PHarr XCPC ex Templates

PHarr

SMU

November 4, 2024

Contents

编程技巧和基础算法 Linux 下运行脚本 mt19937 chrono	2 2 2
数据结构	2
图论 差分约束系统	2 2
数学知识 计算几何	4 4
字符串	5
动态规划	5

编程技巧和基础算法

Linux 下运行脚本

```
将以下脚本保存为 run.sh, 如果要编译则./run.sh A.cpp。
   如果遇到了权限不足的情况可以 chmod +x ./run.sh 或者使用 sudo
   还有一种使用方法是 bash ./run.sh A
   #!/bin/bash
   g++ $1.cpp -o $1 -g -02 -std=c++20 -Wl,--stack=268435456 \
   -Wall -fsanitize=undefined -fsanitize=address \
   && echo compile_successfully >&2 && ./$1
   以下是一个可以在 MAC OS 上使用的版本
   #!/bin/zsh
   g++-11 $1.cpp -o $1 -g -02 -std=c++20 \
   -Wall -fsanitize=undefined -fsanitize=address \
   && echo compile_successfully >&2 && ./$1
   mt19937
   std::mt19937 rd(std::random_device{}());
   chrono
   #include <iostream>
   #include <chrono>
   using namespace std;
   int main() {
       auto start = chrono::high_resolution_clock::now();
       int n = 1e8;
10
11
       while(n --);
12
       auto end = chrono::high_resolution_clock::now();
13
14
```

auto duration = chrono::duration cast<chrono::milliseconds>(end - start);

cerr << duration.count() << " milliseconds" << endl;</pre>

数据结构

return 0:

图论

15

17

差分约束系统

定义

差分约束系统是一种特殊的 n 元一次不等式组,它包含 n 个变量 x_1,x_2,\ldots,x_n 以及 m 个约束条件,每个约束条件是由两个其中的变量做差构成的,形如 $x_i-x_j\leq c_k$,其中 $1\leq i,j\leq n, i\neq j, 1\leq k\leq m$ 并且 c_k 是常数(可以是非负数,也可以是负数)。我们要解决的问题是:求一组解 $x_1=a_1,x_2=a_2,\ldots,x_n=a_n$,使得所有的约束条件得到满足,否则判断出无解。

差分约束系统中的每个约束条件 $x_i-x_j \leq c_k$ 都可以变形成 $x_i \leq x_j+c_k$,这与单源最短路中的三角形不等式 $dist[y] \leq dist[x]+z$ 非常相似。因此,我们可以把每个变量 x_i 看做图中的一个结点,对于每个约束条件 $x_i-x_j \leq c_k$,从结点 j 向结点 i 连一条长度为 c_k 的有向边。

注意到,如果 $\{a_1,a_2,\dots,a_n\}$ 是该差分约束系统的一组解,那么对于任意的常数 d, $\{a_1+d,a_2+d,\dots,a_n+d\}$ 显然也是该差分约束系统的一组解,因为这样做差后 d 刚好被消掉。

过程

设 dist[0]=0 并向每一个点连一条权重为 0 边,跑单源最短路,若图中存在负环,则给定的差分约束系统无解,否则, $x_i=dist[i]$ 为该差分约束系统的一组解。

性质

一般使用 Bellman–Ford 或队列优化的 Bellman–Ford(俗称 SPFA,在某些随机图跑得很快)判断图中是否存在负环,最坏时间复杂度为 O(nm)。

如果题目给定了一个源点,则不需要建立超级源点。

```
// luogu P1993
    // 有三种约束条件
   // x[a] >= x[b] + c -> x[b] - x[a] <= -c -> add(a, b, -c)
    // x[a] \le x[b] + c -> x[a] - x[b] \le c -> add(b, a, c)
    // x[a] == x[b] -> x[a] - x[b] <= 0 and x[b] - x[a] <= 0 -> add(a, b, 0), add(b, a, 0)
    #include <bits/stdc++.h>
    using namespace std;
10
    const int inf = INT_MAX / 2;
11
    using vi = vector<int>;
12
13
    using pii = pair<int, int>;
14
15
    int main() {
        ios::sync_with_stdio(false), cin.tie(nullptr);
16
        int n, m;
17
18
        cin >> n >> m;
19
        vector<vector<pii>> e(n + 1);
20
        for (int op, a, b, c; m; m--) {
21
            cin >> op;
22
            if (op == 1) {
23
                 cin >> a >> b >> c;
24
25
                 e[a].emplace_back(b, -c);
            } else if (op == 2) {
26
                 cin >> a >> b >> c;
                 e[b].emplace_back(a, c);
28
29
            } else {
                 cin >> a >> b;
30
                 e[a].emplace_back(b, 0);
31
                 e[b].emplace_back(a, 0);
32
            }
33
        }
34
35
        for (int i = 1; i <= n; i++)</pre>
36
            e[0].emplace_back(i, 0);
37
38
        vector<int> dis(n + 1, inf), vis(n + 1), tot(n + 1);
39
        dis[0] = 0, vis[0] = 1, tot[0]++;
40
        bool ok = true;
41
42
        queue<int> q;
        q.push(0);
43
44
        while (not q.empty() and ok) {
            int x = q.front();
45
            q.pop();
46
47
            vis[x] = 0;
            for (auto [y, w]: e[x]) {
48
49
                 if (dis[y] <= dis[x] + w) continue;</pre>
                 dis[y] = dis[x] + w;
50
                 if (vis[y] != 0) continue;
52
                vis[y] = 1;
                 q.push(y);
53
54
                 tot[y]++;
                 if (tot[y] > n) {
55
                     ok = false;
                     break;
57
58
                 }
59
            }
60
        }
```

数学知识

计算几何

已知正方形对角线两点坐标,求另外两点坐标

按照顺时针方向,正方形上四点 A, B, C, D,两对角线交点 O。现在已知 A(ax, ay), C(cx, cy) 求另外两点坐标。

令
$$\vec{v} = \frac{C-A}{2} = (\frac{cx-ax}{2}, \frac{cy-ay}{2})$$
, 则有 $O = A + \vec{v} = C - \vec{v} = (ax + vx, ay + vy) = (cx - vx, cy - vy)$

根据正方形的对称性可知

$$B = (ox - vy, oy + vx) = (ax + vx - vy, cy + vx - vy)D = (ox + vy, oy - vx) = (cx - vx + vy, ay - vx + vy)$$

令
$$vp = vx - vy = \frac{cx - ax - cy + ay}{2}$$
 分别代入上式子可得

$$B = (ax + vp, cy + vp)C = (cx - vp, ay - vp)$$

计算三角形面积

对于一个三角形记 $\vec{A}=\vec{ca}, \vec{B}=\vec{cb}$,三角形的面积就是 $\frac{1}{2}|\vec{A}\times\vec{B}|$

多边形的面积

假设 n 个点的多边形,n 个点按照逆时针顺序标记为 $p_0,p_1,p_2,\dots,p_{n-1}$,任取一个辅助点记为 O,记向量 $\vec{v_i}=p_i-O$ 。那么这个多边形的面积可以表示为

$$S = \frac{1}{2} \sum \vec{v}_i \times \vec{v}_{(i+1) \mod n}$$

博弈论

Lasker's Nim Game

n 堆石子,每次玩家可以从一堆石子中取走若干个石子,或者把一堆石子分成两个非空的堆 考虑暴力的求解每一堆石子的 SG 函数

$$SG(x) = \begin{cases} 0 & x = 0 \\ \max\{SG(0)\} = 1 & x = 1 \\ \max\{SG(x-1), SG(x-2), \dots, \max\{SG(y) \oplus SG(z) | (y > 0 \land z > 0 \land y + z = 0)\}\} & x \ge 2 \end{cases}$$

然后我们打表找规律可以得到

$$SG(x) = \begin{cases} 0 & x = 0 \\ x & x = 4k + 1 \lor x = 4k + 2 \\ x \oplus 1 & x = 4k + 3 \lor x = 4x + 4 \end{cases}$$

移动棋子

有一个 $1 \times n$ 的棋盘,其中每个格子可以有多个棋子,每次可以选择一个棋子,将其移动到更左边的任意一个格子,两个人轮流移动,不能移动则输。

考虑每一个棋子的 SG 函数。一个棋子如果在从左向右第 $i(i \ge 0)$ 个格子,则 SG(i) = i。

[HNOI2007] 分裂游戏

有 n 堆石子,每堆有 a_i 个石子,保证 $0 \le n \le 21, 0 \le a_i \le 10^4$ 。两个玩家轮流操作,每次可以从第 i 堆拿出一个石子,并在 $j, k(i < j \le k \le n)$ 堆中各放入一个石子。不能操作的人输。

求出每一个石子的 SG 函数,一个在位置 i 的石子 $SG(i) = \max\{SG(l) \oplus SG(r) | i < j \le k \le n\}$ 。可以 $O(N^3)$ 预处理每一个石子的 SG 函数。

Green Hackenbush Game on Tree(树上删边游戏)

给一个有根树(森林), 每次可以删掉一个子树。

叶子点的 SG 值为 0,非叶子点的 $SG(u)=\oplus[SG(v)+1]$,v 是 u 的子节点。

字符串

后缀自动机

动态规划