

Calculating FLOPS, TFLOPS, and PFLOPS

Formula:

- FLOPS (Floating Point Operations Per Second) = Total Floating Point Operations ÷ Total Execution Time (in seconds)
- **TFLOPS** (**TeraFLOPS**) = FLOPS ÷ 1e12
- **PFLOPS (PetaFLOPS)** = FLOPS ÷ 1e15

Steps:

1. Determine the Total Floating Point Operations (FLO):

• This is the total number of floating-point calculations your model performs. It depends on the architecture and the operations used.

2. Measure the Total Execution Time:

 The total time taken to perform all the floating-point operations (in seconds).

3. Calculate FLOPS:

• Use the formula above to compute FLOPS.

4. Convert FLOPS to TFLOPS or PFLOPS:

- Divide FLOPS by 1e12 for TFLOPS.
- Divide FLOPS by 1e15 for PFLOPS.

Example Calculation:

Suppose you have:

- Total Floating Point Operations (FLO) = 9 x 10¹⁴
- Total Execution Time = 300 seconds

Compute FLOPS:

- FLOPS = FLO ÷ Time
- FLOPS = $(9 \times 10^{14}) \div 300$
- FLOPS = 3 x 1012 FLOPS

Convert to TFLOPS:

• TFLOPS = FLOPS \div 1e12

• TFLOPS = $(3 \times 10^{12}) \div 1e12$

• TFLOPS = **3 TFLOPS**

Convert to PFLOPS:

• PFLOPS = FLOPS ÷ 1e15

• PFLOPS = $(3 \times 10^{12}) \div 1e15$

• PFLOPS = **0.003 PFLOPS**

Summary:

• **FLOPS:** 3 × 10¹² FLOPS

• **TFLOPS**: 3 TFLOPS

• PFLOPS: 0.003 PFLOPS

Note on Prefixes:

• **Kilo (K)** = 1e3

• **Mega (M)** = 1e6

• **Giga (G)** = 1e9

• **Tera (T)** = 1e12

• **Peta (P)** = 1e15

Prefix	Symbol	Power of 10	Decimal Multiplier	Power of 2			
Kilo	k	10^3	1,000	2^10	1,024		
Mega	М	10^6	1,000,000	2^20	1,048,57		
Giga	G	10^9	1,000,000,000	2^30	1,073,74		
Tera	Т	10^12	1,000,000,000,000	2^40	1,099,51		
Peta	Р	10^15	1,000,000,000,000	2^50	1,125,89		
Exa	Е	10^18	1,000,000,000,000,000	2^60	1,152,92		

Prefix	Symbol	Power of 10	Decimal Multiplier	Power of 2	
Zetta	Z	10^21	1,000,000,000,000,000,000	2^70	1,180,59
Yotta	Υ	10^24	1,000,000,000,000,000,000,000	2^80	1,208,92

Key Notes

- **Power of 10**: Used in SI units (e.g., 1 km = 1,000 meters) and decimal-based storage (e.g., hard drives, where 1 GB = 10^9 bytes).
- **Power of 2**: Used in computing for binary storage/memory (e.g., 1 GiB = 2^30 bytes). Binary prefixes (kibi, mebi, etc.) were introduced by the IEC to distinguish from decimal.

Formula:

- Decimal: Value = Base \times 10^n (e.g., $1k = 1 \times 10^3 = 1,000$).
- Binary: Value = Base \times 2^n (e.g., 1Ki = 1 \times 2^10 = 1,024).
- In practice, "k", "M", etc., may be used for binary values (e.g., 1 MB = 2^20 bytes in some contexts), which can cause confusion. Always check the context (e.g., storage vs. RAM).