HIGH FREQUENCY TRIPLE MODE PIEZOELECTRIC FILTER AND FREQUENCY ADJUSTMENT METHOD

Patent Number:

JP2002217663

Publication date:

2002-08-02

Inventor(s):

WATANABE JUN

Applicant(s):

TOYO COMMUN EQUIP CO LTD

Application Number: JP20010013392 20010122

Priority Number(s):

IPC Classification:

H03H3/04; H03H9/56

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a means for improving a frequency adjustment method for a high frequency triple mode piezoelectric filter.

SOLUTION: In the frequency adjustment method for the high frequency triple mode piezoelectric filter, a piezoelectric board having a recessed part on one main face is user. An electrode on one edge of three electrodes on the surface and the whole electrode on the rear face function as a driving electrode, and the other electrodes are short-circuited with the whole electrode. According to the resonance characteristics offered from a one terminal pair resonator, a small mass is applied to the central electrode and a large mass is applied to the edge electrode concurrently to carry our frequency adjustment.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開2002-217663

(P2002-217663A)(43)公開日 平成14年8月2日(2002.8.2)

(51) Int. C1. 7

識別記号

FΙ

テーマコード(参考)

нозн

3/04

9/56

H03H

B 5J108

3/04 9/56

 \mathbf{D}

審査請求 未請求 請求項の数2

OL

(全6頁)

(21)出願番号

(22)出願日

特願2001-13392(P2001-13392)

平成13年1月22日(2001.1.22)

(71)出願人 000003104

東洋通信機株式会社

神奈川県高座郡寒川町小谷2丁目1番1号

(72)発明者 渡辺 潤

神奈川県高座郡寒川町小谷二丁目1番1号

東洋通信機株式会社内

Fターム(参考) 5J108 AA01 AA07 BB02 CC04 CC08

HH04 KK05 NA02 NB02 NB03

(54) 【発明の名称】高周波三重モード圧電フィルタとその周波数調整法

(57)【要約】

【課題】 高周波三重モードフィルタの周波数調整法を 改善する手段を得る。

【解決手段】 一方の主面上に凹陥部を形成した圧電基 板を用いる髙周波三重モード圧電フィルタの周波数調整 法であって、表面の3つの電極の一方の端の電極と裏面 の全面電極とを駆動電極とし、他の電極を全面電極と短 絡した1端子対共振子が呈する共振特性に応じて、中央 の電極には少なく、端の電極には多くの質量を同時に付 加して周波数調整する周波数調整法である。

【特許請求の範囲】

【請求項1】 一方の主面上に凹陥部を形成した圧電基 板の平坦面側に3つの電極を近接配置すると共に、凹陥 面側に全面電極を施した高周波三重モード圧電フィルタ の周波数調整法において、前記3つの電極の一方の端の 電極と前記全面電極とを駆動電極とし、他の電極を全面 電極と短絡した1端子対共振子が呈する共振特性に応じ て前記中央の電極には少なく、端の電極には多くの質量 を同時に付加して周波数調整することを特徴とする三重 モード圧電フィルタの周波数調整法。

【請求項2】 請求項1に記載の周波数調整法を用いて 構成したことを特徴とする三重モード圧電フィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高周波三重モード圧 電フィルタとその周波数調整法関し、特に高周波三重モ ードフィルタの周波数調整方法の改良に関する。

[0002]

【従来の技術】高周波圧電デバイス、特に水晶基板を用 タと称す)は、小型、軽量、堅牢であると共に優れた周 波数温度特性を有することから、近年では携帯電話の端 末に広く使用されている。図4 (a) は従来の三重モー ドフィルタの構成を示す平面図であって、水晶基板31 の主面上に対向する3対の電極32-33、34-3 5、36÷37を近接配置すると共に、それぞれの電極 対から水晶基板31の端部に向けてリード電極を延在 し、端子T1-T1'、T2-T2'、T3-T3'と 接続して三重モードフィルタを構成する。図4(b)は フィルタとして機能させるために、各電極の接続を示す 30 図であって端子T2-T2'を短絡すると共に、T 1'、T2'、T3'接続して共通端子Tcとし、入出 力端子T1-Tc、T3-Tcに適当な終端を施すこと により、バンドパスフィルタとして作用する。また、電 極33、35、37を接続して1つの共通電極として も、三重モードフィルタとして機能することは周知のこ とである。

【0003】三重モードフィルタの周波数調整法につい ては、例えば特開平7-189884号公報に公開され ている。図4(b)において端子T3とTcとを短絡し 40 いう問題があった。即ち、凹陥部41の薄肉部(振動 て、T1-Tcの1端子対共振子とした場合の共振周波 数を低い周波数からf1、f2、f3とする。ここで、 水晶基板31の平面度及び平行度が理想的であり、電極 対32-33、34-35、36-37の質量負荷が同 一であるならば、図5の上段に示すような共振特性を呈 する。そこで、図5の右端に示すように相並んだ3電極 の両端の電極にのみに質量を付加すると、その共振特性 は下段に示すような共振特性となる。即ち、f2の周波 数変動が f 1、f 3に比べて大きく移動する。周波数 f 1と周波数 f 3の周波数移動量は大略同じで周波数差

(f3'-f1')は(f3-f1)とほぼ同じである が、周波数f2の変化量は大きくなり、周波数差(f 2'-f1')は(f2-f1)と比べて大幅に小さく なる。これは、反対称零次モードA。(共振周波数 f 2) の振動変位は電極34の中央で0となり、電極3 2、36のほぼ中央で最大の変位を呈する。周知のよう に、振動体の振動部分に質量を付加する際、振動変位が 最大である位置に付加すると周波数変化量が最大になる からである。また、逆に両端の電極の質量を電子ビーム

10 等で一様に削取ると (f3'-f1') はほぼ一定の状 態で、周波数差 (f2'-f1') は (f2-f1) と 比べて増大することになる。

【0004】次に、図6の右端に示すように相並んだ3 電極のうち、中央の電極34にのみ質量を付加すると、 周波数変化量の大きいモードは対称零次モードS。(周 波数f1)であり、次が対称1次モードS1(周波数f 3) 、周波数の変動の少ないモードは反対称零次モード Ao(f2)である。従って三重モードフィルタの中央 の電極34に質量を付加し周波数を低下させると、反対 いた多重モード圧電フィルタ(以下、多重モードフィル 20 称零次モードA。の周波数変動量が小さいため、周波数 差(f3'-f1') をほぼ一定に保持したまま周波 数差(f3'-f2')を減少させることが出来る。逆 に電極34の質量を削り取りと周波数差(f3'-f 2')を増大させることができる。

> 【0005】また、三重モードフィルタのいずれの電極 に質量を付加した場合でも程度の差はあれ全体の周波数 に影響するため、各々の周波数配列を崩さず全体の周波 数を低下する方法が必要であるが、電極33、35、3 7の全体に蒸着などの方法を用いて質量を付加すれば、 3つの周波数を並行移動させることができる。

[0006]

【発明が解決しようとする課題】しかしながら、上記し たような三重モードフィルタの周波数調整法は、従来の 平板状の水晶基板を用いた三重モードフィルタには適用 可能であったが、図7に断面図を示すような、水晶基板 40にエッチング等の手段を用いて凹陥部41を形成し た高周波圧電基板に、3つの電極42、43、44を近 接配置し、凹陥側に全面電極45を配設した髙周波三重 モードフィルタには、次に述べる理由で適用できないと 部)の板厚は髙周波を得るため十数ミクロンと極めて薄 く加工する必要があり、図8、9の上段に示すように、 平行度あるいは平面度が良好ではない場合が多い。例え ば、図8に示すように、図中の左端から右端にかけて基 板の厚みが次第に薄くなるような基板に、電極42、4 3、44と全面電極45を付着し、電極43、44、4 5を短絡して、T1-Tcからみた1端子対共振子の共 振特性を測定すると、例えば図8の下段に示すような特 性となる。つまり、各電極対42-45、43-45、 50 44-45の共振周波数が大幅に異なるために、各電極 20

間に生じる結合が極めて弱くなり、図8に示すような振 動部の形状の場合には、駆動する電極42-45により 対称零次モードS。(共振周波数 f 1) が強く励振され るが、反対称零次モードA。(共振周波数f2)、対称 1次モードS1(共振周波数 f 3)の共振レベルは極め て小さくなり、場合によっては他のモードによる共振に 隠れて検出できないこともある。

【0007】逆に、図9の上段に示すように基板の厚み が図中左端から右端にかけて次第に厚くなる場合、端子 T1-Tc側から駆動した共振特性は、同図の下段に示 10 すように各電極間の結合が弱いために対称1次モード (S₁) は強く励振されるが、他の対称零次モードS 。(共振周波数 f 1) 、反対称零次モードA。(共振周波 数 f 2) の共振レベルは極めて小さくなる。そこで、図 10の上段左のような共振特性の場合に、対称1次モー ドS1(f3)の共振レベルを大きくすべく電極44に 質量を付加すると、反対称零次モードA。(f2)が大 きく周波数移動することになり、図10の下段に示すよ うに対称零次モードS。(f1)の共振と反対称零次モ ードA。(f2)の共振周波数が接近するようになる。 また、図11の上段右に示すように、電極43、44に 質量を付加すると、下段に示すように反対称零次モード A。(f2) が対称1次モードS1(f3) と近接するよ うになり、高周波三重モードフィルタの周波数調整に従 来の三重モードフィルタの周波数調整法が適用できない という問題があった。本発明は上記問題を解決するため になされたものであって、高周波圧電基板の平面度、平 行度が悪い場合でも高周波三重モードフィルタの周波数 調整を可能とし、所定のフィルタ特性に調整できる手法 を提供することを目的とする。

[0008]

【課題を解決するための手段】上記目的を達成するため に本発明に係る三重モード圧電フィルタとその周波数調 整法の請求項1記載の発明は、一方の主面上に凹陥部を 形成した圧電基板の平坦面側に3つの電極を近接配置す ると共に、凹陥面側に全面電極を施した高周波三重モー ド圧電フィルタの周波数調整法において、前記3つの電 極の一方の端の電極と前記全面電極とを駆動電極とし、 他の電極を全面電極と短絡した1端子対共振子が呈する 共振特性に応じて、前記中央の電極には少なく、端の電 40 共振子として測定した例である。 極には多くの質量を同時に付加して周波数調整すること を特徴とする三重モード圧電フィルタの周波数調整法で ある。請求項2記載の発明は、請求項1に記載の周波数 調整法を用いて構成したことを特徴とする三重モード圧 電フィルタである。

[0009]

【発明の実施の形態】以下本発明を図面に示した実施の 形態に基づいて詳細に説明する。図1 (a) は本発明に 係る三重モードフィルタの構成を示す平面図であって、 水晶基板1の一方の主面の一部をエッチング等の手段に 50 電極膜を薄く削り取るように調整してもよい。この場合

より、振動部となる凹陥部2を形成すると共に、該凹陥 面に全面電極3を施し、端子Tcと接続する。一方、平 坦側に3つの電極4、5、6を近接して配置すると共 に、該電極4、5、6から水晶基板1の端部に向けてリ ード電極を延在し、それぞれ端子T1, T2、T3と接 続して高周波三重モードフィルタを構成する。図1

(b) は三重モードフィルタとして機能させるように各 電極を接続した場合であり、端子T1-Tc、T3-T cにそれぞれ適当な終端を施すことによりバンドパスフ ィルタとして作用する。図1 (c) は本発明になる三角 形状、矩形状に孔を開けた周波数調整用のマスク7a、 7 b を三重モードフィルタ素子に被せて周波数を行う場 合の状態を示す図で、端の電極 6 上にはマスク 7 b をと おしてほぼ全面に質量が付加されるが、中央の電極5上 はマスク7aをとおして電極5の一部にのみ質量が付加 されるようになる。

【0010】本発明の特徴は、従来のように電極6(電 極4)、あるいは電極5、6(電極4、5)のようにそ れぞれの電極にほぼ等面積に質量付加するのではなく、 電極6(電極4)のほぼ全面、電極5の一部、例えば電 極の1/4に質量付加することにより、対称零次モード (f1)、反対称零次モード(f2)、対称1次モード (f3)の共振周波数は互いに接近することなく、しか もその共振レベルが増大するようになる。従って、各モ ードの周波数とレベルを確認しながら周波数を調整する ことができるようになったことである。

【0011】図2は本発明になる三角形状の周波数調整 用マスクを用いて、三重モードフィルタの周波数調整を 行った際の周波数特性を示す図である。始めに、端子T 30 1-Tcから三重モードフィルタ素子の周波数特性を測 定したとき図2の上段に示すような場合とする。電極 5、6上に図1 (c) に示すようなマスクで覆い、質量 付加を始めると図2下段に示すように各モードのレベル が大きくなり、共振周波数の測定が容易になる。このよ うに各モードのレベルが大きくなると、各モードの共振 周波数を精度良く測定できるようになり、その後は従来 の調整法にて所望の周波数に調整すればよい。図3は1 30MHz帯の高周波三重モードフィルタを本発明にな る周波数調整用マスクを用いて周波数調整し、1端子対

【0012】以上では圧電基板に水晶を用いた三重モー ドフィルタの例を説明したが、本発明はこれのみに限る ことなく他の圧電基板、四硼酸リチウム、タンタル酸リ チウム、ランガサイト等の圧電基板を用いた三重モード フィルタに適用してもよい。また、周波数調整用マスク の形状としては必ずしも三角形状である必要はなく、中 央の電極と端の電極とに付着する質量付加を異なるよう にした形状であればよい。また、上記説明は質量を付加 して三重モードフィルタの周波数調整法を説明したが、

も中央の電極と、一方の端の電極とを同時に削り取る量 を異なるようにすればよい。

[0013]

【発明の効果】本発明は、以上説明したように構成した ので、請求項1に記載の発明は高周波三重モードフィル タの周波数調整法が、従来の試行錯誤による調整法に比 べて遙かに優れた効果を表す。請求項2に記載の発明 は、各電極に余分な質量付加を行うことがないので、ス プリアス等の少ないフィルタが得られるという効果があ る。

【図面の簡単な説明】

【図1】(a)は本発明に係る三重モードフィルタの構 成を示す平面図、(b)は各電極の接続法を示す図、

(c) は三重モードフィルタ素子に周波数調整用マスク を被せた場合の平面図である。

【図2】周波数調整前後の周波数特性を示す図である。

【図3】各電極の周波数調整が完了した後の周波数特性 を示す図である。

【図4】(a)は従来の三重モードフィルタの構成を示 す平面図、(b)はフィルタとして機能させる場合の各 20 7・・周波数調整用マスク 電極の接続状態を示す図である。

【図5】従来の三重モードフィルタの周波数調整法を示

す図である。

【図6】従来の三重モードフィルタの周波数調整法を示 す図である。

6

【図7】従来の高周波三重モードフィルタの構成を示す 断面図である。

【図8】圧電基板の振動部が一様でない場合 (図中左か ら右にかけて厚みが薄くなる)の周波数特性である。

【図9】圧電基板の振動部が一様でない場合 (図中左か ら右にかけて厚みが厚くなる) の周波数特性である。

【図10】第3電極への質量付加と周波数特性との関係 10 を示す図である。

【図11】第2、第3電極への質量付加と周波数特性と の関係を示す図である。

【符号の説明】

1・・圧電基板

2・・凹陥部

3・・全面電極

4、5、6・・電極

T1、T2、T3、Tc・・端子

8、9・・付加された質量

【図1】

【図4】

【図7】

【図8】

