Session 06 Outliers (finishing up) and privacy in action

Outliers

- We'll be looking at outliers in the bysykkel data.
- We'll be looking for a appropriate distribution to model trip duration
- We'll do clustering on the trip data (mainly to use more of Sklearn)

Log-normal distribution

Reminder: If X is log-normal distributed, then

$$Y = \ln(X)$$

is normal distributed.

Chi-square distribution

Reminder: If $Z_i, i=1,\ldots,k$ are normal distributed, then

$$Y = \sum_i X_i^2$$

is χ^2 distributed.

Not normally used to model observations, but for hypothesis testing and confidence intervals.

Privacy: Randomization

ϵ -differential privacy

Let ϵ be positive, real, and \mathcal{A} be a randomized algorithm. \mathcal{A} provides ϵ -differential privacy if for all D_1 , D_2 that differ by one element, and all subsets S of $\operatorname{im} \mathcal{A}$

$$\Pr[\mathcal{A}(D_1) \in S] \leq \exp(\epsilon) \cdot \Pr[\mathcal{A}(D_2) \in S]$$

 ϵ -differential privacy gives strong guarantees regarding strength and robustness.

Intuition

Give each individual roughly the same privacy that would result from having their data removed from the set.

Randomization

Given a sensitive (binary) variable and a person queried about that variable,

- 1. Toss a coin.
- 2. If heads up, answer honestly.
- 3. Else, answer randomly by coin toss.

This mechanism provides ϵ -differential privacy, excluding micro-data releases.