Softwarový proces

KIV/ASWI 2017/2018

Obsah

- Pojmy
- Aspekty ovlivňující proces
- Varianty procesu

Realita stavu sw eng ...

▶ Realita stavu sw eng ...

CHAOS RESOLUTION BY PROJECT SIZE

	SUCCESSFUL	CHALLENGED	FAILED
Grand	2%	7%	17%
Large	6%	17%	24%
Medium	9%	26%	31%
Moderate	21%	32%	17%
Small	62%	16%	11%
TOTAL	100%	100%	100%

The resolution of all software projects by size from FY2011-2015 within the new CHAOS database.

▶ Realita stavu sw eng ...

Příčiny neúspěchů

Standish Group: Chaos Report 1995 Emam, Koru: A Replicated Survey of IT Software Project Failures, IEEE Software 25(5), 2008

Project Challenged Factors	% of Responses
Lack of User Input	12.8%
2. Incomplete Requirements & Specifications	12.3%
3. Changing Requirements & Specifications	11.8%
Lack of Executive Support	7.5%
5. Technology Incompetence	7 0%

6. Lack of Resources

7. Unrealistic Expectat

8. Unclear Objectives

9. Unrealistic Time Fra

10. New Technology Other

<u>stence</u>	7.0%	
Reason for cancellation	Percentage of respondents (95% confidence interval)	
Senior management not sufficiently involved	33 (13, 59)	
Too many requirements and scope changes	33 (13, 59)	
Lack of necessary management skills	28 (10, 54)	
Over budget	28 (10, 54)	
Lack of necessary technical skills	22 (6, 48)	
No more need for the system to be developed	22 (6, 48)	
Over schedule	17 (4, 41)	
Technology too new; didn't work as expected	17 (4, 41)	
Insufficient staff	11 (1, 35)	
Critical quality problems with software	11 (1, 35)	
End users not sufficiently involved	6 (0, 27)	
Technology too new; didn't work as expected Insufficient staff Critical quality problems with software	17 (4, 41) 11 (1, 35) 11 (1, 35)	

Příčiny úspěchů

CHAOS FACTORS OF SUCCES

The Journal of Systems and Software 81 (2008) 961-971

The Journal of Systems and Software

www.elsevier.com/locate/jss

ELSEVIER

FACTORS OF SUCCESS	POINTS
Executive Sponsorship	15
Emotional Maturity	15
User Involvement	15
Optimization	15
Skilled Resources	10
Standard Architecture	8
Agile Process	7
Modest Execution	6
Project Management Expertise	5

Clear Business Objectives

A survey study of critical success factors in agile software projects

Tsun Chow, Dac-Buu Cao *

School of Business and Technology, Capella University, Minneapolis, MN 55402, USA Received 20 February 2007; received in revised form 12 August 2007; accepted 17 August 2007 Available online 26 August 2007

First of all, in spite of a large number of factors affecting Agile projects discussed in the literature, the actual number of critical success factors found here is quite small. Out of 48 research hypotheses, only 10 are supported. Through multiple regression analysis, the only factors that could be called critical success factors are found to be (a) a correct delivery strategy, (b) a proper practice of Agile software engineering techniques, and (c) a high-caliber team. Three other factors that could be critical to certain success dimensions are found to be (a) a good Agile project management process, (b) an Agile-friendly team environment, and (c) a strong customer involvement.

The study results have failed to find evidence that some assumed prerequisites for success of Agile projects such as strong executive support, strong sponsor commitment, ready availability of physical Agile facility, or Agile-appropriate project types, etc. are actually critical factors for success.

Procesní přístup

Tři části ASWI

- Proces a jeho varianty => metodiky
- Postupy a techniky
- Kvalita vývoje sw produktu

Softwarový proces: základní pojmy

Softwarový proces

- Proces: systematická série akcí vedoucí k určitému
 výsledku [Random House Unabridged Dictionary, 2006]
- Softwarový proces
 - výsledek = kvalitní software
- Prvky každého procesu
 - > čas: aktivity (činnosti), fáze
 - (mezi)výstupy: artefakty
 - činitelé: role

Sw proces: Aktivity

Technické

- Komunikace
- Plánování
- Modelování
- Konstrukce
- Nasazení

Podpůrné

- Řízení
- Kontrola kvality
- Správa konfigurace
- Dokumentace

Příklad aktivit: ISO 15504 "Information technology – Process assessment"

> BTW: Pokud inženýr zná jenom tohle, nebude to úplně ono.

Pokud zná jenom tohle a jenom trochu, asi je něco úplně špatně...

MAN.1 Management

MAN.2 Project management

MAN.3 Quality management

MAN.4 Risk management

ORG.2 Improvement

Process establishment Process assessment Process improvement

ORG.3 Human resource management

ORG.4 Infrastructure

ORG.5 Measurement

ORG.6 Reuse

Sw proces: Role, tj. lidé v procesu

Technické

- analytik (konzultant)
- architekt, návrhář
- vývojář
- "buildovač" a správce konfigurace
- tester

databázový specialista

Manažerské

- team leader
- technický vedoucí projektu
- šéf vývojářů
- šéf projektů
- CTO
- CEO (příp. CIO)

Podpůrné

- poradce, kouč
- lektor
- uživ. podpora
- dokumentace

▶ Sw proces: Artefakty a jejich druhy

Účel

- Technické
- Komunikační
- Obchodní

Úroveň závažnosti

- Pracovní nástroj
- Dokumentace
- Součást produktu
- Kontrakt

Vazby artefaktů v procesu

- Role vlastnictví, odpovědnost
- Aktivity vstup / výstup
- Nástroje podpora

Význam artefaktů

- Preskriptivní metodiky
 - artefakty jsou cílem (výsledkem) fáze procesu
 - ▶ důsledek: review → podpis → změnové řízení

Empirický přístup

- artefakty jsou prostředkem(cíl = smysluplný stav/přírůstek produktu)
- důsledky
 - ☐ forma, obsah artefaktů ("dress code"):od zcela volné (XP) po vzory a šablony (RUP)
 - □ artefakty živé během projektu
 - □ výběr dle fáze/iterace

Příklad artefaktů: ASWI proces

Proces x metodika x projekt

Projekt: cíl, čas, zdroje

Životní cyklus, metodika

- ŽC = činnosti od zahájení vývoje produktu až po jeho vyřazení z provozu
 - vývoj x výroba x údržba x útlum
- Metodika = definovaný proces pro konkrétní účel
 - různá granularita: jedna technika .. celý životní cyklus
 - používané: Booch method, SSADM, Rational Unified Process, test-driven development, ...
 - UML není metodika!

Varianty softwarového procesu

Společná snaha = snížení rizika chaotického postupu

Základní členění metodik

- Míra cykličnosti činností
- Míra danosti pravidel
- Míra komplexnosti pravidel

Nulová varianta

Figure 1. Implementation steps to deliver a small computer program for internal operations.

(A) Sekvenční postup

- Hlavní technické aktivity lineárně po sobě
 - vztažené na celý produkt → "velký třesk"
 - naplánované pro celý projekt
 - "stepwise refinement" jako základní přístup
 - oddělené meziprodukty
- Sledování plánu ("hra na jistotu")
 - kontext neměnný
 - zadání a technologie zřejmé, (nebo rozsah malý)
 - preskriptivní proces

Vodopádový model

V-model

Systémové inženýrství

Etap a vývoje systému (externí)

Specifikace požadavků na systém Specifikace požadavků na bezpečnost systému Popis architektury systému Plán bezpečnosi systému

Etapa požadavků na software (7.2)

Specifikace požadavků na software Specifikace celkového testování softwaru

Zpráva z verifikace požadavků na software

Etapa zlánování softwaru

Plán zajištění kvality softwar: Plán řízení konfigurace softwaru Plán varifikace softwaru Plán validace softwaru Plán údržby softwaru

Softwarové inženýrství

Etapa arch. & návrhu (7.3)

Specifikace architektury softwaru Specifikace návrhu softwaru Specifikace rozhraní softwaru Specifikace testů integrate softwaru Specifikace testů integrate softwaru/hardwaru

Zpráva z ver.fikace architektury a návrhu softwaru

Etapa návrhu softwarových komponent (7.4)

Specifikace náv:hu softwarcvých komponent Specifikace testů softwarových komponent

Zpráva z verifikace névrhu softwarových komponent

Etapa údržby softwaru (9.2)

Záznamy z údržby softwaru Záznamy zněn softwaru

Etapa hodnocení softwaru

Plán hodnocení softwaru Zp:áva z hodnocení softwaru

Etapa validace senwaru (7.7)

Zpráva z celkového testování softwaru Zpráva z validace softwaru

Etapa integrace softwaru (7.6)

Zpráva z testu integrace softwaru Zpráva z testu integrace softwaru/hardwaru Zpráva z venříkace integrace softwaru

Etapa testů softwarových komponent (7.5)

Zpráva z testu softwarových komponent

Zpráva z verifikace zdrojového kódu sof.waru

ČSN EN 50128:2012 "Software pro drážní řídící a ochranné systémy" – příklad životního cyklu vývoje

Etapa realizace softwarových komponent (7.5)

Zdrojový kód softwaru & podpůrná dokumentace

Metodiky pro sekvenční postup

- ČSN / EN / ISO 50218:2011 Drážní zařízení – Sdělovací a zabezpečovací systémy a systémy zpracování dat – Software pro drážní řídicí a ochranné systémy
 - Definuje "soubor požadavků, které musí být během vývoje, nasazení a údržby jakéhokoliv bezpečnostně relevantního software pro drážní řídicí a ochranné aplikace splněny."
 - Podstatná část: systémové inženýrství
- SSADM Structured Systems Analysis and Design Method
 - Původně 1980s pro vládu UK, postavená na postupech E. Yourdona, L. Constantine, T. De Marco

(B) Cyklický postup

- Opakování technických aktivit
 - b obsah podle sekvenční fáze, znalosti detailů
- Produkt postupně "roste"
 - znalost, funkcionalita, kvalita, ...
- Omezování rizika
 - kontext zřejmý
 - zadání a/nebo technologie nejasné
- Model "průzkumník"

Spirálový model

Boehm B, "A Spiral Model of Software Development and Enhancement", IEEE Computer, 21(5):61-72, May 1988

Figure 2. Spiral model of the software process.

Iterativní přístup

Disciplines

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deployment

Configuration
& Change Mgmt

Project Management

Environment

Kruchten, P. The Rational Unified Process: An Introduction. Addison-Wesley 2003

Metodiky pro iterativní přístup

- Rational Unified Process a rodina xUP metodik
 - Viz závěr semestru; použití např. Unicorn
- Disciplined Agile Delivery (DAD)
 - ▶ S.Ambler 2012
 - Inspirace best practices agilních metodik, enterprise kontext

(C) Adaptivní postup

- Cyklický postup
 - krátké iterace, důraz na technické disciplíny
 - empirický proces
- Adaptace na změnu
 - kontext a/nebo zadání proměnlivé, nejasné
 - změny rozsahu pravděpodobné
 - technologie nevyzkoušené

	remember?	
Project Challenged Factors 1. Lack of User Input		% of Responses 12.8%
2. Incomplete Requirements & Specifications		12.3%
3. Changing Requirements & Specifications		11.8%
Lack of Executive Support		7.5%
5. Technology Incompetence		7.0%

Agilní přístup

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kanban a štíhlý (Lean) přístup

Ohno, Taiichi (June 1988). Toyota Production System - beyond large-scale production. Productivity Press.

Metodiky pro adaptivní přístup

- Extrémní programování
 - K.Beck 2000, techniky spíše než komplexní metodika
- Scrum
 - Viz závěr semestru
- Disciplined Agile Delivery
 - Varianta Lean lifecycle, Exploratory

Varianty procesu x míra (ne)jistoty

Alternativy dodávek funkčnosti

Velký třesk

malé projekty, jasné požadavky

Přírůstkově

- vrčení přírůstků → plán → postupné dodávky
- zpětná vazba, ale úpravy projektu obtížné

Evolučně

cyklus: určení cíle → dodávka → zpřesnění ("growing sw")

Vazba na obchodní model a smluvní podmínky

Různé varianty dle zvyklostí zákazníka a prostředí

http://www.drdobbs.com/is-fixed-price-software-development-unet/209101238?cid=Ambysoft

Jaký zvolit proces pro projekt?

Driving Forces

- Typ projektu
- Velikost problému
- Složitost problému
- Charakter týmu

...

Utilita
Systémová
komponenta
Business-critical
software
Safety-critical
system

Typy vývoje a produktu

... ortogonální charakteristiky

Na zakázku Interní projekt Krabicový software "Pro radosť"

Closed source Open source (+ reuse)

Na zelené louce (green field) Rozvoj existujícího produktu (brown field) Integrační projekt Utilita
Systémová
komponenta
Business-critical
software
Safety-critical
system

Komerční zákazník Státní sféra Vertikály (utility, banky, telco, ...)

Complexity factors

Doplňková četba:

https://disciplinedagiledelivery.wordpress.com/agility-at-scale/

Velikost a důležitost produktu

Rozdílprogramxproduktxsystém

Faktor obtížnosti a rozsahu http://alistair.cockburn.us/Methodology+per+project

How do we define software development success?

96% Meet the actual needs of stakeholders

90% Delivery high-qu

83% Provide the best retu

81% Deliver when the solu

58% Deliver on time according to sc

44% Deliver on time and on budge

36% Deliver on or under budge

14% Build the system to specification

It is time to recognize that people are

than in traditional terms.

Source: 2013 IT Project Success Rates Survey, Ambysoft.com/surveys/success2013.html Copyright 2014 Scott W. Ambler + Associates

Úrovně flexibility při volbě

- 0. Principy
- I. Metodiky a standardy
- 2. Vlastní úpravy
- 3. Software Process Improvement

... Vhodný pro daný účel

There is no silver bullet.

- Softwarový proces
 - výsledek = kvalitní software ("meets the needs")

Shrnutí

Softwarový proces

- Systematická série aktivit + souvisejících rolí a artefaktů vedoucí k vyšší pravděpodobnosti úspěšného vytvoření potřebného kvalitního software
 - ▶ sekvenční → jednorázová dodávka
 - ▶ cyklický → přírůstky
 - ▶ agilní → evoluce

Poznámka: ASWI proces

- Vývojová část ŽC
- Vlastní metodika
- Iterativní proces
- Požadavky a změnové řízení
- Menší míra "ceremonie"
- Learning by Doing