Aprendizaje no supervisado

VC02: Inicialización avanzada de K-means

Félix José Fuentes Hurtado felixjose.fuentes@campusviu.es

Universidad Internacional de Valencia

Inicializar K-means

Inicializar K-means

Método basado en repeticiones

- ▶ Inicializar aleatoriamente y ejecutar K-means R veces
- ► Medir la bondad de los R diferentes agrupamientos
- Devolver como resultado el mejor agrupamiento

Inicializar K-means

K-means++

Inicialización avanzada del método K-means favoreciendo la separación de los centros iniciales

Intuición

Elección individual (y dependiente) de los centros

- ► Centros: Muestreo aleatorio no uniforme
- Probabilidad: Un ejemplo tiene mayor probabilidad de ser escogido como centro (inicial) cuanto mayor sea su distancia con los centros

K-means++

La probabilidad de un ejemplo es proporcional al cuadrado de su distancia mínima a un centro ya incluido, $D(\mathbf{x}, S)$

$$D(\mathbf{x}, S) = \min_{k \in \{1, \dots, |S|\}} ||\mathbf{x} - \bar{\mathbf{x}}_k||^2$$

K-means++

K-means++

K-means++ (inicialización)

Recibe: Conjunto de entrenamiento, $\{x_1, ..., x_n\}$; número de clústeres, K

- 1. Elección (aleatoria) de 1 punto del conjunto de entrenamiento como primer centro, $S = \{\overline{x}_1\}.$
- 2. Mientras |S| < K, repetir
- 2.1. Para todos los ejemplos de entrenamiento, calcular $D(x_i, S)$, la distancia al centro más cercano: $D(x_i, S) = \min_{k \in \{1, \dots, |S|\}} ||x_i \overline{x}_k||^2$
- 2.2. Muestrear un nuevo caso x' del conjunto de entrenamiento, donde el caso x tiene probabilidad $D(x,S)^2/\sum_{i=1}^n D(x_i,S)^2$ y añadir a $S:S=S\cup\{x'\}$

Devuelve: Conjunto de centros, $\{\overline{x}_1, ..., \overline{x}_K\}$

Aprendizaje no supervisado

VC02: Inicialización avanzada de K-means

Félix José Fuentes Hurtado felixjose.fuentes@campusviu.es

Universidad Internacional de Valencia

