

$$\frac{\partial f_{+1}}{\partial f_{+1}} = e^{2\hat{f}_{+1}}$$

$$\frac{\partial f_{+1}}{\partial f_{+1}} = e^$$

$$P(175 < W < 225) = 99.7/-4.5/$$

$$= 95.2/$$

$$\frac{2}{100} = \frac{175 - 194}{11.2} = -1.69$$

$$\frac{2}{\text{nigh}} = \frac{225 - 194}{11.2} = 2.76$$

$$d = \sqrt{(x_1 - x_2) + (y_1 - y_2)^2}$$

$$\frac{X}{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

$$\frac{y}{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\frac{y}{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

distance =
$$\int (x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2$$

= $\int \sum (x_i - y_i)^2$

$$y_{0} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \\ x_{1} & y_{2} \end{bmatrix} = \begin{bmatrix} x_{1} & y_{1} \\ y_{2} & y_{3} \end{bmatrix} = \begin{bmatrix} x_{1} & y_{1} \\ y_{2} & y_{3} \end{bmatrix}$$

$$y^7, y = y_1 + y_2^2 + ... + y_n^2 = ||y||^2$$

$$\begin{bmatrix} x \\ x \\ y = 0 \rightarrow x \\ \end{bmatrix} \times \begin{bmatrix} x \\ y \\ y \end{bmatrix}$$

•

 \blacksquare Let two vectors x & y to be defined as below.

	point	Х	у	-s.			
	p_1		(A)	'			
۱	<i>p</i> ₂	2	0	P,		P3 P4	
	<i>p</i> ₃	3		_	-	113	
	<i>p</i> ₄	5	1	1	1 %		
	41/2						

■ Calculate L_1 , L_2 & L_∞ distances.

L_1	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄
p_1	0	4	Ŧ	6
<i>p</i> ₂	4	0	2	4
<i>p</i> ₃	4	ત	0	2
<i>p</i> ₄	6	4	d	0

L_2	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄
p_1	0	3	51	126
<i>p</i> ₂	क्री	C	5	10
<i>p</i> ₃	60	5	O	2
<i>p</i> ₄	120	10	4	0

L_{∞}	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄
p_1	0	(1)	3	5
<i>p</i> ₂	٦	0	_	3
<i>p</i> ₃	3	-	0	2
<i>p</i> ₄	5	3	2	0

$$max(2,2) = 2$$

$$\mathcal{Y} = \mathcal{P}_1 \times_1 + \mathcal{P}_2 \times_2 + \cdots + \mathcal{P}_d \times_d$$

Zaxa eigen space de compusion;

$$\frac{\lambda_2 = (7)}{100} \rightarrow \left[\begin{array}{c} -1 \\ 1 \\ 1 \end{array}\right]$$

$$= \frac{1}{4} \text{ eighteness }$$

$$= \frac$$

$$\begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -7x \\ -7y \end{bmatrix}$$

$$\begin{cases} -6x + 3y = -7x \\ -4x + 5y = -7y \\ -12y - 4x = -12y$$

