PARCIAL 1 SIMULACIÓN DE SISTEMAS - 3007331

Bienvenidos al componente práctico del primer examen parcial de Simulación de Sistemas. Esta prueba evaluará sus conocimientos de técnicas básicas de simulación Montecarlo, generación de números aleatorios y de generación de observaciones de variables aleatorias que siguen distintas funciones de densidad de probabilidad. Por favor, lean con atención y resuelva los siguientes ejercicios.

- 1. El tiempo para completar un duatlón sigue aproximadamente una distribución a + c, donde a es el tiempo de la carrera de atletismo que se distribuye como una función de distribución de probabilidad triangular con un valor mínimo de 40 minutos, más probable de 48 minutos y valor máximo de 60 minutos y a es el tiempo de la carrera de ciclismo, que se distribuye como uniforme entre 25 y 55 minutos. Suponga que 12 corredores participan en la carrera.
 - a) ¿Cuál es el tiempo del ganador? ¿Y cuál es el tiempo del perdedor? (Puntos: 40)
 - b) Calcule un intervalo de confianza para la media del tiempo del duatión. Considere un alfa de 0,05. (Puntos: 10)

Use los aleatorios de la izquierda para generar los tiempos de carrera de atletismo y, los de la derecha para generar los tiempos de carrera de ciclismo de cada uno de los 12 competidores.

Competidor	Aleatorios tiempos de	Aleatorios tiempos de		
	carrera de atletismo	carrera de ciclismo		
1	0,08	0,22		
2	0,59	0,44		
3	0,82	0,54		
4	0,09	0,82		
5	0,78	0,77		
6	0,64	0,88		
7	0,64	0,65		
8	0,80	0,50		

9	0,07	0,51
10	0,07	0,46
11	0,14	0,72
12	0,80	0,03

2. Utilice el método lineal congruente para generar 20 números aleatorios. a = 17; m = 61; $X_0=9$ y c = 12.

$$X_{i+1} = aX_i + c \mod m$$
, $semilla = 9$

Una vez tenga la secuencia analizar si cumple con las propiedades de uniformidad e independencia. Para probar uniformidad aplique la prueba de Kolmogorov – Smirnov y para probar independencia el método de corridas hacia arriba y hacia abajo. Considere un alfa de 0,05 para los estadísticos de ambas pruebas. (Puntos: 50)

Grados de	İ					
libertad	0.25	0.1	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3137	12.7062	31.8210	63.6559
2	0.8165	1.8856	2.9200	4.3027	6.9645	9.9250
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8408
4	0.7407	1.5332	2.1318	2.7765	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9979	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.6864	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.6853	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.6848	1.3178	1.7109	2.0639	2.4922	2.7970
25	0.6844	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.6830	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.6828	1.3104	1.6973	2.0423	2.4573	2.7500
31	0.6825	1.3095	1.6955	2.0395	2.4528	2.7440
32	0.6822	1.3086	1.6939	2.0369	2.4487	2.7385
33	0.6820	1.3077	1.6924	2.0345	2.4448	2.7333
34	0.6818	1.3070	1.6909	2.0322	2.4411	2.7284
35	0.6816	1.3062	1.6896	2.0301	2.4377	2.7238
36	0.6814	1.3055	1.6883	2.0281	2.4345	2.7195
37	0.6812	1.3049	1.6871	2.0262	2.4314	2.7154
38	0.6810	1.3042	1.6860	2.0244	2.4286	2.7116
39	0.6808	1.3036	1.6849	2.0227	2.4258	2.7079
40	0.6807	1.3031	1.6839	2.0211	2.4233	2.7045
41	0.6805	1.3025	1.6829	2.0195	2.4208	2.7012
42	0.6804	1.3020	1.6820	2.0181	2.4185	2.6981
43	0.6802	1.3016	1.6811	2.0167	2.4163	2.6951
44	0.6801	1.3011	1.6802	2.0154	2.4141	2.6923
45	0.6800	1.3007	1.6794	2.0141	2.4121	2.6896
46	0.6799	1.3002	1.6787	2.0129	2.4102	2.6870
47	0.6797	1.2998	1.6779	2.0117	2.4083	2.6846
48	0.6796	1.2994	1.6772	2.0106	2.4066	2.6822
49	0.6795	1.2991	1.6766	2.0096	2.4049	2.6800

50	0.6794	1.2987	1.6759	2.0086	2.4033	2.6778
51	0.6793	1.2984	1.6753	2.0076	2.4017	2.6757
52	0.6792	1.2980	1.6747	2.0066	2.4002	2.6737
53	0.6791	1.2977	1.6741	2.0057	2.3988	2.6718
54	0.6791	1.2974	1.6736	2.0049	2.3974	2.6700
55	0.6790	1.2971	1.6730	2.0040	2.3961	2.6682
56	0.6789	1.2969	1.6725	2.0032	2.3948	2.6665
57	0.6788	1.2966	1.6720	2.0025	2.3936	2.6649
58	0.6787	1.2963	1.6716	2.0017	2.3924	2.6633
59	0.6787	1.2961	1.6711	2.0010	2.3912	2.6618
60	0.6786	1.2958	1.6706	2.0003	2.3901	2.6603
61	0.6785	1.2956	1.6702	1.9996	2.3890	2.6589
62	0.6785	1.2954	1.6698	1.9990	2.3880	2.6575
63	0.6784	1.2951	1.6694	1.9983	2.3870	2.6561
64	0.6783	1.2949	1.6690	1.9977	2.3860	2.6549
65	0.6783	1.2947	1.6686	1.9971	2.3851	2.6536
66	0.6782	1.2945	1.6683	1.9966	2.3842	2.6524
67	0.6782	1.2943	1.6679	1.9960	2.3833	2.6512
68	0.6781	1.2941	1.6676	1.9955	2.3824	2.6501
69	0.6781	1.2939	1.6672	1.9949	2.3816	2.6490
70	0.6780	1.2938	1.6669	1.9944	2.3808	2.6479
71	0.6780	1.2936	1.6666	1.9939	2.3800	2.6469
72	0.6779	1.2934	1.6663	1.9935	2.3793	2.6458
73	0.6779	1.2933	1.6660	1.9930	2.3785	2.6449
74	0.6778	1.2931	1.6657	1.9925	2.3778	2.6439
75	0.6778	1.2929	1.6654	1.9921	2.3771	2.6430
76	0.6777	1.2928	1.6652	1.9917	2.3764	2.6421
77	0.6777	1.2926	1.6649	1.9913	2.3758	2.6412
78	0.6776	1.2925	1.6646	1.9908	2.3751	2.6403
79	0.6776	1.2924	1.6644	1.9905	2.3745	2.6395
80	0.6776	1.2922	1.6641	1.9901	2.3739	2.6387
81	0.6775	1.2921	1.6639	1.9897	2.3733	2.6379
82	0.6775	1.2920	1.6636	1.9893	2.3727	2.6371
83	0.6775	1.2918	1.6634	1.9890	2.3721	2.6364
84	0.6774	1.2917	1.6632	1.9886	2.3716	2.6356
85	0.6774	1.2916	1.6630	1.9883	2.3710	2.6349
86	0.6774	1.2915	1.6628	1.9879	2.3705	2.6342
87	0.6773	1.2914	1.6626	1.9876	2.3700	2.6335
88	0.6773	1.2912	1.6624	1.9873	2.3695	2.6329
89	0.6773	1.2911	1.6622	1.9870	2.3690	2.6322
90	0.6772	1.2910	1.6620	1.9867	2.3685	2.6316
91	0.6772	1.2909	1.6618	1.9864	2.3680	2.6309
92	0.6772	1.2908	1.6616	1.9861	2.3676	2.6303
93	0.6771	1.2907	1.6614	1.9858	2.3671	2.6297
94	0.6771	1.2906	1.6612	1.9855	2.3667	2.6291
95	0.6771	1.2905	1.6611	1.9852	2.3662	2.6286
96	0.6771	1.2904	1.6609	1.9850	2.3658	2.6280
97	0.6770	1.2903	1.6607	1.9847	2.3654	2.6275
98	0.6770	1.2903	1.6606	1.9845	2.3650	2.6269
99	0.6770	1.2902	1.6604	1.9842	2.3646	2.6264

100	0.6770	1.2901	1.6602	1.9840	2.3642	2.6259
∞	0.6745	1.2816	1.6449	1.9600	2.3263	2.5758