EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

MODEL BUILDING

PREDICTIONS

Date	04 November 2022	
Team ID	PNT2022TMID10153	
	111202211111111111111111111111111111111	
Project Name	Emerging Methods for Early Detection of	
	Forest Fires	

Importing The ImageDataGenerator Library

import keras

from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rot ati on_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDriv e/ Dataset/train_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

```
x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive / Dataset/test_set',target_size=(128,128),batch_size=32, class_mode='binary')
```

Found 121 images belonging to 2 classes.

Import model building libraries

```
#To define Linear initialisation import Sequential
from keras.models import Sequential
#To add layers import Dense
from keras.layers import Dense
#To create Convolution kernel import Convolution2D
from keras.layers import Convolution2D
#import Maxpooling layer
from keras.layers import MaxPooling2D
#import flatten layer
from keras.layers import Flatten
import warnings
warnings.filterwarnings('ignore')
```

Initializing the model

```
model=Sequential()

Add CNN Layer

model.add(Convolution2D(32,
(3,3),input_shape=(128,128,3),activation='relu'))

#add maxpooling layer

model add(MayPooling2D(pool_size=(2,2)))
```

model.add(MaxPooling2D(pool_size=(2,2)))
#add flatten layer
model.add(Flatten())

```
Add Hidden Layer
```

#add hidden layer

```
model.add(Dense(150,activation='relu'))
 #add output layer
 model.add(Dense(1,activation='sigmoid')
 )
 Configure the learning process
 model.compile(loss='binary_crossentropy',optimizer="adam",metrics=[
 "ac curacy"])
 Train the model
 model.fit_generator(x_train,steps_per_epoch=14,epochs=5,validation_data=x_tes
 t, validation steps=20)
Epoch 1/5
0.6972WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator
can generate at least `steps_per_epoch * epochs` batches (in this case, 20 batches). You may need to use the repeat()
function when building your dataset.
val_accuracy: 0.9174
Epoch 2/5
Epoch 3/5
```

Save The Model

Epoch 4/5

Epoch 5/5

model.save("forest1.h5")

<keras.callbacks.History at 0x7ff99287ad50>