UECS3213 / UECS3453 DATA MINING

SESSION: January 2019

TUTORIAL 3

Chapter 3 - Classification

k-NN

1. Consider the one-dimensional data set shown in Table 5.4.

Table 5.4. Data set

X	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
y	_	_	+	+	+	-	_	+	١	_

a) Classify the data point x = 5.0 according to its 1-, 3-, 5-, and 9-nearest neighbors (using majority vote).

Answer:

- 1-nearest neighbor: +, (4.9; 1 positive vs 0 negative)
- **3-nearest neighbor:** –, (4.9, 5.2, 5.3; 2 negative vs 1 positive)
- 5-nearest neighbor: +, (4.9, 5.2, 5.3, 4.6, 5.5 or 4.5; 3 positive vs 2 negative)
- **9-nearest neighbor:** -. (4.9, 5.2, 5.3, 4.6, 5.5, 4.5, 3.0, 7.0, 0.5 or 9.5; 5 negative vs 4 positive)
- b) Repeat the previous analysis using the distance-weighted voting approach.

Answer:

 $w_i = 1/dist(x, x_i)$

- 1-nearest neighbor: +, (positive: 1/0.1=10; negative: 1/0.2=5; positive > negative)
- 3-nearest neighbor: +, (positive: 1/0.1 = 10; negative: (1/0.2 + 1/0.3)/2 = 4.17; positive > negative)
- 5-nearest neighbor: +, (positive: (1/0.1 + 1/0.4 + 1/0.5)/3 = 4.83; negative: (1/0.2 + 1/0.3)/2 = 4.17; positive > negative)
- 9-nearest neighbor: +. (positive: (1/0.1 + 1/0.4 + 1/0.5 + 1/0.5)/4 = 4.125; negative: (1/0.2 + 1/0.3 + 1/2 + 1/2 + 1/4.5)/5 = 1.91; positive > negative)

- Majority voting:
 c* = arg max_c g(c)
- Weighted voting: weighting is on each neighbor c* = arg max_c Σ_i w_i δ(c, f_i(x))

Where $\delta(c, f_i(x))$ is 1 if $f_i(x) = c$ and 0 otherwise

· Weighted voting allows us to use more training examples:

e.g.,
$$w_i = 1/dist(x, x_i)$$

Decision Tree

2. Consider the training examples shown in Table 4.1 for a binary classification problem.

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Luxury Large	
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Table 4.1. Data set

- a) Compute the Gini index for the overall collection of training examples.
- Gini = $1 2 \times 0.5^2 = 0.5$ (C0: 10/20 = 0.5; C1: 10/20 = 0.5)
 - b) Compute the Gini index for the Gender attribute.

- The Gini for Male is $1 0.6^2 \times 0.4^2 = 0.5$. The gini for Female is also $1 0.6^2 \times 0.4^2 = 0.5$.
- Therefore, the overall Gini for Gender is $0.5 \times 0.48 + 0.5 \times 0.48 = 0.48$.
 - c) Compute the Gini index for the Car Type attribute using multiway split.

The gini for

- Family car = $1 (1/4)^2 (3/4)^2 = 0.375$
- Sports car = $1 (8/8)^2 (0/8)^2 = 0$
- Luxury car = $1 (1/8)^2 (7/8)^2 = 1 0.015625 0.765625 = 0.2188$.
- The overall gini = 0.375*4/20 + 0*8/20 + 0.2188*8/20 =**0.16252**
 - d) Compute the Gini index for the Shirt Size attribute using multiway split.

Answer:

- The gini for
 - Small shirt size = $1 (2/5)^2 (3/5)^2 = 1 0.16 0.36 = 1 0.52 = 0.48$
 - Medium shirt size = $1 (3/7)^2 (4/7)^2 = 1 0.1837 0.3265 = 0.4898$
 - Large shirt size = $1 (2/4)^2 (2/4)^2 = 0.5$
 - Extra Large shirt size = $1 (2/4)^2 (2/4)^2 = 0.5$.
- The overall gini for Shirt Size attribute = 5/20*0.48 + 7/20*0.4898 + 4/20*0.5 + 4/20*0.5 =**0.4914**.
 - e) Which attribute is **better**, Gender, Car Type, or Shirt Size?

- Car Type because it has the lowest gini among the three attributes. Car Type is the best.
- 3. Consider the training examples shown in Table 4.2 for a binary classification problem.

Table 4.2. Data set

Instance	a_1	a_2	a_3	Target Class
1	\mathbf{T}	${ m T}$	1.0	+
2	\mathbf{T}	\mathbf{T}	6.0	+
3	\mathbf{T}	\mathbf{F}	5.0	_
4	\mathbf{F}	\mathbf{F}	4.0	+
5	\mathbf{F}	\mathbf{T}	7.0	_
6	\mathbf{F}	\mathbf{T}	3.0	_
7	\mathbf{F}	\mathbf{F}	8.0	_
8	\mathbf{T}	\mathbf{F}	7.0	+
9	\mathbf{F}	\mathbf{T}	5.0	_

- a) What is the *entropy* of this collection of training examples with respect to the positive class?
- There are four positive examples and five negative examples.
- Thus, P(+) = 4/9 and P(-) = 5/9.
- The entropy of the training examples is $-4/9 \log_2(4/9) 5/9 \log_2(5/9)$
- -0.4444(-1.1701) 0.5556(-0.8479) = 0.52 + 0.4711 = 0.9911
 - b) What are the *information gains* of a_1 and a_2 relative to these training examples?

For attribute a₁, the corresponding counts and probabilities are:

a_1	+	-
T	3	1
F	1	4

The entropy for a_1 is

$$\frac{4}{9} \left[-(3/4)\log_2(3/4) - (1/4)\log_2(1/4) \right]$$
+
$$\frac{5}{9} \left[-(1/5)\log_2(1/5) - (4/5)\log_2(4/5) \right] = 0.7616.$$

Therefore, the information gain for a_1 is 0.9911 - 0.7616 = 0.2294.

For attribute a_2 , the corresponding counts and probabilities are:

a_2	+	-
T	2	3
F	2	2

The entropy for a_2 is

$$\begin{split} &\frac{5}{9}\bigg[-(2/5)\log_2(2/5)-(3/5)\log_2(3/5)\bigg]\\ +&\frac{4}{9}\bigg[-(2/4)\log_2(2/4)-(2/4)\log_2(2/4)\bigg]=0.9839. \end{split}$$

Therefore, the information gain for a_2 is 0.9911 - 0.9839 = 0.0072.

c) For a₃, which is a continuous attribute, compute the *information gain* for every possible split.

	1	1		3	4	4		5	(6	7	7		8		
Split	0.	.5	- 1	2	3.	.5	4.	.5	5.	.5	6.	.5	•	7.5	8.	.5
	١٧	^	١٧	>	≤	>	<u> </u>	>	١٧	^	<u><</u>	^	١٧	>	١٧	٧
P(+)	0	4	1	3	1	3	2	2	2	2	3	1	4	0	4	0
P(-)	0	5	0	5	1	4	1	4	3	2	3	2	4	1	5	0

Entropy (1, target class) = $P(\le 0.5)$ *Entropy (0,0) + P(> 0.5)*Entropy(4,5)

$$0 + \frac{9}{9} \left[-\frac{4}{9} * \log_2(\frac{4}{9}) - \frac{5}{9} * \log_2(\frac{5}{9}) \right] = 0.9912$$

GAIN (1) = 0.9912 - 0.9912 = 0

Entropy (3, target class) = $P(\le 2)$ *Entropy (1,0) + P(>2)*Entropy(3,5)

$$\frac{1}{9} \left[-\frac{1}{1} * \log_2(\frac{1}{1}) - \frac{0}{1} * \log_2(\frac{0}{1}) \right] + \frac{8}{9} \left[-\frac{3}{8} * \log_2(\frac{3}{8}) - \frac{5}{8} * \log_2(\frac{5}{8}) \right] = 0.8484$$

GAIN (3) =
$$0.9912 - 0.8484 = 0.1428$$

Entropy (4, target class) = $P(\le 3.5)$ *Entropy (1,1) + P(>3.5)*Entropy(3,4)

$$\frac{2}{9} \left[-\frac{1}{2} * \log_2(\frac{1}{2}) - \frac{1}{2} * \log_2(\frac{1}{2}) \right] + \frac{7}{9} \left[-\frac{3}{7} * \log_2(\frac{3}{7}) - \frac{4}{7} * \log_2(\frac{4}{7}) \right] = 0.9885$$
GAIN (4) = 0.9912 - 0.9885 = 0.0027

Entropy (5, target class) = $P(\leq 4.5)$ *Entropy (2,1) + P(>4.5)*Entropy(2,4)

$$\frac{3}{9} \left[-\frac{2}{3} * \log_2(\frac{2}{3}) - \frac{1}{3} * \log_2(\frac{1}{3}) \right] + \frac{6}{9} \left[-\frac{2}{6} * \log_2(\frac{2}{6}) - \frac{4}{6} * \log_2(\frac{4}{6}) \right] = 0.9183$$
GAIN (5) = 0.9912 - 0.9183 = 0.0729

Entropy (6, target class) = $P(\le 5.5)$ *Entropy (2,3) + P(>5.5)*Entropy(2,2)

$$\frac{5}{9} \left[-\frac{2}{5} * \log_2(\frac{2}{5}) - \frac{3}{5} * \log_2(\frac{3}{5}) \right] + \frac{4}{9} \left[-\frac{2}{4} * \log_2(\frac{2}{4}) - \frac{2}{4} * \log_2(\frac{2}{4}) \right] = 0.9839$$
GAIN (6) = 0.9912 - 0.9839 = 0.0073

Entropy (7, target class) = $P(\le 6.5)$ *Entropy (3,3) + P(>6.5)*Entropy(1,2)

$$\frac{6}{9} \left[-\frac{3}{6} * \log_2(\frac{3}{6}) - \frac{3}{6} * \log_2(\frac{3}{6}) \right] + \frac{3}{9} \left[-\frac{1}{3} * \log_2(\frac{1}{3}) - \frac{2}{3} * \log_2(\frac{2}{3}) \right] = 0.9728$$
GAIN (7) = 0.9912 - 0.9728 = 0.0184

Entropy (8, target class) = $P(\le 7.5)$ *Entropy (4,4) + P(>7.5)*Entropy(0,1)

$$\frac{8}{9} \left[-\frac{4}{8} * \log_2(\frac{4}{8}) - \frac{4}{8} * \log_2(\frac{4}{8}) \right] + \frac{1}{9} \left[-\frac{0}{1} * \log_2(\frac{0}{1}) - \frac{1}{1} * \log_2(\frac{1}{1}) \right] = 0.8889$$
GAIN (8) = 0.9912 - 0.8889 = 0.1023

Answer:

a_3	Class label	Split point	Entropy	Info Gain
1.0	+	2.0	0.8484	0.1427
3.0	-	3.5	0.9885	0.0026
4.0	+	4.5	0.9183	0.0728
5.0	-			
5.0	-	5.5	0.9839	0.0072
6.0	+	6.5	0.9728	0.0183
7.0	+			
7.0	-	7.5	0.8889	0.1022

The best split for a_3 occurs at split point equals to 2.

- d) What is the best split (among a₁, a₂, and a₃) according to the information gain?
- Best of a_3 at GAIN (3) = 0.1427
- GAIN $(a_3) = 0.1427$
- GAIN $(a_2) = 0.0072$
- GAIN $(a_1) = 0.2296$
- We can see that, MAX (GAIN (a_3) , GAIN (a_2) , GAIN (a_1)) = GAIN (a_1) = 0.2296.
- According to information gain, a₁ produces the best split.
 - e) What is the best split (between a₁ and a₂) according to the classification error rate?
 - Classification Error Rate: = (FP + FN) / (TP + TN + FP + FN)
 - Classification error rate a_1 : (1+1)/(3+1+1+4)=2/9=0.2222
 - Classification error rate a_2 : (2+2)/(2+3+2+2)=4/9=0.4444
 - Therefore, a₁ provides best split because of lower classification error rate
 - f) What is the best split (between a₁ and a₂) according to the Gini index?

For attribute a_1 , the gini index is

$$\frac{4}{9} \left[1 - (3/4)^2 - (1/4)^2 \right] + \frac{5}{9} \left[1 - (1/5)^2 - (4/5)^2 \right] = 0.3444.$$

For attribute a_2 , the gini index is

$$\frac{5}{9} \left[1 - (2/5)^2 - (3/5)^2 \right] + \frac{4}{9} \left[1 - (2/4)^2 - (2/4)^2 \right] = 0.4889.$$

Since the gini index for a_1 is smaller, it produces the better split.

Naive Bayes

4. Consider the data set shown in Table 5.1

Table 5.1. Data set

Record	A	B	C	Class
1	0	0	0	+
2	0	0	1	_
3	0	1	1	_
4	0	1	1	_
5	0	0	1	+
6	1	0	1	+
7	1	0	1	_
8	1	0	1	_
9	1	1	1	+
10	1	0	1	+

a) Estimate the *conditional probabilities* for P(Al+), P(Bl+), P(Cl+), P(Al-), P(Bl-), and P(Cl-).

- P(A = 1|-) = 2/5 = 0.4, P(B = 1|-) = 2/5 = 0.4, P(C = 1|-) = 1,
- P(A = 0|-) = 3/5 = 0.6, P(B = 0|-) = 3/5 = 0.6, P(C = 0|-) = 0;
- P(A = 1|+) = 3/5 = 0.6, P(B = 1|+) = 1/5 = 0.2, P(C = 1|+) = 4/5 = 0.8,
- P(A = 0|+) = 2/5 = 0.4, P(B = 0|+) = 4/5 = 0.8, P(C = 0|+) = 1/5 = 0.2.
- b) Use the estimate of conditional probabilities given in the previous question to predict the class label for a test sample (A = 0, B = 1, C = 0) using the Naive Bayes approach.

$$\begin{split} \text{Let } P(A=0,B=1,C=0) &= K. \\ P(+|A=0,B=1,C=0) \\ &= \frac{P(A=0,B=1,C=0|+) \times P(+)}{P(A=0,B=1,C=0)} \\ &= \frac{P(A=0|+)P(B=1|+)P(C=0|+) \times P(+)}{K} \\ &= 0.4 \times 0.2 \times 0.2 \times 0.5 / K \\ &= 0.008 / \text{K} \end{split}$$

$$P(-|A = 0, B = 1, C = 0)$$

$$= \frac{P(A = 0, B = 1, C = 0|-) \times P(-)}{P(A = 0, B = 1, C = 0)}$$

$$= \frac{P(A = 0|-) \times P(B = 1|-) \times P(C = 0|-) \times P(-)}{K}$$

$$= 0/K$$

The class label should be '+'.

c) Estimate the *conditional probabilities* using the m-estimate approach, with p = 1/2 and m = 4.

$$\hat{P}(a_i \mid v_j) \leftarrow \frac{n_c + mp}{n + m}$$

where

- n is number of training examples for which $v = v_i$
- n_c number of examples for which $v = v_i$ and $a = a_i$
- p is the prior estimate of the prob. We wish to determine $P(a_i|v_i)$
- m is a constant called the equivalent sample size, which determines how heavily to weight p relative to the observed data. (i.e. adding m "virtual" examples distributed according to p)
- A typical method for choosing p in the absence of other information is to assume uniform priors.

$$m = 4, p = 0.5$$

- $P(A = 0|+) = (2 + 2)/(5 + 4) = 4/9, n_c = 2, n = 5$
- $P(A = 0|-) = (3+2)/(5+4) = 5/9, n_c = 3, n = 5$
- $P(B = 1|+) = (1 + 2)/(5 + 4) = 3/9, n_c = 1, n = 5$
- $P(B = 1|-) = (2+2)/(5+4) = 4/9, n_c = 2, n = 5$
- $P(C = 0|+) = (1 + 2)/(5 + 4) = 3/9, n_c = 1, n = 5$
- $P(C = 0|-) = (0 + 2)/(5 + 4) = 2/9, n_c = 0, n = 5$
- d) Repeat part (b) using the conditional probabilities given in part (c).

Let
$$P(A = 0, B = 1, C = 0) = K$$

$$P(+|A = 0, B = 1, C = 0)$$

$$= \frac{P(A = 0, B = 1, C = 0|+) \times P(+)}{P(A = 0, B = 1, C = 0)}$$

$$= \frac{P(A = 0|+)P(B = 1|+)P(C = 0|+) \times P(+)}{K}$$

$$= \frac{(4/9) \times (3/9) \times (3/9) \times 0.5}{K}$$

$$= 0.025 /K$$

$$P(-|A = 0, B = 1, C = 0)$$

$$= \frac{P(A = 0, B = 1, C = 0|-) \times P(-)}{P(A = 0, B = 1, C = 0)}$$

$$= \frac{P(A = 0|-) \times P(B = 1|-) \times P(C = 0|-) \times P(-)}{K}$$

$$= \frac{(5/9) \times (4/9) \times (2/9) \times 0.5}{K}$$

$$= 0.0274/K$$

The class label should be '+'.

- e) Compare the two methods for estimating probabilities. Which method is **better** and why?

 Answer:
 - When one of the conditional probability is zero, the estimate for conditional probabilities using the m-estimate probability approach is better, since we don't want the entire expression becomes zero.
 - Example: P(C = 0|-) in the example above.

5. Consider the data set shown in Table 5.2.

Table 5.2. Data set for Exercise 8.

Instance	A	B	C	Class
1	0	0	1	_
2	1	0	1	+
3	0	1	0	_
4	1	0	0	_
5	1	0	1	+
6	0	0	1	+
7	1	1	0	_
8	0	0	0	_
9	0	1	0	+
10	1	1	1	+

a) Estimate the conditional probabilities for P(A = 1|+), P(B = 1|+), P(C = 1|+), P(A = 1|-), P(B = 1|-), and P(C = 1|-) using the same approach as in the previous problem.

Answer:

- P(A = 1|+) = 3/5 = 0.6
- P(B = 1|+) = 2/5 = 0.4
- P(C = 1|+) = 4/5 = 0.8
- P(A = 1|-) = 2/5 = 0.4
- P(B = 1|-) = 2/5 = 0.4
- P(C = 1|-) = 1/5 = 0.2

b) Use the conditional probabilities in part (a) to predict the class label for a test sample (A = 1, B = 1, C = 1) using the naive Bayes approach.

- Let R : (A = 1, B = 1, C = 1) be the test record.
- To determine its class, we need to compute P(+|R) and P(-|R). Using Bayes theorem,
- P(+|R) = P(R|+)P(+)/P(R) and P(-|R) = P(R|-)P(-)/P(R).
- Since P(+) = P(-) = 0.5 and P(R) is constant, R can be classified by comparing P(+|R) and P(-|R).
- For this question,
 - o $P(R|+) = P(A = 1|+) \times P(B = 1|+) \times P(C = 1|+) = 0.6 \times 0.4 \times 0.8 = 0.192$
 - o $P(R|-) = P(A = 1|-) \times P(B = 1|-) \times P(C = 1|-) = 0.4 \times 0.4 \times 0.2 = 0.032$
- Since P(R|+) is larger, the record is assigned to (+) class.
- c) Compare P(A = 1), P(B = 1), and P(A = 1, B = 1). State the relationships between A and B.

- P(A = 1) = 0.5, P(B = 1) = 0.4 and $P(A = 1, B = 1) = P(A) \times P(B) = 1/5 = 0.2$
- Therefore, A and B are independent.
- d) Repeat the analysis in part (c) using P(A = 1), P(B = 0), and P(A = 1, B = 0).

Answer:

- P(A = 1) = 0.5, P(B = 0) = 0.6, and $P(A = 1, B = 0) = P(A = 1) \times P(B = 0) = 0.3$.
- A and B are still independent.
- e) Compare P(A = 1,B = 1|Class = +) against P(A = 1|Class = +) and P(B = 1|Class = +). Are the variables *conditionally independent* given the class?

Answer:

- Compare P(A = 1,B = 1|+) = 0.2 against P(A = 1|+) = 0.6 and P(B = 1|Class = +) = 0.4.
- Since $P(A = 1|+) \times P(B = 1|-) \neq P(A = 1,B = 1|+)$, A and B are not conditionally independent given the class.

Support Vector Machine

- 6. Suppose you are using a Linear SVM classifier with 2 class classification problem. Now you have been given the following data in which some points are circled red that are representing support vectors.
 - a) If you remove the following any one red points from the data. Does the decision boundary will change? Yes/No
 - b) If you remove the non-red circled points from the data, the decision boundary will change? True/False

Answer:

- a) Yes. These three examples are positioned such that removing any one of them introduces slack in the constraints. So the decision boundary would completely change.
- b) False. On the other hand, rest of the points in the data won't affect the decision boundary much.
- 7. What do we mean by generalization error in terms of the SVM?
 - a) How far the hyperplane is from the support vectors
 - b) How accurately the SVM can predict outcomes for unseen data
 - c) The threshold amount of error in an SVM

Answer: B. Generalisation error in statistics is generally the out-of-sample error which is the measure of how accurately a model can predict values for previously unseen data.

- 8. What do we mean by a hard margin?
 - a) The SVM allows very low error in classification
 - b) The SVM allows high amount of error in classification
 - c) None of the above

Answer: A. A hard margin means that an SVM is very rigid in classification and tries to work extremely well in the training set, causing overfitting.

- 9. The SVM's are less effective when:
 - a) The data is linearly separable
 - b) The data is clean and ready to use
 - c) The data is noisy and contains overlapping points

Answer: C. When the data has noise and overlapping points, there is a problem in drawing a clear hyperplane without misclassifying.

- 10. Which of the following are real world applications of the SVM?
 - a) Text and Hypertext Categorization
 - b) Image Classification
 - c) Clustering of News Articles
 - d) All of the above

Answer: D. SVM's are highly versatile models that can be used for practically all real world problems ranging from regression to clustering and handwriting recognition.

The End