姚鳳英女士 您好:

感謝您選用行動基因所提供的檢測服務。行動基因經您的同意,於西元 2021 年09月11日取得您的檢體,進行ACTOnco®+癌安克™癌症基因檢測與ACTFusion™癌融克™癌症融合基因檢測。行動基因實驗室為通過美國病理學會 (The College of American Pathologists, CAP) (CAP#: 9028096) 與臺灣衛生福利部食品藥物管理署「精準醫療分子檢測列冊登錄實驗室」(Laboratory Developed Tests and Services, LDTS) (列冊登錄編號: LDTS0001) 的認證機構。

ACTOnco®+癌安克™癌症基因檢測平台利用次世代定序分析技術,同時檢測440個與腫瘤相關的基因變異,並計算腫瘤突變負荷量。

ACTFusion™癌融克™癌症融合基因檢測能檢測 13 個融合基因轉錄片段。

行動基因的專業生物與醫藥資訊團隊根據您的基因檢測結果與參考文獻,評 估您對藥物的反應,輔助醫師進行治療與預後分析,以體現癌症精準醫療。

本次檢測於腫瘤檢體偵測到的重要基因變異及其相對應的標靶用藥如下:

基因變異	具敏感性之標靶用藥	具抗藥性之標靶用藥
• KRAS 基因增加	 Sorafenib 	 Panitumumab
		Cetuximab
		• Crizotinib

腫瘤突變負荷量 (TMB): 1.9 mutations/megabase

微小衛星體不穩定性 (MSI): 穩定(stable)

融合基因: 未測得基因融合

詳細變異基因描述與用藥建議,請參閱以下完整基因檢測報告內容。

基因檢測報告所提供的資訊僅作為診療參考依據之一,您必須藉由醫師綜合評估過去的治療紀錄及專業判斷,選擇最適合您的治療策略。

若您對本檢測報告有任何疑問,請隨時與我們聯繫。

行動基因 敬上

REPORT SUMMARY

PATIENT AND SAMPLE INFORM	1ATION2
VARIANT(S) WITH CLINICAL REI	EVANCE2
THERAPEUTIC IMPLICATIONS	3
REPORT DETAILS	
VARIANT INTERPRETATION	5
US FDA-APPROVED DRUG(S)	9
ONGOING CLINICAL TRIALS	
DETAILED TEST RESULTS	11
HOTSPOT GENOTYPES	
TEST DETAILS	15
ACTOnco®+ GENE LIST	
DISCLAIMER	20
APPENDIX	
SIGNALING PATHWAYS AND M	OLECULAR-TARGETED AGENTS22

COLLEGE of AMERICA

ACTOnco®+ Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

PATIENT AND SAMPLE INFORMATION

PATIENT SPECIMEN ORDERING PHYSICIAN

Name: 姚鳳英Type: FFPE tissueName: 陳明晃醫師Gender: FemaleDate received: Sep 11, 2021Facility: 臺北榮總Date of Birth: Jul 20, 1958Collection site: EsophagusTel: 886-228712121

Patient ID: 23072573 Specimen ID: S11024899 Address: 臺北市北投區石牌路二段 201 號

Diagnosis: Esophagogastric junction cancer Lab ID: AA-21-03836

D/ID: NA

VARIANT(S) WITH CLINICAL RELEVANCE

Only variant(s) with clinical significance are listed. See the "DETAILED TEST RESULTS" section for full details.

SINGLE NUCLEOTID	E AND SMALL INDEL \	VARIANTS		
Gene	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
DNMT3A	R729W	1096	5.3%	COSM249142
TP53	R209fs	1241	23.5%	COSM6482

COPY NUMBER VARIANTS (CNVS)

Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on <u>45%</u> tumor purity.

Amplification (Copy number ≥ 8)

Chr	Gene	Copy Number
chr12	KRAS	33
chr8	MYC	93

Homozygous deletion (Copy number=0)

78000 000000 (00)	,		
Chr Gene			
ND	ND		
Heterozygous deletion (Copy number=1)			
Chr Gene			
ND	ND		

ND, Not Detected

TUMOR MUTATIONAL BURDEN (TMB) MICROSATELLITE INSTABILITY (MSI)

1.9 muts/Mb

Microsatellite stable (MSS)

Muts/Mb, mutations per megabase

Note:

TMB was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at \geq 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Sign Off

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 ChargemChay

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 2 of 28

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

THERAPEUTIC IMPLICATIONS **TARGETED THERAPIES Therapies** Effect **Genomic Alterations** Level 4 **KRAS** Amplification Sorafenib sensitive KRAS Amplification Cetuximab, Panitumumab, Crizotinib resistant

Note: Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence.

Lev	/el	Description	
1	FDA-recognized biomarker predictive of response to an FDA approved drug in this indication		
Standard care biomarker (recommended as standard care by the NCCN or other expert panels) predictive of response to an FD approved drug in this indication			
3	Α	Biomarkers that predict response or resistance to therapies approved by the FDA or professional societies for a different type of tumor	
	B Biomarkers that serve as inclusion criteria for clinical trials		
4 Biomarkers that show plausible therapeutic significance based on small studies, few case reports or preclinical studie			

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 3 of 28

[‡] Refer to "ONGOING CLINICAL TRIALS" section for detailed trial information.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

IMMUNE CHECKPOINT INHIBITORS (ICI) THERAPIES

Genomic markers and alterations that are associated with response to ICI therapies

Positive Biomarker	Negative Biomarker
TMB-H: ND	EGFR aberration: ND
MSI-H: ND	MDM2/MDM4 amplification: ND
MMR biallelic inactivation: ND	STK11 biallelic inactivation: ND
PBRM1 biallelic inactivation: ND	PTEN biallelic inactivation: ND
SERPINB3/SERPINB4 mutation: ND	B2M biallelic inactivation: ND
	JAK1/2 biallelic inactivation: ND

MMR, mismatch repair; ND, not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES				
Therapies	Genomic Alterations	Effect	Gene / Variant Level Evidence	Cancer Type
FAC CMF and P-FEC regimens	MYC Amplification	sensitive	Clinical	Breast cancer
Platinum-based regimens	MYC Amplification	sensitive	Clinical	Ovarian cancer

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 4 of 28

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

VARIANT INTERPRETATION

DNMT3A R729W

Biological Impact

DNMT3A encodes a DNA methyltransferase regulates gene expression by de novo methylation of cytosine bases at CpG dinucleotides^{[1][2][3]}. Mutations of DNMT3A are frequently detected in a large variety of immature and mature hematologic neoplasms including acute myeloid leukemia (AML), myeloproliferative neoplasms and T-cell acute lymphoblastic leukemia (T-ALL)^{[4][5][6]}.

DNMT3A R729W is located within the SAM-dependent MTase C5-type domain of the DNMT3A protein (UniProtKB). R729W confers a loss of function to the DNMT3A protein, as demonstrated by protein instability and decreased methylation activity in vitro (doi: 10.1158/2159-8290.CD-21-0560)^[7].

Therapeutic and prognostic relevance

DNMT3A mutations, including R882 and some loss-of-function mutations, are associated with unfavorable prognosis in patients with AML^{[4][8][9]}, myelodysplastic syndrome^[10] and chronic myelomonocytic leukemia^[11].

TP53 R209fs

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[12]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[13].

R209fs mutation results in a change in the amino acid sequence beginning at 209, likely to cause premature truncation of the functional p53 protein (UniProtKB). This mutation is predicted to lead to a loss of p53 protein function, despite not being characterized in the literature.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[14].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[15]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[16].

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[17][18][19]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[20]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[21][22]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[23].

KRAS Amplification

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[24]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[24][25]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways^{[26][27]}. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)^{[24][28]}, colon carcinomas (40-50%)^{[29][30]}, and lung carcinomas (30-50%)^{[31][32]}, but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer^[25].

Therapeutic and prognostic relevance

Except for KRAS G12C, other KRAS mutants are not currently targetable, but the downstream MEK serves as a potential target^[33]. MEK inhibitors trametinib, cobimetinib, and binimetinib were approved by the U.S. FDA for patients with advanced metastatic melanoma whose tumors harbor BRAF V600 mutations^{[34][35][36][37]}.

There are case reports indicated that patients harboring a KRAS mutation may benefit from MEK inhibitor treatment. A patient with small cell neuroendocrine carcinoma (SCNEC) of the cervix harboring a KRAS G12D mutation showed significant response with trametinib^[38]. Another low-grade serous carcinoma case with KRAS G12D also has sustained response to trametinib (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143). In addition, a low-grade serous ovarian cancer patient harboring KRAS G12V mutation showed stable disease after 8 weeks of binimetinib treatment, and demonstrated a partial response after another 26 weeks of treatment^[39]. However, trametinib did not demonstrate superiority to docetaxel in KRAS-mutant non-small cell lung cancer (NSCLC) patients, based on results from a randomized Phase II study^[40].

Both clinical and preclinical studies demonstrated a limited response to monotherapy using MEK inhibitors^[41]. Moreover, several clinical trials are in progress to evaluate the combination of MEK and mTOR inhibition as a new

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

potential therapeutic strategy in CRC^[42], and in patient-derived xenografts of RAS-mutant CRC, inhibition of MEK and mTOR suppressed tumor growth, but not tumor regression^[43]. A study using the CRC patient-derived xenograft (PDX) model showed that the combination of trametinib, a MEK inhibitor, and palbociclib, a CDK4/6 inhibitor, was well tolerated and resulted in objective responses in all KRAS mutant models^[44].

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

Cetuximab and panitumumab are two EGFR-specific antibodies approved by the U.S. FDA for patients with KRAS wild-type metastatic colorectal cancer (NCT00154102, NCT00079066, NCT01412957, NCT00364013). Results from the PRIME and FIRE-3 trials indicated that panitumumab and cetuximab did not benefit patients with KRAS or NRAS mutations and may even have a detrimental effect in these patients^[45]. Taken together, the National Comprehensive Cancer Network (NCCN) recommended that, cetuximab and panitumumab should only be used if both KRAS and NRAS genes are normal (NCCN guidelines)^{[46][47]}. Numerous studies have demonstrated the presence of KRAS or NRAS mutations at exon 2, 3 or 4 as a predictor of resistance to anti-EGFR therapies^{[48][49][50][51][52][53][54]}.

Sorafenib, a multi-kinase inhibitor, has been shown to be beneficial in KRAS-mutant CRC^[55], KRAS-mutant NSCLC^[56], and KRAS-amplified melanoma^[57].

There has been conflicting data on the effect of KRAS mutation on the efficacy of bevacizumab in metastatic CRC patients^[58](J Clin Oncol 34, 2016 (suppl; abstr 3525))^[59].

In NCCN guidelines for NSCLC (version 5. 2021), KRAS mutations have been suggested as an emerging biomarker for EGFR TKIs in NSCLC patients. KRAS mutations are associated with a lack of efficacy of EGFR TKIs, including erlotinib, gefitinib, afatinib, and osimertinib, in NSCLC patients^{[60][61][62]}.

Studies have shown that KRAS mutation, especially those occurs in exon 2 (codon 12 or 13) and codon 61 indicated a poor prognosis for patients with CRC^[63].

In low-grade serous carcinoma of the ovary or peritoneum, patients with KRAS or BRAF mutations (n=21) had a significantly better OS than those with wild-type KRAS or BRAF (n=58) (106.7 months vs 66.8 months), respectively^[64]. In ovarian serous borderline tumor with recurrent low-grade serous carcinoma, patient harboring KRAS G12V mutation appeared to have shorter survival time^[65].

Metastatic colorectal cancer patients harboring KRAS amplification were resistant to anti-EGFR therapy such as cetuximab and panitumumab^{[66][67]}.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

Some in vitro studies showed that activation of the RAS, due to either KRAS/NRAS mutations or to KRAS amplification, rendered lung cancer cells resistant to ROS1 inhibition by crizotinib^{[68][69][70]}.

MYC Amplification

Biological Impact

The v-myc avian myelocytomatosis viral oncogene homolog, also known as c-myc (MYC) gene encodes a transcription factor involved in cellular proliferation, inhibiting exit from the cell cycle, stimulating vascularization and enhancing genomic instability^{[71][72][73]}. Dysregulated MYC expression is implicated in a wide range of human cancers^[74].

Therapeutic and prognostic relevance

MYC amplification was associated with better clinical outcome in breast cancer patients treated with FAC (5-fluorouracil, doxorubicin, and cyclophosphamide), CMF (cyclophosphamide, methotrexate and 5-fluorouracil)^[75] and P-FEC (paclitaxel followed by 5-fluorouracil, epirubicin and cyclophosphamide)^[76] and higher expression of MYC was also associated with a better response rate in platinum-treated ovarian cancer patients^[77].

CDK inhibition using the dinaciclib, a CDK1, 2, 5 and 9 inhibitors, exerted antitumor activity in triple-negative breast cancer (TNBC) tumor xenograft and cell lines with increased activity of the MYC pathway^{[78][79]}.

Overexpression of MYC has been reported as a favorable prognostic biomarker in colorectal carcinoma (CRC)^{[80][81]}). However, the favorable prognostic value of MYC in CRC is abrogated by the TP53 mutation^[81].

MYC amplification with the loss of tumor suppressor pathways such as p53 and RB has been shown to be associated with poor outcomes^[78] and was correlated with shortened disease-free survival in breast cancer with BRCA1 deficiency in TNBC^[82].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-00536

姚鳳英

Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

Page 9 of 28

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Sorafenib (NEXAVAR)

Sorafenib is a small molecule multi-kinase inhibitor that targets multiple kinase families including VEGFR, PDGFRB, and the RAF family kinases. Sorafenib is co-developed and co-marketed by Bayer HealthCare Pharmaceuticals and Onyx Pharmaceuticals under the trade name NEXAVAR.

FDA Approval Summary of Sorafenib (NEXAVAR)

	Differentiated thyroid carcinoma (Approved on 2013/11/22)
DECISION ^[83]	
NCT00984282	Sorafenib vs. Placebo
	[PFS(M): 10.8 vs. 5.8]
	Hepatocellular carcinoma (Approved on 2007/11/16)
SHARP ^[84]	-
NCT00105443	Sorafenib vs. Placebo
	[OS(M): 10.7 vs. 7.9]
	Renal cell carcinoma (Approved on 2005/12/20)
TARGET ^[85]	- 7
NCT00073307	Sorafenib vs. Placebo
	[PFS(D): 167 vs. 84]

d=day; w=week; m=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ONGOING CLINICAL TRIALS

Clinical trials shown below were selected by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

Page 11 of 28

DETAILED TEST RESULTS

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS

Gene	Chr	Exon	Accession Number	cDNA Change	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
BCOR	X	7	NM_001123385	c.3410A>G	K1137R	559	47.9%	-
BRD4	19	5	NM_058243	c.563C>T	T188I	1644	42.0%	-
CSF1R	5	17	NM_005211	c.2242C>T	R748W	1269	62.1%	-
DNMT3A	2	19	NM_175629	c.2185C>T	R729W	1096	5.3%	COSM249142
FANCC	9	8	NM_000136	c.743C>G	P248R	877	62.9%	-
KMT2C	7	23	NM_170606	c.3509A>T	K1170M	1699	42.1%	-
LRP1B	2	52	NM_018557	c.8321G>A	C2774Y	1590	21.8%	-
MUC16	19	3	NM_024690	c.31211G>A	S10404N	926	39.6%	-
NF1	17	24	NM_001042492	c.3185A>T	K1062I	1082	44.0%	-
NOTCH4	6	18	NM_004557	c.2811G>T	R937S	944	39.3%	-
PARP1	1	13	NM_001618	c.1811T>C	M604T	2733	46.5%	-
PDGFRB	5	-	NM_002609	c.1912+3G>A	Splice region	679	61.6%	-
TP53	17	6	NM_000546	c.626_627del	R209fs	1241	23.5%	COSM6482
USH2A	1	10	NM_206933	c.1789C>A	H597N	1949	45.4%	-

Mutations with clinical relevance are highlighted in red.

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

COPY NUMBER VARIANTS (CNVS)

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

HOTSPOT GENOTYPES

Listed variants are biomarkers or hotspots that are recommended as standard care by the NCCN or other expert panels and not necessarily FDA-recognized for a particular indication. The genotypes have been manually checked to ensure sufficient coverage for each hotspot of the target gene.

Gene	Variant	Genotype Detected
BRAF	V600X	Not detected
EGFR	A763_Y764insFQEA, E709K, E709_T710delinsD, Exon 19 deletion, Exon 19 insertion, Exon 20 insertion, G719A/C/D/S, L747P, L833V, L858R, L861Q/R, S768I, T790M	
IDH2	R140Q, R172G/K/M/S	Not detected
КІТ	A502_Y503dup, D419del, D579del, D816F/V/Y, D820A/E/G/Y, E554_I571del, E554_K558del, E554_V559del, Exon 11 mutation, F522C, H697Y, I563_L576del, I653T, K550_W557del, K558N, K558_E562del, K558_V559del, K558delinsNP, K642E, M552_W557del, N505I, N564_Y578del, N822H/I/K/Y, P551_M552del, P573_D579del, P577_D579del, P577_W582delinsPYD, P838L, Q556_K558del, T417_D419delinsI, T417_D419delinsRG, T574_Q575insTQLPYD, V530I, V555_L576del, V555_V559del, V559A/C/D/G, V559_V560del, V559del, V560D/G, V560del, V569_L576del, V654A, W557G/R, W557_K558del, Y553N, Y553_K558del, Y570H, Y578C	Not detected
KRAS	A146T/V/P, G12X, G13X, Q61X	Not detected
MET	D1028H/N/Y	Not detected
NRAS	G12X, G13X, Q61X	Not detected
PDGFRA	A633T, C450_K451insMIEWMI, C456_N468del, C456_R481del, D568N, D842I/V, D842_H845del, D842_M844del, D846Y, E311_K312del, G853D, H650Q, H845Y, H845_N848delinsP, I843del, N659K/R/S, N848K, P577S, Q579R, R560_V561insER, R748G, R841K, S566_E571delinsR, S584L, V469A, V536E, V544_L545insAVLVLLVIVIISLI, V561A/D, V561_I562insER, V658A, W559_R560del, Y375_K455del, Y555C, Y849C/S	Not detected
PIK3CA	C420R, E542K/V, E545A/D/G/K, Exon 19 deletion, H1047X, Q546E/R	Not detected

V600X= any mutation in the valine (V) at amino acid 600 being replaced by a different amino acid. G12X = any mutation in the glycine (G) at amino acid 12 being replaced by a different amino acid. G13X= any mutation in the glycine (G) at amino acid 13 being replaced by a different amino acid. Q61X = any mutation in the glutamine (Q) at amino acid 61 being replaced by a different amino acid. H1047X = any mutation in the histidine (H) at amino acid 1047 being replaced by a different amino acid.

Gene	Copy Number Detected
CDK4	2
EGFR	2
ERBB2	2
MET	3

Copy number ≥ 8 is considered amplification

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

Other known alterations that are associated with sensitivity, resistance, and toxicity to therapies.

Gene	Variant	Genotype Detected		
AKT1	E17K	Not detected		
ALK	C1156Y, D1203N, G1202R, L1152R, S1206Y, T1151_L1152insT	Not detected		
BRAF	K601E, L597V/Q/R/S	Not detected		
DPYD	D949V, I560S, splice-site mutation	Not detected		
EGFR	A750P, C797S/Y, S492R	Not detected		
ERBB2	V659E	Not detected		
ESR1	D538G, E380Q, L469V, L536H/P/Q/R, S432L, S463P, V422del, V534E, Y537C/N/S	Not detected		
FGFR3	G370C, G380R, K650E/N/R/M/T/Q, R248C, S249C, S371C, Y373C	Not detected		
IDH1	R132C/G/H/Q/S	Not detected		
MAP2K1	D67N, E203K, F53L, K57E/N, P124S, Q56P, Q56_V60del, R47Q, R49L, S222D	Not detected		
PTEN	R130*/fs/G/L/P/Q	Not detected		
TPMT	A154T, Y240C	Not detected		

Gene	Copy Number Detected						
FGFR1	2						
MDM2	2						
MDM4	2						

Copy number ≥ 8 is considered amplification

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

TEST DETAILS

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (INDELs) (≤ 15 nucleotides) and large-scale genomic alterations like copy number variations (CNVs).

See ACTOnco®+ Gene List' Section for details of gene sequenced.

DATABASE USED

- Reference genome: human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210208)
- ACT Genomics in-house database

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using four pools of primer pairs targeting coding exons of analyzed genes. Amplicons were ligated with barcoded adaptors. Quality and quantity of amplified library were determined using the fragment analyzer (AATI) and Qubit (Invitrogen). Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system (Thermo Fisher Scientific) according to the Ion PI Hi-Q Chef Kit protocol (Thermo Fisher Scientific). Sequencing was performed on the Ion Proton or Ion S5 sequencer (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite (version 5.10). Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (INDELs) were identified using the Torrent Variant Caller plug-in (version 5.10). The coverage was down-sampled to 4000. VEP (Variant Effect Predictor) (version 100) was used to annotate every variant using databases from Clinvar (version 20210208), COSMIC v.92 and Genome Aggregation database r2.1.1. Variants with coverage \geq 25, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained.

This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database r2.1.1 with > 1% minor allele frequency (MAF) were

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number variations (CNVs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations from samples in ACT Genomics in-house database.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

STANDARD OPERATING PROCEDURES (SOPS)

Standard operating procedures (SOPs) are shown below:

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-03 SOP of Cancer Cell DNA and RNA Extraction
- AG3-QP16-07 SOP of Nucleic Acid Extraction with QIAsymphony SP
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-13 SOP of Library Construction and Preparation
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-22 SOP of Variant Calling
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ACTOnco® + Report

- AG3-QP16-35 SOP of Variant Annotation
- AG3-QP16-96 SOP of Manual Inspection for SNVIndel Variant
- AG3-QP16-95 SOP of Manual Inspection for Copy Number Variant
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

LIMITATIONS

This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.

NOTES

We do not exclude the possibility that pathogenic variants may not be reported by one or more of the tools and the parameters used.

PATHOLOGY EVALUATION

H&E-stained section No.: <u>S11024899</u>

• Collection site: Esophagus

• Examined by: Dr. Pei-Yi Chu

• Estimated neoplastic nuclei (whole sample): The percentage of viable tumor cells in total cells in the whole slide (%): 45%

The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 45%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 30%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 30%

Additional comment: NA

Manual macrodissection: <u>Not performed</u>

The outline highlights the area of malignant neoplasm annotated by a pathologist.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

SPECIMEN PHOTO(S)

Collection date: <u>Aug 2021</u>
 Facility retrieved: 臺北榮總

RUN QC

Panel: <u>ACTOnco®+</u>Mean Depth: <u>1160x</u>

Target Base Coverage at 100x: <u>95%</u>

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ACTOnco®+ GENE LIST

ABCB1*	AURKB	CBL	CDKN2B	E2F3	FAT1	GRIN2A	JAK2	MED12	NOTCH4	PMS1	RAD51D	SLCO1B3*	TNFRSF14
ABCC2*	AXIN1	CCNA1	CDKN2C	EGFR	FBXW7	GSK3B	JAK3	MEF2B	NPM1	PMS2	RAD52	SMAD2	TNFSF11
ABCG2*	AXIN2	CCNA2	CEBPA*	EP300	FCGR2B	GSTP1*	JUN*	MEN1	NQ01*	POLB	RAD54L	SMAD3	TOP1
ABL1	AXL	CCNB1	CHEK1	EPCAM	FGF1*	GSTT1*	KAT6A	MET	NRAS	POLD1	RAF1	SMAD4	TP53
ABL2	B2M	CCNB2	СНЕК2	EPHA2	FGF10	HGF	KDM5A	MITF	NSD1	POLE	RARA	SMARCA4	TPMT*
ADAMTS1	BAP1	ССМВЗ	CIC	ЕРНАЗ	FGF14	HIF1A	крм5С	MLH1	NTRK1	PPARG	RB1	SMARCB1	TSC1
ADAMTS13	BARD1	CCND1	CREBBP	ЕРНА5	FGF19*	HIST1H1C*	KDM6A	MPL	NTRK2	PPP2R1A	RBM10	SMO	TSC2
ADAMTS15	BCL10	CCND2	CRKL	ЕРНА7	FGF23	HIST1H1E*	KDR	MRE11	NTRK3	PRDM1	RECQL4	SOCS1*	TSHR
ADAMTS16	BCL2*	CCND3	CRLF2	EPHB1	FGF3	HNF1A	KEAP1	MSH2	PAK3	PRKAR1A	REL	SOX2*	TYMS
ADAMTS18	BCL2L1	CCNE1	CSF1R	ERBB2	FGF4*	HR	КІТ	МЅН6	PALB2	PRKCA	RET	SOX9	U2AF1
ADAMTS6	BCL2L2*	CCNE2	CTCF	ERBB3	FGF6	HRAS*	КМТ2А	MTHFR*	PARP1	PRKCB	RHOA	SPEN	UBE2A*
ADAMTS9	BCL6	сспн	CTLA4	ERBB4	FGFR1	HSP90AA1	кмт2С	MTOR	PAX5	PRKCG	RICTOR	SPOP	UBE2K
ADAMTSL1	BCL9	CD19	CTNNA1	ERCC1	FGFR2	HSP90AB1	KMT2D	MUC16	PAX8	PRKCI	RNF43	SRC	UBR5
ADGRA2	BCOR	CD274	CTNNB1	ERCC2	FGFR3	HSPA4	KRAS	MUC4	PBRM1	PRKCQ	ROS1	STAG2	UGT1A1*
ADH1C*	BIRC2	CD58	CUL3	ERCC3	FGFR4	HSPA5	LCK	мис6	PDCD1	PRKDC	RPPH1	STAT3	USH2A
AKT1	BIRC3	CD70*	CYLD	ERCC4	FH	IDH1	LIG1	митүн	PDCD1LG2	PRKN	RPTOR	STK11	VDR*
AKT2	BLM	CD79A	CYP1A1*	ERCC5	FLCN	IDH2	LIG3	МҮС	PDGFRA	PSMB8	RUNX1	SUFU	VEGFA
АКТЗ	BMPR1A	CD79B	CYP2B6*	ERG	FLT1	IFNL3*	LMO1	MYCL	PDGFRB	PSMB9	RUNX1T1	SYK	VEGFB
ALDH1A1*	BRAF	CDC73	CYP2C19*	ESR1	FLT3	IGF1	LRP1B	MYCN	PDIA3	PSME1	RXRA	SYNE1	VHL
ALK	BRCA1	CDH1	CYP2C8*	ESR2	FLT4	IGF1R	LYN	MYD88	PGF	PSME2	SDHA	TAF1	WT1
AMER1	BRCA2	CDK1	CYP2D6	ETV1	FOXL2*	IGF2	MALT1	NAT2*	PHOX2B*	PSME3	SDHB	TAP1	XIAP
APC	BRD4	CDK12	CYP2E1*	ETV4	FOXP1	IKBKB	MAP2K1	NBN	PIK3C2B	PTCH1	SDHC	TAP2	XPO1
AR	BRIP1	CDK2	CYP3A4*	EZH2	FRG1	IKBKE	МАР2К2	NEFH	PIK3C2G	PTEN	SDHD	ТАРВР	XRCC2
ARAF	BTG1*	CDK4	CYP3A5*	FAM46C	FUBP1	IKZF1	МАР2К4	NF1	РІКЗСЗ	PTGS2	SERPINB3	ТВХ3	ZNF217
ARID1A	BTG2*	CDK5	DAXX	FANCA	GATA1	IL6	МАРЗК1	NF2	PIK3CA	PTPN11	SERPINB4	TEK	
ARID1B	ВТК	CDK6	DCUN1D1	FANCC	GATA2	IL7R	МАРЗК7	NFE2L2	РІКЗСВ	PTPRD	SETD2	TERT	
ARID2	BUB1B	CDK7	DDR2	FANCD2	GATA3	INPP4B	МАРК1	NFKB1	PIK3CD	PTPRT	SF3B1	TET1	
ASXL1	CALR	CDK8	DICER1	FANCE	GNA11	INSR	МАРК3	NFKBIA	PIK3CG	RAC1	SGK1	TET2	
ATM	CANX	CDK9	DNMT3A	FANCF	GNA13	IRF4	MAX	NKX2-1*	PIK3R1	RAD50	SH2D1A*	TGFBR2	
ATR	CARD11	CDKN1A	DOT1L	FANCG	GNAQ	IRS1	MCL1	NOTCH1	PIK3R2	RAD51	SLC19A1*	TMSB4X*	
ATRX	CASP8	CDKN1B	DPYD	FANCL	GNAS	IRS2*	MDM2	NOTCH2	PIK3R3	RAD51B	SLC22A2*	TNF	
AURKA	CBFB	CDKN2A	DTX1	FAS	GREM1	JAK1	MDM4	NOTCH3	PIM1	RAD51C	SLCO1B1*	TNFAIP3	

^{*}Analysis of copy number alteration not available.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

DISCLAIMER

Legal Statement

This test was developed by ACT Genomics and its performing characteristics were determined by ACT Genomics. This test result is to be used for clinical consultative purposes only and is not intended as a substitute for a clinical guidance of your doctor or another qualified medical practitioner. It should not be regarded as investigational or used for research.

The detection of genomic alterations does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; the detection of no genomic alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Treatment Decisions are the Responsibility of the Physician

Decisions on clinical care and treatment should be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, including physical examinations, information from other diagnostics tests and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test, or the information contained in this report.

In terms of consulting a different treating physician, the patient must file an application and fulfill the listed criteria for ACT Genomics to provide the patient's report to the assigned physician. The report may not be copied or reproduced except in its totality.

Genetic Alterations and Drugs Not Presented in Ranked Order

In this report, neither any biomarker alteration nor any drug associated with a potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Provided

Drugs with a potential clinical benefit (or potential lack of clinical benefit) are evaluated for level of published evidence with at least one clinical efficacy case report or preclinical study. We endeavor to keep the information in the report up to date. However, customers must be aware that scientific understanding and technologies change over time, and we make no warranty as to the accuracy, suitability or currency of information provided in this report at any time.

No Guarantee of Clinical Benefit

This report makes no promises or guarantees about the effectiveness of a particular drug or any treatment procedure in any disease or in any patient. This report also makes no promises or guarantees that a drug without an association of reportable genomic alteration will, in fact, provide no clinical benefit.

Liability

ACT Genomics is not affiliated with any medical facility or medical practitioner. We provide information for informational purposes only, therefore, ACT Genomics and their employees cannot be held responsible for any direct, indirect, special, incidental or consequential damages that may arise from the use of information provided in the report.

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

Page 21 of 28

免責聲明

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性排標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。 本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關 專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因, 行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依 照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

Project ID: C21-M001-00536 Report No.: AA-21-03836 ONC Date Reported: Sep 24, 2021

REFERENCES

- PMID: 10555141; 1999, Cell;99(3):247-57 1. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.
- 2. PMID: 28286768; 2017, Biomed Res Int; 2017():5473197 Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis.
- PMID: 28003281; 2017, Cold Spring Harb Perspect Med;7(2): 3. DNMT3A in Leukemia.
- PMID: 21067377; 2010, N Engl J Med;363(25):2424-33 4. DNMT3A mutations in acute myeloid leukemia.
- PMID: 21537334; 2011, Leukemia; 25(7):1217-9 5. DNMT3A mutations in myeloproliferative neoplasms.
- PMID: 23687089; 2013, Blood;122(1):74-82 6. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia.
- 7. PMID: 22722925; 2012, J Biol Chem; 287(37):30941-51 Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation.
- PMID: 27149454; 2016, Medicine (Baltimore);95(18):e3519 8. DNMT3A R882 Mutations Predict a Poor Prognosis in AML: A Meta-Analysis From 4474 Patients.
- 9. PMID: 32269971; 2020, Blood Res;55(1):17-26 Characteristics of <i>DNMT3A</i> mutations in acute myeloid leukemia.
- 10. PMID: 29619119; 2018, Clin Epigenetics; 10():42 Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome.
- PMID: 27733013; 2017, Am J Hematol;92(1):56-61 DNMT3A mutations are associated with inferior overall and leukemia-free survival in chronic myelomonocytic leukemia.
- 12. PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70 Unravelling mechanisms of p53-mediated tumour suppression.
- 13. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 14. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- PMID: 25669829; 2015, Ann Oncol;26(5):1012-8 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ACTOnco® + Report

- 17. PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 18. PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- 19. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52
 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- 21. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- 22. PMID: 10786679; 2000, Cancer Res;60(8):2155-62 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 23. PMID: 25672981; 2015, Cancer Res;75(7):1187-90 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- 24. PMID: 2453289; 1988, Cell;53(4):549-54

 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- 25. PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- 26. PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960 Clinical relevance of KRAS in human cancers.
- 27. PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74 RAS oncogenes: weaving a tumorigenic web.
- 28. PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- 29. PMID: 3587348; 1987, Nature;327(6120):293-7 Prevalence of ras gene mutations in human colorectal cancers.
- 30. PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44 [Prevalence of K-ras gene mutations in human colorectal cancers].
- 31. PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30 The ras oncogenes in human lung cancer.
- 32. PMID: 1486840; 1992, Environ Health Perspect;98():13-24 Role of proto-oncogene activation in carcinogenesis.
- 33. PMID: 25414119; 2014, Drugs;74(18):2111-28
 The biology and clinical development of MEK inhibitors for cancer.
- 34. PMID: 25265492; 2014, N Engl J Med;371(20):1877-88

 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ACTOnco® + Report

- 35. PMID: 22663011; 2012, N Engl J Med; 367(2):107-14 Improved survival with MEK inhibition in BRAF-mutated melanoma.
- 36. PMID: 25265494; 2014, N Engl J Med;371(20):1867-76 Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.
- 37. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615
 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- 38. PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- 39. PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44

 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- 40. PMID: 25722381; 2015, Ann Oncol;26(5):894-901
 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.
- 41. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61
 Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.
- 42. PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.
- 43. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25 Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.
- 44. PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14
 Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.
- 45. PMID: 25937522; 2015, Eur J Cancer;51(10):1243-52 FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer.
- 46. PMID: 19188670; 2009, J Clin Oncol;27(12):2091-6 American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy.
- 47. PMID: 18802721; 2008, Virchows Arch;453(5):417-31

 KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program.
- 48. PMID: 25605843; 2015, J Clin Oncol;33(7):692-700 Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer.
- 49. PMID: 27422777; 2016, Tumour Biol;37(9):11645-11655
 Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer.
- 50. PMID: 24024839; 2013, N Engl J Med;369(11):1023-34 Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.

Project ID: C21-M001-00536 Report No.: AA-21-03836 ONC Date Reported: Sep 24, 2021

ACTOnco® + Report

51. PMID: 24666267; 2014, Acta Oncol;53(7):852-64

> The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.

52. PMID: 27722750; 2017, JAMA Oncol;3(2):194-201

Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.

53. PMID: 27736842; 2016, Br J Cancer;115(10):1206-1214

A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wildtype KRAS or RAS metastatic colorectal cancer.

54. PMID: 20921465; 2010, J Clin Oncol;28(31):4697-705

Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study.

55. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54

Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.

56. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51

A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.

57. PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82

Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.

PMID: 23828442; 2013, Med Oncol;30(3):650

KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials.

PMID: 28632865; 2017, JAMA;317(23):2392-2401

Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.

60. PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8

Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.

61. PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21

KRAS mutation: should we test for it, and does it matter?

62. PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7

Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.

63. PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49

Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.

64. PMID: 26484411; 2015, Br J Cancer;113(9):1254-8

Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.

PMID: 24549645; 2013, J Pathol; 231(4): 449-56

KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ACTOnco® + Report

- 66. PMID: 32376853; 2020, Mod Pathol;33(9):1832-1843
 KRAS amplification in metastatic colon cancer is associated with a history of inflammatory bowel disease and may confer resistance to anti-EGFR therapy.
- 67. PMID: 23404247; 2013, Int J Cancer;133(5):1259-65

 KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy.
- 68. PMID: 25691052; 2015, Oncotarget;6(7):5182-94
 Activation of RAS family members confers resistance to ROS1 targeting drugs.
- 69. PMID: 29057237; 2017, Ann Transl Med;5(18):377
 Emerging uses of biomarkers in lung cancer management: molecular mechanisms of resistance.
- 70. PMID: 30072474; 2018, Clin Cancer Res;24(23):5963-5976
 Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer.
- 71. PMID: 19029958; 2008, Nat Rev Cancer;8(12):976-90 Reflecting on 25 years with MYC.
- 72. PMID: 22464321; 2012, Cell;149(1):22-35 MYC on the path to cancer.
- 73. PMID: 10378696; 1999, Oncogene;18(19):3004-16 MYC oncogenes and human neoplastic disease.
- 74. PMID: 16934487; 2006, Semin Cancer Biol;16(4):318-30
 The Myc oncoprotein as a therapeutic target for human cancer.
- 75. PMID: 22113465; 2012, Clin Exp Med;12(4):217-23
 C-myc as a predictive marker for chemotherapy in metastatic breast cancer.
- 76. PMID: 21741827; 2011, Eur J Cancer;47(12):1779-88

 Association between c-myc amplification and pathological complete response to neoadjuvant chemotherapy in breast cancer.
- 77. PMID: 15132769; 2004, Cancer Sci;95(5):418-23 Expression of the c-myc gene as a predictor of chemotherapy response and a prognostic factor in patients with ovarian cancer.
- 78. PMID: 22430491; 2012, J Exp Med;209(4):679-96

 MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition.
- 79. PMID: 27486754; 2016, Oncotarget;7(35):56864-56875
 Inhibition of cyclin dependent kinase 9 by dinaciclib suppresses cyclin B1 expression and tumor growth in triple negative breast cancer.
- 80. PMID: 24503701; 2014, PLoS One;9(2):e87456 Immunohistochemistry for myc predicts survival in colorectal cancer.
- 81. PMID: 9816266; 1996, Clin Cancer Res;2(6):1049-53

 Overexpression of the c-myc proto-oncogene in colorectal carcinoma is associated with a reduced mortality that is abrogated by point mutation of the p53 tumor suppressor gene.
- 82. PMID: 23860775; 2013, Tumour Biol;34(6):3945-58

 MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency.

AG4-QP4001-02(05) Page 27 of 28

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Project ID: C21-M001-00536 Report No.: AA-21-03836_ONC Date Reported: Sep 24, 2021

ACTOnco® + Report

- 83. PMID: 24768112; 2014, Lancet; 384(9940): 319-28
 Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial.
- 84. PMID: 18650514; 2008, N Engl J Med;359(4):378-90 Sorafenib in advanced hepatocellular carcinoma.
- 85. PMID: 17189398; 2006, Clin Cancer Res;12(24):7271-8 Sorafenib for the treatment of advanced renal cell carcinoma.

ACTFusion[™] Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836 FUS Date Reported: Sep 24, 2021

PATIENT SPECIMEN ORDERING PHYSICIAN

Name: 姚鳳英 Type: FFPE tissue Name: 陳明晃醫師 Gender: Female Date received: Sep 11, 2021 Facility: 臺北榮總 Date of Birth: Jul 20, 1958 Collection site: Esophagus Tel: 886-228712121

Patient ID: 23072573 Specimen ID: S11024899 Address: 臺北市北投區石牌路二段 201 號

Diagnosis: Esophagogastric junction cancer Lab ID: AA-21-03836 D/ID: NA

ABOUT ACTFusionTM

The test is a next-generation sequencing (NGS) based in vitro diagnostic assay to detect fusion transcripts of 13 genes, including ALK, BRAF, EGFR, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET, and ROS1.

VARIANT(S) WITH CLINICAL RELEVANCE

FUSION RESULTS

No fusion gene detected in this sample.

Variant Analysis:

醫檢師張筑芫 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

Sign Off

醫檢師張筑芫 博士 Chu-Yuan Chang Ph.D.

檢字第 020115 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> | T: +886-2-2795-3660| F: +886-2-2795-5016

AG4-QP4006-04(01) Page 1 of 9

ACTFusion™ Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Not Applicable.

VARIANT INTERPRETATION

Not Applicable.

US FDA-APPROVED DRUG(S)

Not Applicable.

Email: <u>service@actgenomics.com</u> | T: +886-2-2795-3660| F: +886-2-2795-5016

AG4-QP4006-04(01) Page 2 of 9

ACTFusion[™] Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

ONGOING CLINICAL TRIAL(S)

Clinical trials shown below were selected by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com | T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4006-04(01) Page 3 of 9

ACTFusion[™] Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

ACTFusion™ GENE LIST

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1
NTRK1	NTRK2	NTRK3	RET	ROS1	-	-	-

TEST DETAILS

SPECIMEN RECEIVED

H&E-stained section No.: <u>\$11024899</u>

Collection date: Aug 2021

Collection site: <u>Esophagus</u>

● Facility retrieved: <u>臺北榮總</u>

Examined by: <u>Dr. Pei-Yi Chu</u>

• Estimated neoplastic nuclei (whole sample): <u>The percentage of viable tumor cells in total cells in the</u> whole slide (%): 45%

The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 45%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 30%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 30%

Additional comment: NA

• Manual macrodissection: Not performed

The outline highlights the area of malignant neoplasm annotated by a pathologist.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> | T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4006-04(01)

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

NEXT-GENERATION SEQUENCING (NGS) METHODS

The extracted RNA was reverse-transcribed and subjected to library construction. The quality and quantity of the amplified library was determined using the fragment analyzer (AATI) and Qubit (Invitrogen). Sequencing was performed on the Ion 540[™] Chip/ Ion 550[™] Chip / Ion P1[™] Chip and Ion GeneStudio[™] S5 Prime System / Ion Proton[™] System (Life Technologies). All assays were performed in accordance with ACT Genomics testing SOPs.

Data processing and statistical analysis for the identification of relevant fusions was performed using in-house fusion calling pipeline with default parameter setting. The four internal controls for the purpose of monitoring the overall sequencing quality of the sample were built into the assay, including CHMP2A, RABA7A, GPI, and VCP. Amplification of these genes using gene specific primers was performed, and the sequencing results were applied to the analysis pipeline to assess RNA quality. The inability of the software to detect these genes was considered a run failure. To ensure optimal sequencing quality for variant analysis, all samples had to meet the following sample quality control (QC) criteria: 1) Average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) \geq 10 (default), and 2) Total reads after sequencing \geq 500,000 (recommended).

Samples passed the sample QC would be subjected to the fusion analysis pipeline for fusion transcript calling. Briefly, the analysis pipeline aligned sequenced reads to a reference genome, identified regions that map to noncontiguous regions of the genome, and applied filters to exclude probable false-positive events and annotate previously characterized fusion events. A minimum of 5 reads with 3 unique sequencing start sites that cross the breakpoints was set as the cutoff value to indicate strong evidence of fusions. RNA fusions would need to be in frame in order to generate productive transcripts. In addition, databases with details for documented fusions were used to authenticate the fusion sequence identified. Known fusions were queried using Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In summary, samples with detectable fusions had to meet the following criteria: 1) Number of unique start sites (SS) for the GSP2 \geq 3. 2) Number of supporting reads spanning the fusion junction \geq 5. 3) Percentage of supporting reads spanning the fusion junction \geq 10%. 4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

Quiver Gene Fusion Database version 5.1.18

LIMITATIONS

This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

COLLEGE of AMERIC

ACTFusion[™] Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

STANDARD OPERATING PROCEDURES (SOPs)

Standard operating procedures (SOPs) are shown below:

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-94 (01) SOP of ACTFusion v3 Library Construction and Preparation
- AG3-QP16-36(02) SOP of Fusion Gene Detection
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

RUN QC

- Panel: <u>ACTFusion™</u>
- Total reads: 955136
- Average unique RNA Start Sites per control GSP2: 68

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com | T: +886-2-2795-3660| F: +886-2-2795-5016

AG4-QP4006-04(01)

Page 6 of 9

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

DISCLAIMER

Legal Statement

This test was developed by ACT Genomics and its performing characteristics were determined by ACT Genomics. This test result is to be used for clinical consultative purposes only and is not intended as a substitute for a clinical guidance of your doctor or another qualified medical practitioner. It should not be regarded as investigational or used for research.

The detection of genomic alterations does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; the detection of no genomic alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Treatment Decisions are the Responsibility of the Physician

Decisions on clinical care and treatment should be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, including physical examinations, information from other diagnostics tests and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test, or the information contained in this report.

In terms of consulting a different treating physician, the patient must file an application and fulfill the listed criteria for ACT Genomics to provide the patient's report to the assigned physician. The report may not be copied or reproduced except in its totality.

Genetic Alterations and Drugs Not Presented in Ranked Order

In this report, neither any biomarker alteration nor any drug associated with a potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Provided

Drugs with a potential clinical benefit (or potential lack of clinical benefit) are evaluated for level of published evidence with at least one clinical efficacy case report or preclinical study. We endeavor to keep the information in the report up to date. However, customers must be aware that scientific understanding and technologies change over time, and we make no warranty as to the accuracy, suitability or currency of information provided in this report at any time.

No Guarantee of Clinical Benefit

This report makes no promises or guarantees about the effectiveness of a particular drug or any treatment procedure in any disease or in any patient. This report also makes no promises or guarantees that a drug without an association of reportable genomic alteration will, in fact, provide no clinical benefit.

Liability

ACT Genomics is not affiliated with any medical facility or medical practitioner. We provide information for informational purposes only, therefore, ACT Genomics and their employees cannot be held responsible for any direct, indirect, special, incidental or consequential damages that may arise from the use of information provided in the report.

ACTFusion[™] Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

Page 8 of 9

免責聲明

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。 本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關 專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因, 行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依 照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、 連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com | T: +886-2-2795-3660| F: +886-2-2795-5016

AG4-QP4006-04(01)

ACTFusion[™] Report

姚鳳英

Project ID: C21-M001-00536 Report No.: AA-21-03836_FUS Date Reported: Sep 24, 2021

Page 9 of 9

REFERENCES

Not Applicable.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com | T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4006-04(01)