TRIGONOMETRY Chapter 19

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL I

¿ QUÉ ES EL ÁNGULO TRIGONOMÉTRICO?

ÁNGULO EN POSICIÓN NORMAL

DEFINICIÓN:

Es aquel ángulo trigonométrico ubicado sobre el plano cartesiano, posee :

- Vértice : Origen de coordenadas.
- Lado inicial : Semieje X positivo.
- Lado final : Se ubica en cualquier cuadrante o semieje del plano.

OBSERVACIÓN:

Representación gráfica:

La posición del lado final de un ángulo en posición normal, determina el cuadrante o semieje al cual pertenece dicho ángulo.

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL I

α: ángulo en posición normal.

x: abscisa del punto P.

y: ordenada del punto P.

r: radio vector del punto P.

$$r = \sqrt{x^2 + y^2}$$
 (r > 0)

DEFINICIONES:

senα	cosα	tanα
<u>y</u>	X	y
r	r	X

Del gráfico, complete el siguiente cuadro.

senα	4 5
cosα	$\frac{-3}{5}$
tana	$\frac{4}{-3}$

RESOLUCIÓN

Según gráfico:

$$x = -3$$
 ; $y = 4$; $r = 5$

RECORDAR:

senβ	cosβ	tanβ
y	X	y
r	r	X

Dado el gráfico, efectúe $E = 13 \operatorname{sen} \phi$

RECORDAR:

RESOLUCIÓN

Según gráfico: x = 5; y = -12

Luego:

$$r = \sqrt{(5)^2 + (-12)^2} = \sqrt{25 + 144}$$

$$\mathbf{r} = \sqrt{169} \implies \mathbf{r} = \mathbf{13}$$

Efectuamos E:

$$E = 13 \cdot (\frac{-12}{13})$$
 $\therefore E = -12$

$$\therefore \mathbf{E} = -12$$

Del gráfico, calcule $K = cos^2 \beta$

RECORDAR:

$$r = \sqrt{x^2 + y^2}$$

RESOLUCIÓN

Según gráfico: x = -3; y = -2

Luego:
$$r = \sqrt{(-3)^2 + (-2)^2}$$

 $r = \sqrt{9+4} \implies r = \sqrt{13}$

Efectuamos K:

$$\mathbf{K} = \left(\frac{-3}{\sqrt{13}}\right)^2$$

$$\therefore K = \frac{9}{13}$$

Del gráfico, efectúe $M = \cos\theta$. $\sin\theta$

$$r = \sqrt{x^2 + y^2}$$

senθ	cosθ
<u>y</u>	X
r	r

RESOLUCIÓN

Según gráfico: x = 1; y = -3

Luego:

$$\mathbf{r} = \sqrt{(1)^2 + (-3)^2} = \sqrt{1+9}$$

$$\Rightarrow \mathbf{r} = \sqrt{10}$$

Efectuamos M:

$$\mathbf{M} = \left(\frac{1}{\sqrt{10}}\right) \left(\frac{-3}{\sqrt{10}}\right) \quad \therefore \quad \mathbf{M} = -\frac{3}{10}$$

Del gráfico, efectúe

$$R = \sqrt{17} (sen\alpha + cos\alpha)$$

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

senα	cosα
<u>y</u>	X
r	r

RESOLUCIÓN

Según gráfico: x = -1; y = 4

Luego:

$$\mathbf{r} = \sqrt{(-1)^2 + (4)^2} = \sqrt{1 + 16}$$

$$\Rightarrow \mathbf{r} = \sqrt{17}$$

Efectuamos R:

$$R = \sqrt{17} \left(\frac{4}{\sqrt{17}} + \frac{-1}{\sqrt{17}} \right) = \sqrt{17} \left(\frac{3}{\sqrt{17}} \right)$$

En una búsqueda del tesoro, organizada por el Príncipe Vegeta; para el último acertijo se tienen las siguientes indicaciones:

- a) Dirigirse al centro del patio deportivo (origen de coordenadas).
- b) Desde el centro dirigirse 3 m a la derecha y luego 4 m hacia arriba.
 Si se sabe que β es el ángulo en posición normal cuyo lado final pasa por las coordenadas antes mencionadas, determine lo siguiente: E = cos²β sen²β

RESOLUCIÓN

Calculamos: $E = \cos^2 \beta - \sin^2 \beta$

$$\mathsf{E} = \left(\frac{3}{5}\right)^2 - \left(\frac{4}{5}\right)^2$$

$$E = \frac{9}{25} - \frac{16}{25}$$

$$\therefore \mathbf{E} = -\frac{7}{25}$$

Los profesores de trigonometría, con la finalidad de realizar un evento de confraternidad, organizaron un campeonato relámpago con las siguientes indicaciones para llegar al campo deportivo:

- a) Tomar el tren y bajarse en la Estación Atocongo (origen de coordenadas).
- b) Desde la Estación Atocongo dirigirse 6 cuadras a la izquierda y luego n + 1 cuadras hacia arriba.

Si se sabe que β es el ángulo en posición normal cuyo lado final pasa por las coordenadas antes indicadas, determine el valor de n si tan $\beta = -\frac{1}{2}$

RESOLUCIÓN

$$\frac{n+1}{+6} = \frac{1}{+3}$$

$$3n + 3 = 6$$

$$3n = 3$$

$$\therefore$$
 n = 1

