Fizyka Ciała Stałego

Kryształy

Wiązania kryształów

Teoria swobodnych elektronów w metalach

Elektrony zamknięte w sześciennym pudle

w jednowymiarowej studni potencjału było:

$$p = n \frac{h}{2l}$$

$$p_{x} = n_{x} \frac{h}{2l_{x}}$$

$$p_{y} = n_{y} \frac{h}{2l_{y}}$$

$$p_z = n_z \frac{h}{2l_z}$$

Przyjmijmy dla uproszczenia:

$$1_x = 1_y = 1_z = 1$$

$$p^{2} = p_{x}^{2} + p_{y}^{2} + p_{z}^{2} = \frac{h^{2}}{4l^{2}} (n_{x}^{2} + n_{y}^{2} + n_{z}^{2})$$

$$E_{k} = \frac{p^{2}}{2m} = \frac{h^{2}}{8ml^{2}} (n_{x}^{2} + n_{y}^{2} + n_{z}^{2})$$

Obliczmy energię Fermiego

$$p_F = p_{x_F} = n_{x(F)} \frac{h}{2l}$$

$$R = n_{x(F)}$$

$$E_{k(F)} = \frac{p_F^2}{2m}$$

$$E_{k(F)} = \frac{h^2}{8m} \left(\frac{3}{\pi}n\right)^{\frac{2}{3}}$$

$$E_{k(F)} = \frac{h^2}{8m} \left(\frac{3}{\pi}n\right)^{\frac{2}{3}}$$

<u>Przykład:</u> $E_{k(F)}$ dla litu

$$\rho$$
=0,534 g/cm³ A=6,94

$$n = \frac{N_A}{V_{mol}} = \frac{N_A \rho}{A}$$

$$E_{k(F)} = 4,7 \text{ eV}$$

$$E_{k(F)} = 4.7 \text{ eV}$$

Rozkład Fermiego-Diraca

W temperaturze T=0

$$f(E) = 1$$
 gdy $E \le E_{k(F)}$

$$f(E) = 0$$
 gdy $E > E_{k(F)}$

W temperaturach T>0

$$f(E) = \frac{1}{e^{(E-E_{k(F)})/kT} + 1}$$

$$\overline{E} = \frac{3}{5} E_{k(F)}$$

$$E_F = U_0 + E_{k(F)} = -W_0$$

$$E_F = -W_0$$

Potencjał kontaktowy

$$\Delta U = E_{F(A)} - E_{F(B)}$$

Działanie termopary:

$$U=a+bT$$

Fe/konstantan \rightarrow do temperatury t = 760°C

Cu/konstantan \rightarrow do temperatury t = 400°C

chromel/alumel \rightarrow do temperatury t = 1370°C

 $Pt/Pt+10\%Ra \rightarrow do temperatury t = 1700°C$

konstantan to stop: Cu(60%) i Ni(40%) alumel to stop: Ni(94,5%); Mn(2,5%); Al(2%); Si(1%) chromel to stop: Ni(90%); Cr(10%)

Model silnego wiązania elektronów

sód diament

Przewodniki, półprzewodniki i izolatory

Przewodnik

