Mathematics for Machine Learning

— Linear Algebra: Basis, Rank, Linear Mappings & Affine Spaces

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Spring 2025

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

- Why linear algebra?
- Vector Space
- 3 Basis & Dimension & Rank
- 4 Linear Mappings
- 5 Affine Spaces

Outline

- Why linear algebra?
- 2 Vector Space
- 3 Basis & Dimension & Rank
- 4 Linear Mappings
- 6 Affine Spaces

Why linear algebra?

• Crucial in the graduate school entrance examination.

Why linear algebra?

- Crucial in the graduate school entrance examination.
- Matrix operations.

Why linear algebra?

- Crucial in the graduate school entrance examination.
- Matrix operations.
- Vectorization.

Vectorization Example (1/3)

$$y_i = \langle \mathbf{m}, \mathbf{x}_i \rangle$$

= $m_1 x_{i,1} + m_2 x_{i,2} + \ldots + m_k x_{i,k}$.

m = np.random.rand(1,5)
x = np.random.rand(5000000,5)

#assume k=5

Vectorization Example (2/3)

```
start = time.time()
zer = []
for i in range(0,5000000):
    total = 0
    for j in range(0,5):
        total = total + x[i][j]*m[0][j]
    zer.append(total)
zer = np.array(zer)
end = time.time()
```


Vectorization Example (2/3)

```
start = time.time()
zer = []
for i in range(0,5000000):
    total = 0
    for j in range(0,5):
        total = total + x[i][j]*m[0][j]
    zer.append(total)
zer = np.array(zer)
end = time.time()
```

```
In [8]: runfile('C:/Users/josep/_Project/
vectorization_matrix.py', wdir='C:/Users/josep/_Project')
Computation time = 13.515385389328003 seconds
```

Vectorization Example (3/3)

```
start = time.time()
zer = np.matmul(x, m.T)
end = time.time()
```

In [13]: runfile('C:/Users/josep/_Project/
vectorization_matrix.py', wdir='C:/Users/josep/_Project')
Computation time © 0.010425329208374023 seconds

Outline

- Why linear algebra?
- Vector Space
- 3 Basis & Dimension & Rank
- 4 Linear Mappings
- 5 Affine Spaces

Group

Group

Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ defined on \mathcal{G} . Then $\mathcal{G}: (\mathcal{G}, \otimes)$ is called a group if the following conditions hold:

Group

Group

- 3 $\exists e \in \mathcal{G}$ such that $\forall x \in \mathcal{G}$, $x \otimes e = e \otimes x = x$.

Group

- $\forall x, y, z \in \mathcal{G}, (x \otimes y) \otimes z = x \otimes (y \otimes z).$
- **③** $\exists e \in \mathcal{G}$ such that $\forall x \in \mathcal{G}$, $x \otimes e = e \otimes x = x$.
- **③** $\forall x \in \mathcal{G}$, $\exists y \in \mathcal{G}$ such that $x \otimes y = y \otimes x = e$. We denote by x^{-1} the inverse element of x.

Group

- $\forall x, y, z \in \mathcal{G}, (x \otimes y) \otimes z = x \otimes (y \otimes z).$
- 3 $\exists e \in \mathcal{G}$ such that $\forall x \in \mathcal{G}$, $x \otimes e = e \otimes x = x$.
- **④** $\forall x \in \mathcal{G}$, $\exists y \in \mathcal{G}$ such that $x \otimes y = y \otimes x = e$. We denote by x^{-1} the inverse element of x.
 - If G is a group and $\forall x, y \in \mathcal{G}$ we have $x \otimes y = y \otimes x$, then G is an Abelian group.

- $(\mathbb{Z},+)$: an Abelain group.
- $(\mathbb{N} \cup \{0\}, +)$ is NOT a group.
- \bullet (\mathbb{Z}, \cdot) is NOT a group.
- (\mathbb{R}, \cdot) is NOT a group.
- $(\mathbb{R} \setminus \{0\}, \cdot)$ is an Abelian group.
- $(\mathbb{R}^{m \times n}, +)$ is an Abelian group.

Vector Space

Vector Space

A real-valued vector space $V = (\mathcal{V}, +, \cdot)$ is a set \mathcal{V} with two operations:

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$

$$\cdot: \mathbb{R} \times \mathcal{V} \to \mathcal{V}$$

where

- \bullet $(\mathcal{V},+)$ is an Abelian group.
- Distributivity holds:
 - $\forall \lambda \in \mathbb{R}$, $\mathbf{x}, \mathbf{y} \in \mathcal{V}$: $\lambda \cdot (\mathbf{x} + \mathbf{y}) = \lambda \cdot \mathbf{x} + \lambda \cdot \mathbf{y}$.
 - $\forall \lambda, \psi \in \mathbb{R}$, $\mathbf{x} \in \mathcal{V}$: $(\lambda + \psi) \cdot \mathbf{x} = \lambda \cdot \mathbf{x} + \psi \cdot \mathbf{x}$.
- $\forall \lambda, \psi \in \mathbb{R}$, $\mathbf{x} \in \mathcal{V}$: $\lambda \cdot (\psi \cdot \mathbf{x}) = (\lambda \psi) \cdot \mathbf{x}$.
- $\forall \mathbf{x} \in \mathcal{V}$: $1 \cdot \mathbf{x} = \mathbf{x}$.
- * Note: A vector multiplication is not defined.

Vector Subspaces

Vector Subspace

Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and $\mathcal{U} \subset \mathcal{V}$ and $\mathcal{U} \neq \emptyset$. Then $U = (\mathcal{U}, +, \cdot)$ is called a vector **subspace** of V if U is a vector space with the operations + and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$ respectively.

• Denote by $U \subseteq V$ a subspace U of V.

Vector Subspaces

Vector Subspace

Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and $\mathcal{U} \subset \mathcal{V}$ and $\mathcal{U} \neq \emptyset$. Then $U = (\mathcal{U}, +, \cdot)$ is called a vector **subspace** of V if U is a vector space with the operations + and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$ respectively.

• Denote by $U \subseteq V$ a subspace U of V.

• The trivial subspace of a vector space $V: \{0\}$ and V.

- The trivial subspace of a vector space $V: \{0\}$ and V.
- The solution set of a homogeneous system of linear equations $A\mathbf{x} = \mathbf{0}$ with n unknowns (i.e., $\mathbf{x} = [x_1, \dots, x_n]^\top$) is a subspace of \mathbb{R}^n .

- The trivial subspace of a vector space $V: \{0\}$ and V.
- The solution set of a homogeneous system of linear equations $A\mathbf{x} = \mathbf{0}$ with n unknowns (i.e., $\mathbf{x} = [x_1, \dots, x_n]^\top$) is a subspace of \mathbb{R}^n .
- The intersection of arbitrarily many subspaces is a subspace.

- The trivial subspace of a vector space $V: \{0\}$ and V.
- The solution set of a homogeneous system of linear equations $A\mathbf{x} = \mathbf{0}$ with n unknowns (i.e., $\mathbf{x} = [x_1, \dots, x_n]^{\top}$) is a subspace of \mathbb{R}^n .
- The intersection of arbitrarily many subspaces is a subspace.
- The solution of an inhomogeneous system of linear equations $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} \neq \mathbf{0}$ is NOT a subspace of \mathbb{R}^n .

Linear Combination

Linear Combination

Consider a vector space V and a finite number of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$. Then, every $\mathbf{v} \in V$ of the form

$$\mathbf{v} = \lambda_1 \mathbf{x}_1 + \cdots \lambda_k \mathbf{x}_k = \sum_{i=1}^k \lambda_i \mathbf{x}_i \in V$$

with $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ is a linear combination of the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$.

• **Question**: How to represent **0** as a linear combination of x_1, \ldots, x_k ?

←□ → ←□ → ← □ → □ ● り へ ○

Linearly Independent

Linear (In)dependence

Consider a vector space V with k > 0 vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$.

- If there is a nontrivial linear combination such that $\mathbf{0} = \sum_{i=1}^k \lambda_i x_i$ with at least one $\lambda_i \neq 0$, then we say $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly dependent.
- If only the trivial solution exists (i.e., $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$), then we say $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly independent.

Recall some facts

• If at least one of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ is $\mathbf{0}$ then they are linearly dependent.

Recall some facts

- If at least one of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ is $\mathbf{0}$ then they are linearly dependent.
- Two identical vectors are linearly dependent.

Recall some facts

- If at least one of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ is $\mathbf{0}$ then they are linearly dependent.
- Two identical vectors are linearly dependent.
- Write all vectors as rows (or columns) of a matrix and perform Gaussian elimination until the matrix is in row echelon form.

Remark (1/2)

Consider a vector space V with k linearly independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k$ and m linear combinations

$$\mathbf{x}_1 = \sum_{i=1}^k \lambda_{i,1} \mathbf{b}_i$$

:

$$\mathbf{x}_{m} = \sum_{i=1}^{k} \lambda_{i,m} \mathbf{b}_{i}$$

Remark (1/2)

Consider a vector space V with k linearly independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k$ and m linear combinations

$$\mathbf{x}_1 = \sum_{i=1}^{\kappa} \lambda_{i,1} \mathbf{b}_i$$

$$\vdots$$

$$\mathbf{x}_{m} = \sum_{i=1}^{k} \lambda_{i,m} \mathbf{b}_{i}$$

• Define $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_k]$ (i.e., a matrix), then

$$\mathbf{x}_j = oldsymbol{B} oldsymbol{\lambda}_j, ext{ for } oldsymbol{\lambda}_j = egin{bmatrix} \lambda_{1j} \ dots \ \lambda_{kj} \end{bmatrix}, \ j = 1, \ldots, m.$$

Remark (2/2)

We want to test whether $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent.

$$\bullet \ \sum_{j=1}^m \psi_j \mathbf{x}_j = \mathbf{0}.$$

Remark (2/2)

We want to test whether $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent.

- $\bullet \sum_{j=1}^m \psi_j \mathbf{x}_j = \mathbf{0}.$
- So,

$$\sum_{j=1}^{m} \psi_j \mathbf{x}_j = \sum_{j=1}^{m} \psi_j \mathbf{B} \lambda_j = \mathbf{B} \sum_{j=1}^{m} \psi_j \lambda_j.$$

Remark (2/2)

We want to test whether $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent.

- $\bullet \ \sum_{j=1}^m \psi_j \mathbf{x}_j = \mathbf{0}.$
- So,

$$\sum_{j=1}^{m} \psi_j \mathbf{x}_j = \sum_{j=1}^{m} \psi_j \mathbf{B} \lambda_j = \mathbf{B} \sum_{j=1}^{m} \psi_j \lambda_j.$$

• Why does the last equality hold?

Remark (2/2)

We want to test whether $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent.

- $\bullet \ \sum_{j=1}^m \psi_j \mathbf{x}_j = \mathbf{0}.$
- So,

$$\sum_{j=1}^{m} \psi_j \mathbf{x}_j = \sum_{j=1}^{m} \psi_j \mathbf{B} \lambda_j = \mathbf{B} \sum_{j=1}^{m} \psi_j \lambda_j.$$

- Why does the last equality hold?
- $\{x_1, \ldots, x_m\}$ are linearly independent iff $\{\lambda_1, \ldots, \lambda_m\}$ are linearly independent.

Remark (2/2)

We want to test whether $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent.

- $\bullet \ \sum_{j=1}^m \psi_j \mathbf{x}_j = \mathbf{0}.$
- So,

$$\sum_{j=1}^{m} \psi_j \mathbf{x}_j = \sum_{j=1}^{m} \psi_j \mathbf{B} \lambda_j = \mathbf{B} \sum_{j=1}^{m} \psi_j \lambda_j.$$

- Why does the last equality hold?
- $\{x_1, \ldots, x_m\}$ are linearly independent iff $\{\lambda_1, \ldots, \lambda_m\}$ are linearly independent.
- **Note:** m linear combinations of k vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly dependent if m > k.

Consider a set of linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4 \in \mathbb{R}^n$ and

Consider a set of linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4 \in \mathbb{R}^n$ and

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 & -1 \\ -4 & -2 & 0 & 4 \\ 2 & 3 & -1 & 3 \\ 17 & -10 & 11 & 1 \end{bmatrix}$$

Consider a set of linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4 \in \mathbb{R}^n$ and

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 & -1 \\ -4 & -2 & 0 & 4 \\ 2 & 3 & -1 & 3 \\ 17 & -10 & 11 & 1 \end{bmatrix} \longrightarrow$$

Consider a set of linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4 \in \mathbb{R}^n$ and

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 & -1 \\ -4 & -2 & 0 & 4 \\ 2 & 3 & -1 & 3 \\ 17 & -10 & 11 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

ML Math - Linear Algebra Basis & Dimension & Rank

Outline

- Why linear algebra?
- 2 Vector Space
- 3 Basis & Dimension & Rank
- 4 Linear Mappings
- 6 Affine Spaces

Basis

Spanning/Generating

Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and a set $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A} , then \mathcal{A} is called a spanning set (or generating set) of V.

• \mathcal{A} spans V; span $(\mathcal{A}) = V$.

Basis

Spanning/Generating

Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and a set $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subseteq \mathcal{V}$.

If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A} , then \mathcal{A} is called a spanning set (or generating set) of V.

• \mathcal{A} spans V; span $(\mathcal{A}) = V$.

Basis

Consider a vector space $V=(\mathcal{V},+,\cdot)$ and a set $\mathcal{A}\subseteq\mathcal{V}$. Then if one of the following condition holds, we say that \mathcal{A} is a basis of V.

• A is a minimal generating set of V.

Basis

Spanning/Generating

Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and a set $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subseteq \mathcal{V}$.

If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A} , then \mathcal{A} is called a spanning set (or generating set) of V.

• \mathcal{A} spans V; span $(\mathcal{A}) = V$.

Basis

Consider a vector space $V=(\mathcal{V},+,\cdot)$ and a set $\mathcal{A}\subseteq\mathcal{V}$. Then if one of the following condition holds, we say that \mathcal{A} is a basis of V.

- \mathcal{A} is a minimal generating set of V. No smaller set $\mathcal{A}' \subsetneq \mathcal{A} \subseteq \mathcal{V}$ that spans V.
- ullet \mathcal{A} spans V and is also linearly independent.

Dimension

Dimension

The number of basis vectors of a vector space V is the *dimension* of V and denoted by $\dim(V)$.

• For $U \subset V$ a subspace of V, $\dim(U) \leq \dim(V)$

Let $V = \mathbb{R}[x]$ be the vector space of all real-coefficient polynomials. Define

$$U = x \mathbb{R}[x] = \{ x \rho(x) : \rho(x) \in \mathbb{R}[x] \},$$

the set of all polynomials whose constant term is 0.

Claim. $U \subsetneq V$ and $\dim(U) = \dim(V)$.

- *U* is a subspace of *V*: it is closed under addition and scalar multiplication by construction.
- U is proper: $1 \in V$ but $1 \notin U$ (no polynomial p satisfies xp(x) = 1).
- A standard basis of V is $\mathcal{B}_V = \{1, x, x^2, x^3, \dots\}$. Hence $\dim(V) = |\mathcal{B}_V| = \aleph_0$ (countably infinite).
- A basis of U is $\mathcal{B}_U = \{x, x^2, x^3, \dots\}$, so dim $(U) = |\mathcal{B}_U| = \aleph_0$.

Therefore $U \subseteq V$ but $\dim(U) = \dim(V) = \aleph_0$.

ML Math - Linear Algebra Basis & Dimension & Rank

Exercise

Given
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 2 \\ -2 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 3 \\ -4 \\ 3 \\ 5 \\ -3 \end{bmatrix}$, $\mathbf{x}_4 = \begin{bmatrix} -1 \\ 8 \\ -5 \\ -6 \\ 1 \end{bmatrix}$.

Find a basis of span($\{x_1, \ldots, x_4\}$).

ML Math - Linear Algebra Basis & Dimension & Rank

Rank

Rank

The number of linearly independent columns of a matrix $\mathbf{A} = \mathbb{R}^{m \times n}$.

Rank

Rank

The number of linearly independent columns of a matrix $\mathbf{A} = \mathbb{R}^{m \times n}$.

- This equals the number of linearly independent rows of A.
- Denote by rank(A) the rank of A.

Important Properties

- $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}).$
- For all $\mathbf{A} \in \mathbb{R}^{n \times n}$, \mathbf{A} is invertible if and only if $\operatorname{rank}(\mathbf{A}) = n$.
- $\operatorname{nullity}(\mathbf{A}) = \operatorname{dim}(\operatorname{null}(\mathbf{A})) = n \operatorname{rank}(\mathbf{A})$, where $\operatorname{null}(\mathbf{A})$ is the subspace of \mathbb{R}^n which solutions for $\mathbf{A}\mathbf{x} = \mathbf{0}$.
- If $rank(\mathbf{A}) = min\{m, n\}$ for a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, then we say \mathbf{A} has full rank.

Outline

- 1 Why linear algebra?
- 2 Vector Space
- 3 Basis & Dimension & Rank
- 4 Linear Mappings
- 5 Affine Spaces

Linear Mappings/Linear Transformation

A mapping $\Phi: V \to W$ preserves the structure of the vector space if

$$\Phi(\mathbf{x} + \mathbf{y}) = \Phi(\mathbf{x}) + \Phi(\mathbf{y})$$

$$\Phi(\lambda \mathbf{x}) = \lambda \Phi(\mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in \mathbb{R}$.

Linear Mappings/Linear Transformation

A mapping $\Phi: V \to W$ preserves the structure of the vector space if

- $\Phi(\mathbf{x} + \mathbf{y}) = \Phi(\mathbf{x}) + \Phi(\mathbf{y})$
- $\Phi(\lambda \mathbf{x}) = \lambda \Phi(\mathbf{x})$

for all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in \mathbb{R}$.

Linear Mapping

For two vector spaces V,W, a mapping $\Phi:V o W$ is a linear mapping if

$$\forall \mathbf{x}, \mathbf{y} \in V, \forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda \mathbf{x} + \psi \mathbf{y}) = \lambda \Phi(\mathbf{x}) + \psi \Phi(\mathbf{y}).$$

Different coordinate representation

Transformation Matrix

Transformation Matrix

Given vector spaces V, W with corresponding bases $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$. Consider a linear mapping $\Phi : V \to W$. For $1 \le i \le n$,

$$\Phi(\mathbf{b}_j) = \alpha_{1,j}\mathbf{c}_1 + \cdots + \alpha_{m,j}\mathbf{c}_m = \sum_{i=1}^m \alpha_{ij}\mathbf{c}_i$$

is the unique representation of $\Phi(\mathbf{b}_i)$ w.r.t. C (i.e., coordinate). Then, we call the $m \times n$ matrix \mathbf{A}_{Φ} , whose elements are $A_{\Phi}(i,j) = \alpha_{ii}$, the transformation matrix of Φ.

• If $\hat{\mathbf{x}}$ is the coordinate of $\mathbf{x} \in V$ w.r.t. B and $\hat{\mathbf{y}} = \Phi(\mathbf{x}) \in W$ w.r.t. C, then $\hat{\mathbf{v}} = \mathbf{A}_{\Phi}(\hat{\mathbf{x}}).$

◆□ ト ◆□ ト ◆ 亘 ト ◆ 亘 ・ り Q (P)

Consider a linear mapping $\Phi: V \to W$ and ordered bases $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ of V and $C = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4)$ of W. Assume that

$$\Phi(\mathbf{b}_1) = \mathbf{c}_1 - \mathbf{c}_2 + 3\mathbf{c}_3 - \mathbf{c}_4
\Phi(\mathbf{b}_2) = 2\mathbf{c}_1 + \mathbf{c}_2 + 7\mathbf{c}_3 + 2\mathbf{c}_4
\Phi(\mathbf{b}_3) = 3\mathbf{c}_2 + \mathbf{c}_3 + 4\mathbf{c}_4.$$

The transformation matrix \mathbf{A}_{Φ} w.r.t. B and C satisfying $\Phi(\mathbf{b}_k) = \sum_{i=1}^4 \alpha_{ik} \mathbf{c}_i$ for k=1,2,3 is

Consider a linear mapping $\Phi: V \to W$ and ordered bases $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ of V and $C = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4)$ of W. Assume that

$$\Phi(\mathbf{b}_1) = \mathbf{c}_1 - \mathbf{c}_2 + 3\mathbf{c}_3 - \mathbf{c}_4
\Phi(\mathbf{b}_2) = 2\mathbf{c}_1 + \mathbf{c}_2 + 7\mathbf{c}_3 + 2\mathbf{c}_4
\Phi(\mathbf{b}_3) = 3\mathbf{c}_2 + \mathbf{c}_3 + 4\mathbf{c}_4.$$

The transformation matrix \mathbf{A}_{Φ} w.r.t. B and C satisfying $\Phi(\mathbf{b}_k) = \sum_{i=1}^4 \alpha_{ik} \mathbf{c}_i$ for k=1,2,3 is

$$m{A}_{\Phi} = [m{lpha}_1, m{lpha}_2, m{lpha}_3] = \left[egin{array}{ccc} 1 & 2 & 0 \ -1 & 1 & 3 \ 3 & 7 & 1 \ -1 & 2 & 4 \end{array}
ight].$$

• $[I]_B^{B'}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B'.

- $[I]_B^{B'}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B'.
- For example, let $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$

- $[I]_B^{B'}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B'.
- For example, let $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$
 - $[I]_{B'}^B =$

- $[I]_B^{B'}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B'.
- For example, let $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$
 - $\bullet \ [I]_{B'}^B = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right].$

- $[I]_B^{B'}$: a transformation matrix that maps coordinates w.r.t. B onto coordinates w.r.t. B'.
- For example, let $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$
 - $\bullet \ [I]_{B'}^B = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right].$
 - What about $[I]_B^{B'}$?

Basis Change

Consider a transformation matrix

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

w.r.t. the standard basis (canonical basis) in \mathbb{R}^2 .

Basis Change

Consider a transformation matrix

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

w.r.t. the standard basis (canonical basis) in \mathbb{R}^2 . Define a new basis

$$B = \left(\left[\begin{array}{c} 1 \\ 1 \end{array} \right], \left[\begin{array}{c} 1 \\ -1 \end{array} \right] \right)$$

Then, what about the transformation matrix $\tilde{\bf A}$ w.r.t. B?

Basis Change

Given

• a linear mapping $\Phi: V \to W$, ordered bases

$$\textit{B} = (b_1, \dots, b_n), \ \tilde{\textit{B}} = (\tilde{b}_1, \dots, \tilde{b}_n) \ \text{of} \ \textit{V}$$

$$C = (\mathbf{c}_1, \ldots, \mathbf{c}_m), \ \tilde{C} = (\tilde{\mathbf{c}}_1, \ldots, \tilde{\mathbf{c}}_m) \ \text{of } W.$$

• a transformation matrix \mathbf{A}_{Φ} of Φ w.r.t. B and C.

Then, the corresponding transformation matrix $\tilde{m{A}}_{\Phi}$ w.r.t. \tilde{B} and \tilde{C} is

$$\tilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S}.$$

where
$$m{S} = [I]_{\tilde{B}}^B \in \mathbb{R}^{n \times n}$$
 and $m{T} = [I]_{\tilde{C}}^C \in \mathbb{R}^{m \times m}$.

$$\begin{split} \tilde{\boldsymbol{b}}_j &= s_{1j} \mathbf{b}_1 + \cdots s_{n,j} \mathbf{b}_n = \sum_{i=1}^n s_{ij} \mathbf{b}_i, \quad j = 1, \dots, n. \\ \tilde{\boldsymbol{c}}_k &= t_{1k} \mathbf{c}_1 + \cdots t_{m,k} \mathbf{c}_m = \sum_{\ell=1}^m t_{\ell k} \mathbf{c}_\ell, \quad k = 1, \dots, m. \\ \text{Let } \boldsymbol{S} &= ((s_{ij})) = [I]_{\tilde{E}}^B \in \mathbb{R}^{n \times n} \text{ and } \boldsymbol{T} = ((t_{\ell k})) = [I]_{\tilde{C}}^C \in \mathbb{R}^{m \times m}. \end{split}$$

$$\begin{split} \tilde{\boldsymbol{b}}_j &= s_{1j} \mathbf{b}_1 + \cdots s_{n,j} \mathbf{b}_n = \sum_{i=1}^n s_{ij} \mathbf{b}_i, \quad j = 1, \dots, n. \\ \tilde{\boldsymbol{c}}_k &= t_{1k} \mathbf{c}_1 + \cdots t_{m,k} \mathbf{c}_m = \sum_{\ell=1}^m t_{\ell k} \mathbf{c}_\ell, \quad k = 1, \dots, m. \\ \text{Let } \boldsymbol{S} &= ((s_{ij})) = [I]_{\tilde{B}}^B \in \mathbb{R}^{n \times n} \text{ and } \boldsymbol{T} = ((t_{\ell k})) = [I]_{\tilde{C}}^C \in \mathbb{R}^{m \times m}. \end{split}$$

• Applying the mapping Φ , we get that for all $j = 1, \dots, n$,

$$\Phi(\tilde{\boldsymbol{b}}_j) = \sum_{k=1}^m \underbrace{\tilde{a}_{kj}\tilde{\boldsymbol{c}}_k}_{\in W}$$

$$\begin{split} &\tilde{oldsymbol{b}}_j = s_{1j} oldsymbol{b}_1 + \cdots s_{n,j} oldsymbol{b}_n = \sum_{i=1}^n s_{ij} oldsymbol{b}_i, \quad j = 1, \dots, n. \\ &\tilde{oldsymbol{c}}_k = t_{1k} oldsymbol{c}_1 + \cdots t_{m,k} oldsymbol{c}_m = \sum_{\ell=1}^m t_{\ell k} oldsymbol{c}_\ell, \quad k = 1, \dots, m. \\ &\operatorname{Let} \, oldsymbol{S} = ((s_{ij})) = [I]_{\tilde{E}}^B \in \mathbb{R}^{n \times n} \, \, \operatorname{and} \, \, oldsymbol{T} = ((t_{\ell k})) = [I]_{\tilde{C}}^C \in \mathbb{R}^{m \times m}. \end{split}$$

• Applying the mapping Φ , we get that for all $j = 1, \dots, n$,

$$\Phi(\tilde{\boldsymbol{b}}_j) = \sum_{k=1}^m \tilde{a}_{kj} \tilde{\boldsymbol{c}}_k = \sum_{k=1}^m \tilde{a}_{kj} \sum_{\ell=1}^m t_{\ell k} \boldsymbol{c}_{\ell}$$

$$\begin{split} \tilde{\boldsymbol{b}}_j &= s_{1j} \mathbf{b}_1 + \cdots s_{n,j} \mathbf{b}_n = \sum_{i=1}^n s_{ij} \mathbf{b}_i, \quad j = 1, \dots, n. \\ \tilde{\boldsymbol{c}}_k &= t_{1k} \mathbf{c}_1 + \cdots t_{m,k} \mathbf{c}_m = \sum_{\ell=1}^m t_{\ell k} \mathbf{c}_\ell, \quad k = 1, \dots, m. \\ \text{Let } \boldsymbol{S} &= ((s_{ij})) = [I]_{\tilde{B}}^B \in \mathbb{R}^{n \times n} \text{ and } \boldsymbol{T} = ((t_{\ell k})) = [I]_{\tilde{C}}^C \in \mathbb{R}^{m \times m}. \end{split}$$

• Applying the mapping Φ , we get that for all $j = 1, \dots, n$,

$$\Phi(\tilde{\boldsymbol{b}}_{j}) = \sum_{k=1}^{m} \tilde{\boldsymbol{a}}_{kj} \tilde{\boldsymbol{c}}_{k} = \sum_{k=1}^{m} \tilde{\boldsymbol{a}}_{kj} \sum_{\ell=1}^{m} t_{\ell k} \boldsymbol{c}_{\ell} = \sum_{\ell=1}^{m} \left(\sum_{k=1}^{m} t_{\ell k} \tilde{\boldsymbol{a}}_{kj} \right) \boldsymbol{c}_{\ell}.$$

$$egin{aligned} ilde{m{b}}_j &= s_{1j} \mathbf{b}_1 + \cdots s_{n,j} \mathbf{b}_n = \sum_{i=1}^n s_{ij} \mathbf{b}_i, & j = 1, \dots, n. \ ilde{m{c}}_k &= t_{1k} \mathbf{c}_1 + \cdots t_{m,k} \mathbf{c}_m = \sum_{\ell=1}^m t_{\ell k} \mathbf{c}_\ell, & k = 1, \dots, m. \end{aligned}$$
 Let $m{S} = ((s_{ij})) = [I]_{\tilde{m{E}}}^B \in \mathbb{R}^{n imes n}$ and $m{T} = ((t_{\ell k})) = [I]_{\tilde{m{C}}}^C \in \mathbb{R}^{m imes m}.$

• Applying the mapping Φ , we get that for all $j = 1, \ldots, n$,

$$\Phi(\tilde{\boldsymbol{b}}_{j}) = \sum_{k=1}^{m} \tilde{\boldsymbol{a}}_{kj} \tilde{\boldsymbol{c}}_{k} = \sum_{k=1}^{m} \tilde{\boldsymbol{a}}_{kj} \sum_{\ell=1}^{m} t_{\ell k} \boldsymbol{c}_{\ell} = \sum_{\ell=1}^{m} \left(\sum_{k=1}^{m} t_{\ell k} \tilde{\boldsymbol{a}}_{kj} \right) \boldsymbol{c}_{\ell}.$$

Alternatively,

$$\Phi(\tilde{\mathbf{b}}_{j}) = \Phi\left(\sum_{i=1}^{n} s_{ij} \mathbf{b}_{i}\right) = \sum_{i=1}^{n} s_{ij} \Phi(\mathbf{b}_{i}) = \sum_{i=1}^{n} s_{ij} \sum_{\ell=1}^{m} a_{\ell i} \mathbf{c}_{\ell}$$
$$= \sum_{\ell=1}^{m} \left(\sum_{i=1}^{n} a_{\ell i} s_{ij}\right) \mathbf{c}_{\ell}$$

Proof (2/2)

Hence,

$$\sum_{k=1}^m t_{\ell k} ilde{a}_{kj} = \sum_{i=1}^n a_{\ell i} s_{ij}, \; ext{ for each } j$$

and it means that

Proof (2/2)

Hence,

$$\sum_{k=1}^m t_{\ell k} \tilde{a}_{kj} = \sum_{i=1}^n a_{\ell i} s_{ij}, ext{ for each } j$$

and it means that

$$T\tilde{A}_{\Phi} = A_{\Phi}S \in \mathbb{R}^{m \times n}$$

such that

$$ilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S}.$$

Basis Change (4/4)

The theorem tells us that

Basis Change (4/4)

The theorem tells us that

With

- ullet a basis change in V (i.e., $B o ilde{B})$ and
- ullet a basis change in W (i.e., $C o ilde{C}$),

the transformation matrix ${\bf A}_\Phi$ of a linear mapping $\Phi:V\to W$ is replaced by an equivalent matrix $\tilde{{\bf A}}_\Phi$ with

$$\tilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S}.$$

Consider a linear mapping $\Phi: \mathbb{R}^3 \to \mathbb{R}^4$ with transformation matrix

$$m{A}_{\Phi} = \left[egin{array}{cccc} 1 & 2 & 0 \ -1 & 1 & 3 \ 3 & 7 & 1 \ -1 & 2 & 4 \ \end{array}
ight]$$

w.r.t. the standard bases

$$B = \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right), C = \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right).$$

We seek the transformation matrix $\tilde{\mathbf{A}}_{\Phi}$ of Φ w.r.t. the new bases

$$ilde{\mathcal{B}} = \left(\left[egin{array}{c} 1 \\ 1 \\ 0 \end{array} \right], \left[egin{array}{c} 0 \\ 1 \\ 1 \end{array} \right], \left[egin{array}{c} 1 \\ 0 \\ 1 \end{array} \right]
ight), \ ilde{\mathcal{C}} = \left(\left[egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array} \right], \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} \right], \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} \right], \left[egin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array} \right]
ight).$$

- ◆ロト ◆団 ト ◆ 圭 ト · 圭 · か Q @

S =

T =

$$m{S} = \left[egin{array}{ccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{array}
ight], \quad m{T} = \left[egin{array}{cccc} 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

Then,

$$ilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S} = \cdots$$

4 D > 4 D > 4 E > 4 E > E 9 Q @

$$m{S} = \left[egin{array}{ccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{array}
ight], \quad m{T} = \left[egin{array}{cccc} 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

Then,

$$ilde{m{A}}_{\Phi} = m{T}^{-1} m{A}_{\Phi} m{S} = \cdots = \left[egin{array}{cccc} -4 & -4 & -2 & 6 & 0 & 0 \\ 6 & 0 & 0 & 4 & 8 & 4 \\ 1 & 6 & 3 & 4 \end{array} \right].$$

Image and Kernel

Image & Kernel

For $\Phi: V \to W$, we define

$$\ker(\Phi) := \Phi^{-1}(\mathbf{0}_W) = \{\mathbf{v} \in V \mid \Phi(\mathbf{v}) = \mathbf{0}_W\}$$

and

$$\mathsf{Image}(\Phi) := \Phi(\mathit{V}) = \{ \mathbf{w} \in \mathit{W} \mid \exists \mathbf{v} \in \mathit{V} \mid \Phi(\mathbf{v}) = \mathbf{w} \}.$$

- V: domain of Φ
- W: codomain of Φ

Remark

For vector spaces V and W and a linear mapping $\Phi: V \to W$:

- $\Phi(\mathbf{0}_V) = \mathbf{0}_W$ so $\mathbf{0} \in \ker(\Phi)$.
- Image(Φ) $\subseteq W$ is a subspace of W
- $\ker(\Phi) \subseteq V$ is a subspace of V.
- Φ is injective (i.e., one-to-one) if and only if $\ker(\Phi) = \{\mathbf{0}\}$.
- Image(Φ) = { $\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n$ } = { $\sum_{i=1}^n x_i \mathbf{a}_i \mid x_1, \dots, x_n \in \mathbb{R}$ } = span($\mathbf{a}_1, \dots, \mathbf{a}_n$) $\subseteq \mathbb{R}^m$.
- $rank(\Phi) = dim(Image(\Phi))$.
- $\star \operatorname{dim}(\ker(\Phi)) + \operatorname{dim}(\operatorname{Image}(\Phi)) = \operatorname{dim}(V).$
 - $null(\mathbf{A}) + rank(\mathbf{A}) = number of columns of A.$
- If $\dim(V) = \dim(W)$, then Φ is injective, surjective and bijective $(\because \operatorname{Image}(\Phi) \subseteq W)$.

Consider the mapping $\Phi: \mathbb{R}^4 \to \mathbb{R}^2$,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$$

Consider the mapping $\Phi: \mathbb{R}^4 \to \mathbb{R}^2$,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$$
$$= x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$Image(\Phi) =$$

Consider the mapping $\Phi: \mathbb{R}^4 \to \mathbb{R}^2$,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$$

$$= x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathsf{Image}(\Phi) = \mathsf{span}\left(\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}\right)$$

Example (contd.)

◆ロト ◆団ト ◆豆ト ◆豆 ◆ りへで

Example (contd.)

$$\left[\begin{array}{ccc} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right] \longrightarrow \cdots \longrightarrow$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 夕久で

Example (contd.)

$$\left[\begin{array}{ccc} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right] \longrightarrow \cdots \longrightarrow \left[\begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \end{array}\right].$$

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 からぐ

Example (contd.)

$$\left[\begin{array}{ccc} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right] \longrightarrow \cdots \longrightarrow \left[\begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \end{array}\right].$$

Thus,

$$ker(\Phi) =$$

Example (contd.)

$$\left[\begin{array}{cccc} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right] \longrightarrow \cdots \longrightarrow \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \end{array}\right].$$

Thus,

$$\ker(\Phi) = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ \frac{1}{2} \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Outline

- 1 Why linear algebra?
- 2 Vector Space
- 3 Basis & Dimension & Rank
- 4 Linear Mappings
- 6 Affine Spaces

Affine Spaces

- Spaces that are offset from the origin.
- They are NO LONGER vector (sub)spaces.

Affine Spaces

- Spaces that are offset from the origin.
- They are NO LONGER vector (sub)spaces.

Affine Subspace

Let V be a vector space, $\mathbf{x}_0 \in V$, and $U \subseteq V$ be a subspace. Then,

$$L = \mathbf{x}_0 + U := \{\mathbf{x}_0 + \mathbf{u} \mid \mathbf{u} \in U\}$$
$$= \{\mathbf{v} \in V \mid \exists \mathbf{u} \in U : \mathbf{v} = \mathbf{x}_0 + \mathbf{u}\} \subseteq V$$

is called affine subspace (or linear manifold) of V.

- U: direction space.
- x₀: support point.

Remark

- An affine subspace excludes **0** if $\mathbf{x}_0 \notin U$.
- Examples: points, lines, and planes in \mathbb{R}^3 which do not go through the origin.

Remark

- An affine subspace excludes **0** if $\mathbf{x}_0 \notin U$.
- Examples: points, lines, and planes in \mathbb{R}^3 which do not go through the origin.
- One-dimensional affine subspaces:

$$\mathbf{y} = \mathbf{x}_0 + \lambda \mathbf{b}_1$$

for $\lambda \in \mathbb{R}$ and $U = \operatorname{span}(\mathbf{b}_1)$ is a one-dimensional subspace of \mathbb{R}^n .

Two-dimensional affine subspaces:

$$\mathbf{y} = \mathbf{x}_0 + \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2$$

for $\lambda_1, \lambda_2 \in \mathbb{R}$ and $U = \text{span}(\{\mathbf{b}_1, \mathbf{b}_2\})$ is a two-dimensional subspace of \mathbb{R}^n .

Affine Mappings

Affine Mappings

Given two vector spaces V, W, a linear mapping $\Phi : V \to W$, and $\mathbf{a} \in W$, the mapping $\phi : V \to W$ with

$$\phi(\mathbf{x}) = \mathbf{a} + \Phi(\mathbf{x})$$

is called an affine mapping from V to W. The vector \mathbf{a} is called the translation vector of ϕ .

Discussions