

UNISONIC TECHNOLOGIES CO., LTD

75N75 **Power MOSFET**

80Amps, 75Volts N-CHANNEL POWER MOSFET

DESCRIPTION

The UTC 75N75 is n-channel enhancement mode power field effect transistors with stable off-state characteristics, fast switching speed, low thermal resistance, usually used at telecom and computer application.

FEATURES

- * $R_{DS(ON)}$ = 9.5 $m\Omega$ @ V_{GS} = 10 V
- * Ultra low gate charge (typical 117 nC)
- * Fast switching capability
- * Low reverse transfer Capacitance (C_{RSS}= typical 240 pF)
- * Avalanche energy Specified
- * Improved dv/dt capability, high ruggedness

SYMBOL

Lead-free: 75N75L Halogen-free:75N75G

ORDERING INFORMATION

Ordering Number				Pin Assignment				
Normal	Lead Free Plating	Halogen Free	Package	1	2	3	Packing	
75N75-TA3-T	75N75L-TA3-T	75N75L-TA3-T 75N75G-TA3-T		G	D	S	Tube	
75N75-TF3-T	75N75L-TF3-T	75N75G-TF3-T	TO-220F	G	D	S	Tube	
75N75-TQ2-T	75N75L-TQ2-T	75N75G-TQ2-T	TO-263	G	D	S	Tube	
75N75-TQ2-R	75N75L-TQ2-R	75N75G-TQ2-R	TO-263	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	75	٧
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current	Continuous Drain Current $T_C = 25^{\circ}C$		80	Α
Pulsed Drain Current (Note 2)		I_{DM}	320	Α
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	700	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	12	V/ns
Power Dissipation	TO-220/TO-263	В	300	W
	TO-220F	P_D	45	W
Junction Temperature		T_J	+175	°C
Storage Temperature		T_{STG}	-55 ~ + 175	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by safe operating area
- 3. Starting T_J =25°C, I_D =40A, V_{DD} =37.5V
- 4. $I_{SD} \le 80A$, $di/dt \le 300A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le T_{JMAX}$

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-263	θ_{JA}	62.5	°C /W
	TO-220F		62.5	°C /W
lunation to Case	TO-220/TO-263	0	0.5	°C /W
Junction to Case	TO-220F	$\theta_{ m JC}$	3.33	°C /W

■ ELECTRICAL CHARACTERISTICS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV_{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	75			V	
Drain-Source Leakage Current		I_{DSS}	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA	
Cata Carras I salisara Currant	Forward	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0 V$			100	nA	
Gate-Source Leakage Current	Reverse		$V_{GS} = -20V, V_{DS} = 0 V$			-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	V	
Static Drain-Source On-State Resis	tance	R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$		9.5	11	mΩ	
DYNAMIC CHARACTERISTICS								
Input Capacitance		C _{ISS}	V _{GS} = 0 V, V _{DS} = 25 V f = 1MHz		3700		pF	
Output Capacitance		Coss			730		pF	
Reverse Transfer Capacitance		C_{RSS}	-		240		pF	
SWITCHING CHARACTERISTICS								
Turn-On Delay Time		$t_{D(ON)}$			25		ns	
Turn-On Rise Time		t_R	$V_{DD} = 37.5V, I_{D} = 45A,$		100		ns	
Turn-Off Delay Time		t _{D(OFF)}	V_{GS} =10V, R_{G} =4.7 Ω		66		ns	
Turn-Off Fall Time		t_{F}			30		ns	
Total Gate Charge		Q_{G}	\/ - 60\/ \/ - 40 \/		117	160	nC	
Gate-Source Charge		Q_GS	$V_{DS} = 60V, V_{GS} = 10 V$		27		nC	
Gate-Drain Charge		Q_GD	I _D = 80A		47		nC	

75N75 Power MOSFET

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS								
Drain-Source Diode Forward Voltage (Note 2)	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 80 \text{A}$			1.5	V		
Continuous Source Current	Is				80	Α		
Pulsed Source Current (Note 1)	I _{SM}				320	Α		
Reverse Recovery Time	t _{RR}	$I_S = 80A, V_{DD} = 25 V$		132		ns		
Reverse Recovery Charge	Q_{RR}	dI _F / dt = 100 A/μs		660		μC		

Note: 1. Pulse width limited by safe operating area

2. Pulsed: pulse duration=300µs, duty cycle 1.5%

■ TEST CIRCUITS AND WAVEFORMS

1A Peak Diode Recovery dv/dt Test Circuit

1B Peak Diode Recovery dv/dt Waveforms

75N75 Power MOSFET

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

2A Switching Test Circuit

2B Switching Waveforms

3A Gate Charge Test Circuit

3B Gate Charge Waveform

4A Unclamped Inductive Switching Test Circuit

4B Unclamped Inductive Switching Waveforms

75N75 Power MOSFET

■ TYPICAL CHARACTERISTICS

Drain-Source Breakdown Voltage, BV_{DSS}(V)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.