Technical Report: Time Series Forecasting of Transport Modes Using Prophet

GitHub Repository: akshayaasd/kovai.co

Key Insights from the Dataset

1. Clear Weekly and Seasonal Trends

All five transport categories — *Local Route, Light Rail, Peak Service, Rapid Route,* and *School* — show strong weekly seasonality. School and Peak Services, in particular, peak during weekdays and drop on weekends, suggesting commuter-centric usage. This pattern can help optimize resource allocation by reducing fleet sizes or frequency on weekends.

2. Differential Demand Across Transport Modes

- Rapid Routes show consistent usage, indicating a stable base of riders relying on high-speed transit options.
- School routes have sharp, periodic peaks aligned with school calendars, suggesting demand forecasting should incorporate academic schedules.
- Light Rail usage is more stable but shows slight dips during holidays, implying mixed-use between daily commuters and occasional travelers.

3. Anomalies Indicate External Events or Disruptions

Visualizations reveal spikes or drops on specific dates across modes — possibly due to public holidays, weather conditions, strikes, or local events. Integrating external datasets (e.g., event calendars, weather data) could improve predictive accuracy.

4. Underutilized Capacity in Local Routes

Local Routes show considerable volatility with lower averages and high variance. This may indicate either underutilized capacity or inconsistent service reliability. A targeted survey or real-time tracking could clarify whether route restructuring or marketing is needed.

- 5. Opportunity for Dynamic Scheduling and Demand-Aware Planning Given the predictable nature of usage patterns, the city transport authority can implement dynamic scheduling. For example:
 - Increase Peak Service frequency during morning and evening rush hours.
 - Reduce School Services during exam seasons or holidays based on predicted drops.
 - Use Light Rail consistently, but optimize train lengths during lowdemand windows.

Forecast Summary

1. Data Loading & Cleaning

- Loaded a dataset containing daily passenger counts for different transport services.
- Converted the date column into a datetime format to support time-based analysis.
- Removed the 'Other' column due to missing values and irrelevance.
- Ensured that the remaining service columns had no missing data and were ready for forecasting.

2. Data Visualization

- Plotted time series graphs to show how passenger usage changed over time for each service.
- Created a correlation heatmap to observe how different transport services are statistically related.

3. Forecasting Each Service

- Built a reusable function that:
 - o Fits a time series model (Prophet) for each transport service.
 - o Displays both the forecasted trends and their seasonal components (weekly, yearly, trend).
 - o Saves the forecasted results as CSV files for later analysis.

4. Detailed Forecast for One Service

- Ran a focused 7-day forecast for "Local Route" separately.
- Visualized predicted values along with confidence intervals.
- Displayed exact forecast numbers to show future demand.

5. Combined Forecast Comparison

- Ran 7-day forecasts for all five key services.
- Merged all forecasts into one view to compare predictions across services.
- Plotted a combined line chart to visualize how each service is expected to perform in the coming week.

