МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет)»

Е.В. СИМОНОВА

МОДЕЛИ ИНФОРМАЦИОННЫХ ПОТОКОВ В СИСТЕМАХ МОДЕЛИРОВАНИЯ

Самара 2022

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет)

Е.В. СИМОНОВА

МОДЕЛИ ИНФОРМАЦИОННЫХ ПОТОКОВ В СИСТЕМАХ МОДЕЛИРОВАНИЯ

Рекомендовано редакционно-издательским советом федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» в качестве методических указаний по курсу «Моделирование информационно-вычислительных систем» для направления «Информатика и вычислительная техника»

С А М А Р А Издательство Самарского университета 2022

УДК 519.876.5 ББК 22.18я73 С 375

Симонова, Елена Витальевна

Рецензент: канд. техн. наук, доц. Л.С. 3 е л е н к о

С 375 **Модели информационных потоков в системах моделирования**: метод. указания / Е. *В. Симонова.* — Самара: Изд-во Самарского университета, 2022. — 26 с.: ил.

ISBN

Методические указания содержат достаточно подробное описание методов моделирования потоков однородных событий с ограниченным последействием и без последействия, стационарных и нестационарных потоков, неординарных и неоднородных потоков событий. Даны рекомендации по организации процесса моделирования информационных потоков различных типов.

Методические указания предназначены для студентов направления 09.03.01 — «Информатика и вычислительная техника».

Подготовлены на кафедре информационных систем и технологий.

УДК 519.876.5 ББК 22.18я73

ISBN

© Самарский университет, 2022

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	5
ВВЕДЕНИЕ	5
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЛАБОРАТОРНОЙ РАБОТЫ	
2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	10
3. ОФОРМЛЕНИЕ ОТЧЕТА	10
4. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ	12
5. КОНТРОЛЬНЫЕ ВОПРОСЫ	
ЗАКЛЮЧЕНИЕ	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	22

ПРЕДИСЛОВИЕ

В методических указаниях описаны методы моделирования потоков однородных событий с ограниченным последействием и без последействия, стационарных и нестационарных потоков, неординарных и неоднородных потоков событий. Приводятся контрольные вопросы, а также индивидуальные задания для выполнения лабораторной работы.

Методические указания предназначены для студентов, обучающихся по направлению 09.03.01 – Информатика и вычислительная техника.

Содержание методических указаний соответствует разделам рабочей программы по дисциплине «Моделирование информационно-вычислительных систем» федерального компонента ГОС подготовки бакалавров по направлению 09.03.01 – Информатика и вычислительная техника.

ВВЕДЕНИЕ

Цель лабораторной работы — изучение методов моделирования потоков случайных величин, развивающихся во времени, получение навыков разработки программ формирования информационных потоков на основании реализаций случайных величин с заданными законами распределения вероятностей, а также практическое освоение статистических методов контроля качества полученных результатов моделирования.

1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЛАБОРАТОРНОЙ РАБОТЫ

Для сложных систем самого различного назначения характерно изменение их состояний в произвольные, заранее непредсказуемые случайные моменты времени. Например, для систем массового обслуживания, если под состоянием подразумевать количество обслуженных к моменту времени t запросов, изменение состояния произойдет в некоторый момент $(t + \tau)$, причем τ – интервал времени между двумя запросами – величина случайная. Переход системы из состояния в состояние обычно связывают с некоторым событием (в данном запроса системе). TOM примере – с появлением В случае, когда подобных переходов – событий определяется последовательность временным течением процесса функционирования системы, т.е. события никак не отличаются одно от другого, - мы говорим о математической модели потока однородных событий.

Поток однородных событий определяется, как уже было отмечено, лишь последовательностью моментов времени наступления событий $\{t_1, t_2, t_3, ...\}$ (рис. 1).

Рис. 1. Поток однородных событий

 t_0 — момент начала функционирования системы.

Величины τ_1 , τ_2 , τ_3 , ..., отделяющие моменты времени наступления двух «соседних» событий, следует рассматривать как случайные. Причем, для весьма широкого класса потоков однородных событий — потоков Пальма [1] τ_2 , τ_3 , τ_4 , ... можно рассматривать как независимые реализации одномерной случайной величины τ с плотностью вероятностей $f(\tau)$. Величина же τ_1 при этом расценивается как независимая от остальных реализация случайной величины с законом распределения

$$f_I(\tau) = A \left[I - \int_0^{\tau} f(u) \, du \right]; \tag{1}$$

(Формула Пальма [1])

$$\Lambda = \left[\int_{0}^{\infty} \tau f(\tau) d\tau\right]^{-1}.$$
 (2)

Собственно, приведенные основные соображения уже позволяют легко формировать реализации потоков событий; для этого нужно разыграть величину τ_I с законом распределения $f_I(\tau)$ (см. лабораторную работу №1), а затем, последовательно обращаясь к датчику случайных чисел, формировать реализации τ_2 , τ_3 , ... случайной величины τ с законом распределения вероятностей $f(\tau)$. Суммирование получаемых реализаций позволит определить и моменты наступления событий в системе:

$$t_k = t_{k-1} + \tau_k;$$
 $k = 1, 2, 3, ...$

В качестве законов распределения $f(\tau)$ могут использоваться самые различные:

- 1) экспоненциальный,
- 2) распределение Эрланга,
- 3) равномерное распределение,
- 4) усеченно-нормальное распределение и т.п.

Для экспоненциального закона $f(\tau)=\lambda e^{-\lambda \tau}, \quad \lambda>0, \quad \tau\geq 0$ оказывается характерным, что

$$f_1(\tau) = f(\tau),$$

в чем нетрудно убедиться, используя выражения (1) и (2).

Этот случай соответствует простейшему потоку событий (или потоку Пуассона). Для такого потока число событий (k), наступивших на интервале времени [0, t] — дискретная случайная величина, определяемая законом распределения Пуассона

$$P\{k\} = \frac{a^k}{k!}e^{-a}; \qquad k = 0, 1, 2, \dots$$
 (3)

с параметром $a = \lambda t$,

 λ – интенсивность (или параметр) потока ($\lambda > 0$).

Формула (3) подсказывает и второй возможный путь цифровой реализации простейшего потока, — формирование дискретной случайной величины с законом распределения (3). (Приемы моделирования подобных величин рассматривались в лабораторной работе \mathbb{N}^{0} 1). Следует, однако, помнить, что при таком способе моделирования потока разыгрывается лишь общее число событий на интервале [0, t], а не каждое отдельное событие.

Формула (3) может быть распространена и на случай интервала времени $[t_1, t_2]$:

$$P\{k\} = \frac{\left[\lambda(t_2 - t_1)\right]^k}{k!} e^{-\lambda(t_2 - t_1)}; \qquad \lambda > 0.$$

При этом k — число событий, наступивших на интервале времени $[t_1, t_2]$.

Распределения Эрланга, равномерное, нормальное и т.п., подробно описаны в работе [1].

Формально моделирование подобных потоков однородных событий мало чем моделирования случайных величин. Это обусловлено отличается OT свидетельствует реализаций ЧТО независимостью $\tau_1, \ \tau_2, \ \tau_3, \ \ldots,$ ограниченном последствии потока. Следует лишь заметить, что нередко моделирование случайных величин, определяющих поток событий в системе, специальных проводится использованием методов. Так, например, применительно к распределению Эрланга воспользоваться методом нелинейного преобразования, обратного функции распределения (см. лабораторную работу N = 1) не удается, ввиду сложности вычисления обратной функции. Поэтому при моделировании случайных величин, распределенных по закону Эрланга, используют то обстоятельство, что этому закону распределения подчиняется сумма k случайных величин:

$$\sum_{i=1}^{k} \tau_i = \tau_{\mathfrak{I}} , \qquad (4)$$

независимых друг от друга и распределенных по экспоненциальному закону с параметром λ . В этом случае τ_9 распределена по закону Эрланга k-го порядка с плотностью вероятности

$$f(\tau_{9}) = \lambda \frac{(\lambda \tau_{9})^{n-1}}{(k-1)!} e^{-\lambda \tau_{9}} ;$$

Если величины τ_i в выражении (4) распределены экспоненциально, каждая со своим параметром λ_i , их сумма подчиняется обобщенному закону Эрланга с плотностью вероятности

$$f(\tau_{9}) = \left[\prod_{i=1}^{k} \lambda_{i}\right] \sum_{i=1}^{k} \frac{e^{-\lambda_{i}\tau_{9}}}{\prod_{\substack{j=1\\j\neq i}}^{k} (\lambda_{j} - \lambda_{i})};$$

Собственно, соотношение (4) и определяет алгоритм моделирования случайной величины, распределенной по закону Эрланга. Это лишь один из примеров, когда для моделирования случайной величины приходится использовать специальные методы.

Нередко потоки событий в системах отличаются нестационарностью — случай, когда параметр λ оказывается зависящим от времени $\lambda(t)$. В качестве примера нестационарного потока рассмотрим поток Пуассона с переменным параметром, для которого интегральная функция распределения величины τ , отделяющей моменты наступления двух «соседних» событий (см. рис. 1), определяется выражением

$$P(\tau < u) = F(u, t) = 1 - e^{-\Lambda(t, u)};$$

$$\Lambda(t,u) = \int_{t}^{t+u} \lambda(t) dt ; \qquad (5)$$

Плотность вероятности величины τ определяется как производная от F(u, t):

$$f(u,t) = \frac{dF(u,t)}{du} = \frac{d\Lambda(t,u)}{du}e^{-\Lambda(t,u)}.$$
(6)

Функция плотности вероятности первого интервала τ определяется из выражения (6), если положить $t=t_0=0$:

$$f_I(u,0) = \frac{d\Lambda(0,u)}{du} e^{-\Lambda(0,u)}.$$

Для получения реализаций τ_1 , τ_2 , τ_3 , ..., воспользуемся методом нелинейного преобразования, обратного функции распределения, описанным в лабораторной работе №1. В соответствии с этим методом τ_i определяется из соотношения

$$\int_{0}^{\tau_{i}} f(u,t) du = R_{i},$$

где R_i – i-я реализация случайной величины, равномерно распределенной в интервале [0, 1].

Подставляя сюда выражение (6), получим:

$$\int_{0}^{\tau_{i}} e^{-\Lambda(t,u)} d\Lambda(t,u) = I - e^{-\Lambda(t,\tau_{i})} = R_{i};$$

$$(7)$$

$$\Lambda(t, \tau_i) = -\ln(I - R_i) = -\ln(R_i).$$

(Переход от $(1 - R_i)$ к R_i уже использовался, он обусловлен тем, что $(1 - R_i)$ и R_i распределены одинаково).

Соотношение (7) следует рассматривать как уравнение относительно τ_i . Решив его, мы определим интервалы τ_i между событиями нестационарного потока.

Если предположить $\lambda(t) = at + b$, из выражения (5) получим:

$$\Lambda(t,u) = \frac{au^2}{2} - (at - b), \qquad (8)$$

а после подстановки в выражение (7) определим уравнение

$$\frac{a\tau_i^2}{2} + \tau_i(at+b) = -\ln R_i , \qquad (9)$$

которое необходимо разрешить относительно τ_i .

При i = 1 и t = 0

$$\tau_I = -\frac{b}{a} + \frac{\sqrt{b^2 - 2a \ln R_I}}{a}.$$

Для второй реализации i=2 и $t= au_l$,

$$au_2 = -rac{a\, au_I + b}{a} + rac{\sqrt{\left(a\, au_I + b
ight)^2 - 2a\,\ln\,R_2}}{a}$$
 и т.д.

В общем случае для розыгрыша i-й реализации величины τ необходимо в выражении (9) положить

$$t = \sum_{k=l}^{i-l} \tau_k \ ,$$

что приводит к определению τ_i :

$$\tau_{i} = -\frac{1}{a} \left(a \sum_{k=1}^{i-1} \tau_{k} + b \right) + \frac{1}{a} \sqrt{\left(a \sum_{k=1}^{i-1} \tau_{k} + b \right)^{2} - 2a \ln R_{i}};$$

$$i = 1, 2, 3, \dots$$

Последнее соотношение и определяет алгоритм моделирования нестационарного потока событий для рассматриваемого частного случая.

Схема алгоритма моделирования подобного потока представлена на рис. 2.

Рис. 2. Схема алгоритма моделирования нестационарного потока

Здесь N- количество событий в потоке (задается в задании на моделирование). В более сложных ситуациях, когда предположение о линейной зависимости λ от времени неоправданно, решение уравнения (7) относительно τ_i может быть связано с серьезными трудностями. В таких случаях нестационарные потоки моделируются с использованием специальных приемов.

Рассмотренные потоки событий однородны. В качестве примера моделирования неоднородного потока рассмотрим такой поток, в котором в моменты τ_i (i=1, 2, 3, ...) может появиться одно из нескольких событий E_k ; $k=\overline{I,K}$. Причем, события несовместны и образуют полную группу

$$\sum_{k=1}^{K} P(E_k) = 1.$$

Подобный поток моделируется как обычный однородный, т.е. последовательно разыгрываются моменты появления t_i очередного события, но в дополнение к этому для каждого t_i методом моделирования определяется, какое из событий E_k произошло в момент t_i . Это осуществляется путем моделирования дискретной случайной величины x с ограниченным спектром значений:

$$x = \begin{cases} x^{(0)} := E_I, x^{(1)} := E_2, ..., x^{(K-1)} := E_K \\ P_0 = P(E_I), P_I = P(E_2), ..., P_{K-1} = P(E_K) \end{cases}.$$

Аналогично моделируются некоторые разновидности неординарных потоков, когда в моменты t_i может наступать не одно, а несколько событий (группа событий). Если в только что приведенном примере положить, что событие E_I заключается в наступлении одного события E в момент t_i ,

 E_2 – в одновременном наступлении 2-х однородных событий E в момент t_i ,

 E_3 – 3-х однородных событий E в момент t_i и т.д.,

то описанный выше прием позволит провести моделирование неординарного потока однородных событий [2].

Если число наступающих событий является случайной величиной, независимой от t_i , достаточно задать вероятность p_k того, что в произвольный момент t_i наступает k событий. Количество событий моделируется с помощью дискретной случайной величины с ограниченным спектром значений.

$$X = \begin{bmatrix} x_0 = 0 & \dots & x_k =_k \\ p_0 = p \text{(число событий в момент } t_i = 0) & \dots & p_k = p \text{(число событий в момент } t_i = k) \end{bmatrix}$$

2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Процесс выполнения лабораторно-расчетной работы можно условно разделить на четыре следующих этапа:

- 1. Ознакомительный
- 2. Расчетный
- 3. Лабораторный
- 4. Этап оформления отчета.

На первом этапе студенту, выполняющему работу, необходимо ознакомиться с теоретическими вопросами моделирования потоков случайных величин.

Второй этап начинается с получения задания на моделирование (раздел 4 настоящего пособия). Для полученного задания разрабатывается алгоритм моделирования и обработки результатов моделирования.

На лабораторном (третьем) этапе выполняется программа моделирования Четвертый этап заключается в оформлении отчета.

3 ОФОРМЛЕНИЕОТЧЕТА

Отчет начинается с названия лабораторной работы и содержит следующие разделы:

- 1. Задание на моделирование.
- 2. Описание метода моделирования информационного потока.
- 3. Листинг программы моделирования.
- 4. Результаты моделирования с необходимыми пояснениями к ним и выводы по работе.

4 ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

<u>Задание 1</u>

Рис. 3. Структура информационного потока

На интервале времени (0, T) (рис. 3) в моменты t_k (k = 1, 2, ..., i) в вычислительную систему поступают некоторые порции информации для дальнейшей обработки. Причем промежутки времени $x_k = t_k - t_{k-1}$ являются независимыми реализациями случайной величины X, распределенной экспоненциально:

$$f(\tau) = ae^{-ax}; \ a > 0, \ x \ge 0.$$
 (10)

Получить последовательность из N=1000 моментов наступления событий. Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Значение а определяется номером варианта в таблице.

№ варианта	1	2	3	4	5
$a(c^{-l})$	0,1	0,2	0,3	0,1	0,1
T(c)	100	50	50	90	80

Задание 2

Некоторое устройство может находиться в двух состояниях: «устранение неисправностей» (УН) и «исправная работа» (ИР), чередующихся во времени так, как показано на временной диаграмме (рис. 4).

Рис. 4. Временная диаграмма

Длительность состояния исправной работы – τ_{UP} – величина случайная, распределенная экспоненциально (см. (10)).

Длительность состояния «устранение неисправностей» — τ_{VH} — величина случайная, равномерно распределенная в интервале $[T_0, T_1]$.

Путем моделирования определить, с какой вероятностью в момент времени t устройство будет находиться в состоянии исправной работы. Вероятность нахождения устройства в состоянии исправной работы определяется как отношение суммы интервалов времени исправной работы к общему времени моделирования, которое складывается из интервалов исправной работы и интервалов устранения неисправностей.

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий. Событиями являются отказ и устранение неисправности.

Оценку вероятности провести по K=10 статистическим испытаниям, в каждом из которых смоделировать N=1000 событий отказа и устранения неисправностей. Исходные данные приведены в таблице.

№ варианта	1	2	3	4	5
а	0,1	0,2	0,3	0,1	0,1
t	50	20	10	30	40
T_0	1	1	0	1	0,5
T_{I}	2	2	1	1,5	1,5

Задание 3

Получить последовательность из N = 1000 событий, образующих поток Эрланга k-го порядка, параметры распределения указаны в таблице.

№ варианта	1	2	3	4	5
k	2	3	4	5	6
λ	0,1	0,2	0,1	0,2	0,1

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 4

Интервалы времени τ между поступлениями изделий с выхода поточной линии распределены равномерно:

$$f(\tau) = \frac{1}{T_I - T_0}; \qquad T_0 < \tau < T_I;$$

$$\tau = t_i - t_{i-1}$$

Из готовых изделий формируются партии (по 10 штук в партии) и отправляются на склад. Путем моделирования определить, за какое время на складе получат 20 партий готовых изделий. Параметры распределения указаны в таблице.

№ варианта	1	2	3	4	5
T_{0}	1	1	1	0,5	0,5
T_1	2	3	4	2	3

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 5

Получить последовательность из N = 1000 событий, образующих обобщенный поток Эрланга 2-го порядка. При моделировании пренебречь отличием распределений f_l и f (считать, что τ_l распределена так же, как и остальные величины – τ_2 , τ_3 , ...).

Таблица 5

№ варианта	1	2	3	4	5
λ_{I}	0,1	0,1	0,1	1	2
λ_2	0,2	0,3	0,05	2	3

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий. Параметры распределения указаны в таблице.

Задание 6

Сборка готового изделия на конвейере насчитывает 50 последовательно выполняемых операций. Длительность каждой операции τ распределена по нормальному закону.

Методами моделирования определить среднее количество изделий, собираемых за смену (T_{cm}) . Параметры распределения указаны в таблице.

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

№ варианта	1	2	3	4	5
m	1	2	3	4	5
σ	1	1	1	2	2
T_{cM}	250	500	200	400	1000

<u>Задание 7</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени τ между событиями образуются суммированием 2-х слагаемых: $\tau = T + \Delta$ — детерминированной компоненты T и случайной составляющей Δ , распределенной по экспоненциальному закону с параметром λ (поток с регулярной составляющей). Параметры распределения указаны в таблице.

№ варианта	1	2	3	4	5
T	1	2	3	4	5
λ	0,1	0,2	0,3	1	2

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 8</u>

Получить последовательность из N=1000 событий, образующих нестационарный информационный поток Пуассона, в котором интенсивность λ прямо пропорциональна времени:

$$\lambda = \lambda(t) = at + b$$

Параметры распределения указаны в таблице.

№ варианта	1	2	3	4	5
а	1	2	0,5	1	0,3
b	0	0	1	1	2

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 9

Получить последовательность из N=1000 неоднородных событий, образующих поток, в котором интервалы времени τ между событиями распределены равномерно $(T_0 \le \tau < T_l)$, а в каждый из моментов $t_i = t_{i-1} + \tau$ может наступить одно из событий $E_k(t_i)$; k=1,2,3 с вероятностями P_k . Параметры распределения указаны в таблице.

№ варианта	1	2	3	4	5
T_{0}	1	2	1	1	1
T_{I}	2	3	3	4	5
P_1	0,3	0,5	0,1	0,8	0,1
P_2	0,4	0,1	0,3	0,1	0,2
P_3	0,3	0,4	0,6	0,1	0,7

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий с указанием типа события.

<u>Задание 10</u>

В вычислительную систему коллективного пользования (ВСКП) поступает поток заявок на расчеты, который является суммарным, состоящим из двух потоков: простейшего (с параметром λ) и регулярного, в котором интервалы времени между заявками – постоянные величины (T_0) (рис. 5).

Определить, сколько в среднем заявок поступает в ВСКП за время t.

Рис. 5. Структура суммарного информационного потока

У казание: моделирование провести по K=10 статистическим испытаниям (10 независимых реализаций суммарного потока, включающего N=1000 событий).

Параметры распределения приведены в таблице.

№ варианта	1	2	3	4	5
T_{θ}	1	2	3	4	5
λ	0,1	1	2	0,5	4
t	50	50	30	40	50

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 11

Получить последовательность из N=1000 событий, образующих неординарный поток, в котором интервалы времени τ между моментами t_i наступления событий распределены экспоненциально (с параметром λ), а в каждый из моментов t_i может наступить либо одно событие K=1 с вероятностью P_1 , либо два (одновременно) – K=2 с вероятностью P_2 , либо три – K=3 с вероятностью P_3 .

Параметры распределения приведены в таблице.

№ варианта	1	2	3	4	5
P_1	0,1	0,2	0,3	0,4	0,5
P_2	0,1	0,5	0,2	0,3	0,4
P_3	0,8	0,3	0,5	0,3	0,1
λ	1	2	0,3	0,4	4

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий с указанием количества наступивших событий.

<u>Задание 12</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором распределение интервалов времени между поступлениями заявок характеризуется следующими экспериментальными данными: в α % случаев величина интервала заключена в пределах от 0 до 10 с; в β % — от 10 до 30 с; в γ % — от 30 до 60 с. Параметры распределения приведены в таблице.

N варианта	Значения параметров				
	α,% β,% γ,%				
1	95	4	1		
2	80	15	5		
3	60	30	10		
4	30	60	10		
5	40	30	30		

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 13</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок имеют распределение X=q(1+Z), где Z имеет геометрическое распределение с параметром ("вероятностью успеха") р. Определить, сколько в среднем заявок поступает в систему за время t. Параметры распределения приведены в таблице.

N варианта	Значения параметров						
	р	p q, c t, c					
1	0.25	0.04	50				
2	0.27	0.05	40				
3	0.33	0.25	30				
4	0.50	0.40	100				
5	0.75	0.55	200				

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 14

Получить последовательность из N=1000 событий, образующих информационный поток. В систему поступает поток заявок, который является суммарным, состоящим из двух потоков, в каждом их которых интервалы времени между поступлениями заявок распределены равномерно на отрезках $[0,\alpha]$ и $[1,\beta]$ соответственно (рис. 5). Определить, сколько в среднем заявок поступает в систему за время t.

N варианта	Значения параметров				
	a, c	t, c			
1	1.4	5	120		
2	4	10	90		
3	6	9	240		
4	8	21	300		
5	10	30	360		

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 15</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок имеют распределение X=Z+q/2, где величина Z распределена по экспоненциальному закону с параметром λ . Определить, сколько в среднем заявок поступает в систему за время t.

N варианта	Значения параметров				
	λ, c^{-1} q, c t, c				
1	0.80	0.30	30		
2	0.40	0.60	90		
3	0.25	0.90	90		
4	0.125	1.80	120		
5	0.05	4.50	120		

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 16

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок имеют распределение X=Z+q, где величина Z равномерно распределена

на отрезке $[\alpha,\beta]$. Определить, сколько в среднем заявок поступает в систему за время t.

N варианта	Значения параметров						
	a, c	α, c β, c q, c $t,$					
1	10	70	16.50	600			
2	4	56	7	600			
3	2	38	5.50	600			
4	0.16	1	45	300			
5	0.50	1.50	11.50	300			

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 17</u>

Получить последовательность из N=1000 событий, образующих информационный поток. В систему поступает поток заявок, который является суммарным, состоящим из двух потоков: простейшего с параметром λ и равномерного, в котором интервалы времени между поступлениями заявок распределены равномерно на отрезке $[1,\alpha]$ (рис. 5). Определить, сколько в среднем заявок поступает в систему за время t.

N варианта	Значения параметров			
	λ, c ⁻¹	t, c		
1	0.125	11	300	
2	0.2	7	300	
3	0.25	6.5	600	
4	1	10	600	
5	1.25	20	600	

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 18</u>

Система может находиться в двух состояниях "устранение неисправностей" и "исправная работа", чередующихся во времени (рис. 4). Длительность состояния исправной работы — величина случайная, распределенная экспоненциально с параметром λ . Длительность состояния устранения неисправностей — усеченнонормальная случайная величина с параметрами (m, σ^2) , принимающая значения, большие K. Определить коэффициент готовности системы (т.е. отношение длительности исправной работы к общему времени моделирования) на основании K = 10 статистических испытаний длительностью 600 с каждое.

N варианта	Значения параметров						
	λ, c ⁻¹	λ, c ⁻¹ κ, c m					
1	0.1	0.1	0.5	1			
2	0.2	0.2	0.3	0.04			
3	0.3	0.5	2.5	1			
4	0.1	1	10	3			
5	0.2	0.5	2.5	1			

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 19</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок распределены по закону Релея с параметром a. Определить среднее количество заявок, поступающих в систему каждые 5 мин.

N варианта	1	2	3	4	5
Значение а	0.5	1	2	3	4

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 20</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок распределены по закону Коши с параметрами a, b. Определить среднее количество заявок, поступающих в систему каждые 2 мин.

N варианта	1	2	3	4	5
Значения а	0	0	1	2	3
Значения в	1	2	1	2	1

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 21</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок являются реализациями дискретной случайной величины

$$X = \begin{bmatrix} x1 & x2 & x3 & x4 & x5 \\ p1 & p2 & p3 & p4 & p5 \end{bmatrix}$$
, где

xl = q, $xi = xl + (i-1)\Delta$, pi = pl - (i-1)p, i=1,2,3,4,5,

параметр p определяется из условия нормировки. Определить среднюю продолжительность функционирования системы по K=10 статистическим испытаниям.

N варианта	Значения параметров				
	p1 Δ, c q, c				
1	0.22	11	7.5		
2	0.26	8	5		
3	0.30	5	3.8		
4	0.34	7	5		
5	0.38	2.5	1.5		

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 22</u>

Получить последовательность из N=1000 событий, образующих нестационарный информационный поток Пуассона, в котором интенсивность λ прямо пропорциональна времени: $\lambda=\lambda(t)=at$. Определить среднюю продолжительность функционирования системы по K=10 статистическим испытаниям.

N варианта	1	2	3	4	5
Значение а	0.5	2	5	7.5	10

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 23</u>

Получить последовательность из N=1000 событий, образующих информационный поток экспериментальных данных, в котором промежутки времени между поступлениями порций данных распределены по экспоненциальному закону с параметром λ , а объем одной порции информации может принимать с вероятностью p1, p2, p3 одно из трех значений: 8 бит, 16 бит, 32 бита. Определить средний суммарный объем экспериментальных данных.

N варианта	Значения параметров						
	λ, c-1	λ , c ⁻¹ p1 p2 p3					
1	0.5	0.33	0.33	0.33			
2	1	0.1	0.6	0.3			
3	0.25	0.4	0.2	0.4			
4	2.5	0.2	0.7	0.1			
5	5	0.5	0.1	0.4			

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 24</u>

Получить последовательность из N=1000 событий, образующих информационный поток. В систему поступает поток заявок, который является суммарным, состоящим из двух потоков: простейшего с параметром λ и усеченно-нормального с параметрами (m, σ^2) , определенного на интервале $]0, \infty]$ (рис. 5). Определить, сколько в среднем заявок поступает в систему за время t.

N варианта	Значения параметров				
	λ, c ⁻¹	m	σ^2	t, c	
1	2	0	1	300	
2	1	1	1	300	
3	0.5	4	2	600	
4	0.25	0.5	1	600	
5	2.5	0	1	600	

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 25

Получить последовательность из $N=1000\,$ событий, образующих информационный поток, в котором интервалы времени между поступлениями

событий распределены по закону Вейбулла с параметрами λ , k. Определить среднее количество событий, поступающих в систему каждые 2 мин.

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

<u>Задание 26</u>

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок имеют распределение X=q(1+Z), где Z имеет распределение Паскаля с параметром ("вероятностью успеха") p. Определить, сколько в среднем заявок поступает в систему за время t. Параметры распределения приведены в таблице.

N варианта	Значения параметров			
	p	q, c	t, c	
1	0.25	0.04	50	
2	0.27	0.05	40	
3	0.33	0.25	30	
4	0.50	0.40	100	
5	0.75	0.55	200	

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 27

Получить последовательность из N=1000 событий, образующих информационный поток, в котором интервалы времени между поступлениями заявок имеют распределение X=q(1+Z), где Z имеет биномиальное распределение с параметром ("вероятностью успеха") p. Определить, сколько в среднем заявок поступает в систему за время t. Параметры распределения приведены в таблице.

N варианта	Значения параметров			
	p	q, c	t, c	
1	0.25	0.04	50	
2	0.27	0.05	40	
3	0.33	0.25	30	
4	0.50	0.40	100	
5	0.75	0.55	200	

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

Задание 28

Получить последовательность из N=1000 событий, образующих нестационарный информационный поток Пуассона, в котором интенсивность λ определяется функцией нестационарности (определить самостоятельно). Определить среднюю продолжительность функционирования системы по K=10 статистическим испытаниям.

Вывести значения интервалов времени между наступлениями событий и моменты времени наступления событий.

5 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Как связаны друг с другом величины $\tau_1, \tau_2, ..., \tau_k, ...$ в потоке Пальма?
- 2. Приведите схему алгоритма моделирования потоков Пальма.
- 3. Приведите схему алгоритма моделирования потоков Эрланга.
- 4. Как меняется интервал между двумя «соседними» событиями нестационарного потока:
 - а) с возрастанием $\lambda(t)$?
 - б) при уменьшении $\lambda(t)$?
- 5. Поясните принцип формирования реализаций потока неоднородных событий.
- 6. Как формируются реализации неординарных потоков?
- 7. Почему для простейшего потока Пуассона отсутствуют различия между распределениями f_1 и f?
- 8. Поясните принцип моделирования потока, являющегося суммой нескольких информационных потоков.
- 9. Интенсивность потока определяется формулой

$$\lambda(t) = at + b$$
.

Каковы размерности величин λ , a, b?

10. Как распределены интервалы между событиями в простейшем потоке Пуассона?

ЗАКЛЮЧЕНИЕ

Методические указания «Модели информационных потоков в системах моделирования» посвящены рассмотрению методов и алгоритмов моделирования потоков случайных величин с заданными законами распределения вероятностей.

Методические указания содержат рекомендации по организации информационных потоков различных видов.

Логическим завершением методических указаний являются контрольные вопросы и индивидуальные задания для самостоятельной работы студентов.

Вопросы, имеющие практическое значение для студентов при выполнении лабораторной работы, освещены с необходимой для использования полнотой.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Е.В.Симонова. Моделирование случайных величин с заданными законами распределения вероятностей. Методические указания к выполнению лабораторной работы. Самара, 2022. 26 с.
- 2. Советов, Б. Я. Моделирование систем : учебник для академического бакалавриата / Б. Я. Советов, С. А. Яковлев. 7-е изд. М. : Издательство Юрайт, 2017. 343 с. (Серия : Бакалавр. Академический курс).
- 3. Советов, Б. Я. Моделирование систем. Практикум: учебное пособие для бакалавров / Б. Я. Советов, С. А. Яковлев. 4-е изд., перераб. и доп. М. : Издательство Юрайт, 2016. 295 с. (Серия: Бакалавр. Академический курс).

Учебное издание

Симонова Елена Витальевна

МОДЕЛИ ИНФОРМАЦИОННЫХ ПОТОКОВ В СИСТЕМАХ МОДЕЛИРОВАНИЯ

Методические указания

Редактор Компьютерная верстка

Подписано в печать . Формат 60х84 1/16. Бумага офсетная. Печать офсетная. Печ. л. . Тираж экз. Заказ . Арт. С- / 2022

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ имени академика С. П. КОРОЛЕВА» (Самарский университет)

Изд-во Самарского университета. 443086 Самара, Московское шоссе, 34.