Solving Fredholm integral equations (FIE): Lu = f(x) for u(x)

- ullet 1st kind (FIE $_1$): $\mathrm{L}_1 u(x) \equiv \int_a^b K(x,t) u(t) \, dt$
- 2nd kind (FIE₂): $\mathbf{L_2}u(x) \equiv \gamma u(x) + \int_a^b K(x,t)u(t)\,dt$ (γ constant)

Adjoint operators for FIE: Use standard L^2 inner product: $\langle f,g
angle = \int_a^b fg \, dx$

The adjoint is always defined from the inner product relation: $\langle \mathrm{L} u, v \rangle = \langle u, \mathrm{L}^* v \rangle$

$$egin{array}{lll} \langle \mathrm{L} u(x),v(x)
angle &=& \int_a^b \int_a^b K(x,t)u(t)v(x)\,dt\,dx= \ \int_a^b \int_a^b K(x,t)v(x)u(t)\,dx\,dt&=& \int_a^b u(t)\left(\int_a^b K(x,t)v(x)\,dx
ight)dt \ &=& \langle u(t),\mathrm{L}^*v(t)
angle \end{array}$$

Made use of interchanging the order of integration. (L*: ODE uses IBP, IE uses IOOI) Adjoint eigenfunctions $\psi(x)$ solve $\mathbf{L}^*\psi=\lambda\psi$ vs. $\mathbf{L}\phi=\lambda\phi$

$$\int_a^b K(t, x) \psi(t) \, dt = \lambda \psi(x)$$
 vs. $\int_a^b K(x, t) \phi(t) \, dt = \lambda \phi(x)$

 $\mathbf{L}^* = \mathbf{L}$ is self-adjoint if the kernel function is symmetric after swapping $x \rightleftarrows t$:

FIE $_1$ eigenvalue problems: $\mathrm{L}_1\phi=\lambda\phi$ $\int_a^b K(x,t)\phi(t)\,dt=\lambda\phi(x)$

Simplest problems: separable ("degenerate") $oldsymbol{K}(x,t)$ kernel functions

ullet $K(x,t)=\sum_{j=1}^n lpha_j(x)eta_j(t)$ finite sum of separation of variables products

Can expand out the integral for Lu(x) as a sum of terms:

$$\int_a^b K(x,t) u(t) \, dt = \int_a^b \left(\sum_j lpha_j(x) eta_j(t)
ight) u(t) \, dt = \sum_j \int_a^b lpha_j(x) eta_j(t) u(t) \, dt = \sum_j \int_a^b lpha_j(x) eta_j(t) u(t) \, dt = \sum_j \int_a^b eta_j(t) u(t)$$

 $\implies \quad \alpha(x)$'s factor out of separate integral terms

Degenerate FIE problems reduce to $n \times n$ matrix problems $+ (\cdots [IOU])$ Solve $\mathbf{L_1}\phi = \lambda \phi$, 2nd-order kernel (n=2) example:

$$\left(\int_a^b \beta_1(t)\phi(t)\,dt\right)\alpha_1(x) + \left(\int_a^b \beta_2(t)\phi(t)\,dt\right)\alpha_2(x) = \lambda\phi(x)$$

- (a) If $\lambda \neq 0$ then LHS(x) determines $\phi(x)$ trial soln form on $a \leq x \leq b$
- (b) If $\lambda = 0$ then what is $\phi(x)$?