Mid-term Examination

HPC1 Fall 2014

Date: Thursday, November 6

30/50

Problem 1: Compare and contrast shared memory and message passing programming models, giving at least four attributes for each.

list of Attendentes: Memory, Ease, Data parallelizhing, Dater Handling, Speedup & scalability, Implementation, Date communication, Data modification, Examples.

Message Parsing Programming. Shared Memory Programming Atter bute -> distailbuted mamory. 1. Memory -> Shaced memoly por parallel programming. 105 Parallel programming 2. Use -> will have to us enginees the Relatively easy when compeled to 3. Ease of Use whole code generally of Message passing programmings - Used generally for talk vsed generally for data parallelizing 4. Data polt ->
parallelizing parallelizhig. & and cannot generally modify each officer data

- Communicate by passing the Worlders have access to same data 5. Data communication 6. Communication -> No, because same data message 7-Data Handling so conilud on data location -> Full control on and data and 8. Speed up & speed up is good compared to Scalability Message Passing but not have its location - Scalability is good. Can be used for nearly large parallel computing good scalability (du to wited and a Implementation = Different on different platforms - general programming method for all the plat forms 00. Snangles - Open MP, HPF, Pthreads Cluster OpenMP, MPI, PVM, High Performance bortran CAF, UPC) -> Pous, not nearly MPI- Message lawing Inlespose morang purson

Used por Windows

DVM, > Parallel vector Machins

(AF+> Co-Array Forten, OPC -> Unified Parallel C

30/30

Problem 2: A sequential program depends on data of size N and has performance of $\mathcal{O}(N^2)$. It also takes $\tau_i + N$ time units to execute the serial portion of the code (input, output, setup, etc.). The program's parallelizable portion executes in $100N^2$ time units.

- **a.** Derive an expression for the parallel speedup, S(N, P), in terms of N and the number of processors, P.
- b. Similarly express the parallel efficiency, $\mathcal{E}(N, P)$, assuming $\tau_i \ll N$.
- c. Express in terms of P the maximum speedup for this program for $N=10^5$, again assuming $\tau_i << N$. For what value of P does the parallel efficiency drop to 50%?
- **d.** Now suppose that $\tau_i = N^2$. For what value of P does the parallel efficiency now drop to 50%?

Social code (75)

Parallel code
$$\Rightarrow$$
 z_1 , z_2 , z_3 , have, $z_1+z_3=z_1+N$ (given)

 $z_2=(00N^2)$

Parallel code \Rightarrow z_1 , z_2 , z_3 , have, $z_1+z_3=z_1+N$ (given)

 $z_2=(00N^2)$
 $z_2=(00N^2)$
 z_1 , $z_2=(00N^2)$
 z_1 , $z_2=(00N^2)$
 $z_2=(00N^2)$
 z_1 , $z_2=(00N^2)$
 z_1 ,