- 1. Banque CCINP 2024 : 25 (convergence dominée)
- 2. Banque CCINP 2024: 99 (facile, simples révisions)
- 3. [Mines]

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue telle que $\int_0^{+\infty} f(t)dt$ converge. Montrer que $\int_0^x tf(t)dt = o(x)$.

- 4. [Classique]
 - (a) Justifier l'existence de $I = \int_{0}^{1} \frac{t-1}{\ln(t)} dt$.
 - (b) Montrer que $I = \int_{0}^{+\infty} \frac{e^{-x} e^{-2x}}{x} dx$. Séparez cette intégrale en deux pour calculer la valeur de I.

(On se placera sur un intervalle du type $[a, \infty[$ avec a > 0 avant de faire le découpage...)

5. [Centrale]

Pour tout entier $n \in \mathbb{N}^*$, on pose $u_n = \int_0^{+\infty} \frac{dt}{(1+t^3)^n}$.

(a) Déterminer des équivalents de $\sum_{k=1}^{n} \frac{1}{k}$ et de $\sum_{k=n}^{+\infty} \frac{1}{k^2}$ en $+\infty$. (c'est du cours)

Montrer que $\sum_{k=n}^{+\infty} \frac{1}{k^3} = O\left(\frac{1}{n^2}\right)$.

- (b) Montrer que u_n existe pour tout entier $n \ge 1$.
- (c) Pour $n \in \mathbb{N}^*$, déterminer une relation entre u_n et u_{n+1} .
- (d) Soit $\alpha \in \mathbb{R}$, on pose $v_n = \alpha \ln(n) + \ln(u_n)$ pour $n \ge 1$. Déterminer la valeur de α pour que $(v_n)_{n \in \mathbb{N}}$ converge vers un réel ℓ . Donner un équivalent de u_n quand n tend vers $+\infty$. (faire un développement limité de $v_{n+1} v_n$.)
- 6. [Centrale]

Soit $\alpha > -1$ et $f: \mathbb{R}_+ \to \mathbb{R}$ de classe C^1 , décroissante, telle que $t \mapsto t^{\alpha} f(t)$ soit intégrable sur $[1; +\infty[$.

- (a) Montrer que $t \mapsto t^{\alpha} f(t)$ et $t \mapsto t^{\alpha+1} f'(t)$ sont intégrables sur \mathbb{R}_{+}^{*} .
- **(b)** Montrer que $\int_{0}^{+\infty} t^{\alpha+1} f'(t) dt = -(\alpha+1) \int_{0}^{+\infty} t^{\alpha} f(t) dt.$
- 7. [Mines]

Domaine de définition de $F(x) = \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$.

Donner un équivalent de F(x) en 0.

(Couper l'intégrale en deux puis pour la première moitié faire un découpage astucieux et pour l'autre moitié faire une majoration.)

8. [Mines-Telecom]

Soit f de classe C^1 sur [a; b], à valeurs dans \mathbb{R} , telle que f(a) = 0.

Montrer que $\int_a^b f^2(x)dx \leqslant \frac{(b-a)^2}{2} \int_a^b f'^2(x)dx$.

(très court, pensez au inégalités faisant intervenir des carrés.)