CSE2202 Design and Analysis of Algorithms-I

Md. Fahim Arefin

Google classroom - m32q43s

Md. Fahim Arefin

Reach me at fahim@cse.du.ac.bd

Quickly accessible drive link: a.farefin.com

How to Learn

I'd like you to have more control over

- how you're learning,
- what you're learning,
- when you're learning,
- where you're learning.

So no marks on attendance!

How I Teach

- You set your **own goals**,
- build on your **own interests**,
- express your own ideas,
- develop your own strategies, and
- feel a sense of control and ownership over your own learning.

So there will be lots of peer learning.

Recap: Data Structure

Mark Distribution

1. Group Assignment: 10 Marks

2. In course : 20 Marks

3. Final : 70 marks

Clarifications

1. In this course, the most important rule is -

TRY YOURSELF.

- 2. You will be working in Java in this course.
- 3. Form a pair within the first week.
- 4. Only soft copies of assignments

Advice!

- 1. Don't worry too much if you don't like competitive programming
- Life is a marathon, don't worry about other people.
- 3. It's about the journey, not the destination
- 4. Always try to think how you use algorithms in your own life

The man who asks a question is a fool for a minute, the man who does not ask is a fool for life. - Confucius

Recommended Textbooks

- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.,
 2022. Introduction to algorithms. MIT press.
- Goodrich, M.T., Tamassia, R. and Goldwasser, M.H., 2013. Data structures and algorithms in Python. John Wiley & Sons Ltd.

Graph

- Graph is probably the data structure that has the closest resemblance to our daily life.
- There are many types of graphs describing the relationships in real life.

Graph Variations

- Variations:
 - A connected graph has a path from every vertex to every other
 - In an undirected graph:
 - Edge (u,v) = edge (v,u)
 - No self-loops
 - In a directed graph:
 - Edge (u,v) goes from vertex u to vertex v, notated u→v

Graph Variations

• More variations: Graph Variations

- A weighted graph associates weights with either the edges or the vertices
 - E.g., a road map: edges might be weighted w/ distance
- A *multigraph* allows multiple edges between the same vertices
 - E.g., the call graph in a program (a function can get called from multiple points in another function)

Graph - Definition

- A graph G=(V, E) consists a set of vertices, V, and a set of edges, E.
- Each edge is a pair of (v, w), where v, w belongs to V

• If the pair is unordered, the graph is undirected; otherwise it is

An undirected graph

- Path: the sequence of vertices to go through from one vertex to another.
 - a path from A to C is [A, B, C], or [A, G, B, C], or [A, E, F, D, B, C].
- Path Length: the number of edges in a path.
- **Cycle:** a path where the starting point and endpoint are the same vertex.
 - [A, B, D, F, E] forms a cycle. Similarly, [A, G, B] forms another cycle.

- **Degree of a Vertex:** the term "degree" applies to unweighted graphs. The degree of a vertex is the number of edges connecting the vertex.
 - the degree of vertex A is 3 because three edges are connecting it.
- **In-Degree:** "in-degree" is a concept in directed graphs. If the in-degree of a vertex is d, there are d directional edges incident to the vertex.
 - In Figure 2, A's indegree is 1, i.e., the edge from F to A.

Out-Degree: "out-degree" is a concent in directed graphs. If the is d, t

- Connectivity: if there exists at least one path between two vertices, these two vertices are connected.
 - A and C are connected because there is at least one path connecting them.
- Negative Weight Cycle: In a "weighted graph", if the sum of the weights of all edges of a cycle is a negative value, it is a negative weight cycle.
 - In the Figure the sum of waidhta in a

- Complete Graph
 - a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge.
 - A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction).
 - How many edges are there in an N-vertex complete graph?

- Bipartite Graph
- a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets

- We will typically express running times in terms of |E| and |V| (often dropping the |'s)
 - If $|E| \approx |V|^2$ the graph is dense
 - If |E| ≈ |V| the graph is *sparse*
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Graph Representation

Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.

- Adjacency Matrix
 Use a 2D matrix to represent the graph
- Adjacency ListUse a 1D array of linked lists

Adjacency Matrix

	a	b	c	d	e
	0	0	1	1	1
	0	0	0	0	0
	1	0	0	0	1
	1	0	0	0	1
38	1	0	1	1	0

Simple Questions on Adjacency Matrix

- Is there a direct link between A and B?
- What is the indegree and outdegree for a vertex A?
- How many nodes are directly connected to vertex A?
- Is it an undirected graph or directed graph?
- Suppose ADJ is an NxN matrix. What will be the result if we create another matrix ADJ2 where ADJ2=ADJxADJ?

Adjacency List

• If the graph is not dense, in other words, sparse, a better solution is an adjacency list

Adjacency Matrix Example

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Adjacency List Example

Storage of Adjacency List

- The array takes up Θ(n) space
- Define degree of v, deg(v), to be the number of edges incident to v. Then, the total space to store the graph is proportional to:

$$\sum_{\text{vertex } v} \deg(v)$$

- An edge $e=\{u,v\}$ of the graph contributes a count of 1 to deg(u) and contributes a count 1 to deg(v)
- Therefore, $\Sigma_{\text{vertex }v} \text{deg(v)} = 2\text{m}$, where m is the total number of edges

Storage of Adjacency List

- In all, the adjacency list takes up $\Theta(n+m)$ space
 - If $m = O(n^2)$ (i.e. dense graphs), both adjacent matrix and adjacent lists use $O(n^2)$ space.
 - If m = O(n), adjacent list outperform adjacent matrix

$$\sum_{\text{vertex } v} \deg(v)$$

 However, one cannot tell in O(1) time whether two vertices are connected

Adjacency List vs. Matrix

Adjacency List

- More compact than adjacency matrices if graph has few edges
- Requires more time to find if an edge exists

Adjacency Matrix

- Always require n² space
 - This can waste a lot of space if the number of edges are sparse
- Can quickly find if an edge exists

Graph Traversal

- Application example
 - Given a graph representation and a vertex s in the graph
 - Find paths from s to other vertices
- Two common graph traversal algorithms
 - Breadth-First Search (BFS)
 - Find the shortest paths in an unweighted graph
 - Depth-First Search (DFS)
 - Topological sort
 - Find strongly connected components

BFS and Shortest Path Problem

 Given any source vertex s, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices

• What do we mean by "distance"? The number of edge on a path from s

edge on a path from s

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2?

8, 6, 5, 4

Nodes at distance 3?

(

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a forest if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- Every vertex of a graph contains a color at every moment:
 - White vertices have not been discovered
 - All vertices start with white initially
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search: The Code

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
  V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE (Q,s);
```

```
While (Q not empty)
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] == WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
  color[u] = BLACK;
```


Vertex	r	S	t	u	V	w	X	У
color	W	W	W	W	W	W	W	W
d	∞	∞	∞	∞	∞	∞	∞	∞
prev	nil							

vertex	r	s	t	u	V	w	X	У
Color	W	G	W	W	W	W	W	W
d	∞	0	∞	∞	∞	∞	∞	∞
prev	nil							

vertex	r	s	t	u	V	w	х	У
Color	G	В	W	W	W	G	W	W
d	1	0	∞	∞	∞	1	∞	∞
prev	S	nil	nil	nil	nil	S	nil	nil

vertex	r	s	t	u	V	w	X	У
Color	G	В	G	W	W	В	G	W
d	1	0	2	∞	∞	1	2	∞
prev	S	nil	w	nil	nil	S	w	nil

vertex	r	s	t	u	v	w	х	У
Color	В	В	G	W	G	В	G	W
d	1	0	2	∞	2	1	2	∞
prev	S	nil	W	nil	r	S	W	nil

vertex	r	S	t	u	V	w	X	У
Color	В	В	В	G	G	В	G	W
d	1	0	2	3	2	1	2	∞
prev	S	nil	w	t	r	S	W	nil

vertex	r	s	t	u	v	w	X	У
Color	В	В	В	G	G	В	В	G
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	w	x

vertex	r	s	t	u	v	w	X	У
Color	В	В	В	G	В	В	В	G
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	х

vertex	r	S	t	u	V	w	X	У
Color	В	В	В	В	В	В	В	G
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	x

vertex	r	S	t	u	V	W	X	У
Color	В	В	В	G	В	В	В	В
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	х

BFS: The Code (again)

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
  V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE (Q,s);
```

```
While (Q not empty)
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] == WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
  color[u] = BLACK;
```

Breadth-First Search: Print Path

```
Data: color[V], prev[V],d[V]
Print-Path(G, s, v)
  if(v==s)
   print(s)
   else if(prev[v]==NIL)
   print(No path);
  else{
   Print-Path(G,s,prev[v]);
   print(v);
```

BFS: Complexity

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
  V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE (Q,s);
```

```
While (Q not empty)
           \bot u = every \ vertex, \ but \ only
  u = DEQUEUE(Q);
                                (Why?
  for each v \in adi[u]
   if(color[v] == WHITE) {
         color[v] = GREY;
         d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
  color[u] = BLACK;
```

What will be the running time? Total running time: O(V+E)

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
 - Shortest-path distance $\delta(s,v) = \min \max number$ of edges from s to v, or ∞ if v not reachable from s
 - Proof given in the book (p. 472-5)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Application of BFS

- Find the shortest path in an undirected/directed unweighted graph.
- Find the bipartite-ness of a graph.
- Find cycle in a graph.
- Find the connectedness of a graph.
- And many more.

Exercises on BFS

- CLRS Chapter 22 elementary Graph Algorithms
- Exercise you have to solve: (Page 602)
 - 22.2-7 (Wrestler)
 - 22.2-8 (Diameter)
 - 22.2-9 (Traverse)

Thanks!

Any questions?

You can find us at

fahim@cse.du.ac.bd