

a la Universitat

Elegiu 5 dels 9 problemes proposats per respondre. Cada problema té un màxim de dos punts. Justificau les respostes, si escau, amb els càlculs i la menció a les lleis aplicades.

- 1) Un asteroide de 790 kg es dirigeix en línia recta cap al centre d'un planeta sense atmosfera de 5,4×10²² kg i 1700 km de radi. La velocitat de l'asteroide és de 6,5 km/s just abans d'impactar sobre la superfície del planeta. Calculau:
 - a) L'energia mecànica total de l'asteroide en aquest moment. (0,5 punts)
 - **b**) La velocitat de l'asteroide quan era a 15000 km del centre del planeta. (0,75 punts)
 - c) La velocitat mínima que hauria d'haver adquirit una nau en aturar els propulsors a 3000 km del centre del planeta per escapar de l'atracció gravitatòria del planeta. Justificau el càlcul. (0,75 punts)
- 2) Calculau el camp total en el punt P a causa de les tres càrregues puntuals de la figura adjunta. Com a resultat, presentau:
 - a) L'esquema dels vectors que representen els camps individuals i el total. (0,5 punts)
 - **b**) El mòdul del camp total. (0,75 punts)
 - c) L'angle en graus que forma el camp total amb el costat inferior del rectangle. (0,5 punts)
 - d) El mòdul de la força elèctrica total sobre un protó en el punt P. (0,25 punts)

- a) El potencial elèctric en el punt mitjà entre les càrregues. (0,4 punts)
- b) El camp elèctric en el punt entre les càrregues on el potencial és nul. (0,8 punts)
- c) El treball que fa una força externa per allunyar la càrrega negativa de 5 mm a 8 mm de la càrrega positiva. Esmentau la relació amb el treball fet pel camp. (0,8 punts)
- 4) Les crestes consecutives d'una ona harmònica a la superfície de l'aigua d'un canal estan separades 40 cm i es propaguen a 5 cm/s. Un punt de la superfície es mou 10 cm entre el punt més alt i el més baix.
 - a) Escriviu l'equació general d'una ona harmònica que es propaga cap a l'esquerra i l'equació particular de l'ona a la superfície de l'aigua descrita a l'enunciat amb la pertorbació nul·la a l'origen de coordenades a t = 0. (0,75 punts).

Calculau el temps mínim que passa des que un punt es mou entre:

- **b**) El nivell més alt de l'ona i el més baix. (0,25 punts)
- c) El nivell zero de l'ona i el nivell 1,5 cm. (1 punt)

Model 3

a la Universitat

5) Al costat de dos fils rectes, infinits i paral·lels hi ha una espira circular. La figura mostra el sentit dels corrents en els fils rectes i la posició i el radi de l'espira. Calculau:

- b) La intensitat l₂ que ha de passar per l'espira circular perquè el camp magnètic total en el centre C sigui nul quan l₁ = 1,6 A. Indicau i justificau el sentit d'aquest corrent. (1 punt)
- 6) Una espira circular de 15 cm de radi està dins un camp magnètic perpendicular al pla de l'espira. La intensitat del camp a l'interval de 0 a 2 s val

$$B(t) = 6t - 3t^2 \text{ mT}.$$

Una altra espira gira a velocitat angular ω dins un camp magnètic uniforme i el flux de camp magnètic a través de l'espira és

$$\phi(t) = 30 \cos(\omega t - 2.45 \text{ rad}) \text{ mWb}.$$

- a) Per a la primera espira, determinau l'expressió de la força electromotriu en funció del temps i indicau el nom de la llei usada. (0,5 punts)
- **b**) Calculau en quin instant de l'interval [0, 2 s] la força electromotriu anterior és nul·la, en quin instant és màxima i què val el valor màxim. (0,9 punts)
- c) Per a la segona espira, calculau la velocitat angular necessària perquè la força electromotriu màxima sigui de 0,3 V. (0,6 punts)

a la Universitat

- 7) El raig d'un làser es dirigeix seguint una línia L cap a un bloc de plàstic transparent de secció rectangular i índex de refracció $n_v = 1,43$. Usau l'escala marcada en graus per determinar l'angle d'incidència del raig sobre el bloc.
 - a) Descriviu o dibuixau de manera qualitativament correcta la trajectòria del raig a través del bloc i l'aire de la part superior. El raig a la sortida del bloc, travessa la línia L? Justificau la resposta breument. (0,8 punts)

- **b**) Calculau el temps que tarda el raig anterior a travessar el bloc de plàstic. (0,8 punts)
- c) Comentau si hi pot haver reflexió total en una refracció d'aire a plàstic d'índex de refracció 1,43, d'aquest plàstic a aire o en els dos casos. Donau l'angle límit quan hi hagi reflexió total. (0,4 punts)
- 8) a) Calculau la distància focal d'una lent prima si la imatge d'un objecte de 2 mm d'alçària creada per la lent és virtual, té 8 mm d'alçària i es forma a 18 cm de la lent. Escriviu explícitament si la lent és convergent o divergent. (1,2 punts)
 - **b**) Un objecte de 3 cm d'alçària està situat amb el peu sobre l'eix òptic a 7 cm d'una lent prima de +35 mm de distància focal. Determinau la imatge de l'objecte amb el traçat dels tres raigs principals. (0,8 punts)
- 9) L'efecte fotoelèctric no es va poder explicar amb la física clàssica del segle XIX.
 - a) Altres fets experimentals tampoc no es podien explicar amb la física clàssica. Escriviu els noms de dos d'aquests altres fets. (0,4 punts)
 - **b**) Una llum monocromàtica de 537 nm il·lumina una placa d'alumini, una de silici i una de sodi. Determinau quines d'aquestes plaques emeten electrons per efecte fotoelèctric. (0,7 punts)
 - c) Calculau en cada cas la velocitat màxima dels electrons. (0,6 punts)
 - **d**) Quin és el canvi de la velocitat màxima dels electrons emesos quan la intensitat de la llum es quadruplica? Justificau la resposta. (0,3 punts)

Solucions

a la Universitat

1a	1,501 10 ¹⁰ J
1b	6,20 km/s
1c	1,55 km/s
2a	q_1 E_1 q_2 E_2 q_2
2b	3,86 MN/C
2c	19,6°
2d	6,18 10 ⁻¹³ N
3a	−12,0 kV
3b	9,0 MN/C
3c	48,6 μJ
4a	$y(x, t) = A \cos(kx + \omega t + \delta) = A \sin(kx + \omega t + \varepsilon)$ Si x es dona en metres i t en segons, l'equació de l'ona és $y(x, t) = 5 \operatorname{cm} \sin\left(\frac{\pi t}{4} + 5\pi x\right)$
4b	4 s (mig període)
4c	0,388 s
5a	1,20 A. El camp magnètic surt del pla
5b	0,796 A en sentit horari
6a	Llei de Faraday-Lenz. fem = 135 π (t – 1)
6b	fem(1 s) = 0, $fem maxima = fem(2 s) = 0,424 mV$
6c	10,0 rad/s
7a	El raig s'acosta a la vertical quan entra dins el plàstic i surt a l'aire paral·lel a L
7b	0,305 ns
7c	Hi ha reflexió total quan un raig arriba pel plàstic a l'aire amb $q_i > 44,4^\circ$
8a	+60 mm. La lent és convergent
8b	Traçat de raigs principals
9a	Se n'han d'esmentar dos dels següents: radiació del cos negre, discontinuïtat dels
	espectres atòmics, l'experiment de Michelson i Morley
9b	Emet electrons la placa de sodi, perquè h c / $\lambda > W_{Na}$
9c	106 km/s
9d	La intensitat de la llum afecta el nombre d'electrons emesos però no la velocitat

Convocatòria 2022

Proves d'accés a la Universitat

$G = 6,674 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-1}$
$K = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
$\mu_0 = 4 \pi 10^{-7} \text{ N A}^{-2}$
$e = -1.6 \times 10^{-19} \text{ C}$
$m_e = 9.1 \times 10^{-31} \text{ kg}$
$M_T = 5,9736 \times 10^{24} \text{ kg}$
$R_T = 6370 \text{ km}$
1 ua = 149 597 871 km

$$\mathbf{F} = -G \frac{m_1 m_2}{r^2} \,\hat{\mathbf{r}}$$

$$E_p = -G \frac{M m}{r}$$

$$E_c = \frac{1}{2} m v^2$$

$$B_{=} = \mu_0 \, n \, I$$

$$\mathbf{F} = q \, \mathbf{v} \times \mathbf{B}$$

$$a_c = \frac{v^2}{R}$$

$$\frac{F}{L} = \mu_0 \, \frac{I_1 \, I_2}{2 \, \pi \, d}$$

$$fem = -\frac{d\phi(t)}{dt}$$

 $B_{\rm I} = \frac{\mu_{\rm O} I}{2 \pi r} \quad B_{\odot} = \frac{\mu_{\rm O} I}{2 R}$

$$y(x, t) = A \sin(kx \pm \omega t + \delta)$$

$$P(r, t) = \frac{A_0}{r} \sin(kr - \omega t)$$

$$k = \frac{2\pi}{\lambda} \qquad \omega = \frac{2\pi}{T}$$

$$f = \frac{1}{T} \qquad v = \frac{\lambda}{T} = \frac{\omega}{k}$$

$$I(dB) = 10 \log \frac{I}{10^{-12} \text{ W m}^{-2}}$$

$$I_1 4 \pi r_1^2 = I_2 4 \pi r_2^2$$

$$Criteri DIN$$

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

$$M_T = \frac{y'}{y} = \frac{s'}{s}$$

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$
Criteri DIN
$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

$$M_T = \frac{y'}{y} = \frac{s'}{s}$$

 $\mathbf{F} = K \, \frac{q_1 \, q_2}{r^2} \, \hat{\mathbf{r}}$

 $V = K \frac{q}{r}$

$$E = hf f = \frac{c}{\lambda}$$

$$h = 6,626 \times 10^{-34} \text{ J s}$$

$$\lambda_{\text{rebuda}} = \lambda_{\text{emesa}} \sqrt{(1+\beta)/(1-\beta)}$$

$$\beta = v/c \oplus \cdots \oplus \rightarrow \oplus v > 0$$

$$\lambda_m T = 2897 \, \mu\text{m K}$$

$$A(t) = A_0 \exp(-\lambda t)$$

$$\lambda = \frac{\ln(2)}{T_{1/2}}$$

Nom	Unitats
Coulomb (C)	A s
Joule (J)	N m
Newton (N)	kg m s ⁻²
Tesla (T)	kg s ⁻² A ⁻¹
Volt (V)	$J A^{-1} s^{-1}$
Weber (Wb)	T m ²

W (eV)
1,94
2,13
2,28
3,59
4,08
4,70
4,73
5,10