Рубежный контроль N°2

Ф.И.О.: Балабанов Алексей Олегович

Группа: ИУ5-22М

Тема: Методы обработки текстов. Решение задачи классификации текстов.

Задание: Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Heoбходимо сформировать два варианта векторизации признаков - на основе CountVectorizer и на основе TfidfVectorizer.

В качестве классификаторов необходимо использовать два классификатора по варианту для Вашей группы:

• Группа ИУ5-22M, ИУ5И-22M: RandomForestClassifier, LogisticRegression

Для каждого метода необходимо оценить качество классификации. Сделайте вывод о том, какой вариант векторизации признаков в паре с каким классификатором показал лучшее качество.

1. Подключение библиотек и загрузка данных

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer,
TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import re # для предварительной обработки текста
```

В качестве датасета будем использовать "SMS Spam Collection Dataset". Этот датасет содержит коллекцию SMS-сообщений, помеченных как "spam" (спам) или "ham" (не спам). Это задача бинарной классификации.

Ссылка на датасет: https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset

Скачаем файл spam. csv и загрузим его.

```
# Укажите путь к вашему файлу spam.csv
# Если файл находится в той же директории, что и ноутбук:
file path = 'spam.csv'
# Если вы загружаете на Google Colab:
# from google.colab import files
# uploaded = files.upload()
# import io
# df = pd.read csv(io.BytesIO(uploaded['spam.csv']),
encoding='latin1')
try:
    df = pd.read csv(file path, encoding='latin1')
except FileNotFoundError:
    print(f"Файл {file path} не найден. Пожалуйста, убедитесь, что он
находится в нужной директории или укажите правильный путь.")
    # Для демонстрации создадим небольшой DataFrame, если файл не
найден
    data dict = {
        'v1': ['ham', 'spam', 'ham', 'spam', 'ham', 'spam', 'ham',
'spam', 'ham', 'spam'],
        'v2': [
            'Go until jurong point, crazy.. Available only in bugis n
great world la e buffet... Cine there got amore wat...',
            'Free entry in 2 a wkly comp to win FA Cup final tkts 21st
May 2005. Text FA to 87121 to receive entry question(std txt
rate)T&C\'s apply 08452810075over18\'s',
            'U dun say so early hor... U c already then say...',
            "FreeMsg Hey there darling it's been 3 week's now and no
word back! I'd like some fun you up for it still? Tb ok! XxX std chgs
to send, £1.50 to rcv",
            "Nah I don't think he goes to usf, he lives around here
though",
            'WINNER!! As a valued network customer you have been
selected to receivea £900 prize reward! To claim call 09061701461.
Claim code KL341. Valid 12 hours only.',
            'I HAVE A DATE ON SUNDAY WITH WILL!!',
            'Had your mobile 11 months or more? U R entitled to Update
to the latest colour mobiles with camera for Free! Call The Mobile
Update Co FREE on 08002986030',
            "I'm gonna be home soon and i don't want to talk about
this stuff anymore tonight, k? I've cried enough today.",
            'SIX chances to win CASH! From 100 to 20,000 pounds txt>
CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply
HL 4 info'
        'Unnamed: 2': [None]*10, 'Unnamed: 3': [None]*10, 'Unnamed:
4': [None]*10
    df = pd.DataFrame(data dict)
```

```
print("Используется демонстрационный DataFrame, так как файл
spam.csv не был найден.")
```

2. Предварительный анализ и подготовка данных

```
print("Первые 5 строк датасета:")
print(df.head())
print("\nИнформация о датасете:")
df.info()
Первые 5 строк датасета:
                                                         v2 Unnamed: 2
     v1
0
         Go until jurong point, crazy.. Available only ...
                                                                   NaN
                             Ok lar... Joking wif u oni...
    ham
                                                                   NaN
   spam Free entry in 2 a wkly comp to win FA Cup fina...
                                                                   NaN
    ham U dun say so early hor... U c already then say...
                                                                   NaN
    ham Nah I don't think he goes to usf, he lives aro...
                                                                   NaN
  Unnamed: 3 Unnamed: 4
0
         NaN
1
         NaN
                    NaN
2
         NaN
                    NaN
3
         NaN
                    NaN
         NaN
                    NaN
Информация о датасете:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5572 entries, 0 to 5571
Data columns (total 5 columns):
                 Non-Null Count Dtype
     Column
 0
                 5572 non-null
     ٧1
                                 object
 1
                 5572 non-null
     v2
                                 object
 2
     Unnamed: 2 50 non-null
                                 object
 3
     Unnamed: 3 12 non-null
                                 object
     Unnamed: 4 6 non-null
                                 object
dtypes: object(5)
memory usage: 217.8+ KB
# Удалим ненужные колонки
df = df.drop(columns=['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],
errors='ignore') # errors='ignore' чтобы не было ошибки если колонки
vже v далены
```

```
# Переименуем колонки для удобства
df = df.rename(columns={'v1': 'label', 'v2': 'text'})
print("\n06новленный датасет (первые 5 строк):")
print(df.head())
Обновленный датасет (первые 5 строк):
  label
                                                      text
   ham Go until jurong point, crazy.. Available only ...
0
1
                             Ok lar... Joking wif u oni...
    ham
   spam Free entry in 2 a wkly comp to win FA Cup fina...
2
3
   ham U dun say so early hor... U c already then say...
    ham Nah I don't think he goes to usf, he lives aro...
# Проверим наличие пропущенных значений
print("\nПропущенные значения:")
print(df.isnull().sum())
Пропущенные значения:
label
text
         0
dtype: int64
# Посмотрим на распределение классов
print("\nPacпределение классов:")
print(df['label'].value counts())
sns.countplot(x='label', data=df)
plt.title('Распределение классов (ham/spam)')
plt.show()
Распределение классов:
label
ham
        4825
spam
         747
Name: count, dtype: int64
```



```
# Преобразуем метки классов в числовой формат: ham -> 0, spam -> 1
df['label'] = df['label'].map({'ham': 0, 'spam': 1})
print("\nДатасет после преобразования меток (первые 5 строк):")
print(df.head())
Датасет после преобразования меток (первые 5 строк):
   label
                                                       text
0
       O Go until jurong point, crazy.. Available only ...
1
                              Ok lar... Joking wif u oni...
2
       1 Free entry in 2 a wkly comp to win FA Cup fina...
3
         U dun say so early hor... U c already then say...
4
         Nah I don't think he goes to usf, he lives aro...
```

2.1. Базовая очистка текста

Применим простую очистку: приведение к нижнему регистру и удаление символов, не являющихся буквами или цифрами.

```
def preprocess_text(text):
    text = text.lower() # Приведение к нижнему регистру
    text = re.sub(r'[^a-z0-9\s]', '', text) # Удаление всего, кроме
букв, цифр и пробелов
```

```
text = re.sub(r'\s+', ' ', text).strip() # Удаление лишних
пробелов
    return text
df['cleaned text'] = df['text'].apply(preprocess text)
print("\nДатасет с очищенным текстом (первые 5 строк):")
print(df[['text', 'cleaned_text']].head())
Датасет с очищенным текстом (первые 5 строк):
                                                text \
  Go until jurong point, crazy.. Available only ...
                       Ok lar... Joking wif u oni...
  Free entry in 2 a wkly comp to win FA Cup fina...
3 U dun say so early hor... U c already then say...
4 Nah I don't think he goes to usf, he lives aro...
                                        cleaned text
  go until jurong point crazy available only in ...
                             ok lar joking wif u oni
  free entry in 2 a wkly comp to win fa cup fina...
         u dun say so early hor u c already then say
4 nah i dont think he goes to usf he lives aroun...
```

3. Разделение данных на обучающую и тестовую выборки

```
X = df['cleaned_text']
y = df['label']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

print(f"Размер обучающей выборки: {X_train.shape[0]}")
print(f"Размер тестовой выборки: {X_test.shape[0]}")

Размер обучающей выборки: 4457
Размер тестовой выборки: 1115
```

4. Векторизация текстов

4.1. CountVectorizer

```
count_vectorizer = CountVectorizer(stop_words='english',
max_features=5000) # Ограничим количество признаков

# Обучаем векторизатор на обучающих данных и трансформируем их
X_train_counts = count_vectorizer.fit_transform(X_train)

# Трансформируем тестовые данные
```

```
X_test_counts = count_vectorizer.transform(X_test)

print("Pasmephoctь матрицы признаков (CountVectorizer) для обучающей выборки:", X_train_counts.shape)
print("Pasmephoctь матрицы признаков (CountVectorizer) для тестовой выборки:", X_test_counts.shape)

Pasmephoctь матрицы признаков (CountVectorizer) для обучающей выборки: (4457, 5000)

Pasmephoctь матрицы признаков (CountVectorizer) для тестовой выборки: (1115, 5000)
```

4.2. TfidfVectorizer

```
tfidf_vectorizer = TfidfVectorizer(stop_words='english',
max_features=5000) # Ограничим количество признаков

# Обучаем векторизатор на обучающих данных и трансформируем их
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)

# Трансформируем тестовые данные
X_test_tfidf = tfidf_vectorizer.transform(X_test)

print("Pasмерность матрицы признаков (TfidfVectorizer) для обучающей выборки:", X_train_tfidf.shape)

print("Pasмерность матрицы признаков (TfidfVectorizer) для тестовой выборки:", X_test_tfidf.shape)

Pasмерность матрицы признаков (TfidfVectorizer) для обучающей выборки: (4457, 5000)

Pasмерность матрицы признаков (TfidfVectorizer) для тестовой выборки: (1115, 5000)
```

5. Обучение и оценка моделей

Будем использовать следующие классификаторы:

- RandomForestClassifier
- LogisticRegression

Оценим каждый классификатор с каждым типом векторизации.

```
# Словарь для хранения результатов
results = {}

def train_and_evaluate_model(model, X_train_vec, y_train_data,
X_test_vec, y_test_data, model_name, vectorizer_name):
    '''Функция для обучения и оценки модели.'''
    print(f"--- Обучение и оценка: {model_name} c {vectorizer_name}
---")
```

```
# Обучение модели
    model.fit(X train vec, y train data)
    # Предсказание на тестовой выборке
    y pred = model.predict(X test vec)
    # Оценка качества
    accuracy = accuracy score(y test data, y pred)
    report = classification_report(y_test_data, y_pred,
target names=['ham', 'spam'], output dict=True) # output dict для
удобного сохранения
    print(f"Точность (Accuracy): {accuracy:.4f}")
    print("Отчет по классификации:")
    print(classification report(y test data, y pred,
target names=['ham', 'spam']))
    # Матрица ошибок
    cm = confusion_matrix(y_test_data, y_pred)
    plt.figure(figsize=(6,4))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['ham', 'spam'], yticklabels=['ham', 'spam'])
    plt.title(f'Матрица ошибок: {model name} c {vectorizer name}')
    plt.xlabel('Предсказанные метки')
    plt.ylabel('Истинные метки')
    plt.show()
    return {
        'model': model name,
        'vectorizer': vectorizer name,
        'accuracy': accuracy,
        'precision_spam': report['spam']['precision'],
        'recall spam': report['spam']['recall'],
        'fl score spam': report['spam']['fl-score']
    }
```

5.1. RandomForestClassifier

ham	0.97	1.00	0.98	966	
spam	1.00	0.77	0.87	149	
accuracy macro avg weighted avg	0.98 0.97	0.89 0.97	0.97 0.93 0.97	1115 1115 1115	

Матрица ошибок: RandomForestClassifier c CountVectorizer

RandomForestClassifier c TfidfVectorizer rf model tfidf = RandomForestClassifier(random state=42, n estimators=100) results['rf tfidf'] = train and evaluate model(rf_model_tfidf, X_train_tfidf, y_train, X_test_tfidf, y_test,
"RandomForestClassifier", "TfidfVectorizer") --- Обучение и оценка: RandomForestClassifier c TfidfVectorizer ---Точность (Accuracy): 0.9767 Отчет по классификации: precision recall f1-score support ham 0.97 1.00 0.99 966 0.83 0.90 1.00 149 spam accuracy 0.98 1115

.115 .115

Матрица ошибок: RandomForestClassifier c TfidfVectorizer

5.2. LogisticRegression

```
# LogisticRegression c CountVectorizer
lr model count = LogisticRegression(random state=42, max iter=1000) #
max iter для сходимости
results['lr count'] = train and evaluate model(
    lr_model_count, X_train_counts, y_train, X_test_counts, y_test,
    "LogisticRegression", "CountVectorizer"
)
--- Обучение и оценка: LogisticRegression c CountVectorizer ---
Точность (Accuracy): 0.9776
Отчет по классификации:
              precision
                            recall f1-score
                                               support
                                                   966
                   0.97
                              1.00
                                        0.99
         ham
                   1.00
                              0.83
                                        0.91
                                                   149
        spam
                                        0.98
    accuracy
                                                  1115
                   0.99
                              0.92
                                        0.95
                                                  1115
   macro avg
                                        0.98
weighted avg
                   0.98
                              0.98
                                                  1115
```

Матрица ошибок: LogisticRegression c CountVectorizer

LogisticRegression c TfidfVectorizer lr model tfidf = LogisticRegression(random state=42, max iter=1000) results['lr tfidf'] = train and evaluate model(lr_model_tfidf, X_train_tfidf, y_train, X_test_tfidf, y_test, "LogisticRegression", "TfidfVectorizer") --- Обучение и оценка: LogisticRegression c TfidfVectorizer ---Точность (Accuracy): 0.9668 Отчет по классификации: recall f1-score precision support ham 0.96 1.00 0.98 966 0.99 0.76 0.86 149 spam 0.97 accuracy 1115 0.98 0.88 0.92 1115 macro avg 0.97 0.97 0.96 weighted avg 1115

6. Сравнение результатов и выводы

```
# Преобразуем словарь результатов в DataFrame для удобного отображения
results df = pd.DataFrame.from dict(results, orient='index')
results_df = results_df.sort_values(by='accuracy', ascending=False)
print("\nСводная таблица результатов (отсортировано по точности):")
print(results df)
Сводная таблица результатов (отсортировано по точности):
                            model
                                        vectorizer accuracy
precision spam \
lr count
              LogisticRegression CountVectorizer
                                                    0.977578
1.000000
rf tfidf
          RandomForestClassifier TfidfVectorizer
                                                    0.976682
1.\overline{0}00000
          RandomForestClassifier CountVectorizer
rf count
                                                    0.969507
1.000000
lr tfidf
              LogisticRegression TfidfVectorizer 0.966816
0.\overline{9}91228
          recall spam f1 score spam
lr count
             0.832215
                             0.908425
rf tfidf
             0.825503
                             0.904412
                             0.871212
rf count
             0.771812
lr tfidf
             0.758389
                             0.859316
```

```
# Визуализация результатов
plt.figure(figsize=(12, 6))
sns.barplot(data=results df, x='accuracy', y=results df.index,
palette='viridis')
plt.title('Сравнение точности (Ассигасу) моделей')
plt.xlabel('Точность (Accuracy)')
plt.ylabel('Модель + Векторизатор')
plt.xlim(0.9, 1.0) # Установим пределы для лучшей визуализации разницы
for index, value in enumerate(results df['accuracy']):
    plt.text(value - 0.005, index, f"{value: 4f}", color='white',
va='center', ha='right', fontweight='bold')
plt.show()
<ipython-input-37-5ae8d9b54c45>:3: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `y` variable to `hue` and set
`legend=False` for the same effect.
  sns.barplot(data=results df, x='accuracy', y=results df.index,
palette='viridis')
```


Выводы

На основе проведенного анализа и полученных результатов можно сделать следующие выводы:

1. Влияние векторизатора:

- Для классификатора LogisticRegression лучшую точность (Accuracy ~0.9776) показал CountVectorizer. При использовании TfidfVectorizer точность снизилась до ~0.9668.
- Для классификатора RandomForestClassifier, наоборот,
 TfidfVectorizer (Accuracy ~0.9767) оказался эффективнее, чем CountVectorizer (Accuracy ~0.9695).
- Таким образом, нет однозначного "лучшего" векторизатора для всех моделей в данной задаче; его эффективность зависит от выбранного классификатора.

2. Сравнение классификаторов:

- При использовании CountVectorizer лучшую точность показал LogisticRegression (~0.9776) по сравнению с RandomForestClassifier (~0.9695).
- При использовании TfidfVectorizer лучшую точность
 продемонстрировал RandomForestClassifier (~0.9767) по сравнению с
 LogisticRegression (~0.9668).
- В целом, обе модели показали сравнимые высокие результаты, но лучшая комбинация выбирается в зависимости от векторизатора.

3. Лучшая комбинация по общей точности (Accuracy):

– Наилучшее качество классификации по метрике Accuracy было достигнуто при использовании **CountVectorizer** в паре с классификатором **LogisticRegression**. Эта комбинация показала точность 0.977578.

4. Анализ метрик для класса "spam":

- Все три комбинации (LogisticRegression + CountVectorizer, RandomForestClassifier + TfidfVectorizer, RandomForestClassifier + CountVectorizer) показали идеальную точность (Precision) для класса "spam" равную 1.0. Это означает, что когда эти модели классифицировали сообщение как спам, они не ошибались (не было ложноположительных срабатываний для спама).
- Комбинация LogisticRegression + TfidfVectorizer также показала очень высокую точность (Precision) для спама (0.991228).
- Наилучшую полноту (Recall) для класса "spam" (0.832215) и, как следствие, наивысший F1-score для спама (0.908425) продемонстрировала комбинация LogisticRegression + CountVectorizer. Это означает, что данная модель смогла корректно идентифицировать наибольшую долю фактических спамсообщений.

Итоговый вывод:

Для задачи классификации SMS-сообщений на "спам" и "не спам" на данном датасете, наилучшие результаты по общей точности (Accuracy) и по F1-score для класса "spam" показала комбинация **CountVectorizer** и **LogisticRegression**.

Все протестированные комбинации продемонстрировали высокое качество классификации (Ассигасу > 0.96), что говорит о хорошей применимости выбранных методов для данной задачи. Интересно отметить, что оптимальный выбор векторизатора оказался зависимым от типа классификатора.