

MITx: 14.310x Data Analysis for Social Scientists

Heli

- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2:

 Fundamentals of
 Probability, Random

 Variables, Distributions,
 and Joint Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 10: Practical Issues in Running Regressions, and Omitted Variable Bias > Practical Issues in Running Regressions > Alternative Functional Forms & Fixed Effects - Quiz

Alternative Functional Forms & Fixed Effects - Quiz

☐ Bookmark this page

Consider the following model:

$$log(Y_i) = eta_0 + eta_1 S_i + eta_2 log(P_i) + \epsilon_i$$

where Y_i denotes the mean hourly wage for individual i, S_i denotes the number of years of education individual i has completed, and P_i denotes mother's education.

Question 1

0/1 point (graded)

Which of the following statements are true? (Select all that apply)

- $extcolor{black}{ extcolor{black}{\square}}$ a. eta_1 is the elasticity of wage with respect to education.
- $exttt{ iny b. Each additional year of education leads to a } (eta_1*100)\%$ change in wages.
- $extbf{ extit{ extbf{ extit{ extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{ extit{\tert{\extit{\$
- \square d. A 1% change in education leads to a $eta_1\%$ change in wages.

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation
- Module 7: Assessing and Deriving Estimators -Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and Multivariate Linear Models
- Module 10: Practical Issues in Running

 $extbf{ extit{ extbf{ extit{ extbf{ extit{ extit{ extbf{ extit{ extit{ extbf{ extit{ extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{ extit{ extit{\tert{\extit{\$

Explanation

When your outcome is in logs and your regressor is in logs, the coefficients represent elasticities: your coefficients measure the % change in your outcome as a result of a 1% change in your regressor. If your outcome is in logs, but your regressor is not, the coefficient represents the % in your outcome resulting from a **unit increase in your regressor.** So in this example, since the model includes S_i and $\log(P_i)$ - the correct interpretations of β_1 and β_2 are given by B, C and E. The remaining options are incorrect.

Regressions, and
<u>Omitted Variable Bias</u>

Practical Issues in Running

Regressions

due Dec 5, 2016 05:00 IST

Omitted Variable Bias

due Dec 5, 2016 05:00 IST

Module 10: Homework

due Nov 28, 2016 05:00 IST

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

