Referee Report

The Demand for Bad Policy when Voters Underappreciate Equilibrium Effects

Yifei Liu

Department of Economics, LMU

July 7, 2023

CONTENTS

1 Question & Motivation

2 Experimental Design

3 Results & Conclusion

4 Assessment

Yifei Liu 2 / 3

Question & Motivation

RESEARCH QUESTION

Underappreciate Equilibrium Effects $\stackrel{causes}{\longrightarrow}$ Bad Policy Demand

■ Bad Policy: cannot maximize total utility

■ Equilibrium Effect: direct + indirect

■ Underappreciate: underestimate indirect effect

Underestimate Behavioral Changes $\stackrel{causes}{\longrightarrow}$ Ineffective Policy (low utility)

Yifei Liu 4 / 30

MOTIVATION

Causes for bad policy:

Most blame bad policies on politicians or institutions (limited electoral accountability^[1], ineptitude^[2], status quo bias^[3], reform delay^[4], dynamic inefficiency^[5])

Politicians are panderers, not educators^{[6][7][8]}

Why voters prefer bad policies?

Assumption: underestimation behavioral changes causes bad policies^[9] (previous papers haven't demonstrated the causal relationship)

Yifei Liu 5 / 30

Experimental Design

BASIC SETTING

Game setting:

choose one game to participate + state beliefs on cooperation rates

$$\begin{array}{c|cc}
C & D \\
C & b-c, b-c & -c, b \\
D & b, -c & 0, 0
\end{array}$$

	C	D
C	$b-c-t_C, b-c-t_C$	$-c-t_C, b-t_D$
D	$b-t_D, -c-t_C$	$-t_D, -t_D$

Prisoners' Dilemma (PD)

Harmony Games (HG)

Specific numbers: b = 6, c = 2, $t_C = 1$, $t_D = 4$ over a baseline of 5

 $C \ \ \underline{8}, \underline{8} \ \ \underline{2}, 7$

Prisoners' Dilemma (PD)

Harmony Games (HG)

Yifei Liu 7 / 30

CONCEPTUAL FRAMEWORK

Expected gain (G) can be decomposed into three terms:

- DE: direct effect of game change
- IS: indirect effect due to the behavioral adjustment by self
- IO: indirect effect due to the behavioral adjustment by opponent

With beliefs

Table: Beliefs on Cooperation Rates

	Prisoners' Dilemma	Harmony Game
Themselves	α	α'
Others	β	eta'

Yifei Liu 8 / 30

CONCEPTUAL FRAMEWORK

Then we can get

$$G = DE + IS + IO = -4 + 2\alpha + \alpha' + 6(\beta' - \beta)$$

where

$$DE = EU(HG|\alpha, \beta) - EU(PD|\alpha, \beta)$$
$$IS = EU(HG|\alpha', \beta) - EU(HG|\alpha, \beta)$$
$$IO = EU(HG|\alpha', \beta') - EU(HG|\alpha', \beta)$$

Based on rational assumption ($\alpha=0,\alpha^{'}=1$), if a person chooses HG, then ${\it G}>0$, then

$$\beta' - \beta > \frac{4 - 2\alpha - \alpha'}{6} = \frac{1}{2} \tag{1}$$

Yifei Liu 9 / 30

TREATMENTS

Two-stage experiment:

■ First Stage: play PD for 5 periods

■ Second Stage: play one of the games for 5 periods

(games are chosen in three different ways)

Three ways:

Table: Experiment Design - Treatments

Treatment	Extension
Control	Reverse Control
Random Dictator (RD)	Reverse RD
Majority Once	Majority Repeated

(reverse groups: avoid effect of orders; repeated group: evolution)

Yifei Liu 10 / 30

Results & Conclusion

Result 1: The payoffs in Harmony Game is higher than in Prisoners' Dilemma.

Table: Cooperation Rates (CR) and Payoffs in the Two Games

Stage	Туре	CR_{PD}	CR _{HG}	Payoff _{PD}	Payoff _{HG}
	Control	16%	92%		
Stage 2	Reverse Control	30%	93%		
	All	23%	95%	5.91	7.66
Stage 1	All (Period 5)	15.5%	95%	5.62	7.65

Yifei Liu 12 / 30

Result 2: The majority prefers Prisoners' Dilemma.

Table: Prisoners' Dilemma Vote Share

	Average	Min	Max
Vote Share	53.60%	50.00%	60.83%

Yifei Liu 13 / 30

Result 3: The <u>majority underestimates</u> the change of others' behavior.

Table: Average Difference of Cooperation Rates between HG and PD

	Real Difference		
	Control	Reverse Control	
Difference	76%	63%	

	Believed Difference		
	Random Dictator	Majority Once	Reverse RD
Difference	35%	35%	30%

Yifei Liu 14 / 30

Additional experiment:

causal relationship between beliefs and preference

■ First Stage: same as before

Additional Section: informed cooperation rates

■ Second Stage: same as before

(choose game: same as RD)

Two different sets of cooperation rates:

Table: Additional Experiment - Treatments

	Basic	Extension
Group A (17%-83%)	PD-1	HG-1
Group B (50%-50%)	PD-2	HG-2

(Extension: reverse groups)

Yifei Liu 15 / 30

Result 4: Underestimating changes in others' behavior <u>causes</u> a preference for the Prisoner's Dilemma.

IV method:

IV: Saw High Difference (= 1 if in Group A; = 0 if in Group B)

Table: Instrumenting for Beliefs

First Stage: Saw High Difference & Belief Difference					
	(1)	(2)			
	No Control Var.	Control Char.			
Saw High Difference	15.549***	16.232***			
	(5.444)	(5.467)			
Second Stage: Belief Difference & Preference for PD					
Belief Difference -0.022*** -0.022***					
	(800.0)	(800.0)			
Note: *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$					

Yifei Liu 16 / 30

CONCLUSION

Underestimate Behavioral Changes $\stackrel{causes}{\longrightarrow}$ Prisoners' Dilemma Preferred (Underappreciate Equilibrium Effects) (Bad Policy Demand)

Yifei Liu 17 / 30

Assessment

CONTRIBUTIONS

1. Political Economics

- New explanation for bad policies
- ► Demonstration of a causal relationship
- New methods for studying political economy (behavioral and experimental economic methods)

2. Behavioral Economics

Empirical support for χ -cursed equilibrium (based on EU Thoery)

Table: χ -cursed Equilibrium

Probability	Equilibrium	Others' Type (C or D)	Game
$\frac{1-\chi}{1-\chi}$	Bayesian Nash	know probability distribution	HG
χ	Full-cursed	completely ignore	PD

 χ : rate of choosing Prisoners' Dilemma (RD / reverse RD)

Yifei Liu 19 / 30

POINT 1: UTILITY FUNCTION

Additional experiment: $\underline{42\%}$ participants choose PD when knowing cooperation rates was 83% in HG and 17% in PD (PD-1 and HG-1)

Contradictory to equation (1):

$$\beta' - \beta = 83\% - 17\% = 66\% > 50\%$$

A similar experiment:

- 1. Game choice
- 2. Actions (C or D) in the two games
- 3. Beliefs on others' cooperation rates
- 4. Game choice (after simulated experience)
- 5. Game choice (after knowing real cooperation rates: 16% in PD and 92% in HG)

Choice is equivalent to:

$$L_{PD} = (5, 84\%; 11, 16\%)$$

 $L_{HG} = (8, 92\%; 2, 8\%)$

Yifei Liu 20 / 30

POINT 1: UTILITY FUNCTION

Potential explanation (consistent with data in additional experiment):
 <u>overweight</u> small probabilities & <u>underweight</u> large probabilities

Cumulative Prospect Theory (CPT):

$$EU_{HG} = \exp(-\beta(-\ln p)^{\alpha} \times 8^{\alpha} + \exp(-\beta(-\ln(1-p))^{\alpha} \times 2^{\alpha})$$

$$EU_{PD} = \exp(-\beta(-\ln(1-q))^{\alpha} \times 5^{\alpha} + \exp(-\beta(-\ln q)^{\alpha} \times 11^{\alpha})$$

Possible values of α and β :

Figure: fixed $\beta = 0.8$

Figure: fixed $\alpha = 0.6$

Yifei Liu

21 / 30

POINT 1: UTILITY FUNCTION

Assume p = 90% and q = 10%:

Table: CPT Expected Utility

	Expected Utility	
	90% in HG 10% in PD	
$\alpha = 0.6, \ \beta = 0.8$	3.24	3.26
$\alpha = 0.4, \ \beta = 0.8$	1.68	1.81
$\alpha = 0.2, \ \beta = 0.8$	1.37	1.46
$\alpha = 0.6, \ \beta = 0.6$	3.54	3.81
$\alpha = 0.6, \ \beta = 1.0$	2.98	2.84

In most cases,

$$G = EU_{HG} - EU_{PD} < 0$$

However, $\underline{\mathsf{CPT}}$ is complex and $\underline{\alpha},\underline{\beta}$ are not easy to determine.

Solution: (1) EU Theory; (2) more groups in additional experiment.

Yifei Liu 22 / 30

POINT 2: PAYOFFS VALUE

Two alternatives (given p = 10% and q = 90%):

Table: Alternative 1

$$\begin{array}{c|cc} & C & D \\ C & 9,9 & 5,\underline{10} \\ D & \underline{10},5 & \underline{8},\underline{8} \end{array}$$

Prisoners' Dilemma (PD)

Harmony Games (HG)

Table: Alternative 2

$$\begin{array}{c|cc} & C & D \\ C & 9,9 & 2,\underline{10} \\ D & \underline{10},2 & \underline{3},\underline{3} \end{array}$$

Prisoners' Dilemma (PD) Harmony Games (HG)

Guess: more prefer PD in Alternative 1 and HG in Alternative 2. Specific values: important but not mentioned

Solution: explanation

POINT 2: PAYOFFS VALUE

Games containing losses:

$$\begin{array}{c|c} C & D \\ C & 4,4 & -2,\underline{6} \\ D & \underline{6},-2 & \underline{0},\underline{0} \end{array}$$

$$\begin{array}{c|cc} & C & D \\ C & \underline{3,3} & -3,2 \\ D & \underline{2,-3} & -4,-4 \end{array}$$

Prisoners' Dilemma (PD)

Harmony Games (HG)

CPT utility function and visualization ($\lambda \ge 1$):

$$EU_{HG} = \exp(-\beta(-\ln p)^{\alpha} \times 3^{\alpha} + \exp(-\beta(-\ln(1-p))^{\alpha} \times (-\lambda)) 3^{\beta} < 0$$

$$EU_{PD} = \exp(-\beta(-\ln q)^{\alpha} \times 6^{\alpha} > 0$$

Solution: prepayment before participating in the experiment

Yifei Liu 24 / 30

POINT 2: PAYOFFS VALUE

Unit of payoffs value grows larger:

- $\underline{\beta}$ becomes larger: more risk averse and overweight small probabilities more
- The difference between EU_{HG} and EU_{PD} grows larger

$$Difference = 1000^{\alpha} \times (EU_{PD} - EU_{HG})$$

Solution: additional questions

Yifei Liu 25 / 30

POINT 3: GAME TYPE

Present bias $(0 < \delta < 1)$:

$$U_t(u) = u_t + \beta \sum_{\tau=t+1}^{T} \delta^{\tau-t} u_{\tau}$$

Solution: dynamic games (choose D in first period of HG)

Yifei Liu 26 / 30

POINT 4: CONSISTENCY WITH REALITY

Experiment in reality:

Pigouvian tax: reduce negative externalities

Effect in reality:

■ Direct Effect: revenue reduction from taxes

Indirect Effect: better living environment

Voters in reality:

■ Taxed Firms: small share of benefit, full burden of pollution

■ The Rest: only benefit

Realistic basis:

■ Taxed Firms: negative net profit?

■ The Rest: role in the games?

Yifei Liu 27 / 30

Thank You!

Reference I

- [1] John Ferejohn. "Incumbent performance and electoral control". In: Public choice (1986), pp. 5–25.
- [2] Francesco Caselli and Massimo Morelli. "Bad politicians". In: Journal of public economics 88.3-4 (2004), pp. 759–782.
- [3] Thomas Romer and Howard Rosenthal. "Political resource allocation, controlled agendas, and the status quo". In: Public choice (1978), pp. 27–43.
- [4] Raquel Fernandez and Dani Rodrik. "Resistance to reform: Status quo bias in the presence of individual-specific uncertainty". In: The American economic review (1991), pp. 1146–1155.
- [5] Rui JP De Figueiredo. "Electoral competition, political uncertainty, and policy insulation". In: American Political Science Review 96.2 (2002), pp. 321–333.

Yifei Liu 29 / 30

Reference II

- [6] Joseph E Harrington Jr. "Economic policy, economic performance, and elections". In: The American Economic Review (1993), pp. 27–42.
- [7] Brandice Canes-Wrone, Michael C Herron, and Kenneth W Shotts. "Leadership and pandering: A theory of executive policymaking". In: American Journal of Political Science (2001), pp. 532–550.
- [8] Eric Maskin and Jean Tirole. "The politician and the judge: Accountability in government". In: American Economic Review 94.4 (2004), pp. 1034–1054.
- [9] Ernesto Dal Bó, Pedro Dal Bó, and Erik Eyster. "The demand for bad policy when voters underappreciate equilibrium effects".
 In: The Review of Economic Studies 85.2 (2018), pp. 964–998.

Yifei Liu 30 / 30