Describe two different Turing machines, M and N, where M outputs

s $\langle N
angle$, when started on any input

Step-by-step solution

Step 1 of 2

Given: There are two different Turing machines M and N.

We have to prove that, it started with any input w , M outputs $\langle \mathit{N} \rangle$ and N outputs $\langle \mathit{M} \rangle$

Here we need to know the recursion theorem.

Recursion theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w)$$

To make a Turing machine that can get its own description and computes with it. Machine T in the statement receives the description of machine as extra input. The recursion theorem produces a new machine R, which operates exactly T, does but R's description filled automatically.

Comment

Step 2 of 2

By using Recursion theorem, remember that r(w) is a Turing machine that prints w on its tape, and halts.

The Turing machine *M* is as follows:

M = on input w:

- 1. No need to note the input
- 2. Obtain $\langle M \rangle$ by using the recursion theorem.
- 3. Compute $\ r(\langle M \rangle)$ where $\ r$ the computable function is write
- $rig(ig\langle M ig)ig)$ on the tape.
- 4. Halt."
- When M runs, it writes $N = \langle r(\langle M \rangle) \rangle$ in its tape.
- When N runs, it writes ${\langle M \rangle}$ in its tape automatically.
- $\langle N \rangle$ is a member of the turing machine M

 $\langle M \rangle$ is a member of the turing machine N

Therefore M outputs $\langle N \rangle$ and N outputs $\langle M \rangle$.

Comment