6 This system of equations
$$Ax = b$$
 has no solution (they lead to $0 = 1$):

$$x + 2y + 2z = 5$$

 $2x + 2y + 3z = 5$
 $3x + 4y + 5z = 9$

Find numbers y_1, y_2, y_3 to multiply the equations so they add to 0 = 1. You have found a vector y in which subspace? Its dot product y^Tb is 1, so no solution x.

vector is in the column space? If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ what is x_r ?

 $\mathcal{A} = \mathcal{A}_r + \mathcal{A}_n$

Four space Mull space All As are in $C(A)$.

8

Row space vector x_r to column space, nullspace vector x_n to zero.

The floor V and the wall W are not orthogonal subspaces, because they share a 14 nonzero vector (along the line where they meet). No planes V and W in \mathbb{R}^3 can be orthogonal! Find a vector in the column spaces of both matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 5 & 4 \\ 6 & 3 \\ 5 & 1 \end{bmatrix}$$

This will be a vector Ax and also $B\hat{x}$. Think 3 by 4 with the matrix $\begin{bmatrix} A & B \end{bmatrix}$.

If P is the plane of vectors in \mathbb{R}^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$, write a basis for P^{\perp} . Construct a matrix that has P as its nullspace.

29

Find a matrix with v = (1, 2, 3) in the row space and column space. Find another matrix with v in the nullspace and column space. Which pairs of subspaces can v not be in?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 0 \\ 3 & 0 & -1 \end{bmatrix}$$

tow, colum space column, hull space.

V can not be in hull, tow or left null, column.

11 Project **b** onto the column space of A by solving $A^{T}A\hat{x} = A^{T}b$ and $p = A\hat{x}$:

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 4 \\ 4 \\ 6 \end{bmatrix}$.

Find e = b - p. It should be perpendicular to the columns of A.

Compute the projection matrices P_1 and P_2 onto the column spaces in Problem 11. Verify that P_1b gives the first projection p_1 . Also verify $P_2^2 = P_2$.

(a)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Questions 21-26 show that projection matrices satisfy $P^2 = P$ and $P^T = P$.

- 21 Multiply the matrix $P = A(A^TA)^{-1}A^T$ by itself. Cancel to prove that $P^2 = P$. Explain why P(Pb) always equals Pb: The vector Pb is in the column space so its projection is _____.
- 22 Prove that $P = A(A^{T}A)^{-1}A^{T}$ is symmetric by computing P^{T} . Remember that the inverse of a symmetric matrix is symmetric.

$$P^{\mathsf{T}} = (A(A^{\mathsf{T}}A)^{\mathsf{T}}A^{\mathsf{T}})^{\mathsf{T}} = A((A^{\mathsf{T}}A)^{\mathsf{T}})^{\mathsf{T}}A^{\mathsf{T}} = A(A^{\mathsf{T}}A)^{\mathsf{T}}A^{\mathsf{T}}$$

Use $P^T = P$ and $P^2 = P$ to prove that the length squared of column 2 always equals the diagonal entry P_{22} . This number is $\frac{2}{6} = \frac{4}{36} + \frac{4}{36} + \frac{4}{36}$ for

i length squared of column 2 always equals the diagonal entry 12.

9 For the closest parabola $b = C + Dt + Et^2$ to the same four points, write down the unsolvable equations Ax = b in three unknowns x = (C, D, E). Set up the three normal equations $A^T A \hat{x} = A^T b$ (solution not required). In Figure 4.9a you are now fitting a parabola to 4 points—what is happening in Figure 4.9b?

- 11 The average of the four times is $\hat{t} = \frac{1}{4}(0+1+3+4) = 2$. The average of the four b's is $\hat{b} = \frac{1}{4}(0+8+8+20) = 9$.
 - (a) Verify that the best line goes through the center point $(\widehat{t}, \widehat{b}) = (2, 9)$.
 - (b) Explain why $C + D\hat{t} = \hat{b}$ comes from the first equation in $A^T A \hat{x} = A^T b$.

- $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- C=1, $D=4 \Rightarrow 1+4t$. a) 6=9 when t=2.
- Figure 4.9: Problems 1-11: The closest line C + Dt matches $Ca_1 + Da_2$ in \mathbb{R}^4 .
 - A line goes through the m points when we exactly solve Ax = b. Generally we can't do it. Two unknowns C and D depending a line, so A has only n = 2 columns. To fit the m points, we are trying to solve m equations (and we only want two!):

$$Ax = b$$
 is $C + Dt_1 = b_1$ $C + Dt_2 = b_2$ with $A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots \\ C + Dt_m = b_m \end{bmatrix}$ (5)

Fitting points by a straight line is so important that we give the two equations $A^T A \widehat{x} = A^T b$, once and for all. The two columns of A are independent (unless all times t_i are the same). So we turn to least squares and solve $A^T A \widehat{x} = A^T b$.

Dot-product matrix
$$A^{\mathsf{T}}A = \begin{bmatrix} 1 & \cdots & 1 \\ t_1 & \cdots & t_m \end{bmatrix} \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} = \begin{bmatrix} m & \sum t_i \\ \sum t_i & \sum t_i^2 \end{bmatrix}.$$
 (6)

On the right side of the normal equation is the 2 by 1 vector A^Tb :

$$A^{\mathsf{T}}b = \begin{bmatrix} 1 & \cdots & 1 \\ t_1 & \cdots & t_m \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} \sum b_i \\ \sum t_i b_i \end{bmatrix}.$$

Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{x} = (C, D)$ and draw the closest line.

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \end{bmatrix} \begin{bmatrix} 35 \\ 42 \end{bmatrix}$$

$$3C+2D=35$$

$$9C=63, C$$

Find q_1, q_2, q_3 (orthonormal) as combinations of a, b, c (independent columns). Then write A as QR:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}.$$

- (a) Suppose the a's are orthonormal. Show that $x_1 = a_1^T b$.
- (b) Suppose the a's are orthogonal. Show that $x_1 = a_1^T b/a_1^T a_1$.
- (c) If the a's are independent, x1 is the first component of

$$00 b = \mathcal{A}_1 a_1 + \mathcal{A}_2 a_2 + \mathcal{A}_3 a_3, \quad a_1^T b = \mathcal{A}_1 a_1^T a_1 + \mathcal{A}_2 a_1^T a_2 + \mathcal{A}_3 a_1^T a_2$$

$$= \mathcal{A}_1(1) + \mathcal{A}_2(0) + \mathcal{A}_3(0) = \mathcal{A}_1(1) + \mathcal{A}_2(1) + \mathcal{A}_3(1) + \mathcal{A}_3($$

$$= \mathcal{A}_{1}(1) + \mathcal{A}_{2}(0) + \mathcal{A}_{3}(0) = \mathcal{A}_{1}$$
b) $a_{1}^{T}b = \mathcal{A}_{1}a_{1}^{T}a_{1} + \mathcal{A}_{2}a_{1}^{T}a_{2} + \mathcal{A}_{3}a_{1}^{T}a_{2} = \mathcal{A}_{1}a_{1}^{T}a_{1} \qquad \mathcal{A}_{1} = \frac{a_{1}^{T}b_{2}}{a_{2}^{T}a_{3}}$

Since as one independent and A is square (3x3), A is invertible.

(a) Find orthonormal vectors q_1, q_2, q_3 such that q_1, q_2 span the column space of

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

- (b) Which of the four fundamental subspaces contains q 3?
- (c) Solve Ax = (1, 2, 7) by least squares.

a)
$$A = (1, 2, -2)$$

 $A = \frac{1}{3}(1, 2, -2)$
 $B = b - \frac{Ab}{AA} A = \begin{bmatrix} -\frac{1}{4} \end{bmatrix} - \frac{-9}{9} \begin{bmatrix} \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{9}{4} \end{bmatrix}$
 $B = \frac{1}{3}(2, 1, 2)$

9m= (d,B,) = 937=0 and \$ 62=0. = (d+20-20)-0 and = (2d+0+20)=0

(b) & G (CA), & G (CA), & and & are linearly independent. trank(A)=2 - Therefore, for and be one bases of C(A)

Since 83 is perpendicular to both 7, and 1/2, which are the bases of C(A), Ria-Riorb, Ris square

23 Find q_1, q_2, q_3 (orthonormal) as combinations of a, b, c (independent columns). Then write A as OR:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}.$$

$$A = (1,0,0), \quad f_{1} = (1,0,0)$$

$$B = b - \frac{Ab}{A'A}A = \begin{bmatrix} \frac{1}{6} \end{bmatrix} - 2\begin{bmatrix} \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \end{bmatrix}, \quad f_{1} = (0,0,1)$$

$$C = C - \frac{AC}{A'A}A - \frac{B'C}{B'B}B$$

$$= \begin{bmatrix} \frac{4}{5} \end{bmatrix} - 4\begin{bmatrix} \frac{1}{6} \end{bmatrix} - \frac{18}{9}\begin{bmatrix} \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac$$

$$Q = [693]$$
, $A = QR$, $R = QTA = [696][636]$
= $[636]$