

Nondeterministic Finite Automata

Nondeterministic Finite Automata (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Automata (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Automata (NFA)

Alphabet =
$$\{a\}$$

First Choice

First Choice

All input is consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA accepts a string:

If there is a computation such that:

All the input is consumed

AND

The automata is in a final state

Example

aa is accepted by the NFA:

Talabuspensantiquem a crecept

"accept"

because this computation accepts aa

Rejection example

First Choice

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

Rejection Example

Language accepted: $L = \{aa\}$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^{+}$$

Another NFA Example

Language accepted

$$L(M) = \{\lambda, 10, 1010, 101010, ...\}$$

= $\{10\}$ *

Remarks:

- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

9300/05/NW/DEA -> 2012/1/2)

Formal Definition of NFAs

Westo Lity DFA

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q: Set of states, i.e. $\{q_0, q_1, q_2\}$
- Σ : Input applied, i.e. $\{a,b\}$
- S: Transition function ตามเด็กเองบางตาวนั
- q_0 : Initial state
- F: Final states

Transition Function δ

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\mathcal{S}(q_1,0) = \{q_0,q_2\}$$

411 ° 2 m 5 ° 12 139

Extended Transition Function δ^*

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

$$q_j \in \mathcal{S}^*(q_i, w)$$
: there is a walk from q_i to q_j with label w

$$S^{*}(q_{i}, \omega) = q_{j}$$

$$2i R_{i} ms s n q_{i} N q_{5}$$

$$q_{i}$$

$$q_{j}$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_j$$

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_3$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \quad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a \quad a$$

$$q_0$$

$$\lambda$$

$$\lambda$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$\Rightarrow \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,aba) = \{q_1\} \qquad aba \notin L(M)$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

NFAs accept the Regular Languages 2

Equivalence of Machines

Definition for Automata:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

We will prove:

NFAs and DFAs have the same computation power

Step 1

Proof: Every DFA is trivially an NFA

DFA: 8(91,W)=9,

7 Na

NFA: $S(G_i, G_i) = 1$ Any language L accepted by a DFA

q_k, q_i) is also accepted by an NFA

Step 2

Languages
accepted
by NFAs

Regular
Languages

Proof: Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

	α	Ь
q0	{q1, q2}	Ø
q1	{q1, q2}	{q0}
q 2	Ø	{qO}

