

IDENTIFICAÇÃO DE FARINHAS ATRAVÉS DOS GRÃOS DE AMIDO

Polissacarídeos são macromoléculas, polímeros constituídos de monossacarídeos (os monômeros) unidos em longas cadeias. O amido é um dos polissacarídeos naturais encontrados nos vegetais, formado por milhares de monossacarídeos, nesse caso, as unidades de glicose (Silva *et al.*, 2000). De forma mais exata, as moléculas de glicose se organizam em dois tipos de macromoléculas: amilose e amilopectina. Essas, por sua vez, formam os grãos de amido (Raven, 2014).

O amido é o principal polissacarídeo de reserva das plantas. A origem das moléculas de glicose nos vegetais, e logo do amido, é a fotossíntese, na qual a energia solar é convertida em energia de ligação química necessária para formar moléculas altamente energéticas como a glicose, e consequentemente, os amidos. A produção do amido ocorre em organelas chamadas de plastídeos, sendo comum sua síntese nos cloroplastos nas folhas e seu acúmulo nos amiloplastos presentes em órgãos de reserva (Raven, 2014). Apesar de ser a principal substância de reserva dos vegetais, o amido tem importância relevante na alimentação humana e dos animais. Os chineses e os egípcios foram os dois povos que primeiro obtiveram o amido, entretanto, o nome *amido* provém do grego *Amylum* (Oliveira e Akisue, 2005).

Embora todas as plantas acumulem amidos, as passíveis de extração economicamente viável e predominantemente usadas no mercado para esse fim são os cereais e as tuberosas, com destaque para o milho, trigo, arroz, aveia, araruta, batata, batata-doce e mandioca (Silva et al., 2000). O amido, quando extraído de raízes ou tubérculos, é chamado de fécula.

Os amidos ou as féculas, após a extração dos vegetais, são sempre pós finos de coloração alva, constituídos por grânulos de tamanhos, formas e estratificações variáveis (Silva *et al.*, 2000). Apesar disso, eles apresentam algumas características morfológicas gerais quando vistos ao microscópio, como o hilo (ponto ou ranhura

simples/cruzada, central/excêntrica) e as lamelas (sucessão de zonas claras e escuras). A posição e a forma do hilo, bem como a centricidade ou não das lamelas são importantes na identificação de grãos de amido. Também existe variação quanto à forma dos grãos (esféricos, ovoides, poliédricos, cupuliformes, riniformes, halteriformes), quanto à estrutura (homogêneos, estratificados), quanto ao tipo de hilo (puntiforme, linear, cruciforme, estrelado, circular, poliédrico), quanto ao estado de agregação (simples ou composto) (Oliveira; Akisue, 2005). Devido a essas características específicas presentes nos grãos de amido de diferentes espécies vegetais, é possível identificar de qual espécie vegetal o amido é originário por meio de técnicas laboratoriais, como a microscopia. Na Tabela 1 são mostradas as características dos principais amidos e féculas (Oliveira; Akisue, 2005).

IDENTIFICAÇÃO DO AMIDO/FÉCULA	PRINCIPAIS CARACTERÍSTICAS DOS GRÃOS DE AMIDO/ FÉCULA
Amido de trigo (<i>Triticum vulgare</i> Vill.)	São lenticulares ou biconvexos dependendo do ângulo, apresentam estrias concêntricas pouco visíveis e hilo pontuado em raros grãos; os grãos menores têm forma globular ou ligeiramente poligonal.
Amido de aveia (Avena sativa L.)	São poligonais e agregados, formando grandes grãos compostos, típicos e arredondados. Apresentam hilo pontuado pouco perceptível e não têm estrias.
Amido de arroz (<i>Oryza sativa</i> L.)	São poligonais e formam pequenos agregados. Têm hilo central pontuado e não apresentam estrias.

Amido de milho (<i>Zea mays</i> L.)	São poliédricos e com os lados ligeiramente
	abaulados quando originários da parte externa da
	semente. Os da zona central branca são quase
	esféricos e bem menores. O hilo é pontuado,
	emitindo prolongamentos curtos em forma de
	estrela. Suas estrias são raramente visíveis. São
	simples.
Fécula de batata (Solanum tuberosum L.)	São elipsoides, ovais, piriformes, arredondados,
	denteados e truncados. O hilo é pontuado e se
	implanta na extremidade mais estreita do grão. O
	sistema estriado é excêntrico, sendo notadas,
	alternadamente, camadas mais e menos
	profundas. Alguns grãos menores podem se
	agrupar.
Fécula de batata-doce (<i>Ipomoea</i> batatas Lam.)	Alguns são esféricos e irregulares; outros quase
	poliédricos, redondos, truncados uma ou várias
	vezes. O hilo é pontuado ou estrelado e está
	implantado quase na extremidade do grão. As
	estrias não são muito acentuadas. Os grãos
	menores podem se agrupar.
Fécula de araruta (Maranta arundinacea L.)	São ovoides, fusiformes, obtuso-triangulares,
	raramente esféricos, apresentando protuberâncias
	laterais. O hilo está quase sempre na extremidade
	mais larga do grão, pode ser único ou duplo,
	imitando asa de um pássaro. As estrias são
	excêntricas, não muito acentuadas.
	São arredondados truncados, triangulares e de
Fécula de falsa araruta (Maranta	contorno bem marcado. O hilo é pontuado,
<i>ruiziana</i> Koern.)	ocupando a parte central do grão. As estrias não
	são muito acentuadas.

Fécula de mandioca (*Manihot* esculenta Grantz.)

São esféricos, arredondados, ou em forma de dedal. Apresentam hilo pontuado linear ou estrelado, ocupando, geralmente, o centro do grão. As estrias são vagamente observadas. É comum a ocorrência de agregados de dois a três elementos.

Tabela 1 – Descrição dos grãos de amidos e féculas mais comuns.

As características físicas dos amidos/féculas permitem a realização de várias técnicas laboratoriais voltadas para a identificação deles. Destaca-se o fato de que os grãos de amido/fécula adquirem cor azul-arroxeada característica, quando tratados pelo lugol diluído. O iodo, presente no lugol, forma um complexo com a amilose, e em menor quantidade com a amilopectina, originando compostos de inclusão nos quais a cor varia do azul ao arroxeado, de acordo com o tamanho da cadeia polissacarídica (Oliveira; Akisue, 2005). Dessa forma, é possível realizar a visualização em microscópio óptico e identificar diferentes amostras de amidos/féculas.

Diante do que foi exposto, no laboratório virtual você irá aprender a preparar lâminas para observação de grãos de amido/fécula no microscópio óptico e como identificar de qual espécie vegetal o amido/fécula provém.

REFERÊNCIAS BIBLIOGRÁFICAS

OLIVEIRA, F.; AKISUE, G. **Fundamentos de farmacobotânica**. 2. ed. São Paulo: Atheneu, 2005.

RAVEN, P. H.; EICHHORN, S. E.; EVERT, R. F. **Biologia vegetal**. 8. ed. São Paulo: Guanabara Koogan, 2014.

SILVA, J. R.; ASSUMPÇÃO, R.; VEGRO, C. L. R. A inserção da fécula de mandioca no mercado de amido. **Informações Econômicas**, [s. l.], v. 30, n. 7, 2000.