MÉTODOS NUMÉRICOS Curso 2020–2021

Problemas

Hoja 5. Interpolación e integración numéricas

1 Hallar el polinomio P que interpola la función $f(x) = \cos(\pi x)$ en los puntos $\{0, \frac{1}{2}, 1, \frac{3}{2}\}$.

2 Sean $f,g:[a,b]\to\mathbb{R}$ y $\{x_0,x_1,\ldots,x_n\}$ puntos distintos del intervalo [a,b]. Si P y Q son, respectivamente, los polinomios de interpolación de f y g en los puntos $\{x_0,x_1,\ldots,x_n\}$

a) ¿Es $\alpha P + \beta Q$ ($\alpha, \beta \in \mathbb{R}$) el polinomio de interpolación de $\alpha f + \beta g$ en los puntos $\{x_0, x_1, \dots, x_n\}$?

b) ¿Es PQ el polinomio de interpolación de fg en los puntos $\{x_0, x_1, \dots, x_n\}$?

3 Sean $\{x_0, x_1, \dots, x_n\} \subset \mathbb{R}$ puntos distintos. Demostrar:

a)
$$\sum_{i=0}^{n} L_i(x) = 1$$
, $x \in \mathbb{R}$. b) $E_n(x) = f(x) - P_n(x) = \sum_{i=0}^{n} [f(x) - f(x_i)]L_i(x)$.

4 Sean $P \in \mathcal{P}_n$ y n+1 puntos distintos $\{x_0, x_1, \ldots, x_n\}$. Hallar el valor de $P[x_0, x_1, \ldots, x_n]$.

5 Sean $\{x_0, x_1, \dots, x_n\}$ con $x_i \neq x_j$ si $i \neq j$ y $f(x) = x^{n+1}$. Calcular el polinomio de interpolación de Lagrange de f en los puntos $\{x_0, x_1, \dots, x_n\}$ y determinar su término independiente.

6 Demostrar que si $f \in \mathcal{C}([a,b])$ y existe $f'(x_i)$ para algún $x_i \in [a,b]$ entonces la función

$$g(x) = \begin{cases} f[x, x_i] & \text{si} \quad x \neq x_i \\ f'(x_i) & \text{si} \quad x = x_i \end{cases}$$

es continua en el intervalo [a,b] (esto permite definir la diferencia dividida $f[x,x_i]$ en todo punto del intervalo). ¿Tiene $f[x,x_i]$ alguna propiedad similar a $(\varphi\psi)'=\varphi'\psi+\varphi\psi'$?

7 Sea $a>0, \{-x_n,-x_{n-1},\ldots,-x_1,0,x_1,\ldots,x_n\}\subset [-a,a]$ y P_{2n} el polinomio de interpolación de Lagrange de $f:[-a,a]\to\mathbb{R}$ en estos puntos. Demostrar los siguientes resultados:

a) Si f es una función par (resp. impar) entonces P_{2n} es par (resp. impar).

b) Si f es par existe $Q_n \in \mathcal{P}_n$ tal que $P_{2n}(x) = Q_n(x^2)$. ¿Quién es Q_n ? ¿Qué utilidad tiene esto?

8 Determinar los valores de λ y μ para que

$$S(x) = \begin{cases} \lambda x(x^2 + 1), & 0 \le x \le 1\\ -\lambda x^3 + \mu x^2 - 5\lambda x + 1, & 1 \le x \le 2 \end{cases}$$

sea una función spline cúbica.

9 Sea $\Delta = \{a = x_0 < x_1 < \dots < x_n = b\}$ una partición del intervalo [a, b]. Demostrar:

a) Si n < 4 toda función spline cúbica que verifique

$$S_{\Delta}^{(k)}(a) = S_{\Delta}^{(k)}(b) = 0, \ k = 0, 1, 2$$

es idénticamente nula.

b) Si n=4 la anterior función spline cúbica está unívocamente determinada por el valor que tome en x_2 .

10 Demostrar, a partir del teorema de Rolle, la unicidad de la función spline cúbica de interpolación en los casos I y II.

11 Sea $\Delta = \{x_0 = a < x_1 < \dots < x_n = b\}$ una partición del intervalo [a,b] y $S_{\Delta}(y;\cdot)$ la función spline cúbica que interpola los valores $y = (y_0, y_1, \dots, y_n)^{\mathrm{T}}$ con condiciones de tipo I. ¿Qué deben verificar los valores $\{y_0, y_1, \dots, y_n\}$ para que $S_{\Delta}(y;\cdot)$ coincida en todo el intervalo [a,b] con un polinomio $P \in \mathcal{P}_3$?

12 Aplicar la regla de Simpson compuesta a la integral

$$\int_{1}^{x} \frac{dt}{t}$$

para obtener una aproximación del logaritmo neperiano de 2 determinando el número m de subintervalos necesario para que el error cometido en esa aproximación sea inferior a 10^{-3} .

- 13 Hallar la expresión de la regla de Simpson abierta compuesta.
- 14 Se considera la fórmula de integración

$$\int_0^1 f(x) \, dx \simeq A(f(x_0) + f(x_1)).$$

Hallar el valor de A, x_0 y x_1 para que la fórmula sea exacta para polinomios del mayor grado posible. ¿Cuál es éste?

- **15** Encontrar un fórmula que aproxime $\int_{1}^{3} f(x) dx$ utilizando los valores de f en los puntos 0, 2 y 4 y que sea exacta para polinomios del mayor grado posible. ¿Cuál es éste?
- **16** Dado $n \in \mathbb{N}$ se considera $h = \frac{1}{n}$, $x_i = ih$ para $i = 0, 1, \dots, n$ y la función

$$f_n(x) = x^n \cos(2\pi nx).$$

Hallar el valor de la aproximación de $\int_0^1 f_n(x) dx$ que se obtiene utilizando la fórmula de Newton–Côtes cerrada de n+1 puntos.

17 Hallar el valor de la aproximación que se obtiene al calcular

$$\int_{-4}^{4} |x-2|^3 (1-\sin \pi x) \, dx$$

mediante la regla de Simpson compuesta para 4 subintervalos.

- 18 a) Hallar la expresión de la fórmula abierta de Newton-Côtes de dos puntos.
- b) Determinar la expresión de la regla anterior compuesta.
- c) ¿Qué valor se obtendría si se utilizara la regla de b) con 100 subintervalos para aproximar $\int_{-5}^{5} |x| dx$? ¿Qué ocurriría si se tomaran 99 subintervalos?
- 19 Hallar la aproximación que se obtiene de $\int_a^b f(x) dx$ cuando se considera la integral de la interpolación lineal a trozos de f en una partición equiespaciada.