## CS118 Discussion 1B, Week 8

Boyan Ding

### Outline

- Lecture review:
  - Internet routing: OSPF; BGP
  - Link layer

## Quiz 2 - logistics

- Time: 4-10pm (PST), Friday, May 28
  - Choose 2.5h within to finish the exam
- Covered material: TCP (From 3.4 on), Chapter 4 and Chapter 5 (up to link state/distance vector routing)
- Format: similar to quiz 1

## Routing

- aggregate routers into regions
  - AS: autonomous systems
- routers in same AS run same routing protocol
  - "intra-AS" routing protocol
- routers in different AS can run different intra-AS routing protocol

#### **OSPF**

- Link state algorithm
- Main functions
  - Broadcast link state info
  - Link failure detection: Neighbor nodes send HELLO msg to each other periodically

### **OSPF**

- Message:
  - HELLO message: used as heartbeat to detect failure
  - LSP: information of the node, the list of direct neighbors and link costs
    - Generated periodically or upon failure
    - Flooding of LSP
      - How to avoid loop? Check the message ID

## BGP (Border Gateway Protocol)

- An inter-domain routing protocol; allows subnet to advertise its existence to rest of Internet: "I am here"
- BGP provides each AS a means to:
  - eBGP: obtain subnet reachability information from neighboring ASs.
  - iBGP: propagate reachability information to all ASinternal routers.
- Why do we need iBGP (when there is intra-AS routing)?

### BGP: iBGP and eBGP

- A single AS may have multiple gateways, and they may not even be adjacent to each other
- But they need to have a consistent view of the network
- Just consider how router 2a in AS2 know the path to AS3 and advertise it to AS1



## BGP: Hot potato routing

 Hot potato routing: choose local gateway that has least intra-domain cost (e.g., 2d chooses 2a, even though more AS hops to X): don't worry about inter-domain cost!



## BGP: routing policy

- A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- X is attached to two networks.



- It does not want to route from B via X to C
- ... so X will not <u>advertise</u> to B a route to C



## BGP: routing policy

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?



## BGP: routing policy

A advertises path AW to B



- B advertises path BAW to X
- Should B advertise path BAW to C?
  - No! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
  - B wants to force C to route to w via A
  - B wants to route only to/from its customers!

### BGP: practice problems

- Explain how loops in paths can be detected in BGP.
- BGP advertisements contain complete paths showing the AS's the path passes through, and so a router can easily identify a loop because an AS will appear two or more times.

## Routing: summary

- Intra-domain routing V.S. inter-domain routing
  - Performance V.S. policy
  - Scalability: hierarchical routing
- Distance-vector routing V.S. link-state routing
  - Fully-distributed algorithm V.S. decentralized algorithm

## ICMP: Internet Control Message Protocol

- Used for feedback, status checking, error reporting at IP layer
- ICMP msgs are carried in IP packets
- ping: echo request/reply
- traceroute: nth packet has TTL = n

### Traceroute: example

```
$ traceroute 8.8.8.8
traceroute to 8.8.8.8 (8.8.8.8), 64 hops max, 52 byte packets
1 172.30.40.3 (172.30.40.3)  4.055 ms  3.017 ms  3.871 ms
2 wifi-131-179-60-1.host.ucla.edu (131.179.60.1)  2.545 ms  2.288 ms  2.714 ms
3 ra00f1.anderson--cr00f2.csb1.ucla.net (169.232.8.12)  3.653 ms  3.506 ms  3.724 ms
4 cr00f2.csb1--bd11f1.anderson.ucla.net (169.232.4.5)  3.959 ms  4.383 ms  3.483 ms
5 lax-agg6--ucla-10g.cenic.net (137.164.24.134)  3.951 ms  5.480 ms  3.840 ms
6 74.125.49.165 (74.125.49.165)  6.558 ms  3.882 ms  3.890 ms
7 108.170.247.129 (108.170.247.129)  3.192 ms
108.170.247.193 (108.170.247.193)  93.964 ms
108.170.247.161 (108.170.247.161)  3.297 ms
8 108.177.3.127 (108.177.3.127)  3.657 ms
209.85.255.73 (209.85.255.73)  3.571 ms
108.177.3.129 (108.177.3.129)  3.261 ms
9 google-public-dns-a.google.com (8.8.8.8)  5.315 ms  3.770 ms  12.165 ms
```

# Traceroute: example

| J.auui | == 8.8.8.8              |                         |                          | 15          | Expression                                                     |
|--------|-------------------------|-------------------------|--------------------------|-------------|----------------------------------------------------------------|
| 2260   | Time<br>18:17:48.137358 | Source<br>172.30.42.132 | Destination              | Protocol    | Length Info  66 42995 → 33435 Len=24                           |
|        | 18:17:48.141025         | 172.30.42.132           | 8.8.8.8<br>172.30.42.132 | UDP<br>ICMP | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.141025         | 172.30.40.3             | 8.8.8.8                  | UDP         | 66 42995 → 33436 Len=24                                        |
|        | 18:17:48.148795         | 172.30.40.3             | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.148917         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33437 Len=24                                        |
|        | 18:17:48.152677         | 172.30.40.3             | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.152839         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33438 Len=24                                        |
|        | 18:17:48.155208         | 131.179.60.1            | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.161801         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33439 Len=24                                        |
|        | 18:17:48.163969         | 131.179.60.1            | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.164105         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33440 Len=24                                        |
|        | 18:17:48.166708         | 131.179.60.1            | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.166852         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33441 Len=24                                        |
|        | 18:17:48.170369         | 169.232.8.12            | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.174842         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33442 Len=24                                        |
|        | 18:17:48.178190         | 169.232.8.12            | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.178346         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33443 Len=24                                        |
|        | 18:17:48.181957         | 169.232.8.12            | 172.30.42.132            | ICMP        | 70 Time-to-live exceeded (Time to live exceeded in transit)    |
|        | 18:17:48.182086         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33444 Len=24                                        |
|        | 18:17:48.185938         | 169.232.4.5             | 172.30.42.132            | ICMP        | 110 Time-to-live exceeded (Time to live exceeded in transit)   |
|        | 18:17:48.189767         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33445 Len=24                                        |
| 2389   |                         | 169.232.4.5             | 172.30.42.132            | ICMP        | 110 Time-to-live exceeded (Time to live exceeded in transit)   |
| 2390   | 18:17:48.194171         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33446 Len=24                                        |
| 2391   | 18:17:48.197563         | 169.232.4.5             | 172.30.42.132            | ICMP        | 110 Time-to-live exceeded (Time to live exceeded in transit)   |
| 2392   | 18:17:48.197664         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33447 Len=24                                        |
| 2393   | 18:17:48.201536         | 137.164.24.134          | 172.30.42.132            | ICMP        | 110 Time-to-live exceeded (Time to live exceeded in transit)   |
|        | 18:17:48.205938         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33448 Len=24                                        |
| 2397   | 18:17:48.211286         | 137.164.24.134          | 172.30.42.132            | ICMP        | 110 Time-to-live exceeded (Time to live exceeded in transit)   |
|        | 18:17:48.211432         |                         | 8.8.8.8                  | UDP         | 66 42995 → 33449 Len=24                                        |
| 2399   | 18:17:48.215159         | 137.164.24.134          | 172.30.42.132            | ICMP        | 110 Time-to-live exceeded (Time to live exceeded in transit)   |
| 2400   | 18:17:48.215293         | 172.30.42.132           | 8.8.8.8                  | UDP         | 66 42995 → 33450 Len=24                                        |
|        | gment offset: 0         | 74 105 40 105           | 172 20 42 422            | TOUR        | 70 Time to live succeeded /Time to live succeeded in terresit) |
|        | e to live: 5            |                         |                          |             |                                                                |
|        | tocol: UDP (17)         |                         |                          |             |                                                                |

## Link layer: introduction

- Link Layer: Provides data transport between adjacent nodes
  - The end-to-end Network Layer is built upon the hopby-hop Link Layer
  - A single datagram may go through different link technologies along the way
  - Different link layer protocols may provide different kinds of service

## Link layer: introduction

- understand principles behind link layer services:
  - data framing
  - error detection, correction CRC (cyclic redundancy check)
  - sharing a broadcast channel: multiple access
  - link layer addressing
- local area networks: Ethernet, VLANs

#### Medium Access Links and Protocols

- Two types: point-to-point, broadcast
- Broadcast channel shared by multiple hosts
  - What if we only have unicast channel?
  - What's the pros and cons for a broadcast channel?
- Three classes of Multiple Access Control (MAC) protocols
  - Channel partitioning: FDMA, TDMA, CDMA
  - Random access: Aloha, CSMA/CD, Ethernet (CSMA/CA)
  - Taking turns: Token ring/passing
  - Pros and cons for each class of protocol?

#### Random access: slotted ALOHA

- Assumptions:
  - all frames same size
  - time divided into equal size slots (time to transmit 1 frame)
  - nodes start to transmit only slot beginning
  - nodes are synchronized
  - if 2 or more nodes transmit in slot, all nodes detect collision

#### Random access: slotted ALOHA

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- Pr(given node has success in a slot) =  $p(1-p)^{(N-1)}$
- Pr(any node has a success) =  $Np(1-p)^{(N-1)}$
- max efficiency: find p\* that maximizes Np(1-p)^(N-1)
- Take the limit of Np\*(1-p\*)^(N-1) as N goes to infinity, yields:
  - max efficiency = 1/e = .37

### Random access: ALOHA efficiency

- Slotted ALOHA max efficiency = 1/e = .37
- Unslotted ALOHA max efficiency = 1/2e = .18