More on Functions

Example

• Sketch the graph of $f: \mathbb{R}\setminus\{-1,2\}$, $f(x) = \frac{1}{(x-2)(x+1)}$ identifying asymptotes and stationary points (there are no roots)

Vert asymptotes at
$$x=-1$$
, $x=2$ $f(2+\varepsilon)=\frac{1}{(2+\varepsilon-2)(2+\varepsilon+1)}$
 $f(-1+\varepsilon)=\frac{1}{2}$

$$F(x) = \frac{1}{(x-2)(x+1)} = (x^2 - x - 2)^{-1}$$

Inverse Functions

- ullet Only defined if f is **bijective**
- 1. for every $b \in B$ there is $a \in A$ such that f(a) = b such that
- 2. for any distinct $x, y \in A$, $f(x) \neq f(y)$
- If *f* bijective, inverse is

$$f': B \rightarrow A$$
 $f' \circ f = I$

$$T: A \rightarrow A$$
, $T(x) = x$

Inverse Functions

Can always restrict A, B to produce bijection

Eg
$$f(x) = x^2$$
 $f: \mathbb{R} \to \mathbb{R}$
Restrict A to \mathbb{R}^+
Restrict B to \mathbb{R}^+

Finding Inverse Functions

Often can rearrange to hid argument in terms of value

Eg.
$$f: \mathbb{R} \setminus \{3\} \rightarrow \mathbb{R} \setminus \{2\}$$
 $f(x) = \frac{2x-5}{x-3}$
 $y = \frac{2x-5}{x-3} \Rightarrow x = \frac{3y-5}{y-2}$
 $f': \mathbb{R} \setminus \{2\} \rightarrow \mathbb{R} \setminus \{3\}$ $f'(x) = \frac{3x-5}{x-2}$

Example

• What is the largest possible (real) domain on which we can define the inverse of e^x ?

Circular Functions

Regular trigonometric functions defined in terms of unit circle

Circular Functions

$$tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

$$\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$$

$$Sec(\theta) = \frac{1}{\cos(\theta)}$$

$$CSC(O) = \frac{1}{Sin(O)}$$

$$\sin^2\theta + \cos^2\theta = ($$

 $1 + \cot^2\theta = \csc^2(\theta)$

Circular Functions

• Sector area $\frac{1}{2}r^2\theta$

Hyperbolic Functions

• Defined in terms of unit hyperbola

$$x^2 - y^2 = 1$$

Hyperbolic Functions

$$tanh(\theta) = \frac{\sinh(\theta)}{\cosh(\theta)}$$

$$corh(0) = \frac{cosh(0)}{sinh(0)}$$

$$sech(0) = \frac{1}{\cosh(0)}$$

Identity
$$\cosh(\theta) = \frac{e^{\theta} + e^{-\theta}}{2}$$

$$\sinh(\theta) = \frac{e^{\theta} - e^{-\theta}}{2}$$

Exercises

- Sketch the hyperbolic functions sinh(x), cosh(x), tanh(x)
- What is sinh(x) + cosh(x)?
- What is $\cosh^2 x \sinh^2 x$?
- What are

$$\frac{d \sinh(x)}{dx} \text{ and } \frac{d \cosh(x)}{dx}?$$

$$\int \int \int \sinh(x) dx$$

$$\cosh(x) = \frac{1}{2} \sinh(x)$$