Unbalanced Datasets

Matthew Rui

December 2024

Outline

Introduction

Alternative Performance Metric

Undersampling

Oversampling

Focal Loss

Experiment

Conclusion

Appendix

Unbalanced Datasets

- Many classification tasks assume classes are evenly represented.
- ▶ Real-world datasets often have imbalanced class distributions.
- Minority classes may be critically important (e.g., cancer detection).

Limitations of Accuracy

- In unbalanced datasets, accuracy can be misleading.
- Baseline accuracy may be high by always predicting the majority class.
- ▶ Need metrics focusing on minority class performance.
 - **Precision**: True positives out of all predicted positives.
 - ► **Recall**: True positives out of all actual positives.

Precision-Recall Curve (PRC)

- PRC demonstrates the trade-off between precision and recall for various classification thresholds.
- ▶ **AUPRC** (Area Under the PRC): provides a single performance metric.

Figure: Sample Precision-Recall Curve (PRC)

Undersampling Techniques

Aim to balance the dataset by reducing majority class instances.

Random Undersampling:

- Randomly remove majority instances.
- Risk of discarding important information.

► Tomek Links:

- For majority instance, remove if nearest neighbor is a minority instance and if the closest neighbor of the minority neighbor is the majority instance.
- Cleans the class boundary.

KNN:

- For majority instance, remove if more than *t* of its *k* nearest neighbors are minority instances.
- Generalizes Tomek Links.

Oversampling Techniques

- Balance the dataset by increasing minority class instances.
- ► Random Oversampling:
 - Duplicate minority instances.
 - Leads to overfitting.
- ► **SMOTE** (Synthetic Minority Over-sampling Technique):
 - ► Generate synthetic minority instances by interpolation.
 - Reduces overfitting compared to duplication.
 - For each minority instance x:
 - Find *k* nearest minority neighbors.
 - Randomly select a neighbor x_i.
 - Generate new instance:

$$x_{\text{new}} = x + \lambda(x_i - x), \quad \lambda \sim U(0, 1)$$

Focal Loss for Deep Learning

- Modify cross-entropy loss to focus on hard-to-classify instances.
- ► Definition:

$$FL = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

- ► Where:
 - \triangleright p_t : Predicted probability for the true class.
 - $ightharpoonup \gamma$: Modulating factor to down-weight easy examples.
 - α_t : Balancing factor for class imbalance.

Dataset and Preprocessing

- Credit card transactions dataset.
- ▶ 284,807 instances; 492 (0.17%) are fraudulent.
- ► Features:
 - ▶ 28 PCA (Principal Component Analysis) components.
 - ► Transaction amount.
 - Time elapsed.
- Data split:
 - Stratified train/test split.
 - Over/undersampling applied only on training set.
 - Data normalization.

Model Training

- ► Neural network classifier with 3 hidden layers.
- Optimizer: Population-Based Training with Adam and weight decay.
- Evaluation metric: AUPRC on the test dataset.

Results: Over/Undersampling

Method (with Optimal Parameters)

Figure: Over/undersampling Performance

Results: SMOTE with Undersampling

Method (with Optimal Parameters)

Figure: SMOTE with Undersampling Performance

Results: Focal Loss

Method (with Optimal Parameters)

Figure: Focal Loss Performance

Conclusion

- Oversampling (SMOTE) and undersampling (Random, Tomek Links, KNN) can improve performance.
- ► Focal loss provides an effective alternative by focusing on hard examples.
- Combining focal loss with sampling methods did not yield further improvements.
- For extreme imbalances, careful tuning is necessary.

Under/Oversampling Performance

Method	Parameters	AUPRC
Baseline	_	0.8028
Random Undersampling	R = 1	0.5551
	R=2	0.5921
	R=3	0.6470
	R = 4	0.6943
	R = 5	0.7188
	R = 6	0.7110
	R = 7	0.6973
	R = 8	0.7639
Tomek Links	_	0.8158

Under/Oversampling Performance

Method	Parameters	AUPRC
KNN	k = 50	0.8165
	k = 100	0.8169
	k = 150	0.8007
	k = 200	0.8124
SMOTE	N=2	0.8127
	N = 3	0.8121
	N = 4	0.8206
	N = 5	0.8172
	N = 6	0.8194
	N = 7	0.8216
	N = 8	0.8220
	N = 9	0.8172
	N = 10	0.8203

SMOTE with Undersampling Performance

Method	Parameters	AUPRC
SMOTE with Random Undersampling	R = 5, N = 10	0.8259
	R = 6, N = 10	0.8279
	R = 7, N = 7	0.8228
	R = 8, N = 8	0.8181
SMOTE with Tomek Links	N = 6	0.8202
SMOTE with KNN	K = 50, N = 7	0.8254
	K = 100, N = 9	0.8255
	K = 150, N = 10	0.8190
	K = 200, N = 7	0.8183

Focal Loss Tuning

Method	Parameters	AUPRC
Baseline	$\gamma = 0.1, \alpha = 0.75$	0.8116
	$\gamma = 0.2, \alpha = 0.25$	0.8199
	$\gamma = 0.5, \alpha = 0.25$	0.8194
Daseille	$\gamma=1.0, lpha=0.25$	0.8197
	$\gamma = 2.0, lpha = 0.5$	0.8070
	$\gamma = \text{5.0}, \alpha = \text{0.5}$	0.7908

Over/Undersampling with Focal Loss

Method	Parameters	AUPRC
Random Undersampling (Focal Loss)	R = 1	0.6079
	R=2	0.6902
	R=3	0.6522
	R = 4	0.7062
	R = 5	0.7108
	R = 6	0.7115
	R = 7	0.7133
	R = 8	0.7172
Tomek Links (Focal Loss)	_	0.8092

Over/Undersampling with Focal Loss

Method	Parameters	AUPRC
KNN (Focal Loss)	K = 50	0.8062
	K = 100	0.8109
	K = 150	0.8070
	K = 200	0.8006
SMOTE (Focal Loss)	N = 2	0.7980
	N = 3	0.8054
	N = 4	0.7961
	N = 5	0.8115
	N = 6	0.8097
	N = 7	0.8026
	N = 8	0.8048
	N = 9	0.8127
	N=10	0.7920