Assignment-1

Q.1 Find the power set and cardinality of the given set $X = \{2, 4, 6\}$. Also find cardinality of power set.

Q.2 Consider two given fuzzy sets

$$A = \{(2, 1), (4, 0.3) (6, 0.5) (8, 0.2)\}$$

$$B = \{(2, 0.5), (4, 0.4) (6, 0.1) (8, 1)\}$$

Perform union, intersection, difference, and complement over fuzzy sets A and B.

Q.3 Given the two fuzzy sets:

$$A1 = \{(1,1), (1.5,0.75), (2,0.3), (2.5,0.15), (3,0)\}$$

$$A2 = \{(1,1), (1.5,0.6), (2,0.2), (2.5,0.1), (3,0)\}$$

Find the following:

a)
$$A1 \cup A2$$
 b) $A1 \cap A2$ c) $\overline{A1}$ d) $\overline{A2}$ e) $A1|A2$ f) $\overline{A1 \cup A2}$ g) $\overline{A1 \cap A2}$

h)
$$A1 \cap \overline{A1}$$
 i) $A1 \cup \overline{A1}$ j) $A2 \cap \overline{A2}$ k) $A2 \cup \overline{A1}$

Q. 4. It is necessary to compare two sensors based upon their detection levels and gain settings. The table of gain settings and sensor detection levels with a standard item being monitored providing typical membership values to represent the detection levels for each sensor is given in Table 1.

Gain Setting	Detection level of sensor 1	Detection level of sensor 2
0	0	0
10	0.2	0.35
20	0.35	0.25
30	0.65	0.8
40	0.85	0.95
50	1	1

Now given the universe of discourse $X = \{0, 10, 20, 30, 40, 50\}$ and the membership functions for the two sensors in discrete form as

$$D1 = \left\{ \frac{0}{0} + \frac{0.2}{10} + \frac{0.35}{20} + \frac{0.65}{30} + \frac{0.85}{40} + \frac{1}{50} \right\}$$

$$D2 = \left\{ \frac{0}{0} + \frac{0.35}{10} + \frac{0.25}{20} + \frac{0.8}{30} + \frac{0.95}{40} + \frac{1}{50} \right\}$$

Find the following membership Functions:

a)
$$\mu_{D1 \cup D2}(x)$$
 b) $\mu_{D1 \cap D2}(x)$ c) $\mu_{\overline{D1}}(x)$ d) $\mu_{\overline{D2}}(x)$ e) $\mu_{D_1 U \overline{D2}}$ f) $\mu_{D_1 \cap \overline{D2}}$

Q. 5 Consider two fuzzy sets

$$A = \left\{ \frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$$

$$B = \left\{ \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{1}{4} \right\}$$

Find the algebraic sum, algebraic product, bounded sum and bounded difference of the given fuzzy sets.

Q.6 Consider two membership functions as follows:

For fuzzy set A, $\mu_A(x) = \left| \frac{60-x}{8} \right| + 1$ and for fuzzy set B, $\mu_B(x) = \left| \frac{40-x}{8} \right| + 1$ Find the following:

- a) AUB
- b) $A \cap B$
- c) Ā
- d) \overline{B} e) \overline{AUB}
- f) $\overline{A \cap B}$

Q.7 The elements in two sets A and B are given as

$$A = \{2,4\}$$

$$B = \{a,b,c\}$$

Find the various Cartesian products of these two sets.

Q.8 Consider the following two fuzzy sets:

$$A = \left\{ \frac{0.3}{x_1} + \frac{0.7}{x_2} + \frac{1}{x_3} \right\}$$
 B = $\left\{ \frac{0.4}{Y_1} + \frac{0.9}{Y_2} \right\}$ Perform the Cartesian product over these given fuzzy sets.

Q.9 Two fuzzy relations are given by R= $\begin{bmatrix} 0.6 & 0.3 \\ 0.2 & 0.9 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 0.5 & 0.3 \\ 0.8 & 0.4 & 0.7 \end{bmatrix}$

R define the relation between x1, x2 and y1 and y2 and S define the relation between y1, y2 and z1, z2, z3.

Obtain fuzzy relation T as a composition between the fuzzy relations R and S as:

- 1) Max-min composition
- 2) Max-product composition

Q.10 Using the inference approach, find the membership values for the triangular shapes I, R, E, IR, and T for a triangle with angle 45° , 55° and 80° .