НИУ «Высшая школа экономики»

Лабораторная работа №2

Изучение законов вращательного движения при помощи маятника Обербека

Выполнил Никитин Илья

БФЗ 191_2

Оглавление

Цель работы	2
Георетическое обоснование	
т Экспериментальная установка	
Ход эксперимента	
Вычисление угловой скорости	
Вычисление моментов инерции	
Вычисление погрешности	
Зывод	
оывод	•••/

Цель работы

Вычислить момент инерции «пустого» обода с помощью серии измерений с различными массами приводящих в движение грузов и с добавлением известных масс на обод.

Теоретическое обоснование

Для описания законов движения выведем формулу полного момента инерции маятника:

$$I = I_0 + M_{omsz} R$$
,

где $\,M_{\it omsr}\,$ - масса дополнительного отягощения, R- радиус обода.

Заметим, что при движении груза на вращающиеся части маятника действуют силы трения, которые, совершая работу, уменьшают энергию колебаний.

Рассмотрим движение системы без учёта сил трения.

Груз на нити, прикрепленной к оси колеса, совершает колебания. Для получения необходимых формул рассмотрим эти движения отдельно:

- 1. Движение вниз:
 - а) Mg-T=Ma (из II закона Ньютона),

где М- масса груза,

g - ускорение свободного падения,

T - сила натяжения нити, T = M(g - a)

б) Рассмотрим моменты сил, действующие в системе, относительно центра

колеса:
$$TR = I \frac{d\omega}{dt}$$
 ,

где *R*- радиус оси колеса,

 $\frac{d\,\omega}{dt}\,$ - угловая ускорение вращения колеса в некоторый момент времени,

$$M(g-a)R=I\frac{d\omega}{dt}$$

заметим, что $a=\frac{d\,\omega}{dt}\,R$. Отсюда $\frac{d\,\omega}{dt}=\frac{MR}{MR^2+I}\,g$.

2. Движение вверх:

a)
$$Ma=Mg-T$$

 $T=M(g-a)$

$$σ$$
) $TR = -I \frac{dω}{dt}$

$$M(g-a)R = -I\frac{d\omega}{dt}$$

$$\frac{d\omega}{dt} = \frac{MR}{MR^2 - I}g$$

В итоге получаем систему двух уравнений для спуска и подъема. Экспериментально вычислив угловое ускорение, по выведенным формулам найдём искомое значение момента инерции обода.

Экспериментальная установка

В ходе лабораторной работы использовалось следующее оборудование:

• Маятник Обербека с намотанной изолентой (велосипедное колесо)

Радиус оси: r = 15 мм

Радиус обода: R = 290 мм

• Дополнительные отягощения (грузы и гайки)

Малый груз: 10г

Средний груз: 14,75г

Большой груз: 105,5г

Шайба: 11,2г

Крючок: 7,5г

• Оборудование для считывания данных с датчиков и сами датчики

• Линейка (погрешность: 0,1 мм)

Весы (погрешность: 0,01 г)

• Штатив с креплением

Ход эксперимента

Устанавливаем рядом с колесом штатив, к которому прикреплен оптодатчик. Датчик располагается сбоку от колеса, чтобы он считывал моменты времени между пробегающими мимо белыми и черными полосками. Подключаем к компьютеру, чтобы с помощью программы, написанной на LabView, обработать данные и получить значения угловой скорости.

Всего было проведено 9 экспериментов в разных конфигурациях

Вычисление угловой скорости

График зависимости угловой скорости от времени:

Рассмотрим части этого графика в линейном приближении:

Внесем получившиеся угловые ускорения в таблицу:

Опыт 1			Опыт 2				Опыт 3		
Угловое ускорение, рад\с^2			Угловое ускорение, рад\c^2			Угловое ускорение, рад\с^2			
1_1		0,8575004503	1 1		.9900128786	1_	1	1,307652185	
1_2		0,8116426824	1_2	0	,9404703755	1_	2	1,254025709	
1_3		0,815740963	1_3		,9431899413	1_	3	1,19567568	
1_4		0,8467851881	1_4		1,014789528	1_	4	1,228110671	
	1	0,832917321	1		,9721156809		1	1,246366061	
2_1		-1,128127466	2_1	-	1,049507325	2_	1	-1,275636127	
2_2		-1,074271483	2_2			2_2		-1,398700993	
2_3		-1,073751344	2_3	-	-1,185966765		3	-1,442629576	
2_4		-1,100661158	2_4		1,213677433	2	4	-1,319849245	
	2	-1,094202863	2	-	1,171272061		2	-1,359203985	
Опыт 4				Опыт 5			Опыт 6		
Угловое ускорение, рад\с^2			Углог	Угловое ускорение, рад\с^2			Угловое ускор	ение, рад\с^2	
1_1		0,8860924862	1_1		0,59129356	07	1_1	0,845786990	
1_2		0,7929662577	1_2		0,6383883017		1_2	0,752417911	
1_3		0,7553546622	1_3		0,5707639255		1_3	0,759817758	
1_4		0,7393433402	1_4		0,58076100	11	1_4	0,744416812	
	1	0,7934391866		1	0,59530169	73		1 0,775609868	
2_1		-1,054948713	2_1		-0,68885861	18	2_1	-0,97719101	
2_2		-1,074271483	2_2		-0,69383116	81	2_2	-0,919394110	
2_3		-1,012632385	2_3		-0,64683254	33	2_3	-0,853656481	
2_4		-1,095304984	2_4		-0,73077041		2_4	-0,866681404	
	2	-1,059289391		2	-0,6900731	85		2 -0,904230753	
Опыт 7			Опыт 8				Опыт 9		
Угловое ускорение, рад\с^2			Угловое ускорение, рад\с^2			Угловое ускорение, рад\с^2			
1_1		0,2238876997	1_1		0,3399226	34	1_1	0,3689804903	
1_2		0,2606033554	1_2		0,35731502		1_2	0,4205907022	
1_3		0,2282765808	1_3		0,37027794	24	1_3	0,396016205	
1_4		0,200718274	1_4		0,37471226	16	1_4	0,426792936	
	1	0,2283714775		1	0,3605569	65		1 0,4030950834	
2_1		-0,2914350962	2_1		-0,38614367	98	2_1	-0,5500078569	
2_2		-0,3105790376	2_2		-0,43677291	46	2_2	-0,540161246	
2_3		-0,3464418647	2_3		-0,43220811	69	2_3	-0,5036967372	
2_4		-0,3084147446	2_4		-0,41595427	73	2_4	-0,4951964335	
	2	-0,3142176858		2	-0,41776974	71		2 -0,5222655684	

Вычисление моментов инерции

С помощью полученных данных вычислим момент инерции пустого обода по результатам разных опытов, построим график разброса значений:

Из диаграммы видно, что разброс значений довольно большой. Скорее всего это связано с неточностью работы датчика на высоких скоростях (что наблюдается в опытах с большими грузами).

Вычисление погрешности

$$\sigma_{I} = \sqrt{\left(\partial \frac{I}{\partial M} \sigma_{M}\right)^{2} + \left(\partial \frac{I}{\partial R} \sigma_{R}\right)^{2} + \left(\partial \frac{I}{\partial \epsilon} \sigma_{\epsilon}\right)^{2}}$$

где $\sigma_{\scriptscriptstyle M}$ =0,01 ε - погрешность измерения весов,

 $\sigma_{\scriptscriptstyle R}$ =0,25 $\it cm$ - погрешность измерения линейки,

 σ_{ϵ} — погрешность измерения углового ускорения (в зависимости от эксперимента).

Итого $\sigma_I = 1.7913 \, \text{г} \cdot \text{м}^2$

Вывод

- 1. Итоговое значение момента инерции $I = (58,2960 \pm 1.7913)$ г*м2
- 2. Мы подтвердили теоретическое утверждение о том, что груз будет подниматься вверх быстрее, чем спускаться вниз.
- 3. Разброс полученных значений довольно большой. Скорее всего это связано с неточностью работы датчика на высоких скоростях (что наблюдается в опытах с большими грузами).