National University of Singapore Department of Computer Science CS1231 Discrete Structures

2021/22 (Sem.1)

Tutorial 5

- 1. Consider the relation R from Tutorial 4 Problem 5. Let $S = R^{-1} \circ R$ and $T = S \circ S$.
 - (a) Determine whether S is a total order.
 - (b) Draw an arrow diagram for T.
 - (c) Why is T an equivalence relation? Determine the equivalence classes with respect to T.
- 2.* Let A and B be sets and R a relation from A to B. Prove that $R^{-1} \circ R$ is symmetric.
- 3. For each relation below, determine if it is reflexive, symmetric, antisymmetric, and transitive:
 - (a) $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x^2 \leq y^2\}$, as a relation on \mathbb{Z} ;
 - (b)* $\{(x,y) \in \mathbb{R} \times \mathbb{R} : xy \ge 0\}$, as a relation on \mathbb{R} ;
 - (c)* $\{(A,B) \in \mathcal{P}(U) \times \mathcal{P}(U) : A \cap B \neq \emptyset\}$, as a relation on $\mathcal{P}(U)$, where U is a set with at least 2 elements;
 - (d) $\{((a,b),(c,d)) \in \mathbb{R}^2 \times \mathbb{R}^2 : (a \leqslant c) \land (b \leqslant d)\}$, as a relation on \mathbb{R}^2 .

If a relation R above is not transitive, then give an example to show $R \circ R \not\subseteq R$. Which of the above is a partial order? Is it a total order?

- 4.* Prove that the relation $S = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : m^3 + n^3 \text{ is even} \}$ on \mathbb{Z} from Tutorial 4 Question 6 is an equivalence relation. What are the equivalence classes?
- 5.* Let $k \in \mathbb{Z}^+$. Define the relation \equiv_k on \mathbb{Z} by setting, for all $m, n \in \mathbb{Z}$,

 $m \equiv_k n$ if and only if k divides m - n.

Prove that \equiv_k is an equivalence relation. What are the equivalence classes?

- 6.* Let R be a binary relation on a set X, and $Y \subseteq X$. The **restriction** of R to Y, denoted $R|_{Y}$, is the relation on Y defined by $R|_{Y} = R \cap (Y \times Y)$. If R is an equivalence relation on X, then we call the partition X/R given by Theorem 6.3.10 the **partition** (of X) induced by R.
 - (a) Prove that, if R is an equivalence relation, then $R|_{Y}$ is an equivalence relation on Y.
 - (b) Let $B = \{-2, -1, 0, 1, 2, 3, 4\}$ and let S be the equivalence relation in Problem 4. How would you draw an undirected graph to represent $S|_B$? Determine the equivalence classes and the partition induced by $S|_B$.
 - (c) Let $C = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}$ and let \equiv_6 be as in Problem 5. How would you draw an undirected graph to represent $\equiv_6 |_C$? Determine the equivalence classes and the partition induced by $\equiv_6 |_C$.

[Without (a), we would have to prove all over again for (b) that $\{(m,n) \in B \times B : m^3 + n^3 \text{ is even}\}$ is an equivalence relation on B.]

7. Consider the following relation on the set of all points in the plane:

$$\mathcal{L} = \{ ((a,b), (c,d)) \in \mathbb{R}^2 \times \mathbb{R}^2 : a - c = 3(b-d) \}.$$

- (a) Prove that \mathcal{L} is an equivalence relation.
- (b) For a point (u, v) in the plane, determine the equivalence class $[(u, v)]_{\mathcal{L}}$, and represent it geometrically.
- (c) Determine the partition of \mathbb{R}^2 induced by \mathcal{L} .

8. Let R be an equivalence relation on set X. Prove that, for any $b, c \in X$,

$$b R c$$
 if and only if $[b]_R = [c]_R$.

- 9. Prove or disprove:
 - (a) A relation that is symmetric cannot be antisymmetric.
 - (b) A relation that is not symmetric must be antisymmetric.
- 10. (a) The following is a "proof" that every relation that is symmetric and transitive must be reflexive: "Suppose R is symmetric and transitive. Then x R y and y R x for any x and y in A, because R is symmetric. Thus x R x by transitivity. So R is reflexive."

What is wrong with this "proof"?

- (b) Give an example of a symmetric, transitive relation that is not reflexive.
- 11.* For a positive integer n, define $S_n = \{q \in \mathbb{Z} : \exists k \in \mathbb{Z}_{\geq 0} \ n = 2^k q\}.$
 - (a) Determine S_{7680} .
 - (b) Use S_n and the Well-Ordering Principle to prove that, for any $n \in \mathbb{Z}^+$, there exists an integer h and an odd integer r such that $n = 2^h r$.
- 12.* Explain why the definitions in (a) and (b) below are not valid.
 - (a) For any real number x, define \hat{x} to be the largest integer n such that $n \ge x$.
 - (b) For any real number x, define $\langle x \rangle$ to be the integer n such that |x-n| < 1.
 - (c) One can define the ceiling $\lceil x \rceil$ of a real number x to be the smallest integer in $\{n \in \mathbb{Z} : n \geqslant x\}$. Explain why this is a valid definition, i.e., why this integer always exists and is always unique.
- 13.* Recall that, for all $x \in \mathbb{R}$, if $x \ge 0$, then |x| = x, else |x| = -x. Consider the claim:

"
$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$
 for all real numbers a_1, \dots, a_n ."

(This is called the *Triangle Inequality*, which is often used in Calculus, as well as in Complexity Analysis, e.g., the *Travelling Salesman Problem* remains NP-Complete even if the distances satisfy the Triangle Inequality.)

(a) The following is a "proof" of the claim.

"We will use the Second Induction Principle. Since $|a_1| \leq |a_1|$ for any $a_1 \in \mathbb{R}$, the claim is trivially true for n = 1. Suppose the claim is true for all n < k + 1, where $k \geq 1$. For any $a_1, \ldots, a_{k-1}, a_k, a_{k+1} \in \mathbb{R}$, letting $a'_k = a_k + a_{k+1}$,

$$\begin{split} |a_1 + \cdots + a_{k-1} + a_k + a_{k+1}| \\ &= |a_1 + \cdots + a_{k-1} + a_k'| \\ &\leqslant |a_1| + \cdots + |a_{k-1}| + |a_k'| \qquad \text{by the induction hypothesis;} \\ &= |a_1| + \cdots + |a_{k-1}| + |a_k + a_{k+1}| \\ &\leqslant |a_1| + \cdots + |a_{k-1}| + |a_k| + |a_{k+1}| \quad \text{as } |b+c| \leqslant |b| + |c| \text{ by the induction hypothesis.} \end{split}$$

So the claim is true for n=k+1. By induction, the claim is true for all integers $n\geqslant 1$."

What is wrong with the "proof" above? (Note that the same "proof" can be used to show " $|a_1 + a_2 + \cdots + a_n| \ge |a_1| + |a_2| + \cdots + |a_n|$ for any real numbers a_1, \ldots, a_n ", which is false.)

- (b) Either fix the error in (a), or give your own proof of the claim.
- 14. Continued from Tutorial 4 Problem 13. Prove that, when $C = 2^n$ where $n \in \mathbb{Z}^+$, there is always a solution, i.e., no matter which unit square is singled out on a $2^n \times 2^n$ chessboard, the rest can be covered by non-overlapping L-tiles.