# INST0072 Lecture 9: Logic, Prolog, and Clark Completion

- 1. In the Last Lecture
- 2. Prolog and Resolution
- 3. Reminder: Resolution Proof By Contradiction
- 4. Example Resolution Proof By Contradiction
- 5. An Example Prolog Proof
- 6. Transforming Programs Into CNF Theories
- 7. An Example Resolution Proof
- 8. Comparing Resolution and Prolog Proofs
- 9. The Meaning of Prolog Programs with Negation-as-Failure
- 10. A Prolog Search Tree with Negation-as-Failure

- 11. Models of  $\{soft \leftarrow (\neg new \land red), red\}$
- 12. Clark Completion for Propositional Programs
- 13. Clark Completion: Propositional Examples
- 14. Clark Completion: Another Example
- 15. Prolog Soundness and Completeness
- 16. Clark Completion for Predicate Prolog Programs
- 17. Safe and Unsafe Prolog Programs
- 18. A Prolog Program, Its General Form and Its Completion
- 19. Example Completion with Equality Theory
- 20. Summary
- 21. Further Reading for Technical Details

### 1. In the Last Lecture

#### In the last lecture we saw that

- ▶ A Prolog program can include *meta-level* clauses about itself.
- ► Three commonly used predefined meta-level predicates are 'clause/2', 'assertz/1' and 'retract/1'.
- ► The 'clause/2' predicate can be used in *meta-interpreters* that refine or adapt Prolog's search strategy for specific problems.
- ▶ The meaning of Prolog programs in terms of classial logic is not always straightforward, partly because Prolog includes Uniquness-of-names and Closed World Assumptions.

## 2. Prolog and Resolution

For a Prolog program in which all the predicates have arity 0 (i.e. no arguments) and that does not use negation-by-failure, a successful branch in the search tree of a query is equivalent to a propositional calculus proof by contradiction using resolution.

Reminder: the general resolution inference rule is:

$$\frac{(L_1 \vee \ldots \vee L_i \vee p \vee L_{i+1} \vee \ldots \vee L_m), \quad (L'_1 \vee \ldots \vee L'_j \vee \neg p \vee L'_{j+1} \vee \ldots \vee L'_n)}{(L_1 \vee \ldots \vee L_m \vee L'_1 \vee \ldots \vee L'_n)}$$

For example:

$$\frac{(\textit{big} \lor \textit{soft} \lor \neg \textit{red}), \ (\neg \textit{soft} \lor \neg \textit{new})}{(\textit{big} \lor \neg \textit{red} \lor \neg \textit{new})} \qquad \frac{(\textit{soft}), \ (\neg \textit{soft})}{\bot}$$

# 3. Reminder: Resolution Proof By Contradiction

The general theorem (from Lecture 3, Slide 12):

### **Resolution Calculus Soundness and Completeness**

For any CNF knowledge base KB and formula F  $KB \models F \text{ if and only if } KB \cup \mathbf{cnfset}[\neg F] \vdash_{res} \bot$ 

... and a special (simpler) case if F is a single proposition p:

For any CNF knowledge base KB and proposition p  $KB \models p$  if and only if  $KB \cup \{\neg p\} \vdash_{res} \bot$ 

For example:  $\{(\neg raining \lor wet), (raining)\} \models wet \text{ if and only if } \{(\neg raining \lor wet), (raining), (\neg wet)\} \vdash_{res} \bot$ 

## 4. Example Resolution Proof By Contradiction

Finish the following proof of

$$\{(\neg raining \lor wet), (raining), (\neg wet)\} \vdash_{res} \bot$$

by adding the final two steps (4) and (5):

- $(\neg raining \lor wet)$ by assumption (2) (*raining*) by assumption
- by (1), (2), resolution (3) (wet)

# 4. Example Resolution Proof By Contradiction

Finish the following proof of

$$\{(\neg raining \lor wet), (raining), (\neg wet)\} \vdash_{res} \bot$$

by adding the final two steps (4) and (5):

(1) 
$$(\neg raining \lor wet)$$
 by assumption (2)  $(raining)$  by assumption

(3) 
$$(wet)$$
 by  $(1)$ ,  $(2)$ , resolution

(4) 
$$(\neg wet)$$
 by assumption (5)  $\bot$  by (3), (4), resolution

so by resolution soundness and completeness this shows that:

$$\{(\neg raining \lor wet), (raining)\} \vDash wet$$

## 5. An Example Prolog Proof

### Prolog program:

```
big :- soft, red.
soft :- new.
new.
red.
```

### Query:

```
?- big.
```

[index]

### Search tree:



## 6. Transforming Programs Into CNF Theories

```
Prolog program: In logic: In CNF: big :- soft, red. big \leftarrow (soft \land red) (big \lor \neg soft \lor \neg red) soft :- new. soft \leftarrow new (soft \lor \neg new) new. new (new) red. red (red)
```

```
\begin{array}{ll} big \leftarrow (soft \wedge red) \\ \equiv big \vee \neg (soft \wedge red) & [implication] \\ \equiv big \vee (\neg soft \vee \neg red) & [De Morgan] \\ \equiv (big \vee \neg soft \vee \neg red) & [\vee associativity] \end{array}
```

## 7. An Example Resolution Proof

### CNF Knowledge Base KB:

(1) 
$$(big \lor \neg soft \lor \neg red)$$

(2) 
$$(soft \lor \neg new)$$

- $(3) \quad (new)$
- (4) (red)

### Proposition to prove:

big

### Resolution proof:

(5) 
$$(\neg big)$$
 [assumption]

(6) 
$$(\neg soft \lor \neg red)$$
 [by (1),(5)]

(7) 
$$(\neg new \lor \neg red)$$
 [by (2),(6)]

(8) 
$$(\neg red)$$
 [by (3),(7)]

(9) 
$$\perp$$
 [by (4),(8)]

So by resolution soundness:

$$KB \models big$$

# 8. Comparing Resolution and Prolog Proofs

Resolution proof (from Slide 7):

Prolog search tree (from Slide 5):

(5) 
$$(\neg big)$$

(6) 
$$(\neg soft \lor \neg red)$$

$$(7) \quad (\neg new \lor \neg red)$$

(8) 
$$(\neg red)$$



# 9. The Meaning of Prolog Programs with Negation-as-Failure

Negation-as-failure ("\+") cannot be directly translated as classical logic negation (" $\neg$ "). A simple example shows why:

### Prolog program:

:- dynamic new/0, soft/0, red/0.

soft :- \+ new, red.
red.

### Query:

?- soft.

Equivalent knowledge base *KB*?

 $soft \leftarrow (\neg new \land red).$  red.

No equivalent entailment:

 $KB \not\models soft$ 

# 10. A Prolog Search Tree with Negation-as-Failure

### Prolog program:

:- dynamic new/0, soft/0, red/0.

```
soft :- \+ new, red.
red.
```

### Query:

?- soft. true.





## 11. Models of $\{soft \leftarrow (\neg new \land red), red\}$

#### Reminders:

- In propositional logic, the models of a formula are the lines in the formula's truth table that make the formula true.
- ▶ If F and G are formulas, then " $F \models G$ " means "every model of F is also a model of G".

|                   | soft | new | red | (soft | ← | $(\neg r$ | new | ٨ | red)) | ٨ | red |              |
|-------------------|------|-----|-----|-------|---|-----------|-----|---|-------|---|-----|--------------|
|                   | t    | t   | t   | #     | # | f         | *   | f | *     | t | *   | _            |
|                   | t    | t   | f   | #     | # | f         | £   | f | f     | f | f   |              |
|                   | t    | f   | t   | #     | 1 | *         | f   | t | Ľ     | t | *   |              |
|                   | t    | f   | f   | *     | 1 | ť         | f   | f | f     | f | f   |              |
| $\Longrightarrow$ | f    | t   | t   | 1     | * | 1         | ť   | f | ť     | t | ť   | $\leftarrow$ |
|                   | f    | t   | f   | f     | ť | f         | ť   | f | f     | f | 1   |              |
|                   | f    | f   | t   | f     | 1 | ť         | 1   | ť | ť     | f | ť   |              |
|                   | f    | f   | f   | f     | ť | ť         | f   | f | f     | f | f   |              |

So,  $\{soft \leftarrow (\neg new \land red), red\} \not\models soft$  because line 5 is not a model of soft.

# 12. Clark Completion for Propositional Programs

Given a proposition 'p' appearing in a propositional program PR:

- 1. If 'p' does not appear as a fact or as the head of a clause in PR then  $\mathbf{COMP}(p, PR) = \neg p$ .
- 2. If 'p' appears as a fact in PR then COMP(p, PR) = p.
- 3. If 'p' does not appear as a fact in PR and has a definition

$$p := Body_1.$$
 ...  $p := Body_n.$ 

then  $\mathbf{COMP}(p, PR) = [p \leftrightarrow (B_1 \lor ... \lor B_n)]$ , where each  $B_i$  is the same as 'Body\_i' but with '\+' replaced by '¬', and ',' replaced by '∧'.

### Clark Completion:

$$COMP(PR) = \{COMP(p, PR) \mid p \text{ appears in } PR\}.$$

## 13. Clark Completion: Propositional Examples

PR

### COMP(PR)

soft :- \+ new, red.
red.

```
soft \leftrightarrow (\neg new \land red), red, \neg new
```

```
big :- soft, red.
big :- \+ new.
red.
```

$$big \leftrightarrow ((soft \land red) \lor \neg new),$$

$$red,$$

$$\neg new,$$

$$\neg soft$$

$$big \leftrightarrow soft$$
,  $\neg soft$ 

## 14. Clark Completion: Another Example

What is COMP(PR) if PR is the following program?

```
happy :- on_holiday, has_money.
happy :- work_done, \+ has_lectures.
has_money :- \+ student.
has_lectures :- term_time, student.
work_done.
```

## 14. Clark Completion: Another Example

What is COMP(PR) if PR is the following program?

```
happy :- on_holiday, has_money.
happy :- work_done, \+ has_lectures.
has_money :- \+ student.
has_lectures :- term_time, student.
work_done.
```

### Answer: COMP(PR) is:

```
happy \leftrightarrow ((on\_holiday \land has\_money) \lor (work\_done \land \neg has\_lectures)), \\ has\_money \leftrightarrow \neg student, \\ has\_lectures \leftrightarrow (term\_time \land student), \\ work\_done, \\ \neg on\_holiday, \\ \neg student, \\ \neg term\_time
```

## 15. Prolog Soundness and Completeness

Let 'p' be a proposition appearing in the propositional Prolog program PR.

#### Soundness:

If PR returns 'true' for the query '?- p' then  $\mathbf{COMP}(PR) \models p$ .

If PR returns 'false' for the query '?- p' then  $\mathbf{COMP}(PR) \models \neg p$ .

#### Completeness:

If  $COMP(PR) \models p$  and PR is *stratified* (i.e. does not contain loops) then PR will return 'true' for the query '?- p'.

If  $COMP(PR) \models \neg p$  and PR is *stratified* (i.e. does not contain loops) then PR will return 'false' for the query '?- p'.

# 16. Clark Completion for Predicate Prolog Programs

Clark completion can be applied to predicate Prolog programs as well, but extra steps and conditions must be applied:

- Programs must be <u>safe</u> written in such a way that negative sub-goals (i.e. sub-goals with '\+') are evaluated only after the variables in them have all been *ground* (i.e. substituted with terms containing no variables).
- Clauses must be re-written in <u>general form</u>, i.e. including quantifiers and with only universally quantified variables in their head, before the COMP procedure is applied.
- Clark equality theory must be added to the completion to ensure that the '=' predicate corresponds to Prolog unification.

## 17. Safe and Unsafe Prolog Programs

### An unsafe Prolog program:

### Queries:

```
?- happy(X).
false.
?- happy(nina).
true.
```

## A safe Prolog program:

```
happy(X) :-
     person(X),
     \+ sad(X).
sad(mani).
hungry(nina).
person(mani).
person(nina).
```

### Query:

```
?- happy(X).
X=nina.
```

## 18. Example General Form and Completion

Prolog program PR:

```
likes(X, partner_of(X)).
likes(nina, X) :- polite(X).
polite(partner_of(mani)).
```

### PR in general form:

```
\forall x_1 \forall x_2.[likes(x_1, x_2) \leftarrow \exists x.(x_1 = x \land x_2 = partner\_of(x))],
\forall x_1 \forall x_2.[likes(x_1, x_2) \leftarrow \exists x.(x_1 = nina \land x_2 = x \land polite(x))],
\forall x_1.[polite(x_1) \leftarrow x_1 = partner\_of(mani)]
```

### COMP(PR):

```
\forall x_1 \forall x_2. [likes(x_1, x_2) \leftrightarrow [\exists x. (x_1 = x \land x_2 = partner\_of(x)) \lor \\ \exists x. (x_1 = nina \land x_2 = x \land polite(x))]], \forall x_1. [polite(x_1) \leftrightarrow x_1 = partner\_of(mani)], - plus \ the \ Clark \ equality \ theory \ for \ PR.
```

## 19. Example Completion with Equality Theory

Prolog program PR:

```
likes(X, partner_of(X)).
likes(nina, X) :- polite(X).
polite(partner_of(mani)).
```

### COMP(PR):

```
\forall x_1 \forall x_2. [likes(x_1, x_2) \leftrightarrow [\exists x. (x_1 = x \land x_2 = partner\_of(x)) \lor \\ \exists x. (x_1 = nina \land x_2 = x \land polite(x))]],
\forall x_1. [polite(x_1) \leftrightarrow x_1 = partner\_of(mani)],
\text{Clark equality theory for } PR:
\underbrace{mani \neq nina \land \forall x. [partner\_of(x) \neq mani \land partner\_of(x) \neq nina],}_{\forall x_1 \forall x_2. [x_1 \neq x_2 \rightarrow partner\_of(x_1) \neq partner\_of(x_2)],}_{\text{plus for any structured term } \tau[x] \text{ containing any variable } x:
\tau[x] \neq x \qquad [\text{e.g. } partner\_of(partner\_of(x)) \neq x]
```

## 20. Summary

- ▶ A query execution with a stratified (i.e. non-looping) propositional Prolog program without negation-as-failure corresponds to a search for a resolution proof by contradiction.
- ► For "sensibly written" (i.e. safe, stratified) Prolog programs with negation-as-failure, their logical meaning can be understood as their Clark completion.
- ► For predicate Prolog programs, the Clark completion must include Clark equality theory, because of the way Prolog unifies terms and variables.
- ▶ In A.I. terms, Clark completion is related to the "closed world assumption", and Clark equality theories are examples of "uniquness-of-names axioms".

## 21. Further Reading for Technical Details

Marek Sergot's notes on negation as failure are available at: https://www.doc.ic.ac.uk/~mjs/teaching/ KnowledgeRep491/NBF\_491−2x1.pdf (Marek Sergot is a professor in the Computer Science Department at Imperial College London.)

Keith Clark's original paper "Negation as Failure", first published in: Logic and Data Bases, (eds Gallaire and Minker), 1978, can be found at: https://www.doc.ic.ac.uk/~klc/NegAsFailure.pdf