

INF250

Multivariate analysis

Topics for INF250

- Multivariate analysis
- PCA
- Clustering

The world is multivariate

Multivariate analysis refers to any statistical technique used to analyze data that arises from more than one variable

Who is this?

WHO IS THIS?

N B

WHO IS THIS

- The brain do not collect information from single parts, but for elements in a pattern
 - We need multivariate techniques!

Collecting data

 Data are often collected as sensor input (X) and actual chemical/physical/sensory measurements as (Y)

X-variables p						Y-v	Y-variables		
Objects	X_{11}	X_{12}			X_{lp}		Y_{11}		Ylq
	X ₂₁	X_{22}					$Y_{21} \\$		
	-			:	27 07*		.		
	-	-		1 .		1	•		
		•			•		•		
			\mathbb{X}					Y	
	•				•		•		
	·-	H		+·	·		H		+
ń	Xnl			1	X _{np}	т	Yni		Ynq

Data presentation and modelling

- One, Two, Three dimensional plots?
- Do we need a N dimension space to view data?
- How to find the optimal low dimension space that reveals maximum useful information?
- How to find the «not so useful information»
 - «NOISE»

The Iris data set

- https://en.wikipedia.org/wiki/Iris flower data set
- Often used as a demo dataset for multivariate analysis
- 3 species of Iris determined from 4 features: length and width of sepal and petals
- http://scikitlearn.org/stable/auto examples/datasets/plot iris datase t.html

Iris Data (red=setosa,green=versicolor,blue=virginica)

Principal Component Analysis


```
1.5

1.0

0.5

-0.5

-1.0

-3 -2 -1 0 1 2 3 4
```

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
# import the Iris data
iris = datasets.load_iris()
X = iris.data
y = iris.target
plt.figure()
plt.scatter(X[:,0],X[:,1],c=y)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
#simple PCA
X_reduced = PCA(n_components=3).fit_transform(iris.data)
plt.figure()
plt.scatter(X_reduced[:,1],X_reduced[:,2],c=y)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```


GRAPHICAL INTERPRETATION OF PCA

 The main idea is to form a minimum number of new variables that describes the variation of the data by a linear combination of the original values

The Principal Components

 The new coordinate system represents a stepwise rotation along the principal orthogonal axes

USE PCA TO SEPARATE CLASSES

Saparation of classes with a rotation

PCA basics

T: PCA scores matrix

E: residuals / noise

P: PCA loadings matrix

Principal Components (PC's) describing

the systematic variation in the data

PCA basics

Data in this illustration consists of 15 observations and 20 variables \rightarrow data matrix X of dimension (15 x 20)

PCA- correlation loadings

- Circles in the plot corresponding to various degrees of explained variances
- Typically one will present a circle for I00%explained and for 50%explained variance by the two components

- Only purpose of PCA is to look for directions with high variance
- This implies: if there are variables x_k in X that have a **larger variance** than others ...
 - they will be given most attention
 - They will dominate the extracted components
 - → They will dominate the plots
- Generally one is interested in letting all variables play a role in the estimation of components (there are exceptions) \rightarrow standardise variables x_k in X
- Matrices in multivariate statistics are always either centered or standardised

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1K} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{NK} \end{pmatrix}$$

- Number of objects (rows):
 - \blacksquare n=1...N
- Number of variables (columns):
 - k = 1 ... K
- Observed value x_{nk} for
 - *n*'th object
 - *k*'th variable

center

$$x_{nk,cent} = x_{nk} - \bar{x}_k$$

$$\bar{x}_k = \frac{1}{N} \sum_{n=1}^{N} x_{nk}$$

where

standardise

$$x_{nk,stand} = \frac{x_{nk} - \bar{x}_k}{\sigma_k}$$

$$\sigma_k = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_{nk} - \bar{x}_k)^2}$$

Equal variance of x_1 and x_2

 x_1

Variance of x_2 is larger than variance of x_1

Validation is necessary to gain knowledge on **how many** components are **appropriate** for the model, i.e. how many components can be used for interpretation and further analysis.

- Use of internal cross validation in PCA
- K-foldcross validation (number of folds / splits used)
- LOOcross validation ("Leave-one-out")

Poor model – may be a result of few objects that are very different from each other or overfitting

Hoggorm, HoggormPlot and examples

- Hoggorm package for multivariate statistics
 - GitHub: https://github.com/olivertomic/hoggorm
 - Read the Docs: http://hoggorm.readthedocs.io/en/latest/
- HoggormPlot package for convenient plotting of Hoggorm results
 - GitHub: https://github.com/olivertomic/hoggormPlot
 - Read the Docs: http://hoggormplot.readthedocs.io/en/latest/
- Examples of how to use Hoggorm illustrated in Jupyter notebooks
 - GitHub: https://github.com/khliland/hoggormExamples

Hoggorm


```
import hoggorm as ho
import hoggormplot as hopl
from sklearn import datasets
#import Iris data set
iris = datasets.load_iris()
X = iris.data
Y = iris.target
# Get the variabls
iris varNames = list(iris.feature names)
# Get the objects
iris_objNames = list(iris.target_names)
model_01 = ho.nipalsPCA(arrX=X, Xstand=True, cvType=["loo"], numComp=3)
hopl.plot(model_01, plots=[1, 2, 3, 6], line=True)
hopl.plot(model 01)
hopl.plot(model_01, plots=['scores', 'loadings', 'explainedVariance'])
```


HOW MANY COMPONENTS?

- «Use the number of components that do not produce overfitting of model»
- Explained variance for PCA
- Prediction error for PCR/PLS

M B U

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
# import the Iris data
iris = datasets.load_iris()
X = iris.data
y = iris.target
plt.figure()
plt.scatter(X[:,0],X[:,1],c=y)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
#simple PCA
X_reduced = PCA(n_components=3).fit_transform(iris.data)
plt.figure()
plt.scatter(X_reduced[:,1],X_reduced[:,2],c=y)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```

Causality?

Data set from Time Magazines 1996

	Liquor	Wine	Beer	Life Ex	Heart D
France	2.5	63.5	40.1	78.0	61.1
Italy	0.9	58.0	25.1	78.0	94.1
Swis	1.7	46.0	65.0	78.0	106.4
Austria	1.2	15.7	102.1	78.0	173.0
UK	1.5	12.2	100.0	77.0	199.7
US	2.0	8.9	87.8	76.0	176.0
Russia	3.8	2.7	17.1	69.0	373.6
Czech	1.0	1.7	140.0	73.0	283.7
Japan	2.1	1.0	55.0	79.0	34.7
Mexico	0.8	0.2	50.4	73.0	36.4

https://www.thedataschool.co.uk/robbin-vernooij/principal-component-analysis-alteryx-example-pinguin/

- Does this mean that you live longer if you drink wine, shorter if you drink Liquor?
- The analysis is about correlation, not causality

MULTIVARIATE ANALYSIS ON IMAGES

- Features in images are used in analysis
 - Matrix of Objects Shape, size, distribution etc
- Surface texture analysis
 - Image Surface texture

UNIVARIATE ANALYSIS ON IMAGES

OBJECT analysis of chocolate

UNIVARIATE ANALYSIS ON IMAGES

OBJECT analysis

Flaur 1. Sortert mhp (Roundness)

MULTIVARIATE ANALYSIS ON IMAGES

 PCA loadings on shape descriptors (area, roundness, ellipse etc)

MULTIVARIATE ANALYSIS ON IMAGES

PCA scores on shape descriptors (area, roundness etc)

Principal Components Analysis of texture

Baguette textures and modeling Ing of sensory porosity

Frost damage detection

Fig 3: The original wall

Fig 4: The bricks mounted in a PCA plot

Clustering

- K-means clustering
 - -Separates samples into k groups of equal variance

- https://www.youtube.com/watch?v=4b5d3muPQmA&ab_channel =StatQuestwithJoshStarmer
- https://www.naftaliharris.com/blog/visualizing-k-means-clustering/