Lógica Computacional

Examen 2

PCIC - UNAM

1 de junio de 2020

Diego de Jesús Isla López

(dislalopez@gmail.com)
(diego.isla@comunidad.unam.mx)

Problema 1

Eliminando la transición de s_2 a s_1 , las únicas opciones para s_0 son entrar a un ciclo ya sea desde s_2 o desde s_3 , las cuales ambas contienen a p, por lo que se sostiene.

Problema 2

No se sostiene ya que el único caso en el que se cumple es al entrar en el ciclo de s_1 , donde solo aparece q. En los demás caminos posibles desde s_0 siempre aparece al menos una p.

Problema 3

■ $\Box p$ y $\Box \Box p$: Se construye un modelo con un mundo donde no se cumplen las dos al mismo tiempo:

En este modelo vemos que se cumple $\Box p$ de s_1 a s_2 ; sin embargo debido a la transición de s_2 a s_1 , no se cumple $\Box \Box p$.

- $\Box \neg p$ y $\neg \diamond p$: Estas fórmulas son equivalentes por las reglas de DeMorgan, por lo tanto no es posible construir un modelo que contenga un mundo donde se cumpla solo alguna de las dos.
- $\Box(p \land q)$ y $\Box p \land \Box q$: Estas fórmulas son equivalentes por la regla de distributividad de \Box sobre \land . Por lo tanto, no es posible construir un modelo que contenga un mundo donde se cumpla solo una de las dos fórmulas.

Problema 4

- Ningún mundo satisface esta fórmula. El mundo a cumple $\Box \neg p$ pero no $\Box \Box \neg p$. El mundo b no cumple ninguna de las dos y d solo cumple $\Box \neg p$.
- Los mundos *a* y *b* cumplen esta fórmula.ya que desde ambos mundos es posible acceder a otros mundos donde existe al menos una *q* y otros donde no necesariamente se cumple *q*.
- Los mundos *a,b*, *e* cumplen, ya que desde todos ellos se llega a algún vecino donde exista *p* o *q*.
- Los mundos *a,b,e* cumplen. La fórmula es equivalente con la del punto anterior.
- Los mundos b,d,e cumplen.
- \blacksquare Todas los mundos cumplen. La fórmula alude a la presencia o no de p, lo cual siempre se va a cumplir.