Exercise Session: Game Theory II

COMP4418 Knowledge Representation and Reasoning

Patrick Lederer¹

These slides are based on lecture slides by Prof. Felix Brandt.

¹School of Computer Science and Engineering, UNSW Australia

a) Find a Nash equilibrium in the following game.

	×)	/
a	3	1	0	4
0	2	3	1	2

	X)	/
a	3	1	0	4
b	2	3	1	2

Indifference principle: The row player must randomizes such that the column player is indifferent between all actions in his support.

	X)	/
a	3	1	0	4
b	2	3	1	2

Indifference principle: The row player must randomizes such that the column player is indifferent between all actions in his support.

Since no action is dominated, it must hold that

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b).$$

	X		у	
a	3	1	0	4
b	2	3	1	2

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b)$$

	X		У	
a	3	1	0	4
b	2	3	1	2

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b)$$
$$s(a) + 3(1 - s(a)) = 4s(a) + 2(1 - s(a))$$

	X)	/
a	3	1	0	4
b	2	3	1	2

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b)$$

$$s(a) + 3(1 - s(a)) = 4s(a) + 2(1 - s(a))$$

$$3 - 2s(a) = 2 + 2s(a)$$

	X		у	
a	3	1	0	4
b	2	3	1	2

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b)$$
$$s(a) + 3(1 - s(a)) = 4s(a) + 2(1 - s(a))$$
$$3 - 2s(a) = 2 + 2s(a)$$
$$1 = 4s(a)$$

	X)	/
a	3	1	0	4
b	2	3	1	2

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b)$$

$$s(a) + 3(1 - s(a)) = 4s(a) + 2(1 - s(a))$$

$$3 - 2s(a) = 2 + 2s(a)$$

$$1 = 4s(a)$$

$$s(a) = \frac{1}{4}$$

	X		у	
a	3	1	0	4
b	2	3	1	2
$\frac{1}{4}a + \frac{3}{4}b$	94	10 4	<u>3</u>	10 4

$$1 \cdot s(a) + 3 \cdot s(b) = 4 \cdot s(a) + 2 \cdot s(b)$$

$$s(a) + 3(1 - s(a)) = 4s(a) + 2(1 - s(a))$$

$$3 - 2s(a) = 2 + 2s(a)$$

$$1 = 4s(a)$$

$$s(a) = \frac{1}{4}$$

	X		у	
a	3	1	0	4
b	2	3	1	2

$$3 \cdot s(x) + 0 \cdot s(y) = 2 \cdot s(x) + 1 \cdot s(y)$$

$$3 \cdot s(x) + 0 \cdot s(y) = 2 \cdot s(x) + 1 \cdot s(y)$$

 $3s(x) = 2s(x) + 1 - s(x)$

$$3 \cdot s(x) + 0 \cdot s(y) = 2 \cdot s(x) + 1 \cdot s(y)$$

 $3s(x) = 2s(x) + 1 - s(x)$
 $2s(x) = 1$

$$3 \cdot s(x) + 0 \cdot s(y) = 2 \cdot s(x) + 1 \cdot s(y)$$

 $3s(x) = 2s(x) + 1 - s(x)$
 $2s(x) = 1$
 $s(x) = \frac{1}{2}$

	×	(У	,	$\frac{1}{2}X +$	$-\frac{1}{2}y$
a	3	1	0	4	<u>3</u>	<u>5</u> 2
b	2	3	1	2	3/2	<u>5</u>

$$3 \cdot s(x) + 0 \cdot s(y) = 2 \cdot s(x) + 1 \cdot s(y)$$
$$3s(x) = 2s(x) + 1 - s(x)$$
$$2s(x) = 1$$
$$s(x) = \frac{1}{2}$$

	X		Ŋ	у		$\frac{1}{2}x + \frac{1}{2}y$	
a	3	1	0	4	<u>3</u>	<u>5</u> 2	
b	2	3	1	2	3 2	<u>5</u> 2	
$\frac{1}{4}a + \frac{3}{4}b$	94	<u>10</u> 4	34	<u>10</u> 4	3 2	<u>5</u>	

$$3 \cdot s(x) + 0 \cdot s(y) = 2 \cdot s(x) + 1 \cdot s(y)$$
$$3s(x) = 2s(x) + 1 - s(x)$$
$$2s(x) = 1$$
$$s(x) = \frac{1}{2}$$

b) Find a Nash equilibrium in the following game.

	×		У	,	Z	
a	5	3	2	4	1	3
b	2	5	2	5	2	6
С	0	2	0	1	8	0
d	1	4	3	2	6	1

	×	(У	,	Z	
a	5	3	2	4	1	3
b	2	5	2	5	2	6
С	0	2	0	1	8	0
d	1	4	3	2	6	1

	×	()	/	Z	
a	5	3	2	4	1	3
b	2	5	2	5	2	6
С	0	2	0	1	8	0
d	1	4	3	2	6	1
$\frac{1}{2}a+\frac{1}{2}d$	<u>6</u> 2	7/2	<u>5</u> 2	<u>6</u>	7/2	7/2

	×	()	/	Z	_
a	5	3	2	4	1	3
b	2	5	2	5	2	6
С	0	2	0	1	8	0
d	1	4	3	2	6	1
$\frac{1}{2}a+\frac{1}{2}d$	<u>6</u> 2	7/2	<u>5</u> 2	<u>6</u> 2	7/2	7/2

	×	(У	,	Z	
a	5	3	2	4	1	3
С	0	2	0	1	8	0
d	1	4	3	2	6	1

	×		у	•	Z	
a	5	3	2	4	1	3
С	0	2	0	1	8	0
d	1	4	3	2	6	1

	X		у	
a	5	3	2	4
С	0	2	0	1
d	1	4	3	2

	×	()	/
a	5	3	2	4
d	1	4	3	2

	X		У	
a	5	3	2	4
d	1	4	3	2

$$3 \cdot s(a) + 4 \cdot s(d) = 4 \cdot s(a) + 2 \cdot s(d)$$

	×	(у	
a	5	3	2	4
d	1	4	3	2

$$3 \cdot s(a) + 4 \cdot s(d) = 4 \cdot s(a) + 2 \cdot s(d)$$
$$3s(a) + 4(1 - s(a)) = 4s(a) + 2(1 - s(a))$$

	×)	/
a	5	3	2	4
d	1	4	3	2

$$3 \cdot s(a) + 4 \cdot s(d) = 4 \cdot s(a) + 2 \cdot s(d)$$
$$3s(a) + 4(1 - s(a)) = 4s(a) + 2(1 - s(a))$$
$$4 - s(a) = 2 + 2s(a)$$

	X		у	
a	5	3	2	4
d	1	4	3	2
$\frac{2}{3}a + \frac{1}{3}d$	<u>11</u> 3	<u>10</u> 3	93	<u>10</u> 3

$$3 \cdot s(a) + 4 \cdot s(d) = 4 \cdot s(a) + 2 \cdot s(d)$$
$$3s(a) + 4(1 - s(a)) = 4s(a) + 2(1 - s(a))$$
$$4 - s(a) = 2 + 2s(a)$$
$$s(a) = \frac{2}{3}$$

	X		у	
а	5	3	2	4
d	1	4	3	2

	×		y	
а	5	3	2	4
d	1	4	3	2

$$5 \cdot s(x) + 2 \cdot s(y) = 1 \cdot s(x) + 3 \cdot s(y)$$

	X		у	
a	5	3	2	4
d	1	4	3	2

$$5 \cdot s(x) + 2 \cdot s(y) = 1 \cdot s(x) + 3 \cdot s(y)$$
$$5s(x) + 2(1 - s(x)) = 1s(x) + 3(1 - s(x))$$

	X		у	
а	5	3	2	4
d	1	4	3	2

$$5 \cdot s(x) + 2 \cdot s(y) = 1 \cdot s(x) + 3 \cdot s(y)$$
$$5s(x) + 2(1 - s(x)) = 1s(x) + 3(1 - s(x))$$
$$2 + 3(x) = 3 - 2s(x)$$

	×	(У	•	$\frac{1}{5}x + \frac{4}{5}y$
a	5	3	2	4	$\frac{13}{5}$ $\frac{19}{5}$
d	1	4	3	2	13 5 5

$$5 \cdot s(x) + 2 \cdot s(y) = 1 \cdot s(x) + 3 \cdot s(y)$$
$$5s(x) + 2(1 - s(x)) = 1s(x) + 3(1 - s(x))$$
$$2 + 3(x) = 3 - 2s(x)$$
$$s(x) = \frac{1}{5}$$

	>	<)	/	$\frac{1}{5}X$	$+\frac{4}{5}y$
a	5	3	2	4	13 5	<u>19</u> 5
d	1	4	3	2	13 5	<u>12</u> 5
$\frac{2}{3}a + \frac{1}{3}d$	11 3	<u>10</u> 3	93	<u>10</u> 3	13 5	50 15

$$5 \cdot s(x) + 2 \cdot s(y) = 1 \cdot s(x) + 3 \cdot s(y)$$
$$5s(x) + 2(1 - s(x)) = 1s(x) + 3(1 - s(x))$$
$$2 + 3(x) = 3 - 2s(x)$$
$$s(x) = \frac{1}{5}$$

c) Find a Nash equilibrium in the following zero-sum game.

	X	У	Z
a	2	1	0
b	1	3	5
С	-2	4	2

	X	у	Z
a	2	1	0
b	1	3	5
С	-2	4	2

	X	y	Z
a	2	1	0
b	1	3	5
С	-2	4	2

max u

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

 $s(a) \ge 0, s(b) \ge 0, s(c) \ge 0$

$$1 \cdot s(a) + 3 \cdot s(b) + 4 \cdot s(c) \ge u \tag{2}$$

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u$$

$$s(a) + s(b) + s(c) = 1$$
(3)

	X	y	Z
а	2	1	0
b	1	3	5
С	-2	4	2

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

$$1 \cdot s(a) + 3 \cdot s(b) + 4 \cdot s(c) \ge u \tag{2}$$

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u$$

$$s(a) + s(b) + s(c) = 1$$

$$s(a) \ge 0, s(b) \ge 0, s(c) \ge 0$$
(3)

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

$$1 \cdot s(a) + 3 \cdot s(b) + 4 \cdot s(c) \ge u \tag{2}$$

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u \tag{3}$$

$$s(a) + s(b) + s(c) = 1$$

$$s(a) \geq 0, s(b) \geq 0, s(c) \geq 0$$

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

$$1 \cdot s(a) + 3 \cdot s(b) + 4 \cdot s(c) \ge u \tag{2}$$

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u \tag{3}$$

$$2 \cdot s(a) + 6 \cdot s(b) + 0 \cdot s(c) \ge 2u$$

$$s(a) + s(b) + s(c) = 1$$

$$s(a) > 0, s(b) > 0, s(c) > 0$$
(4)

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

$$1 \cdot s(a) + 3 \cdot s(b) + 4 \cdot s(c) \ge u \tag{2}$$

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u \tag{3}$$

$$1 \cdot s(a) + 3 \cdot s(b) + 0 \cdot s(c) \ge u$$

$$s(a) + s(b) + s(c) = 1$$

$$s(a) > 0, s(b) > 0, s(c) > 0$$
(4)

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u \tag{3}$$

$$1 \cdot s(a) + 3 \cdot s(b) + 0 \cdot s(c) \ge u \tag{4}$$

$$s(a) + s(b) + s(c) = 1$$

$$s(a) \geq 0, s(b) \geq 0, s(c) \geq 0$$

subject to
$$2 \cdot s(a) + 1 \cdot s(b) - 2 \cdot s(c) \ge u$$
 (1)

$$0 \cdot s(a) + 5 \cdot s(b) + 2 \cdot s(c) \ge u$$

$$s(a) + s(b) + s(c) = 1$$
(3)

$$s(a) \geq 0, s(b) \geq 0, s(c) \geq 0$$

subject to
$$2 \cdot s(a) + 1 \cdot s(b) \ge u$$
 (1)

$$0 \cdot s(a) + 5 \cdot s(b) \ge u \tag{3}$$

$$s(a)+s(b)=1$$

$$s(a) \geq 0, s(b) \geq 0, s(c) = 0$$

subject to
$$2 \cdot s(a) + 1 - 1s(a) \ge u$$
 (1)

$$0 \cdot s(a) + 5 - 5s(a) \ge u$$
 (3)
 $0 < s(a) < 1$

subject to
$$1 + 1s(a) \ge u$$
 (1)

$$5 - 5s(a) \ge u \tag{3}$$

$$0 \le s(a) \le 1$$

If
$$s(a) = \frac{2}{3}$$
, then $u = \frac{5}{3}$ since

$$1 + \frac{2}{3} = \frac{5}{3} \tag{1}$$

$$1 + \frac{2}{3} = \frac{5}{3}$$
 (1)

$$5 - 5 \cdot \frac{2}{3} = \frac{5}{3}$$
 (3)

If $s(a) = \frac{2}{3}$, then $u = \frac{5}{3}$ since

$$1 + \frac{2}{3} = \frac{5}{3} \tag{1}$$

$$1 + \frac{2}{3} = \frac{5}{3}$$
 (1)
$$5 - 5 \cdot \frac{2}{3} = \frac{5}{3}$$
 (3)

The maximin strategy of the row player is $s(a) = \frac{2}{3}$, $s(b) = \frac{1}{3}$, and s(c) = 0.

	X	у	Z
а	2	1	0
b	1	3	5
С	-2	4	2
$\frac{2}{3}a+\frac{1}{3}b$	<u>5</u> 3	<u>5</u> 3	<u>5</u> 3

	X	у	Z
a	2	1	0
b	1	3	5
С	-2	4	2

	X	У	Z
а	2	1	0
b	1	3	5
С	-2	4	2

$$-2 \cdot s(x) - 1 \cdot s(y) + 0 \cdot s(z) \ge -\frac{5}{3} \tag{1}$$

$$-1 \cdot s(x) - 3 \cdot s(y) - 5 \cdot s(z) \ge -\frac{5}{3}$$

$$2 \cdot s(x) - 4 \cdot s(y) - 2 \cdot s(z) \ge -\frac{5}{3}$$

$$s(x) + s(y) + s(z) = 1$$

$$s(x) \ge 0, s(y) \ge 0, s(z) \ge 0$$
(3)

(2)

	X	У	Z
а	2	1	0
b	1	3	5
С	-2	4	2

$$2 \cdot s(x) + 1 \cdot s(y) - 0 \cdot s(z) \le \frac{5}{3} \tag{1}$$

$$1 \cdot s(x) + 3 \cdot s(y) + 5 \cdot s(z) \leq \frac{5}{3}$$

$$-2 \cdot s(x) + 4 \cdot s(y) + 2 \cdot s(z) \le \frac{5}{3}$$

$$s(x) + s(y) + s(z) = 1$$

$$s(x) \ge 0, s(y) \ge 0, s(z) \ge 0$$
(3)

(2)

$$2 \cdot s(x) + 1 \cdot s(y) - 0 \cdot s(z) \le \frac{5}{3} \tag{1}$$

$$1 \cdot s(x) + 3 \cdot s(y) + 5 \cdot s(z) \le \frac{5}{3}$$
 (2)

$$-2 \cdot s(x) + 4 \cdot s(y) + 2 \cdot s(z) \le \frac{5}{3}$$

$$s(x) + s(y) + s(z) = 1$$

$$s(x) \ge 0, s(y) \ge 0, s(z) \ge 0$$
(3)

$$2 \cdot s(x) + 1 \cdot s(y) - 0 \cdot s(z) \le \frac{5}{3} \tag{1}$$

$$1 \cdot s(x) + 3 \cdot s(y) + 5 \cdot s(z) \le \frac{5}{3}$$
 (2)

$$-2 \cdot s(x) + 4 \cdot s(y) + 2 \cdot s(z) \le \frac{5}{3}$$

$$s(x) + s(y) + s(z) = 1$$

$$s(x) \ge 0, s(y) \ge 0, s(z) \ge 0$$
(3)

It can be checked that $s(x) = \frac{2}{3}$ and $s(y) = \frac{1}{3}$ satisfies the conditions.

	×	у	z	$\frac{2}{3}x + \frac{1}{3}y$
а	2	1	0	<u>5</u> 3
b	1	3	5	<u>5</u> 3
С	-2	4	2	0
$\frac{2}{3}a + \frac{1}{3}b$	<u>5</u> 3	<u>5</u> 3	<u>5</u> 3	<u>5</u> 3

a) Alice (1), Bob (2), and Charlie (3) want to go on a trip together. Their possible destinations are Adelaide (A),
 Brisbane (B), Canberra (C), and Darwin (D). To decide on a final destination, they agree on an elimination process: Alice,
 Bob, and Charlie (in this order) each get to veto one of the cities and the last city will be their destination.

Draw the game tree for this scenario.

- b) Assume that
 - Alice prefers A to C to B to D,
 - Bob prefers B to D to A to C,
 - Charlie prefers A to D to B to C.

Compute a subgame-perfect Nash equilibrium.

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
и3	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
и3	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
и3	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
из	3	1	0	2

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

	Α	В	С	D
u_1	3	1	2	0
<i>u</i> ₂	1	3	0	2
и3	3	1	0	2

c) Assume the same preferences as before. Find a Nash equilibrium where the final destination is Adelaide.

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

- Alice prefers A to C to B to D,
- Bob prefers B to D to A to C,
- Charlie prefers A to D to B to C.

- a) 10000 agents wish to travel from city X to city Y as fast as possible. There are three options different routes: a highway (a), a connector street (b), and a rural street (c). The travel time t_X of each street depends on the street and the number of people using it:
 - For the highway, $t_a(z) = 50 + \frac{z}{1000}$.
 - For the connector street, $t_b(z) = 40 + \frac{z}{500}$.
 - For the rural street, $t_c(z) = \frac{z}{100}$.

A action profile is defined by a partition of the agents (N_a, N_b, N_c) indicating which route each agent takes. The utility of every agent is the negative of his travel time, i.e., for each agent $i \in N_x$, we have that $u_i(N_a, N_b, N_c) = -t_x(|N_x|)$. Find a pure Nash equilibrium for his game.

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

Hence, it must hold that $t_x(|N_x|+1) \ge t_y(|N_y|)$ for all distinct $x, y \in \{a, b, c\}$.

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

Hence, it must hold that $t_x(|N_x|+1) \ge t_y(|N_y|)$ for all distinct $x,y \in \{a,b,c\}$.

We will find a action profile (N_a, N_b, N_c) such that

$$t_a(n_a) = t_c(n_c)$$

$$t_b(n_b) = t_c(n_c)$$

$$n_a + n_b + n_c = 10000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

Hence, it must hold that $t_x(|N_x|+1) \ge t_y(|N_y|)$ for all distinct $x,y \in \{a,b,c\}$.

$$50 + \frac{n_a}{1000} = \frac{n_c}{100}$$
$$40 + \frac{n_b}{500} = \frac{n_c}{100}$$
$$n_a + n_b + n_c = 10000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

Hence, it must hold that $t_X(|N_X|+1) \ge t_y(|N_Y|)$ for all distinct $x,y \in \{a,b,c\}$.

$$n_a = 10n_c - 50000$$

$$n_b = 5n_c - 20000$$

$$n_a + n_b + n_c = 10000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$n_a = 10n_c - 50000$$

$$n_b = 5n_c - 20000$$

$$n_a + n_b + n_c = 10000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$10n_c - 50000 + 5n_c - 20000 + n_c = 10000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$16n_c = 80000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$n_c = 5000$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$50 + \frac{n_a}{1000} = \frac{n_c}{100}$$
$$40 + \frac{n_b}{500} = \frac{n_c}{100}$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$50 + \frac{n_a}{1000} = \frac{5000}{100}$$
$$40 + \frac{n_b}{500} = \frac{5000}{100}$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

$$50 + \frac{n_a}{1000} = 50$$
$$40 + \frac{n_b}{500} = 50$$

An action profile (N_a, N_b, N_c) is a pure Nash equilibrium if no agent can deviate to another (pure) strategy with a higher utility.

Hence, it must hold that $t_x(|N_x|+1) \ge t_y(|N_y|)$ for all distinct $x,y \in \{a,b,c\}$.

$$n_a = 0$$

$$n_b = 5000$$

$$n_c = 5000$$

The travel time of each agent is 50 in this Nash equilibrium.

b) Congestion games generalize the idea of our previous game: there are r different resources $R = \{x_1, \ldots, x_r\}$, and each player $i \in N$ can choose which of these resources to use (i.e., $A_i \subseteq 2^R \setminus \{\emptyset\}$). Moreover, let $c: R \times \mathbb{N} \to \mathbb{R}$ denote the cost of resource x depending on the number of agents that use x. The corresponding congestion game is the normal-form game $(N, (A_i)_{i \in N}, (u_i)_{i \in N})$ where

$$u_i(a) = -\sum_{x \in a_i} c(x, |\{j \in \mathbb{N} : r \in a_j\}|)$$

for all agents $i \in N$ and action profiles $a \in A$.

Show that every congestion game has a pure Nash equilibrium.

• Fix some set of resources $R = \{x_1, \dots, x_r\}$ and a cost function c, and let $(N, (A_i)_{i \in N}, (u_i)_{i \in N})$ denote the corresponding congestion game.

- Fix some set of resources $R = \{x_1, \dots, x_r\}$ and a cost function c, and let $(N, (A_i)_{i \in N}, (u_i)_{i \in N})$ denote the corresponding congestion game.
- We define the potential function $\phi(a) = -\sum_{x \in R} \sum_{\ell=1}^{|\{i \in N \colon x \in a_i\}|} c(x,\ell)$ for all action profiles $a \in A$.

- Fix some set of resources $R = \{x_1, \dots, x_r\}$ and a cost function c, and let $(N, (A_i)_{i \in N}, (u_i)_{i \in N})$ denote the corresponding congestion game.
- We define the potential function $\phi(a) = -\sum_{x \in R} \sum_{\ell=1}^{|\{i \in N \colon x \in a_i\}|} c(x,\ell)$ for all action profiles $a \in A$.
- Assume player i can deviate in an action profile a by changing to the action b_i.

Define
$$a'=(b_i,a_{-i})$$
 and Δ_i by
$$\Delta_i=u_i(a')-u_i(a)$$

Define
$$a'=(b_i,a_{-i})$$
 and Δ_i by
$$\Delta_i=u_i(a')-u_i(a)$$

$$=-\sum_{x\in b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

Define
$$a'=(b_i,a_{-i})$$
 and Δ_i by
$$\Delta_i=u_i(a')-u_i(a)$$

$$=-\sum_{x\in b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$=-\sum_{x\in b_i\setminus a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i\setminus b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

Define
$$a'=(b_i,a_{-i})$$
 and Δ_i by
$$\Delta_i=u_i(a')-u_i(a)$$

$$=-\sum_{x\in b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$=-\sum_{x\in b_i\setminus a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i\setminus b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$=-\sum_{x\in b_i\setminus a_i}c(x,|\{j\in N:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i\setminus b_i}c(x,|\{j\in N:x\in a_j\}|+1)$$

Define
$$a'=(b_i,a_{-i})$$
 and Δ_i by
$$\Delta_i=u_i(a')-u_i(a)$$

$$=-\sum_{x\in b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$=-\sum_{x\in b_i\setminus a_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i\setminus b_i}c(x,|\{j\in N\setminus\{i\}:x\in a_j\}|+1)$$

$$=-\sum_{x\in b_i\setminus a_i}c(x,|\{j\in N:x\in a_j\}|+1)$$

$$+\sum_{x\in a_i\setminus b_i}c(x,|\{j\in N:x\in a_j\}|)$$

$$>0$$

$$\phi(a') - \phi(a)$$

$$\phi(a') - \phi(a) = -\sum_{x \in R} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{x \in R} \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell)$$

$$\begin{split} \phi(a') - \phi(a) &= -\sum_{x \in R} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{x \in R} \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \\ &= -\sum_{x \in b_i \setminus a_i} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \\ &- \sum_{x \in a_j \setminus b_i} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \end{split}$$

$$\begin{split} \phi(a') - \phi(a) &= -\sum_{x \in R} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{x \in R} \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \\ &= -\sum_{x \in b_i \setminus a_i} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \\ &- \sum_{x \in a_i \setminus b_i} \sum_{\ell=1}^{|\{j \in N: \ x \in a'_j\}|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \\ &= - \sum_{x \in b_i \setminus a_i} \sum_{\ell=1}^{|\{j \in N: \ x \in a_j\} + 1|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \\ &- \sum_{x \in a_i \setminus b_i} \sum_{\ell=1}^{|\{j \in N: \ x \in a_j\}| - 1} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: \ x \in a_j\}|} c(x,\ell) \end{split}$$

$$\phi(a') - \phi(a) = -\sum_{x \in b_i \setminus a_i} \sum_{\ell=1}^{|\{j \in N: x \in a_j\} + 1|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: x \in a_j\}|} c(x,\ell)$$
$$-\sum_{x \in a_i \setminus b_i} \sum_{\ell=1}^{|\{j \in N: x \in a_j\} - 1|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in N: x \in a_j\} - 1|} c(x,\ell)$$

$$\begin{split} \phi(a') - \phi(a) &= -\sum_{x \in b_i \setminus a_i} \sum_{\ell=1}^{|\{j \in \mathbb{N}: \ x \in a_j\} + 1|} c(x, \ell) + \sum_{\ell=1}^{|\{i \in \mathbb{N}: \ x \in a_j\}|} c(x, \ell) \\ &- \sum_{x \in a_i \setminus b_i} \sum_{\ell=1}^{|\{j \in \mathbb{N}: \ x \in a_j\}| - 1} c(x, \ell) + \sum_{\ell=1}^{|\{i \in \mathbb{N}: \ x \in a_j\}|} c(x, \ell) \\ &= - \sum_{x \in b_i \setminus a_i} c(x, |\{j \in \mathbb{N}: \ x \in a_j\}| + 1) \\ &+ \sum_{x \in a_i \setminus b_i} c(x, |\{i \in \mathbb{N}: \ x \in a_j\}|) \end{split}$$

$$\begin{split} \phi(a') - \phi(a) &= -\sum_{x \in b_i \setminus a_i} \sum_{\ell=1}^{|\{j \in \mathbb{N}: \ x \in a_j\} + 1|} c(x,\ell) + \sum_{\ell=1}^{|\{i \in \mathbb{N}: \ x \in a_j\}|} c(x,\ell) \\ &- \sum_{x \in a_i \setminus b_i} \sum_{\ell=1}^{|\{j \in \mathbb{N}: \ x \in a_j\}| - 1} c(x,\ell) + \sum_{\ell=1}^{|\{i \in \mathbb{N}: \ x \in a_j\}|} c(x,\ell) \\ &= - \sum_{x \in b_i \setminus a_i} c(x, |\{j \in \mathbb{N}: \ x \in a_j\}| + 1) \\ &+ \sum_{x \in a_i \setminus b_i} c(x, |\{i \in \mathbb{N}: \ x \in a_j\}|) \\ &= \Delta_i > 0 \end{split}$$

 This means that every deviation increases the potential function!

- This means that every deviation increases the potential function!
- Since the potential function only can have a finite number of values, we eventually must reach a maximum!

- This means that every deviation increases the potential function!
- Since the potential function only can have a finite number of values, we eventually must reach a maximum!
- This maximum corresponds to a pure Nash equilibrium!

Prove the Maximin theorem. Use the fact that Nash equilibria are guaranteed exist.

The Maximin theorem states the following: It holds for every zero-sum game $(\{1,2\},(A_1,A_2),(u_1,u_2))$ that

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s, t) = -\max_{t \in S_2} \min_{s \in S_1} u_2(s, t).$$

• Let
$$v_1(s) = \min_{t \in S_2} u_1(s, t)$$
 and $v_2(t) = \max_{s \in S_1} u_1(s, t)$.

- Let $v_1(s) = \min_{t \in S_2} u_1(s, t)$ and $v_2(t) = \max_{s \in S_1} u_1(s, t)$.
- For every $s \in S_1$, $t \in S_2$, it holds that $v_1(s) \le u_1(s,t) \le v_2(t)$.

- Let $v_1(s) = \min_{t \in S_2} u_1(s, t)$ and $v_2(t) = \max_{s \in S_1} u_1(s, t)$.
- For every $s \in S_1, t \in S_2$, it holds that $v_1(s) \le u_1(s,t) \le v_2(t)$.
- Since this holds for every $s \in S_1$, we have for every $t \in S_2$ that $\max_{s \in S_1} v_1(s) \le v_2(t)$.

- Let $v_1(s) = \min_{t \in S_2} u_1(s, t)$ and $v_2(t) = \max_{s \in S_1} u_1(s, t)$.
- For every $s \in S_1, t \in S_2$, it holds that $v_1(s) \le u_1(s,t) \le v_2(t)$.
- Since this holds for every $s \in S_1$, we have for every $t \in S_2$ that $\max_{s \in S_1} v_1(s) \le v_2(t)$.
- Since this holds for every $t \in S_2$, we have that $\max_{s \in S_1} v_1(s) \leq \min_{t \in S_2} v_2(t)$.

- Let $v_1(s) = \min_{t \in S_2} u_1(s, t)$ and $v_2(t) = \max_{s \in S_1} u_1(s, t)$.
- For every $s \in S_1, t \in S_2$, it holds that $v_1(s) \le u_1(s,t) \le v_2(t)$.
- Since this holds for every $s \in S_1$, we have for every $t \in S_2$ that $\max_{s \in S_1} v_1(s) \le v_2(t)$.
- Since this holds for every $t \in S_2$, we have that $\max_{s \in S_1} v_1(s) \le \min_{t \in S_2} v_2(t)$.
- This shows that

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s,t) \leq \min_{t \in S_2} \max_{s \in S_1} u_1(s,t) = -\max_{t \in S_2} \min_{s \in S_1} u_2(s,t).$$

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s, t)$$

$$\max_{s \in \mathcal{S}_1} \min_{t \in \mathcal{S}_2} u_1(s,t) \ge \min_{t \in \mathcal{S}_2} u_1(s^*,t)$$

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s, t) \ge \min_{t \in S_2} u_1(s^*, t)$$

$$= -\max_{t \in S_2} -u_1(s^*, t)$$

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s, t) \ge \min_{t \in S_2} u_1(s^*, t)$$

$$= -\max_{t \in S_2} -u_1(s^*, t)$$

$$= -\max_{t \in S_2} u_2(s^*, t)$$

$$\begin{aligned} \max_{s \in S_1} \min_{t \in S_2} u_1(s,t) &\geq \min_{t \in S_2} u_1(s^*,t) \\ &= -\max_{t \in S_2} -u_1(s^*,t) \\ &= -\max_{t \in S_2} u_2(s^*,t) \\ &= -u_2(s^*,t^*) \end{aligned}$$

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s, t) \ge \min_{t \in S_2} u_1(s^*, t)$$

$$= -\max_{t \in S_2} -u_1(s^*, t)$$

$$= -\max_{t \in S_2} u_2(s^*, t)$$

$$= -u_2(s^*, t^*)$$

$$= u_1(s^*, t^*)$$

$$\max_{s \in S_1} \min_{t \in S_2} u_1(s, t) \ge \min_{t \in S_2} u_1(s^*, t)$$

$$= -\max_{t \in S_2} -u_1(s^*, t)$$

$$= -\max_{t \in S_2} u_2(s^*, t)$$

$$= -u_2(s^*, t^*)$$

$$= u_1(s^*, t^*)$$

$$= \max_{s \in S_1} u_1(s, t^*)$$

$$\begin{aligned} \max_{s \in S_1} \min_{t \in S_2} u_1(s, t) &\geq \min_{t \in S_2} u_1(s^*, t) \\ &= -\max_{t \in S_2} -u_1(s^*, t) \\ &= -\max_{t \in S_2} u_2(s^*, t) \\ &= -u_2(s^*, t^*) \\ &= u_1(s^*, t^*) \\ &= \max_{s \in S_1} u_1(s, t^*) \\ &\geq \min_{t \in S_2} \max_{s \in S_1} u_1(s, t) \end{aligned}$$

$$\begin{aligned} \max_{s \in S_1} \min_{t \in S_2} u_1(s,t) &\geq \min_{t \in S_2} u_1(s^*,t) \\ &= -\max_{t \in S_2} -u_1(s^*,t) \\ &= -\max_{t \in S_2} u_2(s^*,t) \\ &= -u_2(s^*,t^*) \\ &= u_1(s^*,t^*) \\ &= \max_{s \in S_1} u_1(s,t^*) \\ &\geq \min_{t \in S_2} \max_{s \in S_1} u_1(s,t) \\ &= -\max_{t \in S_2} \min_{s \in S_1} u_2(s,t) \end{aligned}$$