

Circuit détecteur de haute tension pour une voiture électrique

Projet réalisé par Marc-André Vaillancourt, dans le cadre du cours ELE3000 Sous la supervision de M. Frédéric Sirois (directeur), M. Jean-Philippe Boyer et M. Hugues Marceau (co-directeurs) Département de génie électrique, École Polytechnique de Montréal, marc-andre.vaillancourt@polymtl.ca

1. Introduction

Le projet consistait à concevoir un circuit capable de détecter une haute tension pour ensuite activer un témoin lumineux. Ce circuit est nécessaire selon les réglements de la compétition à laquelle le comité étudiant de la formule électrique veut participer. Le circuit a pour fonction d'avertir qu'il y a présence de haute tension dans les circuits de la voiture. Il est donc un élément de sécurité en cas d'accident pour signaler à toutes les personnes intervenant sur le véhicule qu'il y a un risque d'électrocution.

Spécifications fonctionnelles:

- Le circuit doit avoir un seuil de détection maximal de 40V DC.
- Le circuit doit fonctionner jusqu'à 450 V DC.
- La lumière doit être rouge, visible de tous les côtés de la voiture, de jour comme de nuit, et clignoter à une fréquence comprise entre 2 et 5 Hz.
- Les circuits utilisant une haute tension (plus de 40 V DC) doivent être isolés de ceux utilisant une basse tension (moins de 40 V DC) et clairement identifiés.
- Le circuit doit être placé dans un boitier étanche permettant à la voiture de réussir le test de pluie.

2. Méthodologie

Architecture du système :

- 1. Ce module génère un signal lorsque la tension d'entrée est supérieure ou égale au seuil à respecter.
- 2. Ce module isole les circuits alimentés en basse tension (24 V DC) de ceux alimentés en haute tension (plus de 40V DC).
- 3. Ce module fait clignoter le témoin lumineux lorsque la tension à l'entrée haute tension est supérieure au seuil de détection.

3. Design détaillé

Supertex inc.

L'agencement de la pièce LR8 de Supertex inc. et d'une diode zener à l'entrée du circuit d'application typique permet de détecter la tension souhaitée.

On pourrait donc facilement changer la tension détectée par le circuit en utilisant une autre diode zener.

http://www.supertex.com/pdf/datasheets/LR8.pdf

4. Spécifications du circuit

Partie haute tension:

- Tension maximale: 488 V
- Courant utilisé: 0,3 mA
- Seuil de détection : À 37,1 V les lumières sont à la moitié de leur
 - intensité.
 - À 37,5 V les lumières sont à leur intensité maximale.

Partie basse tension:

- Tension de sortie : 22,5V
- Courant maximal de la charge : 2 A
- Fréquence de clignotement : 2,84 Hz

5. Résultats des tests

Vérification du seuil de détection

Tension à la borne négative de la lumière en fonction de la tension aux bornes de l'entrée haute tension du circuit

Vérification du fonctionnement à haute tension

	Courant entrant
Tension d'entrée	dans l'optocouple:
(V)	(mA)
94,3	0,297
158,5	0,299
202,3	0,299
250,8	0,299
296,6	0,299
364	0,300
404	0,300

* Le test a été effectué à l'aide d'un variateur à courant continu ayant comme tension maximale 400V. Le circuit n'a donc pu être testé jusqu'à 450V. Toutefois, en respectant les spécifications des pièces, la tension maximale est de 488V.

Vérification de la fréquence du clignotement

* Fréquence de clignotement : 2,84 Hz

6. Conclusion

Module prêt à être installé sur la voiture

- Spécifications respectées
- **→** Améliorations possibles

