Course Title: Data Warehousing and Data Mining Credit: 3

Course No: CSIT.416.1 Number of period per week: 3+3

Nature of the Course: Theory + Lab Total hours: 45+45

Year: Fourth, Semester: Seventh

Level: B. Sc. CSIT

1. Course Introduction

Data warehousing and data mining are two major areas of exploration for knowledge discovery in databases. As more data is collected by businesses and scientific institutions alike, knowledge exploration techniques are needed to gain useful business intelligence. Data mining is for relatively unstructured data for which more sophisticated techniques are needed. The course aims to cover powerful data mining techniques including clustering, association rules, and classification.

2. Objectives

Upon completion of the course, the student should:

- → Be able to define and critically analyze data warehouse and mining approaches
- → Understand the technology of data warehousing.
- → Understand data mining concepts and techniques.
- → Be able to develop applications of higher order database systems.

3. Specific Objectives and Contents

Specific Objectives	Contents					
	Unit I: Introduction (6 hr)					
• Discuss data mining and KDD	1.1. Data Mining Definition, KDD vs.Data Mining, KDD					
and their relationships	Process, Architecture of Data Mining Systems					
	2. Data Warehouse, Framework of Data Warehouse,					
• Describe data warehouse	Data Mining Functionalities, Classification of Data					
concepts and needs	Mining Systems, Interestingness of Patterns					
	1.3. Integrating Data Mining with Data Warehouses and					
• Explain functionalities and	Databases, Data Mining Task Primitives, Data					
applications of data mining	Mining Issues and Applications					
	1.4. Importance of Data Pre-processing, Data					
• Demonstrate data pre-processing	Summarization, Data Cleaning, Data Integration and					
steps	Transformation, Data Reduction, Data Discretization					
	and Concept Hierarchy Generation					
	Unit II: Data Warehouse and OLAP (10 hr)					
• Understand differences between	2.1. Overview of Data Warehouse, Features of Data					
OLAP and OLTP	Warehouse, Operational Database Systems vs Data					
	Warehouse, Need of Separate Data Warehouse					
• Describe multidimensional data	2.2. Multidimensional Data Model and Data Cube,					

and their representation using cube	Schema for Multidimensional Data-Star Schema, Snowflake Schema, Fact Constellation Schema						
Demonstrate the different schema	2.3. DMQL introduction and Syntax, Defining Multidimensional schema by using DMQL, Measures and Its Catagories Using DMQL for finding						
used for data warehouse representation	and Its Categories, Using DMQL for finding Measures2.4. Concept Hierarchies, OLAP Operations- Roll-up,						
Apply DMQL to create data warehouse schema	Drill-down, Slicing, Dicing, Pivoting 2.5. Data Warehouse Architecture, Data Warehouse Models, Data Warehouse Backend Tools and						
• Demonstrate different OLAP operations	Utilities, Metadata, Types of OLAP Servers 2.6. Data Cube Computation, Data Cube Computation, Finding number of Cuboids, Data Cube						
Understand data cube computation and materialization	Materialization, OLAP Query Processing, Data Warehouse Usage 2.7. Cube Materialization- Full Cube, Iceberg Cube, Closed Cube, Shell Cube, Optimization of Cube Computation						
	Unit III: Association Mining (8 Hrs)						
• Understand need and importance of association mining	3.1. Frequent Item Sets, Closed Item Sets, Association Rules, Support & Confidence3.2. Finding Frequent Item Sets by using Apriori						
Demonstrate the use of Apriori and FP-Growth algorithms in finding frequent item sets	Algorithm, Mining Association Rules from Frequent Items, Improving Efficiency of Apriori Algorithm 3.3. Finding Frequent Item Sets by using FP-Growth Algorithm, Generating Association Rules						
Use above mentioned algorithms to generate association rules							
	Unit IV: Classification and Prediction (8 Hrs)						
Understand need and importance of classification and prediction	 4.1. Defining Classification and Prediction, Comparison of Classification and Prediction 4.2. Classification, her Pasision, Traces, Naive Page 						
Apply classification algorithms to find class labels	4.2. Classification by Decision Trees, Naive Bays Classification, Rule Based Classification, Support Vector Machines						
Apply prediction algorithms to make predictions	4.3. Prediction-Linear and Non-linear Regression, Accuracy and Error Measures, Evaluating Accuracy of Classifiers and Predictors, Ensemble Methods						
	Unit V: Cluster Analysis (8 Hrs)						
• Explain different measures of distances	5.1. Defining Cluster Analysis, Distance Measures, Types of Data in Cluster Analysis, Categorization of Clustering						
Understand difference between classification and clustering	5.2. Partition Based Clustering: K-Means Algorithm, K-Medoid Algorithm						
Categorize different clustering	5.3. Hierarchical Clustering: Agglomerative Clustering, Divisive Clustering						

algorithms	5.4. Density Based Methods: DBSCAN Clustering,					
	OPTICS Clustering					
• Apply clustering algorithms to	5.5. Clustering High Dimensional Data (CLIQUE),					
divide data into number of groups	Outlier Analysis (Statistical Distribution-Based					
	Outlier Detection					
	Unit VI: Advanced Data Mining Concepts (5 Hrs)					
• Explain use of data mining	6.1. Mining Data Streams, Graph Mining, Social Network					
techniques in different areas	Analysis, Multi-relational Data Mining					
	6.2. Text Mining, Web Mining, Object Mining, Spatial					
Data Mining, Multimedia Data Mining						

Evaluation System

Undergraduate Programs							
External Evaluation	Marks	Internal Evaluation	Weight age	Marks	Practical	Weight age	Mark
End semester examination		Assignments	20%		Practical Report copy	25%	
(Details are given in the separate table at the end)	60	Quizzes	10%	20	Viva	25%	20
		Attendance	20%	20	Practical Exam	50%	20
		Internal Exams	50%				
Total External	60	Total Internal	100%	20		100%	20
Full Marks $60+20+20 = 100$							

External evaluation

1. End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course. The question model, full marks, time and others will be as per the following grid.

2. External Practical Evaluation:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter.

Full Marks: 100, Pass Marks: 45, Time: 3 Hrs

Nature of question	Total questions to be asked	Total questions to be answered	Total marks	Weightage
Group A: multiple choice*	20	20	20×1 = 20	60%
Group B: Short answer type questions	7	6	6×8 = 48	60%
Group C: Long answer type questions	3	2	2×16 =32	60%
			100	100%

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Assignments
- Presentation by Students
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s)

taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam. Unless and until the student clears one semester he/she will not be allowed to study in the following semesters.

Laboratory Work

Student should design data warehouse by using SQL Server or any other tool and then practice different OLAP operations and DMQL queries on it. Besides this students need to implement different association mining, classification and clustering algorithms.

Prescribed Text

 Data Mining Concepts and Techniques, Morgan Kaufmann J. Han, M. Kamber Second Edition

References

- Data Warehousing in the Real Worlds, Sam Anahory and Dennis Murray, Pearson Edition Asia.
- Data Mining Techniques Arun K. Pajari, University Press.