1

Assignment 5

Jayati Dutta

Abstract—This is a simple document explaining how to prove the congruence of two triangles.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

 $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and the vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that

- a) $\triangle ABD \cong \triangle ACD$
- b) $\triangle ABP \cong \triangle ACP$
- c) AP bisects $\angle A$ as well as $\angle D$
- d) AP is the parpendicular bisector of BC

2 Explanation

Fig. 0: Iso-sceles Triangles by Latex-Tikz

The above problem statement is depicted in the figure 0 where the vertices are: A, B and C for $\triangle ABC$ and D, B and C for $\triangle DBC$. For $\triangle ABC$ the sides AB, BC and CA are represented by the vectors $\mathbf{A} - \mathbf{B}$, $\mathbf{B} - \mathbf{C}$ and $\mathbf{C} - \mathbf{A}$ and for $\triangle DBC$ the sides DB, BC and CD are represented by $\mathbf{D} - \mathbf{B}$, $\mathbf{B} - \mathbf{C}$ and $\mathbf{C} - \mathbf{D}$.

From the problem statement we get that:

$$\|\mathbf{A} - \mathbf{B}\| = \|\mathbf{A} - \mathbf{C}\|$$
 (2.0.1)

$$\|\mathbf{D} - \mathbf{B}\| = \|\mathbf{D} - \mathbf{C}\|$$
 (2.0.2)

$$\mathbf{P} - \mathbf{C} = K_2(\mathbf{B} - \mathbf{C}) \tag{2.0.3}$$

$$\mathbf{P} - \mathbf{B} = K_1(\mathbf{B} - \mathbf{C}) \tag{2.0.4}$$

As the $\triangle ABC$ is an iso-scelen triangle,

$$\angle ABC = \angle ACB = \gamma \tag{2.0.5}$$

Similarly, as the $\triangle DBC$ is an iso-scelen triangle,

$$\angle DBC = \angle DCB$$
 (2.0.6)

Let consider $\angle APB = \phi_1$, $\angle APC = \phi_2$ and $\phi_1 + \phi_2 = 180$ °. From the triangular law of vector addition, we can also get that:

$$A - B = (A - P) + (P - B)$$
 (2.0.7)

$$A - C = (A - P) + (P - C)$$
 (2.0.8)

$$D - B = (D - P) + (P - B)$$
 (2.0.9)

$$D - C = (D - P) + (P - C)$$
 (2.0.10)

Now squaring both side of equation 2,

$$||\mathbf{A} - \mathbf{B}|| = ||\mathbf{A} - \mathbf{C}||$$

$$(2.0.11)$$
or, $||\mathbf{A} - \mathbf{B}||^2 = ||\mathbf{A} - \mathbf{C}||^2$

$$(2.0.12)$$
or, $||(\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{B})||^2 = ||(\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{C})||^2$

$$(2.0.13)$$
or, $((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{B}))^T ((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{B})) =$

$$(2.0.14)$$

$$((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{C}))^T ((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{C}))$$

$$(2.0.15)$$
or, $((\mathbf{A} - \mathbf{P})^T + K_1(\mathbf{B} - \mathbf{C})^T) ((\mathbf{A} - \mathbf{P}) + K_1(\mathbf{B} - \mathbf{C})) =$

$$(2.0.16)$$

$$((\mathbf{A} - \mathbf{P})^T + K_2(\mathbf{B} - \mathbf{C})^T) ((\mathbf{A} - \mathbf{P}) + K_2(\mathbf{B} - \mathbf{C}))$$

$$(2.0.17)$$
or, $(K_1 - K_2) ((\mathbf{B} - \mathbf{C})^T (\mathbf{A} - \mathbf{P})$

$$(2.0.18)$$

$$+(\mathbf{A} - \mathbf{P})^T (\mathbf{B} - \mathbf{C}) + (K_1 + K_2) ||\mathbf{B} - \mathbf{C}||^2) = 0$$

$$(2.0.19)$$

So, there are 2 cases, either $(K_1 - K_2) = 0$ or

$$(\mathbf{B} - \mathbf{C})^{T}(\mathbf{A} - \mathbf{P})$$

$$(2.0.20)$$

$$+(\mathbf{A} - \mathbf{P})^{T}(\mathbf{B} - \mathbf{C}) + (K_{1} + K_{2}) \|\mathbf{B} - \mathbf{C}\|^{2}) = 0$$

$$(2.0.21)$$

$$\text{or,} (K_{1} + K_{2}) \|\mathbf{B} - \mathbf{C}\|^{2} = -(\mathbf{B} - \mathbf{C})^{T}(\mathbf{A} - \mathbf{P})$$

$$(2.0.22)$$

$$-(\mathbf{A} - \mathbf{P})^{T}(\mathbf{B} - \mathbf{C})$$

$$(2.0.23)$$

$$\text{or,} (K_{1} + K_{2}) \frac{\|\mathbf{B} - \mathbf{C}\|}{\|\mathbf{A} - \mathbf{P}\|} = \frac{-(\mathbf{P} - \mathbf{B})^{T}(\mathbf{A} - \mathbf{P})}{\|\mathbf{P} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|}$$

$$(2.0.24)$$

$$-\frac{(\mathbf{P} - \mathbf{C})^{T}(\mathbf{A} - \mathbf{P})}{\|\mathbf{P} - \mathbf{C}\| \|\mathbf{A} - \mathbf{P}\|}$$

$$(2.0.25)$$

$$\text{or,} (K_{1} + K_{2}) \frac{\|\mathbf{B} - \mathbf{C}\|}{\|\mathbf{A} - \mathbf{P}\|} = -\cos \phi_{1} - \cos \phi_{2}$$

$$(2.0.26)$$

$$\text{or,} (K_{1} + K_{2}) \frac{\|\mathbf{B} - \mathbf{C}\|}{\|\mathbf{A} - \mathbf{P}\|} = 0$$

$$(2.0.27)$$

$$\text{or,} (K_{1} + K_{2}) \frac{\|\mathbf{B} - \mathbf{C}\|}{\|\mathbf{A} - \mathbf{P}\|} = 0$$

$$(2.0.28)$$

$$\implies K_{1} = -K_{2}$$

$$(2.0.29)$$

So, for the first case, that is, when $K_1 = K_2$:

$$\cos \theta_1 = \frac{(\mathbf{A} - \mathbf{B})^T (\mathbf{A} - \mathbf{P})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|} \quad (2.0.30)$$
or,
$$\cos \theta_1 = \frac{((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{B}))^T (\mathbf{A} - \mathbf{P})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|} \quad (2.0.31)$$

Similarly,

$$\cos \theta_2 = \frac{(\mathbf{A} - \mathbf{C})^T (\mathbf{A} - \mathbf{P})}{\|\mathbf{A} - \mathbf{C}\| \|\mathbf{A} - \mathbf{P}\|} \quad (2.0.32)$$
or,
$$\cos \theta_2 = \frac{((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{C}))^T (\mathbf{A} - \mathbf{P})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|} \quad (2.0.33)$$
or,
$$\cos \theta_2 = \frac{((\mathbf{A} - \mathbf{P}) + (\mathbf{P} - \mathbf{B}))^T (\mathbf{A} - \mathbf{P})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|} \quad (2.0.34)$$

So, we can say that, $\theta_1 = \theta_2$ Now for $\triangle DBC$,

$$\cos \alpha = \frac{(\mathbf{D} - \mathbf{B})^T (\mathbf{D} - \mathbf{P})}{\|\mathbf{D} - \mathbf{B}\| \|\mathbf{D} - \mathbf{P}\|} \quad (2.0.35)$$

or,
$$\cos \alpha = \frac{((\mathbf{D} - \mathbf{P}) + (\mathbf{P} - \mathbf{B}))^T (\mathbf{D} - \mathbf{P})}{\|\mathbf{D} - \mathbf{B}\| \|\mathbf{D} - \mathbf{P}\|}$$
 (2.0.36)

Similarly,

$$\cos \beta = \frac{(\mathbf{D} - \mathbf{C})^T (\mathbf{D} - \mathbf{P})}{\|\mathbf{D} - \mathbf{C}\| \|\mathbf{D} - \mathbf{P}\|} \quad (2.0.37)$$

or,
$$\cos \beta = \frac{((\mathbf{D} - \mathbf{P}) + (\mathbf{P} - \mathbf{C}))^T (\mathbf{D} - \mathbf{P})}{\|\mathbf{D} - \mathbf{B}\| \|\mathbf{D} - \mathbf{P}\|}$$
 (2.0.38)

or,
$$\cos \beta = \frac{((\mathbf{D} - \mathbf{P}) + (\mathbf{P} - \mathbf{B}))^T (\mathbf{D} - \mathbf{P})}{\|\mathbf{D} - \mathbf{B}\| \|\mathbf{D} - \mathbf{P}\|}$$
 (2.0.39)

So, we can conclude that $\alpha = \beta$. These imply that $\mathbf{A} - \mathbf{P}$ bisects $\angle A$ as well as $\angle D$. For $K_1 = K_2$, $\mathbf{P} - \mathbf{C} = \mathbf{P} - \mathbf{B}$

$$\cos \phi_1 = \frac{(\mathbf{A} - \mathbf{P})^T (\mathbf{P} - \mathbf{B})}{\|\mathbf{P} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|}$$
(2.0.40)

or,
$$\cos \phi_1 = \frac{((\mathbf{A} - \mathbf{B}) + (\mathbf{B} - \mathbf{P}))^T (\mathbf{P} - \mathbf{B})}{\|\mathbf{P} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|}$$
(2.0.41)

or,
$$\cos \phi_1 = \frac{(\mathbf{A} - \mathbf{B})^T (\mathbf{P} - \mathbf{B}) + (\mathbf{B} - \mathbf{P})^T (\mathbf{P} - \mathbf{B})}{\|\mathbf{P} - \mathbf{B}\| \|\mathbf{A} - \mathbf{P}\|}$$

or,
$$\cos \phi_1 = \cos \gamma - \frac{||\mathbf{B} - \mathbf{P}||}{||\mathbf{A} - \mathbf{P}||}$$
(2.0.43)

(2.0.44)

Similarly,

$$\cos \phi_2 = \cos \gamma - \frac{||\mathbf{P} - \mathbf{C}||}{||\mathbf{A} - \mathbf{P}||}$$
 (2.0.45)

or,
$$\cos \phi_2 = \cos \gamma - \frac{\|\mathbf{P} - \mathbf{B}\|}{\|\mathbf{A} - \mathbf{P}\|}$$
 (2.0.46)

or,
$$\cos \phi_2 = \cos \gamma - \frac{\|\mathbf{B} - \mathbf{P}\|}{\|\mathbf{A} - \mathbf{P}\|}$$
 (2.0.47)

(2.0.48)

From here it can be concluded

$$\cos \phi_1 = \cos \phi_2 \tag{2.0.49}$$

or,
$$\phi_1 = \phi_2$$
 (2.0.50)

or,
$$\phi_1 + \phi_2 = 180^\circ$$
 (2.0.51)

$$\implies \phi_1 = 90^\circ \tag{2.0.52}$$

For the second case, that is, when $K_1 = -K_2$,

$$\mathbf{P} - \mathbf{C} = \mathbf{B} - \mathbf{P}$$

$$\cos \phi_1 = \cos \gamma - \frac{\|\mathbf{B} - \mathbf{P}\|}{\|\mathbf{A} - \mathbf{P}\|}$$

$$\|\mathbf{P} - \mathbf{C}\|$$
(2.0.53)

$$\cos \phi_2 = \cos \gamma - \frac{\|\mathbf{P} - \mathbf{C}\|}{\|\mathbf{A} - \mathbf{P}\|}$$
 (2.0.54)

$$\implies \cos \phi_2 = \cos \gamma - \frac{||\mathbf{B} - \mathbf{P}||}{||\mathbf{A} - \mathbf{P}||} \tag{2.0.55}$$

(2.0.56)

Which also implies that

$$\cos \phi_1 = \cos \phi_2 \tag{2.0.57}$$

or,
$$\phi_1 = \phi_2$$
 (2.0.58)

or,
$$\phi_1 + \phi_2 = 180^\circ$$
 (2.0.59)

$$\implies \phi_1 = 90^\circ \tag{2.0.60}$$

Hence, it is proved that AP bisects BC perpendicularly.