Wikify! Linking Documents to Encyclopedic Knowledge

Introducción

- Wikipedia se ha convertido en la fuente más grande de conocimiento enciclopédico (+5M artículos!)
- Extenso vocabulario

- Se puede usar como corpus para extracción de keywords y word sense disambiguation
- Nos enfocaremos en estudiar un sistema que automatice la tarea de text wikification

Introducción

Cada artículo en Wikipedia posee un id de referencia

Los hyperlinks dentro de Wikipedia son creados usando este id

Ejemplo:

"Henry Barnard, American educationalist, was born in Hartford, Connecticut"

"Henry Barnard, [[United States|American]] [[educationalist]], was born in [[Hartford, Connecticut]]"

Arquitectura Del Sistema

Keyword Extraction

Extracción:

- Extraer todas las keywords sin el id: [[United States American]], [[educationalist]]
- Borrar las que aparecen menos de 5 veces
- Recolectar hasta 3-gramas
- Descartar números y nonwords (i, me, my, myself, we, our ...)

Ranking:

• $P(\text{keyword} \mid W) \approx \text{count}(W_{\text{kev}}) / \text{count}(W)$

Keyword Extraction

Evaluación:

- Cómo seleccionar la cantidad adecuada de keywords?
 - Calcular el radio promedio entre el número de keywords por artículo y la cantidad de palabras en este = 4%
- Entrenar y evaluar: Separar aleatoriamente el corpus en train y test
 - De train solo usar artículos cuyo radio de keywords esté entre 3% y 5%

	Train: 1,5M artículos Test: 85 artículos Vocabulario: 1,9M palabras	Train: 4M artículos Test: 300K artículos Vocabulario: 2,2M palabras
Precision	53.3%	62.92%
Recall	55.90%	58.11%
F-measure	54.63%	60.42%

Word Sense Disambiguation

In 1834, Sumner was admitted to the [[bar (law)|bar]] at the age of twenty-three, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning approx. 180 degrees every [[bar (music)|bar]].

Vehicles of this type may contain expensive audio players, televisions, video players, and [[bar (counter)|bar]]s, often with refrigerators.

Jenga is a popular beer in the [[bar (establishment)|bar]]s of Thailand.

This is a disturbance on the water surface of a river or estuary, often cause by the presence of a [[bar (landform)|bar]] or dune on the riverbed.

Word Sense Disambiguation

Lesk

- Asume que las palabras en cierta sección del texto comparten el mismo tópico
- Implementación simple: dada una palabra para desambiguar, comparar su contexto con el de cada una de las posibles definiciones
- Pros: Rápido, fácil de usar y con muchas implementaciones (también en nltk)
- Cons: Pocas definiciones comparado con el vocabulario de wikipedia (es inutil para millones de palabras)

Usando modelos de machine learning supervisado

- Para cada palabra ambigua usar las siguientes features: la palabra mencionada, palabras que la rodean (con POS tags) y 5 palabras mas comunes en el texto. Usar como etiqueta la palabra desambiguada
- Pros: Usando Naïve Bayes se puede obtener alta precisión
- o Cons: No es trivial implementarlo, el principal problema está en la alta dimensionalidad
 - se podría usar word2vec

Word Sense Disambiguation

Evaluación:

 Actualmente en wikipedia existe una gran cantidad de keywords que referencian a artículos cuyo nombre ha cambiado, wikipedia maneja estos casos automáticamente, pero en este modelo no y esto claramente afecta la performance

	Train: 1,5M artículos Test: 85 artículos Vocabulario: 1,9M palabras	Train: 4M artículos Test: 1M artículos Vocabulario: 2,2M palabras
Method	Precision	
Most frequent sense	87.03%	80.17%
Lesk	80.63%	12.12%
Lesk + Most frequent sense	-	76.82%

Dificultades adicionales

Poca documentación acerca del formato del corpus

 El corpus contiene muchas otras páginas de wikipedia además de los artículos

Demasiadas palabras o caracteres raros en el texto

 Dado el tamaño del corpus hay que recorrerlo iterativamente (con mucho cuidado en la forma de limpiar nodos ya leídos)

