Chapter 2: 5.4, 5.5, 6.4 Chapter 3: 1.7, 2.3, 2.4, 2.6, 2.8, 2.11, 2.12, 2.16, 2.20

Exercise 5.4. Let *a* and *b* be real numbers. Show that the following three equalities hold:

$$\bigcap_{x>b}(a,x)=(a,b],\qquad \bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}]=(a,b),\qquad \bigcap_{n=1}^{\infty}(a+n,+\infty)=\varnothing.$$

- 1. Let A_1 be the set $(a, b + \epsilon_1)$ for some $\epsilon_1 > 0$. This translates to $\{x \in \overline{\mathbb{R}} : a < x < b + \epsilon_1\}$. Since this is a general intersection, another set in the collection will some subset, $A_2 \subset A_1, A_2 = \{x \in \overline{\mathbb{R}} : a < x < b + \epsilon_2\}$ where $\epsilon_1 > \epsilon_2$. There are many more subsets of A_2 and will continue for $\epsilon_{n+1} < \epsilon_n, n \in \mathbb{N}$. The key insight to note is that b is a common element between all subsets. Clearly, the upper bounds of these subsets are tending to b so that will be the upper bound of general intersection. So, $A_1 \cap A_2 \cap \cdots = \{x \in \overline{\mathbb{R}} : a < x \le b\} = (a, b]$.
- 2.
- 3.

Exercise 5.5. Let $a_1, a_2,...$ be any enumeration of the negative rational numbers; let $b_1, b_2,...$ be any enumeration of the positive rational numbers. Show that the following two equalities hold:

$$\bigcap_{j=1}^{\infty} (a_j, b_j) = \{0\}, \qquad \bigcup_{j=1}^{\infty} (a_j, b_j) = \mathbb{R}.$$

Exercise 6.4. Prove there exists no order \leq that makes $(\mathbb{C}, +, \cdot, \leq)$ into an ordered field.

Let us argue by contradiction. Assume that \mathbb{C} is a ordered field. Let us analyze the case (0,1)=i.

- If i > 0, $x, y \in \mathbb{C}$ and $x = i, y = i, i \cdot i > 0 \implies -1 > 0$, which is a contradiction.
- If i < 0, $x, y \in \mathbb{C}$ and x = -i, y = -i (since x, y > 0 for the second condition to hold), $-i \cdot -i < 0 \rightarrow i^2 > 0 \implies -1 > 0$, which is a contradiction.

Exercise 1.7. Let $\|\cdot\|$ be a norm on a real vector space V. Prove the *reverse triangle inequality*:

$$|||x|| - ||y||| \le ||x - y||$$

Exercise 2.3. Let X be any set. Prove that the discrete metric $d: X \times X \to \mathbb{R}$ (defined by d(x,y) = 1 if $x \neq y$ and d(x,x) = 0 for $x \in X$) satisfies the triangle inequality and is therefore a metric on X.

Exercise 2.4. Determine which of the following functions are metrics on \mathbb{R} . Prove your answer in each case.

- $\bullet \ d_1(x,y) = \sqrt{|x-y|}.$
- $d_2(x,y) = |x 2y|$.
- $d_3(x,y) = \frac{|x-y|}{1+|x-y|}$.

Exercise 2.6. Let $\|\cdot\|$ denote the Euclidean norm \mathbb{R}^2 , i.e. $\|(x_1, x_2)\| = \sqrt{x_1^2 + x_2^2}$. Consider the function from $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, defined by

$$d(x,y) = ||x_1 - y_1|| + ||x_2 - y_2||, \qquad (x = (x_1, x_2), y = (y_1, y_2)).$$

- 1. Prove that *d* is a metric on \mathbb{R}^2 .
- 2. On a sheet of graph paper, draw the set $B_d((5,1),3)$. Use dotted lines to indicate the boundary, which is not included in the set you are drawing. (Hint: it may be easier to figure out what the set looks like if you first consider $B_d((0,0),3)$.
- 3. On the same graph as in the previous part, draw $B_{d_u}((-3,2),1)$, where d_u denotes the square metric.

Exercise 2.8. Let (X, d) be a metric space, and let E be a subset of X. The *diameter* of E in (X, d) is defined by the formula

$$diam_d(E) = \sup\{d(x,y) : x,y \in E\}.$$

- 1. Prove that for any r > 0 and $x \in X$, we have diam $(B(x, r)) \le 2r$.
- 2. If *X* is any set and *d* is the discrete metric, show diam(B(x,r)) = 0.
- 3. If $X = \mathbb{R}^n$ for some $n \in \mathbb{N}$ and d is the Euclidean metric, prove that diam(B(x,r)) = 2r.

Exercise 2.11. As in Example 2.7, let $X = \mathbb{R}^2$, $Y = [-1,3] \times [2,4]$, and let d denote the Euclidean metric on $X = \mathbb{R}^2$. Let p = (3,4) and let q = (2,4). Arguing *directly from the definition of an interior point* (i.e., without using Exercise 2.12), show that q is an interior point $B_Y(p,2)$ with respect to Y, but q is not an interior point $B_Y(p,2)$ with respect to X. In addition, draw a picture on a piece of graph paper that illustrates the idea of your proof.

Exercise 2.12. Let (X, d) be a metric space, and let Y be a subset of X. Prove that

$$(*) \operatorname{Int}_X(U) = \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y).$$

In the notation of Exercise 2.11, the equality (*) gives an alternate explanation of why q is not an interior point of $B_Y(p,2)$ with respect to X: It is because $q \notin \operatorname{Int}_X(Y)$, as can be seen from the picture you drew in that Exercise.

Exercise 2.16. Let (X, d) be a metric space, and let U be a subset of X. Use Proposition 2.15 to prove that $Int_X(U)$ is open in X.

Exercise 2.20. Let (X, d) be a metric space. Assume that $U \subset Y \subset X$, and additionally that Y is open X. Prove that U is open in Y if and only if U is open in X. (Note: There at least two possible solutions; one uses Theorem 2.19, the other uses Exercise 2.12.)

3