

Cavitación

ASIGNATURA: ICM557

PROFESOR: CRISTÓBAL GALLEGUILLOS

ALUMNO: OSCAR RAMÍREZ

11/12/2020

Contenido

Fórmulas	. 4
Valores Calculados	. 6
Gráficos	. 7
Gráfico I: Curvas características de la bomba (H-Q)	. 7
Gráfico II: H, Ne y ngl en % v/s CNSPD	. 9
Preguntas II	12
Gráfico III: Curva CNSPD crítica v/s caudal	13
Preguntas III	14
Conclusión	15
Índice de Gráficos	
Gráfico 1 Altura v/s Caudal	
Gráfico 2 N, Ne y ng v/s CNSPD	
Gráfico 3 N, Ne y ng v/s CNSPD	
Gráfico 5 CNSPD crítica v/s Caudal	
Índice de Tablas	
Tabla 1 Punto 1	. 3
Tabla 2 Punto 2	. 3
Tabla 3 Punto 3	
Tabla 4 Valores Calculados 1	. 6
Tabla 5 Valores Calculados 2	. 6
Tabla 6 Valores Calculados 3	6

VALORES MEDIDOS

					PUNTO 1					
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1

Tabla 1 Punto 1

					PUNTO 2					
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1

Tabla 2 Punto 2

	PUNTO 3												
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	P _{atm}			
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1			
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1			
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1			
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1			
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1			

Tabla 3 Punto 3

Fórmulas

Caudal:

Del gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal Corregido:

$$Q = Qx * \left(\frac{n}{nx}\right) [m^3/hr]$$

Presión de aspiración:

$$pax = 0.1 * pax\% - 10 - \left(\frac{cpax}{1000}\right) [m_{ca}]$$

Cpax=115(mm).

Presión de descarga:

$$pdx = 0.4 * pdx\% + \left(\frac{cpdx}{1000}\right) [m_{ca}]$$

Cpdx=165(mm)

Altura:

$$Hx = -pax + pdx [m_{ca}]$$

Altura Corregida:

$$H = Hx * \left(\frac{n}{nx}\right)^2 [m_{ca}]$$

Potencia en el eje de la Bomba:

$$Nex = 0.0007355 * Fx * nx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex * \left(\frac{n}{nx}\right)^3 [kW]$$

Potencia Hidráulica:

$$Nh = \gamma * \frac{Q * H}{3600} [kW]$$

γ: Peso específico del agua en [N/m³]

Rendimiento Global:

$$\eta_{gl} = 100 * \frac{Nh}{Ne} [\%]$$

Velocidad (V):

$$V = \frac{4 Q}{3600 \pi D_A^2} \left[\frac{\text{m}}{S} \right]$$

 $D_A = 0,1023$ [m]

Columna neta de succión positiva disponible (CNSPD):

$$CNSPD = pax + \frac{13,54 P_{atm}}{1000} + \frac{V^2}{2g} - P_v [mca]$$

P_V = Presión de vapor del líquido bombeado en [m_{ca}]

Columna neta de succión positiva requerida, (CNSPR):

$$CNSPR = CNSPD_{CRITICA}$$

Valores Calculados

	Valores Calculados (1)													
Qx	Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η_{gl}	V	PV	CNSPD	CNSPR	
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[mca]	[m _{ca}]	[m _{ca}]	
101,16	104,36	-0,37	7,21	7,58	8,07	2,99	3,29	2,29	69,76	3,52689	0,23854	10,2718	5,9	
101,16	104,22	-2,17	5,29	7,45	7,91	3,00	3,28	2,24	68,47	3,52205	0,23854	8,48011	5,9	
101,16	104,22	-3,82	3,61	7,42	7,88	3,00	3,28	2,24	68,19	3,52205	0,23854	6,83011	5,9	
101,16	104,18	-4,77	2,25	7,01	7,43	2,96	3,23	2,11	65,34	3,52084	0,23854	5,87967	5,9	
101,16	104,07	-5,08	2,17	7,24	7,66	2,90	3,15	2,17	68,91	3,51721	0,23854	5,56837	5,9	
101,16	104,04	-6,18	2,13	8,30	8,78	3,00	3,27	2,49	76,15	3,51601	0,23854	4,46794	5,9	
101,16	104,07	-6,50	2,05	8,54	9,04	3,00	3,27	2,56	78,38	3,51721	0,23854	4,14837	5,9	

Tabla 4 Valores Calculados 1

	Valores Calculados (2)													
Qx	Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η_{gl}	V	PV	CNSPD	CNSPR	
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[mca]	[m _{ca}]	[m _{ca}]	
81,00	83,30	0,12	11,29	11,17	11,81	3,26	3,55	2,68	75,58	2,81531	0,23854	10,5317	4,9	
81,00	83,30	-2,72	8,37	11,08	11,72	3,26	3,55	2,66	74,97	2,81531	0,23854	7,70173	4,9	
81,00	83,30	-5,28	4,41	9,68	10,24	3,18	3,45	2,32	67,27	2,81531	0,25548	5,12479	4,9	
81,00	83,30	-6,35	2,05	8,39	8,87	3,03	3,29	2,01	61,20	2,81531	0,25548	4,05479	4,9	
81,00	83,36	-6,53	2,01	8,53	9,03	3,00	3,27	2,05	62,71	2,81724	0,25548	3,87535	4,9	
77,40	79,60	-6,54	2,05	8,58	9,08	2,96	3,22	1,97	61,10	2,69018	0,25548	3,82967	4,9	
74,52	76,67	-6,51	1,93	8,43	8,92	2,90	3,15	1,86	59,11	2,59097	0,25548	3,83295	4,9	

Tabla 5 Valores Calculados 2

					Va	lores Cal	culados (3)					
Qx	Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η_{gl}	٧	PV	CNSPD	CNSPR
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[mca]	[m _{ca}]	[m _{ca}]
38,52	39,63	0,87	17,69	16,82	17,80	3,20	3,48	1,92	55,23	1,3393	0,25548	10,9521	3
38,52	39,62	-1,51	14,89	16,39	17,34	3,33	3,62	1,87	51,72	1,33884	0,25548	8,58205	3
38,52	39,60	-7,44	1,77	9,20	9,72	2,75	2,99	1,05	35,14	1,33838	0,25548	2,65199	3
38,52	39,60	-7,34	1,65	8,98	9,49	2,68	2,92	1,02	35,13	1,33838	0,25548	2,75199	3
55,80	57,39	-7,19	1,61	8,79	9,30	2,57	2,80	1,45	51,90	1,93944	0,25548	3,00245	3

Tabla 6 Valores Calculados 3

Gráficos

Gráfico I: Curvas características de la bomba (H-Q)

¿Qué significan las desviaciones que se producen?

Las desviaciones repentinas son debido al fenomeno de cavitación, se producen cambios de presión de forma abrupta a causa la implosión de burbujas de vapor de agua, generando un efecto de reducción en la altura de elevacion del sistema mismo, variacion en el caudal y como consecuencia una variación en el rendimiento

Gráfico II: H, Ne y ngl en % v/s CNSPD

Gráfico 2 N, Ne y ng v/s CNSPD

Gráfico 4 N, Ne y ng v/s CNSPD

Preguntas II

¿Cómo determina la CNSPD crítica y qué representa?

La CNSPD crítica representa el punto donde comienza la cavitación en el sistema, es decir, la presión de aspiración a descendido hasta un punto en donde se generan bolsas de vapor de agua, las cuales prontamente colapsarán y provocarán un funcionamiento indeseado de la bomba.

El valor de CNSPD crítico se obtiene trazando una recta a cada una de las curvas presentadas anteriormente en el punto de inflexión de las tres curvas, esto es, cuando H%, Ne% y Π% presentan un descenso drástico los cuales se resumen a continuación.

Gráfico III: Curva CNSPD crítica v/s caudal

Gráfico 5 CNSPD crítica v/s Caudal

Preguntas III

¿La curva obtenida tiene la forma característica?

Nuevamente si uno se basa en los textos, en los catálogos (vogt) y en lo explicado por el profesor en clases uno aprecia que la curva obtenida de NPSDR v/s Caudal corresponde a lo esperado.

Imagen: Curva real NPSH v/s caudal tomada de catálogo vogt serie H modelo 618

¿De acuerdo con la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Como bien sabemos, la velocidad especifica de una bomba depende de la altura y el caudal de dicha bomba en su punto óptimo de operación. Al realizar el ensayo, la bomba se trató de mantener lo más estable posible y dentro de los rangos nominales de caudal y presión mínima, por lo que las curvas obtenidas, están dentro del rango y se obtuvieron correctamente.

Conclusión

Se pudo observar el fenómeno de cavitación antes estudiado de manera teórica y se verificó la importancia de la Columna neta de succión positiva disponible (CNSPD), es el punto donde la cavitación comienza.