Lesson 4: Describing Quantitative Data; Center & Spread

Homework

- 5. Find Q1 for the study time data summarized in the boxplot above.
- 6. One of the observations represented in the boxplot above is a suspected outlier. How long did that student spend studying?
- 7. The lowest 25% of hours spent on an exam are approximately between what two numbers?
- 8. What is the mean of the data illustrated in the boxplot?

A scientist tested for the presence of many hazardous elements for nuclear reactors. He considered the concentration of Plutonium-238. Plutonium-238 is a radioactive waste generated by a nuclear reactor. He wants there to be as little Plutonium-238 in the tank as possible.

The data below give the concentration of Plutonium-238 in nanocuries per liter (nCi/L) in his sample.

Complete the following table and answer questions 17 through 21 below.

Concentration Level (nCi/L	Deviation from the Mean	Squared Deviations
\overline{x}	$(x-\bar{x})$	$(x-\bar{x})^2$
9.4		
70.7		"B"
7.8		
4.6	"A"	
50.2		

- 9. What is the mean of the concentration levels?
- 10. What is the value of the number that goes in the position marked with an "A" in the table above?
- 11. What is the value of the number that goes in the position marked with a "B" in the table above?
- 12. What is the sample variance of these concentration levels?
- 13. What is the sample standard deviation of these concentration levels?
- 14. Which of the following sets of numbers has the largest standard deviation? (No calculations are required.)
 - a. $\{7, 8, 9, 10\}$
 - b. {10, 10, 10, 10}
 - c. $\{0, 0, 10, 10\}$
 - d. $\{0, 1, 2, 3\}$

For a Math 221 project, one group of students studied the ages of students on the BYU-Idaho campus. They collected data from a random sample of n=100 students. The sample mean was 21.2 and the sample standard deviation was 2.61. An excerpt of their data is given below.

ID	Gender	Age
1	Female	21
2	Male	18
3	Male	12 (error)
4	Female	20
:	:	:
99	Male	25

The group notices an error in their data. The age of one of the males (ID=3) was entered incorrectly. He is actually 21 years old.

- 15. When the error is corrected, what will happen to the sample standard deviation?
 - a. The standard deviation will increase.
 - b. The standard deviation will decrease.
 - c. The standard deviation will stay the same.
 - d. It is not possible to determine this without the full data set.

->

Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

Problem	Part	Solution
1	-	The standard deviation is a measure of how spread out the data are. A larger standard deviation indicates that data are more spread out and less consistent than data that have a smaller standard deviation.
2	-	Box Plot C
3	-	\$NA
4	-	c. The percentage of data is the same for both.
5	-	4 hours
6	-	14 hours
7	-	2 and 4 hours
8	-	There is not enough information to answer this question. We need the original data to make this determination.
9	-	$28.5~\mathrm{nCi/L}$
10	-	$-23.9~\mathrm{nCi/L}$
11	-	1777.5 nCi/L
12	-	$904.1(\text{ nCi/L})^2$
13	-	$30.1~\mathrm{nCi/L}$
14	-	c. {0, 0, 10, 10}
15	-	b. The standard deviation will decrease.