DreamFusion:

Text-to-3D using 2D Diffusion

Что уже умеем?

Diffusion models: по тексту генерировать картинку

- Обучаются на парах (описание, картинка)
- При обучении сначала зашумляем, потом пытаемся предсказывать добавленный шум
- Для генерации из шума пытаемся понять, какая могла быть картинка

A painting of a fox sitting in a field at sunrise in the style of Claude Monet

Data

Тогда давайте учить 3d-диффузию! Или нет?...

Проблемы обучения 3d-диффузионной модели:

- Нужно много размеченных пар (описание, 3d-модель)
- Существующие архитектуры на 3d-данных работают плохо

Figure 3. Examples of aligned models in the chair, laptop, bench, and airplane synsets.

А что мы умеем делать в 3d?

NeRF — Neural Radiance Fields

- На вход: 3 координаты в пространстве и 2 координаты камеры $(x, y, z, \theta, \varphi)$
- На выход: цвет и прозрачность пикселя с координатами (x, y, z), если на него смотреть из (θ , ϕ)

Давайте обучим NeRF! Но где взять изображения?

Этап обучения:

- Инициализирует NeRF случайными весами
- Генерируем изображение с виртуальной камеры
- Спрашиваем у DM, насколько изображение подходит под текст
- Делаем градиентный спуск для параметров NeRF-а (DM не обновляем)

Генерация изображения с виртуальной камеры

- Shading: предсказываем альбедо и плотность
- Случайная замена альбедо на белый цвет: генерируем только тени
- Второй MLP для фона: позиционные кодировки направления луча

Обратная связь от DM

- Текстовые описания: описание картинки + угла зрения
- Сэмплируем шум и t
- Считаем градиент для NeRF

Backpropagate onto NeRF weights

Обратная связь от DM: текстовые описания

Как заставлять модельку поощрять за правильно повёрнутую картинку?

- В текстовое описание добавляем эмбеддинг поворота изображения
 - o verhead view, front view, back view
 - Взвешиваем в зависимости от угла обзора
- Работает, но неидеально

Обратная связь от LDM: функция потерь

Стандартная функция потерь:

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, \mathbf{x} = g(\theta)) = \mathbb{E}_{t, \epsilon} \left[w(t) \underbrace{(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t)}{\mathbf{z}_{t}}}_{\text{U-Net Jacobian}} \underbrace{\frac{\partial \mathbf{x}}{\partial \theta}}_{\text{Generator Jacobian}} \right]$$

По заявлению авторов, якобиан U-Net плохо обусловлен и считать его дорого, поэтому используетс

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$

$$\nabla_{\theta} \mathcal{L}_{SDS}(\phi, \mathbf{x} = g(\theta)) = \nabla_{\theta} \mathbb{E}_t \left[\sigma_t / \alpha_t w(t) \text{KL}(q(\mathbf{z}_t | g(\theta); y, t) || p_{\phi}(\mathbf{z}_t; y, t)) \right].$$

Как использовать обученную модель?

Генерация семпла - обучение NeRF-а с нуля!

- Выкидываем DM
- Семплим картинки
- При желании можно построить 3d модель

Эксперименты: сравнение с другими моделями

	R-Precision ↑					
Method	CLIP	B/32	CLIP	B/16	CLIP	L/14
	Color	Geo	Color	Geo	Color	Geo
GT Images	77.1	_	79.1	_	_	_
Dream Fields	68.3	_	74.2	_	_	_
(reimpl.)	78.6	1.3	(99.9)	(0.8)	82.9	1.4
CLIP-Mesh	67.8	_	75.8	_	74.5^{\dagger}	_
DreamFusion	75.1	42.5	77.5	46.6	79.7	58.5

Эксперименты: изучение прироста качества от улучшений

Эксперименты: изучение параметра guidance

an orangutan making a clay bowl on a throwing wheel*

a corgi taking a selfie*

Michelangelo style statue of dog reading news on a cellphone

a raccoon astronaut holding his helmet

a table with dim sum on it†

a tiger dressed as a doctor*

a blue jay standing on a large basket of rainbow macarons*

a lion reading the newspaper*

a steam engine train, high resolution*

a frog wearing a sweater*

a humanoid robot playing the cello*

an all-utility vehicle driving across a stream[†]

a baby bunny sitting on top of a stack of pancakes[†]

a sliced loaf of fresh bread

a bulldozer clearing away a pile of snow*

a classic Packard car*

Спасибо!

- Статья: https://arxiv.org/pdf/2209.14988.pdf
- Демонстрация: https://dreamfusion3d.github.io/

