I - RAPPEL (vu en seconde)

Lorsque vous appuyez sur une touche de votre clavier, un code binaire est généré :

AS	SCI	•	T	ABLE										
76 88 50.00	Hexadecimal				Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Cha
)	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	
l	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	C
1	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101		5	101	65	1100101		e
5	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110		f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111		g
3	8	1000	10	[BACKSPACE]	56	38	111000		8	104	68	1101000		h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001		i
10	A	1010	12	(LINE FEED)	58	3A	111010		:	106	6A	1101010		j
1	В	1011	13	[VERTICAL TAB]	59	3B	111011		;	107	6B	1101011		k
.2	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100		1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101		=	109	6D	1101101		m
14	E	1110	16	[SHIFT OUT]	62	3E	111110		>	110	6E	1101110		n
.5	E	1111	17	[SHIFT IN]	63	3F	111111		?	111	6F	1101111		0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000		@	112	70	1110000		p
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001		A	113	71	1110001		q
.8	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010		В	114	72	1110010		r
.9	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011		C	115	73	1110011		S
0	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110		F	118	76	1110110		v
23	17	10111	27	[ENG OF TRANS, BLOCK]	71	47	1000111		G	119	77	1110111		w
24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		X
25	19	11001	31	[END OF MEDIUM]	73	49	1001001		!	121	79	1111001		У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010		J	122	7A	1111010		z
27	1B	11011	33	[ESCAPE]	75	4B	1001011		K	123	7B	1111011		1
28	10	11100	34	[FILE SEPARATOR]	76	4C	1001100		L	124	7C	11111100		1
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101		M	125	7D	11111101		}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110		N	126	7E	11111110		~
31	1F		37	[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	1111111	1//	[D
2	20	100000		[SPACE]	80	50	1010000		P					
3	21	100001		!	81	51	1010001		Q					
4	22	100010			82	52	1010010		R					
35	23	100011		#	83	53	1010011		S					
6	24	100100		\$	84	54	1010100		T					
37	25	100101		%	85	55	1010101		U					
38	26	100110		&	86	56	1010110		V					
19	27	100111		ŷ.	87	57	1010111		W					
10	28	101000		(88	58	1011000		X					
11	29	101001		1	89	59	1011001		Y					
12	2A	101010		· ·	90	5A	1011010		Z					
43	2B	101011		+	91	5B	1011011		1					
14	2C	101100		1	92	5C	1011100		1					
45 46	2D	101101		į.	93	5D	1011101]					
16	2E	101110		1	94	5E	1011110		1777					
47	2F	101111	5/	/	95	5F	1011111	13/	-					

Chaque code binaire (base 2) a une correspondance en décimale (base 10) que nous avons davantage l'habitude d'utiliser. Mais aussi en base hexadécimal (base 16) qui est très utilisée aussi en informatique.

Donner le code binaire et décimal généré lorsqu'on appuie sur les touches suivantes :

TOUCHE	Binaire	Décimal
В		
X		
a		
<		
f		
(
Barre espace		
7		
9		
=		

OMJS - 1 -

De même, un écran d'ordinateur est constitué de pixels de couleurs :

Chaque pixel est en réalité composé de 3 « sous » pixels : Rouge, Vert et Bleu. En jouant avec l'intensité de chaque sous-pixel il est possible de reproduire une grande palette de couleur, c'est ce qu'on appelle le système **RGB** (Red, Green, Blue ou RVB en français).

Exemple pour quelques couleurs:

	Noir	Bleu	Jaune	Vert	Rouge	Blanc	Violet
R	0	120	255	120	255	255	203
		0111 1000	1111 1111				
G	0	120	255	255	120	225	143
		0111 1000	1111 1111				
В	0	255	0	120	120	255	252
		1111 1111	0000 0000				

Sachant qu'il y a 255 niveaux d'intensité pour chaque couleurs de base, on a au total 255*255*255 = 16 581 375 couleurs possibles pour un pixel.

L'utilisation de la base 16 ou hexadécimale est très répandue en informatique. Voici par exemple un code source html-css qui permet de fixer la couleur d'une zone de texte :

Le nombre A400FF est au format hexadécimal et correspond à la couleur violette.

A4 : Niveau de rouge 00 : Niveau de vert FF: Niveau du bleu .

L'instruction **chr(valeur)** permet de récupérer le caractère à partir du code ASCII.

A l'inverse, l'instruction **ord("X")** permet de récupérer le code ascii à partir du caractère X.

OMJS - 2 -

II- Applications: Manipulation chaines de caractères, encodage / cryptage.

Problématique : on souhaite crypter un texte afin d'en cacher le contenu et bien sur pouvoir ensuite le décrypter.

Ecrivons le programme suivant :

```
# Initiation programmation python 3 . LLP
# Crytage d'un texte
#

Swhile 1:
    a = input("Entrez la phrase à coder : ")
    for caractere in a:
        print (caractere)

# Initiation programmation python 3 . LLP
# Crytage d'un texte
#

Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Crytage d'un texte
# Initiation programmation python 3 . LLP
# Initiation python pytho
```

While 1 : réalise une boucle toujours vraie (infinie)

for caractere in a : la variable caractere va prendre successivement la valeur de chaque caractère du texte, y compris les espaces

```
Initiation programmation python 3 . LLP
 # Crytage d'un texte
                                                  C:\Windows\system32\cmd.exe
                                                 Entrez la phrase à coder : Bonjour Bertrand
□while 1:
                                                  Cpokpvs!Cfsusboe
     a3="
     a = input("Entrez la phrase à coder : ")
     for caractere in a:
                                                  Entrez la phrase à coder : Zoo
         # print (caractere)
         a2 = ord(caractere) + 1
                                                  qq]
         a3 = a3 + chr(a2)
     print ("")
print (a3)
                                                  Entrez la phrase à coder :
     print ("")
```

- 1- Expliquer, à partir des données d'entrées (phrase à coder) et de sortie (phrase cryptée) et du tableau des codes ASCII, ce que fait le programme .
- 2- Proposer un programme qui va permettre de décoder le texte. En entrée on aura le texte crypté (variable a3) En sortie on affichera le texte décrypté

OMJS - 3 -

III- Programmation

Ci-dessous du code qui pourra vous servir plus tard en mini projet.

Il permet de faire de la saisie d'une touche du clavier au vol sans avoir à appuyer sur « entrée » ce qui est très pratique pour de petits jeux sympas ...

Modifier le pour ajouter des actions en fonction de la touche appuyée.

```
# CLAVIER NON BLOQUANT
 # la base pour vos futurs jeux animés...
 # python 3 LLP HB
 from msvcrt import getch, kbhit
 import sys, time
⊒while True:
     if kbhit():
                           # Test si on appuyé sur une touche du clavier
                            # lecture de la touche
         z = getch()
         code = ord(z)
                           # récupère le code ascii de la touche
         print (code)
         # touche echap sortir de la boucle
         if code == 27:
                             # code ascci
              break
         if code == 97:
              print ("vous avez appuyé sur la touche a")
         if code == 98:
              print ("vous avez appuyé sur la touche b")
         if code == 224:
                                # on a appuyé sur une touche de direction
                               # faut refaire une lecture pour connaître laquelle
# récupère le code ascii de la touche de direction
              z = getch()
              code = ord(z)
              print (code)
              if code==77:
                  print ("vous avez appuyé sur la touche fleche droite")
              if code==75:
                  print ("vous avez appuyé sur la touche fleche gauche")
         # if z.decode()=="a":
     print ("hello")
                               # est exécuté toutes les 0,5s
     time.sleep(0.5)
                               # temporiser 0,5 seconde
```

OMJS - 4 -