§7. Гамма-функция Эйлера

Гамма-функцией (иначе – интегралом Эйлера второго рода) называется функция, выраженная несобственным интегралом

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx.$$
 (7.1)

Этот интеграл зависит от параметра p, а потому является функцией этого параметра в случае сходимости интеграла. Особыми точками подынтегральной функции являются x=0 при p<1 и $x=\infty$.

Исследование с помощью предельного признака сравнения показывает, что интеграл сходится тогда и только тогда, когда $\,p>0\,.$

Свойства гамма-функции.

- 1. Гамма-функция в промежутке $(0, +\infty)$ непрерывна и имеет непрерывные производные любого порядка.
 - 2. $\Gamma(1) = 1$.
- 3. $\Gamma(p+1) = p\Gamma(p)$. Эта рекуррентная формула позволяет свести вычисление любого значения гамма-функции к значениям из промежутка [1, 2], для которого обычно и составляются таблицы $\Gamma(p)$.

Рис. 7.1. График гаммафункции при p > 0

- 4. Если $n \in \mathbb{N}$, то $\Gamma(n+1) = n!$.
- 5. $\Gamma(p)\Gamma(1-p) = \pi/\sin(p\pi)$ формула дополнения.
- 6. $\Gamma(1/2) = \sqrt{\pi}$.
- 7. График $\Gamma(p)$ вогнут вверх (рис. 7.1).
- 8. $\Gamma(p)$ убывает в промежутке $(0, p_{\min})$ от $+\infty$ до $m = \min \Gamma(p) = \Gamma(p_{\min}) = 0.8856...$ $(p_{\min} = 1.4616...)$, а затем возрастает до $+\infty$.

Пример 7.1. Интеграл Эйлера – Пуассона.

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \,. \tag{7.2}$$

▶ В интеграле Эйлера – Пуассона выполняем подстановку $x^2 = t$; $x = \sqrt{t}$; $2x \, dx = dt$; $x = 0 \Rightarrow t = 0$; $x \to +\infty \Rightarrow t \to +\infty$.

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \frac{1}{2} \int_{0}^{+\infty} x^{-1} e^{-x^{2}} 2x \, dx = \frac{1}{2} \int_{0}^{+\infty} t^{-1/2} e^{-t} dt = \frac{1}{2} \int_{0}^{+\infty} t^{\frac{1}{2} - 1} e^{-t} dt = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\pi} .$$