Processus de Poisson Master 1 Université Paris-Dauphine

Examen partiel Lundi 16 Mars 2020

2h - documents non autorisés

La copie peut être rédigée en français ou en anglais; version anglaise du sujet ci-dessous. Papers can be written in French or English; see below for the English version of the exam.

Exercice I

Soit $(N_t, t \ge 0)$ un processus de Poisson d'intensité $\lambda > 0$. On note $(T_n)_{n \ge 1}$ ses temps de sauts.

- 1. Quelle est la loi de N_t pour $t \ge 0$?
- 2. Déterminer la limite en loi de $\frac{T_n \frac{n}{\lambda}}{\sqrt{n}}$ quand $n \to \infty$.
- 3. Soit 0 < s < t et soit $q \in \mathbb{R}$. Calculer $\mathbb{E}[\exp(q(N_t + N_s))]$.
- 4. Soit Θ une v.a. strictement positive indépendante de N. Calculer $\mathbb{E}[N_{\Theta t}]$ et $\text{Var}[N_{\Theta t}]$.

Exercice II

Soit $(\delta_n)_{n\geq 1}$ une suite de v.a. telles que $(\delta_{2n+1})_{n\geq 0}$ est une suite de v.a. i.i.d. exponentielles de paramètre $\lambda > 0$ et pour tout $n \geq 1$, $\delta_{2n} = 0$. On définit le processus de comptage N associé en posant :

$$T_n := \sum_{k=1}^n \delta_k$$
, $N_t := \sum_{n\geq 1} \mathbf{1}_{T_n \leq t}$.

- 1. Quelle est la taille des sauts de N?
- 2. Pour tout $n \ge 1$, on pose $S_n := T_{2n}$. Montrer que pour tout $n \ge 1$, S_n suit une loi Gamma dont on précisera les paramètres.
- 3. On pose $M_t := \frac{1}{2}N_t$ pour tout $t \ge 0$. Montrer que M est un processus de Poisson.

Exercice III

Soit M et N deux processus de Poisson indépendants de paramètres respectifs μ et λ . On notera $(S_n)_{n\geq 1}$ et $(T_n)_{n\geq 1}$ les temps de sauts de M et N respectivement. On définit alors

$$X_t = M_t - N_t$$
, $t \ge 0$.

On note R_1 le temps du premier saut de X, c'est-à-dire

$$R_1 := \inf\{t > 0 : X_t \neq 0\}$$
.

- 1. Le processus X est-il un processus de comptage?
- 2. Pour tout $k \in \mathbb{Z}$ et tout $t \geq 0$, déterminer $\mathbb{P}(X_t = k)$ sous la forme d'une série.
- 3. Montrer que le processus X est à accroissements indépendants et stationnaires.
- 4. Déterminer la limite presque sûre de $\frac{X_t}{t}$ quand $t \to \infty$.
- 5. Déterminer la loi de R_1 .

Exercice IV

Soit $(N_t, t \ge 0)$ un processus de Poisson d'intensité $\lambda > 0$. On note $(T_n)_{n\ge 1}$ ses temps de sauts. On rappelle que si X et Y sont indépendantes de lois $\operatorname{Gamma}(\alpha, \lambda)$ et $\operatorname{Gamma}(\beta, \lambda)$, alors X/(X+Y) suit une loi $\operatorname{Beta}(\alpha, \beta)$ dont la densité est donnée par

$$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{Z_{\alpha,\beta}}\mathbf{1}_{\{0< x< 1\}}\ ,$$

où $Z_{\alpha,\beta}$ est une constante qui dépend de α et β .

- 1. Quelle est la loi de T_n pour $n \ge 1$?
- 2. Montrer que T_1 est indépendant de $T_n T_1$ et identifier la loi du couple $(T_1, T_n T_1)$.
- 3. Déterminer la loi de T_1/T_n pour $n \geq 2$.
- 4. On fixe t>0 et $n\geq 2$. Montrer que la v.a. (T_1,T_n) sachant $N_t=n$ admet pour densité

$$\frac{(t_n - t_1)^{n-2}}{t^n} n(n-1) \mathbf{1}_{\{0 < t_1 < t_n < t\}}.$$

5. Déterminer la loi de T_1/T_n sachant $N_t = n$ et comparer au cas non-conditionné.

Exercise I

Let $(N_t, t \ge 0)$ be a Poisson process of intensity $\lambda > 0$. We let $(T_n)_{n \ge 1}$ be its jump times.

- 1. What is the law of N_t for $t \ge 0$?
- 2. Determine the limit in law of $\frac{T_n \frac{n}{\lambda}}{\sqrt{n}}$ when $n \to \infty$.
- 3. Let 0 < s < t and let $q \in \mathbb{R}$. Compute $\mathbb{E}[\exp(q(N_t + N_s))]$.
- 4. Let Θ be a positive r.v. independent of N. Compute $\mathbb{E}[N_{\Theta t}]$ and $\text{Var}[N_{\Theta t}]$.

Exercice II

Let $(\delta_n)_{n\geq 1}$ be a sequence of r.v. such that $(\delta_{2n+1})_{n\geq 0}$ is a sequence of i.i.d. exponential r.v. with parameter $\lambda > 0$ and for every $n \geq 1$, $\delta_{2n} = 0$. We define the counting process N by setting:

$$T_n := \sum_{k=1}^n \delta_k \ , \quad N_t := \sum_{n>1} \mathbf{1}_{T_n \le t} \ .$$

- 1. What is the size of the jumps of N?
- 2. For every $n \ge 1$, we set $S_n := T_{2n}$. Show that for every $n \ge 1$, S_n follows a Gamma law and determine its parameters.
- 3. We set $M_t := \frac{1}{2}N_t$ for all $t \ge 0$. Show that M is a Poisson process.

Exercice III

Let M and N be two independent Poisson processes with respective parameters μ and λ . We let $(S_n)_{n\geq 1}$ and $(T_n)_{n\geq 1}$ be the jump times of M and N respectively. We define

$$X_t = M_t - N_t$$
, $t \ge 0$.

We let R_1 be the first jump time of X, that is

$$R_1 := \inf\{t > 0 : X_t \neq 0\}$$
.

- 1. Is X a counting process?
- 2. For every $k \in \mathbb{Z}$ and all $t \geq 0$, determine $\mathbb{P}(X_t = k)$ under the form of a series.
- 3. Show that the process X has independent and stationary increments.

- 4. Determine the almost sure limit of $\frac{X_t}{t}$ as $t \to \infty$.
- 5. Determine the law of R_1 .

Exercice IV

Let $(N_t, t \ge 0)$ be a Poisson process of intensity $\lambda > 0$. We let $(T_n)_{n\ge 1}$ be its jump times. We recall that if X and Y are two independent r.v. with laws $\operatorname{Gamma}(\alpha, \lambda)$ and $\operatorname{Gamma}(\beta, \lambda)$, then X/(X+Y) follows a $\operatorname{Beta}(\alpha, \beta)$ law whose density is given by

$$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{Z_{\alpha,\beta}}\mathbf{1}_{\{0< x< 1\}}\ ,$$

where $Z_{\alpha,\beta}$ is a constant that depends on α and β .

- 1. What is the law of T_n for $n \ge 1$?
- 2. Show that T_1 is independent of $T_n T_1$ and identify the law of the pair $(T_1, T_n T_1)$.
- 3. Determine the law of T_1/T_n for $n \geq 2$.
- 4. We fix t > 0 and $n \ge 2$. Show that the r.v. (T_1, T_n) given $N_t = n$ has density

$$\frac{(t_n - t_1)^{n-2}}{t^n} n(n-1) \mathbf{1}_{\{0 < t_1 < t_n < t\}}.$$

5. Determine the law of T_1/T_n given $N_t = n$ and compare it with the un-conditioned case.