SYMPLECTIC GEOMETRY

辛几何笔记

Misuzu/Yuxuan Liu

March 13, 2025

${\rm CONTENTS}$

Contents

1	线性辛几何			
	1.1	辛空间	2	
	1.2	复结构	5	
	1.3	相容复结构	5	
	1.4	辛群	7	
	1.5	$J(V,\omega)$ 的结构 \ldots	8	
_	<u></u> \	т.		
2	辛流	····	11	
		辛流形		
		余切丛 $M = T^*X$		
	2.3	辛同胚	13	
	2.4	Lagrange 子流形	13	

${\rm CONTENTS}$

这是我 2025 春季学期的辛几何课程笔记, 课程大纲如下:

- 线性辛几何
- 辛流形基础
- 局部理论
- 近复结构
- 辛群作用与 Toric 几何
- 经典/量子力学
- Morse 理论/Flow 理论

1 线性辛几何

1.1 辛空间

Definition 1.1. 设 V 是 \mathbb{R} 上的 m 维线性空间, $\omega: V \times V \to \mathbb{R}$ 是非退化, 反对称的双线性映射, 则称 ω 是 V 上的一个辛结构, (V, ω) 构成一个辛空间.

定义中的非退化指的是: 对任意 $0 \neq v \in V$,存在 $0 \neq w \in V$ 使得 $\omega(v,w) \neq 0$. 由定义可知:

- 非退化: $\widetilde{\omega}: V \to \widetilde{V}, v \mapsto \omega(v,\cdot)$ 是同构.
- 反对称: 选取 V 的一组基 $\{e_1, \dots, e_m\}$, 则 (ω_{ij}) 是反对称矩阵, 其中 $\omega_{ij} = \omega(e_i, e_j)$. 同时也有推论: m = 2n, 为偶数.

Example 1.1. 令 $\{e_1 \cdots, e_{2n}\}$ 为 \mathbb{R}^{2n} 的一组基, $e_i = (0, \cdots, 0, \frac{1}{i-\text{th}}, 0 \cdots, 0)$ (我们称其为标准基). 令 \mathbb{R}^{2n} 上的一个非退化反对称双线性映射 ω_0 由以下矩阵给出:

$$(\omega_{ij}) = \left(\begin{array}{c|c} 0 & id_{n \times n} \\ \hline -id_{n \times n} & 0 \end{array}\right)$$

则 $(\mathbb{R}^{2n}, \omega_0)$ 是辛空间. 为了方便, 记 $f_i = e_{n+i}, 1 \leq i \leq n$, 则有

$$\begin{cases} \omega_0(e_i, f_j) = \delta_{ij} \\ \omega_0(e_i, e_j) = \omega_0(f_i, f_j) = 0 \end{cases}$$

Definition 1.2. 设 $\varphi: V \to V'$ 是辛空间 (V, ω) 到 (V', ω') 的线性同构, 且满足 $\varphi^*\omega' = \omega$, 则称 φ 是辛同构.

Proposition 1.1. 任意 2n 维辛空间 (V,ω) 都与 $(\mathbb{R}^{2n},\omega_0)$ 辛同构.

Proof. 我们运用归纳法证明. 目的: 证明存在 V 的一组基 $\{e_1',\cdots,e_n',f_1'\cdots,f_n'\}$ 使得

$$\begin{cases} \omega(e'_i, f'_j) = \delta_{ij} \\ \omega(e'_i, e'_j) = \omega(f'_i, f'_j) = 0 \end{cases}$$

先任取一非零向量 e'_n ,由非退化性质和双线性性, $\exists f'_n$ 使得 $\omega(e'_n, f'_n) = 1$,由此也可知 e'_n, f'_n 线性无关. 考虑 $V' = \{v \in V \mid \omega(e'_n, v) = 0, \omega(f'_n, v) = 0\}$,则有:

- (1) V' 是 2n-2 维线性空间.
- (2) $\omega \mid_{V'}$ 非退化. (若对 $u \in V'$, $\forall u' \in V'$ 都有 $\omega(u, u') = 0$, 则 $\omega(u, v) = 0$ 对 $\forall v \in V$ 成立, 与 ω 非退化矛盾)

故 $\omega|_{V'}$ 是 V' 上的辛结构, 通过对维数归纳得证.

若 (V,ω) 的一组基 $\{e_1,\cdots,e_n,f_1\cdots,f_n\}$ 满足:

$$\begin{cases} \omega(e_i, f_j) = \delta_{ij} \\ \omega(e_i, e_j) = \omega(f_i, f_j) = 0 \end{cases}$$

则称该组基为辛基,注意辛基不唯一.

Definition 1.3. 设 Y 是 (V,ω) 的一个线性子空间, 定义 Y 的辛补空间为 $Y^{\omega} = \{v \in V \mid \omega(v,u) = 0, \forall u \in Y\}.$

由线性代数可知:

- $\dim Y + \dim Y^{\omega} = \dim V$.
- $(Y^{\omega})^{\omega} = Y$.
- $Y \subseteq Z \iff Y^{\omega} \supseteq Z^{\omega}$.

Definition 1.4. 当 (V, ω) 的子空间 Y 分别满足以下条件时, 称其为:

 $Y \cap Y^{\omega} = 0$ 辛子空间

 $Y \subseteq Y^{\omega}$ 迷向子空间

 $Y \supset Y^{\omega}$ 余迷向子空间

 $Y = Y^{\omega}$ Lagrange 子空间

且分别有维数: $\dim Y$ 为偶数, $\dim Y \leq n$, $\dim Y \geq n$, $\dim Y = n$.

当 Y 是辛子空间时, $\omega|_{Y}$ 是其上的辛结构 (这也是为什么 Y 被称为辛子空间).

Remark 1.1. Lagrange 子空间是很重要的子空间, 它兼具极大各向同性 (maximal isotropic) 与结构对称性. 在后续的学习中我们也能看到 Lagrange 子流形的重要性.

Example 1.2. 在 (\mathbb{R}^6 , ω_0) 中, { e_1 , e_2 , e_3 , f_1 , f_2 , f_3 } 为标准基,则有:

 $L(e_1, f_1)$ 辛子空间

 $L(e_1)$ 迷向子空间

 $L(e_1, e_2, e_3, f_1)$ 余迷向子空间

 $L(e_1, e_2, e_3)$ Lagrange 子空间

Example 1.3. 设 Y 是 (V,ω) 的迷向子空间, 在 Y^{ω}/Y 上定义 $\overline{\omega}$ 为 $\overline{\omega}(\overline{u},\overline{v}) = \omega(u,v)$.

Exercise 1.1. 证明: $(Y^{\omega}/Y, \overline{\omega})$ 是辛空间.

Solution.

- 良定义: 对于 $\forall x, x', y, y' \in Y^{\omega}, x x' \in Y, y y' \in Y, 有 \omega(x, y) \omega(x', y') = \omega(x x', y) + \omega(x', y y') = 0$, 故 $\overline{\omega}$ 是良定义的.
- 非退化: 若存在 $(x+Y) \in Y^{\omega}/Y$ 使得 $\forall (y+Y) \in Y^{\omega}/Y$, $\overline{\omega}(x+Y,y+Y) = 0$, 则 对 $\forall y \in Y^{\omega}$ 有 $\omega(x,y) = 0$, 故 $x \in (Y^{\omega})^{\omega} = Y$, 可知 $\overline{\omega}$ 非退化.
- 反对称: 由 ω 反对称继承而来.

Remark 1.2. 对于辛空间 (V, ω) 和其子空间 Y, $V = Y + Y^{\omega}$ 不一定成立, 例如 Y 为迷向子空间.

Exercise 1.2. 证明: (V, ω) 的任意迷向子空间可扩充为一个 Lagrange 子空间.

Solution. 任取 V 的迷向子空间 Y, 考虑满足以下条件的迷向子空间 M:

(1) $Y \subseteq M$; (2) 对任意满足 $Y \subseteq L$ 的迷向子空间 $L, L \subseteq M$.

下证 M 是 Lagrange 子空间: 若存在 $x \in M^{\omega}$ 且 $x \notin M$, 则 M 和 x 线性张成的子空间是包含 Y 的迷向子空间, 故有 $x \in M$, 矛盾. 因此 $M^{\omega} = M$, M 是 Lagrange 子空间.

(本题还可以用上题证明的结论解决,考虑如上题的商空间,由于其为辛空间,则这个商空间中存在 Lagrange 子空间,现在把这个 Lagrange 子空间用商映射拉回到 Y^{ω} 中,证明这个空间就是包含 Y 的 Lagrange 子空间.)

Exercise 1.3. 若 Y 是 (V,ω) 的 Lagrange 子空间,则 (V,ω) 辛同构与 $(Y \oplus Y^*,\omega_0)$, ω_0 定义为 ω_0 $((u,\alpha),(v,\beta)) = \beta(u) - \alpha(v)$.

Solution. 由于 ω 是辛结构,则存在一个线性同构 $\iota: V \to V^*, v \mapsto \omega(v,\cdot)$. 定义

$$f: Y \oplus Y^* \to V, \ (u, \alpha) \mapsto u - \iota^{-1}(\alpha)$$

下证 f 是辛同构:

- f 是线性同构: 线性性是显然的. 若 $u \iota^{-1}(\alpha) = 0$, 则 $\iota(u) = \omega(u, \cdot) = \alpha$. 则有 $\alpha(v) = \omega(u, v) = 0$, $\forall v \in Y$. 故 $\alpha = 0$, u = 0, f 是单射. 由于 $\iota^{-1}(Y^*)$ 是 V 的 n 维子空间, 若 $V = Y \oplus \iota^{-1}(Y^*)$, 则满射是显然的. 假设 $u \in Y \cap \iota^{-1}(Y^*)$, 则存在 $\alpha \in Y^*$ 使得 $u = \iota^{-1}(\alpha)$, 故 u = 0. 因此 f 是线性同构.
- f 是辛同构: $f^*\omega((u,\alpha),(v,\beta)) = \omega(u-\iota^{-1}(\alpha),v-\iota^{-1}(\beta)) = \omega(\iota^{-1}(\beta),u) \omega(\iota^{-1}(\alpha),v) = \beta(u) \alpha(v).$

1.2 复结构

Definition 1.5. 设 $V \in \mathbb{R}$ 上的线性空间, 若线性变换 $J: V \to V$ 满足 $J^2 = -id$, 则称 J 为 V 上的一个复结构.

- 若 V 上有复结构, 则 $(-1)^{\dim V} = \det(J^2) = (\det J)^2 \ge 0$, 故 $\dim V$ 为偶数且 J 可 \mathcal{P} .
- 给定复结构 J, V 可以看成复线性空间:

$$\mathbb{C} \times V \to V, \ (s+it,v) \mapsto sv + tJ(v)$$

Example 1.4. 令
$$\{e_1 \cdots, e_{2n}\}$$
 为 \mathbb{R}^{2n} 的标准基,考虑 J_0 :
$$\begin{cases} J_0(e_i) = e_{n+i} \\ J_0(e_{n+i}) = -e_i \end{cases}$$
 其中 $1 \le i \le n$, 则 J_0 是 \mathbb{R}^{2n} 上的复结构,有矩阵表示: $J_0 = \begin{pmatrix} 0 & -id_{n \times n} \\ id_{n \times n} & 0 \end{pmatrix}$

Proposition 1.2. 若 2n 维实线性空间 V 上有复结构 J, 则有线性同构 $\psi: \mathbb{R}^{2n} \to V$ 使得 $J\psi = \psi J_0$.

Proof. 我们只需找出 V 的一组形如 $\{v_1, \dots, v_n, Jv_1, \dots, Jv_n\}$ 即可. 同样地, 我们使用归纳法证明.

任取 V 上的一个内积 h, 再令 $g: V \times V \to \mathbb{R}$, $(u,v) \mapsto \frac{1}{2}(h(u,v) + h(Ju,Jv))$, 易证 g 对称且正定,故 g 是 V 上内积,注意到 g(Ju,Jv) = g(u,v),故 g 是 J-不变内积. 设 v_n 是 (V,g) 中的单位向量,则 Jv_n 也是单位向量. 计算 $g(v_n,Jv_n) = g(Jv_n,J^2v_n) = g(Jv_n,-v_n) = -g(v_n,Jv_n)$,故 $v_n \perp Jv_n$. 现在考虑 $L(v_n,Jv_n)$ 在 g 下的正交补 V',容易得出 $J|_{V'}$ 是 V' 上的复结构,故由归纳法可以找出 V 的一组基形如 $\{v_1,\cdots,v_n,Jv_1,\cdots,Jv_n\}$.

1.3 相容复结构

对于辛空间 (V,ω) 和其上复结构 J, 我们有同构 $\mathbb{R}^{2n} \overset{\varphi_1}{\cong} V$, $\mathbb{R}^{2n} \overset{\varphi_2}{\cong} V$ 分别保持辛结构和复结构, 但这两个同构通常来说是不相同的. 若要求这两个同构相同, 我们需要引入相容复结构.

Definition 1.6. 设 (V,ω) 是辛空间, $J \in V$ 上的复结构. 若有

- $\omega(Ju, Jv) = \omega(u, v), \forall u, v \in V$
- $\omega(v, Jv) > 0 \ \forall 0 \neq v \in V$

则称 J 与 ω 相容. $J(V,\omega)$ 表示 V 上所有与 ω 相容的复结构的集合.

Remark 1.3. 研究相容复结构对后续进行辛流形的局部分析有重要作用.

若给定相容复结构 J, 则可定义: $g_J: V \times V \to \mathbb{R}$, $(u,v) \mapsto \omega(u,Jv)$, 容易看出这是一个双线性映射. 进一步还有:

- g_J 是对称的: $g_J(u,v) = \omega(u,Jv) = \omega(Ju,-v) = \omega(v,Ju) = g_J(v,u)$.
- g_J 是正定的: $\forall 0 \neq v \in V, g_J(v, v) = \omega(v, Jv) > 0.$ 因此 g_J 是 V 上的一个内积. 我们将看到这个内积有很好的性质.
- g_J 是 J-不变内积: $g_J(Ju, Jv) = \omega(Ju, -v) = \omega(v, Ju) = g_J(v, u) = g_J(u, v)$.
- J 相对于 g_J 是反自伴的: $g_J(Ju, v) = g_J(Ju, J(-Jv)) = -g_J(u, Jv)$.
- ω, J, g_J 任意两个可以决定第三个. 我们称 (ω, J, g_J) 为相容三元组.

Example 1.5. 对于 (\mathbb{R}^{2n} , ω_0), J_0 与 ω_0 相容, 且对于 \mathbb{R}^{2n} 的标准内积 g_0 , 有 $g_0 = g_{J_0}$, 即标准内积和 J_0 诱导的内积相同.

Theorem 1.1. 设 (V,ω) 是辛空间, $J \in V$ 上的复结构. 则以下叙述等价:

- (1) J与 ω 相容.
- (2) (V, ω) 有如下形式的辛基: $\{v_1, \dots, v_n, Jv_1, \dots, Jv_n\}$.
- (3) 存在线性同构 $\Phi: \mathbb{R}^{2n} \to V$ 使得: $\Phi^*\omega = \omega_0$, $\Phi J_0 = J\Phi$.
- (4) $\forall v \neq 0$, 有 $\omega(v, Jv) > 0$ 且 J 将 Lagrange 子空间映为 Lagrange 子空间.

Proof. 我们按照 $(1) \Rightarrow (2), (2) \Rightarrow (3), (3) \Rightarrow (1), (1) \Leftrightarrow (4)$ 的顺序证明:

• 任取 V 的 Lagrange 子空间 Λ , 在其中选相对 g_J 的标准正交基 $\{v_1, \dots, v_n\}$, 则有

$$\begin{cases} \omega(v_i, Jv_j) = g_J(v_i, v_j) = \delta_{ij} \\ \omega(v_i, v_j) = \omega(Jv_i, Jv_j) = 0 \end{cases}$$

故 (V,ω) 有如下形式的辛基: $\{v_1,\cdots,v_n,Jv_1,\cdots,Jv_n\}$.

- 定义 $\Phi: \mathbb{R}^{2n} \to V$, $e_i \mapsto v_i$, $f_i \mapsto Jv_i$, 即得线性同构 $\Phi: \mathbb{R}^{2n} \to V$ 使得: $\Phi^*\omega = \omega_0$, $\Phi J_0 = J\Phi$.
- 这是显然的.
- 任取 V 的 Lagrange 子空间 Λ , $u, v \in \Lambda$, 则有 $\omega(Ju, Jv) = \omega(u, v) = 0$, 故 $J(\Lambda)$ 是 Lagrange 子空间.
- 在 V 上定义 $g_J(u,v) = \omega(u,Jv)$. 我们证明 g_J 对称. 若 g_J 非对称,则存在 $u,v \in V$ 使得 $g_J(u,v) \neq g_J(v,u)$. 此时 $v,u \neq 0$,且 $\omega(u,Jv) = g_J(u,v) \neq g_J(v,u) =$

$$\begin{cases} (1) \ \omega(v, Jw) = \omega(v, Ju) - \omega(v, Ju) = 0 \\ (2) \ \omega(w, Jv) = \omega(u, Jv) - \omega(v, Ju) \neq 0 \end{cases}$$

由 (2) 知 w, Jv 线性无关, 由于 J 是同构, 故有 Jw, v 线性无关. 由 (1) 知 L(Jw, v) 是一个迷向子空间,则可扩张成一个 Lagrange 子空间 Λ , 由假设知 $J\Lambda$ 也是 Lagrange 子空间,则 $w = J(-Jw) \in J\Lambda$, $Jv \in J\Lambda$. 但这与 $\omega(w, Jv) \neq 0$ 矛盾, 故 g_J 对称. $\omega(Ju, Jv) = g_J(Ju, v) = g_J(v, Ju) = \omega(v, -u) = \omega(u, v)$, 故 ω 与 J 相容.

1.4 辛群

Definition 1.7. 我们用 Sp(2n) 表示 \mathbb{R}^{2n} 中保持辛结构 ω_0 不变的线性变换的集合,即 $\psi \in Sp(2n) \iff \omega_0(\psi u, \psi v) = \omega_0(u, v) \iff \psi^T J_0 \psi = J_0$. 可见 Sp(2n) 构成一个群, 叫做辛群.

将 ψ 写成分块矩阵, 计算:

$$\left(\begin{array}{c|c} X & Z \\ \hline Y & W \end{array}\right) \left(\begin{array}{c|c} 0 & -id_{n \times n} \\ \hline id_{n \times n} & 0 \end{array}\right) = \left(\begin{array}{c|c} Z & -X \\ \hline W & -Y \end{array}\right)$$

$$\left(\begin{array}{c|c}
0 & -id_{n \times n} \\
\hline
id_{n \times n} & 0
\end{array}\right) \left(\begin{array}{c|c}
X & Z \\
\hline
Y & W
\end{array}\right) = \left(\begin{array}{c|c}
-Y & -W \\
\hline
X & Z
\end{array}\right)$$

$$\mathbb{M} \ \psi J_0 = J_0 \psi \iff \left(\begin{array}{c|c} X & -Y \\ \hline Y & X \end{array} \right) \in GL(n,\mathbb{C}) \subseteq GL(2n,\mathbb{R}).$$

Remark 1.4. 我们有 \mathbb{R}^{2n} 到 \mathbb{C}^n 的典范同构 $\varphi: \mathbb{R}^{2n} \to \mathbb{C}^n$, $(\vec{x}, \vec{y}) \mapsto \vec{x} + i\vec{y}$. 对于 $\xi \in \mathbb{R}^{2n}$, 我们有

$$\varphi\left(\left(\begin{array}{c|c} X & -Y \\ \hline Y & X \end{array}\right)(\xi)\right) = (X+iY)\varphi(\xi)$$

此时 $\left(\begin{array}{c|c} X & -Y \\ \hline Y & X \end{array}\right)$ 对应于 X+iY,看成 $GL(n,\mathbb{C})$ 中的元素. 因此 $GL(n,\mathbb{C})$ 可以看成 $GL(2n,\mathbb{R})$ 的子群.

Theorem 1.2. $Sp(2n) \cap O(2n) = Sp(2n) \cap GL(n, \mathbb{C}) = GL(n, \mathbb{C}) \cap O(2n) = U(n)$.

Proof. 我们有如下关系:

$$\begin{cases} \psi \in GL(n, \mathbb{C}) \iff \psi J_0 = J_0 \psi \\ \psi \in Sp(2n) \iff \psi^T J_0 \psi = J_0 \\ \psi \in O(2n) \iff \psi^T \psi = \psi \psi^T = id_{2n} \end{cases}$$

故 $Sp(2n) \cap O(2n) = Sp(2n) \cap GL(n,\mathbb{C}) = GL(n,\mathbb{C}) \cap O(2n)$ 是显然的.

设 $\psi \in GL(n,\mathbb{C}) \cap O(2n)$, 则由 $\psi \in GL(n,\mathbb{C})$ 可知 ψ 可写成 $\left(\begin{array}{c|c} X & -Y \\ \hline Y & X \end{array}\right)$. 由 ψ 是正交矩阵可知

$$\left(\begin{array}{c|c} X & -Y \\ \hline Y & X \end{array}\right) \left(\begin{array}{c|c} X^T & Y^T \\ \hline -Y^T & X^T \end{array}\right) = id_{2n} \Rightarrow (X+iY)(X-iY) = id_n \Rightarrow \psi \in U(n)$$

Proposition 1.3. $\psi \in Sp(2n)$ 行列式为 1, 即 $Sp(2n) \subseteq SL(2n,\mathbb{R})$.

Proof. $\psi \in Sp(2n) \Rightarrow \psi^T J_0 \psi = J_0 \Rightarrow \det \psi = \pm 1$, 只需证明 $\det \psi > 0$. 由于 $\psi^T \psi + id$ 是正定矩阵, 我们有 $\det(\psi^T \psi + id) > 0$. 而

$$\psi^{T}\psi + id = \psi^{T} \left(\psi + (\psi^{T})^{-1} \right) = \psi^{T} \left(\psi + J_{0}\psi J_{0}^{-1} \right),$$

$$J_{0} \left(\psi + J_{0}\psi J_{0}^{-1} \right) = J_{0}\psi + \psi J_{0} = \left(\psi + J_{0}\psi J_{0}^{-1} \right) J_{0}$$
故 $\psi + J_{0}\psi J_{0}^{-1} \in GL(n, \mathbb{C}), \ \exists X, Y \ \text{使得} \ \psi + J_{0}\psi J_{0}^{-1} = \left(\frac{X \mid -Y}{Y \mid X} \right). \ \text{现在有}$

$$0 < \det \left(\frac{X \mid -Y}{Y \mid X} \right) = \det(X + iY) \det(X - iY) \ge 0. \ \text{则有} \ 0 < \det(\psi^{T}\psi + id) = \det(\psi^{T}) |\det(X + iY)|^{2}, \ \text{有} \ \det\psi = \det\psi^{T} > 0, \ \text{得证}.$$

1.5 $J(V,\omega)$ 的结构

对于 $J(V,\omega)$, 我们考虑两个问题: (1) 是否非空? (2) 若非空, 则其结构如何? $J(V,\omega)$ 非空是显然的, 因为我们可以从 \mathbb{R}^{2n} 上的典范相容复结构诱导出 V 上的一个相容复结构. 但这个证明不好用, 因为后续考虑辛流形时, 我们需要考虑一族连续变动的辛空间, 这个证明就无法体现这种连续性, 因此我们采用如下的构造性证明:

Proposition 1.4. $J(V, \omega)$ 非空.

Proof. 任取 V 上的一个内积 g, 由于 g 和 ω 都是非退化的,则存在唯一的线性变换 $A:V\to V$,使得 $\omega(u,v)=g(Au,v), \forall u,v\in V$. 具体来说

$$\begin{cases} V \to V^*, \ u \mapsto \omega(u, \cdot) \\ V \to V^*, \ u' \mapsto g(u', \cdot) \end{cases}$$
 都是同构, 则可定义 $A(u) = u'$

对于 V 上的任意线性变换 B, 定义 $B^*:V\to V$ 为满足 $g(B^*u,v)=g(u,Bv)$ 的唯一映射 (同之前的分析, 这个映射是存在的), 此时

$$g(A^*u, v) = g(u, Av) = \omega(v, u) = -\omega(u, v) = g(-Au, v)$$

故有
$$A^* = -A$$
, 于是:
$$\begin{cases} (1) \ (AA^*)^* = AA^* \\ (2) \ g(AA^*u, u) = g(A^*u, A^*u) > 0, \forall 0 \neq u \in V \end{cases}$$
 . 故由此

可知 AA^* 相对于 g 是正定自伴的. 因此可定义正定自伴算子 $\sqrt{AA^*}$ 满足 $(\sqrt{AA^*})^2 = AA^*$. 定义 $J = (\sqrt{AA^*})^{-1}A$.

由于 $A^* = -A$, A 与 AA^* 交换, 因此 A 也与 $(\sqrt{AA^*})^{-1}$ 交换. 故有 $J^2 = (AA^*)^{-1}A^2 = (-A^2)^{-1}A^2 = -id$, 因此 J 是复结构.

由于
$$J^* = A^*(\sqrt{AA^*})^{-1} = -A(\sqrt{AA^*})^{-1} = -J \Rightarrow JJ^* = id$$
, 我们有

$$\omega(Ju,Jv)=g(AJu,Jv)=g(JAu,Jv)=g(J^*JAu,v)=g(Au,v)=\omega(u,v),\ u,v\in V$$

$$\omega(u,Ju)=g(Au,Ju)=g(J^*Au,u)=g(-JAu,u)=g(\sqrt{AA^*}u,u)>0,\ 0\neq u$$
 因此 J 是相容复结构,得证.

Remark 1.5. (1) 由构造过程可知, 对一族连续变动的辛空间 (V_t, ω_t) , 可选连续变动的 g_t , 则构造的 $J_t \in J(V_t, \omega_t)$ 也是连续变动的. 因此在辛流形上一定存在近复结构.

(2) 由构造过程有 $g \to J \to g_J$, 但一般情况下 $g \neq g_J$.

由于 $J(V,\omega)$ 是 V 上线性变换全体构成集合的子集, 可以赋予 $J(V,\omega)$ 子空间拓扑. 则 $J(V,\omega)$ 结构如下:

Theorem 1.3. $J(V, \omega)$ 是可缩的.

Proof. 不妨设 $(V,\omega)=(\mathbb{R}^{2n},\omega_0)$, 若 $J\in J(\mathbb{R}^{2n},\omega_0)$, 当且仅当:

$$\begin{cases} (1) \ J^2 = -id \\ (2) \ J^T J_0 J = J_0 \\ (3) \ \langle v, -J_0 J v \rangle > 0, v \neq 0 \end{cases}$$

因此 $(J_0J)^T = J^T(-J_0) = J_0J$. 令 $P = -J_0J$, 则可验证:

$$\begin{cases} (1) P 是对称的 \\ (2) P^T J_0 P = J_0 \\ (3) \langle v, Pv \rangle > 0, v \neq 0 \end{cases}$$

因此 P 是正定对称的辛矩阵. 记 $S = \{$ 对称正定的辛矩阵 $\}$, 由上述分析可知我们有映射: $J(\mathbb{R}^{2n}, \omega_0) \to S$, $J \mapsto -J_0J$. 反过来, 给定 $P \in S$, 令 $J = J_0P$, 则有:

•
$$J^2 = J_0 P J_0 P = J_0 P^T J_0 P = J_0^2 = -id$$

- $J^T J_0 J = P^T J_0^T J_0 J_0 P = P^T J_0 P = J_0$
- $\langle v, -J_0 J v \rangle = \langle v, P v \rangle > 0, v \neq 0$

故 $S \to J(\mathbb{R}^{2n}, \omega_0)$, $P \mapsto J_0 P$ 是逆映射, 显然这两个映射是连续映射, 故 $J(\mathbb{R}^{2n}, \omega_0)$ 同胚于 S, 我们只需证明 S 是可缩的.

我们证明 $\forall P \in S, \alpha \in [0,1], \text{ f } P^{\alpha} \in S.$ 若这个结论成立, 则容易看出 S 是可缩的. 显然 P^{α} 是正定对称的. 设 $\mathbb{R}^{2n} = \bigoplus_{i} E_{\lambda_{i}}, \lambda_{i} > 0$ 是 P 的特征子空间分解, 令 $u = \sum u_{i}, v = \sum v_{i},$ 其中 $u_{i}, v_{i} \in E_{\lambda_{i}},$ 则

$$\omega_0(u_i,v_j) = \omega_0(Pu_i,Pv_j) = \lambda_i\lambda_j\omega_0(u_i,v_j) \implies \lambda_i\lambda_j = 1 \not \boxtimes \omega_0(u_i,v_j) = 0.$$

有 $\omega_0(P^\alpha u, P^\alpha v) = \sum_{i,j} \lambda_i^\alpha \lambda_j^\alpha \omega_0(u_i, v_j) = \sum_{i,j} \omega_0(u_i, v_j) = \omega_0(u, v)$, 故 $P^\alpha \in S$, 得证. 故 $J(V, \omega)$ 可缩.

2 辛流形

2.1 辛流形

注意: 若未特别说明, 我们所谈论的流形都是连通无边的.

Definition 2.1. 设 M 是一个光滑流形, ω 是 M 上的光滑 2-形式, 如果有:

- (1) $d\omega = 0$ (可积性条件)
- (2) 对 $\forall p \in M, \omega_p$ 是 T_pM 上的辛结构则称 (M,ω) 是辛流形, ω 是 M 的辛结构.

Example 2.1. (\mathbb{R}^{2n} , $\sum_{i=1}^{n} dx^{i} \wedge dy^{i}$) 是辛流形, 其中 x^{1} , \cdots , x^{n} , y^{1} , \cdots , y^{n} 是 \mathbb{R}^{2n} 的坐标, 对 $\forall p \in \mathbb{R}^{2n}$, $\left\{\frac{\partial}{\partial x^{1}}$, \cdots , $\frac{\partial}{\partial x^{n}}$, $\frac{\partial}{\partial y^{1}}$, \cdots , $\frac{\partial}{\partial y^{n}}\right\}$ 构成 $T_{p}\mathbb{R}^{2n}$ 的辛基.

Example 2.2. 考虑 $M = S^2 \subseteq \mathbb{R}^3$. 对 $\forall p \in M, u, v \in T_p M$ 可以看成 $p^{\perp} \subseteq T_p \mathbb{R}^3$ 中的元素. 令 $\omega_p(u,v) = \langle p, u \times v \rangle$, 则 ω_p 给出了 $T_p M$ 的辛结构, ω 是 M 上的光滑 2-形式. 由于 M 是 2 维流形, 故自然有 $d\omega = 0$, 故 (S^2, ω) 是辛流形. 类似地, 取 M 为任意可定向光滑曲面, ω 为 M 上的光滑体积形式, 则 (M, ω) 为辛流形.

Remark 2.1. 辛结构的存在有拓扑障碍, 要求流形满足条件:

- dim M 为偶数.
- 设 dim M=2n, 则 $\omega^n=\omega\wedge\cdots\wedge\omega$ 是处处非零的光滑 2n-形式, 故 M 可定向, ω^n 也是 M 上的体积形式, 称为辛体积.
- 若 M 是紧辛 2n 维流形, 则 $H_{dR}^{2k}(M,\mathbb{R}) \neq 0$, k = 0, 1, ..., n. 具体来说, 由 $d\omega = 0$ 可知 $[\omega] \in H^2(M,\mathbb{R})$.
 - 当 k=0 时, $H^0(M,\mathbb{R})\cong\mathbb{R}$.
 - 当 $k=1,\ldots,n$ 时, $d\omega^k=k\omega^{k-1}\wedge d\omega=0$,故 $[\omega^k]\in H^{2k}(M,\mathbb{R})$.若 $\omega^k=d\beta$,则有

$$\int\limits_{M}\omega^{n}=\int\limits_{M}\omega^{k}\wedge\omega^{n-k}=\int\limits_{M}d\beta\wedge\omega^{n-k}=\int\limits_{M}d\left(\beta\wedge\omega^{n-k}\right)=\int\limits_{\partial M}\beta\wedge\omega^{n-k}=0$$
 而 $\int\limits_{M}\omega^{n}\neq0$,得出矛盾.

故 $0 \neq [\omega^k] \in H^{2k}(M,\mathbb{R})$. 因此 S^{2n} , $n \geq 2$ 上没有辛结构. 对于 \mathbb{R}^{2n} , $\omega_0 = \sum_i dx^i \wedge dy^i = d(\sum_i x^i dy^i)$, 故 $[\omega_0] = 0 \in H^2(\mathbb{R}^{2n},\mathbb{R})$, 但由于 \mathbb{R}^{2n} 非紧, 因此没有与上述 remark 矛盾.

2.2 余切丛 $M = T^*X$

令 X 是一个光滑流形, $M=T^*X$. 取 X 的一个局部坐标卡 $(U,x^i), U\subseteq X$ 是开集. 对 $\forall x\in U, \left\{dx^1|_x,\cdots,dx^n|_x\right\}$ 构成了 T_x^*X 的一组基. 若 $\xi\in T_x^*X$, 则有 ξ^1,\cdots,ξ^n 使 得 $\xi=\sum \xi^i dx^i|_x$. 由此有映射

$$T^*U \to \mathbb{R}^{2n}, (x,\xi) \mapsto (x^1, \dots, x^n, \xi^1, \dots, \xi^n),$$

因此 $(T^*U,(x^1,\cdots,x^n,\xi^1,\cdots,\xi^n))$ 构成 M 的一个局部坐标卡. 若 $\{U_\alpha\}$ 构成 X 的开覆盖, 则 $\{T^*U_\alpha\}$ 也构成 M 的开覆盖. 若 $x\in U\cap U'$, 且 $\xi\in T^*_xX$, 则

$$\xi = \sum_{i} \xi^{i} dx^{i}|_{x} = \sum_{i} \xi^{i} \sum_{j} \frac{\partial x^{i}}{\partial x'^{j}} dx'^{j}|_{x} = \sum_{j} (\xi')^{j} dx'^{j}|_{x}.$$

故有 $(\xi')^j = \sum \xi^i \frac{\partial x^i}{\partial x'^j}$. 可知 M 也是一个光滑流形.

给定 (U, x^1, \cdots, x^n) ,在 T^*U 上定义 $\omega = \sum_i dx^i \wedge d\xi^i$,则 ω 闭且非退化,是 T^*U 上的辛形式. 那么我们能否得到 M 上的辛形式呢?

Proposition 2.1. ω 不依赖于局部坐标卡的选取.

Proof. 定义 $\alpha = \sum_i \xi^i dx^i$, 则 $\omega = -d\alpha$, 只需证 α 不依赖于坐标卡的选取. 在 $T^*U_\alpha \cap T^*U_\beta$ 上,

$$\alpha = \sum_{i} \xi_{\alpha}^{i} dx_{\alpha}^{i} = \sum_{i} \xi_{\alpha}^{i} \sum_{j} \frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}} dx_{\beta}^{j} = \sum_{j} \sum_{i} \xi_{\alpha}^{i} \frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}} dx_{\beta}^{j} = \sum_{j} \xi_{\beta}^{j} dx_{\beta}^{j},$$
故 α 不依赖于坐标卡的选取.

Remark 2.2. 可见对任意的光滑流形其余切丛 (非紧) 上都存在辛结构, 那么对于切丛呢? 事实上, 当流形的性质足够好时, 切丛上可以有复结构. 由此可见辛结构和复结构的某种联系.

Definition 2.2. 在上述命题的证明中, 我们把 α 叫做 $tautological\ 1$ -form, ω 叫做 典则辛形式.

但是我们对 α 和 ω 的定义都是依赖于坐标的, 有时候在描述其性质时不好用, 于是我们也给出内蕴的定义:

对于 $\pi: M \to X$, 其诱导切映射和拉回映射:

$$\pi_*: TM \to TX, \quad \pi^*: T^*X \to T^*M$$

Lemma 2.1. $\alpha_p = \pi_p^* \xi, \ p = (x, \xi) \in M.$

Proof. 对 $\forall v \in T_p M, v = \sum_i a_i \frac{\partial}{\partial x^i} + \sum_i b_i \frac{\partial}{\partial \xi^i}$. 则有

$$(\pi_p^*\xi)(v) = \xi\left(\pi_{*p}(v)\right) = \left(\sum_i \xi^i dx^i\right) \left(\sum_i a_i \frac{\partial}{\partial x^i}\right) = \sum_i \xi^i a_i = \left(\sum_i \xi^i dx^i\right) v = \alpha_p(v).$$

2.3 辛同胚

Definition 2.3. 设 $\Phi: M_1 \to M_2$ 是辛流形 (M_1, ω_1) 到 (M_2, ω_2) 的微分同胚. 若 $\Phi^*\omega_2 = \omega_1$,则称 Φ 是一个辛同胚. 记所有 (M, ω) 到自身的辛同胚集合为 $Symp(M, \omega)$,显然 $Symp(M, \omega)$ 上有群结构.

Example 2.3.
$$Symp(\mathbb{R}^{2n}, \omega_0)$$
 包含: 平移, 旋转,
$$\begin{cases} x \mapsto x + f(y) \\ y \mapsto y \end{cases}$$
,...

Exercise 2.1. 给出几个 $Symp(S^2, \omega_0)$ 的元素.

设 X_1, X_2 是两个 n 维光滑流形, M_1, M_2 分别是余切丛, α_1, α_2 分别是 tautological 1-form. 设 $f: X_1 \to X_2$ 是微分同胚,则其诱导了

$$f_{\sharp}: M_1 \to M_2, \ (x_1, \xi_1) \mapsto (f(x_1), (f_{x_1}^*)^{-1}(\xi_1)).$$

Proposition 2.2. f_{\sharp} 是辛同胚, $f_{\sharp}^*\omega_2 = \omega_1$.

Proof. 用局部坐标写出 f_{\sharp} 与 f_{\sharp}^{-1} , 显然 f_{\sharp} 是微分同胚. 由于外微分和映射拉回交换, 我们只需证 $f_{\sharp}^{-1}\alpha_2=\alpha_1$. 设 $p_1=(x_1,\xi_1), p_2=f_{\sharp}(p_1)=(x_2,\xi_2),$

$$(f_{\sharp}^*\alpha_2)_{p_1} = f_{\sharp}^*\alpha_2|_{p_2} = f_{\sharp}^*\pi_2^*\xi_2 = (\pi_2 \circ f_{\sharp})^*\xi_2 = (f \circ \pi_1)^*\xi_2 = \pi_1^*\xi_1 = \alpha_1.$$

若 $f: X_1 \to X_2, g: X_2 \to X_3$ 都是微分同胚, 则有 $(g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$. 若 $X_1 = X_2 = X_3 = X$, 则有 $Diff(X) \to Symp(T^*X, \omega)$ 是单同态.

2.4 Lagrange 子流形

Definition 2.4. 设 (M,ω) 是辛流形, $i:Y\hookrightarrow M$ 是 M 的子流形. 若有

- (1) $i^*\omega = 0$
- (2) dim $Y = \frac{1}{2}$ dim M

则称 Y 是 M 的一个 Lagrange 子流形. 该定义等价于 $\forall p \in Y, T_pY$ 是 T_pM 的 Lagrange 子空间.

Example 2.4. (\mathbb{R}^2 , ω_0) 中的任意光滑曲线. 更一般地, 二维可定向流形上的光滑曲线.

Example 2.5. 设 $M = T^*X$, dim M = 2n, $(T^*U, x^1, \dots, x^n, \xi^1, \dots, \xi^n)$ 是局部 坐标卡.

- (1) T^*X 的零截面 $X_0 = \{(x,\xi) \mid \xi = 0 \in T_x^*X\}$ 是 Lagrange 子流形.
- (2) T^*X 在 x 处的纤维是 Lagrange 子流形.
- (3) 设 $S \in X$ 的 k 维子流形, 定义 $x \in S$ 处的余法空间

$$N_x^* S = \{ \xi \in T_x^* X \mid \xi(v) = 0, \forall v \in T_x S \}.$$

余法丛 $N^*S = \{(x,\xi) \mid x \in S, \xi \in N_x^*S\} \subseteq T^*X$ 是 Lagrange 子流形.

(4) 设 μ 是 X 上的光滑 1-形式, 它定义了 T^*X 的光滑截面 $s_{\mu}: X \to T^*X$, 记 $X_{\mu} = s_{\mu}(X), i: X_{\mu} \hookrightarrow T^*X$ 是嵌入. 则有 $s_{\mu}^*\alpha = \mu$,

 X_{μ} 是 Lagrange 子流形 $\iff i^*\omega = 0 \iff s_{\mu}^*\omega = 0 \iff d\mu = 0.$

于是我们有 X_{df} 是 T^*X 的 Lagrange 子流形, f 称为 X_{df} 的生成函数.

Example 2.6. $\exists X \S, \dim X \ge 1$ $\forall f, \#(X_0 \cap X_{df}) \ge 2.$

设 (M_i, ω_i) , i=1,2 是两个 2n 维辛流形. 考虑 pr_1, pr_2 是 $M_1 \times M_2$ 到 M_1, M_2 的 投影, 则可定义 $M_1 \times M_2$ 上的 2-形式