Initiation au Machine Learning

Durée

3 jours.

Participants

Ingénieurs/chefs de projet intéressés par les techniques d'apprentissage automatique pour leurs problèmes métiers.

Prérequis

Bases du langage Python

Objectifs

Cette formation vous permettra d'acquérir les bases du Machine Learning afin d'identifier les points d'intégration dans vos applications métier. À la fin de ces trois jours, vous serez en mesure de créer vos propres modèles prédictifs, à l'aide de l'écosystème scientifique du langage Python. Vous aurez alors à votre disposition tout un ensemble de bibliothèques et d'outils open source, tels que Numpy, Scikit-Learn ou TensorFlow. Les concepts théoriques étudiés seront accompagnés d'exemples pratiques en python, utilisant des données issues de problèmes réels et de domaines variés. - Comprendre en quoi consiste l'apprentissage automatique - Identifier les problèmes pour lesquels ce type de méthode saura apporter une réponse pertinente - Connaître les différents types de méthodes et savoir utiliser les principaux algorithmes

Programme

Introduction à la modélisation

- Rapide historique du domaine.
- Formalisation d'un problème par le prisme du machine learning.
- Les étapes de construction d'un modèle.
- · Les algorithmes supervisés et non supervisés.

Évaluation de modèles

- · La validation croisée de modèle
- Séparation en base d'apprentissage, de validation et de test.
- Les mesures de performances adaptées à un problème académique ou métier :
 - Précision
 - Rappel
 - Matrice de confusion
 - f-mesures
 - l'aire sous la courbe ROC

Les bibliothèques python de calcul scientifique et gestion de corpus

- Le calcul scientifique avec *numpy*
- Gestion d'un jeu de donnée avec pandas
- Affichage de statistiques avec seaborn
- Le machine learning avec Scikit-learn

Les algorithmes non supervisés

- De l'intérêt des méthodes non supervisées
- La réduction de dimension :
 - Les méthodes linéaires liées à l'analyse en composante principale
 - Les méthodes non linéaires telles que UMAP ou T-SNE
- Le clustering :
 - K-moyennes et dérivées
 - DBSCAN

Les algorithmes supervisés

- Machine à vecteur support (SVM)
- Random Forest
- Réseaux de neurones