Birth of a Transformer: A Memory Viewpoint

Johannes Losert

Columbia University

jal2340@columbia.edu

October 4, 2024

Overview

Motivation

Bullet Points

- Memorization vs In-Context Learning
- Associative Memory Hypothesis

Bigram Language Model

- Unigram Distribution: $\pi_u = p(i)$
- Bigram Distribution: $\pi_b = p(i|j)$ satisfies Markov Property
- ullet $z_{1:T}^n$ is generated with a random walk $z_0^n \sim \pi_u$, $z_i \sim \textit{pi}_b(\cdot|z_{i-1})$
- ullet For each of the N sequences $z_{1:T}^1 \cdots z_{1:T}^N$
 - pick K trigger tokens q_i
 - 2 $\forall q_i$ pick a output token $o_i \sim \pi_u$
 - set $p(o_i|u_i)=1$
- The paper tests different strategies for picking trigger-output pairs
- For high accuracy model learns π_b and how to recognize trigger-output pairs.

Associative Memory

- orthonormal Embeddings u_i , v_i , with correlation α
- $W = \sum_{i,j} \alpha u_i v_j^T$
- How do we get such embeddings?
 - random Gaussian vectors with variance 1/d
 - $v_i^T v_i \approx 1$, $v_i^T v_j = O(\frac{1}{\sqrt{d}}) \approx 0$
- Superpositions? What if we want 2-1 mapping? $Wu_{i,j} = Wu_i + Wu_j$ This is why we need MLP's w/ non-linear activation.

Solving the Modified Bigram Problem w/ Transformers

- Two layer transformer
- $W_Q = I$
- $x_t' := W_O W_V x_{1:t} \sigma(d^{-1/2} x_{1:t}^\top W_k^\top x_t)$
- freeze W_E , W_U , W_P , W_O^1 , W_V^1 , W_V^2 to random initialization. Remap tokens into new tokens, preserve orthogonality.
- ullet pre-softmax attention scores for each index t $(W_k x_{1:t})^{ op} x_t$
- $W_K^1 = \sum_{t=2}^T p_t p_{t-1}^{\top}$
- $W_K^2 = \sum_{k \in Q} w_E(k) (W_O^1 W_V^1 w_E(k))^{\top}$ attend embeddings preceded by triggers
- $W_O^2 = \sum_{k \in N} w_U(k) (W_V^2 w_E(k))^{\top}$ output attended token, remapped to output embedding.

Induction Head Mechanism

Figure 1: Induction head mechanism. Induction heads are a two-layer mechanism that can predict b from a context $[\dots,a,b,\dots,a]$. The first layer is a previous token head, which attends to the previous token based on positional embeddings $(p_t \to p_{t-1})$ and copies it after a remapping $(w_E(a) \to w_1(a) := W_O^1 W_V^1 w_E(a))$. The second layer is the induction head, which attends based on the output of the previous token head $(w_E(a) \to w_1(a))$ and outputs the attended token, remapped to output embeddings $(w_E(b) \to w_U(b))$. Boxes in the diagram represent sets of embeddings in superposition on each token's residual stream, and attention and output associations are shown with the associative memory viewpoint presented in Section \P .

Associative Memory

- orthonormal Embeddings u_i , v_i , with correlation α
- $W = \sum_{i,j} \alpha u_i v_i^T$
- How do we get such embeddings?
 - ullet random Gaussian vectors with variance 1/d
 - $v_i^T v_i \approx 1$, $v_i^T v_j = O(\frac{1}{\sqrt{d}}) \approx 0$
- Superpositions? What if we want 2-1 mapping? $Wu_{i,j} = Wu_i + Wu_j$ This is why we need MLP's w/ non-linear activation.

Conclusions

 Memory recall probes show us theoretical hypothesis is partially correct.

The End