PEA 3306 - 2021

Primeiro Exercício Computacional - Transformadores (entrega até 23/05/2021)

Um transformador monofásico de núcleo ferromagnético (suposto linear) possui os seguintes valores nominais: 2,5 MVA, 19,1/3,81 kV, 50 Hz. Foram realizados os ensaios em vazio e em curto-circuito desse transformador, cujos dados encontram-se na Tabela 1, ao lado.

Esse transformador alimenta uma carga, no lado da baixa tensão, com tensão nominal.

Tabela 1 – Ensaios em vazio e curto-circuito do transformador			
Tensão (V)	3810	854	
Corrente(A)	9,86	131	
Potência (W)	8140	8890	

Deve-se escrever um script em Matlab/Octave para:

- a) [2,0] Calcular os parâmetros do circuito equivalente completo (em "T") desse transformador, refletidos à alta tensão e à baixa tensão, de modo a preencher uma tabela, conforme o modelo fornecido na **Tabela 2**.
- b) [2,5] Traçar <u>um único</u> gráfico com 2 (duas) curvas do rendimento do transformador (em %) em função da variação porcentual da potência na carga, para uma faixa de variação de 30 a 130% da potência nominal. Cada curva corresponderá a um valor de fator de potência da carga: o primeiro será unitário e o segundo será aquele especificado na **Tabela 3**. Todos os gráficos devem ser dotados de: título, legendas, unidades e escalas convenientes. Usar o circuito equivalente completo (em "T").
- c) [2,5] Traçar <u>um único</u> gráfico com 2 (duas) curvas da regulação do transformador (em %) em função da variação porcentual da potência na carga, para uma faixa de variação de 30 a 140% da sua potência nominal. Cada curva corresponderá a um fator de potência da carga: o primeiro será unitário e o segundo será aquele especificado na **Tabela 3**. Todos os gráficos devem ser dotados de: título, legendas, unidades e escalas convenientes. Usar o circuito equivalente completo (em "T").
- d) [1,0] Determinar, com a ajuda dos gráficos e do *script* gerado, os valores de rendimento e regulação desse transformador nas condições nominais, para o fator de potência especificado na **Tabela 3**. Com esses valores, gerar uma tabela, conforme modelo da **Tabela 4**. Esse ponto deve também estar indicado e destacado em todos os gráficos dos itens b e c!
- e) [2,0] Submeter no eDisciplinasUSP o arquivo texto no formato *.m contento o script desenvolvido, amplamente comentado (modelo no Anexo A). Este deve conter cabeçalho com título, data, nUSP e nome dos integrantes do grupo em ordem alfabética. Deve conter também o nUSP utilizado e o respectivo valor do fator de potência, além de um índice com as variáveis utilizadas, com descrição.

As tabelas e as imagens com os gráficos (geradas pelo *script*, conforme modelo no **Anexo A**), todos pedidos nos itens (a) a (d), deverão ser inseridos no **campo de edição de texto** da tarefa **EC1**, no *eDisciplinasUSP*.

Tabela 2 (MODELO) – Parâmetros do circuito equivalente completo ("T") do Transformador

Parâmetro (fornecer símbolo e descrição)	ALTA Tensão (Ω , kΩ ,)	BAIXA Tensão (Ω, kΩ,)
Ex.: r _x - Resistência	(Máximo de 3 dígitos decimais)	(Máximo de 3 dígitos decimais)

Tabela 3 – Valores de fator de potência da carga

Carga do transformador Capacitiva			Capacitiva		utiva
Grupe	o (z)	2, 4, 6, 8,, 60 (pares)		1, 3, 5, 7, 9,, 59 (ímpares)	
nUSD U *	0.05	1 0 6	2 0 7	200	4 0 0

nUSP U *	0 e 5	1 e 6	2 e 7	3 e 8	4 e 9
f.p. da carga	0,9	0,7	0,6	0,8	0,5

^{*} Último algarismo do nUSP do primeiro membro do grupo em ordem alfabética

Tabela 4 (MODELO) – Rendimento e Regulação Nominais

Fator de Potência	Rendimento (%)	Regulação (%)
(Valor e natureza)	(2 dígitos decimais)	(2 dígitos decimais)

PEA 3306 - 2021

ANEXO A - Modelo do script Octave/Matlab

```
EC1 - PEA3306 - dd/mm/2021 - TRANSFORMADORES
응응응응
응응응응
   >>>> NUSP1 BELTRANO de Tal (Substitua pelos num. e nomes corretos em ordem alf.)
응응응응
응응응응
        NUSP2 FULANO de Tal
응응응응
        NUSP3 Terceiro ...
응응응응
        NUSP4 Quarto ....
응응응응
응응응응
          FATOR DE POTENCIA DA CARGA: ___,__ CAPACITIVO/INDUTIVO
응응응응
응응응응
             VARIAVEIS (Exemplos)
응응응응
응응응용
          SN Potência nominal (VA, kVA ....)
응응응응
          K1 variável xxxx (unidade)
응응응응
          H6 variavel yyyy (unidade)
응응응응
clear; clf;
nusp = 1111111;
grupo = 99; % numero do grupo(1 a 60)
응응응응응응응응응
         EXEMPLO DE ORGANIZAÇÃO DO SCRIPT COM COMENTÁRIOS
CALCULO DOS PARAMETROS
응응응
응응응
x = 1;
y = 7*sin(x);
응응 응
           PARAMETROS NA AT
음음음
Fff = 3;
Ght = 10*Ffff;
888 ///////
응응응
         PARAMETROS NA BT
Fff = 3;
Ght = 10*Ffff;
CALCULO DE TENSÕES E CORRENTES refletidas a ...
응응응
Fff = 3:
응응응
          CALCULO DE potencias
응응응
응응응
          RENDIMENTO
응응응
           REGULACAO
응응응
fig=figure();
titulo=['EC1 - Grupo z',num2str(grupo),' - ', num2str(nusp),' - ', date()];
subplot(2,2,1) % first subplot RENDIMENTO
plot(..., ..., 'r-', ..., ..., 'b--', ..., ..., 'g*');
title(titulo);
set(gca, 'FontSize', 8)
xlabel('% Snom');
ylabel('Rendimento (%)');
grid on:
legend('...', '...', "box", "off", "location", "south", "fontsize", 8); subplot(2,2,2) % second subplot REGULACAO
plot(..., ..., 'r-', ..., ..., 'b--', ..., ..., 'g*');
set(gca, 'FontSize', 8)
xlabel('% Snom');
ylabel('Regulacao (%)');
grid on;
arq=['EC1_2021_PEA3306_z',num2str(grupo),'_',num2str(nusp),'.png']; % GERACAO DO ARQ IMAGEM
print(fig, arq);
응응응
응응응
      IMPRESSÃO DE RESULTADOS
```