Tarefa 9

Gabriel Belém Barbosa RA: 234672

01 de Outubro de 2021

Conteúdo

1	Exe	rcício 1																									3
	1.1	Item (a)																									3
	1.2	Item (a) Item (b) Item (c)																									3
	1.3	Item (c)																									3
	1.4	Item (d)							•					•							•		•			•	3
2 F	Exe	Exercício 2 2.1 Item (a)																3									
	2.1	Item (a)																									3
		Item (b)																									
3	3 Exercício 3																	4									
	3.1	Item (a)																									4
	3.2	Item (b)																									6
	3.3	Item (c)																									7

1 Exercício 1

1.1 Item (a)

 $max g(x) = 6p_1 + 4p_2$

Sujeito a:
$$\begin{cases} 4p_1 + p_2 \le 2\\ 3p_1 + 2p_2 \le 3\\ -p_1 + 5p_2 \le 1\\ p_1 \ge 0, p_2 \ge 0 \end{cases}$$

1.2 Item (b)

 $min \ g(x) = 12p_1 + 4p_2$

Sujeito a:
$$\begin{cases} 7p_1 + p_2 \ge 10 \\ 3p_1 + 5p_2 \ge -2 \\ p_1, p_2 \text{ livre} \end{cases}$$

1.3 Item (c)

 $min \ g(x) = 3p_1 + 8p_2 + 2p_3$

Sujeito a:
$$\begin{cases} p_1 + 4p_2 + p_3 \ge 3 \\ -p_1 + p_2 + 3p_3 \ge 1 \\ p_1 \le 0, p_2 \le 0, p_3 \ge 0 \end{cases}$$

1.4 Item (d)

 $max g(x) = 2p_1 + 9p_2$

Sujeito a:
$$\begin{cases} 2p_1 + 5p_2 \ge 7 \\ -p_1 + 6p_2 \ge 0.5 \\ 2p_1 + p_2 = 3 \\ p_1 \le 0, p_2 \ge 0 \end{cases}$$

2 Exercício 2

2.1 Item (a)

O dual do problema apresentado é $max - c^T p$

Sujeito a:
$$\begin{cases} A^T p \le c \\ p \ge 0 \end{cases}$$

Transformando o problema de máximo em um de mínimo tem-se o objetivo $\min c^T p$. Pela antissimetria de A

$$A^T p = -Ap \le c$$
$$\Rightarrow Ap > c$$

Logo o dual pode ser escrito como $min c^T p$

Sujeito a:
$$\begin{cases} Ap \ge c \\ p \ge 0 \end{cases}$$

Que é exatamente igual ao primal.

2.2 Item (b)

Pelo teorema forte da dualidade, supondo por contradição que um PL factível desse tipo possui solução ilimitada, logo seu dual não possui solução factível. Como, pelo item (a), o primal é igual ao dual nesse tipo de PL, cai-se em contradição pela hipótese de que o PL tinha solução factível. Portanto, se um PL desse tipo tem solução, esta deve ser limitada.

3 Exercício 3

3.1 Item (a)

Dual:

$$max g(x) = 2p_1 + p_2$$

Sujeito a:
$$\begin{cases} 2p_1 + 3p_2 \ge 6 \\ 3p_1 - p_2 \le 9 \\ 3p_1 + 4p_2 \le 24 \\ p_1 \ge 0, p_2 \ge 0 \end{cases}$$

Como deseja-se maximizar a função objetivo, é necessário viajar na direção do gradiente. A curva de nível da função objetivo intersecta a região de factibilidade por último em $\mathbf{x}^* = (4,3)^T$, como pode ser visto no gráfico abaixo, cujo valor ótimo é, da função objetivo, $f(\mathbf{x}^*) = 2 \cdot 4 + 3 = 11$.

Figura 1: Resolução gráfica

Região de factibilidade em vermelho, vetor gradiente C e solução ótima x* denotados e curvas de nível pontilhadas.

Pelo teorema forte da dualidade, o primal possui solução ótima. Pelo teorema das folgas complementares

$$(x_1^*, x_2^*, x_3^*) \begin{pmatrix} 6 - 17 \\ 9 - 9 \\ 24 - 24 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow -11x_1^* = 0 \Rightarrow x_1^* = 0$$

Sendo

$$A^T p^* = \begin{pmatrix} 17 \\ 9 \\ 24 \end{pmatrix}$$

E

$$(4,3) \begin{pmatrix} 2x_1^* + 3x_2^* + 3x_3^* - 2 \\ 3x_1^* - x_2^* + 4x_3^* - 1 \end{pmatrix} == \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow 4(3x_2^* + 3x_3^* - 2) = 3x_2^* + 3x_3^* - 2 = 0$$

$$\Rightarrow 3(4x_3^* - x_2^* - 1) = 4x_3^* - x_2^* - 1 = 0$$

Resolvendo o sitema acima

$$\Rightarrow 15x_3^* = 5$$

$$\Rightarrow x_3^* = \frac{1}{3}$$

$$\Rightarrow x_2^* = 4x_3^* - 1 = \frac{1}{3}$$

Logo a solução ótima é $x^*=(0,\frac13,\frac13)$, cujo valor é $f(x^*)=6\cdot 0+9\cdot \frac13+24\cdot \frac13=11$.

3.2 Item (b)

Dual:

$$min g(x) = -3p_1 - 2p_2$$

Sujeito a:
$$\begin{cases} 3p_1 + p_2 \ge 6 \\ p_1 + 2p_2 \ge 4 \\ -p_1 + 2p_2 \ge -4 \\ 3p_1 - 2p_2 \ge 0 \\ p_1 \ge 0, p_2 \ge 0 \end{cases}$$

Como deseja-se minimizar a função objetivo, é necessário viajar na direção contrária ao gradiente. A curva de nível da função objetivo semre intersecta a região de factibilidade nessa direção, como pode ser visto no gráfico abaixo. Logo o dual não possui solução ótima limitada.

Figura 2: Resolução gráfica

Região de factibilidade em vermelho, vetor gradiente C e solução ótima x* denotados e curvas de nível pontilhadas.

Pelo teorema forte da dualidade, o primal não possui solução factível.

3.3 Item (c)

Dual:

 $max g(x) = 2p_1 - p_2$

Sujeito a:
$$\begin{cases} 2p_1 + p_2 \le 2 \\ -p_1 - p_2 \le -1 \\ -p_1 + 3p_2 \le 2 \\ p_1 \ge 0, p_2 \ge 0 \end{cases}$$

Como deseja-se maximizar a função objetivo, é necessário viajar na direção do gradiente. A curva de nível da função objetivo intersecta a região de factibilidade por último em $\mathbf{x}^* = (1,0)^T$, como pode ser visto no gráfico abaixo, cujo valor ótimo é, da função objetivo, $f(\mathbf{x}^*) = 2 \cdot 1 + 0 = 2$.

Figura 3: Resolução gráfica

Região de factibilidade em vermelho, vetor gradiente C e solução ótima x* denotados e curvas de nível pontilhadas.

Pelo teorema forte da dualidade, o primal possui solução ótima. Pelo teorema das folgas complementares

$$(x_1^*, x_2^*, x_3^*) \begin{pmatrix} 2-2\\-1+1\\2+1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

$$\Rightarrow 3x_3^* = 0 \Rightarrow x_3^* = 0$$

Sendo

$$A^T p^* = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$

E

$$(1,0) \begin{pmatrix} 2x_1^* - x_2^* - x_3^* - 2 \\ x_1^* - x_2^* + 3x_3^* + 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow 1(2x_1^* - x_2^* - 2) = 0$$
$$\Rightarrow 2x_1^* = x_2^* + 2$$

Como, pela segunda restrição do primal, substituindo as relações acima

$$x_1^* - x_2^* + 3x_3^* = -x_1^* + 2 = -\frac{x_2^*}{2} + 1 \ge -1$$

Tem-se que esse segmento de reta é limitado por $x_1^*=3$ ($x_2^*=4$), e por $x_2^*=0$ ($x_1^*=1$) pela não negatividade. Como a solução ótima, se existir, estará em um extremo, fica fácil conferir que $x^*=(1,0,0)$ é a solução ótima do primal, e o valor ótimo é portanto $f(x^*)=2\cdot 1-0+2\cdot 0=2$.