Parf: Adaptive Parameter Refining for Abstract Interpretation

Zhongyi Wang¹, **Linyu Yang¹**, Mingshuai Chen¹, Yixuan Bu¹, Zhiyang Li¹, Qiuye Wang², Shengchao Qin³, Xiao Yi², and Jianwei Yin¹.

1: Zhejiang University

2: Fermat Labs, Huawei Inc.

3: Xidian University

Abstract Interpretation-Based Static Analysis

runtime errors (RTEs)

- arithmetic overflows
- division by zero
- null pointer dereference
- •

```
void f(void) {
  int i = 0;
  int j = 10;
  while (i < 10) {
    i = i + 1;
    j = j - 1;
  }
}</pre>
Any overflow here?
```

example.c

i and j

i	j			
0	10			
1	9	abstract	i∈[0,	10]
•••	•••		i∈[0, j∈[0,	10]
9	1			
10	0			
concrete	states of			

Workflow of Using Static Analyzer

Ourghanlian A (2015) Evaluation of static analysis tools used to assess software important to nuclear power plant safety. Nucl Eng Technol 47(2):212–218.

An Example of Refining by Reconfiguring Parameters

```
#include <stdio.h>
int main()
{
   int array[5] = {1, 2, 3, 4, 5};
   int index = 0, sum = 0;

while (index <= 10) {
    sum += array[index];
    sum *= 2;
    index ++;
   }

printf("Sum of array: %d\n", sum);
   return 0;
}</pre>
```

```
#include <stdio.h>
int main(void)
{
    int array[5] = {1, 2, 3, 4, 5}, index = 0, sum = 0;
    while (index <= 10) {
        //@ assert Eva: index_bound: index < 5;
        //@ assert Eva: signed_overflow: sum + array[index] <= 2147483647;
        sum += array[index];
        //@ assert Eva: signed_overflow: sum * 2 <= 2147483647;
        sum *= 2;
        index ++;
        }
        printf("Sum of array: %d\n", sum);
        return 0;
}</pre>

RTE alarms in the form of ACSL annotation
        return 0;
}
```

int main(void)
{
 int array[5] = {1, 2, 3, 4, 5};
 int index = 0, sum = 0;

while (index <= 10) {
 //@ assert Eva: index_bound: index < 5;
 sum += array[index];
 sum *= 2;
 index ++;
 are eliminated.
}

printf("Sum of array: %d\n", sum);
 return 0;
}</pre>

(a) source C program to be analyzed

(b) analysis result with low-precision parameters

(c) analysis result with high-precision parameters

Challenge

Why configuring parameters is tricky and needs expert knowledge?

a wide range of parameters subject to a huge and possibly infinite joint parameter space

```
[eva] Option -eva-precision 3 detected, automatic configuration of the analysis: option -eva-min-loop-unroll set to 0 (default value). option -eva-auto-loop-unroll set to 64. option -eva-widening-delay set to 2. option -eva-partition-history set to 0 (default value). option -eva-slevel set to 35. option -eva-ilevel set to 24. option -eva-plevel set to 70. option -eva-subdivide-non-linear set to 60. option -eva-remove-redundant-alarms set to true (default value). option -eva-domains set to 'cvalue,equality,gauges,symbolic-locations'. option -eva-split-return set to '' (default value). option -eva-equality-through-calls set to 'none'. option -eva-octagon-through-calls set to false (default value).
```

A typical parameter setting of Frama-C/Eva with different parameter types: integer, Boolean, string, and set-of-strings.

Challenge

Why configuring parameters is tricky and needs expert knowledge?

- a wide range of parameters subject to a huge and possibly infinite joint parameter space
- the lack of a framework to utilize intermediate information

Problem Formulation / Parameter Spaces

Problem Formulation / Problem Statement

Analyze:
$$Prog \times PS \rightarrow \mathcal{P}(A_{\text{uni}})$$

$$(prog, p) \mapsto A_p$$

$$p_1 \sqsubseteq p_2$$
 implies $Analyze(prog, p_2) \subseteq Analyze(prog, p_1)$

Problem Statement. Given a source program $prog \in Prog$, a time budget $T \in \mathbb{R}_{>0}$, an abstraction interpretation-based static analyzer *Analyze*, and the joint space of parameter settings PS of *Analyze*, find a parameter setting $p \in PS$ such that Analyze(prog, p) returns as few alarms as possible within T.

The Parameter Refinement Framework / Overview

$$P^{i} = \underbrace{P^{i}_{\text{base}}}_{\text{for retaining}} \oplus \underbrace{P^{i}_{\text{delta}}}_{\text{for exploring}}$$

The Parameter Refinement Framework / Refine

```
Algorithm 2 Refine: Incremental Refining
Input: List of parameter settings p_list, list of results R_list, uni-
      verse alarms A_{\text{uni}}, and P_{\text{base}}, P_{\text{delta}}.
                                                                                                                                                                                                    the corresponding
                                                                                                                               the sampled
Output: Refined distributions P'_{\text{base}} and P'_{\text{delta}}.
                                                                                                                                                                                                          set of alarms
                                                                                                                          parameter setting
  1: _/* Step 1: Refine P<sub>base</sub> */
  2: P'_{\text{base}} \leftarrow P_{\text{base}};
  3: for all a \in A_{\text{uni}} do
                                                                                                                       P'_{\text{base}} = \bigsqcup_{a \in A_{\text{uni}}} p_a = \bigsqcup_{a \in A_{\text{uni}}} \left\langle p, A \right\rangle \in R_{\text{list}}
         P_a \leftarrow \top;
          for all \langle p, A \rangle \in R_list and a \notin A do
           p_a \leftarrow p_a \sqcap p;
          end for
          if p_a \neq \top then
         P'_{\text{base}} \leftarrow P'_{\text{base}} \sqcup p_a; end if
 11: end for

\eta_{\text{scale}} \otimes P_{\text{delta}} = \left( \eta_{\text{scale}} \otimes P_{\text{delta}}^1, \cdots, \eta_{\text{scale}} \otimes P_{\text{delta}}^n \right)

 13: /* Step 2: Refine P_{\text{delta}} */
15: P'_{\text{delta}} \leftarrow \eta_{\text{scale}} \otimes P_{\text{delta}};
 16: return P_{\text{base}}, P_{\text{delta}};
```

The Parameter Refinement Framework / Refine P_{base}

$$P'_{\text{base}} = \bigsqcup_{a \in A_{\text{uni}}} p_a = \bigsqcup_{a \in A_{\text{uni}}} \left(\bigcap_{\langle p, A \rangle \in R_list \atop a \notin A} p \right)$$

the "parameter setting with lowest precision" P'_{base} eliminating all newly found false alarms

the "parameter setting with lowest precision" p_a eliminating a

The Parameter Refinement Framework / Case Study

- a sampled parameter setting
- a sampled parameter setting which can eliminate a specific false alarm
- a sampled parameter setting which can not eliminate a specific false alarm
- the minimum-precision parameter setting for a specific false alarm
- ★ old base parameter setting
- new base parameter setting

$$P'_{\text{base}} = \bigsqcup_{a \in A_{\text{uni}}} p_a = \bigsqcup_{a \in A_{\text{uni}}} \left(\bigcap_{p,A \in R_list} p \right)$$

The Parameter Refinement Framework / Case Study

- a sampled parameter setting
- a sampled parameter setting which can eliminate a specific false alarm
- a sampled parameter setting which can not eliminate a specific false alarm
- the minimum-precision parameter setting for a specific false alarm
- ★ old base parameter setting
- new base parameter setting

$$P'_{\mathrm{base}} = \bigsqcup_{a \in A_{\mathrm{uni}}} p_a = \bigsqcup_{a \in A_{\mathrm{uni}}} \left(\bigcap_{\substack{p,A \in R_list \\ a \notin A}} p \right)$$

The Parameter Refinement Framework / Case Study

- a sampled parameter setting
- a sampled parameter setting which can oliminate a specific false alarm
- a sampled parameter setting which can not eliminate a specific false alarm
- the minimum-precision parameter setting for a specific false alarm
- ★ old base parameter setting
- new base parameter setting

$$P'_{\text{base}} = \bigsqcup_{a \in A_{\text{uni}}} p_a = \bigsqcup_{a \in A_{\text{uni}}} \left(\bigcap_{p,A \in R_list} p \right)$$

Evaluation: Research Questions

RQ1: How does Parf compare against other parameter-selecting strategies?

RQ2: How does Parf perform on different hyper-parameters?

RQ3: Can Parf be generalized to other static analyzers?

RQ4: Can Parf improve Frama-C in verification competitions?

Experiment Settings

Experiment environments:

- RQ1, RQ2, and RQ4: 8-core Apple M2 processor, 16GB RAM, 64-bit macOS Sonoma 14
- RQ3: 16-core Intel i7 processor, 16GB RAM, Arch Linux

Benchmarks:

- RQ1, RQ2, and RQ3: Frama-C official Open Source Case Study (OSCS) benchmarks
- RQ4: verification tasks of SV-COMP 2022, the NoOverflows category with a specific version called Frama-C-SV

Baselines:

- Default: default parameter settings of Frama-C/Eva or Mopsa
- Official: official parameter settings provided by Frama-C together with the OSCS benchmarks
- Expert: dynamic parameter-tuning strategy for Frama-C/Eva, sequentially increases the parameters from -eva-precision 0 to -eva-precision 11 for analysis until the given time budget is exhausted or the highest precision level is reached

Time Budget:

1 hour for each benchmark

OSCS Benchmark Details				#Alarms (the fewer, the more accurate)				
Benchmark name	LOC	#statements	-eva-precision	DEFAULT	Expert	Official]	PAR
gzip124	8166	4835	0	884	885	866		810
miniz-ex1	10844	3659	1	2291	1832	2291		1828
miniz-ex2	10844	5589	1	2742	2220	2742	2	217
miniz-ex3	10844	3747	1	577	552	577		44
miniz-ex5	10844	3430	1	425	402	425		37
miniz-ex6	10844	2073	1	220	198	220		17
monocypher	25263	4126	1	606	570	568		60
debie1	8972	3243	2	33	3	1		1
kilo	1276	1078	2	523	445	688		42
x509-parser	9457	3112	3	208	198	198		18
miniz-ex4	10844	1246	4	258	217	258		18
tsvc	5610	5478	4	413	355	379		35
2048	440	329	6	7	<u></u> 5	7		
libspng	4455	2377	6	186	122	122		113
microstrain	51007	3216	6	1177	616	646		59
mini-gmp	11706	628	6	83	71	83		7
safestringlib	29271	13029	6	855	$2\overline{56}$	300		$3\overline{5}$
stmr	781	500	6	63	58	59		5
qlz-ex3	1168	294	8	94	$\overline{82}$	94		7
semver	1532	728	9	29	<u>22</u>	25		2
genann	1183	1042	9	236	$\overline{69}$	77		$\overline{6}$
kgflags-ex2	1455	736	10	33	$\overline{19}$	33		$\overline{1}$
chrony	37177	41	11	9	7	8		
hiredis	7459	87	11	9	$\overline{0}$	9		
icpc	1302	424	11	9	$\overline{1}$	1		
jsmn-ex1	1016	1219	11	58	$\overline{1}$	$\frac{\frac{1}{1}}{\frac{1}{1}}$		
jsmn-ex2	1016	311	11	68	$\overline{1}$	$\overline{1}$		
kgflags-ex1	1455	474	11	11	$\overline{0}$	$1\overline{1}$		
khash	1016	206	11	14	$\overline{2}$	14		
line-following-robot	6739	857	11	1	$\overline{1}$	1		
papabench	12254	36	11	$\frac{\frac{1}{1}}{68}$	$\overline{1}$	$\frac{\frac{1}{1}}{68}$		
qlz-ex1	1168	229	11	68^{-}	$1\overline{1}$	$6\overline{8}$		1
qlz-ex2	1168	75	11	8	$\begin{array}{c c} 19 \\ \hline 7 \\ \hline 0 \\ \hline 1 \\ \hline 1 \\ \hline 0 \\ \hline 2 \\ \hline 1 \\ \hline 8 \\ \end{array}$	$\frac{8}{17}$		_
qlz-ex4	1168	164	11	$1\overline{7}$	13	$1\overline{7}$		$\frac{2}{6} \frac{1}{1}$ $\frac{1}{1}$
solitaire	338	396	11	216	$\overline{18}$	213		$\overline{1}$
tutorials	325	89	11	5	1	5		
tweetnacl-usable	1204	659	11	126	25	30		2
Overall (tied-best+exclusively best)				3/37	23/37	8/37	34/37 (91	
Overall (exclusively best)				0/37	1/37	1/37	12/37 (32	2.4%

RQ1: How does Parf compare against other parameter-selecting strategies?

Parf achieves the **best** results on **91.9%** (34/37) benchmarks, and **exclusively best** on **32.4%** (12/37) benchmarks.

Parf performs almost the same as the expert strategy in programs with low analysis complexity (-eva-precision>=9).

Parf achieves **exclusively best** on **57.9%** (11/19) on programs with **high analysis complexity** (-eva-precision<9).

RQ2: How does Parf perform on different hyper-parameters?

OSCS Benchmark Details				#Alarms of Mopsa (RQ3)		
Benchmark name	LOC	#statements	-eva-precision	Default	Pari	
2048	440	329	6	141	6	
chrony	37177	41	11	_		
debie1	8972	3243	2	8245	565	
genann	1183	1042	9	1308	130	
gzip124	8166	4835	1	_		
hiredis	7459	87	11	43	4	
icpc	1302	424	11	11	10	
jsmn-ex1	1016	1219	11	1762	125	
jsmn-ex2	1016	311	11	87	8	
kgflags-ex1	1455	474	11	280	28	
kgflags-ex2	1455	736	10	386	38	
khash	1016	206	11	19	1	
kilo	1276	1078	2	5299	529	
libspng	4455	2377	6			
line-following-robot	6739	857	11	_		
microstrain	51007	3216	6	6237	619	
mini-gmp	11706	628	6	513	49	
miniz-ex1	10844	3659	1	3020	300	
miniz-ex2	10844	5589	1	3916	389	
miniz-ex3	10844	3747	1	2808	279	
miniz-ex4	10844	1246	4	162	16	
miniz-ex5	10844	3430	1	1575	147	
miniz-ex6	10844	2073	1	1197	107	
monocypher	25263	4126	1	TO	TO	
papabench	12254	36	11	_		
qlz-ex1	1168	229	11	82	8	
qlz-ex2	1168	75	11	50	<u>8</u> <u>5</u>	
qlz-ex3	1168	294	8	_	_	
qlz-ex4	1168	164	11	_		
safestringlib	29271	13029	6	_		
semver	1532	728	9	3556	285	
solitaire	338	396	11	700	66	
stmr	781	500	6	1391	139	
tsvc	5610	5478	4			
tutorials	325	89	11	_		
tweetnacl-usable	1204	659	11	667	65	
x509-parser	9457	3112	3	364	33	
Overall (tied-best+exc		best)		14/27 (51.9%)	26/27 (96.3%	
Overall (exclusively	best)			0/27 (0.0%)	12/27 (44.4%	

RQ3: Can Parf be generalized to other static analyzers?

Matthieu Journault et al. 2019. Combinations of Reusable Abstract Domains for a Multilingual Static Analyzer. In VSTTE (Lecture Notes in Computer Science, Vol. 12031). Springer, 1–18.

RQ4: Can Parf improve Frama-C in verification competitions?

Setting		Score				
5555228	correct	wrong	unknown	failure		
Frama-C-SV _{precision11}	146	3	272	33	186	
Frama-C-SV _{Parf}	151	3	300	0	196	

Summary

A new framework for adaptively tuning external parameters of abstract interpretation-based static analyzers, which is particularly practical for large-scale programs.

