WALTER EFIRD

INN Hotels Project 4

Table of Contents

- Problem Statement
- Overview
- Objective Business Problem
- Data Dictionary
- Data Overview
- Exploratory Data Analysis (EDA)
 - Summary
 - Univariate
 - Bivariate

- Model Building
- Business Insights
- Recommendations

Overview

- INN Hotels Group is looking for a solution to the high number of booking cancellations, as new technologies regarding online bookings have led to an increase in customer cancellations.
- Booking cancellations negatively impact the group in several ways:
 - Loss of resources
 - Additional costs of distribution channels by increases in commissions
 - Having to lower prices last minute in order to resell a room
 - Increase in Human Resources to make arrangements for guests

Problem Statement

Due to the increasing number of cancellations, INN Hotels group has requested a Machine Learning based solution be built to help predict which bookings are most likely to be canceled.

Objectives

- To analyze the data provided to discover which factors have a high influence on booking cancellations
- To build a predictive model that can predict which bookings are going to be cancelled in advance
- To help in creating profitable policies for cancellations and refunds

Data Dictionary

- Booking_ID: the unique identifier of each booking
- no_of_adults: Number of adults
- no_of_children: Number of Children
- no_of_weekend_nights: Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel
- no_of_week_nights: Number of weeknights (Monday to Friday) the guest stayed or booked to stay at the hotel
- type_of_meal_plan: Type of meal plan booked by the customer:
 - Not Selected No meal plan selected
 - Meal Plan 1 Breakfast
 - Meal Plan 2 Half board (breakfast and one other meal)
 - Meal Plan 3 Full board (breakfast, lunch, and dinner)
- required_car_parking_space: Does the customer require a car parking space? (0 No, 1- Yes)
- room_type_reserved: Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels Group
- lead_time: Number of days between the date of booking and the arrival date
- arrival_year: Year of arrival date
- arrival_month: Month of arrival date
- arrival_date: Date of the month
- market_segment_type: Market segment designation.
- repeated_guest: Is the customer a repeated guest? (0 No, 1- Yes)
- no_of_previous_cancellations: Number of previous bookings that were canceled by the customer prior to the current booking
- no_of_previous_bookings_not_canceled: Number of previous bookings not canceled by the customer prior to the current booking
- avg_price_per_room: Average price per day of the reservation; prices of the rooms are dynamic. (in euros)
- no_of_special_requests: Total number of special requests made by the customer (e.g. high floor, view from the room, etc)
- booking_status: Flag indicating if the booking was canceled or not.

Observations and Statistical Summary

- 36,275 rows and 19 columns
- Datatypes
 - ▶ 13 integer datatypes
 - 5 object datatypes
 - 1 float64 datatype
- No missing values
- No duplicated values
- Mean number of adults is 1.85
- Mean number of children is 0.10
- Mean number of weekend nights is 0.81
- Mean number of week nights is 2.20
- Mean number of required parking space is 0.03

- Average lead time is 85.23 days
- The data is from the years 2017 and 2018
- The average month is the middle of July
- The average date is approximately the 15th of each month
- The average repeated guests are 0.02
- Average number of previous cancellations is 0.02
- The mean no of previous bookings not cancelled is 0.15
- Average price per room is \$103.42
- Average number of special requests is 0.62

Statistical Summary cont.

- The max number of adults is 4
- The highest number of children is 10 with the lowest being 0
- Longest stay was 17 days
- The longest lead time was 443 days
- The highest room price was \$540.00
- The highest number of special requests was 5

EDA

Lead Time

- The avg lead time was about 85 days
- The median was approximately 60 days
- The feature is heavily right-skewed
- All outliers lie passed the upper whisker

Average price per room

- Average price of a room was \$103.00
- The most expensive room was \$540.00
- The feature is right-skewed
- Outliers exist on both ends of the tails
- Several rooms had a price of \$0, which were not null values
- These were either rooms booked online or were complimentary
- The top 25% of avg price of room ranges from \$120.00 \$179.55
- All outliers for the bottom 25% fall below \$80.30 while all outliers for the top 25% fall above \$179.55

\$0 rooms by Market Segment

Complementary **354**Online **191**

Booking Cancellations

Number of previous cancellations

Number of previous bookings not cancelled

Number of Adults and Children

- Most of the guests were two adults sharing a room.
- 21.2% of guests were by themselves.
- Children hardly frequented any of the hotels with
- There were 2 instances where 9 children were together and 1 instance with 10 children
- · Almost all guests were adults staying by themselves or with another adult

Weeknights and Weekend nights

- During the weeknights, most bookings are for 2 days.
- 2-day and 3-day bookings are also booked often during the week.
- There were 3 stays that were 17 days long
- 0 day stays were those less than 24 hours

- 0-day stays were the most frequent during the weekend, which makes sense, as people travel often during the weekend
- 1 and 2-day stays were also very common.

Meal Plan and Room Type

- Meal Plan 1 is the most popular plan, which is just breakfast
- If these do not have much an impact on determining if customer books or not, costs can be cut by discontinuing some meal plans

- Room Type 1 is by far the most popular
- Management should see about discontinuing some of the room types, especially if they increase costs.
- Room Type 4 is the only other room type that is booked or requested.

Special Requests and Parking Spaces

- Special requests and parking spaces are together because, requiring a parking space can be a request.
- The data does not specify if parking space requests are also included in special requests
- Most guests do not have a special requests; however, there is a large enough group that does
- The Hotel Group should make sure they can accommodate these customers in order to retain them

Arrival Month and Market Segment

- The busiest season appears to be end of summer into fall, with October, September and August having the most volume.
- Over half of the guest booked their reservation online.
 Management should focus on their website to make sure it is user-friendly for bookings, special requests, etc.

Booking Status

- > 33% or 11,885 bookings were cancelled.
- Throughout the analysis, recommendations and observations will be made to help bring this number down.
- INN Hotels may need to restructure their cancellation policy also; however, this will be addressed at the end of the study.

Bivariate Analysis – Heatmap

- The highest positive correlation is among repeated guest number of previous bookings not cancelled.
- Previous cancellations, bookings not cancelled, and repeated guests all have a correlation among them.
- Lead time and booking status also have a moderately strong, positive correlation.
- A negative correlation exists among booking status and number of special requests.

-0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

Average Price Per Room and Market Segment

- The price per room varies according to market segment, with the online segment being the highest.
- Besides the "Complimentary" segment, "Corporate" has the lowest average price per room.
- Management should consider increasing prices for "Offline" bookings and possibly decreasing "Online" prices; however, this will be addressed in more depth at the end of the study.

Number of Special Requests and Average Price per Room

- More special requests increase as the average price of room increases.
- > The more a customer pays for a room, the more accommodations they require and/or expect

Market segment type and booking status

- "Online" segment has the highest number of booking cancellations followed by "Offline"
- It may be a good idea to put in place cancellation policies specific to market segment type

No. of special requests and booking status

- Guests that have 3 or more special requests do not usually cancel.
- Knowing that a guest is not going to cancel is valuable information for day-to-day operations to the company
- Most guests that cancel have no special requests.

Booking status vs avg price per room

- There is a positive correlation between average price per room and booking status.
- Rooms that were cancelled have a higher price than those that didn't.

Booking status vs lead time

- A positive correlation exists between lead time and booking status.
- Bookings that were cancelled seem to have longer lead time days than those that weren't cancelled.

No. of family members vs booking status

- Cancelled and not cancelled bookings seem to be stable among number of family members.
- Bookings with 4 family members has the greater chance of being cancelled compared to 2, 3 and 5 family member bookings.

Total Days and Booking Status

- The chart below represent customers who stay for at least 1 day or longer.
- From the given data, cancellations are more likely to occur when the lead days are larger.
- When it comes to repeated guests, they are less likely to cancel their reservations.

Arrival month, number of guests vs booking status

- The busiest month was October followed by September, August, and November.
- INN Hotels has a large number of cancellations in one of their busiest months, August.
- Finding solutions to cut cancellations in the busier months could lead to a vast improvement in profit and cost reduction.
- June and July had the highest number of cancellations followed by August.
- Arrival month gradually increases in the summer and peaks in October.

Arrival month and average price per room

- Price per room is the highest during the summer and fall months, which is good as these are the busier months of the year for the company.
- Price drops significantly from approximately \$115.00 during busy season, to as low as approximately \$70 at the end and very beginning of the year.
- Management may want to consider adjusting prices during both the busier and the slower months of the year.
- Both arrival month and total number of guests peak in October

Outlier Detection

Outlier Detection

- All features have outliers except for arrival month.
- Though outliers exist in many features, we will treat not remove them as they are proper values.
- No. of previous bookings not cancelled, lead time, no of week nights, avg price per month all have a large number of outliers

Logistic Regression Model

Default-threshold

Т	Training performance:								
:	Accuracy	Recall Precision		F1					
0	0.80600	0.63410	0.73971	0.68285					

Observations

- p-values of a variable tell us whether it is significant or not, when considering significance level of 0.05
- High p-values exist and will need to be dropped before making interpretations on the model.
- Before dropping p-values though, we must check for multicollinearity as these affect p-values as well
- We will drop the predictor variables that have VIF score greater than 5, and then drop p-values greater than 0.05

Initial Model

l	ogit Regre	ssion Resul	lts				
Dep. Variable: booki	ing status	No. Obser	rvations:		25392		
Model:	Logit	Df Residu	uals:		25364		
Method:	MLE	Df Model:			27		
Date: Thu, 17	7 Nov 2022	Pseudo R-	-squ.:		0.3292		
Time:	16:52:47	Log-Like	lihood:		-10794.		
converged:	False	LL-Null:			-16091.		
Covariance Type:	nonrobust	LLR p-val	lue:		0.000		
		coef	std err	z	P> z	[0.025	0.975]
const		-922.8266	120.832	-7.637	0.000	-1159.653	-686.000
no of adults		0.1137	0.038	3.019	0.003	0.040	0.188
no of children		0.1580	0.062	2.544	0.011	0.036	0.280
no of weekend nights		0.1067	0.020	5.395	0.000	0.068	0.145
no of week nights		0.0397	0.012	3.235	0.001	0.016	0.064
required car parking space		-1.5943	0.138	-11.565	0.000	-1.865	-1.324
lead time		0.0157	0.000	58.863	0.000	0.015	0.016
arrival year		0.4561	0.060	7.617	0.000	0.339	0.573
arrival_month		-0.0417	0.006	-6.441	0.000	-0.054	-0.029
arrival_date		0.0005	0.002	0.259	0.796	-0.003	0.004
repeated_guest		-2.3472	0.617	-3.806	0.000	-3.556	-1.139
no_of_previous_cancellations	5	0.2664	0.086	3.108	0.002	0.098	0.434
no_of_previous_bookings_not_	canceled	-0.1727	0.153	-1.131	0.258	-0.472	0.127
avg_price_per_room		0.0188	0.001	25.396	0.000	0.017	0.020
no_of_special_requests		-1.4689	0.030	-48.782	0.000	-1.528	-1.410
<pre>type_of_meal_plan_Meal Plan</pre>	2	0.1756	0.067	2.636	0.008	0.045	0.306
<pre>type_of_meal_plan_Meal Plan</pre>	3	17.3584	3987.836	0.004	0.997	-7798.656	7833.373
type_of_meal_plan_Not Select	ted	0.2784	0.053	5.247	0.000	0.174	0.382
room_type_reserved_Room_Type	2	-0.3605	0.131	-2.748	0.006	-0.618	-0.103
room_type_reserved_Room_Type	2 3	-0.0012	1.310	-0.001	0.999	-2.568	2.566
room_type_reserved_Room_Type	4	-0.2823	0.053	-5.304	0.000	-0.387	-0.178
room_type_reserved_Room_Type	2 5	-0.7189	0.209	-3.438	0.001	-1.129	-0.309
room_type_reserved_Room_Type		-0.9501	0.151	-6.274	0.000	-1.247	-0.653
room_type_reserved_Room_Type	2 7	-1.4003	0.294	-4.770	0.000	-1.976	-0.825
market_segment_type_Compleme	entary	-40.5975	5.65e+05	-7.19e-05	1.000	-1.11e+06	1.11e+06
market_segment_type_Corporat	te	-1.1924	0.266	-4.483	0.000	-1.714	-0.671
market_segment_type_Offline		-2.1946	0.255	-8.621	0.000	-2.694	-1.696
<pre>market_segment_type_Online</pre>		-0.3995	0.251	-1.590	0.112	-0.892	0.093
		======		=======			

Revised Model – Logistic Assumptions Addressed

- This is the model used after removing high p-values and VIF scores.
- Positive coefficients of predictor variables show that an increase in each one will increase the chance of a booking to get cancelled.
- For example, no of previous cancellations has a coefficient of 0.2288, which means it is a feature that has a strong influence with whether a booking will get cancelled or not.
- F-1 score needs to be maximized as the higher the score the higher the chances are of reducing False Negative and False Positives

Training performance:								
	Accuracy	Recall	Precision	F1				
0	0.80545	0.63267	0.73907	0.68174				

Logit Regression Results

Dep. Variable: bookin Model:	g_status	No. Observati Df Residuals:	ons:	253		
Method:	Logit MLE	Df Model:		253	21	
	MLE Nov 2022	Pseudo R-squ.		0.32		
	NOV 2022 12:25:13	Log-Likelihoo		-1081		
converged:		LL-Null:	u:	-1609		
	True onrobust	LL-Null: LLR p-value:		-1009		
Covariance Type: n	onrobust ======	LLK p-value:		۷.۷ 	100 	
	co	ef std err	Z	P> z	[0.025	0.975]
const	-915.63	91 120.471	-7.600	0.000	-1151.758	-679.520
no_of_adults	0.10	88 0.037	2.914	0.004	0.036	0.182
no_of_children	0.15	31 0.062	2.470	0.014	0.032	0.275
no_of_weekend_nights	0.10	86 0.020	5.498	0.000	0.070	0.147
no_of_week_nights	0.04	17 0.012	3.399	0.001	0.018	0.066
required_car_parking_space	-1.59	47 0.138	-11.564	0.000	-1.865	-1.324
<pre>lead_time</pre>	0.01	57 0.000	59.213	0.000	0.015	0.016
arrival_year	0.45	23 0.060	7.576	0.000	0.335	0.569
arrival_month	-0.04	25 0.006	-6.591	0.000	-0.055	-0.030
repeated_guest	-2.73	67 0.557	-4.916	0.000	-3.828	-1.646
no_of_previous_cancellations	0.22	88 0.077	2.983	0.003	0.078	0.379
<pre>avg_price_per_room</pre>	0.01	92 0.001	26.336	0.000	0.018	0.021
no_of_special_requests	-1.46	98 0.030	-48.884	0.000	-1.529	-1.411
<pre>type_of_meal_plan_Meal Plan 2</pre>	0.16	42 0.067	2.469	0.014	0.034	0.295
<pre>type_of_meal_plan_Not Selecte</pre>	d 0.28	60 0.053	5.406	0.000	0.182	0.390
room_type_reserved_Room_Type	2 -0.35	52 0.131	-2.709	0.007	-0.612	-0.098
room_type_reserved_Room_Type	4 -0.28	28 0.053	-5.330	0.000	-0.387	-0.179
<pre>room_type_reserved_Room_Type</pre>	5 -0.73	64 0.208	-3.535	0.000	-1.145	-0.328
room_type_reserved_Room_Type	6 -0.96	82 0.151	-6.403	0.000	-1.265	-0.672
room_type_reserved_Room_Type	7 -1.43	43 0.293	-4.892	0.000	-2.009	-0.860
market_segment_type_Corporate	-0.79	13 0.103	-7.692	0.000	-0.993	-0.590
market_segment_type_Offline	-1.78	54 0.052	-34.363	0.000	-1.887	-1.684
<pre><!--Python.core.display.Javascr</pre--></pre>	ipt object	>	========			

Probability and Odds – Logistic Model

required_car_parking_space	lead_time	arrival_year	arrival_month	repeated_guest	no_of_previous_cancellations av
0.20296	1.01583	1.57195	0.95839	0.06478	1.25712
-79.70395	1.58331	57.19508	-4.16120	-93.52180	25.71181

- Lead_time: holding all other features constant a 1 unit change in lead_time will increase the chance of a booking being cancelled 1.01 times or 1.58% increase in odds of being cancelled.
- Arrival_month: Holding all other features constant, a 1 unit change in arrival month will decrease the odds a booking will be canceled ~0.95 times or a ~4.16% decrease in odds of being cancelled.
- Repeated_guest: holding all other features constant, a 1 unit change in repeated_guest, will decrease the chance of a booking being cancelled by 0.06 times or 93.5% decrease of being cancelled.

- In order to increase the F1 score (and increase TP and FN rate) we used the precision-recall curve and the AUC-ROC curve to find the optimal threshold for the model.
- Below is the confusion matrix from the initial model using the training set
- On the top right is the precision-recall curve and the bottom right is the auc-roc curve.
- The optimal threshold using the auc-roc curve came out to be 0.37
- Below is the confusion matrix on training data using the auc-roc curve as optimal threshold.
- Using the precision-recall curve, the optimal threshold came out to 0.42

Optimal threshold—auc-roc curve

Logistic Regression – Model Performance

Observations

- The model is giving an f1 score of 0.70 on the train and test set respectively.
- The threshold using the auc-roc curve with a threshold of 0.37 gave the best results.
- Since the train and test sets are comparable, the model is not overfitting.

[→]	٥.		nce comparison:						
		Logisti	ic Regression-default	Threshold	Logistic Regression-0.37	Threshold	Logistic Regression-0.42 T	hreshold	10-
	Accuracy			0.80545		0.79265		0.80132	
	Recall			0.63267		0.73622		0.69939	
	Precision			0.73907		0.66808		0.69797	
	F1			0.68174		0.70049		0.69868	
Tes	ting perfo	ormance	companicon:						
				Threshold	Logistic Regression-0.37	Threshold	Logistic Regression-0.42	Threshold	
				Threshold 0.80465	Logistic Regression-0.37	Threshold 0.79555	Logistic Regression-0.42	Threshold	• •
Ac	Lo				Logistic Regression-0.37		Logistic Regression-0.42		5
Ac	Lo			0.80465	Logistic Regression-0.37	0.79555	Logistic Regression-0.42	0.80345	5

Train-Pre-pruning

Test-Pre-pruning

Accuracy Recall Precision F1

0 0.87118 0.81175 0.79461 0.80309

Model Improvement and Evaluation

- The farther the tree model grows the more complex it becomes, leading to overfitting.
- Based off the initial train and test performance, overfitting is present
- To improve this, we prune the tree while also choosing the most important features
- The most important features are know as the Gini Index.
- INN Hotels most important feature is lead time, followed by, average price per room and market segment type online.
- We use cost complexity when pruning the tree, which in turn, uses the effective alphas—its goal is to find the weakest link in the tree.

Final Model Performance

- Lead time was the most important feature pre-pruning and postpruning.
- Post-pruning market segment online jumped average price per room in importance.
- Decision tree post-pruning is giving the highest accuracy on the test set at 0.86
- Decision tree post-pruning saw the most improvement on Recall, jumping from 0.81 pre-pruning to 0.85 postpruning.
- Decision Tree post-pruning for train and test are comparable.
- Both have reduced overfitting.

Training p	erformance	comparison:				
	Decision	Tree sklearr	Decision	Tree (Pre-Pruning)	Decision Tree	(Post-Pruning)
Accuracy		0.99421		0.99421		0.89954
Recall		0.98661		0.98661		0.90303
Precision		0.99578		0.99578		0.81274
F1		0.99117		0.99117		0.85551

Testing	performance	comparison:				
	Decision	Tree sklearn	Decision Tree	(Pre-Pruning)	Decision Tree	(Post-Pruning)
Accurac	у	0.87118		0.87118		0.86879
Recall		0.81175		0.81175		0.85576
Precisio	n	0.79461		0.79461		0.76614
F1		0.80309		0.80309		0.80848

Conclusion and Recommendations

- The higher the number of special requests, the less likely a booking will be canceled. Specifically, bookings with 3 or more requests are least likely to be cancelled. This should help management to be able to accurately know what their vacancy number will be and will help with future bookings.
- Customers tend to cancel more often when lead days exceed a little over 115 days. Management should possibly follow up with the customer after a certain amount of time before their scheduled stay or develop some type of cancellation policy or deposit policy during the initial booking.
- Management may want to consider raising prices slightly during the slow months as the price per room drops to below \$70 in January.
- The people who booked online have the highest probability
 of cancellation, so it would be beneficial to consider having a
 customer pay a deposit when booking or if a person cancels
 within a certain timeframe leading up to their stay, they would
 have to pay for the entire reservation.