Homework 1

January 18, 2025

Please submit your HW on Canvas; include a PDF printout of any code and results, clearly labeled, e.g. from a Jupyter notebook. For coding problems, we recommend using Julia, but you can use other languages if you wish. It is due Friday January 24th by 11:59pm EST.

Problem 1 (10 points)

Start reading the draft course notes (linked from https://github.com/mitmath/matrixcalc/). Find a place that you found confusing, and write a paragraph explaining the source of your confusion and (ideally) suggesting a possible improvement.

(Any other corrections/comments are welcome, too.)

Problem 2 (10 points)

Later in the class we will look analytically at derivatives of eigenproblems. Here you will begin to look at them empirically, with numerical experiments, using finite differences $\delta f = f(x + \delta x) - f(x) \approx f'(x)[\delta x]$.

Let $f(A) = \lambda$ be a function that maps a real-symmetric matrix A to one of its eigenvalues λ (e.g. the smallest one), satisfying $Av = \lambda v$ for some eigenvector v normalized to ||v|| = 1, and suppose that the eigenvalue is *not* a multiple eigenvalue. Demonstrate through numerical evidence on random 4×4 matrices that $\nabla \lambda = vv^T$.

(This result is known as the "Hellmann–Feynman theorem" in physics.)

Problem 3 (4+4+4+4 points)

Find the derivatives f' of the following functions. If f maps column vectors or matrices to scalars, give ∇f (so that $f'(x)[dx] = \langle \nabla f, dx \rangle$ in the usual inner product). If f maps column vectors to column vectors, give the Jacobian matrix. Otherwise, simply write down f' as a linear operation.

- 1. f(x) = g(x), denoting (in Julia notation) element-wise application of some scalar function g (in terms of its scalar derivative g'), for $x \in \mathbb{R}^m$.
- 2. $f(A) = (A^T A)^{-1}$ where A is an $m \times n$ matrix (with $m \ge n$ so that $A^T A$ is invertible for most A).
- 3. $f(x) = (I + xx^T)^{-1}x$ for $x \in \mathbb{R}^n$.
- 4. $f(A) = \operatorname{trace}(A^3)$ where A is an $m \times m$ matrix.

Problem 4 (5+5 points)

Use the "linear operator" definition of Kronecker products, where $A \otimes B$ is interpreted as a linear operator on matrices given by $(A \otimes B)[C] = BCA^T$, to show

1. Associativity:

$$A \otimes (B \otimes C) = (A \otimes B) \otimes C.$$

2. Mixed Products:

$$(A \otimes B)(C \otimes D) = (AC \otimes BD).$$

Problem 5 (4+4+4 points)

For this problem, recall that Newton's method finds a root f(x) = 0 of a function f(x) by iteratively improving a guess x to $x \to x - f'(x)^{-1}f(x)$, assuming the derivative (or Jacobian) f' is square and invertible. It converges extremely rapidly if you start with a good enough initial guess.

If A is an $n \times n$ matrix, an ordinary eigenvalue λ solves $\det(A - \lambda I) = 0$. More generally, you can find the roots $\det M(\lambda) = 0$ where $M(\lambda)$ is some arbitrary matrix-valued function of λ : this is called a *nonlinear eigenvalue problem* and arises in lots of applications. Newton's method (and variants thereof) can be a very good way to solve nonlinear eigenproblems!

- 1. If M maps scalars $\lambda \in \mathbb{R}$ to $n \times n$ matrices $M(\lambda)$, explain why $M'(\lambda)$ (starting from the general definition of derivatives in class) is simply a matrix whose entries are the derivatives of each entry of M with respect to λ .
- 2. If $f(\lambda) = \det M(\lambda)$, find the Newton step $f'(\lambda)^{-1}f(\lambda)$ in terms of $M'(\lambda)$. (Simplify your answer: one term cancels nicely.)
- 3. Implement Newton's method to solve $\det M(\lambda) = 0$ for $M(\lambda) = A \lambda I + \alpha \lambda \sin(\lambda)B$ with example 3×3 matrices $A = [-2 \ -1 \ -7; \ -1 \ 6 \ 5; \ -7 \ 5 \ 6]$, $B = [7 \ -1 \ 8; \ -1 \ 7 \ -1; \ 8 \ -1 \ 3]$, and $\alpha = 0.01$. As your starting guess, use the largest eigenvalue of A (i.e. a solution for $\alpha = 0$), and find the resulting "nonlinear eigenvalue" of $M(\lambda)$ to at least 6 significant digits. (It should require very few Newton steps!)

Problem 6 (4+4+4+4 points)

Let f(A) be a function that maps $m \times m$ matrices to $m \times m$ matrices. Recall that its derivative f'(A) is a linear operator that maps any change δA in A to the corresponding change $\delta f = f(A + \delta A) - f(A) \approx f'(A)[\delta A]$, to first order in δA .

In this problem, you will study and prove a remarkable identity (Mathias, 1996): if f(A) is sufficiently smooth, then for any δA (not necessarily small!) the following formula holds exactly:

$$f\left(\underbrace{\begin{bmatrix} A & \delta A \\ & A \end{bmatrix}}_{M}\right) = \begin{bmatrix} f(A) & f'(A)[\delta A] \\ & f(A) \end{bmatrix}.$$

That is, one applies f to a $2m \times 2m$ "block upper-trianguar" matrix M (blank lower-left = zeros), and the desired derivative is in the upper-right $m \times m$ corner of the result f(M). (Note: please do your own derivation here, don't just look it up.)

1. Check this identity numerically against a finite-difference approximation $f(A + \delta A) - f(A)$, which should match the exact $f'(A)[\delta A]$ to a few digits, for $f(A) = \exp(A)$ (the matrix exponential e^A , computed by $\exp(A)$ in Julia, or $\exp(A)$ in Scipy or Matlab), for a random 3×3 matrix $A = \operatorname{randn}(3,3)$ and a random small perturbation $dA = \operatorname{randn}(3,3) * 1e-8$. Note that you can make the block matrix above in Julia by using LinearAlgebra followed by M = [A dA; 0I A], and you can extract an upper-right corner by (e.g.) M[1:3,4:6].

It is also worth verifying (by a finite-difference check) that the derivative of the matrix exponential is *not* simply multiplication by e^A (on either the left or right or both): $(e^A)'[dA] \neq e^A dA$ or $dA e^A$ or $e^{A/2} dA e^{A/2}$, unlike the scalar case.

- 2. Prove the identity by explicit computation for the cases: f(A) = I, f(A) = A, $f(A) = A^2$, and $f(A) = A^3$. (Two of these are trivial! This is "bargain-basement induction": do a few small examples and see the pattern.)
- 3. Prove the identity for $f(A) = A^n$ for any $n \ge 0$ by induction: assume it works for A^{n-1} and show using the product rule that it therefore must work for A^n . (You already proved the trivial n = 0 base case in the previous part.)

Remark: Once it works for any A^n , it immediately follows that it works for any f(A) described by a Taylor series, such as $\exp(A) = I + A + A^2/2 + A^3/6 + \cdots + A^n/n! + \cdots$, since such a function is just a linear combination of A^n terms.

4. Prove the identity for $f(A) = A^{-1}$: since we know (from class) that $f'(A)[\delta A] = -A^{-1} \delta A A^{-1}$, plug this into the right-hand side of the formula above and show that it is the inverse of M (multiply by M and show you get I).²

¹The result is easiest to show when f(A) has a Taylor series (is "analytic"), and in fact you will do this below, but Higham (2008) shows that it remains true whenever f is 2m-1 times differentiable, or even just differentiable if A is "normal" ($AA^T = A^TA$).

²This is a special case of the famous "Schur complement" formula for the inverse of a 2×2 block matrix.