Exercice 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique bornée.

Pour $n \in \mathbb{N}$ on note $X_n = \{u_k, k \ge n\}$, et $s_n = \sup X_n$.

- 1. Montrer que $(s_n)_{n\in\mathbb{N}}$ est décroissante
- 2. Montrer que $(s_n)_{n\in\mathbb{N}}$ est convergente. On note sa limite $\limsup u_n$.
- 3. Définir par analogie la limite inférieure $\lim \inf u_n$.
- 4. Montrer que, si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors $\liminf u_n = \limsup u_n = \ell$.
- 5. Montrer que si lim inf $u_n = \limsup u_n$, alors $(u_n)_{n \in \mathbb{N}}$ converge vers leur valeur commune.
- 6. Déterminer $\limsup u_n$ et $\liminf u_n$ pour la suite $(u_n)_{n\in\mathbb{N}} = (\cos(2\pi n/3))_{n\in\mathbb{N}}$.

La notion de limite est très liée aux notions de borne supérieure (plus petit des majorants) et borne inférieure (plus grand des minorants). Etant donnée une suite (u_n) , nous appellerons borne supérieure et borne inférieure de (u_n) les quantités

$$\sup\{u_n, n \in \mathbb{N}\}\$$
et $\inf\{u_n, n \in \mathbb{N}\}\$.

Théorème 2

- 1. Toute suite croissante et majorée converge vers sa borne supérieure.
- 2. Toute suite croissante et non majorée tend vers $+\infty$.
- 3. Toute suite décroissante et minorée converge vers sa borne inférieure.
- 4. Toute suite décroissante et non minorée tend vers $-\infty$.

extstyle ext

$$l - \varepsilon \leqslant u_{n_0} \leqslant u_n \leqslant l$$
,

```
V Si AcB alors sup A ≤ sup B
  VaeA, aeB => as sup B => sup A & sup B
                                      car sup A plus petite majorante
  On a X_{n+1} \subset X_n \Rightarrow S_{n+1} = \sup X_{n+1} \leqslant S_n = \sup X_n
                      ⇒ (Sn), décroissant
2/ Par hyp (vk) est bome => Im < M
                                           m < Uk < M Yk
                                       => Xo minore
                                       ⇒ X, minore Vi
       \forall x \in X_1 \quad x > m \Rightarrow s_1 = \sup_{x \in X_1} x > m
    Resume Si decroissante, minoree > CV
S_n = \inf X_n
      SI ACB alors Inf A > InfB
      X_{n+1} \subset X_n \Rightarrow S_{n+1} \geqslant S_n
      \forall S_n = \inf X_n \leq \sup X_n \leq \sup X_o < \infty
      Resumē Sn croissante, majorēe => CV
  4/ Si un-> e alors Y 2, 3N +q
         1-8< Un < 1+8 V n>N
          1-8< x < 1+8  \x \ x \ X x \ X n , \ N n ≥ N
  1-2 minorante de Xn => 1-2 < inf Xn
   l+& majorante de Xn => l+& > sup Xn
        1-2 \le \inf X_n \le \sup X_n \le 1+2  \forall n > N \Rightarrow S_n \rightarrow 1 S_n \rightarrow 1
  Donc
              1-2 \leqslant S_n \leqslant S_n \leqslant 1+2
```

5/
$$\forall n$$
 on a l'encadrement, cow $v_n \in X_n$

$$S_n = \inf X_n \leqslant v_n \leqslant \sup X_n = s_n$$
 $S_i \quad S_n \Rightarrow \ell \quad \text{et} \quad s_n \Rightarrow \ell \quad \text{alove} \quad v_n \Rightarrow \ell$

Théorèm des gendarmes

• On peut aussi appliquer le théorème avec $A=\mathbb{N}$ ou $\{n\in\mathbb{N}\mid n>N\}$ et $a=+\infty$: si u,v et w sont trois suites réelles, telles que pour tout n>N

$$u_n \leq v_n \leq w_n$$
 et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = L$, alors $\lim_{n \to +\infty} v_n = L$, avec L réel ou infini.

6/ cos 2
$$\pi n/3$$
 Enreffet $\forall n \in \mathbb{Z}$
 $n = 0$ 1 $v_{n+3} = \cos \frac{2\pi (n+3)}{3}$
 $h = 1$ $-1/2$ $= \cos \frac{2\pi h}{3} + 2\pi$
 $n = 2$ $-1/2$ $= \cos \frac{2\pi h}{3}$
 $= u_n$

Facile à $v_{01} \neq v_{01} \neq v_{$

$$\Rightarrow \frac{|\text{Im sup } X_n = 1}{|\text{Im inf } X_n = -\frac{1}{2}}$$

Exercice 7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée de réels. On pose $L=\limsup u_n$.

- 1. Soit une suite $(a_n)_{n\in\mathbb{N}}$ convergeant vers a. Déterminer $\limsup (a_n+u_n)$ en fonction de a et de L.
- 2. Si $(a_n)_{n\in\mathbb{N}}$ est seulement bornée, a-t-on $\limsup (a_n+u_n)=\limsup a_n+\limsup u_n$?
- 3. Déterminer $\limsup e^{u_n}$ en fonction de L.

Indications

3) I so suite cle
$$u_n$$
, $v_{n_1} \rightarrow L$ et exp continue, croissante