Cursul 6

Aplicații liniare pe \mathbb{R}^n . Vectori și valori proprii

Funcții reale. Generalități

În această secțiune, vom prezenta unele noțiuni fundamentale legate de aplicații liniare pe spații vectoriale. Amintim următoarea definiție a noțiunii de funcție (v. Cursul 1)

Definiția 7.1 Fie X și Y două mulțimi nevide. Spunem că $f \subseteq X \times Y$ se numește **funcție** dacă satisface următoarele condiții:

- 1) Dom(f) = A:
- 2) $(x,y) \in f$ i $(x,z) \in f \Rightarrow y = z, \forall x \in X, \forall y, z \in Y.$

În acest caz, vom nota $f: X \to Y$.

Amintim şi următoarele noţiuni

- Imaginea lui X prin f(multimea valorilor) este

$$f(X) = \{ y \in Y \mid \exists x \in X : zy = f(x) \};$$

- Dacă $A \subseteq X$, mulțimea $f(A) = \{f(x) \in Y \mid x \in A\}$ se numește **imaginea lui** A **prin** $f: X \to Y$;
- Dacă $B \subseteq Y$, $f^{-1}(B) = \{x \in X | f(x) \in B\}$ se numește **contraimaginea** mulțimii B prin f.
- Graficul funcției $f: X \to Y$ este dat de mulțimea

$$G_f = \{(x, f(x)) \mid x \in X\} \subseteq X \times Y.$$

- Dacă $A\subseteq X$, atunci funcția definită prin $f_{|A}:=f\cap (A\times Y)$ ($f_{|A}(x)=f(x),\ \forall x\in A$) se numește restricția funcției f la mulțimea A.
- $f: X \to Y$ este **surjectivă** dacă f(X) = Y.
- $-f: X \to Y$ este **injectivă** dacă $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$
- Funcția $f:X \to Y$ este **bijectivă** dacă f este injectivă și surjectivă.

În cele ce urmează, vom considera $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, unde $n, m \in \mathbb{N}^*$, adică vom considera funcții de forma

$$f: \mathrm{Dom}(f) \subseteq \mathbb{R}^{\mathrm{n}} \to \mathbb{R}^{\mathrm{m}}.$$

Dacă n > 1, acestea se vor numi funcții de n variabile (reale), iar dacă n = 1, le vom numi funcții de o variabilă (reală). În cazul în care m = 1 le vom numi funcții reale, iar dacă m > 1, ele vor fi numite funcții vectoriale (sau cu valori în \mathbb{R}^m).

Dacă m > 1, atunci, dacă $\mathbf{x} = (x_1, \dots, x_n) \in \text{Dom}(f)$, $f(\mathbf{x}) = f(x_1, \dots, x_n)$, are m componente, notate, de regulă astfel $f_1(\mathbf{x}) = f_1(x_1, \dots, x_n), \dots, f_m(\mathbf{x}) = f_m(x_1, \dots, x_n)$. Așadar, vom avea m funcții de n variabile $f_k : \text{Dom}(f) \to \mathbb{R}$, $1 \le k \le m$, astfel încât

$$f(x_1, \dots, x_n) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)), \forall (x_1, \dots, x_n) \in Dom(f).$$

În continuare, vom prezenta câteva exemple de funcții reale:

- 1. Funcții elementare de bază:
 - funcția constantă: $f: \mathbb{R} \to \mathbb{R}$, cu $f(x) = c, \forall x \in \mathbb{R}$, unde $c \in \mathbb{R}$;
 - funcția identitate: $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}, 1_{\mathbb{R}}(x) = x, \forall x \in \mathbb{R};$
 - funcția exponențială de bază a, a > 0: funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = a^x, \forall x \in \mathbb{R}$;
 - funcția logaritm de bază $a > 0, a \neq 1$: $f:(0,\infty) \to \mathbb{R}, f(x) = \log_a x$;
 - funcția putere de exponent $a \in \mathbb{R}$: $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}, \ f(x) = x^a, \forall x \in \mathbb{R}$;
 - funcții trigonometrice (directe): sin, cos, tg, ctg;
 - funcții trigonometrice inverse: arcsin, arccos, arctg, arcctg.
- 2. Funcții elementare: adică o funcție obținută prin aplicarea uneia sau a mai multor operații de bază cu funcțiile elementare de bază: adunarea, scăderea, înmulțirea și împărțirea.
- 3. Funcții speciale:
 - funcția parte întreagă: $f: \mathbb{R} \to \mathbb{R}, f(x) = [x] \stackrel{def}{=} \sup \{n \in \mathbb{Z} \mid n \leq x\};$
 - funcția parte fracționară: $f: \mathbb{R} \to \mathbb{R}$ definită de $f(x) = \{x\} = x [x]$;
 - funcția semn: $f: \mathbb{R} \to \mathbb{R}$ definită de $f(x) = \mathrm{sgn}(\mathbf{x}) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$
 - funcția valoare absolută: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$;
 - funcția parte pozitivă: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = x^+ = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$;
 - funcția parte negativă: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = x^- = \begin{cases} 0, & x \ge 0 \\ -x, & x < 0 \end{cases}$;
 - funcția lui Dirichlet: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$;
 - funcția lui Heaviside: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$;
 - $\bullet \ \text{ funcția lui Riemann, } f:[0,1]\to\mathbb{R}, \ \text{cu} \ f(x)=\left\{\begin{array}{ll} 0, & \text{dacă } x=0 \ \text{sau } x\in(0,1]\setminus\mathbb{Q} \\ \frac{1}{q}, & x=\frac{p}{q}\in(0,1]\cap\mathbb{Q}, \ (p,q)=1 \end{array}\right..$

Exemple de funcții reale de mai multe variabile:

1) Funcția $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, definită prin

$$f(x_1, x_2) = -\sqrt{\sin(x_1^2 + x_2^2)}, (x_1, x_2) \in A,$$

unde

$$A = \{(x_1, x_2) \in \mathbb{R}^2 \mid \sin(x_1^2 + x_2^2) \ge 0\} = \{(x_1, x_2) \in \mathbb{R}^2 \mid \exists k \in \mathbb{N} : 2k\pi \le x_1^2 + x_2^2 \le (2k+1)\pi\}.$$

2) Funcția $f: A \subseteq \mathbb{R}^3 \to \mathbb{R}$, definită prin

$$f(x_1, x_2, x_3) = \ln(1 - x_1 - x_2 - x_3) - (x_1 + x_3)^{x_2}, (x_1, x_2, x_3) \in A,$$

unde

$$A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 1 - x_1 - x_2 - x_3 > 0 \text{ si } x_1 + x_3 > 0\} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 0 < x_1 + x_3 < 1 - x_2\}.$$

3) Funcția polinomială $P: \mathbb{R}^n \to \mathbb{R}$, definită prin

$$P(x_1, x_2, \dots, x_n) = \sum_{i_1, i_2, \dots, i_n = 0}^{k_1, k_2, \dots, k_n} a_{i_1, i_2, \dots, i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}, \ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$
 (1)

Numerele $a_{i_1,i_2,...,i_n} \in \mathbb{R}$ se numesc coeficienții polinomului P. Fiecare termen $a_{i_1,i_2,...,i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$, unde $a_{i_1,i_2,...,i_n} \neq 0$ se numește monom (al lui P). Gradul acestui monom este $i_1+i_2+\ldots+i_n \in \mathbb{N}$. Cum $P(x_1,x_2,\ldots,x_n)$ este o sumă finită de monoame, numim gradul polinomului P ca fiind cel mai mare grad dintre gradele monoamelor ce îl compun.

Spunem că polinomul P este omogen dacă toate monoamele sale au același grad. Un exemplu de polinom omogen este următorul polinom de grad 1:

$$P(x_1, \dots x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n, \ (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Un polinom P de forma (1) se numește simetric dacă, pentru orice permutare

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{array}\right)$$

cu $\sigma(i) \in \{1, 2, \dots, n\}, \forall i = \overline{1, n} \text{ şi } \sigma(i) \neq \sigma(j), \forall i, j \in \{1, 2, \dots, n\}, \text{ avem}$

$$\sum_{i_1,i_2,\ldots,i_n=0}^{k_1,k_2,\ldots,k_n} a_{i_1,i_2,\ldots,i_n} x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n} = \sum_{i_1,i_2,\ldots,i_n=0}^{k_1,k_2,\ldots,k_n} a_{i_1,i_2,\ldots,i_n} x_{\sigma(1)}^{i_1} x_{\sigma(2)}^{i_2} \ldots x_{\sigma(n)}^{i_n}.$$

Spre exemplu, funcția $P(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2, (x_1, x_2) \in \mathbb{R}^2$ este un polinom simetric dacă și numai dacă a = c.

Aplicații liniare pe spații vectoriale

Definiția 7.2 Fie $(V,+,\cdot)$ și $(W,+,\cdot)$ două spații liniare reale. O aplicație $T:V\to W$ se numește liniară dacă

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in V \ (aditivitate),$
- (ii) $T(\alpha \cdot \mathbf{u}) = \alpha T(\mathbf{u}), \forall \mathbf{u} \in V, \alpha \in \mathbb{R}$ (omogenitate).

Vom utiliza de asemenea denumirile de operator liniar sau transformare liniară pentru o aplicație liniară. **Exemplu:** Toate polinoamele omogene de grad 1(definite pe \mathbb{R}^n) sunt aplicații liniare între \mathbb{R}^n și \mathbb{R} .

Propoziția 7.3 Fie $(V,+,\cdot)$ și $(W,+,\cdot)$ două spații liniare reale. Aplicația $T:V\to W$ este liniară dacă și numai dacă

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in V, \forall \alpha, \beta \in \mathbb{R}.$$

Demonstrație: Cum $T: V \to W$ este aplicație liniară, din Definiția 7.2, avem:

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = T(\alpha \mathbf{u}) + T(\beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in V, \forall \alpha, \beta \in \mathbb{R}.$$

Reciproc, dacă T satisface $T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in V, \forall \alpha, \beta \in \mathbb{R}$, rezultă că, pentru $\alpha = \beta = 1$ avem i), iar pentru $\beta = 0$, are loc ii).

Observații:

- 1. Dacă $(V, +, \cdot)$, $(W, +\cdot)$ sunt două spații liniare, iar $T: V \to W$ este o aplicație liniară bijectivă, atunci T se numește **izomorfism** între spațiile liniare V si W.
- 2. Dacă V=W, aplicația liniară $T:V\to V$ se numește **endomorfism liniar** pe V. Funcția identitate 1_V este un endomorfism liniar pe V.

- 3. Dacă endomorfismul liniar $T: V \to V$ este și bijectiv, atunci el se numește **automorfism liniar** pe V.
- 4. Dacă $T: V \to W$ este o aplicație liniară, iar $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}, \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n \in V$, atunci avem

$$T(\alpha_1 \mathbf{u}_1 + \ldots + \alpha_n \mathbf{u}_n) = \sum_{i=1}^n \alpha_i T(\mathbf{u}_i) = \alpha_1 T(\mathbf{u}_1) + \ldots + \alpha_n T(\mathbf{u}_n), \forall n \in \mathbb{N}^*.$$

5. Dacă $T:V\to W$ este o aplicație liniară, atunci

$$T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W},$$

unde $\mathbf{0}_V$ și $\mathbf{0}_W$ sunt vectorul nul din V și din W. Dacă $\tilde{T}(\mathbf{0}_V) \neq \mathbf{0}_W$, atunci $\tilde{T}: V \to W$ nu este liniară.

- 6. Se poate arăta că mulțimea $(\mathcal{L}(V,W),+,\cdot)$, a tuturor aplicațiilor liniare de la spațiul liniar V la spațiul liniar W, formează un spațiu liniar în raport cu operația de adunare a aplicațiilor și cu operația de înmulțire a unei aplicații cu un scalar din \mathbb{R} . Dacă V=W, vom nota mai simplu $\mathcal{L}(V)$, în loc de $\mathcal{L}(V,W)$.
- 7. Fie U,V și W spații liniare reale. Dacă $T_1:U\to V$ și $T_2:V\to W$ sunt aplicații liniare, atunci $T_2\circ T_1:U\to W$ este tot o aplicație liniară.

Definiția 7.4 Fie $(V, +, \cdot)$ și $(W, +, \cdot)$ două spații liniare și fie $T: V \to W$ o aplicație liniară.

a) Multimea

$$Ker(T) \stackrel{not}{=} T^{-1}(\mathbf{0}_W) = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_W \}$$

se numește nucleul aplicației liniare T.

b) Multimea

$$Im(T) \stackrel{not}{=} T(V) = \{ \mathbf{w} \in W \mid \exists \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{w} \}$$

se numește imaginea aplicației liniare T.

Propoziția 7.5 Fie $(V, +, \cdot)$ și $(W, +, \cdot)$ două spații liniare și fie $T: V \to W$ o aplicație liniară. Atunci Ker(T) este un subspațiu liniar al lui V, iar Im(T) un subspațiu liniar al lui W.

Demonstrație: Știm că $T:V\to W$ este aplicație liniară dacă are loc:

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}) = \alpha \cdot \mathbf{0}_W + \beta \cdot \mathbf{0}_W = \mathbf{0}_W, \forall \mathbf{u}, \mathbf{v} \in Ker(T), \forall \alpha, \beta \in \mathbb{R},$$

adică, am obținut $\alpha \mathbf{u} + \beta \mathbf{v} \in Ker(T), \forall \mathbf{u}, \mathbf{v} \in Ker(T), \forall \alpha, \beta \in \mathbb{R}.$

Pe de altă parte, $\forall \mathbf{w}_1, \mathbf{w}_2 \in Im(T)$, există \mathbf{v}_1 și $\mathbf{v}_2 \in V$, astfel încât $T(\mathbf{v}_1) = \mathbf{w}_1$ și $T(\mathbf{v}_2) = \mathbf{w}_2$. Prin urmare, $\forall \alpha_1, \alpha_2 \in K, \mathbf{w}_1, \mathbf{w}_2 \in Im(T)$:

$$\alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2 = \alpha_1 T(\mathbf{v}_1) + \alpha_2 T(\mathbf{v}_2) = T(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) \in T(V) = Im(T).$$

Teorema 7.6 (Teorema dimensiunii) Fie $(V, +, \cdot)$ un spaţiu liniar finit dimensional, $(W, +, \cdot)$ un spaţiu liniar, şi fie $T: V \to W$ o aplicaţie liniară. Atunci Im(T) este un subspaţiu finit dimensional al lui W şi are loc relaţia dimensiunilor:

$$dim(V) = dim(Ker(T)) + dim(Im(T))$$
.

Demonstrație: Cum spațiul liniar V este finit dimensional, rezultă că Ker(T) este finit dimensional. Fie $m = \dim(Ker(T))$, cu $m \in \mathbb{N}$ și fie $\{\mathbf{b}_1, \ldots, \mathbf{b}_m\}$ o bază a lui Ker(T). Dacă $n = \dim(V)$, atunci există vectorii $\mathbf{b}_{m+1}, \ldots, \mathbf{b}_n \in V$ astfel încât $\{\mathbf{b}_1, \ldots, \mathbf{b}_m, \mathbf{b}_{m+1}, \ldots, \mathbf{b}_n\}$ să fie o bază a lui V. Să demonstrăm că $\{T(\mathbf{b}_{m+1}), \ldots, T(\mathbf{b}_n)\}$ este o bază a lui Im(T).

Fie $\mathbf{w} \in Im(T)$. Atunci există $\mathbf{v} \in V$ astfel încât $T(\mathbf{v}) = \mathbf{w}$. Cum $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază a lui V, există $\alpha_1, \dots, \alpha_n \in \mathbb{R}$, astfel încât

$$\mathbf{v} = \alpha_1 \mathbf{b}_1 + \ldots + \alpha_m \mathbf{b}_m + \alpha_{m+1} \mathbf{b}_{m+1} + \ldots + \alpha_n \mathbf{b}_n,$$

de unde

$$\mathbf{w} = T(\mathbf{v}) = T(\alpha_1 \mathbf{b}_1 + \dots + \alpha_m \mathbf{b}_m + \alpha_{m+1} \mathbf{b}_{m+1} + \dots + \alpha_n \mathbf{b}_n)$$

= $\alpha_1 T(\mathbf{b}_1) + \dots + \alpha_m T(\mathbf{b}_m) + \alpha_{m+1} T(\mathbf{b}_{m+1}) + \dots + \alpha_n T(\mathbf{b}_n)$

Cum $\mathbf{b}_1, \dots, \mathbf{b}_m \in Ker(T)$, avem că $T(\mathbf{b}_1) = \dots = T(\mathbf{b}_m) = 0$, adică $\mathbf{w} = \alpha_{m+1}T(\mathbf{b}_{m+1}) + \dots + \alpha_nT(\mathbf{b}_n)$. Prin urmare, $Lin\{T(\mathbf{b}_{m+1}), \dots, T(\mathbf{b}_n)\} = Im(T)$.

Arătăm liniara independență. Presupunem că $\alpha_{m+1}T(\mathbf{b}_{m+1}) + \ldots + \alpha_nT(\mathbf{b}_n) = \mathbf{0}_W$, pentru $\alpha_{m+1}, \ldots, \alpha_n \in \mathbb{R}$. Atunci $T(\alpha_{m+1}\mathbf{b}_{m+1} + \ldots + \alpha_n\mathbf{b}_n) = \mathbf{0}_W$, deci $\alpha_{m+1}\mathbf{b}_{m+1} + \ldots + \alpha_n\mathbf{b}_n \in Ker(T)$. Pe de altă parte, $\{\mathbf{b}_1, \ldots, \mathbf{b}_m\}$ este bază a lui Ker(T), deci există $\alpha_1, \ldots, \alpha_m$ astfel încât

$$\alpha_{m+1}\mathbf{b}_{m+1} + \ldots + \alpha_n\mathbf{b}_n = \alpha_1\mathbf{b}_1 + \ldots + \alpha_m\mathbf{b}_m$$

adică

$$\alpha_1 \mathbf{b}_1 + \ldots + \alpha_m \mathbf{b}_m - \alpha_{m+1} \mathbf{b}_{m+1} - \ldots - \alpha_n \mathbf{b}_n = \mathbf{0}_V.$$

Cum $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ este o bază a lui V, avem $\alpha_1=\ldots=\alpha_m=\alpha_{m+1}=\ldots=\alpha_n=0$. Aşadar, mulţimea $\{T(\mathbf{b}_{m+1}),\ldots,T(\mathbf{b}_n)\}$ este liniar independentă.

Am demonstrat că mulțimea $\{T(\mathbf{b}_{m+1}), \dots, T(\mathbf{b}_n)\}$ este o bază a lui Im(T), deci Im(T) este subspațiu finit dimensional al lui W și are dimensiunea n-m, adică dim(V)-dim(Ker(T)). Așadar, are loc relația dimensiunilor.

Definiția 7.7 Fie $(V,+,\cdot)$, $(W,+,\cdot)$ două spații vectoriale, și fie $T:V\to W$ o aplicație liniară. Atunci,

- dim(Ker(T)) se numește **defectul lui** T și se notează def(T);
- dim(Im(T)) se numește **rangul lui** T și se notează rang(T).

Aşadar, formula dimensiunilor poate fi redată atunci sub forma:

$$dim(V) = rang(T) + def(T). (2)$$

Următoarele rezultate, ne oferă caracterizări ale injectivității, surjectivității și a bijectivității aplicațiilor liniare utilizând teorema dimensiunilor.

Propoziția 7.8 Fie $(V, +, \cdot)$ un spațiu liniar finit dimensional, $(W, +, \cdot)$ un spațiu liniar, și $T: V \to W$ o aplicație liniară. Atunci, următoarele afirmații sunt echivalente:

- a) T este injectivă;
- b) de f(T) = 0;
- c) rang(T) = dim(V);
- d) Dacă $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ este un sistem liniar independent în V, atunci $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ este sistem liniar independent în W.

Propoziția 7.9 Fie $(V, +, \cdot)$ un spațiu liniar finit dimensional, $(W, +, \cdot)$ un spațiu liniar, și $T: V \to W$ o aplicație liniară. Următoarele afirmații sunt echivalente:

- i) T este surjectivă;
- $ii) \ rang(T) = dim(W);$
- iii) Im(T) = W;
- iv) Dacă $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ este un sistem de generatori pentru V, atunci $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ este un sistem de generatori pentru W.

Pe baza Propozițiilor 7.8 și 7.9, se poate vedea că are loc și următorul rezultat:

Propoziția 7.10 Fie $(V, +, \cdot)$ un spațiu liniar finit dimensional, $(W, +, \cdot)$ un spațiu liniar, și $T: V \to W$ o aplicație liniară. Atunci, următoarele afirmații sunt echivalente:

- j) T este bijectivă;
- jj) dim(V) = dim(W) = rang(T);
- jjj) Pentru orice bază $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a lui V, mulțimea $T(B) = \{T(\mathbf{b}_1), \dots, T(\mathbf{b}_n)\}$ este o bază a lui W.

Reprezentarea matriceală a aplicațiilor liniare

Fie $(V, +, \cdot)$ şi $(W, +, \cdot)$ două spații liniare, finit-dimensionale cu dim(V) = n şi dim(W) = m, şi fie $T: V \to W$ o aplicație liniară. Dacă $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază a lui V, iar $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_m\}$ este bază a lui W, atunci, pentru orice $k \in \{1, \dots, n\}$ putem scrie

$$T(\mathbf{b}_k) = a_{1k}\mathbf{b}_1' + \dots a_{mk}\mathbf{b}_m',$$

unde $a_{1k}, \ldots, a_{mk} \in \mathbb{R}$ sunt coordonatele lui $T(\mathbf{b}_k)$ în raport cu baza B'. Matricea $A_{B,B'} := (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{R})$, unde $1 \leq i \leq m, 1 \leq j \leq n$, se numește **matricea asociată** aplicației T în raport cu bazele B, B'.

Dacă $\mathbf{v} \in V$, iar $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ sunt coordonatele vectorului \mathbf{v} în raport cu baza B, atunci

$$T(\mathbf{v}) = T(\alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n) = \alpha_1 T(\mathbf{b}_1) + \dots + \alpha_n T(\mathbf{b}_n)$$

$$= \alpha_1 (a_{11} \mathbf{b}_1' + \dots a_{m1} \mathbf{b}_m') + \dots + \alpha_n (a_{1n} \mathbf{b}_1' + \dots a_{mn} \mathbf{b}_m')$$

$$= (\alpha_1 a_{11} + \dots + \alpha_n a_{1n}) \mathbf{b}_1' + \dots + (\alpha_1 a_{m1} + \dots + \alpha_n a_{mn}) \mathbf{b}_m'$$
(3)

Adică $T(\mathbf{v}) \in W$ are coordonatele $\beta_1, \ldots, \beta_m \in \mathbb{R}$ în raport cu baza B', unde $\beta_k = \alpha_1 a_{k1} + \ldots + \alpha_n a_{kn}$. Dacă $\mathbf{v} \in V$ are coordonatele $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ în baza B iar $T(\mathbf{v}) \in W$ are coordonatele $\beta_1, \ldots, \beta_m \in \mathbb{R}$ în baza B', atunci putem scrie relația

$$X_{B'} = A_{B,B'} \cdot X_B,$$

unde

$$X_{B} = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}), \qquad X_{B'} = \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{m} \end{bmatrix} \in \mathcal{M}_{m,1}(\mathbb{R})$$

Rangul aplicatiei liniare. Rangul matricii asociate:

Fie $r \in \{1, ..., \min(m, n)\}$ rangul matricei $A_{B,B'}$. Cum r este numărul maxim de vectori liniar independenți, avem $dim(Im(T)) \geq r$. Pe de altă parte, dacă presupunem că dim(Im(T)) > r, putem găsi $\mathbf{v} \in V$ astfel încât $T(\mathbf{b}_{k_1}), ..., T(\mathbf{b}_{k_r})$ și $T(\mathbf{v})$ sunt liniar independenți. Dar $T(\mathbf{v})$ este o combinație liniară a vectorilor $T(\mathbf{b}_1), ..., T(\mathbf{b}_n)$. Cum pentru orice $k \notin \{k_1, ..., k_r\}$, $T(\mathbf{b}_k)$ este o combinație liniară a vectorilor $T(\mathbf{b}_{k_1}), ..., T(\mathbf{b}_{k_r})$, obținem contradicție. Așadar, dim(Im(T)) = r, adică

$$rang(A_{B,B'}) = rang(T)$$
.

Schimbări de baze:

Vrem să vedem cum se schimbă matricea asociată aplicației liniare T la schimbări de bază. Fie $\widetilde{B} = \{\widetilde{\mathbf{b}}_1, \dots, \widetilde{\mathbf{b}}_n\}$ o altă bază a lui V și $\widetilde{B}' = \{\widetilde{\mathbf{b}}'_1, \dots, \widetilde{\mathbf{b}}'_m\}$ o altă bază a lui W. Vom nota cu $S_{B,\widetilde{B}} = (s_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ matricea de trecere de la baza B la baza \widetilde{B} și cu $S'_{B',\widetilde{B}'} = (s'_{ij})_{1 \leq i,j \leq m} \in \mathcal{M}_n(R)$ matricea de trecere de la B' la \widetilde{B}' .

Cu alte cuvinte, vom avea

$$\widetilde{\mathbf{b}}_k = s_{1k}\mathbf{b}_1 + \ldots + s_{nk}\mathbf{b}_n, \forall k \in \{1, \ldots, n\},$$

$$\widetilde{\mathbf{b}}'_{\ell} = s'_{1\ell}\mathbf{b}'_1 + \ldots + s'_{m\ell}\mathbf{b}'_m, \forall \ell \in \{1, \ldots, m\}.$$

Fie $A_{\widetilde{B},\widetilde{B}'}:=(\widetilde{a}_{ij})\in\mathcal{M}_{m,n}(\mathbb{R})$, unde $1\leq i\leq m,\ 1\leq j\leq n$, matricea asociată operatorului T în raport cu bazele $\widetilde{B},\widetilde{B}'$. Atunci pentru orice $1\leq k\leq n$ avem

$$T(\widetilde{\mathbf{b}}_{k}) = \widetilde{a}_{1k}\widetilde{\mathbf{b}}'_{1} + \ldots + \widetilde{a}_{mk}\widetilde{\mathbf{b}}'_{m} = \widetilde{a}_{1k}(s'_{11}\mathbf{b}'_{1} + \ldots + s'_{m1}\mathbf{b}'_{m}) + \ldots + \widetilde{a}_{mk}(s'_{1m}\mathbf{b}'_{1} + \ldots + s'_{mm}\mathbf{b}'_{m})$$

$$= (\widetilde{a}_{1k}s'_{11} + \ldots + \widetilde{a}_{mk}s'_{1m})\mathbf{b}'_{1} + \ldots + (\widetilde{a}_{1k}s'_{m1} + \ldots + \widetilde{a}_{mk}s'_{mm})\mathbf{b}'_{m}. \tag{4}$$

Pe de altă parte, din (3) avem

$$T(\widetilde{\mathbf{b}}_k) = (s_{1k}a_{11} + \ldots + s_{nk}a_{1n})\mathbf{b}'_1 + \ldots + (s_{1k}a_{m1} + \ldots + s_{nk}a_{mn})\mathbf{b}'_m.$$

Identificând coordonatele vectorilor $T(\widetilde{\mathbf{b}}_k)$ în raport cu baza B' obținem

$$\widetilde{a}_{1k}s'_{j1} + \ldots + \widetilde{a}_{mk}s'_{jm} = s_{1k}a_{j1} + \ldots + s_{nk}a_{jn}, \forall 1 \le k \le n, 1 \le j \le m,$$

adică

$$S'_{B',\widetilde{B}'} \cdot A_{\widetilde{B},\widetilde{B}'} = A_{B,B'} \cdot S_{B,\widetilde{B}},$$

sau, echivalent

$$A_{\widetilde{B},\widetilde{B}'} = (S'_{B',\widetilde{B}'})^{-1} \cdot A_{B,B'} \cdot S_{B,\widetilde{B}}.$$

Matricea asociată compunerii a două aplicații:

Presupunem acum că $(W',+,\cdot)$ este un alt spațiu finit dimensional având dim(W')=m', și fie $T':W\to W'$ un operator liniar. Dacă $\widetilde{B}'=\{\widetilde{\mathbf{b}}'_1,\ldots,\widetilde{\mathbf{b}}'_m\}$ este o bază a lui W' și $A_{B',\widetilde{B}'}\in\mathcal{M}_{m,m'}(\mathbb{R})$ este matricea asociată operatorului T' în raport cu B' și \widetilde{B}' , se poate arăta că operatorul $T'\circ T:V\to W'$ are pe $A_{B',\widetilde{B}'}\cdot A_{B,B'}$ ca matrice asociată în raport cu B și \widetilde{B}' .

Aşadar, vom putea spune că operatorul liniar T este bijectiv dacă și numai dacă matricea sa asociată (în raport cu orice bază a lui V) este inversabilă.

Reciproc, dacă $A=(a_{ij})\in \mathcal{M}_{m,n}(\mathbb{R}), 1\leq i\leq m, 1\leq j\leq n$, atunci se poate defini o funcție $T:V\to W$ după formula (3):

$$T(\mathbf{v}) = (\alpha_1 a_{11} + \ldots + \alpha_n a_{1n}) \mathbf{b}'_1 + \ldots + (\alpha_1 a_{m1} + \ldots + \alpha_n a_{mn}) \mathbf{b}'_m,$$

unde $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ sunt coordonatele lui \mathbf{v} în raport cu baza B. Se poate demonstra, cu uşurință, că T este o aplicație liniară numită **operatorul liniar asociat** lui A în raport cu bazele B şi B'. În acest caz, matricea asociată lui T în raport cu bazele B, B' este chiar A.

Caz particular: Dacă presupunem că $V=\mathbb{R}^n,\ W=\mathbb{R}^m,$ iar că B și B' sunt bazele canonice în $\mathbb{R}^n,$ respectiv $\mathbb{R}^m,$ atunci formula (3) devine

$$T(\mathbf{v}) = A_{B,B'} \cdot \mathbf{v}, \forall \mathbf{v} \in \mathbb{R}^n,$$

unde am identificat vectorii din \mathbb{R}^n , respectiv \mathbb{R}^m , cu matricele coloană $\mathcal{M}_{n,1}$, respectiv $\mathcal{M}_{m,1}$.

Aşadar, un operator liniar între \mathbb{R}^n și \mathbb{R}^m se poate identifica cu o matrice $A \in \mathcal{M}_{m,n}$ prin formula

$$T(\mathbf{v}) = A \cdot \mathbf{v}, \forall \mathbf{v} \in \mathbb{R}^n,$$

cu convenția ca vectorii din spațiile euclidiene să fie considerați ca matrice coloană.

Operatori adjuncți

Definiția 7.11 Fie $(V, \langle \cdot, \cdot \rangle_V)$ şi $(W, \langle \cdot, \cdot \rangle_W)$ spații prehilbertiene şi $T: V \to W$ un operator liniar.

i) Un operator $T^*: W \to V$ care satisface

$$\langle T^*(\mathbf{w}), \mathbf{v} \rangle_V = \langle T(\mathbf{v}), \mathbf{w} \rangle_W, \forall \mathbf{v} \in V, \mathbf{w} \in W,$$

se numește operatorul adjunct al lui T.

ii) Dacă V = W, operatorul T se numește **autoadjunct** sau **simetric** dacă $T = T^*$, adică

$$\langle T(\mathbf{w}), \mathbf{v} \rangle_V = \langle T(\mathbf{v}), \mathbf{w} \rangle_V, \forall \mathbf{v}, \mathbf{w} \in V.$$

ii) Dacă V = W, operatorul T se numește antisimetric dacă $T = -T^*$, adică

$$\langle T(\mathbf{w}), \mathbf{v} \rangle_V = -\langle T(\mathbf{v}), \mathbf{w} \rangle_V, \forall \mathbf{v}, \mathbf{w} \in V.$$

Observații:

1. Adjunctul unui operator este unic. Într-adevăr, dacă presupunem că T^* și \overline{T}^* sunt doi adjuncți ai lui T, atunci

$$\langle T^*(\mathbf{w}) - \overline{T}^*(\mathbf{w}), \mathbf{v} \rangle_V = 0, \forall \mathbf{v} \in V, \mathbf{w} \in W,$$

adică $T^*(\mathbf{w}) - \overline{T}^*(\mathbf{w}) \in V^{\perp}$, pentru $\mathbf{w} \in W$. Însă, cum $V^{\perp} = \{\mathbf{0}_V\}$, rezultă că $T^* = \overline{T}^*$.

2. Dacă $(V, \langle \cdot, \cdot \rangle_V)$, $(W, \langle \cdot, \cdot \rangle_W)$ sunt spații prehilbertiene, finit-dimensionale, atunci adjunctul operatorului liniar $T: V \to W$ există întotdeauna. Într-adevăr, conform procedeului de ortonormalizare Gram-Schmidt, există baze ortonormale $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ şi $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ în V, respectiv, în W. Fie $A_{B,B'}$ matricea asociată operatorului T în raport cu bazele B şi B'. Dacă $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ şi $\beta_1, \dots, \beta_m \in \mathbb{R}$ sunt coordonatele a doi vectori $\mathbf{v} \in V$ şi $\mathbf{w} \in W$ în raport cu baza B, respectiv B', atunci obținem din formula (3)

$$\langle T(\mathbf{v}), \mathbf{w} \rangle_W = \langle (\alpha_1 a_{11} + \ldots + \alpha_n a_{1n}) \mathbf{b}'_1 + \ldots + (\alpha_1 a_{m1} + \ldots + \alpha_n a_{mn}) \mathbf{b}'_m, \beta_1 \mathbf{b}'_1 + \ldots + \beta_n \mathbf{b}'_n \rangle_W$$
$$= (\alpha_1 a_{11} + \ldots + \alpha_n a_{1n}) \beta_1 + \ldots + (\alpha_1 a_{m1} + \ldots + \alpha_n a_{mn}) \beta_m = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j a_{ji}.$$

Definind acum $T^*:W\to V$ ca operatorul asociat matrice
i $A_{B,B'}^T\in\mathcal{M}_{mn},$ observăm (schimbând rolurile lui V cu
 W) că

$$\langle T^*(\mathbf{w}), \mathbf{v} \rangle_V = \sum_{j=1}^m \sum_{i=1}^n \alpha_i \beta_j a_{ji}.$$

Deci $\langle T^*(\mathbf{w}), \mathbf{v} \rangle_V = \langle T(\mathbf{v}), \mathbf{w} \rangle_W$, adică T^* este adjunctul lui T.

3. T este simetric dacă și numai dacă matricea $A_{B,B}$ este simetrică, adică $A_{B,B}^T = A_{B,B}$. T este antisimetric dacă $A_{B,B}^T = -A_{B,B}$.

Definiția 7.12 Fie $(V, \langle \cdot, \cdot \rangle_V), (W, \langle \cdot, \cdot \rangle_W)$ două spații prehilbertiene.

i) Spunem că o aplicație $f: V \to W$ este o **izometrie** dacă

$$||f(\mathbf{x}) - f(\mathbf{y})||_W = ||\mathbf{x} - \mathbf{y}||_V, \forall \mathbf{x}, \mathbf{y} \in V,$$

unde $\|\cdot\|_V$ reprezintă norma indusă de produsul scalar $\langle\cdot,\cdot\rangle_V$.

ii) Dacă aplicația $T:V\to V$ este un endomorfism liniar, atunci spunem că T este **ortogonal** dacă

$$||T(\mathbf{u})||_V = ||\mathbf{u}||, \forall \mathbf{u} \in V.$$

Observații:

- 1. Un endomorfism liniar $T \in \mathcal{L}(V)$ este o izometrie dacă și numai dacă T este ortogonal.
- 2. Presupunem că V este finit dimensional, şi că $T \in \mathcal{L}(V)$ este un endomorfism ortogonal. Atunci T este bijectiv. Într-adevăr, dacă notăm $\widetilde{T} := T^* \circ T$, atunci avem

$$\langle \widetilde{T}(\mathbf{u}), \mathbf{v} \rangle = \langle (T^* \circ T)(\mathbf{u}), \mathbf{v} \rangle = \langle T(\mathbf{u}), T(\mathbf{v}) \rangle, \forall \mathbf{u}, \mathbf{v} \in V.$$

Prin urmare, $\langle \widetilde{T}(\mathbf{u}), \mathbf{u} \rangle = ||T(\mathbf{u})||^2 = ||\mathbf{u}||^2, \forall \mathbf{u} \in V$. Mai mult, avem $\langle \widetilde{T}(\mathbf{u}), \mathbf{v} \rangle = \langle \widetilde{T}(\mathbf{v}), \mathbf{u} \rangle, \forall \mathbf{u}, \mathbf{v} \in V$, adică \widetilde{T} este autoadjunct. În consecință, putem scrie

$$4\langle \widetilde{T}(\mathbf{u}), \mathbf{v} \rangle = \langle \widetilde{T}(\mathbf{u} + \mathbf{v}), \mathbf{u} + \mathbf{v} \rangle - \langle \widetilde{T}(\mathbf{u} - \mathbf{v}), \mathbf{u} - \mathbf{v} \rangle = \|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = 4\langle \mathbf{u}, \mathbf{v} \rangle, \forall \mathbf{u}, \mathbf{v} \in V.$$

Deci $\widetilde{T}(\mathbf{u}) - \mathbf{u} \in V^{\perp} = \{\mathbf{0}\}$, adică $\widetilde{T} = 1_V$. Prin urmare, T^* este inversa operatorului liniar T, deciT trebuie să fie bijectivă.

În plus, dacă $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază ortonormală a lui V, se poate arăta că matricea $A = A_{B,B}$, asociată lui V în raport cu baza B, este ortonormală, adică

$$A^T A = A A^T = I_n$$
.

Prin urmare, avem că Aeste inversabilă, cu $A^{-1}=A^T$ și $\det A\in\{-1,1\}.$

Vectori şi valori proprii

Definiția 7.13 Fie $(V, +, \cdot)$ un spațiu liniar și fie $T \in \mathcal{L}(V)$.

a) Un vector $\mathbf{v} \in V \setminus \{\mathbf{0}_V\}$, se numește vector propriu al lui T dacă

$$\exists \lambda \in \mathbb{R} \text{ astfel } \hat{n} c \hat{a} t \ T(\mathbf{v}) = \lambda \cdot \mathbf{v}. \tag{5}$$

Scalarul $\lambda \in \mathbb{R}$ se numește valoare proprie a lui T, corespunzătoare vectorului propriu \mathbf{v} .

b) Dacă $\lambda \in \mathbb{R}$ este o valoare proprie a lui T, atunci subspațiul liniar

$$Ker(T - \lambda \cdot \mathbf{1}_V) = \{\mathbf{u} \in V \mid T(x) = \lambda \cdot \mathbf{u}\}\$$

se numește subspațiu propriu (subspațiul caracteristic) asociat lui λ .

Observații:

- 1. Un vector $\mathbf{v} \in V \setminus \{\mathbf{0}_V\}$ este vector propriu pentru T, corespunzător valorii proprii $\lambda \in \mathbb{R}$, dacă şi numai dacă $\mathbf{v} \in Ker(T \lambda \mathbf{1}_V) \setminus \{\mathbf{0}_V\}$.
- 2. Spaţiul caracteristic asociat unei valori proprii $\lambda \in \mathbb{R}$ este subspaţiul tuturor vectorilor proprii asociaţi lui λ , la care se adaugă $\mathbf{0}$, deci este un spaţiu strict mai mare ca $\{\mathbf{0}\}$. Aşadar, există mai mult de un vector propriu ce corespunde unei valori proprii, dar numai o valoare proprie ce corespunde unui vector propriu.
- 3. Spaţiul caracteristic $V_{\lambda} = Ker(T \lambda \mathbf{1}_{V})$, asociat unei valori proprii $\lambda \in \mathbb{R}$, este invariant în raport cu T, adică $T(V_{\lambda}) \subseteq V_{\lambda}$. Într-adevăr, dacă $\mathbf{v} \in \mathcal{V}_{\lambda}$, atunci

$$T(T(\mathbf{v})) = T(\lambda \cdot \mathbf{v}) = \lambda \cdot T(\mathbf{v}),$$

deci $T(\mathbf{v}) \in V_{\lambda}$.

4. Dacă $\lambda_1, \lambda_2 \in \mathbb{R}$ sunt două valori proprii distincte, atunci $V_{\lambda_1} \cap V_{\lambda_2} = \{0\}$.

Propoziția 7.14 Fie $(V, +, \cdot)$ un spațiu liniar finit dimensional și fie $T \in \mathcal{L}(V)$. Dacă $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ sunt valori proprii distincte ale lui T, iar $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ sunt vectorii proprii corespunzători, atunci $\mathbf{v}_1, \ldots, \mathbf{v}_n$ sunt liniar independenți.

Demonstrație: Utilizăm induția matematică: Pentru n=1, este usor de observat, deoarece $\mathbf{v}_1 \neq \mathbf{0}$. Presupunem că rezultatul are loc pentru $n \geq 1$ și demonstrăm că are loc pentru n+1. Fie valorile proprii $\lambda_1, \ldots, \lambda_n, \lambda_{n+1} \in \mathbb{R}$, și vectorii proprii $\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v}_{n+1}$. Presupunem că avem

$$\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n + \alpha_{n+1} \mathbf{v}_{n+1} = \mathbf{0}, \tag{6}$$

pentru $\alpha_1, \ldots, \alpha_{n+1} \in \mathbb{R}$. Atunci

$$\mathbf{0} = T(\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n + \alpha_{n+1} \mathbf{v}_{n+1}) = \alpha_1 T(\mathbf{v}_1) + \ldots + \alpha_n T(\mathbf{v}_n) + \alpha_{n+1} T(\mathbf{v}_{n+1})$$

$$= \alpha_1 \lambda_1 \mathbf{v}_1 + \ldots + \alpha_n \lambda_n \mathbf{v}_n + \alpha_{n+1} \lambda_{n+1} \mathbf{v}_{n+1}.$$
(7)

Înmulțind cu $-\lambda_{n+1}$ și adăugând-o la egalitatea de mai sus, obținem

$$\alpha_1(\lambda_1 - \lambda_{n+1})\mathbf{v}_1 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})\mathbf{v}_n = \mathbf{0}.$$

Cum vectori $\mathbf{v}_1, \dots, \mathbf{v}_n$ sunt liniar independenti (din ipoteza de inducţie), iar $\lambda_{n+1} \neq \lambda_k, 1 \leq k \leq n$, obţinem $\alpha_1 = \dots = \alpha_n = 0$. Din (6) deducem şi că $\lambda_{n+1} = 0$. În concluzie, vectorii $\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v}_{n+1}$ sunt liniar independenţi.

Presupunem că $(V, +, \cdot)$ este finit dimensional și că $T \in \mathcal{L}(V)$. Dacă $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază a lui V, iar matricea $A \in \mathcal{M}_n(\mathbb{R})$ este matricea asociată operatorului T în raport cu B. Atunci, orice valoare proprie $\lambda \in \mathbb{R}$ satisface ecuația

$$\det(A - \lambda I_n) = 0,$$

deoarece $A - \lambda I_n$ este matricea asociată operatorului $T - \lambda 1_V$, ce nu este bijectiv. Funcția polinomială $\lambda \to P_A(\lambda) := \det(A - \lambda I_n)$ se numește **polinomul caracteristic** al lui A.

Fie B' o altă bază a lui V, și fie S matricea de trecere de la baza B la baza B' și fie $A' \in \mathcal{M}_n(\mathbb{R})$ matricea asociată lui T în raport cu baza B'. Atunci, din formula schimbării de bază, avem

$$A' - \lambda I_n = S^{-1} \cdot (A - \lambda I_n) \cdot S, \forall \lambda \in \mathbb{R},$$

de unde

$$\det(A' - \lambda I_n) = \det(A - \lambda I_n), \forall \lambda \in \mathbb{R}.$$

Așadar, polinomul caracteristic este invariant la schimbări de bază, așa că îl vom numi polinomul caracteristic al lui T.

Toate valorile proprii ale lui T sunt rădăcini reale ale polinomului caracteristic al lui T.

- Dacă $\lambda \in \mathbb{R}$ este o valoare proprie a lui T, atunci numărul $def(T \lambda I_n) = dim(Ker(T \lambda \cdot 1_V))$ se numește multiplicitatea geometrică a lui λ .
- Dacă $\lambda \in \mathbb{R}$ este o rădăcină a polinomului $P_A \in \mathbb{R}[X]$, vom numi **multiplicitatea algebrică** a lui λ , cel mai mare număr $m \in \mathbb{N}^*$ astfel încât $(X \lambda)^m$ este un divizor al lui $P_A(X)$.

Observație Se poate arăta că multiplicitatea geometrică a unei valori proprii λ este mai mică decât multiplicitatea algebrică a lui λ în raport cu polinomul caracteristic al lui T. De aceea, dacă λ are multiplicitatea algebrică egală cu 1, atunci multiplicitatea geometrică λ trebuie să fie 1 (adică $dim(Ker(T - \lambda I_n)) = 1$).

Definiția 7.15 Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional, cu dim(V) = n, și fie $T \in \mathcal{L}(V)$. Spunem că endomorfismul T este **diagonalizabil** dacă există B o bază a lui V în raport cu care matricea asociată lui T, este o matrice diagonală, adică există $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ astfel încât

$$A_{B,B} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Teorema 7.16 Fie $(V, +, \cdot)$ un spaţiu liniar finit dimensional şi $T \in \mathcal{L}(V)$. Atunci T este diagonalizabil dacă si numai dacă multimea tuturor vectorilor proprii generează pe V.

Demonstrație: Dacă $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază a lui V și matricea asociată lui T în raport cu B este $diag(\lambda_1, \dots, \lambda_n)$, atunci $T(\mathbf{b}_k) = \lambda_k \mathbf{b}_k, 1 \le k \le n$. Deci vectorii $\mathbf{b}_1, \dots, \mathbf{b}_n$ sunt proprii, iar $\lambda_1, \dots, \lambda_n$ sunt valorile proprii corespunzătoare. Cum Lin(B) = V, cu atât mai mult mulțimea tuturor vectorilor proprii va genera pe V.

Reciproc, dacă mulțimea tuturor vectorilor proprii generează pe V, pot alege vectorii proprii $\mathbf{v}_1, \dots, \mathbf{v}_n$ astfel încât $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ să fie o bază pentru V. Atunci, matricea asociată lui T în raport cu baza $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ este diagonală, și are drept componente valorile proprii corespunzătoare vectorilor proprii $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Observații:

- 1. Dacă un endomorfism T pe un spațiu prehilbertian finit-dimensional este autoadjunct, atunci acesta este diagonalizabil.
- 2. Un endomorfism $T \in \mathcal{L}(V)$ este diagonalizabil pe spațiul liniar finit dimensional V dacă și numai dacă ecuația caracteristică are toate rădăcinile din \mathbb{R} , iar subspațiile proprii în cauză au dimensiunile egale cu ordinele de multiplicitate ale valorilor proprii corespunzătoare.

În cazul $V = \mathbb{R}^n$, există o metodă practică pentru diagonalizarea endomorfismului $T \in \mathcal{L}(\mathbb{R}^n)$:

– Se consideră baza canonică $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ a lui \mathbb{R}^n . În raport cu această bază se găsește matricea A asociată operatorului T, precum și polinomul caracteristic:

$$P_A(\lambda) := \det(A - \lambda I_n), \lambda \in \mathbb{R}.$$

- Se determină valorile proprii ale endomorfismului respectiv, prin rezolvarea ecuației algebrice caracteristice $P(\lambda) = 0$. Dacă toate cele n rădăcini ale lui P sunt reale, putem continua. Dacă nu, spunem că T nu este diagonalizabilă și ne putem opri aici.
- Pentru fiecare valoare proprie calculăm $r_{\lambda} = rang(A \lambda I_n)$ $(n r_{\lambda})$ va fi multiplicitatea geometrică a lui λ). Dacă $r_{\lambda} = n m_{\lambda}$, pentru orice valoare proprie λ , unde m_{λ} este multiplicitatea algebrică a lui λ în P, putem conchide că T este diagonalizabil. În caz contrar, concluzionăm că endomorfismul nu este diagonalizabil.
- Pentru fiecare valoare proprie λ , rezolvăm ecuația $A\mathbf{v} = \lambda \mathbf{v}$, unde vectorii $\mathbf{v} \in \mathbb{R}^n$ sunt considerați matrice coloană. Cum $rang(A \lambda I_n) = r_{\lambda}$, putem găsi vectorii liniari independenți $\mathbf{v}_1, \dots, \mathbf{v}_{r_{\lambda}}$ ce rezolvă ecuația. Mai mult, conform procedurii de ortonormalizare Gram-Schmidt, putem alege ca $\mathbf{v}_1, \dots, \mathbf{v}_{r_{\lambda}}$ să fie ortonormali.
- Baza B a lui V pentru care matricea lui T este diagonală este atunci mulțimea $\mathbf{v}_1, \dots, \mathbf{v}_{r_{\lambda}}$, pentru toate valorile proprii λ . Matricea de trecere S de la $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ la B este atunci matricea ce diagonalizează pe A, adică

$$diag(\lambda_1, \dots, \lambda_n) = S^{-1} \cdot A \cdot S.$$

Bibliografie

- 1. Ion D. Ion, R. Nicolae Alqebră, Editura Didactică și Pedagogică, București, 1981.
- 2. D. Drăghici Algebră, Editura Didactică și Pedagogică, București, 1972.
- 3. Irinel Radomir Elemente de algebră vectorială, geometrie și calcul diferențial, Editura Albastră, Cluj-Napoca, 2000.
 - 4. E. Cioară, M. Postolache Capitole de analiză matematică, Ed. "Fair Partners", Buc., 2010.
 - 5. Kenneth Kuttler Linear Algebra, Theory And Applications, The Saylor Foundation, 2013.
 - 6. Sheldon Axler Linear Algebra Done Right, Springer International Publishing AG, 2015.