CS & IT ENGINEERING

Algorithms

Analysis of Algorithms

Lecture No.- 06

By- Aditya sir

Recap of Previous Lecture

Big Notations Topic

Topic

Problem Solving

Topics to be Covered

Topic: Asymptotic

$$\frac{1}{m+d-2} \stackrel{i=1}{\sum_{i=1}^{2}} \log(i) = \log(n!)$$

$$\frac{n\log n - n + c}{\sum_{i=1}^{2}} \log_{i} = \left[n(\log n - 1) + c\right]$$

$$\frac{n\log n}{\sum_{i=1}^{2}} \log_{i} = \left[n(\log n - 1) + c\right] = \frac{n\log n - n + c}{\sum_{i=1}^{2}}$$

nio [mtd-3] using approximation logic

$$\frac{1}{\log n + \log(n-1) + \log(n-2) - \dots + \log 1} \leq \log n + \log n +$$

for LB :

logn > log(n/2)

log n + log (n-1) + log(n-2) ... + log1 > log(n/2) + log(n/2) ...

(R

 $\frac{\log |n|}{2} > \sqrt{2 \log (n/2)}$

1/2 terms

$$\int f(n) = \sum_{i=1}^{2} \sqrt{i} = 0$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{1 + \sqrt{2} + \sqrt{n}}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{1 + \sqrt{2} + \sqrt{n}}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{2} + \sqrt{n}}$$

$$= \sqrt{1 + \sqrt{2} + \sqrt{2} + \sqrt{2}}$$

$$= \sqrt{1 +$$

Topic: Small/Little Notations

$$fight bound < \sqrt{2(n)} = f(n) = n$$

$$lose bound$$

- The bounds provided by small/little notations is always not Asymptotocally tight Jose bound

Topic: Asymptotic Notations

Small Oh: (0): proper upper Bound

f(n) is
$$O(g(n))$$
 iff for all $C>0$
 $f(n) < C + g(n)$ whenever $n > n_0$
 $n_0 > n_0$

Topic: Asymptotic Notations

S) Small omega (w): propuloment
—, fln) is
$$\omega(g(n))$$
 ; ff for
all (>0) $f(n)>c*g(n)$
wherever, $n>n$
 $n_0>0$

$$f(n) = \sqrt{2(n)}$$

$$\sqrt{2(n)}$$

* Properties of ASN:-

- Anology between ASH & Real nox:

g sa

Let 9,6 be lead nos, & f, g - + m functions

PSC.xg6)

1) If
$$f(n)$$
 is $O(g(n))$

2) If $f(n)$ is $O(g(n))$
 $a \leq k$

2)
$$f + f(n)$$
 is $\Omega(g(n)) = A$ $a \le a \le b$
3) $f + f(n) = a \circ o(g(n)) = A$ $a = b$
1) $f + f(n)$ is $O(g(n)) = A$ $a = b$

(a) If
$$f(n) = 0$$
 ($g(n)$) $\Rightarrow a = b$
(a) If $f(n) = 0$ ($g(n)$) $\Rightarrow a < b$
(b) If $f(n) = a = b$
(a) If $f(n) = a = b$
(a) If $f(n) = a = b$
(b) If $f(n) = a = b$
(a) If $f(n) = a = b$
(b) If $f(n) = a = b$
(c) $f(n) = a = b$
(d) If $f(n) = a = b$
(e) $f(n) = a = b$
(for $f(n) = a = b$) $f(n) = a = b$

[MCQ]

#Q.
$$f(n) = \sum_{i=1}^{n} i^3 = x$$
 choice for x.

I.
$$\theta(n^4)$$
 II. $\theta(n^5)\chi$

$$\theta$$
 (n⁵) χ

III.
$$O(n^5)$$
 IV. $\Omega(n^3)$

$$\Omega$$
 (n³)

I, II, III, IV

$$\frac{2}{2}i^{2} = \frac{n(n+1)}{2}$$

$$= \frac{n^{2}(n+1)^{2}}{4} = \frac{n^{2}(n^{2}+2n+1)}{4}$$

B II, III, IV =
$$\frac{n^4 + 2n^3 + n^2}{n^4 + n^4}$$

I, III, IV

Topic: General Properties of Big Oh Notation

Let d(n), e(n), f(n), and g(n) be functions mapping nonnegative integers to

non-negative reals. Then

- 1. If d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0
- 2. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n)).
- 3. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is o(f(n)g(n))
- 4. If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)). \longrightarrow Transitive
- 5. If f(n) is a polynomial of degree d (that is, $f(n) = (a_0 + a_1 n + + a_d n^d)$) then f(n) is
 - $O(n!) \longrightarrow f = 1 + n^2 + n^3 \longrightarrow O(n^3)$
 - 6. n^x is $O(a^n)$ for any fixed x > 0 and a > 1
- 7. $\log(n^x)$ is $O(\log n)$ for any fixed x > 0
- 8. $\log^x n$ is $O(n^y)$ for any fixed constants x > 0 and y > 0

2) eq:
$$d(n) = n^3 - O(n^3)$$

$$e(n) = n^4 - O(n^4) - O(n^4)$$

$$d(n) + e(n) \Rightarrow n^3 + n^4 - O(n^3 + n^4) - O(n^4)$$

$$O(\max(n^3, n^4)) - O(n^4)$$

$$= O(n^4)$$

$$= O(n^4)$$

$$3)eq: d(n) = n^{3} \longrightarrow O(n^{2})$$

$$e(n) = n^{4} \longrightarrow O(n^{4})$$

$$e(n) + e(n) = n^{3} \times n^{4} \longrightarrow O(n^{2})$$

$$\log(n^{2}) + (\log n)^{2}$$

$$\log(n^{2}) + (\log$$

Topic: Discrete Properties of ASN

		0	2	0	0	w	
Roportes Dbsc asc	Roflexin			/	X	×	$n = O(n^2)$
	Symmetric	X	X		×	×	$n^2 = O(n)$
	Fransitive				/	1	
if f(n) is 0(g(v))2 then g(n) is 12 (+(n))	Transpose	V		×	1		if f(n) is 0 (g(n)) then g(n) is co (+10)
a 6 6 3 60							J

- if F'& g'are two

Conclusion from our the Disussion:

- ASN: does NOT Satisfy Tricotomy property

.

$$T/F$$
?

 $P(n) = n, g(n) = n^2$

$$f = 0(9) = 0(9)$$

$$f = \sqrt{(3)}$$
 $f = \sqrt{(3)}$
 $f = \sqrt{(3)}$
 $f = \sqrt{(3)}$
 $f = \sqrt{(3)}$

$$(93) = f(n) = n^2 + 10, g(n) = 10n^2 + 8$$

$$(n^2) \qquad o(n^2) \qquad o(n^2)$$

.

$$\frac{g(n)}{f(n)=n} \qquad f(n)=n$$

$$(as)$$
: $Sinn \rightarrow +1 \rightarrow f(n) = n, g(n) = n^{1+1} = n^2$

$$(f < g)$$

Topic: Asymptotic Notations & Apriorist Analysis

State True / False

- 1. 100 n.logn = O(n.logn)
- 2. $2^{n+1} = O(2^n)$:
- 3. $2^{2n} = O(2^n)$
- 4. 0 < x < y then $n^x = O(n^y)$:
- 5. $(n+k)^m \neq \theta (n^m) (k, m) > 0$
- 6. $\sqrt{\log n} = 0(\log \log n)$
- 7. $\log (n)$ is $\Omega (1/n)$
- 8. 2^{n2} is 0 (n!)
- 9. n² is O (2^{2logn})

10.
$$a^{n} \neq O(n^{x}), a > 1, x > 0$$

11. $2^{\log_{2} n^{2}}$ is $O(n^{2})$

2 mins Summary

THANK - YOU