Fakultät für Physik und Astronomie Ruprecht-Karls-Universität Heidelberg

Bachelorarbeit in Physik eingereicht von

Patrick Fahner

geboren in Mannheim (Deutschland)

August 2013

About ...

This Bachelor Thesis has been carried out by XYZ at the ABC Institute in Heidelberg under the supervision of Prof. Max Mustermann

1 CP-Verletzung in B-Meson-Systemen

1.1 Diskrete Symmetrietransformationen

Symmetrien sind in der Physik von zentraler Bedeutung. Gemäß dem Noether-Theorem existiert in der klassischen Physik zu jeder kontinuierlichen Symmetrie eine Erhaltungsgröße. In quantenmechanischen Systemen können wir drei diskrete Symmetrietransformationen betrachten:

1. Parität \mathcal{P} :

Bei der Paritätsoperation wird das Vorzeichen der kartesischen Ortskoordinaten umgekehrt. Dies entspricht einer Punktspigelung.

2. Ladungskonjugation C:

Jedes Teilchen wird durch sein Antiteilchen ersetzt.

3. Zeitumkehr \mathcal{T} :

Das Vorzeichen auf der Zeitachse wird umgekehrt. Da in der vorligenden Arbeit allerdings nur die CP-Verletzung gemessen werden soll, wird die Zeitumkehr im folgenden vernachlässigt.

Entgegen der klassischen Intuition konnte Wu 1956 nachweisen, dass die Parität im β -Zerfall und damit in der schwachen Wechselwirkung nicht erhalten ist. Weitere Experimente zeigen, dass die schwache Wechselwirkung die Parität maximal verletzt: Neutrinos, die nur schwach wechselwirken können, sind stets "linkshändig" (Spin und Impuls antiparallel), Antineutrinos dagegen immer "rechtshändig" (Spin und Impuls parallel). Da der Spin im Gegensatz zum Impuls invariant unter \mathcal{P} -Transformation ist, würde diese Operation aus einem linkshändigen Neutrino ein rechtshändiges machen, was in der Nautr nicht realisiert ist.

Damit ist offensichtlich, dass die schwache Wechselwirkung auch die Ladungskonjugation verletzt: Wendet man die \mathcal{C} -Transformation auf ein linkshändiges Neutrino an, so erhält man ein linkshändiges Antineutrino. Dieses existiert aber wie bereits erwähnt nicht. Analog gilt die Überlegung auch für Antineutrinos.

1.1.1 Scheinbare \mathcal{CP} -Invarianz

Wendet man nun aber die Transformationen \mathcal{P} und \mathcal{C} direkt hintereinander an, so ergibt sich zunächst kein Widerspruch zur Natur (siehe Abb. ??). Aus einen linkshändigen Neutrino wird ein rechtshändiges Antineutrino. Im Jahre 1964 wurde dann allerdings im Zerfall neutraler K-Mesonen erstmal \mathcal{CP} -Verletzung nachgewiesen. [1]

Abbildung 1.1: Scheinbare \mathcal{CP} -Invarianz: Während eine reine \mathcal{P} - oder \mathcal{C} -Transformation zu in der Natur nicht realisierten Zuständen führt, scheint es bei der kombinierten \mathcal{CP} -Transformation keinen Widerspruch zu geben (dünne Pfeile: Impulsausrichtung, dicke Pfeile: Spinausrichtung).

1.2 Direkte CP-Verletzung

Die Zerfallsamplituden der neutralen B^0 -Mesonen in einen Endzustand $|f\rangle$ bzw. seinen \mathcal{CP} -konjugierten Zustand $|\overline{f}\rangle$ sind definiert als

$$A_{f} = \langle f \mid \mathcal{H} \mid B^{0} \rangle, \qquad A_{\overline{f}} = \langle \overline{f} \mid \mathcal{H} \mid B^{0} \rangle,$$

$$\overline{A_{f}} = \langle f \mid \mathcal{H} \mid \overline{B^{0}} \rangle, \qquad \overline{A_{\overline{f}}} = \langle \overline{f} \mid \mathcal{H} \mid \overline{B^{0}} \rangle. \tag{1.1}$$

Ist \mathcal{CP} erhalten, dann sollten die Zerfallsraten, ergo auch die Zerfallsamplituden eines B^0 nach f sowie eines $\overline{B^0}$ nach \overline{f} gleich sein. Dies bedeutet:

Direkte
$$\mathcal{CP}$$
-Verletzung $\Leftrightarrow \frac{A_f}{\overline{A_f}}$ bzw. $\overline{A_f}$ (1.2)

1.3 \mathcal{CP} -Verletzung in der Mischung

Die Flavoureigenzustände $|B^0\rangle = |\bar{b}d\rangle$ und $|\overline{B^0}\rangle = |b\bar{d}\rangle$ entsprechen nicht den Masseneigenzuständen. Wir definieren daher die normierten Zustände

$$|B_h\rangle = p \left| B^0 \right\rangle - q \left| \overline{B^0} \right\rangle \tag{1.3}$$

$$|B_l\rangle = p \left| B^0 \right\rangle + q \left| \overline{B^0} \right\rangle \tag{1.4}$$

mit
$$|p|^2 + |q|^2 = 1$$
 (1.5)

welche eine definierte Masse und Zerfallsbreite besitzen. Sie sind auch Eigenzustände eines nicht-hermiteschen Hamiltonoperators (Nichthermitizität wegen des möglichen Zerfalls der Teilchens). Dieser setzt sich zusammen aus den hermiteschen Massenoperatoren M und Γ . Notieren wir die lineare Superposition der Zustände 1.3 und 1.4 als $\binom{p}{q}$, so nimmt die zeitabhängige Schrödingergleichung die Form

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} p \\ q \end{pmatrix} = \left(M - \frac{\mathrm{i}}{2}\Gamma \right) \begin{pmatrix} p \\ q \end{pmatrix} \tag{1.6}$$

an und führt zur folgenden zeitlichen Entwicklung der Zustände:

$$|B_{h/l}(t)\rangle = e^{-im_{h/l}t - \frac{1}{2}\Gamma_{h/l}t} |B_{h/l}(0)\rangle$$

$$= e^{-\gamma_{h/l}t} (p |B^{0}\rangle \mp q |\overline{B^{0}}\rangle)$$
(1.7)

$$mit \quad \gamma_{h/l} = im_{h/l} + \frac{\Gamma_{h/l}}{2}$$
 (1.8)

Hierbei ist $\gamma_{h/l}$ so definiert, dass $-i\gamma_{h/l} = m_{h/l} - \frac{i}{2}\Gamma_{h/l}$ die Eigenwerte des Hamiltonoperators $\mathcal{H} := \left(M - \frac{i}{2}\Gamma\right)$ sind. Umgeschrieben auf die Flavoureigenzustände erhalten wir:

$$|B^{0}(t)\rangle = \frac{1}{2p} (|B_{h}\rangle + |B_{l}\rangle)$$

$$= \frac{1}{2} \left[(e^{-\gamma_{h}t} + e^{-\gamma_{l}t}) |B^{0}\rangle - \frac{q}{p} (e^{-\gamma_{h}t} - e^{-\gamma_{l}t}) |\overline{B^{0}}\rangle \right]$$
(1.9)

Die Wahrscheinlichkeit für den Übergang eines $|B^0\rangle$ (zum Zeitpunkt t=0) in ein $|\overline{B^0}\rangle$ beträgt:

$$P(B^{0} \to \overline{B^{0}})(t) = |\langle \overline{B^{0}} | B^{0}(t) \rangle|^{2}$$

$$= \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left[e^{-\Gamma_{h}t} + e^{-\Gamma_{l}t} - 2e^{-\frac{1}{2}(\Gamma_{h} + \Gamma_{l})t} \cos(\Delta m_{d}t) \right]$$

$$\text{mit } \Delta m_{d} = m_{h} - m_{l}$$

$$(1.10)$$

1.4 $\mathcal{CP}\text{-Verletzung}$ in der Interferenz

2 Abschätzung systematischer Fehler

2.1 Tagging Kalibrierung

Im Fit wird bei den Parametern der Tagging Kalibrierung nur der statistischen Fehler berücksichtigt. Es soll nun an dieser Stelle der Einfluss der statistischen Unsicherheiten abgeschätzt werden.

Die Korrekturparameter p_0 und p_1 für die Fehlerwahrscheinlichkeit des OST sind gegeben durch

$$p_0 = 0,392 \pm 0,0017 \text{ (stat.)} \pm 0,0076 \text{ (syst.)}$$
 (2.1)

$$p_1 = 1,035 \pm 0,021 \text{ (stat.)} \pm 0,0076 \text{ (syst.)}.$$
 (2.2)

Variation der Parameter in den Daten Zunächst werden die Startwerte der Parameter p_0 und p_1 variiert, indem man jeweils den systematischen Fehler der Parameter addiert bzw. subtrahiert und dann den Fit auf die Daten durchührt. Für alle vier Kombinationen wird dann die Abweichung vom regulären Fitergebnis für $S_{J/\Psi K_s^0}$ berechnet. Der Referenzwert aus dem Fit beträgt

$$S_{J/\Psi K_{\circ}^{0}} = 0,625 \pm 0,069$$
 (2.3)

Tabelle 2.1: Variation des Fitergebnisses für $S_{J/\Psi K_s^0}$ bei Veränderung der Startwerte für p_0 und $p_1 \pm$ ihrer statistischen Unsicherheiten

p_0	p_1	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
0,392-0,0076	1,035-0,012	$0,599 \pm 0,067$	$-0,026 \pm xxx$
0,392+0,0076	1,035-0,012	$0,661 \pm 0,072$	$0,036 \pm xxx$
0,392-0,0076	1,035+0,012	$0,592 \pm 0,066$	$-0,033 \pm xxx$
0,392+0,0076	1,035+0,012	$0,651 \pm 0,071$	$0,026 \pm xxx$

Die Ergebnisse sind Tabelle 2.1 zu entnehmen. Die größte Abweichung beträgt hier $\Delta S_{J/\Psi K_s^0}=0,036.$

Variation der Parameter in Toy MC Eine weitere Möglichkeit der Abschätzung besteht darin, sich entsprechende Toys zu generieren und diese dann zu fitten. Im Folgenden werden bei der Toy Generierung die Parameter p_0 und p_1 um ihre systematische Unsicherheiten variiert, der Fit dann allerdings mit den ursprünglichen Parameterwerten

2 Abschätzung systematischer Fehler

durchgeführt. Als Referenzwert generieren und fitten wir toys mit den ursprünglichen Parameterwerten p_0 und p_1 sowie $S_{J/\Psi K_s^0} = 0.75$ und erhalten hierfür:

$$S_{J/\Psi K_s^0} = 0,75527 \pm xxx \tag{2.4}$$

Tabelle 2.2: Variation des Fitergebnisses für $S_{J/\Psi K_s^0}$ bei Veränderung der Parameterwerte p_0 und p_1 \pm ihrer statistischen Unsicherheiten bei der Generierung von Toys

$\overline{p_0}$	p_1	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
0,392-0,0076	1,035-0,012	$0,782 \pm xxx$	$0,027 \pm xxx$
0,392+0,0076	1,035-0,012	$0,719 \pm xxx$	$-0,036 \pm xxx$
0,392-0,0076	1,035+0,012	$0,788 \pm xxx$	$0,032 \pm xxx$
0,392+0,0076	1,035+0,012	$0,727 \pm xxx$	$-0,028 \pm xxx$

Die Ergebnisse sind Tabelle 2.2 zu entnehmen. Die größte Abweichung beträgt hier betragsmäßig ebenfalls $\Delta S_{J/\Psi K_s^0}=0,036$. Daher schätzen wir den systematischen Fehler durch die Tagging Kalibrierung auf

$$s_{taq_calib} = 0.036. (2.5)$$

Literaturverzeichnis

 $[1]\,$ K. Kleinknecht, Uncovering \dots

Glossary

 ${\bf OST}$ Opposite Side Tagger. 5

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den ...,