Astrofísica Computacional

2020

Problema 2. Potencial Gravitacional en el interior de una Enana Blanca

Potencial Gravitacional en el interior de una Enana Blanca

Dentro de los resultados del Problema 1, se encontró la densidad de masa $\rho(r)$ en el interior de una enana blanca. Con esta información, es posible encontrar el potencial gravitacional en el interior de este objeto astrofísico al solucionar la ecuación de Poisson,

$$\nabla^2 \phi(t, \mathbf{r}) = 4\pi \rho(t, \mathbf{r}). \tag{1}$$

Aunque esta relación es una ecuación diferencial parcial, al imponer la simetría esférica que posee el sistema que se desea describir, se reduce a la ecuación radial

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\phi(r)}{dr}\right) = 4\pi\rho(r),\tag{2}$$

en donde las derivadas parciales se han convertido en derivadas totales debido a la dependencia de las funciones. El problema diferencial queda completamente definido al imponer los valores de frontera,

$$\phi(0) = 0 \tag{3}$$

$$\phi(R) = -\frac{GM}{R},\tag{4}$$

donde M y R son la masa y el radio de la enana blanca calculados en el Problema 1.

- 1. Resuelva el problema de valores de frontera mediante el método shooting, utilizando un adecuado estimado inicial para la primera derivada y un método Runge-Kutta de orden 4.
- 2. Resuelva el problema de valores de frontera utilizando el método de diferencias-finitas.
- 3. Identifique si existe alguna diferencia en el potencial obtenido con los dos métodos. Grafique las soluciones obtenidas.