Numerical Mathematics II for Engineers Homework assignment 3: Rise of the stencil.

Programming assignments can be solved in MATLAB/Python/Julia. Use sparse matrices where appropriate!

Deadline: submit before/during the lecture on November 11, 2019.

1. Exercise: Implementation of higher-order difference stencils

7 points

For given $m \in \mathbb{N}_0$, let $\bar{\Omega} = [0,1]$ and $\bar{\Omega}_h = \{0,h,2h,\ldots,(N+1)h\}$ with h = 1/(N+1) the corresponding grid. Consider $x_n = nh \in \bar{\Omega}_h$ with sufficiently many neighbors to either side, i.e., for any j with $n-m \leq j \leq n+m$ we require $x_j = jh \in \bar{\Omega}_h$. We abbreviate $u_n = u(x_n)$ with $u : \bar{\Omega} \to \mathbb{R}$ being r-times continously differentiable.

- a) Perform Taylor expansions for u_j for $n-m \leq j \leq n+m$ in terms of $u(x_n)$ and derivatives $u^{(k)}(x_n)$ for $k \geq 0$. Expand and, by neglecting the remainders, invert this relationship to find symmetric difference stencils for arbitrary derivatives and arbitrary desired consistency level. What are k, r and the remainders R?
- b) Based on a) write a function S=a03ex01getstencil(m) which returns the 2m+1 stencils for $u^{(k)}(x_n)$ for k=0...2m and compare the symmetric stencils here: https://en.wikipedia.org/wiki/Finite_difference_coefficient
- c) Write a function [xh,Lh]=a03ex01getlaplace(m,N) which returns the reduced sparse matrix for the Laplace operator $L_h \in \mathbb{R}^{(N+1)\times (N+1)}$ based on the stencil S from b) with periodic boundary conditions and the corresponding mesh $x_h = (x_0,..,x_N)$ for given $N,m\in\mathbb{N}$.
 - Hint: Assume $u: \mathbb{R} \to \mathbb{R}$ is 1-periodic u(x+1) = u(x). Discretize u on [0,1) or u_h on $\{0,h,2h,\ldots,Nh\}$ with h=1/(N+1) and identify $u_{N+1+i}=u_i$ for $i\in\mathbb{Z}$.
- d) For $u(x) = \sin(2\pi x)$ plot the error $\max_j |(L_h u_h)(x_j) u''(x_j)|$ as a function of h doubly logarithmically for m = 1, ..., 4 and $N = 2^p 1$ for p = 2, ..., 15 and discuss.

2. Exercise: Difference formulas for non-uniform grids

7 points

Consider a domain $\Omega = (0,1)$, its closure $\overline{\Omega} = [0,1]$, and a grid $\overline{\Omega}_h = \{x_0, \dots, x_{N+1}\}$, where the grid points satisfy $0 = x_0 < x_1 < \dots < x_{N+1} = 1$ with step sizes $h_i := x_i - x_{i-1}$ and maximal step size $h := \max_{i \in \{1,\dots,N+1\}} h_i$. If $h_i = h_j$ for all $i, j \in \{1,\dots,N+1\}$ we say that $\overline{\Omega}_h$ is a uniform grid, otherwise a non-uniform grid. For $i \in \{1,\dots,N\}$ and $u \in C^4(\overline{\Omega})$ we define the adapted differences

$$(D^{-}u)_{i} := \frac{u(x_{i}) - u(x_{i-1})}{x_{i} - x_{i-1}} = \frac{u(x_{i}) - u(x_{i-1})}{h_{i}},$$

$$(D^{+}u)_{i} := \frac{u(x_{i+1}) - u(x_{i})}{x_{i+1} - x_{i}} = \frac{u(x_{i+1}) - u(x_{i})}{h_{i+1}},$$

$$(D^{0}u)_{i} := \frac{u(x_{i+1}) - u(x_{i-1})}{x_{i+1} - x_{i-1}} = \frac{u(x_{i+1}) - u(x_{i-1})}{h_{i} + h_{i+1}}.$$

a) Determine $\alpha_i, \beta_i, \gamma_i, R_i \in \mathbb{R}$ depending on h_i, h_{i+1} such that

$$u''(x_i) = \alpha_i u(x_{i-1}) + \beta_i u(x_i) + \gamma_i u(x_{i+1}) + R_i,$$

with $\lim_{h\to 0} R_i = 0$. Hint: Use u'' = au'' + bu'' with a+b=1 and use suitable Taylor expansions to express the two terms. Choose a and b properly.

- **b)** Determine the order of the remainder R_i for general h_i, h_{i+1} , i.e., find the largest p > 0 such that $|R_i| = \mathcal{O}(h^p)$. Is $u \in C^4(\overline{\Omega})$ necessary to obtain this rate?
- c) Under which special conditions on h_i, h_{i+1} does the order of R_i improve? Is it necessary that $u \in C^4(\overline{\Omega})$ to obtain the improved rate?
- 3. Programming exercise: 1D FDM

7 points

Consider the following boundary value problem (BVP) :

$$\begin{cases} -u''(x) - 4u'(x) + u(x) = f(x), & \text{for all } x \in \Omega = (0, 1), \\ u(0) = 1, \ u(1) = 2. \end{cases}$$

The exact solution is given by $u(x)=1+4x^2-3x^3$. Discretize this BVP with finite differences on $\overline{\Omega}_h=\{ih\in\mathbb{R}:i=0,\ldots,N+1\}$ with mesh size $h=\frac{1}{N+1}$, where $N=2^p-1$ for some integer p>1. Use the standard scheme

$$u_h(0) = 1, u_h(1) = 2,$$

 $(-D^-D^+ - 4D^0 + I)u_h(ih) = f(ih),$ $i = 1, ..., N,$

so that you get a discrete equation $L_h u_h = f_h$ with $L_h \in \mathbb{R}^{N \times N}$.

a) Determine the right hand side of the BVP analytically.

- b) Write a function [xh,Lh,fh] = a03ex03getBVP(p) that sets up the grid xh, the sparse matrix Lh, and the right hand side fh of the corresponding linear system for the refinement level n=2^p-1. Hint: Useful MATLAB commands are speye, spdiags, linspace, etc. (useful Python functions are numpy.linspace, scipy.sparse.diags, etc.).
- c) Write a function error = a03ex03solve() that solves the discretized problem for $p \in \{1, ..., 15\}$. For each p determine the error between the approximation and the restricted exact solution in the maximum norm, i.e. error(p) = $\max_i |u_h(ih) u(ih)|$. Plot the errors versus the grid size using loglog(h,error) (in Python matplotlib.pyplot.loglog(h,error)). How fast does error(p) $\rightarrow 0$ as $h \rightarrow 0$?

total sum: 21 points