

Universidade Federal da Paraíba

Eletrônica II

Atividade 2

Professor: Hugo Cavalcante $\begin{array}{c} Aluno: \\ \text{João Wallace Lucena Lins} \\ 20180027213 \end{array}$

8 de outubro de 2023

Variáveis do Circuito:

- $V_1 = 10 \text{ mV} @ 20 \text{Hz};$
- $V_2 = 100 \text{ mV} @ 400 \text{Hz};$
- $V_{CC} = 15 \text{ V};$
- $V_{EE} = -15 \text{ V};$
- $R_C = R_E = 5 \text{ k}\Omega$.

Circuito no LTSPICE:

Cálculos de ganhos e CMRR:

Para A_V differencial, temos:

$$A_{V} = \frac{R_{C}}{2r_{e'}}, \ r_{e'} = \frac{25\text{mV}}{I_{E}}, \ I_{E} = \frac{V_{EE}}{2R_{E}}$$

$$I_{E} = \frac{15 \text{ V}}{2*5 \text{ k}\Omega} = 1,5 \text{ mA}$$

$$r_{e'} = \frac{25 \text{ mV}}{1,5 \text{ mA}} = 16,7 \Omega$$

$$A_{V} = \frac{5 \text{ k}\Omega}{2*16,7 \Omega} = 150$$

Para $A_{V_{CM}}$, considerando que $R_C = R_E$, temos:

$$A_{V_{CM}} = \frac{R_C}{2R_E} = 0,5$$

Logo, para a Razão de Rejeição do Modo Comum:

$$CMRR = \frac{A_V}{A_{V_{CM}}} = \frac{150}{0.5} = 300$$

Plot das tensões:

Figura 1: A linha verde representa a tensão no resistor R_L , a rosa a tensão V_1 e a vermelha a tensão V_2 .