# Úlohy 1. kola 59. ročníku fyzikální olympiády. Kategorie C

V úlohách počítejte s hodnotou  $g = 9.81 \text{ m} \cdot \text{s}^{-2}$ .

## 1. Rozjíždějící se cyklista

Cyklista se rozjíždí rovnoměrně zrychleně po rovné silnici, na jejímž kraji jsou pravidelně rozmístěné značky. Čas jízdy od první ke druhé značce je  $t_1 = 2.0$  s, od druhé ke třetí značce  $t_2 = 1.0$  s.

- a) Jaká bude doba jízdy cyklisty  $t_3$  od třetí ke čtvrté značce?
- b) S jakým zrychlením se pohyboval cyklista a jaká byla jeho rychlost u páté značky, bylo-li dodatečně zjištěno, že vzdálenost mezi značkami je s=6.0 m?

## 2. Válec na nakloněné rovině ve vagónu

Plošinu vagónu tvoří nakloněná rovina se sklonem  $\alpha = 5,0^{\circ}$ , rovina stoupá od předního konce vagónu k zadnímu konci. V nejnižším místě plošiny se nachází plný homogenní válec, jeho geometrická osa je kolmá k bočním stěnám vagónu. Vagón je tažen lokomotivou po přímých vodorovných kolejích.

a) Určete maximální velikost  $a_m$  zrychlení, s nímž se může vagón při rozjíždění pohybovat, aby se válec neuvedl do pohybu.

Vagón se pohybuje z klidu rovnoměrně zrychleným pohybem se zrychlením o velikosti  $a=1,6a_m$ , od okamžiku dosažení rychlosti o velikosti  $v=11,0~\mathrm{m\cdot s^{-1}}$  se dále pohybuje rovnoměrně.

- b) Určete minimální délku l nakloněné roviny, při níž válec z vagónu nevypadne.
- c) Určete celkovou dráhu s vagónu, na které je válec ve vagónu mimo svoji počáteční polohu.

Řešte nejprve obecně, pak pro dané hodnoty.



Obr. 1

# 3. Kruhový děj

S jednoatomovým ideálním plynem provedeme následující cyklický děj: Nejprve za stálého tlaku  $p_1$  zvýšíme jeho objem z objemu  $V_1=2{,}00$  l na objem  $V_2=16{,}0$  l, pak zmenšíme tlak plynu za stálého objemu na  $p_2=50{,}0$  kPa a nakonec plyn adiabaticky stlačíme na počáteční objem a tlak.

- a) Nakreslete p<br/>–V diagram s obecným vyznačením tlaků  $p_1$  a  $p_2$  a objem<br/>ů  $V_1$  a  $V_2$  a určete počáteční tlak plynu  $p_1$ .
- b) Určete celkovou práci vykonanou plynem během kruhového děje a teplo, které během kruhového děje musíme plynu dodat.
- c) Určete účinnost kruhového děje.

Úlohy a) a b) řešte obecně, pak pro dané hodnoty.

Vnitřní energie plynu s jednoatomovými molekulami  $U = \frac{3}{2}nRT$ ,  $\kappa = 1,67$ .

## 4. Bimetalový pásek

Bimetalový pásek má v přímém tvaru délku  $l_0=12$  cm se skládá ze dvou částí, měděné a zinkové. Tloušťka obou částí je d=1,0 mm. Součinitele teplotní délkové roztažnosti zinku  $\alpha_{\rm Zn}=3,0\cdot 10^{-5}~{\rm K}^{-1}$ , mědi  $\alpha_{\rm Cu}=1,7\cdot 10^{-5}~{\rm K}^{-1}$ . Pásek rovnoměrně zahřejeme o  $\Delta t=60~{\rm ^{\circ}C}$ . Určete:

- a) Rozdíl délek měděné a zinkové části po zahřátí,
- b) poloměr křivosti r prohnutého pásku po zahřátí a odpovídající středový úhel  $\alpha$ .
- c) O jakou vzdálenost x se při zahřátí posunul bod, dotýkající se kontaktu na konci pásku?



# 5. Kalorimetry a součástky

Tepelně izolovaná nádoba – kalorimetr – je až po okraj plná vody o teplotě  $t_1 = 19,0$  °C. Když do kalorimetru vhodíme jednu kovovou součástku o hustotě  $\rho = 2700$  kg· m<sup>-3</sup> a teplotě t = 99,0 °C, část vody přeteče a teplota vody

po ustavení rovnováhy stoupne na  $t_2 = 32,2$  °C. Když pokus opakujeme se stejným množstvím stejně teplé vody, ale do kalorimetru vhodíme dvě stejně a stejně zahřáté součástky, bude výsledná teplota v kalorimetru  $t_3 = 48,8$  °C.

- a) Jaká je měrná tepelná kapacita c materiálu, z něhož jsou zhotoveny součástky?
- b) Jaký je poměr hmotnosti vody v kalorimetru před vhozením součástky a hmotnosti kovové součástky?
- c) Jaká by byla výsledná teplota  $t_4$ , kdybychom do kalorimetru místo dvou vhodili tři stejné a stejně zahřáté součástky?

Úlohy a) a b) řešte nejprve obecně, část c) řešte číselně s použitím výsledku části a).

Měrná tepelná kapacita vody je  $c_v = 4~200~\mathrm{J}\cdot\mathrm{kg}^{-1}\cdot\mathrm{K}^{-1}$ , hustota vody  $\rho_v = 1000~\mathrm{kg}\cdot\mathrm{m}^{-3}$ . Ztráty tepla do okolí jsou zanedbatelné.

#### 6. Kyvadla

Teoretické úkoly:

- a) Určete délku l tenké tyče kývající okolo osy umístěné na jejím konci, aby doba kmitu byla přesně  $T_1 = 1 \, \text{s}$  (obr. 3a).
- b) Stejnou tyč uprostřed ostře ohneme a v místě ohybu položíme na tenký břit (obr. 4b). Určete úhel ohybu  $2\varphi$ , aby doba kmitu byla opět přesně  $T_2 = 1$  s.
- c) Ohnutou tyč z úlohy b) upevníme otáčivě na konci (obr. 4c). Určete dobu kmitu tohoto kyvadla  $T_3$ .



Praktické úkoly: Zhotovte kyvadla popsaná v teoretické části, změřte jejich doby kyvu a naměřené hodnoty porovnejte s teoretickými předpoklady.

## Pokyny k provedení:

a) Kyvadla zhotovíme z drátu o průměru asi 2 mm z hliníku, mědi nebo oceli. Konec rozklepáme a vyvrtáme do něj otvor o průměru asi 1 mm a přebytečný materiál opilujeme tak, že vznikne malé očko (obr. 4a). Od jeho středu naměříme délku kyvadla vypočtenou v teoretickém úkolu a), drát přestřihneme a kyvadlo vyrovnáme. Jako osu kyvadla použijeme špendlík zabodnutý kolmo do svislé desky.



- b) Nalezneme střed drátu a drát ohneme podle výsledku výpočtu v teoretickém úkolu b). Místo ohybu mírně propilujeme, aby vznikl žlábek (obr. 4b). Tím zabráníme vychylování kyvadla z roviny kolmé k ose. Jako břit použijeme nůž upnutý do svěráku.
- c) Ohnutý drát z úlohy b) necháme kývat okolo osy tvořené špendlíkem jako v úloze a).

#### 7. Dvě závaží na kladkách

V soustavě dvou těles o hmotnostech  $m_1$  a  $m_2$  a dvou kladek jsou hmotnosti nití a kladek zanedbatelné. Nit je pevná a neroztažitelná. Na horní kladku působí v jejím středu S síla  $\mathbf{F}$  (obr. 3). Určete

- a) velikosti sil napínajících nitě, na kterých visí závaží,
- b) velikosti zrychlení těles  $a_1$  a  $a_2$ ,
- c) velikost zrychlení středu S horní kladky.



Obr. 5