Lecture 14 The Real Business Cycle Model Part 1: Consumer

Hui-Jun Chen

The Ohio State University

May 6, 2022

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - Lecture 14: consumer
 - Lecture 15: firm
 - Lecture 16: competitive equilibrium
 - Lecture 17: formal example
 - Lecture 18: application to bring RBC to data

Real Business Cycle Model

- One of the workhorse frameworks in modern macroecnomics
- Real: not about money and inflation
- Business Cycle: mainly explain the short- and medium-term economics fluctuation ("business cycle frequency")
- Three agents: representative consumer, representative firm, and government
- All agents make **static and dynamic** decisions
- Larger "scale" model (i.e., more endogenous variables), but build upon the technique learned before

Hui-Jun Chen (OSU) Lecture 14 May 6, 2022 3 / 13

Consumer: Constraints

There are 11 variables associated with the representative consumer:

- choice variables: consumption (C, C') and labor supply (N_S, N_S')
 - leisure follows labor choice: $l = h N_S$, and $l' = h N_S'$
- \blacksquare owns the firm and get profits (π, π') and pays taxes (T, T')
- \blacksquare taken the equilibrium price as given (w, w', r)

Saving (S) at date 0 to construct lifetime budget constraint:

today:
$$C+S=wN_S+\pi-T$$
 tomorrow: $C'=w'N_S'+\pi'-T'+(1+r)S$

lifetime constraint:
$$C + \frac{C'}{1+r} = \underbrace{wN_S + \pi - T}_{\approx Y \text{ in last lecture}} + \underbrace{\frac{w'N_S' + \pi' - T'}{1+r}}_{\approx Y \text{ in last lecture}}$$

Consumer: Preference

In general, utility fcn across consumption and labor choice can be mixed:

- \blacksquare e.g. mix C and N_S : GHH preferences
- e.g. mix current and future: Epstein–Zin preferences

Here, we are making simplified assumption: additive for both direction:

$$U(C, C', N_S, N_S') = u(C) - v(N_S) + u(C') - v(N_S').$$
(1)

To see why additive can simplify analysis, recall the MRS in both intratemporal (w/i period) and intertemporal (b/w period) substitution:

$$MRS_{l,C} = -MRS_{N_S,C} = \frac{v'(N_S)}{u'(C)}, \text{and } MRS_{C,C'} = \frac{u'(C)}{u'(C')}.$$

Hui-Jun Chen (OSU) Lecture 14 May 6, 2022 5/13

Representative Consumer's Problem

$$\max_{C,C',N_S,N_S'} u(C) - v(N_S) + u(C') - v(N_S')$$
subject to
$$C + \frac{C'}{1+r} = wN_S + \pi - T + \frac{w'N_S' + \pi' - T'}{1+r}.$$
 (2)

- Hard to analyze in graph, :: 4 choices variables $\Rightarrow 4$ -dim problem!
- Yet, usual procedure in Calculus still works!
- lacktriangle Why? Because partial derivatives only looks the optimality in 1-dim
- Each FOC is optimal for 1-dim ⇒ solution satisfies ALL FOCs

Hui-Jun Chen (OSU) Lecture 14 May 6, 2022 6/13

Consumer's Optimality Conditions

■ Step 1: substitute *C* by budget constraint,

$$\max_{C',N_S,N_S'} u \left(wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r} \right) - v(N_S) + u(C') - v(N_S')$$

■ Step 2: find FOCs for C', N_S , and N'_S :

$$[C']: u'(C') - \frac{1}{1+r}u'(C) = 0 \Rightarrow u'(C') = \frac{1}{1+r}u'(C)$$

$$[N_S]: wu'(C) - v'(N_S) = 0 \Rightarrow wu'(C) = v'(N_S)$$

$$[N_S']: \frac{w'}{1+r}u'(C) - v'(N_S') = 0 \Rightarrow \frac{w'}{1+r}u'(C) = v'(N_S')$$

Consumer's Optimality Conditions (Cont.)

■ Step 3: Compute multiple MRSs:

$$[C']: MRS_{C,C'} = \frac{u'(C)}{u'(C')} = 1 + r$$

$$[N_S]: -MRS_{N_S,C} = MRS_{l,C} = \frac{v'(N_S)}{u'(C)} = w$$

$$[N'_S]: MRS_{l',C} = \frac{v'(N'_S)}{u'(C)} = \frac{w'}{1+r}$$

■ Step 4: Get C by putting C', N_S and N'_S back to budget constraint.

9/13

Knowledge Gain from Consumer's Problem

We have derived 4 optimality conditions for 4 choice variables:

$$\begin{split} [C']: \quad MRS_{C,C'} &= \frac{u'(C)}{u'(C')} = 1 + r \\ [N_S]: \quad -MRS_{N_S,C} &= MRS_{l,C} = \frac{v'(N_S)}{u'(C)} = w \\ [N_S']: \quad MRS_{l',C} &= \frac{v'(N_S')}{u'(C)} = \frac{w'}{1+r} \\ \text{budget constraint}: \quad C &= wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r} \end{split}$$

Recall that there are 11 variables, so still 7 variables remain. They are:

- 3 endogenous prices: w, w', r
- $\blacksquare \ 4$ endogenous quantities that shift lifetime wealth: π,π',T,T'

Need to know how consumer response to endogenous quantities!

10 / 13

Current Labor Supply and Current Wage

Figure 11.1 The Representative Consumer's Current Labor Supply Curve

Assumption N1: current labor supply ↑ in current wage

- Recall two effects of wage on labor:
 - income (I): $l \uparrow, N_S \downarrow$
 - substitution (S): $l \downarrow, N_S \uparrow$
- N1 suggests that substitution effect > income effect
- data: (I) and (S) cancel out in long-run, while RBC focus on short- and medium run!

Current Labor Supply and Real Interest Rate

Figure 11.2 Real Interest Rate \uparrow Shifts the Current Labor Supply Curve to the Right

Assumption N2: current labor supply \uparrow as real interest rate \uparrow

- can substitute intertemporally using both consumption and labor
- relative price of future leisure in terms of current leisure:

$$\frac{p(l)}{p(l')} = \frac{p(l)}{p(c)} \times \frac{p(c)}{p(c')} \times \frac{p(c')}{p(l')}$$
$$= w \times (1+r) \times \frac{1}{w'}$$

■ fix w and w', $r \uparrow$ makes l become more costly, so $N_S \uparrow$

12 / 13

Current Labor Supply and Wealth

Figure 11.3 Effects of an Increase in Lifetime Wealth

Assumption N3: current labor supply \downarrow as lifetime wealth \uparrow

 only pure income effect on normal goods (consumption & leisure), and thus labor decreases

i-Jun Chen (OSU) Lecture 14 May 6, 2022

Summary of Effect on Labor Supply

- Assumption N1: current labor supply ↑ in current wage
 - $\frac{dN_S}{dw} > 0$
- Assumption N2: current labor supply ↑ as real interest rate ↑
 - $\frac{dN_S}{dr} > 0$
- Assumption N3: current labor supply ↓ as lifetime wealth ↑
 - $\frac{dN_S}{dx} < 0$, where $x = \pi T$.

All statements are properties about **supply curve**, not equilibrium quantities!