Real Analysis - Minor 1

Total Marks: 30 Time: 1 hour

- 1. Prove that $\sup(A+B) = \sup A + \sup B$ (5)
- 2. Let z > 0 and x < y. Prove that there exist a rational number r such that x < rz < y. (5)
- 3. Prove that (using definition) $\lim_{n\to\infty} \frac{2n}{3n^2+5} = 0$ (5)
- 4. Let (x_n) be a bounded sequence and let $s := \sup\{x_n : n \in \mathbb{N}\}$. Show that if $s \notin \{x_n : n \in \mathbb{N}\}$, then there is a subsequence of (x_n) that converges to s.
- 5. Define $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ (5)

Prove that f is not continuous at any point of \mathbb{R} .

6. Prove that $\frac{1}{x}$ is not uniformly continuous on (0,1). (5)