Nur die Aufgaben mit einem * werden korrigiert.

2.1.	MC Fragen:	Folgenkonvergenz.	Wählen Sie	die richtigen	Antworten

- (a) Welche der Aussagen ist richtig?
 - ☐ Eine Folge kann höchstens ein Grenzwert haben.
 - ☐ Jede monotone und von oben beschränkte Folge ist konvergent.
 - ☐ Es gibt konvergente Folgen, die nicht beschränkt sind.
 - ☐ Eine divergente Folge ist nicht beschränkt.
- (b) Seien (a_n) , (b_n) und (c_n) Folgen in \mathbb{R} mit $c_n = a_n + b_n$.
 - \square Falls $\lim_{n\to\infty} c_n$ existiert, existieren $\lim_{n\to\infty} a_n$ und $\lim_{n\to\infty} b_n$, und es gilt:

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n.$$

 \square Falls $\lim_{n\to\infty} c_n$ und $\lim_{n\to\infty} b_n$ existieren, existiert $\lim_{n\to\infty} a_n$ und es gilt:

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n - \lim_{n\to\infty} b_n.$$

- \square Falls (a_n) und (b_n) beschränkt sind, muss (c_n) beschränkt sein.
- \square Falls (c_n) konvergiert, konvergiert mindestens eine der Folgen (a_n) und (b_n) .
- (c) Sei (a_n) eine Folge in \mathbb{R} .
 - \square Falls $\varepsilon > 0$ und $a \in \mathbb{R}$ existieren, so dass

$$|a_n - a| < \varepsilon \quad \forall n > 1$$

gilt, dann konvergiert (a_n) .

- \square Falls (a_n) konvergiert, ist die Folge $b_n = a_{n+1} + a_n$ konvergent.
- \square Falls die Folge $b_n = a_{n+1} a_n$ nach 0 konvergiert, ist (a_n) konvergent.
- \square Falls $a \in \mathbb{R}$ existiert, so dass $a_n \leq a \ \forall n \geq 1$, und $a_{n+1} \geq a_n \ \forall n \geq 1$, dann ist (a_n) konvergent.
- **2.2.** Äquvalente Definitionen der Konvergenz. Sei (a_n) eine reelle Folge und sei $L \in \mathbb{R}$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (i) Für alle ε ist die Menge $\{n \in \mathbb{N} \mid a_n \notin (L \varepsilon, L + \varepsilon)\}$ endlich;
- (ii) Für alle ε existiert $N_{\varepsilon} \geq 1$, so dass $|a_n L| < \varepsilon$ für alle $n \geq N_{\varepsilon}$ gilt.
- *2.3. Grenzwert I. Sei $a \in \mathbb{R}$, a > 0. Beweisen Sie, dass die folgende Gleichung gilt:

$$\lim_{n \to +\infty} \sqrt[n]{a} = 1.$$

Hinweis: Der Binomialsatz könnte nützlich sein.

2.4. Grenzwert II. Man untersuche die nachstehenden Zahlenfolgen. Sind sie beschrankt? Konvergieren sie? Wenn ja: Welches ist ihr Grenzwert?

*(a)
$$a_n = \frac{3n^5 + 2n^3 + 5n}{10 + 2n^5};$$

*(b)
$$b_n = \sqrt{n^2 + 3n} - n;$$

(c)
$$c_n = \frac{3^n + (-2)^n}{3^n - 2^n};$$

(d)
$$d_n = \left(\frac{n}{n^2} + \frac{n+1}{n^2} + \dots + \frac{3n}{n^2}\right);$$

*(e)
$$e_n = \sqrt[n]{5^n + 11^n + 17^n}$$
.

2.5. Divergente Folgen. Finden Sie Beispiele für reelle Folgen (x_n) und (y_n) , so dass $x_n \to +\infty$, $y_n \to -\infty$ und

(a)
$$x_n + y_n \to +\infty$$
;

(b)
$$x_n + y_n \to -\infty;$$

(c)
$$(x_n + y_n)$$
 konvergiert;

(d) $(x_n + y_n)$ beschränkt ist und divergiert.