wherein

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms or, if X or Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group; and

Y is an ethylenically unsaturated polymerisable group selected from the group consisting of

$$\begin{split} &CH_2\text{=}C(R)\text{-}CH_2\text{-}O\text{-},\ CH_2\text{=}C(R)\text{-}CH_2\ OC(O)\text{-},\ CH_2\text{=}C(R)OC(O)\text{-},\ CH_2\text{=}C(R)\text{-}O\text{-},\\ &CH_2\text{=}C(R)CH_2OC(O)N(R^1)\text{-},\ R^2OOCCR\text{=}CRC(O)\text{-}O\text{-},\ RCH\text{=}CHC(O)O\text{-},\\ &RCH\text{=}C(COOR^2)CH_2\text{-}C(O)\text{-}O\text{-}, \end{split}$$

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

 R^1 is hydrogen or a $C_1\text{-}C_4$ alkyl group or R^1 is -B-X where B and X are as defined above; and

 R^2 is hydrogen or a C_{1-4} alkyl group or BX where B and X are as defined above; A is -O- or -NR¹-;

K is selected from the group consisting of $-(CH_2)_pOC(O)$ -, $-(CH_2)_pC(O)O$ -, $-(CH_2)_pNR^3C(O)$ -, $-(CH_2)_pNR^3C(O)$ -, $-(CH_2)_pC(O)NR^3$ -, $-(CH_2)_pNR^3C(O)O$ -, $-(CH_2)_pOC(O)NR^3$ -, $-(CH_2)_pNR^3C(O)NR^3$ - (in which the groups R^3 are the same or different), $-(CH_2)_pO$ -, $-(CH_2)_pSO_3$ -, and optionally in combination with B, a valence bond and p is from 1 to 12 and R^3 is hydrogen or a C_1 - C_4 alkyl group;

b) an aromatic group containing monomer of the general formula II Y^1R^4 II

wherein Y¹ is selected from the group consisting of

 $CH_2=C(R^5)-CH_2-O-, CH_2=C(R^5)-CH_2 OC(O)-, CH_2=C(R^5)OC(O)-, CH_2=C(R^5)-O-, CH_2=C(R^5)CH_2OC(O)N(R^6)-, R^7OOCCR^5=CR^5C(O)-O-, R^5CH=CHC(O)O-, R^5CH=C(COOR^7)CH_2-C(O)-O-,$

wherein:

R⁵ is hydrogen or a C₁-C₄ alkyl group;

 R^6 is hydrogen or a C_1 - C_4 alkyl group or R^6 is R^4 ;

R⁷ is hydrogen or a C₁₋₄ alkyl group or R⁴;

 A^1 is -O- or -NR⁶-;

 K^1 is selected from the group consisting of -(CH₂)_qOC(O)-, -(CH₂)_qC(O)O-, -(CH₂)_qC(O)O-, -(CH₂)_qNR⁸-, -(CH₂)_qNR⁸C(O)-, -(CH₂)_qC(O)NR⁸-, -(CH₂)_qNR⁸C(O)O-, -(CH₂)_qOC(O)NR⁸-, -(CH₂)_qNR⁸C(O)NR⁸- (in which the groups R⁸ are the same or different), -(CH₂)_qO-, -(CH₂)_qSO₃-, and a valence bond and q is from 1 to 12 and R⁸ is hydrogen or a C₁-C₄ alkyl group;

and R4 is an aromatic group; and

c) a cross-linking monomer of the general formula III

$$_{n}R^{9}$$
 III

in which n is an integer of at least 2, each Y² is selected from the group consisting of

$$\begin{split} & CH_2 = C(R^{10}) - CH_2 - O^-, \ CH_2 = C(R^{10}) - CH_2 \ OC(O)^-, \ CH_2 = C(R^{10}) OC(O)^-, \ CH_2 = C(R^{10}) - O^-, \\ & CH_2 = C(R^{10}) CH_2 OC(O) N(R^{11})^-, \ R^{12} OOCCR^{10} = CR^{10} C(O)^-O^-, \ R^{10} CH = CHC(O)O^-, \\ & R^{10} CH = C(COOR^{12}) CH_2 - C(O)^-O^-, \end{split}$$

wherein:

R¹⁰ is hydrogen or a C₁-C₄ alkyl group;

 R^{11} is hydrogen or a $C_1\text{-}C_4$ alkyl group;

 R^{12} is hydrogen or a C_{1-4} alkyl group;

 A^2 is -O- or -NR¹¹-;

 K^2 is selected from the group consisting of -(CH₂)_rOC(O)-, -(CH₂)_rC(O)O-, -(CH₂)_rNR¹²-, -(CH₂)_rNR¹²C(O)-,

- $(CH_2)_rC(O)NR^{12}$ -, - $(CH_2)_rNR^{12}C(O)O$ -, - $(CH_2)_rOC(O)NR^{12}$ -, - $(CH_2)_rNR^{12}C(O)NR^{12}$ - (in which the groups R^{12} are the same or different), - $(CH_2)_rO$ -, - $(CH_2)_rSO_3$ - and a valence bond and r is from 1 to 12 and R^{12} is hydrogen or a C_1 - C_4 alkyl group;

and R9 is an n-functional organic group;

wherein the cross-linked polymer is swellable in water such that the water content of the polymer when fully swollen in deionized water is in the range of 10 to 50% by weight, and the zwitterionic monomer of general formula I is present in an amount of at least 5 mole %, the aromatic group containing monomer of general formula II is present in an amount of at least 10 mole %, and the cross-linking monomer of general formula III is present in an amount of 0.01 to 10 mole %, based upon total monomer.

38 (Amended): A polymer according to claim 37 in which the molar ratio of crosslinking monomer in which R⁹ is aromatic to crosslinking monomer in which R⁹ is aliphatic is in the range 10:1 to 1:10.