ESTIMATING FORMATION BREAKDOWN PRESSURE

if density and thickness of all layers above the target formation is known					
overburden stress = 7056.618056 psi/ft					

Type of sand	density of rocks(lb/ft^3)	6986.888889
Dirt, loose dry	76	1789
Dirt, loose moist	78	1142
Clay, wet	110	1790
Gravel, Wet	125	768
Limestone	160	935
Loam	80	1143
Sand, dry	97	973
Sand, wet	119	1368

44444 psi/ft
5

minimum horizontal stress	5643.444444	psi/ft
tensile strength	500	psi

if average density	y of overburden formation and target depth is known	

overburden stress = 11458.33333 psi/ft
--

average density of the overburden formation	165	(lb/ft^3)
depth	10000	(ft)

$$\sigma_h' = \frac{v}{1-v}\sigma_v'$$
 $\sigma_v' = \sigma_v - \alpha P_p$

$$\begin{split} \sigma_h^{'} &= \frac{v}{1-v} \sigma_v^{'} & \sigma_v^{\prime} &= \sigma_v - \alpha P_p \\ \\ \sigma_{h,min} &= \sigma_h^{\prime} + \alpha P_p & \sigma_{h,max} &= \alpha \sigma_{h,min} + \Delta \sigma_h \end{split}$$

effective vertical stress =	8722.333333	psi/ft
Poroelastic constant	0.72	
Pore pressure gradient	0.38	psi/ft

maximum horizontal stress	6643.444444	psi/ft
difference between max and min	1000	psi/ft

$$P_{bd} = 3\sigma_{h,min} - \sigma_{h,max} + T_0 - P_p$$

Breakdown pressure 6986.9

ESTIMATING SURFACE TREATMENT PRESSURE AND HORSEPOWER REQUIRED

surface treatment pressure = (breakdown pressure + frictional pressure drop in wellbore - hydrostatic pressure)

formation breakdown pressure	6986.88889	psi
sp. gravity of fracturing fluid	1	-
formation depth	10000	ft

pumping rate (q)	20	bbl/min
viscosity of fracturing fluid	1	ср
inner diameter (D)	3	in

hydrostatic pressure = 0.052 x sp. gravity of fluid x H = 4330 psi

frictional pressure drop = $\Delta_{Pf} = \frac{518\rho^{0.79}q^{1.79}\mu^{0.207}}{1000D^{4.79}}L$ 5724.830621

psi

Surface treatment pressure = 8381.72 psi

Horsepower required = $HHP = \frac{qP_{st}}{40.8}$ Horsepower required = $\frac{qP_{st}}{40.8}$

ESTIMATING IN-SITU/MAX. CLOSURE STRESS ON PROPPANT IN THE FRACTURE

minimum horizontal stress	5643.44	psi
reservoir/pore presssure	3800	psi
flowing bottom hole pressure	2600	psi

Traditional method

 $\sigma_{Prop} = \sigma_{min} - p_{wf}$

in-situ closure stress on proppant = 3043.44 psi

Pwf	in-situ closure stress on proppant
3800	1843.44
3400	2243.44
3000	2643.44
2600	3043.44
2200	3443.44
1800	3843.44
1400	4243.44
1000	4643.44
600	5043.44
200	5443.44
0	5643.44

New method

 $\sigma_{Prop} = \sigma_{min} + (p_r - p_{wf})$

in-situ closure stress on proppant = 6843.44 ps

in-situ closure stress on proppant
5643.44
6043.44
6443.44
6843.44
7243.44
7643.44
8043.44
8443.44
8843.44
9243.44
9443.44

minimum closure stress on proppant
5643.44
5643.44
5643.44
5643.44
5643.44
5643.44
5643.44
5643.44
5643.44
5643.44
5643.44

Proppant	Conventional Sand	low density	Ceramic intermediate density	High density	Nut shells	Glass beads	Resin coated sand	Advanced ultra low weight	low weight
Specific	2.50-2.65	1.75	2.7-3.3	3.4-3.75	1-1.35	2.65	2.55	1.25-1.75	1.60-2.10
Bulk density	1.49-1.55	1.65	1.84	191	0.85-1.04	1.55	1.65-1.75	0.86—1.15	0.95-1.30
Closure pressure	2500-6000	5000-8000	5000-10000	>10000	2500-5000	3000-5000	6000-10000	5000-8000	7000-10000

For FBHP of 2600 the proppant which will be used must have the closure pressure range of minimum closure pressure (5643 psi) to maximum closure pressure at 2600 Pwf which is (6843 psi).