Bluetooth Layers and Header Format

Bluetooth Layers

Bluetooth uses several layers that do not exactly match those of the Internet model

Logical Link Control and Adaptation Protocol

- ✓ L2CAP is roughly equivalent to the LLC sublayer in LANs
- ✓ It is used for data exchange on an ACL link
- ✓ SCO channels do not use L2CAP

L2CAP data packet format

- ✓ The 16-bit length field defines the size of the data, in bytes, coming from the upper layers.
- ✓ Data can be up to 65,535 bytes. The channel ID (CID) defines a unique identifier for the virtual channel created at this level.
- ✓ The L2CAP has specific duties: multiplexing, segmentation and reassembly, quality of service (QoS), and group management.

Multiplexing

- **✓** The L2CAP can do multiplexing. At the sender site, it accepts data from one of the upper-layer protocols, frames them, and delivers them to the baseband layer.
- ✓ At the receiver site, it accepts a frame from the baseband layer, extracts the data, and delivers them to the appropriate protocol layer.

Segmentation and Reassembly

✓ The maximum size of the payload field in the baseband layer is 2774 bits, or 343 bytes.

✓ This includes 4 bytes to define the packet and packet length.

✓ Therefore, the size of the packet that can arrive from an upper layer can only be 339 bytes.

Baseband Layer

- √ The baseband layer is roughly equivalent to the MAC sublayer in LANs
- **✓** The access method is TDMA
- \checkmark The primary and secondary stations communicate with each other using time slots. The length of a time slot is exactly the same as the dwell time, 625 μs.

Time Division duplex TDM

Single-Secondary Communication

- \checkmark If the piconet has only one secondary, the TDMA operation is very simple. The time is divided into slots of 625 μs.
- \checkmark The primary uses even-numbered slots (0, 2, 4, ...)
- \checkmark The secondary uses odd-numbered slots (1, 3, 5 ...)

Single-Secondary Communication

Multiple-secondary communication

Let us elaborate on the figure

- ✓ In slot 0, the primary sends a frame to secondary 1.
- ✓ In slot 1, only secondary 1 sends a frame to the primary because the previous frame was addressed to secondary 1; other secondaries are silent

- ✓ In slot 2, the primary sends a frame to secondary 2.
- ✓ In slot 3, only secondary 2 sends a frame to the primary because the previous frame was addressed to secondary 2; other secondaries are silent.
- ✓ The cycle continues.

Links

Two types of links can be created between a primary and a secondary: SCO links and ACL links

SCO

- ✓ A synchronous connection-oriented (SCO) link is used when avoiding latency (delay in data delivery) is more important than integrity (error-free delivery).
- ✓ In an SCO link, a physical link is created between the primary and a secondary by reserving specific slots at regular intervals.

ACL An asynchronous connectionless link (ACL) is used when data integrity is more important than avoiding latency.

Frame Format

Access code

This 72-bit field normally contains synchronization bits and the identifier of the primary to distinguish the frame of one piconet from that of another.

Header

This 54-bit field is a repeated 18-bit pattern. Each pattern has the following subfields

Address: The 3-bit address subfield can define up to seven secondaries (1 to 7)

Type: The 4-bit type subfield defines the type of data coming from the upper layers. We discuss these types later.

F: This 1-bit subfield is for flow control. When set (1), it indicates that the device is unable to receive more frames (buffer is full).

A: This 1-bit subfield is for acknowledgment. Bluetooth uses Stop-and-Wait ARQ; 1 bit is sufficient for acknowledgment

S: This 1-bit subfield holds a sequence number. Bluetooth uses Stop-and-Wait ARQ; 1 bit is sufficient for sequence numbering.

HEC:

The 8-bit header error correction subfield is a checksum to detect errors in each 18-bit header section.