Laborjournal

Versuchsleiter: Raphael Frey Assistent: Jeffrey Gantner

Datum Durch- führung	Versuch	Datum Abgabe	AKZEPTIER, NOTE
07.10.2015	C – Auswertung mit Computer	14.10.2015	
21.10.2015	E11 – Skineffekt	04.11.2015	
18.11.2015	M6 – ???	09.12.2015	

C-Computerversuch

7. Oktober 2015

Versuchsleiter: Raphael Frey

Assistent: Jeffrey Gantner

1 Arbeitsgrundlagen

1.1 Typen von Messfehlern

- Systematische Fehler: Verursacht durch Versuchsandordnung, Versuchsumgebung, Messvorgang. Bewirken entweder eine systematische Abweichung des Messergebnisses vom eigentlichen Wert oder eine Unsicherheit der Messgrösse. Falls sie erkannt werden können sie meist korrigiert werden.
- Zufällige Fehler: Immer vorhanden, auch bei einer von systematischen Fehlern freien Anordnung. Lassen sich durch mehrmalige Wiederholung derselben Messung beliebig verkleinern.

1.2 Angabe der Genauigkeit von Messresultaten

Bestimmung von Fehlern sind Abschätzungen. Daher ist es sinnlos, sie ganauer als ca. 10%, also etwa 1 signifikante Ziffer, anzugeben.

Mittelwert der Messungen:
$$\overline{T} = 147.85 \,\mathrm{s}$$
 (1)

absoluter Fehler:
$$s_T = 4.9 \,\mathrm{s}$$
 (2)

relativer Fehler:
$$r_T = \frac{s_T}{\overline{T}} = 0.033 = 3.3\%$$
 (3)

Messresultat:
$$T = (148 \pm 5) s$$
 (4)

unsinnig:
$$T = (147.8532 \pm 4.8700) s$$
 (5)

Merke:

- Zufällige Fehler aus einer Messreihe werden mit s bezeichnet, auf Abschätzungen beruhende Unsicherheiten mit Δ .
- Üblicherweise werden relative Fehler in %, ‰ oder **ppm** (**p**arts **p**er **m**illion) angegeben.
- Eine Messgenauigkeit von 1 % gilt als gut, 1% ist sehr gut, 1ppm astronomisch gut.

1.3 Die Fehlerbestimmung für einzelne Grössen

1 Einmalige Messung einer Grösse

Fehler wird abgeschätzt. Erfahrungssache. Wird mit Δ bezeichnet (z.B. ΔT)

2 Wiederholte Messung einer Grösse

Seien N Messergebnisse $x_1, x_2, ... x_N$ unter gleichen Bedingungen ermittelt worden. Dann wird der arithmetische Mittelwert dem wahren Wert x_0 umso näher kommen, je grösser N wird.

Arithmetischer Mittelwert aller Messergebnisse:
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (6)

Fehler dieses Mittelwertes:
$$s_{\overline{x}} = \sqrt{\frac{\sum_{1}^{N} (x_i - \overline{x})^2}{N \cdot (N - 1)}}$$
 (7)

Ergebnis:
$$x = \overline{x} \pm s_{\overline{x}}$$
 (8)

Merke:

- Messwerte, die extrem vom Mittelwert abweichen, werden als Fehlmessungen (Ausreisser) betrachtet und nicht in die Fehlerrechnung einbezogen.
- Wahrscheinlichkeitstheorie: wahrer Wert T_0 liegt mit Wahrscheinlichkeit $68\,\%$ innerhalb des Intervals $T_0 \pm s_T$, mit Wahrscheinlichkeit 95 % innerhalb des Intervals $T_0 \pm 2s_T$ und mit Wahrscheinlichkeit 99 % innerhalb des Intervals $T_0 \pm 3s_T$

Mittelwertbildung mit Gewichten

Resultate mit unterschiedlichen Genauigkeiten:

$$x_1 = \overline{x_1} \pm s_{\overline{x_1}} \tag{9}$$

$$x_2 = \overline{x_2} \pm s_{\overline{x_2}} \tag{10}$$

$$\dots$$
 (11)

$$x_n = \overline{x_n} \pm s_{\overline{x_n}} \tag{12}$$

Wahrscheinlichster Wert \overline{x} wird durch Bildung des gewichteten Mittelwerts erreicht:

$$\overline{x} = \frac{\sum_{i=1}^{n} g_{\overline{x_i}} \cdot x_i}{\sum_{i=1}^{n} g_{\overline{x_i}}}$$
 (13)

$$\overline{x} = \frac{\sum_{i=1}^{n} g_{\overline{x_i}} \cdot x_i}{\sum_{i=1}^{n} g_{\overline{x_i}}}$$
(13)

Mit den Gewichten: $g_{\overline{x_i}} = \frac{1}{s_{\overline{x_i}^2}}$

Fehler des gewichteten Mittelwertes:
$$s_{\overline{x}} = \frac{1}{\sqrt{\sum_{i=1}^{n} g_{\overline{x_i}}}}$$
 (15)

Messergebnisse mit betragsmässig kleineren Fehlern werden also stärker gewichtet.

Fehlertheorie

Abbildung 1: Histogramm mit Gauss'scher Normalverteilung. Quelle: Skript "Arbeitsunterlagen", p13.

Die in Abbildung 1 gezeigte Kurve h(x) kann beschrieben werden mit:

$$h(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$
 (16)

$$x_0$$
 Erwartungswert (wahrer Wert) (18)

$$\sigma$$
 Standardabweichung (19)

Für steigendes N geht der gemessene Mittelwert \overline{x} gegen den wahren Wert x_0 .

experimentelle Standardabweichung:
$$s = \sqrt{\frac{\sum_{1}^{N} (x_i - \overline{x})^2}{N - 1}}$$
 (20)

Die experimentelle Standardabweichung s konvergiert für $N \to D\infty$ gegen σ . er Fehler der Einzelmessung s_{T_i} und der Fehler $s_{\overline{T}}$ des Mittelwertes stehen in folgender Beziehung:

$$s_{\overline{T}} = \frac{s_{T_i}}{\sqrt{N}} \tag{21}$$

Daraus folgt z.B., dass der Mittelwert einer Serie von 100 Messungen die zehnfache Genauigkeit der Einzelmessung aufweist.

5 Regression ("Fitten")

$$\chi^{2}(a_{0}, a_{1}, \dots) = \sum_{i=1}^{N} \frac{[y_{i} - f(x_{i}, a_{0}, a_{1}, \dots)]^{2}}{\sigma_{i}^{2}} : \text{minimal}$$
(22)

wobei:
$$(23)$$

$$f(x, a_0, a_1)$$
: gegebene Gesetzmässigkeit/Funktion (24)

$$x_i, y_i$$
: Messwertpaare (25)

- Nichtlineare Funktionen f: Nichtlineare Regression. Gute Startwerde erforderlich für a_i .
- Polynomiale Funktion f: Lineare Regression. Unabhängig vom Startwert existiert lediglich ein Minimum. Startwerte für a_i daher nicht relevant.
- Verwendung einer Software zum Fitten: x-Werte sollen als Stellgrösse (absolute genau) betrachtet werden, y-Werte als fehlerbehaftet (Messgrösse).

Berechnung des Fehlers σ_i der Einzelmessung aus dem Fit:

$$\sigma_i = \sqrt{\frac{\sum_{1}^{N} (y_i - f(x_i, a_0, a_1, \dots))^2}{N - m}}$$
 (26)

Wobei N die Anzahl Messergebnisse, m die Anzahl Parameter $a_0, ... a_m$ bezeichnet. Die Parameter a_i müssen aus dem Fit herausgelesen werden.

1.4 Fehlerfortpflanzung und Auswertung

1 Indirekte Messung, das Fehlerfortpflanzungsgesetz

Seien:

Resultatgrösse:
$$R = R(x, y, z, ...)$$
 (27)

$$x = \overline{x} \pm s_{\overline{x}} \tag{29}$$

$$y = \overline{y} \pm s_{\overline{y}} \tag{30}$$

$$z = \overline{z} \pm s_{\overline{z}} \tag{31}$$

Gesucht: Mittelwert \overline{R} und mittlerer Fehler $s_{\overline{R}}$

$$\overline{R} = R(\overline{x}, \overline{y}, \overline{z}, \dots) \tag{32}$$

Mittlerer, absoluter Fehler (statistischer Fehler): Bestimmen mittels dem Gauss'schen Fehler-fortpflanzungsgesetz:

$$s_{\overline{R}} = \sqrt{\left(\frac{\partial R}{\partial x}\Big|_{\overline{R}} \cdot s_{\overline{x}}\right)^2 + \left(\frac{\partial R}{\partial y}\Big|_{\overline{R}} \cdot s_{\overline{y}}\right)^2 + \left(\frac{\partial R}{\partial z}\Big|_{\overline{R}} \cdot s_{\overline{z}}\right)^2 + \dots}$$
(33)

Wobei $\frac{\partial R}{\partial z}|_{\overline{R}}$ für die partielle Ableitung der Funktion R nach der Variablen x, ausgewertet an der Stelle der Mittelwerte $\overline{x}, \overline{y}, \overline{z}, \dots$ steht.

Der Fehler $\pm s_R$ bezeichnet die Intervallbreite, in welcher der wahre Wert mit 68 % Wahrscheinlichkeit liegt.

2 Spezialfälle des Fehlerfortpflanzungsgesetzes ("Rezepte")

- Addition und Subtraktion: $s_R = \sqrt{s_x^2 + s_y^2}$. Es werden die absoluten Fehler quadratisch addiert.
- Multiplikation und Division: $r_R = \frac{s_R}{R} = \sqrt{(\frac{s_x}{x})^2 + (\frac{s_y}{y})^2} = \sqrt{r_x^2 + r_y^2}$. Es werden die relativen Fehler quadratisch addiert.
- Potenzen: $r_R = \frac{s_R}{R} = n * r_x$. Der relative Fehler der Messgrösse wird mit dem Exponenten multipliziert.

In Endresultaten sind immer absolute Fehler anzugeben.

6 2 DURCHFÜHRUNG

2 Durchführung

Die Daten des Versuches sind vom Dozenten zur Verfügung gestellt. Die verwendeten Tools beinhalten Taschenrechner und Tabellenkalkulation, sowie QTIPlot.

3 Auswertung

Da der Punkt dieses Versuches die Fehlerrechnung selbst ist, beinhaltet dieses Kapitel ausnahmsweise auch die Fehlerrechnung. Üblicherweise ist diese jedoch in einem separaten Kapitel zu finden.

3.1 Aufgabe 1: Schallgeschwindigkeit

1 Daten

• Länge der Messtrecke: $(2.561 \pm 0.003) \,\mathrm{m}$

• Raumtemperatur: $\vartheta = 23$ °C

Messprotokoll:

Messung	Laufzeit t_i (ms)	Messung	Laufzeit t_i (ms)
1	6.83	11	7.36
2	7.41	12	7.31
3	7.32	13	7.56
4	7.31	14	7.14
5	7.23	15	6.94
6	7.68	16	7.32
7	7.33	17	7.34
8	7.7	18	7.28
9	7.93	19	7.01
10	7.54	20	7.76

Mittlere Laufzeit und ihre Unsicherheit

Mittlere Laufzeit:

$$\bar{t} = \frac{1}{20} \sum_{i=1}^{20} t_i = 7.32 \,\text{ms}$$
 (34)

Fehler des Mittelwertes:

$$s_{\bar{t}} = \frac{1}{20} \sum_{i=1}^{20} t_i = 0.01 \,\text{ms} \tag{35}$$

Wert und Unsicherheit der Schallgeschwindigkeit

Formel für Schallgeschwindigkeit in trockener Luft um 0°C:

$$c_{luft} = (331.3 + 0.606 \cdot \vartheta) \,\mathrm{m \, s^{-1}} = (331.3 + 0.606 \cdot 23) \,\mathrm{m \, s^{-1}} = 345.24 \,\mathrm{m \, s^{-1}}$$
 (36)

Berechnung der mittleren Geschwindigkeit:

$$c = \frac{s}{t} \tag{37}$$

$$c = \frac{s}{t}$$

$$\bar{c} = \frac{s}{\bar{t}} = \frac{2.561 \text{ m}}{7.32 \text{ ms}} = 349.74 \text{ m s}^{-1}$$
(38)

(39)

8 3 AUSWERTUNG

Gauss'sches Fehlerfortpflanzungsgesetz:

$$s_{\overline{R}} = \sqrt{\left(\frac{\partial R}{\partial x}\Big|_{\overline{R}} \cdot s_{\overline{x}}\right)^2 + \left(\frac{\partial R}{\partial y}\Big|_{\overline{R}} \cdot s_{\overline{y}}\right)^2 + \left(\frac{\partial R}{\partial z}\Big|_{\overline{R}} \cdot s_{\overline{z}}\right)^2 + \dots}$$
(40)

In diesem Fall ist $R(x,y,z,...):=c(s,t)=\frac{s}{t}.$ Es ergibt sich die Formel:

$$\begin{split} s_{\overline{c(s,t)}} &= \sqrt{\left(\frac{\partial c}{\partial s}\Big|_{\overline{c}} \cdot s_{\overline{s}}\right)^2 + \left(\frac{\partial c}{\partial t}\Big|_{\overline{c}} \cdot s_{\overline{t}}\right)^2} \\ &= \sqrt{\left(\frac{\partial}{\partial s} \frac{s}{t}\Big|_{\overline{c}} \cdot s_{\overline{s}}\right)^2 + \left(\frac{\partial}{\partial t} \frac{s}{t}\Big|_{\overline{c}} \cdot s_{\overline{t}}\right)^2} \\ &= \sqrt{\left(\frac{1}{t}\Big|_{\overline{c}} \cdot s_{\overline{s}}\right)^2 + \left(-\frac{s}{t^2}\Big|_{\overline{c}} \cdot s_{\overline{t}}\right)^2} \\ &= \sqrt{\left(\frac{1}{\overline{t}} \cdot s_{\overline{s}}\right)^2 + \left(-\frac{\overline{s}}{\overline{t^2}} \cdot s_{\overline{t}}\right)^2} \\ &= \sqrt{\left(\frac{1}{7.32\,\mathrm{ms}} \cdot 3\,\mathrm{mm}\right)^2 + \left(-\frac{2.561\,\mathrm{m}}{(7.32\,\mathrm{ms})^2} \cdot 0.01\,\mathrm{ms}\right)^2} \\ &= \sqrt{\left(\frac{1}{0.007\,32\,\mathrm{s}} \cdot 0.003\,\mathrm{m}\right)^2 + \left(-\frac{2.561\,\mathrm{m}}{(0.007\,32\,\mathrm{s})^2} \cdot 0.000\,01\,\mathrm{s}\right)^2} \\ &= 0.64\,\mathrm{m\,s^{-1}} \text{ (Resultat von Tabellenkalkulationsprogramm)} \end{split}$$

 $= 0.63 \,\mathrm{m\,s^{-1}}$ (Resultat mittels Eintippen der obigen Zahlen in Taschenrechner)

Folglich:

$$c_{luft} = \overline{c_{luft}} \pm s_{\overline{c_{luft}}} = (349.7 \pm 0.6) \,\mathrm{m \, s^{-1}}$$
 (41)

3.2 Aufgabe 2: Eisengehalt

1 Daten

Messung	Eisengehalt (%)	absoluter Fehler (%)
1	20.3	1.2
2	21.9	1.3
3	21.1	1.1
4	19.6	0.8
5	19.9	1.3
6	18.0	1.3
7	19.4	1.0
8	22.2	2.0
9	21.6	0.8

2 Einfacher Mittelwert

Der einfache Mittelwert ergibt sich als:

$$\overline{x} = \frac{1}{9} \sum_{i=1}^{9} x_i = 20.44\% \tag{42}$$

Mit dem zugehörigen Fehler:

$$s_{\overline{x}} = \sqrt{\frac{\sum_{1}^{9} (x_i - \overline{x})^2}{9 \cdot 8}} = 0.46 \%$$
(43)

3 Gewichteter Mittelwert

Der gewichtete Mittelwert errechnet sich gemäss:

$$\overline{x} = \frac{\sum_{1}^{9} g_{\overline{x_i}} \cdot x_i}{\sum_{1}^{9} g_{\overline{x_i}}} = \frac{156.24}{7.67} \% = 20.37 \%$$
(44)

Der zugehörige Fehler Beträgt:

$$s_{\overline{x}} = \frac{1}{\sum_{1}^{9} g_{\overline{x_i}}} = 0.36\% \tag{45}$$

10 3 AUSWERTUNG

3.3 Aufgabe 3: Federkonstante

1 Daten

F (N)	z (m)
3.83	0.20
7.79	0.35
8.08	0.42
9.7	0.46
10.58	0.51
12.33	0.54
12.23	0.59
14.43	0.67
15.51	0.71
17.09	0.80

2 Rechnung mittels Tabellenkalkulation

F (N)	z (m)						$\hat{F}(N)$
y_i	x_i	$y_i - \overline{y}$	$x_i - \overline{x}$	$(y_i - \overline{y})(x_i - \overline{x})$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})^2$	\hat{y}
3.83	0.20	-7.33	-0.32	2.38	53.68	0.11	3.82
7.79	0.35	-3.37	-0.17	0.59	11.34	0.03	7.21
8.08	0.42	-3.08	-0.10	0.32	9.47	0.01	8.79
9.70	0.46	-1.46	-0.06	0.09	2.12	0.00	9.69
10.58	0.51	-0.58	-0.01	0.01	0.33	0.00	10.82
12.33	0.54	1.17	0.02	0.02	1.38	0.00	11.50
12.23	0.59	1.07	0.07	0.07	1.15	0.00	12.62
14.43	0.67	3.27	0.15	0.47	10.71	0.02	14.43
15.51	0.71	4.35	0.19	0.81	18.95	0.03	15.33
17.09	0.80	5.93	0.28	1.63	35.20	0.08	17.36
111.57	5.25	0.00	0.00	6.40	144.33	0.29	Summen
11.16	0.52						Durchschnitte

Die Steigung der Regressionsgeraden errechnet sich als:

$$k = \frac{\sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{10} (x_i - \overline{x})^2} = \frac{144.33}{6.4} \text{N m}^{-1} = 22.57 \,\text{N m}^{-1}$$
(46)

Den Achsenabschnitt F_0 erhält man aus:

$$F_0 = \overline{y} - k \cdot \overline{x} = 11.16 \,\mathrm{N} - 22.57 \,\mathrm{N} \,\mathrm{m}^{-1} \cdot 0.52 \,\mathrm{m} = -0.69 \,\mathrm{N}$$
 (47)

Die empirische Korrelation beträgt:

$$r_{xy} = \frac{\sum_{1}^{10} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{1}^{10} (x_i - \overline{x})^2 \cdot \sum_{1}^{10} (y_i - \overline{y})^2}} = \frac{6.40}{\sqrt{144.33 \cdot 0.29}} = 0.99364$$
 (48)

Das Bestimmtheitsmass beträgt:

$$R^2 = r_{xy}^2 = 0.98732 (49)$$

3 Taschenrechner

Ergebnisse ermittelt mittels TI-89:

$$F = k \cdot z + F_0$$

$$k = 0.044312 \,\mathrm{N \, m^{-1}}$$

$$F_0 = 0.03061 \,\mathrm{N}$$

$$corr = 0.993638$$

$$R^2 = 0.987316$$