

5.5 基于内容的推荐

CSDN学院 2017年11月

▶大纲

- 推荐系统出现的背景
- 基于协同过滤的推荐
- 基于内容的推荐
- 推荐系统的评价
- 案例分析

▶基于内容的推荐

- 基于用户喜欢的item的属性/内容进行推荐,无需考虑其他用户的行为
- 根据用户已经选择的对象,计算用户兴趣爱好
- 计算物品的特征,通常使用在文本相关产品上进行推荐
 - Item通过内容(比如关键词)关联:
 - 电影题材:爱情/探险/动作/喜剧/悬疑
 - 标志特征:黄晓明/王宝强...
 - 年代:1995, 2016...
- 计算推荐对象的特征与用户兴趣偏好的匹配程度
- 根据匹配程度排序

▶基于内容的推荐

- 基于用户喜欢的item的属性/ 内容进行推荐, 无需考虑其他用户的行为
- 根据用户已经选择的对象 , 计算用户兴趣爱好
- 计算物品的特征
- 计算物品特征与用户兴趣偏
- 好的匹配程度
- 根据匹配程度排序

电影A和C都是爱情、浪漫型的电影用户A喜欢电影A(爱情、浪漫型) 所以给用户A推荐电影C

► 物品画像 (Item Profile)

- 将item表示成一个特征向量
 - 电影:标题、导演、演员、类型...
 - 图像/视频:原数据、标签
- 对文本描述而言,TF-IDF是一种常用的特征
 - 文档集合: $D = \{d_1, d_2, ..., d_N\}$
 - 词语集合: $T = \{t_1, t_2, ..., t_n\}$
 - 用向量来表示一篇文档j: $d_i = (w_{1i}, w_{2i}, ..., w_{ni})$
 - 其中 w_{kj} 表示第k个词 t_k 在文档j中的权重,值越大表示越重要,可采用归一化 的我TF-IDF

的我TF-IDF
$$w_{k,j} = \underbrace{\text{TF-IDF}(t_k,d_j) \cdot \log \frac{N}{n_k}}_{\text{TF}} \underbrace{w_{k,j} = \underbrace{\text{TF-IDF}(t_k,d_j)}_{\text{TF}} \cdot \log \frac{N}{n_k}}_{\text{TF}} \underbrace{\sqrt{\sum_{s=1}^{|T|} \text{TF-IDF}(t_s,d_j)^2}}_{\text{TF-IDF}(t_s,d_j)^2}$$

►用户画像(User Profile)

- 通过用户历史上有过交易(评分、观看…)的item的profiles构建一个模型,然后用训练好的模型预测用户是否会喜欢一个新的item (监督学习任务)
- 理论上机器学习里的分类算法都用于此处
 - k-NN(k近邻):推荐与用户喜欢的最相似的Item
 - 决策树: 当item的属性较少决策树可以产生容易让人理解的结果
 - SVM/Logistic回归
 - 朴素贝叶斯算法

- . . .

▶基于内容的推荐

优点:

- 用户之间独立,无需利用很多其他人的数据,抗作弊
- 可解释性好:产品属性与用户品味匹配
- 新的item可以立刻得到推荐

缺点:

- item的特征抽取一般很难:特征描述不全可能无法区分不通的item
- 无法挖掘出用户的潜在兴趣:只与历史兴趣匹配
- 无法为新用户产生推荐:新用户没有喜好历史,无法建模用户profile

▶混合推荐

 各种推荐算法都有不同的优缺点,在实际问题中可以针对 具体问题采用各种推荐算法组合进行推荐

THANK YOU

