

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced Level In Statistics S1 (WST01/01)

Question Number	Scheme	Marks
1 (a)	$\overline{x} = \frac{58}{40} = 1.45$	B1
	$\sigma^2 = \frac{84.829}{40} - 1.45^2$	M1
	$= 0.018225 = awrt \underline{0.0182}$	A1 (3)
(b)	New mean = $\underline{145}$ New $\sigma = \underline{13.5}$	B1ft B1 (2)
(c)(i) (ii)	Reason e.g. mean of two extra children is the same as the original mean Conclusion the mean is therefore unchanged or = $\underline{145}$ Reason e.g. extra children more than 1 sd from mean so increased spread	M1 A1 M1
	Conclusion therefore standard deviation will increase	A1 (4) [9]
	Notes	
(a) (b)	B1 for a correct mean (accept an exact fraction) M1 for a correct expression for σ^2 (or s^2) (ft their mean and condone inside square root) A1 for awrt 0.0182 (NB $s^2 = 0.0186923$ awrt 0.0187) Correct ans only 2/2 [No fraction] 1 st B1ft for new mean = 145 or 100×their \bar{x}	
(0)	2^{nd} B1 for new s.d. = awrt 13.5 (accept $s = 13.6719$ or awrt 13.7)	
(c)(i)	1 st M1 for a suitable reason. May see recalculation e.g. $\frac{"145" \times 40 + 130 + 160}{42}$ (o.e.)	
	e.g. "both 15 away from the mean" or "both same distance from the mean" or "mean of new values is 145 or the same"	
	1 st A1 for 145 or 1.45 or "no change" but M1 must be seen [no further comment needed if answer matches their (b) or (a)]	
(ii)	2^{nd} M1 for a suitable reason but must have idea that the "gap" (= 15) > 1 st. dev. [ft σ < 15] 2^{nd} A1 for stating standard deviation will be <u>greater</u> (o.e.) [M1 must be seen]	
	Calculations (You may see)	
	e.g. $\Sigma y^2 = 84.829 + 1.3^2 + 1.6^2 = 89.079$ leading to $\sigma = \sqrt{0.01842} = 0.13575$.	or <u>13.6</u> (cm)
	$\underline{\text{or}} = \frac{89.079}{42} = 2.1209 > \frac{84.829}{40} = 2.1207$ stays the same so σ greater	
	BUT M0A0 unless we see mention of 15 (cm) or 1.5 (m) being more than 1 sd	
l		

Question Number	Scheme	Marks
	[IQR = 47 - 33 =] 14	B1
2. (a)(i) (ii)	[Range = $54 - 11 =$] 43	B1 (2)
(b)	e.g. $Q_2 - Q_1 (= 9) > (5 =) Q_3 - Q_2$	M1
	Therefore <u>negative</u> (skew)	A1 (2)
(c)	$25 \rightarrow 37 \implies \text{new } Q_1 = 35 \pmod{\text{plot}}$	B1
	[54 \rightarrow 60 (implies upper whisker now at 60) but no change to Q_3]	
	New $IQR = 12$ so need to re-calculate for outliers	M1
	Outliers now $[> 47 + 18 = 65 \text{ or}] < 35 - 18 = 17$ Box Plot	A1
	x x 1 10 20 30 40 50 60 70	
	Box and two whiskers with median still at 42	M1
	Lower quartile at their 35 (\neq 33) and upper quartile unchanged at 47	Alft
	Two outliers at 11 and 15	A1
	Lower whisker at 18 (or 17) <u>and</u> upper whisker at 60	A1 (7)
(d)	The value of pmcc is small <u>or</u> weak correlation (o.e.)	M1 (7)
	Therefore the complaint is <u>not</u> supported	A1 (2)
	Notes	
(a)(i)	1 st B1 for 14 2 nd B1 for 43	
(b)	M1 for a suitable reason or calculation (allow longer whisker on left etc)	
	A1 for negative skew (dep on M1 seen) "left skew" etc is A0 [Condone incorre	ct "9" or "5"]
(c)	B1 for new lower quartile at 35 (stated or on box plot) 1st M1 for finding the new IQR (< 14) and attempting to re-calculate for outlier	s
	1 st A1 for at least the correct lower limit of 17 seen 2 nd M1 for drawing a box with only two whiskers and median at 42 (all points <u>-</u>	± 0.5 square)
	2 nd A1ft for lower quartile of "35" (changed from 33) and upper quartile unchanged from 33).	nged at 47
	3 rd A1 for only two outliers at 11 and 15 (no overlap with whisker) 4 th A1 for lower whisker ending at 18 (or 17) <u>and</u> upper whisker ending at 60 Correct box plot scores all except 1 st M1A1 (i.e. 5/7) this M1A1 requires some	
(d)	M1 for comment that pmcc is "small" so little correlation (just saying < 0 is no	_
(u)		<u> </u>
	Allow e.g. "not significant" or "not relevant" or $-0.5 < r < 0.5$ or "not cl but "no correlation" is M0	ose 10 – 1
	A1 for suggesting the complaint is <u>not</u> supported e.g. "little evidence to suppo	rt claim"
	Dep on M1 seen NB M1A0 is possible	

Question Number	Scheme	Marks
3. (a)	0.02 and $0.98-p$ correctly placed [no mixing of % and probability] 0.96 and 0.05 plus $1-q$, 0.04, 0.95 correctly placed	B1 B1 (2)
(b)	$P(T) = pq + 0.02 \times 0.96 + (0.98 - p) \times 0.05 = 0.169$ $\{ pq - 0.05p = 0.1008 \}$	M1; A1
	P(do not have disease T) = $\frac{"(0.98 - p)" \times 0.05}{0.169} = \frac{41}{169}$	M1A1ft
	So $p = \underline{0.16}$ e.g. $0.16q - 0.16 \times 0.05 = 0.1008$ $q = \underline{0.68}$	A1 dM1 A1
(c)(i)	P(type $A \mid T$ and not type B) = $\frac{pq}{pq + (0.98 - p) \times 0.05} = \frac{0.1088}{0.1088 + 0.041}$ $= 0.7263 \text{ awrt } \underline{0.726}$	(7) M1A1ft A1
(ii)	Should find test useful, doctor knows there is a much greater chance that the person has type A (0.73 compared to 0.16 or 0.163[from $\frac{0.16}{0.98}$])	(3) B1
		[13]
	Notes	
(a)	1^{st} B1 for remainder of 1^{st} column probabilities (allow use of correct p so 0.82	
(b)	2 nd B1 for remainder of 2 nd column probabilities (allow use of correct q so 0.68 and 0.32) In (b) or (c) if p or q are used as ft in M or A marks they must be probabilities 1 st M1 for attempt to form eq'n in p and q using P(T) = 0.169 [at least 2 of 3 correct prod's] 1 st A1 for a fully correct equation in p and q or possibly just q (using their p see 3 rd M1) 2 nd M1 for use of a conditional prob (ratio of probabilities with num or den correct, allow ft	
	on num) and $\frac{41}{169}$ to form an equation in p 2^{nd} A1ft for a correct equation using values from their tree diagram 3^{rd} A1 for solving to get $p = 0.16$ (or exact equivalent) 3^{rd} dM1 (dep on 1^{st} M1) for substituting their p into an equation for q (ft their p value) 4^{th} A1 for $q = 0.68$ (or exact equivalent)	
(c)(i)	M1 for an attempt at a conditional prob with numerator of their pq (num < denom) 1^{st} A1ft for a correct ratio of probs (ft their values for p or q with at least one correct) 2^{nd} A1 for awrt 0.726 (or exact fraction $\frac{544}{749}$)	
(ii)	B1 If $(c)(i) < 0.7$ then B0 for suggesting test should be useful (accept "yes") plabout increased prob or "more likely to have type A than no disease" or "prob	

Question Number	Scheme	Marks
4. (a)	[W = weight of a package delivered to Susie $W \sim N(510, 45^2)$]	
	$P(W < 450) = P\left(Z < \frac{450 - 510}{45}\right) \text{ or } P(Z < -1.3333)$	M1
	= 1 - 0.9082 $= 0.0918$	M1 A1 (3)
(b)	$[P(W > d) = 0.05 \text{ implies}] \frac{d - 510}{45} = 1.6449$	M1B1
	d = 584.0205 awrt <u>584</u>	A1 (3)
(c)	$P(W > 450 \mid W < "584.02") = \frac{P(450 < W < "584.02")}{P(W < "584.02")}$	M1
	$= \frac{0.95 - "0.0918"}{0.95} \text{ or } \frac{"0.9082" - 0.05}{0.95}$	M1A1
	= 0.903368 awrt <u>0.904</u> or <u>0.903</u>	A1 (4)
(d)	$\left(\frac{19}{20}\right)^4 \times \frac{1}{20} \times 5$ $= 0.203626 $ awrt $\underline{0.204}$	M1dM1
	= 0.203626 awrt <u>0.204</u>	A1 (3)
	Notes	[13]
(a)	Correct answer only in (a), (c) or (d) scores all the marks for that	
(b)	M1 for standardising their letter d with 510 and 45 and setting equal to z value $1 < z < 2$ B1 for use of $z = \pm 1.6449$ or better (calc 1.644853626)	
Ans only	A1 for awrt 584 (calc 584.0184) [awrt 584.02 scores 3/3 584 scores M1B0A1]	
(c)	1st M1 for a correct ratio of probability expressions ft their answer to (b) where 2nd M1 for numerator of awrt 0.95 – their answer to (a) 1st A1 for a correct denominator of awrt 0.95 (dep on M1M1) NB a correct ratio of probabilities will score the 1st 3 marks 2nd A1 for awrt 0.904 or awrt 0.903	e (b) > 450
(d)	1 st M1 for $k p^4(1-p)$ for any positive integer k and any probability p (allow $k = 1$) 2 nd dM1 for $k = 5$ A1 for awrt 0.204	

Question Number	Scheme	Marks	
5. (a)	$E(X) = -2p - p + 0 + \frac{1}{2} + 3p$; $= \frac{1}{2}$	M1; A1	
(b)	$E(X^{2}) = 4p + p + 0 + 1 + 9p = [14p + 1]$ $[Var(X) =] E(X^{2}) - [E(X)]^{2} = 14p + 1 - ("\frac{1}{2}")^{2}$	(2) M1A1 dM1	
	So $14p + 0.75 = 2.5$ $p = \frac{1}{8}$	M1 A1	
(c)	Sum of probabilities = 1 implies $q = \frac{3}{8}$	(5) B1ft	
(d)	P(Amar wins) = e.g. $P(X_1 > 0) + P(X_1 < 0) \times P([X_1 + X_2] > 0 \{ X_1 < 0 \})$ or $P(X_1 = 2 \text{ or } 3) + P(X_1 = -2) \times P(X_2 = 3) + P(X_1 = -1) \times P(X_2 = 2 \text{ or } 3)$	(1) M1	
	Cases $X_1 = -2$ and $X_2 = 3$ so probability $= p^2$ $X_1 = -1$ and $X_2 \ge 2$ so probability $= p(p + \frac{1}{4})$	M1	
	Total probability = $p + 0.25 + p^2 + p(p + 0.25) = \frac{1}{8} + \frac{1}{4} + \frac{1}{64} + \frac{1}{64} + \frac{1}{32}$	A1ft	
	$=\frac{7}{16}$	A1	
(e)	[Although $E(X) > 0$ since] $P(win) < 0.5$ Amar should not play the game or "disagree"	(4) M1 A1 (2)	
	Notes	[14]	
(a)	M1 for a correct expr'n for $E(X)$ in p (at least 3 non-zero terms seen). May be im A1 for $\frac{1}{2}$ (or exact equivalent e.g. $\frac{2}{4}$ or 0.5)	plied by A1	
(b)	2nd dM1 dep on 1st M1 for use of $[Var(X) =]$ $E(X^2) - [E(X)]$ get $p = \frac{3}{28}, q = \frac{3}{28}$ and if they get $q = \frac{3}{28}$ and if they get $q = \frac{3}{28}$ and if they get $q = \frac{3}{28}$	If they think $E(X^2) = Var(X)$ get $p = \frac{3}{28}$, $q = \frac{3}{7}$ and up to (b) M1A1M0M1A0 (c) B1ft and if they get $\frac{319}{784}$ in (d) it implies M1M1A1A0 there and access to (e)	
(c)	D10 C 3 1 1 1 0.275 3 2 0 1		
(d)	Ist M1 for identifying only the correct cases (any correct list, adding not needed) 2^{nd} M1 for identifying all the cases where a 2^{nd} spin is required <u>and</u> probabilities (no extras) 1^{st} A1ft for correct expression for total probability (allow their $0 or letter p)$		
ALT	2^{nd} A1 for $\frac{7}{16}$ (or exact equivalent e.g. 0.4375) $\left[\frac{7}{16}\right]$ with no incorrect working seen gets 4/4] Allow P(loses) = $q + p(1-p) + p(0.75-p)$ only if $1 - P(\text{loses})$ is seen		
(e)	M1 for identifying that the important feature is that $P(win) < 0.5$ (o.e.) [ft their A1cao for concluding that he shouldn't play the game (dep on M1 seen & 0.375)		

	stion nber	Scheme	Marks
6.	(a)	$\left[\sum y = 16 \times 20.5 = 328\right] S_{yy} = 8266 - \frac{328^2}{16}$	M1
		= 1542 (allow awrt 1540)	A1
		$[r=]\frac{-630.9}{\sqrt{368.16}\times"1542"}$	M1
		= -0.837336 awrt -0.837	A1
	(b)	As the distance from the hospital increases the percentage of referrals decreases (o.e.) e.g. smaller % of patients attend from clinics further away	B1 (4)
	(c)	e.g. Points close to a straight line (of negative gradient) so does support belief	B1 (1) (1)
	(d)	$b = \frac{-630.9}{368.16} [= -1.7136]$	M1
		$a = 20.5 - "-1.7136" \times 8.1 [= 34.3806]$ y = 34.38 1.7136x $y = 34.4 - 1.71x$	M1 A1, A1
	(e)	[On average] each km further from the hospital reduces the % attendance by 1.7%	B1 (4) (1)
	(f)	Correct line drawn on scatter diagram (use overlay within guidelines)	B1 (1)
	(g)	Correct point circled (3.2,19)	B1 (1)
		[Allow coords stated instead of point circled but if both, prioritise circled point]	(1) [13]
		Notes	L - 1
	(a)	1 st M1 for an attempt at a correct expression for S_{yy} (ft their 328 provided intention is Σy) 1 st A1 for 1542 (allow awrt 1540 it leads to $r = -0.83788$ and scores 2 nd A0) 2 nd M1 for a correct expression for r (ft their S_{yy} but use of 8266 is M0 here) 2 nd A1 for awrt -0.837 (ans only 4/4; awrt -0.838 M1A1M1A0; -0.84 M1A0M1A0)	
	(b)	B1 for an interpretation of negative correlation <u>in context</u> (just "strong neg correlation" B0)	
	(c)	B1 for "points close to a straight line" <u>and</u> stating does support manager's belief <u>or</u> allow "r is close to – 1" <u>or</u> "strong (negative) correlation" <u>and</u> supports manager's claim <u>or</u> for a curve drawn on scatter diagram <u>and</u> comment that non-linear model may be better	
	(d)	1^{st} M1 for a correct expression for b 2^{nd} M1 for a correct expression for a (ft their value of b or even letter b in correct formula) 1^{st} A1 (dep on 1^{st} M1) for $b = awrt - 1.71$ in an equation in y and x (no fractions) 2^{nd} A1 (dep on 2^{nd} M1) for $a = awrt$ 34.4 in an equation in y and x	
	(e)	B1 for a comment with their b (<0) relating distance from hospital to % attendance/referrals Allow "as distance increases by 1 the % referrals decreases by 1.7" (o.e.)	
	(f)	B1 for drawing the line on scatter diagram (within guidelines of overlay-check both graphs)	
	(g)	B1 for correct point on scatter diagram circled (more than one point circled is B0)