mk 31-07-23

```
In [ ]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [226]: a=pd.read_csv(r"C:\Users\user\Downloads\14_Iris.csv")
a

Out[226]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [227]: a=a.head(10) a

Out[227]:

	ld	SepalLengthCm	Sepa l WidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

```
In [228]: a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 6 columns):

Non-Null Count Dtype Column --------------0 int64 Ιd 10 non-null 1 SepalLengthCm 10 non-null float64 2 SepalWidthCm 10 non-null float64 float64 PetalLengthCm 10 non-null 4 PetalWidthCm 10 non-null float64 5 Species 10 non-null object dtypes: float64(4), int64(1), object(1)

memory usage: 608.0+ bytes

```
In [229]: a.columns
```

In [230]: a.describe()

Out[230]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	10.00000	10.000000	10.000000	10.000000	10.000000
mean	5.50000	4.860000	3.310000	1.450000	0.220000
std	3.02765	0.291357	0.307137	0.108012	0.078881
min	1.00000	4.400000	2.900000	1.300000	0.100000
25%	3.25000	4.625000	3.100000	1.400000	0.200000
50%	5.50000	4.900000	3.300000	1.400000	0.200000
75%	7.75000	5.000000	3.475000	1.500000	0.200000
max	10.00000	5.400000	3.900000	1.700000	0.400000

In [232]: sns.distplot(a['PetalWidthCm'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[232]: <AxesSubplot:xlabel='PetalWidthCm', ylabel='Density'>

In [233]: x1=a[['Id', 'SepalLengthCm', 'SepalWidthCm']]

```
In [234]: sns.heatmap(x1.corr())
```

Out[234]: <AxesSubplot:>


```
In [235]: | x=a[['Id', 'SepalLengthCm', 'SepalWidthCm']]
          y=a['PetalWidthCm']
```

```
In [236]: | from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [237]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
```

Out[237]: LinearRegression()

```
In [238]: |print(lr.intercept_)
          0.5071476736345251
```

In [239]: coeff=pd.DataFrame(lr.coef .x.columns.columns=['Co-efficient'])

	coeff	
Out[239]:		

	Co-efficient
ld	0.000854
SepalLengthCm	-0.229490
SepalWidthCm	0.241702

```
prediction=lr.predict(x_test)
In [240]:
          plt.scatter(y_test,prediction)
Out[240]: <matplotlib.collections.PathCollection at 0x190bbc11e20>
           0.22
           0.20
           0.18
           0.16
           0.14
           0.12
                0.10
                       0.15
                              0.20
                                     0.25
                                            0.30
                                                   0.35
                                                          0.40
In [241]:
          print(lr.score(x_test,y_test))
          0.061142626948208934
In [242]: from sklearn.linear_model import Ridge,Lasso
In [243]: | rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[243]: Ridge(alpha=10)
In [244]: rr.score(x_test,y_test)
Out[244]: -0.0699393296593398
In [245]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[245]: Lasso(alpha=10)
In [246]: |la.score(x_test,y_test)
Out[246]: -0.023323615160349975
In [247]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[247]: ElasticNet()
In [248]: print(en.coef_)
          [ 0. -0. 0.]
```