## 情報処理工学第7回

藤田 一寿

公立小松大学保健医療学部臨床工学科

## カルノ一図

## ■ 真理値表から論理回路を作る

- 前述のやり方では困ることがある.
  - ・式の簡単化に行き詰まる.
  - 入力が多く真理値表が複雑になっている.

#### 式の簡単化が行き詰まる例

## ORの真理値表

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



$$Y = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$
$$= \overline{A} \cdot B + A \cdot (\overline{B} + B)$$
$$= \overline{A} \cdot B + A$$

ORの真理値表を論理式にうまく変換できていない…

#### ■ 式の簡単化が行き詰まる例

## ORの真理値表

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



$$Y = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$

$$= \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B + A \cdot B$$

$$= (A + \overline{A}) \cdot B + A \cdot (B + \overline{B})$$

$$= A + B$$

論理式の公式をうまく駆使すればORの論理式が導けるが…

簡単な方法はないのか?

## ORの真理値表

| А | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



$$Y = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$

$$= \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B + A \cdot B$$

$$= (A + \overline{A}) \cdot B + A \cdot (B + \overline{B})$$

$$= A + B$$

論理式の公式をうまく駆使すればORの論理式が導けるが…



簡単な方法はないのか? 
カルノー図を使うとうまくいく

## ■カルノ一図

• 論理式を簡略化するための表

## ORの真理値表

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



### カルノ一図

| В | A | 0 | 1 |
|---|---|---|---|
|   | 0 | 0 | 1 |
| : | 1 | 1 | 1 |

#### ■カルノ一図

・論理式を簡略化するための表

ORの真理値表

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



カルノ一図

| A | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 1 |

赤い部分が入力青い部分が出力



赤い線で囲まれた出力が1になる部分について考えてみる.

$$\overline{A} \cdot B + A \cdot B = B \cdot (A + \overline{A}) = B$$

Aが消えてBだけになった!!



$$\overline{A} \cdot B + A \cdot B = B \cdot (A + \overline{A}) = B$$

赤い線で囲まれた部分では、AはOと1、Bは1となる。 AはOと1の値になる場合、AとAの否定の足し算が出てくる ため、Aが消えてBのみとなった。



赤い点線で囲まれた部分について考えてみる.

$$A \cdot \overline{B} + A \cdot B = A \cdot (A + \overline{B}) = A$$

前述のように考えると, Bは0と1となっているため, B が消えた。



赤い線で囲まれた部分から導かれた論理式と、赤い点線で囲まれた部分から導かれた論理式を足すと答えとなる.

$$Y = A + B$$



なぜ、赤い線と赤い点線の両方で囲まれたA・Bを 2回使ってよいのか? それはA・B = A・B + A・Bと変換できるためで ある。

## ■ 3つ以上入力がある場合のカルノー図

- ・入力が3つ以上の場合でも、2つのときと同じやり方で行う。
- ・ただし、表の中の数値の並び方に注意する.

## 真理值表

| Α | В | С | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

### カルノ一図

| AB<br>C | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 0       | 0  | 0  | 1  | 0  |
| 1       | 0  | 1  | 1  | 1  |

・ 真理値表をもとに論理回路を作成せよ.

## 真理值表

| Α | В | С | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## カルノ一図

| C AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 0  | 1  | 0  |
| 1    | 0  | 1  | 1  | 1  |



### 演習

・次の真理値表から論理回路を作れ、ただし、カルノー図を用いよ。

真理值表

| Α | В | C | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

| Α | В | С | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

### 演習

・次の真理値表から論理回路をつくれ、ただし、カルノー図を用いよ、

真理值表

| Α | В | С | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

| _ |   |   |   |   |
|---|---|---|---|---|
|   | Α | В | С | Υ |
|   | 0 | 0 | 0 | 0 |
|   | 0 | 0 | 1 | 1 |
|   | 0 | 1 | 0 | 0 |
|   | 0 | 1 | 1 | 1 |
|   | 1 | 0 | 0 | 0 |
|   | 1 | 0 | 1 | 0 |
|   | 1 | 1 | 0 | 1 |
|   | 1 | 1 | 1 | 0 |
|   |   |   | • |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

# 加算回路

- ・論理演算・論理回路には論理和はあるが、あくまでも論理的な足し 算であって、算術的な足し算ではない。
- ・どのようにして算術的な足し算を論理式・論理回路で表現するのか?

$$0 + 0 = 0$$
  
 $0 + 1 = 1$   
 $1 + 0 = 1$   
 $1 + 1 = 10$ 

## ■ 算術加算の真理値表

1桁の2進数AとBの和は2桁の2進数CSとなる、という計算を することを考える。

入力(1桁の2進数): A, B 和(足した結果の1桁目): S 桁上げ(足した結果の2桁目): C キャリーという

### 真理值表

| Α | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

真理值表

| А | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

2出力あるので論理式は2つ立つ。 出力が1の部分に注目して論理式を作る。

$$C = A \cdot B$$

$$S = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$$

この真理値表及び論理式は1桁の2 進数の和のみを可能にしている。 このような加算を実現する論理回路 を半加算器という。

## 真理值表

| А | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

## 論理式

$$C = A \cdot B$$

$$S = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$$

## ■半加算器の論理回路



## ■ 全加算器

- ・半加算器では1桁の2進数の足し算を論理式・論理回路で実現できている。
- ・2桁以上の2進数の足し算はどのように論理式・論理回路で実現すればよいか

$$0 + 0 = 0$$
  
 $0 + 1 = 1$   
 $0 + 10 = 10$   
 $0 + 11 = 11$   
 $1 + 0 = 1$   
 $1 + 1 = 10$   
 $10 + 1 = 11$   
 $11 + 10 = 101$   
 $11 + 11 = 110$ 

## ■ 問題を分割して考える

- 何桁もの足し算をいきなり考えるのは難しい.
- ある1桁の足し算だけ考える.
- ・ある1桁の足し算は、その桁と桁上りの3つの数字の和で表せる。



2桁目の足し算を考えると、それぞれの桁(1と1)と下の桁の桁上り(1)の足し算(11)となっている。

## ■ 真理値表

ある桁の足し算を実現するには3つの2進数の和が計算できれば良い.

$$\begin{array}{c}
A \\
B \\
+ X \\
\hline
CS
\end{array}$$

#### 真理值表

入力:A,B,X(桁上り) 和(足した結果の1桁目):S 桁上げ(足した結果の2桁目):C

| <b>六</b> |   |   |   |   |  |
|----------|---|---|---|---|--|
| Α        | В | Χ | С | Α |  |
| 0        | 0 | 0 | 0 | 0 |  |
| 0        | 0 | 1 | 0 | 1 |  |
| 0        | 1 | 0 | 0 | 1 |  |
| 0        | 1 | 1 | 1 | 0 |  |
| 1        | 0 | 0 | 0 | 1 |  |
| 1        | 0 | 1 | 1 | 0 |  |
| 1        | 1 | 0 | 1 | 0 |  |
| 1        | 1 | 1 | 1 | 1 |  |

## ■ 真理値表から論理式を立てる

$$C = \overline{A} \cdot B \cdot X + A \cdot \overline{B} \cdot X + A \cdot B \cdot \overline{X} + A \cdot B \cdot X$$

$$= B \cdot X + A \cdot X + A \cdot B$$

$$S = \overline{A} \cdot \overline{B} \cdot X + \overline{A} \cdot B \cdot \overline{X} + A \cdot \overline{B} \cdot \overline{X} + A \cdot B \cdot X$$

| Α | В | Х | С | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

#### 全加算器

半加算器は出力の桁上りは考えていた。 しかし、それだけでは、1桁の2進数の足し算しか実現できない

複数の桁の計算を実現するためには、下の桁の桁上りのことも考える必要がある.

この真理値表・論理式のように、下の桁の桁上りのことも考えた論理回路を全加算器という.

$$C = \overline{A} \cdot B \cdot X + A \cdot \overline{B} \cdot X + A \cdot B \cdot \overline{X} + A \cdot B \cdot X$$

$$= B \cdot X + A \cdot X + A \cdot B$$

$$S = \overline{A} \cdot \overline{B} \cdot X + \overline{A} \cdot B \cdot \overline{X} + A \cdot \overline{B} \cdot \overline{X} + A \cdot B \cdot X$$

| Α | В | Χ | С | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

## ■全加算器の論理回路



覚えなくて良いよ