

Smart Backup Power Management and Real-time Monitoring System

For Junior Design Project

Hardware Implementation

Block Diagram:

04 Key Ingredients for the Projects

ESP32 Dev Module

Acts as the main controller, handling Wi-Fi communication, sensor data processing, and load control via Blynk.

Shunt Resistors

Measure current flow for monitoring load consumption.

Relay SRD-05VDC-SL-C

Switch between different loads and power sources according to set priorities.

Solar Panel with Charging Module

Provides renewable energy to charge the battery.

Used for efficient load switching and current control.

Lithium Rechargeable Battery

Stores energy from the solar panel for backup operation

Circuit Schematic:

Proxy Experiment to achieve our Vision:

First we made a circuit, to determine and understand the concept of switching in ESP32.

After that we implemented to build the full circuit including the Solar Panel and the 1.3' OLED.

Demonstration with 5V:

Demonstration with Solar Charged 3.7 V Battery:

Challenges in implementing Relay:

- The Relay module takes 5v to switch from NC (Normally Closed) to NO (Normally Open). Under 4.5 V the switching doesn't occur.
- Even when Switching did happening, the voltage was fluctuating. It ended up damaging the ESP32.
- Another Circuit and simulation was created to understand the concept.
- They were separately connected.

Software Functionality

Coding Implementation 2

- ESP32 programmed in Arduino IDE
- Defined pins for loads, relay, and shunt sensors
- Functions to read current and calculate power
- Local monitoring via OLED
- Remote monitoring via Blynk
- Synchronization between hardware and software

Blynk Dashboard

- Virtual pins control and monitor loads
- Power values displayed in Watts
- LED indicators show real-time load status
- Dashboard updated every 2 seconds

Blynk Dashboard

Flowchart

- V11 → Toggle Load2 → LED V7
 V12 → Toggle Load3 → LED V8