

FIG. 1B PART ONE: TRIGGER REACTION

FIG. 2A

LJORITY	r (SEO 10 NO:73	MAJORITY LSEC ID NO:71 AT GXX GGCGAT GCTT CCCCT CTTT GAGCCCAAAGCCCGGGT CCT CCT GGT GGGCGGCCACCACCT GGCCT	
DNAPTAO DRAPTFL DRAPTTE	CSEQ 1D NO: 13 CSEQ 1D NO: 23 CSEQ 1D NO: 33	6	70 57 07
	MAJORITY	a ccecacottott ceccct gaaggest caccaccage gegesaaccest scaeses ctacs of	
	DRAPTAG DRAPTEL DRAPTTE	GA	140 137 140
	MAJORITY	CGCCAAGAGCCT CCT CAAGGCCCCT GAAGGAGGACGGGGACXXGGCGGTGXT CGT GGT CTTT CACGCCAAG	
	DNAPTAO DNAPTFL DNAPTFE		207 204 218
	MAJORITY	SCCCCCTCCTTCCSCCACGACGCCTACGAGGCCTACAAGGCGGGCCGGCCCCCCCC	
	DRAPTAQ DRAPTEL DRAPTTE		277 274 280
	MAJORITY	CCCGGCAGCT CGCCCT CAT CAAGGAGCT GGT CGACCT CGT GGGGCT T GGGGGGT CGAGGT CCCGGGCTA	
	ONAPTAO DNAPTFL DNAPTTH	B	347 344 350

FIG. 2B

C	417 414 420		487 484 490		557 554 560		627 624 630		584 691 700
COAGGCGCACGACCTXCT GGCCACCCT CBCCAAGAAGGCGGAAAAGGAAAAGGAGGGGTACGAGGTOCGCAT CCTC	j	<u>accecebaccocacet ctaccaset tertitedbaccbcategestet cetececesaset acter con con con con secon acter</u>		T CACCCCG GCGT GGCTTT GGGADAADTACGGCCT BAGGCCCGAGCAGT GGGT GGGTACCGCGCCCCT GGC	A	sre scaccet ceg acaacet eccesses caasseat esseageageage cocces cox caaset cot exas	С	GA GT G G G G G G G C G C G C C C C C C C	6
MAJORITY ESED ID NO:73	CSEG 10 NO:17 ESEG 10 NO:27 ESEG 10 NO:33	MAJORITY	DRAPTAU DRAPTEL DRAPTTR	MAJORITY	DRAPTEL DRAPTEL DRAPTER	MAJORITY	DRAPTAU DRAPTFI DRAPTTR	MAJORITY	GRAPTAO DRAPTEL DRAPTTR
MAJORITY	DRAPTAG DRAPTEL BRAPTTB								

FIG. 2C

1

)

	26 E		834 831 840		904 901 910		974 971 980		1041 1041 1050
7] TCCAGGCCCACATOBAXGACCTGAXGCTCTCCTGGGAGGTXTCCCAGGTGCGCACCGACCTGCCCTGGA	13 f 6.6. f k c. d.	Y GETGGACTICGCCAAGKGGGGGGGGGCCGAGGGGCTTAGGGCCTTICTGGAGGCTGGAGTTT		Y GEGABEET BETECHE GAGTICGG CETT CO GEGE CO CE CE CA GO CETT GEA GE CE CE CETT GE CE CE CE CE CE CE CE CE CE C	. А	r coga gos cottos tos sottics contices cos cos cos cos cos cos cos cos cos co		. COCCOCCAGGGAGGCCCCGGCCCCCCCCACACCCCTTTAXGGGCCTXAGGCACCTXAAGGAGGTG	T. 66 67
MAJORITY ESEO ID NO:73 TCCAG6	ESEQ 10 NO:13 ESEQ 10 NO:23 ESEQ 10 NO:33	MAJORITY	DRAPTAG DRAPTEL DRAPTTE	MAJORITY	DNAPTAO DNAPTEL DNAPTEN	MAJORITY	DRAPTAU DRAPTEL DRAPTER	MAJORITY	DHAPTA DHAPTH DHAPTH
MAJORITY	DRAPTAG DRAPTFL DRAPTTR								

FIG. 2D

MAJORITY	MAJORITY ESEC ID NO:73	cegeexct cot coccaaesacct seccettt teecect sabbbecct ksacct ext scccs seses	
ORAPTAO DNAFTFL GRAPTTE	ESEO 10 NO: 13 ESEO 10 NO: 23 ESEO 10 NO: 33	G. T	1128 1128
	MAJORITY	Accepat bot cot cecet acct cot coacect scaacecacececs acces as sees to be coeces of taces	
	DRAPTAG Braptri Brapttr		1184 1181 1190
	MAJORITY	BEGBEAGT GBACGGAGGAKGCBBBBBBBBBCCCT CCT XT CCGAGAGBCT CT T CCXGAACCT XXXGBAG	
	DRAPTEL DRAPTEL DRAPTTR	6	1254 1251 1260
	HAJORITY	COCETT. CAGGG BBBBBBBBBBBCT COTTT GSCTTTACCAGGREGT GGAGBABGCCCCTTT CCCGGGTCCT GG	
	DRAPTAQ DRAPTEL DRAPTIF	A. 6 A A	1324 1321 1330
	MAJORITY	CCCACAT 664666646666667XC66CT 66ACST 66CCTACCT CCAGGCCCTXT CCCT 66A66T 6GC6CA	
	DRAPTAG Drapte Draptte	66	1394 1391 1400

FIG. 2E

-. j

,

ţ

MAJORITY	MAJORITY [SEQ 10 NO.7]	GGAGAT CCGCCBCSTCGAGGAGGAGGTGTTCGGCCTGGGGGGGGCGACCCTTCAACCTCAACT CCCGGGGAC	
DRAPTAD DRAPTFL DRAPTTR	[SED 1D NO:1] [SED 1D NO:2] [SED 1D NO:3]	6. 6. 6	1464 1461 1470
	MAJORITY	CAGET GGAAAGGGT GCT CTTT GACGAGCT X GGGCTT CECECAT CGGCAAGACGGAGAAGACXGGCAAGC	
	DNAPTAD DNAPTFL DNAPTTR	66. 6	1534 1531 1540
	MAJORITY	BET CCACCAGC GCCGC GCC GCC GCC CCC X CGX GAGGCCCACCCCAT CGT CGAGAGAT CCT GCAGTA	
	DHAPTAG DHAPTEL DHAPTER	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	1604 1601 1610
	MAJORITY	CC BEBAOCT CACCAABET CAABAACACCTACAT XBACCCCCT BCCX BX GCT CGT CCACCCCAB CACGGGC	
	DRAPTAG DRAPTE DRAPTE	8	1674 1671 1680
	MAJORITY	CECCI CCACACCCCCTT CAACCAGACGCCACGGCCACGGGCAGGGCTTAGTAGT CCGACCCCAACCT GC	•
	DRAPTAO DRAPTFL DRAPTTR	g	1744 1741 1750

FIG. 2F

MAJORITY [SEG TO NO:7] A DNAPTAG [SEG 10 NO:1] . DNAPTEL [SEG 10 NO:2] .	AGARGAIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIG
. 7	STIGGI BOCCCT GEACTATAGCCAGATAGACCT CCGGGT CCT GGCCCACCT CT CCGGGGACGACCT C
	A
4	AT CC666TETT CCAGGGGGGGGGGGGCAT CCACACCCAGACCGCCAGCT GCATGTT CGCCGT CCCCCCG
	1954 15 1954 1954 1954 1955 1956
Ç	A GOCCOT BOA C C C C C C O B A T & C S C C S C C C C C C A A C C A T C A A C T T C S C C C T C T A C G C C A T B T C C B C
. ◄ .	A. 6.6. A T
cə	CEACCECCT CT CCCAGGG GG CT T GCCAT CCCCT ACGAGGGGGGGGGG
	2034

į

ARREAL BERKELL BERKT SCHOOL BERKELL BERKERE BERKELLE BERKELL BERKELT BERKET BE
CTT CAACAT GODGE CCACGCCCCCCCCCCCCCCCCCCCACCCAT BG BAAGCT CCCCACCCACCCAT BG BAAGCT CCCCACCCACCCACCCACCCACCCACCCACCCACCCA
66. 6. . 6. 6. . 6. 6. . 6. 6. . 6. 6. . 6. 6. . 6. 6. . 7. 6. . 6. 6. . 7. 6. . 8. 6. . 9. 6. . 10. 6. <t< td=""></t<>
A A

			2496	
ය		.	` `	` .
gecettebaggtebacet ceceat gegesarbact beet et ececeaasbagtag		ය		•
(2)		•	•	
₹		:	:	6
8		•	•	•
=		•	•	:
=		•	•	•
ະ		•	•	•
(3)		•	•	•
<u> </u>		:	•	:
		•	•	•
=		:	:	Ξ.
င္မ		•	•	•
3		•	•	:
		•	•	•
4		:	٠,	:
8		•	•	•
===		•	:	:
(E)		•	•	•
<u> </u>		•		
99		er.	:	•
		•	_:	•
3		:	2	:
ĆĐ		•	•	•
3		•	:	:
[•	٠	•
25		:		•
S		•	•	•
Ċ				
-		:	•	:
9		•	•	•
3		•	•	-
(2)	•:	•	•	•
ᄗ		•	•	•
دع		•	•	•
ᇙ		:	:	•
G	•			-
HAJORITY ESEQ 10 NO.73		HO: 13	He: 23	[SED 10 NO: 3]
		•		
		i	-	
SEC		SE	SE	SEL
₩			أبسا	ئے
BIT		IAB	訊	TIH
MAJE		DNAP	DHAPTFL	DHAP

FIG. 3A

**	ESED ID NO:87	MXAMIPLFEPKBRVLLVDGHHLAYRTFFALKGLTTSRGEPVQAVYGFAKSLLKALKEDG-DAVXVVFDAK
요ㅎ모	CSEO 10 NO:43 CSEO 10 NO:53 CSEO 10 NO:63	. RG
	MAJORITY	APSFRHEAYEAYKAGRAPTPEDFPROLAL! KELVDLLGLXRLEVPOYEADOVLATLAKKAEKEGYEVR! L
	TAO PRO TFL PRO TTR PRO	138 \$ 138 \$ 138 138 140
	MAJORITY	TABRDLYBLISDBI AVLHPEGYLI TPAWLWEKYGL RPEDWYDYRALXGDPSDHLPGVKGI GEKTAXKLLX
	TAO PRO TFL PRO TTR PRO	K
	MAJORITY	EWGSLENILKMIDBUKP XXREKI XAHMEDLXLSXXLSXVRTDLPLEVDFAXRREPDREGLRAFLERLEF
	TAQ PRO TFL PBO TTM PBO	P. P
	MAJORITY	GSLIHEFBLLEXPKALEEAPWPPPEGAFVGFVLSRPEPMMAELLALAARXGRYHRAXDPLXGLRDLKEV
	TAQ PRO TFL PRO TTR PRO	S

FIG. 3F

SERLFXNLXX	1A WG 418	HPFNLNSRD	488	PXLVHPRTG	. B. I 558 . A K 557 . S 560	AHLSODENL	628	VAFIERYFO	0698 780 700
AVLAL REGIDL XPGDOPMLLAYLL DPSNTTPEGVARRYGGEWTEDAGERAL LSERLFXNLXX	S 6. 9 A W6	LWI YXEVEKPISRVI AHME AT GVRI DVAYI OAL SLEVAEE! BRLEEEVFRLAGHPFNI NSRO	B	ELGLPAI GKTEKTGKRSTSAAVLEALREAHPI VEKI LOYRELTKLKNTYI DPLPXLVHPRTG	B. I. C.	TATATGRESSSOPNE ON! PVRTPLGOR! RRAFVAEEGWXLVALDYSO! EL RVLAHLSSOENE		DI HTOTASWMFGUPPEAVOPLMRRAAKTI NFGVLYGMSAHRLSOELAI PYEEAVAFI ERYFO	
LLDPSHTTPEGVARRY		V R I DV A Y I DA I SLEVA	62	LEAL REAHPI VEKI LO	- CG	PLGORI RRAFVAEEGN		RAAKTI NF GVL Y GMS	
GL DL XPGDOPML LAY	6. U. So	ekpi srvi ahme at 6		GKT EKT GKRST SAAVI		LSSSDPNL DNI PVRTI		SWAIF GUPPEAUOPLAA	9
RGLLAKOL		RLEGEERLL WLYXEV		OLERVIFDEL GLPA!		RLHTRFNOTATATGR		I RVF QE GRO! HT QTA!	ui .
Kajority (Seo 10 x0:8)	[SEQ 10 NO:4] [SEQ 10 NO:5] [SEQ 10 NO:6]	MAJORITY	TAG PRO TFL PRO TTR PRO	MAJORITY	TAO PRO TEL PRO TTH PRO	MAJORITY	TAG PRO TFL PRO TTR PRO	MAJORITY	TAO PRO TFL PRO
KAJORITY	TAO PRO TFL PRO TTM PRO								

4			833 831 835
SF PKYRAWI EKTLE EGBRBGYVETLF GRRRYVPOLNARYKSVBEAAE RMAFNMP V GGTAADL MKLAMVKL		MAJORITY FPRLXEMBARM LOVHOELVLEAPKXRAEXVAALAKEVMEBVYPLAVPLEVEVGXGEDWLSAKEX	E
MAJORITY ESEC ID NO:83 SFPKVRAWI	ESEG 10 10:43	MAJORITY	TAO PRO TRL PRO TTH PRO
MAJORITY	TAG PRG TFL PRG TTB PRG		

Genes for Wild-Type and Pol(-)DNAPTaq	Polymerase	Codons essential to polymerase	A-G	Pst / TGA	Nhe 1 TGA	TCA	Bam HI	Not /
	Coding Regions: 5' Nuclease	(mt)	FIG. 4B	FIG. 4C	FIG. 4D	FIG. 4E	FIG. 4F	FIG. 4G

Genes for Wild-Type and Pol(-) DNAPTfl

}

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 12A

}

FIG. 13B

Substrate RNA (46 nt) (SEQ ID NO:161)

5' A A GCUUGCA UGCCUGCA GGUCGA CUCUA GA GGA UCCCC 3'
3' CGT A CGGA CGT CCA GCT GA GA T CT CCT A GG 5'

30-0 (SEQ ID NO:20)

FIG. 13A

j

iG. 160

FIG. 18

FIG. 19A

L	A-Hairpin (SEQ ID NO:23)	Predicted cleavage site	T-Hairpin (SEQ ID NO:24)	Predicted cleavage site	
	5' CGGACGAAGCGAGACAGCGACACAG 5' Tau primer 3' 3' CAAAGACGACAGAGAGAACGGAGAA	5' CGGACGAACAGCGAGACAGCGACACAGGTACC A C S' Tau primer 3' CATGG T A CAAAGACGAGAGAGAACGGAGAA	5' GTTCTGCTGTGCGTCTCTCTTGCCTCTT S' Alpha primer 3' 3' CTGCTTGTTCGCTCTGTCGCTGTGTC	5' GTTCTGCTGTGTCGTCTCTTGCCTCTT GTACC GTACC S. Alpha primer 3' CATGG T G 3' CTGCTTTCGCTGTCGCTGTGTC	
	FIG. 20A				
L	Sequence of alpha primer: 6: GACGAAGCAAGCG 3:	Sequence of alpha primer: (SEQ ID NO:25)			
	FIG. 20B				
L	5. ACACAG 5. Tau primer 3' 3. CAAAGACGACAGCAGAAACGGAGAA FIG. 20C Cleaved A-Hair	5' ACACAG GTACC A C 3' CATGG T A NGAGAACGGAGAA Cleaved A-Hairpin	in.	5. CCTCTT A T GTACC 3. CATGG T G CTGCTTGTCGCTGTGTC CTGCTTGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCTGTCGTC	
J L		(SEQ ID NO:28) NIBILI HGIC!		(SEQ ID NO:27)	
		Muli	Rsal/NlalV Kpnl		
		BsmAl		BsmAl (SEQ ID NO:24)	
	5' GTTCTGCTGTGTCGTC	 3 CAAAGACGACACAGCAGAGAGAGAGAGAGAGAGAGAGAG	igtacctgtgtcgctgtctcgc ccatggacacagggacagagg	STIGITOGIC 3 GAACAAGCAGGC 5	
	FIG. 20D			A-Hairpin (SEQ ID NO:23)	

FIG. 22A

FIG. 22B

FIG. 24

FIG. 25A

FIG. 25B

FIG. 26B

* .. 32p

FIG. 27

FIG. 28A

FIG. 28B

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

STRAND			i' - B VSE (***		-SEI	VSE :	SCEI STRA		
ssDN/	18.7	: 2	422	5	<u>م</u> ص	2. C.S.	T.W.	44 CD	4 25	-	On On	25	,
250 ^{ng} 81	V -	4000		+	+	+	+	+	+			***	
	A 1	2	3	4	5	6	7	8	9	10	11	12	

FIG. 40

FIG. 41

FIG. 42

FIG. 43

FIG. 44

M 1234 M

FIG. 46

FIG. 47

FIG. 48

	_	_
(_	\supset
L	1	٦

5.GCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG 3.CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCCTGAAAGGTGTTCCCC L.100.8-1 (SEQ ID NO: 76) 5'GCTGACAAGAAGGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC 77) L.46.16-10 (SEQ ID NO:

5'GCTGACAGGAAGCTCGCTGAGATAGCAGGGACTTTCCACAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC 78) L.46.16-12 (SEQ ID NO: 5'GGCTGACAAGAAGGAAACTCGCTGAGACAGGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCCTGAAAGGTGTTCCCC 79) L19.16-3 (SEQ ID NO:

5'GCTGACAAGAAGGAAACTCGCTGAAACAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTTTGTCGTCCCTGAAAGGTGTTCCCC 80) L.CEM/251 (SEQ ID NO:

5'GCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCCTGAAAGGTGTTCCCC 81) (SEQ ID NO: 1.36.8-3

FIG. 49A

L.100.8-1 (SEQ ID NO:	(92	100 ATGTTACGGGGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCACTCTCT TACAATGCCCCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGTGAGAGA
L.46.16-10 (SEQ ID NO:	(22)	ATGTTATGGGGAGGAGCCGGTCGGGAACACCCCACTTTCT TACAATACCCCTCCTCGGCCAGCCCTTGTGGGTGAAGA
L.46.16-12 (SEQ ID NO:	78)	ATGTTATGGGGAGGAGCCGGTCGGGAACACCCCACTTTCT TACAATACCCCTCCTCGGCCAGCCCTTGTGGGTGAAGA
L19.16-3 (SEQ ID NO:	19)	ATGTTACGGGGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCCCCTCTCT TACAATGCCCCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGGGGGAGAGA
L.CEM/251 (SEQ ID NO:	80)	ATGTTACGGGGAGGTACTGGGAAGGAGCCGGTCGGGAACGCCCACTTTCT TACAATGCCCCTCCATGACCCTTCCTCGGCCAGCCCTTGCGGGTGAAGA
L.36.8-3 (SEQ ID NO:	81)	ATGTTACGGAGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCACTCTCT TACAATGCCTCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGGGGAGAGA

·. •

)

FIG. 49B

L.100.8-1	150 5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
L.46.16-10	5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
1.46.16-12	5'TGGTGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA3'ACCACATATTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCT
L.19.16-3	S'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
L.CEM/251	5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA3'ACTACATATTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCT
L.36.8-3	5ºTGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3ºACTACATATTTATAGTGACGTÄAAGCGAGACATAAGTCAGCGAGACGCCT

FIG. 49C

L.100.8-1	200 GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.46.16-10	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCTCCAGCACTAGCAGCTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC
L.46.16-12	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC
L.19.16-3	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC
L.CEM/251	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.36.8-3	GAGGCTGGCAGATTGAGCCCTAGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGATCCTCCAAGAGAGGTCGTGATCGTCCATC

FIG. 49D

L. 100. 8 -1 (SEQ ID NO: 76)	1 76)	3'TCGGACCCACAAGGGACCATCTG	250 14GCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 1TCGGACCCACAAGGGACCATCTGAGAGTGGTCGTGAACCGGCCACGACCC
L. 46.16-10	77)	5'AGCCTGGGTGTTCCCTGCTAGAC	'AGCCTGGGTGTTCCCTGCTAGACIICTCACCAGCACTTAGCCAGTGCTGGG
(SEQ ID NO: 77)		3'TCGGACCCACAAGGGACGATCTGA	'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAATCGGTCACGACCC
L. 46.16-12	78)	S'AGCCTGGGTGTTCCCTGCTAGAC	AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCAGTGCTGGG
(SEQ ID NO: 78)		3'TCGGACCCACAAGGGACGATCTG	TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGTCACGACCC
L. 19.16-3 (SEQ ID NO:	(62	3 2	'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC
L. CEM/251	80)	5'AGCCTGGGTGTTCCCTGCTAGACN	'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG'
(SEQ ID NO:		3'TCGGACCCACAAGGGACGATCTGA	'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC
L. 36.8-3	81)	5'AGCCTGAGTGTTCCCTGCTAAACT	AGCCTGAGTGTTCCCTGCTAAACITCTCACCAGCACTTGGCCGGTGCTGGG
(SEQ ID NO:		3'TCGGACTCACAAGGGACGATTTGA	TCGGACTCACAAGGGACGATTTGAGAGTGGTCGTGAACCGGCCACGACCC

HAIRPIN

FIG. 49E

300 CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCACCGAGGTGCGAACGAATTTCTGGAGAAGTTATTCGACGC	CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCACCGAGGTGCGAACGAATTTCTGGAGAAGTTATTCGACGG	CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGTGCGAACGAATTTCTGGAGAGTTATTCGACGG	CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCACCGAGGTGCGAACGAATTTCTGGAGAGTTATTTCGACGG	CAGAGTGACTCCACGCTTGCTTGCTTAAAGCCCTCTTCAATAAAGCTGCC GTCTCAGTGAGGTGCGAACGAATTTCGGGAGAGGTTATTTCGACGG	CAGAGCGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC
CAGAGTG	CAGAGTG GTCTCAC	CAGAGTGC	CAGAGTGG	CAGAGTGA GTCTCAGT	CAGAGCGG
L. 100. 8 -1 (SEQ ID NO: 76)	L. 46.16-10 (SEQ ID NO: 77)	L. 46.16-12 (SEQ ID NO: 78)	L. 19.16-3 (SEQ ID NO: 79)	L. CEM/251 (SEQ ID NO: 80)	L. 36.8-3 (SEQ ID NO: 81)

FIG. 49F

HAIRPIN

L.100.8-1	350 S'ATTTTAGAAGTAGGCCAGTGTGTGTTCCCATCTCTCTTAGCCGCCGCCTG 3'TAAAATCTTCATCCGGTCACACACAAGGGTAGAGAGGATCGGCGGGGGGAC	6 3 . C 5 .
1.46,16-10	5'ATTTTAGAAGTAÄGCCAGTGTGTGTTCCCATCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGGGGAC	, E ()
L.46.16-12	5'ATTTTAGAAGTAAGCCAGTGTGTGTTCCCATCTCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACAAGGGTAGAGAGGATCGGCGGGGGGAC	2 m C C C C C C C C C C C C C C C C C C
L.19,16-3	5'ATTTTAGAAGTAGGCTAGTGTGTGTTCCCATCTCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATCCGATCACACAAGGGTAGAGAGGATCGGCGGGGGGAC	- , s C 3 C 2
L.CEM/251	5'ATTT TAGAAG TAAGCTAGTGTGTGTTCCCA TCTC TCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGATCACACACAGGGTÄGAGAGGATCGGCGGGGGAC	G 3,
L.36.8-3	5'ATTTTAGAAGTAGGCTAGTGTGTGTTCCCATCTCTCTTAGCCGCCGCCTG 3'TAAAATCTTCATCCGATCACACACAGGGTAGAGAGGATCGGCGGGGGAC	G 3'

FIG. 49G

FIG. 50

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

FIG. 57

FIG. 58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64A

FIG. 64B

FIG. 65A

FIG. 65B

FIG. 66

FIG. 67

FIG. 68

FIG. 69

FIG. 70

5' CLEAVAGE SITE

FIG. 71

FIG. 72

FIG. 73

MUTANT WT 1 2 3

1 2 3 4 M

FIG. 74A

FIG. 74B

FIG. 75

•

FIG. 76

FIG. 77

FIG. 78

FIG. 79

1 2 3 4 5 6 7 8

FIG. 81

20	100	150
GAGTGTCGTG GAGTGTCGTG GAGTGTCGTG GAGTGTCGTG GAGTGTCGTA GAGTGTCGTA GAGTGTCGTA	CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC	TTGGAT-BAA TTGGAT-CAA TTGGAT-CAA GTGGATGIAA TTGGAG-CAA
GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT	CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT	666TCCTTTC 666TCCTTTC 666TCCTTTC 66GTCCTTTC 66GTCCTTTC
TCTGGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG	CCCGGGAGAG CCCGGGAGAG CCCGGGAGAG CCCGGGAGAG	CAGGACGACC CAGGACGACC CAGGACGACC CAGGACGACC CAGGACGACC CGGGAGGACT
GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG	6ACCCCCCT 6ACCCCCCT 6ACCCCCCT 6ACCCCCCT 6CCCCCCT	CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC
CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC	CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG	GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA
-	7.7	101
NO:121) NO:122) NO:123) NO:124) NO:125)		
(SEQ (SEQ (SEQ (SEQ (SEQ		
HCVI.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCV1.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCV1.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1

į

Ì

:

FIG. 82A

151 CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG 200 CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCGAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG CCCGCTCAAT GCCGGGCCAT TTGGGCGTGC CCCGCAAGA CTGCTAGCCG	201 AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCCT 250 AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGCGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT	251 GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC 282 GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTACCC CGGGAGGTCT CGTAGACCGT GC
HCV1.1	HCVI.1	HCVI.1
HCV2.1	HCV2.1	HCV2.1
HCV3.1	HCV3.1	HCV3.1
HCV4.2	HCV4.2	HCV4.2
HCV6.1	HCV6.1	HCV6.1

FIG. 82B

FIG. 83

FIG. 84

FIG. 85A

Į

SENSE STRAND

FIG. 86

ANTISENSE STRAND

FIG. 87

:

•	1638	(((EK10				1659
09	ACACATGCAA TGTGTACGTT	120		180 AATACCGCAT TTATGGCGTA	240 TGCCCAGATG ACGGGTCTAC	300 TGGTCTGAGA ACCAGACTCT	360 6CAGCAGTGG <u>CGTCGTC</u> ACC CGTCGTC
50	GGCAGGCCTA CCGTCCGGAT	110	AGT <u>GGCGGAC</u> TCACCGCCTG	170 AACGGTA GC T TTGCCATCGA	230 CCATCGGATG GGTAGCCTAC	290 GATCCCTAGC CTAGGGATCG	
40	GAACGCTGGC CTTGCGACCG	100	TTTGCTGACG AAACGACTGC	160 AACTACTGGA TTGATGACCT	GGGCCTCTTG CCCGGAGAAC	280 CCTAGGCGAC GGATCCGCTG	GGTCCAG
	GGCTCAGATT CCGAGTCTAA	06	AGCTTGCTTC TCGAACGAAG	150 GGAGGGGGAT CCTCCCCCTA	210 GGGGACCTTC CCCCTGGAAG	270 TAACGGCTCA ATTGCCGAGT	330 ACTGAGACAC TGACTCTGTG
	AGA GILLGAICLI GGCICAG AAATTGAGA GTTTGATCAT GGCICAGATT TTTAACTTCT CAAACTAGTA CCGAGTCTAA	80	AACAGGAAGA TTGTCCTTCT	140 ACTGCCTGAT TGACGGACTA	200 GACCAAAGAG CTGGTTTCTC	260 GTAGGTGGGG CATCCACCCC	320 CCACACTGGA GGTGTGACCT
10	AAATTGA <u>AGA</u> TTTAACTTCT	20	GTCGAACGGT CAGCTTGCCA	130 TGTCTGGGAA ACAGACCCTT	190 AACGTCGCAA TTGCAGCGTT	250 GGATTAGCTA CCTAATCGAT	310 GGATGACCAG CCTACTGGTC

FIG. 88A

770 780 780 GTGCGAGCA CACGCTTTCG CACCCCTCGT

740 750 760 GCGGCCCCT GGACGAAGAC TGACGCTCAG CGCCGGGGGA CCTGCTTCTG ACTGCGAGTC

730 GGTGGCGAAG CCACCGCTTC

370	380	390	400	410	420
GGAATATTGC	ACAATGGGCG	CAAGCCTGAT	GCAGCCATGC	CGCGTGTATG	AAGAAGGCCT
CCTTATAACG	TGTTACCCGC	GTTCGGACTA	CGTCGGTACG	GCGCACATAC	TTCTTCCGGA
430	440	450	460	470	480
TCGGGTTGTA	AAGTACTTTC	AGCGGGGAGG	AAGGGAGTAA	AGTTAATACC	TTTGCTCATT
AGCCCAACAT	TTCATGAAAG	TCGCCCTCC	TTCCCTCATT	TCAATTATGG	AAACGAGTAA
490	500	510	520	530	540
GACGTTACCC	GCAGAAGAAG	CACCGGCTAA	CTCCGTGCCA	GCAGCCGCGG	TAATACGGAG
CTGCAATGGG	CGTCTTCTTC	GTGGCCGATT	GAGGCACGGT	CGTCGGCGCC	ATTATGCCTC
550	560	570	580	590	600
GGTGCAAGCG	TTAATCGGAA	TTACTGGGCG	TAAAGCGCAC	GCAGGCGGTT	TGTTAAGTCA
CCACGTTCGC	AATTAGCCTT	AATGACCCGC	ATTTCGCGTG	CGTCCGCCAA	ACAATTCAGT
610	620	630	640	650	660
GATGTGAAAT	CCCCGGGCTC	AACCTGGGAA	CTGCATCTGA	TACTGGCAAG	CTTGAGTCTC
CTACACTTTA	GGGGCCCGAG	TTGGACCCTT	GACGTAGACT	ATGACCGTTC	GAACTCAGAG
670 GTAGAGGGG GTAGAATTCC CATCTCCCCC CATCTTAAGG		690 AGGTGTAGCG TCCACATCGC	690 700 AGGTGTAGCG GTGAAATGCG TAGAGATCTC TCCACATCGC CACTTTACGC ATCTCTAGAC	710 TAGAGATCTC ATCTCTAGAC	

ļ

FIG. 88B

900 TACGGCCGCA ATGCCGGCGT	960 GTGGTTTAAT CACCAAATTA	1020 CAGAGATGAG GTCTCTACTC	1080 CGTGTTGTGA GCACAACACT	1140	GCGGTCCGGC CGCCAGGCCG	1200 ACGTCAAGTC	ACGTCAAGTC ACGTCAAGTC TGCAGTTCAG
890 GCCTGGGGAG CGGACCCCTC	950 GGTGGAGCAT CCACCTCGTA	1010 CGGAAGTTTT GCCTTCAAAA	1070 GTCGTCAGCT CAGCAGTCGA	1130	TTTGTTGCCA AAACAACGGT	1190 ATG	ATG GGTGGGGATG CCACCCCTAC
880 TAAGTCGACC ATTCAGCTGG	940 CCGCACAAGC GGCGTGTTCG	1000 TTGACATCCA AACTGTAGGT	1060 CTGCATGGCT GACGTACCGA	1120 ACCC	<u>ACCC</u> TTATCC TGGGAATAGG	1180	ACTGGAGGAA TGACCTCCTT
870 GCTAACGCGT CGATTGCGCA	930 TGACGGGGC ACTGCCCCCG	990 TTACCTGGTC AATGGACCAG	1050 GAGACAGGTG CTCTGTCCAC	1110 AACGAGCGCA	AACGAGCGCA TTGCTCGCGT	1170	CCAGTGATAA GGTCACTATT
860 GGCTTCCGGA CCGAAGGCCT	920 TCAAATGAAT AGTTTACTTA	980 GCGAAGAACC CGCTTCTTGG	1040 CGGGAACCGT GCCCTTGGCA	1100 GC	TAAGTCCC <u>GC</u> ATTCAGGGCG	1160	AAGGAGACTG TTCCTCTGAC
850 CTTGAGGCGT GAACTCCGCA	910 AGGTTAAAAC TCCAATTTTG	970 TCGATGCAAC AGCTACGTTG	1030 AATGTGCCTT TTACACGGAA	1090	AATGTTGGGT TTACAACCCA	1150	ATG ACGTCAAGTC CGGGAACTCA AAGGAGACTG CCAGTGATAA ACTGGAGGAA GGTGGGGGAIG <u>ACGICAAGIC</u> GCCCTTGAGT TTCCTCTGAC GGTCACIATT TGACCTCCTT CCACCCCTAC TGCAGTTCAG
	880 T GGCTTCCGGA GCTAACGCGT TAAGTCGACC GCCTGGG A CCGAAGGCCT CGATTGCGCA ATTCAGCTGG CGGACCC	850 850 900 CTTGAGGCGT GCTTCCGGA GCTAACGCGT TAAGTCGACC GCCTGGGGAG TACGGCCGCA GAACTCCGCA CCGAAGGCCT CGATTGCGCA ATTCAGCTGG CGGACCCCTC ATGCCGGCGT 910 920 930 940 950 960 AGGTTAAAAC TCAAATGAAT TGACGGGGC CCGCACAAGC GGTGGAGCAT GTGGTTTAAT TCCAATTTTG AGTTTACTTA ACTGCCCCG GGCGTGTTCG CCACCTCGTA CACCAAATTA	CTTGAGGCGT GGCTTCCGGA GCTAACGCGT TAAGTCGACC GCCTGGGGAG TACGGCCGCA GAACTCCGCA CCGAAGGCCT CGATTGCGCA ATTCAGCTGG CGGACCCCTC ATGCCGCGCG AGGTTAAAAC TCAAATGAAT TGACGGGGGC CCGCACAAGC GGTGGAGCAT GTGGTTTAAT TCCAATTTTG AGTTTACTTA ACTGCCCCCG GGCGTGTTCG CCACCTCGTA CACCACAATTA 970 980 1000 1000 1010 1020 TCGATGCAAC GCGAAGAACC TTACCTGGTC TTGACATCCA CGGAAGTTTT CAGAGATGAG AGCTACGTTG CGCTTCTTGG AATGGACCAG AACTGTAGGT GCCTTCAAAA GTCTCTACTC	850 860 870 880 890 900 CTTGGGGGT GGTTGCGGT TAAGTCGACC GCCTGGGGAG TACGGCCGCAA GAACTCCGCA CCGAAGGCCT CGATTGCGCA ATTCAGCTGG CGGACCCTC ATGCCGCGC 910 920 930 940 950 960 AGGTTAAAAC TCAAATGAAT TGACGGGGC CGCACAAGC GGCGTGTTC ATGGTTTAAT TCCAATTTTG AGTTTACTTA ACTGCCCCC GGCGTGTTC CACCCTCGTA CACCAAATTA TCGATGCAAC GCGAAGAACC TTACCTGGTC TTGACATCCA CGGAAGTTT CAGCAATGAG AATGTGCCTT GGCAAGAACC TACCTGGTC TTGACATCCA GCGAAGATGAG GCCTTCAAAA AATGTGCCTT GGGAACCGT GAGCAGGTG CTGCATGGCT GTGTTCTACGT GTGTTCTACGT AATGTGCCTT GGGAACCGT GAGCAGGTG GTGCTTCAACGT GTGTTTGTGGA GTGTTTGTGGA	850 860 870 880 890 900 CTTGAGGCGT GCTTCCGGA GCTTAGCGCT TAAGTCGACC GCCTGGGGAG TACGGCCGCACACC GCCTGGGGGC GCGACCCCTC ATGCCGCGCACACC GCGACCCTC ATGCCGCGC ATGCCGCGC 950 950 960 </td <td>850 860 870 880 890 900 CTTGAGGCGT GGATACGGGT TAAGTCGAC GCCTGGGGAG TAGGGCCGCA GCATGGCCGCA GAGCCCCCC ATCGGCCGCA ATCGGCCGCA ATCGCCCCC GGACCCCTC ATGCCGCGC AGGTTTAAT ACGCTCAAAC ACGCACAAG GGGGCAAA GGGTGTTTAAT ACGCACAAG GGGGTGTTCG GCGCAAAATAA ACCCAAATTAAT ACGCACCCCG GGCGTGTTCG CCACCTCGTA CACCAAATTAAT ACCCAAAATTAAT ACGCAAAATTAAT ACGCACCCCG GGCGTGTTCG CACCACTCGTA CACCAAAATTAATAAT ACGCAAAATTAATACCCCGG GCGCTGTTCGAAATTAATACCCACGAAAAAATTAATACCCACGAAAAAAAA</td> <td>## 850</td>	850 860 870 880 890 900 CTTGAGGCGT GGATACGGGT TAAGTCGAC GCCTGGGGAG TAGGGCCGCA GCATGGCCGCA GAGCCCCCC ATCGGCCGCA ATCGGCCGCA ATCGCCCCC GGACCCCTC ATGCCGCGC AGGTTTAAT ACGCTCAAAC ACGCACAAG GGGGCAAA GGGTGTTTAAT ACGCACAAG GGGGTGTTCG GCGCAAAATAA ACCCAAATTAAT ACGCACCCCG GGCGTGTTCG CCACCTCGTA CACCAAATTAAT ACCCAAAATTAAT ACGCAAAATTAAT ACGCACCCCG GGCGTGTTCG CACCACTCGTA CACCAAAATTAATAAT ACGCAAAATTAATACCCCGG GCGCTGTTCGAAATTAATACCCACGAAAAAATTAATACCCACGAAAAAAAA	## 850

FIG. 88C

58-1

SB-3 SB-4

			•			
1260	AAGAGAAGCG TTCTCTTCGC	1320 AGTCTGCAAC TCAGACGTTG	1370 GAATGCCACG GTGAATACGT CTTACGGT <u>GC CACTTATGCA</u> GC CACTTATGCA	1440 AGAAGTAGGT TCTTCATCCA	1500 GAAGTCGTAA CTTCAGCATT	
1250	GGCGCATACA CCGCGTATGT	1310 TCCGGATTGG AGGCCTAACC		1430 GGGTTGCAAA CCCAACGTTT	1490 TGACTGGGGT ACTGACCCCA	1550 TA
1240	GGCTACACAC GTGCTACAAT CCGATGTGTG CACGATGTTA	1300 TGCGTCGTAG ACGCAGCATC	1360 TCGTGGATCA AGCACCTAGT	1420 CCATGGGAGT GGTACCCTCA	1480 TTGTGATTCA AACACTAAGT	1540 S ATCACCTCCT TAGTGGAGGA
1230		1290 CCTCATAAAG GGAGTATTTC	1350 TCGCTAGTAA AGCGATCATT	1410 GCCGTCACA CGGGCAGTGT	1470 SCTTACCACT GAATGGTGA	1530 CTGCGGTTGG GACGCCAACC
1220	TTA TTACGA <u>TTACGA</u> CCAG AATGCTGGTC	1280 AGCAAGCGGA TCGTTCGCCT	1340 GAAGTCGGAA CTTCAGCCTT	1400 TGTACACACC <u>ACATG</u> TGTGG ACATG	1460 TCGGGAGGC (AGCCCTCCCG	1520 GTAGGGGAAC CATCCCCTTG
1210	ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG	1270 ACCTCGCGAG TGGAGCGCTC	1330 TCGACTCCAT AGCTGAGGTA	1390 TCCCGGGCCT AGGGCCCGGA AGGGCCCGGA	1450 AGCTTAACCT TCGAATTGGA	1510 CAAGGTAACC GTTCCATTGG

1743

1743

. .

)

1

SB-3 SB-4

FIG. 88D

1) NO:158)OAAATTGAAGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCA NO:159)O ~TTTTTATGGAGAGTTTGATCCTGGCTCAGAGTGAACGCTGGCGGGGGTGCCTAATACATGCA NO:160)OTTTTATGGAGAGTTTGATCCTGGCTCAGGAGTGAACGCTGGCGGGGGGTGCCTAATACATGCA	60 AGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTGGCGGACGGG 62 AGTCGAACGATGAAGACGGGCTTGCTAGAAGTGGATTAGTGGCGGACGGG 62 AGTCGAACGATGAAGCTTCTAGCTTGCTAGAAGTGGATTAGTGGCGCACGGG 61 AGTCGAGCGAACGGACGAGGAAGCTTGCTTCTCTGATGTT-AGCGGCGGACGGG	TGAGTAA 114 TGAGTAATGTCTGGGA <u>-</u> AACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATA 114 TGAGTAAGGTATAGTTAATCTGCCCTACACAAGAGGACAACAGTTGGAAACGACTGCTAATA 113 TGAGTAACGCGGGATAACCTACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATA	175 CCGCATAACGTCGCAAGACCAAAGAGGGGGGGCCTTCG-GGCCTCTTG 176 CTCTATACTCCTGCTTAACACAAGTTGAGTAGG-GAAAGTTTTTCG 175 CCGGATAATATTTTGAACCGCATGGTTCAAAAGTGAAAGACGGTCTTGCTGTCA	221 CCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGA 221 GTGTAGGATGAGACTATATAGTATCAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGA 229 CTTATAGATGGATCCGCGCTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGA	283 TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTA 283 CGCTTAACTGGTCTGAGAGGATGATCAGTCACTGGAACTGAGACACGGTCCAGACTCCTA 291 TACGTAGCCGACCTGAGGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTA ACTCCTA
1638 (SEQ ID NO:15 E.colirrsE(SEQ ID Cam.jejun5(SEQ ID Stp.aureus(SEQ ID	ER10 (SEQ ID NO:15 E.colirrsE Cam.jejunS Stp.aureus	ER10 E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus 1659(COMPL)

FIG. 89A

E.colirrsE	345 CGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCCGCAAGCCTGATGCAGCCATGCGCGTG
Cam.jejun5	345 CGGGAGGCAGCAGTAGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCGGGTG
Stp.aureus	353 CGGGAGGCAGTAGGGAATCTTCCGCAATGGGCGAAGCCTGACGGAGCAACGCCGCGTG
1659(COMPL)	CGGGAGGCAGCAG
E.colirrsE	407 TATGAAGAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGGGAA-GGGAGTAAAGTTAAT
Cam.jejunS	407 GAGGATGACACTTTTCGGAGCGTAAACTCCTTTTCTTAGGGAAGAATT
Stp.aureus	415 AGTGATGAAGGTCTTCGGATCGTAAAACTCTGTTATTAGGGAAGAACATATGTGTAAGTAA
E.colirrsE Cam.jejun5 Stp.aureus	468 ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGAGCAGCCGCGGGATAAGCACCGGCTAACTCCGTGCCAGCAGCGCGCGGATAAGCACCGGGTAACTCCGTGCCAGCAGCGGCGGGAATAAGCACGCGGCTAACTAGCAACTAGGCAACTAGAGCCAGCAGCGGGGGAAAAGCCAACGAAAAGCCAACGAAAAGCCAACAA

FIG. 89B

E.colirrsE	530	GTAATAC GGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAA GCGCACGCAGGCGGTTT
Cam.jejun5	506	GTAATACG GAGGGT GCAAGCGTTACTCGGAATCACT GGGCGCT AAAGGGCGCGTAGGCGGATT
Stp.aureus	538	GTAATACGT AGGTGG CAAGCGTTATCCGGAATTATT GGGCGT AAAGCGCGCGTAGGCGGTTT
E.colirrsE	592	GTTAAGTC AGATGTG AAATCCCCGGGCTCAACCT GGGAAC TGCATCTGATACTGGCAAGCTT
Cam.jejun5	568	ATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTA
Stp.aureus	600	TTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAACTT
E.colirrsE	654	GAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGA
Cam.jejun5	630	GAGTGAGGGAGAGGCAGATGGAATTGGTGGTGTAGGGGGTAAAATCCGTAGATATCACCAAGA
Stp-aureus	662	GAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGGTGAAATGCGCAGAGATATGGAGGA
E.colirrsE	716	ATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGA
Cam.jejun5	692	ATACCCATTGCGAAGGCGATCTGCTGGAACTCAACTGACGCTAAGGCGCGAAAGCGTGGGGA
Stp.aureus	724	ACACCAGTGGCGAAGGCGACTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGA
E.colirrsE	778	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGC
Cam.jejun5	754	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTACACTAGTTGTTGGGGT
Stp.aureus	786	TCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGG

FIG. 89C

900 AAGGTTAA 876 AAGATTAA 909 AAGGTTGA 962 CGATGCAA 938 CGAAGATA 971 CGAAGCAA	E.colirrsE Cam.jejun5 Stp.aureus	840 816 848	C_CTT6A_GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGC G_CTAGT_CATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGC GT_TTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGC
962 CGATGCAA	E.colirrsE	900	AAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGÄGCATGTGGTTTAATT
938 CGAAGATA	Cam.jejun5	876	AAGATTAAAACTCAAAGGAATAGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT
971 CGAAGCAA	Stp.aureus	909	AAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT
	E.colirrsE	962	CGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAAT
	Cam.jejun5	938	CGAAGATACGCGAAGAACCTTACCTGGGCTTGATATCCTAAGAACCTTTTAGAGATAAGAGG
	Stp.aureus	971	CGAAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTTTGACAACTCTAGAGATAGAGCC

GCAACGAGCGCAACCC 1061 1092 1081 E.colirrsE Cam∵jejun5 Stp.aureus **SB-1**

1024 1000 1033

E.colirrsE Cam.jejun5

Stp.aureus

FIG. 89D

4)	NO:157)
(66A	NO:154)
(66A	1142 GGG
(66C	1122 GAG

E.colirrsE	1328 CATGAAGTCGGAATCGCTAGTAATCGTGGATCAGA-ATGCCACGGTGAATACGTTCCCGGGC
Cam.jejun5	1306 CATGAAGCCGGAATCGCTAGTAATCGTAGATCAGCCATGCTACGGTGAATACGTTCCCGGGT
Stp.aureus	1338 CATGAAGCTGGAATCGCTAGTAATCGTAGATCAGC-ATGCTACGGTGAATACGTTCCCGGGT
1743(compl)	CGGTGAATÄCGTTCCCGGGC

FIG. 89E

E.colirrsE Cam.jejun5 Stp.aureus 1743(compl)	1389 CTTGTACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAG
E.colirrsE Cam.jejun5 Stp.aureus	1451 TCG_GGGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCAGGTAACCG 1427 ACT_AGTTACCGTCACAGGTGGAATCAGCGACTGGGGGTGAAGGTCGTAACAGGTAACCG 1461 TTTAGGAGCTAGCCGTCGAAGGTGGGACAAATGATTGGGGTGAAGTCGTAACAAGGTAGCCG

TAGGGGAACCTGCGGTTGGATCACCTCCTTA---

TAGGAGAACCTGCGGTTGGATCACCTCCT---TATCGGAAGGTGCGGCTGGATCACCTCCTTTCT-1512 1485 1523 E.colirrsE Cam.jejun5

Stp.aureus

FIG. 90

FIG. 91A

FIG. 91B

1 2 3

FIG. 92

FIG. 93

FIG. 94