LIMITES ET FONCTIONS CONTINUES

CONTINUITÉ EN UN POINT

1 Continuité

Soient I un intevalle de \mathbb{R} , $f: I \to \mathbb{R}$ une fonction et $x_0 \in I$.

Définition 1 1. On dit que f est continue en x_0 si $\lim_{x \to x_0} = f(x_0)$, c'est-à-dire

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, (|x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon).$$

- 2. On dit que f est continue sur I si f est continue en tout point de I.
- 3. On dit que f est continue à droite en x_0 si $\lim_{x \to x_0^+} f(x) = f(x_0)$.
- 4. On dit que f est continue à gauche en x_0 si $\lim_{x \to x_0^-} f(x) = f(x_0)$.

Remarque 1 f est continue en x_0 ssi f est continue à droite et à gauche en x_0 .

2 Propriétés

Proposition 1 (opérations sur les fonctions continues) Soient $x_0 \in I$ (intervalle de \mathbb{R}) et f et g deux fonctions définies sur I et continues en x_0 . Alors, f+g, λf ($\lambda \in \mathbb{R}$) et $f \times g$ sont continues en x_0 et si $g(x_0) \neq 0$, alors, $\frac{f}{g}$ est continue en x_0 .

Proposition 2 Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$, $x_0 \in I$ et $y_0 = f(x_0)$. Si f est continue en x_0 et g est continue en $y_0 = f(x_0)$, alors $g \circ f$ est continue en x_0 .

Lemme 1 Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I et x_0 un point de I. Si f est continue en x_0 et si $f(x_0) \neq 0$, alors il existe $\eta > 0$ tel que

$$\forall x \in]x_0 - \eta, x_0 + \eta[, f(x) \neq 0.$$

1 IONISX