

Министерство образования Российской Федерации МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н. Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность

«Интеллектуальные технологии информационной безопасности»

ЛАБОРАТОРНАЯ РАБОТА № 1

«Исследование однослойных нейронных сетей на примере моделирования булевых выражений»

Вариант № 6

Преподаватель: Коннова Н.С.

Студент: Кошман А.А.

Группа: ИУ8-61

Оглавление

Цель работы	3
Постановка задачи	
Задание № 1	
Задание № 2	6
Задание № 3	
Задание № 4	
Выводы	12
Приложения	13

Цель работы

Исследовать функционирование простейшей нейронной сети (HC) на базе нейрона с нелинейной функцией активации и обучить ее по правилу Видроу – Хоффа

Постановка задачи

Получить модель булевой функции (БФ) на основе однослойной НС (единичный нейрон) с двоичными входами x_1 , x_2 , x_3 , $x_4 \in \{0, 1\}$, единичным входом смещения $x_0 = 1$, синаптическими весами w_0 , w_1 , w_2 , w_3 , w_4 двоичным выходом $y_e \in \{0, 1\}$ и заданной нелинейной функцией активации (ФА) $f: R \to (0, 1)$

Для заданной БФ реализовать обучение НС с использованием:

- 1) всех комбинаций переменных x_1 , x_2 , x_3 , x_4 ;
- 2) части возможных комбинаций переменных x_1 , x_2 , x_3 , x_4 ;

Остальные комбинации являются тестовыми.

Таблица истинности

Получим таблицу истинности для моделируемой БФ:

$$F(x_1, x_2, x_3, x_4) = x_3 x_4 + \overline{x_1} + \overline{x_2}$$

X_1	X ₂	X ₃	X ₄	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1

Обучение НС с использованием всех комбинаций переменных x_1 , x_2 , x_3 , x_4 , используя пороговую ΦA :

$$f(net) = \begin{cases} 1, net \ge 0, \\ 0, net < 0; \end{cases}$$

Таблица 1. Параметры НС на последовательных эпохах (пороговая ФА)

k	Вектор весов w	Выходной вектор у	Суммарная ошибка Е
0	[0, 0, 0, 0, 0]	[1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1]	5
1	[-0.3, 0.0, -0.3, 0.0, 0.6]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1]	4
2	[-0.3, 0.0, -0.3, 0.3, 0.9]	[0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1]	5
3	[-0.6, -0.3, 0.0, 0.0, 1.2]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1]	2
4	[-0.59, 0.0, 0.0, 0.0, 1.2]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	1
5	[-0.89, 0.0, 0.0, 0.0, 0.89]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
6	[-0.89, 0.0, 0.0, 0.3, 0.89]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
7	[-0.89, 0.0, 0.0, 0.6, 0.89]	[0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1]	7

8	[-1.2, -0.3, 0.0, 0.29, 1.5]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
9	[-1.2, -0.3, 0.0, 0.59, 1.5]	[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
10	[-1.2, -0.3, 0.3, 0.59, 1.5]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1]	2
11	[-1.2, 0.0, 0.3, 0.59, 1.5]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1]	2
12	[-1.2, 0.3, 0.3, 0.59, 1.5]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	1
13	[-1.5, 0.3, 0.3, 0.59, 1.2]	[0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	0

Рисунок 1. График суммарной ошибки НС по эпохам обучения (пороговая ФА)

Обучения НС с использованием всех комбинаций переменных x_1 , x_2 , x_3 , x_4 , используя логистическую ΦA :

$$f(\text{net}) = \frac{1}{2} (\tanh(\text{net}) + 1)$$

Производная которой равна:

$$-\frac{1}{2}\tanh^2(x) + \frac{1}{2}$$

Таблица 2. Параметры НС на последовательных эпохах (логистическая ФА)

k	Вектор весов w	Выходной вектор у	Суммарная ошибка Е
0	[0, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1]	9
1	[- 0.147, - 0.143, - 0.146, 0.002, 0.593]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1]	2
2	[-0.122, 0.005, 0.001, 0.002, 0.618]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	1
3	[-0.240, 0.005, 0.001, 0.002, 0.499]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
4	[-0.231, 0.005, 0.001, 0.152, 0.509]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	1
5	[-0.369, 0.005, 0.001, 0.152, 0.370]	[0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1]	4
6	[-0.365, 0.005, 0.009, 0.157, 0.517]	[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
7	[-0.364, 0.005, 0.156, 0.157, 0.518]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1]	3
8	[-0.512, 0.004, 0.008, 0.008, 0.519]	[0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	3
9	[-0.373, 0.004, 0.158, 0.147, 0.657]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	1

10	[-0.512, 0.004, 0.158, 0.147, 0.518]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
11	[-0.515, 0.004, 0.158, 0.293, 0.515]	[0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1]	4
12	[-0.517, 0.15, 0.009, 0.295, 0.662]	[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1]	3
13	[-0.666, 0.001, 0.007, 0.146, 0.662]	[0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1]	1
14	[-0.516, 0.151, 0.007, 0.146, 0.812]	[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	1
15	[-0.653, 0.151, 0.007, 0.146, 0.675]	[0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
16	[-0.656, 0.151, 0.007, 0.293, 0.672]	[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	2
17	[-0.667, 0.151, 0.146, 0.293, 0.662]	[0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]	0

Рисунок 2. График суммарной ошибки НС по эпохам обучения (логистическая ФА)

Обучение HC с использованием части комбинаций переменных x_1 , x_2 , x_3 , x_4 , используя пороговую Φ A.

Последовательно увеличивая выборку количества векторов, найдем наименьшее количество необходимых для обучения векторов.

Минимальный набор обучающих векторов:

$$x^{(1)} = (0, 0, 0, 1); x^{(2)} = (0, 0, 1, 1); x^{(3)} = (1, 1, 0, 1); x^{(4)} = (1, 1, 1, 0);$$

Вектор синаптических коэффициентов:

$$w = [-1.5, 0.3, 0.3, 0.5(9), 1.2]$$

Для полного обучения потребовалось 20 эпох :

Таблица 3. Параметры HC на последовательных эпохах (пороговая ФА) при наборе из 4 векторов

k	Вектор весов w	Выходной вектор у	Суммарная ошибка Е
0	[0, 0, 0, 0, 0]	[1, 0, 1, 1]	1
1	[-0.3, -0.3, -0.3, 0.0, 0.0]	[0, 0, 0, 1]	3
2	[0.0, -0.3, -0.3, 0.0, 0.6]	[1, 1, 0, 1]	3
3	[-0.3, -0.3, -0.3, -0.3, 0.6]	[1, 0, 0, 1]	3
4	[-0.3, -0.3, -0.3, -0.3, 0.8(9)]	[1, 0, 0, 1]	4
5	[-0.3, -0.3, -0.3, -0.3, 1.2]	[1, 0, 1, 0]	4
6	[-0.3, -0.3, -0.3, 0.0, 1.2]	[1, 1, 0, 0]	2

7	[-0.3, 0.0, 0.0, 0.0, 1.2]	[1, 1, 1, 0]	2
8	[-0.6, 0.0, 0.0, 0.0, 0.8(9)]	[1, 0, 1, 0]	1
9	[-0.5(9), 0.0, 0.0, 0.3, 0.8(9)]	[1, 1, 0, 1]	2
10	[-0.8(9), 0.0, 0.0, 0.0, 0.8(9)]	[1, 0, 1, 0]	3
11	[-0.8(9), 0.0, 0.0, 0.3, 0.8(9)]	[1, 0, 1, 0]	2
12	[-0.8(9), 0.0, 0.0, 0.6, 0.8(9)]	[1, 0, 1, 1]	2
13	[-1.2, -0.3, -0.3, 0.5(9), 0.8(9)]	[0, 1, 0, 0]	3
14	[-0.8(9), 0.0, 0.0, 0.5(9), 1.2]	[1, 1, 0, 1]	1
15	[-1.2, 0.0, 0.0, 0.2(9), 1.2]	[1, 0, 1, 0]	3
16	[-1.2, 0.0, 0.0, 0.5(9), 1.2]	[1, 0, 1, 0]	2
17	[-1.2, 0.0, 0.0, 0.8(9), 1.2]	[1, 1, 0, 1]	2
18	[-1.5, 0.0, 0.0, 0.5(9), 1.2]	[0, 1, 0, 0]	3
19	[-1.2, 0.3, 0.3, 0.5(9), 1.5]	[1, 1, 1, 0]	1
20	[-1.5, 0.3, 0.3, 0.5(9), 1.2]	[0, 1, 1, 0]	1

Рисунок 3. График суммарной ошибки HC по эпохам обучения с минимальным количеством наборов (пороговая ФА)

Обучение НС с использованием части комбинаций переменных x_1 , x_2 , x_3 , x_4 , используя логистическую Φ A.

Последовательно увеличивая выборку количества векторов, найдем наименьшее количество необходимых для обучения векторов.

Минимальный набор обучающих векторов :

$$x^{(1)} = (0, 0, 0, 1); x^{(2)} = (0, 0, 1, 1); x^{(3)} = (1, 1, 0, 1); x^{(4)} = (1, 1, 1, 0);$$

Вектор синаптических коэффициентов:

$$w = [-0.49, 0.086, 0.086, 0.056, 0.461]$$

Для полного обучения потребовалось 11 эпох :

Таблица 4. Параметры HC на последовательных эпохах (логистическая ФА) при наборе из 4 векторов

k	Вектор весов w	Выходной вектор у	Суммарная ошибка Е
0	[0, 0, 0, 0, 0]	[1, 0, 0, 1]	4
1	[0.027, 0.0402, 0.0402, 0.027, 0.137]	[1, 0, 1, 1]	3
2	[-0.108, -0.098, -0.098, 0.037, 0.139]	[1, 0, 0, 1]	4
3	[-0.107, -0.089, -0.089, 0.043, 0.277]	[1, 0, 0, 1]	4
4	[-0.086, -0.072, -0.072, 0.059, 0.43]	[1, 1, 0, 1]	3
5	[-0.217, -0.069, -0.069, -0.087, 0.446]	[1, 0, 1, 0]	2
6	[-0.213, -0.069, -0.069, 0.059, 0.451]	[1, 1, 0, 1]	3
7	[-0.36, -0.074, -0.074, -0.09, 0.454]	[1, 0, 0, 0]	3
8	[-0.221, 0.074, 0.074, 0.047, 0.592]	[1, 1, 1, 0]	1
9	[-0.352, 0.074, 0.074, 0.047, 0.461]	[1, 0, 1, 0]	2
10	[-0.354, 0.074, 0.074, 0.194, 0.46]	[1, 1, 0, 1]	3
11	[-0.49, 0.086, 0.086, 0.056, 0.461]	[0, 1, 1, 0]	0

Рисунок 4. График суммарной ошибки HC по эпохам обучения с минимальным количеством наборов (логистическая ФА)

Выводы

В процессе лабораторной работы было исследовано функционирование простейшей нейронной сети на базе нейрона с нелинейной функцией активации и обучение ее по правилу Видроу – Хоффа. Были обучены НС с использованием пороговой и логистической ФА. А также произведено обучение с использованием части комбинаций переменных.

В результате, HC с использованием пороговой ΦA была быстрее обучена на минимальном количестве наборов, чем на полных наборах. А HC с использованием логистической ΦA была, наоборот, обучена за меньшее количество эпох на полных наборах.

Приложения

Файл 'script.py':

import numpy as np import matplotlib.pyplot as plt from itertools import combinations n = 0.3def Hemming(f1, f2): # возвращает расстояние Хэмминга между наборами f1 и f2 for x1, x2 in zip(f1, f2): if(x1 != x2) : e += 1return e def F(x): # возвращает результат моделируемой булевой функции return int(x[0] or x[1] or x[2]) and x[3]def Y1(net): # возвращает результат пороговой ФА return 1 if net >= 0 else 0 def Y2(net): # возвращает результат логистической ФА out = 0.5 * (np.tanh(net) + 1)return 1 if out >= 0.5 else 0 def DeltaW1(x, q, net): # находит величину, на которую изменятся Wi, для пороговой ΦА return n * q * xdef DeltaW2(x, q, net): # находит величину, на которую изменятся Wi, для логистической ФА **return** n * q * x * ((-0.5) * (np.tanh(net) ** 2) + 0.5)**def** Net(x, w): # находит значение сетевого входа НС return sum([w_i * x_i for w_i, x_i in zip(w[1:], x)]) + w[0] def LearningNN(X, Y, DeltaW): #производит обучение НС и возвращает вектор ошибок Е(к)и вектор синаптических коэффициентов, на которых обучилась НС RightF = [F(x i) for x i in X]print(RightF, "\n")
w = [0 for i in range(0, 5)] TryF = [0 for i in range(0, len(X))]E = [1]k = 0**while** E[k] != 0: print("\n\nk =", k, "\n") print("w =", w) for i in range(0, len(X)): net = Net(X[i], w)TryF[i] = Y(net)q = RightF[i] - TryF[i] for j in range(0, len(X[i])): w[j + 1] += DeltaW(X[i][j], q, net)w[0] += DeltaW(1, q, net) E.append(Hemming(RightF, TryF)) k += 1

```
print("TryF :", TryF)
        print("E[k] :", E[k])
    return E, w
def Graph(E, name): # строит график зависимости вектора ошибок от эпохи
    plt.plot(E[1:], 'bo-', linewidth = 2, markersize = 9 )
    plt.grid(True)
    plt.title(name)
    plt.xlabel('k')
    plt.ylabel('E(k)')
    plt.show()
def MinimazeSet(X, Y, DeltaW, name): # находит минимальные наборы из общей
выборки, на которых возможно обучение НС
    RightF = [F(x_i) \text{ for } x_i \text{ in } X]
    TryF = [0 \text{ for } i \text{ in } range(0, len(X))]
    for min_num in range(0, len(X) + 1):
        for min_x in list(combinations(X, min_num)):
            # print("\n", min_x)
            E, w = LearningNN(min_x, Y, DeltaW)
            for i in range(0, len(X)):
                net = Net(X[i], w)
                TryF[i] = Y2(net)
            if(Hemming(RightF, TryF) == 0) :
                Graph(E, name + "(с минимальным кол-вом наборов)")
                 return min x, w
if __name__=="__main__":
    X = np.unpackbits(np.array([[j] for j in range(0, pow(2, 4))],
dtype=np.uint8), axis=1)[:, 4:]
    E, w = LearningNN(X, Y1, DeltaW1)
    Graph(E, "Пороговая ФА")
    E, w = LearningNN(X, Y2, DeltaW2)
    Graph(E, "Логистическая ФА")
    min_x, w = MinimazeSet(X, Y1, DeltaW1, "Пороговая ФА")
    print("\n\nmin_x :", min_x, "\n\nw =", w)
    min_x, w = MinimazeSet(X, Y2, DeltaW2, "Логистическая ФА")
    print("\n\nmin_x :", min_x, "\n\nw =", w)
```