Dynamic Movement Primitives

- are a method for trajectory planning
- define a way to adjust complex inputs without manual parameter tuning and instability issues.
- each DMP is a nonlinear dynamical system

Key ingredients

• Take a stable, well defined dynamical system and add a term that makes it follow a specific trajectory.

Discrete DMPs

The stable dynamical system in this case is the **point attractor** system:

$$\ddot{y} = \alpha_{v}(\beta_{v}(y_{des} - y) - \dot{y}).$$

We add to this the nonlinear **forcing function** f to obtain:

$$\ddot{y} = \alpha_{v}(\beta_{v}(y_{des} - y) - \dot{y}) + f,$$

where $f = \frac{\sum_{i=1}^N w_i \psi_i}{\sum_{i=1}^N \psi_i} x(y_{des} - y_0)$, for $\psi_i = \exp(-h_i (x-c_i)^2)$, which acts as a Gaussian – h_i defines the variance, c_i the mean.

- x is the canonical dynamical system $\dot{x} = -\alpha_x x$, which acts as a diminishing term driving f to zero, and leaving only the point attractor dynamics.
- Spatial and temporal scaling allows stretching or compressing of the trajectory in spatial (y) and temporal (t) domain.

Comments

• How to choose means (centers) and the variances of basis functions ψ_i ?

There two common ways of choosing the centers of basis functions; by spreading them uniformly on the time axis, or by distributing them according to the complexity of the desired trajectory - more functions around more difficult areas.

The variance parameter can be chosen according to $h_i = \frac{\text{\#basis_functions}}{c_i}$.

• Examples of DMPs in action?

Imitating desired paths. We can choose f such that our trajectory imitates y_d . By double differentiation of y_d , and some additional manipulation, we can get a supervised version of the problem of estimating the parameters. For that, a simple solution exists.

Other examples, could be found in reinforcement learning, e.g. *Path Integral Policy Improvement*, since we can use DMP to efficiently parametrize and learn policies.