Lecture 2: Sequence Alignment

ECE 365 - Data Science and Genomics

Announcements

- Lab 1 (Introduction to Genomics) released
 - □ due March 11 at 11:59pm
 - Submit via gradescope

From last lecture: processing shotgun sequencing data

1 If a genome from that species has never been sequenced before

2 If a genome from that species has already been sequenced

Sequence Alignment

```
x = AGGCTATCACCTGACCTCCAGGCCGATGCCC
```

y = TAGCTAGCACGACCGCGGTCGATTTGCCCGAC

"Definition": Given two sequences x and y, place gaps ('-') in them so that the resulting sequences "line up well"

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTAGCAC--GACCGC--GGTCGATTTGCCCGAC

(slides adapted from Stanford CS262 lectures)

What is a good alignment?

x = AGGCTAGTT

y = AGCGAAGTTT

AGGCTAGTT-

6 matches, 3 mismatches, 1 gap

AGCGAAGTTT

AGGCTA-GTT-

AG-CGAAGTTT

7 matches, 1 mismatch, 3 gaps

AGGC-TA-GTT-

AG-CG-AAGTTT

7 matches, 0 mismatch, 5 gaps

Scoring function

□ We will score points for matches, and penalize mismatches and gaps:

mismatch: CTATCAC

CTAGCAC

CTATCAC

gap: CTA-CAC

match: +m

Scoring function: mismatch: -s

gap: -d

Score = (# matches) \times m – (# mismatches) \times s – (# gaps) \times d

Let's look at some examples!

□ We use an algorithm based on dynamic programming

match: +1
mismatch: -1
gap: -1

	X=	G	С	A	Т	Т	С
7	0						
G G							
A							
Т							
Т							
А							
С							

□ We use an algorithm based on dynamic programming

 $\begin{array}{ll} \text{match:} & +1 \\ \text{mismatch:} & -1 \\ \text{gap:} & -1 \end{array}$

		G	С	A	Т	Т	С
	0						
G							
A							
Т							
Т							
A							
С							

score of best alignment between GCATT and GA

□ We use an algorithm based on dynamic programming

 $\begin{array}{ll} \text{match:} & +1 \\ \text{mismatch:} & -1 \\ \text{gap:} & -1 \end{array}$

score of best alignment between GCA and GATTA

We use an algorithm based on dynamic programming

 $\begin{array}{ll} \text{match:} & +1 \\ \text{mismatch:} & -1 \\ \text{gap:} & -1 \end{array}$

		G	С	A	Т	Т	С
	0	-1	-2	ر -	- 4	-5	م –
G	-1	1	0				
A	-2						
Т	- 3						
Т	- 4						
A	-5						
С	-(

$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + m, \\ (\text{if } x_i = y_j) \\ H_{i-1,j-1} - s, \\ (\text{if } x_i \neq y_j) \\ H_{i-1,j} - d \\ H_{i,j-1} - d \end{cases}$$

We use an algorithm based on dynamic programming

G	C	A	T	T	-	C	
G	~	A	7	†	A	C	

 $\begin{array}{ll} \text{match:} & +1 \\ \text{mismatch:} & -1 \\ \text{gap:} & -1 \end{array}$

		(G)	С	(A)	(T)		С
	0	-1	-2	-3	-4	-5	-6
G	-1	1	• 0	-1	-2	-3	-4
A	-2	0	0	1	0	-1	-2
(-3	-1	-1	0	2	1	0
T	-4	-2	-2	-1	1	3	2
Α	-5	-3	-3	-1	0	2	2
С	-6	-4	-2	-2	-1	1	3

$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + m, \\ (\text{if } x_i = y_j) \\ H_{i-1,j-1} - s, \\ (\text{if } x_i \neq y_j) \\ H_{i-1,j} - d \\ H_{i,j-1} - d \end{cases}$$

We use an algorithm based on dynamic programming

 $\begin{array}{ll} \text{match:} & +1 \\ \text{mismatch:} & -1 \\ \text{gap:} & -1 \end{array}$

		G	С	A	Т	Т	С
	0	-1	-2	-3	-4	-5	-6
G	-1	1	-0	-1	-2	-3	-4
Α	-2	0	0	1	0	-1	-2
Т	-3	-1	-1	0	2	1	0
Т	-4	-2	-2	-1	1	3	2
Α	-5	-3	-3	-1	0	2	2
С	-6	-4	-2	-2	-1	1	3

$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + m, \\ (\text{if } x_i = y_j) \\ H_{i-1,j-1} - s, \\ (\text{if } x_i \neq y_j) \\ H_{i-1,j} - d \\ H_{i,j-1} - d \end{cases}$$

We use an algorithm based on dynamic programming

 $\begin{array}{ll} \text{match:} & +1 \\ \text{mismatch:} & -1 \\ \text{gap:} & -1 \end{array}$

		G	С	Α	Т	Т	С
	0	-1	-2	-3	-4	-5	-6
G	-1	1	0	-1	-2	-3	-4
Α	-2	0	0	1	0	-1	-2
Т	-3	-1	-1	0	2	1	0
Т	-4	-2	-2	-1	1	3	2
А	-5	-3	-3	-1	0	2	2
С	-6	-4	-2	-2	-1	1	3

Needleman-Wunsch algorithm

$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + m, \\ (\text{if } x_i = y_j) \\ H_{i-1,j-1} - s, \\ (\text{if } x_i \neq y_j) \\ H_{i-1,j} - d \\ H_{i,j-1} - d \end{cases}$$

Global vs Local Alignment

□ Global alignment: Align x and y fully

```
x = AGGCTAGTT AGGC-TA-GTT-
y = AGCGAAGTTT AG-CG-AAGTTT
```

Global vs Local Alignment

□ Global alignment: Align x and y fully

Local alignment: Align a substring of x to a substring of y

□ We can adapt the previous algorithm to find local alignments

We can adapt the previous algorithm to find local alignments

match: (± 3) mismatch: -3 gap: -2

		Т	G	Т	Т	Α	С	G	G
	0	0	0	0	0	D	0	0	σ
G	0	0	, 3						
G	0								
Т	0								
Т	0								
G	0								
A	0								
С	บ								
Т	อ								
А	υ								

Smith-Waterman algorithm

We can adapt the previous algorithm to find local alignments

match: (± 3) mismatch: -3gap: -2

		Т	G	Т	Т	Α	C	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
(G)	0	0	3	1	0	0	0	3	6
Т	0	3	1	6	4	2	0	1	4
T	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
Α	0	0	4	3	5	10	8	6	5
(c)	0	0	2	1	3	8	13	11	9
Т	0	3	1	5	4	6	11	10	8
Α	0	1	0	3	2	7	9	8	7

Smith-Waterman algorithm

$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + m, \\ (\text{if } x_i = y_j) \\ H_{i-1,j-1} - s, \\ (\text{if } x_i \neq y_j) \\ H_{i-1,j} - d \\ H_{i,j-1} - d \\ 0 \end{cases}$$

We can adapt the previous algorithm to find local alignments

match: +3mismatch: s + 3gap: 4z + 2

		Т	(Т	Т	Α	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
a	0	0	3	1	0	0	0	3	6
Т	0	3	1	6	4	2	0	1	4
Т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
А	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
Т	0	3	1	5	4	6	11	10	8
A	0	1	0	3	2	7	9	8	7

Smith-Waterman algorithm

$$H_{ij} = \max \begin{cases} H_{i-1,j-1} + m, \\ (\text{if } x_i = y_j) \\ H_{i-1,j-1} - s, \\ (\text{if } x_i \neq y_j) \\ H_{i-1,j} - d \\ H_{i,j-1} - d \\ 0 \end{cases}$$

GTT-AC GTTGAC

Alignment problem variations

Global alignment

GCATT-C G-ATTAC

Local alignment

T GTT-AC GG G GTTGAC TA

		Т	G	Т	Т	А	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
Т	0	3	1	6	4	2	0	1	4
Т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
A	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
Т	0	3	1	5	4	6	11	10	8
A	0	1	0	3	2	7	9	8	7

Alignment problem variations

Global alignment

GCATT-C G-ATTAC

		G	С	Α	Т	Т	С
	0	-1	-2	-3	-4	-5	-6
G	-1	1	0	-1	-2	-3	-4
A	-2	0	0	1	0	-1	-2
Т	-3	-1	-1	0	2	1	0
Т	-4	-2	-2	-1	1	3	2
A	-5	-3	-3	-1	0	2	2
С	-6	-4	-2	-2	-1	1	3

Local alignment

T GTT-AC GG G GTTGAC TA

		т	G	Т	Т	А	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
Т	0	3	1	6	4	2	0	1	4
Т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
Α	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
Т	0	3	1	5	4	6	11	10	8
A	0	1	0	3	2	7	9	8	7

Alignment problem variations

Global alignment

GCATT-C G-ATTAC

		G	С	А	т	т	С
	0	-1	-2	-3	-4	-5	-6
G	-1	1	0	-1	-2	-3	-4
Α	-2	0	0	1	0	-1	-2
Т	-3	-1	-1	0	2	1	0
Т	-4	-2	-2	-1	1	3	2
A	-5	-3	-3	-1	0	2	2
С	-6	-4	-2	-2	-1	1	3

Local alignment

T GTT-AC GG G GTTGAC TA

						_			
		Т	G	Т	Т	A	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
Т	0	3	1	6	4	2	0	1	4
т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
A	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
Т	0	3	1	5	4	6	11	10	8
А	0	1	0	3	2	7	9	8	7

Alignment to reference

GCACT-C
TCT G-ACTAC GCGT

Overlap alignment

GCACT-C GCGTTCA
TTCT G-ACTAC

