Tarski Fixed Point Computation and the Arrival Problem

Angus Joshi

University of Edinburgh s1712180@ed.ac.uk

December 3, 2023

Angus Joshi (UoE) Tarski December 3, 2023 1/10

Overview

- Basic Definitions and Algorithmic Results
 - The integer lattice, monotone functions, Tarski's theorem
 - The problem, Lower bounds
 - Known Upper Bounds
- The Arrival Problem
 - Definitions
 - Reduction to TARSKI
- Progress and Next Steps
 - Testing the Algorithms
 - Progress and next steps

2/10

The integer lattice, monotone functions, Tarski's theorem

Definition (Bounded Integer Lattice)

The bounded d-dimensional integer lattice $[N]^d = \{1,...,N\}^d$ is equipped with a lattice ordering where for $(x_1,...,x_d), (x_1',...,x_d') \in [N]^d$, $(x_1,...,x_d) \leq (x_1',...,x_d')$ if $x_i \leq x_i'$ for each $i \in [d]$.

Definition (Monotone function)

A function $f: [N]^d \to [N]^d$ is monotone if whenever $x, x' \in [N]^d$ with $x \le x'$, $f(x) \le f(x')$.

Theorem (Tarski)

If $f:[N]^d \to [N]^d$ is monotone, then there is a point $x \in [N]^d$ with f(x) = x.

Angus Joshi (UoE)

Tarski

December 3, 2023 3/10

The problem, Lower Bounds

Definition (TARSKI)

The problem $\mathrm{TARSKI}(N,d)$ is, given oracle access to a monotone function $f:[N]^d \to [N]^d$, find a point $x \in [N]^d$ such that f(x) = x.

Theorem (Etessami, Papadimitriou, Rubinstein, Yannakakis)

The query complexity of TARSKI(N, 2) is $\Theta(\log^2 N)$.

Corollary

The query complexity of TARSKI(N, d) is $\Omega(\log^2 N)$ for $d \ge 2$.

4 / 10

Known Upper Bounds

Theorem (Fearnley, Pálvölgyi, Savani)

The query complexity of TARSKI (N,3) is $\Theta(\log^2 N)$.

Theorem (Chen, Li)

The query complexity of TARSKI (N, d) is $O(\log^{\lceil (d+1)/2 \rceil} N)$.

5 / 10

The Arrival Problem

Reduction to TARSKI

Theorem (Gärtner, Haslebacher, Hoang)

Arrival is polynomial-time reducible to Tarski.

Testing the Algorithms

Angus Joshi (UoE)

Tarski

Reality...

9/10

Progress and Next Steps

Progress

- Explored solving the 4-dimensional TARSKI problem,
- Implemented Fearnley, Pálvölgyi, Savani algorithm,
- Applied the algorithm to randomly generated instances of ARRIVAL.

Next Steps

• Explore solving the 4-dimensional TARSKI problem in the special case of monotone functions corresponding to arrival instances.