MACHINE LEARNING AND PATTERN RECOGNITION REPORT

Fingerprint Spoofing Detection

Antonio Iorio

Who?

Where?

When?

Contents

1	Dat	aset Analysis	3
2	Din	nensionality Reduction	4
	2.1	PCA	5
	2.2	LDA	5
	2.3	Our project	6
3	Mu	ltivariate Gaussian Density	6
4	Mod	del evaluation for classification	7
5	Clas	ssification Models Analysis	9
	5.1	Gaussian models	9
		5.1.1 Multivariate Gaussian Classifier	9
		5.1.2 Naive Bayes Gaussian Classifier	9
		5.1.3 Tied Covariance Gaussian Classifier	10
		5.1.4 Gaussian Models Comparison	10
	5.2	Logistic Regression Classifier	13
		5.2.1 Binary Logistic Regression	13
		5.2.2 Quadratic Logistic Regression	17
	5.3	Support Vector Machine Classifier	19
		5.3.1 Linear Support Vector Machines	19
		5.3.2 Kernel Support Vector Machines	20
	5.4	Gaussian Mixture Models Classifier	22
6	Cali	ibration	25
	6.1	Calibration Consideration On Selected Models	25

Introduction The project task consists of a binary classification problem. The goal is to perform fingerprint spoofing detection, i.e. to identify genuine vs counterfeit fingerprint images. The dataset consists of labeled samples corresponding to the genuine (True, label 1) class and the fake (False, label 0) class. The samples are computed by a feature extractor that summarizes high-level characteristics of a fingerprint image. The data is 6-dimensional.

1 Dataset Analysis

In our analysis process, one first begins to represent what are the data related to the various features and how among the various features the data are distributed by making a visual representation in pairs of features.

- 1. Starting with the analysis of the first two features and creating a histogram and a scatter Figure 1, one can see:
 - Both features overlap
 - Follow a Gaussian distribution
 - Feature 1 has a peak at [-0.213, 0.276] and it is worth 0.541 for the false class, instead for Feature 2 the peak at [-0.402, 0.165] and it is worth 0.516 for the true class.

Seeing Figure 1 again, it would appear that Figure 1a and Figure 1b appear to be visually the same but in b they are represented centred which as can be seen is quite similar because Feature 1 has $\mu=0.00170711$ and $\sigma^2=1.00134304$, instead Feature 2 has $\mu=0.00503903$ and $\sigma^2=0.9983527$

Figure 1: Feature 1 vs Feature 2 - Without centering the data relative to the average (a) and with centering the data relative to the average (b)

- 2. For features 3 and 4, observed in Figure 2, on the other hand, they have:
 - do not overlap like the previous two
 - Follow a Gaussian distribution but the true and false labels are centred at different points

• Feature 3 has a peak at [-1.063, -0.568] and it is worth 0.517 for the false class, instead for Feature 4 the peak at [0.290, 0.783] and it is worth 0.525 for the false class.

Seeing Figure 2a and Figure 2b, data are already similar because, the mean calculated with reference to the two classes is close to 0, in fact: Feature 3 has $\mu = -0.00560753$ and $\sigma^2 = 1.0024818$, instead Feature 4 has $\mu = 0.00109537$ and $\sigma^2 = 0.99029389$

Figure 2: Feature 3 vs Feature 4 - Without centering the data relative to the average (a) and with centering the data relative to the average (b)

- 3. For features 5 and 6, observed in Figure 3, one can see:
 - Do not totally overlap
 - For both features, the true labels don't follow a Gaussian distribution as opposed to the false ones, which could be more approximate
 - Feature 5 has a peak at [-1.211, -0.783] and it is worth 0.572 for the true class, instead for Feature 6 has a peak at [-1.273, -0.817] and it is worth 0.553 for the true class.

Also in this other case, Figure 3a and Figure 3b are similar because again the average is close to 0. Feature 5 has $\mu = -0.00700025$ and Feature 6 has $\mu = 0.00910515$

2 Dimensionality Reduction

Before proceeding with classification, two techniques of dimensionality reduction PCA and LDA can be analysed. The goal is to find a subspace of the feature space that preserves most of the useful information, that is, mapping from the n-dimensional feature space to m-dimensional space, with $m \ll n$

Figure 3: Feature 5 vs Feature 6 - Without centering the data relative to the average (a) and with centering the data relative to the average (b)

2.1 PCA

is an unsupervised technique. Where starting from a dataset $X = \{x_1, \dots, x_k\}$ and calculated average. It starts with the empirical covariance matrix:

$$C = \frac{1}{K} \sum_{i} (x_i - \bar{x})(x_i - \bar{x})^T \tag{1}$$

We compute the eigen-decomposition of $C = U\Sigma U^T$ and project the data in the subspace spanned by the m columns of U corresponding to the m largest eigenvalues.

$$y_i = P^T(x_i - \bar{x}) \tag{2}$$

where P is the matrix of the m columns of U associated to the m highest eigenvalues of C. A cross-validation approach can be used to figure out the optimal value of m to be selected. To evaluate each eigenvalue, one would have to calculate the variance corresponding to the axis. The percentage can be calculated as the rate between the sum of the m eigenvalues and the sum of all of them. In Figure 4 we can see how it changes in the project. A good m, corresponds to that value which allows a percentage greater than 95%, so in our case we would need all 6 features.

2.2 LDA

is a supervised technique. To find a direction that has the best separation between classes, we measure spread between classes in terms of class covariance. The objective is to maximize the between-class variability over within-class variability ratio for the transformed samples:

$$\max_{w} \frac{w^T S_B w}{w^T S_W w} \tag{3}$$

Figure 4: Cross validation for PCA impact evaluation

Method	Num Samples	Error	Error Rate $(\%)$
LDA - First threshold LDA - Second threshold	2000 2000	186 186	9.30 9.30
PCA (m=5) + LDA - First threshold	2000	186	9.30
PCA (m=5) + LDA - Second threshold PCA (m=6) + LDA - First threshold	$\frac{2000}{2000}$	185 186	$9.25 \\ 9.30$
PCA (m=6) + LDA - Second threshold	2000	184	9.20

Table 1: Table showing the results of the LDA and PCA + LDA method for classification.

where:

$$S_B \triangleq \frac{1}{N} \sum_{c=1}^{K} n_c (\mu_c - \mu) (\mu_c - \mu)^T$$
 (4)

$$S_W \triangleq \frac{1}{N} \sum_{c=1}^{K} \sum_{i=1}^{n_c} (x_{c,i} - \mu_c)(x_{c,i} - \mu_c)^T$$
 (5)

 μ is dataset mean μ_c is class mean

2.3 Our project

PCA and LDA are applied to the dataset, in particular, m = 6 is used, and in Figure 5 we can observe what are the outcomes for the indicated directions.

At a later stage, they were used to carry out a classification. The available dataset was divided into two sub-portions one for training and the other for validation. In Table 1 we can see the error of the classification, errors made in the classification when varying m (only for some values) and the threshold were reported

3 Multivariate Gaussian Density

Multivariate Gaussian Density is an extension of the Gaussian Density to multiple dimensions. It is used to describe the distribution of a vector of random variables in a multi-dimensional space, and it could be defined

Figure 5: Comparing results between PCA and LDA

as:

$$N(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{M}{2}} |\Sigma|^{\frac{1}{2}}} \exp^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$
(6)

where M is the size of the feature vector x, and $|\Sigma|$ is the determinant of Σ . Since the computation of the exponential could cause problems, the logarithm is applied, so from Equation 6 we get Equation 7:

$$\log N(x \mid \mu, \Sigma) = -\frac{M}{2} \log(2\pi) - \frac{1}{2} \log|\Sigma| - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$
 (7)

Thus, applying Gaussian probability density to the 6 features in our dataset, the following results in Figure 6, are obteinded.

It can observe that **features 1 - 2 - 3 - 4** fit the Gaussian distribution, the histogram of the data is well approximated by the Gaussian curve. For **features 5 - 6** this does not happen and therefore could not be a good model.

4 Model evaluation for classification

To assess whether one model classifies correctly or it is better than another, it is important to introduce what may be a unit of measurement. In particular, the evaluation of a model is done using the **DCF** (**Detection Cost Function**) or also called **empirical Bayes Risk**. But before delving into this method of valuation, we must consider what is called the working point of a binary classification application. This point is characterised by a triplet of values:

$$(\pi_T, C_{fn}, C_{fp}) \tag{8}$$

where π_T is the prior probability of the target class, C_{fn} is the cost of a false negative and C_{fp} is the cost of a false positive.

Figure 6: Gaussian Density

But from π_T , one can have attention on a particular triplet that is defined by:

$$(\tilde{\pi}, C_{fn}, C_{fp}) = (\tilde{\pi}, 1, 1) \tag{9}$$

where $\tilde{\pi}$ in Equation 9 is called **effective prior** probability of the target class, defined as:

$$\tilde{\pi} = \frac{\pi_T C_{fn}}{\pi_T C_{fn} + (1 - \pi_T) C_{fp}} \tag{10}$$

So we can define DCF_u as:

$$B_{emp} = DCF_u = \sum_{c=1}^{K} \frac{\pi_c}{N_c} \sum_{i|c_i = c} C(a(x_i, R) \mid c)$$
(11)

From Equation 11, we can obtain:

$$DCF_u(\pi_T, C_{fn}, C_{fp}) = \pi_T C_{fn} P_{fn} + (1 - \pi_T) C_{fp} P_{fp}$$
(12)

where:

$$P_{fn} = \frac{FN}{FN + TP} , \quad P_{fp} = \frac{FP}{FP + TN}$$
 (13)

From the Equation 11, it is possible to find minDCF and actDCF. When calculating minDCF, the threshold used is the one that minimize DCF, and there are various methods for finding it. Whereas for actDCF, the threshold used is:

$$t' = -\log\frac{\tilde{\pi}}{1 - \tilde{\pi}}\tag{14}$$

5 Classification Models Analysis

To perform the classification, the dataset must first be divided into two sub-portions, the training and validation sub-portions.

5.1 Gaussian models

Since, it is dealing with a binary classification task, it will assign a probabilistic score to each sample in terms of the class-posterior log-ratio:

$$\log r(x_t) = \log \frac{P(C = h_1 \mid x_t)}{P(C = h_0 \mid x_t)}$$
(15)

Analysing Equation 15 in more detail, it becomes:

$$\log r(x_t) = \log \frac{f_{X|C}(x_t \mid h_1)}{f_{X|C}(x_t \mid h_0)} + \log \frac{P(C = h_1)}{P(C = h_0)}$$
(16)

The first addend of the equation is called the *llr* or *log-likelihood ratio* and an optimal decision is given by Equation 17.

$$\log r(x_t) \geqslant 0 \tag{17}$$

Considering $P(C = h_1) = \pi$ and $P(C = h_0) = 1 - \pi$, from Equation 16 and Equation 17, it is possible to write that the class assignment is based on Equation 16 and Equation 17, to obtain Equation 18.

$$llr(x_t) = \log \frac{f_{X|C}(x_t \mid h_1)}{f_{X|C}(x_t \mid h_0)} \ge -\log \frac{\pi}{1 - \pi}$$
(18)

The optimal class decision is based on a comparison between the and a threshold, if the llr is greater than the threshold is assigned to class h_1 , otherwise to class h_0 . It is necessary to find the parameters θ , μ_c , Σ_c ; this can be done by maximising the log-likelihood. Parameter estimation is part of the training phase and this therefore performed on the training part of the dataset, then an estimation of the error rate can be performed on the validation part.

5.1.1 Multivariate Gaussian Classifier

The first classifier is MVG and it is given by the empirical mean and covariance matrix for each class,

$$\mu_c^* = \frac{1}{N_c} \sum_{i|c_i = c} x_i , \quad \Sigma_c^* = \frac{1}{N_c} \sum_{i|c_i = c} (x_i - \mu_c^*) (x_i - \mu_c^*)^T$$
(19)

5.1.2 Naive Bayes Gaussian Classifier

This model makes an important assumption that simplifies the number of parameters to be estimated, it assumes that the features are independent given their class. This causes the covariance matrix to be a diagonal matrix, consequently, matching MVG with a diagonal covariance matrix. However, the assumption of independence may be too restrictive and lead to inferior performance if the features are indeed correlated.

$$\mu_{c,[j]}^* = \frac{1}{N_c} \sum_{i|c_i=c} x_{i,[j]} , \quad \sigma_{c,[j]}^2 = \frac{1}{N_c} \sum_{i|c_i=c} (x_{i,[j]} - \mu_{c,[j]}^*)^2$$
 (20)

5.1.3 Tied Covariance Gaussian Classifier

The assumption of the latter model consists of its own average for each class, but an equal covariance matrix for all classes.

$$\mu_c^* = \frac{1}{N_c} \sum_{i|c_i = c} x_i , \quad \Sigma^* = \frac{1}{N} \sum_c \sum_{i|c_i = c} (x_i - \mu_c) (x_i - \mu_c)^T$$
(21)

The characteristic of this model is that it is strongly correlated to LDA.

5.1.4 Gaussian Models Comparison

A threshold of 0 was used to perform our results, which means that P(C=1) = P(C=0) = 1/2. This model was applied and the outcomes can be seen in the Table 2.

Features	Model	Error Rate (%)
	no PCA	
1 to 6	MVG	7.00
1 to 6	Naive Bayes	7.20
1 to 6	Tied Covariance	9.30
1 to 4	MVG	7.95
1 to 4	Naive Bayes	7.65
1 to 4	Tied Covariance	9.50
1 - 2	MVG	36.50
1 - 2	Naive Bayes	36.30
1 - 2	Tied Covariance	49.45
3 - 4	MVG	9.45
3 - 4	Naive Bayes	9.45
3 - 4	Tied Covariance	9.40
	$PCA \ m = 5$	
1 to 6	MVG	7.10
1 to 6	Naive Bayes	8.75
1 to 6	Tied Covariance	9.30
	$PCA \ m = 6$	
1 to 6	MVG	7.00
1 to 6	Naive Bayes	8.90
1 to 6	Tied Covariance	9.30

Table 2: Table showing the results of the Error Rate for different Models and Features.

Comparing the results with the Table 1, we can see that for some configurations there were improvements in terms of error rate. This means that Gaussian models are better able to classify the data. If we go into the details of how the error rate changes as a function of the observed features, we can see that:

- 1 to 6: in the case we consider all 6 features, the error rate is quite low and its range goes from 7.00% to 9.30%. This means that they all provide useful information.
- 1 to 4: if we consider features from 1 to 4, we can see that the error rate increases slightly. This allow us to say that features 5 and 6 have useful but not fundamental information to change the outcome.

- 1 2: features 1 and 2 have a rather high error rate, meaning that they don't contain relevant information.
- 3 4: on the other hand, the latter two features considered have a rather low error rate, a value close to the case where all features are considered. This means that the information contained in these two features is relevant for making the classification.

Starting with the previous performance, it may be interesting to analyse how performance changes as three main parameters vary:

- $\tilde{\pi}$: represents prior probability of the positive class
- C_{fn} : misclassification cost of a sample predicted as negative but it is positive
- C_{fp} : misclassification cost of a sample predicted as positive but it is negative

	MVG	Naive Bayes	Tied Covariance		
	Application $(\tilde{\pi}, C_{fn}, C_{fp}) = (0.5, 1, 1)$				
actDCF	0.1399	0.1439	0.1860		
\mathbf{minDCF}	0.1302	0.1311	0.1812		
	Application $(\tilde{\pi}, 0)$	$C_{fn}, C_{fp}) = (0.9, 1, 1)$			
actDCF	0.4001	0.3893	0.4626		
\mathbf{minDCF}	0.3423	0.3509	0.4421		
	Application $(\tilde{\pi}, C_{fn}, C_{fp}) = (0.1, 1, 1)$				
actDCF	0.3051	0.3022	0.4061		
\mathbf{minDCF}	0.2629	0.2569	0.3628		
	Application $(\tilde{\pi}, 0)$	$C_{fn}, C_{fp}) = (0.5, 1, 9)$			
actDCF	0.3051	0.3022	0.4061		
$\min DCF$	0.2629	0.2569	0.3628		
	Application $(\tilde{\pi}, C_{fn}, C_{fp}) = (0.5, 9, 1)$				
actDCF	0.4001	0.3893	0.4626		
$\min DCF$	0.3423	0.3509	0.4421		

Table 3: Table showing minDCF and actDCF for different models and applications.

Analysing the results of the Table 3, it is possible to observe:

- Observing how the $\tilde{\pi}$ varies, it can be seen that the best outcome is obtained when it takes the value 0.5. On the other hand, when it takes value 0.1 and 0.9, the outcome gets worse because it penalises false negatives and false positives respectively
- Observing how the values of C_{fn} and C_{fp} change when they assume value 9. The outcomes worsen, in particular there is a greater impact on the model when the cost of false negatives increases.

Starting from the result obtained in Table 3, it is possible to consider the application of PCA as preprocessing technique focusing on the cases of $\tilde{\pi}$ equal to 0.1, 0.5 and 0.9 and $C_{fn} = C_{fp} = 1$, obtaining the outcomes shown in Table 4

From the results obtained in the Table 4, it can be seen that the application of PCA was not very helpful because in no case did the outcomes improve, instead they remained the same or even worsened. Analysing

	MVG	Naive Bayes	Tied Covariance
	Application $(\tilde{\pi}, \tilde{\pi})$	$C_{fn}, C_{fp}) = (0.5, 1, 1)$	
	no	PCA	
actDCF	0.1399	0.1439	0.1860
minDCF	0.1302	0.1311	0.1812
		PCA	
	n	n = 5	
actDCF	0.1419	0.1749	0.1860
minDCF	0.1331	0.1737	0.1812
	n	n = 6	
actDCF	0.1399	0.1780	0.1860
minDCF	0.1302	0.1727	0.1812
	Application $(\tilde{\pi}, $	$C_{fn}, C_{fp}) = (0.9, 1, 1)$	
	no	PCA	
actDCF	0.4001	0.3893	0.4626
\mathbf{minDCF}	0.3423	0.3509	0.4421
		PCA	
	n	n = 5	
actDCF	0.3980	0.4660	0.4626
minDCF	0.3512	0.4340	0.4451
	n	n = 6	
actDCF	0.4001	0.4512	0.4626
minDCF	0.3423	0.4359	0.4421
	Application $(\tilde{\pi},$	$C_{fn}, C_{fp}) = (0.1, 1, 1)$	
	no	PCA	
actDCF	0.3051	0.3022	0.4061
f minDCF	0.2629	0.2569	0.3628
		PCA	
	n	n = 5	
actDCF	0.3042	0.3930	0.4051
minDCF	0.2738	0.3545	0.3648
	n	n = 6	
actDCF	0.3051	0.3920	0.4061
minDCF	0.2629	0.3535	0.3628

Table 4: Show minDCF and actDCF for different models and applications before and after applying PCA.

overall, it can be said that the model that tends to perform worse is the Tied Covariance, whereas MVG and Naive Bayes are rather similar. In particular for MVG and Naive Bayes, the best result is obtained for the 0.5, 1, 1 configuration whether applying PCA or not. In addition, it can be said that there is a good calibration for this configuration because applying or not applying PCA, minDCF and actDCF doesn't change what is not the case for the other configurations.

In Figure 7 the Bayes error was calculated for a prior log odds in the range (-4, +4), for the three models

Figure 7: Error Bayes plots

with a configuration having a $\tilde{\pi} = 0.1$ and applying the PCA as pre-processing.

5.2 Logistic Regression Classifier

Logistic Regression is a discriminative classification model, directly evaluating the posterior probability $C \mid X$. In particular by determining that hyperplane which maximises the posterior probability. Starting from the results obtained from the Tied Gaussian that provides log-likelihood ratios that are linear functions of our data, where log-posterior probability ratio is:

$$\log \frac{P(C = h_1 \mid X)}{P(C = h_0 \mid X)} = \log \frac{f_{X|C}(x \mid h_1)}{f_{X|C}(x \mid h_0)} + \log \frac{\pi}{1 - \pi} = \omega^T x + b$$
 (22)

where prior information has been absorbed in the bias term b of the Equation 22. So from this point we can define the score function as:

$$s(x) = \omega^T x + b = 0 \tag{23}$$

where it is positive for samples of class h_1 and negative for samples of class h_0 . Given ω and b we can compute the posterior class probability as:

$$P(C = h_1 \mid x, \omega, b) = \sigma(\omega^T x + b) = \sigma(s(x))$$
(24)

where σ is sigmoid function defined as:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{25}$$

This approach assumes that the decision rules will be hyperplanes orthogonal to vector w.

5.2.1 Binary Logistic Regression

Binary Logistic Regression Not Prior-Weighted

The objective is to minimise the loss function $J(\omega, b)$, but to this is introduced what is a penalty term, so the new function becomes:

$$J(\omega, b) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-z_i(\omega^T x_i + b)}), \quad z_i = \begin{cases} 1 & \text{if } c_i = 1\\ -1 & \text{if } c_i = 0 \end{cases}$$
 (26)

where λ of Equation 26 is the regularization term, this term has been introduced to make problem solvable in case of linearly separable classes.

Figure 8: Binary Logistic Regression not Prior-Weighted

In this model $\pi_T = 0.1$ is used. In Table 5, it can be seen how the values of minDCF and actDCF vary when λ changes, Z-normalization is applied or not and if the whole training set or a portion was used. It can be deduced from the values obtained that the application of z-normalisation brings no advantage. On the other hand, by using only 50 samples, it can see that using a limited number of samples can significantly influence the model and could lead to misleading results that are not representative of the entire sample. Consequently, as many samples as possible should be used for training to obtain a more accurate model. Figure 8 and Figure 9 give a graphic representation of how minDCF and actDCF vary with λ

Figure 9: Binary Logistic Regression not Prior-Weighted with 50 Samples

Binary Logistic Regression Not Prior-Weighted				
λ	minI	OCF	actD	CF
,	no z-norm	z-norm	no z-norm	z-norm
10^{-4}	0.3640	0.3640	0.4021	0.4021
10^{-3}	0.3650	0.3650	0.4130	0.4130
10^{-2}	0.3611	0.3611	0.4568	0.4568
10^{-1}	0.3641	0.3641	0.8522	0.8522
Binary Logistic Regression Not Prior-Weighted (50 Samples)				
Binary I	$ m Logistic\ Regressi$	on Not Prio	r-Weighted (50	Samples)
	$\omega_{ m ogistic} \; { m Regressi} \ { m min} \Gamma_{ m op}$		$\frac{\text{r-Weighted }(50)}{\text{actD}}$	- /
Binary I λ			<u> </u>	- /
	min I	OCF	actD	CF
λ	minI no z-norm	oCF z-norm	actD no z-norm	CF z-norm
λ 10^{-4}	minL no z-norm	z-norm 0.4466	actD no z-norm 0.9780	CF z-norm 0.9780

Table 5: Show minDCF and actDCF for Binary Logistic Regression Not Prior-Weighted model

Binary Logistic Regression Prior-Weighted

Another possible Logistic Regression approach is that Prior-Weighted; it allows to simulate different priors for class 1. Therefore, the objective function becomes:

$$J(\omega, b) = \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^n \xi_i \log(1 + e^{-z_i(\omega^T x_i + b)}), \quad \xi_i = \begin{cases} \frac{\pi_t}{n_T} & \text{if } z_i = +1(c_i = 1)\\ \frac{1 - \pi_T}{n_F} & \text{if } z_i = -1(c_i = 0) \end{cases}$$
(27)

Now it is possible analyze the results obtained from the Prior-Weighted model with $\pi_T = 0.1$.

Figure 10: Binary Logistic Regression Prior-Weighted

Binary Logistic Regression Prior-Weighted				
$\pi_T = 0.1$				
λ	\mathbf{minDCF}	actDCF		
-10^{-4}	0.3721	0.4071		
10^{-3}	0.3699	0.4129		
10^{-2}	0.3630	0.4487		
10^{-1}	0.3648	0.9147		

Table 6: Show minDCF and actDCF for Binary Logistic Regression Prior-Weighted

The role of the prior is to weight the samples during model training. In particular, samples in the higher priority class receive a higher weight than those in the lower priority class. This can be useful if the dataset is unbalanced, the choice of the prior must be made at the beginning and this choice can affect the model a lot, in fact we may even have a worsening of the model.

Comparing the results obtained in Table 5 and Table 6, there isn't noticeable change in the outcomes on minDCF and actDCF this means that our dataset is not unbalanced. The interesting value to observe is the value of actDCF when $\lambda = 10^{-1}$.

Binary Logistic Regression with Pre-processing (PCA)

In this case, PCA can be applied as pre-processing, and by looking at the values in Table 7, it can be seen that it does not result much improvement of the system.

Figure 11: Binary Logistic Regression applying PCA and z-normalization

	Binary Logistic Regression with PCA			
λ	minΓ	minDCF		CF
^	no z-norm	z-norm	no z-norm	z-norm
		m=5		
10^{-4}	0.3661	0.3661	0.4011	0.4011
10^{-3}	0.3661	0.3661	0.4100	0.4100
10^{-2}	0.3618	0.3628	0.4578	0.4588
10^{-1}	0.3660	0.3660	0.8502	0.8522
		m=6		
10^{-4}	0.3640	0.3640	0.4021	0.4021
10^{-3}	0.3650	0.3650	0.4130	0.4130
10^{-2}	0.3611	0.3611	0.4568	0.4568
10^{-1}	0.3641	0.3641	0.8522	0.8522

Table 7: Show minDCF and actDCF for Binary Logistic Regression applying PCA and with adn withoud z-normalization

5.2.2 Quadratic Logistic Regression

In this step we can analyze training on a Quadratic Logistic Regression model by performing features expansion, so it's possible write log-likelihood ratio as:

$$\log \frac{P(C = h_1|x)}{P(C = h_0|x)} = x^T A x + b^T x + c = s(\mathbf{x}, \mathbf{A}, \mathbf{b}, \mathbf{c})$$
(28)

The Equation 28 is quadratic in x but it's linear in A and b. It can be rewritten to obtain a decision function that is linear for the expanded features space but quadratic in original features space. So we can write features expansion as:

$$\Phi(x) = \begin{bmatrix} vec(xx^T) \\ x \end{bmatrix}, \quad w = \begin{bmatrix} vec(A) \\ b \end{bmatrix}$$
 (29)

where vec(X) in Equation 29 is the operator that stacks the columns of X into a single column vector. In this way we can write the posterior log-likelihood as:

$$s(x, w, c) = s^{T} \phi(x) + c \tag{30}$$

Figure 12: Quadratic Logistic Regression minDCF and actDCF

Quadratic Logistic Regression				
λ	minDCF	actDCF		
$\frac{10^{-4}}{}$	0.2602	0.2768		
10^{-3}	0.2587	0.2765		
10^{-2}	0.2487	0.3464		
10^{-1}	0.2466	0.7520		
Best Result				
$3.162*10^{-2}$	0.2436	0.4972		

Table 8: Show minDCF and actDCF for Quadratic Logistic Regression and best result in logistic regression

Looking the value in Table 8, we can see that this method gives better results than the methods seen before. This is possible because the quadratic method allows us to extract characteristics that are not possible by a linear method.

Summarize

From the results obtained, one can observe:

- The application of z-normalization does not bring any improvements, which means that being a linear transformation didn't change the ability of logistic regression to separate classes, if labels and characteristics are linearly separable.
- Looking at the graphs depicted in Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12, it can be seen that λ significantly affects the performance of the model in term of minDCF and actDCF. In particular, it can be observed that for values above 10^{-1} there is significant degradation, which is why the tables have shown values up to this λ value. This is because, remember that a larger value of λ can lead to overgeneralise resulting, so underfitting. Whereas too small λ can lead to low generalisation and thus to overfitting.
- It can be seen that there is a difference between minDCF and actDCF, which means that the models don't have a good calibration. In our case, Quadratic Logistic Regression seems to give the best results, so we can deduce that the model must be able to capture non-linear relationships between the variables and thus find non-linear separation rules in the feature space.

5.3 Support Vector Machine Classifier

5.3.1 Linear Support Vector Machines

Support Vector Machines are linear classifiers that look for maximum margin separation hyperplanes. The primal formulation of the soft-margin SVM problem consists in minimizing the function:

$$\mathbf{J}(w,b) = \frac{1}{2}||w||^2 + C\sum_{i=1}^{N} \max(0, 1 - z_i(w^T x_i + b))$$
(31)

where in Equation 31 N is the number of training samples, C is the regularization parameter, and z_i is the margin of the i-th sample.

The dual formulation of the problem is:

$$\mathbf{J}(\alpha) = -\frac{1}{2}\alpha^T \mathbf{H} \ \alpha + \alpha^T \mathbf{1} \qquad 1 \le \alpha_i \le C, \ \forall i \in \{1, ..., N\}, \ \sum_{i=1}^n \alpha_i z_i = 0$$
(32)

where H in Equation 32 is $H_{ij} = z_i z_j x_i^T x_j$ and the dual solution is the maximizer of $J^D(\alpha)$. Primal and dual solutions are related through:

$$w^* = \sum_{i=1}^{N} \alpha_i^* z_i x_i \tag{33}$$

In addition it's possible to rewrite dual problem as minimization of:

$$\hat{\mathbf{L}}(\alpha) = -\mathbf{J}(\alpha) = \frac{1}{2}\alpha^T \mathbf{H} \alpha - \alpha^T \mathbf{1}$$
(34)

and it can be minimized by L-BFGS-B algorithm. After that we have calculated the optimal α we can compute w^* .

Figure 13: Shows minDCF and actDCF for Linear SVM

	Linear SVM $K = 1.0$				
C	minDCF	actDCF			
$\frac{10^{-5}}{}$	1.0000	1.0000			
10^{-4}	0.3640	1.0000			
10^{-3}	0.3620	0.9593			
10^{-2}	0.3620	0.6718			
10^{-1}	0.3582	0.5162			
10^{0}	0.3582	0.4894			

Table 9: Show minDCF and actDCF for Linear SVM

5.3.2 Kernel Support Vector Machines

It's possible in Support Vector Machines to use kernels to allow nonlinear classification. In this case there is no explicit expansion of the feature space; we only can calculate the scalar product between the expanded features: $k(x_1, x_2) = \phi(x_1)_T \phi(x_2)$ where k is the kernel function. To do this we need to go and replace H as we saw in the previous section with $\hat{H} = z_i z_j k(x_1, x_2)$. During our project we see two different types of kernels:

- Polynomial kernel of degree d: $k(x_1, x_2) = (x_1^T x_2 + c)^d$
- Radial Basis Function kernel(RBF): $k(x_1, x_2) = e^{-\gamma ||x_1 x_2||^2}$

We can now apply the polynomial kernel to the SVM with $d=2, c=1, \xi=0$ and see how minDCF and actDCF vary as C changes in Figure 14 and Table 10.

Figure 14: Shows minDCF and actDCF with polynomial kernel

Polynon	Polynomial Kernel $d=2, c=1, \xi=0$			
С	actDCF			
10^{-4}	0.2513	1.0000		
10^{-3}	0.2565	0.9196		
10^{-2}	0.2528	0.5884		
10^{-1}	0.2480	0.4109		
10^{0}	0.2582	0.3861		

Table 10: Show minDCF and actDCF for SVM with polynomial kernel

In this case apply a RBF kernel to the SVM with $\xi = 1$, the first thing we consider is which value of γ can give us a better outcome in terms of minDCF and actDCF. Looking at Figure 15, we see that the best solution is given to us by $\gamma = 0.1$.

Figure 15: Shows minDCF and actDCF with polynomial kernel

Now that this consideration has been made, we can specifically represent the values of minDCF and actDCF for values of $\gamma = 0.1$. We can observe this result in Figure 16 and Table 11.

Figure 16: Shows minDCF and actDCF with best RBF kernel

Radial Kernel $\xi = 1\gamma = 0.1$				
C	minDCF	actDCF		
10^{-3}	0.3288	1.0000		
10^{-2}	0.3036	1.0000		
10^{-1}	0.2663	0.9038		
10^{0}	0.2419	0.6033		
10^{1}	0.2388	0.4970		
Best result				
10^{2}	0.1845	0.3581		

Table 11: Show minDCF and actDCF for SVM with best RBF kernel

Summarize

Looking at the outcomes, one can see:

• when parameter C increases, the outcomes become better and also better calibrated because the difference between minDCF and actDCF decreases.

- we can see that outcomes improve when switching from a linear to a polynomial kernel, which confirms
 what we have identified with QLR, namely modelling quadratic relationships between features to improve
 outcomes.
- the case with RBF kernels also confirms that more benefits can be gained from non-linear mapping
- As already mentioned, cases with higher C values improve outcomes and are better calibrated than cases
 with lower C values. But in general, a calibration operation could improve classification even for high C
 values.

5.4 Gaussian Mixture Models Classifier

The last model we are going to consider is a generative model, the Gaussian Mixture Model (GMM). This model is based on the assumption that the data is generated by a mixture of K Gaussian distributions. The GMM density consists of a weighted sum of K Gaussians:

$$\mathbf{X} \sim GMM(\mathbf{M}, \mathcal{S}, w) \implies f_x(x) = \sum_{c=1}^K \mathcal{N}(x|\mu_g, \Sigma_g) w_g$$
 (35)

where $M = [\mu_1...\mu_k]$, $S = [\Sigma_1...\Sigma_k]$ and $w = [w_1...w_k]$ of Equation 35 are the parameters of the model. Gaussian components can be viewed as clusters to which the samples belong (hard or soft), and the cluster label is an unobserved latent random variable. We can also define in this case the responsability term, defined as Equation 36, that represents the posterior probability that a sample belongs to a certain cluster:

$$\gamma(z_{n,i}) = P(G_i = g | X_i = x) = \frac{f_{x_i, G_i}(x_i, g)}{f_{x_i}(x_i)} = \frac{\mathcal{N}(x_i | \mu_g, \Sigma_g) w_g}{\sum_{g'} \mathcal{N}(x_i | \mu_{g'}, \Sigma_{g'}) w_{g'}}$$
(36)

Then assign the sample to the cluster label for which the responsability is highest and re-estimate the model parameters based on the cluster assignment. We can apply the Expectation-Maximization algorithm to estimate the model parameters. The EM algorithm is an iterative algorithm that consists of two steps:

- Expectation stage: estimation of the responsability (given the model parameters (M_t, S_t, w_t))
- Maximization step: estimation of new model parameters using the above statistics, estimation continues from an initial value of the model parameters until a certain criterion is met.

The EM algorithm then requires an initial estimate for the GMM parameters, so we use the LBG algorithm to incrementally construct a GMM with 2G components from a GMM with G components. The starting point will be $(1, \mu, \sigma)$, so we use the empirical mean and covariance matrix of the data set. Then it builds a 2-component model starting from one and from each of the new components 2 more components are generated and so on. GMM can have differents versions as:

- The full covariance model: in this case each component has a full covariance matrix, which means that all possible covariances between the variables are considered.
- The diagonal covariance model: in this setup, the covariance matrix of each component is assumed to be diagonal, which means the variables are considered independent.

As an initial point in our project, we considered having a maximum component number of 32 and using the two methods mentioned above. So at first we evaluated the model where the number of components for class 0 and class 1 were equal, obtaining the results shown in Table 12. Instead, a graphical view of these results can be seen for the Full Covariance method in Figure 17 and in Figure 18 for the Diagonal Covariance method.

Figure 17: Shows minDCF and actDCF for GMM with Full Covariance and same number of components

Figure 18: Shows minDCF and actDCF for GMM with Diagonal Covariance and same number of components

Subsequently, all possible combinations within the maximum value indicated above were tested. Table 13 shows what may be the most significant values. I chose these combinations because (1,16) and (2,16) are the two best combinations for the Full Covariance method, whereas (8,32) and (8,16) are the best for Diagonal Covariance method. Their representation is shown in Figure 19 and Figure 20.

GMM Model						
(nc0, nc1)	Full Cov		Diag Cov			
	minDCF	actDCF	\mathbf{minDCF}	actDCF		
(1, 1)	0.2629	0.3051	0.2570	0.3022		
(2, 2)	0.2170	0.2337	0.2489	0.2674		
(4, 4)	0.2161	0.2395	0.1481	0.1687		
(8, 8)	0.1786	0.1928	0.1463	0.1809		
(16, 16)	0.1631	0.1766	0.1622	0.1769		
(32, 32)	0.2337	0.2499	0.1766	0.1989		

Table 12: Show minDCF and actDCF for same number of components in GMM

Figure 19: Shows minDCF and actDCF for Full Covariance method

Figure 20: Shows minDCF and actDCF for Diagonal Covariance method

GMM Model						
(nc0, nc1)	Full Cov		Diag Cov			
	minDCF	actDCF	minDCF	actDCF		
(1, 16)	0.1495	0.2055	0.1433	0.1807		
(2, 16)	0.1701	0.1980	0.1536	0.1731		
(8, 16)	0.1526	0.1725	0.1324	0.1487		
(8, 32)	0.1745	0.1903	0.1312	0.1517		

Table 13: Show minDCF and actDCF for same number of components in GMM

Summarize

It can be observed from the results obtained that:

- Too high or to low number of components leads to a worsening of the metrics considered.
- The best outcomes show that class 0 requires fewer components, meaning it requires a simpler model. In contrast, for class 1 it is observed that the number of components is greater this requires a more complex

model to avoid underfitting.

- Comparing the outcomes with previously applied methods shows that the performance is better but also better calibrated since the gap between minDCF and actDCF is low.
- GMM seems to prove to be the best performing model on our data set for several reasons. Because the combination of multiple Gaussian distributions allows for better modeling of more complex distributions. Also by estimating Gaussian parameters we can effectively model the distributions of the data we have, even if they are complex. Finally, through cross-validation we can choose the number of components we think is most correct for each class. For all these reasons we can say that in our case this seems to be the model that best fits.

6 Calibration

6.1 Calibration Consideration On Selected Models

Best Models

Taking the best configurations of each method we have:

- Logistic Regression: $\lambda = 3.162 * 10^{-2}$, minDCF is 0.2436 and actDCF is 0.4972
- Support Vector Machine: with RBF Kernel with $\gamma = 0.01$ and C = 100, minDCF is 0.1845 and actDCF is 0.3581
- Gaussian Mixture Model: with Diagonal convolution and (nc0 = 8, nc1 = 32) where nc0 is the number of component for class 0 and nc1 is number of component for class 1, minDCF is 0.1312 and actDCF is 0.1517