Theory of concurrency

Lecture 2

Model checking

Details

Model checking process

Modeling

- Translating a description of a software system to the formal description suitable for automatic verification.
 - Compilation, translation.
 - Abstraction.

Specification

- Formulating software properties systems for verification
 - Logic: temporal, dynamic, epistemic, deontic and many others.
 - Completeness of the specification.
 - · Safety: nothing bad will ever happen.
- · Liveliness: something good is definitely happen.

- Formal model of a system for verification
 - Everything you need
 - Nothing extra
 - Collision avoidance protocols:
 - times and places
 - not names of machines
 - Telecommunications:
 - message exchange
 - not message content
 - Control systems:
 - control signals
 - not physical values

- Reactive systems
 - Interaction with the environment
 - Infinitely long work
 - A state
 - instant description of a system, the value of system variables at a given time.
 - A state transition
 - state change
 - a state before and a state after
 - \cdot A computation
 - is an infinite sequence of states where each state is obtained from the previous state by some transition.

- Kripke structure
 - Special transition graph
 - The paths in the graph correspond to system computations
 - Simple and universal model
- Concurrent systems
 - Program text or chart
 - Types of systems
 - synchronous, asynchronous, with shared variables, exchanging messages, etc.
 - Described by first-order predicate logic formulas
 - Formulas are correctly translated into the Kripke structure

- A set of atomic propositions AP
 - x = 13.
 - Elevator doors open.
 - The sun is shining.
- Kripke structure $M = (S, S_0, R, L)$
 - S finite set of states;
 - $S_0 \subseteq S$ set of initial states;
 - $R \subseteq S \times S$ total transition relation: for each $s \in S$ there exists $s' \in S$ such that R(s, s');
 - L: $S \to 2^{AP}$ a function that labels each state with the set of atomic propositions true in that state
- *Path* in model *M* from state s
 - (in-)finite sequence of model states $\pi = s_0, s_1, s_2, ...,$ such that
 - $s_0 = s$ and for all $i \ge 0$ it is true that $R(s_i, s_{i+1})$.

FOL concurrent system representation

- First-Order Logic
 - · Predicate and functional symbols with fixed interpretation
 - Logical connectives \neg , \wedge , \vee , \rightarrow
 - Quantifiers \forall , \exists
- Description of parallel systems
 - $V = \{v_0, v_1, v_2, \dots v_n\}$ system variables
 - D-domain of interpretation
 - A *valuation* for V is a function that associates a value in D with each variable v in V.
- State s is a valuation: $s: V \to D$.
 - · A formula represents the set of all states in which it is true.
 - A formula that is true *exactly* on a given valuation
 - $V = \{v_0, v_1, v_2\}, D = \{0, 1, 2\}$
 - $s = \{v_0 \leftarrow 0, v_1 \leftarrow 1, v_2 \leftarrow 2\}$:
 - φ : $(v_0 = 0) \land (v_1 = 1) \land (v_2 = 2)$
- 0,1,2

- Atomic propositions AP
 - v = d, $v \in V$, $d \in D$: v = d is true in state s, if s(v) = d.

$$\psi$$
: $(v_0 = 0) \land (v_1 = 1) \lor (v_2 = 2)$

- 0,1,2 1,1,2 2,1,2 0,1,1
- 0,2,2 1,2,2 2,2,2

FOL concurrent system representation

- *Transitions* between states
 - Formulas to represent sets of ordered pairs of states
 - Let V be system variables, V'—copies of system variables
 - V current state variables
 - V'— next state variables

- A valuation of *V* and *V'* encodes a transition
 - The value is encoded by a first-order formula

$$\begin{array}{l} \bullet \ s = \{v_0 \leftarrow 0, \, v_1 \leftarrow 1, \, v_2 \leftarrow 2\}, \\ s' = \{v'_0 \leftarrow 1, \, v'_1 \leftarrow 0, \, v'_2 \leftarrow 0\}, \\ s'' = \{v'_0 \leftarrow 2, \, v'_1 \leftarrow 0, \, v'_2 \leftarrow 0\}: \\ \bullet \ (v_0 = 0) \land (v_1 = 1) \land (v_2 = 2) \land ((v'_0 = 1) \lor (v'_0 = 2)) \land \ \forall \, v \in \{v'_1, \, v'_2\} : (v = 0). \end{array}$$

• R(V, V') – first order formula representing the transition relation R.

Concurrent system representation

- The Kripke structure $M = (S, S_0, R, L)$ from first-order formulas S_0 and R(V, V).
 - States S the set of all valuations of the variables V;
 - Initial states S_{θ} the set of all valuations S_{θ} of the variables V that satisfy the formula S_{θ} .
 - Transitions R R(s, s') are true for all s, s' such that the formula R is true for the valuations s(v) and s(v') for all $v \in V$ and $v' \in V'$.
 - Some state *s* may have no successor.
 - Modify the relation R so that R(s, s) is true.
 - <u>Labeling function</u> $L: S \to 2^{AP}$ for all states s the set L(s) are all atomic propositions true in s.
 - If the variable v is Boolean, then we write $v \in L(s)$ or $v \not\in L(s)$.

Concurrent system representation

- Example
 - Let $V = \{x, y\}, D = \{0, 1\}$
 - Valuations: $(d_1, d_2) \in D \times D$
 - Transition: $x := (x+y) \pmod{2}$, Initial state: $x = 1 \bowtie y = 1$.
- First order representation:
 - $S_0(x, y) = (x = 1) \land (y = 1)$
 - $R(x, y, x', y') \equiv x' = (x+y)(mod 2) \land (y' = y)$
- Kripke structure $M = (S, S_0, R, L)$
 - $S = D \times D$
 - $S_0 = \{(1,1)\}$
 - $R = \{((1,1), (0,1)), ((0,1), (1,1)), ((1,0), (1,0)), ((0,0), (0,0))\}$
 - $L((0,0)) = \{x = 0, y = 0\}, L((0,1)) = \{x = 0, y = 1\}, L((1,0)) = \{x = 1, y = 0\}, L((1,1)) = \{x = 1, y = 1\}$
- The *only* path from initial state and the only computation of the system:
 - · (1,1), (0,1), (1,1), (0,1)...

Concurrent systems

- A set of components that run simultaneously.
- · Components can interact with each other.
 - Execution:
 - asynchronous
 - · at any given time, only one component makes a calculation step
 - synchronous
 - all components take a calculation step at the same time
 - Interaction:
 - changes in the value of *shared variables*
 - message exchange
 - queues
 - handshaking

Digital circuits

- · Synchronous modulo 8 counter.
 - $V = \{v_0, v_1, v_2\}$ state variables,
 - $V = \{v_0, v_1, v_2\}$ copy of the state variables.
 - Transitions:
 - $v_0 = \neg v_0$
 - $v_1 = v_0 \oplus v_1$
 - $v_2 = (v_0 \wedge v_1) \oplus v_2$
 - Transition relations:
 - $R_0(V,V) \equiv (v)_0 \Leftrightarrow \neg v_0$
 - $R_1(V,V) \equiv (v_1 \Leftrightarrow v_0 \oplus v_1)$
 - $R_2(V,V) \equiv (v_2 \Leftrightarrow (v_0 \land v_1) \oplus v_2)$
 - All changes occur simultaneously:
 - $R(V,V) \equiv R_0(V,V) \wedge R_1(V,V) \wedge R_2(V,V)$.

Digital circuits

- The difference between synchronous and asynchronous models
 - Let $V = \{v_0, v_1\}$, $v_0 = v_0 \oplus v_1$ and $v_1 = v_0 \oplus v_1$
 - Let s is the state with $v_0 = 1 \land v_1 = 1$
 - Synchronous model
 - One successor of state *s*
 - state $v_0 = 0 \land v_1 = 0$

- Asynchronous model
 - Two successors of state *s*:

•
$$v_0 = 0 \land v_1 = 1$$

•
$$v_0 = 1 \land v_1 = 0$$

Concurrent Programs

- Sequential programs
 - Consists of a sequence of statements
 - assignment, conditional statement, loop, etc.
- Concurrent programs
 - Combines sequential programs

- Translation *C* converts
 - text of program P into a first-order formula R, which represents the set of program transitions.
- Each operator has a single entry point and a single exit point.
 - These points are labeled in a unique way.
- For formulas of the system: define variables, initial states and transitions.
 - V— the set of program variables and program counters, and V— a copy of V.
- Initial states of the concurrent program *P*
 - $S_0(V,PC) = pre(V) \land pc = m \land \land^n_{i=1} (pc_i = \bot)$
 - $pc_i = \bot$ for process P_i is not active

```
• P = m: cobegin P_0 \parallel P_1 coend m
• pc – program counter P
   • pc = m — input label P
   • pc = m — output label P
   • pc = \bot, if P_0 and P_1 are active
• pc_i – program counter of process P_i
   • its values: l_i, l_i, NC_i, CR_i, LC_i and \bot
• V = V_0 = V_1 = \{ turn \}  and PC = \{ pc, pc_0, pc_1 \}.
• pc_i = NC_i: process i is in non-critical section.
   • A process waits (turn = i) to enter critical section.
• pc_i = CR_i: process i is in critical section.
```

```
P_0:
                                                                  l<sub>0</sub>: while True do
                                                               NC_0: wait (turn = 0);
                                                               CR_0: actions;
                                                               LC_0: turn := 1;
                                                                     od
                                                           P_1:: I_1: while True do
                                                               NC_1: wait (turn = 1);
                                                               CR<sub>1</sub>: actions;
                                                               LC_1: turn := 0;
                                                                     od
• It is forbidden to be in the critical section at the same time.
```

- $pc_i = LC_i$: process i goes out from critical section.
 - It changes **turn** for going out.

- The *initial states* of concurrent program P:
 - $S_0(V, PC) \equiv pc = m \land pc_0 = \bot \land pc_1 = \bot$
 - There are no restrictions on the value of turn

- The formula for the $transition\ relation\ R(V,PC,V)$ is
 - a disjunction of the formulas:

```
    pc = m ∧ pc`<sub>0</sub> = l<sub>0</sub> ∧ pc`<sub>1</sub> = l<sub>1</sub> ∧ pc` = ⊥
    pc<sub>0</sub> = l`<sub>0</sub> ∧ pc<sub>1</sub> = l`<sub>1</sub> ∧ pc` = m` ∧ pc`<sub>0</sub> = ⊥ ∧ pc`<sub>1</sub> = ⊥
```

- $C(l_i, P_i, l_i) \land same(V \lor V_i) \land same(PC \lor \{pc_i\})$
 - $C(l_i, P_i, l_i) \land same(pc, pc_{\neg i}), i \in \{0, 1\}$

```
P<sub>0</sub>::
      In: while True do
    NC_0: wait (turn = 0);
    CR_0: actions;
    LC_0: turn := 1;
         od
      I<sub>1</sub>: while True do
    NC_1: wait (turn = 1);
    CR<sub>1</sub>: actions;
    LC_1: turn := 0;
         od
```

• For every P_i formula $C(l_i, P_i, l_i)$ is disjunction:

```
• pc_i = l_i \land pc_i^* = NC_i \land True \land same(\texttt{turn})

• pc_i = NC_i \land \texttt{turn} \neq i \land same(pc_i, \texttt{turn})

• pc_i = NC_i \land pc_i^* = CR_i \land \texttt{turn} = i \land same(\texttt{turn})

• pc_i = CR_i \land C(\texttt{actions}) \land same(pc_i, \texttt{turn})

• pc_i = CR_i \land pc_i^* = LC_i \land same(\texttt{turn})

• pc_i = LC_i \land pc_i^* = l_i \land \texttt{turn} = (i+1)(mod\ 2)

• pc_i = l_i \land pc_i^* = l_i^* \land False \land same(\texttt{turn})
```

```
P<sub>0</sub>::
      l<sub>0</sub>: while True do
    NC_0: wait (turn = 0);
    CR<sub>0</sub>: actions;
    LC_0: turn := 1;
          od
      l<sub>1</sub>: while True do
    NC_1: wait (turn = 1);
    CR<sub>1</sub>: actions;
    LC_1: turn := 0;
          od
```

```
l_0: while True do
   NC_0: wait (turn = 0);
   CR<sub>0</sub>: actions;
   LC_0: turn := 1;
        od
P_1:: I_1: while True do
   NC_1: wait (turn = 1);
   CR<sub>1</sub>: actions;
   LC_1: turn := 0;
        od
```


- The Kripke structure is constructed according to the formulas $S_{ heta}$ and R
 - Mutual exclusion property holds
 - Processes will never enter in their critical sections at the same time.
 - Starvation property does not hold
 - one process can continuously
 try to enter your critical section
 never getting access there,
 and at the same time
 another process is located
 in his critical section infinitely long.

Property Specification

Model checking process

- Modeling
 - Translating a description of a software system to the formal description suitable for automatic verification.
 - Compilation, translation.
 - Abstraction.
- Specification
 - Formulating software properties systems for verification
 - Logic: temporal, dynamic, epistemic, deontic and many others.
 - Completeness of the specification.
 - Safety: nothing bad will ever happen.
 - Liveliness: something good is definitely happen.

Logics for specification: modal logics

- Temporal Logic ®
 - LTL, CTL, CTL*
 - Statements about the evolution of a system over *time*
 - Something will surely happen sometime.
 - F restart
 - · Something may always be.
 - **EG** blocked
 - · There must have been something until something happened.
 - \cdot A move U stop
- Dynamic logic

Logics for specification

- Temporal Logic (9)
- Dynamic Logic 🗨
 - PDL, PDL*, *µ-calculus*
 - Statements about the evolution of a system as a result of certain *actions*.
 - If you do something, then you will definitely get something.
 - [go_down] at_bottom
 - If you do something repeatedly, then maybe you will get something.
 - < go_up*> at_top

Logics for specification

- Temporal Logic ®
- Dynamic Logic 🗲
- Other logic
 - Epistemic &
 - PLK, PLC
 - Statements about *knowledge*.
 - I know that he knows that they are aware that I know a secret.
 - Deontic
 - SDL, DDL
 - Statement about *obligations*
 - Something must take place.
 - Belief
 - Logic Combinations

Logics for specification

- Temporal Logic 🖭
- Dynamic Logic 🗲
- Other logic
 - Epistemic &
 - Deontic
 - Belief
 - PLB, PPLB
 - Statements about *belief*
 - I believe something is true.
 - Combinations of logics (1) 🍑 🔊 🗷 🖠
 - *All kinds* of statements
 - Someday, after some action, I find out that I always had to do something other before in order to believe that nothing would have changed due to I could know something obvious.

Temporal logics

- Logics for the specification of temporal properties of transition systems (Kripke structures)
- Atomic propositions, Boolean connectives, quantifiers and modalities, operators describing the temporal properties of system states.
- Reactive systems
 - State transition sequence specification
 - Floyd-Hoar method
 - Input and Output Specification
 - Temporal Logic
 - Specification of the execution process (computation)

Temporal logics

- Time is not explicitly described:
 - in future
 - never
- Temporal operators for describing temporal properties.
- Temporal logics differ
 - the set of temporal operators used
 - semantics of these operators
- LTL Linear Temporal Logic: about one path
- CTL Computational Tree Logic: about alternating path
- MTL Metric Temporal Logic: about measurable time on one path

- LTL formulas describe the properties of computation *paths*.
- Computation tree
 - Root initial state
 - Successors states obtained by transitions
 - Infinite
 - All possible computations

- Temporal operators
 - Properties of the path in a computation tree.
- Time shift operator X
 - neXttime, "the next moment"
 - A property holds in the following state of the path.
- Incident operator F
 - Future, "sooner or later", "sometime in the future", "someday"
 - · A property will hold in some subsequent state of the path.
- Invariance operator G
 - Globally, "always", "everywhere"
 - A property holds in each state of the path.
- Conditional operator $oldsymbol{U}$
 - *Until*, "until"
 - · A property holds starting from some point until some other property holds.

Syntax LTL formulas

An assertion about a path

 $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$,

 $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U\psi$

Semantics of LTL formulas

- Based on Kripke structure $M = (S, S_0, R, L)$
 - S finite set of states;
 - $S_0 \subseteq S$ set of initial states;
 - $R \subseteq S \times S$ total transition relation;
 - $L: S \to 2^{AP}$ a labeling function.
- Path in model *M* from state *s* is
 - infinite sequence of model states

$$\pi = s_0, s_1, s_2, \dots$$
, such that $s_0 = s$ and for all $i \ge 0$ $R(s_i, s_{i+1})$.

- infinite branch in the computation tree of model M
- $M, \pi \models \varphi \varphi$ holds on path π of model M

- Relation | is defined inductively
 - φ , φ_1 and φ_2 are formulas
 - path $\pi = s$, s_1 , ... s_k , ... and suffix $\pi^k = s_k$, ... s_m , ...

•
$$M, \pi \models p \Leftrightarrow p \in L(s)$$

•
$$M$$
, $\pi \models \neg \varphi$ \Leftrightarrow M , $\pi \not\models \varphi$

•
$$M$$
, $\pi \models \varphi_1 \land \varphi_2 \iff M$, $\pi \models \varphi_1 \text{ and } M$, $\pi \models \varphi_2$

•
$$M$$
, $\pi \models \varphi_1 \lor \varphi_2 \iff M$, $\pi \models \varphi_1 \text{ or } M$, $\pi \models \varphi_2$

- Relation | is defined inductively
 - φ , φ_1 and φ_2 are formulas
 - path $\pi = s$, s_1 , ... s_k , ... and suffix $\pi^k = s_k$, ... s_m , ...

•
$$M$$
, $\pi \models X\varphi$ $\Leftrightarrow M$, $\pi^l \models \varphi$

- M, $\pi \models \varphi_1 U \varphi_2 \iff$ there exists $k \ge 0$, such that $\pi^k \models \varphi_2 \text{ and for all } 0 \le j < k : M, \ \pi^j \models \varphi_1 \text{ holds}$
- M, $\pi \models F\varphi$ \Leftrightarrow there exists $k \ge 0$ such that M, $\pi^k \models \varphi$
- M, $\pi \models G\varphi$ \Leftrightarrow for all $k \ge 0$: M, $\pi^k \models \varphi$ holds

$$F\varphi \equiv true \ U\varphi$$
 $G\varphi \equiv \neg F \neg \varphi$

Typical LTL formulas

- $F(Start \land \neg Ready)$
 - it is possible to achieve a state in which the *Start* condition is satisfied, and *Ready* is not.
- $G(Req \rightarrow FAck)$
 - if a request is received, it will be confirmed sooner or later.
- **GF** (DeviceEnabled)
 - DeviceEnabled condition holds infinitely often on every system execution.
- **GF** (Restart)
 - from any state, *Restart* state is reachable.
- GFφ
 - formula φ holds infinitely often (*liveness*)
- $FG\varphi$
 - eventually φ becomes true and holds forever (*stabilization*)

CTL and LTL: specification patterns

• https://matthewbdwyer.github.io/psp/patterns.html

Occurrence patterns

- appearance of a system event *p* during system execution.
- Universality:
 - *Meaning*: it is always the case that *p* holds
 - Semantics LTL:

Gp

• Graphical form:

• Example: Alice loves Bob forever.

X-next

F-future

G-always

U-until

Occurrence patterns

- appearance of a system event *p* during system execution.
- Existence:
 - *Meaning*: *p* eventually holds
 - Semantics LTL:

• Graphical form:

• Example: Alice will love Bob sometime.

Fp

 $\overline{X-next}$

F-future

G-always

U-until

Occurrence patterns

- appearance of a system event *p* during system execution.
- Absence:
 - *Meaning*: it is never the case that *p* holds
 - Semantics LTL:

 $G \neg p$

• Graphical form:

G-always

U-until

Order patterns

- a relative appearance of events p and s during execution.
- Precedence:
 - *Meaning*: if *p* happens, then *s* has happened before
 - Semantics LTL:

$$\neg p \mathbf{W} (s \land \neg p \land \mathbf{F}p)$$

• Graphical form:

• *Example*: The *cooling* is only possible after *overheating*.

 \overline{X} – next

F-future

G-always

U-until

Order patterns

- a relative appearance of events p and s during execution.
- Response:
 - *Meaning*: it is always the case that if *p* holds, then *s* eventually holds
 - Semantics LTL: $G(p \rightarrow Fs)$

• Graphical form:

• Example: After the overheating signal the cooling will start.

 \boldsymbol{F} – future

G-always

U-until

Specification patterns: eventual restrictions

• Property p, property q

• After \boldsymbol{q} , until \boldsymbol{r} .

Specification patterns: eventual restrictions

Pattern -what, scope -when.

- Globally: no restrictions.
- Before R: a pattern holds during program execution before *r* first occurs.
 - Universality Before R:
 - *Meaning*: *p* always holds until *r* holds
 - Semantics LTL:
 - Graphical form:

 $\mathbf{Fr} \rightarrow \mathbf{pUr}$

G-always

U-until

Specification patterns: eventual restrictions

Pattern -what, scope -when.

- Before R: a pattern holds during program execution before *r* first occurs.
 - Response Before R:
 - *Meaning*: if *p* holds, then *s* eventually holds before *r* holds
 - Semantics LTL:

$$\mathbf{F}r \rightarrow (\mathbf{p} \rightarrow (\neg r \ \mathbf{U}(s \wedge \neg r)))\mathbf{U}r$$

- Graphical form:
- Example: After the overheating signal the cooling starts before the temperature becomes low.

X-next

F-future

G-always

U-until

 $W-weak\ until$

Restrictions: eventual, durational, quantitative

- Globally + Before + Duration + Quantity:
 - *Meaning*: p happens 2 two times before r and its duration is k time unites.
 - Formal semantics MTL:

$$Fr \to (\neg rU(FG_k(\textcolor{red}{p} \land \neg r) \land X(\neg rU(FG_k(\textcolor{red}{p} \land \neg r) \land X(\neg G_k\textcolor{red}{p}U \ r)))))$$

• Graphical form:

• *Example*: A train must give two long calls before train maintenance staff release the brakes.

LTL model checking

Model checking process

- Modeling
- Specification
- Verification
 - Checking consistency of the model and its specification.
 - Fully automatic.
 - Results Analysis
 - Counterexample
 - False counterexample
 - Model refinement
 - · Large size model.
 - Abstraction

Model checking problem

- Model checking problem
 - For given
 - Kripke structure $M = (S, S_0, R, L)$
 - finite state system
 - formula of (temporal) logic φ
 - specification
 - To find in the set *S*
 - the set of all states in which φ holds, i.e.
 - semantics of φ , the set $\{s \in S \mid M, s \models \varphi\}$.
 - If a concurrent system has initial states, then
 - the system satisfies the specification φ if
 - all the initial states in the semantics of φ .

Model checking problem

- The abstract algorithms for solving the model checking problem
 - · explicit representation of Kripke structures in the form of labeled directed graphs
 - vertices states from S,
 - edges transition relation R,
 - vertex labeling function $L: S \to 2^{AP}$.

LTL Model Checking

- Kripke structure $M = (S, S_0, R, L), s \in S, A\varphi \in ALTL$.
 - $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $X\varphi$, $F\varphi$, $G\varphi$, $\varphi U \psi$ in LTL

- Model checking problem
 - Verify that $M,s \models A\varphi$
 - $\cdot \Leftrightarrow M,s \models \neg E \neg \varphi$
 - it is enough to be able to check $\boldsymbol{E}\varphi$.

- Model checking problem for $\boldsymbol{E}\varphi$ is *NP-complete*.
 - Let G = (V, A) is graph with $V = \{v_1, \dots, v_n\}$.
 - The *Hamiltonian path* finding problem can be reduced to checking if $M, s \models \varphi$

$$E[Fp_1 \land \dots \land Fp_n \land G(p_1 \rightarrow XG \neg p_1) \land \dots \land G(p_n \rightarrow XG \neg p_n)]$$

- Tableaux algorithm of Liechtenstein-Pnueli
 - The complexity is
 - exponential with respect to the length of the verifying formula and
 - linear with respect to the size of the model
- *Tableaux* is graph constructed according to the formula
 - The algorithm for checking the satisfiability of LTL formula in Kripke structure
 - · constructs the composition of the tableaux and structure to verify if
 - there is a *computation* in the structure that simultaneously
 - is the *path* in the tableaux.
- The model checking problem for LTL-formula and the Kripke structure is to determine
 - whether a given formula holds on all paths
 - or if there are paths on which the formula does not hold.

Tableaux LTL Model Checking

- For the given formula φ and the Kripke structure M,
 - construct the tableaux T for the formula φ .
 - The Kripke structure which includes just all the paths that satisfy formula φ .

X-next

 \mathbf{F} – future

G-always

U-until

W – weak until

Transform the formula to normal form – negations before propositions only.

- $\neg \neg \varphi \equiv \varphi$
- $\neg (\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$
- $\neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
- $\neg X \varphi \equiv X \neg \varphi$
- $\neg F\varphi \equiv G \neg \varphi$
- $\neg G\varphi \equiv F \neg \varphi$
- $\neg (\varphi U \psi) \equiv \neg \psi W \neg (\varphi \vee \psi)$
- $\neg (\varphi W \psi) \equiv \neg \psi U \neg (\varphi \vee \psi)$
- · The algorithm also works for general formulas.

Towards a tableaux form for LTL-formula

X-next

 \mathbf{F} – future

G-always

U-until

W – weak until

Transforming LTL formulas to tableaux form

•
$$p \wedge G(q \wedge (r_1 \rightarrow Xs_1) \wedge ... \wedge (r_n \rightarrow Xs_n) \wedge Ft_1 \wedge ... \wedge Ft_m),$$

- p the initial conditions
- q the invariant
- $r_i \rightarrow Xs_i$ the transitions
- t_i the fairness conditions

- Two steps:
 - 1. Coding temporal formulas with atomic propositions
 - 2. Replacing temporal operators

Towards a tableaux form for LTL-formula

1. Coding temporal formulas

- The formula f_S is obtained from the formula f by replacing the subformulas f_i containing temporal operators with atomic statements p_i , starting with the deepest.
- Formula $f_C = \bigwedge_i \mathbf{G}(p_i \to f_i)$.
 - Always, if proposition p_i holds then formula f_i holds also.
 - Proposition p_i «codes» f_i .

•
$$f \equiv f_S \wedge f_C$$

•
$$f = \neg a \lor G \neg b \land X(\neg c \ U \ (\neg d \land \neg c))$$

•
$$f_S = -a \lor p_1 \land p_3$$

•
$$f_C = G(p_1 \rightarrow G \neg b) \land G(p_3 \rightarrow Xp_2) \land G(p_2 \rightarrow (\neg c \ U (\neg d \land \neg c)))$$

$$p \wedge G(q \wedge (r_1 \rightarrow Xs_1) \wedge ... \wedge (r_n \rightarrow Xs_n) \wedge Ft_1 \wedge ... \wedge Ft_m)$$

Towards a tableaux form for LTL-formula

X-next

 $oldsymbol{F}-future$

G-always

U-until

W-weak until

2. Replacing temporal operators

•
$$f \equiv f_S \wedge f_C = F \wedge A_i G(p_i \rightarrow f_i)$$

- *F* do not include temporal operators
- $h_i = \Lambda_i G(p_i \rightarrow f_i)$
- Replace h_i including G, F, U and W.
- 1. $h_i = G(p_i \rightarrow Gd_i) \equiv G(p_i \rightarrow r_i) \land G(r_i \rightarrow d_i) \land G(r_i \rightarrow Xr_i)$
 - new r_i promises that d_i will hold always.

2.
$$h_i = G(p_i \to Fd_i) = G(p_i \to (\neg d_i \to r_i)) \land G(r_i \to X(\neg d_i \to r_i)) \land GF \neg r_i$$

3.
$$h_i = \mathbf{G}(p_i \rightarrow (d_i \mathbf{W} e_i)) \equiv \mathbf{G}(p_i \rightarrow e_i \vee d_i \wedge r_i) \wedge \mathbf{G}(r_i \rightarrow \mathbf{X}(e_i \vee d_i \wedge r_i))$$

4.
$$h_i = G(p_i \rightarrow (d_i U e_i)) \equiv G(p_i \rightarrow e_i \lor d_i \land r_i) \land G(r_i \rightarrow X(e_i \lor d_i \land r_i)) \land G(p_i \rightarrow Fe_i)$$

A tableaux form for LTL-formula

• Factor out all operators *G* and propositional subformulas:

$$p \wedge G(q \wedge (r_1 \rightarrow Xs_1) \wedge ... \wedge (r_n \rightarrow Xs_n) \wedge Ft_1 \wedge ... \wedge Ft_m),$$

- $p, q, r_1, ..., r_n, s_1, ..., s_n, t_1, ..., t_m$ propositional subformulas without temporal operators.
- formula *p* «plays just at the start»,
- formula q «plays always»,
- formulas r_i and s_i (i in [1..n]) specify transition steps,

• formulas t_j (j in [1..m]) are fairness conditions

reachable from every state.

Tableaux form

$$\varphi \equiv p \wedge \mathbf{G}(q \wedge (r_1 \rightarrow \mathbf{X}s_1) \wedge \dots \wedge (r_n \rightarrow \mathbf{X}s_n) \wedge \mathbf{F}t_1 \wedge \dots \wedge \mathbf{F}t_m)$$

• Tableaux T_{φ} – the graph of semantics of φ

Model Checking

- Does LTL formula φ hold in a given structure M?
- The language of this structure $L_{\omega}(M)$ is the set of (infinite) paths of M.
- · Naive verification method:
 - Is $L_{\omega}(M) \subseteq L_{\omega}(T_{\omega})$ true?
 - Accepting paths in structure M-possible system behavior
 - Accepting table paths $T_{\varphi}-desired$ system behavior
 - If any possible behavior is the desired: $L_{\omega}(M) \subseteq L_{\omega}(T_{\omega})$
 - then the model satisfies the formula φ
 - The problem of inclusion checking for languages of Kripke structures is *PSPACE*-complete.

$$L_{\omega}(M) \subseteq L_{\omega}(T_{\varphi}) \quad \text{iff} \quad L_{\omega}(M) \cap L_{\omega}(\neg T_{\varphi}) = \emptyset,$$

- $\neg T_{\varphi}$ is complement of T_{φ}
 - A structure with the set of paths which are complement of the set of paths in T_{φ} .
- The best known algorithm for constructing $\neg T_{\varphi}$ by tableaux T_{φ}
 - is quadratically exponential:
 - if T_{φ} includes n states, then $\neg T_{\varphi}$ includes c^{n^2} states for some $c \ge 1$.

$$L_{\omega}(M) \subseteq L_{\omega}(T_{\varphi}) \quad \text{iff} \quad L_{\omega}(M) \cap L_{\omega}(\neg T_{\varphi}) = \emptyset,$$

• Compliment structure for $\neg T_{\varphi}$ is equivalent to structure for $\neg \varphi$:

•
$$L_{\omega}(\neg T_{\varphi}) = L_{\omega}(T_{\neg \varphi})$$

Model checking algorithm:

- 1. Build a tableaux for the negation of the desired property φ .
 - Tableaux $T_{\neg \varphi}$ models undesirable system computations

If M contains an acceptable path, which is also an acceptable path in $T_{\neg \varphi}$

- an example of a computation that violates the property φ , i.e. φ is not a property of M.
- Otherwise, φ holds.
- 2. Check if $L_{\omega}(M) \cap L_{\omega}(T_{-\omega}) = \emptyset$.
 - Construct a Cartesian product of the structures M and $T_{\neg \varphi}$.

- Structure $M = (S, S_0, R, L)$, structure $T_{\neg \varphi} = (S_D, S_{0D}, R_D, L_D)$
- Product structure $M' = (S', R', S_0', L')$:
- $S' = \{(s, s_D) \mid s \in S, s_D \in S_D \text{ and } L_D(s_D) \cap AP = L(s)\};$
- $R' = \{((s, s_D), (s', s_D')) \mid (s, s') \in R, (s_D, s_D') \in R_D\} \cap (S' \times S');$
- $S_0' = \{(s_0, s_{0D}) \mid s_0 \in S_0, s_{0D} \in S_{0D}\} \cap S';$
- $L(s, s_D) = L_D(s_D)$.
- 3. Determine whether in the model M' there exists an infinite path starting from the initial state and satisfying the fairness conditions t_i
 - If such a path exists, then in M there exists a path satisfying $\neg \varphi$.
 - A *counterexample* for the formula φ .
- The time complexity of this algorithm $O(|M| \times 2^{|\varphi|})$.

Summary

- Model Checking (formal verification)
 - Exhaustive search in parallel system states
 - States, transitions
 - Kripke structure
 - Formal model for programs and systems in general
 - Translation
 - Checks if a specification is satisfiable in a state
 - Specification logics
 - Temporal logics
 - Something happens in time
 - Other logics