МФТИ ФПМИ Письменный ГОС вышмат

Кулапин Артур

Июнь 2021

Оглавление

1	Mar	гемати	ический анализ	6
	1.1	Теори	я для самых маленьких	6
		1.1.1	Производные	6
		1.1.2	Интегралы	6
		1.1.3	Тригонометрия	7
	1.2	Преде	лы	8
		1.2.1	Тейлор с отношением	8
			1.2.1.1 Теоретические сведения	8
			1.2.1.2 Примеры решения	9
		1.2.2	Тейлор со степенью	9
			1.2.2.1 Теоретические сведения	9
			1.2.2.2 Примеры решения	10
		1.2.3	Числовая последовательность	11
			1.2.3.1 Теоретические сведения	11
			1.2.3.2 Примеры решения	11
	1.3	Неопр	ределенный интеграл	11
		1.3.1	Неопределенный интеграл	11
			1.3.1.1 Теоретические сведения	12
			1.3.1.2 Примеры решения	12
	1.4	Графі	ик	12
		1.4.1	График дробно-рациональной функции	12
			1.4.1.1 Теоретические сведения	12
			1.4.1.2 Примеры решения	13

	1.4.2	График	функции с корнем	14
		1.4.2.1	Теоретические сведения	14
		1.4.2.2	Примеры решения	14
1.5	Разло	жение в р	ояд Тейлора	15
	1.5.1	Разложе	ение до $o(x^n)$	15
		1.5.1.1	Теоретические сведения	15
		1.5.1.2	Примеры решения	16
	1.5.2	Разложе	ение в бесконечный ряд	16
		1.5.2.1	Теоретические сведения	16
		1.5.2.2	Примеры решения	16
1.6	Несоб	СТВЕННЫЙ	интеграл с параметром	17
	1.6.1	Знакопо	стоянные интегралы	17
		1.6.1.1	Теоретические сведения	17
		1.6.1.2	Примеры решения	17
	1.6.2	Условна	я и абсолютная сходимость	18
		1.6.2.1	Теоретические сведения	18
		1.6.2.2	Примеры решения	18
1.7	Функі	циональні	ые последовательности и ряды	20
	1.7.1	Функцио	ональные ряды	20
		1.7.1.1	Теоретические сведения	20
		1.7.1.2	Примеры решения	20
1.8	Кратн	ные интег	ралы	21
	1.8.1	Порядок	к интегрирования	21
		1.8.1.1	Теоретические сведения	21
		1.8.1.2	Примеры решения	21
	1.8.2	Геометра	ические интегралы (длины и площади)	21
		1.8.2.1	Теоретические сведения	21
		1.8.2.2	Примеры решения	21
	1.8.3	Криволи	инейные интегралы	22
		1.8.3.1	Теоретические сведения	22

			1.8.3.2 Примеры решения	22
		1.8.4	Поверхностные интегралы	22
			1.8.4.1 Теоретические сведения	22
			1.8.4.1.1 Сферическая система координат	23
			1.8.4.1.2 Цилиндрическая система координат	23
			1.8.4.2 Примеры решения	23
	1.9	Ряд Ф	урье 2	24
		1.9.1	Тригонометрическая система	24
			1.9.1.1 Теоретические сведения	24
			1.9.1.2 Примеры решения	24
		1.9.2	Нестандартная система	25
			1.9.2.1 Теоретические сведения	25
			1.9.2.2 Примеры решения	26
	1.10	Услов	ные экстремумы	27
		1.10.1	Условные экстремумы	27
			1.10.1.1 Теоретические сведения	27
			1.10.1.2 Примеры решения	27
2	Лин	іейная	алгебра 2	29
	2.1	Систе	мы линейных уравнений	29
		2.1.1	Системы линейных уравнений	29
			2.1.1.1 Теоретические сведения	29
			2.1.1.2 Примеры решения	29
	2.2	Квадр	атичные формы	30
		2.2.1	Приведение формы и ее свойства	30
			2.2.1.1 Теоретические сведения	30
			2.2.1.2 Примеры решения	31
3	Диф	рфере:	нциальные уравнения 3	32
	3.1	Уравн	ения с постоянными коэффициентами и их системы	32
		3.1.1	Однородные линейные уравнения с постоянными коэффициентами	32

			3.1.1.1 Теоретические сведения	32
			3.1.1.2 Примеры решения	33
		3.1.2	Системы однородных линейных уравнений с постоянными коэффициентами	33
			3.1.2.1 Теоретические сведения	33
			3.1.2.2 Примеры решения	34
		3.1.3	Неоднородные линейные уравнения с постоянными коэффициентами	35
			3.1.3.1 Теоретические сведения	35
			3.1.3.2 Примеры решения	35
	3.2	Фазов	вые траектории	36
		3.2.1	Линейные системы	36
			3.2.1.1 Теоретические сведения	36
			3.2.1.2 Примеры решения	36
	3.3	Вариа	ационное исчисление	37
		3.3.1	Задача с обоими закрепленными концами	37
			3.3.1.1 Теоретические сведения	37
			3.3.1.2 Примеры решения	37
	3.4	Прико	ольчики	38
		3.4.1	Уравнение, сводящееся к уравнению в полных дифференциалах	38
		3.4.2	Задача Коши	39
ı	ΤФ	кп		40
	4.1			40
	4.1	4.1.1		40
		4.1.1		40
				41
	4.2	Рап Г	_	41
	4.2	1 х д 3.		41
		4.2.1		41
		4.2.2		41
		4.4.4		41 42
			4.2.2.1 Примеры решения	±∠

	4.3	Вычет	ты и инте	егралы	43
		4.3.1	Интегра	алы по контуру	43
			4.3.1.1	Теоретические сведения	43
			4.3.1.2	Примеры решения	43
5	Ada	ditional	l informa	ation	45

Глава 1

Математический анализ

1.1 Теория для самых маленьких

1.1.1 Производные

Таблица п	роизводных	Правила дифференцирования
c'=0	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	$(Cu)' = C \cdot u'$
$(x^n)' = nx^{n-1}$	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	(u+v)' = u' + v'
$\left(a^x\right)' = a^x \ln x$	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	(uv)' = u'v + uv'
$\left(\log_a x\right)' = \frac{1}{x \ln a}$	$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
$\left (\ln x)' = \frac{1}{x} \right $	$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$	$\left \left(f(g(x)) \right)' = f'(g(x)) \cdot g'(x) \right $
$(\sin x)' = \cos x$	$(\operatorname{sh} x)' = \operatorname{ch} x$	
$\left (\cos x)' = -\sin x \right $	$\left(\operatorname{ch} x\right)' = \operatorname{sh} x$	
$\left \left(\sqrt{x} \right)' = \frac{1}{2\sqrt{x}} \right $	$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$	
$\left(\left(\operatorname{tg} x \right)' = \frac{1}{\cos^2 x} \right)$	$(\coth x)' = -\frac{1}{\sinh^2 x}$	

1.1.2 Интегралы

Основные приемы интегрирования:

- Метод разложения: $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx;$
- Метод замены: $\int f(u)du = F(u) + C \iff \int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C;$
- Метод итегрирования по частям: $\int u \underbrace{dv}_{dx} = uv \int v \underbrace{du}_{u'dx} + C$.

	Таблица интегралов	
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int \operatorname{tg} x dx = -\ln \cos x + C$	$\int \operatorname{ch} x dx = \operatorname{sh} x + C$
$\int dx = x + C$	$\int \operatorname{ctg} x dx = \ln \sin x + C$	$\int \frac{dx}{\cosh^2 x} = \tanh x + C$
$\int \frac{dx}{x} = \ln x + C$	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int \frac{dx}{\sin^2 x} dx = -\operatorname{ctg} x + C$	«Длинный» логарифм
$\int e^x dx = e^x + C$	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$	$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln x + \sqrt{x^2 \pm a^2} + C$
$\int \sin x dx = -\cos x + C$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$	«Высокий» логарифм
$\int \cos x dx = \sin x + C$	$\int \operatorname{sh} x dx = \operatorname{ch} x + C$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$

1.1.3 Тригонометрия

Основное тригонометрическое тождество			
$\sin^2 a + \cos^2 a = 1$			
$tg^2a + 1 = \frac{1}{\cos^2 a}$	$tga = \frac{\sin a}{\cos a}$		
$ctg^2a + 1 = \frac{1}{\sin^2 a}$	$ctga = \frac{\cos a}{\sin a}$		
$tga \cdot ctg = 1$			
Двойные углы	Синус/косинус суммы/разности		
$\sin 2a = 2\sin a\cos a$	$\sin \alpha + \beta = \sin \alpha \cos \beta + \cos \alpha \sin \beta$		
$\cos 2a = \cos^2 a - \sin^2 a$	$\sin \alpha - \beta = \sin \alpha \cos \beta - \cos \alpha \sin \beta$		
$\cos 2a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$	$\cos \alpha + \beta = \cos \alpha \cos \beta - \sin \alpha \sin \beta$		
$tg 2a = \frac{2tga}{1 - tg^2a}$	$\cos \alpha - \beta = \cos \alpha \cos \beta + \sin \alpha \sin \beta$		
	$tg \alpha \pm \beta = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$		
Сумма/разность синусов/косинусов	Произведение -> сумма		
$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$	$2\cos\alpha\cos\beta = \cos\alpha + \beta + \cos\alpha - \beta$		
$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$	$2\sin\alpha\sin\beta = \cos\alpha - \beta - \cos\alpha + \beta$		
$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$	$2\sin\alpha\cos\beta = \sin\alpha + \beta - \sin\alpha - \beta$		
$\cos \alpha - \cos \beta = -2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$			
Универсальная замена	Понижение степени		
Пусть $t = \operatorname{tg} \frac{a}{2}$	$\sin^2 a = \frac{1 - \cos 2a}{2}$		
Тогда $\sin a = \frac{2t}{1+t^2}$, $\cos a = \frac{1-t^2}{1+t^2}$, $\operatorname{tg} a = \frac{2t}{1-t^2}$	$\cos^2 a = \frac{1 + \cos 2a}{2}$		

Тройные углы		
$\sin 3a = 3\sin a - 4\sin^3 a$	$\cos 3a = 4\cos^3 a - 3\cos a$	

1.2 Пределы

1.2.1 Тейлор с отношением

1.2.1.1 Теоретические сведения

Надо будет знать ряды Маклорена для небольшого количества функций

$$\bullet \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\tan x = x + \frac{x^3}{3} + \dots$$

•
$$\arcsin x = x + \frac{x^3}{6} + \dots$$

•
$$\arccos x = \frac{\pi}{2} - \arcsin x = \frac{\pi}{2} - x - \frac{x^3}{6} + \dots$$

•
$$\arctan x = x - \frac{x^3}{3} + \dots$$

•
$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

•
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

•
$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} C_{\alpha}^n x^n = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6} x^3 + \dots, \quad C_{\alpha}^n = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}$$

И самое важное соотношение для этого раздела

$$\lim_{x \to 0} \frac{\alpha x^n + o(x^n)}{\beta x^n + o(x^n)} = \frac{\alpha}{\beta}$$

Note. Если ваша функция не приводится к виду выше, то почти наверное вы где-то неправы.

1.2.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 1.

Найти предел
$$\lim_{x\to 0} \frac{\sin(\tan^2 x) - \log(1+x^2+x^3)}{\frac{\arctan(\cosh x-1)}{x} - \frac{x}{2}}$$

Решение. Будем разваливать конструкцию по кусочкам. Сначала числитель

$$\tan^2 x = \left(x + \frac{x^3}{3} + o(x^6)\right)^2 = x^2 + \frac{2x^4}{3} + o(x^4)$$

$$\sin\left(\tan^2 x\right) = \sin\left(x^2 + \frac{2x^4}{3} + o(x^4)\right) = x^2 + o(x^3)$$

$$\log(1 + x^2 + x^3) = x^2 + x^3 + o(x^3)$$

$$\sin\left(\tan^2 x\right) - \log\left(1 + x^2 + x^3\right) = -x^3 + o(x^3)$$

Теперь знаменатель

$$\cosh x - 1 = \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

$$\arctan(\cosh x - 1) = \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

$$\frac{\arctan(\cosh x - 1)}{x} - \frac{x}{2} = \frac{x}{2} + \frac{x^3}{24} + o(x^3) - \frac{x}{2} = \frac{x^3}{24} + o(x^3)$$

Ну раз такое дело, то

$$\lim_{x \to 0} \frac{\sin(\tan^2 x) - \log(1 + x^2 + x^3)}{\frac{\arctan(\cosh x - 1)}{x} - \frac{x}{2}} = \lim_{x \to 0} \frac{-x^3 + o(x^3)}{\frac{1}{24}x^3 + o(x^3)} = -24$$

Ответ: -24

1.2.2 Тейлор со степенью

1.2.2.1 Теоретические сведения

Самое важное соотношение для этого раздела

$$\lim_{x \to 0} (1 + \alpha x^n + o(x^n))^{\frac{1}{\beta x^n + o(x^n)}} = e^{\frac{\alpha}{\beta}}$$

Note. Если ваша функция не приводится к виду выше, то почти наверное вы где-то неправы.

1.2.2.2 Примеры решения

ГОС 2013-14, вариант 1, задача 2.

Найти предел
$$\lim_{x\to 0} \left(\frac{\log^2(1+x)+\arcsin(2x-x^2)}{\sin x+\tan x}\right)^{\frac{x}{\sinh 2x-2\arctan x}}$$

Решение. От перемены мест слагаемых сумма не меняется, но тут вопрос труднее. Надо понять, до какого порядка раскладывать. Показатель степени явно выглядит поприятнее, чем основание, поэтому начнем с него

$$\sinh 2x - 2\arctan x = 2x + \frac{8x^3}{6} - 2x + \frac{2x^3}{3} + o(x^3) = 2x^3 + o(x^3) \Longrightarrow \frac{x}{\sinh 2x - 2\arctan x} = \frac{1}{2x^2 + o(x^2)}$$

Вот она, дробь здорового человека, а не вот эти ваши выкрутасы, теперь понятно, что второго порядка хватит, но до третьего нам тоже не жалко. Разберемся с основанием. Это дробь, с ней мы позже проделаем хитрый трюк

$$\log^{2}(1+x) = \left(x - \frac{x^{2}}{2} + o(x^{2})\right)^{2} = x^{2} - x^{3} + o(x^{3})$$

$$\arcsin(2x - x^{2}) = 2x - x^{2} + \frac{(2x - x^{2})^{3}}{6} + o(x^{3}) = 2x - x^{2} + \frac{4x^{3}}{3} + o(x^{3})$$

$$\log^{2}(1+x) + \arcsin(2x - x^{2}) = 2x + \frac{x^{3}}{3} + o(x^{3})$$

$$\sin x + \tan x = x - \frac{x^{3}}{6} + x + \frac{x^{3}}{3} + o(x^{3}) = 2x + \frac{x^{3}}{6} + o(x^{3})$$

То есть основание какое-то кривое $\frac{2x+\frac{x^3}{3}+o(x^3)}{2x+\frac{x^3}{6}+o(x^3)}$. Нам нужна единичка, чтобы сработал факт из теории, добьемся ее и проделаем обещанный трюк

$$\frac{2x + \frac{x^3}{3} + o(x^3)}{2x + \frac{x^3}{6} + o(x^3)} = 1 + \frac{\frac{x^3}{6} + o(x^3)}{2x + \frac{x^3}{6} + o(x^3)} = 1 + \left(\frac{x^3}{6} + o(x^3)\right) \frac{1}{2x + \frac{x^3}{6} + o(x^3)} = 1 + \left(\frac{x^3}{6} + o(x^3)\right) \cdot \frac{1}{2x} \cdot \frac{1}{1 + \frac{x^2}{12} + o(x^2)} =$$
 {используем еще раз формулу Маклорена} =
$$1 + \left(\frac{x^2}{12} + o(x^2)\right) \left(1 - \frac{x^2}{12} + o(x^2)\right) = 1 + \frac{x^2}{12} + o(x^2)$$

Ну все, осталось посчитать ответ

$$\lim_{x \to 0} \left(\frac{\log^2(1+x) + \arcsin(2x - x^2)}{\sin x + \tan x} \right)^{\frac{x}{\sinh 2x - 2\arctan x}} = \lim_{x \to 0} \left(1 + \frac{x^2}{12} + o(x^2) \right)^{\frac{1}{2x^2 + o(x^2)}} = e^{\frac{1}{24}}$$

Ответ: $e^{\frac{1}{24}}$

1.2.3 Числовая последовательность

1.2.3.1 Теоретические сведения

Тут как правило все сводится к тому, чтобы привести последовательность под пределом к виду $\left(1+\frac{\alpha}{n^{\beta}}\right)^{n^{\beta}}$, тогда мы можем пользоваться вторым замечательным пределом (точнее его следствием): $\lim_{n\to\infty}\left(1+\frac{\alpha}{n}\right)^n=e^{\alpha}$. Для приведения к такому виду мы имеем право заменять функции на эквивалентные как в ряде Тейлора.

1.2.3.2 Примеры решения

ГОС 2015-16, вариант 1, задача 1.

Найти предел
$$\lim_{n\to\infty} \left(\sqrt[3]{n^3 + \frac{n}{3}} \cdot \sin\frac{1}{n}\right)^{-n^2}$$

Решение. Заметим, что в показателе стоит квадрат, значит нам нужно будет раскладывать в эквивалентные функции до второго порядка. Преобразуем основание

$$\sqrt[3]{n^3 + \frac{n}{3}} = n \cdot \sqrt[3]{1 + \frac{1}{3n^2}} = n\left(1 + \frac{1}{9n^2} + o\left(\frac{1}{n^2}\right)\right)$$

$$\sin\frac{1}{n} = \frac{1}{n} - \frac{1}{6n^3} + o(n^3)$$

$$\sqrt[3]{n^3 + \frac{n}{3}} \cdot \sin\frac{1}{n} = n\left(1 + \frac{1}{9n^2} + o\left(\frac{1}{n^2}\right)\right)\left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)\right) = 1 - \frac{1}{18n^2} + o\left(\frac{1}{n^2}\right)$$

Теперь воспользуемся фактом выше и вычислим ответ

$$\lim_{n \to \infty} \left(\sqrt[3]{n^3 + \frac{n}{3}} \cdot \sin \frac{1}{n} \right)^{-n^2} = \lim_{n \to \infty} \left(1 - \frac{1}{18n^2} + o\left(\frac{1}{n^2}\right) \right)^{-n^2} = e^{\frac{1}{18}}$$

Ответ: $e^{\frac{1}{18}}$

1.3 Неопределенный интеграл

1.3.1 Неопределенный интеграл

Note. Не беритесь за него, ибо обычно это рофлотаска, которую знает как решать только составитель.

1.3.1.1 Теоретические сведения

Напомним основные методы взятия интегралов читателям

- Метод угадывания первообразной
- Замена переменных. Тригонометрическая замена и гиперболическая замена
- Интегрирование по частям. Не забывайте про то, что можно брать за один из кусков dx
- Чувство производных тригонометрических, обратных тригонометрических производных
- Длинный и высокий логарифмы

1.3.1.2 Примеры решения

Возьмем для примера нетрудный интеграл, который берет даже машина.

ГОС 2013-14, вариант 2, задача 1.

Вычислить
$$\int \frac{x \cos x}{\sin^3 x} dx$$

Сначала дадим ответ, чтобы читатели могли оценить адекватность данного задания.

Otbet: $-\frac{1}{2}\left(\cot x + \frac{x}{\sin^2 x}\right) + \text{const}$

Решение. Остается в качестве упражнения для читателей или бездушной машины.

1.4 График

1.4.1 График дробно-рациональной функции

1.4.1.1 Теоретические сведения

Что требуется в задании

- Нахождение области определения
- Нахождение асимптоты
- Исследование первой производной, нахождение промжутков монотонности
- Исследование второй производной, нахождение промежутков выпуклости
- Собственно построение

1.4.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 2.

Построить график функции
$$y = -3x + 1 - \frac{3}{x-4}$$
.

Решение. Пойдем по пунктам выше

- Функция не определена в x=4, то есть $D(y)=\mathbb{R}\setminus\{4\}$
- В общем случае мы бы искали асимптоту через решение «уравнения» $\lim_{x \to \pm \infty} y(x)$. В нашем случае все гораздо проще, нам выделили целую часть, за что добрым людям благодарность. Асимптота: f = -3x + 1. Также не забудем о вертикальной асимптоте x = 4.
- Найдем первую производную: $y' = \frac{3}{(x-4)^2} 3 = -\frac{3(x-5)(x-3)}{(x-4)^2}$. Откуда функция строго возрастает на $(3,5)\setminus\{4\}$, а в $\mathbb{R}\setminus[3,5]$ строго убывает. Заодно найдем значения функции в точках локального экстремума: y(3) = -5, y(5) = -17.
- Самое время посчитать вторую производную $y'' = -\frac{6}{(x-4)^3}$. То есть на $(-\infty,4)$ функция выпукла вниз и на $(4,\infty)$ выпукла вверх. Были бы точки перегиба нашли бы еще в них значения.

Теперь, когда мы узнали все об этой функции, нужно построить график (достаточно эскиза). Построение будет сделано не руками:(

1.4.2 График функции с корнем

1.4.2.1 Теоретические сведения

Что требуется в задании

- Нахождение области определения
- Нахождение асимптоты
- Исследование первой производной, нахождение промжутков монотонности
- Исследование второй производной, нахождение промежутков выпуклости
- Собственно построение

1.4.2.2 Примеры решения

ГОС 2009-10, вариант 1, задача 4.

Построить график функции
$$y = \sqrt{|x^2 - 3x + 2|}$$
.

Решение. Пойдем по пунктам выше

- Функция определена везде, то есть $D(y) = \mathbb{R}$
- Заметим, что у нас на бесконечности и минус бесконечности могут быть разные асимптоты. Как искать асимптоты? Да давайте в Тейлора разложим в плюс бесконечности (модуль не нужен, так как на бесконечности его аргумент и так положителен).

$$\sqrt{x^2-3x+2}=x\sqrt{1-\frac{3}{x}+\frac{2}{x^2}}=\{\text{ Тейлор }\}=x\left(1-\frac{3}{2x}-\frac{1}{8x^2}+o\left(\frac{1}{x^2}\right)\right)=x-\frac{3}{2}-\frac{1}{8x}+o\left(\frac{1}{x}\right)$$

То есть на $+\infty$ асимптота будет $f_+ = x - \frac{3}{2}$. Аналогично найдем $f_- = -x + \frac{3}{2}$. Единственная разница, из под корня вынесем -x, чтобы было все справедливо. В обоих случаях график ниже асимптоты.

• Приступаем к исследованию производных $y' = \frac{(2x-3)\cdot sign(x^2-3x+2)}{2\sqrt{|x^2-3x+2|}}$. Таким образом, точки экстремума: x=1.5, а производная не определена в $x\in\{1,2\}$. Функция строго убывает на $(-\infty,1)\cup(1.5,2)$ и строго возрастает на $(1,1.5)\cup(2,\infty)$.

• Самое время посчитать вторую производную

$$y'' = sign(x^2 - 3x + 2) \cdot \frac{4\sqrt{|x^2 - 3x + 2|} - \frac{(2x - 3)^2 \cdot sign(x^2 - 3x + 2)}{\sqrt{|x^2 - 3x + 2|}}}{|x^2 - 3x + 2|} =$$

$$= sign(x^2 - 3x + 2) \cdot \frac{4|x^2 - 3x + 2| - (2x - 3)sign(x^2 - 3x + 2)}{|x^2 - 3x + 2|^{\frac{3}{2}}} =$$

$$= sign(x^2 - 3x + 2) \cdot \frac{4(x^2 - 3x + 2)sign(x^2 - 3x + 2) - (2x - 3)^2sign(x^2 - 3x + 2)}{|x^2 - 3x + 2|^{\frac{3}{2}}} =$$

$$= \frac{4(x^2 - 3x + 2) - (2x - 3)^2}{|x^2 - 3x + 2|^{\frac{3}{2}}} = -\frac{1}{|x^2 - 3x + 2|^{\frac{3}{2}}} < 0$$

Отличная производная, отрицательная, значит функция везде выпукла вверх.

Мы нигде выше не посчитали значения функции в точках, где нет производной, это корни подкорневой функции, то есть в них значение ноль.

Теперь, когда мы узнали все об этой функции, нужно построить график (достаточно эскиза). Построение будет сделано не руками:(

1.5 Разложение в ряд Тейлора

1.5.1 Разложение до $o(x^n)$

1.5.1.1 Теоретические сведения

В ряд Тейлора с точностью до $o((x-a)^n)$ можно раскладывать функции, которые n раз дифференцируемы в точке a.

1.5.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 6.

Разложить функцию $f(x) = \tan(x+2)^3 + |x+2|^3 \sin(x+2)^2$ в точке x=-2 в ряд Тейлора до максимального порядка малости.

1.5.2 Разложение в бесконечный ряд

1.5.2.1 Теоретические сведения

Нам опять же нужно знать основные ряды Тейлора. Но есть загвоздка, а как искать радиус сходимости? Так как ряд Тейлора это степенной ряд, приведем две формулы (далее a_i — коэффициент при x^i)

- ullet Формула Коши-Адамара: $\frac{1}{R} = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$
- ullet Формула Даламбера: $R = \overline{\lim_{n \to \infty}} \left| \frac{a_n}{a_{n+1}} \right|$

Необходимо, чтобы у каждая степень x входила ровно в одно слагаемое, иначе это не будет уже рядом Тейлора.

1.5.2.2 Примеры решения

ГОС 2015-16, вариант 1, задача 3.

Разложить функцию $f(x) = \frac{x^2+1}{\sqrt[4]{16+x^2}}$ в точке x=0 в ряд Тейлора.

Решение. Перепишем функцию $f(x) = \frac{1+x^2}{2} \cdot \left(1 + \left(\frac{x}{4}\right)^2\right)^{-\frac{1}{4}}$.

Теперь можем применить разложение $(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} C_{\alpha}^{n} x^{n}$

$$f(x) = \frac{1+x^2}{2} \cdot \left(1 + \left(\frac{x}{4}\right)^2\right)^{-\frac{1}{4}} = \frac{1+x^2}{2} \cdot \left(1 + \sum_{n=1}^{\infty} C_{-1/4}^n \frac{x^{2n}}{16^n}\right) =$$

$$= \frac{1}{2} \left(1 + x^2 + \sum_{n=1}^{\infty} C_{-1/4}^n \frac{x^{2n}}{16^n} + \sum_{n=1}^{\infty} C_{-1/4}^n \frac{x^{2n+2}}{16^n}\right) =$$

$$= \frac{1}{2} + \frac{C_{-1/4}^0 x^2}{2} + \frac{1}{2} \sum_{n=1}^{\infty} C_{-1/4}^n \frac{x^{2n}}{16^n} + \frac{1}{2} \sum_{n=2}^{\infty} C_{-1/4}^{n-1} \frac{x^{2n}}{16^{n-1}} = \frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{C_{-1/4}^n}{2^{4n+1}} + \frac{C_{-1/4}^{n-1}}{2^{4n-3}}\right) x^{2n}$$

Ответ.
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{C_{-1/4}^n}{2^{4n+1}} + \frac{C_{-1/4}^{n-1}}{2^{4n-3}} \right) x^{2n}$$

1.6 Несобственный интеграл с параметром

1.6.1 Знакопостоянные интегралы

1.6.1.1 Теоретические сведения

Первым шагом нам необходимо определить особые точки, в которых подынтегральная функция не определена (или уходит на бесконечность) Если номер без «прикола», то по классике это пределы интегрирования. Более того, обычно это 0 и бесконечность. Для исследования на сходимость (обычно это задачи с параметром) нам снова понадобится разложение в ряд Тейлора и базовые интегралы

- $\int_{0}^{1} \frac{dx}{x^{\alpha}}$ сходится, если $\alpha < 1$.
- $\int_{1}^{\infty} \frac{dx}{x^{\alpha}}$ сходится, если $\alpha > 1$.
- $\int_{0}^{\infty} \frac{dx}{e^{\alpha x}}$ сходится, если $\alpha > 0$.
- $\int_{0}^{\frac{1}{2}} \frac{dx}{x^{\alpha} |\log x|^{\beta}}$ сходится, если $\alpha < 1, \beta \in \mathbb{R}$ или $\alpha = 1, \beta > 1$.
- $\int\limits_{2}^{\infty} \frac{dx}{x^{\alpha} \log^{\beta} x}$ сходится, если $\alpha > 1, \beta \in \mathbb{R}$ или $\alpha = 1, \beta > 1$.

1.6.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 4.

Исследовать на сходимость интеграл
$$\int\limits_0^\infty \frac{\arctan\left(\frac{3x}{(2+x)^4}\right)}{\log^3(3+x)x^{2\alpha}}dx$$

Решение. Заметим, что особенности в нуле и бесконечности, тогда разобьем интеграл на три части:

$$\int_{0}^{\infty} \frac{\arctan\left(\frac{3x}{(2+x)^{4}}\right)}{\log^{3}\left(3+x\right)x^{2\alpha}} dx = \int_{0}^{\frac{1}{2}} \frac{\arctan\left(\frac{3x}{(2+x)^{4}}\right)}{\log^{3}\left(3+x\right)x^{2\alpha}} dx + \int_{\frac{1}{2}}^{2} \frac{\arctan\left(\frac{3x}{(2+x)^{4}}\right)}{\log^{3}\left(3+x\right)x^{2\alpha}} dx + \int_{2}^{\infty} \frac{\arctan\left(\frac{3x}{(2+x)^{4}}\right)}{\log^{3}\left(3+x\right)x^{2\alpha}} dx$$

Второй интеграл очевидно сходится, исследуем первый и третий. Начнем с первого.

В числителе подынтегральная функция эквивалентна $\frac{3x}{(2+x)^4} \sim \frac{3x}{16}$. Значит сходимость первого интеграла эквивалентна сходимости $\int_0^{\frac{1}{2}} \frac{dx}{\log^3(3+x)x^{2\alpha-1}}$. Более того, в нуле логарифм является числом, а значит он тоже не влияет на сходимость. Из списка эталонных интегралов получаем, что $2\alpha-1<1$, то есть $\alpha<1$.

Теперь рассмотрим третий интеграл. В бесконечности функция под арктангенсом эквивалентна $\frac{3}{x^3}$, а значит числитель эквивалентен $\frac{3}{x^3}$. То есть сходимость интеграла эквивалентна сходимости $\int\limits_2^{\infty} \frac{3dx}{\log^3(3+x)x^{2\alpha+3}}$, а из списка эталонных интегралов получаем, что $2\alpha+3\geq 1$, то есть $\alpha\geq -1$.

Ответ. $-1 \le \alpha < 1$.

1.6.2 Условная и абсолютная сходимость

1.6.2.1 Теоретические сведения

Нам придется здесь сделать четыре этапа:

- 1. Сходимость, используя признак Дирихле
- 2. Расходимость, используя критерий Коши
- 3. Абсолютная сходимость через эталонные интегралы
- 4. Условная сходимость через признак сравнения

Теорема (признак Дирихле). Интеграл вида $\int\limits_{a}^{\infty}f(x)g(x)dx$ сходится, если

- 1. $f \in C[a, \infty), g \in C^1[a, \infty)$
- 2. f имеет ограниченную первообразную
- $3. \, \, q$ монотонно стремится к нулю

Теорема (критерий Коши). Интеграл вида $\int\limits_a^b f(x)dx$ с особенностью в $b\in\overline{\mathbb{R}}$ сходится \iff

$$\forall \varepsilon > 0 \exists \beta \in [a, b) \forall \xi_1 \in [\beta, b) \forall \xi_2 \in [\beta, b) \left| \int_{\xi_1}^{\xi_2} f(x) dx \right| < \varepsilon$$

1.6.2.2 Примеры решения

ГОС 2015-16, вариант 1, задача 8.

Исследовать на условную и абсолютную сходимость интеграл $\int\limits_1^\infty \log\left(1+\frac{\sin2x}{x^\alpha}\right)dx$ при $\alpha>0$

Решение. Заметим, что в бесконечности функция ведет себя крайне странно (постоянно меняет знак), поэтому исследовать на сходимость надо в окрестности бесконечности. Нам необходимо представить данную функцию в окрестности ∞ в виде суммы двух слагаемых, интеграл от одного из

которых сходится условно, от другого — абсолютно. Для получания суммы слагаемых, как правило, используется представление формулой Тейлора, где остаточный член — O-большое от величины, стремящейся к нулю.

$$\log\left(1 + \frac{\sin 2x}{x^{\alpha}}\right) = \frac{\sin 2x}{x^{\alpha}} - \frac{\sin^2 2x}{x^{2\alpha}} + O\left(\frac{\sin^2 2x}{x^{2\alpha}}\right) = \frac{\sin 2x}{x^{\alpha}} - \frac{\sin^2 2x}{x^{2\alpha}}(1 - O(1))$$

Исследуем первое слагаемое:

- 1. Пусть $f(x) = \sin 2x$, а $g(x) = \frac{1}{x^{\alpha}}$. Первообразная f(x) ограничена $\frac{1}{2}$. f непрерывна, а g непрерывно дифференцируема на $[1, \infty)$, $g(x) \to 0$ при $x \to \infty$ и g(x) монотонно убывает при $\alpha > 0$. Тогда по признаку Дирихле интеграл сходится при $\alpha > 0$.
- 2. Заметим, что исследуемое множество параметров исчерпано, а значит нам не нужно применять критерий Коши для доказательства расходимости.
- $3. \int\limits_{1}^{\infty} \left| \frac{\sin 2x}{x^{\alpha}} \right| dx \leq \int\limits_{1}^{\infty} \frac{1}{x^{\alpha}} dx$, который сходится при $\alpha > 1$.
- 4. Покажем, что на $\alpha \in (0,1]$ интеграл будет абсолютно расходиться.

$$\int_{1}^{\infty} \left| \frac{\sin 2x}{x^{\alpha}} \right| dx \ge \int_{1}^{\infty} \frac{\sin^{2} 2x}{x^{\alpha}} dx = \int_{1}^{\infty} \frac{1}{2x^{\alpha}} dx - \int_{1}^{\infty} \frac{\cos 4x}{2x^{\alpha}} dx = I_{1} - I_{2}$$

Заметим, что I_1 расходится для $\alpha \in (0,1]$, а I_2 сходится по признаку Дирихле (смотри первый пункт). Тогда I_1-I_2 расходится, а значит и $\int\limits_1^\infty \left|\frac{\sin 2x}{x^\alpha}\right| dx$ расходится.

Итого первое слагаемое сходится абсолютно при $\alpha > 1$ и условно при $\alpha \in (0,1]$.

Теперь разберемся со вторым слагаемым. Заметим, что функция знакопостоянная под ним, а значит имеем право заменить на эквивалентный

$$\frac{\sin^2 2x}{x^{2\alpha}}(1 - O(1)) \sim \frac{C}{x^{2\alpha}}$$

A сходится он только при $\alpha > \frac{1}{2}$.

Объединяя все рассуждения выше, записываем ответ.

Ответ.

- Расходится при $\alpha \in (0, 0.5]$.
- Условно сходится при $\alpha \in [0.5, 1)$.
- Абсолютно сходится при $\alpha > 1$.

1.7 Функциональные последовательности и ряды

1.7.1 Функциональные ряды

1.7.1.1 Теоретические сведения

Нам придется здесь сделать три этапа:

- 1. Поточечная сходимость через эквивалентность или сравнение
- 2. Неравномерная сходимость по подбору плохой последовательности точек
- 3. Равномерная сходимость через признак Дирихле или Вейерштрасса

Теорема (признак Дирихле). Ряд вида $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ сходится равномерно на E, если

1. Последовательность частичных сумм $\sum_{n=1}^{\infty} v_n(x)$ равномерно ограничена на E, то есть

$$\exists C > 0 \ \forall N \in \mathbb{N} \ \forall x \in E \ \left| \sum_{n=1}^{N} v_n(x) \right| \le C$$

- 2. $u_n(x)$ монотонно убывает $\forall x \in E$
- 3. $u_n(x)$ стремится равномерно к нулю, то есть $\sup_{x\in E}|u_n(x)|<\varepsilon$

Теорема (признак Вейерштрасса). Если существует последовательность $\{a_n\}$ такая, что ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится и существует $N\in\mathbb{N}$ такой, что $\forall n>N\forall x\in E\;|u_n(x)|\leq a_n,$ то ряд $\sum\limits_{n=1}^{\infty}u_n(x)$ сходится абсолютно и равномерно.

1.7.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 5.

Исследовать на поточечную и равномерную сходимости на $E_1=(0,1)$ и $E_2=(1,\infty)$ функциональный ряд $\sum\limits_{n=1}^{\infty}xe^n\arctan\frac{x}{4^n}$

Решение.

- 1. Зафиксируем $x \in E_1 \cup E_2$, тогда $\left| xe^n \arctan \frac{x}{4^n} \right| \leq \left| xe^n \frac{x}{4^n} \right| = x^2 \left(\frac{e}{4} \right)^n$, а ряд $\sum_{n=1}^{\infty} x^2 \left(\frac{e}{4} \right)^n$ сходится, так как мажорируется геометрической прогрессией со знаменателем меньше единицы.
- 2. На $E_1 | xe^n \arctan \frac{x}{4^n} | \le x^2 \left(\frac{e}{4}\right)^n \le \left(\frac{e}{4}\right)^n$, а ряд $\sum_{n=1}^{\infty} \left(\frac{e}{4}\right)^n$ сходится, значит по признаку Вейерштрасса ряд сходится на E_1 равномерно.
- 3. Пусть $x_n = 4^n$, тогда $u_n(x_n) = (4e)^n \cdot \arctan 1 = \frac{\pi}{4} (4e)^n \not\to 0$, значит неравномерно на E_2 .

1.8 Кратные интегралы

1.8.1 Порядок интегрирования

1.8.1.1 Теоретические сведения

Строим область, которая удовлетворяет всем неравенствам, разбиваем на куски.

1.8.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 15.

Записать кратный интеграл $\iint_G f(x,y) dx dy$ в виде повторного интеграла или их суммы, если область G задана неравенствами: $x^2 + (y-3)^2 > 9$, $y \in (0,3)$, 2x + y < 9 и x > 0.

Решение: Данная система неравенств ограничивает криволинейный треугольник с вершинами A = (0,0), B = (3,3) и C = (4.5,0), где AC и BC — отрезки, а AB — четверть окружности с центром (0,3) и радиуса три. Тогда искомый интеграл можно расписать так

$$\iint_{G} f(x,y)dxdy = \int_{0}^{3} dx \int_{0}^{3-\sqrt{9-x^2}} f(x,y)dy + \int_{3}^{\frac{9}{2}} dx \int_{0}^{9-2x} f(x,y)dy$$

1.8.2 Геометрические интегралы (длины и площади)

1.8.2.1 Теоретические сведения

Не забываем о якобиане в переходе к полярным координатам J=r

1.8.2.2 Примеры решения

ГОС 2013-14, вариант 1, задача 9.

Вычислить площадь области $G = \{(x^2 + y^2)^3 < 4x^2y^2, x > 0, y > 0\}.$

Решение: $S=\iint\limits_G dxdy=\iint\limits_G rdrd\varphi$. Теперь запишем область G в полярных координатах: x>0,y>0 это то же самое, что $0<\varphi<\frac{\pi}{2}$.

$$(x^2 + y^2)^3 < 4x^2y^2 \Longrightarrow r^6 < 4r^4\cos^2\varphi\sin^2\varphi \Longrightarrow r < \sin 2\varphi$$

Тогда

$$S = \iint\limits_{G} r dr d\varphi = \int\limits_{0}^{\frac{\pi}{2}} d\varphi \int\limits_{0}^{\sin 2\varphi} r dr = \int\limits_{0}^{\frac{\pi}{2}} \frac{\sin^{2} 2\varphi}{2} d\varphi = \frac{\pi}{8}$$

1.8.3 Криволинейные интегралы

1.8.3.1 Теоретические сведения

Теорема (формула Грина). $\oint_{\Gamma} P dx + Q dy = \iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$, где Γ — граница области G

1.8.3.2 Примеры решения

ГОС 2013-14, вариант 1, задача 11.

Вычислить интеграл $\oint_{\Gamma} 3x^2y^2dx + (2yx^3+x^2)dy$, где Γ — граница области $D=\{x^2+y^2<2y,x>0\}$

Решение: Для начала перейдем к поверхностному интегралу, то есть пусть $P = 3x^2y^2$ и $Q = (2yx^3 + x^2)$, тогда используем формулу Грина

$$\oint_{\Gamma} 3x^2y^2dx + (2yx^3 + x^2)dy = \iint_{\Gamma} 2xdxdy$$

Теперь перейдем к полярным координатам, не забывая о якобиане (и заметим, что уравнения выше равносильны тому, что $r < 2\sin\varphi$ и $0 < \varphi < \frac{\pi}{2}$)

$$\oint_{\Gamma} 3x^{2}y^{2}dx + (2yx^{3} + x^{2})dy = \iint_{G} 2xdxdy = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\sin\varphi} 2r^{2}\cos\varphi dr = 2\int_{0}^{\frac{\pi}{2}} \cos\varphi d\varphi \int_{0}^{2\sin\varphi} r^{2}dr = \frac{16}{3}\int_{0}^{\frac{\pi}{2}} \cos\varphi \sin^{3}\varphi d\varphi = \{t = \sin\varphi\} = \frac{16}{3}\int_{0}^{1} t^{3}dt = \frac{4}{3}$$

Ответ: $\oint_{\Gamma} 3x^2y^2dx + (2yx^3 + x^2)dy = \frac{4}{3}$

1.8.4 Поверхностные интегралы

1.8.4.1 Теоретические сведения

Теорема (формула Гаусса-Остроградского).

$$\iint\limits_{S} \left(P dy dz + Q dx dz + R dx dy \right) = \iiint\limits_{W} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

где S — граница области W.

1.8.4.1.1 Сферическая система координат Еще не забываем переход к сферическим координатам

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \end{cases} \begin{cases} r \ge 0 \\ 0 \le \theta \le \pi \\ 0 \le \varphi < 2\pi \end{cases}$$

M ее якобиан $J = r^2 \sin \theta$

1.8.4.1.2 Цилиндрическая система координат Если кафедра высшей математики ненавидит ваш курс, то можно словить цилиндрическую маслину систему координат

$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \begin{cases} r \ge 0 \\ 0 \le \varphi < 2\pi \\ z = z \end{cases}$$

W ее якобиан J=r

1.8.4.2 Примеры решения

ГОС 2015-16, вариант 1, задача 5.

Вычислить интеграл
$$\int\limits_{\Sigma}(x^2+z^3)dxdy$$
, где Σ — поверхность сферы $x^2+y^2+z^2=R^2$

Решение. Воспользуемся формулой Гаусса-Остроградского и перейдем в сферическую систему кординат $(r \leq R)$:

$$\int_{\Sigma} (x^2 + z^3) dx dy = \iiint_{W} 3z^2 dx dy dz = \iiint_{W} 3r^2 \cos^2 \theta \cdot r^2 \sin \theta \, dr d\varphi d\theta =
= 3 \int_{0}^{R} r^4 dr \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin \theta \cos^2 \theta d\theta = \frac{6\pi R^5}{5} \int_{0}^{\pi} \sin \theta \cos^2 \theta d\theta = -\frac{6\pi R^5}{5} \int_{0}^{\pi} \cos^2 \theta d \cos \theta =
= |t = \cos \theta| = -\frac{6\pi R^5}{5} \int_{0}^{-1} t^2 dt = \frac{12\pi R^5}{5} \int_{0}^{1} t^2 dt = \frac{4\pi R^5}{5}$$

Otbet. $\int\limits_{\Sigma}(x^2+z^3)dxdy=rac{4\pi R^5}{5}$

1.9 Ряд Фурье

1.9.1 Тригонометрическая система

1.9.1.1 Теоретические сведения

Сначала делаем функцию 2π -периодической. Далее нам надо посчитать коэффициенты Фурье, так как ряд Фурье имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Note. Если полученная функция получилась четной, то $b_n \equiv 0$, а если нечетной, то $a_n \equiv 0$

Теорема (равенство Парсеваля).

Пусть $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, тогда справедливо равенство Парсеваля

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx$$

1.9.1.2 Примеры решения

ГОС 2013-14, вариант 1, задача 12.

Разложить функцию f(x) в ряд Фурье на $[0,2\pi]$ и исследовать на равномерную сходимость на \mathbb{R} .

$$f(x) = \begin{cases} 2x - \pi, & 0 \le x \le \pi \\ 3\pi - 2x, & \pi < x \le 2\pi \end{cases}$$

Решение: Сделаем функцию 2π -периодической, тогда

$$\widetilde{f}(x) = \begin{cases} -\pi - 2x, & -\pi \le x \le 0\\ 2x - \pi, & 0 < x \le \pi \end{cases}$$

Заметим, что функция нечетная, а значит $b_n \equiv 0$. Осталось посчитать коэффициенты Фурье.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \left(\int_{-\pi}^{\pi} (-\pi - 2x) dx + \int_{0}^{\pi} (2x - \pi) dx \right) = 0$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx = \frac{1}{\pi} \left(\int_{-\pi}^{0} (-\pi - 2x) \cos nx \, dx + \int_{0}^{\pi} (2x - \pi) \cos nx \, dx \right) =$$

$$= \frac{1}{\pi} \left(-\pi \int_{-\pi}^{0} \cos nx \, dx - 2 \int_{-\pi}^{0} x \cos nx \, dx + 2 \int_{0}^{\pi} x \cos nx \, dx - \pi \int_{0}^{\pi} \cos nx \, dx \right) =$$

$$= \frac{1}{\pi} \left(-\pi \int_{-\pi}^{\pi} \cos nx \, dx - \frac{2}{n^{2}} \int_{-\pi n}^{0} t \cos t \, dt + \frac{2}{n^{2}} \int_{0}^{\pi} t \cos t \, dt \right) =$$

$$= |\int t \cos t = \int t d \sin t = t \sin t - \int \sin t dt = t \sin t + \cot t =$$

$$\frac{1}{\pi} \left(-\frac{\pi}{n} \sin nx \Big|_{-\pi}^{\pi} - \frac{2}{n^{2}} \int_{-\pi n}^{0} t \cos t \, dt + \frac{2}{n^{2}} \int_{0}^{\pi} t \cos t \, dt \right) = \frac{2}{\pi n^{2}} \left(-\cos t \Big|_{-\pi n}^{0} + \cos t \Big|_{0}^{\pi n} \right) =$$

$$= \frac{2}{\pi n^{2}} \left(-(1 - (-1)^{n}) + ((-1)^{n} - 1) \right) = \frac{4}{\pi n^{2}} \left((-1)^{n} - 1 \right)$$

To есть $\widetilde{f}(x) = \sum_{n=1}^{\infty} \left(\frac{4}{\pi n^2}((-1)^n - 1)\right) \cos nx$ — сходится равномерно по теореме Вейерштрасса.

Ответ.
$$f(x) = \sum_{n=1}^{\infty} \left(\frac{4}{\pi n^2} ((-1)^n - 1) \right) \cos nx$$

1.9.2 Нестандартная система

1.9.2.1 Теоретические сведения

Если система нестандартная, то как правило это 2l-периодическая функция, тогда коэффициенты и ряд Фурье имеют следующий вид.

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l} \right)$$
$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, dx$$
$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} \, dx$$
$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} \, dx$$

Note. Если полученная функция получилась четной, то $b_n \equiv 0$, а если нечетной, то $a_n \equiv 0$

1.9.2.2 Примеры решения

ГОС 2015-16, вариант 1, задача 7.

Разложить функцию f(x)=x в ряд Фурье на (0,1) по системе $\{\cos \pi nx\}_{n=0}^{\infty}$. Построить график суммы ряда. Сходится ли он равномерно на \mathbb{R} ? Вычислить с помощью ряда следующие ряды $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} \text{ и } \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$

Решение: У нас есть система $\{\cos \pi nx\}_{n=0}^{\infty}$, а значит мы хотим четную функцию, тогда пусть

$$\widetilde{f}(x) = \begin{cases} -x, & -1 \le x \le 0 \\ x, & 0 < x \le 1 \end{cases}$$

И делаем ее 2l-периодической с l=1, тогда ряд Фурье будет по нужной нам системе, причем $b_n\equiv 0$. А значит считаем коэффициенты ряда Фурье

$$a_0 = \int_{-1}^{1} \widetilde{f}(x)dx = 1$$

$$a_n = \int_{-1}^{1} \widetilde{f}(x) \cos \pi nx \ dx = 2 \int_{0}^{1} \widetilde{f}(x) \cos \pi nx \ dx = 2 \int_{0}^{1} x \cos \pi nx \ dx = \frac{2((-1)^n - 1)}{\pi^2 n^2}$$

Так как f является кусочно гладкой, получаем, что $f(x)=x=\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{2((-1)^n-1)}{\pi^2n^2}\right)\cos\pi nx$

Тогда заметим, что не обнуляются только нечетные члены ряда, то есть

$$f(x) = x = \frac{1}{2} - \sum_{n=0}^{\infty} \left(\frac{4}{\pi^2 (2n+1)^2} \right) \cos \pi (2n+1)x$$

Положим x = 0 в данном тождестве

$$\frac{1}{2} = \sum_{n=0}^{\infty} \frac{4}{\pi^2 (2n+1)^2} \Longrightarrow \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$

Для нахождения второго ряда воспользуемся равенством Парсеваля

$$\frac{1}{2} + \sum_{n=0}^{\infty} \left(\frac{4}{\pi^2 (2n+1)^2} \right)^2 = \int_{-1}^{1} x^2 dx = \frac{2}{3} \Longrightarrow \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$$

1.10 Условные экстремумы

1.10.1 Условные экстремумы

1.10.1.1 Теоретические сведения

Теорема (критерий Сильвестра).

- 1. Матрица A положительно определена \iff все ее главные миноры положительно определены.
- 2. Матрица A отрицательно определена \iff главные миноры четных порядков положительны, а нечетных отрицательны.

Алгоритм решения:

- 1. В первую очередь найдем точки-кандидаты для того, чтобы они были экстремумами:
 - (a) Выпишем функцию Лагранжа $L=u+\lambda\varphi$
 - (b) Выпишем систему из уравнения связи и частных производных L по всем переменным, тогда приравняв данные выражения к нулю, найдем кандидатов.
- 2. Теперь нужно проверить достаточное условие
 - (a) Найдем d^2L и составим его матрицу. Тогда, если она положительно определена в данной точке, то перед нами минимум, иначе, если отрицательно, то максимум по критерию Сильвестра.
 - (b) Если вдруг критерий Сильвестра нам не помог, то воспользуемся следующим трюком. Найдем $d\varphi$, он должен быть равен нулю в точках-кандидатах. Находим условия на связь dx и dy в каждой точке по отдельности и для каждой точки отдельно считаем d^2L .
 - (c) После того, как подсчитали d^2L в каждой точке можно сделать вывод: если он больше нуля, то минимум, иначе максимум.

1.10.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 11.

Исследовать функцию u(x,y)=2x+2y-1 относительно уравнения связи $x^2+4xy+y^2=6$

Решение: Выпишем функцию Лагранжа $L = 2x + 2y - 1 + \lambda(x^2 + 4xy + y^2 - 6)$ и выпишем необходимое условие

$$\begin{cases} L'_x = 2 + 2\lambda x + 4\lambda y = 0 \\ L'_y = 2 + 2\lambda y + 4\lambda x = 0 \\ x^2 + 4xy + y^2 = 6 \end{cases}$$

Решая систему, получаем две точки: A=(1,1) для $\lambda=-\frac{1}{3}$ и B=(-1,-1) для $\lambda=\frac{1}{3}$. То есть вот наши кандидаты на то, чтобы быть условными экстремумами. Найдем второй дифференциал лагранжиана:

$$d^2L = 2\lambda dx^2 + 8\lambda dxdy + 2\lambda dy^2 = 2\lambda (dx^2 + 4dxdy + dy^2)$$

Откуда его матрица имеет вид

$$H = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Ее главные миноры $\Delta_1=1$ и $\Delta_2=-3$, они разных знаков, а значит мы еще ничего не можем сказать. Найдем дифференциал уравнения связи:

$$d\varphi = (2x + 4y)dx + (2y + 4x)dy$$

В точке $A\ d\varphi=6dx+6dy=0$, то есть dy=-dx. Подставим это в d^2L : $d^2L=-4\lambda dx^2$, а для точки $A\ \lambda=-\frac{1}{3}$, откуда $d^2L(A)=\frac{4}{3}dx^2$, а значит A — условный локальный минимум.

В точке $B\ d\varphi=-6dx-6dy=0$, то есть dy=-dx. Подставим это в d^2L : $d^2L=-4\lambda dx^2$, а для точки $B\ \lambda=\frac{1}{3},$ откуда $d^2L(B)=-\frac{4}{3}dx^2,$ а значит B — условный локальный максимум.

Глава 2

Линейная алгебра

2.1 Системы линейных уравнений

2.1.1 Системы линейных уравнений

2.1.1.1 Теоретические сведения

- 1. Приводим матрицу системы к ступенчатому (быть может сильно) виду
- 2. Определяем свободные и зависимые переменные
- 3. Ставим в свободные переменные базисные значения (единичка и все нули), считаем зависимые

Вау, мы получили ФСР

2.1.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 9.

Найти общее решение системы уравнений. Указать ФСР и частное решение.

$$\begin{cases} 3x_1 + 2x_2 + x_3 - x_4 = 7 \\ -2x_1 + 3x_2 + 12x_3 + 2x_5 = 18 \end{cases}$$

Решение. Матрица однородной системы имеет вид

$$\begin{pmatrix} 3 & 2 & 1 & -1 & 0 \mid 7 \\ -2 & 3 & 12 & 0 & 2 \mid 18 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & 13 & -1 & 2 \mid 25 \\ -2 & 3 & 12 & 0 & 2 \mid 18 \end{pmatrix} \sim \begin{pmatrix} 2 & 10 & 26 & -2 & 4 \mid 50 \\ 0 & 13 & 38 & -2 & 6 \mid 68 \end{pmatrix} \sim \begin{pmatrix} 2 & -3 & -12 & 0 & -2 \mid -18 \\ 0 & -13 & -38 & 2 & -6 \mid -68 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{3}{2} & -6 & 0 & -1 \mid -9 \\ 0 & -\frac{13}{2} & -19 & 1 & -3 \mid -34 \end{pmatrix}$$

Ранг матрицы равен двум, а значит пространство решений имеет размерность три.

Свободные переменные — x_2, x_3, x_5 , а главные — x_1, x_4 .

$$\Phi$$
CP = $\begin{pmatrix} \frac{3}{2} & 6 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{13}{2} & 19 & 3 \\ 0 & 0 & 1 \end{pmatrix}$, частное решение $X_0 = \begin{pmatrix} -9 \\ 0 \\ 0 \\ -34 \\ 0 \end{pmatrix}$

ГОС 2013-14, вариант 1, задача 4.

При каких α система ниже имеет ненулевое решение. Отыскать решение при всех таких α

$$\begin{cases} \alpha x_1 - 3x_2 + 3x_3 = 0\\ 6x_1 + 2x_2 - x_3 = 0\\ 3x_1 + x_2 = 0 \end{cases}$$

Решение. Однородная система уравнений имеет ненулевое решение, если ее пространство решений нетривиально, то есть имеет размерность хотя бы один, тогда ранг матрицы системы должен быть не более двух, откуда получаем, что у матрицы должен быть нулевой определитель. Ее детерминант равен $\alpha + 9$, откуда $\alpha = -9$. При таком значении параметра система становится эквивалентной

$$\begin{cases} 3x_1 + x_2 = 0 \\ x_3 = 0 \end{cases}$$

Как видите, система кайфовая, ее Φ CP $\begin{pmatrix} 1\\ -3\\ 0 \end{pmatrix}$

2.2 Квадратичные формы

2.2.1 Приведение формы и ее свойства

2.2.1.1 Теоретические сведения

Используем метод Лагранжа (частично убиваем линейных челов, выделяя полные квадраты). Ранг формы это понятно, а что такое сигнатура?) Это разность количества положительных и отрицательных множетелей в каноничной форме.

2.2.1.2 Примеры решения

ГОС 2015-16, вариант 1, задача 11.

Привести квадратичную форму $k=2x_3^2-7x_1x_2$ к каноническому виду. Выписать матрицу перехода к новому базису. Указать ранг и сигнатуру формы.

Решение. Заметим, что x_3 уже в квадрате и больше ни в каких связях не участвует, с x_1 и x_2 разобраться нетрудно, заменяем их на полусумму и полуразность, итоговая замена координат такая:

$$\begin{cases} x_1' = \sqrt{2}x_3 \\ x_2' = \sqrt{7}\frac{x_1 - x_2}{2} \\ x_3' = \sqrt{7}\frac{x_1 + x_2}{2} \end{cases}$$

После такой замены $k'=x_1'^2+x_2'^2-x_3'^2$. Ранг равен трем, а сигнатура равна единице. Матрица перехода к новому базису имеет вид

$$S = \begin{pmatrix} 0 & 0 & \sqrt{2} \\ \frac{\sqrt{7}}{2} & -\frac{\sqrt{7}}{2} & 0 \\ \frac{\sqrt{7}}{2} & \frac{\sqrt{7}}{2} & 0 \end{pmatrix}$$

Глава 3

Дифференциальные уравнения

3.1 Уравнения с постоянными коэффициентами и их системы

3.1.1 Однородные линейные уравнения с постоянными коэффициентами

3.1.1.1 Теоретические сведения

Пускай имеется уравнение вида

$$\sum_{i=0}^{n} a_i y^{(i)} = 0$$

Тогда оно является однородным линейным уравнением с постоянными коэффициентами. Как их решать? Составим характеристическое уравнение

$$\sum_{i=0}^{n} a_i \lambda^i = 0$$

Решая его, получаем некоторые корни. Пускай сначала они все различны, тогда итоговый вид решения

$$y = \sum_{i=0}^{n} C_i e^{\lambda_i x}$$

Заметим, что у нас могут быть комплексные корни $a \pm bi$, тогда у нас имеются соответствующие им решения $e^{(a\pm bi)x}$, то есть $e^{(a\pm bi)x} = e^a(\cos bx \pm i\sin bx)$. Из них можно выделить сложив и вычев, поделив на i два соответствующих решения, получим соответствующие им вещественнозначные аналоги. Осталось узнать, что делать с кратными корнями.

Пусть λ является корнем степени m, тогда базисом в соответствующем подпространстве решений будет набор вида $e^{\lambda x}, xe^{\lambda x}, \dots, x^{m-1}e^{\lambda x}$. Ну все, мы готовы решать задачи.

3.1.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 16.

Составить однородное дифференциальное уравнение с постоянными коэффициентами наименьшего порядка, имеющего частные решения e^x и $x \sin 2x$.

Решение. Заметим, что перед нами ЛНЗ решения, значит они оба входят в базис пространства решений.

Так как уравнение с постоянными коэффициентами и однородное, нам необходимо искать характеристическое уравнение. Вспомним, что e^x соответствует корень $\lambda = 1$. Так как порядок нужен наименьший, он кратности 1.

Теперь подумаем о втором частном решении $x \sin 2x$. Если есть такое решение, то есть и решение $\sin 2x$, который тоже будет элементом базиса пространства решений. Этому решению соответствует корень 2i, но тогда есть и парный ему -2i, при этом оба этих корня имеют кратность 2. То есть это решение скрывает в себе два корня каждый кратности хотя бы 2.

Тогда пять корней $\{-2i, -2i, 1, 2i, 2i\}$. Откуда характеристическое уравнение имеет вид $(\lambda - 1)(\lambda^2 + 4)^2 = 0$. Раскроем скобки

$$\lambda^5 - \lambda^4 + 8\lambda^3 - 8\lambda^2 + 16\lambda - 16 = 0$$

Ну тогда уравнение имеет вид $y^{(V)} - y^{(IV)} + 8y''' - 8y'' + 16y' - 16y = 0$

Ответ.
$$y^{(V)} - y^{(IV)} + 8y''' - 8y'' + 16y' - 16y = 0$$

3.1.2 Системы однородных линейных уравнений с постоянными коэффициентами

3.1.2.1 Теоретические сведения

Пусть система имеет вид

$$\begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix} = A \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

Тогда надо найти базисы в собственных подпространствах линейного оператора A. Этим вы занимались на линейной алгебре, только надо еще вспомнить, как работают жордановы цепочки. Пусть h_1, \ldots, h_k — жорданова цепочка, тогда соответствующий данному подпространству базис имеет вид

$$\left\{ e^{\lambda t} h_1, e^{\lambda t} (h_1 t + h_2), e^{\lambda t} \left(\frac{h_1 t^2}{2} + h_2 t + h_3 \right), \dots, e^{\lambda t} \left(\frac{h_1 t^{k-1}}{(k-1)!} + \dots + h_k \right) \right\}$$

3.1.2.2 Примеры решения

ГОС 2015-16, вариант 1, задача 17.

Решить систему
$$\begin{cases} x'=x+2y+2z\\ y'=2x+y+2z\\ z'=2x+2y+z \end{cases}$$

Решение.

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

Найдем собственные значения матрицы A

$$det(A - \lambda E) = -(\lambda + 1)^{2}(\lambda - 5)$$

Откуда $\lambda_1=5$ и $\lambda_{2,3}=-1$. Собственный вектор, соответствующий λ_1 :

$$A - 5E = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

откуда собственный вектор $h_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (можно было легко угадать). Тогда частное решение, соответ-

ствующее ему, имеет вид $e^{5x}h_1$. Теперь найдем два других:

$$A + E = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

В данном случае мы сможем найти еще два базисных вектора и скажем нет цепочкам Жордана $h_2=$

$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 и $h_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Отсюда соответствующее собственное подпространство имеет вид $e^{-x}\langle h_2, h_3 \rangle$, а значит решение имеет вил

Ответ.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{5t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{-t} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

3.1.3 Неоднородные линейные уравнения с постоянными коэффициентами

3.1.3.1 Теоретические сведения

- 1. Решаем однородное
- 2. Для каждого слагаемого неоднорости ищем частное

Частные решения неоднородного уравнения				
Правая часть	Условие	Частное решение		
$P_m(x)e^{\alpha x}, \alpha \in \mathbb{R}$	α не корень $p(\lambda)$ (нет резонанса)	$\tilde{P}_m(x)e^{\alpha x}$		
	α — корень $p(\lambda)$ кратности k (резонанс порядка k)	$x^k \tilde{P}_m(x) e^{\alpha x}$		
$e^{\alpha x}[P_m(x)\cos\beta x + Q_n(x)\sin\beta x],$	$\alpha + \beta i$ не корень $p(\lambda)$ (нет резонанса)	$e^{\alpha x} [\tilde{P}_r(x) \cos \beta x + \tilde{Q}_r(x) \sin \beta x]$		
$r = \max(n, m)$	$\alpha+\beta i$ — корень $p(\lambda)$ кратности k (резонанс порядка k)	$x^k e^{\alpha x} [\tilde{P}_r(x) \cos \beta x + \\ + \tilde{Q}_r(x) \sin \beta x]$		

Многочлены с волной находятся методом неопределенных коэффициентов.

3.1.3.2 Примеры решения

ГОС 2015-16, вариант 1, задача 16.

Решить уравнение $y'' - y = e^{-x} + e^{6x}$.

Решение. Решая однородное уравнение y'' - y = 0 получаем, что $y_0 = C_1 e^x + C_2 e^{-x}$.

Теперь будем искать частные решения: $y''-y=e^{6x}$, пусть $y_1=ae^{6x}$, найдя производные и решая уравнение, получим, что $y_1=\frac{e^{6x}}{35}$

 $y''-y=e^{6x}$, пусть $y_1=(ax+b)e^{-x}$, найдя производные и решая уравнение, получим, что $y_2=-\frac{xe^{-x}}{2}$, откуда

Ответ. $y = C_1 e^x + C_2 e^{-x} + \frac{e^{6x}}{35} - \frac{xe^{-x}}{2}$

3.2 Фазовые траектории

3.2.1 Линейные системы

3.2.1.1 Теоретические сведения

Напомним классификацию положений равновесия:

- 1. Если собственные числа действительные, то
 - (a) Неустойчивый узел: $\lambda_2 > \lambda_1 > 0$
 - (b) Устойчивый узел: $\lambda_2 < \lambda_1 < 0$
 - (c) Седло: $\lambda_1 > 0 > \lambda_2$
- 2. Если собственные числа комплексные $\lambda = \alpha \pm \beta i$, то
 - (a) Устойчивый фокус: $\alpha < 0$
 - (b) Неустойчивый фокус: $\alpha > 0$
 - (c) Центр: $\alpha = 0$

3.2.1.2 Примеры решения

ГОС 2017-18, вариант 1, задача 15.

Найти общее решение системы
$$\begin{cases} x' = 4x + 3y \\ y' = 3x + 4y \end{cases}$$

Найти положение равновесия, определить его характер и нарисовать фазовые траектории.

Решение. Найти общее решение предлагается читателям, а мы займемся фазовыми траекториями. Матрица системы имеет вид

$$A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$$

Собственные вектора и значения: $\lambda_1=1,\ \lambda_2=7,\ h_1=\begin{pmatrix} -1\\1 \end{pmatrix}$ и $h_2=\begin{pmatrix} 1\\1 \end{pmatrix}$. $\lambda_2>\lambda_1>0,$ значит перед нами неустойчивый узел. Картинок много имеется в интернете:)

3.3 Вариационное исчисление

3.3.1 Задача с обоими закрепленными концами

3.3.1.1 Теоретические сведения

Пусть имеется функционал

$$J(y) = \int_{a}^{b} F(x, y, y') dx$$

И еще имеются условия y(a) = A, y(b) = B, тогда перед нами задача с закрепленными концами. Хотим найти допустимые экстремали.

- 1. Сначала выписываем уравнение Эйлера: $\frac{\partial F}{\partial y} \frac{d}{dx} \frac{\partial F}{\partial y'} = 0$
- 2. Решаем его, получаем решение с двумя константами (сложно получить уравнение выше второго порядка в такой постановке задачи) получили множество экстремалей
- 3. Теперь вспомним о y(a) = A, y(b) = B, решаем ситему относительно этого условия и находим константы. Ответ получен

3.3.1.2 Примеры решения

ГОС 2015-16, вариант 1, задача 18.

Найти допустимые экстремали функционала
$$J(y)=\int\limits_1^2(x^2(y')^2-14xyy'-y^2-8xy)dx,$$
 если $y(1)=2$ и $y(2)=6.$

Решение. Сначала надо получить уравнение Эйлера.

$$F = x^{2}(y')^{2} - 14xyy' - y^{2} - 8xy$$

$$\frac{\partial F}{\partial y} = -14xy' - 2y - 8x$$

$$\frac{\partial F}{\partial y'} = 2x^{2}y' - 14xy$$

$$\frac{d}{dx}\frac{\partial F}{\partial y'} = 4xy' + 2x^{2}y'' - 14y - 14xy'$$

$$0 = \frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} = -14xy' - 2y - 8x - 4xy' - 2x^{2}y'' + 14y + 14xy' = -2x^{2}y'' - 4xy' + 12y - 8x$$

$$x^{2}y'' + 2xy' - 6y = -4x$$

Ура, мы получили уравнение Эйлера, теперь его надо решить. Воспользуемся заменой $x=e^t$, тогда y не меняется, а $y_x'=e^{-x}y_t', \ y_x''=e^{-2t}(y_t''-y_t')$. Теперь

$$y'' + y' - 6y = -4e^t$$

Ну такое мы уже решали выше, $y = C_1 x^2 + \frac{C_2}{x^3} + x$. Осталось решить систему

$$\begin{cases} y(1) = C_1 + C_2 + 1 = 2 \\ y(2) = 4C_1 + \frac{C_2}{8} + 2 = 6 \end{cases} \implies \begin{cases} C_1 = 1 \\ C_2 = 0 \end{cases}$$

Ответ. $y = x^2 + x$

3.4 Прикольчики

3.4.1 Уравнение, сводящееся к уравнению в полных дифференциалах

ГОС 2015-16, вариант 1, задача 15.

Решить уравнение
$$y' = \frac{y}{x-2y^3}$$
.

Решение. Перепишем уравнение в виде $ydx + (2y^3 - x)dy = 0$, обозначим M(x,y) = y и $N(x,y) = 2y^3 - x$. Если бы было правдой, что $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, то мы бы могли осознать, что F(x,y) = C, где $\frac{\partial F}{\partial x} = M(x,y)$, но это не так. Чтобы обойти этот конфуз, подберем интегрирующий множитель $\mu(x,y)$. Искать его будем в виде $\mu(x,y) = x^{\alpha}y^{\beta}$, тогда $M(x,y) = x^{\alpha}y^{\beta+1}$ и $N(x,y) = 2x^{\alpha}y^{\beta+3} - x^{\alpha+1}y^{\beta}$. Мы все еще хотим, чтобы $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, добьемся этого.

$$(\beta + 1)x^{\alpha}y^{\beta} = 2\alpha x^{\alpha - 1}y^{\beta + 3} - (\alpha + 1)x^{\alpha}y^{\beta}$$
$$(\alpha + \beta + 2)x = 2\alpha y^{3} \Longrightarrow \alpha = 0, \beta = -2$$

Откуда уравнение можно переписать как $\frac{dx}{y} + \left(2y - \frac{x}{y^2}\right) dy = 0$, а теперь воспользуемся техникой:

$$\frac{\partial F}{\partial x} = \frac{1}{y}$$

$$F(x,y) = \frac{x}{y} + f(y)$$

$$\frac{\partial F}{\partial y} = -\frac{x}{y^2} + f'(y) = 2y - \frac{x}{y^2}$$

$$f'(y) = 2y \Longrightarrow f(y) = y^2$$

$$F(x,y) = \frac{x}{y} + y^2 = C$$

Ответ: $y \equiv 0$ или $\frac{x}{y} + y^2 = C$

3.4.2 Задача Коши

ГОС 2017-18, вариант 1, задача 17.

Решить задачу Коши
$$y^2(y^2+1)y''-y^3(y')^2+(y^2+1)^{\frac{3}{2}}y'=0,\ y(0)=\sqrt{3},\ y'(0)=\frac{2}{\sqrt{3}}$$

Решение. Заметим, что хоть уравнение и большое, но места для x ему не нашлось, а значит пусть y' = p(y), тогда y'' = pp'. Перепишем уравнение:

$$y^2(y^2+1)pp'-y^3p^2+(y^2+1)^{\frac{3}{2}}p=0 \iff y^2(y^2+1)p'-y^3p+(y^2+1)^{\frac{3}{2}}=0 \iff p'-\frac{y}{y^2+1}p=-\frac{\sqrt{y^2+1}}{y^2}$$

Перед нами отличное неоднородное уравнение первой степени. Решим однородное.

$$\frac{dp}{dy} = \frac{y}{y^2 + 1}p \Longrightarrow \int \frac{dp}{p} = \int \frac{ydy}{y^2 + 1} = \int \frac{1}{2} \frac{d(y^2 + 1)}{y^2 + 1} = \frac{1}{2} \log(y^2 + 1) + C = \log|p|$$

Откуда решение однородного имеет вид:

$$p = C\sqrt{y^2 + 1}$$

Проделаем вариацию постоянной и получим, что $p=\frac{\sqrt{y^2+1}}{y}+C\sqrt{y^2+1}$. Настало время избавиться от константы. Вспомним, что $p(\sqrt{3})=\frac{2}{\sqrt{3}}$. Отсюда получаем, что C=0 или уравнение

$$p = \frac{\sqrt{y^2 + 1}}{y} = y'$$

Или же

$$x + C = \int \frac{ydy}{\sqrt{y^2 + 1}} = \left\{ z = \sinh y \right\} = \int \frac{\sinh z \cosh z}{\cosh z} dz = \cosh z = \cosh x + \sinh y = \sqrt{1 + y^2}$$

Note. Отметим, что данный интеграл можно было взять и без гиперболической замены, а занесением y под дифференциал, но автор тупой.

Это ли не победа? То есть $x=\sqrt{1+y^2}+C$. И еще раз обратимся к граничным условиям: $0=\sqrt{3+1}+C=C+2$, откуда C=-2.

Ответ.
$$x = \sqrt{1 + y^2} - 2$$
.

Глава 4

ΤΦΚΠ

4.1 Простейшие уравнения

4.1.1 Комплексные уравнения

4.1.1.1 Теоретические сведения

Как правило все такие уравнения решаются следующим алгоритмом:

- 1. Превращаем все функции в экспоненты
- 2. Делаем замену $t=e^{iz}$
- 3. Решаем 13-ю задачку с ЕГЭ
- 4. Потом делаем обратную замену и решаем для каждого случая

Список формул

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sinh z = \frac{e^z - e^{-z}}{2}$$

$$\cosh z = \frac{e^z + e^{-z}}{2}$$

4.1.1.2 Примеры решения

ГОС 2015-16, вариант 1, задача 13.

Решить уравнение $\sin z + 3i \cos z = 1$, $z \in \mathbb{C}$.

Решение. Преобразуем уравнение

$$\frac{e^{iz} - e^{-iz}}{2i} + 3i \cdot \frac{e^{iz} + e^{-iz}}{2} = 1 \Longrightarrow e^{iz} - e^{-iz} - 3(e^{iz} + e^{-iz}) = 2i \Longrightarrow 2e^{iz} + 4e^{-iz} + 2i = 0$$

Теперь небольшой трюк (или можем воспользоваться заменой $e^{iz}=t$)

$$\frac{e^{2iz} + ie^{iz} + 2}{e^{iz}} = 0 \Longrightarrow \frac{(e^{iz} + 2i)(e^{iz} - i)}{e^{iz}} = 0 \Longrightarrow (e^{iz} + 2i)(e^{iz} - i) = 0$$

Теперь отдельно для каждого случая решаем уравнение. Как решать? Ну надо представить число в экспоненциальной форме.

$$e^{iz} = i \Longrightarrow e^{i\left(\frac{\pi}{2} + 2\pi k\right)} \Longrightarrow z = \frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}$$
$$e^{iz} = -2i \Longrightarrow e^{\log 2} \cdot e^{i\left(-\frac{\pi}{2} + 2\pi k\right)} \Longrightarrow z = -\frac{\pi}{2} + 2\pi k - i\log 2, \ k \in \mathbb{Z}$$

Ответ. $z = \frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}$ и $z = -\frac{\pi}{2} + 2\pi k - i \log 2, \ k \in \mathbb{Z}.$

4.2 Ряд Лорана

4.2.1 Разложение в ряд Лорана

4.2.1.1 Теоретические сведения

4.2.2 Алгоритм решения

Разложим функцию в ряд Лорана по степеням (z-a) в кольце K, чтобы кольцо содержало точку z_0

- Находим корни знаменателей, чтобы представить их в виде произведения
- Раскладываем в сумму простых дробей
- Производим замену t = z a, $t_0 = z_0 a$
- Находим точки, в которых теряется регулярность (нули знаменателя), обзовем их c
- Сравниваем $|t_0|$ со значениями |t-c| и выбираем наименьшее кольцо (e.g. $K = \{|c_0| < |t| < |c_1|\})$

ullet В зависимости от соотношения модулей t_0 и c раскладываем каждую дробь:

$$\frac{1}{t-c} = \begin{cases} -\sum_{n=0}^{\infty} c^{-n-1} t^n, & |t_0| < |c| \\ \sum_{n=-\infty}^{-1} c^{-n-1} t^n, & |t_0| > |c| \end{cases}$$

Если у вас $\frac{1}{(z-a)^2}$ или что пострашнее — продифференцируйте выражение выше.

Note. Не забывайте указывать кольцо разложения в ответе!

Note. Не забывайте произвести обратную замену t = z - a, раскладывая именно по степеням z - a, а не, например, -(z - a).

4.2.2.1 Примеры решения

ГОС 2017-18, вариант 1, задача 18.

Разложить функцию $f(z)=-1-\frac{3}{z-i}+\frac{1}{(z-9i)^3}$ в ряд Лорана по степеням (z-2i) в кольце K, которому принадлежит точка $z_0=5+2i$. Указать границы кольца K.

- 1. Замена t=z-2i, тогда $f(t)=-1-\frac{3}{t+i}+\frac{1}{(t-7i)^3}$, а $t_0=5$, $|t_0|=5$. Теперь рассмотрим каждую дробь по отдельности:
- 2. Так как $|t_0| > |i|$, раскладываем таким образом

$$\frac{1}{t+i} = \frac{1}{t} \frac{1}{1+\frac{i}{t}} = \frac{1}{t} \sum_{n=0}^{\infty} (-i)^n t^{-n} = \sum_{n=-\infty}^{-1} (-i)^{-n-1} t^n = \sum_{n=-\infty}^{-1} i^{n+1} t^n$$

3. Так как $|t_0| < |7i|$, раскладываем таким образом

$$\frac{1}{t-7i} = -\frac{1}{7i} \frac{1}{1-\frac{t}{7i}} = -\frac{1}{7i} \sum_{n=0}^{\infty} (7i)^{-n} t^n = -\sum_{n=0}^{\infty} (7i)^{-n-1} t^n$$

$$\left(\frac{1}{t-7i}\right)' = -\frac{1}{(t-7i)^2} = -\sum_{n=0}^{\infty} n(7i)^{-n-1} t^{n-1} \Longrightarrow \frac{1}{(t-7i)^2} = \sum_{n=0}^{\infty} n(7i)^{-n-1} t^{n-1}$$

$$\left(\frac{1}{(t-7i)^2}\right)' = -\frac{2}{(t-7i)^3} = \sum_{n=0}^{\infty} n(n-1)(7i)^{-n-1} t^{n-2} \Longrightarrow \frac{1}{(t-7i)^3} = -\frac{1}{2} \sum_{n=0}^{\infty} n(n-1)(7i)^{-n-1} t^{n-2}$$

$$\frac{1}{(t-7i)^3} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{(7i)^{n+3}} t^n$$

4. Тогда разложение такое:

$$f(z) = -1 - \sum_{n=-\infty}^{-1} 3i^{n+1}(z-2i)^n - \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2(7i)^{n+3}} (z-2i)^n$$

А кольцо сходимости устроено так: 1 < |t| < 7, то есть 1 < |z - 2i| < 7.

Ответ:
$$f(z) = -1 - \sum_{n=-\infty}^{-1} 3i^{n+1}(z-2i)^n - \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2(7i)^{n+3}} (z-2i)^n$$
, $K = \{1 < |z-2i| < 7\}$.

4.3 Вычеты и интегралы

4.3.1 Интегралы по контуру

4.3.1.1 Теоретические сведения

- Находим все особые точки подынтегральной функции
- Определим, вне или внутри контура лежит конечное множество особых точек (как правило их конечное число вне контура)
- Вычисляем в выбранных особых точках вычет
- Считаем интеграл по формуле Коши
- ???????
- PROFIT!

Как вычислять вычеты?

- Через ряд Лорана. Если точка конечна, то вычет в ней равен c_{-1} , а если в бесконечности, то $-c_1$. Оба коэффициента при $\frac{1}{z}$!
- Полюсы в конечной точке.
 - Полюс первого порядка. Вычет равен $\lim_{z\to a} ((z-a)f(z))$. Пусть $f(z)=\frac{h(z)}{\varphi(z)},\ h,\ \varphi$ регулярны в точке a, при этом $\varphi(a)=0,\ \varphi'(a)\neq 0$. Тогда вычет равен $\frac{h(a)}{\varphi'(a)}$.
 - Полюс порядка m>1. Тогда вычет в ней равен $\frac{1}{(m-1)!}\lim_{z\to a}\left((z-a)^mf(z)\right)^{(m-1)}$
- Полюсы в бесконечности.
 - f регулярна в ∞ , тогда вычет равен $\lim_{z\to\infty} (z(f(\infty)-f(z))).$
 - $-z=\infty$ нуль порядка k, тогда если $f\sim \frac{A}{z^k}$, то если k=1, то вычет равен -A, а иначе 0.
 - $-f(z)=arphi\left(rac{1}{z}
 ight),\,arphi$ регулярна в нуле, тогда вычет равен -arphi'(0).

4.3.1.2 Примеры решения

ГОС 2015-16, вариант 1, задача 14.

Применяя теорию вычетов, вычислить интеграл $\oint\limits_{|z|=100} \frac{dz}{\sinh\frac{3}{z}+\sinh\frac{2}{z}}.$

Обход контура против часовой стрелки.

Решение. Найдем особые точки. Из них имеются z=0 и $z=\infty$, а еще решения $\sinh \frac{3}{z} + \sinh \frac{2}{z} = 0$. Ну давайте решим данное уравнение:

$$e^{\frac{3}{z}} - e^{-\frac{3}{z}} + e^{\frac{2}{z}} - e^{-\frac{2}{z}} = 0$$

$$e^{\frac{6}{z}} - 1 + e^{\frac{5}{z}} - e^{\frac{1}{z}} = 0$$

$$-\left(1 + e^{\frac{1}{z}}\right) + e^{\frac{5}{z}}\left(1 + e^{\frac{1}{z}}\right) = 0$$

$$\left(e^{\frac{1}{z}} + 1\right)\left(e^{\frac{5}{z}} - 1\right) = 0$$

$$z = \frac{5}{2\pi k}, \quad z = \frac{1}{\pi + 2\pi k}$$

Как мы видим, $|z|<\frac{5}{2\pi}$, То есть внутри контура бесконечно много точек, значит будем считать снаружи:

$$\oint\limits_{|z|=100} \frac{dz}{\sinh\frac{3}{z}+\sinh\frac{2}{z}} = \oint\limits_{|z|=100} f(z)dz = -2\pi i \cdot \mathop{res}_{z=\infty} f(z)$$

Значит надо раскладывать в ряд Лорана функцию в бесконечности

$$\frac{1}{\sinh\frac{3}{z} + \sinh\frac{2}{z}} \sim \frac{1}{\frac{3}{z} + \frac{27}{6z^3} + \frac{8}{6z^3}} = \frac{1}{\frac{5}{z} + \frac{35}{6z^3}} = \frac{z}{5} \cdot \frac{1}{1 + \frac{7}{6z^2}} \sim \frac{z}{5} \left(1 - \frac{7}{6z^2}\right) = \frac{z}{5} - \frac{7}{30} \frac{1}{z}$$

Ура, $\underset{z=\infty}{res} f(z) = \frac{7}{30}$, а значит ответ готов.

Otbet.
$$\oint\limits_{|z|=100} \frac{dz}{\sinh\frac{3}{z}+\sinh\frac{2}{z}} = -\frac{7\pi i}{15}$$

Глава 5

Additional information

- 1. Консультация Вадима Витальевича
- 2. Консультация Карлова
- 3. Письмаки прошлых лет с решениями в некоторые года