Feasibility Analysis: Lego satellites

I have listed below the best of the sensors and actuators that are available in the market. These have been taken from our literature survey report. Since this is a technology demonstration, we can choose our design parameters as long as they satisfy the achievable limit.

- GPS
 - Present accuracy: \pm 20m
- Star tracker
 - Advantages
 - * Only 1 needed, hence reducing complexity and error build-up (this itself can be a tech demo of sorts)
 - * Always functional, no interference with albedo and such
 - * 5 Hz update rate
 - * 0.5 U size, 7-24 arc-second accuracy
 - * Can also be used to measure angular rates, by using star smeared in the image and calculating it's radius of curvature, and thus removing need of gyro
 - Disadvantages
 - * Gets disturbed by stray light. More than 1 might be needed in this case
 - * Problematic during detumbling
- Active control dataset packages
 - 0.003° pointing accuracy, 0.5W power consumption, 0.5U size
 - Sensors and actuators included
 - * Magnetometer
 - * IMU
 - * Sun sensor
 - * 3 reaction wheels
 - * 3 torque rods
- Other instruments that might be needed
 - Normal Cameras
 - Infrared Cameras
 - Lights/Bulbs In case we are going to do advertisements, or vision based intersatellite distance measurement.