

HACIENDO PROGRAMABLE Y ESTABLE CON FPGA UN DRONE COMERCIAL

Trabajo Fin de Grado

Eloy Navarro Morales

Índice

- Introducción
- Objetivos
- Infraestructura
- **...**
- Conclusiones

Introducción

Drones

- Aplicaciones en entorno civil y militar
- Sistemas de control variados según aplicación

FPGAs

- Potencia paralela
- Escalabilidad
- Reconfiguración
- Desarrollo abierto

Objetivos

Hacer **estable y programable** el vuelo de un dron comercial de bajo coste haciendo uso de FPGAs libres

Sub-objetivos:

- Sensorizar vehículo y enlazarlo con tierra
- Diseñar estación de tierra y control en comunicación con dron y PC
- Diseñar software para PC de mando en Python

Requisitos

- Control en tres grados de libertad independientes
- Tiempo real
- Incluyo más requisitos... O este apartado quizás sobra?

Infraestructura

Software

- IDEs: Quartus, IceCube2, ArduinoIDE
- Simulación: ModelSim, FT_Prog
- Programación y depuración: Diamond, Logic

Hardware

- Plataformas: Arduino, ICE40, SYMA
 X5C
- Comunicaciones: NRF24L01
- Sensores: Flow breakout board

Dron comercial programable

Sistema basado en sensorización adicional a bordo del dron e infraestructura de control en tierra

Módulo en vuelo

Dron: Cuadricópteros enriquecidos

Módulos en Tierra

- PC de mando: Python para el manejo del vehículo
- Estación de tierra basada en FPGA: Verilog para el control

Dron

Pc de Mando

Estación de tierra basada en FPGA

Experimentos

Dron Eachine-E010

Dron Syma-X5C

Conclusiones y líneas futuras

Líneas futuras