Лабораторная Работа №16

Задачи оптимизации. Модель двухстратегий обслуживания

Козлов В.П.

Российский университет дружбы народов им. Патриса Лумумбы, Москва, Россия

Докладчик

- Козлов Всеволод Павлович
- НФИбд-02-22
- Российский университет дружбы народов
- [1132226428@pfur.ru]

Выполнение лабораторной

работы

Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

Построение модели

Целью моделирования является определение:

- характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

Построение модели

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

```
GENERATE (Exponential (1.0.1.75)) : прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl 2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl 1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5.Obsl 1.Obsl 2 : плины очерелей равны.
 : выбираем произв. пункт пропуска
 : моделирование работы пункта 1
Obsl 1 OUEUE Other1 : присоединение к очереди 1
SEIZE punkt1 : занятие пункта 1
DEPART Other1 : выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 : освобожление пункта
TERMINATE ; автомобиль покидает систему
: молелирование работы пункта 2
Obsl 2 OURUE Other2 : присоелинение к очерели 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 : выход из очереди 2
ADVANCE 4.3 : обслуживание на пункте 2
RELEASE punkt2 : освобождение пункта 2
TERMINATE : автомобиль покилает систему
: задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
 : (7 лией х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 : остановить моделирование
START 1 : запуск процедуры моделирования
```

Figure 1: Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Отчет. Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Figure 2: Отчет. Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

```
punkt STORAGE 2
GENERATE (Exponential(1,0,1,75)); прибытие автомобилей
OUEUE Other:
ENTER punkt, 1
DEPART Other:
ADVANCE 4.3:
LEAVE punkt, 1;
TERMINATE :
GENERATE 10080:
TERMINATE 1:
START 1:
```

Figure 3: Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Figure 4: Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнение стратегий

Анализ результатов моделирования двух систем показывает, что первая модель способна обработать большее количество автомобилей. Однако стоит отметить, что во второй модели разница между числом поступивших и обслуженных машин меньше, что свидетельствует о более эффективной работе системы. Кроме того, коэффициент загрузки для второй модели достигает 1, что означает полное использование всех пропускных пунктов без простоев. Также показатели, связанные с длиной очередей и временем ожидания, во второй стратегии оказались ниже. Это позволяет считать вторую стратегию более предпочтительной.

Оптимизация модели двух стратегий обслуживания

Изменим модели под следующие критерии:

- коэффициента загрузки прпускных пунктов принадлежат интервалу [0.5; 0.95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Модель с одним пунктам (для обеи стратегий)

```
GENERATE (Exponential(1,0,1,75)) ; прибытие автомобилей
QUEUE Other;
SEIZE punkt: занятие пункта 1
DEPART Other;
ADVANCE 4,3;
RELEASE punkt:
TERMINATE ;
GENERATE 10080:
TERMINATE 1;
START 1;
```

Figure 5: Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Отчет. Модель с одним пунктам

Figure 6: Отчет. Модель с одним пунктам

Анализ

Здесь модель не проходит ни по одному из критериев, тк коэфиициенты загрузки, размер очереди и среднее время ожидания больше.

Модель для первой стратегии с 3 пропускными пунктами

```
GENERATE (Exponential(1.0.1.75)) : прибытие автомобилей
TRANSFER 0.33, go, Obsl 3;
go TRANSFER 0.5, Obsl 1, Obsl 2;
Obsl 1 QUEUE Other1;
SEIZE punkt1:
DEPART Other1:
ADVANCE 4.3:
RELEASE punkt1;
TERMINATE:
Obsl 2 QUEUE Other2;
SEIZE punkt2;
DEPART Other2:
ADVANCE 4,3;
RELEASE punkt2;
TERMINATE:
Obsl 3 OUEUE Other3:
SEIZE punkt3:
DEPART Other3;
ADVANCE 4.3:
RELEASE punkt3:
TERMINATE:
GENERATE 10080:
TERMINATE 1;
START 1:
```

Figure 7: Модель с тремя пунктами

Отчет. Модель для первой стратегии с 3 пропускными пунктами

Figure 8: Отчет. Модель с тремя пунктами

Анализ

Здесь сред кол-во автомобилей в очереди меньше 3 и коэффициента загрузки в нужном диапазоне. Однако сред время ожидания больше 4.

Модель для первой стратегии с 4 пропускными пунктами

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TRANSFER 0.5,a,b;
a TRANSFER 0.5, Obsl 1, Obsl 2;
b TRANSFER 0.5.Obsl 3.Obsl 4
Obsl 1 QUEUE Other1;
SEIZE punkt1:
DEPART Other1:
ADVANCE 4.3:
RELEASE punkt1:
TERMINATE:
Obsl 2 QUEUE Other2;
SEIZE punkt2:
DEPART Other2;
ADVANCE 4.3:
RELEASE punkt2:
TERMINATE;
Obsl 3 OURUE Other3:
SEIZE punkt3;
DEPART Other3:
ADVANCE 4.3:
RELEASE punkt3;
TERMINATE:
Obsl 4 OUEUE Other4:
SEIZE punkt4:
DEPART Other4:
ADVANCE 4,3;
RELEASE punkt4:
TERMINATE:
GENERATE 10080 .
```

Figure 9: Модель с четырьмя пунктам

Отчет. Модель для первой стратегии с 4 пропускными пунктами

Figure 10: Отчет. Модель с четырьмя пунктам

Анализ

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

Модель для второй стратегии с 3 пропускными пунктами

```
punkt STORAGE 3;
GENERATE (Exponential(1.0.1.75)) : прибытие автомобилей
OURUE Other:
ENTER punkt:
DEPART Other:
ADVANCE 4.3:
LEAVE punkt;
TERMINATE;
GENERATE 10080;
TERMINATE 1:
START 1;
```

Figure 11: Модель для второй стратегии с 3 пропускными пунктами

Отчет. Модель для второй стратегии с 3 пропускными пунктами

Figure 12: Отчет. Модель для второй стратегии с 3 пропускными пунктами

Анализ

Все критерии выполняются => модель оптимальна.

Модель для второй стратегии с 4 пропускными пунктами

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1,75)) : прибытие автомобилей
OUEUE Other:
ENTER punkt;
DEPART Other:
ADVANCE 4.3:
LEAVE punkt;
TERMINATE:
GENERATE 10080;
TERMINATE 1:
START 1:
```

Figure 13: Модель для второй стратегии с 4 пропускными пунктами

Отчет. Модель для второй стратегии с 4 пропускными пунктами

Figure 14: Отчет. Модель для второй стратегии с 4 пропускными пунктами

Анализ

В данной ситуации все критерии соблюдены, при этом время ожидания и среднее количество автомобилей оказываются ниже, чем во втором варианте стратегии с тремя пунктами. Однако уровень загрузки также снижается, что говорит о возможной избыточности четвёртого пункта пропуска.

Анализ

Таким образом, на основе проведённого анализа можно заключить, что оптимальное количество пропускных пунктов составляет три при втором типе обслуживания и четыре при первом.

Выводы

Реализовал с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.