BFR 2024 Drivetrain Project

Gautham Jey

Design Scenario

- Wheel Center between hub and rim
- 12x ½-20 bolt holes at 3.375" (rims)
- 4x ³/₈-24 bolt holes at 1.2" (hubs)
- 1.88" offset between the hub face and rim face
- 1.75" diameter through hole centered on the face that interacts with wheel hub
- Minimize weight and maximize stiffness
- Loading: (10/8 Numbers)
 - Torque(X): 2.2 G / 4 * Torque Arm (4 brakes)- 549.3lbf-in
 - Axial (Y): 1.75 G / 2 (two-wheeling) 364.5 lbf
 - Z Loading (Z): 1.6 G / 2 (two-wheeling) 799 lbf

Design Targets

- Manufacturability
 - Easy-to-manufacture material
 - Can be done without specialized tooling
 - Ex: Lathe, Mill, and CNC versions
- Cost
 - Relatively cheap material
 - Doesn't rely on specialized tooling
 - Ex: no 5-axis
- Reliability
 - Hesitant on composites until further research and IRL testing

Material Choice

- High specific strength and high stiffness/modulus
- Inexpensive
- Ease of manufacturing

Material	Composites (CF Toray T1100G)	Maraging Steel	Titanium Alloy (Beta C)	Al Alloy (7075-T6)
Specific Strength	3,911	298.78	260	204

https://en.wikipedia.org/wiki/Specific_strength

Material Choice

- Metals: easy to manufacture (project focus)
- Titanium: expensive and difficult to machine
- Steel Vs Aluminum: steel is good for volume constraints, but we have a bigger mass constraint
 - ~½ the strength-weight ratio of alumiums
- Design Targets: Aluminum is the best choice

Aluminum

- Manufacturing Method: Wrought Vs Cast
 - Cast: cheaper but more defects and lower strength
 - Wrought: mechanically formed after casting (less defects and stronger)
- Alloys
 - 7000 series (Zinc)
 - Zinc alloy, used in aerospace
 - o 6000 series (Magnesium and Silicon)
 - general purpose, easy to machine
- Common: 7075 Vs 6061
 - 7075 greater stiffness/strength (204 vs 115 kNm/kg)
 - 6061 is ~25% cheaper + machinability
- Heat Treatments
 - Tempering increases yield strength
 - o And elastic regime
- Design Targets: 6061 T6

6061 Aluminum

- Known as the all-purpose aluminum grade, most commonly used aluminum alloy for CNC machined parts.
- Yield Strength of ~276 MPa (~40000 psi).
- · Brinell hardness of 95.
- Elasticity of 68.9 GPa (10000 ksi).
- Melting point range of 582°-652°C (1080°-1205°F)

7075 Aluminum

- One of the strongest aluminum alloys with strengths comparable to many steels.
- Yield Strength of ~503 MPa (~73000 psi).
- Brinell hardness of 150
- Elasticity of 71.7 GPa (10400 ksi).
- Melting point range of 477°-635°C (890°-1175°F)

Research And Design Approach

- Spoke-Like Design
- Remove material between holes
- Add material close to holes
- Can think of mapping material from each hub hole to each rim hole (Complete Graph)
- Adding each mapping might be excessive, only keeping some
- Think about manufacturability

https://keizerwheels.com/product/cl10-center-lock-fsae/

Baseline

- General volume of material
- Baseline mass: 1.43 lbs
- High stress by holes
- Stress concentrations when geometry suddenly changes
- Cone part is excessive and can be cut down to spoke style
- Need to consider adding fillets/curves to smooth transitions

Scaling irrelevant since different material and

- Made revolved spokes at 6/12 holes (tried to reduce spokes for weight)
- Set arbitrary thicknesses and fillet diameters (didn't quantify and reason decisions)
- Didn't look at heat treatments
- High stress at spokes
- Decided to understand how loading impacted spokes

- ->>
- From deformation plot, lot of movement from torque and/or z loading
- On each spoke, we view it as a bending problem. There is a component of bending about y and a component about x
- Two options to improve structure
 - Decrease moment arms
 - Will decrease applied moments on spoke
 - Not really possible due to constraints
 - o Increase moment of inertias
 - Can make the spoke wider greatly increasing ly and lx
 - Can make spokes thicker
 - Can also remove area reduction of spoke and keep it straight

Torsion	$\phi = \frac{TL_0}{GJ}$	$\tau = \frac{T\rho}{J}$	$\gamma = \frac{\phi \rho}{L_0}$
Stiffness and Flexibility	$k_{ m axial} = rac{EA}{L_0} = rac{1}{f_{ m axial}}$	$k_{ m torsion}$	$=rac{GJ}{L_0}=rac{1}{f_{ m torsion}}$
Bending	$\sigma = \frac{M c}{I}$		

- Few iterations later of increasing spoke width and adjusting thickness + heat treatment, got acceptable solution
- Min FOS: 1.8
- Mass: 1.15 lbs
- Didn't like that revolved spokes decreased in width
- Wanted to quantify parameters

Property	Value	Units
Elastic Modulus	10007603.9	psi
Poisson's Ratio	0.33	N/A
Shear Modulus	3770981.179	psi
Mass Density	0.0975436609	lb/in^3
Tensile Strength	17996.86264	psi
Compressive Strength		psi
Yield Strength	7998.613676	psi
Thermal Expansion Coefficient	1.333333333e-05	/ºF
Thermal Conductivity	0.00227371	Btu/(in-sec-oF)
Specific Heat	0.3105	Btu/(lb.ºF)
Material Damping Ratio		N/A

Property	Value	Units
Elastic Modulus	10007604	psi
Poisson's Ratio	0.33	N/A
Shear Modulus	3770981.198	psi
Mass Density	0.0975436609	lb/in^3
Tensile Strength	44961.69898	psi
Compressive Strength		psi
vield Strength	39885.37799	psi
Thermal Expansion Coefficient	1.333333333e-05	/°F
Thermal Conductivity	0.00223225	Btu/(in·sec·°F)
Specific Heat	0.214006	Btu/(lb.ºF)
Material Damping Ratio		N/A

6061 no heat treatment VS T6

Optimization

- Design Study
 - Can parameterize model, set a range of values for each parameters, set strength constraints, and set goal to minimize mass
- To optimize, we have two way of doing it
 - Design Study
 - Slow Setting: set step values for parameters and simulate every iteration ($10^2 10^3$)
 - Takes too much time and computation
 - Fast Setting: SolidWorks chooses few iterations (10^1) to simulate
 - If dynamically, this could converge to an optimal solution
 - If randomly select, not as useful
 - DOE + Design Study
 - Simulate edge cases and interpolate with DOE
 - Identify significant terms
 - Simulate again
 - Adjust the range of values and step sizes for parameters depending on how significant
- https://docs.google.com/spreadsheets/d/1SMT5XEg40nVRpHcWgympEDg8oVh474Yb4IMTR7zO-PY/edit?usp=sharing

- Couldn't fully get the Design Study to work, but tested few variations
- Realizations:
 - Can decrease thickness of rim plate and hub plate for significant mass saving
 - Higher spoke count, thinner, wide spacing proved to be mass efficient
 - Intuition: greater distribution of support; due to crossover of spokes, had diagonal members preventing bending

Variables	low (in)	high (in)	
1. Spoke Width	0.5	2	
1. Spoke Material Ratio	0.1	0.75	
3. Spoke Count	4	12	
4. Rim Plate Thickness	0.125	0.75	
5. Hub Plate Thickness	0.125	1	

Bounds chosen to be within reason, if DOE favored an extrema, can examine going past it

(Mass of Example Iteration: 0.98lbs)

Final Iteration - 20+ revisions

- 12 sets of spokes, 0.1 material ratio, 2 in width between pair of parallel spokes
- Hub Plate Thickness: 0.25 in
- Rim Plate Thickness: 0.125 in
- Material added near the hub (low polar moment of area and avoiding stress concentration)
- Fillets refined by minimizing, hitting a high stress, then adding material until no longer limiting factor
- Fillet added between hub plate and spokes to remove stress concentration
- Min FOS: 1.5, Mass: 0.43 lbs

Plots

• Max Displacement = 0.45mm

Manufacturability

- Start with round stock
- Lathe or CNC Lathe to volume
- CNC Mill with two orientations
 - Hub side secured to vice
 - o Rim side secured vice
- Fillets are common fractions of inch. Should work with imperial tooling.

Unfinished Research

- Design Study
- DOE
- Hand Calc
 Validation

Thank You