$$ightharpoonup$$
 9) $W_{k,m}$ (Z) et $W_{-k,m}$ (-Z) sont indépendantes car lorsque

$$|\arg z| < \pi$$
, $W_{k,m}(z) = e^{-Z/2} z^k (1 + 0 (1/2))$

$$|\arg(-z)| < \pi \quad W_{-k,m}(-z) = e^{z/2} (-z)^{-k} (1 + O(1/z))$$

et $\frac{W_{k,m(Z)}}{W-k,m(-Z)}$ ne peut être une constante.

D'où A $W_{k,m}(Z)$ + B $W_{-k,m}$ (-Z) décrit l'ensemble des solutions de

Whittaker. Par suite (k = P/2 et m = 1/2 - s)

$$\gamma(u) = A W_{p/2,m} (2u) + B W_{+p/2,-m} (-2u)$$

et
$$\varphi(Z) = e^{i\mu x} (A W_{p/2,m} (2\mu y) + B W_{p/2,m} (-\mu y)$$

avec Z = x + iy. Si elles sont dominées par une puissance de y,

$$\varphi = ke^{i\mu x}$$
 $W_{P/2,m}$ (2py).

Année 1972

UN THÉORÈME DE HÖRMANDER SUR UNE ÉQUATION AUX DÉRIVÉES PARTIELLES

ÉNONCÉ

On désigne:

- par Z (resp. N) l'ensemble des entiers relatifs (resp. naturels);
- par (x_1, x_2, x_3) le point courant de \mathbb{R}^3 ;
- par \mathbf{R}_1 [resp. \mathbf{R}_2 et \mathbf{R}_3] le sous-espace formé par les vecteurs de la forme $(x_1, 0, 0)$ [resp. $(0, x_2, 0)$ et $(0, 0, x_3)$];
- par (z, x_3) le point courant de $\mathbb{C} \times \mathbb{R}$, \mathbb{C}_1 étant le sous-espace formé par les vecteurs de la forme (z, 0).

On identifie $C \times R$ à R^3 par la relation $(z, x_3) = (x_1, x_2, x_3)$ avec $z = x_1 + ix_2$.

Si A et B sont deux parties non vides de \mathbb{R}^n , A + B désigne l'ensemble des vecteurs X + Y, où X parcourt A et Y parcourt B.

Si Ω est un ouvert non vide de \mathbf{R}^n et ω une partie de Ω , \emptyset (Ω) est l'ensemble des fonctions à valeurs complexes indéfiniment différentiables sur Ω et \emptyset (ω , Ω) la partie de \emptyset (Ω) constituée par celles qui s'annulent sur ω ; pour n=3, $\mathrm{H}(\Omega)$ est formé par les fonctions f de \emptyset (Ω) telles que, pour tout nombre c réel, la fonction partielle $z \longmapsto f(z,c)$ soit holomorphe sur la section de Ω par le plan d'équation $x_3=c$; la dérivée de cette fonction sera notée $\frac{\partial f}{\partial z}$.

I

On désigne par S l'ensemble des suites doubles $\mathbf{a} = (a_{p,q})$ à valeurs complexes indexées par $\mathbf{Z} \times \mathbf{N}$. Étant donné \mathbf{a} et \mathbf{b} dans S, \mathcal{R} (\mathbf{a} , \mathbf{b}) désignera l'ensemble des suites \mathbf{c} de S vérifiant pour tout couple (p,q) de $\mathbf{Z} \times \mathbf{N}$:

$$c_{p+1,q} = a_{p,q} c_{p+2,q+1} + b_{p,q} c_{p,q+2}$$
.

ÉNONCÉ

1º Soit k un entier donné quelconque dans N. Démontrer l'existence de fonctions $\Gamma_{i,j,k}$ polynomiales des $a_{p,q}$ et $b_{p,q}$, à coefficients positifs, et telles que pour tout \mathbf{c} dans \mathcal{R} (a, b) on ait :

$$c_{0,0} = \sum_{\substack{i+2j=3k\\k \le j \le 2k}} \Gamma_{i,j,k} (\mathbf{a}, \mathbf{b}) c_{i,j}.$$

2º Soit $\mathbf{a}' = (a'_{p,q})$ et $\mathbf{b}' = (b'_{p,q})$ deux suites à valeurs réelles de S, telles que pour tout couple (p,q) de $\mathbf{Z} \times \mathbf{N}$ vérifiant $|p+1| \leq q$, on ait :

$$|a_{p,q}| \leqslant a'_{p,q}$$
 et $|b_{p,q}| \leqslant b'_{p,q}$.

Démontrer alors : $|\Gamma_{i,j,k}(\mathbf{a},\mathbf{b})| \leq \Gamma_{i,j,k}(\mathbf{a}',\mathbf{b}')$.

3° Soit ε la suite de S définie par $\varepsilon_{p,q} = \frac{\alpha}{q+1}$ ($\alpha \in \mathbb{C}$, $\alpha \neq 0$). Vérifier l'inégalité : $|\Gamma_{i,j,k}(\varepsilon,\varepsilon)| \leq \frac{|2\alpha|^k}{k!}$.

4º Soit A, λ et μ trois constantes réelles positives et $(\mathbf{e}_p)_{p \in \mathbf{z}}$ une suite de nombres complexes vérifiant $|\mathbf{e}_p| \le 1$ pour tout p. Démontrer que, si \mathbf{c} est une suite de S vérifiant les relations :

$$c_{p+1,q} = \frac{\theta_p}{q+1} c_{p+2,q+1} + \frac{\mu(p+1)}{(q+1)(q+2)} c_{p,q+2} \quad \text{et} \quad |c_{p,q}| \leq \lambda A^{p+2q}$$

pour tout couple $(p, q) \in \mathbb{Z} \times \mathbb{N}$, alors il existe un nombre M, ne dépendant que de A, λ , μ , p, q, tel qu'on ait pour tout $k \ge 1$

$$|c_{p,q}|\leqslant \frac{\mathsf{M}^k}{(k-1)!}.$$

(On pourra commencer par majorer $|c_{0,0}|$, puis ramener le cas général au cas précédent par une translation des indices.)

En déduire que les $c_{p,q}$ sont nuls.

II

Le point courant de \mathbb{R}^2 est noté (x, y); on étudie l'opérateur différentiel $\mathbb{D} = \frac{\partial^2}{\partial y^2} + a(x) \frac{\partial}{\partial y} + b \frac{\partial}{\partial x}$, où a est une fonction polynomiale du premier degré à coefficients complexes et b une constante complexe.

1º Π est le demi-plan formé par les points (x, y) vérifiant y > 0; K est une partie bornée contenue dans Π . Démontrer que toute fonction f de

 $\mathfrak{O}(\Pi)$, nulle en dehors de K, bornée sur K ainsi que ses dérivées partielles jusqu'à l'ordre deux et vérifiant Df = 0, est nulle sur Π tout entier. (Pour cela, on pourra poser pour tout couple (p, q) de $\mathbb{Z} \times \mathbb{N}$

$$c_{p,q} = \iint_{\Pi} [\mathbf{a}(x)]^p y^q f(x, y) dx dy \quad \text{si} \quad p \ge 0$$

$$c_{p,q} = 0 \quad \text{si} \quad p < 0.$$

puis montrer que la suite $\mathbf{c} = (c_{p,q})$ vérifie les conditions du I 4° et en déduire le résultat).

20 Ω et ω sont deux ouverts convexes non vides de \mathbf{R}^2 vérifiant $\omega \subset \Omega \subset \omega + \mathbf{R}_2$ et $\omega \neq \Omega$;

 \mathbf{C} ω désigne le complémentaire de ω dans \mathbf{R}^2 . Soit dans \mathbf{R}^2 une parabole $\mathfrak R$ d'axe parallèle à \mathbf{R}_2 et d'équation

$$\varphi(x,y)=\alpha y-(x^2+\beta x+\gamma)=0;$$

 \mathfrak{L}_i désigne l'intérieur de la parabole, c'est-à-dire l'ensemble $\{(x,y) \mid \varphi(x,y) > 0 \}.$

a. Soit M un point donné dans $\Omega \cap \mathbf{C}$ ω ; démontrer qu'on peut choisir \mathfrak{R} de façon que M appartienne à \mathfrak{R}_i et que la composante connexe δ de $\mathfrak{R}_i \cap \mathbf{C}$ ω contenant M soit relativement compacte et contenue dans Ω . \mathfrak{R} est ainsi choisie dans la suite.

b. Soit v une fonction de $\mathcal{O}(\omega, \Omega)$. Démontrer que la fonction v, qui est nulle en dehors de δ et coıncide avec v sur δ , appartient à $\mathcal{O}(\mathfrak{L}_i)$.

c. Soit Φ l'application : $(x, y) \longmapsto (x, \varphi(x, y))$. Démontrer que l'application $g \mapsto g \circ \Phi$ définit une bijection de $\mathcal{O}(\pi)$ sur $\mathcal{O}(\mathfrak{L}_i)$.

Expliciter en fonction de (α, β, γ) l'opérateur différentiel D tel que pour tout g de $\mathcal{O}(\pi)$ on ait : D $(g \circ \Phi) = (Dg) \circ \Phi$.

3º Déduire des questions précédentes que D est un opérateur injectif sur $\mathfrak{O}(\omega,\,\Omega)$.

4º Démontrer que ce résultat subsiste pour l'opérateur

$$\mathbf{D_0} = \frac{\partial^2}{\partial y^2} + \boldsymbol{b} \ \frac{\partial}{\partial x}.$$

III

On étudie l'opérateur différentiel $\Delta = \frac{\partial}{\partial z} - i \frac{\partial^2}{\partial x_3^2}$ défini sur les ensembles H (Ω) introduits dans le préambule.

Soit M un point (ζ, c) donné dans $\mathbb{C} \times \mathbb{R}$.

- 1º Soit α un nombre complexe.
- a. Démontrer que l'équation $\Delta u = 0$ a dans H ($\mathbb{C} \times \mathbb{R}$) une solution unique de la forme $\Psi(z)e^{\alpha z_0}$ et satisfaisant à $u(\mathbf{x},c)=1$. On appelle U_n cette solution pour $\alpha=\sqrt{n}\,e^{i\theta}$ $(n\in\mathbb{N},\,\theta)$ réel donné).
- b. Démontrer que la série $\sum_{n=0}^{\infty} U_n$ converge uniformément et absolument sur tout compact d'un demi-espace ouvert P_{θ} ayant M comme point frontière, et que la somme s de cette série est une fonction de $H(P_{\theta})$ vérifiant $\Delta s = 0$.
 - c. Démontrer que s n'est pas bornée au voisinage de M.
- 2º Soit P le plan d'équation $x_2 = 0$ et $\tilde{\Delta}$ l'opérateur $\frac{\partial}{\partial x_1} i \frac{\partial^2}{\partial x_3^2}$. Étant donné un demi-plan Π_1 de P, dont la frontière est parallèle à \mathbf{R}_1 ou \mathbf{R}_3 , et un point M de cette frontière, démontrer qu'il existe une fonction h de $\mathcal{Q}(\Pi_1)$ non bornée au voisinage de M et vérifiant $\tilde{\Delta}h = 0$.

IV

On suppose que Ω est une partie non vide, ouverte et convexe de $\mathbf{C} \times \mathbf{R}$.

- 1º a. Démontrer que, si A est une partie convexe de Ω ayant plus d'un point et contenue dans un plan parallèle à C_1 , alors toute fonction de $H(\Omega)$, qui s'annule sur A, s'annule aussi sur $(A + C_1) \cap \Omega$.
- b. Démontrer que, si B est une partie convexe de Ω contenue dans le plan d'équation $x_2=a$ et formant un ouvert non vide de ce plan, alors toute fonction u de H (Ω) , qui s'annule sur B et vérifie $\Delta u=0$, s'annule nécessairement sur $(B+\mathbf{R}_s)\cap\Omega$.
- 2^o Démontrer que deux points quelconques de Ω peuvent être joints par une ligne polygonale dont les côtés sont parallèles soit à $C_{\rm 1},$ soit à $R_{\rm s}.$
- 3º On suppose que la partie ω de Ω est un ouvert non vide, convexe, borné du plan P d'équation $x_2 = 0$; $\mathcal{E}(\Omega)$ [resp. $\widetilde{\mathcal{E}}(\omega)$] désigne l'ensemble des solutions dans $H(\Omega)$ [resp. $\Omega(\omega)$] de l'équation $\Delta u = 0$ [resp. $\Delta w = 0$] Pour tout u de $H(\Omega)$, u est la restriction de u à ω .

Démontrer que l'application $u \mapsto u$ est une injection de $\mathcal{E}(\Omega)$ dans $\tilde{\mathcal{E}}(\omega)$.

Démontrer, à l'aide des résultats de la partie III, que cette application n'est pas surjective.