GEOMETRY HOMEWORK 10

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

December 8, 2011

Problem 2. 若 E = 1, F = 0, G = 1, f = 0,假設再加入函數 e, g 後是某 surface 的 $1st \otimes 2nd$ fundamental form。

- (a) 說明 e,g 中至少有一為 0
- (b) 說明若 e = g = 0 則此曲面為平面
- (c) 說明若 $e \neq 0$,則此曲面為特別的 ruled surface, 並討論 e 的意義。

Proof. (a) Since E=1, F=0, G=1, we know that the surface has K=0, so $eg-f^2=0$. So eg=0, and one of e and g is zero.

(b) If e = g = 0, then

$$X_{uu} = [1, 1, 1]X_u + [1, 1, 2]X_v + eN = 0$$

 $X_{uv} = [1, 2, 1]X_u + [1, 2, 2]X_v + fN = 0$
 $X_{vv} = [2, 2, 1]X_u + [2, 2, 2]X_v + gN = 0$

So \mathbb{X}_u and \mathbb{X}_v are constant, and the surface is a plane.

(c) if $e \neq 0$, then g = 0, and $\mathbb{X}_{vu} = \mathbb{X}_{vv} = 0$, so \mathbb{X}_v is constant. So $\mathbb{X}(u,v)$ is a line when we fix u, thus \mathbb{X} is a ruled surface. Let $\gamma(u) = \mathbb{X}(u,0)$, then $\|\gamma'(u)\| = \|\mathbb{X}_u\| = 1$, so u is arc-length parameter for γ . $\gamma''(u) = \mathbb{X}_{uu}(u,0) = eN$, so $\operatorname{sign}(e)N$ is also the n for γ , and γ has curvature |e|.

Problem 4 (Ex p237 8.). Compute the Cristoffel symbols for an open set of the plane

- (a) In cartesian coordinates.
- (b) In polar coordinates.

Use the Gauss formula to compute K in both cases.

Problem 6. 有一 surface X(u, v), 令 $\hat{X}(u, v) = \lambda X(u, v), \lambda > 0$ 。

- (a) 討論 $\hat{\Gamma}_{ij}^k$ 和 Γ_{ij}^k 的關係
- (b) 從 Gauss equation(GTE) 討論 Â 和 K 的關係

Problem 9. 舉一個例子說明有可能 $F: M \to N$ 是 conformal map, 且相應 點 $K_M > 0, K_N = 0$ (想想曾經討論的例子)

Proof. 取 M 為單位球 $x^2+y^2+z^2=1,\ N$ 為平面 z=0, 則顯然 $K_M>0,K_N=0.$

取 map $f:M\mapsto N,$ $f(x,y,z)=(\frac{x}{1-z},\frac{y}{1-z},0)$ 為 stereographic projection. 因為若 f(x,y,z)=(u,v,w), 則

$$du^{2} + dv^{2} + dw^{2} = \left(\frac{(1-z)dx + xdz}{(1-z)^{2}}\right)^{2} + \left(\frac{(1-z)dy + ydz}{(1-z)^{2}}\right)^{2}$$

$$= \frac{1}{(1-z)^{4}} \left((1-z)^{2}dx^{2} + (1-z)^{2}dy^{2} + (x^{2} + y^{2})dz^{2} + (xdx + ydy)(1-z)dz\right)$$

$$= \frac{1}{(1-z)^{4}} \left((1-z)^{2}dx^{2} + (1-z)^{2}dy^{2} + (-z^{2} + 1)dz^{2} + (-zdz)(1-z)dz\right)$$

$$= \frac{1}{(1-z)^{4}} \left((1-z)^{2}dx^{2} + (1-z)^{2}dy^{2} + (1-z)dz^{2}\right)$$