Exercice (ACP):

Une étude gastronomique a conduit à apprécier le service, la qualité et le prix de quatre restaurants. Pour cela, un expert a noté ces restaurants avec des notes allant de -3 à 3. Les résultats sont les suivants

Restaurant	Service	Qualité	Prix
R1	-2	3	-1
R2	-1	1	0
R3	2	-1	-1
R4	1	3	2

1. Calculer la moyenne pour chaque variable, les écarts types des variables, la matrice Xc des données centrées et la matrice centrée réduit X_{cr}

La matrice des covariances est

$$V = \begin{bmatrix} 5/2 & -3 & 1/2 \\ -3 & 5 & -2 \\ 1/2 & -2 & 3/2 \end{bmatrix}$$

Et celle des corrélations :

$$R = \begin{bmatrix} 1 & -0.85 & 0.26 \\ -0.85 & 1 & -0.73 \\ 0.26 & -0.73 & 1 \end{bmatrix}$$

Pour l'étude on effectuera une ACP centrée

- 2. Effectuer la décomposition aux valeurs propres de V
- 3. Calculer les pourcentages d'inertie. Quelle est la dimension à retenir ?
- 4. On donne $U_1 = (0.5 0.8 \ 0.3)$ ' et $U_2 = (0.65 \ 0.11 0.75)$ '
 - a. Calculer les composantes principales
 - b. Représenter les individus dans le plan principal (1,2).
- 5. Représenter les variables dans le plan factoriel (1,2).
- 6. Interpréter les résultats.

Solution (ACP):

Restaurant	Service	Qualité	Prix
R1	-2	3	-1
R2	-1	1	0
R3	2	-1	-1
R4	1	-3	2

7. Calculer la moyenne pour chaque variable, les écarts types des variables et la matrice Xc des données centrées

Moy (service) =
$$0$$
; Moy (qualité) = 0 ; Moy (prix) = 0

$$X_c = X$$
 (tableau initial)

Var (S) =
$$[(-2)^2 + (-1)^2 + 2^2 + 1^2] * 1/4$$

= $10/4 = 2.5$

$$\sigma_1 = 1.58$$

$$Var(Q) = 5 \rightarrow \sigma_2 = 2.23$$

Var (P) = 1.5
$$\rightarrow \sigma_3 = 1.22$$

$$Xcr = Xc * D'$$

$$D = [1/1.58 \ 0 \ 0; 0 \ 1/2.23 \ 0; 0 \ 0 \ 1/1.22]$$

8. Effectuer la décomposition aux valeurs propres de V

$$\lambda_1 = 7.6225 \ ; \, \lambda_2 = 1.3775 \ ; \, \lambda_3 = 0$$

9. Calculer les pourcentages d'inertie. Quelle est la dimension à retenir ?

$$\lambda_1 / 9 = 84.695 \%$$

$$\lambda_2 / 9 = 15.305 \%$$

- 10. On donne $U_1 = (0.5 0.8 \ 0.3)$ ' et $U_2 = (0.65 \ 0.11 0.75)$ '
 - c. Calculer les composantes principales

$$\begin{split} CP &= X_c * U \\ CP &= & -3.7000 & -0.2200 \\ &-1.3000 & -0.5400 \\ &1.5000 & 1.9400 \end{split}$$

d. Représenter les individus dans le plan principal (1,2).