1 Examples of stable ∞ -cagtegories

1.1 dg-Categories

Review, let \mathcal{A} be an abelian cagtegory with enough projectives. Then there is a category $D^{-}(\mathcal{A})$ the derived category of bounded-above.

 $\mathbf{Ch}(()\mathcal{A})$ is naturally a dg-Category meaning it is enriched in $\mathbf{Ch}(()\mathbf{Ab})$. Indeed, if $A, B \in \mathbf{Ch}(()\mathcal{A})$ then we define,

$$\operatorname{Hom} (A_{\bullet}, B_{\bullet})_n = \prod_k \operatorname{Hom} (A_k, B_{k-n})$$

with differential,

$$(\mathrm{d}f)_k = f_{k+1} \circ \mathrm{d}_B + (-1)^{n+1} \mathrm{d}_B \circ f_k$$

Then we check that,

$$H^0(\operatorname{Hom}(A, B)_{\bullet}) = \operatorname{Hom}_{\mathbf{Ch}(()A)}(A, B)$$

1.2 Program

Given a dg-category, we get a simplicially enriched category by truncating and then applying Dold-Kan and then apply the homotopy-coherent nerve.

However, this requires checking many steps. We can instead go directly with the following construction.

1.3 Construction

Definition 1.3.1. A dg-category is a category enriched in $\mathbf{Ch}(()\mathcal{A})$. This includes the requirement that,

$$d(g \circ f) = dg \circ f + (-1)^{\deg g} g \circ df$$

which arises from needing to preserve the monoidal structure on $\mathbf{Ch}(()\mathcal{A})$ given by graded tensor $A\otimes B$.

We will define a dg-Nerve which goes directly from dg-categories to ∞ -categories which does not require passing through simplically-enriched categories.

Definition 1.3.2. Let C be a dg-category. Then the dg-Nerve is the simplicial set $N_{\rm dg}(C)$ where $N_{\rm dg}(C)_n$ is the set of objects X_i for $i \in \{0, \ldots, n\}$ and for each ordered set $I = \{i_- < i_m < \cdots < i_1 < i_+\}$ for $m \ge 0$ of elements in $\{0, \ldots, n\}$ we have map,

$$f_I \in X_{i_-} X_{i_+}$$

such that,

$$df_I = \sum_{1 \le j \le m} (-1)^i (f_{I \setminus \{i_j\}} - f_{\{i_j < \dots < i_+\}} \circ f_{\{i_- < \dots < i_j\}})$$

and the maps work as follow. If $\alpha:[m]\to[n]$ is monotone. Then the induced map α^* is given by,

$$\alpha^*(\{X_i\}, \{f_I\}) = (\{X_{\alpha(i)}\}, \{g_I\})$$

where,

$$g_J = \begin{cases} f_{\alpha(J)} & \alpha|_J \text{ injective} \\ \mathrm{id}_{X_i} & J = \{j, j'\} \text{ and } \alpha(j) = j' \\ 0 & \text{else} \end{cases}$$

Proposition 1.3.3. For any dg-category C the dg-Nerve $N_{\rm dg}(C)$ is an ∞ -category.

Proof. We need to show that inner horns can be filled. However, $\Lambda^n_i \to N_{\rm dg}(C)$ this is the same data as specifying $\Delta^n \to N_{\rm dg}(C)$ except we haven't specified all the maps f_I . In fact, this has specified the maps for all I except for I = [n] and $I = [n] \setminus \{i\}$. Then we set $f_{[n]} = 0$ and,

$$f_{[n]\setminus\{i\}} = \sum_{0$$