Modelos Lineares Generalizados Unidade I

Terezinha K. A. Ribeiro

terezinha.ribeiro@unb.br

Instituto de Ciências Exatas Departamento de Estatística Universidade de Brasília

Organização

- ▶ Introdução
- Família exponencial uniparamétrica e suas propriedades
- Casos particulares
- Funções de ligação
- Estimação dos parâmetros
- Procedimento iterativo

O modelo de regressão linear normal (MRLN) amostral é definido por

$$Y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \varepsilon_i, \quad i = 1, 2, \dots, n,$$

em que

- $ightharpoonup Y_i$ é uma variável aleatória (observável) denominada de resposta;
- ▶ $x_{i1}, x_{i2}, ..., x_{ip}$ são p < n variáveis não aleatórias (observáveis) chamadas de covariáveis; se $x_{i1} = 1, \forall i$, o modelo possui intercepto;
- $\beta_1, \beta_2, \dots, \beta_p$, são os coeficientes/parâmetros da regressão desconhecidos que devem ser estimados;
- ho_i é uma variável aleatória (não observável) denominada de erro da regressão e supõe-se que $\varepsilon_i \stackrel{\text{iid}}{\sim} N\left(0,\sigma^2\right)$, com $\stackrel{\text{iid}}{\sim}$ denotando "se distribuem de forma independente e são identicamente distribuídas".

Veja que

$$E(Y_i) = \mu_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip},$$

$$Var(Y_i) = \sigma^2, \quad \forall i.$$

Note que este modelo é homoscedástico, ou seja, apesar da média de Y_i variar com as observações, a variância de Y_i é constante.

Para interpretar o coeficiente β_j , $j=1,2,\ldots,p$, considere o aumento de uma unidade em x_{ij} e que as demais covariáveis estão fixadas:

$$\mu_i(x'_{ij}) - \mu_i(x_{ij}) = \beta_j, \quad x'_{ij} = x_{ij} + 1.$$

Observa-se que β_j é a variação (aumento ou diminuição) na resposta média quando é adicionada uma unidade em x_{ij} . A variação na resposta média para um aumento de b unidades em x_{ij} é mensurada a partir de $b \times \beta_j$.

Veja que

$$E(Y_i) = \mu_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip},$$

$$Var(Y_i) = \sigma^2, \quad \forall i.$$

Note que este modelo é homoscedástico, ou seja, apesar da média de Y_i variar com as observações, a variância de Y_i é constante.

Para interpretar o coeficiente β_j , $j=1,2,\ldots,p$, considere o aumento de uma unidade em x_{ij} e que as demais covariáveis estão fixadas:

$$\mu_i(x'_{ij}) - \mu_i(x_{ij}) = \beta_j, \quad x'_{ij} = x_{ij} + 1.$$

Observa-se que β_j é a variação (aumento ou diminuição) na resposta média quando é adicionada uma unidade em x_{ij} . A variação na resposta média para um aumento de b unidades em x_{ij} é mensurada a partir de $b \times \beta_j$.

Forma equivalente de definir o MRLN:

- i) $Y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} N(\mu_i, \sigma^2)$ componente aleatória;
- ii) $\mu_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$ componente determinística ou sistemática

em que $\mathbf{x}_i^{\top} = (x_{i1} \ x_{i2} \ \cdots \ x_{ip}) \in \mathbb{R}^p$ é o vetor de valores conhecidos das p covariáveis para a i-ésima observação, $\boldsymbol{\beta} = (\beta_1 \ \beta_2 \ \cdots \ \beta_p)^{\top} \in \mathbb{R}^p$ é o vetor de coeficientes da regressão, e $\stackrel{\text{ind}}{\sim}$ denota "se distribuem de forma independente".

Note que nesta última definição, o erro da regressão ε_i não está explicitado.

Os modelos lineares generalizados (MLGs) são definidos por

i)
$$Y_i \mid \boldsymbol{x}_i \stackrel{\text{ind}}{\sim} \mathsf{FE}(\mu_i, \phi)$$

ii)
$$g(\mu_i) = \eta_i \Leftrightarrow \mu_i = g^{-1}(\eta_i) \text{ com } \eta_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta},$$

em que FE (\cdot,\cdot) denota uma distribuição pertencente à família de distribuições exponencial uniparamétrica; $\phi>0$ é um parâmetro de precisão (ϕ^{-1} é um parâmetro de dispersão); $g(\cdot)$ é uma função de ligação monótona e diferenciável; η_i é o preditor linear.

- ► Em i) ampliamos o número de opções para a distribuição de probabilidades da resposta Y_i.
- ▶ Em ii), ganhamos flexibilidade na modelagem da média μ_i por meio de uma função $g(\cdot)$.

Os modelos lineares generalizados (MLGs) são definidos por

i)
$$Y_i \mid \mathbf{x}_i \stackrel{\text{ind}}{\sim} \mathsf{FE}(\mu_i, \phi)$$

ii)
$$g(\mu_i) = \eta_i \Leftrightarrow \mu_i = g^{-1}(\eta_i) \text{ com } \eta_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta},$$

em que FE (\cdot,\cdot) denota uma distribuição pertencente à família de distribuições exponencial uniparamétrica; $\phi>0$ é um parâmetro de precisão (ϕ^{-1} é um parâmetro de dispersão); $g(\cdot)$ é uma função de ligação monótona e diferenciável; η_i é o preditor linear.

- Em i) ampliamos o número de opções para a distribuição de probabilidades da resposta Y_i.
- ▶ Em ii), ganhamos flexibilidade na modelagem da média μ_i por meio de uma função $g(\cdot)$.

Em situações em que Y_i possui uma distribuição assimétrica, o MRLN não é adequado pois a inferência dos parâmetros (intervalar e testes de hipóteses) é construída sob a suposição de normalidade de $Y_i \mid \mathbf{x}_i$.

Em cenários como este, pode-se transformar Y_i para atingir normalidade. Por exemplo, para $Y_i > 0$, pode-se utilizar a transformação logarítmica. Daí, o MRLN é ajustado considerando como variável resposta $Y_i^* = \log(Y_i)$:

$$\begin{aligned} Y_i^* &= \log(Y_i) = \mu_i^* + \varepsilon_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i, \\ \text{com E}(Y_i^*) &= \mu_i^*. \end{aligned}$$

Nesta abordagem, a interpretação de $\beta_1,\beta_2,\ldots,\beta_p$ é feita com relação à média do logaritmo da resposta. Neste caso, β_j é a variação na média de Y_i^* quando é adicionada uma unidade em x_{ij} .

Aqui β_j não é interpretado (de forma exata) diretamente em termos da média de Y_i .

Observe que

$$Y_{i} = e^{\log(Y_{i})} = \exp\{\beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip} + \varepsilon_{i}\}$$

= $\exp\{\beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip}\} \exp\{\varepsilon_{i}\}.$

Assim,

$$\mathsf{E}(Y_i) = \exp\{\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}\} \, \mathsf{E}(\exp\{\varepsilon_i\}).$$

Será que é possível calcular a média de Y_i ?

Dado que $\varepsilon_i \sim N(0, \sigma^2)$, qual é a distribuição da variável aleatória e^{ε_i} ?

Revisão. Se $Z \sim N(\mu, \sigma^2)$, então vale que

- $W = e^Z \sim LN(\mu, \sigma)$ com $LN(\mu, \sigma)$ denotando a distribuição lognormal de parâmetros $\mu \in \mathbb{R}$ e $\sigma > 0$;
- $W = e^Z \sim LN(\mu, \sigma) \text{ com Med}(W) = e^{\mu},$

$$\mathsf{E}(\mathit{W}) = \mathrm{e}^{\mu + \sigma^2/2}$$
, $\mathsf{Var}(\mathit{W}) = (\mathrm{e}^{\sigma^2} - 1)\mathrm{e}^{2\mu + \sigma^2}$,

em que Med(W) denota a mediana da variável W.

De $\varepsilon_i \sim \mathrm{N}(\mathbf{0}, \sigma^2)$, tem-se que $\exp\{\varepsilon_i\} \sim \mathrm{LN}(\mathbf{0}, \sigma)$. Assim, obtemos

$$\mathsf{E}(\mathrm{e}^{\varepsilon_i}) = \mathrm{e}^{\sigma^2/2}, \quad \mathrm{Med}(\mathrm{e}^{\varepsilon_i}) = \mathrm{e}^0 = 1.$$

Daí, segue que

$$\mu_i = E(Y_i) = \exp{\{\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}\}} e^{\sigma^2/2}$$

Se σ^2 é um valor próximo a zero, então

$$\mu_i = \mathsf{E}(Y_i) \approx \exp\{\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}\}.$$

Alguns estudos mostram que σ^2 é um valor muito próximo a zero quando a transformação logarítmica é aplicada em Y.

Supondo que σ^2 é próximo a zero, como interpretamos β_0 e β_1 ?

Considere o aumento de uma unidade em x_{ij} e que as demais covariáveis estão fixadas:

$$\frac{\mu_i(x'_{ij})}{\mu_i(x_{ij})} \approx \frac{\exp\{\beta_1 x_{i1} + \dots + \beta_j (x_{ij} + 1) + \dots + \beta_p x_{ip}\}}{\exp\{\beta_1 x_{i1} + \dots + \beta_j x_{ij} + \dots + \beta_p x_{ip}\}} = e^{\beta_j},$$

em que $x'_{ij} = x_{ij} + 1$.

Observa-se que e^{β_j} é a variação percentual **aproximada** na resposta média quando é adicionada uma unidade em x_{ij} .

Logo, a interpretação dos coeficientes do MRLN com resposta transformada através do logaritmo não é exata!

De forma geral,

$$\mathsf{E}(g(Y)) \neq g(\mathsf{E}(Y)).$$

Por esta razão, ao aplicar uma transformação $g(\cdot)$ na resposta Y_i e, em seguida, ajustar um MRLN sob $g(Y_i)$, perdemos a fácil interpretação dos coeficientes da regressão em termos da média da resposta.

Esta é a grande desvantagem desta abordagem. Perde-se interpretação dos β 's diretamente em termos da média de Y_i .

Uma grande diferença dos MLGs com relação ao MRLN é manter a distribuição assumida para a variável resposta intacta, e transformar o parâmetro μ_i flexibilizando o ajuste do modelo aos dados.

A transformação $g(\cdot)$ é aplicada na média da resposta (parâmetro) através de

$$g(\mu_i) = \eta_i$$
.

Além da flexibilidade, a ideia da função de ligação é mapear o espaço em que está o parâmetro de localização μ_i para a reta real, garantindo que os parâmetros de regressão sejam estimados sem restrições.

Por exemplo, suponha que Y_i segue uma distribuição de probabilidades positiva. Assim, $\mu_i = E\left(Y_i\right) > 0$. Seja $g(z) = \log(z)$, então $g^{-1}(z) = \mathrm{e}^z$. Consequentemente,

$$g(\mu_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} \Rightarrow \log(\mu_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} \in \mathbb{R} \Rightarrow \mu_i = \exp{\{\boldsymbol{x}_i^{\top} \boldsymbol{\beta}\}} > 0.$$

Se $Y \in FE(\mu, \phi)$, a função densidade (ou função de probabilidade) de Y possui a forma

$$f(y;\theta,\phi) = \exp\{\phi[\theta y - b(\theta)] + c(y;\phi)\},\tag{1}$$

em que

- ightharpoonup o suporte desta família de distribuições não depende de θ ou ϕ ;
- $lackbox{mlack}{ heta}= heta(\mu)$ é uma função de μ e é chamado de parâmetro canônico;
- \blacktriangleright $b(\theta)$ é uma função diferenciável que depende apenas de θ ;
- $c(y;\phi)$ é uma função que depende de y e ϕ e é diferenciável nos seus argumentos.

Note a função densidade em (1) é um caso particular da família exponencial de distribuições. A variável y aparece de forma linear em (1).

Para derivar algumas propriedades desta família de distribuições, considere

$$\ell(\theta,\phi) = \log[f(y;\theta,\phi)] = \phi[\theta y - b(\theta)] + c(y;\phi).$$

As funções escore para θ e ϕ são dadas por

$$U_{\theta} = \frac{\partial \ell(\theta, \phi)}{\partial \theta} = \phi \left[y - b'(\theta) \right],$$

$$U_{\phi} = \frac{\partial \ell(\theta, \phi)}{\partial \phi} = \theta y - b(\theta) + c'(y; \theta),$$

em que

$$b'(\theta) = \frac{d}{d\theta}[b(\theta)], \quad c'(y;\phi) = \frac{d}{d\phi}[c(y;\theta)].$$

Considere as seguintes condições de regularidade:

- C_1) O suporte da distribuição de Y não depende de θ ou ϕ ;
- C_2) É válida a troca entre os sinais de derivação e integração sob a densidade $f(\cdot; \theta, \phi)$.

Sob estas condições é válido que

$$\mathsf{E}\left(U_{\theta}\right)=\mathsf{0},\quad \mathsf{E}\left(U_{\theta}'\right)=-\,\mathsf{E}\left(U_{\theta}^{2}\right),$$

com

$$U'_{\theta} = \frac{\partial^2 \ell(\theta, \phi)}{\partial \theta^2}.$$

Daí, segue que

$$\mathsf{E}\left\{\phi\left[\mathsf{Y}-\mathsf{b}'(\theta)\right]\right\}=0\Rightarrow\mathsf{E}(\mathsf{Y})=\mu=\mathsf{b}'(\theta).$$

Também, temos que

$$\begin{split} & U_{\theta}^2 = \left\{\phi\left[y - b'(\theta)\right]\right\}^2 = \phi^2(y - \mu)^2 \\ \\ & \Rightarrow \mathsf{E}\left(U_{\theta}^2\right) = \phi^2\,\mathsf{E}\left[(Y - \mu)^2\right] = \phi^2\,\mathsf{Var}(Y). \end{split}$$

Ainda,
$$U_{\theta}' = -\phi b''(\theta)$$
 com $b''(\theta) = \frac{d^2}{d\theta^2}[b(\theta)]$. Então,
$$\mathsf{E}\left(U_{\theta}'\right) = -\,\mathsf{E}\left(U_{\theta}^2\right) \Rightarrow -\phi b''(\theta) = -\phi^2\,\mathsf{Var}(Y)$$

$$\Rightarrow \mathsf{Var}(Y) = \phi^{-1}b''(\theta) = \phi^{-1}\mathsf{V}(\mu),$$

em que $V(\mu) = b''(\theta)$ é conhecida como função de variância.

A função de variância caracteriza a distribuição da família exponencial uniparamétrica. Por exemplo, a função de variância

$$V(\mu) = \mu(1 - \mu), 0 < \mu < 1,$$

caracteriza a classe de distribuições binomiais de sucesso μ ou 1 $-\mu$.

Note que para $V(\mu)$ fixada, $Var(Y) = \phi^{-1}V(\mu)$ aumenta quando ϕ diminui, e, diminui quando ϕ cresce. Por esta razão, ϕ é considerado um parâmetro de precisão.

Resultados aproximados

Sejam Y_1, Y_2, \ldots, Y_n variáveis aleatórias independentes e identicamente distribuídas (iid) com E $(Y_i) = \mu$ e Var $(Y_i) = \sigma^2$. Pelo Teorema do Limite Central, para n grande,

$$\overline{Y} \stackrel{\text{a}}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$
,

em que $\stackrel{a}{\sim}$ denota "segue distribuição aproximada".

Nos MLGs temos apenas independência entre $Y_1, Y_2, ..., Y_n$. Para ϕ grande,

$$Y \stackrel{a}{\sim} N\left(\mu, \frac{V(\mu)}{\phi}\right).$$

Note que este último resultado é válido para n=1 e precisão ϕ grande.

Seja Y uma variável aleatória com distribuição normal de média μ e variância σ^2 . A função densidade de Y é dada por

$$f(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y - \mu)^2\right\}, \qquad \begin{array}{l} y \in \mathbb{R}, \\ \mu \in \mathbb{R}, \\ \sigma^2 > 0. \end{array}$$

Denotaremos por $Y \sim N(\mu, \sigma^2)$.

Veja que

$$\begin{split} f(y;\mu,\sigma^2) &= \exp\left\{-\frac{1}{2\sigma^2}\left(y^2 - 2\mu y + \mu^2\right) - \log\left[\left(2\pi\sigma^2\right)^{1/2}\right]\right\} \\ &= \exp\left\{\frac{1}{\sigma^2}\left(\mu y - \frac{\mu^2}{2}\right) - \frac{1}{2\sigma^2}y^2 - \frac{1}{2}\log\left(2\pi\sigma^2\right)\right\} \\ &= \exp\left\{\frac{1}{\sigma^2}\left(\mu y - \frac{\mu^2}{2}\right) - \frac{1}{2}\left[\log\left(2\pi\sigma^2\right) + \frac{y^2}{\sigma^2}\right]\right\}. \end{split}$$

Tome
$$\phi = 1/\sigma^2$$
, $\theta = \mu$, $b(\theta) = \mu^2/2 = \theta^2/2$, e
$$c(y;\phi) = -\frac{1}{2} \left[\log \left(2\pi\sigma^2 \right) + \frac{y^2}{\sigma^2} \right]$$
$$= -\frac{1}{2} \left[\log \left(2\pi\phi^{-1} \right) + \phi y^2 \right]$$
$$= -\frac{1}{2} \left[\log \left(\frac{2\pi}{\phi} \right) + \phi y^2 \right]$$
$$= \frac{1}{2} \left[\log \left(\frac{\phi}{2\pi} \right) - \phi y^2 \right].$$

Também, o suporte da distribuição normal não depende de θ ou ϕ pois $y \in \mathbb{R}$.

Portanto, $Y \in FE(\mu, \phi)$.

Pelas propriedades da família exponencial uniparamétrica, temos que

$$\mathsf{E}(Y) = b'(\theta) = \frac{2\theta}{2} = \theta = \mu;$$

$$\mathsf{V}(\mu) = b''(\theta) = 1 \Rightarrow \mathsf{Var}(Y) = \phi^{-1} \, \mathsf{V}(\mu) = \sigma^2.$$

Para $Y \sim N(\mu, \sigma^2)$, temos

- média igual a μ;
- função de variância $V(\mu)$ não depende da média μ ;
- variância igual a σ^2 (homoscedasticidade);
- adequação para dados contínuos reais;
- simetria em torno da média μ.

Casos particulares - Distribuição Poisson

Seja Y uma variável aleatória com distribuição de Poisson de parâmetro μ . A função de probabilidade de Y é dada por

$$f(y; \mu) = \frac{e^{-\mu}\mu^y}{y!}, y \in \{0,1,2,\ldots\}, \mu > 0.$$

Denotaremos por $Y \sim Poisson(\mu)$.

Veja que

$$f(y; \mu) = \exp\{y \log(\mu) - \mu - \log(y!)\}.$$

Tome $\theta = \log(\mu) \Rightarrow \mu = e^{\theta}$, $b(\theta) = \mu = e^{\theta}$, $\phi = 1$ (conhecido), e $c(y;\phi) = -\log(y!)$.

Além disso, o suporte da distribuição Poisson não depende de θ ou ϕ desde que $y \in \{0,1,2,\ldots\}$.

Logo, $Y \in FE(\mu, \phi)$.

Casos particulares - Distribuição Poisson

Segue que

$$\mathsf{E}(\mathsf{Y}) = \mathsf{b}'(\theta) = \mathsf{e}^{\theta} = \mu;$$

$$V(\mu) = b''(\theta) = e^{\theta} = \mu \Rightarrow Var(Y) = \phi^{-1}V(\mu) = \mu.$$

Para $Y \sim Poisson(\mu)$, temos

- média igual a μ;
- variância igual a média (heteroscedasticidade);
- adequação para dados de contagem.

Dizemos que o modelo de Poisson acomoda equidispersão, isto é, acomoda dados que satisfazem $\mathsf{E}(Y) = \mathsf{Var}(Y)$. Esta é uma restrição forte desta distribuição para modelagem de dados de contagem.

Seja Y uma variável aleatória com distribuição gama de média μ e coeficiente de variação $\phi^{-1/2}$. A função densidade de Y é dada por

$$f(y; \mu, \phi) = \frac{1}{\Gamma(\phi)} \left(\frac{\phi y}{\mu}\right)^{\phi} \exp\left\{-\frac{\phi y}{\mu}\right\} \frac{1}{y}, \qquad \begin{array}{c} y > 0, \\ \mu > 0, \\ \phi > 0, \end{array}$$

em que $\Gamma(\cdot)$ é a função gama definida por

$$\Gamma(\phi) = \int_0^\infty t^{\phi - 1} \mathrm{e}^{-t} dt.$$

Esta função densidade está reparametrizada de tal forma que $\mu = E(Y)$.

Denotaremos por $Y \sim \text{gama}(\mu, \phi)$.

Se $\phi = 1$ temos a distribuição exponencial. Se $\phi = k/2$ e $\mu = k$ temos a distribuição qui-quadrado com k graus de liberdade.

Veja que

$$\begin{split} f(y;\mu,\phi) &= \exp\left\{-\log\Gamma(\phi) + \phi\log\left(\frac{\phi y}{\mu}\right) - \frac{\phi y}{\mu} - \log(y)\right\} \\ &= \exp\left\{-\log\Gamma(\phi) + \phi[\log(\phi y) - \log(\mu)] - \frac{\phi y}{\mu} - \log(y)\right\} \\ &= \exp\{\phi[-y/\mu - \log(\mu)] - \log\Gamma(\phi) + \phi\log(\phi y) - \log(y)\}. \end{split}$$

Tome $\phi = \phi$, $\theta = -\frac{1}{\mu} \Rightarrow \mu = -\theta^{-1}$, $b(\theta) = \log(\mu) = -\log(-\theta)$, com $\theta < 0$,

$$\begin{split} c(y;\phi) &= \phi \log(\phi y) - \log \Gamma(\phi) - \log(y) \\ &= \phi \log(\phi) + \phi \log(y) - \log \Gamma(\phi) - \log(y) \\ &= (\phi - 1) \log(y) + \phi \log(\phi) - \log \Gamma(\phi). \end{split}$$

Além disto, o suporte da distribuição gama não depende de θ ou ϕ desde que y > 0. Logo, $Y \in FE(\mu, \phi)$.

Segue que

$$\mathsf{E}(Y) = b'(\theta) = -\frac{1}{-\theta}(-1) = -\frac{1}{\theta} = \mu;$$

$$V(\mu) = b''(\theta) = \frac{1}{\theta^2} = \left(-\frac{1}{\theta}\right)^2 = \mu^2 \Rightarrow Var(Y) = \phi^{-1}V(\mu) = \phi^{-1}\mu^2.$$

Note que

$$CV(Y) = {DP(Y) \over E(Y)} = {(\phi^{-1}\mu^2)^{1/2} \over \mu} = \phi^{-1/2},$$

com $\mathrm{CV}(Y)$ e $\mathrm{DP}(Y)$ denotando coeficiente de variação e desviopadrão de Y, respectivamente.

Para $Y \sim \text{gama}(\mu, \phi)$, temos

- média igual a μ;
- ightharpoonup variância dependente da média através de μ^2 (heteroscedasticidade);
- coeficiente de variação igual a $\phi^{-1/2}$;
- adequação para dados contínuos positivos assimétricos.

Adicionalmente, temos que para ϕ grande

$$Y \stackrel{\text{a}}{\sim} N\left(\mu, \frac{\mu^2}{\phi}\right)$$
.

Casos particulares - Distribuição normal inversa

Seja Y uma variável aleatória com distribuição normal inversa de média μ e parâmetro de precisão ϕ . A função densidade de Y é dada por

$$f(y;\mu,\phi) = \sqrt{\frac{\phi}{2\pi y^3}} \exp\left\{-\frac{\phi(y-\mu)^2}{2\mu^2 y}\right\}, \qquad \begin{array}{c} y>0,\\ \mu>0,\\ \phi>0. \end{array}$$

Denotaremos por $Y \sim NI(\mu, \phi)$.

Veja que

$$f(y; \mu, \phi) = \exp\left\{-\frac{\phi(y^2 - 2\mu y + \mu^2)}{2\mu^2 y} + \frac{1}{2}\log\left(\frac{\phi}{2\pi y^3}\right)\right\} = \exp\left\{\phi\left[-\frac{y}{2\mu^2} + \frac{1}{\mu}\right] - \frac{\phi}{2y} + \frac{1}{2}\log\left(\frac{\phi}{2\pi y^3}\right)\right\}.$$

Casos particulares - Distribuição normal inversa

Tome $\phi=\phi,\, \theta=-\frac{1}{2\mu^2}\Rightarrow \mu=(-2\theta)^{-1/2},\, b(\theta)=-\frac{1}{\mu}=-(-2\theta)^{1/2},\, \cos\theta<0,$

$$c(y;\phi) = -rac{\phi}{2y} + rac{1}{2}\log\left(rac{\phi}{2\pi y^3}
ight).$$

Além disto, o suporte da distribuição normal inversa não depende de θ ou ϕ desde que y > 0. Logo, $Y \in FE(\mu, \phi)$.

Segue que

$$\begin{split} \mathsf{E}(Y) &= b'(\theta) = -\frac{1}{2}(-2\theta)^{-1/2}(-2) = (-2\theta)^{-1/2} = \mu; \\ \mathsf{V}(\mu) &= b''(\theta) = -\frac{1}{2}(-2\theta)^{-3/2}(-2) = \left[(-2\theta)^{-1/2}\right]^3 = \mu^3 \\ \Rightarrow \mathsf{Var}(Y) &= \phi^{-1}\,\mathsf{V}(\mu) = \phi^{-1}\mu^3. \end{split}$$

Casos particulares - Distribuição normal inversa

Para $Y \sim NI(\mu, \phi)$, temos

- média igual a μ;
- ightharpoonup variância dependente da média através de μ^3 (heteroscedasticidade);
- ightharpoonup variância cresce mais rapidamente com μ quando comparado ao modelo gama;
- adequação para dados contínuos positivos assimétricos;
- alternativa ao modelo gama.

Adicionalmente, temos que para ϕ grande

$$Y \stackrel{a}{\sim} N\left(\mu, \frac{\mu^3}{\phi}\right)$$
.

Casos particulares - Distribuição binomial

Seja Y uma variável aleatória com distribuição binomial de parâmetros n e $0 < \mu < 1$. A função de probabilidade de Y é dada por

$$f(y; \mu) = \binom{n}{y} \mu^{y} (1 - \mu)^{n-y}, \quad y \in \{0, 1, 2, \dots, n\}.$$

Denotaremos por $Y \sim \text{binomial}(n, \mu)$. O parâmetro n é conhecido.

Observe que

$$f(y; \mu) = \exp\left\{\log\binom{n}{y} + y\log(\mu) + (n-y)\log(1-\mu)\right\}$$
$$= \exp\left\{y\log\left(\frac{\mu}{1-\mu}\right) + n\log(1-\mu) + \log\binom{n}{y}\right\}.$$

Casos particulares - Distribuição binomial

Considere $\phi = 1$,

$$\begin{split} \theta &= \log \left(\frac{\mu}{1-\mu}\right) \Rightarrow \mu = \frac{\mathrm{e}^{\theta}}{1+\mathrm{e}^{\theta}}, \ \theta \in \mathbb{R}; \\ b(\theta) &= -n \log (1-\mu) = -n \log \left(\frac{1}{1+\mathrm{e}^{\theta}}\right) = n \log \left(1+\mathrm{e}^{\theta}\right); \\ c(y;\phi) &= \log \binom{n}{y}. \end{split}$$

Além disto, o suporte da distribuição binomial é o conjunto $\{0,1,2,\ldots,n\}$ que não depende de parâmetros desconhecidos. Logo, $Y \in FE(\mu,\phi)$.

Note que o suporte depende de n, entretanto o valor n sempre será conhecido.

Casos particulares - Distribuição binomial

Segue que

$$\mathsf{E}(\mathsf{Y}) = b'(\theta) = \frac{n\mathrm{e}^{\theta}}{1 + \mathrm{e}^{\theta}} = n\mu;$$

$$V(\mu) = b''(\theta) = \frac{n \left[e^{\theta} (1 + e^{\theta}) - e^{\theta} e^{\theta} \right]}{(1 + e^{\theta})^2} = \frac{n e^{\theta}}{(1 + e^{\theta})^2} = n \mu (1 - \mu);$$

$$\Rightarrow$$
 Var $(Y) = \phi^{-1}$ V $(\mu) = n\mu(1 - \mu)$.

Assim, a função de variância $V(\mu)$ depende do tamanho amostral n. Gostaríamos que $V(\mu)$ dependa apenas da média μ .

Para resolver este "problema", realizaremos uma mudança de escala através da transformação $Y^* = \frac{Y}{n}$. Note que Y^* representa a proporção de sucessos em n ensaios independentes de Bernoulli, cada um com probabilidade de ocorrência μ com $nY^* \sim \text{binomial}(n, \mu)$.

Daí, a função de probabilidade de Y* fica dada por

$$f(y^*; \mu) = \binom{n}{ny^*} \mu^{ny^*} (1 - \mu)^{n - ny^*}$$

$$= \exp\left\{n\left[y^* \log\left(\frac{\mu}{1 - \mu}\right) + \log(1 - \mu)\right] + \log\binom{n}{ny^*}\right\}.$$

$$com y^* \in \left\{0, \frac{1}{n}, \dots, 1\right\}.$$

Tome $\phi = n$ (conhecido),

$$\theta = \log\left(\frac{\mu}{1-\mu}\right) \Rightarrow \mu = \frac{e^{\theta}}{1+e^{\theta}}, \ \theta \in \mathbb{R};$$

$$b(\theta) = -\log(1-\mu) = -\log\left(\frac{1}{1+e^{\theta}}\right) = \log\left(1+e^{\theta}\right);$$

$$c(y;\phi) = \log\binom{n}{ny^*} = \log\binom{\phi}{\phi y^*}.$$

Além disto, o suporte da distribuição binomial é o conjunto $\left\{0,\frac{1}{n},\ldots,1\right\}$ que não depende de parâmetros desconhecidos. Logo, $Y^*\in\mathsf{FE}(\mu,\phi)$.

Segue que

$$\mathsf{E}(\mathsf{Y}^*) = \mathsf{b}'(\theta) = \frac{\mathrm{e}^{\theta}}{\mathsf{1} + \mathrm{e}^{\theta}} = \mu;$$

$$V(\mu) = b''(\theta) = \frac{e^{\theta} (1 + e^{\theta}) - e^{\theta} e^{\theta}}{(1 + e^{\theta})^2} = \frac{e^{\theta}}{(1 + e^{\theta})^2} = \mu(1 - \mu);$$

$$\Rightarrow Var(Y^*) = \phi^{-1} V(\mu) = n^{-1} \mu (1 - \mu).$$

Para $Y^* = \frac{Y}{n} \operatorname{com} nY^* \sim \operatorname{binomial}(n, \mu)$, temos

- média igual a μ;
- variância dependente da média através de $\mu(1 \mu)$ (heteroscedasticidade);
- variância assume valor menor nos extremos (μ próximo a zero ou μ próximo a um);
- adequação para modelagem de probabilidade de sucesso;
- ightharpoonup quando n=1 obtém-se a regressão logística.

Adicionalmente, temos que para n grande

$$Y \stackrel{a}{\sim} N\left(\mu, \frac{\mu(1-\mu)}{n}\right).$$

Casos particulares

Na tabela abaixo estão apresentadas as principais distribuições pertencentes à família exponencial uniparamétrica.

Tabela 1: Principais distribuições pertencentes à $FE(\mu, \phi)$.

θ	φ	$b(\theta)$	V(μ)
μ	$1/\sigma^2$	$\theta^2/2$	1
$\log(\mu)$	1	e^{θ}	μ
$-\frac{1}{u}$	$1/CV^2$	$-\log(- heta)$	μ^2
$-\frac{1}{2\mu^2}$	φ	$-(-2\theta)^{1/2}$	μ^3
$\log\left(\frac{\mu}{1-\mu}\right)$	n	$log(1 + \mathrm{e}^{\theta})$	$\mu(1-\mu)$
	$ \begin{array}{c} -\frac{1}{\mu} \\ -\frac{1}{2\mu^2} \\ \mu \end{array} $	$ \begin{array}{ccc} -\frac{1}{\mu} & 1/CV^2 \\ -\frac{1}{2\mu^2} & \phi \end{array} $	$\begin{array}{ccccc} \mu & 1/\sigma^2 & \theta^2/2 \\ \log(\mu) & 1 & e^{\theta} \\ -\frac{1}{\mu} & 1/\operatorname{CV}^2 & -\log(-\theta) \\ -\frac{1}{2\mu^2} & \phi & -(-2\theta)^{1/2} \end{array}$

Como escolher uma função de ligação $g(\cdot)$ adequada?

A princípio qualquer função monótona e diferenciável pode ser utilizada. Entretanto, existem algumas funções de ligação que são mais interessantes.

Dizemos que uma função de ligação $g(\cdot)$ é canônica quando esta é obtida de $\theta_i = \eta_i$.

Para a distribuição normal sabemos que o parâmetro canônico é $\theta_i = \mu_i$. Assim, a igualdade $\theta_i = \eta_i$ implica em $\mu_i = \eta_i$. Portanto, a função de ligação canônica para a distribuição normal é a ligação identidade

$$g(z) = z, z \in \mathbb{R}.$$

Como escolher uma função de ligação $g(\cdot)$ adequada?

A princípio qualquer função monótona e diferenciável pode ser utilizada. Entretanto, existem algumas funções de ligação que são mais interessantes.

Dizemos que uma função de ligação $g(\cdot)$ é canônica quando esta é obtida de $\theta_i = \eta_i$.

Para a distribuição normal sabemos que o parâmetro canônico é $\theta_i = \mu_i$. Assim, a igualdade $\theta_i = \eta_i$ implica em $\mu_i = \eta_i$. Portanto, a função de ligação canônica para a distribuição normal é a ligação identidade

$$g(z)=z, z\in\mathbb{R}.$$

Para a distribuição Poisson temos que $\theta_i = \log(\mu_i)$. Assim, $\theta_i = \eta_i$ implica em $\log(\mu_i) = \eta_i$. Daí, a função de ligação canônica para a distribuição Poisson é a ligação logarítmica

$$g(z) = \log(z), \quad z > 0.$$

Para a distribuição gama temos que $\theta_i = -1/\mu_i$. Assim, $\theta_i = \eta_i$ implica em $-1/\mu_i = \eta_i$. Por conveniência, a função de ligação canônica para a distribuição gama é definida como

$$g(z) = \frac{1}{z}, \ z \in \mathbb{R}$$

e esta é chamada de ligação recíproca.

Para a distribuição Poisson temos que $\theta_i = \log(\mu_i)$. Assim, $\theta_i = \eta_i$ implica em $\log(\mu_i) = \eta_i$. Daí, a função de ligação canônica para a distribuição Poisson é a ligação logarítmica

$$g(z) = \log(z), \ z > 0.$$

Para a distribuição gama temos que $\theta_i = -1/\mu_i$. Assim, $\theta_i = \eta_i$ implica em $-1/\mu_i = \eta_i$. Por conveniência, a função de ligação canônica para a distribuição gama é definida como

$$g(z)=\frac{1}{z}, \ z\in\mathbb{R}$$

e esta é chamada de ligação recíproca.

Para a distribuição normal inversa temos que $\theta_i = -1/2\mu_i^2$. Assim, $\theta_i = \eta_i$ implica em $-1/2\mu_i^2 = \eta_i$. Por conveniência, a função de ligação canônica para a distribuição normal inversa é definida como

$$g(z)=\frac{1}{z^2}, z\in\mathbb{R}$$

e esta é chamada de ligação recíproca ao quadrado.

Para a distribuição binomial temos que $\theta_i = \log(\mu_i/(1-\mu_i))$. Assim, $\theta_i = \eta_i$ implica em $\log(\mu_i/(1-\mu_i)) = \eta_i$. Daí, a função de ligação canônica para a distribuição binomial, denominada de logito, é

$$g(z) = logito(z) = log\left(\frac{z}{1-z}\right), \quad 0 < z < 1.$$

Neste caso, a função de ligação é inversa da função de distribuição acumulada (FDA) da distribuição logística.

Para a distribuição normal inversa temos que $\theta_i = -1/2\mu_i^2$. Assim, $\theta_i = \eta_i$ implica em $-1/2\mu_i^2 = \eta_i$. Por conveniência, a função de ligação canônica para a distribuição normal inversa é definida como

$$g(z)=\frac{1}{z^2}, z\in\mathbb{R}$$

e esta é chamada de ligação recíproca ao quadrado.

Para a distribuição binomial temos que $\theta_i = \log(\mu_i/(1-\mu_i))$. Assim, $\theta_i = \eta_i$ implica em $\log(\mu_i/(1-\mu_i)) = \eta_i$. Daí, a função de ligação canônica para a distribuição binomial, denominada de logito, é

$$g(z) = \operatorname{logito}(z) = \operatorname{log}\left(\frac{z}{1-z}\right), \ \ 0 < z < 1.$$

Neste caso, a função de ligação é inversa da função de distribuição acumulada (FDA) da distribuição logística.

Na tabela abaixo temos as funções de ligação canônicas das principais distribuições pertencentes à família exponencial uniparamétrica.

Tabela 2: Ligações canônicas das principais distribuições pertencentes à $FE(\mu,\phi)$.

Distribuição	g(z)	Nome
Normal	Z	identidade
Poisson	$\log(z)$	logarítmica
Gama	1/ <i>z</i>	recíproca
Normal Inversa	1/ <i>z</i> ²	recíproca ao quadrado
Binomial	logito(z)	logito

Existem outras funções de ligação que são muito utilizadas na prática. Em especial, quando o parâmetro a ser modelado pertence ao intervalo (0,1).

Ligação probito:

$$g(z) = \text{probito}(z) = \Phi^{-1}(z), \quad 0 < z < 1,$$

em que $\Phi^{-1}(\cdot)$ denota a inversa da FDA da distribuição normal padrão.

Ligação complemento log-log:

$$g(z) = \log(-\log(1-z)), \quad 0 < z < 1.$$

Neste caso, g(z) corresponde a inversa da FDA da distribuição Gumbel padrão.

Existem outras funções de ligação que são muito utilizadas na prática. Em especial, quando o parâmetro a ser modelado pertence ao intervalo (0,1).

Ligação probito:

$$g(z) = \text{probito}(z) = \Phi^{-1}(z), \quad 0 < z < 1,$$

em que $\Phi^{-1}(\cdot)$ denota a inversa da FDA da distribuição normal padrão.

Ligação complemento log-log:

$$g(z) = \log(-\log(1-z)), \quad 0 < z < 1.$$

Neste caso, g(z) corresponde a inversa da FDA da distribuição Gumbel padrão.

Existem outras funções de ligação que são muito utilizadas na prática. Em especial, quando o parâmetro a ser modelado pertence ao intervalo (0, 1).

Ligação probito:

$$g(z) = \text{probito}(z) = \Phi^{-1}(z), \ \ 0 < z < 1,$$

em que $\Phi^{-1}(\cdot)$ denota a inversa da FDA da distribuição normal padrão.

Ligação complemento log-log:

$$g(z) = \log(-\log(1-z)), \quad 0 < z < 1.$$

Neste caso, g(z) corresponde a inversa da FDA da distribuição Gumbel padrão.

Ligação cauchit:

$$g(z) = \tan(\pi(z - 0.5)), 0 < z < 1,$$

em que $tan(\cdot)$ denota a função tangente. Neste caso, g(z) é a inversa da FDA da distribuição Cauchy padrão.

As ligações probito, complemento log-log e cauchit são alternativas a ligação logito para modelar parâmetros θ tais que $0 < \theta < 1$. Por esta razão, estas ligações podem ser utilizadas para modelar a média da proporção de sucessos μ do modelo binomial.

Ligação cauchit:

$$g(z) = \tan(\pi(z - 0.5)), 0 < z < 1,$$

em que $\tan(\cdot)$ denota a função tangente. Neste caso, g(z) é a inversa da FDA da distribuição Cauchy padrão.

As ligações probito, complemento log-log e cauchit são alternativas a ligação logito para modelar parâmetros θ tais que $0 < \theta < 1$. Por esta razão, estas ligações podem ser utilizadas para modelar a média da proporção de sucessos μ do modelo binomial.

As ligações logito, probito e cauchit são simétricas, isto é,

$$g(z)=-g(1-z).$$

Isto é uma consequência das ligações serem baseadas em distribuições simétricas. O mesmo não pode ser dito sobre a ligação complemento log-log que é assimétrica.

Várias das ligações discutidas foram obtidas a partir de inversas de FDAs de distribuições de probabilidade contínuas padronizadas.

De forma geral, considerando F(z) uma FDA contínua em sua forma padronizada, pode-se definir uma função de ligação a partir de

$$\mu_i = F(\eta_i) \Leftrightarrow F^{-1}(\mu_i) = \eta_i, \ \ 0 < \mu_i < 1, \ \ \eta_i \in \mathbb{R}.$$

Daí, define-se a ligação como sendo $g(z) = F^{-1}(z) \cos 0 < z < 1$

As ligações logito, probito e cauchit são simétricas, isto é,

$$g(z)=-g(1-z).$$

Isto é uma consequência das ligações serem baseadas em distribuições simétricas. O mesmo não pode ser dito sobre a ligação complemento log-log que é assimétrica.

Várias das ligações discutidas foram obtidas a partir de inversas de FDAs de distribuições de probabilidade contínuas padronizadas.

De forma geral, considerando F(z) uma FDA contínua em sua forma padronizada, pode-se definir uma função de ligação a partir de

$$\mu_i = F(\eta_i) \Leftrightarrow F^{-1}(\mu_i) = \eta_i, \ \ 0 < \mu_i < 1, \ \ \eta_i \in \mathbb{R}.$$

Daí, define-se a ligação como sendo $g(z) = F^{-1}(z)$ com 0 < z < 1.

Para ajustar MLGs no R utiliza-se a função glm do pacote stats.

- Para o modelo normal, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo Poisson, as ligações disponíveis são identidade, logarítmica, raiz quadrada;
- Para o modelo gama, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo normal inversa, as ligações disponíveis são iden tidade, logarítmica, recíproca e recíproca ao quadrado;
- Para o modelo binomial, as ligações disponíveis são logito, probito, complemento log-log, cauchit, logarítmica.

Para ajustar MLGs no R utiliza-se a função glm do pacote stats.

- Para o modelo normal, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo Poisson, as ligações disponíveis são identidade, logarítmica, raiz quadrada;
- Para o modelo gama, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo normal inversa, as ligações disponíveis são identidade, logarítmica, recíproca e recíproca ao quadrado;
- Para o modelo binomial, as ligações disponíveis são logito, probito, complemento log-log, cauchit, logarítmica.

Para ajustar MLGs no R utiliza-se a função glm do pacote stats.

- Para o modelo normal, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo Poisson, as ligações disponíveis são identidade, logarítmica, raiz quadrada;
- Para o modelo gama, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo normal inversa, as ligações disponíveis são identidade, logarítmica, recíproca e recíproca ao quadrado;
- Para o modelo binomial, as ligações disponíveis são logito, probito, complemento log-log, cauchit, logarítmica.

Para ajustar MLGs no R utiliza-se a função glm do pacote stats.

- Para o modelo normal, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo Poisson, as ligações disponíveis são identidade, logarítmica, raiz quadrada;
- Para o modelo gama, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo normal inversa, as ligações disponíveis são identidade, logarítmica, recíproca e recíproca ao quadrado;
- Para o modelo binomial, as ligações disponíveis são logito, probito, complemento log-log, cauchit, logarítmica.

Para ajustar MLGs no R utiliza-se a função glm do pacote stats.

- Para o modelo normal, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo Poisson, as ligações disponíveis são identidade, logarítmica, raiz quadrada;
- Para o modelo gama, as ligações disponíveis são identidade, logarítmica e recíproca;
- Para o modelo normal inversa, as ligações disponíveis são identidade, logarítmica, recíproca e recíproca ao quadrado;
- Para o modelo binomial, as ligações disponíveis são logito, probito, complemento log-log, cauchit, logarítmica.

Para realizar interpretação de algumas funções de ligação, considere a estrutura de regressão:

$$g(\mu) = \eta = \alpha + \beta x,$$

em que x é uma covariável contínua. Seja x' = x + 1.

Se g(z) = z, então

$$\mu' = \alpha + \beta(x+1) = \alpha + \beta x + \beta = \mu + \beta.$$

Assim, β é a variação na média da resposta quando x é acrescido de uma unidade.

A interpretação é análoga para o caso com duas ou mais covariáveis desde que as demais covariáveis estejam fixadas.

Se $g(z)=\log(z)$, então $\log(\mu)=\alpha+\beta x\Rightarrow \mu=\mathrm{e}^{\alpha+\beta x}$. Daí, segue que

$$\mu' = e^{\alpha + \beta(x+1)} = e^{\alpha + \beta x} e^{\beta} = \mu e^{\beta} \Rightarrow e^{\beta} = \frac{\mu'}{\mu}.$$

Logo, e^{β} é a variação percentual na média da resposta quando x é acrescido de uma unidade.

Se ${
m e}^{\beta}>1$, então tem-se aumento percentual na média quando x aumenta. Se $0<{
m e}^{\beta}<1$, então tem-se redução percentual na média quando x aumenta.

Novamente, a interpretação é análoga para o caso com duas ou mais covariáveis desde que as demais covariáveis estejam fixadas.

Se g(z) = logito(z), então $\text{logito}(z) = \alpha + \beta x$.

Veja que

$$\log\left(\frac{\mu}{1-\mu}\right) = \alpha + \beta x \Rightarrow \frac{\mu}{1-\mu} = e^{\alpha+\beta x},$$

em que 0 < μ < 1 é a probabilidade de sucesso. A quantidade $\mu/(1-\mu)$ é denominada de chance do sucesso.

- Se a chance é igual a 1, sucesso e fracasso são igualmente prováveis;
- Se a chance é maior do que 1, o sucesso é mais provável do que o fracasso;
- ➤ Se a chance é menor do que 1, o fracasso é mais provável do que o sucesso.

Adicionando uma unidade em x, obtemos que a chance do sucesso fica dada por

$$\frac{\mu'}{1-\mu'} = e^{\alpha+\beta(x+1)} = e^{\alpha+\beta x}e^{\beta} = \frac{\mu}{1-\mu}e^{\beta}.$$

Consequentemente,

$$e^{\beta} = \frac{\mu'/(1-\mu')}{\mu/(1-\mu)}.$$

Portanto, e^{β} é a razão de chances do sucesso quando adiciona-se uma unidade em x.

Por exemplo, considere Y é a ocorrência de uma certa doença (Y=1 se doente, caso contrário, Y=0) e x é a idade do indivíduo. Neste caso, e^{β} é a variação percentual na chance do indivíduo desenvolver a doença quando aumenta-se um ano na idade.

Por suposição $Y_i \mid \boldsymbol{x}_i \stackrel{\mathrm{ind}}{\sim} \mathsf{FE}\left(\mu_i, \phi\right) \mathsf{com}\ \mu_i = g^{-1}\left(\eta_i\right) \mathsf{e}\ \eta_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}.$

O vetor de parâmetros $\theta=(\pmb{\beta}^\top\,\phi)^\top$ é desconhecido e deve ser estimado com base em dados amostrais. Sob os MLGs, o procedimento de estimação baseia-se no método de máxima verossimilhança.

Considere a função de verossimilhança $L(\theta)$ como sendo a função densidade de probabilidade conjunta de $\mathbf{Y} = (Y_1, Y_2, ..., Y_n)^{\top}$.

O estimador de máxima verossimilhança (EMV) para $\theta = (\beta^{\top} \phi)^{\top}$ é o valor de θ que maximiza a função de verossimilhança $L(\theta)$, isto é,

$$\widehat{m{ heta}} = \mathop{\mathsf{argmax}}_{m{ heta} \in \mathbb{R}^{p+1}} [L(m{ heta})],$$

em que $\widehat{\theta}$ é o EMV para θ . Ao maximizar $L(\theta)$ com relação a θ estaremos determinando o valor de θ com maior plausibilidade de ter gerado a amostra \mathbf{Y} .

Pela independência de Y_1, \ldots, Y_n , a função de verossimilhança fica dada por

$$L(\theta) = \prod_{i=1}^{n} f(y_i; \theta_i, \phi)$$

$$= \prod_{i=1}^{n} \exp\{\phi[\theta_i y_i - b(\theta_i)] + c(y_i; \phi)\}$$

$$= \exp\left\{\sum_{i=1}^{n} [\phi[\theta_i y_i - b(\theta_i)] + c(y_i; \phi)]\right\}$$

$$= \exp\left\{\phi\sum_{i=1}^{n} [\theta_i y_i - b(\theta_i)] + \sum_{i=1}^{n} c(y_i; \phi)\right\}.$$

O valor de θ que maximiza $L(\theta)$ é o mesmo que maximiza $\ell(\theta) = \log(L(\theta))$ pois a função logaritmo é monótona crescente. Assim, o logaritmo da função de verossimilhança para θ é

$$\ell(\boldsymbol{\theta}) = \phi \sum_{i=1}^{n} [y_i \theta_i - b(\theta_i)] + \sum_{i=1}^{n} c(y_i; \phi).$$

Para encontrar o valor de θ que maximiza $\ell(\theta)$, podemos derivar $\ell(\theta)$ com relação a θ , e posteriormente, igualar a derivada obtida ao vetor de zeros de dimensão (p+1).

O vetor escore para θ é definido por

$$U(heta) = egin{bmatrix} U_{oldsymbol{eta}}(heta) \ U_{oldsymbol{\phi}}(heta) \end{bmatrix} = egin{bmatrix} rac{\partial \ell(oldsymbol{ heta})}{\partial oldsymbol{eta}} \ rac{\partial \ell(oldsymbol{ heta})}{\partial oldsymbol{\phi}} \end{bmatrix}.$$

Daí, para j = 1, 2, ..., p, temos

$$U_{\beta_j} = \frac{\partial \ell(\theta)}{\partial \beta_j} = \phi \sum_{i=1}^n \left\{ y_i \frac{d\theta_i}{d\mu_i} \frac{d\mu_i}{d\eta_i} \frac{\partial \eta_i}{\partial \beta_j} - \frac{db(\theta_i)}{d\theta_i} \frac{d\theta_i}{d\mu_i} \frac{d\mu_i}{d\eta_i} \frac{\partial \eta_i}{\partial \beta_j} \right\}.$$

Sabemos que

$$\mu_{i} = b'(\theta_{i}) = \frac{db(\theta_{i})}{d\theta_{i}}; \quad \frac{\partial \eta_{i}}{\partial \beta_{j}} = x_{ij};$$

$$V_{i} = V(\mu_{i}) = b''(\theta_{i}) = \frac{d^{2}b(\theta_{i})}{d\theta_{i}^{2}} = \frac{d\mu_{i}}{d\theta_{i}} = \frac{1}{\frac{d\theta_{i}}{d\mu_{i}}};$$

$$\frac{d\mu_{i}}{d\eta_{i}} = \frac{d[g^{-1}(\eta_{i})]}{d\eta_{i}} = \frac{1}{g'(g^{-1}(\eta_{i}))} = \frac{1}{g'(\mu_{i})}.$$

Assim, ficamos com

$$U_{\beta_j} = \phi \sum_{i=1}^n (y_i - \mu_i) \frac{1}{V_i} \frac{d\mu_i}{d\eta_i} x_{ij} = \sum_{i=1}^n \phi \left[\sqrt{\frac{\omega_i}{V_i}} (y_i - \mu_i) x_{ij} \right],$$

em que

$$\omega_i = \frac{(d\mu_i/d\eta_i)^2}{V_i} > 0$$

é visto com um peso.

Note que o numerador de ω_i depende da função de ligação e o denominador de ω_i caracteriza a distribuição de probabilidades da FE.

Daí, o vetor escore para β é

$$U_{\beta}(\theta) = \frac{\partial \ell(\theta)}{\partial \beta} = \phi X^{\top} W^{1/2} V^{-1/2} (\mathbf{y} - \mu),$$

em que $W = \operatorname{diag}\{\omega_1, \omega_2, \dots, \omega_n\}, V = \operatorname{diag}\{V_1, V_2, \dots, V_n\},\$

$$X = \begin{bmatrix} \boldsymbol{x}_1^\top \\ \boldsymbol{x}_2^\top \\ \vdots \\ \boldsymbol{x}_n^\top \end{bmatrix}, \quad \boldsymbol{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

Por fim, o escore para ϕ é dado por

$$U_{\phi}(\theta) = \frac{\partial \ell(\theta)}{\partial \phi} = \sum_{i=1}^{n} [y_i \theta_i - b(\theta_i)] + \sum_{i=1}^{n} c'(y_i; \phi),$$

em que $c'(y_i; \phi) = dc(y_i; \phi)/d\phi$.

Note que se $g(\cdot)$ é a ligação canônica ($\theta_i = \eta_i$),

$$\frac{d\mu_i}{d\eta_i} = \frac{d\mu_i}{d\theta_i} \frac{d\theta_i}{d\eta_i} = V_i,$$

pois $d\theta_i/d\eta_i = 1$.

Assim, sob ligação canônica tem-se que os pesos se reduzem a

$$\omega_i = \frac{(d\mu_i/d\eta_i)^2}{V_i} = \frac{V_i^2}{V_i} = V_i,$$

e o vetor escore para eta fica expresso por

$$U_{\beta}(\theta) = \phi X^{\top} V^{1/2} V^{-1/2} (\boldsymbol{y} - \mu) = \phi X^{\top} (\boldsymbol{y} - \mu).$$

Para encontrar $\hat{\theta}$, fazemos

$$U_{\boldsymbol{\beta}}(\boldsymbol{\theta}) = \mathbf{0}, \quad U_{\boldsymbol{\phi}}(\boldsymbol{\theta}) = \mathbf{0}.$$

Mas,

$$U_{\boldsymbol{\beta}}(\boldsymbol{\theta}) = \mathbf{0} \Leftrightarrow \boldsymbol{X}^{\top} \widehat{\boldsymbol{W}}^{1/2} \widehat{\boldsymbol{V}}^{-1/2} (\boldsymbol{y} - \widehat{\boldsymbol{\mu}}) = \mathbf{0}.$$

Note que o sistema de equações acima não depende de $\widehat{\phi}$. Assim, o parâmetro ϕ não precisa ser estimado conjuntamente com $\pmb{\beta}$.

De forma geral, $\widehat{\beta}$ não possui forma fechada. Por esta razão, estudaremos um processo iterativo para encontrar o valor de $\widehat{\beta}$.

De $U_{\phi}(\theta)=$ 0, obtemos que

$$-\sum_{i=1}^n [y_i\widehat{\theta}_i - b(\widehat{\theta}_i)] = \sum_{i=1}^n c'(y_i; \widehat{\phi}).$$

Quando estivermos sob os modelos normal e normal inversa, veremos que $\widehat{\phi}$ possui forma fechada.

Lembre-se que há situações em que não será necessário estimar ϕ pois este será um valor conhecido.

A matriz de informação de Fisher é obtida a partir de

$$\begin{split} & \textit{K}_{\theta\theta} = \begin{bmatrix} \textit{K}_{\beta\beta} & \textit{K}_{\beta\phi} \\ \textit{K}_{\phi\beta} & \textit{K}_{\phi\phi} \end{bmatrix} = \begin{bmatrix} - \, \mathsf{E} \left(\frac{\partial^2 \ell(\theta)}{\partial \beta \partial \beta^\top} \right) & - \, \mathsf{E} \left(\frac{\partial^2 \ell(\theta)}{\partial \beta \partial \phi} \right) \\ - \, \mathsf{E} \left(\frac{\partial^2 \ell(\theta)}{\partial \phi \partial \beta^\top} \right) & - \, \mathsf{E} \left(\frac{\partial^2 \ell(\theta)}{\partial \phi \partial \phi} \right) \end{bmatrix}. \end{split}$$

Para j, l = 1, 2, ..., p, tem-se que

$$\frac{\partial^{2}\ell(\theta)}{\partial\beta_{j}\partial\beta_{l}} = \frac{\partial}{\partial\beta_{l}} \left\{ \phi \sum_{i=1}^{n} (y_{i} - \mu_{i}) \frac{1}{V_{i}} \frac{d\mu_{i}}{d\eta_{i}} x_{ij} \right\}$$

$$= \phi \sum_{i=1}^{n} \frac{\partial [(y_{i} - \mu_{i})]}{\partial\beta_{l}} V_{i}^{-1} \frac{d\mu_{i}}{d\eta_{i}} x_{ij} + \phi \sum_{i=1}^{n} (y_{i} - \mu_{i}) x_{ij} \frac{\partial}{\partial\beta_{l}} \left[V_{i}^{-1} \frac{d\mu_{i}}{d\eta_{i}} \right]$$

A matriz de informação de Fisher é obtida a partir de

$$\begin{split} K_{\theta\theta} &= \begin{bmatrix} K_{\beta\beta} & K_{\beta\phi} \\ K_{\phi\beta} & K_{\phi\phi} \end{bmatrix} = \begin{bmatrix} -\operatorname{E}\left(\frac{\partial^2\ell(\theta)}{\partial\beta\partial\beta^{\top}}\right) & -\operatorname{E}\left(\frac{\partial^2\ell(\theta)}{\partial\beta\partial\phi}\right) \\ -\operatorname{E}\left(\frac{\partial^2\ell(\theta)}{\partial\phi\partial\beta^{\top}}\right) & -\operatorname{E}\left(\frac{\partial^2\ell(\theta)}{\partial\phi\partial\phi}\right) \end{bmatrix}. \end{split}$$

Para $j, l = 1, 2, \dots, p$, tem-se que

$$\frac{\partial^{2}\ell(\boldsymbol{\theta})}{\partial\beta_{j}\partial\beta_{l}} = \frac{\partial U_{\beta_{j}}}{\partial\beta_{l}} = \frac{\partial}{\partial\beta_{l}} \left\{ \phi \sum_{i=1}^{n} (y_{i} - \mu_{i}) \frac{1}{V_{i}} \frac{d\mu_{i}}{d\eta_{i}} x_{ij} \right\}$$

$$= \phi \sum_{i=1}^{n} \frac{\partial[(y_{i} - \mu_{i})]}{\partial\beta_{l}} V_{i}^{-1} \frac{d\mu_{i}}{d\eta_{i}} x_{ij} + \phi \sum_{i=1}^{n} (y_{i} - \mu_{i}) x_{ij} \frac{\partial}{\partial\beta_{l}} \left[V_{i}^{-1} \frac{d\mu_{i}}{d\eta_{i}} \right]$$

$$\begin{split} \frac{\partial^2 \ell(\theta)}{\partial \beta_j \partial \beta_l} &= \phi \sum_{i=1}^n \left\{ -\frac{d\mu_i}{d\eta_i} \frac{\partial \eta_i}{\partial \beta_l} V_i^{-1} \frac{d\mu_i}{d\eta_i} x_{ij} \right\} \\ &+ \phi \sum_{i=1}^n \left(y_i - \mu_i \right) x_{ij} \left\{ \frac{\partial}{\partial \beta_l} \left[V_i^{-1} \right] \frac{d\mu_i}{d\eta_i} + V_i^{-1} \frac{d^2 \mu_i}{d\eta_i^2} \frac{\partial \eta_i}{\partial \beta_l} \right\} \\ &= -\phi \sum_{i=1}^n V_i^{-1} \left(\frac{d\mu_i}{d\eta_i} \right)^2 x_{ij} x_{il} + \phi \sum_{i=1}^n \left(y_i - \mu_i \right) x_{ij} \frac{d^2 \theta_i}{d\mu_i^2} \frac{d\mu_i}{\partial \eta_i} \frac{\partial \eta_i}{\partial \beta_l} \frac{d\mu_i}{d\eta_i} \\ &+ \phi \sum_{i=1}^n \left(y_i - \mu_i \right) x_{ij} V_i^{-1} \frac{d^2 \mu_i}{d\eta_i^2} x_{il}, \end{split}$$

desde que

$$V_i^{-1} = \frac{d\theta_i}{d\mu_i}.$$

Segue que

$$\begin{split} \frac{\partial^2 \ell(\theta)}{\partial \beta_j \partial \beta_l} &= -\phi \sum_{i=1}^n V_i^{-1} \left(\frac{d\mu_i}{d\eta_i} \right)^2 x_{ij} x_{il} + \phi \sum_{i=1}^n \left(y_i - \mu_i \right) \frac{d^2 \theta_i}{d\mu_i^2} \left(\frac{d\mu_i}{d\eta_i} \right)^2 x_{il} x_{ij} \\ &+ \phi \sum_{i=1}^n \left(y_i - \mu_i \right) \frac{d^2 \mu_i}{d\eta_i^2} V_i^{-1} x_{ij} x_{il}. \end{split}$$

Portanto,

$$- E \left\{ \frac{\partial^2 \ell(\theta)}{\partial \beta_j \partial \beta_l} \right\} = \phi \sum_{i=1}^n V_i^{-1} \left(\frac{d\mu_i}{d\eta_i} \right)^2 x_{ij} x_{il}$$
$$= \phi \sum_{i=1}^n \omega_i x_{ij} x_{il},$$

desde que

$$\mathsf{E}\left(\mathsf{Y}_{i}-\mu_{i}\right)=\mathsf{0},\quad\omega_{i}=\frac{\left(\mathsf{d}\mu_{i}|\mathsf{d}\eta_{i}\right)^{2}}{V_{i}}.$$

Matricialmente, a matriz de informação de Fisher para β é

$$K_{\beta\beta} = - \mathsf{E} \left\{ \frac{\partial^2 \ell(\theta)}{\partial \beta \partial \beta^{\top}} \right\} = \phi X^{\top} W X.$$

Se W é uma matriz positiva definida, então $r(X^{\top}WX) = r(X)$. Se X é de posto completo, então $X^{\top}WX$ é invertível e positiva definida.

Se a ligação é a canônica ($\theta_i = \eta_i$), tem-se $\omega_i = V_i$, e consequentemente,

$$K_{\beta\beta} = \phi X^{\top} V X.$$

Com relação ao parâmetro ϕ ,

$$\frac{\partial^2 \ell(\boldsymbol{\theta})}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left\{ \sum_{i=1}^n [y_i \theta_i - b(\theta_i)] + \sum_{i=1}^n c'(y_i; \phi) \right\} = \sum_{i=1}^n c''(y_i; \phi),$$

em que

$$c''(y_i;\phi)=\frac{d^2c(y_i;\phi)}{d\phi^2}.$$

Daí, a informação de Fisher para ϕ é

$$\mathcal{K}_{\phi\phi} = -\operatorname{E}\left\{\frac{\partial^2\ell(\theta)}{\partial\phi^2}\right\} = -\operatorname{E}\left\{\sum_{i=1}^n c''(Y_i;\phi)\right\} = -\sum_{i=1}^n \operatorname{E}[c''(Y_i;\phi)].$$

Finalmente, para j = 1, 2, ..., p,

$$\frac{\partial^2 \ell(\theta)}{\partial \beta_j \partial \phi} = \frac{\partial}{\partial \phi} \left\{ \phi \sum_{i=1}^n (y_i - \mu_i) \frac{1}{V_i} \frac{d\mu_i}{d\eta_i} x_{ij} \right\} = \sum_{i=1}^n (y_i - \mu_i) \frac{1}{V_i} \frac{d\mu_i}{d\eta_i} x_{ij}.$$

Implicando que

$$K_{oldsymbol{eta}\phi} = K_{\phioldsymbol{eta}}^{ op} = - \, \mathsf{E} \left\{ rac{\partial^2 \ell(oldsymbol{ heta})}{\partial oldsymbol{eta} \partial \phi}
ight\} = \mathbf{0}_{
ho imes 1}.$$

A matriz de informação de Fisher para ${\pmb{\theta}} = ({\pmb{\beta}}^{ op} \ {\pmb{\phi}})^{ op}$ é dada por

$$K_{\theta\theta} = \operatorname{diag}\{K_{\beta\beta}, K_{\phi\phi}\} = \begin{bmatrix} \phi X^{\top}WX & \mathbf{0} \\ \mathbf{0} & -\sum_{i=1}^{n} \operatorname{E}[c''(Y_i; \phi)] \end{bmatrix}.$$

Como a matriz $K_{\theta\theta}$ é bloco diagonal, concluímos que os parâmetros β e ϕ são ortogonais.

Normalidade assintótica do EMV

Para *n* grande, pode-se mostrar que

$$\widehat{m{ heta}} \sim N_{
m p+1} \left(m{ heta}, m{ extit{K}}_{m{ heta}m{ heta}}^{-1}
ight)$$
 ,

em que

$$K_{\theta\theta}^{-1} = \operatorname{diag}\{K_{\beta\beta}^{-1}, K_{\phi\phi}^{-1}\} = \begin{bmatrix} \phi^{-1}(X^{\top}WX)^{-1} & \mathbf{0} \\ \mathbf{0} & \{-\sum_{i=1}^{n} E[c''(Y_i; \phi)]\}^{-1} \end{bmatrix}.$$

Particularmente, para *n* grande,

$$\widehat{oldsymbol{eta}} \sim \mathrm{N}_{oldsymbol{eta}} \left(oldsymbol{eta}, \phi^{-1} (X^{ op} W X)^{-1}
ight),$$

$$\widehat{\phi} \sim \mathrm{N} \left(\phi, \left\{ - \sum_{i=1}^{n} \mathsf{E}[c''(Y_i; \phi)] \right\}^{-1} \right).$$

Sabemos que $\theta_i = \mu_i, \ \phi = 1/\sigma^2$ e $V_i = 1$. Daí, os pesos ficam expressos por

$$\omega_{i} = \frac{\left(d\mu_{i}|d\eta_{i}\right)^{2}}{V_{i}} = \left(\frac{d\mu_{i}}{d\theta_{i}}\frac{d\theta_{i}}{d\eta_{i}}\right)^{2} = \left(\frac{d\theta_{i}}{d\eta_{i}}\right)^{2}.$$

O vetor escore para β fica expresso por

$$U_{\beta} = \frac{1}{\sigma^2} X^{\top} W^{1/2} (\mathbf{y} - \mu), \quad K_{\beta\beta} = \frac{1}{\sigma^2} X^{\top} W X.$$

Se a ligação é canônica ($\theta_i=\eta_i$) obtemos que $\omega_i=1$, $\forall i$, reduzindo as expressões para

$$U_{\beta} = \frac{1}{\sigma^2} X^{\top} (\mathbf{y} - \mu), \quad K_{\beta\beta} = \frac{1}{\sigma^2} X^{\top} X.$$

Sabemos que $\widehat{\phi}$ é obtido tal que $\textit{U}_{\phi}=0$, isto é,

$$-\sum_{i=1}^n [y_i\widehat{\theta}_i - b(\widehat{\theta}_i)] = \sum_{i=1}^n c'(y_i; \widehat{\phi}).$$

Neste caso,

$$c(y_i;\phi) = \frac{1}{2} \left[\log \left(\frac{\phi}{2\pi} \right) - \phi y_i^2 \right].$$

Daí, obtemos que

$$c'(y_i;\phi) = \frac{1}{2} \left[\frac{2\pi}{\phi} \frac{1}{2\pi} - y_i^2 \right] = \frac{1}{2\phi} - \frac{y_i^2}{2}.$$

Também, $\widehat{\theta}_i = \widehat{\mu}_i$ e $b(\widehat{\theta}_i) = \widehat{\mu}_i^2/2$.

Assim, $\widehat{\phi}$ é tal que

$$-\sum_{i=1}^{n} \left[y_{i} \widehat{\mu}_{i} - \frac{\widehat{\mu}_{i}^{2}}{2} \right] = \sum_{i=1}^{n} \left[\frac{1}{2\widehat{\phi}} - \frac{y_{i}^{2}}{2} \right] \Leftrightarrow$$

$$-\sum_{i=1}^{n} y_{i} \widehat{\mu}_{i} + \frac{1}{2} \sum_{i=1}^{n} \widehat{\mu}_{i}^{2} = \frac{n}{2\widehat{\phi}} - \frac{1}{2} \sum_{i=1}^{n} y_{i}^{2} \Leftrightarrow$$

$$\frac{n}{\widehat{\phi}} = \sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\widehat{\mu}_{i} + \widehat{\mu}_{i}^{2}) \Leftrightarrow$$

$$\widehat{\phi} = \frac{n}{D(\mathbf{y}; \widehat{\mu})},$$

em que

$$D(\mathbf{y}; \widehat{\mu}) = \sum_{i=1}^{n} (y_i - \widehat{\mu}_i)^2.$$

Também, temos que

$$c''(y_i;\phi)=-\frac{1}{2\phi^2},$$

e portanto, a matriz de informação de Fisher para ϕ fica dada por

$$K_{\phi\phi} = -\sum_{i=1}^{n} E\left[c''(Y_i;\phi)\right] = \sum_{i=1}^{n} \frac{1}{2\phi^2} = \frac{n}{2\phi^2}.$$

Daí, a variância assintótica de $\widehat{\phi}$ é dada por

$$\operatorname{Var}(\widehat{\phi}) = rac{2\phi^2}{n} \;\; \Rightarrow \;\; \widehat{\operatorname{Var}}(\widehat{\phi}) = rac{2\widehat{\phi}^2}{n}.$$

Casos particulares - Distribuição Poisson

Sabemos que $\phi=1$ (constante), $\theta_i=\log(\mu_i)$ e $V_i=\mu_i$. Daí, temos que

$$\omega_i = \frac{1}{V_i} \left(\frac{d\mu_i}{d\theta_i} \frac{d\theta_i}{d\eta_i} \right)^2 = \frac{1}{\mu_i} \left(\mu_i \frac{d\theta_i}{d\eta_i} \right)^2 = \mu_i \left(\frac{d\theta_i}{d\eta_i} \right)^2.$$

De forma geral,

$$U_{\beta} = X^{\top} W^{1/2} V^{-1/2} (\mathbf{y} - \mu), \quad K_{\beta\beta} = X^{\top} W X.$$

Em particular, se $g(\cdot)$ é a ligação canônica $(\theta_i = \eta_i)$, tem-se que $\omega_i = V_i = \mu_i, \forall i$. Neste caso, os pesos são as próprias médias.

Casos particulares - Distribuição Poisson

Se $g(\mu_i) = \sqrt{\mu_i}$, tem-se $\sqrt{\mu_i} = \eta_i \Rightarrow \mu_i = \eta_i^2$. Como $\theta_i = \log(\mu_i) = \log(\eta_i^2)$. Segue que

$$\frac{d\theta_i}{d\eta_i} = \frac{1}{\eta_i^2} 2\eta_i = \frac{2}{\eta_i} = \frac{2}{\sqrt{\mu_i}}.$$

$$\Rightarrow \omega_i = \mu_i \left(\frac{2}{\sqrt{\mu_i}}\right)^2 = 4, \ \forall i.$$

Assim, se a ligação é a raiz quadrada, os pesos ω_i são constantes.

Nesse caso,

$$U_{\beta} = 2X^{\top}V^{-1/2}(\boldsymbol{y} - \boldsymbol{\mu}), \quad K_{\beta\beta} = 4X^{\top}X.$$

Sabemos que $\phi = n$ (conhecido), $\theta_i = \log(\mu_i/(1-\mu_i))$ e $V_i = \mu_i(1-\mu_i)$.

Daí,

$$\omega_{i} = \frac{1}{V_{i}} \left(\frac{d\mu_{i}}{d\theta_{i}} \frac{d\theta_{i}}{d\eta_{i}} \right)^{2}$$

$$= \frac{1}{\mu_{i}(1 - \mu_{i})} \left[\mu_{i}(1 - \mu_{i}) \frac{d\theta_{i}}{d\eta_{i}} \right]^{2}$$

$$= \mu_{i}(1 - \mu_{i}) \left(\frac{d\theta_{i}}{d\eta_{i}} \right)^{2}.$$

Se a ligação é canônica, então $\omega_i = \mu_i (1 - \mu_i)$.

Entretanto, pode-se encontrar na literatura (e nos *softwares*) os pesos definidos através de

$$\omega_i = n\mu_i(1-\mu_i)\left(\frac{d\theta_i}{d\eta_i}\right)^2.$$

Para ligação canônica, $\omega_i = n\mu_i(1 - \mu_i)$.

Isto se deve ao fato que o MLG binomial pode ser definido sem fazer a mudança de escala $Y^* = Y/n$.

Neste caso, tem-se que $V_i=\mu_i^2$ e $\theta_i=-1/\mu_i$. Então,

$$\omega_i = \frac{1}{\mu_i^2} \left[\mu_i^2 \frac{d\theta_i}{d\eta_i} \right]^2 = \mu_i^2 \left(\frac{d\theta_i}{d\eta_i} \right)^2.$$

Se a ligação é a canônica, então $\omega_i = \mu_i^2 \quad \forall i$.

Quando a ligação escolhida é a logarítmica, tem-se

$$\begin{split} \log\left(\mu_{i}\right) &= \eta_{i} \quad \Rightarrow \quad \mu_{i} = \mathrm{e}^{\eta_{i}} \quad \Rightarrow \quad -\frac{1}{\theta_{i}} = \mathrm{e}^{\eta_{i}} \quad \Rightarrow \quad \theta_{i} = -\mathrm{e}^{-\eta_{i}} \\ &\Rightarrow \frac{d\theta_{i}}{d\eta_{i}} = -\mathrm{e}^{-\eta_{i}} \times (-1) = \mathrm{e}^{-\eta_{i}} = \mathrm{e}^{-\log(\mu_{i})} = \mathrm{e}^{\log\left(\mu_{i}^{-1}\right)} = \frac{1}{\mu_{i}} \\ &\Rightarrow \omega_{i} = \mu_{i}^{2} \left(\frac{1}{\mu_{i}}\right)^{2} = 1, \forall i. \end{split}$$

Também, sabemos que $\widehat{\phi}$ é obtido tal que $U_{\phi}=0$, isto é,

$$-\sum_{i=1}^n [y_i\widehat{\theta}_i - b(\widehat{\theta}_i)] = \sum_{i=1}^n c'(y_i; \widehat{\phi}).$$

Neste caso,

$$c(y_i; \phi) = (\phi - 1)\log(y_i) + \phi\log(\phi) - \log(\Gamma(\phi)).$$

Daí,

$$c'(y_i; \phi) = \log(y_i) + \log(\phi) + \frac{\phi}{\phi} - \psi(\phi)$$
$$= \log(y_i) + \log(\phi) + 1 - \psi(\phi).$$

em que $\psi(\cdot)=rac{\Gamma'(\cdot)}{\Gamma(\cdot)}$ é a função digama.

Sabendo que $\theta_i = -1/\mu_i$ e $b(\theta_i) = \log(\mu_i)$, ficamos com

$$-\sum_{i=1}^{n} \left[-\frac{y_i}{\widehat{\mu}_i} - \log(\widehat{\mu}_i) \right] = \sum_{i=1}^{n} [\log(y_i) + \log(\widehat{\phi}) + 1 - \psi(\widehat{\phi})]$$

$$\sum_{i=1}^{n} \left[\frac{y_i}{\widehat{\mu}_i} - \log\left(\frac{y_i}{\widehat{\mu}_i}\right) \right] = n[\log(\widehat{\phi}) + 1 - \psi(\widehat{\phi})].$$

Note que não é possível isolar $\widehat{\phi}$ na equação acima, e portanto, $\widehat{\phi}$ não possui forma fechada.

Também,

$$c''(y_i;\phi)=\frac{1}{\phi}-\psi'(\phi),\quad \psi'(\phi)=\frac{d\psi(\phi)}{d\phi},$$

com $\psi'(\cdot)$ sendo a função trigama.

Daí, segue que

$$K_{\phi\phi} = -\sum_{i=1}^{n} \left[\frac{1}{\phi} - \psi'(\phi) \right] = -\frac{n \left[1 - \phi \psi'(\phi) \right]}{\phi} = \frac{n \left[\phi \psi'(\phi) - 1 \right]}{\phi}.$$

Logo, a variância assintótica de $\widehat{\phi}$ é dada por

$$\mathsf{Var}(\widehat{\phi}) = \frac{\phi}{n \left[\phi \psi'(\phi) - 1 \right]} \ \Rightarrow \ \widehat{\mathsf{Var}}(\widehat{\phi}) = \frac{\widehat{\phi}}{n \left[\widehat{\phi} \psi'(\widehat{\phi}) - 1 \right]}.$$

Neste caso, $V_i = \mu_i^3$ e $\theta_i = -1/2\mu_i^2$. Segue que

$$\omega_i = \frac{1}{\mu_i^3} \left[\mu_i^3 \frac{d\theta_i}{d\eta_i} \right]^2 = \mu_i^3 \left(\frac{d\theta_i}{d\eta_i} \right)^2.$$

Se a ligação é a canônica, então $\omega_i = \mu_i^3$, $\forall i$.

Se $g(\mu_i)=\log(\mu_i)$, tem-se $\mu_i=\mathrm{e}^{\eta_i}$. Daí, a relação entre θ_i e η_i é obtida de

$$\mu_i^2 = -\frac{1}{2\theta_i} \implies \mu_i = \left(-\frac{1}{2\theta_i}\right)^{1/2} \implies e^{\eta_i} = \left(-\frac{1}{2\theta_i}\right)^{1/2}$$

$$e^{2\eta_i} = -\frac{1}{2\theta_i} \implies \theta_i = -\frac{1}{2e^{2\eta_i}} \implies \theta_i = \frac{-e^{-2\eta_i}}{2}.$$

Assim, obtemos que

$$\frac{d\theta_i}{d\eta_i} = -\frac{1}{2}e^{-2\eta_i}(-2) = e^{-2\eta_i} = e^{-2\log(\mu_i)} = \mu_i^{-2} = \frac{1}{\mu_i^2}.$$

Portanto, se a ligação é logarítmica, os pesos são dados por

$$\omega_i = \mu_i^3 \left(\frac{1}{\mu_i^2}\right)^2 = \frac{1}{\mu_i}, \forall i.$$

Ainda, sabemos que

$$c(y_i;\phi) = \frac{1}{2}\log\left(\frac{\phi}{2\pi y_i^3}\right) - \frac{\phi}{2y_i}.$$

Assim, obtemos que

$$c'(y_i;\phi) = \frac{1}{2} \frac{2\pi y_i^3}{\phi} \frac{1}{2\pi y_i^3} - \frac{1}{2y_i} = \frac{1}{2\phi} - \frac{1}{2y_i}.$$

Ainda, sabendo que $b(\widehat{\theta}_i) = -1/\widehat{\mu}_i$, temos $\widehat{\phi}$ é obtido tal que

$$-\sum_{i=1}^{n} [y_i \widehat{\theta}_i - b(\widehat{\theta}_i)] = \sum_{i=1}^{n} c'(y_i; \widehat{\phi})$$
$$-\sum_{i=1}^{n} \left[-\frac{y_i}{2\widehat{\mu}_i^2} + \frac{1}{\widehat{\mu}_i} \right] = \sum_{i=1}^{n} \left[\frac{1}{2\widehat{\phi}} - \frac{1}{2y_i} \right] \Leftrightarrow$$
$$\sum_{i=1}^{n} \left[\frac{(y_i^2 - 2\widehat{\mu}_i y_i + \widehat{\mu}_i^2)}{2y_i \widehat{\mu}_i^2} \right] = \frac{n}{2\widehat{\phi}}.$$

Isolando $\widehat{\phi}$, obtemos que

$$\widehat{\phi} = \frac{n}{D(\boldsymbol{y}; \widehat{\boldsymbol{\mu}})},$$

com

$$D(\mathbf{y}; \widehat{\mu}) = \sum_{i=1}^{n} \frac{(y_i - \widehat{\mu}_i)^2}{y_i \widehat{\mu}_i^2}.$$

Por fim, veja que

$$c''(y_i;\phi) = -\frac{1}{2\phi^2} \Rightarrow K_{\phi\phi} = -\sum_{i=1}^n -\frac{1}{2\phi^2} = \frac{n}{2\phi^2}.$$

Consequentemente,

$$\operatorname{Var}(\widehat{\phi}) = \frac{2\phi^2}{n} \Rightarrow \widehat{\operatorname{Var}}(\widehat{\phi}) = \frac{2\widehat{\phi}^2}{n}.$$

Vimos que o EMV para eta é obtido encontrando o valor de eta tal que

$$U_{\beta} = \mathbf{0} \Leftrightarrow X^{\top} \widehat{W}^{1/2} \widehat{V}^{-1/2} (\mathbf{y} - \widehat{\mu}) = \mathbf{0}, \tag{2}$$

que não depende de $\widehat{\phi}$.

Para encontrar o valor de β que resolve o sistema de equações não linear (2), considere a expansão do vetor escore U_{β} em série de Taylor em torno de $\beta = \beta^{(0)}$:

$$U_{\beta} \cong U_{\beta}^{(0)} + J_{\beta\beta}^{(0)}(\beta - \beta^{(0)}),$$
 (3)

em que $J_{\beta\beta}=U_{\beta}'=\partial U_{\beta}/\partial \beta^{\top}$ é a matriz hessiana para β , $U_{\beta}^{(0)}$ e $J_{\beta\beta}^{(0)}$ são avaliadas em $\beta^{(0)}$ que é um valor inicial ("chute") preestabelecido.

Seja $\beta^{(1)}$ o valor β atualizado no passo 1 do procedimento iterativo após substituir $\beta^{(0)}$ em (3) e isolar β . Assim, segue que

$$U_{\beta}^{(0)} + J_{\beta\beta}^{(0)}(\beta^{(1)} - \beta^{(0)}) = \mathbf{0} \quad \Leftrightarrow$$

$$U_{\beta}^{(0)} + J_{\beta\beta}^{(0)}\beta^{(1)} - J_{\beta\beta}^{(0)}\beta^{(0)} = \mathbf{0} \Leftrightarrow$$

$$J_{\beta\beta}^{(0)}\beta^{(1)} = J_{\beta\beta}^{(0)}\beta^{(0)} - U_{\beta}^{(0)} \Leftrightarrow$$

$$\beta^{(1)} = \left\{J_{\beta\beta}^{-1}\right\}^{(0)}J_{\beta\beta}^{(0)}\beta^{(0)} - \left\{J_{\beta\beta}^{-1}\right\}^{(0)}U_{\beta}^{(0)} \Leftrightarrow$$

$$\beta^{(1)} = \beta^{(0)} - \left\{J_{\beta\beta}^{-1}\right\}^{(0)}U_{\beta}^{(0)},$$

desde que $J_{\beta\beta}^{-1}$ exista.

Repetindo o procedimento *m* vezes, obtemos:

$$\beta^{(m+1)} = \beta^{(m)} - \left\{J_{\beta\beta}^{-1}\right\}^{(m)} U_{\beta}^{(m)}, \quad m = 0, 1, 2, ...,$$

em que $\beta^{(m+1)}$ denota o valor de β no passo (m+1) do processo iterativo.

Observações:

- A matriz hessiana $J_{\beta\beta}$ pode não ser invertível;
- $\blacktriangleright \ \ell(\pmb{\beta}^{(m+1)}) > \ell(\pmb{\beta}^{(m)}), \forall m, \text{ pode não ocorrer.}$

Estes possíveis problemas podem ser resolvidos substituindo a matriz $-J_{\beta\beta}$ (Fisher observada) pela matriz $K_{\beta\beta}$ (Fisher esperada) que sempre será positiva definida.

Ao fazer esta modificação no procedimento iterativo estaremos utilizando o procedimento Escore de Fisher definido por

$$\beta^{(m+1)} = \beta^{(m)} + \left\{ K_{\beta\beta}^{-1} \right\}^{(m)} U_{\beta}^{(m)}, \quad m = 0, 1, 2, \dots,$$
 (4)

em que

$$U_{\beta}^{(m)} = \phi X^{\top} \left\{ W^{1/2} \right\}^{(m)} \left\{ V^{-1/2} \right\}^{(m)} (\mathbf{y} - \boldsymbol{\mu}^{(m)}),$$
$$\left\{ K_{\beta\beta}^{-1} \right\}^{(m)} = \phi^{-1} \left\{ (X^{\top} W X)^{-1} \right\}^{(m)}.$$

Ainda, observe que

$$\beta^{(m)} = \{ (X^{\top} W X)^{-1} \}^{(m)} [X^{\top} W^{(m)} X] \beta^{(m)}$$
$$= \{ (X^{\top} W X)^{-1} \}^{(m)} X^{\top} W^{(m)} \eta^{(m)},$$

em que $\eta^{(m)} = X\beta^{(m)}$ é preditor linear no passo m do processo iterativo Escore de Fisher.

Substituindo a expressão acima de $\boldsymbol{\beta}^{(m)}$ no processo iterativo em (4), ficaremos com

$$\begin{split} \boldsymbol{\beta}^{(m+1)} &= \boldsymbol{\beta}^{(m)} + \left\{ K_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1} \right\}^{(m)} U_{\boldsymbol{\beta}}^{(m)} \\ &= \left\{ (\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X})^{-1} \right\}^{(m)} \boldsymbol{X}^{\top} \boldsymbol{W}^{(m)} \boldsymbol{\eta}^{(m)} \\ &+ \boldsymbol{\phi}^{-1} \left\{ (\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X})^{-1} \right\}^{(m)} \boldsymbol{\phi} \boldsymbol{X}^{\top} \left\{ \boldsymbol{W}^{1/2} \right\}^{(m)} \left\{ \boldsymbol{V}^{-1/2} \right\}^{(m)} (\boldsymbol{y} - \boldsymbol{\mu}^{(m)}) \\ &= \left\{ (\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X})^{-1} \right\}^{(m)} \boldsymbol{X}^{\top} \boldsymbol{W}^{(m)} \left\{ \boldsymbol{\eta}^{(m)} \right. \\ &+ \left. \left\{ \boldsymbol{W}^{-1/2} \right\}^{(m)} \left\{ \boldsymbol{V}^{-1/2} \right\}^{(m)} (\boldsymbol{y} - \boldsymbol{\mu}^{(m)}) \right\} \\ &= \left. \left\{ (\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X})^{-1} \right\}^{(m)} \boldsymbol{X}^{\top} \boldsymbol{W}^{(m)} \boldsymbol{z}^{(m)}, \\ \text{em que} \\ & \boldsymbol{z}^{(m)} = \boldsymbol{\eta}^{(m)} + \left\{ \boldsymbol{W}^{-1/2} \right\}^{(m)} \left\{ \boldsymbol{V}^{-1/2} \right\}^{(m)} (\boldsymbol{y} - \boldsymbol{\mu}^{(m)}). \end{split}$$

O vetor de variáveis z é vista como uma variável resposta modificada. As entradas do vetor $z = (z_1 \ z_2 \ \cdots \ z_n)^{\top}$ são dadas por

$$z_i = \eta_i + \frac{y_i - \mu_i}{\sqrt{\omega_i V_i}}, \quad i = 1, 2, \dots, n,$$

 $com \omega_i = (d\mu_i/d\eta_i)^2/V_i.$

Revisão. O estimador de mínimos quadrados ponderados para $\boldsymbol{\beta}$ no modelo linear $\boldsymbol{Y}=\boldsymbol{X}\boldsymbol{\beta}+\boldsymbol{\varepsilon}$ com $\mathrm{E}(\boldsymbol{\varepsilon})=0$ e $\mathrm{Var}(\boldsymbol{\varepsilon})=\sigma^2\boldsymbol{V}$ com \boldsymbol{V} conhecida é

$$\widehat{\boldsymbol{\beta}}_{G} = (\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{Y}.$$

Observe que o processo Escore de Fisher é atualizado por meio da expressão

$$\boldsymbol{\beta}^{(m+1)} = \left\{ (X^{\top} W X)^{-1} \right\}^{(m)} X^{\top} W^{(m)} \boldsymbol{z}^{(m)}$$
 (5)

que se assemelha com $\widehat{\beta}_G$.

Por esta razão que o processo iterativo de Escore de Fisher pode ser visto como um processo iterativo de mínimos quadrados reponderados.

Note que a matriz W possui o papel de reponderar $\widehat{\beta}$, ou seja, W é vista como uma matriz de ponderações ou "pesos" que muda a cada passo do processo iterativo.

Para estabelecer um valor inicial para $oldsymbol{eta}^{(0)}$, considere que

$$\mu^{(0)} = \mathbf{y} \Rightarrow \eta^{(0)} = g(\mathbf{y}).$$

Daí, o i-ésimo valor da variável transformada z_i no passo 0 é calculado por meio de

$$z_i^{(0)} = \eta_i^{(0)} + \frac{y_i - \mu_i^{(0)}}{\sqrt{\omega_i^{(0)} V_i^{(0)}}},$$

em que

$$\eta_i^{(0)} = g(y_i), \quad \mu_i^{(0)} = y_i, \quad V_i^{(0)} = V_i\left(\mu_i^{(0)}\right), \quad \omega_i^{(0)} = \frac{[1/g'(\mu_i^{(0)})]^2}{V_i^{(0)}}.$$

Calculado $z_i^{(0)}$, $\forall i \in W^{(0)}$, obtemos $\beta^{(1)}$ através de (5).

Consequentemente, com o valor atualizado $\beta^{(1)}$ calcula-se $\eta^{(1)}$ e obtémse $\beta^{(2)}$. O procedimento segue até que não há mudanças significativas na estimativa de β .

Quando devemos parar o procedimento iterativo?

Dizemos que há convergência do procedimento iterativo se

$$\left| \frac{\beta_j^{(m+1)} - \beta_j^{(m)}}{\beta_j^{(m)}} \right| < \epsilon, \quad \forall j = 1, 2, \dots, p,$$
 (6)

em que $\epsilon > 0$ é um valor pequeno preestabelecido.

Usualmente, fixam-se dois valores de ϵ . Sejam ϵ_1 e ϵ_2 os valores de ϵ fixados tais que $\epsilon_1 < \epsilon_2$.

Se a condição em (6) é verificada para ϵ_1 , dizemos que houve "convergência forte". Note que se a condição é satisfeita para ϵ_1 , então é satisfeita para ϵ_2 .

Se a condição em (6) é verificada apenas para ϵ_2 , dizemos que houve "convergência fraca".

Se a condição em (6) não é satisfeita para ϵ_2 , dizemos que o procedimento iterativo não convergiu.

Para o caso de possível não convergência do procedimento iterativo, deve-se fixar um número máximo de iterações. Usualmente fixa-se 200 iterações.

De forma análoga, o procedimento iterativo para ϕ é

$$\phi^{(m+1)} = \phi^{(m)} - \left\{J_{\phi\phi}^{-1}\right\}^{(m)} U_{\phi}^{(m)}, \quad m = 0, 1, 2, \dots,$$

em que $\phi^{(m+1)}$ denota o valor de ϕ no passo (m+1).

Também pode-se substituir $-J_{\phi\phi}$ por $K_{\phi\phi}$.

O valor inicial $\phi^{(0)}$ pode ser definido como sendo o estimador de momentos para ϕ .

Por exemplo, sob o modelo gama, temos que

$$\mathsf{E}\left[\frac{(Y_i-\mu_i)^2}{\mu_i^2}\right]=\phi^{-1}.$$

Daí, segue que um estimador de momentos para ϕ^{-1} sob o modelo gama é

$$\widehat{\phi}_{M}^{-1} = \frac{1}{n-\rho} \sum_{i=1}^{n} \frac{(Y_{i} - \widehat{\mu}_{i})^{2}}{\widehat{\mu}_{i}^{2}}.$$

Mostra-se que $\widehat{\phi}_M$ é um estimador consistente para ϕ .

Assim, no procedimento iterativo utiliza-se $\phi^{(0)} = \widehat{\phi}_M$.

Perceba que o procedimento iterativo para obtenção da estimativa de ϕ depende da estimativa de β .

Portanto, primeiro encontra-se o valor $\widehat{\pmb{\beta}}$, em seguida, obtém-se $\widehat{\pmb{\phi}}$.

