برهان بهروش عكس نقيض

گاه برای اینکه نشان دهیم گزاره q از گزاره p نتیجه می شود (یعنی $p \longrightarrow (p \longrightarrow p)$ می توانیم این نتیجه گیری را به صورتی ساده تر انجام دهیم. یعنی از هم ارز منطقی آن، $q \longrightarrow \sim p$ استفاده کنیم و $q \sim r$ را از $q \sim r$ نتیجه بگیریم. برای تشریح این روش به مثالهای زیر توجه کنید.

دهید \sqrt{n} عددی گویا نیست. $n=k^\intercal$ کامل نیست این است که هیچ عدد طبیعیای مانند k وجود ندارد به طوری که $n=k^\intercal$ منظور از این که n مربع کامل نیست nهمچنین یک عدد n را گویا می نامند هرگاه بتوان آنرا به صورت $\frac{p}{q}$ که p,q اعدادی صحیحاند نوشت. می توان و و و را چنان انتخاب کرد که نسبت به هم اول باشند. و و و را چنان انتخاب کرد که نسبت به هم اول باشند.

حل: روایت عکس نقیض گزاره بالا به صورت زیر است:

اگر \sqrt{n} عددی گویا باشد آنگاه n به صورت مربع کامل است.

فرض کنیم \sqrt{n} عددی گویا است.

 $\sqrt{n}=rac{p}{q}$ پس اعداد صحیح q و q ، که q
eq q و جود دارند به طوری که

 $\cdot p^\intercal = nq^\intercal$ و یا $n = rac{p^\intercal}{q^\intercal}$ آنگاه

بنابراین q^{r} عدد p^{r} را بخش میکند. p عدد p دارد به طوری که p وجود دارد به طوری که p اما از اینجانتیجه می شود p عدد p عدد

 $p^{\mathsf{Y}}=b^{\mathsf{Y}}q^{\mathsf{Y}}$ بنابراین $p^{\mathsf{Y}}=b^{\mathsf{Y}}q^{\mathsf{Y}}$ این ناقض فرض «مربع کامل نبودن» است. درنتیجه $p^{\mathsf{Y}}=b^{\mathsf{Y}}$

مثال ۲۰۰۰۰ فرض کنید $a\neq 0$ اعدادی صحیح با $a\neq 0$ هستند. اگر $a\neq 0$ عدد $a\neq 0$ اعدادی معادله هیچ جواب صحیح مثبتی ٔندارد. $ax^{\dagger} + bx + b - a = \circ$

 $ax^{7}+bx+b-a=\circ$ فرض کنید x عددی صحیح و مثبت است که

 $\cdot x = \frac{-b \pm (b - 7a)}{7a}$ مُنْگاہ

چون $x > \frac{-b-(b-7a)}{7a} = 1 - \frac{b}{a}$ قابل قبول نیست ولی $x = \frac{-b-(b-7a)}{7a} = 1 - \frac{b}{a}$ قابل قبول است. په این ترتیب a = 0 و درنتیحه a عدد a را بخش می کند.

 $x \geq \infty$ نشان دهید $x \geq \infty$ نتیجه شود $x \geq \infty$ نتیجه شود $x \geq \infty$ نشان دهید $x \geq \infty$ نشان دهید $x \geq \infty$ **حل:** اگر بخواهیم عکس نقیض گزاره بالا را بنویسیم به صورت زیر خواهد بود:

 $x < \circ \Longrightarrow \exists \varepsilon > \circ \quad \textit{S.t.} \quad x < -\varepsilon.$

 $x<\circ$ فرض کنیم x<0 چون $x<rac{1}{7}$ از ضرب طرفین این نامساوی در x نتیجه می شود (x<0 چون x<0 چون $arepsilon = -rac{x}{7}$ پس و کافی است قرار دهیم

x=y مثال ه.۰۰۰ می دانیم تابع $f:A\longrightarrow B$ تابعی یکبهیک است هرگاه از f(x)=f(y) نتیجه شود مثال اما گاہ حل کِردن معادلہ f(x)=f(y) و به دست آوردن جواب x=y از آن، دشوارتر است. اما از $y \neq y$ سادہتر می $f(x) \neq f(y)$ توان نتیجه گرفت

 $1 \circ x = 1 \circ y$ مثلاً فرض کنید بخواهیم نشان دهیج تابع $f(x) = 1 \circ x$ تابعی یک به یک است. طبق تعریف باید از $\cdot \cdot \cdot \cdot x \neq 1 \circ y$ نتیجه بگیریم x = y ولی روشن است که اگر $x \neq y$ آنگاه $\cdot x = y$

توضیح دهید چرا نتایج زیر درستاند؟

- (۱) فرض کنید p,q دو گزاره باشند. طبق قانون جمع می دانیم $p \lor q \Longrightarrow p \lor q$. همچنین $p,q \Longrightarrow q$ عکس نقیض هریک از این دو گزاره را بنویسید. این دو نتیجه یادآور چه نتیجهای هستند؟
- از $p \mid a$ نتیجه می شود $p \mid a$ یا $p \mid b$ یا $p \mid a$ نتیجه می شود $p \mid a$ یا $p \mid a$ از $p \mid a$ نتیجه می شود $p \mid a$ یا $p \mid a$ از طرف دیگر اگر $p \mid a$ هیچ کدام از دو عدد $p \mid a$ را بخش نکند آنکاه حاصل ضرب آنها را نیز بخش نخواهد کرد.
- ر۳) می دانیم اگر تابع $\mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R}$ در نقطه a مشتقپذیر باشد آنگاه در این نقطه پیوسته است. نشان دهید تابع جزء صحیح f(x) = [x] در هر نقطه از \mathbb{Z} مشتقپذیر نیست.
 - به جای گزاره $p\Leftrightarrow q$ می توان گزاره $p\Leftrightarrow \sim q$ را به اثبات رساند.
- (۵) برای این که نشان دهیم A زیر مجموعه B است نشان می دهیم هر عضو که در b نیست در A هم نیست. آیا از این شیوه استدلال می توانید نتیجه بگیرید مجموعه تهی زیر مجموعه هر مجموعهای است؟
 - رای هر دوعدد a,b داریم (۶) برای

$$(ab = \circ \Longrightarrow a = \circ \lor b = \circ) \Leftrightarrow (a \neq \circ \land b \neq \circ \Longrightarrow ab \neq \circ)$$

می دانیم $(x-a)(x-b)=\circ$ می معادله به صورت جواب یک معادله به صورت (Y)

$$(x-a)(x-b) = \circ \Longrightarrow x = a \lor x = b \Leftrightarrow x \neq a \land x \neq b \Longrightarrow (x-a)(x-b) \neq \circ.$$