Simple LTC Good LDPC Codes

David Ponarovsky

January 30, 2023

Abstract

We propose a new simple construction based on Tanner Codes, which yields a good LDPC testable code.

ex1. Find a simple description of the work-function algorithm in the case of uniform metric space.

ex2. Consider the following 3-point metric space, w(a,b)=1 and $w(\cdot,c)=M$. The initial configuration is $\{b,c\}$ (2 servers). Show that randomized competitive ratio, for some value of M is $>H_2=1+\frac{1}{2}$.

Solution. Define the following distribution:

$$\tilde{\sigma} = \begin{cases} (ab)^{\frac{M}{3}} & \text{w.p } \frac{1}{2} \\ (ab)^{\frac{M^{100}}{3}} & \text{w.p } \frac{1}{2} \end{cases}$$

ex3. Show that randomized marking algorithm cannot be c-competitive against the adaptive online adversary, for c = o(k).

Solution. Assume by contrdiction that there is a constant c>1, and a randomizded algorithm which is an c-competitive in the adadptive online setting. According to theroem that shown at class, If there is exists an α competitive alg for an online problem in the non-adaptive setting and inadttion there exists a β competitive algorithm for the same problem against adaptive online adversary, then it holds that there exists an algorithm which is $\alpha\beta$ competitive against an offline adaptive adversary. Combine the fact that randomized con't help agaisnt such adversary we obtain that the deterministic comppetitive ratio is lower than $\alpha\beta$. As we know that a k-lowerbound for the determinstic regime and also a log k soultion using randomizion agaisnt a non-adaptive adversary, we obtains that

$$\alpha \beta \ge k$$

$$\Rightarrow \frac{k}{c} \log k \ge k$$

But for any $k \leq \log 2^c$ we obtain the oppsite direction. Which mean that there is a range of valids k that obtains a better ratio than the lower bound. And that is a contridiction.

 ${\bf ex4}$ - Ski Rental. At each step, the adversary decides either continue or stop. Stop terminate the game. If it continues, the online algorithm decides, etiher rent or buy. Rent costs 1 Buy costs M>1. Deisgn a primal-dual randomized online ski-rental algorithm with better than 2 competitive ratio.

ex5. Prove Yao's minimax principle.

$$\begin{split} &\forall \text{rand. alg} \ \exists \ \sigma \\ & \mathbf{E} \left[c_{\text{alg}} \left(\sigma \right) : \text{alg} \sim \tilde{\text{alg}} \right] \geq c \cdot c_{\text{base}} \left(\sigma \right) \\ & \Leftrightarrow \exists \ \text{rand. } \tilde{\sigma} \forall \text{alg} \\ & \mathbf{E} \left[c_{\text{alg}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] \geq c \mathbf{E} \left[c_{\text{base}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] \end{split}$$

Solution. First direction, assume through contriduction that there exists an determenstic algorithm such that for all distrubtons $\tilde{\sigma}$:

$$\mathbf{E}\left[c_{\mathrm{alg}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]< c\mathbf{E}\left[c_{\mathrm{base}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]$$

And that holds, in paritcular, for distribution $\tilde{\sigma}$ which suportted by a single σ . Hence, by the fact that any deterministic algorithm is also a randomized algorithm, set it to be alg and that imdetly yeilds a contrudication. It left to show the seconed direaction, By the monotonic preporty of random variables we have that for any distribution $\tilde{\sigma}$:

$$\begin{split} \mathbf{E} & \left[\mathbf{E} \left[c_{\mathrm{alg}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] : \mathrm{alg} \sim \tilde{\mathrm{alg}} \right] \\ & \geq c \cdot \mathbf{E} \left[\mathbf{E} \left[c_{\mathrm{base}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] : \mathrm{alg} \sim \tilde{\mathrm{alg}} \right] \\ \mathbf{E} & \left[\mathbf{E} \left[c_{\mathrm{alg}} \left(\sigma \right) : \mathrm{alg} \sim \tilde{\mathrm{alg}} \right] : \sigma \sim \tilde{\sigma} \right] \\ & \geq c \cdot \mathbf{E} \left[\mathbf{E} \left[c_{\mathrm{base}} \left(\sigma \right) : \mathrm{alg} \sim \tilde{\mathrm{alg}} \right] : \sigma \sim \tilde{\sigma} \right] \\ \mathbf{E} & \left[\mathbf{E} \left[c_{\mathrm{alg}} \left(\sigma \right) : \mathrm{alg} \sim \tilde{\mathrm{alg}} \right] : \sigma \sim \tilde{\sigma} \right] \\ & \geq c \cdot \mathbf{E} \left[c_{\mathrm{base}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] \end{split}$$

And by the fact that inequality of excrection between random varibles follows an existness of atomic event on which the inequality holds, we obtain that there is must exists at least a single σ such that:

$$\mathbf{E}\left[\mathbf{E}\left[c_{\mathrm{alg}}\left(\sigma\right):\mathrm{alg}\sim\tilde{\mathrm{alg}}\right]:\sigma\sim\tilde{\sigma}\right]\geq c\cdot\mathbf{E}\left[c_{\mathrm{base}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]$$

And that ends the proof.