symbolic ai and mathematics

luís cruz-filipe

department of mathematics and computer science university of southern denmark

conference on theoretical and computational algebra july 6th, 2023

what is ai?

the goal

build computer systems that behave in an "intelligent" way

• how do we measure success?

what is ai?

the goal

build computer systems that behave in an "intelligent" way

• how do we measure success?

two main directions

- data-driven ai
- symbolic ai

what is ai?

the goal

build computer systems that behave in an "intelligent" way

• how do we measure success?

two main directions

- data-driven ai learning
- symbolic ai reasoning

the central question

how do we represent knowledge?

the central question

how do we represent knowledge?

two different options

- implicitly using procedures
- explicitly using logic

the central question

how do we represent knowledge?

$two\ different\ options$

- implicitly using procedures
- explicitly using logic

using logic creates a challenging balance:

expressivity knowledge is structured and complex...

the central question

how do we represent knowledge?

two different options

- implicitly using procedures
- explicitly using logic

using logic creates a challenging balance:

```
\emph{expressivity} knowledge is structured and complex. . .
```

decidability ... but you need to make decisions...

the central question

how do we represent knowledge?

two different options

- implicitly using procedures
- explicitly using logic

using logic creates a challenging balance:

```
expressivity knowledge is structured and complex...
```

decidability ... but you need to make decisions...

complexity ... preferably before the end of the universe

some examples of (non-)problematic reasoning:

some examples of (non-)problematic reasoning:

some examples of (non-)problematic reasoning:

non-monotonicity new information may invalidate previous conclusions

some examples of (non-)problematic reasoning:

non-monotonicity new information may invalidate previous conclusions

belief revision we continuously adjust what (we think) we know

logic for mathematics

a simpler world?

mathematics is consistent^a and monotonic

^amodulo gödel

$logic\ for\ mathematics$

a simpler world?

mathematics is consistent^a and monotonic

^amodulo gödel

still many options

- propositional logic simple but not structure
- first-order logic everyone knows it, but not enough
- higher-order logic with inductive types ouch

logic for mathematics

a simpler world?

mathematics is consistent^a and monotonic

^amodulo gödel

still many options

- propositional logic simple but not structure
- first-order logic everyone knows it, but not enough
- higher-order logic with inductive types ouch

→ and let's not discuss intuitionism

automated theorem proving

sat-solving is a success story!

 encode your problem as a VERY large propositional formula and push the button

automated theorem proving

sat-solving is a success story!

 encode your problem as a VERY large propositional formula and push the button

large number of new results in combinatorics in the last years

- can deal with millions of variables, millions of clauses
- proofs can be "efficiently" verified
- encodings can be made formal

automated theorem proving

sat-solving is a success story!

 encode your problem as a VERY large propositional formula and push the button

large number of new results in combinatorics in the last years

- can deal with millions of variables, millions of clauses
- proofs can be "efficiently" verified
- encodings can be made formal

but it has limitations

- cannot represent structure
- can only work in finite domains

automated theorem proving

sat-solving is a success story!

 encode your problem as a VERY large propositional formula and push the button

large number of new results in combinatorics in the last years

- can deal with millions of variables, millions of clauses
- proofs can be "efficiently" verified
- encodings can be made formal

but it has limitations

- cannot represent structure
- can only work in finite domains

→ more recent success stories in first-order logic (but gödel. . .)

interactive theorem proving

use expressive (undecidable) logics, and help the computer with the proof

- also success stories e.g. four-color theorem, kepler conjecture
- starting to be usable in active research
- potential for automation, learning, etc

interactive theorem proving

use expressive (undecidable) logics, and help the computer with the proof

- also success stories e.g. four-color theorem, kepler conjecture
- starting to be usable in active research
- potential for automation, learning, etc

still mostly a tool for experts

- not very intuitive
- requires understanding both mathematics, proof theory, and a bit of programming

$computational\ algebra\ systems$

the operational approach

- no explicit semantics
- no formal guarantees of correctness
- can give very strange results (but you have to try hard)

the future

what do we want?

computers doing mathematics

when do we want it?

as soon as possible

how do we get there?

probably: combining a bit of everything

thank you!