

CSE 473: Pattern Recognition

• Set of states: $\{s_1, s_2, \dots, s_N\}$

- Set of states: $\{s_1, s_2, \dots, s_N\}$
- Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$

- Set of states: $\{s_1, s_2, ..., s_N\}$
- Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

- Set of states: $\{s_1, s_2, \dots, s_N\}$
- Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• To define Markov model, the following probabilities have to be specified: transition probabilities $a_{ij} = P(s_j \mid s_i)$ and initial probabilities $\pi_i = P(s_i)$

• Two states : 'Rain' and 'Dry'.

- Two states: 'Rain' and 'Dry'.
- Transition probabilities:
 - •P('Rain'|'Rain')=0.3, P('Dry'|'Rain')=0.7,
 - P('Rain'|'Dry')=0.2, P('Dry'|'Dry')=0.8

- Two states: 'Rain' and 'Dry'.
- Transition probabilities:
 - •P('Rain'|'Rain')=0.3, P('Dry'|'Rain')=0.7,
 - P('Rain'|'Dry')=0.2, P('Dry'|'Dry')=0.8
- Initial probabilities: say P('Rain')=0.4, P('Dry')=0.6.

• By Markov chain property, probability of state sequence can be found by the formula:

$$P(s_{i1}, s_{i2}, ..., s_{ik}) = P(s_{ik} | s_{i1}, s_{i2}, ..., s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1})$$

$$= P(s_{ik} | s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1}) = ...$$

$$= P(s_{ik} | s_{ik-1}) P(s_{ik-1} | s_{ik-2}) ... P(s_{i2} | s_{i1}) P(s_{i1})$$

•Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

 $P(\{\text{'Dry','Dry','Rain',Rain'}\})$

•Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

$$\begin{split} &P(\{\text{'Dry','Dry','Rain',Rain'}\}) \\ &= P(\text{'Rain'}|\text{'Rain'}) \ P(\text{'Rain'}|\text{'Dry'}) \ P(\text{'Dry'}|\text{'Dry'}) \ P(\text{'Dry'}) \end{split}$$

•Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

$$P(\{\text{'Dry','Dry','Rain',Rain'}\})$$

= $P(\text{'Rain'}|\text{'Rain'}) P(\text{'Rain'}|\text{'Dry'}) P(\text{'Dry'}|\text{'Dry'}) P(\text{'Dry'})$
= $0.3*0.2*0.8*0.6$

HTHHTTTHHH....

HTHHTTTHHH....

Can we guess which coin is tossed at different times?

Not A Hidden Markov Model

- Set of states: $\{s_1, s_2, \dots, s_N\}$
- •Process moves from one state to another generating a sequence of states : $s_{i1}, s_{i2}, ..., s_{ik}, ...$
- •Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• States are not visible, but each state randomly generates one of *M* observations (or visible states)

$$\{v_1, v_2, \dots, v_M\}$$

• States are not visible, but each state randomly generates one of *M* observations (or visible states)

$$\{v_1, v_2, \dots, v_M\}$$

- •To define hidden Markov model, the following probabilities have to be specified:
 - •matrix of transition probabilities $A=(a_{ij})$, $a_{ij}=P(s_j | s_i)$
 - •matrix of observation probabilities $B=(b_i(v_m))$, where, $b_i(v_m)=P(v_m|s_i)$
 - •vector of initial probabilities $\pi = (\pi_i)$, $\pi_i = P(s_i)$
- •Model is represented by $M=(A, B, \pi)$.

Example of Hidden Markov Model

Example of Hidden Markov Model

•Initial probabilities: say P(`Low')=0.4, P(`High')=0.6.

Example of Hidden Markov Model

- Two states: 'Low' and 'High' atmospheric pressure.
- Two observations: 'Rain' and 'Dry'.
- Transition probabilities: P(`Low'|`Low')=0.3, P(`High'|`Low')=0.7,

$$P(\text{`Low'}|\text{`High'})=0.2, P(\text{`High'}|\text{`High'})=0.8$$

• Observation probabilities : P(`Rain'|'Low')=0.6 , P(`Dry'|'Low')=0.4 ,

$$P(\text{`Rain'}|\text{`High'})=0.4$$
, $P(\text{`Dry'}|\text{`High'})=0.3$.

• Initial probabilities: say P(`Low')=0.4, P(`High')=0.6.

Calculation of observation sequence probability

 Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}.

Consider all possible hidden state sequences:

```
P({'Dry','Rain'}) = P({'Dry','Rain'}, {'Low','Low'})
+P({'Dry','Rain'}, {'Low','High'})
+P({'Dry','Rain'}, {'High','Low'})
+P({'Dry','Rain'}, {'High','High'})
```

Calculation of observation sequence probability

```
    P({'Dry','Rain'}) = P({'Dry','Rain'}, {'Low','Low'})
    + P({'Dry','Rain'}, {'Low','High'})
    + P({'Dry','Rain'}, {'High','Low'})
    + P({'Dry','Rain'}, {'High','High'})
```

```
where first term is:
```

```
P({'Dry','Rain'}, {'Low','Low'})=
P({'Dry','Rain'} | {'Low','Low'}) P({'Low','Low'}) =
P('Dry'|'Low')P('Rain'|'Low') P('Low')P('Low'|'Low)
= 0.4*0.4*0.6*0.4*0.3
```

Main issues using HMMs

Evaluation problem.

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the probability that model M has generated sequence O.

 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1,...,v_M\}$.

Main issues using HMMs

Decoding problem.

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states s_i that produced this observation sequence O.

 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1,...,v_M\}$.

Main issues using HMMs

Learning problem.

Given some training observation sequences $O=o_1 o_2 ... o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1,...,v_M\}$.

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the probability that model M has generated sequence O.

where, $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{V_1, ..., V_M\}$.

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the probability that model M has generated sequence O.

where, $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1, ..., v_M\}$.

Alternately, find P(O|M) or $P(o_1 o_2 ... o_K|M)$

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the probability that model M has generated sequence O.

where, $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1, ..., v_M\}$.

Alternately, find P(O|M) or $P(o_1 o_2 ... o_K|M)$

For simplicity we write it as P(O) or $P(o_1 o_2 ... o_K)$

Objective:

•find P(O) or P($o_1 o_2 ... o_K$)

$$P(O) = \sum_{i} p(O, \Omega_{i})$$

where, Ω_i is a possible state sequence

$$S_{i_1}, S_{i_2}, \ldots, S_{i_m}, \ldots, S_{i_K}$$

Objective:

•find P(O) or P($o_1 o_2 ... o_K$)

$$P(O) = \sum_{i} p(O, \Omega_{i})$$

where, Ω_i is a possible state sequence

$$S_{i_1}, S_{i_2}, \ldots, S_{i_m}, \ldots, S_{i_K}$$

There are N^{κ} possible state sequences!!

The evaluation Problem

Objective:

•find P(O) or P($o_1 o_2 ... o_K$)

$$P(O) = \sum_{i} p(O, \Omega_{i})$$

where, Ω_i is a possible state sequence

$$S_{i_1}, S_{i_2}, \ldots, S_{i_m}, \ldots, S_{i_K}$$

Complexity is $O(N^K)$

Alternate Solution to The evaluation Problem

- Use Forward-Backward HMM algorithms for efficient calculations.
- Define the forward variable $\alpha_m(i)$ as the joint probability of
 - the partial observation sequence o₁ o₂ ... o_m and
 - the hidden state at time *m* is s_i:

$$\alpha_m(i) = P(o_1, o_2 \dots o_m, q_m = s_i)$$

Therefore, we can write,

$$\alpha_{m+1}(j) = P(o_1 o_2 ... o_{m+1}, q_{m+1} = s_j)$$

$$=\sum_{i} P(o_1 o_2 ... o_{m+1}, q_m = S_i, q_{m+1} = S_j)$$

$$= \sum_{i} P(o_{1} o_{2} ... o_{m}, q_{m} = s_{i}) a_{ij} b_{j}(o_{m+1})$$

=[
$$\sum_i \alpha_m(i) a_{ij}] b_j(o_{m+1})$$
,

for 1 <= j <= N, 1 <= m <= K-1.

Now $P(o_1 o_2 ... o_K)$

can be written as $\Sigma_i P(o_1 o_2 ... o_K, q_K = s_i) = \Sigma_i \alpha_K(i)$

Forward recursion for HMM

• Initialization:

$$\alpha_1(i) = P(o_1, q_1 = s_i) = \pi_i b_i(o_1), 1 <= i <= N.$$

• Forward recursion:

$$\alpha_{m+1}(j) = [\sum_{i} \alpha_{m}(i) a_{ij}] b_{j}(O_{m+1}),$$
 1<=j<=N, 1<=m<=K-1.

• Termination:

$$P(o_1 o_2 \dots o_k) = \sum_i \alpha_k(i)$$

• Complexity:

N²K operations.

- Define the backward variable $\beta_m(j)$ as the conditional probability of
 - the partial observation sequence $o_{m+1} o_{m+2} \dots o_K$
 - given that the hidden state at time m is s_i:

$$\beta_{m}(j) = P(o_{m+1} o_{m+2} ... o_{K} | q_{m} = s_{j})$$

- Define $\beta_m(j)$ in terms of $\beta_{m+1}(i)$'s:
- $\beta_{m+1}(i)$ is the conditional probability of
 - the partial observation sequence $o_{m+2} o_{m+3} \dots o_K$
 - given that the hidden state at time m+1 is s_i:

$$\beta_{m+1}(i) = P(o_{m+2} o_{m+3} ... o_K | q_{m+1} = s_i)$$

• Define $\beta_m(j)$ in terms of $\beta_{m+1}(i)$'s: the probability of

where
$$\beta_{m+1}(i) = P(o_{m+2} o_{m+3} ... o_K | q_{m+1} = s_i)$$

Now, $\beta_m(j) = P(o_{m+1} o_{m+2} \dots o_K | q_m = s_j)$ $= \Sigma_i P(o_{m+1} o_{m+2} \dots o_K, q_{m+1} = s_i | q_m = s_j)$ $= \Sigma_i P(o_{m+2} o_{m+3} \dots o_K | q_{m+1} = s_i) a_{ji} b_i (o_{m+1})$ $= \Sigma_i \beta_{m+1}(i) a_{ji} b_i (o_{m+1}), 1 <= j <= N, 1 <= m <= K-1.$

```
\begin{split} &= \Sigma_{i} \; P(o_{m+1} \; o_{m+2} \; ... \; o_{K} \; , q_{m+1} = s_{i} \; | \; q_{m} = s_{j} \; ) \\ &= \Sigma_{i} \; P(o_{m+2} \; o_{m+3} \; ... \; o_{K} \; | \; q_{m+1} = s_{i}) \; a_{ji} \; b_{i} \; (o_{m+1}) \\ &= \Sigma_{i} \; \beta_{m+1}(i) \; a_{ji} \; b_{i} \; (o_{m+1}) \; , \qquad 1 <= j <= N, \; 1 <= m <= K-1. \end{split}
```


•Initialization:

$$\beta_{K}(i)=1$$
 , 1<=i<=N.

Backward recursion:

$$\beta_m(j) = \Sigma_i \beta_{m+1}(i) a_{ii} b_i (o_{m+1}), \quad 1 <= j <= N, 1 <= m <= K-1.$$

• Termination:

$$P(o_1 o_2 ... o_K) = \Sigma_i P(o_1 o_2 ... o_{K_i} q_1 = s_i) = \Sigma_i P(o_1 o_2 ... o_K | q_1 = s_i) P(q_1 = s_i) = \Sigma_i \beta_1(i) b_i (o_1) \pi_1$$

Main issues using HMMs (2)

Decoding problem.

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states s_i that produces this observation sequence O.

 $O=o_1...o_K$ denotes a sequence of observations $o_k \in \{v_1,...,v_M\}$.

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states s_i that produces this observation sequence O.

We want to find:

the state sequence $Q = q_1...q_K$ maximizing

 $P(Q \mid o_1 o_2 ... o_K)$

Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 ... o_K$, calculate the most likely sequence of hidden states s_i that produces this observation sequence O.

We want to find:

the state sequence $Q = q_1...q_K$ maximizing

$$P(Q \mid o_1 o_2 ... o_K)$$

or, equivalently

$$P(Q, o_1 o_2 ... o_K)$$

•Find max value of $P(Q, o_1 o_2 ... o_K)$

Brute Force Method:

Try for all possible sequences of states

N^K possible sequences for Q

- Use efficient Viterbi algorithm instead
- Define variable $\delta_{m}(i)$ as the maximum probability of
 - •producing observation sequence o₁ o₂ ... o_m
 - •when moving along any hidden state sequence $q_1 \dots q_{m-1}$ and
 - •getting into q_m= s_i

- Use efficient Viterbi algorithm instead
- Define variable $\delta_{m}(i)$ as the maximum probability of
 - producing observation sequence o₁ o₂ ... o_m
 - •when moving along any hidden state sequence $q_1 \dots q_{m-1}$ and
 - •getting into q_m= s_i

```
Therefore, \delta_m(i) = \max P(q_1... q_{m-1}, q_m = s_i, o_1 o_2... o_m)
where max is taken over all possible paths q_1... q_{m-1}.
```

General idea:

if best path ending in $q_m = s_j$ goes through $q_{m-1} = s_i$ then it should coincide with best path ending in $q_{m-1} = s_i$.

General idea:

if best path ending in $q_m = s_j$ goes through $q_{m-1} = s_i$ then it should coincide with best path ending in $q_{m-1} = s_i$.

• $\delta_m(j) = max P(q_1... q_{m-1}, q_m = s_j, o_1 o_2... o_m)$

General idea:

if best path ending in $q_m = s_j$ goes through $q_{m-1} = s_i$ then it should coincide with best path ending in $q_{m-1} = s_i$.

$$\begin{split} \bullet \; \delta_m(j) &= max \; P(q_1...\; q_{m\text{-}1} \;, \, q_m = s_j \; , \; o_1 \, o_2 \, ... \; o_m) \\ &= max_i \left[\; a_{ij} \; b_j \left(o_m \, \right) \; max \; P(q_1...\; q_{m\text{-}1} = s_i \; , \; o_1 \, o_2 \, ... \; o_{m\text{-}1}) \; \right] \end{split}$$

General idea:

if best path ending in $q_m = s_j$ goes through $q_{m-1} = s_i$ then it should coincide with best path ending in $q_{m-1} = s_i$.

•
$$\delta_{m}(j) = \max P(q_{1}... q_{m-1}, q_{m} = s_{j}, o_{1} o_{2}... o_{m})$$

= $\max_{i} [a_{ij} b_{j} (o_{m}) \max P(q_{1}... q_{m-1} = s_{i}, o_{1} o_{2}... o_{m-1})]$
= $\max_{i} [a_{ij} b_{i} (o_{m}) \delta_{m-1}(i)]$

General idea:

if best path ending in $q_m = s_j$ goes through $q_{m-1} = s_i$ then it should coincide with best path ending in $q_{m-1} = s_i$.

• To backtrack best path, keep info that predecessor of s_i was s_i.

• Initialization:

$$\delta_1(i) = \max P(q_1 = s_i, o_1) = \pi_i b_i(o_1), 1 <= i <= N$$

•Forward recursion:

$$\delta_{m}(j) = \max_{i} [a_{ij} b_{i} (o_{m}) \delta_{m-1}(i)], \quad 1 \le j \le N, 2 \le m \le K.$$

•<u>Termination:</u> choose best path ending at time K max_i [δ_{κ} (i)]

Backtrack best path.

Issues in HMMs (3)

Learning/Training problem.

Given some training observation sequences $O=o_1 o_2 ... o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

 $O=o_1..., o_m,...,o_K$ denotes a sequence of observations where, $o_m \in \{v_1,...,v_M\}$.

Given some training observation sequences $O=o_1 o_2 ... o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

There is no algorithm producing optimal parameter values.

Given some training observation sequences $O=o_1 o_2 ... o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

•There is no algorithm producing optimal parameter values.

 Use iterative Expectation-Maximization (EM) algorithm to find local maximum of P(O | M) - Baum-Welch algorithm.

Idea of EM:

Initialization: Assume initial value of A, B, π and calculate P(O | M)

E-step:

Estimate new values of the model parameters: A, B, π from the previous values of A, B, π

M-step:

Find P(O | M) with the new values of A, B, π

Repeat these steps until $P(O \mid M)$ declines

we need to calculate the following parameters:

$$a_{ij} = P(s_j | s_i) = \frac{\text{No. of transitions from state } s_i \text{ to state } s_j}{\text{No. of transitions out of state } s_i}$$

$$b_i(v_n) = P(v_n \mid s_i) = \frac{\text{No. of times observation } v_n \text{ occurs in state } s_i}{\text{No. of times in state } s_i}$$

$$\pi(i) = P(s_i) = \frac{\text{No. of times in state } s_i \text{ at time } m = 1}{\text{No. of times in any state at time } m = 1}$$

the algorithm estimates the expected value::

$$a_{ij} = P(s_j | s_i) = \frac{\text{Expected No. of transitions from state } s_i \text{ to state } s_j}{\text{Expected No. of transitions out of state } s_i}$$

$$b_i(v_n) = P(v_n \mid s_i) = \frac{\text{Expected No. of times observation } v_n \text{ occurs in state } s_i}{\text{Expected No. of times in state } s_i}$$

$$\pi(i) = P(s_i) = \frac{\text{Expected No. of times in state } s_i \text{ at time } m = 1}{\text{Expected No. of times in any state at time } m = 1}$$

$$\xi_{m}(i,j) = P(q_{m} = s_{i}, q_{m+1} = s_{i} \mid o_{1} o_{2} \dots o_{K})$$

$$\xi_m(i,j) = P(q_m = s_i, q_{m+1} = s_j \mid o_1 o_2 \dots o_K)$$

$$\xi_{m}(i,j) = \frac{P(q_{m}=s_{i}, q_{m+1}=s_{j}, o_{1} o_{2} ... o_{K})}{P(o_{1} o_{2} ... o_{K})}$$

$$\xi_m(i,j) = P(q_m = s_i, q_{m+1} = s_j \mid o_1 o_2 \dots o_K)$$

$$\xi_{m}(i,j) = \frac{P(q_{m}=s_{i}, q_{m+1}=s_{j}, o_{1} o_{2} ... o_{K})}{P(o_{1} o_{2} ... o_{K})}$$

$$P(q_m = s_i, o_1 o_2 ... o_m) a_{ij} b_j (o_{m+1}) P(o_{m+2} ... o_K | q_{m+1} = s_j)$$

$$P(o_1 o_2 ... o_K)$$

$$\xi_{m}(i,j) = P(q_{m} = s_{i}, q_{m+1} = s_{j} \mid o_{1} o_{2} \dots o_{K})$$

$$P(q_m = s_i, o_1 o_2 ... o_m) a_{ij} b_j (o_{m+1}) P(o_{m+2} ... o_K | q_{m+1} = s_j)$$

$$P(o_1 o_2 ... o_K)$$

$$\alpha_{m}(i) a_{ij} b_{j} (o_{m+1}) \beta_{m+1}(j)$$

$$P(o_{1} o_{2} ... o_{K})$$

• Define variable $\gamma_m(i)$ as the probability of being in state s_i at time m, given the observation sequence $o_1 o_2 \dots o_K$.

$$\gamma_{m}(i) = P(q_{m} = s_{i} \mid o_{1} o_{2} ... o_{K})$$

$$\gamma_{m}(i) = \frac{P(q_{m} = s_{i}, o_{1} o_{2} \dots o_{k})}{P(o_{1} o_{2} \dots o_{k})} = \frac{\alpha_{m}(i) \beta_{m}(i)}{P(o_{1} o_{2} \dots o_{k})}$$

•We calculated
$$\xi_m(i,j) = P(q_m = s_i, q_{m+1} = s_j \mid o_1 o_2 ... o_K)$$

and $\gamma_m(i) = P(q_m = s_i \mid o_1 o_2 ... o_K)$

- Expected number of transitions from state s_i to state s_j $= \sum_m \xi_m(i,j)$
- Expected number of transitions out of state $s_i = \sum_m \gamma_m(i)$
- Expected number of times observation v_n occurs in state $s_i = \sum_m \gamma_m(i)$, m is such that $o_m = v_n$

Baum-Welch algorithm: E-Step

Estimate the expected values as

$$a_{ij} = \frac{\text{Expected No. of transitions from state } s_i \text{ to state } s_j}{\text{Expected No. of transitions out of state } s_i} = \frac{\sum_{m} \xi_{m}(i,j)}{\sum_{m} \gamma_{m}(i)}$$

$$b_{i}(v_{m}) = \frac{\text{Expected No. of times observation } v_{n} \text{ occurs in state } s_{\underline{i}}}{\text{Expected No. of times in state } s_{i}} \frac{\sum_{m, O_{m} = v_{n}} \gamma_{m}(i)}{\sum_{m} \gamma_{m}(i)}$$

m

$$\pi(i) = P(s_i) = \frac{\text{Expected No. of times in state } s_i \text{ at time } m = 1}{\text{Expected No. of times in any state at time } m = 1} = \frac{\gamma_1(i)}{\sum_i \gamma_1(i)}$$

Learning/Training Algorithm

Initialization: Assume initial value of A, B, π and calculate P(O | M)

E-step:

Estimate new values of the model parameters: A, B, π from the previous values of A, B, π

M-step:

Find P(O | M) with the new values of A, B, π

Repeat these steps until $P(O \mid M)$ declines