Examen Individual

NIVEL III

Instrucciones: El examen consta de dos partes. La parte A consta de 12 problemas con un valor de 5 puntos cada uno. En estos problemas solo se toma en cuenta la respuesta final, que debe ser claramente escrita en el espacio correspondiente a cada problema, no se darán puntos parciales y no hay penalizaciones por respuestas incorrectas. Para las preguntas con varias respuestas, se darán los 5 puntos solo si todas las respuestas correctas están escritas y solo ellas. En caso de que las respuestas a estos problemas no sean enteras, estas deben ser aproximadas a dos decimales tomando en cuenta los siguientes valores:

$$\pi = 3.14, \qquad \sqrt{2} = 1.41, \qquad \sqrt{3} = 1.73, \qquad \sqrt{5} = 2.23.$$

La parte B consta de 3 problemas de redacción libre y con un valor de 20 puntos cada uno. En estos problemas es posible acumular puntos parciales. Las figuras mostradas, podrían no estar a escala. No está permitido el uso de calculadoras, transportadores y aparatos electrónicos. La duración del examen es de **2 horas.**

PARTE A

Problema 1. En el interior de un cuadrado hay tres triángulos equiláteros como se muestra en la figura. Si la suma de los ángulos $a ext{ y } b$ es 50° , ¿cuál es el valor de la suma, en grados, de los ángulos $c ext{ y } d$?

R:

Problema 2. En una olimpiada participan cinco hermanos: Aldo, César, Hugo, Luis y Saúl. Sus edades son 12, 13, 14, 17 y 25 años, pero no se sabe quién tiene cada edad. Sin embargo, se sabe que si sumas la edad de Saúl y la de César obtienes la edad de Luis, mientras que si sumas la edad de Saúl y la de Aldo obtienes el doble de la edad de César. ¿Cuál es la edad de Hugo?

Problema 3. Rogelio escribe una lista de los divisores positivos de 10! de menor a mayor. Luego multiplica los números que ocupan los lugares 10 y 261 de su lista. ¿Qué resultado obtiene Rogelio?

R:

Problema 4. Carolina planea vender crepas dulces y la forma de prepararlas es acompañarlas con una o dos frutas diferentes y un aderezo. Carolina ha considerado utilizar como aderezo chocolate, cajeta o mermelada de fresa. A ella le gustaría ofrecer a sus clientes al menos 100 tipos de crepas distintas. ¿Cuál es la cantidad mínima de frutas que debe ofrecer Carolina a sus clientes para garantizar al menos 100 tipos de crepas distintas?

R:

Problema 5. Ivannia escribió en el pizarron la siguiente ecuación:

$$m^2 - n^2 = 2021.$$

Calcula la suma de todos los posibles valores del último dígito de n^m , tomando en cuenta que m y n son enteros positivos.

R:

Problema 6. ¿Cuántos números de siete dígitos hay para los cuales el producto de sus dígitos es 45³ y la suma de sus dígitos no es un número primo?

R:

Problema 7. Sea ABCD un trapecio con AB paralela a CD, AB = 14 cm, BC = 15 cm, CD = 28 cm y DA = 13 cm. Encuentra el área, en cm², de ABCD.

R:

Problema 8. La taquería "*El taco matemático*" tiene dos promociones: Promo100, donde son tres órdenes de tacos por 100 pesos, y Promo70, donde son dos órdenes de tacos por 70 pesos. Matilde quiere hacer una fiesta y quiere minimizar el dinero que gastará en los platillos. Si ella quiere pedir exactamente 31 órdenes de tacos, ¿cuánto es lo menos que puede gastar en pesos?

R:

Problema 9. Determina cuántos enteros positivos a menores que 10000 satisfacen que 1010a - 1011 es múltiplo de 2021.

R:

Problema 10. Se tiene un cubo con sus caras pintadas de 6 colores distintos, una de cada color. Cada cara se separa en 4 cuadrados iguales trazando líneas perpendiculares a sus lados que pasen por sus centros. En los 24 cuadrados que resultan de la división, se acomodan los números del 1 al 24 de manera que después de colocarlos todos, la suma de cada 3 números cuyos cuadrados tienen un vértice en común y este sea un vértice del cubo sea múltiplo de 3 y, además, cada dos números cuyos cuadrados estén en la misma cara del cubo y estos compartan un lado sumen también un múltiplo de 3. Si el número de formas de realizar este acomodo se puede expresar de la forma $a \cdot (b!)^c$ donde a, b y c son enteros positivos tales que a no es divisible por el cuadrado de ningún primo, encuentra a + b + c

R:

Problema 11. Los números reales positivos x, y, z satisfacen

$$\frac{x+y}{z} = \frac{y+z}{5x} = \frac{z+x}{2y}.$$

Si el valor de la expresión $\frac{x+2y}{3z}$ se puede escribir de la forma $\frac{m}{n}$ con m y n enteros positivos cuyo máximo común divisor es igual a 1, encuentra m+n.

R:

Problema 12. En la figura se observan dos circunferencias de radios 1 cm y 2 cm tangentes a una recta horizontal. Una tercera circunferencia de radio 3 cm es tangente a las otras dos circunferencias. ¿A qué distancia, en centímetros, se encuentra el centro de la tercera circunferencia de la recta horizontal?

R:

PARTE B

Problema 13. La siguiente figura muestra un hexágono regular cuyos vértices son A, B, C, D, E, F, un pentágono regular cuyos vértices son E, G, H, I, F, y un cuadrado cuyos vértices son I, F, K, J. ¿Cuánto mide, en grados, el ángulo $\angle KAI$?

Problema 14. David, Américo y Nicho tienen 12, 13 y 14 años, respectivamente. Al inicio, cada uno de ellos tiene un número. Por turnos, siguiendo el orden de acuerdo a su edad del menor al mayor, juegan al "Oportuno veinte veintiuno" que consiste en, durante su turno, elegir y hacer uno de los siguientes movimientos:

- Restar 3 a su número.
- Multiplicar por 7 su número y al resultado sumarle 9.
- Multiplicar por 4 su número y al resultado restarle 3.

Gana el primero que obtenga como resultado el número 2021. Si cada uno comienza con el número de su edad, ¿quién ganará?

Problema 15. Los números reales x,y,z,N cumplen las siguientes ecuaciones:

$$x + y + z = 3,$$

$$N = x^2y^2 + 4z = y^2z^2 + 4x = z^2x^2 + 4y.$$

Encuentra todos los posibles valores de N.