1. (4 pts) Provide the structures and names of four (4) structural (constitutional) isomers that are alcohols or phenols and have the molecular formula C<sub>8</sub>H<sub>10</sub>O.

1)



2-ethylphenol





3-ethylphenol





2,3-xylenol



4-ethylphenol

2. (1 pt) Rank the following compounds from most (1) to least (4) acidic.





3. (6 pts) Identify three ways to convert 2-butanol to 2-chlorobutane. Write each reaction. (Hint: some methods may take more than one step)



01/

















## c.

d.

e.

5. (6.5 pts) <u>Draw cyclopentanol</u>. Then, draw the products would you obtain from reaction of cyclopentanol with the following reagents.

b. H<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

c. Na followed by 2-bromopentane







d. Pyridinium chlorochromate (PCC)



| 4a(left)                    |     | 4e | benzyllic |
|-----------------------------|-----|----|-----------|
| 4a(right)                   | - 0 | 5  | 2°        |
| <b>ぺd</b> a (final product) | 2   |    |           |
| 7a                          |     |    |           |

7. (7 pts) Show the reagents required to complete the following synthesis.

$$H_2O$$
 $H_2SOY$ 
 $H_BV$ 
 $Br$ 

8. (3 pts) Show how you would synthesize diisobutyl ether using isobutyl chloride as your only source of carbon (all of the carbon atoms in the product MUST come from isobutyl chloride). You have as much isobutyl chloride as you need.