

A Planetary Defense Follow-up Broker

Eric J. Christensen

on behalf of Catalina Sky Survey and the NEOfixer team:

Alex Gibbs¹, Bill Gray², Carson Fuls¹, Rob Seaman¹, Joshua Sosa¹, Don Fay¹, Frank Shelly¹,

¹Catalina Sky Survey, LPL, UArizona, ²Project Pluto

NEOfixer

- NEOfixer is a target brokering service for NEO observers
- NEOfixer is NOT an LSST "community broker" it will not be plugged directly into the LSST alert stream. It also accepts user feedback (unlike one-way brokers)
- Primary data sources are Minor Planet Center observations database (direct replication from MPC and/or PDS-Small Bodies Node)
- NEOfixer will receive LSST solar system observations filtered through the MPC:
 - NEO Confirmation Page objects
 - Cataloged, published NEOs
 - Non-NEO astrometry is ignored
- Secondary data sources include external lists of objects (JPL impact probability, radar schedules, Yarkovsky candidates)
- NEOfixer is extensible can accept or publish other data products

NEOfixer

- NEOfixer goals:
 - Improve the NEO orbit catalog, from a planetary defense perspective
 - Provide NEO follow-up observers with customized recommendations for "tonight" and the near future
 - Highlight NEOs in need of observation (and suppress those that do not)
 - Foster coordination among follow-up observers
- NEOfixer considers and scores all cataloged NEOs and all NEOCP/PCCP objects

NEOfixer

- Each list is customized to a particular site's capabilities
- Object priorities are dynamic, changing throughout the night
 - As cost changes (e.g. sky brightness, airmass)
 - When new astrometry is published
 - When external lists change (Scout, Sentry, NHATS, radar, Yarkovsky)
- Built-in coordination mechanism
- Primary data source is astrometry, directly from MPC databases
- Orbits, ephemerides + uncertainties are independently calculated by Find_Orb

Column visibility - CSV Print PDF

entries

Targets Status FAQ API Contact Search site eric Log out Register

Targets (I52)

Show 100

Filters: Showing 1 to 53 of 53 entries (filtered from 1,199 total entries)

Packed	Object	Priority	Score	Cost (min) %	Import %	Urgency	RA (hr) %	Dec.	Mag. (V) ∜	Uncert.	Rate ("/min)	Elong.	GC (N)	Num. Obs. 1∜	Last Obs. 19	Arc Length®	RMS	U %	H N	q _%	MOID (AU) [↑]	NEO %	Impact	NHATS	Radar	Yarkov.	Interest	Status	Action
C3R7HJ1	C3R7HJ1		12.72		18	2.8	111	+08:09:30		11			1 1	14				7.6	26.8	0.99	-	100	4						- select✓
C3R7GH1	C3R7GH1		11.73	2	6	1.3	11:07:56	+01:14:55	17.3	0.0847	488.3	84	0	14	22.3	1.9h	0.7	8.4	31.7	0.63	0.000	100	4				- 0.80	observed	observer
P21G0FQ	P21G0FQ		9.79	6	105	100.0	21:34:38	+00:24:08	20.9	0.1191	0.2	117	1	4	1 14.6	1.0h	0.6	12.1	15.7	0.65	0.069	68							- select✓
P21G0G2	P21G0G2		9.21	22	101	100.0	21:08:56	+03:55:49	21.6	0.1281	0.3	121	1	:	3 14.6	1.0h	0.2	12.0	16.3	0.90	0.069	61							- select✓
K22M01M	2022 MM1	very high	8.64	21	20	8.6	18:12:13	-14:10:41	20.3	0.7184	3.0	167	7 5	24	3500	8.8d	0.5	7.0	24.6	0.66	0.009	100		5247					- select✓
C9CWMP2	C9CWMP2	very high	8.12	11	33		00:15:29	+04:03:27	20.2	1.0819	27.9	79	0	1	17.8	0.7h	0.3	13.1	24.6	0.41	0.001	87							- select✓
K19P02D	2019 PD2	high	7.79	41	55	1.0	00:18:38	+44:20:05	21.1	0.7650	1.9	66	2	46	3.7	42d	0.6	6.8	20.0	0.91	0.085	100							- select✓
K20Y01L	2020 YL1	high	7.23	147	66	0.9	01:00:48	+33:51:04	22.2	0.5742	5.2	60	0	74	1 2.4	30d	0.5	6.9	20.5	0.79	0.034	100							- select✓
K20X00S	2020 XS	high	7.21	115	40	1.3	10:02:19	+13:49:58	21.9	0.5725	7.4	64	0	54	2.5	300	0.8	6.6	21.2	0.80	0.078	100					0.00	canceled	canceler
K18L06Q	2018 LQ6	med-high	6.90	61	17	0.7	15:13:21	-24:34:32	20.8	1.4732	3.4	148	3 2	36	4.9	210	0.6	6.9	20.5	1.29	0.427	100					0.00	canceled	canceler
K07Y00H	2007 YH	med-high	6.56	166	38	0.6	23:47:14	+22:54:29	21.8	1.6627	4.5	78	1	83	3 15	46d	0.5	6.3	20.2	0.82	0.163	100							- select✓
K20R05C	2020 RC5	med-high	6.45	159	20	0.6	22:22:21	-23:23:42	22.0	0.6590	2.2	114	0	24	2.7	31d	0.7	6.6	21.7	1.22	0.223	100							- select✓
K10A02N	2010 AN2	med-high	6.28	73	30	0.2	23:06:26	-26:28:24	20.8	2.0864	4.6	106	0	44	1 13	54d	0.7	6.3	22.2	0.84	0.068	100							- select✓
C9CU8E2	C9CU8E2	medium	5.84	2	36	0.8	20:53:55	-24:51:54	19.3	0.0003	2.5	134	1	19	1.7	17.8h	0.2	10.2	20.8	1.15	0.134	100							- select✓
P21FZuX	P21FZuX	medium	5.80	15	19	0.9	15:14:17	+26:21:41	21.9	0.0024	1.0	120	0	,	15.6	6.2h	0.3	11.5	23.0	1.11	0.110	100							- select✓
C9CHDU2	C9CHDU2	medium	5.48	7	20	0.5	22:19:26	-17:22:29	21.1	0.0009	2.2	113	3 0	13	19.4	23.3h	0.4	10.0	23.8	0.57	0.038	100							- select✓
A10VGGW	A10VGGW	medium	5.38	84	60	93.0	23:34:50	-17:49:00	19.3	17.7585	7.3	97	0	4	19.4	0.7h	0.5	12.3	20.6	0.97	0.041	93							- select✓
K19X01F	2019 XF1	medium	5.10	164	19	0.9	13:44:06	-33:00:23	22.3	0.0323	1.8	130	2	58	3.4	580	0.6	5.1	22.3	1.05	0.179	100							- select✓
K23F010	2023 F01	med-low	4.96	73	41	1.5	22:11:39	+64:34:06	22.1	0.0016	1.5	77	5	48	520	38d	0.5	6.7	21.5	0.93	0.056	100							- select✓
K12TP9A	2012 TA259	med-low	4.83	96	36	0.3	12:46:54	+29:33:15	20.7	10.3241	6.3	94	0	52	2 11	23d	0.5	7.4	20.3	0.49	0.171	100							- select✓
K23K00W	2023 KW	med-low	4.79	32	26	1.2	11:53:14	-13:43:35	22.0	0.0008	2.6	100	0	28	8.20	200	0.7	7.3	22.9	0.69	0.046	100	-					-	- select✓

Targets Status FAQ API Contact Log out Register Search site

API

Edit Delete Revisions Devel

Contents

- Overview
- Parameters
- Reply Format
- Methods
 - Get Ephemeris (ephem)
 - Get Observations (obs)
 - Get Orbit (orbit)
 - Report Observing Status (report)
 - Get Targets (target)
 - Get Uncertainty Offsets (uncert)
- Example Code
 - o curl and jq
 - o Python 3
 - o Tcl
- Sample Programs

Overview

The NEOfixer API allows programs to retrieve all the information that is available on the website, excluding plots. This includes customized lists of targets and the details about specific objects. The API can also be used to report your observing status for an object to facilitate better coordination between stations.

The NEOfixer API is easy to use. The target and object pages contain API Link buttons with the API link for the data you are viewing. The target list web page also provides an API link that includes the filters you've chosen, called Filtered Targets API Link, making it very easy to build an API call for a customized list of targets. Those links can be used directly by programs.

API calls start with the following URL, which on it's own does nothing except return some built-in help:

https://neofixerapi.arizona.edu

NEOfixer scoring

Calculate and combine five independent quantities:

Per object:

- Importance of each NEO / NEOCP object
 - How large (H); how close (MOID), potential impacts or other interest?
- Confidence that the object exists + linkage is correct
 - How reputable is the submitter; confirming observations?

Per observation:

- Cost to observe
 - Calculated per telescope+instrument+site combination
- Benefit to object's orbit
 - Sky-plane uncertainty as a proxy for orbital uncertainty
- Urgency to observe
 - Becoming easier or more difficult to observe? What are other sites' intentions?

NEOfixer scoring

Scores are calculated for every ephemeris step (15 min). Plot shows NEOfixer scores for NEOCP object for the upcoming week. Best time to observe A10OgrE from I52 is now!

Verbose scoring breakdown for "tonight" is also available in Scores and Interest tab

Scores and Interest NEOfixer Score for A100grE at I52 Benefit Confidence Value Basis Quantity ΔScore Quantity Basis Value ΔScore Quantity Value ΔScore 5.790 0.76 1σ uncert. = 0.786351° = 2830.86" 1.742 0.24 Raw confidence 0.881 Importance Suncert Confidence Benefit U = 12.31 -1.19 17.424 1.24 SU 10.000 1.00 0.064 99.776 2.00 Benefit 17.424 1.24 Urgency

Cost	5.712	-0.70				
Confidence	0.064	-1.19	Urgency			
Interest	1.000	0.00	Quantity	Basis	Value	ΔScore
Time of max tonight (t _{max})	2022-10-17 03:00		Cost ₁	Optimal cost score in near future	1040.459	_
			Costo	Optimal cost score tonight	4.952	-
NEOfixer (at t _{max})	112.9493	critical 9.05	Ratio (r)	· · · · · · · · · · · · · · · · · · ·	210.127	-
			itatio (i)			
Importance		<u> </u>	Urgency		99.776	2.00

Interest									
Site	Time (UTC)	Status	Value	ΔScore					
No observing interest reported									
All interes	t (target table)	0.0	-						
Others' int	terest (besides 152)	0.0							
Interest		1.000	0.00						

Quantity	Basis	Value	ΔScore					
S _H	H = 28.82	2.201	0.34					
S _{MOID}	MOID _⊙ = 0.002226 AU	2.652	0.42					
P(NEO)	find_orb p_NEO = 99.2%	0.992	-0.00					
S _{Scout}	Scout rating = 0	1.000	0.00					
Base Importa	nce (target table)	5.838	-					
Importance		5.790	0.76					

Cost									
Basis	Value	ΔScore							
One visit integration time (minutes)	0.062	-							
1σ uncert. = 0.786351° = 2830.864"	5.017	-							
1σ uncert.	6.034	-							
Galactic confusion (GC) = 0.000	1.200	-							
Base cost in minutes (target table)									
Cost									
	One visit integration time (minutes) 1 σ uncert. = 0.786351° = 2830.864° 1 σ uncert. Galactic confusion (GC) = 0.000	One visit integration time (minutes) 0.062 1σ uncert. = 0.786351° = 2830.864" 5.017 1σ uncert. 6.034 Galactic confusion (GC) = 0.000 1.200							

Coordination / communication

- Subscribing sites can communicate with NEOfixer about observation actions
- Sites can tell NEOfixer: may observe, will observe, observing, observed, found, reported, not found, canceled
- These actions adjust the priority scores for all other sites
- Can be communicated via the website or the API
- Everyone's action messages are visible to NEOfixer users

Who's using NEOfixer?

- ~130 user accounts
- 100+ unique, user-defined telescope sites have been created
 - Apertures range from 0.2-m to 8-m
 - More sites are welcome NEOfixer is designed with everyone in mind:
 - Full-time professional follow-up stations
 - Dedicated amateur observers
 - Occasional use of high-value telescopes
- Non-observers are also welcome to browse NEOfixer
 - All 32,000+ NEOs have object pages from MPC code 500 (geocenter)
 - Object pages have orbits, ephemerides, benefit plots, orbit viewer, etc.

Benefit estimates

- NEOfixer estimates benefit from sky-plane uncertainty, in service of assigning target priorities
- BUT this technique can be used retroactively, to estimate benefit for any tracklet
- Iteratively solve an orbit, adding one tracklet at a time, in order of submission time
- Generate sky-plane uncertainty estimates both with and without the tracklet; ratio of pre-tracklet uncertainty to post-tracklet uncertainty is the benefit.
- Benefit can be weighted by NEOfixer's object Importance metric

Benefit plots

Some orbits are efficiently constructed – nearly all tracklets provide substantial benefit to the orbit. Height of rectangle correlates with benefit.

Benefit plots

Other orbits contain unnecessary or minimally beneficial tracklets:

(Benefit plots are interactive at https://neofixer.arizona.edu)

Benefit plots

The most beneficial tracklets are often early NEOCP observations or secondapparition recoveries

Follow-up Benefit

 Benefit information can help measure performance of MPC codes or groups of codes

NEO Follow-up Tracklets, 2020-2022

- Benefit <2 is considered "low-benefit"
- Follow-up programs should avoid creating low-benefit tracklets!
- NEOfixer can help....

Follow-up Benefit

- Can track follow-up station performance over time, for example CSS NEO follow-up (I52 + V06) since 2014
- Working to improve aggregate benefit. Note low-benefit fraction trending downward ->
- NEOfixer integration began in 2021

Future NEO follow-up challenges

- LSST may publish observations through multiple paths:
 - 3 linked tracklets (pairs) over multiple nights
 - Decent orbits, ready for publication as new objects.
 - Published "next day," after collection of third tracklet
 - Follow-up not required except for interesting objects
 - Streaked pairs of observations, from the alert stream
 - Insufficient to calculate orbit prompt follow-up required
 - Published immediately, during the night (assumes someone is linking streaked pairs)
 - Serendipitous triples or quads from standard cadence or field overlap
 - Insufficient to calculate orbit prompt follow-up required
 - Published next day

Future NEO follow-up challenges

- Current follow-up assets are wellmatched to current survey capability, but...
- Future surveys (LSST and NEO Surveyor) will discover NEOs at fainter magnitudes (V>23) and at greater volume (~10x current rates)
- Traditional methods for identifying NEO candidates (e.g. digest2) may not scale
- Important for LSST to deliver highconfidence, high-purity observations/orbits to the Minor Planet Center!
- False linkages are often exotic and may waste follow-up resources, attract unwanted attention

Too Much of a Good Thing? Rapid NEO Follow-up Strategies in the Era of LSST

T. Wagg , M. Juric , P. Yoachim , S. Cornwall , J. Moeyens , S. Eggl , and R. L. Jones

(Received May 4, 2023)

ABSTRACT

We present new predictions for the impact that the Rubin Observatory Legacy Survey of Space and Time (LSST) will have on the Near Earth Object (NEO) follow-up system, and especially the NEO Confirmation Page (NEOCP). NEO candidates are currently found at a rate of 10-30/night and, if they meet certain criteria, announced on the NEOCP for community follow-up. We use mock LSST observations and the digest2 code to quantify the effect of Rubin on the NEOCP. We find that, when using current submission criteria, Rubin would typically contribute 1100 new objects to the NEOCP each night, 2 orders of magnitude higher than the current rates. Typically only 3% of these candidates would be NEOs, where the rest are main belt asteroids (MBAs). As such an increase would overwhelm the NEO follow-up system, we consider mitigation strategies. We develop an algorithm that predicts (with 76% efficiency) whether Rubin itself will self follow-up the object; these can then be flagged on the NEOCP. However, even with this algorithm enabled, Rubin would still submit around 170 NEO candidates per night (with only $\sim 1.5\%$ purity). We conclude that the main challenge is the large background of undiscovered 22-24th mag MBAs masquerading as NEOs. We recommend that in the first 1-2 years the community focuses on following up only the highest probability Rubin-reported NEO candidates, until most of the MBA background is catalogued. We show that a pure sample can be attained using ecliptic latitude cuts or focusing on NEOs exhibiting trails.

Keywords: Near-Earth objects, Asteroids, Solar system, Small Solar System bodies, Surveys

¹DiRAC Institute and the Department of Astronomy, University of Washington, Seattle, WA, 98195

²Department of Aerospace Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801

Future NEO follow-up challenges

- Wagg et al. suggest predicting which NEO candidates might be incidentally self-followed up by LSST
- Lots of open questions about how external follow-up resources can optimally behave to supplement LSST observations
- Tools like NEOfixer can help identify high-priority targets and coordinate scarce follow-up resources (for planetary defense)
- NEOfixer architecture could be extended to:
 - Accept "possible future pointings" from surveys
 - Incorporate Rubin-provided estimates of likely self-follow-up
 - May need to modify scoring algorithms for Confidence and Urgency
 - Open to suggestions!

NEOfixer quick start guide

- Go to https://neofixer.arizona.edu/
- Read the <u>FAQ</u>
- Browse site 500 for all 32,000+ NEOs, or load a sample site (I52, T14, J95)
- Filter target lists, add/hide columns, sort by any table column
- For observers:
 - Register for an account
 - <u>Create</u> or request authorization for a telescope site
 - Communicate intentions/actions to NEOfixer via the website or API
- See ACM poster #2328 by D. Carson Fuls
- Send questions or comments through the <u>Contact</u> form, or directly to me, eric@arizona.edu * but only until July 28...!