Интерполяция волатильности и аппроксимация Йошиды

Статья показывает, как **математическая теория** аппроксимации (приближённого описания сложных объектов) может помочь **в моделировании волатильности** (изменчивости) цен на финансовом рынке — например, при расчётах по **опционам** (финансовым контрактам).

В частности, он показывает, что метод, используемый для моделирования "волатильности с прыжками" в работе Andreasen и Huge (2011), связан с аппроксимацией Йосиды — важным инструментом в теории марковских процессов.*

Плотность функции перехода, как правило, означает, что вероятность нахождения системы в некотором состоянии в определённый момент времени можно выразить через интеграл. Например, в задачах, связанных с процессами, переход от одного состояния к другому может описываться с помощью функции переходов. Когда эта функция имеет плотность, это означает, что переходы между состояниями можно измерить с помощью распределения вероятностей.

Интерполяция волатильности и аппроксимация Йосиды

Аннотация

Цель данной заметки — указать на связь между аппроксимацией Йосиды для линейных операторов и методом интерполяции волатильности, разработанным в работе Andreasen и Huge (2011).

1. Марковский процесс

Процесс, в котором **будущее зависит только от текущего состояния**, а не от прошлого. Примеры: игра в кости, блуждание по клеткам, курс акций при определённых условиях.

2. Генератор процесса (оператор A)

Это математический объект, описывающий, как изменяется функция от состояния системы во времени. Например, для физического процесса это может быть оператор, похожий на дифференцирование по времени.

3. Аппроксимация Йосиды

Это способ заменить **сложный (неограниченный)** оператор A на **семейство более простых операторов** A_{λ} , которые можно легко использовать для расчётов. Такие приближённые операторы удобно применять, когда хотим численно моделировать поведение сложного процесса.

0 Прелиминарии

В этом разделе собраны некоторые хорошо известные факты из теории марковских процессов. Полное изложение можно найти в работе Ethier и Kurtz (1986).

Пусть E — сепарабельное метрическое пространство, а $\bar{C}(E)$ — пространство всех ограниченных непрерывных функций на E. Пусть A — линейный оператор, определённый на подпространстве $D(A) \subset \bar{C}(E)$. Предположим, что процесс X, определённый на фильтрованном вероятностном пространстве $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\})$, является решением мартингальной задачи для A, то есть

$$f(X(t)) - \int_0^t Af(X(u)) \, du$$

является $\{\mathcal{F}_t\}$ -мартингалом для любой $f\in D(A)$ (т.е. величина, у которой **ожидаемое значение не меняется во времени**. Это ключевое свойство марковского процесса.)

- E пространство состояний (например, возможные значения курса акций).
- *A оператор, связанный с эволюцией марковского процесса X(t).

- Берём f(x)=x2f(x) = x^2f(x)=x2, тогда Af=1A f = 1Af=1 константа.
- Интеграл от AfA fAf по времени просто линейная функция.
- Мартингал $f(X(t)) \int_0^t Af(X(u))du$ должен колебаться вокруг постоянного значения это визуально подтверждает свойство мартингала.

- X(t) броуновское движение,
- f(x) = x²
- Тогда по правилам стохастического исчисления:

$$Af(x) = \frac{1}{2} \cdot \frac{d^2}{dx^2} x^2 = 1.$$

• To ects: $\int_0^t Af(X(u)) du = \int_0^t 1 du = t$.

Значит:

$$M(t) = f(X(t)) - \int_0^t 1 du = X(t)^2 - t.$$

То есть мартингал — это:

$$M(t) = X(t)^2 - t.$$

А это **всегда ниже** $X(t)^2$ ровно на величину t, потому что мы вычитаем линейную функцию t.

• И для мартингала график всегда будет ниже на -t

Аппроксимация Йосиды для A определяется для каждого $\lambda>0$ следующим образом:

$$A_{\lambda}:=\lambda A(\lambda-A)^{-1},\quad D\left(A_{\lambda}
ight):=R(\lambda-A).$$

Позволяет приближённо заменить A оператором A_{λ} , который проще. Эти операторы используются для построения **прыгающих марковских цепей**, которые можно считать приближением исходного процесса X(t).

np.random.randn(len(t))

Аппроксимация Йосиды: прыгающие процессы vs. исходный процесс

по аналогии с ядром в орепсу чем больше ядро тем больше размытие и тут чем больше лямбда тем больше размытие

- Исходный процесс X(t) моделируется как непрерывный (например, броуновское движение).
- Аппроксимация Йосиды заменяет его дискретным прыгающим процессом Y(V(t)), где:
 - V(t) Пуассоновский счётчик (число прыжков до момента времени t) это типо случайное время,
 - Y(n)— Марковская цепь с дискретными шагами.
- Параметр λ управляет **частотой прыжков**. При больших λ приближение к исходному процессу становится **более точным**.

Это семейство ограниченных линейных операторов, аппроксимирующих (обычно неограниченный) оператор A, и поэтому играет ключевую роль в общей теории марковских процессов. Например, аппроксимация Йосиды тесно связана с аппроксимацией X (в смысле слабой сходимости) марковским процессом (jump) $\dot{X}(t):=Y(V(t))$, где Y(n) — марковская цепь с функцией переходов $\mu_{\lambda}(x,\Gamma)$, а V(t) — независимый пуассоновский процесс с параметром λ . Функция переходов определяет сжатие

 $P_\lambda f(\cdot):=\int f(y)\mu_\lambda(\cdot,dy),\,f\in \dot C(E)$, продолжающее $\lambda(\lambda-A)^{-1}$ из $D\left(A_\lambda
ight)$ на $\dot C(E)$:

$$P_{\lambda}f=\lambda(\lambda-A)^{-1}f,\quad f\in D\left(A_{\lambda}
ight).$$

В результате Y(n) решает следующую дискретную мартингальную задачу: для любой $f \in R(\lambda - A)$

$$f(Y(n)) - \sum_{i=0}^{n-1} rac{1}{\lambda} A_{\lambda} f(Y(i))$$

является $\{\mathcal{F}_n^Y\}$ -мартингалом (здесь \mathcal{F}_n^Y — σ -алгебра, порождённая $Y(0),Y(1),\ldots,Y(n)$).

это **мартингал**, то есть её среднее значение не меняется во времени, если мы знаем прошлое. Это свойство помогает анализировать поведение случайных процессов.

Связь с марковскими цепям

Предлагается построить процесс Y(n) — дискретную цепь, которая приближает поведение X(t). Это можно сделать так:

- Берём оператор A_λ и используем его для построения **функции** переходов $\mu_\lambda(x,\Gamma)$ вероятность попасть из состояния x в множество Γ
- Эта цепь описывает "большие скачки" (jump process) это полезно в финансовом моделировании, особенно для волатильности.

1 Дискретное прямое уравнение

Фиксируем $g \in D(A)$, и пусть f := (I-A)g.

Принимая $\lambda = 1$ в (1), получаем для фиксированного n:

$$E[f(Y(n+1)) - f(Y(n)) - A_1 f(Y(n))] = 0.$$

Поскольку $A_1f\equiv Ag$, то из (2) следует:

предположим, что функция f выражена как f=(I-A)g. Тогда, подставляя это в уравнение, получаем:

$$E[(I-A)g(Y(n+1)) - (I-A)g(Y(n)) - Ag(Y(n))] = 0$$

Теперь упрощаем выражение, замечая, что (I-A)g(Y(n))и Ag(Y(n)) скомпенсируют друг друга. Это упрощает уравнение до следующего:

$$E[(I - A)g(Y(n + 1))] = E[g(Y(n))].$$

что и есть искомое выражение. Это показывает, как оператор (I-A)) действует на g в шагах марковской цепи, и приводит к равенству математических ожиданий для двух состояний процесса Y(n)и Y(n+1). Предположим, что Y_n имеет плотность 1p_n . Тогда:

$$\int p_{n+1}(y)g(y)\,dy - \int p_{n+1}(y)Ag(y)\,dy = \int p_n(y)g(y)\,dy.$$

Предположим, что A^* — сопряжённый оператор для A. Тогда $\int p_{n+1}(y)Ag(y)\,dy=\int g(y)A^*p_{n+1}(y)\,dy$, что даёт:

$$\int [p_{n+1}(y) - A^*p_{n+1}(y)]g(y)\,dy = \int p_n(y)g(y)\,dy.$$

Это слабая форма 2

$$p_{n+1} - A^* p_{n+1} = p_n.$$

Для особого случая одномерной диффузии $A=\frac{1}{2}x^2\sigma^2(x)\frac{\partial^2}{\partial x^2}$ уравнение (3) даёт ключевое уравнение, использованное в работе Andreasen и Huge (2011) для разработки схемы интерполяции волатильности и модели локальной волатильности с "большими прыжками". Оно также разработано, при других условиях, в работе Carr и Cousot (2012).

график:

Генератор A(x): $A(x) = \frac{1}{2}\sigma^2 x^2$

Начальная плотность p(x)p(x)p(x): Начальная плотность — это нормальное распределение (Гауссова функция), которое является стандартным выбором для подобных задач. Мы нормируем её, чтобы интеграл по всей области был равен 1.

Численное решение: применяем метод Эйлера, чтобы аппроксимировать изменение плотности p(x) во времени. Изменения происходят по формуле:

$$pnew(xi) = p(x_i) + \Delta t \cdot rac{A(x_i)(p(x_{i+1}) - p(x_{i-1}))}{2\Delta x}$$

где $A(x_i)$ — это генератор для точки x_i , а $p(x_{i+1})$ и $p(x_{i-1})$ — значения плотности в соседних точках.

На графике видно, как плотность \$p(x) изменяется со временем. На первых шагах плотность сильно варьируется, затем постепенно стабилизируется в определенной форме, что отражает динамику диффузионного процесса.

Из вышеизложенного мы видим, что уравнение (3) естественным образом возникает как дискретное прямое уравнение для плотности аппроксимирующей марковской цепи для процесса с генератором A. Таким образом, (3) всегда имеет решение, которое является плотностью вероятности, пока непрерывный марковский процесс имеет плотность и допускает аппроксимацию марковским процессом с прыжками (условия для последнего обычно достаточно мягкие — см. раздел 4.3 работы Ethier и Kurtz (1986)).

Литература

Andreasen, J. и Huge, B. (2011), 'Волатильность интерполяции', RISK. Carr, P. и Cousot, L. (2012), 'Явное построение мартингалов, калиброванных по заданным улыбкам имплицитной волатильности', SIAM J. Finan. Math. 3. Электронная копия доступна по адресу: http://ssrn.com/abstract=1699002.

Ethier, S. N. и Kurtz, T. G. (1986), *Марковские процессы: Характеристика и сходимость*, Wiley.

Gihman, I. I. и Skorohod, A. V. (1972), Стохастические дифференциальные уравнения, Springer.

А Условия существования плотности

Предположим, что функция переходов P(t;x,y) исходного решения мартингальной задачи для A допускает плотность p(t;x,y). Тогда функция переходов $\mu_{\lambda}(\cdot,\Gamma)$ также имеет плотность, и

$$\mu_{\lambda}(\cdot,dy) = \lambda \int_0^{\infty} e^{-\lambda t} p(t;\cdot,y) dt dy.$$

- $\mu_{\lambda}(\cdot,\Gamma)$ это некая функция, характеризующая вероятность перехода через интеграл.
- λ это параметр, который контролирует скорость переходов.
- Интеграл по времени и состоянию y описывает, как часто система находится в различных состояниях y с учётом времени.

В случае знакомого оператора второго порядка

$$L=b(x)rac{\partial}{\partial x}+rac{1}{2}a(x)rac{\partial^2}{\partial x^2}$$

Этот оператор описывает изменение функции в зависимости от положения x. Он включает в себя два компонента:

- b(x) первый член, который отвечает за "первичное" изменение функции в зависимости от x. Это своего рода "скорость изменения".
- $\frac{1}{2}a(x)$ второй член, который описывает "вторичное" изменение функции, т.е. насколько сильно изменяется скорость изменения. Оператор L используется для описания эволюции системы, и в контексте мартингала он может описывать, как процесс изменяется со временем.

набор достаточных условий для существования плотности p приведён в теореме I.13.2 работы Gihman и Skorohod (1972).

Функции переходов в задачах мартингалов описывают, как система меняется со временем, и плотность этих функций позволяет нам понять, как часто система оказывается в различных состояниях. Мы можем использовать такие операторы, как L, чтобы формализовать эти изменения, и интегралы, чтобы вычислять вероятности переходов между состояниями.

Основной вывод: наличие плотности в задаче мартингала означает, что мы можем использовать математические инструменты, такие как интегралы и операторы второго порядка, чтобы точно описать поведение системы, переходящей между состояниями.