# Mathematics and numerics for data assimilation and state estimation – Lecture 14





Summer semester 2020

### Overview

1 Filtering in continuous state-space

2 The Kalman filter

## Summary of lecture 13

■ In additive Gaussian noise setting (both for dynamics and observations), smoothing density for  $V_{0:J}|Y_{1:J}=y_{1:J}$ :

$$\pi(v_{0:J}|y_{1:J}) = \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{j=1}^{J} |h(v_j) - y_j|_{\Gamma}^2 - \frac{1}{2} |v_0 - m_0|_{C_0}^2 - \frac{1}{2} \sum_{j=0}^{J-1} |v_{j+1} - \Psi(v_j)|_{\Sigma}^2\right)$$

 Stability of the density wrt perturbations (under some assumptions on the dynamics),

$$d_{H}(\pi_{V_{0:J}\mid Y_{1:J}}(\cdot\mid y_{1:J}), \pi_{V_{0:J}\mid Y_{1:J}}(\cdot\mid \tilde{y}_{1:J})) \leq c \sqrt{\sum_{j=1}^{J} |y_{j} - \tilde{y}_{j}|^{2}}$$

■ For deterministic dynamics with uncertain initial condition, we derived a smoothing density for  $V_0|Y_{1:J} = y_{1:J}$ .

### Overview

1 Filtering in continuous state-space

2 The Kalman filter

## Dynamics and observation setting

Continuous state-space dynamics: A mapping  $\Psi \in C(\mathbb{R}^d, \mathbb{R}^d)$  is associated to the dynamics

 $V_{j+1} = \Psi(V_i) + \xi_i, \quad j = 0, 1, \dots$ 

(1)

(2)

$$V_0 \sim N(m_0, C_0)$$

with an iid sequence  $\xi_i \sim N(0, \Sigma)$ .

#### **Observations:**

$$Y_j = h(V_j) + \eta_j, \quad j = 1, 2, \ldots,$$

where  $h \in C(\mathbb{R}^d, \mathbb{R}^k)$  and iid sequence  $\eta_j \sim N(0, \Gamma)$ .

## Independence assumptions:

$$\{\eta_i\} \perp \{\xi_i\} \perp \{V_0\}$$

**Objective:** Derive iterative formulas for pdfs of  $V_n|Y_{1:n} = y_{1:n}$  and  $V_{n+1}|Y_{1:n} = y_{1:n}$  for n > 1.

## Filtering – the prediction step

**Setting:** At time  $n \ge 0$ , we have observations  $Y_{1:n} = y_{1:n}$  and we have computed  $\pi_{V_n|Y_{1:n}}(v_n|y_{1:n}) =: \pi(v_n|y_{1:n})$  (for n = 0, we mean by this  $\pi_{V_0}(v_0)$ ).

What is the distribution of  $V_{n+1}|Y_{1:n} = y_{1:n}$ ?

**Prediction:** By the law of total probability

$$\pi(v_{n+1}|y_{1:n}) =$$

$$= \int_{\mathbb{R}^d} \pi(v_{n+1}|v_n, y_{1:n}) \pi(v_n|y_{1:n}) dv_n$$

$$= \int_{\mathbb{R}^d} \pi(v_{n+1}|v_n) \pi(v_n|y_{1:n}) dv_n$$

The last step follows from  $\xi_n \perp \{Y_{1:n}\}$  and

$$V_{n+1}|(V_n = v_n, Y_{1:n} = y_{1:n}) = \Psi(V_n) + \xi_n|(V_n = v_n, Y_{1:n} = y_{1:n})$$
  
=  $\Psi(v_n) + \xi_n|(V_n = v_n, Y_{1:n} = y_{1:n})$   
=  $\Psi(v_n) + \xi_n|(V_n = v_n).$ 

## Filtering – the analysis step

**Setting:** At time n+1, we have the old observations  $Y_{1:n}=y_{1:n}$  and we have computed the prediction density  $\pi(v_{n+1}|y_{1:n})$ . Now we seek to assimilate the new observation  $Y_{n+1}=y_{n+1}$  into our state estimate.

What is the distribution of  $V_{n+1}|(Y_{1:n}=y_{1:n}, \frac{Y_{n+1}=y_{n+1}}{Y_{n+1}})$ ?

## Analysis step

$$\pi(v_{n+1}|y_{1:n}, y_{n+1}) = \frac{\pi(v_{n+1}, y_{n+1}|y_{1:n})}{\pi(y_{n+1}|y_{1:n})}$$

$$= \frac{\pi(y_{n+1}|v_{n+1}, y_{1:n})\pi(v_{n+1}|y_{1:n})}{\pi(y_{n+1}|y_{1:n})}$$

$$= \frac{\pi(y_{n+1}|v_{n+1})\pi(v_{n+1}|y_{1:n})}{\pi(y_{n+1}|y_{1:n})}$$

Here we used that  $\eta_{n+1} \perp \{Y_{1:n}\}$ :

Here we used that 
$$\eta_{n+1} \perp \{ \eta_{1:n} \}$$

$$|Y_{n+1}|(V_{n+1}=v_{n+1},Y_{1:n}=y_{1:n})| = h(v_{n+1}) + \eta_{n+1}|(V_{n+1}=v_{n+1},Y_{1:n}=y_{1:n})$$

$$= h(v_{n+1}) + \eta_{n+1}|(V_{n+1} = v_{n+1})$$

## Summary filtering steps

#### **Prediction step:**

$$\pi(v_{n+1}|y_{1:n}) = \int_{\mathbb{R}^d} \pi(v_{n+1}|v_n)\pi(v_n|y_{1:n}) dv_n$$

#### Analysis step:

$$\pi(v_{n+1}|y_{1:n+1}) = \frac{\pi(y_{n+1}|v_{n+1})\pi(v_{n+1}|y_{1:n})}{\pi(y_{n+1}|y_{1:n})}$$

#### Remarks:

 $\blacksquare \pi(v_{n+1}|v_n)$  is the transition kernel density :

$$\pi(v_{n+1}|v_n)$$
 " = "prob density of going from  $v_n$  to  $v_{n+1}$ 

■ Generally, it is not easy to derive usable closed-form filtering densities from the above steps, and they are rather a starting point for approximation filtering algorithms.

## Relationship between smoothing and filtering pdfs

The derived equations are exact both for

- the updated filtering pdf  $\pi_{V_n|Y_{1:n}}(v_n|y_{1:n})$
- and for the smoothing pdf  $\pi_{V_{0:n}|Y_{1:n}}(v_{0:n}|y_{1:n})$ .

Consequently,

$$\pi_{V_n|Y_{1:n}}(v_n|y_{1:n}) = \int_{\mathbb{R}^d} \dots \int_{\mathbb{R}^d} \pi_{V_{0:n}|Y_{1:n}}(v_{0:n}|y_{1:n}) dv_0 \dots dv_{n-1}.$$
 (3)

Explicit computations of either of them is often complicated when  $\Psi$  and/or h are nonlinear, following from their effects on the pdf

$$\pi(v_{0:n}|y_{1:n}) = \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{j=1}^{n} |h(v_j) - y_j|_{\Gamma}^2 - \frac{1}{2} |v_0 - m_0|_{C_0}^2 - \frac{1}{2} \sum_{j=0}^{n-1} |v_{j+1} - \Psi(v_j)|_{\Sigma}^2\right)$$

## Well-posedness of the filter pdf

#### Corollary 1 (SST 7.7)

Fix  $n \in \mathbb{N}$ , a pair of observation sequences  $y_{1:n}, \tilde{y}_{1:n} \in \mathbb{R}^{k \times n}$ , and assume that the dynamics  $V_i$  satisfies

$$\mathbb{E}\left|\left|\sum_{j=0}^n(1+|h(V_j)|^2)\right|\right|<\infty.$$

Then there exists a constant c>0 that depends on  $y_{1:n}$  and  $\tilde{y}_{1:n}$  such that

$$d_{TV}(\pi_{V_n|Y_{1:n}}(\cdot|y_{1:n}),\pi_{V_n|Y_{1:n}}(\cdot|\tilde{y}_{1:n})) \leq c \sqrt{\sum_{j=1}^n |y_j - \tilde{y}_j|^2}$$

#### **Proof:**

We will use

$$d_{H}(\pi_{V_{1:n}|Y_{1:n}}(\cdot|y_{1:J}), \pi_{V_{1:n}|Y_{1:n}}(\cdot|\tilde{y}_{1:J})) \leq c \sqrt{\sum_{j=1}^{n} |y_{j} - \tilde{y}_{j}|^{2}} \quad \text{(LSZ 2.15)}$$

and that  $d_{TV}(\hat{\pi}, \check{\pi}) \leq \sqrt{2} d_H(\hat{\pi}, \check{\pi})$  for any  $\hat{\pi}, \check{\pi} \in \mathcal{M}$ .

By definition

$$d_{TV}\left(\pi_{V_{n}|Y_{1:n}}(\cdot|y_{1:J}), \pi_{V_{n}|Y_{1:n}}(\cdot|\tilde{y}_{1:J})\right) = \frac{1}{2} \int_{\mathbb{R}^{d}} \left|\pi(v_{n}|y_{1:n}) - \pi(v_{n}|\tilde{y}_{1:n})\right| dv_{n}$$

$$\stackrel{(3)}{=} \frac{1}{2} \int_{\mathbb{R}^{d}} \left|\int_{\mathbb{R}^{d}} \dots \int_{\mathbb{R}^{d}} \pi(v_{0:n}|y_{1:n}) - \pi(v_{0:n}|\tilde{y}_{1:n}) dv_{0} \dots dv_{n-1}\right| dv_{n}$$

$$\leq \frac{1}{2} \int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} \left| \pi(v_{0:n}|y_{1:n}) - \pi(v_{0:n}|\tilde{y}_{1:n}) \right| dv_0 \ldots dv_n$$

$$= d_{TV}\Big(\pi_{V_{0:n}|Y_{1:n}}(\cdot|y_{1:n}), \pi_{V_{0:n}|Y_{1:n}}(\cdot|\tilde{y}_{1:n})\Big)$$

$$\leq \sqrt{2} d_{H} \Big( \pi_{V_{0:n}|Y_{1:n}}(\cdot|y_{1:J}), \pi_{V_{0:n}|Y_{1:n}}(\cdot|\tilde{y}_{1:n}) \Big) \leq \sqrt{2} c |y_{1:n} - \tilde{y}_{1:n}|$$

### Overview

1 Filtering in continuous state-space

2 The Kalman filter

#### Kalman filter

- Is the filtering problem with additive Gaussian noise (all independent) and both linear dynamics  $\Psi(v) = Av$  and linear observations h(v) = Hv.
- In this setting the filtering pdfs will remain Gaussian for all times, and we obtain surprisingly simple recursive formulas the pdfs.
- Groundbreaking paper by Richard Kalman, "A new approach to linear filtering and prediction problems" J. Basic Engineering 1960, has, according to Google Scholar, been cited more than 33000 times.



## Applications in control theory

In many real application, the state estimation and state prediction of filtering is often combined with control

$$V_{j+1} = AV_j + Bu_j + \xi_j$$
 dynamics  $Y_j = HV_j + \eta_j$  observations,

where  $u_j$  belongs to set of admissible controls, e.g.,  $u_j \in \sigma(Y_{1:j})$ .

For example, the linear quadratic Gaussian control problem

$$\min_{u_n, u_{n+1}, \dots, u_N} \mathbb{E} \left[ V_N^T Q_0 V_N + \sum_{j=n}^N (V_j^T Q_1 V_j + u_j^T Q_2 u_j) \mid Y_{1:n} = y_{1:n} \right]$$

#### **Applications:**

 Guidance and navigation systems [autopilots, driveless cars, dynamical positioning in ships, Apollo program, missiles, . . . ]



- econometric time-series analysis and signal processing
- and seed of many approximate Gaussian filtering methods.



## The linear-Gaussian setting

We consider the **dynamics** on  $\mathbb{R}^d$ :

$$V_{j+1} = AV_j + \xi_j,$$
  $j = 0, 1, \dots$   
 $V_0 \sim N(m_0, C_0)$ 

with  $\xi_i \stackrel{iid}{\sim} N(0, \Sigma)$ , and the **observations** on  $\mathbb{R}^k$ :

$$Y_j = HV_j + \eta_j, \quad j = 1, 2, ...$$

with  $\eta_j \stackrel{iid}{\sim} N(0,\Gamma)$ .

Independence assuptions:  $V_0 \perp \{\xi_j\} \perp \{\eta_j\}$ .

**Objective:** Show that, under assumption  $C_0, \Sigma, \Gamma > 0$ ,

$$V_n|Y_{1:n} = y_{1:n} \sim N(m_n, C_n), \quad V_{n+1}|Y_{1:n} = y_{1:n} \sim N(\hat{m}_{n+1}, \hat{C}_{n+1})$$

for all n > 0, and describe recursive formulas for evolution of pdfs

$$(m_n, C_n) \mapsto (\hat{m}_{n+1}, \hat{C}_{n+1})$$
 and  $(\hat{m}_{n+1}, \hat{C}_{n+1}, y_{n+1}) \mapsto (m_{n+1}, C_{n+1}).$ 

## Gaussianity of the filtering pdfs

**Property 1:** The dynamics  $V_{j+1} = AV_j + \xi_j$  is Gaussian for any  $j \ge 0$ .

**Motivation:** Assuming  $V_j$  is Gaussian,  $AV_j + \xi_j$  is a linear combination of independent Gaussians, which again is a Gaussian (cf. LSZ 1.5 and Ubung 6). Holds by induction, since  $V_0$  is Gaussian.

**Property 2:** If  $V_j | Y_{1:j} = y_{1:j} \sim N(m_j, C_j)$ , then  $V_{j+1} | Y_{1:j} = y_{1:j} \sim N(\hat{m}_{j+1}, \hat{C}_{j+1})$  for computable moments with  $\hat{C}_{j+1} > 0$ .

**Motivation:** Writing  $Z_j := V_j | (Y_{1:j} = y_{1:j})$ , observe that

$$V_{j+1}|(Y_{1:j} = y_{1:j}) = AV_j + \xi_j|(Y_{1:j} = y_{1:j})$$
  
=  $A(V_j|(Y_{1:j} = y_{1:j})) + \xi_j$   
=  $AZ_j + \xi_j$ 

Hence,  $V_{j+1}|(Y_{1:j}=y_{1:j})$  is linear combination of independent Gaussians and thus itself Gaussian. Moreover,

$$\hat{m}_{j+1} = \mathbb{E} [V_{j+1} | Y_{1:j} = y_{1:j}] 
= \mathbb{E} [AV_j + \xi_j | Y_{1:j} = y_{1:j}] 
= A\mathbb{E} [V_j | Y_{1:j} = y_{1:j}] + \mathbb{E} [\xi_j] 
= Am_j,$$

and

$$\hat{C}_{j+1} = \mathbb{E}\left[ (V_{j+1} - \hat{m}_{j+1})(V_{j+1} - \hat{m}_{j+1})^T | Y_{1:j} = y_{1:j} \right]$$

$$= \mathbb{E}\left[ (AV_j + \xi_j - Am_j)(AV_j + \xi_j - Am_j)^T | Y_{1:j} = y_{1:j} \right]$$

$$= \mathbb{E}\left[ A(V_j - m_j)(V_j - m_j)^T A^T | Y_{1:j} = y_{1:j} \right]$$

$$+ \mathbb{E}\left[ \xi_j \right] \mathbb{E}\left[ (V_j - m_j)^T A^T | Y_{1:j} = y_{1:j} \right]$$

$$+ \mathbb{E}\left[ A(V_j - m_j) | Y_{1:j} = y_{1:j} \right] \mathbb{E}\left[ \xi_j^T \right] + \mathbb{E}\left[ \xi_j \xi_j^T \right]$$

$$= A\mathbb{E}\left[ (V_j - m_j)(V_j - m_j)^T | Y_{1:j} = y_{1:j} \right] A^T + \Sigma$$

$$= AC_i A^T + \Sigma.$$

**Property 3:** If  $V_{j+1}|Y_{1:j}=y_{1:j}\sim N(\hat{m}_{j+1},\hat{C}_{j+1})$  with  $\hat{C}_{j+1}>0$ , then for any  $y_{j+1}\in\mathbb{R}^k$  we have that  $V_{j+1}|Y_{1:j+1}=y_{1:j+1}\sim N(m_{j+1},C_{j+1})$  and the moments are computable.

Motivation: By the previous derivations and using that

$$\pi(v_{j+1}|y_{1:j+1}) \propto \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|y_{1:j})$$

$$\propto \exp\left(-\frac{1}{2}|y_{j+1} - Hv_{j+1}|_{\Gamma}^{2} - \frac{1}{2}|v_{j+1} - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^{2}\right)$$
(4)

where we used that

$$Y_{j+1}|V_{j+1} = v_{j+1} = Hv_{j+1} + \eta_j \sim N(Hv_{j+1}, \Gamma)$$

Making the ansatz  $V_{j+1}|Y_{1:j+1}=y_{1:j+1}\sim N(m_{j+1},C_{j+1})$  and equating same-order-term coefficients in the exponent of (4) the exponent of our ansatz pdf

$$\pi(v_{j+1}|y_{1:j+1}) \propto \exp\left(-rac{1}{2}|v_{j+1}-m_{j+1}|^2_{C_{j+1}}
ight)$$

verifies the claim.

Moreover, equating quadratic terms yields

$$C_{j+1}^{-1} = \hat{C}_{j+1}^{-1} + H^T \Gamma^{-1} H$$
 (5)

and equating linear terms yields

$$C_{j+1}^{-1}m_{j+1} = \hat{C}_{j+1}^{-1}\hat{m}_{j+1} + H^T\Gamma^{-1}y_{j+1}$$

(For more details on equating terms, see similar argument in Lecture 10.)

## Consequence of these properties:

Given a sequence  $y_1, y_2, \ldots$ ,

■ Starting from  $V_0 \sim N(m_0, C_0)$  it follows by **Property 2** that  $V_1 \sim N(\hat{m}_1, \hat{C}_1)$  with

$$\hat{m}_1 = Am_0$$
 and  $\hat{C}_1 = AC_0A^T + \Sigma > 0$ , since  $\Sigma > 0$ 

■ Property 3 then implies that  $V_1|Y_1=y_1\sim N(m_1,C_1)$  with computable moments, where

$$C_1^{-1} = \hat{C}_1^{-1} + H^T \Gamma^{-1} H$$

is positive definite since  $\hat{C}_1, \Gamma > 0$ , and thus invertible.

- By induction,  $V_{n+1}|Y_{1:n} = y_{1:n} \sim N(\hat{m}_{n+1}, \hat{C}_{n+1})$  with  $\hat{C}_{n+1} > 0$
- and  $V_{n+1}|Y_{1:n+1}=y_{n+1}\sim N(m_{n+1},C_{n+1})$  for computable moments with

$$C_{n+1}^{-1} = \hat{C}_{n+1}^{-1} + H^T \Gamma^{-1} H$$

which is positive definite since  $\hat{C}_{n+1}$ ,  $\Gamma > 0$ , and thus invertible.

## Theorem 2 (LSZ 4.1)

For the linear-Gaussian filtering problem with  $C_0, \Sigma, \Gamma$ , it holds for any observation sequence  $y_1, y_2, \ldots$  and  $n \ge 1$  that  $V_n|Y_{1:n} = y_{1:n} \sim N(m_n, C_n)$  where

$$C_n^{-1} = \hat{C}_n^{-1} + H^\mathsf{T} \Gamma^{-1} H$$

is positive definite and thus invertible, and

$$C_n^{-1}m_n=\hat{C}_n^{-1}\hat{m}_n+H^T\Gamma^{-1}y_n.$$

To avoid dealing with the inverse of  $C_n$ , we apply the Woodbury matrix identity (LSZ 4.4) to obtain

$$C_n = (\hat{C}_n^{-1} + H^T \Gamma^{-1} H)^{-1} = \hat{C}_n - \underbrace{\hat{C}_n H^T (H \hat{C}_n H^T + \Gamma)^{-1}}_{=:K_n} H \hat{C}_n$$

$$=(I-K_nH)\hat{C}_n$$
 and

$$m_n = (I - K_n H)\hat{m}_n + K_n y_n$$
 (ubung 7)

## Kalman filtering iteration algorithm

Given any sequence  $y_1, y_2, ...$  and  $V_n | Y_{1:n} = y_{1:n} \sim N(m_n, C_n)$  the next-time filtering distributions are iteratively determined by

#### Prediction

$$\hat{m}_{n+1} = Am_n$$

$$\hat{C}_{n+1} = AC_nA^T + \Sigma$$

and

### Analysis

$$d_{n+1} = y_{n+1} - H\hat{m}_{n+1}$$
 innovation  $K_{n+1} = \hat{C}_{n+1}H^T(H\hat{C}_{n+1}H^T + \Gamma)^{-1}$  Kalman gain  $m_{n+1} = \hat{m}_{n+1} + K_{n+1}d_{n+1}$   $C_{n+1} = (I - K_{n+1}H)\hat{C}_{n+1}$ 

## Example

**Dynamics** on  $\mathbb{R}^2$ 

$$V_{j+1} = \begin{bmatrix} 1 & 0.1 \\ 0 & 1 \end{bmatrix} V_j + \xi_j,$$

$$V_0 \sim N\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1/4 & 0 \\ 0 & 1/4 \end{bmatrix}\right)$$

where  $\xi_j \stackrel{iid}{\sim} \mathcal{N}(0,\Sigma)$  with  $\Sigma = \begin{bmatrix} 0.01 & 0 \\ 0 & 0.1 \end{bmatrix}$ .

And **observations** on  $\mathbb{R}$ :

$$Y_j = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{I} V_j + \eta_j, \qquad \eta_j \stackrel{iid}{\sim} N(0, 1/4).$$

An observation sequence is generated from synthetic data:  $y_j = V_j^{\dagger}(\omega) + \eta_j(\omega)$ .

```
% Dynamics parameters
A = [1 \ 0.1; \ 0.1];
Sigma = [0.01 \ 0; \ 0 \ 0.1];
m0 = [0: 1]: C0 = [1/4 \ 0: 0 \ 1/4]:
%Observation parameters
H = [0 1]; Gamma = 1/4;
n = 40;
%generate observation sequence
rng(12009) %set seed for reproducibility
v = zeros(2, n+1); v = zeros(1,n);
v(:,1) = m0 + sqrt(C0) * randn(2,1);
for j=1:n
    v(:,j+1) = A*v(:,j) + sqrt(Sigma)*randn(2,1);
    y(j) = H*v(:,j+1) + sqrt(Gamma)*randn();
end
```

## Continuation of Matlab program

```
% Filtering distributions
m = zeros(2, n+1);
C = zeros(2,2,n+1);
m(:,1) = m0;
C(:.:.1) = C0:
for j=1:n
   %prediction step
   m(:,j+1) = A*m(:,j);
   C(:,:,j+1) = A*C(:,:,j)*A' + Sigma;
    %Analysis
    K
        = C(:,:,j+1)*H'/(H*C(:,:,j+1)*H' + Gamma);
   m(:,j+1) = m(:,j+1) + K*(y(j) - H*m(:,j+1));
    C(:,:,j+1) = (eye(2)-K*H)*C(:,:,j+1);
end
```

## Numerical results - noisy case



Figure: Left pair of figures: Evolution of first component, mean and "one standard deviation" grey uncertainty region in the right plot. Right pair of figures: Same for the second component, but here also including measurements.

What is a good error measure? Is it  $||m - v^{\dagger}||$  or  $||m_{n,2} - y_n||$ , or should we also rely on uncertainty regions?

#### Numerical results - "noiseless case"

We consider the same problem, but now with almost no noise, except for in  $V_{0,1}$ :

$$C_0 = \begin{bmatrix} 1/4 & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Gamma = 10^{-6}.$$



Note that uncertainty in first component remains for all times!

#### Numerical results - "noiseless case 2"

We consider the same problem, but now with almost no noise, except for in  $\Gamma$ :

$$C_0 = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Gamma = 1/4.$$



 $|\Gamma| \gg |C_n| \implies |K_n| \ll 1 \implies$  we do almost not take observations into account, and then the problem is almost deterministic.

#### Numerical results - "noiseless case 3"

We consider the same problem, but now with almost no noise, except for in  $\Sigma_{22}$ :

$$C_0 = egin{bmatrix} 10^{-6} & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Sigma = egin{bmatrix} 10^{-6} & 0 \\ 0 & 0.1 \end{bmatrix}, \qquad \Gamma = 10^{-6}.$$



Very accurate observations  $y_n \approx V_{n,2}$  means that by relying on the observations (and not the model) in  $V_{n,2}$ , we can track it very accurately.

#### Numerical results - "noiseless case 4"

We consider the same problem, but now with almost no noise, except for in  $\Sigma_{22}$  and  $\Gamma$ :

$$C_0 = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 0.1 \end{bmatrix}, \qquad \Gamma = 1/4$$



Both noisy dynamics and uncertain observations in the second component introduces uncertainty in both components.

#### Numerical results - "noiseless case 5"

We consider the same problem, but now with almost no noise, except for in  $\Sigma_{11}$ :

$$C_0 = \begin{bmatrix} 10^{-6} & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 0.1 & 0 \\ 0 & 10^{-6} \end{bmatrix}, \qquad \Gamma = 10^{-6}$$

Noisy dynamics in the first component, an unobserved component and does not influence the dynamics of the second component, will (almost) only introduce uncertainty in the first component.

## Summary

For a filtering problem

$$V_{j+1} = \Psi(V_j) + \xi_j$$
  
 $Y_j = h(V_j) + \eta_j, \quad j = 1, 2, ...,$ 

with Gaussian noise and initial condition and  $\Psi$  and h linear mappings, we have derived iterative formulas for the distribution  $V_n|Y_{1:n}=y_{1:n}$ .

- Theory extends straightforwardly to settings with time-dependence:  $\Psi_n(v) = A_n v$ ,  $h(v) = H_n v$ ,  $\Sigma_n$ ,  $\Gamma_n$ .
- Also possible to derive the moments for the Kalman smoother distribution  $V_{0:n}|Y_{1:n}=y_{1:n}$ , which also is a Gaussian, cf. LSZ 3.1
- Next time, we will look at Approximate Gaussian filters, which are extensions of Kalman filtering to nonlinear settings.
- No lectures or ubung during Pentecost week. Next lecture on Monday, June 8.