UBC Physics 102

Lecture 15

Rik Blok

AC source [Text: Sect. 31-1]

- Definition: AC source
- Generates an alternating (sinusoidal unless otherwise stated) current,

$$I = I_0 \sin \omega t.$$

Angular frequency \(\tilde{\pi} \) related to frequency \(f \) and period T by

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

- Circuit symbol: -
- Note: multimeters read RMS values, not peak.

UBC Physics 102: Lecture 15, July 22, 2003 - p. 3/18

3

Outline

- AC source R circuits L circuits C circuits
- LRC circuits
 - Resonance

UBC Physics 102: Lecture 15, July 22, 2003 - p. 2/18

UBC Physics 102: Lecture 15, July 22, 2003 - p. 1/18

R circuits [Text: Sect. 31-2]

Discussion: R circuits

• Voltage drop across resistor, $V = IR = I_0 R \sin \omega t$ so voltage amplitude is $V_0 = I_0 R$.

UBC Physics 102: Lecture 15, July 22, 2003 - p. 4/18

L circuits [Text: Sect. 31-3]

- Discussion: R circuits, contd
- ullet RMS voltage, $V_{
 m RMS} = I_{
 m RMS} R$.
 - Interactive Quiz: PRS 15a
- Discussion: L circuits

By Kirchhoff's loop rule,

$$V = L \frac{dI}{dt} = L \frac{d}{dt} I_0 \sin \omega t$$
$$= \omega L I_0 \cos \omega t.$$

UBC Physics 102: Lecture 15, July 22, 2003 - p. 5/18

L circuits, contd

- ullet Definition: Inductive reactance, X_L
- Voltage amplitude is $V_0 = \omega L I_0$.
- \bullet Multimeter will give readings $V_{\mathrm{RMS}} = I_{\mathrm{RMS}} X_L$ where

$$X_L = \omega L$$
.

- X_L called inductive *reactance*.
- Like resistance except current out of phase with

UBC Physics 102: Lecture 15, July 22, 2003 - p. 7/18

3

L circuits, contd

Discussion: L circuits, contd

Current lags voltage by 90°.

UBC Physics 102: Lecture 15, July 22, 2003 - p. 6/18

C circuits [Text: Sect. 31-4]

Discussion: C circuits

- By Kirchhoff's loop rule, $V = \frac{Q}{C}$.
- How does this relate to current? I = \frac{dQ}{dt} so

$$\frac{dV}{dt} = \frac{I}{C} = \frac{I_0}{C} \sin \omega t.$$

Solution is

$$V = -\frac{I_0}{\omega C} \cos \omega t.$$

UBC Physics 102: Lecture 15, July 22, 2003-p. 8/18

C circuits, contd

Discussion: C circuits, contd

Current leads voltage by 90°.

UBC Physics 102: Lecture 15, July 22, 2003 - p. 9/18

LRC circuits [Text: Sect. 31-5]

Discussion: LRC circuits

- What if circuit contains all three components in
- Same current $I = I_0 \sin \omega t$ goes through each.
- Expect total voltage drop to be $V = V_0 \sin(\omega t + \phi)$. But which ϕ ? 0° , $\pm 90^\circ$ or something else?

 - And what is V_0 ?

UBC Physics 102: Lecture 15, July 22, 2003 - p. 11/18

C circuits, contd

ullet Definition: Capacitive reactance, X_C

- Voltage amplitude is $V_0=rac{I_0}{\omega C}$.
- \bullet Multimeter will give readings $V_{\mathrm{RMS}} = I_{\mathrm{RMS}} X_C$ where

$$X_C = \frac{1}{\omega C}.$$

X_C called inductive reactance.

Discussion: CIVIL memory aid 9

- CIVIL = in Capacitors I comes before \underline{V} .
- $C|\overline{VIL} = \underline{V}$ comes before \underline{I} in inductors (\underline{L})

UBC Physics 102: Lecture 15, July 22, 2003 - p. 10/18

LRC circuits, contd

Discussion: LRC circuits, contd

From Kirchhoff's loop rule,

$$V = V_R + V_L + V_C$$

= $I_0 R \sin \omega t + I_0 (X_L - X_C) \cos \omega t$.

Definition: Impedance

- After some geometry (hand waving) we find $V_0 = I_0 Z$.
- \bullet Likewise, multimeters will read $V_{
 m RMS} = I_{
 m RMS} Z$ where

$$Z = \sqrt{R^2 + (X_L - X_C)^2}.$$

3

UBC Physics 102: Lecture 15, July 22, 2003 - p. 12/18

LRC circuits, contd

- Definition: Impedance, contd
- Z called impedance of circuit.
- "Impedes" current flow like resistance but also phase-shifts it by $\phi.$
- Vector representation:

UBC Physics 102: Lecture 15, July 22, 2003 - p. 13/18

LRC circuits, contd

- Derivation: Power, contd
- ullet Average rate of power consumption is $\overline{P}=I_{
 m RMS}^2R$
- From vector representation we see $R=Z\cos\phi$ so

$$\overline{P} = I_{\rm RMS}^2 Z \cos \phi = I_{\rm RMS} V_{\rm RMS} \cos \phi.$$

• $\cos \phi$ called **power factor**.

http://www.zoology.ubc.ca/~rikblok/phys102/lecture/

UBC Physics 102: Lecture 15, July 22, 2003 - p. 15/18

3

LRC circuits, contd

- Definition: Impedance, contd
- Summary:

Name	Symbol	Phase shift
Resistance	R	00
Reactance	X	~06∓
Impedance	Z	$ \phi (\phi \le 90^{\circ})$

- Interactive Quiz: PRS 15b
- Derivation: Power
- \bullet L and C don't lose energy, they just swap it back and forth.
- Only R loses energy, as heat.

UBC Physics 102: Lecture 15, July 22, 2003 - p. 14/18

Resonance [Text: Sect. 31-6]

- Discussion: Resonance
- Already saw a LC circuit (without any voltage source) oscillates at frequency $\left|\omega_0=\frac{1}{\sqrt{LC}}\right|$.
- What is so special about that frequency?
- If we "push" an LRC circuit with an AC source at frequency ω_0 ,

$$X_L = \omega_0 L = \sqrt{\frac{L}{C}},$$
$$X_C = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}}.$$

So $X_L = X_C$.

ologv.ubc.ca/~rikblok/phys102/lecture/

UBC Physics 102: Lecture 15, July 22, 2003 - p. 16/18

