

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехника и комплексная автоматизация»

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Модели и методы анализа проектных решений»

Студент:	Василян Артур Размикович
Группа:	PK6-736
Тип задания:	Лабораторная работа (дополнитель-
	ное задание)
Название:	Метод конечных элементов
Вариант:	45

Студент	подпись, дата	$\frac{\text{Василян A.P.}}{\Phi_{\text{амилия, И.O.}}}$
Преподаватель	подпись, дата	Трудоношин В. А.
Опенка:		

Содержание

Метод	конечных элементов	3
1	Цель выполнения лабораторной работы	3
2	Задание	3
3	Аналитическое решение	4
4	Получение локальных матрицы жесткости и вектора нагрузок	4
	Линейная функция-формы КЭ	5
	Кубическая функция-формы КЭ	6
5	Получение глобальных матрицы жесткости и вектора нагрузок	7
	Ансамблирование	7
	Учет граничных условий	8
6	Анализ результатов	8
	Линейная функция-формы	8
	Кубическая функция-формы	11
	Нахождение количества линейных КЭ, обеспечивающих ту же точность,	
	что и 20 кубических	14
7	Код	14
8	Вывод	20

Метод конечных элементов

1 Цель выполнения лабораторной работы

Цель выполнения лабораторной работы – решение дифференциального уравнения методом конечных элементов (МКЭ), используя линейную и кубическую функции формы, и анализ точности относительной аналитического способа решения

2 Задание

Решить с помощью МКЭ уравнение 1

$$3\frac{d^2u}{dx^2} - 4\frac{du}{dx} + 11 = 0, (1)$$

при следующих граничных условиях (г. у.):

$$u(x=0)=4, (2)$$

$$u'(x=14) = 8. (3)$$

Количество конечных элементов

- \bullet для первого расчета 20,
- для второго 40.

Также необходимо:

- 1. Сравнить результаты с аналитическим решением. Оценить максимальную погрешность.
- 2. Определить количество линейных КЭ, обеспечивающих такую же точность как и кубические.

3 Аналитическое решение

На рисунке 1 представлено аналитическое решение поставленной задачи.

Рис. 1. Аналитическое решение

Таким образом, получаем:

$$u(x) = \frac{e^{56/3}(44x + 64) + 63e^{4x/3} - 63}{16e^{56/3}}.$$

4 Получение локальных матрицы жесткости и вектора нагрузок

Составим локальные матрицу жесткости и вектор нагрузок для уравнения 1.

Линейная функция-формы КЭ

$$\mathbf{u} = \begin{bmatrix} (1 - \frac{x}{L}); & \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \mathbf{N_e} \mathbf{U},$$

где N_e — вектор функции формы конечного элемента (в данном случае линейной), его составляющие элементы - глобальные базисные функции, отличные от нуля в пределах этого элемента, L — длина $K\Theta$.

В соответствии с методом Галеркина для уравнения 1:

$$\int_0^L \mathbf{W_e} \left(3 \frac{d^2 \mathbf{u}}{dx^2} - 4 \frac{d\mathbf{u}}{dx} + 11 \right) dx = 0, \tag{4}$$

где $\mathbf{W_e} = \mathbf{N_e}^T$.

$$\int_{0}^{L} \mathbf{W_{e}} \left(3 \frac{d^{2} \mathbf{u}}{dx^{2}} - 4 \frac{du}{dx} + 11 \right) dx = 3 \int_{0}^{L} \mathbf{W_{e}} \frac{d^{2} \mathbf{u}}{dx^{2}} dx - 4 \int_{0}^{L} \mathbf{W_{e}} \frac{d\mathbf{u}}{dx} dx + 11 \int_{0}^{L} \mathbf{W_{e}} dx = 0$$

Распишем каждое слагаемое отдельно:

$$3\int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 3\int_{0}^{L} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 3\left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d\mathbf{u}}{dx} \Big|_{0}^{L} - 3\int_{0}^{L} \frac{d}{dx} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d}{dx} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix}; \quad \frac{x}{L} \right] \left[u_{i} \\ u_{j} \right] = \begin{bmatrix} -3\frac{d\mathbf{u}}{dx} \Big|_{i} \\ 3\frac{d\mathbf{u}}{dx} \Big|_{i} \end{bmatrix} - 3\left[\frac{1}{L}, \quad -\frac{1}{L} \right] \left[u_{i} \\ u_{j} \right]$$

$$-4\int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d\mathbf{u}}{dx} dx = -4\int_{0}^{L} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} \right] \frac{d\mathbf{u}}{dx} \left[u_{i} \\ u_{j} \right] dx =$$

$$= -\frac{4}{L} \int_{0}^{L} \left[\begin{pmatrix} 1 - \frac{x}{L} \end{pmatrix} - \begin{pmatrix} -1 + \frac{x}{L} \end{pmatrix} \right] \left[u_{i} \\ u_{j} \right] = -4\left[-\frac{1}{2}, \quad \frac{1}{2} \right] \left[u_{i} \\ u_{j} \right]$$

$$11\int_{0}^{L} \mathbf{W}_{\mathbf{e}} dx = 11\left[\frac{L}{2} \right]$$

Таким образом, для уравнения 4, при использовании линейной функции-формы, получаем (матмодель линейного КЭ):

$$\begin{bmatrix} 3\frac{1}{L} - 4\frac{1}{2}, & -3\frac{1}{L} + 4\frac{1}{2} \\ -3\frac{1}{L} - 4\frac{1}{2}, & 3\frac{1}{L} + 4\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} -3\frac{du}{dx}|_i + 11\frac{L}{2} \\ 3\frac{du}{dx}|_j + 11\frac{L}{2} \end{bmatrix}$$

Кубическая функция-формы КЭ

$$\mathbf{u} = \left[-\frac{9x^3}{2L^3} + \frac{18x^2}{2L^2} - \frac{11x}{2L} + 1; \frac{27x^3}{2L^3} - \frac{45x^2}{2L^2} + \frac{9x}{L}; -\frac{27x^3}{2L^3} + \frac{36x^2}{2L^2} - \frac{9x}{2L}; \frac{9x^3}{2L^3} - \frac{9x^2}{2L^2} - \frac{x}{L}; \right] \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \mathbf{N_eU},$$

Как и для линейной функции-формы применим метод Галеркина (см. уравнение 4) и рассмотрим каждое слагаемое отдельно.

$$3\int_{0}^{L}\mathbf{W_{e}}\frac{d^{2}\mathbf{u}}{dx^{2}}dx = 3\int_{0}^{L}\begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1\\ -\frac{9x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} + \frac{9x}{L}\\ -\frac{9x^{3}}{2L^{3}} - \frac{45x^{2}}{2L} - \frac{9x}{L} \end{bmatrix}\frac{d^{2}\mathbf{u}}{dx^{2}}dx = \\ = 3\begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1\\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix}\frac{d\mathbf{u}}{dx}|_{0}^{L} - 3\int_{0}^{L}\frac{d}{dx}\begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1\\ \frac{27x^{3}}{2L^{3}} + \frac{36x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix}\frac{d\mathbf{u}}{dx}|_{0}^{L} - 3\int_{0}^{L}\frac{d}{dx}\begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1\\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} \end{bmatrix}\frac{d\mathbf{u}}{dx}|_{0}^{L} - 3\int_{0}^{L}\frac{d}{dx}\begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1\\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} \end{bmatrix}\frac{d}{2L} + 1\\ = \begin{bmatrix} -\frac{3}{2}\frac{du}{dx}|_{i} \\ 0 \\ 0 \\ 3\frac{d\mathbf{u}}{dx}|_{i} \end{bmatrix} - 3\begin{bmatrix} -\frac{37}{10}\frac{180}{40} & \frac{27}{20L} - \frac{13}{40} \\ -\frac{180}{2L} & \frac{27}{2L} - \frac{13}{40} \\ \frac{27x}{2L} & -\frac{189}{2L} \end{bmatrix}\begin{bmatrix} u_{i} \\ u_{i} \\ u_{k} \\ u_{l} \end{bmatrix}$$

$$-4\int_{0}^{L}\mathbf{W_{e}}\frac{d\mathbf{u}}{dx}dx = -4\int_{0}^{L}\begin{bmatrix} -\frac{9x^{3}}{2T^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1\\ -\frac{27x^{3}}{40L} & \frac{180}{2L^{2}} - \frac{189}{40} & \frac{1}{37} \end{bmatrix}\begin{bmatrix} u_{i} \\ u_{k} \\ u_{l} \end{bmatrix}$$

$$= -4\begin{bmatrix} -\frac{1}{2}\frac{57}{2}\frac{57}{80} - \frac{3}{10} & \frac{7}{80} \\ -\frac{57}{80} & \frac{80}{80} & 0 & -\frac{3}{10} \\ -\frac{10}{80} & \frac{3}{80} & -\frac{7}{10} \end{bmatrix}\begin{bmatrix} u_{i} \\ u_{k} \\ u_{l} \end{bmatrix}$$

$$u_{k} \\ u_{l} \end{bmatrix}$$

$$11\int_{0}^{L}\mathbf{W_{e}}dx = 11\begin{bmatrix} \frac{L}{3}\frac{L}{3L} \\ \frac{3L}{2L} \\ \frac{3L}{2L} \\ \frac{3L}{2L} \end{bmatrix}$$

Таким образом, для уравнения 4, при использовании кубической функции-формы, получаем:

$$\begin{bmatrix} 3\frac{37}{10L} - 4\frac{1}{2} & -3\frac{189}{40L} + 4\frac{57}{80} & 3\frac{27}{20L} - 4\frac{3}{10} & -3\frac{13}{40L} + 4\frac{7}{80} \\ -3\frac{189}{40L} - 4\frac{57}{80} & 3\frac{54}{5L} + 0 & -3\frac{297}{40L} + 4\frac{81}{80} & 3\frac{27}{20L} - 4\frac{3}{10} \\ 3\frac{27}{20L} + 4\frac{3}{10} & -3\frac{297}{40L} - 4\frac{81}{80} & 3\frac{54}{5L} + 0 & -3\frac{189}{40L} + 4\frac{57}{80} \\ -3\frac{13}{40L} - 4\frac{7}{80} & 3\frac{27}{20L} + 4\frac{3}{10} & -3\frac{189}{40L} + 4\frac{57}{80} & 3\frac{37}{10L} + 4\frac{1}{2} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} 11\frac{L}{8} - 3\frac{du}{dx}|_i \\ 11\frac{3L}{8} \\ 11\frac{1}{8} + 3\frac{du}{dx}|_i \end{bmatrix}$$
 (5)

Локальные матрицу жесткости и вектор нагрузок из уравнения 5 с помощью матричных преобразований приведем к следующему виду:

$$\begin{bmatrix} a_{11} & 0 & 0 & a_{14} \\ a_{21} & a_{22} & 0 & a_{24} \\ a_{31} & 0 & a_{33} & a_{34} \\ a_{41} & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 3\frac{du}{dx}|_i \\ b_2 \\ b_3 \\ b_4 + 3\frac{du}{dx}|_l \end{bmatrix}$$

Для упрощения расчетов преобразуем систему выше, исключив внутренние узлы. Таким образом СЛАУ (математическая модель кубического КЭ):

$$\begin{bmatrix} a_{11} & a_{14} \\ a_{41} & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 3\frac{du}{dx}|_i \\ b_4 + 3\frac{du}{dx}|_l \end{bmatrix}$$

5 Получение глобальных матрицы жесткости и вектора нагрузок

Проведем процедуры ансамблирования и учет граничных условий для формирования итоговой математической модели.

Ансамблирование

Пусть локальные матрица жесткости и вектор неизвестных заданы следующим образом

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} b_1 - 3\frac{du}{dx}|_i \\ b_2 + 3\frac{du}{dx}|_l \end{bmatrix},$$

тогда, при разбитие области на n K \ni , глобальная матрица жесткости будет иметь размерность $(n+1)\cdot (n+1)$:

$$\begin{bmatrix} a_{11}^1 & a_{12}^1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{21}^n & a_{22}^n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} b_1^1 - 3\frac{du}{dx}|_0 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_2^{n-1} + b_1^n \\ b_2^n + 3\frac{du}{dx}|_L \end{bmatrix}$$

Учет граничных условий

Применим граничные условия первого (см. 3) и второго рода (см. 2) к выведенной выше системе.

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} 4 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_2^{n-1} + b_1^n \\ b_2^n + 3 \cdot 8 \end{bmatrix}$$

6 Анализ результатов

Проведем сравнение результатов согласно заданию.

Линейная функция-формы

На рисунках 2, 3 представлены графики полученные с помощью МКЭ (линейная функция-формы).

Рис. 2. Результат работы программы для 20 Рис. 3. Результат работы программы для 40 КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	4.000000	4.000000	0.000000
0.700000	5.925000	5.925000	0.000000
1.400000	7.850000	7.850000	0.000000
2.100000	9.775000	9.775000	0.000000
2.800000	11.700001	11.700000	0.000001
3.500000	13.625003	13.625001	0.000002
4.200000	15.550008	15.550003	0.000006
4.900000	17.475021	17.475008	0.000013
5.600000	19.400054	19.400021	0.000033
6.300000	21.325137	21.325058	0.000079
7.000000	23.250348	23.250159	0.000189
7.700000	25.175885	25.175438	0.000448
8.400000	27.102252	27.101204	0.001048
9.100000	29.030726	29.028310	0.002415
9.800000	30.964560	30.959104	0.005456
10.500000	32.912026	32.900036	0.011991
11.200000	34.894157	34.868848	0.025310
11.900000	36.964440	36.914331	0.050108
12.600000	39.258888	39.170661	0.088227
13.300000	42.123385	42.006818	0.116567
14.000000	46.437500	46.437500	0.000000

Таблица 1. 20 линейных КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	4.000000	4.000000	0.000000
0.350000	4.962500	4.962500	0.000000
0.700000	5.925000	5.925000	0.000000
1.050000	6.887500	6.887500	0.000000
1.400000	7.850000	7.850000	0.000000
1.750000	8.812500	8.812500	0.000000
2.100000	9.775000	9.775000	0.000000
2.450000	10.737501	10.737501	0.000000
2.800000	11.700001	11.700001	0.000000
3.150000	12.662502	12.662502	0.000000
3.500000	13.625003	13.625002	0.000001
3.850000	14.587505	14.587504	0.000001
4.200000	15.550008	15.550006	0.000002
4.550000	16.512513	16.512510	0.000003
4.900000	17.475021	17.475017	0.000004
5.250000	18.437534	18.437527	0.000007
5.600000	19.400054	19.400044	0.000010
5.950000	20.362586	20.362570	0.000016
6.300000	21.325137	21.325113	0.000024
6.650000	22.287718	22.287682	0.000037
7.000000	23.250348	23.250292	0.000056
7.350000	24.213055	24.212970	0.000085
7.700000	25.175885	25.175756	0.000129
8.050000	26.138912	26.138717	0.000195
8.400000	27.102252	27.101957	0.000294
8.750000	28.066091	28.065649	0.000442
9.100000	29.030726	29.030065	0.000661
9.450000	29.996631	29.995648	0.000982
9.800000	30.964560	30.963108	0.001452
10.150000	31.935719	31.933587	0.002132
10.500000	32.912026	32.908922	0.003104
10.850000	33.896545	33.892070	0.004475
11.200000	34.894157	34.887787	0.006371
11.550000	35.912650	35.903722	0.008928
11.900000	36.964440	36.952184	0.012256
12.250000	38.069327	38.052969	0.016358
12.600000	39.258888	39.237929	0.020959
12.950000	40.583476	40.558299	0.025176
13.300000	42.123385	42.096503	0.026882
13.650000	44.006663	43.985135	0.021528
14.000000	46.437500	46.437500	0.000000

Таблица 2. 40 линейных КЭ 10

Максимальная абсолютная погрешность 1.165671e-01 и 2.688241e-02 соответственно.

Кубическая функция-формы

На рисунках 4,5 представлены графики полученные с помощью МКЭ (кубическая функция-формы).

Рис. 4. Результат работы программы для 20 $\,$ Рис. 5. Результат работы программы для 40 $\,$ КЭ $\,$ КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
0.000000	4.000000	4.000000	0.000000
0.700000	5.925000	5.925000	0.000000
1.400000	7.850000	7.850000	0.000000
2.100000	9.775000	9.775000	0.000000
2.800000	11.700001	11.700001	0.000000
3.500000	13.625003	13.625003	0.000000
4.200000	15.550008	15.550008	0.000000
4.900000	17.475021	17.475021	0.000000
5.600000	19.400054	19.400054	0.000000
6.300000	21.325137	21.325137	0.000000
7.000000	23.250348	23.250348	0.000000
7.700000	25.175885	25.175885	0.000000
8.400000	27.102252	27.102251	0.000000
9.100000	29.030726	29.030725	0.000000
9.800000	30.964560	30.964560	0.000001
10.500000	32.912026	32.912025	0.000001
11.200000	34.894157	34.894155	0.000002
11.900000	36.964440	36.964435	0.000005
12.600000	39.258888	39.258880	0.000008
13.300000	42.123385	42.123376	0.000010
14.000000	46.437500	46.437500	0.000000

Таблица 3. 20 кубических КЭ

X	Аналитическое	МКЭ-	Абсолютная
A	решение	решение	погрешность
0.000000	4.000000	4.000000	0.000000
0.350000	4.962500	4.962500	0.000000
0.700000	5.925000	5.925000	0.000000
1.050000	6.887500	6.887500	0.000000
1.400000	7.850000	7.850000	0.000000
1.750000	8.812500	8.812500	0.000000
2.100000	9.775000	9.775000	0.000000
2.450000	10.737501	10.737501	0.000000
2.800000	11.700001	11.700001	0.000000
3.150000	12.662502	12.662502	0.000000
3.500000	13.625003	13.625003	0.000000
3.850000	14.587505	14.587505	0.000000
4.200000	15.550008	15.550008	0.000000
4.550000	16.512513	16.512513	0.000000
4.900000	17.475021	17.475021	0.000000
5.250000	18.437534	18.437534	0.000000
5.600000	19.400054	19.400054	0.000000
5.950000	20.362586	20.362586	0.000000
6.300000	21.325137	21.325137	0.000000
6.650000	22.287718	22.287718	0.000000
7.000000	23.250348	23.250348	0.000000
7.350000	24.213055	24.213055	0.000000
7.700000	25.175885	25.175885	0.000000
8.050000	26.138912	26.138912	0.000000
8.400000	27.102252	27.102252	0.000000
8.750000	28.066091	28.066091	0.000000
9.100000	29.030726	29.030726	0.000000
9.450000	29.996631	29.996631	0.000000
9.800000	30.964560	30.964560	0.000000
10.150000	31.935719	31.935719	0.000000
10.500000	32.912026	32.912026	0.000000
10.850000	33.896545	33.896545	0.000000
11.200000	34.894157	34.894157	0.000000
11.550000	35.912650	35.912650	0.000000
11.900000	36.964440	36.964440	0.000000
12.250000	38.069327	38.069327	0.000000
12.600000	39.258888	39.258888	0.000000
12.950000	40.583476	40.583475	0.000000
13.300000	42.123385	42.123385	0.000000
13.650000	44.006663	44.006663	0.000000
14.000000	46.437500	46.437500	0.000000

Таблица 4. 40 кубических К
Э13

Максимальная абсолютная погрешность 9.802044e-06 и 1.493353e-07 соответственно.

Нахождение количества линейных КЭ, обеспечивающих ту же точность, что и 20 кубических

Так как очевидно, что при увлечении числа КЭ точность растет, найдем искомое следуя алгоритму, представленному на рисунке 6.

Рис. 6. Алгоритм нахождения количества КЭ, заданную точность

Реализовав данный алгоритм с начальным количеством K9=20 и увеличивая счетчик всегда на 1 получаем необходимое количество K9, равное 2073.

7 Код

Листинг 1. Реализация МКЭ

```
#include <iostream>
#include <vector>
#include <vector>
duble EPS = 1e-16;
double X_BEGIN = 0.0;
double X_END = 14.0;
size t ELEMS NUM = 20;
```

```
10 double L = (X END - X BEGIN) / ELEMS NUM;
11
12 double a = 3.0, B = -4.0, C = 0.0, D = 11.0, usl left = 4.0, usl right = 8.0; //
       au''+Bu'+Cu+D=0
13
14 std::vector<double> solve with gauss(std::vector<std::vector<double>>& A,
       std::vector<double>& b){
       size t row size = A.size();
15
16
       size t col size = A.back().size();
17
       // Прямой ход Гаусса
18
19
       double pivot = 0.;
20
       for (size t i = 0; i < row_size; i++) {
21
           for (size t j = i + 1; j < col size; j++) {
22
               if (std::abs(A.at(j).at(i)) < EPS) {
                   continue;
23
24
25
               pivot = A.at(j).at(i) / A.at(i).at(i);
26
               b.at(j) = pivot * b.at(i);
               for (size t k = 0; k < row size; k++) {
27
                   A.at(i).at(k) = pivot * A.at(i).at(k);
28
29
               }
30
           }
       }
31
32
       // Обратный ход Гаусса
33
       std::vector<double> x(row_size);
34
       for (int i = row size -1.; i >= 0; i—) {
35
36
           x.at(i) = b.at(i);
           for (size t j = i + 1; j < row size; j++) {
37
               x.at(i) = x.at(j) * A.at(i).at(j);
38
39
           x.at(i) /= A.at(i).at(i);
40
       }
41
42
43
       return x;
44 }
45
46 double analytical solution(double x) {
       return (\exp(56./3.) * (44. * x + 64.) + 63. * \exp(4 * x / 3.) - 63.)/(16. * \exp(56./3.));
47
48 }
49
50 std::vector<double> build analytical solution(std::vector<double>& x vec) {
51
       size t \times vec  size = x \cdot vec.size();
       std::vector<double> y vec = std::vector<double>(x vec size);
52
       for (size_t i = 0; i < x_vec_size; i++) {
53
```

```
y vec.at(i) = analytical solution(x vec.at(i));
54
55
56
       return y_vec;
57 }
58
59 std::vector<double> build linear solution(size t elems num) {
60
       double L = (X END - X BEGIN) / elems num;
61
       size t \text{ size} = elems \text{ num} + 1;
62
       std::vector< std::vector<double> > A(size, std::vector<double>(size));
       std::vector<double> b(size);
63
64
       // Локальная матрица жесткости для линейного КЭ
65
       std::vector< std::vector< double> > local matrix = {
66
           \{ (a / L) + (B / 2.), -(a / L) - (B / 2.) \},
67
           \{-(a/L) + (B/2.), (a/L) - (B/2.)\},\
68
69
       };
70
       // Ансамблирование и получение глобальной матрицы жесткости для линейного КЭ
71
       for (size t i = 0; i < elems num; i++) {
72
73
           for (size t j = 0; j < 2; j++) {
74
               for (size t k = 0; k < 2; k++) {
                   A.at(i + j).at(i + k) += local matrix.at(j).at(k);
75
76
77
           }
       }
78
79
       for (size _t i = 0; i < size; i++) {
80
           b.at(i) = D * L;
81
82
       }
83
84
       // Учет ГУ
       if (0 == 1)
85
           b.at(0) = D * L /2. - a*usl left;
86
87
       } else {
           b.at(0) = usl left;
88
           A.at(0).at(0) = 1;
89
90
           A.at(0).at(1) = 0;
       }
91
92
93
       if (1 == 1) {
           b.at(size - 1) = D * L /2. + a*usl_right;
94
95
       } else {
           b.at(size - 1) = usl right;
96
97
           A.at(size -1).at(size -1) = 1;
           A.at(size -1).at(size -2) = 0;
98
99
       }
```

```
100
                 // Решение полученной СЛАУ методом Гаусса
101
102
                 std::vector<double> res = solve with gauss(A, b);
103
                 return res:
104 }
105
106 std::vector<double> build cube solution(size t elems num) {
107
                 double L = (X END - X BEGIN) / elems num;
                 size t \text{ size} = elems \text{ num} + 1;
108
109
                 std::vector< std::vector<double> > A(size,std::vector<double>(size));
                 std::vector<double> b(size);
110
111
                 // Локальная матрица жесткости для кубического КЭ
112
                 std::vector< std::vector<double> > local matrix = {
113
                          \{a * 37./(10.*L) + B / 2., -a * 189./(40.*L) - B * 57./80., a * 27./(20.*L) + B
114
                                   *3./10., -a * 13./(40.*L) - B * 7./80.},
                          \{-a * 189./(40.*L) + B * 57./80., a * 54./(5.*L) + 0., -a * 297./(40.*L) - B * (40.*L) + (40.*
115
                                  81./80., a * 27./(20.*L) + B * 3./10.},
                          \{a * 27./(20.*L) - B * 3./10., -a * 297./(40.*L) + B * 81./80., a * 54./(5.*L) - B * 81./80. \}
116
                                  0., -a * 189./(40.*L) - B * 57./80.},
                         \{-a * 13./(40.*L) + B * 7./80., a * 27./(20.*L) - B * 3./10., -a * 189./(40.*L)\}
117
                                   + B * 57./80., a * 37./(10.*L) - B * 1./2.
118
                 };
119
                 // Локальный вектор нагрузок (дополнительные слагаемые для первого и последнего
120
                          элементов учитываются далее)
                 std::vector<double> local b = { D * L / 8.0,
121
                                                                                      D * 3.0 * L / 8.0
122
                                                                                      D * 3.0 * L / 8.0,
123
                                                                                       D * L / 8.0 };
124
125
126
                 // Производим матричные преобразования для обнуления элементов локальной
127
                          матрицы жесткости, относящихся к внутренним узлам
                 for (size t i = 1; i < 3; i++) {
128
                          for (size t = 0; i < 4; i++) {
129
                                  if (std::fabs(local matrix.at(j).at(i)) > EPS && i != j) {
130
                                           double val = local matrix.at(j).at(i) /local matrix.at(i).at(i);
131
                                           local b.at(i) = val * local b.at(i);
132
                                           for (size t k = 0; k < 4; k++) {
133
                                                   local matrix.at(j).at(k) -= val *local matrix.at(i).at(k);
134
                                           }
135
136
                                  continue;
137
138
                          }
                 }
139
```

```
140
141
142
        // Исключаем внутренние узлы из рассмотрения
        std::vector < std::vector < double > > local matrix mod = { { local matrix.at(0).at(0), }}
143
            local matrix.at(0).at(3) },
                                                                    { local matrix.at(3).at(0),
144
                                                                        local matrix.at(3).at(3)
                                                                        } };
        std::vector<double> local_b_mod = { local_b.at(0),
145
                                             local b.at(3)
146
147
148
        // Ансамблирование и получение глобальной матрицы жесткости для кубического КЭ
149
        for (size t i = 0; i < elems num; i++) {
150
            for (size t j = 0; j < 2; j++) {
151
152
                for (size t k = 0; k < 2; k++) {
                    A.at(i + j).at(i + k) += local matrix mod.at(j).at(k);
153
154
            }
155
        }
156
157
        for (size t i = 0; i < elems num; i++) {
158
            b.at(i) += local b mod.at(0);
159
            b.at(i+1) += local b mod.at(1);
160
        }
161
162
        // Учет ГУ
163
        if (0 == 1) {
164
165
            b.at(0) = local_b_mod.at(0) - a * usl_left;
        } else {
166
            b.at(0) = usl left;
167
            A.at(0).at(0) = 1.;
168
            A.at(0).at(1) = 0.;
169
        }
170
171
        if (1 == 1) {
172
            b.at(size - 1) = local b mod.at(1) + a * usl right;
173
174
        } else {
            b.at(size - 1) = usl right;
175
            A.at(size -1).at(size -1) = 1.;
176
            A.at(size -1).at(size -2) = 0.;
177
178
        }
179
180
        // Решение полученной СЛАУ методом Гаусса
        std::vector<double> res = solve with gauss(A, b);
181
182
        return res;
```

```
183 }
184
185 double calc abs error(const std::vector<double>& y real, const std::vector<double>&
        y) {
        double max_err = 0.0;
186
        for (size t i = 0; i < y real.size(); i++) {
187
            double err = std::fabs(y real.at(i) - y.at(i));
188
189
            if (err > max err) {
                max err = err;
190
            }
191
192
        }
193
        return max err;
194 }
195
196 int main() {
197
         std::vector < double > x(ELEMS NUM + 1);
198
         for (size t i = 0; i < x.size(); i++) {
199
             x.at(i) = X BEGIN + i * L;
200
201
202
         size t \times size = x.size();
203
        std::vector<double> y;
204
205
        if (true) {
            y = build linear solution(ELEMS NUM);
206
        } else {
207
            y = build_cube_solution(ELEMS_NUM);
208
209
210
         std::vector<double> y real = build analytical solution(x);
211
212
         FILE* gp;
213
         FILE* ab;
214
         FILE* pgr;
215
         FILE* tab;
216
         if (true) {
217
            if(ELEMS NUM == 20) {
218
                gp = fopen("res/labs/text/graph/lin 20.txt", "w");
219
                ab = fopen("res/labs/text/graph/abs.txt", "w");
220
                for (size t i = 0; i < x size; i++) {
221
                    fprintf(ab, "%lf %lf\n", x.at(i), y_real.at(i));
222
223
                pgr = fopen("res/labs/text/pgr/lin 20.txt", "w");
224
225
                tab = fopen("res/labs/text/tab/lin 20.txt", "w");
226
            if(ELEMS NUM == 40) {
227
```

```
gp = fopen("res/labs/text/graph/lin 40.txt", "w");
228
                pgr = fopen("res/labs/text/pgr/lin 40.txt", "w");
229
                tab = fopen("res/labs/text/tab/lin 40.txt", "w");
230
231
         } else {
232
            if(ELEMS NUM == 20) {
233
                gp = fopen("res/labs/text/graph/cub 20.txt", "w");
234
                pgr = fopen("res/labs/text/pgr/cub 20.txt", "w");
235
                tab = fopen("res/labs/text/tab/cub 20.txt", "w");
236
237
            if(ELEMS NUM == 40) {
238
                gp = fopen("res/labs/text/graph/cub 40.txt", "w");
239
                pgr = fopen("res/labs/text/pgr/cub 40.txt", "w");
240
                tab = fopen("res/labs/text/tab/cub 40.txt", "w");
241
            }
242
         }
243
244
         for (size t i = 0; i < x.size()-1; i++) {
245
            fprintf(tab, "%lf & %lf & %lf & %lf \\\\n", x.at(i), y real.at(i), y.at(i),
246
                std::fabs(y real.at(i) - y.at(i)));
247
         fprintf(tab, "%|f & %|f & %|f & %|f", x.at(x.size()-1), y real.at(x.size()-1),
248
             y.at(x.size()-1), std::fabs(y real.at(x.size()-1) - y.at(x.size()-1));
249
         for (size t i = 0; i < x size; i++) {
250
             fprintf(gp, "%lf %lf\n", x.at(i), y.at(i));
251
         }
252
253
254
         fprintf(pgr, "%e", calc abs error(y real, y));
         fclose(gp);
255
256
         fclose(ab);
         fclose(pgr);
257
         fclose(tab);
258
259
260
         return 0;
261 }
```

8 Вывод

В ходе выполнения лабораторной работы был реализован МКЭ для различных функций форм, а также найдено количество линейных КЭ обеспечивающих точность 20ти кубических КЭ.

Постановка: \bigcirc доцент кафедры РК-6, кандидат технических наук, до-

цент, Трудоношин В.А.

Решение и вёрстка: С студент группы РК6-736, Василян А.Р.

2022, осенний семестр