Università degli studi di Milano-Bicocca Scuola di Economia e Statistica

CORSO DI LAUREA TRIENNALE IN SCIENZE STATISTICHE ED ECONOMICHE

TITOLO ELABORATO

RELATORE: Dott. Roberto Ascari

Tesi di laurea di: Nome Cognome Matricola N. 123456

Anno Accademico 20XX/20YY

Indice

1	Ese	mpio t	testo, sezioni e sottosezioni	1
	1.1	Prima	a sezione	1
		1.1.1	Prima sottosezione	1
2	Ese	mpi		3
Bi	bliog	grafia		5

${\bf Ringraziamenti}$ Inserire qui gli eventuali ringraziamenti, altrimenti	oliminaro
inserire qui gii eventuari imgraziamenti, attimienti	emmare

Capitolo 1

Esempio testo, sezioni e sottosezioni

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vehicula rhoncus venenatis. Sed eu mauris ut risus tempor faucibus. Donec tincidunt congue faucibus. Quisque cursus egestas eleifend. Vivamus at mi vel erat suscipit ullamcorper. Proin mauris sem, rutrum sit amet sollicitudin nec, varius id tellus. Vestibulum porttitor ultricies congue.

1.1 Prima sezione

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vehicula rhoncus venenatis. Sed eu mauris ut risus tempor faucibus. Donec tincidunt congue faucibus. Quisque cursus egestas eleifend. Vivamus at mi vel erat suscipit ullamcorper. Proin mauris sem, rutrum sit amet sollicitudin nec, varius id tellus. Vestibulum porttitor ultricies congue.

1.1.1 Prima sottosezione

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vehicula rhoncus venenatis. Sed eu mauris ut risus tempor faucibus. Donec tincidunt congue faucibus. Quisque cursus egestas eleifend. Vivamus at mi vel erat suscipit ullamcorper. Proin mauris sem, rutrum sit amet sollicitudin nec, varius id tellus. Vestibulum porttitor ultricies congue.

Sotto-sotto-sezione

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vehicula rhoncus venenatis. Sed eu mauris ut risus tempor faucibus. Donec tincidunt congue faucibus. Quisque cursus egestas eleifend. Vivamus at mi vel erat suscipit ullamcorper. Proin

mauris sem, rutrum sit amet sollicitudin nec, varius id tellus. Vestibulum porttitor ultricies congue.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vehicula rhoncus venenatis. Sed eu mauris ut risus tempor faucibus. Donec tincidunt congue faucibus. Quisque cursus egestas eleifend. Vivamus at mi vel erat suscipit ullamcorper. Proin mauris sem, rutrum sit amet sollicitudin nec, varius id tellus. Vestibulum porttitor ultricies congue. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vehicula rhoncus venenatis. Sed eu mauris ut risus tempor faucibus. Donec tincidunt congue faucibus. Quisque cursus egestas eleifend. Vivamus at mi vel erat suscipit ullamcorper. Proin mauris sem, rutrum sit amet sollicitudin nec, varius id tellus. Vestibulum porttitor ultricies congue.

Capitolo 2

Esempi

Teorema 2.1 (Teorema di Pitagora). Dato un triangolo rettangolo di lati a, b e c, dove c è l'ipotenusa e a e b sono i cateti, allora

$$a^2 + b^2 = c^2.$$

Esempio formula matematica

L'Equazione 2.1 riporta invece la funzione di verosimiglianza relativa ad un campione casuale semplice sotto assunzione di Normalità:

$$\mathcal{L}(\mathbf{y}; \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right\}.$$
 (2.1)

Esempio matrice

$$\mathcal{I} = \begin{bmatrix} \mathcal{I}_{1,1} & \mathcal{I}_{1,2} \\ \mathcal{I}_{2,1} & \mathcal{I}_{2,2} \end{bmatrix}$$
 (2.2)

Esempio citazione

Si veda Pace & Salvan (2001).

Alcuni autori hanno mostrato che.... (Pace & Salvan, 2001).

Esempio figura (con etichetta)

La Figura 2.1 riporta un diagramma a dispersione relativo alle variabili Girth e Volume.

Figura 2.1: Scatterplot delle variabili Volume e Girth.

Esempio tabella (con etichetta)

Si veda la Tabella 2.1 per i risultati di un modello di regressione lineare semplice.

Tabella 2.1: Output di un modello di regressione lineare semplice.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.2771	0.4844	2.64	0.0113
speed	0.3224	0.0298	10.83	0.0000

Il sito tablesgenerator facilita la costruzione e la personalizzazione di tabelle.

Bibliografia

Pace, L. & Salvan, A. (2001). Introduzione alla statistica II. Cedam.