Chapitre n°1 : Activités numériques 1

Résumé du cours

1°) Division euclidienne

Définition 1

Soit a et b deux entiers naturels tels que b est non nul.

Effectuer la division euclidienne de a par b , c'est déterminer le couple d'entiers

(q, r) tels que : a = bq + r avec $0 \le r < b$.

a est le dividende , b est le diviseur , q est le quotient et ${\bf r}$ est le reste . Définition 2

Soit a et b deux entiers naturels tels que b est non nul.

b divise a si le reste de la division euclidienne de a par b est nul.

Définition 3

Soit a et b deux entiers naturels tels que b est non nul.

Le quotient $\frac{a}{b}$ est un entier naturel si b divise a .

Critères de divisibilité

- Par 2: Le dernier chiffre est: 0, 2, 4, 6 ou 8.
- Par 3: La somme des chiffres est multiple de 3.
- Par 5: Le dernier chiffre est 0 ou 5.
- Par 9 : La somme des chiffres est multiple de 9 .
- Par 10 : Le dernier chiffre est 0.

2°) Nombres premiers - PGCD - PPCM

a- Nombres premiers

Un entier naturel est premier s'il est différent de 1 et s'il possède exactement deux diviseurs : 1 et lui-même .

b- Décomposition d'un entier naturel

Tout entier naturel , sauf 0 et 1 , peut toujours s'écrire sous la forme d'un produit ou chaque facteur est un nombre premier .

c- PGCD de deux entiers naturels

Le plus grand diviseur commun à deux entiers naturels a et b est appelé le plus grand commun diviseur de a et b, on le note PGCD(a, b) .

Algorithme d'Euclide pour chercher le PGCD de deux nombres :

Méthode:

- On divise le plus grand nombre par le plus petit.
- On prend le diviseur et le reste de la division précédente , puis on recommence .
- On s'arrête lorsque le reste est nul .
- Le PGCD de deux nombres est les dernier reste non nul.

Exemple: Cherchons le PGCD des 255 et 221.

- On effectue la division euclidienne de 255 par 221, on obtient : 255 = $1 \times 221 + 34$.
- On effectue la division euclidienne de 221 par 34 , on obtient : $221 = 6 \times 34 + 17$

On effectue la division euclidienne de 34 par 17, on obtient : $34 = 2 \times 17 + 0$.

<u>Conclusion</u>: PGCD (225, 221) = 17.

d- PPCM de deux entiers naturels

Le plus petit multiple commun non nul de deux entiers naturels a et b est appelé le plus petit commun multiple de a et b, on le note PPCM(a, b) . Méthode :

On utilise la décomposition en facteurs premiers pour déterminer le PPCM de deux

Exemple: cherchons le PPCM de 210 et 126.

On a : 210 = $2 \times 3 \times 5 \times 7$ et 126 = $2 \times 3^2 \times 7$. Donc PPCM(210 , 126) = $2 \times 3^2 \times 5 \times 7$ = 630 .

Propriétés :

Si a est un multiple non nul de b , alors :

$$PPCM(a,b) = a$$
.

PPCM(a,b)
$$\times$$
 PGCD(a,b) = a \times b.

e- Nombres premiers entre eux

Deux entiers naturels sont dits premiers entre eux si leur PGCD est égal à 1 .

f- Fractions irréductibles

Soit a et b deux entiers naturels tels que b est non nul .

La fraction $\frac{a}{b}$ est dite **irréductible** si: **PGCD(a , b) = 1** .

g- Notation scientifique

- Tout nombre décimal peut s'écrire sous la forme a \times 10 n , ou a et n sont des entiers relatifs.
- Tout nombre décimal peut s'écrire sous la forme a \times 10 n , ou a est un nombre décimal ayant un seul chiffre non nul avant la virgule et n un entier relatif. L'écriture
- $\mathbf{a} \times \mathbf{10}^n$ est appelée **notation scientifique** du nombre décimal .

h- Valeurs exactes, approchées, arrondis

Exemples:

Valeur exacte	2000	π	$3\sqrt{7} - 9$
	7	60	2
Troncature à 3 décimales	285,714	0,052	-0,531
Valeur approchée à 10 ⁻³ prés			
🕶 par défaut	285,714		-0 ,532
par excès	285,715	0,053	-0,531
Valeurs arrondies :			
™ à 10 ⁻³ prés	285,714		-0,531
à 4 chiffres significatifs	285,7	0,05236	-0,5314

Définition

Soit p un entier , on dit que le nombre décimal a est une valeur approchée de b à 10^p prés si : $\mathbf{a} - \mathbf{10}^p \le \mathbf{b} \le \mathbf{a} + \mathbf{10}^p$.

Méthode:

Pour obtenir l'écriture scientifique , on place la virgule après le premier chiffre non nul. Pour avoir un ordre de grandeur , on arrondit ce décimal à l'entier le plus proche et on conserve la puissance de 10 .

Exemple:

312,9
$$\times$$
 0,0973 \times 0,00018 = 3,219 \times 10 2 \times 9,73 \times 10 $^{-2}$ \times 1,8 \times 10 $^{-4}$. = 3,219 \times 9,73 \times 1,8 \times 10 $^{-4}$ \approx 3 \times 10 \times 2 \times 10 $^{-4}$.

On obtient environ 6×10^{-3} .

I - Droite réelle

A tout point d'une droite réelle graduée correspond un réel Réciproquement, à tout réel correspond un point M de la droite graduée.

Exemple: Construction du point d'abscisse $\sqrt{2}$. Soit D une droite graduée de repère (O , I) .

Soit D' la droite perpendiculaire à D passant par O .

On construit sur D' le point J tel que OI = OJ, puis on complète la construction du carré OIKJ.

Le cercle de centre O et de rayon OK coupe la demi-droite [OI) au point M d'abscisse $\sqrt{2}$.

En effet en appliquant le théorème de Pythagore dans le triangle rectangle OIK , on a : $OK^2 = OI^2 + IK^2 = 1 + 1 = 2 \; .$

Par suite on aura donc : OM = OK = $\sqrt{2}$.