Subject: Physics | Topic: Electric Fields

Given:

Charge \(q_1 \) = +8.97 μ C = +8.97 × 10^-6 C Position of \(q_1 \) (\(x_1 \)) = +3.18 cm = +0.0318 m Charge \(q_2 \) = -21.8 μ C = -21.8 × 10^-6 C Position of \(q_2 \) (\(x_2 \)) = +8.64 cm = +0.0864 m

Objective:

Calculate the x-component of the net electric field at:

- 1. (x = 0) cm
- 2. (x = 6) cm

Step 1: Calculate the x-component of the electric field at \(x = 0 \) cm

Formula:

 $(E = \frac{k \cdot |q|}{r^2})$

where,

\(E\) = Electric field,

 $(k) = Coulomb's constant = (8.99 \times 10^9) N \cdot m^2/C^2$

(q) = magnitude of the charge,

(r) =distance between the charge and the point of interest.

Calculation of \(E_1 \) from \(q_1 \) at \(x=0 \):

 $(r_{1} = x_1 - 0 = 0.0318) m$

 $(E_{1} = \frac{8.99 \times 10^9}{6}, 0.0318)^2)$

 $(E_{1} = \frac{0.90101124}{)}$

\(E_{1} \approx 7.968 \times 10^5 \) N/C

Direction: The direction of $(x_1 \setminus y_2)$ due to $(y_1 \setminus y_3)$ due to $(x_1 \setminus y_4)$ is along the negative x-axis.

Calculation of (E_2) from (q_2) at (x=0):

 $(r_{2} = x_2 - 0 = 0.0864) m$

 $(E_{2} = \frac{3.99 \times 10^9 \times 21.8 \times 10^{-6}}{(0.0864)^2})$

 $(E_{2} = \frac{8.99 \times 10^9 \times 21.8 \times 10^{-6}}{0.00746496})$

\(E_{2} \approx 2.627 \times 10^6 \) N/C

Direction: The direction of (E_2) due to (q_2) (negative charge) at (x = 0) is along the positive x-axis.

Net Electric Field at \(x = 0 \) cm:

 $(E_{net} = E_2 - E_1)$

\(E_{net} = 2.627 \times 10^6 - 7.968 \times 10^5 \)

 $(E_{net} = 1.83 \times 10^6) N/C$

Supporting Statement: The net electric field at a point is the vector sum of fields due to all charges. Here, $(E \ 2)$ was greater and in the positive x-direction.

Step 2: Calculate the x-component of the electric field at x=6 cm

Position of the charges relative to x=6 cm:

```
(r_{1,6} = |0.06 - 0.0318| = 0.0282) \text{ m from } (q_1) 
(r_{2,6} = |0.06 - 0.0864| = 0.0264) \text{ m from } (q_2)
```

Calculation of $(E_{1,6})$ from (q_1) at (x=6) cm:

 $(E_{1,6} = \frac{8.99 \times 10^9 \times 8.97 \times 10^{-6}}{0.0282^2})$

 $(E_{1,6} = \frac{8.99 \times 10^9 \times 8.97 \times 10^{-6}}{0.00079524})$

\(E_{1,6} \approx 1.01 \times 10^6 \) N/C

Direction: The field $(E_{1,6})$ due to (q_1) (positive charge) at (x = 6) cm is along the positive x-axis.

Calculation of $(E_{2,6})$ from (q_2) at (x=6) cm:

 $(E_{2,6} = \frac{8.99 \times 10^9 \times 21.8 \times 10^{-6}}{0.0264^2})$

 $(E_{2,6} = \frac{8.99 \times 10^9 \times 21.8 \times 10^{-6}}{0.00069696})$

\{ E_{2,6} \approx 2.81 \times 10^6 \) N/C

Direction: The field $(E_{2,6})$ due to (q_2) (negative charge) at (x = 6) cm is along the positive x-axis.

Net Electric Field at \(x = 6 \) cm:

 $(E_{net,6} = E_{1,6} + E_{2,6})$

 $(E_{net,6} = 1.01 \times 10^6 + 2.81 \times 10^6)$

Supporting Statement: Both electric fields $(E_{1,6})$ and $(E_{2,6})$ are in the same direction (positive x-axis), hence they add up.

Final Solution:

- 1. The x-component of the net electric field at x = 0 cm is \(1.83 \times 10^6 \) N/C (positive direction).
- 2. The x-component of the net electric field at x = 6 cm is \(3.82 \times 10^6 \) N/C (positive direction).