Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

U. S. DEPARTMENT OF AGRICULTURE
AGRICULTURAL RESEARCH SERVICE
SOUTHERN REGION
P. O. BOX 53326
NEW ORLEANS, LOUISIANA 70153

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID U. S. DEPARTMENT OF AGRICULTURE AGR 101

MATERIALS SCREENED AS ANIMAL SYSTEMIC INSECTICIDES AT KERRVILLE, TEXAS, 1967-1973

ARS-S-101 February 1976

CONTENTS

		Page
	AbstractIntroduction	1
	Experimental procedures	2
	Results and discussion	3
	Literature cited	4
	Index of materials	52
	TABLES	
1.	Spectrum of activity of systemically active compounds screened from 1953 to 1973	3
2.	Systemic effectiveness of 474 compounds against secondary screwworms, black blow flies, stable flies, and lone star ticks when administered orally and subcutaneously to guinea pigs	6

ACKNOWLEDGMENTS

T. M. Whetstone and S. E. Ernst, both Biological Technicians of this laboratory, provided technical help in the conduct of these tests. Mrs. E. M. Osborne, head, Chemical Coordination Unit, Agricultural Environmental Quality Institute, Agricultural Research Service, Beltsville, Maryland, verified the chemical nomenclature presented in table 2.

Trade names are used in this publication solely for the purpose of providing specific information. Mention of a trade name does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or an endorsement by the Department over other products not mentioned.

USDA policy does not permit discrimination because of race, color, national origin, sex, or religion. Any person who believes he or she has been discriminated against in any USDA-related activity should write immediately to the Secretary of Agriculture, Washington, D.C. 20250.

MATERIALS SCREENED AS ANIMAL SYSTEMIC INSECTICIDES AT KERRVILLE, TEXAS, 1967-1973

By R. O. Drummond

ABSTRACT

This report presents the procedures and results of tests with 474 chemical compounds screened by the guinea pig-multiple arthropod test to determine their activity as systemic insecticides against larvae of the black blow fly, Phormia regina (Meigen), larvae of the screwworm, Cochliomyia hominivorax (Coquerel), larvae of the secondary screwworm, Cochliomyia macellaria (F.), adults of the stable fly, Stomoxys calcitrans (L.), and nymphs of the lone star tick, Amblyomma americanum (L.), on guinea pigs treated orally or subcutaneously. Of the 157 systemically active compounds. 128 (81 percent) were active against fly larvae, 74 (47 percent) were active against adult stable flies, and 95 (60 percent) were active against ticks. Nineteen compounds (12 percent) were systemically active orally, 27 (17 percent) were active subcutaneously, and 111 (71 percent) were systemically active both orally and subcutaneously. Also, 99 compounds (63 percent) were systemically active at dosages lower than those lethal to guinea pigs, and 58 (37 percent) were systemically active at dosages equal to or greater than those lethal to guinea pigs.

INTRODUCTION

In an effort to detect the systemic activity of materials administered to animals, a screening test, the guinea pig-multiple arthropod test, was established at the U.S. Livestock Insects Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Kerrville, Tex., in 1953. Before that date, a number of materials were evaluated as systemics in both in vivo and in vitro tests with first-instar larvae of Hypoderma lineatum (de Villers), the common cattle grub (1). McGregor and Bushland (22) described a test procedure in which guinea pigs infested with larvae of the screwworm,

Location and research leader, U.S. Livestock Insects Laboratory, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 232, Kerrville, Tex. 78028.

Underscored numbers in parentheses refer to items in "Literature Cited" preceding table 2.

Cochliomyia hominivorax (Coquerel), were treated subcutaneously with candidate compounds. Also, techniques were developed for feeding stable flies, Stomoxys calcitrans (L.), and lone star ticks, Amblyomma americanum (L.), on guinea pigs treated orally or subcutaneously. Some modifications and standardizations in the testing procedures were reported by Drummond (2). Graham (21) included the Kerrville testing procedure in his description of techniques to detect the activity of animal systemic insecticides. In 1962, because of the program to eradicate screwworms from the Southwestern United States, it was necessary to replace screwworm larvae with larvae of the secondary screwworm, C. macellaria (F.), and the black blow fly, Phormia regina (Neigen); details of the change in technique were presented by Drummond (8). This technique remained unchanged until the test was discontinued in 1973.

In a series of papers (3, 5-11, 13-15, 18, 19), the results of screening tests with the guinea pig-multiple arthropod model and results of secondary tests on cattle with 231 systemically active insecticides for the control of cattle grubs, Hypoderma spp., were presented. In addition, Drummond (4, 12) presented the results of screening tests with 438 compounds and with 640 compounds. This report contains results of an additional 474 compounds screened by the same technique. Most of these compounds were tested during 1968-1973, although some were tested earlier, and identification of the chemical structures was obtained after publication of the previous papers.

EXPERIMENTAL PROCEDURES

The procedures were explained briefly by Drummond (2, 8) and in detail by Graham (21) and Drummond (12). Guinea pigs were infested with 10 starved nymphal lone star ticks about 48 hours before treatment. About 24 hours before treatment, the guinea pigs were wounded, and the wounds were infested with the larvae of the screwworm, secondary screwworm, or black blow fly. At the time of treatment, the guinea pigs were weighed and treated orally or subcutaneously at specific dosages of candidate chemicals, usually formulated as 5-percent solutions in Tween-20 (polyoxyethylene sorbitan monolaurate). The initial dosage was usually 100 milligrams per kilogram. Approximately 4 hours after treatment, about 30 starved adult stable flies were allowed to engorge on the guinea pigs. The fed flies were held for 24 hours, and then mortality was recorded. At 24 hours after treatment, additional stable flies were fed on the guinea pigs, and wounds were examined for live larvae. About 3 to 5 days after treatment, engorged nymphal ticks were collected and held for at least a month. Mortality of the ticks was determined during the engorging and molting periods.

If any of the arthropods or guinea pigs were killed at initial dosages, lower dosages--50, 25, 10, or 5 milligrams per kilogram etc.--were administered until there was either no systemic activity or the guinea pigs survived.

RESULTS AND DISCUSSION

Of the 474 compounds tested, 157 (33 percent) were systemically active. Data from the two previous reports (4, 12) and this report combined resulted in a total of 1,552 compounds tested and, of these, 420 (27 percent) were systemically active (table 1).

TABLE 1.--Spectrum of activity of systemically active compounds screened from 1953 to 1973

Arthropod	No. compoun	ds
active against	From table 2	Total
Fly larvae and stable fly adults	. 24 . 42 . 35 . 11	109 81 60 82 46 13
IICRS	• 14	29
Total	. 157	420

From table 2 plus compounds in references 4 and 12.

The results of tests with the 474 compounds are presented in table 2. The compounds are listed alphabetically by chemical nomenclature that was standard until 1972, since the materials were received and defined under that nomenclature. In the index, the compounds are listed by AI3 number (formerly ENT number)³ with reference to the corresponding company number and item number from table 2.

Of the 157 systemically active compounds (table 1), 128 (81 percent) were active against fly larvae, 74 (47 percent) were active against adult stable flies, and 95 (60 percent) were active against ticks. As table 2 shows, 19 compounds (12 percent) were systemically active orally, 27 (17 percent) were active subcutaneously, and 111 (71 percent) were systemically active both orally and subcutaneously. Also, 99 compounds (63 percent) were systemically active at dosages lower than those lethal to guinea pigs, and 58 (37 percent) were systemically active at dosages equal to or greater than those lethal to guinea pigs.

Although the guinea pig-multiple arthropod test has been used to screen a large number of compounds and has detected over 400 systemically active insecticides, it has certain specific limitations with respect to the cattle-

³Numbers assigned by Agricultural Research Service to chemicals used in entomological investigations.

Hypoderma, host-parasite system, which is the target of the research. None of the arthropods in the guinea pig-multiple arthropod test migrates through the animal's body and produces furuncular myiasis as cattle grubs do. Also, because of the external feeding of ticks and flies and the presence of open wounds containing fly larvae in guinea pigs, we could not administer materials dermally to the guinea pigs.

As announced by Drummond et al. (17) and presented in detail by Gingrich et al. (20), a new host-parasite system, the mouse-Cuterebra test, was developed for screening animal systemic insecticides. In this test, white mice are infested nasally or orally with newly hatched larvae of Cuterebra fontinella, and 2 days later the mice are treated orally with candidate materials. Seven days after treatment, the mice are killed and examined for encysted larvae by noting breathing holes or by palpation. In addition to oral treatments, some mice are dipped in insecticides for dermal treatments (16). Effective systemics kill larvae while they are migrating through the mouse's body (a situation similar to the migration of first-instar Hypoderma larvae in cattle). Because of the greater relativity (to the cattle-Hypoderma cycle) and versatility of the mouse-Cuterebra test, this test replaced the guinea pig-multiple arthropod test in the spring of 1973. Thus, this is the last report containing results of the guinea pig-multiple arthropod test.

LITERATURE CITED

- (1) Barrett, W. L., and Wells, R. W. 1948. Transplantation of <u>Hypoderma</u> larvae and testing chemicals for control of larvae in experimental hosts. J. Econ. Entomol. 41: 779-782.
- (2) Drummond, R. O. 1958. Laboratory screening tests of animal systemic insecticides. J. Econ. Entomol. 51: 425-427.
- (3) ____1960. Preliminary evaluation of animal systemic insecticides.

 J. Econ. Entomol. 53: 1125-1127.
- (4) 1961. Compounds screened as animal systemic insecticides at Kerrville, Texas, 1953-1959. U.S. Dep. Agric., Agric. Res. Serv. [Rep.] ARS 33-64, 50 pp.
- (5) ____1962. Further evaluation of animal systemic insecticides, 1961. J. Econ. Entomol. 55: 398-402.
- (6) 1963. Further evaluation of animal systemic insecticides, 1962.

 J. Econ. Entomol. 56: 831-834.
- (7) ____1964. Further evaluation of animal systemic insecticides, 1963. J. Econ. Entomol. 57: 741-745.
- (8) ___1965. Further evaluation of animal systemic insecticides, 1964. J. Econ. Entomol. 58: 773-776.

- (9) 1966. Further evaluation of animal systemic insecticides, 1965.

 J. Econ. Entomol. 59: 1049-1053.
- (10) 1967. Further evaluation of animal systemic insecticides, 1966.

 J. Econ. Entomol. 60: 733-737.
- (11) 1968. Further evaluation of animal systemic insecticides, 1967.

 J. Econ. Entomol. 61: 1261-1264.
- (12) 1970. Materials screened as animal systemic insecticides at Kerrville, Texas, 1960-1967. U.S. Dep. Agric., Prod. Res. Rep. No. 116, 46 pp.
- (13) Darrow, D. I., and Gladney, W. J. 1970. Further evaluation of animal systemic insecticides, 1969. J. Econ. Entomol. 63: 1103-1106.
- Darrow, D. I., and Gladney, W. J. 1971. Further evaluation of animal systemic insecticides, 1970. J. Econ. Entomol. 64: 1166-1170.
- (15) Darrow, D. I., and Gladney, W. J. 1972. Further evaluation of animal systemic insecticides, 1971. J. Econ. Entomol. 65: 745-748.
- (16) and Gingrich, R. E. 1972. Detection of systemic activity of insecticides applied dermally to white mice infested with larvae of Cuterebra sp. J. Econ. Entomol. 65: 1211-1212.
- Gingrich, R. E., and Gladney, W. J. 1970. A new test for detecting animal systemic insecticides. (Abstract). Proc. 2d Int. Congr. Parasitol., J. Parasitol. 56 (Sec. II, Part I): 85-86.
- (18) and Gladney, W. J. 1969. Further evaluation of animal systemic insecticides, 1968. J. Econ. Entomol. 62: 934-936.
- (19) and Whetstone, T. M. 1974. Cattle grubs: Evaluation of new animal systemic insecticides, 1971-1972. J. Econ. Entomol. 67: 237-239.
- (20) Gingrich, R. E., Drummond, R. O., and Gladney, W. J. 1972. Use of white mice experimentally infested with larvae of a rodent bot fly for screening systemic insecticides. J. Econ. Entomol. 65: 742-745.
- (21) Graham, O. H. 1960. Techniques for evaluating systemic insecticides against livestock insects. In Shepard, H. H. (ed.)., Methods of Testing Chemicals on Insects, vol. 2, pp. 200-216. Burgess Publishing Co., Minneapolis, Minn.
- (22) McGregor, W. S., and Bushland, R. C. 1956. Research on the use of systemic insecticides for the control of livestock pests. J. Econ. Entomol. 49: 86-88.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs

[N, no dosage was lethal; I, no dosage was systemically active]

			Hloheat	+		Lowest dosage (mg/kg)	оваge (1	(mg/kg)	1-11 of
Item No.	AI3 No. (AI3-)	Chemical	dosage (mg/kg) as method o admini-stration	ge and of 1-	Lethal to guinea	Larvae Secon- B dary screw- f.	ofack low	Adult stable flles	1 2 2 0 2
1	70322	Acetamide, M-butyl-M-1-cyclohexen-1-yl-	100	0. Sc.	ZZ	нн	нн	нн	нн
2	28966	Acetamide, N-butyl-N-(3,7-dimethyl-1,6-octadienyl)-	100	o. Sc.	ZZ	нн	н	нн	пп
e	28968	Acetamide, \underline{N} -butyl- \underline{N} -(2-ethyl-1-hexenyl)-	100	o. Sc.	ZZ	нн	HH	нн	пп
4	28969	Acetamide, $N-butyl-N-p-menth-3-en-3-yl-$	100 0	0. Sc.	zz	нн	нн	нн	нн
10	28967	Acetamide, $\overline{\text{N-cyclohexyl-N-(3,7-dimethyl-l,6-octadienyl)}}$ octadienyl)-	100 0	0. Sc.	zz	нн	н	нн	нн
9	70141	Acetamide, \overline{N} -cyclohexyl- \overline{N} -(2-ethyl-1-hexenyl)-	100	0. Sc.	N 100	нн	нн	нн	нн
7	16742	Acetamide, $\overline{\text{N-cyclohexyl-N-(2-ethylhexyl)}}$ -	100 0	0. Sc.	N 100	нн	нн	нн	нн
∞	28970	Acetamide, $\overline{\text{N-cyclohexyl-N-(2-methylpropenyl)-}}$	100 0	0. Sc.	ZZ	нн	нн	нн	нн
6	27722	Acetic acid, bis(\underline{p} -bromophenyl)hydroperoxy-, isopropyl ester	100 (100 (100 (100 (100 (100 (100 (100	0. Sc.	100	II	II	пп	I

25	25	10 I	нн	нн	1 25	1 25	нн	нн	нн	нн
100	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн
25 100	100	10	нн	нн	1 25	1 25	нн	нн	нн	нн
25	50	10	нн	нн	1 25	10 25	нн	нн	нн	нн
N 100	50	N N	100 N	25	25	25	10	25	N 25	ZZ
. S. c.	. sc.	0°.	0°. Sc.	0. Sc.		0°.		, o o		, o o o
100	100	50	100	100	25	25	25	100	100	100
Acetic acid, mercapto-, 2-carboxy-2-methylhydrazide, methyl ester, S-ester with 0,0-dimethyl phosphorothloate	Acetic acid, mercapto-, 2-(2-cyanopropyl)-2-methylhydrazide, S-ester with 0,0-dimethyl phosphorothioate	Acetic acid, mercapto-, 2,2-dimethylhydrazide, O-ethyl ethylphosphonodithioate (ester)	Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester	Acetimidic acid, N-(carbamoyloxy)thio-, methyl ester	Acetimidic acid, N-methoxy-2-thio-, methyl ester, S-ester with O-ethyl= isopropylphosphoramidothioate	Acetimidic acid, N-methoxy-2-thio-, methyl ester, S-ester with O-methyl isopropylphosphoramidothioate	Acetimidic acid, N-[(methylcarbamoyl)oxy]thio-ester with mercaptoacetonitrile	Acetimidic acid, N-[(methylcarbamoyl)oxy]thio-ester with 3-mercaptopropionitrile	Acetimidoyl chloride, 2,2,2-trichloro-N-(pentachlorophenyl)-	Allophanic acid, 4,4'-o-phenylenebis[3-thio-], dimethyl ester
7835	27814	27509	27797	27411	27977	27978	27519	27613	27323	27905
27	2	7	2	2	(4	4		. 4	. 4	.4
	2-carboxy-2- 100 0. N 25 25 100 /1 ester, S-ester 100 Sc. 100 100 100 50 sphorothioate	Acetic acid, mercapto-, 2-carboxy-2- methylhydrazide, methyl ester, S-ester with 0,0-dimethyl phosphorothloate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- phosphorothloate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- phosphorothloate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- phosphorothloate Acetic acid, mercapto-, 2-(2-cyanopropyl) - 100	Acetic acid, mercapto-, 2-carboxy-2- Methylhydrazide, methyl ester, S-ester With 0,0-dimethyl phosphorothioate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- phosphorothioate Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0. Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0.	Acetic acid, mercapto-, 2-carboxy-2- methylhydrazide, methyl ester, S-ester with 0,0-dimethyl phosphorothicate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- methylhydrazide, S-ester with 0,0-dimethyl 100 sc. 50 100 100 I Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0. 50 25 10 100 I Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 sc. 50 100 100 I Acetic acid, phenyl-, 5-chloro-2- Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester 100 sc. N I I I I I I I I I	Acetic acid, mercapto-, 2-carboxy-2- methylhydrazide, methyl ester, S-ester with 0,0-dimethyl phosphorothioate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- methylhydrazide, S-ester with 0,0-dimethyl 100 Sc. 50 100 10 1 5 Bhosphorothioate Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0. 50 100 100 1 5 Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester Acetic acid, M-(carbamoyloxy)thio-, 100 0. 25 1 1 1 1 1 1 1 1 Acetic acid, M-(carbamoyloxy)thio-, 100 Sc. 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acetic acid, mercapto-, 2-carboxy-2- methylhydrazide, methyl ester, S-ester with Q,Q-dimethyl phosphorothioate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- methylhydrazide, S-ester with Q,Q-dimethyl phosphorothioate Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0. Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0. Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 0. Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-Q-tolylbenzyl ester Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-Q-tolylbenzyl ester Acetic acid, M-(carbamoyloxy)thio-, methyl ester Acetimidic acid, M-methoxy-2-thio-, methyl seter, S-ester with Q-ethyl= seter, S-ester with Q-ethyl	Acettc acid, mercapto-, 2-carboxy-2- methylhydrazide, methyl ester, S-ester with Q,Q-dimethyl phosphorothioate Acettc acid, mercapto-, 2-(2-cyanopropyl)-2- phosphorothioate Acettc acid, mercapto-, 2,2-dimethyllydrazide, 50 0. Acettc acid, phonyl-, 5-dimethyllydrazide, 50 0. Acettc acid, phonyl-, 5-chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester Acetimidic acid, M-(carbamoyloxy)thio-, methyl ester Acetimidic acid, M-methoxy-2-thio-, methyl ester, S-ester with Q-ethyl= isopropylphosphoramidothioate Acetimidic acid, N-methoxy-2-thio-, methyl ester, S-ester with Q-ethyl= isopropylphosphoramidothioate Acetimidic acid, N-methoxy-2-thio-, methyl ester, S-ester with Q-ethyl= isopropylphosphoramidothioate Acetimidic acid, N-methoxy-2-thio-, methyl ester, S-ester with Q-methyl ester, S-ester with Q	Acetic acid, mercapto-, 2-carboxy-2- methylhydrazide, methyl ester, 5-ester with 0,0-dimethyl phosphorothioate Acetic acid, mercapto-, 2-(2-cyanopropyl)-2- methylhydrazide, 2-ester with 0,0-dimethyl 100 sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethylhydrazide, 50 sc. 50 100 100 1 Acetimidic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester 100 sc. NN 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 1 Acetimidic acid, N-methoxy-2-thio-, methyl 25 sc. 25 sc. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acetic acid, mercapto-, 2-carboxy-2- methyllydrazide, methyl eter, S-ester Acetic acid, methyl eter, S-ester Mighyllydrazide, methyl eter, S-ester Acetic acid, methyllydrazide, S-oster with O.Q-dimethyll 100 Sc. 50 50 100 100 I phosphorothioate Acetic acid, mercapto-, 2,2-dimethyllydrazide, 50 0. 5 50 100 100 I O-ethyl ethylphosphorodithioate (ester) 50 Sc. 5 25 50 I Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester 100 Sc. 100 I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 I I I I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 25 Sc. 10 Sc. 25 I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 25 Sc. 10 Sc. 25 I I I I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 10 I I I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 10 I I I I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 10 I I I I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 10 I I I I Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 10 I I I I Acetimidic acid, M-(methylcarbamoyl)oxy]thio-, 25 Sc. 10 I I I I I Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 10 Sc. 25 I I I I I I Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 10 Sc. 25 I I I I I I I I I I I I I I I I I I	Acetic acid, mercapto-, 2-carboxy-2- methyllydrazide, publy lester, 5-ester Acetic acid, mercapto-, 2-(2-vanopropyl)-2- methyllydrazide, 5-ester with 0,0-dimethyl 100 Sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethyllydrazide, 50 Sc. 50 100 100 1 Acetic acid, mercapto-, 2,2-dimethyllydrazide, 50 Sc. 5 Sc. 5 Sc. 50 10 Acetic acid, mercapto-, 2,2-dimethyllydrazide, 50 Sc. 5 Sc. 5 Sc. 10 II II II Acetic acid, phenyl-, 5-chloro-2- (dimethylamino)-alpha-2-chloro-100 Sc. 100 Sc. N II II II Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 II II II Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 Sc. 25 II II II Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 II II II Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 II II II Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 II II II Acetimidic acid, M-methoxy-2-thio-, methyl 25 Sc. 25 II II II Acetimidic acid, M-(methylcarbamoyl)oxy]thio-, 25 Sc. 10 Sc. 10 II II II Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 25 Sc. 10 II II II Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 100 Sc. 25 II II II II Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 25 Sc. 10 II II II Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 25 Sc. 10 II II II Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 25 Sc. 10 II II II Acetimidic acid, M-((methylcarbamoyl)oxy]thio-, 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II II II II II Acetimidoyl chloride, 2,2,2-trichloro-M- 100 Sc. 25 II

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	пп	нп	пп	μн	Η	пп	пп	нн	I
mg/kg) percent kill Adult Nympl stable lo files st	нн	нн	нн	нн	нн	нн	HH	нн	I
osage (n ng 100 j ne of Black blow files	нн	нн	нн	нн	нн	нн	нн	нн	I
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- files files worms	нн	нн	нн	нн	нн	нн	нн	нн	I
Lethal to guinea pigs	N 100	ZZ	ZZ	zz	ZZ	ZZ	ZZ	N 100	NN
ighest dosage /kg) and thod of dmini- ration	o. sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.	0. Sc.		0. Sc.	0. Sc.
Highest dosage (mg/kg) a method o admini-stration	100	100	100	100	100	100	100	100	100
	late	1th 2',4'-	.th .e	amino)-	- (outure	-amino)-	amino)-	thoxy-,	thoxy-,
Chemical	Ammonium, dialkyldimethylsalicy	Ammonium, dialkyldimethylsalt widihydroxybenzophenone	Ammonium, dialkyldimethylsalt with 2,2',4,4'-tetrahydroxybenzophenone	m-Anisic acid, 5-chloro-2-(dimethylamino)-	m-Anisic acid, 5-chloro-2-(dimethylamino)-alpha-o-tolylbenzyl ester	o-Anisic acid, 5-chloro-2-(dimethylamino)- alpha-phenylbenzyl ester	p-Anisic acid, 5-chloro-2-(dimethylamino)- alpha-o-tolylbenzyl ester	o-Anisimidic acid, 3,6-dichloro-N-ethoxy-, anhydride with benzoic acid	o-Anisimidic acid, 3,6-dichloro-N-ethoxy-, anhydride with p-toluic acid
AI3 No. (AI3-)	28012-X Ammon1um, dialkyldimethylsalicylate	28019-X Ammonium, dialkyldimethylsalt with 2',4'-dihydroxybenzophenone	28020-X Ammon1um, dialkyldimethylsalt wi 2,2',4,4'-tetrahydroxybenzophenon	27793 m-Anisic acid, 5-chloro-2-(dimethylalpha-phenylbenzyl ester	27780 m-Anisic acid, 5-chloro-2-(dimethylalpha-o-tolylbenzyl ester	27792 o-Anisic acid, 5-chloro-2-(dimethylalpha-phenylbenzyl ester	27778 p-Anisic acid, 5-chloro-2-(dimethyl alpha-o-tolylbenzyl ester		

9

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	нн	нн	нн	10	нн	2 2	5.2.5	нн	нн
mg/kg/ percent kill Adult Nymp stable lo files st	нн	нн	нн	3 ₁₀	нн	5	25	50 I	нн
ng 100 ae of Black blow flies	нн	нн	нн	10	нн	v v	5	25	нн
Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- files files	нн	н	нн	10	нн	N N	N N	25	нн
Lethal to guinea pigs	ZZ	100 N	ZZ	25 25	50 100	25 25	25 10	25	ZZ
est age) and d of ni-	0°.	0. Sc.	Sc.	0°. Sc.	0°. Sc.	S.c.	Sc.	0. Sc.	0°. Sc.
Highest dosage (mg/kg) as method o administration	100	100	100	100	100	100	100	100	100
Chemical	Benzhydrol, 5-chloro-2-(dimethylamino)-, benzoate (ester)	<pre>Benzhydrol, 5-chloro-2-(dimethylamino)-2'- methyl-, benzoate (ester)</pre>	Benzilic acid, 4,4'-dibromo-, ethyl ester	<pre>Benzimidazole, 2-(chlorodifluoromethyl)-4- nitro-6-(trifluoromethyl)-</pre>	1-Benzimidazolecarboxylic acid, 4,6-dilodo-2-(trifluoromethyl)-, isopropyl ester	1-Benzimidazolecarboxylic acid, 4-nitro- 2,6-bis(trifluoromethyl)-, isopropyl ester	1-Benzimidazolecarboxylic acid, 4-nitro-2,6-bis(trifluoromethyl)-, phenyl ester	Benzimidic acid, N-ethoxy-, O-anhydride with O,O-diethyl phosphorothioate	Benzoic acid, m-chloro, 5-chloro-2- (dimethylamino)-alpha-o-tolybenzyl ester
AI3 No. (AI3-)	27786	27771	27605	29049	29055	27953	29048	29010	27776
Item No.	45	97	47	84	64	20	51	52	53

I I I I I I I I I I I I I I I I I I I	I I I I I		I I I I I I	I I I I I	I I I 25 I I I 25		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I I I I		I I I I I I I I I I I I I I I I I I I	4 _I I I I 4 _I		
NN	N N	10	100	NN	100	100 N	100	50 N	N 20	10	NN	. 50	
0°.	0. Sc.	0. Sc.	. Sc.	0°.	0°.	0°.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	
100	100	100	100	100	100	100	100	100	100	10	100	100	
Benzoic acid, o-chloro-, 5-chloro-2- (dimethylamino)-alpha-phenylbenzyl ester	Benzoic acid, p-chloro-, 5 chloro-2- (dimethylamino)-alpha-o-tolylbenzyl ester	Benzoic acid, m-(cyano-N-hydroxyformimidoyl)-, methyl ester, diethyl phosphate	Benzoic acid, m-(cyano-N-hydroxyformimidoyl)-, methyl ester, 0-ester with 0,0-diethyl phosphorothioate	Benzoic acid, \underline{p} -[(1,5-dimethylhexyl)oxy]-, methyl ester	Benzonitrile, 4-hydroxy-2-isopropyi-, methanesulfonate	Benzothiazole, 2-(methylsulfonyl)-6-nitro-	Benzoyl chloride, phenylhydrazone	Benzoyl chloride, (2,4,6-trichlorophenyl)-hydrazone	3-Biphenylcarboxy-o-toluidide, 4',5-dichloro-4''-fluoro-2-hydroxy-	2-Butanone, 3,3-dimethyl-1-(methylthio)-, 0-(methylcarbamoyl)oxime	3-Buten-2-ol, 2-methy1-	Butyric acid, 2-chloro-, 2-sec-butyl-4,6-dinitrophenyl ester	
27787	27774	27497	29033	70349	27850	27906	27645	27646	27349	27851	23122	27215	
54	55	26	57	58	59	09	61	62	63	99	65	99	

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

Causing 100 percent kill of Larvae of con- Black Adult Nymphal ary blow stable lone rew- files files star rms ticks	пп	нн	пп	I I	50 50	нн	нн	нн	нн
ng/kg) percent Adult stable files	нн	нн	нн	нн	нн	нн	нн	нн	нн
ausing 100 larvae of on- Black ry blow ew- files	н	н	нн	нн	нн	нн	пп	нн	нн
Lowest dosage (mg/kg)Causing 100 percent Larvae ofSecon-Black Adult dary blow stable screw-files files worms	нн	нн	нн	нн	нн	нн	пп	нн	нн
Lethal to guinea pigs	50	25 5	100	50 25	50	ZZ	100	ZZ	100
ighest dosage /kg) and thod of dmini- ration	0. S.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.	0. Sc.
Highest dosage (mg/kg) and method of administration	100	100	100	100	100	100	100	100	100
Chemical	Carbamic acid, acetylmethyl-, m-cumenyl ester (60 percent), mixture with p-cumenyl acetylmethylcarbamate (40 percent)	Carbamic acid, acetylmethyl-, 2,3-dihydro-2,2-dimethyl-7-benzofuranyl ester	Carbamic acid, (chloroacety1)methyl-, m-tert-buty1phenyl ester	Carbamic acid, (chloroacetyl)methyl-, m-cumenyl ester	<pre>Carbamic acid, (chloroacetyl)methyl-, 4- (dimethylamino)-3,5-xylyl ester</pre>	Carbamic acid, (chloroacetyl)methyl-, m-tolyl ester	Carbamic acid, (3-chloro-2,6-dimethoxybenzoyl)-100 methoxy-, ethyl ester	Carbamic acid, (3-chloro-2,6-dimethoxybenzoyl)-100 methoxy-, isopropyl ester	Carbamic acid, (dichloroacetyl)methyl-, m- tert-butylphenyl ester
AI3 No. (AI3-)	27968-X	27468	27457	27334	27750	27456	27783	27790	27459
Item No.	67	89	69	70	71	72	73	74	75

III	I I I	I I I	I I	I I	I I	I I	I I	нн	50 I I I	25 I I I	50 100 50 I
нн	пп	нн	нн	нн	нн	нн	нн	нн	50 I	50 I	25
нн	нн	нн	нн	нн	нн	нн	нн	нн	50 I	25 I	25
25	N 50	N 100	100	50 25	25	50	ZZ	25	ZZ	100	NN
o. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	Sc.
100	100	100	100	100	100	50	100	100	100	100	100
Carbamic acid, (dichloroacety1)methy1-, m-cumenyl ester	Carbamic acid, (3,6-dichloro-o-anisoyl)- methoxy-, ethyl ester	Carbamic acid, (3,6-dichloro-o-anisoyl)- methoxythio-, <u>S</u> -ethyl ester	Carbamic acid, [(dichlorofluoromethyl)thio]-methyl-, o-isopropoxyphenyl ester	Carbamic acid, dimethyl-, 4-sec-butyl-2- methyl-5-thiazolyl ester	Carbamic acid, dimethyl-, o-1,3-dithiolan-2-ylphenyl ester	K Carbamic acid, dimethyl-, 5-quinolyl ester,	Carbamic acid, dimethyl-, 2,3,4,6-tetrachlorophenyl ester	Carbamic acid, hydroxy-, m-cumenyl ester	Carbamic acid, (mercaptoacetyl)methyl-, p-tert-butylphenyl ester, S-ester with 0,0-dimethyl phosphorodithioate	Carbamic acid, (mercaptoacety1)methy1-, m-cumeny1 ester, S-ester with 0,0-dimethy1 phosphorodithloate	Carbamic acid, (mercaptoacetyl)methyl-, 0-ester with methyl p-hydroxybenzoate, S-ester with 0,0-dimethyl phosphorothioate
27455	27772	27775	27981	29036	27624	27734-X	70053	25955	27706	27348	27955
9/	77	78	79	80	81	82	83	84	85	86	87
							13				

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

est dosage (mg/kg) Causing 100 percent kill of	Nymphal lone star ticks	100	100	пп	I I	ΙΙ	пп	пп	100
Lowest dosage (mg/kg) Causing 100 percent	Adult stable flies	нн	50	25 100	100	нн	нн	нн	100
ausing 100	Black blow flies	25	25	25 I	нн	нн	нн	нн	100
Caust d	Secon- dary screw- worms	50	25	25 I	нн	нн	нн	1 100	1 100
	Lethal to guinea	25	N 100	N 100	N 100	51	50	N 100	100
eat	Losage /kg) and thod of dmini- ration	0. Sc.	0°. Sc.	o. Sc.	0. Sc.	0. Sc.	0°. Sc.	0. Sc.	0. Sc.
Highest	(mg/kg) and method of admini- stration	100	100	100	100	100	100	100	100
	Chemical	Carbamic acid, (mercaptoacetyl)methyl-, methyl 100 ester, S-ester with O-methyl 100	Carbamic acid, (mercaptoacety1)methy1-, phenyl ester, S-ester with 0,0-dimethy1 phosphorodithioate	Carbamic acid, (mercaptoacetyl)methyl-, o-tolyl ester, S-ester with 0,0-dimethyl phosphorodithoate	Carbamic acid, methyl-, 1,4-benzodioxan-5-ylester	Carbamic acid, methyl-, 3-sec-butyl-p-tolyl ester	Carbamic acid, methyl-, 2-chloro-m-tolyl ester	Carbamic acid, methyl-, 3,5-di-tert-butyl-4-hydroxyphenyl ester	27984-X Carbamic acid, methyl-, 3,5-diethylphenyl
	AI3 No. (AI3-)	27723	27954	27460	27362	27475	27649	29035	27984-X
	Item No.	88	88	06	91	92	6	96	95

96 27486	97 27305	98 27907	99 27524	100 27389	101 27703	102 27702	103 27388	104 27638	105 27480	106 27640	107 27637	108 27630
981	505	107	24	688	03	0.5	888	38	084	040	37	930
Carbamic acid, methyl-, 4-[(dimethylamino)-methyl]-2,3-dimethylphenyl ester	Carbamic acid, methyl-, 4-[[(dimethylamino)-methylene]amino]-m-tolyl ester	Carbamic acid, methyl-, 4,5-dimethylbenzo- [b]thien-7-yl ester	Carbamic acid, methyl-, 1,1-dimethyl-4-indanyl ester	Carbamic acid, methyl-, o-1,3-dioxolan-2-ylphenyl ester	Carbamic acid, methyl-, 4-(di-2-propynylamino)-100 m-tolyl ester	Carbamic acid, methyl-, 4-(d1-2-propynylamino)-3,5-xylyl ester	Carbamic acid, methyl-, o-1,3-dithiolan-2-ylphenyl ester	Carbamic acid, methyl-, ester with 3-chloro-3'-hydroxypropionalide	Carbamic acid, methyl-, ester with 4'-hydroxyacetanilide	Carbamic acid, methyl-, ester with 3'-hydroxy-3-butenanilide	Carbamic acid, methyl-, ester with 3'-hydroxybutyranilide	Carbamic acid, methyl-, ester with 3'-hydroxycyclopropanecarboxanilide
100	99	100	100	100	100	100	100	100	100	100	100	100
0. Sc.	0°. Sc.	Sc.	0. Sc.	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	S.	0. Sc.	S.	0. Sc.	0°. Sc.	0. Sc.	0°. Sc.	
25.2.5	10	N 50	20	N 25	50	10	25 N	N 100	50	N 100	N 100	ZZ
нн	нн	нн	нн	нн	нн	нн	нн	нн	6 ₁₀	нн	нн	100 I
нн	нн	нн	нн	нн	нн	нн	нн	нн	10	нн	нн	50 I
нн	нн	нн	нн	нн	нн	нн	нн	1 ₁₀₀	7 25 25	1,00	50	25 I

See footnotes at end of table.

TABLE 2. --- Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs -- Continued

[N, no dosage was lethal; I, no dosage was systemically active]

			Highest	est		Lowest dosage (mg/kg) Causing 100 percent	ng 100 1	est dosage (mg/kg) Causing 100 percent kill	k111 of
Item No.	AI3 No.	Chemical	dosage (mg/kg) as method o	age) and d of	Lethal	Secon- dary	Larvae of	Adult stable	Nymphal lone
	(LCTW)		stration	ion	pigs	WOTE	ITIES	TTTER	ticks
109	27639	Carbamic acid, methyl-, ester with 3'-hydroxyformanilide	100	0. Sc.	N 25	нн	нн	50	нн
110	27397	Carbamic acid, methyl-, ester with (p-hydroxyphenyl) acetonitrile	100	0. Sč.	50 100	нн	нн	1 100	нн
111	27727	Carbamic acid, methyl-, ester with 1-(m-hydroxyphenyl)-2-pyrrolidinone	100	0. Sc.	N 100	6 ₅₀	нн	100	нн
112	27481	Carbamic acid, methyl-, ester with 3'-hydroxypropionanilide	100	0°. S c .	N 20	50	50	25 25	нн
113	27657	Carbamic acid, methyl-, ester with 2,2,2-trifluoro-4'-hydroxyacetanilide	100	0. Sc.	100 50	1 25	I 50	1 50	I 50
114	29007	Carbamic acid, methyl-, alpha-(ethylthio)- o-tolyl ester	100	0°. Sc.	50	нн	нн	нн	100
115	27695	Carbamic acid, methyl-, 2,3-(isopropylidene-dioxy)phenyl ester	100	0°. Sc.	10	нн	нн	нн	нн
116	25918	Carbamic acid, methyl-, o-(methoxymethoxy)-phenyl ester	100	o. Sc.	N 100	нн	нн	50 25	нн
117	27384	Carbamic acid, methyl-, 7-methylbenzo $[\underline{b}]$ -thien-4-yl ester	100	0. Sc.	N 50	нн	нн	нн	н

нн	нн	100	нн	нн	нн	нн	нн	нн	нн	нн	нн	
10	1 50	1,001	нн	нн	нн	нн	нн	нн	1100	нн	нн	
нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	
нн	50	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	
25 10	25 25	100	25	100	10	50 25	50 100	25 25	100	50	ZZ	
0. Sc.	o. Sc.	0. Sc.	0. Sc.	0. Sc.	Sc.	0°.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0°.	
100	100	100	50	100	100	100	100	100	100	100	100	
Carbamic acid, methyl-, o-[methyl(2-propynyl)-amino]phenyl ester	<pre>Carbamic acid, methyl-, 4-[methyl(2-propynyl)- amino]-3,5-xylyl ester</pre>	Carbamic acid, methyl-, o-[3- (methylthio)propyl]-phenyl ester	Carbamic acid, methyl-, 2-(methylthio)-3-pyridyl ester	Carbamic acid, methylnitroso-, m-cumenyl ester	Carbamic acid, methyl(phenylthio)-, m-sec-butylphenyl ester (approximately 58%), mixture with p- and o-isomers (29% and 5%, respectively)	ပိ	Carbamic acid, methyl(trichloroacetyl)-, m- tert-butylphenyl ester	Carbamic acid, methyl(trichloroacetyl)-, m -cumenyl ester	Carbamic acid, methyl[(trichloromethyl)thio]- o-isopropoxyphenyl ester	Carbamic acid, thio-, S.S'-2-(dimethylamino)-trimethylene ester, hydrochloride	Carbanilic acid, p-chloro-, 2-butynyl ester	
27701	27969	27173	27917	27347	27704-X	27975-x	27458	27454	27982	27573	27636	
118	119	120	121	122	123	124	125	126	127	128	129	
						17						

See footnotes at end of table.

TABLE 2. -- Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs -- Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	нн	нн	пп	нн	пп	пп	пп	пп	нн
Lowest dosage (mg/kg) Causing 100 percent kill Larvae of Secon- Black Adult Nympl dary blow stable los screw- files files st	нн	нн	нн	нн	нн	нн	нн	нн	нн
causing 100 Larvae of con- Black ary blow rew- files	нн	нн	нн	6 ₅₀	нн	нн	нн	нн	нн
Caust Caust Lar Secondary BCrew-worms	нн	нн	нн	1 650	нн	нн	нн	нн	нн
Lethal to guinea pigs	N 100	N 100	N 100	100	ZZ	ZZ	50	5 ₁ 2.5	ZZ
Highest dosage (mg/kg) and method of admini- stration	0°. Sc.	0. Sc.	0. Sc.	sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0.
Highest dosage (mg/kg) e method o admini- stration	100	100	100	100	100	100	100	100	100
Ghemical	Carbanilic acid, p-chloro-, 1-methyl-2- propynyl ester	Carbanilic acid, 3,4-dichloro-, 1- methyl-2-propynyl ester	Carbanilic acid, o-methoxy-, thymyl ester	Carbanilide, 3-chloro-4-(\underline{p} -chlorophenoxy)-4'-nitro	Carbanilide, N.N'-diethyl-4,4'-dinitro	Carbanilide, N.M'-dimethyl-4,4'-dimitro-	Carbonic acid, 2-sec-buty1-4,6-dinitrophenyl isopropyl ester	Carbonic acid, 2-tert-butyl-4,6-dinitrophenyl 2-fluoroethyl ester	Carbonic acid, dithio-, O-butyl S- (P-nitrophenacyl) ester
AI3 No. (AI3-)	27995	27996	27942	27432	27440	27441	27244	29011	70052
Item No.	130	131	132	133	134	135	136	137	138

	139	25935	Carbonic acid, dithio-, O-ethyl S- (P-nitrophenacyl)ester	100	o. Sc.	NN	HH	нн	нн	нн
	140	70054	Carbonic acid, dithio-, S-(p-nitrophenacyl)	100	o. Sc.	ZZ	нн	нн	нн	нн
	141	27856	<pre>Carbonimidodithioic acid, cyano-, (diethoxyphosphinothioyl)methyl 2-propenyl ester</pre>	100	Sc.	100	нн	нн	нн	нн
	142	27976	<pre>Carbonimidothioic acid, [methylcarbamoyl)oxy]-, dimethyl ester</pre>	100	0. Sc.	100	1 100	нн	нн	100
	143	27795	Cinnamic acid, 5-chloro-2-(dimethylamino)- α -phenylbenzyl ester	100	0. Sc.	ZZ	нн	нн	нн	нн
	144	27740	Crotonic acid, 4-bromo-3-hydroxy-, methyl ester, dimethyl phosphate	100	0. Sc.	50	нн	нн	нн	нн
19	145	27941	Crotonic acid, 3-hydroxy-, ester with methyl lactate, dimethyl phosphate	100	0°. Sc.	N 50	нн	нн	нн	нн
9	146	27756	Crotonic acid, 3-hydroxy-, ethyl ester, methyl propylphosphoramidate, (\underline{E}) -	100	o. Sc.	10	100	100	нн	6 25
	147	27754	Crotonic acid, 3-hydroxy-, 1-ethyl-1-methyl-2-propynyl ester, dimethyl phosphate	100	o. Sc.	N 100	нн	нн	нн	нн
	148	27989	Crotonic acid, 3-hydroxy-, isopropyl ester, 0-ester with 0-methyl ethylphosphoramidothioate	100	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	25 100	50	25 50	нн	нн
	149	27753	Crotonic acid, 3-hydroxy-, isopropyl ester, methyl propylphosphoramidate, (\underline{E}) -	100	0. Sc.	100	нн	нн	нн	нн
	150	27752	Crotonic acid, 3-hydroxy-, 2-methoxy- l-methylethyl ester, dimethyl phosphate	100	o. Sc.	25	нн	нн	нн	1 100
	151	27993	Crotonic acid, 3-hydroxy-, methyl ester, S-sec-butyl ethylphosphonodithioate, (Z)-	50	. S. S.	50	нн	нн	нн	нн

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	нн	25 25	пн	нн	нн	нн	нн	I
Lowest dosage (mg/kg) Causing 100 percent kill Larvae of Secon- Black Adult Nymp dary blow stable lo screw- files files st worms tic	нн	нн	нн	нн	нн	нн	нн	ı
Sausing 100 Larvae of con- Black ary blow rew- files	нн	50 25	нн	нн	нн	нн	нн	I
Lowest dos Causing Larvae Secon-B dary screw-f	нн	50 25	нн	нн	нн	нн	нн	I
Lethal to guinea pigs	25 25	10 5	100	N 25	ZZ	N 100	N 100	NN
Highest dosage mg/kg) and method of admini- stration	0°. Sc.	o. Sc.	S. S.	0°. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.
Highest dosage (mg/kg) a method o admini- stration	50	100	100	100	100	100	100	100
Chemical	Crotonic acid, 3-hydroxy-, methyl ester, O-ester with S-ethyl ethylphosphonodithioate	Crotonic acid, 3-hydroxy-, methyl ester, methyl ethylphosphoramidate, (\underline{E}) -	Crotonic acid, 3-hydroxy-, α-methyl-p-methylsulfonyl)benzyl ester, dimethyl phosphate	Crotonic acid, 3-hydroxy-, α-methyl-p- (methylthio)-benzyl ester, dimethyl phosphate	Crotonic acid, thio-, S-phenyl ester	1,5,9-Cyclododecatriene, compound with 0,0-diethyl phosphorodithioate (1:2)	Cyclohexanecarboxyl1c acid, 5-chloro-2- (dimethylamino)-α-phenylbenzyl ester	Cyclohexanecarboxyllc acid, 5-chloro-2- (dimethylamino)-α-o-tolylbenzyl ester
AI3 No. (AI3-)	27945	27755	27483	27451	27429	25954	27791	27782
Item No.	152	153	154	155	156	157	158	159

нн	нн	нн	1_{100}	нн	нн	нн	нн	нн	нн	нн	нн	
нн	нн	нн	1 1100	нн	нн	нн	нн	нн	нн	нн	нн	
нн	нн	нн	1_{100}	нн	нн	нн	нн	нн	нн	нн	нн	
нн	нн	нн	1_{100}	нн	нн	I 50	нн	I 50	нн	нн	нн	
ZZ	ZZ	25 10	N 100	ZZ	25 25	50 100	M N	100 N	N N	zz	ZZ	
o. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	sc.	sc.	Sc.	Sc.	Sc.	Sc.	o. Sc.	
100	100	100	100	100	100	100	100	100	100	100	100	
Gyclohexanecarboxylic acid, 2-hydroxyethyl ester	1,2-Cyclohexanediol, 1,2-dimethyl-, cyclic sulfite	Cyclohexanone, 2-methyl-2-nitro, 0-(methylcarbamoyl)oxime	<pre>1-Cyclopentene-1-carboxyl1c acid, 2-hydroxy-, methyl ester, dimethyl phosphate</pre>	Cyclopropane, 1,1-dichloro-2,2- bis(p-ethoxyphenyl)-	Cyclopropanecarboxylic acid, 3-(cyclopentylidenemethyl)-2,2-dimethyl-, (5-benzyl-3-furyl)methyl ester, trans-(+)-	Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methylpropenyl)-, (5-benzyl-3-furyl)methyl ester, cis-(+)-	Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methylpropenyl)-, (5-benzyl-3-furyl)methyl ester, cis,trans-(1)-	Cyclopropanecarboxyllc acid, 2,2-dimethyl-3- (2-methylpropenyl)-, (5-benzyl-3- furyl)methyl ester, trans-(+)-	Cyclopropanecarboxyllc acid, 2,2-dimethyl-3-(2-methylpropenyl)-, 2,3-dihydro-3-benzofuranyl ester, cls,trans-(t)-	Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methylpropenyl)-, 2,4-dimethylbenzyl ester, trans-(-)-	Cyclopropanecarboxylic acid, 2,2,3,3-tetramethyl-, 4-phenoxy-2-butynyl ester	
70087	27540	27304	27462	27391	27985	27987	27474	27662	27809	27944	27958	-
160	161	162	163	164	165	166	167	168	169	170	171	

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal Lone star ticks	нн	нн	п	нн	нн	нн	нн	I 50
Lowest dosage (mg/kg) Causing 100 percent kill Larvae of Secon- Black Adult Nymp dary blow stable lo screw- files files st worms tiles	нн	нн	нн	пн	нн	нн	пп	I
at dosage (ausing 100 Larvae ofon-Black ry blow ew-files	нн	нн	нн	нн	нн	нн	100	50
Lowest Caus Lar Secondary screw- worms	нп	нн	нн	нн	нн	нн	100	50
Lethal to guinea pigs	ZZ	ZZ	100	N 100	N 100	N 100	zz	100 50
Highest dosage mg/kg) and method of admini- stration	0. Sc.	0. Sc.	0. Sc.	sc.	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Sc.	0. Sc.	0. Sc.
Highes dosag (mg/kg) method administration	100	100	100	100	100	100	100	100
Chemical	Decylamine, N.N-diethyl-	Decylamine, N.N-dimethyl-	Decylamine, N-methyl-	Dibenzamide, 3-chloro-N,2,6-trimethoxy-	D1-2,6-octadienylamine, $N-[2-[2-(dethylamino)ethoxy]-1,1-dimethylethyl]-3,3',7'-tetramethyl-, (E,E)-$	D1-2,6-octadienylamine, N-[2-[2-(diethylamino)ethoxy]propyl]-3,3',7,7'-tetramethyl-	1,3,2-Dioxaphosphorinane, 2-chloro-5,5- diethyl-, 2-sulfide	4H-1,3,2-Dioxaphosphorino $[5,4-b]$ pyridine, 2-methoxy-6-methyl-, 2-sulfide
AI3 No. (AI3-)	32	27531	174 27530	27784	70181	70283	29006	29104
Item No.	27532	27.	27	27	20	20	178 29	29

18(180 27738	738	Distannoxane, hexakis $(\beta,\beta-\text{dimethylphenethyl})-$	100	o. Sc.	100 5	нн	нн	нн	нн
181		27810	1,4-Dithiepan-6-one, N -[(methylcarbamoyl) oxy] $oxime$	100	0. Sc.	25	нн	нн	нн	50 25
182		27949	1,3-Dithiolane-2-carbonyl chloride, 2-methyl-, $(6-\text{chloro-}\alpha,\alpha,\alpha-\text{trifluoro-}\overline{m}-\text{tolyl})$ hydrazone	100	S.	zz	нн	нн	нн	нн
183		27660	1,3-Dithiolane-2-carboxaldehyde, 2-methyl-,0- (methylcarbamoyl)oxime	99	o. Sc.	10 5	нн	нн	нн	нн
184		70350	2,6-Dodecadienoic acid, 10,11-epoxy-3,7,10,11-tetramethyl-, ethyl ester	100	0. Sc.	20 Z	нн	нн	нн	нн
185		70348	2-Dodecenoic acid, 7,11-dichloro-3,7,11-trimethyl-, ethyl ester, $(\underline{\mathrm{E}})$ -	100	0. Sc.	N 100	нн	нн	нн	нн
186		27915	Ethanesulfonic acid, ester with 4-hydroxy-2-isopropylbenzonitrile	100	0°. Sc.	N 100	нн	нн	нн	1100 100
187		70083	Ethanol, 2,2'-(m-phenylenedioxy)di-	100	0°. Sc.	ZZ	1 1	нн	нн	HH
188		27728	Ethenesulfinic acid, 2,2-dichlorothio-, anhydrosulfide with 0,0-dimethyl phosphorothioate	100	0. Sc.	50 25	100 I	50 I	нн	100 I
189		70088	Flavan, 2',4',7-trimethoxy-2,4,4-trimethyl-	100	sc.	N 100	нн	нн	нн	нн
190		29005	Formamidine, N'-(4-chloro-o-toly1)-N-methyl-N- [(methylthio)methyl]-, hydrochloride	100		50	нн	нн	нн	н
191		29046	Formimidic acid, N- [methoxy(methylthio)phosphinyl]-, ethyl ester	100	0. Sc.	50 25	25	25	10 25	50 I

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	нн	нн	нн	нн	нн	нн	нн	нн	нн
mg/kg) percent kill Adult Nympl stable lo files st	нн	нн	нн	нн	нн	нн	нн	нн	нн
osage () ng 100 ae of Black blow files	нн	нн	005 I	нн	нн	нн	нн	нн	нн
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon	нн	нн	100 I	нн	нн	нн	нн	нн	нн
Lethal to guinea pigs	N 50	zz	zz	zz	ZZ	50	50 100	10	10
Highest dosage g/kg) and ethod of admini- tration	0. Sc.	0. Sc.	o. Sc.	0. Sc.	o. Sc.	0°. Sc.	o. Sc.	o. Sc.	o. Sc.
Highest dosage (mg/kg) a method o admini- stration	100	100	100	100	100	100	100	100	100
Chemical	Glyoxylic acid, cyano-, methyl ester, ($\alpha,\alpha,\alpha,\alpha,\alpha',\alpha',\alpha'$ -hexafluoro-3,5-xylyl)hydrazone	Hexanediamide, N,N,N',N'-tetraethyl-	Imidazole-1-carboxanilide, 2-methyl-4'-mitro-	Isothiocyanic acid, phthalimidomethyl ester	Isovaleric acid, 5-chloro-2-(dimethylamino)-α-o-tolylbenzyl ester	Lauric acid, diester with N.N-bis(2-hydroxyethyl)dodecanamide	Maleimide, N-(hydroxymethyl)-	Malononitrile, (3,5-d1-tert-buty1-4-hydroxybenzylidene)-	Malononitrile, (3,5-di-tert-butyl-4-hydroxybenzylidene)-, carbanilate (ester)
AI3 No. (AI3-)	27871	70056	27431	70150	27781	70059	61979	27910	27909
Item No.	192	193	194	195	196	197	198	199	200

H	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	
нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	
н	нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	н	нн	
ΙI	нн	нн	н н	нн	нн	нн	нн	нн	нн	нн	нн	нн	
25 50	ZZ	N 100	zz	zz	2.5	50	ZZ	10 25	ZZ	zz	zz	100	
0. Sc.	0. Sc.	0. Sc.	0°. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.	0°. Sc.	0°. Sc.	0°. Sc.	0°. Sc.	
100	100	100	100	100	100	100	100	50	100	100	100	100	
Malononitrile, $[(\underline{N}-ethyl-\alpha,\alpha,\alpha',\alpha',\alpha'-hexafluoro-3,5-xylidino)$ methylene]-	p-Menthan-2-one	P-Menth-8-ene-1,2-diol, cyclic sulfite	p-Menth-3-en-2-one	Methanesulfonamide, 1-chloro-	4,7-Methanoisobenzofuran- $5(3\underline{\text{M}})$ -one, 1,3,4,6,7,-100 8,8-heptachlorohexahydro-	4,7-Methanoisobenzofuran-5(3H)-one, 1(or 3), $4,6,7,8,8$ -hexachlorohexahy \overline{d} ro-	Nonanediamide, N.N.N', N'-tetraethyl-	2-Norbornanone, 3-methyl-3-nitro-, 0-(methylcarbamoyl)oxime	5-Norbornene-2,3-dimethanol, 1,4,5,6,7,7-hexachloro-	9-Octadecenamide, N.N-diethyl-	Octanamide, N.M-diethyl-, compound with but oxy polypropylene glycol	Octanoic acid, diester with $N_sN-bis(2-hydroxyethyl)$ octanamide	
27824	27538	27539	27537	27846	27236	27237	70057	27301	27048	70035	70484-X	70058	
201	202	203	204	205	206	207	208	209	210	211	212	213	

25

See footnotes at end of table.

TABLE 2. -- Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs -- Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	нн	нн	нн	нн	нн	нн	нн	нн	нн
causing 100 percent kill Larvae of con- Black Adult Nymp ary blow stable lo rew- files files st	нн	нн	нн	нн	нн	нн	нн	нн	нн
st dosage (sausing 100 larvae of-on-Black on-fles ew-fles ms	нн	нн	нн	1 1	нн	нн	нн	нн	нн
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- files files worms	нн	нн	нн	нн	нн	нн	нн	нн	нн
Lethal to guinea pigs	100	ZZ	N 100	zz	ZZ	ZZ	z z	50 N	zz
Highest dosage g/kg) and ethod of admini-tration	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.		0. Sc.	0. Sc.	Sc.
Highest dosage (mg/kg) a method o admini- stration	100	100	100	100	100	100	100	100	100
Chemical	2-Octene, 6,7-epoxy-3,7-dimethyl-1-(2-propynyloxy)-	1-0xa-4-azasp1ro[4.5]decane, 4-acety1-3-ethy1-	1-0xa-4-azaspiro[4.5]decane, 4-benzoyl-	1,2,4-0xadfazole, 5-amino-3-[2-(5-nitro-2-furyl)-vinyl]-, (\underline{E}) -	2H-1,3-Oxazine, 3-acetyl-2-(2,6-dimethyl-5- heptenyl)tetrahydro-	2H-1,3-0xazine, 3-acetyl-2-(1-ethylpentyl) tetrahydro-	2H-1,3-0xazine, 3-acetyltetrahydro-2- isopropyl-	2H-1,3-0xazine, 3-acetyltetrahydro-2-pheny1-	2H-1,3-Oxazine, 3-acetyltetrahydro-2- _(2-th1enyl)-
AI3 No. (AI3-)	70351	28930	28876	27918	28953	28951	28949	28877	28964
Item No.	214	215	216	217	218	219	220	221	222

нн	нн	нн	нн	нн	н	нн	нн	нн	нн	нн	нн	нн	
ZZ	ZZ	ZZ	ZZ	ZZ	ZZ	ZZ	N 100	ZZ	N 100	100 N	N 100	N 100	
o. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0°.	0. Sc.	0. Sc.	0°. Sc.	0. Sc.	
100	100	100	100	100	100	100	100	100	100	100	100	100	
2H-1,3-0xazine, 3-benzoyl-2-(1-ethylpentyl)- tetrahydro-	2H-1,3-0xazine, 3-benzoyltetrahydro-2-1sopropyl-	$\frac{2H-1}{p}$ 3-0xazine, 3-benzoyltetrahydro-2-(3-pyridy1)-	Oxazolidine, 3-acetyl-2-(2,6-dimethyl-5-heptenyl)-	Oxazolidine, 3-acetyl-4,4-dimethyl-2-phenyl-	Oxazolidine, 3-acetyl-4-ethyl-2-(1-ethylpentyl)-	Oxazolidine, 3-acetyl-4-ethyl-2-1sopentyl-2-methyl-	Oxazolidine, 3-acetyl-2-(1-ethylpentyl)-	Oxazolidine, 3-acetyl-2-(1-ethylpentyl)-4,4- dimethyl-	Oxazolidine, 3-acetyl-4-ethyl-2- $^{\diamond}$ henyl-	Oxazolidine, 3-acetyl-2-isopentyl-2-methyl-	Oxazolidine, 3-acetyl-2-[3,4-(methylenedioxy)-phenyl]-	Oxazolidine, 3-acetyl-2-phenyl-	See footnotes at end of table.
28952	28948	28965	28963	28927	70138	28926	70140	70139	28929	28867	28928	28868	See fo
224	225	226	227	228	229	230	231	232	233	234	235	236	

HH

100 N

100

2H-1,3-Oxazine, 3-benzoyl-2-(2,6-dimethyl-5-heptenyl)tetrahydro-

28954

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	I I	нн	нн	нн	нн	н	I	нн	I
est dosage (mg/kg) Causing 100 percent kill Larvae of con- Black Adult Nympl ary blow stable lor rew- flies flies st	н	I	нн	нн	нн	I I	I I	нн	ı
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- files files	нн	нн	нн	нн	нн	нн	нн	нн	I
Lowest d Caustilary Secondary screw- worms	нн	нн	нн	нн	нн	нн	нн	нн	нн
Lethal to guinea pigs	ZZ	ZZ	N 100	100 N	N 100	ZZ	ZZ	N 100	ZZ
Highest dosage mg/kg) and method of admini- stration	0°.	0. Sc.	0°. Sc.	0. Sc.	o. Sc.	0. Sc.	sc.	0. Sc.	0°. Sc.
Highes dosag (mg/kg) method admini stratio	100	100	100	100	100	100	100	100	100
Chemical	Oxazolidine, 3-benzoyl-4-ethyl-2-isopentyl-2-methyl-	Oxazolídine, 3-benzoyl-2-ethyl-2-methyl-	Oxazolidine, 3-benzoyl-2-isobutyl-2-methyl-	Oxazolidine, 3-benzoyl-2-isopentyl-2-methyl-	Oxazolidine, 3-benzoyl-2-phenyl-	Oxazolidine, 3-butyl-2-phenyl-	2,4-Pentanediol, cyclic sulfite, meso-	2-Pentenoic acid, 2,3,5,5,5-pentachloro-4-oxo-,100 (\underline{Z}) -	2-Pentenoic acid, 2,3,5,5,5-pentachloro-4-oxo-,100 phenyl ester, (Z)-
AI3 No. (AI3-)	28878	28875	28874	28869	28866	28864	27535	27400	27401
Item No.	237	238	239	240	241	242	243	244	245

нн	нн	нн	нн	1 50	1 10	нн	нн	нн	нн	нн	нн	нн
нн	нн	нн	нн	1 25	нн	нн	нн	нн	нн	нн	нн	нн
нн	нн	нн	нн	100	NN	нн	нн	нн	нн	пп	нн	нн
нн	нн	нн	нн	1 100	10	нн	нн	нн	нн	нн	нн	нн
10	100 50	zz	zz	20	10 5	N 100	25 10	100 50	10	10 25	5 100	10 25
Sc.	0. Sc.	sc.	0°.	0. Sc.	0. Sc.	o. Sc.	0. Sc.	o. Sc.	sc.	0°. Sc.	0°. Sc.	0. Sc.
100	100	100	100	100	100	100	100	100	50	50	100	50
3-Penten-2-one, 4-methyl-, $\underline{0}$ -(methylcarbamyl)-oxime, $(\underline{2})$ -	Phenol, 2-bromo-4-chloro-6-nitro-	Phenyl isocyanide, p-[(p-tert-butylphenyl)-thio]-	3-Phospholene, 3-chloro-1-methoxy-, 1-sulfide	Phosphonamidothioic acid, $N-(a-aminobenzylidene)-P-ethyl-, S-methyl ester$	Phosphonamidothioic acid, P-ethyl., S-ethylester	Phosphonic acid, phenyl-, 0-(4-browo-2,5-dichlorophenyl) 0-methyl ester	Phosphonic acid, [(1,2,2-trichloroethyl)sulfinyl]-, diethyl ester	Phosphonodithioic acid, allyi-, S,S-dipropylester	Phosphonodithioic acid, ethyl-, O-benzyl S-2-propynyl ester	Phosphonodithioic acid, ethyl., S-(2-bromo-2-chloroethyl) O-ethyl ester	Phosphonodithioic acid, ethyl-, S-(p-chlorophenyl) O-isobutyl ester	Phosphonodithioic acid, ethyl-, 0-cyclopentyl $S-2$ -propynyl ester
27463	27994	27627	27825	29094	27641	27872	27729	27730	27948	27747	27632	27946
246	247	248	249	250	251	252	253	254	255	256	257	258

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

Aill of Nymphal lone star ticks	нн	нн	нн	нн	нн	нн	нн	нн	нн
est dosage (mg/kg) Causing 100 percent kill Larvae of con- Black Adult Nymp ary blow stable lo rew- files files st	нн	нн	нн	нн	нн	нн	нн	нн	нн
st dosage (ausing 100 Larvae of-con Black or blow ew-files	н	нн	нн	нн	нн	нн	нн	50 1	нн
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- files files	нн	нн	н н	нн	нн	нн	нн	100 I	нн
Lethal to guinea pigs	25 50	1	10	25 10	50 25	100 50	100	50	5 10
Highest dosage (mg/kg) and method of admini- stration	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.
H1g do (mg/k meth adm stra	100	10	50	100	100	100	50	100	10
Chemf.cal	Phosphonodithioic acid, ethyl-, S-[(2,4-dichlorophenoxy)methyl] O-propyl ester	Phosphonodithioic acid, ethyl-, S-[(ethylthio)-methyl] ester, O-ester with acetone oxime	Phosphonodithioic acid, ethyl-, 5-phenyl ester, 0-ester with acetone oxime	Phosphonodithioic acid, (2-isopropoxyvinyl)-, S.S-dipropyl ester	Phosphonodithioic acid, [2-(isopropylthio)-vinyl]-, S,S-dimethyl ester	Phosphonodithioic acid, (2-methoxyviny1)-, S.S-diisopropyl ester	Phosphonothioic acid, ethyl-, $0-(7-$ chlorobenzofurazan-4-yl) $0-$ ethyl ester	Phosphomothioic acid, ethyl-, $0-(2,5-dichloro-4-iodophenyl)$ 0-ethyl ester	Phosphonothioic acid, ethyl-, 0-[α-(diethylamino)-4-(methylthio)-ο-tolyl] O-ethyl ester
AI3 No. (AI3-)	27361	27857	27861	27838	27839	27661	27916	27919	27575
Item No.	259	260	261	262	263	264	265	266	267

268	27860	Phosphonothioic acid, ethyl-, 0-ester with acetone oxime, 0-ester with \overline{p}^- hydroxybenzomitrile	10 25	0°. Sc.	10	нн	нн	нн	нн
269	27666	Phosphonothioic acid, ethyl-, 0-ethyl ester, 0-ester with p-hydroxybenzaldehyde, 0- (butylcarbamoyl)oxime	100	o. Sc.	10	25 25	25 I	нн	100 I
270	27549	Phosphonothioic acid, ethyl-, 0-ethyl ester, 0-ester with p-hydroxybenzaldehyde, 0-[(m-chlorophenyl)carbamoyl]oxime	50	0°. Sc.	99	н	нн	нн	нн
271	27859	Phosphonothioic acid, ethyl-, $0-(4-nitro-m-tolyl)$ ester, $0-ester$ with acetone oxime	50	0. Sc.	10 25	нн	нн	нн	нн
272	27913	Phosphonothioic acid, ethyl-, 0-(4-nitro-m-tolyl) ester, 0-ester with 3,3-dimethyl-2-butanone oxime	10	o. Sc.	10	нн	нн	нн	нн
273	27912	Phosphonothioic acid, ethyl-, 0-(2,4,5,-trichlorophenyl) ester, 0-ester with acetone oxime	25	o. Sc.	10 25	нн	нн	нн	нн
274	29098	Phosphonothioic acid, methyl-, $0-(4-bromo-2,5-dichlorophenyl)$ 0-methyl ester	100	0. Sc.	N 20	50 25	50 25	нн	нн
275	27453	Phosphonothioic acid, methyl-, $0-(4-bromo-2,5-dichlorophenyl)$ 0-propyl ester	100	0°. Sc.	50 100	100 I	50 I	нн	нн
276	27634	Phosphonothioic acid, methyl-, 0-[2,5-dichloro-100 4-(methylthio)phenyl] 0-ethyl ester	100	0. Sc.	10 50	1 10	1 50	нн	нн
277	27471	Phosphonothioic acid, methyl-, $0-(3,4-$ dichlorophenyl) 0 -methyl ester	100	o. sc.	25 100	100	100	7 ₁₀₀	100 I
278	27399	Phosphonothioic acid, methyl-, O-ethyl O-6-quinolyl ester	100	0. Sc.	52	100	100	нн	10
279	27378	Phosphonothioic acid, phenyl-, 0-(4-bromo-2,5-dichlorophenyl) 0-methyl ester	100	o. Sc.	50	100 I	100 I	100 I	н

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

								(
mg/kg) percent kill of Adult Nymphal stable lone files star ticks	50	нн	нн	нн	25 100	нн	нн	нн
mg/kg) percent Adult stable flies	нн	нн	нн	нн	1 25	нн	нн	нн (
est dosage (causing 100 larvae of-con-Black ary blow rew-files rms	нн	нн	нн	нн	25 25	нн	нн	нн
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- files files worms	10	нн	нн	нн	25 10	нн	нн	нн
Lethal to guinea pigs	25 50	25 50	10 25	25 25	50	N 100	100	25 50
st ge and of 1- on	0. Sc.	o. Sc.	0. Sc.	o. Sc.	o. Sc.	O. Sc.	. sc.	8°C•
Highest dosage (mg/kg) and method of admini-stration	100 0 100 s	100 0 100 s	100 0 100 s	50 o 50 s	100 0 100 s	100 o 100 s	100 0 100 s	100 o 100 s
Chemical	Phosphonothioic acid, phenyl-, 0 -ethyl 0 - (6-methyl-3-pyridyl) ester	Phosphonotrithioic acid, ethyl-, tert-butyl ester, ester with N- (mercaptomethyl)phthalimide	Phosphonotrithioic acid, ethyl-, (ethylthio)-methyl isopropyl ester	Phosphoramidic acid, isopropyl-, ethyl ester, S -ester with mercapto-2-propanone $\overline{0}$ -methyloxime	Phosphoramidic acid, isopropyl-, ethyl 4- (methylthio)-m-tolyl ester	Phosphoramidic acid, isopropyl-, methyl p-nitrophenyl ester	Phosphoramidic acid, (2-mercaptoethy1)-, diethyl ester, S-ester with 0,0-dimethyl phosphorothioate	Phosphoramidic acid, (2-mercaptoethyl)-, diethyl ester, <u>S</u> -ester with <u>O</u> -methyl <u>O</u> -propylphosphorothioate
AI3 No. (AI3-)	29061	29093	29041	27979	27572	27656	27628	27629
Item No.	280	281	282	283	284	285	286	287

нн	нн	нн	нн	100	нн	10 I	нн	100	нн	10	100	нн
нн	нн	нн	нн	25 25	нн	нн	нн	100	нн	нн	10	нн
нн	нн	HH	I 50	25 25	нн	нн	нн	50	25 25	10	25 25	нн
нн	нн	нн	50	50	нн	1 10	нн	100 25	50 25	5	25 25	нн
100	100 N	N 25	10	N 100	50	r) r)	S S	100	N 100	10	N 100	10
o. Sc.	sc.	0. Sc.	0. Sc.	0°. Sc.	0. Sc.	o. Sc.	o. Sc.	0°. Sc.	0°. Sc.	0°. Sc.	0°. Sc.	0°. Sc.
100	100	100	100	100	50	10	10	100	100	10	100	100
thylamino) r	diny1	, ^			11dene)-	lidene)-	lidene)-	lidene)-	O-methyl	O-methyl		y1
Phosphoramidic acid, methyl-, 2-(diethylamino)-100 6-methyl-4-pyrimidinyl methyl ester	Phosphoramidic acid, methyl., 2-(dipropylamino)-6-methyl-4-pyrimidinyl methyl ester	Phosphoramidodithioic acid, isopropyl-, S.S-dimethyl ester	Phosphoramidodithioic acid, methyl., S.Sdipropyl ester	Phosphoramidothioic acid, acetyl-, 0.5 -dimethyl ester	Phosphoramidothioic acid, (1-aminoethylidene)-, 0,0-bis(p-bromophenyl)ester	Phosphoramidothioic acid, (1-aminoethylidene)-, 0-(p-bromophenyl) 0-methyl ester	Phosphoramidothioic acid, (1-aminoethylidene)-, $\underline{0}$ -(\underline{p} -chlorophenyl) $\underline{0}$ -methyl ester	Phosphoramidothioic acid, (1-aminoethylidene)-,100 0,5-dimethyl ester	Phosphoramidothioic acid, isopropyl., O-(2,4,5-trichlorophenyl) ester	Phosphoramidothioic acid, methyl-, O-m O-[p-(methylthio)phenyl] ester	Phosphoramidothioic acid, propionyl-, 0.5 -dimethyl ester	Phosphoric acid, butyl 2,2-dichlorovinyl methyl ester
5 .	29009 Phosphoramidic acid, methyl-, 2-(dipropylamino)-6-methyl-4-pyrimi methyl ester	ithioic	27731 Phosphoramidodithioic acid, methyl-, S.S-dipropyl ester	27822 Phosphoramidothioic acid, acetyl-, O.S-dimethyl ester	27578 Phosphoramidothioic acid, (1-aminoethy 0,0-bis(p-bromophenyl)ester		27580 Phosphoramidothioic acid, (1-aminoethy O-(p-chlorophenyl) O-methyl ester	27992 Phosphoramidothioic acid, (1-aminoethy O.S-dimethyl ester	isopropyl-, L) ester		27823 Phosphoramidothioic acid, propionyl-, O.S-dimethyl ester	27490 Phosphoric acid, butyl 2,2-dichlorovin methyl ester

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

			Highest	e t		Lowest dosage (mg/kg) Causing 100 percent	est dosage (r Causing 100 r	ng/kg) sercent	(mg/kg) percent kill of
Item			dosage (mg/kg) and	ge	Lethal	Secon-	Larvae of on- Black		Nymph a1
No.	No. (AI3-)	Chemical	method of admini-	of 1-	to guinea	dary screw-	blow flies	stable flies	lone
			stration	u o	pigs	WOTTE			ticks
301	27500	Phosphoric acid, 6-chlorobicyclo[3.2.0]hepta-	100	•	z	н	н	н	н
		2,6-dien-7-yl dimethyl ester	100	လွှင	20	-	-	4	-
302	29060	Phosphoric acid, 2-chloro-1-(2,4-	100	0.0	Z	н	H C	нç	нь
		dichlorophenyl)-Vinyl ethyl methyl ester	007	ຸດ	001	27	2	2	1
303	27743	Phosphoric acid, 2-chloro-1-pyrazol-1-ylvinyl	100	•	2.5	н	I	I	I
		diethyl ester	100	Sc.		н	ı	н	ı
304	27742	Phosphoric acid, 2,2-dichloro-1-(4,5-	100	•	25	ı	I	н	ı
		dimethylpyrazol-1-yl)vinyl diethyl ester	100	Sc	2	н	н	н	н
305	305 27741	Phosphoric acid, 2,2-dichloro-1-pyrazol-1-	100	•	'n	I	ı	н	I
		ylvinyl diethyl ester	100	Sc.	0 1	ı	н	н	н
306	306 27612	Phosphoric acid, diethyl ester, ester with	100	•	5	н	н	н	н
		$1-a11y1-6-methy1-2(\overline{1H})-pyridone$	100	Sc.	, ,	25	100	н	100
307	27840	Phosphoric acid, diethyl ester, ester with	100	•	25	H	н	н	ı
		J-[\C., Z-dichiolo-i- hydroxyvinyl) oxy]propionitrile							
308	27626	Phognhoric acid disthyl pater pater with	100	Ö	z	Н	П	Н	I
		o-tolylglyoxylonitrile oxime	100	Sc.	50	ī	I	н	ī

1 100	50	нн	50 25	нн	нн	HH	нн	50 1	100 I	НН	нн
1 50	1 50	нн	нн	н	нн	нн	нн	нн	нн	нн	нн
100	50	нн	50	нн	нн	нн	н	H	нн	100 1	нн
20 20	50	нн	50	нн	нн	нн	нн	100 I	нн	нн	HH
N 100	100	1 2	50	5 1	100	N 100	N 100	N 100	N 100	25 100	25 100
o. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	S.	0°. Sc.	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
100	100	100	100	100	100	100	100	100	100	100	100
Phosphoric acid, dimethyl ester, ester with 2-chloro-M-ethylcrotonamide	Phosphoric acid, dimethyl ester, ester with 2-chloro- $\overline{\mathrm{M}}$ -methylcrotonamide	Phosphoric acid, dimethyl ester, ester with 1,6-dimethyl- $2(1\underline{\mathrm{H}})$ -pyridone	Phosphoric acid, dimethyl ester, ester with $(\underline{E})-3$ -hydroxy- \underline{N} -methoxy- \underline{N} -methylcrotonamide	Phosphoric acid, dimethyl ester, ester with 6-methyl-1-propyl-2($\overline{ m 1H}$)-pyridone	Phosphoric acid, dimethyl 1,2,5-thiadiazol-3-yl ester	Phosphoric acid, dimethyl 3,5,6-trichloro-2-pyridyl ester	Phosphorodithioic acid, \underline{S} -2-butenyl $\underline{0}$, $\underline{0}$ -dimethyl ester	Phosphorodithioic acid, \underline{S} -(6-chlorothiochroman-4-y1) $\underline{0}$, $\underline{0}$ -dimethyl ester	Phosphorodithioic acid, \underline{S} -(7-chlorothiochroman-4-y1) \underline{O} , \underline{O} -dimethyl ester	Phosphorodithioic acid, 0.0 -diethyl ester, S -ester with 1 -acetyl- 3 - 7 mercaptomethyl)- 5.5 -dimethylhydantoin	Phosphorodithioic acid, 0.0 -diethyl ester, S -ester with 3-(2-chloro-l-mercaptoethyl)- $\overline{2}$ -benzoxazolinone
27358	27357	27610	27625	27611	27744	27521	27424	29082	29081	25943	27650
309	310	311	312	313	314	315	316	317	318	319	320

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

			Highest	ıt		Lowest	Lowest dosage (mg/kg) Causing 100 percent kill	ng/kg)	k111 of
Item			dosage (mg/kg) and	ge and	Lethal	Secon-	Larvae of	Adult	Nymphal
• 0 2	NO.	Chemical	method of	Jo i	to	dary	blow f1400	stable	lone
			stration	n c	pigs	WOLMS	82717	5577	ticks
321	27562	Phosphorodithioic acid, 0,0-diethyl ester,	100	0.	50	н	н	н	н
		S-ester with 4-chloro-2-(mercaptomethy1)- $\overline{1(2\underline{\mathrm{H}})}$ -phthalazinone	100	Sc.	20	н	H	H	H
322	27316	Phosphorodithioic acid, 0,0-diethyl ester,	100	•0	25	I	50	ı	П
		S-ester with N.N-diallyl-2-mercaptoacetamide	100	Sc.	25	H	100	20	H
323	27768	Phosphorodithioic acid, 0,0-diethyl ester,	100	•0			6 50	н	н
		S-ester with 2',6'-diethyl-2- mercaptoacetanilide	100	sc.	100	-100	20	н	н
324	27736	Phosphorodithioic acid, 0,0-diethyl ester,	100	0.	2	н	I	I	н
		S-ester with 3-(difluoromethyl)-1- (mercaptomethyl)-4-methyl- Δ^2 -1,2,4- triazoline 5-thione	100	လွင ့	25	H	H	н	H
325	27836	Phosphorodithioic acid, 0,0-diethyl ester, S-	100	•	25	H	н	н	25
			100	Sc.	25	н	н	H	20
326	25938	Phosphorodithioic acid, 0,0-diethyl ester,	100	0.	100	н	н	н	н
		S-ester with 3-(mercaptomethyl)-2- benzothiazolinone	100		کر د	⊣	-	- -	-1
327	327 27707	Phosphorodithioic acid, 0,0-diethyl ester,	50	.0	25	н	Н	н	н
		$\frac{S_2}{\Delta}$ -ester with 4-(mercaptomethyl)-2-methoxy- Δ -1,3,4-thiodiazolin-5-one	00	sc.	25	н	H	H	H

100 I	нн	50	50	NN	o. Sc.	100	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with N-(1-mercaptoethyl)succinimide	27405	338
25	50	10 25	25	zz	0. Sc.	100	Phosphorodithioic acid, 0.0 -dimethyl ester, \overline{S} -ester with \overline{N} -(2-mercaptoethyl) acetamide	27346	337
100 I	100	100 I	6 50	ZZ	0°.	100	Phosphorodithioic acid, 0.0 -dimethyl ester, \overline{S} -ester with \overline{N} -isopropyl- $\overline{2}$ -mercapto- \overline{N} -methoxyacetamide	27360	336
I 100	нн	100	1 100	N 100	sc.	100	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with 1-hexanoy1-3- (mercaptomethyl)hydantoin	27956	335
25	нн	25	25	6 10 6 10	Sc.	100	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with 1-acetyl-3-(mercaptomethyl)hydantoin	27652	334
25 100	нн	50	100	50	o. Sc.	100	Phosphorodithioic acid, 0.0 -dimethyl ester, $\frac{S}{5}$ -ester with 1-acetyl- $\frac{3}{5}$ -(mercaptomethyl)- $\frac{5}{5}$ -dimethylhydantoin	27653	333
нн	100 I	100	50	zz	o. Sc.	100	Phosphorodithioic acid, 0,0-diethyl S-(3,4,4-trifluoro-3-butenyl) ester	27370	332
нн	нн		4 4 I I	50 N	o. Sc.	100	Phosphorodithioic acid, 0.0 -diethyl S-(tetrahydro-3-thienyl) ester	25822	331
нн	нн	нн	нн	10 25	o. Sc.	50	Phosphorodithioic acid, 0.0 -diethyl \underline{S} -[2-(methylthio)propyl] ester	27414	330
нн	нн	1,00	100	100	sc.	100	Phosphorodithioic acid, 0.0 -diethyl ester, 8 -ester with 1-(mercaptomethyl)-4-methyl- 3 -(trifluoromethyl)- Δ^2 -1,2,4-trizoline-5-thione	27735	329
H	пп	H	Н	25 25	0°.	50	Phosphorodithioic acid, 0,0-diethyl ester, S-ester with 2-mercapto-N-methyl-N-(4-methyl-1,3-thiazol-2-yl)acetamide	27911	328

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

of	ri so							
k111 Nymph 1or	star ticks	нн	25	25	25	нн	нн	25
Causing 100 percent Larvae of Secon- Black Adult dary blow stable	flies	нн	нн	25 50	50 I	нн	нн	100 I
Causing 100 percent kill Larvae of con- Black Adult Nymp	files	нн	100	25 100	25 50	нн	нн	50 I
Causi Larv Secon- dary	screw- worms	нн	50	50	10 25	нн	нн	100 I
1	guinea pigs	ZZ	100	50	50	100	100 N	100 L
st and of	- u	. S C .	0°. Sc.	S.c.	0. Sc.	0. Sc.	o. Sc.	0.80.
Highest dosage (mg/kg) and method of	admini- stration	100	100	100	50	100	100	100
Chemical		Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with 3-(mercaptomethyl)-2-benzothiazolinone	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with 3-(mercaptomethyl)-1-methylhydantoin	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with 3-(mercaptomethyl)-2,4-oxazolidinedione	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with N-(mercaptomethyl)succinimide	Phosphorodithioic acid, 0,0-dimethyl ester, S-ester with mercapto-2-propanone dimethyl mercaptal	Phosphorodithioic acid, 0.0 -dimethyl ester, S -ester with mercapto- 2 -propanone $\overline{0}$ -methyloxime	Phosphorodithioic acid, 0,0-dimethyl S-[2-(methylthio)propyl] ester
AI3	(AI3-)	27111	340 27615	27614	25872	27798	27980	27412
Item No.		339	340	341	342	343	344	345

нн	100 I	50	50	I 50	нн	25	нн	6 25	100 I	1100	нн	нн
1 ₁₀₀	нн	нн	нн	нн	нн	нн	нн	нн	нн	100 I	нн	1,100
I	100	50	50	1 25	нн	25	нн	100	нн	6 25 I	нн	нн
100 I	100	100	50	I 50	нн	25	нн	100	нн	6 25 I	I 50	нн
N 100	100	50	50	100	100	25	50	50	100	100 100	100	100
o. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.	0. Sc.	0°. Sc.	0°. Sc.	0°.	0. Sc.	0°. Sc.	0. Sc.	s. S.
100	100	100	100	100	100	50	100	100	100	100	100	100
Phosphorodithioic acid, 0,0-dimethyl S- propenyl ester	Phosphorodithioic acid, 0 -ethyl S -[2-(1sopropylthio)ethyl] \overline{S} -propyl ester	Phosphorodithioic acid, 0-ethyl S-[2- (methylsulfinyl)ethyl] S-propyl ester	Phosphorodithioic acid, 0-ethyl S-[2-(methylthio)ethyl] S-propyl ester	Phosphorodithioic acid, 0-ethyl S-[2-(methylthio)propyl] S-propyl ester	Phosphorodithiolc acid, 0-ethyl S-[2- (phenylthio)ethyl] S-propyl ester	Phosphorodithioic acid, 0-ethyl S-propyl ester, S-ester with 3-(mercaptomethyl)-1-methylhydrouracil	Phosphorodithioic acid, 0-ethyl S-propyl ester, S-ester with 3-(mercaptomethyl)-1-methyl- $\overline{2}$,4(1H,3H)-quinazolinedione	Phosphorodithioic acid, 0-ethyl S-propyl S-[2-(propylthio)ethyl] ester	Phosphorodithioic acid, 0-ethyl 9-propyl S- [2-(propylthio)propyl] ester (crude)	Phosphorodithioic acid, S-[2- (ethylthio)propyl] 0,0-dimethyl ester	Phosphorodithioic acid, S-[(5-methoxy-1,2,4-thiadiazol-3-y1)methy1] 0,0-dimethyl ester	Phosphorodithioic acid, 0,0,5-trimethyl ester
27422	27848	27806	27761	27760	27808	27807	27837	27762	27759-X	27413	27901	27482
346	347	348	349	350	351	352	353	354	355	356	357	358

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

kill of Nymphal lone star ticks	50 I	нн	нн	нн	нн	нн	нн	нн
mg/kg) percent Adult stable flies	6 50 6	нн	нн	нн	100	нн	нн	нн
st dosage (ausing 100 Larvae of on- Black ry blow ew- files	нн	нн	нн	HH	нн	нн	нн	нн
Lowest d Causi Lary Secondary screw-	I 50	нн	нн	нн	нн	нн	20	нн
Lethal to guinea pigs	50	50 100	25 10	50	N 05	50 100	N 05	10
st ge and of 1- on	0. Sc.	0°.	0°. Sc.	0. Sc.	0. Sc.	0. Sc.	0. S c.	0. Sc.
Highest dosage (mg/kg) an method of admini- stration	100	100	100	100	100	100	100	100
Chemical	Phosphorothioic acid, $\overline{0}$ -1,2-benzisoxazol-3-yl $\overline{0}$, $\overline{0}$ -diethyl ester	Phosphorothioic acid, $0-(3-bromo-5,7-dimethylpyrazolo[1,5-a]pyrimidin-2-y1) 0,0-diethyl ester$	Phosphorothioic acid, $0-(3-bromo-7-methylpyrazolo[1,5-a]pyrimidin-2-y1)$ 0,0-diethyl ester	Phosphorothioic acid, 0 -butyl 0 -methyl 0 -1,2,5-thiadiazol-3-yl ester	Phosphorothioic acid, $0-(4-\text{chloro}-7-\text{benzofurazanyl})$ $0.0-\text{dimethyl}$ ester	Phosphorothioic acid, 0-(3-chloro-5,7-dimethylpyrazolo[1,5-a]pyrimidin-2-y1) 0,0-diethyl ester	Phosphorothioic acid, $0-(6(\text{or }7)-\text{chloro}-2-quinoxalinyl})$ $0.0-\text{diethyl}$ ester	Phosphorothioic acid, S-(4-chlorotetrahydro-3-thienyl) 0,0-diethyl ester, 1,1-dioxide
AI3 No. (AI3-)	27845	27607	27826	29038	27444	27608	29008-X	27331
Item No.	359 2	360 2	361 2	362 2	363 2	364 2	365 2	366 2

100 I	нн	нн	нн	6 50	нн	50	6 25 25	нн	нн	нн	нн
100 I	нн	нн	нн	нн	100 I	нн	нн	нн	нн	50 I	нн
нн	100 I	25	I 100	6 25 I	100	100	50	нн	нн	нн	6 25 I
нн	нн	50	I 50	6 25	100	нн	25	н	нн	100 I	100
N 25	N 100	50	100	50	N 100	10 25	25	5.2.5	50	100	50
0°. Sc.	0. S c.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Se.	o. Sc.	0. Sc.	0. S c.	o. Sc.	0. Sc.
100	100	100	100	100	100	100	100	10	100	100	100
Phosphorothioic acid, S-(6-chlorothiochroman-4-yl) 0,0-dimethyl ester	Phosphorothioic acid, $0-[2,5-dichloro-4-(ethylthio)]$	Phosphorothioic acid, $0-[2,5-dichloro-4-(methylthio)phenyl] 0,0-diethyl ester$	Phosphorothioic acid, $0-[2,5-dichloro-4-(methylthio)phenyl] 0,0-dimethyl ester$	Phosphorothioic acid, $0-[2-(diethylamino)-6-methyl-4-pyrimidinyl] 0,0-diethyl ester$	Phosphorothioic acid, $0-[2-(diethylamino)-6-methyl-4-pyrimidinyl]$ 0,0-dimethyl ester	Phosphorothioic acid, 0.0 -diethyl ester, S -ester with N -(1-cyano-1-methylethyl)-2-mercaptoacetamide	Phosphorothioic acid, 0.0 -diethyl ester, 0 -ester with M , M -diethyl-3-hydroxy-6-oxo-1($\overline{6H}$)-pyridazinecarboxamide	Phosphorothioic acid, 0.0 -diethyl ester, \overline{S} -ester with 5.5 -dimethy $\overline{1}$ -3-thiomorpholinone	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with 3-ethoxy-5-hydroxyisothiazole-4-carbonitrile	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with 4'-hydroxyacetophenone 0-(butylcarbamoyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with 4'-hydroxyacetophenone 0-(ethoxycarbonyl)oxime
29083	29099	27635	27908	27698	27699	27577	27900	27812	29095	27543	27654
367	368	369	370	371	372	373	374	375	376	377	378

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwvorms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

Highest Causing 100 percent kill of dosage Larvae of (mg/kg) and Lethal Secon- Black Adult Nymphal	pigs worms illes illes t	cothioic acid, 0 , 0 -diethyl ester, 0 - 100 0. 50 50 50 I with 4'-hydroxyacetophenone 0 - 100 Sc. 100 25 I 50 I 1 -carbamoyl) oxime	cothfold acid, 0.0 -diethyl ester, 0 - 100 0. 100 6 50 100 50 I with 4-hydroxy-m-anisaldehyde 100 Sc. 25 25 I I I I I ihyldarbamoyl) oxime	cothloic acid, 0 , 0 -diethyl ester, 0 - 50 0. 10 50 50 10 I with p-hydroxybenzaldehyde 0 - 50 Sc. 10 10 I I 10 I I carbamoyl) oxime	cothioic acid, 0 , 0 -diethyl ester, 0 - 100 0. 25 I 6 25 25 I with p-hydroxybenzaldehyde 0 -(1 H- 100 Sc. 10 6 50 6 5 I I I 1 -1-ylcarbonyl)oxime	cothloic acid, 0 , 0 -diethyl ester, 0 - 50 0. 25 50 10 10 I with p-hydroxybenzaldehyde 0 - 50 Sc. 25 I I 25 I I 25 I I carbamoyl)oxime	rothloic acid, 0 , 0 -diethyl ester, 0 - 100 0. 50 25 25 10 50 with p-hydroxybenzaldehyde 0 - 100 Sc. 50 25 25 I itylcarbamoyl) oxime	cothioic acid, 0.0 -diethyl ester, 0 - 100 0. 25 6 25 50 I I with p-hydroxybenzaldehyde 0 - 100 Sc. 100 I I I I I I I Larbamovi) exime
Chemical		Phosphorothioic acid, 0,0-diethyl ester, ester with 4'-hydroxyscetophenone 0-(methylcarbamoyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, ester with 4-hydroxy-m-anisaldehyde 0-(methylcarbamoyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, ester with p-hydroxybenzaldehyde 0-(allylcarbamoyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, ester with p-hydroxybenzaldehyde 0-(1H-azepin-1-ylcarbonyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, ester with p-hydroxybenzaldehyde 0-(butylcarbamoyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, ester with p-hydroxybenzaldehyde 0-(dimethylcarbamoyl)oxime	Phosphorothioic acid, 0,0-diethyl ester, ester with p-hydroxybenzaldehyde 0-(hexylcarbamovi)oxime
AI3 No.	(A13-)	27542	27648	27507	27665	27508	27664	27720
Item No.		379	380	381	382	383	384	385

	386	27506	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with p-hydroxybenzaldehyde 0-(methylcarbamoyl)oxime	50	0. Sc.	10 25	10	10	72 72	I
	387	27647	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with p-hydroxybenzaldehyde 0-(morpholinocarbonyl)oxime	100	0. S c.	50	50	50	50 I	100 I
	388	27950	Phosphorothioic acid, 0.0 -diethyl ester, 0 -ester with 3-hydroxy- $\overline{\rm M}.{\rm M}$ -dimethyl-6-oxo-1(6 $\overline{\rm H}$)-pyridazinepropionamide	10	0. S c.	70 70	1 10	1 10	нн	1 10
	389	29096	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with 5-hydroxy-3-methoxyisothiazole-4-carbonitrile	50	o. Sc.	50	нн	н	нн	н
	390	27544	Phosphorothioic acid, $0.0-\text{diethyl}$ ester, $0-\text{ester}$ with $4'-\text{hydroxy}-2'-\text{methylacetophenone}$ $0-\text{acetyloxime}$	100	0°. Sc.	N 100	100 I	100 I	100 I	100 I
4.2	391	27651	Phosphorothioic acid, 0.0 -diethyl ester, \overline{S} -ester with 3-(mercaptomethyl)-2,4-oxazolidinedione	10	0. S c.		10 I	нн	нн	10
	392	29042	Phosphorothioic acid, 0,0-diethyl ester, 0-ester with 2-thiopheneglyoxylonitrile oxime	100	0. Sc.	N 100	нн	нн	1,000 I	1,100 I
	393	27841	Phosphorothioic acid, 0,0-diethyl æster, 0-ester with o-tolylglyoxylonitrile oxime	100	0. S c.	N 100	HH	HH	1000	50 I
	394	27416	Phosphorothioic acid, 0,0-diethyl S-[2-(ethylthio)propyl] ester	100	0. Sc.	25	нн	нн	нн	HH
	395	27764	Phosphorothioic acid, 0,0-diethyl 0-(1-phenyl- lH-1,2,4-triazol-3-y1) ester	100	0°.	25	50	100	1 100	I 50
	396	27394	Phosphorothioic acid, 0,0-diethyl 0-2-quinoxalinyl ester	100	0. Sc.	25	H H	нн	нн	HH
	397	27371	Phosphorothioic acid, 0,0-diethyl S-(3,4,4-trifluoro-3-butenyl) ester	100	0. Sc.	100	50	50	50	1 100
		See foot	See footnotes at end of table.							

See footnotes at end of table.

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

est dosage (mg/kg) Causing 100 percent kill of Larvae of con- Black Adult Nymphal ary blow stable lone rew- flies flies star rms ticks	нн	нн	50 25	25 I	50	10	10 25
Lowest dosage (mg/kg) Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- flies flies worms	100	нн	25 I	50 I	50 I	нн	нн
st dosage (sausing 100 Larvae of-on-Black ry blow ew-files	100	нн	5	25 100	25 I	100	пп
Caus: Caus: Lar Secondary screw- worms	I 50	нн	10	25 I	25 I	100	н
Lethal to guinea pigs	N 100	10	50 25	100	100	100	25
st ge and of 1-	0. Sc.	0. Sc.	0. Sc.	o. Sc.	. Sc.	0°. Sc.	0. S c.
Highest dosage (mg/kg) and method of admini-stration	100	100	- 50	100	100	100	25
Chemical	Phosphorothioic acid, 0.0 -dimethyl ester, 0 -ester with 2-chloro- $\overline{N},\overline{N}$ -diethyl-4-hydroxybenzenesulfonamide	Phosphorothioic acid, 0.0 -dimethyl ester, 0 -ester with 1,6-dimethyl-2(1 H $)$ -pyridone	Phosphorothioic acid, 0.0 -dimethyl ester, S -ester with M -ethyl-3-mercaptoacrylamide, $\overline{(Z)}$ -	Phosphorothioic acid, 0,0-dimethyl ester, 0-ester with glyoxylonitrile, p-hydroxyphenyl isopropyl mercaptal	Phosphorothioic acid, 0,0-dimethyl ester, 0-ester with [(p-hydroxyphenyl)thio]phenylacetonitrile	Phosphorothioic acid, 0,0-dimethyl ester, Sester with 3-(mercaptomethyl)-1,5-dimethylhydrouracil	Phosphorothioic acid, 0,0-dimethyl ester, Sester with 3-(mercaptomethyl)-1-(2-methoxyethyl)hydantoin
AI3 No. (AI3-)	27769	27609	27820	27746	27745	27815	27805
Item No.	398	399	400	401	402	403	404

	7	7	7	7	45	7	7	7	7	7	7
405	907	407	408	607	410	411	412	413	414	415	416
27618	27804	407 27617	27616	27813	29102	29043	29101	29037	29040	27520	27161
Phosphorothioic acid, 0,0-dimethyl ester, Seester with 3-(mercaptomethyl)-1-methylhydantoin	Phosphorothioic acid, 0,0-dimethyl ester, S-ester with 3-(mercaptomethyl)-1-methylhydrouracil	Phosphorothioic acid, 0,0-dimethyl ester, Seester with 3-(mercaptomethyl)-2,4-oxazolidinedione	Phosphorothioic acid, 0,0-dimethyl ester, Seester with 3-(mercaptomethyl)-2,4-thiazolidinedione	Phosphorothioic acid, 0.0 -dimethyl ester, S -ester with 2-mercapto- \overline{N} -(2-oxo-3-oxazolidinyl)-acetamide	Phosphorothioic acid, 0,0-dimethyl ester, 0-ester with phenylglyoxylonitrile oxime	Phosphorothioic acid, 0.0 -dimethyl ester, 0 -ester with 2-thiopheneglyoxylonitrile oxime	Phosphorothioic acid, 0,0-dimethyl ester, 0-ester with o-tolylglyoxylonitrile oxime	Phosphorothioic acid, 0,0-dimethyl 0-(5-phenyl-1,2,4-thiadiazol-3-yl) ester	Phosphorothioic acid, 0.0 -dimethyl $0-1.2.5$ -thiadiazol-3-yl ester	Phosphorothioic acid, 0.0 -dimethyl 0 -(3.5.6-trichloro-2-pyridyl) ester	Phosphorothioic acid, 0,0'-(sulfonyldi-p-phenylene) 0,0'0',0'-tetramethyl ester
25 0 25 S	50 0 50 S	50 0 50 S	10 0 10 S	100 0 100 s	100 0 100 s	100 0 100 s	100 0 100 s	100 0 100 S	100 0 100 s	100 0 100 s	100 0 100 S
o. Sc.	0. Sc	o. Sc.	0 · Sc.		0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.
10	25 50	25 25	10	100	100	N 50	20 N	100 I	N 100	N 100	100 100
10 2.5	25 50	25 10	10	1 100	нн	100	нн	1 100	1 25	1 25	нн
10 5	25 50	25 10	10	100	нн	нн	нн	нн	нн	нн	нн
нн	нн	нн	нн	нн	нн	пп	нн	нн	нн	нн	нн
2.5	10	10	H 2	6 50 6 50	нн	нн	нн	нн	нн	нн	нн

See footnotes at end of table.

TABLE 2. -- Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs -- Continued

[N, no dosage was lethal; I, no dosage was systemically active]

Nymphal Nymphal lone star ticks	н	II	пп	пп	нн	I I	нн	пп	I I
percent kill Adult Nymp stable lo files st	нн	нн	нн	нн	нн	нн	нн	нн	нн
100 lack 11es	нн	нн	нн	нн	нн	нн	нн	нн	нн
Causing Larvae Secon- B. dary screw- f.	нн	нн	нн	нн	нн	нн	нн	нн	нн
Lethal to guinea pigs	N 200	N 50	N 100	NN	N 100	N 100	100 N	N 100	ZZ
ge and of 1-	0. Sc.	0. Sc.	0. Sc.	0°. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.
Highest dosage (mg/kg) a method o admini- stration	100	100	100	100	100	100	100	100	100
Chemical	Piperidine, 1-benzoyl-2-methyl-	Piperidine, 1-benzoyl-4-methyl-	Piperidine, 1-decyl-	Piperidine, 1-decyl-4-methyl-	Piperidine, 2,6-dimethyl-l- $\overline{\text{m}}$ -toluoyl-	Piperidine, 1-[2-[2-(2-isobornyloxy)ethoxy]-ethyl]-	Piperidine, 1-(5,5,7,7-tetramethy1-2-octenyl)-	Piperidine, $1-\underline{m}$ -toluoyl-2-propyl-	Piperidine, $1-\overline{\underline{\mathrm{m}}}$ -toluoyl-4-propyl-
AI3 No. (AI3-)	28800	28801	27529	27541	28565	70282	27533	28563	28564
Item No.	417	418	419	420	421	422	423	424	425

							See footnotes at end of table.	See fo		
нн	нн	нн	н	ZZ	0. Sc.	100	Salicylanilide, 3'-chloro-4'(p-chlorophenoxy)-3,5-diiodo-	29020	439	
Н	нн	нн	нн	N 100	0. Sc.	100	Pyruvaldehyde, 1-(phenylhydrazone)	27957	438	
НН	нн	нн	нн	ZZ	0. Sc.	100	Pyrrolidine, 1-benzoyl-	28870	437	
НН	нн	нн	H	N 100	0. Sc.	100	Pyridine, 2-(2-methoxyethoxy)-	27528	436	
НН	нн	нн	Н	ZZ	0. Sc.	100	Propionic acid, 2-phenoxy-, 5-chloro-2-dimethylamino)-0-o-tolylbenzyl ester	27779	435	
HH	нн	нн	нн	NN	0. Sc.	100	Propionic acid, 2-phenoxy-, 5-chloro-2-dimethylamino)-a-phenylbenzyl ester	27794	434	
НН	нн	нн	нн	ZZ	0. Sc.	100	Propionic acid, 2-bromo-2-methyl-, 5-chloro-2-(dimethylamino)-0-o-tolylbenzyl ester	27785	433	
нн	нн	нн	Н	ZZ	0. Sc.	100	Propionic acid, 2-bromo-2-methyl-, 5-chloro-2-(dimethylamino)- α -phenylbenzyl ester	27796	432	
нн	нн	нн	нн	25	0. Sc.	100	1-Propanone, 2-methyl-1-(2-thienyl)-, 0- (methylcarbamoyl)ox1me	27571	431	
нн	нн	нн	нн	ZZ	0. Sc.	100	1-Propanol, 2-methyl-2-(octylamino)-	70515	430	
нн	нн	нн	нн	N 100	0. Sc.	100	1-Propanol, 2-[(3,7-dimethyloctyl)amino]-2-methyl-	70446	429	
нн	нн	нн	нн	ZZ	0. Sc.	100	Propane, 1,1-bis(p-methoxyphenyl)-2,2-dimethyl-	23395	428	
НН	нн	нн	нн	50	0. Sc.	100	Propane, 1,1-bis(p-ethoxyphenyl)-2-nitro-	27990	427	
5	H	I	I	N 50	0. Sc.	100	Pivalic acid, ester with 3-hydroxy-2- mesetylindone	426 27991	426	

47

TABLE 2.--Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs--Continued

[N, no dosage was lethal; I, no dosage was systemically active]

Causing 100 percent kill of Larvae of con- Black Adult Nymphal ary blow stable lone rew- flies flies star rms ticks	25 50	6 50	25 25	нн	нн	нн	нн	I 50	нн
mg/kg) percent Adult stable files	25 I	нн	1 100	нн	2.5 25	нн	нн	пп	нн
Lowest dosage (mg/kg)Causing 100 percent Larvae ofSecon-Black Adult dary blow stable screw-flies flies worms	25 50	6 25	25 25	нн	50	нн	нн	нн	нн
Causi Causi Secondary Screw-worms	25 25	50	25 10	нн	50	нн	нн	нн	нн
Lethal to guinea pigs	50 100	ZZ	50	100 50	25	50 100	50	10 25	100 N
ist ige and l of ii-	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.	0. Sc.
Highest dosage (mg/kg) and method of admini-stration	100	100	100	100	100	100	100	100	100
Chemical	Salicylic acid, isopropyl ester, 0-ester with 0-ethyl isopropylphosphoroamidothioate	Salicylic acid, isopropyl ester, O-ester with O-ethyl phosphoramidothioate	Salicylic acid, isopropyl ester, O-ester with O-methyl phosphoramidothioate	Stannane, chlorotris(β , β -dimethylphenethyl)-	Stannane, hexamethyldi-	Stannane, tributyl[(phenylsulfonyl)methyl]-	Stannane, tricyclohexylmercapto-, 0.0 -disopropyl phosphorodithioate	Succinic acid, mercapto-, bis[(methylthio)methyl] ester, S-ester with 0,0-diethyl phosphorodithioate	Sulfurous acid, 2-(p-tert- butylphenoxy)cyclohexyl 2-propynyl ester
AI3 No. (AI3-)	27748	27658	27659	27739	27428	27799	29047	27476	27226
Item No.	7	• •	• • •				• •		

нн	нн	нн	нн	нн	нн	нн	нн	нн	нн	1 1	нн	нн	нн	
ZZ	100 N	N 100	100	ZZ	N 100	ZZ	ZZ	1.0	ZZ	ZZ	ZZ	ZZ	100	
o. Sc.	0. Sc.	o. Sc	0. Sc.	0. Sc.	o. Sc.	0. Sc.	0. Sc.	0. Sc.	o. Sc.	0. Sc.	0°.	0. Sc.	0°. Sc.	
100	100	100	100	100	100	100	100	10	100	100	100	100	100	
Sulfurous acid, 1-[(p-tert-butylphenoxy)methyl]-propyl 2-butynyl ester	Sulfurous acid, decyl 2-propynyl ester	Sulfurous acid, diphenyl ester	Sulfurous acid, dodecyl 2-propynyl ester	Sulfurous acid, hexyl 2-propynyl ester	Sulfurous acid, octyl 2-propynyl ester	2,4,8,10-Tetraoxaspiro[5.5]undecane, 3,3,9,9-tetramethyl-	Thiocyanic acid, 2-methyl-1-naphthyl ester	$3(2\underline{\text{H}})$ -Thiophenone, dihydro-4,4-dimethyl-, $\underline{0}$ - (methylcarbamoyl)oxime	$\overline{\text{m-}}$ Toluamide, $\overline{\text{N,N-}}$ diethyl-6-nitro-	o-Toluamide, M , M -dipentyl-	Toluene, 2,4,6-trimethyoxy-	m-Toluic acid, 5-chloro-2-(dimethylamino)- α -phenylbenzyl ester	m-Toluic acid, 5-chloro-2-(dimethylamino)-α- o-tolylbenzyl ester	See footnotes at end of table.
27855	27280	27534	27852	27279	27853	28865	27525	27733	28950	70084	70079	27789	27777	See fo
644	450	451	452	453	454	455	456	457	458	459	460	461	462	

HH

HH

49

TABLE 2. -- Systemic effectiveness of 474 compounds against secondary screwworms, black blow files, stable files, and lone star ticks when administered orally (0.) and subcutaneously (Sc.) to guinea pigs -- Continued

[N, no dosage was lethal; I, no dosage was systemically active]

causing 100 percent kill of Larvae of con- Black Adult Nymphal ary blow stable lone rew- flies flies star rms ticks	100	H	нн	II	II	пп	н	нн	нн
Adult Rable files	нн	нн	нн	нн	нн	нн	нн	нн	H +
ausing 100 p Larvae of on- Black ry blow ew- flies	нн	нн	нн	нн	нн	нн	нн	нн	H
Causing 100 percent Larvae of Secon- Black Adult dary blow stable screw- flies flies worms	н	нн	нн	нн	нн	нн	нн	нн	нь
Lethal to guinea pigs	zz	50 N	10	N 100	N 100	100	N 100	N 100	Z
st ge and of 1- on	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0. Sc.	0 8 6.	0. Sc.	0.
Highest dosage (mg/kg) and method of administration	100	100	100	100	100	100	100	100	100
Chemical	o-Toluic acid, 5-chloro-2-(dimethylamino)-α-phenylbenzyl ester	o-Toluic acid, 5-chloro-2-(dimethylamino)-c-o-tolybenzyl ester	p-Toluoyl chloride, phenylhydrazone	Triethylamine, 2-[(decahydro-2-naphthyl)oxy]-	Triethylamine, 2-[3-(2-isobornyloxy)propoxy]-	Triethylamine, 2-[4-(p-menth-1-en-8-yl)butoxy]-	Triethylamine, 2-[(p-menth-8-en-3-y1)oxy]-	Triethylamine, 2-(9-octadecenyloxy)-	Triethylamine, 2-(octadecyloxy)-
AI3 No. (AI3-)	27788	27773	29019	70447	70182-X	70180	70280	70281	70179
Item No.	463	797	465	997	467	468	697	470	471

нн	н	нн
нн	н н	нн
нн	нн	нн
нн	нн	нн
ZZ	ZZ	100 N
0. Sc.	0. Sc.	0. Sc.
100	100 0. 100 Sc.	100
Urea, 3-isobornyl-1,l-dimethyl-	Urea, 1-methoxy-1-methy1-3-[$(exo-2-methy1-2-notborny1)$ methy1]-	2,4-Xylidine, N,N'- [(methylimino)dimethylidyne]-di-
472 70151 Urea, 3-isobomy1-1,1-dimethy1-	473 70152 Urea, 1-methoxy-1-methy1-3-[(exo-2-methy1-2-norborny1)methy1]-	474 27967 2,4-Xylidine, N,N'- [(methylimino)dimethylidyne]-di-

 $^{\rm L}$ High but not complete mortality.

2 Some indication of repellency.

 3 Complete mortality at 4 and 24 hours at 10 mg/kg.

4Screwworm larvae.

5Lowest dosage given.

Not complete mortality at higher dosages.

 $^7\mathrm{Complete}$ mortality at 4 and 24 hours at 100 mg/kg.

INDEX OF MATERIALS

4.70 37		Ta 1	AT2 No		Item
AI3 No.	Comment No.	Item	AI3 No.	Company No.	
(AI3-)	Company No.	No.	(AI3-)	Company No.	No.
16742	S.C. Johnson 3207-R-17	7	27391	Monsanto CP-51543	164
23122	Hoffmann La Roche	′	27394	Sandoz S-6538	396
23122	R02-8021	65	27394	Stauffer R-11782	110
22205	Merck L-485,719-0-9	428	27399	BAY 69588	278
23395 24864	PCRB RED I-90	44	27400	Air Products AP-20	244
	Hooker HRS-1296	331	27400	Air Products AP-27	245
25822	Hercules 7845-C	342	27401	Hercules 13462	338
25872 25918	Hercules 10016	116	27403	du Pont 1642	15
25935	Hercules 7224	139	27411	Esso ER 2430	345
25933	Hercules 7347	326	27412	Esso ER 2431	356
25943	Hercules 7741	319	27413	Esso ER 2431 Esso ER 2432	330
	Hercules 8414	157	27414	Esso ER 2434	394
25954		84	27416	Esso ER 2440	346
25955	Hercules 8490	210	1		316
27048	PCRB PS I-100-H	339	27424	Esso ER 2442	444
27111	Rhodia RP-11807	227	27428	Pennwalt TD-5032	
27161	American Cyanamid	416	27429	Pennwalt TD-5063	156
07170	E.I. 43913	120	27431	Merck L-592,807-0-3	194
27173	Hooker HRS-1667		27432	Merck L-585,851-0-3	133
27215	Thompson-Hayward TH-113M		27440	Merck L-551,303-0-3	134
27226	Ayerst AY-23595	448 206	27441	Merck L-546,104-0-3	135
27236	Hooker HRS-1671	207	27444	Shell SD 15134	363
27237	Hooker HRS-1694	136	27451	Shell SD 14045	155
27244	Union Carbide UC-19786	453	27453	CELA K-159	275
27279	Uniroyal UNI-D426	450	27454	Hercules 9418	126
27280	Uniroyal UNI-C935	209	27455	Hercules 9427	76
27301	Union Carbide UC-22878	162	27456	Hercules 16805	72
27304	Union Carbide UC-23746 Union Carbide UC-250748	97	27457 27458	Hercules 16806	69 1 25
27305	Monsanto CP-18978	322	- 1	Hercules 17643	75
27316 27323		20	27459	Hercules 17645	90
	BAY 58733 Hooker HRS-1879	366	27460	Hercules 17200	163
27331 27334	Hercules 9007	70	27462 27463	Ansul AN-53782	246
27334	Monsanto CP-49674	337	27468	Upjohn U-24,310 BAY 78537	68
27347	Hercules 11771-C	122	27471	BAY 80833	277
27347	Hercules 14469	86	27471	Penick SBP-1382	167
27349	Monsanto CP-48985	63	27474	BAY 62862	92
27347	CIBA C-768	310	27475	Stauffer R-14016	447
27357	CIBA C-776	309	27470	Stauffer R-10534	105
27360	CIBA C-2428	336	27480	Stauffer R-10534 Stauffer R-11520	112
27361	Stauffer R-10414	259	27481		358
27362	Stauffer R-10414 Stauffer R-11163	91	27482	Stauffer R-5910 Shell SD 15465	154
27370	Stauffer R-8963	332	27486	Thompson-Hayward	104
27370	Stauffer R-11898	397	2/400	TH-397-1	96
27371	Velsicol VCS 506	279	27490	Shell SD 15568	300
27378	Mobil MC 1175	117	27490	Mobil MC 1937	56
27388	du Pont 1804	103	27500	Chevron RE-9885	301
27389	du Pont 1519	100	27506	Stauffer R-14487	386
-,507	1000 4047				300

		(1		
AI3 No.		Item	AI3 No.		Item
(AI3-)	Company No.	No.	(AI3-)	Company No.	No.
.==.=		007	07414		
27507	Stauffer R-14488	381	27614	Hercules 17409	341
27508	Stauffer R-14493	383	27615	Hercules 17413	340
27509	Stauffer R-15552-A	13	27616	Hercules 17884	408
27519	Shell SD 16898	18	27617	Hercules 18164	407
27520	Dowco 214	415	27618	Hercules 18526	405
27521	Dowco 217	315	27624	CIBA C-13963	81
27524	BAY 85032	99	27625	CIBA C-2307	312
27525	Thompson-Hayward TH-7465	456	27626	BAY 88991	308
27528	Reynolds SAA-6-A	436	27627	BAY 89504	248
27529	Reynolds SAA-14-G	419	27628	Pechiney-Progil	
27530	Reynolds SAA-21-G	174		LS 65-821	286
27531	Reynolds SAA-23-G	173	27629	Pechiney-Progil	
27532	Reynolds SAA-26-G	172		LS 67-559	287
27533	Reynolds SAA-28-A	423	27630	Stauffer R-13293	108
27534	Reynolds SM-2-G	451	27632	Stauffer R-15792	257
27535	Reynolds SM-4-G	243	27633	BAY 86256	34
27537	Reynolds SM-10-G	204	27634	CELA K-673	276
27538	Reynolds SM-11-G	202	27635	CELA S-2957	369
27539	Reynolds SM-32-A	203	27636	Stauffer R-17335	129
27540	Reynolds SM-50-A	161	27637	Stauffer R-12466	107
27541	Reynolds SAA-74-A	420	27638	Stauffer R-12783	104
27542	Stauffer R-14805	379	27639	Stauffer R-13580	109
27543	Stauffer R-14855	377	27640	Stauffer R-14327	106
27544	Stauffer R-15201	390	27641	Stauffer R-16374	251
27545	Velsicol PCS 1301	30	27645	Upjohn U-25,322	61
27546	Velsicol PCS 1302	29	27646	Upjohn U-27,415	62
27549	Stauffer R-15022	270	27647	Stauffer R-15996	387
27558	Dowco 177	297	27648	Stauffer R-14789	380
27562	American Cyanamid		27649	International Minerals	
	CL 23358	321		& Chemical 48003	93
27571	Upjohn U-26,549	431	27650	Hercules 16434	320
27572	BAY 68138	284	27651	Hercules 18290	391
27573	Diamond Shamrock		27652	Hercules 18009	334
2.5.0	"Cartap"	128	27653	Hercules 18010	333
27575	BAY 53744	267	27654	Stauffer R-15018	378
27576	BAY 64054	298	27656	Sandoz 6607	285
27577	Thompson-Hayward		27657	Stauffer R-13906	113
2,3,,	TH-427-1	373	27658	BAY 91273	441
27578	BAY 70926	293	27659	BAY 93820	442
27579	BAY 74747	294	27660	3M MBR 5667	183
27580	BAY 75752	295	27661	Chemagro 7375	264
27605	Geigy GS-19849	47	27662	Niagara NIA 18739	168
27603	BAY 75546	360	27664	Stauffer R-15206	384
27607	BAY 79845	364	27665	Stauffer R-16745	382
27608		399	27666	Stauffer R-15644	269
	Mobil MC 2951		27695		
27610	Mobil MC 2572	311		Fisons NC 6897	115
27611	Mobil MC 2702	313	27698	Plant Protection PP 211	
27612	Mobil MC 2680	306	27699	Plant Protection PP 511	372
27613	Shell SD 17250	19	-		

AI3 No. (AI3-)	Company No.	Item No.	AI3 No. (AI3-)		Item No.
27701	CIBA C-17018		27768	Monsanto MON 808	323
	(Ciba-Geigy CGA-13608)	118	27769	Upjohn U-34,013	398
27702	CIBA C-17475	102	27770	Velsicol PCS 1475	33
27703	CIBA C-17551	101	27771	Velsicol PCS 1574	46
27704-X	Chevron RE-11775	123	27772	Velsicol RCS 1633	77
27706	Hercules 18676	85	27773	Velsicol RCS 1712	464
27707	Geigy GS-13006	327	27774	Velsicol RCS 1718	55
27720	Stauffer R-15396	385	27775	Velsicol RCS 1725	78
27721	Diamond Shamrock	303	27776	Velsicol RCS 1740	53
21122	DS-12581	10	27777	Velsicol RCS 1744	462
27722	Diamond Shamrock	10	27778	Velsicol RCS 1758	28
21122	DS-12580	9	27779	Velsicol RCS 1770	435
27723	Pennwalt TD-8550	88	27780	Velsicol RCS 1770	26
27727	Shell SD 16961	111	27781	Velsicol RCS 1779	196
27728	Chemagro 5727	188	27782	Velsicol RCS 1799	159
27729	Chemagro 5777	253	27783	Velsicol RCS 1817	73
27730	Chemagro 7290	254	27784	Velsicol RCS 1818	175
27731	Chemagro 8096	291	27785	Velsicol RCS 1819	433
27732	Chemagro 8189	290	27786	Velsicol RCS 1821	45
27733	Diamond Shamrock	2,0	27787	Velsicol RCS 1822	54
27733	DS-13182	457	27788	Velsicol RCS 1824	463
27734-X	Thompson-Hayward	701	27789	Velsicol RCS 1825	461
27737 11	TH-459-I	82	27790	Velsicol RCS 1831	74
27735	Air Products AP-10045		27791	Velsicol RCS 1847	158
	(Lilly EL-411)	329	27792	Velsicol RCS 1848	27
27736	Air Products AP-36945		27793	Velsicol RCS 1849	25
	(Lilly No.)	324	27794	Velsicol RCS 1872	434
27738	Shell SD 14114	180	27795	Velsicol RCS 1888	143
27739	Shell SD 14328	443	27796	Velsicol RCS 1893	432
27740	Mobil MC 3427	144	27797	Velsicol RCS 1894	14
27741	Mobil MC 3470	305	27798	Stauffer R-19641	343
27742	Mobil MC 3515	304	27799		445
27743	Mobil MC 3815	303	27804	Esso ER-8687	406
27744	Mobil MC 4044	314	27805	Esso ER-8989	404
	BAY 82231	402	27806		348
	BAY 85950	401	27807		352
	BAY 85194	256	27808	Esso ER-9362	351
27748		440	27809	Procter & Gamble PG 132	
	Upjohn U-31,751	71	27810	Plant Prot. PP 156	181
27752		150	27812	Esso ER-8821	375
27753	Sandoz 52,097	149	27813	Esso ER-9403	409
27754	Sandoz 52,114	147	27814	Esso ER-9404	12
27755	Sandoz 52,117	153	27815	Esso ER-9433	403
27756	Sandoz 52,118	146	27820	Rohm & Haas RH-412	400
27759-X		355		Chevron RE-12,420	292
27760	Esso ER-6624	350	27823	Chevron RE-13,913	299
27761		349	27824	Monsanto MON-856	201
	Esso ER-8700	354		BAY 85699	249
27764	Hoechst HOE 2960	395	27826	BAY HOX 1980	361

AI3 No. (AI3-)	Company No.	Item No.	AI3 No. (AI3-)	Company No.	Item No.
27835	Esso ER-9930	11	27949	Upjohn U-32,635	182
27836	Esso ER-9281	325	27950	Ansul AN-57003	388
27837	Esso ER-9669	353	27953	Eli Lilly EL-473	50
27838	Chemagro 8556	262	27954	Hercules 16801	89
27839	Chemagro 8807	263	27955	Hercules 18777	87
27840	Mobil MC 4158	307	27956	Hercules 20656	335
27841	BAY 88941	393	27957	Ansul AN-2507	438
27845	BAY HOX 2052	359	27958	Hoffmann-LaRoche	
27846	International Minerals			RO 3-5571	171
	& Chemical 3957	205	27967	Upjohn U-36,059	474
27848	Esso ER-9603	347	27968-X	Upjohn U-38,117	67
27850	Monsanto MON-768	59	27969	CIBA C-20132	119
27851	Diamond Shamrock		27975-X	Upjohn U-38,099	124
	DS-15647	64	27976	Shell SD 21427	142
27852	Uniroyal UNI-D239	452	27977	Velsicol RCS 1761	16
27853	Uniroyal UNI-D459	454	27978	Velsicol RCS 2087	17
27855	Uniroyal UNI-D048	449	27979	Velsicol HCS 3500	283
27856	Stauffer R-16876	141	27980	Velsicol HCS 3507	344
27857	Stauffer R-19738	260	27981	BAY KUE 2302	79
27859	Stauffer R-20620	271	27982	BAY KUE 2327	127
27860	Stauffer R-20621	268	27984-X	Wyandotte BAS-2350-I	95
27861	Stauffer R-20624	261	27985	Niagara NIA 24110	165
27871	BAY 93220	192	27987	Niagara NIA 26021	166
27872	Velsicol RCS 1855	252	27989	Sandoz SAN I 52,139	148
27900	Ansul AN-57000	374	27990	Cooper 11Z70	427
27901	Ansul AN-57605	357	27991	Union Carbide UC 41305	426
27905	Pennwalt TD-1771	21	27992	Stauffer R-17767	296
27906	Pennwalt TD-5056	60	27993	Stauffer R-24711	151
27907	Mobil MC 5664	98	27994	Ansul AN-2514	247
27908	CELA S-2956	370	27995	Hercules 24108	130
27909	Gulf S-18219	200	27996	Hercules 24734	131
27910	Gulf S-15126	199	28012-X	Armour ARD-801	22
27911	Stauffer R-19668	328	28019-X	Armour ARD-808	23
27912	Stauffer R-20625	273	28020-X	Armour ARD-809	24
27913	Stauffer R-20873	272	28563	Johnson 2134-R-123-4	424
27914	Sandoz SAN-52-135	288	28564	Johnson 2134-R-133-3	425
27915	Monsanto MON 720	186	28565	Johnson 2134-R-143-3	421
27916	Shell SD 23687	265	28800	Johnson 2650-R-54	417
27917	Shell SD 26890	121	28801	Johnson 2650-R-57	418
27918	Squibb SQ 18,506	217	28864	Johnson 2650-R-37	242
27919	CIBA C-18244	266	28865	Johnson 2650-R-68	455
27941	CELA K-357	145	28866	Johnson 2650-R-75	241
27942	Ansul AN 2189	132	28867	Johnson 2650-R-31	234
27944	M. G. King	170	28868	Johnson 2650-R-65	236
	1-trans-dimethrin		28869	Johnson 2650-R-35	240
27945	Stauffer R-22607	152	28870	Johnson 2650-R-21	437
27946	Stauffer R-23090	258	28874	Johnson 2650-R-90	239
27947	Stauffer R-23680	41	28875	Johnson 2650-R-92	238
27948	Stauffer R-24413	255	28876	Johnson 2650-R-93	216
		1	1		

AI3 No. (AI3-)	Company No.	Item No.	AI3 No. (AI3-)	Company No.	Item No.
		221	20060	G1-11 GD 0710	200
28877	Johnson 2650-R-97	221	29060	Shell SD 8713	302
28878	Johnson 2650-R-104	237	29061 29081	Pepro LS 68-1323 Hoechst H-71-0518	280
28926	Johnson 2650-R-112	230	29081	Hoechst H-71-0608	318 317
28927	Johnson 2650-R-115	228	29082	Hoechst H-72-5757	367
28928	Johnson 2650-R-121	235	29093	Stauffer R-21279	281
28929	Johnson 2650-R-124	233 215	29094	Stauffer R-17543	250
28930	Johnson 2650-R-129	215	29095	CELAMERCK CM-IT 8737	376
28948	Johnson 2650-R-136	220	29096	CELAMERCK CM-IT 8986	389
28949	Johnson 2615-R-146	458	29098	CELAMERCK CM-S 4781	274
28950	Johnson 2785-R-43	219	29099	CELAMERCK CM-S 4701	368
28951 28952	Johnson 2815-R-3 Johnson 2815-R-5	219	29101	BAY LOW 6599	412
28953	Johnson 2815-R-13	218	29101	BAY SRA 7660	410
28954	Johnson 2815-R-15	223	29104-X	Pepro LS 71.187	179
28962	Johnson 2785-R-59	35	61979	PCRB AD-6-86-B	198
28963	Johnson 2785-R-69	227	70035	Pfizer LM-62158	211
28964	Johnson 2815-R-25	222	70052	Hercules 11772	138
28965	Johnson 2815-R-29	226	70053	Hercules 12693	83
28966	Johnson 2815-R-32	2	70054	Hercules 11839	140
28967	Johnson 2815-R-42	5	70056	Pfizer LM-62587	193
28968	Johnson 2815-R-46	3	70057	Pfizer LM-62558	208
28969	Johnson 2815-R-49	4	70058	Pfizer LM-62487	213
28970	Johnson 2815-R-53	8	70059	Pfizer LM 14-62	197
28971	Johnson 2815-R-56	39	70078	Johnson 2815-R-96	42
28972	Johnson 2815-R-59	37	70079	Johnson 2815-R-99	460
28973	Johnson 2815-R-63	36	70080	Johnson 2815-R-102	32
29005	Chevron XE-274	190	70081	Johnson 2914-R-8	31
29006	BAY HOX 1619	178	70082	Johnson 2914-R-13	43
29007	BAY HOX 1901	114	70083	Johnson 2932-R-4	187
29008-X	Sandoz SAN I 52,129	365	70084	Johnson 2932-R-7-3	459
29009	Sandoz SAN I 132-247	289	70085	Johnson 2932-R-9-3	38
29010	BAY Vd 4326	52	70086	Johnson 2932-R-10-3	40
29011	PPG-140	137	70087	Johnson 2932-R-17-3	160
29019	Upjohn U-29,124	465	70088	Johnson 2932-R-18	189
29020	Merck MK-990	439	70138	Johnson 2932-R-70-4	229
29033	Mobil MC-6921	57	70139	Johnson 2932-R-72-4	232
29035	Gulf S-15053-B	94	70140	Johnson 2932-R-74-3	231
29036	Shell SD 27426	80	70141	Johnson 2932-R-76-3	6
29037	Shell SD 28071	413	70150	BAY 74774	195
29038	Shell SD 22639	362	70151	BAY 79062	472
29040	Shell SD 33255	414	70152	BAY 79504	473
29041	Stauffer R-22500	282	70179	Glidden-Durkee B-127-68	471
29042	Stauffer R-26374	392	70180	Glidden-Durkee B-136-68	468
29043	Stauffer R-26375	411	70181	Glidden-Durkee B-140-68	176
29046	Stauffer R-28585	191	70182-X	Glidden-Durkee B-144-68	467
29047	Stauffer R-28627	446	70280	Glidden-Durkee A-3-68	469
29048	Eli Lilly L-5	51	70281	Glidden-Durkee A-23-68	470
29049	Eli Lilly L-9	48	70282	Glidden-Durkee A-95-68	422
29055	Shell SD 32963	49	70283	Glidden-Durkee B-137-68	177

AI3 No. (AI3-)	Company No.	Item No.	AI3 No. (AI3-)	Company No.	Item No.
70322	Johnson 3207-R-33	1			
70348	Hoffmann-LaRoche				
	RO 6-8415	185			
70349	Hoffmann-LaRoche				
	RO 8-3627	58			
70350	Hoffmann-LaRoche				
	RO 8-4314	184			
70351	Hoffmann-LaRoche				
	RO 8-5496	214			
70446	Glidden GD-471	429			
70447	Glidden GD-256	466			
70484-X	Thompson-Hayward TH-7501	212			
70515	Glidden-Durkee GD-880	430			

U. S. DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE SOUTHERN REGION P. O. BOX 53326 NEW ORLEANS, LOUISIANA 70153

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID
U. S. DEPARTMENT OF
AGRICULTURE
AGR 101

