Exercice 6 (parties (4) et (5) rectifiées)

Soit \mathcal{C}^0 l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues. On note + et \times les opérations usuelles d'addition et multiplication des fonctions réelles.

- (1) Montrer que $(C^0, +, \times)$ est un anneau commutatif. Est-il intègre ?
- (2) Trouver les éléments inversibles de C^0 .
- (3) Pour tout élément g de \mathcal{C}^0 , on note $Z(f) := \{x \in \mathbb{R} : f(x) = 0\}$. Montrer que pour tous $f, g \in C^0$, on a

$$f$$
 divise g dans $A \Longrightarrow Z(f) \subset Z(g)$.

A-t-on l'implication réciproque?

(4) Soit B un sous-ensemble de \mathbb{R} . Montrer que l'ensemble

$$I(B) := \{ f \in \mathcal{C}^0 : \forall x \in B, f(x) = 0 \}$$

est un idéal de C^0 .

(5) On suppose que B est non-vide et non-dense dans \mathbb{R} (càd, $B \neq \emptyset$ et $\overline{B} \neq \mathbb{R}$). Montrer que l'idéal I(B) n'est pas principal (on pourra considérer la racine cubique d'un élément).

Solution de (5):

On suppose par l'absurde que I(B) est principal. Alors il existe $g \in C^0$ telle que $I(B) = gC^0 = \{gf : f \in C^0\}$. On définit

$$f = g^{1/3} : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = \sqrt[3]{g(x)}.$

Étant la composée de fonctions continues, on sait que $f \in C^0$. En plus, puisque $f(x) = \sqrt[3]{g(x)} = 0$ pour tout $x \in B$, on trouve que $f \in I(B) = gC^0$. Alors, il existe $h \in C^0$ telle que

$$\begin{split} f &= gh \Longrightarrow \sqrt[3]{g(x)} = g(x)h(x), \quad \forall x \in \mathbb{R} \\ &\Longrightarrow h(x) = \frac{\sqrt[3]{g(x)}}{g(x)}, \quad \forall x \notin Z(g) \\ &\Longrightarrow h(x) = \frac{1}{\sqrt[3]{g(x)^2}}, \quad \forall x \notin Z(g). \end{split}$$

L'idée maintenant c'est de trouver une suite $(x_n)_n$ d'éléments du complémentaire de Z(g) qui converge vers un point $x \in Z(g)$. La conclusion c'est que $g(x_n) \to 0$ par des points $x_n \notin Z(g)$ et donc $h(x_n) \to +\infty$, ce qui implique (par continuité de h) l'absurde $h(x) = +\infty$. Voyons comment prouver l'existence d'une telle suite.

On commence par vérifier que $Z(g) \neq \mathbb{R}$ et $Z(g) \neq \emptyset$. Ceci se vérifie par l'absurde : si $Z(g) = \mathbb{R}$, c'est-à-dire si $g \equiv 0$, alors $I(B) = gC^0 = \{0\}$ et donc B et dense dans \mathbb{R} , ce qui est faux par hypothèse ; si $Z(g) = \emptyset$ alors $g \in I(B)$ ne s'annule jamais et donc $B = \emptyset$, ce qui est aussi faux par hypothèse. Donc effectivement $Z(g) \neq \mathbb{R}$ et $Z(g) \neq \emptyset$. Par conséquent, $\partial(Z(g)) \neq \emptyset$. Puisque la frontière d'un ensemble coïncide avec celle de sont complémentaire, on peut fixer $x \in \partial(Z(g)^c) = \partial(Z(g))$ et trouver une suite $(x_n)_n$ de points de $Z(g)^c$ telle que $\lim_n x_n = x$. Étant g continue, on sait que Z(g) est un ensemble fermé. Ainsi, $x \in \partial(Z(g)) \subset Z(g)$, c'est-à-dire, $\lim_n g(x_n) = g(x) = 0$. Puisque h est continue, cela implique la contradiction

$$h(x) = \lim_{n \to \infty} h(x_n) = \lim_{n \to \infty} \frac{1}{\sqrt[3]{g(x_n)^2}} = \frac{1}{0^+} = +\infty.$$

Par conséquent, l'idéal I(B) n'est pas principal.