Week 11: Nuclear Power — Video

Part 1

Nuclear Reactors

- 1. Basic Reactor Theory
 - Slow nuclear reaction
 - You can make reactors that are completely safe
 - Variable safety
 - Uses U-238 in it (lowers the probability and stops neutrons)
 - Moderator: bounces the neutrons around to make it likely to hit U-235
 - Control rod: absorbs neutrons so that it doesn't fission too fast
- 2. Reactor engineering example: TRIGA
 - Was this TRIGA reactor a part of the NPT treaty?
 - As it gets hotter, it reduces the neutron probability of hitting fuel

The road to peaceful nuclear power

- 1. Postwar reactor research
 - In 1940 reactor research taken over by AEC
 - Mainly used for research and plutonium production
- 2. Atoms for peace
 - Promote peaceful international uses of atomic energy
 - Declassify peaceful tech, reactor work, basic science, some enrichment info, etc.
- 3. Atomic energy act 1954
 - Changes:
 - US can share info to allies
 - US can share reactor info with private industry
 - During this time, push for private reactor research
- 4. Naval Reactors
 - Hyman G. Rickover
 - AEC and Navy
 - Makes submarine nuclear reactor
- 5. Types of reactors
 - Does the pool of water get emptied in the BWR?
 - Why do the cool down towers have that iconic shape to them?
- 6. Nuclear concerns by the 1970s
 - Concerns about accidents:
 - loss of coolant
 - meltdown
 - risk = (probability of accident) * (expected consequences)
 - high powered reactors have low prob of accident, but high consequences = "high risk" technology
 - Concerns about waste:
 - spent fuel very radioactive for a few decades—fission products
 - less radioactive for thousands of years
 - how to guarantee a structure will survive for millennium?
 - reprocessing possible—but expensive and raises security issues
 - Concerns about economics:
 - high capital costs
 - * licensing, development, maintenance
 - * expensive anywhere, but just US, but US legal system makes very expensive
 - * takes a long time to pay for itself—must run plant for 30-40 years

- never any "organic demand" for nuclear power (maybe today, with concern about environment/climate, there is)

Part 2

Three Mile Island

- 1. TMI Nuclear generating Station
 - Why have a nuclear reactor that costs hundreds of millions and takes a decade to run when you can make a natural gas generator that's cheaper and easier to run which will turn a profit sooner?
 - Largely a failure in engineering
 - PORV fails and opens fully, light in control room doesn't show this, just shows that it was attempted to close
 - The workers have degrees so it wasn't stupidity that failed
 - General emergency is declared but no one knows who is in charge when this happens
 - Partial core meltdown
- 2. Immediate results
 - No long-term health consequences at TMI
 - No one was injured
 - Focus on change with the "human factor engineering" in plant design
 - i.e. working at 4 am, alarm blaring so they couldn't think
- 3. The China Syndrome
 - By 1979, anti-nuclear power movement becomes mainstream
 - TMI doesn't help
 - The China Syndrome released 12 days prior to TMI accident so it is tied with it
- 4. Consequences for the reactor industry
 - On top of the initial capital, there is now lawsuits that the reactor companies have to pay for

Chernobyl

- 1. Nuclear power in the USSR
 - What did the HBO series Chernobyl get wrong?
 - 2 main reactor design: VVER (PWR), and RBMK
 - RBMK is quick to assemble, cheap, easy to build locally, and can convert to a PU-239 production
 if desired
- 2. RBMK Reactor
 - Graphite moderator and water coolant
 - If water stops, then there is still a moderator in it
 - Unlike having water acting as both
- 3. Chernobyl
 - RBMK had a feedback loop that made it hotter and hotter with no containment vessel
 - Soviet gov't. slow to react, cities not evacuated
 - Vast areas of Ukraine and Belarus rendered essentially uninhabitable
 - Who or what is to blame?
 - Was there a similar anti-nuclear movement? Same for Japan.

Fukushima

- 1. Nuclear Power in Japan
 - Have PWR and BWR
 - Japan is one of the most seismically active areas of the planet with little land area to spare
 - Tectonic theory really picked up after nuclear power era
 - Most reactors probably not in a good area
- 2. Fukushima Daiichi
 - 6 BWR reactors

- partial meltdowns in 1, 2, 3
- Hydrogen bubble build up so units exploded and exposed other units' reactor rods

Nuclear Waste

- 1. Nuclear Waste
 - Seen as an issue for the future
 - US liked the idea about just burying it in a dry cool place
 - Operation salt vault
 - Deep ocean disposal
 - US currently doesn't have centralized disposal site
 - Now they place waste near the respective reactor facilities
 - How to communicate danger to people 10,000 years in the future?
 - i.e. if future civilization has lost all knowledge

Questions about nuclear power

- 1. Big, difficult questions
 - Is nuclear a "green" tech for a world worried about climate change?
 - 50/50 favor/in-favor of nuclear power