Package 'streamDAG'

July 20, 2022
Version 0.1.0-2
Date 2022-6-28
Title Descriptors and Methods for Stream DAGs
Author Ken Aho [aut, cre], Arya Legg [ctb]
Maintainer Ken Aho <kenaho1@gmail.com></kenaho1@gmail.com>
Depends R ($>= 4.0$), igraph
Imports asbio, graphics, stats, plotrix
Suggests ggplot2, sf
Description Provides indices and tools for directed acyclic graphs (DAGs), particularly DAG representations of intermittent streams.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no

R topics documented:

	2
e.pa.from.nodes	3
sort	4
rn.length	5
ta.posterior	6
v.bern	7
gree.dists	8
lete.arcs.pa	8
lete.nodes.pa	9
nvbeta	10
obal.summary	11
)	12
SL	13
p.closeness	15
cal.summary	16
ır_arc_pres_abs	16
ır_coords	17
ır_lengths	18
ır_node_pres_abs	18
ır_seasons_arc_pa	20

2 A

	path.lengths	21
	path.lengths.sink	21
	path.visibility	22
	plot_degree.dist	23
	R.bounds	24
	size.intact.to.sink	25
	spatial.plot	26
Index		28

Arcs of a directed graph

Description

This function and its documentation have been lifted from the *igraph* function E with arguments according to DAG conventions. An arc sequence is a vector containing numeric arc ids, with a special class attribute that allows custom operations: selecting subsets of arcs based on attributes, or graph structure, creating the intersection, union of arcs, etc.

Usage

A(G, P, path)

Arguments

G	Graph object of class igraph. See graph_from_literal.
Р	A list of node to select arcs via pairs of nodes. The first and second nodes select the first arc, the third and fourth node select the second arc, etc.
path	A list of nodes, to select arcs along a path. Note that this only works reliable for simple graphs. If the graph has multiple arcs, one of them will be chosen arbitrarily to be included in the arc sequence.

Details

Arc sequences are usually used as function arguments that refer to arcs of a graph.

An arc sequence is tied to the graph it refers to: it really denoted the specific arcs of that graph, and cannot be used together with another graph.

An arc sequence is most often created by the A() function. The result includes arcs in increasing arc id order by default (if none of the P and path arguments are used). An arc sequence can be indexed by a numeric vector, just like a regular R vector.

Value

An arc sequence of the graph.

Author(s)

Gabor Csardi

arc.pa.from.nodes 3

See Also

See E

Examples

```
G <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e, e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l, l --+ m, m --+ n, n --+ o)

A(G)
```

arc.pa.from.nodes

Obtain arc activity outcomes based on bounding nodes

Description

Given nodal presence absence outcomes for a graph, G, the function calculates are activity probabilities. For the kth arc with bounding nodes u and v, there are three possibilities for the arc: 1.0, if both u and v are present, 0.0 if both u and v are absent, and 0.5 if only one of u or v is present and the other is absent.

Usage

```
arc.pa.from.nodes(G, node.pa)
```

Arguments

G Graph object of class igraph. See graph_from_literal.

node.pa

A data frame or matrix of nodal presence absence data with column names corresponding to node names in G.

Author(s)

Ken Aho

```
murphy_spring <- graph_from_literal(IN_N --+ M1984 --+ M1909, IN_S --+ M1993,
M1993 --+ M1951 --+ M1909 --+ M1799 --+ M1719 --+ M1653 --+ M1572 --+ M1452,
M1452 --+ M1377 --+ M1254 --+ M1166 --+ M1121 --+ M1036 --+ M918 --+ M823,
M823 --+ M759 --+ M716 --+ M624 --+ M523 --+ M454 --+ M380 --+ M233 --+ M153,
M153 --+ M91 --+ OUT)

data(mur_node_pres_abs)
arc.pa.from.nodes(murphy_spring, mur_node_pres_abs[400:405,][,-1])</pre>
```

4 assort

assort

Assortativity

Description

Calculates graph assortativity

Usage

```
assort(G, mode = "in.out")
```

Arguments

G Graph object of class igraph. See graph_from_literal.

mode One of "in.in", "in.out", "out.out", "out.in", or "all".

Details

The definitive measure of graph assortativity is the assortativity coefficient which is the Pearson correlation coefficient of the degree of pairs of adjacent nodes (Newman, 2002). Let $\overrightarrow{u_iv_i}$ define nodes and directionality of the ith arc, $i=1,2,3,\ldots,m$, let $\gamma,\tau\in -,+$ index the degree type: -=in,+=out, and let (u_i^γ,v_i^τ) , be the $\gamma-$ and $\tau-$ degree of the ith arc. Then, the general form of assortativity index is:

$$r\left(\gamma,\tau\right)=m^{-1}\frac{\sum_{i=1}^{m}(u_{i}^{\gamma}-\bar{u}^{\gamma})(v_{i}^{\tau}-\bar{v}^{\tau})}{s^{\gamma}s^{\tau}}$$

where \bar{u}^{γ} and \bar{v}^{γ} are the arithmetic means of the u_i^{γ} s and v_i^{τ} s, and s^{γ} and s^{τ} are the population standard deviations of the u_i^{γ} s and v_i^{τ} s. Under this framework, there are four possible forms to $r(\gamma,\tau)$ (Foster et al., 2010). These are: r(+,-), r(-,+), r(-,-), and r(+,+).

Value

Assortativity coefficeint outcome(s)

Author(s)

Ken Aho, , Gabor Csardi wrote degree

References

Newman, M. E. (2002). Assortative mixing in networks. *Physical Review Letters*, 89(20), 208701. Foster, J. G., Foster, D. V., Grassberger, P., & Paczuski, M. (2010). Edge direction and the structure of networks. *Proceedings of the National Academy of Sciences*, 107(24), 10815-10820.

```
network_a <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e, e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l, l --+ m, m --+ n, n --+ o) assort(network_a)
```

bern.length 5

bern.length	Botter and Durighetto Bernoulli stream length	

Description

A simple function for calculating the dot product of a vector of stream arc lengths and a corresponding vector of either binary (stream presence or absence) outcomes, probabilities of stream presence or inverse probabilities of stream presence.

Usage

```
bern.length(lengths, pa, mode = "local")
```

Arguments

lengths A numeric vector of stream arc lengths

pa A numeric vector of either binary (stream presence or absence) outcomes, prob-

abilities of stream presence or inverse probabilities of stream presence. A Vector outcome in lengths should correspond to an outcome for the same arc in pa.

mode One of "local" of "global"

Value

When pa is a vector of binary (stream presence or absence) data, the function provides a measure of instantaneous stream length (in the units used in lengths). When pa is a vector of probabilities of stream presence, the function provides average stream length (in units used in lengths). When pa is a vector of inverse probabilities of stream presence, the function provides average communication distance (in units used in lengths).

Author(s)

Ken Aho

References

Botter, G., & Durighetto, N. (2020). The stream length duration curve: A tool for characterizing the time variability of the flowing stream length. *Water Resources Research*, *56*(8), e2020WR027282.

```
lengths <- rexp(10, 10)
pa <- rbinom(10, 11, 0.4)
bern.length(lengths, pa)</pre>
```

beta.posterior

beta.posterior	Posterior Beta and Inverse-beta summaries	
----------------	---	--

Description

Calculates summaries for beta and inverse-beta posteriors given prior probabilities for success, binary data and prior weight specification. Summaries include beta and inverse beta posterior means and variances and stream length and communication distance summaries given that stream length is provided for intermittent stream segments.

Usage

```
beta.posterior(p.prior, dat, length = NULL, w = 0.5)
```

Arguments

p.prior	Prior probability for success for the beta prior. The beta prior for the probability of success (e.g., stream presence) for k th outcome (e.g., stream segment) is defined as: $\theta_k \sim BETA(\alpha, \beta = t\alpha)$, where $\frac{1}{1+t} = p_{prior}$. This results in: $E(\theta_k) = p_{prior}$.
dat	An $n \times s$ matrix of binary outcomes, where n is the number of observations (e.g., stream observations over time) and s is the number experimental units observed, (e.g., stream segments).
length	An optional $n \times 1$ vector containing stream segement lengths to allow calculation of mean stream Bernoulli stream length and mean communication distance.
W	Weight for the prior distribution compared to the actual data (generally a proportion).

Details

As our Bayesian framework we assume a conjugate beta prior $\theta_k \sim BETA(\alpha, \beta)$ and binomial likelihood $\boldsymbol{x}_k \mid \theta_k \sim BIN(n, \theta_k)$ resulting in the posterior $\theta_k \mid \boldsymbol{x}_k \sim BETA(\alpha + \sum \boldsymbol{x}_k, \beta + n - \sum \boldsymbol{x}_k)$.

Value

Returns a list with components:

alpha	The α shape parameters for the beta and inverse beta posteriors.
beta	The β shape parameters for the beta and inverse beta posteriors.
mean	The means of the beta posteriors.
var	The variances of the beta posteriors.
mean.inv	The means of the inverse-beta posteriors.
var.inv	The variances of the inverse-beta posteriors.
Com.dist	If length is supplied, the mean communication distances of the network.
Length	If length is supplied, the mean stream length of the network.
Х	The observed number of Bernoulli successes over n trials observed in dat.

biv.bern 7

Author(s)

Ken Aho

See Also

dinvbeta.

biv.bern

Bivariate Bernoulli Distribution

Description

Densities (probabilities) of a bivariate Bernoulli distribution, Y_1, Y_2 .

Usage

```
biv.bern(p11, p10, p01, p00, y1, y2)
```

Arguments

p11	The probability that $y_1, y_2 = 1, 1$.
p10	The probability that $y_1, y_2 = 1, 0$.
p01	The probability that $y_1, y_2 = 0, 1$.
p00	The probability that $y_1, y_2 = 0, 0$.
y1	Outcome for Y_1 .
y2	Outcome for Y_2 .

Value

Densities (probability) of the joint Bernoulli distribution.

Author(s)

Ken Aho

```
biv.bern(0.25,0.25,0.25,0.25,1,0)
biv.bern(0.1,0.4,0.3,0.2,1,0)
```

8 delete.arcs.pa

degree	d	ist	ts
ucgicc	. u	10	しつ

Potential degree distributions

Description

Calculates degree distribution probability density. By default calculates an uncorrelated (random) density for a given degree.

Usage

```
degree.dists(d, exp.lambda = 3/2, normalize = TRUE)
```

Arguments

d degree

exp.lambda if not NULL, allows specification of chaotic exp.lambda < 3/2 and correlated

stochastic processes exp.lambda < 3/2.

normalize ensures that sum of demsities = 1

Details

In general $f(d) = \exp(-\lambda d)$ where d is the degree. For random degree distributions, $\lambda = \log(3/2)$.

Value

Returns a density plot for a degree.

Author(s)

Ken Aho

See Also

degree.distribution, plot_degree.dist.

delete.arcs.pa

Delete arcs based on presence absence data

Description

Create a new graph after deleting stream graph arcs based on presence/absence data, e.g., data based on outcomes from STIC (Stream Temperature, Intermittency, and Conductivity) loggers.

```
delete.arcs.pa(G, pa)
```

delete.nodes.pa 9

Arguments

G A graph object of class "igraph", see graph_from_literal

pa A vector of binary = 0.1 values indicating the absence or presence of arcs from

G.

Author(s)

Ken Aho, Gabor Csardi wrote delete.edges

Examples

```
G \leftarrow graph\_from\_literal(a--+b--+c--+d--+e) delete.arcs.pa(G, c(0,0,1,1))
```

delete.nodes.pa

Delete nodes based on presence absence data

Description

Create a new graph after deleting stream graph nodes based on presence/absence data, e.g., data based on outcomes from STIC (Stream Temperature, Intermittency, and Conductivity) loggers.

Usage

```
delete.nodes.pa(G, pa)
```

Arguments

G A graph object of class "igraph", see graph_from_literal

pa A vector of binary = 0.1 values indicating the absence or presence of nodes from

G.

Author(s)

Ken Aho, Gabor Csardi wrote delete.vertices

```
G \leftarrow graph\_from\_literal(a--+b--+c--+d--+e) delete.nodes.pa(G, c(\emptyset,\emptyset,1,1,1))
```

10 dinvbeta

dinvbeta	Inverse Beta Distribution
ainvocta	Inverse Beta Distribution

Description

Calculates density (dinvbeta), lower-tailed probability (pinvbeta) and obtains random outcomes (rinvbeta) for an inverse beta distribution

Usage

```
dinvbeta(x, alpha, beta)
pinvbeta(x, alpha, beta)
rinvbeta(n, alpha, beta)
```

Arguments

x Quantile vector or scalar at which to evaluate density or probability.

alpha Alpha parameter beta Beta parameter

n Number of random outcomes to be generated.

Value

Returns density, probability, and random outcomes for an inverse beta distribution.

Author(s)

Ken Aho and Dwayne Derryberry

See Also

See Also dbeta.

```
dinvbeta(1,1,1)
pinvbeta(1,1,1)
rinvbeta(1,1,1)
```

global.summary 11

|--|

Description

This function calculates useful DAG global summaries including (but not limited to) size, diameter, number of paths to sink, mean path centrality, mean path length, Randic index, first Zagreb Index, second Zagreb index, atom-bond connectivity, geometric-arithmatic index, harmonic index, assortativity correlation (+, -), and assortativity correlation (+, +).

Usage

```
global.summary(G, sink, inf.paths = FALSE)
```

Arguments

G graph object of class "igraph". See graph_from_literal.

sink sink node from graph G

inf.paths logical, consider infinite paths?

Details

Simple global graph measures of complexivity and/or connectivity of a stream DAG include size, diameter, and number of paths to a sink. The size of stream metric is equal to the number of arcs in the stream network. The diameter equals the length of the longest path, *height* of the sink, and *in eccentricity* of the sink. The number of paths to sink is equivalent to the number of nodes from which the sink node is reachable, which will be n-1 for a fully active stream. For more information see I.D

Author(s)

Ken Aho

References

Kunkler, S. J., LaMar, M. D., Kincaid, R. K., & Phillips, D. (2013). Algorithm and complexity for a network assortativity measure. arXiv Preprint *arXiv:1307.0905*.

Das, K. C., Gutman, I., & Furtula, B. (2011). On atom-bond connectivity index. *Chemical Physics Letters*, 511(4-6), 452-454.

Li, X., & Shi, Y. (2008). A survey on the randic index. MATCH Commun. Math. Comput. Chem, 59(1), 127-156.

See Also

degree

Examples

```
network_a <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e,
e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l,
l --+ m, m --+ n, n --+ o)
global.summary(network_a, sink ="o")</pre>
```

I.D

Generalized DAG indices

Description

Calculates global generalized topopological indices for a digraph

Usage

```
I.D(G, mode = "gen.rand", alpha = -1/2, mult = FALSE)
```

Arguments

G	Graph object of class. See graph_from_literal.
mode	One of "gen.rand", "sum.con", "ABC", "GA", "harm".
alpha	Exponent value for forms of omega with alpha exponent.
mult	Logical if TRUE use experimental multiplicative measures.

Details

For an arc $a=\overrightarrow{uv},\,a\in A$, we denote the out degree of u as d_u^+ , and the in degree of v as d_v^- . Now let I(D) represent a generalized topopological index for a digraph, D (cf. Deng et al., 2021) that depends on d_u^+ and d_v^- :

$$I(D) = 1/2 \sum_{uv \in A} \omega(d_u^+, d_v^-)$$

Five basic configurations for I(D) can be recognized:

- 1. If $\omega(x,y)=(xy)^{\alpha}$, for $\alpha\neq 0$, then I(D) is the general directed Randic index (Kincaid et al., 2016) for D. Specific variants include the Randic index $(\alpha=-1/2)$, the second Zagreb index $(\alpha=1)$ and the second modified Zagreb index $(\alpha=-1)$ (Anthony & Marr, 2021).
- 2. If $\omega(x,y)=(x+y)^{\alpha}$, then I(D) is the first general sum-connectivity index for D (Deng et al., 2021). Further, if $\omega(x,y)=2(x+y)^{\alpha}$, then I(D) is the sum connectivity (Zhou & Trinajstic, 2009), and the directed first Zagreb index (Anthony & Marr, 2021) for $\alpha=-1/2$ and $\alpha=1$, respectively.
- 3. If $\omega(x,y) = \sqrt{((x+y-2)/xy)}$, then I(D) is the *atom bond connectivity* of D (Estrada et al., 1998).
- 4. If $\omega(x,y) = \sqrt{xy}/(1/2(x+y))$, then I(D) is the first geometric-arithmetic index for D (Vukicevic & Furtula, 2009).
- 5. If $\omega(x,y) = 2/(x+y)$, then I(D) is the harmonic index of D (Favaron et al., 1993).

ICSL 13

Value

Index values for a DAG

Author(s)

Ken Aho, Gabor Csardi wrote degree

References

Anthony, B. M., & Marr, A. M. (2021). Directed zagreb indices. *Graphs and Combinatorial Optimization: From Theory to Applications: CTW 2020 Proceedings*, 181-193.

Deng, H., Yang, J., Tang, Z., Yang, J., & You, M. (2021). On the vertex-degree based invariants of digraphs. arXiv Preprint *arXiv*:2104.14742.

Zhou, B., & Trinajstic, N. (2009). On a novel connectivity index. *Journal of Mathematical Chemistry*, 46(4), 1252-1270.

Estrada, E., Torres, L., Rodriguez, L., & Gutman, I. (1998). *An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes*. NISCAIR-CSIR, India.

Vukicevic, D., & Furtula, B. (2009). Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. *Journal of Mathematical Chemistry*, 46(4), 1369-1376.

Favaron, O., Maheo, M., & Sacle, J.-F. (1993). Some eigenvalue properties in graphs (conjectures of graffitii). *Discrete Mathematics*, 111(1-3), 197-220.

See Also

degree

Examples

```
network_a <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e, e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l, l --+ m, m --+ n, n --+ o) I.D(network_a)
```

ICSL

Integral connectivity scale length (ICSL)

Description

Integral connectivity scale lengths (ICSL, Western et al. 2013) is the average distance between wet locations using either (1) Euclidean distance or (2) topographically-defined hydrologic distance, e.g., instream hydrologic distance, subsurface distance (Ali and Roy 2009) and outlet distance, in which connected saturated paths must reach the catchment outlet.

```
ICSL(G, coords = NULL, names = NULL, lengths = NULL,
dist.matrix = NULL, show.dist = FALSE)
```

14 ICSL

Arguments

G A graph object of class "igraph", see graph_from_literal

coords Spatial coordinates to allow computation of nodal Euclidean distances

names Nodal names

lengths Stream arc lengths or hydrologic arc lengths

show.dist Logical. Show distance matrix?

dist.matrix An optional distance matrix, potentially providing non-Euclidean node distances

(e.g., node subsurface distance, etc.). Distance matrix Labels in dist.matrix must be analogous to those used in G. Note that dimensions in dist.matrix can be larger than the number of nodes in G if, for instance, dist.matrix represents distances of the complete wetted network and G is a subgraph of the complete

wetted network after drying.

Details

Computes either: 1) the average Euclidean distance of connected nodal locations as defined in G, if coords are provided, 2) if dist.matrix is provided, the average nodal distances of a distance matrix provided in dist.matrix for nodes remain in G, or 3) the instream distances of connected nodal locations if stream lengths are provided in lengths. For 3), the length vector will need to trimmed as arcs disappear within intermittent streams (see Examples).

Author(s)

Ken Aho, Gabor Csardi worte underlying functions distances and E

References

Western, A. W., Bloschl, G., & Grayson, R. B. (2001). Toward capturing hydrologically significant connectivity in spatial patterns. *Water Resources Research*, *37*(1), 83-97.

Ali, G. A., & Roy, A. G. (2010). Shopping for hydrologically representative connectivity metrics in a humid temperate forested catchment. *Water Resources Research*, 46(12).

See Also

distances

```
murphy_spring <- graph_from_literal(IN_N --+ M1984 --+ M1909, IN_S --+ M1993,
M1993 --+ M1951 --+ M1909 --+ M1799 --+ M1719 --+ M1653 --+ M1572 --+ M1452,
M1452 --+ M1377 --+ M1254 --+ M1166 --+ M1121 --+ M1036 --+ M918 --+ M823,
M823 --+ M759 --+ M716 --+ M624 --+ M523 --+ M454 --+ M380 --+ M233 --+ M153,
M153 --+ M91 --+ OUT)
#---- ICSL based on nodal Euclidean distances ----#
data(mur_coords)
ICSL(murphy_spring, coords = mur_coords[,2:3], names = mur_coords[,1])
#---- ICSL based on in-stream length data ----#
data(mur_lengths)</pre>
```

imp.closeness 15

```
# Arcs 1 and 3 dry

B <- graph_from_literal(IN_N, M1984, IN_S --+ M1993 --+ M1951 --+ M1909,
M1909 --+ M1799 --+ M1719 --+ M1653 --+ M1572 --+ M1452 --+ M1377 --+ M1254,
M1254 --+ M1166 --+ M1121 --+ M1036 --+ M918 --+ M823 --+ M759 --+ M716,
M716 --+ M624 --+ M523 --+ M454 --+ M380 --+ M233 --+ M153 --+ M91 --+ OUT)
ICSL(B, lengths = mur_lengths[,2][-c(1,3)], show.dist = TRUE)
```

imp.closeness

Improved Closeness Centrality

Description

Calculates improved closeness centrality of individual nodes in a DAG.

Usage

```
imp.closeness(G)
```

Arguments

G

Graph object of class "igraph", see See graph_from_literal.

Details

Improved closeness centrality (Beauchamp, 1965) was developed for weakly connected or disconnected digraphs. The measure is based on the reciprocal of nodal shortest path distances from the jth node to the kth node, $1/\delta_{j,k}$. For the jth node this is:

$$H_j = (n-1)\sum_{j \neq k} 1/\delta_{j,k}$$

where, for disconnected nodes, the reciprocal distance $1/\infty$ is taken to be zero.

Value

Improved closeness centrality of a node

Author(s)

Ken Aho, Gabor Csardi wrote distances

References

Beauchamp, M. A. (1965). An improved index of centrality. Behavioral Science, 10(2), 161-163.

See Also

distances

```
network_a <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e, e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l, l --+ m, m --+ n, n --+ o) imp.closeness(network_a)
```

mur_arc_pres_abs

local.summary

local (generally nodal) summaries of a DAG

Description

Obtains local (generally nodal) summaries from a DAG

Usage

```
local.summary(G)
```

Arguments

G

Graph of class "igraph". See graph_from_literal

Value

Nodes are returned with values measuring the in degree, alpha centrality, improved path closeness, height, and path length mean, variability, skew, and kurtosis.

Author(s)

Ken Aho, Gabor Csardi wrote degree and alpha_centrality functions.

See Also

```
degree, alpha_centrality, imp.closeness
```

Examples

```
network_a <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e,
e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l,
l --+ m, m --+ n, n --+ o)
local.summary(network_a)</pre>
```

mur_arc_pres_abs

Stream segment presence absence data for Murphy Cr. Idaho

Description

Simulated multivariate Benroulli outcomes for 27 stream segments, based on their observed marginal probabilities for steam presence and covariance structures. "M"-labelling for nodes indicates "meters above outlet".

```
data("mur_arc_pres_abs")
```

mur_coords 17

Format

A data frame with 1000 observations on the following 27 variables.

```
'IN_N->M1984' a numeric vector
'M1984->M1909' a numeric vector
'M1909->M1799' a numeric vector
'IN_S->M1993' a numeric vector
'M1993->M1951' a numeric vector
'M1951->M1909' a numeric vector
'M1799->M1719' a numeric vector
'M1719->M1653' a numeric vector
'M1653->M1572' a numeric vector
'M1572->M1452' a numeric vector
'M1452->M1377' a numeric vector
'M1377->M1254' a numeric vector
'M1254->M1166' a numeric vector
'M1166->M1121' a numeric vector
'M1121->M1036' a numeric vector
'M1036->M918' a numeric vector
'M918->M823' a numeric vector
'M823->M759' a numeric vector
'M759->M716' a numeric vector
'M716->M624' a numeric vector
'M624->M523' a numeric vector
'M523->M454' a numeric vector
'M454->M380' a numeric vector
'M380->M233' a numeric vector
'M233->M153' a numeric vector
'M153->M91' a numeric vector
'M91->0UT' a numeric vector
```

mur_coords

Coordinates of nodes at Murphy Ck. Idaho

Description

Coordinates in 12T UTMs of nodes established at Murphy Cr. Idaho.

```
data("mur_coords")
```

18 mur_node_pres_abs

Format

A data frame with 28 observations on the following 3 variables.

```
Object.ID Node name
x UTM Easting
y UTM Northing
```

mur_lengths

Lengths of Murphy Cr. stream (arc) segments

Description

Lengths of Murphy Cr. stream (arc) segments

Usage

```
data("mur_lengths")
```

Format

A data frame with 27 observations on the following 2 variables.

Arcs Arc names, arrows directionally connect nodes.

Lengths Stream segment (arc) length in meters.

Source

Warix, S. R., Godsey, S. E., Lohse, K. A., & Hale, R. L. (2021). Influence of groundwater and topography on stream drying in semi-arid headwater streams. Hydrological Processes, 35(5), e14185.

mur_node_pres_abs

Stream node presence absence data for Murphy Cr. Idaho

Description

A subset of stream node presence absence data from Warix et al. (2019) resulting in binary observations for 28 nodes at 2.5 hr intervals.

```
data("mur_node_pres_abs")
```

mur_node_pres_abs 19

Format

A data frame with 1163 observations on the following 29 variables.

Datetime a character vector

IN_N a numeric vector

M1984 a numeric vector

M1909 a numeric vector

IN_S a numeric vector

M1993 a numeric vector

M1951 a numeric vector

M1799 a numeric vector

M1719 a numeric vector

M1653 a numeric vector

M1572 a numeric vector

M1452 a numeric vector

M1377 a numeric vector

M1254 a numeric vector

M1166 a numeric vector

M1121 a numeric vector

M1036 a numeric vector

M918 a numeric vector

M823 a numeric vector

M759 a numeric vector

M716 a numeric vector

M624 a numeric vector

M523 a numeric vector

M454 a numeric vector

M380 a numeric vector

M233 a numeric vector

M153 a numeric vector

M91 a numeric vector

OUT a numeric vector

References

Warix, S. R., Godsey, S. E., Lohse, K. A., & Hale, R. L. (2021). Influence of groundwater and topography on stream drying in semi-arid headwater streams. *Hydrological Processes*, 35(5), e14185.

20 mur_seasons_arc_pa

mur_seasons_arc_pa

Simulated seasonal arc presence absence data for Murphy Cr

Description

A data frame with one hundred multivariate Bernoulli simulated outcomes representing spring, summer and fall.

Usage

```
data("mur_seasons_arc_pa")
```

Format

A data frame with 300 observations on the following 28 variables.

```
'IN_N -> M1984' a numeric vector
'M1984 -> M1909' a numeric vector
'M1909 -> M1799' a numeric vector
'IN_S -> M1993' a numeric vector
'M1993 -> M1951' a numeric vector
'M1951 -> M1909' a numeric vector
'M1799 -> M1719' a numeric vector
'M1719 -> M1653' a numeric vector
'M1653 -> M1572' a numeric vector
'M1572 -> M1452' a numeric vector
'M1452 -> M1377' a numeric vector
'M1377 -> M1254' a numeric vector
'M1254 -> M1166' a numeric vector
'M1166 -> M1121' a numeric vector
'M1121 -> M1036' a numeric vector
'M1036 -> M918' a numeric vector
'M918 -> M823' a numeric vector
'M823 -> M759' a numeric vector
'M759 -> M716' a numeric vector
'M716 -> M624' a numeric vector
'M624 -> M523' a numeric vector
'M523 -> M454' a numeric vector
'M454 -> M380' a numeric vector
'M380 -> M233' a numeric vector
'M233 -> M153' a numeric vector
'M153 -> M91' a numeric vector
'M91 -> OUT' a numeric vector
Season A categorical variable with three levels: "spring" (6/3/2019 - 7/13/2019), "summer"
    (7/13/2019 - 8/23/2019) and "fall" (8/23/2019 - 10/2/2019)
```

path.lengths 21

path.lengths

Path Lengths

Description

Path lengths from all possible nodes to a designated node.

Usage

```
path.lengths(G, node = NULL)
```

Arguments

G Graph of class "igraph". See graph_from_literal

node Designated node.

Value

Lengths of paths to a node of interest.

Author(s)

Ken Aho, Gabor Csardi wrote distances

path.lengths.sink

Path Lengths

Description

Obtains all path links to a sink

Usage

```
path.lengths.sink(G, sink = NULL, inf.paths = TRUE)
```

Arguments

G Graph object of class "igraph", see: See graph_from_literal.

sink sink node from G.

inf.paths Logical, consider infinite paths?

Value

Length of path to a sink

Author(s)

Ken Aho, Gabor Csardi wrote distances

22 path.visibility

Examples

```
murphy_spring <- graph_from_literal(IN_N --+ M1984 --+ M1909, IN_S --+ M1993,
M1993 --+ M1951 --+ M1909 --+ M1799 --+ M1719 --+ M1653 --+ M1572 --+ M1452,
M1452--+ M1377 --+ M1254 --+ M1166 --+ M1121 --+ M1036 --+ M918 --+ M823,
M823 --+ M759 --+ M716 --+ M624 --+ M523 --+ M454 --+ M380 --+ M233 --+ M153,
M153 --+ M91 --+ OUT)

path.lengths.sink(murphy_spring, sink = "OUT")

# with stream lengths as weights
data(mur_lengths)

E(murphy_spring)$weights <- mur_lengths[,2]
path.lengths.sink(murphy_spring, "OUT")</pre>
```

path.visibility

Path Visibilities

Description

Shows visibilities of path nodes from one or several source nodes to an sink.

Usage

```
path.visibility(G, degree = "in", source = NULL, sink = NULL, directed = TRUE)
multi.path.visibility(G, degree = "in", source = NULL, sink = NULL, directed = TRUE,
weights = NULL)
```

Arguments

G	Graph of class "igraph". See See graph_from_literal
degree	One of "out" for out-degree, "in" for in-degree or "all" for the sum of the two.
source	A starting node for a path. The function $\mbox{multi.path.visibility}$ allows multiple starting nodes.
sink	An ending node for a path.
directed	Logical, indicating if G is a directed graph.
weights	Refers to $n\times 1$ matrix of weights, with rownames corresponding to node names in G.

Value

multi.path.visibility Generates tables of path visibilities and visibility summaries for multiple sources to a single sink. The function path.visibility calculates path visibilities from single source to a single sink.

Author(s)

Ken Aho, Gabor Csardi wrote degree

plot_degree.dist 23

See Also

degree

Examples

```
network_a <- graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e,
e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l,
l --+ m, m --+ n, n --+ o)

multi.path.visibility(network_a, source = c("a","c","f","h"),
sink = "o")

weights <- matrix(nrow = 15, runif(15,0,1),
dimnames = list(letters[1:15], "weights"))
multi.path.visibility(network_a, source = c("a","c","f","h"),
sink = "o", weights = weights)</pre>
```

plot_degree.dist

Plot degree distributions

Description

Plots bserved degree distribution against models for uncorrelated random, chaotic and correlated random processes.

Usage

```
plot_degree.dist(G, mode = "all", exp.lambda = c(1.1, 3/2, 2), leg.loc = "topright")
```

Arguments

G	Graph object of class "igraph". See graph_from_literal
mode	Character string, one of "out" for out-degree, "in" for in-degree or "all" for the sum of the two. For undirected graphs this argument is ignored.
exp.lambda	$log.lamda = if \ not \ NULL, \ allows \ specification \ of \ chaotic \ exp.1 ambda < 3/2 \ and \ correlated \ stochastic \ processes \ exp.1 ambda < 3/2$
leg.loc	placement of legend,

Value

Plots processes for observed versus distributions under random or chaotic degrees.

Author(s)

Ken Aho

See Also

```
degree.dists, degree.distribution
```

24 R.bounds

Examples

```
\label{eq:network_a} $$ - graph_from_literal(a --+ b, c --+ d, d --+ e, b --+ e, e --+ j, j --+ m, f --+ g, g --+ i, h --+ i, i --+ k, k --+ l, l --+ m, m --+ n, n --+ o) $$ plot_degree.dist(network_a)
```

R.bounds

R bounds Bounds for the correlation of two (or more) Benrnoulli random variables

Description

Replaces impossible correlations (values too small or too large) with minimum and maximum correlations, respectively.

Usage

```
min_r(p1, p2)
max_r(p1, p2)
R.bounds(p, R, pad = 0.001)
```

Arguments

p1	Probability of success for first random variable
p2	Probability of success for second random variable
p	Vector of marginal probabilities for multivariate Bernoulli random variables, for R.bounds.
R	Raw correlation matrix for random variables
pad	Padding (in correlation units) to adjust the returned correlation matrix with respect extremal values.

Details

The functions r.min and r.max define minimum and maximimum possible correlations. The function R. bounds replaces impossibly large or small values with maximally large or small values repectively.

Author(s)

Ken Aho

```
min_r(0.6, 0.9)
max_r(0.1, 0.2)

x1 <- rep(c(1,0),5)
x2 <- c(rep(1,7), rep(0,3))
x3 <- c(rep(1,3), rep(0,7))
R <- cor(cbind(x1, x2, x3))
R.bounds(c(0.5, 0.7, 1), R)
```

size.intact.to.sink 25

```
size.intact.to.sink Size of intact network that includes a particular node
```

Description

The size of the subgraph network that include a particular node, e.g., the sink. For a weighted graph, the sum of the weights of the subgraph are given. Thus if weights are stream lengths the function can give the stream length of the portion of the intact stream network that includes the sink.

Usage

```
size.intact.to.sink(G, node = NULL)
```

Arguments

```
G A graph object of class "igraph", , see graph_from_literal node A node of interest.
```

Value

Returns the size of the graph or subgraph that includes a node of interest.

Author(s)

Ken Aho, Gabor Csardi wrote several important function components including subgraph

```
# Murphy Cr. data, no arc from M1799 to M1719
G <- graph_from_literal(IN_N --+ M1984 --+ M1909, IN_S --+ M1993 --+ M1951,
M1951 --+ M1909 --+ M1799, M1719 --+ M1653 --+ M1572 --+ M1452 --+ M1377,
M1377 --+ M1254 --+ M1166 --+ M1121 --+ M1036 --+ M918 --+ M823 --+ M759,
M759 --+ M716 --+ M624 --+ M523 --+ M454 --+ M380 --+ M233 --+ M153 --+ M91,
M91 --+ OUT)

data(mur_coords) # coordinate data
spatial.plot(G, mur_coords[,2], mur_coords[,3], names = mur_coords[,1])

data(mur_lengths) # segment length data

lengths_new <- mur_lengths[-7,] # Drop M1799 -> M1719 arc length
E(G)$weights <- lengths_new[,2]
size.intact.to.sink(G, node = "OUT")</pre>
```

26 spatial.plot

Description

Makes a spatial plot of a igraph object, given nodal coordinates

Usage

```
spatial.plot(G, x, y, names = NULL, plot.shapefile = FALSE,
shapefile = NULL, col = 1, text.cex = 0.7, cex = 1, arrow.col = "blue",
arrow.lwd = 1, plot.bg = gray(.9), pch = 21, pt.bg = "orange", grid.lwd = 2, ...)
```

Arguments

G	Graph object, see graph_from_literal.
x	X-coordinates of nodes.
у	Y-coordinates of nodes.
names	Names of nodes, must use the same names as ${\sf G}$ and correspond to the order of coordinates in ${\sf x}$ and ${\sf y}.$
plot.shapefile	Logical. Plot shapefile (if provided) instead of arrows showing DAG flow. Requires library $ggplot2$ and sf .
shapefile	Shapefile object brought in using library sf
col	point symbol color.
text.cex	Character expansion for text.
cex	Chahracter expnansion of point symbols.
arrow.col	Color of plot arrows.
arrow.lwd	Arrow line width.
plot.bg	Background color of plot.
pch	Plotting character.
pt.bg	Background color for plotting character.
grid.lwd	Grid line width; grid.lwd = 0 suppresses grid.
• • •	Other arguments to plot

Details

Makes a graph showing arc flow directions to and from spatial node locations, or a spatially explicit graph generated from a stream shapefile showing the stream outlay and node points.

Author(s)

Ken Aho

spatial.plot 27

```
murphy_spring <- graph_from_literal(IN_N --+ M1984 --+ M1909, IN_S --+ M1993,</pre>
 \verb|M1452--+ M1377 --+ M1254 --+ M1166 --+ M1121 --+ M1036 --+ M918 --+ M823, \\
M823 --+ M759 --+ M716 --+ M624 --+ M523 --+ M454 --+ M380 --+ M233 --+ M153,
M153 --+ M91 --+ OUT)
data(mur_coords)
x <- mur_coords[,2]</pre>
y <- mur_coords[,3]</pre>
names <- mur_coords[,1]</pre>
spatial.plot(murphy_spring, x, y, names)
## Not run:
# using shapefiles
library(ggplot2); library(sf)
mur_sf <- st_read("Murphy_shapefile/Murphy/Murphy_Creek.shp")</pre>
spatial.plot(murphy_spring, x, y, names,
plot.shapefile = TRUE, shapefile = mur_sf)
# modify ggplot
g1 \leftarrow spatial.plot(murphy\_spring, x, y, names,
plot.shapefile = TRUE, shapefile = mur_sf)
g1 + theme_classic()
## End(Not run)
```

Index

```
* datasets
                                                   mur_coords, 17
    mur_arc_pres_abs, 16
                                                   mur_lengths, 18
    mur_coords, 17
                                                   mur_node_pres_abs, 18
    mur_lengths, 18
                                                   mur_seasons_arc_pa, 20
    mur_node_pres_abs, 18
                                                   path.lengths, 21
    mur_seasons_arc_pa, 20
                                                   path.lengths.sink, 21
A, 2
                                                   path.visibility, 22
{\tt alpha\_centrality}, \underline{\it 16}
                                                   pinvbeta (dinvbeta), 10
                                                   plot, 26
arc.pa.from.nodes, 3
assort, 4
                                                   plot_degree.dist, 8, 23
                                                   R. bounds, 24
bern.length, 5
beta.posterior, 6
                                                   rinvbeta (dinvbeta), 10
biv.bern, 7
                                                   size.intact.to.sink, 25
                                                   spatial.plot, 26
dbeta, 10
                                                   subgraph, 25
degree, 4, 11, 13, 16, 22, 23
degree.distribution, 8, 23
degree.dists, 8, 23
delete.arcs.pa, 8
delete.edges, 9
delete.nodes.pa, 9
delete.vertices, 9
dinvbeta, 7, 10
distances, 14, 15, 21
E, 2, 3, 14
{\tt global.summary}, {\tt 11}
graph_from_literal, 2-4, 9, 11, 12, 14-16,
         21–23, 25, 26
I.D, 11, 12
ICSL, 13
imp.closeness, 15, 16
legend, 23
local.summary, 16
max_r (R.bounds), 24
min_r (R. bounds), 24
multi.path.visibility
         (path.visibility), 22
mur_arc_pres_abs, 16
```