

<u>Course</u> > <u>Week 2: Simple Programs</u> > <u>3. Simple Algorithms (TIME: 41:06)</u> > Exercise 3

	c ise 3 ise 3
4 poin	ts (graded)
	TED TIME TO COMPLETE: 5 minutes
1.	True or False? The internal computer representation of any number is always an approximation.
	True
	False
	•
2.	Γhe decimal 11 is what binary?:
	<u>11</u>
	● 1011
	<u></u>
	cannot be converted
	✓
	True or False? The internal representation of the decimal number 1/10 = 0.1 requires an infinite number of digits.
	● True
	False
	✓
	After many computations, you get two floating numbers stored in variables $\begin{bmatrix} a \end{bmatrix}$ and $\begin{bmatrix} b \end{bmatrix}$. Your code compares the numbers with $\begin{bmatrix} a \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}$.
	Doing the comparison will always lead to a correct program.
	Doing the comparison will sometimes lead to a correct program.
	Doing the comparison will never lead to a correct program.

Exercise 3

Topic: Lecture 3 / Exercise 3

© All Rights Reserved