Yellow Taxi: Iconic symbol of New York

Today's Agenda

Introduction

What is the research problem? Why does the problem matter to them?

How do we help them to tackle the challenge?

Business Suggestion from EDA and Logistic Regression

Introduction

> Problem Statement

How can the yellow taxi industry in New York City address the challenge of decreasing demand?

- Rapid growth of Uber & Lyft, challenging the traditional yellow taxi industry
- Significant decrease in yellow taxi trips from 175 million (2013) to 71 million (2020)
- Need to understand factors driving these changes.
- Target Audience:
 - Yellow taxi drivers
 - Yellow taxi companies

- Mission:
 - Efficient allocation of cabs
 - Data-driven recommendations based on analysis.
 - Secure the future of the iconic yellow taxi in New York City

Methodology:

Data Source:

Utilized three datasets:

- 1. TLC Trip Record Data (Yellow Taxi, Nov 2022),
- 2. Taxi Zone Lookup Table, 3
- 3. High-Volume For-Hire Vehicle Records (Uber/Lyft)

Focused on Manhattan due to its highest concentration of yellow cab rides

Exploratory Data Analysis (EDA):

Assess the service gap
between yellow taxis and
Uber/Lyft

3

In-depth Analysis:

Comparing Yellow Taxi and Uber/Lyft

Metrics used: Fare and rides

Demand across various zones in

Manhattan

 Demand patterns with respect to time

Logistic Regression Model:

 Identify factors influencing a trip to be a yellow taxi or Uber/Lyft

Total rides across boroughs for Yellow Taxi and FHV

Key Findings

- Yellow taxis majorly function in Manhattan and Queens (~2M and 300K respectively)
- Uber/Lyft functions across almost all the boroughs with Manhattan and Brooklyn having the highest number of rides (7586146 and 4602459 respectively)

Zone-wise percentage of trips for yellow cabs

Key Findings:

Yellow cabs accounts to higher % of rides(66.10) out of total rides in central Park

It is the second highest in Upper

East Side North (48.65%)

Yellow cabs have third highest % of rides in Upper East Side South

(48.16%)

Hour and zone-wise percentage of trips for yellow cabs and Uber/Lyft

Key Findings

• In central park Yellow cabs have the most number of rides compared to FHV across all hours of the day peaking at 11 am

(72.70%)

 Interesting observation is that in Penn Station the % of rides peaks to 64% out of total rides in that area at 6 am

Day-wise analysis of top zones for yellow cabs and FHV

Key Findings

- Central Park the highest % of rides across days of week peaking to
 - ~70% during Mondays
- Upper East Side has the second highest % of rides

Fare comparisons between yellow taxis and ride-hailing services

Key Findings

- Rides in Penn Station by yellow taxi charge \$16.91 less than FHV rides
- Yellow cabs charge \$14.28% less than FHV in Central Park
- Upper East Side has the second highest % of rides

Logistic Regression

- Independent variables: trip_miles, base_passenger_fare, dummies for days, for time of day, and for each Borough.
- Dependent variable: High Volume Flag: 1 -> Uber/Lyft and 0 -> Yellow taxi
- Month: November

Highlights

Measures of Performance:

- F1 Score: 0.93
- Accuracy: 0.88
- Precision: 0.88
- Recall: 0.98

Significant Variables:

- Manhattan: -4.897 (p-value=0.000*)
- EWR -3.172 (p-value=0.002*)
- Queens -2.970 (p-value=0.003*)

Negative coefficient: Probability of the ride being from Uber/Lyft decreases.

Logistic Regression

Model: Manhattan

- F1 Score: 0.89
- Significant Variables:
 - +Central Harlem North
 - +East Harlem North
 - +Hamilton Heights
 - +Inwood
 - +Marble Hill
 - +Roosevelt Island
 - +Washington Heights

Model: Queens

- F1 Score: 0.96
- Significant Variables:
 - -East Elmhurst
 - -JFK Airport
 - o -LaGuardia Airport
 - -Flushing Meadows-Corona Park
 - o -Queensbridge/Ravenswood
 - Saint MichaelsCemetery/Woodside:

Model: EWR

No significant variables due to small data size.

- Likelihood of a ride being from Uber/Lyft or Yellow taxi is not significantly influenced by the distance or fare -> influenced by the Borough of origin.
- Manhattan: Increase the availability of Yellow Taxis in the neighborhoods with significant coefficients where Uber and Lyft have higher presence.
- Queens: Focus on providing better services and convenience for passengers traveling from these locations, specially the airports.

Recommendations

Dynamic Pricing Strategy:

- -> Zones where yellow taxis are charging less, consider allocating more taxis to meet the potential increase in demand.
- -> Match their prices to Uber and Lyft

Optimize Service Coverage and Availability:

- -> Allocate cabs in areas with high demand, such as Central Park, Upper East Side North, and Upper East Side South.
- -> Focus on peak hours (7 am to 4 pm) in top zones

Target Key Boroughs and Zones:

- -> Prioritize service in Manhattan and Queens, where rides are more likely to be Yellow Taxi.
- -> Enhance service quality and convenience for passengers traveling to and from statistically significant zones: Central Harlem, as well as JFK Airport and LaGuardia Airport, since these are areas that Uber/lyft dominate.

Data-driven Resource Allocation:

- -> Use the analysis of day-wise and hour-wise demand to allocate resources more efficiently.
- -> Monitor and analyze trip data to identify emerging trends and adjust resource allocation