MP: Sujet 3

Coralie RENAULT

14 mai 2015

Exercice

Montrer que

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} \arctan(nx)$$

est continue sur \mathbb{R} et de classe \mathcal{C}^1 sur \mathbb{R}^* .

Exercice

a) Soit $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice p. Montrer que $(I_n, N, N^2, \dots, N^{p-1})$ est une famille libre.

Exprimer

$$e^{t(\lambda I_n+N)}$$

b) Soit $A \in \mathcal{M}_n(\mathbb{C})$ ayant pour unique valeur propre $\lambda \in \mathbb{C}$. Montrer que $N = A - \lambda I_n$ est nilpotente.

Montrer que les solutions du système différentiel X' = AX sont toutes bornées sur \mathbb{R} si, et seulement si, λ est imaginaire pur et $A = \lambda I_n$.

c) Soit $A \in \mathcal{M}_n(\mathbb{C})$ de polynôme caractéristique

$$(X-\lambda_1)^{n_1}\dots(X-\lambda_m)^{n_m}$$

les λ_k étant deux à deux distincts. Soit f l'endomorphisme de \mathbb{C}^n canoniquement associé à A. Montrer que

$$\mathbb{C}^n = \bigoplus_{k=1}^m \ker(f - \lambda_k \mathrm{Id}_{\mathbb{C}^n})^{n_k}$$

En déduire l'existence d'une base de \mathbb{C}^n dans laquelle la matrice de f est diagonale par blocs.

- d) Avec les notations de c). Montrer que les solutions de X' = AX sont bornées si, et seulement si, les λ_k sont imaginaires purs et que A est diagonalisable.
- e) Montrer qu'une matrice antisymétrique réelle est diagonalisable.