

格的性质

- $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \leq \rangle$ 诱导的代数系统。 $\forall a, b, c, d \in A$
- 1. $a \leq a \vee b$, $b \leq a \vee b$, $a \wedge b \leq a$, $a \wedge b \leq b$ 此性质由运算 \vee 和 \wedge 的定义直接得证。
- 2. 如果 $a \leq b$, $c \leq d$, 则 $a \vee c \leq b \vee d$, $a \wedge c \leq b \wedge d$ 证明:如果 $a \leq b$, 又 $b \leq b \vee d$, 由传递性得 $a \leq b \vee d$ 类似由 $c \leq d$, $d \leq b \vee d$, 由传递性得 $c \leq b \vee d$, 这说明 $b \vee d$ 是a, c的上界, 而 $a \vee c$ 是a, c的最小上界, 所以 $a \vee c \leq b \vee d$ 。类似可证 $a \wedge c \leq b \wedge d$ 。

推论: 在一个格中,任何 $a,b,c \in A$,如果 $b \leq c$,则 $a \lor b \leq a \lor c$, $a \land b \leq a \land c$ 。此性质称为格的保序性。

- 4. \forall 和 \land 都满足幂等律。即 $a \lor a = a$, $a \land a = a$ 证明: 显然 $a \leqslant a \lor a$, 又由 $a \leqslant a$ 可得 $a \lor a \leqslant a$, 根据反对称性有 $a \lor a = a$, 由对偶原理, $a \land a = a$ 得证。

