Потенциальные векторные поля

Определение. Интеграл векторного поля V не зависит от пути в области O:

 $\forall A,B\in O \ \ \forall \gamma_1,\gamma_2$ — кусочно-гладкие из A в B:

$$\int_{\gamma_1} \sum v_i dx_i = \int_{\gamma_2} \sum v_i dx_i$$

Теорема 1 (характеризация потенциальных векторных полей в терминах интегралов). V — векторное поле в области O. Тогда эквивалентны следующие:

- 1. V потенциально
- 2. $\int_{\gamma} \sum v_i dx_i$ не зависит от пути в O
- 3. $\forall \gamma$ кусочно-гладкий, замкнутый в $O\int_{\gamma} \sum v_i dx_i = 0$

Доказательство.

1⇒2 Обобщенная формула Ньютона-Лейбница

 $2\Rightarrow 3\ \gamma$ — петля: [a,b] o O. $\gamma(a) = \gamma(b) = A$

Рассмотрим постоянный путь $\tilde{\gamma}:[a,b]\to 0, t\mapsto A$. По свойству 2: $\int_{\gamma}=\int_{\tilde{\gamma}}\langle V,\gamma'\rangle dt=0$

 $3{\Rightarrow}2~\gamma_1,\gamma_2$ — пути с общим началом и концом. Тогда $\gamma:=\gamma_2^-\gamma_1$ — петля. γ — кусочно гладкий $\Rightarrow 0=\int_{\gamma}=\int_{\gamma_1}+\int_{\gamma_2^-}=\int_{\gamma_1}-\int_{\gamma_2}$

 $2\Rightarrow 1$ Фиксируем $A \in O$.

 $\forall x\in O$ выберем кусочно-гладкий путь γ_x из A в x. Проверим, что $f(x):=\int_{\gamma_x}\sum v_idx_i$ — потенциал.

Достаточно проверить, что $\dfrac{\partial f}{\partial x_1} = V_1$ в O.

Фиксируем $x \in O$. $\gamma_0(t) = x + the_1, t \in [0,1], \gamma_0'(t) = (h,0\dots 0) = he_1$

$$f(x + he_1) - f(x) = \int_{\gamma_{x+he_1}} - \int_{\gamma_x}$$

$$= \int_{\gamma_0 \gamma_x} - \int_{\gamma_x}$$

$$= \int_{\gamma_0}$$

$$= \int_0^1 V_1(\gamma_0(t))hdt$$

$$= hV_1(x_1 + ch_1, x_2 \dots x_n)$$

Таким образом:

$$\frac{f(x+he_1)-f(x)}{h} \xrightarrow{h\to 0} V_1(x_1+ch_1,x_2\dots x_n) \xrightarrow{h\to 0} V_1(x)$$

Локально-потенциальные векторные поля

Пемма 1. V — гладкое, потенциальное в O

Тогда

$$\forall x \in O \ \forall k, j \ \frac{\partial V_k}{\partial x_j}(x) = \frac{\partial V_j}{\partial x_k}(x) \tag{1}$$

M3137y2019 2.11.2020

Доказательство. Непрерывные производные не изменяются при порядке дифференцирования:

$$\frac{\partial V_k}{\partial x_j}(x) = \frac{\partial^2 f}{\partial x_k \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_k}(x) = \frac{\partial V_j}{\partial x_k}(x)$$

Упражнение. Даны 4 векторных поля в \mathbb{R}^2 : (x,y),(x,-y),(y,x),(-y,x). Вычеркните лишнее.

Ответ:
$$(-y,x)$$
, т.к. $\frac{\partial V_1}{\partial y}=-1 \neq \frac{\partial V_2}{\partial x}=1$

Теорема 2 (лемма Пуанкаре).

- $O \subset \mathbb{R}^m$ выпуклая область
- $V:O \to \mathbb{R}^m$ векторное поле
- V удовлетворяет 1, в т.ч. V гладкое.

Тогда V — потенциальное.

Доказательство. Фиксируем $A \in O$

$$\forall x \in O \ \gamma_x(t) := A + t(x - A), t \in [0, 1]$$
$$\gamma_x'(t) = x - A$$
$$f(x) := \int_{\gamma_x} \sum_{x \in A} v_i dx_i = \int_0^1 \sum_{k=1}^m V_k (A + t(x - A))(x_k - A_k) dt$$

Проверим, что f — потенциал.

$$\frac{\partial f}{\partial x_{j}}(x) = \text{правило Лейбница}$$

$$= \int_{0}^{1} V_{j}(A + t(x - A)) + \sum_{k=1}^{m} \frac{\partial V_{k}}{\partial x_{j}}(\dots)t(x_{k} - A_{k})dt$$

$$= \int_{0}^{1} V_{j}(A + t(x - A)) + \sum_{k=1}^{m} \frac{\partial V_{j}}{\partial x_{k}}(\dots)t(x_{k} - A_{k})dt$$

$$= \int_{0}^{1} (tV_{j}(A + t(x - A)))'_{t}dt$$

$$= tV_{j}(A + t(x - A))\Big|_{t=0}^{t=1}$$

$$= V_{j}(x)$$
(2)

Примечание. Это же доказательство проходит для "звёздных" областей — областей O, таких что $\exists A \in O$: любая точка O видна из A.

Определение. V — локально потенциальное векторное поле в O, если $\forall x \in O \ \exists U(x): V$ — потенциально в U(x)

Следствие 1 (лемма Пуанкаре).

- $O \subset \mathbb{R}^m$ любая область
- $V: O \to \mathbb{R}^m$ векторное поле
- V удовлетворяет 1.

Тогда V — локально потенциально.

Равномерная сходимость функциональных рядов (продолжение)

Теорема 3' (о дифференцировании ряда по параметру).

- $u_n \in C^1\langle a, b \rangle$
- $\sum u_n(x) = S(x)$ (поточечная сходимость)
- $\sum u'_n(x) = \varphi(x)$ (равномерная сходимость)

Тогда:

- 1. $S(x) \in C^1\langle a, b \rangle$
- 2. $S' = \varphi$ на $\langle a, b \rangle$

To есть
$$(\sum u_n(x))' = \sum u_n'(x)$$

Доказательство. Следует из теоремы 3.

$$S_n \to S$$
 поточечно, $S'_n \rightrightarrows \varphi$

Пример. Формула Вейерштрасса:

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}, x > 0$$

 γ — постоянная Эйлера.

$$-\ln\Gamma(x) = \ln x + \gamma x + \sum_{k=1}^{\infty} \underbrace{\left(\ln\left(1 + \frac{x}{k}\right) - \frac{x}{k}\right)}_{u_k(x)}$$

Зафиксируем x_0 .

$$u'_k(x) = \frac{1}{1 + \frac{x}{k}} \frac{1}{k} - \frac{1}{k} = \frac{1}{x+k} - \frac{1}{k} = \frac{-x}{(x+k)k}$$

Пусть $M > x_0$. Тогда

$$\left| \frac{-x}{(x+k)k} \right| \le \frac{M}{k^2}$$

при $x \in (0, M)$.

Тогда $\sum \frac{-x}{(x+k)k}$ равномерно сходится на (0,M), значит $\ln \Gamma(x) \in C^1(0,M)$, $\frac{-x}{(x+k)k}$ — непр. $\Rightarrow \sum \frac{-x}{(x+k)k}$ — непр. $\Rightarrow \ln \Gamma(x) \in C^1(0,+\infty) \Rightarrow \Gamma(x) \in C^1(0,+\infty)$

 Π римечание. Фактически, теорема 3' устанавливает, что $\sum u_n'(x)$ — непр.

Примечание.

$$-\frac{\Gamma'(x)}{\Gamma(x)} = \frac{1}{x} + \gamma - \sum_{k=1}^{+\infty} \frac{x}{(x+k)k}$$
$$\Gamma'(x) = -\Gamma(x) \left(\frac{1}{x} + \gamma - \sum_{k=1}^{+\infty} \frac{x}{(x+k)k} \right)$$

Изучив равномерную сходимость $\left(\frac{x}{(x+k)k}\right)'$, получаем, что $\Gamma\in C^2(0,+\infty)$ и т.д. \Rightarrow $\Gamma\in C^\infty(0,+\infty)$

Теорема 4' (о почленном предельном переходе в суммах).

- $u_n: E \subset X \to \mathbb{R}$
- X метрическое пространство
- x_0 предельная точка E
- $\forall n \; \exists$ конечный $\lim_{x \to x_0} u_n(x) = a_n$
- $\sum u_n(x)$ равномерно сходится на E.

Тогда:

1. $\sum a_n - \text{сходится}$

2.
$$\sum a_n = \lim_{x \to x_0} \sum_{n=1}^{+\infty} u_n(x)$$

M3137y2019

$$\lim_{x \to x_0} \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to x_0} u_n(x)$$

Доказательство.

1. $? \sum a_n - \text{сходится}$

$$S_n(x) = \sum_{k=0}^n u_k(x), S_n^a = \sum_{k=1}^n a_k$$

Проверим, что S_n^a — фундаментальная:

$$|S_{n+p}^a - S_n^a| \le |S_{n+p}^a - S_{n+p}(x)| + |S_{n+p}(x) - S_n(x)| + |S_n(x) - S_n^a|$$

Из равномерной сходимости $\sum u_n(x)$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \ |S_{n+p} - S_n(x)| < \frac{\varepsilon}{3}$$

(Это критерий Больцано-Коши для равномерной сходимости)

Зададим ε по N, выберем n,n+p и возьмём x близко к $x_0:|S_{n+p}^a-S_{n+p}(x)|<\frac{\varepsilon}{3}$ $|S_n^a-S_n(x)|<\frac{\varepsilon}{3}$

Тогда выполнено 1, т.е. $|S_{n+p}-S_n^a|<rac{arepsilon}{3}+rac{arepsilon}{3}+rac{arepsilon}{3}<arepsilon$

$$2. \sum a_n \stackrel{?}{=} \lim_{x \to x_0} \sum u_n(x)$$

Сведём к теореме Стокса-Зайдля.

$$ilde{u}_n(x)=egin{cases} u_n(x), & x\in E\setminus\{x_0\}\ a_n, & x=x_0 \end{cases}$$
 — задано на $E\cup\{x_0\}$, непрерывно в $x_0.$

 $\sum \tilde{u}_n(x)$ — равномерно сходится на $E \cup \{x_0\} \Rightarrow$ сумма ряда непрерывна в x_0

$$\lim_{x \to x_0} \sum u_n(x) = \lim_{x \to x_0} \sum \tilde{u}_n(x) = \sum \tilde{u}_n(x_0) = \sum a_n$$

 $\sum \tilde{u}_n(x)$ — равномерно сходится, т.к.:

$$\sup_{x} \left| \sum_{k=n}^{+\infty} \tilde{u}_k(x) \right| \leq \underbrace{\sup_{x \in E \setminus \{x_0\}} \left| \sum_{k=n}^{+\infty} u_k(x) \right|}_{\to 0} + \underbrace{\left| \sum_{k=n}^{+\infty} a_k \right|}_{\to 0}$$

Примечание. Теорема 4' верна для случая $u_n: E\subset X\to Y$, где Y — полное нормированное пространство.

Теорема 4 (о перестановке двух предельных переходов).

- $f_n: E \subset X \to \mathbb{R}$
- x_0 предельная точка E

•
$$f_n \xrightarrow[n \to +\infty]{E} S(x)$$

•
$$f_n(x) \xrightarrow[x \to x_0]{} A_n$$

Тогда:

1.
$$\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$$

2.
$$S(x) \xrightarrow[x \to x_0]{} A$$

То есть пунктирные преобразования верны:

$$\begin{array}{ccc}
f_n & \xrightarrow{n \to +\infty} & S(x) \\
\downarrow^{x \to x_0} & & \downarrow^{x \to x_0} \\
A_n & \xrightarrow[n \to +\infty]{} & A
\end{array}$$

Доказательство. $u_1 = f_1, \dots u_k = f_k - f_{k-1} \dots$

$$a_1 = A_1, \dots a_k = A_k - A_{k-1}$$

Тогда
$$f_n = u_1 + u_2 + \ldots + u_n$$
, $A_n = a_1 + a_2 + \ldots + a_n$

В эти обозначениях $\sum u_k(x)$ равномерно сходится к сумме S(x).

$$u_k(x) \xrightarrow[x \to x_0]{} a_k$$

Тогда по т. 4' $\sum_{k=1}^n a_k = A_n$ имеет конечный предел при $n \to +\infty$.

$$\lim_{x \to x_0} \sum u_k(x) = \lim_{x \to x_0} S(x) = \sum a_k = A$$

Примечание. Здесь можно было бы вместо n рассматривать "непрерывный параметр" t.

$$f_n(x) \leftrightarrow f(x,t)$$

M3137y2019

$$n \to +\infty \leftrightarrow t \to t_0$$

$$f_n \underset{E}{\Longrightarrow} S \leftrightarrow f(x,t) \xrightarrow{t \to t_0} S(x)$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t : 0 < |t - t_0| < \delta \ \forall x \in E \ |f(x,t) - S(x)| < \varepsilon$$