Descriptive Statistics With R Software

Moments

• •

Raw and Central Moments

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Moments

Moments are used to describe different characteristics and features of a frequency distribution, viz., central tendency, disperson, symmetry and peakedness (hump) of frequency curve.

Notations for Ungrouped (Discrete) Data

Observations on a variable X are obtained as $x_1, x_2, ..., x_n$.

Notations for Grouped (Continuous) data

Observations on a variable X are obtained and tabulated in K class intervals in a frequency table as follows. The mid points of the intervals are denoted by $x_1, x_2, ..., x_k$ which occur with frequencies $f_1, f_2, ..., f_K$ respectively and $n = f_1 + f_2 + ... + f_K$.

Class intervals	Mid point (x_i)	Absolute frequency (f_i)
<i>e</i> ₁ - <i>e</i> ₂	$x_1 = (e_1 + e_2)/2$	f_1
e ₂ - e ₃	$x_2 = (e_2 + e_3)/2$	f_2
•••	•••	•••
e_{K-1} - e_{K}	$x_K = (e_{K-1} + e_K)/2$	f_{κ}

Moments about Arbitrary Point A

The r^{th} moment of a variable X about any arbitrary point A based on observations $x_1, x_2, ..., x_n$ is defined as

For ungrouped (discrete) data

$$\mu'_{r} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - A)^{r}$$

❖ For grouped (continuous) data

$$\mu'_{r} = \frac{1}{n} \sum_{i=1}^{K} f_{i} (x_{i} - A)^{r}$$

where
$$n = \sum_{i=1}^{K} f_i$$

Raw Moments

The r^{th} (sample) moment around origin A = 0 is called as raw moment and is defined as follows:

For ungrouped (discrete) data

$$\mu_r' = \frac{1}{n} \sum_{i=1}^n x_i^r$$

❖ For grouped (continuous) data

$$\mu_r' = \frac{1}{n} \sum_{i=1}^K f_i x_i^r$$

where
$$n = \sum_{i=1}^{K} f_i$$

Raw Moments

The first and second raw moments are obtained by substituting r = 1 and r = 2 respectively as follows:

For ungrouped (discrete) data	For grouped (continuous) data	
$\mu_1' = \frac{1}{n} \sum_{i=1}^n x_i$ Arithmetic mean	$\mu_1' = \frac{1}{n} \sum_{i=1}^K f_i x_i$ Arithmetic mean	
$\mu_2' = \frac{1}{n} \sum_{i=1}^n x_i^2$	$\mu_2' = \frac{1}{n} \sum_{i=1}^K f_i x_i^2$	
i=1	where $n = \sum_{i=1}^{K} f_i$	

Note that when r = 0, $\mu_0 = 1$ for ungrouped and grouped data both.

Central Moments

The moments of a variable X about the arithmetic mean \overline{X} are called central moments.

The r^{th} (sample) central moment based on observations $x_1, x_2, ..., x_n$ is defined as follows:

For ungrouped (discrete) data

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^r$$

For grouped (continuous) data

$$\mu_r = \frac{1}{n} \sum_{i=1}^K f_i (x_i - \overline{x})^r$$

where
$$n = \sum_{i=1}^{K} f_i$$
, $\overline{x} = \frac{1}{n} \sum_{i=1}^{K} f_i x_i$

Central Moments

The first and second central moments are obtained by substituting r = 1 and r = 2 respectively as follows:

For ungrouped (discrete) data

$$\mu_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

$$\mu_2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
: Sample variance

Central Moments

The first and second central moments are obtained by substituting r = 1 and r = 2 respectively as follows:

❖ For grouped (continuous) data

$$\mu_{1} = \frac{1}{n} \sum_{i=1}^{K} f_{i}(x_{i} - \overline{x}) = 0$$

$$\mu_2 = \frac{1}{n} \sum_{i=1}^{K} f_i (x_i - \overline{x})^2$$
: Sample variance

where
$$n = \sum_{i=1}^{K} f_i$$
, $\overline{x} = \frac{1}{n} \sum_{i=1}^{K} f_i x_i$

***** Note that when r = 0, $\mu_0 = 1$ for ungrouped and grouped data both.

Relationship Between Central and Raw Moments

$$\mu_0 = \mu'_0 = 1$$

$$\mu_1 = 0$$

$$\mu_2 = \mu'_2 - {\mu'_1}^2$$

$$\mu_3 = {\mu'_3} - 3{\mu'_1}{\mu'_2} + 2{\mu'_1}^3$$

$$\mu_4 = {\mu'_4} - 4{\mu'_3}{\mu'_1} + 6{\mu'_2}{\mu'_1}^2 - 3{\mu'_1}^4$$