Data Mining Lab 2020: Variational Fair Autoencoder

Intermediate Results

Mohammad Abir, Fabian Beringer

VFAE Short Refresher

- encodes features into latent space z using NNs
- naturally disentangles sensitive variable s from x by modeling them as independent
- also injects label information about y
 - -> keeps **z** useful when predicting **y** but removes **s**

Dataset: Adult Income

Dataset

- Each instance x represents a person
- Labels y: whether the person has >50k annual income
- The protected attribute s is gender:
 - 67% Male, 33% Female (protected class)
- 45,222 instances, 15 features each

Dataset

For pre-processing we:

- removed NaN's
- binarized each feature using one-hot encoding
- bucketized continuous features into 5 buckets each
- resulted in 117 binary features

Challenges

Paper Omitting Details

- pre-processing not explained in detail
 - we followed another paper that was mentioned as reference
- no info about total training times
 - we trained for 100 epochs at max
- penalty scaling parameter β unclear for some datasets:
 - "scaled according to validation set"
 - we found that β =1.0 i.e. not scaling at all worked best

Further Challenges

- rather complex objective function, harder to debug
- non standard metrics i.e. discrimination have some specialties when it comes to implementation details
- designing a training pipeline for different models which depend on each other can be a bit tricky

Comparing Results

Accuracy on **y**, trained on **x** vs. **z**

Accuracy on s

Validation accuracy during training when predicting gender.

slightly higher than
mentioned in the paper
due to longer training
time?

Accuracy on **s**, trained on **x** vs. **z**

Accuracy Gender

test accuracy predicting gender (lower is better)

Discrimination Score

Discrimination Score

Discrimination on the validation set during training.

- discrimination on z stays low rather consistently
 -> gender is being factored out properly
- however z is more noisy

- original features **x**
- representation from VFAE z

Discrimination Gender

Discrimination Score

Effects of the MMD penalty

We found the use of the MMD penalty to

- result in higher accuracy on s (lower is better)
- cause high variance in discrimination during training
- make it more likely to jump into good minima
- -> room for improvement

$$\ell_{\text{MMD}}(\mathbf{Z}_{1s=0}, \mathbf{Z}_{1s=1}) = \|\mathbb{E}_{\tilde{p}(\mathbf{x}|\mathbf{s}=0)}[\mathbb{E}_{q(\mathbf{z}_1|\mathbf{x},\mathbf{s}=0)}[\psi(\mathbf{z}_1)]] - E_{\tilde{p}(\mathbf{x}|\mathbf{s}=1)}[\mathbb{E}_{q(\mathbf{z}_1|\mathbf{x},\mathbf{s}=1)}[\psi(\mathbf{z}_1)]]\|^2$$

Predicting **s** without MMD

- MMD penalty resulting in higher accuracy on s
- could be due to:
 - different scaling
 - longer training time

Discrimination with MMD more noisy

Improvement Ideas

Improvement Ideas

- actual MMD instead of the fast approximation
- replace MMD with a different penalty
- try common ideas for AutoEncoders:
 - o add input noise for robustness
 - use Contractive AutoEncoder penalty

Thanks for listening!