164 BÀI 10. GIÁ TRỊ RIÊNG, VÉC-TƠ RIÊNG, CHÉO HÓA MA TRẬN

Học xong bài này, người học cần nắm được các nội dung sau.

- Các khái niệm giá trị riêng, véc-tơ riêng của một ma trận cũng như của một toán tử tuyến tính và phương pháp tìm giá trị riêng, véc-tơ riêng.
- Các tiêu chuẩn chéo hóa ma trận và các bước để chéo hóa một ma trận.
- Phương pháp chéo hóa trực giao để chéo hóa một ma trận đối xứng.

Note 1 - Ma trận Đồng dạng:

- a) Định lý:
- -Cho X: không gian véc tơ n chiều, tức dimX = n
- -Và T: X→X, là AXTT
- -MT của T trong cơ sở E là A
- -MT của T trong cơ sở F là B
- -MT chuyển cơ sở từ F vào E là S
- -Khi đó: B = $S^{-1}AS$. (1)
- b) Định nghĩa: ... Ta nói: A và B thỏa mãn (1) là 2 MT đồng dạng.

→Nhớ: Chiều thuận của ĐL

Note 2: Ví dụ:

- B1- Tìm MT của T trong cơ sở E là A.
 - Tìm MT của T trong cơ sở F là B.
- B2- Tìm MT chuyển cơ sở từ F vào E là S.
- B3- Tìm MT nghịch đảo của S là S⁻¹.
- B4- Kiểm chứng: S⁻¹ AS = B

→ Thực hành: Xem thật kỷ VÍ dụ sau qua 4 bước trên: (SV tự đọc thật kỷ để hiểu 1 bài → sẽ hiểu được nhiều bài,...)

10.1.2 Ví dụ. Cho $T: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi công thức $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 \\ x_1 + 3x_2 \end{pmatrix}$. Xét hai cơ sở

$$E = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}; F = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}.$$

Trước tiên tìm ma trận A của T trong cơ sở E. Ta có

$$Te_1 = T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}; Te_2 = T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

... Tiếp theo cần khai triển các véc-tơ $(2,1)^T$, $(1,4)^T$ theo cơ sở E, ta có

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} \alpha_1 + \alpha_2 = 2 \\ \alpha_2 = 1 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = 1 \\ \alpha_2 = 1, \end{cases}$$

Vậy
$$[Te_1]_E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 và $[Te_2]_E = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$, cho nên $A = \begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix}$.

 $v\grave{a}\left(\frac{1}{4}\right) = \beta_1\left(\frac{1}{0}\right) + \beta_2\left(\frac{1}{1}\right) \Leftrightarrow \begin{cases} \beta_1 + \beta_2 = 1 \\ \beta = 4 \end{cases} \Leftrightarrow \begin{cases} \beta_1 = -3 \\ \beta_2 = 4. \end{cases}$

Bây giờ tìm ma trận B của T trong cơ sở F: Tf₁ = T $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ = $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$: Tf₂ = T $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ = $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$. Khai

triển các véc-tơ
$$(-1,3)^T$$
, $(3,5)^T$ theo cơ sở F , ta có

 $\begin{pmatrix} -1 \\ 3 \end{pmatrix} = \gamma_1 f_1 + \gamma_2 f_2 = \gamma_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \gamma_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} 2\gamma_2 = -1 \\ \gamma_1 + \gamma_2 = 3 \end{cases} \Leftrightarrow \begin{cases} \gamma_1 = \frac{7}{2} \\ \gamma_2 = -\frac{1}{2} \end{cases}$

 $v\grave{a} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \delta_1 f_1 + \delta_2 f_2 = \delta_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \delta_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} 2\delta_2 = 3 \\ \delta_1 + \delta_2 = 5 \end{cases} \Leftrightarrow \begin{cases} \delta_1 = \frac{7}{2} \\ \delta_2 = \frac{3}{2} \end{cases}.$

Vây
$$[Tf_1]_F = \begin{pmatrix} 7/2 \\ -1/2 \end{pmatrix}$$
, $[Tf_2]_F = \begin{pmatrix} 7/2 \\ 3/2 \end{pmatrix}$, cho nên $B = \begin{pmatrix} 7/2 & 7/2 \\ -1/2 & 3/2 \end{pmatrix}$.

Cuối cùng ta tìm ma trận chuyển từ cơ sở F vào E. Ma trận chuyển từ F vào E cố cấu trúc

$$S = ([f_1]_E, [f_2]_E, ..., [f_n]_E).$$

Ta có

$$f_{1} = s_{11}e_{1} + s_{21}e_{2} \Leftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} = s_{11}\begin{pmatrix} 1 \\ 0 \end{pmatrix} + s_{21}\begin{pmatrix} 1 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} s_{11} = -1 \\ s_{21} = 1, \end{cases}$$

$$f_2 = s_{12}e_1 + s_{22}e_2 \Leftrightarrow {2 \choose 1} = s_{12}{1 \choose 0} + s_{22}{1 \choose 1} \Leftrightarrow \begin{cases} s_{12} = 1 \\ s_{22} = 1. \end{cases}$$

Vậy
$$S = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
, nên $S^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Kiểm tra lại, ta có
$$S^{-1}AS = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{7}{2} & \frac{7}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix} = B.$$

10.2 GIÁ TRỊ RIÊNG, VÉC-TƠ RIÊNG

10.2.1 Định nghĩa Cho $A = (a_{lk})$ là ma trận vuông cấp n. Khi ấy định thức của ma trận $A - \lambda I$,

$$det(A-\lambda I) = |A-\lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} - \lambda \end{vmatrix}$$

(là một đa thức cấp n với hệ số của λ^n là $(-1)^n$ - điều đó rút trực tiếp từ định nghĩa định thức) được gọi là đa thức đặc trưng của A, kí hiệu là $P_A(\lambda)$. Phương trình $P_A(\lambda) = 0$ được gọi là phương trình đặc trưng của A.

Note 3: PT đặc trưng của MTV A cấp n.

- 1- Đa thức đặc trưng:
- -Ký hiệu + ĐN:

(Viết lên bảng)

$$det(A-\lambda I) = |A-\lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

- Đa thức cấp n, với hệ số của lũy thừa cao nhất là (-1)ⁿ
- ⇒Nếu n chẵn thì hệ số dương, nếu n lẻ thì hệ số này là âm.
- Hai MTV đồng dạng có cùng đa thức đặc trưng.

- 2- PT đặc trưng:
- -Có đúng n nghiệm (kể cả nghiệm phức và nghiệm bội).

Note 4: Ví dụ:

- 1- Đa thức đặc trưng của MTV cấp 2.
 - -PT đặc trưng của MTV cấp 2.

- 2- Đa thức đặc trưng của MTV cấp 3.
 - -PT đặc trưng của MTV cấp 3.

3-Hai MTV đồng dạng có cùng đa thức đặc trưng:

4-Xem thêm các ví dụ bên dưới.

10.2.2 Ví dụ. a) Ma trận A =
$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$$
 có đa thức đặc trưng là

$$P_{A}(\lambda) = \begin{vmatrix} 1 - \lambda & 2 & -1 \\ 1 & -\lambda & 1 \\ 4 & -4 & 5 - \lambda \end{vmatrix} = -\lambda^{3} + 6\lambda^{2} - 11\lambda + 6 = -(\lambda - 1)(\lambda - 2)(\lambda - 3).$$

b) Ma trận
$$B = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
 có đa thức đặc trưng là $P_B(\lambda) = |B - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ -2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 4$.

Phương trình đặc trưng của nó $(I - \lambda)^2 + 4 = 0$ có hai nghiệm phức là

$$\lambda_1 = 1 + 2i \text{ và } \lambda_2 = 1 - 2i.$$

Note 5: ĐN Giá trị riêng, Véc tơ riêng

Cho A là MTV cấp n, trên K.

1- Số a thuộc K được gọi là giá trị riêng của MTV A nếu tồn tại véc tơ x khác 0 và x thuộc K^n , sao cho: Ax = ax.

2- Khi đó x (khác 0) được gọi là véc tơ riêng của MTA ứng với giá trị riêng a. (Véc tơ riêng thì bắt buộc phải khác 0).

3- Các véc tơ riêng x ứng với giá trị riêng a (của AXTT T) là ĐLTT nên cùng với véc tơ 0 tạo thành 1 không gian véc tơ con => không gian con riêng ứng với a.

Note 6: Cách tìm: Giá trị riêng, Véc tơ riêng

Chú ý: Tìm giá trị riêng là tìm a (hay lamda) từ PT đặc trưng Tìm véc tơ riêng là tìm x khác 0 từ hệ PT,...

B1- Giải phương trình đặc trưng: $|A-aI_n| = 0$ để tìm giá trị riêng a (trong giáo trình ký hiệu là lamda, khi viết VD lên bảng GV viết là theo lamda).

B2- Giải hệ: $(A-aI_n)x = 0$ (với x khác 0) để tìm x.

B3- Kết luận.

-VD:

10.2.6 Ví dụ. Tìm trị riêng, véc-tơ riêng của ma trận $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ như là ma trận phức.

Ta có
$$|A-\lambda I| = \begin{vmatrix} 1-\lambda & 2 \\ -2 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 + 4 = 0 \Leftrightarrow \lambda_{1,2} = 1 \pm 2i$$
. Với $\lambda_1 = 1 + 2i$ ta có

$$(A - \lambda_1 \mathbf{I}) x = \begin{bmatrix} -2i & 2 \\ -2 & -2i \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow -2\begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} ix_1 & -x_2 & = 0 \\ x_1 & +ix_2 & = 0 \end{cases}$$

$$\Leftrightarrow x_1 = \alpha; \ x_2 = \alpha i$$
.

Vậy véc-tơ riêng ứng với
$$\lambda_i$$
 là $\alpha \begin{pmatrix} 1 \\ i \end{pmatrix}$, $\alpha \neq 0$.

Tương tự, với $\lambda_2 = I - 2i$ thì véc-tơ riêng có dạng $\beta \begin{pmatrix} 1 \\ -i \end{pmatrix}$, $\beta \neq 0$.

Note 7: GTR, VTR của AXTT

-SV tự đọc giáo trình và xem thêm các kết quả sau. (Tương tự của MT)

10.3 CHÉO HÓA MA TRÂN

- **10.3.1 Định nghĩa.** Ma trận vuông A được gọi *chéo hóa được* nếu nó đồng dạng với một ma trận chéo D, tức là $P^{-1}AP = D$.
- 10.3.2 Định lí. Ma trận vuông A cấp n chéo hóa được khi và chỉ khi trong không gian Kⁿ tồn tại một cơ sở từ các véc-tơriêng của A.
- 10.3.3 Hệ quả Ma trận vuông A cấp n chéo hóa được nếu nó có n giá trị riêng phân biệt.

Note 8: MTV A cấp n chéo hóa được

-Nếu tồn tại MTV khả nghịch P sao cho: P⁻¹AP = D (với D là MT chéo)

-Ta nói: MTV A là chéo hóa được.

Và MT P: gọi là MT làm chéo hóa A.

- -Chú ý: Nếu MTV A cấp n có n giá trị riêng phân biệt thì A nhất định chéo hóa được. Nhưng chiều ngược lại tổng quát có thể không đúng.
- → Phương pháp: Xem,...

Note 9: Các bước chéo hóa MT

- B1: Giải PT đặc trưng để tìm giá trị riêng
- B2: Úng với giá trị riêng ta tìm các véc tơ riêng cụ thể (để ở dạng cột)
- B3: Lập MT P từ các cột véc tơ riêng trên B2
- B4: Tìm MT nghịch đảo: P-1
- B5: Tính: $P^{-1}AP = ?$ (ta sẽ được MT dạng chéo)
- **VD: MTV cấp 2**,....

10.3.6 Ví dụ. Cho A = $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Tìm ma trận *P* làm chéo hóa ma trận *A*.

Đa thức đặc trưng có dạng $P_{\Lambda}(\lambda) = \lambda (\lambda - 1)^2$ với các trị riêng $\lambda_1 = 0$; $\lambda_2 = \lambda_3 = 1$.

Với
$$\lambda_I = 0$$
, ta có véc-tơ riêng $P_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Với $\lambda_2 = I$, ta có các véc-tơ riên

$$P_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Các véc-tơ
$$P_1$$
, P_2 , P_3 độc lập tuyến tính, tạo cơ sở. Lập ma trận $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$

Ta tính được
$$P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Vậy ta có

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

10.3.7 Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
, trong Ví dụ 10.2.2-b) ta đã biết rằng ứng với trị riêng

$$\lambda_i = 1 + 2i$$
, ta có véc-tơ riêng $\begin{bmatrix} 1 \\ i \end{bmatrix}$, ứng với trị riêng $\lambda_2 = 1 - 2i$ ta có véc-tơ riêng

$$\begin{bmatrix} 1 \\ -i \end{bmatrix}$$
. Lập ma trận $P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$, ta tính được $P^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{i}{2} \end{pmatrix}$. Từ đó ta có thể chéo

hóa được A như sau

$$P^{-1}AP = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{i}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} = \begin{pmatrix} 1+2i & 0 \\ 0 & 1-2i \end{pmatrix}.$$

10.3.8 Bội hình học của giá trị riêng và chéo hóa được

Ta gọi bội hình học của giá trị riêng λ (của ma trận A) là số chiều của không gian nghiệm của hệ phương trình $(A - \lambda I)x = 0$; còn bội đại số của λ là bội của nghiệm λ của phương trình đặc trưng $P_A(\lambda) = 0$.

Ta có thể chứng minh được rằng

- 1- Bội hình học của trị riêng λ luôn nhỏ hơn hoặc bằng bội đại số của nó;
- 2- Ma trận A chéo hóa được khi và chỉ khi bội đại số của giá trị riêng bất kỳ bằng bội hình học của nó.

10.3.9 Ví dụ. a) Trong Ví dụ 10.3.6 vừa xét ở trên ta thấy rằng $\lambda_1 = 0$ có bội đại số và bội hình học đều bằng I, còn $\lambda_2 = I$ có bội hình học và bội đại số bằng I, nên ma trận chéo hóa được.

b) Xét ma trận
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
. Ma trận A có các giá trị riêng $\lambda_1 = 4$; $\lambda_2 = \lambda_3 = 2$ (có

nghĩa là trị riêng $\lambda=2$ có bội đại số bằng 2). Ta tìm bội hình học của giá trị riêng $\lambda=2$. Ta có

$$(A - \lambda_2 \mathbf{I}) x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow x_1 = 0; \ x_2 = 0; \ x_3 = \beta.$$

tức là $\lambda_2 = 2$ (có bội đại số bằng 2) có bội hình học bằng 1. Vậy ma trận A không chéo hóa được.

Note 10: Chéo hóa trực giao (Bởi MT trực giao)

- •-MT thực đối xứng: A = A^T
- •-MT trực giao: $U^{-1} = U^{T}$.
- •-MT đối xứng chéo hóa được bởi MT trực giao: Nghĩa là: $U^{-1}AU = U^{T}AU = D$ (MT chéo).

Note 10: Chéo hóa bởi MT TRỰC GIAO

- B1: Giải PT đặc trưng để tìm giá trị riêng
- B2: Úng với giá trị riêng ta tìm các véc tơ riêng cụ thể (để ở dạng cột)
- B3: Trực chuẩn hệ các véc tơ riêng trên
- B4: Lập MT U từ các cột véc tơ trực chuẩn trên B3
- B5: Tìm MT chuyển vị U^T
- B6: Tính: $U^{-1}AU = U^{T}AU = ?$ (ta sẽ được MT dạng chéo) (hay ở chỗ là tính U^{T} thay vì U^{-1})
- -VD: Lấy MTV cấp 2,...

10.4.3 Ví dụ. Chéo hóa ma trận đối xứng
$$A = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \end{bmatrix}$$
. $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 0 \end{bmatrix}$

Dễ thấy A có các trị riêng
$$\lambda_1 = \lambda_2 = -2$$
; $\lambda_3 = 4$.

Với $\lambda_i = -2$, ta có hệ

$$(A - \lambda_1 I)x = 0 \Leftrightarrow \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Giải hệ này ta có thể chọn được hai véc-tơ riêng tương ứng, chẳng hạn

$$f_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}; \quad f_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

Với $\lambda_3 = 4$, ta có hệ

$$(A - \lambda_3 I)x = 0 \Leftrightarrow \begin{bmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Vậy có thể lấy véc-tơ riêng $f_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Để thiết lập ma trận trực giao làm chéo hóa A, ta cần có cơ sở trực chuẩn từ các véc-tơ riêng. Ở đây fị không vuông góc f₂ và cả 3 véc-tơ đều chưa là véc-tơ đơn vị. Vậy cần trực chuẩn hóa hệ 3 véc-tơ đó. Lưu ý rằng f_3 đã trực giao với f_1 và f_2 (vì các véc-tơ riêng ứng với các giá trị riêng khác nhau), vì vậy chỉ cần trực chuẩn 2 véc-tơ f_1 , f_2 và chuẩn hóa f_3 .

Trước hết, theo phương pháp Gram-Schmidt, ta lấy

$$e'_1 = f_1; e'_2 = f_2 - \frac{(f_2, f_1)}{(f_1, f_1)} f_1 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -1 \end{bmatrix}.$$

Tiếp theo, ta chọn

Tiếp theo, ta chọn
$$e_1 = \frac{e_1'}{\|e_1'\|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}; \quad e_2 = \frac{e_2'}{\|e_2'\|} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\sqrt{\frac{2}{3}} \end{bmatrix}; \quad e_3 = \frac{f_3}{\|f_3\|} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$$

Ta được hệ các véc-tơ riêng trực chuẩn, thiết lập ma trận trực giao

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Vậy ta có

Vây ta có
$$U^{-1}AU = U^{T}AU = e. \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}. \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Nộp BT Bài học 10

- -Làm hết BT cuối Bài học 10 => Nộp online
- -Chuẩn bị bài học 11
- -Chuẩn bị các câu hỏi cụ thể từ bài 1 11