Implementação de um Processador de 8 bits - Logisim

Step-by-Step Design and Simulation of a Simple CPU
Architecture

Allex Lima Paulo Moraes Renan Barroncas

Bacharelado em Engenharia da Computação Escola de Exatas Centro Universitário do Norte - UniNorte Laureate

Organização e Arquitetura de Computadores, 2016

Introdução

Implementação do Projeto

Uma ULA simples

O Datapath da CPU

A Unidade de Controle

Combinações de processo

Uma breve introdução

Derek C. Schuurman, Ph.D., P.Eng. Professor of Computer Science Redeemer University College Phone: (905) 648-2131 ext. 4273 Office: 221H e-mail: dschuurman (at) cs.redeemer.ca

twitter: @DerekSchuurman

Computer science curriculum, 2008

"A professional in any field of computing should not regard the computer as just a black box that executes programs by magic ... Students need to understand computer architecture in order to make best use of the software tools and computer languages they use to create programs"

Introdução

Implementação do Projeto Uma ULA simples

O Datapath da CPU A Unidade de Controle Combinações de processo

Modelo Teórico

Diagrama de Blocos

Tabela Verdade

F2	F1	F0	Output
0	0	0	А
0	0	1	В
0	1	0	A+1
0	1	1	B+1
1	0	0	A + B
1	0	1	A - B
1	1	0	A <i>AND</i> B
1	1	1	А <i>ОR</i> В

Implementação no Logisim

Diagrama de Blocos

Introdução

Implementação do Projeto

Uma ULA simples

O Datapath da CPU

A Unidade de Controle Combinações de process

O modelo utilizado

F210 Reg. Write L. B Bus S.

Clock DATAPATH

MBR

Clear DT AD Output Input

- A ULA sempre terá o registrador A associado a uma de suas entradas;
- A outra entrada da ULA possui como origem:
 - O registrador B;
 - ► O MBR;
 - ► O PC; ou
 - Uma fonte externa.
- A saída da ULA terá como destino o registrador que estiver habilitado a receber dados (write ativo).

O modelo utilizado

Output Input

Clear DT AD

- A ULA sempre terá o registrador A associado a uma de suas entradas;
- A outra entrada da ULA possui como origem:
 - O registrador B;
 - ► O MBR;
 - ► O PC; ou
 - ▶ Uma fonte externa.
- A saída da ULA terá como destino o registrador que estiver habilitado a receber dados (write ativo).

O modelo utilizado

Output Input

Clear DT AD

- A ULA sempre terá o registrador A associado a uma de suas entradas:
- A outra entrada da ULA possui como origem:
 - O registrador B;
 - ► O MBR:
 - ► O PC; ou
 - Uma fonte externa.
- A saída da ULA terá como destino o registrador que estiver habilitado a receber dados (write ativo).

Introdução

Implementação do Projeto

Uma ULA simples

O Datapath da CPU

A Unidade de Controle

Combinações de processo

- ► Uma ROM (*Read Only Memory*) de 32x24-bits é utilizada para armazenar o *microprogama*;
- O registrador MPC contém os 5 bits do endereço da instrução;
- O seletor JMPC irá encaminhar para o MPC um endereço do MBR ou da próxima instrução;
- ▶ O MIR armazena os 16 bits da instrução em si;
- ▶ O MPC e o MIR são atualizados a cada *clock*;

- ► Uma ROM (*Read Only Memory*) de 32×24-bits é utilizada para armazenar o *microprogama*;
- O registrador MPC contém os 5 bits do endereço da instrução;
- O seletor JMPC irá encaminhar para o MPC um endereço do MBR ou da próxima instrução;
- ▶ O MIR armazena os 16 bits da *instrução em si*;
- ▶ O MPC e o MIR são atualizados a cada clock;

- ► Uma ROM (*Read Only Memory*) de 32x24-bits é utilizada para armazenar o *microprogama*;
- O registrador MPC contém os 5 bits do endereço da instrução;
- O seletor JMPC irá encaminhar para o MPC um endereço do MBR ou da próxima instrução;
- ▶ O MIR armazena os 16 bits da *instrução em si*;
- ▶ O MPC e o MIR são atualizados a cada *clock*;

- ► Uma ROM (*Read Only Memory*) de 32x24-bits é utilizada para armazenar o *microprogama*;
- O registrador MPC contém os 5 bits do endereço da instrução;
- O seletor JMPC irá encaminhar para o MPC um endereço do MBR ou da próxima instrução;
- O MIR armazena os 16 bits da instrução em si;
- ▶ O MPC e o MIR são atualizados a cada *clock*;

- ► Uma ROM (*Read Only Memory*) de 32x24-bits é utilizada para armazenar o *microprogama*;
- O registrador MPC contém os 5 bits do endereço da instrução;
- O seletor JMPC irá encaminhar para o MPC um endereço do MBR ou da próxima instrução;
- O MIR armazena os 16 bits da instrução em si;
- ▶ O MPC e o MIR são atualizados a cada clock;

- Os bits que encontram-se no MIR poussem a organização:
 - ► Endereço: 5 bits;
 - Seletor JMPC (J): 1 bit;
 - Controladores da ULA: 3 bits;
 - Controle de escrita: 5 bits; e
 - Seletor da entrada B da ULA: 2 bits.

Assembly	Binary					Hexadecima	
input .r, <value></value>	##### O		001	000RR	11	vvvvvvv	
print .r	#####	Θ	00L	10000	00	00000000	
add .r0, .rl	#####	Θ	100	000RR	00	00000000	
sub .r0, .r1	#####	0	101	000RR	00	00000000	
mov .r0, .r1	#####	Θ	00L	000RR	00	00000000	
inc .r	#####	Θ	ΘIC	000RR	00	00000000	
and	#####	0	110	10000	00	00000000	
or	#####	Θ	111	10000	00	00000000	
jump # <add></add>	#####	1	001	10000	11	AAAAAAA	
load .r, # <add></add>	#####	Θ	001	01000	11	AAAAAAA	
	#####	Θ	001	000RR	01	00000000	
end	#####	0	000	00000	00	00000000	

Introdução

Implementação do Projeto

Uma ULA simples O Datapath da CPU

A Unidade de Controle

Combinações de processo

Combinando os processos

Figure: Resultado

Instruções - Testes

TESTES

Referências

Derek C. Schuurman.

Step-by-step design and simulation of a simple CPU architecture

Proceeding of the 44th ACM technical symposium on Computer science education (SIGCSE '13), ACM, New York, NY, USA, 335-340. 2013.