Lecture 19: 14 June, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
 - · Each class is a connected region
 - A single curve can separate them
- More complex scenario
 - Classes form multiple connected regions
 - Need multiple separators

Linear separators

- Simplest case linearly separable data
- Dual of linear regression
 - Find a line that passes close to a set of points
 - Find a line that separates the two sets of points
- Many lines are possible
 - · How do we find the best one?
 - What is a good notion of "cost" to optimize?

Linear separators

- Each input x has n attributes <x₁,x₂,...,x_n>
- Linear separator has the form $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$
- Classification criterion $w_1x_1 + \cdots + w_nx_n + b > 0$, classify yes, +1 $w_1x_1 + \cdots + w_nx_n + b < 0$, classify no, -1
- Dot product $\langle w \cdot x \rangle$ $(w_1, \dots, w_n) \cdot (x_1, \dots, x_n) = w_1 x_1 + \dots + w_n x_n$
- Collapsed form $\langle w \cdot x \rangle + b > 0, \langle w \cdot x \rangle + b < 0$
- Rename bias b as w_0 , create fictitious $x_0 = 1$
- · Equation becomes

$$\langle w \cdot x \rangle > 0, \langle w \cdot x \rangle < 0$$

Perceptron algorithm

(Frank Rosenblatt, 1958)

- Each training input is (x_i, y_i) where $x_i = \langle x_1^i, x_2^i, ..., x_n^i \rangle$ and $y_i = +1$ or -1
- Need to find w = <w₀,w₁,...,w_n>.
 Recall xⁱ₀ = 1, always

Initialize
$$w=\langle 0,0,\dots,0
angle$$
 While there exists (x_i,y_i) such that $y_i=+1$, and $\langle w\cdot x_i
angle < 0$, or $y_i=-1$, and $\langle w\cdot x_i
angle > 0$ Update w to $w+x_i$

Perceptron algorithm

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
 - Width of the band separating the positive and negative points
 - Narrow band takes longer to converge
 - Magnitude of the x values
 - Larger spread of points takes longer to converge

Perceptron Algorithm — Proof

Theorem

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all i, then the Perceptron Algorithm finds a solution w with $(w \cdot x_i)y_i > 0$ for all i in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

- Assume w^* exists. Keep track of two quantities: $w^T w^*$, $|w|^2$.
- Each update increases $w^\top w^*$ by at least 1.

$$(w + x_i y_i)^{\top} w^* = w^{\top} w^* + x_i^{\top} y_i w^* \ge w^{\top} w^* + 1$$

■ Each update increases $|w|^2$ by at most r^2

$$(w + x_i y_i)^{\top} (w + x_i y_i) = |w|^2 + 2x_i^{\top} y_i w + |x_i y_i|^2 \le |w|^2 + |x_i|^2 \le |w|^2 + r^2$$

Note that we update only when $x_i^{\top} y_i w < 0$

2/3

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

$$m \leq |w||w^*|$$

$$m/|w^*| \leq |w|$$

$$m/|w^*| \leq r\sqrt{m}$$

$$\sqrt{m} \leq r|w^*|$$

$$m \leq r^2|w^*|^2$$

■ Note (for later) that final w is of the form $\sum_{i} n_i x_i$

Linear separators

- Simplest case linearly separable data
- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
 - Does the Perceptron algorithm find the best one?
 - What is a good notion of "cost" to optimize?

Margin

- Each separator defines a margin
 - Empty corridor separating the points
 - Separator is the centre line of the margin
- Wider margin makes for a more robust classifier
 - More gap between the classes
- Optimum classifier is one that maximizes the width of its margin
- Margin is defined by the training data points on the boundary
 - Support vectors

Small Margin

Support Vectors

Finding a maximum margin classifier

Recall our original linear classifier

$$w_1x_1 + \dots + w_nx_n + b > 0$$
, classify yes, $+1$
 $w_1x_1 + \dots + w_nx_n + b < 0$, classify no, -1

 Scale margin so that separation is 1 on either side

$$w_1x_1 + \cdots + w_nx_n + b > 1$$
, classify yes, $+1$
 $w_1x_1 + \cdots + w_nx_n + b < -1$, classify no, -1

 \bullet Using Pythagoras's theorem, perpendicular distance to nearest support vector is $\underline{\ 1\ }$,

||w||

where
$$||w|| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$$

Optimization problem

- Want to maximize the overall margin
- ullet Equivalently, minimize ||w||
- Also, w should classify each (x_i, y_i) correctly

$$w_1 x_1^i + \dots + w_n x_n^i + b > 1$$
, if $y_i = 1$
 $w_1 x_1^i + \dots + w_n^i x_n + b < -1$, if $y_i = -1$

$$w_1 x_1^i + \dots + w_n^i x_n + b < -1$$
, if $y_i = -1$

Optimization problem

$\frac{||w||}{2}$

Subject to

$$w_1 x_1^i + \dots + w_n x_n^i + b > 1$$
, if $y_i = 1$
 $w_1 x_1^i + \dots + w_n^i x_n + b < -1$, if $y_i = -1$

• The objective function is not linear

$$||w|| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$$

• This is a *quadratic optimization* problem, not linear programming

Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers $\alpha_1, \alpha_2, \ldots, \alpha_N$ one multiplier per training input
- α_i is non-zero iff x_i is a support vector
- ullet Final classifier for new input z

$$\operatorname{sign}\left[\sum_{i \in sv} y_i \alpha_i \langle x_i \cdot z \rangle + b\right]$$

• sv is set of support vectors

Support Vector Machine (SVM)

$$\operatorname{sign}\left[\sum_{i \in sv} y_i \alpha_i \langle x_i \cdot z \rangle + b\right]$$

Support Vector Machine (SVM)

- Solution depends only on support vectors
 - If we add more training data away from support vectors, separator does not change
- Solution uses dot product of support vectors with new point
 - Will be used later, in the non-linear case

The non-linear case

- Some points may lie on the wrong side of the classifier
- How do we account for these?
- Add an error term to the classifier requirement
- Instead of

$$\langle w \cdot x \rangle + b > 1,$$
 if $y_i = 1$
 $\langle w \cdot x \rangle + b < -1,$ if $y_i = -1$

we have

$$\langle w \cdot x \rangle + b > 1 - \xi_i, \quad \text{if } y_i = 1$$

 $\langle w \cdot x \rangle + b < -1 + \xi_i, \quad \text{if } y_i = -1$

Soft margin classifier

$$\langle w \cdot x \rangle + b > 1 - \xi_i, \quad \text{if } y_i = 1$$

 $\langle w \cdot x \rangle + b < -1 + \xi_i, \quad \text{if } y_i = -1$

- Error term always non-negative, $\xi_i \geq 0$
- If the point is correctly classified, error term is 0
- Soft margin some points can drift across the boundary
- Need to account for the errors in the objective function
 - Minimize the need for non-zero error terms

Soft margin optimization

$$\text{Minimize } \frac{||w||}{2} + \sum_{i=1}^{N} \xi_i^2$$

Subject to

$$\begin{aligned}
\xi_i &\geq 0 \\
\langle w \cdot x \rangle + b &> 1 - \xi_i, & \text{if } y_i &= 1 \\
\langle w \cdot x \rangle + b &< -1 + \xi_i, & \text{if } y_i &= -1
\end{aligned}$$

- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic

Soft margin optimization

- Can again be solved using convex optimization theory
- Form of the solution turns out to be the same as the hard margin case
 - Expression in terms of Lagrange multipliers α_i
 - Only terms corresponding to support vectors are actively used

$$\operatorname{sign}\left[\sum_{i \in sv} y_i \alpha_i \langle x_i \cdot z \rangle + b\right]$$

The non-linear case

• How do we deal with datasets where the separator is a complex shape?

- Geometrically transform the data
 - Typically, add dimensions
- For instance, if we can "lift" one class, we can find a planar separator between levels

Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^2 + y^2 = 1$
- Points inside the circle $x^2 + y^2 < 1$
- Points outside circle $x^2 + y^2 > 1$
- Transformation

$$\varphi:(x,y)\mapsto(x,y,x^2+y^2)$$

- Points inside circle lie below z = 1
- Point outside circle lifted above z = 1

SVM after transformation

SVM in original space

$$\operatorname{sign}\left[\sum_{i \in sv} y_i \alpha_i \langle x_i \cdot z \rangle + b\right]$$

• After transformation

$$\operatorname{sign}\left[\sum_{i \in sv'} y_i \alpha_i \langle \varphi(x_i) \cdot \varphi(z) \rangle + b\right]$$

 All we need to know is how to compute dot products in transformed space

