Hieu Pham

Assignment Section_4.5 due 05/01/2014 at 11:58pm MST

1. (1 pt) Find two numbers A and B (with $A \le B$) whose difference is 38 and whose product is minimized. $A = \underline{\qquad}$ $B = \underline{\qquad}$	of 290 square feet. The fence along three sides is to be made of material that costs 5 dollars per foot, and the material for the fourth side costs 14 dollars per foot. Find the length L and width W (with $W \le L$) of the enclosure that is most economical to construct.
Answer(s) submitted:	L =
-1919	W =
(correct) Correct Answers:	Answer(s) submitted:
 -19 19 	• 23.47 • 12.35
2. (1 pt) Find two positive numbers whose product is 196	(correct) Correct Answers:
and whose sum is a minimum.	23.47338918861112.3544153624268
Answer:, Answer(s) submitted:	5. (1 pt) A box is to be made out of a 10 cm by 16 cm piece of cardboard. Squares of side length <i>x</i> cm will be cut out of each
1414	corner, and then the ends and sides will be folded up to form a box with an open top.
(correct) Correct Answers:	(a) Express the volume V of the box as a function of x .
1414	V = cm ³ (b) Give the domain of V in interval notation. (Use the fact that length and volume must be positive.)
3. (1 pt) Find the length L and width W (with $W \le L$) of the rectangle with perimeter 80 that has maximum area, and then	(c) Find the length L , width W , and height H of the resulting
find the maximum area. $L = \underline{\qquad}$	box that maximizes the volume. (Assume that $W \leq L$).
W =	<i>L</i> = cm
Maximum area =	W = cm
Answer(s) submitted:	$H = \underline{\hspace{1cm}}$ cm (d) The maximum volume of the box is $\underline{\hspace{1cm}}$
2020	cm ³ . Answer(s) submitted:
• 400 (correct)	• (4x^3) - (52x^2) + (160x) • (0, 5) • 12
Correct Answers: • 20	62
20400	• 144 (correct) Correct Answers:
	Correct Allawers.

- (10 2 * x) (16 2 * x) x
- (0,5)
- 12
- 6
- 2
- 144
- **6.** (1 pt) A rectangular storage container with an open top is to have a volume of 12 cubic meters. The length of its base is twice the width. Material for the base costs 13 dollars per square meter. Material for the sides costs 7 dollars per square meter. Find the cost of materials for the cheapest such container.

Total cost = ______ (Round to the nearest penny and include monetary units. For example, if your answer is 1.095, enter \$1.10 including the dollar sign and second decimal place.)

**Answer(s) submitted:*

• \$223.37

(correct)

Correct Answers:

\\$223.37

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

7. (1 pt) Find the minimum distance from the parabola

$$x + y^2 = 0$$

to the point (0,-3).

Minimum distance = _____

Answer(s) submitted:

• sqrt(5)

(correct)

Correct Answers:

- 2.23606797749979
- **8.** (1 pt) A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola $y = 11 x^2$. What are the dimensions of such a rectangle with the greatest possible area?

Width = ____ Height = ____ Answer(s) submitted:

- 2sqrt(11/3)
- 11-(11/3)

(correct)

Correct Answers:

- 3.82970843102535
- 7.33333333333333