

Analytics Foundation

Outline

- **Demystify "Data Scientist"**
- **Python key packages**
- Pandas data analytics
- **Case studies in Python**

What is Data Scientist?

1

What is Data Scientist?

Analytical skills

Design algorithm

Business insight

Data Science Skills Spectrum

Capable to write Production Code (Scala/Java/Go)

Big Data Techniques (HDFS, Spark)

Machine Learning

Data Analytics (Python/R & SQL)

Dashboard / Presentation

More engineer focusing

More business focusing

Recommended Stack for future DS

Data Science foundation

- 1. SQL the universal language for analytics
- 2. Python the most popular language for data science

Analytics in the business world

- 1. Microsoft-Suite/G-Suite
- 2. Tableau (BI visualization)

Python in Data Science

2

Why Python?

General purpose programming language

Life as a Data Scientist

"Reality"

安裝python

https://www.anaconda.com/products/individual

Jupyter VS Spyder

Data type

Data Structure	Ordered	Mutable	Constructor	Example
List	Yes	Yes	[] or list()	[5.7, 4, 'yes', 5.7]
Tuple	Yes	No	() or tuple()	(5.7, 4, 'yes', 5.7)
Set	No	Yes	{}* or set()	{5.7, 4, 'yes'}
Dictionary	No	Yes**	<pre>{ } or dict()</pre>	{'Jun': 75, 'Jul': 89}

	列表	元组	集合	宇典
英文	list	tuple	set	dict
可否读写	读写	只读	读写	读写
可否重复	是	是	否	是
存储方式	值	值	键(不能重复)	键值对(键不能重复)
是否有序	有序	有序	无序	无序,自动正序
初始化	[1,'a']	('a', 1)	set([1,2]) 或 {1,2}	{'a':1,'b':2}
添加	append	只读	add	d['key'] = 'value'
读元素	1[2:]	t[0]	无 https://blog	d[%an] net/baoguaalale

Pandas: Panel Data System

Rich data structures and functions to work with structured data fast, easy and expressive

Build on top of NumPy

Ideal tool for: munging/cleaning/analyzing/modeling data

PANel DAta S

Quiz#1

Quiz #2

Consider the following nested list definition:

Quiz #2 - Answer

Python

```
x = [10, [3.141, 20, [30, 'baz', 2.718]], 'foo']
```

Expression	Selects
x[1] x[-2]	The second element of x: [3.141, 20, [30, 'baz', 2.718]]
x[1][2] x[1][-1]	The third element of that sublist: [30, 'baz', 2.718]
x[1][2][1] x[1][2][-2]	The second element of that sublist: 'baz'
x[1][2][1][2] x[1][2][1][-1]	The third character of 'baz': 'z'

Regular Expression

Identifiers	Modifiers	White space characters	Escape required
\d= any number (a digit)	\d represents a digit.Ex: \d{1,5} it will declare digit between 1,5 like 424,444,545 etc.	\n = new line	. + * ? [] \$ ^ () {} \
\D= anything but a number (a non-digit)	+ = matches 1 or more	\s= space	
\s = space (tab,space,newline etc.)	? = matches 0 or 1	\t =tab	
\S= anything but a space	* = 0 or more	\e = escape	
\w = letters (Match alphanumeric character, including "_")	\$ match end of a string	\r = carriage return	
\W =anything but letters (Matches a non-alphanumeric character excluding "_")	^ match start of a string	\f= form feed	
. = anything but letters (periods)	matches either or x/y		
\b = any character except for new line	[] = range or "variance"		
\.	{x} = this amount of preceding code		

Data Reshaping for Single Table

Group by
Aggregation
Pivot
Pivot Table
Stack
Unstack
Melt

Quiz # 3

```
exp = lambda x: x ** 3
print(exp(2))

A. 6
B. 222
C. 8
D. None of the above
```


Quiz#4

```
def func(message, num = 1):
    print(message * num)

func('Welcome')
func('Viewers', 3)
```

A. Welcome

Viewers

B. Welcome

ViewersViewers

C. Welcome

Viewers, Viewers

D. Welcome

Quiz #5

Q.10 Which of the following can be used to make a Dataframe?
☐ Series
☐ DataFrame
☐ Structured ndarray
☐ All of the above

Data Operation for Multiple Tables

Append
Concat
Join/merge

	df1				sl			Result				
	Α	В	С	D	- [Х	- [Α	В	С	D	Х
0	A0	В0	ω	D0	0	X0	0	A0	В0	00	D0	X0
1	Al	B1	CI	D1	1	X1	1	A1	B1	C1	D1	Xl
2	A2	B2	(2	D2	2	X2	2	A2	B2	C2	D2	Х2
3	A3	В3	СЗ	D3	3	ХЗ	3	A3	В3	СЗ	D3	ХЗ

Matplotlib Plots

Seaborn Plot

Example gallery

