Решение задачи о назначениях Венгерским алгоритмов и симлекс-методом

Докладчик: Дыбко И. Е.

группа ФН2-41Б

14 сентября 2024 г.

Постановка задачи

Задача о назначениях

Имеется n работ и n исполнителей. Задана матрица стоимостей (размера $n \times n$) выполнения каждой работы тем или иным исполнителем. Необходимо распределить исполнителей по работам так, чтобы суммарная стоимость выполнения была минимальной.

Входные данные: матрица стоимостей.

Выходные данные: номера исполнителей для работ с номерами от 1 до n.

Постановка задачи

Пусть c_{ij} — стоимость назначения работника i на задачу j.

Целевая функция

минимизировать
$$z=\sum_{i=1}^n\sum_{j=1}^nc_{ij}x_{ij},$$

Ограничения

$$\sum_{i=1}^{n} x_{ij} = 1, \quad \forall j = 1, 2, \dots, n;$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i = 1, 2, \dots, n;$$

$$x_{ij} \in \{0, 1\}, \quad \forall i, j = 1, 2, \dots, n$$

где $x_{ij}=1$, если работник i назначен на задачу j, и 0 в противном случае.

Потенциалы строк и столбцов

Пусть $A[1\dots n][1\dots n]$ — матрица стоимостей

Два произвольных масива чисел $u[1\dots n]$ и $v[1\dots n]$ будем называть **потенциалом**, если выполняется следуюущее неравенство:

$$u[i] + v[j] \le A[i][j].$$
 $\forall i, j \in [1 \dots n]$

Назовем ребро (i,j) жестким, если верно:

$$u[i] + v[j] = A[i][j].$$

Формулировка задачи в терминах двудольного графа

Пусть H — двудольный граф, составленный только из жёстких рёбер, а M — максимальное по количеству рёбер паросочетание графа H.

Рис. Граф

Дополняющий путь — путь нечетной длины в котором рёбра поочередно принадлежат/не принадлежат паросочетанию и оба конца не принадлежат паросочетанию.

Теорема Бержа

Паросочетание M в двудольном графе H является максимальным тогда и только тогда, когда в H нет дополняющего пути.

Пересчет потенциала

Пусть L и R — посещенные вершины левой и правой доли соответсвенно.

$$\Delta = \min_{i \in L, j \notin R} \{A[i][j] - u[i] - v[j]\}.$$

Правило пересчета

$$u[i] = u[i] + \Delta, \quad i \in L;$$

 $v[j] = v[j] - \Delta, \quad j \in R.$

После перечета:

- потенциал останется корректным;
- достижимые вершины остануться достижимыми;
- количество достижимых вершин строго увеличиться.

Стандартная форма линейных оптимизационных моделей

При стандартной форме линейной модели:

- все ограничения должны быть записаны в виде равенств с неотрицательной правой частью;
- значения всех переменных модели неотрицательны;
- целевая функция подлежит максимизации или минимизации.

Пространство решений для задачи с двумя переменными

Рис. Пространство решений для задачи с двумя переменными

Пространство решений для задачи с n переменными

Рис. Пространство решений для задачи с n переменными

Источник: Simplex algorithm // Wikipedia URL: https://en.wikipedia.org/wiki/Simplex_algorithm

Симплекс-таблица

Таблица Симплекс-таблица

Базисные переменные	<i>x</i> ₁	<i>x</i> ₂		Xn	Ь	Отношение
Z	<i>c</i> ₁	<i>c</i> ₂	• • •	Cn	0	_
x_{e_1}	a ₁₁	a ₁₂	• • •	a _{1n}	b_1	$\frac{b_1}{a_{12}}$
X _{e2}	a ₂₁	a ₂₂	• • •	a _{2n}	<i>b</i> ₂	$\frac{b_2}{a_{22}}$
:	:	:		:	:	:
X _{em}	a _{m1}	a _{m2}		a _{mn}	b _m	$\frac{b_m}{a_{m2}}$
Δ	Δ_1	Δ_2	٠	Δ_n	_	_

$$\Delta_i = \sum_{j=1}^m c_j a_{ij} - c_i$$

Эмпирический анализ времени выполнения

Таблица Сравнение времени работы алгоритмов

Размер матрицы	Венгерский алгоритм (с)	Симплекс- метод (с)
32 × 32	< 0.01	9.24
64 × 64	< 0.01	15.68
128×128	< 0.01	33.51
256×256	0.02	1020.01

Таблица Венгерский алгоритм

Размер матрицы	Венгерский алгоритм (с)		
400 × 400	0.09		
800×800	1.71		
1600×1600	9.41		
3200×3200	58.95		

Таблица Симплекс-метод

Размер матрицы	Симплекс- метод (с)		
50 × 50	0.33		
75 × 75	2.13		
112×112	10.98		
168×168	89.11		