Задача

У Майка есть последовательность $\mathbf{A} = [\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}]$ длины \mathbf{n} . Он считает последовательность $\mathbf{B} = [\mathbf{b_1}, \mathbf{b_2}, ..., \mathbf{b_n}]$ красивой, если \mathbf{gcd} всех её элементов больше, чем $\mathbf{1}$, то есть $\mathbf{gcd}(\mathbf{b_1}, \mathbf{b_2}, ..., \mathbf{b_n}) > \mathbf{1}$.

Майк может изменить последовательность, чтобы сделать её красивой.

За один ход он может выбрать позицию \mathbf{i} ($\mathbf{1} \le \mathbf{i} < \mathbf{n}$), удалить числа $\mathbf{a_i}$, $\mathbf{a_{i+1}}$ и вставить числа $\mathbf{a_i}$ - $\mathbf{a_{i+1}}$, $\mathbf{a_i}$ + $\mathbf{a_{i+1}}$ на их место в таком порядке. Найдите минимальное количество ходов, которое необходимо сделать, чтобы последовательность \mathbf{A} стала красивой, или сообщите, что это невозможно.

 $\mathbf{gcd}(\mathbf{b_1}, \mathbf{b_2}, ..., \mathbf{b_n})$ – наибольшее натуральное число \mathbf{d} , которое делит $\mathbf{b_i}$ для всех \mathbf{i} ($1 \le \mathbf{i} \le \mathbf{n}$).

Дополнительные условия

Входные данные:

Первая строка входных данных содержит единственное целое число $\mathbf{n} \ (\mathbf{2} \le \mathbf{n} \le \mathbf{10^5}) -$ длина последовательности \mathbf{A} .

Вторая строка содержит **n** целых чисел, разделенных пробелами, $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}$ $(1 \le \mathbf{a_i} \le 10^9)$ — элементы последовательности **A**.

Выходные данные:

В первой строке выведите **YES**, во второй строке — количество ходов, если возможно последовательность A сделать красивой. Иначе просто выведите **NO**.

Ограничения: 1 секунда, 256 мегабайт.

Если **gcd** исходной последовательности больше 1, т.е. $gcd(a_1, a_2, ..., a_n) > 1$, то ответ **YES** с нулем шагов.

Теперь рассмотрим $gcd(a_1, a_2, ..., a_n) = 1$.

После проведения одной операции над $\mathbf{a_i}$ и $\mathbf{a_{i+1}}$, наш новый \mathbf{gcd} \mathbf{D} будет удовлетворять следующему: \mathbf{D} делит $(\mathbf{a_i} - \mathbf{a_{i+1}})$ и $(\mathbf{a_i} + \mathbf{a_{i+1}})$.

После проведения второй операции над $(\mathbf{a_i} - \mathbf{a_{i+1}})$ и $(\mathbf{a_i} + \mathbf{a_{i+1}}) - \mathbf{D}$ делит $(\mathbf{-2a_{i+1}})$ и $(\mathbf{2a_i})$.

Тогда \mathbf{D} делит $(\mathbf{2a_i})$ и $(\mathbf{2a_{i+1}})$.

$$a_{i,} a_{i+1}$$

$$(a_{i} - a_{i+1}), (a_{i} + a_{i+1})$$

$$(a_{i} - a_{i+1}) - (a_{i} + a_{i+1}), (a_{i} - a_{i+1}) + (a_{i} + a_{i+1})$$

$$(-2 a_{i+1}), (2a_{i})$$

С помощью вышеприведенных утверждений можно сделать вывод:

D делит
$$\mathbf{gcd}(\mathbf{a}_1,...,\mathbf{2a_i},\mathbf{2a_{i+1}},...,\mathbf{a_n})$$
 и $\mathbf{gcd}(\mathbf{a}_1,...,\mathbf{2a_i},\mathbf{2a_{i+1}},...,\mathbf{a_n})$ делит $\mathbf{2}\ \mathbf{gcd}(\mathbf{a}_1,...,\mathbf{a_n})=\mathbf{2}.$

Подробнее:

$$\mathbf{D}$$
 делит $\mathbf{gcd}(\mathbf{a}_1, ..., \mathbf{2a}, \mathbf{2a}_{i+1}, ..., \mathbf{a}_n) = \mathbf{gcd}(\mathbf{2} \ \mathbf{gcd}(\mathbf{a}_{i,} \mathbf{a}_{i+1}), \mathbf{gcd}(\mathbf{a}_1, ..., \mathbf{a}_{i-1}, \mathbf{a}_{i+2}, ..., \mathbf{a}_n)).$ $\mathbf{gcd}(\mathbf{2} \ \mathbf{gcd}(\mathbf{a}_{i,} \mathbf{a}_{i+1}), \mathbf{gcd}(\mathbf{a}_1, ..., \mathbf{a}_{i+1}, \mathbf{a}_{i+2}, ..., \mathbf{a}_n))$ делит $\mathbf{gcd}(\mathbf{2} \ \mathbf{gcd}(\mathbf{a}_{i,} \mathbf{a}_{i+1}), \mathbf{2} \ \mathbf{gcd}(\mathbf{a}_1, ..., \mathbf{a}_{i+1}, \mathbf{a}_{i+2}, ..., \mathbf{a}_n)) = \mathbf{2} \ \mathbf{gcd}(\mathbf{a}_1, ..., \mathbf{a}_i, \mathbf{a}_{i+1}, ..., \mathbf{a}_n) = \mathbf{2}.$ Тогда можно сделать вывод, что $\mathbf{D} \leq \mathbf{2}.$

Это значит, что нам нужна последовательность только из чётных чисел для того, чтобы \mathbf{gcd} этой последовательности был строго больше $\mathbf{1}$.

Пусть $\mathbf{v_1}$, ..., $\mathbf{v_n}$ последовательность, где $\mathbf{v_i} = \mathbf{a_i} \% \ \mathbf{2} \ (\mathbf{1} \le \mathbf{i} \le \mathbf{n})$. Такая последовательность будет состоять из нулей и единиц, где $\mathbf{1}$ означает, что число нечётное, а $\mathbf{0}$ - чётное. За одно действие мы можем заменить пару $(\mathbf{v_i}, \mathbf{v_{i+1}})$ на $(\mathbf{v_i} \oplus \mathbf{v_{i+1}}, \mathbf{v_i} \oplus \mathbf{v_{i+1}})$. Такое преобразование можно получить, если посмотреть, что происходит с чётностью чисел при выполнении операции из условия задачи.

Преобразования чётности (Ч – чётное число, Н – нечётное число)

- 1 $(Y, Y) \rightarrow (Y Y, Y + Y) \rightarrow (Y, Y)$
- $2 (H, H) \rightarrow (H H, H + H) \rightarrow (H, H)$
- $3 (H, Y) \rightarrow (H Y, H + Y) \rightarrow (H, H)$
- 4 $(H, H) \rightarrow (H H, H + H) \rightarrow (H, H)$

Из таблицы видно, что все возможные пары чисел можно привести к паре чётных чисел за конечное число шагов.

Найдем наименьшее количество действий, необходимых для приведения последовательности $\mathbf{v_1},...,\mathbf{v_n}$ к последовательности, состоящей только из нулей.

Оптимальным решением нашей подзадачи будет деление нашей последовательности на минимальное количество подпоследовательностей (ПП), в которых будут только единицы.

Покажем это. Предположим, что мы имеем две ПП с длинами \mathbf{a} и \mathbf{b} , расстояние между которыми равно \mathbf{c} ($\mathbf{c} > \mathbf{0}$). Для того чтобы преобразовать обе ПП в одну, необходимо \mathbf{c} операций.

Предположим, что ответ для последовательности длины **k** равен $\mathbf{f}(\mathbf{k}) = \lfloor s_i/2 \rfloor + 2 * (s_i \% 2)$. Тогда нужно просто проверить, что $\mathbf{c} + \mathbf{f}(\mathbf{a} + \mathbf{b} + \mathbf{c}) < \mathbf{f}(\mathbf{a}) + \mathbf{f}(\mathbf{b})$, но при $\mathbf{c} > \mathbf{0}$ это условие не выполняется. То есть оптимальное решение было выбрано верно.

Пример: из (1, 1, 1, 0, 1, 0, 1, 1) получим три ПП: (1, 1, 1), (1), (1, 1).

Пусть $\mathbf{s_1},...,\mathbf{s_k}$ – длины подпоследовательностей, состоящих только из единиц.

Тогда ответ: $\sum_{i=1}^k \lfloor s_i/2 \rfloor + 2*(s_i\% 2)$, так как из пары с одним нечётным числом

можно прийти к двум чётным за 2 шага, а из пары с двумя нечётными – за 1 шаг.

Итоговый ответ

Можно было уже понять, что ответ всегда будет **YES**.

Если для исходной последовательности $\gcd(a_1, a_2, ..., a_n) > 1$, то ответ **YES** с **нулем** шагов.

Если $\mathbf{gcd}(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}) = \mathbf{1}$, то ответ **YES** с $\sum_{i=1}^k \lfloor s_i / 2 \rfloor + 2 * (s_i \% \mathbf{2})$ шагов, где $\mathbf{s_1}, ..., \mathbf{s_k}$ – длины подпоследовательностей, состоящих только из единиц (только из нечётных чисел).