

APPROCHE DU PROBLÈME

- ☐ Principe de l'effet Doppler.
- ☐ Application à l'expérimentation et au diagnostic.
- ☐ Expérience modélisant l'effet doppler :
 - Mouvement d'un autoporteur.
 - Traitement du signal établie.
 - Exploitation des mesures et calcul d'incertitude.
 - Limites et difficultés d'évaluation de la vitesse.
- □ Conclusion.

PRINCIPE DE L'EFFET DOPPLER:

Émetteur et récepteur fixe Fr=F

Émetteur se rapprochant du récepteur Fr>F

Émetteur s'éloignant du récepteur Fr<F

Note aigue

Note grave

Application à l'expérimentation et au diagnostic :

Modélisation d'une artère

Formule Doppler:

$$F' = \frac{V_{son} + V_r}{V_{son} + V_e} F$$

Les signes plus ou moins au numérateur et au dénominateur sont définies selon les règles suivants:

Si le récepteur R se déplace vers l'émetteur E, on met + au numérateur.

Si l'émetteur E se déplace vers le récepteur R, on met - au dénominateur.

Trajet d'aller:

V_{//}=V x cos(téta)

$$\mathsf{F''} = \frac{\mathsf{V}_{\mathsf{son}}}{\mathsf{V}_{\mathsf{son}} - \mathsf{V}_{//}} \mathsf{F'}$$

$$\mathsf{F'} = \frac{\mathsf{V}_{\mathsf{son}} + \mathsf{V}_{//}}{\mathsf{V}_{\mathsf{son}}} \mathsf{F}$$

$$\Delta F = \frac{2 \times V_{//}}{V_{son} - V_{//}} F$$

Trajet retour:

<u>Difficultés de modélisation de l'écoulement</u> <u>des particules :</u>

Mouvement d'un autoporteur:

Amplificateur

Multiplieur

Filtre passe-bas

Filtre passe bande

Montage Électronique :

Centrale d'acquisition / LATIS-Pro

Traitement du signal:

Signal obtenu

Vitesses

Numéro d'expérience	1	2	3	4	5
Vitesse mesurée [m/s]	0.23	0.36	0.29	0.34	0.26

Valeurs finales:

$$V_{\rm m} = \frac{1}{5} \left(\sum_{k=1}^{5} V_k \right) = 0.29 \,{\rm m/S}$$

Écart type

$$EC = \sqrt{\frac{1}{4} \sum_{k=1}^{5} (Vk - Vm)^2} = 0.054 \, m/S$$

Complexité de mesure de la vélocité

Un grand nombre de cibles participant à l'information Doppler

CONCLUSION