COMPUTER NETWORKS

- Chapter 1.2: Architecture

王昊翔 WANG Haoxiang hxwang@scut.edu.cn

School of Computer Science & Engineering 国家双语教学试点项目 广东省精品课

Contents

How to design

- Layered Model
 - -OSI
 - TCP/IP of Internet

Standardization

Design Issues for the Networks

Addressing

Error control

flow control

routing

multiplexing and de-multiplexing

Network Architecture

Layered Network Model

- What is the Protocol
- What is the Service, Service Primitives
- Relationship of Services and Protocols

Software Soften and Programmable

Layered Network Model (OSI)

- Application Presentation 6 Session 5 Transport Network 3 Data Link 2 **Physical**
- Reduces complexity
- Standardizes interfaces
- Facilitates modular engineering
- Ensures interoperable technology
- Accelerates evolution
- Simplifies teaching and learning

Support varieties

OSI Model Application Layer

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

Physical

Network processes to applications

 Provides network services to application processes (such as electronic mail, file transfer, and terminal emulation)

OSI Model Presentation Layer

Data representation

- Insure data is readable by receiving system
- Format of data
- Data structures
- Negotiates data transfer syntax for application layer

OSI Model Session Layer

OSI Model Transport Layer

OSI Model Network Layer

OSI Model Data Link Layer

OSI Model Physical Layer

Peer-to-Peer Communications

Protocol is the most important!

Service Primitives

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Discussion (3)

• OSI v.s. TCP/IP?

OSI: XNS, Novell-IPX, MS-NetBEUI

The TCP/IP Model

network itf itf layer

Physical + DataLink Layers : Ethernet

Discussion (4)

• Services v.s. Protocols?

Information Encapsulation Exp.

Protocol Graph: TCP/IP

You can add more and more applications

Example: Client/Server

They operate at all 7 layers of the OSI model. They perform the entire process of encapsulation and decapsulation to do their job of sending e-mails, printing reports, scanning pictures, or accessing database.

Example: NIC

A network interface card (NIC card or NIC) is a small printed circuit board that fits into the expansion slot of a bus on a computer's motherboard or peripheral device network adapter.

Example: Switch

It switches packets from incoming ports (interfaces) to outgoing ports, while providing each port with full bandwidth

Example: Router

The symbol for a router is suggestive of its two primary purposes path selection, and switching of router routes, and packets.

TCP/IP protocols' friend

LAN Specification

The IEEE 802 working groups

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

Network Standardization

- ITU (International Telecommunication Union)
- ISO (International Standards Organization)
- ANSI (American National Standards Institute)
- NIST (National Institute of Standards and Technology)
- IEEE (Institute of Electrical and Electronics Engineers)
- RFCs (Request For Comments).
- IRTF (Internet Research Task Force)

Presentation 1

- For a good talk
 - Organization: Structure, acknowledge or refs.
 - Presentation: Visually; orally; body language...
 - Timing: ~20mins(15-25 min?)
 - Q&A

Many thanks:

Cisco Academy.

Your task:

Yuketang &

Layered Structure? &

Compare TCP/IP and OSI?

