importing libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

loding and viewing data

```
df=pd.read csv(r"C:\Users\Bhoomika.G\OneDrive\Documents\
Salary EDA.csv")
df.head()
   Age Gender Education Level
                                         Job Title Years of
Experience \
0 32.0
                     Bachelor's Software Engineer
          Male
5.0
1 28.0 Female
                       Master's
                                      Data Analyst
3.0
2 45.0
        Male
                            PhD
                                    Senior Manager
15.0
3 36.0 Female
                                  Sales Associate
                     Bachelor's
7.0
4 36.0 Female
                     Bachelor's
                                  Sales Associate
7.0
     Salary
0
   90000.0
   65000.0
1
2
  150000.0
3
   60000.0
4
   60000.0
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 375 entries, 0 to 374
Data columns (total 6 columns):
#
    Column
                          Non-Null Count
                                          Dtype
- - -
 0
     Age
                          373 non-null
                                          float64
     Gender
                          371 non-null
1
                                          object
 2
     Education Level
                          372 non-null
                                          object
 3
     Job Title
                          370 non-null
                                          object
    Years of Experience 373 non-null
4
                                          float64
 5
                          372 non-null
     Salary
                                          float64
dtypes: float64(3), object(3)
memory usage: 17.7+ KB
```

```
conclusion:
    -Age ,salary, year of exprience have in float datatype
    -gender , job titles, have the object data types
    -null values exit became no same non null values
    -they are 6-feature and 375 columns
df.isnull().sum()
Age
                        2
Gender
                        4
                        3
Education Level
                       5
Job Title
                       2
Years of Experience
                       3
Salary
dtype: int64
df.dropna(inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 366 entries, 0 to 374
Data columns (total 6 columns):
#
     Column
                           Non-Null Count
                                           Dtype
- - -
     -----
0
     Age
                           366 non-null
                                           float64
     Gender
                           366 non-null
 1
                                           object
 2
     Education Level
                           366 non-null
                                           object
 3
     Job Title
                           366 non-null
                                           object
 4
     Years of Experience 366 non-null
                                           float64
 5
     Salary
                           366 non-null
                                           float64
dtypes: float64(3), object(3)
memory usage: 20.0+ KB
df.isnull().sum()
Aae
                        0
Gender
                        0
Education Level
                        0
Job Title
                        0
Years of Experience
                       0
                        0
Salary
dtype: int64
conclusion: All null values are droped , now the features are null
df.describe(include='all')
               Age Gender Education Level
                                                         Job Title \
count
        366.000000
                       366
                                       366
                                                               366
unique
               NaN
                         2
                                         3
                                                               169
```

	Years	of	Experience	Salary
count			366.000000	366.000000
unique			NaN	NaN
top			NaN	NaN
freq			NaN	NaN
mean			10.045082	100492.759563
std			6.517102	48013.732434
min			0.000000	350.000000
25%			4.000000	56250.000000
50%			9.000000	95000.000000
75%			15.000000	140000.000000
max			25.000000	250000.000000

Conclusion:

1.Age:

- -the average age is 37.459016
- -the majority age is the falls become 32 and 44
- -minimum age=23.00
- -maximum age=53.0

2.Gender:

- -the unique values are male and female
- -among the 366,189 entites are male ,177 entites are female, so we can say that male are slightly dominting

3.Education level:

-most of the data concentrate on the bachelor's(dominating)

4.job Titile:

- among 366,12 times are directed of markting of markiting is repeated Others are repeated less than 12 times, which means no jobing titles is dominating the dataset

5. years of exprience:

- -minimum exprience is 0, Maxmium exprience is 25, the average expeience is 10 tears
 - -majority of exprience is b/w thw 4 and 5

6.Salarv:

-minimum salry is 350, maximum salary is 250000, average salary is

```
1lakh
   -the majority of the salary is b/w 56250 to 140000
   -ther might be outliners,min=350,avg=1lakh,there are lot of
time(error part time)
```

1. Analysis age distribution

```
plt.figure(figsize =(6,5))
sns.histplot(df['Age'],kde=True,bins=10)
plt.title('distribution of age')
plt.show()
```


Conclusions: -On outline -the majority is 30 to 40 -few peoples are less in 50 and less in 25 - skew on the sightly positive side -the average age 34

Analyse the distribution of salary

```
plt.figure(figsize =(6,5))
sns.histplot(df['Salary'],kde=True,bins=10)
plt.title('distribution of salary')
plt.show()
```



```
Conclusions:
-it is outline
-the majority is 56250.0 to 140000
-few peoples are less in 50000 and less in
-skew on the sightly positive side
-the average 50000
```

Analyse of salary distribution

```
plt.figure(figure=(6,5))
sns.boxplot(x=df['Salary'])
plt.title('Salary distribution')
plt.show()
```

Salary distribution

Conclusions: -the majority salary is the 50000 to 150000 -the average is 90000 -the box plot is normal -on outline

find the corelation matrix

```
ndf=df.select dtypes(include=['number'])
ndf.head()
         Years of Experience
                                Salary
    Age
  32.0
                         5.0
                               90000.0
  28.0
                         3.0
                               65000.0
1
  45.0
                        15.0
                              150000.0
3
  36.0
                         7.0
                               60000.0
  36.0
                         7.0
                               60000.0
plt.figure(figure=(6,5))
sns.heatmap(ndf.corr(),cmap='plasma',annot=True)
plt.title('Age ,Education Level , Years of Experience , Salary')
plt.show()
C:\ProgramData\anaconda3\Lib\site-packages\IPython\core\
pylabtools.py:170: UserWarning: Glyph 9 ( ) missing from font(s)
DejaVu Sans.
  fig.canvas.print figure(bytes io, **kw)
```


concusion:

- -age sal sal exp are the corelations
- -age and salary is the lowest corelation

plot the count plot for Gender based on the education

```
plt.figure(figsize=(6,5))
sns.countplot(x=df['Gender'],palette='bright',hue=df['Education
Level'])
plt.title('count of gender')
Text(0.5, 1.0, 'count of gender')
```


• construct the pair plot for the dataset of Education Level

sns.pairplot(df,hue='Education Level')
<seaborn.axisgrid.PairGrid at 0x272140cae40>

Conclusion:

- -we absover that when age
- -the peak salary are given to bacholer degree people
- -empoyes are in bachlores degree are conistences in the job
- -salary is also effect by the years of expriences
 - group eduction level and find avg salary for every catagary
 - filter data set it will exprince is more than 20 years and find the avg salary

```
gl=df.groupby('Education Level')['Salary'].mean()
gl
```

Education Level

Bachelor's 74683.409091 Master's 129473.684211 PhD 157843.137255 Name: Salary, dtype: float64

```
g1=df[(df['Gender']=='Female')&(df['Education Level']=="Master's")]
g1['Salary'].mean()

121020.40816326531
e=df[df['Years of Experience']>20]
e['Salary'].mean()

175892.85714285713
```

Aggregation