# **ECE 230L - LAB 7**

### **DEVICE NON-IDEALITIES**

|          |    | . 4 . |    | 4 -  |
|----------|----|-------|----|------|
| <b>.</b> | on | 116   | 'n | TIS. |

| 1 Objectives of this Laboratory |                                        |                                       |   |  |
|---------------------------------|----------------------------------------|---------------------------------------|---|--|
| 2                               | <b>Experimental Exploration Format</b> |                                       |   |  |
| 3                               | Exp<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5 | MOSFET Amplifier Gain and Load Limits |   |  |
| Gı                              | 3.5 Zener diode (Reverse breakdown)    |                                       |   |  |
| $\left[ \right]$                | Lis                                    | t of Figures                          |   |  |
|                                 | 1                                      | PN-Junction Diode Test Circuit        | 3 |  |

# 1 Objectives of this Laboratory

The objectives of this laboratory session are as follows:

• To gain understanding of some of the less than ideal behavior of devices and circuits explored in previous laboratories.

- To explore methods for measuring these non-idealities in a less structured lab environment using the tools presented during the course of the semester.
- To work with a group in the course to explore these methods.
- To present group findings to fellow students in the course in a lab presentation.

### 2 Experimental Exploration Format

- This lab will be conducted in groups of two or three.
- Each group will be assigned an exploration
- Complete the exploration and form a brief presentation to share with the lab section—you have one hour
- Each group will present their findings to the entire lab

# 3 Experimental Explorations

There are five possible explorations:

#### 3.1 Thermal Effects on PN-Junction Diode & MOSFET

To be completed in a group of 2 or 3.

#### **PN-Junction Diode**

1. Construct the following circuit on a breadboard:



- 2. Run the singleloop.vi script from 0 to 6 V with 100 steps. This produces  $I_D(V_D)$ .
- 3. Repeat the above, but with a voltmeter over the diode, to measure  $V_{PN}$ . Combine the results to produce the graph  $I_D(V_{PN})$ .
- 4. Now, obtain thermal paste from your TA and apply it to the diode. Obtain a soldering iron and heat it to its lowest setting. Apply the soldering iron to the diode to allow it to heat it.
- 5. Repeat steps (1) (3), and compare the results.

# MOSFET



## 3.2 MOSFET Amplifier Gain and Load Limits





- 3.3 MOSFET Input and Output Resistance
- **3.4** MOSFET Inverter maximum clock frequency with external capacitive load

## 3.5 Zener diode (Reverse breakdown)



**Grading Rubric**