

COMPUTER ORGANIZATION AND DE

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

add extra Ostosfor this is positive number

- Overflow if result out of range
 - Adding positive (+) and negative (–) operands, no overflow
 - Adding two positive (+ +) operands
 - Overflow if result sign is 1 (negative)
 - Adding two negative (-- –) operands
 - Overflow if result sign is 0 (positive)

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

- Overflow if result out of range
 - Subtracting two positive (+ +) or two negative (- --) operands, no overflow
 - Subtracting positive (+) from negative (–) operand
 - Overflow if result sign is 0 (positive)
 - Subtracting negative (–) from positive (+) operand
 - Overflow if result sign is 1 (negative)

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
- Other languages (e.g., Ada, Fortran) has overflow
- MIPS has overflow, require raising an exception on overflow
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve
 EPC value, to return after corrective action

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions

 - mult rs, rt / multu rs, rt
 64-bit product in HI/LO = special registers not accessible by name but rather by mfhi or mfhl.
 mfhi rd / mflo rd
 - - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - **■**(mul') rd, rs, rt
- similar to mult Least-significant 32 bits of product -> rd but only use least-significan 32 bit (i.e LO)

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Quotient

32 bits

Shift left

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading 1 bit
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow significand = 1.0$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow significand = 1.0$
- Largest value
 - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Double: approx 2⁻⁵²

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 10111111101000...00
- Double: 10111111111101000....00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Denormal Numbers

■ Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations of 0.0!

HOME WORK

Floating-Point Example

- 1. Use the MIPS algorithm in this chapter to get the binary sum for these two decimal numbers, verify your result is correct. $5_{10}+9_{10}=?_2$
- 2. Use the MIPS algorithm in this chapter to get the binary difference for these two decimal numbers, verify your result is correct. 5_{10} - 9_{10} = $?_2$
- 3. Use the MIPS algorithm in this chapter to get the binary product for these two decimal numbers, verify your result is correct. $5_{10} \times 9_{10} = ?_2$
- 4. Use the MIPS algorithm in this chapter to get the binary quotient and binary remainder for these two decimal numbers, verify your result is correct. $9_{10}/2_{10} = ?_2$