Лекция 1: Введение в Reinforcement Learning. Метод Cross-Entropy.

Антон Романович Плаксин

Организационные вопросы

- Пятница, 17:50, аудитория 622
- Лекции и практики
- Отчетность: домашние работы
- Слайды: https://github.com/imm-rl-lab/UrFU_course
- E-mail для связи: a.r.plaksin@gmail.com
- Вопросу по ходу можно и нужно!

Цель агента - ???

ENVIROMENT

Цель агента - максимизировать $G = \sum_{t=0}^{T} \gamma^t R_t, \quad \gamma \in [0,1].$

Пример: лабиринт

Пример: лабиринт

- Состояния: белые клетки
- \bullet Действия: \uparrow , \rightarrow , \downarrow , \leftarrow
- Награда: -1 на каждом шаге

Пример: Frozen Lake

Frozen Lake World (OpenAl GYM)

Пример: Atari Games

- Состояния: пиксели с экрана
- Действия: \rightarrow , \leftarrow , «0»
- Награда: очки в игре

Пример: Cartpole

Пример: Cartpole

- ullet Состояния: \mathbb{R}^4 или пиксели с экрана
- Действия: \rightarrow , \leftarrow , «0»
- Награда: +1 на каждом шаге

Пример

- Состояния: \mathbb{R}^{26}
- ullet Действия: \mathbb{R}^6
- Награда: +1 в каждый момент времени

Markov Decision Process

Markov Property

$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$

Markov Decision Process

Markov Property

$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2 \dots, S_t, A_t] = 1$$

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2 \dots, S_t, A_t]$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \circ S пространство состояний
- \bullet \mathcal{A} пространство действий
- \mathcal{P} функция (матрица) вероятностей переходов между состояниями

$$\mathcal{P}(s'|s, a) = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

• \mathcal{R} — функция (вектор) вознаграждений

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — коэффициент дисконтирования

Наша задача. Что мы хотим?

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

• Мы задаем π

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

- \bullet Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

- Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- ullet совершает действие $A_0=\pi(S_0)$

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

- \bullet Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- совершает действие $A_0 = \pi(S_0)$
- получает награду $R_0 = \mathcal{R}(S_0, A_0)$ и переходит в следующее состояние $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

- \bullet Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- совершает действие $A_0 = \pi(S_0)$
- получает награду $R_0 = \mathcal{R}(S_0, A_0)$ и переходит в следующее состояние $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$
- совершает действие $A_1 = \pi(S_1)$

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

- \bullet Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- совершает действие $A_0 = \pi(S_0)$
- получает награду $R_0 = \mathcal{R}(S_0, A_0)$ и переходит в следующее состояние $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$
- совершает действие $A_1 = \pi(S_1)$
- получает награду $R_1 = \mathcal{R}(S_1, A_1)$ и переходит в следующее состояние $S_2 \sim \mathcal{P}(\cdot|S_1, A_1)$

$$\pi \colon \mathcal{S} \mapsto \mathcal{A}$$

- \bullet Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- совершает действие $A_0 = \pi(S_0)$
- получает награду $R_0 = \mathcal{R}(S_0, A_0)$ и переходит в следующее состояние $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$
- совершает действие $A_1 = \pi(S_1)$
- получает награду $R_1 = \mathcal{R}(S_1, A_1)$ и переходит в следующее состояние $S_2 \sim \mathcal{P}(\cdot|S_1, A_1)$
- ...

•
$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}, \quad G(\tau) = \sum_{t=0}^T \gamma^t \mathcal{R}(S_t, A_t)$$

$$\pi\colon \mathcal{S}\mapsto \mathcal{A}$$

- Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- совершает действие $A_0 = \pi(S_0)$
- получает награду $R_0 = \mathcal{R}(S_0, A_0)$ и переходит в следующее состояние $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$
- совершает действие $A_1 = \pi(S_1)$
- получает награду $R_1 = \mathcal{R}(S_1, A_1)$ и переходит в следующее состояние $S_2 \sim \mathcal{P}(\cdot|S_1, A_1)$
- ...
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}, \quad G(\tau) = \sum_{t=0}^{T} \gamma^t \mathcal{R}(S_t, A_t)$

Наша задача

$$\mathbb{E}_{\pi}[G] \longrightarrow \max_{\pi}$$

Stochastic policy

$$\pi(a|s) \in [0,1], \quad a \in \mathcal{A}, \quad s \in \mathcal{S}$$

- Мы задаем π
- АГЕНТ находится в начальном состоянии $S_0 \in \mathcal{S}$
- совершает действие $A_0 \sim \pi(\cdot|S_0)$
- получает награду $R_0 = \mathcal{R}(S_0, A_0)$ и переходит в следующее состояние $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$
- совершает действие $A_1 \sim \pi(\cdot|S_1)$
- получает награду $R_1 = \mathcal{R}(S_1, A_1)$ и переходит в следующее состояние $S_2 \sim \mathcal{P}(\cdot|S_1, A_1)$
- ...
- ... $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}, \quad G(\tau) = \sum_{t=0}^T \gamma^t \mathcal{R}(S_t, A_t)$

Наша задача

$$\mathbb{E}_{\pi}[G] \longrightarrow \max_{\pi}$$

$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}$$

$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}$$

$$\mathbb{P}(\tau|\pi) = ?$$

$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}$$

$$\mathbb{P}(\tau) = \mathbb{P}(A_0|S_0)\mathbb{P}(S_1|S_0, A_0) \\
\times \mathbb{P}(A_1|S_1)\mathbb{P}(S_2|S_1, A_1) \\
\times \cdots \\
\times \mathbb{P}(A_T|S_T)$$

$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}$$

$$\mathbb{P}(\tau) = \mathbb{P}(A_0|S_0)\mathbb{P}(S_1|S_0, A_0)$$

$$\times \mathbb{P}(A_1|S_1)\mathbb{P}(S_2|S_1, A_1)$$

$$\times \cdots$$

$$\times \mathbb{P}(A_T|S_T)$$

$$\mathbb{P}(\tau) = \prod_{t=0}^{T-1} \pi(A_t|S_t) \mathcal{P}(S_{t+1}|S_t, A_t) \cdot \pi(A_T|S_T)$$

$$\tau = \{S_0, A_0, S_1, A_1, \dots, S_T, A_T\}$$

$$\mathbb{P}(\tau) = \mathbb{P}(A_0|S_0)\mathbb{P}(S_1|S_0, A_0)$$

$$\times \mathbb{P}(A_1|S_1)\mathbb{P}(S_2|S_1, A_1)$$

$$\times \cdots$$

$$\times \mathbb{P}(A_T|S_T)$$

$$\mathbb{P}(\tau) = \prod_{t=0}^{T-1} \pi(A_t|S_t) \mathcal{P}(S_{t+1}|S_t, A_t) \cdot \pi(A_T|S_T)$$

$$\mathbb{E}_{\pi}[G] = \int_{\tau \sim \pi} G(\tau) \mathbb{P}(\mathrm{d}\tau)$$

Общая схема алгоритмов в RL

На каждой итерации:

- Policy evaluation
- Policy improvement

Policy evaluation

Policy evaluation

Закон больших чисел

Если $X_k, k \in \overline{1,K}$ — независимые случайные величины с одним распределением. Тогда

$$\frac{1}{K} \sum_{k=1}^{K} X_k \to E[X]$$
 по вероятности

Policy evaluation

Закон больших чисел

Если $X_k, k \in \overline{1,K}$ — независимые случайные величины с одним распределением. Тогда

$$\frac{1}{K} \sum_{k=1}^{K} X_k \to E[X]$$
 по вероятности

Подход Монте-Карло

$$E_{\pi}[G] \approx \frac{1}{K} \sum_{k=1}^{K} G(\tau_k)$$

Cross-Entropy Method

Пусть π_0 — начальная (равномерная) policy, N — количество итераций алгоритма, $p \in [0,1]$ — порог для элитных траекторий. Для каждого $n \in \overline{0,N}$ делаем

Cross-Entropy Method

Пусть π_0 — начальная (равномерная) policy, N — количество итераций алгоритма, $p \in [0,1]$ — порог для элитных траекторий. Для каждого $n \in \overline{0,N}$ делаем

• (Policy evaluation) Действуя в согласии с текущей policy π_n реализуем K сессий, получаем траектории τ_k , $k \in \overline{1,K}$ и награды $G(\tau_k)$ для каждой из них. Оцениваем policy π_n :

$$\mathbb{E}_{\pi_n}[G] \approx V_{\pi_n} := \frac{1}{K} \sum_{k=1}^K G(\tau_k)$$

Если $V_{\pi_n} << V_{\pi_{n-1}},$ то break с ответом π_{n-1}

Cross-Entropy Method

Пусть π_0 — начальная (равномерная) policy, N — количество итераций алгоритма, $p \in [0,1]$ — порог для элитных траекторий. Для каждого $n \in \overline{0,N}$ делаем

• (Policy evaluation) Действуя в согласии с текущей policy π_n реализуем K сессий, получаем траектории $\tau_k, k \in \overline{1,K}$ и награды $G(\tau_k)$ для каждой из них. Оцениваем policy π_n :

$$\mathbb{E}_{\pi_n}[G] \approx V_{\pi_n} := \frac{1}{K} \sum_{k=1}^K G(\tau_k)$$

Если $V_{\pi_n} \ll V_{\pi_{n-1}}$, то break с ответом π_{n-1}

• (Policy improvement) По значениям $G(\tau_k)$ выбираем L=(1-p)K элитных траекторий $\mathcal{T}_n=\{\tau_1,\tau_2,\ldots,\tau_L\}$ и по ним определяем следующую policy

$$\pi_{n+1}(a|s) = \frac{|\{(a|s) \in \mathcal{T}_n\}|}{|\{s \in \mathcal{T}_n\}|}$$

В чем проблема алгоритма?

В чем проблема алгоритма?

- Необходима большое количество сессий
- Выбор policy сильно зависит от случайности
- Проблемы со стохастической средой
- ullet Работает только с конечными ${\mathcal S}$ и ${\mathcal A}$

Проблема: выбор policy сильно зависит от случайности

РЕШЕНИЕ:

• Сглаживание по Лапласу

$$\pi_{n+1}(a|s) = \frac{|(a|s) \in \mathcal{T}_n| + \lambda}{|s \in \mathcal{T}_n| + \lambda|\mathcal{A}|}, \quad \lambda > 0$$

• Сглаживание по policy

$$\pi_{n+1}(a|s) \leftarrow \lambda \pi_{n+1}(a|s) + (1-\lambda)\pi_n(a|s), \quad \lambda \in (0,1]$$

Проблемы со стохастической средой

РЕШЕНИЕ:

По стохастической policy π_n насэмплировать детерминированные policy $\pi_{n,m}, m \in \overline{1,M}$. В согласии с каждой из них реализовать K сессий и получить траектории $\tau_{m,k}, m \in \overline{1,M}, k \in \overline{1,K}$. Определить величины

$$V_{\pi_{n,m}} = \frac{1}{K} \sum_{k=1}^{K} G(\tau_{m,k})$$

По этим значениям выбираем L = (1-p)K элитных траекторий $\mathcal{T}_n = \{\tau_{m,k}\}_{m=1,k=1}^{m=M,k=L}$

вопросы?