Devoir surveillé n° 2

Durée : 2 heures, calculatrices et documents interdits

I. Étude de quatre séries

On considère dans ce problème, la suite $(a_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{1 \times 3 \times \dots \times (2n-1)}{n \, 2^{n+1} \, n!} = \frac{1}{n \, 2^{n+1} \, n!} \prod_{k=0}^{n-1} (2k+1)$$

Pour $n \in \mathbb{N}$, on note

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k2^k} \qquad S_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1}}{k} \qquad T_n = \sum_{k=n+1}^{+\infty} a_k \qquad V_n = \sum_{k=n+1}^{+\infty} \frac{1}{k(k+1)2^k}$$

Le but de ce problème est de déterminer des équivalents des quatre suites $(R_n)_n$, $(S_n)_n$, $(T_n)_n$ et $(V_n)_n$.

On rappelle que la notation $u_n \sim v_n$ signifie que la suite $(u_n)_{n \in \mathbb{N}}$ est équivalente à la suite $(v_n)_{n \in \mathbb{N}}$ et que la notation $u_n = o(v_n)$ signifie que la suite $(u_n)_{n \in \mathbb{N}}$ est négligeable devant la suite $(v_n)_{n \in \mathbb{N}}$.

- 1) a) Soit $n \in \mathbb{N}$: justifier l'existence des trois réels R_n , S_n et V_n .
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$, $a_n = \frac{(2n)!}{n \cdot 2^{2n+1} (n!)^2}$.
 - c) Après avoir rappelé la formule de Stirling, montrer que la série de terme général a_n est convergente.
- **2)** On note dans cette question $(U_n)_{n\in\mathbb{N}}$ la suite définie par $U_n = \sum_{i=n+1}^{+\infty} \frac{1}{2^i}$.
 - a) Pour n dans \mathbb{N} , calculer U_n . Écrire, pour tout $k \in \mathbb{N}^*$, $\frac{1}{2^k}$ en fonction de deux termes de la suite $(U_n)_{n \in \mathbb{N}}$.
 - **b)** En déduire que, pour tout $n \in \mathbb{N}$, $R_n = \frac{U_n}{n+1} \sum_{k=n+1}^{+\infty} \frac{U_k}{k(k+1)}$.
 - c) Montrer que $\sum_{k=n+1}^{+\infty} \frac{U_k}{k(k+1)} = o(R_n).$
 - **d)** Montrer que $R_n \sim \frac{1}{n2^n}$.
- **a)** Montrer que

$$\forall n \in \mathbb{N}^*, \quad \forall t \in [0, 1], \quad \sum_{k=0}^{n-1} (-1)^k t^k = \frac{1}{1+t} - (-1)^n \frac{t^n}{1+t}$$

b) En admettant que $\ln 2 = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k}$, montrer que pour tout $n \in \mathbb{N}^*$, $S_n = (-1)^n \int_0^1 \frac{t^n}{1+t} dt$.

c) Montrer que l'on a

$$\forall n \in \mathbb{N}^*, \quad S_n = \frac{(-1)^n}{2(n+1)} + \frac{(-1)^n}{n+1} \int_0^1 \frac{t^{n+1}}{(1+t)^2} dt$$

- **d)** Conclure que $S_n \sim \frac{(-1)^n}{2n}$.
- 4) Soit $\varepsilon > 0$.
 - a) Montrer qu'il existe un rang $N \in \mathbb{N}$ tel que

$$\forall k \geqslant N, \quad (1-\varepsilon)\frac{1}{2\sqrt{\pi} k^{\frac{3}{2}}} \leqslant a_k \leqslant (1+\varepsilon)\frac{1}{2\sqrt{\pi} k^{\frac{3}{2}}}$$

- **b)** Montrer que, pour tout entier $k \ge 2$, $\int_k^{k+1} \frac{\mathrm{d}t}{t^{\frac{3}{2}}} \le \frac{1}{k^{\frac{3}{2}}} \le \int_{k-1}^k \frac{\mathrm{d}t}{t^{\frac{3}{2}}}$.
- c) Déduire des questions précédentes que

$$\forall n \geqslant N, \quad (1 - \varepsilon) \frac{1}{2\sqrt{\pi}} \int_{n+1}^{+\infty} \frac{\mathrm{d}t}{t^{\frac{3}{2}}} \leqslant T_n \leqslant (1 + \varepsilon) \frac{1}{2\sqrt{\pi}} \int_{n}^{+\infty} \frac{\mathrm{d}t}{t^{\frac{3}{2}}}$$

- **d)** Conclure que $T_n \sim \frac{1}{\sqrt{\pi n}}$.
- **5)** Montrer que $V_n \sim \frac{1}{n^2 2^n}$.
- **6)** Parmi les quatre séries $\sum_{n\geqslant 1}\frac{1}{n2^n}$, $\sum_{n\geqslant 1}\frac{(-1)^{n-1}}{n}$, $\sum_{n\geqslant 1}a_n$ et $\sum_{n\geqslant 1}\frac{1}{n(n+1)2^n}$, laquelle converge le plus rapidement? Laquelle converge le moins rapidement? Justifier vos réponses.

II. Une suite récurrente

On considère la suite u définie par récurrence par $u_0 = 3$ et, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{3u_n - 4}{u_n - 1}.$$

- 1) Montrer que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n > 2$.
- **2)** Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite ℓ .
- 4) Redémontrons les résultats de la question 3) en utilisant une autre méthode.
 - a) Montrer que la suite de terme général $v_n = \frac{1}{u_n 2}$ est arithmétique et donner sa raison.
 - b) Calculer, en fonction de n, le terme général de la suite v_n , puis celui de u_n .
 - c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite ℓ .
- 5) Montrer que la suite de terme général $w_n = n(u_n \ell)$ converge et donner sa limite.