Introduction to Panel-Data Analysis using Stata

Chris Cheng, PhD

Staff Econometrician, StataCorp LLC College Station, TX, USA October 13, 2020

Outline

Basic concepts

Stata tools

Linear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Outline

- Basic concepts
 - Incentives
 - Stata tools
 - The data and the data generating process
 - The model
- 2. Linear models for panel data
 - Data generating process
 - Random effects
 - Fixed effects
 - Fixed or random effects
 - Marginal analysis
- 3. Dynamic panel-data linear models
 - Arellano-Bond
 - Arellano–Bover/Blundell–Bond
- 4. Extended regression models for panel data

Outline

Basic concepts

Stata tools

inear PD

DGP Random Effects

FE vs RE Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Rover/Blundell-

Extended

What is panel?

- ► (mathstats) repeated measures (wide vs long format)
- ► (biostats) longitudinal data
- ► (economics) panel data

Outline

Basic concepts

Incentives

Stata tools

_inear PD

DGP
Random Effects
Fixed-Effects
FF vs RF

Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-

xtended Regression

Panel Data StataCorp LLC

Incentives

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Arellano/Bond

- a typical panel vs. cross-sectional data structure

```
. list country year consumption gdp irate ///
    if CountryName=="Mexico" | ///
    CountryName=="United States", ///
    sepby(country) abbreviate(12) noobs
```

country	year	consumption	gdp	irate
Mexico	2010	815.78416	1057.8013	1.2125
Mexico	2011	842.78459	1096.5486	.95583333
Mexico	2012	863.83937	1136.4885	1.0816667
United States	2010	12695.979	14992.053	2.4000001
United States	2011	12812.144	15224.555	6.5
United States	2012	12932.334	15567.038	7

```
collapse (mean) consumption gdp irate, by(country)
list country consumption gdp irate ///
```

```
list country consumption gdp irate ///
if country == 128 | country == 207, ///
abbreviate(12) noobs
```

	country consumption		gdp	irate	
United	Mexico States	840.8027 12813.486	1096.9461 15261.215	1.0833333 5.3	

Source: http://databank.worldbank.org/data/Home.aspx

4□ ト 4回 ト 4 重 ト 4 重 ・ 9 Q @

How it looks

Outline

Basic concepts

Incentives

ata tools

Linear PD

DGP Random Effects

FE vs RE
Marginal Analysis

Marginal Analysis

Models Arellano/Bond

Arellano-Bover/Blundell-Bond

xtended legression lodels

How it works - Pooled vs. Panel

Panel Data StataCorp LLC

Outline

Basic concepts

Incentives

Linear PD

DGP Random Effects Fixed-Effects

FE vs RE Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

How it works - Pooled vs. Panel

Outline

Basic concepts

Incentives

Stata tools

Linear PD

DGP Random Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression

Stata tools

- Data management
- Linear regression estimators
- Dynamic panel-data estimators
- Nonlinear regression estimators
- Postestimation tools
- Extended regression models

Outline

Basic concepts

Stata tools

Linear PD

DGP

Random Effect

Fixed-Effects

FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Tools related to panel

- reshape converts data from wide to long form and vice versa
- xtsum summarizes xt (panel) data
- xttab tabulates xt (panel) data, one-way table for categorical variables
- xttrans tabulates xt (panel) data and reports transition probabilities
- duplicates reports, tags, or drops duplicate observations
- panelstat a community-contributed (user-written) command, computes statistics for panel data https://www.stata.com/meeting/portugal17/slides/portugal17_Silva.pdf

Outline

Basic concepts

Stata tools

inear PD

DGP
Random Effects
Fixed-Effects
FE vs RE

Marginal Analysis Dynamic PD Models

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression

LINEAR PANEL-DATA MODELS

Outline

Basic concepts

Incentives Stata tools

Linear PD

DGP Random Effects Fixed-Effects FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

Data-generating process (DGP)

The data-generating process is given by

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \eta_{it}$$

$$\eta_{it} \equiv \alpha_i + \varepsilon_{it}$$

$$i = 1, \ldots n$$

$$t = 1, \ldots T$$

- ▶ The random disturbance (η_{it}) includes two parts:
 - $lpha_i$: the *unobservable* component is particular to each panel and is *time-invariant* (e.g. for individuals: ability, intelligence, work ethic). As in the regression case, the assumptions made on η_{it} , with particular emphasis on α_i , define the models we work with.
 - \triangleright ε_{it} : the idiosyncratic error term

Outline

Basic concepts

Linear DD

Linear PD

DGP

Random Effects
Fixed-Effects

FE vs RE Marginal Analysis

> ynamic PD lodels

Arellano/Bond
Arellano-Bover/Blundell-

Extended Regression Models

Model for aggregate consumption

$$\mathsf{consumption}_{\mathit{it}} = \beta_{\mathsf{0}} + \beta_{\mathsf{1}} * \mathsf{gdp}_{\mathit{it}} + \beta_{\mathsf{2}} * \mathsf{irate}_{\mathit{it}} + \alpha_{\mathit{i}} + \varepsilon_{\mathit{it}}$$

- ➤ World Bank public online data on consumption: Final consumption expenditure (2010 US\$) gdp: Gross domestic product (2010 US\$) irate: deposit interest rate
- Example : 2010-2018 for 131 countries
- ► Source: http://databank.worldbank.org/data/Home.aspx

Outline

Basic concepts

centives stata tools

Linear PD

DGP

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression

Specifying the panel structure in Stata

Users can tell Stata that data have a special structure for various types of datasets

- Repeated measures/Panel data/Longitudinal data datasets – see help xtset
- Time-series datasets see help tsset
- Survival time datasets see help stset
- Datasets arising from complex survey designs (called survey datasets) – see help svyset

Outline

Basic concepts

Linear PD

DGP

Random Effects
Fixed-Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

Specifying the panel structure in Stata

Assuming that the second dimension corresponds to time series, we use the **xtset** command to specify the panel structure with

- ► Panel identifier variable (e.g. country)
- ► Time identifier variable (e.g. year)

Outline

Basic concepts

Stata tools

Linear PD

DGP

Random Effects
Fixed-Effects

FE vs RE Marginal Analysis

ynamic PD

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression

Specifying the panel structure in Stata

Assuming that the second dimension corresponds to time series, we use the **xtset** command to specify the panel structure with

- ► Panel identifier variable (e.g. country)
- ► Time identifier variable (e.g. year)
 - . xtset country year

panel variable: country (unbalanced)

time variable: year, 2010 to 2018, but with a gap

delta: 1 unit

P.S. You can specify the panel structure using **xtset panelvar** if you want to ignore the time structure.

Dutline

Basic concepts

Stata tools

Linear PD

DGP

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-

Extended Regression Models

Theoretical framework

- As in the classical linear regression, all models are defined by two components:
 - 1. The data-generating process (DGP)
 - 2. The relationship between the random disturbance or idiosyncratic shock and the explanatory variables
- From the first consideration, we can distinguish the DGP for the panel-data case:

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \eta_{it}$$

$$\eta_{it} = \alpha_i + \varepsilon_{it}$$

Outline

Basic concepts

Stata tools

Linear PD

DGP

Random Effects

FE vs RE Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-

Extended Regression Models

The regressors are unrelated to the unobserved time-invariant component α_i

$$E(\alpha_i|x_{it1},\ldots x_{itk})=E(\alpha_i)$$

Outline

Basic concepts

Incentives Stata tools

Linear PD

DGP Random Effects

Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD

Models
Arellano/Bond
Arellano-Bover/Blundell-

xtended egression

Summarv

Bond

The regressors are unrelated to the unobserved time-invariant component α_i

$$E(\alpha_i|x_{it1},\ldots x_{itk})=E(\alpha_i)$$

strict exogeneity, no lagged dependent variables

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_{i}\right)=0$$

Outline

Basic concepts

Incentives Stata tools

Linear PD

DGP

Random Effects

FE vs RE Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-

xtended egression

Random-effects model

The regressors are unrelated to the unobserved time-invariant component α_i

$$E(\alpha_i|x_{it1},\ldots x_{itk})=E(\alpha_i)$$

strict exogeneity, no lagged dependent variables

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_{i}\right)=0$$

► The previous two assumptions allow us to think about using a regression. But:

$$E\left(\varepsilon_{i}\varepsilon_{i}^{\prime}|\mathbf{x}_{i},\alpha_{i}\right) = \sigma_{\varepsilon}^{2}I_{T}$$

$$E\left(\varepsilon_{it}^{2}\right) = \sigma_{\varepsilon}^{2}$$

$$E\left(\varepsilon_{it}\varepsilon_{is}\right) = 0$$

$$V\left(\alpha_{i}^{2}\right) = E\left(\alpha_{i}^{2}|\mathbf{x}_{i}\right) = \sigma_{\alpha}^{2}$$

Basic concepts

Incentives Stata tools

Linear PD

DGP

Random Effects

Fixed-Effects
FE vs RE
Marginal Analysis

ynamic PD

Arellano/Bond
Arellano-Bover/Blundell-

Extended Regression

Random-effects variance-Matrix

For each individual, we have that

$$\Omega = E\left(\eta_i \eta_i'\right) = \begin{pmatrix} \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \dots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 & \dots & \vdots \\ \vdots & & \ddots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \dots & \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 \end{pmatrix}$$

Racio concente

Incentives Stata tools

Linear PD

Random Effects
Fixed-Effects
FF vs RF

Marginal Analysis

Models
Arellano/Bond
Arellano-Rover/Rlundell-

xtended egression

For each individual, we have that

$$\Omega = E\left(\eta_i \eta_i'\right) = \begin{pmatrix} \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \dots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 & \dots & \vdots \\ \vdots & & \ddots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \dots & \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 \end{pmatrix}$$

► This gives rise to an efficient estimator:

$$\Omega^{-1/2} y_i = \Omega^{-1/2} x_i \beta + \Omega^{-1/2} \eta_i$$

$$\Omega^{-1/2} z_i \equiv z_i^*$$

► This implies that we have the following model:

$$y_i^* = x_i^* \beta + \eta_i^*$$

$$E\left(\eta_i^* \eta_i^{*'}\right) = I_T$$

Basic concepts

Incentives Stata tools

Linear PD

DGP

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

ynamic PD

Arellano/Bond
Arellano-Bover/Blundell-

Extended Regression Models

. use panel webinar stata

. xtset country year

panel variable: country (unbalanced)

time variable: year, 2010 to 2018, but with a gap

delta: 1 unit

. describe

Contains data from panel slides.dta

obs: 1,016

6 Mar 2020 13:40

display storage value variable name format label variable label type country long %30.0g country Country Name vear float %10.0a Year consumption double %10.0g Consumption (Billions 2000 US\$) adp double %10.0a GDP (Billions 2000 US\$) irate double %10.0a Deposit interest rate long %12.0g Regional groups region region Log of consumption ln cons float %9.0a float %9.0q Log of qdp ln qdp In irate %9.0a Log of irate float.

Sorted by: country year

)utline

Juliiio

centives

inear PD

DGP

Random Effects

ixed-Effects

FE vs RE Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-

xtended

Models

.05205235

.95284182

sigma e rho

xtreg ln_cons ln_gdp ln_irate, re

Random-effects GLS regression 1,016 Group variable: country Number of groups 131 Obs per group: R-sq: within = 0.8033min = between = 0.9859avg = 7.8 overall = 0.9847max = Wald chi2(2) 13277.81 corr(u i, X) (assumed) Prob > chi2 0 0000 = ln cons Coef. Std. Err. P> | z | [95% Conf. Interval] z . 958856 .0084128 113.98 0.000 . 9423672 .9753449 ln qdp ln irate 0041147 -0 95 0.340 - 011994 - 0039294 0041352 cons 760708 2065915 3.68 0 000 .3557961 1 16562 sigma u 2339765

(fraction of variance due to u i)

Bandom Effects FF vs RF Marginal Analysis

Arellano/Bond

Arellano-Rover/Rlundell-

Number of obs

Interpreting results

- ► The Wald chi2 (df) statistic is the equivalent of the F and regards the overall relevance of the model
- ► The three different R-sq statistics represent the variability of y explained by its predicted values. But there are three possible measures of y:
 - 1. yit OVERALL
 - 2. \bar{y}_i BETWEEN
 - 3. $y_{it} \bar{y}_i$ WITHIN
- corr (u_i, X) refers to the correlation between the time-invariant component α_i, in this case called u_i, and the regressors. For the random effects, we assume it is zero.
- ▶ sigma_u = σ_{α} , sigma_e = σ_{ε} , rho= $\sigma_{\alpha}^{2} (\sigma_{\varepsilon}^{2} + \sigma_{\alpha}^{2})^{-1}$

Outline

Basic concepts

tata tools

Linear PD

Random Effects

Fixed-Effects FE vs RE

Marginal Analysis

Models
Arellano/Bond
Arellano-Bover/Blundell-

Extended Regression

Random effects vs. Pooled OLS

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects

Estimated results:

Var	sd = sqrt(Var
027035	2.006747
027094	.0520524
054745	.2339765
	Var .027035 .027094 .054745

Test: Var(u) = 0

chibar2(01) = 3108.85

Prob > chibar2 = 0.0000

Outline

Basic concepts

ncentives Stata tools

inear PD

DGP Random Effects

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

Fixed effects models

The regressors are correlated with the *unobserved time-invariant* component α_i

$$Cov(\alpha_i, x_i) \neq 0$$

Outline

Basic concepts

Incentives Stata tools

Linoar DD

inear PD

andom Effects

Fixed-Effects

FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-

extended Regression

Fixed effects models

The regressors are correlated with the *unobserved time-invariant* component α_i

$$Cov(\alpha_i, x_i) \neq 0$$

strict exogeneity, no lagged dependent variables:

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_{i}\right)=0$$

Outline

Basic concepts

Incentives Stata tools

inear PD

OGP Sandom Effect

Fixed-Effects

FE vs RE

Marginal Analysis

Wodels
Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Interpretation

In the model we have been discussing:

$$In(\mathsf{consumption}_{it}) = \beta_0 + \beta_1 In(\mathsf{GDP}_{it}) + \beta_2 In(\mathsf{irate}_{it}) + \alpha_i + \varepsilon_{it}$$

It is difficult to maintain, for a particular model, that the unobserved individual component is independent of all regressors

Outline

Basic concepts

Stata tools

DGP DGP

Fixed-Effects

FE vs RE Marginal Analysis

Models
Arellano/Bond
Arellano-Bover/Blundella

extended egression

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \alpha_i + \varepsilon_{it}$$
 (1)

If we take the average over the T observations of each panel, we obtain

$$\bar{y}_i = \beta_0 + \beta_1 \bar{x}_{i1} + \ldots + \beta_k \bar{x}_{ik} + \alpha_i + \bar{\varepsilon}_i$$

Outline

asic concepts

Incentives
Stata tools

inear PD

Random Effects

Fixed-Effects
FE vs RE
Marginal Analysis

ynamic PD

Arellano/Bond Arellano-Bover/Blundell-Bond

extended Regression Models

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \alpha_i + \varepsilon_{it}$$
 (1)

If we take the average over the T observations of each panel, we obtain

$$\bar{y}_i = \beta_0 + \beta_1 \bar{x}_{i1} + \ldots + \beta_k \bar{x}_{ik} + \alpha_i + \bar{\varepsilon}_i$$

Where

$$\bar{y}_i = T^{-1} \sum_{t=1}^{T} y_{it},$$

$$\bar{x}_{ij} = T^{-1} \sum_{t=1}^{T} x_{itj}$$

Outline

asic concepts

Incentives Stata tools

inear PD

DGP Random Effects

Fixed-Effects FE vs RE

Marginal Analysis

Models
Arellano/Bond
Arellano-Bover/Blundella

xtended egression

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \alpha_i + \varepsilon_{it}$$
 (1)

If we take the average over the T observations of each panel, we obtain

$$\bar{y}_i = \beta_0 + \beta_1 \bar{x}_{i1} + \ldots + \beta_k \bar{x}_{ik} + \alpha_i + \bar{\varepsilon}_i$$

Where

$$\bar{y}_i = T^{-1} \sum_{t=1}^{T} y_{it},$$

$$\bar{x}_{ij} = T^{-1} \sum_{t=1}^{T} x_{itj}$$

We now can construct the following object:

$$y_{it} - \bar{y}_i = (\beta_0 - \beta_0) + \beta_1 (x_{it1} - \bar{x}_{i1}) + \ldots + \beta_k (x_{itk} - \bar{x}_{ik}) + (\alpha_i - \alpha_i) + (\varepsilon_{it} - \varepsilon_i)$$

And we can then estimate the parameters of interest from equation (1):

$$\tilde{\mathbf{y}}_i = \beta_1 \tilde{\mathbf{x}}_{i1} + \ldots + \beta_k \tilde{\mathbf{x}}_{ik} + \tilde{\varepsilon}_i$$

utline

asic concepts

Incentives Stata tools

inear PD

Random Effects

Fixed-Effects
FE vs RE
Marginal Analysis

Models
Arellano/Bond
Arellano-Rover/Blundell-

Extended Regression

. xtreg ln_cons ln_gdp ln_irate, fe

Number of obs Fixed-effects (within) regression 1.016 Group variable: country Number of groups = 131 R-sq: Obs per group: within = 0.8034min = between = 0.98587.8 avg = overall = 0.9845max = F(2,883) = 1804 60

Corr(u_i, Xb) = -0.0175 F(2,883) = 1804.60 Prob > F = 0.0000

ln_cons	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_gdp ln_irate _cons	.958713 0074047 .7750608	.016523 .0042761 .4063998	58.02 -1.73 1.91	0.000 0.084 0.057	.926284 0157972 0225615	.991142 .0009878 1.572683
sigma_u sigma_e rho	.24585324 .05205235 .95709727	(fraction	of varia	nce due t	.o u_i)	

F test that all u i=0: F(130, 883) = 152.63

Prob > F = 0.0000

Dutline

Basic concepts
Incentives

DGP
Random Effects
Fixed-Effects
FE vs RE
Marqinal Analysis

Models
Arellano/Bond
Arellano-Bover/Blundell-Bond

extended Regression

Summaru

Fixed effects vs. Random effects

- Theory should be one of the main factors guiding your modeling decision
- However, you should present a statistical test to back up your claims
 - 1. Hausman test for fixed effects vs random effects
 - 2. Mundlak test for fixed effects vs random effects

Outline

Basic concepts

Incentives Stata tools

inear PD

DGP Random Effect

Fixed-Effects

FE vs RE Marginal Analysis

Dynamic PD Models Arellano/Bond

Arellano-Bover/Blundell-Bond Extended

Regression Models

Hausman test

► The following object has a Chi-Squared distribution with degrees of freedom equal to the number of regressors:

$$H = \left(\hat{\beta}_{\text{fe}} - \hat{\beta}_{\text{re}}\right)' \left[\widehat{\textit{VCE}}_{\text{fe}} - \widehat{\textit{VCE}}_{\text{re}}\right]^{-1} \left(\hat{\beta}_{\text{fe}} - \hat{\beta}_{\text{re}}\right)$$

- ▶ The test implicitly assumes that the random effects model is efficient, which in turn makes $\left[\widehat{VCE}_{fe} \widehat{VCE}_{re}\right]$ positive definite.
- ► The test rules out heteroskedasticity and serial correlation

Outline

Basic concepts

Incentives Stata tools

Linear PD

DGP Random Effect

> FE vs RE Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-

Extended Regression

- . quietly xtreg ln_cons ln_gdp ln_irate, fe
- . estimates store eq_fe
- . quietly xtreg ln_cons ln_gdp ln_irate, re
- . estimates store eg re
- . hausman eq_fe eq_re

	Coeff:	icients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	eq_fe	eq_re	Difference	S.E.
ln_gdp ln_irate	.958713 0074047	.958856 0039294	000143 0034753	.0142209 .0011638

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

$$chi2(2) = (b-B)'[(V_b-V_B)'(-1)](b-B)$$

= 17.25
Prob>chi2 = 0.0002

Outline

Basic concepts

ncentives Stata tools

inear PD

DGP Random Effects

FE vs RE Marginal Analysis

Models
Arellano/Bond

Areliano-Bover/Blundell-Bond

Extended Regression Models

Mundlak test

Alternatively, the Mundlak test can be used for comparing fixed effects and random effects.

The Stata Blog

"Fixed effects or random effects: The Mundlak approach" Enrique Pinzon, Associate Director of Econometrics https://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/

Outline

Basic concepts

Stata tools

inear PD

DGP Random Effec

FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-

Extended Regression

-

MARGINAL ANALYSIS

Outline

Basic concepts

Incentives Stata tools

Linear PD

DGP

Random Effects

FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

Notice that all the variables are in natural logs. Therefore:

$$E\left(\ln(y_{it})|\ln x_{it},\alpha_i\right) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_k \ln x_{itk} + \alpha_i$$

▶ If you want the impact of a continuous regressor on y_{it}:

$$\frac{\partial E\left(y_{it}|x_{it},\alpha_{i}\right)}{\partial x_{itj}}\frac{x_{itj}}{E\left(y_{it}|x_{it},\alpha_{i}\right)}=\beta_{j}$$

Outline

Basic concepts

Incentives Stata tools

inear PD

DGP Random Effect: Fixed-Effects

Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

xtended egression

Interpreting the coefficients

▶ Notice that all the variables are in natural logs. Therefore:

$$E\left(\ln(y_{it})|\ln x_{it},\alpha_i\right) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_k \ln x_{itk} + \alpha_i$$

If you want the impact of a continuous regressor on y_{it}:

$$\frac{\partial E\left(y_{it}|x_{it},\alpha_{i}\right)}{\partial x_{itj}} \frac{x_{itj}}{E\left(y_{it}|x_{it},\alpha_{i}\right)} = \beta_{j}$$

► Use **margins** to get the elasticities (**dvdx(**) in this particular case):

- . quietly xtreg ln_cons ln_qdp ln_irate, fe
- . margins, dvdx(*)

Average marginal effects Model VCE

: Conventional

Expression : Linear prediction, predict()

dv/dx w.r.t. : ln gdp ln irate

	Delta-method					
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
ln_gdp ln_irate	.958713 0074047	.016523 .0042761	58.02 -1.73	0.000 0.083	.9263284 0157857	.9910976 .0009763

FF vs RF

Marginal Analysis

Arellano/Bond Arellano-Rover/Rlundell-

1.016

Number of obs =

Regional interactions with In gdp:

```
. quietly xtreq ln_cons ln_qdp ///
         i.region#c.ln_gdp ln_irate, fe
```

margins, dydx(ln_gdp) over(region)

Average marginal effects Model VCE · Conventional

Expression : Linear prediction, predict()

dv/dx w.r.t. : ln gdp

: region over

	Delta-method								
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]			
ln_gdp									
region									
Africa	1.003669	.0253091	39.66	0.000	.9540644	1.053274			
America	.8961536	.0409304	21.89	0.000	.8159314	.9763758			
Asia	.9440403	.0260334	36.26	0.000	.8930157	.9950649			
Aust_Oceania	1.017993	.1622033	6.28	0.000	.70008	1.335905			
Europe	.8729883	0837015	10 43	0 000	7089363	1 03704			

Number of obs

986

FF vs RF

Marginal Analysis

Arellano/Bond Arellano-Rover/Blundell-

Panel Data StataCorp LLC

. marginsplot

Marginal effects by region

Variables that uniquely identify margins: region

Outline

Basic concepts

Stata tools

DGP Random Effects

Marginal Analysis

Models
Arellano/Bond
Arellano-Bover/Blundell-

Bond Extended

output omitted

- ► Regional interactions with **In irate**:
- . quietly xtreg ln_cons ln_gdp i.region##c.ln_irate, re
- . margins region, at(ln_irate=(-4(2)0))

Predictive Model VCE		ventional	L			Number of	obs	=	986
Expression	: Lin	ear predi	iction, p	oredict()					
1at	: ln_	irate	=		4				
2at	: ln_	irate	=	-2	2				
3at	: ln_	irate	=	(0				
		Margin	Delta-m Std.		z	P> z	[95%	Conf.	Interval]

utline

centives

ear PD

Random Effects
Fixed-Effects

Marginal Analysis

Models
Arellano/Bond
Arellano-Bover/Blundelle

Extended Regression

Bond

Panel Data StataCorp LLC

. marginsplot, noci

Predictive margins by region

Variables that uniquely identify margins: ln_irate region

Outline

Basic concepts

l inoar PD

DGP Random Effects Fixed-Effects

Marginal Analysis

Dynamic PD Models

Arellano-Bover/Blundell-Bond

Regression Models

DYNAMIC PANEL-DATA MODELS

Outline

Basic concepts

Stata tools

Linear PD

DGP Random Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

Dynamic models

$$y_{it} = \beta_0 + \beta_1 y_{i(t-1)} + x'_{it} \beta_2 + \alpha_i + \varepsilon_{it}$$

► In the model above, *x_{it}* could also include lagged variables.

Outline

Basic concepts

Stata tools

inear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression

Dynamic models

$$y_{it} = \beta_0 + \beta_1 y_{i(t-1)} + x'_{it} \beta_2 + \alpha_i + \varepsilon_{it}$$

- ► In the model above, *x_{it}* could also include lagged variables.
- ► Taking first differences:

$$\Delta y_{it} = \beta_1 \Delta y_{i(t-1)} + \Delta x'_{it} \beta_2 + (\alpha_i - \alpha_i) + \Delta \varepsilon_{it}$$

Outline

Basic concepts
Incentives

Linear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-

Extended Regression

Dynamic models

$$y_{it} = \beta_0 + \beta_1 y_{i(t-1)} + x'_{it} \beta_2 + \alpha_i + \varepsilon_{it}$$

- ► In the model above, *x_{it}* could also include lagged variables.
- Taking first differences:

$$\Delta y_{it} = \beta_1 \Delta y_{i(t-1)} + \Delta x'_{it} \beta_2 + (\alpha_i - \alpha_i) + \Delta \varepsilon_{it}$$

We have eliminated the fixed effect but notice that

$$E\left(\Delta y_{i(t-1)}\Delta \varepsilon_{it}\right) \neq 0$$

Outline

Basic concepts ncentives

inear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

Instrumental-variable (GMM) estimation

The key to estimation is to find a set of instruments that satisfy

$$E(z_{it}\Delta\varepsilon_{it})=0$$

- ▶ This gives rise to the following models:
 - ► Anderson–Hsiao $y_{i(t-2)}$ and $\Delta y_{i(t-2)}$ (**xtivreg, fd**).

Outline

Basic concepts

Stata tools

Linear PD

DGP Random Effects Fixed-Effects FE vs RE

Marginal Analysis

Dynamic PD Models

Arellano-Bover/Blundell-Rond

Extended Regression

Instrumental-variable (GMM) estimation

The key to estimation is to find a set of instruments that satisfy

$$E(z_{it}\Delta\varepsilon_{it})=0$$

- ► This gives rise to the following models:
 - ► Anderson–Hsiao $y_{i(t-2)}$ and $\Delta y_{i(t-2)}$ (**xtivreg**, **fd**).
 - ► Arellano and Bond suggest using all available lag levels (not only the second lag) for the first difference equation (xtabond).

Outline

Basic concepts

Stata tools

Linear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano-Bover/Blundell-Bond

Extended Regression

. xtabond ln_cons ln_gdp ln_irate, twostep

Arellano-Bond dynamic panel-data estimation Num
Group variable: country Num

Time variable: vear

Number of obs = 761Number of groups = 121

Obs per group:

min = 1 avg = 6.289256 max = 7

Number of instruments = 31 Wald chi2(3) = 9345.33 Prob > chi2 = 0.0000

Two-step results

ln_cons	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ln_cons L1.	.3616734	.0072234	50.07	0.000	. 3475158	.375831
ln_gdp ln_irate cons	.602238 0085773 .7702696	.0073699 .0024087	81.72 -3.56 3.00	0.000 0.000 0.003	.5877932 0132982 .2672833	.6166828 0038564 1.273256

Instruments for differenced equation

GMM-type: L(2/.).ln_cons

Standard: D.ln_gdp D.ln_irate

Instruments for level equation

Standard: _cons

utline

sic concepts

tata tools

DGP
Random Effects
Fixed-Effects
FE vs RE

Marginal Analysis

Dynamic PD

Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regressior Models

. estat sargan

Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid

> chi2(27) = 32.56842Prob > chi2 = 0.2117

► The overidentification restriction is a test of the validity of the instruments under correct specification.

Outline

Basic concepts

ncentives Stata tools

Linear PD

Random Effects
Fixed-Effects
FE vs RE

Marginal Analysis

/lodels

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Model specification

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order	z	Prob > z				
1	-2.5248	0.0116				
2	1.5938	0.1110				

HO: no autocorrelation

▶ The Arellano–Bond test is testing that Ho: $E\left[\Delta\varepsilon_{it}\Delta\varepsilon_{i(t-1)}\right] \neq 0$:

$$\begin{split} E\left[\Delta\varepsilon_{it}\Delta\varepsilon_{i(t-1)}\right] &= E\left[\left(\varepsilon_{it}-\varepsilon_{i(t-1)}\right)\left(\varepsilon_{i(t-1)}-\varepsilon_{i(t-2)}\right)\right] \\ &= E\left[\varepsilon_{i(t-1)}^{2}\right] + 0 \end{split}$$

 According to our asssumptions, we should reject this hypothesis. Also, according to our hypothesis,

$$\begin{split} E\left[\Delta\varepsilon_{it}\Delta\varepsilon_{i(t-2)}\right] &= E\left[\left(\varepsilon_{it}-\varepsilon_{i(t-1)}\right)\left(\varepsilon_{i(t-2)}-\varepsilon_{i(t-3)}\right)\right] \\ &= E\left(\varepsilon_{it}\varepsilon_{i(t-2)}\right)-E\left(\varepsilon_{it}\varepsilon_{i(t-3)}\right)+E\left(\varepsilon_{i(t-1)}\varepsilon_{i(t-2)}\right) \\ &-E\left(\varepsilon_{i(t-1)}\varepsilon_{i(t-3)}\right) \\ &= 0 \end{split}$$

Outline

Basic concepts

Stata tools

Linear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

xtended egression

A new set of moment conditions

► The lagged-level instruments in **xtabond** become weak as the AR process becomes too persistent or σ_u^2/σ_e^2 becomes too large, so a new set of moments conditions are proposed:

Outline

Basic concepts

ncentives Stata tools

Linear PD

DGP
Random Effects
Fixed-Effects
FF vs RF

Marginal Analysis

lodels

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression

A new set of moment conditions

The lagged-level instruments in **xtabond** become weak as the AR process becomes too persistent or σ_u^2/σ_e^2 becomes too large, so a new set of moments conditions are proposed:

$$E(z_{it}\Delta\varepsilon_{it}) = 0$$

$$E(\Delta z_{it}\varepsilon_{it}) = 0$$

- These are defined by Arellano–Bover/Blundell–Bond
- Notice that you have moments for the equation in levels and for the equation in first difference
- ► Fit this model with xtdpdsys

Outline

Basic concepts

Incentives Stata tools

Linear PD

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

xtended egression lodels

xtdpdsys ln_cons ln_gdp ln_irate, twostep

System dynamic panel-data estimation Number of obs 884 Group variable: country Number of groups = 122

Time variable: vear

Obs per group: min =

avg = 7.245902 max = Number of instruments = Wald chi2(3) 36908.02 38

Prob > chi2 0 0000

Two-step results

ln_cons	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ln_cons L1.	. 464653	.0063034	73.71	0.000	. 4522985	.4770074
ln_gdp ln_irate _cons	.4918536 0092232 .9754017	.0051095 .0029176 .1538629	96.26 -3.16 6.34	0.000 0.002 0.000	.4818391 0149415 .6738359	.501868 0035049 1.276967

Instruments for differenced equation

GMM-type: L(2/.).ln_cons Standard: D.ln gdp D.ln irate

Instruments for level equation

GMM-type: LD.ln cons Standard: cons

FF vs RF Marginal Analysis

Arellano/Bond

Arellano-Rover/Blundell-

Arellano-Bover/Blundell-Bond

Overidentification and Autocorrelation Tests

. estat sargan

```
Sargan test of overidentifying restrictions

H0: overidentifying restrictions are valid

chi2(34) = 46.01339

Prob > chi2 = 0.0819
```

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order	z	Prob > z				
1 2	-2.6633 1 6218	0.0077				

HO: no autocorrelation

Outline

Basic concepts

Linear PD

DGP
Random Effects
Fixed-Effects
FF vs RF

Marginal Analysis

lodels

Arellano/Bond

Arellano-Bover/Blundell-Bond

extended Regressio Models

Your Own Dynamic Model

This model relies heavily on the idea that the dynamics are correctly specified

Outline

Basic concepts

Stata tools

inear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression

Your Own Dynamic Model

- This model relies heavily on the idea that the dynamics are correctly specified
- For instance, you could have

$$y_{it} = \beta_0 + \beta_1 y_{i(t-1)} + x'_{it}\beta_2 + \alpha_i + \varepsilon_{it} + \gamma \varepsilon_{i(t-1)}$$

$$\Delta y_{it} = \Delta \beta_1 y_{i(t-1)} + \Delta x'_{it}\beta_2 + \Delta \varepsilon_{it} + \gamma \Delta \varepsilon_{i(t-1)}$$

- You now need to construct a new set of instruments that satisfy the moment conditions.
- ➤ Stata allows you to do this with **xtdpd**. You need to specify the instruments for the level and difference equations.

Outline

Basic concepts
Incentives

inear PD

DGP
Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

lodels rellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Extended Regression Models

Outline

Basic concepts

Stata tools

Linear PD

DGP

Bandom Effects

Fixed-Effec

Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

Extended regression models (ERMs)

Problems: Endogeneity, selection, and nonrandom treatment assignment

- Endogeneity Unobserved variable affects causal relation
- Selection Part of sample is missing not at random (outcome)
- Nonrandom treatment You want something that looks like an experiment

ERMs account for all of these problems simultaneously, whether you have a continuous, binary, interval, or ordered outcome variable.

ERMs can also be used to fit panel-data random effects and two-level multilevel models

Outline

Basic concepts

Incentives Stata tools

Linear PD

DGP
Random Effects
Fixed-Effects
FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

Extended regression models (ERMs) for panel data

Random-effects linear regression with endogenous covariates

```
xteregress y x1 x2, ///
endogenous(w = x1 z1 z2)
```

 Random-effects linear regression with sample selection

```
xteregress y x1 x2, ///
select(selected = x2 w2)
```

Random-effects linear regression with endogenous treatment

```
xteregress y x1 x2, ///
entreat(treatment = w z2 z3)
```

Outline

Basic concepts

ncentives Stata tools

Linear PD

DGP
Random Effects
Fixed-Effects
FE vs RE

Marginal Analysis

Models Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Extended regression models for panel data

Random-effects probit regression

- Random-effects ordered probit regression
 - ► xteoprobit
- Random-effects interval regression
 - ▶ xteintreg
- Random-effects Heckman model
 - xtheckman

Outline

Basic concepts

ncentives Stata tools

inear PD

DGP Random Effects Fixed-Effects FE vs RE

Marginal Analysis

Dynamic PD

Arellano/Bond
Arellano-Bover/Blundell-Bond

Extended Regression Models

. webuse womenhlthre,clear
(Women's health status panel)

. xtset personid year

panel variable: personid (strongly balanced)

time variable: year, 2010 to 2013

delta: 1 unit

. generate goodhlth = health>3 if !missing(health)

. label var goodhlth "Good-Excellent Health condition"

describe

Contains data from https://www.stata-press.com/data/r16/womenhlthre.dta obs: 7,200 Women's health status panel vars: 10 6 Sep 2018 16:14

variable name	storage type	display format	value label	variable label
grade	byte	%8.0g		Years of education
personid	int	%9.0g		Person ID
year	int	%9.0g		Year
workschool	byte	%8.0q	yesno	Employed or in school
insured	byte	%8.0g	yesno	Has health insurance
regcheck	byte	%8.0g	yesno	Has regular checkups
select	byte	%8.0q	-	In sample
exercise	byte	%8.0₫	yesno	Exercises regularly
health	byte	%9.0g	status	Health status
goodhlth	float	%9.0g		Good-Excellent Health cond

Sorted by: personid year

Outline

Basic concepts

Stata tools

inear PD

DGP
Random Effects
Fixed-Effects
FE vs RE

Marginal Analysis

ynamic PD lodels

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

. xteprobit goodhlth i.exercise grade, select(select = grade i.regcheck)

(setting technique to bhhh)
Iteration 0: log likeliho

Iteration 0: log likelihood = -6840.671
Iteration 1: log likelihood = -6808.6475

Iteration 2: log likelihood = -6808.1535
Iteration 3: log likelihood = -6808.1515

Iteration 4: log likelihood = -6808.1515

Extended probit regression

Group variable: personid

Gloup variable. personiu

Integration method: myaghermite

Log likelihood = -6808.1515

Selected = 5,421 Nonselected = 1,779 Number of groups = 1,800 Obs. per group: min = 4 avg = 4.0

max =
Integration pts. =

Number of obs

Wald chi2(2) = 348.34 Prob > chi2 = 0 0000 utline

Pagia concenta

Incentives Stata tools

7,200

inear PD

DGP

Fixed-Effects FE vs RE

Marginal Analysis

Models
Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

. xteprobit goodhlth i.exercise grade, select(select = grade i.regcheck)

	Coef.	Std. Err.	z	P> z	195% Conf	Intervall
	COEI.	Stu. EII.	Z.	F > Z	[95% CONT.	Incervar
goodhlth						
exercise						
yes	. 3554439	.0400762	8.87	0.000	.276896	.4339919
grade	.1743015	.0095533	18.25	0.000	.1555774	.1930256
_cons	-2.252753	.1154867	-19.51	0.000	-2.479102	-2.026403
select						
grade	.0832256	.007392	11.26	0.000	.0687376	.0977137
regcheck						
yes	.4800144	.036039	13.32	0.000	.4093793	.5506495
_cons	5420435	.0964841	-5.62	0.000	731149	3529381
corr(e.select,e.goodhlth)	.8060986	.0855705	9.42	0.000	.5627727	. 9208657
var(goodhlth[personid])	.2640095	.0364768			.2013787	.346119
var(select[personid])	.1538155	.0271043			.1088948	.2172667
<pre>corr(select[personid], goodhlth[personid])</pre>	. 6224091	.0808206	7.70	0.000	. 4384837	.7562961

Outline

Rasic conce

Incentives Stata tools

inear PD

Random Effects
Fixed-Effects
FE vs RE
Marginal Analysis

ynamic PD odels

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

```
. xteprobit goodhlth i.exercise grade, ///
> entreat(insured = i.workschool, nore) nolog
```

Extended probit regression Number of obs 7,200 1,800 Group variable: personid Number of groups = Obs. per group: min = avg = 4.0 max = Integration method: mvaghermite Integration pts. Wald chi2(6) 265.10 $Log\ likelihood = -7572.592$ Prob > chi2 0.0000

Dutline

Rasic concents

Stata tools

inear PD

DGP Random Effects

Fixed-Effects

Marginal Analysis

Dynamic PD

Arellano/Bond Arellano-Bover/Blundell-

Extended Regression Models

. xteprobit goodhlth i.exercise grade, ///
> entreat(insured = i.workschool, nore) nolog

	Coef.	Std. Err.	z	P> z	IGE& Conf	. Interval]
	COEI.	Stu. EII.		F > Z	[95% CONT	. Incervar
goodhlth						
exercise#insured						
yes#no	.5563098	.0916258	6.07	0.000	.3767266	.735893
yes#yes	. 486376	.0454754	10.70	0.000	.3972458	.5755062
insured#c.grade						
no	.0125397	.0207005	0.61	0.545	0280325	.053112
yes	.0788714	.0100576	7.84	0.000	.0591589	.098584
insured						
no	-1.398234	.3668983	-3.81	0.000	-2.117342	679127
yes	6820556	.1458962	-4.67	0.000	9680069	3961043
insured						
workschool						
yes	.6620277	.058127	11.39	0.000	.5481008	.7759545
_cons	0088057	.0557336	-0.16	0.874	1180415	.1004301
corr(e.insured,e.goodhlth)	. 3433395	.1522733	2.25	0.024	.0195374	. 6019547
var(goodhlth[personid])	.3394691	.0451158			.2616222	.4404797

Dutline

Basic concepts

Linear PD DGP Random Effects

Fixed-Effects
FE vs RE
Marginal Analysis

Dynamic PD Models Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

Summary

- Basic Concepts
- Linear panel-data models
 - Random effects
 - Fixed effects
 - Marginal analysis
- 3. Dynamic panel-data models
 - Arellano–Bond
 - Arellano–Bover/Blundell–Bond
- 4. Extended regression models for panel data

FF vs RF Marginal Analysis

Arellano/Bond

Arellano-Rover/Rlundell-

Online documentation -xt- commands

https://www.stata.com/bookstore/longitudinal-panel-data-reference-manual/

Outline

Basic concepts

Stata tools

Linear PD

DGP Random Effects Fixed-Effects

Marginal Analysis

Dynamic PD

Models
Arellano/Bond

Arellano-Bover/Blundell-

extended Regression

Send questions to Tech Support

tech-support@stata.com

Upcoming webinars

https://www.stata.com/training/webinar/

Bandom Effects

Marginal Analysis

Arellano/Bond Arellano-Rover/Blundell-