```
In [1]:
            import pandas as pd
          2
          3
            # Sample data
            data = pd.DataFrame({
                 'Gender': ['Male', 'Female', 'Female', 'Male', 'Female'],
          5
                 'Department': ['HR', 'IT', 'Sales', 'HR', 'IT', 'Sales'],
          6
                 'Education': ['Bachelor', 'Master', 'PhD', 'Master', 'PhD', 'Bachelor'],
          7
                 'Salary': [50000, 60000, 55000, 52000, 58000, 53000],
          8
          9
                 'Experience': [1.5, 3.0, 4.2, 2.3, 3.7, 2.9]
         10
            })
         11
            data.head()
         12
         13
```

c:\users\vamsi2001\appdata\local\programs\python\python39\lib\site-packages\num
py_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:
c:\users\vamsi2001\appdata\local\programs\python\python39\lib\site-packages\num
py\.libs\libopenblas.EL2C6PLE4ZYW3ECEVIV3OXXGRN2NRFM2.gfortran-win_amd64.dll
c:\users\vamsi2001\appdata\local\programs\python\python39\lib\site-packages\num
py\.libs\libopenblas.XWYDX2IKJW2NMTWSFYNGFUWKQU3LYTCZ.gfortran-win_amd64.dll
warnings.warn("loaded more than 1 DLL from .libs:"

Out[1]: Gender Department Education Salary Experience

0	Male	HR	Bachelor	50000	1.5
1	Female	IT	Master	60000	3.0
2	Female	Sales	PhD	55000	4.2
3	Male	HR	Master	52000	2.3
4	Male	IT	PhD	58000	3.7

In [2]: 1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5

Data columns (total 5 columns):

	COTAMMIS (CO	car o coramio,	•			
#	Column	Non-Null Coun	t Dtype			
0	Gender	6 non-null	object			
1	Department	6 non-null	object			
2	Education	6 non-null	object			
3	Salary	6 non-null	int64			
4	Experience	6 non-null	float64			
dtypes: float64(1), int64(1), object(3)						
memory usage: 368.0+ bytes						

```
In [12]:
             #Use LabelEncoder to convert categories into integers
             from sklearn.preprocessing import LabelEncoder
           2
           3
             # Make a copy to preserve original
           4
             encoded_data = data.copy()
           5
           6
           7
             le = LabelEncoder()
             encoded data['Gender'] = le.fit transform(data['Gender'])
             encoded data['Department'] = le.fit transform(data['Department'])
           9
             encoded_data['Education'] = le.fit_transform(data['Education'])
          10
             encoded data.head()
          11
             encoded data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 6 entries, 0 to 5
         Data columns (total 5 columns):
              Column
                          Non-Null Count Dtype
                          -----
                                         ____
          0
              Gender
                          6 non-null
                                          int32
          1
              Department 6 non-null
                                          int32
          2
              Education
                          6 non-null
                                          int32
          3
              Salary
                          6 non-null
                                          int64
          4
              Experience 6 non-null
                                          float64
         dtypes: float64(1), int32(3), int64(1)
         memory usage: 296.0 bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 6 entries, 0 to 5
         Data columns (total 5 columns):
              Column
                          Non-Null Count Dtype
         ---
          0
              Gender
                          6 non-null
                                          category
          1
              Department 6 non-null
                                          int32
          2
              Education
                         6 non-null
                                          int32
          3
              Salary
                          6 non-null
                                          int64
          4
              Experience 6 non-null
                                          float64
         dtypes: category(1), float64(1), int32(2), int64(1)
         memory usage: 402.0 bytes
In [13]:
             encoded_data['Gender']=encoded_data['Gender'].astype('category')
           2 | encoded_data['Department']=encoded_data['Department'].astype('category')
             encoded data['Education']=encoded data['Education'].astype('category')
             encoded_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 6 entries, 0 to 5
         Data columns (total 5 columns):
              Column
                          Non-Null Count Dtype
              -----
                          -----
          0
              Gender
                          6 non-null
                                          category
          1
              Department 6 non-null
                                          category
          2
              Education
                          6 non-null
                                          category
          3
              Salary
                          6 non-null
                                          int64
              Experience 6 non-null
                                          float64
         dtypes: category(3), float64(1), int64(1)
         memory usage: 630.0 bytes
```

```
In [20]:
              #One-Hot Encoding Use pd.get_dummies() to create binary columns.
           2
              onehot_encoded_data = pd.get_dummies(data, columns=['Gender', 'Department',
           3
           4
           5
              onehot_encoded_data
```

Out[20]:

	Salary	Experience	Gender_Female	Gender_Male	Department_HR	Department_IT	Department_S
_	5 50000	1.5	0	1	1	0	
	1 60000	3.0	1	0	0	1	
:	2 55000	4.2	1	0	0	0	
;	3 52000	2.3	0	1	1	0	
4	4 58000	3.7	0	1	0	1	
,	5 53000	2.9	1	0	0	0	

```
In [8]:
```

```
from sklearn.preprocessing import LabelBinarizer
 2
 3
   lb = LabelBinarizer()
   en_data=data.copy()
5
   # Gender (Binary)
   en_data['Gender'] = lb.fit_transform(data['Gender'])
 7
   en_data['Department'] = lb.fit_transform(data['Department'])
   en_data['Education'] = lb.fit_transform(data['Education'])
9
10
   en_data
11
```

Out[8]:

	Gender	Department	Education	Salary	Experience
0	1	1	1	50000	1.5
1	0	0	0	60000	3.0
2	0	0	0	55000	4.2
3	1	1	0	52000	2.3
4	1	0	0	58000	3.7
5	0	0	1	53000	2.9

```
In [9]:
              # Department (Multiclass)
              dept_binarized = pd.DataFrame(LabelBinarizer().fit_transform(data['Departmen')]
                                              columns=['Dept_HR', 'Dept_IT', 'Dept_Sales'])
           3
              dept_binarized
 Out[9]:
             Dept_HR Dept_IT Dept_Sales
                                      0
          0
                   1
          1
                   0
                           1
                                      0
          2
                   0
          3
                   0
                                      0
          5
                   0
In [10]:
              # Education (Multiclass)
              edu_binarized = pd.DataFrame(LabelBinarizer().fit_transform(data['Education'
           3
                                             columns=['Edu_Bachelor', 'Edu_Master', 'Edu_PhD
           4
           5
              edu_binarized
Out[10]:
             Edu_Bachelor Edu_Master Edu_PhD
          0
                       1
                                  0
                                            0
          1
                       0
                                            0
          2
                       0
          3
                       0
                       1
```

Similarity Measures

1. Euclidean Distance (L2 norm)

Straight-line distance between points.

used: Good for continuous features, geometric closeness.

Euclidean Distance: 2.5005999280172744

2. Manhattan Distance (L1 norm)

Sum of absolute differences.

Used in urban planning or anytime "right-angle" travel is needed.

Manhattan Distance: 6.17

3. Cosine Similarity

Measures angle between vectors (not magnitude).

Ideal for text similarity, TF-IDF, embeddings.

Cosine Similarity: 0.9408871372284504

4. Jaccard Similarity

Works with sets or binary data.

Great for recommendations (e.g., common likes), binary vectors.

Jaccard Similarity: 0.5

5.Hamming Distance

Number of positions with different values (binary or strings).

Best for comparing binary vectors or DNA sequences.

Hamming Distance: 0.5

1. Cosine Similarity on Text

Cosine Similarity works best when we vectorize the text (e.g., using TF-IDF or CountVectorizer).

Using TfidfVectorizer

```
In [28]: 1 text1 = "I love machine learning"
2 text2 = "I enjoy learning machines"
3
```

```
In [29]:
              from sklearn.feature_extraction.text import TfidfVectorizer
              from sklearn.metrics.pairwise import cosine similarity
           2
           3
           4
              # Sample texts
              texts = [text1, text2]
           5
           6
           7
              # Vectorize
              vectorizer = TfidfVectorizer()
              tfidf matrix = vectorizer.fit transform(texts)
           9
          10
          11
              # Show feature names (unique words)
              print(vectorizer.get_feature_names_out())
          12
          13
              # Show the TF-IDF matrix as an array
          14
             tf=pd.DataFrame(tfidf matrix.toarray(),columns=vectorizer.get feature names
          15
          16 tf
          ['enjoy' 'learning' 'love' 'machine' 'machines']
Out[29]:
               enjoy
                     learning
                                 love
                                      machine machines
          0 0.000000 0.449436 0.631667 0.631667
                                               0.000000
          1 0.631667 0.449436 0.000000 0.000000
                                               0.631667
In [30]:
              # Compute Cosine Similarity
              cos sim = cosine similarity(tfidf matrix[0:1], tfidf matrix[1:2])
              print("Cosine Similarity:", cos_sim[0][0])
           5
         Cosine Similarity: 0.20199309249791833
 In [ ]:
           1
 In [ ]:
           1
```

2. Hamming Distance on Text

Hamming Distance only works on equal-length binary strings or character sequences.

So, we'll:

Convert each sentence to a fixed-length binary or character sequence

Pad if needed

Convert to character sequence (basic example)

```
In [31]:
          1 from scipy.spatial.distance import hamming
           3 # Shortened equal-length strings
           4 text1 = "machine"
             text2 = "mashing"
           5
           6
           7 # Ensure equal Length
           8 min len = min(len(text1), len(text2))
          9 text1 = text1[:min_len]
          10 text2 = text2[:min_len]
          11
          12 # Convert to list of characters
          13 list1 = list(text1)
          14 | list2 = list(text2)
          15
          16 # Compute Hamming Distance
          17 hamm_dist = hamming(list1, list2)
          18 print("Hamming Distance:", hamm_dist)
          19
```

Hamming Distance: 0.2857142857142857