Practical Text Analytics: Probabilistic Latent Semantic Analysis

Fan Dai

Iowa State University

October 29, 2019

Recall: Latent semantic analysis (LSA)

- LSA focuses on word co-occurrence and the meaning behind
- Truncated singular value decomposition (SVD)

Figure: Truncated SVD process

Source: Martin and Berry (2007)

- Truncated singular value decomposition (SVD)
 - columns (singular vectors) in value-weighted term matrix $U_k\Sigma_k$:
 - a linear combination of words

- Truncated singular value decomposition (SVD)
 - columns (singular vectors) in value-weighted term matrix $U_k \Sigma_k$:
 - a linear combination of words
 - *topics* (latent) in the documents

Example: weighted term matrix with k = 2 (column normalized)

Word	S1	S2
dog	0.54	0.02
cat	0.40	0.01
apple	0.03	0.22
blueberry	0.02	0.4
orange	0.01	0.35

* topic 1: animal

* topic 2: fruit

- Truncated singular value decomposition (SVD)
 - columns (singular vectors) in value-weighted term matrix $U_k\Sigma_k$:
 - a linear combination of words
 - *topics* (latent) in the documents

Example: weighted term matrix with k = 2 (column normalized)

Word	S1	S2
dog	0.54	0.02
cat	0.40	0.01
apple	0.03	0.22
blueberry	0.02	0.4
orange	0.01	0.35

* topic 1: animal

* topic 2: fruit

 rows in U_k: words sharing with similar topical content are expected be close in the semantic term space.

- Truncated singular value decomposition (SVD)
 - columns (singular vectors) in value-weighted term matrix $U_k \Sigma_k$:
 - a linear combination of words
 - *topics* (latent) in the documents

Example: weighted term matrix with k = 2 (column normalized)

Word	S1	S2
dog	0.54	0.02
cat	0.40	0.01
apple	0.03	0.22
blueberry	0.02	0.4
orange	0.01	0.35

- topic 1: animal
- topic 2: fruit

- rows in U_k: words sharing with similar topical content are expected be close in the semantic term space.
- rows in weighted document matrix $V_k\Sigma_k$: documents with similar topical content will be close in the semantic document space.

- Strengths of LSA
 - compress the term-document matrix $(M \rightarrow A_k)$
 - easier and faster to implement

- Strengths of LSA
 - compress the term-document matrix $(M \rightarrow A_k)$
 - easier and faster to implement
- Limitations of LSA
 - · lacks a generative model
 - no statistical inference for the latent variables (topics)
 - number of topics k is determined by heuristic techniques

- Strengths of LSA
 - compress the term-document matrix $(M \rightarrow A_k)$
 - · easier and faster to implement
- Limitations of LSA
 - lacks a generative model
 - no statistical inference for the latent variables (topics)
 - \bullet number of topics k is determined by heuristic techniques

Possible solution: probabilistic latent semantic analysis (PLSA)

What is the generation process?

Graphical model representations

Observed variables:

- documents: $d_1, d_2, ..., d_n$
- words: $w_1, w_2, ..., w_m$

What is the generation process?

Graphical model representations

Observed variables:

- documents: $d_1, d_2, ..., d_n$
- words: $w_1, w_2, ..., w_m$
- some words may not appear

What is the generation process?

Graphical model representations

Observed variables:

- documents: $d_1, d_2, ..., d_n$
- words: $w_1, w_2, ..., w_m$
- some words may not appear

Include the latent variables:

- topics: $t_1, t_2, ..., t_k$
- conditional independence assumption

The generative model can be summarized as: (Recall the formalization of topic models)

- for each document d_i , $i \in \{1, 2, ..., n\}$, suppose it contains $N_i \le m$ words, then for each word position $g \in \{1, 2, ..., N_i\}$
 - choose a topic $t_l \sim \text{Multinomial}(\theta_{d_i})$
 - ② choose a word $w_j \sim \text{Multinomial}(\phi_{t_l})$

where,

- $\theta_{d_i} = (p(t_1|d_i), p(t_2|d_i), \dots, p(t_k|d_i)), \mathbf{1}'\theta_{d_i} = 1$
- $\phi_{t_l} = (p(w_1|t_l), p(w_2|t_l), \dots, p(w_m|t_l)), \mathbf{1}'\phi_{t_l} = 1$
- $p(t_l|d_i)$: probability that topic t_l appears in document d_i
- $p(w_j|t_l)$: probability that word w_j is chosen by topic t_l

PLSA: Likelihood function

• By conditional independence, $p(w_j|t_l, d_i) = p(w_j|t_l)$, so the probability function of a word w_j appearing at position g in document d_i is,

$$p(d_{i,g} = w_j | \Theta) = \sum_{l=1}^{k} p(w_j | t_l) p(t_l | d_i)$$

• the joint likelihood function for the whole text collection is,

$$f(\text{data}|\Theta) = \prod_{i=1}^{n} \prod_{g=1}^{N_i} \sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i)$$

PLSA: Likelihood function

• By conditional independence, $p(w_j|t_l, d_i) = p(w_j|t_l)$, so the probability function of a word w_j appearing at position g in document d_i is,

$$p(d_{i,g} = w_j | \Theta) = \sum_{l=1}^{k} p(w_j | t_l) p(t_l | d_i)$$

• the joint likelihood function for the whole text collection is,

$$f(\text{data}|\Theta) = \prod_{i=1}^{n} \prod_{g=1}^{N_i} \sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i)$$
$$= \prod_{i=1}^{n} \prod_{j=1}^{m} \left[\sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i) \right]^{n(w_j,d_i)}$$

where $n(w_j, d_i)$ is the number of times term w_j appearing in document d_i (entries in the TDM/DTM).

PLSA: Prameter estimation

- Maximize $\log f(\text{data}|\Theta)$ with constraints $\mathbf{1}'\theta_{d_i} = 1$ and $\mathbf{1}'\phi_{t_l} = 1$ for i = 1, 2, ..., n, l = 1, 2, ..., k
 - Lagrange Multipliers

$$\arg\max\left\{\log f(\text{data}|\Theta) + \sum_{i=1}^{n} \lambda_{i} [1 - \sum_{l=1}^{k} p(t_{l}|d_{i})] + \sum_{l=1}^{k} \xi_{l} [1 - \sum_{j=1}^{m} p(w_{j}|t_{l})]\right\}$$

where
$$\log f(\text{data}|\Theta) = \sum_{i=1}^{n} \sum_{j=1}^{m} n(w_j, d_i) \log \left[\sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i) \right]$$

• difficult to directly optimize...

PLSA: Prameter estimation

- Maximize $\log f(\text{data}|\Theta)$ with constraints $\mathbf{1}'\theta_{d_i} = 1$ and $\mathbf{1}'\phi_{t_l} = 1$ for i = 1, 2, ..., n, l = 1, 2, ..., k
 - Lagrange Multipliers

$$\arg\max\left\{\log f(\text{data}|\Theta) + \sum_{i=1}^{n} \lambda_{i} [1 - \sum_{l=1}^{k} p(t_{l}|d_{i})] + \sum_{l=1}^{k} \xi_{l} [1 - \sum_{j=1}^{m} p(w_{j}|t_{l})]\right\}$$

where
$$\log f(\text{data}|\Theta) = \sum_{i=1}^{n} \sum_{j=1}^{m} n(w_j, d_i) \log \left[\sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i) \right]$$

- difficult to directly optimize...
- Expectation Maximization (EM) algorithm: reference link

PLSA: Prameter estimation

- Maximize $\log f(\text{data}|\Theta)$ with constraints $\mathbf{1}'\theta_{d_i} = 1$ and $\mathbf{1}'\phi_{t_l} = 1$ for i = 1, 2, ..., n, l = 1, 2, ..., k
 - Lagrange Multipliers

$$\arg\max\left\{\log f(\text{data}|\Theta) + \sum_{i=1}^{n} \lambda_{i} [1 - \sum_{l=1}^{k} p(t_{l}|d_{i})] + \sum_{l=1}^{k} \xi_{l} [1 - \sum_{j=1}^{m} p(w_{j}|t_{l})]\right\}$$

where
$$\log f(\text{data}|\Theta) = \sum_{i=1}^{n} \sum_{j=1}^{m} n(w_j, d_i) \log \left[\sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i) \right]$$

- difficult to directly optimize...
- Expectation Maximization (EM) algorithm: reference link
 - key idea: suppose for each word position in document d_i , the topic t_l is known
 - indicator variable (hidden) $r_{d_{i,g},l} = 1$, if topic t_l is chosen for word position g in document d_i .

• formalize the complete data log-likelihood with r, the set of all the latent variables $r_{d_{i,g},l}$,

$$\begin{split} \log f(\text{data}|\Theta) &= \log \prod_{i=1}^{n} \prod_{g=1}^{N_{i}} \sum_{l=1}^{k} p(w_{j}|t_{l}) p(t_{l}|d_{i}) \\ \log f(\text{data}|\boldsymbol{r},\Theta) &= \log \prod_{i=1}^{n} \prod_{g=1}^{N_{i}} \prod_{l=1}^{k} \left[p(w_{j}|t_{l}) p(t_{l}|d_{i}) \right]^{r_{d_{i,g},l}} \\ &= \sum_{i=1}^{n} \sum_{g=1}^{N_{i}} \sum_{l=1}^{k} r_{d_{i,g},l} \left[\log p(w_{j}|t_{l}) + \log p(t_{l}|d_{i}) \right] \end{split}$$

• formalize the complete data log-likelihood with r, the set of all the latent variables $r_{d_{i\sigma},l}$,

$$\begin{split} \log f(\text{data}|\Theta) &= \log \prod_{i=1}^{n} \prod_{g=1}^{N_{i}} \sum_{l=1}^{k} p(w_{j}|t_{l}) p(t_{l}|d_{i}) \\ \log f(\text{data}|\boldsymbol{r},\Theta) &= \log \prod_{i=1}^{n} \prod_{g=1}^{N_{i}} \prod_{l=1}^{k} \left[p(w_{j}|t_{l}) p(t_{l}|d_{i}) \right]^{r_{d_{i,g},l}} \\ &= \sum_{i=1}^{n} \sum_{g=1}^{N_{i}} \sum_{l=1}^{k} r_{d_{i,g},l} \left[\log p(w_{j}|t_{l}) + \log p(t_{l}|d_{i}) \right] \end{split}$$

new objective function

$$\arg\max\left\{\log f(\text{data}|\boldsymbol{r},\Theta) + \sum_{i=1}^{n} \lambda_{i}[1 - \sum_{l=1}^{k} p(t_{l}|d_{i})] + \sum_{l=1}^{k} \xi_{l}[1 - \sum_{j=1}^{m} p(w_{j}|t_{l})]\right\}$$

What is the value for $r_{d_{i,\sigma},l}$?

 E-step in EM algorithm: compute the expected values of missing variables given the observed data and current parameters

$$\begin{split} \mathbf{E}[r_{d_{i,g},l}|data,\Theta] &= p(r_{d_{i,g},l} = 1|data,\Theta) \\ &= \frac{p(r_{d_{i,g},l} = 1, data|\Theta)}{p(r_{d_{i,g},l} = 1|\Theta)} \\ &= \cdots \\ &= \frac{p(d_{i,g}|t_l)p(t_l|d_i)}{\sum_{l=1}^{k} p(d_{i,g}|t_l)p(t_l|d_i)} \end{split}$$

* work out \cdots : how do the data and parameters relate to $r_{d_{i,g},l}$? (hint: graphical representations)

• M-step in EM algorithm:

$$\begin{split} p(t_{l}|d_{i}) &= \frac{\sum_{g=1}^{N_{i}} \mathrm{E}[r_{d_{i,g},l}|data,\Theta]}{N_{i}} \\ &= \frac{\sum_{j=1}^{m} n(w_{j},d_{i}) \frac{p(w_{j}|t_{l})p(t_{l}|d_{i})}{\sum_{l=1}^{k} p(w_{j}|t_{l})p(t_{l}|d_{i})}}{N_{i}} \\ p(w_{j}|t_{l}) &= \frac{\sum_{i=1}^{n} \sum_{g=1}^{N_{i}} \mathrm{E}[r_{d_{i,g},l}|data,\Theta]\mathbf{I}(d_{i,g} = w_{j})}{\sum_{j'=1}^{m} \sum_{i=1}^{n} \sum_{g=1}^{N_{i}} \mathrm{E}[r_{d_{i,g},l}|data,\Theta]\mathbf{I}(d_{i,g} = w_{j'})} \\ &= \frac{\sum_{i=1}^{n} n(w_{j},d_{i}) \frac{p(w_{j}|t_{l})p(t_{l}|d_{i})}{\sum_{l=1}^{k} p(w_{j}|t_{l})p(t_{l}|d_{i})}}{\sum_{j'=1}^{m} \sum_{i=1}^{n} n(w_{j'},d_{i}) \frac{p(w_{j'}|t_{l})p(t_{l}|d_{i})}{\sum_{l=1}^{k} p(w_{j'}|t_{l})p(t_{l}|d_{i})}} \end{split}$$

The joint probability model of the observations (documents and words) with known topics

- parameters
 - $p(t_l)$: probability of topic t_l
 - $p(d_i|t_l)$: probability of document d_i given topic t_l
 - $p(w_j|t_l)$: probability of word w_j given topic t_l
- by conditional probability, $p(d_i, w_j) = p(d_i)p(w_j|d_i)$ and $p(w_j, t_l|d_i) = p(w_j|t_l, d_i)p(t_l|d_i)$

The joint probability model of the observations (documents and words) with known topics

- parameters
 - $p(t_l)$: probability of topic t_l
 - $p(d_i|t_l)$: probability of document d_i given topic t_l
 - $p(w_j|t_l)$: probability of word w_j given topic t_l
- by conditional probability, $p(d_i, w_j) = p(d_i)p(w_j|d_i)$ and $p(w_j, t_l|d_i) = p(w_j|t_l, d_i)p(t_l|d_i)$
- by conditional independence,

$$\Rightarrow p(w_j|d_i) = \sum_{l=1}^{k} p(w_j, t_l|d_i) = \sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i)$$

The joint probability model of the observations (documents and words) with known topics

- parameters
 - $p(t_l)$: probability of topic t_l
 - $p(d_i|t_l)$: probability of document d_i given topic t_l
 - $p(w_j|t_l)$: probability of word w_j given topic t_l
- by conditional probability, $p(d_i, w_j) = p(d_i)p(w_j|d_i)$ and $p(w_j, t_l|d_i) = p(w_j|t_l, d_i)p(t_l|d_i)$
- by conditional independence,

$$\Rightarrow p(w_j|d_i) = \sum_{l=1}^{k} p(w_j, t_l|d_i) = \sum_{l=1}^{k} p(w_j|t_l) p(t_l|d_i)$$

• by reparameterization, $p(d_i, w_j) = \sum_{l=1}^k p(t_l) p(w_j | t_l) p(d_i | t_l)$

log-likelihood function

$$\ell = \log \prod_{i=1}^{n} \prod_{j=1}^{m} p(d_i, w_j)^{n(w_j, d_i)}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} n(w_j, d_i) \log \sum_{l=1}^{k} p(t_l) p(w_j | t_l) p(d_i | t_l)$$

log-likelihood function

$$\ell = \log \prod_{i=1}^{n} \prod_{j=1}^{m} p(d_i, w_j)^{n(w_j, d_i)}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} n(w_j, d_i) \log \sum_{l=1}^{k} p(t_l) p(w_j | t_l) p(d_i | t_l)$$

• EM algorithm: introduce hidden variables $r(t_l, w_j, d_i) = 1$, if topic t_l is chosen to generated word w_l in document d_i

$$\ell_c = \sum_{i=1}^n \sum_{j=1}^m n(w_j, d_i) \sum_{l=1}^k r(t_l, w_j, d_i) \left[\log p(t_l) + \log p(w_j | t_l) + \log p(d_i | t_l) \right]$$

- EM algorithm
 - E-step

$$p(t_l|w_j, d_i) = \frac{p(t_l)p(d_i|t_l)p(w_j|t_l)}{\sum_{l=1}^{k} p(t_{l'})p(d_i|t_{l'})p(w_j|t_{l'})}$$

M-step

$$p(t_l) \propto \sum_{i=1}^{n} \sum_{j=1}^{m} n(w_j, d_i) p(t_l | w_j, d_i)$$

$$p(w_j | t_l) \propto \sum_{i=1}^{n} n(w_j, d_i) p(t_l | w_j, d_i)$$

$$p(d_i | t_l) \propto \sum_{i=1}^{m} n(w_j, d_i) p(t_l | w_j, d_i)$$