Data Mining and Business Intelligence

Lecture 9: ARIMA Models

Jing Peng
University of Connecticut

3/26/20

WebEx Session

- Client: https://www.webex.com/downloads.html
- Link for Meeting Room:
 - https://uconn-cmr.webex.com/uconn-cmr/j.php?MTID=m14752071b12dc799faa9b174360ba233
 - Join by phone: Dial +1-415-655-0002 and enter access code: 613 027 204
- Best practice: to ensure you can hear me, everyone will be mute on entrance
- The session will be automatically recorded

Tutorial on How to Use WebEx

- Enter your name while join the meeting
- Using Chat to ask questions
- Polling
- Raising your hand
- Switch to (or back from) Full screen (Alt+Enter)
- If you have difficulty connecting to WebEx during the live session, email Hao

Removing Trend and Seasonality

Two Types of Trend (Seasonality)

- Deterministic: a mathematical function of time
 - Linear, quadratic, logarithmic, exponential (e.g., $Y_t = \alpha t + \varepsilon_t$)
 - How to model: mathematical functions

- Stochastic: future values depend on past values plus error
 - e.g., Random walk with drift $(Y_t = \theta + Y_{t-1} + \varepsilon_t)$
 - How to model: first (seasonal) difference

Deterministic Trend

Deterministic Trend

Stochastic Trend

Random Walk

Random Walk with Drift

Deterministic vs. Stochastic Trends

	Deterministic	Stochastic
Exemplary Model	$y_t = \alpha t + \varepsilon_t$	$y_t = \alpha + y_{t-1} + \varepsilon_t$
Mean	$E[y_t] = \alpha t$	$E[y_t] = \alpha t$
Variance	$Var(y_t) = \sigma^2$	$Var(y_t) = t\sigma^2$

Read/Watch more:

https://www.youtube.com/watch?v=yCM6N8sRtPY

https://www.youtube.com/watch?v=ouahL4HbwBE

https://stats.stackexchange.com/questions/159650/why-does-the-variance-of-the-random-walk-increase https://www.quora.com/ls-a-random-walk-the-same-thing-as-a-non-stationary-time-series

How to Model Deterministic Trend?

• Add a deterministic trend component as a regressor into the model

How to Remove Stochastic Trend?

- First difference:
 - Random walk $(Y_t Y_{t-1} = \varepsilon_t)$
 - Random walk with drift $(Y_t Y_{t-1} = \theta + \varepsilon_t)$

- First difference can also remove LINEAR deterministic trend
 - $y_t = \alpha t + \varepsilon_t \rightarrow y_t y_{t-1} = \alpha + \varepsilon_t \varepsilon_{t-1}$
 - The difference of two independent normal variables is still normal

Frist Difference on Straight Line

Removing Deterministic Seasonality

Seasonal Dummy Variables

$$Y_{t} = \beta_{JAN} I_{JAN} + \beta_{FEB} I_{FEB} + \dots + \beta_{DEC} I_{DEC}$$
$$\beta_{M} = \text{effect of month } M$$

Trigonometric Functions (not directly supported by TSFS)

Sine Wave

$$X_t = \sin\left(\frac{2\pi t}{S}\right)$$

Seasonal Difference

• Can account for both stochastic and deterministic seasonality

$$\Delta_{\mathsf{k}} = \mathsf{C}$$

Takeaway

- Stochastic trend increases the variance, whereas deterministic trend changes the mean instead of the variance
- Deterministic trend component cannot address stochastic trend
- First difference cannot address nonlinear deterministic trend
- A time series may exhibit both deterministic and stochastic trend

$$Y_t = \theta + \alpha t + Y_{t-1} + \varepsilon_t$$

Diagnosing Trend and Seasonality through

- √ Time series plot
- ✓ Autocorrelation functions
- ✓ Unit/Seasonal root test

Demos on two datasets

Takeaway: Diagnosing Trend

- A time series having a trend component usually exhibits the following
 - a time series plot that is trending up, down, or in a deterministic fashion
 - a highly significant ACF, PACF, and IACF at lag 1
 - an ACF with many significant lags decaying slowly from lag 1
 - an ACF with few significant values after first differencing is applied
 - unit root tests that are not significant but become significant when a first difference is applied

Takeaway: Diagnosing Seasonality

- A time series with a seasonal component having a period S usually exhibits the following:
 - a time series plot that has repetitive behavior every S time units
 - significant ACF, PACF, and IACF values at lag S
 - an ACF with significant values at lags that are multiples of S
 - seasonal root tests that are not significant but become significant when a difference of order S is applied

ARIMA Models

Autoregressive (AR) Model

• AR (1): autoregressive model of order 1

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t$$

• AR(p): autoregressive model of order p

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$

Moving Average (MA) Model

• MA (1): moving average model of order 1

$$Y_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

MA(q): moving average model of order q

$$Y_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

Autoregressive Integrated Moving Average (ARIMA)

ARMA

$$Y_t = \theta_0 + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- ARIMA: replace Y_t above with $\Delta_d(Y_t)$
- ARIMA(p, d, q)
 - p: order of autoregressive (AR)
 - d: order of differencing (I)
 - q: order of moving average (MA)

ARIMA Encapsulates Some ESMs as Special Cases

- ARIMA(0,1,0) = random walk
- ARIMA(0,1,1) without constant = simple exponential smoothing
- ARIMA (0,2,2) without constant = linear (Holt) exponential smoothing

https://people.duke.edu/~rnau/411arim.htm

Identifying AR and MA Models

Portfolio of Shapes — AR(p) Model

Portfolio of Shapes — AR(p) Model

Identifying an AR(p) Model

- The PACF and IACF are important in identifying the order of an AR model, namely value of p
- The highest lag of the PACF values or IACF values that are significantly different from zero suggest the appropriate value of p
- If PACF and IACF suggest different p, consider the larger one

Portfolio of Shapes — MA(q) Model

Portfolio of Shapes — MA(q) Model

Identifying an MA(q) Model

- The ACF is important in identifying the order of an MA model, namely the value of q
- The highest lag of the ACF values that is significantly different from zero suggests the appropriate value of q

Theoretical Patterns of ACF and PACF

Type of Model	Typical Pattern of ACF	Typical Pattern of PACF
AR (<i>p</i>)	Decays exponentially or with damped sine wave pattern or both	Cut-off after lags p
MA (<i>q</i>)	Cut-off after lags q	Declines exponentially
ARMA (<i>p,q</i>)	Exponential decay	Exponential decay

Source: http://slideplayer.com/slide/1507028/

Identifying Orders of ARMA model

Identifying ARIMA Models

Box-Jenkins Modeling Methodology

Identify

Determine ARIMA orders p and q using ACF, PACF, and the IACF. Determine d based on Unit Root Test

Estimate

Fit the ARIMA(p,d,q) model and assess the fit of the model.

Forecast

Produce forecasts using the best ARIMA model that passes assessment.

ARIMA(p,d,q) Model Selection

- Assumes series is stationary. If not, apply first difference first
- Find q such that ACF(q) falls outside confidence limits and ACF(k) falls inside confidence limits for all k>q.
- Find p such that PACF(p) / IACF(p) falls outside confidence limits and PACF(k) / IACF(k) falls inside confidence limits for all k > p.

ARMA(p,d,q) Model Selection

- Determine all ordered pairs (j,k) such that $0 \le j \le p$ and $0 \le k \le q$.
- For each ordered pair (j,k) found in step 4, fit an ARIMA(j,d,k) model.
- For all of the models fit in step 5, select the model with the smallest values of RMSE on the holdout sample or AIC or SBC on the fit sample.

Forecasting Steps

- Refit the best model on the entire data set
- Verify that the model parameters and forecast have not changed substantially
- Make sure that the residuals of the model look reasonable (not necessarily perfect)

Application

Identifying ARMA(p, q) models

Chapter 3 p51-58

Datasets: Groceries

Summary of Identification Demonstration

Toothpaste series

ACF implies $q \le 1$, PACF suggest $p \le 1$, IACF suggest $p \le 2$

Peanut butter series

ACF implies q <= 1 PACF and IACF p <= 1, IACF suggest either p <= 3, p = (1,3) or q = 2 because of sine-wave decay pattern.

• Jelly series

ACF implies q <= 1, PACF and IACF imply p <= 2

Estimation of candidate models

Chapter 3 p62-87

Datasets: Groceries

- → Set Ranges (13 weeks holdout)
- → Identify p and q (done)
- → Fit ARIMA models
- → Examine model performance, residuals, parameters and fit stats
- → View forecasts

Generate forecast based on the best model

Chapter 3 p90-101

Datasets: Groceries

Reset Ranges → Duplicate best model → Examine changes in model parameters and model residuals → Save Predictions

Saving Predictions

Save Predictions

Seasonal ARIMA Model

Seasonal ARIMA Model

$ARIMA(p,d,q)(P,D,Q)_S$

- The p, d, and q are the orders of the nonseasonal terms of the model.
- P is the order of the seasonal autoregressive terms.
- Q is the order of the seasonal moving average terms.
- D is the order of the seasonal difference (rarely goes above 1).
- *S* the length of the seasonal period.

In practice, you may try (P=0,Q=0),(P=1,Q=0), or (P=0, Q=1), but rarely
 (P=1,Q=1)

Box-Jenkins Modeling Methodology

Identify

Determine ARIMA orders p and q using ACF, PACF, and the IACF. Determine d/D based on Unit/Seasonal Root Test

Estimate

Fit the ARIMA(p,d,q)(P,D,Q)_s model and assess the fit of the model.

Forecast

Produce forecasts using the best ARIMA model that passes assessment.

Estimate a seasonal ARIMA model for Airline data

Chapter 4 p52-83

Dataset: DOTAIR9498

Further Readings

- Forecasting Chapters 3 & 4
- Exercise: replicate the in-class demo on your own
- Time series ARIMA models using Stata/R/SAS: video
- Seasonal ARIMA models: https://www.otexts.org/fpp/8/9

Notations for ARIMA models (optional)

Previous parametrization of ARIMA(p, d, q)

$$\Delta_d(Y_t) = \theta_0 + \phi_1 \Delta_d(Y_{t-1}) + \dots + \phi_p \Delta_d(Y_{t-p}) + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

An alternative and more common parametrization of ARIMA(p, d, q)

$$(1 - \phi_1 B - \dots - \phi_p B^p)(\Delta_d(Y_t) - \mu) = (1 + \theta_1 B + \dots + \theta_q B^q)\varepsilon_t$$

- Backshift Operator (B)
 - $BY_t = B(Y_t) = Y_{t-1}$
 - $B^k Y_t = Y_{t-k}$
 - $B^k \varepsilon_t = \varepsilon_{t-k}$
 - $\Delta_d(Y_t) = Y_t Y_{t-d} = (1 B^d)Y_t$
 - B(constant) = constant

Model Interpretation (optional)

STEELSHP: Steel Shipments Thousands of Net Tons ARMA(2.2)

			ARMA(2,2)		
Model Parameter	Estimate	Std. Error	Т	Prob> T	_
Intercept	6450	197.5803	32.6440	< .0001	
Moving Average, Lag 1	0.35362	0.4810	0.7352	0.4641	
Moving Average, Lag 2	-0.19271	0.2624	-0.7345	0.4646	
Autoregressive, Lag 1	0.71490	0.4837	1.4780	0.1429	
Autoregressive, Lag 2	0.09856	0.4423	0.2228	0.8242	
Model Variance (signa squared)	205925				
$(1 - \phi_1 B - \dots - \phi_n)$					
(1 - 0.71B - 0.10B)	$(Y_t - 6^2)(Y_t - 6^2)$	450) = (1	+ 0.35 <i>B</i>	– 0.19 <i>B</i>	$^{2})arepsilon_{t}$
$(Y_t - 6450) - 0.71(Y_{t-1} - 6$	450) - 0.1	$0(Y_{t-2}-64$	ϵ 50) = ε_t -	$+ 0.35 \varepsilon_{t-1}$	$-0.19\varepsilon_{t-2}$

Examples of Seasonal ARIMA Models (optional)

ARIMA(0,0,0)(1,1,1)₁₂

$$(1 - \Phi_1 B^{12})(1 - B^{12})(Y_t - \mu) = (1 - \Theta_1 B^{12})\varepsilon_t$$

 $ARIMA(1,1,1)(1,1,1)_{12}$

$$(1 - \phi_1 B)(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})(Y_t - \mu) = (1 - \theta_1 B)(1 - \Theta_1 B^{12})\varepsilon_t$$