Vecteurs - 1

A. <u>Lire un point graphiquement.</u>

Méthode. Pour lire graphiquement un point *A* dans un repère :

- On repère sur l'axe horizontal le nombre correspondant à la première coordonnée de A appelée abscisse et notée x.
- On repère sur l'axe vertical le nombre correspondant à la deuxième coordonnée de A appelée ordonnée et notée y.
- On écrit : A = (x; y)

Exercice A1. Sur le repère ci-contre, on lit :

$$A =$$

$$B =$$

$$C =$$

$$D =$$

B. <u>Lire un vecteur graphiquement.</u>

Définition. Le **vecteur** du plan $\binom{x}{y}$ représente un déplacement horizontal de x unités et vertical de y unités.

- On représente un vecteur par une flèche.
- En maths, le mot translation signifie déplacement.

Le vecteur $\vec{u} = \binom{2}{1}$ représente la translation de 2 pas à droite et 1 pas en haut.

$$\vec{v} = \begin{pmatrix} & & \end{pmatrix}$$

$$\vec{w} = ($$

$$\vec{s} = ($$

$$\vec{r} = ($$

-2

Méthode. Pour lire graphiquement un vecteur \vec{u} dans un repère :

- On mesure l'étendue horizontale x de la flèche, positive si la flèche pointe vers la droite, négative si vers la gauche.
- On mesure l'étendue verticale y de la flèche, positive si la flèche pointe vers le haut, négative si vers le bas.
- On écrit : $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$

Exercice B1. Lire graphiquement les vecteurs suivants

$$\vec{a} = ($$

$$\vec{b} = ($$

$$\vec{c} = \begin{pmatrix} \end{pmatrix}$$

$$\vec{d} = ($$

$$\vec{e} = ($$

$$\vec{f} = ($$

Définition. Le **vecteur nul** noté $\vec{0}$ est défini par $\vec{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Le vecteur nul représente l'absence de déplacement. C'est une flèche de longueur 0 que l'on ne dessine pas.

C. <u>Trouver l'image d'un point par la translation associée à un vecteur.</u>

Définition. Soit $A = (x_A; y_A)$ un point. Soit $\vec{u} = \begin{pmatrix} x_{\vec{u}} \\ y_{\vec{v}} \end{pmatrix}$ un vecteur.

- On définit *le point* $t_{\vec{u}}(A) = (x_A + x_{\vec{u}}; y_A + y_{\vec{u}})$
- Le point noté $t_{\vec{u}}(A)$ est l'image du point A par la translation de vecteur \vec{u} .

i. Graphiquement:

Méthode. Pour trouver $t_{\vec{u}}(A)$ graphiquement :

- ullet On peut dessiner une copie de la flèche $ec{u}$ partant du point A
- On place le point $t_{\vec{u}}(A)$ à la pointe de la flèche copiée.
- ii. Par le calcul : On utilise la formule $t_{\vec{u}}(A) = (x_A + x_{\vec{u}}; y_A + y_{\vec{u}})$

Exemple. Calculer l'image du point A = (1; 2) par la translation de vecteur $\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$$t_{\vec{u}}(A) =$$

Exercice C1. Sachant $A = (-3; 2), B = (-2; -1), \vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Déterminer :

$$t_{\vec{u}}(A) =$$

$$t_{\vec{\imath}\vec{\imath}}(B) =$$

$$t_{\vec{v}}(A) =$$

$$t_{\vec{v}}(B) =$$

Remarques.

- Deux vecteurs sont identiques s'ils ont même direction, même sens, même longueur.
- La position d'un vecteur n'a pas d'importance.

D. Additionner des vecteurs.

Par le calcul:

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$

$$\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

Exemple.

Calculer
$$\binom{2}{-5} + \binom{-1}{4}$$

$$\binom{2}{-5} + \binom{-1}{4} = \binom{2+-1}{-5+4} = \binom{1}{-1}$$

Exercice D1. Calculer:

$$\vec{u} = \begin{pmatrix} 12 \\ -4 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} =$$

$$\vec{v} = \begin{pmatrix} -10 \\ -8 \end{pmatrix} + \begin{pmatrix} 4 \\ 9 \end{pmatrix} =$$

$$\vec{w} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \end{pmatrix} + \begin{pmatrix} -10 \\ 3 \end{pmatrix} =$$

Additionner des vecteurs graphiquement : ii.

Méthode. Pour additionner des vecteurs graphiquement :

- On place les flèches les unes à la suite des autres.
- On crée une nouvelle flèche qui :
 - part du début de la première flèche
 - arrive sur la pointe de la dernière flèche.

Remarque. Additionner des vecteurs, c'est appliquer des translations successivement car $t_{\vec{u}+\vec{v}}(A)=t_{\vec{v}}(t_{\vec{u}}(A))$

Exercice D2.

1) Tracer $\vec{u} + \vec{v}$ puis lire ses coordonnées :

$$\vec{u} + \vec{v} = ($$

2) Tracer $\vec{v} + \vec{u}$ puis lire ses coordonnées :

$$\vec{v} + \vec{u} = \left(\right)$$

3) Que remarque-t-on?

Calculer l'opposé d'un vecteur. E.

Définition.

Pour tout $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, $-\vec{u} = -\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$.

Le vecteur opposé a la même longueur mais son sens est inversé.

Exemples.

 $-\binom{1}{-1} = \frac{\binom{-1}{1}}{1} \qquad -\binom{-5}{8} = \frac{\binom{-5}{1}}{1}$

F. Soustraire des vecteurs.

Par le calcul:

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$,

$$\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$$

 $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$ donc soustraire un vecteur, c'est additionner son opposé.

Calculer
$$\binom{2}{-5} - \binom{-1}{4}$$

Calculer
$$\binom{2}{-5} - \binom{-1}{4}$$
 $\binom{2}{-5} - \binom{-1}{4} = \binom{2--1}{-5-4} = \binom{3}{-9}$

Exercice F1. Calculer:

$$\vec{u} = \begin{pmatrix} 12 \\ -4 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \end{pmatrix} =$$

$$\vec{v} = \begin{pmatrix} -10 \\ -8 \end{pmatrix} - \begin{pmatrix} 4 \\ 9 \end{pmatrix} =$$

$$\overrightarrow{w} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ 5 \end{pmatrix} + \begin{pmatrix} -10 \\ 3 \end{pmatrix} =$$

Graphiquement:

Méthode. Pour soustraire *deux* vecteurs \vec{u} et \vec{v} graphiquement :

- On représente l'opposé $-\vec{v}$ du vecteur \vec{v} .
- On additionne graphiquement \vec{u} et $-\vec{v}$

1) Tracer $\vec{u} - \vec{v}$ puis lire graphiquement ses coordonnées :

$$\vec{u} - \vec{v} = ($$

Multiplier un vecteur par un nombre. G.

Par le calcul:

Définition. Pour tout
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et tout nombre réel k , $k \vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

$$\vec{k} \vec{u} = \frac{k}{k} {x \choose y} = {kx \choose ky}$$

$$3\binom{2}{-4} =$$

$$-4\begin{pmatrix} 2 \\ -1 \end{pmatrix} =$$

ii. **Graphiquement:**

Propriété.

- Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k sans changer de sens.
- Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et inverser son sens.

Exercice G1. Attribuer à chaque vecteur son représentant tracé ci-contre

$$\frac{1}{3}\vec{u} =$$

$$-\vec{u} =$$

$$2\vec{u} =$$

$$-\frac{2}{3}\vec{u} =$$

$$-\frac{4}{3}\vec{u} =$$

H. Faire des calculs avec des vecteurs.

Exercice H1. Soit
$$\vec{u} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$
; $\vec{v} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{w} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$

$$\vec{u} + \vec{v} =$$

$$-7\vec{u} =$$

$$\vec{u} - \vec{w} =$$

$$3\vec{u} + 5\vec{v} =$$

$$2\vec{u} - 6\vec{w} =$$

$$-5\vec{w} + 3\vec{u} - 2\vec{v} =$$