Problem set for 27-Feb-2025

Exercise 1.1 Let $P_n:=\{f(x\in\mathbb{F}[x])\mid \deg f(x)< n\}$. Pick $\{a_i\}_{i=1}^n\in\mathbb{F}$ such that $a_i\neq a_j$ for any $i\neq j$. Show that

$$f_j(x) := \prod_{i
eq j} (x-a_i) \quad (1 \le j \le n)$$

form a basis of P_n .

答: 只需证明 $\{f_j\}_{j=1}^n$ 是大小为n 的线性无关组.对线性无关性证明如下, 定义线性映射

$$\varphi_i: P_n \mapsto \mathbb{F}, \quad f \mapsto f(a_i).$$

依照定义, $f_j(x_i) = \delta_{i,j}$. 对任意线性组合式 $\sum_{i=1}^n c_i f_i$, 总有

$$arphi_j: \sum_{i=1}^n c_i f_i \mapsto c_j f_j(x_j).$$

今取遍所有 φ_j ,上述线性组合式为0当且仅当一切 c_i 为0. 这说明了线性无关性.

Exercise 4.1 Assume $f(x)=x^3+px+q\in\mathbb{Z}[x]$ is irreducible and $\alpha\in\mathbb{C}$ is a root of f.

- 1. Prove that $\mathbb{Q}[\alpha]:=\{g(\alpha)\mid g(x)\in\mathbb{Q}[x]\}$ is a linear space over \mathbb{Q} and $1,\alpha,\alpha^2$ form a basis.
- 2. Prove that $\varphi: \beta \mapsto f'(\alpha)\beta$ gives a linear map on $\mathbb{Q}[\alpha]$ and find its matrix under $1, \alpha, \alpha^2$.
 - 答: 为证明 $1, \alpha, \alpha^2$ 构成基, 下依次证明 $\mathrm{Span}(1, \alpha, \alpha^2) = \mathbb{Q}[\alpha]$, 以及线性无关性.
 - 1. 依照 $f(\alpha) = 0$, $\alpha^{\geq 3}$ 可以由更低次项的线性组合表示. 这说明 $\mathrm{Span}(1,\alpha,\alpha^2) = \mathbb{Q}[\alpha]$.
 - 2. 我们断言 $1, \alpha, \alpha^2$ 线性无关. 若存在非零线性组合使得 $a+b\alpha+c\alpha^2=0$, 则 α 具有次数小于 3 的零化多项式, 这和 f 不可约矛盾.

为找到 φ 的矩阵表示,直接计算得

$$\begin{split} \varphi(1 \mid \alpha \mid \alpha^2) &= (\varphi(1) \mid \varphi(\alpha) \mid \varphi(\alpha^2)) \\ &= (3\alpha^2 + p \mid 3\alpha^3 + p\alpha \mid 3\alpha^4 + p\alpha^2) \\ &= (3\alpha^2 + p \mid -2p\alpha - 3q \mid -2p\alpha^2 - 3q\alpha) \\ &= (1 \mid \alpha \mid \alpha^2) \cdot \begin{pmatrix} p & -3q & 0 \\ 0 & -2p & -3q \\ 3 & 0 & -2p \end{pmatrix}. \end{split}$$