INFERENCE REFERENCE SHEET

Stat 120 | Fall 2025

Prof Amanda Luby

Name	Type of Variable(s)	Statistic	Parameter
Mean	Quantitative	\bar{x}	μ
Proportion	Categorical	\hat{p}	p
Standard Deviation	Quantitative	s	σ
Difference in Proportions	2 Categorical	$\hat{p}_1 - \hat{p}_2$	$p_{1} - p_{2}$
	(1 Response, 1 Explanatory)	- - - -	
Difference in Means	1 Quantitative (Response)	$\bar{x}_1 - \bar{x}_2$	$\mu_1 - \mu_2$
	1 Categorical (Explanatory)	- -	
Correlation	2 Quantitative	r	ho
Slope	2 Quantitative	b_1	β_1

Hypothesis Test

Confidence Interval

- 1. I am ____ % confident
- 2. that the [population parameter in context]
- 3. is between ____ and ____ [units]

- 1. At $\alpha = [\text{significance level}]$
- 2. I [reject/do not reject] ${\cal H}_0$
- 3. with a p-value of [p-value]
- 4. and conclude [population parameter] is ...

	${\cal H}_0$ True	H_0 False
Reject H_0		
Do not reject H_0		

R Commands

library(CarletonStats)

Confidence Interval

Mean/Proportion: boot(~<variable_name>, data = <dataset_name>, seed = <seed>)

Difference: boot(<response> ~ <explanatory>, data = <dataset_name>, seed = <seed>)

Paired Diff.: bootPaired(<response1> ~ <response2>, data = <dataset>, seed = <seed>)

Correlation: bootCor(<response> ~ <explanatory>, data = <dataset_name>, seed = <seed>)

Hypothesis Test

Difference: permTest(<response> ~ <explanatory>, data = <dataset_name>, seed = <seed>)

Paired Diff.: permTestPaired(<response1> ~ <response2>, data = <dataset>, seed = <seed>)

Correlation: permTestCor(<response> ~ <explanatory>, data = <dataset_name>, seed = <seed>)