Peptide Computing – Universality and Complexity

M.Sakthi Balan Kamala Krithivasan Y.Sivasubramanyam

Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, India

Organization

Natural Computing Biological Computing DNA Computing Peptide Computing Solving HPP Solving Exact 3-cover set problem Universality Result Conclusion

Natural Computing

Biological Computing

Quantum Computing

Biological Computing

DNA Computing

Peptide Computing

DNA Computing

Uses DNA strands and Watson-Crick Complementarity as operation

Highly non-deterministic
Massive parallelism

Solves NP-Complete Problems quite efficiently

Peptide Computing

Uses peptides and antibodies

Operation – binding of
antibodies to epitopes in
peptides

Epitope – The site in peptide recognized by antibody

Highly non-deterministic

Massive parallelism
13th June, 2001
IIT, Madras

6

Peptide Computing Contd..

Peptides – sequence of amino acids

Twenty amino acids. Example – Glycine, Valine

Connected by covalent bonds

Peptide Computing Contd..

Antibodies recognizes epitopes by binding to it

Binding of antibodies to epitopes has associated power called affinity

Higher priority to the antibody with larger affinity power

Computing DNA Vs Peptide

Four building blocks Adenine (A), Guanine(G), Cytosine (C), Thiamine (T) Only one reverse complement -Watson-Crick Complement Complement (A) = Tand Complement (G)

Twenty building blocks (20 amino acids) Example: Glycine, Valine Different antibodies can recognize different epitopes Binding affinity of

different

Peptide Computing Model

Peptides represent sample space of the problem

Antibodies are used to select the correct solution of the problem (i.e. peptides)

Definition

For finite sequence $M = m_1, m_2, ..., m_n$ the doubly duplicated sequence is

 $MM = m_{1}, m_{1}, m_{2}, m_{2}, ..., m_{n}, m_{n}$

Doubly duplicated permutation of a finite set S is

 $\{m \ m \ / \ m$ is a permutation of the set $S\}$

Hamiltonian Path Problem

```
G = (V, E) is a directed graph

V = \{v_1, v_2, ..., v_n\} is the vertex set

E = \{e_{ij} \mid v_i \text{ is adjacent to } v_j\} is the edge set
```

 v_1 - source vertex, v_n - end vertex

Problem – Test whether there exists a Hamiltonian path between v_1 and

Graph G

Peptides Formation

Each vertex v_i has a corresponding epitope ep_i

Each peptide has ep_1 on one extreme and ep_n on the other extreme

All doubly duplicated permutations of

 $\{ep_2, \dots, ep_{n-1}\}$ are formed in each of the peptide in between ep_1 and ep_n

13th June, 2001 IIT, Madras

Antibody Formation

```
Form antibodies A_{ii} – site = ep_i ep_i
  s.t. v_i is adj. to v_i
  Form antibodies B_{ii} – site = ep_iep_i s.t.
  v_i is not adj. to v_i
 Form antibody C – site is whole of
  peptide
  Affinity(B_{ii}) > Affinity(C)
Affinity(C) > Affinity(A<sub>ij</sub>)
```

Peptide Solution Space

13th June, 2001 IIT, Madras 16

Algorithm

- 1. Take all the peptides in an aqueous solution
- 2. Add antibodies Aij
- 3. Add antibodies B_{ij}
- 4. Add labeled antibody C
- 5. If fluorescence is detected answer is yes or else the answer is no

Peptides with Antibodies

Peptide with Antibodies

Complexity

Number of peptides = (n-2)! Length of peptides = O(n)Number of antibodies = $O(n^2)$ Number of Bio- steps is constant

Exact Cover by 3- Sets Problem

Instance: A finite set $X = \{x_1, x_2, ..., x_n\}$, n = 3q and a collection C of 3-elements subsets of X

Question: Does C contain an Exact Cover for X

Peptide Formation

For each x_i a specific epitope ep_i is chosen

For every permutation of the set $\{ep_i\}$ a peptide is chosen s.t. every subsequence of $ep_i ep_j ep_k$ is followed by the epitope ep_{ijk}

Example

$$X = \{x_1, x_2, ..., x_9\}$$

For permutation

$$x_1, x_7, x_9, x_2, x_6, x_4, x_3, x_5, x_8$$

13th June, 2001 IIT, Madras 24

Antibody Formation

```
Form antibodies A_{ijk}, site = ep_i ep_j ep_k if \{x_i, x_j, x_k\} is in C
Form antibodies B_{ijk}, site = ep_i ep_j ep_k if
```

 $\{x_i, x_i, x_k\}$ is not in C

Form colored antibody C, site is whole of peptide

 $Affinity(B_{ijk}) > Affinity(C)$

 $\overline{\text{Affinity}(C)} > \overline{\text{Affinity}(A_{ijk})}$

13th June, 2001 IIT, Madras 25

Algorithm

Take all the antibodies in an aqueous solution.

Add antibodies Aijk

Add antibodies B_{ijk}

Add antibody C

If fluorescence is detected the answer is yes otherwise no

Complexity

```
Number of peptides = n!

Length of peptides = O(n)

Number of Antibodies = O(n^3)

Number of Bio-steps is constant
```

Peptide Computing is Computationally Complete

A Turing Machine can be

simulated by a Peptide System

Assumptions

Turing Machine halts when it reaches a final state

Let s(n) be the space complexity of the Turing Machine

Assume that s(n) is apriori known

Universality Result

Turing machine, $M = (Q, \Sigma, \delta, s_0, F)$

 $Q = \{q_1, q_2, ..., q_m\}$

 $\sum = \{a_1, a_2, \dots, a_l\}$

B is the blank symbol

Universality Result Contd..

Form s(n) epitopes, $E_Q = \{ep_i^Q / 1 < i < s(n)\}$

Form s(n) epitopes, $E_{\Sigma} = \{ep_i^{\Sigma} / 1 < i < s(n)\}$

Universality Result Contd..

Form s(n)*m antibodies, $A_{Q} = \{A_{i}^{q} / 1 < i < s(n), q Q\}$

Form
$$s(n)*l$$
 antibodies,
 $A_{\Sigma} = \{A_i^a / 1 < i < s(n), a \sum U\{b\}\}$

• The antibodies A_{if}^{q} are labeled

Universality Result Contd..

Peptide without antibodies

Initial Configuration of Peptide

Simulating the Right Move

M moves from $a_i q a_j a_{j'}$ to $a_i a_{j''} q' a_{j'}$

Add excess of free epitopes ep_k^{Σ} and ep_k^{Q} Add antibodies $A_{k j}^{a}$ and $A_{k+1}^{q'}$

k is the position of the head prior to the right move

Simulating the Right Move Contd..

Simulating the Left Move

M moves from $a_i q a_j a_{j'}$ to $q'a_i a_{j''} a_{j'}$

Add excess of free epitopes ep_k^{Σ} and ep_k^{Q} Add antibodies $A_{k j}^{a}$ and $A_{k-1}^{q'}$

k is the position of the head prior to the right move

Complexity

Peptide system takes O(t(n)) time Length of the peptide is O(s(n))Number of peptide is one Amount of antibodies is O(m.s(n)+l.(s(n)))

What Next...

Complexity Issues
Cost effectiveness
Implementation Difficulties
Theoretical Model

