1 Introduction

1.1 Definition of split graphs

A split graph is one that can be partitioned into a clique and an independent set.

1.2 Examples

 $K_n \vee \overline{K_m}$:

 K_2 :

 P_4 :

 $K_{1,n}$:

1.3 Basic properties

• If G is a split graph, then \overline{G} is a split graph.

- If G is a split graph with partition (S, K), S an independent set and K a clique, then exactly one of the following holds:
 - 1. $|S| = \alpha(G)$ and $|K| = \omega(G)$.
 - 2. $|S| = \alpha(G)$ and $|K| = \omega(G) 1$, and there exists a vertex $x \in S$ such that K + x is a complete graph.
 - 3. $|S| = \alpha(G) 1$ and $|K| = \omega(G)$, and there exists a vertex $y \in K$ such that S + y is independent.
- G is a split graph if and only if both G and \overline{G} are chordal. [1]

2 Characterizations

2.1 Vertex ordering

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$, and let m be the largest i with $d_i \geq i-1$. Then G is a split graph if and only if

$$\sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i.$$

Furthermore, if the above equality holds, then $\omega(G) = m$. [2]

2.2 Forbidden subgraphs

G is a split graph if and only if G contains no induced subgraph isomorphic to any of C_4 , $\overline{C_4}$, or C_5 . [2]

3 Optimization problems

3.1 Colouring

Split graphs are in particular chordal graphs. [1] gives an algorithm to colour chordal graphs in linear time, so split graphs can also be coloured in linear time. This is a very hard problem in general, and colouring an arbitrary graph takes exponential time.

3.2 Maximum clique

m as defined in the vertex ordering characterization of split graphs allows us to find a maximum clique: the m vertices of largest degree form a maximum clique on G. This process can be done in linear time.

3.3 Maximum independent set

Let K be the maximum clique obtained using the above method. $V(G)\setminus K$ is an independent set, so we know from the basic properties that exactly one of the three cases is possible, and $\alpha(G)$ is either $|V(G)\setminus K|$ or $|V(G)\setminus K|+1$. If it is $|V(G)\setminus K|+1$, then there exists a vertex $y\in K$ such that $V(G)\setminus K+y$ is still independent. We can search K for such a vertex in linear time, and we're done.

3.4 Minimum clique covering

We know that \overline{G} is a split graph, so we can colour \overline{G} using the algorithm given in [1] to get a set of colour classes, all of which are independent sets in \overline{G} , hence cliques in G. Since the colouring is optimal, the corresponding clique cover is minimal.

References

- [1] Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier, 2nd edition, 2004.
- [2] P. L. Hammer and B. Simeone. The splittance of a graph. *Combinatorica*, 1(3):275–284, 1977.