Teoremi di analisi

Teorema di De l'Hopital

• Se
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0} \circ \frac{\infty}{\infty} e \quad g'(x) \neq 0$$
, allora
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Equivalenze asintotiche

• Se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$ si dice che f(x) è asintoticamente equivalente a g(x) per $x \to x_0$ e si scrive $f(x) \sim g(x)$ $x \to x_0$

Teorema di Rolle

• Se una funzione f(x) è definita e continua in un intervallo chiuso [a,b], derivabile in]a,b[e f(a)=f(b), allora esiste almeno un punto appartenente all'intervallo in cui la derivata si annulla $(\exists x_0)$ tale che $f'(x_0) = 0$

Teorema di Lagrange

• Sia f(x) definita e continua in un intervallo [a, b] e derivabile in]a, b[, allora $\exists c \in [a, b]$ tale che $f'(c) = \frac{f(b) - f(a)}{b - a}$