HTML HW3

B12901022 廖冠豪

In this problem we use $\{-1,+1\}$ to denote boolean values (outcome of binary classification)

5

We consider hypotheses $h_1, h_2 : \mathbb{R} \to \{-1, +1\}$, where

$$h_1(x) = \operatorname{sign}(x)$$

$$h_2(x) = -\operatorname{sign}(x)$$

and hypotheses sets $\mathcal{H}_1 = \{h_1\}$ and $\mathcal{H}_2 = \{h_2\}$.

As both \mathcal{H}_1 and \mathcal{H}_2 only contain one hypothesis, their VC dimension are both 0.

$$d_{VC}(\mathcal{H}_1) = d_{VC}(\mathcal{H}_2) = 0$$

Now consider the hypotheses set $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$, and x = 1. We have $h_1(x) = +1$ and $h_2(x) = -1$, so \mathcal{H} can shatter a set of one data vector and its VC dimension is hence greater than or equal to 1.

We conclude that

$$d_{VC}(\mathcal{H}_1 \cup \mathcal{H}_2) \geq 1 > d_{VC}(\mathcal{H}_1) + d_{VC}(\mathcal{H}_2) = 0$$

Therefore we have disproved the statement.

6

In the super-market case, we hope to find $f(\mathbf{x})$ that minimizes

$$\underset{\mathbf{x},y\sim P(\mathbf{x},y)}{\mathbb{E}} \left[10P(+1|\mathbf{x})[\![f(\mathbf{x}=-1)]\!] + P(-1|\mathbf{x})[\![f(\mathbf{x}=+1)]\!]\right]$$

We can see that for any \mathbf{x} exactly one out of $f(\mathbf{x}) = +1$ and $f(\mathbf{x}) = -1$ is true, so it would be optimal to choose an α such that the one that contributes to a smaller value in \mathbb{E} is always chosen(i.e. $f(\mathbf{x}) = -1$ if $10P(+1|\mathbf{x})$ is greater than $P(-1|\mathbf{x})$, and vice versa)

$$\begin{cases} P(+1|\mathbf{x}) + P(-1|\mathbf{x}) = 1\\ 10P(+1|\mathbf{x}) \ge P(-1|\mathbf{x}) \end{cases}$$

$$\implies P(+1|\mathbf{x}) \ge \frac{1}{11}$$

By the analysis above, we can see that the optimal choice of α is $\frac{1}{11}$, and we have the mini-target

$$f_{\text{MKT}}(\mathbf{x}) = \text{sign}(P(y = +1|\mathbf{x}) - \frac{1}{11})$$

7

$$\begin{split} E_{\text{out}}^{(1)}(h) &= \sum_{\mathbf{x} \sim P(\mathbf{x})} P(\mathbf{x}) \llbracket h(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket \\ E_{\text{out}}^{(2)}(h) &= \sum_{\mathbf{x} \sim P(\mathbf{x})} P(\mathbf{x}) \left(P(-1|\mathbf{x}) \llbracket h(\mathbf{x}) = +1 \rrbracket + P(+1|\mathbf{x}) \llbracket h(\mathbf{x}) = -1 \rrbracket \right) \\ E_{\text{out}}^{(2)}(f) &= \sum_{\mathbf{x} \sim P(\mathbf{x})} P(\mathbf{x}) \left(P(-1|\mathbf{x}) \llbracket f(\mathbf{x}) = +1 \rrbracket + P(+1|\mathbf{x}) \llbracket f(\mathbf{x}) = -1 \rrbracket \right) \end{split}$$

We see that

$$E_{\mathrm{out}}^{(1)}(h) + E_{\mathrm{out}}^{(2)}(f) = \sum_{\mathbf{x} \sim P(\mathbf{x})} P(\mathbf{x}) \left(P(-1|\mathbf{x}) [\![f(\mathbf{x}) = +1]\!] + P(+1|\mathbf{x}) [\![f(\mathbf{x}) = -1]\!] + [\![h(\mathbf{x}) \neq f(\mathbf{x}))]\!] \right)$$

Given $h(\mathbf{x}), f(\mathbf{x})$, define

$$\begin{split} a(\mathbf{x}) &= P(-1|\mathbf{x}) \llbracket f(\mathbf{x}) = +1 \rrbracket + P(+1|\mathbf{x}) \llbracket f(\mathbf{x}) = -1 \rrbracket + \llbracket h(\mathbf{x}) \neq f(\mathbf{x})) \rrbracket \\ b(\mathbf{x}) &= P(-1|\mathbf{x}) \llbracket h(\mathbf{x}) = +1 \rrbracket + P(+1|\mathbf{x}) \llbracket h(\mathbf{x}) = -1 \rrbracket \end{split}$$

We then consider the four different cases for $h(\mathbf{x})$, $f(\mathbf{x})$.

Case 1: $h(\mathbf{x}) = +1, f(\mathbf{x}) = +1$

$$a(\mathbf{x}) = P(-1|\mathbf{x})$$

$$b(\mathbf{x}) = P(-1|\mathbf{x})$$

Case 2: $h(\mathbf{x}) = +1, f(\mathbf{x}) = -1$

$$a(\mathbf{x}) = P(+1|\mathbf{x}) + 1$$
$$b(\mathbf{x}) = P(-1|\mathbf{x})$$

Case 3: h(x) = -1, f(x) = -1

$$a(\mathbf{x}) = P(+1|\mathbf{x})$$
$$b(\mathbf{x}) = P(+1|\mathbf{x})$$

Case 4: h(x) = -1, f(x) = +1

$$a(\mathbf{x}) = P(-1|\mathbf{x}) + 1$$
$$b(\mathbf{x}) = P(+1|\mathbf{x})$$

We can see that for all possible cases we have $a(\mathbf{x}) \geq b(\mathbf{x})$. Hence

$$E_{\mathrm{out}}^{(1)}(h) + E_{\mathrm{out}}^{(2)}(f) = \sum_{\mathbf{x} \sim P(\mathbf{x})} P(\mathbf{x}) a(\mathbf{x}) \geq E_{\mathrm{out}}^{(2)}(h) = \sum_{\mathbf{x} \sim P(\mathbf{x})} P(\mathbf{x}) b(\mathbf{x})$$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Note that when dealing with a continuous distribution of \mathbf{x} , we only need to change the summation to integral, and the following argument applies.

Assuming that X^TX is invertible, we can express \mathbf{w}_{LIN} in the following form

$$\mathbf{w}_{\mathrm{LIN}} = (X^T X)^{-1} X^T \mathbf{y}$$

Now if we replace x_0 with 1126, we get the new X matrix

$$X' = XD'$$

Where D' is the diagonal matrix with

$$D'_{ij} = \begin{cases} 1126 & i = j = 0\\ 1 & i = j \neq 0\\ 0 & \text{else} \end{cases}$$

Clearly ${D'}^{-1}$ exists, and D' is symmetric, so

$$({X'}^TX')({D'}^{-1}(X^TX)^{-1}{D'}^{-1}) = D'(X^TX)D'{D'}^{-1}(X^TX)^{-1}{D'}^{-1} = I$$

So $({X'}^T X')$ is invertible with

$$(X'^T X')^{-1} = D'^{-1} (X^T X)^{-1} D'^{-1}$$

Hence we can repeat the linear regression procedure and obtain

$$\mathbf{w}_{\text{LUCKY}} = ({X'}^T X')^{-1} {X'}^T \mathbf{y}$$

$$= {D'}^{-1} (X^T X)^{-1} {D'}^{-1} {D'}^{-1} D' X^T \mathbf{y}$$

$$= {D'}^{-1} (X^T X)^{-1} {D'}^{-1} X^T \mathbf{y}$$

$$= {D'}^{-1} \mathbf{w}_{\text{LIN}}$$

Hence we have proved the statement and found the diagonal matrix $D = {D'}^{-1}$

$$Dij = \begin{cases} \frac{1}{1126} & i = j = 0\\ 1 & i = j \neq 0\\ 0 & \text{else} \end{cases}$$

9

Let $f(\mathbf{x})$ be the target function we want to approximate with $\tilde{h}(\mathbf{x})$. Consider $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2) \dots (\mathbf{x}_N, y_N), \}, \quad y_i \in \{-1, +1\}$. The probability that f generates \mathcal{D} is

$$P(\mathbf{x}_1)f(\mathbf{x}_1)\times P(\mathbf{x}_2)(1-f(\mathbf{x}_2))\times \cdots \times P(\mathbf{x}_N)(1-f(\mathbf{x}_N))$$

The likelihood that \tilde{h} generates \mathcal{D} is

$$P(\mathbf{x}_1)h(\mathbf{x}_1)\times P(\mathbf{x}_2)(1-h(\mathbf{x}_2))\times \cdots \times P(\mathbf{x}_N)(1-h(\mathbf{x}_N))$$

Also,

$$\begin{split} 1 - \tilde{h}(\mathbf{x}) &= 1 - \frac{1}{2} (\frac{\mathbf{w}^T \mathbf{x}}{\sqrt{1 + (\mathbf{w}^T \mathbf{x})^2}} + 1) \\ &= \frac{1}{2} (\frac{-\mathbf{w}^T \mathbf{x}}{\sqrt{1 + (\mathbf{w}^T \mathbf{x})^2}} + 1) \\ &= \tilde{h}(-\mathbf{x}) \end{split}$$

Therefore the likelihood for some hypothesis \tilde{h} is proportional to

$$\prod_{n=1}^N \tilde{h}(y_n \mathbf{x}_n)$$

We hope to find

$$\begin{split} \arg\max_{\mathbf{w}} \prod_{n=1}^{N} \tilde{h}(y_n \mathbf{x}_n) &= \arg\max_{\mathbf{w}} \prod_{n=1}^{N} \left(\frac{1}{2} \left(\frac{y_n \left(\mathbf{w}^T \mathbf{x}_n \right)}{\sqrt{1 + \left(\mathbf{w}^T \mathbf{x}_n \right)^2}} + 1 \right) \right) \\ &= \arg\max_{\mathbf{w}} \ln \left(\prod_{n=1}^{N} \frac{1}{2} \left(\frac{y_n \left(\mathbf{w}^T \mathbf{x}_n \right)}{\sqrt{1 + \left(\mathbf{w}^T \mathbf{x}_n \right)^2}} + 1 \right) \right) \\ &= \arg\max_{\mathbf{w}} \sum_{n=1}^{N} \ln \left(\frac{1}{2} \left(\frac{y_n \left(\mathbf{w}^T \mathbf{x}_n \right)}{\sqrt{1 + \left(\mathbf{w}^T \mathbf{x}_n \right)^2}} + 1 \right) \right) \\ &= \arg\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} - \ln \left(\frac{1}{2} \left(\frac{y_n \left(\mathbf{w}^T \mathbf{x}_n \right)}{\sqrt{1 + \left(\mathbf{w}^T \mathbf{x}_n \right)^2}} + 1 \right) \right) \\ &= \arg\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} - \Pr(\mathbf{w}, \mathbf{x}_n, y_n) \end{split}$$

Hence we've found the error function

$$\begin{split} \text{err}(\mathbf{w}, \mathbf{x}_n, y_n) &= -\ln \left(\frac{1}{2} \left(\frac{y_n \mathbf{w}^T \mathbf{x}_n}{\sqrt{1 + (\mathbf{w}^T \mathbf{x}_n)^2}} + 1 \right) \right) \\ &= \ln \frac{2\sqrt{1 + (\mathbf{w}^T \mathbf{x}_n)^2}}{y_n \mathbf{w}^T \mathbf{x}_n + \sqrt{1 + (\mathbf{w}^T \mathbf{x}_n)^2}} \end{split}$$

Therefore

$$\tilde{E}_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{2\sqrt{1 + (\mathbf{w}^T \mathbf{x}_n)^2}}{y_n \mathbf{w}^T \mathbf{x}_n + \sqrt{1 + (\mathbf{w}^T \mathbf{x}_n)^2}} \right)$$

We can then compute $\nabla \tilde{E}_{\rm in}(\mathbf{w})$

$$\begin{split} (\nabla \tilde{E}_{\mathrm{in}}(\mathbf{w}))_i &= \frac{\partial \tilde{E}_{\mathrm{in}}(\mathbf{w})}{\partial \mathbf{w}_i} \\ &= \sum_{n=1}^N \frac{\partial \ln \bigcirc}{\partial \bigcirc} \frac{\partial \bigcirc}{\partial \square} \frac{\partial \square}{\partial \mathbf{w}_i} \quad \left(\bigcirc = \left(\frac{2\sqrt{1+\square^2}}{y_n\square + \sqrt{1+\square^2}}\right), \square = \mathbf{w}^T \mathbf{x}_n\right) \\ &= \frac{1}{N} \sum_{n=1}^N \left(\frac{1}{\bigcirc}\right) \left(-\frac{2y_n}{\sqrt{1+\square^2} \left(y_n\square + \sqrt{1+\square^2}\right)^2}\right) \left(\mathbf{x}_{n,i}\right) \\ &= \frac{1}{N} \sum_{n=1}^N \left(-\frac{y_n \mathbf{x}_{n,i}}{(1+(\mathbf{w}^T x_n)^2)(y_n \mathbf{w}^T \mathbf{x}_n + \sqrt{1+(\mathbf{w}^T \mathbf{w}_n)^2})}\right) \end{split}$$

Therefore we have

$$\nabla \tilde{E}_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left(-\frac{y_n \mathbf{x}_n}{(1 + (\mathbf{w}^T x_n)^2)(y_n \mathbf{w}^T \mathbf{x}_n + \sqrt{1 + (\mathbf{w}^T \mathbf{w}_n)^2})} \right)$$

From the scatter plot we can see E_{out} is significantly larger than E_{out} , for the majority of data points E_{in} ranges between 0 to 2×10^4 and the maxima for E_{in} is about 1.2×10^5 . On the other hand, for most data points E_{out} is less than 40, and the maxima of E_{out} is no less than 180.

This difference between E_{out} and E_{in} is consistent with theory, in lecture we're introduced with the equations

$$\overline{E_{out}} = \mathbf{noise} \ \operatorname{level} \cdot (1 + \frac{d+1}{N})$$

$$\overline{E_{in}} = \mathbf{noise} \ \operatorname{level} \cdot (1 - \frac{d+1}{N})$$

The expected generalization error is $\frac{2(d+1)}{N}$. In this case N=32 is relatively small, so the difference between E_{out} an E_{in} is quite large.

```
## Data_vec = zeros(@192, 13);

y = zeros(@192, 13);

y = zeros(@192, 13);

y = zeros(@192, 13);

file = fopen(*.gdat.xt*);

line = fopen(*.gdat.xt*);

line = fopen(*.gdat.xt*);

line = fopen(*.gdat.xt*);

y (\text{Vise}(count = i) = str2double(parts(1));

x = zeros(@192, 1);

y (\text{Vise}(count = i) = str2double(parts(1));

x = zeros(@192, 1);

y (\text{Vise}(count = i) = str2double(parts(1));

x = zeros(@192, 1);

y (\text{Vise}(count = i) = str2double(fog2));

and | = zeros(@192, 1);

and | = zeros(@192, 1);

and | = xeros(@192, 1);

y = zeros(@192, 1);

w | = xeros(@192, 1);

w | = x
```

Code snapshot:

From the figure we see that for small N, as in problem 10, the difference between E_{out} and E_{in} is large, with E_{out} reaching almost 7000 and E_{in} approximately 27 for N=25. As N increases, E_{out} decreases rapidly until it reaches the same level as E_{in} (around 100). During the process, E_{in} also increases slightly. At approximately N=400, E_{out} and E_{in} become almost identical For larger N, E_{out} and E_{in} are very stable, and their value don't change much as N increases to larger values.

This result is also consistent with theory, from the two equations

$$\begin{split} \overline{E_{out}} &= \mathbf{noise} \ \mathrm{level} \cdot (1 + \frac{d+1}{N}) \\ \overline{E_{in}} &= \mathbf{noise} \ \mathrm{level} \cdot (1 - \frac{d+1}{N}) \end{split}$$

we see that as N becomes larger, both E_{out} and E_{in} converges to the noise level σ^2 . This phenomenon is clearly reflected in the figure, as E_{out} and E_{in} approaches the same value for large N.

```
| displicing.count); | displicing.count); | displicing.count); | displicing.count); | displicing.count); | displicing.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.count.co
```

Code snapshot:

The figure above is mostly similar to that in problem 10 in their trend of growth (increase/decrease). But there are some differences.

Firstly we see that the value to which E_{out} and E_{in} converge is different. This may be due to the noise level term σ^2 in the equation. For this set the noise level for each dimension of \mathbf{x} may be different, so training with different dimensions of \mathbf{x} may lead to different σ^2 values. Secondly, the difference between E_{in} and E_{out} for small N and large N (stable value) is larger in problem 11. We can see that in problem 11 E_{out} decreased by more than $99\% (\approx 7000 \rightarrow \approx 100)$, and E_{in} increased by about $300\% (\approx 27 \rightarrow \approx 100)$, whereas in this problem E_{out} only decreased by approximately 70% ($\approx 1250 \rightarrow \approx 400$) and E_{in} only increased by about $100\% (\approx 200 \rightarrow \approx 400)$. This is due to the difference in d.

From the equations

$$\overline{E_{out}} = \mathbf{noise} \ \mathrm{level} \cdot (1 + \frac{d+1}{N})$$

$$\overline{E_{in}} = \mathbf{noise} \ \mathrm{level} \cdot (1 - \frac{d+1}{N})$$

we see that the difference between E_{in} and E_{out} at small N and their value at large N is $\frac{d+1}{N}$, hence for larger d and same N, E_{in} and E_{out} differs more with their asymptotic value. This is consistent with the cases for problem 11 and 12, as in problem 11 d=13 and in problem 12 d=3.

```
| Main and the state of the sta
```

Code snapshot:

13

This problem is done in collaboration with B12901035 鄭宇彥

Let S be the set that contains all 2^N dichotomies of some N data vectors $\mathbf{x} \in \mathcal{D}$, that is, S contains all 2^N distinct boolean vectors of length N.

Let $S_0, S_1, S_2 \dots S_N$ be subsets of S. The subset S_i contains all the dichotomies where exactly i data vectors are classified as +1.

From the definition above, we can see that S_i has $\binom{N}{i}$ elements, and any two of these subsets are mutually exclusive.

Now consider the set $S \setminus (S_k \cup S_{k+1} \cup \cdots \cup S_N)$ for $k \in \{0, 1, 2, \dots, N\}$. For the dichotomies in this set, no k data vectors are scattered. This is true because for any k data vectors, this

set does not contain any dichotomy where all these k data vectors are classified as +1, since any such dichotomy must be in one of $\mathcal{S}_k, \mathcal{S}_{k+1}, \dots, \mathcal{S}_N$.

The number of elements in $\mathcal{S} \setminus (\mathcal{S}_k \cup \mathcal{S}_{k+1} \cup \cdots \cup \mathcal{S}_N)$ is

$$2^N - (\sum_{i=k}^N {N \choose i}) = \sum_{i=0}^{k-1} {N \choose i}$$

Hence we have

$$B(N,k) \geq \sum_{i=0}^{k-1} {N \choose i} \quad \forall k \in \{0,1,2,\dots,N\}$$

Lastly, for $k \in \{N+1, N+2, N+3...\}$ obviously $B(N, k) = 2^N = \sum_{i=0}^{k-1} {N \choose i}$, as these N data vectors can be shattered.

Therefore, we have proven

$$B(N,k) \ge \sum_{i=0}^{k-1} {N \choose i}$$