INTELIGÊNCIA ARTIFICIAL

Computação Evolutiva: Algoritmos Genéticos

Alexandre Zamberlan

Sumário

- Contexto
- Definição
- Fluxograma básico
- Representação
- Seleção
- Operadores Genéticos
- Parâmetros
- Referências bibliográficas

Contexto

- Área da IA inspirada na:
 - Teoria da Evolução Natural e na
 - Genética
- Sub-áreas
 - Algoritmos Genéticos
 - Estratégias de Evolução
 - Programação Genética

Contexto

- Algoritmos Genéticos
 - método de Resolução de Problemas
 - Modelos computacionais baseados nas teorias:
 - SELEÇÃO NATURAL
 - HEREDITARIEDADE

Contexto

Métodos de Resolução de Problemas

- Toda tarefa de busca ou otimização possui:
 - Estados inicial(ais) e final(ais)
 - Regras de transição ou operadores
 - Espaço de busca (possibilidades de solução de um problema)
 - Função de avaliação (função de custo)

Métodos de busca e otimização tradicionais

- Geralmente, um candidato (estado inicial)
- Aplicações das regras de transição + heurísticas
 - Processo iterativo
 - Heurísticas estáticas

AG: Definição

- Algoritmos Genéticos: AG
 - método de Resolução de Problemas
 - Busca de Soluções em Espaço de Estados
 - Os estados produzidos são prováveis soluções ou indivíduos da população, denominados CROMOSSOMOS
 - Os operadores ou regras de transição de estados são MECANISMOS DE SELEÇÃO E DE REPRODUÇÃO que tentam encontrar melhores soluções (ou indivíduos)
 - SOBREVIVÊNCIA DO MAIS FORTE (melhores soluções a cada geração)
 - CRUZAMENTO (crossover)
 - MUTAÇÃO
 - É possível operar sobre uma população de candidatos (espaço de estados) em PARALELO
 - Usa a estratégia de gerar e testar

Algoritmos Genéticos

"Quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes"

(Charles Darwin, 1859)

AG: fluxograma básico

 Antes do uso de AGs (busca ou otimização), é fundamental:

REPRESENTAÇÃO do problema

- Cromossomo: estrutura de dados
 - Vetores ou cadeia de valores com o conjunto de parâmetros da função objetivo (custo)
 - Conjunto de todas as configurações que o cromossomo pode assumir forma seu espaço de busca
- Representações (codificações de variáveis):
 - Codificação Binária
 - Codificação por Permutação
 - Codificação de Valores
 - Codificação em Árvore

- Binária (mais utilizada)
 - Relativa Simplicidade
 - Cada cromossomo é uma série de bits 0 ou 1.
 - Representação genotípica
 - Vetores e alfabetos de tamanhos finitos
 - Ex.: Problema da Mochila Cada bit é usada para dizer se a 'coisa' correspondente está ou não na mochila.

Cromossomo A	10110010110010111100101
Cromossomo B	111111100000110000011111

Permutação

- Pode ser usada em problemas que envolvem ordenação
- Cada cromossomo é uma série de números que representa uma sequência
- Ex.: Problema do Caixeiro Viajante Os cromossomos descrevem a ordem em que o caixeiro visitará as cidades.

Cromossomo A	1	5	3	2	6	4	7	9	8
Cromossomo B	8	5	6	7	2	3	1	4	9

Valor

- Pode ser usada em problemas que são usados valores mais complicados. Cada cromossomo é uma sequência de alguns valores.
- É uma boa escolha para problemas especiais. Entretanto, é frequentemente necessário desenvolver método de cruzamento e mutação específico.
- Ex.: Cálculo de pesos para uma Rede Neural.

Cromossomo A	1.2324 5.3243 0.4556 2.3293 2.4545
Cromossomo B	ABDJEIFJDHDIERJFDLDFLFEGT
Cromossomo C	(atrás), (atrás), (direita), (frente), (esquerda)

Árvore

 É usada principalmente para desenvolver programas ou expressões. Cada cromossomo é uma árvore de alguns objetos

 O cromossomo é composto por genes (bits), que são responsáveis por determinadas características do indivíduo

Temperatura	Catalisador	Agitação	Tempo
35	8	43	56
100011	001000	101011	111000

Seleção

- Princípio básico de funcionamento de AG
 - Mecanismo que, depois de muitas gerações, gerará indivíduos mais aptos
 - AG começa com uma população inicial N cromossomos;
 - 2. Novos cromossomos são gerados aleatoriamente (novo espaço de busca) mais aptos
- Uso da função de aptidão (fitness)
 - Uma nota a partir de quão bons são os genes do cromossomo – ou seja, relativa a função objetivo (custo ou avaliação)

Seleção

- Função de Aptidão
- Função de Aptidão Relativa
 - função de aptidão de um indivíduo dividida pela soma de todas as aptidões dos indivíduos

individuo ou cromossomo	aptidão	aptidão relativa = aptidão/ aptidão total
1	1	0,025
2	3	0,075
3	4	0,100
4	6	0,150
5	7	0,175
6	9	0,225
7	10	0,250
APTIDÃO TOTAL	40	

Seleção

- Métodos:
 - · Roleta
 - Torneio
 - Amostragem Estocástica

Seleção: ROLETA

- Mais simples e mais utilizado
- Os indivíduos são selecionados a partir de uma roleta, como em jogo de azar, via 'agulha'
- Cada indivíduo, via sua aptidão, ocupa mais ou menos espaço na roleta
- A roleta é girada a quantidade de vezes que se queira selecionar indivíduos para a nova geração (intermediária)

Seleção: TORNEIO

- N indivíduos da população são escolhidos aleatoriamente, com a mesma probabilidade
- O cromossomo com maior aptidão entre os N é selecionado para população intermediária
- O processo até que a população intermediária seja preenchida
- Em geral, a quantidade de selecionados pelo método do Torneio é 3, ou seja, N = 3

individuo ou cromossomo	aptidão	aptidão relativa = aptidão/ aptidão total
1	1	0,025
2	3	0,075
3	4	0,100
4	6	0,150
5	7	0,175
6	9	0,225
7	10	0,250
APTIDÃO TOTAL	40	

Seleção: AMOSTRAGEM ESTOCÁTISTICA

- Variação do método da Roleta
- A quantidade de 'agulhas' será a quantidade de indivíduos que se quer selecionar para nova geração

AG: fluxograma básico

Operadores Genéticos

- São as regras de transição ou produção de novos estados (ou Espaço de Estados)
 - Uma nova geração com melhor aptidão nos seus indivíduos (com herança assegurada)
- Operadores
 - Reprodução ou Cruzamento ou Crossover (garante hereditariedade)
 - Mutação (garante a diversidade)
 - Alteração arbitrária de um ou mais genes (componentes da estrutura)
- Para garantir que os melhores perpetuem
 - Elitismo
 - Os melhores indivíduos são colocados na próxima geração

 Ponto de cruzamento único – Codificação Binária

Mascara	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0			
Pai	1	1	0	0	1	0	0	0	0	1	1	0	1	1	0			
Mãe	0	1	0	1	1	0	1	0	0	0	1	1	0	1	1			
Filho 1	1	1	0	0	1	0	1	0	0	0	1	1	0	1	1			
Filho 2	0	1	0	1	1	0	0	0	0	1	1	0	1	1	0			

 Dois pontos de cruzamento – Codificação Binária

Mascara	1110000000111
Pai	110010000110110
Mãe	010110100011011
Filho 1	110110100011110
Filho 2	01001000110011

Cruzamento aritmético – Codificação Binária

Pai	110010000110110
Mãe	000110100011011
Filho	1 1 1 1 1 0 1 0 1 0 1 0 0 0 1(AND)

 Pontos de cruzamento uniforme – Codificação Binária

Mascara	111000000111000
Pai	1100010000110110
Mãe	010110100011
Filho 1	1101101000110011
Filho 2	0100010000110110

 Pontos de cruzamento uniforme – Codificação Árvore

Mutação

- Codificação Binária
 - Opera sobre indivíduos resultantes do processo de cruzamento/reprodução

Individuo Original	111000011111111	
Individuo Mutante	111000011101111	

Mutação

- Codificação Árvore
 - Alterando o operador

Individuo Original

Individuo Mutante

Parâmetros

- Taxas de Mutação
 - Valor Alto: a busca se torna essencialmente aleatória;
 - Valor Baixo: previne que uma dada posição fique estagnada em um valor, além de possibilitar que se chegue em qualquer ponto do espaço de busca.
- Taxas de Cruzamento/Crossover (reprodução)
 - Controla a quantidade da população que será substituída;
 - Valor Alto: pode-se perder os melhores indivíduos;
 - Valor Baixo: Com valores muito baixos o AG pode se tornar lento.

Parâmetros

Pontos de Corte

- Valor Alto: haverá um acréscimo de novas estruturas na população, mas se for muito alta pode-se perder bons indivíduos;
- Valor Baixo: Com um valor baixo o AG pode ficar muito lento.

Tamanho da População

- Valor Alto: geralmente fornece uma melhor cobertura do espaço de soluções, mas necessita de mais recursos computacionais;
- Valor Baixo: fornece uma pequena diversidade de soluções, podendo ficar preso em máximos locais.³¹

Parâmetros

Elitismo

 Não é propriamente um parâmetro do AG, mas ao copiar o(s) melhor(es) indivíduo(s) para a próxima geração, ganha-se em desempenho, pois garante que o melhor fitness (aptidão) somente melhore.

AG: aplicações

- O desempenho do algoritmo tem apresentado excelentes resultados para problemas de otimização de grande escala;
- Simplicidade na formulação e solução de problemas de otimização
- Roteamento de Telecomunicações
- Planejamento dos Jogos Olímpicos
- Avaliação de Crédito e Análise de Risco
- Particionamento de circuitos
- Jogos
- Tunning em SGBD por exemplo, auto tunning do Oracle₃₃

Questões Importantes para AG

- Como criar cromossomos e qual tipo de codificação/ representação usar?
- Quem será a população inicial?
- Como definir a função objetivo?
- Que critérios de seleção utilizar?
- Como escolher os pais para a realização do crossover/ cruzamento?
- Como aplicar/definir o operador de reprodução?
- Como aplicar/definir o operador de mutação?
- A geração de uma população a partir de duas soluções pode causar a perda da melhor solução. O que fazer?

AG: fluxograma básico

Referências Bibliográficas

- HOLLAND, J. Adaptation in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press, 1992.
- REZENDE, Solange Oliveira. Sistemas inteligentes: fundamentos e aplicações. Ed. Manole, 2003.