Лабораторная работа по теме: "Свойства электродов"

Пискунова Ольга, Делинкевич Мария Б06-205

1 марта 2024 г.

Цели:

- 1. Исследование базовых свойств электродов, способности поляризоваться (изменять заряд) под действием внешнего напряжения.
- 2. Знакомство с факторами, определяющими свойство поляризуемости
- 3. Знакомство с принципом работы трехэлектродной схемы, требованиям к электродам и их расположению
- 4. Знакомство с понятием лимитирующей стадии электрохимической реакции и двумя принципиально разными причинами изменения потенциала электрода в условиях протекания тока при быстрой и медленной электрохимической стадии.
- 5. Особые требования к элементам трехэлектродной схемы при исследовании вольтамперных характеристик протекающих реакций.
- 6. Получение хлорсеребряного электрода и изучение его свойств.
- 7. Исследование свойств платинового электрода в условиях поляризуемости и обратимости. Оценка ключевых параметров диффузионной и кинетической стадий электрохимической реакции.

Задачи:

- 1. Снять циклические ВАХ электродов при катодной и анодной поляризации.
- 2. Получить хлорсеребряный электрод.
- 3. Снять циклическую BAX в случае поляризуемого и неполяризуемого рабочего электрода.
- 4. Снять стационарные кривые поляризации для Pt электрода в зависимости от концентрации окислителя в растворе, скорости перемешивания.
- 5. Измерить ЭДС двух хлорсеребряных электродов в растворах одинаковой и различной концентрации электролитов HCl и KCl.

В работе используются: водные растворы HCl 0.1M, KCl 1M, K3[Fe(CN)6] 0.1M, K4[Fe(CN)6] 0.1M, хлорсеребряный электрод сравнения (в 3.5M KCl), программное обеспечение, потенциостат, рабочий Ад электрод (после 2.1 – Ag|AgCl электрод), Pt рабочий электрод, Pt противоэлектрод, магнитная мешалка, колба, штатив.

1

1. Теоретическая часть

1.1. Поляризуемые и неполяризуемые электроды

Поляризация - изменение потенциала под действием электрического тока (фарадеевский ток (OBP) или ток заряжения (ДЭС)). Схема Эршлера-Рэндлса - простейшая эквивалентная схема электрода и включает параллельно соединенные емкость ДЭС C и сопротивление фарадеевской реакции Θ (существует энергетический барьер) с последовательно соединенным омическим сопротивлением объема раствора R_p . Большая Θ затрудняет протекание реакции разряда и при незначительных перенапряжениях все приложенное напряжение идет на заряжение емкости ДЭС. В таком случае электрод идеально поляризуемый. Абсолютно идеально поляризуемых электродов нет, говорят об области поляризуемости (с ростом заряда и потенциала электрода ток электрохимической реакции начинает преобладать над током заряжения).

Рис. 1. Схема Эршлера-Рэндлса

Идеально неполяризуемые или обратимые электроды - с низким сопротивлением реакции разряда Θ . Они находятся в равновесии с продуктами э/х реакции и зарядить их поверхность внешним напряжением невозможно. В ответ возникает ток, сбрасывающий "лишний" заряд. Все электроды сравнения обладают высокой плотностью тока обмена. Изменить потенциал можно, варьирую концентрацию потенциал-определяющих ионов (неизбежно изменяется при протекании значительного тока). Данного типа электроды не описывают электрическими схемами.

Рис. 2. Зависимости тока от потенциала для идеально поляризуемого (а) и неполяризуемого (б) электродов; штриховые линии - поведениие реальных.

1.2. Трехэлектродная э/х ячейка

При создании разности потенциалов между рабочим и вспомогательным электродами они заряжаются и часть разности потенциалов падает в ДЭС вблизи поверхности. При протекании тока электрохимической реакции дополнительным неизвестным будет омическое падение напряжение IR в растворе: $U = E_0 + |\Delta E_P| + |\Delta E_B| + IR$

Независимо меняются три величины, двухэлектродная схема не применима. Третьим электродом вводят электрод сравнения (идеально обратимый), который соединен с рабочим высокоомным милливольтметром, через который практически не течет ток (следовательно неизменяемый потенциал). Тем самым известно изменение потенциала на рабочем электроде. Требования к вспомогательному электроду - большая площадь поверхность чтобы не лимитировалась измеряемая величина.

На катоде протекают реакции восстановления, на аноде - окисления. В отечественной литературе за положительный принят анодный ток: Ox + ne = Red.

Рис. 3. Трехэлектродная схема (вэ, рэ, эс - вспомогательный, рабочий электроды, электрод сравнения)

1.3. Электроды сравнения

Выступают идеально неполяризуемые электроды со (стабильным) значением потенциала, определяемым составом раствора. Части используют водородный электрод или электроды второго рода. Например, хлорсеребряный электрод: $AqCl + e^- = Aq + Cl^-$

При низких потенциалах катодный процесс восстановления из хлорида, при высоких - анодное окисление до ионов серебра при взаимодействие с адсорбированными ионами хлора.

Преимущества:

- обратимы, ибо низкое сопротивление реакции передачи электрона на электрод и обратно обеспечено наличием плотного адсорбционного слоя AgCl, где ионы серебра лишены гидратной оболочки и поэтому максимально близко расположены к поверхности металла.
- восстановление потенциалов даже после кратковременной поляризации. В отличие от электродов первого рода после пропускания тока концентрация ионов серебра в растворе не меняется, т.к. определяется произведением растворимости и значительной концентрацией хлорид-ионов в растворе

• удобство в работе

Благородные металлы в интервале потенциалов около п.н.з. идеально поляризуемы, но их инернтуню поверхность можно использовать в качестве передатчика электронов в окислительно-восстановительном процессе (в присутствии овр пары), получая окислительновосстановительные электроды.

1.4. Многостадийность прохождения электрического тока

Деление на поляризуемые и неполяризуемые электроды определяется величиной активационного барьера и скоростью кинетической стадии переноса заряда на электроде. Типичная схема включает следующие стадии: массопереноса из раствора к электроду, адсорбция, перенос заряда на электрод (разряд). Самая медленная стадия будет определять силу тока.

Рис. 4. Стадии электродной реакции.

1.5. Диффузионно-лимитированный процесс и концентрационная поляризация

Если кинетическая стадия протекает быстро (обратимые электроды), то величина тока определяется массопереносом, а точнее диффузией (миграция элиминируется добавлением индиферентных электролитов, подавляющих омическое падение напряжения и создающих движущую силу). Диффузионным называют приэлектродный неперемешиваемый слой с градиентом концентрации. Поток диффузии по направлени. перпендикулярно электроду пропорционален (с коэффициентом диффузии) градиенту концентрации:

$$j_d = -D\frac{\partial c}{\partial x} \tag{1}$$

Отличие поверхностной концентрации от ее объемного значения обуславливает сдвиг потенциала от равновесного значения (существовавшего до пропускания тока), поэтому такой сдвиг называется концентрационной поляризацией. Рассмотрим катодный процесс на электроде первого рода: $Me^{n+} + ne = Me$. Величину перенапряжения определяем по уравнению Нернста:

$$\eta = E - E_p = \frac{RT}{nF} ln \frac{c_i^s}{c_i^b} \tag{2}$$

В условиях стационарности концентрация внутри диффузионного слоя спадает линейно, где δ - толщина диффузионного слоя:

$$i = -nFD \frac{c_i^b - c_i^s}{\delta} \tag{3}$$

Диффузионно-лимитированный ток растет пока растет градиент концентрации и называется предельным диффузионным током при $c_i^s = 0$:

$$i_d = -nFD\frac{c_i^b}{\delta} \tag{4}$$

Объединим (3) и (4) и подставим в (2):

$$\eta = \frac{RT}{nF}ln(1 - \frac{i}{i_d}) \tag{5}$$

Тогда классическая вольт-амперная характеристика (при малых перенапряжениях ток растет пропорционально напряжению и стремится к i_d):

$$i = i_d(1 - exp(\frac{nF\eta}{RT})) \tag{6}$$

Рис. 5. Зависимость тока от концентрационной поляризации при разряде ионов металла на одноименном металле.

$$\eta = E - E_p = \frac{RT}{nF} ln(1 - \frac{i}{i_d^{(O)}}) - \frac{RT}{nF} ln(1 + \frac{i}{i_d^{(R)}})$$
 (7)

Потенциал идеально неполяризуемого электрода, где кинетическая стадия разряда не лимитирует процесс, может быть отклонен от равновесного значения, а в области незначительных перенапряжений вольтамперная характеристика линейна с наклоном, определяемым величиной предельного диффузионного тока.

1.6. Кинетические закономерности стадии переноса электрона

На идеально неполяризуемых изучают диффузионно лимитированный ток, в то время как кинетику стадии разряда на идеально поляризуемых на границе области поляризуемости. При E > Ep протекает анодный ток, в IUPAC анодное перенапряжение стадии переноса электрона $\eta = E - E_p$ считается больше нуля. Предполагаем, что изменение заряда происходит в элементарной стадии. Тогда в не слишком широком температурной интервале, в предположении линейной зависимости энергий активации катодного и анодного процессов от потенциала электрода (в некотором интервале перенапряжений), без учета строения заряженной межфазной границы и изменения концентрации реагентов вблизи электродов, можно записать, где α коэффициент в линейной зависимости энергии активации от E для анодного процесса:

$$i = nFkc_R * exp(\frac{\alpha nFE}{BT})$$
(8)

Величина *плотности тока обмена* прямо характеризует обратимость реакции. Уравнение Батлера-Фольмера:

$$i = i_a - i_k = i_0 \left(exp\left(\frac{\alpha n F \eta}{RT}\right) - exp\left(-\frac{(1 - \alpha)n F \eta}{RT}\right)\right)$$
(9)

при $\eta >> \frac{nF}{RT} \approx 25$ мВ пренебрегаем второй экспонентой:

$$\eta \approx -\frac{RT}{\alpha nF} lni_0 + \frac{RT}{\alpha nF} lni_k \tag{10}$$

При коэффициенте переноса а = RT*ln i_0/α nF и b = 2.3RT/ α nF получаем формулу Тафеля:

$$\eta = a + blgi \tag{11}$$

В области малых перенапряжений ($\eta << (RT/nF) \approx 25 \text{ мB}$), т.е. если электродный потенциал слабо отклоняется от Ep, парциальные токи сравнимы. В этих условиях, можно разложить в ряд экспоненты в уравнении поляризационной кривой (9) и, ограничившись двумя первыми членами разложения, получить следующее выражение:

$$\eta \approx \frac{RT}{nF} \frac{i}{i_0} = \Theta i \tag{12}$$

Величину $\Theta = \text{RT}/(\text{nF}i_0)$ называют сопротивлением стадии переноса заряда. Чем больше ток обмена тем меньше отклонение от равновесного потенциала.

При больших катодных перенапряжениях $\eta_k = -\eta >> RT/nF$

$$\eta_k \approx -\frac{RT}{(1-\alpha)nF} ln i_0 + \frac{RT}{(1-\alpha)nF} ln |i|$$
(13)

1.7. Измерения при непрерывной развертке потенциала: циклическая вольтамперометрия

Электрический ток имеет две компоненты - емкостную и разрядную. При постоянном напряжении емкостным током можно прнебречь. При линейно развертке потенциал меняется $C = \frac{\mathrm{d}q}{\mathrm{d}\phi} = \frac{I_c}{\mathrm{d}\phi}$. Тогда сумма тока разряда и емкостного пропорциональна скорости развертки. При нарастающем напряжении емкостной ток положительный. При циклической вольтамперометрии, когда напряжение меняется по закону периодических треугольных импульсов, с ростом скорости развертки кривая при растущем потенциале будет все дальше отстоять от кривой при спадающем потенциале. При исследовании рабочего электрода его ток должен быть лимитирующим (вспомогательный с большой поверхностью/емкостью).

Методом циклической вольтамперометрии изучают процессы адсорбции с переносом заряда.

2. Ход работы и обработка результатов

2.1. Получение и проверка работы хлорсеребряных электродов

- 1. Электроды промываем в дистиллированной воде, подключаем по трехэлектродной схеме: Comp и Work(+) вместе к рабочему Ag рабочему, Counter(-) к Pt противо-электроду, Ref(-) к хлорсеребряному (3.5M KCl)
- 2. Ячейку заполняем 50 мл 0.1M HCl
- 3. Серебряную проволоку очищаем от слоя хлорида катодной поляризацией в режиме линейной развертки потенциала от 0 до -1500 мВ со скоростью 10 мВ/с

Рис. 6. Катодная поляризация серебряной проволоки

При малых отклонениях от равновесного потенциала на катоде протекает реакция восстановлениях $i_k < 0$: $AgCl + e = Ag + Cl^-$. Процесс лимитирован диффузионно (кинетическая стадия не затруднена). После восстановления всего хлорида электрод становится серебряным первого рода, ток снова ноль. Далее наблюдаем выделение

водорода при больших отрицательных потенциалах по реакции $2H^+ + 2e = H_2$ и получаем линейную зависимость (омически лимитированный процесс). Эквивалентная схема Э-Р в это случае представлена последовательными резисторами.

4. Чтобы получить хлорсеребряный электрод создаем слой хлорида анодной поляризацией в течение 10 минут в потенциостатическом режиме при 200 мВ относительно хлорсеребряного электрода сравнения. Наблюдаем изменение цвета серебряной проволоки до черно-коричневого и газовыделение на платине. Протекает реакция окисления, анодный ток положительный: $Ag + Cl^- - e = AgCl$

2.2. Поляризуемые и неполяризуемые электроды

- 1. Заливаем в ячейку 50 мл 1М KCl. В программе выбираем потенциостатический режим работы, циклическую развертку потенциала по времени, скорость развертки около 100 мВ/с, скорость регистрации 13 точек в секунду, около 5 циклов.
- 2. Пункт а). Подключаем контакты "Comp" и "Work" (+) потенциостата к полученному Ag|AgCl. С помощью потенциостата проводим измерение циклической вольтамперной характеристики для рабочих электрода Ag/AgCl электрода (от -150 до 150 мВ относительно хлорсеребряного электрода сравнения) в растворе 1 М KCl.
- 3. Пункт б). Подключаем контакты "Comp" и "Work" (+) потенциостата к Pt электроду, проводим измерение циклической вольт-амперной характеристики (в диапазоне потенциалов от –900 до 1150 мВ относительно хлорсеребряного электрода сравнения) в растворе 0,5 или 1 М КСl.При больших перенапряжениях происходят реакции оксиления/восстановления воды на платиновом электроде.

катодный ток: $H_3O^+ + e(Pt) = Pt - H_{ads} + H_2O$

анодный ток: $Pt + H_2O = Pt - O_{ads} + 2e(Pt) + 2H^+$

Рис. 7. цВАХ для Ag и Pt РЭ

Рис. 8. цВАХ Рt

Pt электрод является идеально поляризуемым на области -800 до 1000 мB, т.к. его цВАХ соответствует графику идельно поляризуемого электрода.

Полученный хлорсеребряный электрод является идеально неполяризуемым на области -150 до 150 мВ, что следует из вида ВАХ. Процесс: $AgCl+e=Ag+Cl^ E^0(AgCl/Ag)=0.222B$ (отн водородного), по уравнению Нернста в 3.5М КСl его потенциал 0.19В. $E^0(H_2O|H_2)=-0.413B,\ E^0(O_2|OH^-)=0.82B$

2.3. Стационарные кривые поляризации для Ox-Red электрода

- 1. В качестве рабочего берем Pt электрод с малой площадью поверхности. регистрации 13 точек в секунду, около 5 циклов.
- 2. Помещаем мешальник в электрохимическую ячейку, включив магнитную мешалку. Добавляем в ячейку по 1 мл 0.1 М раствора К3[Fe(CN)6] и 0.1 М К4[Fe(CN)6] (в присутствии 50 мл 1 М КСl (фоновый электролит)). Потенциал разрыва цепи = 283.2 В. Регистрируем катодную и анодную поляризационные кривые в диапазоне от 0 до –400 мВ и от 0 до 400 мВ (относительно потенциала разрыва цепи) при постоянной скорости перемешивания раствора. Используем режим линейной развертки потенциала со скоростью 5 мВ/с, диапазон тока 200 мкА. Перед началом регистрации каждой стационарной кривой дождаемся установления стационарного потенциала.
- 3. Последовательно добавляем 5 раз по 2 мл раствора K3[Fe(CN)6], снимая кривые поляризации.
- 4. В конечном растворе повторяем измерение поляризационных кривых Pt электрода при скорости \approx в 4 раза выше.

Рис. 9. Стационарные кривые поляризации для Ох-Red электрода

Рис. 10. Стационарные кривые анодной поляризации для Ox-Red электрода

Катодная поляризация $[Fe(CN)6]^{3-} + e = [Fe(CN)6]^{4-}$ Анодная поляризация $[Fe(CN)6]^{4-} - e = [Fe(CN)6]^{3-}$

При положительных перенапряжениях относительно потенциала разрыва цепи предельный диффузионный ток практически не зависит от концентрации оксиленной формы, при отрицательных - растет с увеличением концентрации.

		Концентрация K3[Fe(CN)6]			
V(KCl 1M), мл	V(K4[Fe(CN)6] 0.1 M), мл	V(K3[Fe(CN)6] 0,1M), мл	V общий, мл	C(K3[Fe(CN)6]), M	id, мкА
50	1	1	52	0,0019	0,947
50	1	3	54	0,0056	2,7154
50	1	5	56	0,0089	4,0193
50	1	7	58	0,0121	5,8326
50	1	9	60	0,0150	7,3617
50	1	11	62	0,0177	8,9622

Таблица 1. Данные при последовательном добавлении Ох

Рис. 11. Зависимость предельного диффузионного тока от концентрации Ох

$${
m k}=503.57~{
m mkA/M}.$$
 По формуле (4) найдем δ - толщину неперемешиваемого слоя, $S=2\pi rl+\pi r^2,$ где $l=1{
m mm}, r=0.45{
m mm}.$ $D_{red}=0.89\cdot 10^{-9}{
m m}^*{
m m/c}$ $\delta=FD_{red}S/k=\frac{96485\cdot 0.89\cdot 10^{-9}\cdot 3.46\cdot 10^{-6}}{503.57\cdot 10^{-9}}=0.00059{
m m}$

Рис. 12. Кривая поляризации платинового электрода при одинаковых концентрациях солей и разной скорости перемешивания

В целом наблюдаем уменьшение предельного диффузионного тока по модулю при перемешивании.

В стационарных условиях при отсутствии тока построим зависимость величины стационарного потенциала электрода от логарифма отношения концентраций в соответствии с уравнением Нернста:

$$E(i=0) = E_0 + \frac{RT}{nF} ln \frac{C_{ox}}{C_{red}}$$
(14)

ν, мл	Ep, MB	In(C3/C4)
1	283,2	-3,95124
3	310,2	-2,89037
5	321,3	-2,41591
7	328,6	-2,11453
9	335,52	-1,89712
11	339,4	-1,72924

Таблица 2. Данные при изменении концентрации Ох

Рис. 13. Зависимость стационарного потенциала от логарифма отношения концентраций Ох к Red

Из графика RT/nF = 25.2 мВ. Тогда n=1.02, что согласуется с процессом. Максимальное количество феррицианида, превратившееся в ферроцианид по ф-ле Фарадея: $\frac{It}{nF} = \frac{200 \cdot 10^{-6} \cdot 238}{1 \cdot 96500} = 5 \cdot 10^{-7}$ моль.

2.4. Определение диффузионного потенциала

- Подключаем потенциостат к двум Ag/AgCl электродам по двухэлектродной схеме ("Counter" и "Ref" к одному электроду, "Work" и "Comp" к другому). Ведем измерения в режиме мониторинга. Разность потенциалов дву электродов в одном растовре в один общий раствор КСl или HCl.
- Соскабливание части покрытия не проводилось
- Один электрод помещаем в 0,1 M раствор HCl, а второй в раствор HCl концентрацией 1M, стаканы соединены электролитическим мостиком, заполненным 1 M HCl $E=49~\mathrm{mB}$
- Помещаем электроды в ячейки с 0,1 M и 1 M растворами KCl (электролитический мостик заполняется раствором KCl). $E=51.5~\mathrm{mB}$ B соответствии с уравнением Нернста:

$$\Delta E = \frac{RT}{nF} ln \frac{1}{0.1} = 59 \text{MB} \tag{15}$$

Оценим диффузионный потенциал теоретически, по уравнению Гендерсона-Планка:

$$\Delta \phi = \frac{RT}{zF} \frac{D_{-} - D_{+}}{D_{-} + D_{+}} ln \frac{c_{1}}{c_{2}}$$
(16)

В модели Стокса:

$$D = \frac{\lambda_0 RT}{|z|F^2} \tag{17}$$

Табличные значения предельных эквивалентных электропроводностей: $\lambda_H^0=349.8$ см²/Ом*моль $\lambda_K^0=73.5$ см²/Ом*моль $\lambda_{Cl}^0=76.35$ см²/Ом*моль

диффузионный скачок потенциала теоретический $\Delta\phi_{HCl}^{teor}=38~\text{мB}$ диффузионный скачок потенциала экспериментальный $\Delta\phi_{HCl}^{exp}=99$ - 59=40~мB диффузионный скачок потенциала теоретический $\Delta\phi_{KCl}^{teor}=1.18~\text{мB}$ диффузионный скачок потенциала экспериментальный $\Delta\phi_{KCl}^{exp}=59$ - 51.5=7.5~мB

3. Вывод

- 1. Катодная поляризация позволяет очистить серебряную проволоку от слоя хлорида, анодная превратить его в хлорсеребряный электрод
- 2. Pt электрод идеально поляризуемый на области -800 до 1000 мВ; полученный хлорсеребряный идеально неполяризуем на области -150 до 150 мВ
- 3. Толщина неперемешиваемого составила 0.59 мм, удалось подтвердить участие одного электрона в OBP с участием кровяных солей.
- 4. Удалось определить диффузионный скачок потенциала экспериментально и теоретически для растворов КСl и HCl, которые составили 7.5(1.18) мВ и 40(38) мВ соответственно.

Список литературы

- [1] Дамаскин Б.Б., Петрий О.А. Электрохимия. М.: Высшая школа, 1987 295 с. Глава VII. 2 Лукомский Ю.Я., Гамбург Ю.Д. Физико-химические основы электрохимии. Долгопрудный: Интеллект, 2008 424 с. Главы 21-24, 26-28, 30, 31, 33-35, 47 (о процессах на электродах, методах их исследования) 3 Назаров В.В., Гродский А.С. и др. Практикум и задачник по коллоидной химии. Поверхностные явления и дисперсные системы. М.: ИКЦ «Академкнига», 2007 374 с. Работа 4 (про электрокапиллярность) 4 Справочник по электрохимии / Под редакцией А.В. Сухотина. Л.: Химия, 1981 488 с.
- [2] Лукомский Ю.Я., Гамбург Ю.Д. Физико-химические основы электрохимии. Долго-прудный: Интеллект, 2008 424 с. Главы 21-24, 26-28, 30, 31, 33-35, 47 (о процессах на электродах, методах их исследования)
- [3] Назаров В.В., Гродский А.С. и др. Практикум и задачник по коллоидной химии. Поверхностные явления и дисперсные системы. М.: ИКЦ «Академкнига», 2007 374 с. Работа 4 (про электрокапиллярность)
- [4] Справочник по электрохимии / Под редакцией А.В. Сухотина. Л.: Химия, 1981 488 с.
- [5] Л. Антропов Теоретическая электрохимия, "Высшая школа 1984, 179 с.