Diskrete Fourier-Transformation

15.01.2024 bis 19.01.2024

Aufgabe 1: Komplexe Zahlen

Die diskrete Fourier-Transformation benötigt Kenntnisse zu komplexen Zahlen. Darum sollen im Folgenden die Grundlagen von komplexen Zahlen wiederholt werden. Gegeben sind zunächst die komplexen Zahlen $z_1=1+i$ in kartesischer Darstellung sowie $z_2=2\exp(\frac{5\pi i}{6})$ in Polarkoordinaten.

- 1. Wie funktioniert die Umrechnung von kartesischen Koordinaten zu Polarkoordinaten und andersherum? Wandeln Sie z_1 und z_2 in die jeweils andere Darstellung um und zeichnen Sie diese in den obigen Abbildungen hinein.
- 2. Berechnen Sie die Summe $z_3=z_1+z_2$ und das Produkt $z_4=z_1\cdot z_2$ und zeichnen Sie diese ebenfalls in die Abbildungen hinein. Welche Darstellung eignet sich für die jeweilige Operation am besten?
- 3. Berechnen Sie die komplex Konjugierte $\overline{z_1}$ von z_1 in beiden Darstellungen und zeichnen Sie diese ebenfalls in die Abbildungen hinein. Welche geometrische Bedeutung hat die komplexe Konjugation?
- 4. Gegeben ist die Gleichung $z^n=1$. Ermitteln Sie alle Lösungen dieser, die sogenannten Einheitswurzeln, in Abhängigkeit von n. Zeichnen Sie die Lösungen für n=3, n=4 und n=5 in die folgenden Abbildungen hinein. Welche Eigenschaften und geometrische Bedeutung haben sie?

Aufgabe 2: Diskrete Fourier-Transformation

Die diskrete Fourier-Transformation bildet ein zeitdiskretes, endliches Signal, von dem man ausgeht, dass es periodisch fortsetzt wird, auf ein diskretes, periodisches Frequenzspektrum ab. Sie gehört zu den wichtigsten Werkzeugen der Signalverarbeitung.

- 1. Wie ist das Standardskalarprodukt im \mathbb{C}^n definiert? Welche unterschiedlichen Eigenschaften hat dieses im Vergleich zu reellen Skalarprodukten? Welche analogen Matrixeigenschaften ergeben sich dadurch für komplexe Matrizen?
- 2. Wie ist die diskrete Fourier-Transformation (DFT) $\hat{\mathbf{z}}$ eines diskreten Signals $\mathbf{z} \in \mathbb{C}^n$ definiert? Wie lässt sie sich diese als Produkt von \mathbf{z} mit einer Matrix schreiben?
- 3. Welche Eigenschaften hat die besagte Matrix? Welche Eigenschaften ergeben sich dadurch für die diskrete Fourier-Transformation?
- 4. Gegeben sind vier kontinuierliche reelle Signale $s_1, \ldots, s_4 : \mathbb{R} \to \mathbb{R}$, welche äquidistant an den Stützstellen $\{0, \ldots, 7\}$ abgetastet wurden.

Wie sieht die Fourier-Transformierte $\hat{\mathbf{s}}_i$ der Vektoren $\mathbf{s}_i = (s_i(0), \dots, s_i(7))^\mathsf{T}$ aus? Was bedeutet jeder Eintrag im Frequenzspektrum des Fourier-transformierten Signals? Welche Symmetrien kommen bei der DFT eines reellen Signals zustande?

5. Wie lässt sich die inverse diskrete Fourier-Transformation (IDFT) berechnen? Welche Konventionen sind bezüglich der DFT und IDFT zu beachten?