Booth School of Business, University of Chicago

Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay

Midterm

ChicagoBooth Honor Code:

I pledge my honor that I have not violated the Honor Code during this examination.

Signature: Name: ID:

Notes:

- Open notes and books. Exam time: 120 minutes.
- You may use a calculator or a PC. However, turn off Internet connection and cell phones. Internet access and phone communication are strictly prohibited during the exam.
- The exam has 8 pages and the R output has 11 pages. Please **check** that you have all 19 pages.
- For each question, write your answer in the blank space provided.
- Manage your time carefully and answer as many questions as you can.
- For simplicity, if not specifically given, use 5% Type-I error in hypothesis testings.
- Round your answer to 3 significant digits.

Problem A: (30 pts) Answer briefly the following questions. Each question has two points.

- 1. Give two situations under which returns of an assert follow an MA(1) model.
- 2. Describe two ways by which a GARCH(1,1) model can introduce heavy tails.

3. (Questions 3 to 6): Suppose that the asset return r_t follows the model

$$r_t = 0.005 + a_t$$

$$a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim \text{iid } t_6^*$$

$$\sigma_t^2 = 0.09 + 0.10a_{t-1}^2 + 0.855\sigma_{t-1}^2.$$

Compute the mean and variance of r_t , i.e., $E(r_t)$ and $Var(r_t)$.

- 4. Express the volatility model in an ARMA(1,1) formation using $\eta_t = a_t^2 \sigma_t^2$.
- 5. Describe two nice characteristics of the volatility model for r_t .
- 6. Suppose further that $a_{100} = -0.02$ and $\sigma_{100}^2 = 0.16$. Compute the 1-step ahead prediction (both mean and volatility) of the return at the forecast origin t = 100.
- 7. Give two nice features of the exponential GARCH model that the standard GARCH model does not have.
- 8. Give two empirical characteristics of daily asset returns.

9. (Questions 9 - 11): Let p_t be the log price of an asset at time t. Assume that the log price follows the model

$$p_t = 0.001 + p_{t-1} + a_t$$
, $a_t \sim \text{iid } N(0, 0.16)$,

where $N(\mu, \sigma^2)$ denotes normal distribution with mean μ and variance σ^2 . Assume further that $p_{200} = 4.551$. Compute the 95% interval forecast for p_{201} at the forecast origin t = 200.

- 10. Compute the 2-step ahead point forecast and its standard error for p_{202} at the forecast origin t=200.
- 11. What is the 100-step ahead forecast for p_{300} at the forecast origin t = 200?
- 12. Describe two methods for comparing two different models for a time series z_t .
- 13. (Questions 13-15): Suppose that the quarterly growth rates r_t of an economy follows the model

$$r_t = 0.006 + 0.168 r_{t-1} + 0.338 r_{t-2} - 0.189 r_{t-3} + a_t, \quad a_t \sim \text{iid } N(0,.0016).$$

What is the expected growth rate of r_t ?

- 14. Does the model imply existence of business cycles? Why?
- 15. What is the average length of business cycles of the economy, if any?

Problem B. (45 points) Consider the daily log returns r_t , in percentages, of the NASDAQ index for a certain period of time with 1841 observations. Answer the following questions, using the attached R output.

- 1. (2 points) Let μ be the expected value of r_t . Test $H_0: \mu = 0$ versus $H_a: \mu \neq 0$. Obtain the test statistic and draw your conclusion.
- 2. (2 points) Is the distribution of r_t skew? Why?
- 3. (2 points) Does the distribution of r_t have heavy tails? Why?
- 4. (2 points) Let ρ_1 be the lag-1 ACF of r_t . Test $H_0: \rho_1=0$ versus $H_a: \rho_1 \neq 0$. The sample lag-1 ACF is -0.086. Obtain the test statistic and draw your conclusion.
- 5. (2 points) An MA(1) model is fitted. Write down the fitted model, including σ^2 of the residuals.
- 6. (2 points) Is there any ARCH effect in the residuals of the fitted MA(1) model? Why?
- 7. (2 points) An ARMA(0,1)+GARCH(1,1) model with Gaussian innovations was entertained for r_t . See **m2**. Write down the fitted model.

8.	(2 points) Is the fitted ARMA(0,1)+GARCH(1,1) model adequate? Why?
9.	(3 points) A GARCH(1,1) model with standardized Student- t innovations was fitted. See ${\bf m3}.$ Write down the fitted model.
10.	(3 points) To further improve the model, a GARCH model with skew standardized Student-t innovations was considered. See m4 . Write down the fitted model.
11.	(2 points) Based on the fitted model $\mathbf{m4}$. Does the return r_t follow a skew distribution? Why? Perform proper test and draw the conclusion.
12.	(2 points) Based on the model ${\bf m4}$. Obtain 1-step and 2-step 95% interval forecasts for r_t at the forecast origin $t=1841$.
13.	(2 points) An IGARCH model is fitted to r_t . See ${\bf m5}$. Write down the fitted model, including mean equation.
14.	(2 points) Based on the output provided, is the IGARCH model adequate? Why?

15.	(2 points)) From the	IGARCH	model,	we have	r_{1841}	=-0.09	$055 \text{ and } \sigma$	1841
	= 0.745.	Compute	the 1-step	ahead	${\it forecast}$	of r_t	and its	volatility	y at
	the foreca								

16. (3 points) A GARCH-M model is entertained for the r_t series. See **m6**. Write down the fitted model.

17. (2 points) Based on the fitted model **m6**, is the risk premium statistically significant? Why?

18. (4 points) A Threshold GARCH model with standard Student-*t* innovations is considered. See **m7**. Write down the fitted model.

19. (2 points) Based on the fitted TGARCH model **m7**, is the leverage effect statistically significant? Why?

20. (2 points) Among models { **m7, m4, m2** }, which one is preferred? Why?

Problem C. (12 points) The consumption of natural gas in northern American cities depends heavily on temperature and daily activities. Let y be the daily sendout of natural gas and DHD be the degrees of heating days defined as DHD = $65^{o}F$ minus daily average temperature. Also, let x_1 = DHD, x_2 = lag-1 DHD, x_3 = windspeed, and x_4 be the indicator variable for weekend. The data were collected for 63 days. Statistical analysis is included in the attached R output. Answer the following questions.

- 1. (2 points) A multiple linear regression is applied. Write down the fitted model, including the R^2 .
- 2. (3 points) Model checking shows that the residuals have serial correlations, and the AIC selects an AR(8) model. After removing insignificant parameters, we have the model **n5**. Write down the fitted model. Is the model adequate? Why?

3. (3 points) Let ϕ_i be the lag-i AR coefficient. It is seen that $\phi_1 \times \phi_7 \approx 0.2$, which is not far away from $-\phi_8$, especially in view of its standard error. This is indicative of a multiplicative model. Therefore, we fit a seasonal model. Denoted by **n6**. Write down the fitted seasonal model. Is the model adequate? Why?

- 4. (2 points) Compare models **n5** and **n6**. Which one is preferred? Why?
- 5. (2 points) The weekend effect is rather significant in the multiple linear regression model of Question 1, but it is not so in the seasonal model. Why?

Problem D. (13 points) Consider the monthly log return of Decile 10 portfolio of CRSP from 1961,1 to 2014.12 with T=648. The returns include dividends. Let r_t denote the monthly log return. Answer the following questions based on the attached R output.

- 1. (2 points) The ACF of r_t shows $\hat{\rho}_1 = 0.203$ and $\hat{\rho}_{12} = 0.127$. Test $H_0: \rho_{12} = 0$ versus $H_a: \rho_{12} \neq 0$. Compute the test statistic and draw the conclusion.
- 2. (2 points) The $\hat{\rho}_{12}$ is likely due to the January effect. To remove ρ_{12} , one can use a simple linear regression with January dummy variable. The fitted model is $r_t = 0.0064 + 0.06926 \text{Jan}_t + \epsilon_t$. Let $\tilde{r}_t = r_t 0.06928 \text{Jan}_t$ be the adjusted log returns of Decile 10 portfolio. Several models were entertained for \tilde{r}_t ; see model **g1**, **g2**, **g3** and **g4**. Which model is preferred? Why?
- 3. (2 points) Write down the fitted model **g4**.
- 4. (2 points) Based on the fitted model **g4**. Is the leverage effect significant? Why?
- 5. (3 points) The average of fitted volatility is 0.0614 and the 1% quantile of the residuals of model **g4** is -0.171. Compute the ratio $\frac{\sigma_t^2(-0.171)}{\sigma_t^2(0.171)}$ of model **g4**, where $\sigma_t^2(a_t)$ denotes the conditional variance of the series when innovation is a_t .

6. (2 points) Consider the forecasts of model **g4**. Why is the 1-step ahead forecast of \tilde{r}_t different from multi-step ahead forecasts?

R output: edited

```
### Problem B #######
> getSymbols("^IXIC",from="XXXX",to=','XXXX',')
[1] "IXIC"
> rtn=diff(log(as.numeric(IXIC[,6]))) * 100
> require(fBasics)
> basicStats(rtn)
                    rtn
            1841.000000
nobs
Mean
               0.036063
Median
               0.099857
Sum
              66.391926
SE Mean
               0.035029
LCL Mean
              -0.032637
UCL Mean
               0.104763
Variance
               2.258907
Stdev
               1.502966
Skewness
              -0.245339
Kurtosis
               6.831855
> m0=acf(rtn)
> m0$acf[2]
[1] -0.08602153
> m1=arima(rtn,order=c(0,0,1),include.mean=F)
Call: arima(x = rtn, order = c(0, 0, 1), include.mean = F)
Coefficients:
          ma1
      -0.0948
      0.0243
s.e.
sigma^2 estimated as 2.241: log likelihood = -3354.9, aic = 6713.79
> Box.test(m1$residuals,lag=10,type='Ljung')
        Box-Ljung test
data: m1$residuals
X-squared = 12.9361, df = 10, p-value = 0.2273
> Box.test(m1$residuals^2,lag=10,type='Ljung')
        Box-Ljung test
data: m1$residuals^2
X-squared = 1507.765, df = 10, p-value < 2.2e-16
> require(fGarch)
> m2=garchFit(~arma(0,1)+garch(1,1),data=rtn,trace=F)
> summary(m2)
Title: GARCH Modelling
Call:
 garchFit(formula = ~arma(0, 1) + garch(1, 1), data = rtn, trace = F)
```

```
data \tilde{a} arma(0, 1) + garch(1, 1)
 [data = rtn]
Conditional Distribution: norm
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
                              4.080 4.50e-05 ***
mu
       0.091456
                   0.022416
ma1
      -0.036450
                   0.025636 -1.422
                                        0.155
omega
       0.028193
                   0.007026 4.013 6.00e-05 ***
alpha1 0.104304
                   0.013844
                              7.534 4.93e-14 ***
beta1
       0.880167
                   0.014468
                              60.835 < 2e-16 ***
Log Likelihood:
 -2911.304
             normalized: -1.581371
Standardised Residuals Tests:
                               Statistic p-Value
 Jarque-Bera Test
                        Chi^2 93.64382 0
                   R
 Shapiro-Wilk Test R
                               0.9860011 2.046596e-12
                        W
 Ljung-Box Test
                        Q(10)
                               7.810015 0.6473883
 Ljung-Box Test
                        Q(20) 15.9162
                                         0.7218094
 Ljung-Box Test
                   R^2 Q(10)
                               17.04423 0.0733911
Ljung-Box Test
                   R^2 Q(20)
                               27.94681 0.1106644
LM Arch Test
                        TR^2
                               16.9636 0.1509718
                   R
Information Criterion Statistics:
    ATC
             BIC
                      SIC
                              HQIC
3.168174 3.183161 3.168160 3.173700
> m3=garchFit(~garch(1,1),data=rtn,trace=F,cond.dist="std")
> summary(m3)
Title: GARCH Modelling
garchFit(formula = ~garch(1,1), data = rtn, cond.dist="std", trace = F)
Mean and Variance Equation:
 data ~ garch(1, 1)
 [data = rtn]
Conditional Distribution: std
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
                              5.330 9.82e-08 ***
mu
       0.119076
                   0.022341
                   0.008176
                               3.099 0.00194 **
omega
       0.025339
alpha1 0.106679
                   0.017710
                               6.024 1.70e-09 ***
```

Mean and Variance Equation:

```
0.017503 50.417 < 2e-16 ***
beta1
       0.882429
                   1.254542 5.604 2.10e-08 ***
shape
       7.030196
___
Log Likelihood:
-2894.18
            normalized: -1.572069
Standardised Residuals Tests:
                               Statistic p-Value
Ljung-Box Test
                        Q(10)
                               11.29792 0.334783
Ljung-Box Test
                        Q(20)
                               19.92898 0.4623801
                   R
Ljung-Box Test
                   R^2 Q(10)
                               15.97748 0.100279
Ljung-Box Test
                   R^2 Q(20)
                               28.08922 0.1073041
LM Arch Test
                        TR^2
                               16.01562 0.1905215
                   R
Information Criterion Statistics:
    AIC
             BIC
                      SIC
3.149571 3.164557 3.149556 3.155097
> m4=garchFit(~garch(1,1),data=rtn,trace=F,cond.dist="sstd")
> summary(m4)
Title: GARCH Modelling
Call:
 garchFit(formula=~garch(1,1),data=rtn,cond.dist="sstd",trace=F)
Mean and Variance Equation:
 data ~ garch(1, 1)
 [data = rtn]
Conditional Distribution: sstd
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
       0.090509
                   0.022901
                              3.952 7.75e-05 ***
mu
       0.023284
                   0.007639
                               3.048
                                       0.0023 **
omega
                   0.016509 6.272 3.57e-10 ***
alpha1 0.103543
                              52.607 < 2e-16 ***
beta1
       0.884482
                   0.016813
skew
       0.873450
                   0.027496
                              31.767 < 2e-16 ***
                               4.892 9.98e-07 ***
       8.123793
                   1.660601
shape
---
Log Likelihood:
 -2884.789
             normalized: -1.566968
Standardised Residuals Tests:
                              Statistic p-Value
Ljung-Box Test
                   R
                        Q(10) 11.36986 0.3294374
Ljung-Box Test
                        Q(20)
                               19.82094 0.4691798
```

15.70359 0.1084377

 $R^2 Q(10)$

Ljung-Box Test

```
Ljung-Box Test
                    R<sup>2</sup> Q(20) 27.38012 0.1249042
Information Criterion Statistics:
              BIC
                       SIC
                               HQIC
3.140455 3.158439 3.140434 3.147086
> predict(m4,5)
  meanForecast meanError standardDeviation
   0.09050898 0.7804844
                                 0.7804844
2 0.09050898 0.7906612
                                 0.7906612
   0.09050898 0.8005892
                                 0.8005892
   0.09050898 0.8102788
                                 0.8102788
   0.09050898 0.8197398
                                 0.8197398
> source("Igarch.R")
> m5=Igarch(rtn)
Estimates: 0.9224943
Maximized log-likehood: 2939.672
Coefficient(s):
       Estimate Std. Error t value
                                       Pr(>|t|)
beta 0.92249434 0.00841949 109.567 < 2.22e-16 ***
> names(m5)
[1] "par"
                 "volatility"
> vol5=m5$volatility
> rtn[1841]
[1] -0.09549699
> vol5[1841]
[1] 0.744785
> resi=rtn/vol5
> Box.test(resi,lag=10,type="Ljung")
        Box-Ljung test
data: resi
X-squared = 13.1735, df = 10, p-value = 0.2141
> Box.test(resi^2,lag=10,type="Ljung")
        Box-Ljung test
data: resi^2
X-squared = 21.4537, df = 10, p-value = 0.01814
> source("garchM.R")
> m6=garchM(rtn,type=1)
Maximized log-likehood: -2915.346
Coefficient(s):
        Estimate Std. Error t value
                                        Pr(>|t|)
mu
      0.07601900 0.03238316 2.34749
                                        0.018901 *
```

```
gamma 0.01408378 0.02140652 0.65792
                                       0.510589
omega 0.02845490 0.00715017 3.97961 6.9027e-05 ***
alpha 0.10499661
                 0.01401392 7.49231 6.7724e-14 ***
beta 0.87913601 0.01471637 59.73864 < 2.22e-16 ***
> m7=garchFit(~garch(1,1),data=rtn,trace=F,cond.dist="std",leverage=T)
> summary(m7)
Title: GARCH Modelling
Call:
garchFit(formula = ~garch(1, 1), data = rtn, cond.dist = "std",
 leverage = T, trace = F)
Mean and Variance Equation:
data ~ garch(1, 1)
 [data = rtn]
Conditional Distribution: std
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
       0.078450
                   0.022038
                               3.560 0.000371 ***
mu
       0.032456
                   0.007679
                               4.226 2.37e-05 ***
omega
                   alpha1 0.052368
                   0.280199
                              3.542 0.000397 ***
gamma1 0.992492
beta1
       0.874213
                   0.016132
                              54.192 < 2e-16 ***
                               5.024 5.05e-07 ***
shape
       7.960959
                   1.584444
---
Log Likelihood:
 -2861.373
             normalized: -1.554249
Standardised Residuals Tests:
                               Statistic p-Value
Ljung-Box Test
                   R
                        Q(10)
                               10.42453 0.40407
Ljung-Box Test
                        Q(20)
                               18.25502 0.5706129
                   R
Ljung-Box Test
                   R^2 Q(10)
                               18.89127 0.04166563
Ljung-Box Test
                   R^2 Q(20)
                               30.74011 0.05871629
LM Arch Test
                   R
                        TR^2
                               20.56976 0.05704693
Information Criterion Statistics:
                      SIC
    AIC
             BIC
                              HQIC
3.115017 3.133000 3.114995 3.121648
##### Problem C ########
> da=read.table("JW74.DAT",header=T)
> head(da)
 Sendout DHD DHDm1 Windspeed Weekend
1
     227 32
                30
                          12
2
     236 31
                32
                           8
                                   1
```

```
3
     228 30
                31
                           8
                                   0
4
      252 34
                30
                           8
                                   0
5
     238 28
                34
                          12
                                   0
                28
                           8
                                   0
      195 24
> dim(da)
[1] 63 5
> n1=lm(Sendout~DHD+DHDm1+Windspeed+Weekend,data=da)
> n1
Call:
lm(formula = Sendout ~ DHD + DHDm1 + Windspeed + Weekend, data = da)
> summary(n1)
Call:
lm(formula = Sendout ~ DHD + DHDm1 + Windspeed + Weekend, data = da)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       11.5561
                                 0.161 0.87282
             1.8581
DHD
             5.8742
                        0.2905 20.219 < 2e-16 ***
DHDm1
                        0.2928 4.799 1.16e-05 ***
             1.4052
Windspeed
             1.3154
                        0.5787
                                 2.273 0.02675 *
Weekend
           -15.8571
                        5.3344 -2.973 0.00429 **
Residual standard error: 18.32 on 58 degrees of freedom
Multiple R-squared: 0.9521,
                               Adjusted R-squared: 0.9488
F-statistic: 288.1 on 4 and 58 DF, p-value: < 2.2e-16
> Box.test(n1$residuals,lag=10,type='Ljung')
       Box-Ljung test
data: n1$residuals
X-squared = 48.1743, df = 10, p-value = 5.768e-07
> acf(n1$residuals)
> y=da[,1]
> X=da[,-1]
> pacf(n1$residuals)
> n2=ar(n1$residuals,method="mle")
> n2$order
[1] 8
> n3=arima(y,order=c(8,0,0),xreg=X)
> n3
Call:arima(x = y, order = c(8, 0, 0), xreg = X)
Coefficients:
                                 ar4
                                                  ar6
         ar1
                ar2
                         ar3
                                          ar5
                                                          ar7
                                                                   ar8
      0.5758 0.0043 -0.0511 0.2908 -0.3086 0.2350 0.2673 -0.3363
s.e. 0.1323 0.1401
                      0.1465 0.1352
                                       0.1268 0.1565 0.1367
                                                                0.1287
      intercept
                   DHD
                         DHDm1 Windspeed
                                            Weekend
        17.0627 5.6777 1.2451
                                   1.2691 -14.8311
```

```
14.9832 0.2226 0.2180
                                   0.3755
s.e.
                                             8.1959
sigma^2 estimated as 161.3: log likelihood = -250.66, aic = 529.31
> c1=c(NA,O,O,NA,NA,O,NA,NA,O,NA,NA,NA,NA)
> n4=arima(y,order=c(8,0,0),xreg=X,fixed=c1)
> n4
Call: arima(x = y, order = c(8, 0, 0), xreg = X, fixed = c1)
Coefficients:
        ar1 ar2 ar3
                          ar4
                                   ar5 ar6
                                                ar7
                                                         ar8
                                                              intercept
     0.5229
               0
                    0 0.2252 -0.1715
                                          0 0.3746
                                                    -0.2835
                                                                     0
                    0 0.1231
s.e. 0.1069
               0
                               0.1152
                                          0 0.1121
                                                      0.1184
                                                                     0
              DHDm1 Windspeed Weekend
        DHD
     5.7673 1.4870
                        1.2958 -15.3126
                        0.3565
                                  5.9855
s.e. 0.1945 0.1923
sigma^2 estimated as 177.1: log likelihood = -253.33, aic = 526.67
> c1=c(NA,0,0,0,0,0,NA,NA,0,NA,NA,NA,NA)
> n5=arima(y,order=c(8,0,0),xreg=X,fixed=c1)
> n5
Call:arima(x = y, order = c(8, 0, 0), xreg = X, fixed = c(1)
Coefficients:
        ar1 ar2 ar3 ar4 ar5 ar6
                                         ar7
                                                  ar8
                                                       intercept
                                                                     DHD
     0.5362
               0
                    0
                         0
                              0
                                   0 0.3677 -0.2613
                                                               0 5.7669
s.e. 0.1064
               0
                    0
                              0
                                   0 0.1165
                                               0.1210
                                                               0 0.1946
      DHDm1 Windspeed Weekend
     1.4751
                1.3192 -10.1304
s.e. 0.1897
                0.3630
                          6.1649
sigma^2 estimated as 188.1: log likelihood = -255.07, aic = 526.13
> Box.test(n5$residuals,lag=10,type='Ljung')
       Box-Ljung test
data: n5$residuals
X-squared = 7.2835, df = 10, p-value = 0.6984
> n6=arima(y,order=c(1,0,0),seasonal=list(order=c(1,0,0),period=7),xreg=X,
   include.mean=F)
> n6
Call:
arima(x=y,order=c(1,0,0),seasonal=list(order=c(1,0,0),period=7),
   xreg = X, include.mean = F)
Coefficients:
        ar1
               sar1
                        DHD
                              DHDm1 Windspeed
                                                Weekend
     0.5359 0.3677 5.7651 1.4732
                                        1.2819
                                                -9.5947
```

0.3637

6.0260

s.e. 0.1065 0.1171 0.1999 0.1953

```
sigma^2 estimated as 189.5: log likelihood = -255.28, aic = 524.56
> Box.test(n6$residuals,lag=10,type='Ljung')
        Box-Ljung test
data: n6$residuals
X-squared = 6.5785, df = 10, p-value = 0.7645
#### Problem D ####
> da=read.table("m-dec12910-6114.txt",header=T)
> head(da)
      date
               dec1
                         dec2
                                   dec9
                                             dec10
1 19610131 0.058011 0.068040 0.096754 0.087303
2 19610228  0.029241  0.042879  0.056564  0.060040
3 19610330 0.025896 0.025270 0.060563 0.073311
4 19610428 0.005667 0.000877 0.011911 0.025753
5 19610531 0.019208 0.037392 0.046248 0.052023
6 19610630 -0.024670 -0.025332 -0.050651 -0.052041
> dec10=da$dec10
> jan=rep(c(1,rep(0,11)),54)
> m0=acf(dec10)
> m0\$acf[c(2,13)]
[1] 0.2031250 0.1271504
> m1=lm(dec10~jan)
Call:lm(formula = dec10 ~ jan)
Coefficients:
(Intercept)
                     jan
  0.006396
               0.069263
> adj10=dec10-0.069263*jan
> acf(adj10)
> g1=garchFit(~arma(0,1)+garch(1,1),data=adj10,trace=F)
> summary(g1)
Title: GARCH Modelling
Call:
 garchFit(formula = ~arma(0, 1) + garch(1, 1), data = adj10, trace = F)
Mean and Variance Equation:
 data ~ arma(0, 1) + garch(1, 1)
 [data = adj10]
Conditional Distribution: norm
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
      0.0070817 0.0027669
                               2.559 0.01048 *
mu
```

```
0.0429797
                                5.445 5.18e-08 ***
ma1
      0.2340229
omega 0.0002646
                  0.0001126
                                2.350 0.01879 *
alpha1 0.0856456
                  0.0272147
                               3.147 0.00165 **
beta1 0.8484757
                  0.0468131
                              18.125 < 2e-16 ***
Log Likelihood:
 900.7496
            normalized: 1.390046
Standardised Residuals Tests:
                                Statistic p-Value
 Jarque-Bera Test
                   R
                        Chi^2 309.9221 0
 Shapiro-Wilk Test R
                                0.9706054 4.095619e-10
                        W
Ljung-Box Test
                               2.717944 0.9873051
                   R
                        Q(10)
Ljung-Box Test
                                14.40794 0.8092247
                   R
                        Q(20)
Ljung-Box Test
                   R^2 Q(10)
                                1.275305 0.9994815
Ljung-Box Test
                   R^2 Q(20)
                               4.427128 0.999894
Information Criterion Statistics:
     AIC
               BIC
                         SIC
                                  HQIC
-2.764659 -2.730139 -2.764777 -2.751268
> g2=garchFit(~arma(0,1)+garch(1,1),data=adj10,trace=F,cond.dist="std")
> summary(g2)
Title: GARCH Modelling
Call:
garchFit(formula =~arma(0,1)+garch(1,1),data=adj10,cond.dist ="std",
   trace = F)
Mean and Variance Equation:
 data ~ arma(0, 1) + garch(1, 1)
 [data = adj10]
Conditional Distribution: std
Error Analysis:
        Estimate Std. Error t value Pr(>|t|)
      0.0071115
                 0.0024374
                                2.918 0.00353 **
mu
      0.2148526
                  0.0395801
                                5.428 5.69e-08 ***
ma1
                                1.730 0.08363 .
omega 0.0002084
                  0.0001204
alpha1 0.1182122
                  0.0434399
                               2.721 0.00650 **
beta1
                  0.0583986
                              14.326 < 2e-16 ***
      0.8366444
shape 5.4767582
                  1.1049796
                               4.956 7.18e-07 ***
Standardised Residuals Tests:
                                Statistic p-Value
Ljung-Box Test
                   R
                        Q(10)
                                3.092116 0.9791723
Ljung-Box Test
                        Q(20)
                                14.15442 0.8225807
```

```
Ljung-Box Test
                   R^2 Q(10)
                               2.437512 0.9917554
Ljung-Box Test
                   R^2 Q(20)
                               4.907722 0.9997601
LM Arch Test
                        TR^2
                               3.07941
                                         0.9949569
Information Criterion Statistics:
     AIC
               BIC
                         SIC
                                  HQIC
-2.844666 -2.803241 -2.844835 -2.828596
> g3=garchFit(~arma(0,1)+garch(1,1),data=adj10,trace=F,cond.dist="std",
   leverage=T)
> summary(g3)
Title: GARCH Modelling
Call:
 garchFit(formula = arma(0, 1)+garch(1,1),data = adj10, cond.dist = "std",
   leverage = T, trace = F)
Mean and Variance Equation:
 data ~ arma(0, 1) + garch(1, 1)
 [data = adj10]
Conditional Distribution: std
Error Analysis:
       Estimate
                 Std. Error t value Pr(>|t|)
      0.0060302
                  0.0024882
                               2.423
                                       0.0154 *
mu
      0.2224592
                  0.0400198
                               5.559 2.72e-08 ***
ma1
omega 0.0003067
                 0.0001572
                               1.950
                                       0.0511 .
alpha1 0.1294974
                 0.0495784
                               2.612
                                       0.0090 **
gamma1 0.3189026
                 0.1376621
                              2.317
                                       0.0205 *
                  0.0729151 10.832 < 2e-16 ***
beta1 0.7898273
shape 5.7288196 1.1917451
                               4.807 1.53e-06 ***
Standardised Residuals Tests:
                               Statistic p-Value
                        Q(10)
                               3.126521 0.9782877
Ljung-Box Test
                   R
Ljung-Box Test
                        Q(20)
                               16.21446 0.7032337
                   R
 Ljung-Box Test
                   R^2 Q(10)
                               3.290507 0.9737376
Ljung-Box Test
                   R^2 Q(20)
                               5.845771 0.9990903
Information Criterion Statistics:
               BIC
                         SIC
                                  HQIC
-2.852305 -2.803976 -2.852535 -2.833556
> g4=garchFit(~arma(0,1)+aparch(1,1),data=adj10,trace=F,cond.dist="std",
   delta=2,include.delta=F)
> summary(g4)
Title: GARCH Modelling
```

```
Call:
 garchFit(formula = ~arma(0, 1) + aparch(1, 1), data = adj10,
   delta = 2, cond.dist = "std", include.delta = F, trace = F)
Mean and Variance Equation:
 data \sim arma(0, 1) + aparch(1, 1)
 [data = adj10]
Conditional Distribution: std
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
      0.0060302 0.0024882
                               2.423
                                       0.0154 *
mu
ma1
      0.2224592 0.0400198
                               5.559 2.72e-08 ***
omega 0.0003067 0.0001572 1.950
                                       0.0511 .
alpha1 0.1294974
                 0.0495784
                              2.612
                                       0.0090 **
gamma1 0.3189026 0.1376621
                              2.317
                                       0.0205 *
                  0.0729151 10.832 < 2e-16 ***
beta1 0.7898273
                 1.1917451 4.807 1.53e-06 ***
shape 5.7288196
Standardised Residuals Tests:
                               Statistic p-Value
Ljung-Box Test
                        Q(10)
                               3.126521 0.9782877
Ljung-Box Test
                        Q(20)
                               16.21446 0.7032337
                   R^2 Q(10)
Ljung-Box Test
                               3.290507 0.9737376
Ljung-Box Test
                   R<sup>2</sup> Q(20) 5.845771 0.9990903
LM Arch Test
                   R
                        TR^2
                               4.740345 0.9660941
Information Criterion Statistics:
               BIC
                         SIC
                                  HQIC
-2.852305 -2.803976 -2.852535 -2.833556
> predict(g4,4)
 meanForecast meanError standardDeviation
1 0.013232245 0.05388801
                                0.05388801
                                0.05490500
2 0.006030204 0.05619847
3 0.006030204 0.05715694
                                0.05583665
4 0.006030204 0.05803645
                                0.05669161
> v4=volatility(g4)
> r4=residuals(g4)
> mean(v4)
[1] 0.06144349
> quantile(r4,prob=c(0.01,0.99))
```

99%

1% -0.1712219 0.1462078