18.369 Midterm Solutions: Fall 2021

Problem 1: ((6+6)+11+11 points)

(a) To have no time-average work done by the current, we need non-negative time-average work done on the current, i.e.: $\frac{1}{2} \operatorname{Re} \langle \mathbf{E}, \mathbf{J} \rangle \geq 0$, for the usual inner product $\langle \mathbf{F}, \mathbf{G} \rangle = \int \mathbf{F}^* \cdot \mathbf{G}$. Now, we can simplify:

$$\begin{split} \operatorname{Re}\langle\mathbf{E},\mathbf{J}\rangle &= \operatorname{Re}\langle\mathbf{E},\frac{\hat{A}\mathbf{E}}{i\omega}\rangle \\ &= \frac{1}{\omega}\operatorname{Im}\langle\mathbf{E},\hat{A}\mathbf{E}\rangle \\ &= \frac{1}{2i\omega}\left[\langle\mathbf{E},\hat{A}\mathbf{E}\rangle - \langle\mathbf{E},\hat{A}\mathbf{E}\rangle^*\right] \\ &= \frac{1}{2i\omega}\left[\langle\mathbf{E},\hat{A}\mathbf{E}\rangle - \langle\hat{A}\mathbf{E},\mathbf{E}\rangle\right] \\ &= \frac{1}{2i\omega}\left[\langle\mathbf{E},\hat{A}\mathbf{E}\rangle - \langle\mathbf{E},\hat{A}^{\dagger}\mathbf{E}\rangle\right] \\ &= \frac{1}{\omega}\langle\mathbf{E},(\Im\hat{A})\mathbf{E}\rangle. \end{split}$$

Since this must be ≥ 0 for any possible **E**, it follows for $\omega > 0$ that $\Im \hat{A}$ must be **positive semidefinite.**

Furthermore, since this is true for *any* **E**, let's choose an **E** that vanishes on the boundary of our domain (or far away for an infinite domain), in which case (as in class) when we integrate by parts we will find that $(\nabla \times \nabla \times)^{\dagger} = \nabla \times \nabla \times$, since the boundary terms vanish. Hence, the curl terms will vanish in $\hat{A} = \hat{A}^{\dagger}$, and we are left with the $\omega^2 \varepsilon$ terms. But since this is just a scalar, the adjoint (†) is simply the complex conjugate, and \Im is then simply the imaginary part:

$$\frac{\Im \hat{A}}{\omega} = \frac{\operatorname{Im}(\omega^2 \varepsilon)}{\omega} = \omega \operatorname{Im}(\varepsilon) \ge 0,$$

which is exactly the passivity condition from class.

(b) Say $\Im \hat{A} = \frac{\hat{A} - \hat{A}^{\dagger}}{2i}$ is positive definite, and we want to show that $\Im(\hat{A}^{-1})$ is negative definite for any $\mathbf{G} \neq 0$, consider

$$\langle \mathbf{G}, \Im(\hat{A}^{-1})\mathbf{G} \rangle = \frac{1}{2i} \left[\langle \mathbf{G}, \hat{A}^{-1}\mathbf{G} \rangle - \langle \mathbf{G}, (\hat{A}^{-1})^{\dagger} \mathbf{G} \rangle \right]$$

$$= \frac{1}{2i} \left[\langle \mathbf{G}, \hat{A}^{-1}\mathbf{G} \rangle - \langle \hat{A}^{-1}\mathbf{G}, \mathbf{G} \rangle \right]$$

$$= \frac{1}{2i} \left[\langle \hat{A}\mathbf{F}, \mathbf{F} \rangle - \langle \mathbf{F}, \hat{A}\mathbf{F} \rangle \right] \qquad \text{letting } \mathbf{F} = \hat{A}^{-1}\mathbf{G}$$

$$= \frac{1}{2i} \left[\langle \mathbf{F}, \hat{A}^{\dagger}\mathbf{F} \rangle - \langle \mathbf{F}, \hat{A}\mathbf{F} \rangle \right]$$

$$= -\langle \mathbf{F}, (\Im \hat{A})\mathbf{F} \rangle < 0,$$

where we got a sign flip because we had $\hat{A}^\dagger - \hat{A}$ instead of $\hat{A} - \hat{A}^\dagger$.

Note that if we consider the case where \hat{A} is just a complex number a+ib (the simplest linear operator), we can see that the above result is simply a generalization of the observation that $(a+ib)^{-1} = \frac{a-ib}{a^2+b^2}$ has the opposite sign of its imaginary part.

(c) Plugging $\Delta \hat{\mathbf{E}} = \Delta \hat{\mathbf{E}}^{(1)} + \Delta \hat{\mathbf{E}}^{(2)} + \cdots$ into our equation for \mathbf{E} , and realizing that \hat{A} is just perturbed to $\hat{A} - \omega^2 \Delta \varepsilon$, we obtain:

1

$$(\hat{A} - \omega^2 \Delta \varepsilon) (\mathbf{E} + \Delta \hat{\mathbf{E}}^{(1)} + \Delta \hat{\mathbf{E}}^{(2)} + \cdots) = i\omega \mathbf{J}.$$

Figure 1: Sketch of dispersion relations for fundamental modes of two ε_{hi} waveguides in air ($\varepsilon = 1$), one waveguide wider than the other.

Collecting terms order-by-order, we find

$$\hat{A}\mathbf{E}=i\omega\mathbf{J}$$
 (zero-th order)
$$\hat{A}\Delta\hat{\mathbf{E}}^{(1)}-\omega^2\Delta\varepsilon\mathbf{E}=0$$
 (first order) :

and hence the first-order correction is

$$\Delta \hat{\mathbf{E}}^{(1)} = \hat{A}^{-1} \omega^2 \Delta \varepsilon \mathbf{E} = \hat{A}^{-1} \omega^2 \Delta \varepsilon (\hat{A}^{-1} i \omega \mathbf{J}).$$

Essentially, $\omega^2 \Delta \varepsilon \mathbf{E}$ acts like an additional "current" source $-i\omega \Delta \varepsilon \mathbf{E}$ in the unperturbed problem. This is also known as a **first Born approximation**.

Problem 2: (12+7+7+7 points)

- (a) The sketch is shown in Fig. 1. Some key features:
 - (i) For each waveguide, the $\omega(k)$ of the fundamental mode must lie beneath the light cone $\omega \ge c|k|$ for all $k \ne 0$, as proved in class.
 - (ii) The wider waveguide's dispersion curve must lie *below* the narrower waveguide at every k. Intuitively, as discussed in class, increasing ε by increasing the width of the ε_{hi} region should *decrease* the frequency. (More formally, we could show from perturbation theory that $\omega(k)$ at each k decreases monotonically with the waveguide width, but this is not required here.)
 - (iii) As $|k| \to 0$, both dispersion curves should approach the light line of air (from below).
 - (iv) For large |k|, both dispersion curves should approach the light line $\omega = c|k|/\sqrt{\epsilon_{\rm hi}}$ of the high- ϵ material.
- (b) The key point is that we want to break conservation of k to make the two different modes at the same ω interact: a period a allows modes at a multiple of $2\pi/a$ to couple to one another, because k is only conserved modulo $2\pi/a$. If $|\Delta\varepsilon|$ is small, the dispersion curves $\omega(k)$ should be almost unchanged, so we can read off of the original dispersion relation which Δk we want to allow. To couple the two forward-propagating modes, we want $2\pi/a = \Delta k_1$ as labeled in Fig. 1, so $a = 2\pi/\Delta k_1$. This sort of device is also known as a **grating coupler**.

Technically, we could have any integer multiple of $2\pi/a$ equal to Δk_1 , so if we divide $2\pi/k_1$ by any integer it should also work. However, if we think of the Fourier-series expansion of $\Delta \varepsilon$, the first Fourier coefficient is usually the largest—and this is certainly the case for the square-wave modulation indicated in the problem—and so the coupling will generally be strongest for the Δk_1 equal to the smallest multiple of $2\pi/a$ (corresponding to the smallest nonzero frequency in the Fourier series of $\Delta \varepsilon$).

- (c) All that changes is Δk , since we now want to couple to the backward-propagating modes: we should now use $a = 2\pi/\Delta k_2$ for Δk_2 as labeled in Fig. 1.
- (d) All that changes is Δk , since we now want to couple to the **light cone** (radiation) at k=0 (corresponding to planewaves **perpendicular** to the waveguide): we should now use $a=2\pi/\Delta k_3$ for Δk_3 as labeled in Fig. 1.

Problem 3: (11+11+11 points)

(a) Let D(n) be a representation for C_N^n . Then we must have $D(n_1+n_2)=D(n_1)D(n_2)$, corresponding to $C_N^{n_1}C_N^{n_2}=C_N^{n_1+n_2}$. As in class and in homework, this immediately leads to irreps that are complex exponentials $D(n)=e^{-i\alpha n}$ (the sign in the exponent is an arbitrary convention; you could have also made it +). Furthermore, since $C_N^N=C_N^0=E$, we must have $D(N)=e^{-i\alpha N}=1$, which implies that $an N=2\pi i k$ for some integer k. So, the irreps are $an D^{(k)}(n)=e^{-\frac{2\pi i}{N}nk}$. Furthermore, it's clear that $an D^{(k+N)}(n)=D^{(k)}(n)$ for all n,k, so k and k+N are the same irrep (much like a reciprocal lattice vector in periodic systems). Therefore, the unique irreps are $an D^{(k)}(n)=n$ (much like a Brillouin zone). Indeed, since we have a finite group with 1d irreps, our character-table rules imply that we must have only N irreps.

(In fact, the character table, viewed as a matrix, is a discrete Fourier transform!)

(b) If $\mathbf{H}(\mathbf{x})$ is a partner function of $D^{(k)}$, then $\widehat{C_N}\mathbf{H}(\mathbf{x}) = C_N\mathbf{H}(C_N^{-1}\mathbf{x})$ must equal $e^{-\frac{2\pi i}{N}k}\mathbf{H}(\mathbf{x})$. It follows that $\widehat{C_N}\left[e^{-i\theta k}\mathbf{H}(\mathbf{x})\right] = e^{-i\theta k}\mathbf{H}(\mathbf{x})$ —i.e., $e^{-i\theta k}\mathbf{H}(\mathbf{x})$ is N-fold rotation invariant—since C_N rotates the polar coordinate θ to $\theta - \frac{2\pi}{N}$, cancelling the $e^{-\frac{2\pi i}{N}k}$ factor. Hence, a partner $\mathbf{H}(\mathbf{x})$ of $D^{(k)}$ must be of the form

$$\mathbf{H}(\mathbf{x}) = e^{i\theta k} \underbrace{[N\text{-fold rotation-invariant function}]}_{\mathbf{H}_k(\mathbf{x})},$$

analogous to Bloch waves except that the envelope is rotationally periodic instead of translationally periodic, and k is an integer (equivalent in irrep to k + N).

Hence, the eigenfunctions of $\hat{\Theta}$ must be of this form as well (and must also satisfy the PEC boundary conditions of vanishing tangential electric field, i.e. vanishing tangential $\nabla \times \mathbf{H}$ at the boundary, and must be divergence-less).

(c) As for time-reverseal symmetry, since $\hat{\Theta}$ is purely real (not just Hermitian), it follows from conjugating the eigen-equation $\hat{\Theta}\mathbf{H} = \omega^2\mathbf{H} \implies \hat{\Theta}\mathbf{H}^* = \omega^2\mathbf{H}^*$, i.e. for any eigenfunction \mathbf{H} , the complex conjugate \mathbf{H}^* is also an eigenfunction with the same eigenvalue. Moreover, for $\mathbf{H} = e^{i\theta k}\mathbf{H}_k(\mathbf{x})$ a partner of $D^{(k)}$, we have $\mathbf{H}^* = e^{i\theta(-k)}\mathbf{H}_k(\mathbf{x})^*$, which is a partner of $D^{(-k)}$, since $\mathbf{H}_k(\mathbf{x})^*$ still has N-fold rotational symmetry. This must be linearly independent of \mathbf{H} , and in fact orthogonal to \mathbf{H} , if $-k \neq k \mod N$, i.e. if -k is a distinct irrep, which is true for 0 < k < N (i.e. $k \neq 0 \mod N$). So any $k \neq 0 \pmod N$ eigenfunction *must* be doubly degenerate!