Степень с рациональным и действительным показателем.

Перечень вопросов, рассматриваемых в теме

- 1) понятие степени;
- 2) определение степени с рациональным и действительным показателем;
- 3) нахождения значения степени с действительным показателем.

Глоссарий по теме

Если n- натуральное число, $n \ge 2$, m- целое число и частное $\frac{m}{n}$ является целым числом, то при a > 0 справедливо равенство:

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

При любом действительном х $(x \in R)$ и любом положительном а (a > 0) степень a^x является положительным числом:

$$a^{x} > 0$$
 при $x \in R, a > 0$.

Но если основание степени a=0, то степень 0^x определяют только при x>0, и считают, что $0^x=0$ при x>0.

При $x \le 0$ выражение 0^x не имеет смысла.

Теоретический материал для самостоятельного изучения

Пример: вычислим $\sqrt[5]{4^{15}}$

Мы можем представить $4^{15} = (4^3)^5$, тогда

$$\sqrt[5]{4^{15}} = \sqrt[5]{(4^3)^5} = 4^3 = 64$$

Таким образом, мы можем записать

$$\sqrt[5]{4^{15}} = 64 = 4^3$$
 или $\sqrt[5]{4^{15}} = 4^{\frac{15}{5}}$, т.к. $3 = \frac{15}{5}$

На основании данного примера можно сделать вывод:

Если n- натуральное число, $n \geq 2$, m- целое число и частное $\frac{m}{n}$ является целым числом, то при a > 0 справедливо равенство:

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Напомним, что r-рациональное число вида $\frac{m}{n}$, где m- целое число , nнатуральное число. Тогда по нашей формуле получим:

$$a^r = a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
.

Таким образом, степень определена для любого рационального показателя r и любого положительного основания а.

Если $r = \frac{m}{n} > 0$, то выражение $\sqrt[n]{a^m}$ имеет смысл не только при a > 0, но и при a = 0, причем, $\sqrt[n]{0^m} = 0$. Поэтому считают, что при r > 0 выполняется равенство $0^r = 0$.

Пользуясь формулой $\sqrt[n]{a^m} = a^{\frac{m}{n}}$ степень с рациональным показателем можно представить в виде корня и наоборот.

Рассмотрим несколько примеров:

1.
$$32^{\frac{3}{5}} = \sqrt[5]{32^3} = \sqrt[5]{2^{15}} = 2^3 = 8;$$

2. $64^{-\frac{2}{3}} = \sqrt[8]{64^{-2}} = \sqrt[8]{4^{-6}} = \sqrt[8]{(4^{-2})^3} = 4^{-2} = \frac{1}{16}$

Отметим, что все свойства степени с натуральным показателем, которые мы с вами повторили, верны для степени с любым рациональным показателем и положительным основанием, а именно, для любых рациональных чисел р и q и любых a > 0 и b > 0 ы следующие равенства:

1.
$$a^p \cdot a^q = a^{p+q}$$
;
2. $a^p : a^q = a^{p-q}$;

2.
$$a^p:a^q=a^{p-q}$$

$$3. (a^p)^q = a^{pq};$$

4.
$$(a \cdot b)^p = a^p \cdot b^p$$

$$\int_{a}^{\infty} \left(\frac{a}{b}\right)^p = \frac{a^p}{b^p} \quad b \neq 0$$

Разберем несколько примеров, воспользовавшись данными свойствами:

1. Вычислим: $9^{\frac{1}{3}} \cdot 81^{\frac{1}{3}}$

$$(9 \cdot 81)^{\frac{1}{3}} = (3^2 \cdot 3^4)^{\frac{1}{3}} = (3^6)^{\frac{1}{3}} = 3^2 = 9.$$

1. Упростить выражение:

$$\frac{a^{\frac{5}{4}}b - ab^{\frac{5}{4}}}{\sqrt[4]{a} - \sqrt[4]{b}}$$

В числителе вынесем общий множитель ab за скобки, в знаменателе представим корни в виде дробных показателей степени:

$$\frac{ab(a^{\frac{1}{4}} - b^{\frac{1}{4}})}{a^{\frac{1}{4}} - b^{\frac{1}{4}}} = ab.$$

А теперь дадим определение степени с действительным показателем, на примере $2^{\sqrt{2}}$.

Пусть $r_1, r_2, ..., r_n, ...$ последовательность десятичных приближений с недостатком $\sqrt{2}$:

$$r^1 = 1.4$$
; $r^2 = 1.41$; $r^3 = 1.414$; ...

Эта последовательность стремится к числу $\sqrt{2}$, т.е. $r_n = \sqrt{2}$.

Числа $r_1, r_2, \dots, r_n, \dots$ являются рациональными, и для них определены степени $2^{r_1}, 2^{r_2}, 2^{r_3}, \dots$ т.е. определена последовательность $2^{1,4}, 2^{1,41}, 2^{1,414}, \dots$

Можно сделать вывод, что данная последовательность стремится к некоторому действительному числу, которое обозначают $2^{\sqrt{2}}$, т.е. $2^{\sqrt{2}} = 2^{r_n}$.

Опредление степени с действительным показателем.

При любом действительном х $(x \in R)$ и любом положительном а (a > 0) степень a^x является положительным числом:

$$a^{x} > 0$$
 при $x \in R, a > 0$.

Но если основание степени a=0, то степень 0^x определяют только при x>0, и считают, что $0^x=0$ при x>0.

При $x \le 0$ выражение 0^x не имеет смысла.

Для степени с действительным показателем сохраняются все известные свойства степени с рациональным показателем, из которых следует теорема.

Теорема. Пусть a > 1 и $x_1 < x_2$. Тогда $a^{x_1} < a^{x_2}$.

Доказательство:

По условию $x^2-x^1>0$. Поэтому, по свойству 1 имеем $a^{x_1}-a^{x_1}>1$. Умножив обе части этого равенства на положительное число a^{x_1} , получим $a^{x_1}a^{x_2-x_1}>a^{x_1}$. По свойству умножения степеней получаем: $a^{x_2}>a^{x_1}$, т.е. $a^{x_1}< a^{x_2}$.

Из данной теоремы вытекают три следствия:

- 1. Пусть a > 0, $a \neq 1$, $a^{x_1} = a^{x_2}$. Тогда $x_1 = x_2$
- 2. Пусть $x_1 < x_2$ и a > 1.Тогда $a^{x_1} < a^{x_2}$;

$$0 < a < 1, a^{x_1} > a^{x_2}$$

1. Пусть
$$0 < x_1 < x_{2N} p > 1$$
. Тогда $x^{1^p} < x^{2^p}$;

$$p < 0, x_1^p > x_2^p$$

Эти теорема и следствия помогают при решении уравнений и неравенств, сравнении чисел.

Примеры и разборы решения заданий тренировочного модуля

Пример 1. Сравнить числа $5^{2\sqrt{3}}$ и $5^{3\sqrt{2}}$

Сравним показатели $2\sqrt{3}$ и $3\sqrt{2}$

T.K.
$$2\sqrt{3} = \sqrt{12}$$
, $3\sqrt{2} = \sqrt{18}$ N 12 < 18, TO $2\sqrt{3}$ < $3\sqrt{2}$.

Поэтому по теореме $5^{2\sqrt{3}} < 5^{3\sqrt{2}}$

Пример 2. Решим уравнение

$$4x = 2^{4\sqrt{3}}$$

$$4^x = (2^2)^x = 2^{2x}$$

Поэтому уравнение можно записать так:

$$2^{2x} = 2^{4\sqrt{3}}$$

Получим, $2x = 4\sqrt{3}$, разделим на 2 обе части уравнения.

Следовательно, $x = 2\sqrt{3}$

Пример 3. Сравнить числа $\sqrt{2}$ и $\sqrt[3]{3}$

Избавимся от корней, для это возведем оба числа в шестую степень, т.к. шесть делится - наименьшее общее кратное двух и трех:

$$(\sqrt{2})^6 = (2^{\frac{1}{2}})^6 = 2^3 = 8$$

$$(\sqrt{3})^6 = (3^{\frac{1}{3}})^6 = 3^2 = 9$$

T.K.
$$0 < 8 < 9 \text{ M} \frac{1}{6} > 0$$
, TO $8^{\frac{1}{6}} > 9^{\frac{1}{6}}$, T.e. $\sqrt{2} < \sqrt[8]{3}$.