Magneto-static Analysis of a Brushless DC Motor

Tom Ginsberg, Brendan Posehn

Overview

- Background Brushless DC Motors
- Theory
 Magneto-statics, Permanent Magnets, Non Linear Materials,
 Non Linear FEM
- Implementation
 Meshing, Matrix Assembly, Solving, Newton Raphson
- ResultsDiagrams, Torques

Theory: Magnetostatics in a 2D Cross Section

If current is only perpendicular to the 2D plane, then

$$\nabla \times \nu B = J \text{ and } \nabla \times A = B$$

 $\nabla \times \nu \nabla \times A = J \iff \nabla \cdot \nu \nabla A = J$

Theory: Permanent Magnets

Maxwell's Equation's for Permanent Magnets

$$B = \mu H + \mu_0 M_r \text{ and } \nabla \times H = J \implies \nabla \times \nu B = J + \nabla \times \nu \mu_0 M_r$$
$$J_m \triangleq \nabla \times \nu \mu_0 M_r \implies \nabla \times \nu B = J + J_m$$

Permenant Magnets

We use a 2D-coil model for permanent magnets.

- ► **Assumption**: A bar magnet has a similar field to a current carrying coil
- ► **Heuristic**: Any magnet geometry can be approximated from gluing together curved bar magnets

Theory: Non Linear FEM

How can we use FEM to solve problems in the form of

$$\nabla \cdot (\alpha(\|\nabla \phi\|) * \nabla \phi) = f(x, y)$$

First thing: Determine $\|\nabla \phi\|$ on a single element in terms of node values of ϕ : (ϕ_i, ϕ_i, ϕ_k)

$$\left| \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \right) \right| = \left| \left(\frac{\partial \vec{N}}{\partial x}, \frac{\partial \vec{N}}{\partial y} \right)^{\mathsf{T}} \cdot \left(\begin{array}{c} \phi_i \\ \phi_j \\ \phi_k \end{array} \right) \right|$$

Solving the Non Linear System

Now our element matrix equation looks like:

$$F(\vec{\phi}) = \mathbf{K} \cdot \vec{\phi} * \alpha(\vec{\phi}) - \vec{b} = 0$$

No more linear solver :(we need to use Newton's Method Consider the vector equation $f(\vec{x}) = 0$

- Start with the guess $\vec{x} \approx \vec{x_0}$
- Expand in power series

$$f(\vec{x}) \approx f(\vec{x}_0) + \mathbf{J}_{f(\vec{x}_0)}(\vec{x} - \vec{x}_0) \approx 0$$

Solve a linear system for $\vec{x_0}$ to find a better guess for \vec{x} . Iterate.

$$\mathbf{J}_{f(\vec{x}_n)}(\vec{x}_n - \vec{x}_{n+1}) = f(\vec{x}_n)$$

$$\mathbf{J}_{F(\vec{\phi}_n)} = \mathbf{K} \left(\mathbf{I} * \alpha(\vec{\phi}_n) + (\vec{\phi}_n)^{\mathsf{T}} \cdot \nabla_{\vec{\phi}} \alpha(\vec{\phi}_n) \right)$$

Implementation: FEA*lite*

Implementation: Mesh Generation

- ► Meshes are generated using the Mathematica 12 mesh generator
- Exported as: list of coordinates [x, y]^v list of mesh elements [v₁, v₂, v₃, marker]^e list of boundary elements [v₁, v₂, marker]^{be}


```
# Coordinates-5
0.0000 0.0000
1.0000 0.0000
0.5000 1.0000
2.0000 0.0000
1.5000 1.0000
# Triangle Elements-5
# Boundary Elements-5
```

Mesh