Laplacian Filter

Alex Eagles

Contents

How they work	3
Laplacian Filter Mask Types	3
What it is Used for and Examples	4
Python Code	5
Table of Figures	
Figure 1 Positive Laplacian Mask	3
Figure 2 Negative Laplacian Mask	4
Figure 3 Laplacian Filter Example	4

How they work

The story of the Laplacian filter starts from the Laplacian matrix in Graph theory which is the simplest method of representation of a graph in the matrix. The Laplacian of an image highlights regions of rapid intensity change. Any feature with a sharp discontinuity will be enhanced by a Laplacian operator. The Laplacian filter comes under the derivative filter category. It is a second-order filter used in image processing for edge detection and feature extraction. When we use first-order derivative filters, we must apply separate filters to detect vertical and horizontal edges and then combine both. But the Laplacian filter detects all the edges irrespective of directions.

Laplacian Filter Mask Types

- Positive Laplacian
- Negative Laplacian

Positive Laplacian operator uses a mask with center element as a negative value and corner elements as 0. This filter identifies the outward edges from an image.

0	1	0
1	-4	1
0	1	0

Figure 1 Positive Laplacian Mask

Negative Laplacian operator is used to find the inward edges of the image. It uses a standard mask with the center element as positive, corners as 0 and all other elements as -1.

0	-1	0
-1	4	-1
0	-1	0

Figure 2 Negative Laplacian Mask

What it is Used for and Examples

The Laplacian operator is used in image processing to detect edges in many applications. Here is an example of it:

Figure 3 Laplacian Filter Example

Python Code

```
import cv2
import matplotlib.pyplot as plt
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_COLOR)
image = cv2.GaussianBlur(image, (3, 3), 0)
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
filtered_image = cv2.Laplacian(image_gray, cv2.CV_16S, ksize=3)
# Plot the original and filtered images
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.imshow(image, cmap='gray')
plt.title('Original Image')

plt.subplot(122)
plt.imshow(filtered_image, cmap='gray')
plt.title('LoG Filtered Image')
```