Выбор оптимальной модели рекуррентной сети в задачах поиска парафраза

Смердов Антон Николаевич

Научный руководитель д.ф-м.н. В.В. Стрижов

Московский физико-технический институт Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

МФТИ, 13 июня 2018

Решаемая задача и предлагаемый подход

Задача

Избыточное число параметров в моделях глубокого обучения влечёт переобучение и сложность оптимизации параметров.

Цель работы

Оптимизация структур моделей глубокого обучения.

Метод решения

Предлагается вариационный байесовский подход с предположением о нормальном распределении вектора параметров модели. Для оптимизации структуры используется прореживание полученной модели.

Литература

- Sanborn A., Skryzalin J. Deep Learning for Semantic Similarity // CS224d: Deep Learning for Natural Language Processing Stanford, CA, USA: Stanford University, 2015. Unpublished.
- Graves A. Practical variational inference for neural networks // Advances in Neural Information Processing Systems 24 (NIPS 2011). P. 2348–2356.
- О.Ю. Бахтеев, В.В. Стрижов. Выбор моделей глубокого обучения субоптимальной сложности // Автоматика и телемеханика, 2018.

Постановка задачи нахождения оптимальной модели

Дано $\mathfrak{D} = \{(\mathbf{a}_i, \mathbf{b}_i, y_i)\}, i = \overline{1, N}, \mathbf{a}_i, \mathbf{b}_i$ — последовательности векторов слов, $y_i \in \{0\dots 5\}$ — экспертная оценка их близости. Для модели $\mathbf{f} \in \mathfrak{F}$ и вектора параметров \mathbf{w} определим логарифмическую функцию правдоподобия выборки:

$$L_{\mathfrak{D}}(\mathbf{y},\mathfrak{D},\mathbf{f},\mathbf{w}) = \log p(\mathbf{y}|\mathfrak{D},\mathbf{w},\mathbf{f}) = \sum_{(\mathbf{a},\mathbf{b},\mathbf{y}) \in \mathfrak{D}} \log p(\mathbf{y}|\mathbf{a},\mathbf{b},\mathbf{w},\mathbf{f})$$

Оптимальная модель f находится максимизацией логарифма правдоподобия модели $L_f(y,\mathfrak{D},f)$:

$$L_{\mathbf{f}}(\mathbf{y}, \mathfrak{D}, \mathbf{f}) = \log p(\mathbf{y}|\mathfrak{D}, \mathbf{f}) = \log \int_{\mathbf{w}} p(\mathbf{y}|\mathfrak{D}, \mathbf{w}) p(\mathbf{w}|\mathbf{f}) d\mathbf{w}$$

Априорное и апостериорное распределения параметров будем считать нормальными:

$$p(\mathbf{w}|\mathbf{f}) \sim N(\mu_1, \mathbf{A}_1^{-1}), \ p(\mathbf{w}|\mathbf{y}, \mathfrak{D}, \mathbf{f}) \sim N(\mu_2, \mathbf{A}_2^{-1})$$

Предлагаемая модель

Для решения задачи использовалась рекуррентная нейронная сеть с одним скрытым слоем.

Вектор значений скрытого слоя обновляется как:

$$\mathbf{h_i} = \mathsf{tanh}(\mathbf{x_i^TW} + \mathbf{h_{i-1}^TU} + \mathbf{b}),$$

где $\mathbf{x_i} \in R^m$ – входной вектор, $\mathbf{h_i} \in R^n$, $\mathbf{W} \in R^{n*m}$, $\mathbf{U} \in R^{n*n}$, $\mathbf{b} \in R^n$.

Вариационная нижняя оценка

Рассмотрим вариационную нижнюю оценку $L_{\mathbf{f}}(\mathbf{y},\mathfrak{D},\mathbf{f})$, полученную из неравенства Йенсена:

$$\begin{split} &L_{\mathbf{f}}(\mathbf{y},\mathfrak{D},\mathbf{f}) = \int_{\mathbf{w}} \rho_{2}(\mathbf{w}) \log p(\mathbf{y}|\mathfrak{D},\mathbf{f}) d\mathbf{w} \geq \\ &\geq -D_{\mathsf{KL}}(N(\boldsymbol{\mu}_{2},\mathbf{A}_{2}^{-1})||N(\boldsymbol{\mu}_{1},\mathbf{A}_{1}^{-1})) + \int_{\mathbf{w}} \rho_{2}(\mathbf{w}) \log p(\mathbf{y}|\mathfrak{D},\mathbf{f},\mathbf{w}) d\mathbf{w} \end{split}$$

Обозначим за $L_{\mathbf{w}}(\mathfrak{D},\mathbf{f})$ и $L_{E}(\mathbf{y},\mathfrak{D},\mathbf{f},\mathbf{w})$ первое и второе слагаемые со знаком минус:

$$L_{\mathbf{w}}(\mathfrak{D}, \mathbf{f}) = D_{\mathsf{KL}}(N(\boldsymbol{\mu}_2, \mathbf{A}_2^{-1})||N(\boldsymbol{\mu}_1, \mathbf{A}_1^{-1}))$$

$$\mathit{L}_{\mathit{E}}(\mathsf{y},\mathfrak{D},\mathsf{f},\mathsf{w}) = -\mathsf{E}_{\mathsf{w} \sim \mathit{N}(\mu_{2},\mathsf{A}_{2}^{-1})} \mathit{L}_{\mathfrak{D}}(\mathsf{y},\mathfrak{D},\mathsf{f},\mathsf{w})$$

Искомая модель f минимизирует суммарную функцию потерь

$$f = \operatorname{argmin}_{f \in \mathfrak{F}} L(y, \mathfrak{D}, f, w)$$

$$\textit{L}(\textbf{y},\mathfrak{D},\textbf{f},\textbf{w}) = \textit{L}_{\textit{E}}(\textbf{y},\mathfrak{D},\textbf{f},\textbf{w}) + \textit{L}_{\textbf{w}}(\mathfrak{D},\textbf{f},\textbf{w})$$

Предлагаемое решение оптимизационной задачи

Для оценки $L_E(\mathbf{y},\mathfrak{D},\mathbf{f},\mathbf{w})$ воспользуемся интегрированием Монте-Карло:

$$\mathit{L}_{E}(\mathbf{y},\mathfrak{D},\mathbf{f},\mathbf{w}) \approx \frac{1}{S} \sum_{k=1}^{S} \mathit{L}_{\mathfrak{D}}(\mathbf{y},\mathfrak{D},\mathbf{f},\mathbf{w}_{k})$$

Сложность модели $L_{\mathbf{w}}(\mathfrak{D},\mathbf{f},\mathbf{w})$ может быть найдена аналитически:

$$\begin{aligned} L_{\mathbf{w}}(\mathfrak{D}, \mathbf{f}, \mathbf{w}) &= D_{\mathsf{KL}}(N(\mu_{1}, \mathbf{A}_{1}^{-1}) || N(\mu_{2}, \mathbf{A}_{2}^{-1})) = \frac{1}{2} \left(\log \frac{|\mathbf{A}_{2}^{-1}|}{|\mathbf{A}_{1}^{-1}|} - W + tr(\mathbf{A}_{2}\mathbf{A}_{1}^{-1}) + (\mu_{1} - \mu_{2})^{T} \mathbf{A}_{2}(\mu_{1} - \mu_{2}) \right) \end{aligned}$$

Обновление параметров распределений

Скалярные априорная дисперсия и вектор средних, апостериорная матрица ковариаций диагональна:

$$\mathbf{A}_1^{\text{-}1} = \sigma \mathbf{I}, \ \mathbf{A}_2^{\text{-}1} = \operatorname{diag}(\boldsymbol{\sigma}), \ \boldsymbol{\mu}_1 = \boldsymbol{\mu}, \ \boldsymbol{\mu}_2 = \mathbf{m}.$$

Тогда
$$L_{\mathbf{w}}(\mathfrak{D},\mathbf{f},\mathbf{w}) = \sum_{i=1}^d (\log \frac{\sigma}{\sigma_i} + \frac{(\mu - m_i)^2 + \sigma_i^2 + \sigma^2}{2\sigma^2})$$

$$\frac{\partial}{\partial \mu}D_{\mathsf{KL}} = \sum_{i=1}^{W} \frac{\mu - m_i}{\sigma^2} = 0 \implies \hat{\mu} = \frac{1}{W} \sum_{i=1}^{W} m_i.$$

$$\frac{\partial}{\partial \sigma^2} D_{KL} = \sum_{i=1}^W \frac{1}{2\sigma^2} - \frac{(\mu - m_i)^2 + \sigma_i^2}{2\sigma^4} = 0 \implies \hat{\sigma}^2 = \frac{1}{W} \sum_{i=1}^W (\mu - m_i)^2 + \sigma_i^2.$$

В частности, если апостериорная матрица ковариаций скалярна, т.е. $\mathbf{A}_2^{\text{-1}} = \beta \mathbf{I}$:

$$\frac{\partial}{\partial \sigma^2} D_{\mathsf{KL}} = \sum_{i=1}^W \frac{1}{2\sigma^2} - \frac{(\mu - m_i)^2 + \beta^2}{2\sigma^4} = 0 \implies \hat{\sigma}^2 = \frac{1}{W} \sum_{i=1}^W (\mu - m_i)^2 + \beta^2.$$

Алгоритм обновления параметров распределений

Оптимизация параметров сводится к следующему алгоритму:

- **1** Инициализация $\sigma = 1$, m = 0, $\mu = 0$, $\sigma^2 = 1$
- **2** Повторять:
- $oldsymbol{\circ}$ Сделать градиентный шаг $oldsymbol{\sigma}:=oldsymbol{\sigma}-\eta
 ablaoldsymbol{\sigma},\ \mathbf{m}:=\mathbf{m}-\eta
 abla\mathbf{m}$
- **②** Обновить параметры априорного распределения $\mu := \hat{\mu}, \ \sigma^2 := \hat{\sigma}^2.$
- \bullet Пока значение L не стабилизируется

Цели и данные вычислительного эксперимента

Цели вычислительного эксперимента

Проверить работоспособность метода. Путём удаления наименее важных весов найти оптимальную структуру сети в задачах поиска парафраза.

Данные

Вычислительный эксперимент проводился на выборке пар предложений разной степени схожести SemEval 2015. Тренировочная, валидационная и тестовая выборки составили 70%, 15% и 15% соответственно.

Сравнение с базовыми алгоритмами

Векторизация слов для использования алгоритмами проводилась методом GloVe.

Функционалом качества была выбрана F1-мера:

$$F_1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{precision}}$$

Результаты вычислительного эксперимента:

Classificator	F1-measure
Logistic Regression	0.286
SVC	0.290
DecisionTreeClassifier	0.316
KNeighborsClassifier	0.322
RNN	0.362
RNN+variational, I, I	0.311
RNN+variational, D, I	0.330

Результаты вычислительного эксперимента

Чем больше плотность вероятности в нуле $\rho(0)=\frac{1}{\sqrt{2\pi\sigma_i^2}}exp(-\frac{\mu_i^2}{2\sigma_i^2})$, тем меньше важность параметра. Обозначим отношение сигнал-шум за $\lambda=\left|\frac{\mu_i}{\sigma_i}\right|$, тогда $\rho(0)\sim exp(-\frac{\lambda^2}{2})$. Параметры с большим значением λ могут быть удалены.

Заключение

- Задача выбора оптимальной модели поставлена формально.
- Минимизация правдоподобия модели не приводит к переобучению.
- Алгоритм удаления параметров позволяет упростить структуру модели без существенных потерь качества.

Публикации

А. Н. Смердов, О. Ю. Бахтеев, В. В Стрижов. Выбор оптимальной модели рекуррентной сети в задачах поиска парафраза // Информатика и её применения, 2019. Том 13, выпуск 2.