EXERIMENT NO 10

Design and Implementation of Multiplexer and Demultiplexer

Objective:-

To design and implement multiplexer and demultiplexer using logic gates and study of IC 74150 and IC 74154.

Parts required:-

Sl.No.	COMPONENT	SPECIFICATION	QTY.
1.	3 I/P AND GATE	IC 7411	2
2.	OR GATE	IC 7432	1
3.	NOT GATE	IC 7404	1

Equipment:-

- Trainer/ proto board
- Wire cutter
- Patch Cords
- Voltmeter

MULTIPLEXER:

Multiplexer means transmitting a large number of information units over a smaller number of channels or lines. A digital multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally there are 2ⁿ input line and n selection lines whose bit combination determine which input is selected.

DEMULTIPLEXER:

The function of Demultiplexer is in contrast to multiplexer function. It takes information from one line and distributes it to a given number of output lines. For this reason, the demultiplexer is also known as a data distributor. Decoder can also be used as demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates. The data select lines enable only one gate at a time and the data on the data input line will pass through the selected gate to the associated data output line.

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

FUNCTION TABLE:

S1	S0	INPUTS Y	
0	0	D0 → D0 S1' S0'	
0	1	D1 → D1 S1' S0	
1	0	D2 → D2 S1 S0'	

1	1 D3 → D3 S1 S0
---	-----------------

TRUTH TABLE:

S1	S0	Y = OUTPUT
0	0	D0
0	1	D1
1	0	D2
1	1	D3

CIRCUIT DIAGRAM FOR MULTIPLEXER:

BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:

FUNCTION TABLE:

S1	SO SO	INPUT
0	0	X → D0 = X S1' S0'
0	1	X → D1 = X S1' S0
1	0	X → D2 = X S1 S0'
1 1		X → D3 = X S1 S0

$$Y = X S1' S0' + X S1' S0 + X S1 S0' + X S1 S0$$

LOGIC DIAGRAM FOR DEMULTIPLEXER:

TRUTH TABLE:

INPUT		ОИТРИТ				
S1	S0	I/P	D0	D1	D2	D3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

PROCEDURE:

- (i) Connections are given as per circuit diagram.
- (ii) Logical inputs are given as per circuit diagram.
- (iii) Observe the output and verify the truth table.

Questions:-