New Over-Approximate Examples

=> over-approximate dependency between variable entride loop. v.s. inside.

⇒ change a constant assignment for variable artside loop.
will cause sequence of difference for variable inside loop. if y ∈ x.
⇒ depardency actually 1, but edge weight is iteration #.

aepona on ay

 $Cj \leftarrow kJ$ $Cx \leftarrow query(0)J^{1}$ while $Cj \ge 0J^{2}$ do $Cj \leftarrow J-4J^{3}$ $Cy \leftarrow query(8)J^{4}$

 $\int_{k}^{1} \left[(j, \lambda) (x, 1, v_1, 0), (j, 4) \right]$

 $\begin{bmatrix}
 (j, 2) & (x, 1, V_1, 0), (j, 4), (y, 4, V_2, V_1) & \Rightarrow Sq(7_1, 7_3, y^4) \\
 (j, 0) & (y, 4, V_2', V_1), (j, -1), (y, 4, V_2', V_1) & \Rightarrow [V_1; V_1, V_1] \\
 ((i, 2), (x, 4, V_1, 0)) & (y, 4, V_2, V_1) & \downarrow [V_1', V_1', V_1']
 \end{bmatrix}$

 $C(j, 2), (x, 4, V_1, 0)$ $(y, 4, V_2, V_1)$ $\Rightarrow |D_{rff}| = 3.$ $(y, 4, V_2', V_1)$ $(y, 4, V_2', V_1)$

 $\Theta = T \rightarrow Tk$.

⇒ 2 ways:

IV consider both vortices weight & edge weight. V.

restricted walk: $70 \Rightarrow$ { edge 809: $(e_1, \dots e_n)$ s.t. $cnt(e_i) \leq w_{e_i}(70)$ with Vortices 909: $(V_1, \dots V_{n+1})$. $cnt(V_i) \leq w_{v_i}(70)$.

 $flon(k,c): 7a \rightarrow N$ $\Rightarrow flon(k,c)(7a) = \#{1 \mid V_i \in QV} (c) \land V_i \in k(7a) \land k \in WALk(c)$

 \Rightarrow A(c) : $T_0 \Rightarrow N$

 $A(c) = \tau_0 \Rightarrow \max\{ \text{ flon}(k, c)(\tau_0) \mid k \in WK(c)\}$.

Where bothor?

both works.

> bother.

 $I: \longrightarrow |Diff| = 1$

Diff seq $(7_1, 7_2, 8^l) \stackrel{\triangle}{=}$

 $\begin{cases} \frac{1}{\sqrt{k}} & \text{ in } \log_{1}[0] \neq \log_{2}[0] \text{ or } \log_{1}[1] \\ \frac{1}{\sqrt{k}} & \text{ in } \log_{2}[k] \end{cases}, \quad \text{ Seq}[k-1] \neq \text{ Seq}[k]$

U 2 Seq_[0] | Seq_ = [] 9.

Diff $\stackrel{\triangle}{=}$ (lone (Sq₂) \neq lon (Sq₂)) V (Sq₂[0] \neq Sq₃[0])

 \Rightarrow Diff $sq(71, 72, X^l) \stackrel{\triangle}{=}$

 \Rightarrow [Diff (z_1, z_2, y) in example is 1. \Rightarrow weight of edge $z_2 \Rightarrow z_3 \Rightarrow z_4 \Rightarrow z_4 \Rightarrow z_5 \Rightarrow z_$

but it causes over approximate still.

The variation still because V Seq [k+1] & Seq [k], doesn't comes from modification of variable outside of loop.