Logistic regression analysis

2019.04.10

Introduction

In the linear regression model, the dependent variable is a quantitative variable, not a qualitative variable. However, in many practical problems, it is often the case that the dependent variable is a qualitative variable. Logistic regression analysis, Probit analysis, log-linear model, etc. are statistical methods for processing classification dependent variables. The Logistic regression model is a multivariate analysis method for analyzing and predicting discrete dependent variables based on single or multiple continuous or discrete independent variables. It is a commonly used statistical method.

This article will present an example of a logistic regression model for analysis and a brief analysis and evaluation.

Logistic

Logistic regression analysis, Probit analysis, discriminant analysis, log-linear model, etc. are statistical methods for processing classification dependent variables. Among them, Logistic regression analysis, Probit analysis is a commonly used statistical method for processing classification dependent variables. The Logistic regression model is a multivariate analysis method for analyzing and predicting discrete dependent variables based on single or multiple continuous or discrete independent variables. Logistic regression analysis is the most commonly used statistical method.

The Logistic probability function, also known as the growth function, was first proposed by P.F.V erhuist in Belgium in 1838. After using the logistic function as the growth curve, he used the curve for demographic research until the end of the 19th century. Logistic regression models have been used extensively for many years. At the time of its origin, it has been applied in the study of infectious diseases. Logistic regression analysis has been widely used in many fields as an effective data processing method, such as biomedicine, criminology, ecological engineering, health, linguistics and wildlife, biology.

Application

This paper uses logistic model regression to analyze a practical problem. The problem description is: the milk products currently sold in supermarkets mainly

include Mengniu, Yili, Guangming and Manor. Now it is necessary to analyze the different ages and wages, and whether it will affect the choice of milk products brand.

The data of this regression analysis is randomly generated by EXCEL, where the "choice" variable is the interpreted variable, indicating the brand of the milk selected by the customer; the explanatory variables include "age" and "income", indicating the age and monthly income of the customer, respectively. For the "choice" variable, the values "1", "2", "3", and "4" represent the brands of Mengniu, Yili, Guangming, and Manor, respectively. (Specific data can be seen in the notes.)

We perform Logit regression analysis in STATA, which can handle multivalued individual-specific explanatory variables. The code and results are as follows:

```
mlogit choice age income
predict c1 c2 c3 c4 in 1/10
. mlogit choice age income
Iteration 0:
             log likelihood = -132.58649
Iteration 1: log likelihood = -129.91023
Iteration 2: log likelihood = -129.90474
Iteration 3: log likelihood = -129.90474
Multinomial logistic regression
                                                Number of obs
                                                                         100
                                                LR chi2(6)
                                                                        5.36
                                                Prob > chi2
                                                                      0.4981
Log likelihood = -129.90474
                                                 Pseudo R2
                                                                      0.0202
```

	choice	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]					
1		(base outcome)										
2												
	age	.1159301	.1317833	0.88	0.379	1423605	.3742206					
	income	005675	.0050338	-1.13	0.260	0155409	.004191					
	_cons	18.00942	20.70307	0.87	0.384	-22.56785	58.5867					
3												
	age	.2314693	.1408797	1.64	0.100	0446499	.5075885					
	income	.0005456	.0055545	0.10	0.922	010341	.0114321					
	_cons	-11.76394	22.98534	-0.51	0.609	-56.81438	33.2865					
4												
	age	.002081	.1788722	0.01	0.991	3485021	.352664					
	income	.0019682	.0069224	0.28	0.776	0115994	.0155359					
	_cons	-8.980221	28.63694	-0.31	0.754	-65.10759	47.14715					

The predicted results are shown in the figure below. (Detailed data can be seen in the note.)

	age	income	id	choice	C1	c2	с3	C4
1	43	4031	1	2	.2509485	.2825712	.3700794	.0964009
2	39	4007	2	1	.3634287	.2949319	.2095751	.1320644
3	41	3919	3	2	.2586531	.4361147	.2258598	.0793724
4	42	4072	4	3	.2935456	.2332505	.3512164	.1219875
5	40	4130	5	3	.3711109	.1682706	.2884656	.1721529
6	37	4064	6	2	.4454358	.2074483	.166786	.1803299
7	38	4047	7	4	.4105323	.2364385	.1919639	.1610653
8	40	4025	8	1	.3408215	.2804236	.2501718	.128583
9	41	4064	9	1	.3232263	.239344	.3054812	.1319484
10	36	3926	10	2	.4014423	.3643469	.1106047	.123606

Of course, we can also use the "asclogit" command for regression analysis. Compared to the "mlogit" command, it can handle not only the individual-specific explanatory variables, but also the alternative-specific explanatory variables.

In addition, "mlogit" and "mprobit" handle wide data, while "clogit" handles long data. It is not shown here. Readers can try to use these regression analysis to solve problems in stata.

References

- [1] Yin Jianjie. Summary and Applied Research on Regression Model Analysis[D]. Heilongjiang:Heilongjiang University,2011.
- [2] Gumbel, E. J. Ranges and Midranges [J]. Ann. Math. Statist, 1994, (15): $300\mbox{-}322.$