Paralelismo com a GPU

De Rina Wilk para Chorume 15/08/2023

Sumário

Começo

- 1- Apresentação e introdução.
 - Sobre a Rina.
 - O que é low-level e paralelismo.
 - O que é a GPU e o paralelismo com GPU.
 - Porque é uma área extremamente importante para o avanço da humanidade.
 - Breve explicação sobre as principais tecnologias conhecidas (Vulkan, Opengl, Metal e DirectX).
- 2- Qual a base de conhecimento e a preparação necessária para iniciar nessa área.
 - Uma área muito voltada para a academia.
 - Base de conhecimento que você encontra desde o ensino médio até a faculdade.
 - É preciso aprender a ser auto-didáta.
- Matemática e física é importantíssimo (álgebra, geometria analítica, trigonometria, álgebra linear etc).
 - Linguagem de sombreamento/shading languages.
 - Paixão necessária.
- 3- Quais os diferentes campos e sua situação no mercado exterior.
- Biotecnologia, simulação, campos científicos, AI, desenvolvimento de jogos, desenvolvimento de engines, kernel/driver, compiladores/interpretadores, computação gráfica, graphics programming.
- Todas essas áreas compartilham do mesmo fundamento, emboram tenham diferenças de abstrações na maioria dos casos.
- Graphics programming, desenvolvimento de game engines, desenvolvimento de jogos e a diferença para a GPGPU.
- O mercado no uso de GPU para proposito geral (GPGPU): IA, automatização, embedded, linguagens de programação, compilador/interpretadores, shaders.
 - Freelancer, desenvolvimento de jogos/engines A e AA.
 - Desenvolvimento de jogos AAA.
- 4- Situação do Brasil e o campo graphics programming.
 - Criticar o baixo índice de vagas pelo país.
 - Trazer os motivos.
- 5- Conclusões.
 - Diferentes áreas que necessitam de uma boa base de conhecimento específico.
 - Como a GPU está impactando a humanidade e a falta de mercado no Brasil.
 - Futuro.

Programação e a Realidade

- 5- Introdução ao funcionamento da GPU.
- Breve explicação sobre o conceito de pipelines e como a GPU é diferente em comparação com a CPU.
 - Instruções, operadores matemáticos e processadores de trabalho especificos.
 - Driver comunicação com as APIs -, GPGPU e consoles.
 - Papel do OpenGL e Vulkan.
- 6- Renderização.
 - Diferença de fundamentos entre OpenGL e Vulkan.
 - Conceito de buffers.
 - Abstrações na hora de renderizar: estágios de shader e processo de masterização.
 - Shaders.
 - Algebra linear.
 - Matrizes de projeção, efeitos 2D (motion blur, hdr, bloom etc).
 - Algoritmos de renderização.
- 7- Principais fornecedores/vendor: Nvidia, AMD e Intel.
- Porque diferentes fornecedores/vendor (marcas) de GPUs conseguem renderizar as mesmas coisas
 - Diferença de OpenCL e CUDA para APIs de renderização.
- Quais as dificuldades de programar engines e a incompatibilidade de arquiteturas em diferentes fornecedores/vendor de GPUs.
- 8- Otimização via GPU, solução de falta de poder computacional e AI.
 - Como ocorre a otimização via GPU Compute shaders -.
 - Dificuldades pela falta de flexibilidade da GPU.
 - Uso de energia e processo de sincronização externa.
- 9- Conclusões.
 - Como a GPU é diferente da CPU.
 - Como o processo de renderização é complexo.
 - Problemas enfrentados pelas diferentes arquiteturas.
 - GPGPU e seus contrapontos.

Gatinhos

10- Agradecimentos.