

SIDANG TUGAS AKHIR

"Analisis Performa Sistem Pendeteksi Wajah Berbasis Convolutional Neural Network (CNN)"

Rizky Najwa (0721 15 4000 0039)

Dosen Pembimbing

Reza Fuad Rachmadi, ST., MT., Ph.D.

Dr. Supeno Mardi Susiki Nugroho, ST., MT.

Departemen Teknik Komputer - Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember

Garis Besar Presentasi

Latar Belakang

popsci.com/seven-surprising-biometric-identification-methods

hackevolve.com/face-recognition-deep-learning/

Berkembangnya sistem autentikasi identitas manusia berbasis biometrik, salah satunya yaitu pengenalan wajah.

2 Semakin banyak metode pengenalan wajah yang dapat digunakan untuk melakukan pendeteksian dan pengenalan objek secara *real-time*, salah satunya *Convolution Neural Network* (CNN)

Masih terdapat beberapa tantangan dalam pendeteksian wajah, baik faktor internal maupun faktor eksternal yang menyebabkan pengenalan wajah sulit dilakukan.

Permasalahan

blog.rapidapi.com/top-facial-recognition-apis/

Dari tantangan yang ada, diperlukan analisis terhadap sistem pendeteksi wajah berbasis *Convolutional Neural Network* (CNN) pada variasi visual wajah dan lingkungan yang berbeda untuk menguji performa sistem dalam melakukan pendeteksian wajah.

Tujuan Penelitian

Membuat sebuah sistem pendeteksi wajah berbasis Convolutional Neural Network (CNN).

Melakukan analisis performa terhadap sistem pendeteksi wajah berbasis Convolutional Neural Network (CNN) sehingga didapatkan kondisi optimal dimana sistem tersebut dapat mendeteksi wajah seseorang di kamera dengan akurat.

Metodologi Penelitian

Akuisisi Data Video Pelabelan Objek Pendeteksian Wajah Analisis Hasil Pendeteksian

Perekaman Video

FFMPEG

Resolusi: 1280 x 720 piksel

FPS: 25 fps

179 data video

Pelabelan Objek

38,404
frame video
4
19,358
ground-truth bounding box

Pendeteksian Objek

Convolutional Neural Network (CNN)

MobileNet SSD

- Liu, Wei, et al. "Ssd: Single shot multibox detector." *European conference on computer vision*. Springer, Cham, 2016.
- Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." *arXiv preprint arXiv:1704.04861* (2017).

Darknet53 YOLOv3

• Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).

Perbandingan Arsitektur SSD dan YOLO

Analisis Hasil Pendeteksian

Skenario Pengujian

Berdasarkan lokasi peletakan kamera

Berdasarkan kondisi cahaya

Berdasarkan jumlah objek

Berdasarkan kecepatan objek

Berdasarkan perangkat keras yang digunakan

Dengan tambahan pencahayaan buatan

Dengan ketinggian kamera sejajar dengan wajah

Letak Kamera	Halangan 1	Halangan 2	Halangan 3	Halangan 4
	-	-	-	-
	Kacamata	-	-	-
	Masker	-	-	-
	Topi	-	-	-
	Hoodie	-	-	-
		Masker	-	-
Manakadan	Kacamata	Topi	-	-
Menghadap		Hoodie	-	-
Barat atau	Mookon	Topi	-	-
Timur	Masker	Hoodie	-	-
	Topi	Hoodie	-	-
		Mookor	Topi	-
	Kacamata	Masker	Hoodie	-
		Topi	Hoodie	-
	Masker	Topi	Hoodie	-
	Kacamata	Masker	Topi	Hoodie

16
kombinasi
halangan objek

Peletakan Kamera Pertama

Keterangan	Nilai	Karnera Hukusador
Ketinggian	260 cm	Agreed Hi
Sudut	50°	
Jangkauan Panjang Frame	640 cm	500
<u> </u>		
∢		640 cm

Peletakan Kamera Kedua

Keterangan	Nilai
Ketinggian	240 cm
Sudut	60°
Jangkauan Panjang Frame	2320 cm

Dokumentasi Pengujian

Berdasarkan Lokasi Peletakan Kamera

Lokasi Kamera Pertama Menghadap ke Arah Barat

Lokasi Kamera Kedua Menghadap ke Arah Timur

Tabel Hasil Pengujian Berdasarkan Lokasi Peletakan Kamera Menghadap ke Arah Barat

Keterangan _i		SSD		YOLO		
Nilai	Waktu Pemrosesan (s)	FPS	mAP	Waktu Pemrosesan (s)	FPS	mAP
Maksimum	10.299	27.311	75.39%	36.435	6.604	93.22%
Minimum	7.140	23.553	14.84%	29.536	6.313	11.48%
Rata-rata	8.368	25.755	48.13%	33.330	6.434	55.23%
Total	133.893	-	-	533.278	-	-

Tabel Hasil Pengujian Berdasarkan Lokasi Peletakan Kamera Menghadap ke Arah Timur

Keterangan _I		SSD			YOLO		
Nilai	Waktu Pemrosesan (s)	FPS	mAP	Waktu Pemrosesan (s)	FPS	mAP	
Maksimum	14.885	25.237	72.01%	56.499	6.216	77.91%	
Minimum	10.798	21.949	0.00%	38.261	5.989	12.50%	
Rata-rata	12.551	23.711	31.45%	48.313	6.165	42.81%	
Total	200.811	-	-	773.009	-	-	

Pengujian Berdasarkan Kondisi Cahaya

Kondisi cahaya	Halangan 1	Halangan 2	Halangan 3	Halangan 4					
	,	Sama dengan skenario sebelumnya							
		-	-	-					
		Masker	-	-					
Siang atau		Topi	-	-					
Malam	Kacamata	Hoodie	-	-					
	Hitam	Masker	Topi	-					
		Maskei	Hoodie	-					
		Topi	Hoodie	-					
		Masker	Topi	Hoodie					

24
kombinasi
halangan objek

Tabel Hasil Pengujian Berdasarkan Kondisi Cahaya pada saat Siang Hari

Keterangan _I		SSD			YOLO		
Nilai	Waktu Pemrosesan (s)	FPS	mAP	Waktu Pemrosesan (s)	FPS	mAP	
Maksimum	11.636	28.048	75.39%	46.742	6.604	93.22%	
Minimum	7.140	21.823	14.84%	29.536	6.264	7.94%	
Rata-rata	8.569	25.587	43.90%	33.904	6.440	51.53%	
Total	205.658	-	-	813.684	-	-	

Tabel Hasil Pengujian Berdasarkan Kondisi Cahaya pada saat Malam Hari

Keterangan _I		SSD		YOLO		
Nilai	Waktu Pemrosesan (s)	FPS	mAP	Waktu Pemrosesan (s)	FPS	mAP
Maksimum	8.547	28.118	43.79%	34.183	6.581	99.89%
Minimum	6.834	24.824	0%	28.264	6.290	58.97%
Rata-rata	7.508	26.869	13.99%	30.932	6.518	74.14%
Total	180.202	-	-	742.371	-	-

Pengujian dengan Tambahan Pencahayaan Buatan

Keterangan	Nilai					
Ketinggian	260 cm	,or				
Sudut	50°	Kanera Hikusion				
Jangkauan Panjang Frame	640 cm	Karrie				
Fluks LED	860 lm					
Daya LED	9W	LE				
Arrana						
4 640 cm						

Dokumentasi Pengujian

Dengan Tambahan Pencahayaan Buatan dan Ketinggian Kamera yang Berbeda

Konfigurasi Kamera dan Pencahayaan Buatan pada Siang Hari

Konfigurasi Kamera dan Pencahayaan Buatan pada Malam Hari

Tabel Perbandingan Hasil Pengujian dengan Tambahan Pencahayaan Buatan

				SSD			YOLO		
No.	o. Waktu Pengujian	Jenis Pencahayaan	Rata-rata Waktu Pemrosesa n (s)	Rata-rata FPS	Rata-rata mAP	Rata-rata Waktu Pemrosesa n (s)	Rata-rata FPS	Rata-rata mAP	
1	Ciona Hori	Tanpa Pencahayaan Buatan	8.569	25.587	43.90%	33.904	6.440	51.53%	
2	Siang Hari	Dengan Pencahayaan Buatan	7.878	25.438	43.69%	27.656	7.208	56.82%	
3		Tanpa Pencahayaan Buatan	7.508	26.869	13.99%	30.932	6.518	74.14%	
4	Malam Hari	Dengan Pencahayaan Buatan	8.260	25.922	33.35%	30.602	6.899	67.20%	

Pengujian dengan Ketinggian Kamera Sejajar dengan Wajah

Tabel Perbandingan Hasil Pengujian dengan Ketinggian Kamera yang Berbeda

				SSD		YOLO			
No.	No. Waktu Pengujian	Ketinggian Kamera	Rata-rata Waktu Pemrosesa n (s)	Rata-rata FPS	Rata-rata mAP	Rata-rata Waktu Pemrosesa n (s)	Rata-rata FPS	Rata-rata mAP	
1	Ciona Hori	Kamera di Atas Objek	7.878	25.438	43.69%	27.656	7.208	56.82%	
2	Siang Hari	Kamera Sejajar Wajah Objek	7.566	26.445	41.88%	28.267	7.053	69.11%	
3	Malamallami	Kamera di Atas Objek	8.260	25.922	33.35%	30.602	6.899	67.20%	
4	Malam Hari	Kamera Sejajar Wajah Objek	7.995	26.423	56.73%	29.913	7.034	73.60%	

Pengujian Berdasarkan Jumlah Objek

2 orang

3 orang

4 orang

Tabel Hasil Pengujian Berdasarkan Jumlah Objek

Vatarangan		SSD		YOLO		
Keterangan Nilai	Waktu Pemrosesan (s)	FPS	mAP	Waktu Pemrosesan (s)	FPS	mAP
Maksimum	10.358	29.249	57.78%	45.905	6.444	55.47%
Minimum	8.203	27.717	47.78%	36.569	6.274	35.51%
Rata-rata	9.079	28.379	51.63%	40.622	6.340	45.86%
Total	90.79	-	-	406.216	-	-

- Terdapat sebuah galat pada pendeteksian menggunakan SSD di skenario 10, dimana terdapat tangan yang ikut terdeteksi sehingga memberikan hasil deteksi sebanyak 5 objek.
- Terdapat sebuah galat pada pendeteksian menggunakan YOLO di skenario 5, dimana hanya 2 dari 3 objek yang terdeteksi.

No.	Kecepatan Objek					
1	Normal					
2	Agak cepat					
3	Cepat					

No.	Perangkat yang Digunakan
1	Pendeteksian dengan CPU laptop (Intel Core i7-7700HQ)
2	Pendeteksian dengan GPU laptop (GTX 1050 2GB)
3	Pendeteksian dengan GPU desktop (GTX 1050 4GB)

Tabel Hasil Pengujian Berdasarkan Kecepatan Objek

No.	Skenario Kecepatan Objek	Rata-rata Kecepatan (m/s)		SSD		YOLO		
			Rata-rata Waktu Pemrosesa n (s)	Rata-rata FPS	Rata-rata mAP	Rata-rata Waktu Pemrosesa n (s)	Rata-rata FPS	Rata-rata mAP
1	Normal	0.68	9.009	24.240	62.45%	30.673	7.095	92.31%
2	Agak Cepat	1.00	5.745	24.512	62.56%	19.482	7.188	87.78%
3	Cepat	1.64	3.595	22.699	44.34%	11.332	7.206	71.73%

Tabel Hasil Pengujian Berdasarkan Perangkat Keras yang Digunakan

No.	Jenis Perangkat Keras		SSD		YOLO			
		Rata-rata Waktu Pemrosesan (s)	Rata-rata FPS	Rata-rata mAP	Rata-rata Waktu Pemrosesan (s)	Rata-rata FPS	Rata-rata mAP	
1	CPU Laptop	26.139	8.355	43.90%	80.803	2.704	54.76%	
2	GPU Laptop	8.569	25.587	43.90%	33.904	6.440	51.53%	
3	GPU Desktop	6.541	33.908	43.97%	24.555	8.898	51.53%	

Kesimpulan

- Sistem pendeteksi wajah berbasis SSD mampu memberikan waktu pemrosesan yang lebih cepat dan nilai FPS yang lebih baik, mencapai empat kali lipat, dibandingkan sistem pendeteksi wajah berbasis YOLO. Namun, sistem berbasis YOLO mampu memberikan nilai mAP lebih tinggi hingga dua kali lipat daripada sistem berbasis SSD.
- Posisi peletakan kamera berpengaruh terhadap performa sistem pendeteksi wajah. Perbandingan nilai mAP dari pengujian menunjukkan bahwa kamera yang menghadap ke arah barat memberikan hasil lebih baik daripada kamera yang menghadap ke arah timur.
- Perbedaan ketinggian peletakan kamera juga berpengaruh terhadap nilai mAP yang didapatkan, dimana ketika menggunakan kamera yang diletakkan sejajar dengan wajah objek, nilai mAP yang didapatkan lebih tinggi jika dibandingkan dengan nilai ketika kamera diletakkan di atas objek.
- Kedua sistem pendeteksi wajah cukup kesulitan untuk melakukan pendeteksian terhadap wajah dengan objek penghalang masker dan topi, khususnya ketika kombinasi objek penghalang yang terdapat pada wajah berjumlah lebih dari tiga buah.

Kesimpulan

- Kondisi cahaya berpengaruh pada nilai mAP. Ketika input video yang diberikan berada pada kondisi cahaya yang kurang seperti pada saat malam hari, maka sistem akan kesulitan untuk menemukan objek wajah yang terdapat pada video. Hal ini bisa diatasi dengan memberikan tambahan pencahayaan buatan pada lokasi pendeteksian.
- Sistem pendeteksi wajah berbasis YOLO mampu memberikan performa pendeteksian yang jauh lebih baik pada malam hari dibandingkan dengan sistem pendeteksi wajah berbasis SSD, namun dengan mengorbankan waktu pemrosesan dan nilai FPS.
- Berdasarkan hasil pengujian pada objek yang lebih dari satu, kedua sistem pendeteksi wajah berbasis CNN mampu melakukan pendeteksian pada seluruh wajah dengan hanya terdapat 2 galat dari 66 wajah yang seharusnya terdeteksi.
- Perangkat keras yang digunakan untuk melakukan pendeteksian memberikan pengaruh yang besar terhadap kecepatan waktu pemrosesan dan nilai FPS dari sistem, namun tidak memberikan perubahan yang signifikan terhadap nilai mAP.

Terima Kasih

