一、常用的线性化方法

1. 双曲线:

$$\frac{1}{y} = a + \frac{b}{x} \xrightarrow{u = \frac{1}{y}, \quad v = \frac{1}{x}} u = a + bv$$

图4-14 双曲线

1

2. 幂函数曲线:

$$y = ax^b \xrightarrow{u=\ln y, v=\ln x, c=\ln a} u = c + bv$$

图4-15 幂函数曲线

3. 指数曲线:

$$y = ae^{bx} \xrightarrow{u=\ln y, c=\ln a} u = c + bx$$

图4-16 指数曲线

4. 倒指数函数:

$$y = ae^{\frac{b}{x}} \xrightarrow{u=\ln y, \quad v = \frac{1}{x}, \quad c = \ln a} u = c + bv$$

图4-17 倒指数曲线

5. 对数曲线:

$$y = a + b \ln x \xrightarrow{v = \ln x} y = a + bv$$

图4-18 对数曲线

6. S型曲线:

第四章 回归分析 §3 可化为线性情形的非线性回归 20170131 制作人:中国民用航空飞行学院 曾艳

实际应用中,一般作出所给数据 (x_i,y_i) (i=1,2,...,n)的散点图,将图形与直线或以上几种常见的曲线进行比较,选择其中的某条曲线来拟合这些点.

【*例4.8-4.9(P₁₉₀₋₁₉₃)】出钢时所用盛钢水的钢包,由于钢水对耐火材料的浸蚀,容积不断增大. 试找出使用次数x与增大的容积y之间的关系. 试验数据列于下表4-7.

表4-7

X	2	3	4	5	6
y	6.42	8.20	9.58	9.50	9.70
X	7	8	9	10	11
y	10.00	9.93	9.99	10.49	10.59
X	12	13	14	15	16
y	10.60	10.80	10.60	10.90	10.76

说明:本例如果选用双曲线函数回归,则所求回归方程满足 $\sum_{i=1}^{n}(\frac{1}{y_i}-\frac{1}{\hat{y}_i})^2$ 最小,而并非满足残差平方和 $Q_e=\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$ 最小,因此所求得的回归曲线 (4.81)不一定是最佳的拟合曲线。在选用曲线来表示y与x之间的关系时,最好选用不同的曲线类型分别进行计算,然后进行比较,残差平方和 $Q_e=\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$ 最小者为最优。

二、多项式回归

$$\begin{cases} y = \beta_0 + \beta_1 x + \dots + \beta_p x^p + \varepsilon, & (p \ge 2) \\ E\varepsilon = 0, D\varepsilon = \sigma^2 < \infty \end{cases}$$
 (4.83)

令 $x^i = x_i$ ($i = 1, 2, \dots, p$),则(4.83)可化归成多元线性回归模型:

$$\begin{cases} y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon \\ E\varepsilon = 0, D\varepsilon = \sigma^2 < \infty \end{cases}$$
(4.38)

【*例4.10(P₁₉₄)】某种半成品在生产过程中的废品率y(%)与它所含的某种化学成分x(0.01%)有关,现将试验所得的16组数据记录如下表,求y对x的回归方程.

X	34	36	37	38	39	39	39	40
y	1.30	1.00	0.73	0.90	0.81	0.70	0.60	0.50
X	40	41	42	43	43	45	47	48
y	0.44	0.56	0.30	0.42	0.35	0.40	0.41	0.60

第四章 回归分析 §3 可化为线性情形的非线性回归 20170131 制作人:中国民用航空飞行学院 曾報

作业:

 $(P_{196-200})$ 4.4, 4.8, 4.11