

AD-A152 091 AN IMPROVED TORSIONAL METHOD FOR DETERMINING THE
FRACTURE TOUGHNESS OF ST. (U) AKRON UNIV OH INST OF
POLYMER SCIENCE K CHO ET AL. MAR 85 TR-37 1/1

UNCLASSIFIED N00014-76-C-0488

F/G 28/11 NL

END

MICROCOPY RESOLUTION TEST CHART
MAY 1972 EDITION NO. 2

AD-A152 091

(2)

OFFICE OF NAVAL RESEARCH
Contract N00014-76-C-0408
Project NR 092-555

Technical Report No. 37

AN IMPROVED TORSIONAL METHOD FOR DETERMINING THE
FRACTURE TOUGHNESS OF STIFF MATERIALS AND OF
ADHESIVE JOINTS

by

K. Cho and A. N. Gent

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

March, 1985

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unrestricted

DTIC FILE COPY

85 09 21 166

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 37	2. GOVT ACCESSION NO. <i>AD-A152091</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) An Improved Torsional Method for Determining the Fracture Toughness of Stiff Materials and of Adhesive Joints	5. TYPE OF REPORT & PERIOD COVERED Technical Report	
7. AUTHOR(s) K. Cho and A. N. Gent	6. PERFORMING ORG. REPORT NUMBER	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science The University of Akron Akron, Ohio 44325	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 092-555	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Power Program Arlington, VA 22217	12. REPORT DATE March, 1985	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 21	
15. SECURITY CLASS. (of this report) Unclassified		
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) According to attached distribution list. Approved for public release; distribution unrestricted.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Submitted for publication in: International Journal of Fracture		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Adhesion, Adhesive joints, Double-torsion test, Fracture energy, Polymers, Strength, Torsion.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A simple modification is described of the Outwater torsion test method for determining the fracture energy of stiff materials and of adhesive joints. It permits large torsions to be applied and the corresponding torque to be simultaneously monitored. The modified test method can be used with specimens of simple rectangular shape and having a wide range of stiffness. As an example, the fracture		

energy is determined for molded rectangular bars of polystyrene having a wide range of thickness and of width.

S/N 0102-LF-014-6601

Unclassified

1. Introduction

A simple torsional test method, developed by Outwater and Gerry (1) and utilized by Kies and Clark (2) and Evans (3), has several advantages when used for measuring the fracture energy (toughness) of relatively stiff materials and adhesive joints. The first advantage is that it employs simple flat rectangular specimens. Secondly, the imposed failure force remains constant, at least in principle, while the crack is driven forward over long distances, so than an average strength can be readily determined. Thirdly, the fracture energy is given directly in terms of the specimen dimensions, its stiffness during loading, and the critical load at which the crack propagates. No other measurements are necessary, therefore, to determine the work G_c of fracture, or the work G_a of separation, per unit area cracked through.

The test method as commonly used is shown schematically in Figure 1. A rectangular specimen of length L , width W and thickness T is grooved along the center of one face, generally the lower one, and pre-cracked to a distance C_0 . It is then subjected to three-point bending by a test device, as shown in Figure 1, so that the applied load P imposes a torque on each arm of the specimen formed by the pre-crack.

Assuming that the material is linearly-elastic and that the arms are sufficiently long to be placed in a state of simple torsion by the applied torque, then P will be proportional to the vertical displacement d of the point of load application and inversely proportional to the length C of the crack. Thus,

$$P = k d/C, \quad (1)$$

where k is a constant representing the stiffness of the specimen when the arms have unit length. Strain energ. w is stored in the two

twisted arms, of amount

$$W = \frac{1}{2} Pd = \frac{1}{2} kd^2/C. \quad (2)$$

The Griffith criterion for advance of the crack is that the loss in strain energy incurred by crack growth is more than sufficient to meet the requirement for propagation. Thus,

$$-[dw/dc]_d \geq T'G_c \text{ or } T'G_a, \quad (3)$$

where T' denotes the thickness cracked through. (T' is less than the specimen thickness if a groove is made initially to guide the crack along the center line.) The fracture energy G_c or G_a is obtained from equations 2 and 3 in terms of the critical force P_c at which the crack advances:

$$G = P_c^2 / 2kT'. \quad (4)$$

Measurements of the stiffness k of the assembly as the load is applied and the critical load P_c at which the crack advances are thus sufficient to determine the value of G , at least in principle.

Unfortunately, three-point bending is only a useful loading system over a restricted range of specimen stiffness. If the specimen is extremely stiff, comparable to the stiffness of the test machine, then the potential energy released by crack growth is sufficient to cause catastrophic fracture. On the other hand, when the specimen deforms to a substantial extent under the applied load, then the relation between P and d becomes a non-linear one and equation 4 is no longer applicable. Also, the application of a bending load is experimentally difficult when the specimen deforms significantly.

In order to circumvent these difficulties, a new way of imposing torsional strains on the two arms of the Outwater specimen has been devised, based on the recently-proposed method for imposing large

bending deformations (4). It is described below. Some experimental measurements of the fracture energy of molded rectangular bars of polystyrene are also given, to illustrate its potential use.

2. Proposed test method for large torsional deflections.

The proposed test method is shown in Figure 2. The test specimen is now secured by two clamps which grip the ends of each arm. One clamp is fastened to a vertical pulley, with the pulley axle arranged to be in line with the axis of the specimen. The pulley axle is supported in fixed bearings, mounted on the floor of a conventional tensile testing machine. Rotation of the pulley is then imposed by a flexible cable passing around it, attached to the moveable cross-head of the test machine.

The second clamp is attached to one end of a long rigid light-weight bar. The other end is suspended from a tensile load cell by means of a long vertical cable. Thus, the second clamp is free to move horizontally or vertically, at least over short distances, but is completely prevented from rotation by the rigid bar and inextensible cable.

Vertical movement of the crosshead through a distance y imposes a corresponding angular rotation θ on one clamp with respect to the other,

$$\theta = y/r \quad (5)$$

where r denotes the pulley radius. The corresponding torque M applied to the specimen is proportional to the tensile force F registered by the load cell:

$$M = Fa \quad (6)$$

where a denotes the moment arm, i.e., the horizontal distance between

the line of action of the vertical load-cell cable and the central line of the test specimen, Figure 2.

The analysis leading to equation 4 can be carried out in an analogous way for torsional deflections and yields the result:

$$G = M_c^2 / 2 k_t T' \quad (7)$$

where M_c denotes the critical value of the applied torque at which the crack propagates and k_t denotes the torsional stiffness of the test system for unit length of the arms:

$$k_t = MC/\dots \quad (8)$$

Thus, as before, the fracture energy G can be determined using only the critical applied torque M_c and the torsional stiffness k_t of the test specimen before fracture was initiated, Figure 3. But now the deflection θ can be relatively large, approaching 180° , before the test must be discontinued. And the applied force itself will be relatively small, even for stiff and strong specimens, if the moment arm a is relatively long, so that the compliance of the test machine becomes unimportant.

3. Fracture energy of molded polystyrene bars

Rectangular bars of various dimensions were molded from pellets of clear polystyrene (Styron 685, Dow Chemical Company) by pressing them at 140°C for about 30 min. The sheets obtained in this way were free from bubbles and non-birefringent, indicating little or no residual strain. Test pieces were prepared from these molded bars by machining a v-shaped groove along the center line of one surface, and by inserting an initial crack at one end by sawing. The tip of the saw cut was sharpened by pressing a razor blade into the material.

If this step was not taken, it was found that the original blunt crack grew catastrophically at a relatively high value of the applied torque, whereas a sharpened initial crack was found to grow smoothly and continuously at a well-defined value of the applied torque. It was also found advantageous to make the initial crack length C_0 comparable to or greater than the width $W/2$ of the testpiece arms, and to make the depth of the v-shaped groove not more than about one-half of the testpiece thickness T .

Results obtained with testpieces having a wide range of thickness T , and hence fractured thickness T' , and with a wide range of width W , are given in Table 1. Because of the wide range of dimensions employed, the torsional stiffness coefficient k_t was found to vary by a factor of over 100X and the critical torque M_c at which the crack propagated was also found to vary by a large factor, about 40X. Nevertheless, values of the fracture energy G_c calculated by means of equation 7 from the measured fracture torque and specimen stiffness coefficient were found to be relatively uniform, with a mean value of $1.23 \pm 0.5 \text{ kJ/m}^2$. Moreover, this value is in good agreement with values obtained previously for polystyrene by a variety of methods, ranging from 0.5 kJ/m^2 to 3.0 kJ/m^2 (5-7). This general consistency indicates that the proposed test method gives correct values for the fracture energy, and can be used with testpieces of quite varied dimensions.

4. Fracture energy of adhesive joints

The fracture energy G_a required to separate an adhesive from a substrate can also be determined in the same way. Two possible specimen arrangements are shown in Figure 4. In either case it is necessary that one or both of the adhering rectangular blocks is able to undergo

a significant amount of torsion so that torsional strain energy can be made available for fracture. It is not necessary, however, that the specimen be symmetrical in form or that the adhesive itself be the "soft" member for equation 7 to apply.

Acknowledgement

This work was carried out while one of the authors (A.N.G.) was a guest worker in the Polymers Division of the National Bureau of Standards, Washington, D.C. Acknowledgement is due to Dr. L.C. Smith, head of the Polymers Division and Dr. D.L. Hunston, head of the Composites Section, for their kind hospitality during this stay.

References

1. J.O. Outwater and D.J. Gerry, J.Adhesion 1, 290 (1969).
2. J.A. Kies and A.B.J. Clark, paper 42 in "Fracture 1969: Proceedings of the Second International Conference on Fracture, Brighton, 1969", ed. by P.L. Pratt, Chapman and Hall Ltd., London, 1969, pp. 483-491.
3. A.G. Evans, Internat'l. J. Fracture 9, 267-275 (1973).
4. J.-M. Charrier and A.N. Gent, Polym. Eng. Sci., in press.
5. J.J. Benbow and F.C. Roesler, Proc. Phys. Soc. (London).
Ser. B 7, 201 (1957).
6. J.P. Berry, J. Appl. Phys. 34, 62 (1963).
7. A. VandenBoogaert and C.E. Turner, Trans. Plastics Inst.
(London) F31, 109 (1963).

Table 1: Measurements of fracture energy G_c for molded polystyrene bars.

Test specimen dimensions				Stiffness	Critical torque	Fracture energy
W (mm)	T (mm)	T' (mm)	C (mm)	$k_t \times 10^3$ (Nm/rad)	M_c (Nm)	G_c (kJ/m ²)
20	1.13	0.52	40	2.0	0.043	0.9
20	2.39	0.94	40	8.5	0.13	1.1
20	3.79	1.90	33	42.1	0.39	1.0
40	1.13	0.55	29	3.6	0.056	0.8
40	1.35	1.14	29	4.1	0.078	0.7
40	1.99	0.67	31	12.1	0.119	0.9
40	3.79	1.15	26	13.4	0.234	1.8
40	3.79	1.62	26	70.0	0.563	1.4
40	5.50	2.14	27	160.0	1.19	2.0
60	1.13	0.57	28	4.1	0.045	0.7
60	1.99	0.54	31	10.9	0.124	1.3
60	3.79	1.76	30	103.0	0.66	1.2
60	5.50	2.92	36	289.0	1.90	2.2

Figure Legends

Figure 1. (a) Sketch of rectangular Outwater specimen, pre-cut along the center line for a distance C_0 and grooved along the center line in the lower surface.
(b) Three-point bending method of applying torques to the specimen arms.

Figure 2. Proposed method of applying torques to the arms of an Outwater specimen, taken from reference 3.

Figure 3. Sketch of an experimental relation between applied torque M and pulley rotation θ , showing fracture torque M_C and method of determining stiffness coefficient k_t .

Figure 4. Two specimens suitable for determining the fracture energy G_a for an adhesive joint.

- (a) With a rectangular plate of adhesive edge-bonded to a rectangular plate of the substrate material.
- (b) With two rectangular plates of the substrate material edge-bonded together with a layer of adhesive.

Figure 1

Figure 2

Figure 3

(a)

(b)

Figure 4

(DYN)

DISTRIBUTION LIST

Dr. R.S. Miller
Office of Naval Research
Code 432P
Arlington, VA 22217
(10 copies)

Dr. J. Pastine
Naval Sea Systems Command
Code 06R
Washington, DC 20362

Dr. Kenneth D. Hartman
Hercules Aerospace Division
Hercules Incorporated
Alleghany Ballistic Lab
P.O. Box 210
Washington, DC 21502

Mr. Otto K. Heiney
AFATL-DLJG
Elgin AFB, FL 32542

Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22312

Dr. R.L. Lou
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. R. Olsen
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. Randy Peters
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC 27709-2211

Dr. L.V. Schmidt
Office of Naval Technology
Code 07CT
Arlington, VA 22217

JHU Applied Physics Laboratory
ATTN: CPIA (Mr. T.W. Christian)
Johns Hopkins Rd.
Laurel, MD 20707

Dr. R. McGuire
Lawrence Livermore Laboratory
University of California
Code L-324
Livermore, CA 94550

P.A. Miller
736 Leavenworth Street, #6
San Francisco, CA 94109

Dr. W. Moniz
Naval Research Lab.
Code 6120
Washington, DC 20375

Dr. K.F. Mueller
Naval Surface Weapons Center
Code F11
White Oak
Silver Spring, MD 20910

Prof. M. Nicol
Dept. of Chemistry & Biochemistry
University of California
Los Angeles, CA 90024

Mr. L. Roslund
Naval Surface Weapons Center
Code R10C
White Oak, Silver Spring, MD 20910

Dr. David C. Sayles
Ballistic Missile Defense
Advanced Technology Center
P.O. Box 1500
Huntsville, AL 35807

(DYN)

DISTRIBUTION LIST

Mr. R. Geisler
ATTN: DY/MS-24
AFRPL
Edwards AFB, CA 93523

Naval Air Systems Command
ATTN: Mr. Bertram P. Sobers
NAVAIR-320G
Jefferson Plaza 1, RM 472
Washington, DC 20361

R.B. Steele
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813

Mr. M. Stosz
Naval Surface Weapons Center
Code RICF
White Oak
Silver Spring, MD 20910

Mr. E.S. Sutton
Thiokol Corporation
Elkton Division
P.O. Box 241
Elkton, MD 21921

Dr. Grant Thompson
Morton Thiokol, Inc.
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302

Dr. R.S. Valentini
United Technologies Chemical Systems
P.O. Box 50015
San Jose, CA 95150-0015

Dr. R.F. Walker
Chief, Energetic Materials Division
DRSMC-LCE (D), B-3022
USA ARDC
Dover, NJ 07801

Dr. Janet Wall
Code 012
Director, Research Administration
Naval Postgraduate School
Monterey, CA 93943

Director
US Army Ballistic Research Lab.
ATTN: DRXBR-IBD
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

Dr. Ingo W. May
Army Ballistic Research Lab.
ARRADCOM
Code DRXBR - IBD
Aberdeen Proving Ground, MD 21005

Dr. E. Zimet
Office of Naval Technology
Code 071
Arlington, VA 22217

Dr. Ronald L. Derr
Naval Weapons Center
Code 389
China Lake, CA 93555

T. Boggs
Naval Weapons Center
Code 389
China Lake, CA 93555

Lee C. Estabrook, P.E.
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. J.R. West
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. D.D. Dillehay
Morton Thiokol, Inc.
Longhorn Division
Marshall, TX 75670

G.T. Fowman
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

(DYN)

DISTRIBUTION LIST

R.E. Shenton
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mike Barnes
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. Lionel Dickinson
Naval Explosive Ordnance
Disposal Tech. Center
Code D
Indian Head, MD 20340

Prof. J.T. Dickinson
Washington State University
Dept. of Physics 4
Pullman, WA 99164-2814

M.H. Miles
Dept. of Physics
Washington State University
Pullman, WA 99164-2814

Dr. T.F. Davidson
Vice President, Technical
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, Illinois 60606

Mr. J. Consaga
Naval Surface Weapons Center
Code R-16
Indian Head, MD 20640

Naval Sea Systems Command
ATTN: Mr. Charles M. Christensen
NAVSEA-62R2
Crystal Plaza, Bldg. 6, Rm 806
Washington, DC 20362

Mr. R. Beauregard
Naval Sea Systems Command
SEA 64E
Washington, DC 20362

Brian Wheatley
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mr. G. Edwards
Naval Sea Systems Command
Code 62R32
Washington, DC 20362

C. Dickinson
Naval Surface Weapons Center
White Oak, Code R-13
Silver Spring, MD 20910

Prof. John Deutch
MIT
Department of Chemistry
Cambridge, MA 02139

Dr. E.H. deButts
Hercules Aerospace Co.
P.O. Box 27408
Salt Lake City, UT 84127

David A. Flanigan
Director, Advanced Technology
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, Illinois 60606

Dr. L.H. Caveny
Air Force Office of Scientific
Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, DC 20332

W.G. Roger
Code 5253
Naval Ordnance Station
Indian Head, MD 20640

Dr. Donald L. Ball
Air Force Office of Scientific
Research
Directorate of Chemical &
Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

(DYN)

DISTRIBUTION LIST

Dr. Anthony J. Matuszko
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric
Sciences
Ft. Meade Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

J.J. Rocchic
USA Ballistic Research Lab.
Aberdeen Proving Ground, MD 21005-5066

G.A. Zimmerman
Aerojet Tactical Systems
P.O. Box 13466
Sacramento, CA 95813

B. Swanson
INC-4 MS C-346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. James T. Bryant
Naval Weapons Center
Code 3205B
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

Dr. H.G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

U.S. Army Research Office
Chemical & Biological Sciences
Division
P.O. Box 12211
Research Triangle Park, NC 27709

G. Butcher
Hercules, Inc.
MS X2H
P.O. Box 98
Magna, Utah 84044

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840

Dr. H. Rosenthal
AIR-320R
Naval Air Systems Command
Washington, DC 20361

Dr. Joyce J. Kaufman
The Johns Hopkins University
Department of Chemistry
Baltimore, MD 21218

Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555

(DYN)

DISTRIBUTION LIST

K.D. Pae
High Pressure Materials Research Lab.
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Dr. John K. Dienes
T-3, B216
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 87544

A.N. Gent
Institute Polymer Science
University of Akron
Akron, OH 44325

Dr. D.A. Shockey
SKI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Dr. R.E. Kruse
Morton Thiokol, Inc.
Huntsville Division
Huntsville, AL 35807-7501

G. Butcher
Hercules, Inc.
P.O. Box 98
Magna, UT 84044

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. R. Bernecker
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

Prof. Edward Price
Georgia Institute of Tech.
School of Aerospace Engineering
Atlanta, GA 30332

J.A. Birkett
Naval Ordnance Station
Code 5253K
Indian Head, MD 20640

Prof. R.W. Armstrong
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Herb Richter
Code 385
Naval Weapons Center
China Lake, CA 93555

J.T. Rosenberg
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

G.A. Zimmerman
Aerojet Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

Prof. Kenneth Kuo
Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802

T.L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555

(DYN)

DISTRIBUTION LIST

Dr. C.S. Coffey
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

D. Curran
SKI International
332 Ravenswood Avenue
Menlo Park, CA 94025

F.L. Throckmorton
Code SP-2731
Strategic Systems Program Office
Crystal Mall #3, RM 1048
Washington, DC 20076

Dr. R. Martinson
Lockheed Missiles and Space Co.
Research and Development
3251 Hanover Street
Palo Alto, CA 94304

C. Gotzmer
Naval Surface Weapons Center
Code R-11
White Oak
Silver Spring, MD 20910

G.A. Lo
3251 Hanover Street
B204 Lockheed Palo Alto Research Lab
Palo Alto, CA 94304

R.A. Schapery
Civil Engineering Department
Texas A&M University
College Station, TX 77843

J.M. Culver
Strategic Systems Projects Office
SSPO/SP-2731
Crystal Mall #3, RM 1048
Washington, DC 20376

Prof. G.D. Duvall
Washington State University
Department of Physics
Pullman, WA 99163

Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555

Dr. M. Farber
135 W. Maple Avenue
Monrovia, CA 91016

W.L. Elban
Naval Surface Weapons Center
White Oak, Bldg. 343
Silver Spring, MD 20910

G.E. Manser
Morton Thiokol
Wasatch Division
P.O. Box 524
Brigham City, UT 84302

R.G. Rosemeier
Brimrose Corporation
7720 Belair Road
Baltimore, MD 20742

Ser 432/84/340
Revised January 1985

Administrative Contracting
Officer (see contract for
address)
(1 copy)

Director
Naval Research Laboratory
Attn: Code 2627
Washington, DC 20375
(6 copies)

Defense Technical Information Center
Bldg. 5, Cameron Station
Alexandria, VA 22314
(12 copies)

Dr. Robert Polvani
National Bureau of Standards
Metallurgy Division
Washington, D.C. 20234

Dr. Y. Gupta
Washington State University
Department of Physics
Pullman, WA 99163

END

FILMED

5-85

DTIC