Boosting

David Rosenberg

New York University

March 23, 2016

Boosting Introduction

Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models
- Parallel ensembles: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance
- Sequential ensembles:
 - Models are generated sequentially
 - Try to add new models that do well where previous models lack

The Boosting Question: Weak Learners

- A weak learner is a classifier that does slightly better than random.
- Weak learners are like "rules of thumb":
 - If an email has "Viagra" in it, more likely than not it's spam.
 - Email from a friend is probably not spam.
 - A linear decision boundary.
- Can we combine a set of weak classifiers to form single classifier that makes accurate predictions?
 - Posed by Kearns and Valiant (1988,1989):
- Yes! Boosting solves this problem. [Rob Schapire (1990).]

AdaBoost

AdaBoost: Setting

- Consider $\mathcal{Y} = \{-1, 1\}$ (binary classification).
- Suppose we have a weak learner:
 - Hypothesis space $\mathcal{F} = \{f : \mathcal{X} \to \{-1, 1\}\}.$
 - Note: not producing a score, but an actual class label.
 - Algorithm for finding $f \in \mathcal{F}$ that's better than random on training data.
- Typical weak learners:
 - Decision stumps (tree with a single split)
 - Trees with few terminal nodes
 - Linear decision functions

Weighted Training Set

- Training set $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}.$
- Weights $(w_1, ..., w_n)$ associated with each example.
- Weighted empirical risk:

$$\hat{R}_n^W(f) = \frac{1}{W} \sum_{i=1}^n w_i \ell(f(x_i), y_i) \quad \text{where } W = \sum_{i=1}^n w_i$$

- Can train a model to minimize weighted empirical risk.
- What if model cannot conveniently be trained to reweighted data?
- Can sample a new data set from \mathcal{D} with probabilities $(w_1/W, \dots w_n/W)$.

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- So far, we've generated M classifiers: $G_1(x), \ldots, G_m(x)$.

AdaBoost: Schematic

From ESL Figure 10.1

AdaBoost - Rough Sketch

- Training set $\mathfrak{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- Final prediction $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
- The α_m 's are nonnegative,
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted $\mathfrak D$ less well

Adaboost: Weighted Classification Error

- In round *m*, weak learner gets a weighted training set.
 - Returns a classifier $G_m(x)$ that roughly minimizes weighted 0-1 error.
- The weighted 0-1 error of $G_m(x)$ is

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i))$$
 where $W = \sum_{i=1}^n w_i$.

- Notice: $err_m \in [0, 1]$.
- We treat the weak learner as a black box.
 - It can use any method it wants to find $G_m(x)$. (e.g. SVM, tree, etc.)
 - BUT, for things to work, we need at least $err_m < 0.5$.

AdaBoost: Classifier Weights

• The weight of classifier $G_m(x)$ is $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$.

• Note that weight $\alpha_m \to 0$ as weighted error $err_m \to 0.5$ (random guessing).

AdaBoost: Example Reweighting

- We train G_m to minimize weighted error, and it achieves err_m.
- Then $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$ is the weight of G_m in final ensemble.
- Suppose w_i is weight of example i before training:
 - If G_m classfies x_i correctly, then w_i is unchanged.
 - Otherwise, w; is increased as

$$w_i \leftarrow w_i e^{\alpha_m}$$

$$= w_i \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \right)$$

• See why this only increases the weight?

Adaboost: Example Reweighting

• Any misclassified point has weight adjusted as $w_i \leftarrow w_i \left(\frac{1 - \mathsf{err}_m}{\mathsf{err}_m} \right)$.

 \bullet The smaller err_m, the more we increase weight of misclassified points.

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ..., n.
- ② For m = 1 to M:
 - Fit weak classifier $G_m(x)$ to \mathcal{D} using weights w_i .
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i))$$
 where $W = \sum_{i=1}^n w_i$.

- **3** Compute $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$.
- $\bullet \text{ Set } w_i \leftarrow w_i \cdot \exp\left[\alpha_m 1(y_i \neq G_m(x_i))\right], \quad i = 1, 2, \dots, N$
- **o** Ouptut $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

AdaBoost with Decision Stumps

• After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.

AdaBoost with Decision Stumps

• After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

AdaBoost with Decision Stumps

• After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

- Methods we've seen so far come in two categories:
 - Convex optimization problems (L1/L2 regression, SVM, kernelized versions)
 - No issue minimizing objective function over hypothesis space
 - Trees
 - Can always fit data perfectly with big enough tree
- AdaBoost is something new at this point, it's just an algorithm.
 - In this sense, it's like the Perceptron algorithm.
- Will G(x) even minimize training error?
- "Yes", if our weak classifiers have an "edge" over random.

- As a weak classifier, $G_m(x)$ should have $\operatorname{err}_m < \frac{1}{2}$.
- Define the **edge** of classifier $G_m(x)$ at round m to be

$$\gamma_m = \frac{1}{2} - \operatorname{err}_m.$$

• Measures how much better than random G_m performs.

Theorem

The empirical 0-1 risk of the AdaBoost classifier G(x) is bounded as

$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leqslant \prod_{m=1}^{M} \sqrt{1 - 4\gamma_m^2}.$$

For more details, see the book Boosting: Foundations and Algorithms by Schapire and Freund.

Example

Suppose $err_m \leq 0.4$ for all m.

• Then $\gamma_m = .5 - .4 = .1$, and

$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leqslant \prod_{m=1}^{M} \sqrt{1 - 4(.1)^2} \approx (.98)^M$$

Bound decreases exponentially:

$$.98^{100} \approx .133$$

 $.98^{200} \approx .018$
 $.98^{300} \approx .002$

• With a consistent edge, training error decreases very quickly to 0.

Test Performance of Boosting

Typical Train / Test Learning Curves

Might expect too many rounds of boosting to overfit:

Learning Curves for AdaBoost

- In typical performance, AdaBoost is surprisingly resistant to overfitting.
- Test continues to improve even after training error is zero!

From Rob Schapire's NIPS 2007 Boosting tutorial.

Boosting Fits an Additive Model

Adaptive Basis Function Model

AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- each G_m is a weak classifier
- \bullet The G_m 's are like basis functions, but they are learned from the data.
- Let's move beyond classification models...

Adaptive Basis Function Model

- Base hypothesis space \mathcal{F}
 - the "weak classifiers" in boosting context
- ullet An adaptive basis function expansion over ${\mathcal F}$ is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- $h_m \in \mathcal{F}$ chosen in a learning process ("adaptive")
- $v_m \in R$ are expansion coefficients.
- **Note**: We are taking linear combination of outputs of $h_m(x)$.
 - Functions in $h_m \in \mathcal{F}$ must produce values in **R** (or a vector space)

How to fit an adaptive basis function model?

- Loss function: $\ell(y, \hat{y})$
- Base hypothesis space: F of real-valued functions
- Want to find

$$f(x) = \sum_{m=1}^{M} v_m h_m(x)$$

that minimizes empirical risk

$$\frac{1}{n}\sum_{i=1}^n\ell\left(y_i,f(x_i)\right).$$

• We'll proceed in stages, adding a new h_m in every stage.

Forward Stagewise Additive Modeling (FSAM)

- Start with $f_0 \equiv 0$.
- After m-1 stages, we have

$$f_{m-1}=\sum_{i=1}^{m-1}\nu_ih_i,$$

where $h_1, \ldots, h_{m-1} \in \mathcal{F}$.

- Want to find
 - step direction $h_m \in \mathcal{F}$ and
 - step size $v_i > 0$
- So that

$$f_m = f_{m-1} + v_i h_m$$

minimizes empirical risk.

Forward Stagewise Additive Modeling

- Initialize $f_0(x) = 0$.
- 2 For m = 1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbf{R}, h \in \mathcal{F}}{\arg\min} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- **2** Set $f_m = f_{m-1} + v_m h$.
- \odot Return: f_M .

Exponential Loss and AdaBoost

Take loss function to be

$$\ell(y, f(x)) = \exp(-yf(x)).$$

- Let $\mathcal{F} = \{b(x; \gamma) \mid \gamma \in \Gamma\}$ be a hypothesis space of weak classifiers.
- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost! (See HTF Section 10.4 for proof.)
- Only difference:
 - AdaBoost is loose about each G_m "fitting the weighted training data"
 - Just needs to "have an edge" over random classification
 - For FSAM we're explicitly looking for

$$G_m = \arg\min_{G \in \mathcal{F}} \sum_{i=1}^{N} w_i^{(m)} \mathbb{1}(y_i \neq G(x_i))$$

Robustness and AdaBoost

Exponential Loss

 Note that exponential loss puts a very large weight on bad misclassifications.

AdaBoost / Exponential Loss: Robustness Issues

- When Bayes error rate is high (e.g. $\mathbb{P}(f^*(X) \neq Y) = 0.25$)
 - Training examples with same input, but different classifications.
 - Best we can do is predict the most likely class for each X.
- Some training predictions should be wrong (because example doesn't have majority class)
 - AdaBoost / exponential loss puts a lot of focus on geting those right
- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate, or when there's
 - high "label noise"
- Logistic loss performs better in settings with high Bayes error

Population Minimizer

Population Minimizers

- In traditional statistics, the population refers to
 - the full population of a group, rather than a sample.
- In machine learning, the population case is the hypothetical case of
 - an infinite training sample from $P_{X \times Y}$.
- A population minimizer for a loss function is another name for the risk minimizer.
- For the exponential loss $\ell(m) = e^{-m}$, the population minimizer is given by

$$f^*(x) = \frac{1}{2} \ln \frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=-1 \mid X=x)}$$

- (Short proof in KPM 16.4.1)
- By solving for $\mathbb{P}(Y=1 \mid X=x)$, we can give probabilistic predictions from AdaBoost as well.

Population Minimizers

- AdaBoost has the robustness issue because of the exponential loss.
- Logistic loss $\ell(m) = \ln(1 + e^{-m})$ has the same population minimizer.
 - But works better with high label noise or high Bayes error rate
- Population minimizer of SVM hinge loss is

$$f^*(x) = \text{sign}\left[\mathbb{P}(Y=1 \mid X=x) - \frac{1}{2}\right].$$

• Because of the sign, we cannot solve for the probabilities.