

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST) BS(CS), BS(SE), BS(CY), BS(AI)

PROGRAM (S) TO BE EVALUATED

A. Course Description

Course Code	CS2001
Course Title	Data Structures
Credit Hours	3+1
Prerequisites by Course(s) and Topics	Object-oriented Programming (CS1004)
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Midterm Exam 1: 15 (1 Hour written exam) Midterm Exam 2: 15 (1 Hour written exam) Assignments (programming based) x 2: 10 Quizzes (Best 3 out of 4): 10 Final: 50 (3 Hours Written Exam)
Course Coordinator	Farrukh Hasan Syed
URL (if any)	-
Current Catalog Description	-
Textbook (or Laboratory Manual for Laboratory Nat Courses)	Textbook: Algorithms by Robert Sedgewick and Kevin Wayne ional Computing Estudation Accreditation Colonal Prozdek Reference books: NCEAC Data Structure and Algorithms Analysis in C++ Mark Allen Using C++ A Practical Implementation by Sachi Nandan Mohanty and Pabitra Kumar Tripathy

1

	T					
Reference Material	Data Structures Using C++ by VARSHA H. PATIL Oxford University Press Data Structures and Algorithm Analysis by Clifford A. Shaffer Open Data Structures in C++ Open Data Structures in Java					
Course Cools						
Course Goals	A. Course Learning	Outcomes (CLOs)				
	1. Use & explain concepts related to basic and advanced data structures and describe their usage in terms of common algorithmic operations [Bloom's Taxonomy Level: 3, Learning Domain: Cognitive]					
		ve problems efficiently using Backtracking Level: 3, Learning Domain: Cognitive]	_			
	design effective solut	Ferent data structures in terms of their relative efficiency ions and algorithms that make use of them. Level: 6, Learning Domain: Cognitive & Psychomoter.				
	4. Transform cycling-bearing graphs into acyclic tree structures for minimum cost traversal [Bloom's Taxonomy Level: 6, Learning Domain: Cognitive & Psychomotor]					
	B. Program Learning Outcomes					
	1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	CLO-1			
			CLO-2			
	2. Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.				
	3.Design/Develo p Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	CLO-3			

2

1 2 3 4 5 6 7 8 9 10 11 12

CLOs

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and onehour lectures)

1. Topics to be covered:			
List of Topics	No. of Weeks	Contact Hours	CLO
ADT, C++/ Java Language Specification, Pointers revisited/ pass-by-reference and pass by value, Rule of Three, Dynamic Safe Arrays	1	3	1
List (Singly Linked List), List (Doubly Linked List), List (Circular Linked List), Linear, Binary & Interpolation Search using Arrays and Linked Lists	1	3	1,3
Elementary Sorting Techniques (Bubble sort, Selection Sort, Insertion			
Sort, Radix Sort, Shell sort, Comb sort)			

3

			-	
	2	6	1, 3	

	Recursion, it's types, issues and Backtracking (with examples), Stack, Queue, their implementation strategies and applications (Simulation of recursion)	1	3	1,2,3		
	======= Mid-term ²	1 Exam ==	======			
	Advanced Sorting Techniques (Merge sort, Quick sort)	1	3	3		
	Binary trees and their properties (Full Binary Tree, Complete Binary Tree), Binary Search Trees, their operations	2	7	1, 2, 3		
	and applications, skewness and issues Balance in Binary Search Trees, AVL Trees, 2-3 trees, B-trees	2	3	2, 3		
	======= Mid-term 2	2 Exam ==	======			
	Priority Queues, Heaps as Priority Queues, Heap Sort	1	3	1, 3		
	Hashing, Hash Functions, Collision- resolution Techniques, Rehashing	1	3	1, 3		
	String search (Brute force, Rabin Karp, Boyer Moore, Knuth Morris)	1	3	4		
	Minimum Spanning Trees, Graph Algorithms, Topological Sort, Graphs and their representation and traversal, Shortest Path Problem	1	3	4		
	======= Final E	xam ====	=====			
	Total	16	48			
Laboratory Projects/Experiment s Done in the Course	There will be weekly labs starting from the first week. The following is a summary of the Lab exercises given to Students:					
	• Introduction to Data Structures and their	implemen	tation.			
	• Writing & using dynamic safe arrays					
	Solving recursive problems using Backtr	racking in p	programs			
	• Implementation of Linked Lists	D	G,			
	• Linked List based implementation of pri	mitive Data	a Structures			
	Implementing Sorting AlgorithmsImplementing Binary Trees and writing	functions f	or thair propo	rtiac		
				11108		
	 Implementing Binary Search Trees using Structures and Classes Writing functions for tree traversal and maintaining balance 					
5		3	, - •			

	• Implementing graphs and writing functions for their traversal				
Programming Assignments Done in the Course	Assignments related to Backtracking, Stacks & Queues, Binary Search Trees and traversal				
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues	
	15	15	13	0	
Oral and Written Communications	Every student is required to submit at least1_ written report of typically _6_ pages and to make _1_ oral presentations of typically10_ minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.				

Instructor Name:			
Instructor Signature:			
Date:			