

Regression

Intelligente Systeme (SoSe 2017)

Dr.-Ing. Sabine Schumann & Jan Paul Assendorp

Stand: 13.05.2017

Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Beispiel

Kaufpreis einer Immobilie in Portland, Oregon

Dataset mit Immobilienpreisen aus Portland, Oregon

Living area (feet²)	Price (1000\$)
2104	400
1600	330
2400	369
1416	232
3000	540
	•••

Wie lassen sich Preise für weitere Immobilien vorhersagen?

Allgemeine Notation:

 $x^{(i)}$: Input, hier Wohnraum

y⁽ⁱ⁾: Zielvariable, hier Preis

Paar $(x^{(i)}, y^{(i)})$: Trainingsset

Ziel ist das Lernen einer Funktion:

h(x) mit $h: X \mapsto Y$

Welche Art von Machine-Learning-Problem?

Klassifikation vs. Regression

Im Allgemeinen lässt sich unterscheiden:

Kontinuierliche Zielvariable

$$y \in \mathbb{R}$$

 Zielvariable nimmt kleine Anzahl diskreter Werte oder Label an

z.B. $y \in \langle gut, neutral, schlecht \rangle$

Zielvariable (Preis) ist kontinuierlich

-> lineare Regressions

Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Erweiterung des Beispiels: Immobilienpreise

 x_1

 \boldsymbol{x}_2

y

Lösung eines supervised Learning Problems

1. Festlegen der Input-Output-Paare:

2. Auswahl der Hypothese *h*

3. Bestimmen einer Error-Funktion J zum Prüfen der Hypothese

4. Auswahl eines Algorithmus zur effektiven Suche der besten Hypothese

Definition der Hypothese h als lineare Funktion:

 $\theta_0 x_0$ mit $x_0 = 1$ als Intercept Term

x_i: Ausprägungen eines Datensatzes

Definition der Hypothese h als lineare Funktion:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_i x_i$$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

-> Vereinfachung möglich durch $x_0 = 1$

Wie wird das Modell trainiert?

 $\rightarrow h(x)$ annähern an y mittels Cost-Funktion

Cost-Funktion (SSE):

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

-> für alle Paare $(x^{(i)}, y^{(i)})$, wobei $x \in \mathbb{R}^n$

Erinnerung: Sum of Squared Errors (SSE)

-> $J(\theta)$ misst Abweichung zwischen $h(x^{(i)})$ und $y^{(i)}$

Lösung: Closed Form

Lösung in geschlossener Form:

$$w = (X^T X)^{-1} X^T y$$

-> Geschlossene Form nur selten anwendbar

Beispiel: m = 1,000,000, n = 100,000

 $X^T X: \mathbb{R}^{n \times m} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times n}$

-> Matrix mit 100,000*100,000 Elementen -> $1*10^{10}$ Gleit-Kommazahlen (8 Bytes) benötigt 80 Gigabyte Hauptspeicher

LMS Algorithmus (Least Mean Squares)

Suchalgorithmus zum finden optimaler Gewichte θ :

1. Zufällige initiale Werte für θ

2. Reduzierung der Error-Funktion $J(\theta)$ durch schrittweises Update der Gewichte θ mittels Gradienten-Verfahren

3. Abbruch bei Konvergenz

Gradienten-Verfahren (Gradient Descent)

Update der Gewichte mittels Gradient:

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Learning Rate a: Geschwindigkeit der Bewegung zum Optimum (je Kleiner desto mehr Schritte)

Partielle Ableitung von $J(\theta)$ nach θ_i

Gradienten-Verfahren (Gradient Descent)

Beispiel zu quadratischer Funktion

$$y = \frac{1}{2}(x-2)^2 + 3.2$$

Globoles Minimum $J_{min}(\theta)$

Gradienten-Verfahren (Gradient Descent)

Update der Gewichte mittels Gradient:

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

-> Verfahren simultan durchführen für alle θ_j mit j=0,...,n

Gradient Descent für einen Datensatz (x, y) mit SSE Error-Funktion:

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Wir suchen partielle Ableitung von $J(\theta)$ nach θ_j für <u>einen</u> Datensatz

Gradient Descent für einen Datensatz (x, y) mit SSE Error-Funktion:

Gradient Descent für einen Datensatz (x, y) mit SSE Error-Funktion:

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$$

Partielle Ableitung von $J(\theta)$:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$u = g(x), \qquad z = f(u) = f(g(x))$$

Erinnerung: Kettenregel

$$\frac{dz}{dx} = \frac{dz}{du}\frac{du}{dx} \quad \rightarrow \text{Äußere mol innere Ableitung}$$

Mehrdimensionale Kettenregel:

X ist ein Vektor

$$\frac{dz}{dx} = \frac{dz}{du}\frac{du}{dx} \quad \Rightarrow \quad \frac{\partial z}{\partial x_{j}} = \sum_{i} \frac{\partial z}{\partial u_{i}}\frac{\partial u_{i}}{\partial x_{j}}$$

$$Hier nur \underline{ein} i \qquad \qquad \frac{\partial z}{\partial x_{j}} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x_{j}}$$

$$bzw. Dotensotz$$

Kettenregel am Beispiel $J(\theta)$:

$$\frac{\partial z}{\partial x_i} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x_i} = \frac{\partial f(g)}{\partial g} \frac{\partial g(x)}{\partial x_i}$$

$$f(g) = \frac{1}{2}g^2 \qquad \int$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2 = \frac{1}{2} * 2 * (h_{\theta}(x) - y) * \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y)$$

$$g(x) = h_{\theta}(x) - y$$

Vereinfachung durch Faktor

Partielle Ableitung der Error-Funktion:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{2} * 2 * (h_{\theta}(x) - y) * \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) * \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

Partielle Ableitung der Error-Funktion:

$$\frac{\partial}{\partial \theta_j} J(\theta) = (h_{\theta}(x) - y) * \frac{\partial}{\partial \theta_j} \left(\sum_{i=0}^n \theta_i x_i - y \right)$$

$$\frac{\partial}{\partial \theta_j} \sum_{i=0}^n \theta_i x_i - y = \frac{\partial}{\partial \theta_j} (\theta_0 x_0 + \dots + \theta_j x_j + \dots + \theta_n x_n) = \frac{\partial}{\partial \theta_j} \theta_j x_j = x_j$$

Partielle Ableitung der Error-Funktion:

$$\frac{\partial}{\partial \theta_j} J(\theta) = (h_{\theta}(x) - y) * \frac{\partial}{\partial \theta_j} \left(\sum_{i=0}^n \theta_i x_i - y \right)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = (h_{\theta}(x) - y) x_j$$

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Gradient Descent

$$\frac{\partial}{\partial \theta_j} J(\theta) = (h_{\theta}(x) - y) x_j$$

Partielle Ableitung von $J(\theta)$

 \rightarrow LMS (Least Mean Squares) Update Regel für einen Datensatz $(x^{(i)}, y^{(i)})$:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

Batch Gradient Descent

Wie ist die Update-Regel für mehrere Trainingsdatensätze?

-> Batch Gradient Descent

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 Für alle Parameter θ_j wiederholen bis Konvergenz

Visualisierung: Batch Gradient Descent

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Initialer Wert (48, 30)

Ergebnis: Batch Gradient Descent

Approximierte Hypothese:

$$h(x) = 89.60 + 0.1392x_1 - 8.738x_2$$

Batch Gradient Descent

Loop bis Konvergenz {

$$\theta_j \coloneqq \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
, for every j

}


```
# Batch Gradient Descent

for (k in seq(max_iterations)) {
         for(j in seq(n)){
             w[j] <- w[j] + alpha * ( t(y - (X %*% w)) %*% X[,j] )
         }
}</pre>
```


Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Stochastic Gradient Descent (SGD)

- Batch Gradient Descent geht über das gesamte Trainingsset um Parameter θ_i zu aktualisieren
 - -> langsam, wenn Datensatz RAM sprengt
- **SGD** geht über das Trainingsset und verändert die Parameter gemäß der Gradienten des betrachteten Datensatzes i
 - -> stochastisch durch Annäherung an Subset der Daten
 - -> optimiert durch mini-batches
 - -> übertritt lokales Optimum durch "noisy" Gradient

Stochastic Gradient Descent (SGD)

```
Loop bis Konvergenz { for \ i=1 \ to \ m, \{ \\ \theta_j \coloneqq \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)})\right) x_j^{(i)} \ (for \ every \ j). \} }
```


Stochastic Gradient Descent (SGD) in

```
# Stochastic Gradient Descent (SGD)
for (k in seq(max_iterations)) {
  for (i in seq(m)) { # iterate over Datapoints
    w <- w + alpha * t((y[i] - (t(w) %*% X[i,])) %*% X[i,])
  }
}</pre>
```


Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Approximation Performance

 $y = \theta_0 + \theta_1 x$

Approximation Performance

$$y = \theta_0 + \theta_1 x$$

$$y = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$y = \sum_{j=0}^{5} \theta_j x^j$$

-> Error Reduktion durch mehr Features

Approximation Performance

Sind mehr Feature wirklich besser?

Locally Weighted Linear Regression (LWR)

- LWR Algorithmus wählt passende Features aus
 - -> Voraussetzung: Genügend Trainingsdaten

• Auswahl von θ , sodass $J(\theta)$ minimal wird mit $w^{(i)}$ als nicht-negative Gewichte mit

$$J(\theta) = \sum_{i} w^{(i)} (y^{(i)} - \theta^T x^{(i)})^2$$

Locally Weighted Linear Regression (LWR)

• Gewichte $w^{(i)}$ mit τ als Bandbreite, typisch wie folgt:

$$w^{(i)} = e^{\left(-\frac{\left(x^{(i)} - x\right)^2}{2\tau^2}\right)}$$

• Bandbreite definiert das Abfallen des Gewichtes $w^{(i)}$ bei größerer Differenz $|x^{(i)} - x|$, wobei x der aktuell betrachteten Datensatz ist

Trainingsdaten zum Zeitpunkt der Berechnung neuer Punkte nötig

Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Anwendungsbeispiel

Binäre Klassifikation von Spam-Emails:

0: negative Klasse

1: positive Klasse

 \rightarrow Zielvariable: $y \in \{0, 1\}$

Zielvariable ist WahrscheinlichKeit für Klasse Spam

Hypothese

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

mit Sigmoid-Funktion

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid-Funktion

-> Logistische Funktion

$$z \rightarrow \infty = 1$$

$$z \rightarrow -\infty = 0$$

→ Einfach differenzierbar

Ableitung der Sigmoid-Funktion

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

Kettenregel
$$\frac{df(u)}{dz} = \frac{df}{du}\frac{du}{dz}$$

$$f(u) = u^{-1} \to \frac{df(u)}{du} = -u^{-2}$$

$$u(z) = 1 + e^{-z} \to \frac{du(z)}{dz} = -e^{-z}$$

Ableitung der Sigmoid-Funktion

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = \frac{e^{-z} + 1 - 1}{(1 + e^{-z})^2}$$
 -> Erweitern mit Foktor (Summe 0)
$$= \frac{1 + e^{-z}}{(1 + e^{-z})^2} - \frac{1}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} - \frac{1}{(1 + e^{-z})^2} = \frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}}\right)$$

Ableitung der Sigmoid-Funktion

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = \frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}} \right)$$

$$g'(z) = g(z) (1 - g(z))$$
 Ableitung der logistischen Funktion

Annahmen bzgl. der Wahrscheinlichkeiten:

1: positive Klasse

0: negative Klasse

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Wahrscheinlichkeit von y unter der Bedingung x, parametrisiert durch θ (Keine Zufalls-Variable)

Zusammengefasst: $p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$

Likelihood L der Parameter θ

Anstatt Likelihood $L(\theta)$ ist es einfacher die Log-Likelihood $l(\theta)$ zu maximieren:

$$l(\theta) = \log L(\theta) = \log \prod_{i=1}^{m} \left(h_{\theta}(x^{(i)}) \right)^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)}) \right)^{1 - y^{(i)}}$$

$$= \sum_{i=1}^{m} \log \left(h_{\theta}(x^{(i)}) \right)^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)}) \right)^{1 - y^{(i)}}$$

$$\rightarrow$$
 mit $\log(\mathbf{a} * \mathbf{b} * \cdots) = \log(\mathbf{a}) + \log(\mathbf{b}) + \cdots$

Log-Likelihood $l(\theta)$: \rightarrow mit $\log(a * b * \cdots) = \log(a) + \log(b) + \cdots$

$$l(\theta) = \sum_{i=1}^{m} \log \left(h_{\theta}(x^{(i)}) \right)^{y^{(i)}} + \log \left(1 - h_{\theta}(x^{(i)}) \right)^{1 - y^{(i)}}$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

$$\rightarrow mit \log(a^b) = b * \log(a)$$

Wie lässt sich die Log-Likelihood maximieren?

Updates der Parameter:

$$\theta \coloneqq \theta + \alpha \nabla_{\theta} l(\theta)$$
 (Gradient Ascent)

• Berechnen des Gradienten

$$rac{\partial}{\partial heta_j} \; l(heta)$$

Alternative: minimieren der negativen Log-Likelihood

Berechnung des Gradienten der Log-Likelihood:

$$\frac{\partial}{\partial \theta_j} l(\theta) = \frac{\partial}{\partial \theta_j} \sum_{i=1}^m y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

 \downarrow zunächst nur für einen Datensatz (x,y)

$$\frac{\partial}{\partial \theta_j} l(\theta) = \frac{\partial}{\partial \theta_j} \left(y \log h(x) + (1 - y) \log (1 - h(x)) \right)$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$\frac{\partial}{\partial \theta_i} l(\theta) = \frac{\partial}{\partial \theta_i} \left(y \log h_{\theta}(x) + (1 - y) \log \left(1 - h_{\theta}(x) \right) \right)$$

Kettenregel ->
$$\frac{\partial f(g)}{\partial \theta_j} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta_j}$$

$$\frac{\partial}{\partial \theta_j} l(\theta) = \frac{\partial}{\partial g(\theta^T x)} \left(y \log g(\theta^T x) + (1 - y) \log \left(1 - g(\theta^T x) \right) \right) \frac{\partial}{\partial \theta_j} g(\theta^T x)$$

$$\frac{\partial}{\partial \theta_j} l(\theta) = \frac{\partial}{\partial g(\theta^T x)} \left(y \log g(\theta^T x) + (1 - y) \log \left(1 - g(\theta^T x) \right) \right) \frac{\partial}{\partial \theta_j} g(\theta^T x)$$

mit Ableitungsregel
$$\frac{d}{dx}\log(x) = \frac{1}{x}$$
 und $\frac{d}{dx}\log(1-x) = -\frac{1}{x}$

$$\frac{\partial}{\partial \theta_j} l(\theta) = \left(y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)} \right) \frac{\partial}{\partial \theta_j} g(\theta^T x)$$

$$\frac{\partial}{\partial \theta_j} l(\theta) = \left(y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)} \right) \frac{\partial}{\partial \theta_j} g(\theta^T x)$$

$$\frac{\partial}{\partial \theta_j} g(\theta^T x) = \frac{\partial g(z)}{\partial z} \frac{\partial z}{\partial \theta_j} = g(\theta^T x) (1 - g(\theta^T x)) \frac{\partial}{\partial \theta_j} \theta^T x$$

Erinnerung
$$g'(z) = g(z)(1 - g(z)) = x_j$$

$$\frac{\partial}{\partial \theta_j} l(\theta) = \left(y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)} \right) g(\theta^T x) \left(1 - g(\theta^T x) \right) x_j$$

$$\frac{\partial}{\partial \theta_i} l(\theta) = (y(1 - g(\theta^T x)) - (1 - y)g(\theta^T x)) * x_j$$

$$\frac{\partial}{\partial \theta_i} l(\theta) = (y(1 - g(\theta^T x)) - (1 - y)g(\theta^T x)) * x_j$$

$$\frac{\partial}{\partial \theta_i} l(\theta) = (y - y * g(\theta^T x) - g(\theta^T x) + y * g(\theta^T x)) * x_j$$

$$\frac{\partial}{\partial \theta_j} l(\theta) = (y - g(\theta^T x)) * x_j$$

Damit ergibt sich für logistische Regression die folgende Update-Regel für Stochastic Gradient Ascent (SGA):

$$\theta_j \coloneqq \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

> Die Regel ist identisch zur linearen Regression!

Regularization

- Einfache Methode zum Verhindern von Overfitting
- · Hinzufügen von extra Bias zum Verhindern extremer Gewichte

L2-Regularization:
$$\frac{\lambda}{2} \|\theta\|^2 = \frac{\lambda}{2} \sum_{j=1}^{m} \theta_j^2$$
Bias-Term θ_0 ausgeschlossen

-> Cost-Funktion
$$J(\theta) = l(\theta) = \left[\sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)})) \right] + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

A steuert Bolonce zwischen Overfitting und Kleinen Gewichten


```
# Sigmoid Function
sigmoid <- function(x) 1/(1+exp(-x))
# Logistic Regression Hypothesis
h <- function(x,w){
    sigmoid(t(w) %*% x)
}</pre>
```



```
# Stochastic Gradient Descent (SGD)
for (k in seq(max_iterations)) {
  for (i in seq(m)) { # iterate over Datapoints
    w <- w + alpha * t((y[i] - h(X[i,],w)) %*% X[i,])
  }
}</pre>
```


Logistische Regression in der Praxis

Beispiel: Google's Vorhersage der Schwierigkeit der Parkplatzsuche

- Integriert in Google Maps (USA)
- Croudsourcing + Machine Learning
- Logistische Regression
 - Einfach und weit verbreitet
 - Einfluss der Feature gut interpretierbar
 - -> Ergebnis leicht verifizierbor

Google Research, 2017

Gliederung

Einleitung

Lineare Regression

Batch Gradient Descent

Stochastic Gradient Descent

Locally Weighted Regression

Logistische Regression

Zusammenfassung

Zusammenfassung

Regression beschreibt ein einfaches Modell zur Vorhersage von Zielvariablen

- Kontinuierliche Zielvariable
- -> lineare Regression

Diskrete Zielwerte

-> logistische Regression


```
# Example Formula
formula <- myData$y ~ myData$x1 + myData$x2 + myData$x3

# Linear Regression with Linear Model Function (lm)
fit <- lm(formula)

# Logistic Regression with General Linear Model Function (glm)
fit <- glm(formula, family = binomial("logit"))</pre>
```



```
from sklear import linear model
# Create linear regression object
model = linear model.LinearRegression()
# Training with dataset X_train and target y
model.fit(X train,y)
# Prediction of target variables for dataset X test
prediction = model.predict(X test)
```

Regression in

Quellen

- Andrew Ng: Stanford CS229 Lecture Notes: http://cs229.stanford.edu/notes/cs229-notes1.pdf
- Jürgen Cleve, Uwe Lämmel: Data Mining, 2014
- Scikit-Learn Dokumentation: http://scikit-learn.org/stable/documentation.html
- Google Research: <u>Using Machine Learning to predict parking difficulty</u>, 2017