

International
IR Rectifier

AUTOMOTIVE MOSFET

PD - 11371

IRF1404Z

HEXFET® Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to T_{jmax}

$V_{DSS} = 40V$
 $R_{DS(on)} = 3.7m\Omega$
 $I_D = 75A$

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

TO-220AB

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^\circ C$	Continuous Drain Current, $V_{GS} @ 10V$ (Silicon Limited)	190	A
$I_D @ T_C = 100^\circ C$	Continuous Drain Current, $V_{GS} @ 10V$	130	
$I_D @ T_C = 25^\circ C$	Continuous Drain Current, $V_{GS} @ 10V$ (Package Limited)	75	
I_{DM}	Pulsed Drain Current ①	750	
$P_D @ T_C = 25^\circ C$	Power Dissipation	220	W
	Linear Derating Factor	1.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E_{AS} (Thermally limited)	Single Pulse Avalanche Energy ②	320	mJ
E_{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ⑥	480	
I_{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	A
E_{AR}	Repetitive Avalanche Energy ⑤		mJ
T_J T_{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf·in (1.1N·m)	

Thermal Resistance

	Parameter	Typ.	Max.	Units
R_{0JC}	Junction-to-Case	—	0.67	°C/W
R_{0CS}	Case-to-Sink, Flat, Greased Surface	0.50	—	
R_{0JA}	Junction-to-Ambient	—	62	

IRF1404Z

Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

International
IR Rectifier

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(\text{BR})\text{DSS}}$	Drain-to-Source Breakdown Voltage	40	—	—	V	$V_{\text{GS}} = 0\text{V}$, $I_D = 250\mu\text{A}$
$\Delta V_{(\text{BR})\text{DSS}}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.033	—	V/ $^\circ\text{C}$	Reference to 25°C , $I_D = 1\text{mA}$
$R_{\text{DS}(\text{on})}$	Static Drain-to-Source On-Resistance	—	2.7	3.7	$\text{m}\Omega$	$V_{\text{GS}} = 10\text{V}$, $I_D = 75\text{A}$ ③
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	2.0	—	4.0	V	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 250\mu\text{A}$
g_{fs}	Forward Transconductance	170	—	—	V	$V_{\text{DS}} = 25\text{V}$, $I_D = 75\text{A}$
I_{DSS}	Drain-to-Source Leakage Current	—	—	20	μA	$V_{\text{DS}} = 40\text{V}$, $V_{\text{GS}} = 0\text{V}$
		—	—	250		$V_{\text{DS}} = 40\text{V}$, $V_{\text{GS}} = 0\text{V}$, $T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	200	nA	$V_{\text{GS}} = 20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-200		$V_{\text{GS}} = -20\text{V}$
Q_g	Total Gate Charge	—	100	150	nC	$I_D = 75\text{A}$
Q_{gs}	Gate-to-Source Charge	—	31	—		$V_{\text{DS}} = 32\text{V}$
Q_{gd}	Gate-to-Drain ("Miller" Charge	—	42	—		$V_{\text{GS}} = 10\text{V}$ ③
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	—	18	—	ns	$V_{\text{DD}} = 20\text{V}$
t_r	Rise Time	—	110	—		$I_D = 75\text{A}$
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time	—	36	—		$R_G = 3.0\ \Omega$
t_f	Fall Time	—	58	—		$V_{\text{GS}} = 10\text{V}$ ③
L_D	Internal Drain Inductance	—	4.5	—	nH	Between lead, 6mm (0.25in.) from package and center of die contact
L_S	Internal Source Inductance	—	7.5	—		
C_{iss}	Input Capacitance	—	4340	—	pF	$V_{\text{GS}} = 0\text{V}$
C_{oss}	Output Capacitance	—	1030	—		$V_{\text{DS}} = 25\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	550	—		$f = 1.0\text{MHz}$
C_{oss}	Output Capacitance	—	3300	—		$V_{\text{GS}} = 0\text{V}$, $V_{\text{DS}} = 1.0\text{V}$, $f = 1.0\text{MHz}$
C_{oss}	Output Capacitance	—	920	—		$V_{\text{GS}} = 0\text{V}$, $V_{\text{DS}} = 32\text{V}$, $f = 1.0\text{MHz}$
$C_{\text{oss eff.}}$	Effective Output Capacitance	—	1350	—		$V_{\text{GS}} = 0\text{V}$, $V_{\text{DS}} = 0\text{V}$ to 32V ④

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
I_S	Continuous Source Current (Body Diode)	—	—	75	A	MOSFET symbol showing the integral reverse p-n junction diode.
	Pulsed Source Current (Body Diode) ①	—	—	750		
V_{SD}	Diode Forward Voltage	—	—	1.3	V	$T_J = 25^\circ\text{C}$, $I_S = 75\text{A}$, $V_{\text{GS}} = 0\text{V}$ ③
t_{rr}	Reverse Recovery Time	—	28	42	ns	$T_J = 25^\circ\text{C}$, $I_F = 75\text{A}$, $V_{\text{DD}} = 25\text{V}$
Q_{rr}	Reverse Recovery Charge	—	34	51	nC	$\text{di}/\text{dt} = 100\text{A}/\mu\text{s}$ ③
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^\circ\text{C}$, $L = 0.11\text{mH}$ ⑤ $R_G = 25\Omega$, $I_{\text{AS}} = 75\text{A}$, $V_{\text{GS}} = 10\text{V}$. Part not recommended for use above this value.
- ③ Pulse width $\leq 1.0\text{ms}$; duty cycle $\leq 2\%$.
- ④ $C_{\text{oss eff.}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- ⑤ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑥ This value determined from sample failure population. 100% tested to this value in production.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance Vs. Drain Current

IRF1404Z

International
IR Rectifier

Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode
Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10. Normalized On-Resistance
Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF1404Z

International
Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature
www.irf.com

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

www.irf.com

Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. $P_{D(ave)}$ = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. I_{av} = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$
 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$P_{D(ave)} = 1/2 (1.3 \cdot BV \cdot I_{av}) = \Delta T / Z_{thJC}$$

$$I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$$

$$E_{AS(AR)} = P_{D(ave)} \cdot t_{av}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

International
IR Rectifier

IRF1404Z

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH

3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

TO-220AB packages are not recommended for Surface Mount Application.

Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR's Web site.

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 3/03

www.irf.com

9