Diffuse Reflection

https://en.wikipedia.org/wiki/Diffuse_reflection

Diffuse Reflection: the reflection of light uniformly in all different directions, the surface of this reflection exhibits Lambert reflection, e.g., equal luminance when viewed from all directions.

Two Key Characteristics:

- 1. The surface with reflectivity as K_d = (k_r, k_g, k_b), e.g., diffuse coefficients;
- 2. The decay of incident light is inverse proportional to its distance from the source to the surface point. e.g., 1/(r*r), where r is bing the distance from the light source to the surface. Specular vs. diffuse reflection

Diffuse Reflection Formulation

Light source $I_s(x,y)$ consists of r, g, b 3 primitive colors as follows, but let's simplify it as white color, so r, g, b all equal and have the highest value (if in graphics, they are 255)

Object surface consists of reflectivity, e.g., coefficient of reflection

r_d vector in Equation (1) is a ray equation, just like l_s(x,y,z) but has no r, g, b primitive color defined in it for the matter of simplicity.

Diffuse Reflection Equation

Let's consider white color of the point light source, then each primitive color r, g, b of the object surface I(x,y,z) can be computed as follows:

... (1.1)

wher e

Reference: Computer Graphics, C. K. Pokorny, C. F. Gerald, pp. 514

... (1.3)

Formulation Of Diffuse Reflection Equation

Point Light Source And Incident Angle

Angle of incident light

Step 1-5 For Diffuse Reflection Computation

Step 6 For Diffuse Reflection Computation

Example On Diffuse Reflection Computation (1)

Example On Diffuse Reflection Computation (2)

Use DDA Algorithm To Find Boundary Points

Bilinear Interpolation To Find Boundary Color

