

ulm university universität UUM

Projektionen in D3.js

Lukas Pellot, 14.02.2018

Agenda

- 1. Bestandteile einer Projektion in D3.js
- 2. Codebeispiel Landkarte in D3.js
- 3. Choreoplethen-Karten

1. Bestandteile einer Projektion in D3.js

1. Bestandteile einer Projektion in D3.js

- a) Geographische Daten (in Form von GeoJSON oder TopoJSON)
- b) Projektionsfunktion
- c) Pfadfunktion

1.a) GeoJSON

- Offenes Format, um geografische Daten zu repräsentieren
- Verwendet die JavaScript Object Notation (kurz JSON)

1.a) GeoJSON – Aufbau einer GeoJSON-Datei

- "type":
 - "Feature" für einzelnes Element
 - Zweiter Schlüssel: "geometry", Wert: Einzelnes Element
 - "FeatureCollection" für mehrere Elemente
 - Zweiter Schlüssel: "features", Wert: Array von Features
- Optional: "bbox", Wert: Array mit vier Elementen
 - Die ersten zwei Zahlen stellen den südwestlichen, die letzten zwei den nordöstlichen Eckpunkt des Rechtecks darstellen, das das Element/die Elemente exakt umfasst

1.a) GeoJSON – Aufbau eines einzelnen Elements

- Notwendige Schlüssel
 - "type": <Name des Elements>
 - "coordinates":
 - Einfaches Element
 - Einzelnes Koordinaten-Array (bei Point) oder Array von Koordinaten-Arrays (für alle anderen Elemente)
 - Mehrteiliges Element
 - Array an Koordinaten (entsprechend dem vervielfachten einfachen Element)

1.a) GeoJSON – Aufbau eines einzelnen Elements

- Optional: "properties":
 - Wert: JSON-Objekt mit beliebigen Schlüssel-Wert-Paaren

1.a) GeoJSON – Koordinaten

- Punktkoordinaten werden als Array in der Form [Längengrad,
 Breitengrad] angegeben
- Unterstützte Elemente
 - Einfach: Point (Punkt), LineString (Linie), Polygon
 - Mehrteilig: "Multi" + entsprechendes einfaches Element (MultiPoint etc.)

1.a) GeoJSON - Beispiel

```
"type": "FeatureCollection",
"features":
        "type": "Feature",
        "geometry":
            "type": "LineString",
            "coordinates": [[102.0, 0.0], [104.0, 0.0], [106.5, 2.1]]
    },
        "type": "Feature",
        "geometry":
            "type": "Point",
            "coordinates": [13.24, 52.31]
```

1.a) GeoJSON vs. TopoJSON

■ TopoJSON: Alternativer Weg, um geografische Daten zu speichern

	GeoJSON	TopoJSON
Speicherung von Strukturen	 Explizite Speicherung des Pfades für jede Struktur Pfade werden bei aneinandergrenzenden Strukturen mehrfach gespeichert 	 Alle genutzten Pfade werden genau einmal gespeichert Zusätzlich Information, welche Struktur welche Pfade nutzt
Vorteil	 Einfachere Dateistruktur 	 Kleinere Dateigröße
Nachteil	Ggf. wesentlich größere Datei	 Komplexere Dateistruktur Ggf. weitere Bibliotheken zur Verarbeitung erforderlich

1.b) Projektionsfunktion – Aufgabe

- Problem
 - Die Erde ist eine Kugel (dreidimensional), Projektionsflächen sind Ebenen (zweidimensional) => "Verlust" einer Dimension
 - Darstellung daher nur verzerrt (unter Verlust von Längen-/Flächen-/Winkeltreue) möglich
- Lösung
 - Aufstellen einer Projektionsfunktion, die Breiten- und Längengrad in X- und Y-Koordinaten "übersetzt" und so die Verzerrung vereinheitlicht

1.b) Projektionsfunktion – In D3.js

- Es wird stets ein geographischer Punkt auf eine (Pixel-)Ebene projiziert (Default-Größe: 960x500 Pixel)
 - [Breitengrad, Längengrad] → [x-Koordinate, y-Koordinate]
- D3 liefert diverse allgemeine Projektionsfunktionen ,ab Werk'
 in g3-geo mit
 - Weitere Projektionen können über d3-geo-projections nachgeladen werden

1.b) Funktionen auf Projektionen – Auszug (1)

- Projektion eines einzelnen Punktes
 - projection(point)
 - Gibt ein Array mit den Koordinaten des projizierten Punktes (in Pixeln)
 zurück
 - point: Array [Breitengrad, Längengrad]
 - projection.invert(point)
 - "Umkehrfunktion" zu *projection*(point)

1.b) Funktionen auf Projektionen – Auszug (2)

- Verschieben des projizierten Punkts
 - projection.translate([tx, ty])
 - Versetzt die Projektion um die Koordinaten tx und ty entlang der entsprechenden Achsen
 - Falls keine Werte übergeben werden, wird der aktuelle Versatz (Standardwert: [480, 250]) zurückgegeben
 - Versatz bezieht sich auf Mittelpunkt der Projektion

1.b) Funktionen auf Projektionen – Auszug (3)

- Umsetzen des Mittelpunkts der Projektion
 - projection.center([longitude, latitude])
 - Setzt den Mittelpunkt der Projektion auf den übergebenen Punkt
 - Falls keine Werte übergeben werden, wird der momentane
 Mittelpunkt zurückgegeben (Standardwert: <0°, 0° >)

1.b) Funktionen auf Projektionen – Auszug (4)

- Skalieren des projizierten Punktes
 - projection.scale(scale)
 - Skaliert die Koordinaten des projizierten Punktes um den angegebenen Faktor
 - Falls kein Wert übergeben wird, wird der aktuelle Skalierungsfaktor zurückgegeben (Standardwert: Von gewählter Projektion abhängig)

1.c) Pfadfunktion – Aufgabe

 Wird genutzt, um eine (in GeoJSON oder TopoJSON dargestellte) geometrische Struktur einer bestimmten Projektionsfunktion entsprechend darzustellen

1.c) Pfadfunktion – Erzeugung

- d3.geoPath(projection) erzeugt eine neue Pfadfunktion, die gemäß der übergebenen Projektionsfunktion Elemente abbildet
 - Wird kein Wert übergeben, wird standardmäßig
 d3.geoAlbersUSA() genutzt (zusammengesetzte Projektion für die USA)

1.c) Pfadfunktion – Manipulation

- path.projection(projection) ändert die von path genutzte Projektionsfunktion auf die übergebene
 - Wird kein Wert übergeben, wird die aktuell genutzte Projektionsfunktion zurückgegeben

1.c) Pfadfunktion – Nutzung

 path(object) zeichnet das übergebene object gemäß der gesetzten Projektionsfunktion als SVG-Pfad

2) Codebeispiel – Landkarte in D3.js

2) Codebeispiel – Landkarte in D3.js (1)

Allgemeines

2) Codebeispiel – Landkarte in D3.js (2)

Anlegen von Projektions- und Pfadfunktion

2) Codebeispiel – Landkarte in D3.js (3)

Einlesen und Verarbeiten der GeoJSON-Datei

```
// Fortsetzung von letzter Folie
var geojsonURL = <URL zur darzustellenden GeoJSON-Datei>;
//Weltkarte, Auflösung von 110m
d3.json(geojsonURL, function(geojson){
    svg.append("path")
        .attr("d", path(geojson));
});
```

2) Codebeispiel – Landkarte in D3.js (4)

- Resultierende SVG-Datei → mapSinglePath.html öffnen
 - Styling durch CSS

3) Choreoplethenkarten

3. Choreoplethenkarten

- a) Allgemeines
- b) Codebeispiel Choreoplethenkarte in D3.js

3.a) Choreoplethenkarten - Allgemeines

- Alternative Bezeichnung: Thematische Karte
- Abschnitte der Karte werden einer statistischen Variablen entsprechend eingefärbt
- Nutzen: Veranschaulichen, wie Messungen/Werte in bestimmten
 Regionen variieren
- Beispiel: Arbeitslosenanteil pro Landkreis/Bundesland

3.a) Choreoplethenkarten – In D3.js

Aufgabe:

Jedes Land soll entsprechend einer Kennzahl eingefärbt werden

Problem mit bisheriger Implementierung:

Erzeugung eines einzelnen Pfades für alle Länder zusammen ightarrow

Nur Füllung mit einzelner Farbe möglich

■ Lösungsansatz:

Ein Pfad für jedes einzelne Land

3.a) Choreoplethenkarten – In D3.js

- Statt dem "features"-Array mit allen Feldern als Ganzes wird jedes
 Feld einzeln an die Pfad-Funktion übergeben
- Wird durch die Nutzung des enter/update/exit-Patterns ermöglicht

3.b) Codebeispiel – Choreoplethenkarte in D3.js (1)

```
/**
 * Allgemeines, Projektions-/Pfadfunktion wie in vorigem Beispiel
**/

d3.json(geojsonURL, function(geojson){
    svg.selectAll("path")
        .data(geojson.features)
        .enter()
        .append("path")
        .attr("d", path);
});
```

3.b) Codebeispiel – Choreoplethenkarte in D3.js (2)

- Resultierende SVG-Datei → mapMultiplePaths.html öffnen
 - Styling durch CSS
 - Beobachtung: Für jedes Land wurde ein eigener path-Tag angelegt

3.b) Codebeispiel – Choreoplethenkarte in D3.js (3)

- Um die path-Tags der Länder ihrer Kennzahl entsprechend einfärben zu können, muss eine Farbskala erstellt werden
- Beim Zeichnen der Pfade wird die Farbe des Landes mithilfe der entsprechenden Kennzahl und der Farbskala errechnet

3.b) Codebeispiel – Choreoplethenkarte in D3.js (4)

```
/**
 * Allgemeines, Projektions-/Pfadfunktion wie in vorigem Beispiel
**/
d3.json(geojsonURL, function(geojson){
    var features = geojson.features;
    var min = d3.min(features, function(d){
        return d.properties.gdp md est;
    });
    var max = d3.max(features, function(d){
        return d.properties.gdp md est;
    });
    var color = d3.scaleLinear()
            .domain([min, max])
            .range(["white", "crimson"]);
// Fortsetzung auf nächster Folie
```

3.b) Codebeispiel – Choreoplethenkarte in D3.js (5)

3.b) Codebeispiel – Choreoplethenkarte in D3.js (6)

- Resultierende SVG-Datei → mapChoreopleth.html öffnen
 - Styling durch CSS

Fragen?

Danke für eure Aufmerksamkeit!