Taller III

Bourbaki

18 de noviembre de 2024

1. Demuestre que $A \subset \mathbb{C}$ es compacto si y solo si es acotado y cerrado.

Demostración. Supongamos que A es compacto, si A no es acotado entonces para todo $n \in \mathbb{N}$, existe $z_n \in A$ tal que $|z_n| > n$, por tanto $\{z_n\}$ no tiene punto de acumulación ya que... suponga que z_0 es un punto de acumulación, sea $m > 2|z_0|$, es claro que $|z_0| > 0$ ya que en caso contrario $z_0 = 0$, así pues $|z_n - z_0| = |z_n| > n$ y por lo tanto z_0 no sería punto de acumulación. En este caso $|z_m - z_0| \ge |z_m| - |z_0| > 2|z_0| - |z_0| = |z_0|$, contradice que ese coso es punto límite. Entonces es acotado.

Sea $z_0 \in \overline{A}$, dado n, existe $z_n \in A$ tal que $|z_n - z_0| < \frac{1}{n}$, así $\{z_n\}$ converge a z_0 . Como A es compacto existe una subsucesión convergente en A, es claro que este límite debe ser z_0 , así $z_0 \in A$, con lo cual A es cerrado.

El recíproco tengo pereza

2. Sea $K \subset \mathbb{C}$ compacto. Sean $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ una sucesión de subconjuntos de K no vacíos, tales que $K_n \supseteq K_{n+1}$. Demostrar que la intersección de todos los $K_n, n=1,2,3,\ldots$ es no vacía.

Pues lo que pasa es que eso siempre es fácil allí porque usted llega y coge el conjunto $\left(0,\frac{1}{n}\right)$ $n \in \mathbb{N}$, note que ese conjunto está contenido en [0,1] que es compacto, y pues si usted considera la intersección de esos coyos, eso le da vacío siono?

3. Encontrar la imagen de las regiones:

$$1<|\operatorname{Im}(z)|\leq 2$$

|z| < 1

bajo las aplicaciones:

a)
$$f(z) = z^2$$

Sea z=x+yi, entonces $z^2=x^2-y^2+2xyi$, sean $u(x,y)=x^2-y^2$ y v(x,y)=2xy las funciones parte real e imaginaria, esto es

$$x = \frac{v}{2y}$$

reemplazando en la ecuación de arriba se obtiene que

$$u = \frac{v^2}{4y^2} - y^2$$

si uno reemplaza en -2 y -1 obtiene las ecuaciones de dos parábolas, pero pues usted tiene que girar la cabeza para verlo bien

$$u = \frac{v^2}{16} - 4$$
 $u = \frac{v^2}{4} - 1$

Para el caso |z|<1 nos deja la misma bola porque dado $z=re^{i\theta}$ entonces $z^2=r^2e^{i2\theta}$ por lo que nos queda la misma circunferencia, dado que si $0 \le r < 1$ entonces $0 \le r^2 < 1$

$$b) f(z) = \frac{2z + i}{z + 1}$$

Esto lo irá a hacer su madre y con su madre me refiero al Santiago xd.

- 4. Sea $f(z) = \frac{z i}{z + i}$, hallar la imagen por f de:
 - a) El semiplano superior.
 - b) La semirecta it; $t \ge 0$.
 - *c*) La recta it; $t \in \mathbb{R}$.
 - d) |z-1|=1.
 - e) |z| = 2; $Im(z) \ge 0$.
- 5. Sea $A = \{z \in \mathbb{C} : -\infty < \text{Im}(z) \le \alpha\}$. Si $f(z) = e^z$, hallar f(A).
- 6. Sea $A = \{z \in \mathbb{C} : |Re(z)| < \frac{\pi}{2}, Im(z) > 0\}$. Si $f(z) = \sin(z)$, hallar f(A).
- 7. Determine completamente la proyección estereográfica (que lleva la esfera de Riemann en el plano complejo). Es decir, hallar explícitamente T y T^{-1} .
- 8. Demostrar que la proyección estereográfica preserva círculos. La imagen directa o inversa de una circunferencia es una circunferencia.