

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Semantics –

- Model Checking and Semantic Entailment

04-10-2018 Sundar B. CS&IS, BITS Pilani 0

SEMANTICS: INTERPRETATION INVOLVING VARIABLES

Semantics: Interpretation: Variables

- Evaluating formulas with quantified variables:
 - e.g. $\forall X \exists Y \phi$,
- requires evaluation(s) of the sub-formula φ with
 - a value, say v1, used for all free occurrences of X and
 - a value, say v2, used for all free occurrences of Y
- How do we express this in our syntax?

Interpretation: Variables and Values

- Evaluating formula $\forall X \exists Y \phi$ requires evaluation(s) of the sub-formula ϕ with
 - a value, say v1, used for all free occurrences of X and
 - a value, say v2, used for all free occurrences of Y
- Can we express this as $\phi[v1/X][v2/Y]$?
 - Is substitution defined on (semantic) values?
 - Recall that ϕ [t/X] was defined as replacing free occurrences of **X** in ϕ with term **t** to get a new formula ϕ **1**
 - What is the difference between this and the evaluation intended above?
- Using substitution in this context for instance φ [v1/X][v2/Y] would only yield a new formula (i.e. not a value) !!
 - Why?

Semantics: Evaluation vs. Substitution

- Using substitution in the context of evaluation won't work!
 - e.g. consider the set of predicate logic formulas with
 - **F** = {*succ*, *zero*} where *zero* is a constant and *succ* is a unary function, and **P** = { = }:
 - What are the formulas you can write in this language?
 - e.g. $\forall X \phi$ where ϕ is defined as \neg (succ(X) = zero)
- Now define a model for F,P: e.g.
 - The universe: set of natural numbers
 - **zero** has the meaning $\underline{0}$ (of the Platonic world)
 - succ has the meaning <u>successor</u> (of the Platonic world)
 - = has the usual meaning
- What is the difference between the substitution $\phi[succ(succ(zero))/X]$ and trying to evaluate ϕ when X has the value 2?
 - Why is \(\phi[2/X]\) syntactically meaningless?

SEMANTICS: INTERPRETATION

Semantics: Interpretation: Need for Notation

Evaluating a formula such as $\forall X \exists Y \phi$: for each value v1 in U { for each value v2 in U { res = $\underline{\text{evaluate } \phi \text{ with } X=v1 \text{ and } Y=v2}$; if (res) then break; // get out of this loop else continue; if (res) then continue; We need notation else return false; for this! return true;

Interpretation: Lookup Tables - Definition

- We interpret formulas relative to an environment:
 - i.e. a context in which each variable has a specific value
- We need to define an environment:
 - we will use a *lookup table* (i.e. <u>a function from variables</u> <u>to values</u>)
 - to denote that some variables have been assigned specific values.
- A look-up table (or environment) is a function:
 - l: Var --> A where Var is the set of all variables (i.e. symbols) in a given formula and A is the universe in our (chosen) model.

Interpretation – Lookup Tables – Extension

```
In evaluating our example formula \forall X \exists Y \phi,
       we can use the lookup-table l where l(X) = v1 and l(Y) = v1
/* The evaluation will now look like this: */
for each value v1 in U {
    update l such that l(X) = v1;
    for each value v2 in U {
                                                      We need notation for
        update l such that l(Y) = v2
                                                        update(s) on a look-up
         res = \underline{\text{evaluate }} \phi \text{ with } \iota;
                                                        table!
         if (res) then break;
         else continue;
                                   We use l[X \mid -> a] to denote the <u>look-table</u>
    if (res) then continue;
    else return false;
                                 where variable X has been mapped to value a
                                                         and
                                            any other variable Y to L(Y)
return true;
```

Semantics: Interpretation: Notation

- Evaluating the formula $\forall X \exists Y \phi$, requires evaluation(s) of the sub-formula ϕ with
 - a value, say v1, for all free occurrences of X and
 - a value, say v2, for all free occurrences of Y
- This evaluation can then be denoted as $M =_{\lfloor [X]->v1][Y]->v2]} \phi$
 - which is read as
 - \$\phi\$ holds under the environment that maps \$\mathbf{X}\$ to \$\mathbf{v1}\$ and
 Y to \$\mathbf{v2}\$ in the model \$\mathbf{M}\$
 - i.e. φ evaluates to true when X maps to v1 and Y maps to v2 in the model M

Semantics: Model-Checks Relation

- Given a model **M** for a pair (**F**,**P**) and a given environment l, we define the **model-checks** relation **M** $|=_l \phi$ for each formula ϕ (by **structural induction**):
 - Induction Basis:
 - ϕ is of the form $p(t_1, t_2, ... t_n)$
 - for each i from 1 to n:
 - evaluate term t_i using M and l to obtain value a_i
 - M $|=_{L} p(t_1, t_2, ... t_n)$ holds iff $(a_1, a_2, ... a_n)$ is in p^{M}
 - where $\mathbf{p}^{\mathbf{M}}$ is the meaning of \mathbf{p} in model \mathbf{M}

• • •

Semantics – Evaluating Terms

- Define **evalTerm(t, M, l)** by structural induction on the definition of terms:
 - case t is a constant c :
 - return c_M
 - case t is a variable X :
 - return l(X)
 - case t is a function term of the form f(t₁, t₂, ... t_n)
 - return $f_M(evalTerm(t_1, M, l), evalTerm(t_2, M, l),$

•••

evalTerm(t_n,M, l))

Semantics: Model-Checks Relation – Induction Step

- Given a model **M** for a pair (**F**,**P**) and a given environment l, we define the model-checks relation $\mathbf{M} \mid =_{l} \phi$ for each formula ϕ (by **structural induction**):
 - Induction Basis:
 - ϕ is of the form $p(t_1, t_2, ... t_n)$

•••

- Induction Step:
 - ϕ is of the form $\forall X \psi$:
 - $\mathbf{M} =_{\iota} \phi$ holds \underline{iff} $\mathbf{M} =_{\iota[\mathbf{x}| \rightarrow \mathbf{a}]} \psi$ holds for all \mathbf{a} in \mathbf{A} where \mathbf{A} is the universe in \mathbf{M}
 - ϕ is of the form $\exists X \psi$
 - $\mathbf{M} \mid =_{l} \phi$ holds \underline{iff} $\mathbf{M} \mid =_{l[\mathbf{x}\mid ->\mathbf{a}]} \psi$ holds for some \mathbf{a} in \mathbf{A} where \mathbf{A} is the universe in \mathbf{M}

• • •

- Given a model M for a pair (F,P) and a given environment l,
 we define the model-checks relation M |= φ for each
 formula φ (by structural induction):
 - Induction Basis:
 - ϕ is of the form $p(t_1, t_2, ..., t_n)$: ...
 - Induction Step:
 - ϕ is of the form $\forall X \psi : ...$
 - ϕ is of the form $\exists X \psi : ...$
 - ϕ is of the form $\neg \psi$:
 - $\mathbf{M} =_{\iota} \mathbf{\phi}$ holds iff $\mathbf{M} =_{\iota} \mathbf{\psi}$ does not hold

• • •

- Given a model **M** for a pair (**F**,**P**) and a given environment l, we define the model-checks relation **M** $| =_{l} \phi$ for each formula ϕ :
 - Induction Basis:
 - ϕ is of the form $p(t_1, t_2, ..., t_n)$: ...
 - Induction Step:
 - ϕ is of the form $\forall X \psi : ...$
 - ϕ is of the form $\exists X \psi : ...$
 - ϕ is of the form $\neg \psi : ...$
 - ϕ is of the form $\psi 1 \wedge \psi 2$
 - M $=_{\perp} \phi$ holds iff M $=_{\perp} \psi 1$ holds and M $=_{\perp} \psi 2$ holds
 - ϕ is of the form $\psi 1 \vee \psi 2$
 - M $= \psi$ holds iff M $= \psi$ 1 holds or M $= \psi$ 2 holds
 - ϕ is of the form $\psi 1 \longrightarrow \psi 2$
 - $\mathbf{M} =_{\iota} \phi$ holds **iff** $\mathbf{M} =_{\iota} \psi \mathbf{2}$ holds whenever $\mathbf{M} =_{\iota} \psi \mathbf{1}$ holds

. . .

Model-Checks Relation

- Given a model **M** for a pair (**F**,**P**) and a given environment l, we define the model-checks relation **M** $| =_l \phi$ for each formula ϕ :
 - ϕ is of the form $p(t_1, t_2, ... t_n)$
 - evaluate each term **t**_i using **M** and l to obtain **a**_i;

$$M =_{l} p(t_1, t_2, ... t_n)$$
 holds iff $(a_1, a_2, ... a_n)$ is in p^M

- ϕ is of the form $\forall X \psi$:
 - $M = \psi$ holds iff $M = \psi$ holds for all **a** in **A**
- ϕ is of the form $\exists X \psi$:
 - M $|=_{\downarrow} \phi$ holds iff M $|=_{\lfloor [x] ->a \rfloor} \psi$ holds for some a in A
- ϕ is of the form $\neg \psi$:
 - $\mathbf{M} =_{\perp} \phi$ holds iff $\mathbf{M} =_{\perp} \psi$ does not hold
- ϕ is of the form $\psi 1 \wedge \psi 2$:
 - M $=_{\perp} \phi$ holds iff M $=_{\perp} \psi 1$ holds and M $=_{\perp} \psi 2$ holds
- ϕ is of the form $\psi 1 \vee \psi 2$:
 - M $=_{\perp} \phi$ holds iff M $=_{\perp} \psi 1$ holds or M $=_{\perp} \psi 2$ holds
- ϕ is of the form $\psi 1 \longrightarrow \psi 2$:
 - $\mathbf{M} =_{\iota} \phi$ holds iff $\mathbf{M} =_{\iota} \psi \mathbf{2}$ holds whenever $\mathbf{M} =_{\iota} \psi \mathbf{1}$ holds

Model-Checks Relation: Example

- Let F = { + } and P = { ≡ } and M a model for (F,P) be:
 ({ 0, 1, 2, 3, 4, 5, 6 }, addition modulo 7, congruent modulo 7)
- Check whether the following formula ϕ "model-checks":
 - $\forall X \forall Y \exists Z X + Y \equiv Z$
- $M =_{\{\}} \phi$ holds iff:
 - for each j from 0 to 6
 - for each **k** from 0 to 6
 - $M =_{\{X \mid -> j, Y \mid -> k\}} \exists Z X + Y \equiv Z \text{ holds}$
 - i.e. $M \mid =_{\{X \mid -> j, Y \mid -> k, Z \mid -> n\}} X + Y \equiv Z$ holds for some n = 0 to 6, for all j = 0 to 6, for all k = 0 to 6
 - i.e. $\mathbf{j} +_{7} \mathbf{k} = \mathbf{n} \pmod{7}$ holds for some \mathbf{n} and for any $0 \le \mathbf{j}$, $\mathbf{k} \le 6$

Model-Checks Relation: Example (continued)

```
Let F = \{ + \} and P = \{ \equiv \} and M a model for (F,P) be:
({ 0, 1, 2, 3, 4, 5, 6 }, addition modulo 7, congruent modulo 7)
   Check whether the following formula \phi "model-checks":
               \forall X \forall Y \exists Z X + Y \equiv Z
     modelChecks_M(\phi) { // \phi is \forall X \forall Y \exists Z X + Y \equiv Z
          for each j from 0 to 6 {
             for each k from 0 to 6 {
               for each n from 0 to 6 {
                    res = ((j+k)\%7 == n);
                    if (res) break;
               if (!res) return FALSE;
             if (!res) else return FALSE;
           return TRUE;
```

Model Checking

- Exercise:
 - Write an algorithm to define the model-checks relation i.e. an algorithm MC
 - that takes a model M, a look-up table l, and a predicate formula ϕ and
 - evaluates φ under M and l.
 - [Hints:
 - Identify suitable representation i.e. data structures for:
 - φ (e.g. a parse tree)
 - M (a set of values for the universe, a map for symbols in F and P)
 - •
 - Follow the inductive definition of |= to write MC recursively.
 - What assumptions do you need to make this algorithm terminate?

End of Hints]

SEMANTICS - SEMANTIC ENTAILMENT

04-10-2018

Semantic Entailment

- Let Γ be (a possibly infinite) set of formulas and let ψ be a formula
 - in predicate logic using functions and predicates in F and P respectively.
- We define a semantic entailment relation as follows:
 - If **M** is a model of (**F,P**), then we say that

```
\Gamma |=<sup>M</sup> \psi i.e. \Gamma entails \psi under model M iff for all environments (i.e. look-up tables) \iota, M |= \iota \psi holds whenever M |= \iota \phi holds for all \phi in \Gamma
```


Semantic Entailment

- Let Γ be (a possibly infinite) set of formulas and let ψ be a formula in predicate logic
 - using functions and predicates in F and P respectively.
- $\Gamma \mid = \psi$ holds *iff*
 - $\Gamma \mid =^{M} \psi$ for all models **M** for **F** and **P**

Semantic Entailment

- Recall:
 - we had a potential infinity in evaluating a formula using quantifiers
 - if the universe is infinite,
 - then we cannot write an algorithm (that terminates) to evaluate a formula in predicate logic because
 - we may have to evaluate the formula for each of the values a variable can assume
- Now we have another infinity involved:
 - To understand the meaning of a formula (i.e. <u>to evaluate a formula</u>):
 - one has to evaluate the formula under all possible models

