UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MEK 3220/4220 — Viskøse væsker

og elastiske stoffer.

Eksamensdag: Tirsdag 2. desember 2008.

Tid for eksamen: 14.30 - 17.30.

Oppgavesettet er på 3 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Rottmann: Matematische Formel-

samlung, godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er tilsammen 10 delspørsmål. Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for fullstendig svar, 0 for blank). Maksimal oppnåelig poengsum er 100. Kontroller at du ikke overser noen av spørsmålene.

Oppgave 1.

I et kartesisk koordinatsystem x,y,z er spenningstensoren gitt ved

$$\mathcal{P} = \begin{cases} 0 & \tau_1 & \tau_2 \\ \tau_1 & 0 & 0 \\ \tau_2 & 0 & 0 \end{cases}$$

hvor τ_1 og τ_2 er konstanter.

- a) Finn spenning på en flate med normalvektor $n = \{1, 0, 1\}/\sqrt{2}$.
- b) Finn normalspenningen og tangensialspenningen (størrelse og retning) på den samme flaten.
- c) Vi antar et isotropt elastisk medium som følger Hookes lov. Bestem komponentene i tøyningstensoren $\{\epsilon_{ij}\}$ som tilsvarer den gitte spenningstensoren.

(Fortsettes side 2.)

Oppgave 2.

To homogene elastiske lag (lag 1 og lag 2) henholdsvis med tetthet ρ_1 og ρ_2 og Lamés elastisitetsparametre λ_1, μ_1 og λ_2, μ_2 grense inn mot hverandre langs en plan skilleflate (z-aksen) hvor lagene henger sammen. Det er ingen volumkrefter.

Vi skal regne med to-dimensjonale forskyvninger i x,z planet og setter forskyvningsvektoren

$$\boldsymbol{u} = \{0, u_z(x, t)\}$$

hvor $u_z(x,t)$ er z-komponenten av forskyvningsvektoren.

a) Vis at $u_z(x,t)$ oppfyller en bølgelikning av formen

$$\frac{\partial^2 u_z}{\partial t^2} = c^2 \frac{\partial^2 u_z}{\partial r^2}$$

og bestem konstanten c.

b) Vis at i lag 1 kan det forplante seg bølger med forskyvningsfelt

$$u_z(x,t) = I\sin(k_1x - \omega t)$$

inn mot skilleflaten, hvor I er amplituden, k_1 er bølgetallet og ω er vinkelhastigheten. Bestem k_1 når ω er gitt. Skisser forskyvningsfeltet. Hva kaller vi en slik bølge?

- c) Sett opp tilsvarende uttrykk for den reflekterte og transmitterte bølge. La R og T henholdsvis betegne amplituden for disse to bølgene. Bestem bølgetallet for bølgene når vinkelhastigheten ω er gitt.
- d) Formuler randbetingelsene ved skilleflaten og finn R og T uttrykt ved I. Bestem også refleksjonskoeffisienten.

(Fortsettes side 3.)

Oppgave 3.

Vi betrakter to-dimensjonal rettlinjet og stasjonær strøm av en homogen inkompressibel viskøs væske mellom to parallelle plan i avstand h fra hverandre. Helningsvinkelen i forhold til horisontalen er θ . Strømmen beskrives i et aksekors x,z som er orientert slik som figuren viser. Strømmen er drevet av tyngdens akselerasjon g og en konstant trykkgradient i x-retning $\frac{\partial p}{\partial x} = -\beta$ hvor p er trykket i væsken.

Væskens tetthet er ρ og viskositetskoeffisienten er $\mu = \rho \nu$. Varmediffusiviteten i væsken er κ og den spesifike varmekapasiteten er c. Vi antar at hastighetsfeltet er gitt ved $\mathbf{v} = u(z)\mathbf{i}$, hvor \mathbf{i} er enhetsvektoren i x-retning.

- a) Bestem hastighetsprofilen u=u(z) og trykket i væsken når trykket i origo er p_0 .
- b) Finn energidissipasjonen $\Delta=2\mu\dot{\varepsilon}_{ij}^2$, pr. volumenhet og tidsenhet i et vilkårlig punkt i væsken.
- c) Sett opp varmetransportlikningen for væsken. Vi antar at energidissipasjonen er eneste varmekilde. Bestem temperaturen T=T(z) når begge sideveggene har temperatur T_0 .

SLUTT