PHYS 462 (optics) HW#6

Parker Whaley March 28, 2016

1 8.5

$$\tilde{E} = \frac{\hat{i} - \hat{j}}{\sqrt{2}} E_{\circ} e^{(\omega t + (x+y)/\sqrt{2}\lambda + \pi/2)i}$$

2 8.9

We are told that the angle between the light and the polorizer is 60° we also know that the intencity goes as $\cos^2(\theta)$ of the incident light. So the intencity will be $(\cos(60))^2 = (\frac{1}{2})^2 = .25$ so 25% of the light will be transmitted.

3 8.14

We will assume that the polorizer is ideal given no other information. We then see that there is a 60° angle between the polorizer and the incident light. From the previous section we know that the intencity will be quartered to $50W/m^2$.

4 8.18

If we take non-polorized light and polorize it the intencity is reduced by the average value of $\cos^2(x)$ wich is $\frac{1}{2}$ so the first polorizer reduces the intencity by .5. if we then have a polorizer at 50° off of the privious one we will reduce the intecity by another $\cos^2(50)$ so our intencity will be $I = I_{\circ} \cdot .5\cos^2(50^{\circ}) = 207W/m^2$. With the third polorizer in place we then get $I = I_{\circ} \cdot .5\cos^2(25^{\circ})\cos^2(25^{\circ}) = 337W/m^2$.

5 8.23

The light leaving the paper has lost its polorization since the paper absorbs the light and then transmits the light.

6 8.30

This will be the brewster's angle so (8.25) $tan(\theta) = n = 1.39$.

7 8.35

In the cristol the ordinary waves have a index of 1.5443 so there wevelength is 381.60nm and there frequency is preserved at $c/\lambda = 5.09E14Hz$. The extraordinary light has a index of 1.5534 and so will have a wevelength of 379.36nm and the same frequency of 5.09E14Hz.