

<110>	ITESCU, SILVIU	ı			TRADEMARK OF	
	·		C 10/0C1DDT1	. ****		
<120>	REGENERATION O	F ENDOGENOU	S MYOCARDIA	L 11220E		
<130>	0575/66602в					
<140> <141>	10/693,480 2003-10-23					
<150> <151>	10/128,738 2002-04-23					
<160>	11					
<170>	PatentIn versi	on 3.3				
<210> <211> <212> <213>	1 2780 DNA HOMO SAPIENS	·				
<400> aaactaa	1 accc ctcttttct	ccaaaggagt	gcttgtggag	atcggatctt	ttctccagca	60
attgggg	gaa agaaggcttt	ttctctgact	tcgcttagtg	taaccagcgg	cgtatatttt	120
ttaggcg	gcct tttcgaaaac	ctagtagtta	atattcattt	gtttaaatct	tattttattt	180
ttaagct	caa actgcttaag	aataccttaa	ttccttaaag	tgaaataatt	ttttgcaaag	240
gggttt	ctc gatttggagc	ttttttttc	ttccaccgtc	atttctaact	cttaaaacca	300
actcagt	tcc atcatggtga	tgttcaagaa	gatcaagtct	tttgaggtgg	tctttaacga	360
ccctgaa	aag gtgtacggca	gtggcgagaa	ggtggctggc	cgggtgatag	tggaggtgtg	420
tgaagtt	act cgtgtcaaag	ccgttaggat	cctggcttgc	ggagtggcta	aagtgctttg	480
gatgcag	gga tcccagcagt	gcaaacagac	ttcggagtac	ctgcgctatg	aagacacgct	540
tcttctg	gaa gaccagccaa	caggtgagaa	tgagatggtg	atcatgagac	ctggaaacaa	600
atatgag	tac aagttcggct	ttgagcttcc	tcaggggcct	ctgggaacat	ccttcaaagg	660
aaaatat	ggg tgtgtagact	actgggtgaa	ggcttttctt	gaccgcccga	gccagccaac	720
tcaagag	aca aagaaaaact	ttgaagtagt	ggatctggtg	gatgtcaata	cccctgattt	780
aatggca	cct gtgtctgcta	aaaaagaaaa	gaaagtttcc	tgcatgttca	ttcctgatgg	840
gcgggtg	tct gtctctgctc	gaattgacag	aaaaggattc	tgtgaaggtg	atgagatttc	900
catccat	gct gactttgaga	atacatgttc	ccgaattgtg	gtccccaaag	ctgccattgt	960
ggcccgc	cac acttaccttg	ccaatggcca	gaccaaggtg	ctgactcaga	agttgtcatc	1020
agtcaga	ggc aatcatatta	tctcagggac	atgcgcatca	tggcgtggca	agagccttcg	1080
ggttcag	aag atcaggcctt	ctatcctggg	ctgcaacatc	cttcgagttg	aatattcctt	1140
actgatc	tat gttagcgttc	ctggatccaa	gaaggtcatc	cttgacctgc	ccctggtaat	1200
tggcagc	aga tcaggtctaa	gcagcagaac	atccagcatg	gccagccgaa	ccagctctga	1260
gatgagt	tgg gtagatctga	acatccctga	taccccagaa Page 1		gctatatgga	1320

Applicant: Silviu Itescu Application No.: 10/693,480 Filed: October 23, 2003 Exhibit B

66602-B.ST25

```
1380
tgtcattcct gaagatcacc gattggagag cccaaccact cctctgctag atgacatgga
tggctctcaa gacagcccta tctttatgta tgcccctgag ttcaagttca tgccaccacc
                                                                     1440
                                                                     1500
gacttatact gaggtggatc cctgcatcct caacaacaat gtgcagtgag catgtggaag
aaaagaagca gctttaccta Cttgtttctt tttgtctctc ttcctggaca ctcacttttt
                                                                     1560
cagagactca acagtctctg caatggagtg tgggtccacc ttagcctctg acttcctaat
                                                                     1620
gtaggaggtg gtcagcaggc aatctcctgg gccttaaagg atgcggactc atcctcagcc
                                                                     1680
agcgcccatg ttgtgataca ggggtgtttg ttggatgggt ttaaaaataa ctagaaaaac
                                                                     1740
tcaggcccat ccattttctc agatctcctt gaaaattgag gccttttcga tagtttcggg
                                                                     1800
                                                                     1860
tcaggtaaaa atggcctcct ggcgtaagct tttcaaggtt ttttggaggc tttttgtaaa
ttgtgatagg aactttggac cttgaactta cgtatcatgt ggagaagagc caatttaaca
                                                                     1920
                                                                     1980
aactaggaag atgaaaaggg aaattgtggc caaaactttg ggaaaaggag gttcttaaaa
tcagtgtttc ccctttgtgc acttgtagaa aaaaaagaaa aaccttctag agctgatttg
                                                                     2040
atggacaatg gagagagctt tccctgtgat tataaaaaag gaagctagct gctctacggt
                                                                     2100
catctttgct taagagtata ctttaacctg gcttttaaag cagtagtaac tgccccacca
                                                                     2160
aaggtcttaa aagccatttt tggagcctat tgcactgtgt tctcctactg caaatatttt
                                                                     2220
catatgggag gatggttttc tcttcatgta agtccttgga attgattcta aggtgatgtt
                                                                     2280
cttagcactt taattcctgt caaatttttt gttctcccct tctgccatct taaatgtaag
                                                                     2340
ctgaaactgg tctactgtgt ctctagggtt aagccaaaag acaaaaaaa ttttactact
                                                                     2400
tttgagattg ccccaatgta cagaattata taattctaac gcttaaatca tgtgaaaggg
                                                                     2460
ttgctgctgt cagccttgcc cactgtgact tcaaacccaa ggaggaactc ttgatcaaga
                                                                     2520
tgcccaaccc tgtgatcaga acctccaaat actgccatga gaaactagag ggcaggtctt
                                                                     2580
                                                                     2640
cataaaagcc ctttgaaccc ccttcctgcc ctgtgttagg agatagggat attggcccct
cactgcagct gccagcactt ggtcagtcac tctcagccat agcactttgt tcactgtcct
                                                                     2700
gtgtcagagc actgagctcc acccttttct gagagttatt acagccagaa agtgtgggct
                                                                     2760
                                                                     2780
gaagatggtt ggtttcatgt
```

```
<210> 2
<211> 391
<212> PRT
<213> HOMO SAPIENS
<400> 2
```

Met Val Met Phe Lys Lys Ile Lys Ser Phe Glu Val Val Phe Asn Asp $1 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Glu Lys Val Tyr Gly Ser Gly Glu Lys Val Ala Gly Arg Val Ile 20 25 30

66602-B.ST25 Val Glu Val Cys Glu Val Thr Arg Val Lys Ala Val Arg Ile Leu Ala 35 40 45 Cys Gly Val Ala Lys Val Leu Trp Met Gln Gly Ser Gln Gln Cys Lys 50 55 60 Gln Thr Ser Glu Tyr Leu Arg Tyr Glu Asp Thr Leu Leu Leu Glu Asp 65 70 75 80 Gln Pro Thr Gly Glu Asn Glu Met Val Ile Met Arg Pro Gly Asn Lys 85 90 95Tyr Glu Tyr Lys Phe Gly Phe Glu Leu Pro Gln Gly Pro Leu Gly Thr 100 105 110Ser Phe Lys Gly Lys Tyr Gly Cys Val Asp Tyr Trp Val Lys Ala Phe 115 120 Leu Asp Arg Pro Ser Gln Pro Thr Gln Glu Thr Lys Lys Asn Phe Glu 130 140 Val Val Asp Leu Val Asp Val Asn Thr Pro Asp Leu Met Ala Pro Val 145 150 155 160 Ser Ala Lys Lys Glu Lys Lys Val Ser Cys Met Phe Ile Pro Asp Gly 165 170 175 Arg Val Ser Val Ser Ala Arg Ile Asp Arg Lys Gly Phe Cys Glu Gly 180 185 Asp Glu Ile Ser Ile His Ala Asp Phe Glu Asn Thr Cys Ser Arg Ile 195 200 205 Val Val Pro Lys Ala Ala Ile Val Ala Arg His Thr Tyr Leu Ala Asn 210 215 220 Gly Gln Thr Lys Val Leu Thr Gln Lys Leu Ser Ser Val Arg Gly Asn 225 230 235 240 His Ile Ile Ser Gly Thr Cys Ala Ser Trp Arg Gly Lys Ser Leu Arg 245 250 255 Val Gln Lys Ile Arg Pro Ser Ile Leu Gly Cys Asn Ile Leu Arg Val 260 265 270 Glu Tyr Ser Leu Leu Ile Tyr Val Ser Val Pro Gly Ser Lys Lys Val 275 280 285 Ile Leu Asp Leu Pro Leu Val Ile Gly Ser Arg Ser Gly Leu Ser Ser 290 295 300

66602-B.ST25

Arg Thr Ser Ser Met Ala Ser Arg Thr Ser Ser Glu Met Ser Trp Val 305 310 315 320

Asp Leu Asn Ile Pro Asp Thr Pro Glu Ala Pro Pro Cys Tyr Met Asp 325 330 335

Val Ile Pro Glu Asp His Arg Leu Glu Ser Pro Thr Thr Pro Leu Leu 340 345 350

Asp Asp Met Asp Gly Ser Gln Asp Ser Pro Ile Phe Met Tyr Ala Pro 355 360 365

Glu Phe Lys Phe Met Pro Pro Pro Thr Tyr Thr Glu Val Asp Pro Cys 370 380

Ile Leu Asn Asn Asn Val Gln 385 390

<210> 3 <211> 1176 <212> DNA

<213> HOMO SAPIENS

60 atggtgatgt tcaagaagat caagtctttt gaggtggtct ttaacgaccc tgaaaaggtg tacggcagtg gcgagaaggt ggctggccgg gtgatagtgg aggtgtgtga agttactcgt 120 gtcaaagccg ttaggatcct ggcttgcgga gtggctaaag tgctttggat gcagggatcc 180 cagcagtgca aacagacttc ggagtacctg cgctatgaag acacgcttct tctggaagac 240 300 cagccaacag gtgagaatga gatggtgatc atgagacctg gaaacaaata tgagtacaag 360 ttcggctttg agcttcctca ggggcctctg ggaacatcct tcaaaggaaa atatgggtgt 420 gtagactact gggtgaaggc ttttcttgac cgcccgagcc agccaactca agagacaaag 480 aaaaactttg aagtagtgga tctggtggat gtcaataccc ctgatttaat ggcacctgtg tctgctaaaa aagaaaagaa agtttcctgc atgttcattc ctgatgggcg ggtgtctgtc 540 600 tctgctcgaa ttgacagaaa aggattctgt gaaggtgatg agatttccat ccatgctgac 660 tttgagaata catgttcccg aattgtggtc cccaaagctg ccattgtggc ccgccacact 720 taccttgcca atggccagac caaggtgctg actcagaagt tgtcatcagt cagaggcaat 780 catattatct cagggacatg cgcatcatgg cgtggcaaga gccttcgggt tcagaagatc 840 aggccttcta tcctgggctg caacatcctt cgagttgaat attccttact gatctatgtt 900 agcgttcctg gatccaagaa ggtcatcctt gacctgcccc tggtaattgg cagcagatca 960 ggtctaagca gcagaacatc cagcatggcc agccgaacca gctctgagat gagttgggta 1020 gatctgaaca tccctgatac cccagaagct cctccctgct atatggatgt cattcctgaa 1080 gatcaccgat tggagagccc aaccactcct ctgctagatg acatggatgg ctctcaagac

ancect	66602-B.ST25 atct ttatgtatgc ccctgagttc aagttcatgc caccaccgac ttatactgag	1140
_	ccct gcatcctcaa caacaatgtg cagtga	1176
grggar	ceet geateereda caacaargig cagiga	1170
<210> <211> <212> <213>	DNA	
<220> <223>	PRIMER DIRETCTED TO RAT Cinc	
<400> gaagat	4 agat tgcaccgatg	20
<210> <211> <212> <213>	DNA	
<220> <223>	PRIMER DIRETCTED TO RAT Cinc	
<400> catago	5 cctct cacatttc	18
<210> <211> <212> <213>		
<220> <223>	PRIMER DIRETCTED TO RAT Cinc	
<400> gcgccc	6 gtcc gccaatgagc tgcgc	25
<210> <211> <212> <213>	7 28 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER DIRETCTED TO RAT Cinc	
<400> cttggg	7 gaca cccttcagca tcttttgg	28
<210> <211> <212> <213>	8 21 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER DIRETCTED TO RAT Cinc	
	8 ccac ggcaagttca a	21
<210> <211>	9 (

212	66602-B.ST25	
<212> <213>	DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER DIRETCTED TO RAT Cinc	
<400> gggatga	9 acct tgcccacagc	20
	10 34 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER DIRECTED TO RAT HBP23	
	10 ctct tgactttact tttgtgtgtc ccac	34
<211> <212>	11 23 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER DIRECTED TO RAT HBP23	
	11 gggc acacttcacc atg	23