

Dr. Kübra Atalay Kabasakal Bahar 2023

Faktör Analizi

```
library(psych); library(haven)
veri <- read_sav("data/AFA.sav")[ ,-c(1,13)]</pre>
 (out <- fa(veri, nfactors = 3,fm="pa",rotate="none"))</pre>
## Factor Analysis using method = pa
## Call: fa(r = veri, nfactors = 3, rotate = "none", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
         PA1
              PA2
                    PA3 h2
                                 u2 com
## per1 0.80 -0.45 -0.38 0.99 0.012 2.0
## per2 0.78 -0.32 -0.21 0.75 0.252 1.5
## per3 0.80 -0.25 -0.09 0.71 0.292 1.2
## per4 0.75 -0.23 -0.21 0.67 0.335 1.4
## per5 0.77 0.47 -0.01 0.82 0.179 1.7
## per6 0.61 0.47 -0.14 0.61 0.388 2.0
## per7 0.78 0.42 -0.08 0.80 0.204 1.6
## per8 0.73 0.40 -0.01 0.68 0.315 1.5
## per9 0.67 -0.22 0.48 0.72 0.280 2.1
## per10 0.60 -0.07 0.41 0.53 0.465 1.8
## per11 0.67 -0.14 0.44 0.67 0.334 1.8
##
##
                         PA1 PA2 PA3
## SS loadings
                        5.81 1.27 0.86
## Proportion Var
                       0.53 0.12 0.08
## Cumulative Var
                        0.53 0.64 0.72
```

Faktörleştirme yöntemi

- psych paketinde kullanılan faktörleştirme yöntemlerinden bazıları:
- verilerin çok değişkenli normallik varsayımını karşılaması durumda ml yöntemi,
- sağlamaması durumunda ise en küçük kareler uls veya ağırlıklandırılmış en küçük kareler wls tercih edilebilir.

Faktörlerin Yorumlanması

out\$loadings

```
##
## Loadings:
##
         PA1
                PA2
                        PA3
## per1
         0.803 -0.447 -0.379
## per2 0.775 -0.322 -0.208
## per3 0.799 -0.246
## per4
         0.753 - 0.230 - 0.214
## per5
         0.772 0.474
         0.607 \quad 0.472 \quad -0.145
## per6
## per7
         0.784 0.418
         0.727 0.395
## per8
## per9
         0.665 - 0.223 \quad 0.477
## per10 0.601
                         0.409
## per11 0.671 -0.144 0.442
##
##
                    PA1
                           PA2
                                 PA<sub>3</sub>
## SS loadings
                  5.814 1.271 0.859
## Proportion Var 0.529 0.116 0.078
## Cumulative Var 0.529 0.644 0.722
```

Örüntü katsayısı matrisi incelendiğinde aşağıdaki sonuçlar çıkarılabilir:

- 11 değişkenin hepsinin birinci faktördeki yükleri orta veya yüksektir.
- İkinci ve üçüncü faktördeki yükler daha küçüktür, bazıları negatif bazıları ise pozitif değerlerdedir.
- Ancak örüntü matrisi tablosu incelenerek bu 11 değişkenden 3 faktörü ayırmak ve yorumlamak oldukça zordur.

Faktörlerin Yorumlanması

- Yandaki grafikte 3 küme birikinti görünmektedir:
 - PER1-4 birlikte
 - PER5-8 birlikte
 - PER9-11 birlikte
- Eğer faktör eksenleri faktör uzayında hareket ederse, altta yatan faktörlerin doğası daha açık hale gelecektir.
- Bu da Faktör Döndürme (Factor Rotation) adı verilen bir yöntemle gerçekleştirilir.

Maddelerin Analizden Çıkarılması

- Çoğu durumda, maddelerin ileri analizlerden çıkarılması düşünülebilir. Bu durum aşağıdakiler ile karşılaşıldığında düşünülebilir:
 - Maddeler düşük ortak varyanslara sahipse
 - Maddelerin diğer maddelerle aralarındaki korelasyon zayıfsa
 - Maddeler beklenmeyen faktörlerde çapraz yüklere sahipse
 - Faktörler yorumlanabilir değilse
- Genel olarak geride kalan maddelerle yeni bir AFA'nın gerçekleştirilmesi gerekmektedir.

Faktör Döndürmenin Amacı

- İlk çözümde PER1-PER11 ölçülen değişkenlerinden 3 faktör çıkarıldı.
- Hem örüntü katsayısı matrisi hem de yük grafiği 3- faktörlü çözümün yorumlanmasının zor olduğunu gösterdi.
- İdeal olarak her bir değişkenin sadece bir faktöre yüklenmesi(factor complexity = 1 u2) beklenir basit yapı
- AFA'dan elde edilen çoğu ilk çözümler ile **basit bir yapı** elde edilemeyebilir.
- Faktör döndürmenin amacı bu hedefe ulaşmaktır.

Faktör Döndürmenin Amacı

- Faktör döndürme, faktör uzayında ölçülen değişkenlerin konumlarını ölçen faktör eksenlerinin hareket ettirilmesini içerir, böylece altta yatan yapıların doğası araştırmacı için daha açık hale gelir.
- Yalnızca bir faktör çıkarıldığında, döndürme mümkün değildir. Ancak, iki veya daha fazla faktör içeren hemen hemen tüm durumlarda, yorumlama için döndürme genellikle gereklidir.

Faktör Döndürmenin Amacı

- İki tip faktör döndürme vardır:
 - **Dik Döndürme** (Orthogonal Rotation):
 - Çıkarılan faktörler döndürme işleminden sonra dik olarak kalırlar.
 - Bu yöntem genellikle araştırmacıların altta yatan faktörler arasında korelasyon olmadığına inandığı zaman uygulanır.
- Eğik Döndürme (Oblique Rotation):
 - Döndürme işleminden sonra çıkarılan faktörlerin arasında korelasyon olmasına izin verilir.
 - Bu yöntem genellikle araştırmacıların altta yatan faktörlerin ilişkili olduğunu varsaydıkları zaman uygulanır.

Döndürmeden Önceki Örüntü Matrisi

 Aşağıdaki örüntü katsayılarına sahip iki değişken olduğunu varsayalım:

 Her bir değişken için eşitlik aşağıdaki gibidir:

$$x_1 = .6 \xi_1 + .6 \xi_2 + \delta_1 \ x_2 = .6 \xi_1 + (-.6) \xi_2 + \delta_2$$

 Faktörlere karşılık gelen örüntü katsayıları sağdaki grafikte gösterilebilir.

Döndürmeden Önceki Örüntü Matrisi

- İki değişkenin her iki faktörde de yükü olduğundan, faktörleri yorumlamak çok zordur.
- Eğer her bir değişken sadece bir faktöre yüklenip diğerlerine yüklenmezse, yorum yapmak daha kolay olacaktır.
- Faktör döndürmenin amacı, faktör uzayındaki faktör eksenlerini döndürmektir. Döndürme sonucunda altta yatan faktörler mümkün olduğunca basit bir yapıya sahip olacaktır.

Dik Döndürmeden Sonra Örüntü Matrisi

- Eğer her iki eksen de saat yönünde 45° döndürülürse:
- X1 sadece yeni F2'de yüklenecek,
 X2 de sadece yeni F1'de
 yüklenecektir.
- İki yeni faktör arasında da korelasyon yoktur.
- X1 ve X2 arasındaki ilişki döndürmeden önce ve sonra değişmez. Yeni faktör uzayındaki her bir değişkenin faktörlerdeki yükleri değişir.

Dik Döndürmeden Sonra Örüntü Matrisi

- Yeni yükler gözle bakarak kestirilebilir:
- X1'in yeni F1'deki yükü 0'dır; X1'in yeni F2'deki yükü 0,85 civarındadır;
- X2'nin yeni F1'deki yükü 0,85 civarındadır; X2'nin yeni F2'deki yükü 0'dır.
- Böylece, yeni örüntü matrisi

Dik Döndürmeden Önceki ve Sonraki

Örüntü Matrisi

Asıl soru orijinal örüntü matrisinin döndürülen örüntü matrisine nasıl dönüştürüldüğüdür?

Original Pattern Matrix:

	Factor	
	1	2
X1	.6	.6
X2	.6	6

Rotated Pattern Matrix:

	Factor	
	1	2
X1	0	.85
X2	.85	0

 \blacksquare Geometrik işlemler sonucu, dönüştürülen yük tam olarak aşağıdaki gibi elde edilir: $0.6\sqrt{0.2}=.848$

AFA modeli aşağıdaki eşitlikle gösterilebilir:

$$\mathbf{x} = \mathbf{\Lambda}\boldsymbol{\xi} + \mathbf{\delta}$$

 A matrisinin bir birim matrisi ile çarpılması eşitliği değiştirmeyecektir:

$$\mathbf{x} = \mathbf{\Lambda} \mathbf{I} \boldsymbol{\xi} + \mathbf{\delta}$$

 Bir T matrisi transpozu olan T' ile çarpılırsa, çarpım bir birim matrisine eşit olacaktır:

$$\mathbf{x} = \mathbf{\Lambda}(\mathbf{T}\mathbf{T}')\boldsymbol{\xi} + \boldsymbol{\delta} \implies \mathbf{x} = (\mathbf{\Lambda}\mathbf{T})(\mathbf{T}'\boldsymbol{\xi}) + \boldsymbol{\delta}$$

 Bu yeni eşitliğe dayalı model, örüntü matrisindeki ve art matrisindeki değerler de dahil olmak üzere parametre kestirimlerini değiştirmeyecektir, çünkü:

$$\mathbf{x} = (\mathbf{\Lambda}\mathbf{T})(\mathbf{T}'\mathbf{\xi}) + \mathbf{\delta}$$

$$\mathbf{R} = \mathbf{\Lambda}\mathbf{T}\mathbf{T}'\mathbf{\Phi}\mathbf{T}\mathbf{T}'\mathbf{\Lambda}' + \mathbf{R}_{res}$$

 Burada Φ bir birim matristir. Böylece verilen eşitlik aşağıdaki eşitliğe indirgenebilir:

$$\mathbf{R} = \mathbf{\Lambda}\mathbf{T}\mathbf{T}'\mathbf{T}\mathbf{T}'\mathbf{\Lambda}' + \mathbf{R}_{res}$$

 Burada TT'TT' iki tane birim matrise eşit olduğundan, verilen eşitlik aşağıdaki eşitliğe indirgenebilir:

$$\mathbf{R} = \mathbf{\Lambda} \mathbf{\Lambda}' + \mathbf{R}_{\text{res}}$$

- x = (ΛT)(T'ξ) + δ eşitliğindeki T matrisi transformasyon matrisi olarak adlandırılır ve ΛT matrislerinin çarpımıyla elde edilen matris döndürülen örüntü matrisi olarak adlandırılır.
- İki faktör olduğunda, T matrisi aşağıdaki gibidir:

$$\mathbf{T} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

Burada α saat yönünde döndürme açısıdır. Verilen örnekte

$$\alpha = 45^{\circ}, \cos(45^{\circ}) = \sin(45^{\circ}) = \frac{\sqrt{2}}{2}$$

$$\mathbf{AT} = \begin{bmatrix} .6 & .6 \\ .6 & -.6 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 0 & .848 \\ .848 & 0 \end{bmatrix}$$

Varimax: En yaygın olarak kullanılan dik döndürme yöntemidir.

- Her bir faktörde yüksek yüke sahip değişkenlerin sayısını küçültür.
- Sonuç olarak, bu yöntem faktörlerin yorumlanmasını sadeleştirir.

Quartimax: Her değişkeni açıklamak için gerekli faktör sayısını küçültür.

 Sonuç olarak bu yöntem gözlenen değişkenlerin yorumlanmasını kolaylaştırır.

Equamax: Varimax ve Quartimax'ın bileşimidir.

```
out_dik <- fa(veri,3,fm="pa",rotate="varimax")</pre>
```

```
print(out$loadings[,1:3],
    digits = 3, cutoff = 0.30)
```

```
##
  PA1 PA2
                         PA3
## per1 0.803 -0.4468 -0.37851
## per2 0.775 -0.3224 -0.20784
## per3 0.799 -0.2461 -0.09132
        0.753 -0.2298 -0.21389
## per4
## per5
        0.772 0.4739 -0.00517
## per6 0.607 0.4716 -0.14484
## per7
        0.784 0.4178 -0.08044
        0.727 \quad 0.3954 \quad -0.00837
## per8
## per9 0.665 -0.2234 0.47732
## per10 0.601 -0.0727 0.40929
## per11 0.671 -0.1440 0.44205
```

```
## per1 0.957 0.186 0.1924
## per2 0.777 0.242 0.2919
## per3 0.686 0.299 0.3838
## per4 0.713 0.302 0.2545
## per5 0.210 0.836 0.2777
## per6 0.184 0.756 0.0788
## per7 0.290 0.811 0.2340
## per8 0.229 0.748 0.2700
## per9 0.287 0.152 0.7842
## per10 0.197 0.243 0.6611
## per11 0.263 0.223 0.7397
```

- Ilk çözümle karşılaştırıldığında, aşağıdaki ilişkiler gözlenmektedir:
- per1-4 birinci faktörde daha yüksek ancak diğer iki faktörde daha düşük yüklere sahiptir.
- per5-8 ikinci faktörde daha yüksek ancak diğer iki faktörde daha düşük yüklere sahiptir.
- perg-11 üçüncü faktörde daha yüksek ancak diğer iki faktörde daha düşük yüklere sahiptir.
- Sonuç olarak, döndürülen 3 faktör ilkine göre daha basit yapıya sahiptir.

Döndürülen Yüklerin Kareleri Toplamı

- Döndürmeden önce, her bir faktör için yüklerin kareleri toplamı örüntü katsayılarının kareleri toplanarak hesaplanır.
- Döndürülen yüklerin kareleri toplamı da aynı şekilde hesaplanır ancak döndürülen örüntü matrisindeki yüklerin kareleri toplanır

sum(out_dik\$loadings[,1]^2)

[1] 2.91

$$0.958^2 + 0.777^2 + \ldots + 0.263^2$$

- 3 faktör tarafından açıklanan toplam varyans döndürmeden önce ve sonra aynıdır (yaklaşık %72,23).
- Ancak her bir faktör tarafından açıklanan varyans miktarı faktör eksenleri faktör uzayında döndürüldükten sonra yeniden dağıtılır.

Dik Döndürmede Yük Grafiği

döndürmeden sonraki çözüm için yük grafiği verilir (sol taraftaki)

Döndürmeden önceki yük grafiğiyle (sağ taraftaki)

karşılaştırınca değişkenler arasındaki ilişkiler değişmez ancak faktör uzayındaki faktör eksenleri değişir.

Eğik Döndürme (Oblique Rotation)

- Döndürmeden önceki çözümle karşılaştırınca, dik döndürmeye dayalı 3faktörlü yapı daha basittir.
- Ancak halen yeterince basit değildir: Bazı değişkenlerin sadece bir faktöre mümkün olduğunca yüklenip diğerlerine yüklenmemesi beklenir.
- Örneğin, aşağıdaki 3 yük önemsiz değildir.

per3 0.686 0.299 0.384

```
print(out_dik$loadings[2:3,], digits = 3, cutoff = 0.30)

## PA1 PA2 PA3
## per2 0.777 0.242 0.292
```

 Eğik döndürme daha basit yapı bulmak için kullanılır. Eğik döndürmeden sonra faktörler arasındaki ilişki sıfır olarak kalmaz.

Eğik Döndürme (Oblique Rotation):

- Direct oblimin eğik döndürme yöntemi döndürülen faktörler arasındaki korelasyonların derecesini kontrol etmek üzere Delta adı verilen bir değere başvurur. Delta -9999 ile 0,8 arasında bir değer alır.
 - Default olarak delta değeri sıfıra eşittir. Bu değer daha yüksek korelasyona sahip faktörler sağlar.
 - Eksi değerler aralarında korelasyon bulunmayan faktörler üretir.

Not: Eğik çözümün gerektiği durumlarda, **promax** genellikle daha iyi bir seçimdir.

Eğik Döndürme (Oblique Rotation):

- Promax eğik döndürme yöntemi döndürülen faktörler arasındaki korelasyonların derecesini kontrol etmek üzere Kappa adı verilen bir değere başvurur. Kappa 1 ile 9999 arasında bir değer alır.
 - Default olarak kappa değeri 4'e eşittir. 4'ten küçük değerler daha daha az korelasyona sahip faktörler, 4'ten büyük değerlerse daha yüksek korelasyona sahip faktörler üretir.

Not: **Promax** döndürme direct oblimin döndürmeden **daha hızlı** hesaplanabildiğinden büyük veri setleri için **kullanışlıdır.**

- Faktörler arasında ilişki olduğundan, Φ korelasyon matrisi artık bir birim matris değildir.
- Bu nedenle, döndürülen çözüm için model eşitliği aşağıdaki şekilde gösterilir:

$$\mathbf{R} = \mathbf{\Lambda}_{\mathrm{T}} \mathbf{\Phi} \mathbf{\Lambda'}_{\mathrm{T}} + \mathbf{R}_{\mathrm{res}}$$

Burada ∧_⊤ döndürülen örüntü matrisini simgeler.

$$\Lambda_{\mathsf{T}}\Phi\Lambda'_{\mathsf{T}}=\Lambda\Lambda'$$

Burada Λ döndürmeden önceki örüntü matrisidir.

- Hangi egik döndürme seçeneği seçilirse seçilsin,
- Örüntü matrisi (Pattern matrix): Döndürmeden önceki örüntü matristir.
- Döndürülen örüntü matrisi: Eğik döndürmeden sonraki örüntü matrisidir.
- Ancak dik döndürmede olduğu gibi "Rotated Factor Matrix" olarak değil,
 "Pattern Matrix" olarak adlandırılır.
- Yapı matrisi (Structure matrix)
- Faktörler arasındaki korelasyon matris

Örüntü Katsayısı ve Yapı Katsayısı

- Yapı matrisi gözlenen değişkenlerle faktörler arasındaki iki değişkenli korelasyon katsayısını içerir; her korelasyon katsayısı yapı katsayısı olarak adlandırılır.
- Örüntü katsayısı her bir ölçülen değişkenin her bir faktör üzerindeki bireysel (unique) katkısını temsil eder.
 - Bireysel (unique) katkı diğer faktörlerin etkisi kontrol altına alındıktan sonra, bir faktörün bir değişkene katkısı anlamına gelmektedir.
 - Faktörler dikse (veya sadece bir faktör varsa),örüntü katsayısı belli bir değişken ve bir faktör arasındaki iki değişkenli korelasyon katsayısı ile aynıdır.
 - Ancak faktörler dik değilse, örüntü katsayısı belli bir değişken ve bir faktör arasındaki iki değişkenli korelasyon katsayısı ile aynı değildir.

Örüntü Katsayısı ve Yapı Katsayısı

Örüntü matrisi ve yapı matrisi arasındaki ilişki aşağıdaki eşitlikle gösterilebilir:

$$\Lambda_{\mathrm{T}}\Phi = \mathbf{S}$$

- Burada,
 - Λ_T döndürülen örüntü matrisi
 - Φ faktörler arasındaki korelasyon matrisi
 - S yapı matrisi
- Φ bir birim matris olduğunda,

$$\Lambda_{\rm T} = S$$

Döndürme olmadığında,

$$\Lambda = S$$

Proportion Var 0.26 0.243 0.173 ## Cumulative Var 0.26 0.503 0.676

```
out_egik <- fa(veri,3,fm="pa",rotate="oblimin")</pre>
print(out_egik$loadings, digits = 3, cutoff = 0.30)
##
## Loadings:
##
        PA2 PA1
                   PA3
## per1
        1.058
        0.792
## per2
## per3
               0.637
## per4
               0.712
## per5
        0.887
## per6
        0.842
## per7
        0.847
        0.779
## per8
## per9
                      0.847
## per10
                      0.698
## per11
                      0.781
##
##
               PA2
                      PA1
                            PA3
## SS loadings 2.87 2.670 1.906
```

```
print(out_egik$Structure, digits = 3, cutoff = 0.30)
```

```
##
## Loadings:
##
        PA2
              PA1
                    PA3
## per1 0.467 0.991 0.505
## per2 0.497 0.860 0.557
## per3 0.550 0.812 0.628
## per4 0.528 0.805 0.517
## per5 0.904 0.467 0.512
## per6 0.773 0.372 0.302
## per7 0.890 0.525 0.490
## per8 0.824 0.461 0.490
## per9 0.409 0.504 0.847
## per10 0.440 0.411 0.727
## per11 0.459 0.488 0.815
##
##
                 PA2
                       PA1
                             PA3
## SS loadings 4.50 4.537 3.970
## Proportion Var 0.41 0.412 0.361
## Cumulative Var 0.41 0.822 1.183
```

out_egik\$Phi

```
## PA2 PA1 PA3
## PA2 1.000 0.525 0.520
## PA1 0.525 1.000 0.569
## PA3 0.520 0.569 1.000
```

- Eğik döndürme ile AFA gerçekleştirildiğinde, hangi grup katsayılar rapor edilmelidir: örüntü veya yapı? $\Lambda_T\Phi=S$
- eşitliğinden dolayı, çoğu makale örüntü katsayılarını ve faktörler arasındaki korelasyon katsayılarını rapor eder.
- Bazı makalelerde hem örüntü hem de yapı katsayıları faktör yükleri adı altında rapor edilir.
- Karışıklığı önlemek amacıyla, hangi grup katsayıların rapor edildiği açıkça belirtilmelidir.

Dik ve Eğik Döndürme

Dik döndürme ve eğik döndürme sonucu elde edilen faktör çözümleri karşılaştırıldığında, **eğik döndürme** sonucu elde edilen faktör yapısının daha basit ve daha kolay yorumlanabilir olduğu görülmektedir

```
Dik
                                                Eğik
##
                                                ##
## Loadings:
                                                ## Loadings:
##
        PA1
             PA2
                   PA3
                                                ##
                                                         PA2
                                                               PA1
                                                                      PA3
                                                        1.058
## per1 0.957
                                                ## per1
       0.777
                                                ## per2
                                                               0.792
## per2
## per3 0.686
                                                ## per3
                                                                0.637
                   0.384
## per4 0.713 0.302
                                                ## per4
                                                                0.712
## per5
             0.836
                                                ## per5
                                                         0.887
## per6
       0.756
                                                         0.842
                                                ## per6
                                                         0.847
## per7
        0.811
                                                ## per7
       0.748
## per8
                                                          0.779
                                                ## per8
## per9
                   0.784
                                                ## per9
                                                                      0.847
## per10
                   0.661
                                                ## per10
                                                                      0.698
## per11
                   0.740
                                                ## per11
                                                                      0.781
                                                ##
##
```

Dik ve Eğik Döndürme

Dik

Egik

3D factor loadings

Yorum

AFA'dan uygun bir sonuç elde edildikten sonra, çıkarılan faktörlerin yorumlanması gerekir.

- Verilen örnekte aşağıdaki sonuçlar elde edilmiştir:
- Faktör 1 temel olarak PER1-4 tarafından açıklanır.
- Faktör 2 temel olarak PER5-8 tarafından açıklanır.
- Faktör 3 temel olarak PER9-11 tarafından açıklanır.
- Bu 3 faktör arasındaki korelasyon katsayıları orta-yüksek korelasyon katsayılarıdır.

Yorum

Faktörler anlamları bakımından da yorumlanmalıdır.

 Verilen örnekteki 11 değişkenin kütüphane servis kalitesi algısını ölçmesi hedeflenmiştir.

	Variable	Contents
	PER1	Willingness to help users
Factor 1 can be explained	PER2	Giving users individual attention
as "service affect".	PER3	Employees who deal with users in a caring fashion
	PER4	Employees who are consistently courteous
	PER5	A haven for quiet and solitude
Factor 2 can be explained	PER6	A meditative place
as "library as place".	PER7	A contemplative environment
	PER8	Space that facilitates quiet study
Factor 3 can be explained	PER9	Comprehensive print collections
as "information assess".	PER10	Complete runs of journal titles
as illioithadon assess.	PER11	Interdisciplinary library needs being addressed

 AFA veri yapısı ile ilgili olarak herhangi bir önsel kuram gerektirmediğinden ve sadece ölçülen değişkenler arasındaki korelasyon matrisine dayandığından, çıkarılan faktörler yorumlanabilir olmayabilir.

Yorum

- Yorumlanabilir döndürülen çözüm bulunduğunda ve çıkarılan faktörlere anlam yüklendiğinde, her bir bireyin bu gözlenmeyen boyutlarda değerlendirilmesi özellikle istenebilir.
- Bu faktör puanı kestirimi adı verilen yöntemin amacıdır ve bu yöntemle her bir birey için faktörlerin kestirimi elde edilir.
- Kestirilen faktör puanı daha ileri analizlerde kullanılabilir (örneğin, faktörlere göre gruplardaki ortalama farklarının karşılaştırılması).

Faktör Puanı Kestirimi:

- Her bir birey için faktör puanı kestirmek için , analizlerde bireysel verinin kullanılması gerekmektedir.
- Faktör puanı kestirim yöntemleri
 - Regression method
 - Bartlett's methods
 - Anderson-Rubin

Faktör Puanı Kestirimi:

- Regresyon yöntemiyle elde edilen faktör puanlarının ortalaması sıfırdır
- Bartlett yöntemiyle elde edilen faktör puanlarının ortalaması sıfırdır.
- Anderson-Rubin yöntemiyle elde edilen faktör puanlarının ortalaması 0 ve standart sapması 1'dir. Faktör puanları arasında ilişki yoktur. Bartlett yönteminin kestirilen faktörlerin dikliğini sağlaması için modifiye edilmiş halidir.

Faktör Puanı Kestirimi Örneği

```
fa_egik <- fa(veri, nfactors=3, rotate="oblimin", scores="regression")
head(fa_egik$scores)</pre>
```

```
## MR2 MR1 MR3
## [1,] -1.686 0.3314 -0.556
## [2,] -0.567 -1.4117 -1.515
## [3,] -0.812 -0.7918 -1.355
## [4,] -1.038 -1.3164 -1.838
## [5,] -0.652 -1.2621 -1.044
## [6,] 0.683 -0.0205 0.278
```

