

Model Development Phase Template

Date	18 June 2024	
Team ID	SWTID1749713922	
Project Title	Early Prediction for Chronic Kidney Disease Detection: A Progressive Approach to Health Management	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
def run_healthcare_ml_pipeline_hyp(X_train, X_test, y_train, y_test):
    Complete healthcare ML pipeline with enhanced hyperparameter tuning and overfitting detection
    print(f"\n{'='*80}")
    print("HEALTHCARE ML ANALYSIS PIPELINE")
    print("Kidney Disease Detection - Enhanced with Hyperparameter Tuning")
    print(f"{'='*80}")
    # Convert target to binary if needed
    if hasattr(y_train, 'dtype') and y_train.dtype == 'object':
        unique_classes = np.unique(y_train)
        if len(unique_classes) == 2:
            y_train_processed = (y_train == unique_classes[0]).astype(int)
           y_test_processed = (y_test == unique_classes[0]).astype(int)
            from sklearn.preprocessing import LabelEncoder
            le = LabelEncoder()
            y_train_processed = le.fit_transform(y_train)
            y_test_processed = le.transform(y_test)
    else:
       y_train_processed = y_train
       y_test_processed = y_test
```



```
print(f"Dataset Info:")
print(f" Training samples: {X_train.shape[0]}")
print(f" Test samples: {X test.shape[0]}")
print(f" Features: {X_train.shape[1]}")
print(f" Classes: {len(np.unique(y_train_processed))}")
print(f" Class distribution: {dict(zip(*np.unique(y_train_processed, return_counts=True)))}")
# Create hyperparameter-tuned models
models, tuning_summary = create_tuned_models_dict(X_train, y_train_processed)
print(f"\n Testing {len(models)} different classification algorithms...")
print(f"
            {len(tuning summary)} models have been hyperparameter-tuned")
print(f"
            {len(models) - len(tuning_summary)} baseline models included")
# Print hyperparameter tuning summary
if tuning_summary:
    print hyperparameter tuning summary(tuning summary)
# Run comprehensive analysis with enhanced overfitting detection
results_list, cv_results, overfitting_summary = detect_overfitting_comprehensive_enhanced(
    X_train, X_test, y_train_processed, y_test_processed, models
# Convert results list to dictionary for easier access
results_dict = {}
for result in results_list:
    model name = result['Model']
    results_dict[model_name] = result
```

```
print(f"\n{'='*80}")
print("INDIVIDUAL MODEL ANALYSIS WITH VISUALIZATIONS")
print(f"{'='*80}")
# Dictionary to store trained models for plotting
trained_models = {}
# Individual model analysis with plotting
for model_name, model_results in results_dict.items():
    if model_results is None:
       continue
    print(f"\n ANALYZING: {model_name}")
    print("-" * 60)
    try:
        # Get model instance
        if model name not in models:
            print(f" Model {model_name} not found in models dictionary, skipping...")
            continue
        model = models[model name]
        # Train the model
        model.fit(X_train, y_train_processed)
        trained_models[model_name] = model
        # Make predictions
        y_pred = model.predict(X_test)
```



```
# Get prediction probabilities if available
if hasattr(model, 'predict_proba'):
    y_pred_proba = model.predict_proba(X_test)
    if len(np.unique(y_test_processed)) == 2:
        y_pred_proba = y_pred_proba[:, 1]
    else:
        y_pred_proba = y_pred_proba.max(axis=1)
elif hasattr(model, 'decision_function'):
    y_pred_proba = model.decision_function(X_test)
    # Normalize decision function scores to [0,1] for binary classification
    if len(np.unique(y_test_processed)) == 2:
        y_pred_proba = (y_pred_proba - y_pred_proba.min()) / (y_pred_proba.max() - y_pred_proba.min())
else:
    y_pred_proba = None
print(f" Model Performance:")
# Access metrics from model_results dictionary
print(f" Test Accuracy: {model_results.get('Test Accuracy', 0):.4f}")
print(f" Precision: {model_results.get('Precision', 0):.4f}")
           Precision: {model_results.get('Precision', 0):.4f}")
print(f" Recall: {model_results.get('Recall', 0):.4f}")
          F1 Score: {model_results.get('F1 Score', 0):.4f}")
print(f" ROC AUC: {model_results.get('ROC AUC', 0):.4f}")
# Display hyperparameter tuning results if available
if model_name in tuning_summary:
    tuning_info = tuning_summary[model_name]
    print(f"\n Hyperparameter Tuning Results:")
    print(f" Best Recall Score (CV): {tuning_info['results']['best_score']:.4f}")
    print(f" Overfitting Risk: {tuning_info['results']['overfitting_risk']}")
    print(f" Overfitting Gap: {tuning_info['results']['overfitting_gap']:.4f}")
```

```
print(f" Search Method: {tuning_info['results']['search_type']}")
    # Show key hyperparameters
    key_params = list(tuning_info['params'].items())[:3] # Show first 3 params
    if key params:
       print(f" Key Tuned Parameters:")
       for param, value in key params:
           print(f"
                         {param}: {value}")
# Plot confusion matrix
print(f"\n Generating Confusion Matrix...")
plot_confusion_matrix(y_test_processed, y_pred, model_name)
# Plot ROC curve (only for binary classification)
if len(np.unique(y_test_processed)) == 2 and y_pred_proba is not None:
    print(f" Generating ROC Curve...")
    plot_roc_curve(y_test_processed, y_pred_proba, model_name)
    print(f" Generating Precision-Recall Curve...")
    plot_precision_recall_curve(y_test_processed, y_pred_proba, model_name)
# Plot feature importance (if available)
if hasattr(model, 'feature importances '):
    print(f" Generating Feature Importance Plot...")
    plot_feature_importance(model, X_train, model_name)
elif hasattr(model, 'coef_') and model.coef_.ndim == 1:
    print(f" Generating Feature Coefficients Plot...")
    # Handle linear model coefficients
```



```
plt.figure(figsize=(10, 6))
    if hasattr(X train, 'columns'):
        coef_series = pd.Series(np.abs(model.coef_), index=X_train.columns)
        coef_series = pd.Series(np.abs(model.coef_), index=[f'Feature_{i}' for i in range(len(model.coef_))])
    coef_series.sort_values(ascending=False).head(10).plot(kind='bar')
   plt.title(f'Top 10 Feature Coefficients (Absolute) - {model_name}')
    plt.xticks(rotation=45, ha='right')
   plt.tight_layout()
   plt.show()
# Validation curve analysis for selected models with hyperparameters
print(f" Generating Validation Curve Analysis...")
if model name == 'Random Forest':
    validation_curve_analysis_enhanced(
        X_train, y_train_processed, model,
        'n_estimators', [10, 50, 100, 200, 300]
elif model name == 'XGBoost':
    validation_curve_analysis_enhanced(
       X_train, y_train_processed, model,
        'max_depth', [3, 4, 5, 6, 7, 8]
elif model_name == 'LightGBM':
    validation_curve_analysis_enhanced(
        X_train, y_train_processed, model,
        'num_leaves', [10, 20, 30, 40, 50]
elif 'SVM' in model_name:
    validation_curve_analysis_enhanced(
        X_train, y_train_processed, model,
```

```
'C', [0.1, 1, 10, 100, 1000]
        elif 'Logistic Regression' in model name:
            validation curve analysis enhanced(
                X_train, y_train_processed, model,
                'C', [0.01, 0.1, 1, 10, 100]
        print(f"Completed analysis for {model_name}\n")
    except Exception as e:
        print(f" Error analyzing {model name}: {str(e)}")
        continue
    # Print overfitting summary
risk_groups = print_overfitting_summary(overfitting_summary)
# Convert results list to DataFrame for healthcare model selection
results_df = pd.DataFrame(results_list)
# Healthcare-specific model selection
best model name, ranked models = healthcare model selection algorithm(results df)
# Generate comprehensive model comparison plots
print(f"\n{'='*80}")
print(" COMPREHENSIVE MODEL COMPARISON VISUALIZATIONS")
print(f"{'='*80}")
```



```
print(" Generating Top Models Comparison...")
plot_model_comparison(results_df)
# Enhanced hyperparameter tuning summary visualization
if tuning summary:
    print(f"\n Generating Hyperparameter Tuning Summary Visualization...")
    plot_hyperparameter_tuning_summary(tuning_summary)
# Final recommendations with hyperparameter considerations
print(f"\n{'='*80}")
print(" FINAL HEALTHCARE RECOMMENDATIONS")
print(f"{'='*80}")
print(f" RECOMMENDED MODEL: {best_model_name}")
best stats = ranked models.iloc[0]
print(f" Healthcare Score: {best_stats['Healthcare_Score']:.4f}")
print(f" Recall (Sensitivity): {best_stats['Recall']:.4f}")
print(f" Precision: {best_stats['Precision']:.4f}")
print(f" F1 Score: {best_stats['F1 Score']:.4f}")
print(f" Overfitting Risk: {best_stats['Overfitting Risk']}")
# Show hyperparameter tuning info for best model if available
if best_model_name in tuning_summary:
    best_tuning = tuning_summary[best_model_name]
    print(f"
               Hyperparameter Optimization:")
    print(f"
                 Tuning Method: {best_tuning['results']['search_type']}")
    print(f"
                   • CV Recall Score: {best_tuning['results']['best_score']:.4f}")
    print(f"
                   • Overfitting Gap: {best_tuning['results']['overfitting_gap']:.4f}")
```

```
print(f"\n TOP 3 SAFE MODELS FOR HEALTHCARE:")
safe_models = ranked_models[ranked_models['Overfitting Risk'].isin(['LOW', 'MEDIUM'])].head(3)
for i, (_, row) in enumerate(safe models.iterrows(), 1):
    risk_indicator = "" if row['Overfitting Risk'] == 'LOW' else ""
    tuning_indicator = "" if row['Model'] in tuning_summary else ""
              (i). {tuning_indicator} {row['Model']} (Score: {row['Healthcare_Score']:.4f}, Risk: {risk_indicator} {row['Overfitting Risk']})")
# Models to avoid with hyperparameter tuning context
avoid_models = ranked_models[ranked_models[Overfitting Risk'].isin(['CRITICAL', 'HIGH'])]['Model'].tolist()
if avoid models:
    print(f"\n MODELS TO AVOID IN HEALTHCARE:")
    for model in avoid_models[:5]: # Show top 5 to avoid
        if model in tuning_summary:
            gap = tuning_summary[model]['results']['overfitting_gap']
             print(f" {model} (Overfitting Gap: {gap:.4f})")
        else:
            print(f" {model}")
# Hyperparameter tuning insights
if tuning_summary:
    print(f"\n HYPERPARAMETER TUNING INSIGHTS:")
    # Count tuned models by risk level
    tuned_risks = {}
    for model_name, info in tuning_summary.items():
        risk = info['results']['overfitting_risk']
         tuned_risks[risk] = tuned_risks.get(risk, 0) + 1
```



```
print(f" Tuned Models by Risk Level:")
     risk_order = ['LOW', 'MEDIUM', 'HIGH', 'CRITICAL']
     for risk in risk_order:
         if risk in Tuned_risks:
    icon = {'LOW': '\_', 'MEDIUM': '\_', 'HIGH': '\_', 'CRITICAL':
    print(f" {icon} {risk}: {tuned_risks[risk]} models")

     # Best tuning results
     best_tuned_recall = max(tuning_summary.items(), key=lambda x: x[1]['results']['best_score'])
     lowest_overfitting_tuned = min(tuning_summary.items(), key=lambda x: x[1]['results']['overfitting_gap'])
                   Best Tuned Recall: {best_tuned_recall[0]} ({best_tuned_recall[1]['results']['best_score']:.4f})")
                  Lowest Overfitting (Tuned): {lowest_overfitting_tuned[0]} (Gap: {lowest_overfitting_tuned[1]['results']['overfitting_gap']:.4f})")
# Additional comprehensive analysis plots
print(f"\n GENERATING ADDITIONAL ANALYSIS PLOTS...")
# Overfitting risk distribution plot
plt.figure(figsize=(15, 10))
# Risk distribution
plt.subplot(2, 3, 1)
risk_counts = ranked_models['Overfitting Risk'].value_counts()
colors = {'LOW': 'green', 'MEDIUM': 'orange', 'HIGH': 'red', 'CRITICAL': 'darkred'}
risk_colors = [colors.get(risk, 'gray') for risk in risk_counts.index]
plt.pie(risk_counts.values, labels=risk_counts.index, autopct='%1.1f%%', colors=risk_colors)
plt.title('Overfitting Risk Distribution')
```

```
# Healthcare scores distribution
plt.subplot(2, 3, 2)
plt.hist(ranked models['Healthcare Score'], bins=15, alpha=0.7, color='skyblue', edgecolor='black')
plt.xlabel('Healthcare Score')
plt.ylabel('Number of Models')
plt.title('Healthcare Scores Distribution')
plt.grid(True, alpha=0.3)
# Recall vs Precision scatter plot
plt.subplot(2, 3, 3)
colors_risk = ranked_models['Overfitting Risk'].map(colors)
scatter = plt.scatter(ranked_models['Recall'], ranked_models['Precision'],
                     c=colors risk, alpha=0.7, s=60, edgecolors='black', linewidth=0.5)
plt.xlabel('Recall (Sensitivity)')
plt.ylabel('Precision')
plt.title('Recall vs Precision (Colored by Risk)')
plt.grid(True, alpha=0.3)
# F1 Score vs CV Stability
plt.subplot(2, 3, 4)
plt.scatter(ranked_models['F1 Score'], ranked_models['CV Std F1'],
           c=colors_risk, alpha=0.7, s=60, edgecolors='black', linewidth=0.5)
plt.xlabel('F1 Score')
plt.ylabel('CV Standard Deviation')
plt.title('Performance vs Stability (Colored by Risk)')
plt.grid(True, alpha=0.3)
```



```
# Hyperparameter tuning comparison (if available)
if tuning_summary:
   plt.subplot(2, 3, 5)
   tuned_models_data = []
   tuned_scores = []
   tuned_gaps = []
   for model_name in ranked_models['Model']:
        if model name in tuning summary:
           tuned_models_data.append(model_name[:15]) # Truncate long names
            tuned_scores.append(tuning_summary[model_name]['results']['best_score'])
           tuned_gaps.append(tuning_summary[model_name]['results']['overfitting_gap'])
   if tuned models data:
       plt.scatter(tuned_scores, tuned_gaps, alpha=0.7, s=60,
                   c='purple', edgecolors='black', linewidth=0.5)
       plt.xlabel('Tuned CV Recall Score')
       plt.ylabel('Overfitting Gap')
       plt.title('Hyperparameter Tuning Results')
       plt.grid(True, alpha=0.3)
        # Add model names as annotations for top performers
        for i, (score, gap, name) in enumerate(zip(tuned_scores, tuned_gaps, tuned_models_data)):
           if score > np.percentile(tuned_scores, 75) and gap < np.percentile(tuned_gaps, 50):</pre>
               plt.annotate(name, (score, gap), xytext=(5, 5),
                           textcoords='offset points', fontsize=8)
```

```
# Model complexity vs performance
plt.subplot(2, 3, 6)
# Create a complexity score based on model type
complexity map = {
    'Dummy': 1, 'Naive Bayes': 2, 'Logistic Regression': 3, 'LDA': 3, 'QDA': 4,
    'Decision Tree': 4, 'KNN': 4, 'SVM': 5, 'Random Forest': 6, 'Extra Trees': 6,
    'AdaBoost': 6, 'Gradient Boosting': 7, 'XGBoost': 8, 'LightGBM': 8, 'CatBoost': 8,
    'MLP': 9, 'SGD': 3, 'Ridge': 3, 'Bagging': 5
complexity_scores = []
for model name in ranked models['Model']:
    complexity = 5 # default
    for key, value in complexity_map.items():
        if key.lower() in model_name.lower():
            complexity = value
            break
    complexity_scores.append(complexity)
plt.scatter(complexity_scores, ranked_models['Healthcare_Score'],
           c=colors_risk, alpha=0.7, s=60, edgecolors='black', linewidth=0.5)
plt.xlabel('Model Complexity')
plt.ylabel('Healthcare Score')
plt.title('Complexity vs Healthcare Performance')
plt.grid(True, alpha=0.3)
plt.tight layout()
plt.show()
```



```
# Summary statistics
print(f"\n SUMMARY STATISTICS:")
print(f" Total Models Evaluated: {len(results_list)}")
print(f"
           Models with Hyperparameter Tuning: {len(tuning_summary)}")
print(f"
           Low Risk Models: {len(ranked_models[ranked_models['Overfitting Risk'] == 'LOW'])}")
print(f"
           Medium Risk Models: {len(ranked_models[ranked_models['Overfitting Risk'] == 'MEDIUM'])}")
print(f"
           High Risk Models: {len(ranked models[ranked models['Overfitting Risk'] == 'HIGH'])}")
print(f"
           Critical Risk Models: {len(ranked_models[ranked_models['Overfitting Risk'] == 'CRITICAL'])}")
print(f"
            Average Healthcare Score: {ranked_models['Healthcare_Score'].mean():.4f}")
print(f"
           Average Recall: {ranked_models['Recall'].mean():.4f}")
print(f"
           Average Precision: {ranked_models['Precision'].mean():.4f}")
    'results': results dict,
    'results_list': results_list,
    'cv_results': cv_results,
    'overfitting_summary': overfitting_summary,
    'risk_groups': risk_groups,
    'best_model': best_model_name,
    'ranked_models': ranked_models,
    'safe models': safe models,
    'trained_models': trained_models,
    'tuning_summary': tuning_summary,
    'hyperparameter_insights': {
        'tuned_models_count': len(tuning_summary),
        'best_tuned_recall': best_tuned_recall if tuning_summary else None,
        'lowest_overfitting_tuned': lowest_overfitting_tuned if tuning_summary else None,
        'risk_distribution': tuned_risks if tuning_summary else None
```


Model Validation and Evaluation Report:

Model	Classification Report	Accura cy	Confusion Matrix
Rando m Forest	COMPREHENSIVE ANALYSIS: Random Forest	92.50%	Confusion Matrix - Random Forest - 40 - 35 - 30 - 25 - 20 - 15 - 10 - 5 - 0 Predicted Label
XGBoo st	COMPREHENSIVE ANALYSIS: XGBoost	96.25%	Confusion Matrix - XGBoost - 40 - 30 - 20 - 10 Predicted Label

