

#### ITEC - Institute of Information Technology



# Dimensionality Reduction and Data Fusion

Narges Mehran

narges.mehran@aau.at

Peer Seminar Lecturers: Prof. Hellwagner and Prof.Hitz 28.06.2019

### Key questions

- How to transform a high-dimensional data set into a small set?
- Which methods can be used to combine and reduce the highdimensional data?
- Are these methods among the learning-based schemes?
- Do I need some pre-processing techniques before data fusion exploitation?

#### Data fusion

- Humans, who rely on their senses as the vision, smell, taste, voice and physical movement, are a principal example of data-fusion system.
- A major tool is to remove the dependencies among the collected data.
- In computer science, it is also required to combine various data sets into a unified (fused) data set which includes all data points.

#### Data fusion (cont.)

- To store, analyze and summarize the vast amounts of generated data, one may reduce the dimension of data by dimensionality-reduction data fusion.
- This transformation finds a subspace whose vectors are a combination
  of the old subspace and projects a t-dimensional space onto an kdimensional subspace of the original features, where k<<t.</li>
- The raw data sets collected from our implementations are not available before running the algorithm.

### Principal component analysis

 PCA is mathematically defined as an orthogonal linear transformation that transforms the data to a new coordinate system,

#### PCA

- helps to find relevant structure in data,
- helps to throw away things that won't matter
- The projection of the data comes to lie on the new coordinate system,
  - the greatest variance on the first coordinate (called the first principal component),
  - the second greatest variance on the second coordinate,
  - o and so on

# Transforming the data set to the new space



Data in the old space

Data in new space after PCA Transformation

### Projection of the data



Data in the old space



Projection on the line with higher variance



Projection on the line with lower variance

#### **PCA Calculation**

Vectors of data X:

$$X_1, X_2, X_3, \dots, X_J$$

- $_{\circ}$  Dimension of every vector of data X: I imes I
- Matrix dimension: I×J → I is the number of samples,
   J shows the attribute for every sample.
- First step is to calculate the average of samples and normalizing them:

$$\mu_{j} = \frac{1}{I} \left( \sum_{i=1}^{I} X_{ij} \right) \qquad X = \left[ X_{1} - \mu_{1}, X_{2} - \mu_{2}, ..., X_{J} - \mu_{J}, \right]$$

### PCA Calculation (cont.)

- Second step is to calculate the principal components of the new subspace:
  - 1) Calculating the co-variance matrix:
    - $C = \frac{1}{I} (X^T X)$
    - $V_i C = \lambda_i C$
  - 2) Calculating by the singular value decomposition: SVD (X) =  $[U,\Sigma,V] = U \Sigma V^T$ 
    - Σ is the diagonal matrix
    - U and V are unitary matrices
- Third step is choosing a few number of eigenvectors of V and projecting X on this new subspace.
  - $X_K = X.V_K$

### Randomized-SVD algorithm

- For reducing the size of information and combining features with different qualities, Truncated-SVD is exploited; Truncated-SVD has the ability to extract only the most important information from the data matrix by using just the first several components estimated from the original matrix of data set.
- Randomized-SVD implements a type of Truncated Singular Value Decomposition (Truncated-SVD) that only computes the k-largest singular values with a randomized algorithm, where k is a user-specified parameter.
- Randomized-SVD is similar to PCA, but differs in that it works on sample matrix X directly instead of their covariance matrices. When the column-wise (per-feature) means of X is subtracted from the feature values, Randomized-SVD on the resulting matrix is equivalent to PCA.

### Randomized-SVD algorithm (cont.)

- Given an m×n matrix X, a target number k of singular vectors, this procedure computes an approximate factorization UV, where U and V are orthonormal matrices whose columns are eigenvectors of X.X\* and X\*.X respectively, and is nonnegative and diagonal matrix containing the eigenvalues of X. X\* in the diagonal being sorted in descending order.
- By considering the problem of finding the k principal components of the SVD of an m×n input matrix, randomized algorithms involve O(mnlog(k)) floating-point operations (flops) in distinction to O(mnk) for classical algorithms.
- Randomized-SVD can generate a structure from an unstructured input data matrix by using a subsampled random Fourier Transform (SRFT) and QR decomposition:

• 1

### Randomized-SVD algorithm (cont.)

#### Algorithm 1 Randomized-SVD's Pseudo Code

Goal: Given an  $m \times n$  input matrix X, compute an approximate rank-k SVD:  $X \approx U_k.\Sigma_k.V_k{}^T$ 

- 1: Draw an  $n \times k$  Gaussian random matrix  $\Omega$ ,
- 2: Form an  $m \times k$  orthonormal matrix Q by using (subsampled) FFT and QR factorization,
- 3: Form the  $k \times n$  matrix  $B = Q^T.X$
- 4: Compute the SVD of the small matrix B:  $B = \tilde{U}.\Sigma_k.V_k{}^T$ ,
- 5: Form the matrix  $U_k = Q.\tilde{U}$ ,
- 6: Calculate  $X_k = U_k . \Sigma_k . V_k^T$ .
- N. Mehran and N. Movahhedinia "Randomized SVD Based Probabilistic
- Caching Strategy in Named Data Networks," (2018).

### Reaching the fused data in a nutshell

Using the Randomized SVD algorithm as a data fusion model as follows:

At first, normalizing the data

$$x = \frac{x - mean}{std\_dev}$$

Second, Randomized-SVD, applied to the training samples X, produces a low-rank approximation  $X_k$ 

$$X \approx X_k = U_k. \Sigma_k. V_k^T$$

 $U_k\Sigma_k$  is a transformed training set with k features. To also transform the original set X, we multiply it with  $V_k$  (the normalized eigenvectors of a new subspace)  $X_{fused} = X \cdot V_k$ 

### A Data Fusion Diagram



- ✓ Raol, Jitendra R. "Multi-Sensor Data Fusion with MATLAB," (2009).
- ✓ N. Mehran and N. Movahhedinia "Randomized SVD Based Probabilistic Caching Strategy in Named Data Networks," (2018).

- https://scikit-learn.org/stable/
- Scikit-learn, an open source library in Python, can be exploited for:

https://scikit-learn.org/stable/

#### Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... — Examples

#### Regression

Predicting a continuous-valued attribute associated with an object.

**Applications**: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

— Examples

#### Clustering

Automatic grouping of similar objects into sets.

**Applications**: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift. ... Examples

#### **Dimensionality reduction**

Reducing the number of random variables to consider.

Applications: Visualization, Increased

efficiency

Algorithms: PCA, feature selection, non-— Examples

negative matrix factorization.

#### Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation,

metrics. Examples

#### Preprocessing

Feature extraction and normalization.

**Application**: Transforming input data such as text for use with machine learning algorithms. **Modules**: preprocessing, feature extraction.

Examples

```
Randomized-SVD.py 🗵 📙 pca.py 🗵
             X = array2d(X)
             n samples, n features = X.shape
             X = as float array(X, copy=self.copy)
             # Center data
             self.mean = np.mean(X, axis=0)
             X -= self.mean
             U, S, V = linalg.svd(X, full matrices=False)
             self.explained variance = (S ** 2) / n samples
             self.explained variance ratio = (self.explained variance /
                                                self.explained variance .sum())
             if self.whiten:
                 self.components_ = V / S[:, np.newaxis] * np.sqrt(n_samples)
             else:
                 self.components = V
         Cov = np.cov(X.transpose())
         print "\nCovariance matirx is:"
         print Cov
             if self.n components == 'mle':
                 if n samples < n features:</pre>
                     raise ValueError ("n components='mle' is only supported "
                                       "if n samples >= n features")
                 self.n components = infer dimension (self.explained variance ,
                                                        n samples, n features)
             elif (self.n components is not None
                   and 0 < self.n components</pre>
                   and self.n components < 1.0):</pre>
                 # number of components for which the cumulated explained variance
                 # percentage is superior to the desired threshold
                 ratio cumsum = self.explained variance ratio .cumsum()
                 self.n components = np.sum(ratio cumsum < self.n components) + 1</pre>
             if self.n components is not None:
                 self.components = self.components [:self.n components, :]
                 self.explained variance = \
                     self.explained variance [:self.n components]
                 self.explained variance ratio = \
                     self.explained variance_ratio_[:self.n_components]
             return (U, S, V)
```

49

50

51

53

54

56

57

59 60

61

62

63

64 65 66

67

68

69

70

71

72

73

74

75 76

78

81

82

83 84

85

86

87

88

89

90

#### **PCA**

```
🔚 Randomized-SVD.py 🔀 📙 pca.py 🗵
          * An implementation of a randomized algorithm for principal component
 91
            analysis
 92
            A. Szlam et al. 2014
 93
 94
          random state = check random state(random state)
 95
          n random = n components + n oversamples
 96
          n samples, n features = M.shape
 97
 98
          if n iter == 'auto':
99
              # Checks if the number of iterations is explicitely specified
              # Adjust n iter. 7 was found a good compromise for PCA. See #5299
100
              n iter = 7 if n components < .1 * min(M.shape) else 4
101
102
          if transpose == 'auto':
103
104
              transpose = n samples < n features
105
          if transpose:
              # this implementation is a bit faster with smaller shape[1]
106
107
              M = M.T
108
109
          Q = randomized range finder (M, n random, n iter,
110
                                       power iteration normalizer, random state)
111
112
           \# project M to the (k + p) dimensional space using the basis vectors
113
          B = safe sparse dot(Q.T, M)
114
115
          # compute the SVD on the thin matrix: (k + p) wide
116
          Uhat, s, V = linalg.svd(B, full matrices=False)
117
          del B
118
          U = np.dot(Q, Uhat)
119
120
          if flip sign:
121
               if not transpose:
                  U, V = svd flip(U, V)
123
124
                   # In case of transpose u based decision=false
125
                  # to actually flip based on u and not v.
126
                  U, V = svd flip(U, V, u based decision=False)
127
128
          if transpose:
              # transpose back the results according to the input convention
129
              return V[:n components, :].T, s[:n components], U[:, :n components].T
130
131
          else:
132
              return U[:, :n components], s[:n components], V[:n components, :]
133
```

#### Randomized SVD

### A sample code of Python

from sklearn.decomposition import PCA from sklearn.decomposition import TruncatedSVD

```
X_std = StandardScaler().fit_transform(X)
```

```
sklearn_X = TruncatedSVD(n_components=1)
sklearn_transf = sklearn_X.fit(X_std)
```

#### Ref.

- http://cs229.stanford.edu/notes/cs229-notes10.pdf
- J. Novakovic and . S. Rankov, "Classification performance using principal component analysis and different value of the ratio R," *International Journal of Computers Communications & Control*, vol. 6, no. 2, pp. 317-327, 2011.
- A. Janecek, W. Gansterer, M. Demel and G. Ecker, "On the relationship between feature selection and classification accuracy," in New Challenges for Feature Selection in Data Mining and Knowledge Discovery, 2008.
- H. Abdi and L. J. Williams, "Principal component analysis," Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433-459, 2010.
- Huamin Li, George C. Linderman, Arthur Szlam, Kelly P. Stanton, Yuval Kluger, and Mark Tygert, "Algorithm 971: An implementation of a randomized algorithm for principal component analysis," *Math. Softw.*, 43 (3): 28: 1-28: 14, January 2017.
- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schuetze. Matrix decompositions & latent semantic indexing in Introduction to information Retrieval, pages 220{235.
   Cambridge University Press, New York, NY, USA, 2008.

## Thank you