepsis simulations (saving states along the way)
- Input state files with varying parameters into howto .csv files

- Import .csv files to python dataframes
- Concatenate and reformat

Postprocessing

Feasibility Study Results

BioGears / EHR integration – capturing trends

- Introduce actions (pre-existing conditions, drugs, etc)
- Next steps: quantify similarity

Feasibility Study Results

BioGears / EHR integration – creating "noise"

Introduce actions (pain, stress, exercise)

BioGears - with actions

Feasibility Study Results

BioGears / Machine Learning integration

- Random initial patient generation
- No-action time lapse with infection and meals every 8 hours

Wrap up

Future use cases

Supplement 4TDS dataset with BioGears data

Increase number of septic shock patients in training

Generalizing to other scenarios

Beyond sepsis

Physics-based Machine Learning research

 Capture the underlying mechanics of BioGears in a machine learning model

Takeaways

New BioGears feature in dev has enabled dataset creation

Dataset up on github today!

BioGears can help bridge the gap between Machine Learning and physics-based modeling

Smart resource management for multi-casualty care is on the horizon

Thank you!