MATH GU 4156 Advanced Probability Theory

Columbia University (Fall 2023)

Lecture 7: Uniform Integrability

Lecturer: Ioannis Karatzas Scribes: Heyuan Yao

Let us place ourselves on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If $X : \omega \to \mathbb{R}$ is integrable, then the DCT gives

$$\mathbb{E}(|X|\mathbb{1}_{\{|X|>\lambda\}})\to 0,\ \lambda\to\infty.$$

Here is a generalization of this observation.

Definition 7.1 A family $\{X_{\alpha}\}_{{\alpha}\in A}$ of random variables is called **uniformly integrable**, if

$$\sup_{\alpha \in A} \mathbb{E}\left(\mathbb{1}_{|X_{\alpha}| > \lambda}\right) \to 0, \ \lambda \to \infty.$$

This notion is crucial. It is weaker than boundedness in \mathbb{L}^p for p>1, but stronger than boundedness in \mathbb{L}^1 .

Example: On $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathbb{B}, Leb)$ consider $X_n(\omega) = n \cdot \mathbb{1}_{(0, \frac{1}{n})(\omega)}, n \in \mathbb{N}_0$. Clearly $\mathbb{E}|X_n| = 1, \forall n \in \mathbb{N}_0$, so this sequence is bounded in \mathbb{L}^1 . However, with $n \geq \lambda > 0$ we have

$$\mathbb{E}\left(|X_n|\mathbb{1}_{\{|X_n|>\lambda\}}\right) = nLeb(0,\frac{1}{n}) = 1,$$

so this sequence is not uniformly integrable.

Example: De La Vallée Poussin Criterion: Suppose that $\sup_{\alpha \in A} \mathbb{E}[h(|X_{\alpha}|)] < \infty$ holds for some function $h: (0\infty) \to (0\infty)$ with h(0+) = 0 and such that $x \mapsto \frac{h(x)}{x}$ is increasing, with $\lim_{x \to \infty} \frac{h(x)}{x} = \infty$. then the family $\{X_{\alpha}\}_{\alpha \in A}$ is uniformly integrable.

The great mathematician Charles-Jean Étienne Gustave Nicolas, Baron DE LA VALLÉE POUSSIN, came up with this criterion; and showed that, conversely, if $\{X_{\alpha}\}_{{\alpha}\in A}$ is uniformly integrable, there exists a function $h:(0\infty)\to(0\infty)$ with these properties.

We have also the following characterization for this notion.

Proposition 7.2 A family of random variable $\{X_{\alpha}\}_{\alpha\in A}$ is uniformly integrable if, and only if, both conditions below hold:

- (i) Boundedness in \mathbb{L}^1 : $\sup_{\alpha \in A} \mathbb{E}(|X_{\alpha}|) < \infty$.
- (ii) Uniform Absolute Continuity:

$$(\forall \epsilon > 0)(\exists \delta_{\epsilon} > 0) \ s.t. \ \sup_{\alpha \in A} \mathbb{E}(|X_{\alpha}|\mathbb{1}_{B}) < \epsilon \ holds \ for \ every \ B \in \mathcal{F} \ with \ \mathbb{P}(B) < \delta_{\epsilon}.$$

We know very well by now, that a sequence of integrable random variables can easily converge a.e., but fail to converge in \mathbb{L}^1 The following result identifies uniform integrability as the "unique glue" that makes this happen.

Theorem 7.3 (Generalized DCT) Suppose the sequence of integrable r.v.'s $X_1, X_2...$ converges in probability to some random variable X.

Then the following are equivalent:

- (i) the $X_1, X_2, ...$ are uniformly integrable;
- $(ii) \ \mathbb{E}(|X_n-X|) \overset{n\to\infty}{\to} 0, \ i.e., \ X_n \overset{\mathbb{L}^1}{\to} X;$
- (iii) $\mathbb{E}|X_n| \overset{n \to \infty}{\to} \mathbb{E}|X|$.

The equivalence (i) and (ii) above, has become known as SCHEFFÉ's lemma.

Finally, we have a famous compactness result.

Theorem 7.4 (DUNFORD-PETTIS) Consider a family $\{X_{\alpha}\}_{{\alpha}\in A}$ of integrable random variables. Then the following are equivalent:

- (i) the family is uniformly integrable.
- (ii) every sequence $(X_n)_{n\in\mathbb{N}_0}$ from the family, contains a subsequence which converges weakly in \mathbb{L}^1 to some $X\in\mathbb{L}^1$.