

Machine Learning: Yoshinari Fujinuma University of Colorado Boulder

Slides adapted from Chenhao Tan, Jordan Boyd-Graber, Chris Ketelsen

Logistics

- HW2 available on Github
- Small edits made on the slides from the last lecture
- Final project team formulation due on March 1st

Learning objectives

Understand stochastic gradient descent

Stochastic Gradient Descent (SGD)

Outline

Stochastic Gradient Descent (SGD)

Problem with Gradient Descent

- $(x, y) = \{(x_0, y_0), ..., (x_N, y_N)\}$: Training data with N examples. x_{ij} is the jth feature of ith example.
- $\beta = (\beta_0, ..., \beta_d)$: Parameters of logistic regression.
- η: Learning rate (step size)

Updating parameters by gradient descent is

$$\beta_j' \leftarrow \beta_j - \eta \frac{\partial \mathcal{L}}{\partial \beta_j} \tag{1}$$

where $\frac{\partial \mathscr{L}}{\partial \beta_i}$ for logistic regression is

$$\frac{\partial \mathcal{L}}{\partial \beta_j} = \sum_{i}^{N} - (y_i - \sigma_i) \mathbf{x}_{ij}$$
 (2)

Probelm: $\sum_{i=1}^{N}$ indicates that you need to go through all trianing examples

Approximating the Gradient

- Training datasets are big these days (to fit into memory)
- What if we compute an update just from one observation?

Intuition of SGD: Analogy to Getting to Union Station

Pretend it's a pre-smartphone world and you want to get to Union Station

Stochastic Gradient Descent

- $(x,y) = \{(x_0,y_0),...,(x_N,y_N)\}$: Training data with N examples. x_{ij} is the jth feature of ith example.
- $\beta = (\beta_0, ..., \beta_n)$: Parameters of logistic regression.
- η: Learning rate (step size)

Updating the parameters by stochastic gradient descent

$$\beta_j' \leftarrow \beta_j - \eta \frac{\partial \mathcal{L}}{\partial \beta_j} \tag{3}$$

where $\frac{\partial \mathscr{L}}{\partial \beta_i}$ for logistic regression is

$$\frac{\partial \mathcal{L}}{\partial \beta_i} = -(y_i - \sigma_i) \mathbf{x}_{ij} \tag{4}$$

We now compute $\frac{\partial \mathscr{L}}{\partial \beta_j}$ without \sum_i^N i.e., only from **one** trianing example

Gradient Descent vs. Stochastic Gradient Descent

Image from https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-2/

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j^{'} = \beta_j + \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\vec{\beta} = \langle \beta_0 = 0, \beta_1 = 0, \beta_2 = 0, \beta_3 = 0, \beta_4 = 0 \rangle$$

$$y_1 = 1$$
 $y_2 = 0$ $x_1 = (1, 4, 3, 1, 0)$ $x_2 = (1, 0, 1, 3, 4)$

(Assume step size $\eta = 1.0$.)

You first see the positive example. First, compute σ_1

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}' = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

You first see the positive example. First, compute σ_1 $\sigma_1 = \Pr(y_1 = 1 \mid x_1) = \frac{1}{1 + \exp(-\beta^T x_1)} =$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}^{'} = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

You first see the positive example. First, compute σ_1 $\sigma_1 = \Pr(y_1 = 1 \mid x_1) = \frac{1}{1 + \exp(-\beta^T x_1)} = \frac{1}{1 + \exp(0)} = 0.5$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

 $\sigma_1 = 0.5$ What's the updated β'_0 ?

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_0' ? $\beta_0' = \beta_0 + \eta \cdot (y_1 - \sigma_1) \cdot \boldsymbol{x}_{1,0} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_0' ? $\beta_0' = \beta_0 + \eta \cdot (y_1 - \sigma_1) \cdot \boldsymbol{x}_{1,0} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_1' ?

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}' = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_1' ? $\beta_1' = \beta_1 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,1} = 0.0 + 1.0 \cdot (1 - 0.5) \cdot 4$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}' = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_1' ? $\beta_1' = \beta_1 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,1} = 0.0 + 1.0 \cdot (1 - 0.5) \cdot 4$ =2.0

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_2' ?

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

 $y_2 = 0$

 $\mathbf{x}_2 = (1, 0, 1, 3, 4)$

(Assume step size $\eta = 1.0$.)

What's the updated β_2' ? $\beta_2' = \beta_2 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,2} = 0.0 + 1.0 \cdot (1 - 0.5) \cdot 3$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}' = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_2' ? $\beta_2' = \beta_2 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,2} = 0.0 + 1.0 \cdot (1 - 0.5) \cdot 3 = 1.5$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_3' ?

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

 $y_2 = 0$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

(Assume step size $\eta = 1.0$.)

What's the updated β_3' ? $\beta_3' = \beta_3 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,3} = 0.0 + 1.0 \cdot (1 - 0.5) \cdot 1$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}' = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

 $y_2 = 0$

 $\mathbf{x}_2 = (1, 0, 1, 3, 4)$

(Assume step size $\eta = 1.0$.)

What's the updated β_3' ? $\beta_3' = \beta_3 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,3} = 0.0 + 1.0 \cdot (1 - 0.5) \cdot 1$

=0.5

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_4' ?

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_{j}' = \beta_{j} + \eta(y_{i} - \sigma_{i})\boldsymbol{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_4' ? $\beta_4' = \beta_4 + \eta \cdot (y_1 - \sigma_1) \cdot x_{1,4} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_4' ? $\beta_4' = \beta_4 + \eta \cdot (y_1 - \sigma_1) \cdot \boldsymbol{x}_{1,4} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0 = 0.0$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$
 $y_2 = 0$ $x_1 = (1, 4, 3, 1, 0)$ $x_2 = (1, 0, 1, 3, 4)$ (Assume step size $\eta = 1.0$.)

Now you see the negative example. What's σ_2 ?

Note that $-\eta \frac{\partial \mathcal{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $n = 1.0$.)

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

 $v_2 = 0$

Now you see the negative example. What's σ_2 ?

$$\sigma_2 = \Pr(y_2 = 0 \,|\, \vec{x_2}) = \frac{\exp{-\beta^T x_i}}{1 + \exp{-\beta^T x_i}} = \frac{\exp{\{-(.5 + 1.5 + 1.5 + 0)\}}}{1 + \exp{\{-(.5 + 1.5 + 1.5 + 0)\}}} =$$

Note that $-\eta \frac{\partial \mathcal{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $n = 1.0$.)
 $y_2 = 0$
 $x_2 = (1, 0, 1, 3, 4)$

Now you see the negative example. What's σ_2 ? $\sigma_2 = \Pr(y_2 = 0 \mid \vec{x_2}) = \frac{\exp{-\beta^T x_i}}{1 + \exp{-\beta^T x_i}} = \frac{\exp{\{-(.5 + 1.5 + 1.5 + 0)\}}}{1 + \exp{\{-(.5 + 1.5 + 1.5 + 0)\}}} = 0.97$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

 $y_2 = 0$

Now you see the negative example. What's σ_2 ? $\sigma_2 = 0.97$

What's the updated β_0' ?

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

 $y_2 = 0$

 $\mathbf{x}_2 = (1, 0, 1, 3, 4)$

What's the updated β_0' ? $\beta_0' = \beta_0 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,0} = 0.5 + 1.0 \cdot (0 - 0.97) \cdot 1$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_0' ? $\beta_0' = \beta_0 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,0} = 0.5 + 1.0 \cdot (0 - 0.97) \cdot 1 = -0.47$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_1' ?

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_1' ? $\beta_1' = \beta_1 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,1} = 2.0 + 1.0 \cdot (0 - 0.97) \cdot 0$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_1' ? $\beta_1' = \beta_1 + \eta \cdot (y_2 - \sigma_2) \cdot \boldsymbol{x}_{2,1} = 2.0 + 1.0 \cdot (0 - 0.97) \cdot 0 = 2.0$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_2' ?

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$

 $y_2 = 0$

 $\mathbf{x}_2 = (1, 0, 1, 3, 4)$

(Assume step size $\eta = 1.0$.)

What's the updated β_2' ? $\beta_2' = \beta_2 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,2} = 1.5 + 1.0 \cdot (0 - 0.97) \cdot 1$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_2' ? $\beta_2' = \beta_2 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,2} = 1.5 + 1.0 \cdot (0 - 0.97) \cdot 1 = 0.53$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_3' ?

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_3' ? $\beta_3' = \beta_3 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,3} = 0.5 + 1.0 \cdot (0 - 0.97) \cdot 3$

Note that
$$-\eta \frac{\partial \mathcal{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_3' ? $\beta_3' = \beta_3 + \eta \cdot (y_2 - \sigma_2) \cdot \mathbf{x}_{2,3} = 0.5 + 1.0 \cdot (0 - 0.97) \cdot 3 = -2.41$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$
 $x_1 = (1, 4, 3, 1, 0)$ (Assume step size $\eta = 1.0$.)

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_4' ?

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_i} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

,

What's the updated β_4' ? $\beta_4' = \beta_4 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,4} = 0 + 1.0 \cdot (0 - 0.97) \cdot 4$

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta (y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j' = \beta_j + \eta(y_i - \sigma_i) \mathbf{x}_{ij}$$
$$\vec{\beta} = \langle 0.5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$\mathbf{x}_1 = (1, 4, 3, 1, 0)$$

(Assume step size $\eta = 1.0$.)

$$y_2 = 0$$

$$\mathbf{x}_2 = (1, 0, 1, 3, 4)$$

What's the updated β_4' ? $\beta_4' = \beta_4 + \eta \cdot (y_2 - \sigma_2) \cdot x_{2,4} = 0 + 1.0 \cdot (0 - 0.97) \cdot 4$ =-3.88

Note that
$$-\eta \frac{\partial \mathscr{L}}{\partial \beta_j} = \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\beta_j^{'} = \beta_j + \eta(y_i - \sigma_i) \boldsymbol{x}_{ij}$$

$$\vec{\beta} = \langle -0.47, 2, 0.53, -2.41, -3.88 \rangle$$

$$y_1 = 1$$

 $x_1 = (1, 4, 3, 1, 0)$
(Assume step size $n = 1.0$.)
 $y_2 = 0$
 $x_2 = (1, 0, 1, 3, 4)$

Overview of Optimizing β using SGD

- 1. Initialize a vector β to be all zeros
- 2. For t = 1, ..., T (i.e. number of epochs)
 - For each example x_i, y_i and each feature j:
 - Compute $\sigma_i = \Pr(y_i | \mathbf{x}_i)$
 - Set $\beta_j' = \beta_j + \eta(y_i \sigma_i)x_{ij}$
- 3. Output the parameters β_0, \ldots, β_d .

Overview of Optimizing β using SGD

- 1. Initialize a vector β to be all zeros
- 2. For t = 1, ..., T (i.e. number of epochs)
 - For each example x_i, y_i and each feature j:
 - Compute $\sigma_i = \Pr(y_i | x_i)$
 - Set $\beta_j' = \beta_j + \eta(y_i \sigma_i)x_{ij}$
- 3. Output the parameters β_0, \ldots, β_d .

How to decide η ?

Choosing learning rate

η too small

η too large

variable η_t – just right

Learning rate decay

Decay schedule can be seen as a hyperparameter too.

• Decay after each epoch (e.g., $\frac{\eta_0}{l^2}$)

Advanced stochastic gradient descent:

http://ruder.io/optimizing-gradient-descent/

(Bonus) Mini-Batch Stochastic Gradient Descent

- $(x, y) = \{(x_0, y_0), ..., (x_N, y_N)\}$: Training data with N examples. x_{ij} is the jth feature of ith example.
- $\beta = (\beta_0, ..., \beta_n)$: Parameters of logistic regression.
- η: Learning rate (step size)

Updating the parameters by stochastic gradient descent

$$\beta_j' \leftarrow \beta_j - \eta \frac{\partial \mathcal{L}}{\partial \beta_j} \tag{5}$$

where $\frac{\partial \mathscr{L}}{\partial \beta_i}$ for logistic regression is

$$\frac{\partial \mathcal{L}}{\partial \beta_j} = \sum_{i}^{M} -(y_i - \sigma_i) \mathbf{x}_{ij} \tag{6}$$

We now compute $\frac{\partial \mathscr{L}}{\partial \beta_i}$ from M trianing examples (less noisy)