Loading the data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from google.colab import files
from datetime import datetime
import seaborn as sns
%matplotlib inline

import io

# Load the data
local_file = files.upload()
train_data = io.BytesIO(local_file['train1.csv'])
train_data2 = io.BytesIO(local_file['train.csv'])
df1 = pd.read_csv(train_data)
df2 = pd.read_csv(train_data2)
```

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving trainl.csv to trainl.csv

Saving trainl.csv to trainl.csv

Data integration

```
df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 367 entries, 0 to 366
Data columns (total 12 columns):

Jaca	COIUMNIS (COCAI IZ	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	Loan_ID	367 non-null	object
1	Gender	356 non-null	object
2	Married	367 non-null	object
3	Dependents	357 non-null	object
4	Education	367 non-null	object
5	Self_Employed	344 non-null	object
6	ApplicantIncome	367 non-null	int64
7	CoapplicantIncome	367 non-null	int64

```
8
    LoanAmount
                        362 non-null
                                       float64
 9
    Loan_Amount_Term
                        361 non-null
                                       float64
 10 Credit_History
                        338 non-null
                                       float64
 11 Property Area
                        367 non-null
                                       object
dtypes: float64(3), int64(2), object(7)
memory usage: 34.5+ KB
```

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float64
8	LoanAmount	592 non-null	float64
9	Loan_Amount_Term	600 non-null	float64
10	Credit_History	564 non-null	float64
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object
1.0	C1 (C4/4) · (C4/4\ (0\)	

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

```
frames = [df1, df2]
```

```
df = pd.concat(frames)
df
```

df.

		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	
	0	LP001015	Male	Yes	0	Graduate	No	5720	
	1	LP001022	Male	Yes	1	Graduate	No	3076	
	2	LP001031	Male	Yes	2	Graduate	No	5000	
·tai	1()								

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	

Data cleaning

df.isnull().sum()

Loan_ID	0
Gender	24
Married	3
Dependents	25
Education	0
Self_Employed	55
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	27
Loan_Amount_Term	20
Credit_History	79
Property_Area	0
Loan_Status	367
dtype: int64	

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 981 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	981 non-null	object
1	Gender	957 non-null	object
2	Married	978 non-null	object

```
3
     Dependents
                         956 non-null
                                         object
 4
     Education
                         981 non-null
                                         object
 5
     Self Employed
                         926 non-null
                                         object
 6
     ApplicantIncome
                                         int64
                         981 non-null
 7
     CoapplicantIncome
                        981 non-null
                                         float64
 8
     LoanAmount
                         954 non-null
                                         float64
 9
     Loan Amount Term
                         961 non-null
                                         float64
 10
    Credit History
                         902 non-null
                                         float64
     Property Area
                         981 non-null
                                         object
 12 Loan Status
                         614 non-null
                                         object
dtypes: float64(4), int64(1), object(8)
memory usage: 107.3+ KB
```

Converting the string values to numeric values.

```
numeric gender = {'Female': 1, 'Male': 2}
df ['Gender'] = df['Gender'].map(numeric gender)
numeric married = {'Yes': 1, 'No': 2}
df ['Married'] = df['Married'].map(numeric_married)
numeric edu = {'Graduate': 1, 'Not Graduate': 2}
df ['Education'] = df['Education'].map(numeric edu)
numeric self = {'Yes': 1, 'No': 2}
df ['Self_Employed'] = df['Self_Employed'].map(numeric_self)
numeric_loan = {'Y': 1, 'N': 2}
df ['Loan Status'] = df['Loan Status'].map(numeric loan)
numeric property = {'Rural': 1, 'Urban': 2, 'Semiurban': 3}
df ['Property Area'] = df['Property Area'].map(numeric property)
#numeric d = \{'3+': 3\}
#df ['Dependents'] = df['Dependents'].map(numeric_d)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 981 entries, 0 to 613
     Data columns (total 13 columns):
          Column
                             Non-Null Count
                                             Dtype
          ----
                             -----
     - - -
                                              ____
      0
          Loan ID
                                              object
                             981 non-null
          Gender
                                              float64
      1
                             957 non-null
      2
          Married
                             978 non-null
                                              float64
      3
          Dependents
                             956 non-null
                                              object
      4
                                              int64
          Education
                             981 non-null
      5
          Self Employed
                             926 non-null
                                              float64
      6
          ApplicantIncome
                             981 non-null
                                              int64
      7
          CoapplicantIncome
                             981 non-null
                                              float64
      8
          LoanAmount
                             954 non-null
                                              float64
      9
                             961 non-null
                                              float64
          Loan Amount Term
      10
         Credit History
                             902 non-null
                                              float64
      11
          Property Area
                             981 non-null
                                              int64
      12
          Loan Status
                             614 non-null
                                              float64
     dtypes: float64(8), int64(3), object(2)
     memory usage: 107.3+ KB
```

df.isnull().sum()

Loan_ID	0
Gender	24
Married	3
Dependents	25
Education	0
Self_Employed	55
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	27
Loan_Amount_Term	20
Credit_History	79
Property_Area	0
Loan_Status	367
dtype: int64	

Data analysis:

df.describe()

	Gender	Married	Education	Self_Employed	ApplicantIncome	CoapplicantInd
count	957.000000	978.000000	981.000000	926.000000	981.000000	981.000
mean	1.809822	1.354806	1.222222	1.871490	5179.795107	1601.916
std	0.392646	0.478699	0.415952	0.334837	5695.104533	2718.772
min	1.000000	1.000000	1.000000	1.000000	0.000000	0.000
25%	2.000000	1.000000	1.000000	2.000000	2875.000000	0.000
50%	2.000000	1.000000	1.000000	2.000000	3800.000000	1110.000
75%	2.000000	2.000000	1.000000	2.000000	5516.000000	2365.000
max	2.000000	2.000000	2.000000	2.000000	81000.000000	41667.000

Here we can see the shape of our data with the .shape. Here we see (614, 13) this means that we have a 614 rows and 13 columns

df.shape

(981, 13)

Here we can see the shape of our test data with the .shape. Here we see (367, 12) this means that

To view what data that is stored we can use .columns. This will return the colums of our data

```
df.columns
```

To look at the data we'll use the .head() method from pandas. This will show us the first 5 items in our dataframe.

df.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Со
0	LP001015	2.0	1.0	0	1	2.0	5720	
1	LP001022	2.0	1.0	1	1	2.0	3076	
2	LP001031	2.0	1.0	2	1	2.0	5000	
3	LP001035	2.0	1.0	2	1	2.0	2340	
4	LP001051	2.0	2.0	0	2	2.0	3276	

df.tail()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
609	LP002978	1.0	2.0	0	1	2.0	2900
610	LP002979	2.0	1.0	3+	1	2.0	4106
611	LP002983	2.0	1.0	1	1	2.0	8072
612	LP002984	2.0	1.0	2	1	2.0	7583
613	LP002990	1.0	2.0	0	1	1.0	4583

df.info()

0	Loan_ID	981 non-null	object
1	Gender	957 non-null	float64
2	Married	978 non-null	float64
3	Dependents	956 non-null	object
4	Education	981 non-null	int64
5	Self_Employed	926 non-null	float64
6	ApplicantIncome	981 non-null	int64
7	CoapplicantIncome	981 non-null	float64
8	LoanAmount	954 non-null	float64
9	Loan_Amount_Term	961 non-null	float64
10	Credit_History	902 non-null	float64
11	Property_Area	981 non-null	int64
12	Loan_Status	614 non-null	float64
d+vn	$0.00 \cdot 100 + 64(0) \cdot 100 + 100$	64(2) object(2)	

dtypes: float64(8), int64(3), object(2)

memory usage: 107.3+ KB

df.sort_values('Loan_Status', ascending = True)[:50]

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
0	LP001002	2.0	2.0	0	1	2.0	5849
380	LP002226	2.0	1.0	0	1	NaN	3333
379	LP002225	2.0	1.0	2	1	2.0	5391
377	LP002223	2.0	1.0	0	1	2.0	4310
376	LP002219	2.0	1.0	3+	1	2.0	8750
375	LP002211	2.0	1.0	0	1	2.0	4817
374	LP002209	1.0	2.0	0	1	NaN	2764
372	LP002201	2.0	1.0	2	1	1.0	9323
371	LP002197	2.0	1.0	2	1	2.0	5185
370	LP002194	1.0	2.0	0	1	1.0	15759
368	I PNN219N	2 በ	1 ∩	1	1	2 0	6325

df.sort_values('Education')[:50]

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
0	LP001015	2.0	1.0	0	1	2.0	5720
234	LP001778	2.0	1.0	1	1	2.0	3155
235	LP001784	2.0	1.0	1	1	2.0	5500
236	LP001786	2.0	1.0	0	1	NaN	5746
237	LP001788	1.0	2.0	0	1	1.0	3463
238	LP001790	1.0	2.0	1	1	2.0	3812
239	LP001792	2.0	1.0	1	1	2.0	3315
240	LP001798	2.0	1.0	2	1	2.0	5819
242	LP001806	2.0	2.0	0	1	2.0	2965
243	LP001807	2.0	1.0	2	1	1.0	6250
245	LP001813	2.0	2.0	0	1	1.0	6050
233	LP001776	1.0	2.0	0	1	2.0	8333
246	LP001814	2.0	1.0	2	1	2.0	9703
249	LP001825	2.0	1.0	0	1	2.0	1809
251	LP001836	1.0	2.0	2	1	2.0	3427
254	LP001844	2.0	2.0	0	1	1.0	16250
255	LP001846	1.0	2.0	3+	1	2.0	3083
257	LP001854	2.0	1.0	3+	1	2.0	5250
258	LP001859	2.0	1.0	0	1	2.0	14683
260	LP001865	2.0	1.0	1	1	2.0	6083
261	LP001868	2.0	2.0	0	1	2.0	2060
262	LP001870	1.0	2.0	1	1	2.0	3481
263	LP001871	1.0	2.0	0	1	2.0	7200
248	LP001824	2.0	1.0	1	1	2.0	2882
231	LP001768	2.0	1.0	0	1	NaN	3716
230	LP001765	2.0	1.0	1	1	2.0	2491
229	LP001761	2.0	2.0	0	1	1.0	6400
196	LP001666	2.0	2.0	0	1	2.0	8333
198	LP001671	1.0	1.0	0	1	2.0	3416
199	LP001673	2.0	2.0	0	1	1.0	11000
				_			1000

https://colab.research.google.com/drive/17VdX-vKCoPlQgKgsFDL-Hx2KdVYq4Edf#scrollTo=t3sv1Mw98fEE&printMode=true

201 LP001677	2.0	2.0	2	1	2.0	4923
206 LP001693	1.0	2.0	0	1	2.0	3244

Here we can see one row (one person)

```
df.iloc[0]
```

```
Loan ID
                      LP001015
Gender
                             2
Married
                             1
Dependents
                             0
Education
                             1
Self Employed
                             2
ApplicantIncome
                          5720
CoapplicantIncome
                             0
LoanAmount
                           110
Loan Amount Term
                           360
Credit History
                             1
Property_Area
                             2
Loan Status
                           NaN
Name: 0, dtype: object
 __. _. _. _. _.
```

Get the unique values and their frequency of variable. (Checking how many times the certain value occurs.)

```
      224 | P001750
      20
      10
      0
      1
      20
      6250

      df['Loan_Status'].value_counts()
```

1.0 422 2.0 192

Name: Loan_Status, dtype: int64

df['ApplicantIncome'].value_counts()

Name: ApplicantIncome, Length: 752, dtype: int64

df['Gender'].value_counts()

2.0 7751.0 182

```
Name: Gender, dtype: int64
df['Married'].value_counts()
     1.0
            631
     2.0
            347
     Name: Married, dtype: int64
df['CoapplicantIncome'].value_counts()
     0.0
               429
     2500.0
                 6
                 5
     1666.0
     2000.0
                 5
                 5
     2083.0
     6250.0
                 1
     1742.0
                 1
     189.0
                 1
     1868.0
                 1
     4266.0
     Name: CoapplicantIncome, Length: 437, dtype: int64
df['Dependents'].value_counts()
     0
           545
     1
           160
     2
           160
     3+
            91
     Name: Dependents, dtype: int64
df['Education'].value counts()
     1
          763
     2
          218
     Name: Education, dtype: int64
df['Self_Employed'].value_counts()
     2.0
            807
     1.0
            119
     Name: Self Employed, dtype: int64
df['Loan_Status'].unique()
     array([nan, 1., 2.])
df['ApplicantIncome'].unique()
     array([ 5720, 3076, 5000, 2340, 3276,
                                                 2165, 2226,
                                                                3881, 13633,
```

```
2400,
         3091,
                 2185,
                         4166, 12173,
                                          4666,
                                                  5667,
                                                           4583,
                                                                   3786,
 9226,
                                                                   4363,
         1300,
                 1888,
                         2083,
                                  3909,
                                          3765,
                                                  5400,
                                                              0,
 7500,
         3772,
                 2942,
                         2478,
                                  6250,
                                          3268,
                                                  2783,
                                                           2740,
                                                                   3150,
         2267,
                 5833,
                                                          6500,
 7350,
                         3643,
                                  5629,
                                          3644,
                                                  1750,
                                                                   3666,
 4260,
         4163,
                 2356,
                         6792,
                                  8000,
                                          2419,
                                                  3500,
                                                           4116,
                                                                   5293,
 2750,
         4402,
                 3613,
                         2779,
                                  4720,
                                          2415,
                                                  7016,
                                                                   2101,
                                                           4968,
         2917,
                                  7666,
 4490,
                 4700,
                         3445,
                                          2458,
                                                  3250,
                                                          4463,
                                                                   4083,
 3900,
         4750,
                 3583,
                         3189,
                                  6356,
                                          3413,
                                                  7950,
                                                           3829, 72529,
 4136,
         8449,
                 4456,
                         4635,
                                  3571,
                                          3066,
                                                  3235,
                                                           5058,
                                                                   3188,
                 4766,
                                                  9719,
13518,
         4364,
                         4609,
                                  6260,
                                          3333,
                                                           6835,
                                                                   4452,
                 2687,
         3901,
 2262,
                         2243,
                                  3417,
                                          1596,
                                                  4513,
                                                          4500,
                                                                   4523,
 4742,
         4082,
                 2922,
                         4167,
                                  4243,
                                          1516,
                                                  1762,
                                                            724,
                                                                   3125,
 2333,
         3350,
                 2500, 12500,
                                  4667,
                                          3073,
                                                  3321,
                                                           3391,
                                                                   3343,
 3620,
         4000,
                 4258,
                                                  6794, 32000, 10890,
                         2014,
                                  4727,
                                          3089,
12941,
         8703,
                 5900,
                         3071,
                                  2463,
                                          4855,
                                                  1599,
                                                           4246,
                                                                   4333,
 5823,
                 4150,
                         2964,
                                  5583,
                                          2708,
                                                  3180,
                                                           2268,
                                                                   1141,
         7895,
                         4483,
 3042,
         3564,
                 3958,
                                  5225,
                                          3017,
                                                  2431,
                                                           4912,
                                                                   2918,
 5128, 15312,
                 4334,
                         4358, 10166,
                                          4521,
                                                  9167, 13083,
                                                                   7874,
 3785,
         2654, 10000,
                         4796,
                                  2000,
                                          2540,
                                                  1900,
                                                           8706,
                                                                   2855,
                 1937,
                         2613,
                                  4960,
                                          3074,
                                                  4213,
 3016,
         3159,
                                                           2038,
                                                                   2362,
 5333,
         5384,
                 5708,
                         3754,
                                  2914,
                                          2747,
                                                  7830,
                                                           3507,
                                                                   3747,
 2166,
         2896,
                 5062,
                         5184,
                                  2545,
                                          2553,
                                                  3436,
                                                           2412,
                                                                   5180,
14911,
         2860,
                 1173,
                         7600,
                                  2157,
                                                  2274,
                                          2231,
                                                          6166,
                                                                   2513,
 3844,
         3887,
                 3510,
                         2539,
                                  2107,
                                          3186,
                                                  3943,
                                                           2925,
                                                                   3242,
 3863,
         4028,
                 4010,
                         3719,
                                  2858,
                                          3833,
                                                  3007,
                                                           1850,
                                                                   2792,
                 2995,
 2982, 18840,
                         3579,
                                  3835,
                                          3854,
                                                  3508,
                                                           1635, 24797,
 2773,
         5769,
                 3634, 29167,
                                  5530,
                                          9000,
                                                  8750,
                                                           1972,
                                                                   4983,
 8333,
         3667,
                 3166,
                                  2241,
                                                  2666,
                                                           6478,
                         3271,
                                          1792,
                                                                   3808,
 3729,
         4120,
                 6300, 14987,
                                   570,
                                          2600,
                                                  2733,
                                                           3859,
                                                                   6825,
         5314,
                 2366,
                                                  4283,
 3708,
                         2066,
                                  3767,
                                          7859,
                                                           1700,
                                                                   4768,
                                                                   5509,
 3083,
         2667,
                 1647,
                         3400, 16000,
                                          2875,
                                                  5041,
                                                           6958,
 9699,
         3621,
                 4709,
                         3015,
                                  2292,
                                          2360,
                                                  2623,
                                                           3972,
                                                                   3522,
                 2868,
 6858,
         8334,
                         3418,
                                  8667,
                                          2283,
                                                  5817,
                                                           5119,
                                                                   5316,
 7603,
                 3132,
                                  2269,
                                          4009,
                                                  4158,
         3791,
                         8550,
                                                           9200,
                                                                   5849,
         2583,
                 6000,
                         5417,
                                  3036,
                                          4006, 12841,
 3000,
                                                           3200,
                                                                   1853,
                                  7660,
                                                  3365,
 1299,
         4950,
                 3596,
                                          5955,
                                                           3717,
                                                                   9560,
                         4887,
 2799,
         4226,
                 1442,
                         3750,
                                  3167,
                                          4692,
                                                  2275,
                                                           1828,
                                                                   3748,
 3600,
         1800,
                 3941,
                         4695,
                                  3410,
                                          5649,
                                                  5821,
                                                           2645,
                                                                   1928,
 3086,
         4230,
                 4616, 11500,
                                  2132,
                                          3366,
                                                  8080,
                                                           3357,
                                                                   3029,
 2609,
         4945,
                 5726,
                        10750,
                                  7100,
                                          4300,
                                                  3208,
                                                           1875,
                                                                   4755,
 5266,
         1000,
                 3846,
                         2395,
                                  1378,
                                          3988,
                                                  8566,
                                                                   2958,
                                                           5695,
                                                  1759,
 3273,
         4133,
                 6782,
                         2484,
                                  1977,
                                          4188,
                                                          4288,
                                                                   4843,
                                                                   2929,
13650,
         4652,
                 3816,
                         3052, 11417,
                                          7333,
                                                  3800,
                                                           2071,
 3572,
         7451,
                 5050, 14583,
                                  2214,
                                          5568, 10408,
                                                           2137,
                                                                   2957,
 3692, 23803,
                 3865, 10513,
                                  6080, 20166,
                                                  2718,
                                                           3459,
                                                                   4895,
 3316, 14999,
                 4200,
                         5042,
                                  6950,
                                          2698, 11757,
                                                           2330, 14866,
 1538,
         4860,
                 6277,
                         2577,
                                  9166,
                                          2281,
                                                  3254, 39999,
                                                                   9538,
         1863,
                                                  2237,
 2980,
                 7933,
                         9323,
                                  3707,
                                          2439,
                                                           1820, 51763,
 4344,
         3497,
                 2045,
                         5516,
                                  6400,
                                          1916,
                                                  4600, 33846,
                                                                   3625,
39147,
         2178,
                 2383,
                           674,
                                  9328,
                                          4885, 12000,
                                                           6033,
                                                                   3858,
 4191,
                                                  3917,
         1907,
                 3416, 11000,
                                  4923,
                                          3992,
                                                           4408,
                                                                   3244,
 3975,
         2479,
                 3430,
                         7787,
                                  5703,
                                          3173,
                                                  3850,
                                                            150,
                                                                   3727,
                                  4758,
 2221,
         2971,
                 7578,
                         4735,
                                          2491,
                                                  3716,
                                                           3155,
                                                                   5500,
 5746,
                 3812,
                         3315,
                                  5819,
                                          2510,
                                                  2965,
         3463,
                                                           3406,
                                                                   6050,
 9703,
                 2882,
                                  1668,
                                                  2661, 16250,
                                                                   6045,
         6608,
                         1809,
                                          3427,
 5250, 14683,
                 4931,
                         6083,
                                  2060,
                                          3481,
                                                  7200,
                                                           5166,
                                                                   4095,
 4708,
         2876,
                 3237, 11146,
                                  2833,
                                          2620,
                                                  3993,
                                                           3103,
                                                                   4100,
```

sns.countplot(y = 'Gender', hue = 'Loan Status', data = df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f99cc032c90>

The percentage of males who applied for a loan is greater than the one of females.

df['Loan_Status'].value_counts().plot(kind='pie', autopct='%1.2f%%', figsize=(6, 6))

<matplotlib.axes. subplots.AxesSubplot at 0x7f99cd11d410>

According to the pie chart, there are more approved loans that disapproved.

```
grid=sns.FacetGrid(df, row='Gender', col='Married', size=2.2, aspect=1.6)
grid.map(plt.hist, 'ApplicantIncome', alpha=.5, bins=10)
grid.add_legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size` warnings.warn(msg, UserWarning)

Males have the highest income according to the data. Males that are married have greater income that unmarried male. And the same goes for female.

```
grid.map(plt.hist, 'ApplicantIncome', alpha=.5, bins=10)
grid.add legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size`
 warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x7f99cb69e3d0>

A graduate who is a male has more income than a one whithout and the same goes for females.

Here I am exploring the distribution of the numerical variables mainly the Applicant income and the Loan amount.

What can be noticed are quite a few outliers.

sns.distplot(df.ApplicantIncome,kde=False)

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `di warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f99c262d090>
```

People with better education should normally have a higher income, we can check that by plotting the education level against the income.

```
df.boxplot(column='ApplicantIncome', by = 'Education')
```

/usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarr
return array(a, dtype, copy=False, order=order)
<matplotlib.axes. subplots.AxesSubplot at 0x7f99c2587fd0>

We can conclude that there is no substantial different between the mean income of graduate and non-graduates. However, there are a higher number of graduates with very high incomes, which are appearing to be the outliers.

sns.boxplot(x='Education',y='ApplicantIncome',data=df)

<matplotlib.axes. subplots.AxesSubplot at 0x7f99c24be3d0>

```
80000 -
70000 -
60000 -
```

The distributions shows that the graduates have more outliers which means that the people with huge income are most likely to be educated.

```
temp3 = pd.crosstab(df['Credit_History'], df['Loan_Status'])
temp3.plot(kind='bar', stacked=True, color=['blue','green'], grid=False)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f99c23e5490>

This shows that the chances of getting a loan are higher if the applicant has a valid credit history.

Data processing:

Checking if there are certain missing values that need to be fixed.

```
total = df.isnull().sum().sort_values(ascending=False)
percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
missing_data.head(20)
```

	Total	Percent
Loan_Status	367	0.374108
Credit_History	79	0.080530
Self_Employed	55	0.056065
LoanAmount	27	0.027523
Dependents	25	0.025484
Gender	24	0.024465
Loan_Amount_Term	20	0.020387
Married	3	0.003058
Property_Area	0	0.000000
CoapplicantIncome	0	0.000000
ApplicantIncome	0	0.000000

Filling the missing values, for categorical we can fill them with the mode (the value with the highest frequency). The best practice is to use mode with data points such as salary field or any other kind of money.

```
df['Gender'] = df['Gender'].fillna(
df['Gender'].dropna().mode().values[0] )
df['Married'] = df['Married'].fillna(
df['Married'].dropna().mode().values[0] )
df['Dependents'] = df['Dependents'].fillna(
df['Dependents'].dropna().mode().values[0] )
df['Self_Employed'] = df['Self_Employed'].fillna(
df['Self_Employed'].dropna().mode().values[0] )
df['LoanAmount'] = df['LoanAmount'].fillna(
df['LoanAmount'].dropna().median() )
df['Loan_Amount_Term'] = df['Loan_Amount_Term'].fillna(
df['Loan_Amount_Term'].dropna().mode().values[0] )
df['Credit_History'] = df['Credit_History'].fillna(
df['Credit_History'].dropna().mode().values[0] )
```

Checking if there any empty values.

df.isnull().all()

Loan_ID	False
Gender	False
Married	False
Dependents	False
Education	False

LoanAmount

Loan_Amount_Term

Credit History

Property Area

Loan_Status

dtype: int64

```
Self Employed
                           False
     ApplicantIncome
                           False
     CoapplicantIncome
                           False
     LoanAmount
                           False
     Loan Amount Term
                           False
     Credit_History
                           False
     Property Area
                           False
     Loan_Status
                           False
     dtype: bool
df.isnull().sum()
     Loan ID
                             0
     Gender
     Married
     Dependents
                             0
     Education
                             0
     Self Employed
                             0
     ApplicantIncome
                             0
     CoapplicantIncome
                             0
```

0

0

0

0

367

Some people might have a low income, but strong CoappliantIncome, so a good idea would be to combine them in a TotalIncome column.

```
df['LoanAmount_log']=np.log(df['LoanAmount'])
df['TotalIncome']= df['ApplicantIncome'] + df['CoapplicantIncome']
df['TotalIncome_log']=np.log(df['TotalIncome'])
sns.distplot(df.TotalIncome,kde=False)
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `di warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f99c2305950>
```

Modeling:

```
Encoding to numeric data in order to start the training of the models.
#drop the uniques loan id
df.drop('Loan_ID', axis = 1, inplace = True)
df['Gender'].value counts()
     2.0
            799
     1.0
            182
     Name: Gender, dtype: int64
df['Dependents'].value counts()
     0
           570
     1
           160
     2
           160
     3+
            91
     Name: Dependents, dtype: int64
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 981 entries, 0 to 613
     Data columns (total 15 columns):
                              Non-Null Count Dtype
      #
          Column
          _____
                              _____
      0
          Gender
                              981 non-null
                                              float64
      1
          Married
                              981 non-null
                                              float64
          Dependents
                              981 non-null
                                              object
      2
                                              int64
      3
          Education
                              981 non-null
      4
          Self Employed
                              981 non-null
                                              float64
      5
          ApplicantIncome
                              981 non-null
                                              int64
                             981 non-null
      6
          CoapplicantIncome
                                              float64
      7
          LoanAmount
                              981 non-null
                                              float64
          Loan_Amount_Term
      8
                              981 non-null
                                              float64
      9
          Credit History
                              981 non-null
                                              float64
      10
          Property Area
                              981 non-null
                                              int64
      11
         Loan_Status
                              614 non-null
                                              float64
      12 LoanAmount log
                              981 non-null
                                              float64
      13
         TotalIncome
                              981 non-null
                                              float64
      14 TotalIncome log
                              981 non-null
                                              float64
     dtypes: float64(11), int64(3), object(1)
```

memory usage: 142.6+ KB

Need to covnvert the object values to numeric ones - Dependents needs to become an int.

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 981 entries, 0 to 613
Data columns (total 15 columns):
     Column
                        Non-Null Count Dtype
    ----
    Gender
 0
                        981 non-null
                                        float64
 1
    Married
                        981 non-null
                                        float64
 2
    Dependents
                                        object
                        981 non-null
 3
     Education
                        981 non-null
                                        int64
 4
     Self_Employed
                        981 non-null
                                        float64
 5
     ApplicantIncome
                        981 non-null
                                        int64
     CoapplicantIncome 981 non-null
                                        float64
 7
     LoanAmount
                        981 non-null
                                        float64
     Loan_Amount_Term
 8
                        981 non-null
                                        float64
 9
     Credit History
                        981 non-null
                                        float64
                                        int64
 10 Property Area
                        981 non-null
 11 Loan Status
                        614 non-null
                                        float64
 12 LoanAmount log
                        981 non-null
                                        float64
 13 TotalIncome
                        981 non-null
                                        float64
 14 TotalIncome log
                        981 non-null
                                        float64
dtypes: float64(11), int64(3), object(1)
memory usage: 142.6+ KB
```

Heatmaps are very useful to find relations between two variables in a dataset and this way the user gets a visualisation of the numeric data. No correlations are extremely high. Each square shows the correlation between the variables on each axis.

• The correlations between LoanAmount and ApplicantIncome can be explained:

The close to 1 the correlation is the more positively correlated they are; that is as one increases so does the other and the closer to 1 the stronger this relationship is. It is noticable that the correlation between the ApplicantIncome and LoanAmount is 0.57, which mean that they have a positive correlation, but not strong.

```
sns.heatmap(df.corr(), annot = True, cmap = 'magma')
```


Importing sklearn libraries

The second secon

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score
```

Splitting into train and test set after choosing the right features X and labels y

```
v = df['Loan Status']
X = df.drop('Loan Status', axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0)
numeric_features = df.select_dtypes(include=[np.number])
numeric features.columns
     Index(['Gender', 'Married', 'Education', 'Self_Employed', 'ApplicantIncome',
            'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History',
            'Property_Area', 'Loan_Status', 'LoanAmount_log', 'TotalIncome',
            'TotalIncome log'],
           dtype='object')
# use only those input features with numeric data type
df = df.select dtypes(include=["int64","float64"])
# set the target and predictors
y = df.Loan Status # target
# use only those input features with numeric data type
df temp = df.select dtypes(include=["int64","float64"])
```

```
X = df_temp.drop(["Loan_Status"],axis=1) # predictors
```

Logistic Regression

```
model = LogisticRegression()
model.fit(X train, y train)
y_reg=model.predict(X_test)
evaluation = f1_score(y_test, y_reg)
evaluation
     ValueError
                                                Traceback (most recent call last)
     <ipython-input-129-ae0c7bcd60e1> in <module>()
           1 model = LogisticRegression()
     ----> 2 model.fit(X train, y train)
           3 y_reg=model.predict(X_test)
           4 evaluation = f1_score(y_test, y_reg)
           5 evaluation
                                        5 frames
     /usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py in asarray(a, dtype,
     order)
          81
                 .....
          82
                 return array(a, dtype, copy=False, order=order)
     ---> 83
          84
          85
     ValueError: could not convert string to float: '3+'
      SEARCH STACK OVERFLOW
```

Decision tree:

- 1. Creating classifier
- 2. Fitting classifier with train data

Do predictions on a test set. **Testing** the model by testing the test data.

Evaluate classsifier, measure accuracy, which is 0.76

```
evaluation = f1_score(y_test, y_tree)
evaluation
0.7619047619047619
```

Random forests

Testing the model by testing the test data.

Result of the accuracy.

```
evaluation_f= f1_score(y_test, y_forest)
evaluation_f

0.8795811518324607
```

Conclusion

From the Exploratory Data Analysis, it can be concluded:

- 1. There amount of male applicants seems to be greater than the female ones and they tend to live in the semisuburbian areas.
- 2. There are more positive than negative loan statuses more approvals.
- 3. The distributions shows that the graduates have more outliers which means that the people with huge income are most likely to be educated.
- 4. Males have the highest income according to the data. Males that are married have greater income that unmarried male. And the same goes for female. Therefore, there is a greater chance for educated and married people to receive a loan than applicant who are not.

From the Modelling, it can be concluded:

- 1. After the exploring of different types of modelling, that the more accurate model is Random forest than Decision tree.
- 2. From the evaluation of the three models, it can be noticed that the Logistic Regression performed better than others

×