

Z2

93

$$\frac{270R}{2800} = \frac{5}{7} , \frac{28}{10}, \frac{1}{10}, \frac{5}{10} = \frac{2}{10}$$

OR/OT is argue busiceton of LPOS, LSOQ orugadar $\angle POS = n \qquad , \qquad \angle ROT = ? = 90^{\circ} \qquad \checkmark$

PT: LPOR+LQOR+LSOR+LPOS = 360°

PQ ((RS)) (xMY = ? = 85°

BO/CO are concless of CBE & DCB

CBOC = 90° - 1/BAC P.T.

$$\alpha = \alpha - \frac{1}{\alpha}\beta \Rightarrow \alpha = \alpha(\beta)$$

$$2\alpha = 160 - \beta \Rightarrow 2\alpha + \beta = 180$$

Agle sum prop:

$$\beta + \sqrt{t} \delta = 150^{\circ}$$
 $\frac{\theta + \phi}{2} + \kappa = 180^{\circ} \Rightarrow 0 + \phi + 2\kappa = 360^{\circ} \Rightarrow \beta + 2\kappa = 180^{\circ}$ $\frac{\theta}{2} + \frac{1}{1} = 180^{\circ}$ \frac

Triangle Ride Inequality

*

Digle off. to the longer side is larger

if sich = longut $\Rightarrow \theta = Max$.

g

To prove ABZAD

AD = AC LADC = LACD

△ABD → ∠BAD + ∠DBA = ∠ADC

ZABC > ZABD => CADC > ZABC

Lutury (1/5et) 1.5

AB ZAC D

AD

3. Quadricaturals (meting)

*

= It live regnet / 2-point correlation

*

= triangle / 3-point correlations

 $|\times|$

= Quadrileteral / 4-point Correlation

a Agu lun of quel

*

 $\sum_{i=1}^{4} \theta_{i} = 360^{\circ}$

Angle him property of queed

John :

b. Types of Cheradrilatinals (ABCD)

LDAB = LBCD

Δ DEF ≅ Δ FAD

$$A_{\Lambda}(\Delta ADC) = \frac{1}{2} \times Bare \times Hight$$

\$4

Mudian of a triagh divides & rit 2 &s of Egud Areas.

* An(
$$\Delta BD$$
) = $\pm (AE)(BD)$
2

An(ΔDC) = $\pm (AE)(DC)$
3D

All Restagles Not inniler $\frac{1}{b_i} \neq 6$ not.

Eliges wet limile ai + onet

* Thm 1: Any ABC,

Thated them

Barie Proportionality Therm (BPT)

o solid statisty / CMP ~ lattice

foard:

*
$$Ar(AADE) = \frac{1}{2}(AD)(fE) = \frac{1}{2}n(fE)$$

$$Ar(ADBE) = \frac{1}{2}(D8)(FE) = \frac{1}{2}y(FE)$$

$$\Rightarrow \frac{\Delta n(\Delta ADE)}{\Delta n(\Delta DBE)} = \frac{\pi}{2} - C$$

*
$$\Delta n(\Delta ADE) = \frac{1}{2}(AE)(DG) = \frac{1}{2} \lambda(DG)$$

$$\Delta n(\Delta DEC) = \frac{1}{2}(EC)(DG) = \frac{1}{2} \lambda(DG)$$

$$\Rightarrow \Delta n(\Delta PDE) = \frac{z}{\lambda}$$

$$\Delta n(DEC) = \frac{z}{\lambda}$$

$$\frac{\Delta n(\Delta PDE)}{\Delta n(DEC)} = \frac{z}{N} \qquad - 2$$

$$\begin{array}{ccc}
 & Ar (ADE) = Ar(ADE) & \Rightarrow & \frac{Ar(ADE)}{Ar(ABE)} & \Rightarrow & \frac{\pi}{3} = \frac{Z}{\omega} \\
 & Grand DE' & & & & \\
 & Ar(ADE) & & & \\
 &$$

$$\frac{2}{3} + 1 = \frac{2}{3} + 1 \Rightarrow \frac{2}{3} = \frac{2}{3} \Rightarrow \frac{AB}{DB} = \frac{Ae}{Ec}$$
 Whole part address // \(\).

$$\frac{AB}{DB} = \frac{Ae}{Ec}$$

*
$$\frac{n}{y} = \frac{z}{\omega} \Rightarrow \frac{y}{x} = \frac{\omega}{z} \Rightarrow \frac{y}{x} + 1 = \frac{\omega}{z} + 1 \Rightarrow \frac{AB}{AD} = \frac{AC}{AD}$$

$$= \frac{\omega}{z} + (\Rightarrow \frac{AB}{AD} = \frac{AC}{AD}$$

$$\frac{AD}{DR} = \frac{AE}{E}$$

$$\frac{AE - AF}{EC} \Rightarrow \frac{AE + EE}{EC} \Rightarrow \frac{AF + FC}{EC} \Rightarrow \frac{AE}{EC} \Rightarrow \frac$$

$$\frac{n}{n-2} = \frac{n+2}{n-4}$$

$$P.T \qquad i \qquad \frac{AR}{AB} = \frac{AR}{AB}$$

$$\frac{QB}{AR} = \frac{DR}{AR}$$

$$AABC: AR = AP$$
 $ABC: AR = AP$
 $ABC: AR = A$

$$\frac{AE}{EC} = \frac{8E}{EC}$$

Gretnet: FE | DC
$$\frac{8PT}{AADC}$$
 $\frac{AF}{FD} = \frac{AE}{EE}$

On if
$$EF(|AB||CD) \Rightarrow \frac{AE}{ED} = \frac{BF}{ED}$$

DADB

Conven JBPT

* EGUAB
$$\Rightarrow$$
 $\frac{AE}{CD} = \frac{36}{5D}$ ($\triangle ABD$)

* $\frac{8C}{CD} = \frac{8F}{6D} = \frac{8F}{FC}$ ($\triangle ADC$)

$$\Rightarrow \frac{AC}{CD} = \frac{BI}{CD}$$

$$\frac{AB}{BC} = \frac{DE}{EF}$$

 $CFUBC \Rightarrow \underline{a} = \underline{C}$

$$g^{L}$$
 if $BP=PC$, $AQ=QP$ $\xrightarrow{T:P}$ $RA=L$ CA

Creture 11 lie ··· PTIIBR

$$\Delta BCR \xrightarrow{BPT} PR = CT \Rightarrow CT = TR$$

PTIIBR
$$\Rightarrow$$
 PTIIQR $\xrightarrow{\Delta APT}$ \Rightarrow \Rightarrow AR=RT \Rightarrow AR=RT L

$$|DB| = 8$$
 $|DB| = 9$
 $|A-c| = 6$ $|DB| = 12$

if ABILPQ, ACLIQR > BCILPR 6

It In a trapezium, the diagonals divide Each other proportionally of Prove that!

$$PNof: \Delta ADC \xrightarrow{SPT} \Delta F = AE$$
 $FD = GC$
 ΔCC
 $AF = BC$
 $FD = GC$

Interior Biretos Theorem

+ if
$$\angle A$$
: biscottod (=> 1=2) than $\frac{\pi}{J} = \frac{z}{\omega}$

Total MM: 40