CHL7001H S1 Applied Deep Learning

Modern Deep Learning

Recap of last week

- Fully connected layers (e.g. Multilayer Perceptrons)
- In the simplest case, all input units are connected to all output units.
 We call this a fully connected layer.
- A multilayer network consisting of fully connected layers is called a multilayer perceptron.

Some activation functions

Identity

ReLU

Logistic

TanH

$$f(x) = x$$

$$f(x) = max(0, x)$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = x$$
 $f(x) = max(0, x)$ $f(x) = \frac{1}{1 + e^{-x}}$ $f(x) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$

Example of shallow NN

 https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=spir al®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0& networkShape=8&seed=0.50265&showTestData=false&discretize=false&perc TrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=c lassification&initZero=false&hideText=false

Example with a deep NN

https://playground.tensorflow.org/#activation=relu&batchSize=30&dataset=spir al®Dataset=reg-plane&learningRate=0.1®ularizationRate=0&noise=0&ne tworkShape=4,4,4&seed=0.50265&showTestData=false&discretize=false&perc TrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false &cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=c lassification&initZero=false&hideText=false

Handwritten digits classification

Problem with fully connected network

What is the problem with having this as the architecture (densely connected)?

- Too many parameters!
 - Input: 28*28 = 784
 - If we plan to have 100 hidden units, then the number of parameters will be 784*100 = 78.4K
- What happens if the object in the image shifts a little?
- No spatial information!

Example of convolution

Using spatial structure

- Connect patch in input layer to a single neuron in subsequent layer.
- Use a sliding window to define connections.

Feature extraction with convolution

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is convolution

- 1. Apply a set of weights a filter to extract local features
- 2. Use multiple filters to extract different features sliding
- 3. Spatially share parameters of each filter or say weights are shared between all image location

Feature maps

Original

Sharpen

Edge Detect

"Strong" Edge Detect

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

1	1	1	0	0				
0	1	1	1	0		1	0	1
0	0	1	1	1	\otimes	0	1	0
0	0	1	1	0		1	0	1
0	1	1	0	0			filter	

image

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,,0	1,
0	0	1,	1,	O [∞]
0	1	1,	0,,0	0,,1

1	0	1
0	1	0
1	0	1

filter

feature map

Simple filters

0	0	0	0	0
0	1/9	1/9	1/9	0
0	1/9	1/9	1/9	0
0	1/9	1/9	1/9	0
0	0	0	0	0

Simple filters

0	0	0	0	0
0	0	0	0	0
0	-1	1	0	0
0	0	0	0	0
0	0	0	0	0

Feature maps

Original

Sharpen

Edge Detect

"Strong" Edge Detect

CNN for classification

- 1. Convolution: Apply filters with learned weights to generate feature maps.
- 2. Non-linearity: Often ReLU. 3. Pooling: Downsampling operation on each feature map.

CNN for classification

- 1. Convolution: Apply filters with learned weights to generate feature maps.
- 2. Non-linearity: Often ReLU. 3. Pooling: Downsampling operation on each feature map.

Multiclass

- Multiclass, single label? Softmax
- Multiclass, multilabel? Sigmoids

Examples

- https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/r2/tutorials/guickstart/beginner.ipynb
- https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/r2/tutorials/images/intro_to_cnns.ipynb