1 Question 1: Graph with Two Connected Components

1.1 1. Number of Edges in Graph G

The graph G consists of two connected components:

• First Component: A complete graph K_{100} on 100 vertices. The number of edges in K_{100} is given by:

Number of edges in
$$K_{100} = \binom{100}{2} = \frac{100 \cdot (100 - 1)}{2} = 4950$$

• **Second Component:** A complete bipartite graph $K_{50,50}$ with 50 vertices in each partition. The number of edges in $K_{50,50}$ is given by:

Number of edges in
$$K_{50,50} = 50 \cdot 50 = 2500$$

• **Total Edges:** The total number of edges in G is:

$$4950 + 2500 = 7450$$

1.2 2. Number of Triangles in Graph *G*

• First Component: The complete graph K_{100} contains triangles. The number of triangles in K_{100} is given by:

Number of triangles in
$$K_{100} = \binom{100}{3} = \frac{100 \cdot 99 \cdot 98}{6} = 161700$$

- Second Component: The bipartite graph $K_{50,50}$ does not contain any triangles, as triangles cannot be formed in a bipartite graph.
- Total Triangles: The total number of triangles in G is:

$$161700 + 0 = 161700$$

1.3 Final Answer

- Total number of edges in *G*: **7450**.
- Total number of triangles in *G*: **161700**.

Question 2: Modularity Calculation

The modularity Q is calculated using the formula:

$$Q = \sum_{c=1}^{n_c} \left[\frac{l_c}{m} - \left(\frac{d_c}{2m} \right)^2 \right]$$

where:

- *m*: Total number of edges in the graph.
- l_c : Number of edges within cluster c.
- d_c : Sum of degrees of the nodes in cluster c.
- n_c : Total number of clusters.

(a) Partition 1

Step 1: Total number of edges (m) From the graph in (a), the total number of edges is:

$$m = 13$$

Step 2: Cluster-specific values For the two clusters (Green and Blue):

- 1. **Green cluster**:
 - Nodes: $\{1, 2, 3, 4, 5\}$
 - $l_{\rm green}=6$ (edges within the green cluster).
 - $d_{green} = 3 + 2 + 3 + 3 + 2 = 13$ (sum of degrees of the nodes in the green cluster).
- 2. **Blue cluster**:
 - Nodes: $\{6, 7, 8, 9\}$
 - $l_{\text{blue}} = 6$ (edges within the blue cluster).
 - $d_{\text{blue}} = 4 + 3 + 3 + 3 = 13$ (sum of degrees of the nodes in the blue cluster).

Step 3: Modularity Calculation

Green cluster (C_1) :

$$\begin{split} Q_{\rm green} &= \frac{l_{\rm green}}{m} - \left(\frac{d_{\rm green}}{2m}\right)^2 = \frac{6}{13} - \left(\frac{13}{26}\right)^2 \\ Q_{\rm green} &= 0.4615 - 0.25 = 0.2115 \end{split}$$

Blue cluster (C_2):

$$\begin{aligned} Q_{\text{blue}} &= \frac{l_{\text{blue}}}{m} - \left(\frac{d_{\text{blue}}}{2m}\right)^2 = \frac{6}{13} - \left(\frac{13}{26}\right)^2 \\ Q_{\text{blue}} &= 0.4615 - 0.25 = 0.2115 \end{aligned}$$

Total Modularity:

$$Q = Q_{\text{green}} + Q_{\text{blue}} = 0.2115 + 0.2115 = 0.423$$

Final Answer:

$$Q=0.423$$

(b) Partition 2

Step 1: Cluster-specific values For the two clusters (Green and Blue):

- 1. **Green cluster**:
 - Nodes: $\{1, 2, 8, 9\}$
 - $l_{\text{green}} = 2$ (edges within the green cluster).
 - $d_{green} = 3 + 2 + 3 + 3 = 11$.
- 2. **Blue cluster**:
 - Nodes: $\{3, 4, 5, 6, 7\}$
 - $l_{\text{blue}} = 4$.
 - $d_{\text{blue}} = 3 + 3 + 2 + 4 + 3 = 15$.

Step 2: Modularity Calculation The modularity formula is:

$$Q = \sum_{c=1}^{n_c} \left[\frac{l_c}{m} - \left(\frac{d_c}{2m} \right)^2 \right]$$

where $n_c=2$, m=13, and the cluster-specific values are:

$$l_{\rm green}=2, \quad d_{\rm green}=11, \quad l_{\rm blue}=4, \quad d_{\rm blue}=15$$

Green cluster (C_1) :

$$\begin{split} Q_{\text{green}} &= \frac{l_{\text{green}}}{m} - \left(\frac{d_{\text{green}}}{2m}\right)^2 = \frac{2}{13} - \left(\frac{11}{26}\right)^2 \\ Q_{\text{green}} &= 0.1538 - \left(0.4231\right)^2 = 0.1538 - 0.1790 = -0.0252 \end{split}$$

Blue cluster (C_2):

$$\begin{split} Q_{\text{blue}} &= \frac{l_{\text{blue}}}{m} - \left(\frac{d_{\text{blue}}}{2m}\right)^2 = \frac{4}{13} - \left(\frac{15}{26}\right)^2 \\ Q_{\text{blue}} &= 0.3077 - \left(0.5769\right)^2 = 0.3077 - 0.3330 = -0.0253 \end{split}$$

Total Modularity:

$$Q = Q_{\text{green}} + Q_{\text{blue}} = -0.0252 + (-0.0253) = -0.0505$$

Final Answer:

$$Q = -0.0505$$

Question 3: Shortest Path Kernel Calculation

The shortest path kernel k(G, G') for two graphs G and G' is defined as:

$$k(G,G') = \phi(G) \cdot \phi(G') = \sum_{d} \phi_{d}(G) \cdot \phi_{d}(G')$$

where $\phi_d(G)$ is the frequency of shortest paths of distance d in graph G.

- (1) Pair (C_4, C_4)
- For C_4 (a cycle graph with 4 nodes):

$$\phi(C_4) = [4, 4, 0, \dots]$$

- 4 shortest paths of distance 1. - 4 shortest paths of distance 2.

$$k(C_4, C_4) = 4 \cdot 4 + 4 \cdot 4 = 16 + 16 = 32$$

- (2) Pair (C_4, P_4)
- For P_4 (a path graph with 4 nodes):

$$\phi(P_4) = [3, 2, 1, 0, \dots]$$

- 3 shortest paths of distance 1. - 2 shortest paths of distance 2. - 1 shortest path of distance 3.

$$k(C_4, P_4) = 4 \cdot 3 + 4 \cdot 2 + 0 \cdot 1 = 12 + 8 + 0 = 20$$

(3) Pair (P_4, P_4)

$$k(P_4, P_4) = 3 \cdot 3 + 2 \cdot 2 + 1 \cdot 1 = 9 + 4 + 1 = 14$$

Final Answers:

- $k(C_4, C_4) = 32$
- $k(C_4, P_4) = 20$
- $k(P_4, P_4) = 14$

Final Answer

The modularity values for the two partitions are:

1. Partition (a): Q = 0.423

2. Partition (b): Q = -0.0505

Partition (a) has a much better modularity score than Partition (b).

Question 4: Graphlet Kernel Value Equal to 0

Answer to Question 4

If k(G, G') = 0, it implies that the feature vectors f_G and $f_{G'}$ are orthogonal. In other words, the two graphs do not share any common graphlets of size 3. This occurs when every graphlet of size 3 present in G is absent in G', and vice versa.

Example

Let G and G' be two graphs defined as follows:

- G consists of a single cycle of three nodes (a triangle graph).
- G' consists of three nodes connected in a path (a line graph of three nodes).

Explanation:

- In *G*, the only graphlet of size 3 is a triangle.
- In G', the only graphlet of size 3 is a path.

Since G and G' do not share any common graphlets of size 3, their feature vectors f_G and $f_{G'}$ are orthogonal, resulting in:

$$k(G, G') = f_G^{\top} f_{G'} = 0.$$

Thus, k(G, G') = 0 holds for these two graphs.

References