

ID Lithium-Ion Battery for Thermal Models

Introduction

This model is used within the Thermal Modeling of a Cylindrical Lithium-Ion Battery in 3D and Liquid-Cooled Lithium-Ion Battery Pack examples to create an average heat source in an active battery material domain. See the model documentation of these two examples.

Model Definition

The 1D model has many similarities to the Application Library example 1D Isothermal Lithium-Ion Battery. The differences are the addition of negative and positive current collector domains and the use of a liquid electrolyte (1.2 M LiPF₆ in 3:7 EC:EMC) which also introduces a separator to the model. The cell model consists of the following five domains:

- Negative current collector (Al, 7 μm)
- Negative porous electrode (Li_xC₆ MCMB, 55 μm)
- Separator (30 μm)
- Positive porous electrode (Li_vMn₂O₄, 55 μm)
- Positive current collector (Cu, 10 μm)

Application Library path: Battery_Design_Module/Thermal_Management/li_battery_1d_for_thermal_models

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click ID.
- 2 In the Select Physics tree, select Electrochemistry>Batteries>Lithium-Ion Battery (liion).
- 3 Click Add.
- 4 Click M Done.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- 3 Click Load from File.
- **4** Browse to the model's Application Libraries folder and double-click the file li_battery_thermal_parameters.txt.

GEOMETRY I

Interval I (iI)

- I In the Model Builder window, under Component I (compl) right-click Geometry I and choose Interval.
- 2 In the Settings window for Interval, locate the Interval section.
- 3 From the Specify list, choose Interval lengths.
- **4** In the table, enter the following settings:

Lengths (m)			
L_neg			
L_sep			
L_pos			

- 5 Click **Build All Objects**.
- **6** Click the **Zoom Extents** button in the **Graphics** toolbar.

DEFINITIONS

Negative Electrode

- I In the **Definitions** toolbar, click **\(\bigcap_{\text{a}} \) Explicit**.
- 2 Select Domain 1 only.
- 3 In the Settings window for Explicit, type Negative Electrode in the Label text field.

Positive Electrode

- I In the **Definitions** toolbar, click **\(\frac{1}{3} \) Explicit**.
- 2 Select Domain 3 only.
- 3 In the Settings window for Explicit, type Positive Electrode in the Label text field.

MATERIALS

This model uses battery materials available in the material library. Note: In the Materials node, cEeqref denotes the maximum lithium concentration in the active material.

ADD MATERIAL

- I In the Home toolbar, click **‡** Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Battery>Electrolytes>LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery).
- 4 Click Add to Component in the window toolbar.
- 5 In the tree, select Battery>Electrodes>Graphite, LixC6 MCMB (Negative, Li-ion Battery).
- **6** Click **Add to Component** in the window toolbar.
- 7 In the tree, select Battery>Electrodes>LMO, LiMn2O4 Spinel (Positive, Li-ion Battery).
- **8** Click **Add to Component** in the window toolbar.
- 9 In the Home toolbar, click 🙀 Add Material to close the Add Material window.

MATERIALS

LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat1)

- I In the Model Builder window, under Component I (compl)>Materials click LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (matl).
- 2 Select Domain 2 only.

Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat2)

- I In the Model Builder window, click Graphite, LixC6 MCMB (Negative, Liion Battery) (mat2).
- **2** Select Domain 1 only.

LMO, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat3)

- I In the Model Builder window, click LMO, LiMn204 Spinel (Positive, Li-ion Battery) (mat3).
- 2 Select Domain 3 only.

LITHIUM-ION BATTERY (LIION)

Separator I

- I In the Model Builder window, under Component I (compl)>Lithium-lon Battery (liion) click Separator I.
- 2 In the Settings window for Separator, locate the Porous Matrix Properties section.

- **3** In the ε_1 text field, type epsl_sep.
- 4 Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the f_1 text field, type eps1_sep^brug1_sep.
- **5** From the **Diffusion** list, choose **User defined**. In the $f_{\rm Dl}$ text field, type eps1 sep^brug1 sep.

Porous Electrode I

- I In the Physics toolbar, click Domains and choose Porous Electrode.
- 2 In the Settings window for Porous Electrode, locate the Electrolyte Properties section.
- 3 From the Electrolyte material list, choose LiPF6 in 3:7 EC:EMC (Liquid, Liion Battery) (mat1).
- 4 Locate the Domain Selection section. From the Selection list, choose Negative Electrode.
- **5** Locate the **Electrode Properties** section. In the σ_s text field, type sigmas_neg.
- 6 Locate the Porous Matrix Properties section. In the $\epsilon_{\rm s}$ text field, type epss_neg.
- 7 In the ε_1 text field, type epsl_neg.

Particle Intercalation 1

- I In the Model Builder window, click Particle Intercalation I.
- 2 In the Settings window for Particle Intercalation, locate the Material section.
- 3 From the Particle material list, choose Graphite, LixC6 MCMB (Negative, Liion Battery) (mat2).
- **4** Locate the **Species Settings** section. In the $c_{\rm s.init}$ text field, type cs0_neg.
- **5** Locate the **Particle Transport Properties** section. In the r_p text field, type rp_neg .
- 6 Click to expand the **Heat of Mixing** section. Select the **Include heat of mixing** check box.

Porous Electrode Reaction I

- I In the Model Builder window, click Porous Electrode Reaction I.
- 2 In the Settings window for Porous Electrode Reaction, locate the Material section.
- 3 From the Material list, choose Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat2).
- **4** Locate the **Electrode Kinetics** section. In the $i_{0,ref}(T)$ text field, type ioref_neg.

Porous Electrode I

In the Model Builder window, click Porous Electrode 1.

Porous Matrix Double Layer Capacitance I

In the **Physics** toolbar, click — Attributes and choose

Porous Matrix Double Layer Capacitance.

Porous Electrode 2

- I In the Physics toolbar, click **Domains** and choose **Porous Electrode**.
- 2 In the Settings window for Porous Electrode, locate the Domain Selection section.
- **3** From the **Selection** list, choose **Positive Electrode**.
- 4 Locate the Electrolyte Properties section. From the Electrolyte material list, choose LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat1).
- **5** Locate the **Electrode Properties** section. In the σ_s text field, type sigmas_pos.
- 6 Locate the Porous Matrix Properties section. In the ϵ_s text field, type epss_pos.
- **7** In the ε_1 text field, type epsl_pos.
- 8 Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the f_1 text field, type epsl_pos^brugl_pos.
- **9** From the **Diffusion** list, choose **User defined**. In the $f_{\rm Dl}$ text field, type epsl pos^brugl pos.

Particle Intercalation I

- I In the Model Builder window, click Particle Intercalation I.
- 2 In the Settings window for Particle Intercalation, locate the Material section.
- 3 From the Particle material list, choose LMO, LiMn2O4 Spinel (Positive, Liion Battery) (mat3).
- **4** Locate the **Species Settings** section. In the $c_{
 m s,init}$ text field, type cs0_pos.
- **5** Locate the **Particle Transport Properties** section. In the r_p text field, type rp_pos.
- 6 Locate the Heat of Mixing section. Select the Include heat of mixing check box.

Porous Electrode Reaction I

- I In the Model Builder window, click Porous Electrode Reaction I.
- 2 In the Settings window for Porous Electrode Reaction, locate the Material section.
- 3 From the Material list, choose LMO, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat3).
- **4** Locate the **Electrode Kinetics** section. In the $i_{0,ref}(T)$ text field, type ioref_pos.

Porous Electrode 2

In the Model Builder window, click Porous Electrode 2.

Porous Matrix Double Layer Capacitance I

In the **Physics** toolbar, click — Attributes and choose

Porous Matrix Double Layer Capacitance.

Electric Ground 1

- I In the Physics toolbar, click Boundaries and choose Electric Ground.
- 2 Select Boundary 1 only.

Electrode Current Density I

- I In the Physics toolbar, click Boundaries and choose Electrode Current Density.
- 2 Select Boundary 4 only.
- 3 In the Settings window for Electrode Current Density, locate the Electrode Current Density section.
- **4** In the $i_{n,s}$ text field, type i_app.

Initial Values 2

- I In the Physics toolbar, click Domains and choose Initial Values.
- 2 In the Settings window for Initial Values, locate the Domain Selection section.
- 3 From the Selection list, choose Positive Electrode.
- 4 Locate the Initial Values section. In the phil text field, type mat2.elpot.Eeq_int1(cs0_neg/mat2.elpot.cEeqref).
- **5** In the cl text field, type cl 0.
- 6 In the phis text field, type mat3.elpot.Eeq_int1(cs0_pos/ mat3.elpot.cEeqref)-mat2.elpot.Eeq int1(cs0 neg/mat2.elpot.cEeqref).

Initial Values 1

- I In the Model Builder window, click Initial Values I.
- 2 In the Settings window for Initial Values, locate the Initial Values section.
- 3 In the phil text field, type -mat2.elpot.Eeq_int1(cs0_neg/mat2.elpot.cEeqref).
- **4** In the *cl* text field, type c1_0.

DEFINITIONS (COMPI)

Set up the temperature value used in **Lithium-Ion Battery** interface.

Model Inbut 1

- I In the Physics toolbar, click **Shared Properties** and choose **Model Input**.
- 2 In the Settings window for Model Input, locate the Geometric Entity Selection section.

- 3 From the Selection list, choose All domains.
- 4 Locate the **Definition** section. Click **Select Quantity**.
- 5 In the Physical Quantity dialog box, type temperature in the text field.
- 6 Click **Filter**.
- 7 In the tree, select General>Temperature (K).
- 8 Click OK.

GLOBAL DEFINITIONS

Waveform I (wvI)

- I In the Home toolbar, click f(X) Functions and choose Global>Waveform.
- 2 In the Settings window for Waveform, locate the Parameters section.
- 3 From the Type list, choose Square.
- 4 In the **Period** text field, type cycle time.

DEFINITIONS (COMPI)

Variables 1

- I In the Home toolbar, click ∂ = Variables and choose Local Variables.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** In the table, enter the following settings:

Name	Expression	Unit	Description
i_app	i_load*(wv1(t/1[s]))* (t<1500)		Applied current density

Domain Point Probe I

- I In the **Definitions** toolbar, click **Probes** and choose **Domain Point Probe**.
- 2 In the Settings window for Domain Point Probe, locate the Point Selection section.
- 3 In row Coordinate, set x to L neg+L sep+L neg.
- 4 Select the Snap to closest point check box.

Point Probe Expression I (ppb1)

- I In the Model Builder window, expand the Domain Point Probe I node, then click Point Probe Expression I (ppbI).
- 2 In the Settings window for Point Probe Expression, type CellVoltageProbe in the Variable name text field.

- 3 Click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)>Lithium-lon Battery>phis Electric potential V.
- 4 Click to expand the Table and Window Settings section. Click + Add Plot Window.

Global Variable Probe I (var I)

- I In the Definitions toolbar, click Probes and choose Global Variable Probe.
- 2 In the Settings window for Global Variable Probe, type CellCurrentProbe in the Variable name text field.
- 3 Locate the Expression section. In the Expression text field, type i_app/i_1C.
- 4 Click to expand the **Table and Window Settings** section. From the **Plot window** list, choose **Probe Plot 1**.