Data Mining (EECS 4412)

Assignment Project Exam Help

https://powcoder.com Text Classification Add WeChat powcoder

Parke Godfrey

EECS

Lassonde School of Engineering York University

Thanks to

Professor Aijun An

Assignment Project Exam Help

for creation & use of these slides.

Add WeChat powcoder

Outline

- Introduction and applications
- ► Text Representation (traditional)
- ► Text Preprocessing the pect Exam Help
- Advanced techniques for text representation (word embedding)
 Add WeChat powcoder

Text Mining

- It refers to data mining using text documents as data.
 - A text document could be an article, a web page, a Assignment Project Exam. Help product review, an xml file, an email message, a blog and so https://powcoder.com
- ► Tasks of text mining Chat powcoder
 - ▶ Text classification
 - Text clustering
 - ▶ Text summarization
 - Topic detection
 - **...**

Text Classification

- Learn a classification model from a set of preclassified documents
- Classify new text documents using the learned model
- Applicationshttps://powcoder.com
 - Classify articles intechtagoriescoder
 - Classify web pages into different categories
 - Classify emails into different categories
 - Spam email filtering
 - **...**

Example Applications

News topic classification (e.g., Google News)

```
C={politics, sports, business, health, tech, ...}
```

Assignment Project Exam Help

- "SafeSearch" filtering

 C={pornography, https://pgwspder.com
- Language classifiedtive Chat powcoder C={English, Spanish, Chinese,...}
- Sentiment classificationC={positive review, negative review, neutral review}
- Email sortingC={spam, meeting reminders, invitations, ...} user-defined!

Text Representation

- Most classification learning programs require the examples to be represented as a tuple, which is a vector of attribute values.
- How to representent decimentation of attribute values?
- https://powcoder.com
 Typical method (which has become traditional):
 - Attributes Add WeChat powcoder
 - ▶ "Bag of words" method: Use a set of words as attributes
 - ► Attribute values
 - ▶ Method 1: use 0 or 1 as attribute value to indicate whether the word appears in the document.
 - ▶ Method 2: use the absolute or relative frequency of each word in the document as the attribute value.
 - ► Method 3: assign a weight to a word in a document using TF-IDF and use the weight as the attribute value

Text Representation (Cont'd)

Training data sets:

▶ Method 1:

	word ₁	word ₂	•••	word _m	Class
document	ssignme	nt Proje	ct Exam F	Ielp ¹	C 1
document ₂	1	0	•••	1	C2
•••	https:	//powco	oder.com	•••	•••
document _n	A ^l dd V	We © hat	powcoder	. 0	C2

Method 2 with absoluate term frequency:

	word ₁	word ₂	•••	word _m	Class
document ₁	0	3	• • •	1	C1
document ₂	2	0	•••	3	C2
•••	• • •	•••	•••	•••	•••
document _n	5	0		0	C2

Method 3: TF-IDF Term Weighting

- ► TF: term frequency
 - ▶ Definition: $TF = t_{ij}$
 - \blacktriangleright frequency of term *i* in document *j*
 - ► Purpose: makes the frequent words forthe document more important
- https://powcoder.com
 IDF: inverted document frequency
 - ▶ Definition: IDF = $\log(N/n_i)$ powcoder
 - \triangleright n_i : number of documents containing term i
 - N: total number of documents
 - ► Purpose: makes rare words *across documents* more important
- ▶ TF-IDF value of a term *i* in document *j*
 - ▶ Definition: TF×IDF = $t_{ij} \times \log(N/n_i)$

Example: TF-IDF Weighted Vectors

Assume there are three documents in the training set:

Document D1: "yes we got no bananas"

Document D2: "what you got" Project Exam Help

Document D3: "yes I like what you got"

https://powcoder.com got no like bananas what yes vou we Add WeChat powcoder D1: 0 0.48 0 .18 0.48 0.480 D2: 0 0 0 0.18 0.18 0 0 0 0 0.18 0.18 0.18 0 0 0 0 0.48 .48 D3:

Text Processing for Selecting the Bag of Words

- Word (token) extraction Assignment Project Exam Help
 - Extract all the words in a document https://powcoder.com
 Convert them into lower cases
- ► Stop words removal Powcoder
- Stemming
- Selecting words

Stop Words

- Many of the most frequently used words in English are worthless in text mining these words are called *stoppedia* Project Exam Help
- Examples of stop words the, of, and, to, a, ...
- the, of, and, to, a, ...

 Add WeChat powcoder

 Typically about 400 to 500 such words
- For an application, there may be additional domain-specific stop words
- These stop words are usually removed from the set of words for representing a document.

Stemming

- ▶ A technique used to find the root/stem of a word.
- ► For example: Assignment Project Exam Help
 - discussed
 - discubttps://powcoder.com
 - discussing WeChat powcoder
 - discuss

Stem: discuss

- Usefulness
 - Reduce the number of words
 - ▶ Improve effectiveness of text classification

Example Stemming Rules

- Remove ending
 - If a word ends with s, preceded by a consonant other than sign mental references. Help
 - If a word endspwithoutcoded by a consonant, delete the ed unless this leaves only a single letter.
- Transform words
 - If a word ends with "ies" but not "eies" or "aies", then "ies" is replaced with "y".

Stemming Algorithms

- Porter stemming algorithm
 - ▶ The most widely used stemming algorithm
 - Developed by Martinj-Corteant the University of Cambridge in 1980
 https://powcoder.com

 http://www.tartarus.org/~martin/PorterStemmer/
 - http://www.tartarus.org/~martin/PorterStemmer/contains source Codes in Parework anguages
- Other stemming algorithms
 - http://www.comp.lancs.ac.uk/computing/research/ stemming/general/

Text Processing for Selecting the Bag of Words

- Word (token) extraction Assignment Project Exam Help
 - Extract all the words in a document https://powcoder.com
 Convert them into lower cases
- ► Stop words removal Powcoder
- Stemming
- Selecting words

Feature Selection

- Selecting the "bag of words" to represent documents
- Why do weighted to be the Help
 - The numberters in powerds a set of documents and we control of the set of documents and we control of the set of the set
 - Leaning program may not be able to handle all possible features
 - ► Good features can result in higher accuracy

What are Good and Bad Features?

- Good features: (should be kept)
 - Co-occur with a particular category
 - Do not a significant the period of the parties
- ► Bad features: (best to remove)

 - Uniform across all categories
 Add WeChat powcoder
 Very infrequent (appear 1 or 2 times in the whole training set of documents)
 - unlikely to be met again
 - can be noise
 - co-occurrence with a class can be due to chance

Feature Selection Methods

- Class independent methods (Unsupervised)
 - Document Frequency (DF)
 - Term Assignment Project Exam Help

https://powcoder.com

- ► Class-depenAlth Wir Cethatophsw (Soder ervised)
 - ► Information Gain (IG)
 - Mutual Information (MI)
 - $\rightarrow \chi^2$ statistic (CHI)

Document Frequency (DF)

▶ Document frequency of a word w:

https://powcoder.com

- Rank the words according to their document frequency Add WeChat powcoder
- ▶ Select the first *m* words with high DF values

Document Frequency (Cont'd)

- Advantages
 - Easy to compute
 - ► Can remaye rare words (hence maise) Help

https://powcoder.com

- Disadvantages
 - ► Class independent: Add WeChat powcoder
 - ▶ If the word appears frequently in many classes, it cannot distinguish the classes well
 - ▶ Some infrequent terms can be good discriminators, which cannot be selected by this method.

Information Gain

- ▶ A measure of importance of the feature for predicting the classes of documents
- Defined as:
 - The number of "bits of information" gained by knowing the word is present or absent

$$Gain(w) = -\sum_{i=1}^{k} P(C_i) \log P(C_i)$$
Add WeChat powcoder

$$+ P(w) \sum_{i=1}^{k} P(C_i \mid w) \log P(C_i \mid w) + P(\overline{w}) \sum_{i=1}^{k} P(C_i \mid \overline{w}) \log P(C_i \mid \overline{w})$$

where w is a word and C_1 , C_2 , ..., C_k are classes.

- Rank the words according to their information gain value
- Select the first m words with high gain values

Information Gain (Cont'd)

- Advantage:
 - Consider the classes
- Disadvantagenment Project Exam Help
 - Computationally expensive (compared to using DF)
 - Noisy words occurring only once in the document collection have high Khat powcoder
- Solution
 - ▶ Remove rare words (appears 1 or 2 times) first. This can
 - reduce the amount of computation, and
 - remove noisy words that have by-chance correlations with the classes.

What Do People Do In Practice?

- Rare term removal
 - rare across the whole collection (i.e. DF is very low Assignment Project Exam Help
 - met in ahtinglepdwandencom
- Most frequent darmaemoval (indeemoving stop words) (often)
- Stemming. (often)
- Use a class-dependent method (e.g., the information gain method) to select features.

Outline

- Introduction and applications
- Text Representation (traditional)
- ► Text Preprocessing the pect Exam Help
- Advanced techniques for text representation (word embedding)
 Add WeChat powcoder

Beyond Bag of Words

- Bag of words representation
 - does not consider the position or order of words in a document
 - does not consider the context a word is in.

 Assignment Project Exam Help
 does not consider semantic relationships between words
- It would be great to include multi-word features like "New York", rather wheathat sto Wester and "York"
- Bigram document representation (or n-gram in general)
 - a pair of consecutive words in the document
 - But: including all pairs of words, or all consecutive pairs of words, as features creates WAY too many features to deal with, and many are very sparse.
- Document representation using word embeddings

Word Embedding

- A type of word representation using vectors
 - Embed words into a vector space
 - ▶ The vector of a word is called its embedding

Assignment Project Exam Help

Add WeChat powcoder

- Given a vocabulary of words
 - ► The embedding of the ith word in the vocabulary is a *d*-dimensional vector:

$$W_i \in \Re^d$$

where d is typically in the range 50 to 1000.

Important Feature of Word Embedding

▶ In an embedding space, semantically similar words are

close to each other: attack, kill, alleged, accuse, rape, assault Assignment Project Exam Help medicine, Spain Italy Madrid Berlin walked Ankara woman swam king Moscow walking queen swimming Beijing Male-Female

Verb tense

Country-Capital

Benefits of Word Embedding

- Word embeddings is better than one-hot encoding
- ▶ One-hot encoding:
 - ▶ Large dimension: size of vocabulary (could be tens of thousands)
 - ► Sparse Assignment Project Exam Help
 - Words are considered independent (no semantics is encoded) https://powcoder.com

Word embedding

Rome = [1.73 0.73 -0.90 -0.62 0.12 -1.35 ...] Paris = [0.77 1.18 -1.12 -0.75 -0.60 -1.05 ...]

- ► Low dimensionality: typically 50 1000
 - Italy = [1.77 -0.78 -0.95 0.33 0.04 -0.09 ...]

 France = [0.67 0.30 -1.05 -0.70 -0.78 0.00 ...]

- Dense and distributed
- ▶ Semantically related words are close to each other.

Main Methods for Word Embedding

- Latent Semantic Indexing (Deerwester et al., '88).
- ▶ Neural Net Language Models (NN-LMs) (Bengio et al., '06)
- Convolutional Nets for tagging (SENNA) (Collobert & Weston, '08).
- Supervised Semantic Indexang (Barecaln'09).
- Wsabie (Weston et ald We Chat powcoder)
- ▶ Recurrent NN-LMs (Mikolov et al., '10).
- ▶ Recursive NNs (Socher et al., '11).
- ► Word2Vec (Mikolov et al., '13).
- ▶ GloVe (Pennington et al., '14)
- ▶ BERT (Devlin et al., '18)

Characteristics of Word2Vec

Word2Vec is a model for learning word embeddings from a text corpus Help

https://powcoder.com Use a simple feedforward neural network with a single hidden layer. Add WeChat powcoder

Word2Vec is a successful example of "shallow" learning.

Two Learning Architectures of Word2Vec

- Word2Vec learns word embeddings
 - from a large text corpus (i.e., a large collection of text documents, e.g., Wikipedia documents)

 Assignment Project Exam Help
 using one of the two architectures:

Word2Vec: Two Learning Architectures

Snapshot of the training text corpus (for context window size = 2):

```
... The cute cat jumps over the lazy dog ...

w(t-2) w(t-1) w(t) w(t+1) w(t+2)
context words target word context words
```

Skip-gram

- Learn to predict the context words from a target word based on a training corpus
 - ► Target word moves from the beginning to the end of the corpus
 - Context words are the k words before or Eafter the target word (k is the context window size)
 - Training data containts provided charge of the pairs:

Skip-gram Model

Assume there are 10,000 words in the vocabulary:

- After training, the weights are the word embeddings
- Dimension of the word vector is the number of neurons in the hidden layer

Skip-gram Model

Example: assume training example is (brown, quick)

- z_i is the dot product of the target and context word embeddings, representing the similarity between the two words
- Such training tries to make words close to each other in the text corpus have similar embeddings

Word Vectors: weights

Assume there are 10,000 words in the vocabulary and 300 hidden neurons:

Dimension of the word vector is the number of neurons in the hidden layer

General Picture of Skip-gram

It assumes words close to each other are semantically related by making the embedding of a word similar to the vectors of its context words, 38

Usefulness of Word Embeddings

Can be used to compute similarity between words

cosine_similarity(w_i, w_j) = $\frac{\overrightarrow{w_i} \cdot \overrightarrow{w_j}}{\|\overrightarrow{w_i}\|\|\overrightarrow{w_j}\|}$ Assignment Project Exam Help

where w_i and w_j are words and $\overrightarrow{w_i}$ and $\overrightarrow{w_j}$ are word vectors

Useful for tasks, https://pawarafag. Goffmation retrieval, etc.

- Building block for longer text embedding
 - Sentence embedding (Sent2Vec)
 - Paragraph/Document Embedding (doc2vec)
- Used in many other NLP tasks, such as
 - Text classification
 - Machine translation
 - Summarization)

• • • •

Text Classification with Word Embedding

- Objective is to learn to classify a document
- Key is to represent a document with word embeddingssignment Project Exam Help
- There are a fewnyaysoto do so cong.,
 - Compute a *document vector* with word embeddings Add WeChat powcoder

 Directly using *the sequence of word embeddings* to train
 - 2) Directly using *the sequence of word embeddings* to train and classify a document with *recurrent neural networks*.
 - Train *document embeddings* directly (e.g., doc2vec, Doc2VecC, GPT, BERT, etc)
- We will only briefly describe the first two

Methods for Computing Document Vector with Word Embeddings

- Simple averaging on word embeddings
 - Average the embeddings of the words occurring in the documentssignment Project Exam Help
- ► TF-IDF weighted averaging on word embeddings https://powcoder.com
 - Using the TF-IDF value of a word in the document as the weight for the Word batten award and word embeddings
- Word embeddings
 - Can be pre-trained with a large text corpus
 - ▶ Fine-tuned with the training data
 - Freshly trained with the training data

Recurrent Neural Network (RNN) with Word Embeddings

Recurrent neural network:

- Words in a document are inputted to RNN sequentially.
- Each word is represented by its embedding
- Output indicates the class of the document.

Recurrent Neural Network with Word Embeddings

Unfolded recurrent neural network:

x_i is a word

Recurrent Neural Network (RNN) with Word Embeddings

- Word embeddings
 - Can be pre-trained with a large text corpus
 - Fine-tuned with the training data Exam Help
 - Freshly trained with the training data

Long Short Term Memory networks

- A popular RNN is LSTM
 - Capable of bridging long time lags between inputs
 - ► Able to ressign been Person In 1990 time steps

Summary

- Text classification has many applications
- ▶ The most important issue is how to represent document Assignment Project Exam Help
 - Word extraction https://powcoder.com
 - Stop word removal
 - Add WeChat powcoder Stemming

 - ▶ Feature selection
 - Represent document with values of the selected features (e.g., the frequency of the word in the document).
 - Advanced methods for text representation based on word embeddings