TOPOLOGÍA I. Examen del Tema 1

- Grado en Matemáticas. Curso 2013/14 -

\underline{Nombre} :

1. Sea X un conjunto y un subconjunto suyo $A \subset X$, que lo fijamos. Definimos

$$\tau = \{O \subset X : A \subset O\} \cup \{\emptyset\}.$$

- (a) Probar que τ es una topología en X.
- (b) Probar que $\beta_x = \{B_x\}$ es base de entornos de $x \in X$, donde $B_x = \{x\} \cup A$.
- (c) Si $C \subset X$, caracterizar el interior y la adherencia de C.
- 2. En (\mathbb{R}^2, τ_u) , hallar el interior y la adherencia de

$$A = B_1((0,0)) - \{(0,0)\}, B = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}.$$

- 3. En \mathbb{R}^2 , consideramos la familia $\beta = \{(a,b) \times \{c\} : a < b, a,b,c \in \mathbb{R}\}.$
 - (a) Probar que β es base de abiertos de una topología τ en \mathbb{R}^2 .
 - (b) Comparar τ con τ_u .
 - (c) Dado $C = \{0\} \times \mathbb{R}$, estudiar cuál es la topología relativa $\tau_{|C}$ y si es conocida.

Razonar todas las respuestas

Soluciones

1. Sea X un conjunto y un subconjunto suyo $A \subset X$, que lo fijamos. Definimos

$$\tau = \{ O \subset X : A \subset O \} \cup \{\emptyset\}.$$

- (a) Probar que τ es una topología en X.
 - i. $\emptyset \in \tau$ por definición y $A \subset X$, luego $X \in \tau$.
 - ii. Si $O_1, O_2 \in \tau$, entonces $O_i \supset A$, luego al intersecar ambas inclusiones, $O_1 \cap O_2 \supset A \cap A = A$, luego $O_1 \cap O_2 \in \tau$.
 - iii. Si $\{O_i: i \in \tau\}$, entonces $A \subset O_i, \forall i \in I$. Al hacer uniones en $i \in I$, $A \subset \bigcup_{i \in I} O_i$.
- (b) Probar que $\beta_x = \{B_x\}$ es base de entornos de $x \in X$, donde $B_x = \{x\} \cup A$. En primer lugar, $B_x \supset A$, luego B_x es un abierto, y como $x \in B_x$, es un entorno suyo. Por otro lado, sea U un entorno de x. Entonces existe $O \in \tau$ tal que $x \in O \subset U$. En particular, $A \subset O$. Esto prueba que $B_x = \{x\} \cup A \subset \{x\} \cup O = O \subset U$.
- (c) Si $C \subset X$, caracterizar el interior y la adherencia de C. Los conjuntos cerrados son $\mathcal{F} = \{F \subset X : F \subset X - A\} \cup \{X\}$. Distinguimos casos:
 - i. Si $A \subset C$, entonces C es un abierto, luego int(C) = C. Por otro lado, si F es un cerrado no trivial que contiene a C, entonces $X A \supset F \supset C \supset A$. Esta contradicción, prueba que C es trivial, es decir, F = X y así $\overline{C} = X$.
 - ii. Si $A \not\subset C$, y $O \in \tau$ no trivial tal que $O \subset C$, entonces $C \supset O \supset A$: contradicción. Por tanto, el único abierto incluido en C es el trivial, es decir, $O = \emptyset$, probando que $int(C) = \emptyset$. Si F es un cerrado no trivial conteniendo a C, entonces $X A \supset F \supset C$, es decir, $C \subset X A$, probando que C es cerrado y $\overline{C} = C$. En otro caso, es decir, si $C \not\subset X A$, el único cerrado es que contiene a C es el trivial, es decir, X, probando ahora $\overline{C} = X$.
- 2. En (\mathbb{R}^2, τ_u) , hallar el interior y la adherencia de

$$A = B_1((0,0)) - \{(0,0)\}, \quad B = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}.$$

(a) Sabemos que un punto en un espacio métrico (en este caso, \mathbb{R}^2) es un cerrado, luego

$$A = B_1((0,0)) \cap (\mathbb{R}^2 - \{(0,0)\},\$$

es decir, intersección de dos abiertos, luego int(A) = A.

Otra manera es darse cuenta que $A = \bigcup_{(x,y) \in \mathbb{S}^1_{1/2}} B_{1/2}(x,y)$, luego es abierto por ser unión de conjuntos abiertos.

Otra manera es que dado $(x,y) \in A$, y tomando $r = \min\{\sqrt{x^2 + y^2}, 1 - \sqrt{x^2 + y^2}\}$ entonces r es positivo (ya que $x^2 + y^2 \notin \{0,1\}$) y que $B_r((x,y)) \subset A$. Si $(x,y) \in \overline{A}$, entonces existe $\{(x_n,y_n)\} \subset A \to (x,y)$. En particular, $0 < x_n^2 + y_n^2 < 1$. Ya que $x_n \to x$ e $y_n \to y$, tomando límites obtenemos $0 \le x^2 + y^2 \le 1$. Por tanto, $\overline{A} \subset \{(x,y): 0 \le x^2 + y^2 \le 1\}$. Para probar la igualdad, observemos que si $\lambda_n \to 1$ con $0 < \lambda_n < 1$ (por ejemplo, $\lambda_n = 1 - 1/n$), entonces si (x,y) satisface $x^2 + y^2 = 1$, tenemos $\lambda_n(x,y) \in A$, pues $|\lambda_n| |(x,y)| = \lambda_n \in (0,1)$ y

$$\lim \lambda_n(x,y) = (x,y) \Rightarrow (x,y) \in \overline{A}.$$

Para el punto (0,0) basta darse cuenta que

$$B_r(0,0) \cap A = B_{\min\{1,r\}}(0,0) - \{(0,0)\},\$$

que no es vacío, al ser una bola de \mathbb{R}^2 (que es un conjunto infinito) menos un punto.

(b) El conjunto $\mathbb{R} \times (-1,1)$ es abierto pues

$$\mathbb{R} \times (-1,1) = \cup_{n \in \mathbb{N}} (-n,n) \times (-1,1) \in \tau_u.$$

Por tanto, $int(B) \supset \mathbb{R} \times (-1,1)$. Veamos que es una igualdad. Para $(x,1) \in B$, dado $B_r(x,1)$, entonces esta bola no está contenida en B ya que $(x,1+r/2) \in B_r(x,1)$ pero $(x,1+r/2) \notin B$. Esto prueba que (x,1) no es interior. Del mismo modo se hace para los punto (x,-1).

Para la adherencia, y haciendo un razonamiento como en el caso A (seguimos la misma notación), se tendría $-1 \le y_n \le 1$. Tomando límites, $-1 \le y \le 1$, es decir, $\overline{B} \subset B$, obteniendo pues, la igualdad.

- 3. En \mathbb{R}^2 , consideramos la familia $\beta = \{(a,b) \times \{c\} : a < b, a, b, c \in \mathbb{R}\}.$
 - (a) Probar que β es base de abiertos de una topología τ en \mathbb{R}^2 . Si $(x,y) \in \mathbb{R}^2$, entonces $(x,y) \in (x-1,x+1) \times \{y\} \in \beta$, probando que $\mathbb{R}^2 = \bigcup_{B \in \beta} B$.

Por otro lado, sean $B_1 = (a, b) \times \{c\}$, $B_2 = (a', b') \times \{c'\}$ y $(x, y) \in B_1 \cap B_2$. En particular, $B_1 \cap B_2 \neq \emptyset$. Esto prueba que c = c'. Entonces tomamos

$$B_3 = B_1 \cap B_2 = (\max\{a, a'\}, \min\{b, b'\}) \times \{c\}.$$

(b) Comparar τ con τ_u .

Tomamos como base de τ_u el producto de intervalos abiertos. Entonces dado $B \in \beta_u$ y $(x,y) \in B$, con $B = (a,b) \times (c,d)$, tomamos $B' = (a,b) \times \{y\}$, teniendo $(x,y) \in B' \subset B$. Esto prueba que $\tau_u \subset \tau$.

La otra inclusión no es cierta, pues dado $B' = (0,2) \times \{0\}$ y $(1,0) \in B'$, si $\tau \subset \tau_u$ existiría $(a,b) \times (c,d) \in \beta_u$ tal que

$$(1,0) \subset (a,b) \times (c,d) \subset B' = (0,2) \times \{0\}.$$

En particular, $(c,d) \subset \{1\}$, una contradicción ya que el intervalo (c,d) tiene infinitos puntos.

(c) Dado $C = \{0\} \times \mathbb{R}$, estudiar cuál es la topología relativa $\tau_{|C}$ y si es conocida. Una base de $\tau_{|C}$ es $\beta_{|C} = \{B \cap C : B \in \beta\}$. La intersección de B con C o es vacío o es un punto. Concretamente, dicha base tiene al menos las siguientes intersecciones:

$$\{((-1,1)\times\{y\})\cap C=\{(0,y)\}:y\in\mathbb{R}\}.$$

Esto prueba que los puntos de C son abiertos y así, $\tau_{|C}$ es la topología discreta.