NLP and Deep Learning MAT3399

Lecture 10: Some Guidelines for Training Deep Learning Models

Tuan Anh Nguyen @ Aimesoft ted.nguyen95@gmail.com

Training ML/DL is a highly iterative process

Data

Numbers of layers

Numbers of units

Learning rate

Activation functions

Architecture

•••

Build a model fast, then iterate

Train / Dev (Validation) / Test

What is the best ratio for train/dev/test dataset?

Test dataset and train dataset should have same distribution

Cross Validation

Bias and Variance

Basic Recipe for Deep Learning

Problem	Possible solutions
High bias (Underfitting)	Use more complex networksTrain for more epochs
High variance (Overfitting)	Collect more dataUse regularization`

Understanding Regularization

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

Dropout

Dropout on hidden layer

Input layer

Without Dropout

With Dropout

Data Augmentation

Data augmentation is a technique that increase the training dataset artificially Some methods for data augmentation in NLP:

- Synonym replacement: Replace a word by its synonyms
- Contextual word augmentation: Use masked language model (like BERT) to insert a word randomly at a random position
- Back translation: Use machine translation model to translate text to another language then translate back to the original language
- Or you can just use ChatGPT

Early Stopping

Decay Learning Rate

Error Analysis

It is helpful to do these tasks when you want to improve your deep learning model:

- Data quality assessment
- Confusion matrix analysis: This will help you identify if the model is struggling with specific classes or types of data.
- Error categorization: Group errors into categories based on their characteristics
- Comparative analysis: Compare your model's performance with baseline models or alternative approaches

Model Combining Methods - Model Bagging

Model Combining Methods - Ensemble Learning

