```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]: df=pd.read_csv(r"C:\Users\LENOVO\Downloads\drug200.csv")
 df

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 6 columns):
             Column
                          Non-Null Count Dtype
             _____
             Age
                          200 non-null
                                          int64
                          200 non-null
                                          object
             Sex
                          200 non-null
         2
             BP
                                          object
             Cholesterol 200 non-null
                                          obiect
                          200 non-null
                                          float64
             Na to K
         5
             Drug
                          200 non-null
                                          obiect
        dtypes: float64(1), int64(1), object(4)
        memory usage: 9.5+ KB
In [4]: df['BP'].value counts()
        df['Na to K'].value counts()
Out[4]: Na_to_K
        12.006
                  2
        18.295
                  2
        25.355
                  1
        11.939
                  1
        16.347
                  1
        24.658
                  1
        24.276
                  1
        13.967
                  1
        19.675
                  1
        11.349
        Name: count, Length: 198, dtype: int64
```

6/13/23, 10:25 AM drug - Jupyter Notebook

```
In [5]: convert={"BP":{"HIGH":129,"NORMAL":80,"LOW":50}}
    df=df.replace(convert)
    df
```

Out[5]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	129	HIGH	25.355	drugY
1	47	М	50	HIGH	13.093	drugC
2	47	М	50	HIGH	10.114	drugC
3	28	F	80	HIGH	7.798	drugX
4	61	F	50	HIGH	18.043	drugY
195	56	F	50	HIGH	11.567	drugC
196	16	М	50	HIGH	12.006	drugC
197	52	М	80	HIGH	9.894	drugX
198	23	М	80	NORMAL	14.020	drugX
199	40	F	50	NORMAL	11.349	drugX

200 rows × 6 columns

6/13/23, 10:25 AM drug - Jupyter Notebook

```
In [6]: convert={"Cholesterol":{"HIGH":103,"NORMAL":97}}
    df=df.replace(convert)
    df
```

Out[6]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	129	103	25.355	drugY
1	47	М	50	103	13.093	drugC
2	47	М	50	103	10.114	drugC
3	28	F	80	103	7.798	drugX
4	61	F	50	103	18.043	drugY
195	56	F	50	103	11.567	drugC
196	16	М	50	103	12.006	drugC
197	52	М	80	103	9.894	drugX
198	23	М	80	97	14.020	drugX
199	40	F	50	97	11.349	drugX

200 rows × 6 columns

```
In [7]: convert={"Cholesterol":{"HIGH":103,"NORMAL":97}}
    df=df.replace(convert)
    df
```

Out[7]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	129	103	25.355	drugY
1	47	М	50	103	13.093	drugC
2	47	М	50	103	10.114	drugC
3	28	F	80	103	7.798	drugX
4	61	F	50	103	18.043	drugY
195	56	F	50	103	11.567	drugC
196	16	М	50	103	12.006	drugC
197	52	М	80	103	9.894	drugX
198	23	М	80	97	14.020	drugX
199	40	F	50	97	11.349	drugX

200 rows × 6 columns

```
In [9]: (x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.3)
```

```
In [10]:
    clf=DecisionTreeClassifier(random_state=0)
```