Skolémisation

Fonctions de skolémisation et herbrandisation

• Si Φ est atomique, $s(\Phi) = h(\Phi) = \Phi$;

• $s(\Phi \wedge \Phi') = s(\Phi) \wedge s(\Phi')$, $h(\Phi \wedge \Phi') = h(\Phi) \wedge h(\Phi')$;

• $s(\Phi \vee \Phi') = s(\Phi) \vee s(\Phi')$, $h(\Phi \vee \Phi') = h(\Phi) \vee h(\Phi')$;

• $s(\neg \Phi) = \neg h(\Phi)$. $h(\neg \Phi) = \neg s(\Phi)$:

• $s(\Phi \Rightarrow \Phi') = h(\Phi) \Rightarrow s(\Phi'), h(\Phi \Rightarrow \Phi') = s(\Phi) \Rightarrow h(\Phi')$;

• $s(\forall x.\Phi) = s(\Phi)$, $h(\forall x.\Phi) = h(\Phi)[f(x_1,...,x_n)/x]$, où $x_1,...,x_n$ sont les variables libres de $\forall x.\Phi$:

• $s(\exists x.\Phi) = s(\Phi)[f(x_1,\ldots,x_n)/x]$, où x_1,\ldots,x_n sont les variables libres de $\exists x.\Phi$, $h(\exists x.\Phi) = h(\Phi)$.

• Ensuite, une fois le calcul terminé :

Skolémisation : $\forall x_1, \dots, \forall x_n, s(\Phi)$, où x_1, \dots, x_n sont les variables libres de $s(\Phi)$;

Herbrandisation : $\exists x_1, \dots, \exists x_n, h(\Phi)$, où x_1, \dots, x_n sont les variables libres de $h(\Phi)$.

Skolémisation

Exemple

• Skolémisation de $\forall x. \exists y. \forall z. P(x, y, z)$;

• $s(\forall x. \exists y. \forall z. P(x, y, z)) =$ $s(\exists y. \forall z. P(x, y, z)) =$ $s(\forall z.P(x,y,z))[f(x)/y] =$ s(P(x, y, z))[f(x)/y] =P(x, y, z)[f(x)/y] =P(x, f(x), z);

• On obtient donc : $\forall x. \forall z. P(x, f(x), z)$.

D. Delahave

Automatisation en logique d'ordre 1

M2 Info. 2022-2023

21 / 29

Clausification

Principe

- On skolémise : on obtient une formule universelle $\forall \vec{x}.\Phi$;
- On élimine les quantificateurs, puis on met Φ en cnf.

Exemple

- $s(\neg((\forall x.P(x) \lor Q(x)) \Rightarrow P(a) \lor Q(a))) =$ $\neg (h((\forall x.P(x) \lor Q(x)) \Rightarrow P(a) \lor Q(a))) =$ $\neg (s(\forall x.P(x) \lor Q(x)) \Rightarrow h(P(a) \lor Q(a))) =$ $\neg (P(x) \lor Q(x) \Rightarrow P(a) \lor Q(a));$
- $\bullet \neg (P(x) \lor Q(x) \Rightarrow P(a) \lor Q(a)) =$ $\neg(\neg(P(x) \lor Q(x)) \lor P(a) \lor Q(a)) =$ $\neg(\neg(P(x) \lor Q(x))) \land \neg P(a) \land \neg Q(a)) =$ $(P(x) \vee Q(x)) \wedge \neg P(a) \wedge \neg Q(a)$:
- $S = \{P(x) \lor Q(x), \neg P(a), \neg Q(a)\}.$