CS268: MACHINE PERCEPTION

Homework 1: Building an Image Mosaic

DUE: October 15, 2015

Deliverables

You will be given:

- 20 images.
- A set of keypoint coordinates for each of the 20 images (found in this PDF).

You must submit:

- A short description of the approach you followed.
- Code that solves the problem specified in the next section.
- An image of the mosaic you have constructed.

Constructing a basic image mosaic

In this homework, you will start constructing an image mosaic. You are given a collection of 20 images, I_1, I_2, \ldots, I_{20} , and the goal is to compose them into a single image I, much in the same way in which you would "stitch" multiple photographs together.

For simplicity, you are given coordinates of "key points" in different images. You will notice that each image I_j has a certain number of green crosses, with an index written next to each of them (see Fig. 1). The matrix $x_j \in \mathbb{R}^{2 \times N_j}$ contains the two coordinates (row, column) of those points in the image.

You will notice that each point is visible in more than one image, so you will have multiple copies of the coordinates of that point, each written relative to a different reference frame. We will say that the coordinates in different images of a point with the same index "correspond" to each other. In the final mosaic, corresponding points will coincide.

Your goal is to find the transformations $[G_{ij}]$ that map each point with index "i" in image "j" onto a common canvas, where it will have coordinates $[x_i, y_i]$.

Once you have found all the transformations, you will assemble the mosaic image on the canvas and visualize it. You may write your solution in any programming language (e.g. C++, Python, Matlab). You will turn in your solution, which should produce the final mosaic image given the original images and the coordinates of corresponding points. You may use a library that can assist you with displaying images.

The questions below may help you get the most out of your homework:

- What does it mean for two points in different images to "correspond"? Try to distill a definition that is as simple and concise as possible, but unambiguous.
- Based on your definition above, how would you design an algorithm to determine such correspondence automatically?
- Does your mosaic show artifacts? Would you be able to tell from your final product that it has been assembled from different "fragments"? If so, how would you go about eliminating such artifacts?

Figure 1: Point with j=17 is visible on the left and right images, I_1 and I_3 , where it has coordinates, respectively, $x_1=[42,\ 153]$ and $x_3=[22,\ 65]$. The same goes for point j=19, that is visible in the first and second images, etc. Each image I_j comes with the coordinate vector $x_j \in \mathbb{R}^{2\times N_j}$, where each column is the coordinate of a point in image x_j . Note that the order in this matrix is not necessarily consistent among different images. For instance, point j=17 is visible in both images I_1 and I_3 , but its coordinates may be, say, the fifth column of x_1 and the seventeenth column of x_3 .

Background

In order to complete this homework, you will need the following skills:

- Solve a linear system of algebraic equations in the least-squares sense.
- Efficiently solve a combinatorial search over index permutations

Below are the numerical values of the coordinates in the 20 images shown in Fig. 2. Note that you should not assume that such coordinates are perfect! There may be errors, some small, some perhaps not so small. Direct your questions on the homework to Georgios Georgiadis, giorgos@cs.ucla.edu.

x1 = 109 147	109 181	124 179										
x2 = 24 23	57 15	24 57	39 55	49 51	62 48	57 71	67 122	42 153	56 159	68 152		
x3 = 18 14	51 6	80 18	88 26	100 22	18 48	33 46	43 42	56 39	73 41	70 50	72 53	
x4 = 7 177	15 141	20 174	15 197	34 185	36 188	37 176	44 154	52 161	64 157	73 175	84 186	82 153
x5 = 2 89	19 91	16 99	18 103	19 139	11 156	19 163	26 68	34 76	46 72	42 163	48 142	53 167
x6 = 17 37	25 45	37 41	55 37	64 47	79 29	88 50	102 37					
x7 = 5 55	14 33	23 43	8 84	16 66	23 60	24 90	14 104	14 122				
x8 = 9 129	23 111	47 119	33 132	39 158	28 147	17 146	9 146					
x9 = 39 38	15 30	25 51	31 77	20 65	10 65	30 155	27 165			9 257	6 236	3 170
x10 = 6 4	48 21	45 31	39 60	21 36	15 49	5 30						
x11 = 50 10	66 16	56 30	40 33	11 30	11 54	34 54	46 58	52 59	56 48	68 91	61 104	51 85
39 104	39 90	25 84	10 90	34 54								
x12 = 59 10	88 13	104 10	104 28	101 39	93 38	82 34	59 34	47 34	22 65	36 71	48 64	58 70
73 64	87 70											

3

x13 =

52	64	78	63	53	41	27	18	30	65	73	47	30
15	15	45	50	45	52	46	87	100	126	177	164	156
21	19											
179	151											
x14 =												
37	42	14	35	115	129	105	117	52				
4	21	34	45	27	34	69	81	89				
x15 =												
95	83	69	60	72	89	72	63	45	22	6		
34	41	35	77	90	153	145	168	128	129	97		
x16 =												
23	89	152	182	210	185	170	150	124	39	62	89	106
21	13	27	31	76	52	43	36	39	52	52	69	77
132	153	170	210	208	179	118	81					
90	94	77	76	128	121	132	92					
477												
x17 = 14	26	26	17	11	43	61	55	64	69	84	103	86
18	30	86	108	176	94	56	149	214	108	200	231	158
10	00	00	100	110	01	00	1 10	211	100	200	201	100
91	87	89	107	106	117	123	119					
112	53	44	60	94	138	69	48					
x18 =	00		7.0	00	100	00	400	100	70	40	404	F0
12 29	29 37	55 50	76 54	92 37	108 12	93 3	133 36	102 81	72 102	40 92	131 88	50 157
29	31	30	34	31	12	3	30	01	102	32	00	101
69	89	110	143	255	267	251	265					
143	174	144	137	101	121	141	167					
x19 =												
21	50	29	62	8	66	75	136	184	170	186	173	
33	40	96	89	126	136	135	160	119	94	73	53	
x20 =												
18	39	82	114	145	173	185	152	111	92	131	188	198
49	50	23	33	12	19	68	75	74	88	105	115	114

Figure 2: Images I_1 through I_{20} .