		Course Handout					
	Course details						
	Faculty name	Mr. Pratyush Kumar Deka					
	Programme	B.Tech CSE					
1	Semester	V					
_	Section	CSE Elec Sec7					
	Course code	BCSE3066					
	Course title	Machine Learning					
	Vision of School of Computing Science and Engineering						
2	To be known g	lobally as a premier department of Computer Science and Engineering					
	for value-based	d education, multidisciplinary research and innovation.					
	Mission of Sch	ool of Computing Science and Engineering					
	MD1:	Create a strong foundation on the fundamentals of Computer					
		Science and Engineering through Outcome Based Teaching -Learning					
		Process.					
	MD2:	Establish state-of-the-art facilities for Analysis, Design and					
3		Implementation to develop sustainable ethical solutions					
	1402						
	MD3:	Conduct multidisciplinary research for developing innovative solutions					
		Solutions					
	MD4:	Involve the students in group activity including that of professional					
	WID4.	bodies to develop leadership and communication skills					
	Programme ed	ucational objectives(PEOs)					
	PEO1	Graduates of Computer Science and Engineering will be globally					
		competent and provide sustainable solutions for interdisciplinary					
		problems as team players.					
_	PEO2	Graduates of Computer Science and Engineering will engage in					
4		professional activities with ethical practices in the field of Computer					
		Science and Engineering to enhance their own stature to contribute					
		towards society.					
	PEO3	Graduates of Computer Science and Engineering will acquire					
		specialized knowledge in engineering technologies for research,					
		innovation and product development.					
	Programme ou	tcomes					
	PO1	Engineering Knowledge: Apply knowledge of mathematics and					
		science, with fundamentals of Computer Science & Engineering to be					
		able to solve complex engineering problems related to CSE.					
_	PO2	Problem Analysis : Identify, Formulate, review research literature					
5		and analyze complex engineering problems related to CSE and					
		reaching substantiated conclusions using first principles of					
	D02	mathematics, natural sciences and engineering sciences.					
	PO3	Design/Development of solutions: Design solutions for complex					
		engineering problems related to CSE and design system components					
		or processes that meet the specified needs with appropriate					

	1						
		consideration for the public health and safety and the cultural					
		societal and environmental considerations.					
	PO4	Conduct Investigations of Complex problems: Use research—based					
		knowledge and research methods including design of experiments,					
		analysis and interpretation of data, and synthesis of the information					
		to provide valid conclusions.					
	PO5	Modern Tool Usage: Create, Select and apply appropriate					
		techniques, resources and modern engineering and IT tools including					
		prediction and modeling to computer science related complex					
		1.					
	DOC	engineering activities with an understanding of the limitations.					
	PO6	The Engineer and Society: Apply Reasoning informed by the					
		contextual knowledge to assess societal, health, safety, legal and					
		cultural issues and the consequent responsibilities relevant to the					
		CSE professional Engineering practice.					
	PO7	Environment and Sustainability : Understand the impact of the CSE					
		professional engineering solutions in societal and environmental					
		contexts and demonstrate the knowledge of, and need for					
		sustainable development					
	PO8	Ethics: Apply Ethical Principles and commit to professional ethics					
		responsibilities and norms of the engineering practice					
	PO9	Individual and Team Work: Function effectively as an individual an					
	105	as a member or leader in diverse teams and in multidisciplinary					
	PO10	Settings Communication Communicate offsetively an example or single or in a					
	PO10	Communication : Communicate effectively on complex engineering					
		activities with the engineering community and with society at large					
		such as able to comprehend and with write effective reports and					
		design documentation, make effective presentations and give and					
		receive clear instructions.					
	PO11	Project Management and Finance: Demonstrate knowledge and					
		understanding of the engineering management principles and apply					
		these to one's own work, as a member and leader in a team, to					
		manage projects and in multi-disciplinary environments.					
	PO12	Life-Long Learning: Recognize the need for and have the preparation					
		and ability to engage in independent and life-long learning the					
		broadest context of technological change.					
	Programme sr	pecifics outcome(PSO) (if any)					
	PSO1	Able to analyse, design and implement sustainable and ethical					
6		solutions in the field of computer science.					
0	PSO2	Able to use problem solving skills to develop efficient algorithmic					
	F302	solutions.					
	Course outser						
	Course outcon						
	CO1	Understand basic concepts and applications of Machine Learning					
_		Algorithms					
7	CO2	Apply supervised learning algorithms in different domains.					
	CO3	Apply unsupervised learning algorithms in different domains.					
	CO4	Understand the basic concepts of Neural Networks and its					
		applications in Deep Learning.					
		•					

	CO5 Understand the recommendation systems and reinforcement									
		learning al	learning algorithms and its applications.							
	Evaluation	Duration	Marks	Date	Nature of	Evaluation				
	Component		(50)	&Time	Component	Component				
	CAT-1	90 mins	50 (15)		Closed Book					
	CAT-2	90 mins	50 (15)		Closed Book					
8	Quiz-1	15 mins	5		LMS/Closed					
					Book					
	Quiz-2	15 mins	5		LMS/Closed					
					Book					
	Quiz-3	15mins	5		Closed Book					
	Assignment(s)			Any time	-					
				throughout						
				the						
				semester						
9	List of teaching-l			/talk, PowerPo	oint presentation	n, flipped				
	classes, videos, o			2DN 4						
10	Open Hours: Thu			JPIVI						
11	Link address for									
	https://gu.mastersofterp.in/rfcampusgu									
12	Recommended I									
	1. Ng A. CS				TEL /NACOCC					
13	Recommended I			-	TEL/MOOCS:					
		Leaning by A	• .	•						
			•	Л (Coursera).	araman Ravindr	can (cwayam)				
	3. INTRODE	CHON TO IV	IACITINE LEA	KKINING Dy Baid	ilalilali Navillui	ali (Swayalli)				
14	Recommended I	ist of mini nr	niects / nro	iects/technica	l training etc					
14	1. House pr	•		jects, teeminea	r training etc.					
	2. CAR-Selli	•								
15	Students' Preser									
16	List of e-books									
	1. Müller, A	C. and Guid	o, S., 2016.	ntroduction to	machine learn	ing with				
	Python: a	a guide for da	ata scientist	s. " O'Reilly Me	dia, Inc.".					
			_		use.org/mlclass	<u>:/</u>				
	3. Master N									
	https://n	<u>nachinelearn</u>	<u>ingmastery.</u>	<u>com/master-m</u>	<u>achine-learnin</u>	g-algorithms/				
17	List of NPTEL/M	OOCS/SWAY	AM/Courses	/Video						
				•	araman Ravindr	an (swayam).				
	2. MACHIN	E LEARNING,	ML by Carl	Gustaf Jansson	(swayam).					

18	Content beyond Syllabus								
	 Data Preprocessing using Python package. 								
	2. Implementation of Learning algorithms in Python								
19	List of mini projects/projects:								
	1. SPAM Classification								
	2. Credit-Card Fraud Detection								
	3. CHATBOT								
	Etc.								

Lesso	n Plan						
Lec tur e No.	Date	Learni ng Object ives	Topics to be covered	Tea chin g Ped agog y	Co urs e Mo dul e	Tot al Lec ture s	Referen ce
1	06 Aug 2019		Introduction of Machine Learning.	Blac k Boar d/ Inter actio n			
2	07 Aug	Underst and basic concept s and applicat	Types of Machine Learning and Applications of ML	Blac k Boar d/ Inter actio n			
3	09	ions of Machin e Learnin g Algorit	Understanding of Datasets: Feature selection,	Blac k Boar d/ Inter actio	1	6	T1, R1, R2
4	Aug 13 Aug	hms.	Preprocessing of data Basics Mathematics: Matrix Operations	n Flipp ed Class			
5	14 Aug		Differential Equation, Gradient Descent.	Flipp ed Class			
6	16 Aug		Graphs: Linear and Non-linear, Contour graph, Sigmoid Function.	Flipp ed Class			
5	20 Aug	Apply supervi sed learning algorith ms in	Decision Tree Classification	Blac k Boar d/ Inter actio	2	11	T1, R1, R2, R4

		differen		n		
		t		Blac		
		domain		k Blac		
		S.		Boar		
				d/		
6				Probl		
				em		
	21			Solvi		
	Aug		Decision TreeClassification	ng		
				Blac		
				k		
				Boar d/		
7				Probl		
				em		
	23			Solvi		
L	Aug		Regression: Linear Regression	ng		
				Blac		
				k		
				Boar		
8				d/		
	27		Cost Function, Gradient Descent for Linear	Inter		
	27 Aug		Regression	actio n		
		-	Linear Regression with Multiple variables:	BB/P		
9	28		Multiple Features	PT		
	Aug	-	Windpie Features	Blac		
				k		
				Boar		
10				d/		
				Inter		
	30			actio		
	Aug		Gradient Descent for multiple variables	n		
				Blac		
				k		
				Boar d/		
11				Probl		
				em		
	03			Solvi		
	Sep		Polynomial Regression,	ng		
				Blac		
				k		
				Boar		
12				d/		
	04		Normal Equation. Overfitting and	Inter		
	04 Sep		Underfitting	actio n		
	БСР	-	Chaching	Blac		
				k		
				Boar		
13				d/		
				Inter		
	06		N · B · G · G	actio		
<u> </u>	Sep		Naive Bayes Classifiers	n		
				Blac		
14	10		k-Nearest Neighbor and Support Vector	k Poor		
	10 Sep		Machines Machines	Boar d/		
L	Sep	<u> </u>	iviaciiiics	u/		

				Inter			
				actio			
				n			
				Blac			
				k			
				Boar			
15				d/			
				Inter			
				actio			
				n			
	l .		CAT	ļ		<u> </u>	
	ı	T	CAT –I	1		1	
				Blac			
				k			
				Boar			
				d/			
16				Grou			
				p			
				Disc			
	11			ussio			
			Uncupartized learning				
	Sep		Unsupervised learning	n			
				Blac			
				k			
				Boar			
17				d/			
				Inter			
	13			actio			
	Sep		Clustering Algorithms	n			
	БСР		Crustering / rigorithms	Blac			
				k			
				Boar			
18		Apply		d/			
		unsuper		Inter			
	17	vised		actio			
	Sep	learning	k-Means clustering,	n			
		algorith	_	Blac		1.0	T1, R1,
		ms in		k	3	10	R2
		differen		Boar			-1-
				d/			
19		t					
		domain		Probl			
	1.0	S.		em			
	18		1- Manua alaataa'	Solvi			
	Sep		k-Means clustering	ng			
				Blac			
				k			
				Boar			
20				d/			
				Inter			
	20			actio			
	Sep		Hierarchical Clustering	n			
	~~P			Blac	1		
				k			
				K Danie			
				Boar			
21				d/			
				Probl			
				em			
	24			Solvi			
	Sep		Hierarchical Clustering	ng			
	25			Blac	1		
22	Sep		Probabilistic Clustering	k			
	bch	l	1 Toodomsuc Clusteling	V			

				Boar			
				d/			
				Probl			
				em			
				Solvi			
				ng			
				Blac			
				k			
				Boar			
23				d/			
23							
	27			Inter			
	27		D' ' 1' D 1 '	actio			
	Sep		Dimensionality Reduction	n			
				Blac			
				k			
				Boar			
24				d/			
				Inter			
	01			actio			
	Oct		Feature Extraction	n			
	OCI		1 Catalo Limitation	Blac			
				k			
				Boar			
25				d/			
				Inter			
	02			actio			
<u></u>	Oct		Manifold Learning	n	<u> </u>		
				Blac			
				k			
				Boar			
26				d/			
				Inter			
	04		Neural Networks: Representation, Artificial	actio			
	Oct		Neural Networks(ANN)	n			
-	Oct		iveural ivetworks(Aiviv)				
				Blac			
				k			
		Underst		Boar			
27		and the		d/			
		basic		Inter			
	08	concept		actio			
	Oct	s of	Deep Neural Network	n			
		Neural		Blac	1		
	1	Networ		k			
		ks and		Boar	4	9	T1, R3
		Its		d/	-		11,10
28				Probl			
		applicat					
	00	ions in	Activation Function: Sigmoid Activation	em			
	09	Deep		Solvi			
	Oct	Learnin	Function, tanh, ReLU and Leaky ReLU.	ng			
	1	g.		Blac			
	1			k			
	1			Boar			
29				d/			
				Inter			
	11		Distribution of data for improving accuracy.	actio			
	Oct		Bias and Variance.	n			
	301		Dim min i mimioti	Blac			
				k			
30	1.5						
	15		Englished and Dealmond and action	Boar			
	Oct		Forward and Backward propagation.	d/			

Ī	Ì			Probl			l l
				em			
				Solvi			
				ng Blac			
				k			
				Boar			
32				d/			
32				Inter			
	16		Regularization for Neural Networks, Data	actio			
	Oct		Augmentation	n			
	341		1.1.00	Blac			
				k			
				Boar			
33				d/			
				Inter			
	18			actio			
	Oct		Normalization of Datasets	n			
				Flipp			
34	22			ed			
	Oct		Convolutional Neural Networks(CNN)	Class			
				Flipp			
35	23		Recurrent Neural Networks(RNN), Sequence	ed			
	Oct		Models	Class			
			CAT-II				
		Underst	Reinforcement learning, Positive	Flipp			
36	25	and the	Reinforcement, Negative Reinforcement and	ed			
	Oct	recomm	Applications	Class			
		endatio	Recommendation system: Content-based	Flipp			
37	29	n	methods and Collaborative Filtering	ed			
	Oct	systems	Methods Methods	Class			
	001	and	11201000	Case			
38	30	reinforc		Stud	5	4	
	Oct	ement	Case studies of Recommendation Systems	y			
	300	learning		Case			
39	01	algorith		Stud			
	Nov	ms and	Case studies of Recommendation Systems	у			
		its		,			T1,
		applicat					Internet
		ions					Souces

Course Description:

Machine learning uses interdisciplinary techniques such as statistics, linear algebra, optimization, and computer science to create automated systems that can sift through large volumes of data at high speed to make predictions or decisions without human intervention. Machine learning as a field is now incredibly pervasive, with applications spanning from business intelligence to homeland security, from analyzing biochemical interactions to structural monitoring of aging bridges, and from emissions to astrophysics, etc. This class will familiarize students with a broad cross-section of models and algorithms for machine learning and prepare students for research or industry application of machine learning techniques.

Scope & Objective:

The objective of this course is to make the students able to understand, compare and select appropriate machine learning algorithm for a given problem that would help the students to develop real life applications based on Machine Learning.

Course Objectives

The objective of this course is to:

- 1. Introduce students to machine learning and data science and its applications.
- 2. Develop the ability to understand, apply and implement different machine learning algorithms.
- 3. Introduce students to deep learning and Neural Networks concepts and its application.
- 4. Able to choose machine learning and deep learning algorithms to develop a particular application.

Course Outcomes

At the end of the course student will be able to:

- 1. Understand basic concepts and applications of Machine Learning Algorithms.
- 2. Apply supervised learning algorithms in different domains.
- 3. Apply unsupervised learning algorithms in defferent domains.
- 4. Understand the basic concepts of Neural Networks and Its applications in Deep Learning.
- 5. Understand the recommendation systems and reinforcement learning algorithms and its applications.

Text Books

1. Alpaydin, Ethem. Introduction to machine learning. MIT press, 2009.

Reference Books

- 1. R1: Müller AC, Guido S. Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc."; 2016 Sep 26.
- 2. R2: Ng A. CS229 Lecture notes. 2000;1(1):1-3.
- 3. R3: Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT press; 2016 Nov 18.
- 4. R4: M.Gopal, Applied Machine Learning, TMH.

Course Content

Unit I: Introduction 6 lecture hours

Introduction of Machine Learning. Types of Machine Learning: Supervised, Semi-supervised and Unsupervised Machine Learning. Applications of ML. Uderstanding of Datasets: Features selection, Traing and Test Datasets. Basics Mathematics: Matrix Operations, Differential Equation, Gradient Descent. Graphs: Linear and Non-linear, Contour graph, Sigmoid

Module II: Supervised Learning Algorithms

11 lecture hours

Classification: Logistics Classification, Decision trees, Naive Bayes Classifiers, k-Nearest Neighbor, Support Vector Machines. Regression: Linear Regression, Cost Function, Gradient Descent for Linear Regression, Linear Regression with Multiple variables: Multiple Features, Gradient Descent for multiple variables, Polynomial Regression, Normal Equation. Overfitting and Underfitting.

Module III: Unsupervised Learning Algorithms

10 lecture hours

Unsupervised learning: Clustering Algorithms: k-Means clustering, Hierarchical Clustering, Probabilistic Clustering, Dimensionality Reduction, Feature Extraction and Manifold Learning.

Module IV: Neural Networks

9 lecture hours

Neural Networks:Representation, Artificial Neural Networks(ANN), Deep Neural Network, Bias, Activation Function: Sigmoid Activation Function, tanh, ReLU and Leaky ReLU. Distribution of data for improving accuracy. Bias and Variance. Forward and Backward propogation. Regularization for Neural Networks, Data Augmentation. Normalization of Datasets. Convolutional Neural Networks(CNN). Recurrent Neural Networks(RNN), Sequence Models.

Module V: Reinforcement learning and Recommendation System 4 lecture hours
Reinforcement learning: Positive Reinforcemen, Negative Reinforcement, Applications.
Reommendation system: Content-based methods and Collaborative Filtering Methods. Case studies of Recommendation Systems: Google Search, Amazon, Netflix, IMDb, YouTube and etc.