Disciplina Métodos Potenciais

Vanderlei C. Oliveira Jr.

Observatório Nacional - MCTI

Rio de Janeiro - 2014

Conteúdo

1	Fun	ções harmônicas	1
	1.1	Exercício	1
2	Har	mônicos esféricos	2
	2.1	Exercício	2
		2.1.1	2
		2.1.2	3
		2.1.3	4
		2.1.4	6

1 Funções harmônicas

1.1 Exercício

Seja f(x, y, z) dada por

$$f(x,y,z) = -\iiint_{v} \mathbf{m}(x',y',z')^{\mathsf{T}} \left(\nabla \frac{1}{r}\right) dv \tag{1}$$

em que $r=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}$ é a distância entre o ponto (x,y,z) e o ponto (x',y',z') dentro do volume de integração v (Figura 1). Os

vetores $\mathbf{m}(x',y',z')$ e $\nabla \frac{1}{r}$ são dados por

$$\mathbf{m}(x', y', z') = \begin{bmatrix} m_x(x', y', z') \\ m_y(x', y', z') \\ m_z(x', y', z') \end{bmatrix}_{3 \times 1}$$
 (2)

e

$$\nabla \frac{1}{r} = \begin{bmatrix} \frac{\partial}{\partial x} \frac{1}{r} \\ \frac{\partial}{\partial y} \frac{1}{r} \\ \frac{\partial}{\partial z} \frac{1}{r} \end{bmatrix}_{3 \times 1}$$
 (3)

.....

Mostre que a função f(x,y,z) (Eq. 1) é harmônica e, portanto, satisfaz a equação de Laplace em coordenadas Cartesianas

$$\frac{\partial^2 f(x,y,z)}{\partial x^2} + \frac{\partial^2 f(x,y,z)}{\partial y^2} + \frac{\partial^2 f(x,y,z)}{\partial z^2} = 0 \quad . \tag{4}$$

......

2 Harmônicos esféricos

2.1 Exercício

2.1.1

Sejam $f_1(r)$ e $f_2(r)$ duas funções dadas por

$$f_1(r) = r^n (5)$$

e

$$f_2(r) = r^{-(n+1)}$$
 , (6)

Figura 1: Distância $r=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}$ entre um ponto (x,y,z) e outro ponto (x',y',z') de um sistema de coordenadas Cartesianas. O ponto (x',y',z') está dentro do volume de integração v.

em que $n \geqslant 0$ é um número inteiro e r > 0 é um número real.

......

Mostre que $f_1(r)$ (Eq. 5) e $f_2(r)$ (Eq. 6) são soluções da equação diferencial

$$r^{2} \frac{d^{2} f(r)}{dr^{2}} + 2 r \frac{d f(r)}{dr} - n(n+1) f(r) = 0 \quad .$$
 (7)

2.1.2

Sejam $h_1(\lambda)$ e $h_2(\lambda)$ duas funções dadas por

$$h_1(\lambda) = \cos(m\lambda) \tag{8}$$

е

$$h_2(\lambda) = sen(m\lambda) \quad , \tag{9}$$

em que $m \ge 0$ é um número inteiro e λ é um número real.

......

Mostre que $h_1(\lambda)$ (Eq. 8) e $h_2(\lambda)$ (Eq. 9) são soluções da equação diferencial

$$\frac{d^2h(\lambda)}{d\lambda^2} + m^2h(\lambda) = 0 \quad . \tag{10}$$

.....

2.1.3

A equação diferencial

$$sen\theta g''(\theta) + cos\theta g'(\theta) + \left[n(n+1) sen\theta - \frac{m^2}{sen\theta} \right] = 0$$
 (11)

tem como solução os polinômios associados de Legendre

$$q(\theta) = P_{nm}(\cos\theta) \quad . \tag{12}$$

Nestas Equações, n e m são inteiros maiores ou iguais a zero (sendo m menor ou igual a n), $g'(\theta)$ é a primeira derivada e $g''(\theta)$ é a segunda derivada de $g(\theta)$. Os inteiros n e m são, respectivamente, o grau e a ordem do polinômio $P_{nm}(\cos\theta)$. Por conveniência, estas Equações são comumente transformadas por mudança de variáveis utilizando a relação $t = \cos\theta$. Dessa forma,

$$g(\theta) = \overline{g}(t)$$

$$g'(\theta) = -\overline{g}'(t) \operatorname{sen}\theta$$

$$g''(\theta) = \overline{g}''(t) \operatorname{sen}^{2}\theta - \overline{g}'(t) \cos\theta .$$
(13)

em que $\overline{g}(t) = P_{nm}(t)$, com primeira e segunda derivadas $\overline{g}'(t)$ e $\overline{g}''(t)$, respectivamente. Substituindo as Equações 13 na equação diferencial 11, dividindo o

resultado por $sen\theta$ e utilizando a relação $sen^2\theta=1-t^2$ temos que

$$(1 - t^2) \overline{g}''(t) - 2 t \overline{g}'(t) + \left[n(n+1) - \frac{m^2}{1 - t^2} \right] = 0 \quad . \tag{14}$$

A função $\overline{g}(t) = P_{nm}(t)$ (polinômio associado de Legendre escrito em função da viariável t) que satisfaz a Equação 14 pode ser dada por

$$P_{nm}(t) = \frac{1}{2^n n!} (1 - t^2)^{m/2} \frac{d^{n+m}}{dt^{n+m}} (t^2 - 1)^n \quad . \tag{15}$$

Por exemplo,

$$P_{11}(t) = \frac{(1-t^2)^{1/2}}{2} \frac{d^2}{dt^2} (t^2 - 1)$$

$$= \sqrt{1-t^2}$$

$$= sen\theta , \qquad (16)$$

ou

$$P_{21}(t) = \frac{(1-t^2)^{1/2}}{2^2 2!} \frac{d^3}{dt^3} (t^2 - 1)^2$$

$$= \frac{\sqrt{1-t^2}}{8} (16t + 8t)$$

$$= 3t\sqrt{1-t^2}$$

$$= 3 \operatorname{sen}\theta \cos\theta .$$
(17)

No caso particular em que m=0, não há raízes $\sqrt{1-t^2}$, $P_{nm}(t)$ é representado simplesmente por $P_n(t)$ e é denominado polinômio de Legendre. A partir da Equação 15, os polinômios de Legendre podem ser escritos como

$$P_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n \quad . \tag{18}$$

Alternativamente, os polinômios de Legendre (18) a partir do grau n=2 podem ser obtidos pela fórmula recursiva

$$P_n(t) = -\frac{n-1}{n} P_{n-2}(t) + \frac{2n-1}{n} t P_{n-1}(t) \quad , \tag{19}$$

em que $P_2(t)$ é obtido utilizando $P_0(t)$ e $P_1(t)$, $P_3(t)$ é obtido utilizando $P_1(t)$ e $P_2(t)$, etc.

Sendo assim, determine os polinômios de Legendre de grau n=0 até n=5 utilizando a Equação 18. Em seguida, determine os polinômios de grau n=2 até n=5 utilizando a fórmula recursiva (Eq. 19). Por último, faça um gráfico dos polinômios de Legendre $P_n(t)$ de grau n=0 até n=5 para t no intervalo [-1,1].

2.1.4

Solução da Equação de Laplace em coordenadas esféricas

Seja $V(r,\theta,\lambda)$ uma função harmônica que depende das coordenadas esféricas $r,~\theta$ e λ (Fig. 2). Esta função satisfaz a equação de Laplace em coordenadas esféricas, que pode ser escrita como

$$r^2 \frac{\partial^2 V}{\partial r^2} + 2r \frac{\partial V}{\partial r} + \frac{\partial^2 V}{\partial \theta^2} + \cot \theta \frac{\partial V}{\partial \theta} + \frac{1}{sen^2 \theta} \frac{\partial^2 V}{\partial \lambda^2} = 0 \quad . \tag{20}$$

A equação de Laplace 20 pode ser resolvida pelo método de separação de variáveis. Este método consiste em supor que a função $V(r, \theta, \lambda)$ pode ser reescrita como o produto entre três funções independentes:

$$V(r,\theta,\lambda) = f(r) g(\theta) h(\lambda) \quad . \tag{21}$$

Figura 2: Sistema de coordenadas Cartesianas (x,y,z) e esféricas (r,θ,λ) .

O próximo passo consiste em determinar as funções f(r), $g(\theta)$ e $h(\lambda)$. Para tanto, basta substituir a função $V(r,\theta,\lambda)$ dada pela Equação 21 na equação de Laplace 20. Esta substituição nos leva a conclusão de que a função f(r) (Eq. 21) satisfaz a equação diferencial 7. Tal como visto anteriormente, as funções $f_1(r)$ (Eq. 5) e $f_2(r)$ (Eq. 6) são soluções desta equação. Neste caso, mostra-se que a função $V(r,\theta,\lambda)$ pode ser escrita como:

$$V(r,\theta,\lambda) = r^n g(\theta) h(\lambda) \quad , \tag{22}$$

ou

$$V(r,\theta,\lambda) = \frac{1}{r^{(n+1)}} g(\theta) h(\lambda) \quad . \tag{23}$$

Estas funções são denominadas harmônicos esféricos sólidos. De forma análoga, mostra-se que a função $h(\lambda)$ (Eq. 21) satisfaz a equação diferencial 10, que possui as soluções $h_1(\lambda)$ (Eq. 8) e $h_2(\lambda)$ (Eq. 9), e que a função $g(\theta)$ (Eq. 21)

satisfaz a equação diferencial 11, cuja solução é dada pelos polinômios associados de Legendre $P_{nm}(cos\theta)$ (Eq. 12). Os polinômios associados de Legendre $P_{nm}(cos\theta)$ podem ser obtidos pela Equação 15, em que $t = cos\theta$. Por fim, é possível mostrar que a função $V(r,\theta,\lambda)$ pode ser escrita de duas formas:

$$V_e(r,\theta,\lambda) = \sum_{n=0}^{\infty} r^n Y_n(\theta,\lambda) \quad , \tag{24}$$

ou

$$V_i(r,\theta,\lambda) = \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} Y_n(\theta,\lambda) \quad , \tag{25}$$

em que

$$Y_n(\theta, \lambda) = \sum_{m=0}^{n} \left[A_{nm} R_{nm}(\theta, \lambda) + B_{nm} S_{nm}(\theta, \lambda) \right] , \qquad (26)$$

sendo A_{nm} e B_{nm} constantes e as funções $R_{nm}(\theta,\lambda)$ e $S_{nm}(\theta,\lambda)$ dadas por

$$R_{nm}(\theta, \lambda) = P_{nm}(\cos\theta)\cos(m\lambda) \tag{27}$$

е

$$S_{nm}(\theta,\lambda) = P_{nm}(\cos\theta) \operatorname{sen}(m\lambda)$$
 (28)

As funções $Y_n(\theta, \lambda)$ (Eq. 26) são denominadas harmônicos (esféricos) de superfície.

Relações de ortogonalidade entre as funções $R_{nm}(\theta, \lambda)$ e $S_{nm}(\theta, \lambda)$

As constantes A_{nm} e B_{nm} (Eq. 26) podem ser determinadas por meio das relações de ortogonalidade entre as funções $R_{nm}(\theta, \lambda)$ (Eq. 27) e $S_{nm}(\theta, \lambda)$ (Eq. 28). Para tanto, vamos considerar r = 1 nas equações 24 e 25. Dessa maneira,

estas equações são iguais a uma função $f(\theta, \lambda)$ que pode ser escrita em função dos harmônicos de superfície (Eq. 26) da seguinte forma

$$f(\theta, \lambda) = \sum_{n=0}^{\infty} Y_n(\theta, \lambda)$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[A_{nm} R_{nm}(\theta, \lambda) + B_{nm} S_{nm}(\theta, \lambda) \right].$$
(29)

De acordo com as relações de ortogonalidade entre as funções $R_{nm}(\theta, \lambda)$ (Eq. 27) e $S_{nm}(\theta, \lambda)$ (Eq. 28),

$$\iint_{\sigma} R_{nm}(\theta, \lambda) R_{op}(\theta, \lambda) d\sigma = 0$$
(30)

e

$$\iint_{\sigma} S_{nm}(\theta, \lambda) S_{op}(\theta, \lambda) d\sigma = 0$$
(31)

para o caso em que $nm \neq op$. Já a integral

$$\iint_{\sigma} R_{nm}(\theta, \lambda) S_{op}(\theta, \lambda) d\sigma = 0$$
(32)

é sempre zero, independente dos valores de o e p. Nestas Equações, $\iint_{\sigma} = \int_{\lambda=0}^{2\pi} \int_{\theta=0}^{\pi} e \ d\sigma = sen\theta \ d\theta d\lambda$. Por outro lado, estas integrais são diferentes de zero quando nm = op. Neste caso,

$$\iint_{\Gamma} R_{n0}^2(\theta,\lambda) d\sigma = \frac{4\pi}{2n+1}$$
(33)

e

$$\left. \iint_{\sigma} R_{nm}^{2}(\theta, \lambda) d\sigma \atop \iint_{\sigma} S_{nm}^{2}(\theta, \lambda) d\sigma \right\} = \frac{2\pi}{2n+1} \frac{(n+m)!}{(n-m)!}.$$
(34)

Observe que estas integrais (Eqs. 30, 31, 32, 33 e 34) são avaliadas sobre a superfície σ de uma esfera com raio unitário, cuja área é igual a 4π .

Determinação das constantes A_{nm} e B_{nm}

Para determinar as constantes A_{nm} (Eqs. 26 e 29), basta multiplicar os dois lados da Equação 29 por $R_{op}(\theta, \lambda)$ (Eq. 27), integrar o resultado sobre a superfície σ de uma esfera com raio unitário e utilizar as relações de ortogonalidade (Eqs. 30, 31, 32, 33 e 34):

$$R_{op}(\theta,\lambda) f(\theta,\lambda) = R_{op}(\theta,\lambda) \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[A_{nm} R_{nm}(\theta,\lambda) + B_{nm} S_{nm}(\theta,\lambda) \right]$$

$$= \left[A_{00} R_{op}(\theta,\lambda) R_{00}(\theta,\lambda) + B_{00} R_{op}(\theta,\lambda) R_{00}(\theta,\lambda) + A_{10} R_{op}(\theta,\lambda) R_{10}(\theta,\lambda) + B_{10} R_{op}(\theta,\lambda) S_{10}(\theta,\lambda) + A_{11} R_{op}(\theta,\lambda) S_{10}(\theta,\lambda) + A_{11} R_{op}(\theta,\lambda) S_{11}(\theta,\lambda) + B_{11} R_{op}(\theta,\lambda) S_{11}(\theta,\lambda) + \vdots \right]$$

$$\vdots$$

$$A_{op} R_{op}(\theta,\lambda) R_{op}(\theta,\lambda) + \vdots$$

$$\vdots$$

$$A_{nn} R_{op}(\theta,\lambda) R_{nn}(\theta,\lambda) + B_{nn} R_{op}(\theta,\lambda) S_{nn}(\theta,\lambda) = \left[\dots + A_{op} R_{op}^{2}(\theta,\lambda) + \dots \right]$$

$$= \left[\dots + A_{op} R_{op}^{2}(\theta,\lambda) + \dots \right]$$

$$\iint_{\sigma} f(\theta, \lambda) R_{op}(\theta, \lambda) d\sigma = \left[\dots + \iint_{\sigma} A_{op} R_{op}^{2}(\theta, \lambda) d\sigma + \dots \right] \\
= \left[\dots + A_{op} \iint_{\sigma} R_{op}^{2}(\theta, \lambda) d\sigma + \dots \right] \\
= A_{op} \iint_{\sigma} R_{op}^{2}(\theta, \lambda) d\sigma$$
(36)

De forma análoga, para determinar as constantes B_{nm} (Eqs. 26 e 29), basta multiplicar os dois lados da Equação 29 por $S_{op}(\theta,\lambda)$ (Eq. 28), integrar o resultado sobre a superfície σ de uma esfera com raio unitário e utilizar as relações de ortogonalidade (Eqs. 30, 31, 32, 33 e 34):

$$\iint_{\mathcal{S}} f(\theta, \lambda) S_{op}(\theta, \lambda) d\sigma = B_{op} \iint_{\mathcal{S}} S_{op}^{2}(\theta, \lambda) d\sigma.$$
 (37)

A partir das Equações 36 e 37 temos que

$$A_{n0} = \frac{2n+1}{4\pi} \iint f(\theta,\lambda) R_{n0}(\theta,\lambda) d\sigma , \qquad (38)$$

$$A_{nm} = \frac{2n+1}{2\pi} \frac{(n-m)!}{(n+m)!} \iint f(\theta,\lambda) R_{nm}(\theta,\lambda) d\sigma , \ m \neq 0,$$
 (39)

 \mathbf{e}

$$B_{nm} = \frac{2n+1}{2\pi} \frac{(n-m)!}{(n+m)!} \iint f(\theta,\lambda) S_{nm}(\theta,\lambda) d\sigma , m \neq 0.$$
 (40)

Normalização das funções $R_{nm}(\theta, \lambda)$ e $S_{nm}(\theta, \lambda)$

Em geofísica, a descrição do campo de gravidade e do campo geomagnético é feita por meio dos harmônicos esféricos (Eqs. 24 e 25). Contudo, por conveniência, a descrição destes campos não é feita utilizando-se as funções $R_{nm}(\theta, \lambda)$

(Eq. 30) e $S_{nm}(\theta,\lambda)$ (Eq. 31). Ao invés destas funções, são utilizadas as funções normalizadas

$$\overline{R}_{nm}(\theta,\lambda) = c_{nm} R_{nm}(\theta,\lambda) \tag{41}$$

e

$$\overline{S}_{nm}(\theta,\lambda) = c_{nm} \, S_{nm}(\theta,\lambda) \,. \tag{42}$$

Para descrever o campo de gravidade, os coeficientes c_{nm} (Eqs. 41 e 42) são

$$c_{n0}^{gr} = \sqrt{2\,n+1}\tag{43}$$

 \mathbf{e}

$$c_{nm}^{gr} = \sqrt{2(2n+1)\frac{(n-m)!}{(n+m)!}}, \quad m \neq 0.$$
 (44)

Para descrever o campo geomagnét
co, os coeficientes c_{nm} (Eqs. 41 e 42) são

$$c_{n0}^{ge} = 1 (45)$$

е

$$c_{nm}^{ge} = \sqrt{2 \frac{(n-m)!}{(n+m)!}}, \quad m \neq 0.$$
 (46)

Utilizando as relações de ortogonalidade entre as funções $R_{nm}(\theta, \lambda)$ (Eq. 30) e $S_{nm}(\theta, \lambda)$ (Eq. 31), determine

$$\frac{1}{4\pi} \iint\limits_{\sigma} \left[\overline{R}_{nm}^{gr}(\theta, \lambda) \right]^2 d\sigma ,$$

$$\frac{1}{4\pi} \iint\limits_{\sigma} \left[\overline{S}^{gr}_{nm}(\theta,\lambda) \right]^2 \, d\sigma \; ,$$

$$\frac{1}{4\pi} \iint_{\sigma} \left[\overline{R}_{nm}^{ge}(\theta, \lambda) \right]^2 d\sigma$$

 \mathbf{e}

$$\frac{1}{4\pi} \iint\limits_{\sigma} \left[\overline{S}^{ge}_{nm}(\theta,\lambda) \right]^2 \, d\sigma \,,$$

em que $\iint_{\sigma} = \int_{\lambda=0}^{2\pi} \int_{\theta=0}^{\pi} e \ d\sigma = sen\theta \ d\theta d\lambda$. Nestas integrais, $\overline{R}_{nm}^{gr}(\theta,\lambda)$ e $\overline{S}_{nm}^{gr}(\theta,\lambda)$ representam as funções normalizadas $\overline{R}_{nm}(\theta,\lambda)$ (Eq. 41) e $\overline{S}_{nm}(\theta,\lambda)$ (Eq. 42) utilizando-se os coeficientes c_{n0}^{gr} (Eq. 43) e c_{nm}^{gr} (Eq. 44). Analogamente, $\overline{R}_{nm}^{ge}(\theta,\lambda)$ e $\overline{S}_{nm}^{ge}(\theta,\lambda)$ representam as funções normalizadas $\overline{R}_{nm}(\theta,\lambda)$ (Eq. 41) e $\overline{S}_{nm}(\theta,\lambda)$ (Eq. 42) utilizando-se os coeficientes c_{n0}^{ge} (Eq. 45) e c_{nm}^{ge} (Eq. 46).

.....