One Dimensional Array in C

- List of variables of same type
- Accessed through a common name
- General form
 - type var_name[size];
 - int myarray[20];
 - int m[10], a[5];
- Accessed by indexing
 - Known as subscript
 - Can be any valid expression
 - Begin at 0
 - myarray[1]: 2nd element
- Array elements are stored in contiguous memory location

Array (Initialization)

• int $n[6] = \{48, 53, 26, 71, 9, 12\};$

48	53	26	71	9	12
----	----	----	----	---	----

- float $n[] = \{3.1, -5, 2.5, 17.4, 29\};$
 - Array dimension optional

- After the declaration
 - 10 bytes get reserved in memory
 - Each integer 2 bytes long

	a[0]	a[1]	a[2]	a[3]	a[4]
a	0	1	2	3	4
	4002	4004	4006	4008	4010

• Can be used anywhere a variable/constant can

```
int a[5];
for(int i=0; i<5; i++) {
     scanf("%d", &a[i]);
}</pre>
```

- C does not perform any bound checking on array index
- Program may crash

• It is not possible to assign one entire array to other array

```
int a1[5], a2[5];
a1=a2; //not possible
• Need to copy explicitly
for(int i=0; i<5; i++) {
    a1[i]=a2[i];
}</pre>
```

Array (Average Calculation)

```
#include<stdio.h>
int main(){
         int a[5];
         double sum=0;
         for(int i=0; i<5; i++) {
                   scanf("%d", &a[i]);
         for(i=0; i<5; i++) {
                   sum=sum+a[i];
         printf("Average is %lf\n", sum/5.0);
         return 0;
```