

$y = X - \frac{(\sqrt{12} + \sqrt{12})}{1 - \exp(-\frac{2}{\sqrt{12}})}$	1-e-12
we can only tind this a, a in to	to general solution
$\frac{2}{12} \frac{2 u_i'' \approx 5 h_0 + u_i' + \frac{u_{i+1}'' - 2u_i'' + u_{i-1}''}{h_i''}}{12 + u_i'' + u_i''} \frac{2u_i'' + u_{i-1}''}{h_i''} \frac{2u_i'' + u_{i-1}''}{h_i''} + u_i'' = \frac{u_i'' - 2u_i'' + u_{i-1}''}{h_i''}$	6, Ui ~ Ui+1-Ui-1 h·i
$\frac{1}{12} \frac{1}{12} \frac$	ruin + Spull - tul-1 = hit
i Rh = (0, 1, 2 N-1, 0)	h = 0
$2^{h} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ -\gamma & s - t & \cdots & 0 & 0 \end{bmatrix}$	

3. ~ 2h Rhv = [10 - 0] [Vo] (2h Rhv) = Vo = 0
(2h Lv) = Lv(0) = 0 (CLhRhV)0-(Rh2V) =0 @ Similarly 1 (1h Rhv) ~ (R/2v) =0 $(2^{h}2V)_{i} = -67h3-hV_{i}+V_{i}$ $(2^{h}2V)_{i} = 2V(x_{i}) = -6V'(x_{1})+V_{i}$ $(2^{h}2V)_{i} - (2^{h}2V)_{i} = 0(h^{2})$ in the is consistent of 2=2Then NTS the stability of L^h 0 2t $|V_0| = ||V||_{\infty}$, then $||L^h v||_{\infty} \ge |(L^h v)_0| = ||V_0|| = ||V||_{\infty}$ $||V_0|| = ||V||_{\infty}$, then Similarly $||L^h v||_{\infty} = ||V||_{\infty}$ $||V_0|| = ||V||_{\infty}$ for some $||S_1|| \le |V_0||_{\infty}$ (2"); = - VI-1 +5Vi - t Vi+1 $= \gamma(V_{i}-V_{i+1}) + t(V_{i}-V_{i+1}) + (S-Y-t)V_{i}$ $= \gamma(V_{i}-V_{i+1}) + t(V_{i}-V_{i+1}) + (S-Y-t)V_{i}$ $= \gamma(V_{i}-V_{i+1}) + t(V_{i}-V_{i+1}) + (S-Y-t)V_{i}$ S-Y-t=1 $= t=\frac{1}{h^{2}}>0$ $= (L^{h}V)_{i} \ge V_{i} = ||V||_{\mathcal{P}} = \gamma ||L^{h}V||_{\mathcal{P}} \ge ||V||_{\mathcal{P}}$ $= \gamma(V_{i}-V_{i+1}) + \gamma(V$ $(L^{h}V)_{i} = -Y(V_{i}-V_{i}) - t(V_{i}+V_{i}) + (s-y-t)V_{i}$ = -Y(V_{i}-V_{i}) \(20 \), -t(V_{i}+V_{i}) \(60 \), $V_{i} \(50 \) \(70 \).$ 1. 12hVil > 1Vil i 11 LhVill > 11VIl >