SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

TEHNIKE UPRAVLJANJA U MEHATRONICI

2. laboratorijska vježba

Priprema i upute za rad na vježbi

Sadržaj

1.	Uvod	1
	1.1. Cilj vježbe	1
2.	Opis sustava	2
	2.1. Matematički model rotacijskog modula	2
3.	Simulacijski dio vježbe	3
	3.1. Karakteristike otvorenog kruga	3
	3.2. Određivanje parametara regulatora	3
	3.3. Projektiranje kompenzacijskog člana	4
	3.4. Korištenje Matlab funkcija u postupku sinteze regulatora brzine vrtnje	4
	3.5. Simulacija kruga regulacije brzine vrtnje rotacijskog modula	5
	3.6. Priprema za eksperimentalni dio vježbe	5
4.	Eksperimentalni dio	6
	4.1. Rad na viežbi i pitanja	7

1. Uvod

Metode sinteze regulatora u frekvencijskom području bazirane su na odnosu između pokazatelja vladanja sustava u vremenskom i frekvencijskom području. Polazište pri sintezi je frekvencijska karakteristika otvorenog kruga upravljanja. Dodavanjem regulatora u sustav upravljanja želi se postići frekvencijska karakteristika otvorenog kruga s određenim karakterističnim veličinama. Pri tome se mogu koristiti standardni tipovi regulatora (PID regulator i njegove inačice) ili nestandardni tipovi regulatora (kompenzacijski ili korekcijski članovi). Najčešći korekcijski članovi su: kompenzator s faznim prethođenjem, kompenzator s faznim kašnjenjem i kombinacija kompenzatora s faznim prethođenjem i faznim kašnjenjem.

1.1. Cilj vježbe

Cilj laboratorijske vježbe je upoznavanje s frekvencijskim metodama sinteze regulatora korištenjem Bodeovih dijagrama. Kroz sintezu regulatora brzine vrtnje, upoznati se s utjecajem pojedinih korekcijskih članova (proporcionalni, integralni i kompenzacijski član) na amplitudnu i faznu karakteristiku Bodeovog dijagrama otvorenog regulacijskog kruga.

Vježba se sastoji od simulacijskog dijela koji se radi samostalno te eksperimentalnog dijela koji služi za usporedbu simuliranog i stvarnog sustava. Prije dolaska na eksperimentalni dio, potrebno je proći sve zadatke iz simulacijskog dijela te imati spremne rezultate.

Autori: Šandor Ileš, Bruno Vilić Belina, Josip Kir Hromatko

2. Opis sustava

2.1. Matematički model rotacijskog modula

Projektiranje regulatora izvest će se na primjeru upravljanja brzinom vrtnje rotacijskog modula. Za potrebe ove vježbe, modul je dovoljno opisati prijenosnom funkcijom prvog reda:

$$\frac{\omega(s)}{U_a(s)} \approx \frac{K}{\tau s + 1} \tag{2.1}$$

Parametri sustava dani su u Tablici 2.1 za rotacijske module Quanser i ME13.

Tablica 2.1

	Quanser	ME13
K	1.467	1.633
au	0.155	0.166
nazivni napon	±6 V	±12 V

Za potrebe simulacije, matematički model elektromehaničkog sustava potrebno je prikazati unutar Simulink grafičkog okruženja pomoću odgovarajuće prijenosne funkcije i bloka zasićenja kojim se ograničava upravljački signal ispod nazivnog napona motora.

3. Simulacijski dio vježbe

Zadatak je projektirati regulator brzine vrtnje elektromehaničkog sustava koristeći kompenzacijski član s faznim prethođenjem/kašnjenjem tako da se ostvare sljedeći zahtjevi:

- 1. Sustav treba imati statičku pogrešku jednaku nuli.
- 2. Presječna frekvencija sustava treba iznositi 5 rad/s (približno 0.8 Hz).
- 3. Otvoreni sustav treba imati fazno osiguranje približno 85 stupnjeva.
- 4. Sustav ne smije imati nadvišenje.

3.1. Karakteristike otvorenog kruga

U svrhu postiznja statičke pogreške brzine vrtnje jednake nuli na skokovitu ulaznu funkciju, sustav mora imati astatizam prvog reda, odnosno jedan pol smješten u ishodištu (integrator). Budući da prijenosna funkcija (2.1) nema pol u ishodištu, potrebno je uvesti integracijski član u regulacijski krug. Prijenosna funkcija otvorenog regulacijskog kruga s dodanim integratorom je G(s)/s.

3.2. Određivanje parametara regulatora

Nakon dodavanja integracijskog člana i postizanja prvog uvjeta da je statička pogreška jednaka nuli, slijedi namještanje tražene presječne frekvencije otvorenog regulacijskog kruga i faznog osiguranja pri toj presječnoj frekvenciji. Proces projektiranja može se podijeliti na sljedeće korake:

- 1. Crtanje Bodeovih dijagrama otvorenog kruga s integratorom G(s)/s.
- 2. Podešavanje pojačanja K_p tako da presječna frekvencija staze $K_p \cdot G(s)/s$ iznosi 5 rad/s.
- 3. Projektiranje kompenzacijskog člana s faznim prethođenjem/kašnjenjem C(s) tako da fazno osiguranje staze $K_p \cdot C(s) \cdot G(s)/s$ iznosi 85 stupnjeva.

Za sva tri koraka sinteze regulatora potrebno je poznavati način crtanja Bodeovih dijagrama u Matlabu. Kod koraka 2. iterativnim postupkom se traži iznos pojačanja K_p , sve dok presječna frekvencija staze $K_p \cdot G(s)/s$ ne bude 5 rad/s. Kod koraka 3. potrebno je napraviti sintezu kompenzacijskog člana s faznim prethođenjem/kašnjenjem kojom se postiže traženo fazno osiguranje od 85°.

3.3. Projektiranje kompenzacijskog člana

Kompenzacijski član s faznim prethođenjem/kašnjenjem služi za korekciju Bodeove fazne karakteristike promatranog sustava. Potrebno je projektirati kompenzacijski član koji će unijeti traženi fazni pomak u faznoj karakteristici, pri čemu presječna frekvencija mora ostati nepromijenjena. To znači da pojačanje kompenzacijskog člana na presječnoj frekvenciji mora biti 0 dB, odnosno 1. Kompenzacijski član općenito ima prijenosnu funkciju:

$$C(s) = \alpha \frac{s + \frac{\omega_c}{\alpha}}{s + \alpha \omega_c},\tag{3.1}$$

gdje je ω_c presječna frekvencija, a α parametar koji se računa kao:

$$\alpha = \tan \phi + \sqrt{(\tan \phi)^2 + 1},\tag{3.2}$$

te ϕ predstavlja kut za koji je potrebno korigirati faznu karakteristiku sustava.

3.4. Korištenje Matlab funkcija u postupku sinteze regulatora brzine vrtnje

Za crtanje Bodeovih dijagrama s automatskim prikazom faznog i amplitudnog osiguranja koristi se Matlab funkcija margin.

Da bi se nacrtali Bodeovi dijagrami, potrebno je prvo definirati brojnik i nazivnik prijenosne funkcije čije Bodeove dijagrame želimo nacrtati. Npr. ako prijenosna funkcija glasi $G(s) = \frac{2s^2+s-1}{s^2-3s+5}$, brojnik i nazivnik se mogu definirati kao dva vektora, num i den, kako slijedi:

```
num = [2 1 -1];

den = [1 -3 5];
```

Prijenosnu funkciju je moguće prikazati objektom tipa tf kako slijedi:

```
G = tf(num,den);
```

Nad objektima tipa **tf** moguće je jednostavno raditi operacije množenja, oduzimanja, zbrajanja i dijeljenja te je moguće na jednostavan način nacrtati odgovarajući Bodeov dijagram za dobiveni rezultat.

Za dobivanje Bodeovog dijagrama s odgovarajućim amplitudnim i faznim osiguranjem, moguće je koristiti funkciju margin kako slijedi:

```
margin(G);
```

3.5. Simulacija kruga regulacije brzine vrtnje rotacijskog modula

Nakon određivanja parametara regulatora potrebno je simulirati krug regulacije brzine vrtnje kako bi se potvrdilo da taj krug ispunjava postavljene kriterije. Zadatak je:

- Unutar Simulink okruženja izraditi simulacijski model sustava regulacije brzine vrtnje rotacijskog elektromehaničkog modula, Slika 3.1.
- Snimiti karakteristične odzive na skokovitu pobudu te potvrditi valjanost projektiranog regulatora.

Slika 3.1: Simulacijski model sustava regulacije brzine vrtnje rotacijskog elektromehaničkog modula

3.6. Priprema za eksperimentalni dio vježbe

Prije dolaska na eksperimentalni dio vježbe, potrebno je odgovoriti na sljedeća pitanja:

_	Za koji rotacijski modul ste projektirali regulator (Quanser ili ME13)?
	Odgovor:
_	Koliko iznosi traženo pojačanje regulatora, K_p ?
	Odgovor:
_	Koliko iznosi parametar kompenzacijskog člana α ?
	Odgovor:
_	Kako se mijenja odziv sustava kad regulator nema integracijskog djelovanja?
	Odgovor:
_	Kako se mijenja odziv sustava kad je pojačanje K_p 10 puta veće od proračunatog
	Odgovor:

4. Eksperimentalni dio

Cilj ovog dijela laboratorijske vježbe je implementacija i provjera sinteze regulatora iz prethodnog dijela. Pri tome je potrebno usporediti stvarne i simulirane regulacijske karakteristike. To će se postići generiranjem zajedničke reference i korištenjem istog (projektiranog) regulatora za stvarni i simulirani sustav. Prije puštanja u pogon, potrebno je ostvariti mjerenje brzine vrtnje i slanje analognog signala koristeći Simulink Desktop Real Time programsko okruženje i dostupne mjerne članove na rotacijskom modulu.

Provjera regulacijskih karakteristika vrši se snimanjem odziva brzine vrtnje na skokovitu pobudu (step) i test ulaznu funkciju oblika prikazanog na Sl. 4.1, koja se može ostvariti npr. zbrajanjem izlaza četiri *Step* Simulink bloka.

Slika 4.1: Oblik ulazne test funkcije.

Napomena: Prije samog puštanja u pogon, preporuka je provjeriti signal povratne veze na stvarnom sustavu. Za to možete slijediti sljedeći postupak:

- 1. Spojiti konstantan napon (npr. 3 V) na ulaz u simulacijski model i na analogni izlaz.
- 2. Mjeriti brzinu vrtnje iz simulacijskog bloka te usporediti sa stvarnom brzinom vrtnje koja se dobiva s enkodera.
- 3. Tek kada obje brzine vrtnje imaju približno jednak iznos te isti predznak, spojiti regulator na oba ulaza i ispitati vladanje regulatora brzine vrtnje.

4.1. Rad na vježbi i pitanja

– Usporedite sljedeće odzive i zapišite komentare:
• Odziv simulirane i stvarne brzine vrtnje na ulaznu skokovitu pobudu (step).
Komentar:
• Odziv simulirane i stvarne brzine vrtnje na ulaznu test pobudu (Sl. 4.1).
Komentar:
– Odgovorite na sljedeća pitanja:
• Koji parametar ograničava frekvenciju test ulazne funkcije na Sl. 4.1? Do
koje granice se može povećavati ta frekvencija, a da ne dođe do narušavanja
regulacijskih karakteristika? Pokažite i obrazložite jednostavnim testom na
simulacijskom modelu.
Odgovor:
• Utječe li amplituda ulazne test funkcije na regulacijske karakteristike sustava?
Obrazložite.