Policy Mirror Descent with Reversed KL Projection

Ruitong Huang

Joint work with: Jincheng Mei, Chenjun Xiao, and Dale Schuurmans

Borealis Al

Overview

- Background
 - Reinforcement learning
 - Policy gradient methods
 - REINFORCE
 - UREX
- Our Algorithms
 - PMD
 - REPMD
- 3 Experimental Results
 - Algorithmic tasks in OpenAl gym
 - Ablation Study

Reinforcement Learning

- MDP: finite actions $A_t \in \mathcal{A}$ and finite states $S_t \in \mathcal{S}$;
- Agent: policy $\pi_{\theta}(a_t|s_t)$, parametrized by θ ; Non-convex!
- Environment: reward $\mathbb{P}(R_{t+1}|A_t, S_t)$, and transition $\mathbb{P}(S_{t+1}|A_t, S_t)$;

[Image source: Sutton and Barto, Reinforcement Learning book]

Background Reinforcement learning 3 / 19

Reinforcement Learning

- WLOG, assume the state transition function is deterministic.
- State-action sequence: $\rho = (s_1, a_1, \dots, a_{T-1}, s_T)$;

Goal: Maximizing the expected reward

$$\max_{\theta} \mathbb{E}\left[R(\rho) \,|\, \pi_{\theta}\right]$$
 .

[Image source: Sutton and Barto, Reinforcement Learning book]

Background Reinforcement learning 4 / 19

Policy Gradient

Goal:
$$\max_{\theta} \mathbb{E}\left[R(\rho) \mid \pi_{\theta}\right] = \max_{\theta} \sum_{\rho} \mathbb{P}\left(\rho \mid \pi_{\theta}\right) R(\rho);$$

Compute the gradient: $\nabla f = f \nabla \log(f)$,

$$egin{aligned}
abla_{ heta} \mathbb{E}\left[R(
ho) \,|\, \pi_{ heta}
ight] &= \sum_{
ho}
abla_{ heta} \mathbb{P}\left(
ho | \pi_{ heta}
ight) R(
ho) = \sum_{
ho} \mathbb{P}\left(
ho | \pi_{ heta}
ight)
abla_{ heta} \log \mathbb{P}\left(
ho | \pi_{ heta}
ight) R(
ho) \ &= \mathbb{E}_{
ho}\left[
abla_{ heta} \log \mathbb{P}\left(
ho | \pi_{ heta}
ight) R(
ho)
ight] \end{aligned}$$

To compute $\nabla_{\theta} \log \mathbb{P}(\rho | \pi_{\theta})$:

$$abla_{ heta} \log \mathbb{P}\left(
ho | \pi_{ heta}
ight) =
abla_{ heta} \sum_{t=1}^{T-1} \log \pi_{ heta}(a_t | s_t); ext{ (Dynamics Independent!)}$$

REINFORCE

REINFORCE

Compute the gradient w.r.t. θ :

- Sample ρ_1, \ldots, ρ_M from the current π_θ ;
- Estimate the gradient $\mathbb{E}_{\rho}\left[\nabla_{\theta}\log\mathbb{P}\left(\rho|\pi_{\theta}\right)R(\rho)\right]$ by

$$\frac{1}{M} \sum_{\rho_i} R(\rho_i) \sum_{t=1}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t});$$

• Update θ .

REINFORCE with entropy regularization

Entropy regularization to encourage exploration:

$$\max_{\theta} \mathbb{E}\left[R(\rho) \,|\, \pi_{\theta}\right] + \tau \mathcal{H}(\pi_{\theta}) = \max_{\theta} \mathbb{E}\left[R(\rho) \,|\, \pi_{\theta}\right] - \tau \pi_{\theta} \log \pi_{\theta} \,.$$

UREX

UREX

Reward-guided exploration:

$$\max_{\theta} \mathbb{E}\left[R(\rho) \,|\, \pi_{\theta}\right] + \tau \pi_{\tau} \log \pi_{\theta}\,,$$

where $\pi_{\tau}(\rho) = \frac{1}{Z} \exp(\frac{1}{\tau} R(\rho))$.

- Encourages exploration, but emphasizes more on larger rewarded ρ ;
- May converge to poor local optima: estimate of π_{τ} is bad at the beginning of the training, thus it provides poor guidance;
- Difficult to interpret its fixed point (for a fixed τ), even in the simplex set:

$$\pi_{\theta}(\rho) = \frac{\tau \pi_{\tau}(\rho)}{\alpha - R(\rho)}; *$$

No theoretical justification in its performance.

 $^{^*\}alpha$ is the normalizer.

This work

- Typical analysis only focus on policy space.
- We focus on analysis in the parameter space.
 - One-layer neural network: $\pi_{\theta}(\cdot|s) = \operatorname{softmax}(X_s^{\top}\theta)$;
 - Fixed points analysis;
 - Theoretical guarantee in performances.

Our Algorithms

Our Algorithms 9 / 19

PMD

Mirror descent type regularization (trust region):

$$\max_{\theta} \mathbb{E}\left[R(\rho) \,|\, \pi_{\theta}\right] - \tau \mathcal{D}_{\mathsf{KL}}(\pi_{\theta} || \pi_{\theta_{\mathsf{old}}}).$$

- Essentially the same as TRPO;
- Our analysis is in the parameter space.

Projection view of PMD

$$rg\min_{\pi_{ heta} \in \Pi} D_{\mathsf{KL}}\left(\pi_{ heta} || \pi_{ au}^*
ight)$$

(Projection)

where $\pi_{\tau}^* = \arg\max_{\pi \in \Lambda} \mathbb{E}\left[R(\rho) \,|\, \pi_{\theta}\right] - \tau D_{\mathsf{KL}}(\pi_{\theta}||\pi_{\theta_{\mathsf{old}}})$ (Improvement)

Properties of PMD

If the projection step can be solved optimally,

Property 1: Monotonically improves the expected reward;

$$\mathbb{E}\left[R(\rho)\,\big|\,\pi_{\theta_{t+1}}\right] - \mathbb{E}\left[R(\rho)\,|\,\pi_{\theta_{t}}\right] \geq 0,$$

- Property 2: Its fixed points include the optimal policy in the parameter space.
- TRPO also has the monotonical improvement property, but only in the policy space;
- Poor local optima still exist: can be observed in simulation and real experiments;
- In practice, the projection step cannot be solved optimally, because it is non-convex in θ , even for 1-layer neural network.

Our Algorithms PMD 11 / 19

REPMD

$$\begin{split} & \arg\min_{\pi_{\theta} \in \Pi} D_{\mathsf{KL}} \big(\pi_{\tau,\tau'}^* \big| \big| \pi_{\theta} \big) \\ \text{where } & \pi_{\tau,\tau'}^* = \arg\max_{\pi \in \Delta} \mathbb{E} \left[R(\rho) \, \big| \, \pi_{\theta} \right] - \tau D_{\mathsf{KL}} (\pi_{\theta} || \pi_{\theta_{\mathsf{old}}}) + \tau' \mathcal{H}(\pi_{\theta}), \end{split}$$

with $\tau \to \infty$ and $\tau' \to 0$.

- Entropy regularization: encourages exploration to mitigate the local optima problem;
- Reversed entropy: convexifies the projection step in θ for the 1-layer neural network case, thus the projection step is solvable even in the parameter space.

Properties of REPMD

When using 1-layer neural network: $\pi_{\theta}(\cdot|s) = \operatorname{softmax}(X_s^{\top}\theta)$, REPMD satisfies

- Property 1: Fixed points include the optimal policy.
- Property 2: Monotonically improves the surrogate reward;

$$SR(\pi_{\theta_{t+1}}) - SR(\pi_{\theta_t}) \ge 0,$$

where
$$SR(\pi) = (\tau + \tau') \log \sum_{\rho} \exp \left(\frac{R(\rho) + \tau \log \pi(\rho)}{\tau + \tau'} \right)$$
.

Local optima still exist.

Behavior of $SR(\pi)$

- $SR(\pi) = \tau \log \sum_{\rho} \pi(\rho) \exp \left(\frac{R(\rho)}{\tau}\right)$, as $\tau' \to 0$;
- $SR(\pi) \to \mathbb{E}[R(\rho)|\pi]$, as $\tau \to \infty$ and $\tau' \to 0$.
- Landscape of $SR(\pi)$: X-axis is θ , Y-axis is reward.

Experiments

- Tasks:
 - Bandit simulation
 - OpenAI gym algorithmic tasks
 - Copy: ababaa → ababaa.
 - DuplicatedInput: aba → aabbaa.
 - RepeatCopy: abc → abccbaabc.
 - Reverse: aabc → cbaa.
 - ReversedAddition: Observe two numbers in base 3 in little-endian order on a $2 \times n$ grid tape: $120;221 \rightarrow 022$
- Reward:
 - Correct(+1); incorrect(-0.5 & terminate); idle(0); overtime(-1);
 - Only accumulative reward is available
- Observation: letter on the current position of the read head
- Actions: move the read head; write (some symbol or nothing);

Experiments

- Reward:
 - Correct(+1); incorrect(-0.5 & terminate); idle(0); overtime(-1);
 - Only accumulative reward is available
- Observation: letter on the current position of the read head
- Actions: move the read head; write (some symbol or nothing);

Experiments

- X-axis is number of sampled trajectories; Y-axis is reward;
- REINFORCE (red), UREX (green), and REPMD (blue);
- Bandit results averaged over 5 repetitions. Algorithmic task results averaged over 25 runs (5 repetitions \times 5 random seeds).

• REPMD (blue), REPMD w/o entropy (yellow), PMD with entropy (red), REPMD w/o projection (green).

Experimental Results Ablation Study 18 / 19

Thank you! Questions?