Arquitectura de computadoras - 2024

Integrantes:

Roko María Guillermina DNI 45.390.594

Gamarra Bruno Elías DNI 44.772.853

ISA procesador monociclo.

- 16 registros de propósito general de 16 bits
- Instrucciones de 16 bits
- PC de 16 bits
- 8 bits por dirección de memoria

REGISTROS

Registros de propósito						
general						
0	XO					
1	xa					
2	xb					
3	xc					
4	xd					
5	xe					
6	xf					
7	xg					
8	xh					
9	xi					
10	xj					
11	xk					
12	xl					
13	xm					
14	xn					
15	XW					

Banco de registros:

INSTRUCCIONES:

OPCODE	Instrucción	RTL BASICO
0000	Suma rd, rf1, rf2	R[rd] = R[rf1] + R[rf2]
0001	Resta rd, rf1, rf2	R[rd] = R[rf1] - R[rf2]
0010	Y rd, rf1, rf2	R[rd]= R[rf1] && R[rf2]
0011	O rd, rf1, rf2	$R[rd] = R[rf1] \mid\mid R[rf2]$
0100	Carga rd, rf1, rf2	$R[rd] = M\{R[rf1] + R[rf2]\}$
0101	Almacena rf1, rf2, rd	$M\{R[rf1]+R[rf2]\}=R[rd]$
0110	Sumai rd, rf1, inm	R[rd]= R[rf1]+SignExt[inm]
0111	Not rf1	R[rf1]= !R[rf1]
1000	Igual rf1, rf2, inm	Si(R[rf1]==R[rf2])-> PC=PC+ SignExt[inm]
		Sino PC= PC + 16
1001	Mayor rf1, rf2, inm	Si(R[rf1]>R[rf2])-> PC=PC+ SignExt[inm]
		Sino PC= PC + 16
1010	Mayorig rf1, rf2, inm	Si (R[rf1]>=R[rf2])-> PC=PC+
		SignExt[inm]
		Sino $Si(R[rf1]==R[rf2]) \rightarrow PC=PC+$
		SignExt[inm]
		Sino PC= PC + 16

PSEUDOINSTRUCCIONES:

Pseudoinstrucción		
Inc	Inc rf1	Sumai rf1, rf1, 1
Dec	Dec rf1	Sumai rf1, rf1, -1
nop	nop	Sumai xo, xo, o <-
		un salto

FORMATO DE LAS INSTRUCCIONES:

4bits	4bits	4bits	4bits						
TIPO-R									
Registro-fuente-2	Registro-fuente-1	Registro-destino	Op-code						
	TIPO-M								
Registro-fuente-2	Registro-fuente-1	Registro-destino	Op-code						
TIPO-I									
Inmediato	Registro-fuente-1	Registro-destino	Op-code						
TIPO-J									
Inmediato	Registro-fuente-2	Registro-fuente-1	Op-code						

Instrucción	4bits	4bits	4bits	4bits	Tipo
	Opcode				
Suma	0000	Rd	Rf1	Rf2	R
Resta	0001	Rd	Rf1	Rf2	R
Y	0010	Rd	Rf1	Rf2	R
О	0011	Rd	Rf1	Rf2	R
Not	0111	Rf1	Rf1	X	R
Sumai	0110	Rd	Rf1	Inm	I
Carga	0100	Rd	Rf1	Rf2	M

Almacena	0101	Rf1	Rf2	Rd	M
Igual	1000	Rf1	Rf2	Inm	J
mayor	1001	Rf1	Rf2	Inm	J
Mayorig	1010	Rf1	Rf2	Inm	J
Inc		Rf1	Rf1	1	pseudoinstruccion
Dec		Rf1	Rf1	-1	pseudoinstruccion
Nop		Xo	Xo	0	pseudoinstruccion

<u>ALU – Unidad Aritmético Lógica:</u>

Nuestra ALU es de 16 bits, tiene como entrada un campo de 3 bits el cual permite codificar las funciones principales. (Suma, Resta, AND, OR, NOT)

Instrucción	Operación	Operación que realiza la ALU	ALU OP
Tipo-R	Suma	Suma	000
Tipo-R	Resta	Resta	001
Tipo-R	Y	Y	010
Tipo-R	0	0	011
Tipo-R	Not	Not	100
Tipo-I	Sumai	Suma con inmediato	000
Tipo-J	Igual	Resta	001
Tipo-J	Mayor	Resta	001
Tipo-J	Mayoroig	Resta	001
Tipo-M	Carga	Suma	000
Tipo-M	Almacena	Suma	000

UNIDAD DE CONTROL

Para la construcción de la unidad de control se realizo una tabla de verdad según las instrucciones y lo que hace cada una.

ENTRADA O SALIDA	Nombre de señal	Tipo-R			Tipo-M		Tipo-I	Tipo-J				
Entradas		Suma	Resta	Y	О	Not	Carga	Almacena	Sumai	Igual	mayor	Mayoroig
	I(bit3)	0	0	О	0	0	0	0	0	1	1	0
	I(bit2)	0	0	0	0	1	1	1	1	0	0	1
	I(bit1)	0	0	1	1	1	0	0	1	0	0	0
	I(bito)	0	1	0	1	1	0	1	0	0	1	1
Salidas	AluSRC	0	0	0	0	0	0	0	1	1	1	1
	MemtoReg	0	0	0	0	0	1	X	0	0	0	0
	regWrite	1	1	1	1	1	1	0	1	0	0	0
	Resta	0	1	0	0	0	0	0	0	0	0	0
	memWrite	0	0	0	0	0	0	1	0	0	0	0
	Igual	0	0	0	0	0	0	0	0	1	0	1
	Mayor	0	0	0	0	0	0	0	0	0	1	1
	aluOP1	0	1	0	1	0	0	0	0	1	1	1
	aluOP2	0	0	1	1	0	0	0	0	0	0	0
	aluOP3	0	0	0	0	1	0	0	0	0	0	0

Y el camino de datos de nuestro procesador Monociclo quedaría de esta manera:

Programa requerido:

Codigo ensamblador

Sumai xa, xo, 8 Sumai xb, xo, 10 Carga xi, xa, xo Carga xj, xb, xo Igual xi, xj, 10 Almacena xb, xo, xo Igual xi, xi, 10

(posición +10 del primer igual) Almacena xo, xo, xa Almacena xo, xo, xb

Binario correspondiente:

1000 0000 0001 0110

1010 0000 0010 0110

0000 0001 1001 0100

0000 0010 1010 0100

1010 1010 1001 1000

0000 0000 0010 0101

1010 1001 1001 1000

(salto primer condicion)

0001 0000 0000 0101

0010 0000 0000 0101