Работа 1.2.4: Определение главных моментов инерции твердых тел с помощью крутильных колебаний

1 Аннотация

Цель работы: измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относительно нескольких осей для каждого тела, по ним найти главные моменты инерции тел и построить эллипсоид инерции.

2 Теоретические сведения

Инерционные свойства твердого тела при вращении определяет не только величина его массы, но и ее пространственное распределение. Последнее характеризует физическая величина, которая называется тензором инерции. Геометрическим образом тензора инерции является эллипсоид, уравнение которого в главных осях имеет вид:

$$I_x x^2 + I_y y^2 + I_z z^2 = 1$$

Этот эллипсоид принято называть эллипсоидом инерции. Эллипсоид инерции жестко связан с телом, для которого построен. Знание эллипсоида инерции позволяет найти момент инерции тела относительно любой оси, проходящей через центр эллипсоида. Для этого необходимо вдоль выбранной оси провести радиус-вектор \vec{r} до пересечения с поверхностью эллипсоида. Длина r будет определять момент инерции тела относительно этой оси:

$$I = \frac{1}{r^2}$$

Главные оси тела часто можно определить из его симметрии. Например, оси симметрии цилиндра или шара являются главными осями, так как для всех осей, лежащих в плоскости перпендикулярной оси симметрии, моменты инерции одинаковые, и, следовательно, эллипсоид инерции обладает такой же симметрией, являясь эллипсоидом вращения относительно оси симметрии тела. Крутильные колебания рамки с телом описываются уравнением

$$(I+I_p)\frac{d^2\varphi}{dt^2} = -f\varphi$$

Здесь I и I_p – это моменты инерции тела относительно оси вращения, φ – угол поворота рамки, f – модуль кручения проволоки. Период крутильных колебаний рамки с телом определяется формулой

$$T = 2\pi \sqrt{\frac{I + I_p}{f}}$$

Момент инерции относительно диагонали I_d выражается через главные моменты с помощью формулы:

$$I_{d} = I_{x} \frac{a^{2}}{x^{2}} + I_{y} \frac{b^{2}}{y^{2}} + I_{z} \frac{c^{2}}{z^{2}}$$

$$(a^{2} + b^{2} + c^{2})I_{d} = a^{2}I_{x} + b^{2}I_{y} + c^{2}I_{z}$$

$$(a^{2} + b^{2} + c^{2})T_{d}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2} + c^{2}T_{z}^{2}$$

$$(2.1)$$

Относительно остальных осей:

$$(b^2 + c^2)T_E^2 = b^2T_y^2 + c^2T_z^2 (2.2)$$

$$(a^2 + c^2)T_P^2 = a^2T_x^2 + c^2T_z^2 (2.3)$$

$$(a^{2} + c^{2})T_{P}^{2} = a^{2}T_{x}^{2} + c^{2}T_{z}^{2}$$

$$(b^{2} + a^{2})T_{M}^{2} = a^{2}T_{y}^{2} + b^{2}T_{z}^{2}$$

$$(2.3)$$

3 Методика измерений

В данной работе используется устройство для получения крутильных колебаний, изображенное на рис.1. Рамка 1 жестко соединена с проволокой 2, закрепленной вертикально в специальных зажимах 3, позволяющих сообщить начальное закручивание для возбуждения крутильных колебаний вокруг вертикальной оси. В рамке с помощью планки 4, гаек 5 и винта 6 закрепляется твердое тело 7. На теле имеются специальные выемки, позволяющие его закрепить так, чтобы ось вращения проходила в теле под различными углами через центр масс.

Рис. 1: Схема установки

В работе будем проверять соотношения (2.1), (2.2), (2.3) и (2.4). Для пустой рамки и всех тел при различных их положениях относительно оси колебаний определим периоды колебаний по времени 10-15 колебаний, повторяя каждое измерение не менее 3 раз. Штангенциркулем измерьте геометрические размеры параллелепипеда. Вычислите главные моменты инерции. По полученным ранее данным проверьте справедливость формул.

4 Используемое оборудование

В работе используются: установка для получения крутильных колебаний (жесткая рамка, имеющая винты для закрепления в ней твердых тел, подвешенная на натянутой вертикально проволоке), набор исследуемых твердых тел, секундомер. Погрешности:

- 1. Для секундомера ± 0.5 c
- 2. Для линейки $\pm 0,5$ мм
- 3. Для транспортира $\pm 0.5^{\circ}$

5 Результаты и обработка измерений

Таблица 1: Пустая рамка и цилиндры

Периоды 10 измерений, с	Пустая рамка	Мал. Цил., z	Мал. Цил., х	Бол. Цил., z
1	25,56	32,12	30,57	31,90
2	25,65	32,06	30,40	31,94
3	25,52	32,18	30,27	31,63
10Т, секунд	25,58	32,12	30,41	31,82
Т, секунд	2,558	3,212	3,041	3,182

Таблица 2: Цилиндры и главные оси куба

rastinga 2. Eminispi i mabini sen nyea					
Периоды 10 измерений, с	Бол. Цилиндр, х	Два цилиндра	Куб, г	Куб, х	Куб, г
1	34,23	37,10	30,57	30,66	30,72
2	34,59	36,88	30,65	30,55	30,78
3	34,45	36,95	30,69	30,62	30,64
10Т, секунд	34,42	36,98	30,64	30,61	30,71
Т, секунд	3,442	3,698	3,064	3,061	3,071

Таблица 3: Куб: диагонали и другие

Периоды, с	Плоскостная диагональ	Главная диагональ	Куб / 2	Куб / 3
1	30,67	30,73	30,65	30,67
2	30,81	30,80	30,74	30,79
3	30,70	30,65	30,64	30,63
10Т, секунд	30,73	30,73	30,68	30,70
Т, секунд	3,073	3,073	3,068	3,070

Длина ребра куба 6: a = 93,4 мм

Таблица 4: Параллелепипед: главные

zerottinger zi. zzer pettitististinion, zittetzinzio			
Периоды 10 измерений, с	T, z	T, x	Т, у
1	40,80	38,03	32,70
2	40,69	37,91	32,58
3	40,71		
10Т, секунд	40,73	37,97	32,64
Т, секунд	4,073	3,797	3,264

Таблица 5: Параллелепипед: диагонали

Периоды 10 измерений, с	Т, плоскостная диагональ	Т, главная
1	33,34	35,03
2	33,47	35,03
10Т, секунд	33,41	35,03
Т, секунд	3,341	3,50

Таблица 6: Характеристики цилиндров

Характеристики	Мал. Цилиндр	Бол. Цилиндр
d, мм	87,6	87,8
h, мм	49,4	97,5
т, г	2263,6	4562,4

Таблица 7: Массы кубиков в граммах

2	1085,5
3	1090,5
6	1086,9

Таблица 8: Характеристика параллелепипеда

m , Γ	1083,2
X, MM	100,4
у, мм	150,3
Z, MM	50,7

Таблица 9: Главные моменты инерции

	radilina d. ritabilina momentin imepanii				
Предмет	$\frac{I+I_x}{f}, c^2$	$\frac{I+I_y}{f}, c^2$	$\frac{I+I_z}{f}, c^2$		
Пустая рамка			0,166		
Маленький цилиндр	0,234	0,234	0,261		
Большой цилиндр	0,300	0,300	0,257		
Два цилиндра			0,346		
Куб 6	0,237	0,239	0,238		
Куб 2			0,238		
Куб 3			0,239		
Параллелепипед	0,365	0,270	0,420		

Тогда у T^2 погрешность равна $2\Delta T$. Поскольку мерили по 10, то $\Delta T=0.05~c$, поэтому $\Delta T^2=0.1~c^2$.

$$\frac{I+I_p}{f} = \frac{T^2}{4\pi^2} \implies \Delta\left(\frac{I+I_p}{f}\right) = \frac{\Delta T^2}{4\pi^2} \approx 2.5 \cdot 10^{-3} c^2$$

Построим сечение эллипсоидом инерции тела, для этого вычислим $\frac{1}{\sqrt{T^2-T_p^2}}$:

Таблица 10: Расстояния

таолица то. г асстоинии			
Тело	$\frac{1}{\sqrt{T^2 - T_p^2}}, c^{-1}$		
Маленький Цилиндр, z	0,27		
Маленький Цилиндр, х	0,37		
Большой Цилиндр, z	0,28		
Большой Цилиндр, х	0,19		
Куб, z	0,35		
Куб, х	0,35		
Куб, у	0,34		
Параллелепипед, z	0,10		
Параллелепипед, х	0,13		
Параллелепипед, у	0,24		

6 Обсуждение результатов

Проверим верность формул (2.1), (2.2), (2.3) и (2.4): Для куба:

$$T_{\text{плоскостная диагональ}}^2\left(a^2+a^2\right)\stackrel{?}{=}a^2T_y^2+b^2T_z^2$$

$$3,073^2\cdot2-\left(3,064^2+3,071^2\right)=0,068\ \text{м}\ c^2<0,1\ \text{м}c^2$$

$$T_{\text{ главная диагональ}}^2 \, 3a^2 \stackrel{?}{=} a^2 T_x^2 + a^2 T_y^2 + a^2 T_z^2$$

$$3 \cdot 3.073^2 - (3.061^2 + 3.064^2 + 3.071^2) = 0.068 \ \text{ м } c^2 < 0.1 \ \text{м} c^2$$

Для параллелепипеда:

$$T_{\text{плоскостная диагональ}}^2\left(a^2+b^2\right) \stackrel{?}{=} a^2T_y^2 + b^2T_z^2$$

$$3,341^2(0,1503^2+0,0507^2) - \left(0,1503^2\cdot3,797^2+0,0507^2\cdot3,264^2\right) = -0,073 \text{ м } c^2 > -0,1 \text{ м } c^2$$

$$T_{\text{главная диагональ}}^2\left(a^2+b^2+c^2\right) \stackrel{?}{=} a^2T_x^2 + b^2T_y^2 + c^2T_z^2$$

$$(0.1503^2 + 0.507^2 + 0.1004^2) \cdot 3.50^2 - (0.1503^2 \cdot 4.073^2 + 0.0507^2 \cdot 3.264^2 + \\ + 0.1004^2 \cdot 3.797^2) = 0.053 \text{ m } c^2 < 0.1 \text{ m } c^2$$

Значит формулы верны в пределах нашей погрешности. Для соосных цилиндров должно выполняться:

$$rac{I_{
m \, малень \, Ku\, f i}\,\, {
m z}}{m} = rac{I_{
m \, 6оль \, mo\, f i}\,\, {
m z}}{M} = rac{I_{
m \, двуx}\,\, {
m z}}{m+M}$$

Используя теоретическую формулу для $I = \frac{1}{6} ma^2$ найдём f:

$$\begin{cases} I_p = 0.166f \\ I_t = \frac{1}{6} \cdot 1.0869 \cdot 0.0934^2 = 1.58 \cdot 10^{-3} & \text{kg kg} \leq 1.58 \cdot 10^{-3} = 0.072f \\ I_t = 0.238f - I_p \end{cases}$$

$$f = 0.0219 \frac{\text{kg kg} \leq 1.58 \cdot 10^{-3}}{\text{c}^2}$$

Погрешность f:

$$\varepsilon_f = \frac{5 \cdot 10^{-3}}{0.072} = 7\% \implies \Delta f = 1.5 \cdot 10^{-3} \frac{\text{K} \Gamma \cdot \text{M}^2}{\text{c}^2}$$

Погрешность вычисленного I:

Таблица 11: Главные моменты инерции

20001111140	таолица 11. главиво моменты инерции			
Предмет	I, х, г · м ²	I, у, г · м ²	I, z, г · м ²	
Пустая рамка			$3,\!6$	
Маленький цилиндр	1,5	1,5	2,1	
Большой цилиндр	2,9	2,9	2,0	
Два цилиндра			4,0	
Куб 6	1,6	1,6	1,6	
Куб 2			1,6	
Куб 3			1,6	
Параллелепипед	4,4	2,3	5,6	

$$\Delta I \leqslant 0.61 \; \text{f} \; \cdot \; \text{m}^2$$

Тогда данное значение f не соответствует значению для маленького цилиндра. Возможно данное расхождение произошло из-за того, что не была учтена случайная погрешность измерений или периоды для какого-то из цилиндров измерялись при углах, при которых уже нельзя пользоваться гармоническими законами для вычисления $\frac{I+I_p}{f}$. Кроме того, возможно, что во время работы f поменялось.

7 Вывод

Удалось измерить периоды крутильных колебаний рамки при различных положениях закреплённого в ней тела, подтвердили верность теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, нашли главные моменты инерции тел и построили дл них эллипсоиды инерции. Однако погрешности данных измерений оказались очень большими.