Modelos de Classificação Logistic Regression

Prof. Gustavo Willam Pereira

Classificação Supervisionada

- Conforme já vimos em aulas anteriores, a aprendizagem supervisionada é realizada quando temos disponíveis dados de entrada e conhecemos, para cada entrada, o resultado da saída.
- A regressão, que é um tipo de aprendizagem supervisionada, utilizada para dados contínuos.
- Agora iremos descrever alguns algoritmos classificação supervisionada.
- Na classificação supervisionada os dados de entrada são utilizados para prever classes, que são variáveis categóricas.
- A principal diferença é que na classificação supervisionada temos que decidir sobre determinada classe, como por exemplo, se um determinado indivíduo apresenta ou não uma determinada doença de la decidir sobre de la decidir

Classificação Supervisionada

- Nesse caso, temos que nos preocupar com os erros e suas consequências.
- Se o algoritmo der como resposta que uma planta tem uma doença, então iremos iniciar um tratamento, no entanto, se o algoritmo estiver errado? Qual risco corremos?
- Esse é um tipo de erro conhecido como falso positivo.
- Em caso contrário, se nosso algoritmo der como resposta que não existe doença na planta, qual o risco corremos se houver um erro? Esse é um tipo de erro conhecido como falso negativo.
- Dessa forma, em classificação, a análise da acurácia do modelo é diferente da regressão.

Classificação Supervisionada

- Para classificação vamos tratar dos algoritmos:
 - Logistic Regression
 - K-Nearest Neighbors(K-NN)
 - Naive Bayes,
 - Support Vector Machine (SVM),
 - Decision Tree
 - Random Forest.

- Para exemplificar de forma intuitiva como funciona o algoritmo Logistic Regression, vamos imaginar que temos um problema de classificação de doença em pessoas.
- Então, temos os seguintes rótulos no banco de dados. Se a pessoa está doente, o rótulo será 1 (sim), caso contrário, 0 (não).
- Para cada indivíduo, medimos um determinado índice (um índice de doença), que é nossa variável (x1).
- Veja na Figura 1 como seria essa regressão. Então se o valor estimado de y fosse próximo ou maior que 1 então o resultado da classificação seria 1 (sim). Caso o resultado de y fosse menor ou próximo de 0, então poderíamos decidir que não tem a doença 0 (não).

Figura 1 – Problema de classificação de doença (1 e 0) utilizando regressão linear simples.

• A regressão da Figura 1 é descrita pela seguinte equação.

$$y = b_0 + b_1 X$$

 A seguir uma equação sigmoide ou logística que assume valores entre 0 e 1.

$$p = \frac{1}{1 + e^{-y}}$$

 Nessa equação sigmoide poderíamos substituir o y da função de regressão. Então a solução seria a seguinte equação.

$$ln\left(\frac{p}{1-p}\right) = b_0 + b_1 X$$

• Nessa equação p é a estimativa da probabilidade. Se ajustássemos a equação acima aos dados do problema anterior, obteríamos a função da Figura 2.

Figura 2 – Transformação da função de regressão em uma função sigmoide de probabilidade

- Então, para cada valor da variável x1 teríamos uma probabilidade associada.
- Na Figura 3 é apresentado um exemplo que para x1 = 0,40 a probabilidade seria de 5% de ter a doença,
- Se x1 = 0.65 a probabilidade seria de 40% de ter a doença,
- Se x1 = 0.85 a probabilidade seria de 80% de ter a doença.

Figura 3 – Valores da variável X1 e suas probabilidades.

- Com base na probabilidade de ocorrência, se decidíssemos que se a probabilidade for menor que 50%, então a pessoa não tem a doença, e se a probabilidade for maior que 50%, então a pessoa tem a doença.
- Veja na Figura 3, que com base nesse critério de 50%, 3 amostras doentes seriam erroneamente classificadas como não doentes (Falso negativo).
- Isso ocorre pois se visualmente, usando a Figura 3, projetássemos os pontos na função logística os pontos em vermelho teríamos valores de probabilidade menores que 50%.
- Por outro lado, 2 amostras (em vermelho) não doentes seriam classificadas como doentes (Falso positivo). Isso ocorre pois os valores de probabilidade seriam maiores que 50%.

Figura 3 – Valores da variável X1 e suas probabilidades.

• Como exercício, imagine o que ocorreria se modificássemos o limite de 50% para 20%. Veja que nesse caso todas as amostras que apresentasse probabilidade acima de 20% seriam classificadas como doentes, caso contrário, não doentes. O que ocorreria cem os erros do tipo falso positivo ou falso negativo?

- Agora vamos fazer um exemplo de classificação supervisionada utilizando Logistic Regression no Python.
- Para teste vamos utilizar o banco de dados Framingham, disponível em: https://www.kaggle.com/navink25/framingham.
 - O conjunto de dados está disponível publicamente no site Kaggle e é de um estudo cardiovascular em andamento em moradores da cidade de Framingham, Massachusetts. O objetivo da classificação é prever se o paciente tem risco de contrair doença coronariana futura (DCF). O conjunto de dados fornece as informações dos pacientes. Inclui mais de 4.000 registros e 15 atributos.

Métricas para Classificação

Matriz de confusão

$$acur$$
ácia $global = \frac{VN + VP}{VN + FP + FN + VP}$

		Predito	
		Negativo	Positivo
Observado	Negativo	Verdadeiro Negativo (VN)	Falso Positivo (FP)
	Positivo	Falso Negativo (FN)	Verdadeiro Positivo (VP)

Métricas para Classificação

Matriz de confusão

$$acur$$
ácia $global = \frac{VN + VP}{VN + FP + FN + VP}$

$$acur$$
ácia $global = \frac{9550 + 100}{10000} = 0,965$

