

INTEGRATED CIRCUITS

INDEX

		Page No.
General Informati	on	3–4
Logic Diagram Su	mmary of Devices Available	3-6
DEVICE SPEC	FICATIONS	
GATES		
MC660P	Expandable Dual 4-Input Gate (active pullup)	3-8
MC661P	Expandable Dual 4-Input Gate (passive pullup)	3-10
MC670P	Triple 3-Input Gate (passive pullup)	3-12
MC671P	Triple 3-Input Gate (active pullup)	3-14
MC668P	Quad 2-Input Gate (passive pullup)	3–16
MC672P	Quad 2-Input Gate (active pullup)	3–18
DRIVER		
MC662P	Expandable Dual 4-Input Line Driver	3-20
FLIP-FLOPS		
MC663P	Dual J-K Flip-Flop	3-22
MC664P	Master-Slave R-S Flip-Flop	3-24
EXPANDER		
MC669P	Dual 4-Input Expander	3-26

NUMERICAL INDEX (Functions and Characteristics)

 V_{CC} = 15 V ±1.0 V, T_A = 25°C, Case 93

Function	Type -30 to + 75 ^o C	Output Loading Factor Each Output	Propagation Delay ^t pd ns typ	Total Power Dissipation mW typ/pkg	Page No.
Expandable Dual 4-Input NAND Gate (active pullup)	MC660P	10	110	88/26 ①	3-8
Expandable Dual 4-Input NAND Gate (passive pullup)	MC661P	10	125	88/26 ①	3-10
Expandable Dual 4-Input Line Driver	MC662P	30	140	180/26 ①	3-20
Dual J-K Flip-Flop	MC663P	9	_	200	3-22
Master-Slave R-S Flip-Flop	MC664P	8		160	3-24
Quad 2-Input NAND Gate (passive pullup)	MC668P	10	125	176/52①	3-16
Dual 4-Input Expander	МС669Р	_	_	_	3-26
Triple 3-Input NAND Gate (passive pullup)	MC670P	10	125	132/39 ①	3-12
Triple 3-Input NAND Gate (active pullup)	MC671P	10	110	132/39 ①	3-14
Quad 2-Input NAND Gate (active pullup)	MC672P	10	110	176/52①	3-18

¹ Input High/Inputs Low

GENERAL INFORMATION

MHTL MC660 series

MAXIMUM RATINGS TA = 25°C

Rating	Symbol	Value	Unit
Power Supply Voltage Continuous Pulsed, < 1.0 s	Vcc	18 20	Vdc
Input Voltage (MC669P Expanders Reverse Voltage)	Vin	-1.0/+18 18	Vdc
Output Current (into outputs) MC660, 661, 670, 671, 668, 672 MC662 MC663 MC664 MC669	-	30 60 28 26	mAdc
Input Reverse Current @ 20 V	I _R	0.5	mAdc
Forward Current (individual)MC669P	1 _F	30	mAdc
Operating Temperature Range	TA	-30 to +75	°C
Storage Temperature Range	T _{stq}	-55 to +125	°C

TEST LIMITS TOLERANCE

 $T_{A} = \pm 3 \, ^{o}C \quad V_{R} = \pm 1\% \quad V_{CC} = \pm 1\% \quad V_{IL} = \pm 1\% \quad V_{IH} = \pm 1\% \quad V_{F} = \pm 1\% \quad I_{OL} = \pm 1\% \quad I_{OH} = \pm 1\% \quad V_{OH} =$

DEFINITIONS

CP Clock Pulse

ICEX Collector-to-emitter leakage of the output transistor

ICCH VCC current drain when all inputs are high

ICCL VCC current drain when all inputs are low

IF Forward current of input diodes for unit input load

2 lp Forward current of input diodes which are equal to twice unit load

IOH Test current flowing into the output pin when output is high. (Negative)

IOL Test current flowing into output pin when output is low

IR Reverse current of input diodes with VR applied

2 IR Reverse current of two input diodes with VR applied

I_{SC} Short-circuit current obtained from device output when output is high

 $t_{\mbox{pd+}}$ Propagation delay time for a positive-going output pulse

 $t_{\mbox{pd-}}$ Propagation delay time for a negative-going output pulse

V_{CC} Device power supply voltage

V_{CCH} High power supply voltage

V_{CCL} Low power supply voltage

V_{CEX} Collector-to-emitter voltage of the output transistor

VF Input voltage when measuring IF

VIH Threshold voltage for high input voltage state

 $V_{\mbox{\scriptsize IL}}$ Threshold voltage for low input voltage state

 $\mbox{V}_{\mbox{OH}}$. Output high voltage state with $\mbox{I}_{\mbox{OH}}$ flowing out of pin

 V_{OL} Output low voltage state with I_{OL} flowing into pin

V_R Reverse voltage for input diode leakage test

V_X Threshold voltage for low input voltage state on expander unit

GENERAL RULES

- The number of load circuits that may be driven from an output is determined by the input loading factor.
 The summation of input loading should not exceed the drive capability of the output.
- The outputs of the passive pullup gates may be tied together to perform the wired-collector OR function. For each added gate subtract 1.2 output loading factor (fan-out).
- The outputs of the active pullup devices should not be tied together.

GENERAL INFORMATION (continued)

FIGURE 1-GATE COMPARISONS

MODIFIED DIODE-TRANSISTOR LOGIC HIGH THRESHOLD LOGIC WITH PASSIVE PULLUP

HIGH THRESHOLD LOGIC

The High Threshold Logic (MHTL) family of integrated circuit devices was developed for applications requiring a higher degree of inherent electrical noise immunity than is available with the more standard forms of integrated circuit logic families. The basic MHTL logic gate is similar to the Diode Transistor Logic (MDTL) gate circuit as can be seen in Figure 1. A considerably larger input threshold characteristic is exhibited by the MHTL devices by using a reversed biased base-emitter junction which operates in the breakdown avalanche mode (sometimes referred to as zener operation) as compared to a forward biased diode junction for the corresponding D₁ element in the MDTL gate. A typical 7.5 volt input signal is required to turn on the MHTL output inverting transistor while a 1.5 volt signal is necessary for MDTL.

The higher threshold characteristic of MHTL requires a higher VCC supply and is specified at 15 volts ±1.0 V tolerance. In order to keep the power dissipation within reasonable levels, higher values of resistance are used in MHTL than for corresponding resistors in the MDTL circuit. These resistance values also allow the outputs of gates to be interconnected to provide the "wired - or" logic function. The propagation delay of MHTL is in the order of 110 nanoseconds and consequently is a relatively slow logic family, a property which aids in rejecting noise. A comparison of transfer curves is made in Figure 2 illustrating the large logic swing available from MHTL.

An active output pullup configuration is available for the MHTL devices and is shown in Figure 3. The active output arrangement will allow the circuits to handle capacitive loads at a higher speed than is obtainable with the passive pullup configuration. Additionally, the impedance in the high state is considerably less, and consequently makes the family more immune to electrical noise. The active output configuration also allows for a more powerful arrangement to interface with discrete components.

In summary the MHTL devices may be characterized as an integrated circuit family with a high degree of inherent noise immunity, a high input threshold and a large logic swing. These characteristics make the line very attractive for use where electrical noise is an important consideration, as well as for applications where interfacing with various discrete components is required.

FIGURE 2-TRANSFER CURVES

FIGURE 3-MHTL GATE WITH ACTIVE PULLUP

LOGIC DIAGRAMS

The logic diagrams shown describe the circuits of the MHTL line and permit quick selection of circuits required to implement a particular logic system. Pertinent information, such as logic equations and truth tables is

provided to show line compatability. Package pin numbers and loading factors for each device are specified with each logic diagram. The numbers at the ends of the terminals are package pin numbers.

MC660P MC661P MC668P **QUAD 2-INPUT GATE EXPANDABLE EXPANDABLE DUAL 4-INPUT GATE DUAL 4-INPUT GATE** (with passive output pullup) (with active output pullup) (with passive output pullup) 10 13 13 11 Positive Logic: $6 = 1 \cdot 2 \cdot 4 \cdot 5 \cdot (3)$ Positive Logic 6 = 1 • 2 • 4 • 5 • (3) Positive Logic: $3 = \overline{1 \cdot 2}$ Input Loading Factor = 1 Input Loading Factor = 1 Input Loading Factor = 1 Output Loading Factor = 10 Output Loading Factor = 10 Output Loading Factor = 10 Propagation Delay Time = 110 ns typ Propagation Delay Time = 125 ns typ Propagation Delay Time = 125 ns typ Typical Total Power Dissipation Typical Total Power Dissipation Inputs High - 88 mW Inputs Low - 26 mW Typical Total Power Dissipation Inputs High - 176 mW Inputs Low - 52 mW Inputs High-88 mW Inputs Low - 26 mW MC670P MC671P MC672P **TRIPLE 3-INPUT GATE** TRIPLE 3-INPUT GATE QUAD 2-INPUT GATE (with passive output pullup) (with active output pullup) (with active output pullup) 10 Positive Logic: $6 = \overline{3 \cdot 4 \cdot 5}$ Positive Logic: $3 = \overline{1 \cdot 2}$ Positive Logic: $6 = \overline{3 \cdot 4 \cdot 5}$ Input Loading Factor = 1 Input Loading Factor = 1 Input Loading Factor = 1 Output Loading Factor = 10 Output Loading Factor = 10 Output Loading Factor = 10 Propagation Delay Time = 125 ns typ Propagation Delay Time = 110 ns typ Propagation Delay Time = 110 ns typ Typical Total Power Dissipation Typical Total Power Dissipation Typical Total Power Dissipation Inputs High - 132 mW Inputs Low - 39 mW Inputs High - 132 mW Inputs Low - 39 mW Inputs High - 176 mW Inputs Low - 52 mW

LOGIC DIAGRAMS (continued)

MC662P EXPANDABLE DUAL 4-INPUT LINE DRIVER (with active output pullup)

Positive Logic = 1 • 2 • 4 • 5 • (3)

Input Loading Factor = 1
Output Loading Factor = 30

Propagation Delay Time = 140 ns typ Typical Total Power Dissipation Inputs High - 180 mW Inputs Low - 26 mW

MC669P DUAL 4-INPUT EXPANDERS

Positive Logic: $4 = 2 \cdot 3 \cdot 5 \cdot 6$

Input Loading Factor = 1

9 Input Lo

MC663P DUAL J-K FLIP-FLOP

Input Loading Factor:

R_D Input = 2

C Input = 1.5 Other Inputs = 1

Output Loading Factor = 9

Total Power Dissipation = 200 mW typ Toggle Frequency = 3.0 MHz typ

TRUTH TABLE

	t,	t,	+ 1
J	K	Q	Q
0	0	Q _n	Q,
1	0	1	0
0	1	0	1
1	1	Q,	Q _n

Direct input (\overline{R}_D) must be high.

0 = low state

1 = high state

t_n = time period prior to negative transition of clock pulse

t_{n+1} = time period subsequent to negative transition of clock pulse

 Ω_n = state of Q output in time period t_n

NOTE: A low state "0" at the direct reset \overline{R}_D causes a low state "0" at the Q output and the complement at the \overline{Q} output.

MC664P MASTER-SLAVE R-S FLIP-FLOP

Input Loading Factor:

C Input = 3

Other Inputs = 1
Output Loading Factor = 8

Total Power Dissipation = 160 mW typ

Toggle Frequency = 3.0 MHz typ

DIRECT INPUT OPERATION

\overline{R}_D	SD	Q	Q
1	1	NC	NC
1	0	1	0
0	1	0	1
0	0	NA	NA

CLOCKED OPERATION*

		t,		t, +1
Sı	S2	R,	R ₂	Q
0	Х	0	X	Q _n
0	Х	Х	0	Q.
Χ	0	0	Χ	Q _n
Χ	0	X	0	Q _n
0	X	1	1	0
X	0	1	1	0
1	1	0	χ	1
1	1	Х	0	1
1	1	1	1	U

* Direct inputs $(\overline{R}_D, \overline{S}_D)$ must be high.

0 = low state

1 = high state

NC = No change

NA = Not allowed

X = state of input does not affect state of the circuit

U = indeterminate state

U = Indeterminate state $t_n = time period prior to negative transition of clock pulse$

t_{n+1} = time period subsequent to negative transition of clock pulse

 Q_n = state of Q output in time period t_n

EXPANDABLE DUAL 4-INPUT GATE

MHTL MC660 series

MC660P

This device consists of two expandable 4-input NAND gates with active output pullup.

Positive Logic: $6 = \overline{1 \cdot 2 \cdot 4 \cdot 5 \cdot (3)}$

Input Loading Factor = 1
Output Loading Factor = 10

Propagation Delay Time = 110 ns typ Typical Total Power Dissipation Input High = 88 mW Inputs Low = 26 mW

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one gate only. The other gate is tested in the same manner.

	TEST	CURI	RENT/V	OLTA	GE VA	LUES	(All Te	mpera	tures)	
m	A					Volts				
l _{OL}	I _{OH}	VIL	V _{IH}	V _F	\mathbf{V}_{R}	V _X	VCEX	V _{CC}	V _{CCL}	V _{CCH}
12.0	-0. 03	6.50	8.50	1.5	16.0	7.20	16.0	15.0	14.0	16.0

					TEST	LIMITS	S			TES	ST CUR	RENT	/VOLTAG	GE A	PPLIED	TO	PINS LI	STED	BELOV		
		Pin Under	-3	0°C	+2	5°C	+7	5°C		loL	I _{OH}	VIL	V _{IH}	VF	\mathbf{V}_{R}	\mathbf{V}_{X}	VCEX	Vcc	VCCL	V _{CCH}	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit												
Output Voltage	v _{OL}	6	_	1.5	_	1.5	_	1.5	Vdc	6	-	-	1, 2, 4, 5	-	-	-	-	-	14	-	7
	VOH	6	_	_	12.5	_	12.5	_	1		6	1	-	_	-	-	-	2, 4, 5	14	-	
	ОН		-	-		-		-		-		2 4	_	-	-	-	-	1, 4, 5 $1, 2, 5$		-	
			-	-		_		_		_		5	-	-		_] -	1, 2, 4		-	
		+	-	-	+	-	*	-	+	-	*	-	-	-	-	3		-	*	-	*
Short-Circuit Current	I _{SC}	6	-	-	-6.5	-15.0	-6.5	-15.0	mAdc	-	-	-	-	-	-	-	-	-	-	14	1, 6, 7
Reverse Current	$I_{ m R}$	1	-	-	-	2.0	-	2.0	μAdc	-	-	-	-	-	1	-	-	-	14	-	2, 3, 4, 5, 7
	"	2 4	-	-	-		-			_	-	-	_	-	2 4	-	-	_		_	1,3,4,5,7 1,2,3,5,7
i		5	-	-	-	♦	-	+	♦	-	-	-	-	-	5	-	-	-	*	-	1, 2, 3, 4, 7
Output Leakage Current	ICEX	6	-	-	-	100	-	100	μAdc	-	-	-	-	-	-	-	6, 14	-	_	-	1,7
Forward Current	I _F	1	-	-	-	-1.20	-	-1.20	mAdc	-	-	-	-	1	2, 4, 5	-	-	-	-	14	7
	"	2 4	-	_	-		-			_	-	_	-	2 4	1, 4, 5 1, 2, 5	-	_	-	_		
		5	-	_	-	₩	-	♦	♦	-	-	-	-	5	1, 2, 4	-	-	-	-	*	▼
Power Drain	ICCL	14	-	-	-	3.0	-	-	mAdc	-	-	-	-	-	-	•	-	-	-	14	1, 2, 4, 5, 7, 9, 10, 12, 13
Current (Total Device)	I _{CCH}	14	-	-	-	10	- :	-	mAdc	-	-	-	-	-	-	-	-	-	-	14	7
Switching Times				-	-			 -		Pulse	Pulse	-		-						 	
Darrenme Times										În	Out		14								
	t ₊ 1-6+	6	-	-	-	200	-	-	ns	1	6	-	-	-	-	-	-	14 14	-	-	7 7
	t ₁₊₆₋	6	-	-		100	-	_	ns	1	6	_	-		-	_	_	14			

EXPANDABLE DUAL 4-INPUT GATE

MHTL MC660 series

MC661P

This device consists of two expandable 4-input NAND gates with passive output pullup.

Positive Logic 6 = 1 • 2 • 4 • 5 • (3)

Input Loading Factor = 1
Output Loading Factor = 10

Propagation Delay Time = 125 ns typ Typical Total Power Dissipation Input High = 88 mW Inputs Low = 26 mW

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one gate only. The other gate is tested in the same manner.

	TEST CURRENT/VOLTAGE VALUES (All Temperatures)													
m	Α					Volts								
loL	loH	VIL	V _{IH}	VF	\mathbf{V}_{R}	V _X	\mathbf{V}_{CEX}	Vcc	V _{CCL}	V _{CCH}				
12.0	-0.03	6.50	8.50	1.5	16.0	7.20	16.0	15.0	14.0	16.0				

													L	1	L	L	1	1			
					TES	T LIMI	TS			TE	ST CUR	RENT	r/VOLTA	GE /	APPLIE	OT 0	PINS L	ISTED			
		Pin Under	-3	0°C	+2	5°C	+7	5°C		loL	Юн	VIL	V _{IH}	٧۶	V _R	V _X	VCEX	Vcc	V _{CCL}	V _{CCH}	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit												
Output Voltage	V _{OL}	6	-	1.5	-	1.5	-	1.5	Vdc	6	-	-	1,2,4,5	-	-	-	-	-	14	-	7
	v _{OH}	6	-	-	12.5	- -	12.5	-		- -	6	1 2	-	-	-	- -	-	2, 4, 5 1, 4, 5	1 1	-	
			-	-		-		-		- -		4 5 -	-	-	-	- - 3	-	1, 2, 5 1, 2, 4		- - -	
Short-Circuit Current	I _{SC}	6	-	-	-0.6	-1.5	-0.6	-1.5	mAdc	-	-	-	-	-	-	-	-	-	-	14	1, 6, 7
Reverse Current	I _R	1 2 4 5	-	-	- - -	2.0	- - -	2.0	μAdc	- - -	- - -	-		- - -	1 2 4 5	- - -	-	-	14	- - -	2, 3, 4, 5, 7 1, 3, 4, 5, 7 1, 2, 3, 5, 7 1, 2, 3, 4, 7
Output Leakage Current	ICEX	6	-	-	-	100	-	100	μAdc	-	-	-	-	-	-	-	6, 14	-	-	-	1, 7
Forward Current	I _F	1 2 4 5		-	- - -	-1.20	- - -	-1.20	mAdc	- - -	- - -	-	-	1 2 4 5	2, 4, 5 1, 4, 5 1, 2, 5 1, 2, 4	- - -	-	- - -	-	14	7
Power Drain Current	ICCL	14	-	-	-	3.0	-	-	mAdc	-	-	-	-	-	-	-	-	-	-	14	1, 2, 4, 5, 7, 9, 10, 12, 13
(Total Device)	I _{CCH}	14	-	-	-	10	-	-	mAdc	-	-	-	-	-	-	-	-	-	-	14	7
Switching Times										Pulse In	Pulse Out										
	t ₁₋₆₊	6 6	-	-	-	250 100	-	-	ns ns	1 1	6 6	-	-	-	-	- -	-	14 14	-	-	7

TRIPLE 3-INPUT GATE

MHTL MC660 series

MC670P

This device consists of three 3-input NAND gates with passive output pull-up.

Positive Logic: $6 = 3 \cdot 4 \cdot 5$ Input Loading Factor = 1
Output Loading Factor = 10

Propagation Delay Time ≈ 125 ns typ Typical Total Power Dissipation Input High = 132 mW Inputs Low = 39 mW

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

	TEST C	URRE	NT/VO	LTAG	E VALL	JES (All	Tempe	ratures)
m	Α		-			Volts			
loL	I _{OH}	VIL	V _{IH}	V _F	V _R	V _{CEX}	Vcc	V _{CCL}	V _{CCH}
12.0	-0.03	6.50	8. 50	1.5	16.0	16.0	15.0	14.0	16.0

TEST LIMITS									510	TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW:								OW:		
		Pin Under	-3	0°C	+25	5°C	+7	5°C												
Characteristic	Symbol		Min	Max	Min	Max	Min	Max	Unit	IOL	I _{OH}	VIL	V _{IH}	V _F	V _R	V _{CEX}	Vcc	V _{CCL}	V _{CCH}	Gnd
Output Voltage	v _{OL} v _{OH}	6	-	1.5	12.5	1.5	12.5	1.5	Vdc	6 -	6	3	3, 4, 5	- -	- -	-	- 4, 5 3, 5	14 14	-	7
	1		=	-	•	-	₩ .	-	• •		+	4 5	-	_	-	-	3, 3	+	-	. ♦
Short-Circuit Current	I _{SC}	6	-	<u>-</u> 1.	-0.6	-1.5	-0.6	-1.5	mAdc	-	-	-	-	-	-	-	-	-	14	3, 6, 7
Reverse Current	I _R	3 4 5	- - - -		-1	2.0	- 1	2.0	μAdc	-	 		-		3 4 5	<u>-</u> -	- - - -	14	- - -	4, 5, 7 3, 5, 7 3, 4, 7
Output Leakage Current	ICEX	6	-	-	 	100	-	100	μAdc	-	2	-	-	-		6, 14		- "	-	3,7
Forward Current	$^{ m I}_{ m F}$	3 4 5	-	- -		-1.20	·	-1.20 ↓	mAdc	-	-	-		3 4 5	4, 5 3, 5 3, 4	- -	 	 . / x ₂ , =	14) i 7 . }
Power Drain Current	ICCL	14	-	1 - 1	-	4.5	•	÷	mAdc	-	-	-	- 1	-	-		-		14	1, 2, 3, 4, 5, 7 9, 10, 11, 13
(Total Device)	^I ССН	14	-	-	-	15	-	-	mAdc	-	-	- <u>-</u>	- ·	-	-	-	-		14	7
Switching Times			7							Pulse In	Pulse Out									
	t ₃₋₆₊	6 6	- n	-	-	250 100	-	<u>-</u>	ns ns	3	6 6	 	- - -	-	,;= ,-	- :	14 14	-	- -	7 7

TRIPLE 3-INPUT GATES

MHTL MC660 series

MC671P

This device consists of three 3-input NAND gates with active output pull-up.

Positive Logic: $6 = 3 \cdot 4 \cdot 5$

Input Loading Factor = 1
Output Loading Factor = 10

Propagation Delay Time = 110 ns typ Typical Total Power Dissipation Input High = 132 mW Inputs Low = 39 mW

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

	TEST C	URRE	NT/VOI	TAGE	VALU	JES (All	Tempe	ratures))
n	ıA					Volts			
I _{OL}	I _{OH}	V _{IL}	V _{IH}	VF	V _R	\mathbf{V}_{CEX}	Vcc	V _{CCL}	V _{CCH}
12.0	-0.03	6. 50	8. 50	1.5	16.0	16.0	15.0	14.0	16.0

					TEST I	LIMITS				TES	T CURI	RENT/	VOLTA	GE AP	PLIED	TO PI	IS LIST	ED BEI	.OW:	
		Pin Under	-3	0°C	+2	5°C	+7	5°C												
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	loL	I _{OH}	VIL	V _{IH}	V _F	\mathbf{V}_{R}	V _{CEX}	V _{CC}	V _{CCL}	V _{CCH}	Gnd
Output Voltage	V _{OL}	6	-	1.5	-	1.5	-	1.5	Vdc	6	-	-	3, 4, 5	-	-	-	-	14	-	7
	v _{OH}	6	-	-	12.5	_	12.5	-	Vdc	_	6	3	-	-	-	-	4,5	14	-	
	On		-	-	1 1	-		-		-	1	4 5	-	-	-	-	3,5	1 1	-	l
		V	•		▼ .	-	Y	-	V		V	5	<u> </u>	-	-		3,4	V		· · · · · · · · · · · · · · · · · · ·
Short-Circuit Current	I _{SC}	6	-	-	-6.5	-15.0	-6.5	-15.0	mAdc	-	-	-	-	-	-	-	-	-	14	3,6,7
Reverse Current	$^{ m I}_{ m R}$	3	-	-	-	2.0	-	2.0	μAdc	_	-	-	-	-	3	_	-	14	-	4,5,7
	R	4	-	-	-		-	1 1		-	-	-	-	-	4	-	-		-	3, 5, 7
		5	-	-	-	*	-	*	*	-	-			-	5	-	-	7	-	3, 4, 7
Output Leakage Current	ICEX	6	-	-	-	100	-	100	μAdc	-	-	-	-	-	-	6, 14		-	-	3, 7
Forward Current	I _F	3	-	-	-	-1.20	-	-1.20	mAdc	-	-	-	-	3	4, 5	-	-	-	14	7
	F.	4	-	-	-	1 1	-			-	-	-	-	4	3,5	-	-	-	1 1	
		5	-	-	-	▼		*	1	-	-		-	5	3,4	-	-	-	▼	V
Power Drain Current	ICCL	14	-	-	-	4.5	-	-	mAdc	-	-	-	-	-	-	-	-	-	14	1, 2, 3, 4, 5, 7, 9, 10, 11, 13
(Total Device)	I _{CCH}	14	-	-	-	15	-	-	mAdc	-	-	-	_	-	-	-		-	14	7
Switching Times										Pulse In	Pulse Out									
	t ₃₋₆₊	6	-	-	-	200	-	-	ns	3	6	-	-	-	-	-	14	-	-	7
	t ₃₊₆₋	6	-	-	-	100	-	-	ns	3	6	-	-	-	-	-	14	-	-	7

QUAD 2-INPUT GATES

MHTL MC660 series

MC668P

This device consists of four 2-input NAND gates with passive output pull-up.

Positive Logic: 3 = 1 • 2

Input Loading Factor = 1
Output Loading Factor = 10
Propagation Delay Time = 125 ns typ
Typical Total Power Dissipation
Input High = 176 mW
Inputs Low = 52 mW

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

	TEST	CURRE	NT/VC	LTAGE	VALUE	S (All T	empera	atures)	
n	ıA				Volts				
IOL	I _{OH}	VIL	V _{IH}	VF	V _R	VCEX	V _{CC}	V _{CCL}	V _{CCH}
12.0	-0.03	6.50	8.50	1.5	16.0	16.0	15.0	14.0	16.0

					TEST	LIMITS				TE	ST CUF	RENT	/VOLT	GE AP	PLIED 1	O PINS	LISTE	D BELO	OW:	
٠.		Pin Under	-3	0°C	+2!	5°C	+7	5°C												21
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	loL	I _{OH}	VIL	V _{IH}	V F	V _R	V _{CEX}	Vcc	V _{CCL}	V _{CCH}	Gnd
Output Voltage	VOL	3	-	1.5	-	1.5	-	1.5	Vdc	3	-	-	1, 2	-	-	_	-	14	-	7
	V _{ОН}	3 3	-	-	12.5 12.5	-	12.5 12.5			-	3 3	1 2	- -	-	-	1,- ,- 1 -	2 1	14 14	-	•
Short-Circuit Current	ISC	3	-	-	-0.6	-1.5	-0.6	-1.5	mAdc	-	-	-	-	-	-	-	-	-	14	1,3,7
Reverse Current	I _R	1 2	-	, - -	-	2. 0 2. 0	-	2.0 2.0	μAdc μAdc	-			-	-	1 2	-	-	14 14	-	2,7 1,7
Output Leakage Current	ICEX	3	-	-	-	100		100	μAdc	-	-	-	-	-	= ,	3, 14	-	-	-	1,7
Forward Current	I _F	1 2		-	-	-1. 20 -1. 20	-	-1.20 -1.20	mAdc mAdc	-	-	-	-	1 2	2 1	-	-	-	14 14	7 7
Power Drain Current	ICCL	14	-	-	-	6.0	-	-	mAde	-	-	- 1,	-	-	-	-	-	-	14	1, 2, 4, 5, 7, 9, 10, 12, 13
(Total Device)	I _{CCH}	14	- 1		-	20	-		mAdc	-	-	-	-	-	-	-	-	-	14	7
Switching Times		-								Pulse In	Pulse Out									
	t 1-3+ t ₁₊₃₋	3	-	-	-	250 100	- -	- -	ns ns	1 1	3		-	-	- -		14 14	- - -	-	7 ° 7

MHTL MC660 series

QUAD 2-INPUT GATES

MC672P

This device consists of four 2-input NAND gates with active output pull-up.

Positive Logic: $3 = 1 \cdot 2$ Input Loading Factor = 1
Output Loading Factor = 10
Propagation Delay Time = 110 ns typ
Typical Total Power Dissipation
Input High = 176 mW
Inputs Low = 52 mW

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Test procedures shown are for one gate only. The other gates are tested in the same manner.

	TEST C	URRE	OV/T/	LTAGE	VALL	IES (All	Tempe	ratures)		
mA Volts											
l _{OL}	I _{OH}	VIL	V _{IH}	V _F	\mathbf{V}_{R}	V _{CEX}	V _{CC}	V _{CCL}	V _{CCH}		
12.0	-0.03	6.50	8.50	1.5	16.0	16.0	15.0	14. 0	16.0		

					TEST	LIMITS				TES	T CUR	RENT/	VOLTA	GE AF	PLIED	TO PIN	NS LIST	TED BEI	LOW:	
		Pin Under	-3	0°C	+2	5°C	+7	5°C												
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	I _{OL}	I _{OH}	VIL	V _{IH}	V _F	V _R	V _{CEX}	Vcc	V _{CCL}	V _{CCH}	Gnd
Output Voltage	V _{OL}	3	-	1.5	-	1.5	-	1.5	Vdc	3	-	-	1,2	-		-	-	14	-	7
	v _{он}	3	- -	-	12.5 12.5	- -	12.5 12.5	- -	V dc V dc	-	3	1 2	-	-	-	-	2 1	14 14	-	7
Short-Circuit Current	I _{SC}	3	-		-6.5	-15.0	-6.5	-15.0	mAdc	-	-	-	-	-	-	-	-	-	14	1,3,7
Reverse Current	I _R	1 2	-	-	-	2. 0 2. 0	-	2. 0 2. 0	μAdc μAdc	-	-	-	- -	- -	1 2	-	-	14 14	-	2, 7 1, 7
Output Leakage Current	ICEX	3	-	-	-	100	-	100	μAdc	-	-	-	-	-	-	3,14	-	-	-	1,7
Forward Current	I _F	1 2	-	-	-	-1. 20 -1. 20	-	-1. 20 -1. 20	mAdc mAdc	-	-	-	-	1 2	2 1	-	-	-	14 14	7 7
Power Drain Current	ICCL	14	-	-	-	6.0	-	-	m Adc	-	-	-	-	-	-	-	-	-	14	1, 2, 4, 5, 7, 9, 10, 12, 13
(Total Device)	I _{CCH}	14	-	-	-	20	-	-	mAdc	-	-	-	-	-	-	-	-	-	14	7
Switching Times										Pulse In	Pulse Out									
	t ₁₋₃₊	3	-	-	-	200	-	-	ns	1	3		-	-	-	-	14	-	-	7
	t ₁₊₃ -	3	-	-	-	100	-	-	ns	1	3	-	-	-	-	-	14	-	-	. 7

MHTL MC660 series

EXPANDABLE DUAL 4-INPUT LINE DRIVER

MC662P

This device consists of two expandable 4-input NAND line drivers with active output pullup. This device allows fan-out to 30 MHTL gates and drives large capacitive loads.

Positive Logic = 1 • 2 • 4 • 5 • (3)

Input Loading Factor = 1
Output Loading Factor = 30

Propagation Delay Time = 140 ns typ Typical Total Power Dissipation Input High = 180 mW Inputs Low = 26 mW

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one driver only. The other driver is tested in the same manner.

	TEST	CURR	ENT/VO	LTA	GE VAI	UES	(All Ter	nperat	ures)	
m	Α					Volts				
I _{OL}	I _{OH}	VIL	V _{IH}	VF	\mathbf{V}_{R}	V _X	VCEX	Vcc	V _{CCL}	V _{CCH}
36.0	-0.09	6.50	8.50	1.5	16.0	7.20	16.0	15.0	14.0	16.0

					TEST	LIMIT	S			TES	T CUR	RENT	/VOLTA	GE A	PPLIED	то	PINS L	ISTED	BELO	N:	
		Pin Under	-3	0°C	+25	5°C	+75	5°C		I _{OL}	I _{OH}	VIL	V _{IH}	VF	V _R	V _X	V _{CEX}	Vcc	V _{CCL}	V _{CCH}	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit												
Output Voltage	V _{OL}	6	-	1.5	-	1.5	-	1.5	Vdc	6	-	-	1,2,4,5	-	-	-	-	-	14	-	7
	v _{OH}	6	-	-	12.5	-	12.5	-		-	6	1	-	-	-	-	-	2, 4, 5	14	-	
	On		-	-		-		-		-		2 4	-	-	-	-	-	1, 4, 5 1, 2, 5		-	
			-	-	↓	-	1	-		-		5	-	-	-	- 3	-	1, 2, 4		-	
Short-Circut Current	I _{SC}	6	-	-	-10.0	-25.0	-10.0	-25.0	mAdc	-	-	-	-	-	-	•	-	-	-	14	1, 6, 7
Reverse Current	I_{R}	1	-	-	-	2.0	-	2.0	μAdc	-	-	-	-	-	1	-	-	-	14	-	2, 3, 4, 5, 7
		2		_	-		-			-	-	-	-	-	2 4	-	_	_		-	$\begin{array}{ c c c c }\hline 1,3,4,5,7\\ 1,2,4,5,7\\ \end{array}$
		5	-	_	-	+		+	*	-	- :	-	-	-	5	-	-		*	-	1, 2, 3, 4, 7
Output Leakage Current	ICEX	6	-	-	-	100	-	100	μAdc	-	-	-	-	-	-	-	6, 14	-	-	-	1, 7
Forward Current	I_{F}	1	-	-	-	-1.20	-	-1.20	mAdc	-	-	-	_	1	2, 4, 5		-	-	-	14	7
	1	2 4	-	-	_		-			-	-	-	_	2 4	$\begin{vmatrix} 1, 4, 5 \\ 1, 2, 5 \end{vmatrix}$	-	_	-	-		
		5	-	-	-	*	_	+	+	-	-		-	5	1, 2, 4	-		-	-	•	•
Power Drain Current	ICCL	14	-	-	-	4.0	-	-	mAdc	-	-	-	-	-	-	-	-	-	-	14	1, 2, 4, 5, 7, 9, 10, 12, 13
(Total Device)	I _{CCH}	14	-	-	-	17	-	-	mAdc	-	-	-	-	-	-	-	-	-	-	14	7
Switching Times										Pulse In	Pulse Out										
	t ₁₋₆₊	6	-	-	-	250	-	-	ns	1	6] -	-	-	-	-	-	14	-	-	7
	t ₁₋₆₊ t ₁₊₆₋	6			-	100	-	-	ns	1	6					_		14	<u> </u>		7

DUAL J-K FLIP-FLOP

MHTL MC660 series

MC663P

Two J-K flip-flops in a single package. Each flip-flop has a direct reset input in addition to the clocked inputs.

TRUTH TABLE

	t _n	tn	
J	Κ	Q.	Ю
0	. 0	Q _n	Q,
1	0	1	0
0	1	0	1
1	1	Q,	Q,

Input Loading Factor:

C Input = 1.5

Other Inputs = 1

Output Loading Factor = 9

Loading factors are valid from -30°C to +75°C with V_{CC} = 15 ± 1 Vdc

f_{Tog} = 3.0 MHz typ

Total Power Dissipation = 200 mW typ

Direct input (\overline{R}_D) must be high.

0 = low state

1 = high state

 t_n = time period prior to negative transition of clock pulse t_{n+1} = time period subsequent to negative transition of clock pulse \mathbf{Q}_n = state of Q output in time period t_n

NOTE: A low state "0" at the direct reset \overline{R}_D causes a low state "0" at the Q output and the complement at the \overline{Q} output.

Unless otherwise noted, tests are shown for only one flip-flop. The other flip-flop is tested in the same manner.

same manne										n	ıA .				Volts					
saille illailli	51.									loL	Іон	VIL	VIH	VF	V _R	VccL	V _{CCH}			
										10.8	-0.027	6.50	8.50	1.5	16.0	14.0	16.0	CP _a	CP _b	Ground
		Pin			TE	ST LI	VITS			TEST C	LIDDENT	VOLTA	OF AD	DI IED	TO DIE	IS LISTED	BELOW.		1	
Characteristic	Symbol	Under	-3	0°C	+2	5°C	+7	′5°C	Unit	1231 0	ORRENT /	VOLIA	IGE AF	FLICD	1011	13 113111	DLLOW.			
		Test	Min	Max	Min	Max	Min	Max	J	lou	Іон	VIL	VIH	V F	V _R	VccL	VccH			
Output	V _{OL}	1	-	1.5	-	1.5	-	1.5	Vdc	1	-	2	3, 5	-	-	14	-	4	-	7
Voltage	02	6	-	1.5	-	1.5	-	1.5		6	-	5	2, 3	-	-	14	-	4	-	7
	v _{oh}	1	-	-	12.5	-	12.5	-		-	1	2, 3	5	-	-	14	-	4		7
	On	1	-	-	12.5	-	12.5	-		-	1	5	2, 3	-	-	14	-	4	-	7
		6	-	-	12.5	-	12.5	-		-	6	2	3, 5	-	-	14	-	4	-	7
Short-Circuit Current	ISC	1	-	-	-6.5	-15	-6.5	-15	mAdc .	-	-	3, 4	-	-	-	-	14	-	-	1, 7
Reverse	I _R	2	-	-	-	2.0	-	2.0	μAdc	-	-	Γ-	-	-	2	14	-	-	-	3, 4, 5, 7
Current	3I _R	3	-	-		6.0	-	6.0		-	-	-	-	-	3	2, 4, 5, 14	-	-	-	7
	2I _R	4	-	-	-	4.0	-	4.0		-	-	-		-	4	14	-	-	-	2, 3, 5, 7
	I _R	5	-	-	-	2.0	-	2.0		-	-	-	-	-	5	14	-	-	-	2, 3, 4, 7
Forward	IF	2	-	-	-	-1.20	-	-1.20	mAdc	-	l -	-	-	2	-	-	14	-	4	7
Current	ı r	3	-	-	-	-1, 20	-	-1.20		-	-	-	-	3	-	-	14	-	-	2, 4, 5, 7
		4	-	-	-	-1.20	-	-1.20	1	-	-	-	-	4	-	-	2, 5, 14	-	-	7
		5	-	-	-	-1.20	-	-1.20	↓	-	-	-	-	5	-	-	14	-	4	7
Power Drain Current	ICCL	14	-	-	-	16.7	-	-	mAdc	-	-	-	-		-	-	14	-	-	2, 3, 4, 5, 7, 9, 10, 11, 12
(Both		14	l _	١ ـ	i -	16.7	-	-	mAdc	۱ -	l -	1 -		-	1 -	-	14		-	1 7

TEST CURRENT / VOLTAGE VALUES (All Temperatures)

Pins not listed are left open.

TOGGLE MODE TEST CIRCUIT

MASTER-SLAVE R-S FLIP-FLOP

MC664P

A dc coupled R-S flip-flop operating on the master-slave principle. Information is entered in the master section while the clock pulse is high and is transferred to the slave when the clock goes negative.

Input Loading Factor: C Input = 3

Other Inputs = 1

Output Loading Factor = 8

Loading factors are valid from -30° C to $+75^{\circ}$ C with V_{CC} = 15 ± 1 Vdc

f_{Tog} = 3.0 MHz typ

Total Power Dissipation = 160 mW typ

OPERATION

				4
į	ŔD	Ī 5 _D	Q	ā
i	1	1	NC	NC
	1	0	1	0
	. 0	1	0	1
	0	0	NA	NA .

NC = No change

NA = Not allowed

CLOCKED OPERATION

10.00		tn	100	t _{n+1}
S ₁	S ₂	R ₁	R ₂	р
0	X	0	X	Q,
0	X	. Х	0	Q _n
Х	0	0	X	Q _n
X	0	Х	0	Q _n
0	X	1	1	0
X	0	1	1	0
1	1	0	Х	1
1	1	Х	0	1
1	. 1	1	. 1	U

NOTES FOR CLOCKED-OPERATION TRUTH TABLE:

Direct inputs $(\overline{R}_D, \overline{S}_D)$ must be high.

0 = low state

1 = high state

X = state of input does not affect state of the circuit

U = indeterminate state

t_n = time period prior to negative transition of clock pulse

 t_{n+1} = time period subsequent to negative transition of clock pulse

 Q_n = state of Q output in time period t_n

LECTRICAL CHARACTERISTICS										TEST CURRENT / VOLTAGE VALUES (All Temperatures)											
										mA			Volts								
										loL	Іон	VIL	V _{IH}	VF	V _R	VCCL	V ссн				
								9.6	-0.024	6.50	8.50	1,5	16.0	14.0	16.0	CP.	СРь	Ground			
	Symbol	Pin	TEST LIMITS					TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW:													
Characteristic			-3	30°C +		+25°C +		′5°C Unit													
		Test	Min	Max	Min	Max	Min	Max	Oilli	lor	Іон	VIL	V _{IH}	V _F V _R		Vccl	V ссн				
Output Voltage	v _{OL}	6* 6 6 9‡ 9		1.5		1. 5	11111	1.5	Vdc	6 6 9 9	-	4 3 - 11 12	3, 4, 11, 12 3, 5, 11, 12 4, 5, 11, 12 3, 4, 11, 12 3, 4, 10, 12 3, 4, 10, 11		-	14	-	2 2 2 2	5 - 10 -	7 7 7 7	
	V _{OH}	6 9	-	-	12.5 12.5		12.5 12.5			-	6 9	-	5 10	Ξ	- -	14 14	-	-	-	2, 3, 4, 7, 10, 11, 1 2, 3, 4, 5, 7, 11, 12	
Short-Circuit Current	I _{SC}	6 9	-	-	-6. 5 -6. 5	-15 -15	-6.5 -6.5		mAdc mAdc		-	2, 5 2, 10	10 5	-	1- -	-	14 14	-	-	6,7,9 6,7,9	
Reverse Current	4I _R 4IR I _R	2§ 2† 3 4 5 10 11		1 - 1 - 1 - 1	-	8. 0 8. 0 2. 0	-	8.0 8.0 2.0	μAdc		-		5 10 - - 2, 11, 12 2, 3, 4 - -	-	2 2 3 4 5 10 11 12	14 14 14 14 14 14 14 14	-	-		3, 4, 7, 10, 11, 12 3, 4, 5, 7, 11, 12 2, 4, 7 2, 3, 7 7 7 2, 7, 12 2, 7, 11	
Forward Current	3I _F 3I _F I _F	2 2 3 4 5 10 11 12	-		-	-3.60 -3.60 -1.20	- 1	-3.60 -3.60 -1.20		-	-	-	5 10 - - - - - -	2 2 3 4 5 10 11	3, 4, 11, 12 3, 4, 11, 12 2, 4 2, 3 - 2, 12 2, 11	1111111	14 14 14 14 14 14 14 14		-	7, 10 5, 7 7 7 2, 7, 10, 11, 12 2, 3, 4, 5, 7 7	
Power Drain Current	I _{CCL}	14 14	=	-	-	14.5 14.5		=	mAdo mAdo		-	=	-	-	=	-	14 14	=	-	2, 3, 4, 5, 7, 10, 11,	

Pins not listed are left open.
*Apply momentary ground to pins 9 and 10 prior to clock pulse
\$Apply momentary ground to pins 5 and 6 prior to clock pulse
\$Apply momentary ground to pin 9
†Apply momentary ground to pin 6

TOGGLE MODE TEST CIRCUIT

DUAL 4-INPUT EXPANDERS

MC669P

This device consists of two independent high voltage diode networks with characteristics matched to the input of the gate and buffer elements in the MHTL logic family. Its use increases the fan-in capability of other MHTL devices to a maximum of 20 while having negligible effect on their performance.

Positive Logic: $4 = 2 \cdot 3 \cdot 5 \cdot 6$

Input Loading Factor = 1

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one expander. The other expander is tested in the same manner.

TEST CURRENT/V (All Tempo	EST CURRENT/VOLTAGE VALUES (All Temperatures)										
mA	Volts										
1	V-										

16.0

1. 2

			TEST LIMITS							TEST CURRENT/\		
		Pin Under	-30	o.c	+25°C		+75°C			TO PINS LIS		
Characteristic				Max	Min	Max	Min	Max	Unit	1 _F	V _R	Gnd
Forward Voltage	v _F	4	- - -	1.0	- - -	0.9	-	0.8	Vdc	4		2, 7 3, 7 5, 7 6, 7
Reverse Current	I _R	2 3 5 6 4	-	2.0		2.0	-	2.0	μAdc ▼	- - - - -	3 5	3, 5, 6, 7 2, 5, 6, 7 2, 3, 6, 7 2, 3, 5, 7