2022 추계지질과학연합학술대회 특별세션 고준위방사성폐기물 처분연구 동향 창원컨벤션센터 2022.10.25.

Safety case 기반 심층처분시스템 안전성 구성

Constructing the Safety of Deep Geologic Disposal System based on the Safety Case

정찬우·박진용·안진모 김요한·김정진·박상수·방제헌 서은진·안상면·이상호

CONTENTS

Safety case 기반 심층처분시스템 안전성 구성

〈심층처분시스템 규제요소 개발〉배경 심층처분에 대한 Safety case 규제접근법

- 1. 심층처분 시스템-안전성 구성체계
- 2. 처분안전목표에 대한 부합성 평가
- 3. 심층방어 성능 평가 방안

맺음말

〈심층처분시스템 규제요소 개발〉 배경

- 〈사용후핵연료 저장·처분 안전성 확보를 위한 핵심기술개발사업〉의 일환으로 국내 심층처분시스템 개발환경에 알맞은 심층처분 규제요소 수립 → 규제기반 구축
 - ✓ 심층처분 연구개발에 기술기준/지침 제공
 - ✓ 심층처분시스템 개발 적합성 검토 적용
- 심층처분 규제체계 수립 ('21)

- 심층처분시스템 구성요건 개발 ('22~'23)
- ※ 안전성검증기술 개발: KIGAM

심층처분에 대한 Safety case 규제접근법

Safety case = 안전에 관한 논증들의 총화 · · · 종합안전성구축

- ✓ A collection of arguments and evidence in support of the safety of a facility or activity (IAEA)
- ✓ A structured set of arguments & evidence demonstrating the safety of a system (ICRP)
- ✓ 안전성평가(integral part) 결과 + 안전을 뒷받침하는 증빙(심층방어 논거)

- 미래 불확실성 속에서 처분 안전성 객관화 위해 체계적인 Safety case 개발 필수 A facility specific safety case has to be prepared early in the development of a disposal facility to provide a basis for licensing decisions and to guide activities in R&D, site selection & evaluation and design. (IAEA SSR-5, Requirement 12)
- 심층처분시설 일반기준 (원안위고시)

제7조(신뢰성 구축) 안전성평가 결과가 안전목표치에 부합함에 대한 판단은 선량 및 위험도의 확률론적 분포특성에 관한 분석, 평가 불확실성의 분석, **자연유사물 및 보조안전지표를 이용한 비교평가, 심층방어 증거의 확보 등 다중의** 논거에 의해 뒷받침되어야 한다.

제8조(**종합안전성 구축**) 심층처분시설의 안전성은 기초연구, 부지조사, 설계, 건설, 운영, 폐쇄 및 폐쇄 후 관리 등 해당 처분시스템의 전체 단계에 걸쳐 단계별 목적에 맞게 최신 정보를 바탕으로 **단계별 안전성** 평가를 통해 지속적으로 구축되어야 한다.

심층처분에 대한 Safety case 규제접근법

심층처분에 대한 Safety case 규제접근법

● 심층처분시설 개발을 위한 처분안전시스템 요건 체계

0	방	사성폐기물 처분 안전
S		처분 안전성 구축

S C 처분 안전시스템 구성

S	С	В		부지환경 안전특성	
S	С	В	1	부지환경_개발단계	
S	C	В	2	부지환경_미래상황	

S	С	N		천연방벽 안전특성	
S	С	Ν	1	천연방벽 구성	
S	С	Ν	2	지질학적 안정성	
S	С	N	3	수리지질학적 특성	
S	С	N	4	지구화학적 특성	

S	С	Е		공학적방벽 안전특성		
S	С	Ε	1	공학적방벽 구성		
S	С	Ε	2		처분구조물 성능	
S	С	Е	3	처분용기 성능		
S	С	Ε	4	완충재 특성		
S	С	Е	5		뒷채움/밀봉	

S	С	W		방	사성폐기물 안전특성
S	С	W	1		Waste form
S	С	W	2		성분 특성

처분안전시스템: Safety function을 구성하는 시스템 성분의 총체

٦	٦		Ja	Salety case -		
S	S	D		Sa	fety case 개발 체계	
S	S	М		M	anagement system	
S	S	G		Ge	eneric Safety case	
S	S	S		Site-specific Safety case		
S	S	F		Fa	cility-specific Safety case	
S	S	F	1		설계단계 Safety case	
S	S	F	2		건설 Safety case	
S	S	F	3		운영단계 Safety case	
S	S	F	4		폐쇄 Safety case	
S	S	F	5		관리단계 Safety case	

s safety case 구축

S	D	S		부지개발	
S	D	S	0	부지개발 체계	
S	D	S	1	부지기초조사	
S	О	S	2	부지상세조사	
S	D	S	3	부지특성화개발	
S	О	S	4	부지관리	

처분 안전시스템 개발

S	D	L		지하연구시설(URL) 개발
S	D	L	0	URL 개발 체계
S	D	L	1	URL 구축
S	D	L	2	URL 운용

S	D	F		처분시설 개발		
S	D	F	0		처분시설 개발체계	
S	D	F	1		처분시설 설계	
S	D	F	1	0	설계기준	
S	D	F	1	1	폐기물 인수•관리	
S	D	F	1	2	Monitoring	
S	D	F	1	3	Retrievability	
S	D	F	1	4	4 Nuclear Security	
S	D	F	2		처분시설 건설	
S	D	F	3		처분시설 운영	
S	D	F	4		처분시설 폐쇄	
S	D	F	5		폐쇄후 처분장 관리	

국내외 심층처분시스템 구성요건: 방사선안전기준 ⊕ 심층방어기준

IAEA SSR-5	● 방사선방호 ● 다중안전기능, 다중방벽 ● 방사성폐기물 격납 ● 방사성폐기물 격리 ● 수동안전특징	□처분시설 폐쇄 후 인간과 환경의 방호를 위한 안전목표 및 기준 적용 □다중 안전기능에 의해 안전성이 확보되도록 기반환경을 선택하고 공학적 방벽을 설계 □다중의 방벽들에 의해 폐기물 격납 및 격리 □처분폐기물 내 방사성핵종을 격납할 수 있도록 폐기물 형태를 포함한 공학적방벽 설계 및 기반환경 선택 □처분폐기물을 인접 생태계로부터 최소 수천년 격리하도록 부지 선정, 처분시설 설계 및 운영 □최대한 수동적 수단에 의해 안전성을 보증하도록 처분시스템 구성
미국 10 CFR 60 40 CFR 191	● 전체시스템 성능목표 ● 방사선방호 ● 공학적방벽 격납요건: 1만년 핵종유출 제한 ● 천연방벽 격리요건 ● 폐기물 포장물 설계특징	□ 폐쇄 후 환경으로 방사성 물질의 유출이 기준을 준수하도록 부지조건과 공학적방벽시스템(EBS) 구성 □ 처분 후 1만년 동안 연간유효선량을 제한(< 0.15 mSv)하도록 처분시스템 설계 □ EBS 상태가 핵분열 생성물 붕괴에 의해 지배되는 기간 동안 HLW를 격납 □ EBS로부터 방사성핵종의 유출이 장기간에 걸쳐 점진적 과정이어야 함 □ 생태계까지 지하수이동 시간이 최소 1천년이 되도록 지질계 설정 □ 포장물의 화학적・물리적・핵적 특성과 처분환경의 상호 작용이 포장의 기능과 시스템 성능을 손상하지 않도록 설계
스웨덴 SSMFS 2008:37 SSMFS 2008:21	● 전체시스템 접근법 ● 방사선방호 ● 공학적방벽 ● 천연방벽	□ 방사선영향으로부터 건강과 환경의 방호 □ BAT 최적화, 폐쇄후 1만년 이상 집단선량 고려 □ 폐쇄 후 연간위험도를 10 ⁻⁶ 이하로 제한 □ 방호능력을 최우선 고려하여 설계: 접근/침입 제한 □ 방벽에 대한 다중안전기능의 설정과 평가 □ EBS 구성: 처분용기, 처분구조물, 완충재/뒤채움재 등 □ 방벽에 대한 다중안전기능의 설정과 평가 □ 방벽에 대한 다중안전기능의 설정과 평가 □ 기질학적 조건, 깊이, 미래 자원개발 등 고려
핀란드 STUK/Y/4/2018 YVL D.5/13.02.2018	방사선방호심층방어천연방벽공학적방벽	□ 폐쇄 후 처분시스템의 예상 변화(evolution)에 따른 방사선영향이 안전기준을 만족하도록 설계 및 구현 - 대표인 선량 < 0.1 mSv/y (최소 수천년간) □ 폐쇄 후 장기안전성 확보 □ 다중안전기능에 의한 기능적 심흥방어 설계 □ 격리에 유리한 기반암 특성의 부지 선정 □ 처분 깊이, 미래 지하자원 개발 등 고려 □ 주변 기반암으로 방사성핵종의 장기간(수천년) 유출 제한에 효과적인 격납 설계 □ 사용후핵연료의 경우, 방사성핵종의 유출을 효과적으로 방지하는 포장 설계
독일 GMBI.1983, Nr.13, S.220	전체시스템 접근법방사선방호부지특성다중방벽	□ 전체 처분시스템에 대하여 부지에 고유한 안전성분석을 통한 안전성 입증 □ 방사선영향으로부터 인간과 환경의 방호 □ 방호목표 달성을 위해 부지의 중요성 강조 □ 지형적 조건, 미래 자원개발 가능성, 기반암, 수리지질 특성 등 고려 □ 여러 방벽의 조합을 통해 생태계로 방사성물질의 유입 제한 □ Waste form, 처분용기, Backfill, 처분지층, 모암 등의 안전기능 고려
한국 NSSC 일반기준	 방사선안전 심층방어 천연방벽 공학적방벽 수동안전특징 	□ 처분에 따른 방사선영향으로부터 건강 및 환경 보호 □ 대표인 총위험도를 10 ⁻⁶ /y 이내로 제한 □ 단계적 Safety case 개발, 지하연구시설을 통한 실증 □ 자연유사물, 보조안전지표 등 다중의 심층방어 논거 □ 다중방벽, 다중안전기능에 의한 처분시스템 구성 □ 안정한 지층, 단일의 기반암, 핵종이동 제한 특성 □ 미래 부지 변화, 기후변화, 처분 깊이 등 고려 □ 천연방벽으로 방사성핵종의 장기간(수천년) 유출 제한 □ 처분환경에서 장기 건전성 □ 처분용기를 필수 방벽요소로 적용 □ 수동안전기능에 의한 처분안전성 확보

● 시스템-안전성 구성&개발

심층처분시설에 관한 일반기준[고시]

● 시스템-안전성 구성 & 개발 - Safety case 접근법

처분안전성 구성	Safety case 구축	처분시스템 개발
◎ 처분안전요건○ 전체시스템 성능요건○ 심층방어 요건- 다중방벽-다중안전기능- 수동안전기능	© 처분안전요건 부합성 확보 ○ 안전목표 부합성 입증 ○ 심층방어 성능 입증	© 단계적 시스템-안전성 구성 ○ 시스템-안전성 구성방안 개발 ○ 부지 – URL 개발 ○ 처분시설 설계-건설-운영-폐쇄-
● 방벽 구성 (안전기능) 요건 ○ 부지환경 안전특성 ○ 천연방벽 안전특성 ○ 공학적방벽 안전특성 ○ 방사성폐기물 안전특성	● 안전성구성과 시스템개발의 연계성/유효성 확보 ○ 구성-안전성 통합관리체계 ● 단계적 Safety case 구축을 바탕으로 개발 ○ 지하연구시설을 통한 방벽요소 성능 실증 ○ 전체개발단계 BAT 최적화, 안전성 증진 및 확증	폐쇄후관리/최종조치 ● 개발요건 이행 ○ 시스템 특성화 ○ 안전설계 ○ 건설·운영·폐쇄 안전성 ○ 방벽성능 확인 및 보전 ◆ 시스템 성립과 안전기능 확보 양면

Safety case 문맥으로 체계화

심층처분시설에 관한 일반기준 고시

제5조 (안전목표치) 심층처분시설은 폐쇄 후 방사선영향이 안전목표치를 만족하도록 설계되어야 한다.

제11조 (처분시스템의 구성) ① 처분시스템은 다음 각 호의 다중 방벽과 이들이 제공하는 다중의 안전기능으로 구성되어야 한다.

- 1. 해당 처분환경에서 방사성핵종의 누출을 제한하는 방사성폐기물 형태 및 특성
- 2. 방사성폐기물에서 누출된 방사성핵종이 지하환경으로 유입되는 것과 지하수가 방사성폐기물과 접촉하는 것을 제한할 수 있는 공학적 방벽 등 설계 특징
- 3. 방사성핵종이 지하환경에서 이동하는 것과 생태계로 유출되는 것을 제한할 수 있는 천연방벽

제13조(공학적 방벽) 방사성핵종이 지하수 흐름에 따라 천연방벽으로 유입하는 것을 수천 년 이상 제한할 수 있을 것

● 시스템-안전성 구성 & 개발 – 규제요건 문맥

심층처분 시스템-안전성 구성 요건 <mark>(안</mark>)	부합성 기준 <mark>(안</mark>)
원자력안전법 제64조(허가기준) ①	
3. 방사성폐기물관리시설등의 건설 · 운영 과정에서 발생되는 방사성물질등으로부터 국민의 건강 및 환경상의 위해를 방지하기 위하여 대통령령으로 정하는 기준에 적합할 것 [추가]	
3-1. 처분시설의 폐쇄 후 장기안전성을 확보하기 위하여 <u>대통령령으로 정하는 기준</u> 에 적합할 것	
시행령 제174조(환경상의 위해방지) 법 제64조 제1항 제3호에 따라 국민의 건강 및 환경상의 위해를 방지하기 위한 기준은 다음 각 호와 같다.	[그 1]] 바니서바늘 드에 자하 기즈
1. 시설에서 배출되는 액체 및 기체 상태의 방사성물질의 농도가 위원회가 정하는 기준에 맞을 것	[고시] 방사선방호 등에 관한 기준
2. 그밖에 방사선 위해 방지 를 위하여 <u>위원회가 정하는 기준</u> 에 맞을 것 [신설]	[고시] 고준위방사성폐기물 심층처분시설에 관한 일반기준
지행령 제174조의1(처분안전기준) 법 제64조 제1항 제3-1호에 따라 처분시설의 폐쇄 후 장기안전성을 확보하기 위한 기준은 다음 각 호와 같다. 1. 처분시설의 폐쇄 후 방사선영향이 <u>위원회가 정하는 기준</u> 에 맞을 것 2. 처분시설로부터 방사성핵종의 유출과 생태계로의 유입을 제한하기 위한 처분시스템의 성능이 <u>위원회가 정하는 기준</u> 에 맞을 것 3. 고준위방사성폐기물 심층처분시설의 경우에는 <u>위원회가 정하는 기준</u> 에 따라 해당 처분부지의 지하연구시설을 통해 처분시스템의 성능을 실증할 것	■ 처분안전 목표치 및 부합성(평가)기준 ■ 심층방어 요건과 부합성기준 ■ 다중방벽-다중안전기능: 천연방벽, 공학 적방벽, 방폐물 안전특성 기준 ■ 처분부지 URL 개발 기준 [신설 검토] ■ 단계적 Safety case 기준 [신설 검토]

● 시스템-안전성 구성&개발 – 단계적 Safety case 발전

단계적 Safety case 기반 심층처분시스템 구성 □ 시스템 성립 : 단계적•체계적 개발 ⊕ BAT 최적화 구축 □ 안전성 구성 : 안전기준 부합성 ⊕ 심층방어 성능 확보							
1-2-3-4 7	성 가능성 검토 - ㅊ 부지 개발		1	실수 있는가? 성 제시 – 시스템 구성	방안의 실현성과 처	분안전성을 입증할	수 있는가?
	• 기초조사.평가 • 특성범위 분석 • EBS범위 검토	상세조사.평가특성범위 설정EBS대상 검토	• EBS연계 특성호 • 방벽특성 평가 • 안전기능 조사		 특성화 심화 격리성능 입증 안전기능 발굴	특성화 심화모니터링안전기능보전	특성화 심화모니터링/관리최종조치
천연방벽			URL 개발 (부		⑥-⑦ 구성 적합성 * 필요시 보역	확인 – 선행 전제들 관 구성, 최적화 후	
• generic URL 활용	• 기본개발방안	• 부지고유 개발방안	설계.건설.운용	방벽성	성능 실증		
공학적방벽 (EI	3S)			처분시설 개발	⑦-⑧ 시스템	성능 확증 : 시스턴 완성 ⁵	-안전성 구성이 타(었)는가?
• 구성 방안 • 일반특성 검토 • 대상범위 설정	• 연계비교평가 - 처분방식 - 부지조건 - 방폐물조건	• 부지고유방안 - 처분방식 - 부지조건 - 방폐물조건	• 시설고유방안 - 처분방법 - 부지특성 - 방폐물특성	•설계기준 설정 •방폐물 특성/기준 •시설 설계/배치 •운영방법/후속계획	설계성능 입증방폐물 특성화후속계획 갱신폐쇄방법 결정	•안전성 증진 •폐쇄성능 확인 •관리방법 결정	•최종안전성확인 •최종조치
①기초연구	②후보부지 선별	③부지 선정	④URL 설치	⑤설계.건설	<u>⑥</u> 운영	⑦모니터링/폐쇄	⑧폐쇄후관리

● 처분안전목표 배경 이해

심층처분시설에 관한 일반기준 고시

제5조 (안전목표치) 심층처분시설은 폐쇄 후 방사선영향이 다음 안전목표치를 만족하도록 설계되어야 한다.

1. 주요 시나리오에 따른 연간 총위험도가 대표인에 대해 10-6을 초과하지 않을 것

총위험도
$$\mathbf{R} \approx \gamma \cdot \sum P_i D_i$$

2. 단일 시나리오에 따른 예상피폭선량이 대표인에 대해 연간 10 mSv를 초과하지 않을 것

	Low- and Intermediate-level waste Near surface disposal	High level waste Deep geological disposal			
Safety objectives	Performance objectives (constraints) ■ 0.1 mSv/y from normal-natural process ■ 10 ⁻⁶ /y risk from abnormal-natural events	■ 10 ⁻⁶ /y risk (constraint) for representative person from all exposure scenarios			
objectives	Intruder protection (reference level) 1 mSv/y for inadvertent intrusion	* under 10 mSv/y (reference level) for each scenario			
	After this, no abrupt exposure shall be expected for deterministic effects.				
Compliance period	1,000 years	10,000 years			
	Maximum expected period for performance of engineered barrier system				

● 처분시스템 성능프로세스 추상화, 선량-위험도 모델링

심층처분시설에 관한 일반기준 고시

제5조 (안전목표치) 심층처분시설은 폐쇄 후 방사선영향이 다음 안전목표치를 만족하도록 설계되어야 한다.

1. 주요 시나리오에 따른 연간 총위험도가 대표인에 대해 10⁻⁶을 초과하지 않을 것

총위험도
$$\mathbf{R} \approx \gamma \cdot \sum P_i D_i$$

2. 단일 시나리오에 따른 예상피폭선량이 대표인에 대해 연간 10 mSv를 초과하지 않을 것

 $Risk \equiv (Probability of receiving dose)$

× (Probability that the dose will give rise to a deleterious health effect)

$$R \equiv P(D) \times [\gamma \cdot D] = \gamma \int_{D} P(D) D dD \approx \gamma \sum P^{k} D^{k}$$

$$R \equiv \gamma E[D] = \gamma \int P(D) D \ dD \approx \gamma \sum_{k=1}^{n} P^{k} D^{k}$$

$$R/D$$
 W/C Exposure, k Transfer, j Release, i Waste

$$R \approx \gamma \sum_{k=1}^{n} P^k D^k = \gamma \sum_{k=1}^{n} [P^k C^k] F^k \sim \gamma \sum_{i=1}^{l} p(i) \sum_{j=1}^{m} p(j|i) c_{ij} \mathbf{f}_{ij} \sim \gamma \sum_{k=1}^{n} \mathbf{E}[C_k] \mathbf{F}_k = \gamma \sum_{k=1}^{n} \mathbf{E}[D_k]$$

● 처분시스템 성능프로세스 추상화, 선량-위험도 모델링

✓ 미래 영향의 양상을 포괄하도록 대표시나리오 구성

External Factors / Potential Phenomena / Initiating Events

+		S ₁ : Norm	al_natura	il :		
은 10 ⁻¹	S ₃ :	Defect				
9 10 ⁻²			1		S ₄ : Intrus	sion
Probability of scenario 10-2 -	S₅: Unkr	nown				
iii qe 10-4	S ₂ : Aborma	al_natura	1	1		
2 10-5						
10°	101	10 ²	10 ³	104	105	—— 10 ⁶
	Time	e after re	pository	/ closure	(years)	

시나리오 범주	분류 속성	확률범위 (a-1)	
정상시나리오 <i>NS</i> (normal, natural)	- 방벽/시스템 점진적/자연적 변화 - 유출-전이 특성에 따라 세분류	$10^{-0} \sim 10^{-1}$	
비정상시나리오 <i>DS</i> (abnormal)	- Disruptive events/processes - 유출/전이 영역에서 각각 발생 가능	$10^{-2} \sim 10^{-6}$	
결함 시나리오 <i>LS</i>	- 시공결함, 조기열화 가능성 등 - 특성에 따라 정상범주로 통합	$10^{-1} \sim 10^{-3}$	
침입시나리오 <i>DS</i>	- 인위적 방벽 우회, 성능 손상 - 가능성+결말 고려, 정상범주와 구분	$10^{-2} \sim 10^{-6}$	
미지 시나리오 <i>US</i>	- 시스템 특성화 불확실성 반영 - 부합성 확보 일환	$10^{-3} \sim 10^{-4}$	

위험도평가 시나리오

- 부합성평가에 유효한 세트 구성
- 발생가능성에 중점을 두어 선별
 : < 10⁻⁶ /y 시나리오 배제
- Normal > branching 고려
- 시점별 유출-전이 기대값 산정 안배
- 시나리오 발생확률 시간분포
 - pdf(t) 미리 설정; 또는
 - 시점별 generating / sampling
 - Time stepping & interpolation

■ 기대오염준위 E[C_k](t) 분포 → 대표인 피폭양상 적용 → 기대선량 E[D_k](t) 분포

오염매체(k⇔j)를 매개로 피폭(상황 k) ~ 누출_이동(시나리오 i * j) 연계

● 선량평가 TSPA – 위험도평가 연계체계

● 성능기간 Risk profile 구성

$$R_{i}(T) = \gamma \int_{0}^{T} P_{i}(t) D_{i}(t \to T) dt$$

$$E[\mathbf{C}_{ij}^{k}(T)] = \int_{0}^{T} \mathbf{p}_{ij}^{k}(\tau) \left\{ \mathbf{F}_{i}^{k}(\tau) \mathbf{g}_{ij}^{k}(T - \tau) \right\} d\tau$$

 The concept of defense in depth for a disposal facility lies in ensuring that the system will fulfil multiple complementary safety functions (IAEA SSG-23).

심층처분시설에 관한 일반기준 고시

제 7조 (신뢰성 구축) 자연유사물 및 보조안전지표를 이용한 비교평가, 심층방어 증거의 확보 등 다중의 논거에 의해 안전목표치 부합성 판단

제11조 (처분시스템 구성) ① 다중 방벽과 다중 안전기능으로 구성

제13조 (공학적 방벽) 지하수 흐름에 따른 방사성핵종의 천연방벽 유입을 수천 년 이상 제한

Performance (**Defense in depth**) ~ Confinement (radionuclides)

= Safety function { Containment ⊕ Isolation [barrier... (process...)]}

● 심층처분시스템에 적용 가능한 지표 (예시)

지표 (Indicator)	적용 대상	Yardstick			
일반 성능지표 (performance indicators)					
핵종 이동시간	공학적방벽(예; clay backfill), 지질계	핵종 반감기			
근계 핵종 농도	공학적방벽시스템	민감도분석으로부터 유도된 하부시스템 기준 (분석간 상대 비교도 의미가 있을 수 있음)			
근계 핵종 플럭스	공학적방벽시스템	민감도분석으로부터 유도된 하부시스템 기준 (분석간 상대 비교도 의미가 있을 수 있음)			
희석 제어특성 (폐기물 용해/누출률, Canister 파손율, 공극률 등)	공학적방벽/지질계	TSPA 계산으로부터 유도된 기준			
지하수 age profile	지질계(geosphere)	평가의 Time-scale			
기타 처분시스템 물리/화학적 특성 (패키지 로딩, 완충재 조성/밀도, 단열빈도 등)	공학적방벽/지질계	규제기관/개발자가 설정한 하부시스템 기준			
안전지표 (safety indicators)	안전지표 (safety indicators)				
위험도(risk)	일반인	위험도 제약치			
선량(dose)	일반인	선량 제약치			
환경영향	인간 외 다른 종	환경보호기준			
보조 안전지표 (complementary safety indicators)					
근계 외부 핵종 농도	접근하기 쉬운 환경	해당 자연농도준위			
근계 외부 핵종 플럭스	접근하기 쉬운 환경; GBI	해당 천연플럭스			
격납/격리 기간	Canister/Container, 공학적방벽/지질계	Hazard index에 대한 Crossover time			

Multiple barriers and safety functions over time for containment and isolation of radioactive waste in HLW disposal system

안전성 구성 맥락에서 성능기간의 정의

- ~ 심층방어 성능을 요하는 기간
- ~ 폐쇄 후 처분시스템에서 환경으로 유의미한 유출이 없게 되는 시점까지

● 시스템 심층방어 지표로서 핵종 유출량 적용방안

 $r_i =$ 처분 후 EBS유출량 e , 천연방벽유출량 n , 환경유입량 b [Bq]

맺음 말

심층처분시스템 안전성 구성

- Safety case를 바탕으로 시스템-안전성 연계 구축
 - ✓ 처분 안전목표 부합성 입증
 - ✓ 심층방어 성능 입증
- 시스템 안전성 구성 요건은 통합적인 부분
 - ✓ 부지/천연방벽, 공학적방벽, 방사성폐기물 등 성분별 요건 구체화 검토
- Generic → System-specific 수립 과정에서 개발자의 능동적 노력 긴요
 - ✓ 자체 개발기준 설정, 유효성 확인
 - ✓ 규제요건에 대해 적극적 의견 제시

