

Einführung in die Algebra

Aufarbeitung der Vorlesungsnotizen

Tobias Wedemeier

 November 2014 gelesen von Prof. Dr. Kramer

Inhaltsverzeichnis

1	Elem	nentare Gruppentheorie	1
	1.1	Definition Gruppe	1
	1.2	Beispiel 1	1
	1.3	Beobachtungen	1
	1.4	Lemma 1 (Sparsame Definition von Gruppen)	1
	1.5	Beispiel 2	2
	1.6	Definition zentralisieren	2
	1.7	Beispiel 3	2
	1.8	Definition Untergruppe	2
	1.9	Lemma 2	3
	1.10	Definition $\langle X \rangle$	3
	1.11	Definition zyklische Gruppe	3
		Zyklische Gruppen	3
	1.13	Nebenklassen	4
	1.14	Satz von Lagrange	5
	1.15	Homomorphismen	6
	1.16	Satz Gruppenhomomorphismen	6
	1.17	Normalteiler	7
	1.18	Definition Teilmengen assoziativ	7
	1.19	Definition π_H	8
		Der Homomorphiesatz	8
	1.21	Definition Isomorphismus	9
	1.22	Satz Eigenschaften von Gruppenhomomorphismen	9
	1.23	Die Isomorphiesätze	10
	1.24	Produkte von Gruppen	12
2	Grup	ppenwirkungen und Sylow-Sätze	14
	2.1	Gruppenwirkungen	14
	2.2	mehrere Definitionen	14
	2.3	Beispiele Wirkungen	15
	2.4	Satz von Cayley	15
	2.5	Definition transitiv	15
	2.6	Bahnen	16
	2.7	Die Bahnengleichung	16
	2.8	Automorphismen und Konjugationswirkungen	17
	2.9	Satz (Die Klassengleichung)	18
	2.10	Korollar über das Zentrum	18
Αu	ssage	en aus den Übungen	Α
Inc	lex		С
Αb	bildu	ngsverzeichnis	D
		-	

1 Elementare Gruppentheorie

Erinnerung: eine **Verknüpfung** auf einer nicht leeren Menge X ist eine Abbildung

$$X \times X \to X, (x, y) \mapsto m(x, y).$$

Häufig schreibt man $m(x,y)=x\cdot y$ oder m(x,y)=x+y, je nach Kontext. Die Schreibweise m(x,y)=x+y wird eigentlich nur für kommutative Verknüpfungen benutzt, d.h. wenn $\forall x,y\in X$ gilt m(x,y)=m(y,x).

1.1 Definition Gruppe

Eine $\underline{\mathbf{Gruppe}}$ (G,\cdot) besteht aus einer Verknüpfung \cdot auf einer nicht leeren Menge G, mit folgenden Eigenschaften:

- (G1) Die Verknüpfung ist <u>assoziativ</u>, d.h. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ gilt $\forall x, y, z \in G$. (Folglich darf man Klammern weglassen.)
- (G2) Es gibt ein neutrales Element $e \in G$, d.h. es gilt $e \cdot x = x \cdot e = x \forall x \in G$
- (G3) Zu jedem $x \in G$ gibt es ein <u>Inverses</u> $y \in G$, d.h. xy = e = yx. man schreibt dann auch $y = x^{-1}$ für das Inverse zu x.

Fordert man von der Verknüpfung nur (G1) und (G2), so spricht man von einer Halbgruppe mit Eins oder einem **Monoid**. Fordert man nur (G1), so spricht man von einer Halbgruppe.

1.2 Beispiel 1

- $(\mathbb{Z},+),(\mathbb{Q},+)$ sind kommutative Gruppen.
- $(\mathbb{Z}, \cdot), (\mathbb{N}, \cdot), (\mathbb{N}, +)$ sind Monoide.

1.3 Beobachtungen

- a) Das Neutraleelement (einer Verknüpfung) ist eindeutig bestimmt: sind e,e' beides Neutralelemente, so folgt: e=ee'=e'
- b) Das Inverse zu x ist eindeutig bestimmt: $xy = e = xy' = y'x \Rightarrow y' = y'e = y'xy = ey = y$

1.4 Lemma 1 (Sparsame Definition von Gruppen)

Sei $G \times G \to G$ eine assoziative Verknüpfung. Dann ist G schon eine Gruppe, wenn gilt:

- (i) es gibt $e \in G$ so, dass $ex = x \ \forall x \in G$ gilt.
- (ii) zu jedem $x \in G$ gibt es ein $y \in G$ mit yx = e

Beweis

$$\overline{\text{Sei }yx}=e\text{, es folgt }yxy=y\text{. W\"{a}hle }z\text{ mit }zy=e\text{, es folgt }\underbrace{zy}_{=e}xy=zy=e\Rightarrow xy=e$$

Weiter gilt xe = xyx = ex = x.

1.5 Beispiel 2

Sei X eine nicht leere Menge, sei $X^X=\{f:X\to X\}$ die Menge aller Abbildungen von X nach X. Als Verknüpfung auf X nehmen wir die Komposition von Abbildungen. Dann gilt wegen $f=\operatorname{id}_X\circ f=f\circ\operatorname{id}_X$, dass id_X ein Neutralelement ist.

Damit haben wir ein Monoid (X_X, \circ) .

Sei $\mathrm{Sym}(X)=\{f:X\to X\mid f \text{ bijektiv}\}$. Zu jedem $f\in\mathrm{Sym}(X)$ gibt es also eine Umkehrabbildung $g:X\to X$ mit $f\circ g=g\circ f=\mathrm{id}_X$. Folglich ist $(\mathrm{Sym}(X),\circ)$ eine Gruppe, die **Symmetrische Gruppe**. Wenn X endlich ist mit n Elementen, so gibt es genau $n!=n(n-1)(n-2)\cdots 2\cdot 1$ Permutationen, also hat Sym(X) dann genau n! Elemente.

Für
$$X = \{1, 2, 3, \dots, n\}$$
 schreibt man auch $\operatorname{Sym}(X) = \operatorname{Sym}(n) \bigg(= S_n \bigg)$.

1.6 Definition zentralisieren

Sei $G \times G \to G$ eine Verknüpfung. Wir sagen, $x,y \in G$ vertauschen oder kommutieren oder x zentralisiert y, wenn gilt xy = yx.

Eine Gruppe, in der alle Elemente vertauschen heißt kommutativ oder abelsch.

1.7 Beispiel 3

- (a) $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{Q}^*,\cdots)$ sind abelsche Gruppen.
- (b) K Körper, $G = Gl_2(K) = \{X \in K^{2 \times 2} \mid \det(X) \neq 0\}$ Gruppe der invertierbaren 2×2 Matrizen.

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

 \Rightarrow nicht abelsch, genauso $Gl_n(K)$ für $n \ge 2$.

(c) Sym(2) ist abelsch, aber Sym(3) nicht. Allgemein ist Sym(X) nicht abelsch, falls $\#X \geq 3$ gilt.

1.8 Definition Untergruppe

Sei G eine Gruppe, sei $H \subseteq G$. Wir nennen H Untergruppe von G, wenn gilt:

- (UG1) $e \in H$
- (UG2) $x, y \in H \Rightarrow xy \in H$
- (UG3) $x \in H \Rightarrow x^{-1} \in H$

Offensichtlich ist eine Untergruppe dann wieder eine Gruppe, mit der von G vererbten Verknüpfung.

Bsp

- (a) $(\mathbb{Q},+)$. \mathbb{Z} ist Untergruppe, denn $0 \in \mathbb{Z}, m, n \in \mathbb{Z} \Rightarrow m+n \in \mathbb{Z}$ und $n \in \mathbb{Z} \Rightarrow -n \in \mathbb{Z}$
- (b) (\mathbb{Q}^*, \cdot) . \mathbb{Z}^* ist keine Untergruppe, kein Inverses.

1.9 Lemma 2

Sei G eine Gruppe und sei U eine nicht leere Menge von Untergruppen von G. Dann ist auch $\bigcap U = \{g \in G \mid \forall H \in U \text{ gilt } g \in H\}$ eine Untergruppe von G.

Beweis

Für alle $H \in U$ gilt $e \in H$, also $e \in \bigcap U$. Angenommen $x, y \in \bigcap U$. Dann gilt für alle $H \in U$, dass $xy \in H$ sowie $x^{-1} \in H$. Es folgt $xy \in \bigcap U$ sowie $x^{-1} \in \bigcap U$.

1.10 Definition $\langle X \rangle$

Sei G eine Gruppe und $X\subseteq G$ eine Teilmenge. Wir setzen:

$$\langle X \rangle = \bigcap \{ H \subseteq G | H \text{ Untergruppe und } X \subseteq H \}$$

Ist nicht leer, da mindestens G enthalten ist.

- \bullet Es gilt z.B. $\langle\emptyset\rangle=\{e\}$, denn $\{e\}$ ist Untergruppe.
- Ist $H \subseteq G$ Untergruppe mit $X \subseteq H$, so folgt $X \subseteq \langle X \rangle \subseteq H$, insb. also $\langle H \rangle = H$.

Satz

Sei $X \subseteq G$ und sei $W = \{x_1 \cdot x_2, \dots \cdot x_s | s \ge 1, x_i \in X \text{ oder } x_i^{-1} \in X \ \forall i = 1, \dots, s\}$. Dann gilt: $\langle X \rangle = \{e\} \cup W$.

Beweis

Wegen $X\subseteq \langle X\rangle$ und $e\in \langle X\rangle$ folgt $\{e\}\cup W\subseteq \langle X\rangle$. Ist $f,g\in W$, so folgt $fg\in W$ sowie $f^{-1}\in W$, also ist $H=\{e\}\cup W$ eine Untergruppe von G, mit $X\subseteq H$. Es folgt $\langle X\rangle\subseteq H=\{e\}\cup W$. \square

1.11 Definition zyklische Gruppe

Sei G eine Gruppe und sei $g \in G$. Für $n \geq 1$ setze $g^n = \underbrace{g \cdot \dots \cdot g}_{n-mal}$ sowie $g^{-n} = \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{n-mal}$ und

$$g^0 = e$$
.

Dann gilt $\forall k, l \in \mathbb{Z}$, dass $g^k \cdot g^l = g^{k+l}$.

Sei $\langle g \rangle = \langle \{g\} \rangle \stackrel{1.10}{=} \{g^n | n \in \mathbb{Z}\}$. Man nennt $\langle g \rangle$ die von g erzeugte **zyklische Gruppe**. Wenn für ein $n \geq 1$ gilt $g^n = e$, so heißt n ein **Exponent** von g. Dle **Ordnung** von g ist der kleinste Exponent von g,

$$o(g) = \min (\{n \ge 1 | g^n = 1\} \cup \{\infty\})$$

 $o(g) = \infty$ bedeutet: $g^n \neq e \ \forall n \geq 1$ o(g) = 1 bedeutet: $g^n = g = e$

1.12 Zyklische Gruppen

Eine Gruppe G heißt **zyklisch**, wenn es ein $g \in G$ gibt mit $G = \langle g \rangle$. Wegen $g^k g^l = g^{k+l} = g^{l+k} = g^l g^k$ gilt: zyklische Gruppen sind abelsch.

Satz

Sei $G = \langle g \rangle$ zyklisch mit $o(g) = n < \infty$. Dann gilt #G = n und $G = \{g, g^1, g^2, g^3, \dots, g^n\}$. Beweis Jedes $m \in \mathbb{Z}$ lässt sich schreiben als m = kn + l mit $0 \le l < n$ (Teilen mit Rest), also $g^m = \underbrace{g^{kn}}_{} . g^l = g^l$.

Es folgt
$$G \subseteq \{g, g^2, \dots, g^n\}, g^n = g^0$$
. Ist $g^k = g^l$ für $0 \le k \le l < n$, so gilt $e = g^0 = g^{l-k}$, also $l - k = 0$ (wegen $l < n$), also $\#\{g, g^2, \dots, g^n = g^0\} = n$.

Folgerung

Ist G endlich mit #G = n und ist $h \in G$ mit O(h) = n, so folgt $\langle h \rangle = G$. Insbesondere ist dann G eine zyklische Gruppe.

1.13 Nebenklassen

Sei G eine Gruppe und sei H eine Untergruppe. Sei $a \in G$. Wir definieren:

$$aH = \{ah|h \in H\} \subseteq G$$

$$Ha = \{ha|h \in H\} \subseteq G$$

Man nennt aH die <u>Linksnebenklassen</u> von a bzgl. H (und Ha die <u>Rechtsnebenklassen</u>). In nicht abelschen Gruppen gilt im allgemeinen $aH \neq Ha$.

Lemma

Sei $H \subseteq G$ Untergruppe der Gruppe G und $a,b \in G$. Dann sind äquivalent:

- (i) $b \in aH$
- (ii) bH = aH
- (iii) $bH \cap aH \neq \emptyset$

Beweis

- $\begin{array}{l} \bullet \quad (i) \Rightarrow (ii): \ b \in aH \Rightarrow b = ah \ \text{für ein} \ h \in H \Rightarrow bH = \{ahh'|h' \in H\} \\ \stackrel{H \ \text{Untergruppe}}{=} \{ah''|h'' \in H\} = aH \end{array}$
- $(ii) \Rightarrow (iii) : \mathsf{klar}$
- $(iii) \Rightarrow (i)$: Sei $g \in bH \cap aH$, $g = bh = ah' \Rightarrow b = ah'h^{-1} \in aH$, da H Untergruppe

Folgerung

Jedes $g \in G$ liegt in genau einer Linksnebenklasse bzgl. H, nämlich $g \in gH$. Entsprechendes gilt natürlich für Rechtsnebenklassen. Man setzt:

 $G/H = \{gH \mid g \in G\}$ Menge der Linksnebenklasse, Rechtsnebenklassen analog.

Lemma

Sei $H \subseteq G$ Untergruppe der Gruppe G, sei $a \in G$.

Dann ist die Abbildung $H \to gH, h \mapsto gH$ bijektiv.

Beweis

'Surjektiv' ist klar nach Definition von gH. Angenommen, $gh = gh' \Rightarrow h = g^{-1}gh' = h'$

1.14 Satz von Lagrange

Sei G eine Gruppe und $H \subseteq G$ eine Untergruppe. Wenn zwei der drei Mengen G, H, G/H endlich sind, dann ist die dritte ebenfalls endlich und es gilt:

$$\#G = \#H \cdot \#G/H$$

Insbesondere ist dann #H eine **Teiler** von #G.

Beweis

Wenn G endlich ist, dann sind auch H und G/H endlich.

Angenommen, G/H und H sind endlich. Dann ist auch $G = \bigcup G/H = \bigcup \{gH \mid gH \in G/H\}$ endlich, da #gH = #H nach 1.13.

Jetzt zählen wir genauer: sei #G/H = m; #H = n etwa $G/H = \{g_1H, g_2H, \dots g_mH\}$.

$$g_iH \stackrel{1.13}{=} n$$
 $g_iH \cap g_jH = \emptyset$ für $i \neq j$ nach 1.13.
$$G = g_1 \cap \#g_2H \cap \dots \cap g_mH \Rightarrow \#G = m \cdot n$$

Bem

- (1) Eine entsprechende Aussage gilt für Rechtsnebenklassen.
- (2) Die Abbildung $G \to G$, $g \mapsto g^{-1}$ bildet die Linksnebenklassen bijektiv auf die Rechtsnebenklassen ab:

$$(gH)^{-1} = \{(gh)^{-1} \mid h \in H\} \stackrel{\mathsf{Achtung!}}{=} \{h^{-1}g^{-1} \mid h \in H\} = \{hg^{-1} \mid h \in H\} = Hg^{-1} \tag{ÜA}$$

Korollar A (Lagrange)

Sei G eine endliche Gruppe und sei $g \in G$. Dann teilt o(g) die Zahl #G.

Beweis

Da G endlich ist, folgt $o(q) < \infty$. Nach dem Satz von Lagrange ist $\#\langle q \rangle = o(q)$ ein Teiler von #G. \square

Korollar B

Sei G eine endliche Gruppe, sei p eine $\underline{\mathbf{Primzahl}}$ (d.h. die einzigen Teiler von p sind 1 und p) und p>1. Wenn gilt #G=p, dann ist G zyklisch. Für jedes $g\in G\backslash\{e\}$ gilt $\langle g\rangle=G$.

Beweis

Sei $g \in G \setminus \{e\}$. Dann ist o(g) > 1 und o(g) teilt p. Es folgt o(g) = p, also $G = \langle g \rangle$ vgl. 1.12. Für endliche Gruppen sind Teilbarkeitseigenschaften wichtig, wie wir sehen werden. Die Zahl $\#^G/H := [G:H]$ nennt man auch den **Index von H in G**.

Wichtige Rechenregeln in Gruppen

(a) Man darf kürzen

$$ax = ay \Rightarrow x = y$$

 $xa = ya \Rightarrow x = y$

(multipliziere beide Seiten von links/rechts mit a^{-1})

- (b) Es gilt $(x^{-1})^{-1} = x$ $(x^{-1}x = e = xx^{-1} \Rightarrow (x^{-1})^{-1} = x)$
- (c) Beim Invertieren darf die Reihenfolge umgedreht werden:

$$(ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right)$$

(in abelschen Gruppen gilt natürlich damit $(ab)^{-1} = a^{-1}b^{-1}$)

1.15 Homomorphismen

Seien G,K Gruppen. Eine Abbildung $\varphi:G\to K$ heißt (Gruppen-)Homomorphismus, wenn $\forall x,y\in G$ gilt

$$\varphi\underbrace{(x\cdot y)}_{\text{Verküpfung in G}} = \underbrace{\varphi(x)\varphi(y)}_{\text{Verknüpfung in K}}$$

Bsp

- (a) $id_G: G \to G$ ist Homomorphismus
- (b) $H \subseteq G$ Untergruppe $i: H \hookrightarrow G$, $h \mapsto h$ Inklusion, ist Homomorphismus.
- (c) $(G,\cdot)=(\mathbb{Z},+)$ $m\in\mathbb{Z}$ $\varphi:\mathbb{Z}\to\mathbb{Z}, x\mapsto mx$ ist Homomorphismus, denn $\phi(x+y)=m(x+y)=mx+my=\varphi(x)+\varphi(y)$
- (d) G Gruppe, $a \in G$, $a \neq e$, $\lambda_a(x) = ax$. $\lambda: G \to G$ ist kein Homomorphismus, denn $\lambda_a(e) = a$, $\lambda(ee) = a$, aber $\lambda_a(e)\lambda_a(e) = aa \neq a$

Lemma

Sei $\varphi:G\to K$ ein Homomorphismus von Gruppen. Dann gilt $\varphi(e_G)=e_K$ und $\varphi(x^{-1})=\varphi(x)^{-1}\ \forall x\in G.$ (e_G Neutralelement in G und e_K Neutralelement in K) Beweis

$$\begin{split} \varphi(e_G) &= \varphi(e_G \cdot e_G) = \varphi(e_G) \cdot \varphi(e_G) \overset{\text{k\"urzen}}{\Rightarrow} e_K = \varphi(e_G) \\ e_K &= \varphi(e_G) = \varphi(x^{-1}x) = \varphi(x^{-1})\varphi(x) \Rightarrow \varphi(x)^{-1} = \varphi(x^{-1}) \end{split}$$

Achtung: $\varphi(x)^{-1}$ ist das Inverse in K von $\varphi(x)$ nicht die Umkehrabbildung!

Das <u>Bild</u> eines Homomorphismus $\varphi:G\to K$ ist $\varphi(G)\subseteq K$, der <u>Kern</u> ist $ker(\varphi)=\{x\in G\mid \varphi(x)=e_K\}\subseteq G$

1.16 Satz Gruppenhomomorphismen

Bild und Kern von Gruppenhomomorphismen sind Untergruppen.

Beweis

Setze $H = \varphi(G) \subseteq K$. Es folgt $e_K \in H$. Für $\varphi(x), \varphi(y) \in H$ gilt $\varphi(x)\varphi(y) = \varphi(xy) \in H$ sowie $\varphi(x)^{-1} = \varphi(x^{-1}) \in H$, also ist H Untergruppe. Betrachte jetzt $ker(\varphi) \subseteq G$. Es gilt $\varphi(e_G) = e_K$, also $e_G \in ker(\varphi)$. Ist $x, y \in ker(\varphi)$, so folgt

$$\varphi(xy)=\varphi(x)\varphi(y)=e_K\cdot e_K=e_K\text{ , also }xy\in ker(\varphi)$$

$$\varphi(x^{-1})=\varphi(x)^{-1}=e_K^{-1}=e_K\text{ , also }x^{-1}\in ker(\varphi)$$

Bemerkung:

<u>Jede</u> Untergruppe von $H\subseteq G$ ist Bild eine geeigneten Homomorphismus (nämlich der Inklusion $H\hookrightarrow G$). Wir werden sehen, dass im allgemeinen <u>nicht</u> jede Untergruppe $H\subseteq G$ Kern eines Homomorphismus ist.

1.17 Normalteiler

Sei G eine Gruppe und $N \subseteq G$ eine Untergruppe. Wir nennen N <u>normal</u> in G oder <u>Normalteiler</u> in G, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (i) für alle $a \in G$ gilt aN = Na (Rechtsnebenklassen sind Linksnebenklassen)
- (ii) für alle $a \in G$ gilt $aNa^{-1} = N(aNa^{-1} = \{ana^{-1} \mid n \in N\})$
- (iii) für alle $a \in G$ gilt $aN \subseteq Na$
- (iv) für alle $a \in G$ gilt $aNa^{-1} \subseteq N$

Beweis:

(i) und (ii) sind äquivalent: multipliziere von rechts mit a^{-1} bzw. a. Genauso sind (iii) und (iv) äquivalent. Klar: (ii) \Rightarrow (iv) (\checkmark)

Zeige (iv)
$$\Rightarrow$$
 (ii): Setze $b=a^{-1}$, es folgt aus (iv), dass $bNb^{-1} \subseteq N \rightsquigarrow N \subseteq b^{-1}Nb = aNa^{-1}$. Also gilt für alle $a \in G$, dass $N \subseteq aNa^{-1}$ und $aNa^{-1} \subseteq N$, damit gilt (ii)

Lemma

Ist $\varphi:G\to K$ ein Homomorphismus von Gruppen, dann ist $ker(\varphi)$ ein Normalteiler in G.

Beweis:

 $\overline{\mathsf{Sei}\ N} = ker(\varphi) = \{n \in G \mid \varphi(n) = e\}, \ \mathsf{sei}\ a \in G. \ \mathsf{Dann}\ \mathsf{gilt}$

$$\varphi(ana^{-1}) = \varphi(a)\underbrace{\varphi(n)}_{=e}\varphi(a^{-1}) = \varphi(a)\varphi(a^{-1}) = e$$

also gilt $aNa^{-1} \subseteq N \ \forall a \in G$.

Achtung:

<u>Bilder</u> von Homomorphismen sind <u>nicht</u> immer Normalteiler, nach Beispiel 1.15 (b) ist <u>jede</u> Untergruppe Bild eines Homomorphismus, aber nicht jede Untergruppe ist normal.

Beispiel:

G=Sym(3), g=(1,2) Transposition, die 1 und 2 vertauscht. $g^2=id$, $\langle g\rangle=\{g,id\}\subseteq \mathrm{Sym}(3)$ ist Untergruppe, aber für h=(2,3) gilt

$$h\langle g\rangle h^{-1} = \{hgh^{-1}, h \ id \ h^{-1}\} = \{\underbrace{(2,3)(1,2)(2,3)}_{=(3,1)}, id\} \not\subseteq \langle g\rangle$$

also ist $\langle g \rangle$ kein Normalteiler in $\mathrm{Sym}(3)$.

Schreibweise: Ist $N \subseteq G$ ein Normalteiler, schreibt man kurz $N \leqslant G$

Beachte: Ist G abelsch, dann sind alle Untergruppen $H \subseteq G$ automatisch normal.

1.18 Definition Teilmengen assoziativ

Für Teilmengen $X, Y, Z \subseteq G$ in einer Gruppe schreibe kurz:

$$XY = \{xy \mid x \in X, \ y \in Y\} \subseteq G$$
$$X^{-1} = \{x^{-1} \mid x \in X\} \subseteq G$$

Es gilt dann (XY)Z = X(YZ), (weil die Verknüpfung assoziativ ist).

П

Satz

Sei $N \leqslant G$ Normalteiler in der Gruppe G. Dann ist $G/N = \{gN \mid g \in G\}$ eine Gruppe mit der Verknüpfung $(gN) \cdot (hN) = ghN$

Das Neutralelement ist eN=N, das Inverse zu gN ist $g^{-1}N$.

Beweis:

Da N Normalteiler ist, gilt für $g,h \in G$

$$gNhN = g(Nh)N \stackrel{1.17}{=} g(hN)N = ghNN \stackrel{N}{=} gruppe ghN$$

Die Verknüpfung ist also einfach gegeben durch

$$gN \cdot hN = gNhN = ghN$$

und damit assoziativ nach obiger Bemerkung. Es gilt NgN=gNN=gN=gNN, also ist N ein Neutralelement. Weiter gilt:

$$gNg^{-1}N = gg^{-1}N = N = g^{-1}gN = g^{-1}NgN$$

1.19 Definition π_H

Ist G eine Gruppe und H eine Untergruppe, so definieren wir $\pi_H:G\to G/H$ durch $\pi_H(g)=gH$.

Satz

Ist $N \leqslant G$ ein Normalteiler, dann ist $\pi_N: G \to G/N$ ein surjektiver Homomorphismus mit Kern $N = ker(\pi_N)$.

Beweis:

 π_N ist nach Definition surjektiv und

$$\pi_N(gh) = ghN = gNhN = \pi_N(g)\pi_N(h)$$

Weiter gilt

$$\pi_N(g) = N \Longleftrightarrow gN = N \stackrel{\text{1.13}}{\Longleftrightarrow} g \in N$$

Folgerung:

Jeder Normalteiler ist auch ein Kern eines Homomorphismus.

1.20 Der Homomorphiesatz

Sei $G \stackrel{\varphi}{\to} K$ ein Homomorphismus von Gruppen, sei $N \leqslant G$ ein Normalteiler. Wenn gilt $N \subseteq ker(\varphi)$, dann gibt es <u>genau einen</u> Homomorphismus $\overline{\varphi} : G/H \to K$ mit $\overline{\varphi} \circ \pi_H = \varphi$.

Abbildung 1: Homomorphiesatz

Beweis:

Existenz von $\overline{\varphi}$:

Für $g \in G$ setze $\overline{\varphi}(gN) = \varphi(g)$. Das ist eine wohldefinierte Abbildung, denn angenommen,

$$gN = g'N \Rightarrow g^{-1}g' \in N \subseteq ker(\varphi) \Rightarrow \varphi(g^{-1}g') = e \Rightarrow \varphi(g) = \varphi(g')$$

Es gilt damit

$$\overline{\varphi}(gNhN) = \overline{\varphi}(ghN) = \varphi(gh) = \varphi(g)\varphi(h) = \overline{\varphi}(gN)\overline{\varphi}(hN)$$

also ist $\overline{\varphi}$ ein Homomorphismus.

Eindeutigkeit von $\overline{\varphi}$:

Sei $\psi: G/N \to K$ ein Homomorphismus mit $\psi \circ \pi_N = \varphi$.

Es folgt

$$\psi(gN) = \psi(\pi_N(g)) = \varphi(g) = \overline{\varphi}(gN) \quad \forall g \in G$$

Bemerkung:

In der Situation vom Homomorphiesatz gilt:

- (i) $ker(\varphi) = \pi_N^{-1} ker(\overline{\varphi})$
- (ii) $ker(\overline{\varphi}) = \pi_N \ ker(\varphi)$
- (iii) $\varphi(G) = \overline{\varphi}(G/N)$

Beweis:

- (iii) ist klar nach Konstruktion, $\overline{\varphi}(gN) = \varphi(g)$
- (ii) $\overline{\varphi}(gN) = e = \varphi(g) \Leftrightarrow g \in ker(\varphi)$, also $ker(\overline{\varphi}) = \pi_N(ker(\varphi))$

(i)
$$\varphi(g) = e \Rightarrow g \in ker(\varphi) \Rightarrow \pi_N(g) \in ker(\overline{\varphi}) \Rightarrow \varphi(g) = e$$

1.21 Definition Isomorphismus

Ein Gruppenhomomorphismus $\varphi:G\to K$ heißt Mono/Epi/Isomorphismus, wenn φ injektiv/surjektiv/bijektiv ist.

(Klar: φ Epimorphismus $\Leftrightarrow \varphi(G) = K$)

Für einen Mono / Epi / Isomorphismus schreibt man auch:

$$\stackrel{\varphi}{\rightarrowtail} \stackrel{\varphi}{\twoheadrightarrow} \text{ und } \stackrel{\cong}{\rightarrow}$$

Lemma

Ein Gruppenhomomorphismus $G \stackrel{\varphi}{\to} K$ ist genau dann injektiv, wenn gilt $ker(\varphi) = \{e_G\}$.

Beweis:

Wenn
$$\varphi$$
 injektiv ist, dann ist $ker(\varphi) = \{e_G\}$ (klar). Angenommen, $ker(\varphi) = \{e_G\}$ und $a, b \in G$ mit $\varphi(a) = \varphi(b) \leadsto \varphi(a)\varphi(b)^{-1} = \varphi(ab^{-1}) = e_K \Rightarrow ab^{-1} = e_G \Rightarrow a = b$

1.22 Satz Eigenschaften von Gruppenhomomorphismen

Sei $G \stackrel{\varphi}{\to} K$ ein Gruppenhomomorphismus. Dann gilt folgendes:

- (i) Ist $H \subseteq G$ Untergruppe, so ist $\varphi(H) \subseteq K$ Untergruppe. Wenn $H \triangleleft G$, so gilt $\varphi(H) \triangleleft \varphi(G)$
- (ii) Ist $L\subseteq K$ Untergruppe, so ist $\varphi^{-1}(L)\subseteq G$ Untergruppe. Ist $L\leqslant K$, so gilt $\varphi^{-1}(L)\leqslant G$.

Beweis:

(i) Sei $a,b \in H$ und $g \in G$. Es gilt $\varphi(a)\varphi(b) = \varphi(ab) \in H$, $\varphi(a)^{-1} = \varphi(a^{-1}) \in \varphi(H)$. $\varphi(e_G) = \varphi(a^{-1}) \in \varphi(H)$ $e_K \in \varphi(H) \Rightarrow \varphi(H)$ Untergruppe.

$$\operatorname{lst} H \leqslant G \text{, so folgt } \varphi(g)\varphi(H)\varphi(g)^{-1} = \varphi(gHg^{-1}) \overset{H \leqslant G}{=} \varphi(H)$$

 $\text{(ii) Sei } a,b \in \varphi^{-1}(L), \quad g \in G \text{ (also } \varphi(a),\varphi(b) \in L). \text{ Es folgt } \varphi(ab) \in L, \quad \varphi(a^{-1}) = \varphi(a)^{-1} \in L \text{ und } \varphi(ab) \in L$ $\varphi(e_G) = e_K \Rightarrow ab, a^{-1}, e_G \in \varphi^{-1}(L) \rightsquigarrow \mathsf{Untergruppe}.$ Angenommen, $L \leqslant K$.

Es folgt
$$\varphi(gag^{-1}) = \varphi(g)\varphi(a)\varphi(g^{-1}) \in L$$
, also $g\varphi^{-1}(L)g^{-1} \subseteq \varphi^{-1}(L)$.

Beispiele

Gruppe $(\mathbb{Z}, +)$, $\varphi : \mathbb{Z} \to \mathbb{Z}$ Homomorphismus, $\varphi(z) = m \cdot z$, $m \in \mathbb{Z}$ fest.

$$\varphi(\mathbb{Z}) = m\mathbb{Z} = \{mz \mid z \in \mathbb{Z}\} = (-m)\mathbb{Z}$$

z.B.
$$m=2 \iff 2\mathbb{Z}=\{0,\pm 2,\pm 4,\pm 6,\dots\}$$
 gerade Zahlen

$$ker(\varphi) = \left\{ \begin{array}{l} \{0\}, \quad \text{wenn } m \neq 0 \\ \mathbb{Z}, \quad \text{wenn } m = 0. \end{array} \right. \quad \varphi \text{ surjektiv} \Leftrightarrow \quad m = \pm 1$$

$$\varphi \text{ injektiv} \Leftrightarrow \quad m \neq 0$$

Angenommen, m > 0, $a, b \in \mathbb{Z}$

$$a+m\mathbb{Z}=b+m\mathbb{Z}$$
 Nebenklassen $\overset{1.13}{\Leftrightarrow}a\in b+m\mathbb{Z}\Leftrightarrow a-b\in m\mathbb{Z}$

Folglich
$$\mathbb{Z}/m\mathbb{Z} = \{m\mathbb{Z}, 1 + m\mathbb{Z}, 2 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}\}$$
 insbesondere $\#\mathbb{Z}/m\mathbb{Z} = m$.

Schreibe $\overline{k} = k + m\mathbb{Z}$ Kongruenzklasse von k modulo m.

 $\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$ wird erzeugt von $\overline{1} \leadsto \mathbb{Z}/m\mathbb{Z} = \langle \overline{1} \rangle$ zyklische Gruppe der Ordnung m. $o(\overline{1}) = m$. Später mehr dazu.

1.23 Die Isomorphiesätze

Lemma

Sei G eine Gruppe, seien $H, N \subseteq G$ Untergruppen. Wenn $N \leq G$ gilt, dann ist $HN = NH \subseteq G$ eine Untergruppe.

Beweis:

Es gilt $e = e \cdot e \in N \cdot H$. Weiter gilt für $h_1, h_2 \in H, n_1, n_2 \in N$, dass

$$h_1 n_1 h_2 n_2 = \underbrace{h_1 h_2}_{\in H} \underbrace{h_2^{-1} n_1 h_2}_{\in N} n_2 \in HN$$

$$(h_1 n_1)^{-1} = n_1^{-1} h_1^{-1} = h_1^{-1} \underbrace{h_1 n_1^{-1} h_1^{-1}}_{\in N} \in HN$$

$$(HN)^{-1} = N^{-1} H^{-1} = NH \subseteq HN \text{ genauso } HN \subseteq NH$$

Satz

Sei $G \xrightarrow{\varphi} K$ ein Epimorphismus von Gruppen. Sei $N = ker(\varphi)$. Dann ist die Abbildung $\overline{\varphi} : G/N \to K$ aus dem Homomorphisatz 1.20 ein Isomorphismus.

Beweis:

 $\overline{\varphi}(G/N) = \varphi(G)$ und $ker(\overline{\varphi}) = \{N\}$ nach dem Beweis von 1.20. Den Isomorphismus $\overline{\varphi}: G/\ker(\varphi) \stackrel{\cong}{\to} K$ nennt man kanonisch oder natürlich.

Theorem: 1. Isomorphiesatz

Sei G eine Gruppe, seien $H,N\subseteq G$ Untergruppen mit $N \leqslant G$. Dann gilt $H\cap N \leqslant H$, $N \leqslant NH$ und die Abbildung

$$H/H \cap N \to NH/N$$
 $aH \mapsto aNH$

ist ein Isomorphismus. ("Kürzungsregel")

Beweis:

Für alle $h \in H$ gilt $h(H \cap N)h^{-1} \subseteq N \cap H$ weile $N \triangleleft G$ und $hHh^{-1} = H. \Rightarrow N \cap H \triangleleft H$. Für alle $g \in NH$ gilt $gNg^{-1} \subseteq N \Rightarrow N \triangleleft NH$

Lemma

Sei $G \stackrel{\varphi}{\to} K$ ein Gruppenhomomorphismus. Dann sind äquivalent:

- (i) φ ist bijektiv
- (ii) es gibt ein Homomorphismus $\psi: K \to G$ mit $\varphi \circ \psi = \mathrm{id}_K$ und $\psi \circ \varphi = \mathrm{id}_G$.

Beweis:

(ii) \Rightarrow (i): klar, aus $\varphi \circ \psi = \mathrm{id}_K$ folgt, dass φ surjektiv ist und aus $\varphi \circ \psi = \mathrm{id}_G$ folgt, dass φ injektiv ist.

 $\underbrace{ (\mathrm{i}) \Rightarrow (\mathrm{ii}) \text{: Sei } \psi : K \to G \text{ die eindeutig bestimmte Umkehrabbildung, also } \varphi \circ \psi = \mathrm{id}_K \text{ und } \psi \circ \varphi = \mathrm{id}_G.$ Für $a,b \in K$ folgt $\psi(ab) = \psi(\varphi\psi(a)\varphi\psi(b)) \overset{\varphi \text{ Homo.}}{=} \underbrace{\psi(\varphi(\psi(a)\psi(b))) = \psi(a)\psi(b)}_{\text{id}}$

Abbildung $\varphi: H \to {}^{HN}\!/N \subseteq {}^{G}\!/N, \ h \mapsto hN$ das ist ein Homomorphismus, weil $H \stackrel{i}{\to} G \stackrel{\pi_N}{\to} {}^{G}\!/N$ einer ist. Für $hn \in HN$ gilt $\varphi(h) = hN = hnN$, also ist φ ein Epimorphismus. Der Kern ist $ker(\varphi) = \{h \in H \mid hN = N\} = H \cap N$. Also gilt nach dem vorigem Satz

$$H/n\cap H \xrightarrow{\overline{\varphi}} HN/N$$

Theorem: 2. Isomorphiesatz

Sei G Gruppe, seien $M, N \leq G$ Normalteiler mit $M \subseteq N \subseteq G$. Dann gilt $N/M \leq G/M$ und

$$G/M/N/M \cong G/N$$
 'Kürzungsregel'

Beweis:

Es gilt $^{N}\!/_{M}=\{nM\mid n\in N\}=\pi_{M}(N)\subseteq {}^{G}\!/_{M}$ Nach1.22(i) gilt $N/M \leq G/M$. Jetzt Homomorphiesatz 1.20

Abbildung 2: 2. Isomorphiesatz

Nach dem vorigen Satz gilt:

$$\begin{array}{c} {}^{G/M}/ker(\overline{\pi_N}) \stackrel{\cong}{\to} G/N \\ \\ ker(\overline{\pi_N}) \stackrel{1.20}{=} \pi_M(N) = {}^{N}/M \end{array}$$

1.24 Produkte von Gruppen

Seien G, K zwei Gruppen. Dann ist das Produkt $G \times K$ wieder eine Gruppe das **direkte Produkt**, mit Verknüpfung

$$(g_1, k_1) \cdot (g_2, k_2) = (g_1 g_2, k_1 k_2)$$

Neutralelement
$$e = (e_G, e_K)$$

Das Inverse zu
$$(g,k) \in G \times K$$
 ist $(g,k)^{-1} = (g^{-1},k^{-1})$

Den Beweis lassen wir weg, die Gruppenaxiome (G1)-(G3) sind leicht zu prüfen. Wir haben kanonische Homomorphismen:

$$\begin{split} i_G: G \to G \times K & i_K: K \to G \times K \\ g \mapsto (g, e_K) & k \mapsto (e_G, k) \end{split}$$

sowie

$$pr_G: G \times K \to G, \quad (g,k) \mapsto g$$

 $pr_K: G \times K \to K, \quad (g,k) \mapsto k$

mit

$$pr_G \circ i_G = \mathrm{id}_G$$
 $pr_K \circ i_K = \mathrm{id}_K$ $ker(pr_G) = \{e_G\} \times K \cong K$ $ker(pr_K) = G \times \{e_K\} \cong G$

Das geht auch mit Familien von (endliche vielen) Gruppen: ist $(G_i)_{i\in I}$ eine Familie von Gruppen, so ist $\prod_i G_i$ wieder eine Gruppe, das <u>direkte Produkt</u> der G_i . Die Elemente sind Folgen $(g_i)_{i\in I},\ g_i\in G_i$ mit

Verknüpfung $(g_i)_{i \in I} \cdot (g'_i)_{i \in I} = (g_i g'_i)_{i \in I}$ usw.

Satz

Sei G eine Gruppe mit Untergruppe $H,K\subseteq G.$ Angenommen, es gilt folgendes

- (i) G = HK
- (ii) $H \cap K = \{e\}$
- (iii) $hk = kh \quad \forall h \in H, \ k \in K$

Dann ist die Abbildung $H \times K \xrightarrow{\varphi} G$, $(h,k) \mapsto hk$ ein Isomorphismus, d.h. G 'ist' das direkte Produkt aus H und K.

Beweis:

Wegen (iii) gilt

$$\varphi((h_1, k_1)(h_2, k_2)) = \varphi(h_1 h_2, k_1 k_2) = h_1 h_2 k_1 k_2$$

$$\varphi(h_1, k_1) \varphi(h_2, k_2) = h_1 k_1 h_2 k_2 = h_1 h_2 k_1 k_2$$

also ist φ ein Homomorphismus. Wegen (i) ist φ surjektiv.

$$(h,k) \in ker(\varphi) \Leftrightarrow hk = e \Leftrightarrow \underset{\in H}{h} = \underset{\in K}{\overset{-1}{\varprojlim}} \Leftrightarrow h = k = e \text{ wegen (ii)}$$

Beispiel

 $G=\mathbb{Z}/6\mathbb{Z}=\{\overline{0},\ldots,\overline{5}\}$ vgl. 1.22.Dann sind $H=\{\overline{0},\overline{3}\}$ sowie $K=\{\overline{0},\overline{2},\overline{4}\}$ Untergruppen (nachrechnen!), $H\cong\mathbb{Z}/2\mathbb{Z},\ K\cong\mathbb{Z}/3\mathbb{Z}$ und (i),(ii),(iii) aus dem vorigen Satz sind erfüllt. Es folgt

$$\mathbb{Z}/_{6\mathbb{Z}} \cong \mathbb{Z}/_{3\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$$

2 Gruppenwirkungen und Sylow-Sätze

2.1 Gruppenwirkungen

Sei G eine Gruppe und X eine nicht leere Menge. Eine <u>Wirkung</u> von G auf X (auch: <u>G-Wirkung</u>, 'G-Aktion') ist ein Homomorphismus $\alpha: G \to \operatorname{Sym}(X)$. Für $g \in G$ und $x \in X$ schreibe kurz

$$g(x) = \alpha(g)(x)$$

(wenn klar ist welches α gemeint ist). Die Abbildung $G \times X \to X$, $(g,x) \mapsto g(x)$ erfüllt folgende Eigenschaften:

(W1) $e(x) = x \ \forall x \in X \ (e \in G \ \text{Neutralelement})$

(W2)
$$(a \circ b)(x) = a(b(x)) \ \forall a, b \in G, \ x \in X$$

Ist umgekehrt eine Abbildung $G \times X \to X$ gegeben die (W1) und (W2) erfüllt, so erhalten wir eine Wirkung $\alpha: G \to Sym(X)$ durch

$$\alpha(g) = [x \mapsto g(x)]$$

denn aus (W2) folgt: $\alpha(g^{-1})$ ist Inverse zu $\alpha(g)$, also ist die Abbildung $\alpha(g): X \to X$ bijektiv und $\alpha: G \to Sym(X)$ ist ein Homomorphismus nach (W2).

2.2 mehrere Definitionen

Gegeben sei eine G-Wirkung $G \times X \to X$. Für $x \in X$ ist der **Stabilisator** (die **Standgruppe**)

$$G_x = \{g \in G \mid g(x) = x\} \subseteq G$$

Die **Bahn** (der **Orbit**) von x ist

$$G(x) = \{g(x) \mid g \in G\} \subseteq X$$

Der Kern der Wirkung ist $\bigcap_{x \in X} G_x \subseteq G$.

Satz

Der Stabilisator G_x ist eine Untergruppe und der Kern ist ein Normalteiler.

Beweis:

Es gilt $e(x) = x \leadsto e \in G_x$. Für $a, b \in G_x$ gilt

$$(ab)(x) = a(b(x)) = a(x) = x \leadsto ab \in G_x$$

$$a^{-1}(x) = a^{-1}(\underline{a(x)}) = (a^{-1}a)(x) = e(x) = x \leadsto a^{-1} \in G_x$$

Also ist $G_x \subseteq G$ Untergruppe.

Es gilt:

$$\bigcap_{x \in X} G_x = \{ g(x) = x \mid \forall x \in X \}$$

Das ist genau der Kern der zugehörigen Homomorphie $\alpha:G\to Sym(X)$, also ein Normalteiler. \square

2.3 Beispiele Wirkungen

(a) Sei G eine Gruppe. Für $g \in G$ definiere eine Abbildung $\lambda_q : G \to G$ durch $\lambda_q(x) = gx$. Es folgt

$$\lambda_q \circ \lambda_h = \lambda_{qh} \quad \lambda_e = \mathrm{id}_G \leadsto \lambda_q \lambda_{q^{-1}} = \mathrm{id}_G = \lambda_{q^{-1}} \lambda_q$$

also $\lambda_q \in \mathrm{Sym}(G)$. Die Gruppe G wirkt also auf der Menge G = X. Es gilt für die Wirkung:

$$G_x = \{g \in G \mid \lambda_g(x) = x\} = \{g \in G \mid gx = x\} = \{e\}$$

Zu $x,y\in G$ gibt es genau ein $g\in G$ mit $\lambda_g(x)=y$, nämlich $g=yx^{-1}$. Man nennt das die **Linksreguläre Wirkung** von G auf sich.

(b) Sei G eine Gruppe und $H\subseteq G$ Untergruppe. Sei $X=G/H=\{aH\mid a\in G\}$. Die Gruppe G wirkt auf X durch

$$\lambda_g: G/H \to G/H, \ aH \mapsto gaH$$

Es gilt wieder $\lambda_g \lambda_h = \lambda_{gh}, \ \lambda_e = \mathrm{id}_{G/H}$. Der Stabilisator von $x = H \in X$ ist

$$G_x = \{ g \in G \mid gH = H \} = H$$

Zu $x=aH, y=bH \in X$ gibt es wieder $g \in G$ mit g(x)=y, nämlich $g=ba^{-1}$. Anders als im Bsp(a) ist g nicht eindeutig, falls $H \neq \{e\}$ gilt (für $H=\{e\}$ erhalten wir wieder Bsp(a)).

2.4 Satz von Cayley

Zu jeder Gruppe G gibt es eine Menge X und ein injektiven Homomorphismus $\alpha: G \to Sym(X)$.

Beweis:

Setze G = X und $\lambda : G \to \operatorname{Sym}(X)$ wie in Beispiel 2.3(a)

Eine Untergruppe von $\mathrm{Sym}(X)$ nennt man auch eine <u>Permutationsgruppe</u>. Der Satz von Cayley wird auch so formuliert:

Jede Gruppe 'ist' (bis auf Isomorphie) eine Permutationsgruppe.

2.5 Definition transitiv

Eine G-Wirkung $G \times X \to X$ heißt **transitiv**, wenn es für alle $x, y \in G$ ein $g \in G$ gibt mit g(x) = y. Die in Bsp. 2.3(a)(b) betrachteten Wirkungen sind also transitiv.

Satz

Gegeben sei ein transitive G-Wirkung $G \times X \to X$. Sei $x \in X$ und $H = G_x$. Dann ist die Abbildung $G/H \to X$, $gH \mapsto g(x)$ wohldefiniert und bijektiv. Für jedes $y \in X$ mit y = g(x) gilt $G_y = gG_xg^{-1}$.

Beweis:

Betrachte die Abbildung $\epsilon: G \to X, \epsilon(g) = g(x)$. Es gilt

$$\epsilon(g) = \epsilon(g') \Leftrightarrow g(x) = g'(x) \Leftrightarrow g^{-1}g' = x \Leftrightarrow g^{-1}g' \in G_x = H \stackrel{1,13}{\Leftrightarrow} g'H = gH$$

Damit ist die erste Behauptung gezeigt.

Für y = g(x) gilt

$$a(y) = y \Leftrightarrow ag(x) = g(x) \Leftrightarrow g^{-1}ag(x) = x \Leftrightarrow g^{-1}ag \in G_x \Leftrightarrow a \in gG_xg^{-1}$$

2.6 Bahnen

Gegeben sei eine G-Wirkung $G \times X \to X$.

Lemma

Für **Bahnen** G(x), $G(y) \subseteq X$ gilt stets:

$$\mathsf{lst}\ G(x)\cap G(y)\neq\emptyset,\ \mathsf{so\ gilt}\ G(x)=G(y)$$

Bahnen sind entweder disjunkt oder gleich.

Beweis:

Angenommen, $z \in G(x) \cap G(y)$, also z = a(x) = b(y) für $a, b \in G$. Es folgt $b^{-1}a(x) = y$, also $y \in G(x)$, also $G(y) \subseteq G(x)$. Genauso folgt auch $G(y) \supseteq G(x)$, also G(x) = G(y).

Bemerkung

Für jedes $x \in X$ wirkt G transitiv auf der Bahn $G(x) \subseteq X$. Denn: $y,z \in G(x), \ y = a(x)$ und $z = b(x) \leadsto x = a^{-1}(y) \leadsto z = ba^{-1}(x)$. Weiter gilt $g(y) = ga(x) \in G(x)$.

Definition Bahnenraum

Die Menge der Bahnen bezeichnen wir mit $G \setminus X = \{G(x) \mid x \in X\}$ 'Bahnenraum'

Bemerkung

Das passt zur Notation für Nebenklassen: Gegeben sei eine Untergruppe $H\subseteq G$. Setze X=G, dann wirkt H auf G=X durch $H\times X\to X,\ (h,x)\mapsto hx$

Die <u>Länge</u> einer Bahn G(x) ist #G(x). Ist $\{x\} = \{G\}$ (Bahn der Länge 1), so sagt man,dass $x \in X$ ein **Fixpunkt** der G-Wirkung auf X ist. Für alle $g \in G$ gilt dann g(x) = x.

Die Bahnen der Wirkung von H auf G sind dann genau die Rechtsnebenklassen, H(x) = Hx für $x \in X = G$, die Bahnenmenge ist also $H \setminus G = \{Hx \mid x \in G\}$

2.7 Die Bahnengleichung

Gegeben sei eine G-Wirkung $G \times X \to X$. Ein <u>Schnitt</u> (ein <u>Transversale</u>) ist eine Teilmenge $S \subseteq X$ mit folgender Eigenschaft: für jedes $x \in X$ gilt $\#(s \cap G(x)) = 1$, jede Bahn trifft S genau einmal. Es folgt $\#S = \#(G \backslash H)$. Mit Hilfe des Auswahlaxioms sieht man, dass Schnitte stets existieren.

Satz

Sei $S\subseteq X$ ein Schnitt der G-Wirkung $G\times X\to X$. Wenn X endlich ist, dann gilt

$$\#X = \sum_{s \in S} [G : G_s]$$

Beweis:

Sei #S = m, $S = \{s_1, \dots, s_m\} \rightsquigarrow X = G(s_1) \stackrel{.}{\cup} G(s_2) \stackrel{.}{\cup} \cdots \stackrel{.}{\cup} G(s_m)$

$$\#G(s_i) \stackrel{2.5}{=} \#G/G_{s_i} \stackrel{1.14}{=} [G:G_{s_i}]$$

2.8 Automorphismen und Konjugationswirkungen

Sei G Gruppe. Ein bijektiver Homomorphismus $\alpha:G\to G$ heißt <u>Automorphismus</u> von G. Die Menge

$$\operatorname{Aut}(G) = \{ \alpha : G \to G \mid \alpha \text{Automorphismus} \}$$

ist eine Gruppe, mit der Komposition von Automorphismus als Verknüpfung und id_G als Neutralelement.

Beispiel

Sei $a \in G$. Dann ist die Abbildung $\gamma_a : G \to G, \ g \mapsto aga^{-1}$ ein Automorphismus. Denn:

$$\begin{split} \gamma_a(gh) &= agha^{-1} = aga^{-1}aha^{-1} = \gamma_a(g)\gamma_a(h) \\ &\leadsto \gamma_a \text{ Homomorphismus} \\ \gamma_a(g) &= e \Leftrightarrow aga^{-1} = e \Leftrightarrow g = a^{-1}ea = e \\ &\leadsto \gamma_a \text{ Monomorphismus}, \ ker(\gamma_a) = \{e\} \\ \text{Gegeben } g \in G \text{ folgt } \gamma_a(aga^{-1}) = g \\ &\leadsto \gamma_a \text{ Epimorphismus} \\ &\Rightarrow \gamma_a \text{ Automorphismus} \end{split}$$

 $\text{oder: } \gamma_a \circ \gamma_a = \\ \text{id}_G = \gamma_{a^{-1}} \circ \gamma_a$

Satz

Die Abbildung $G \xrightarrow{\gamma} \operatorname{Aut}(G), \ a \mapsto \gamma_a$ ist ein Homomorphismus.

Beweis:

also $\gamma_a \circ \gamma_b = \gamma_{ab}$,

Es gilt

$$\gamma_a \circ \gamma_b(g) = abgb^{-1}a^{-1} = abg(ab)^{-1} = \gamma_{ab}(g)$$

Weil $\operatorname{Aut}(G) \subseteq Sym(G)$ eine Untergruppe ist, ist $\gamma: G \to \operatorname{Aut}(G)$ eine Wirkungvon G auf G, die Konjugationswirkung.

Beachte den Unterschied zu 2.3(a):

$$\lambda_a(g) = ag$$
 $\gamma_a(g) = aga^{-1}$

 λ_a ist <u>kein</u> Homomorphismus (für $a \neq e$)

$$\lambda_a(gh) = agh \neq \lambda_a(g)\lambda_a(h) = agah$$

Der Kern von $\gamma:G\to \operatorname{Aut}(G)$ ist

$$Z(G) = \{ a \in G \mid \forall g \in G \text{ gilt } aga^{-1} = g \}$$
$$= \{ a \in G \mid \forall g \in G \text{ gilt } ag = ga \}$$

Man nennt diesen Normalteiler das **Zentrum** von G. Das Zentrumvon G ist also abelsch (und G ist genau dann abelsch, wenn Z(G) = G gilt).

Bemerkung

Im Allgemeinen ist die Abbildung $\gamma:G\to \operatorname{Aut}(G)$ weedr injektiv und surjektiv. Das Bild $\gamma(G)\subseteq \operatorname{Aut}(G)$ ist die Gruppe der <u>inneren Automorphismen</u>, $\gamma(G)=\operatorname{Inn}(G)\subseteq \operatorname{Aut}(G)$. Mit dem Homomorphiesatz also:

$$G/Z(G) \cong \operatorname{Inn}(G)$$

Wie sehen die Stabilisatoren in der Konjugationswirkung aus? Der Stabilisator von $g \in G$ ist der **Zentralisator** von g (vgl. 1.6)

$$Z_G(g) = \{ a \in G \mid aga^{-1} = g \}$$

= $\{ a \in G \mid ag = ga \}$

Beachte: es gilt stets $\langle g \rangle \subseteq Z_G(g)$,denn

$$ggg^{-1} = g \leadsto g \in Z_G(g) \leadsto \langle g \rangle \subseteq Z_G(g)$$

Die Bahnen $G(g) = \{aga^{-1} \mid a \in G\}$ nennt man <u>Klassen</u> oder <u>Konjugiertenklassen</u> in G.

2.9 Satz (Die Klassengleichung)

Sei G eine endliche Gruppe, sei $S\subseteq G$ ein Schnitt der Konjugationswirkung γ . Sei $\mathcal{K}=S-Z(G)$. Dann gilt

$$\#G = \#Z(G) + \sum_{s \in \mathcal{K}} [G : Z_G(s)]$$

Beweis:

Nach der Bahnengleichung gilt

$$\#G = \sum_{s \in S} [G : Z_G(s)]$$

Für jedes $z \in Z(G)$ gilt $G(z) = \{aza^{-1} \mid a \in G\} = \{z\}$, also $Z(G \subseteq S \text{ und } \#G(z) = 1 \ \forall z \in Z.$

2.10 Korollar über das Zentrum

Sei p eine Primzahl und G eine endliche Gruppe mit $\#G=p^m,\ m\geq 1.$ Dann gilt $Z(G)\neq \{e\}.$

Beweis:

Für $g \in G \backslash Z(G)$ ist $Z_G(g) \neq G$. Nach dem Satz von Lagrange 1.14 folgt $\# Z_G(g) = p^l, \ l < m$. Insbesondere ist dann p ein Teiler von $[G:Z_G(g)] = p^{m-l} \neq 1$. Folglich ist p ein Teiler von # Z(G), also $\# Z(G) \geq p$.

Aussagen aus den Übungen

Zettel 1

Aufage 1.2

Sei G eine Gruppe. A, B Untergruppen von G.

 $\mathbb{Z}_{\mathbb{Z}}$: Wenn $A \cup B$ eine Untergruppe ist, dann gilt: $A \subseteq B$ oder $b \subseteq A$.

Beweis:

Annahme: $A \not\subseteq B$. Also ex. ein $a \in A \setminus B$ und $b \in B$ beliebig. Betrachte $ab \in A \cup B$, da AB Untergruppe. Also ist $ab \in A$ oder $ab \in B$.

Also $ab \in A$ und $a^{-1} \in A$, da A Untergruppe, folgt, dass $a^{-1}ab = b \in A$. Da b beliebig war, folgt $B \subseteq A$.

Aufgabe 1.4

Gruppe $G.\ A,B$ Untergruppen.Wir definieren $AB:=\{ab\mid a\in A,b\in B\}.$

- (i) Die Menge AB ist im allgemeinen keine Untergruppe.
- (ii) Wenn weiter gilt AB=BA, dann ist AB eine Untergruppe.

Beweise klar! (✓)

Zettel 2

Aufgabe 2.1

Eine Gruppe G hat **Exponent** k, wenn für jedes Gruppenelement $g \in G$ gilt: $g^k = e$. ZGGruppen mit Exponent 2 sind abelsch.

Beweis:

Aus $g^2 = e$ folgt $g = g^{-1} \ \forall g \in G. \ a, b \in G$ beliebig

$$ab=(ab)^{-1}\stackrel{\mathsf{G}}{=} {}^{\mathsf{Gruppe}}b^{-1}a^{-1}=ba$$

Anmerkung: Gruppen mit Exponenten 3 sind im allgemeinen nicht abelsch.

Aufgabe 2.3

Menge X und Sym(X). Der <u>Träger einer Permutation</u> $\sigma \in Sym(X)$ ist definiert wie folgt: $supp(\sigma) := \{x \in X \mid \sigma(x) \neq x\}.$

- (i) Wenn $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ für $\rho, \sigma \in Sym(X)$ gilt, dann folgt $\rho \circ \sigma = \sigma \circ \rho$.
- (ii) Wenn $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ und $\rho \circ \sigma = \operatorname{id}$ für $\sigma, \rho \in Sym(X)$ gilt, dann folgt $\rho = \sigma = \operatorname{id}$.

Beweis:

$$\text{(i) Es gilt: } \rho \circ \sigma = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right. \\ \text{oder } \sigma \circ \rho = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right.$$

Da $\operatorname{supp}(\rho)\cap\operatorname{supp}(\sigma)=\emptyset$ gilt und somit x nicht von beiden Permutationen verändert wird. Da Permutationen bijektiv nach Definition sind, ist dies wohldefiniert.

$$\text{(ii) Nach (i) gilt, dass } \rho \circ \sigma = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right. \text{gilt.}$$

Also muss $\rho(x)=x$ gelten, da $\rho\circ\sigma$ gilt, analog $\sigma(x)=x$. Also folgt $\rho=\sigma=\mathrm{id}.$

Zettel 3

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar!

abelsch, 2 Automorphismus, 17 Bahn, 14

Bahnen, 16 Länge, 16 Bild, 6

direkte Produkt, 12

Exponent, 3, A

Fixpunkt, 16

Gruppe, 1 Unter-, 2 symmetrische , 2 zyklische , 3

Homomorphismen Mono/Epi/Iso, 9 Homomorphismus Gruppen-, 6

Index von H in G, 5 inneren Automorphismen, 18

kanonisch, 10 Kern, 6 Klassen, 18 Kongruenzklasse, 10 Konjugationswirkung, 17 Konjugiertenklassen, 18

modulo, 10 Monoid, 1

natürlich, 10 Nebenklassen Links-, 4 Rechts-, 4

normal, 7 Normalteiler, 7

Orbit, 14 Ordnung, 3

Permutationsgruppe, 15

Primzahl, 5

Satz von Lagrange, 5 Schnitt, 16 Stabilisator, 14 Standgruppe, 14

Teiler, 5 Träger einer Permutation, A transitiv, 15 Transversale, 16

Verknüpfung, 1

Wirkung, 14 Linksregulär, 15

Zentralisator, 18 zentralisiert, 2 Zentrum, 17 zyklisch, 3

Index

Abbildungsverzeichnis

1	Homomorphiesatz						 								 				8
2	2. Isomorphiesatz						 								 				12