Lecture-8

Solutions, Solubility & Gas Laws

Text

"Chemistry Fundamentals"

A Q Chowdhury

What is a solution?

- ☐ A solution is a homogeneous mixture of two or more pure substances, which may be solids, liquids, gases or a combination of these and composed of only one phase.
- A homogeneous mixture is a physical combination in which particles of one or more substances (solute) are distributed uniformly throughout another substance (solvent) at the molecular or ionic level.
- ☐ Generally, in a solution the percentage of solvent is more than 50 percent.

Types of solution

- 1. Depending on the three physical states- (9 types)
- 2. Depending on the temperature- (2 types)
- 3. Depending on the equilibrium-(3 types)

Sep 18, 2022

Solution & Solubility

(i) Depending on the three physical statesgas, liquid and solid (9 types):

Solution	Example
 Gas in gas Gas in liquid Gas in solid Liquid in gas Liquid in liquid Liquid in solid 	 Air. (78% N₂ 21%. O₂, 0.93% Ar, other gases) Soda water (CO₂ in liquid) H₂ absorbed by heated palladium water vapor in air alcohol in water
7. Solid in gas8. Solid in liquid9. Solid in solid	mercury in goldcamphor in airsugar solutionNi-Cu alloy

(ii) Depending on the temperature-(2 types)

- 1. Exothermic solution: The process of dissolution of a solute in solvent involving evolution of heat energy due to breaking and formation of bonds. Examples: CaO or NaOH or strong acids in H₂O etc.
- 2. Endothermic solution: The process of dissolution of a solute in solvent involving absorption of heat energy due to breaking and formation of bonds. Examples: NH₄NO₃ or glucose in H₂O, evaporation of H₂O etc.

NaU

(iii) Depending on the equilibrium- (3 types)

1. A **saturated solution** is a solution containing the maximum concentration of a solute under certain temperature and pressure. Additional solute will not dissolve in a saturated solution and simply settle down as undissolved solids.

There exists a dynamic equilibrium between the undissolved solute molecules and the solute molecules in saturated solution.

Solute molecules (undissolved)

 \rightleftharpoons

Solute molecules (in solution)

→ Oc/273K. Lam/101325 Px

(iii) Depending on the equilibrium- (contd.)

2. A supersaturated solution is a solution containing more solute than a saturated solution. The solubility of a solution increases as the temperature or pressure is increased. This means that temperature rises, more solute can dissolved. Increased pressure also increases maximum possible saturation and allows for a supersaturated solution.

Sep 18, 2022

Solution & Solubility

(iii) Depending on the equilibrium- (contd.)

An unsaturated solution is a solution containing less solute than a saturated solution. An unsaturated solution has room for additional solute to be added and fully dissolved, without settling and sedimentation

occurring.

Properties of Solvent

What is Solvents?

The vast majority of chemical reactions are performed in solution. The solvent fulfills functions several during chemical a reaction. It solvates reactants the and reagents so that they dissolve.

- A good solvent should meet the following criteria:
- It should be inert to the reaction conditions.
- It should dissolve the reactants and reagents.
- It should have an appropriate boiling point.
- It should be easily removed at the end of the reaction.

Properties of Solvent (contd.)

Non-polar reactants will dissolve in non-polar solvents. Polar reactants will dissolve in polar solvents.

- For our purposes there are three measures of the polarity of a solvent:
- (a) Dipole moment,
- (b) Dielectric constant,
- (c) Miscibility with water.

- **Dipole moment**: It occurs due to equal amount of positive and negative charge separated by a distance within a molecule. Mathematically, μ = q × r; where μ = dipole moment, q = charge of atom in coulomb and r = distance between charges in Å. A knowledge of dipole moment is useful to know the extent of polar character and geometrical shape of a molecule.
- **Dielectric constant**: The dielectric constant of a solvent may be defined as its capacity to weaken the force of attraction between the electrical charges in that solvent. It is a measure of the polarity of the solvent. Mathematically, F = e2/rD; where D = dielectric constant, e = charge, F = force of attraction and r = distance between charges.

or 1 -0 = 0

- FIGURE

Dipole moment of (a) H₂O, (b) CO₂ and (c) NH₃

Sep 18, 2022

Solution & Solubility

Properties of Solvent (contd.)

- Molecules with *large dipole moments* and *high dielectric* constants are considered **polar**.
- Those with *low dipole moments* and *small dielectric* constants are classified as **non-polar**.
- On an operational basis, solvents that are miscible with water are polar, while those that are not are non-polar.
- Chemists have classified solvents into three categories according to their polarity: (1) Polar protic H₂O, NH₃, ethanol etc. (2) Dipolar aprotic –acetone (CH₃COCH₃), chloroform, Dichloromethane etc. and (3) Non-polar alkanes, tolune, carbon tetrachloride etc.

—.

Solubility

The amount of a substance that dissolves in a given quantity of solvent at a given temperature to form a saturated solution is called its solubility.

Sep 18, 2022

Solution & Solubility

Factors Affecting Solubility

(a) Nature of the solute and solvent

- 1. Ionic and polar substances dissolve in polar solvent, e.g. NaCl in H₂O.
- 2. Nonpolar substances are dissolved in nonpolar solvents, e.g. Napthalene, oil etc. in C₆H₆, CCl₄.

'Like dissolves like' - that means substances dissolve in chemically similar solvents.

Factors Affecting Solubility (contd.)

(b) Effect of temperature

A higher temperature increases both the rate of dissolution and also the solubility of the solute.

Except in case of gas

Solution & Solubility

Factors Affecting Solubility (contd.)

(c) Rate of solution

- 1. At a low temperature the rate of solution is quite low. At higher temperature dissolution of more solute causes.
- 2. The rate of dissolution may be increased by shaking or stirring of the solvent-solute mixture.
 - 3. Particle size factor: The process of solution being a surface phenomenon, the greater the surface of contact between the solvent and the solute, the higher will be rate of solution.

Sep 18, 2022

Solution & Solubility

Mechanism of dissolution

How do the evolution and the absorption of heat arises?

To explain this, we have to analyze the process of dissolution of a solute in a solvent.

For example, the dissolution of common salt, NaCl in H₂O.

Mechanism of dissolution (contd.)

The process involves the following sequences:

- a) H₂O molecules attack the Na⁺ particles and detach these from crystal lattice against the attractive force of the adjoining particles i.e. the Cl⁻ ions.
- b) The solvent particles may require to be pulled apart to make room for Na⁺ particles.
- c) The Na⁺ particles are solvated (the interaction of ions of a solute with molecules of solvent) by the solvent molecules.

Mechanism of dissolution (contd.)

Nacl

- Energy is required for operations (a) and (b) while as a result of operation (c) energy is liberated.
- When the energy requirement for the operations (a) and (b) is greater than that released from operation (c), the temperature of the system goes down i.e. **heat is absorbed** during the dissolution of NaCl molecule.

Sep 18, 2022

Solution & Solubility

Jam

Mechanism of dissolution (contd.)

- The amount of heat absorbed is called **negative heat** of solution (**endothermic system**).
- When the energy requirement for the operations (a) and (b) is less than that released from operation (c), the temperature of the system goes up i.e. **heat is evolved** during the dissolution of NaCl molecule.
- The amount of heat evolved is called **positive** heat of solution (exothermic system).

Solution 1(a):

- + H2504 36
- 1.18 gm/cm
- 10m2 | ml
- Given, 36% (w/w) HCl, specific gravity 1.18
- Mol. Wt. of HCl = 36.5, gram-equiv-wt = 36.5
- \therefore 1 ml conc. HCl contains = 0.36×1.18 gm of HCl
- \therefore 1000 ml conc. HCl contains = $0.36 \times 1.18 \times 1000$
- = 424.8 gm of HCl
- : 36.5 gm of HCl in 1000ml solution = 1.0 N HCl
- \therefore 424.8 gm HCl in 1000ml = $(1 \times 424.8 \text{ gm}) / 36.5 \text{ gm}$

$$\Rightarrow$$
 = 11.64 N HC1 Ans.

Sep 18, 2022

Next Class

Solubility-Product & pH