

8 Evaluating and Managing Crops Water Requirement

Zohrab Samani

CONTENTS

8.1	Introd	luction	179
8.2	Evapo	otranspiration	179
	_	Crop Coefficient (K _c)	
		Calculating Growing Degree Days	
		Irrigation Interval	
		Alternative Method "Calculating ET without GDD"	
	8.2.5	Perennial Crops.	189
Refe	rences.	*	190

8.1 INTRODUCTION

Crops use water for cooling, nutrient transport to the leaves, and photosynthesis. Most of the water used by the crop evaporates from the surface of the leaves. Plants function like an evaporative cooler where large amount of water is used for cooling, which is an integral part of the photosynthesis process. The growth of plant is tied to the ability of leaves to produce carbohydrate via photosynthesis. The carbohydrate is the basis for the accumulation of biomass and growth of the plant. The leaves capture light over the surface area of the leaves exposed to the sun. Upon exposure to the solar energy, the leaves open thousands of tiny pores (stomata) to let in carbon dioxide (CO₂) and solar energy to produce carbohydrate. The open stomata and solar energy also result in water evaporation at the same time. The water evaporated through the stomata is referred to as transpiration. The sum of water loss through transpiration and evaporation outside of stomata such as soil surface is referred to as evapotranspiration (ET). The ET is a function of climate condition, plant leaf area, and the stomata behavioral characteristic of the plant. The water that evaporates through ET is supplied from the stored moisture within the root zone of the plant. Thus the success of the crop growth and yield production depends on the climate, the plant, and the ability of the producer to provide the soil reservoir with timely and sufficient quantity of water. Water is the single most important production parameter in irrigated agriculture. This chapter describes how the crops' water requirement (ET) can be estimated and how the soil moisture reservoir can be managed to achieve successful production.

8.2 EVAPOTRANSPIRATION

To estimate the crops' water requirement, the ET is divided into two distinct parameters: the crop coefficient (K_c) representing the crop, and reference evapotranspiration (ET_r) , which is calculated from the climate parameters. The ET thus can be described as

$$ET = K_c \times ET_r \tag{8.1}$$

ET_r is calculated using various equations of Hargreaves and Samani (1982, 1985) and Penman–Monteith (Allen 1986), Allen et al. (1998), and ASCE-EWRI standardized reference

179

AQ1

9/30/2013 5:36:38 PM

evapotranspiration (2005). The ASCE-EWRI (2005) has recommended two equations for calculating reference evapotranspiration (ET_r). Those are standardized Penman–Monteith and Hargreaves and Samani (1985). The Hargreaves–Samani equation is as follows:

$$ET_r = 0.0023 \times RA(Tc + 17.8)(TD)^{0.5}$$
 (8.2)

where

RA is the extraterrestrial radiation representing the amount of solar energy received at any latitude above the atmosphere

Tc is the average of daily maximum and minimum temperatures in degree Celsius

TD is the difference between daily maximum and minimum temperatures in degree Celsius ET, is the daily ET value in mm

The extraterrestrial values as a function of the latitude of location is shown in Table 8.1. Equation 8.2 uses the temperature difference to account for the loss of solar energy in the atmosphere due to cloudiness or humidity.

8.2.1 CROP COEFFICIENT (K_c)

The most difficult parameter to be determined in assessing ET and managing water is the K_c . The K_c value changes not only with crop, but also with time or stage of growth of the crop, crop density, and general growth conditions. The K_c is also temporally and spatially variable. This means that a K_c value determined for one climatic condition cannot be used for another climatic condition. One of the easiest ways to determine the K_c value for a given crop under a given climatic condition and growth stage is through the use of growing degree days (GDDs) as described in the following text. The crop growth starts with the start of growing season, where plants develop leaves and start to actively grow. In annual crops, regardless of when the seed is planted, the crop growth stage starts with a minimum average temperature called the base temperature and the growth stops once a minimum temperature is occurred. The same is true for the perennial crops where the plants start to grow when a minimum base temperature is reached and will stop growth when a final minimum temperature occurs. Table 8.2 shows the base temperature and final (end) temperature for some common crops.

8.2.2 CALCULATING GROWING DEGREE DAYS

The GDD calculation starts when the minimum temperature has reached the base temperature shown in Table 8.2. The equation to calculate GDD is as follows:

$$GDD = \frac{Tmax + Tmin}{2} - Tbase$$
 (8.3)

where

GDD is the growing degree day calculated for each day

Tmax is the maximum daily temperature

Tmin is the minimum daily temperature

Tbase is the minimum start-up temperature

In calculating GDD, the Tmax is normally limited to a maximum cutoff daily temperature, which is normally 86°F. For example, if the Tmax of the day for corn crop is 90°F, Tmax is set equal to 86°F. Some crops like alfalfa and pecan do not have cutoff temperature.

_	
α	
ш	
_	4
7	9
⊴	_

Extraterrestrial Radiation (RA) (mm/day)

	٠,	٠,	~			~~	••	٠,	٠,			_	00	_	10			00		16	٠,	_	4			~~
Dec	18.2	18.2	18.3	18.3	18.3	18.3	18.3	18.2	18.2	18.1	18.1	17.9	17.8	17.7	17.5	17.4	17.1	16.8	16.6	16.5	16.2	16.0	15.7	15.4	15.1	14.8
N _o	16.5	16.6	16.7	16.7	16.8	16.9	17.0	17.0	17.1	17.2	17.3	17.2	17.2	17.1	17.0	17.0	16.8	16.7	16.5	16.4	16.2	16.0	15.8	15.5	15.3	15.1
Oct	12.9	13.2	13.4	13.7	14.0	14.2	11.4	14.6	14.9	15.1	15.3	15.4	15.5	15.6	15.7	15.8	15.8	15.8	15.8	15.8	15.9	15.8	15.7	15.6	15.5	15.4
Sep	8.9	9.3	6.7	10.2	10.6	11.0	11.4	11.7	12.0	12.4	12.7	13.0	13.2	13.4	13.7	13.9	14.1	14.3	14.5	14.7	14.8	14.9	15.0	15.1	15.2	15.3
Aug	5.5	0.9	6.5	6.9	7.4	7.9	8.3	8.8	9.2	9.6	10.1	10.4	10.9	11.2	11.6	12.0	12.3	12.6	12.9	13.2	13.5	13.7	14.0	14.3	14.5	14.8
Ī	3.5	4.0	4.4	4.9	5.4	5.9	6.3	8.9	7.2	7.7	8.1	8.6	9.1	9.5	10.0	10.4	10.8	11.2	11.6	12.0	12.4	12.7	13.1	13.4	13.7	14.1
June	3.1	3.5	4.0	4.4	4.9	5.3	5.8	6.3	8.9	7.3	7.8	8.2	8.7	9.1	9.6	10.0	10.4	10.8	11.2	11.6	12.0	12.4	12.8	13.2	13.5	13.9
May	4.2	4.7	5.2	5.7	6.1	9.9	7.1	7.5	8.0	8.5	8.9	9.3	6.7	10.2	10.6	11.0	11.4	11.7	12.1	12.5	12.8	13.1	13.4	13.8	14.1	14.4
Apr	7.0	7.5	7.9	8.4	8.8	9.2	9.6	10.1	10.5	10.9	11.3	11.6	12.0	12.3	12.6	13.0	13.2	13.5	13.7	14.0	14.2	14.4	14.7	14.9	15.1	15.3
Mar	10.9	11.2	11.5	11.9	12.2	12.5	12.8	13.2	13.5	13.8	14.0	14.3	14.4	14.6	14.8	15.0	15.1	15.2	15.3	15.4	15.5	15.5	15.6	15.6	15.7	15.7
Feb	14.7	14.9	15.1	15.3	15.5	15.7	15.8	16.0	16.1	16.2	16.4	16.4	16.4	16.5	16.5	16.5	16.5	16.4	16.4	16.3	16.3	16.1	16.0	15.8	15.7	15.5
Jan	17.5	17.6	17.7	17.8	17.8	17.9	17.9	17.9	17.8	17.8	17.8	17.7	17.6	17.5	17.4	17.3	17.1	16.9	16.7	16.6	16.4	16.1	15.8	15.5	15.3	15.0
Lato	50	48	46	44	42	40	38	36	34	32	30	28	26	24	22	20	18	16	14	12	10	∞	9	4	2	0
Dec	3.2	3.7	4.3	4.7	5.2	5.7	6.1	9.9	7.2	7.8	8.3	8.8	9.3	6.7	10.2	10.7	11.1	11.6	12.0	12.5	12.9	13.3	13.7	14.1	14.4	14.8
No	4.5	5.0	5.5	0.9	6.5	7.0	7.5	8.0	8.5	0.6	9.5	6.6	10.3	10.7	11.1	11.6	12.0	12.4	12.8	13.3	13.6	13.9	14.2	14.5	14.8	15.1
Oct	7.4	7.8	8.3	8.7	9.1	9.6	10.0	10.6	10.8	11.2	11.6	12.0	12.3	12.6	13.0	13.3	13.6	13.9	14.1	14.4	14.7	14.8	15.0	15.1	15.3	15.4
Sep	10.9	11.2	11.5	11.9	12.2	12.5	12.8	13.1	13.4	13.6	13.9	14.1	14.3	14.5	14.6	14.8	14.9	15.0	15.1	15.2	15.3	15.3	15.3	15.3	15.3	15.3
Aug	14.1	14.3	14.5	14.7	15.0	15.2	15.3	15.4	15.5	15.6	15.7	15.7	15.7	15.8	15.8	15.9	15.8	15.7	15.7	15.6	15.5	15.4	15.2	15.1	14.9	14.8
Ī	16.4	16.5	16.6	9.91	16.7	16.7	16.7	16.7	16.8	16.8	16.8	16.7	16.6	16.5	16.4	16.3	16.1	15.9	15.7	15.5	15.3	15.1	14.9	14.6	14.3	14.1
nne	17.1	17.2	17.2	17.2	17.3	17.3	17.2	17.2	17.1	17.0	17.0	16.8	16.7	16.6	16.4	16.4	16.3	15.9	15.7	15.5	15.3	15.0	14.7	14.4	14.2	13.9
May	15.8	15.9	0.91	16.1	16.2	16.4	16.4	16.4	5.91	16.5	16.5	16.5	16.4	16.4	16.3	6.3	16.1	0.91	15.8	15.7	15.5	15.3	15.1	14.9	14.6	14.4
Apr /																									15.3	
Mar /																									15.6	
Feb A																									15.3	
Jan F																									14.7	
Ĵ		4	4	•	•	-	-	-	-			٠.	٠.	Ĭ	Ĭ	_	_	1	Τ.	Т	_	_	_	Ť	Ţ	1

AQ2

AQ3

TABLE 8.2 Plant Growing Season Start-Up and End Temperature in °F

Crop	Earliest Mean Temperature (°F)	End Temperature
Perennial crops		
Alfalfa	50	28°frost
Cool season grasses	45	45°F
Decides orchards	50	45°F
Grapes	55	50°F
Pecan	60	25°frost
Pomegranate and almond	50	28°frost
Annual crops		
Dry beans	60	32°frost
Corn	55	32°frost
Cotton	62	32°frost
Spring grain	45	32°frost
Potatoes	60	32°frost
Sorghum, grain	60	32°frost
Sugar beets	28	28°frost
Wheat	45	45°
Tomato	50	32°frost

AQ4 TABLE 8.3
Relationship between K_c and GDD for Various Stages of Growth

Corn—Grain	Tbase	55°F								
Time % to full cover	10	20	30	40	50	60	70	80	90	100
GDD	5.3	23.4	53.5	102	164	222	318	425	541	644
K _c , before full cover	0.345	0.345	0.345	0.345	0.368	0.483	0.633	0.805	0.98	1.093
Days-after-full cover	10	20	30	40	50	60	68			
GDD	833	1002	1168	1341	1472	1567	1603			
K _c	1.104	1.093	1.081	1.035	0.978	0.909	0.85			

Once the daily GDD is calculated, the cumulative (sum-GDD) is calculated starting from day 1 and related to crop coefficient K_c . There is a direct relationship between sum-GDD and K_c of crop throughout the growing season. Tables 8.3 through 8.7 show the relationship between sum-GDD and K_c for several crops. Tables 8.3 through 8.7 were created using 8 years of experimental data presented by Wright (1981).

Example 8.1

AQ5

AQ6

Table 8.8 shows the procedure to calculate daily ET and growing season ET of grain corn crop for Laguna, New Mexico, using GDD. In this example, Table 8.8 for grain corn was used to calculate GDD from temperature data. The calculation starts from day 120 of the year when the average daily temperature reaches 55°F, and a positive GDD can be calculated. The daily GDD is then summed up starting from day 120 until the maximum GDD value of 1603°F when the crop matures. The daily K_c is then calculated based on the cumulative GDD (sum-GDD) value.

TABLE 8.4 Relationship between K_c and GDD for Various Stages of Growth

Corn—Sweet	Tbase	55°F								
Time % to full cover	10	20	30	40	50	60	70	80	90	100
GDD	5.3	23.4	53.5	101	164	222	318	423	541	644
K _c , before full cover	0.345	0.345	0.345	0.345	0.368	0.483	0.632	0.805	0.98	1.093
Days after full cover	10	20	30							
GDD	833	1002	1168							
kc, after full cover	1.07	1.07	1.035							

TABLE 8.5 Relationship between K_c and GDD for Various Stages of Growth

Bean	Tbase	60°F						
Time % to full cover	30	40	50	60	70	80	90	100
Sum-GDD	20	35	70.3	106	164	220	292	341
K_c	0.345	0.403	0.518	0.633	0.78	0.92	1.035	1.093
Days after	10	20	30	40	45			
Sum-GDD	463	582	698	808	865			
kc	1.093	1.035	0.77	0.38	0.173			

AQ7

TABLE 8.6 Relationship between K_c and GDD for Various Stages of Growth

Barley	Tbase	45°F								
Time % to full cover	10	20	30	40	50	60	70	80	90	100
GDD		8.23	25.6	67.1	140	204	293	421	531	613
kc, before		0.345	0.368	0.46	0.748	0.978	1.093	1.14	1.15	1.15
Days after	20	30	40	50	55					
GDD	1030	1276	1529	1781	1827					
K_c	1.15	1.035	0.575	0.288	0.173					

AQ8

TABLE 8.7 Relationship between K_c and GDD for Various Stages of Growth

Alfalfa 1146 GDD/Cut	Tbase	41°F								
Time % of total cycle	10	20	30	40	50	60	70	80	90	100
K _c , first cut	0.805	0.94	1.05	1.104	1.15	1.15	1.127	1.104	1.093	1.093
K _c , second + third cuts	0.46	0.575	0.92	1.104	1.13	1.15	1.15	1.13	1.093	1.093
Fourth cut	0.46	0.51	0.69	0.75	0.63	0.58	0.52	0.4	0.35	0.29

TABLE 8.8
AQ9 ET Calculation for Grain Corn in Laguna, New Mexico

DOV	Sum-GDD								
DOY	Julii-GDD	ET,	K_c	ET (mm)	DOY	Sum-GDD	ET,	K_c	ET (mm)
120	0.69	4.8	0.345	1.65	166	354	6.8	0.805	5.49
121	1.11	4.7	0.345	1.62	167	368	6.8	0.805	5.44
122	1.59	4.7	0.345	1.61	168	382	6.8	0.805	5.44
123	2.07	4.8	0.345	1.65	169	397	6.8	0.805	5.51
124	4.27	4.9	0.345	1.7	170	411	7	0.805	5.6
125	7.63	5	0.345	1.74	171	427	6.9	0.805	5.52
126	10.6	5	0.345	1.73	172	442	6.8	0.98	6.64
127	13.4	5	0.345	1.74	173	458	6.8	0.98	6.7
128	16.4	5.1	0.345	1.75	174	473	6.9	0.98	6.8
129	20.3	5.2	0.345	1.78	175	489	7	0.98	6.82
130	23.9	5.2	0.345	1.79	176	504	7	0.98	6.83
131	27.6	5.2	0.345	1.8	177	520	7	0.98	6.86
132	31.4	5.3	0.345	1.82	178	536	6.9	0.98	6.76
133	35.9	5.3	0.345	1.84	179	552	7	1.093	7.62
134	40.7	5.3	0.345	1.84	180	568	7	1.093	7.6
135	46.3	5.4	0.345	1.85	181	585	6.8	1.093	7.46
136	51.8	5.4	0.345	1.87	182	602	6.7	1.093	7.37
137	58	5.5	0.368	2.03	183	618	6.8	1.093	7.45
138	64.4	5.5	0.368	2.03	184	635	6.6	1.093	7.24
139	71.5	5.6	0.368	2.08	185	652	6.6	1.093	7.27
140	79.4	5.7	0.368	2.08	186	669	6.7	1.104	7.35
141	86.1	5.6	0.368	2.05	187	686	6.7	1.104	7.44
142	92.8	5.7	0.368	2.09	188	703	6.7	1.104	7.45
143	99.9	5.7	0.368	2.1	189	720	6.7	1.104	7.45
144	108	5.8	0.368	2.12	190	737	6.7	1.104	7.37
145	116	5.8	0.368	2.12	191	754	6.6	1.104	7.32
146	125	5.7	0.368	2.11	192	772	6.6	1.104	7.32
147	134	5.7	0.368	2.11	193	789	6.6	1.104	7.26
148	142	5.9	0.368	2.15	194	807	6.6	1.104	7.27
149	151	6	0.368	2.21	195	824	6.6	1.104	7.33
150	161	6	0.368	2.22	196	841	6.5	1.104	7.12
151	170	6	0.483	2.91	197	859	6.5	1.093	7.11
152	180	6.1	0.483	2.94	198	876	6.4	1.093	7.01
153	190	6.1	0.483	2.94	199	894	6.4	1.093	7.02
154	201	6.1	0.483	2.96	200	912	6.4	1.093	7.01
155	211	6.1	0.483	2.96	201	929	6.4	1.093	6.97
156	222	6.2	0.483	2.99	202	946	6.3	1.093	6.87
157	234	6.3	0.633	4.01	203	964	6.3	1.093	6.91
158	247	6.4	0.633	4.05	204	981	6.4	1.093	6.97
159	260	6.4	0.633	4.06	205	998	6.3	1.093	6.9
160	273	6.4	0.633	4.07	206	1016	6.3	1.081	6.76
161	285	6.4	0.633	4.08	207	1034	6.2	1.081	6.67
162	299	6.4	0.633	4.06	208	1051	6.2	1.081	6.67
163	312	6.4	0.633	4.03	209	1068	6.2	1.081	6.65
164	326	6.6	0.633	4.17	210	1086	6.1	1.081	6.58
165	340	6.6	0.805	5.34	211	1103	6.2	1.081	6.71

TABLE 8.8 (continued)
ET Calculation for Grain Corn in Laguna, New Mexico

DOY	Sum-GDD	ET _r	K_c	ET (mm)	DOY	Sum-GDD	ET _r	K_c	ET (mm)
212	1121	6.1	1.081	6.58	227	1380	5.6	0.978	5.47
213	1139	6.1	1.081	6.64	228	1396	5.6	0.978	5.48
214	1156	6.1	1.081	6.59	229	1413	5.6	0.978	5.48
215	1174	6	1.081	6.47	230	1429	5.6	0.978	5.5
216	1191	5.9	1.035	6.07	231	1446	5.6	0.978	5.48
217	1208	5.8	1.035	6.05	232	1462	5.5	0.978	5.38
218	1226	5.9	1.035	6.1	233	1479	5.4	0.978	5.26
219	1243	5.9	1.035	6.06	234	1495	5.4	0.909	4.88
220	1261	6	1.035	6.17	235	1511	5.4	0.909	4.92
221	1278	5.9	1.035	6.09	236	1527	5.3	0.909	4.83
222	1295	5.8	1.035	5.99	237	1542	5.4	0.909	4.95
223	1312	5.8	1.035	5.99	238	1558	5.4	0.909	4.88
224	1329	5.7	1.035	5.92	239	1574	5.3	0.909	4.86
225	1346	5.7	1.035	5.88	240	1590	5.3	0.85	4.48
226	1363	5.7	0.978	5.53	241	1606	5.2	0.85	4.43

Thedaily ET values are then calculated by multiplying daily ET_r by daily K_c values as shown in Equation 8.1. Note that even though in Table 8.2 the end temperature is shown as 32° frost, the actual maturity and end of growing season occur on day 241 of the year when the cumulative GDD reaches the $1603^{\circ}F$ value, which is the required GDD for maturity. In this example, the length of growing season for grain corn is 122 days (from day 120–241). The same crop will reach maturity in only 106 days in Las Cruces, New Mexico, due to higher daily temperature. The growing season will also vary depending on when the crop is planted. If a crop is planted later than day 120, then it will mature at a later day, but most likely at a shorter growing season.

8.2.3 IRRIGATION INTERVAL

One of the main questions to be answered in an irrigation management is when to irrigate. In drip, and sprinkler irrigation, it is possible to irrigate every day. However, from practical, agronomic, and economic points of view, the best time of irrigation is when the readily available water (RAW) is consumed. One can calculate the RAW by having the knowledge of soil type, root depth, and crop management allowed depletion known as MAD. To calculate RAW, one needs to know the soil field capacity (FC) and the crop root depth. The MAD is also a function of crop.

The RAW is calculated as

$$RAW = MAD \cdot (F)(FC)(RD)$$
 (8.4)

where

RAW is the readily available water

MAD is the management allowed depletion from Table 8.9

RD is the root depth

F is the soil factor, which is taken as 0.5 for medium soil, 0.4 for clay soil, and 0.6 for sandy soil

Table 8.10 shows MAD and root depth for various crops. The root depth can vary depending on the AQ10 soil type and age of the crop. If not sure, one can always use the lower value of root depth to calculate RAW and irrigation interval.

AQ11

TABLE 8.9
Typical Root Depth and MAD Values for Various Crops

Crop	MAD	Root Depth (ft)	Root Depth (m)
Almond	0.6	3–4	1-1.3
Alfalfa	0.55	3–10	1–3
Banana	0.35	2–3	0.6-0.9
Barley	0.55	3–5	1-1.5
Beans	0.45	1–2	0.3-0.7
Beets	0.5	2–3	0.6-1.0
Cabbage	0.45	1–2	0.3-0.6
Carrots	0.35	1–3	0.3-1.0
Celery	0.20	1–2	0.3-0.5
Citrus	0.5	4–5	1.2-1.5
Clover	0.35	2–3	0.6-0.9
Corn	0.6	3–5	1-1.7
Cotton	0.6	3–5	1-1.7
Cucumber	0.5	2–4	0.7-1.2
Dates	0.5	5–8	1.5-2.5
Flax	0.5	3–5	1.0-1.5
Grains, small	0.55	3–5	1-1.5
Grapes	0.35	3–6	1-1.8
Grass	0.5	2–5	0.6-1.5
Lettuce	0.30	1–2	0.3-0.6
Melons	0.35	3–5	1-1.5
Olives	0.65	4–5	1.2-1.5
Onions	0.25	1–2	0.3-0.6
Peas	0.35	2–3	0.6-1.0
Pepper (Chile)	0.25	2–3	0.6-1.0
Pecan	0.55	3–6	1.0-2.0
Pineapple	0.5	1–2	0.3-0.6
Potatoes	0.25	1–2	0.3-0.6
Pomegranate	0.55	3–6	1–2

Example 8.2

AQ12 Table 8.11 shows the K_c values for mature almond. If the ET_r for the month of June is 8 mm/day and the crop coefficient from Table 8.11 is 0.9, then the ET can be calculated as

$$ET = kc \times ET_r = 0.9(8) = 7.2 \text{ mm/day}$$

Taking the MAD value of 0.6 and root depth of 1 m from Table 8.9, for a medium soil with an FC of 0.3 (30%), the RAW can then be calculated as

$$RAW = 0.6(0.5)(0.3)(1.0) = 0.09 \text{ m} = 90 \text{ mm}$$

That means that the soil can hold 90 mm of water within the root zone of the crop without causing stress. If the ET is 7.2 mm/day in the month of June, then there is enough water to last 13 days (90/7.2) before the next irrigation. One factor that can change is the effective rainfall. There are

TABLE 8.10 Typical Root Depth and MAD Values for Various Crops

Crop	MAD	Root Depth (ft)	Root Depth (m)
Safflower	0.6	3–6	1–2
Sorghum	0.55	3–6	1–2
Soybeans	0.5	2–4	0.6-1.2
Spinach	0.2	1–2	0.3-0.6
Strawberries	0.15	0.5-1.0	0.2-0.6
Sugar beets	0.5	2–4	0.6-1.2
Sugarcane	0.65	4–6	1.2-2
Sunflower	0.45	3–5	1-1.5
Sweet potatoes	0.65	3–5	1-1.5
Tomatoes	0.4	2-5	0.6-1.5
Vegetables	0.2	1–2	0.3-0.6
Wheat	0.55	3–5	1-1.5

TABLE 8.11 Almond Crop Coefficient (K_c) Recommended by UN-FAO

Month	Dec/Jan	Feb	Mar	April	May	June/July/Aug	Sep	Oct	Nov
K _c with cover crop	0.85	0.85	0.85	0.95	1.05	1.15	1.10	0.90	0.85
K _c without cover crop	0.00	0.00	0.50	0.70	0.85	0.90	0.80	0.75	0.65

various ways to calculate the effective rainfall. One of the simplest equations is the NRCS/USDA AQ13 (1970), which is described as

$$Re = (0.70917 \cdot [Rt]^{0.82416} - 0.11556) \cdot (10^{0.02426[U]})$$
(8.5)

where

Re is the effective rainfall

Rt is the monthly rainfall in inches

U is the monthly consumptive use in inches

In this example, if we had 1 in. (25.4) of rainfall during the 13 days, that would be equivalent to 2.3 in./month. Using Equation 8.5, and monthly equivalent of 8.5 in. (216 mm) of ET, the effective rainfall for the equivalent month is calculated as

$$Re = 2.08 \text{ in.} = 52.8 \text{ mm}$$

Adjusting the monthly Re for 13 days, the effective rainfall during the 13 days would be 22.9 mm. This can then prolong the irrigation for another 3 days (22.9/7.2). This results in the total irrigation interval of 13 + 3 = 16 days.

AQ14

8.2.4 ALTERNATIVE METHOD "CALCULATING ET WITHOUT GDD"

In the absence of K_c –GDD relationship shown in Tables 8.3 through 8.7, a simplified approach can be used to calculate K_c and ET. Allen et al. (1998), in FAO-56, has provided some information on the stages of growth and the relevant K_c for various climate conditions. Allen et al. (1998) has divided the stages of growth into four phases of initial, growing stage, midseason, and late season similar to Figure 8.1. The definition of each stage is as follows:

- Stage 1. From planting to 10% ground cover
- Stage 2. From 10% ground cover to maximum growth
- Stage 3. From maximum growth to the start of maturity
- Stage 4. From the start of maturity to maturity or harvest

AQ15 Allen et al. (1998) have then provided corresponding number of days for each stage and k_c values for initial, midseason, and end date. Table 8.8 shows an example of such data. For growing crops in a new region or a different planting date, one can construct K_c versus days or GDD similar to AQ16 Figure 8.1, by knowing the duration of each growth stage and the corresponding K_c values for Kc1, AQ17 Kc3, and Kc-end shown in Table 8.12. However, the information on stages and corresponding kc need to be reconfigured for a new location or new planting date. Example 8.3 shows how informa-

tion on stage and kc can be transferred for a new location or a new planting date.

FIGURE 8.1 K_c versus the stages of growth in a typical crop.

TABLE 8.12 Stages of Growth and K_c Values for Typical Crops

AQ19

Crop	Stages (Days)		s)	Total (Days)	K_c			
						Kc1	kc3	kc-end
Tomato	35	40	50	30	155	0.6	1.15	0.8
Cantaloupe	30	45	35	10	120	0.5	0.85	0.60
Potato	25	30	45	30	130	0.5	1.15	0.75

Source: Allen, R.G. et al., Crop evapotranspiration: Guidelines for computing crop water requirements, Food and Agriculture Organization, FAO Irrigation and Drainage Paper No. 56, Rome, Italy, 1998.

Example 8.3

Research has shown that tomato requires between 1600 and 1850 GDD with a base temperature of 50°F from planting to maturity depending on the variety. If we intend to plant an early variety tomato in Las Cruces, New Mexico, the crop can be planted as early as day 83. Calculating cumulative GDD, for the area, it shows that the crop will reach maturity on day 176, a total of 94 days. Looking at Table 8.8, the total growing season is given as 155 days. A simple way to determine the K_c -days relationship would be to scale the growing season by multiplying the length of each stage by the ratio of (94/155 = 0.605). The new stages of growth for the tomato will then be calculated as follows:

Stages 1	2	3	4
Days 21	24	31	18

And the corresponding kc for each stage can then be calculated using the K_c values in Table 8.8. A more accurate relationship can be established by modifying the length of each stage by observing the duration of the first two stages in the field and calculating the duration of the third and fourth stages using the remaining days.

8.2.5 Perennial Crops

The crop coefficients for perennial crops such as almond, pecan, or grapes are normally shown on monthly basis as is shown in Tables 8.11 and 8.13. The growing season in such crops starts as the minimum beginning temperature is reached and ends when minimum temperature is reached at the end of season. In perennial crops, the ET values are normally calculated for growing season, and irrigation is practiced during growing season. However, the perennial crops never stop using water even during what is called the dormant season. When perennial crops lose their leaves, their physiological activities slow down but do not cease. During this period, the K_c reduces to basic K_c , which is typically 0.3–0.40. During this dormant period, the plants continue to lose water and may

TABLE 8.13 Monthly K_c Values for Grapes Based on Four Climatic Conditions

Cond.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Mature grapes grown in areas with killing frost, ground cover 40%–50%									
1	_	_	0.50	0.65	0.75	0.80	0.75	0.65	_
2	_	_	0.50	0.70	0.80	0.85	0.80	0.70	_
3	_		0.45	0.70	0.85	0.90	0.80	0.70	_
4	_	_	0.50	0.75	0.90	0.95	0.90	0.75	_
Mature grapes grown in areas of light frost, ground cover 30%–35%									
1	_	0.50	0.55	0.60	0.60	0.60	0.60	0.50	0.40
2	_	0.50	0.55	0.65	0.65	0.65	0.55	0.55	0.40
3	_	0.45	0.60	0.70	0.70	0.60	0.60	0.60	0.35
4	_	0.45	0.65	0.75	0.75	0.75	0.75	0.65	0.35
Mature grapes grown in hot dry areas, ground cover 30%-35%									
3	0.25	0.45	0.60	0.70	0.70	0.65	0.55	0.45	0.35
4	0.25	0.45	0.65	0.75	0.75	0.70	0.55	0.45	0.35

Notes: 1—Humid, light to moderate wind; 2—humid, strong wind; 3—dry, light to moderate wind; 4—dry, strong wind.

AQ20 need irrigation. In dry climates, such as that of Southwestern United States, crops like pecans are often irrigated during the dormant season to maintain sufficient moisture in the root zone.

REFERENCES

- Allen, R.G., L.S. Pereira, D. Raes, and M. Smith (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organization, FAO Irrigation and Drainage Paper No. 56. Rome, Italy.
- ASCE-EWRI (2005). The ASCE standardized reference evapotranspiration equation. In: Allen, R.G., Walter, I.A., Elliot, R.L., Howell, T.A., Itenfisu, D., Jensen, M.E., and Snyder, R.L. (eds.), *American Society of Civil Engineers (ASCE) Task Committee on Standardization of Reference Evapotranspiration*. Reston, VA: ASCE, 0-7844-0805-X, 204p.
- Hargreaves, G.H. and Z.A. Samani (1982). Estimating potential evapotranspiration. *Journal of Irrigation and Drainage Engineering Division ASCE* 108(3): 225–230.
- Hargreaves, G.H. and Z.A. Samani (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1(2): 96–99.
- AQ21 NRCS/USDA (1970). The crop water requirements, Technical release #21.
 - Wright, J. (1981). Crop coefficients for estimates of daily crop evapotranspiration. ASAE Irrigation Scheduling Conference, Chicago, IL.

AUTHOR QUERIES

- [AQ1] Please include Allen (1986) in the reference list with complete details.
- [AQ2] Please check the correctness of the term "Decides orchards."
- [AQ3] Please check the value "45" for correctness.
- [AQ4] Table 8.3 through 8.7 captions are one and the same. Please check.
- [AQ5] Tables 8 and 11 (in original) have has been changed to Tables 11 and 8 as per the explanation. Please check for correctness.
- [AQ6] Here the explanation is about Table 8.8. Please check the change made.
- [AQ7] Please check the phrase "Days after" for completeness.
- [AQ8] Please check if the phrases "kc, before" and "Days after" are used appropriately in Table 8.6.
- [AQ9] Table 8.11 has been changed as Table 8.8 for sequential order of text citation. Please check for correctness.
- [AQ10] Root depth and MAD values are described in Table 8.10 not in Table 8.9. Please check the change made.
- [AQ11] Table 8.9 and 8.10 captions are similar. Please check.
- [AQ12] "Kc" has been changed as "K_c" throughout. Please check.
- [AQ13] "SCS-21" has been changed as "NRCS/USDA" as per the reference list. Please check for correctness.
- [AQ14] Please check if edit to the sentence starting with "Adjusting the monthly Re..." is correct.
- [AQ15] Please check if the variable "k_c" "kc" could be changed to "K_c" throughout.
- [AQ16] Please check if "Kc1, Kc3, and Kc-end" should be changed as "K_{c1}, K_{c3}, and K_{c-end}", respectively.
- [AQ17] Table 8.11 has been changed to Table 8.12. Please check.
- [AQ18] Please check if edit to the sentence starting with "Example 8.3 shows..." is okay.
- [AQ19] Please check if stages such as "Stage 1, Stage 2.." should be mentioned in Table 8.12.
- [AQ20] Please check if edit to the sentence "...and may need irrigation" is correct.
- [AQ21] Please provide more details if any for "NRCS/USDA, 1970."

