CS 173: Discrete Structures, Spring 2013 Exam 1 Review Solutions

1. Set Operations

Suppose you were given the following sets:

```
\mathbf{A} = \{ \text{Piano}, (\text{Violin}, \text{Viola}, \text{Cello}), \text{Guitar} \}
\mathbf{B} = \{(\text{Flute, Piccolo}), \text{Cymbals}\}\
\mathbf{C} = \{ \text{Piano, Flute} \}
D = {(Violin, Viola, Cello), (Flute, Piccolo)}
```

List the elements of the set or find the values for the following expressions:

- (a) |A|Solution: 3 (b) $A \cup D$ **Solution:** { Piano, (Violin, Viola, Cello), Guitar, (Flute, Piccolo) } (c) $A \cap C$ **Solution:** { Piano } (d) $B \cap C$ **Solution:** \emptyset (e) A - (B - C)**Solution:** $(B - C) = \{ (Flute, Piccolo), Cymbals \}$ $A - (B - C) = \{Piano, (Violin, Viola, Cello), Guitar\}$ (f) $(B \cap D) \times C$ **Solution:** $(B \cap D) = \{(Flute, Piccolo)\}$ $(B \cap D) \times C = \{$ ((Flute, Piccolo), Piano), ((Flute, Piccolo), Flute) $\}$
- = { (Flute, Piccolo, Piano), (Flute, Piccolo, Flute) } (g) $A \times \emptyset$
- (h) $C \times \{\emptyset\}$ **Solution:** $\{(Piano, \emptyset), (Flute, \emptyset)\}$

Solution: 0

2. Counting with sets

In our role-playing game, an evil character may be an elf or a troll, it may be red, green, brown, or black, and it may have scales or hair. A good character may be an elf or a human or a lion, it may be green, brown, or blue, and it has hair or fur. When we look at a character, we can't see whether it is good or evil. How many choices do we have for its appearance?

Solution: There are $2 \cdot 4 \cdot 2 = 16$ types of evil characters. There are $3 \cdot 3 \cdot 2 = 18$ types of good characters. But there are 2 types of characters that could be good or evil. So we have a total of 16 + 18 - 2 = 32 possible appearances.

Suppose we have a 26 character alphabet. How many 6-letter strings start with PRE or end in TH?

Solution: There are 26^3 strings starting with PRE, 26^4 strings ending in TH, and 26 strings that start with PRE and end in TH. Thus we have a total of $26^3 + 26^4 - 26 = 26(26^2 + 26^3 - 1)$ total strings.

3. Euclidean algorithm

Trace the execution of the Euclidean algorithm for computing GCD on the inputs a = 837 and b = 2015. That is, give a table showing the values of the main variables (x, y, r) for each pass through the loop. Explicitly indicate what the output value is.

Solution:

X		У	r
83	7	2015	837
20	15	837	341
83	7	341	155
34	1	155	31
15	5	31	0
3	1	0	

Therefore, the algorithm outputs GCD(837, 2015) = 31. Note that the algorithm terminates when y = 0, **not** when r = 0.

4. Direct Proof Using Congruence mod k

In the book, you will find several equivalent ways to define congruence mod k. For this problem, use the following definition: for any integers x and y and any positive integer m, $x \equiv y \pmod{m}$ if there is an integer k such that x = y + km.

Using this definition prove that, for all integers a, b, c, p, q where p and q are positive, if $a \equiv b \pmod{p}$ and $c \equiv b \pmod{q}$ and q|p, then $a - 2c \equiv (-b) \pmod{q}$.

Solution:

Let a, b, c, p, q be integers, where p and q are positive. Suppose that $a \equiv b \pmod{p}$ and $c \equiv b \pmod{q}$ and q|p. By the given definition of congruence, a = b + pr and

c = b + qt, where r and t are integers. Since q|p, we know that p = qu, where u is an integer.

Therefore, by substituting b + pr for a and b + qt for c:

$$a - 2c = b + pr - 2(b + qt)$$

By substituting qu for p, we get:

$$a-2c = b+qur-2(b+qt)$$

$$= b+qur-2b-2qt$$

$$= (-b)+q(ur-2t)$$

$$= (-b)+qw$$

where w = ur - 2t. By closure, w must be an integer. Therefore, by the definition given for congruence, $a - 2c \equiv (-b) \pmod{q}$.

5. Equivalence classes

Let $A = \mathbb{R}^{\geq 0} \times \mathbb{R}^{\geq 0} - \{(0,0)\}$, i.e. pairs of non-negative reals in which no more than one of the two numbers is zero.

Consider the equivalence relation \sim on A defined by

$$(x,y) \sim (p,q)$$
 iff $(xy)(p+q) = (pq)(x+y)$

- (a) List four elements of [(3,1)]. Hint: what equation do you get if you set (x,y) to (3,1) and q=2p?
- (b) Give two other distinct equivalence classes that are not equal to [(3,1)].
- (c) Describe the members of [(0,4)].

Solutions:

- (a) (3,1), (1,3), $(\frac{9}{8},\frac{9}{4})$, $(\frac{9}{4},\frac{9}{8})$. You can find a range of other elements by setting q to other multiples of p.
- (b) For example, [(3,2)], [(3,4)]
- (c) All pairs of the form (0, y) or (x, 0). If (x, y) = (0, 4), then the equation (xy)(p+q) = (pq)(x+y) reduces to 0(p+q) = (pq)4. So this means either p or q must also be zero and, then, it doesn't matter what value we give to the other.

6. Relation properties

7. Proofs on Relations

(a) Define a relation \sim on the set of all functions from \mathbb{R} to \mathbb{R} by the rule $f \sim g$ if and only if $\exists k \in \mathbb{R}$ such that f(x) = g(x) for every $x \geq k$. Prove that \sim is an equivalence relation. **Hint**: each part of this proof is quite brief.

Solution: Let f, g, and h be functions from \mathbb{R} to \mathbb{R} .

Reflexive: Note that f is equal to itself on all inputs, so, in particular, f(x) = f(x) for all $x \ge 0$. Thus, $f \sim f$, and the relation is reflexive.

Symmetric: Suppose $f \sim g$. Then there exists $k \in \mathbb{R}$ such that f(x) = g(x) for all $x \geq k$. But then g(x) = f(x) for all $x \geq k$. So $g \sim f$, and the relation is reflexive.

Transitive: Suppose $f \sim g$ and $g \sim h$. Then there exist real numbers k and k' such that f(x) = g(x) for all $x \geq k$ and g(x) = h(x) for all $x \geq k'$. Let $K = \max(k, k')$. Then, we see that f(x) = g(x) = h(x) for all $x \geq K$. So f(x) = h(x) for all $x \geq K$. Thus, $f \sim h$, and the relation is transitive.

Since the relation is reflexive, symmetric, and transitive, it is an equivalence relation.