

Applied Artificial Intelligence with Python

SEOW KHEE WEI

Accuracy, Precision, Recall, F1

Confusion Matrix

Predicted/Classified

Actual

	Negative	Positive
Negative	998	0
Positive	1	1

Predicted

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Precision

True Positive + False Positive = Total Predicted Positive

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$
$$= \frac{True \ Positive}{Total \ Predicted \ Positive}$$

Precision is a good measure to determine, when the costs of False Positive is high.

For instance, email spam detection. In email spam detection, a false positive means that an email that is non-spam (actual negative) has been identified as spam (predicted spam). The email user might lose important emails if the precision is not high for the spam detection model.

$$\begin{aligned} \text{Recall} &= \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \\ &= \frac{\textit{True Positive}}{\textit{Total Actual Positive}} \end{aligned}$$

		Predicted		
		Negative	Positive	
Actual	Negative	True Negative	False Positive	
Actual	Positive	False Negative	True Positive	

True Positive + False Negative = Actual Positive

- •Recall shall be the model metric we use to select our best model when there is a high cost associated with False Negative.
- •If a sick patient (Actual Positive) goes through the test and predicted as not sick (Predicted Negative). The cost associated with False Negative will be extremely high if the sickness is contagious.

F1 Score

- •a function of Precision and Recall.
- •F1 Score is needed when you want to seek a balance between Precision and Recall

$$F1 = 2 \times \frac{Precision*Recall}{Precision*Recall}$$