- CC2-S1 - 2020-2021

- Correction - Algèbre -

1. On considère les matrices carrées

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 4 & 0 & -3 \\ 3 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

a. Les matrices A et B sont-elles diagonalisables dans \mathbb{R} ?

On trouve $\chi_A = (X-2)(X+1)(X-1)$ qui est scindé sur \mathbb{R} , puis $\operatorname{Sp}(A) = \{-1,1,2\}$ et donc, comme les racines sont simples, A est diagonalisable dans \mathbb{R} .

On trouve par ailleurs $\chi_B = (X - 4)(X - 1)^2$ qui scindé sur \mathbb{R} , puis $\operatorname{Sp}(B) = \{1, 4\}$. 1 est racine double. De plus, $\operatorname{rg}(B - \operatorname{I}_3) = 1$ donc, par le théorème du rang, dim $(\operatorname{Ker}(B - \operatorname{I}_3)) = 2$ et donc B est diagonalisable dans \mathbb{R} .

- **b.** Calculer A^2 . On trouve $A^2 = B$.
- c. Déterminer une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.

On détermine les sous-espaces propres de A. On trouve $E_{-1}(A) = \operatorname{Vect}\left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}\right)$, $E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\right)$, $E_2(A) = \operatorname{Vect}\left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\right)$, puis on a $A = PDP^{-1}$ avec $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- **d.** Retrouver sans calcul que B est diagonalisable dans \mathbb{R} . On sait que $B = A^2$ donc, $B = PDP^{-1}PDP^{-1} = PD^2P^{-1}$. On conclut que B est semblable à D^2 qui est diagonale et réelle. Par définition, B est diagonalisable dans \mathbb{R} .
- 2. On considère maintenant un espace vectoriel E sur \mathbb{R} de dimension finie. Pour un endomorphisme f de E, f^2 désigne $f \circ f$. La notation Id_E désigne l'endomorphisme identité de E.
 - **a.** Soit f, g deux endomorphismes de E tels que $f \circ g = 0$. Montrer que $\operatorname{Im}(g) \subset \ker(f)$. Soit $g \in \operatorname{Im}(g)$ alors il existe $g \in E$ tel que g = g(g). Puis, $f(g) = f(g(g)) = f \circ g(g) = 0$ puisque $g \in \operatorname{Im}(g) \subset \operatorname{Im}$
 - **b.** On suppose dans cette question que f est un endomorphisme **diagonalisable** de E. On désigne par $\lambda_1, \ldots, \lambda_p$, avec $p \in \mathbb{N}^*$, ses valeurs propres.
 - i. Montrer que

$$\forall \alpha, \beta \in \mathbb{R}, \quad (f - \alpha \mathrm{Id}_E) \circ (f - \beta \mathrm{Id}_E) = (f - \beta \mathrm{Id}_E) \circ (f - \alpha \mathrm{Id}_E)$$

Par linéarité de f, on a :

$$(f - \alpha \operatorname{Id}_E) \circ (f - \beta \operatorname{Id}_E) = f^2 - (\alpha + \beta)f + \alpha \beta \operatorname{Id}_E) = (f - \beta \operatorname{Id}_E) \circ (f - \alpha \operatorname{Id}_E)$$

ii. Montrer que pour tout vecteur propre v de f

$$(f - \lambda_1 \operatorname{Id}_E) \circ \cdots \circ (f - \lambda_p \operatorname{Id}_E) (v) = 0$$

De la question précédente, on conclut que les endomorphismes $g_i = f - \lambda_i \operatorname{Id}_E$, $i \in [1, p]$ commutent deux à deux. De plus, si v est un vecteur propre de f alors il existe $i \in [1, p]$ tel que $(f - \lambda_i \operatorname{Id}_E)(v) = g_i(v) = 0$. Par conséquent, $(f - \lambda_1 \operatorname{Id}_E) \circ \cdots \circ (f - \lambda_p \operatorname{Id}_E)(v) = g_1 \circ \cdots \circ g_p(v) = g_1 \circ \cdots \circ g_{i-1} \circ g_{i+1} \cdots \circ g_p \circ g_i(v) = 0$.

iii. Soit $x \in E$ un vecteur quelconque. En décomposant x dans une base bien choisie, montrer que

$$(f - \lambda_1 \operatorname{Id}_E) \circ \cdots \circ (f - \lambda_n \operatorname{Id}_E)(x) = 0$$

Puisque f est diagonalisable, il existe une base $\mathscr{B}=(v_1,v_2,\ldots,v_n)$ de E $(\dim(E)=n)$ formée de vecteurs propres de f. Par conséquent, il existe $(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n,\ x=\sum_{i=1}^n\alpha_iv_i.$

Par linéarité de l'endomorphisme $(f - \lambda_1 \mathrm{Id}_E) \circ \cdots \circ (f - \lambda_p \mathrm{Id}_E)$ et en tenant compte de la question précédente, on trouve bien $(f - \lambda_1 \mathrm{Id}_E) \circ \cdots \circ (f - \lambda_p \mathrm{Id}_E)$ (x) = 0.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 2

c. Soit α , β deux réels distincts. On suppose dans cette question que f est un endomorphisme de E tel que

$$(f - \alpha \operatorname{Id}_E) \circ (f - \beta \operatorname{Id}_E) = 0 \quad (\bigstar)$$

- i. Déterminer deux réels a et b tels que a $(f \alpha Id_E) + b$ $(f \beta Id_E) = Id_E$. On a a $(f - \alpha Id_E) + b$ $(f - \beta Id_E) = (a + b)f - (a\alpha + b\beta)$ $Id_E = Id_E$. Il suffit donc de trouver a et b tels que a + b = 0 et $-(a\alpha + b\beta) = 1$. On trouve, puisque $\alpha \neq \beta$, $a = \frac{1}{\beta - \alpha}$ et $b = -\frac{1}{\beta - \alpha}$.
- ii. En déduire que $E = \operatorname{Im}(f \alpha \operatorname{Id}_E) + \operatorname{Im}(f \beta \operatorname{Id}_E)$. De la question précédente, on déduit que tout x de E s'écrit x = y + z avec $y = a \left(f - \alpha \operatorname{Id}_E \right) (x) \in \operatorname{Im}(f - \alpha \operatorname{Id}_E)$ et $z = b \left(f - \beta \operatorname{Id}_E \right) (x) \in \operatorname{Im}(f - \beta \operatorname{Id}_E)$. Ainsi, $E \subset \operatorname{Im}(f - \alpha \operatorname{Id}_E) + \operatorname{Im}(f - \beta \operatorname{Id}_E)$. L'inclusion contraire étant évidente, on conclut $E = \operatorname{Im}(f - \alpha \operatorname{Id}_E) + \operatorname{Im}(f - \beta \operatorname{Id}_E)$.
- iii. Déduire de (\bigstar) que $\operatorname{Im}(f \beta \operatorname{Id}_E) \subset \operatorname{Ker}(f \alpha \operatorname{Id}_E)$ et que $\operatorname{Im}(f \alpha \operatorname{Id}_E) \subset \operatorname{Ker}(f \beta \operatorname{Id}_E)$. Les résultats des questions a. et b.i. permettent d'écrire que $\operatorname{Im}(f - \beta \operatorname{Id}_E) \subset \operatorname{Ker}(f - \alpha \operatorname{Id}_E)$ et $\operatorname{Im}(f - \alpha \operatorname{Id}_E) \subset \operatorname{Ker}(f - \beta \operatorname{Id}_E)$.
- iv. Montrer que $E = \operatorname{Ker}(f \alpha \operatorname{Id}_E) + \operatorname{Ker}(f \beta \operatorname{Id}_E)$. Les deux questions précédentes donnent : $E = \operatorname{Im}(f - \alpha \operatorname{Id}_E) + \operatorname{Im}(f - \beta \operatorname{Id}_E) \subset \operatorname{Ker}(f - \alpha \operatorname{Id}_E) + \operatorname{Ker}(f - \beta \operatorname{Id}_E) \subset E$, la dernière inclusion étant évidente. On a donc bien $E = \operatorname{Ker}(f - \alpha \operatorname{Id}_E) + \operatorname{Ker}(f - \beta \operatorname{Id}_E)$.
- v. Montrer que $E = \operatorname{Ker}(f \alpha \operatorname{Id}_E) \oplus \operatorname{Ker}(f \beta \operatorname{Id}_E)$. Compte tenu de la question précédente, il suffit de montrer que $\operatorname{Ker}(f - \alpha \operatorname{Id}_E) \cap \operatorname{Ker}(f - \beta \operatorname{Id}_E) = \{0\}$. Soit alors $x \in \operatorname{Ker}(f - \alpha \operatorname{Id}_E) \cap \operatorname{Ker}(f - \beta \operatorname{Id}_E)$. On a donc $(f - \alpha \operatorname{Id}_E)(x) = 0$, c'est à dire $f(x) = \alpha x$ et aussi $(f - \beta \operatorname{Id}_E)(x) = 0$, c'est à dire $f(x) = \beta x$. Par conséquent, $(\alpha - \beta) x = 0$ puis x = 0 car $\alpha \neq \beta$. On a donc bien $E = \operatorname{Ker}(f - \alpha \operatorname{Id}_E) \oplus \operatorname{Ker}(f - \beta \operatorname{Id}_E)$.
- vi. En déduire que f est diagonalisable.

On en déduit que la concaténation d'une base \mathscr{B}_{α} de Ker $(f - \alpha \operatorname{Id}_E)$ et d'une base \mathscr{B}_{β} de Ker $(f - \beta \operatorname{Id}_E)$ forme une base \mathscr{B} de E. Or les vecteurs de \mathscr{B}_{α} (respectivement \mathscr{B}_{β}) sont vecteurs propres de f pour la valeur propre α (respectivement β). On a donc une base \mathscr{B} de E formée de vecteurs propres de f. On peut conclure que f est diagonalisable.

Dans le cas particulier où l'un des deux noyaux Ker $(f - \alpha Id_E)$ ou Ker $(f - \beta Id_E)$ est réduit au vecteur nul, on peut considérer que la base correspondante est vide, et par conséquent que f est une homothétie.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 2