PROVA N.o 1 EE 754 ONDAS GUIADAS

16.10.2009 com consulta

1. Na linha abaixo de meio comprimento de onda com perdas despreziveis, tem-se acesso somente aos terminais de saida onde se podem medir as tensões e correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variáveis resistivas, variando de 0 a comprese de correntes com as cargas variando de 0 a comprese de correntes com as cargas variando de 0 a comprese de correntes com as cargas variando de 0 a comprese de correntes com as cargas variando de 0 a comprese de correntes de co

- a) com Z = 00 (aberto)
- Vc=30 V 1c= 0 A RMS
- b) com Z = O (curto)
- V=0 VRNS 1c=0,2 ARMS
- c) com Z = Z (casada)
- V = 7,5 V RMS 1 = 0,15 A RMS

Calcule Z₀ Z₂ e V₂ V₀ I₀ quando Z₂ = 2 Z₀

2. Determine $v_1(t)$ e $v_2(t)$ para:

b)
$$a(t) = 10 \cos \omega t$$

 $f = 100 \text{KHz}$

03 - Calcule $e_t(t)$ e $e_r(t)$ e esboce suas formas de onda para :

b)
$$e(t) = 100 \cos w_0 t$$

 $w_0 = 2\pi f_0 \quad f_0 = 50 \text{ KHz}$

Na linha de transmissão abaixo :

Linha sem perdas r = g = 0 L = 1mH/KmC = 25 nF/Km