Лабораторная работа №4

Модель гармонических колебаний

Роман Владимирович Иванов

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13

Список таблиц

Список иллюстраций

3.1	Код программы для первого случая	8
3.2	График для первого случая	8
3.3	Код программы для второго случая	9
3.4	График для второго случая	9
3.5	Код программы для третьего случая	10
3.6	График для второго случая	11

1 Цель работы

Ознакомление с моделью линейного гармонического осциллятора и ее построение с помощью языка программирования Modelica.

2 Задание

- 1. Построить фазовый портрет гармонического осциллятора и решенить уравнения гармонического осциллятора без затуханий и без действий внешней силы.
- 2. Построить фазовый портрет гармонического осциллятора и решенить уравнения гармонического осциллятора с затуханием и без действий внешней силы.
- 3. Построить фазовый портрет гармонического осциллятора и решенить уравнения гармонического осциллятора с затуханием и под действием внешней силы.

3 Выполнение лабораторной работы

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + \gamma \dot{x} + w_0^2 x = f(t)$$

x — переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.) t — время w — частота γ — затухание

Интервал: $t \in [0;66]$ (шаг 0.05).

Начальные условия: $x_0 = -1.2, y_0 = -1$

1. Уравнение гармонического осциллятора без затухания и без действия внешней силы:

$$\ddot{x} + 4.8x = f(t)$$

где

$$w = \sqrt{4.8}$$

$$\gamma = 0.0$$

$$f(t) = 0.0$$

Ниже представлен код программы для первого случая, выполненный на языке программирования Modelica. (рис 1. @fig:001)

Рис. 3.1: Код программы для первого случая

Также ниже представле график для первого случая. (рис 2. @fig:001)

Рис. 3.2: График для первого случая

2. Уравнение гармонического осциллятора с затуханием и без действия внешней силы:

$$\ddot{x} + 5\dot{x} + 10x = 0$$

где
$$w = \sqrt{10.0}$$

$$\gamma = 5.0$$

$$f(t) = 0.0$$

Ниже представлен код программы для второго случая, выполненный на языке программирования Modelica. (рис 3. @fig:001)

Рис. 3.3: Код программы для второго случая

Также ниже представле график для второго случая. (рис 4. @fig:001)

Рис. 3.4: График для второго случая

3. Уравнение гармонического осциллятора с затуханием и под действием внешней силы:

$$\ddot{x} + 14\dot{x} + 1.5x = 0.2cos(4t)$$

где $w = \sqrt{1.5}$ $\gamma = 14.0$ f(t) = 0.2cos(4t)

Ниже представлен код программы для третьего случая, выполненный на языке программирования Modelica. (рис 5. @fig:001)

Рис. 3.5: Код программы для третьего случая

Также ниже представле график для третьего случая. (рис 6. @fig:001)

Рис. 3.6: График для второго случая

Приведу полный код программы (Modelica):

```
model Oscillator
//Параметры осциллятора
//x'' + g^* x' + w^2 x = f(t)
//Для первого случая:/*/
parameter Real w = sqrt(4.8); //w - частота для первого случая
parameter Real g = 0.0; //g - затухание для первого случая
//Для второго случая:
//parameter Real w = sqrt(1.5); //w - частота для первого случая
//parameter Real g = 14.0; //g - затухание для первого случая
//Для третьего случая:
//parameter Real w = sqrt(1.5); //w - частота для первого случая
//parameter Real g = 14.0; //g - затухание для первого случая
parameter Real x0 = -1.2;
parameter Real y0 = -1.0;
Real x(start=x0);
Real y(start=y0);
//Правая часть уравнения f(t)
```

```
function f
input Real t;
output Real result;
algorithm
result := 0; //для первого и второго случаев
//result := 0.2cos(4.0t); //для третьего случая
end f;
equation
//Вектор-функция f(t, x)
//для решения системы дифференциальных уравнений
//x' = y(t, x)
//где x - искомый вектор
der(x) = y;
der(y) = -w* w* x - g*y - f(time);
end Oscillator;
```

4 Выводы

Ознакомился с моделью линейного гармонического осциллятора, решив уравнения гармонического осциллятора и построив его фазовые портреты.