STREAMLINE Training Summary Report: 2022-06-22 06:10:48.621406

General Pipeline Settings:

Data Path: /content/drive/MyDrive/Colab Notebooks/Lasso/STREAMLINE-main/MyData Output Path: /content/drive/MyDrive/Colab

Notebooks/Lasso/STREAMLINE-main/Colab_Output

Experiment Name: vbm_report_1

Class Label: Class Instance Label: InstanceID Ignored Features: []

Specified Categorical Features: []

CV Partitions: 3 Partition Method: S Match Label: None Categorical Cutoff: 10

Statistical Significance Cutoff: 0.05 Export Feature Correlations: True Export Univariate Plots: True

Random Seed: 42

Run From Jupyter Notebook: True

Use Data Scaling: True
Use Data Imputation: True
Use Multivariate Imputation: True
Use Mutual Information: True
Use MultiSURF: True

Use TURF: False TURF Cutoff: 0.5

MultiSURF Instance Subset: 2000 Max Features to Keep: 2000 Filter Poor Features: False Top Features to Display: 40

Export Feature Importance Plot: True

Overwrite CV Datasets: True

ExSTraCS: False

Primary Metric: balanced_accuracy

 $\label{thm:continuity} Training \ Subsample \ for \ KNN, ANN, SVM, and \ XGB: \ 0 \\ Uniform \ Feature \ Importance \ Estimation \ (Models): \ True$

Hyperparameter Sweep Number of Trials: 200

Hyperparameter Timeout: 900 Export ROC Plot: True Export PRC Plot: True Export Metric Boxplots: True

Export Feature Importance Boxplots: True Top Model Features To Display: 40

ML Modeling Algorithms:

Naive Bayes: True

Elastic Net: True
Logistic Regression: True
Decision Tree: True
Random Forest: True
Gradient Boosting: True
Extreme Gradient Boosting: True
Light Gradient Boosting: True
Category Gradient Boosting: True
Support Vector Machine: True
Artificial Neural Network: True
K-Nearest Neightbors: True
Genetic Programming: False

eLCS: False XCS: False

LCS Settings (eLCS,XCS,ExSTraCS):

Do LCS Hyperparameter Sweep: False

LCS Hyperparameter: nu: 1

LCS Hyperparameter: Training Iterations: 200000 LCS Hyperparameter: N - Rule Population Size: 2000 LCS Hyperparameter Sweep Timeout: 1200

Datasets:

D1 = VBM_with_bi_diagclass

Univariate Analysis of Each Dataset (Top 10 Features for Each)

D1 = VBM_with_bi_diagclass

Feature: P-Value

Precentral_L: 9.118022191884288e-28

Postcentral_R: 2.464228965838577e-25

Postcentral_L: 6.894181237130811e-23

Precentral_R: 1.434752287873083e-20

Putamen_R: 4.407446958391657e-20

Cerebelum_8_L: 1.104077185113905e-18

Cerebelum_7b_L: 4.4667037842088395e-18

Cerebelum_6_R: 5.918799786097711e-18

Parietal_Sup_R: 7.899599654013874e-18

Cerebelum_4_5_R: 1.1909105085962023e-17

Dataset and Model Prediction Summary: D1 = VBM_with_bi_diagclass 200 175 150 125 100 75 50 25 **Dataset Counts Summary:** instances: 377.0 features: 116.0 categorical_features: 0.0 quantitative_features: 116.0 missing_values: 0.0 missing_percent: 0.0 Top ML Algorithm Results (Averaged Over CV Runs): Best (ROC_AUC): Logistic Regression = 0.913 Best (Balanced Acc.): Logistic Regression = 0.851 Best (F1 Score): Logistic Regression = 0.828 Best (PRC AUC): Logistic Regression = 0.901 Best (PRC APS): Logistic Regression = 0.903 ROC Naive Bayes, AUC=0.742 1.0 Elastic Net, AUC=0.908 Logistic Regression, AUC=0.913 0.90 0.9 Decision Tree, AUC=0.802 0.8 Random Forest, AUC=0.840 Gradient Boosting, AUC=0.851 **True Positive Rate** 0.7 Extreme Gradient Boosting, AUC=0.879 0.85 Light Gradient Boosting, AUC=0.871 Category Gradient Boosting, AUC=0.854 Support Vector Machine, AUC=0.907 800 0.5 Artificial Neural Network, AUC=0.910 0.80 K-Nearest Neightbors, AUC=0.795 0.4 --- No-Skill 0.3 0.75 0.2 0.1 Naive Bayes Elastic Net Artificial Neural Network Light Gradient Boosting Category Gradient Boosting Support Vector Machine Logistic Regression Decision Tree Gradient Boosting Extreme Gradient Boosting 0.0 Random Forest 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 False Positive Rate ML Algorithm PRC 1.0 Naive Bayes, AUC=0.721, APS=0.658 Elastic Net, AUC=0.891, APS=0.889 0.9 Logistic Regression, AUC=0.901, APS=0.903 Decision Tree, AUC=0.774, APS=0.730 Random Forest, AUC=0.801, APS=0.801 0.8 0.85 Gradient Boosting, AUC=0.818, APS=0.814 Extreme Gradient Boosting, AUC=0.863, APS=0.864 0.7 Precision (PPV) Light Gradient Boosting, AUC=0.858, APS=0.860 PRC AUC Category Gradient Boosting, AUC=0.835, APS=0.837 0.80 Support Vector Machine, AUC=0.897, APS=0.898 Artificial Neural Network, AUC=0.897, APS=0.899 K-Nearest Neightbors, AUC=0.769, APS=0.770 --- No-Skill 0.75 0.4 0.3 0.70 Naive Bayes Elastic Net ogistic Regression Decision Tree Gradient Boosting Extreme Gradient Boosting Light Gradient Boosting Category Gradient Boosting Support Vector Machine Artificial Neural Network 0.1 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 Recall (Sensitivity)

Average Model Prediction Statistics (Rounded to 3 Decimal Points)

D1 = VBM_with_bi_diagclass																
ML Algorithm	Balanced	Accuracy	F1	Sensitivity	Specificity	Precision	TP	TN	FP	FN	NPV	LR+	LR-	ROC	PRC	PRC
	Accuracy		Score	(Recall)		(PPV)								AUC	AUC	APS
Naive Bayes	0.688	0.692	0.648	0.653	0.723	0.647	35.667	51.333	19.667	19.0	0.731	2.44	0.481	0.742	0.721	0.658
Elastic Net	0.816	0.83	0.784	0.707	0.925	0.879	38.667	65.667	5.333	16.0	0.804	9.484	0.316	0.908	0.891	0.889
Logistic Regression	0.851	0.857	0.828	0.805	0.897	0.858	44.0	63.667	7.333	10.667	0.86	7.906	0.216	0.913	0.901	0.903
Decision Tree	0.713	0.724	0.663	0.622	0.803	0.712	34.0	57.0	14.0	20.667	0.734	3.317	0.471	0.802	0.774	0.73
Random Forest	0.75	0.756	0.716	0.701	0.798	0.733	38.333	56.667	14.333	16.333	0.776	4.297	0.38	0.84	0.801	
Gradient Boosting	0.764	0.772	0.726	0.702	0.826		38.333	58.667	12.333	16.333	0.785	4.083	0.362	0.851		0.814
Extreme Gradient Boosting	0.807	0.812	0.781	0.774	0.84	0.792	42.333	59.667	11.333	12.333	0.831	5.341	0.268	0.879		0.864
Light Gradient Boosting	0.792	0.798		0.744	0.84	0.785	40.667	59.667	11.333	14.0	0.811	4.966	0.305	0.871		0.86
Category Gradient Boosting		0.772	0.735	0.726	0.808		39.667	57.333	13.667	15.0	0.792	4.096	0.341	0.854		0.837
Support Vector Machine	0.833	0.844	0.807	0.75	0.915		41.0	65.0	6.0	13.667	0.826	8.877	0.273	0.907		0.898
Artificial Neural Network	0.84	0.846	0.817	0.792	0.887		43.333	63.0	8.0	11.333	0.849	7.653	0.234	0.91		0.899
K-Nearest Neighthors	0.727	0.745	0.668	0.501	0.864	0.772	33 333	61 333	0.667	22 333	0.734	4.512	0.473	0.795	0.769	0.77

| Feature Importance Summary: D1 = VBM_with_bi_diagclass

Dataset				
D1 = V	BM_with_bi_diagclass			

Using Best Performing Algorithms (Kruskall Wallis Compare Datasets)

Pipeline Runtime Summary

VBM_with_bi_diagclass					
Pipeline Component	Time (sec)				
Exploratory Analysis	34.24				
Preprocessing	0.12				
Mutual Information	1.06				
MultiSURF	18.54				
Feature Selection	2.27				
Naive Bayes	4.0				
Elastic Net	21.83				
Logistic Regression	97.06				
Decision Tree	33.71				
Random Forest	2117.9				
Gradient Boosting	2729.34				
Extreme Gradient Boosting	459.68				
Light Gradient Boosting	184.27				
Category Gradient Boosting	2895.15				
Support Vector Machine	65.87				
Artificial Neural Network	665.92				
K-Nearest Neightbors	769.28				
Stats Summary	60.87				