Diszkrét matematika I. feladatok Gráfok II.

Kilencedik alkalom (2025.04.28-05.02.)

Gyakorló feladatok

1. Mutassa meg, hogy tetszőleges páratlan hosszúságú zárt séta tartalmaz kört. Igaz-e ez páros hosszúságúra?

Megoldás: A séta egy $v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-2}, e_{k-1}, v_{k-1}, e_k, v_k$ csúcs-él-csúcs-él-stb. szimbólum-sorozat. Zárt a séta, azaz a legelső és a legutolsó csúcsszimbólum ugyanaz: $v_0 = v_k = v$.

Ha a két legszélső él is ugyanaz $(e_1 = e_k = e)$, akkor, mivel v_1 és v_{k-1} is az e él másik vége (ami nem v), ezért $v_1 = v_{k-1}$. (Vagy ha $v_1 = v$ vagy $v_{k-1} = v$, akkor e hurokél, és azért lesz $v_1 = v_{k-1}$). Mindenesetre ekkor a sorozat elejét (v, e) és a végét (e, v) lehagyva, a kapott sorozat: $v_1, e_2, v_2, \ldots, v_{k-2}, e_{k-1}, v_{k-1}$ szintén egy zárt séta. Mivel két éllel kevesebbet tartalmaz, ez is egy páratlan hosszúságú zárt séta. Ezt a lépést véges sokszor alkalmazva már egy olyan páratlan hosszúságú zárt sétát kapunk, amiben második és az utolsó előtti csúcs nem azonos. (Vagy egyetlen hurokélből áll a zárt séta: v, e, v, vagy az első és az utolsó éle két különböző él: $v, e, w_1, \ldots, w_m, f, v$, ahol $e \neq f$ és így $w_1 \neq w_m$.)

Ha a séta egyetlen hurokélből áll, akkor az maga egy kör. Ha a séta $v, e, w_1, \ldots, w_m, f, v$, ahol $e \neq f$ és így $w_1 \neq w_m$, akkor a w_1, \ldots, w_m, f, v , sétából kiválasztható egy w_1, \ldots, v út, és ezt az utat az e él egy körré zárja be: w_1, \ldots, v, e, w_1 .

Páros hosszúságúra biztosan nem igaz, ellenpélda: Legyen a gráf egy 1 élű ösvény: P_1 , azaz két csúcs $(V = \{A, B\})$ és köztük egy él $(E = \{e\}, \varphi(e) = \{A, B\})$, és legyen a páros hosszúságú (két élszimbólumot tartalmazó) zárt séta: A, e, B, e, A (mindkét élszimbólum ugyanaz). A P_1 ösvény egy fa, körmetes, esélyünk sincs tehát a fenti sétából kört kiválasztani.

- 2. Mutassa meg, hogy ha a-ból vezet út b-be, és b-ből c-be, akkor a-ból is vezet út c-be!
- **Megoldás:** Az a-ból b-be vezető utat és a b-ből c-be vezető utat egymás után írva (a két út találkozásánál b csúcsot csak egyszer leírva) egy sétát kapunk a-ból c-be. Ebből a sétából pedig kiválasztható út a-ból c-be (ami esteleg nem tartalmazza b-t, de az nem is fontos).
 - 3. Egy körmérkőzéses sakkversenyen 27-en indultak. Lehetett-e olyan pillanat, amikor mindenki pontosan 9 ellenfélen volt túl?
- Megoldás: Készítsünk gráfot! A csúcsok legyenek a versenyzők, és húzzunk élt két versenyző közé, ha már játszottak egymással. A kérdéses pillanatban a gráfban minden csúcsnak kilenc volna a foka, és így a fokszámösszeg 27 · 9 volna, ami páratlan; tehát nem lehetett ilyen pillanat.
 - 4. Olyan fát szeretnék készíteni, melyben csak két különböző fokszám fordul elő: az egyik fajta 9-szer, a másik fajta 92-szer. Mi lehet a szóban forgó két fokszám?

- **Megoldás:** Ennek a fának 9 + 92 = 101 csúcsa és így 100 éle lesz. Ha a két fokszám x és y, akkor a fokszámösszege 9x + 92y = 200, emiatt x páros kell, hogy legyen. Mivel legalább két csúcsú fában van levél, x és y közül valamelyik 1; ezekből y = 1 és x = 12 adódik. Ilyen fokszámokkal valóban lehet fát készíteni, pl. egy 11 csúcsú út minden másodfokú pontjára tegyünk 10 további levelet.
 - 5. Igazolja, hogy ha egy n csúcsú, egyszerű gráf izomorf a komplementerével, akkor n néggyel osztva 0 vagy 1 maradékot ad.
- **Megoldás:** Legyen G(V, E), |V| = n. Egy gráf élei és a komplementerének élei együtt pontosan kiadják a teljes gráf éleit, azaz $|E(G)| + |E(\overline{G})| = |E(K_n)| = \binom{n}{2}$, továbbá ha G és \overline{G} izomorfak, akkor $|E(G)| = |E(\overline{G})|$. Ezt visszahelyettesítve az előző egyenletbe $2|E(G)| = \binom{n}{2} = \frac{n \cdot (n-1)}{2}$, azaz $|E(G)| = \frac{n \cdot (n-1)}{4}$ adódik. Az élek száma egész, ezért $n \cdot (n-1)$ osztható 4-gyel, és mivel a két szám közül az egyik páratlan, a másik osztható lesz 4-gyel. 4|n esetén n néggyel osztva 0 maradékot, 4|(n-1) esetén n néggyel osztva 1 maradékot ad.
 - 6. Legyen G egy n csúcsú, egyszerű gráf, melyben bármely két nem szomszédos pont fokszámának összege legalább n-1. Mutassuk meg, hogy G összefüggő.
- **Megoldás:** Tegyük föl indirekt, hogy G nem összefüggő. Ekkor a csúcshalmaza felbontható két diszjunkt részre, hívjuk ezeket A-nak és B-nek, melyek közt nincs él. (Ezt már láttuk.) Egy $u \in A$ csúcsnak legfeljebb |A|-1, egy $v \in B$ csúcsnak legfeljebb |B|-1 lehet a fokszáma, hiszen G egyszerű. Ebből $\deg(u) + \deg(v) \leq |A|-1+|B|-1 = |A|+|B|-2 = n-2$ adódik. Másrészt a fokszámokra vonatkozó feltétel miatt (u és v nyilván nem szomszédosak) $\deg(u) + \deg(v) \geq n-1$ teljesül. Ezzel ellentmondásra jutottunk, tehát az indirekt feltevés hamis.
 - 7. Hat versenyző körmérkőzést játszik. Bizonyítsa be, hogy bármely időpontban van három olyan versenyző, akik már mind játszottak egymással, vagy három olyan, hogy egyik sem játszott a másik kettővel.
- Megoldás: Minden pillanathoz tartozik egy hatpontú gráf, amiben azok a csúcsok vannak összekötve, akik adott pillanatig már játszottak egymással. Az állítás szerint minden ilyen gráfban vagy a komplementerében van háromszög.
 - Tekintsünk egy tetszőleges csúcsot és tetszőleges pillanathoz tartozó gráfot. A többi öt csúcs közül vagy van legalább három, amivel ő össze van kötve, vagy legalább három, amivel nincs összekötve (azaz a komplementerben van velük összekötve). Ez skatulya-elvvel belátható (a két skatulya a "szomszédja" és a "nem szomszédja", és nem lehet, hogy öt csúcs közül mindkét skatulyába csak legfeljebb kettő-kettő kerül).
 - 1. Ha a gráfban van legalább 3 szomszédja a kiválasztott csúcsak, akkor két eset lehetséges: 1/a) Ezen három szomszéd közül valamelyik kettő között van él, és így ez a két csúcs, és az előre kiválasztot csúcs egy háromszöget alkot a gráfban. 1/b) Ezen három szomszéd közül semelyik kettő között sincs él, és így ez a három csúcs a komplementerben alkot egy háromszöget.

- 2. Ha a gráf komplementerében van legalább 3 szomszédja a kiválasztott csúcsak, akkor két eset lehetséges: 2/a) Ezen három szomszéd közül valamelyik kettő között van él a komplementerben, és így ez a két csúcs, és az előre kiválasztot csúcs egy háromszöget alkot a komplementerben. 2/b) Ezen három szomszéd közül semelyik kettő között sincs él a komplementerben, és így ez a három csúcs a a gráfban alkot egy háromszöget.
- 8. Igazolja, hogy egy összefüggő véges gráfban bármely két leghosszabb útnak van közös pontja!

Megoldás: Legyen a leghosszabb utak hossza k. Legyen két tetszőleges leghosszabb út közül az egyik $(v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, és a másik pedig $(w_0, f_1, w_1, f_2, w_2, \dots, w_{k-1}, f_k, w_k)$.

Indirekt tegyük fel, hogy ennek a két útak nincs közös pontja. Mivel a gráf összefüggő, bizosan létezik séta v_0 és w_0 között, ezen séta használhatja a két út csúcsait és éleit, akár többször is (vissza-visszatérve is az egyik és a másik útra), de biztosan lesz egy olyan szakasza, ami után már nincsen csúcsa az első útól, és ennek a szakasznak az elején lesz egy olyan szakasz, aminek csak az utolsó csúcsa van a második útról.

A fenti szakasz eleje tehát indul az első út egy csúcsával, nevezzük ezt v_i -nek, és befejeződik a második út egy csúcsával, nevezzük ezt w_j -ek. A kettő között pedig sem az egyik, sem a másik útról nincs csúcs (esteleg csak egy él van v_i és w_j között, de lehet hosszabb is az "átkötés", de biztosan olyan csúcsokon át, amik sem a v-k, sem a w-k között nincsenek felsorolva). Ezt a v_i, \ldots, w_j utat jelölje α . Ez az α legalább 1-hosszú út. (Az α karaktersorozat fordított sorrendjét jelölje α')

Jelöljük az első és a második út szakaszait is röviden:

 $\beta = v_0, e_1, v_1, e_2, v_2, \dots, v_{i-1}, e_i, v_i, \text{ ez } i\text{-hosszú},$

 $\gamma = v_i, e_{i+1}, v_{i+1}, e_{i+2}, v_{i+2}, \dots, v_{k-1}, e_k, v_k, \text{ ez } k - i\text{-hosszú}.$

 $\delta = (w_0, f_1, w_1, f_2, w_2, \dots, w_{j-1}, f_j, w_j), \text{ ez } j\text{-hosszú},$

 $\varepsilon = (w_j, f_{j+1}, w_{j+1}, f_{j+2}, w_{j+2}, \dots, w_{k-1}, f_k, w_k)$, ez k - j-hosszú. Ezeknek a karaktersorozatoknak a fordított sorrendjeit is jelöljük vesszővel.

Vagy a $\beta\alpha\delta'$ út, vagy a $\beta\alpha\varepsilon$ út, vagy a $\gamma'\alpha\delta'$ út, vagy a $\gamma'\alpha\varepsilon$ út (ahol a görög betűkkel jelölt karatersorozatok határain a közös csúcsokat csak egyszer írjuk le) hosszabb lesz mint k, és így ellentmondásra jutunk azzal, hogy k-hosszú a leghosszabb út.

9. Mutassa meg, hogy egy véges fában az összes leghosszabb út egy ponton megy át!

Megoldás: Először bizonyítjuk, hogy bármely két leghosszabb útnak van közös pontja. Indirekt tfh. van két diszjunkt leghosszabb út, P_1 és P_2 , hosszuk legyen k. Mivel fa, ezért összefüggő, tehát van "átkötés" a két út között, azaz van $v_1 \in P_1$ és $v_2 \in P_2$ úgy, hogy van olyan v_1 -ből v_2 -be vezető út, melynek egyik éle sincs rajta sem P_1 -en, sem P_2 -n. v_1 két részre osztja P_1 -et, tekintsük a hosszabbik részt, ez legalább k/2 hosszú. Hasonlóan v_2 két részre osztja P_2 -t, tekintsük a hosszabbik részt, ez legalább k/2 hosszú. A két rész és a $v_1 - v_2$ út együtt egy több mint k hosszú út, ellentmondás.

Most szintén indirekt tfh. van 3 leghosszabb út P_1 , P_2 és P_3 , de nem egy ponton mennek át. A következő gondolatmenettel azt fogjuk megmutatni, hogy ekkor van a gráfban kör, ami ellentmondás. (Két leghosszabb útnak lehet több közös pontja is, azaz egy egész közös

útszakasz, de a körmentesség miatt csak egy ilyen közös szakasz lehet, ami legalább egy pontú. Jelölje $\gamma_1 = P_2 \cap P_3$ útszakaszt, és jelölje $\gamma_2 = P_3 \cap P_1$ útszakaszt. Az indirekt feltevés szerint nincs olyan csúcs, ami mindhárom leghosszabb útnak közös csúcsa, ezért γ_1 és γ_2 két diszjunkt szakasza P_3 -nak. Jelölje $m_1 \in \gamma_1$ és $m_2 \in \gamma_2$ azt a két pontot, ami a P_3 úton egymáshoz a legközelebb van. Jelölje $\gamma_3 = P_2 \cap P_1$ útszakaszt. Az indirekt feltevés szerint ez diszjunkt P_3 úttól. Jelölje $m_3 \in P_3$ az egyik csúcsot.) Tehát m_1, m_2, m_3 csupa különböző csúcs. m_1 és m_2 csúcsok között van β séta m_3 csúcson keresztül, ami nem használja P_3 útnak az m_1 és m_2 közötti szakaszát (amit jelöljön α_3). A β sétából kiválasztható α_2 út, ami úgy köti össze m_1 és m_2 csúcsokat, hogy nincs közös belső csúcsa a α_3 úttal. Ekkor tehát m_1, m_2, m_3 rajta van egy körön (ami α_2 és α_3 útszakaszokból áll), de a gráf fa, ellentmondás.

10. Jelöljük egy fa elsőfokú pontjainak számát f_1 -gyel, a kettőnél nagyobb fokúak számát pedig c-vel. Mutassuk meg, hogy ha legalább két pontja van a gráfnak, akkor $f_1 \geq c + 2$.

Megoldás: Legyen G(V, E), |V| = n fa gráf, jelöljük a fa másodfokú pontjainak számát f_2 -vel, általában az i-edfokú pontjainak számát f_i -vel. Ekkor a fokszámösszeg $\sum d(v) = 1 \cdot f_1 + 2 \cdot f_2 + 3 \cdot f_3 + \ldots + i \cdot f_i + \ldots$ alulról becsülhető $\sum d(v) \ge 1 \cdot f_1 + 2 \cdot f_2 + 3 \cdot c$ -vel. Másrészt, mivel a gráf fa, |E| = n - 1, tehát a fokszámösszeg $\sum d(v) = 2 \cdot (n - 1) = 2n - 2$. A csúcsszám felírható $n = f_1 + f_2 + c$ alakban, az előző egyenletbe behelyettesítve $\sum d(v) = 2 \cdot (f_1 + f_2 + c) - 2$. Összevetve a korábbi becsléssel $2 \cdot (f_1 + f_2 + c) - 2 = \sum d(v) \ge 1 \cdot f_1 + 2 \cdot f_2 + 3 \cdot c$, azaz $2 \cdot f_1 + 2 \cdot f_2 + 2 \cdot c - 2 \ge f_1 + 2 \cdot f_2 + 3 \cdot c$, rendezve az egyenlőtlenséget $f_1 - 2 \ge c$ adódik.

Megjegyzés: az eredmény jelentése, hogy ha a fában van(nak) nagy fokszámú csúcs(ok), akkor sok elsőfokú csúcs lesz, ami megegyezik a fákkal kapcsolatos természetes intuíciónkkal.