1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
183	-4.19999999999999	4.2
186	-1.19999999999999	1.2
191	3.80000000000001	3.8
184	-3.19999999999999	3.2
192	4.80000000000001	4.8
======	=======	=======
$\sum x = 936$		$\sum x - \bar{x} = 17.2$
$\bar{x} = 187.2$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{17.2}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
98	3	9
94	-1	1
94	-1	1
94	-1	1
=======	======	=======
$\sum x = 380$ $\bar{x} = 95$		$\sum (x - \bar{x})^2 = 12$

We are ready for the formula.

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{12}{4 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$