CAN YOU ACTUALLY PREDICT A FUTURE FAILURE OF A VEHICLE?

RUNE PRYTZ – HEAD OF R&D STRATIO AUTOMOTIVE

history of connected vehicles

- 1991 On board diagnostic (OBD)
- 1996 GM OnStar
- 2000 GM OnStar + GPS
- 2001 Remote OBD scan
- 2003 Vehicle Health reports
- 2014 CarPlay, Android Auto, Apps, WIFI...

Add pictures of vehicles and data aqusition devices

2014 - CarPlay, Android Auto, Apps, WIFI, Predictive maintenance...

Who drives the predictive maintenance efforts today?

Any guesses?

DRIVERS

- The Operational costs
 - Downtime cost money
- Sales of spare parts at workshops
- Road system efficiency
 - congestions

Downtime cost money

Total cost of ownership, one breakdown

TURBO BREAKDOWN IN NUMBERS

PREVENTIVE REP	LACEMENT
----------------	----------

SPARE PART (TURBO) €1500 LABOR €250 **CORRECTIVE REPAIR**

TOWING €500 SPARE PARTS €5000 ENGINE CLEANING €500

LABOR €1000

LOST REVENUE N/A

TOTAL: >€7000

TOTAL: €1750

DATA ACQUISITION

TWO WAYS OF ACHIEVING P.M.

Classic supervised machine learning

Unsupervised knowledge discovery

SUPERVISED LEARNING

SUPERVISED LEARNING

THE DATASET

- The source of data is not Independent and Identically Distributed
 - Selecting train and test dataset is difficult

Date	Chassis ID	LVD CUF	LVD BIY	LVD OO	VDA IHF	TTF	Label
130101	A-12345	10	1240	10002	12	200	Faulty
130525	A-12345	15	3450	15200	12	75	Faulty
130430	A-23456	8	800	34423	13	Inf	Normal
131101	A-23456	6	1600	34555	14	Inf	Normal

- Labelling data is hard
 - Prediction Horizon

FEATURE SELECTION

- Heterogeneous dataset across vehicles
 - No traditional method for feature selection

Differences in distribution based on usage and wear

FEATURE SELECTION WEAR

Data from 25 weeks prior failure

Data from 5 weeks prior failure

PREDICTING A SINGLE VEHICLE

EVALUATING RESULT

	Predicted Faulty	Predicted Normal
Observed Faulty	True positive	False Negative
Observed Normal	False Positive	True Negative

EVALUATING RESULT

	Predicted Faulty	Predicted Normal
Observed Faulty	True positive Warned in advanced	False Negative No warning / vehicle failure
Observed Normal	False Positive Unnecessary warning / repair shop visit.	True Negative No action

UNSUPERVISED FLEET BASED APPROACH

FLEET BASED APPROACH

FLEET BASED APPROACH

HISTOGRAMS OF VEHICLES

Each point corresponds to a bus observation (illustrated using multidimensional scaling)

- Distance between histograms
- 19 vehicles
- One week data

Evenly distributed - No significant pattern

WHEN SOMETHING IS ODD...

We are looking for a vehicle that is different from rest of the group

Short circuit in ECU lead to coolant fan ran at 100% all the time

WHY THIS IS IMPORTANT TO ME

A strong business case with a clear objective

 Easy to relate to cars and busses. You see your product every day in Lisbon for instance.

 A tough problem with a potential to change people's life

notes

Outline:

- 1. History
- 2. Why Predictive Maintenance
- 3. How Predictive Maintenance
 - a. Supervised
 - b. Unsupervised
- 4. Feature engineering & feature selection
- 5. Problems & result
 - a. Question about
- 6. Why this is important to me:
 - a. Clear link between data >model -> prediction business implication
 - b. Vehicles you see in every day life (Carris, Lisbon trash trucks)
 - c. Tough ML problems, get to work with great minds.