If x=n+lnJ, then $x=\langle a_0,...,a_m\rangle$ is purely periodic.

Pf. Set $x' = \lfloor r \rfloor - r = canjugate of x. Note$ that <math>-1 < x' < 0

Set $x = \langle a_0, ..., a_k + x_k \rangle = \langle a_0, ..., a_k, \xi_{k+1} \rangle$ with $\xi_k = \xi_k - a_k = \xi_$

Se $\frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k}}$ for $1 \le m_k < m$, $1 \le \frac{1}{\sqrt{k}} \le m$ We know: $\sqrt{k} = \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k$

A direct (but right) check verifies that, for $f'_{k} = conjugate of f_{k} = \frac{-n + m_{k-1}}{q_{k}}, \quad |f'_{k}| = \frac{1}{f'_{k} - q_{k}}$

But! $x = \xi_0 = \langle \xi_0 \rangle$, 80 $\xi_0' = x! \text{ has } -1 \langle \xi_0' < 0 \rangle$ So that by induction, $-1 < \xi_0' < 0 \implies \xi_0' - q_0 < -1$ $\implies -1 < \frac{1}{\xi_0' - q_0} = \xi_0' + \langle 0 \rangle$, 80 $-1 < \xi_0' < 0 \text{ for all } k$. But then $\left\lfloor \frac{-1}{5\kappa} \right\rfloor = \left\lfloor \frac{-1}{5\kappa} \right\rfloor = a_{\kappa}$, since $a_{\kappa} < a_{\kappa} - 5\kappa' < a_{\kappa} + 1$.

But from HW, we know that on (and therefore at La) has periodic continued faction exponsion, 12., at some part Xn = Xnorm for some M>0. But claim: the first time this happens is REO. Bocarded Xp= Xpm -> Spi= xpmil = Spine) E/-or = E/m-arm => ar = Laren - Ern) = Laren - Ern) = arm => Q = E = art Xr = Grant Xran = Fran == XM== XM-1= XM-U+n= = from, contrad.

So for some m, $\chi_m = \chi_0 = \Omega - L\Omega_J$, and $\chi = \langle a_0, \dots, a_m \rangle$