질량분석 기반 단백체 연구 소개

2020. 06 김현우

- The Study of Proteins
 - Expression
 - Structures
 - Functions
 - Interactions of protein

- Amino acid
 - 생물의 몸을 구성하는 단백질의 기본 구성단위이다

- Peptide
 - 20가지의 서로 다른 <u>아미노산들이 화학 결합으로</u> 길게 연결된 것

Protein

- 여러 가지의 <u>펩타이드</u> 사슬이 4차 구조를 이루어 고유한 기능을 갖게 되었을 때 비로소 단백질이라고 불린다.
- 일반적으로는 분자량이 비교적 작으면 펩타이드라고 하며, 분자량이 매우 크면 단백질이라고 한다.

- Protein
 - An amino acid sequence
- Peptide
 - An amino acid sequence
 - Substring of the protein
- Amino acid
 - Single Character!

Amino Acid	3-Letter	1-Letter		
Alanine	Ala	A		
Arginine	Arg	R		
Asparagine	Asn	N		
Aspartic acid	Asp	D		
Cysteine	Cys	C		
Glutamic acid	Glu	Е		
Glutamine	Gln	Q		
Glycine	Gly	G		
Histidine	His	Н		
Isoleucine	Ile	I		
Leucine	Leu	L		
Lysine	Lys	K		
Methionine	Met	M		
Phenylalanine	Phe	F		
Proline	Pro	P		
Serine	Ser	S		
Threonine	Thr	T		
Tryptophan	Trp	W		
Tyrosine	Tyr	Y		
Valine	Val	V		

Protein

- An amino acid sequence
 - MEMEKEFEQIDKSGSWAAIYQDIRHEASDFPCRVAKLPKNKNRNRY RDVSPFDHSRKLHQEDNDYINASLIKMEEAQRSYILTQ....

Protein

- An amino acid sequence
 - MEMEKEFEQIDKSGSWAAIYQDIRHEASDFPCRVAKLPKNKNRNRY RDVSPFDHSRKLHQEDNDYINASLIKMEEAQRSYILTQ....

Peptide

- Substring of the protein
 - LPKNKNRNRYRDVSPFDHSR

• Why are proteins studied?

What is a problem?

How to analyze a protein

Mass Spectrometry

What is Mass Spectrometry?

• What is Mass Spectrometry?

	AA Co	des	AA Residue Composition	Mono.	Avg.	Structure	AA Co	des	AA Residue Composition	Mono.	Avg.	Structure	
Glycine	Gly	G	C ₂ H ₃ NO	57 .021464	57 .05	-NH-CH ₂ -CO-	Asp	D	C ₄ H ₅ NO ₃	115 .02694	115.1	CH, C-OH	Aspartic acid
Alanine	Ala	А	C ₃ H ₅ NO	71 .037114	71 .08	CH ₃ -NH-CH-CO-	Gln	Q	C ₅ H ₈ N ₂ O ₂	128 .05858		CH,-CH, H,	Glutamine
Serine	Ser	S	C ₃ H ₅ NO ₂	87 .032029	87 .08	CH , OH -NH-CH-CO-	Lys	K	C ₆ H ₁₂ N ₂ O	128 .09496	128 .2	CH;CH;CH;CH;NH; -NH-CH-CO-	Lysine
Proline	Pro	Р	C ₅ H ₇ NO	97 .052764	97 .12	H,CH, CH, -N-CH-CO-	N Glu	Е	C ₅ H ₇ NO ₃	129 .04259	129.1	СН-СН-СО-	Glutamic acid
Valine	Val	٧	C ₅ H ₉ NO	99 .068414		CH, CH, CH -NH-CH-CO-	Met	М	C ₅ H ₉ NOS	131 .04048	131 .2	CH₹CH₹S-CH2 -NH-CH-CO-	Methionine
Threonine	Thr	Т	C ₄ H ₇ NO ₂	101 .04768	101.1	он сн. сн -ин-сн-со-	c O M His	Н	C ₆ H ₇ N ₃ O	137 .05891	137.1	H CH. W	Histidine
Cysteine	Cys	С	C ₃ H ₅ NOS	103 .00919	103.1	H ₄ C -SH -NH-CH-CO-	Phe	F	C ₉ H ₉ NO	147 .06841	147 .2	CH₂-⊙	Phenylalanine
Leucine	Leu	L	C ₆ H ₁₁ NO	113 .08406	113 .2	CH ₃ CH ₇ CH-CH ₃ -NH-CH-CO-	Arg	R	C ₆ H ₁₂ N ₄ O	156 .10111	156 .2	CHICHICHINH-C	Arginine
Isoleucine	lle	ı	C ₆ H ₁₁ NO	113 .08406	113 .2	CH ₃ HC-CH ₇ CH ₃ -NH-CH-CO-	Tyr	Υ	CgHgNO ₂	163 .06333	163 .2	CH₂- <mark>⟨○⟩</mark> - OH -NH-CH-CO-	Tyrosine
Asparagine	Asn	N	C ₄ H ₆ N ₂ O ₂	114 .04293	114 .1	CH'-G-NH'	Trp	W	C ₁₁ H ₁₀ N ₂ O	186 .07931	186 .2	CH:	Tryptophane

Bottom-up method

- Protein digestion
- Mass spectrometry analysis
- Peptide identification using MS/MS
- Protein Assembly using identified peptides

- Protein digestion
 - Use proteases
 - Trypsin, Lys-C, Asp-N, Glu-C, etc.

Protein digestion

- Trypsin
 - Aggressive and stable protease
 - It cleaves proteins very specifically on the carboxy-terminal side (right side) of arginine(R) and lysine(K) residues.

- N-term & C-term
 - Protein
 - MEMEKEFEQIDKSGSWAAIYQDIRHEASDFPCRVAKLPKNKNRNRY RDVSPFDHSRKLHQEDNDYINASLIKMEEAQRSYILTQ
 - Peptide
 - LPKNKNRNRYRDVSPFDHSR
 - Amino acid
 - R

Protein digestion

- Trypsin
 - Aggressive and stable protease
 - It cleaves proteins very specifically on the carboxy-terminal side (right side) of arginine(R) and lysine(K) residues.

- Protein digestion(Trypsin)
 - Protein
 - MEMEKEFEQIDKSGSWAAIYQDIRHEASDFPCRVAKLPKNKNRNRY RDVSPFDHSRKLHQEDNDYINASLIKMEEAQRSYILTQ
 - Peptides
 - MEMEKEFEQIDK
 - SGSWAAIYQDIR
 - HEASDFPCRVAK
 - LPK
 - K

- Protein digestion(Trypsin)
 - Protein (Quiz)
 - MTVYAVTGGAEFLGRYIVKLLISADDVQEIRVINVVEDPQPLVSKVK VINYIQCDINDLIR
 - Peptides ?

- Protein digestion(Trypsin)
 - Protein (Quiz)
 - MTVYAVTGGAEFLGRYIVKLLISADDVQEIRVINVVEDPQPLVSKVK VINYIQCDINDLIR
 - Peptides?
 - MTVYAVTGGAEFLGR
 - YIVKLLISADDVQEIR
 - VINVVEDPQPLVSK
 - VK
 - VINYIQCDINDLIR
 - 실습 (?)

Protein digestion(Trypsin)

• Protein digestion(Trypsin)

• Protein digestion(Trypsin)

Protein digestion(Trypsin)

• Protein digestion(Trypsin)

• Protein digestion(Trypsin)

- Bottom-up method
 - Protein digestion
 - Mass spectrometry analysis
 - Peptide identification using MS/MS
 - Protein Assembly using identified peptides

What is the mass spectrum?

- What is the mass spectrum?
 - Y-axis?
 - Intensity
 - X-axis?
 - m/z (mass to charge ratio)
 - Peak?

Mass to charge ratio

- Peptide with mass of 1232.55
- The charge state of the peptide ion 2
- $(M + 2H)^{2+}$
 - M: The mass of the peptide
 - H⁺: The mass of a proton
- (1232.55 + (2 * 1.0073)) / 2 = (1232.55 / 2) + ((2 * 1.0073) / 2) = (1232.55 / 2) + 1.0073 = 617.28

- Mass to charge ratio (Quiz)
 - Peptide with mass of 1848.84
 - The charge state of the peptide ion 3

Mass to charge ratio

- Peptide with mass of 1848.84
- The charge state of the peptide ion 3
- $(M + 3H)^{3+}$
 - M: The mass of the peptide
 - H⁺: The mass of a proton
- (1848.84 + (3 * 1.0073)) / 3 = (1848.84 / 3) + ((3 * 1.0073) / 3) = (1848.84 / 3) + 1.0073 = 617.28

Mass to charge ratio

- Mass = 1232.55, Charge state = 2
 - (1232.55 + (2 * 1.0073)) / 2 = (1232.55 / 2) + ((2 * 1.0073) / 2) = (1232.55 / 2) + 1.0073 = 617.28
- Mass = 1848.84, Charge state = 3
 - (1848.84 + (3 * 1.0073)) / 3 = (1848.84 / 3) + ((3 * 1.0073) / 3) = (1848.84 / 3) + 1.0073 = 617.28

Mass to charge ratio

- Mass = 1232.55, Charge state = 2
 - (1232.55 + (2 * 1.0073)) / 2 = (1232.55 / 2) + ((2 * 1.0073) / 2) = (1232.55 / 2) + 1.0073 = 617.28
- Mass = 1848.84, Charge state = 3
 - (1848.84 + (3 * 1.0073)) / 3 = (1848.84 / 3) + ((3 * 1.0073) / 3) = (1848.84 / 3) + 1.0073 = 617.28

$$m/z = 617.28 !!!$$

How can we decide the charge state?

The peptide mass

- m/s = 617.28, Charge state = 2
 - (617.28 1.0073) * 2 = 1232.55
 - The peptide mass = 1232.55

The peptide mass

- m/s = 617.28, Charge state = 2
 - (617.28 1.0073) * 2 = 1232.55
 - The peptide mass = 1232.55

How can we know sequences?

The peptide mass

- m/s = 617.28, Charge state = 2
 - (617.28 1.0073) * 2 = 1232.55
 - The peptide mass = 1232.55

How can we know sequences?

Tandem mass spectrum (MS/MS)

Tandem mass spectrum

- Fragmentation
 - Method: HCD, CID, ETD, ECD
 - LPKNK
 - LPKNK
 - L + PKNK
 - LP + KNK
 - LPK + NK
 - LPKN + K

Fragmentation

Mass
71
115
129
156

y1

b3

• b1 mass =
$$R + 1 = 157$$

•
$$y1 \text{ mass} = D + 19 = 134$$

Amino Acid	Mass
Α	71
D	115
E	129
R	156

- 2 Fragmentation
 b2 R E A D
 y2
- Fragmentation

 R
 E
 A
 D
 y1

- **b1** mass = R + 1 = 157
- y1 mass = D + 19 = 134
- Quiz
- b2 mass = ?
- y3 mass = ?

Amino Acid	Mass
Α	71
D	115
E	129
R	156

y1

b3

- b1 mass = R + 1 = 157
- y1 mass = D + 19 = 134
- Quiz
- **b2** mass = R + E + 1 = 286
- y3 mass = E + A + D + 19 = 334

Amino Acid	Mass
Α	71
D	115
E	129
R	156

Tandem Mass Spectrum (Quiz)

Amino Acid	Mass
Α	71
D	115
E	129
R	156

READ vs DEAR

• Peptide mass = 471

Proteomics

- Bottom-up method
 - Protein digestion
 - Mass spectrometry analysis
 - Peptide identification using MS/MS
 - Protein Assembly using identified peptides

READ vs DEAR

• Peptide mass = 471

• Peptide mass = 471

- De novo sequencing approach
 - Peptide mass = 471

Amino Acid	Mass
Α	71
D	115
E	129
R	156

- De novo sequencing approach
 - Peptide mass = 471

Amino Acid	Mass
Α	71
D	115
E	129
R	156

- De novo sequencing approach
 - Peptide mass = 471

Amino Acid	Mass
Α	71
D	115
E	129
R	156

- De novo sequencing approach
 - Peptide mass = 471

Amino Acid	Mass
Α	71
D	115
E	129
R	156

정답: DEAR

Database search approach

• Peptide mass = 471

Amino Acid	Mass
Α	71
D	115
E	129
R	156

MS/MS						
	175	246		375		
Intensity	116	245	316			m/z
	100	200	300		400	, 2

Database search approach

• Peptide mass = 471

MS/MS						
1	175	246		375		
Intensity	116	245	316			m/z
	100	200	300		400	, _

Amino Acid	Mass
Α	71
D	115
E	129
R	156

Database

ADER

DEAR

READ

REDA

- Database search approach
 - Peptide mass = 471

MS,	/MS						
		17	75	246	375		
Intensity		116	2	45 1 3	16		m/z
		100	200) 3	800	400	, 2

Amino Acid	Mass
Α	<i>7</i> 1
D	115
E	129
R	156

Database

ADER

1.7

DEAR READ REDA

Database search approach

• Peptide mass = 471

MS/MS				
	1	75 246		375
Intensity	116	245	316	m/z
	100	200	300	400

Amino Acid	Mass
Α	71
D	115
E	129
R	156

Database ADER

DEAR

9.8

READ REDA

Database search approach

• Peptide mass = 471

MS	/MS							
			175	246		375		
Intensity		116		245	316			m/z
		100		200	300		400	, 2

Amino Acid	Mass
Α	71
D	115
E	129
R	156

Database ADER DEAR

READ

REDA

5.7

Database search approach

• Peptide mass = 471

MS,	/MS							
			175	246	Ī	375	Ī	
Intensity		116		245	316			m/z
		100		200	300		400	, 2

Amino Acid	Mass
Α	71
D	115
E	129
R	156

Database ADER DEAR READ

REDA

3.3

Database search approach

• Peptide mass = 471

MS/N	MS				
	17	75 246		375	
Intensity	116	245	316		- m/z
	100	200	300	40	

Amino Acid	Mass
Α	71
D	115
E	129
R	156

Database

ADER

1.7

DEAR

9.5

READ

5.7

REDA

3.3

De Novo Approach

VS

Database Search Approach

Proteomics

Bottom-up method

- Protein digestion
- Mass spectrometry analysis
- Peptide identification using MS/MS
- Protein Assembly using identified peptides

Protein Inference

Protein Inference

- Protein 1
 - MEMEKEFEQIDKSGSWAGGAEFLGRYAIYQDIRHEASDFPCRVAKL PKNKNRNRYRDVSPFDHSRKLHQEDNDYINASLIKMEEAQRSYILT Q
- Protein 2
 - MTVYAVTGGAEFLGRYIVKLLISADDVQEIRVINVVEDPQPLVSKVK VINYIQCDINDLIR
- Peptide
 - LGRYIVKLLISADD
 - DPQPLVSKVK

Protein Inference

Protein Inference

- Protein 1
 - MEMEKEFEQIDKSGSWAGGAEFLGRYAIYQDIRHEASDFPCRVAKL PKNKNRNRYRDVSPFDHSRKLHQEDNDYINASLIKMEEAQRSYILT Q
- Protein 2
 - MTVYAVTGGAEFLGRYIVKLLISADDVQEIRVINVVEDPQPLVSKVK VINYIQCDINDLIR
- Peptide
 - GGAEFLGRY