Clase 1, 2025

Termodinàmica en relación otras áreas de la materia

Macanica Estadística

* Experimento Vintual

* Mecanica estadística Numerica"

Bibliografía: H. B. Callen

Muy interesante si quieren profundizar en termodinámica

Buenos "condidatos" a variable termodinamica: * Las variables Conservadas (E, Pror, Ztor) X Otras

Volumen [V]: Modo Normal de mayor longitud de Onda.

X Otras

Tiene Frecuencia wwo war Caller

Trabajo (W): Mayoria de modos escondidos del sistema de almacenamiento de energía Trabajo mecanica. > Color (Q): transferencia de energía via modos ocultos La termodinámica en Postulados Postulado I: Exister estados particulares on pletamente a rivel macroscópico por UV Ni (Variables termodinàmicas extensivas) Eall Herbert Caller VIJ Postulado II: Existe una función $S = S(U, V, N_i)$ (función de los variables a extensivas) de un sistema compuesto, definido en los estados de 3= 5+52+ Postulado III: Las 5 de un sistema compuesto es aditiva sobre los subsistemas que lo componen $S = \sum_{\alpha} S^{(\alpha)}$. Ses ademas continua diferenciable y monotora creciente de la energia U. spertición se ignoré extensivos S(\lambda V, \lambda V

Ecuaciones de Estado
Rep. U => U = U (S,V,N)
* T, P, m -> son funciones de los panximetros extensivos
 Ecuaciones de estado:
T = T (SNN)
T = T (SVN) Intensivos = Intensivos (Extensivos) W = m (SNN)
$\mathcal{M} = \mathcal{M}(S, \mathcal{N}, \mathcal{M})$
·
** Relàción fundamental -> Es homogéned de 1em orden -> Las ecuaciones de estado son homogéneas de grado 0:
-> Las ecuaciones de estados son homogéneas de grado O:
$T(\lambda S, \lambda V, \lambda N) = \frac{\lambda^{\circ}}{I} T(S, V, N)$
* Lat es la misma en todos las monas del sistema Timip Timip
The state of 10000 to grant seet systems
* E. la descusación termodiatarios de un sistema has que aleman
VEN la descripción termodizionica de un sindena har que elegin una representación: U o S son variables dependientes =>
Und regressing with: 0 & 5 50/1 variables dependente) =)
La relación fundamental es $\longrightarrow U=U(s,v_N)$ Unca las dos!
$\int S = S(v_i v_i v_i)$
termodinánico. Dependent de la información disposible.
ternodinánico. Dependent de la información disposible.

	Loud Ción de Gibbs - Ouhan
4	x Los pundmetros intensivos no son todos independientes entre si.
	* Existe una relación entre ellos - Ec. de Gibbs-Ochem
	Ejemplo: Sistera de una sóla componente
	Relación de 6i665-Duhem SdT-Vap+Ndm=0
	$\Rightarrow ' \phi _{W} = -s dT + v d\rho$
	>
	* L2 ec. de Gillo- Duhen se integra > 6 novemos las ec.s de Estado
	Nimero de Parametros intensivos) grados de libertad termo dinámicos de un sistema
	independientes termo dinamicos de un sistema
	2
	{sistema de r componentes} > { (r+1) grados de libertod termodinámios
	Ejemplo: Si tenemos una ecuación fundamental U=U(S,V,N)
	* 3 parametros extensivos independientes > T = T(S,V,N)
	# 3 ecusiones de estado
	* 3 po rémetros intersivos * Senás Fusción de Solo (3-1) variables*
	3
	* La etiminación de las É variables de las EtA ecuaciones de estado
	NOS dond la relación entre parametros interacios. > Gibbs - behem
	* Sali del hecho que los pe intensivos sun homogéneos de grado O
	· · · · · · · · · · · · · · · · · · ·

