

Data Preprocessing -Data Integration and Transformation-

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

Data Preprocessing

- About data
- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation
- Summary

Data Integration

- Data integration(数据集成):
 - ◆ Combines data from multiple sources into a coherent store
- Schema integration (schema集成)
 - Integrate raw data from different sources
 - Entity identification problem: identify real world entities from multiple data sources, e.g., A.cust-id ≡ B.cust-#
- Detecting and resolving data value conflicts (值冲突)
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

3

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - ◆ *Object identification*: The same attribute or object may have different names in different databases
 - ◆ *Derivable data (导出性数据):* One attribute may be a "derived" attribute in another table, e.g., annual revenue (年度税收)
- Redundant attributes may be able to be detected by correlation analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Handling Redundancy in Data Integration Cover. 25-25-25-25-15 IN STANDARD THE STA

Correlation Analysis (Numerical Data)

 Correlation coefficient (also called Pearson's product moment coefficient) (积差相 关系数)

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum (AB) - n \overline{AB}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \bar{A} and \bar{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(AB)$ is the sum of the AB cross-product.

- \circ If $r_{A,B} > 0$, A and B are positively correlated (A' s values increase as B' s. The higher, the stronger correlation.)
- $r_{A,B} = 0$: independent; $r_{A,B} < 0$: negatively correlated

Correlation Analysis (Categorical Data)

● X² (chi-square , 卡方检验) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- - # of hospitals and # of car-theft in a city are correlated
 - ◆ Both are causally linked to the third variable: population (人口)

7

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 X2 (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like_science_fiction (科幻小说) and play_chess are correlated in the group

Data Transformation

- Smoothing (平滑): remove noise from data
- Aggregation (聚合): summarization, data cube construction
- Generalization (泛化): concept hierarchy climbing
- Normalization (规范化): scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones

9

Data Transformation: Normalization

• min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalization (μ: mean, σ: standard deviation)

$$v' = \frac{v - \mu_A}{\sigma_A}$$

• normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 ,where j is the smallest integer such that Max(|v'|) < 1

