

Claudio Arbib Università dell'Aquila

Ricerca Operativa

Matrici Totalmente Unimodulari

Definizioni

Definizione 1

Una matrice $A \in IR^{n \times n}$ è unimodulare se il suo determinante $|\mathbf{A}| \in \{0, \pm 1\}$

Esempio 1

Sono unimodulari

Esempio 2 Non sono unimodulari

Definizioni

Definizione 2

Una matrice $A \in IR^{m \times n}$ è totalmente unimodulare se ogni sua sottomatrice quadrata **B** è unimodulare

Esempio 3

Sono totalmente unimodulari

$$\begin{bmatrix} 1 & & 1 \\ 1 & & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & & 0 \\ 0 & & 1 \\ 1 & & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & & 0 & & 0 \\ 0 & & 1 & & 1 \\ 1 & & 0 & & 1 \end{bmatrix}$$

<u>Non</u> sono totalmente unimodulari

Teorema 1

Se nel problema di PL
(P) min
$$\mathbf{c}\mathbf{x}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} > 0$$

A è totalmente unimodulare e **b** intero, allora ogni soluzione di base di P è intera

Dimostrazione Una soluzione di base ha la forma $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$, $\mathbf{x}_N = \mathbf{0}$. \mathbf{A}_B^{-1} si ottiene trasponendo la matrice aggiunta di \mathbf{A}_B e dividendola per $|\mathbf{A}_B|$. L'elemento ik dell'aggiunta di \mathbf{A}_B è il complemento algebrico di a_{ik} , e vale $(-1)^{i+k}|\mathbf{A}_B^{ik}|$, dove \mathbf{A}_B^{ik} si ottiene cancellando la riga i e la colonna k di \mathbf{A}_B . Poiché \mathbf{A} è tot. unimodulare, si ha $|\mathbf{A}_B| = \pm 1$ e $|\mathbf{A}_B^{ik}| \in \{0, \pm 1\}$. Quindi gli elementi di \mathbf{A}_B^{-1} sono tutti 0 o ± 1 . Siccome \mathbf{b} è intero ...

Teorema 2 Condizione necessaria perché $A \in IR^{m \times n}$ sia

totalmente unimodulare è che ogni suo

elemento sia 0, +1 oppure -1

Dimostrazione Ovvia: un elemento di A corrisponde a una matrice

quadrata 1×1 .

- Teorema 3
- Condizione sufficiente perché $\mathbf{A} \in \{0, \pm 1\}^{m \times n}$ sia totalmente unimodulare è che
 - 1) ogni colonna di A abbia al più due elementi $\neq 0$
 - 2) esista una partizione R_1 , R_2 delle righe di $\bf A$ tale che per ogni colonna k

$$a_{ik}a_{jk} = 1 \implies i, j \in R_p$$

$$(p = 1 \text{ oppure } 2)$$
 $a_{ik}a_{jk} = -1 \implies i \in R_p, j \in R_q$

$$(p \neq q)$$

Dimostrazione Dobbiamo provare che tutte le sottomatrici quadrate A_k di

A aventi ordine k sono unimodulari. Per induzione

sull'ordine k.

<u>Caso base</u> Per k = 1 il teorema è banale (per il Teorema 2 gli elementi

di **A** sono 0, +1 o −1)

Passo induttivo Supponiamo il teorema vero per un certo k e dimostriamolo

per k+1.

Si danno le seguenti possibilità:

- 1) \mathbf{A}_{k+1} contiene una colonna nulla $\Rightarrow |\mathbf{A}_{k+1}| = 0$
- 2) \mathbf{A}_{k+1} contiene una colonna unitaria \Rightarrow sviluppando $|\mathbf{A}_{k+1}|$ secondo tale colonna si ha $|\mathbf{A}_{k+1}| = \pm |\mathbf{A}_k|$, che per induzione è 0 o ± 1
- 3) <u>tutte</u> le colonne di \mathbf{A}_{k+1} hanno 2 elementi $\neq 0 \Rightarrow$ sommando tra loro le righe di R_1 si ottiene una riga uguale a quella ottenuta sommando tra loro le righe di R_2 . Quindi $|\mathbf{A}_{k+1}| = 0$

Esempio 5 La matrice di incidenza nodi-archi **G** di un grafo

orientato G = (V, E) è totalmente unimodulare

Esempio 6 La matrice di incidenza nodi-archi **H** di un grafo

bipartito simmetrico $H = (V_1 \cup V_2, F)$ è

totalmente unimodulare

Teorema 4

Se \mathbf{A} è totalmente unimodulare, allora anche \mathbf{A}^{T} e $[\mathbf{A}, \pm \mathbf{I}]$ (con \mathbf{I} matrice identica) sono totalmente unimodulari

Dimostrazione

Ovvia.

Esempio 7

$\int 1$	Trasp0sta della	1	-1	0	0
0	terza matrice	0	0	- 1	0
0	dell'esempio 3	1	0	0	-1
1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
$\int 0$	0	0	0	0	1

Teorema 5

Condizione sufficiente affinché \mathbf{A} sia totalmente unimodulare è che ogni riga di \mathbf{A} abbia la forma $\mathbf{a}_i = (0 \dots 0 1 \dots 1 0 \dots 0)$ (proprietà degli uno consecutivi)

Dimostrazione

Sia $\mathbf{B} \subseteq \mathbf{A}$, quadrata $m \times m$. Sia inoltre

$$\mathbf{T} = \begin{pmatrix} 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$
 dove $det(\mathbf{T}) = 1$

È facile verificare che $G = B \cdot T$ fornisce la matrice di incidenza nodi-archi di un grafo orientato.

D'altra parte per un noto teorema sui determinanti si ha $det(\mathbf{G}) = det(\mathbf{B})det(\mathbf{T})$, e il teorema è così dimostrato.