# CHƯƠNG 2 GIẢI GẦN ĐÚNG PHƯƠNG TRÌNH PHI TUYẾN

# I. ĐẶT BÀI TOÁN:

Bài toán: tìm nghiệm gần đúng của phương trình

$$f(x) = 0$$

với f(x) là hàm liên tục trên khoảng đóng [a, b] hay khoảng mở (a,b).

## 1. Khoảng cách ly nghiệm

Khoảng đóng hay mở trên đó tồn tại duy nhất nghiệm của phương trình gọi là khoảng cách ly nghiệm

## Định lý:

Nếu hàm f liên tục trên đoạn [a,b] thoả điều kiện f(a) f(b) < 0 thì phương trình f(x) = 0 có nghiệm trên [a,b].

Nếu hàm f đơn điệu ngặt thì nghiệm là duy nhất.

# [a, b] là KCLN của pt khi

- $\geq$  f(a) f(b) < 0
- Dạo hàm f' không đổi dấu trên đoạn [a,b]



## Ví dụ:

Tìm các khoảng cách ly nghiệm của pt  $f(x) = 3x^2 + lnx = 0$ 

#### Giải:

$$f'(x) = 6x + 1/x > 0$$
  $x>0$ 

f hàm tăng ngặt nên pt có tối đa 1 nghiệm

$$f(0.3) = -0.93$$
,  $f(0.4) = -0.44$ ,  $f(0.5) = 0.057$ 

Vây khoảng cách ly nghiệm là (0.4,0.5)

## Ví dụ:

Tìm các khoảng cách ly nghiệm của pt  $f(x) = x^3 - 3x + 1 = 0$ 

## giải:

Ta lập bảng giá trị tại các điểm đặc biệt

| X    |   | -3 |  |  | 3 |   |
|------|---|----|--|--|---|---|
| f(x) | _ | -  |  |  | + | + |

Nhìn vào bảng ta thấy pt có nghiệm trong các khoảng (-2, -1) (0, 1) (1,2)

Vì pt bậc 3 có tối đa 3 nghiệm, nên các khoảng cách ly nghiệm là : (-2,-1) (0,1) (1,2)

## Bài tập:

1. Tìm các khoảng cách ly nghiệm của pt

$$f(x) = e^x - x^2 + 3x - 2$$

#### Giải

$$f'(x) = e^x - 2x + 3$$

Ta lập bảng giá trị tại các điểm đặc biệt

| X    |   | -3 |  |  | 3 |   |
|------|---|----|--|--|---|---|
| f(x) | ı | ı  |  |  | + | + |

Nhận xét : f'(x) > 0,  $x \square [0,1]$ .

Vây khoảng cách ly nghiêm (0,1)

2. Tìm các khoảng cách ly nghiệm của pt

$$f(x) = x\cos x - 2x^2 + 3x + 1$$

$$f'(x) = \cos x - x \sin x - 4x + 3$$

Ta lập bảng giá trị tại các điểm đặc biệt

| X    |   | -3 |  |  | 3 |   |
|------|---|----|--|--|---|---|
| f(x) | - | I  |  |  | 1 | - |

Nhận xét:

$$f'(x) < 0 \quad x \square [1,2],$$

$$f'(x) > 0 \quad x \square [-1,0]$$

Vây các khoảng cách ly nghiệm: (-1.0), (1,2)

# 2. Cách giải gần đúng pt f(x) = 0

- ➤ B1: tìm tất cả các khoảng cách ly nghiệm
- ➤ B2: trong từng khoảng cách ly nghiệm, tìm nghiệm gần đúng của phương trình

# Các phương pháp giải gần đúng

- > Phương pháp chia đôi
- > Phương pháp lặp đơn
- > Phương pháp lặp Newton

# 3. Công thức sai số tổng quát:

# Định lý:

Giả sử f(x) liên tục trên [a,b], khả vi trên (a,b) Nếu x\*, x là nghiệm gần đúng và nghiệm chính xác của phương trình và

$$|f'(x)| \ge m > 0$$
,  $x \square (a,b)$ 

thì sai số được đánh giá theo công thức:

$$|x^* - x| \le |f(x^*)| / m$$

Ví dụ: Xét phương trình

$$f(x) = 2x^3 - 3x^2 - 5x + 1 = 0$$

trên khoảng [2.2, 2.6]

Tính sai số nếu chọn nghiệm  $x^* = 2.45$ 

#### Giải

$$f'(x) = 6x^{2} - 6x - 5$$

$$g(x)=|f'(x)| = 6x^{2} - 6x - 5, \quad x \square [2.2,2.6]$$

$$g'(x)=12x-6>0, \quad x \square [2.2,2.6],$$

$$g(2.2)=10.84$$

® 
$$|f'(x)| \ge 10.84 = m$$
,  $x \square [2.2, 2.6]$ 

Sai số 
$$|x^*-x| \le |f(x^*)|/m H 0.0143$$

Ghi nhớ: sai số luôn làm tròn lên

Ví dụ: Xét phương trình

$$f(x) = 5x + \sqrt[7]{x} - 24 = 0$$

trên khoảng [4,5]

Tính sai số nếu chọn nghiệm  $x^* = 4.9$ 

#### Giải

$$f'(x) = 5 + \frac{1}{7\sqrt[7]{x^6}}$$

$$=> |f'(x)| \ge 5 + \frac{1}{7\sqrt[7]{5^6}} = m, \quad x \square [4,5]$$

Sai số

$$|x^*-x| \le |f(x^*)|/m \text{ H } 0.3485$$

# II. Phương Pháp Chia Đôi

Xét phương trình f(x) = 0 có nghiệm chính xác x trong khoảng cách ly nghiệm [a,b] và f(a)f(b) < 0.

# Ý nghĩa hình học



1.Đặt  $[a_0,b_0]=[a,b], d_0=b_0-a_0=b-a$ 

Chọn  $x_0$  là điểm giữa của  $[a_0,b_0]$ 

Ta có 
$$x_0 = (a_0 + b_0) / 2$$

Nếu  $f(x_0) = 0$  thì  $x_0$  là nghiệm  $\square$  xong

- 2. Nếu
- $f(a_o)f(x_o) < 0$ : đặt  $a_1 = a_o$ ,  $b_1 = x_o$
- $f(x_o)f(b_o) < 0$ :  $dat a_1 = x_o, b_1 = b_o$

Ta thu được  $[a_1, b_1] \square [a_0,b_0]$  chứa nghiệm x  $d_1 = b_1 - a_1 = (b-a)/2$ , điểm giữa  $x_1 = (a_1 + b_1)/2$ 

3. Tiếp tục quá trình chia đôi như vậy đến n lần ta được

$$\begin{split} &[a_n,\,b_n] \; \square \; [a_{n\text{-}1},\!b_{n\text{-}1}] \; \text{chứa nghiệm x} \\ &d_n = b_n\text{-}a_n = (b\text{-}a)/2^n, \; f(a_n)f(b_n) < 0 \\ &\text{điểm giữa } x_n = (a_n + b_n) \; / \; 2, \; a_n \leq x_n \leq b_n \end{split}$$

Ta có 
$$\lim x_n = x$$

Vậy x<sub>n</sub> là nghiệm gần đúng của pt

Công thức sai số

$$|x_n - x| \le (b-a) / 2^{n+1}$$

Ví dụ: Tìm nghiệm gần đúng của pt  $f(x) = 5x^3 - \cos 3x = 0$  trên khoảng cách ly nghiệm [0,1] với n=3

Giải

Ta lập bảng

| n | $a_n$ | f(a <sub>n</sub> ) | b <sub>n</sub> | f(b <sub>n</sub> ) | X <sub>n</sub> | $f(x_n)$ | $\otimes_{_{\mathbf{n}}}$ |
|---|-------|--------------------|----------------|--------------------|----------------|----------|---------------------------|
| 0 | 0     | -                  | 1              | +                  |                |          | 0.5                       |
| 1 |       |                    |                |                    |                |          | 0.25                      |
| 2 |       |                    |                |                    |                |          | 0.125                     |
| 3 |       |                    |                |                    |                |          | 0.0625                    |

Nghiệm gần đúng là  $x_3 = 0.4375$ 

Ví dụ: Tìm nghiệm gần đúng của pt  $f(x) = 2+\cos(e^x-2)-e^x = 0$  trên khoảng [0.5,1.5] với sai số 0.04

#### Giải

Ta lập bảng

| n | $a_n$ | f(a <sub>n</sub> ) | b <sub>n</sub> | f(b <sub>n</sub> ) | X <sub>n</sub> | $f(x_n)$ | $\otimes_{\mathrm{n}}$ |
|---|-------|--------------------|----------------|--------------------|----------------|----------|------------------------|
| 0 | 0.5   | +                  | 1.5            | -                  |                |          | 0.5                    |
| 1 |       |                    |                |                    |                |          | 0.25                   |
| 2 |       |                    |                |                    |                |          | 0.125                  |
| 3 |       |                    |                |                    |                |          | 0.0625                 |
| 4 |       |                    |                |                    |                |          | 0.03125                |

Nghiệm gần đúng là x = 1.03125

# III. Phương Pháp Lặp Đơn

Xét phương trình f(x) = 0 có nghiệm chính xác x trong khoảng cách ly nghiệm [a,b] và f(a)f(b) < 0.

Ta chuyển pt 
$$f(x) = 0$$
 về dạng  $x = g(x)$ 

Bây giờ ta tìm điều kiện để dãy  $\{x_n\}$  hội tu Ta có định nghĩa sau

Định Nghĩa: Hàm g(x) gọi là <u>hàm co</u> trên đoạn [a,b] nếu  $\Box q: 0 < q < 1$  sao cho  $|g(x) - g(y)| \le q |x - y|, x, y \Box [a,b]$ 

q gọi là hệ số co

Để kiểm tra hàm co, ta dùng định lý sau

Định lý: Nếu hàm g(x) liên tục trên [a,b], khả vi trên (a,b) và  $\Box q: 0 < q < 1$  sao cho

$$|g'(x)| \le q$$
,  $x \square (a,b)$ 

Thì g(x) là hàm co với hệ số co q

Ví dụ: Xét tính chất co của hàm

$$g(x) = \sqrt[3]{10-x}$$

trên khoảng [0,1]

Giải

Ta có

$$|g'(x)| = \frac{1}{3\sqrt[3]{(10-x)^2}} \le \frac{1}{3\sqrt[3]{81}} = q, \forall x \in [0,1]$$
  
q H 0.0771 < 1

Nên g(x) là hàm co

Để tìm nghiệm gần đúng, ta chọn giá trị ban đầu  $x_o \square$  [a,b] tùy ý

Xây dựng dãy lặp theo công thức

$$x_n = g(x_{n-1}), n = 1, 2, ...$$

Bài toán của ta là khảo sát sự hội tụ của dãy  $\{x_n\}$ 

Tổng quát, dãy  $\{x_n\}$  có thể hội tụ hoặc phân kỳ

Nếu dãy  $\{x_n\}$  hội tụ thì nó sẽ hội tụ về nghiệm của pt

Ví dụ: Xét tính chất co của hàm  $g(x) = (x^2-e^x+2)/3$  trên khoảng [0,1]

#### Giải

$$g'(x) = (2x-e^{x})/3$$

$$g''(x) = (2-e^{x})/3=0 \text{ TM } x = \ln 2$$

$$\text{Ta có } g'(0) = -0.33, \ g'(1) = -0.24$$

$$g'(\ln 2) = -0.2046$$

$$\mathbb{R} \quad |g'(x)| \le 0.33 = q < 1, \quad x \square [0,1]$$

Nên g(x) là hàm co

# Định lý (nguyên lý ánh xạ co):

Giả sử g(x) là hàm co trên [a,b] với hệ số co q, đồng thời  $g(x) \square [a,b]$ ,  $x\square [a,b]$ 

Khi ấy với mọi giá trị ban đầu  $x_o \square$  [a,b] tùy ý, dãy lặp  $\{x_n\}$  hội tụ về nghiệm của pt

Ta có công thức đánh giá sai số

(1) 
$$|x_n - x| \le \frac{q^n}{1 - q} |x_1 - x_0|$$
 tiên nghiệm

(2) 
$$|x_n - x| \le \frac{q}{1 - q} |x_n - x_{n-1}|$$
 hậu nghiệm

Nhận xét :Công thức (2) cho sai số tốt hơn công thức (1)

Ví dụ: Xét phương trình

$$f(x) = x^3 - 3x^2 - 5 = 0$$

trên khoảng cách ly nghiệm [3,4]

Giả sử chọn giá trị ban đầu  $x_0 = 3.5$ 

a. Tính gần đúng nghiệm  $x_4$  và sai số  $\otimes_4$ 

#### Giải

Ta chuyển pt về dạng x = g(x)

Có nhiều cách chuyển:

Cách 1: 
$$x = \frac{x^2}{3} - \frac{5}{3x} = g(x)$$

$$g'(x) = \frac{2x}{3} + \frac{5}{3x^2}$$
 Không phải hàm co

Cách 2: 
$$x = 3 + \frac{5}{x^2} = g(x)$$

$$g'(x) = -\frac{10}{x^3} \implies |g'(x)| \le \frac{10}{27} = q, \forall x \in [3, 4]$$

q H 0.37037 < 1 nên g hàm co

Hiển nhiên  $g(x) \square [3,4]$  nên pp lặp hội tụ

xây dựng dãy lặp

$$\begin{cases} x_0 = 3.5 \\ x_n = 3 + \frac{5}{x_{n-1}^2}, \forall n = 1, 2, \dots \end{cases}$$

# Ta lập bảng

| n | $\mathbf{X}_{\mathbf{n}}$ |
|---|---------------------------|
| 0 | 3.5                       |
| 1 | 3.408163265               |
| 2 | 3.430456452               |
| 3 | 3.424879897               |
| 4 | 3.426264644               |

# Sai số

tien nghiem 
$$\Delta_4 = \frac{q^4}{1-q} | x_1 - x_0 | \approx 0.0028$$
  
hau nghiem  $\Delta_4 = \frac{q}{1-q} | x_4 - x_3 | \approx 0.00082$ 

b. Tìm nghiệm gần đúng với sai số 0.001 (dùng công thức tiên nghiệm)

$$|x_n - x| \le \frac{q^n}{1 - q} |x_1 - x_0| \le 0.001$$
  
 $\Rightarrow n \ge \log(\frac{(1 - q)0.001}{|x_1 - x_0|}) / \log q = 5.0164$   
 $\Rightarrow n = 6$ 

Nghiệm gần đúng  $x_6 = 3.426005817$ 

c. Tìm nghiệm gần đúng với sai số 0.001 (dùng công thức hậu nghiệm)

$$|x_n - x| \le \frac{q}{1 - q} |x_n - x_{n-1}| \le 0.001$$

Ta lập bảng

| n | $\mathbf{X}_{\mathbf{n}}$ | $\otimes_{_{\mathbf{n}}}$ |
|---|---------------------------|---------------------------|
| 0 | 3.5                       |                           |
| 1 |                           |                           |
| 2 |                           |                           |
| 3 |                           |                           |
| 4 |                           |                           |

Nghiệm gần đúng  $x^* = 3.426264644$ 

Ví dụ: Tìm nghiệm gần đúng của pt

$$x = \sqrt[3]{1000 - x}$$

trên khoảng cách ly nghiệm [9,10] với sai số  $10^{-8}$  chọn giá trị ban đầu  $x_0 = 10$ 

- a. Dùng công thức tiên nghiệm
- b. Dùng công thức hậu nhiệm

Giải 
$$x = \sqrt[3]{1000 - x} = g(x)$$

$$|g'(x)| = \frac{1}{3\sqrt[3]{(1000 - x)^2}} \le \frac{1}{3\sqrt[3]{990^2}} = q, \forall x \in [9, 10]$$
  
q H 0.0034 < 1, nên g(x) là hàm co

Dễ dàng kiếm tra  $g(x) \square [9,10], x \square [9,10]$ 

$$(9 \le \sqrt[3]{1000 - x} \le 10 \Leftrightarrow 0 \le x \le 271)$$

Theo nguyên lý ánh xạ co thì pp lặp hội tu xây dựng dãy lặp

$$\begin{cases} x_0 = 10 \\ x_n = \sqrt[3]{1000 - x_{n-1}} & \forall n = 1, 2, 3, \dots \end{cases}$$

a. Sai số (dùng công thức tiên nghiệm)

$$|x_n - x| \le \frac{q^n}{1 - q} |x_1 - x_0| \le 10^{-8}$$

$$\Rightarrow n \ge \log(\frac{(1-q)10^{-8}}{|x_1 - x_0|}) / \log q = 2.6376$$

$$\Rightarrow n = 3$$

Nghiệm gần đúng  $x_3 = 9.966666789$ 

b. Sai số (dùng công thức hậu nghiệm)

$$|x_n - x| \le \frac{q}{1 - q} |x_n - x_{n-1}| \le 10^{-8}$$

Ta lập bảng

| n | $\mathbf{X}_{\mathbf{n}}$ | $\otimes_{_{\mathbf{n}}}$ |
|---|---------------------------|---------------------------|
| 0 | 10                        |                           |
| 1 |                           |                           |
| 2 |                           |                           |
| 3 |                           |                           |

Nghiệm gần đúng  $x_3 = 9.966666789$ 

# Ví dụ: Xét phương trình

$$x = cosx$$

trên khoảng cách ly nghiệm [0,1]

Giả sử chọn giá trị ban đầu  $x_o = 1$ . Xác định số lần lặp n khi xấp xỉ nghiệm pt với sai số  $10^{-8}$  (dùng công thức tiên nghiệm)

#### Giải

a. g(x)=cosx
g'(x)=-sinx
g(x) là hàm co với hệ số co q = sin1H0.8415 < 1</li>
Mặt khác g(x) =cos x □[0,1] nên pp lặp hội tụ

xây dựng dãy lặp

$$x_{o} = 1$$
$$x_{n} = \cos x_{n-1}$$

Xác định số lần lặp bằng công thức tiền nghiệm

$$|x_n - x| \le \frac{q^n}{1 - q} |x_1 - x_0| \le 10^{-8}$$

$$\Rightarrow n \ge \log(\frac{(1-q)10^{-8}}{|x_1 - x_0|}) / \log q = 112.8904$$

Vậy số lần lặp n = 113

# Nhận xét:

Tốc độ hội tụ của pp lặp đơn phụ thuộc vào giá trị của hệ số co q

- > q càng nhỏ (gần với 0) thì pp lặp hội tụ càng nhanh
- > q càng lớn (gần với 1) thì pp lặp hội tụ càng chậm

# IV. Phương Pháp Lặp Newton

Một phương pháp lặp khác là pp lặp Newton, nếu hội tụ sẽ cho tốc độ hội tụ nhanh hơn

Giả sử hàm f khả vi trên khoảng cách ly nghiệm [a,b] với f(a)f(b) < 0 và f'(x) = 0,  $x \square [a,b]$ 

Phương trình f(x) = 0 tương đương với pt

$$x = x - \frac{f(x)}{f'(x)} = g(x)$$

Để tìm nghiệm gần đúng ta chọn 1 giá trị ban đầu  $x_o \square [a,b]$  tùy ý. Xây dựng dãy lặp  $\{x_n\}$  theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} \quad \forall n = 1, 2, ...$$

Công thức này gọi là công thức lặp Newton

Tổng quát, dãy  $\{x_n\}$  có thể hội tụ hoặc phân kỳ

# Ý nghĩa hình học



# Định lý:

Giả sử hàm f(x) có đạo hàm đến cấp 2 liên tục và các đạo hàm f'(x) và f"(x) không đổi dấu trên đoạn [a,b].

Khi ấy nếu chọn giá trị ban đầu  $x_0$  thỏa điều kiện Fourier

$$f(x_0)f''(x_0) > 0$$

Thì  $\overline{day}$   $\overline{lap}$   $\{x_n\}$  xác định theo công thức Newton sẽ hội tụ về nghiệm của pt

# Chú ý:

- Diều kiện Fourier chỉ là điều kiện đủ không phải là điều kiện cần
  - P Qui tắc đơn giản chọn  $x_0$  thỏa điều kiện Fourier:

nếu đạo hàm cấp 1 và 2 cùng dấu, chọn  $x_o = b$ . Ngược lại trái dấu chọn  $x_o = a$  Dể đánh giá sai số của pp Newton ta dùng công thức sai số tổng quát

$$|x_n - x| \le |f(x_n)| / m$$

$$m = \min_{x \in [a,b]} |f'(x)|$$

# Bai tap: Cho phương trình

 $f(x) = x^3 - 9x^2 - 4x + 12 - \cos(3x/4) = 0$ trên khoảng cách ly nghiệm [0,2]. Dùng pp Newton tính nghiệm  $x_3$  và đánh giá sai số  $\otimes_3$  theo công thức sai số tổng quát

#### Giải

1.Kiểm tra điều kiện hội tu

$$f'(x)=3x^2-18x-4+3\sin(3x/4)/4<0$$

$$f''(x)=6x-18+9\cos(3x/4)/16<0, x [0,2]$$

Đạo hàm f', f" cùng dấu, chọn  $x_0=2$ 

## 2. Xây dựng dãy lặp Newton

$$x_{0} = 2$$

$$x_{n} = x_{n-1} - \frac{x_{n-1}^{3} - 9x_{n-1}^{2} - 4x_{n-1} + 12 - \cos(3x_{n-1}/4)}{3x_{n-1}^{2} - 18x_{n-1} - 4 + 3\sin(3x_{n-1}/4)/4}$$

# Công thức sai số

$$m = \min_{0 \le x \le 2} |3x^2 - 18x - 4 + 3\sin(3x/4)/4| = 4$$

$$\Delta_n = \frac{|f(x_n)|}{m} = \frac{|x_n^3 - 9x_n^2 - 4x_n + 12 - \cos(3x_n/4)|}{4}$$

| n | X <sub>n</sub> | $\otimes_{_{\mathbf{n}}}$ |
|---|----------------|---------------------------|
| 0 | 2              |                           |
| 1 |                |                           |
| 2 |                |                           |
| 3 |                |                           |

Ví dụ: Tìm nghiệm gần đúng của pt  $f(x) = x - \cos x = 0$ 

Trên khoảng cách ly nghiệm [0,1] với sai số 10<sup>-8</sup>

#### Giải

1.Kiểm tra điều kiện hội tu

$$f'(x) = 1 + \sin x > 0, \quad x \square [0,1]$$

$$f''(x) = \cos x > 0$$

f'(x) và f''(x) cùng dấu, chọn  $x_o = 1$  ta có pp lặp Newton hội tụ

## 2. Xây dựng dãy lặp Newton

$$x_{0} = 1$$

$$x_{n} = x_{n-1} - \frac{x_{n-1} - \cos x_{n-1}}{1 + \sin x_{n-1}} \quad \forall n = 1, 2, ...$$

Công thức sai số

$$m = \min_{0 \le X \le 1} |f'(x)| = 1$$

$$\Delta_n = \frac{|f(x_n)|}{m} = |x_n - \cos x_n| \le 10^{-8}$$

| n | X <sub>n</sub> | $\otimes_{\mathrm{n}}$ |
|---|----------------|------------------------|
| 0 | 1              |                        |
| 1 |                |                        |
| 2 |                |                        |
| 3 |                |                        |

Nghiệm gần đúng  $x_3 = 0.739085133$