Yeditepe University Department of Computer Engineering

CSE 232 Systems Programming Spring 2019

Term Project

Preprocessor

Due to: 22nd May 2019

3 Students in a Group

In this project, you will develop a **preprocessor** named MTRX that replaces matrix-based macros by the appropriate C codes.

Write your Preprocessor in C and use gcc compiler on Linux.

MTRX preprocessor expands a code as follows:

MTRX macros			Expanded code (expanded.c)
Declarations			Replace the macro with
@def	N	100	#define N 100
@mat	A	N, M	declaration of a 2-dimensional integer array of size NxM
@vec	X	N	declaration of a 1-dimensional integer array of size N
@int	a		declaration of an integer variable a
Matrix/vector operations			
@A=B+C	or	@A=B-C	addition/subtraction of two matrices (A,B,C are 2-dimensional arrays)
@A=B*C			Multiplication of two matrices (A,B,C are 2-dimensional arrays)
@X=Y+Z	or	@ X=Y-Z	addition/subtraction of two vectors (X,Y,Z are 1-dimensional arrays)
@X=Y*Z			Multiplication of two vectors (X,Y,Z are 1-dimensional arrays)
@X=A*Z			matrix-vector multiplication (A is 2-dimensional and X,Y are 1-dimensional arrays)
@X=A*Z+Y			matrix-vector multiplication and addition (A is 2-dimensional and X,Y,Z are 1-
			dimensional arrays)
@A=a*B			Multiplication of a matrix by a constant (A,B are 2-dimensional arrays)
@X=a*Y			Multiplication of a vector by a constant (X,Y are 1-dimensional arrays)
I/O operations			
@read A < filename			Reads a matrix from a file
@read X < filename			Reads a vector from a file
@print A			Displays the matrix on the screen
@print X			Displays the vector on the screen

Your preprocessor must perform the following:

while (not EOF)

read a line from the source code

if the line starts with '@'

parse the line and display the tokens

if it is a declaration

expand the macro with the appropriate C code and write it to the file named expanded.c enter the symbol to symbol table

otherwise

search symbol table for the symbol names

expand the macro with the appropriate C code and write it to the file named expanded.c

otherwise

write the line to the file expanded.c

Use the following structure for symbol table:

Write a function named searchST() that searches the symbol table for the name of the symbol and returns its index in the table:

Ex:

Source code with MTRX macros	Expanded code (expanded.c)
@def N 100	#define N 100
@def M 50	#define M 50
@vec X M	<pre>int X[M];</pre>
@vec Y M	<pre>int Y[M];</pre>
@mat A N,M	int A[N][M];
<pre>int main(){</pre>	<pre>int main() {</pre>
@read X < file1	FILE *f1;
	f1=fopen("file1", "r");
	for (int i=0; i <m; i++)<="" td=""></m;>
	fscanf(f1, "%c", &X[i]);
@read A < file2	FILE *f2;
	f2=fopen("file2", "r");
	for (int i=0; i <n; i++)<="" td=""></n;>
	for (int j=0; j <m; j++)<="" td=""></m;>
	fscanf(f2, "%c", &A[i][j]);
@Y=A*X	for (int i=0; i <n; i++)<="" td=""></n;>
	for (int j=0; j <m; j++)<="" td=""></m;>
	Y[j]=A[i][j]*X[j];
@print Y	for (int i=0; i <m; i++)<="" td=""></m;>
	<pre>printf("%d\n", Y[i]);</pre>
}	}