Assignment-3

Name: Jagadeesh Pradhan

Reg No: 2241016398

S1 No:33

Q-1) Download the dataset given in the following link in your local repository. Read the dataset and clean it if it has some missing values, wrong data, wrong formats or duplicate values. Clean the dataset and print the 5 to 15 rows of the data. Finally, save the clean dataset in your local repository.

Dataset: data.csv

Answer)

Import The Data csv File

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
```

```
Jagadeesh Pradhan
2241016398
 :\Users\pbisw\AppData\Local\Temp\ipykernel_24584\1145572803.py:3: DeprecationWarning:
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at <a href="https://github.com/pandas-dev/pandas/issues/54466">https://github.com/pandas-dev/pandas/issues/54466</a>
  import pandas as pd
   Duration
                    Date Pulse Maxpulse Calories
0
         60 '2020/12/01'
                                       130
                                               409.1
         60 '2020/12/02'
                                       145
                                              479.0
2
         60 '2020/12/03'
                                       135
                                              340.0
                            103
         45 '2020/12/04'
                            109
                                       175
                                              282.4
         45 '2020/12/05'
                                               406.0
```

```
#Drop rows with empty data
df = df.dropna()
df.head()
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0

Change The value 450 into 45

```
df.loc[7, 'Duration'] = 45
df.head(8)
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	45	'2020/12/08'	104	134	253.3

Delete The duplicates Rows

```
df = df.drop_duplicates()
df
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	2020-12-01	110	130	409.1
1	60	2020-12-02	117	145	479.0
2	60	2020-12-03	103	135	340.0
3	45	2020-12-04	109	175	282.4
4	45	2020-12-05	117	148	406.0
5	60	2020-12-06	102	127	300.0
6	60	2020-12-07	110	136	374.0
7	45	2020-12-08	104	134	253.3
8	30	2020-12-09	109	133	195.1
9	60	2020-12-10	98	124	269.0
10	60	2020-12-11	103	147	329.3
11	60	2020-12-12	100	120	250.7
13	60	2020-12-13	106	128	345.3
14	60	2020-12-14	104	132	379.3
15	60	2020-12-15	98	123	275.0
16	60	2020-12-16	98	120	215.2
17	60	2020-12-17	100	120	300.0
19	60	2020-12-19	103	123	323.0
20	45	2020-12-20	97	125	243.0
21	60	2020-12-21	108	131	364.2
23	60	2020-12-23	130	101	300.0
24	45	2020-12-24	105	132	246.0
25	60	2020-12-25	102	126	334.5
26	60	2020-12-26	100	120	250.0
27	60	2020-12-27	92	118	241.0
29	60	2020-12-29	100	132	280.0
30	60	2020-12-30	102	129	380.3
31	60	2020-12-31	92	115	243.0

Print The row from 5 to 15:

df.iloc[5:15]

	Duration	Date	Pulse	Maxpulse	Calories
5	60	2020-12-06	102	127	300.0
6	60	2020-12-07	110	136	374.0
7	45	2020-12-08	104	134	253.3
8	30	2020-12-09	109	133	195.1
9	60	2020-12-10	98	124	269.0
10	60	2020-12-11	103	147	329.3
11	60	2020-12-12	100	120	250.7
13	60	2020-12-13	106	128	345.3
14	60	2020-12-14	104	132	379.3
15	60	2020-12-15	98	123	275.0

Q-2) Given two arrays, arr_1 = np.array([1, 2, 3, 4]), arr_2 = np.array([2, 4, 6, 8]). Print the results of the following operations: Add, Subtract, Multiply, Divide. Use NumPy A. Generate a random integer 2D array with three rows and four columns named arr_3, with four values between 0 and 100. B. print the exponential and logarithmic values of all elements in array arr_1.

C. Given an array $arr_4 = np.array(1.2, 2.5, 5.6, 3.4, 7.8]$, print the round-down (floor) and round-up (ceil) values. Answer)

```
import numpy as np
print("Jagadeesh Pradhan")
print(2241016398)
arr_1 = np.array([1, 2, 3, 4])
arr_2 = np.array([2, 4, 6, 8])
```

Jagadeesh Pradhan 2241016398

```
arr_33 = arr_1 + arr_2
print('Add:',arr_33)
arr_44 = arr_1 - arr_2
print('Sub:',arr_44)
arr_5 = arr_1 * arr_2
print('Multiply:',arr_5)
arr_6 = arr_1 / arr_2
print('Divide:',arr_6)
```

```
Add: [ 3 6 9 12]
Sub: [-1 -2 -3 -4]
Multiply: [ 2 8 18 32]
Divide: [0.5 0.5 0.5 0.5]
```

```
arr_3 = np.random.randint(0, 101, size=(3, 4))
#Random 2D Array (arr_3)
print('A part answer: ')
print(arr_3)
```

```
print("B part answer:")
print("exponential value of arr_1:",np.exp(arr_1))
print("logarithmic values of arr_1:",np.log(arr_1))
```

```
arr_4 = np.array([1.2, 2.5, 5.6, 3.4, 7.8])
print("C part answer:")
print("round-up value of arr_4:",np.ceil(arr_4))
print("round-down values of arr_4:",np.floor(arr_4))
```

```
C part answer:
round-up value of arr_4: [2. 3. 6. 4. 8.]
round-down values of arr_4: [1. 2. 5. 3. 7.]
```

Q-3) Generate an array of 200 values between -pi & pi. Calculate the corresponding sin, cos and tan value for the generated array. Finally, plot the sin, cos and tan curves using the matplotlib library.

Hints: use np.linspace to generate values (gen_arr), then sin_values = np.sin(gen_arr) and so on for others and finally use plot(gen_arr, sin_values). Follow the same for cos and tan also.

```
print("Jagadeesh Pradhan")
print(2241016398)
import numpy as np
import matplotlib.pyplot as plt
gen_arr = np.linspace(-np.pi, np.pi, 200)
sin_values = np.sin(gen_arr)
cos_values = np.cos(gen_arr)
tan_values = np.tan(gen_arr)
plt.plot(gen_arr, sin_values, label='sin(x)')
plt.plot(gen_arr, cos_values, label='cos(x)')
plt.plot(gen_arr, tan_values, label='tan(x)')
plt.xlabel('x')
plt.ylabel('Value')
plt.legend()
plt.show()
```


- Q-4) Given two 2D arrays, $arr_1 = np.array([[1, 2], [3, 4]])$, $arr_2 = np.array([[2, 4], [6, 9]])$. Perform the following operations.
- A. Matrix multiplication with Dot Product
- B. Compute eigenvalues and eigenvectors for both matrices.
- C. Compute the determinant of both matrices.
- D. Compute the inverse of both the matrices.

Hint: Use from numpy import linalg as LA

```
print("Jagadeesh Pradhan")
print(2241016398)
import numpy as np
arr_1 = np.array([[1, 2], [3, 4]])
arr_2 = np.array([[2, 4], [6, 9]])
```

```
from numpy import linalg as LA
print("A part answer: ")
matrix_product = np.dot(arr_1, arr_2)
print(matrix_product)
print("B part answer: ")
eigenvalues_1, eigenvectors_1 = LA.eig(arr_1)
print("Eigenvalues of matrix 1 are : ", eigenvalues_1)
print( "Eigenvectors of matrix 1 are : ")
print(eigenvectors 1)
eigenvalues_2, eigenvectors_2 = LA.eig(arr_2)
print("Eigenvalues of matrix 1 are : ", eigenvalues_2)
print( "Eigenvectors of matrix 1 are : ")
print(eigenvectors_2)
print("C part answer: ")
determinant_1 = LA.det(arr_1)
determinant_2 = LA.det(arr_2)
print("Determinant of matrix 1: ",determinant 1)
print("Determinant of matrix 2: ",determinant 2)
print("D part answer: ")
inverse 1 = LA.inv(arr 1)
inverse 2 = LA.inv(arr 2)
print("Inverse of matrix 1: ")
print(inverse 1)
print("Inverse of matrix 2: ")
print(inverse_2)
```

```
A part answer:
[[14 22]
[30 48]]
B part answer:
Eigenvalues of matrix 1 are : [-0.37228132 5.37228132]
Eigenvectors of matrix 1 are:
[[-0.82456484 -0.41597356]
[ 0.56576746 -0.90937671]]
Eigenvalues of matrix 1 are : [-0.52079729 11.52079729]
Eigenvectors of matrix 1 are:
[[-0.84601546 -0.38733662]
[ 0.53315837 -0.92193836]]
C part answer:
Determinant of matrix 2: -6.0
D part answer:
Inverse of matrix 1:
[[-2. 1.]
[ 1.5 -0.5]]
Inverse of matrix 2:
[[-1.5 0.66666667]
            -0.33333333]]
 [ 1.
```

Q-5) Using the given data, use the matplotlib library to draw the Pie chart for the column class.

Dataset: Data

```
import pandas as pd
print("Jagadeesh Pradhan")
print(2241016398)
df = pd.read_csv('mpg_ggplot2.csv')
df
```

Jagadeesh Pradhan 2241016398

	manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
0	audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compact
1	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
2	audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact
3	audi	a4	2.0	2008	4	auto(av)	f	21	30	p	compact
4	audi	a4	2.8	1999	6	auto(l5)	f	16	26	p	compact
229	volkswagen	passat	2.0	2008	4	auto(s6)	f	19	28	p	midsize
230	volkswagen	passat	2.0	2008	4	manual(m6)	f	21	29	p	midsize
231	volkswagen	passat	2.8	1999	6	auto(l5)	f	16	26	р	midsize
232	volkswagen	passat	2.8	1999	6	manual(m5)	f	18	26	р	midsize
233	volkswagen	passat	3.6	2008	6	auto(s6)	f	17	26	р	midsize
234 r	ows × 11 columr	ns									

df['class']

```
compact
0
     compact
1
      compact
2
      compact
3
4
      compact
      midsize
229
230
     midsize
231 midsize
     midsize
232
     midsize
233
Name: class, Length: 234, dtype: object
```

```
unique_counts = df['class'].value_counts()
unique_counts
```

```
class
suv
               62
compact
               47
midsize
               41
subcompact
               35
pickup
               33
minivan
               11
2seater
                5
Name: count, dtype: int64
```

```
import matplotlib.pyplot as plt
plt.pie(df['class'].value_counts().tolist(),labels=df['class'].value_counts().index.tolist())
plt.show()
```


Q-6) A pairwise plot is a favourite in exploratory analysis to understand the relationship between all possible pairs of numeric variables. Use the seaborn library to load the iris dataset and then plot the pairwise plot for the iris data.

```
print("Jagadeesh Pradhan")
print(2241016398)
import seaborn as sns
iris = sns.load_dataset('iris')
sns.pairplot(iris)
```

Jagadeesh Pradhan 2241016398

<seaborn.axisgrid.PairGrid at 0x24fd5d46660>

i	ris				
	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica
150 r	ows × 5 columr	ns			

Q-7) Download the given dataset and plot the histogram for integer and float columns of the dataset.

Dataset: Data

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('ComputerSales.csv')
df
```

•	16398	radhan										
s	ale ID	Contact	Sex	Age	State	Product ID	Product Type	Sale Price	Profit	Lead	Month	Year
0	1	Paul Thomas	м	43	ОН	M01-F0024	Desktop	479.99	143.39	Website	January	2018
1	2	Margo Simms	F	37	wv	GT13-0024	Desktop	1249.99	230.89	Flyer 4	January	2018
2	3	Sam Stine	м	26	PA	13670	Desktop	649.99	118.64	Website	February	2018
3	4	Moe Eggert	м	35	PA	13593	Laptop	399.99	72.09	Website	March	2018
4	5	Jessica Elk	F	55	PA	15M-ED	Laptop	699.99	98.09	Flyer 4	March	2018
5	6	Sally Struthers	F	45	PA	GT13-0024	Desktop	1249.99	230.89	Flyer 2	April	2018
6	7	Michelle Samms	F	46	ОН	GA401IV	Laptop	1349.99	180.34	Email	May	2018
7	8	Mick Roberts	м	23	ОН	MY2J2LL	Tablet	999.99	146.69	Website	July	2018
8	9	Ed Klondike	м	52	ОН	81TC00	Laptop	649.99	122.34	Email	July	2018
9	10	Phil Jones	М	56	w	M01-F0024	Desktop	479.99	143.39	Flyer 2	August	2018
10	11	Rick James	м	49	PA	GA401IV	Laptop	1349.99	180.34	Flyer 3	November	2018
11	12	Sue Etna	F	54	ОН	GT13-0024	Desktop	1249.99	230.89	Flyer 2	November	2018
12	13	Jason Case	М	57	PA	81TC00	Laptop	649.99	122.34	Email	November	2018
13	14	Doug Johnson	М	51	PA	13670	Desktop	649.99	118.64	Website	December	2018
14	15	Andy Sands	М	56	ОН	MY2J2LL	Tablet	999.99	146.69	Flyer 1	December	2018
15	16	Kim Collins	F	49	PA	13593	Laptop	399.99	72.09	Flyer 2	January	2019
16	17	Edna Sanders	F	46	ОН	15M-ED	Laptop	699.99	98.09	Email	February	2019
17	18	Michelle Samms	F	46	NY	MY2J2LL	Tablet	999.99	146.69	Website	March	2019
18	19	Mick Roberts	м	23	PA	13593	Laptop	399.99	72.09	Flyer 4	March	2019
19	20	Sally Struthers	F	45	NY	81TC00	Laptop	649.99	122.34	Website	April	2019
20	21	Jason Case	М	57	PA	M01-F0024	Desktop	479.99	143.39	Flyer 4	May	2019
21	22	Doug Johnson	м	51	PA	GA401IV	Laptop	1349.99	180.34	Website	August	2019
22	23	Paul Thomas	м	43	ОН	81TC00	Laptop	649.99	122.34	Website	August	2019
23	24	Margo Simms	F	37	wv	Q526FA	Laptop	1049.99	143.09	Flyer 4	November	2019
24	25	Michelle Samms	F	46	NY	13670	Desktop	649.99	118.64	Flyer 2	November	2019
25	26	Mick Roberts	М	23	PA	Q526FA	Laptop	1049.99	143.09	Email	November	2019
26	27	Ed Klondike	М	52	ОН	QS26FA	Laptop	1049.99	143.09	Website	December	2019
27	28	Moe Eggert	М	35	PA	15M-ED	Laptop	699.99	98.09	Email	December	2019
28	29	Jessica Elk	F	55	PA	GA401IV	Laptop	1349.99	180.34	Flyer 2	December	2019
29	30	Phil Jones	М	56	w	M01-F0024	Desktop	479.99	143.39	Flyer 2	January	2020
30	31	Rick James	М	49	PA	GA401IV	Laptop	1349.99	180.34	Flyer 1	January	2020
31	32	Sue Etna	F	54	ОН	GT13-0024	Desktop	1249.99	230.89	Flyer 2	February	2020
32	33	Kim Collins	F	49	PA	13593	Laptop	399.99	72.09	Flyer 2	March	2020
33	34	Edna Sanders	F	46	ОН	15M-ED	Laptop	699.99	98.09	Email	March	2020
34	35	Michelle Samms	F	46	NY	MY2J2LL	Tablet	999.99	146.69	Website	April	2020
35	36	Sally Struthers	F	45	NY	81TC00	Laptop	649.99	122.34	Website	April	2020
36	37	Jason Case	М	57	PA	M01-F0024	Desktop	479.99	143.39	Flyer 4	April	2020
37	38	Doug Johnson	М	51	PA	GA401IV	Laptop	1349.99	180.34	Website	May	2020
38	39	Moe Eggert	м	35	PA	13593	Laptop	399.99	72.09	Website	May	2020

```
np.array(df.Age)
plt.hist(np.array(df.Age),[0,10,20,30,40,50,60,70,80])
plt.show()
```


np.array(df['Sale Price'])
plt.hist(np.array(df['Sale Price']),[0,500,1000,1500,2000])
plt.show()


```
np.array(df['Profit'])
plt.hist(np.array(df['Profit']),[0,500,1000,1500,2000])
plt.show()
```


Q-8) Download the dataset and plot the scatter plot for the sale price and profit columns.

Dataset: Data

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('ComputerSales.csv')
df
```

•	adeesh P 1016398	radhan										
	Sale ID	Contact	Sex	Age	State	Product ID	Product Type	Sale Price	Profit	Lead	Month	Year
0	1	Paul Thomas	м	43	ОН	M01-F0024	Desktop	479.99	143.39	Website	January	2018
1	2	Margo Simms	F	37	wv	GT13-0024	Desktop	1249.99	230.89	Flyer 4	January	2018
2	3	Sam Stine	м	26	PA	13670	Desktop	649.99	118.64	Website	February	2018
3	4	Moe Eggert	м	35	PA	13593	Laptop	399.99	72.09	Website	March	2018
4	5	Jessica Elk	F	55	PA	15M-ED	Laptop	699.99	98.09	Flyer 4	March	2018
5	6	Sally Struthers	F	45	PA	GT13-0024	Desktop	1249.99	230.89	Flyer 2	April	2018
6	7	Michelle Samms	F	46	ОН	GA401IV	Laptop	1349.99	180.34	Email	May	2018
7	8	Mick Roberts	М	23	ОН	MY2J2LL	Tablet	999.99	146.69	Website	July	2018
8	9	Ed Klondike	М	52	ОН	81TC00	Laptop	649.99	122.34	Email	July	2018
9	10	Phil Jones	М	56	w	M01-F0024	Desktop	479.99	143.39	Flyer 2	August	2018
10	11	Rick James	М	49	PA	GA401IV	Laptop	1349.99	180.34	Flyer 3	November	2018
11	12	Sue Etna	F	54	ОН	GT13-0024	Desktop	1249.99	230.89	Flyer 2	November	2018
12	13	Jason Case	М	57	PA	81TC00	Laptop	649.99	122.34	Email	November	2018
13	14	Doug Johnson	М	51	PA	13670	Desktop	649.99	118.64	Website	December	2018
14	15	Andy Sands	М	56	ОН	MY2J2LL	Tablet	999.99	146.69	Flyer 1	December	2018
15	16	Kim Collins	F	49	PA	13593	Laptop	399.99	72.09	Flyer 2	January	2019
16	17	Edna Sanders	F	46	ОН	15M-ED	Laptop	699.99	98.09	Email	February	2019
17	18	Michelle Samms	F	46	NY	MY2J2LL	Tablet	999.99	146.69	Website	March	2019
18	19	Mick Roberts	М	23	PA	13593	Laptop	399.99	72.09	Flyer 4	March	2019
19	20	Sally Struthers	F	45	NY	81TC00	Laptop	649.99	122.34	Website	April	2019
20	21	Jason Case	М	57	PA	M01-F0024	Desktop	479.99	143.39	Flyer 4	May	2019
21	22	Doug Johnson	М	51	PA	GA401IV	Laptop	1349.99	180.34	Website	August	2019
22	23	Paul Thomas	М	43	ОН	81TC00	Laptop	649.99	122.34	Website	August	2019
23	24	Margo Simms	F	37	w	QS26FA	Laptop	1049.99	143.09	Flyer 4	November	2019
24	25	Michelle Samms	F	46	NY	13670	Desktop	649.99	118.64	Flyer 2	November	2019
25	26	Mick Roberts	М	23	PA	QS26FA	Laptop	1049.99	143.09	Email	November	2019
26	27	Ed Klondike	М	52	ОН	QS26FA	Laptop	1049.99	143.09	Website	December	2019
27	28	Moe Eggert	М	35	PA	15M-ED	Laptop	699.99	98.09	Email	December	2019
28	29	Jessica Elk	F	55	PA	GA401IV	Laptop	1349.99	180.34	Flyer 2	December	2019
29	30	Phil Jones	М	56	w	M01-F0024	Desktop	479.99	143.39	Flyer 2	January	2020
30	31	Rick James	М	49	PA	GA401IV	Laptop	1349.99	180.34	Flyer 1	January	2020
31	32	Sue Etna	F	54	ОН	GT13-0024	Desktop	1249.99	230.89	Flyer 2	February	2020
32	33	Kim Collins	F	49	PA	13593	Laptop	399.99	72.09	Flyer 2	March	2020
33	34	Edna Sanders	F	46	ОН	15M-ED	Laptop	699.99	98.09	Email	March	2020
34	35	Michelle Samms	F	46	NY	MY2J2LL	Tablet	999.99	146.69	Website	April	2020
35	36	Sally Struthers	F	45	NY	81TC00	Laptop	649.99	122.34	Website	April	2020
36	37	Jason Case	М	57	PA	M01-F0024	Desktop	479.99	143.39	Flyer 4	April	2020
37	38	Doug Johnson	М	51	PA	GA401IV	Laptop	1349.99	180.34	Website	May	2020
38	39	Moe Eggert	м	35	PA	13593	Laptop	399.99	72.09	Website	May	2020

plt.scatter(np.array(df['Sale Price']),np.array(df['Profit'])) plt.show()

Q-9) Download the given dataset and split the dataset into 70% for training and 30% for testing using the Scikit library.

Dataset: Data

```
Answer)
```

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd

df = pd.read_csv('Housing.csv')
df
```

	016398												
	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
0	13300000	7420	4	2	3	yes	no	no	no	yes	2	yes	furnished
1	12250000	8960	4	4	4	yes	no	no	no	yes	3	no	furnished
2	12250000	9960	3	2	2	yes	no	yes	no	no	2	yes	semi-furnished
3	12215000	7500	4	2	2	yes	no	yes	no	yes	3	yes	furnished
4	11410000	7420	4	1	2	yes	yes	yes	no	yes	2	no	furnished
540	1820000	3000	2	1	1	yes	no	yes	no	no	2	no	unfurnished
541	1767150	2400	3	1	1	no	no	no	no	no	0	no	semi-furnished
542	1750000	3620	2	1	1	yes	no	no	no	no	0	no	unfurnished
543	1750000	2910	3	1	1	no	no	no	no	no	0	no	furnished
544	1750000	3850	3	1	2	yes	no	no	no	no	0	no	unfurnished

```
x = df
x
```

p	rice are	a bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
0 13300	0000 742	0 4	2	3	yes	no	no	no	yes	2	yes	furnished
1 12250	0000 896	0 4	4	4	yes	no	no	no	yes	3	no	furnished
2 12250	0000 996	0 3	2	2	yes	no	yes	no	no	2	yes	semi-furnished
3 12215	000 750	0 4	2	2	yes	no	yes	no	yes	3	yes	furnished
4 11410	0000 742	0 4	1	2	yes	yes	yes	no	yes	2	no	furnished
40 1820	000 300	0 2	1	1	yes	no	yes	no	no	2	no	unfurnished
41 1767	150 240	0 3	1	1	no	no	no	no	no	0	no	semi-furnished
42 1750	0000 362	0 2	1	1	yes	no	no	no	no	0	no	unfurnished
43 1750	0000 291	0 3	1	1	no	no	no	no	no	0	no	furnished
44 1750	0000 385	0 3	1	2	yes	no	no	no	no	0	no	unfurnished

```
y = df['price']
y
```

```
13300000
       12250000
2
       12250000
3
       12215000
       11410000
540
        1820000
541
        1767150
542
        1750000
543
        1750000
544
       1750000
Name: price, Length: 545, dtype: int64
```

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
```

```
print("Training set:", x_train.shape, y_train.shape)
print("Testing set:", x_test.shape, y_test.shape)
```

```
Training set: (381, 13) (381,)
Testing set: (164, 13) (164,)
```

Q-10) Download the dataset given in the link, convert the categorical data into integer columns, and print the shape and head of the dataset.

Dataset: Data

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd

df = pd.read_csv('Housing.csv')
df
```


HOME ASSIGNMENT

Q-1) Read the dataset given in the following link. Print the info on the data and clean the data if required. Visualize the data using an appropriate diagram based on your observations.

Dataset: Data

Answer)

```
print("Jagadeesh Pradhan")
  print(2241016398)
    import pandas as pd
    import matplotlib.pyplot as plt
    df = pd.read_csv("police.csv")
    df
```


#Info about the datasets
print(df.info())

<class 'pandas.core.frame.DataFrame'> RangeIndex: 91741 entries, 0 to 91740 Data columns (total 15 columns): Non-Null Count Dtype # Column 0 91741 non-null object stop_date 1 stop_time 91741 non-null object 2 county_name 0 non-null float64 86406 non-null object driver_gender 4 driver_age_raw 86414 non-null float64 5 driver_age 86120 non-null float64 6 86408 non-null object driver_race 7 violation_raw 86408 non-null object 8 violation 86408 non-null object search_conducted 91741 non-null bool 9 3196 non-null 10 search_type object 11 stop_outcome 86408 non-null object 86408 non-null object 86408 non-null object 12 is_arrested 13 stop_duration 14 drugs_related_stop 91741 non-null bool dtypes: bool(2), float64(3), object(10) memory usage: 9.3+ MB None

df.isnull().sum()

stop_date	0
stop_time	0
county_name	91741
driver_gender	5335
driver_age_raw	5327
driver_age	5621
driver_race	5333
violation_raw	5333
violation	5333
search_conducted	0
search_type	88545
stop_outcome	5333
is_arrested	5333
stop_duration	5333
drugs_related_stop	0
dtype: int64	

```
#drop the NaN column
df.drop(['county_name', 'search_type'], axis=1)
```

	stop_date	stop_time	driver_gender	driver_age_raw	driver_age	driver_race	violation_raw	violation	$search_conducted$	stop_outcome	is_arrested	stop_duration	drugs_related_stop
0	2005-01-02	01:55	М	1985.0	20.0	White	Speeding	Speeding	False	Citation	False	0-15 Min	False
	2005-01-18	08:15	М	1965.0	40.0	White	Speeding	Speeding	False	Citation	False	0-15 Min	False
	2005-01-23	23:15	М	1972.0	33.0	White	Speeding	Speeding	False	Citation	False	0-15 Min	False
	2005-02-20	17:15	М	1986.0	19.0	White	Call for Service	Other	False	Arrest Driver	True	16-30 Min	False
4	2005-03-14	10:00		1984.0	21.0	White	Speeding	Speeding	False	Citation	False	0-15 Min	False
1736	2015-12-31	20:27	М	1986.0	29.0	White	Speeding	Speeding	False	Warning	False	0-15 Min	False
1737	2015-12-31	20:35		1982.0	33.0	White	Equipment/Inspection Violation	Equipment	False	Warning	False	0-15 Min	False
1738	2015-12-31	20:45	М	1992.0	23.0	White	Other Traffic Violation	Moving violation	False	Warning	False	0-15 Min	False
1739	2015-12-31	21:42	М	1993.0	22.0	White	Speeding	Speeding	False	Citation	False	0-15 Min	False
1740	2015-12-31	22:46	М	1959.0	56.0	Hispanic	Speeding	Speeding	False	Citation	False	0-15 Min	False

```
plt.scatter(df['driver_age_raw'],df['driver_age'] ,color = 'g')
plt.legend()
plt.xlabel("Driver raw age")
plt.ylabel("Driver age")
plt.title("Driver raw age vs Driver age")
plt.title("Driver raw age vs Driver age")
```


H-2) The time series plot visualises how a given metric changes over time. Use the given data and draw the time series plot to visualise how the Air Passenger traffic changed between 1949 and 1969.

Dataset: Data

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("AirPassengers.csv")
df
```

```
Jagadeesh Pradhan
2241016398
              AppData\Local\Temp\ipykernel 18400\636613361.py:3: DeprecationWarning:
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
 import pandas as pd
          date value
                 112
  0 1949-01-01
  1 1949-02-01
                 118
  2 1949-03-01
                 132
    1949-04-01
                 129
  4 1949-05-01
                 121
139 1960-08-01
                 606
140 1960-09-01
                 508
141 1960-10-01
                 461
142 1960-11-01
                 390
    1960-12-01
 44 rows × 2 columns
```

```
plt.plot(df['value'] ,label= "value", color = 'g')
plt.legend()
plt.title("Metric change over time")
plt.show()
```

Metric change over time

	date	value				
4	1949-05-01	121				
5	1949-06-01	135				
6	1949-07-01	148				
7	1949-08-01	148				
8	1949-09-01	136				
138	1960-07-01	622				
139	1960-08-01	606				
140	1960-09-01	508				
141	1960-10-01	461				
142	1960-11-01	390				
139 rows × 2 columns						

```
plt.plot(jax['value'] ,label= "value", color = 'g')
plt.legend()
plt.title("Metric change over year 1949 to 1960")
plt.show()
```

Metric change over year 1949 to 1960

H-3) Read the dataset given in the following link. Print the info on the data and clean the data if required. Finally, draw the bar chart, where the x-axis has the ['manufacturer'] column, and the y-axis has the ['counts'] column.

Dataset: Data

Answer)

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("mpg_ggplot2.csv")
```

Jagadeesh Pradhan 2241016398

df

```
manufacturer model displ
                                                trans drv cty hwy fl
                                                                          class
                                year cyl
  0
              audi
                            1.8 1999
                                       4
                                              auto(15)
                                                           18
                                                                    p compact
                       a4
                                         manual(m5)
  1
              audi
                       a4
                            1.8 1999
                                                           21
                                                                29
                                                                    p compact
  2
                            2.0 2008
                                         manual(m6)
                                                           20
              audi
                                                                31
                                                                    p compact
                       a4
  3
              audi
                       a4
                            2.0 2008
                                             auto(av)
                                                           21
                                                                30
                                                                   p compact
                                                           16
                            2.8 1999
                                             auto(l5)
                                                        f
                                                                26 p compact
  4
              audi
                       a4
229
       volkswagen passat
                            2.0 2008
                                             auto(s6)
                                                        f
                                                           19
                                                                        midsize
                                       4
                                                                28 p
       volkswagen passat
230
                                          manual(m6)
                                                           21
                                                                        midsize
                            2.0 2008
                                                        f
                                                                29 p
231
       volkswagen passat
                            2.8 1999
                                              auto(l5)
                                                           16
                                                                        midsize
                                                                26 p
232
       volkswagen
                            2.8 1999
                                         manual(m5)
                                                           18
                                                                        midsize
                   passat
                                                                26 p
       volkswagen passat
                                                           17
                                                                        midsize
233
                            3.6 2008
                                             auto(s6)
                                                                26 p
234 rows × 11 columns
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 234 entries, 0 to 233
Data columns (total 11 columns):
                   Non-Null Count
     Column
                                    Dtype
     manufacturer
 0
                   234 non-null
                                    object
                   234 non-null
     mode1
                                    object
 1
 2
     displ
                   234 non-null
                                    float64
                   234 non-null
     year
 3
                                    int64
                                    int64
 4
     cyl
                   234 non-null
                                    object
 5
     trans
                   234 non-null
     drv
                   234 non-null
                                    object
                   234 non-null
                                    int64
 7
     cty
                                    int64
 8
     hwy
                   234 non-null
     f1
 9
                   234 non-null
                                    object
     class
                   234 non-null
                                    object
 10
dtypes: float64(1), int64(4), object(6)
memory usage: 20.2+ KB
None
```

```
plt.bar(df['manufacturer'],df['cty'])
plt.legend()
plt.xlabel("manufacturer")
plt.ylabel("cty")
plt.title("manufacturer vs cty")
plt.show()
```


H-4) A correlogram is used to visually see the correlation metric between all possible pairs of

numeric variables in a given data frame (or 2D array). Import the dataset provided in the following link and plot the heatmap to visualize the correlation.

Dataset: Data

Answer)

```
print("Jagadeesh Pradhan")
print(2241016398)
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv("mtcars.csv")
```

Jagadeesh Pradhan 2241016398

df

Carnanie	Cais	III	Call	year	a	•••	4sec	wı	ulat	ш	шър	cyı	шүу	
Mazda RX4	Mazda RX4	1	4	4	1	0	16.46	2.620	3.90	110	160.0	6	4.582576	0
Mazda RX4 Wag	Mazda RX4 Wag	1	4	4	- 1	0	17.02	2.875	3.90	110	160.0	6	4.582576	1
Datsun 710	Datsun 710	1	1	4	- 1	1	18.61	2.320	3.85	93	108.0	4	4.774935	2
Hornet 4 Drive	Hornet 4 Drive	1	1	3	0	1	19.44	3.215	3.08	110	258.0	6	4.626013	3
Hornet Sportabout	Hornet Sportabout	1	2	3	0	0	17.02	3.440	3.15	175	360.0	8	4.324350	4
Valiant	Valiant	1	1	3	0	1	20.22	3.460	2.76	105	225.0	6	4.254409	5
Duster 360	Duster 360	0	4	3	0	0	15.84	3.570	3.21	245	360.0	8	3.781534	6
Merc 240D	Merc 240D	1	2	4	0	1	20.00	3.190	3.69	62	146.7	4	4.939636	7
Merc 230	Merc 230	1	2	4	0	1	22.90	3.150	3.92	95	140.8	4	4.774935	8
Merc 280	Merc 280	1	4	4	0	1	18.30	3.440	3.92	123	167.6	6	4.381780	9
Merc 280C	Merc 280C	1	4	4	0	1	18.90	3.440	3.92	123	167.6	6	4.219005	10
Merc 450SE	Merc 450SE	1	3	3	0	0	17.40	4.070	3.07	180	275.8	8	4.049691	11
Merc 450SL	Merc 450SL	1	3	3	0	0	17.60	3.730	3.07	180	275.8	8	4.159327	12
Merc 450SLC	Merc 450SLC	0	3	3	0	0	18.00	3.780	3.07	180	275.8	8	3.898718	13
Cadillac Fleetwood	Cadillac Fleetwood	0	4	3	0	0	17.98	5.250	2.93	205	472.0	8	3.224903	14
Lincoln Continental	Lincoln Continental	0	4	3	0	0	17.82	5.424	3.00	215	460.0	8	3.224903	15
Chrysler Imperial	Chrysler Imperial	0	4	3	0	0	17.42	5.345	3.23	230	440.0	8	3.834058	16
Fiat 128	Fiat 128	1	1	4	1	1	19.47	2.200	4.08	66	78.7	4	5.692100	17
Honda Civic	Honda Civic	1	2	4	- 1	1	18.52	1.615	4.93	52	75.7	4	5.513620	18
Toyota Corolla	Toyota Corolla	1	1	4	- 1	1	19.90	1.835	4.22	65	71.1	4	5.822371	19
Toyota Corona	Toyota Corona	1	- 1	3	0	1	20.01	2.465	3.70	97	120.1	4	4.636809	20
Dodge Challenger	Dodge Challenger	0	2	3	0	0	16.87	3.520	2.76	150	318.0	8	3.937004	21
AMC Javelin	AMC Javelin	0	2	3	0	0	17.30	3.435	3.15	150	304.0	8	3.898718	22
Camaro Z28	Camaro Z28	0	4	3	0	0	15.41	3.840	3.73	245	350.0	8	3.646917	23
Pontiac Firebird	Pontiac Firebird	1	2	3	0	0	17.05	3.845	3.08	175	400.0	8	4.381780	24
Fiat X1-9	Fiat X1-9	1	1	4	- 1	1	18.90	1.935	4.08	66	79.0	4	5.224940	25
Porsche 914-2	Porsche 914-2	1	2	5	- 1	0	16.70	2.140	4.43	91	120.3	4	5.099020	26
Lotus Europa	Lotus Europa	1	2	5	- 1	1	16.90	1.513	3.77	113	95.1	4	5.513620	27
Ford Pantera L	Ford Pantera L	0	4	5	- 1	0	14.50	3.170	4.22	264	351.0	8	3.974921	28
Ferrari Dino	Ferrari Dino	1	6	5	- 1	0	15.50	2.770	3.62	175	145.0	6	4.438468	29
Maserati Bora	Maserati Bora	0	8	5	_ 1	0	14.60	3.570	3.54	335	301.0	8	3.872983	30
Volvo 142E	Volvo 142E	1	2	4	- 1	1	18.60	2.780	4.11	109	121.0	4	4.626013	31

mpg cyl disp hp drat wt qsec vs am gear carb fast

```
numeric_columns = ['mpg', 'disp', 'drat', 'wt', 'qsec']
data_subset = df[numeric_columns]
correlation_matrix = data_subset.corr()
plt.imshow(correlation_matrix)
plt.title('Correlation Heatmap for Iris Flower Measurements')
plt.show()
```

Correlation Heatmap for Iris Flower Measurements


```
numeric_columns = ['mpg', 'disp', 'drat', 'wt', 'qsec']
data_subset = df[numeric_columns]
correlation_matrix = data_subset.corr()
#cmap is used for denoting the colour
sns.heatmap(correlation_matrix, annot=True, cmap='autumn')
plt.title('Correlation Heatmap for Iris Flower Measurements')
plt.show()
```

