ENGG1003 - Monday Week 8

Solving nonlinear algebraic equations

Steve Weller

University of Newcastle

26 April 2021

Last compiled: April 26, 2021 11:37am +10:00

Lecture overview

- Solving nonlinear algebraic equations pp. 175-176
 - general setting
 - problem: fluid level in measuring cup
- Bisection method §7.4
- Secant method §7.3
 - Newton's method
- Extensions
 - bisection & secant methods: re-write as functions
 - timing code in Python
 - speed comparisons: bisection vs. secant

1) Solving nonlinear algebraic equations

- *linear* equations: ax + b = 0
 - ightharpoonup solution x = -b/a
- nonlinear equations
 - quadratic $ax^2 + bx + c = 0$: solution $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - cubic and quartic (orders 3 and 4): exact solutions exist but are very complicated
 - quintic (order 5) equations: exact solutions do not exist in general, proving that needs serious mathematics
- most equations in engineering applications have no exact "pen and paper" solutions!

Numerical solutions to equations

"Far better an approximate answer to the right question...
than an exact answer to the wrong question"
—John Tukey

General problem: find x satisfying

$$f(x) = 0$$

where f(x) is a formula involving x

Example

$$f(x) = e^{-x}\sin(x) - \cos(x)$$

has solution x = 7.85359326 because

$$e^{-7.85359326}\sin(7.85359326) - \cos(7.85359326) = 0.000$$

Fluid level in truncated cone

applications: water in dam, coal in conical hopper

Fluid level

ullet volume V depends on depth L as follows:

$$V = 0.0268L^3 + 1.884L^2 + 44.15L$$

ightharpoonup V (in millilitres, mL), L (in cm)

Fluid level

Q: depth L when cup holds 500 mL of water?

need to solve equation

$$500 = 0.0268L^3 + 1.884L^2 + 44.15L$$

$$f(L) = 0.0268L^3 + 1.884L^2 + 44.15L - 500 = 0$$

2) Bisection method

- continuous function f(x) on interval $[x_{\rm LO}, x_{\rm HI}]$, where value of f changes sign from $x_{\rm LO}$ to $x_{\rm HI}$
- divide interval in two, f(x) = 0 in one sub-interval
- ullet select sub-interval where sign of f changes & repeat

Bisection method

$$f(x_{\text{MID}}) \times f(x_{\text{LO}}) > 0$$

... select *upper sub-interval* by updating

$$x_{\rm LO} = x_{\rm MID}$$

...and repeat

Bisection method

$$f(x_{\text{MID}}) \times f(x_{\text{LO}}) < 0$$

... select *lower sub-interval* by updating $x_{\rm HI} = x_{\rm MID}$

Bisection method

...and repeat, with new midpoint

$$x_{\rm MID} = (x_{\rm LO} + x_{\rm HI})/2$$

- ullet each iteration halves the width of interval $[x_{
 m LO},x_{
 m HI}]$
- continue until $|f(x_{\rm MID})| < {\rm tolerance}$, eg: 10^{-6}

Bisection method: Python code

```
bisection.pv
 1 def f(L):
       return 0.0268*L**3 + 1.884*L**2 + 44.15*L - 500
 4 \text{ eps} = 1e-6
 5 \times LO = 6
 6 \times_{-}HI = 10
8 \times MID = (\times LO + \times HI)/2
9 \text{ itCnt} = 0
while abs(f(x_MID)) > eps:
  if f(x_MID)*f(x_LO) > 0:
11
          \times I O = \times MID
12
else:
           \times HI = \times MID
14
    x_{-}MID = (x_{-}LO + x_{-}HI)/2
15
       itCnt += 1
16
17
18 print('Solution: {}'.format(x_MID))
19 print('Number of iterations: {}'.format(itCnt))
20 print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x_MID, f(x_MID)))
```

Bisection method: simulation results

- lines 1–2: function f, want L such that f(L) = 0
- line 4: tolerance 10^{-6}
- lines 9 & 16: count loop iterations
- live demo

```
Solution: 8.15660098195076
Number of iterations: 26
Check: f(8.15660098) = -0.00000099
```

3) Secant method

- start with two points $(x_0, f(x_0))$ and $(x_1, f(x_1))$
 - red dots
 - $lacktriangledown f(x_0)$ and $f(x_1)$ do *not* necessarily have opposite signs

Secant method

- secant is line through $(x_0, f(x_0))$ and $(x_1, f(x_1))$
- define x_2 as point where secant intersects x-axis

Secant method

... and repeat, with x_3 defined as point where secant through $(x_1, f(x_1))$ and $(x_2, f(x_2))$ intersects x-axis

Secant method equations

Equation of secant connecting $(x_0, f(x_0)) \& (x_1, f(x_1))$:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot (x - x_1) + f(x_1)$$

Solving for intersection of secant with x-axis:

$$x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

Secant method equations

Equation of secant connecting $(x_0, f(x_0)) \& (x_1, f(x_1))$:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot (x - x_1) + f(x_1)$$

Solving for intersection of secant with x-axis:

$$x_{2} = x_{1} - f(x_{1}) \cdot \frac{x_{1} - x_{0}}{f(x_{1}) - f(x_{0})}$$

$$x_{3} = x_{2} - f(x_{2}) \cdot \frac{x_{2} - x_{1}}{f(x_{2}) - f(x_{1})}$$

$$x_{4} = x_{3} - f(x_{3}) \cdot \frac{x_{3} - x_{2}}{f(x_{3}) - f(x_{2})}$$

Secant method: Python code

secant.py

```
1 def f(L):
      return 0.0268*L**3 + 1.884*L**2 + 44.15*L - 500
_{4} \text{ eps} = 1e-6
5 \times 0 = 6
6 \times 1 = 10
7 itCnt = 0 # iteration counter
8 while abs(f(x1)) > eps:
      # line (=secant) through (x0, f(x)) and (x1, f(x1)) intersects
# horizontal axis at (x,0)
  x = x1 - f(x1)*((x1 - x0)/(f(x1) - f(x0)))
11
x0 = x1
  x1 = x
13
   itCnt += 1
14
15
16 print('Solution: {}'.format(x))
print('Number of iterations: {}'.format(itCnt))
18 print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x,f(x)))
```

Secant method: simulation results

- lines 12–13: this update simpler to code than $\{x_0, x_1\} \to x_2, \{x_1, x_2\} \to x_3, \{x_2, x_3\} \to x_4, \dots$
- live demo

```
Solution: 8.156600987863818

Number of iterations: 4

Check: f(8.15660099) = -0.00000052
```

Newton's method

- choose initial estimate x_0
- x_1 is intersection of tangent line through $(x_0, f(x_0))$
- ullet x_2 is intersection of tangent line through $(x_1,f(x_1))$

. .

Newton's method

- also known as Newton-Raphson method
- Newton's method much more popular than bisection or secant methods
- ullet calculation of "tangent lines" requires *derivative* of function f(x)
 - therefore needs calculus (eg: MATH1110)
 - beyond assumed knowledge for ENGG1003, won't consider Newton's method in this course
- secant method can be considered as an approximation to Newton's method

4) Extensions

bisection_fn.py

```
1 def f(L):
       return 0.0268*L**3 + 1.884*L**2 + 44.15*L - 500
  def my_bisection(f, x_LO, x_HI, tol):
       x_MID = (x_LO + x_HI) / 2
       itCnt = 0
       while abs(f(x_MID)) > tol:
            if f(x_MID) * f(x_LO) > 0:
                \times IO = \times MID
10
           else:
                x_HI = x_MID
11
           x_MID = (x_LO + x_HI) / 2
12
            itCnt += 1
13
       return x_MID, itCnt
14
15
16 \times \text{numlt} = \text{my\_bisection}(f, 4, 12, 1e-6)
17
18 print('Solution: {}'.format(x))
19 print('Number of iterations: {}'.format(numlt))
20 print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x, f(x)))
```

Bisection method as a function

- line 4: my_bisection function takes function f as first argument
 - \dots also pass in $x_{\rm LO},~x_{\rm HI}$ and convergence tolerance
- line 14: function returns approximate solution & iteration count

- line 16: call my_bisection function with four arguments
- live demo

Secant method as a function

secant_fn.py

```
1 def f(L):
      return 0.0268*L**3 + 1.884*L**2 + 44.15*L - 500
  def my_secant(f, x0, x1, tol):
      itCnt = 0
    while abs(f(x1)) > tol:
          x = x1 - f(x1) * ((x1 - x0) / (f(x1) - f(x0)))
          x0 = x1
          x1 = x
          itCnt += 1
10
    return x1, itCnt
11
12
13 x, numlt = my_secant(f, 4, 12, 1e-8)
14
print('Solution: {}'.format(x))
16 print('Number of iterations: {}'.format(numlt))
print('Check: f(\{:.8f\}) = \{:.8f\}'.format(x, f(x)))
```

live demo

Timing code in Python

- often useful to measure time taken to perform calculations; easy in Python!
- start by importing time module:

```
1 import time
```

- function time.perf_counter() returns value of a clock
 - float value (in seconds)
- elapsed time is difference between two successive calls

```
tStart = time.perf_counter()
xB, numltB = my_bisection(f, 6, 10, 1e-6)
tStop = time.perf_counter()
tBisect = tStop - tStart
```

Speed comparison: bisection vs. secant

- live demo bisectionvssecant.py
- code in #lecturecode

```
Solution (bisection): 8.15660098195076
Number of iterations (bisection): 26
Check: f(8.15660098) = -0.00000099
Run-time (bisection): 6.166e-05 seconds
Solution (secant): 8.156600987863818
Number of iterations (secant): 4
Check: f(8.15660099) = -0.00000052
Run-time (secant): 1.257e-05 seconds
Secant method is 4.9 times as fast as bisection method
```

Lecture summary

- Solving nonlinear algebraic equations
- Bisection method
- Secant method
 - Newton's method

Extensions

More information

- Newton's method in textbook §7.2
 - needs differentiation from calculus (MATH1110)
 - in particular: need expression for tangent lines to function f(x), written as f'(x)
- "optimised" versions of bisection and secant methods in textbook §7.3 and §7.4
 - maximise speed of computation by minimising number of function evaluations f(x)
- volume of truncated cone based on volumes of solids of revolution (needs calculus, MATH1110) https://bit.ly/3sOsaj4