CONTROLE E SERVOMECANISMOS Engenharia de Computação

Aula 00 - "Apresentação da Disciplina"

Prof. Dr. Victor Leonardo Yoshimura

Universidade Federal de Mato Grosso do Sul Faculdade de Computação

05 de agosto de 2024

Victor Leonardo Yoshimura

- ► Formação:
 - Engenheiro Eletricista (UFMS 1999);
 - Licenciado em Matemática (UFMT 2009);
 - Mestre em Engenharia Elétrica (UFSC 2002);
 - Doutor em Engenharia Elétrica (Unesp-IS 2013).
- ► Áreas de interesse (lista não-exaustiva):
 - ► Teoria de Controle Linear e Não-Linear;
 - Projeto de controladores via Desigualdades Matriciais Lineares (LMIs);
 - Aplicações de Controle, em particular em Eletrônica de Potência;
 - Eletrônica de Potência.
- ▶ Projetos em desenvolvimento atualmente:
 - Pesquisa: "Análise e Projeto de Controladores para Sistemas sob Ação de Sensores Dinâmicos"
 - Ensino: "Desenvolvimento de Material de Estudo de Ferramentas Baseadas em SPICE para Projeto de Circuitos Flétricos e Fletrônicos"

Atividades **Didáticas** do Docente

	Segunda	Terça	Quarta	Quinta	Sexta
7-9					
9-11	Controle/EC		Controle/EC	Controle/EC	
13-15	ALUNOS				
15-17					

Legenda:

Controle e Servomecanismos (Controle)

Engenharia da Computação (EC)

Controle e Servomecanismos (6º semestre)

- Carga horária: 102 horas;
- Aulas Teóricas: Complexo Multiuso, sala 13;
- Simulações: Laboratório disponível na Facom, em dias oportunamente divulgados;
- As aulas são duplas (2 presenças ou faltas)!
- Justificativa de faltas: somente nos casos previstos pela UFMS e após tramitação de processo formal.

Importante!

Utilizaremos os softwares:

- Scilab (www.scilab.org), e;
- Octave (www.octave.org), com o pacote control.

Ementa

- 1. Fundamentos e Métodos no Domínio do Tempo
 - ► Transformada de Laplace (TL) e Diagramas de Blocos (DBs)
 - Modelagem de sistemas físicos
 - Análise das respostas transitória e de regime permanente
 - Sistemas realimentados
 - Lugar das raízes ("root locus")
- 2. Métodos no Domínio da Frequência e Controle Moderno
 - Resposta em frequência
 - Controle PID
 - Introdução ao Controle Moderno

Cronograma

Data	Conteúdo Previsto		
05/Ago	Apresentação da disciplina		
07/Ago	Transformada de Laplace (revisão)		
08/Ago	Funções Transferência, Diagramas de Blocos e grafos de fluxo de sinal		
12/Ago	Representação no espaço de estado		
14/Ago	Modelagem de sistemas mecânicos		
15/Ago	Modelagem de sistemas elétricos e eletrônicos		
19/Ago	Modelagem de sistemas de controle de nível		
21/Ago	Modelagem de sistemas térmicos. Linearização de modelos.		
22/Ago	Resposta transitória: sistemas de 1º e 2º ordens		
28/Ago	Laboratório: definição e simulação de SLIT-Cs		
29/Ago	Resposta transitória: efeito de um zero na segunda ordem		
02/Set	Laboratório: simulação de SLIT-Cs com interface gráfica		
04/Set	Ações básicas de controle: controladores P, PI, PD e PID		
05/Set	Erro em regime em sistemas realimentados		
09/Set	Análise da estabilidade		
11/Set	Critério de Routh-Hurwitz		
12/Set	Laboratório: Critério de Routh-Hurwitz e erros em regime permanente		
16/Set	Alocação de polos e a Equação Diofantina		
18/Set	Projeto assistido por computador: Equação Diofantina		
19/Set	Análise do lugar das raízes: região de desempenho garantido		

Cronograma

Data	Conteúdo Previsto
23/Set	Análise do lugar das raízes: efeito de polos complexos e zeros
25/Set	Laboratório: análise do lugar das raízes
26/Set	Projeto de compensadores via lugar das raízes
30/Set	Projeto assistido por computador: lugar das raízes
02/Out	Projeto de compensadores via lugar das raízes
03/Out	Projeto assistido por computador: lugar das raízes
14/Out	Resposta em frequência e diagramas de Bode
16/Out	Diagrama de Nyquist e o critério de estabilidade de Nyquist
17/Out	1 ^a prova escrita.
21/Out	Parâmetros de desempenho na resposta em frequência
23/Out	Laboratório: SLIT-Cs sujeitos a entradas senoidais
24/Out	Cartas de Hall e de Nichols. Diagrama de Black.
28/Out	Laboratório: Diagramas de Bode, Nyquist e Black
30/Out	Projeto de compensadores via resposta em frequência
31/Out	Projeto de compensadores via resposta em frequência
04/Nov	Projeto de compensadores via resposta em frequência
06/Nov	Sintonia de compensadores PID
07/Nov	Espaço de estado: solução de EDOs
11/Nov	Espaço de estado: controlabilidade

Cronograma

Data	Conteúdo Previsto
13/Nov	Espaço de estado: alocação de polos e fórmula de Ackermann
14/Nov	Projeto assistido por computador: alocação de polos via Ackermann
18/Nov	Espaço de estado: observabilidade
20/Nov	Espaço de estado: dualidade e o teorema da separação
21/Nov	Teoria de Lyapunov: estabilidade e projeto de compensadores
25/Nov	Teoria de Lyapunov: estabilidade e projeto de compensadores
27/Nov	Controle ótimo e a equação algébrica de Riccati
28/Nov	2ª prova escrita.
02/Dez	Projeto asssistido por computador: escolha de polos via LQR
04/Dez	Introdução aos Sistemas Não-Lineares
05/Dez	Prova optativa.

Avaliação

- Três provas escritas: duas obrigatórias e uma optativa;
- Dez relatórios ou exercícios, cuja média é R;
- ightharpoonup Calcula-se a média de aproveitamento (M):

$$M = \frac{P_1 + P_2 + R}{3}$$

- Os conteúdos das provas obrigatórias são os respectivos itens da ementa;
- A prova optativa substitui a menor nota entre as provas obrigatórias;
- O conteúdo da prova optativa é todo o conteúdo da disciplina;
- Se $M \ge 6$ e a presença igual ou superior a 75%, o acadêmico estará aprovado; do contrário, reprovado.

Referências

Geromel, José Cláudio e Rubens H. Korogui: Controle Linear de Sistemas Dinâmicos: Teoria, Ensaios Práticos e Exercícios.

Edgard-Blücher, São Paulo, 1ª edição, 2011.

Dorf, Richard C. e Robert H. Bishop: Sistemas de Controle Modernos. LTC, Rio de Janeiro, 8ª edição, 2001.

Nise, Norman S.: Engenharia de Sistemas de Controle. LTC, Rio de Janeiro, 6ª edição, 2002.

Kuo, Benjamin C.: Automatic Control Systems. Englewood Cliffs, 6ª edição, 1991.

Distefano, Joseph J., Allen R. Stubberud e Ivan J. Williams: Sistemas de Controle e Realimentação.

McGraw-Hill, São Paulo, 1972.