Chall.

to the product of the true armature acceleration α and an acceleration measurement transfer function $F_g(p)$, the acceleration measurement transfer function $F_g(p)$ having a complex frequency variable p whereby the function $F_g(p)$ equals one when p equals 0;

means for measuring a substitute acceleration signal b_E , made available as a measured acceleration signal, \underline{b}_E m;

means to scale the measured armature acceleration value \underline{b}_m and the measured acceleration signal \underline{b}_{Em} such that the relationship of $\underline{b}_m = \alpha \bullet F_g(p) = \underline{b}_{Em} \bullet F_g(p)$ is satisfied;

a first filter for filtering the measured armature acceleration signal \underline{b}_m with a first filter transfer function of $F_T(p)$, to obtain a first filter output signal $\underline{x} = \underline{b}_m \bullet F_T(p)$, in which the first filter transfer function $F_T(p)$ has the complex frequency variable p;

a second filter for filtering the measured acceleration signal $\underline{b}_E m$ with a second filter transfer function of $F_H(p)$, to obtain a second filter output signal $\underline{y} = \underline{b}_{Em} \bullet F_H(p)$; and

means for combining the first and second filter outputs to form the partly synthesized high quality acceleration error correction signal $\underline{z} = \underline{b}_m \bullet F_T(p) + \underline{b}_{Em} \bullet F_H(p)$.

02

40. (New) The controller according to claim 25, wherein the function $F_T(p)$ equals one when p equals 0.

REMARKS

By the present Supplemental Amendment, claim 25 has been amended and claim 40 has been added to clarify the claims without narrowing the scope thereof. This leaves claims 13-40 pending in the application, with claims 13 and 25 being the independent claims.

The Applicant believes the matter is in position for allowance. Notice to that effect is respectfully requested.