

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS FIZYCZNY DLA KLAS IV-VIII UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP WOJEWÓDZKI 2020/2021

ZASADY OCENIANIA PRAC KONKURSOWYCH

Maksymalna liczba punktów za ten arkusz jest równa 40.

- Każdy poprawny sposób rozwiązania przez ucznia zadań nie ujęty w modelu odpowiedzi powinien być uznawany za prawidłowy i uczeń otrzymuje maksymalną liczbę punktów.
- Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

ODPOWIEDZI I ROZWIĄZANIA ZADAŃ

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ

Nr zadania	1	2	3	4	5	6	7
Poprawna odpowiedź	A	В	В	С	D	D	С
Liczba pkt.	1	1	1	1	1	1	1

Zadanie 8. (0-5 pkt.)

- 1 pkt zauważenie, że pasażer napotka pociągi, które już były na trasie, gdy wyruszał oraz te, które na trasę wyjechały już w czasie, gdy był w podróży;
- 1 pkt zauważenie, że te ze spotkanych, które już jechały gdy wyruszał, musiały wyruszyć mniej niż 2 godziny przed rozpoczęciem jego podróży;
- 1 pkt policzenie tych pociągów jadących zgodnie z ruchem wskazówek zegara było ich 19 i przeciwnie do ruchu wskazówek zegara było ich 11;
- 1 pkt policzenie pociągów, które wyruszyły na trasę, gdy pasażer już był w drodze lub właśnie ruszał z miejsca; tych poruszających się zgodnie z ruchem wskazówek zegara było 20, tych poruszających się przeciwnie do nich 12;
- 1 pkt ustalenie, że w związku z tym pasażer jadący przeciwnie do ruchu wskazówek zegara napotkał w sumie 39 pociągów jadących zgodnie z ruchem wskazówek zegara, a pasażer jadący zgodnie z ruchem wskazówek zegara napotkał 23 pociągi jadące przeciwnie do ruchu wskazówek zegara.

Uwaga! Zadanie może mieć wiele sposobów rozwiązania. M.in. graficzne, czy oparte na zauważeniu, że pasażer, jadąc 2 godziny, spotka tyle samo pociągów, co osoba stojąca na peronie w ciągu 4 godzin.

Zadanie 9. (0-5 pkt.)

- 1 pkt poprowadzenie z punktu A prostych przez skrajne punkty zwierciadła M i N (patrz rysunek powyżej);
- 1 pkt zauważenie, że obszar kąta MAN, to obszar, w którym obserwator A widzi obrazy powstałe w zwierciadle;
- 1 pkt zauważenie, że obraz B₁ biedronki jest symetryczny z nią względem zwierciadła i porusza się synchronicznie z nią;
- 1 pkt zauważenie, że obraz biedronki trafia w pole widzenia obserwatora w punkcie D₁, w chwili, gdy sama biedronka znajduje się w punkcie D;
- 1 pkt zauważenie, że długość odcinka DA jest wielkością szukaną i ustalenie na podstawie rysunku, że długość DA = 1 = R.

Zadanie 10. (0-5 pkt.)

- 1 pkt zauważenie, że ilość ciepła wyemitowanego przez noc z fragmentu powierzchni stawu o polu 1 m² jest równa $Q = q_0 \tau_0$;
- 1 pkt zauważenie, że to samo ciepło Q = l m, gdzie m = S h d masa powstałego w ciągu nocy lodu, przy czym h to jego grubość stąd Q = l S h d;
- 1 pkt porównanie prawych stron zapisanych równości;
- 1 pkt wyznaczenie, na podstawie otrzymanego równania, $h = q_0 \tau/(l d S)$;
- 1 pkt obliczenie wartości liczbowej grubości lodu na powierzchni stawu wraz z odpowiednimi jednostkami; h = 1 cm.

Zadanie 11. (0 – 4 pkt.)

- 1 pkt zauważenie, że prąd płynący przez fragment przekroju przewodnika o powierzchni s to $I_s = I/S$;
- 1 pkt zauważenie, że w czasie t przez ten fragment przewodnika przepływają elektrony o ładunku $q = I_s t = I t/S$;
- 1 pkt znalezienie wyrażenia na poszukiwaną liczbę elektronów $N = q/e = I_s t/(S e)$;
- **1** pkt obliczenie poszukiwanej liczby elektronów i sprawdzenie jednostek $N \approx 2.5 \times 10^{18}$.

Zadanie 12. (0 – 4 pkt.)

- 1 pkt zauważenie, że sygnał potrzebuje na dogonienie pierwszego okrętu czasu $t_1 = l/(u-v)$;
- 1 pkt zauważenie, że sygnał odbity od pierwszego okrętu, potrzebuje na dotarcie do drugiego, czasu $t_2=l/(u+v)$;
- 1 pkt zauważenie, że całkowity czas biegu sygnału od hydrolokatora do pierwszego okrętu i z powrotem $t = t_1 + t_2$;
- 1 pkt pokazanie, że $t = 2 l u/(u^2-v^2)$ lub zapisanie w innej ekwiwalentnej postaci.

Zadanie 13. (0 - 5 pkt.)

- **1** pkt za zapisanie warunku pływania lodu m $g = d_x V_I g$, gdzie d_x poszukiwana gęstość cieczy, V_I objętość zanurzonej części lodu; stąd $m = d_x V_I$ i $V_I = m/d_x$;
- 1 pkt zauważenie, że objętość wody powstałej z całego stopionego lodu $V_2 = m/d$;
- 1 pkt obliczenie różnicy objętości V_1 $V_2 = m (1/d_x 1/d)$;
- **1** pkt zauważenie, że jednocześnie V_1 $V_2 = S h$ i stąd otrzymanie wyrażenia $d_x = m d/(m + S h d)$;
- 1 pkt obliczenie wartości liczbowej d_x i sprawdzenie jednostek, d_x = 0,95 g/cm³.

Zadanie 14. (0 - 5 pkt.)

- 1 pkt zauważenie, że cegła w chwili odbicia się od piłki posiada prędkość potrzebną do wzniesienia się na wysokość $H \approx 1$ m;
- 1 pkt wyznaczenie tej prędkości z zasady zachowania energii mechanicznej: $M v^2/2 = M g H$, gdzie M masa cegły, stąd $v = (2 g H)^{1/2}$;
- 1 pkt zauważenie, że w chwili odbijania się cegły od piłki najwyższy punkt piłki posiada prędkość taką jak cegła w tym momencie, czyli v, a punkt piłki stykający się jeszcze z podłożem, prędkość równą zeru;
- 1 pkt zauważenie, że pozwala to przyjąć, do oszacowania prędkości u środka masy piłki, w chwili odbijania się od niej cegły, średnią arytmetyczną prędkości najwyższego i najniższego punktu piłki, u = (v + 0)/2 = v/2;
- 1 pkt wykorzystanie prędkości środka masy piłki w chwili jej odbijania się od ziemi do wyznaczenia wysokości h, na jaką podskoczy; podobnie jak poprzednio (z zasady zachowania energii) $m (v/2)^2/2 = m g h$, gdzie m masa piłki, czyli $v^2/8 = g h$ i $v^2/2 = g H$, stąd $h = H/4 \approx 25$ cm.