Reading Summary 4.1

Evan Hughes

March 2023

4.1 Polynomial Arithmetic and Division Algorithm

Defining the Polynomial

We must start with defining polynomials in a way that is an obvious extension of real-number coefficient polynomials.

Let R be any ring. A polynomial with coefficients in R is an expression of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{1}$$

where n is a non negative integer and $a_i \in R$.

But what is x?

Theorem 4.1

If R is a ring, then there exists a ring T containing an element x that is not in R and has these properties:

- 1. R is a subring of T.
- 2. xa = ax for all $a \in R$.
- 3. The set R[x], read R add x, of all elements of T of from

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 (where $n \ge 0$ and $a_i \in R$)

is a subring of T that contains R.

4. The representation of elements of R[x] is unique: if $n \leq m$ and

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$
, then $a_i = b_i$ for $i = 1, 2, \dots, n$ and $b_1 = 0_R$ if and only if $a_i = 0_R$.

5. $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = 0$ if and only if $a_i = 0$ for all i.

Proof of Theorem 4.1

The elements of the ring R[x] in Theorem 4.1 are called polynomials with coefficients in R. and the elements a_i are called coefficients. The special element x is sometimes called an indeterminate. Note:

- Property 2 does not imply that the ring T is commutative, but only that the special element x commutes with each element of the subring R.
- Property 5 is the special case of property 4 when each $b_i = 0_r$
- The first expression in property 5 is not an equation to be solved for x. In this context, asking what value makes $a_0 + a_1 x + \cdots + a_n x^n = 0_R$ is meaningless. This is because x is a specific element of a ring, not a variable.

Example(from the book)

Let E be the ring of even integers. Then $4 - 6x + 4x^3 \in E[x]$. However, the polynomial x is not in E[x], because it cannot be written with even coefficients.

Polynomial Arithmetic

The rules for adding and multiplying polynomials follow directly from the fact that R[x] is a ring.

Example

If
$$f(x) = 2 + 3x - 4x^2$$
 and $g(x) = 3 - 2x + x^2$, then $f(x) + g(x) = 5 + x - 2x^2$ and $f(x)g(x) = 8 - x - x^2$.

Theorem 4.2

If R is an integral domain and f(x), g(x) are nonzero polynomials in R[x], then the degree of f(x)g(x) = the degree of f(x) plus the degree of g(x).

Proof of Theorem 4.2

Suppose $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_mx^m$ with $a_n \neq 0$ and $b_m \neq 0$, so that $\deg f(x) = n$ and $\deg g(x) = m$, then

$$f(x)g(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_2b_0 + a_1b_1 + a_0b_2)x^2 + \dots + a_nb_mx^{n+m}$$

The largest exponent of x that can possibly have a nonzero coefficient is n+m. But $a_nb_m \neq 0_R$ because R is an integral domain and $a_n \neq 0_R$ and $b_m = 0_R$. Therefore, f(x)g(x) is nonzero and $\deg(f(x)g(x)) \leq n+m \leq \deg f(x) + \deg g(x)$

Corollary 4.3

If R is an integral domain, then so is R[x].

Proof of Corollary 4.3

Since R is a commutative ring with identity, so is R(x). The proof of Theorem 4.2 shows that the product of nonzero polynomials in R(x) is nonzero. Therefore, R(x) is an integral domain.

Corollary 4.4

Let R be a ring. If f(x), g(x), and f(x)g(x) are nonzero in R[x], then $\deg[f(x)g(x)] \leq \deg f(x) + \deg g(x)$.

Corollary 4.5

Let R be an integral domain and $f(x) \in R[x]$. Then f(x) is a unit in R[x] if and only if f(x) is a constant polynomial that is a unit in R. In particular, if F is a field, the units in F[x] are the nonzero constants in F.

$$2x + 2 \overline{\smash)x^2 + 6x + 9}$$

$$- x^2 + x$$

$$deg(r) < deg(b)
$$- \frac{5x + 9}{5x + 5}$$$$

Figure 1: Division Algorithm

The Division Algorithm in F[x]

Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0_F$. Then there exist unique polynomials q(x) and r(x) in F[x] such that

$$f(x) = g(x)q(x) + r(x)$$
 and either $r(x) = 0_F$ or $\deg r(x) < \deg g(x)$.