TIGHTENING THE BASIC VERSION OF HENSEL'S LEMMA

KEITH CONRAD

In its simplest form, Hensel's Lemma says that a polynomial $f(X) \in \mathbf{Z}_p[X]$ with a simple root mod p has a lifting to a p-adic root:

 $f(a_0) \equiv 0 \mod p, f'(a_0) \not\equiv 0 \mod p \Rightarrow \text{ there is } a \in \mathbb{Z}_p \text{ such that } a \equiv a_0 \mod p, f(a) = 0.$

The hypotheses can also be written using absolute values: $|f(a_0)|_p < 1$, $|f'(a_0)|_p = 1$. And the conclusion is f(a) = 0 with $|a - a_0|_p < 1$.

As a simple application, consider $f(X) = X^p - X$. For each integer j between 0 and p-1, $f(j) \equiv 0 \mod p$ and $f'(j) = pj^{p-1} - 1 \equiv -1 \not\equiv 0 \mod p$. So there is some $\omega_j \in \mathbf{Z}_p$ such that $\omega_j^p = \omega_j$ and $\omega_j \equiv j \mod p\mathbf{Z}_p$. This accounts for p different roots (they are incongruent mod $p\mathbf{Z}_p$, hence unequal), so we've found all the roots: $X^p - X$ splits completely in $\mathbf{Z}_p[X]$. Its nonzero roots are (p-1)-th roots of unity.

Let's consider the following more general setting for Hensel's Lemma: K is a field complete with respect to a nonarchimedean absolute value $|\cdot|$, \mathfrak{o} is its valuation ring.

The version of Hensel's Lemma in [3, Chap. II, §2, Prop. 2] goes as follows: if $a_0 \in \mathfrak{o}$ and

$$|f(a_0)| < |f'(a_0)|^2,$$

then the sequence

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$$

converges in \mathfrak{o} , and its limit a satisfies

$$f(a) = 0, |a - a_0| \le \left| \frac{f(a_0)}{f'(a_0)^2} \right|.$$

The need for having a Hensel's Lemma like this, where we start with a possible nonsimple root at the level of the residue field (i.e., with $|f(a_0)| < 1$ and $|f'(a_0)| < 1$), is seen when trying to determine which elements of \mathbf{Q}_2 are squares: the derivative of $X^2 - b$ vanishes mod 2, so Hensel's Lemma stated only for simple roots in the residue field is useless. A similar difficulty arises when deciding which elements of \mathbf{Q}_p are p-th powers for any p.

The estimate (1) only makes sense if $f'(a_0) \neq 0$. In the course of the proof in [3], it is seen that $|f'(a)| = |f'(a_0)|$, so the theorem will produce only simple roots of f in \mathfrak{o} (which may not be simple in $\mathfrak{o}/\mathfrak{m}$, *i.e.*, perhaps $|f'(a_0)| < 1$).

We now give a version of Hensel's Lemma which strengthens the above form in three respects:

- 1) it improves the upper bound on $|a a_0|$ to an exact formula,
- 2) it proves uniqueness of the root in a disc around a_0 which is slightly larger than $|a-a_0|$,
- 3) it provides a converse of sorts, showing that the basic inequality which gets things going is guaranteed to hold in a neighborhood of any simple root.

Theorem 1. Let $f \in \mathfrak{o}[X]$ and $a_0 \in \mathfrak{o}$ with $|f(a_0)| < |f'(a_0)|^2$. Then the recursion

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$$

converges in \mathfrak{o} to a root a of f and

1)
$$|a - a_0| = |f(a_0)/f'(a_0)| < |f'(a_0)| \le 1$$
,

2) a is the unique root of f whose distance from a_0 is $\langle |f'(a_0)|$.

Moreover, if f has a simple root r in \mathfrak{o} , then for all x such that |r-x| < |f'(r)|, we have |f'(x)| = |f'(r)| and $|f(x)| < |f'(x)|^2$.

Two consequences of the theorem are worth noting, concerning the uniqueness aspect:

- 1) while a is the unique root of f in the open ball around a_0 of radius $|f'(a_0)|$, it is in fact closer to a_0 than that distance.
 - 2) for a simple root $r \in \mathfrak{o}$ of f, there are no other roots s of f in \mathfrak{o} satisfying |s-r| < |f'(r)|.

Proof. Let $c = |f(a_0)/f'(a_0)^2| < 1$. We inductively prove that

- i) $|a_n| \le 1$, *i.e.*, $a_n \in \mathfrak{o}$,
- ii) $|f'(a_n)| = |f'(a_0)|$,
- iii) $|f(a_n)| < |f'(a_0)|^2 c^{2^n}$
- iv) $|a_{n+1} a_n| < |f'(a_0)| c^{2^n}$

For n=0 they are all clear. Part iv comes from the definition $a_1=a_0-f(a_0)/f'(a_0)$. For the inductive step, we use the following: for any polynomial $P(X) \in \mathfrak{o}[X]$,

$$P(X + Y) = P(X) + P'(X)Y + Q(X,Y)Y^{2}$$

for some $Q \in \mathfrak{o}[X,Y]$ (by the binomial theorem, $(X+Y)^n = X^n + (nX^{n-1})Y + Y^2H(X,Y)$. now use \mathfrak{o} -linearity). So if $x, y \in \mathfrak{o}$ then $P(x+y) = P(x) + P'(x)y + y^2z$ where $z \in \mathfrak{o}$.

Assume parts i through iv are true for n. Then $|f(a_n)/f'(a_n)| = |f(a_n)/f'(a_0)| <$ $|f'(a_0)|c^{2^n} \le 1$, so $|a_{n+1}| \le 1$. Next, since $|f(a_n)| < |f'(a_0)|^2$,

$$|f'(a_{n+1}) - f'(a_n)| \le |a_{n+1} - a_n| = \frac{|f(a_n)|}{|f'(a_n)|} = \frac{|f(a_n)|}{|f'(a_0)|} < |f'(a_0)|,$$

so $|f'(a_{n+1})| = |f'(a_0)|$.

To estimate $|f(a_{n+1})|$,

$$f(a_{n+1}) = f(a_n) + f'(a_n) \left(-\frac{f(a_n)}{f'(a_n)} \right) + \left(\frac{f(a_n)}{f'(a_n)} \right)^2 z = \left(\frac{f(a_n)}{f'(a_n)} \right)^2 z,$$

where $z \in \mathfrak{o}$. Thus

$$|f(a_{n+1})| \le \left| \frac{f(a_n)}{f'(a_n)} \right|^2 = \frac{|f(a_n)|^2}{|f'(a_0)|^2} < |f(a_0)|^2 c^{2^{n+1}}.$$

Part iv is equivalent to part iii.

Thus, the sequence $\{a_n\}$ is Cauchy. Let a be its limit, so $a \in \mathfrak{o}$ by i. By iii, f(a) = 0. By ii, $|f'(a)| = |f'(a_0)|$. For $n \ge 1$,

$$|a_{n+1} - a_n| < |f'(a_0)|c^2 < |f'(a_0)|c = \left| \frac{f(a_0)}{f'(a_0)} \right| = |a_1 - a_0|,$$

so writing $a_{n+1} - a_0 = a_{n+1} - a_n + a_n - a_0$, we get by induction on n that $|a_n - a_0| =$ $|f(a_0)/f'(a_0)|$, so $|a-a_0|=|f(a_0)/f'(a_0)|$.

Now we want to show the uniqueness of the root in the open ball around a_0 of radius $|f'(a_0)|$. Assume $|b-a_0| < |f'(a_0)|$ and f(b) = 0. Then also $|b-a| < |f'(a_0)|$.

Let $b = a + h, h \in \mathfrak{o}$. Then

$$0 = f(b) = f(a) + f'(a)h + h^2z = f'(a)h + h^2z$$

for $z \in \mathfrak{o}$. If $z \neq 0$ then f'(a) = -hz, so $|f'(a)| \leq |h| = |b - a| < |f'(a_0)|$. But |f'(a)| = $|f'(a_0)|$, so we have a contradiction and h=0, i.e., b=a.

Now assume r is a simple root of f and |r-x| < |f'(r)|. Then $|f'(r) - f'(x)| \le |r-x| < |f'(r)|$, so |f'(x)| = |f'(r)|. Also

$$f(x) = f(r) + f'(r)(x - r) + (x - r)^{2}z = f'(r)(x - r) + (x - r)^{2}z,$$

where $z \in \mathfrak{o}$. Each term on the right hand side has size less than $|f'(r)|^2$, so also $|f(x)| < |f'(r)|^2 = |f'(x)|^2$.

Let's see the uniqueness aspect of Hensel's Lemma put to use to answer a concrete question: what are the roots of unity in \mathbf{Q}_p ? Of course, if $x^n = 1$ then $|x|^n = 1$, so |x| = 1. This means any root of unity in \mathbf{Q}_p lies in \mathbf{Z}_p^{\times} . Therefore we work in \mathbf{Z}_p^{\times} right from the start.

First let's consider roots of unity of order prime to p. We've already found one in each residue class, from our factorization of $X^{p-1}-1$. Now assume that ζ_1 and ζ_2 are roots of unity with order prime to p. So they are both roots of some $f(X)=X^m-1$, where m is prime to p. Since $|f'(\zeta_i)|_p=1$, the uniqueness in Hensel's Lemma says that the only root x of X^m-1 satisfying $|x-\zeta_1|_p<1$ is ζ_1 itself. So we can't have $|\zeta_2-\zeta_1|_p<1$. That is, roots of unity of order prime to p must be incongruent mod p. Since we've already found one root in each nonzero class mod p, we've found them all: the only roots of unity of order prime to p in \mathbf{Q}_p are the roots of $X^{p-1}-1$.

Now we consider roots of unity of p-power order. Of course, in \mathbb{Q}_2 we have a root of unity of order 2, namely -1. That's all, folks.

Theorem 2. For p odd, there are no roots of unity of order p in \mathbf{Q}_p . There are no roots of unity of order 4 in \mathbf{Q}_2 .

Proof. We first consider odd p, showing the only root of $X^p - 1$ in \mathbb{Q}_p is 1.

Suppose $r^p = 1$. From $r^p \equiv 1 \mod p$ we get $r \equiv 1 \mod p$. By the uniqueness in Hensel's Lemma for $f(X) = X^p - 1$, the ball

$${x \in \mathbf{Q}_p : |x - r|_p < 1/p^2} = r + p^3 \mathbf{Z}_p$$

around r contains no pth root of unity except for r. (Using the pth cyclotomic polynomial instead of $X^p - 1$ would make the bound on $|x - r|_p$ depend on r, which would be inconvenient.) That is, cosets mod $p^3 \mathbf{Z}_p$ contain at most one pth root of unity. So we show the only solution mod p^3 to $X^p = 1$ is 1.

Any pth root of unity has the form 1 + py. Then

$$(1+py)^p = 1 \Rightarrow \sum_{k=1}^p \binom{p}{k} p^k y^k = 0,$$

where all terms except for k=1 are divisible by p^3 (p is odd), so p^2y is divisible by p^3 , hence p^3 is divisible by p^4 , hence p^2y is divisible by p^4 , so p^4 is divisible by p^4 , so p^4 is divisible by p^4 , so p^4 is divisible by p^4 . Of course, we could continue ad infinitum to find p^4 is arbitrarily highly divisible by p^4 , so p^4 is p^4 we get p^4 is p^4 and by the uniqueness of Hensel's Lemma the only root of p^4 is p^4 which is p^4 is p^4 is p^4 , so we're done.

Now we consider roots of unity of order 4 in \mathbf{Q}_2 , *i.e.*, roots of X^2+1 . This won't use Hensel's Lemma. Any putative root of X^2+1 is in $\mathbf{Z}_2^{\times}=1+2\mathbf{Z}_2$. But $x\equiv 1 \bmod 2 \Rightarrow x^2\equiv 1 \bmod 8$, so $x^2+1\equiv 2 \bmod 8$. Therefore $x^2+1\neq 0$.

When there's no root of unity of order p^n in a field, there are none of order p^m for $m \ge n$. Since every root of unity is a (unique) product of a root of unity of p-power order and a root of unity of order prime to p, the only roots of unity in \mathbf{Q}_p are the roots of $X^{p-1} - 1$ for p odd, and ± 1 for p = 2. For a version of Hensel's Lemma allowing \mathfrak{o} to be any complete local ring (possibly not a domain, so division is more delicate), see [2, Theorem 7.3].

For an even more elaborate form, dealing with several polynomials (or power series) in several variables, see [1, Chap. III, §4.3].

References

- [1] N. Bourbaki, "Commutative Algebra," Springer-Verlag, New York, 1989.
- [2] D. Eisenbud, "Commutative Algebra with a View to Algebraic Geometry," Springer-Verlag, New York, 1995.
- $[3]\,$ S. Lang, "Algebraic Number Theory," 3rd ed., Springer-Verlag, New York, 1994.