Assignment –2 Data Visualization and Pre-processing

Assignment Date	25 September 2022
Student Name	Mr. Vinoth Kumar .M
Student Roll Number	820419104085
Maximum Marks	2 Marks

 ${\bf 1.\ Downloaded\ the\ Dataset\ Churn_Modelling.csv\ and\ Uploaded\ into\ content\ folder:}$

Importing Required Libraries:

```
[ ] import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
```

2.Loading the dataset:

- 3. Performing Visualization on Datasets
- 3.1 Univariate Analysis

3.2 Bi-variate Analysis

3.3 Multivariate Analysis

4.Performing Descriptive Statistics on the Dataset

5. Handling the Missing values

```
[ ] ds.isnull().any()
    RowNumber
                        False
    CustomerId
                        False
    Surname
                        False
    CreditScore
                        False
    Geography
                        False
    Gender
                        False
    Age
                        False
    Tenure
                        False
    Balance
                        False
    NumOfProducts
                        False
    HasCrCard
                        False
    IsActiveMember
                        False
    EstimatedSalary
                        False
    Exited
                        False
    dtype: bool
```

```
[ ] ds.isnull().sum()
    RowNumber
                        0
    CustomerId
                        0
    Surname
                        0
    CreditScore
                        0
    Geography
    Gender
                        0
                        0
    Age
                        0
    Tenure
    Balance
                        0
    NumOfProducts
                       0
    HasCrCard
                        0
    IsActiveMember
                        0
    EstimatedSalary
                        0
    Exited
                        0
    dtype: int64
[ ] #no null values found , so no need to handle.
```

6. Finding the outliers and Replace the outliers:

[]	q0 = ds["Age	"].describe()["25%"]											
[]	q1 = ds["Age	"].describe()["75%"]											
[]	iqr=q1-q0													
[]	lb = q0 -(1. ub = q1 + (1													
[]	ds[ds["Age"]	<1b]												
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited

ds[ds[["Age"]>ub]													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
		15623944	Tien		Spain	Female							1643.11	
85		15805254	Ndukaku	652	Spain	Female							114675.75	
104		15804919	Dunbabin		Spain	Female							177655.68	
158		15589975	Maclean	646	France	Female			97259.25				104719.66	
181		15789669	Hsia		France	Male							48071.61	
9753			Chiedozie	656	Germany	Male			153545.11				186574.68	
9765	9766	15777067	Thomas	445	France	Male			136770.67				43678.06	
9832		15814690	Chukwujekwu		Germany	Female							89935.73	
9894	9895	15704795	Vagin	521	France	Female			0.00				49054.10	
9936		15653037	Parks		France	Male							18708.76	
359 rov	ws × 14 colum	ins												

[] #Meplacing the outlier outlier_list = list(ds[ds["Age"] > ub]["Age"])	
[] print(outlier_list)	
[66, 75, 65, 73, 65, 72, 67, 79, 88, 68, 75, 66, 66, 70, 63, 72, 64, 64, 70, 67, 82, 63, 69, 65, 69, 64, 65, 74, 67, 66, 67, 63, 70, 71, 72, 67, 74, 76, 66, 63, 66, 68, 67, 63	71,
[] outlier_dict - {}.fromkeys(outlier_list,ub)	
[] print(outlier_dict)	
{66: 62.0, 75: 62.0, 65: 62.0, 73: 62.0, 72: 62.0, 67: 62.0, 79: 62.0, 80: 62.0, 68: 62.0, 70: 62.0, 63: 62.0, 64: 62.0, 82: 62.0, 62: 62.0, 69: 62.0, 74: 62.0, 71: 62.0, 77: 62.0	. 88:
[] ds["Age"] = ds["Age"].replace(outlier_dict)	

7. Check for categorical columns and perform coding:

```
[] from sklearn.compose import ColumnTransformer
    from sklearn.preprocessing import OneHotEncoder
    ct=ColumnTransformer([('oh',OneHotEncoder(),[1,2])],remainder='passthrough')
    x=ct.fit_transform(x)
    print(x.shape)

    (10000, 13)

[] # saving the data
    import joblib
    joblib.dump(ct,"churnct.pkl")

['churnct.pkl']
```

8. Split the data into dependent and independent variables

```
[ ] x=ds.iloc[:,3:13].values
    print(x.shape)
    y=ds.iloc[:,13:14].values
    print(y.shape)

    (10000, 10)
    (10000, 1)
```

9. Scale the independent variables:

10. Split the data into training and testing:

```
[ ] from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
    print(x_train.shape)
    print(x_test.shape)

(8000, 13)
    (2000, 13)
```