$$d_{0} = |z_{1} - z_{0}|$$

$$z_{1} - z_{0} = i \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3} e^{i \frac{\pi}{2}}$$

$$d_{0} = \frac{\sqrt{3}}{3}$$

3.c) Pour tout entier n non nul on a :

$$z_{n+2} = \left(1 + i\frac{\sqrt{3}}{3}\right)z_{n+1} \text{ et } z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)z_n$$

$$\text{donc } z_{n+2} - z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)(z_{n+1} - z_n).$$

3.d) Le module du produit de deux complexes étant égal au produit de leurs modules, on a :

$$\left|z_{n+2} - z_{n+1}\right| = \left|1 + i\frac{\sqrt{3}}{3}\right| z_{n+1} - z_n$$
, c'est à dire, $d_{n+1} = d_n \frac{2}{\sqrt{3}}$.

 $(d_n)_{n\geq 0}$ est une suite géométrique de premier terme $d_0 = \frac{\sqrt{3}}{3}$ et de raison $q = \frac{2}{\sqrt{3}}$.

Ainsi pour tout entier n naturel, $d_n = d_0 q^n = \left(\frac{\sqrt{3}}{3}\right) \left(\frac{2}{\sqrt{3}}\right)^n$.

4.a) D'après 2.a), on a
$$\left|z_n\right| = \left(\frac{2}{\sqrt{3}}\right)^n$$

d'où
$$|z_{n+1}|^2 = \left(\frac{2}{\sqrt{3}}\right)^{2(n+1)} = \left(\frac{4}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n}$$
 et $|z_n|^2 = \left(\frac{2}{\sqrt{3}}\right)^{2n}$. Par ailleurs $d_n^2 = \left(\frac{1}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n}$.

Donc
$$|z_n|^2 + d_n^2 = \left(\frac{2}{\sqrt{3}}\right)^{2n} + \left(\frac{1}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n} = \left(\frac{4}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n} \text{ et,}$$

$$|z_{n+1}|^2 = |z_n|^2 + d_n^2.$$

4.b) D'après 3.a), l'égalité précédente est équivalente à : $\|\overrightarrow{OA_{n+1}}\|^2 = \|\overrightarrow{OA_n}\|^2 + \|\overrightarrow{A_nA_{n+1}}\|^2$. Ceci implique que le triangle OA_nA_{n+1} est rectangle en A_n .