Deep Network for Speech Emotion Recognition —A Study of Deep Learning—

Zhuowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

Table of Contents

Multilayer Neural Network Function and Training Problems and Solutions

Conclusion and Outlook

Table of Contents

Multilayer Neural Network Function and Training Problems and Solutions

Conclusion and Outlook

Structure and Function

Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
$$a_j(\mathbf{x}) = \sum_i w_{ji}^{(1)} x_i + b_j^{(1)}$$

Hidden layer activation:

$$\mathbf{h} = f(\mathbf{a})$$

Output layer activation of single hidden layer:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)})$$

Output layer activation of N hidden layers:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(N+1)}\mathbf{h}^{(N)} + \mathbf{b}^{(N+1)})$$

Training

Empirical Risk Minimization

learning algorithms

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \Omega(\boldsymbol{\theta})$$

- loss function $l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)})$ for sigmoid activation $l(\boldsymbol{\theta}) = \sum_{m} \frac{1}{2} \left\| y^{(m)} \hat{y}^{(m)} \right\|^2$
- regularizer $\lambda\Omega(\boldsymbol{\theta})$

Optimization

- Gradient calculation with Backpropagation
- Stochastic/Mini-batch gradient descent

Unsupervised Layerwise Pre-training

Vanishing Gradient

- Training time increases as network gets deeper
- Gradient shrink exponentially and training end up local minima
- Caused by random initialization of network parameters

Unsupervised Layerwise Pre-training

Vanishing Gradient

- Training time increases as network gets deeper
- Gradient shrink exponentially and training end up local minima
- Caused by random initialization of network parameters

Unsupervised layerwise pre-training

- Pretrain the deep network layer by layer to build a stacked auto-encoder
- Each layer is trained as a single hidden layer auto-encoder by minimizing average reconstruction error:

$$\min l_{AE} = \sum_{m} \frac{1}{2} \left\| \mathbf{x}^{(m)} - \hat{\mathbf{x}}^{(m)} \right\|^2$$

• Fine-tuning the entire deep network with supervised training

Pre-training

even more abstract features

more abstract features

features

Input

3

Overfitting

- Huge amount of parameters in deep network
- Not enough data for training
- Poor generalization

Overfitting

- Huge amount of parameters in deep network
- Not enough data for training
- Poor generalization

Regularization

■ Add weight penalization $\lambda \|\mathbf{w}\|_p$ to loss function

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \|\mathbf{w}\|_{p}$$

In convex optimization:

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}), s.t. \|\mathbf{w}\|_{p} \leq C$$

P-Norm

$$\|\mathbf{w}\|_p := \left(\sum_{n=1}^n |w_i|^p\right)^{1/p} = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

Widely used: L1- and L2-regularization (p=1 and p=2)

P-Norm

$$\|\mathbf{w}\|_p := \left(\sum_{n=1}^n |w_i|^p\right)^{1/p} = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

Widely used: L1- and L2-regularization (p=1 and p=2)

Table of Contents

Multilayer Neural Network Function and Training Problems and Solutions

Conclusion and Outlook

Conclusion

- Model with long-term dependencies shall be used for speech emotion
- CRBM is appropriate for short-term modelling, but not for long-term variation
- LSTM is good at modelling long time dependency
- Frame-based classification can also reach good result
 - □ CRBM-LSTM 71.98%
 - □ LSTM 81.59%
 - \Box LSTM with rectifier layers 83.43%

Outlook

- Stacking CRBM to form deeper structure
- Train CRBM with more/larger database
- Second order optimization to speed up learning process
- Bi-directional LSTM, capturing future dependencies

Thank You!