MACS Sales Quantity Prediction using Machine Learning

1. Introduction & Problem Statement

Accurate sales quantity forecasting is critical for effective inventory management, pricing strategies, and marketing decisions in retail. This project aimed to develop a robust machine learning model to predict the sales quantity of various products across different stores using a comprehensive dataset containing product, customer, store, and environmental features.

2. Approach

Data Cleaning & Preparation: - Checked and imputed missing values using median imputation. - Ensured consistent data types across numerical and categorical columns.

Exploratory Data Analysis (EDA): - Visualized missing values heatmaps to confirm imputation. - Analyzed sales quantity distribution, revealing skewness requiring robust model handling. - Generated correlation heatmaps to understand feature relationships.

Feature Engineering: - Created derived features: price_diff, discount_ratio, footfall_per_staff, weekend_footfall. - These enhanced the dataset by capturing business-relevant signals.

Model Selection: - Chose LightGBM due to its efficiency and native handling of categorical variables.

Hyperparameter Tuning: - Applied Optuna for Bayesian optimization, improving the model's RMSE.

3. Feature Analysis & Insights

Using SHAP for interpretability: - Top impactful features were revenue, actual_price, base_price, customer_income, and customer_footfall. - Price and revenue features were most predictive, confirming domain expectations. - Customer income and footfall also contributed significantly.

4. Model Performance & Evaluation

The tuned LightGBM model achieved: - RMSE: 2.8301 - MAE: 0.4313 - R² Score: 0.9540

This indicates high predictive accuracy, with the model explaining ~95% of variance in sales quantity.

5. Final Model Summary

```
Final LightGBM model hyperparameters: - learning_rate : 0.0816 - [max_depth]: 5 - [num_leaves]: 32 - [colsample_bytree]: 0.8371 - [subsample]: 0.9128 - [reg_alpha]: 0.6319 - [reg_lambda]: 0.7907
```

The model was saved for deployment and used to generate test predictions saved as a adya_result.csv.

6. Visualizations

- · Missing values heatmap
- · Sales quantity distribution histogram
- Correlation heatmap
- · Pairplots for key predictors
- SHAP feature importance plots

These visualizations validated data quality, highlighted key relationships, and ensured model interpretability.

7. Challenges Faced & Learnings

- Managing missing values and large categorical variables.
- Handling package compatibility issues with NumPy and SHAP.
- Using Optuna effectively to enhance model performance.
- · Balancing accuracy with model complexity to avoid overfitting.

8. Conclusion & Future Work

A high-performing LightGBM regression model was successfully developed for sales quantity prediction, supporting inventory planning, discounting, and marketing strategy.

Future improvements could include: - Adding seasonality and granular holiday features. - Testing ensemble methods for further accuracy improvement. - Creating a retraining pipeline for continuous learning on new data.

Attachments

- aadya_result.csv (final predictions)
- aadya_MACS_SalesPrediction.ipynb (full structured notebook)
- This report for PDF submission to MACS.

Prepared By: Aadya Jha