✓	恭喜!	您通过了!
•	<i>'</i> ''' •	/U'\~~~~ J •

下一项

1/1分

1.

If you have 10,000,000 examples, how would you split the train/dev/test set?

- 33% train . 33% dev . 33% test
- 60% train . 20% dev . 20% test
- 98% train . 1% dev . 1% test

正确

1/1分

2.

The dev and test set should:

Practical a	spect	10/10 分 (100%)	
测验, 10 个问题		Be identical to each other (same (x,y) pairs)	10110 75 (10010)
		Have the same number of examples	
	~	1 / 1 分	
	-	Neural Network model seems to have high variance, what of owing would be promising things to try?	
	<u> </u>	Add regularization	
	正确		
		Make the Neural Network deeper	
	未选择	幹的是正确的	
	<u> </u>	Get more training data	
	正确		
		Get more test data	
	未选择	译的是正确的	
		Increase the number of units in each hidden layer	
	未选择	幹的是正确的	

ceiling on the values of the weights.

every iteration.

A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on

Practical aspects of deep learning 测验, 10 个问题

10/10 分 (100%)

	Gradual corruption of the weights in the neural network if it is trained on noisy data.
~	1/1分
	appens when you increase the regularization arameter lambda?
	Weights are pushed toward becoming smaller (closer to 0)
正确	
	Weights are pushed toward becoming bigger (further from 0)
	Doubling lambda should roughly result in doubling the weights
	Gradient descent taking bigger steps with each iteration (proportional to lambda)
✓	1/1分
	e inverted dropout technique, at test time:
	You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.
	You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training

You do not apply dropout (do not randomly eliminate Practical aspects for form of the place of the property of the place of the property of the place of the property of the place of the

10/10 分 (100%)

	calculations used in training	
正确		
11 M		
	You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.	
✓	1/1分	
	sing the parameter keep_prob from (say) 0.5 to 0.6 will likely the following: (Check the two that apply)	
	Increasing the regularization effect	
未选择	圣的是正确的	
正确	Reducing the regularization effect	
未选择	Causing the neural network to end up with a higher training set error	
正确	Causing the neural network to end up with a lower training set error	

Practical aspects of deep learning 测验, 10 个问题 9.

Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)

Cuucii	ing over neurigy: (effect all that apply.)
✓	L2 regularization
正确	
正确	Dropout
	Vanishing gradient
未选择	全的是正确的
	Gradient Checking
未选择	全的是正确的
正确	Data augmentation
	Exploding gradient
未选择	全的是正确的
	Xavier initialization
未选择	译的是正确的

Practical aspects of deep learning 测验, 10 个问题 10.

Why do we	normalize	the	inputs	\boldsymbol{x}	?
-----------	-----------	-----	--------	------------------	---

wny ac	b we normalize the inputs x ?
	It makes the parameter initialization faster
	It makes the cost function faster to optimize
正确	
\bigcirc	It makes it easier to visualize the data
	Normalization is another word for regularizationIt helps to reduce variance

