Exploring Plain Vision Transformer Backbones for Object Detection

Facebook Al Research

Добряев Иван Добросовестнов Иван Поклонская Мария

Vision Transformer

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

А теперь к сути статьи!

- Есть новая архитектура, которая лучше CNN подходов.
- Есть Задача Детекции в которой CNN подходы хороши.

Можем использовать ViT для детекции?

Цель

• Исследовать не иерархические тушки в задаче детекции объектов,

с минимальными изменениями

Зачем?

• Это позволит использовать ViT на прямую.

Ключевые части подхода

- Simple feature pyramid.
- Backbone adaptation.

Имплементация

- BackBones: vanilla pretrained ViT-B, ViT-L, ViT-H
- Map scale is 1/16
- Heads: Mask R-CNN / Cascade Mask R-CNN
- Input Image size: 1024×1024 + augmentation
- Fine-tune for up to 100 epochs in COCO.
- Optimizer: AdamW

А что делать с FPN?

FPN

Попробовать сделать выходы ViT иерархическими (пирамидоидальный)

Simple feature pyramid

	ViT-B		ViT-L	
pyramid design	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
no feature pyramid	47.8	42.5	51.2	45.4
(a) FPN, 4-stage	50.3 (+2.5)	44.9 (+2.4)	54.4 (+3.2)	48.4 (+3.0)
(b) FPN, last-map	50.9 (+3.1)	45.3 (+2.8)	54.6 (+3.4)	48.5 (+3.1)
(c) simple feature pyramid	51.2 (+3.4)	45.5 (+3.0)	54.6 (+3.4)	48.6 (+3.2)

Backbone adaptation.

Hybrid window attention

Backbone adaptation.

Convolutional propagation

Backbone adaptation.

Результаты

prop. locations	APbox	AP ^{mask}
none	52.9	47.2
first 4 blocks	52.9 (+0.0)	47.1 (-0.1)
last 4 blocks	54.3 (+1.4)	48.3 (+1.1)
evenly 4 blocks	54.6 (+1.7)	48.6 (+1.4)

prop. blks	APbox	AP ^{mask}
none	52.9	47.2
2	54.4 (+1.5)	48.5 (+1.3)
4	54.6 (+1.7)	48.6 (+1.4)
24^{\dagger}	54.4 (+1.5) 54.6 (+1.7) 55.1 (+2.2)	48.9 (+1.7)

⁽c) Locations of cross-window global propagation blocks.

prop. strategy	AP ^{box}	AP^{mask}
none	52.9	47.2
4 global blocks	54.6 (+1.7)	48.6 (+1.4)
4 conv blocks	54.8 (+1.9)	48.8 (+1.6)
shifted win.	54.0 (+1.1)	47.9 (+0.7)

(a) Window attention with various cross-window propagation strategies.

⁽d) Number of global propagation blocks.

†: Memory optimization required.

Сравнение резульатов

		Mask R-CNN		Cascade Mask R-CNN	
backbone	pre-train	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
hierarchical-backbone detectors:					
Swin-B	21K, sup	51.4	45.4	54.0	46.5
Swin-L	21K, sup	52.4	46.2	54.8	47.3
MViTv2-B	21K, sup	53.1	47.4	55.6	48.1
MViTv2-L	21K, sup	53.6	47.5	55.7	48.3
MViTv2-H	21K, sup	54.1	47.7	55.8	48.3
our plain-backbone detectors:					
ViT-B	1K, mae	51.6	45.9	54.0	46.7
ViT-L	1K, mae	55.6	49.2	57.6	49.8
ViT-H	1 K , mae	56.7	50.1	58.7	50.9

Tradeoffs

Сравнение резульатов

System-level comparisons with the leading results on COCO

			single-scale test		
method	framework	pre-train	AP ^{box}	AP ^{mask}	
hierarchical-backbone detectors:					
Swin-L [42]	HTC++	21K, sup	57.1	49.5	
MViTv2-L [34]	Cascade	21K, sup	56.9	48.6	
MViTv2-H [34]	Cascade	21K, sup	57.1	48.8	
CBNetV2 [36] [†]	HTC	21K, sup	59.1	51.0	
SwinV2-L [41]	HTC++	21K, sup	58.9	51.2	
plain-backbone detectors:					
UViT-S [9]	Cascade	1K, sup	51.9	44.5	
UViT-B [9]	Cascade	1K, sup	52.5	44.8	
ViTDet, ViT-B	Cascade	1 K , mae	56.0	48.0	
ViTDet, ViT-L	Cascade	1 K , mae	59.6	51.1	
ViTDet, ViT-H	Cascade	1 K , mae	60.4	52.0	

Ссылки на статьи

- Exploring Plain Vision Transformer Backbones for Object Detection https://arxiv.org/pdf/2203.16527.pdf
- AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE https://arxiv.org/pdf/2010.11929.pdf
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows https://arxiv.org/pdf/2103.14030.pdf
- MViTv2: Improved Multiscale Vision Transformers for Classification and Detection https://arxiv.org/pdf/2112.01526.pdf
- Mask R-CNN https://arxiv.org/pdf/1703.06870.pdf

Спасибо за внимание!

Exploring Plain Vision Transformer Backbones for Object Detection

Рецензия

Добросовестнов Иван

Авторы

Yanghao Li
Facebook Al Research
Verified email at fb.com - Homepage
Computer Vision

Hanzi Mao
Research Scientist, Facebook Al Research (FAIR)
Verified email at fb.com - Homepage
Machine Learning Computer Vision

Ross Girshick

Research Scientist, Facebook Al Research (FAIR)

Verified email at eecs.berkeley.edu - Homepage

computer vision machine learning

Kaiming He

Research Scientist, Facebook Al Research (FAIR)

Verified email at fb.com - Homepage

Computer Vision Machine Learning

Facebook AI Research

2020

28 мая

End-to-End Object Detection with Transformers

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko (Facebook AI)

2021

3 июня

An image is worth 16x16 words: Transformers for image recognition at scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

2022

Masked Autoencoders Are Scalable Vision Learners

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

2022

MViTv2: Improved Multiscale Vision Transformers for Classification and Detection

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra, Malik, Christoph Feichtenhofer

История статьи

2021

22 Ноября

Benchmarking Detection Transfer Learning with Vision Transformers

Yanghao Li Saining Xie Xinlei Chen Piotr Dollar Kaiming He Ross Girshick

История статьи

2022

Exploring Plain Vision Transformer Backbones for Object Detection

30 Марта

Yanghao Li Hanzi Mao Ross Girshick Kaiming He

Конкуренты

2022

A Simple Single-Scale Vision Transformer for Object Detection and Instance Segmentation

17 сентября

Wuyang Chen, Xianzhi Du, Fan Yang, Lucas Beyer, Xiaohua Zhai, Tsung-Yi Lin, Huizhong Chen, Jing Li, Xiaodan Song, Zhangyang Wang, and Denny Zhou (Google Research & University of Texas)

Цитирующие работу

2022

14 июля

TransVG++: End-to-End Visual Grounding with Language Conditioned Vision Transformer

Jiajun Deng, Zhengyuan Yang, Daqing Liu, Tianlang Chen, Wengang Zhou, Senior Member, IEEE, Yanyong Zhang, Fellow, IEEE, Houqiang Li, Fellow, IEEE, Wanli Ouyang, Senior Member, IEEE

