Linear Programming

Reduction:

is there a universal efficient also that we com reclue to?

Constraints

Goal: maximize 6x+8y

RMK: - The Shaded region is continuous region => no obvious finite time algo.

- Can be high dimension
- The region is polyhydron

The input size is:

def Say IT is feasible if 7 x ER" that satisfies constraints. else infecisible TT is bounded if $|TT| < \infty$. Otherwise unbounded. Q: Given TT, What is ITT !? LP - liveer objective functions - linear constraints Philosophy: maximize a minimize (=> min <c,x> = - max <-c,x> def A comonical form of LP: restrict to this det max (c,x> Sit. Ax≤b,x≥0 lem No Loss of generality using this restriction. I efficient maps x x x > x is fesible in T = x' is feasible in T'

 $|\pi| = |\pi'|$

Renains: force 820

Create
$$x'$$
 as x^{\dagger} , $x^{-} \in \mathbb{R}^{n}$ by
$$\begin{cases} x_{i}^{\dagger} = \begin{cases} x_{i} & \text{if } x_{i} \ge 0 \\ 0 & \text{if } x_{i} \le 0 \end{cases} \\ x_{i}^{-} = \begin{cases} -x_{i} & \text{if } x_{i} \ge 0 \\ 0 & \text{if } x_{i} \le 0 \end{cases} \\ \Rightarrow x' = x^{\dagger} - x^{-}$$

Define c' by (C,x) = (C,x+>- (C,x-) = (c',x')

Another direction:

$$A(x^{+}-x^{-}) \leq b, \qquad \Rightarrow \qquad x=x^{+}-x^{-} \Rightarrow Ax \leq b \Rightarrow \langle c,x\rangle = \langle c',x'\rangle$$

Q: Maxflow V.S. LP? prop: G carpacitated graph, Sit, Cezo max f(s) = \(\sum_{e:s>}\) fe - \(\sum_{e:o->s}\) linear objective maxflow in G Siti Ve, fezo, fesce. ∀v ≠s.t, f(v) =0

Z fe - I fe also linear

Express mincet in LP:

min
$$|C(S,T)|$$

 $V=SUT$
 S t II
 S t S t

Show they have some minimum:

Show they have some minimum:

(7) given
$$V = SUT$$
, define $dv = \begin{cases} 0 & \text{if } v \in S \\ 1 & \text{if } v \in T \end{cases} \Rightarrow ds = 0$, $dt = 1$

define $xe = \begin{cases} 1 & \text{if } e : u \Rightarrow V, u \in S, v \in T \\ 0 & \text{o.w.} \end{cases}$

claim:
$$\forall e: u \rightarrow v$$
, $dv \leq du + \chi e$

Pf: four cases:

$$C(S,T) = \sum_{e: u \rightarrow v} Ce \cdot 1$$

$$= \sum_{e: u \rightarrow v} Ce \cdot \chi e = \langle C, \chi \rangle$$

$$\Rightarrow |T| \leq \min_{e \in V} Ce$$

(
$$\leq$$
) given d, \times optimal (possibly not integral)

(This is the LP)

Idea: randomized rounding

Abo: choose $\theta \in (0,1]$ randomly.

define $S = \{v = alv < \theta\}$

Output $v = SUT$

claim: $\mathbb{E}[|C(s,\tau)|] \leq |T||$
 $cor: \exists V = SUT.$
 $C(s,\tau) \in \mathbb{E}_{\theta}[|C(s,\tau)|] \leq |T||$

$$\mathbb{E}[|C(S,T)|] = \mathbb{E}[\sum_{e} : u \rightarrow v]$$