Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki

Sprawozdanie z ćwiczenia

Tytuł Sprawdzenie poprawności praw Kirchoffa		Rok akademicki 2019/2020
22.03.2020	25.03.2020	Informatyka
Skład grupy laboratoryjnej	Rok, semestr, grupa	
1. Dawid Królak	Rok 1,	
2. Michał Matuszak	semestr 2,	
3. Mateusz Miłkowski	grupa I2.1	
4. Dominik Pawłowski		

1. Cel ćwiczenia.

Zbadanie poprawności dwóch praw Kirchoffa.

2. Podstawy teoretyczne.

Pierwsze prawo Kirchoffa - suma natężeń prądów wpływających do węzła jest równa sumie natężeń prądów wypływających z węzła.

$$\sum_{i=0}^{\infty} I_i = 0$$

Drugie prawo Kirchoffa - suma wszystkich spadków napięć oraz sił elektromotorycznych źródeł napięcia jest równa zero w danym oczku nawet, jeśli oczko to jest elementem większego obwodu.

3. Schemat badanego układu.

4. I prawo Kirchoffa. Przebieg ćwiczenia.

a) obliczenia analityczne

Obliczenie rezystancji zastępczej układu:

$$\begin{split} R_z &= R1 + \frac{1}{\frac{1}{R2} + \frac{1}{R3}} \\ R_z &= 2500\Omega + \frac{1}{\frac{1}{10000\Omega} + \frac{1}{5000\Omega}} = 2500\Omega + 3333.33\Omega = 5833.33\Omega \end{split}$$

Obliczenie natężenia prądu w całym układzie za pomocą prawa Ohma:

$$I = \frac{U}{R}$$

$$I = \frac{5V}{5833.33\Omega} = 0.000857143 \ A = 0.85714 \ mA$$

Obliczenie spadku napięcia w R1 i podziału natężeń w węźle z R2 i R3.

$$U_1 = 2500\Omega \cdot 0.857mA = 2.143V$$

$$U_{2/3} = 5V - 2.143V = 2.857V$$

$$I_2 = \frac{2.857V}{10000\Omega} = 0.0002857A = 0.2857mA$$

$$I_3 = \frac{2.857V}{5000\Omega} = 0.0005714A = 0.5714mA$$

Prąd przechodzący przez R1 to $I_1=0.8571mA$, a zatem do węzła R $_{2/3}$ wpływa 0.8571mA, co jest równe sumie prądów przechodzących przez R2 i R3

$$I = I_1 = 0.8571mA = I_2 + I_3 = 0.2857mA + 0.5714mA$$

Prawo Kirchoffa jest zatem spełnione.

b) pomiary

Tabela przedstawia wyniki symulacji *DC op pnt* na układzie, z uwzględnieniem prądów przechodzących przez kolejne rezystory.

I(R1)	0.000857143
I(R2)	0.000285714
I(R3)	0.000571429

Wyniki zgadzają się z teoretycznymi wyliczeniami, prąd I1 wchodzący do węzła R_{2/3} jest równy sumie prądów I2 oraz I3, które węzeł ten opuszczają.

5. Il prawo Kirchoffa. Przebieg ćwiczenia.

a) obliczenia analityczne.

Suma spadków napięć i siły elektromotorycznej musi być równa 0.

 $U=5V\,$ - siła elektromotoryczna źródła napięcia

 $U_{R1}=I_{R1}\cdot R1=0.000857143A\cdot 2500\Omega=2.142857V$ - spadek napięcia na rezystorze R1

 $U_{R_{2/3}} = I \cdot R_{2/3} = 0.000857143A \cdot 3333.33\Omega = 2.857143V$ - spadek napięcia na węźle R_{2/3}.

Zatem:

$$U - U_{R1} - U_{R_{2/3}} = 5V - 2.142857V - 2.857143V = 0$$

Drugie prawo Kirchoffa jest spełnione.

b) pomiary

Używając lewego przycisku myszy na poszczególnych fragmentach obwodu, można odczytać napięcia w nich występujące.

Spadki napięcia (R1, R_{2/3}) sumują się do 5V. Odejmując tę wartość od siły elektromotorycznej wygenerowanej przez V1 (5V), otrzymujemy 0, co obrazuje pomiar w środkowej dolnej części schematu obwodu.

6. Wnioski

Prawa Kirchoffa są poprawne. W obu przypadkach wyniki pomiarów zgadzają się z analitycznymi obliczeniami i prowadzą do potwierdzenia prawdziwości obu sformułowań.