

امنیت داده و شبکه

رمزنگاری نامتقارن (کلید عمومی)

فهرست مطالب

- □ مبانی رمزنگاری کلید عمومی
- □ مقایسه با رمزنگاری سنتی و متقارن
 - □ کاربردهای رمزنگاری کلید عمومی
 - □ الگوريتم رمز RSA
 - □ الگوريتم تبادل كليد ديفي-هلمن
 - □ الگوريتم رمز الجمل

مباني رمزنگاري كليد عمومي

- □ رمزنگاری کلید عمومی اساساً با انگیزه رسیدن به دو هدف طراحی شد:
 - حل مساله توزیع کلید در روشهای رمزنگاری متقارن
 - امضای دیجیتال
 - دیفی و هلمن اولین راه حل را در ۱۹۷۶ ارایه دادند.

رمزنگاری کلید عمومی

- □ کلیدهای رمزگذاری و رمزگشایی متفاوت اما مرتبط هستند.
- □ رسیدن به کلید رمزگشایی از کلید رمزگذاری از لحاظ محاسباتی ناممکن است.
 - □ (در حفظ محرمانگی) رمزگذاری امری همگانی است و اساساً نیازی به اشتراک گذاشتن اطلاعات محرمانه ندارد.
 - □ (در حفظ محرمانگی) رمزگشایی از طرف دیگر امری اختصاصی بوده و محرمانگی پیامها محفوظ میماند.

نمادها و قراردادها

- □ **کلید عمومی:** کلید رمز گذاری (در حفظ محرمانگی)
 - این کلید را برای شخص A با PU_a نشان می دهیم.
- □ **کلید خصوصی:** کلید رمزگشایی (در حفظ محرمانگی)
 - این کلید را برای شخص A با PR_a نشان میدهیم.

نیازمندیهای رمزنگاری کلید عمومی

- از نظر محاسباتی، تولید کلید خصوصی (PR_b) با دانستن کلید عمومی (PU_b) غیرممکن باشد.
 - ا بازیابی پیام M، با دانستن PU_b و PU_b غیرممکن باشد.
 - □ ویژگی تقارنی: از هر یک از کلیدها میتوان برای رمزکردن استفاده کرد. در این صورت از کلید دیگر برای رمزگشایی استفاده میشود.

$$M = D_{PR_h}[E_{PU_h}(M)] = D_{PU_h}[E_{PR_h}(M)]$$

رمزگذاری کلید عمومی

- □ برای رمزنگاری کلید عمومی گامهای زیر را برمیداریم:
- عر کاربر یک زوج کلید رمزگذاری و رمزگشایی تولید می کند.
- 2. کاربران کلید رمزگذاری خود را به صورت عمومی اعلان میکنند درحالی که کلید رمزگشایی مخفی میباشد.
- همگان قادر به ارسال پیام رمز شده برای هر کاربر دلخواه با استفاده از کلید رمزگذاری (عمومی) او هستند.
- 4. هر کاربر می تواند با کمک کلید رمزگشایی (خصوصی) پیامهایی که با کلید رمزگشایی کند. با کلید رمزگشایی کند.

رمزگذاری با کلید عمومی

رمزگشایی با کلید عمومی

فهرست مطالب

- □ مبانی رمزنگاری کلید عمومی
- □ مقایسه با رمزنگاری سنتی و متقارن
 - □ کاربردهای رمزنگاری کلید عمومی
 - □ الگوريتم رمز RSA
 - □ الگوريتم تبادل كليد ديفي-هلمن
 - □ الگوريتم رمز الجمل

مقایسه رمزنگاري متقارن و رمزنگاري کلید عمومي

مزايا

□ با این وجود از الگوریتمهای رمزنگاری با کلید عمومی سریعتر است.

جایگزینی یا تکمیل؟

از نظر کاربردی، رمزگذاری با کلید عمومی بیش از آنکه جایگزینی برای رمزگذاری متقارن باشد, نقش مکمل آن را برای حل مشکلات توزیع کلید بازی میکند.

سوء برداشت!

- □ دو تصور اشتباه دیگر درباره الگوریتمهای کلید عمومی
 - رمزنگاری با کلید عمومی امنتر است!
 - □ در هر دو روش رمزنگاری امنیت به طول کلید وابسته است.
- مسأله توزیع کلید در رمزنگاری با کلید عمومی برطرف شده است!
- □ چگونه مطمئن شویم کلید عمومی لزوما متعلق به شخص ادعاکننده است؟!
 - □ پس توزیع کلید عمومی آسانتر است، ولی بدیهی و بدون مشکل نیست.

فهرست مطالب

- □ مبانی رمزنگاری کلید عمومی
- □ مقایسه با رمزنگاری سنتی و متقارن
- □ کاربردهای رمزنگاری کلید عمومی
 - □ الگوريتم رمز RSA
 - □ الگوريتم تبادل كليد ديفي-هلمن
 - □ الگوريتم رمز الجمل

كاربردهاي رمزنگارى كليد عمومي

- □ رمزگذاری / رمزگشایی: برای حفظ محرمانگی
- □ امضاء رقمی: برای کنترل اصالت پیام و معین نمودن فرستنده پیام (پیوند دادن پیام با امضاء کننده) یا همان عدم انکار
- □ **توزیع کلید:** برای توافق طرفین روی کلید مخفی جلسه، قبل از برقراری ارتباط

جایگاه عملی رمزنگاری کلید عمومی

- □ کلیدهای این نوع از الگوریتمها بسیار طولانی تر از الگوریتمهای رمز متقارن هستند.
 - الگوریتم RSA با پیمانه ۱۰۲۴ بیتی امنیتی در حد الگوریتمهای متقارن با کلیدهای ۸۷ بیتی دارد.
 - □ سرعت الگوریتمهای کلید عمومی از الگوریتمهای رمزگذاری متقارن پایین تر است.
 - RSA تقریباً ۱۰۰۰ بار کندتر از رمزهای متقارن (با امنیت یکسان) است.

حملات به رمزنگاری کلید عمومی

- □ جستجوى فراگير (Brute force)
- □ محاسبه کلید خصوصی از کلید عمومی
- □ حمله پیام احتمالی (Probable-message attack)
 - مخصوص رمزنگاری کلید عمومی
- در صورت کوچک بودن پیام (مثلا پیام، یک کلید ۵۶ بیتی DES باشد) می توان همه کلیدهای ممکن DES را با کلید عمومی رمز کرد و کلید رمز شده را پیدا کرد.

فهرست مطالب

- □ مبانی رمزنگاری کلید عمومی
- □ مقایسه با رمزنگاری سنتی و متقارن
 - □ کاربردهای رمزنگاری کلید عمومی
 - □ الگوريتم رمز RSA
 - □ الگوريتم تبادل كليد ديفي-هلمن
 - □ الگوريتم رمز الجمل

كليات الگوريتم رمزنگاري RSA

□ توسط Rivest–Shamir –Adleman در سال ۱۹۷۷ در

□ مشهورترین و پرکاربردترین الگوریتم رمزگذاری کلیدعمومی

Public Key Cryptography Standards

- □ مبتنی بر توان رسانی پیمانهای
- 🗖 امنیت آن ناشی از دشواری تجزیه اعداد بزرگ
- \square مستندات مربوط به آن تحت عنوان PKCS استاندارد شده است.

Ronald Linn Rivest (1947 -)

Adi Shamir (1952 -)

Leonard Adleman (1945 –)

مبانی ریاضی RSA

- n اعداد نامنفی کمتر از \mathbb{Z}_n
- . مجموعه اعداد طبیعی کمتر از \mathbf{n} و اول نسبت به آن \mathbb{Z}_n^*

□ مثال:

$$\mathbb{Z}_{17} = \{\cdot, 1, 7, 7, 7, 6, \Delta, 6, 7, \lambda, 9, 1., 11\}$$

$$\mathbb{Z}_{1}^{*} = \{1, \Delta, Y, Y\}$$

نمادگذاري RSA

- n : ييمانه محاسبات
 - e □: نمای رمزگذاری
 - d □: نمای رمزگشایی
- \mathbb{Z}_n ییام، عدد صحیح متعلق به \square
- $C = M^e \mod n$ تابع :RSA: تابع تابع
 - $M = C^d \bmod n$ تابع معکوس: \square

مبانی ریاضی RSA

- p و p دو عدد اول میباشند. □
- اول است. $\phi(n)$ تعداد اعداد (کوچکتر از p(n) که نسبت به p(n)
 - □ کلید عمومی:{e,n}
- $\varphi(n) = (p-1).(q-1)$
- $gcd(\phi(n), e)=1, 1<e<\phi(n)$
- d.e=1 [mod $\phi(n)$], d=e⁻¹ [mod $\phi(n)$]
- $C = M^e \mod n, M < n$
- $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n = M \mod n$

روند تولید کلید در RSA

- 1. ابتدا دو عدد اول بزرگ p و p را به طور تصادفی انتخاب کن به $p \neq q$
- $\phi(n)=(p-1).(q-1)$ و p-1 و p-1 را محاسبه کن p-1 و p-1
- 3. عدد صحیح فرد e کوچکتر از $\phi(n)$ را به گونه ای انتخاب کن که $\gcd(e, \phi(n))=1$
 - $d \equiv e^{-1} [\text{mod } \phi(n)]$ را محاسبه کن d = 4.
 - 5. زوج PU=(e,n) را به عنوان کلید عمومی اعلام کن.
 - 6. زوج PR=(d,n) را به عنوان کلید خصوصی ذخیره کن.

قراردادها و پروتکل RSA

- □ هم فرستنده و هم گیرنده مقدار n را میدانند.
 - □ فرستنده مقدار e را میداند.
 - کلید عمومی : (n , e)
 - □ تنها گیرنده مقدار d را میداند.
 - کلید خصوصی : (n, d)
 - □ نیازمندیها:
 - محاسبه M^e و C^d آسان باشد.
- محاسبه d با دانستن کلید عمومی غیرممکن باشد.

RSA-مثال

p = 17, q = 11, n = p.q= 187

$$\phi(n) = 16.10 = 160$$
, pick e=7, d.e=1 [mod $\phi(n)$]
 \Rightarrow d = 23

روشهاي كارا براي محاسبه نما

- الگوریتمهای متفاوتی ابداع شده a^b (mod n) برای محاسبه است...
 - ا فرض کنید $b_k b_{k-1} ... b_0$ نمایش مبنای ۲ عدد $b_k b_{k-1} ... b_0$ باشد.
 - بنابراین خواهیم داشت:

$$a^b = a^{\sum_{b_i \neq 0} 2^i} = \prod_{b_i \neq 0} a^{2^i}$$

$$a^b \mod n = \left[\prod_{b_i \neq 0} a^{2^i}\right] \mod n = \left[\prod_{b_i \neq 0} \left(a^{2^i} \mod n\right)\right] \mod n$$

الگوريتم توان و ضرب

ر الطراحى نمود:
$$c \leftarrow 0; d \leftarrow 1$$
 for $i \leftarrow k$ downto 0 do $c \leftarrow 2.c$ \Longrightarrow c is prefix of b $d \leftarrow d^2$ mod n if $b_i = 1$ then $c \leftarrow c + 1$ $d \leftarrow (d.a) \mod n$ \Longrightarrow $d = a^c \mod n$ return d

مثال عددي الگوريتم توان و ضرب

اگر a و n با β بیت قابل نمایش باشند،

• نیاز به $O(\beta)$ عمل ریاضی

 $c \leftarrow 0$; $d \leftarrow 1$ for $i \leftarrow k$ downto 0 do $c \leftarrow 2.c$ $d \leftarrow d^2 \mod n$ if $b_i = 1$ then $c \leftarrow c + 1$ $d \leftarrow (d.a)$ mod nreturn d

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
c	1	2	4	8	17	35	70	140	280	560
d	7	49	157	526	160	241	298	166	67	1

Figure 9.8 Result of the Fast Modular Exponentiation Algorithm for $a^b \mod n$, where a = 7, b = 560 = 1000110000, n = 561

□ حمله آزمون جامع(Brute Force)

- طول کلید با پیدایش هر نسل جدید از پردازندهها افزایش مییابد، ضمن اینکه قدرت پردازشی هکرها زیاد میشود!
 - طول کلید معادل تعداد بیتهای پیمانه محاسبات (n) است.

□ حملات ریاضی

- φ(n) و در نتیجه محاسبه \blacksquare
- □ در حال حاضر سختی مساله فوق معادل سختی مساله تجزیه اعداد بزرگ حاصل از ضرب دو عامل اول است.
- الگوریتمهای مختلفی برای مساله تجزیه ارائه شده است (بهترین آنها LS است). \Box
 - □ در حال حاضر RSA با کلید ۱۰۲۴ تا ۴۰۹۶ بیت امن است.

Twenty Years of Attacks on the RSA Cryptosystem 1999, by Dan Boneh

- □ حمله زمانی
- زمان اجرای عملیات رمزگذاری یا رمزگشایی میتواند اطلاعاتی را در مورد کلید افشا کند.
 - □ راههای مقابله با حملات زمانی
 - استفاده از توان رساندن با زمان ثابت محاسباتی
 - اضافه کردن تاخیرهای تصادفی
 - قرار دادن اعمال اضافی و گمراه کننده در بین محاسبات

□ حمله كانال جانبي

- تاثیرات جانبی اجرای الگوریتم رمزگذاری یا رمزگشایی (مانند میزان توان مصرفی) می تواند اطلاعاتی را در مورد کلید افشا نماید.
- مثال: در الگوریتم ارایه شده در اسلایدهای قبل، هرگاه بیت b_i از کلید یک باشد، یک عمل ضرب انجام میشود که منجر به مصرف بالاتر میشود و زمانی که صفر باشد، مصرف کمتری دیده میشود.

□ راههای مقابله با حملات کانال جانبی

- حذف تاثیرات جانبی
- قرار دادن اعمال اضافی و گمراه کننده جهت تغییر تاثیرات جانبی

فهرست مطالب

- □ مبانی رمزنگاری کلید عمومی
- □ مقایسه با رمزنگاری سنتی و متقارن
 - □ کاربردهای رمزنگاری کلید عمومی
 - □ الگوريتم رمز RSA
- □ الگوریتم تبادل کلید دیفی –هلمن
 - □ الگوريتم رمز الجمل

الگوريتم ديفي-هلمن

- □ توسط Diffie و Hellman در سال ۱۹۷۶ ارائه شد.
 - □ برای تبادل کلید مورد استفاده قرار می گیرد.

Bailey Whitfield Diffie (1944 –)

Martin Edward Hellman (1945 –)

الگوريتم ديفي-هلمن

- ا طرفین بر روی مقادیر q و α توافق می کنند.
- یک عدد اول و α یک مولد برای این عدد است.
- □ امنیت روش مبتنی بر دشواری مسأله لگاریتم گسسته است.
 - مسأله لگاریتم گسسته: پیدا کردن x با داشتن مقادیر \square

 $p,\alpha,\alpha^x \mod p$

الگوريتم ديفي-هلمن

A

α, q : عمومی

B

مقدار تصادفی $\mathbf{X}_{\mathbf{A}}$ < \mathbf{q} مقدار تصادفی $^{\circ}$

مقدار تصادفي $\mathbf{X_B} < \mathbf{q}$ را انتخاب ميكفد

$$Y_A = \alpha^{X_A} \bmod q$$

$$Y_B = \alpha^{X_B} \mod q$$

$$K_{AB} = (Y_B)^{X_A} \bmod q$$

$$K_{AB} = (Y_A)^{X_B} \bmod q$$

 $lpha^{(X_A imes X_B)} \operatorname{mod} q$ کلید مشترک عبارت است از

حمله مرد میانی

□ مهاجم به عنوان کانال ارتباطی میان طرفین عمل می کند.

□ از نوع حملات فعال محسوب می شود.

□ الگوریتم دیفی-هلمن را تهدید می کند.

حمله مرد میانی

رفع مشكل تبادل كليد ديفي-هلمن

□ طرفین باید قبل از شروع پروتکل، یک کلید طولانی مدت (LTK) را به اشتراک گذاشته باشند.

LTK: Long-Term Key

- LTK مىتواند متقارن يا نامتقارن باشد.
- در حالت نامتقارن، طرفین کلید عمومی یکدیگر را دارند.
 - □ دیفی –هلمن احرازاصالت شده (ADH) Authenticated Diffie–Hellman
- و $lpha^{X_B}$ استفاده می شود. $lpha^{X_B}$ و LTK برای کنترل صحت
- در صورت کنترل صحت، مهاجم نمی تواند حمله مرد میانی را اجرا کند.

خاصیت محرمانگی پیشرو (Forward Secrecy)

- 🖵 گاه به آن PFS هم گفته می شود (Perfect Forward Secrecy).
- تعریف: در صورت لو رفتن LTK در زمان T، کلیدهای نشستی که قبل از زمان T تبادل شدهاند امن بمانند.

- □ ADH دارای خاصیت PFS است.
- از LTK فقط برای کنترل صحت و نه محرمانگی استفاده میشود.
 - محرمانگی کلید نشست وابسته به LTK نیست.

فهرست مطالب

- □ مبانی رمزنگاری کلید عمومی
- □ مقایسه با رمزنگاری سنتی و متقارن
 - □ کاربردهای رمزنگاری کلید عمومی
 - □ الگوريتم رمز RSA
 - □ الگوريتم تبادل كليد ديفي-هلمن
 - □ الگوريتم رمز الجمل

رمز الجمل (ElGamal)

- □ ابداع توسط الجمل، رمزنگاری مصری–آمریکایی، در سال ۱۹۸۵
 - در ایران بیشتر با نام «الجمال» شناخته میشود.
 - الجمل دانشجوی دکترای هلمن در دانشگاه استنفورد بود.

□ امنیت رمز الجمل مبتنی بر دشواری لگاریتم گسسته

طاهر الجمل (19۵۵ –)

توليد كليد الجمل

- lpha و q انتخاب پارامترهای عمومی \Box
- $1 < X_A < q$ -1 انتخاب عدد تصادفی X_A به گونهای که \square
 - $Y_A = \alpha^{X_A} \mod q$ محاسبه \square
 - X_A :کلید خصوصی \square
 - $\{q,\alpha,Y_A\}$: کلید عمومی \square

رمزگذاری و رمزگشایی الجمل

- $0 \le M \le q-1$ رمزگذاری پیام M که در آن Q = 0
 - \mathbb{Z}_{q} انتخاب عدد تصادفی r از \blacksquare
 - $k = {Y_A}^r \mod q$ تولید کلید یکبار مصرف
 - $C=(C_1,C_2)$ رمزگذاری پیام به صورت یک زوج \blacksquare

$$C_1 = \alpha^r \mod q$$
 $C_2 = kM \mod q$

رمزگذاری و رمزگشایی الجمل

- X_A با استفاده از کلید خصوصی $C=(C_1,C_2)$ با استفاده از کلید خصوصی \Box
 - $k = {C_1}^{X_A} \ mod \ q$ بازیابی کلید یکبار مصرف \square
 - $M=(C_2k^{-1})\ mod\ q$ رمزگشایی پیام

كاربردهاي برخي الكوريتمهاي كليد عمومي

تبادل کلید	امضاء رقمي	رمز گذاری / رمز گشایی	الگوريتم
\checkmark	√	√	RSA
√	×	×	Diffie- Hellman
×	√	×	DSS (بعداً معرفی خواهد شد)
√	×	√	ElGamal Encryption

ہایان

درستی RSA

□ Chinese Remainder Theorem

- If n_1 , n_2 , ..., n_k are pairwise relatively prime and $n = n_1 n_2 ... n_k$, then for all integers x and a:
- $x \equiv a \pmod{n_i}$ for i = 1, 2, ..., kif and only if $x \equiv a \pmod{n}$

□ Fermat's Theorem

If p is prime, $a^{p-1} \equiv 1 \pmod{p}$

درستی RSA

- Since e and d are multiplicative inverses modulo $\Phi(n) = (p-1)(q-1)$, So ed = 1 + k(p-1)(q-1)
- \square We prove that $M^{ed} = M \pmod{p}$, for all M
 - If M≠0 (mod p)
 - $M^{ed} = M (M^{p-1})^{k(q-1)} \pmod{p}$
 - $= M (1)^{k(q-1)} \pmod{p}$
 - $= M \qquad (mod p)$
 - □ If $M=0 \pmod{p}$, then $M^{ed} = M \pmod{p}$
- □ In the same way: $M^{ed} = M \pmod{q}$, for all M
- □ Thus: M^{ed} = M (mod n) based on Chinese remainder theorem