Rationnels et irrationnels

Exercice 1 Montrer que la somme d'un nombre rationnel et d'un nombre irrationnel est un nombre irrationnel.

Soit x un rationnel et y un irrationnel.

Par l'absurde : Si z = x + y est rationnel alors y = z - x est rationnel par différence de deux nombres rationnels. Or y est rationnel. Absurde.

Exercice 2 Montrer que $\sqrt{2}$ n'est pas un nombre rationnel

Par l'absurde supposons $\sqrt{2} \in \mathbb{Q}$. On peut alors écrire $\sqrt{2} = p/q$ avec $p,q \in \mathbb{N}^*$ et, quitte à simplifier, p et q de parités différentes. On a alors $2q^2 = p^2$.

p est nécessairement pair car p^2 est pair. Cela permet d'écrire p=2k avec $k\in\mathbb{N}$ puis $q^2=2k^2$. Mais alors q est pair. Par suite p et q ont même parité. Absurde.

Exercice 3 Calculer $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$. En déduire l'existence d'irrationnels a,b>0 tels que a^b soit rationnels.

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^2 = 2$$
.

Si $\sqrt{2}^{\sqrt{2}}$ est rationnel, c'est gagné avec $a=b=\sqrt{2}$. Sinon, on prend $a=\sqrt{2}^{\sqrt{2}}$ et $b=\sqrt{2}$.

Exercise 4 Soit $f: \mathbb{Q} \to \mathbb{Q}$ telle que $\forall x, y \in \mathbb{Q}, f(x+y) = f(x) + f(y)$.

a) On suppose f constante égale C quelle est la valeur de C?

On revient au cas général.

- b) Calculer f(0).
- c) Montrer que $\forall x \in \mathbb{Q}, f(-x) = -f(x)$.
- d) Etablir que $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}, f(nx) = nf(x)$ et généraliser cette propriété à $n \in \mathbb{Z}$.
- e) On pose a = f(1). Montrer que $\forall x \in \mathbb{Q}, f(x) = ax$.
- a) La relation f(x+y) = f(x) + f(y) avec f constante égale à C donne C = C + C d'où C = 0.
- b) Pour x = y = 0, la relation f(x+y) = f(x) + f(y) implique f(0) = 0.
- c) Pour y = -x, la relation f(x+y) = f(x) + f(y) donne 0 = f(-x) + f(x) d'où f(-x) = -f(x).
- d) Par récurrence : $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}, f(nx) = nf(x)$.

Pour $n \in \mathbb{Z}^-$, n = -p avec $p \in \mathbb{N}$ et f(nx) = f(-px) = -f(px) = -pf(x) = nf(x).

e) On peut écrire x = p/q avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

$$f(x) = f(p \times \frac{1}{q}) = pf(\frac{1}{q}) \text{ or } a = f(1) = f(q \times \frac{1}{q}) = qf(\frac{1}{q}) \text{ donc } f(\frac{1}{q}) = \frac{a}{q} \text{ puis } f(x) = \frac{ap}{q} = ax$$
.

Nombres réels

Exercice 5 Montrer $\forall a,b \in \mathbb{R}$, $ab \leq \frac{1}{2} (a^2 + b^2)$.

$$(a-b)^2 \ge 0$$
 donne $2ab \le a^2 + b^2$

Exercice 6 Montrer $\forall a,b,c \in \mathbb{R}$, $ab+bc+ca \le a^2+b^2+c^2$.

Sachant
$$2xy \le x^2 + y^2$$
: $ab + bc + ca \le \frac{1}{2}(a^2 + b^2) + \frac{1}{2}(b^2 + c^2) + \frac{1}{2}(c^2 + a^2) = a^2 + b^2 + c^2$.

Exercice 7 Soit $a \in [1, +\infty[$. Simplifier $\sqrt{a + 2\sqrt{a - 1}} + \sqrt{a - 2\sqrt{a - 1}}$.

Posons
$$x = \sqrt{a + 2\sqrt{a - 1}} + \sqrt{a - 2\sqrt{a - 1}}$$
.
On a $x^2 = 2a + 2\sqrt{a - 1} + 2\sqrt{a^2 - 4(a - 1)} = 2a + 2\sqrt{(a - 2)^2}$.
Si $a \in [1, 2]$ alors $x^2 = 2a + 2(2 - a) = 4$ donc $x = 2$.
Si $a \in [2, +\infty[$ alors $x^2 = 4(a - 1)$ puis $x = 2\sqrt{a - 1}$.

Exercice 8 Soit $f: \mathbb{R} \to \mathbb{R}$ une application telle que : $\begin{cases} 1) & \forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y) \\ 2) & \forall (x,y) \in \mathbb{R}^2, f(xy) = f(x) + f(y) \\ 3) & \exists x \in \mathbb{R}, f(x) \neq 0 \end{cases}$

- a) Calculer f(0), f(1) et f(-1).
- b) Déterminer f(x) pour $x \in \mathbb{Z}$ puis pour $x \in \mathbb{Q}$.
- c) Démontrer que $\forall x \ge 0, f(x) \ge 0$. En déduire que f est croissante.
- d) Conclure que $f = Id_{\mathbb{R}}$.

a)
$$f(0) = f(0+0) = f(0) + f(0)$$
 donc $f(0) = 0$.

 $\forall x \in \mathbb{R}, f(x) = f(1.x) = f(1)f(x)$. Comme f est non nulle, on a f(1) = 1.

$$f(1) + f(-1) = f(0) = 0$$
 donc $f(-1) = -1$.

b) Par récurrence sur $n \in \mathbb{N}$: f(n) = n. De plus $f(-n) = f((-1) \times n) = f(-1) \times f(n) = -f(n) = -n$ donc

$$\forall x \in \mathbb{Z}, f(x) = x \text{ . Pour } x \in \mathbb{Q} \text{ , } x = \frac{p}{q} \text{ avec } p \in \mathbb{Z}, q \in \mathbb{N}^* \text{ , } f(x) = f(p \times \frac{1}{q}) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = p \text{ et } f(p) = f(p) \times f(\frac{1}{q}) \text{ . Or } f(p) = f(p) \times f(\frac{1}{q}) \text{ .$$

$$1 = f(1) = f(q \times \frac{1}{q}) = f(q) \times f(\frac{1}{q}) = q \times f(\frac{1}{q}) \text{ donc } f(\frac{1}{q}) = \frac{1}{q}. \text{ Par suite } f(x) = x.$$

c)
$$\forall x \ge 0, f(x) = f(\sqrt{x}\sqrt{x}) = (f(\sqrt{x}))^2 \ge 0$$
.

Pour $x,y\in\mathbb{R}$, si $x\leq y$ alors $f(y)=f(x+y-x)=f(x)+f(y-x)\geq f(x)$. Ainsi f est croissante.

d) Pour
$$x \in \mathbb{R}$$
 et $n \in \mathbb{N}$: $\frac{E(nx)}{n} \le x < \frac{E(nx) + 1}{n}$

Comme
$$f$$
 est croissante : $f(\frac{E(nx)}{n}) \le f(x) < f(\frac{E(nx)+1}{n})$ puis $\frac{E(nx)}{n} \le f(x) < \frac{E(nx)+1}{n}$.

A la limite, quand $n \to +\infty$, on obtient $x \le f(x) \le x$ i.e. f(x) = x. Finalement $f = \operatorname{Id}_{\mathbb{R}}$.

Partie entière

Exercice 9 Montrer que la fonction partie entière est croissante.

Soit $x \leq y \in \mathbb{R}$. $E(x) \leq x$ donc $E(x) \leq y$ or $E(x) \in \mathbb{Z}$ donc $E(x) \leq E(y)$ car E(y) est le plus grand entier inférieur à y.

Exercice 10 Montrer que $\forall x, y \in \mathbb{R}, E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$.

$$\begin{split} &E(x) + E(y) \leq x + y \; \text{ donc } \; E(x) + E(y) \leq E(x + y) \; . \\ &E(x + y) \leq x + y < E(x) + 1 + E(y) + 1 \; \text{ donc } \; E(x + y) \leq E(x) + E(y) + 1 \; . \end{split}$$

Exercise 11 Montrer que, pour $x, y \in \mathbb{R}$, $E(x) + E(x+y) + E(y) \le E(2x) + E(2y)$.

Si
$$E(x) \le x < E(x) + 1/2$$
 et $E(y) \le y < E(y) + 1/2$ alors $E(x+y) = E(x) + E(y), E(2x) = 2E(x)$ et $E(2y) = 2E(y)$ puis la relation voulue. Si $E(x) + 1/2 \le x < E(x) + 1$ et $E(y) \le y < E(y) + 1/2$ alors

 $E(x+y) \le E(x) + E(y) + 1$, E(2x) = 2E(x) + 1 et E(2y) = 2E(y) puis la relation voulue Si $E(x) \le x < E(x) + 1/2$ et $E(y) + 1/2 \le y < E(y) + 1$: idem. Si $E(x) + 1/2 \le x < E(x) + 1$ et $E(y) + 1/2 \le y < E(y) + 1$ alors E(x+y) = E(x) + E(y) + 1, E(2x) = 2E(x) + 1 et E(2y) = 2E(y) + 1 puis la relation voulue.

 $\textit{Exercice 12} \quad \text{Soit} \ \ n \in \mathbb{N}^* \ \ \text{et} \ \ x \in \mathbb{R} \ . \ \ \text{Montrer que} \ \ E\bigg(\frac{E(nx)}{n}\bigg) = E\left(x\right).$

On a $E(nx) \le nx$ puis $\frac{E(nx)}{n} \le x$, or $x \mapsto E(x)$ est croissante donc $E\left(\frac{E(nx)}{n}\right) \le E(x)$.

 $E(x) \le x$ donc $nE(x) \le nx$ puis $nE(x) \le E(nx)$ car $nE(x) \in \mathbb{Z}$.

Par suite $E(x) \le \frac{E(nx)}{n}$ puis $E(x) \le E(\frac{E(nx)}{n})$ et finalement $E(x) = E\left(\frac{E(nx)}{n}\right)$.

Exercice 13 Montrer que $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) = E(nx)$

Posons m = E(nx) et réalisons la division euclidienne de m par n: m = nq + r avec $0 \le r \le n - 1$.

On a $nq + r \le nx < nq + r + 1$ donc pour tout $k \in \{0, ..., n-1\}$: $q + \frac{k+r}{n} \le x + \frac{k}{n} < q + \frac{k+r+1}{n}$

Si k+r < n alors $E\left(x+\frac{k}{n}\right) = q$ et si $k+r \ge n$ alors $E\left(x+\frac{k}{n}\right) = q+1$.

 $\text{Par suite } \sum_{k=0}^{n-1} E \bigg(x + \frac{k}{n} \bigg) = \sum_{k=0}^{n-r-1} E \bigg(x + \frac{k}{n} \bigg) + \sum_{k=n-r}^{n-1} E \bigg(x + \frac{k}{n} \bigg) = nq + r = m = E(nx) \; .$

Exercice 14 Soit $a \le b \in \mathbb{R}$. Etablir $\operatorname{Card}([a,b] \cap \mathbb{Z}) = E(b) + E(1-a)$.

$$\begin{split} &\text{Si } a \not\in \mathbb{Z} \text{ alors } \big[a,b\big] \cap \mathbb{Z} = \big\{E(a)+1,E(a)+2,\ldots,E(b)\big\} \text{ donc } \operatorname{Card}(\big[a,b\big] \cap \mathbb{Z}) = E(b)-E(a) \;. \\ &\text{Or } E(1-a)=1+E(-a)=-E(a) \text{ car } a\not\in \mathbb{Z} \text{ donc } \operatorname{Card}(\big[a,b\big] \cap \mathbb{Z}) = E(b)+E(1-a) \\ &\text{Si } a \in \mathbb{Z} \text{ alors } \big[a,b\big] \cap \mathbb{Z} = \big\{a,a+1,\ldots,E(b)\big\} \text{ donc } \operatorname{Card}(\big[a,b\big] \cap \mathbb{Z}) = E(b)-a+1 = E(b)+E(1-a) \text{ car } b \in \mathbb{Z} \text{ donc } a \in \mathbb{Z} \text{ donc } a$$

Exercice 15 Soit $n \in \mathbb{N}^*$.

 $1-a \in \mathbb{Z}$.

- a) Montrer qu'il existe $(a_n,b_n)\in\mathbb{N}^{*2}$ tel que $(2+\sqrt{3})^n=a_n+b_n\sqrt{3}$ et $3b_n^2=a_n^2-1$.
- b) Montrer que la partie entière de $(2+\sqrt{3})^n$ est un entier impair.
- a) Par récurrence sur $n \in \mathbb{N}^*$.

Pour n = 1, $a_1 = 2$ et $b_1 = 1$ conviennent.

Supposons la propriété établie au rang $n \ge 1$.

$$(2+\sqrt{3})^{n+1} = (2+\sqrt{3})(2+\sqrt{3})^n = (2+\sqrt{3})(a_n+b_n\sqrt{3}) = a_{n+1}+b_{n+1}\sqrt{3}$$

 $\text{avec } a_{n+1} = 2a_n + 3b_n \text{ et } b_{n+1} = a_n + 2b_n \text{ de sorte que } 3b_{n+1}^2 - a_{n+1}^2 = -a_n^2 + 3b_n^2 = -1 \,.$

Récurrence établie

b) $a_n - 1 \le b_n \sqrt{3} < a_n \text{ donc } 2a_n - 1 \le (2 + \sqrt{3})^n < 2a_n \text{ donc } E((2 + \sqrt{3})^n) = 2a_n - 1$.

Borne supérieure, borne inférieure

Exercice 16 Soit $A = \left\{ (-1)^n + \frac{1}{n+1} / n \in \mathbb{N} \right\}$.

Montrer que A est bornée, déterminer inf A et $\sup A$.

 $\forall n \in \mathbb{N}, -1 \le (-1)^n + \frac{1}{n+1} \le 2$ donc A est bornée.

A est une partie de $\mathbb R$ non vide et bornée donc inf A et $\sup A$ existent.

$$\frac{n}{(-1)^n + \frac{1}{n+1}} \begin{vmatrix} 0 & 1 & 2 & 3 & \dots \\ 2 & -1 + \frac{1}{2} & 1 + \frac{1}{3} & -1 + \frac{1}{4} & \dots \end{vmatrix}.$$

2 est plus grand élément de A et donc $\sup A = \max A = 2$.

A est clairement minorée par -1 et $(-1)^{2p+1} + \frac{1}{2p+2} \rightarrow -1$ donc il existe une suite d'éléments de A qui converge vers -1 donc inf A = -1.

Exercice 17 Soit A et B deux parties non vides et bornées de \mathbb{R} telles que $A \subset B$. Comparer inf A, sup A, inf B et sup B.

A et B sont des parties non vides et bornées de $\mathbb R$ donc les bornes sup et inf considérées existent.

 $\forall a \in A$, on a $a \in B$ donc $a \le \sup B$. $\sup B$ majore A donc $\sup A \le \sup B$.

 $\forall a \in A$, on a $a \in B$ donc inf B < a. inf B minore A donc inf $B < \inf A$.

Enfin, puisque $A \neq \emptyset$, inf $A \leq \sup A$.

Exercice 18 Soit A et B deux parties non vides de \mathbb{R} telles que $\forall (a,b) \in A \times B, \ a \leq b$. Montrer que $\sup A$ et $\inf B$ existent et que $\sup A \leq \inf B$.

 $\forall b \in B$ on a $\forall a \in A$, $a \le b$ donc A est majorée par b.

A est une partie de $\mathbb R$ non vide et majorée par b donc $\sup A$ existe et $\sup A \leq b$.

B est une partie de $\mathbb R$ non vide et minorée par $\sup A$ donc $\inf B$ existe et $\sup A \leq \inf B$.

Exercice 19 Soit A et B deux parties de \mathbb{R} non vides et majorées. Montrer que $\sup A, \sup B$ et $\sup A \cup B$ existent et $\sup A \cup B = \max(\sup A, \sup B)$.

 $A,B,A\cup B$ sont des parties de $\mathbb R$ non vides et majorées donc $\sup A,\sup B,\sup A\cup B$ existent dans $\mathbb R$.

 $\forall x \in A \cup B \text{ on a } x \leq \max(\sup A, \sup B) \text{ donc } \sup(A \cup B) \leq \max(\sup A, \sup B).$

Puisque $A, B \subset A \cup B$ on a $\sup A, \sup B \leq \sup A \cup B$ donc $\max(\sup A, \sup B) \leq \sup A \cup B$ puis l'égalité.

Exercice 20 Soit A et B deux parties non vides et majorées de \mathbb{R} .

On forme $A + B = \{a + b/(a, b) \in A \times B\}$.

Montrer que A+B est majorée et $\sup(A+B) = \sup A + \sup B$.

A et B sont deux parties non vides et majorées de \mathbb{R} donc sup A et sup B existent.

 $\forall x \in A + B$, on peut écrire x = a + b avec $a \in A$ et $b \in B$.

On a $x = a + b \le \sup A + \sup B$, donc A + B est majorée par $\sup A + \sup B$

A+B est une partie de \mathbb{R} non vide et majorée donc $\sup A+B$ existe et $\sup A+B \leq \sup A+\sup B$.

 $\forall b \in B$, $\forall a \in A$, $a = (a+b) - b \le \sup(A+B) - b$ donc A est majorée par $\sup(A+B) - b$ d'où

 $\sup A \leq \sup(A+B) - b \text{ . Par suite } b \leq \sup(A+B) - \sup A \text{ et } B \text{ est donc major\'e par } \sup(A+B) - \sup A \text{ et par suite } \sup B \leq \sup(A+B) - \sup A \text{ . Finalement } \sup A + \sup B \leq \sup A + B \text{ puis l'\'egalit\'e}.$

 $\textit{Exercice 21} \quad \text{Soit } (u_{\scriptscriptstyle n}) \ \text{ une suite r\'eelle. Pour tout } \ n \in \mathbb{N} \ \text{, on pose } \ v_{\scriptscriptstyle n} = \sup_{\scriptscriptstyle p \geq n} u_{\scriptscriptstyle p} \ \text{et } \ w_{\scriptscriptstyle n} = \inf_{\scriptscriptstyle p \geq n} u_{\scriptscriptstyle p} \ .$

Etudier les monotonies des suites (v_n) et (w_n) .

 $\left\{u_{\scriptscriptstyle p} \: / \: p \, \overline{\geq n+1}\right\} \subset \left\{u_{\scriptscriptstyle p} \: / \: p \geq n\right\} \ \operatorname{donc} \ v_{\scriptscriptstyle n+1} \leq v_{\scriptscriptstyle n} \ \operatorname{et} \ w_{\scriptscriptstyle n+1} \geq w_{\scriptscriptstyle n} \: .$

Ainsi (v_n) est décroissante et (w_n) est croissante.

Exercice 22 Pour $n \in \mathbb{N}$, on pose $f_n(x) = x^n(1-x)$. Déterminer $\lim_{n \to +\infty} \sup_{x \in [0,1]} f_n(x)$

 f_n est dérivable et $f'_n(x) = nx^{n-1}(1-x) - x^n = nx^{n-1} - (n+1)x^n$.

$$\frac{x \mid 0 \qquad x_n \qquad 1}{f_n(x) \mid 0 \quad \nearrow \quad M_n \quad \searrow \quad 1} \text{ avec } x_n = \frac{n}{n+1} \in \left[0,1\right] \text{ et } M_n = \sup_{x \in [0,1]} f_n(x) = \left(1 - \frac{1}{n+1}\right)^n \frac{1}{n+1} \to 0.$$

Exercice 23 Déterminer
$$\inf \left\{ (x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) / x_1, \dots, x_n > 0 \right\}$$
.

On exploite
$$\frac{x_i}{x_j} + \frac{x_j}{x_i} = \frac{x_i^2 + x_j^2}{x_i x_j} \ge 2$$
 pour obtenir $(x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) = \sum_{i,j=1}^n \frac{x_i}{x_j} \ge n^2$.

Puisque que pour $x_1 = ... = x_n = 1$ on obtient $(x_1 + ... + x_n) \left(\frac{1}{x_1} + ... + \frac{1}{x_n} \right) = n^2$ on peut conclure

$$\inf \left\{ (x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) / x_1, \dots, x_n > 0 \right\} = n^2$$

Equations et systèmes

Exercice 24 Résoudre les équations suivantes d'inconnue $x \in \mathbb{R}$:

a)
$$x = 2x - 1$$
 [1]

(a)
$$3x = 2 - x \quad [\pi]$$

b)
$$3x = 2 - x$$
 $[\pi]$ c) $nx = 0$ $[\pi]$ (avec $n \in \mathbb{N}^*$).

a)
$$x = 2x - 1$$
 [1] $\Leftrightarrow -x = -1$ [1] $\Leftrightarrow x = 1$ [1], $S = \mathbb{Z}$

b)
$$3x = 2 - x \quad [\pi] \Leftrightarrow 4x = 2 \quad [\pi] \Leftrightarrow x = \frac{1}{2} \quad \left[\frac{\pi}{4}\right], \ \mathcal{S} = \left\{\frac{(2k+1)\pi}{4} / k \in \mathbb{Z}\right\}.$$

c)
$$nx = 0$$
 $[\pi] \Leftrightarrow x = 0$ $\left[\frac{\pi}{n}\right]$, $S = \left\{\frac{k\pi}{n}/k \in \mathbb{Z}\right\}$.

Exercice 25 Observer que $x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}$ est solution d'une équation de la forme $x^3 = \alpha x + \beta$ avec $\alpha, \beta \in \mathbb{R}$. Résoudre cette dernière et déterminer x.

 $x^3 = 6x + 40$. 4 est solution apparente de cette équation. $x^3 - 6x - 40 = (x - 4)(x^2 + 4x + 10)$

Les solutions de l'équation sont $4, -2 + i\sqrt{6}, -2 - i\sqrt{6}$. On conclut x = 4 .

Exercice 26 Résoudre les systèmes d'inconnue $(x,y) \in \mathbb{R}^2$:

a)
$$\begin{cases} x^2 + 2y^2 = 1 \\ x^2 + xy = 0 \end{cases}$$

b)
$$\begin{cases} x^2 + y^2 = 1 \\ 2xy = 1 \end{cases}$$

c)
$$\begin{cases} x^2 = y \\ y^2 = x \end{cases}$$

a) Si (x,y) est solution alors $(2) \Rightarrow x(x+y) = 0$ donc x = 0 ou y = -x.

Si x = 0 alors (1) donne $y = \pm 1/\sqrt{2}$.

Si y = -x alors (1) donne $x = \pm 1/\sqrt{3}$.

Inversement: ok

Finalement : $S = \{(0, 1/\sqrt{2}), (0, -1/\sqrt{2}), (1/\sqrt{3}, -1/\sqrt{3}), (-1/\sqrt{3}, 1/\sqrt{3})\}$.

b) Si (x,y) est solution alors (1) – (2) donne $(x-y)^2=0$ d'où x=y puis (1) donne $x=y=\pm\frac{1}{\sqrt{2}}$.

Inversement : ok. Finalement $S = \{(1/\sqrt{2}, 1/\sqrt{2}), (-1/\sqrt{2}, -1/\sqrt{2})\}$.

c) Si (x,y) est solution alors (1) et (2) donnent $x^4 = x$ d'où x = 0 ou x = 1.

Si x = 0 alors y = 0. Si x = 1 alors y = 1.

Inversement : ok. Finalement $S = \{(0,0),(1,1)\}$.

Exercice 27 Résoudre les systèmes suivants d'inconnue $(x,y,z) \in \mathbb{R}^3$:

a)
$$\begin{cases} x + 2y - z = 1 \\ x - y + z = 2 \\ xyz = 0 \end{cases}$$

b)
$$\begin{cases} x + 2y - z = 1 \\ x - y + 2z = 2 \\ 3x - y + z = 3 \end{cases}$$

c)
$$\begin{cases} x + y + z = 1 \\ x - y + 3z = 2 \\ 2x - y + z = 3 \end{cases}$$

a) Si (x, y, z) est solution alors (3) donne x = 0, y = 0 ou z = 0.

Si
$$x = 0$$
 alors $y = 3, z = 5$. Si $y = 0$ alors $x = \frac{3}{2}, z = \frac{1}{2}$. Si $z = 0$ alors $x = \frac{5}{3}, y = -\frac{1}{3}$.

Inversement : ok. Finalement $S = \left\{ (0,3,5), (\frac{3}{2},0,\frac{1}{2}), (\frac{5}{3},-\frac{1}{3},0) \right\}$.

b)
$$S = \left\{ \left(\frac{8}{9}, \frac{7}{9}, \frac{4}{9} \right) \right\}$$
 . c) $S = \left\{ \left(\frac{5}{4}, -\frac{3}{8}, \frac{1}{8} \right) \right\}$.

Exercice 28 Résoudre le système $\begin{cases} x - ay + z = 2 \\ x + (a+1)z = 3 \text{ d'inconnue } (x,y,z) \in \mathbb{R}^3, \ a \text{ désignant un paramètre réel.} \\ x + ay + 3z = 4 \end{cases}$

$$\begin{cases} x - ay + z = 2 \\ x + (a+1)z = 3 \\ x + ay + 3z = 4 \end{cases} x - ay + z = 2 \begin{cases} x - ay + z = 2 \\ x + (a+1)z = 3 \\ x + 2z = 3 \end{cases} (x - ay + z = 2 (x - ay + z = 3 (x - ay + z = 2 (x - ay + z = 3 (x - ay + z = 3$$

Si a = 0 ou 1 le système n'a pas de solution.

Si $a \ne 1$ et $a \ne 0$ le système a pour solution x = 3, y = 1/a, z = 0.

david Delaunay http://mpsiddl.free.fr