Evaluation of the Wobbling Motion in Even-Even Nuclei Within a Simple Rotor Model

Robert POENARU^{1,2}

¹Doctoral School of Physics @ UB Bucharest, Romania

²Dept. of Th. Phys. @ IFIN-HH Magurele, Romania

International Conference on Nuclear Structure Properties June 28, 2022

Table of Contents

- Nuclear shapes
- Triaxial Nuclei
- Energy spectra
- Wobbling Motion
- Simple wobbling Energy spectrum
- Results for even-A nuclei
- Conclusions

Nuclear Deformation

- Most of the nuclei are either spherical or axially symmetric in their ground-state.
- Deformation parameter β (Bohr, 1969): preserves axial symmetry

Figure 1: spherical: $\beta = 0$ prolate: $\beta > 0$ oblate: $\beta < 0$

Nuclear Triaxiality

Non-axial shapes

- Deviations from symmetric shapes can occur across the chart of nuclides → triaxial nuclei.
- The triaxiality parameter γ (Bohr, 1969): departure from axial symmetry

Fingerprints for Triaxiality

- Stable triaxial nuclei represent a real challenge for experimentalists and theoreticians
- Clear signatures for confirming stable triaxiality in nuclei
 - 1 Chiral symmetry breaking (Frauendorf, 1997)
 - **2 Wobbling motion** (Bohr & Mottelson, 1975)

Wobbling Motion (WM)

- Unique to non-axial nuclei
- Predicted 50 years ago for even-A nuclei (i.e., the simple wobbler)
- First experimental evidence for ¹⁶³Lu (Ødegård, 2001)
- Currently confirmed wobblers $A \approx [100, 130, 160, 180]$.

Triaxial Rotor Energy

- ullet Rigid body rotational energy: $E_{
 m rot} \propto rac{\hbar^2}{2\mathcal{J}_{
 m max}} I(I+1)$
- \bullet A triaxial nucleus can rotate about any of the three axes \rightarrow rich energy spectra
- MOI anisotropy → the main rotation around J_{max} is disturbed by the other two axes → resulting motion of the rotating nucleus has an oscillating behavior

Wobbling Motion

- ullet Oscillatory character of $oldsymbol{I} o oldsymbol{I}$ disaligned w.r.t. body-fixed axes
- ullet The a.m. **precesses** and **wobbles** around the axis with $\mathcal{J}_{\mathsf{max}}$
- The precession of I can increase by tilting
- Tilting by an energy quanta \sim *vibrational character* \rightarrow **wobbling phonon** $n_w = 0, 1, 2...$

Wobbling Spectrum

Even-A Nuclei

- Employing the Harmonic Approximation (Bohr, 1969)
- Ĥ composed of a rotational part and harmonic oscillation (i.e., wobbling) part:

$$\hat{H} = \frac{\hbar^2}{2\mathcal{J}_{\text{max}}}I(I+1) + \hbar\omega_{\text{wob}}\left(n_w + \frac{1}{2}\right), n_w = 0, 1, 2, \dots$$
 (1)

Energy spectrum - simple wobbling

 Employed an energy spectrum of harmonic type according to Eq. 1:

$$E_{I} = \frac{\hbar^{2}}{2\mathcal{J}_{3}}I(I+1) + \hbar\omega_{\text{wob}}\left(n_{w} + \frac{1}{2}\right)$$

• $\hbar\omega_{\text{wob}}$ - wobbling frequency - linear dependence on I (fixed MOI ordering $\mathcal{J}_3 > \mathcal{J}_{1,2}$)

$$\hbar\omega_{\mathsf{wob}}(I) = 2f(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3) \cdot I$$

New Experimental Findings

- New experimental measurements show *potential* wobbling candidates in the $A \approx 130$ region
- Three even-A are studied with the simple wobbler formalism
 - 130 Ba (*Petrache et al. 2019*)
 - ² ¹³⁴Ce (Petrache and Guo, 2016)
 - ¹³⁶Nd (Lv et al., 2018)
- Study the excited spectra: theoretical model checks the data?

Model

Harmonic Approximation

- Reproduced the excited spectra for the wobbling bands
- Employ a free parameter set: $\mathcal{P} = [\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3]$
- Adopt a fitting procedure:

$$\chi^{2} = \frac{1}{N_{T}} \sum_{i=1}^{N_{T}} \frac{\left(E_{\text{exp}}^{(i)} - E_{\text{th}}^{(i)}\right)^{2}}{E_{\text{exp}}^{(i)}}$$
(2)

ullet $N_{\mathcal{T}}$ o total number of wobbling states within the nucleus

Robert, POENARU Wo

New Results for 130Ba

Z = 56

Recent findings for even-even nuclei

- Two wobbling bands have been identified experimentally in ¹³⁰Ba (Petrache et al., 2019)
- DFT+PRM description of the wobbling motion described the excited spectra (Chen et al., 2019)
 - Reproduced experimental energies
 - Obtained deformation parameters self-consistently
 - Stable triaxiality for $\beta=0.24$ and $\gamma=21.5^\circ$

Figure from Petrache et al., 2019

New Results for 130Ba II

Results for ¹³⁰Ba **PRELIMINARY!**

- $\mathcal{J}_1: \mathcal{J}_2: \mathcal{J}_3 \to 27: 22: 43$
- Maximal MOI is $\mathcal{J}_3 > \mathcal{J}_{1,2}$

Electromagnetic Transitions 130Ba

- In the harmonic approximation, the three MOI are used to determine $B(E2)_{\rm out}$
- β_2 and γ are taken from Chen et al. \rightarrow $(\beta, \gamma) = 0.24, 21.5^{\circ}$ \rightarrow used to calculate the quadrupole components Q_2 0 and Q_2 2
- $B(E2)_{out}(I) = \frac{5}{16\pi}I^{-1}\left(\sqrt{3}Q_{20}\cdot f(\mathcal{J}) + \sqrt{2}Q_{22}\cdot g(\mathcal{J})\right)$

,	$B(E2)_{\rm out}/B(E2)_{\rm in}$		
'	Th.	PRM*	Exp.
11	0.37	-	-
13	0.32	0.51	0.32
15	0.27	0.42	0.36
17	0.24	0.35	0.22
19	0.21	0.29	0.22
21	0.19	0.25	0.41
23	0.18	-	-
25	0.16	-	-

New Results for 134Ce

- Petrache et al. found two sets of wobbling bands in 134 Ce, Z=55
- Wobbling confirmed in odd-A ¹³⁵Pr by Matta et al. 2015 → even-A neighbor also with wobbling character?
- The *isomer structure* is based on a 10^+ level with lower quadrupole deformation but higher life-time $(t \approx 300 \, \mathrm{ns})$

New Results for 134Ce II

- Separate fitting procedures for the isomer and deformed
- Isomer: $(\beta, \gamma) = (0.14, -35^{\circ})$, $E_{\text{RMS}} \approx 90 \text{ keV}$
- Deformed: $(\beta, \gamma) = (0.22, 25^{\circ})$, $E_{RMS} \approx 60 \text{ keV}$

- isomer: $\mathcal{J}_1 : \mathcal{J}_2 : \mathcal{J}_3 \to 14 : 21 : 34 \ \hbar^2 \text{MeV}^{-1}$
- deformed: $\mathcal{J}_1: \mathcal{J}_2: \mathcal{J}_3 \to 15: 23: \textbf{42} \ \hbar^2 \text{MeV}^{-1}$

New Results for 136Nd

- Lv et al. found two sets of wobbling bands in 136 Nd, Z=60, \rightarrow worth investigating A=137 neighbor nuclei ?
- low/high label is used to differentiate the energy of 10^+ state of each structure \rightarrow similar 10^+ structures as for ^{134}Ce
- The higher structure has two phonon excitations

New Results for 136Nd II

- Separate fitting for each structure (low/high)
- Low: $(\beta, \gamma) = (0.15, -35^{\circ})$, $E_{\text{RMS}} \approx 120 \text{ keV}$
- High: $(\beta, \gamma) = (0.21, 25^{\circ})$, $E_{\text{RMS}} \approx 145 \text{ keV}$

Moments of inertia

• ¹³⁰Ba

\mathcal{J}_1^fit	\mathcal{J}_2^{fit}	\mathcal{J}_3^{fit}
27	22	43

• ¹³⁴Ce - isomeric structure

\mathcal{J}_1^{fit}	\mathcal{J}_2^{fit}	\mathcal{J}_3^{fit}
14	21	34

• ¹³⁴Ce - high deformed structure

\mathcal{J}_1^{fit}	\mathcal{J}_2^{fit}	\mathcal{J}_3^{fit}
15	23	42

• 136 Nd - lower 10+

\mathcal{J}_1^{fit}	\mathcal{J}_2^{fit}	\mathcal{J}_3^{fit}
21	22	33

• 136 Nd - higher 10+

\mathcal{J}_1^{fit}	\mathcal{J}_2^{fit}	\mathcal{J}_3^{fit}
35	37	39

Worth investigating the reversing of \mathcal{J}_1 and \mathcal{J}_2 identified at A=130 Raduta A A, Poenaru R, Phys Rev C, 2020

Conclusions & Future Outlook

- New wobbling nuclei were investigated through a semi-classical formalism
- The harmonic approximation reproduces the experimental data of even-A wobbling nuclei
 - One wobbling structure for ¹³⁰Ba
 - Two wobbling structures for ¹³⁴Ce and ¹³⁶Nd
- Quality of the fit was reflected in the transition probabilities for ¹³⁰Ba
- Calculations were done for fixed deformation parameters
- + Employ spin-dependence for the moments of inertia
- + Find classical trajectories Poenaru R, Raduta A A, IJMPE 2021
- Potential progress in triaxial deformation within a semi-classical picture

Thank you for your attention!