Yushi (Gavin) Guan

Profile: https://gavinguan95.github.io/

P: 647-518-0082 E: yushi.guan@mail.utoronto.ca

EDUCATION

Master of Engineering, University of Toronto

September 2018 – June 2021

Major in Computer Engineering

CGPA 3.96/4.0

Bachelor of Applied Science, Engineering Science, University of Toronto

September 2013 - June 2018

Major in Robotics Engineering Graduated with High Honours, CGPA 3.76/4.0

TECHNICAL SKILLS

Proficient in: Python (PyTorch, Tensorflow), C++, C

- Experienced with: CMake, Matlab & Simulink, Perl, Shell Script, R, Verilog, MySQL
- Solid Understanding of and Hands-on Experience with:
 - Neural Network Hardware Acceleration, Inference Time Graph Optimizers
 - Computer Vision, Object Classification, Object Detection, Acceleration of CV Neural Networks on Hardware
 - Natural Language Processing, HMMs, RNNs, Transformers, BERT
 - Generative Adversarial Networks, DCGAN, Wasserstein GAN
 - Neural Network Security, Adversarial Attacks and Defenses, Data Confidentiality

RESEARCH EXPERIENCE

Synthetic Epilepsy Generation with Generative Adversarial Networks

Master of Engineering Research Project

May 2020 - Present

- Designed and trained Wasserstein GAN model for generation of synthetic multi-channel epilepsy signals for EU epilepsy dataset; Eliminating the dependency on large amount of real seizure
- The synthetic epilepsy signals reduced the false positive rate of seizure detection by 72.72% while maintaining 100% sensitivity
- Submitted to IEEE Neuro 2021

Visual Question Answer Generation using Visual-Linguistic Transformer

CSC2547 Current Algorithms and Techniques in Machine Learning

January 2020 – April 2020

- Modeled Visual Question Answering (VQA) as a generative task, enabling generation of novel answers instead of simple selection from predefined list, achieving 41.3% accuracy on VQA v2 dataset despite the lack of predefined answers
- Utilized faster RCNN for visual feature extraction; Trained Visual-Linguistic BERT for cross modality information flow; Implemented Attention based decoder for generation of novel answers

End to End ASR System with Automatic Punctuation Insertion

CSC2518 Spoken Language Processing

January 2019 - April 2019

- Implemented an Automatic Speech Recognition System with BiLSTM and CTC that transcribes texts and punctuations simultaneously in PyTorch; Reduced punctuation Slot Error Rate (SER) by 31.3% compared to the previous best-performing BiLSTM + Pause model
- Proposed the Damerau-Levenshtein Slot Error Rate (DLev-SER) metric that can evaluate punctuation transcription accuracy amongst imperfect word alignment

Adversarial Defense and Detection using Quantized NNs with Inference Time Dropout

ECE1784 Trustworthy Machine Learning

September 2019 - December 2019

- · Demonstrated Quantized NNs with lower bit-widths improve classification accuracy on adversarial inputs. Monte Carlo Simulation via randomized dropout further improves the accuracy
- · Showed that Quantized NNs with higher bit-widths are more effective for detecting adversarial inputs due to the larger difference in uncertainties between the clean and adversarial inputs
- Achieved 82.4% and 93.9% detection accuracy for FGSM and JSMA adversarial inputs respectively

Road Path Planning for Autonomous Vehicles with Improved Intersection Considerations

Engineering Science Robotics Undergraduate Thesis

September 2017 - April 2018

- · Developed API for location search and path-finding via QGIS on North America map
- Proposed new path-finding objectives that consider vehicle direction and reduces exposure to hazards due to left-turns and U-turns

Automatic Reprogramming of Stratasys Chips for Filter Reloading

Summer Research Exchange, University of Liverpool, the UK

June 2015 - August 2015

- Developed Python programs on Raspberry Pi that writes and reprograms Stratasys cartridge chips through Maxim 1-wire
- Completed 3D models with PTC Creo and Created an integrated hand-held device for easy reprogramming of Stratasys chips in labs

INDUSTRY EXPERIENCE

Deep Learning Acceleration Engineer

Intel, Toronto, Canada

July 2018 - Present

- Implemented graph compiler support for General Matrix-Matrix Multiplication (Gemm) and Attention mechanism on Intel FPGAs; Enabled Gemm computation via utilizing Convolution Engines on chip
- Debugging and optimizing graph compiler for object classification and object detection neural networks
- · Improved CMake files for stable and scalable build flows; Performance benchmark with MLPerf

Software Engineer

Self Driving Car AutoDrive Team, University of Toronto

August 2017 - December 2018

- Enabled acceleration of ResNeXt, YOLO topologies on Intel FPGA through Intel OpenVINO framework
- Integrated Bumblebee stereo camera and Grasshopper camera drivers into Robotics Operating System, performed testing and verification of sensors' outputs

Graphics Card Test Automation Intern

AMD, Markham, Canada

May 2016 - August 2017

- · Implemented command broadcasting, test platform reboot, file transferring, and other features for a graphics card test automation tool in C++ to reduce manual testing effort
- Developed a Python program to parse txt, YML, and XML test results into SQL database

COMPETITION and AWARDS

Winner, UTEC Senior Design

University of Toronto Engineering Competition

January 2016

Achieved 1st place amongst 20 teams, designed an infrared remote-controlled robot

Designer, Fully-Automated Connect-4 Playing Robot

AER201 Engineering Science Engineering Design

January 2015 - April 2015

 Top 3 amongst 50 teams, Designed and built a fully-autonomous robot that collects ping-pong balls from the field and plays connect-4 with them

Master of Engineering – Department of Electrical and Computer Engineering CGPA 3.96				
ECE2500Y	Master of Engineering Project	IPR		
CSC2516H	Neural Networks and Deep Learning	A+		
CSC2547H	Current Algorithms & Techniques in Machine Learning	A+		
ECE568H	Computer Security	A+		
ECE1784H	Trustworthy Machine Learning	Α		
APS1051H	Portfolio Manage. Praxis Under Real Market Constraints	A+		
CSC2518H	Spoken Language Processing	A+		
ECE552H1	Computer Architecture	Α		
APS1501H	Leadership and Leading in Groups and Organizations	A-		

•	ering Science – Robotics Engineering raduated with High Honours		
AER521H1	Mobile Robotics & Perception	86	Α
CSC401H1	Natural Language Computing	88	Α
ESC499Y1	Thesis	89	Α
JRE300H1	Foundations of Accounting & Finance	92	A+
MIE443H1	Mechatronics System: Design & Integration	88	Α
ECE470H1	Robot Modeling and Control	82	A-
ECE557H1	Systems Control	88	Α
JRE410H1	Markets & Competitive Strategy	88	Α
ROB501H1	Computer Vision for Robotics	88	Α
AER372H1	Control Systems	88	Α
CSC384H1	Introduction to Artificial Intelligence	91	A+
CSC411H1	Machine Learning	89	А
ECE353H1	Systems Software	84	A-
MIE346H1	Analog & Digital Electronics for Mechatronics	89	Α
AER301H1	Dynamics	90	A+
CHE374H1	Economic Analysis & Decision Making	91	A+
CSC263H1	Data Structures & Analysis	89	Α
MIE342H1	Circuits with Appl. to Mechanical Eng. Sys.	94	A+
ROB301H1	Introduction to Robotics	82	A-
ROB310H1	Mathematics for Robotics	99	A+
AER201H1	Engineering Design	84	A-
BME205H1	Biomolecules and Cells	88	Α
ECE259H1	Electricity and Magnetism	94	A+
HPS100H1	Intro History and Philosophy of Science	85	Α
PHY294H1	Quantum and Thermal Physics	85	Α
STA286H1	Probability & Statistics	89	Α
AER210H1	Vector Calculus & Fluid Mechanics	91	A+
CHE260H1	Thermodynamics	91	A+

ECE253H1	Digital & Computer Systems	80	A-
ESC203H1	Eng. Society & Critical Thinking	79	B+
MAT292H1	Calculus III	83	A-
PHY293H1	Waves and Modern Physics	83	A-
CSC190H1	Comp. Algor. & Data Structures	77	B+
ECE159H1	Fundamentals of Elec. Circuits	78	B+
ESC102H1	Praxis II	68	C+
MAT185H1	Linear Algebra	67	C+
MAT195H1	Calculus II	86	Α
MSE160H1	Molecules and Materials	85	Α
CIV102H1	Structures & Materials	98	A+
CSC180H1	Introduction to Computer Programming	92	A+
ESC101H1	Praxis I	57	D+
ESC103H1	Eng. Mathematics & Computation	82	A-
MAT194H1	Calculus I	91	A+
PHY180H1	Classical Mechanics	90	A+