Name:	
VIP ID:	

- Write your name and your VIP ID in the space provided above.
- The test has six (6) pages, including this one and a formula sheet at the end.
- Do not detach the formula sheet from the booklet.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.

Page	Max	Points
2	20	
3	30	
4	30	
5	20	
Total	100	

Problem 1 (10 pts). Suppose that the population P(t) of a country after t years satisfies the differential equation.

$$\frac{dP}{dt} = kP(200 - P)$$

with k constant. Its population in 1940 was 100 million and was then growing at the rate of 1 million per year. Predict this country's population in the year 2020.

Population in 2020:

Problem 2 (10 pts). Plot a slope field to indicate the stability of the following population model:

$$\frac{dP}{dt} = (P-2)^2(P-4)^3(2P^2 - 13P + 21)$$

Problem 3 (20 pts—10 pts each part). During the period from 1790 to 1930, the U.S. population P(t) after t years grew from 3.9 million to 123.2 million. Throughout this period, P(t) remained close to the solution of the initial value problem

$$\frac{dP}{dt} = 0.03135P - 0.0001489P^2, \quad P(0) = 3.9.$$

(a) What limiting population does it predict?

(b) What 1930 population does this model predict?

Problem 4 (10 pts). Consider a logistic population P(t) of fish on a lake, measured in hundreds after t years, with k=3 and M=6. Suppose that 450 fish are harvested annually (at a constant rate throughout the year). If the lake is initially stocked with 375 fish, when will its population reach 90% of the carrying capacity?

Problem 5 (10 pts). Find the family of curves for which the length of the part of the tangent between the point of contact (x, y) and the y-axis is equal to half the y-intercept of the tangent.

Problem 6 (20 pts—10 pts each). Find the orthogonal trajectories of each of the following families of curves:

(a)
$$3x^2 + 5y^2 = k$$

(b)
$$y^2 = 3x^2(2 - kx)$$

Problem 7 (10 pts). Find all curves for which the subtangent at any third of the square of the abscissa.	y point (x, y) is equal to one

Problem 8 (10 pts). Find all curves for which the normal at point (x, y) and the line joining the origin with that point form an isosceles triangle having its base on the x-axis.

Formula Sheet

f(x)	$\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x) dx$				
1	$\frac{1}{s}$	s > 0	$cf(x)\pm g(x)$	$cF(s) \pm G(s)$	s > max(a, b)
x^n	$\frac{n!}{s^{n+1}}$	s > 0	$e^{\alpha x}f(x)$	$F(s-\alpha)$	$s > a + \alpha$
$e^{\alpha x}$	$\frac{1}{s-\alpha}$	$s > \alpha$	$x^n f(x)$	$(-1)^n F^{(n)}(s)$	s > a
$\sin \beta x$	$\frac{\beta}{s^2 + \beta^2}$	s > 0	f'(x)	sF(s) - f(0)	
$\cos \beta x$	$\frac{s}{s^2 + \beta^2}$	s > 0	f''(x)	$s^2 F(s) - sf(0) - f'(0)$	

- The slope of the tangent line to the curve at (x_0, y_0) is $f'(x_0)$.
- The slope of the normal line to the cure at (x_0, y_0) is $-1/f'(x_0)$.
- The equation of the tangent line at (x_0, y_0) is $y y_0 = y'(x x_0)$.
- The equation of the normal line at (x_0, y_0) is $y y_0 = (x_0 x)/f'(x_0)$.
- The x-intercept of the tangent is $x_0 f(x_0)/f'(x_0)$.
- The y-intercept of the tangent is $f(x_0) x_0 f'(x_0)$.
- The x-intercept of the normal is $x_0 + f(x_0)f'(x_0)$.
- The y-intercept of the normal is $f(x_0) + x_0/f'(x_0)$.
- The length of the tangent between (x_0, y_0) and the x-axis is $|y_0|\sqrt{1+1/f'(x_0)^2}$.
- The length of the tangent between (x_0, y_0) and the y-axis is $|x_0|\sqrt{1 + f'(x_0)^2}$.
- The length of the normal between (x_0, y_0) and the x-axis is $|y_0|\sqrt{1 + f'(x_0)^2}$.
- The length of the normal between (x_0, y_0) and the y-axis is $|x_0|\sqrt{1+1/f'(x_0)^2}$.
- The length of the subtangent is $|f(x_0)/f'(x_0)|$.
- The length of the subnormal is $|f(x_0)f'(x_0)|$.