Word2vec

박준형 데이터인텔리전스 연구실

irish07@korea.ac.kr

Class Lab - Schedule & Assignment

Skip-gram / CBOW (~5/20)
 (Basic) Softmax

2. Hierarchical Softmax / Negative sampling (~6/7) Subsampling

Class Lab - Schedule & Assignment

 T. Mikolov, K. Chen, G. Corrado, J. Dean, "Efficient Estimation of Word Representations in Vector Space", ICLR 2013

Class Lab - Schedule & Assignment

 T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, "Distributed Representations of Words and Phrases and their Compositionality", NIPS 2013

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]
NEG-5	38	63	54	59
NEG-15	97	63	58	61
HS-Huffman	41	53	40	47
NCE-5	38	60	45	53
The following results use 10^{-5} subsampling				
NEG-5	14	61	58	60
NEG-15	36	61	61	61
HS-Huffman	21	52	59	55

How to represent words

What is "Orange"?

What is "Orange"?

Representation

Atomic Word Representation

Atomic Word Representation

All vectors are independent

1	0
)	0
)	0
)	1
)	0
)	0

apple

orange

Atomic Word Representation

But words are dependent

apple

orange

Atomic Word Representation

apple orange

Distributed Representation

Word

Continuous Feature Space

Distributed Representation

inhibited

excited

Distributed Representation

Distributed Representation

Distributed Representation

???	?
???	?
???	?
???	?
???	?
???	?

How to set features and values of them

Word

Distributed Representation

???	?
???	?
???	?
???	?
???	?
???	?

How to set features and values of them

Manually?

Word

Distributed Representation

???	5
???	?
???	?
???	?
???	?
???	?

Word

How to set features and values of them

English words

- More than 1 million
- 1 new word every 98 minutes

Distributed Representation

???	?
???	?
???	?
???	?
???	?
???	?

How to set features and values of them

Manually? Impossible

Word

Distributed Representation

???	?
???	?
???	?
???	?
???	?
???	?

How to set features and values of them

With Neural Networks

Word

Automatically Detect Features

Ex) Obesity with height and weight

 $BMI = weight / height^2$

BMI > 30 : Obesity

BMI <= 30 : Normal

Height(m)	Weight(kg)	Obesity
1.81	70	False
1.63	68	False
1.75	95	True
1.55	46	False
1.78	103	True

Ex) Obesity with height and weight

Input: Height, Weight

Output : Probabilities of True or False

Neural network with randomly initialized parameters

Ex) Obesity with height and weight

Ex) Obesity with height and weight

Update parameters with Backpropagation and Gradient descent

Ex) Obesity with height and weight

The second output will be closer to the answer

Ex) Obesity with height and weight

Answer

After repeat of training, the neural network will approximate the obesity function

Ex) Obesity with height and weight

Ex) Obesity with height and weight

I eat an apple every day (O)

I eat an orange every day (O)

I eat a car every day (X)

Co-occurrence probabilities have three important properties

1. Each word has its own unique distribution

2. Similar words have similar distributions

3. Different words have different distributions

(A), (B), (C)의 각 네모 안에서 문맥에 맞는 낱말로 가장 적절한 것은?

To say that we need to curb anger and our negative thoughts and emotions does not mean that we should deny our feelings. There is an important distinction to be made between denial and restraint. The latter constitutes a (A) desperate / deliberate and voluntarily adopted discipline based on an appreciation of the benefits of doing so. This is very different from the case of someone who suppresses emotions such as anger out of a feeling that they need to present a facade of self-control, or out of fear of what others may think. Such behavior is like (B) healing / closing a wound which is still infected. We are not talking about rule-following. Where denial and suppression occur, there comes the danger that in doing so the individual stores up anger and resentment. The trouble here is that at some future point they may find they cannot (C) contain / attain these feelings any longer.

*facade #E ? ≥

(A)	(B)	(C)
① desperate	 healing	 contain
② desperate	 healing	 attain
3 deliberate	 healing	 contain
4 deliberate	 closing	 contain
⑤ deliberate	 closing	 attain

Word2Vec predicts the co-occurring words

Skip-gram

Skip-gram

Predict context words using a center word

Skip-gram

0. Preliminaries

- Build a dictionary and give an index number to each word
- Make two matrices randomly initialized (No bias)

Skip-gram

1. Word encoding

I eat an **orange** every day.

Parameterize

Word vector

Word Representation

Automatically determined

Where is one-hot vector???

(one-hot vector)

Output

from the embedding matrix

Skip-gram

1. Word encoding

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \equiv \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

Matrix multiplication

Read a row

Which is faster? Which is easier to implement?

Skip-gram

1. Word encoding

I eat an **orange** every day.

Word vector

from the embedding matrix

Skip-gram

2. Predict

Word vector

Probabilities

 Each element represent the probability of a word

Skip-gram

3. Update

I eat an **orange** every day.

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Skip-gram

3. Update

I eat an **orange** every day.

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Skip-gram

3. Update

I eat an **orange** every day.

- Negative Log Likelihood Loss
- Backpropagation
- **Stochastic Gradient Descent**

Update

Skip-gram

3. Update

I eat an **orange** every day.

- Negative Log Likelihood Loss
- Backpropagation
- **Stochastic Gradient Descent**

Probabilities

Update

Skip-gram

3. Update

I eat an **orange** every day.

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Continuous Bag of Words

How frequent the center word occurs in some context?

I eat an **orange** every day.

center word

I eat an ??? every day.

CBOW

Continuous Bag of Words

0. Preliminaries

- Build a dictionary and give an index number to each word
- Make two matrices randomly initialized (No bias)

Continuous Bag of Words

1. Context encoding

l eat an ??? every day. an every day

Context

Continuous Bag of Words

1. Context encoding

Context

Continuous Bag of Words

1. Context encoding

Continuous Bag of Words

1. Context encoding

l eat an ???? every day.

an
every
day
day

Context

Context vector

Continuous Bag of Words

2. Prediction

Context vector

Probabilities

 Each element represent probability of a word

Continuous Bag of Words

 $p(word_n)$

3. Update

Probabilities

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Update

V: vocabulary size

h: embedding dimension

$$y = softmax(W_{out}h)$$
 $\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ for $j = 1, ..., K$.

$$o = W_{out}h$$

$$y = softmax(o) = \frac{e^o}{\sum_k e^k}$$

$$L = NLL(y, t) = -\log(y_t)$$

$$\frac{\partial L}{\partial h} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial o} \frac{\partial o}{\partial h}$$

$$\frac{\partial L}{\partial W_{out}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial o} \frac{\partial o}{\partial W_{out}}$$

$$g = \frac{\partial L}{\partial y} \frac{\partial y}{\partial o}$$

$$g_k = \begin{cases} y_k - 1 & (k = t) \\ y_k & (k \neq t) \end{cases}$$

$$o = W_{out}h$$

$$y = softmax(o) = \frac{e^o}{\sum_k e^k}$$

$$L = NLL(y, t) = -\log(y_t)$$

$$\frac{\partial L}{\partial h} = W_{out} g$$

$$\frac{\partial L}{\partial W_{out}} = hg^T$$

$$o = W_{out}h$$

$$y = softmax(o) = \frac{e^o}{\sum_k e^k}$$

$$L = NLL(y, t) = -\log(y_t)$$

$$\frac{\partial L}{\partial h} = W_{out} g$$

$$\frac{\partial L}{\partial W_{out}} = hg^T$$

CBOW

$$h = w_a + w_b + w_c + w_d$$

$$\frac{\partial h}{\partial w_a}$$
, $\frac{\partial h}{\partial w_b}$, $\frac{\partial h}{\partial w_c}$, $\frac{\partial h}{\partial w_d} = 1$

$$w_a = w_a - \eta \frac{\partial L}{\partial h}$$

$$w_b = w_b - \eta \frac{\partial L}{\partial h}$$

$$w_c = w_c - \eta \frac{\partial L}{\partial h}$$

$$w_d = w_d - \eta \frac{\partial L}{\partial h}$$

$$W_{out} = W_{out} - \eta \frac{\partial L}{\partial W_{out}}$$

Skip-gram

$$h = w_k$$

$$w_k = w_k - \eta \frac{\partial L}{\partial h}$$

$$W_{out} = W_{out} - \eta \frac{\partial L}{\partial W_{out}}$$

CBOW vs Skip-gram

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words			[days]	
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3
1 epoch CBOW	300	783M	13.8	49.9	33.6	0.3
1 epoch CBOW	300	1.6B	16.1	52.6	36.1	0.6
1 epoch CBOW	600	783M	15.4	53.3	36.2	0.7
1 epoch Skip-gram	300	783M	45.6	52.2	49.2	1
1 epoch Skip-gram	300	1.6B	52.2	55.1	53.8	2
1 epoch Skip-gram	600	783M	56.7	54.5	55.5	2.5

Better and Faster

Model	Semantic-Syntactic Wo	MSR Word Relatedness	
Architecture	Semantic Accuracy [%]	Syntactic Accuracy [%]	Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words			[days x CPU cores]	
			Semantic	Syntactic	Total	
NNLM	100	6B	34.2	64.5	50.8	14 x 180
CBOW	1000	6B	57.3	68.9	63.7	2 x 140
Skip-gram	1000	6B	66.1	65.1	65.6	2.5 x 125

Additive Compositionality

vec("Paris") - vec("France")

= vec("Berlin") - vec("Germany")

- Word2Vec Implementation
 - CBOW and Skip-gram
 - Forward path
 - Backward path
 - Return : cost value and gradient of two word vectors

Word2Vec Implementation

```
def Skipgram(center, context, inputMatrix, outputMatrix):
# center : Index of a centerword (type:int)
# outputMatrix : Weight matrix of output (type:torch.tesnor(V,D))
# grad emb : Gradient of word vector (type:torch.tensor(1,D))
# grad out : Gradient of outputMatrix (type:torch.tesnor(V,D))
    loss = None
    grad emb = None
   grad_out = None
   return loss, grad_emb, grad_out
def CBOW(center, context, inputMatrix, outputMatrix):
# center : Index of a centerword (type:int)
# context : Indices of contextwords (type:list(int))
# outputMatrix : Weight matrix of output (type:torch.tesnor(V,D))
# grad emb : Gradient of word embedding (type:torch.tensor(1,D))
# grad out : Gradient of outputMatrix (type:torch.tesnor(V,D))
    loss = None
    grad emb = None
    grad_out = None
   return loss, grad emb, grad out
```

Word2Vec Implement

```
def word2vec_trainer(corpus, word2ind, mode="CBOW", dimension=64, learning_rate=0.05, iteration=50000):
   W_emb = torch.randn(len(word2ind), dimension) / (dimension**0.5)
   W out = torch.randn(len(word2ind), dimension) / (dimension**0.5)
    window size = 5
    losses=[]
    for i in range(iteration):
        centerWord, contextWords = getRandomContext(corpus, window_size)
        centerInd = None
        contextInds = None
        lr = learning_rate*(1-i/iteration)
        if mode=="CBOW":
            L, G_emb, G_out = CBOW(centerInd, contextInds, W_emb, W_out)
            W emb[contextInds] -= lr*G emb
            W out -= lr*G out
            losses.append(L.item())
        elif mode=="SG":
            for contextInd in contextInds:
                L, G_emb, G_out = Skipgram(centerInd, contextInd, W_emb, W_out)
                W_emb[centerInd] -= lr*G_emb.squeeze()
                W_out -= lr*G_out
                losses.append(L.item())
            print("Unkwnown mode : "+mode)
            exit()
        if i%10000==0:
            avg_loss=sum(losses)/len(losses)
            print("Loss : %f" %(avg loss,))
            losses=[]
    return W emb, W out
```

Word2Vec Experiment

Analogical reasoning task

"work": "works":: "speak":?

z =vec("works") - vec("work") + vec("speak")

Find 5 words whose vector is similar to z (cosine similarity)

*text8 only includes lower cases

**Exclude question words from the predictions

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Type of relationship	Word Pair 1		Word Pair 2	
Common capital city	Athens	Greece	Oslo	Norway
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe
Currency	Angola	kwanza	Iran	rial
City-in-state	Chicago	Illinois	Stockton	California
Man-Woman	brother	sister	grandson	granddaughter
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

T. Mikolov, K. Chen, G. Corrado, J. Dean, "Efficient Estimation of Word Representations in Vector Space", ICLR 2013

- Word2Vec Experiment
 - In this assignment, 9 types are used

Man-Woman	brother	sister	grandson	granddaughter
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

Total 36 questions

work :: works = speak :: speaks

- works work + speak
- work works + speaks
- speaks speak + work
- speak speaks + works

Report top 5 accuracy
Any of 5 predictions is correct -> correct
None of 5 predictions is correct -> wrong

Submission

- Due date: ~5/20(个) 23:59
- Submission: Online submission on blackboard
- word2vec.py + Report(pdf)
- Report should include
 - 1. Each member's contribution
 - 2. Explanation of your code
 - 3. Analysis of experiments
- You must implement the components yourself!
- You must specify each member's contribution (role) in this assignment
- File name : TeamID_word2vec.zip

Q&A

- Data intelligence lab.
- <u>irish07@korea.ac.kr</u> (박준형)