

Bancos de Dados

Profa. Patrícia R. Oliveira EACH - USP

Mapeamento de Modelos ER e EER para o Modelo Relacional

slides parcialmente basedos em material de aula do Prof. José Eduardo Ferreira (IME-USP)

Objetivo

- Projetar um esquema de dados relacional, tendo por base o esquema de um projeto conceitual, o que corresponde ao:
 - projeto lógico do BD;
 - mapeamento do modelo de dados ER ou EER.

DER do Sistema Companhia

- 1) Para cada tipo entidade forte E do DER, crie uma relação R que inclua todos os atributos simples de E.
- 2) Inclua também os atributos simples dos atributos compostos.
- 3) Escolha um dos atributos-chave de E como a chave primária de R.
- 4) Se a chave escolhida for composta, então o conjunto de atributos simples que o compõe formarão a chave primária de R.

• Passo 1.1: Para cada tipo entidade forte E do DER, crie uma relação R que inclua todos os atributos simples de E.

 Passo 1.2: Inclua também os atributos simples dos atributos compostos.

 Passo 1.3: Escolha um dos atributos-chave de E como a chave primária de R.

 Passo 1.4: Se a chave escolhida for composta, então o conjunto de atributos simples que o compõe formarão a chave primária de R.

Passo 1: resultado

EMPREGADO

PNOME M	MINICIAL UNOM	E <u>SSN</u>	DATANASC	ENDERECO	SEXO	SALARIO
---------	---------------	--------------	----------	----------	------	---------

DEPARTAMENTO

DNOME	<u>DNUMERO</u>
-------	----------------

PROJETO

- 1) Para cada tipo entidade fraca W do DER, com o tipo identificação E, crie uma relação R e inclua todos os atributos simples (ou os atributos simples de atributos compostos) de W como atributos de R.
- 2) Inclua como chave-estrangeira de R a chave primária da relação que corresponde ao tipo entidade proprietária da identificação.
- 3) A chave primária de R é a combinação da chave primária do tipo entidade proprietária da identificação e a chave parcial do tipo entidade fraca W.

Passo 2.1: Para cada tipo entidade fraca W do DER, com o tipo identificação E, crie uma relação R e inclua todos os atributos simples (ou os atributos simples de atributos compostos) de W como atributos de R.

• Passo 2.2: Inclua como chave-estrangeira de R a chave primária da relação que corresponde ao tipo entidade proprietária da identificação.

• Passo 2.3: A chave primária de R é a combinação da chave primária do tipo entidade proprietária da identificação e a chave parcial do tipo entidade fraca W.

Passo 2: resultado

EMPREGADO

	PNOME	MINICIAL	UNOM	<u>SSN</u>	DATANASC	ENDERECO	SEXO	SALARIO
Ī			Е	7				

DEPARTAMENTO

DNOME <u>DNUMERO</u>

PROJETO

PJNOME PNUMERO PLOCALIZACAO

DEPENDENTE

ESSN	NOME_DEPENDENTE	SEXO	DATANASC	PARENTESCO
------	-----------------	------	----------	------------

- Para cada tipo relacionamento binário 1:1, R, do DER, identifique as relações S e T, que correspondem aos tipos entidade que participam de R.
- Escolha uma das relações, por exemplo S, e inclua como chave-estrangeira de S a chave primária de T.
 - <u>Dica</u>: escolher o tipo entidade com participação total no relacionamento como sendo a relação S.
- Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento 1:1, R, como atributos de S.

• Passo 3.1: Para cada tipo relacionamento binário 1:1, R, do DER, identifique as relações S e T, que correspondem aos tipos entidade que participam de R.

 Passo 3.2: Escolha uma das relações, por exemplo S, e inclua como chave-estrangeira de S a chave primária de T.
 <u>Dica</u>: escolher o tipo entidade com participação total no relacionamento como sendo a relação S.

 Passo 3.3: Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento 1:1, R, como atributos de S.

Passo 3: resultado

EMPREGADO

PNOME MINICIAL UNOM SSN DATANASC ENDERECO SEXO SALARIO

DEPARTAMENTO

DNOME	<u>DNUMERO</u>	GERSSN	GERDATAINICIO

PROJETO

PJNOME	<u>PNUMERO</u>	PLOCALIZACAO
--------	----------------	--------------

DEPENDENTE

ESSN	NOME DEPENDENTE	SEXO	DATANASC	PARENTESCO
	_			

- Para cada tipo relacionamento binário 1:N, R, identifique a relação S que representa o tipo entidade que participa do lado N de R.
- Inclua como chave-estrangeira de S a chave primária de T, que representa o outro tipo entidade que participa em R
 - cada entidade do lado 1 pode estar relacionada a mais de uma entidade do lado N.
- Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento 1:N, R, como atributos de S.

• Passo 4.1: Para cada tipo relacionamento binário 1:N, R, identifique a relação S que representa o tipo entidade que participa do lado N de R.

• Passo 4.2: Inclua como chave-estrangeira de S a chave primária de T que representa o outro tipo entidade que participa em R.

 Passo 4.3: Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento 1:N, R, como atributos de S.

Passo 4: resultado

- Para cada tipo relacionamento binário M:N, R, crie uma nova relação S para representar R.
- Inclua como chaves-estrangeiras de S as chaves primárias das relações que representam os tipos entidade que participam em R
 - sua combinação irá formar a chave primária de S.
- Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento M:N, R, como atributos de S.

 Passo 5.1: Para cada tipo relacionamento binário M:N, R, crie uma nova relação S para representar R.

- Passo 5.2: Inclua como chaves-estrangeiras de S as chaves primárias das relações que representam os tipos entidade que participam em R
 - sua combinação irá formar a chave primária de S.

• Passo 5.3: Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento M:N, R, como atributos de S.

Passo 5: resultado

- Para cada atributo A multivalorado, crie uma nova relação R, que inclua o atributo A e a chave primária K, da relação que representa o tipo entidade ou o tipo relacionamento que tem A como atributo.
- A chave primária de R é a combinação de A e K.
- Se o atributo multivalorado for composto, inclua os atributos simples que o compõem.

Passo 6.1: Para cada atributo A multivalorado, crie uma nova relação R, que inclua o atributo A e a chave primária K, da relação que representa o tipo entidade ou o tipo relacionamento que tem A como atributo.

 Passo 6.2: A chave primária de R é a combinação de A e K.

 Passo 6.3: Se o atributo multivalorado for composto, inclua os atributos simples que o compõem.

Passo 6: resultado

- Para cada tipo relacionamento n-ário, R, n>2, crie uma nova relação S para representar R.
- Inclua como chaves estrangeiras em S as chaves primárias das relações que representam os tipos entidade que participam em R.
 - sua combinação irá formar a chave primária de S.
- Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento n-ário, R, como atributos de S.

 Passo 7.1: Para cada tipo relacionamento n-ário, R, n>2, crie uma nova relação S para representar R.

• Passo 7.2: Inclua como chaves estrangeiras em S as chaves primárias das relações que representam os tipos entidade que participam em R.

sua combinação irá formar a chave primária de S.

• Passo 7.3: Inclua todos os atributos simples (ou os atributos simples dos atributos compostos) do tipo relacionamento n-ário, R, como atributos de S.

Passo 7: resultado

Exercício

 Dado o DER de uma locadora de vídeo, obtenha o esquema do BD relacional utilizando os passos do mapeamento DER/MDR.

Passo 8

- Converta cada especialização com m subclasses {S₁,
 S₂, ..., S_m} e a superclasse C (generalizada), em que:
 - os atributos de C são {k, a₁, a₂, ..., a_n}
 - k é a chave primária de C.

Passo 8

- Existem quatro opções para o mapeamento especialização/generalização:
 - 8A) crie várias relações: superclasse e subclasses.
 - 8B) crie várias relações: somente para subclasses.
 - 8C) crie uma única relação com um atributo tipo.
 - 8D) crie uma única relação com vários atributos tipo.

• 8A) Crie uma relação L para C com os atributos Atr(L) = {k,a₁,...,a_n} e PK(L) = k. Crie uma relação L_i para cada subclasse S_i, 1 < i < m, com os atributos Atr(L_i) = {k} U {atributos of S_i} e PK(L_i)=k.

Passo 8A: resultado

- 8B) Crie uma relação L_i para cada subclasse S_i, 1 < i < m, com os atributos Atr(L_i) = {atributos of S_i} U {k, a₁,...a_n} e PK(L_i) = k.
- Essa opção funciona somente para especializações cujas subclasses são totais.

Passo 8B: resultado

CARRO

IdVeiculo NrLicencaPlaca Preco VelocidadeMax	NrDePassageiros
--	-----------------

CAMINHAO

IdVeiculo NrLicencaPlaca	Preco	NrDeEixos	Capacidade	
--------------------------	-------	-----------	------------	--

2° semestre 2008

- 8C) Crie uma única relação L com os atributos Atr(L) = $\{k,a_1,...a_n\}$ U $\{atributos of S_i\}$... U $\{atributos of S_m\}$ U $\{t\}$ e PK(L) = k.
- t é um atributo tipo que indica a subclasse à qual a tupla pertence, se pertencer a alguma.

Passo 8C: resultado

EMPREGADO

- 8D) Crie uma única relação L com os atributos Atr(L) = {k,a₁, ...a_n} U {atributos of S_i}... U {atributos of S_m} U {t₁,t₂,...t_m} e PK(L) = k.
- Cada t_i é um atributo tipo booleano que indica se a tupla pertence ou não à subclasse S_i.

Passo 8D: resultado

	\sim
-	-1 · A

NumPeca	Descricao	MFlag	NumDesenho	DataFabricacao	NumLote	PFlag	NomeFornecedor	ListaPreco	
---------	-----------	-------	------------	----------------	---------	-------	----------------	------------	--

Mapeamento de subclasses compartilhadas

- Para mapear subclasses compartilhadas (com herança múltipla) não é necessário seguir a mesma opção de mapeamento para todos as especializações (generalizações).
 - observar as condições discutidas no passo 8 para o mapeamento.

- Opção 8A para PESSOA/ {EMPREGADO, EXALUNO,ALUNO}
- Opção 8C para EMPREGADO/ {AUXILIAR, DOCENTE, ASSISTENTE_ALUNO}
- Opção 8D para:
 - ASSISTENTE_ALUNO/
 {ASSISTENTE_PESQUISA,
 ASSISTENTE_ENSINO}
 - ALUNO/ASSISTENTE_ALUNO
 - ALUNO/{ALUNO_GRADUADO, ALUNO_NAOGRADUADO}

Mapeamento de subclasses compartilhadas: resultado

Opção 8A para PESSOA/ {EMPREGADO, EXALUNO,ALUNO}:

 Opção Opção 8D para ASSISTENTE_ALUNO/ {ASSISTENTE_PESQUISA, ASSISTENTE_ENSINO}:

Passo 9: mapeamento de categorias – tipos união

Aqui as superclasses podem ter tipos (e portanto, chaves) diferentes.

Passo 9: mapeamento de categorias – tipos união

- Pode não ser possível usar a chave de nenhuma das superclasses para identificar todas as entidades da categoria.
- Deve-se criar um novo atributo-chave chamado de <u>chave substituta.</u>

- A chave primária da relação PROPRIETARIO é uma chave substituta.
- Id_Proprietario é incluída como chave estrangeira para PROPRIETARIO em cada uma das relações de superclasse da categoria.

- As superclasses da categoria VEICULO têm a mesma chave primária, portanto, não é preciso usar chave substituta.
- IdCarro e IdCam são chaves estrangeiras para a relação VEICULO.

■ Na relação POSSUI, IdProprietario e IdVeiculo são chaves estrangeiras para as relações PROPRIETARIO e VEICULO, respectivamente.