

Nachzeichner KI

Maturarbeit Ian Wasser, Robin Steiner Oktober 2022

Betreut durch: Nicolas Ruh

NKSA

Inhaltsverzeichnis

1	Met	hode		1
	1.1	dprogramm	1	
		1.1.1	Doodle-SDQ als Basis	1
		1.1.2	Präparierung der Daten und Training	3
		1.1.3	Hyperparameteroptimierung	3
	1.2	Evalu	ierung der Leistung	4
		1.2.1	Erkennbarkeit	4
		1.2.2	Prozentuale Übereinstimmung	4
		1.2.3	Geschwindigkeit	5
	1.3	Variat	tionen	5
		1.3.1	Basis Reward Function	5
		1.3.2	Training auf Geschwindigkeit	6
		1.3.3	Training auf Erkennbarkeit	7
	1.4	Physi	kalische Umgebung	8
T.i	terati	1r		11

Kapitel 1

Methode

Die Methode dieser Untersuchung besteht darin, die in der Fragestellung beschriebene künstliche zu entwickeln und die Leistung davon auszuwerten. Die Diskusssion dieser Resultate führt schliesslich zu einer Antwort auf die Fragestellung. Die Entwicklung der künstlichen Intelligenz besteht aus zwei Teilen. Der eine Teil umfasst die Definition der Kriterien, nach denen die Leistung der künstlichen Intelligenz evaluiert wird. Der zweite Teil umfasst die Entwicklung der künstlichen Intelligenz, zusammen mit verschiedenen Variationen. Die Variationen haben jeweils einen unterschiedlichen Fokus auf die definierten Kriterien. Die Auswertung bezieht sich ebenfalls auf die definierten Kriterien. Die Leistung der künstlichen Intelligenz wird dabei in einer Testumgebung für das Zeichnen von verschiedenen Arten von Strichbildern gemessen.

1.1 Grundprogramm

Die künstliche Intelligenz ist abhängig von den Kriterien, die dessen Leistung definieren (siehe Eval). Mit anderen Worten trainiert die künstliche Intelligenz auf diese Kriterien. Das Ziel des Grundprogrammes ist, eine Trainingsumgebung für die künstliche Intelligenz bereitzustellen. Dieses Grundprogramm ist unabhängig von einem spezifischen Kriterium und kann stattdessen auf ein ausgewählte Kriterium trainiert werden. Reinforcement Learning Modelle mit einer momentan undefinierten Reward Function haben diese Eigenschaften. Die Implementierung eines spezifischen Kriteriums in die Reward Function ermöglicht das Training auf dieses Kriterium.

1.1.1 Doodle-SDQ als Basis

Das Reinforcement Learning Modell von dem Grundprogramm basiert auf Doodle-SDQ von Das Grundprogramm basiert auf dem Reinforcement Algorithmus aus dem Programm Doodle-SDQ (Tao Zhou et Al (2018) [1]).

Ausser dem Reinforcement Learning Modell, hauptsächlich bezogen auf die Form des Inputs, des Outputs und den hidden Layers, sind keine weiteren Konzepte von Doodle-SDQ übernommen. Die relevanten Anpassungen von Doodle-SDQ für das Grundprogramm dieser Arbeit sind nachfolgend erläutert.

Bei der Umgebung handelt es sich, wie bei Doodle-SDQ, um eine Zeichenfläche, worauf sich der Agent frei bewegen kann. Die Ziffern, die während dem Training nachgezeichnet werden sollen, stammen aus dem MNIST Datenset und haben somit eine Grösse von 28×28 Pixeln. Die Fläche, worauf sich der Agent bewegen kann, hat somit auch eine Grösse von 28×28 Pixeln. Die 'globale' Eingabe in das Neuronale Netz ändert sich bis auf diese neue Grösse der Bilder nicht. Die genaue Architektur des neuronalen Netzes sieht folgendermassen aus (siehe Abbildung NN Architektur). Jeder Block in der Abbildung repräsentiert Eine Layer des neuronalen Netzes, wobei die Form des Inputs und die Form des Outputs von jeder Layer angegeben ist.

(Bild Architektur NN)

Die Bilder, wie auch die Zeichenfläche, haben die Datenstruktur einer Bitmap. Es handelt sich also um eine 28 × 28 Matrix, wobei jedes Element eine Null oder eine Eins ist. Eine Null repräsentiert einen schwarzen (nicht gezeichneten) Pixel an dieser Stelle im Bild und eine Eins einen weissen (gezeichneten) Pixel.

Die lokale Eingabe, also das nahe Umfeld um den Agenten schrumpft von 11×11 Pixeln auf 7×7 Pixeln. Somit schrumpft gleichzeitig der Actionspace des Agenten von $2 \cdot 11 \cdot 11 = 242$ Aktionen auf $2 \cdot 7 \cdot 7 = 98$ Aktionen. Das bedeutet für den Agenten, dass er sich pro Schritt um maximal drei Pixel von seiner Position wegbewegen kann. Diese Bewegung kann der Agent entweder zeichnend oder nicht zeichnend ausführen.

Falls der Agent die Aktion zeichnend ausführt, zieht das Programm einen Strich zwischen der alten und der neuen Position. Mit anderen Worten werden alle Pixel in der Zeichenfläche zwischen den beiden Positionen weiss. Der Strich hat eine festgelegte Breite von 3 Pixeln. Am Anfang jeder Episode, also bei jeder neuen Ziffer, die gezeichnet werden soll, startet der Agent in einer zufälligen Position im nicht zeichnenden Zustand. Am Anfang jeder Episode ist die Zeichenfläche leer, also vollkommen Schwarz.

Aktionen des Agenten, die ihn über die vorgegebene Zeichenfläche hinaus positionieren würden, sind nicht zulässig. Diese Aktionen können vom Agenten nicht gewählt werden und ihr optimaler Q-Wert ist als 0 definiert. Das hat zur Folge, dass nach der Trainingsphase die allermeisten unzulässigen Aktionen einen tiefen Q-Wert haben. Das senkt die Wahrscheinlichkeit, dass der Agent versucht, eine unzulässige Aktion auszuführen.

1.1.2 Präparierung der Daten und Training

Das für das Training der künstlichen Intelligenz verwendete MNIST Datenset besteht aus 42000 Bildern von handgeschriebenen Ziffern. Die Bilder im Datenset sind als Bitmap dargestellt, wobei jedes Element (jeder Pixel) einen Wert zwischen 0 und 255 annimmt. Die Zahl räpresentiert einen Graustufe, wobei 0 Schwarz ist und 255 Weiss. Diese Graustufen werden entfernt. Jeder Pixel mit einem Wert über 0 übernimmt den Wert 1, wodurch die Bilder nur noch aus Einsen und Nullen bestehen. So stimmen die Bilder mit den Zeichnungen, die der Agent produzieren kann, überein.

Die Trainingsdaten bestehen aus 36000 der 42000 Bilder im Datenset. Die restlichen 6000 Bilder sind Teil des Test Datensets. Das Grundprogramm trainiert mit 4000 Bildern, von denen jede Ziffer 400 Bilder ausmacht. Die restlichen Bilder in den Trainingsdaten sind für mögliche Erweiterungen aufgehoben. Der Agent zeichnet jedes der 4000 Bilder insgesamt zwei Mal. Mit anderen Worten Läuft die Trainingsphase für 2 Epochen mit jeweils 4000 Episoden. Der Agent macht 64 Schritte pro Episode. Er kann sich also pro Zeichnung 64 mal bewegen. Das Training (des Neuronalen Netz) findet in jedem vierten Schritt statt mit einem Batch von 64 zufällig gewählten Schritten aus dem Replay Buffer.

1.1.3 Hyperparameteroptimierung

Die genauen Hyperparameter des Reinforcement Learning Modells, wie auch die der Variationen (siehe Variation) stehen im Anhang. Alle diese Hyperparameter sind durch eine Implementierung des Baysian Algorithmus [fernando'bayesian'2022] (siehe Theorie Baysian) optimiert. Der Baysian Algorithmus ändert sich für verschiedene Variationen der künstlichen Intelligenz nicht. Somit ist der Baysian Algorithmus Teil des Grundprogrammes, wobei er zu der optimalen Leistung der künstlichen Intelligenz beiträgt.

Mit jeder Iteration des Baysian Algorithmus trainiert das Reinforcement Learning Modell für eine Epoch und 4000 Episodes. Das Training läuft dabei in jeder Iteration mit den selben 4000 Bildern als Vorlagen in der selben Reihenfolge ab. Das schliesst einen willkürlichen Einfluss der Trainingsdaten während der Optimierung aus. Der Wert, der durch den Baysian Algorithmus maximiert werden soll, wird am Ende jedes Trainings berechnet. Dieser Wert wird in der Testumgebung (siehe Auswertung) mit der gerade trainierten künstlichen Intelligenz berechnet. Das Kriterium, wonach die Leistung in der Testumgebung berechnet wird, ist frei wählbar.

1.2 Evaluierung der Leistung

In diesem Unterkapitel sind die Kriterien definiert, die die Leistung der künstlichen Intelligenz evaluieren. Mit anderen Worten beschreiben die Kriterien, wie gut die künstliche Intelligenz nachzeichnet. Für eine präzise Evaluierung sind alle Kriterien durch einen Zahlenwert repräsentierbar. Dieser Zahlenwert geht direkt aus Berechnungen im Computerprogramm hervor. Die Kriterien und ihre jeweiligen Berechnungen werden nachfolgend beschrieben.

1.2.1 Erkennbarkeit

Das Kriterium der Erkennbarkeit beschreibt, ob in der Vorlage das gleiche Motiv wie in der Zeichnung der künstlichen Intelligenz erkannt wird. Wenn Beispielsweise in beiden Fällen eine Fünf erkannt wird, hat das Kriterium den Wert 1. Wird in der Vorlage eine Fünf erkannt, aber in der Zeichnung eine Vier, hat das Kriterium den Wert 0

Welches Motiv in der Zeichnung erkannt wird, ist durch eine zweite künstliche Intelligenz bestimmt. Diese künstliche Intelligenz beurteilt ein Motiv nur als erkannt, wenn das zugehörige Neuron im Output des neuronalen Netzen einen Wert von über 0.9 hat. Das entspricht einer hohen Wahrscheinlichkeit zur korrekten Beurteilung.

Für die verschiedenene Arten von Strichbildern, die die künsltiche Intelligenz zeichnen soll, existieren vortrainierte Modelle von neuronalen Netzen. Die vortrainierten Modelle, die in dieser Arbeit verwendet wurden sind in der Tabelle ... ersichtlich. Diese Modelle sind mit den selben Daten trainiert, die für die künstlichen Intelligenz dieser Arbeit als Vorlage zum Abzeichnen dienen.

Tabelle: Art — Entwickler — Trainiert mit — Genauigkeit

Zahlen Buchstaben Strichbilder von Objekten

Dieses Kriterium ist in der Fragestellung dieser Untersuchung angedeutet. Die Frage ist bestätigt, wenn die künstliche Intelligenz dieses Kriterium konsequet erfüllt (und auf physische Weise zeichnet). Es gibt aber noch weitere Kriterien, die andere Facetten der Leistung der künstlichen Intelligenz betreffen.

1.2.2 Prozentuale Übereinstimmung

Dieses Kriterium ist durch die die prozentuale Übereinstimmung der weissen (gezeichneten) Pixel zwischen der Vorlage und der Zeichnung der künstlichen Intelligenz definiert. Der Wert *K* dieses Kriteriums zu einem bestimmten

Schritt *t* berechnet sich aus folgender Formel:

$$K(t) = \frac{G(t)}{G_{max}} \tag{1.1}$$

 G_{max} entspricht der Anzahl aller weissen Pixeln in der Vorlage. G(t) entspricht der Anzahl der weissen Pixel, die zwischen der Vorlage und der Zeichenfläche übereinstimmen. Wenn der gleiche Pixel (am gleichen Ort) in der Vorlage und in der Zeichenfläche weiss ist, erhöht sich diese Anzahl um Eins. Wenn in der Zeichenfläche ein weisser Pixel gezeichnet ist, der in der Vorlage schwarz ist, sinkt die Anzahl um Eins. G(t) und somit auch K(t) können dadurch auch negative Werte annehmen. Der maximale Wert von K(t) ist 1, was einer Genauigkeit von 100% entspricht.

1.2.3 Geschwindigkeit

Dieses Kriterium beschreibt, wie schnell die Zeichnung der künstlichen Intelligenz fertig ist. Der Wert dieses Kriteriums entspricht der Anzahl Steps, die die künstliche Intelligenz macht, bis die Zeichnung fertig ist. Eine kleinere Anzahl Steps entspricht einer schnelleren Fertigstellung der Zeichnung und somit einer besseren Leistung nach diesem Kriterium

Eine Zeichnung gilt als fertig, wenn die prozentuale Übereinstimmung (siehe proz Übereinstimmung) mindestens 70% beträgt und die Zahl nach der Definition (siehe erkennbarkeit) erkannt wird. Wenn die Zeichnung bis zum Ende die Bedingungen einer fertigen Zeichnung nicht erfüllt, hat dieses Kriterium den Wert 64. Das entspricht der maximalen Anzahl Steps, die die künstliche Intelligenz für eine Zeichnung begeht.

1.3 Variationen

Dieses Kapitel beschreibt Variationen vom Grundprogramm (siehe Grundprogramm). Bei einigen dieser Variationen handelt es sich um konkrete Implementierungen der definierten Kriterien in die Reward Function. Die Variationen überschneiden sich teilweise in den Kriterien, die sie Implementieren. Der Unterschied der Variationen liegt im Fokus auf die verschiedenen Kriterien. Einige Variationen sind auch untereinander kombinierbar. Variationen können auch strukturelle Änderungen an der künsltichen Intelligenz, abgesehen von der Reward Function haben. Das Ziel dieser strukturellen Änderungen ist eine grundsätzliche Verbesserung, oder zumindest eine Veränderung der Leistung der künstlichen Intelligenz.

1.3.1 Basis Reward Function

Die Basis Reward Function ist die einfachste Erweiterung des Grundprogrammes zu einer funktionierenden künstlichen Intelligenz. Diese Reward Function implementiert das Kriterium der prozentualen Übereinstimmung (ref proz Übereinstimmung). Der Reward für eine Aktion berechnet sich aus der Differenz zwischen der prozentualen Übereinstimmung vor dem Ausführen der Aktion und der prozentualen Übereinstimmung nach dem Ausführen der Aktion. Somit wird der Reward R zum Schritt t durch folgende Formel berechnet. (Für K(t): siehe eval)

$$R(t) = K(t) - K(t-1)$$

Der Reward eines Schrittes entspricht dadurch nicht der gesamten prozentualen Übereinstimmung, sondern lediglich der Veränderung dieser, die durch den Schritt auslöst. Der addierte Reward aller Schritte enstspricht dem absoluten Wert der prozentualen Übereinstimmung.

1.3.2 Training auf Geschwindigkeit

Der numerische Wert für die Zeit bis zur Fertigstellung der Zeichnung (die Geschwindigkeit) kann in die Reward-Function integriert werden. Dadurch trainiert die künstliche Intelligenz auf die kürzeste Zeit bis zur Fertigstellung. Die Variation verwendet die grundsätzlich die Basis Reward Function. Die Anpassung davon sieht folgendermassen aus: Am Ende jeder Zeichnung wird der Reward jedes Schrittes mit einem Faktor F multipliziert. Dieser Faktor berechnet sich aus folgender Formel:

$$F = 2 - \frac{S}{S_{max}}$$

S_{max} entspricht der Anzahl Schritte, die der Agent pro Zeichnung (Episode) begeht (siehe Grundprogramm). S Entspricht der Anzahl Schritte zur Fertigstellung der Zeichnung. Der Faktor nimmt einen Wert zwischen 1 und 2 an. Wenn der Agent die Zeichnung bis zum Ende einer Episode nicht fertigstellen kann, ist F = 1. In diesem Fall wird der Reward also nicht angepasst. Der Agent zeichnet immer S_{max} Schritte pro Episode. Das verhindert eine ungleichmässige Verteilung der verschiedenen Episoden im replay-buffer. S wird bis an das Ende der Episode gespeichert, wenn die Anforderungen für die Fertigstellung einer Zeichnung das erste Mal erfüllt sind. Die Anpassung der Bedingung für eine fertige Zeichnung während dem Training ermöglicht eine weitere Verbesserung der Geschwindigkeit. Die minimale prozentuale Übereinstimmung einer fertigen Zeichnung ist als 80% definiert. Zu beginn des Trainings wird dieser Wert auf 30% heruntergesetzt, und über das Training hinweg linear bis auf 80% erhöht. Dadurch löst die Reward Function bereits bei einer unfertigen Zeichnung positive Rewards für die Geschwindigkeit aus, was den Fokus auf eine maximale Geschwindigkeit weiter erhöht.

1.3.3 Training auf Erkennbarkeit

Das Kriterium der Erkennbarkeit kann, anders als die anderen Kriterien, nur teilweise in die Reward Function integriert werden. Das Kriterium strebt eine Erkennbarkeit, unabhängig von der Art der Strichbilder, an (siehe eval erkennbarkeit). Die künstliche Intelligenz trainiert allerdings nur auf das Nachzeichnen von Ziffern. Aus diesem Grund trainiert diese Variation nur auf die Erkennbarkeit von Ziffern, und lässt die anderen Arten von Strichbildern ausser vor.

Die Reward Function beinhaltet die künstliche Intelligenz, die handgeschriebene Ziffern erkennt (siehe eval erkennbarkeit). Diese künstliche Intelligenz beurteilt in jedem Schritt, welche Ziffern in der Vorlage und der aktuellen Zeichnung erkannt werden. Wenn die erkannte Zahl in der Vorlage und der Zeichnung gleich ist, erhält der Agent einen Reward von 0.1. In diesem Zustand funktioniert die Reward-Funktion nicht. Das heisst, der Agent kann den akkumulierten Reward nicht vergrössern. Zwei Ansätze lösen dieses Problem. Beide Ansätze sind Teil dieser Variation

Der erste Ansatz ist es, die künstliche Intelligenz, die Ziffern erkennt, erst ab einer gewissen prozenutalen Übereinstimmung (siehe prozentuale Übereinstimmung) einzusetzen. Das heisst, dass die korrekte Erkennung erst ab einer prozentualen Übereinstimmung von 20% einen positiven Reward auslöst. Diese zusätzliche Bedingung ist notwendig, weil die Einschätzung der Ziffern durch die künstlichen Intelligenz teilweise für einen menschlichen Betrachter fragwürdig ist. Zum Beispiel schätzt die Schrifterkennungssoftware eine leere Zeichenfläche mit einer hohen Wahrscheinlichkeit als eine Eins ein. Das ist in diesem Fall ein Problem, weil dadurch der Agent einen positiven Reward (eine Belohnung) für eine leere Zeichenfläche erhält. Das stört das weitere Lernverhalten, indem es wahrscheinlicher wird, dass der Agent nicht mehr zeichnet.

Der zweite Ansatz beinhaltet ebenfalls das Kriterium der prozentualen Übereinstimmung. Dieses Kriterium ist in dieser Variation gleich wie in der Basis Reward Function implementiert. Der Unterschied ist, dass der Reward durch diese Reward Function über das Training hinweg linear kleiner wird. Das Training startet mit 100% dieses Rewards und sinkt bis zur letzten Episode des Trainings auf 10%. Gleichzeitig nimmt der Reward durch die korrekte Erkennung der Ziffer linear zu. Die Reward Function ändert sich somit über den Verlauf des Trainings hinweg. Das hat den Vorteil, dass die künstliche Intelligenz am Anfang des Trainings durch das Kriterium der prozentualen Übereinstimmung bereits für kleine Erfolge positive Rewards bekommt. Das Kriterium der Erkennbarkeit ermöglichst erst bei einer korrekten Erkennung einen Reward. Diese korrekte Erkennung ist für eine untrainierte künstliche Intelligenz schwer zu erreichen, wodurch sie nur in seltenen Fällen einen positiven Reward erreichen würde.

1.4 Physikalische Umgebung

Bei der physikalischen Umgebung für die Untersuchung handelt es sich um ein sehr simples inertial System. Also ein System in dem die Gesetze der Kinematik gelten. Das Ziel dieser Veränderung ist es die Anzahl möglicher Aktionen des Agenten zu reduzieren, wodurch es einfacher werden soll diese zu erlernen. Zusätzlich soll die simulierte Umgebung auch einer reellen Situation näher kommen und somit sich mehr an das menschliche Zeichnen annähern.

Die Umgebung nimmt Kraftvektoren entgegen und berechnet darauf hin die neue Stiftposition auf der Zeichenebene. Der Kraftvektor wird gemäss der Gesetze der Kinematik zu der schon bestehenden Geschwindigkeit hinzugefügt. Jeder Zeitschritt des Agenten repräsentiert in der Physik die vergangene Zeit t=1. ($\frac{\vec{F}}{m} \cdot t=\vec{v}$). Pro Zeitschritt wird die Geschwindigkeit auch kleiner durch eine simulierte Reibung ($m \cdot g \cdot \mu = F_R$). Für die Position wird immer die Geschwindigkeit zu der jetzigen Position addiert.

Wie aus den Formeln herauszulesen ist, besitzt der Stift und auch die Umgebung physikalische Eigenschaften (m, g, μ) , welche für ein optimales Ergebnis später optimiert werden.

Der Agent hat in der Umgebung die Möglichkeit haben seinen Stift mit Kraftvektoren zu beschleunigen. Nicht nur eine Beschleunigung ist möglich, sondern das Gleiten mit der restlichen Geschwindigkeit ist für den Agenten möglich.

Um das menschlichte Zeichnen noch näher zu bringen kann sich der Agent zusätzlich entscheiden, wie stark der Stift auf die Zeichenfläche drückt. Das bewirkt, dass um den Stift herum Pixel zusätzlich bemalt werden. Zu der Stärker kommt auch dazu, dass der Agent sich entscheiden kann, gar nicht auf das Papier zu drücken, sondern sich ganz vom Papier zu heben und nicht zu zeichnen.

In der Realität müsste der Druck auch mit einer Beschleunigung gelöst werden, was zur Vereinfachung weggelassen wird.

Training auf physikalische Umstände

Da die Aktiondes Agenten nur ein einfacher Integer ist, hat jeder Kraftvektor einen eigenen Index bekommen. Es gibt insgesamt 20+1(gar nicht bewegen) Richtungen in die der Agent sich bewegen kann. Der Stift wird somit immer in eine dieser Richtungen, um den Betrag 1 beschleunigt. Mit den Optionen des Drucks kommt die Formel für die Anzahl Aktionsmöglichkeiten heraus: $21\cdot(1)+1$ So sind die Möglichkeiten der

nicht zeichnen maximale Stärke des Zeichnens Aktionen des Agenten viel stärker begrenzt als in der ursprünglichen Variante. Es stellte sich zu beginn des Training heraus, dass der Agent das Konzept der Geschwindigkeit noch nicht verstanden hat. Um dieses Problem zu lösen wurde die Geschwindigkeit als Kontext zur Observation hinzugefügt und somit als Eingabe des Netzes verwendet. Dies brachte bessere Ergebnisse, allerdings gelang es noch bessere Ergebnisse zu erziehlen, in dem man die Geschwindigkeit nicht roh als Zahlen mitgibt, sondern den lokalen Patch in die Richtung der Geschwindigkeit, also der nächsten Position des Agenten verschiebt.

Ein weiteres Problem während dem Training war, dass der Agent viel zu hohe Geschwindigkeiten angenommen hat und somit oft aus der Zeichenebene verschwinden wollte. Dieses Problem wurde durch die Reward Function gelöst, sodass er bei solchem Verhalten bestraft wird.

Parameteroptimizerung

Nach einigem Trainieren zeigt sich, dass der Agent am meisten Erfolg mit einer maximalen Zeichenstärke von 1 hat. Zur Optimierung der physikalischen Parameter wird gleich, wie bei der Hyperparameteroptimierung (siehe Hyperparameteroptimierung) der Baysian Algorithmus verwendet um das bestmöglichste Ergebnis zu erzielen.

[1] Tao Zhou u. a. "Learning to Sketch with Deep Q Networks and Demonstrated Strokes". In: arXiv:1810.05977 [cs] (14. Okt. 2018). arXiv: 1810.05977. URL: http://arxiv.org/abs/1810.05977 (besucht am 31.03.2022).

Abbildungsverzeichnis