# Reasoning with Compositional Concepts in the Probabilistic Language of Thought

**McNair Scholars Program Student Learning and Academic Success** 

UNIVERSITY OF CENTRAL FLORIDA

Laila Johnston<sup>1</sup>, Max Siegel<sup>2</sup>, Josh Tenenbaum<sup>2</sup>, Tobias Gerstenberg<sup>3</sup>



<sup>1</sup>Department of Mathematics, UCF; <sup>2</sup>Department of Brain and Cognitive Sciences, MIT; <sup>3</sup>Department of Psychology, Stanford University

Imagine a Tug of War Tournament



### The Probabilistic Language of Thought (PLoT)

Game 2

### Hypothesis 1

Humans reason about the world using concepts

strength, winner, team, player, laziness, pulling

### Hypothesis 2

Concepts are compositional

A team is made up of players

Team 1 = Alex +Jim + Sarah

# Hypothesis 3

Concepts are probabilistic

People aren't always lazy or not lazy

Maybe they are lazy 30% of the time

#### Concepts in a Probabilistic Language of Thought (Goodman et al. 2015)

# Tug of War PLoT Model



# Marginal Distributions for Experiment 3 by Question



### Tug of war PLoT model matches human intuitions strikingly well



### How sensitive is the PLoT model to parameter choices?

Parameter grid search over four parameters, all other parameters were dependent on one of these four

### Parameters Range

strength standard deviation [5, 10, 15, 20] pulling percentage [.1, .2, .3, .4, .5, .6, .7, .8, .9] normal effort prior [ .4, .5, .6, .7, .8, .9 ] close clear threshold [.1, .2, .3, .4, .5]

### Marginal Distributions by Experiment



#### **Alternative Models**

#### Large Language Models (GPT-3)

Is it possible for a model to have the same kind of flexibility and generalizability of human thought just through large amounts of data?

#### Exp1 trial where GPT-3 closely matches human intuitions

...How strong is player 1 on a scale of 0 to 100 based on the evidence below? In Game 1, player 1 competed against player 2 and player 1 won. In Game 2, player 2 competed against player 3 and player 2 won. In Game 3, player 2 competed against player 4 and player 2 won.

Player 1 is stronger than player 2, who is stronger than players 3 and 4. Therefore, player 1 is at least as strong as player 2, and is likely stronger. I would rate player 1 as a 90.

#### Exp3 trial where GPT-3 does not capture human intuitions

...How strong is player 1 on a scale of 0 to 100 based on the evidence below? In Game 1, player 1 competed against player 2 and player 1 won In Game 2, player 1 competed against player 3 and player 3 won.

Player 1 is 50% strong.

Player 1 won 2 out of 10 games in the past. Given this new evidence, on a scale of 0 to 100, how strong is player 1?

Player 1 is 80% strong.

#### GPT-3 Output vs. Average Participant Responses



#### Feature Based Models

Can features of the tug of war game accurately predict human judgments?

- # games lost
- # games won
- # players on team
- # players on opposite team
- Did player win game being asked about

#### Discussions & Future Work

#### Parameter Grid Search

- Parameters matter to some degree
- There isn't only one parameter setting that works
- But not the case that all of the parameter settings work

#### PLoT & Alternative Models

- PLoT model works well but need to complete evaluation of alternative models