Zadanie 1 (3p) Podaj i zinterpretuj pierwsze twierdzenie teorii dobrobytu (max. 3 zdania).

Zadanie 2 (6p) Podaj definicję optymalności w rozumieniu Pareto. Znajdź równowagi Nasha (w strategiach czystych) gry pomiędzy graczami I (wybierającego jeden z wierszy: U, D), II (wybierającego jedną z kolumn: L, R) oraz III (wybierającego jedną z macierzy A, B, C) z wypłatami:

	L	R			L	R		L	R
U	0,0,3	0,0,0		U	2,2,2	0,0,0	U	0,0,0	0,0,0
D	1,0,0	0,0,0		D	0,0,0	2,2,2	D	0,1,0	0,0,3
\overline{A}				\overline{B}			\overline{C}		

Zadanie 3 (8p) Na rynku oligopolistycznym działają dwie firmy A i B produkujące produkt homogeniczny po równych kosztach krańcowych w wysokości 400. Funkcja popytu na produkt ma postać: $Q(P) = 1000 - \frac{P}{2}$. Oblicz wielkość produkcji obu firm oraz cenę na rynku w równowadze Cournota-Nasha.

Zadanie 4 (9p) Oblicz IRR dla obligacji o wartości nominalnej 221 złotych okresie wykupu za 2 lata, oprocentowaniu $\frac{10}{221}$ a kupionej za 200 złotych. Czy przy stopie dyskontowej równej obliczonemu IRR, NPV takiej samej obligacji tyle, że z terminem wykupu za 3 lata jest dodatnie czy ujemnne?

Zadanie 5 (10p) Udowodnij lub podaj kontrprzykład na następujące twierdzenie: każda rosnąca różniczkowalna, wypukła funkcja produkcji $f(k) \geq 0$, gdzie $k \geq 0$ to nakłady kapitału i f(0) = 0, ma niemalejące korzyści skali.

Zadanie 6 (14p) Konsument ma preferencje określone funkcją użyteczności postaci $U(c,r) = \alpha \ln c + \beta \ln r$, gdzie $\alpha, \beta \geq 0$, c - ilość dobra konsumpcyjnego (o cenie p) a r - ilość czasu wolnego. Niech l oznacza ilość czasu przeznaczanego na pracę w sektorze rynkowym a łączna ilość czasu dostępna konsumentowi wynosi 1 = l + r. Zakładając, że płaca za jednostkę czasu pracy wynosi w > 0 i wszystkie zarobki przeznaczane są na konsumpcję c metodą mnożników Lagrangea wyznacz optymalną wysokość podaży czasu pracy konsumenta oraz omów jak zależy ona od wysokości płacy.