

APELLIDO Y NOMBRE:

Matemática II - Segundo Parcial 2022 06 30

El examen debe hacerse en TINTA y con letra clara. Todas las respuestas deben estar claramente justificadas, caso contrario, no serán tenidos en cuenta.

1	2			4				_	6		- 1151
	а	b	3	а	b	С	d	5	а	b	Calificación

Ejercicio 1:

Sea $S = \{(x, y, z) \in \mathbb{R}^3 / x - 2y + z = x - y = 0\}$. Hallar $a, b \in \mathbb{R}$ y un vector $v \in S$ de manera que $B = \{(1, a, -1); (0, -2, b), v\}$ sea una base de \mathbb{R}^3 y las coordenadas de (2, 9, 3) en la base B sean (5, 4, 1)

Ejercicio 2:

Decidir si los siguientes conjuntos son Subespacios Vectoriales del espacio correspondiente. En caso de serlo demostrarlo y encontrar base y dimensión. En caso de no serlo, indicar por qué

$$S_{1} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2x^{2}} / c = 0 \right\}$$

$$S_{2} = \left\{ (x, y) \in \mathbb{R}^{2} / x - y = 3 \land 2x + y = 0 \right\}$$

Ejercicio 3:

Sean $p,q\in\mathbb{Z}$ dos primos cualesquiera, $p\neq q$, entonces $p\neq q$ son coprimos

Ejercicio 4:

Decidir si los siguientes enunciados son verdaderos o falsos con demostración o contraejemplo según corresponda

$$a. \overline{2}(5) \cap \overline{3}(4) = \emptyset$$

$$b.\ \overline{3}(6) \subseteq \overline{0}(3)$$

$$c. \, \bar{3}(6) \cap \bar{4}(6) = \emptyset$$

$$d. \ \overline{2}(5) = \overline{4}(10)$$

Ejercicio 5:

Sean $a,b,c,n\in\mathbb{Z}$, demostrar: $a.c\equiv b.c(n)\land (c,n)=1\Rightarrow a\equiv b(n)$

Ejercicio 6:

Decidir si los siguientes enunciados son verdaderos o falsos con demostración o contraejemplo según corresponda:

a. Si $\{v_1, v_2, v_3\}$ vectores linealmente independientes en V espacio vectorial, entonces $\{v_1, v_2\}$ también lo son b.Sean $\{v_1, v_2\}$ dos vectores de \mathbb{R}^2 espacio vectorial, entonces el conjunto $\{v_1, v_1 + v_2\}$ es linealmente dependiente en V