УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 81

> Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $5 < x_1x_2x_3 + x_4x_5 \le 9$ и неопределенное значение при $x_3x_4x_5 = 6$

Таблица истинности

No॒	x_1	x_2	x_3	x_4	x_5	$x_1 x_2 x_3$	$x_{4}x_{5}$	$x_3x_4x_5$	f
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0
2	0	0	0	1	0	0	2	2	0
3	0	0	0	1	1	0	3	3	0
4	0	0	1	0	0	1	0	4	0
5	0	0	1	0	1	1	1	5	0
6	0	0	1	1	0	1	2	6	d
7	0	0	1	1	1	1	3	7	0
8	0	1	0	0	0	2	0	0	0
9	0	1	0	0	1	2	1	1	0
10	0	1	0	1	0	2	2	2	0
11	0	1	0	1	1	2	3	3	0
12	0	1	1	0	0	3	0	4	0
13	0	1	1	0	1	3	1	5	0
14	0	1	1	1	0	3	2	6	d
15	0	1	1	1	1	3	3	7	1
16	1	0	0	0	0	4	0	0	0
17	1	0	0	0	1	4	1	1	0
18	1	0	0	1	0	4	2	2	1
19	1	0	0	1	1	4	3	3	1
20	1	0	1	0	0	5	0	4	0
21	1	0	1	0	1	5	1	5	1
22	1	0	1	1	0	5	2	6	d
23	1	0	1	1	1	5	3	7	1
24	1	1	0	0	0	6	0	0	1
25	1	1	0	0	1	6	1	1	1
26	1	1	0	1	0	6	2	2	1
27	1	1	0	1	1	6	3	3	1
28	1	1	1	0	0	7	0	4	1
29	1	1	1	0	1	7	1	5	1
30	1	1	1	1	0	7	2	6	d
31	1	1	1	1	1	7	3	7	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \,$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		$K^1(f)$			$K^2(f)$		Z(f)
m_{18}	10010	√	m_6 - m_{14}	0X110	√	m_{18} - m_{19} - m_{22} - m_{23}	10X1X	0111X
m_{24}	11000	✓	m_{18} - m_{19}	1001X	✓	m_{24} - m_{25} - m_{26} - m_{27}	110XX	101X1
m_6	00110	✓	m_{18} - m_{22}	10X10	✓	m_{24} - m_{25} - m_{28} - m_{29}	11X0X	1X101
m_{19}	10011	√	m_{24} - m_{25}	1100X	✓	m_{24} - m_{26} - m_{28} - m_{30}	11XX0	10X1X
m_{21}	10101	✓	m_{24} - m_{26}	110X0	✓	m_{18} - m_{19} - m_{26} - m_{27}	1X01X	110XX
m_{25}	11001	✓	m_{24} - m_{28}	11X00	✓	m_{18} - m_{22} - m_{26} - m_{30}	1XX10	11X0X
m_{26}	11010	✓	m_{18} - m_{26}	1X010	✓	m_6 - m_{14} - m_{22} - m_{30}	XX110	11XX0
m_{28}	11100	✓	m_6 - m_{22}	X0110	✓			1X01X
m_{14}	01110	✓	m_{14} - m_{15}	0111X				1XX10
m_{22}	10110	✓	m_{22} - m_{23}	1011X	✓			XX110
m_{15}	01111	√	m_{21} - m_{23}	101X1				
m_{23}	10111	✓	m_{19} - m_{23}	10X11	✓			
m_{27}	11011	✓	m_{26} - m_{27}	1101X	✓			
m_{29}	11101	✓	m_{25} - m_{27}	110X1	\checkmark			
m_{30}	11110	✓	m_{28} - m_{29}	1110X	✓			
			m_{28} - m_{30}	111X0	✓			
			m_{25} - m_{29}	11X01	✓			
			m_{26} - m_{30}	11X10	✓			
			m_{19} - m_{27}	1X011	✓			
			m_{21} - m_{29}	1X101				
			m_{22} - m_{30}	1X110	✓			
			m_{14} - m_{30}	X1110	✓			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы										
		0	1	1	1	1	1	1	1	1	1	1
		1	0	0	0	0	1	1	1	1	1	1
Пр	Простые импликанты		0	0	1	1	0	0	0	0	1	1
			1	1	0	1	0	0	1	1	0	0
			0	1	1	1	0	1	0	1	0	1
			18	19	21	23	24	25	26	27	28	29
	0111X	X										
A	101X1				X	X						
В	1X101				X							X
С	10X1X		X	X		X						
D	110XX						X	X	X	X		
E	11X0X						X	X			X	X
F	11XX0						X		X		X	
G	1X01X		X	X					X	X		
H	1XX10		X						X			
	XX110											

Ядро покрытия:

$$T = \{0111X\}$$

Получим следующую упрощенную импликантную таблицу:

Простые импликанты		0-кубы										
		1	1	1	1	1	1	1	1	1	1	
		0	0	0	0	1	1	1	1	1	1	
		0	0	1	1	0	0	0	0	1	1	
		1	1	0	1	0	0	1	1	0	0	
			1	1	1	0	1	0	1	0	1	
			19	21	23	24	25	26	27	28	29	
A	101X1			X	X							
В	1X101			X							X	
С	10X1X	X	X		X							
D	110XX					X	X	X	X			
Е	11X0X					X	X			X	X	
F	11XX0					X		X		X		
G	1X01X	X	X					X	X			
Н	1XX10	X						X				

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (C \vee G \vee H) \ (C \vee G) \ (A \vee B) \ (A \vee C) \ (D \vee E \vee F) \ (D \vee E) \ (D \vee F \vee G \vee H) \ (D \vee G) \ (E \vee F) \ (B \vee E)$$

Приведем выражение в ДНФ:

$$Y = A \, E \, G \vee A \, C \, D \, E \vee B \, C \, D \, E \vee B \, C \, D \, F \vee B \, C \, E \, G \vee A \, B \, D \, F \, G$$

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ A \\ E \\ G \end{cases} = \begin{cases} 0111X \\ 101X1 \\ 11X0X \\ 1X01X \end{cases} \qquad C_{2} = \begin{cases} T \\ A \\ C \\ D \\ E \end{cases} = \begin{cases} 0111X \\ 10X1X \\ 110X1X \\ 110XX \\ 111X0X \end{cases} \qquad C_{3} = \begin{cases} T \\ B \\ C \\ D \\ E \end{cases} = \begin{cases} 0111X \\ 1X101 \\ 10X1X \\ 110XX \\ 11X0X \end{cases}$$

$$S_{1}^{a} = 14 \\ S_{1}^{b} = 18 \qquad S_{2}^{a} = 17 \\ S_{2}^{b} = 22 \qquad S_{3}^{a} = 17 \\ S_{3}^{a} = 22 \end{cases}$$

$$C_{4} = \begin{cases} T \\ B \\ C \\ D \\ F \end{cases} = \begin{cases} 0111X \\ 1X101 \\ 10X1X \\ 110X1X \\ 110XX \\ 11X0X \\ 11X0X \\ 1X01X \end{cases} \qquad C_{6} = \begin{cases} T \\ A \\ B \\ D \\ F \\ G \end{cases} = \begin{cases} 0111X \\ 101X1 \\ 101X1 \\ 110XX \\ 11X01 \\ 110XX \\ 11X01 \\ 110XX \\ 11X01 \\ 110XX \\ 11X01 \\ 1X01X \end{cases}$$

$$S_{4}^{a} = 17 \\ S_{4}^{b} = 22 \qquad S_{5}^{a} = 21 \\ S_{5}^{b} = 27 \end{cases}$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0111X \\ 101X1 \\ 11X0X \\ 1X01X \end{cases}$$
$$S^{a} = 14$$
$$S^{b} = 18$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \, x_5 \vee x_1 \, x_2 \, \overline{x_4} \vee x_1 \, \overline{x_3} \, x_4$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \, x_5 \vee x_1 \, x_2 \, \overline{x_4} \vee x_1 \, \overline{x_3} \, x_4$$

Определение МКНФ

$$f = (x_1 \lor x_2) \ (x_1 \lor x_3) \ (x_1 \lor x_4) \ (x_2 \lor x_3 \lor x_4) \ (x_2 \lor x_4 \lor x_5) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,x_2\,x_3\,x_4\vee x_1\,\overline{x_2}\,x_3\,x_5\vee x_1\,x_2\,\overline{x_4}\vee x_1\,\overline{x_3}\,x_4\quad S_Q=18\quad \tau=2$$
 Декомпозиция невозможна
$$f=\overline{x_1}\,x_2\,x_3\,x_4\vee x_1\,\overline{x_2}\,x_3\,x_5\vee x_1\,x_2\,\overline{x_4}\vee x_1\,\overline{x_3}\,x_4\quad S_Q=18\quad \tau=2$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_2) \; (x_1 \lor x_3) \; (x_1 \lor x_4) \; (x_2 \lor x_3 \lor x_4) \; (x_2 \lor x_4 \lor x_5) \; (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \qquad S_Q = 22 \quad \tau = 2$$

$$f = (x_1 \lor x_2 \, x_3 \, x_4) \; (x_2 \lor x_4 \lor x_3 \, x_5) \; (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \qquad S_Q = 17 \quad \tau = 3$$

$$\varphi = x_2 \, x_3$$

$$\overline{\varphi} = \overline{x_2} \lor \overline{x_3}$$

$$f = (x_1 \lor \varphi \, x_4) \; (x_2 \lor x_4 \lor x_3 \, x_5) \; (\overline{\varphi} \lor \overline{x_1} \lor \overline{x_4}) \qquad S_Q = 18 \quad \tau = 4$$
 Декомпозиция нецелесообразна
$$f = (x_1 \lor x_2 \, x_3 \, x_4) \; (x_2 \lor x_4 \lor x_3 \, x_5) \; (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \qquad S_Q = 17 \quad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 1]) = 1$$

$$f([x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_1} x_2 x_3 x_4 \vee x_1 \overline{x_2} x_3 x_5 \vee x_1 x_2 \overline{x_4} \vee x_1 \overline{x_3} x_4 \quad (S_Q = 18, \tau = 2)$$

Схема по упрощенной МКНФ:

$$f = (x_1 \lor x_2 x_3 x_4) (x_2 \lor x_4 \lor x_3 x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \quad (S_Q = 17, \tau = 3)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{\overline{x_1}}\, x_2\, x_3\, x_4\, \overline{x_1}\, \overline{x_2}\, x_3\, x_5\, \overline{x_1}\, x_2\, \overline{x_4}\, \overline{x_1}\, \overline{x_3}\, x_4} \quad (S_Q = 23, \tau = 4)$$

Схема по упрощенной МКН Φ в базисе И, НЕ:

$$f = \overline{\overline{x_1}\,\overline{x_2\,x_3\,x_4}}\,\overline{\overline{x_2}\,\overline{x_4}\,\overline{x_3\,x_5}}\,\overline{x_1\,x_2\,x_3\,x_4} \quad (S_Q = 22, \tau = 5)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_1} \overline{x_2} \overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{x_4}} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_5}}$$
 $(S_Q = 26, \tau = 6)$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_1} \overline{x_2} \overline{\overline{x_3} x_4}} \overline{\overline{\overline{x_2}} \overline{\overline{\overline{x_4}} \overline{x_3} \overline{x_5}}} \overline{\overline{\overline{x_1} x_2}} \overline{\overline{\overline{x_3} x_4}} \quad (S_Q = 34, \tau = 8)$$

