4CCS1ELA-ELEMENTARY LOGIC WITH APPLICATIONS

3-IMPORTANT SEMANTICAL NOTIONS

3.2-Quine's Method and Satisfiability

Dr. Odinaldo Rodrigues

odinaldo.rodrigues@kcl.ac.uk
Room BH(S) TBC, +44 (0)20 7848 2087
Department of Informatics
King's College London

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.2 - Quine's Method and Satisfiability

3.2.0 (11)

Outline

- 1. Quine's Method
- 2. Satisfiability

Quine's Method

Quine's Method

Quine's Method

For any formula W and propositional variable P:

- \bigcirc W is a tautology if and only if $W(P/\mathbf{0})$ and $W(P/\mathbf{1})$ are tautologies.
- \bigcirc *W* is a contradiction if and only if $W(P/\mathbf{0})$ and $W(P/\mathbf{1})$ are contradictions.

Quine's method can be described graphically with a binary tree (Hein, Section 6.2).

Constructing Quine's Tree for a Formula W

- 1. Start with W as the root of the tree.
- 2. Take the first level in the tree with a propositional symbol, say *P*, in any of the level's nodes *n*. If none are left, then finish.
- 3. Let the left child of *n* be n(P/1) and let its right child be n(P/0).
- 4. Repeat from 2.

When no propositional symbols remain:

- W is a tautology if all of the leaves in the tree are true (i.e., 1)
- \bigcirc W is a contradiction if all leaves in the tree are false (i.e., **0**)
- Otherwise, *W* is a *contingency* (i.e., sometimes true, sometimes false)

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.2 - Quine's Method and Satisfiability

3.2.4 (11)

Quine's Method

Example

$$P \rightarrow Q \land P$$
 $1 \rightarrow Q \land 1 \quad 0 \rightarrow Q \land 0$
 $1 \rightarrow Q \quad 0 \rightarrow 0$
 $Q \quad 1$
 $1 \quad 0$

Conclusion. The formula $P \to Q \land P$ is a contingency, because neither all leaves in the tree are true, nor all of them are false.

SATISFIABILITY

Satisfiability

Satisfiability

A formula *F* is **satisfiable** if there is an interpretation *v* that makes the formula F true. In this case, we say that v satisfies F.

A set $S = \{A_1, \dots, A_n\}$ of propositional formulae is **satisfiable** (**consistent**) if there is an interpretation v satisfying *every* formula in S.

The set of formulae $\{A_1, \ldots, A_n\}$ is satisfiable if, and only if, the conjunction $A_1 \wedge \ldots \wedge A_n$ is satisfiable

Example

Let $A_1 = P \rightarrow Q$, $A_2 = Q \rightarrow R$ and $A_3 = R \rightarrow P$ and S be the set of formulae $\{A_1, A_2, A_3\}$. The combined truth-table for S is:

	<i>p</i> ₁	p_2	p_3	A ₁	A_2	<i>A</i> ₃
	Р	Q	R	P o Q	$Q \rightarrow R$	$R \rightarrow P$
<i>v</i> ₀	0	0	0	1	1	1
<i>V</i> ₁	0	0	1	1	1	0
<i>V</i> ₂	0	1	0	1	0	1
<i>V</i> ₃	0	1	1	1	1	0
<i>V</i> ₄	1	0	0	0	1	1
<i>V</i> ₅	1	0	1	0	1	1
<i>v</i> ₆	1	1	0	1	0	1
<i>V</i> ₇	1	1	1	1	1	1

Thus, S is satisfiable, since v_0 and v_7 satisfy every formula in S (we can also say that S is *consistent*).

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.2 - Quine's Method and Satisfiability

3.2.8 (11)

Satisfiability

Models

A *model* is an interpretation that makes a formula (or set of formulae) true.

We denote the fact that v is a model of A by $v \Vdash A$.

The set of all models of a formula A is denoted by mod(A). We use the same symbol for a set of formulae S, as before.

Thus, in the Example of Slide 3.2.8 we have that $mod(S) = \{v_0, v_7\}$.

Example

Let S be the set of formulae $\{P \leftrightarrow \neg Q, Q \leftrightarrow R, R \leftrightarrow P\}$. The truth-table for its formulae is:

	Р	Q	R	$P \leftrightarrow \neg Q$	$Q\leftrightarrow R$	$R \leftrightarrow P$
<i>v</i> ₀	0	0	0	0	1	1
<i>V</i> ₁	0	0	1	0	0	0
<i>V</i> ₂	0	1	0	1	0	1
<i>V</i> ₃	0	1	1	1	1	0
<i>V</i> ₄	1	0	0	1	1	0
<i>V</i> ₅	1	0	1	1	0	1
<i>v</i> ₆	1	1	0	0	0	0
<i>V</i> ₇	1	1	1	0	1	1

S is **not** satisfiable (i.e., S is inconsistent) and thus, $mod(S) = \emptyset$.

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.2 - Quine's Method and Satisfiability

3.2.10 (11)

Satisfiability

To know more...

- Quine's method is shown in Section 6.2 of Hein's "Discrete Structures, Logic, and Computability", 4th edition.
- Satisfiability can be found in Sections 1.2 and 1.3 of Gabbay and Rodrigues' "Elementary Logic with Applications, 1st edition.