

MARRIAGE + DIVORCE (AGAIN)

	Loc	Marriage	MedianAgeMarriage	Divorce
1	AL	20.2	25.3	12.7
2	AK	26.0	25.2	12.5
3	AZ		25.8	10.8
4	AR	26.4	24.3	13.5
5	CA	19.1	26.8	8.0
6	C0	23.5	25.7	11.6
7	СТ	17.1	27.6	6.7
8	DE	23.1	26.6	8.9
9	DC	17.7	29.7	6.3
10	FL	17.0	26.4	8.5
11	GA	22.1	25.9	11.5
12	ΗI	24.9	26.9	8.3
13	ID	25.8	23.2	7.7
14	IL	17.9	27.0	8.0
15	IN	19.8	25.7	11.0
16	IA	21.5	25.4	10.2

What's the effect of M on D, controlling for A?

MULTIPLE REGRESSION

Divorce = $\alpha + \beta_1 Marriage + \beta_2 MedianAge + \epsilon$

```
# base model
m1 = lm(Divorce ~ Marriage, data = WaffleDivorce)
summary(m1)
```

```
# control for age at marriage
m2 = lm(Divorce ~ Marriage + MedianAgeMarriage,
pata = WaffleDivorce)
summary(m2)
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.87665 7.66104 4.814 1.58e-05 ***

Marriage -0.05686 0.08053 -0.706 0.483594

MedianAgeMarriage -0.99965 0.24593 -4.065 0.000182 ***
```

"Controlling for Median Age"/"all else equal"/"all other variables held constant", a one-unit increase in Marriage decreases Divorce by -.06

EXPLAINING WITH VARIABLES

To understand multiple regression we need to know what it means to use one variable to *explain* another variable

"How does X explain Y" =

"what would I expect Y to look like given a specific value of X"

"How much of the variation in Divorce is explained by Marriage? How much is **not** explained?"

POVERTY IN MIDWEST

# A tibble: 437 x 3									
	state	county	percbelowpoverty						
	<chr></chr>	<chr></chr>	<dbl></dbl>						
1	IL	ADAMS	13.2						
2	IL	ALEXANDER	32.2						
3	IL	BOND	12.1						
4	IL	BOONE	7.21						
5	IL	BROWN	13.5						
6	IL	BUREAU	10.4						
7	IL	CALHOUN	15.1						
8	IL	CARR0LL	11.7						
9	IL	CASS	13.9						
10	IL	CHAMPAIGN	15.6						

STATE AS EXPLANATION

How much of the poverty rate can be **explained** by what state someone is in?

```
# let's get average rate by state
midwest %>% group_by(state) %>%
  # add column that equals average poverty rate in state
mutate(avebystate = mean(percbelowpoverty)) %>%
  select(state, county, percbelowpoverty, avebystate) %>%
  # calculate residual
  mutate(residual = percbelowpoverty - avebystate)
```

```
# A tibble: 437 x 5
# Groups: state [5]
                  percbelowpoverty avebystate residual
   state county
                             <dbl>
   <chr> <chr>
                                        <dbl>
                                                <dbl>
                             13.2
 1 IL
        ADAMS
                                        13.1 0.0750
        ALEXANDER
                                        13.1 19.2
 2 IL
                             32.2
 3 IL
        BOND
                             12.1
                                        13.1 - 1.01
 4 IL
                             7.21
        BOONE
                                        13.1 - 5.87
 5 IL
                             13.5
        BROWN
                                        13.1 0.444
 6 IL
        BUREAU
                                        13.1 - 2.68
                             10.4
 7 IL
        CALHOUN
                                        13.1 2.07
                             15.1
                                        13.1 - 1.37
 8 IL
        CARROLL
                             11.7
 9 IL
        CASS
                                        13.1 0.799
                             13.9
                                        13.1 2.50
10 IL
        CHAMPAIGN
                             15.6
```

RESIDUALS

Residual =
part of poverty-bycounty **not explained**by what state you're in
(what's "left over")

The **smaller** the residuals, the **better** state explains poverty

```
A tibble: 437 x 5
            state [5]
# Groups:
                    percbelowpoverty avebystate residual
   state county
                                          <dbl>
   <chr> <chr>
                               <dbl>
                                                    <dbl>
 1 IL
         ADAMS
                               13.2
                                            13.1
                                                   0.075<u>0</u>
                                            13.1 19.2
         ALEXANDER
 2 IL
                               32.2
 3 IL
         BOND
                               12.1
                                            13.1 - 1.01
 4 IL
         BOONE
                                7.21
                                            13.1 - 5.87
 5 IL
         BROWN
                               13.5
                                            13.1
                                                   0.444
                               10.4
 6 IL
         BUREAU
                                            13.1 - 2.68
 7 IL
         CALHOUN
                               15.1
                                            13.1
                                                  2.07
 8 IL
         CARROLL
                               11.7
                                            13.1 - 1.37
 9 IL
         CASS
                               13.9
                                            13.1
                                                   0.799
         CHAMPAIGN
                                                   2.50
                               15.6
10 IL
                                            13.1
```


Relationships between variables

The stronger the relationship between X and Y, the less of Y there is "left over" to explain

INTUITION

We want to know relationship between M and D controlling for A

We want to remove the influence of A on **both** M and D

INTUITION

First: let's figure out how A explains M, and keep part of M not explained by A

Second: let's figure out how A *explains* D, and keep part of D *not explained* by A

	Loc	Marriage	MedianAgeMarriage	Divorce	age_marriage_resid	age_divorce_resid
1	AL	20.2	25.3	12.7	-1.5744174	2.352684
2	2 AK	26.0	25.2	12.5	4.0053681	2.065241
3	8 AZ	20.3	25.8	10.8	-0.3733448	0.889896
4	AR	26.4	24.3	13.5	2.4234376	2.278259
5	CA	19.1	26.8	8.0	0.6288002	-1.035679

............

Part of
Marriage
unexplained
by age

Part of
Divorce
unexplained
by age

......


```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.87665 7.66104 4.814 1.58e-05 ***

Marriage -0.05686 0.08053 -0.706 0.483594

MedianAgeMarriage -0.99965 0.24593 -4.065 0.000182 ***
```

Now let's do the same for Age

.....

.....

.....

.....

SLEP AND GRADES

OK, but how do we know true effect of M on D is -.06?

We can't know, so let's see an example where we can

What is the effect of getting a good night's sleep on grades?

I'll make up some data where I already know the answer to this question

 $Grades = \alpha + 3 \times Sleep$

THE DAG

.....

.....

MAKING UP DATA

rnorm(n = 500): pick 500 random numbers that look like this

MAKING UP DATA

Make up data on how much people are drinking

Make up data on how much people are sleeping

Make up data on people's grades

```
drink = rnorm(n = 500, mean = 3),
```

```
sleep = rnorm(500) - drink,
```

grades = sleep*3 + drink*2 + rnorm(500)

REGRESSION

```
# fit model without controls
m1 = lm(grades ~ sleep, data = df)
summary(m1)
```

```
# fit model with controls
m2 = lm(grades ~ sleep + drink, data = df)
summary(m2)
```

```
Coefficients:
Estimate
(Intercept) 3.14277
sleep 2.05697
```

```
Coefficients:
Estimate
(Intercept) 0.09897
sleep 3.01762
drink 1.98586
```

grades = sleep*3 + drink*2 + rnorm(500)

RECAP

We want to close backdoors (Z) from X to Y

Statistical "controls" allow us to do this by removing the part of X and Y that can be explained by Z

Interpretation template: "all else equal"/"controlling for A, B, C, a one unit increase in X produces ____ in Y"

HOMEWORK:
Making DAGs in R + very basic multiple regression