

Actividades complementarias: geometría plana

Tema 1. Conceptos y definiciones básicas

 Encontrar la medida del suplemento de cada uno de los siguientes ángulos:

 100° , 80° , n° , 140° , $(180-n)^{\circ}$.

- 2. Si un ángulo mide el doble de su suplemento, encuentre su medida.
- 3. Cuatro veces la medida de un ángulo es 60°, mayor que dos veces la medida de su suplemento. ¿Cuánto mide el ángulo?
- **4.** Uno de los ángulos de un par vertical (ángulos opuestos por el vértice) mide 128°. Encontrar la medida de los otros tres ángulos que se forman.
- 5. Sean OA, OB, OC y OD semirrectas coplanares (del mismo plano), tales que ∠AOB=∠COD y ∠BOC=∠DOA. Demostrar que tanto OA y OC como OB y OD, son semirrectas opuestas.

(A - O - C colineales, B - O - D colineales)

- 6. Sean OX y OY las bisectrices de dos ángulos agudos adyacentes ∠AOB
 = α y ∠BOC= β, tales que ∠AOB-∠BOC=36°. Sea OZ la bisectriz del
 ∠XOY. Calcular la medida del ángulo que forman OZ y OB.
- **7.** Las semirrectas consecutivas OA, OB, OC y OD forman cuatro ángulos adyacentes consecutivos que son entre sí como 1, 2, 3, 4. Calcular dichos ángulos y los ángulos adyacentes consecutivos formados por sus bisectrices.
- 8. En un triángulo isósceles el ángulo entre las bisectrices de los ángulos de la base es igual al ángulo opuesto a la base, ¿cuáles son las medidas de los ángulos del triángulo?

9. Explique paso a paso por qué los ángulos θ, β y δ suman 180°.
 Sugerencia: Trace por uno de los vértices la paralela al lado opuesto; use paralelismo.

10. Las semirrectas OA y OB forman con la semirrecta OX los ángulos no adyacentes α y β . Probar que la bisectriz OC del \angle AOB forma con OX un ángulo $(\alpha+\beta)/2$

Tema 2. Triángulos y cuadriláteros

- 1. En un $\triangle ABC$ se traza la bisectriz \overline{AD} del $\angle A$, con D sobre \overline{BC} . Por cualquier punto E sobre el lado \overline{AB} se traza la paralela a \overline{AD} , que corta a la prolongación de \overline{CA} en F. justifique que el $\triangle AEF$ es isósceles.
- 2. Si el ángulo entre las bisectrices de los ángulos de la base de un triángulo isósceles es igual al ángulo opuesto a la base, ¿Cuánto mide cada uno de los ángulos del triángulo?
- 3. En un $\triangle ABC$, $\angle B = 80^{\circ}$ y $\angle C = 40^{\circ}$. Hallar los ángulos que forman:
 - a. Las alturas de dos en dos. (Cada pareja de alturas)
 - b. Las bisectrices de dos en dos. (Cada pareja de bisectríces)
- 4. Un triángulo tiene dos lados que miden 12 y 7 unidades, ¿será posible que el otro lado mida 5 unidades, 20 unidades o 10 unidades? ¿Sí o no, en cada caso, y por qué?
- 5. Se considera un paralelogramo ABCD tal que $\overline{CD} = 2.\overline{AD} \iff \overline{AD} = \frac{1}{2}\overline{CD}$. Se unen A y B con el punto medio M de \overline{CD} . Demostrar que el $\angle AMB$ es recto.

6. En un cuadrado ABCD se toman M sobre \overline{AD} y N sobre \overline{CD} con $\overline{AM} = \overline{DN}$. Demostrar que $\overline{AN} \perp \overline{BM}$.

- 7. Demostrar que las bisectrices de los ángulos de un paralelogramo forman un rectángulo.
- 8. Escriba en la línea en blanco, según el caso, siempre, algunas veces o nunca:
 - a. Las bisectrices de un par de ángulos suplementarios adyacentes ______ son perpendiculares entre sí.
 - b. Los suplementos de dos ángulos ______ son congruentes.
 - c. Las bisectrices de ángulos suplementarios ______ son perpendiculares.
 - d. Si los tres ángulos de un triángulo son congruentes con las partes correspondientes de otro triangulo, entonces los triángulos ______ son congruentes.
 - e. Una altura de un triángulo ______ es una mediana del triángulo.
 - f. Dos triángulos rectángulos son congruentes.
 - g. Un triángulo equilátero _____ es isósceles.
 - h. Una mediana de un triángulo ______ lo divide en dos triángulos congruentes.
- 9. En los ejercicios siguientes, demuestre H y T donde **H** significa Hipótesis y **T** significa Tesis.

- 10. Elaborar un ejemplo gráfico mostrando que no sería cierto un criterio de congruencia o igualdad de triángulos que sea L-L-A
- 11.En los ejercicios siguientes, demuestre H y T donde **H** significa Hipótesis y **T** significa Tesis.

Con la misma gráfica anterior

12. Ana Bárbara, Carmen, Dora y Eva acamparon en un terreno plano en las posiciones indicadas por A, B, C, D y E, respectivamente, en el diagrama que se muestra. Si m∠BAE = m∠ABD y m∠BDE = m∠AED, encuentra la distancia de Bárbara a Eva si la distancia de Ana a Dora es de 75 pies.

13. Los guardabosques Alicia, Benjamín, Claudia y Daría están ubicados en las estaciones indicadas por A, B, C y D, respectivamente, en el diagrama que se muestra. Si Alicia y Benjamín están, cada uno, a 3 millas de Claudia y a 2 millas de Darío, encuentra m∠DAC si m∠DBC = 23°.

14.

FIGURA PARA LOS EJERCICIOS 3 A 6

En los ejercicios 3-6, dado: $m \angle A = 75^{\circ}$, $m \angle B = 60^{\circ}$ y $m \angle D = 35^{\circ}$.

- 3. Encuentra m∠ACB y explica tu respuesta.
- Encuentra m∠E y explica tu respuesta.
- Encuentra m∠BCE y explica tu respuesta.
- 6. Encuentra la relación entre $m \angle A$, $m \angle B$ y $m \angle BCE$.

15.

DADO: $m \angle ACB = 90^{\circ}$, $m \angle CBD = 2(m \angle C)$, $m \angle BFA = 120^{\circ}$ $m \angle DBE = m \angle A$, AF = BF

ENCUENTRA: $m \angle A$, $m \angle ABF$, $m \angle DBC$ \forall $m \angle C$

16.

DADO: k || m

DEMUESTRA: $m \angle 3 = m \angle 1 + m \angle 2$

17.

DADO: C es el punto medio de \overline{BD} , m $\angle A = m\angle E$

DEMUESTRA: △ABC ≃ △EDC

18. Paralelogramo

1. Si m $\angle A = 50^{\circ}$ en $\square ABCD$, encuentra m $\angle B$, m $\angle C$ y m $\angle D$. Proporciona razones.

2. Si $m \angle 1 = 30^{\circ}$ y $m \angle 2 = 20^{\circ}$, encuentra

m∠3, m∠4, m∠5, m∠6, m∠7 y m∠8.

Proporciona razones.

- 3. El conjunto de todos los cuadrados, ¿es un subconjunto del conjunto de todos los rectángulos? ¿Por qué?
- 4. El conjunto de todos los cuadrados, ¿es un subconjunto del conjunto de todos los paralelogramos? ¿Por qué?
- 5. ¿Es posible que un rombo sea un rectángulo? ¿Por qué?
- 6. Si dos triángulos isósceles congruentes distintos tienen una base común, ¿qué tipo especial de paralelogramo forman?

19. Paralelogramo

Demuestra que el cuadrilátero MNPQ formado al unir los puntos medios consecutivos de cualquier cuadrilátero ABCD es un \square . (Sugerencia: Traza \overline{BD} y considera $\triangle ABD$, $\triangle BCD$

20. En la línea en blanco escribe la expresión siempre, algunas veces o nunca, según corresponda.

- a. La suma de las medidas de los ángulos de un triángulo _____ es 180°
- b. Las diagonales de un cuadrilátero _____ lo dividen en cuatro triángulos congruentes.
- c. Las diagonales de un trapezoide ______ son perpendiculares.
- d. Un trapezoide ______ es un paralelogramo.
- e. Un cuadrado ______ es un rombo.
- f. Un ángulo externo en la base de un triángulo isósceles _____es un ángulo obtuso.
- g. Una recta que uno los puntos medios de dos lados de un triángulo _____ es paralela al tercer lado.

- h. Si el número de lados de un polígono se duplica, la suma de las medidas de los ángulos externos de este polígono _____ cambia.
- i. Una diagonal de un rombo ______ es congruente a un lado.

21. Demostrar [use notación o escritura correcta]

Hipótesis:

E punto medio de AC, AD = EF y $AB \parallel EF$

Tesis:

 $\Delta ADE = \Delta EFC$

