Traitement d'images

Convolution

Convolution

Convolution de fonctions continues

En 1D
$$g(x)=f*h|_x=f(x)*h(x)$$

$$g(x)=\int\limits_{-\infty}^{+\infty}f(x-u)h(u)du$$
 Réponse impulsionnelle : réponse du système à une impulsion de Dirac

$$\delta * h|_x \int_{-\infty}^{+\infty} \delta(x - u, h(u)) du = h(x)$$

En 2D
$$g(x,y) = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f(x-u,y-v)h(u,v)dudv$$

$$\delta*h|_{x,y} = g(x,y) = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} \delta(x-u,y-v)h(u,v)dudv = h(x,y)$$
 3

Convolution

Convolution de fonctions discretes

Masque * réponse impulsionnelle à support borné

Filtrage

Dans le domaine spatial, le filtrage se fait par convolution. Dans le domaine spectral, il se fait par multiplication (ou masquage de l'image).

Convolution

Convolution de fonctions discretes

En 1D
$$g(p) = \sum_{i=-\infty}^{i=+\infty} f(p-i)h(i)$$

$$h = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
 Impulsion unité Réponse impulsionnelle

En 2D
$$g(p,q) = \sum_{i=-\infty}^{i=+\infty} \sum_{j=-\infty}^{j=+\infty} f(p-i,q-j)h(i,j)$$

Convolution

Propriétés de la convolution

- Additivité/distributivité $(f*h_1) + (f*h_2) = f*(h_1 + h_2)$
- → Commutativité
- Associativité du produit de convolution
- \blacksquare Norme d'un opérateur $\|h\| = \sum_{(p,q)} \sum_{\in voisinage} h(p,q)$
- ➡Séparabilité d'un opérateur de convolution

$$\begin{bmatrix} a & b & c \end{bmatrix} * \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = \begin{bmatrix} aa' & ba' & cb' \\ ab' & bb' & cb' \\ ac' & bc' & cc' \end{bmatrix}$$
Traitement selon y

Traitement

Convolution

Convolution de fonctions discretes

Elément neutre de la convolution

0	0	0
0	1	0
0	0	0

$$\delta * f|_{p,q} = f(p,q)$$

Masque de convolution

- •Le masque de convolution est le plus souvent
- Carré
- De taille 3x3 ou 5x5 (ou plus, mais impair)
- •Ce masque représente un filtre linéaire permettant de modifier
- •La plupart du temps, on divisera le résultat de la convolution par la somme des coefficients du masque.
 - Pour éviter de modifier l'entropie de l'image, la somme des coefficients doit être égale à 1.
 - Dans le cas du Laplacien (plus loin), la somme sera égale à

Exemple de convolution 2D

Réponse impulsionnelle discrète

Convolution

Convolution de fonctions discretes

0	0	0	0	0		h(-2,-2)	h(-1,-2)	h0,-2)	h(1,-2)	h(2,-2)
0	0	0	0	0	□ h(p,q) □	h(-2,-1)	h(-1,-1)	h0,-1)	h(1,-1)	h(2,-1)
0	0	1	0	0		h(-2, 0)	h(-1,0)	h0,0)	h(1,0)	h(2,0)
0	0	0	0	0		h(-2,1)	h(-1,1)	h0,1)	h(1,1)	h(2,1)
0	0	0	0	0		H(-2,2)	h(-1,2)	h0,2)	h(1,2)	h(2,2)

Convolution

Convolution de fonctions discretes $\sum f(p-i,q-j)h(i,j)$

11

Convolution

Convolution de fonctions discretes

$$g(p,q) = \sum_{i} \sum_{j} f(p-i,q-j)h(i,j)$$

$$i$$

 $\tilde{h}(p,q) = h(-p,-q)$

Convolution

Convolution de fonctions discretes

Exemple de convolution: le filtre moyenneur

1	1	1
1	1	1
1	1	1

Filtre moyenneur

(au facteur de pondération 1/9 près)

Convolution numérique R = I*K

Convolution numérique

- Problème : Que faire avec les bords de l'image ?
 - Mettre à zéro (0)
 - Convolution partielle
 - Sur une portion du noyau
 - Miroir de l'image
 - f(x-1,y) = f(x+1,y)
 - ... (pas de solution miracle)

Le filtre moyenne

- •Le filtre moyenne
- Permet de lisser l'image (smoothing)
- Remplace chaque pixel par la valeur moyenne de ses voisins
- Réduit le bruit
- Réduit les détails non-important
- Brouille ou rend floue l'image (blur edges)
- •Filtre dont tous les coefficients sont égaux.
- •Exemple de filtres moyennes :

LAC	Exemple de intres moyennes.									
1/9	1/9	1/9	ou	1/9	1	1	1			
1/9	1/9	1/9			1	1	1			
1/9	1/9	1/9			1	1	1			

Filtre moyenneur

D'après M. Dai, Univ. Bordeaux 3

Image originale

Image moyennée (3x3)

Filtre moyenneur

Image originale

Image moyennée (9x9)

Effet de flou d'autant plus marqué que la taille du filtre est grande

Filtre moyenneur

Image originale

Image moyennée (7x7)

Filtres binomiaux et gaussiens

Filtrage gaussien 2D : $g(x,y,\sigma) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$

25

- Propriétés :
 Approche optimale
 Séparable (gaussienne 2D=produit de 2 gaussiennes 1D)
- Isotrope
 Approximation par masque de convolution
- σ facteur d'échelle spatiale \to taille du filtre

Remarque : filtrage de type passe-bas

Filtres binomiaux et gaussiens

Filtre binomiaux \rightarrow approximations de filtres gaussiens finis discrets

Triangle de Pascal	Niveau (n)	Somme	Variance σ_n^2
1	0	1	0
1 1	1	2	1/4
121	2	4	1/2
1331	3	8	3/4
14641	4	16	1
1 5 10 10 5 1	5	32	5/4

Construction des filtres : $h_n(p) = \underbrace{[1 \quad 1] * ... * [1 \quad 1]}$

n convolutions

$$\sum h_n(p) = 2^n$$

$$\sigma_n^2 = \frac{n}{4}$$

$$h_2(p) = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Filtres binomiaux et gaussiens

Exemples en 2D

$$h_{2}(p,q) = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 Approximal
$$h_{2}(p,q) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 Approximal
$$g(x,y,x) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$h_4(p,q) = \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 6 & 24 & 16 & 4 \\ 4 & 1 & 24 & 6 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 4 & 16 & 24 & 16 & 4 \\ 4 & 16 & 24 & 16 & 4 \\ 4 & 16 & 24 & 16 & 4 \end{bmatrix} + 1/256$$

Approximation de

Filtres binomiaux et gaussiens

- (1) Binomial $\mathbf{a}_2\mathbf{h}_2$ et filtre gaussien g(x,
- (2) Binomial $\alpha_t h_t$ et filtre gaussien $g(x, \frac{1}{2})$
- (3) Binomial $a_s h_s$ et filtre gaussien $g(x,\sqrt{2})$

(4) Binomial $a_{16}h_{16}$ et filtre gaussien g(x,2)

Filtres binomiaux et gaussiens

Image originale

Image originale bruitée

Filtres binomiaux et gaussiens

Image filtrée $\frac{1}{256}$. h_4

Image filtrée g(x, y, 1)

Filtres binomiaux et gaussiens

Image filtrée $\frac{1}{256}$. h_4

Exemples de filtres moyennes

Original

Moyenne 5x5

Moyenne 11x11

Source: monkey.geog.ucsb.edu/mh/115b/filter.pdf

Exemples de filtres gaussiens

Original Gauss 5x5

Gauss 11x11

Décomposition d'un filtre

•Pour accélérer les traitements, il est possible de décomposer les filtres en sous-filtres équivalents qu'on passe un après l'autre.

Réhaussement de contraste

- But du réhaussement de contraste :
 - Diminuer l'étendue de la zone de transition sans affecter l'intensité moyenne des régions situées de part et d'autre de cette transition

- Limite le risque de fusions intempestives de régions distinctes lors de la phase de segmentation
 - Réduire le bruit dans les zones stationnaires, et éviter les phénomènes de dépassement
- Méthodes utilisées :

 > Laplacien, filtrage d'ordre adaptatif, opérateurs morphologiques

- · Le rehaussement de contraste
 - Convolution de l'image avec un filtre rehausseur

Réhaussement de contraste par Laplacien

Approximations du Laplacien

Laplacien : dérivée seconde	1	1	1		0	1	0	
Laplacien : denvee seconde	1	φ	1	1/8 .	1	-4	1	1/4 .
	1	1	1		0	1	0	

Principe du rehaussement

- Soustraction à l'image initiale d'une proportion de son Laplacien
- $\begin{array}{l} f_a(p,q) = f(p,q) \lambda \triangle f(p,q) \\ \text{ Si images bruitées, tendance à amplifier le bruit, alors :} \\ \Rightarrow \text{ utilisation d'un opérateur Laplacien filtré } \Phi \end{array}$

 $f_a(p,q) = (1+\lambda)f(p,q) - \lambda \Phi(p,q)$ (\$\Phi\$: differenciation de 2 filtres passe-bas)

37

Exemple de réhaussement

$$f_a(p,q) = f(p,q) - \triangle f(p,q)$$

		inale	 mage			٠.
ô	5	4	6	5	4	
7	9	5	 7	8	5	
3	5	3	3	5	3	

Image originale

(5x6)-7-5-5-5=8

Exemple de réhaussement

Image originale

Image rehaussée

Image des différences

Exemples de réhaussement de contraste

Image originale

Rehaussement de contraste par le laplacien

Rehaussement de contraste par morphologie

A propos du bruit

Bruit lié au contexte de l'acquisition Bruit lié au capteur Bruit lié à l'échantillonnage Bruit lié à la nature de la scène

Dégradations subies par l'image

Plusieurs types de bruit :

- bruit "poivre-et-sel" (de type impulsionnel);
 bruit de "speckle" (bruit granulaire de type multiplicatif);
- bruit gaussien;

Objet : la réduction, voire l'élimination des distorsions introduites (bruits) par le système d'acquisition de l'image.

But : obtenir une image qui soit la plus proche possible de l'image idéale qui aurait été obtenue si le système d'acquisition était parfait

43

Dégradations subies par l'image

Dans l'ensemble des dégradations possibles d'une image, il existe une classe intéressante : les *transformations linéaires*. Dans ce cas, on suppose les dégradations invariantes spatialement ce qui permet d'écrire le modèle suivant :

Modèle de dégradation

 $f_d(x,y) = g(f_i(x,y)) + b(x,y)$

Les méthodes de restauration sont alors basées sur la recherche de la fonction f_i , l'opérateur g et le bruit b étant connus.

Remarque:

Si g est l'identité, alors f_d est une version bruitée de f_i

 la restauration consiste alors à supprimer le bruit contenu dans l'image

45

Filtre médian

- •Pour nettoyer le bruit dans une image, il existe mieux que le filtre moyenne ou le filtre gaussien.
- •Il s'agit du filtre médian.
- •C'est un filtre non-linéaire, qui ne peut pas s'implémenter comme un produit de convolution.
- •On remplace la valeur d'un pixel par la valeur médiane dans son voisinage NxN.

Exemple de filtre médian

abc

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise, (b) Noise reduction with a 3 × 3 weraging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Nettoyage du bruit dans une image

3 X 3 Moyenn

7 X 7 Movenne

Filtre médi

Filtrage par petits noyaux

Cas 1

On se propose d'étudier les propriétés du filtre laplacien représenté par le masque de convolution g de taille 3x3 suivant :

1/8	1/8	1/8
1/8	-1	1/8
1/8	1/8	1/8

Ce filtre est appliqué deux fois sur une image de dimension M xN.

Calculer le masque de convolution de taille 5 x5 équivalent à l'application deux fois du masque g.

Cas 2

On applique les filtres H1 et H2 sur l'image dont les masques sont les suivants :

$$H_1 = \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right] H_2 = \left[\begin{array}{ccc} & -1 & \\ -1 & 4 & -1 \\ & -1 & \end{array} \right].$$

- Déterminer le coefficient pondérateur à appliquer à H_1 et à H_2 pour normaliser le filtre.
- A quelles familles de filtres appartiennent H_1 et H_2 ?
- Donner le masque du filtre équivalent à la convolution successive de l'image par H_1 puis H_2 .

Généralisation

- Montrer que l'on a l'équation suivante notée $g = h \star h'$ avec

$$\begin{bmatrix} a_5 & a_4 & a_2 & a_4 & a_5 \\ a_4 & a_3 & a_1 & a_3 & a_4 \\ a_2 & a_1 & a_0 & a_1 & a_2 \\ a_4 & a_3 & a_1 & a_3 & a_4 \\ a_5 & a_4 & a_2 & a_4 & a_5 \end{bmatrix} = \begin{bmatrix} c & b & c \\ b & a & b \\ c & b & c \end{bmatrix} \star \begin{bmatrix} c' & b' & c' \\ b' & a' & b' \\ c' & b' & c' \end{bmatrix}.$$

- Déterminer les équations donnant a, b, c, a', b', c' en fonction de $a_0, ..., a_5$.
- Montrer l'intérêt de cette méthode de convolution pour filtrer une image de dimension M x N à partir de noyaux 3 x 3.