Homework 7: Due Monday, June 24, at 11:59pm, on Gradescope

(1) Prove that if the function f is continuous on [a, b], then there is $c \in [a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

- (2) (a) Let $f:[a,b]\to\mathbb{R}$ be nonnegative and continuous. Prove that if f(x)>0 for some $x\in[a,b]$, then $\int_a^b f>0$.
 - (b) Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions such that $f(x) \leq g(x)$ for all $x \in [a, b]$. Prove that if $\int_a^b f = \int_a^b g$, then f = g.
- (3) (a) Prove that if the function f is integrable on [a,b], then there is $c \in [a,b]$ such that $\int_a^c f = \int_c^b f$.
 - (b) Give an example to show that in part (a) we may not have $c \in (a, b)$.
- (4) Compute the following limits:

(a)
$$\lim_{x \to 0} \frac{1}{x} \int_0^x e^{t^2} dt$$
 (b) $\lim_{h \to 0} \int_3^{3+h} e^{t^2} dt$

- (5) For all $x \ge 0$ and $n \in \mathbb{N}$, let $f_n(x) = \frac{x^n}{1 + x^n}$.
 - (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Show that for all 0 < b < 1, f_n converges uniformly on [0, b].
 - (c) Does f_n converge uniformly on [0,1]? Prove your claim.
- (6) Prove that if (f_n) is a sequence of uniformly continuous functions on the interval (a, b) such that $f_n \to f$ uniformly on (a, b), then f is also uniformly continuous on (a, b).
- (7) Give an example of a sequence (f_n) of continuous functions from [0,1] to \mathbb{R} that converges pointwise but *not* uniformly to a continuous limit function $f:[0,1] \to \mathbb{R}$.
- (8) Let (f_n) be a sequence in of C^1 functions on [0,1] such that (f'_n) converges uniformly. Prove that if $(f_n(a))$ converges for some $a \in [0,1]$, then $(f_n(x))$ converges for all $x \in [0,1]$.
- (9) A function $f:[a,b] \to \mathbb{R}$ is called a *step function* if there is a partition $\mathcal{P} = (x_k)_{k=0}^n$ of [a,b] such that f is constant on (x_{k-1},x_k) for each k. Prove that for every continuous function $f:[a,b] \to \mathbb{R}$, there is a sequence $f_n:[a,b] \to \mathbb{R}$ of step functions such that $f_n(x) \leq f(x)$ for all $x \in [a,b]$ and $f_n \to f$ uniformly on [a,b].
- (10) Suppose $\sum c_n x^n$ is a power series such that $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = L > 0$. Prove that $\sum c_n x^n$ converges for all $x \in (-R, R)$ and diverges for all $x \in \mathbb{R} \setminus [-R, R]$, where $R = \frac{1}{L}$.
- (11) For each of the following power series, find the radius of convergence and determine the exact interval of convergence.

(a)
$$\sum n^2 x^n$$
 (b) $\sum \left(\frac{2^n}{n^2}\right) x^n$ (c) $\sum \left(\frac{2^n}{n!}\right) x^n$

(12) Define the function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = e^{-1/x^2}$ for $x \neq 0$, and f(0) = 0.

- (a) Prove by induction that for all $n \in \mathbb{N}$ and $x \neq 0$, $f^{(n)}(x)$ exists and has the form $f^{(n)}(x) = p(\frac{1}{x})f(x)$ where p is a polynomial.
- (b) Show that for every polynomial p, $\lim_{x\to 0} p(\frac{1}{x})f(x) = 0$. Remark: you may freely use without proof the fact from calculus that $\lim_{x\to \infty} \frac{p(x)}{e^x} = 0$ for every polynomial p.
- (c) Show by induction that $f^{(n)}(0)$ exists and is equal to 0 for all integers $n \geq 0$.
- (d) Give an example of a C^{∞} function g whose Taylor series expansion about 0 converges to g for all $x \leq 0$ and converges but not to g for all x > 0. (No justification needed.)

Optional Challenge Problems:

(13) (a) For each $n \in \mathbb{N}$, define the function $f_n: (-1,1) \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} -x - 2^{-n-1} & \text{if } -1 < x < 2^{-n} \\ 2^{n-1}x^2 & \text{if } -2^{-n} \le x \le 2^{-n} \\ x - 2^{-n-1} & \text{if } 2^{-n} < x < 1 \end{cases}$$

Show that each f_n is differentiable on (-1,1), and that (f_n) converges uniformly to the absolute value function on (-1,1).

- (b) For each $n \in \mathbb{N}$, define the function $g_n : \mathbb{R} \to \mathbb{R}$ by $g_n(x) = \frac{\sin(nx)}{n}$. Show that (g_n) converges uniformly on \mathbb{R} to a differentiable function whose derivative is not $\lim_{n \to \infty} g'_n$.
- (14) Let $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$, and for each $n \in \mathbb{N}$ let $f_n : \mathbb{R} \setminus \{q_n\} \to \mathbb{R}$ be the function defined by

$$f_n(x) = 4^{-n} \sin\left(\frac{1}{x - q_n}\right).$$

For each $x \in \mathbb{R} \setminus \mathbb{Q}$, let $f(x) = \sum_{n=1}^{\infty} f_n(x)$.

- (a) Prove that for all $x \in \mathbb{R} \setminus \mathbb{Q}$, $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges. Thus $dom(f) = \mathbb{R} \setminus \mathbb{Q}$.
- (b) Prove that f is continuous.
- (c) Prove that for every $q \in \mathbb{Q}$, $\lim_{x \to q} f(x)$ does not exist. (cf. HW 6, #17)