This report presents search results for air cargo problem. It describes a number of algorithms used to do a search depending of complexity of the problem.

Table below presents results of running 5 types of search algorithms (search column) on 4 problem domains (problem column). 4 heuristic functions (heuristic column) were used where applicable. The results show number of actions in domain (actions column) for a problem, number of node expansions (expansions column), number of times it was tested whether node is goal node (goal tests column), number of new nodes (new nodes column), number of nodes used in solution (plan length), and time search took (time elapsed).

Problem	Search	Heuristic	Actions	Expansion s	Goal Tests	New Nodes	Plan length	Time elapsed
Air Cargo Problem 1	breadth_first_searc h		20	43	56	178	6	0.00401 040000 000001 1
Air Cargo Problem 1	depth_first_graph_ search		20	21	22	84	20	0.00222 630000 000000 05
Air Cargo Problem 1	uniform_cost_sear ch		20	60	62	240	6	0.00616 92
Air Cargo Problem 1	greedy_best_first_ graph_search	h_unmet_go als	20	7	9	29	6	0.00102 780000 000000 93
Air Cargo Problem 1	greedy_best_first_ graph_search	h_pg_levels um	20	6	8	28	6	0.38159 030000 000005
Air Cargo Problem 1	greedy_best_first_ graph_search	h_pg_maxle vel	20	6	8	24	6	0.28403 53
Air Cargo Problem 1	greedy_best_first_ graph_search	h_pg_setlev el	20	6	8	28	6	0.95146 03
Air Cargo Problem 1	astar_search	h_unmet_go als	20	50	52	206	6	0.00626 830000 000011 54
Air Cargo Problem 1	astar_search	h_pg_levels um	20	28	30	122	6	1.03409 82
Air Cargo	astar_search	h_pg_maxle vel	20	43	45	180	6	1.00873 139999

Problem 1								99998
Air Cargo Problem 1	astar_search	h_pg_setlev el	20	33	35	138	6	2.39845 71
Air Cargo Problem 2	breadth_first_searc h		72	3343	4609	30503	9	1.28632 199999 99993
Air Cargo Problem 2	depth_first_graph_ search		72	624	625	5602	619	1.73026 069999 99997
Air Cargo Problem 2	uniform_cost_sear ch		72	5154	5156	46618	9	2.13631 64
Air Cargo Problem 2	greedy_best_first_ graph_search	h_unmet_go als	72	17	19	170	9	0.01210 820000 000012 4
Air Cargo Problem 2	greedy_best_first_ graph_search	h_pg_levels um	72	9	11	86	9	9.97103 11
Air Cargo Problem 2	greedy_best_first_ graph_search	h_pg_maxle vel	72	27	29	249	9	19.8255 502000 00002
Air Cargo Problem 2	greedy_best_first_ graph_search	h_pg_setlev el	72	9	11	84	9	22.9613 929
Air Cargo Problem 2	astar_search	h_unmet_go als	72	2467	2469	22522	9	1.42147 599999 99984
Air Cargo Problem 2	astar_search	h_pg_levels um	72	357	359	3426	9	248.747 676600 00003
Air Cargo Problem 2	astar_search	h_pg_maxle vel	72	2887	2889	26594	9	2346.19 39995
Air Cargo Problem 2	astar_search	h_pg_setlev el	72	1037	1039	9605	9	2021.52 27873
Air Cargo Problem 3	breadth_first_searc h		88	14663	1809 8	12962 5	12	6.70726 190000 0001
Air Cargo Problem 3	depth_first_graph_ search		88	408	409	3364	392	0.68875 920000 00007

Air Cargo Problem 3	uniform_cost_sear ch		88	18510	1851 2	16193 6	12	9.20066 77
Air Cargo Problem 3	greedy_best_first_ graph_search	h_unmet_go als	88	25	27	230	15	0.02269 659999 999973 4
Air Cargo Problem 3	greedy_best_first_ graph_search	h_pg_levels um	88	14	16	126	14	22.3828 773000 00004
Air Cargo Problem 3	greedy_best_first_ graph_search	h_pg_maxle vel	88	21	23	195	13	26.8393 283
Air Cargo Problem 3	greedy_best_first_ graph_search	h_pg_setlev el	88	35	37	345	17	127.151 522599 99999
Air Cargo Problem 3	astar_search	h_unmet_go als	88	7388	7390	65711	12	5.36703 919999 9994
Air Cargo Problem 3	astar_search	h_pg_levels um	88	369	371	3403	12	413.326 787699 99995
Air Cargo Problem 4	breadth_first_searc h		104	99736	1149 53	94413	14	62.4931 047
Air Cargo Problem 4	depth_first_graph_ search		104	25174	2517 5	22884 9	24132	2255.65 72815
Air Cargo Problem 4	uniform_cost_sear ch		104	113339	1133 41	10664 13	14	73.2896 267000 0055
Air Cargo Problem 4	greedy_best_first_ graph_search	h_unmet_go als	104	29	31	280	18	0.03687 949999 948614
Air Cargo Problem 4	greedy_best_first_ graph_search	h_pg_levels um	104	17	19	165	17	42.1026 019999 9993
Air Cargo Problem 4	greedy_best_first_ graph_search	h_pg_maxle vel	104	56	58	580	17	97.1335 939999 999
Air Cargo Problem 4	greedy_best_first_ graph_search	h_pg_setlev el	104	107	109	1164	23	596.410 071700 0001
Air Cargo	astar_search	h_unmet_go	104	34330	3433	32850	14	34.6832

Joanna Muras

Build a Forward Planning Agent

Problem 4	als			2	9		168000 0008
Air Cargo Problem 4	h_pg_levels um	104	1208	1210	12210	14	2331.99 5729

Table and chart below present number of nodes expanded against number of actions in the domain. For all algorithms but one number of expanded nodes grows with domain size. For four following algorithms the difference is the biggest: uniform cost search, breadth first search, A* search with unmet goals heuristic function, and depth first search. However, for depth first search number of expanded nodes for 88 actions (408) was smaller than for 72 actions (624). This is rather unusual, but might be related to the fact that problems and goals were different for the domains. All greedy searches had the smallest amount of expanded nodes and their grow with domain size was the smallest as well.

	20	72	88	104
breadth_first_search	43	3343	14663	99736
depth_first_graph_search	21	624	408	25174
uniform_cost_search	60	5154	18510	113339
greedy_best_first_graph_search, h_unmet_go	7	17	25	29
greedy_best_first_graph_search, h_pg_levels	6	9	14	17
greedy_best_first_graph_search, h_pg_maxle	6	27	21	56
greedy_best_first_graph_search, h_pg_setlev	6	9	35	107
astar_search, h_unmet_goals	50	2467	7388	34330
astar_search, h_pg_levelsum	28	357	369	1208
astar_search, h_pg_maxlevel	43	2887		
astar_search, h_pg_setlevel	33	1037		

Table and chart below present search time against the number of actions in the domain. For all algorithms but one time needed to finish the search grows with domain size. For five following algorithms the difference is the biggest: A* search with all heuristic function but unmet goals, depth first search, and greedy algorithm with set level heuristic function. However, for depth first search time needed to finish for 88 actions (0.69s) was smaller than for 72 actions (1.73s). This is rather unusual, but might be related to the fact that problems and goals were different for the domains. Noticeable smallest amount of time to find solution is required by greedy search with unmet goals heuristic function. A* search with the same heuristic function (unmet goals) obtained better results than other algorithms as well.

	20	72	88	104
breadth_first_search	0,00	1,29	6,71	62,49
depth_first_graph_search	0,00	1,73	0,69	2 255,66
uniform_cost_search	0,01	2,14	9,20	73,29
greedy_best_first_graph_search, h_unmet_go	0,00	0,01	0,02	0,04
greedy_best_first_graph_search, h_pg_levels	0,38	9,97	22,38	42,10
greedy_best_first_graph_search, h_pg_maxle	0,28	19,83	26,84	97,13
greedy_best_first_graph_search, h_pg_setlev	0,95	22,96	127,15	596,41
astar_search, h_unmet_goals	0,01	1,42	5,37	34,68
astar_search, h_pg_levelsum	1,03	248,75	413,33	2 332,00
astar_search, h_pg_maxlevel	1,01	2 346,19		
astar search, h pg setlevel	2,40	2 021,52		

The chart below presents time needed to finish search for different algorithms depending on the domain size. As presented the differences in times between algorithms grew with domain size. The biggest differences were noticed for greedy search with set level heuristic function, and A* search for all heuristic functions but unmet goals.

Table and chart below present the length of the plans returned by each algorithm on all search problems. In terms of finding optimal solution we can see that depth search performs definitively the worst for all domain sizes. For larger domains all greedy algorithms seem to find solution very close to optimal, but slightly bigger. The algorithms that find optimal solution in all domain sizes are: breath search, uniform cost search, and A* search.

	20	72	88	104
breadth_first_search	6	9	12	14
depth_first_graph_search	20	619	392	24132
uniform_cost_search	6	9	12	14
greedy_best_first_graph_search, h_unmet_go	6	9	15	18
greedy_best_first_graph_search, h_pg_levels	6	9	14	17
greedy_best_first_graph_search, h_pg_maxle	6	9	13	17
greedy_best_first_graph_search, h_pg_setlev	6	9	17	23
astar_search, h_unmet_goals	6	9	12	14
astar_search, h_pg_levelsum	6	9	12	14
astar_search, h_pg_maxlevel	6	9		
astar search h no setlevel	6	g		

The algorithm that definitively performed the best time wise (almost real time) for all domain sizes is greedy search with unmet goals heuristic function. A* search with unmet goals heuristic function performed pretty good as well, however for larger domains time needed to finish was definitively larger. For small domains basic algorithms (breadth search, depth search, and uniform cost search) and ones using unmet goals heuristic function performed noticeably better than other algorithms. The optimal plans were found by breath search, uniform cost search, and A* search.