Olho de Thoth

Detector de Deepfakes

Davi Nascimento Mattos 28 de maio de 2025

Resumo

Este trabalho apresenta uma evolução significativa do sistema *Olho de Thoth*, uma ferramenta híbrida que combina análise visual heurística, aprendizado de máquina e leitura de metadados para detectar vídeos com alta probabilidade de terem sido gerados por inteligência artificial. A nova versão inclui suporte a múltiplos modelos de detecção de deepfake (XceptionNet, EfficientNet, InceptionV3 e ResNet50), além de uma interface gráfica moderna desenvolvida com PyQt5 e exibição de resultados detalhados.

O sistema foi testado com sucesso em vídeos reais e sintéticos, incluindo exemplos gerados pelo modelo Veo da Google, obtendo bons resultados mesmo sem acesso a grandes bases de dados de treinamento. **Palavras-chave:** IA Generativa, Detecção de Deepfake, Visão Computacional, Sistema Híbrido, Mídia Sintética.

1 Introdução

O avanço das tecnologias de geração de mídia sintética, especialmente vídeos, trouxe consigo riscos significativos relacionados à desinformação e à segurança digital. Diante disso, surge o *Olho de Thoth*, um sistema híbrido capaz de analisar vídeos e identificar se há indícios de que foram criados por inteligência artificial.

A versão atualizada do sistema agora:

- Usa múltiplos modelos pré-treinados de visão computacional (XceptionNet, EfficientNetB0, InceptionV3, ResNet50)
 - Analisa todos os frames do vídeo automaticamente
 - Mostra logs em tempo real e barra de progresso
 - Integra os resultados dos modelos em uma decisão única e mais robusta
 - Apresenta os resultados com interface visual intuitiva

2 Metodologia

O sistema é composto por módulos independentes que avaliam diferentes aspectos do vídeo, culminando em uma pontuação global que indica a probabilidade de o vídeo ser gerado por IA.

2.1 Fluxo Geral do Sistema

O processo de análise ocorre na seguinte ordem:

1. Extração de Frames: O vídeo é decomposto em frames individuais.

- 2. Análise Facial e Microexpressões: Identifica falhas faciais e quantidade de piscadelas.
- 3. Estimativa de Nitidez: Mede a clareza das bordas usando o operador Laplaciano.
- 4. Detecção de Instabilidade Temporal (Jitter): Verifica tremores entre frames consecutivos.
- 5. Análise de Frequência Espacial (FFT): Avalia padrões de frequência nas imagens.
- 6. Classificação com Múltiplos Modelos de IA: Cada modelo analisa os frames e retorna sua confiança.
- 7. Leitura de Metadados: Detecta palavras-chave suspeitas nos metadados do vídeo.
- 8. Consolidação Final: Combina todos os indicadores em uma única decisão.

3 Fórmulas e Modelos Matemáticos

3.1 Eye Aspect Ratio (EAR) para Piscadas

A ausência ou anormalidade de piscadelas é um forte indício de origem sintética. Usamos a métrica EAR:

EAR =
$$\frac{\|p_2 - p_6\| + \|p_3 - p_5\|}{2\|p_1 - p_4\|}$$

Uma piscada ocorre quando o valor cai abaixo de 0.2. Um total menor que 2 piscadelas durante o vídeo aumenta a suspeita de vídeo gerado por IA.

3.1.1 Exemplo de cálculo

Para ilustrar o cálculo do EAR, consideraremos dois cenários: um olho aberto e um olho fechado.

Cenário 1: Olho Aberto

Considerando os seguintes pontos de referência hipotéticos para um olho aberto: $p_1 = (10, 10), p_2 = (12, 7), p_3 = (18, 7), p_4 = (20, 10), p_5 = (18, 13), p_6 = (12, 13)$

Calculamos as distâncias euclidianas:

$$||p_2 - p_6|| = \sqrt{(12 - 12)^2 + (7 - 13)^2} = \sqrt{0^2 + (-6)^2} = \sqrt{36} = 6$$

$$||p_3 - p_5|| = \sqrt{(18 - 18)^2 + (7 - 13)^2} = \sqrt{0^2 + (-6)^2} = \sqrt{36} = 6$$

$$||p_1 - p_4|| = \sqrt{(10 - 20)^2 + (10 - 10)^2} = \sqrt{(-10)^2 + 0^2} = \sqrt{100} = 10$$

Substituindo na fórmula do EAR:

$$EAR = \frac{6+6}{2 \times 10} = \frac{12}{20} = 0.6$$

Resultado Exemplo 1: Um EAR de 0.6 é um valor típico para um olho aberto, estando bem acima do limiar de 0.2.

Cenário 2: Olho Fechado (Piscada)

Considerando os seguintes pontos de referência hipotéticos para um olho fechado: $p_1 = (10, 10), p_2 = (12, 9.8), p_3 = (18, 9.8), p_4 = (20, 10), p_5 = (18, 10.2), p_6 = (12, 10.2)$

Calculamos as distâncias euclidianas:

$$||p_2 - p_6|| = \sqrt{(12 - 12)^2 + (9.8 - 10.2)^2} = \sqrt{0^2 + (-0.4)^2} = \sqrt{0.16} = 0.4$$

$$||p_3 - p_5|| = \sqrt{(18 - 18)^2 + (9.8 - 10.2)^2} = \sqrt{0^2 + (-0.4)^2} = \sqrt{0.16} = 0.4$$
$$||p_1 - p_4|| = \sqrt{(10 - 20)^2 + (10 - 10)^2} = \sqrt{(-10)^2 + 0^2} = \sqrt{100} = 10$$

Substituindo na fórmula do EAR:

$$EAR = \frac{0.4 + 0.4}{2 \times 10} = \frac{0.8}{20} = 0.04$$

Resultado Exemplo 2: Um EAR de 0.04 está abaixo do limiar de 0.2, indicando uma piscada. Se durante a análise de um vídeo, o número total de piscadelas detectadas for menor que 2, isso adiciona +1 ponto ao score final, aumentando a suspeita de deepfake.

3.2 Nitidez com Operador Laplaciano

A nitidez é medida pela variância do operador Laplaciano aplicado ao frame em escala de cinza:

$$f_m = \operatorname{Var}(\nabla^2 I)$$

Valores baixos de f_m (abaixo de 100) são considerados suspeitos.

3.2.1 Exemplo de cálculo

Seja um frame convertido em escala de cinza I, o cálculo pode ser implementado assim:

Para entender o resultado, vamos considerar dois exemplos:

Cenário 1: Frame Nítido

Resultado Exemplo 1: Após processar um frame de alta qualidade e bem focado, o valor de f_m obtido foi de 150.2. Como 150.2 \geq 100, este frame é considerado nítido e não contribui para a suspeita de deepfake neste critério.

Cenário 2: Frame Borrado/Pouco Nítido

Resultado Exemplo 2: Em um frame com pouca nitidez ou borrado (comum em deepfakes devido a artefatos de geração), o valor de f_m obtido foi de 45.7. Como 45.7 < 100, este frame é considerado suspeito em termos de nitidez, adicionando +1 ponto ao score final.

3.3 Análise de Tremor entre Frames (Jitter)

Medimos a diferença absoluta entre frames consecutivos:

$$diff_i = ||F_i - F_{i-1}||, \quad avg_{jitter} = \frac{1}{N-1} \sum_{i=1}^{N-1} diff_i$$

Nota: A soma vai até N-1 pois há N-1 diferenças entre N frames. Valores acima de 10 indicam instabilidade temporal incomum em vídeos reais.

3.3.1 Exemplo de cálculo

Suponha um vídeo com 5 frames, e as diferenças absolutas calculadas entre os frames consecutivos foram:

$$\operatorname{diff}_1 = \|F_1 - F_0\| = 5.2\operatorname{diff}_2 = \|F_2 - F_1\| = 7.8\operatorname{diff}_3 = \|F_3 - F_2\| = 11.5\operatorname{diff}_4 = \|F_4 - F_3\| = 14.1\operatorname{diff}_4 = \|F_4 - F_3\| = 14.1\operatorname{diff$$

O número de diferenças é N-1=5-1=4.

Calculamos a média do jitter:

$$avg_jitter = \frac{5.2 + 7.8 + 11.5 + 14.1}{4} = \frac{38.6}{4} = 9.65$$

Resultado Exemplo 1: O tremor médio calculado foi de 9.65. Como 9.65 < 10, este valor não é considerado suspeito para instabilidade temporal.

Cenário 2: Vídeo com Alto Jitter

Suponha outro vídeo onde as diferenças foram:

$$diff_1 = 8.0diff_2 = 12.5diff_3 = 15.0diff_4 = 9.5$$

$$avg_jitter = \frac{8.0 + 12.5 + 15.0 + 9.5}{4} = \frac{45.0}{4} = 11.25$$

Resultado Exemplo 2: O tremor médio calculado foi de 11.25. Como 11.25 > 10, este valor indica instabilidade temporal incomum, adicionando +1 ponto ao score final.

3.4 Análise de Frequência Espacial (FFT)

A Transformada Rápida de Fourier (FFT) é usada para medir a distribuição de frequências espaciais:

Magnitude Média =
$$\frac{1}{N} \sum_{i=1}^{N} 20 \log(\|F(I_i)\|)$$

Padrões atípicos podem revelar artefatos de upscale ou compressão comuns em vídeos sintéticos.

3.4.1 Exemplo de uso

Implementação prática com OpenCV:

```
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
f = np.fft.fft2(gray)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift))
mean_magnitude = np.mean(magnitude_spectrum)
```

Resultado Exemplo 1: Após a análise de FFT em um frame de um vídeo real, a Magnitude Média foi de 125.8. Este valor é considerado dentro da faixa esperada para vídeos reais.

Resultado Exemplo 2: Em um frame de um deepfake, onde podem existir padrões de repetição ou artefatos de compressão, a Magnitude Média pode ser, por exemplo, 180.5. Valores muito altos ou muito baixos, que se desviam significativamente da média de vídeos reais, podem indicar padrões incomuns e serem considerados suspeitos. A interpretação exata da "atipicidade" depende de um modelo de base ou de limiares definidos através de treinamento.

3.5 Classificação com Múltiplos Modelos de IA

Ao invés de usar apenas um modelo, o sistema agora utiliza os seguintes modelos pré-treinados:

- XceptionNet
- EfficientNetB0
- InceptionV3
- ResNet50

Cada modelo processa os mesmos frames, e suas saídas são combinadas para obter uma média ponderada da probabilidade de o vídeo ser fake.

IA Score Médio =
$$\frac{1}{M} \sum_{m=1}^{M} \text{score}_m$$

Se a média ultrapassar 60%, isso contribui diretamente para o score final.

3.5.1 Exemplo de cálculo

Vamos considerar dois exemplos de resultados dos modelos de IA.

Cenário 1: Alta Probabilidade de Deepfake

Suponha que os 4 modelos de IA retornaram as seguintes probabilidades de o vídeo ser fake para um determinado frame:

- XceptionNet: 75%

- Efficient Net
B0: 60%

- Inception V3: 80%

- ResNet50: 50%

O número de modelos (M) é 4.

IA Score Médio =
$$\frac{75\% + 60\% + 80\% + 50\%}{4} = \frac{265\%}{4} = 66.25\%$$

Resultado Exemplo 1: O IA Score Médio calculado foi de 66.25%. Como 66.25% > 60%, este critério contribui com +2 pontos para o score final.

Cenário 2: Baixa Probabilidade de Deepfake

Suponha que para outro vídeo, os modelos retornaram as seguintes probabilidades:

- XceptionNet: 30%

- EfficientNetB0: 45%

- InceptionV3: 20%

- ResNet50: 35%

O número de modelos (M) é 4.

IA Score Médio =
$$\frac{30\% + 45\% + 20\% + 35\%}{4} = \frac{130\%}{4} = 32.5\%$$

Resultado Exemplo 2: O IA Score Médio calculado foi de 32.5%. Como $32.5\% \le 60\%$, este critério não contribui com pontos para o score final.

3.6 Análise de Metadados

Usando o FFProbe, o sistema extrai os metadados do vídeo e procura palavras-chave como:

Presença dessas palavras nos metadados soma automaticamente 2 pontos ao score final.

3.6.1 Exemplo de Análise de Metadados

Cenário 1: Metadados Suspeitos

Suponha que os metadados de um vídeo extraído contenham a seguinte linha: encoder: Google Inc. / Lavf58.76.100

Neste caso, as palavras "Google"e "Lavf"são detectadas.

Resultado Exemplo 1: A presença dessas palavras nos metadados soma automaticamente +2 pontos ao score final, indicando uma alta probabilidade de ser um vídeo gerado por IA.

Cenário 2: Metadados Normais

Se os metadados de um vídeo real contiverem apenas informações padrão, como: encoder: Lavf58.20.100 creation $_time: 2024-05-20T10: 30:00.000000Z$

Nenhuma das palavras-chave suspeitas ("google", "ai", "synthetic", "fake") está presente.

Resultado Exemplo 2: Neste caso, nenhum ponto é adicionado ao score final por este critério.

4 Sistema de Pontuação Final

Para chegar a uma decisão, cada módulo contribui para uma pontuação global. Se o total for maior ou igual a 4, o vídeo é classificado como provavelmente gerado por IA.

Tabela 1. Citterios de l'ontaação			
Critério	Condição	Pontuação	
Anomalias Faciais	> 5 falhas	+2	
Piscadelas	< 2 piscadelas	+1	
Nitidez	$f_m < 100$	+1	
Instabilidade	jitter > 10	+1	
Probabilidade IA	$m\acute{e}dia > 60\%$	+2	
Metadados	Palavras-chave suspeitas	+2	

Tabela 1: Critérios de Pontuação

5 Versões Disponíveis do Projeto

O projeto Olho de Thoth foi desenvolvido em três versões distintas:

- Versão Base (Terminal): Código principal rodando no terminal, ideal para análise técnica profunda.
- Versão GUI (PyQt5): Interface gráfica intuitiva com logs em tempo real, barra de progresso e exibição de resultados consolidados.
- Versão Jupyter Notebook (.ipynb): Ideal para demonstrações interativas e prototipagem rápida.

Essas versões permitem flexibilidade no uso do sistema, seja em ambientes técnicos, educacionais ou forenses.

6 Interface Gráfica e Experiência do Usuário

O sistema agora conta com uma interface gráfica desenvolvida em PyQt5, com tema estilizado inspirado no conceito "Olho de Thoth", trazendo:

- Seleção de vídeo via janela

- Análise em tempo real com logs dinâmicos
- Barra de progresso durante a análise
- Resultado final formatado e destacado
- Visualização dos metadados em JSON com destaque de sintaxe
- A interface é leve, intuitiva e ideal tanto para uso técnico quanto forense.

7 Resultados e Análise Prática

O sistema foi testado com vídeos reais e sintéticos, incluindo amostras do modelo Veo da Google. Abaixo estão os resultados de uma análise típica:

Tabela 2: Exemplo de Resultado de Vídeo Gerado por IA

Métrica	Valor Obtido	Pontuação
Anomalias Faciais	3 frames	0
Piscadelas Detectadas	0	+1
Nitidez Média (f_m)	26.32	+1
Tremor Médio	4.92	0
Média de Probabilidade de IA	67.2%	+2
Metadados	"Google Inc.", "Lavf"	+2
Score Total	-	6 / 7
Classificação Final	-	Provavelmente Gerado por IA

8 Discussão

A nova versão do *Olho de Thoth* demonstrou eficácia superior à anterior, graças à utilização de múltiplos modelos de IA, permitindo maior resiliência e precisão. Além disso, a interface gráfica facilita o uso por usuários não técnicos.

8.1 Principais Melhorias

- Suporte a múltiplos modelos de IA
 - Análise completa de todos os frames do vídeo
 - Interface amigável e visualmente informativa
 - Feedback em tempo real com barra de progresso
 - Consolidação de resultados dos modelos

8.2 Limitações

- Depende de limiares ajustáveis manualmente
 - Análise facial pode falhar em vídeos sem rostos
 - Requer internet para download inicial dos pesos dos modelos

8.3 Trabalhos Futuros

- Adicionar exportação de relatórios em PDF/JSON
 - Implementar detecção de batimentos cardíacos e respiração com ROI
 - Integrar OCR para verificar textos falsificados
 - Criar versão portátil (.exe) com PyInstaller

9 Conclusão

Esta atualização do *Olho de Thoth* eleva o nível de sofisticação e confiabilidade do sistema de detecção de deepfakes. Combinando métodos heurísticos e modelos de aprendizado profundo, o sistema consegue identificar artefatos sutis que passariam despercebidos por uma análise humana simples. Mesmo diante de vídeos altamente realistas, como os gerados pelo Veo, o sistema conseguiu reunir evidências suficientes para classificar corretamente o vídeo como sintético.

Esse tipo de abordagem multifacetada é essencial para acompanhar o rápido avanço das tecnologias de síntese de vídeo.

Referências

Referências

- [1] Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. CVPR. arXiv:1610.02357.
- [2] Rossler, A., Cozzolino, D., Verdoolaege, G., Boato, G., Farid, H., & Otte, M. (2019). FaceForensics++: Learning to Detect Manipulated Facial Images. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
- [3] Google Research. (2020). *MediaPipe Face Mesh*. Disponível em: https://google.github.io/mediapipe/solutions/face_mesh.html
- [4] Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal of Software Tools.
- [5] FFmpeg Developers. (2024). FFmpeg Documentation. Disponível em: https://ffmpeg.org/ffmpeg-all.html
- [6] Abadi, M., et al. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.
- [7] Riverbank Computing. (2024). *PyQt5 Documentation*. Disponível em: https://www.riverbankcomputing.com/software/pyqt/intro
- [8] OpenAI. (2024). Sora: Video Generation Model. Disponível em: https://openai.com/research/sora
- [9] Google Research. (2024). Veo: High-Resolution Video Generation.

 Disponível em: https://blog.google/research/veo-video-generation/