CE394M: Linear Elasticity

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

March 18, 2019

Overview

Linear Elasticity

2 Project on FEA of an excavation

Slope stability

Isotropic linear elastic stress-strain relations

The linear relationship between the stress and strain tensor is a linear one. The stress component is a linear combination of the strain tensor:

$$\sigma_{ij} = C_{ij11}\varepsilon_{11} + C_{ij12}\varepsilon_{12} + C_{ij13}\varepsilon_{13} + C_{ij21}\varepsilon_{21} + C_{ij22}\varepsilon_{22} + C_{ij23}\varepsilon_{23} + C_{ij31}\varepsilon_{31} + C_{ij32}\varepsilon_{32} + C_{ij33}\varepsilon_{33}$$

The most general form for *linear* stress-strain relations for a *Cauchy elastic* material is given by:

Where B_{ij} is the components of initial stress tensor corresponding to the initial strain free (when all strain components $\varepsilon_{kl} = 0$). C_{ijkl} is the tensor of material *elastic constants*.

If it is assumed that the initial strain free state corresponds to an *initial* stress free state, that is $B_{ij} = 0$, the equations reduces to:

Observation on linear elasticity

Stress-strain relationship

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{31} \end{bmatrix}$$

 C_{ijkl} is a tensor of material *elastic constants*. However, the above [**C**] is not a tensor anymore. So we can not rotate the matrix to another frame of reference. This relationship is useful for isotropic materials, where **C** is independent of the frame of reference.

The inverse of the relationship (Compliance matrix):

Isotropic Linear Elastic Stress-strain relationship

The isotropic tensor C_{ijkl} :

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) + \alpha (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk})$$

Where λ, μ , and α are scalar constants. Since C_{ijkl} must satisfy symmetry, $\alpha = 0$.

So the stress:

Hence for an isotropic linear elastic material, there are only two independent material constants, λ and μ , which are called *Lame's constants*.

Hooke's law

Empirical observation:

Where *E* is defined as the *Young's modulus*. The lateral strains are defined as:

Using superposition for principal stresses:

$$\varepsilon_{11} = (1/E) [\sigma_{11} - \nu \sigma_{22} - \nu \sigma_{33}]$$

$$\varepsilon_{22} = (1/E) [-\nu \sigma_{11} + \sigma_{22} - \nu \sigma_{33}]$$

$$\varepsilon_{33} = (1/E) [-\nu \sigma_{11} - \nu \sigma_{22} + \sigma_{33}]$$

Hooke's law

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \end{cases} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu \\ -\nu & 1 & -\nu \\ -\nu & -\nu & 1 \end{bmatrix} \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \end{cases}$$

It is possible to invert the matrix to obtain the generalized Hooke's law:

$$\begin{cases}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{cases} = \alpha \begin{bmatrix}
(1-\mu) & \nu & \nu & 0 & 0 & 0 \\
(1-\nu) & \nu & 0 & 0 & 0 \\
& & (1-\nu) & 0 & 0 & 0 \\
& & & \frac{(1-2\nu)}{2} & 0 & 0 \\
& & & & \frac{(1-2\nu)}{2} & 0 \\
& & & & \frac{(1-2\nu)}{2} & 0
\end{cases}$$

Where $\alpha = E/((1 + \mu)(1 - 2\mu))$. Similarly, we can obtain the inverse matrix.

Hooke's law

The matrices [C] and [D] contains two indepdent variables E and μ , where E>0 and $-1 \le \mu \le 0.5$. The matrix can also be defined in terms of Lame's constants.

$$\begin{cases} \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} & \text{Lame's modulus (wave propagation)} \\ \mu = G = \frac{E}{2(1+\nu)} & \text{Shear modulus (shear behavior)} \\ K = \frac{E}{3(1-2\nu)} & \text{Bulk modulus (volumetric behavior)} \end{cases}$$

Behavior of isotropic linear elastic material in simple tests: (a) hydrostatic compression test ($\sigma_{11} = \sigma_{22} = \sigma_{33} = p$) and (b) simple tension test (Chen 1994)

Hydrostatic compression test The non-zero components of stress: The *Bulk modulus*, K, is defined as the ratio between the *hydrostatic pressure* p nd the corresponding volume change $\delta \varepsilon_{v} = \varepsilon_{kk}$.

Simple tension test The only non-zero components of stress: The *Young's modulus*, E, and *Poisson's ratio*, ν as.

Behavior of isotropic linear elastic material in simple tests: (c) pure shear test, and (d) uniaxial strain test (Chen 1994)

Simple shear test

The non-zero components of stress:

The *Shear modulus, G or* μ , is defined as:

Uniaxial strain test The test is carried out by applying a uniaxial stress component σ_{11} in the axial direction of a cylindrical sample, whose lateral surface is *restrained* against lateral movement (Oedometer test). Axial strain ε_{11} is the only nonvanishing component. The *constrained modulus* M or as PLAXIS calls it E_{oed} is defined as the ratio between σ_{11} and ε_{11} .

Plane stress v Plane strain

For a frame with an axis perpendicular to the plane of interest, x_3 or z: **Plane stress**

. The strain in z is written as:

Plane strain

.

The stress in z is written as:

Elastic solutions

Pore-pressure analysis in geotechnical engineering

Drained analysis - Effective stress

- Need to assign initial effective stresses before the analysis.
- Quantification of the contraction of the contrac
- If plasticity models are used, need to update the effective stresses at each increment:

Very common.

Undrained analysis - Total stress

- Excess pore pressure cannot be calculated.
- Effective stress state of the soil cannot be examined.
- Elastic model is commonly used for deformation

- Von-Mises model is used for modeling undrained shear strength of clays. (C_u or s_u and undrained friction $\phi_u = 0$)
- Can assign different stiffness and strength at different depths explicity by assigning different model parameters at different depths.

Undrained analysis - Effective vs Total stress

Undrained analysis - Effective stress

- Need to assign initial effective stresses before the analysis.
- Can use any effective stress model, so the stiffness and strength variation with depth can be modeled implicitly with the one set of model parameters.
- The applied load is carried by the soil skeleton and pore water.
- The contribution of the bulk modulus of water needs to be added:

• Effective stress increment can be computed by:

Need to update the effective stresses at each time step.

Effective stress approach or undrained (A)

- Effective stiffness and effective strength parameters are used.
- Pore pressures are generated, but may be inaccurate depending on the model.
- Undrained shear strength is not an input parameter but an outcome of the constitutive model. The resulting shear strength must be checked against known data!
- Consolidation analysis can be performed after the undrained calculation, which affects the shear strength!

Equivalent effective stress approach or undrained (B)

- Effective stiffness parameters and undrained strength parameters are used.
- Pore pressures are generated, but may be hightly inaccurate.
- Undrained shear strength is an input parameter.
- Consolidation analysis should not be performed after the undrained calculation, s_u must be updated, if consolidation is performed anyway!

Methods of undrained analysis for Mohr-Coulomb clay

undrained analysis	material type	deformation parameters	strength parameters	initial con- ditions
Total stress	Non-porous / drained	E_u, ν_u	$c_u, \phi_u = 0$	$K_{0,u}$
Effective stress	Undrained (triaxial parameters)	E', ν'	c', ϕ'	<i>K</i> ₀
Equivalent Effective stress	Undrained (strength profile)	E', u'	c', ϕ'	<i>K</i> ₀

Consolidation analysis - Effective stress

- Use Biot's 3D consolidation theory
- Pore pressure and displacement are computed at each time step.
- Need to use effective stress model
- Need permeability
- Lots of computational time
- More realistic. Undrained, partially drained, drained depending on the loading condition, drainage condition, permeability of soil.
- Stress path followed is correct, which should provide a good strain estimate when plasticity models are used.

Total stress evaluating varying K_0

Depth	σ_{v}	u	σ _v '	$k_0 \sigma_v' = \sigma_h'$	σ_{h}	K _o	K ₀ Layer
0	82.5	0	82.5	49.5	49.5	0.6	
6.5	202.75	65	137.75	82.65	147.65	0.728	0.664
11.5	295.25	115	180.25	108.15	223.15	0.756	0.742
16.5	387.75	165	222.75	133.65	298.65	0.77	0.763

Undrained analysis using effective stress method

Effective stress Method A

- Define c' and ϕ' in terms of the real effective stress parameters, assuming zero dilation.
- ν' is the effective Poisson ratio
- E and K₀ should be 'effective stress' based.

Mohr-Coulomb failure criteria: $\tau = c' + \sigma' \tan \phi'$

$$s_u = c' \cos \phi' + (1 + K_0)/2 \cdot \sin \phi' \cdot \sigma'_{v0}.$$

Undrained analysis using equivalent effective stress method

Effective stress Method B

- Define c' and ϕ' in terms of the "equivalent" effective stress parameters, with zero dilation. Parameters are defined based on the strength profile with depth.
- ν' is the effective Poisson ratio
- E and K₀ should be 'effective stress' based.

Mohr-Coulomb failure criteria: $\tau = c' + \sigma' \tan \phi'$

$$s_u = c' \cos \phi' + (1 + K_0)/2 \cdot \sin \phi' \cdot \sigma'_{v0}.$$

2014 Oso landslide

Shear failure plane

At failure, shear stress along the failure surface (τ) reaches the shear strength (τ_f) .

Factor of Safety =

Dry slope (total stress = effective stress)

Saturated slope (total stress = effective stress + pwp)

Drained conditions - need to compute the steady state pore pressure field and then evaluate "effective stress-based" shear strength to find the overall stability (based on total stress equilibrium).

Saturated slope (total stress = effective stress + PWP)

Undrained conditions - (total stress approach) – Use "total-stress based" shear strength (s_u) to find the overall stability (based on total stress equilibrium).

Saturated slope (total stress = effective stress + PWP)

Undrained conditions - (Effective stress approach-not common) - need to compute the pore pressure (including excess pore pressure) field and then evaluate "effective stress -based" shear strength to find the overall stability (based on total stress equilibrium).

Infinite slopes

$$\begin{array}{ll} u &= \gamma_w z_w \cos^2\!\beta \\ \sigma &= \gamma z \cos^2\!\beta \\ \sigma' &= (\gamma z - \gamma_w z_w) \cos^2\!\beta \\ \tau &= \gamma z \cos\!\beta \sin\!\beta \end{array}$$

$$\tan \phi_{\text{mob}} = \frac{\tau}{\sigma'} = \frac{\tan \beta}{\left(1 - \frac{\gamma_{\text{w}} Z_{\text{w}}}{\gamma z}\right)}$$

Soil fails when (dry): Soil fails when (submerged):

Undrained infinite slope (total stress approach)

But also the shear stress:

Infinite slope: Summary

$$\begin{split} u &= \gamma_w z_w \cos^2\beta \\ \sigma &= \gamma_z \cos^2\beta \\ \sigma' &= (\gamma z - \gamma_w z_w) \cos^2\beta \\ \tau &= \gamma z \cos\beta \sin\beta \end{split}$$

$$tan \varphi_{mob} = \frac{\tau}{\sigma'} = \frac{tan\beta}{\left(1 - \frac{\gamma_w z_w}{z}\right)^2}$$

- Factor of Safety = resistance / driving
- ② Dry FoS = $tan(\phi_{mob})/tan(\beta)$
- ullet Submerged FoS $= an(\phi_{
 m mob})/ an(eta)$
- Undrained FoS = $2s_u/\gamma z \sin(2\beta)$
- Steady state seepage FoS = $(1 \gamma_w/\gamma)\tan(\phi_{\rm mob})/\tan(\beta)$ where the water table is located at the slope surface