

МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова»

(БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

<u>O</u>	Естественнонаучный			
шифр	наименование			
07	Информационные системы и программная инженерия			
шифр	наименование			
เเนลด	аписка к разработанной проектной и			
IDIIAA .	anneka k paspaoorannon npoekrnon n			
TO 123 /3 /4	нтации локальной вычислительной			
цокумо	нтации локальной вычислительной			
	сети (ЛВС)			
	Выполнили студенты группы И595			
	Бутусов Н. С., Исмаилов М. Р.,			
	Мальцев А. С., Степченко И. Д.			
	Фамилия И.О.			
	ПРЕПОДАВАТЕЛЬ			
	Скобеев Ю. С.			
	Фамилия И.О. Подпись			
	Фамилия И.О. Подпись			
	шифр О7 шифр Сетевые т			

САНКТ-ПЕТЕРБУРГ

«____» _____ 2023 г.

ВВЕДЕНИЕ

В ходе проектирования ЛВС были разработаны следующие проектные документы:

- структурная схема ЛВС;
- схема сети уровня L2;
- схема сети уровня L3;
- план кабельных трасс;
- план размещения оборудования в технических помещениях;
- план размещения оборудования в монтажных шкафах;
- таблица соединений и подключений;
- спецификация оборудования, изделий и материалов;
- схема сегментации сети предприятия.

Спроектирована ЛВС на 154 подключения с возможностью масштабирования.

1 Структурная схема ЛВС

При проектировании ЛВС была выбрана топология «иерархическая звезда». Ниже приведены достоинства и недостатки данной топологии.

Достоинства:

- на сегодняшний день самая распространенная топология в высокоскоростной локальной вычислительной сети;
- выход из строя одной рабочей станции не отражается на работе всей сети в целом;
 - лёгкий поиск неисправностей и обрывов в сети;
- высокая производительность сети (при условии правильного проектирования);
 - гибкие возможности администрирования;
 - низкая стоимость;
- простота установки и масштабируемость сделали топологию звезды единственной общей топологией.

Недостатки:

- выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
- для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
- конечное число рабочих станций в сети (или сегменте сети)
 ограничено количеством портов в центральном концентраторе.

В приложении A на рисунке A.1 представлена структурная схема ЛВС с отображением кабельных трасс и планом размещения оборудования в техническом помещении.

2 Схемы сети уровня L1, L2, L3

В приложении Б на рисунке Б.1 представлена схема сети уровня L1.

В приложении Б на рисунке Б.2 представлена схема сети уровней L2 и L3.

Элементы на схеме в нижнем ряду, изображенные как персональные компьютеры, соответствуют комнатам офиса, в которых сидят сотрудники отделов. Они равномерно распределены между четырьмя коммутаторами доступа. Это сделано не только для повышения эффективности работы среды, но и для обеспечения безопасности данных внутри отделов.

Все коммутаторы, маршрутизатор, сервер и межсетевой экран расположены в серверной в монтажном шкафе. Количество подключенных устройств к локальной сети у каждого коммутатора соответствует количеству розеток, расположенных на рабочих местах сотрудников.

Межсетевой экран является первым компонентом локальной сети, который встречают на своем пути внешние пакеты. Таким образом, получается обеспечить большую надежность и безопасность сети, отсеивая лишние пакеты.

3 План размещения оборудования в монтажных шкафах

В приложении В на рисунке В.1 представлен план размещения оборудования в монтажных шкафах.

4 План соединений и подключений

В таблице 1 представлен план соединений и подключений.

Таблица 1 — План соединений и подключений

Имя устройства	Порт (из)	Порт (в)	Название	VLAN	/LAN
				Access	Trunk
Межсетевой экр. д.	ETH1/2		Интернет		
	ETH1/1	GE8/2	Маршрутизатор		2,3,101-108
Маршрутизатор	GE8/2	ETH1/1	Межсетевой экр. д.		2,3,101-108
	GE8/1	GE7/4	Коммутатор ядра		2,3,102-108
Коммутатор ядра	GE7/4	GE8/1	Маршрутизатор		2,3,102-108
тениј штер идри	GE7/1	GE6/5	Коммутатор ядра 1		2,102-108
	GE7/2	GE5/5	Коммутатор ядра 2		2,102-108
	GE7/3		Сервер	3	
Коммутатор ядра 1	GE6/5	GE7/1	Коммутатор ядра		2,102-108
	GE6/1	GE1/1	Ком. доступа 1		102-104
	GE6/2	GE2/1	Ком. доступа 2		102,105
	GE6/3	GE3/1	Ком. доступа 3		106
	GE6/4	GE4/1	Ком. доступа 4		107-108
Коммутатор ядра 2	GE5/5	GE7/2	Коммутатор ядра		2,102-108
	GE5/1	GE1/2	Ком. доступа 1		102-104
	GE5/2	GE2/2	Ком. доступа 2		102,105
	GE5/3	GE3/2	Ком. доступа 3		106
	GE5/4	GE4/2	Ком. доступа 4		107-108
Ком. доступа 1	GE1/1	GE5/1	Коммутатор ядра 1		102-104
	GE1/2	GE6/1	Коммутатор ядра 2		102-104
	FE1/1-1/12		Отдел разраб. 1	102	
	FE1/13-1/18		Холл	103	
	FE1/19-1/24		Директор + секретарь	104	
Ком. доступа 2	GE2/1	GE5/2	Коммутатор ядра 1		102, 105
	GE2/2	GE6/2	Коммутатор ядра 2		102, 105
	FE2/1-2/12		Отдел разраб. 2	102	*
	FE2/13-2/24		Юр. отдел	105	

5 Спецификация оборудования, изделий и материалов

В таблице 2 представлена спецификация оборудования, изделий и материалов.

Таблица 2 — Спецификация оборудования, изделий и материалов

Поз.	Обозначение	Наименование	Кол.
1	Коммутатор доступа	D-Link DGS-1210-52	4
2	Коммутатор ядра 24	D-Link DGS-3130-30TS/B1A	3
3	Маршрутизатор	D-Link DSA-2006	1
4	Патч-панель	CABEUS PL-48-CAT.5E-DUAL IDC 2U	7
5	Файловый сервер	HP DL380 GEN9 16SFF	1
6	Почтовый сервер	HP ProLiant DL20 Gen10	1
7	Система хранения данных	DELL PowerVault MD1200	1
8	Межсетевой экран доступа	ZyXEL ATP100	1
9	ибП	ИМПУЛЬС ЮНИОР ПРО 3000 РТ JR30201	1
10	Управляющий блок ротации	БУРР-2М "Алекс Электроникс"	1
11	Настенная сплит-система	Lessar LS-H09KPA2C	2
12	Розетка	Schneider RJ45 Cat.5e UTP 2-я	160
13	Коммутационный шнур	Cabeus UTP-4P-CAT.5E-SOLID-LSZH (305 м/бухта)	21
14	Открытая серверная стойка	Cabeus RA-42U	2
15	Комплект заземления	RC19 big RC19	2
16	Труба негорючая термостойкая	БК 75	15
17	Труба негорючая термостойкая	БК 200	3
18	Огнеупорная монтажная пена	IRFIX B1	8
19	Пластиковый кабельный канал	Промрукав 100х60	400
20	Органайзер	Hyperline CM-1U-PL	20

Перед выбором ИБП был произведен расчет рабочих мощностей компонентов сети, расположенных в серверной, чтобы убедиться, что его выходной мощности хватит для того, чтобы покрыть потребности. Выбор

управляющего блока ротации также обусловлен предварительным расчетом выделяемого компонентами сети тепла в БТЕ.

6 Схема сегментации сети предприятия

На рисунке 1 представлена схема сегментации сети предприятия.

Рисунок 1 — Схема сегментации сети предприятия

ПРИЛОЖЕНИЕ А

Рисунок А.1 — План помещения

приложение б

Рисунок Б.1 — Схема сети уровня L1

Рисунок Б.2 — Схема сети уровней L2 и L3

приложение в

Рисунок В.1 — План размещения оборудования в монтажных шкафах