CLASS: More on Quantified Statements

Due Jan 25 at 11:59pm **Points** 5 **Questions** 5 **Time Limit** None

Allowed Attempts Unlimited

Instructions

Have your Math 22 notebook prepared to write the definition and the examples.

This is CLASS assignment is a continuation to the quantifies statements.

You have multiple attempts in answering the question

<u>Truth and Falsity of Quantifies Statements</u> <u>→ (https://www.youtube.com/watch?v=WuV7meVTTKk)</u>

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	3 minutes	5 out of 5

(!) Correct answers are hidden.

Score for this attempt: **5** out of 5 Submitted Jan 25 at 4:49pm This attempt took 3 minutes.

Question 1 1 / 1 pts

Negation of Quantified Statements \Rightarrow

(https://www.youtube.com/watch?

v=jVNubvMSjoo&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=99)

The logic of quantified statements Note.pdf (https://deanza.instructure.com/courses/33250/files/10766771?wrap=1) (https://deanza.instructure.com/courses/33250/files/10766771/download? download_frd=1)			
Now answer the following question: What is the negation of a universal statement?			
Conditional statement			
 Universal statement 			
Existential statement			
Biconditional Statement			

Question 2	1 / 1 pts			
Negation of Quantified Statements (https://www.youtube.com/watch? v=jVNubvMSjoo&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUko	ղ <u>fh&index=99)</u>			
The logic of quantified statements Note.pdf (https://deanza.instructure.com/courses/33250/files/10766771?wrap=1) (https://deanza.instructure.com/courses/33250/files/10766771/download? download_frd=1)				
Now answer the following question:				
What is the negation of "If P then Q"?				
O Not P then not Q				
O Not P then Q				
O Not P or Q				

P and not Q

1 / 1 pts **Question 3** Vacuously True ⇒ (https://www.youtube.com/watch? v=yG4UFZrlnxw&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=100) The logic of quantified statements Note.pdf (https://deanza.instructure.com/courses/33250/files/10766771?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10766771/download? download_frd=1) Now answer the following question: In general, a statement of the form $\forall x \text{ in } D, \text{ if } P(x) \text{ then } Q(x)$ is called **vacuously true** or **true by default** if, and only if, P(x) is false for every x in D. Which statement is vacuously true? \bigcirc If p(x) is false for some x in the domain If p(x) is false for all x in the domain \bigcirc If p(x) is true for all x in the domain

Question 4 1 / 1 pts

<u>Vacuously True</u> ⇒ (https://www.youtube.com/watch? <u>v=yG4UFZrlnxw&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=100</u>)

Quiz Score: 5 out of 5