

Intelligent Systems

Susana M. Vieira

Universidade de Lisboa, Instituto Superior Técnico IS4, Center of Intelligent Systems, IDMEC, LAETA, Portugal {susana.vieira}@tecnico.ulisboa.pt

Feature Selection and Knowledge Discovery

SI7 – Intelligent data analysis, KDD, Feature selection, Feature extraction

Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.. Feature Extraction: Foundations and Applications. 2006.

J. Li, K. Cheng, S. Wang, F. Morstatter, T. Robert, J. Tang, and H. Liu. *Feature selection: A data perspective*. 2016

Michael R. Berthold and Christian Borgelt. *Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data*. 2010.

Knowledge Data Discovery

Based on "G. Piatetsky-Shapiro U. Fayyad and P. Smyth. From data mining to knowledge discovery in databases. *Artificial Intelligence Magazine*, 17(3):37-54, 1996."

Knowledge Discovery in Databases

Relative effort spent in each KDD step

Intelligent Data Analysis

Determine the project objective

Problems faced in data analysis

problem source	project owner perspective	analyst perspective		
communication	project owner does not under- stand the technical terms of the analyst	analyst does not understand the terms of the domain of the project owner		
lack of understanding	project owner was not sure what the analyst could do or achieve	analyst found it hard to under- stand how to help the project owner		
	models of analyst were different from what the project owner en- visioned			
organization	requirements had to be adopted in later stages as problems with the data became evident	project owner was an unpre- dictable group (not so concerned with the project)		

Determine the project objective

- Determine data mining tasks
 - (classification, regression, cluster analysis, finding associations, deviation analysis,...)
- Specify the requirements for the models
- Determine analysis goals
 - Interpretability
 - Reproducibility/stability
 - Model
 - Flexibility/adequacy
 - Runtime
 - Interestingness and use of expert knowledge

Intelligent Data Analysis

Questions in data understanding

- Goal: gain insight in your data with respect to your project goals
- Find answers to the questions:
 - What kind of attributes do we have?
 - How is the data quality?
 - Does a visualization helps?
 - Are attributes correlated?
 - What about outliers?
 - How are missing values handled?

Data visualization

There is no excuse for failing to plot and look

Data visualization

There is no excuse for failing to plot and look

Hidden missing values

Data understanding checklist: Must do!

- Check the distributions for each attribute
 - (unexpected properties like outliers, correct domains, correct medians)

• Check correlations or dependencies between pairs of attributes

Intelligent Data Analysis

Data understanding vs Data preparation

- Data understanding provides general information about the data
 - Existence and character of missing values
 - Outliers
 - Character of attributes and dependencies between attributes.
- Data preparation uses this information to select attributes
 - Reduce the dimension of the data set
 - Select records
 - Treat missing values and outliers
 - Integrate, unify and transform data; improve data quality.

Intelligent Data Analysis

Model: requirements

Simplicity

- Occam's razor: Choose the simplest model that still "explains" the data.
- Or: Numquam ponenda est pluralitas sine necessitate
 - = [Plurality must never be posited without necessity]
- Easier to understand
- Lower complexity
- Avoid overfitting

Interpretability

- Black-Boxes are mostly not a proper choice
- But: They can result in a very good accuracy (e.g. NN or DNN)

Intelligent Data Analysis

Knowledge Discovery in Databases

Relative effort spent in each KDD step

Feature Selection

Why feature selection?

- The information about the target class is inherent in the variables.
- Naive theoretical view more features
 - More information
 - More discrimination power.
- In practice many reasons why this is not the case.

Practical problems

- Many explored domains have hundreds to tens of thousands of variables/features with many irrelevant and redundant ones.
- In domains with many features the underlying probability distribution can be very complex and very hard to estimate (e.g. dependencies between variables).

Practical problems

Irrelevant and redundant features can "confuse" learners

Limited computational resources

Limited training data

Curse of dimer

➤In many cases variables is ma mapping/samp

1D: 3 regions, 2D: 3² regions, 3D: 3³, 1000D: hopeless!

Practical problems

- The required number of samples (to achieve the same accuracy) grows exponentially with the number of variables.
- In practice: number of training examples is fixed.
 - Classifier performance usually degrade for a large number of features:

Real-world example

Gene selection from microarray data:

- Variables:
 - gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g. tissue biopsy)
- Task: Separate healthy patients from cancer patients
 - Usually there are only about 100 examples (patients) available for training and testing
 - Number of variables in the raw data: 6.000 60.000
 - Does this work? ([a])

[a] C. Ambroise, G.J. McLachlan: Selection bias in gene extraction on the basis of microarray gene-expression data. *PNAS* Vol. 99 6562-6566(2002)

Feature selection

What is feature selection?

Remove features X(i) to improve (or least degrade) prediction of Y.

Advantages:

- Feature selection specify the most relevant features
- Collect/process less features and data
- Less complex models run faster
- Models are easier to understand, verify and explain

Feature selection: definition

- Given a set of features $F = \{f_1, ..., f_i, ..., f_n\}$ the Feature Selection problem is to find a subset $F' \subseteq F$ that maximizes the learner ability to classify patterns.
- Formally F ' should maximize some scoring function $\Theta: \Gamma \longrightarrow \mathbb{R}$ (where Γ is the space of all possible feature subsets of F), i.e.

$$F' = arg \, m \, ax_{G \in \Gamma} \left\{ \Theta(G) \right\}$$

Feature extraction: definition

• Given a set of features $F = \{f_1, ..., f_i, ..., f_n\}$ the **Feature Extraction (or Construction) problem** is to map F to some feature set F'' that maximizes the learner ability to classify patterns:

$$F'' = arg \, m \, ax_{G \in \Gamma} \left\{ \Theta(G) \right\}$$

This general definition subsumes feature selection

 (i.e. a feature selection algorithm also performs a mapping but can only map to subsets of the input variables)

Feature selection vs. Feature extraction

Feature Selection:

$$\{f_1, ..., f_i, ..., f_n\} \xrightarrow{f. selection} \{f_{i_1}, ..., f_{i_j}, ..., f_{i_m}\}$$
 $i_j \in \{1, ..., n\}; j = 1, ..., m$ $i_a = i_b \Rightarrow a = b; a, b \in \{1, ..., m\}$

$$i_j \in \{1,...,n\}; j = 1,...,m$$

 $i_a = i_b \Rightarrow a = b; a,b \in \{1,...,m\}$

Feature Extraction/Creation:

$$\{f_1,...,f_i,...,f_n\} \xrightarrow{f. extraction} \{g_1(f_1,...,f_n),...,g_j(f_1,...,f_n),...,g_m(f_1,...,f_n)\}$$

Feature selection: optimality

- In theory the **goal** is to find an **optimal feature-subset** (one that maximizes the scoring function).
- In real world applications this is usually not possible
 - For most problems it is computationally intractable to search the whole space of possible feature subsets.
 - One usually must settle for approximations of the optimal subset.
 - Most of the research in this area is devoted to finding efficient search heuristics.

Relevance of features

- Relevance vs optimality of feature set
 - Classifiers induced from training data are likely to be **suboptimal** (no access to the real distribution of the data).
 - Relevance does not imply that the feature is in the optimal feature subset.
 - Even "irrelevant" features can improve a classifier performance.
 - Defining **relevance in terms of a given classifier** (and therefore a hypothesis space) would be better.

• Problem definition:

$$x_1 = r\cos(t)$$

$$x_2 = r\sin(t)$$

$$r \in [0.99, 1.01]$$

$$y = r > 1$$

• Features: $F = \begin{bmatrix} x_1 & x_2 & x_1^2 & x_2^2 \end{bmatrix}$

• Output: $y = \begin{bmatrix} 0 & 1 \end{bmatrix}$

• Features: $F = \begin{bmatrix} x_1 & x_2 & x_1^2 & x_2^2 \end{bmatrix}$

• Output: $y = [0 \ 1]$

• Correlation:

		x_1	x_2	x_3	x_4	
		x_1	x_2	x_1^2	x_{2}^{2}	<i>y</i>
x_1	x_1	1.0000	-0.1163	-0.1784	0.1790	-0.1090
χ_2	x_2	-0.1163	1.0000	0.2002	-0.2085	-0.1162
хз	x_{1}^{2}	-0.1784	0.2002	1.0000	-0.9995	0.1050
x_4	x_{2}^{2}	0.1790	1.0000 0.2002 -0.2085	-0.9995	1.0000	-0.0772
	y	-0.1090	-0.1162	0.1050	-0.0772	1.0000

All combinations of features using fuzzy models

- All possible combinations of feature subsets:
 - $N(1) = \{1\}, \{2\}, \{3\}, \{4\}$
 - $N(2) = \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}$
 - $N(3) = \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}$
 - $N(4) = \{1,2,3,4\}$
- Accuraccy for all combinations using fuzzy models:
 - N(1) = [46.1538] [50] [69.2308] [57.6923]
 - N(2) = [53.8462] [50] [53.8462] [50] [50] [96.1538]
 - N(3) = [53.8462] [53.8462] [100] [92.3077]
 - N(4) = [96.1538]

Feature selection

Filters

- Based on general characteristics of data to be evaluated.
- No model is involved.

Wrappers

- Tappers Hybrid methods
 Uses model performance to evaluate feature subsets.
- Train one model for each feature subset.

Embedded methods

- Do not retrain the model at every step.
- Search feature selection space and model parameter space simultaneously.

Filter methods

- Features are scored independently, and the top s are used by the classifier.
- **Score:** correlation, mutual information, t-statistic, F-statistic, Fisher score, Gini Index, p-value, etc.
 - ✓ Easy to interpret.
 - √ Usually fast.

- Given a set of features F
 - **Variable ranking** is the process of ordering the features by the value of some scoring function $S: F \to \mathbb{R}$ (which usually measures **feature-relevance**)
- Resulting set: a permutation of F: $F := \{f_{i_1},...,f_{i_j},...,f_{i_n}\}$ with $S(f_{i_j}) \geq S(f_{i_{j+1}}); \quad j=1,...,n-1;$
- The score $S(f_i)$ is computed from the training data, measuring some criteria of feature f_i .
- By convention a high score is indicative for a valuable (relevant) feature.

- A simple method for feature selection using variable ranking is to select the k highest ranked features according to S.
- This is usually not optimal.
- But often preferable to other, more complicated methods.
- Computationally efficient: only calculation and sorting of *n* scores.

Questions:

Can variables with small score be automatically discarded?

NO

 Can a useless variable (i.e. one with a small score) be useful together with others?

YES

 Can two variables that are useless by themselves be useful together?

YES

Take home messages:

- Correlation between variables and target is not enough to assess relevance.
- Correlation/covariance between pairs of variables has to be considered too.
 - (potentially difficult, examples: Joint Mutual Information, Relief)
- Diversity of features which one to choose?

Filter methods

Problems:

- Redundancy in selected features: features are considered independently and not measured on the basis of whether they contribute with new information.
- Interactions among features generally can not be explicitly incorporated.
- Classifier has no say in what features should be used: some scores
 may be more appropriate in conjunction with some classifiers than
 others.

Sometimes used as a pre-processing step for other methods.

Dimension reduction

A variant of filter methods:

- Rather than retain a subset of s features, perform dimension reduction by projecting features onto s principal components of variation (e.g. PCA, etc.)
- Problem is that we are no longer dealing with one feature at a time but rather a linear or possibly more complicated combination of all features.

Those methods tend not to work better than simple filter methods and the model to build looses transparency.

Wrapper methods

- Iterative approach: many feature subsets are scored based on classification performance and best is used.
- Selection of subsets: forward selection, backward selection, forward-backward selection, ACO, GA, PSO, etc.
- By using the learner as a black box, wrappers are universal.

Wrapper methods

Problems:

- Computationally expensive: for each feature subset to be considered, a classifier must be built and evaluated.
- No exhaustive search is possible (many subsets to consider): generally greedy algorithms only.
- Easy to overfit.

Validation

CV2 – can yield optimistic estimation of classification true error.

Taxonomy of feature selection

Table 1. A taxonomy of feature selection techniques. For each feature selection type, we highlight a set of characteristics which can guide the choice for a technique suited to the goals and resources of practitioners in the field.

	Model search		Advantages	Disadvantages	Examples	
	FS space Classifier	Multivariate Univariate	Fast	Ignores feature dependencies	Chi-square	
			Scalable	ignores readire dependencies	Euclidean distance	
			Independent of the classifier	Ignores interaction with the classifier	t-test	
Filter					Information gain, Gain ratio [6]	
			Models feature dependencies	Slower than univariate techniques	Correlation based feature selection (CFS) [45]	
			Independent of the classifier	Less scalable than univariate	Markov blanket filter (MBF) [62]	
			Better computational complexity	techniques	Fast correlation based	
			than wrapper methods	Ignores interaction with the classifier	feature selection (FCBF) [136]	
	FS space Hypothesis space Ctass:fier	zed Deterministic	Simple	Risk of over fitting		
			Interacts with the classifier	More prone than randomized algorithms	Sequential forward selection (SFS) [60]	
			Models feature dependencies	to getting stuck in a local optimum	Sequential backward elimination (SBE) [60]	
ber			Less computationally intensive	(greedy search)	Plus q take-away r [33]	
Wrapper			than randomized methods	Classifier dependent selection	Beam search [106]	
			Less prone to local optima	Computationally intensive	Simulated annealing	
		, m	Interacts with the classifier	Classifier dependent selection	Randomized hill climbing [110]	
		Randomized	Models feature dependencies	Higher risk of overfitting	Genetic algorithms [50]	
				than deterministic algorithms	Estimation of distribution algorithms [52]	
þą		Interacts with the classifier			Decision trees	
Embe dded	FS U Hypothesis space Classifier	Be	tter computational complexity		Weighted naive Bayes [28]	
l g		tha	n wrapper methods	Classifier dependent selection	Feature selection using	
Ξ		Mo	odels feature dependencies		the weight vector of SVM [44, 125]	

Taxonomy of feature selection

Tree search methods: SFS

Tree search methods: SBS

Tree search methods

Advantages:

- Easy to use
- Reduce number of iterations (comparing to exhaustive search)
- SFS achieves smaller number of features

Disadvantages:

- Converge to local minima
- Computationally very heavy for more than about 50 features

Metaheuristic methods → global search

Artificial ants

- Artificial ants move in graphs
 - nodes / arcs
 - environment is discrete
- As real ants:
 - choose paths based on pheromone concentration
 - deposit pheromones on paths
 - environment updates pheromones
- Extra abilities of artificial ants:
 - prior knowledge (heuristic η)
 - memory (feasible neighbourhood N)

Ant feature selection

• Multicriteria algorithm (S. Vieira et al., 2010):

Ant feature selection

Choose node

$$p_{ij}^{k} = \begin{cases} \frac{\tau_{ij}^{\alpha} \times \eta_{ij}^{\beta}}{\sum_{j \in \mathbb{N}} \tau_{ij}^{\alpha} \times \eta_{ij}^{\beta}}, & if \quad j \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}$$

Pheromone update

$$\tau(I+1) = \tau(I)(1-\rho) + \Delta \tau_{ij}^{k}$$

Subset: $\{x_3, x_6, x_7, x_1, x_4\}$

Heuristics in AFS

 Heuristic for feature cardinality: Fisher's score for the features

$$F(i) = \frac{\left|\mu_{c_1}(i) - \mu_{c_2}(i)\right|^2}{\sigma_{c_1}^2(i) + \sigma_{c_2}^2(i)}$$
 mean and variance values of feature i for the samples in class c_1 and c_2

• Heuristic for selection of features: classification error e(i) for the individual features

$$\eta_f(i) = \frac{1}{e(i)}$$

Test example

• Problem definition:

$$x_1 = r\cos(t)$$

$$x_2 = r\sin(t)$$

$$r \in [0.99, 1.01]$$

$$y = r > 1$$

• Features: $F = \begin{bmatrix} x_1 & x_2 & x_1^2 & x_2^2 \end{bmatrix}$

• Output: $y = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Test example

- All possible combinations of feature subsets:
 - $N(1) = \{1\}, \{2\}, \{3\}, \{4\}$
 - $N(2) = \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}$
 - $N(3) = \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}$
 - $N(4) = \{1,2,3,4\}$
- Accuraccy for all combinations using fuzzy models:
 - N(1) = [46.1538] [50] [69.2308] [57.6923]
 - N(2) = [53.8462] [50] [53.8462] [50] [50] [96.1538]
 - N(3) = [53.8462] [53.8462] [100] [92.3077]
 - N(4) = [96.1538]

Test example

Ant feature selection using fuzzy models (5 ants, 20

iterations).

Results: fuzzy models

• Classification rates with 10-fold cross validation:

Data set	Fuzzy Models								
	Classification	on Accuracy	Standard	deviation	Number of features				
	No FS	AFS	No FS	AFS	No FS	AFS			
1 WBCO	84.5	97.7	1.75	1.21	9	2-5			
2 Wine	82.6	99.5	3.40	1.66	13	2-4			
3 Vote	80.0	99.7	4.18	1.02	16	2-5			
4 WDBC	77.2	99.5	3.05	0.84	32	2-3			
5 WPBC	78.9	85.6	1.50	2.47	33	2			
6 Sonar	60.2	86.6	5.73	2.83	60	2-3			
7 Musk	77.7	78.3	4.14	4.39	166	2-20			
Average	77.3	92.4	-	-	-	-			
WTL	0/0/7	0/1/6	-	-	-	-			

Fuzzy objective function

Classic objective function

minimize
$$f = w_1 e + w_2 N$$

Fuzzy objective function

maximize
$$D(\mathbf{x})$$

 $D(\mathbf{x}) = \bigcirc (I(F_1, w_1), I(F_2, w_2))$

Comparison with state-of-the-art

GAAR - genetic algorithm-based

PSORSFS - particle swarm optimization algorithm-based

GBML - multi-objective fuzzy genetics-based machine learning

MIFS - a classical filter method based on mutual information

HGA - a hybrid genetic algorithm wrapper approach based on mutual information

Real world example

MEDAN database

Variables:

The MEDAN data base contains the data of 382 patients. The data were copied from intensive care unit records in the years 1998-2002 by medical documentation staff. All patients have septic shock of abdominal cause.

Task:

Predict patients survival.

Problems in the database...

Sepsis patients database

The matrix contains 387 patients and 59 variables.

• Different time samples:

Missing data:

Stopped being measured:

Classification accuracy (%)

• Results

EC		12 Features set			28 Features set		
FS method	Model	Num. Feat.	Mean	Std	Num. Feat.	Mean	Std
-	NN [Paetz]	12	69.0	4.37	-	-	-
Bottom	Fuzzy TS	2-6	74.1	1.31	2-7	82.3	1.56
-up	NN	2-8	73.2	2.03	4-8	81.2	1.97
ΛEC	Fuzzy TS	2-3	72.8	1.44	3-9	78.6	1.44
AFS	NN	2-7	75.7	1.37	5-12	81.9	2.12

12 features subset

Most frequent features:

8 - pH

26 - Calcium

28 - Creatinine

28 features subset

Most frequent features (besides previous 8, 26 and 28):

18 - thrombocytes 41 - CRP (C-reactive protein)

22 – antithrombin III 85 – FiO2

35 – total bilirubin

