# Distributed Representation

#### Discrete representation

- One-hot vector/ Bag-of-word vector

$$'dog' = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$$
  $'cat' = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$   $Doc1 = \begin{bmatrix} 12\\0\\0\\3\\1\\0\\5 \end{bmatrix}$ 

#### **Distributed representation**

- Word2vec, Doc2vec

$$'dog' = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \quad 'cat' = \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \quad Doc1 = \begin{bmatrix} 12\\0\\0\\3\\1\\0\\5 \end{bmatrix} \quad 'dog' = \begin{bmatrix} 0.5\\0.3\\-0.1\\1 \end{bmatrix} \quad 'cat' = \begin{bmatrix} 0.8\\-0.3\\-0.2\\0.6 \end{bmatrix} \quad Doc1 = \begin{bmatrix} 0.68\\0.23\\0.10\\-0.41\\0.90\\0.51\\-0.33 \end{bmatrix}$$

- Frequency 기반으로 표현하는 방법
- 구성 변수들을 직관적으로 이해 가능함
- 전처리 과정이 뚜렷하지 않으며 단어 빈도가 낮은 경우 중요하지 않게 판별됨

- Neural Network를 통해 continuous vector로 변환 가능
- 단어 별 유사도 계산가능
  - 'king' 'man' + 'woman' → closest('Queen')

Data: All Bloomberg news articles from 2008 to 2015, # = 520,728



Continuous bag-of-word model



Skip-gram model

V = vocabulary size

- C = window size

 $N = word2vec\ dimension$ 

**Doc1**: { 'You are a very good boy.'
'You are a good girl too.' }

**Vocabulary**: { 'you' 'are' 'a' 'very' 'good' 'girl', 'too' }



Continuous bag-of-word model

N-dim

Hidden layer

Input layer

- V = vocabulary size
- C = window size

Output layer

V-dim

- N = word2vec dimension





- V = vocabulary size
- C = window size
- N = word2vec dimension



- V = vocabulary size
- C = window size
- $N = word2vec\ dimension$



- V = vocabulary size
- C = window size
- $N = word2vec\ dimension$



- V = vocabulary size
- C = window size
- $N = word2vec\ dimension$



- V = vocabulary size
- C = window size
  - $N = word2vec\ dimension$



- V = vocabulary size
- C = window size
  - $N = word2vec\ dimension$



- V = vocabulary size
- C = window size
- $N = word2vec\ dimension$



- V = vocabulary size
- C = window size
- $N = word2vec\ dimension$

Doc1: { 'You are a very good boy.' 'You are a good girl too. ' }

 $W_{VxN} \leftarrow$ 

|        | X1    | X2     | Х3     | X4     | <b>X</b> 5 | Xn    |
|--------|-------|--------|--------|--------|------------|-------|
| Word 1 | 0.345 | 0.121  | -0.538 | 1.011  | 2.011      | 0.004 |
| Word2  | 0.445 | 2.101  | 1.054  | -0.181 | -0.114     | 0.764 |
| •••    | ver   |        | ***    | •••    | 100        |       |
| word V | 0.334 | -0.087 | -0.407 | 1.114  | 0.554      | 0.674 |



- V = vocabulary size
- C = window size
- N = word2vec dimension

Doc1: { 'You are a very good boy.' 'You are a good girl too. ' }

#### $W_{VxN}$

|        | X1    | X2     | Х3     | X4     | X5     | Xn    |
|--------|-------|--------|--------|--------|--------|-------|
| Word 1 | 0.345 | 0.121  | -0.538 | 1.011  | 2.011  | 0.004 |
| Word2  | 0.445 | 2.101  | 1.054  | -0.181 | -0.114 | 0.764 |
| •••    |       |        |        |        | •••    | •••   |
| word V | 0.334 | -0.087 | -0.407 | 1.114  | 0.554  | 0.674 |



- V = vocabulary size
- C = window size
- N = word2vec dimension



- V = vocabulary size
- V' = documents size
- C = window size
- N =  $doc2vec\ dimension$



- V = vocabulary size
- V' = documents size
- C = window size
- N =  $doc2vec\ dimension$

