PDF Classifier

By: Matthew Wong

Motivation

- Businesses get hundreds of PDFs
- ☐ PDFs are sorted by employees
- ☐ Takes a lot of time and costs money
- ☐ Goal: Classify PDFs

Data

- 14 different classifications
 - Appraisal
 - Income
 - Insurance
- ~700 documents and uneven classes
- PDFs in each classification vary
 - ☐ Type: Forms, Scans, Faxes
 - Length

Text Extraction

- PDFminer
 - Works well for PDFs with text layers
 - Much quicker than PyOCR
- PyOCR (python wrapper for Tesseract)
 - Works well for most PDFs
 - ☐ Takes a long time

Different Models

Naive Bayes

Simpler NLP model

Worked well for some categories and not so great with others

TF-IDF

Average Cosine Similarity

Tried to capture signal from variation in documents of the same category

TF-IDF

kNN Cosine Similarity

Only looked at the n most similar documents

Cross Validated Accuracy

Used Stratified Cross Validation due to uneven classes

Naive Bayes

PDFminer:

~ 0.58

PDFminer and PyOCR:

~0.62

PyOCR:

~0.48

Average Cosine Similarity

PDFminer:

~ 0.67

PDFminer and PyOCR:

~0.75

PyOCR:

~0.67

kNN Cosine Similarity

PDFminer:

 ~ 0.73

PDFminer and PyOCR:

~0.84

PyOCR:

~0.83

Future Work

- Renaming/Filing documents automatically
- Extracting specific text strings
 - □ Name
 - Address
 - ☐ \$\$\$ Values

Thank You Questions?

Matthew Wong

mjwong1991@gmail.com

https://www.linkedin.com/in/matthew-j-wong/

https://github.com/Unrelenting