jee2020-paper1

- 1. Let $\vec{k} = \hat{i} 2\hat{j} + \hat{k}$ and $\mathfrak{b} = \hat{i} \hat{j} + \hat{k}$ be two vectors. If \vec{c} is a vector such that $\vec{b} \cdot \vec{c} = \vec{b} \cdot \vec{a}$ and $a_0 \neq 0$, then c_b is equal to:
 - (a) $\frac{1}{2}$
 - (b) -1
 - (c) $-\frac{1}{2}$
 - (d) $-\frac{3}{2}$
- 2. The area (in square units) of the region $\{(x,y)\in\mathbb{R}^2\mid x^2\leq y\leq 3-2x\}$ is:
 - (a) $\frac{29}{3}$
 - (b) $\frac{31}{3}$
 - (c) $\frac{34}{3}$
 - (d) $\frac{32}{3}$
- 3. The length of the perpendicular from the origin to the normal of the curve $x^2+2xy-3y^2=0$ at the point (2,2) is:
 - (a) $4\sqrt{2}$
 - (b) $2\sqrt{2}$
 - (c) 2
 - (d) $\sqrt{2}$
- 4. If $I = \int_1^2 \frac{dx}{\sqrt{2x^3 9x^2 + 12x + 4}}$, then:
 - (a) $\frac{1}{9} < I^2 < \frac{1}{8}$
 - (b) $\frac{1}{16} < I^2 < \frac{1}{9}$
 - (c) $\frac{1}{6} < I^2 < \frac{1}{2}$
 - (d) $\frac{1}{8} < I^2 < \frac{1}{4}$
- 5. If a line y = mx + c is a tangent to the circle $(x 3)^2 + y^2 = 1$ and it is perpendicular to a line L, where L is the tangent to the circle at the point $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, then

- (a) $c^2 6c + 7 = 0$
- (b) $c^2 + 6c + 7 = 0$
- (c) $c^2 + 7c + 6 = 0$
- (d) $c^2 7c + 6 = 0$
- 6. Let S be the set of all functions $f:[0,1]\to\mathbb{R}$ which are continuous on [0,1] and differentiable on (0,1). Then for every $f\in S$, there exists a $c\in(0,1)$, depending on f, such that:
 - (a) |f(c) f(1)| < (1 c)|f'(c)|
 - (b) f(c) f(1) = f'(c)
 - (c) |f(c) + f(1)| > (1+c)|f'(c)|
 - (d) $\frac{f(1)-f(c)}{1-c} = f'(c)$
- 7. Which of the following statements is a tautology?
 - (a) $\neg (p \lor \neg q) \to (p \lor q)$
 - (b) $\neg (p \land \neg q) \rightarrow (p \lor q)$
 - (c) $\neg (p \lor \neg q) \to (p \land q)$
 - (d) $(p \lor \neg q) \to (p \land q)$
- 8. If the $10^{\rm th}$ term of an arithmetic progression is $\frac{1}{20}$ and its $20^{\rm th}$ term is $\frac{1}{10}$, then the sum of its first 200 terms is:
 - (a) $50\frac{1}{4}$
 - (b) $100\frac{1}{2}$
 - (c) 50
 - (d) 100
- 9. Let $f:(1,3)\to\mathbb{R}$ be a function defined by

$$f(x) = \frac{x - \lfloor x \rfloor}{1 + x^2}$$

where |x| denotes the greatest integer function. Then the range of f is:

- (a) $(\frac{3}{5}, \frac{4}{5})$
- (b) $(\frac{2}{5}, \frac{3}{5}) \cup (\frac{3}{4}, \frac{4}{5})$
- (c) $(\frac{2}{5}, \frac{4}{5})$
- (d) $(\frac{2}{5}, \frac{1}{2}) \cup (\frac{3}{5}, \frac{4}{5})$

10. The system of linear equations:

$$\lambda x + 2y + 2z = 5$$

$$bx + 3y + 5z = 8$$

$$4x + ky + 6z = 10$$

has:

- (a) Infinitely many solutions when $\lambda = 2$
- (b) A unique solution when $\lambda = -8$
- (c) No solution when $\lambda = 8$
- (d) No solution when $\lambda = 2$

11. If α and β be the coefficients of x and x^2 respectively in the expansion of $(x+\sqrt{x^2-1})^6+(x-\sqrt{x^2-1})^6$ then given

- (a) $\alpha + \beta = 60$
- (b) $\alpha + \beta = -30$
- (c) $\alpha \beta = -132$
- (d) $\alpha \beta = 60$

12. Evaluate the limit:

$$\lim_{x \to 0} \frac{\int_0^x t \sin(10t) \, dt}{x}$$

- (a) 0
- (b) $-\frac{1}{5}$
- (c) $-\frac{1}{10}$
- (d) $\frac{1}{10}$

13. If

$$A = \begin{bmatrix} 2 & 2 \\ 9 & 4 \end{bmatrix}, \quad I = r \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

then 10A is equal to:

- (a) 41 A
- (b) A 61
- (c) 61 A
- (d) A 41
- 14. The mean and variance of 20 observations are found to be 10 and 4, respectively. On rechecking, it was found that an observation 9 was incorrect and the correct observation was 11. Then the correct variance is:

Options:

- (a) 3.99
- (b) 3.98
- (c) 4.02
- (d) 4.01
- 15. If a hyperbola passes through the point P(10, 16) and has vertices at $(\pm 6, 0)$, then the equation of the normal to it at P is:

Options:

- (a) x + 2y = 42
- (b) 3x + 4y = 94
- (c) 2x + 5y = 100
- (d) x + 3y = 58
- 16. Let A and B be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then the probability of both of them occurring together is:
 - (a) 0.02
 - (b) 0.01
 - (c) 0.20
 - (d) 0.10
- 17. The mirror image of the point (1,2,3) in the plane $(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3})$ is: Which of the following points lies on this plane?
 - (a) (-1, -1, -1)
 - (b) (-1, -1, 1)
 - (c) (1,1,1)
 - (d) (1, -1, 1)
- 18. Let S be the set of all real roots of the equation:

$$3x(3x-1) + 2 = |3x-1| + |3x-2|.$$

Then S:

- (a) is an empty set.
- (b) contains at least four elements.
- (c) contains exactly two elements.
- (d) is a singleton.

19.	Let $\alpha = \frac{-1+i\sqrt{3}}{2}$ if $a = (1+\alpha)\sum_{k=0}^{100} \alpha^{2k} \cdot a_n \cdot db = \sum_{k=0}^{100} \alpha^{3k}$ and let	a
	and b be the roots of the quadratic equation. Then:	

(a)
$$x^2 - 102x + 101 = 0$$

(b)
$$x^2 + 101x + 100 = 0$$

(c)
$$x^2 - 101x + 100 = 0$$

(d)
$$x^2 + 102x + 101 = 0$$

20. The differential equation of the family of curves,

$$x^2 = 4b(y+b),$$

where $b \in \mathbb{R}$, is:

(a)
$$x(y')^2 - x + 2yy'$$

(b)
$$xy'' = y'$$

(c)
$$x(y')^2 = 2yy' - x$$

(d)
$$x(y')^2 = x - 2y$$

21. Solve for α :

$$H \cdot \frac{\sqrt{2}\sin\alpha}{\sqrt{1+\cos2\alpha}} = \frac{1}{7}$$

and

$$\sqrt{\frac{1-\cos 2\beta}{2}} = \frac{1}{\sqrt{10}}$$

where $\alpha \in (0, \frac{\pi}{2})$. Then $\tan(\alpha + 2\beta)$ is equal to _____.

- 22. Let f(x) be a polynomial of degree 3 such that f(-1) = 10, f(1) = -6. The function f(x) has a critical point at x = -1, and f''(x) has a critical point at x = 1. Then f(x) has a local minimum at x =_____.
- 23. Let a line y=mx (m>0) intersect the parabola $y^2=3x$ at a point P, other than the origin. Let the tangent to it at P meet the x-axis at the point Q. If $\operatorname{area}(\triangle OPQ)=4$ square units, then m is equal to
- 24. Evaluate the sum:

$$\sum_{n=1}^{7} \frac{n(n+1)(2n+1)}{4}$$

which is equal to _____

25. The number of 4-letter words (with or without meaning) that can be formed from the eleven letters of the word "EXAMINATION" is ______