CLAIMS

What is claimed is:

1. A compound of formula (I):

$$\begin{array}{c|c}
(R^{17})_u & \underline{\underline{A}} \\
R^5 & N & \underline{\underline{A}} \\
R^{4'} & R^4 & R^{11}
\end{array}$$

(I)

or stereoisomers or pharmaceutically acceptable salts thereof, wherein:

A is selected from

$$(R^{18})_{u}$$
 $(CH_{2})_{t}$ $(CH_$

15

5

G is selected from $-C(O)R^3$, $-C(O)NR^2R^3$, $-C(O)OR^3$, $-SO_2NR^2R^3$, $-SO_2R^3$, $-C(=S)NR^2R^3$, $C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$,

- W, at each occurrence, is independently selected from C or N, provided at least two of W are C;
- X is selected from O, S, and NR¹⁹;
- ${\tt X^1}$ and ${\tt X^2}$ are independently selected from C and N;
- Z^1 is selected from C and N;

斯斯克特拉氏學動調力

5

15

- 10 Z^2 is selected from NR^{1a} , O, S and C;
 - R^1 and R^2 are independently selected from H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^a ;
- R^{1a} is independently selected from H, C_{1-6} alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-5 R^a ;
- 20 R^{a} , at each occurrence, is selected from C_{1-4} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_{2})_{r}C_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_{2})_{r}CF_{3}$, NO_{2} , CN, $(CH_{2})_{r}NR^{b}R^{b}$, $(CH_{2})_{r}OH$, $(CH_{2})_{r}OR^{c}$, $(CH_{2})_{r}SH$, $(CH_{2})_{r}SR^{c}$, $(CH_{2})_{r}C(O)R^{b}$, $(CH_{2})_{r}C(O)NR^{b}R^{b}$, $(CH_{2})_{r}NR^{b}C(O)R^{b}$, $(CH_{2})_{r}C(O)OR^{b}$, $(CH_{2})_{r}OC(O)R^{c}$, $(CH_{2})_{r}CH(=NR^{b})NR^{b}R^{b}$, $(CH_{2})_{r}NHC(=NR^{b})NR^{b}R^{b}$, $(CH_{2})_{r}S(O)_{p}R^{c}$, $(CH_{2})_{r}S(O)_{2}NR^{b}R^{b}$, $(CH_{2})_{r}NR^{b}S(O)_{2}R^{c}$, and $(CH_{2})_{r}Phenyl$;
 - R^b , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, and phenyl;
 - R^{c} , at each occurrence, is selected from C_{1-6} alkyl, C_{3-6} cycloalkyl, and phenyl;
- alternatively, R^2 and R^3 join to form a 5, 6, or 7-membered 35 ring substituted with 0-3 R^a ;

- R^3 is selected from a $(CR^3'R^3'')_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{15} and a $(CR^3'R^3'')_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{15} ;
- $R^{3'}$ and $R^{3''}$, at each occurrence, are selected from H, C_{1-6} alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and phenyl;
- 10 R^4 is hydrogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_{r}C_{3-6} \text{ cycloalkyl, and a } (CH_2)_{\dot{r}}-C_{3-10} \text{ carbocyclic}$ residue substituted with 0-5 R^a ;

机砂锅 网络麻醉草宫宫

- alternatively, R^4 joins with R^8 or R^{11} to form a pyrrolidine or piperidine ring system substituted with 0-3 R^{4d} ;
- R^{4'} is absent, taken with the nitrogen to which it is attached to form an N-oxide, or selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{3-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, $(CH_2)_qC(0)R^{4b}, (CH_2)_qC(0)NR^{4a}R^{4a'}, (CH_2)_qC(0)OR^{4a}, \text{ and a } (CH_2)_r-C_{3-10} \text{ carbocyclic residue substituted with 0-3}$ $R^{4c};$
- R^{4a} and $R^{4a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and phenyl;
 - R^{4b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{2-8} alkynyl, and phenyl;
- 30 R^{4c} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, C_{1} , F, Br, I, CN, NO_{2} , $(CF_{2})_{r}CF_{3}$, $(CH_{2})_{r}OC_{1-5}$ alkyl, $(CH_{2})_{r}OH$, $(CH_{2})_{r}SC_{1-5}$ alkyl, $(CH_{2})_{r}NR^{4a}R^{4a'}$, and $(CH_{2})_{r}phenyl$;

 R^{4d} , is selected from H, C_{1-6} alkyl, $(CHR')_qOH$, $(CHR')_qOR^{7a}$, $(CHR')_qOC(O)R^{7b}$, $(CHR')_qOC(O)NHR^{7a}$;

化三甲基基基基 医二甲基二甲基

和特殊的學生的轉換等於實際的第三人称 。

- R^5 is selected from a $(CR^{5'}R^{5''})_t$ - $C_{3-10310}$ carbocyclic residue substituted with 0-5 R^{1616} and a $(CR^{5'}R^{5''})t$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{1616} ;
- $R^{5'5}$ and $R^{5''5}$, at each occurrence, are selected from H, C_{1-616} alkyl, $(CH_{22})_{r}C_{3-636}$ cycloalkyl, and phenyl;
- R⁷, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CHR')_qOH$, $(CHR')_qSH$, $(CHR')_qOR^{7d}$, $(CHR')_qSR^{7d}$, $(CHR')_qNR^{7a}R^{7a'}$, $(CHR')_qC(O)OH$, $(CHR')_rC(O)R^{7b}$, $(CHR')_qC(O)NR^{7a}R^{7a'}$, $(CHR')_qNR^{7a}C(O)R^{7a}$, $(CHR')_qNR^{7a}C(O)H$, $(CHR')_qC(O)OR^{7a}$, $(CHR')_qOC(O)R^{7b}$, $(CHR')_qS(O)_2NR^{7a}R^{7a'}$, $(CHR')_qNR^{7a}S(O)_2R^{7b}$, $(CHR')_qNHC(O)NR^{7a}R^{7a}$, $(CHR')_qNHC(O)OR^{7a}$, $(CHR')_qOC(O)NHR^{7a}$, $(CHR')_qNHC(O)OR^{7a}$, $(CHR')_qOC(O)NHR^{7a}$, $(C_{1-6}$ haloalkyl, a $(CHR')_r-C_{3-10}$ 20 carbocyclic residue substituted with 0-3 R^{7c} , and a $(CHR')_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{7c} ;
- 25 R^{7a} and $R^{7a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{7e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e} ;
 - R^{7b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{7e} , and a $(CH_2)_r$ -5-6 membered

heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e} ;

- R^{7c}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkenyl, $(C_{2-8} C_{3-6} C_{3$
- R^{7d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{7e} , and a C_{3-10} carbocyclic residue substituted with 0-3 R^{7c} ;
- R^{7e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, $(CF_2)_r CF_3, \ (CH_2)_r OC_{1-5} \ alkyl, \ (CH_2)_q OH, \ OH, \ (CH_2)_q SH, \ SH, \\ (CH_2)_r SC_{1-5} \ alkyl, \ (CH_2)_q NR^{7f}R^{7f}, \ and \ (CH_2)_r phenyl;$
 - R^{7f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
 - R^8 is selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, and $(CH_2)_r$ phenyl substituted with 0-3 R^{8a} ;

25

R^{8a}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{7f}R^{7f}$, and $(CH_2)_rphenyl$;

alternatively, R^7 and R^8 join to form C_{3-7} cycloalkyl, or =NR^{8b};

陈晓涛说, 略水水明 红色 了一个好人

20

25

30

 $\rm R^{8b}$ is selected from H, $\rm C_{1-6}$ alkyl, $\rm C_{3-6}$ cycloalkyl, OH, CN, and $(\rm CH_2)_{\,r}\text{-phenyl}\,;$

R¹¹, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_qOH$, $(CH_2)_qSH$, $(CH_2)_qOR^{11d}$, $(CH_2)_qSR^{11d}$, $(CH_2)_qNR^{11a}R^{11a'}$, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{11b}$, $(CH_2)_rC(O)NR^{11a}R^{11a'}$, $(CH_2)_qNR^{11a}C(O)R^{11b}$, $(CH_2)_qNR^{11a}C(O)NR^{11a}$, $(CH_2)_qNR^{11a}C(O)NR^{11a}$, $(CH_2)_qS(O)_pR^{11b}$, $(CH_2)_qS(O)_2NR^{11a}R^{11a'}$, $(CH_2)_qNR^{11a}S(O)_2R^{11b}$, C_{1-6} haloalkyl, a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-5 R^{11c} , and a $(CH_2)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11c} ;

 R^{11a} and $R^{11a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{11e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;

 R^{11b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{11e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;

R^{11c}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{11f}R^{11f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rSC_{1-4}$ alkyl, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{11b}$, $(CH_2)_rC(O)NR^{11f}R^{11f}$, $(CH_2)_rNR^{11f}C(O)R^{11a}$, $(CH_2)_rC(O)OC_{1-4}$ alkyl, $(CH_2)_rOC(O)R^{11b}$, $(CH_2)_rC(=NR^{11f})NR^{11f}R^{11f}$, $(CH_2)_rNHC(=NR^{11f})NR^{11f}R^{11f}$, $(CH_2)_rS(O)_pR^{11b}$, $(CH_2)_rS(O)_2NR^{11f}R^{11f}$, $(CH_2)_rNR^{11f}S(O)_2R^{11b}$, and $(CH_2)_r$ phenyl substituted with 0-3 R^{11e} ;

14 TO 18

as the straight of the confi

5

10

15

20

 R^{11d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{11e} , C_{3-6} alkenyl, C_{3-6} alkynyl, and a C_{3-10} carbocyclic residue substituted with 0-3 R^{11c} ;

R^{11e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{11f}R^{11f}$, and $(CH_2)_rphenyl$;

 $\mbox{R}^{11f},$ at each occurrence, is selected from H, C_{1-6} alkyl, and $$C_{3-6}$$ cycloalkyl;

25 R^{15} , at each occurrence, is selected from C_{1-8} alkyl, $(CH_2)_rC_{3-6} \text{ cycloalkyl}, Cl, Br, I, F, NO_2, CN,$ $(CHR')_rNR^{15a}R^{15a'}, (CHR')_rOH, (CHR')_rO(CHR')_rR^{15d},$ $(CHR')_rSH, (CHR')_rC(O)H, (CHR')_rS(CHR')_rR^{15d},$ $(CHR')_rC(O)OH, (CHR')_rC(O)(CHR')_rR^{15b},$ $(CHR')_rC(O)NR^{15a}R^{15a'}, (CHR')_rNR^{15f}C(O)(CHR')_rR^{15b},$ $(CHR')_rNR^{15f}C(O)NR^{15a}R^{15a'}, (CHR')_rC(O)O(CHR')_rR^{15d},$ $(CHR')_rOC(O)(CHR')_rR^{15b}, (CHR')_rC(=NR^{15f})NR^{15a}R^{15a'},$ $(CHR')_rNHC(=NR^{15f})NR^{15a}R^{15a'}, (CHR')_rS(O)_p(CHR')_rR^{15b},$

(CHR') $_{r}$ S(O) $_{2}$ NR^{15a}R^{15a'}, (CHR') $_{r}$ NR^{15f}S(O) $_{2}$ (CHR') $_{r}$ R^{15b}, C₁₋₆ haloalkyl, C₂₋₈ alkenyl substituted with 0-3 R', C₂₋₈ alkynyl substituted with 0-3 R', (CHR') $_{r}$ phenyl substituted with 0-3 R^{15e}, and a (CH $_{2}$) $_{r}$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e};

R', at each occurrence, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and $(CH_2)_r$ phenyl substituted with R^{15e} ;

切損 医乳腺性乳腺性缺乏症

5

10

- R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{15e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ;
- R^{15b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e} , and $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{15e} ;
- 25 R^{15d} , at each occurrence, is selected from C_{3-8} alkenyl, C_{3-8} alkynyl, methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{15e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{15e} , and a $(CH_2)_r$ 5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{15e} ;
 - R^{15e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br,

I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5} \text{ alkyl}, (CH_2)_rNR^{15f}R^{15f}, \text{ and } (CH_2)_rphenyl;$

中国的时间 1967年 · 其中主

20

25

 R^{15f} , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-6} 5 \ cycloalkyl, and phenyl;

R¹⁶, at each occurrence, is selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO_2 , CN, $(CHR')_rNR^{16a}R^{16a'}$, $(CHR')_rOH$,

(CHR')_rO(CHR')_rR^{16d}, $(CHR')_rSH$, $(CHR')_rC(O)H$, $(CHR')_rS(CHR')_rR^{16d}$, $(CHR')_rC(O)OH$, $(CHR')_rC(O)(CHR')_rR^{16b}$, $(CHR')_rC(O)NR^{16a}R^{16a'}$, $(CHR')_rNR^{16f}C(O)(CHR')_rR^{16b}$, $(CHR')_rC(O)O(CHR')_rR^{16d}$, $(CHR')_rOC(O)(CHR')_rR^{16b}$, $(CHR')_rC(=NR^{16f})NR^{16a}R^{16a'}$, $(CHR')_rNHC(=NR^{16f})NR^{16a}R^{16a'}$, $(CHR')_rS(O)_2NR^{16a}R^{16a'}$, $(CHR')_rNR^{16f}S(O)_2(CHR')_rR^{16b}$, $(CHR')_rS(O)_2NR^{16a}R^{16a'}$, $(CHR')_rNR^{16f}S(O)_2(CHR')_rR^{16b}$, C_{1-6} haloalkyl, C_{2-8} alkenyl substituted with 0-3 R', C_{2-8} alkynyl substituted with 0-3 R', and $(CHR')_r$ phenyl substituted with 0-3 R^{16e};

 R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_T$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{16e} , and a $(CH_2)_T$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{16e} ;

 R^{16b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_rC_{3-6}$ carbocyclic residue substituted with 0-3 R^{16e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{16e} ;

 R^{16d} , at each occurrence, is selected from C_{3-8} alkenyl, C_{3-8} alkynyl, methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{16e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{16e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{16e} ;

· 斯尔斯· 斯特特特斯特特 经有效的

5

- R^{16e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{16f}R^{16f}$, and $(CH_2)_rphenyl$;
 - R^{16f} , at each occurrence, is selected from H, C_{1-5} alkyl, and C_{3-6} cycloalkyl, and phenyl;
- R¹⁷, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_qOH$, $(CH_2)_qSH$, $(CH_2)_qOR^{17d}$, $(CH_2)_qSR^{17d}$, $(CH_2)_qNR^{17a}R^{17a'}$, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{17b}$, $(CH_2)_rC(O)NR^{17a}R^{17a'}$, $(CH_2)_qNR^{17a}C(O)R^{17b}$, $(CH_2)_qNR^{17a}C(O)H$, $(CH_2)_rC(O)OR^{17a}$, $(CH_2)_qOC(O)R^{17b}$, $(CH_2)_qS(O)_pR^{17b}$, $(CH_2)_qS(O)_2NR^{17a}R^{17a'}$, $(CH_2)_qNR^{17a}S(O)_2R^{17b}$, C_{1-6} haloalkyl, a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-3 R^{17c} , and a $(CH_2)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{17c} ;
- R^{17a} and $R^{17a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{17e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{17e} ;

 R^{17b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{17e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{17e} ;

In the state of th

5

- $R^{17c}, \text{ at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2, CN, $(CH_2)_rNR^{17f}R^{17f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rSC_{1-4}$ alkyl, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{17b}$, $(CH_2)_rC(O)NR^{17f}R^{17f}$, $(CH_2)_rNR^{17f}C(O)R^{17a}$, $(CH_2)_rC(O)OC_{1-4}$ alkyl, $(CH_2)_rOC(O)R^{17b}$, $(CH_2)_rC(=NR^{17f})NR^{17f}R^{17f}$, $(CH_2)_rS(O)_pR^{17b}$, $(CH_2)_rNHC(=NR^{17f})NR^{17f}R^{17f}$, $(CH_2)_rS(O)_2NR^{17f}R^{17f}$, $(CH_2)_rNHC^{17f}S(O)_2R^{17b}$, and $(CH_2)_rPhenyl$ substituted with $0-3$ R^{17e}; $$$
- R^{17d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{17e} , C_{3-6} alkenyl, C_{3-6} alkynyl, and a C_{3-10} carbocyclic residue substituted with 0-3 R^{17c} ;
- R^{17e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{2} , C_{1} , C_{2} , C_{2} , C_{2} , C_{3} , C_{1} , C_{2} , C_{3} , C_{1-5} alkyl, C_{2} , C_{3} , C_{3} , C_{3} , C_{3} , and C_{4} , C_{4} ,
 - R^{17f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
 - R¹⁸, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CHR')_qOH$, $(CHR')_qSH$, $(CHR')_qOR^{18d}$, $(CHR')_qSR^{18d}$, $(CHR')_qNR^{18a}R^{18a'}$, $(CHR')_rC(O)OH$, $(CHR')_rC(O)R^{18b}$, $(CHR')_rC(O)NR^{18a}R^{18a'}$,

 $(CHR')_qNR^{18a}C(0)R^{18a}, \quad (CHR')_qNR^{18a}C(0)H, \quad (CHR')_rC(0)OR^{18a}, \\ (CHR')_qOC(0)R^{18b}, \quad (CHR')_qS(0)_pR^{18b}, \quad (CHR')_qS(0)_2NR^{18a}R^{18a'}, \\ (CHR')_qNR^{18a}S(0)_2R^{18b}, \quad C_{1-6} \text{ haloalkyl}, \quad a \quad (CHR')_r-C_{3-10} \\ carbocyclic residue substituted with 0-3 R^{18c}, \quad and \quad a \\ (CHR')_r-5-10 \text{ membered heterocyclic system containing 1-4} \\ \text{heteroatoms selected from N, O, and S, substituted with 0-2 R^{18c}; }$

· 1.表现 17.21 (15.15) " " " 15.15 (15.15) " 15

5

15

20

 R^{18a} and $R^{18a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{18e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{18e} ;

 $\rm R^{18b},$ at each occurrence, is selected from $\rm C_{1-6}$ alkyl, $\rm C_{2-8}$ alkenyl, $\rm C_{2-8}$ alkynyl, a $\rm (CH_2)_r$ - $\rm C_{3-6}$ carbocyclic residue substituted with 0-2 $\rm R^{18e},$ and a $\rm (CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 $\rm R^{18e};$

R^{18c}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{18f}R^{18f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rSC_{1-4}$ alkyl, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{18b}$, $(CH_2)_rC(O)NR^{18f}R^{18f}$, $(CH_2)_rNR^{18f}C(O)R^{18a}$, $(CH_2)_rC(O)OC_{1-4}$ alkyl, $(CH_2)_rOC(O)R^{18b}$, $(CH_2)_rC(=NR^{18f})NR^{18f}R^{18f}$, $(CH_2)_rS(O)_pR^{18b}$, $(CH_2)_rNHC(=NR^{18f})NR^{18f}R^{18f}$, $(CH_2)_rS(O)_2NR^{18f}R^{18f}$, $(CH_2)_rNR^{18f}S(O)_2R^{18b}$, and $(CH_2)_r$ phenyl substituted with 0-3 R^{18e} ;

 R^{18d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{18e} , C_{3-6} alkenyl, C_{3-6}

alkynyl, and a C_{3-10} carbocyclic residue substituted with 0-3 R^{18c} ;

લાક મુખ્યામાં લાક્ષ્યા છે. •

15

25

30

 R^{18e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{2} , C_{2} , C_{3} , C_{1} , C_{2} , C_{3} , C_{1} , C_{3} , C_{3} , C_{3} , C_{4} , C_{5} , C

 R^{18f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;

 R^{19} is selected from C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $-C(0)R^{19b}$, $-C(0)NR^{19a}R^{19a}$, $-C(0)OR^{19a}$, and $-SO_2R^{19a}$, a $(CHR')_r-C_{3-10}$ carbocyclic residue substituted with 0-3 R^{16} , and a $(CHR')_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{16} ;

 R^{19a} is selected from C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, C_{3-6} cycloalkyl, a $(CR^{5'5}R^{5''})_t$ - $C_{3-10310}$ carbocyclic residue substituted with 0-5 R^{1516} and a $(CR^{5'5}R^{5''5})_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{1616} ;

 $\rm R^{19b}$ is selected from H, $\rm C_{1-8}$ alkyl, $\rm C_{3-8}$ alkenyl, $\rm C_{3-8}$ alkynyl, $\rm C_{3-6}$ cycloalkyl, a (CR $^{5'}$ R $^{5''}$) $_{t}$ -C $_{3-10310}$ carbocyclic residue substituted with 0-5 R 1516 and a (CR $^{5'}$ R $^{5''}$) $_{r}$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R 1616 ;

m, at each occurrence, is selected from 1, 2, 3, 4, and 5;

n, at each occurrence, is selected from 0, 1, 2, 3, 4, and 5;

可以文本 特別情報 医乳糖 机

- o, at each occurrence, is selected from 1 and 2;
- 5 p, at each occurrence, is selected from 1 and 2;

建石的 建铁子油铁油强燃烧

- r, at each occurrence, is selected from 0, 1, 2, 3, 4, and 5;
- q, at each occurrence, is selected from 1, 2, 3, 4, and 5;
- s, at each occurrence, is selected from 0, 1, and 2;
 - t, at each occurrence, is selected from 0, 1, 2, 3, 4, and 5;
- - v, at each occurrence, is selected from 0 and 1; and
- 20 w, at each occurrence, is selected from 0, 1, 2, and 3.
 - 2. The compound of claim 1, wherein:
- R^{4'} is absent or, taken with the nitrogen to which it is attached to form an N-oxide;
- R⁷, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CHR')_qOH$, $(CHR')_qOR^{7d}$, $(CHR')_qNR^{7a}R^{7a'}$, $(CHR')_qC(O)R^{7b}$, $(CHR')_qC(O)NR^{7a}R^{7a'}$, $(CHR')_qNR^{7a}C(O)R^{7b}$, $(CHR')_qNR^{7a}C(O)H$, $(CHR')_qS(O)_2NR^{7a}R^{7a'}$, $(CHR')_qNR^{7a}S(O)_2R^{7b}$, $(CHR')_qNHC(O)NHR^{7a}$, $(CHR')_qNHC(O)OR^{7a}$, $(CHR')_qOC(O)NHR^{7a}$, C_{1-6} haloalkyl, a $(CHR')_r-C_{3-10}$ carbocyclic residue substituted with 0-3 R^{7c} , and a $(CHR')_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{7c} ;

alternatively, R^7 and R^8 join to form C_{3-7} cycloalkyl, or =NR^{8b};

5

R¹¹, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_qOH$, $(CH_2)_qOR^{11d}$, $(CH_2)_qNR^{11a}R^{11a'}$, $(CH_2)_rC(O)R^{11b}$, $(CH_2)_rC(O)R^{11a}R^{11a'}$, $(CH_2)_qNR^{11a}C(O)R^{11b}$, $(CH_2)_qNR^{11a}C(O)NHR^{11a}$, $(CH_2)_qNHC(O)NHR^{11a}$, $(CH_2)_qNHC(O)NHR^{11a}$, $(CH_2)_qNHC(O)OR^{11a}$, $(CH_2)_qOC(O)NHR^{11a}$, C_{1-6} haloalkyl, a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-5 R^{11c} , and a $(CH_2)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11c} .

15

10

3. The compound of claim 2, wherein:

A is selected from

$$(R^{18})_{u} (CH_{2})_{t}$$

$$(CH_{2})_{t} (CH_{2})_{t}$$

20

t is selected from 0, 1, and 2.

4. The compound of claim 3, wherein:

25

 R^{17} is selected from H; and

R¹⁸ is selected from H.

- 5. The compound of claim 4, wherein:
- A is selected from

5

10

20

翻譯 不断的现代性有的复数形式

- 6. The compound of claim 5, wherein:
- G is selected from $-C(0)R^3$, $-C(0)NR^2R^3$, $-C(0)OR^3$, $-SO_2NR^2R^3$, and $-SO_2R^3$, $-C(=S)NR^2R^3$, $C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$,

$$C (=CHNO_2) NR^2R^3$$
, $C (=C (CN)_2) NR^2R^3$, and NR^2R^3 .

- 7. The compound of claim 6, wherein:
- 15 G is selected from $-C(0)NR^2R^3$, $^{23}C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$, $C(=CHNO_2)NR^2R^3$, and $C(=C(CN)_2)NR^2R^3$;
 - 8. The compound of claim 7, wherein:

R¹⁶, at each occurrence, is selected from methyl, ethyl, propyl, iso-propyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{2-8} alkynyl, C_{2-8} alkynyl, C_{2-8} alkenyl, C_{2-

 R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, methyl, ethyl, and a $(CH_2)_{r}$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{16e} ;

重压分别的 文 数据额。

- 5 R^{16e}, at each occurrence, is selected from methyl, ethyl, Cl, F, Br, I, CN, CF₃, and OCH₃;
 - ${\bf R}^{\rm 16f}$, at each occurrence, is selected from H; and
- 10 r is selected from 0, 1, and 2.

- 9. The compound of claim 8, wherein:
- R³ is selected from a $(CR^{3'}R^{3''})_{r}$ - C_{3-6} carbocyclic residue 15 substituted with 0-2 R¹⁵ and a $(CR^{3'}CR^{3''})_{r}$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R¹⁵;
 - ${\bf R}^{3}{}^{\prime}$ and ${\bf R}^{3}{}^{\prime\prime}$, at each occurrence, are selected from H;
- R¹⁵, at each occurrence, is selected from C_{1-8} alkyl, $(CH_2)_rC_{3-6} \ \, \text{cycloalkyl}, \ \, Cl, \ \, \text{Br, F, CN, } \ \, (\text{CHR'})_r\text{NR}^{15a}\text{R}^{15a'}, \\ (CHR')_r\text{OH, } \ \, (\text{CHR'})_r\text{O(CHR'})_r\text{R}^{15d}, \ \, (\text{CHR'})_r\text{C(O)} \ \, (\text{CHR'})_r\text{R}^{15b}, \\ (CHR')_r\text{C(O)} \ \, \text{NR}^{15a}\text{R}^{15a'}, \ \, (\text{CHR'})_r\text{NR}^{15f}\text{C(O)} \ \, (\text{CHR'})_r\text{R}^{15b}, \\ (CHR')_r\text{NR}^{15f}\text{C(O)} \ \, \text{NR}^{15f}\text{R}^{15f}, \ \, (\text{CHR'})_r\text{C(O)} \ \, (\text{CHR'})_r\text{R}^{15d}, \\ (CHR')_r\text{OC(O)} \ \, (\text{CHR'})_r\text{R}^{15b}, \ \, (\text{CHR'})_r\text{S(O)}_p \ \, (\text{CHR'})_r\text{R}^{15b}, \\ (CHR')_r\text{S(O)}_2\text{NR}^{15a}\text{R}^{15a'}, \ \, (\text{CHR'})_r\text{NR}^{15f}\text{S(O)}_2 \ \, (\text{CHR'})_r\text{R}^{15b}, \\ (CHR')_r\text{S(O)}_2\text{NR}^{15a}\text{R}^{15a'}, \ \, (\text{CHR'})_r\text{NR}^{15f}\text{S(O)}_2 \ \, (\text{CHR'})_r\text{R}^{15b}, \\ \text{alkynyl substituted with } 0-3 \ \text{R'}, \ \, (\text{CHR'})_r\text{phenyl} \\ \text{substituted with } 0-3 \ \text{R}^{15e}, \ \, \text{and a} \ \, (\text{CH}_2)_r-5-10 \ \, \text{membered} \\ \text{heterocyclic system containing } 1-4 \ \, \text{heteroatoms selected} \\ \text{from N, O, and S, substituted with } 0-2 \ \, \text{R}^{15e}; \\ \end{cases}$
 - $\mbox{R}^{'}\,,$ at each occurrence, is selected from H, and $\mbox{C}_{1\text{-}6}$ alkyl;

- R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-5 R^{15e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ;
- R^{15b} , at each occurrence, is selected from C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e} , and $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ; and
- R^{15e} , at each occurrence, is selected from C_{1-6} alkyl, Cl, F, Br, I, CN, $(CF_2)_{\,\rm r}CF_3$, and OH.
 - 10. The compound of claim 5, wherein:

20 11. The compound of claim 10, wherein:

 R^1 is selected from H;

1 年 曹阳广东京

5

10

15

25

both X^1 and X^2 cannot be C; and

 \mathbf{Z}^2 is selected from $\mathtt{NR}^{1}{}'$, O, and S.

- 12. The compound of claim 11, wherein:
- 30 R¹⁶, at each occurrence, is selected from methyl, ethyl, propyl, iso-propyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CHR')_rNR^{16a}R^{16a'}, (CHR')_rOH, (CHR')_rO(CHR')_rR^{16d}, (CHR')_rC(O)(CHR')_rR^{16b},

 $\label{eq:chr'} \mbox{(CHR')$_r$C(0)NR^{16a}R$^{16a'}$, (CHR')_rNR^{16f}C(0)$ (CHR')$_r$R16b, (CHR')_r$S(0)$_2NR^{16a}R$^{16a'}$, (CHR')_rNR^{16f}S(0)$_2$ (CHR')$_r$R16b, C_{1-6}$ haloalkyl$, and (CHR')_r$phenyl substituted with 0-3 $R16e; }$

医副部分性 电流管机 毛

5

 R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, methyl, ethyl, and a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{16e} ;

10 R^{16e}, at each occurrence, is selected from methyl, ethyl, Cl, F, Br, I, CN, CF₃, and OCH₃;

R^{16f}, at each occurrence, is selected from H; and

15 r is selected from 0, 1, and 2.

13. The compound of claim 12, wherein:

R¹⁵, at each occurrence, is selected from C_{1-8} alkyl, $(CH_2)_rC_{3-6} \text{ cycloalkyl}, Cl, Br, F, CN, (CHR')_rNR^{15a}R^{15a'}, \\ (CHR')_rOH, (CHR')_rO(CHR')_rR^{15d}, (CHR')_rC(O)(CHR')_rR^{15b}, \\ (CHR')_rC(O)NR^{15a}R^{15a'}, (CHR')_rNR^{15f}C(O)(CHR')_rR^{15b}, \\ (CHR')_rNR^{15f}C(O)NR^{15f}R^{15f}, (CHR')_rC(O)O(CHR')_rR^{15d}, \\ (CHR')_rOC(O)(CHR')_rR^{15b}, (CHR')_rS(O)_p(CHR')_rR^{15b}, \\ (CHR')_rS(O)_2NR^{15a}R^{15a'}, (CHR')_rNR^{15f}S(O)_2(CHR')_rR^{15b}, C_{1-6} \\ \text{haloalkyl}, C_{2-8} \text{ alkenyl}, C_{2-8} \text{ alkynyl}, (CHR')_rphenyl \\ \text{substituted with 0-3 } R^{15e}, \text{ and a } (CH_2)_r-5-10 \text{ membered} \\ \text{heterocyclic system containing 1-4 heteroatoms selected} \\ \text{from N, O, and S, substituted with 0-2 } R^{15e};$

30

R', at each occurrence, is selected from H, and C_{1-6} alkyl;

 R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted

with 0-5 R^{15e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ;

- 5 R^{15b} , at each occurrence, is selected from C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e} , and $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ; and
 - R^{15e} , at each occurrence, is selected from C_{1-6} alkyl, Cl, F, Br, I, CN, $(CF_2)_rCF_3$, and OH.
 - 14. The compound of claim 2, wherein:

A is selected from

10

15

25

v is selected from 0 and 1.

- 20 15. The compound of claim 14, wherein:
 - G is selected from $-C(O)R^3$, $-C(O)NR^2R^3$, $-C(O)OR^3$, $-SO_2NR^2R^3$, and $-SO_2R^3$, $-C(=S)NR^2R^3$, $C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$,

$$C = CHNO_2$$
) NR^2R^3 , $C = C (CN)_2$) NR^2R^3 , and NR^2R^3

16. The compound of claim 15, wherein:

G is selected from $-C(0)NR^2R^3$, $^{23}C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$, $C(=CHNO_2)NR^2R^3$, and $C(=C(CN)_2)NR^2R^3$.

interior size.

17. The compound of claim 16, wherein:

·新致飘荡 抽印 2000年 李涛莺•

5 .

- R¹⁶, at each occurrence, is selected from methyl, ethyl, propyl, iso-propyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{2-8} alkenyl, C_{2-
- 15 R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, methyl, ethyl, and a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{16e} ;
- R^{16e} , at each occurrence, is selected from methyl, ethyl, Cl, F, Br, I, CN, CF₃, and OCH₃;
 - R^{16f} , at each occurrence, is selected from H; and r is selected from 0, 1, and 2.
 - 18. The compound of claim 17, wherein:
- R^3 is selected from a $(CR^3'R^3'')_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{15} and a $(CR^3'CR^{3''})_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15}
 - $R^{3}{}^{\prime}$ and $R^{3}{}^{\prime\prime}$, at each occurrence, are selected from H;

R¹⁵, at each occurrence, is selected from C_{1-8} alkyl, $(CH_2)_rC_{3-6} \text{ cycloalkyl}, Cl, Br, F, CN, (CHR')_rNR^{15a}R^{15a'}, \\ (CHR')_rOH, (CHR')_rO(CHR')_rR^{15d}, (CHR')_rC(O)(CHR')_rR^{15b}, \\ (CHR')_rC(O)NR^{15a}R^{15a'}, (CHR')_rNR^{15f}C(O)(CHR')_rR^{15b}, \\ (CHR')_rNR^{15f}C(O)NR^{15a}R^{15a'}, (CHR')_rC(O)O(CHR')_rR^{15d}, \\ (CHR')_rOC(O)(CHR')_rR^{15b}, (CHR')_rS(O)_p(CHR')_rR^{15b}, \\ (CHR')_rS(O)_2NR^{15a}R^{15a'}, (CHR')_rNR^{15f}S(O)_2(CHR')_rR^{15b}, C_{1-6} \\ haloalkyl, C_{2-8} alkenyl substituted with 0-3 R', C_{2-8} \\ alkynyl substituted with 0-3 R', (CHR')_rphenyl \\ substituted with 0-3 R^{15e}, and a (CH_2)_r-5-10 membered \\ heterocyclic system containing 1-4 heteroatoms selected \\ from N, O, and S, substituted with 0-2 R^{15e};$

A. 地位为为1000年间

5

. 10

15

20

25

30

 $\mbox{R}^{\prime}\,,$ at each occurrence, is selected from H, and $\mbox{C}_{1\text{--}6}$ alkyl;

 R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-5 R^{15e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ;

- R^{15b} , at each occurrence, is selected from C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e} , and $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ; and
- R^{15e} , at each occurrence, is selected from C_{1-6} alkyl, Cl, F, Br, I, CN, $(CF_2)_r CF_3$, and OH.
 - 19. The compound of claim 14, wherein:

20. The compound of claim 19, wherein: `

5 R^1 is H;

10

25

畅 文學學到舊漢(「體驗或與海藻型」等

both X^1 and X^2 cannot be C; and

 Z^2 is selected from $NR^{1'}$, O, and S.

21. The compound of claim 20, wherein:

R¹⁶, at each occurrence, is selected from methyl, ethyl, propyl, iso-propyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-1}$ 6 cycloalkyl, Cl, Br, I, F, NO₂, CN, $(CHR')_rNR^{16a}R^{16a'}$, $(CHR')_rOH$, $(CHR')_rO(CHR')_rR^{16d}$, $(CHR')_rC(O)(CHR')_rR^{16b}$, $(CHR')_rC(O)NR^{16a}R^{16a'}$, $(CHR')_rNR^{16f}C(O)(CHR')_rR^{16b}$, $(CHR')_rS(O)_p(CHR')_rR^{16b}$, $(CHR')_rS(O)_2NR^{16a}R^{16a'}$, $(CHR')_rNR^{16f}S(O)_2(CHR')_rR^{16b}$, C_{1-6} haloalkyl, and $(CHR')_rphenyl$ substituted with 0-3 R^{16e} ;

 R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, methyl, ethyl, and a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{16e} ;

 $\rm R^{16e},$ at each occurrence, is selected from methyl, ethyl, Cl, F, Br, I, CN, CF_3, and OCH_3;

 R^{16f} , at each occurrence, is selected from H; and 30 r is selected from 0, 1, and 2.

22. The compound of claim 21, wherein:

R¹⁵, at each occurrence, is selected from C_{1-8} alkyl, $(CH_2)_rC_{3-6} \ cycloalkyl, \ Cl, \ Br, \ F, \ CN, \ (CHR')_rNR^{15a}R^{15a'}, \\ (CHR')_rOH, \ (CHR')_rO(CHR')_rR^{15d}, \ (CHR')_rC(O) \ (CHR')_rR^{15b}, \\ (CHR')_rC(O) \ NR^{15a}R^{15a'}, \ (CHR')_rNR^{15f}C(O) \ (CHR')_rR^{15b}, \\ (CHR')_rNR^{15f}C(O) \ NR^{15a}R^{15a'}, \ (CHR')_rC(O)O(CHR')_rR^{15d}, \\ (CHR')_rOC(O) \ (CHR')_rR^{15b}, \ (CHR')_rS(O)_p(CHR')_rR^{15b}, \\ (CHR')_rS(O)_2NR^{15a}R^{15a'}, \ (CHR')_rNR^{15f}S(O)_2 \ (CHR')_rR^{15b}, \ C_{1-6} \\ haloalkyl, \ C_{2-8} \ alkenyl \ substituted \ with \ 0-3 \ R', \ (CHR')_rphenyl \\ substituted \ with \ 0-3 \ R^{15e}, \ and \ a \ (CH_2)_r-5-10 \ membered \\ heterocyclic \ system \ containing \ 1-4 \ heteroatoms \ selected \\ from \ N, \ O, \ and \ S, \ substituted \ with \ 0-2 \ R^{15e};$

化复数缺氧重新的 经被公司申请用户 化二

5

10

15

20

25

30

 $\mbox{R}^{\prime}\,,$ at each occurrence, is selected from H, and \mbox{C}_{1-6} alkyl;

- R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-5 R^{15e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ;
- R^{15b} , at each occurrence, is selected from C_{1-6} alkyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e} , and $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ; and
- R^{15e} , at each occurrence, is selected from C_{1-6} alkyl, Cl, F, Br, I, CN, $(CF_2)_rCF_3$, and OH.
- 23. The compound of claim 1 wherein the compound is selected from:

```
fluorophenyl) methyl] -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea hydrochloride;
     N-(3-acetylphenyl) - N'-[(2R)-2-[[trans-4-[(4-acetylphenyl)]]]
 5
           fluorophenyl) methyl] -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea hydrochloride;
     N-(3-cyanophenyl)-N'-[(2R)-2-[[trans-4-[(4-cyanophenyl)])]
10
           fluorophenyl) methyl] -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea trifluoroacetate;
     N-(3-cyanophenyl)-N'-[(2R)-2-[[cis-4-[(4-cyanophenyl)]]]
           fluorophenyl) methyl]-1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea trifluoroacetate;
15
     N-(3-cyanophenyl)-N'-[(2S)-2-[[trans-4-[(4-cyanophenyl)]]]
           fluorophenyl) methyl] -1-cyclohexyl] amino] - (1S) -1-
           cyclohexyl]urea trifluoroacetate;
20
     N-(3-cyanophenyl)-N'-[(2S)-2-[[cis-4-[(4-cyanophenyl)]]]
           fluorophenyl) methyl] -1-cyclohexyl] amino] - (1S) -1-
           cyclohexyl]urea trifluoroacetate;
     N-(3-acetylphenyl)-N'-[(2S)-2-[[trans-4-[(4-acetylphenyl)]]]
25
           fluorophenyl) methyl] -1-cyclohexyl] amino] - (1S) -1-
           cyclohexyl]urea trifluoroacetate;
     N-(3-acetylphenyl)-N'-[(2S)-2-[[cis-4-[(4-acetylphenyl)]]]
30
           fluorophenyl) methyl]-1-cyclohexyl] amino]-(1S)-1-
           cyclohexyl]urea trifluoroacetate;
     N-(3-acetylphenyl)-N'-[(2R)-2-[[(3R)-3-[(4-acetylphenyl)])]
           fluorophenyl) methyl - (1R) -1-cyclohexyl amino - (1R) -1-
           cyclohexyl]urea;
35.
```

N-(3-acetylphenyl)-N'-[(2R)-2-[[cis-4-[(4-acetylphenyl)]]]

roman in the second of the second

```
fluorophenyl) methyl] - (1S) -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea;
     N-(3-\text{acetylphenyl})-N'-[(2R)-2-[[(3S)-3-[(4-
           fluorophenyl) methyl] - (1R) -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea;
     N-(3-acetylphenyl)-N'-[(2R)-2-[[(3S)-3-[(4-acetylphenyl)])]
           fluorophenyl) methyl] - (1S) -1-cyclohexyl] amino] - (1R) -1-
10
           cyclohexyl]urea;
     N-(4-fluorophenyl)-N'-[(2R)-2-[[(3R)-3-[(4-fluorophenyl)])]
           fluorophenyl) methyl] - (1R) -1-cyclohexyl] amino] - (1R) -1-
15
           cyclohexyl]urea;
     N-(4-fluorophenyl)-N'-[(2R)-2-[[(3R)-3-[(4-fluorophenyl)])]
           fluorophenyl) methyl] - (1S) -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea;
20
     N-(4-fluorophenyl)-N'-[(2R)-2-[[(3S)-3-[(4-fluorophenyl)])]
           fluorophenyl) methyl - (1R) -1-cyclohexyl amino - (1R) -1-
           cyclohexyl]urea;
25
     N-(4-fluorophenyl)-N'-[(2R)-2-[[(3S)-3-[(4-fluorophenyl)])]
           fluorophenyl) methyl] - (1S) -1-cyclohexyl] amino] - (1R) -1-
           cyclohexyl]urea;
     N-(3-acetylphenyl)-N'-((3S,4S)-4-{[4-(4-
           fluorobenzyl)cyclohexyl]amino}tetrahydro-3-furanyl)urea;
30
     N-(3-\text{acetylphenyl})-N'-(\{(2S)-1-[4-(4-
           fluorobenzyl)cyclohexyl]pyrrolidinyl}methyl)urea;
     N-(3-\text{acetylphenyl})-N'-(\{(2S)-1-[4-(4-
35
           fluorobenzyl)cyclohexyl]pyrrolidinyl}methyl)urea;
```

N-(3-acetylphenyl)-N'-[(2R)-2-[[(3R)-3-[(4-acetylphenyl)])]

- N-(3-acetylphenyl)-N'-({(2R)-1-[4-(4-fluorobenzyl)cyclohexyl]pyrrolidinyl}methyl)urea;
- $N-(3-\text{acetylphenyl})-N'-(\{(2R)-1-[4-(4-fluorobenzyl)cyclohexyl]pyrrolidinyl\}methyl)urea;$
 - N-(3-acetylphenyl)-N'-{(3R)-1-[4-(4fluorobenzyl)cyclohexyl]pyrrolidinyl}urea;
- 10 N-(3-acetylphenyl)-N'-{(3R)-1-[4-(4-fluorobenzyl)cyclohexyl]pyrrolidinyl}urea;

· 15、移居 夏禄(中南) 医肾囊生姜麻根腺 化元

5

15

25

30

- N-(3-acetylphenyl)-N'-{(3S)-1-[4-(4-fluorobenzyl)cyclohexyl]pyrrolidinyl}urea; and
- $N-(3-\text{acetylphenyl})-N'-\{(3S)-1-[4-(4-fluorobenzyl)cyclohexyl]pyrrolidinyl\}urea.$
- 24. A pharmaceutical composition, comprising a20 pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1.
 - 25. A method for modulation of chemokine receptor activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
 - 26. A method for treating or preventing inflammatory diseases, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
 - 27. A method for treating or preventing asthma, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.