Individual Events

	individual Events																
SI	P	30	I1	\boldsymbol{A}	12	I2	P	5	I3	α	45	I4	\boldsymbol{A}	22	IS	P	95
	*Q	120		В	108		Q	12		*B see the remark	56		В	12		Q	329
	R	11		*C	280		R	3		γ	23		C	12		*R see the remark	6
	*S see the remark	72		D	69		S	17		δ	671		D	7		S	198
	Group Events																
SG	\boldsymbol{q}	3	G1	tens digit	1	G2		2	G3	z	6	G4	$\frac{BD}{CE}$	2	GS	*m see the remark	4
	k	1		*P	1031		K	2		*r see the remark	540		Q	1		v	6
	w	25		k	21		l	45		D	998		R	1		α	3
	p	$\frac{3}{2}$		*S\(\Delta BCD\) see the remark	32		see the remark	$\frac{1}{4}$		$*F_{2012}(7)$ see the remark	1		<i>X</i> 5	5		F	208

Sample Individual Event (2009 Final Individual Event 1)

SI.1 Let a, b, c and d be the roots of the equation $x^4 - 15x^2 + 56 = 0$.

If
$$P = a^2 + b^2 + c^2 + d^2$$
, find the value of P .

$$x^4 - 15x^2 + 56 = 0 \Rightarrow (x^2 - 7)(x^2 - 8) = 0$$

$$a = \sqrt{7}$$
, $b = -\sqrt{7}$, $c = \sqrt{8}$, $d = -\sqrt{8}$

$$P = a^2 + b^2 + c^2 + d^2 = 7 + 7 + 8 + 8 = 30$$

SI.2 In Figure 1, AB = AC and AB // ED.

If
$$\angle ABC = P^{\circ}$$
 and $\angle ADE = Q^{\circ}$, find the value of Q.

$$\angle ABC = 30^{\circ} = \angle ACB$$
 (base \angle s isos. \triangle)

$$\angle BAC = 120^{\circ}$$

$$(\angle s \text{ sum of } \Delta)$$

$$\angle ADE = 120^{\circ}$$

(alt.
$$\angle$$
s, $AB // ED$)

$$Q = 120$$

Remark: Original question \cdots *AB* // *DE* \cdots .

It is better for AB and ED to be oriented in the same direction.

Figure 1

SI.3 Let
$$F = 1 + 2 + 2^2 + 2^3 + \dots + 2^Q$$
 and $R = \sqrt{\frac{\log(1+F)}{\log 2}}$, find the value of R .

$$F = 1 + 2 + 2^2 + 2^3 + \dots + 2^{120} = \frac{2^{121} - 1}{2 - 1} = 2^{121} - 1$$

$$R = \sqrt{\frac{\log(1+F)}{\log 2}} = \sqrt{\frac{\log 2^{121}}{\log 2}} = 11$$

SI.4 Let f(x) be a function such that f(n) = (n-1) f(n-1) and $f(1) \neq 0$.

If
$$S = \frac{f(R)}{(R-1)f(R-3)}$$
, find the value of S.

$$f(n) = (n-1) f(n-1) = (n-1)(n-2)f(n-2) = \cdots$$

$$S = \frac{f(11)}{(11)f(11-3)} = \frac{10 \times 9 \times 8 \times f(8)}{10 \times f(8)} = 9 \times 8 = 72$$

Remark: Original question:

Let f(x) be a function such that f(n) = (n-1) f(n-1). If $S = \frac{f(R)}{(R-1)f(R-3)}$, find the value of S.

Note that *S* is undefined when f(n) = 0 for some integers *n*.

Individual Event 1

I1.1 If A is the sum of the squares of the roots of $x^4 + 6x^3 + 12x^2 + 9x + 2$, find the value of A. Let $f(x) = x^4 + 6x^3 + 12x^2 + 9x + 2$ By division,

Let
$$f(x) = x^{3} + 6x^{3} + 12x^{2} + 9x + 2$$

 $f(-1) = 1 - 6 + 12 - 9 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 - 18 + 2 = 0$
 $f(-2) = 16 - 48 + 48 + 2 = 0$
 $f(-2) = 16 - 48 + 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) = 16 - 48 + 2 = 0$
 $f(-2) =$

Method 2 By the change of subject, let $y = x^2$, then the equation becomes

$$x^{4} + 12x^{2} + 2 = -x(6x^{2} + 9) \Rightarrow y^{2} + 12y + 2 = \mp \sqrt{y}(6y + 9)$$
$$(y^{2} + 12y + 2)^{2} - y(6y + 9)^{2} = 0$$

Coefficient of $y^4 = 1$, coefficient of $y^2 = 24 - 36 = -12$

If α , β , δ and γ are the roots of x, then α^2 , β^2 , δ^2 and γ^2 are the roots of y

$$\alpha^2 + \beta^2 + \delta^2 + \gamma^2 = -\frac{\text{coefficient of } y^3}{\text{coefficient of } y^4} = 12$$

Method 3

Let α , β , δ and γ are the roots of x, then by the relation between roots and coefficients,

$$\alpha + \beta + \delta + \gamma = -6 \cdot \cdot \cdot \cdot (1)$$

$$\alpha\beta + \alpha\delta + \alpha\gamma + \beta\delta + \beta\gamma + \delta\gamma = 12 \cdot \dots \cdot (2)$$

$$\alpha^2 + \beta^2 + \delta^2 + \gamma^2 = (\alpha + \beta + \delta + \gamma)^2 - 2(\alpha\beta + \alpha\delta + \alpha\gamma + \beta\delta + \beta\gamma + \delta\gamma)$$

$$= (-6)^2 - 2(12) = 12$$

I1.2 Let x, y, z, w be four consecutive vertices of a regular A-gon. If the length of the line segment xy is 2 and the area of the quadrilateral xyzw is $a + \sqrt{b}$, find the value of $B = 2^a \cdot 3^b$.

Let *O* be the centre of the regular dodecagon.

Let
$$Ox = r = Oy = Oz = Ow$$

$$\angle xOy = \angle yOz = \angle zOw = \frac{360^{\circ}}{12} = 30^{\circ} (\angle s \text{ at a point})$$

In ΔxOy , $r^2 + r^2 - 2r^2 \cos 30^\circ = 2^2$ (cosine rule)

$$(2 - \sqrt{3})r^2 = 4 \Rightarrow r^2 = \frac{4}{2 - \sqrt{3}} = 4(2 + \sqrt{3})$$

Area of xyzw = area of Oxyzw – area of ΔOxw

$$=3 \times \frac{1}{2} \cdot r^2 \sin 30^\circ - \frac{1}{2} r^2 \sin 90^\circ = \left(\frac{3}{4} - \frac{1}{2}\right) \cdot 4\left(2 + \sqrt{3}\right) = 2 + \sqrt{3}$$

$$a = 2, b = 3, B = 2^2 \cdot 3^3 = 4 \times 27 = 108$$

I1.3 If *C* is the sum of all positive factors of *B*, including 1 and *B* itself, find the value of *C*. $108 = 2^2 \cdot 3^3$

$$C = (1 + 2 + 2^2) \cdot (1 + 3 + 3^2 + 3^3) = 7 \times 40 = 280$$

Remark: Original version: $\vec{a} C \not\in B$ 的所有因子之和... If C is the sum of all factors ...

Note that if negative factors are also included, then the answer will be different.

I1.4 If $C! = 10^D k$, where D and k are integers such that k is not divisible by 10, find the value of D.

Reference: 1990 HG6, 1994 FG7.1, 1996 HI3, 2004 FG1.1, 2011 HG7, 2012 FG1.3 Method 1 Method 2

When each factor of 5 is multiplied by 2, a trailing We can find the total number of factors of 5 by zero will appear in n!.

The number of factors of 2 is clearly more than the $5 \ 2 \ 8 \ 0$ number of factors of 5 in 280! $5 \ 5 \ 6$

It is sufficient to find the number of factors of 5. 5, 10, 15, ..., 280; altogether 56 numbers, each have at least one factor of 5.

25, 50, 75, \dots , 275; altogether 11 numbers, each have at least two factors of 5.

125, 250; altogether 2 numbers, each have at least three factors of 5.

 \therefore Total number of factors of 5 is 56 + 11 + 2 = 69 D = 69

division as follow: $5 \ 2 \ 8 \ 0$... Total no. of factors of 5 is $5 \ 5 \ 6$... $1 \ D = 69$

Individual Event 2

I2.1 If the product of the real roots of the equation $x^2 + 9x + 13 = 2\sqrt{x^2 + 9x + 21}$ is P, find the value of P.

Let $y = x^2 + 9x$, then the equation becomes $y + 13 = 2\sqrt{y + 21}$

$$(y+13)^2 = 4y + 84$$

$$y^2 + 26y + 169 - 4y - 84 = 0$$

$$y^2 + 22y + 85 = 0$$

$$(y+17)(y+5) = 0$$

$$y = -17$$
 or $y = -5$

Check put y = -17 into the original equation: $-17 + 13 = 2\sqrt{-17 + 21}$

LHS < 0, RHS > 0, rejected

Put y = -5 into the original equation: LHS = $-5 + 13 = 2\sqrt{-5 + 21} = \text{RHS}$, accepted $x^2 + 9x = -5$

$$x^2 + 9x + 5 = 0$$

Product of real roots = 5

Method 2

Let
$$y = \sqrt{x^2 + 9x + 21} \ge 0$$

Then the equation becomes $y^2 - 8 = 2y \Rightarrow y^2 - 2y - 8 = 0$

$$(y-4)(y+2) = 0 \Rightarrow y = 4 \text{ or } -2 \text{ (rejected)}$$

$$\Rightarrow x^2 + 9x + 21 = 16$$

$$x^2 + 9x + 5 = 0$$

$$\Delta = 9^2 - 4(5) > 0$$

Product of real roots = 5

I2.2 If $f(x) = \frac{25^x}{25^x + P}$ and $Q = f\left(\frac{1}{25}\right) + f\left(\frac{2}{25}\right) + \dots + f\left(\frac{24}{25}\right)$, find the value of Q.

Reference: 2004 FG4.1, 2011 HG5

$$f(x) + f(1-x) = \frac{25^{x}}{25^{x} + 5} + \frac{25^{1-x}}{25^{1-x} + 5} = \frac{25 + 5 \cdot 25^{x} + 25 + 5 \cdot 25^{1-x}}{25 + 5 \cdot 25^{1-x} + 5 \cdot 25^{x} + 25} = 1$$

$$Q = f\left(\frac{1}{25}\right) + f\left(\frac{2}{25}\right) + \dots + f\left(\frac{24}{25}\right)$$

$$= f\left(\frac{1}{25}\right) + f\left(\frac{24}{25}\right) + f\left(\frac{2}{25}\right) + f\left(\frac{23}{25}\right) + \dots + f\left(\frac{12}{25}\right) + f\left(\frac{13}{25}\right) = 12$$

C:\Users\孔德偉\Dropbox\Data\My Web\Competitions\HKMO\HKMOFinal\HKMOfinalanswers\HKMO2012finalans.docx Page 3

12.3 If $X = \sqrt{(100)(102)(103)(105) + (Q-3)}$ is an integer and R is the units digit of X,

find the value of R.

Reference: 1993 HG6, 1995 FI4.4, 1996 FG10.1, 2000 FG3.1, 2004 FG3.1

Let
$$y = 102.5$$
, then
 $(100)(102)(103)(105) + (12 - 3)$
 $= (y - 2.5)(y - 0.5)(y + 0.5)(y + 2.5) + 9$
 $= (y^2 - 6.25)(y^2 - 0.25) + 9$
 $= y^4 - 6.5y^2 + \frac{25}{16} + 9 = y^4 - 6.5y^2 + \frac{169}{16}$
 $= \left(y^2 - \frac{13}{4}\right)^2 = \left(102.5^2 - \frac{13}{4}\right)^2 = \left(\frac{205^2}{4} - \frac{13}{4}\right)^2$
 $X = \frac{42025^2 - 13}{4} = 10503$

R =the units digit of X = 3

Method 2
$$X = \sqrt{(100)(102)(103)(105) + 9} = \sqrt{(100)(100 + 5)(100 + 2)(100 + 3) + 9}$$

= $\sqrt{(100^2 + 500)(100^2 + 500 + 6) + 9} = \sqrt{(100^2 + 500)^2 + 6(100^2 + 500) + 9} = (100^2 + 500) + 3$
 $R = \text{the units digit of } X = 3$

I2.4 If *S* is the sum of the last 3 digits (hundreds, tens, units) of the product of the positive roots of $\sqrt{2012} \cdot x^{\log_{2012} x} = x^R$, find the value of *S*.

$$\log_{2012}(\sqrt{2012} \cdot x^{\log_{2012} x}) = \log_{2012} x^{3}$$

$$\frac{1}{2} + (\log_{2012} x)^{2} = 3\log_{2012} x$$
Let $y = \log_{2012} x$, then $2y^{2} - 6y + 1 = 0$

$$y = \log_{2012} x = \frac{3 \pm \sqrt{7}}{2}$$

$$\Rightarrow x = 2012^{\frac{3+\sqrt{7}}{2}} \text{ or } 2012^{\frac{3-\sqrt{7}}{2}}$$

Product of positive roots =
$$2012^{\frac{3+\sqrt{7}}{2}} \times 2012^{\frac{3-\sqrt{7}}{2}}$$

= 2012^3
= $12^3 \pmod{1000}$
= $1728 \pmod{1000}$

S = sum of the last 3 digits = 7 + 2 + 8 = 17

Individual Event 3

I3.1 In Figure 1, a rectangle is sub-divided into 3 identical squares of side length 1.

If $\alpha^{\circ} = \angle ABD + \angle ACD$, find the value of α .

Method 1 (compound angle)

$$\tan \angle ABD = \frac{1}{3}$$
, $\tan \angle ACD = \frac{1}{2}$

$$0^{\circ} < \angle ABD$$
, $\angle ACD < 45^{\circ}$

$$\therefore 0^{\circ} \le \angle ABD + \angle ACD \le 90^{\circ}$$

$$\tan \alpha^{\circ} = \frac{\tan \angle ABD + \tan \angle ACD}{1 - \tan \angle ABD \cdot \tan \angle ACD} = \frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \cdot \frac{1}{2}} = 1 > 0$$

 $\alpha = 45$

Method 2 (congruent triangles)

Draw 3 more identical squares BCFE, CIGH, IDHG of length 1 as shown in the figure. ALBD, DBEH are identical rectangles. Join BG, AG.

$$BE = GH = AD$$
 (sides of a square)

$$EG = HA = CD$$
 (sides of 2 squares)

$$\angle BEG = 90^{\circ} = \angle GHA = \angle ADC$$
 (angle of a square)

$$\Delta BEG \cong \Delta GHA \cong \Delta ADC$$
 (SAS)

Let
$$\angle BGE = \theta = \angle GAH$$
 (corr. $\angle s \cong \Delta's$)

$$\angle AGH = 90^{\circ} - \theta \ (\angle s \text{ sum of } \Delta)$$

$$\angle AGB = 180^{\circ} - \angle AGH - \angle BGE \text{ (adj. } \angle \text{s on st. line)}$$

= $180^{\circ} - \theta - (90^{\circ} - \theta) = 90^{\circ}$

$$BG = AG$$
 (corr. sides $\cong \Delta$'s)

$$\angle ABG = \angle BAG$$
 (base \angle s isos. \triangle)

$$=\frac{180^{\circ}-90^{\circ}}{2}=45^{\circ} \ (\angle \text{s sum of } \Delta)$$

$$\alpha^{\circ} = \angle ABD + \angle ACD$$

$$= \angle ABD + \angle GBI \text{ (corr. } \angle s, \cong \Delta's)$$

$$=45^{\circ} \Rightarrow \alpha = 45$$

Method 3 (similar triangles)

Join AI.

$$AI = \sqrt{2}$$
 (Pythagoras' theorem)

$$\frac{BI}{AI} = \frac{2}{\sqrt{2}} = \sqrt{2}$$
, $\frac{AI}{CI} = \frac{\sqrt{2}}{1} = \sqrt{2}$

 $\angle AIB = \angle CIA \text{ (common } \angle \text{)}$

 $\triangle AIB \sim \triangle CIA$ (2 sides proportional, included \angle)

$$\therefore \angle ACD = \angle BAI \text{ (corr. } \angle s, \sim \Delta's)$$

$$\alpha^{\circ} = \angle ABD + \angle ACD = \angle ABI + \angle BAI$$

$$= \angle AID$$
 (ext. \angle of Δ)

= 45° (diagonal of a square) $\Rightarrow \alpha = 45$

Method 4 (vector dot product)

Define a rectangular system with $BC = \mathbf{i}$, $BL = \mathbf{j}$.

$$\overrightarrow{AB} = -3\mathbf{i} - \mathbf{j}, \overrightarrow{AC} = -2\mathbf{i} - \mathbf{j}, \overrightarrow{AI} = -\mathbf{i} - \mathbf{j}.$$

$$\overrightarrow{AB} \cdot \overrightarrow{AI} = |\overrightarrow{AB}| |\overrightarrow{AI}| \cos \angle BAI$$

$$AB \cdot AI = |AB| |AI| \cos \angle BAI$$

$$\cos \angle BAI = \frac{(-3)(-1) + (-1)(-1)}{\sqrt{(-3)^2 + (-1)^2} \cdot \sqrt{(-1)^2 + (-1)^2}} = \frac{2}{\sqrt{5}}$$

$$\cos \angle ACD = \frac{2}{\sqrt{5}} \Rightarrow \angle BAI = \angle ACD$$

$$\alpha^{\circ} = \angle ABD + \angle ACD = \angle ABI + \angle BAI = \angle AID \text{ (ext. } \angle \text{ of } \Delta) \Rightarrow \alpha = 45$$

Method 5 (complex number)

Define the Argand diagram with B as the origin, BD as the real axis, BL as the imaginary axis.

Let the complex numbers represented by AB and AC

be
$$z_1$$
 and z_2 respectively.
 $z_1 = 3 + i$, $z_2 = 2 + i$
 $z_1 \cdot z_2 = (3 + i)(2 + i) = 6 - 1 + (2 + 3)i = 5 + 5i$
 $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$

$$z_1 \cdot z_2 = (3+i)(2+i) = 6 - 1 + (2+3)i = 5 + 5i$$

$$Arg(z_1 z_2) = Arg(z_1) + Arg(z_2)$$

$$\alpha^{\circ} = \angle ABD + \angle ACD = \tan^{-1} \frac{5}{5} = 45^{\circ}$$

13.2 Let ABC be an acute-angled triangle. If $\sin A = \frac{36}{\alpha}$, $\sin B = \frac{12}{13}$ and $\sin C = \frac{\beta}{\nu}$, find the value of

 β , where β and γ are in the lowest terms.

(Reference: 2003 FG2.4)

$$\sin A = \frac{36}{45} = \frac{4}{5} \implies \cos A = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$$

$$\sin B = \frac{12}{13} \implies \cos B = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \frac{5}{13}$$

$$\sin C = \sin(180^\circ - (A+B)) = \sin (A+B) = \sin A \cos B + \cos A \sin B$$
$$= \frac{4}{5} \cdot \frac{5}{13} + \frac{3}{5} \cdot \frac{12}{13} = \frac{56}{65}$$

$$\beta = 56$$

 $\alpha = 45$

Remark The original question is: Let ABC be a triangle.

If all angles are acute, then $\beta = 56$ (done above) Case 1

If $\angle A$ is obtuse, then $\cos A = -\frac{3}{5}$ Case 2

$$\cos B = \frac{5}{13}$$
, $\sin C = \frac{4}{5} \cdot \frac{5}{13} - \frac{3}{5} \cdot \frac{12}{13} = -\frac{16}{65} \implies C > 180^{\circ} \text{ or } C < 0^{\circ} \text{ (rejected)}$

If $\angle B$ is obtuse, then $\cos B = -\frac{5}{12}$

$$\cos A = \frac{3}{5}$$
, $\sin C = \frac{4}{5} \cdot \left(-\frac{5}{13}\right) + \frac{3}{5} \cdot \frac{12}{13} = \frac{16}{65}$

$$\beta = 16$$

There are two possible values of β , of which $\beta = 16$ could not be carried forward.

I3.3 In Figure 2, a circle at centre O has three points on its circumference, A, B and C. There are line segments OA, OB, AC and BC, where OA is parallel to BC. If D is the intersection of OB and AC with $\angle BDC = (2\beta - 1)^{\circ}$ and $\angle ACB = \gamma^{\circ}$, find the value of

 $\angle AOB = 2\gamma^{\circ}$ (\angle at centre twice \angle at circumference)

$$\angle OBC = 2\gamma^{\circ} \text{ (alt. } \angle, OA // CB)$$

$$\gamma^{\circ} + 2\gamma^{\circ} + (2\beta - 1)^{\circ} = 180^{\circ} \ (\angle s \text{ sum of } \Delta)$$

$$3\gamma + 111 = 180$$

$$\gamma = 23$$

Figure 2

- **I3.4** In the expansion of $(ax + b)^{2012}$, where a and b are relatively prime positive integers.
 - If the coefficients of x^{γ} and $x^{\gamma+1}$ are equal, find the value of $\delta = a + b$.
 - Coefficient of $x^{23} = C_{23}^{2012} \cdot a^{23} \cdot b^{1989}$; coefficient of $x^{24} = C_{24}^{2012} \cdot a^{24} \cdot b^{1988}$

$$C_{23}^{2012} \cdot a^{23} \cdot b^{1989} = C_{24}^{2012} \cdot a^{24} \cdot b^{1988}$$

$$b = \frac{C_{24}^{2012}}{C_{23}^{2012}} \cdot a$$

$$b = \frac{2012 - 24 + 1}{24} \cdot a$$

$$24b = 1989a$$

$$8b = 663a$$

 \therefore a and b are relatively prime integers

$$\therefore a = 8, b = 663$$

$$\delta = 8 + 663 = 671$$

Individual Event 4

I4.1 If A is a positive integer such that $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \dots + \frac{1}{(A+1)(A+3)} = \frac{12}{25}$, find the value of A.

$$\frac{1}{(n+1)(n+3)} = \frac{1}{2} \left(\frac{1}{n+1} - \frac{1}{n+3} \right) \text{ for } n \ge 0$$

$$\frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{A+1} - \frac{1}{A+3} \right) = \frac{12}{25}$$

$$1 - \frac{1}{A+3} = \frac{24}{25}$$

$$\frac{1}{A+3} = \frac{1}{25}$$

$$A = 22$$

I4.2 If x and y be positive integers such that x > y > 1 and xy = x + y + A.

Let $B = \frac{x}{y}$, find the value of B.

Reference: 1987 FG10.4, 2002 HG9

$$xy = x + y + 22$$

 $xy - x - y + 1 = 23$
 $(x - 1)(y - 1) = 23$
 $\therefore 23$ is a prime number and $x > y > 1$
 $\therefore x - 1 = 23, y - 1 = 1$
 $x = 24$ and $y = 2$
 $x = 24$

I4.3 Let f be a function satisfying the following conditions:

- (i) f(n) is an integer for every positive integer n;
- (ii) f(2) = 2;
- (iii) f(mn) = f(m)f(n) for all positive integers m and n and
- (iv) f(m) > f(n) if m > n.

If C = f B), find the value of C.

Reference: 2003 HI1

$$2 = f(2) > f(1) > 0 \Rightarrow f(1) = 1$$

$$f(4) = f(2 \times 2) = f(2)f(2) = 4$$

$$4 = f(4) > f(3) > f(2) = 2$$

$$\Rightarrow f(3) = 3$$

$$C = f(12) = f(4 \times 3) = f(4)f(3) = 4 \times 3 = 12$$

14.4 Let D be the sum of the last three digits of 2401×7^{C} (in the denary system).

Find the value of *D*.

$$2401 \times 7^{C} = 7^{4} \times 7^{12} = 7^{16} = (7^{2})^{8} = 49^{8} = (50 - 1)^{8}$$

$$= 50^{8} - 8 \times 50^{7} + \dots - 56 \times 50^{3} + 28 \times 50^{2} - 8 \times 50 + 1$$

$$= 28 \times 2500 - 400 + 1 \pmod{1000}$$

$$= -399 = 601 \pmod{1000}$$

$$D = 6 + 0 + 1 = 7$$
Method 2 $2401 \times 7^{C} = 7^{4} \times 7^{12} = 7^{16}$

$$7^{4} = 2401$$

$$7^{8} = (2400 + 1)^{2} = 5760000 + 4800 + 1 = 4801 \pmod{1000}$$

$$7^{16} = (4800 + 1)^{2} = 48^{2} \times 10000 + 9600 + 1 = 9601 \pmod{1000}$$

$$D = 6 + 0 + 1 = 7$$

Individual Spare (2011 Final Group Spare Event)

IS.1 Let *P* be the number of triangles whose side lengths are integers less than or equal to 9. Find the value of *P*.

The sides must satisfy triangle inequality. i.e. a + b > c.

Possible order triples are $(1, 1, 1), (2, 2, 2), \dots, (9, 9, 9)$,

$$(2, 2, 1), (2, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 4), (3, 3, 5),$$

$$(4, 4, 1), (4, 4, 2), (4, 4, 3), (4, 4, 5), (4, 4, 6), (4, 4, 7),$$

$$(5, 5, 1), \dots, (5, 5, 4), (5, 5, 6), (5, 5, 7), (5, 5, 8), (5, 5, 9),$$

$$(6, 6, 1), \dots, (6, 6, 9)$$
 (except $(6, 6, 6)$)

$$(7, 7, 1), \dots, (7, 7, 9)$$
 (except $(7, 7, 7)$)

$$(8, 8, 1), \dots, (8, 8, 9)$$
 (except $(8, 8, 8)$)

$$(9, 9, 1), \cdots, (9, 9, 8)$$

$$(2, 3, 4), (2, 4, 5), (2, 5, 6), (2, 6, 7), (2, 7, 8), (2, 8, 9),$$

$$(3, 4, 5), (3, 4, 6), (3, 5, 6), (3, 5, 7), (3, 6, 7), (3, 6, 8), (3, 7, 8), (3, 7, 9), (3, 8, 9),$$

$$(4, 5, 6), (4, 5, 7), (4, 5, 8), (4, 6, 7), (4, 6, 8), (4, 6, 9), (4, 7, 8), (4, 7, 9), (4, 8, 9),$$

$$(5, 6, 7), (5, 6, 8), (5, 6, 9), (5, 7, 8), (5, 7, 9), (5, 8, 9), (6, 7, 8), (6, 7, 9), (6, 8, 9), (7, 8, 9)$$
.

Total number of triangles = $9 + 6 + 6 + 8 \times 5 + 6 + 9 + 9 + 6 + 4 = 95$

Method 2 First we find the number of order triples.

Case 1 All numbers are the same: $(1, 1, 1), \dots, (9, 9, 9)$.

Case 2 Two of them are the same, the third is different: $(1, 1, 2), \dots, (9, 9, 1)$

There are
$$C_1^9 \times C_1^8 = 72$$
 possible triples.

Case 3 All numbers are different. There are $C_3^9 = 84$ possible triples.

$$\therefore$$
 Total 9 + 72 + 84 = **165** possible triples.

Next we find the number of triples which cannot form a triangle, i.e. $a + b \le c$.

Possible triples are $(1, 1, 2), \cdots (1, 1, 9)$ (8 triples)

$$(1, 2, 3), \dots, (1, 2, 9)$$
 (7 triples)

$$(1, 3, 4), \dots, (1, 3, 9)$$
 (6 triples)

$$(1, 4, 5), \dots, (1, 4, 9)$$
 (5 triples)

$$(1, 5, 6), \dots, (1, 5, 9)$$
 (4 triples)

$$(1, 6, 7), (1, 6, 8), (1, 6, 9), (1, 7, 8), (1, 7, 9), (1, 8, 9),$$

$$(2, 2, 4), \dots, (2, 2, 9)$$
 (6 triples)

$$(2, 3, 5), \dots, (2, 3, 9)$$
 (5 triples)

$$(2, 4, 6), \dots, (2, 4, 9)$$
 (4 triples)

$$(2, 5, 7), (2, 5, 8), (2, 5, 9), (2, 6, 8), (2, 6, 9), (2, 7, 9),$$

$$(3, 3, 6), \dots, (3, 3, 9)$$
 (4 triples)

$$(3, 4, 7), (3, 4, 8), (3, 4, 9), (3, 5, 8), (3, 5, 9), (3, 6, 9), (4, 4, 8), (4, 4, 9), (4, 5, 9)$$

Total number of triples which cannot form a triangle

$$= (8 + 7 + \dots + 1) + (6 + 5 + \dots + 1) + (4 + 3 + 2 + 1) + (2 + 1) = 36 + 21 + 10 + 3 = 70$$

$$\therefore$$
 Number of triangles = $165 - 70 = 95$

IS.2 Let $Q = \log_{128} 2^3 + \log_{128} 2^5 + \log_{128} 2^7 + \dots + \log_{128} 2^P$. Find the value of Q.

$$Q = 3 \log_{128} 2 + 5 \log_{128} 2 + 7 \log_{128} 2 + \dots + 95 \log_{128} 2$$

=
$$(3 + 5 + ... + 95) \log_{128} 2 = \frac{3 + 95}{2} \times 47 \times \log_{128} 2 = \log_{128} 2^{2303} = \log_{128} (2^7)^{329} = 329$$

IS.3 Consider the line 12x - 4y + (Q - 305) = 0. If the area of the triangle formed by the x-axis, the y-axis and this line is R square units, what is the value of R?

$$12x - 4y + 24 = 0 \Rightarrow \text{Height} = 6, \text{ base} = 2; \text{ area } R = \frac{1}{2} \cdot 6 \cdot 2 = 6$$

Remark: the original question is ... 12x - 4y + Q = 0

The answer is very difficult to carry forward to next question.

IS.4 If
$$x + \frac{1}{x} = R$$
 and $x^3 + \frac{1}{x^3} = S$, find the value of S.

$$S = \left(x + \frac{1}{x}\right)\left(x^2 - 1 + \frac{1}{x^2}\right) = R\left[\left(x + \frac{1}{x}\right)^2 - 3\right] = R^3 - 3R = 216 - 3(6) = 198$$

Sample Group Event (2009 Final Group Event 1)

SG.1 Given some triangles with side lengths a cm, 2 cm and b cm, where a and b are integers and $a \le 2 \le b$. If there are q non-congruent classes of triangles satisfying the above conditions, find the value of q.

When a = 1, possible b = 2

When a = 2, possible b = 2 or 3

$$\therefore q = 3$$

SG.2 Given that the equation $|x| - \frac{4}{x} = \frac{3|x|}{x}$ has k distinct real root(s), find the value of k.

When
$$x > 0$$
: $x^2 - 4 = 3x \Rightarrow x^2 - 3x - 4 = 0 \Rightarrow (x + 1)(x - 4) = 0 \Rightarrow x = 4$

When
$$x < 0$$
: $-x^2 - 4 = -3x \Rightarrow x^2 - 3x + 4 = 0$; $D = 9 - 16 < 0 \Rightarrow$ no real roots.

k = 1 (There is only one real root.)

SG.3 Given that x and y are non-zero real numbers satisfying the equations $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$ and $x - \frac{1}{2}$

y = 7. If w = x + y, find the value of w.

The first equation is equivalent to $\frac{x-y}{\sqrt{xy}} = \frac{7}{12} \Rightarrow \sqrt{xy} = 12 \Rightarrow xy = 144$

Sub.
$$y = \frac{144}{x}$$
 into $x - y = 7$: $x - \frac{144}{x} = 7 \Rightarrow x^2 - 7x - 144 = 0 \Rightarrow (x + 9)(x - 16) = 0$

x = -9 or 16; when x = -9, y = -16 (rejected : \sqrt{x} is undefined); when x = 16; y = 9 w = 16 + 9 = 25

Method 2 The first equation is equivalent to $\frac{x-y}{\sqrt{xy}} = \frac{7}{12} \Rightarrow \sqrt{xy} = 12 \Rightarrow xy = 144 \dots$ (1)

$$\therefore x - y = 7 \text{ and } x + y = w$$

$$\therefore x = \frac{w+7}{2}, y = \frac{w-7}{2}$$

Sub. these equations into (1): $\left(\frac{w+7}{2}\right)\left(\frac{w-7}{2}\right) = 144$

$$w^2 - 49 = 576 \Rightarrow w = \pm 25$$

: From the given equation $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$, we know that both x > 0 and y > 0

$$\therefore w = x + y = 25$$
 only

SG.4 Given that x and y are real numbers and $\left|x - \frac{1}{2}\right| + \sqrt{y^2 - 1} = 0$.

Let p = |x| + |y|, find the value of p.

Reference: 2006 FI4.2 ... $y^2 + 4y + 4 + \sqrt{x + y + k} = 0$. If r = |xy|, ...

Both $\left|x-\frac{1}{2}\right|$ and $\sqrt{y^2-1}$ are non-negative numbers.

The sum of two non-negative numbers = 0 means each of them is zero

$$x = \frac{1}{2}$$
, $y = \pm 1$; $p = \frac{1}{2} + 1 = \frac{3}{2}$

G1.1 Calculate the tens digit of 2011²⁰¹¹.

$$2011^{2011} \equiv (10+1)^{2011} \mod 100$$

= $10^{2011} + \dots + 2011 \times 10 + 1$ (binomial theorem)
= $11 \mod 100$

The tens digit is 1.

G1.2 Let a_1, a_2, a_3, \cdots be an arithmetic sequence with common difference 1 and

$$a_1 + a_2 + a_3 + \cdots + a_{100} = 2012$$
. If $P = a_2 + a_4 + a_6 + \cdots + a_{100}$, find the value of P.

Let
$$a_1 = a$$
 then $\frac{100(2a+99)}{2} = 2012$

$$2a + 99 = \frac{1006}{25}$$

$$2a = \frac{1006 - 99 \times 25}{25} = -\frac{1469}{25}$$

$$P = a_2 + a_4 + a_6 + \dots + a_{100} = \frac{50(a+1+a+99)}{2} = 25 \times (2a+100) = 25 \times \left(100 - \frac{1469}{25}\right)$$

$$P = 2500 - 1469 = 1031$$

Method 2
$$P = a_2 + a_4 + a_6 + \cdots + a_{100}$$

$$Q = a_1 + a_3 + a_5 + \dots + a_{99}$$

$$P - Q = 1 + 1 + 1 + \cdots + 1 (50 \text{ terms}) = 50$$

But since
$$P + Q = a_1 + a_2 + a_3 + \dots + a_{100} = 2012$$

$$\therefore P = \frac{2012 + 50}{2} = 1031$$

Remark: the original question …等差級數…, … arithmetic progression …

The phrases are changed to … 等差數列 … and … arithmetic sequence … according to the mathematics syllabus since 1999.

G1.3 If 90! is divisible by 10^k , where k is a positive integer, find the greatest possible value of k.

Reference: 1990 HG6, 1994 FG7.1, 1996 HI3, 2004 FG1.1, 2011 HG7, 2012 FI1.4 Method 1 Method 2

When each factor of 5 is multiplied by 2, a trailing zero will We can find the total number of factors appear in n!. of 5 by division as follow:

The number of factors of 2 is clearly more than the number 5 | 9 0 No. of factors of 5 is 18+3 of factors of 5 in 280! 5 | 18 k = 21It is sufficient to find the number of factors of 5.

- $5, 10, 15, \dots, 90$; altogether 18 numbers, each have at least one factor of 5.
- 25, 50, 75, altogether 3 numbers, each have at least two factors of 5.
- \therefore Total number of factors of 5 is 18 + 3 = 21 k = 21

G1.4 In Figure 1, $\triangle ABC$ is a right-angled triangle with $AB \perp BC$.

If AB = BC, D is a point such that $AD \perp BD$ with AD = 5 and BD = 8, find the value of the area of ΔBCD .

$$AB = BC = \sqrt{5^2 + 8^2} = \sqrt{89}$$
 (Pythagoras' theorem)

Let
$$\angle ABD = \theta$$
, then $\cos \theta = \frac{8}{\sqrt{89}}$

$$\angle CBD = 90^{\circ} - \theta$$
, $\sin \angle CBD = \frac{8}{\sqrt{89}}$

$$S_{\triangle BCD} = \frac{1}{2} BD \cdot BC \sin \angle CBD = \frac{1}{2} \cdot 8 \cdot \sqrt{89} \cdot \frac{8}{\sqrt{89}} = 32$$

Method 2

Rotate ΔABD about the centre at B in clockwise direction through 90° to ΔCBE .

Then
$$\triangle ABD \cong \triangle CBE$$

$$\angle CEB = \angle ADB = 90^{\circ} \text{ (corr. } \angle s \cong \Delta s)$$

$$CE = 5$$
, $BE = 8$ (corr. sides $\cong \Delta$ s)

$$\angle DBE = \angle DBC + \angle CBE$$

= $\angle DBC + \angle ABD$ (corr. $\angle s \cong \Delta s$)
= 90°

$$\angle DBE + \angle CEB = 180^{\circ}$$

BD // CE (int. \angle s supp.)

:. BDCE is a right-angled trapezium.

Area of $\triangle BCD$ = area of trapezium BDCE – area of $\triangle BCE$

$$= \frac{1}{2} (8 + 5) \times 8 - \frac{1}{2} \cdot 8 \times 5$$
$$= 32$$

It should be changed to right-angled triangle. Furthermore, the condition $AD \perp BD$ is not specified.

G2.1 Find the value of $2 \times \tan 1^{\circ} \times \tan 2^{\circ} \times \tan 3^{\circ} \times \cdots \times \tan 87^{\circ} \times \tan 88^{\circ} \times \tan 89^{\circ}$.

Similar question: 2008 FI1.1

 $\tan \theta \times \tan(90^{\circ} - \theta) = 1$ for $\theta = 1^{\circ}, 2^{\circ}, \dots$ 44° and $\tan 45^{\circ} = 1$

 $2\times \tan 1^{\circ} \times \tan 2^{\circ} \times \tan 3^{\circ} \times \cdots \times \tan 87^{\circ} \times \tan 88^{\circ} \times \tan 89^{\circ} = 2$

G2.2 If there are *K* integers that satisfy the equation $(x^2 - 3x + 2)^2 - 3(x^2 - 3x) - 4 = 0$, find the value of *K*.

$$(x^{2} - 3x + 2)^{2} - 3(x^{2} - 3x) - 4 = 0$$

$$(x^{2} - 3x)^{2} + 4(x^{2} - 3x) - 3(x^{2} - 3x) = 0$$

$$(x^{2} - 3x)^{2} + (x^{2} - 3x) = 0$$

$$(x^{2} - 3x)(x^{2} - 3x + 1) = 0$$

$$3 + \sqrt{5}$$

$$x = 0, 3 \text{ or } \frac{3 \pm \sqrt{5}}{2}$$

K = number of integral roots = 2

G2.3 If ℓ is the minimum value of |x-2|+|x-47|, find the value of ℓ .

Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2010 HG6, 2011 FGS.1

Using the triangle inequality: $|a| + |b| \ge |a + b|$

$$|x-2| + |x-47| = |x-2| + |47-x| \ge |x-2+47-x| = 45 \implies \ell = 45$$

G2.4 In Figure 1, P, B and C are points on a circle with centre O and diameter BC. If A, B, C, D are collinear such that AB = BC = CD, $\alpha = \angle APB$ and $\beta = \angle CPD$, find the value of $(\tan \alpha)(\tan \beta)$.

Let
$$AB = x = BC = CD$$
, $\angle CBP = \theta$.

$$\angle BPC = 90^{\circ} (\angle \text{ in semi circle}), \angle BCP = 90^{\circ} - \theta (\angle \text{s sum of } \Delta)$$

$$BP = x \cos \theta$$
, $CP = x \sin \theta$

$$\angle BAP = \theta - \alpha$$
, $\angle CDP = 90^{\circ} - \theta - \beta$ (ext. \angle of Δ)

$$\frac{x}{\sin \alpha} = \frac{BP}{\sin \angle BAP} \text{ (sine rule on } \triangle ABP); \quad \frac{x}{\sin \beta} = \frac{CP}{\sin \angle CDP} \text{ (sine rule on } \triangle CDP)$$

$$\frac{x}{\sin \alpha} = \frac{x \cos \theta}{\sin (\theta - \alpha)}; \quad \frac{x}{\sin \beta} = \frac{x \sin \theta}{\cos (\theta + \beta)}$$

 $\sin \theta \cos \alpha - \cos \theta \sin \alpha = \cos \theta \sin \alpha$; $\cos \theta \cos \beta - \sin \theta \sin \beta = \sin \theta \sin \beta$ $\sin \theta \cos \alpha = 2 \cos \theta \sin \alpha$; $\cos \theta \cos \beta = 2 \sin \theta \sin \beta$

$$\tan \alpha = \frac{\tan \theta}{2}$$
; $\tan \beta = \frac{1}{2 \tan \theta}$

$$(\tan \alpha)(\tan \beta) = \frac{\tan \theta}{2} \cdot \frac{1}{2 \tan \theta} = \frac{1}{4}$$

Method 2 $\angle BPC = 90^{\circ}$ (\angle in semi circle),

Produce PB to E so that PB = BE.

Produce PC to F so that PC = CF.

$$\therefore AB = BC = CD$$
 (given)

:. APCE, BPDF are //-grams (diagonals bisect each other)

$$\angle PEC = \alpha \text{ (alt. } \angle s, AP//EC)$$

$$\angle PFB = \beta$$
 (alt. \angle s, $PD//BF$)

In
$$\triangle EPC$$
, $\tan \alpha = \frac{PC}{PE} = \frac{PC}{2PB}$

In
$$\triangle BPF$$
, $\tan \beta = \frac{PB}{PF} = \frac{PB}{2PC}$

Answers: (2011-12 HKMO Final Events)

$$(\tan \alpha)(\tan \beta) = \frac{PC}{2PB} \cdot \frac{PB}{2PC} = \frac{1}{4}$$

Method 3 Lemma A Given a triangle ABC. D is a point

on BC such that BD : DC = m : n, AD = t.

$$\angle ABD = \alpha$$
, $\angle ADC = \theta < 90^{\circ}$, $\angle ACD = \beta$.

Then $n \cot \alpha - m \cot \beta = (m + n) \cot \theta$

Proof: Let *H* be the projection of *A* on *BC*.

AH = h, $DH = h \cot \theta$.

 $BH = \cot \alpha$, $CH = h \cot \beta$

$$\frac{m}{n} = \frac{BD}{DC} = \frac{BH - DH}{CH + HD} = \frac{h\cot\alpha - h\cot\theta}{h\cot\beta + h\cot\theta}$$

 $m(\cot \beta + \cot \theta) = n(\cot \alpha - \cot \theta)$

 $\therefore n \cot \alpha - m \cot \beta = (m+n) \cot \theta$

 $\angle BAD = \alpha$, $\angle ADC = \theta < 90^{\circ}$, $\angle CAD = \beta$.

Then $m \cot \alpha - n \cot \beta = (m + n) \cot \theta$

Proof: Draw the circumscribed circle ABC.

Produce AD to cut the circle again at E.

 $\angle BCE = \alpha$, $\angle CBE = \beta$ (\angle s in the same seg.)

 $\angle BDE = \theta < 90^{\circ} \text{ (vert. opp. } \angle \text{s)}$

Apply **Lemma A** on ΔBEC .

 $\therefore m \cot \alpha - n \cot \beta = (m+n) \cot \theta$

Now return to our original problem

 $\angle BPC = 90^{\circ} (\angle \text{ in semi circle})$

Apply **Lemma B** to $\triangle APC$:

$$x \cot \alpha - x \cot 90^\circ = (x + x) \cot \theta$$

$$\cot \alpha = 2 \cot \theta \cdots (1)$$

Apply **Lemma B** to $\triangle BPC$, $\angle BPC = 90^{\circ} - \theta$

$$x \cot \beta - x \cot 90^\circ = (x + x) \cot(90^\circ - \theta)$$

$$\cot \beta = 2 \tan \theta \cdots (2)$$

(1)×(2): $\cot \alpha \cot \beta = 2 \cot \theta \times 2 \tan \theta = 4$

$$\therefore (\tan \alpha)(\tan \beta) = \frac{1}{4}$$

Both versions are not smooth and clear. The new version is as follow:

BC 是圓的直徑,圓心為 O,P 、 B 及 C 皆為圓周上的點。若 A 、 B 、 C 及 D 共綫且 AB=BC=CD … If A, B, C, D are collinear such that AB=BC=CD …

G3.1 Let
$$x = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$
, $y = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}}$ and $192z = x^4 + y^4 + (x + y)^4$, find the value of z.
$$(\sqrt{7} + \sqrt{3})^2 + (\sqrt{7} - \sqrt{3})^2 = 2(7+3)$$

$$x + y = \frac{\left(\sqrt{7} + \sqrt{3}\right)^2 + \left(\sqrt{7} - \sqrt{3}\right)^2}{7 - 3} = \frac{2(7 + 3)}{4} = 5; xy = 1$$

$$x^2 + y^2 = (x + y)^2 - 2xy = 5^2 - 2 = 23$$

$$x^4 + y^4 = (x^2 + y^2)^2 - 2(xy)^2 = 23^2 - 2 = 527$$

$$192z = 527 + 5^4 = 527 + 625 = 1152$$

$$z = 6$$

G3.2 In Figure 1, AD, DG, GB, BC, CE, EF and FA are line segments. If $\angle FAD + \angle GBC + \angle BCE + \angle ADG + \angle CEF + \angle AFE + \angle DGB = r^{\circ}$, find the value of r.

In the figure, let P, Q, R, S, T be as shown.

$$\angle ATP + \angle BPQ + \angle DQR + \angle ERS + \angle GST = 360^{\circ} \dots (1)$$

$$\angle APT + \angle CQP + \angle DRQ + \angle FSR + \angle GTS = 360^{\circ} \dots (2)$$

(sum of ext. ∠ of polygon)

$$\angle FAD = 180^{\circ} - (\angle ATP + \angle APT) (\angle s \text{ sum of } \Delta)$$

$$\angle GBC + \angle BCE = 360^{\circ} - (\angle BPQ + \angle CQP)$$
 (\angle s sum of polygon)

$$\angle ADG = 180^{\circ} - (\angle DQR + \angle DRQ) (\angle s \text{ sum of } \Delta)$$

$$\angle CEF + \angle AFE = 360^{\circ} - (\angle ERS + \angle FSR)$$
 (\angle s sum of polygon)

$$\angle DGB = 180^{\circ} - (\angle GST + \angle GST) (\angle s \text{ sum of } \Delta)$$

Add these 5 equations up and make use of equations (1) and (2):

$$r^{\circ} = 180^{\circ} \times 7 - 2 \times 360^{\circ} \Rightarrow r = 540$$

Remark: The original question $\angle FAD + \angle GBC + \angle BCE + \angle ADG + \angle CEF + \angle DGB = r^{\circ}$ $\angle AFE$ is missing, the original question is wrong.

中文版題目: "...及 FA 都是綫段。..." is changed into "...及 FA 都是直綫綫段。..."

example,
$$f(3) = 666$$
 because $\frac{3-1}{3} = 0.666...$, find the value of $D = f(f(f(f(112))))$.

$$0.99 = 1 - \frac{1}{100} < \frac{112 - 1}{112} = 1 - \frac{1}{112} < 1 \Rightarrow f(112) = \overline{99k_3}$$

$$0.998 = 1 - \frac{1}{500} < \frac{\overline{99k_3} - 1}{\overline{99k_3}} = 1 - \frac{1}{\overline{99k_3}} < 1 - \frac{1}{1000} = 0.999 \Rightarrow f(f(112)) = 998$$

$$\Rightarrow \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{1}\mathsf{1}\mathsf{2}))) = 998 \Rightarrow D = \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{1}\mathsf{1}\mathsf{2}))))) = 998$$

G3.4 If F_n is an integral valued function defined recursively by $F_n(k) = F_1(F_{n-1}(k))$ for $n \ge 2$ where $F_1(k)$ is the sum of squares of the digits of k, find the value of $F_{2012}(7)$.

$$F_1(7) = 7^2 = 49$$

$$F_2(7) = F_1(F_1(7)) = F_1(49) = 4^2 + 9^2 = 97$$

$$F_3(7) = 9^2 + 7^2 = 130$$

$$F_4(7) = 1^2 + 3^2 + 0^2 = 10$$

$$F_5(7) = 1$$

$$F_{2012}(7) = 1$$

Remark: the original question If f is an integer valued function ...

The recursive function is defined for F_n , not f.

G4.1 In figure 1, ABC and EBC are two right-angled triangles, $\angle BAC = \angle BEC = 90^{\circ}$, AB = AC and EDB is the angle bisector of $\angle ABC$.

Find the value of $\frac{BD}{CE}$.

$$\angle ABC = \angle ACB = 45^{\circ} (\angle s \text{ sum of isos. } \Delta)$$

$$\angle ABD = \angle CBD = 22.5^{\circ} (\angle bisector)$$

Let
$$BC = x$$

$$AB = x \cos 45^\circ = \frac{\sqrt{2}x}{2}$$
; $CE = x \sin 22.5^\circ$

$$BD = AB \div \cos 22.5^\circ = \frac{\sqrt{2}x}{2\cos 22.5^\circ}$$

$$\frac{BD}{CE} = \frac{\sqrt{2}x}{2\cos 22.5^{\circ} \cdot x\sin 22.5^{\circ}} = \frac{\sqrt{2}}{\cos 45^{\circ}} = 2$$

Method 2 Produce *CE* and *BA* to meet at *F*.

$$AB = AC \Rightarrow \angle ABC = \angle ACB = 45^{\circ}$$

$$\angle BAC = \angle BEC = 90^{\circ} \text{ (given)}$$

 \Rightarrow ABCE is a cyclic quad. (converse, \angle s in the same seg.)

$$\angle ABD = \angle CBD = 22.5^{\circ} (\angle bisector)$$

$$\angle ACF = 22.5^{\circ}$$
 (\angle s in the same seg.)

$$\angle CAE = \angle CBE = 22.5^{\circ}$$
 (\angle s in the same seg.)

$$CE = AE \dots (1)$$
 (sides, opp. eq. \angle s)

$$\angle EAF = 180^{\circ} - 90^{\circ} - 22.5^{\circ} = 67.5^{\circ}$$
 (adj. \angle s on st. line)

$$\angle AFE = 180^{\circ} - 90^{\circ} - 22.5^{\circ} = 67.5^{\circ} \ (\angle s \text{ of } \Delta ACF)$$

$$AE = EF \dots (2)$$
 (sides, opp. eq. \angle s)

By (1) and (2),
$$CF = 2CE ... (3)$$

$$\Delta ACF \cong \Delta ABD \text{ (A.S.A.)}$$

$$BD = CF$$
 (corr. sides, $\cong \Delta$'s)

$$\frac{BD}{CE} = \frac{CF}{CE} = \frac{2CE}{CE} = 2 \text{ by (3)}$$

$$\left| 3Q - \left| 1 - 2Q \right| \right| = 2$$

$$3Q - |1 - 2Q| = 2$$
 or $3Q - |1 - 2Q| = -2$

$$3Q - 2 = |1 - 2Q|$$
 or $3Q + 2 = |1 - 2Q|$

$$3Q - 2 = 1 - 2Q \text{ or } 3Q - 2 = 2Q - 1 \text{ or } 3Q + 2 = 1 - 2Q \text{ or } 3Q + 2 = 2Q - 1$$

$$Q = \frac{3}{5}$$
 or 1 or $-\frac{1}{5}$ (rejected) or -3 (rejected)

Check: when
$$Q = \frac{3}{5}$$
, LHS = $\left| \frac{9}{5} - \left| 1 - \frac{6}{5} \right| \right| = \frac{8}{5} \neq 2$, rejected

When
$$Q = 1$$
, LHS = $|3 - |1 - 2|| = 2$ = RHS accepted $\therefore Q = 1$

G4.3 Let
$$xyzt = 1$$
. If $R = \frac{1}{1+x+xy+xyz} + \frac{1}{1+y+yz+yzt} + \frac{1}{1+z+zt+ztx} + \frac{1}{1+t+tx+txy}$,

find the value of R.

$$\frac{1}{1+x+xy+xyz} = \frac{1}{1+x+xy+\frac{1}{t}} = \frac{t}{1+t+tx+txy}$$

$$\frac{1}{1+y+yz+yzt} = \frac{1}{1+y+\frac{1}{tx}+\frac{t}{tx}} = \frac{tx}{1+t+tx+txy}$$

$$\frac{1}{1+z+zt+ztx} = \frac{1}{1+\frac{1}{txy}+\frac{t}{txy}+\frac{tx}{txy}} = \frac{txy}{1+t+tx+txy}$$

$$R = \frac{t}{1+t+tx+txy} + \frac{tx}{1+t+tx+txy} + \frac{txy}{1+t+tx+txy} + \frac{1}{1+t+tx+txy} = 1$$

G4.4 If x_1 , x_2 , x_3 , x_4 and x_5 are positive integers that satisfy $x_1 + x_2 + x_3 + x_4 + x_5 = x_1 x_2 x_3 x_4 x_5$, that is the sum is the product, find the maximum value of x_5 .

The expression is symmetric. We may assume that $1 \le x_1 \le x_2 \le x_3 \le x_4 \le x_5$.

If $x_1 = x_2 = x_3 = x_4 = 1$, then $1 + 1 + 1 + 1 + x_5 = 1 \times 1 \times 1 \times 1 \times x_5 \implies$ no solution

$$x_1x_2x_3x_4 - 1 \neq 0$$

$$x_1 + x_2 + x_3 + x_4 = (x_1x_2x_3x_4 - 1)x_5$$

$$x_5 = \frac{x_1 + x_2 + x_3 + x_4}{x_1 x_2 x_3 x_4 - 1}$$

When x_5 attains the maximum value, the denominator must be 1, i.e. $x_1x_2x_3x_4 = 2$

$$\therefore 1 \le x_1 \le x_2 \le x_3 \le x_4 \therefore x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 2, \text{ max. } x_5 = \frac{1 + 1 + 1 + 2}{2 - 1} = 5$$

Method 2 We begin from the lowest integer.

Case 1 Let $x_1 = x_2 = x_3 = x_4 = 1$, then $1 + 1 + 1 + 1 + x_5 = 1 \times 1 \times 1 \times 1 \times x_5 \Rightarrow$ no solution

Case 2 Let
$$x_1 = x_2 = x_3 = 1$$
 and $x_4 > 1$, then $3 + x_4 + x_5 = x_4x_5 \Rightarrow x_5 = \frac{x_4 + 3}{x_4 - 1}$

When
$$x_4 = 2$$
, $x_5 = 5$; when $x_4 = 3$, $x_5 = 3$

When
$$x_4 = 4$$
, no integral solution for x_5

When
$$x_4 = 5$$
, $x_5 = 2$, contradicting that $1 \le x_1 \le x_2 \le x_3 \le x_4 \le x_5$.

When $x_4 > 5$, then $x_5 < x_4$, which is a contradiction

Case 3 Let $x_1 = x_2 = 1$ and $x_3 > 1$, then $2 + x_3 + x_4 + x_5 = x_3x_4x_5$

When
$$x_3 = 2$$
, $4 + x_4 + x_5 = 2x_4x_5 \Rightarrow x_5 = \frac{x_4 + 4}{2x_4 - 1} > 1 \Rightarrow x_4 + 4 > 2x_4 - 1 \Rightarrow x_4 < 5$

When
$$x_4 = 2$$
, $x_5 = 2$

When $x_4 = 3$, 4, no integral solution for x_5

Case 4 1 =
$$x_1 < x_2 \le x_3 \le x_4 \le x_5$$
, then $x_5 = \frac{1 + x_2 + x_3 + x_4}{x_2 x_3 x_4 - 1} < \frac{1 + 3x_4}{4x_4 - 1}$

When
$$x_2 = x_3 = x_4 = 2$$
, $x_5 = 1 < x_4$, contradiction

When
$$2 \le x_2 = x_3 \le x_4$$

$$1 + 3x_4 < 4x_4 - 1$$

$$\frac{1+3x_4}{4x_4-1} < 1 \Rightarrow x_5 < 1$$
, contradiction :. There is no integral solution for x_5 .

Case 5
$$2 \le x_1 \le x_2 \le x_3 \le x_4 \le x_5$$
, then $x_5 = \frac{x_1 + x_2 + x_3 + x_4}{x_1 x_2 x_3 x_4 - 1} < \frac{4x_4}{8x_4 - 1}$

$$1 < 4x_4$$

$$4x_4 < 8x_4 - 1$$

$$\frac{4x_4}{8x_4-1} < 1 \Rightarrow x_5 < 1$$
, contradiction \therefore There is no integral solution for x_5 .

Conclusion: The solution set for $(x_1, x_2, x_3, x_4, x_5)$ is $\{(1, 1, 1, 2, 5), (1, 1, 1, 3, 3), (1,1,2,2,2)\}$. Maximum for $x_5 = 5$

Group Spare (2011 Final Group Spare Event)

GS.1 Let α and β be the real roots of $y^2 - 6y + 5 = 0$. Let m be the minimum value of $|x - \alpha| + |x - \beta|$ over all real values of x. Find the value of m.

Remark: there is a typing mistake in the English version. \cdots minimum value a of \cdots

Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2010 HG6, 2012 FG2.3

$$\alpha = 1, \beta = 5$$

If $x < 1, |x - \alpha| + |x - \beta| = 1 - x + 5 - x = 6 - 2x > 4$
If $1 \le x \le 5, |x - \alpha| + |x - \beta| = x - 1 + 5 - x = 4$
If $x > 5, |x - \alpha| + |x - \beta| = x - 1 + x - 5 = 2x - 6 > 4$

 $m = \min$ of $|x - \alpha| + |x - \beta| = 4$ **Method 2** Using the triangle inequality: $|a| + |b| \ge |a + b|$

Method 2 Using the triangle inequality: $|a| + |b| \ge |a|$ $|x - \alpha| + |x - \beta| \ge |x - 1| + |x - \beta| = 4 \Rightarrow m = 4$

GS.2 Let α , β , γ be real numbers satisfying $\alpha + \beta + \gamma = 2$ and $\alpha\beta\gamma = 4$.

Let v be the minimum value of $|\alpha| + |\beta| + |\gamma|$. Find the value of v.

If at least one of α , β , $\gamma = 0$, then $\alpha\beta\gamma \neq 4 \Rightarrow \alpha$, β , $\gamma \neq 0$

If α , β , $\gamma > 0$, then

$$\frac{\alpha + \beta + \gamma}{3} \ge \sqrt[3]{\alpha\beta\gamma} \quad (A.M. \ge G.M.)$$

$$\frac{2}{3} \ge \sqrt[3]{4}$$

 $2^3 \ge 27 \times 4 = 108$, which is a contradiction

If $\beta < 0$, in order that $\alpha\beta\gamma = 4 > 0$, WLOG let $\gamma < 0$, $\alpha > 0$

$$\alpha = 2 - \beta - \gamma > 2$$

$$|\alpha| + |\beta| + |\gamma| = \alpha - (\beta + \gamma) = 2 + 2(-\beta - \gamma) \ge 2 + 4\sqrt{(-\beta)(-\gamma)}$$
, equality holds when $\beta = \gamma$

$$4 = (2 - 2\beta)\beta^2$$

$$\beta^3 - \beta^2 + 2 = 0$$

$$(\beta+1)(\beta^2-2\beta+2)=0$$

 $\beta = -1$ (For the 2nd equation, $\Delta = -4 < 0$, no real solution)

$$\gamma = -1$$
, $\alpha = 4$

$$|\alpha| + |\beta| + |\gamma| = 1 + 1 + 4 = 6$$

$$v = \min$$
 of $|\alpha| + |\beta| + |\gamma| = 6$

GS.3 Let y = |x + 1| - 2|x| + |x - 2| and $-1 \le x \le 2$. Let α be the maximum value of y.

Find the value of α .

$$y = x + 1 - 2|x| + 2 - x = 3 - 2|x|$$

 $0 \le |x| \le 2 \Rightarrow 3 \ge 3 - 2|x| \ge -1$
 $\alpha = 3$

GS.4 Let F be the number of integral solutions of $x^2 + y^2 + z^2 + w^2 = 3(x + y + z + w)$.

Find the value of F.

(x, y, z, w) = (0, 0, 0, 0) is a trivial solution.

$$x^{2} + y^{2} + z^{2} + w^{2} - 3(x + y + z + w) = 0$$

$$\left(x^2 - 3x + \frac{9}{4}\right) + \left(y^2 - 3y + \frac{9}{4}\right) + \left(z^2 - 3z + \frac{9}{4}\right) + \left(w^2 - 3w + \frac{9}{4}\right) = 9$$

$$\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 + \left(z-\frac{3}{2}\right)^2 + \left(w-\frac{3}{2}\right)^2 = 9$$

$$(2x-3)^2 + (2y-3)^2 + (2z-3)^2 + (2w-3)^2 = 36$$

Let a = 2x - 3, b = 2y - 3, c = 2z - 3, d = 2w - 3, the equation becomes $a^2 + b^2 + c^2 + d^2 = 36$ For integral solutions of (x, y, z, w), (a, d, c, d) must be odd integers.

In addition, the permutation of (a, b, c, d) is also a solution. (e.g. (b, d, c, a) is a solution)

 \therefore a, b, c, d are odd integers and $a^2 + b^2 + c^2 + d^2 \ge 0$

If one of the four unknowns, say, a > 6, then L.H.S. > 36, so L.H.S. \neq R.H.S.

$$\therefore a, b, c, d = \pm 1, \pm 3, \pm 5$$

When
$$a = \pm 5$$
, then $25 + b^2 + c^2 + d^2 = 36 \Rightarrow b^2 + c^2 + d^2 = 11$

The only integral solution to this equation is $b = \pm 3$, $c = \pm 1 = d$ or its permutations.

When the largest (in magnitude) of the 4 unknowns, say, a is ± 3 , then $9 + b^2 + c^2 + d^2 = 36$ $\Rightarrow b^2 + c^2 + d^2 = 27$, the only solution is $b = \pm 3$, $c = \pm 3$, $d = \pm 3$ or its permutations.

 \therefore The integral solutions are (a, b, c, d) = (5, 3, 1, 1) and its permutations $\cdots (1) \times P_2^4 = 12$

$$(3, 3, 3, 3) \cdots (2) \times 1$$

If (a, b, c, d) is a solution, then $(\pm a, \pm b, \pm c, \pm d)$ are also solutions.

There are 16 solutions with different signs for $(\pm a, \pm b, \pm c, \pm d)$.

∴
$$F = (12 + 1) \times 16$$

= 208