1703.03400 - Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

- Yunqiu Xu
- 2nd for this paper, try to understand both paper and code
- Other reference:
 - https://www.jiqizhixin.com/articles/2017-07-20-4
 - http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
- Implementation:
 - Original: https://github.com/cbfinn/maml
 - PyTorch: https://github.com/katerakelly/pytorch-maml

1. Introduction

- The goal of meta-learning: train a model with some learning tasks, then it can solve new tasks with only a few samples
- Our work:
 - MAML: pretrain the model with a series of tasks
 - Then this model can be generated to new task with a small number of training samples / gradient steps on that task
- Comparison with another recent related work: Ravi & Larochelle, 2017.

Optimization as a Model for Few-Shot Learning

- o Their work :
 - Learns both the weight initialization and the optimizer → they learn an update function or learning rule
 - Meta-based LSTM
- Our advantage :
 - The MAML learner's weights are updated using the gradient, not a trained update method
 - So we do not need additional parameters
 - And we are not limited to LSTM, our model can be generalized to both SL

Other advantages: see 6.Discussion and Future Work

2. MAML

2.1 Problem Setup

- Goal: train a "meta learning" model on a set of tasks, then this model can adapt to a new task with only a few data / iterations → learn as much as possible with limited data
- ullet Model f:x o a
 - \circ \boldsymbol{x} : observations
 - \circ \boldsymbol{a} : outputs
 - This model is like a "base model" which will be able to adapt to a lot of new tasks
- ullet General notion of task $T=\{L(x_1,a_1,\ldots,x_H,a_H),q(x_1),q(x_{t+1}|x_t,a_t),H\}$:
 - $\circ \ L o R$: loss function
 - $\circ q(x_1)$: distribution over initial observations
 - $\circ \ q(x_{t+1}|x_t,a_t)$: transiion distribution
 - 对于监督学习,不存在这个分布: *H* = 1
 - 对于强化学习, $q(x_{t+1}|x_t,a_t)$ 代表某时间点观察值的分布, e.g. 初始观察值后观察值取自 $q(x_2|x_1,a_1)$
 - ∘ **H**:
 - lacktriangle Episode length, model may generate samples of length H by choosing an output a_t at each time t
 - lacksquare For supervised learning, H=1 and loss function $L(x_1,a_1)$ could be MSE or cross entropy

2.2 K-shot meta-learning:

- Train model f:
 - \circ Sample a new task T_i from p(T) (training taskset)

- \circ Learn T_i :
 - lacksquare Train model with K samples drawn from q_i
 - lacksquare Get feedback L_{T_i} from T_i
- \circ Test on new samples from T_i and get test error
- \circ Improve model f : treat the test error on sampled tasks $extit{T_i}$ as the training error of meta-learning process
- Test meta-learning:
 - \circ Sample new task from p(T) (testing taskset), try to adapt f to this new task
 - Learn the model with K samples
 - Treat the performance as "meta-performance"

2.3 A MAML Algorithm

- What our model does?
 - o Be able to learn parameters of any standard model via meta-learning
 - o Why: some internal representations are more transferrable
 - E.G. 我们可以通过一系列任务学到一个神经网络模型, 而非仅仅通过一个任务, 这样这个模型就比较容易迁移到类似的新任务上
- How we learn
 - \circ Learn a model that gradient-based learning rule can make rapid progress on new tasks drawn from p(T) without overfitting
 - Find model parameters that are **sensitive** to changes of the task → small changes lead to large improvement (direction of gradient)
 - 为什么这样做: 之前的目标就是在样本/更新次数有限的情况下学到的东西尽可能多, 因此我们要尽量让每一点点小改变都能获得较大的提升
 - 此处存疑: 代码里该怎么体现"sensitive", 看了代码好像没有具体提及

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

- Algorithm 1:
 - \circ $f_{ heta}$, when adapting to a new training task T_i , the model's parameter heta becomes $heta_i'$
 - \circ Then we learn $heta_i'$ by gradient update:

$$heta_i' = heta - lpha
abla_ heta L_{T_i}(f_ heta)$$

- 这里我理解为调整梯度的方向,比如为了适应 T_2 我们需要将梯度方向稍微上移
- 经过多次梯度更新(内循环)后,我们就可以学到比较适合 T_2 的参数向量 $heta_2$
- lacksquare Step size lpha : fixed as a hyperparameter or meta-learned
- After learning the parameter vectors for all tasks in training task set ($\theta_1', \theta_2', \dots \theta_n'$), compute their test error to update θ :
 - Meta objective

$$min_{ heta} \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta_i'}) = \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta - lpha
abla_{ heta} L_{T_i}(f_{ heta})})$$

■ SGD:

$$heta \leftarrow heta - eta
abla_{ heta} \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta_i'})$$

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

while not done do

Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3:

for all \mathcal{T}_i do 4:

Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples 5:

Compute adapted parameters with gradient de-6:

scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

end for 7:

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ 8:

9: end while

This process involves a gradient through a gradient \rightarrow an additional backward pass through f to compute Hessian-vector products

3. Species of MAML

```
Algorithm 2 MAML for Few-Shot Supervised Learning
```

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: while not done do

Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i 5:

Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) 6:

Compute adapted parameters with gradient descent: 7: $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the 8: meta-update

9:

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

1: randomly initialize θ 2: while not done do

Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ}

6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4 7: Compute adapted parameters with gradient descent:

 $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$

8: in \mathcal{T}_i

9:

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

11: end while

3.1 Supervised learning

- Model is to predict output value given input value
- ullet For each training task T_i
 - \circ H=1: single input and single output
 - $\circ \; L = \mathsf{MSE} \; \mathsf{or} \; \mathsf{corss} \; \mathsf{entropy}$
 - \circ $q_i(x_1)$: 因为不存在时序观察值, 这个分布就是监督学习训练集样本的分布
 - \circ I think there is no $q_i(x_{t+1}|x_t,a_t)$
 - \circ Then generate K samples x from $q_i(x_1)$, compute the error between predicted value a and ground truth y

3.2 RL

- ullet Model is to predict action a_t given state x_t
- For each training task T_i :
 - \circ timestep $t \in \{1, \dots, H\}$
 - 。 The initial state distribution $q_i(x_1)$: 为了训练这个子任务,我们会从这个初始值分布选取K个起始点
 - Transition distribution $q_i(x_{t+1}|x_t,a_t)$:
 - 对每个当前观察值及选取的动作,未来观察值同样构成一个分布
 - 比如我选择吃一口饭,接下来可能观察到 {饱了,还饿}等状态
 - 当然我们训练好 T_i , 获得的未来状态可能就是选取最优动作后的结果了
 - \circ For T_i and its model parameter ϕ , the loss function is

$$L_{T_i}(f_\psi) = -E_{x_t,a_t \sim f_{\psi,q_{T_i}}} \left[\sum_{t=1}^H R_i(x_t,a_t)
ight]$$
 (4)

- As reward function is to maximize reward, in loss function we multiply "-1" to minimize the value
- lacksquare Here $oldsymbol{\phi}$ is $oldsymbol{ heta'_i}$, which we mentioned before
- \circ Why in step 8 we sample trajectories using f_{θ_i} instead of f_{θ_i} : PG is on-policy, thus each additional gradient updateing during the adaption of f_{θ} need to sample from current policy

4. Related work

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	_
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	${\bf 48.07 \pm 1.75\%}$	$63.15 \pm 0.91\%$	
MAML (ours)	$48.70 \pm 1.84\%$	${\bf 63.11 \pm 0.92\%}$	

- RNNs as learners: MANN
 - Search space includes all conceivable ML algorithms
 - Moves the burden of innovation to RNNs
 - o Ignors advances achieved in ML by humans
 - o The results are not good
- Metric learning: Siamese nets, matching nets
 - Learn a metric in input space
 - o Specialized to one/few-shot classification
 - o Can't use in other problems
- Optimizer learning: meta-learner LSTM
 - Learn parameter update given gradients (search space includes SGD, RMSProp, Adam etc)
 - Applicable to any architecture / task
 - o But we can achieve better performance with MAML

5. Experimental evaluation

• Questions need to be answered:

- Can MAML enable fast learning of new tasks
- Can MAML be used for meta-learning in multiple different domains: SL / RL ...
- Can a model learned with MAML continue to improve with additional gradient updates and/or examples
- An oracle work:
 - Receives the identity of the task (which is a problem-dependent representation) as an additional input,
 - Thus oracle will be an upper bound on the performance of the model
 - 我们主要对比用或不用MAML的情形, 越接近oracle代表效果越好

5.1 Regression

- 模拟sin曲线
- Each task:
 - o The shape of curve varies by amplitude and phase
 - o Input and output of a sine wave
 - Data points sampled from [-5.0, 5.0]
 - Loss: MSE
- Model architecture: NN with 2 hidden layers, 40 hidden nodes, ReLU
- Training:
 - ∘ K = 10
 - \circ \alpha = 0.01
 - Adam
 - o After all training tasks, we get a pretrained model
- Testing:
 - o Fine-tune the pretrained model with K test samples and a number of GDs
- Result
 - Left is pretrained with MAML, right is without MAML

Figure 6. Quantitative sinusoid regression results showing test-time learning curves with varying numbers of K test-time samples. Each gradient step is computed using the same K examples. Note that MAML continues to improve with additional gradient steps without overfitting to the extremely small dataset during meta-testing, and achieves a loss that is substantially lower than the baseline fine-tuning approach.

- Even with only 5 datapoints the fitting curve is nice
- When all the points are in one half, the model can still infer the shape of the other half → model the periodic nature
- Quantitative results: improve with addition gradient steps
 - 但素, sin曲线这种简单任务好像也就是再多迭代一个循环的事情:)
- 。 总之对Regression可以用很少的样本/循环finetune, 不会overfitting

5.2 Classification

- Vinyals et al. 2016 Matching networks for one shot learning
- Tasks: Few-shot image recognition
- Datasets
 - Omniglot:
 - 20 instances of 1623 characters from 50 different alphabets
 - Downsampled to 28 * 28
 - 1200 characters for training, remain for testing
 - Augmentation: degree retations
 - o MiniImagenet: 64 training classes, 12 validation classes, and 24 test classes
- Evaluation : N-way classification
 - Select N unseen classes

- Provide the model with K different instances of each of the N classes
- Evaluate the model' s ability to classify new instances within the N classes
- Model architecture
 - o 4 modules, each module:
 - 3*3 conv, 64 filters (32 filters for MiniImagenet)
 - Batch normalization
 - ReLU nonlinearity
 - Strided convolutions (2*2 max-pooling for MiniImagenet)
 - o A non-conv network for comparison: 256-128-64-64, BN, ReLU
 - Loss: cross entropy
- Comparision result : see 4. related work
- We also compare the performance between first order and second order derivatives
 - \circ From $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta_i'})$ we can find that there is second order derivatives, which maybe computational expensive
 - Thus we compare it with first-order approximation
 - lacktriangle Compute the meta-gradient at the post-update parameter values $heta_i'$
 - Result:
 - 1st order is similar to 2nd order, less need to use 2nd derivatives
 - Improvement of MAML comes from gradients of the objective at the postupdate parameter values
 - Not 2nd derivative for differentiating through the gradient update
 - The use of ReLU make most of 2nd derivatives close to 0

5.3 Reinforcement Learning

- Dual et al. 2016 Benchmarking deep reinforcement learning for continuous control
- Model architecture
 - o 2 hidden layers, 100 hidden nodes, ReLU
 - Vanilla PG + TRPO
 - Use finite differences to compute Hessian-vector products for TRPO: avoid computing third derivatives

Comparison:

- policy inited with MAML
- o policy inited with randomly weights
- oracle policy

• 2D Navigation

- Goal: move to goal positions in 2D
- o Observation: current 2D position
- Action: velocity commands
- Reward: negative squared distance
- When to terminate: too close to the goal, or H = 100
- Comparison: adaptation to a new task with up to 4 gradient updates, each with
 40 samples

MuJoCo Simulation:

- Goal velocity experiment: the reward is the negative absolute value between the current velocity of the agent and a goal
- Goal direction experiments: the reward is the magnitude of the velocity in either the forward or backward direction
- Result: MAML learns a model that can quickly adapt its velocity and direction with even just a single gradient update, and continues to improve with more gradient steps

- 本文中经过MAML预训练的模型强于随机初始化,不过在Parisotto et al 2016.的工作中,也有预训练不如随机初始化的情况
- Note that random baseline curves for game velocity are removed (worse return)

6. Discussion and Future Work

- MAML can be treated as an initialization method to get pretrained model that is easy to fine-tune
- Benefits:
 - o Simple, does not introduce any learned parameters for meta-learning
 - Can be applied to regression / classification / RL
 - Adaptation on new tasks with few shot / updates
- Future work:
 - \circ Generalize meta-learning technique to apply to any problem and any model \rightarrow 1709.04905 One-Shot Visual Imitation Learning via Meta-Learning
 - o Apply to multi-task

7. Code

- Here I try to understand maml.py in https://github.com/cbfinn/maml
- Note that this is only the code for SL, RL version is more complex
- How will it be used:
 - Suffix 'a': training data for inner loop
 - Suffix 'b': testing data for inner loop

```
1. model = MAML(dim_input, dim_output, test_num_updates =
   test_num_updates)
2. input_tensors = {'inputa': inputa, 'inputb': inputb, 'labela': labela,
   'labelb': labelb}
```

```
3. model.construct_model(input_tensors=..., prefix='...')
```

7.1 Initialize the model

- ullet update_lr: learning rate lpha
- $meta_lr$: learning rate $oldsymbol{eta}$
- ullet lossesa : the training loss of inner loop ullet for updating $oldsymbol{lpha}$
- lossesb : the testing loss of inner loop (the training loss of meta) ightarrow for updating $oldsymbol{eta}$

```
    lossesa, outputas, accuraciesa = [], [], []
    num_updates = max(self.test_num_updates, FLAGS.num_updates)
    lossesb, outputbs, accuraciesb = [[]]*num_updates, [[]]*num_updates, [[]]*num_updates
```

7.2 Inner loop

- Helper function task_metalearn(inp, reuse=True)
 - Input: inp = (self.inputa, self.inputb, self.labela, self.labelb)
 - o Output:

```
task_output = [task_outputa, task_outputbs, task_lossa, task_lossesb]
```

■ For classification, add another 2 elements

```
task accuracya, task accuraciesb
```

- Question: I can't find how outputas, outputbs will be used later
- Here we use another 2 hellper functions:
 - forward : forward pass, get task outputs
 - loss_func : compute loss
- The first iteration and remaining are splitted:
 - task_outputa and task_lossa will only be computed in first iteration, in remaining iterations this will be computed as loss directly
 - Thus the final output of task_outputa and task_lossa will be computed in first iteration

```
1. # For first iteration:
2. task_outputa = self.forward(inputa, weights, reuse=reuse)
3. task_lossa = self.loss_func(task_outputa, labela)
4. # For remaining iterations:
5. loss = self.loss_func(self.forward(inputa, fast_weights, reuse=True), labela)
```

- Then we compute gradients for inner loop
 - Recall that we will make comparison between 2nd order derivation and 1st order

```
# For first iteration:
grads = tf.gradients(task_lossa, list(weights.values()))
# For remaining iterations:
grads = tf.gradients(loss, list(fast_weights.values()))
# if True --> only use 1st order
if FLAGS.stop_grad:
grads = [tf.stop_gradient(grad) for grad in grads]
# Transfer to dict
gradients = dict(zip(weights.keys(), grads))
```

ullet Update the weights for sub-task: $heta' \leftarrow heta' - lpha * grad$

```
fast_weights = dict(zip(weights.keys(), [weights[key] - self.update_lr*
gradients[key] for key in weights.keys()]))
```

Compute the test error for inner loop → the train error of meta process

```
output = self.forward(inputb, fast_weights, reuse=True)
task_outputbs.append(output)
task_lossesb.append(self.loss_func(output, labelb))
```

7.3 Meta update

- Note that meta update is only for meta-training
- Map meta tasklearn to all data

```
1. result = tf.map_fn(task_metalearn, elems=(self.inputa, self.inputb, sel
    f.labela, self.labelb), dtype=out_dtype,
    parallel_iterations=FLAGS.meta_batch_size)
```

```
2.
3. if self.classification:
4.    outputas, outputbs, lossesa, lossesb, accuraciesa, accuraciesb =
    result
5. else:
6.    outputas, outputbs, lossesa, lossesb = result
```

- Compute average loss to update meta params
 - total loss1: the training loss of inner loop
 - total_losses2 : the testing loss of inner loop
 - For classification we also need to compute accuracy

```
    self.total_loss1 = total_loss1 = tf.reduce_sum(lossesa) / tf.to_float(F LAGS.meta_batch_size)
    self.total_losses2 = total_losses2 = [tf.reduce_sum(lossesb[j]) / tf.to _float(FLAGS.meta_batch_size) for j in range(num_updates)]
```

- Meta update
 - There are 2 kinds of update operations: pretrain op and metatrain op
 - o In main.py: iter = pretrain_iter + metatrain_iter, metatrain will only
 happen when it reaches metatrain_iter
 - However in default settings these 2 iterations will not be together: one is 0
 that there is only 1 kind of iteration

```
# meta update for pretrain_op will be in all iterations
self.pretrain_op =
    tf.train.AdamOptimizer(self.meta_lr).minimize(total_loss1)

# meta update for metatrain_op
if FLAGS.metatrain_iterations > 0:
    optimizer = tf.train.AdamOptimizer(self.meta_lr)
    self.gvs = gvs = optimizer.compute_gradients(self.total_losses2[FLAGS.num_updates-1])

# meta update for metatrain_op = 'minimagenet':
    gvs = [(tf.clip_by_value(grad, -10, 10), var) for grad, var in gvs]
    self.metatrain_op = optimizer.apply_gradients(gvs)
```

7.4 Meta testing

- metaval total loss1: training error of test task
- metaval_total_losses2 : testing error of test task

```
1. self.metaval_total_loss1 = total_loss1 = tf.reduce_sum(lossesa) / tf.to
    _float(FLAGS.meta_batch_size)
2. self.metaval_total_losses2 = total_losses2 = [tf.reduce_sum(lossesb[j])
    / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)]
3. if self.classification:
4. self.metaval_total_accuracy1 = total_accuracy1 = tf.reduce_sum(accuraciesa) / tf.to_float(FLAGS.meta_batch_size)
5. self.metaval_total_accuracies2 = total_accuracies2 = [tf.reduce_sum(accuraciesb[j]) / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)]
```