

Figure 2.13 Illustration of the effect of a change of variables on a probability distribution in two dimensions. The left column shows the transforming of the variables whereas the middle and right columns show the corresponding effects on a Gaussian distribution and on samples from that distribution, respectively.

that arises when changing variables within an integral. The formula (2.77) follows from the fact that the probability mass in region Δx is the same as the probability mass in Δy . Once again, we take the modulus to ensure that the density is nonnegative.

We can illustrate this by applying a change of variables to a Gaussian distribution in two dimensions, as shown in the top row in Figure 2.13. Here the transformation from x to y is given by

Exercise 2.20

$$y_1 = x_1 + \tanh(5x_1) (2.78)$$

$$y_1 = x_1 + \tanh(5x_1)$$
 (2.78)
 $y_2 = x_2 + \tanh(5x_2) + \frac{x_1^3}{3}$. (2.79)

Also shown on the bottom row are samples from a Gaussian distribution in x-space along with the corresponding transformed samples in y-space.