Лабораторная работа №3

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей

Цель лабораторной работы: изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

- Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- Произведите подбор гиперпараметра К с использованием GridSearchCV и/или RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кросс-валидации.
- Сравните метрики качества исходной и оптимальной моделей.

Выбор набора данных

4.9

После многочисленных неудачных попыток использования opensource наборов данных, для выполнения данной лабораторной работы был выбран достаточно тривиальный датасет iris_dataset. Неудачные попытки были связанны с неоднородностью значений в наборах данных, которые никак не получалось нормализовать.

```
In [107... import pandas as pd
          import numpy as np
          from sklearn.model selection import train test split
          from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
          from sklearn.datasets import *
          pd.set option('display.max columns', None)
          # чтение набора днанных
In [108...
          data = load iris()
          pd data = pd.DataFrame(data=np.c [data['data'], data['target']], columns
          # data0 = pd.read csv('JupyterNotebooks/data/googleplaystore.csv', sep="
          # data1 = pd.read csv('JupyterNotebooks/data/superhero.csv', sep=",")
          pd data
In [109...
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
Out[109...
                                        3.5
                                                      1.4
                                                                     0.2
                                                                           0.0
```

3.0

1.4

0.2

0.0

2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0
145	6.7	3.0	5.2	2.3	2.0
146	6.3	2.5	5.0	1.9	2.0
147	6.5	3.0	5.2	2.0	2.0
148	6.2	3.4	5.4	2.3	2.0
149	5.9	3.0	5.1	1.8	2.0

150 rows × 5 columns

Разделение набора данных на обущающую и тестовую

```
In [117... from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(data.data, data.targe
In [111... print(f"Обучающая выборка (x, y): ( {X_train.shape}, {Y_train.shape} )")
    print(f"Тестовая выборка (x, y): ( {Y_test.shape}, {Y_train.shape} )")

Обучающая выборка (x, y): ( (120, 4), (120,) )
Тестовая выборка (x, y): ( (30,), (120,) )
```

Обучение модели ближайших соседей (с заданным К)

```
In [118... from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier KNC = KNeighborsClassifier(n_neighbors=3)

In [119... KNC.fit(X_train, Y_train) predict1 = KNC.predict(X_test)

In [120... # Предсказанные значения тестовой выборки predict1

Out[120... array([1, 1, 2, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0])
```

Оценка качества модели

Процент совпадений: 96.667

Оценим качества обученной модели при помощи различных оценочных метрик.

Accuracy

```
In [121... # метрика Accuracy - процент совпадения предсказаний и истинных значений
from sklearn.metrics import accuracy_score, balanced_accuracy_score
accuracy_result = accuracy_score(Y_test, predict1) * 100
print(f"Процент совпадений: {round(accuracy_result, 3)}")
```

Confusion matrix

```
In [122... # Матрица ошибок

from sklearn.metrics import confusion_matrix

from sklearn.metrics import plot_confusion_matrix
```

Out[122... <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7fd00 acc8d90>

Recall, Precision

```
from sklearn.metrics import recall score, precision score
In [123...
          rcl1 = recall score(Y test, predict1, average='micro')
          rcl2 = recall_score(Y_test, predict1, average='macro')
          rcl3 = recall score(Y test, predict1, average='weighted')
          prc1 = precision score(Y test, predict1, average='micro')
          prc2 = precision score(Y test, predict1, average='macro')
          prc3 = precision score(Y test, predict1, average='weighted')
In [124... | print(f"Recall (сумма по всем классам): {round(rcl1, 4)}")
          print(f"Recall (среднее значение от расчетов по классам в отдельности):
          print(f"Recall (c yuerom Beca): {round(rcl3, 4)}")
         Recall (сумма по всем классам): 0.9667
         Recall (среднее значение от расчетов по классам в отдельности): 0.9744
         Recall (c учетом веса): 0.9667
In [125... print(f"Precision (сумма по всем классам): {round(prc1, 4)}")
          print(f"Precision (среднее значение от расчетов по классам в отдельности
          print(f"Precision (c yuerom Beca): {round(prc3, 4)}")
         Precision (сумма по всем классам): 0.9667
         Precision (среднее значение от расчетов по классам в отдельности): 0.9524
         Precision (c учетом веса): 0.9714
```

Подбор гиперпараметра К

Ранее я произвольно установил гиперпараметр К равным 3. Теперь же осознанно подберем значение параметра различными методами

Grid search

```
n range = np.array(range(3, 55, 3))
          tuned parameters = [{'n neighbors': n range}]
          tuned parameters
Out[126... [{'n_neighbors': array([ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 3
         9, 42, 45, 48, 51,
                  54])}]
          # GridSearchCV
In [127...
          from sklearn.model selection import GridSearchCV
          KNC GS = GridSearchCV(KNeighborsClassifier(), tuned parameters, cv=3, sc
          # параметр сv как раз указыватет на использование кросс-валидации
          KNC GS.fit(X train, Y train)
Out[127... GridSearchCV(cv=3, estimator=KNeighborsClassifier(),
                      param_grid=[{'n_neighbors': array([ 3, 6, 9, 12, 15, 18, 2
         1, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51,
                54])}],
                      scoring='accuracy')
In [128...
         # результаты выполнения:
          print(f"Лучшее значение гиперпараметра: {KNC GS.best params }")
          print(f"Лучший итог по выбранной метрике: {KNC GS.best score }")
         Лучшее значение гиперпараметра: {'n neighbors': 3}
         Лучший итог по выбранной метрике: 0.96666666666668
        # График для всех вариантов параметра К
In [129...
          plt.plot(n range, KNC GS.cv results ['mean test score'])
Out[129... [<matplotlib.lines.Line2D at 0x7fd00acc52e0>]
          0.95
          0.90
```



```
In [130... from sklearn.model_selection import LeaveOneOut

KNC_GS1 = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=Leave

KNC_GS1.fit(X_train, Y_train)

# результаты выполнения:
print(f"Лучшее значение гиперпараметра: {KNC_GS1.best_params_}")
print(f"Лучший итог по выбранной метрике: {KNC_GS1.best_score_}")

# График для всех вариантов параметра К
plt.plot(n_range, KNC_GS1.cv_results_['mean_test_score'])
```

Лучшее значение гиперпараметра: {'n_neighbors': 18} Лучший итог по выбранной метрике: 0.975

Randomized Search

```
# Другой метод кроссвалидации
In [131...
          from sklearn.model selection import RandomizedSearchCV
          KNC RS = RandomizedSearchCV(KNeighborsClassifier(), tuned parameters, cv
           # параметр сv как раз указыватет на использование кросс-валидации
           # X_train, X_test, Y_train, Y_test = train_test_split(data.data, data.ta
          KNC RS.fit(X train, Y train)
Out[131... RandomizedSearchCV(cv=3, estimator=KNeighborsClassifier(),
                             param distributions=[{'n neighbors': array([ 3,
          9, 12, 15, 18, 21, 24, \overline{27}, 30, 33, 36, 39, \overline{42}, 45, 48, 51,
                 54])}],
                             scoring='accuracy')
          # результаты выполнения:
In [133...
          print(f"Лучшее значение гиперпараметра: {KNC RS.best params }")
          print(f"Лучший итог по выбранной метрике: {round(KNC_RS.best_score_, 4)}
         Лучшее значение гиперпараметра: {'n neighbors': 15}
         Лучший итог по выбранной метрике: 0.9667
```

Сравнение матрик качества исходной и оптимальной моделей

для выполнения данной лабораторной работы был выбран не самый удачных "учебный" датасет, который достаточно предсказуем.