Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Решение задачи о минимизации булевой функции

Задача. Для функции $f(x_1, x_2, x_3, x_4)$, заданной списком номеров наборов из Nf методом Квайна найти сокращенную и минимальные ДНФ.

Список номеров: 0,1,2,3,6,7,8,9,11,15.

Решение. Составим таблицу истинности для функции f:

Nº	x_1	x_2	x_3	\mathcal{X}_4	f
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

Выпишем $N_f = \{0000,0001,0010,0011,0110,0111,1000,1001,1011,1111\}$.

Так как число переменных велико, для удобства будем использовать модифицированный метод Квайна-МакКласки. Разобьем конституэнты на группы по числу единиц:

- 0) 0000
- 1) 0001, 0010, 1000
- 2) 0011, 0110, 1001
- 3) 0111, 1011
- 4) 1111

Склеиваем конституэнты из соседних групп:

Группы 0 и 1:

0000+0001=000-

0000+0010=00-0

0000+1000 = -000

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Группы 1 и 2:

0001+0011=00-1

0001+1001 = -001

0010+0011=001-

0010+0110=0-10

1000+1001=100-

Группы 2 и 3:

0011+0111=0-11

0011+1011 = -011

0110+0111=011-

1001+1011=10-1

Группы 3 и 4:

0111+11111 = -1111

1011+1111=1-11

Все конституэнты подверглись склеиванию, получили новые группы:

- 0) 000-, 00-0, -000
- 1) 00-1, -001, 001-, 0-10, 100-
- 2) 0-11, -011, 011-, 10-1
- 3) -111, 1-11

Снова прибегаем к склеиванию.

Группы 0 и 1:

$$000 - + 001 - = 00 - -$$

$$000 - + 100 - = -00$$

$$00-0+00-1=00-$$

$$-000 + -001 = -00$$

Группы 1 и 2:

$$00-1 + 10-1 = -0-1$$

$$-001 + -011 = -0-1$$

$$001 - + 011 - = 0 - 1 -$$

$$0-10+0-11=0-1-$$

Группы 2 и 3:

$$0-11 + 1-11 = --11$$

$$-011 + -111 = --11$$

Все конституэнты подверглись склеиванию, получили новые группы: 0) 00--, -00-

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Дальнейшее склеивание невозможно.

Итак, получили $D_{corp.} = \overline{x_1} \overline{x_2} \vee \overline{x_2} \overline{x_3} \vee \overline{x_2} x_4 \vee \overline{x_1} x_3 \vee x_3 x_4$.

$$N_f = \{0000, 0001, 0010, 0011, 0110, 0111, 1000, 1001, 1011, 1111\}$$

Строим импликантную таблицу, в столбцах элементарные конъюнкции СДНФ, в строках – простые импликанты сокращенной ДНФ. Ставим в ячейке плюс, если простая импликанта покрывает элементарную конъюнкцию. Получаем:

	0000	0001	0010	0011	0110	0111	1000	1001	1011	1111
$00 - \overline{x_1} \overline{x_2}$	+	+	+	+						
$-00-\overline{x_{2}}\overline{x_{3}}$	+	+					+	+		
$-0-1 \ \overline{x_2} x_4$		+		+				+	+	
$0-1-\overline{x_1}x_3$			+	+	+	+				
$11 x_3 x_4$				+		+			+	+

Выбираем столбцы, содержащие только по одному плюсу (это столбцы 5, 7, 10), импликанты строк, соответствующих этим плюсам попадают в ядровую ДНФ, то есть $D_{sop.} = \overline{x_2} \overline{x_3} \vee \overline{x_1} x_3 \vee x_3 x_4$ (пометили эти импликанты *). Теперь вычеркиваем строки (отмечаем серой заливкой), соответствующие ядровым импликантам, а затем столбцы, содержащие отмеченные клетки в вычеркнутых строках, это будут все столбцы. Получаем:

	0000	0001	0010	0011	0110	0111	1000	1001	1011	1111
$00-\overline{x_1}\overline{x_2}$	+	+	+	+						
$-00-\overline{x_2}\overline{x_3}*$	+	+					+	+		
$-0-1 \ \overline{x_2} x_4$		+		+				+	+	
$0-1-\overline{x_1}x_3^*$			+	+	+	+				
$-11 x_3 x_4 *$				+		+			+	+

Таким образом, минимальная ДНФ равна $D_{\text{\tiny MUH.}} = \overline{x_2} \, \overline{x_3} \vee \overline{x_1} x_3 \vee x_3 x_4$