Syllabus

Arthur J. Redfern axr180074@utdallas.edu Jan 14, 2019

0 Outline

- 1 Logistics
- 2 Description
- 3 Plan
- 4 Grades

1 Logistics

Class: CS 6301.503.19S Special Topics in Computer Science –

Convolutional Neural Networks

Link: https://coursebook.utdallas.edu/search/searchresults/cs6301.503.19s

Location: Mon and Wed from 5:30 – 6:45 pm in ECSN 2.110

Office hrs: TBA TA: TBA

2 Description

Description: This course provides an introduction to convolutional neural networks (CNNs). The course is motivated by the realization that many information extraction problems can be reduced to a classification or regression problem, neural networks are universal approximators and CNNs are an efficient neural network structure for multidimensional data. Network design and training methods are discussed along with software and hardware requirements for high performance CNN implementations. Theory and implementation are demonstrated and expanded on in the context of applications.

Outline: Math – linear algebra, calculus, probability and algorithms

Networks – design, training and implementation Applications – vision, speech, language, games and art Objectives: Course learning objectives include:

- 1. Ability to design convolutional neural networks
- 2. Ability to train convolutional neural networks
- 3. Ability to implement convolutional neural networks
- 4. Ability to apply convolutional neural networks to applications including vision, speech, language, games and art

References: No required book to purchase, links to open source materials will be provided.

3 Plan

01 Mon Jan 14	Introduction	HW1 assigned	
02 Wed Jan 16	Linear algebra		
03 Mon Jan 21	Martin Luther King day		
03 Wed Jan 23	Linear algebra	HW2 assigned	HW1 due
04 Mon Jan 28	Calculus		
05 Wed Jan 30	Calculus	HW3 assigned	HW2 due
06 Mon Feb 04	Probability		
07 Wed Feb 06	Probability		HW3 due
08 Mon Feb 11	Algorithms	HW4 assigned	
09 Wed Feb 13	Design		
10 Mon Feb 18	Design		HW4 due
11 Wed Feb 20	Design	HW5 assigned	
12 Mon Feb 25	Test 1: math		
13 Wed Feb 27	Training		HW5 due
14 Mon Mar 04	Training		
15 Wed Mar 06	Training	HW6 assigned	
16 Mon Mar 11	Implementation		
17 Wed Mar 13	Implementation		HW6 due
00 Mon Mar 18	Spring break		
00 Wed Mar 20	Spring break		
18 Mon Mar 25	Implementation	HW7 assigned	
19 Wed Mar 27	Vision		
20 Mon Apr 01	Vision	HW8 assigned	HW7 due
21 Wed Apr 03	Test 2: networks		
22 Mon Apr 08	Speech		HW8 due
23 Wed Apr 10	Speech	HW9 assigned	
24 Mon Apr 15	Language		
25 Wed Apr 17	Language	HW10 assigned	HW9 due
26 Mon Apr 22	Games		

27 Wed Apr 24 Art HW11 assigned HW10 due

28 Mon Apr 29 Summary

29 Wed May 01 Test 3: applications HW11 due

4 Grades

25% Test 1: linear algebra, calculus, probability and algorithms

25% Test 2: network design, training and implementation

25% Test 3: vision, speech, language, games and art

25% Homework

No final exam