学院化学与化工学院专业能源化学工程年级***任课教师
课程负责人关国强类栓狮

教 学 日 历

课程 工程热力学

(20xx-20xx 学年第 2 学期)

教	学	周	10		自学
课:	堂 讲	授	45	学时	24
习	题	课	3	学时	
实	验	课		学时	
设		计		学时	
其		他		学时	
总		计	48	学时	学时

课程时间	课前自学内容	时	教学内容	时	课外作业	时	备注
		长		长		长	
2/25: 3-4	"腾讯课堂"使用	0.5	课程内容与专业培养	0.2	绘制我国 2014-2018	1	
			目标、毕业要求的关		年能源生产和消费结		
			系; 课程教学目标和评		构图,分析说明我国		
			价方式		2020 年能源规划战略		
					目标的可实现性		
	阅读课本"绪论"内容	0.5	人类发展与能源	0.2			
			* 能识别能源种类和				
			属性				
			* 能辨析当前我国的				
			能源结构				
			热是能源利用的主要	0.3			
			形式->研究物质和能				
			量的转化和利用对社				
			会发展具有重要意义				
			->热力学是研究热和				
			功的科学				
			热力学发展史	0.2			
			"工程热力学"与其他热	0.2			
			力学分支的区别				
			* 能概括说明工程热				
			力学的主要内容				
			工程热力学对构建能	0.1			
			源化工专业知识体系				
			的重要作用				
			如何学好"工程热力学"	0.1			
			课堂测验	0.2			
2/27: 5-7	阅读课本"基本概念及	0.5	本章课程教学目标及	0.3	第 4 或 5 版课后作业	3	
	定义"内容		与培养目标、毕业要求		1-3、9、10、12、13、		
			的关系;		14、16、18、19、23		
			课堂测验及作业评讲				
			如何用热力学方法分	0.1			
			析实际问题: 抽象问题				
			如何用热力学方法分	0.2			
			析实际问题: 确定对象				
			* 能用热力系统分析				
			热力学问题				
			如何用热力学方法分	0.3			
			析实际问题: 表达性质				

			* 能用状态参数表达					
			热力系的宏观性质					
			如何用热力学方法分	0.6				
			 析实际问题: 描述过程					
			* 能用热力过程分析					
			热力系的宏观性质变					
			化					
0.40 0 4		4	* 能分析循环过程	0.4	₩ 5 			
3/3: 3-4	阅读课本"热力学第一	1	本章课程教学目标及	0.1		3		
	定律"内容		与培养目标、毕业要求		6~10、13、16、18 和			
			的关系;		19			
			课堂测验评讲					
			能量的本质、分类(宏	0.6				
			观与微观、内能与机械					
			能、推动功与流动功)					
			* 能从不同维度辨析					
			各种能量的特征					
			能量守恒:不同形式的	0.6				
			能量转换(在闭口系和					
			开口系的应用)					
			* 能抽象问题-建立热					
			力系-表达、分析、计算					
			和比较能量转换过程					
			祝比较能重转换过程 课堂测验	0.2				
3/5: 5-7	 阅读课本"气体和蒸汽	1	本章课程教学目标,其	0.2	 第 5 版习题 3-5~8、			┨
3/5: 5-7	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	1	本草味性教学日称,共 与培养目标、毕业要求	U.I				
	的性质"内容				11~21			
			的关系;					
			课堂测验评讲	0.0				
			示例说明同样的问题	0.2				
			可采用不同的热力系					
			进行分析求解					
			通过说明理想气体分	0.2				
			子运动物理模型, 加深					
			理解理想气体的应用					
			条件					
			* 能分析说明用理想					
			气体近似表达实际气					
			体的温度、压力条件					
			 介绍比热概念, 进而说	0.3				
			明理想气体的恒容					
			(压)比热与内能(焓)					
			变的计算式, 以及恒容					
			比热与恒压比热间的					
			大系 关系					
				0.1				
			说明比热与温度的关	0.1				
	1		系					
						i .	I	1
			* 能根据真实比热得					
			* 能根据真实比热得 到平均比热 说明状态函数熵及理	_				

			想气体的熵变 * 能计算过程熵变 水蒸气性质和状态 水蒸气图表及使用 * 能应用工质(水、氨 和 R134a 等)蒸气图	0.2 0.3			
			或表分析过程的内能、 焓和熵的变化 水蒸气计算程序及相 关软件应用基础 * 能应用水蒸气程序 分析过程的内能、焓和	0.4			
3/10: 3-4	阅读课本"气体和蒸汽的基本热力学过程"内	1	熵的变化 课堂测验评讲	0.2	第 5 版习题 4-2~9、17~22		
	容		回顾上章内容, 引出本 章内容实质为应用"理 想气体的热力学性质	0.1			
			计算公式"计算系统状态、热和功变化 通过说明解决实际复	0.1			
			杂热力过程的方法是 对工质和过程简化,介 绍本章的主要内容 将基本热力过程分为	0.3			
			等容等压和等温绝热 两类过程, 重点说明如 何将"理想气体的热力				
			学性质计算公式"应用 于等压等容过程的热 和功的计算 * 能应用理想气体模				
1			型分析基本热力过程 的热功转换情况				
1			等压和等容曲线,为后续"热力学一般关系"的应用埋下伏笔				
			导出绝热过程计算式 $pv^{\kappa} = \text{const}$, 并说明 其适用条件是比热容 (绝热指数) 为定值的	0.1			
			理想气体 说明如何将"理想气体 的热力学性质计算公	0.3			
			式"应用于等温绝热过程的热和功的计算 * 能应用理想气体模				

	型分析基本热力过程
	的热功转换情况
	在压容图上比较、识别 0.1
	等温和绝热曲线,为后
	续"热力学一般关系"的
	应用埋下伏笔
	承接前述实际过程的 0.2
	绝热指数不为定值,由
	此引出说明"变热容定
	熵过程的图表计算法"
3/12: 5-7	回顾基本热力过程: 三 0.3 第 5 版习题 4-10~16
	个基本状态参数 (p-v-
	T) 之一不变或绝热的
	可逆过程, 引出状态参
	数都发生变化且不绝
	热的通用热力过程分
	析方法。
	通过与绝热过程类别,
	说明多变过程方程,进
	而结合 PG-EOS 的微
	分形式导出多变过程
	的体积功计算式。
	结合热力系第一定律
	推导多变过程的热量
	计算式, 进而获得功和
	热的关系。
	应用多变过程的热功 0.3
	态变化及热、功特征。
	进而说明可将基本热
	力系过程视为特定 n
	值条件的多变过程, 并 ————————————————————————————————————
	在p-v图和T-s图中示
	意性表达多变过程。
	* 能定性分析理想气
	体热力过程(多变过
	程),进一步加深过程
	特性和规律的认识
	方法
	多变过程的技术功计
	算式,通过与体积功对
	功和热的计算方法。
	* 能定量分析理想气
	体热力过程(多变过
	程),进一步加深过程
1	特性和规律的认识

•	1	ı	1	
			回顾水蒸气的非理想	0.2
			特性,由此说明水蒸气	
			热力过程需要采用图	
			表法。	
			扩展介绍采用水蒸气	
			性质计算程序 XSteam	
			计算过程做功量	
			* 能利用 MATLAB 进	
			一行水蒸气基本过程的	
			分析和计算	
			ガが飛げ 昇 由问题: "T-s 图上有经	0.2
				0.2
			过相同初态的等压线	
			和等容线,如何识别哪	
			一条是等压线?"引出	
			热力学关系式的另一	
			重要应用。	
			类似地, 热力学关系式	0.1
			可应用于"p-v 图中等	
			温和绝热线的辨别"	
			说明要求掌握的 21 个	0.1
			方程 (麦克斯韦关系式	
			12 个、全微分关系式 4	
			个、能函数关系式 1	
			个、偏微分关系式 1	
			个)	
			, 说明"九宫格记忆法"	0.2
			应用热力学关系式导	0.2
			出熵、内能和焓变的一	
			般计算式	
				0.2
			出等压和等容比热容	0.2
			间的一般关系	
				0.2
			总括说明将连想气体	0.2
			性质的一般计算式可	
			得 P125 表 4-1, 再次	
			强调表中式子的应用	
			条件	
			* 能综合分析、计算理	
			想气体热力过程,进一	
			步加深过程特性和规	
			律的认识	
3/31: 3-4	阅读教材第七章"气体	1	第 4 章的课堂测验评	0.2
	与蒸汽的流动"		讲	
			第 7-11 章内容梗概、	0.2
			课程教学目标及与培	
			养目标、毕业要求的关	
			系;	
			从质量守恒到管流速	0.3
•	•			. 1

	莊亦 //	I		
	度变化			
	由稳流体系的热力学	0.3		
	第一定律导出"滞止性			
	质"			
	* 能应用稳定流动基			
	本方程分析喷管中流			
	体动力学基本现象			
	导出音速的计算式, 进	0.3		
	而可得临界性质的计			
	算方法			
	课堂测验 c7q1	0.2		
4/2: 5-7	现场演示课堂测验问	0.1	第 5 版习题 7-4、10 和	
	题的求解, 建议同学们		18	
	不要单纯"背"P125 表			
	4-1			
	课堂测验 c7q2(课程内	0.1		
	容将在本次课程中讲			
	解)			
	→	0.3		
	与压力变化的关系(力			
	学条件), 进而导出流			
	速与流道截面变化的			
	关系 (几何条件)			
	学例说明用 Excel 进行	0.2		
	喷管设计的简单计算	0.2		
	过程			
	* 能根据工质进出喷			
	管时的状态判断工质			
	的流动状态,进而进行			
	基本的喷管尺寸设计			
	总括介绍由动力条件	0.2		
		0.2		
	计算喷管出口气速的基本方法, 其中强调公			
	式的适用条件,以及结			
	题时"不要单纯背公式"			
	* 能应用稳定、可压缩			
	流体在管内流动的力			
	学和几何条件分析流			
	动状态			
	在获得出口气速后可	0.1		
	进一步由喷管的几何			
	条件计算气体流量			
	* 能应用稳定、可压缩			
	流体在管内流动的几			
	何条件分析流动状态			
	通过例 7-1 说明喷管	0.1		
	的基本计算过程			
	进一步通过例 7-2 说	0.3		
	明应用 Matlab 进行非			

			理想气体的喷管计算 方法				
			│ 刀法 │* 能用 Matlab 分析喷				
			管流动过程				
			介绍背压对喷射流动	0.1			
			的影响				
			说明绝热流动中的不	0.1			
			可逆损伤及计算方法				
			由流动中的不可逆现	0.2			
			象导出节流现象, 重点				
			说明焦汤系数的由来				
			和应用, 为后续制冷循环的学习奠定基础				
				0.1			
			的实验测量方法和节	0.1			
			流过程的回转温度概				
			念				
			图解说明节流过程在	0.1			
			制冷和工质做功能力				
			的应用				
			通过例 7-4 具体说明	0.2			
			如何应用 Matlab 进行				
			水蒸气做功能力的计				
			第一条四点,八年世				
			* 能用 Matlab 分析节 流过程的做功能力变				
			流过性的吸功能力变				
4/7: 3-4	 阅读教材第八章"压气	1	解释本章教学目标,说	0.2	 第 5 版习题 8-2、7、9		1
	机的热力过程"		明如何利用教学大纲		和 11		
			进行课程学习(预习、				
			听课和复习)				
			说明什么压气机及其	0.2			
			分类; 结合能量衡算重				
			点说明压气机的能耗				
			计算实质是热力学第				
			一定律的应用	0.0			
			利用热力学第一定律	0.2			
			付近 (机的连比功代 计算方法, 其中重点说				
			明技术功的导出和应				
			用; 进而引出压气机的				
			过程描述基本术语"增				
			压比"				
			演示计算理想气体不	0.3			
			同过程 (绝热和等温)				
			的压气机功耗量, 重点				
			L VV 55 15 11 1 4- V 1	ı	İ	I	1
			说明压气机的功耗计				
			说明压气机的功耗计算实质是"旧瓶装新酒";结合应用 p-v 和				

·			
T-s 图理解并掌握不同			
压缩过程的功耗和气			
体温升结果, 进而说明			
不同压缩过程的区别			
* 能计算多变过程消			
耗的技术功			
在 p-v 图上表达压气	0.3		
机的工作过程,结合活	0.0		
塞式压气机结构说明			
其压气过程,由此引出			
活塞式压气机的重要			
基本概念:余隙体积、			
气缸排量、余容比和容			
积效率, 重点说明压气			
机正常连续工作时气			
缸实际进气量不等于			
其排量; 进而说明容积			
效率与增压比的关系			
通过 p-v 图上压气机	0.3		
的工作循环说明压气			
机的理论功耗计算方			
法, 重点说明余隙体积			
对理论功耗的影响			
* 能分析活塞式压气			
机的理论功耗和余隙			
体积的影响			
课测评讲	0.2	第5版习题8-2、7、9	
		和 11	
──│ 课堂测验	0.1	和 11	
课堂测验 反例说明教材例 8-1	0.1	和 11	
		和 11	
反例说明教材例 8-1		和 11	
反例说明教材例 8-1 的求解过程; 讲解如何		和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解		和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负荷	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负荷 下较难实现等温操作,	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负荷 下较难实现等温操作, 同时产生高压气体将	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负荷 下较难实现等温操作, 同时产生高压气体将 导致很高的增压比, 由	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负荷 下较难实现等温操作, 同时产生高压气体将 导致很高的增压比, 由 此造成气缸的容积效	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负荷 下较难实现等温操作, 同时产生高压气体将 导致很高的增压比, 积 等数成气缸的容积采 率较低, 为此提出采用	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压缩 的功耗更低, 但高负循 下较难实现等温操作, 同时产生高的增压比, 导致很高的增压比, 此造成气缸的容积采用 "多级压缩级间冷却"技	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压负 下较难实现等温操作, 同致难实现等压气比, 导致很高的增压比, 导致很气缸, 等级压缩级间冷却"技术	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解如何 应用 Matlab 进行例题 求解 等温压缩比绝热压 的功耗更低, 但高操作, 同致独实现等温气比, 同致很产生的增压比, 等级压缩级间,为此提出和"多级压缩级压缩级压缩级压缩级压缩级压缩级压缩级压缩级压缩级压缩级压缩级压缩级压缩级	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解例题 求解 Matlab 进行例题 求解 等温压缩比绝热系 等温压缩比,但高操作,同致致产生的组成气为此是。 等级压有。等压压。等。 等级压缩、为此是。 "多级压缩。"技术 * 能综合分析多极压缩、级间冷却的最佳功	0.4	和 11	
反例说明教材例 8-1 的求解过程; 讲解例 Matlab 进行的求解 Matlab 进行的 所属 医缩 医缩 医缩 医细胞	0.4	和 11	
反例说明程; 讲解例 8-1 的 Matlab 进行 Matlab 上海 Matlab 从海 Matlab 和 Matlab	0.4	和 11	
反例的成果 Matlab 对明初的 Matlab 对解 Matlab 对较时致的 Matlab 地名 Matl	0.4	和 11	
反例说明程; 讲解例 8-1 的 Matlab 进行 Matlab 上海 Matlab 从海 Matlab 和 Matlab	0.4	和 11	

		l	本主法以及子口与知			1	
			确表达叶轮式压气机				
			的工作过程,进而分析				
			计算压缩过程的能量				
4/14: 3-4	 阅读教材第九章"气体	1	转换特征 播放"外燃机录像"加深	0.2	课后补充作业题(见教		
4/14. 3-4		1		0.2			
	│动力循环" │		同学们对热转化为功		学在线)		
			的过程认识; 以斯特林				
			发动机为例, 从热力学				
			角度分析热功转换过				
			程	0.0			
			说明热力过程分析的	0.2			
			关键指标: 热效率和㶲				
			效率				
			解决问题之道在于化	0.2			
			繁为简, 进而说明将气				
			体动力循环的工质简				
			化为理想气体				
			结合活塞式内燃机的	0.2			
			实际过程说明内燃机				
			的分类				
			进而说明将活塞式内	0.2			
			燃机的开式循环过程				
			简化为混合加热理想				
			循环(即萨巴德循环);				
			重点说明热力系特征				
			和燃烧过程的简化方				
			法; 结合体积功说明平				
			均有效压力的概念				
			* 能应用热力学原理,				
			通过对关键能源转化				
			过程的识别和判断,将				
			复杂的活塞式内燃机				
			和燃气轮机工作过程				
			表达为简化的理想循				
			环过程				
			说明混合加热循环的	0.3			
			特征参数,导出以特征				
			参数表示的循环效率				
			 计算表达式				
4/16: 5-7			课堂测验及课后作业	0.3	课后作业:教材(第5		
			评讲, 演示使用 Matlab		版) 习题 9-1~6、16 和		
			进行能效分析的方法		22		
			说明热力基本过程的	0.2			
			通用性, 以此切入讲述				
			"可再用性"的程序设计				
			思想,通过实例说明如				
			何构建通用的气体动				
			力循环过程计算程序				
		l	/				

			解,详细说明例 9-1 和	
			解, 许细说奶奶 9-1 和 作业 9-1 的求解	
				0.2
			近而	0.2
			响	
			说明萨巴德循环的两种统化版本,建筑包括	0.3
			种简化版本: 狄塞尔循	
			环和奥托循环的热效	
			率计算方法及特征参	
			数对能效的影响	
			比较说明 3 种活塞式	0.2
			内燃机循环过程的能	
			対情况	
			说明燃气轮机的基本	0.2
			过程; 比较说明其相对	
			活塞式气体动力循环	
			的优点	
			讲授布雷顿循环的热	0.2
			功计算, 重点理清与活	
			塞式内燃机的特征参	
			数区别	
			说明布雷顿循环输出	0.3
			功与增压比的关系	
			说明循环中的不可逆	0.2
			因素对燃气轮机的影	
			响,以及提高能效的措	
			施;举例说明燃气轮机	
			的能效和㶲损计算	
4/21: 3-4	阅读"蒸汽动力装置循	1	由追求循环最大效率	0.3
	环"		 引出采用卡诺循环设	
) 计热机;针对理想气体	
			卡诺循环的等温难以	
			实现和单位工质做功	
			量小的问题, 提出采用	
			水蒸气作为工质, 进而	
			为避免蒸汽压缩时设	
			备的低容积效率,以及	
			蒸汽膨胀做功时冷凝	
			造成的设备不稳定性,	
			提出了朗肯循环	
			详细说明朗肯循环的	0.2
			设备构成和在热力学	
			图上表示的过程特点	
			图工农小的过程符点 推导演示朗肯循环的	0.3
			│推导澳示助	0.3
			明朗肯循环中的各过程的稳定工具	
			程为稳流开口系, 由此	
			绝热压缩和膨胀的功	

4/23: 5-7	耗体可吸 α 想说循介可率效的举图朗课 复通通实值失是分均系知热 = Δh; 对概例和肯堂 习过过际,的状别为热 μ· 中 Δ/汽蒸热实作内和念说水循测 相例相膨以计态计技力 = 大解的参率循,邦效 如气的 内-3 内后环法,由一而零明。朗的环说汽丸 与全样概数影平明率耗 用进算 率重率质可由各系稳定等,"明明的内、汽 h进算 念如确的逆于过统流律压故理 肯 不效有率 - s 行 ,何定焓损熵程的流律压故理	0.2 0.2 0.3 0.2	教材(第5版)课后作 10-5和10 补充题:湿质分额完选为200C饱和水蒸流,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		
			并标出该卡诺循环的 状态点; (2) 计算水蒸气膨胀 做功后的干度; (3) 若工质改为空气, 计算循环输出功的变 化?		
			能力目标 (1) 能应用水蒸气性 质 计 算 程 序 (如 XSteam)确定工质状 态 (2) 能应用 Matlab 解 决简单的热功转换问 题 (3) 能应用 Matlab 绘 制 2d 曲线,由此帮助 分析和理解问题		
	为协调追求朗肯循环 的高热效率而提高生	0.2			

			蒸汽压力所产生的乏				
			流八型分析/ 工的之 汽干度降低问题, 提出				
			再热循环;说明中间压				
			力对循环热效率的影				
			响				
			^啊 举例 10-4 说明如何应	0.2			
				0.2			
			用 Matlab 及水蒸气性				
			质计算程序分析确定				
			再热工艺对循环热效				
			率的影响				
			针对简单蒸汽动力循	0.3			
			环中加热过冷水会降				
			低平均吸热温度的问				
			题,提出了回热循环				
			(抽气回热技术),重				
			点说明抽气量对能效				
			的影响				
			简介进一步提高能效	0.1			
			的方案和措施				
			介绍工民用制冷应用,	0.2			
			说明常见的两类制冷				
			过程; 说明热泵和制冷				
			的过程等同性				
			以逆向卡诺循环为例,	0.2			
			说明制冷和热泵过程				
			的能效计算方法,				
			对比燃气轮机的定压	0.3			
			加热理想循环, 掌握其				
			逆过程压缩空气制冷				
			循环;推导说明COP计				
			算方法,以及特征参数				
			增压比对 COP 的影响				
4/28: 3-4	阅读"制冷循环"	1	复习压缩空气制冷循	0.2	教材(第5版)习题11-		1
4/28: 3-4			环具体过程,联系"气		6和9		
			体动力循环"中内容掌				
			握该制冷循环实质是				
			燃气轮机定压加热理				
			想循环的逆过程; 重点				
			说明增压比对能效、制				
			冷量和制冷温度的影				
			响。				
			│ ^{•ा} 。 │复习活塞和叶轮式压	0.3			
			气机的优缺点, 并由实	0.0			
			际过程难以实现高增				
			压比,引出"回热式压				
			缩空气制冷循环", 重				
			点说明采用回热技术				
		1	后降低了循环的增压				1
			比,而 COP 和制冷量				

			都不变。	,		
		1	举例说明压缩空气制	0.3		
		1	冷循环的计算方法: 从	,		
		1	初态依次计算各状态	,		
		1 1	的性质, 然后计算 q_c 和	.		
		1	COP。注意教材例 11-	,		
		1 1	1题干信息比较晦涩,	.		
		1 1		.		
		1	例题实例说明压缩空	,		
		1		,		
		1	数和单位工质吸热量	,		
			数加平位工从	,		
		1	由此引出了压缩蒸汽	0.2		
			制冷循环。对比朗肯循	0.2		
				,		
		1	茶的足过程, 掌握压缩	,		
			然代的夕頃坊的的夕 系数计算方法;能在T-	,		
			S 图中表示实际循环过	,		
	ļ		S 图中表示关际循环过 程和过冷操作对制冷	,		
	ļ		量和制冷系数的影响。	,		
			単型的交易数的影响。 以水蒸气作为制冷工	0.2		
	ļ		以小然气作为耐冷工 质时需要低真空和制	0.2		
	ļ			,		
	ļ		冷温度入于冬摄氏度	,		
			对例,说明而安远取追 宜的制冷工质	,		
		1	且的制模工版 举例说明压缩蒸汽制	0.2		
			举例说明压缩蒸汽制 冷循环的计算方法	0.2		
				0.1		
			为比制之循环说明然 泵循环的制热系数计	, 0.1		
			算; 简要说明取暖应用	,		
		1	异,间安说叨取吸应用	,		
			中应用然永恒坏的化 缺点。	,		
4/30: 5-7	阅读"理想气体混合物	1	<u>짜</u> 点。 从二元气体混合物的	0.2		
4/00.0 1	及湿空气"			, 0.2	业 12-20 和 23	
	次/班王 \	1	新型文力力が打出進 尔顿分压定律, 进而说	,	<u> </u>	
		1	明混合物组分含量的	,		
		1	表示方法, 由此说明理	,		
	ļ		想气体混合物的基本	,		
		1	悠	,		
			明理想气体混合物的	,		
				,		
		1	十均分了重和版量	,		
			体市致的11 异刀法。	0.2		
			说明内能、烟和烟支的 计算方法; 举例说明理	0.2		
				,		
			怨	,		
				0.1		
			由湿空气在日常生活中的广泛应用说明了	0.1		
		1	中的厂泛应用说明了	,		
	ļ ,	(J	牌 坐 工 (は 火 口) 里 文 「	, 1	I	

I	1	l	ı	1	I	ī
		性, 重点说明湿空气中				
		的水蒸气为何假定为				
		理想气体; 说明湿度的				
		概念, 特别说明不同学				
		科、课程有不同的湿度				
		定义。				
		介绍说明湿空气基本	0.1			
		性质: 干基焓和比体积				
		举例说明湿空气的基	0.2			
		本计算方法				
		说明湿空气的干、湿球	0.1			
		温度、绝热饱和温度和				
		露点温度, 重点说明湿				
		球温度虽数值与绝热				
		饱和温度相近, 但其描				
		述的是完全不同的两				
		个过程状态。				
		说明湿空气图的类型	0.1			
		进而说明典型湿空气	0.3			
		过程应用				