Mathematik 1 für Informatik

Kleingruppenübung

Blatt 03

Kampmann/Meyer HS Osnabrück, Fakultät I.u.I.

Erinnern Sie sich an folgende Begriffe, Sachverhalte und Sätze: Binomialkoeffizienten, Fakultät, Binomische Formeln, Zahldarstellungen, Rechenregeln in \mathbb{R} , Kombinatorik.

- 1. Aufgabe: Binomialkoeffizienten, Fakultät, elementare Kombinatorik Berechnen Sie:
 - (a) $\sum_{n=4}^{7} {n \choose n-2}.$
 - (b) $\sum_{k=3}^{5} \frac{\binom{k}{3}}{k!}$.
 - $(c) \sum_{i=0}^{10} {10 \choose i}.$
 - (d) $\sum_{k=0}^{n} (-1)^k \cdot \binom{n}{k}.$
 - (e) $\binom{2n}{n} \binom{2n}{n+1} = \frac{1}{n+1} \cdot \binom{2n}{n}$.
 - (f) Wieveile Möglichkeiten gibt es, aus 15 Personen 9 Personen auszuwählen?
 - (g) Wieviele Möglichkeiten gibt es, die Buchstaben des Namens "Heinz" anzuordnen?
 - (h) Die Pin einer normalen Bank-Karte besteht aus vier Ziffern der Menge {0,1,2,3,4,5,6,7,8,9}. An jeder Stelle sind alle Ziffern zulässig. Wieviele Pin-Nummern existieren insgesamt, wenn nur "0000" als Pin-Nummer ausgeschlossen wird?
- 2. Aufgabe: Binomische Formeln
 - (a) Berechnen Sie p(x), so dass gilt: $8^2 x^6 = (2 x) \cdot p(x)$.
 - (b) Berechnen Sie q(x), so dass gilt: $x^{12} 4096 = (x^6 64) \cdot q(x)$.
- 3. Aufgabe: Dezimalsystem

Ein Freund verrät Ihnen folgenden "Trick":

Bei Dezimalzahlen, die als letzte Ziffer eine 5 haben, kann man das Quadrat dieser

Zahl sehr einfach berechnen. Man nimmt die Ziffern vor der 5 als Zahl n, rechnet $n \cdot (n+1)$ und hängt an diese Ziffernfolge einfach 25 an.

Beispiel: 125^2 , mit n=12 erhält man $n \cdot (n+1) = 12 \cdot 13 = 156$ und durch "Anhängen" von 25: $125^2 = 15625$.

Beweisen Sie, dass Ihr Freund die Wahrheit sagt!

Dazu gibt es folgende "Anleitung":

- a) Die Zahl im Dezimalsystem ist $a_n a_{n-1} \dots a_1 5 = \underbrace{(a_n a_{n-1} \dots a_1)}_{=n} \cdot 10 + 5.$
- b) Berechnen Sie damit $(n \cdot 10 + 5)^2$ und interpretieren Sie das Ergebnis korrekt im Dezimalsystem.
- 4. Aufgabe: Für welche $x \in \mathbb{R}$ gilt:
 - a) $\frac{x-1}{x+4} > 0$
 - b) $\frac{x+1}{2-2x} \le 4$
 - $c) \left| \frac{x-1}{2x+1} \right| \le 2$
 - d) |x+2| = |x-3|

Geben Sie für jede Ungleichung/Gleichung den Definitionsbereich an.

- $5. \ Aufgabe: \ Zahldarstellungen/Zahlsysteme$
 - (a) Geben sie die Darstellung der Brüche $\frac{13}{5}$, $\frac{7}{4}$ und $\frac{8}{3}$ im Dezimalsystem an.
 - (b) Gegeben ist die Zahl 654321, 123 $\overline{567}$ als periodische Dezimalzahl. Schreiben Sie diese Zahl als Bruch $\frac{z}{n} \in \mathbb{Q}$.
 - (c) Gegeben ist die Zahl 1001001, 1101 im Dualsystem. Stellen Sie diese Zahl im Dezimalsystem dar.
- 6. Aufgabe: Rechnen in \mathbb{R}
 - a) Finden Sie Binome bzw. berechnen Sie mit geeigneten Binomen
 - (a1) $36a^2 36a + 9$
 - (a2) $81x^4 + 36x^2y + 4y^2$
 - (a3) $81x^2y^4 64a^2b^4$
 - (a4) $25r^2 40rs + 16s^2 + 49t^2 70tq + 25q^2$
 - $(a5) 99^2$
 - $(a6) 81^2$
 - b) Kürzen Sie die folgenden Terme so weit wie möglich.
 - (b1) $\frac{39a^3 39a^2}{13a^2 13a}$
 - $(b2) \ \frac{15ab 30b^2}{5a^2b 20ab^2 + 20b^3}$
 - c) Fassen Sie folgende Ausdrücke zusammen:

- (c1) $(-a^5)^6 \cdot (-a^6)^{-5}$
- $(c2) \ (\frac{a}{3})^2 \cdot (\frac{3}{a})^{-5}$
- (c3) $(a^{12} \frac{5}{(2a^4)^3}) \cdot \frac{1}{3a^{-1}}$
- d) Bestimmen Sie Definitionsbereich und Lösungsmenge der folgenden Gleichungen.
 - d1) $3x^2 + 10x = -7$
 - d2) $2x^2 = 2x 3$
 - d3) x(2x-3) = 0
 - $d4) \ 3 4\sqrt{3}x + 4x^2 = 0$
 - d5) (x-2)(x-5) + 2 = 0
 - d6) $\sqrt[3]{8x-3} = -3$