Medical Insurance Cost Analysis

Importing Libraries

```
1 import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 %matplotlib inline
 5 import seaborn as sns
 6 from scipy import stats
 7 import requests
 {\tt 8 \ from \ sklearn.linear\_model \ import \ LinearRegression}
 9 \ \mathsf{from} \ \mathsf{sklearn.preprocessing} \ \mathsf{import} \ \mathsf{StandardScaler}, \ \mathsf{PolynomialFeatures}
10 from sklearn.pipeline import Pipeline
11 from sklearn.metrics import mean_squared_error, r2_score
12 import warnings
13 warnings.filterwarnings("ignore", category = UserWarning)
14 warnings.filterwarnings("ignore", category=FutureWarning, message=".*use_inf_as_na.*")
15 from ipywidgets import interact,interactive,fixed,interact_manual
16 from sklearn.model_selection import train_test_split
17 from sklearn.model_selection import cross_val_score
18 from sklearn.model_selection import cross_val_predict
19 from sklearn.linear_model import Ridge
20 from sklearn.model_selection import GridSearchCV
21 from tqdm import tqdm
22 import requests
```

Importing Datasets

```
1 data= pd.read csv("insurance.csv")
2 df = data
1 df.head(10)
      Age Diabetes BloodPressureProblems AnyTransplants AnyChronicDiseases Height Weight KnownAllergies HistoryOfCancerInFamily NumberOfMajorSurgeries Premiu
                                                                                                             0
   0
      45
                  0
                                          0
                                                         0
                                                                                    155
                                                                                             57
                                                                                                                                       0
                                                                                                                                                               0
       60
                  1
                                          0
                                                         0
                                                                              0
                                                                                    180
                                                                                             73
                                                                                                             0
                                                                                                                                       0
                                                                                                                                                               0
   2
       36
                                                         0
                                                                              0
                                                                                    158
                                                                                             59
                                                                                                             0
                                                                                                                                       0
   3
       52
                                                         0
                                                                              1
                                                                                    183
                                                                                             93
                                                                                                             0
                                                                                                                                       0
                                                                                                                                                               2
    4
       38
                  0
                                          0
                                                         0
                                                                                    166
                                                                                             88
                                                                                                             0
                                                                                                                                       0
   5
       30
                  0
                                          0
                                                         0
                                                                              0
                                                                                    160
                                                                                             69
                                                                                                              1
                                                                                                                                       0
   6
       33
                  0
                                          0
                                                         0
                                                                              0
                                                                                    150
                                                                                             54
                                                                                                             0
                                                                                                                                       0
                                                                                                                                                               0
   7
       23
                  0
                                          0
                                                         0
                                                                              0
                                                                                    181
                                                                                             79
                                                                                                                                       0
                                                                                                                                                               0
   8
       48
                                          0
                                                         0
                                                                              0
                                                                                    169
                                                                                             74
                                                                                                                                       0
                                                                                                                                                               0
       38
                  0
                                          O
                                                          0
                                                                                             93
                                                                                                             0
                                                                                                                                       0
                                                                                                                                                               0
```

Data wrangling

1 missing_data = df.isnull()

2 missing_data												
_		Age	Diabetes	BloodPressureProblems	AnyTransplants	AnyChronicDiseases	Height	Weight	KnownAllergies	HistoryOfCancerInFamily	NumberOfMajorSurgeries	Pre
	0	False	False	False	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	False	False	False	
	981	False	False	False	False	False	False	False	False	False	False	
	982	False	False	False	False	False	False	False	False	False	False	
	983	False	False	False	False	False	False	False	False	False	False	
	984	False	False	False	False	False	False	False	False	False	False	
	985	False	False	False	False	False	False	False	False	False	False	

- 1 for column in missing_data.columns.values.tolist():
 - 2 print(column)
 - print(missing_data[column].value_counts())
- 4 print("")

```
Age
         986
False
Name: count, dtype: int64
Diabetes
Diabetes
       986
Name: count, dtype: int64
BloodPressureProblems
BloodPressureProblems
False 986
Name: count, dtype: int64
AnyTransplants
AnyTransplants
False 986
Name: count, dtype: int64
AnyChronicDiseases
AnyChronicDiseases
False
        986
Name: count, dtype: int64
Height
Height
False
         986
Name: count, dtype: int64
Weight
Weight
         986
False
Name: count, dtype: int64
KnownAllergies
KnownAllergies
False 986
Name: count, dtype: int64
{\tt HistoryOfCancerInFamily}
HistoryOfCancerInFamily
False
        986
Name: count, dtype: int64
NumberOfMajorSurgeries
NumberOfMajorSurgeries
False 986
Name: count, dtype: int64
PremiumPrice
PremiumPrice
False 986
Name: count, dtype: int64
```

→ Age

1 df.dtypes

```
<del>____</del>
                                    0
                Age
                                 int64
              Diabetes
                                 int64
      BloodPressureProblems
                                 int64
          AnyTransplants
                                 int64
        AnyChronicDiseases
                                 int64
               Height
                                 int64
                                 int64
               Weight
           KnownAllergies
                                 int64
      HistoryOfCancerInFamily
                                int64
      NumberOfMajorSurgeries int64
           PremiumPrice
                                 int64
     dtype: object
```

```
1 # Map 'Diabetes' column: yes -> 1, no -> 2
2 df['Diabetes'] = df['Diabetes'].map({'yes': 1, 'no': 2})
3 df[['PremiumPrice']] = np.round(df[['PremiumPrice']],2)
```

1 df.head(10)

_	1	Age	Diabetes	BloodPressureProblems	AnyTransplants	AnyChronicDiseases	Height	Weight	KnownAllergies	HistoryOfCancerInFamily	NumberOfMajorSurgeries	Premiu
	0	45	NaN	0	0	0	155	57	0	0	0	
	1	60	NaN	0	0	0	180	73	0	0	0	
	2	36	NaN	1	0	0	158	59	0	0	1	
	3	52	NaN	1	0	1	183	93	0	0	2	
	4	38	NaN	0	0	1	166	88	0	0	1	
	5	30	NaN	0	0	0	160	69	1	0	1	
	6	33	NaN	0	0	0	150	54	0	0	0	
	7	23	NaN	0	0	0	181	79	1	0	0	
	8	48	NaN	0	0	0	169	74	1	0	0	
	9	38	NaN	0	0	0	182	93	0	0	0	

Exploratory Data Analysis (EDA)

Distribution analysis

```
1 df.head(), df.info()
→ <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 986 entries, 0 to 985
             Data columns (total 11 columns):
                         Column
                                                                                                 Non-Null Count Dtype
              0
                                                                                                  986 non-null
                                                                                                                                                int64
                          Age
                          Diabetes
                                                                                                  0 non-null
                                                                                                                                                float64
                          {\tt BloodPressureProblems}
                                                                                                  986 non-null
                                                                                                                                                 int64
                          AnyTransplants
                                                                                                  986 non-null
                                                                                                                                                int64
                          AnyChronicDiseases
                                                                                                  986 non-null
                                                                                                                                                int64
                          Height
                                                                                                  986 non-null
                                                                                                                                                int64
                          Weight
                          KnownAllergies
                                                                                                  986 non-null
                                                                                                                                                int64
                         HistoryOfCancerInFamily
NumberOfMajorSurgeries
                                                                                                 986 non-null
                                                                                                                                                int64
                                                                                                 986 non-null
                                                                                                                                                int64
               10
                        PremiumPrice
                                                                                                  986 non-null
                                                                                                                                                int64
             dtypes: float64(1), int64(10)
             memory usage: 84.9 KB
                       . Graph of the state of the st
                          60
                                                                                                                           0
                3
                           52
                                                    NaN
                                                                                                                                                                         a
                4
                                                                                                                           0
                          38
                                                    NaN
                                                                                                                                                                         0
                                                                                                                                                                                                                                  1
                        Height
                                               Weight
                                                                     KnownAllergies
                                                                                                                 HistoryOfCancerInFamily
                0
                                155
                                                          57
                                                                                                           0
                1
2
                                180
                                                          73
                                                                                                          0
                                                          59
                                                                                                          0
                                158
                                                                                                                                                                                  0
                3
                                                          93
                                183
                        NumberOfMajorSurgeries PremiumPrice
                                                                                                                25000
                2
                                                                                                                23000
                                                                                   2
                                                                                                                28000
                4
                                                                                   1
                                                                                                                23000
                None)
    1 import matplotlib.pyplot as plt
    2 import seaborn as sns
    \bf 4 # Plotting distribution for all numerical variables
    5 fig, axes = plt.subplots(nrows=4, ncols=3, figsize=(15, 20))
    6 axes = axes.flatten()
    {\bf 8} for i, column in enumerate(df.columns):
                     \verb|sns.histplot(df[column]|, kde=True, ax=axes[i])|\\
```


The histograms above show the distributions of all variables in the dataset. Some variables like PremiumPrice and Age have broader distributions, while others, such as Diabetes and BloodPressureProblems, are binary.

Correlation Analysis

```
1 # Generate correlation matrix
2 correlation_matrix = df.corr()
3
4 # Plot the heatmap
5 plt.figure(figsize=(12, 8))
6 sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
7 plt.title("Correlation Heatmap of Variables")
8 plt.show()

**Correlation Heatmap of Variables**
```


The heatmap displays the correlations between all variables. Notable points include:

- PremiumPrice appears moderately correlated with NumberOfMajorSurgeries and Weight.
- Other variables show low or no correlation with PremiumPrice.

Outlier Detection

```
1 def detect_outliers_iqr(data, column):
       Q1 = data[column].quantile(0.25)
       Q3 = data[column].quantile(0.75)
       IQR = Q3 - Q1
       lower_bound = Q1 - 1.5 * IQR
       upper_bound = Q3 + 1.5 * IQR
       outliers = data[(data[column] < lower_bound) | (data[column] > upper_bound)]
       {\tt return\ outliers,\ lower\_bound,\ upper\_bound}
10~\mbox{\#} Detecting outliers for PremiumPrice, Weight, and NumberOfMajorSurgeries
11 outliers_premium, lb_premium, ub_premium = detect_outliers_iqr(df, "PremiumPrice")
12 outliers_weight, lb_weight, ub_weight = detect_outliers_iqr(df, "Weight")
{\tt 13} \ outliers\_surgeries, \ b\_surgeries, \ ub\_surgeries = detect\_outliers\_iqr(df, \ "NumberOfMajorSurgeries")
14
15 \# Outputting the results
16 len(outliers_premium), lb_premium, ub_premium, \
17 len(outliers_weight), lb_weight, ub_weight, \
18 len(outliers_surgeries), lb_surgeries, ub_surgeries
20 # Boxplot for PremiumPrice
21 plt.figure(figsize=(10, 6))
22 sns.boxplot(data=df, x="PremiumPrice", color="skyblue")
23 plt.title("Boxplot of PremiumPrice")
```

```
24 plt.xlabel("PremiumPrice")
25 plt.show()
26
27 # Boxplot for Weight
28 plt.figure(figsize=(10, 6))
29 sns.boxplot(data=df, x="Weight", color="salmon")
30 plt.title("Boxplot of Weight")
31 plt.xlabel("Weight")
32 plt.show()
33
34 # Boxplot for NumberOfMajorSurgeries
35 plt.figure(figsize=(10, 6))
36 sns.boxplot(data=df, x="NumberOfMajorSurgeries", color="lightgreen")
37 plt.title("Boxplot of NumberOfMajorSurgeries")
38 plt.xlabel("Number of Major Surgeries")
39 plt.show()
```


PremiumPrice Boxplot of Weight

Boxplot of NumberOfMajorSurgeries


```
1 import matplotlib.pyplot as plt
2 import seaborn as sns
3 # Visualizing outliers for selected variables
4 fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))
5
6 # PremiumPrice
7 # Ensure 'df' is defined by running the preceding cells that load and prepare the data.
8 sns.boxplot(data=df, x="PremiumPrice", ax=axes[0], color="skyblue")
9 axes[0].axvline(lb_premium, color="red", linestyle="--", label="Lower Bound")
10 axes[0].axvline(ub_premium, color="green", linestyle="--", label="Upper Bound")
```

```
11 axes[0].set_title("PremiumPrice Outliers")
12 axes[0].legend()
13
14 # Weight
15 sns.boxplot(data=df, x="Weight", ax=axes[1], color="lightcoral")
16 \ axes [1]. axvline (lb\_weight, color="red", linestyle="--", label="Lower Bound") \\
17 axes[1].axvline(ub_weight, color="green", linestyle="--", label="Upper Bound")
18 axes[1].set_title("Weight Outliers")
19 axes[1].legend()
21 # NumberOfMajorSurgeries
22 sns.boxplot(data=df, x="NumberOfMajorSurgeries", ax=axes[2], color="lightgreen")
23 axes[2].axvline(lb_surgeries, color="red", linestyle="--", label="Lower Bound")
24 axes[2].axvline(ub_surgeries, color="green", linestyle="--", label="Upper Bound")
25 axes[2].set_title("NumberOfMajorSurgeries Outliers")
26 axes[2].legend()
28 plt.tight_layout()
29 plt.show()
```


The boxplots above illustrate the detected outliers:

- PremiumPrice: Outliers lie significantly beyond the upper bound (38,500), indicating high premiums.
- Weight: Outliers include both underweight and overweight individuals beyond the range [37, 117].
- NumberOfMajorSurgeries: Outliers are above 2 surgeries, as expected.

Handling strategies might include:

- PremiumPrice: Winsorizing or capping at a threshold.
- Weight: Normalizing or segmenting into categories.
- · NumberOfMajorSurgeries: Considering separate models for groups with many surgeries.

Hypothesis Testing

```
1 from scipy.stats import ttest_ind, chi2_contingency, f_oneway
 3 # Example: T-test for smokers vs non-smokers (assuming data has such columns)
 4 group1 = df[df['Diabetes'] == 0]['PremiumPrice']
 5 group2 = df[df['Diabetes'] == 1]['PremiumPrice']
 6 t_stat, p_value = ttest_ind(group1, group2)
 7 print(f"T-test: t-statistic = {t_stat}, p-value = {p_value}")
 9 # Example: ANOVA for NumberOfMajorSurgeries and PremiumPrice
10 anova stat, anova p = f oneway(
       df[df['NumberOfMajorSurgeries'] == 0]['PremiumPrice'],
11
12
       df[df['NumberOfMajorSurgeries'] == 1]['PremiumPrice'],
       df[df['NumberOfMajorSurgeries'] >= 2]['PremiumPrice']
13
14)
15 print(f"ANOVA: F-statistic = {anova_stat}, p-value = {anova_p}")
16
{\tt 17~\#~Example:~Chi-square~test~for~HistoryOfCancerInFamily~and~AnyChronicDiseases}\\
18 contingency_table = pd.crosstab(
19
       df['HistoryOfCancerInFamily'],
20
       df['AnyChronicDiseases']
21 )
22 chi2_stat, chi2_p, _, _ = chi2_contingency(contingency_table)
23 print(f"Chi-square test: Chi2-statistic = {chi2_stat}, p-value = {chi2_p}")
T-test: t-statistic = nan, p-value = nan
    ANOVA: F-statistic = 39.2415277169692, p-value = 4.0158930660447635e-17
Chi-square test: Chi2-statistic = 0.02062393388215223, p-value = 0.8858081638149811
```

/usr/local/lib/python3.11/dist-packages/scipy/_lib/deprecation.py:234: SmallSampleWarning: One or more sample arguments is too small; all returned values will be N

1 from scipy.stats import f_oneway, ttest_ind

return f(*args, **kwargs)

```
3 \# ANOVA for PremiumPrice across NumberOfMajorSurgeries (0, 1, 2)
  \begin{tabular}{ll} 4 & groups\_surgeries = [df[df["NumberOfMajorSurgeries"] == group]["PremiumPrice"] \\ \end{tabular} 
                        for group in df["NumberOfMajorSurgeries"].unique()]
 6 anova_surgeries = f_oneway(*groups_surgeries)
 8 # T-tests for PremiumPrice across AnyChronicDiseases (0 vs. 1)
 9 group_chronic_0 = df[df["AnyChronicDiseases"] == 0]["PremiumPrice"]
10 group_chronic_1 = df[df["AnyChronicDiseases"] == 1]["PremiumPrice"]
11 ttest_chronic = ttest_ind(group_chronic_0, group_chronic_1, equal_var=False)
13 # T-tests for PremiumPrice across HistoryOfCancerInFamily (0 vs. 1)
14 group_cancer_0 = df[df["HistoryOfCancerInFamily"] == 0]["PremiumPrice"]
15 group_cancer_1 = df[df["HistoryOfCancerInFamily"] == 1]["PremiumPrice"]
16 ttest_cancer = ttest_ind(group_cancer_0, group_cancer_1, equal_var=False)
18 # Output results
19 anova_surgeries.pvalue, ttest_chronic.pvalue, ttest cancer.pvalue
→ (np.float64(2.8711631377228097e-16),
     np.float64(1.7279736467737666e-13),
     np.float64(0.01982822652964323))
```

The results of the hypothesis tests are as follows:

• ANOVA for PremiumPrice across NumberOfMajorSurgeries:

```
p-value: 2.87e-16
```

Interpretation: The mean PremiumPrice differs significantly across groups (0, 1, 2 surgeries).

• T-test for PremiumPrice across AnyChronicDiseases (0 vs. 1):

p-value: 1.73e-13

Interpretation: There is a statistically significant difference in PremiumPrice between individuals with and without chronic diseases.

• T-test for PremiumPrice across HistoryOfCancerInFamily (0 vs. 1):

1 from sklearn.model_selection import train_test_split

p-value: 0.0198

Interpretation: There is a statistically significant difference in PremiumPrice between those with and without a family history of cancer, though the effect may be less pronounced.

ML Modeling

Data Preprocessing

```
2 from sklearn.preprocessing import StandardScaler, OneHotEncoder
 3 from sklearn.compose import ColumnTransformer
 4 from sklearn.pipeline import Pipeline
 5 # Step 1: Handle Missing Values
 {\bf 6} # Check for missing values
 7 print("Missing Values:\n", data.isnull().sum())
9 # If missing values exist, handle them
10 if data.isnull().sum().anv():
      # Fill numerical features with median
11
       for col in data.select dtypes(include=np.number).columns:
12
           data[col].fillna(data[col].median(), inplace=True)
13
14
       # Fill categorical features with mode
       for col in data.select dtypes(include='object').columns:
15
16
           {\tt data[col].fillna(data[col].mode()[0],\ inplace=True)}
17
18 # Step 2: Feature Engineering
19 # Example: Calculate BMI (Body Mass Index) if height and weight columns exist
20 if 'height' in data.columns and 'weight' in data.columns:
      data['BMI'] = data['weight'] / (data['height'] / 100) ** 2
23 # Split the dataset BEFORE identifying numerical/categorical features for the preprocessor
24 X = data.drop('PremiumPrice', axis=1)
25 y = data['PremiumPrice']
27 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
29 # Step 3: Scaling and Encoding
30 # Identify numerical and categorical columns AFTER splitting
31 numerical_features = X_train.select_dtypes(include=np.number).columns.tolist()
32 categorical_features = X_train.select_dtypes(include='object').columns.tolist()
34
35 # Preprocessing Pipeline
36 preprocessor = ColumnTransformer(
37
      transformers=[
38
           ('num', StandardScaler(), numerical_features),
39
           ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_features) # Added handle_unknown for robustness
40
      ]
41)
44\ \mbox{\#} Apply the preprocessing pipeline
45 X train = preprocessor.fit transform(X train)
46 X_test = preprocessor.transform(X_test)
48 print("Preprocessing Complete. Ready for Model Selection.")
```

```
→ Missing Values:
     Age
    Diabetes
    BloodPressureProblems
    AnyTransplants
                               0
    AnvChronicDiseases
                               0
    Height
    Weight
    KnownAllergies
    HistoryOfCancerInFamily
                               0
    NumberOfMajorSurgeries
    PremiumPrice
    dtype: int64
    Preprocessing Complete. Ready for Model Selection.
```

Model Selection

```
1 from sklearn.linear_model import LinearRegression
 2 from sklearn.tree import DecisionTreeRegressor
 3 from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
 4 from sklearn.neural_network import MLPRegressor
 6 # Step 1: Linear Regression
 7 linear_model = LinearRegression()
 8 linear_model.fit(X_train, y_train)
 9 linear_preds = linear_model.predict(X_test)
10
11 # Step 2: Decision Tree
12 tree_model = DecisionTreeRegressor(random_state=42)
13 tree_model.fit(X_train, y_train)
14 tree_preds = tree_model.predict(X_test)
16 # Step 3: Random Forest
17 forest_model = RandomForestRegressor(random_state=42)
18 forest_model.fit(X_train, y_train)
19 forest_preds = forest_model.predict(X_test)
20
21 # Step 4: Gradient Boosting
22 gb_model = GradientBoostingRegressor(random_state=42)
23 gb_model.fit(X_train, y_train)
24 gb_preds = gb_model.predict(X_test)
26 # Step 5: Neural Network
27 nn_model = MLPRegressor(random_state=42, max_iter=500)
28 nn_model.fit(X_train, y_train)
29 nn_preds = nn_model.predict(X_test)
31 print("Model Training Complete. Ready for Evaluation.")
```

Model Evaluation and Validation

→ Model Training Complete. Ready for Evaluation.

```
1 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
 3 # Function to evaluate models
 4 def evaluate_model(name, y_test, predictions):
      mse = mean_squared_error(y_test, predictions)
       mae = mean_absolute_error(y_test, predictions)
       r2 = r2_score(y_test, predictions)
       print(f"{name} Evaluation:")
print(f" - MSE: {mse}")
print(f" - MAE: {mae}")
print(f" - R2: {r2}\n")
 8
 9
10
11
13 # Evaluate all models
14 evaluate_model("Linear Regression", y_test, linear_preds)
15 evaluate_model("Decision Tree", y_test, tree_preds)
16 evaluate_model("Random Forest", y_test, forest_preds)
17 evaluate_model("Gradient Boosting", y_test, gb_preds)
18 evaluate_model("Neural Network", y_test, nn_preds)
```

```
\rightarrow Linear Regression Evaluation:
      - MSF: 12221661.705858208
      - MAE: 2586.2253840681074
      - R2: 0.713394427027874
    Decision Tree Evaluation:
      - MSE: 14893939.393939395
      - MAE: 1095.9595959596
      - R2: 0.6507278521900168
    Random Forest Evaluation:
     - MSE: 5310708.080808081
       MAE: 1034.74747474748
       R2: 0.8754605904647057
    Gradient Boosting Evaluation:
- MSE: 6166949.130591766
       MAE: 1501.7274850951546
      - R2: 0.8553812049783704
    Neural Network Evaluation:
      - MSE: 577411808.7458334
      - MAE: 23238.412330525465
      - R2: -12.540666258758183
```