Congestion Control

Goodput: number of useful packets/sec

Congestion Control Vs. Flow Control

- **Flow control**: in point-to-point transmission case, prevent sender sending data too fast and drown receiver.
- Congestion control: affect the ability of subnet to actually carry the traffic

Load Shedding

When congestion control methods all fail, router have to discard packets. But application can give some packets priority to avoid to be discard.

Qos (Quality Of Service)

- bandwidth
- delay
- · jitter: variation of delay
 - jitter control method: router shuffle packets, router transmit packets with low TTL first and high TTL later.
 - jitter control is important in applications like Voice Over IP
- · reliability: chance to loss packet

Congestion Control Techniques

In network layer:

- Over-provisioning: 准备过量的 buffer, router CPU, bandwidth. Expensive and not scalable.
- **Buffering**: buffer received flow first, then delivery. Increase delay but smooth out jitter.
- Traffic Shaping: regulate average rate of transmission and burstiness of transmission.
 - leaky bucket: constant outgoing flow
 - token bucket: good at deal with burstiness of flow
- Resource Reservation: reserve bandwidth, buffer, CPU in advance
- Admission Control: when busy, router can reject new flow
- Proportional Routing: router split packet and reroute them to different routers
- Packer Scheduling: give priority to packets

In transport layer:

TCP can ask sender to slow down. Sender manage congestion window, receiver set a receiver window once connection established.

• Slow Start: 每次 sender收到一个 ACK, send back 2 segments.

• Additive Increase: 每次 sender收到所有上次的 ACK, 就多回复一个 segment.

• TCP Tahoe: first Slow Start then Additive Increase

Summary Table For Policy Affecting Congestion

Layer	Policies
Transport	Retransmission policy
	Out-of-order caching policy
	Acknowledgement policy
	Flow control policy
	Timeout determination
Network	Virtual circuits versus datagram inside the subnet
	 Packet queueing and service policy
	Packet discard policy
	Routing algorithm
	Packet lifetime management
Data link	Retransmission policy
	Out-of-order caching policy
	Acknowledgement policy
	Flow control policy