PSY9511: Seminar 5

Unsupervised learning

Esten H. Leonardsen 24.10.24

Outline

- 1. Overview of unsupervised learning
- 2. Clustering
 - · K-means
 - Hierarchical
- 3. Dimensionality reduction
 - · Principal component analysis (PCA)
 - · Independent component analysis (ICA)
 - · Partial least squares (PLS)

Unsupervised learning

Supervised learning: Find $\hat{y} = f(X)$

• Descriptive: Understand the relationship between X and y

- Descriptive: Understand the relationship between X and y
- Predictive: Predict y given new X.

- Descriptive: Understand the relationship between X and y
- Predictive: Predict y given new X.
 - · Because the predictions are useful

- Descriptive: Understand the relationship between X and y
- Predictive: Predict y given new X.
 - · Because the predictions are useful
 - · Because we want to know if it is possible

Supervised learning: Find $\hat{y} = f(X)$

- Descriptive: Understand the relationship between X and y
- Predictive: Predict y given new X.
 - · Because the predictions are useful
 - · Because we want to know if it is possible

Unsupervised learning: Are there some interesting patterns in X?

Supervised learning: Find $\hat{y} = f(X)$

- Descriptive: Understand the relationship between X and y
- Predictive: Predict y given new X.
 - · Because the predictions are useful
 - · Because we want to know if it is possible

Unsupervised learning: Are there some interesting patterns in X?

· Can we find subgroups or interesting axes of variability?

Supervised learning: Find $\hat{y} = f(X)$

- Descriptive: Understand the relationship between X and y
- Predictive: Predict y given new X.
 - · Because the predictions are useful
 - · Because we want to know if it is possible

Unsupervised learning: Are there some interesting patterns in X?

- · Can we find subgroups or interesting axes of variability?
- Visualization

Dimensionality reduction

1	0.30	0.86	0.89	0.41	0.93
	1	0.41		0.29	0.36
0.86	0.41	1	0.84	0.68	0.89
0.89		0.84	1	0.50	0.95
0.41	0.29	0.68	0.50	1	0.54
0.93	0.36	0.89	0.95	0.54	1

1	0.30	0.86	0.89	0.41	0.93
	1	0.41	0.34	0.29	0.36
0.86	0.41	1	0.84	0.68	0.89
0.89		0.84	1	0.50	0.95
0.41	0.29	0.68	0.50	1	0.54
0.93	0.36	0.89	0.95	0.54	1

 $c \rightarrow$ center of the data

 $v \rightarrow direction of maximum variance$

$$PC_1 \rightarrow 0.69*z_{\rm horsepower} + 0.71*z_{\rm weight}$$

 $v \rightarrow$ direction of maximum variance **orthogonal** to PC_1

