10 Schedule

Mon, Jul 28	Session
08:00-17:30	Registration Desk Open
08:45-09:00	Conference Opening
09:00-10:00	Plenary Talk by Rohan Sawhney
10:00-10:30	Coffee Break
10:30-12:30	Track A: Stochastic Computation and Complexity, Part I
10:30-12:30	Track B: Domain Uncertainty Quantification
10:30-12:30	Track C: Nested expectations: models and estimators, Part I
10:30-12:30	Track D: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I
10:30-12:30	Track E: Technical Session 1 - Markov Chain Monte Carlo
12:30-14:00	Lunch Break
14:00-15:00	Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences
15:00-15:30	Coffee Break
15:30-17:30	Track F: Stochastic Computation and Complexity, Part II
15:30-17:30	Track G: Recent advances in optimization under uncertainty
15:30-17:30	Track H: Computational Methods for Low-discrepancy Sampling and Applications
15:30-17:30	Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1
15:30-17:30	Track J: Technical Session 12 - PDEs
17:30-19:30	Welcome Reception

${f Tue,Jul29}$	Session
08:30-17:30	Registration Desk Open
09:00-10:00	Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:
	COSIMLA
10:00-10:30	Coffee Break
10:30-12:30	Track A: Stochastic Computation and Complexity, Part III
10:30-12:30	Track B: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part I
10:30-12:30	Track C: Heavy-tailed Sampling
10:30-12:30	Track D: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part I
10:30-12:30	Track E: Technical Session 2 - Bayesian Methods
12:30-14:00	Lunch Break
14:00-15:00	Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and
	Screening: From Monte Carlo to Experimental Design
15:00-15:30	Coffee Break
15:30-17:30	Track F: Stochastic Computation and Complexity, Part IV
15:30-17:30	Track G: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part II
15:30-17:30	Track H: Advances in Rare Events Simulation
15:30-17:30	Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part II
15:30-17:30	Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2

Schedule 11

$\mathbf{Wed},\mathbf{Jul}30$	Session
08:30-16:30	Registration Desk Open
09:00-10:00	Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach
	to quantifying model uncertainty of SDEs
10:00-10:30	Coffee Break
10:30-12:30	Track A: Stochastic Computation and Complexity, Part V
10:30-12:30	Track B: Statistical Design of Experiments
10:30-12:30	Track C: Advances in Adaptive Hamiltonian Monte Carlo
10:30-12:30	Track D: Technical Session 15 - Simulation
10:30-12:30	Track E: Technical Session 6 - Sampling
12:30-14:00	Lunch Break
14:00-16:00	Track F: Stochastic Optimization
14:00-16:00	Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications
14:00-16:00	Track H: Monte Carlo Applications in High-performance Computing, Computer
	Graphics, and Computational Science
14:00-16:00	Track I: Technical Session 16 - Statistics
14:00-16:00	Track J: Technical Session 10 - Langevin
16:00-16:30	Coffee Break
18:00-20:30	Conference Dinner

Thu, Jul 31	Session
08:30-17:30	Registration Desk Open
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-
	ods and Optimization Strategies
10:00-10:30	Coffee Break
10:30-12:30	Track A: QMC and Applications Part I
10:30-12:30	Track B: Analysis of Langevin and Related Sampling Algorithms, Part I
10:30-12:30	Track C: Nested expectations: models and estimators, Part II
10:30-12:30	Track D: Technical Session 8 - Finance
10:30-12:30	Track E: Technical Session 13 - ML & Optimization
12:30-14:00	Lunch Break
14:00-15:00	Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte
	Carlo and its application to exact ecological inference
15:00-15:30	Coffee Break
15:30-17:30	Track F: QMC and Applications Part II
15:30-17:30	Track G: Analysis of Langevin and Related Sampling Algorithms, Part II
15:30-17:30	Track H: Recent Advances in Stochastic Gradient Descent
15:30-17:30	Track I: Technical Session 7 - Sampling
15:30-17:30	Track J: Technical Session 11 - SDEs
18:00-20:30	Steering Committee Meeting (by invitation)

Fri, Aug 1	Session
08:30-12:15	Registration Desk Open
09:00-10:30	Track A: Forward and Inverse Problems for Stochastic Reaction Networks
09:00-10:30	Track B: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II
09:00-10:30	Track C: Technical Session 3 - Simulation
09:00-10:30	Track D: Technical Session 9 - Sampling
09:00-10:30	Track E: Technical Session 14 - Markov Chain Monte Carlo
10:30-11	Coffee Break
11:00-12:00	Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference
12:00-12:15	Closing Remarks

b
\vdash
•=
\Box
ت
ornin
. •
Ž
_
- 1
- 1
10
77
C
2025
\sim
61
_
$\frac{28}{9}$
W
\sim
٠,
$\overline{}$
Jul
_

				TBD	Track E: Technical Session	1 - Markov Chain Monte	Carlo	Chair: TBD	Zhihao Wang,	Stereographic Multi-Try	Metropolis Algorithms for	Heavy-tailed Sampling,	Ruben Seyer, Creating	rejection-free samplers by	rebalancing skew-balanced	jump processes, p. 138			i	Philippe Gagnon,	Theoretical guarantees for	litted samplers, p. 139							
				Special Session, TBD	Track D: Hardware or	Software for	(Quasi-)Monte Carlo	Algorithms, Part I, p. 35 Chair: TBD	Pieterjan Robbe,	Multilevel quasi-Monte	Carlo without replications,	p. 80	Irina-Beatrice Haas, A	nested Multilevel Monte	Carlo framework for	efficient simulations on	FPGAs, p. 80			Mike Giles, CUDA	implementation of MLMC	on NVIDIA GPUs, p. 81			Chung Ming Loi, Scalable	and User-Iriendly QMC Sampling with UMBridge.	p. 82		
				Special Session, TBD	Track C: Nested	expectations: models and	estimators, Part I, p. 34	Chair: TBD	Abdul Lateef Haji Ali, An	Adaptive Sampling	Algorithm for Level-set	Approximation, p. 77	Sebastian Krumscheid,	Double-loop randomized	quasi-Monte Carlo	estimator for nested	integration, p. 77		;	Vinh Hoang,	Posterior-Free A-Optimal	Bayesian Design of	Experiments via	Conditional Expectation, p. 78	Vesa Kaarnioja, QMC for	Bayesian optimal experimental design with	application to inverse	problems governed by	rues, p. 19
		? Chair:		Special Session, TBD	Track B: Domain	Uncertainty Quantification	, p. 33	Chair: TBD	André-Alexander	Zepernick, Domain UQ	for stationary and	time-dependent PDEs	Carlos Jerez-Hanckes,	Domain Uncertainty	Quantification for	Electromagnetic Wave	Scattering via First-Order	Sparse Boundary Element	Approximation, p. 75	Jürgen Dölz, Quantifying	uncertainty in spectral	clusterings: expectations	for perturbed and	mcomplete data, p. 10	Harri Hakula, Model	Problems for PDEs on Uncertain Domains, p. 76			
Registration Desk Open	Conference Opening	Plenary Talk: TBD, p. ??	Coffee Break	Special Session, TBD	Track A: Stochastic	Computation and	Complexity, Part I, p. 32	Chair: TBD	Andreas Neuenkirch, A	strong order 1.5 boundary	preserving discretization	scheme for scalar SDEs defined in a domain, p. 72	Christopher Rauhögger,	An adaptive Milstein-type	method for strong	approximation of systems	of SDEs with a	discontinuous drift		Verena Schwarz, Stong	order 1 adaptive	approximation of	jump-diffusion SDEs with	discontinuous dime, p. 19					
08:00-17:30	08:45-09:00	9:00 - 10:00	10:00-10:30						10:30-12:30				10:30–12:30							10:30–12:30					10:30-12:30				

Jul~28,~2025-Afternoon

		TBD Track J: Technical Session 12 - PDEs Chair: TBD	Adrien Richou, A probabilistic Numerical method for semi-linear elliptic Partial Differential Equations, p. 170	Abdujabar Rasulov, Monte Carlo method for the Spatially Homogenous Boltzmann equation, p. 170	Miguel Alvarez, A New Approach for Unbiased Estimation of Parameters of Partially Observed Diffusions, p. 171	Håkon Hoel, High-order adaptive methods for exit times of diffusion processes and reflected diffusions, p. 172	
equences, p. 22 Chair:	4	TBD Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 Chair: TBD	Christian Weiss, Halton Sequences, Scrambling and the Inverse Star-Discrepancy, p. 147	Xiaoda Xu, Star discrepancy and uniform approximation under weighted simple and stratified random sampling , p. 148	Sifan Liu, Transport Quasi-Monte Carlo, p. 149	Ambrose Emmett-Iwaniw, Using Normalizing Flows for Efficient Quasi-Random Sampling for Copulas, p. 150	4
of Waterloo, Golden ratio nets and sequences, p. 22		Special Session, TBD Track H: Computational Methods for Low-discrepancy Sampling and Applications, p. 39 Chair: TBD	François Clément, Searching Permutations for Constructing Low-Discrepancy Point Sets and Inverstigating the Kritzinger Sequence, p. 88	Nathan Kirk, Minimizing the Stein Discrepancy, p. 89	Makram Chahine, Improving Efficiency of Sampling-based Motion Planning via Message-Passing Monte Carlo, p. 89	Gregory Seljak, An Empirical Evaluation of Robust Estimators for RQMC, p. 90	
$\it Christiane\ Lemieux,\ U\ of\ Waterloo$		Special Session, TBD Track G: Recent advances in optimization under uncertainty, p. 38 Chair: TBD	Tapio Helin, Stability of Expected Utility in Bayesian Optimal Experimental Design, p. 85	Karina Koval, Subspace accelerated measure transport methods for fast and scalable sequential experimental design, p. 86	Johannes Milz, Randomized quasi-Monte Carlo methods for risk-averse stochastic optimization, p. 87	Arved Bartuska, Efficient expected information gain estimators based on the randomized quasi-Monte Carlo method, p. 87	7
Lunch Break Plenary Talk: Christiane		Special Session, TBD Track F: Stochastic Computation and Complexity, Part II, p. 37 Chair: TBD	Michael Gnewuch, Optimality of deterministic and randomized QMC-cubatures on several scales of function spaces, p. 82	Kateryna Pozharska, Optimal designs for function discretization and construction of tight frames, p. 84	Leszek Plaskota, Complexity of approximating piecewise smooth functions in the presence of deterministic or random noise, p. 85		., .
12:30–14:00 14:00–15:00	15:00-15:30		15:30–17:30	15:30–17:30	15:30–17:30	15:30–17:30	7 00 7

Jul 29, 2025 - Morning

	Chair.		TBD	Track E: Technical Session	2 - Bayesian Methods Chair: <i>TBD</i>		Lorenzo Nagar,	Optimizing Ceneralized Hamiltonian Monte Carlo for Bayesian Inference	applications, p. 140	$Hamza\ Ruzayqat,$	Bayesian Anomaly	Detection in Variable-Order and	Variable-Diffusivity	Fractional Mediums, p. 141	Arghya Datta, Theoretical	Guarantees of Mean Field	Valiational Interence 101 Bayesian Principal	Component Analysis,	p. 142	Jimmy Lederman,	Bayesian Analysis of Latent Underdispersion	Using Discrete Order	Judinous, p. 174
	Alnebra: COSIMIA n 23		Special Session, TBD	Track D: Frontiers in	(Quasi-)Monte Carlo and Markov Chain Monte	Carlo Methods, Fart 1, p. 46 Chair: TBD	Hwanwoo Kim, Enhancing	Gaussian Frocess Surrogates for Optimization and	Posterior Approximation via Random Exploration, p. 98														
	Combining Simulation and Linear Algebra: COSIMLA v 23		Special Session, TBD	Track C: Heavy-tailed	Sampling, p. 44 Chair: <i>TBD</i>		Sebastiano Grazzi,	Faranei computations for Metropolis Markov chains Based on Picard maps,	p. 95	Federica Milinanni, A	large deviation principle	tot ivrettopous-mastings sampling p. 96) A (0		Xingyu Wang, Sharp	Characterization and	Dynamics of SGDs with	Heavy Tails, p. 97					
0	Open Peter Chun, Stanford II, Combinin		Special Session, TBD	Track B: Next-generation	optimal experimental design: theory, scalability,	and real world impact: Part I, p. 42 Chair: TBD	Xun Huan, Optimal Pilot	Sampling for Mutti-naenty Monte Carlo Methods, p. 93		Adrien Corenflos, A	recursive Monte Carlo	approach to optimal Bavesian experimental	design, p. 94	· · · · · · · · · · · · · · · · · · ·	Ayoub Belhadji, Weighted	quantization using MMD:	shift via gradient flows.	p. 94					
	Registration Desk Open Plenary Talk: Peter Glan		Special Session, TBD	Track A: Stochastic	Computation and Complexity, Part III, p. 41	Chair: 15D	Jean-François	Chassagneux, Computing the stationary measure of McKean-Vlasov SDEs,	p. 91	Noufel Frikha, On the	convergence of the	for McKean-Vlasov SDFs.	p. 91	1	Sotirios Sabanis,	Wasserstein Convergence	of Score-based Generative Models under	Semiconvexity and	Discontinuous Gradients, p. 92				
11	08:30-17:30	10:00-10:30					10:30-12:30			10.30 - 12.30					10:30-12:30					10:30–12:30			

to Comp to Tomorimontal	te carto to Experimental		TBD	Track J: Technical Session 5 - Onesi-Monte Carlo	Part 2	Chair: TBD		$Peter\ Kritzer,$	Approximation using	median lattice algorithms,	р. 191	Yang Liu, Convergence	Rates of Randomized	Quasi-Monte Carlo	Methods under Various	Regularity Conditions, p. 151	Jakob Dilen, Use of rank-1	lattices in the Fourier	neural operator, p. 192				Aadit Jain, Investigating	the Optimum RQMC	Batch Size for Betting and	Empirical Bernstein	Confidence Intervals,	p. 192
and Concoming. Imam Mon	and Screening. From Mon		Special Session, TBD	Track I: Frontiers in	Markov Chain Monte	Carlo Methods, Part II,	p. 91 Chair: <i>TBD</i>	Takashi Goda,	Quasi-uniform	quasi-Monte Carlo digital	neus, p. 100	Ziang Niu, Boosting the	inference for generative	models by (Quasi-)Monte	Carlo resampling, p. 106		Chenyang Zhong, A hit	and run approach for	sampling and analyzing	ranking models, p. 101								
f Tooks Och Consitinity	institute of rectitionogy, Bensittority and Bereening. From Monte Carto to Experimental		Special Session, TBD	Track H: Advances in Rare	Chair: TBD			Victor Elvira, Multiple	Importance Sampling for	Commission Suntain	communication systems, p. 103	Bruno Tuffin, Asymptotic	robustness of smooth	functions of rare-event	estimators, p. 103		Eya Ben Amar,	Importance Sampling	Methods with Stochastic	the Estimation of the	Right Tail of the CCDF of	the Fade Duration, p. 104	Shyam Mohan Subbiah	Pillai, Estimating rare	event probabilities	associated with	McKean-Vlasov SDEs,	p. 104
	Chair:		Special Session, TBD	Track G: Next-generation	design: theory, scalability,	and real world impact:	rarun, p. 40 Chair: <i>TBD</i>	Alen Alexanderian, Goal	Oriented Sensor Placement	lor infinite-Dimensional Barrellon Introng Problems	payesian inverse riobiems, p. 100	llo,	Diffusion-Based Bayesian	Experimental Design:	Advancing BED for	Fractical Applications, p. 101	$Tommie\ Catanach,$	Robust Bayesian Optimal	Experimental Design	Missnosifoation n 109	iviisspeciiication, p. 102							
Lunch Break		Coffee Break	Special Session, TBD	Track F: Stochastic	Complexity, Part IV, p. 47	Chair: TBD		Larisa Yaroslavtseva,	Optimal strong	approximation of SDEs	drift coefficient, p. 98	$Gunther\ Leobacher,$	Tractability of	L_2 -approximation and	integration in weighted	nermite spaces of finite smoothness, p. 99	Alexander Steinicke,	Malliavin differentiation of	Lipscillez SDES and RCDFs and an Application	to Oughetic	Forward-Backward SDES	p. 100						
12:30–14:00	14.00-19.00	15:00-15:30						15:30–17:30				15:30–17:30					15:30–17:30						15:30–17:30					

Jul~30,~2025-Morning

odel uncertainty of		TBD Track E: Technical Session 6 - Sampling Chair: TBD	Akash Sharma, Sampling with constraints, p. 153	Joonha Park, Sampling from high-dimensional, multimodal distributions using automatically tuned, tempered Hamiltonian Monte Carlo, p. 154	Arne Bouillon, Localized consensus-based sampling for non-Gaussian distributions, p. 155	Alex Shkolnik, Importance Sampling for Hawkes Processes, p. 155
approach to quantifying m		TBD Track D: Technical Session 15 - Simulation Chair: TBD	Philippe Blondeel, Combining quasi-Monte Carlo with Stochastic Optimal Control for Trajectory Optimization of Autonomous Vehicles in Mine Counter Measure Simulations, p. 179	Rino Persiani, A Monte Carlo Approach to Designing a Novel Sample Holder for Enhanced UV-Vis Spectroscopy, p. 180	Prasanth Shyamsundar, ARCANE Reweighting: A technique to tackle the sign problem in the simulation of collider events in high energy physics, p. 181	Nicole Aretz, Multifidelity and Surrogate Modeling Approaches for Uncertainty Quantification in Ice Sheet Simulations, p. 182
of Klagenfurt, An optimal transport approach to quantifying model uncertainty of		Special Session, TBD Track C: Advances in Adaptive Hamiltonian Monte Carlo, p. 56 Chair: TBD	Bob Carpenter, GIST: Gibbs self-tuning for locally adapting Hamiltonian Monte Carlo, p. 113	Nawaf Bou-Rabee, Acceleration of the No-U-Turn Sampler, p. 113	Chirag Modi, ATLAS: Adapting Trajectory Lengths and Step-Size for Hamiltonian Monte Carlo, p. 114	Trevor Campbell, AutoStep: Locally adaptive involutive MCMC, p. 115
k Open Michaela Szölgyenyi, U of Klagenfr Chair:		Special Session, TBD Track B: Statistical Design of Experiments, p. 54 Chair: TBD	Simon Mak, Respecting the boundaries: Space-filling designs for surrogate modeling with boundary information, p. 110	Chih-Li Sung, Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy, p. 111	Qian Xiao, Optimal design of experiments with quantitative-sequence factors, p. 112	Chaofan Huang, Factor Importance Ranking and Selection using Total Indices, p. 112
Registration Desk Open Plenary Talk: Michaela SDEs, p. 25 Chair:	Coffee Break	Special Session, TBD Track A: Stochastic Computation and Complexity, Part V, p. 53 Chair: TBD	Stefan Heinrich, On the quantum complexity of parametric integration in Sobolev spaces, p. 108	Bernd Käßemodel, Quantum Integration in Tensor Product Besov Spaces, p. 108	Nikolaos Makras, Taming the Interacting Particle Langevin Algorithm — The Superlinear Case, p. 109	Iosif Lytras, Sampling with Langevin Dynamics from non-smooth and non-logconcave potentials., p. 109
08:30–16:30 09:00–10:00	10:00-10:30		10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

Jul~30,~2025-Afternoon

12:30-14:00	Lunch Break				
	Special Session, TBD Track F: Stochastic Optimization, p. 58 Chair: TBD	Special Session, TBD Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications, p. 59 Chair: TBD	Special Session, TBD Track H: Monte Carlo Applications in High-performance Computing, Computer Graphics, and Computational Science, p. 61 Chair: TBD	TBD Track I: Technical Session 16 - Statistics Chair: TBD	TBD Track J: Technical Session 10 - Langevin Chair: TBD
14:00–16:00	Raghu Bollapragada, Monte Carlo Based Adaptive Sampling Approaches for Stochastic Optimization, p. 115	Haotian Jiang, Algorithmic Discrepancy Theory: An Overview, p. 117	Arash Fahim, Gaining efficiency in Monte Carlo policy gradient methods for stochastic optimal control, p. 118	Kazeem Adeleke, Empirical Statistical Comparative Analysis of SNP Heritability Estimators and Gradient Boosting Machines (GBM) Using Genetic Data from the UK Biobank, p. 182	Attila Lovas, Stochastic gradient Langevin dynamics with non-stationary data, p. 164
14:00–16:00	Shane Henderson, A New Convergence Analysis of Two Stochastic Frank-Wolfe Algorithms, p. 116	Peng Zhang, Improving the Design of Randomized Experiments via Discrepancy Theory, p. 117	Silei Song, WoS-NN: Collaborating Walk-on-Spheres with Machine Learning to Solve Ellip- tic PDEs, p. 119	Carles Domingo-Enrich, Cheap permutation testing , p. 183	Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 165
14:00–16:00		Aleksandar Nikolov, Online Factorization for Online Discrepancy Minimization, p. 118		Christopher Draper, Moving PCG beyond LCGs, p. 184	
14:00–16:00				Yiming Xu , Hybrid least squares for learning functions from highly noisy data, p. 184	
$16:00-16:30\\18:00-20:30$	Coffee Break Conference Dinner				

Jul~31,~2025-Morning

	Strategies, p. 26		TBD Track E: Technical Session 13 - ML & Optimization Chair: TBD	Frédéric Blondeel, Learning cooling strategies in simulated annealing through binary interactions, p. 173	Du Ouyang, Accuracy of Discretely Sampled Stochastic Policies in Continuous-Time Reinforcement Learning, p. 174	Wei Cai, Martingale deep neural networks for quasi-linear PDEs and stochastic optimal controls in 10,000 dimensions, p. 175	Yiqing Zhou, Minimizing Functions with Sparse Samples: A Fast Interpolation Approach, p. 175
	Methods and Optimization		TBD Track D: Technical Session 1 1 1 1 1 1 1 1 1	Matyokub Bakoev, The Stochastic Differential I Equations of the Heston in Model for Option Pricing, tp. 159	Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion Expectation-based Simulations on Low-Volatility American F Common Stocks, p. 160	Hao Quan, Efficient Pricing for Variable n Annuity via Simulation, q p. 162 s in	F F S S S T I I I I I I I I I I I I I I I I
	Plenary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization Strategies, p. 26 Chair:		Special Session, TBD Track C: Nested expectations: models and estimators, Part II, p. 64 Chair: TBD	RAUL TEMPONE, Multilevel randomized S quasi-Monte Carlo estimator for nested I expectations, p. 124	Matteo Raviola, Stochastic gradient with least-squares control variates, p. 125	Philipp Guth, A one-shot I method for Bayesian optimal experimental design, p. 126	
	ık, UC Berkeley, Gradient		Special Session, TBD Track B. Analysis of Langevin and Related Sampling Algorithms, Part I, p. 63 Chair: TBD	Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 122	litting tochastic ithms,	Xiaoou Cheng, Delocalization of Bias in Unadjusted Hamiltonian Monte Carlo, p. 124	
Registration Desk Open	Plenary Talk: Uros Selja Chair:	Coffee Break	Special Session, TBD Track A: QMC and Applications Part I, p. 62 Chair: TBD	Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 120	Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 121	Zhijian He, High-dimensional density estimation on unbounded domain, p. 121	Frances Y. Kuo, Application of QMC to Oncology, p. 122
08:30-17:30	09:00-10:00	10:00-10:30		10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

	dication to exact		TBD Track J: Technical Session 11 - SDEs Chair: TBD	Fabio Zoccolan, Dynamical Low-Rank Approximation for SDEs: an interacting particle-system ROM, p. 166	Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 168	Leon Wilkosz, Forward Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 169		
	Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact ence, p. 28 Chair:		TBD Track I: Technical Session 7 - Sampling Chair: TBD	Kun-Lin Kuo, Revisiting the Gibbs Sampler: A Conditional Modeling Perspective, p. 156	Sascha Holl, Concatenation of Markov processes for Monte Carlo Integration, p. 156	Josephine Westermann, Polynomial approximation for efficient transport-based sampling, p. 158	Soumyadip Ghosh, Fast Approximate Matrix Inversion via MCMC for Linear System Solvers, p. 158	
	ique de Paris, Saddlepoint		Special Session, TBD Track H: Recent Advances in Stochastic Gradient Descent, p. 67 Chair: TBD	Jose Blanchet, Inference for Stochastic Gradient Descent with Infinite Variance, p. 131	Jing Dong, Stochastic Gradient Descent with Adaptive Data, p. 132			
	<i>Phopin, Institut Polytechni</i> Chair:		Special Session, TBD Track G: Analysis of Langevin and Related Sampling Algorithms, Part II, p. 66 Chair: TBD	Molei Tao, Langevin-Based Sampling under Nonconvex Constraints, p. 129	Yifan Chen, Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias, p. 129	Fuzhong Zhou, Entropy methods for the delocalization of bias in Langevin Monte Carlo, p. 130	Siddharth Mitra, Convergence of Ф-Divergence and Ф-Mutual Information Along Langevin Markov Chains, p. 130	(by invitation)
	Plenary Talk: Nicolas C ecological inference, p. 28	Coffee Break	Special Session, TBD Track F: QMC and Applications Part II, p. 65 Chair: TBD	Dirk Nugens, Approximation of multivariate periodic functions, p. 126	Art Owen, Randomized QMC with one categorical variable, p. 127	Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 128	Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 128	Steering Committee Meeting (by invitation)
12:30-14:00	14:00–15:00	15:00-15:30		15:30–17:30	15:30–17:30	15:30–17:30	15:30–17:30	18:00-20:30

2025	
-	
Ang	0

08:30_19:15	Bowistration Dock Onen				
00:00	Crocial Session TBD	Special Session TBD	TBD	TBD	TBD
	Trook A. Rommond and	Trook B. Hordman or	Track C. Toobnieed Section	Track D. Toohnised Cossion	Trook T. Toohniool Section
	I.ack A. Fulward and	G-6 f	11ack C. recillical Dession	o g1:	14 Medical Session
	Inverse Problems for	Soltware Ior	3 - Simulation	9 - Sampling	14 - Markov Chain Monte
	Stochastic Reaction	(Quasi-)Monte Carlo	Chair: TBD	Chair: TBD	
	Networks, p. 68	Algorithms, Part II, p. 69			Chair: TBD
	Chair: TBD	Chair: IBU			
09:00-10:30	Zhou Fang, Fixed-budget	Niklas Baumgarten, A	Yashveer Kumar, Monte	$Nicola\ Branchini,$	Kevin Bitterlich, Delayed
	simulation method for	High-performance	Carlo simulation approach	Revisiting self-normalized	Acceptance Slice
	growing cell populations,	Multi-level Monte Carlo	to solve distributed order	importance sampling: new	Sampling: A Two-Level
	n 132	Software for Full Field	fractional mathematical	methods and diagnostics	method for Improved
			model is 144	169	Figures in Improve
		Estimates and	1110de1, p. 144	p. 102	Emiciency III
		Applications in Optimal			High-Dimensional Settings
		Control, p. ??			, p. 176
09:00-10:30	$Sophia\ M\"{u}nker,$	$Aleksei\ Sorokin,$	$Serena\ Fattori,$	$Daniel\ Yukimura,$	$Reuben\ Cohn$ -Gordon,
	Dimensionality Reduction	Quasi-Monte Carlo	Benchmarking the	Quantitative results on	Gradient-based MCMC in
	for Efficient Bare Event	Generators.	Geant 4-DNA 'UHDB'	sampling from	high dimensions. p. 177
	Fetimation n 133	Randomization Routings	Evenue for Monte Carlo	Ameri etationam	
	Estimation, p. 199	Ivaliuolinization Ivoutilles,	c: 17: c II B&	quasi-stationaly	
		and Fast Kernel Methods,	Simulation of pH Effects	distributions, p. 163	
		p. 135	on Radiolytic Species		
			Yields Using a Mesoscopic		
			Approach, p. 144		
09:00-10:30	Maksim Chupin, Filtered	Johannes Krotz, Hybrid	Toon Ingelaere, Multilevel	Amit Subrahmanya, Serial	Philip Schaer, Parallel
	Markovian Projection:	Monte Carlo methods for	simulation of ensemble	ensemble filtering with	Affine Transformation
	Dimensionality Reduction	kinetic transport, p. 136	Kalman methods:	marginal coupling, p. 164	Tuning: Drastically
	in Filtering for Stochastic	1 1	interactions across levels		Improving the
	Rosetion Notworks n 124		116 months across 10 months 116 m		Effectiveness of Clice
	reaction incomplies, p. 194		P: 140		Compling n 178
					Samping, p. 116
09:00-10:30	Muruhan Kathınam, State		Muhammad Noor ul Amın,		Annabelle Carrell,
	and parameter inference in		Adaptive Max-EwiMA		Low-Kank Innning,
	stochastic reaction		Control Chart with SVK:		p. 179
	networks, p. 135		Monte Carlo Simulation		
			for Run Length Analysis,		
			p. 146		
	Coffee Break				
11:00-12:00	Plenary Talk: Veronika	Ročková, U of Chicago,	Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference, p. 30	rence, p. 30 Chair:	
19,00 19,18			,		