타이타닉 생존율

• 팀 원 : 박윤수 김경태 김혜민 방이현

CONTENTS

01 개요

출처 및 목적

분석 배경

02 데이터 수집

• 조회

데이터 전처리

03 데이터 분석

시각화

04 생존자 예측

SVM

Random Forest

Decision Tree

05 결론

kaggle

Kaggle은 2010년 설립된 예측모델 및 분석 대회 플랫폼이다. 기업 및 단체에서 데이터와 해결과제를 등록하면, 데이터 과학자들이 이를 해결하는 모델을 개발하고 경쟁한다. Kaggle에서 주최하는 경진 대회 중 대표적인 것은 Titanic: Machine Learning from Disaster이다.

대회의 목표는 "어떤 사람들이 생존 할 가능성이 더 높은가"라는 질문에 답하는 예측 모델을 구축하는 것이다.

1912년 시대적 배경에는

"Lady First"라는 개념이 존재 했다.

어린이와 여자부터

우선적으로 구조 했다고 한다.

"Lady First"

라는 개념이 없었다면

급박한 상황에서 구명정으로 달려들 때 <mark>힘센 남성</mark>이 구명정을 차지할 가능성이 높아 생존에 유리했을 것이다.

02

조 회

1. 필요한 라이브러리 불러오기

2. 정보 보기

필요한 라이브러리 import import pandas as pd import numpy as np train= pd.read_csv('./train.csv')
test= pd.read_csv('./test.csv'|)
train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

타이타닉 dataset은 test데이터와 train데이터로 나뉘어 있습니다.

train데이터는 모델 훈련에 쓰이고, test데이터는 모델 검증에 쓰입니다.

test데이터에는 train데이터와 다르게 Survived 행이 존재하지 않습니다. test데이터 셋의 Survived행을 예측하기 위해서 입니다.

#정보보기

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

pala #	Column	Non-Null Count	Dtype
π	COTUMIT	Non Nam Count	Drybe
0	Passengerld	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtuna	oc: float64(2) in+64(5) obi	oot (E)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

Passengerld: 각 승객의 고유 번호

Survived : 0 = 사망, 1 = 생존

Pclass : 1 = 1등석,2 = 2등석,3 = 3등석

Sex: male = 남성, female = 여성

Age : 나이

SibSp: 타이타닉 호에 동승한 자매/ 배우자의 수

Parch : 타이타닉 호에 동승한 부모/ 자식의 수

Ticket : 티켓 번호

Fare : 승객 요금

Cabin : 방 호수

Embarked : 탑승지 , C= 셰르부르, Q = 퀸즈타운, S = 사우샘프턴

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	 int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
-I.I	(104/0) (mic//E) ab:	/=>

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

보기와 같이 생긴 dataset은 어떤 모델에 적용시켜도 수많은 에러와 낮은 정확도를 나타낼 것 이므로 앞으로 전처리를 하겠습니다.

- 1. Name, Sex, Embarked 자료형은 컴퓨터가 학습하기에 나쁘기 때문에 숫자로 바꾸도록 하겠습니다.
- Age행에 Nan, 즉 결측 치 값을 채워야 합니다.
 Nan값을 훈련할 때 사용한다면 잘못된 가중치로 받아 들일 수 있기 때문입니다.
- 3. Cabin과 같이 Nan값이 너무 많은 컬럼은 삭제합니다.


```
dic = {"male":0,"female":1}|
for dataset in whole:
    dataset["Sex"] = dataset["Sex"].map(dic)
train.head
```

	Passengerld	Survived	Pclass	Name	Sex	Age
0	1	0	3	Braund, Mr. Owen Harris	0	22.0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0
2	3	1	3	Heikkinen, Miss. Laina	1	26.0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0
4	5	0	3	Allen, Mr. William Henry	0	35.0

Dictionary를 이용해 남성(male)은 0으로 여성(female)은 1로 mapping합니다.

1. Null 개수 확인

2. Name에 호칭 추출

3. 타이틀 종류와 개수 확인

```
#컬럼별 null 개수
train.isnull().sum()
                        # 정규표현식을 사용해서 이름앞에 있는 호칭을 추출합니다.
                        for dataset in whole:
Passenger I d
                            dataset['Title']=dataset['Name'].str.extract('([A-Za-z]+)\\.'.expand=False)
Survived
                        train['Title'].value_counts().sort_index()
Polass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
                 4. 호칭 Mapping
dtype: int64
dic = {"Mr": 0, "Miss": 1, "Mrs": 2,
                "Master": 3. "Dr": 4. "Rev": 4. "Col": 4. "Major": 4. "MIle": 4."Countess": 4.
                "Ms": 4. "Ladv": 4. "Jonkheer": 4. "Don": 4. "Dona": 4. "Mme": 4."Capt": 4."Sir": 4 }
for dataset in whole:
    dataset.drop("Name", axis=1,inplace=True)
   dataset["Title"] = dataset["Title"].map(dic)
    dataset.set_index("PassengerId",inplace=True)
```

Capt	1		
Col	2		
Countess	1		
Don	1		
Dr	7		
Jonkheer	1		
Lady	1		
Major	2		
Master	40		
Miss	182		
Mile	2		
Mme	1		
Mr	517		
Mrs	125		
Ms	1		
Rev	6		
Sir	1		
Name: Tit	:le, dtype:	int64	

	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title
Passengerld											
1	0	3	0	22.0	1	0	A/5 21171	7.2500	NaN	S	0
2	1	1	1	38.0	1	0	PC 17599	71.2833	C85	С	2
3	1	3	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
4	1	1	1	35.0	1	0	113803	53.1000	C123	S	2

기존에 Name 컬럼을 삭제하고 호칭을 추출한 Title 컬럼을 호칭에 따라 (0,1,2,3,4)로 매핑합니다


```
for dataset in whole:
    dataset["Age"].fillna(uni.groupby("Title")["Age"].transform("mean"),inplace=True)
```

Age의 결측 치 값 호칭의 평균나이로 처리 했습니다.

```
for dataset in whole:
    dataset["Agecut"]=pd.qcut(dataset["Age"],4,labels=[0,1,2,3])
    dataset.drop("Age",axis=1,inplace=True)
train.head()
```

Pandas에서 제공하는 qcut 함수를 통해

- 1. 0~22 세
- 2. 23~29 세
- 3. 30~35 세
- 4. 35세 초과

정해진 비율대로 Age값을 카테고리화 합니다.

Agecut이 생기고 모델 훈련에 사용하지 않을 Age를 삭제합니다.

	Survived	Pclass	Sex	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title	Agecut
Passengerld											
1	0	3	0	1	0	A/5 21171	7.2500	NaN	S	0	1
2	1	1	1	1	0	PC 17599	71.2833	C85	С	2	3
3	1	3	1	0	0	STON/O2. 3101282	7.9250	NaN	S	1	1
4	1	1	1	1	0	113803	53.1000	C123	S	2	2
5	0	3	0	0	0	373450	8.0500	NaN	S	0	2


```
02
```

데이터 전처리

```
# Fare에 결축치 값을 가장 관련있는 Polass와 관련자에 평균을 대입합니다.
for dataset in whole:
    dataset["Fare"].fillna(uni.groupby("Polass")["Fare"].transform("mean"), inplace=True)
uni.info()
```

Test데이터의 Fare컬럼에 존재하는 Nan값을 처리하기 위해 Age에서 Nan값 처리하는 방법과 동일하게 평균을 대입합니다.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 1 to 1309
Data columns (total 10 columns):
    Column
              Non-Null Count Dtype
    Polass
              1309 non-null
                              int64
    Sex
              1309 non-null
                             int64
    SibSp
              1309 non-null
                             int64
    Parch
              1309 non-null
                              int64
    Ticket
              1309 non-null
                              object
                            float64
    Fare
              1309 non-null
    Cabin
              295 non-null
                             object
    Embarked 1307 non-null
                             object
    Title
              1309 non-null
                              int64
              1309 non-null
                             category
dtypes: category(1), float64(1), int64(5), object(3)
memory usage: 136.0+ KB
```

Age를 카테고리화 할때와 같은 방식으로 Fare도 카테고리화를 진행합니다.
for dataset in whole:
 dataset["Farecut"] = pd.cut(dataset["Fare"],4,labels=[0,1,2,3])
 dataset.drop("Fare",axis=1,inplace=True)
train.head()

	Survived	Pclass	Sex	SibSp	Parch	Ticket	Cabin	Embarked	Title	Agecut	Farecut
Passengerld											
1	0	3	0	1	0	A/5 21171	NaN	S	0	1	0
2	1	1	1	1	0	PC 17599	C85	С	2	3	0
3	1	3	1	0	0	STON/O2. 3101282	NaN	S	1	1	0
4	1	1	1	1	0	113803	C123	S	2	2	0
5	0	3	0	0	0	373450	NaN	S	0	2	0

Age를 카테고리화 할 때 와 동일하게 Fare컬럼도 카테고리화 진행합니다.

Embared 행의 Nan drop train.dropna(axis=0,inplace=**True**)

Embarked의 존재하는 Nan 값을 가진 데이터를 제거합니다.

```
# S는 0, C는 1, Q는 2로 배평시계 자료형 변환해줍니다.
dic2 = {"S": 0, "C": 1, "Q": 2}
train.loc[:,"Embarked"] = train.loc[:,"Embarked"].map(dic2)
test.loc[:,"Embarked"] = test.loc[:,"Embarked"].map(dic2)
```

S선승지에서 탄 경우: 0 C선승지에서 탄 경우: 1 Q선승지에서 탄 경우: 2

	Pclass	Sex	Embarked
Passengerld			
1	3	0	0
2	1	1	1
3	3	1	0
4	1	1	0
5	3	0	0


```
# 동반자가 있는지 없는지 판단하기 위해
# SibSp, Parch를 합해줍니다.
for dataset in whole:
    dataset["FamilySize"] = dataset["SibSp"] + dataset["Parch"] + 1
도 바 지 다 이 느 지 어 느 지 파 다 하기 이 하
```

동반자가 있는지 없는지 판단하기 위해

SibSp : 타이타닉 호에 동승한 자매/ 배우자의 수 Parch : 타이타닉 호에 동승한 부모/ 자식의 수

각 컬럼을 더해 Famlisize라는 컬럼을 생성합니다.

```
# isAlone이 0 이면 동반자가 있고, 1이면 동반자가 없습니다.

for dataset in whole:

dataset["IsAlone"] = 0 # 동반자가 있음

dataset.loc[dataset["FamilySize"] == 1, "IsAlone"] = 1 # 동반자가 없음
```

```
# E||O|| drop
for dataset in whole:
    dataset.drop(labels="SibSp",axis=1,inplace=True)
    dataset.drop(labels="Parch",axis=1,inplace=True)
    dataset.drop(labels="FamilySize",axis=1,inplace=True)
    dataset.drop(labels="Title",axis=1,inplace=True)
# E||O|| drop
for dataset in whole:
    dataset.drop(labels="Cabin",axis=1,inplace=True)
    dataset.drop(labels="Ticket",axis=1,inplace=True)
    train.info()
```

필요 없는 테이블 삭제

FailySize를 이용해 isAlone = 0 이면 동반자가 있고, isAlone = 1 이면 동반자가 없다고 처리합니다.

```
label = train["Survived"]
train.drop("Survived", axis=1, inplace=True)
train.head()
```

지도학습이기때문에 라벨을 분리시킬 필요가 있습니다. 생존 유무를 파악하기 위함이므로 label에 Survived행을 저장합니다.

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

	Pclass	Sex	Embarked	Agecut	Farecut	IsAlone
Passengerld						
1	3	0	0	1	0	0
2	1	1	1	3	0	0
3	3	1	0	1	0	1
4	1	1	0	2	0	0
5	3	0	0	2	0	1

시 각 화

해당 feature들은 생존과 사망에 영향을 미치는 승객 정보들이다.

여자

비싼 티켓

0~10세

c항

1등급 객실

동승자와 탑승

04 모델링

```
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import accuracy_score
# k_fold = KFold(n_splits=20, shuffle=True, random_state=1)
```

SVM, Random Forest, Decision Tree 세가지 모델로 선정하여 학습

04 SVM

grid_search.fit(train, label)

파라미터들을 dictionary형태로 설정한 후

Grid search를 이용하여 모델에 하이퍼 파라 미터에 넣을 수 있는 값들을 순차적으로 입력 한 뒤

가장 높은 성능을 보이는 파라미터를 찾아준 다.

04 SVM

```
# 최고 정확도를 나타냅니다
grid_search.best_score_
0.8098484848484848
```

```
# 최고 파라이터를 나타냅니다.
grid_search.best_params_
{'C': 1, 'gamma': 1}
```

#refit=True로 지정했기 때문에 최고의 파라미터로 미리 훈련했고 # 그 최적의 모델을 반환합니다.

best_model = grid_search.best_estimator_

#최적의 모텔의 score best_model.score(train,label)

0.8368953880764904

최고 정확도와 최고 정확도의 파라미터를 구한 후

Refit=True로 지정하여 최고의 파라미터로훈련.

반환된 최적의 모델을 이용해 train 데이터의 score값을 구함

	Passengerld	Survived
0	892	0
1	893	1
2	894	0
3	895	0
4	896	1
5	897	0
6	898	1
7	899	0
8	900	1
9	901	0

최적의 C와 gamma를 설정하고 훈련데이터를 사용해 SVM모델 생성 후 test데이터로 예측 값을 뽑습니다.

Random forest

```
|param2 = {'max_depth': range(5,20,1), # 15
         'min_samples_split': range(2,100,10), # 10
        'min_impurity_decrease': np.arange(0.0001, 0.001, 0.0001) # 9
rf=RandomForestClassifier()
lrs = RandomizedSearchCV(rf.
                            param_distributions=param2,
                           scoring="accuracy",
                           n iobs=-1.
                            refit=True...
                            cv=5.
                           verbose=1.
                           n iter=500)
 rs.fit(train, label)
```

파라미터들을 dictionary형태로 설정 후

RandomizedSearchCV 이용하여 랜덤하게 추출된 샘플링을 사용해서 최고의 파라미터를 찾아준다.

Random forest

생존자 예측

최고 정확도를 나타냅니다 rs.best_score_ 0.8087856281343235 # 최고 파라미터를 나타냅니다 rs.best_params_

{'min_samples_split': 12,
 'min_impurity_decrease': 0.00030000000000000003,
 'max_depth': 13}

최고 정확도와 최고 정확도의 파라미터를 구한 후

Refit=True로 지정하여 최고의 파라미터로훈련.

반환된 최적의 모델을 이용해 train 데이터의 score값을 구함

best_model = rs.best_estimator_
best_model

최적의 모델의 score

best_model.score(train, label) 0.8335208098987626

	Passengerld	Survived
0	892	0
1	893	0
2	894	0
3	895	0
4	896	0
5	897	0
6	898	1
7	899	0
8	900	1
9	901	0

최적의 파라미터를 설정하고 랜덤포레스트 모델 생성 후 test 데이터로 예측값을 뽑아냅니다

```
param3 = { 'max_depth' : range(3,20,1), }
         'min samples split': range(2,50,1),
         'min_impurity_decrease': np.arange(0.0001, 0.001, 0.0001)
dt = DecisionTreeClassifier()
gs = GridSearchCV(dt, param_grid=param3, scoring="accuracy",
                    n jobs=-1, refit=True, cv=5, verbose=1)
gs.fit(train, label)
Fitting 5 folds for each of 7344 candidates, totalling 36720 fits
              GridSearchCV
  estimator: DecisionTreeClassifier
         ► DecisionTreeClassifier
```

파라미터들을 dictionary형태로 설정

Grid search를 이용하여 가장 높은 성능을 보이는 파라미터를 찾아줍니다.

Refit = True로 지정하여 최고의 파라미터로 다시 훈련하도록 해줍니다.

```
gs.best_score_
0.8065574811147082
gs.best_params_
{'max_depth': 7,
 'min_impurity_decrease': 0.0003000000000000003,
 'min samples split': 12}
best_model = gs.best_estimator_
best_model
                       DecisionTreeClassifier
|DecisionTreeClassifier(max_depth=7,
                      min_impurity_decrease=0.0003000000000000003,
                      min_samples_split=12)
best_model.score(train, label)
0.8323959505061868
```

Best_score_와 best_params_를 이용하여 최고 정확도와 최고 정확도의 파라미터를 구합니다

best_estimator_를 이용하여 최적의 모델을 반환합니다

반환된 최적의 모델을 이용해 train 데이터의 score값을 구해줍니다.

0 892 0 1 893 1 2 894 0 3 895 0 4 896 1 5 897 0 6 898 1 7 899 0 8 900 1		Passengerld	Survived
2 894 0 3 895 0 4 896 1 5 897 0 6 898 1 7 899 0	0	892	0
3 895 0 4 896 1 5 897 0 6 898 1 7 899 0	1	893	1
4 896 1 5 897 0 6 898 1 7 899 0	2	894	0
5 897 0 6 898 1 7 899 0	3	895	0
6 898 1 7 899 0	4	896	1
7 899 0	5	897	0
	6	898	1
8 900 1	7	899	0
900 1	8	900	1
9 901 0	9	901	0

pred.to_csv("./gender_submission", index=False)

최적의 파라미터로 설정한 모델을 생성

Train 데이터로 훈련후, Test 데이터로 예측값을 얻습니다

Kaggle에 제출하기 위해 'gender_submission'파일에 예측값을 적용시켜줍니다

```
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
%matplotlib inline
```

```
plot_tree(dt, feature_names=['Pclass','Sex','Embarked','Agecut','Farecut','IsAlone'], max_depth=1)
plt.show()
```


%matplotlib inline을 이용하 여 브라우저에서 바로 그림을 볼 수 있게 해줍니다

plot_tree를 사용해 결정트리 를 시각화 하였습니다

결 론

Kaggle 제출 결과 SVM

Kaggle 제출 결과 결정 트리

0.76555

Kaggle 제출 결과 Random forest

