

Programación en Python 2021

Trabajo práctico final: Cálculo de la Entropía Wavelet en ataques de epilepsia

Carbonari, Giulia Yamgotchian, Matías Pose, Fernando Ru, Micaela

```
string services int iLength, iN;
double dblresp;
bool again = true;

while (again) {
    iN = -1;
    again = false;
    again = folse;
    system("cls");
    system("cls");
    system("cls");
    stringstresm(sinput) >>> dblresp;
    system("cls");
    stringstresm(sinput) >>> dblresp;
    system("cls");
    ilength = sinput length();
    ilength = sinput length();
```

Objetivo general

Estudiar la entropía wavelet en señales de electroencefalograma con ataques de epilepsia

Objetivo secundario

Realizar un algoritmo capaz de calcular la entropía wavelet

EEG (electroencefalograma)

Medición de la actividad eléctrica del cerebro

Seguimiento y registro de las ondas cerebrales

Detección de anomalías

1

Normal

Forma patrones reconocibles

Con convulsiones, epilepsia, etc.

Forma patrones anormales

Epilepsia

Enfermedad del sistema nervioso, debida a la aparición de actividad eléctrica anormal en la corteza cerebral, que provoca ataques repentinos caracterizados por convulsiones violentas y pérdida del conocimiento.

Entropía (H)

Es la cantidad de información que se desconoce del sistema. En otras palabras la incerteza que tenemos del mismo

1.0

Cerebro - EEG - entropía

- Se puede decir que el cerebro es "entrópico"
- En estado normal, el EEG es altamente fluctuante, por lo que la información es alta y la entropía también lo es.
- En episodios de ataque epiléptico, existe una "sincronización" donde el EEG se "periodiza" produciendo que la entropía disminuya debido a la falta de información.

Propuesta

Propuesta - Went

Dada la matriz de coeficientes wavelet obtenida:

$$M_{coef} = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1(n-1)} & C_{1n} \\ C_{21} & \cdots & \cdots & C_{2n} \\ \vdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \vdots \\ C_{(n-1)1} & \cdots & \cdots & C_{(n-1)n} \\ C_{n1} & C_{n2} & \cdots & C_{n(n-1)} & C_{nn} \end{pmatrix} \xrightarrow{E_1} E_2$$

$$E_{tot} = \sum_{i < 0} \sum_k |C_i(k)|^2 = \sum_{i < 0} E_i$$

Luego:
$$P_i = \frac{E_i}{E_{tot}}$$

$$W_{ent} = -\sum_{i=1}^{N} p_i \log(p_i) \ con \ \sum_{i=1}^{N} P_i = 1$$

Resultado

CÓDIGO