Multi-Objective Parametric Query Optimization

Immanuel Trummer, Christoph Koch

September 2, 2015

Paper Goal

Generalize Query Optimization

Traditional Query Optimization

- ► Input: query
- ▶ One cost metric
- Plan cost known
- ► Goal: find optimal plan

Traditional Query Optimization

- ► Input: query
- One cost metric
- ▶ Plan cost known
- Goal: find optimal plan

 $\mathsf{Cost}(\mathsf{Plan}) \in \mathbb{R}$

Parametric Query Optimization

- ► Input: query template
- One cost metric
- ► Plan cost unknown
- Goal: find optimal plan for each parameter region

Parametric Query Optimization

- ► Input: query template
- One cost metric
- ► Plan cost unknown
- Goal: find optimal plan for each parameter region

$$\mathsf{Cost}(\mathsf{Plan}){\in \mathbb{R}^N \to \mathbb{R}}$$

Multi-Objective Query Optimization

- ► Input: query
- Multiple cost metrics
- Plan cost known
- Goal: find Pareto-optimal plans

Multi-Objective Query Optimization

- ► Input: query
- ► Multiple cost metrics
- ▶ Plan cost known
- Goal: find Pareto-optimal plans

 $Cost(Plan) \in \mathbb{R}^N$

Traditional $c \in \mathbb{R}$

Optimization Goals

Context of MPQ

Application Scenarios

Multi-Objective QO
Cloud computing
Approximate QP
Crowdsourcing

Multi-Objective Parametric QO Parametric QO Query templates Stored procedures Configuration-par.

Paper Contribution Overview

- Formalize & analyze MPQ
- Propose first algorithm
- ► Theoretical analysis of algorithm
- Experimental evaluation

QUERY: $R \bowtie S \bowtie T$

Query: $R\bowtie S\bowtie T$

Query: $R\bowtie S\bowtie T$

Query: $R\bowtie S\bowtie T$

Pruning Overview

- ▶ Each query plan p maps to a Pareto region R(p)
- ► Compare plans pairwise during pruning: If p_1 dominates p_2 in X then $R(p_2) \leftarrow R(p_2) \setminus X$
- Plans with empty Pareto region are discarded

Questions

- ► Shape of Pareto regions?
- ► How to represent them?
- ▶ How to implement comparison, reduction, emptiness check?

Questions

- Shape of Pareto regions?
- ▶ How to represent them?
- ▶ How to implement comparison, reduction, emptiness check?

Choose: Piece-wise Linear Plan Cost Functions

Answer

► Region representation based on convex polytopes

Answer

▶ Region representation based on convex polytopes

Answer

- Region representation based on convex polytopes
- ▶ Pareto region: union of sub-regions
- ► Sub-region: convex polytope minus union of convex polytopes
- Implement basic operations using linear programming solver

Dominated Area is Removed from Pareto Region

Complexity Analysis

Query Optimization Variant	Nr. Pareto Plans per Relation
Traditional Multi-Objective Multi-objective Parametric	1 2nrMetrics 2(nrParams+1)·nrMetrics

Experimental Setup

Benchmark

- Randomly generated queries
- Different query structures
- Cloud scenario with two objectives

Algorithms

Multi-objective parametric optimizer

Comparison

- Measure optimization time
- Vary number of query tables

Experimental Results (Extract)

Conclusion

- Generalized query optimization model
- Presented first MPQ algorithm
- ► Future work: heuristics, approximation, ...

Thanks for your Attention!

Questions?

Slides/More on Query Optimization: www.itrummer.org