# ECEN 758 Data Mining & Analysis: Likelihood, MLE & EM for Gaussian Mixture Clustering

Nick Duffield
Texas A&M University





## Probability vs. Likelihood

Probability: predict unknown outcomes based on known parameters:

$$\circ P(x \mid \theta)$$

• Likelihood: estimate unknown *parameters* based on known *outcomes*:

$$\circ$$
 L( $\theta \mid x$ ) =  $p(x \mid \theta)$ 

- Coin-flip example:
  - $\circ \theta$  is probability of "heads" (parameter)
  - $\circ$  *x* = HHHTTH is outcome form 6 flips



### Likelihood for Coin-flip Example

Probability of outcome given parameter:

$$\circ$$
 p(x = HHHTTH |  $\theta$  = 0.5) = 0.5<sup>6</sup> = 0.016

• Likelihood of parameter given outcome:

$$\circ L(\theta = 0.5 \mid x = HHHTTH) = p(x \mid \theta) = 0.016$$



General Θ:

 $L(\Theta|HHHTTH) = \Theta^4(1-\Theta)^2$ 

- Likelihood *maximal* when  $\theta = 0.6666...$
- Likelihood function not a probability density





### Coin Flip MLE details

- $L(\Theta|HHHTTH) = \Theta^4(1-\Theta)^2$
- $\log L(\Theta) = 4 \log \Theta + 2 \log (1-\Theta)$ :

$$(d/d\Theta) \log L(\Theta) = 4/\Theta - 2/(1-\Theta)$$

Stationary point: derivative = 0 when  $\Theta = 2/3$ 

- Stationary point is maximizer
  - Because logarithm is a concave function
    - Second derivative is negative
- Intuitive result:
  - MLE of H probability Θ = fraction of H in sample





### Likelihood for Continuous Distributions

• Six samples {-3, -2, -1, 1, 2, 3} believed to be drawn from some Gaussian N(0,  $\sigma^2$ )





• Likelihood of σ:

$$L(\sigma | \{-3,-2,-1,1,2,3\}) = p(x = -3 | \sigma) \cdot p(x = -2 | \sigma) \cdots p(x = 3 | \sigma)$$

Maximum likelihood:



$$\sigma = \sqrt{\frac{(-3)^2 + (-2)^2 + (-1)^2 + 1^2 + 2^2 + 3^2}{6}} = 2.16$$



### Likelihood for Cont. Distributions

- Six samples {-3, -2, -1, 1, 2, 3}
  - $\circ$  believed to be drawn from some Gaussian N(0,  $\sigma^2$ )
- Likelihood of σ:

$$L(\sigma | \{-3,-2,-1,1,2,3\}) = p(x = -3 | \sigma) \cdot p(x = -2 | \sigma) \cdots p(x = 3 | \sigma)$$

Maximum likelihood:

$$\sigma = \sqrt{\frac{(-3)^2 + (-2)^2 + (-1)^2 + 1^2 + 2^2 + 3^2}{6}} = 2.16$$

• Intuitive: MLE  $\sigma^2$  = sample variance



### Maximum Likelihood Estimate

- Parameterized family of distributions of some r.v. X
- $P[X|\theta]$  for  $\theta$  in some paramter set
- Likelihood  $L(\theta, X) = P[X | \theta]$
- MLE =  $\operatorname{argmax}_{\theta} L(\theta, X)$
- Clustering with normal distribution:
  - Single point  $f(x_i) = \sum_{i=1}^k f(x_i \mid \mu_i, \Sigma_i) P(C_i)$
  - $\circ$  P[X| $\theta$ ]=Prod<sub>j</sub> f(x<sub>j</sub>)
  - o Log-LLHD
- Find max by differentiation?
  - Difficult due to sum inside logarithms





### Latent data

- Observations  $X = \{x_1, x_2, \dots, x_n\}$
- Suppose "latent data" Y, unobserved, that explains the observations
  - E.g. if clustering with mixture of k Normal distributions Latent variables  $Y = \{y_1, y_2, ...., yn\}$  where each  $y_i$  in  $\{1,...,k\}$  tells which mixture component i actually followed.
  - $\circ$  Parameters  $\theta = (P(C_i))$  describe joint distribution of  $P_{\theta}(X,Y)$  of X,Y
    - $\square$  Y part:  $P(C_i)$  = probability to be in component i
    - □ Distribution of X given Y:
      - $\mu_i$ ,  $\Sigma^2_i$  parametrize Normal distribution of x in component i
- Problem: we don't know the y<sub>i</sub>
- Call (X,Y) complete data
  - Contrast with observed data X
- Complete data likelihood  $L(\theta | X,Y) = P_{\theta}(X,Y)$





### Expectation-Maximization

- Let  $E_{\theta}$  denote the expectation w/ parameter  $\theta$
- Expectation Step: Compute Expected value of the complete data log likelihood, conditioned on observed data X
  - $\circ$  Q( $\theta'$ ,  $\theta$ ) = E<sub> $\theta$ </sub>[log L( $\theta'$ |X,Y) | X]
- Maximization step: given  $\theta$ , find the parameters  $f(\theta) = \arg\max_{\theta'} Q(\theta', \theta)$

### EM Procedure:

- Initialize  $\theta(0)$
- Iterate E and M steps:
  - $\circ$  sequence of iterates  $\theta(n+1) = f(\theta(n))$
- Iterate until some stopping criterion is met
  - o e.g., small successive differences
- until  $| | \theta(n+1) \theta(n) | | < \epsilon$
- Declare victory
  - $\circ$  hope θ is MLE of the original problem: argmax L(θ,X)



### 3 questions

- What is the unobserved data Y?
  - How does it relate to any given problem
  - O How do I know its distribution?
- How is this related to the MLE problem?
  - $\circ$  Function Q( $\theta'$ ,  $\theta$ ) = E<sub> $\theta$ </sub>[log L( $\theta'$  | X,Y] | X]
  - $\circ$  New parameters f(θ) = arg max  $\theta'$  Q(θ', θ)
    - $\Box$  Find parameters  $\theta'$  that maximize E log likelihood
    - Seems to have something to do with MLE
- How to find maximizer to compute iterates f(θ)





## Why Expectation Maximization?

- $P_{\theta'}(X,Y) = P_{\theta'}(X) P_{\theta'}(Y|X)$
- $\log P_{\theta'}(X) = \log P_{\theta'}(X,Y) \log P_{\theta'}(Y|X)$
- $\log L(\theta' \mid X)$ . =  $\log L(\theta' \mid X,Y)$   $\log P_{\theta'}(Y \mid X)$ 
  - Taking logs and rearrainging
- Take expectation  $E_{\theta}$  conditional on X
  - $\circ \log L(\theta' \mid X) = Q(\theta', \theta) + H(\theta', \theta)$ 
    - Definition of Q
    - $\square$  Where H( $\theta'$ ,  $\theta$ ) = E<sub> $\theta$ </sub> [ log P<sub> $\theta'$ </sub> (Y|X) | X]



## Why Expectation Maximization?

• Recap:

$$\log L(\theta' \mid X) = Q(\theta', \theta) + H(\theta', \theta)$$

- Suppose  $\theta^* = \operatorname{argmax}_{\theta'} Q(\theta', \theta)$
- $\log L(\theta^* | X) \log L(\theta | X)$ =  $Q(\theta^*, \theta) - Q(\theta, \theta) + (H(\theta^*, \theta) - H(\theta, \theta))$  $\geq H(\theta^*, \theta) - H(\theta, \theta)$
- By Gibbs inequality (see later):  $H(\theta^*, \theta) H(\theta, \theta) \ge 0$
- Then conclude that  $\log L(\theta^* \mid X) \ge L(\theta \mid X)$
- Observed data likelihood is higher for  $\theta^*$  than for  $\theta$





### Expectation-Maximization: Monotonicity

- Map  $\theta \rightarrow f(\theta) = \theta^*$
- Sequence  $\theta(n+1) = f(\theta(n))$ .
- $L(\theta(n)|X)$  is non-decreasing function of n
- Best case:
  - $\circ$  L( $\theta(n)$ | X) increases monotonically to a limit which is the ML
  - $\circ$   $\theta(n)$  converges to MLE argmax  $\theta L(\theta \mid X)$
- Beware:
  - $\circ$  L( $\theta(n)$ | X) could converge to a *local* maximum of the likelihood



**TEXAS A&M** 

Institute of Data Science

## Gibbs' Inequality

- Theorem:
- If p and q are two probability distributions with  $q_i = 0 \rightarrow p_i = 0$  $D(p,q) = \sum_i p_i \log(p_i / q_i) \ge 0 \text{ with equality iff } p = q$
- $H(\theta', \theta) = -E_{\theta} [\log P_{\theta'}(Y|X) \mid X] = \Sigma_y P_{\theta} (Y=y \mid X) \log P_{\theta'}(Y=y \mid X)$
- $H(\theta^*, \theta)-H(\theta, \theta) = \Sigma_y P_{\theta} (Y=y \mid X) \log P_{\theta} (Y=y \mid X) P_{\theta} (Y=y \mid X) \log P_{\theta^*} (Y=y \mid X)$
- =  $\Sigma_y P_{\theta}$  (Y=y | X) {log  $P_{\theta}$  (Y=y | X)/ $P_{\theta*}$  (Y=y | X)}
- =  $D(P_{\theta}(Y|X), P_{\theta^*}(Y|X) \ge 0$  due to Gibbs Inequality





## Proof of Gibbs Inequality

- Want to show  $D(p,q) = \Sigma_i p_i \log (p_i / q_i) \ge 0$
- g(x) = log(x) a concave function,
  - derivative 1/x is decreasing
- $\log x \log 1 \le g'(1)(x-1) = x-1$ 
  - $\circ$  with equality only of x = 1.
- -  $\log x = \log(1/x) < 1/x-1$  so  $\log x > 1-1/x$
- $\log p/q > 1 q/p$
- $\Sigma_i$   $p_i \log (p_i / q_i) \ge \Sigma_i$   $p_i (1-q_i / p_i) = \Sigma_i$   $p_i q_i = 1-1 = 0$  with equality only if  $p_i = q_i$  for all i



### When does EM converge to MLE?

#### Certain abstract conditions

but sometimes difficult to check.

#### • Theorem:

- o If L(θ,X) has unique maximum and  $(d/d\theta)Q(\theta, \theta')$  is continuous in  $\theta$  and  $\theta'$
- Then EM sequence converges to MLE



### Gaussian Mixture models

#### Observed Data LLHD:

#### Complete data:

- $\circ$  Each point  $x_i$  comes with vector  $c_i = (c_{i1},...,c_{ik})$
- o c<sub>i</sub> indicates which component j lies in:
  - $\Box$  c<sub>ii</sub> = 1 if j in component i and zero otherwise.
- $\circ$  Y = {c<sub>i</sub>} is latent or unobserved data.
- $\circ E[c_{ji}] = P[C_i \mid x_j] = w_{ij}$

### Full Data Likelihood

#### Full data likelihood:

- $\circ$  Suppose we know the  $c_{ji}$  as data, i.e. which component i each point j belongs to
- For each point x<sub>i</sub>
  - $\Box f(x_{j}, c_{j}) = \prod_{i=1}^{k} (f(x_{j} | \mu_{i}, \Sigma_{i}) P(C_{i})) ** c_{ji}$
  - $\Box$  c<sub>ii</sub> = 1 for exactly 1 of the i:
  - □ Terms in product for all other i are 1
- $P(X,Y | \theta) = \prod_{j=1}^{n} f(x_{j,} c_{j}) = \prod_{j=1}^{n} \prod_{i=1}^{k} (f(x_{j} | \mu_{i}, \Sigma_{i}) P(C_{i})) ** c_{ji}$
- log P(X,Y| $\theta$ ) =  $\sum_{j=1}^{n} \sum_{j=1}^{n} c_{ji} \log \{f(x_j | \mu_i, \Sigma_i)P(C_i)\}$



### Computation of Q

#### Much nicer than for observed data likelihood

- o no sum inside log
- $Q(\theta', \theta) = E_{\theta} [\log L(\theta' | X, Y) | X]$
- =  $E_{\theta}[\Sigma_{i=1}^{n} \Sigma_{i=1}^{k} c_{ii} \{ \log f(x_{i} | \mu'_{i}, \Sigma'_{i}) + \log P'(C_{i}) \} | X]$ 
  - $\Box$  Conditioned on X, so the  $x_i$  are just constant
- $E_{\theta}[c_{ji}] = P[C_i | x_j] = w_{ij}$

$$Q(\theta', \theta) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \{ \log f(x_i | \mu'_i, \Sigma'_i) + \log P'(C_i) \}$$



## Computation of maximizer (1-dim)

#### **Recap:**

- $\square \qquad Q(\theta', \theta) = \sum_{i=1}^{k} \sum_{i=1}^{n} w_{ii} \{ \log f(x_i | \mu'_i, \Sigma'_i) + \log P'(C_i) \}$
- □  $\log f(x_i | \mu'_i, \Sigma'_i) = -(x_i \mu'_i)^2 / 2(\sigma'_i)^2 \log \sigma'_i + const.$

#### Differentiate w.r.t. μ'<sub>i</sub>:

- $\Box \Sigma_{i=1}^{n} W_{ij} (x_{i} \mu_{i}') = 0$
- Occurs when  $\mu'_i = \mu_i^* = \sum_{j=1}^n w_{ij} x_j / \sum_{j=1}^n w_{ij}$

#### Differentiate w.r.t. σ'<sub>i</sub>

- $\Box -\Sigma_{i=1}^{n} \{ w_{ii} (x_i \mu_i')^2 / (\sigma_i')^3 1 / \sigma_i' \} = 0$
- Occurs when  $(\sigma'_i)^2 = (\sigma^*_i)^2 = \sum_{j=1}^n w_{ij} (x_j \mu'_i)^2 / \sum_{j=1}^n w_{ij}$



## Computation of maximizer (1-dim)

- Recap:
  - $\square \quad Q(\theta', \theta) = \sum_{i=1}^{k} \sum_{j=1}^{n} w_{ij} \{ \log f(x_i | \mu'_i, \Sigma'_i) + \log P'(C_i) \}$
- Differentiate w.r.t. P'(C<sub>i</sub>)

Subject to constraint  $\Sigma_{i=1}^k P'(C_i) = 1$ 

- $\square$   $\Sigma_{i=1}^{n} w_{ij} / P'(C_i) = constant independent of i$
- $\Box$  Occurs when  $P'(C_i) = \sum_{j=1}^{n} w_{ij} / n$
- Maximizer
- Have recovered stated iteration of parameters
  - $\square \quad \mu_i \rightarrow \mu_i^*, \Sigma_i \rightarrow \Sigma_i^*, P(C_i) \rightarrow P^*(C_i)$

