Régulation de température

Objectif : un liquide circulant dans une canalisation à débit Q_S constant doit être maintenu à température constante θ_S

Pour obtenir ce résultat, on dispose (figure donnée ci-dessous) d'un réservoir alimenté par ce même liquide, dont le débit est Q_E et la température θ_E . Le chauffage du liquide est assuré par une résistance de puissance R.

En régime permanent, les débits d'entrée Q_E et de sortie Q_S sont les mêmes, donc le niveau du liquide dans le réservoir reste constant.

Un capteur de température est placé à l'entrée de la canalisation de sortie et fournit une tension V_X proportionnelle à θ_S

Un gradateur, de gain en tension G, permet de fournir la puissance à la résistance R. On notera P_U la puissance dissipée par la résistance R et U_1 sa tension de commande linéarisée.

On travaillera autour du point moyen de fonctionnement suivant :

Débit d'entrée (= débit de sortie)	Température d'entrée	Température de sortie	Volume du réservoir (niveau constant)	Puissance de chauffage
Q _{E0}	Θ _{E0}	Θso	V ₀	Pu ₀
5 l/mn	20°C	40°C	100 litres	5 kW

Remarque : pour la suite, les valeurs littérales avec indice "0" correspondront au point moyen de fonctionnement, les valeurs littérales sans cet indice correspondront aux variations autour de ce point moyen.

1) Identification de chaque élément de la boucle.

1.1) Commande de la résistance de chauffage.

a) La valeur de la résistance : $R = 0.5\Omega$. Donner la relation : $P_U = f(U, R)$. Calculer la valeur de $U = U_0$ au point moyen de fonctionnement ($P_{U0} = 5.10^3 \text{ W}$)

b) Calculer:
$$\frac{dP_U}{dU} = f(U, R)$$
. Quelle est sa valeur au point moyen de fonctionnement?

Ce résultat correspond au gain statique : $\frac{P_{U}(W)}{U(V)}$

c) Si le gain en tension du gradateur est égal à 10, en déduire le gain statique $\frac{P_U(W)}{U_1(V)}$

d) Une étude indicielle a permis d'estimer la variation de la puissance P_U en réponse à un échelon sur la tension de commande U_1 . le résultat est le suivant :

On en déduit que la fonction de transfert : $\frac{P_U(W)}{U_1(V)}$ est de la forme : $\frac{K_1}{1+\tau_1 p} = A_1(p)$

Quelles sont les valeurs de $K_1(watts/Volts)$ et de $\tau_1(secondes)$?

ATTENTION : pour la suite du problème, on exprimera la puissance en $\underline{\mathbf{k}}\underline{\mathbf{W}}$ et les constantes de temps en $\underline{\mathbf{minutes}}$. Pour A_1 , on utilisera les valeurs "arrondies" suivantes :

$$\frac{2}{1+0.1p} = A_1(p) = \frac{P_U(kW)}{U_1(V)}$$

1.2) Modélisation du réservoir

La variation de température θ dépend de la variation de puissance P_U et de la variation de débit d'entrée Q_E . Le schéma-bloc de fonctionnement est le suivant :

$$\text{Avec}: \ A_2(p) = \frac{\left(\theta_{S0} - \theta_{E0}\right)/P_{U0}}{1 + \frac{V_0}{Q_{E0}}p} \quad \text{et} \ : \ A_3(p) = \frac{\left(\theta_{S0} - \theta_{E0}\right)/Q_{E0}}{1 + \frac{V_0}{Q_{E0}}p}$$

Exprimer numériquement A₂(p) et A₃(p).

REMARQUE:

Les températures sont exprimées en : degrés Celsius

La puissance en : **kW**Le volume en : **litres**Le débit en : **litres/minute**

La constante de temps en : minutes

1.3) Modélisation du capteur et boucle complète

Autour du point de fonctionnement, le capteur de température a pour fonction de transfert :

$$\frac{V_X(V)}{\theta_S(\deg r\acute{e}s\ C)} = \frac{1,25}{1+2p} = B(p)$$

(constante de temps en minutes). La tension de sortie du capteur de température est comparée à une tension de consigne $V_{\rm E}$

Le schéma-bloc de la boucle est le suivant (sans régulateur ni perturbation) :

<u>Rappel</u>: les variables de la boucle sont définies en variation autour du point de fonctionnement.

Expliquer comment est obtenue la fonction de transfert A(p) de la branche directe.

2) Etude de la boucle de température non perturbée

2.1) En l'absence régulateur

Remarque: tous les lieux de Bode seront tracés avec une pulsation exprimée en rad/minutes.

Tracer les lieux de Bode asymptotiques (gain et phase) de la boucle ouverte : A(p).B(p)

Déterminer l'ordre de grandeur de la marge de phase Mφ. Expliquer cette détermination (on confondra la courbe de gain avec sa représentation asymptotique).

La réponse à un échelon de position unitaire en boucle fermée autour du point de fonctionnement est la suivante :

Expliquer ce résultat à partir de la valeur trouvée de la marge de phase Mo.

Pour un échelon unitaire appliqué sur V_E autour du point de fonctionnement, quelle est la valeur de l'erreur de position $V_{\epsilon P}$? En déduire θ_S . Comment vérifier ce résultat sur la courbe cidessus ?

2.2) Avec régulateur

On place un régulateur à la sortie de l'additionneur-soustracteur. On utilise successivement les deux régulateurs suivants :

$$R_1(p) = \frac{1+20p}{20p}$$
 puis : $R_2(p) = \frac{1+20p}{20p} \cdot \frac{1+2p}{1+0.2p}$

Quel est le type de chacun des deux régulateurs proposés ?

Tracer les lieux de Bode asymptotiques en gain et en phase de la boucle ouverte corrigée pour les deux régulateurs proposés : $R_1(p).A(p).B(p)$ puis $R_2(p).A(p).B(p)$

Dans les deux cas

- Déterminer l'ordre de grandeur de la marge de phase Mφ. Expliquer ces déterminations.
- Déterminer l'erreur de position $V_{\epsilon P}$ pour une consigne quelconque.

3) Effet d'une perturbation

On conserve le régulateur $R_2(p)$ et on cherche à analyser l'effet d'une petite variation de débit d'entrée Q_E sur la température θ_S

La boucle à analyser est la suivante :

perturbation Q_E sur la température θ_S .

Pour $V_E = 0$, calculer la fonction de transfert en boucle fermée $\frac{\theta_S}{Q_E}(p)$. Quel est son gain statique? En déduire l'effet, en régime permanent, d'un échelon de faible amplitude de la