Linear systems stability: condition number of a matrix Numerical Linear Algebra 200919

When solving linear systems, roundoff will play a role. We want to investigate the accuracy of the computed solution.

A matrix $A \in \mathbb{R}^{n \times n}$ is **ill-conditioned** if relatively small changes in A (if is rounded for example) can cause large changes in the solution of Ax = b (for a fixed $b \in \mathbb{R}^n$). Otherwise it is well-conditioned. For a given matrix norm $\|\cdot\|$, the **accuracy** of the solution depends on the **condition number** $k(A) = \|A\| \|A^{-1}\|$.

In general, we have approximations of A and b, say $A + \delta A$ and $b + \delta B$, and we obtain a solution $\hat{x} = x + \delta x$. Recall that (backward error analysis formula):

$$\frac{\|\delta x\|}{\|\hat{x}\|} \le k(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|A\| \|\hat{x}\|} \right).$$

- 1. There are ill-conditioned matrices of relatively small dimensions.
 - (a) Consider the Vandermonde matrix of order n

$$V_n = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & \dots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{pmatrix}.$$

Let $\alpha_j = 1 - 2(j-1)/(n-1)$, j = 1,...,n. Investigate how $\kappa_2(V_n)$ behaves as a function of n (consider values of $n \leq 50$).

- (b) Check numerically Szegö's result $k_2(H_n) \sim e^{3.5n}$ for the Hilbert matrices $H_n(i,j) = 1/(i+j-1), 1 \le i, j \le n$.
- 2. Investigate the relation between the condition number and the precision of the solution when solving a linear system.

Consider the n-dimensional Frank matrix

$$A_{i,j} = \begin{cases} 0 & \text{for } j < i - 2, \\ n + 1 - i & \text{for } j = i - 1, \\ n + 1 - j & \text{for } j \ge i. \end{cases}$$

Assume that $A_{i,j}$ are stored as float (double precision) numbers. Let $x_0 = (1, ..., 1)$ and $b = Ax_0$. Note that b contains roundoff errors of the order of the precision machine ($\epsilon_{\text{machine}} \sim 10^{-16}$). For n = 2, ..., 24 compute $k_2(A)$ and compare the values of $\epsilon_{\text{machine}} k_2(A)$ with those of the relative error of the solution, that is

$$e_{\text{rel}}(x) = \frac{\|x - x_0\|_2}{\|x_0\|_2}.$$

Explain the results using the backward error analysis formula.

3. Moral: It is inadvisable to actually compute A^{-1}

Imagine we want to solve Ax = b, $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$. We compare two ways: 1) $x = A^{-1}b$ and 2) using GEPP (Gauss elimination with partial pivoting). Assume that for 1) we do the things properly, that is, for example we compute the inverse A^{-1} solving n-linear systems using GEPP. We want to see that, even if A^{-1} is computed exactly,

- Cost: 1) $2n^3$ flops, 2) $2n^3/3$ flops (3 times faster!).
- Stability: 1) is less numerically stable than 2)

To this end, perform the following numerical experiment. Consider fifty 25×25 linear systems Ax = b (and repeat for 10^4 systems of dimension 50 for example) of the following form:

- i) A is random with $k_2(A) = \epsilon_{\text{machine}}^{-1/2} \approx 9 \times 10^7$, and
- ii) the elements of x are taken from the standard Gaussian distribution.

For each system

- (a) compute the solution using the 1) "matrix inverse method" and 2) the LU method using GEPP,
- (b) compute the norm-wise relative backward error

$$\eta_{A,b} = \frac{\|r\|}{\|A\| \|x\| + \|b\|}, \qquad r = Ax - b \text{ (the residual)}$$

Write a program to compute the minimum and the maximum of $\eta_{A,b}$ obtained for each method. Also compare both methods in terms of the computation time as a function of the dimension (e.g. up to n = 100 and solving 10^3 systems for each n).

Remark: To generate random matrices with $k_2(A) = \alpha > 1$ do the following:

- i) generate a random matrix B (e.g. with standard Gaussian coefficients),
- ii) perform the so-called QR decomposition of B, then B = QR,
- iii) consider $A = Q^t DQ$, where D is diagonal matrix $D = [\alpha, 1, ..., 1]$.

The matrix A has the desirable condition number $k_2(A)$.

4. A method to estimate the condition number $k_1(A)$

We have seen that it is inadvisable (and usually unnecessary!) to actually compute A^{-1} . In particular, the computation of k(A) for large matrices involves a large number of operations. Then, how can we effectively compute the condition number of a matrix? Techniques have been developed to approximate $||A^{-1}||_1$ without computing the inverse of the matrix A, that is, the condition number of a nonsingular matrix is estimated by $k_1(A) = ||A||_1 \omega$ where ω is an estimate of $||A||_1^{-1}$.

(a) Write a code that implements Hager's algorithm (from Demmel's book, p.53) to estimate the 1-norm of a matrix (computes ω such that $\omega \leq \|B\|_1$, and typically a) $\omega \approx \|B\|_1$ and b) it stops after 2 iterations)

Algorithm 2.5. Hager's condition estimator returns a lower bound $||w||_1$ on $||B||_1$:

```
choose any x such that \|x\|_1 = 1 /* e.g. x_i = \frac{1}{n} */
repeat
w = Bx, \ \zeta = \mathrm{sign}(w), \ z = B^T \zeta /* z^T = \nabla f */
if \|z\|_{\infty} \le z^T x then
return \ \|w\|_1
else
x = e_j \ where \ |z_j| = \|z\|_{\infty}
endif
end repeat
```

Remark. sign $(x) = (s_1, ...s_n)$ where $s_i = 1$ if $x_i \ge 0$ and $s_i = -1$ otherwise.

(b) Modify the previous algorithm to obtain an estimate of $||A^{-1}||_1$. Observe that if $B = A^{-1}$ then w = Bx and $z = B^T \eta$ can be rewritten as the linear systems Aw = x and $A^T z = \eta$, then apply GEPP/LU to solve these systems. ¹

Check the algorithm by recording the ratio between the estimated condition number and the direct computation of the condition number (inverting the matrix A and computing the norms) for 1000 random matrices A having $10^3 \le k_2(A) \le 10^{16}$ of dimensions $10 \le n \le 90$.

¹An improvement by Higham of this algorithm is the subroutine **slacon** in LAPACK. Also **condest** in MAT-LAB performs a similar computation. There are other methods for very large systems.