Introduction to Large Language Models(LLM)

Outline

- 1. Overview from 30,000 feet above
- 2. Transformer in nutshell
- 3. Pretraining Parallel paradigm
- 4. Finetuning Parameter efficient finetuning
- 5. Steering the decoding of LLM Prompting
- 6. Augmentation and Plugins

Overview from 30000 feet above

- Paradigm transition in Al
 - From: training(specific) -> prediction(specific)
 - To: pretraining(general) -> finetuning(general/specific) -> in-context
 prompting(specific)
- Primary steps of new paradigm
 - Pretraining with self-supervised learning
 - Finetuning on instruction from mutiple domains
 - Application by steering the decoding process of LLM
- Where are we to AGI?
 - From explanation to prediction
 - From correlation to causality

A LLMs tree

- Decoder Only
- Encoder Only
- Encoder-Decoder

Img Source: Jingfeng Yang et al. 2023

Transformer in nutshell

- Transformer modules
- Aspects of alternative
- Parameter concentration
- Computation concentration

Transformer modules

Token & positional embedding :

$$\circ$$
 $E \in R^{V imes d}$, $P \in R^{T imes d}$

- Multi-head attention
 - Self-attention & Cross-attention
 - Weight matrix:

$$W_Q^h, W_K^h, W_V^h \in R^{d imes d_h}$$

Head projection:

$$W_O \in R^{d imes d}$$

- ResNet & LayerNorm
- Feedfoward Network

$$\phi \mid W_1 \in R^{d imes 4d}, W_2 \in R^{4d imes d}$$

Output head: task related

Aspects of alternative

- Efficient Transformer (for long sequence)
 - Coarse sequence resolution:
 - Block/Stride/Clustering/Neural Memory
 - TransformerXL
 - Attention matrix approximation:
 - Linear Transformer
- LLMs specific
 - Encoder vs Decoder vs Encoder-Decoder
 - Pretraining objective
 - Positional encoding
 - Input or output LayerNorm
 - Activation

Parameter concentration

Decoder only Transformer(GPT)

- Parameter size:
 - \circ Embedding: (V+T) imes d
 - \circ Attention: $L imes (3 imes d imes d_h imes H+(d_h imes H) imes d)=4Ld^2$
 - \circ FFN: $L imes ((d imes 4d+4d)+(4d imes d+d))pprox 8Ld^2$
- On GPT3-175B:

Total	PE	TE	Attn	FFN
174,597M	25M(0.01%)	617M(0.35%)	57,982M(33.21%)	115,970M(66.42%)

Computation concentration

Decoder only Transformer

Per-token calculation:

- ullet QKV+project: $2 imes L imes (3 imes H imes h_d imes d+(H imes h_d) imes d)=2 imes 4Ld^2$
- Attention: $2 \times L \times T \times d$
- ullet FFN: $2 imes L imes ((d imes 4d+4d)+(4d imes d+d))pprox 2 imes 8Ld^2$

Model training flops utilization(MFU):

- ullet Forward and backward: (1+2) imes(2N+2LTd)pprox 6N , where $Npprox 12Ld^2$
- Theoretical peak throughput: $\frac{P}{6N+6LTd}$
- $MFU = \frac{Observed throughput}{Theoretical peak throughtput}$

Pretraining

- Training objectives
- Text Corpus
- Parallel strategies
- Results & Evaluation

Training objectives

- Auto-regressive Language Models
- Missing token prediction

Text Corpus

- Unsupervised text
 - BookCorpus: 7000 unpublished books
 - WebText: 8M outlinks of Reddit.com
 - Common Crawl
- Week supervised text
 - Summarization: Reddit TL;DR
 - QA: StackExchange
- Supervised text
 - Summarization:
 - Q&A:
 - Dialog: InstructGPT

Parallel strategies

- Why bother?
- Four parallel paradigms
 - Data parallel
 - Model parallel
 - Tensor parallel
 - Pipeline parallel
 - Sequence parallel
- Combined implementations

Why bother?

Data parallel

Tensor parallel

Pipeline parallel

Sequence parallel

Combined implementations

End of Parallel strategies

Result & Evaluations

Finetuning

- Target and issues
- Instruct finetuning
- Finetuning for specific task
- Parameter efficient finetuning

Target and issues

- Target
 - From pattern completion to real world tasks
- Issues
 - Instruction following
 - Hallucination
 - Toxicity and ethics
 - Securities

Instruct Finetuning

Key to success

- Number of finetuning datasets:
 - scaling from 62 text datasets to 18K
- Model scale: 137B LaMDA-PT
- Natural language instructions

Finetuning for specific task

HHHA(Anthropic):2112.00861

InstructGPT(OpenAI):2203.02155

HHA(Anthropic):2204.05862

Sparrow(Deepmind):2209.14375

Problems from Supervised Finetuning(SFT)

- Learning only the task format and the way to response for the format
- Knowledge labeled but not in the LLM leads to more hallucination
- Knowledge in the LLM but labeled as don't know leads to withhold information

What we want from finetuning:

outputs its(LLM's) state of knowledge with the correct amount of hedging and expressing its uncertainty

Advance of RL to SFT for truthfullness

- LLMs know what they know
 - Calibrated probability, uncertainty
- RLHF can leverage the self-awareness
 - Design reward function: correct answer=1, don't know=0 and wrong answer=-4
 - RL learn optimal threshold of probability to maximize the reward
- No oracle for the correctness, delegate to Reward Model
 - Reward model: relative criteria trained by pairwise loss from human feedback
 - Open problem: true probabilites of everything?
 - Open problem: go beyond things that labelers can easily do
 - Verification is easier than generation

Anthropic: 2207.05221

More on Reinforcement Learning

- Catalog of algorithms (PPO belongs)
 - World model or model free
 - Value-based or policy-based(actor-critic)
 - MC or TD bootstrapping
 - Off-policy or on-policy
 - Deterministic or stochastic policy
- Design consideration
 - Sample efficiency: Off-policy > On-policy
 - Stability & Convergence: Deadly Triad issue
 - Explore & Exploit: Random at episode beginning
 - Bias & Variance: Advantage Function

28

Parameter Efficient Finetuning

- Design aspects
- Primary implementations
 - Adapter
 - Prefix-tuning
 - LoRA

Overall

Design aspects

- Finetuned Modules:
 - Attention-key/value matrix: LoRA(Q/V)
 - Attention-head: Prefix-Tuning(K/V)
 - Attention: Adapter
 - After FFN: Adapter
- Other aspects:
 - Multi-task consideration
 - Task related head

Adapter

Implementation & training notes

$$h \leftarrow h + f(hW_{ ext{down}})W_{ ext{up}}$$

Parameter scale:

$$2 imes L imes (r imes d+r+d), r\ll d$$

- Adapt after FFN sub-layer works too
- Results
 - Finetune BERT for 26 classification Tasks
 - 3.6% parameters for 0.4% GLUE performance gap
 - Ablation: fewer layers adapted -> worser performance

Prefix-Tuning

- Implementation
 - $\circ \ \operatorname{head} = \operatorname{Attn}(XW_Q^h, [P_K^h; XW_K^h], [P_V^h; XW_V^h])$
 - Reparameterization for finetuning stability:

$$lacksquare [P_K^h,P_V^h] = \operatorname{MLP}_{ heta}(\hat{P}_K^h,\hat{P}_V^h), |\hat{P}| < |P|$$

Parameter scale:

$$egin{aligned} \circ & 2 imes L imes d imes |P| ext{ or } \ & 2 imes L imes d imes \hat{P} + |\hat{P}| imes |P| \end{aligned}$$

More on Prefix-Tuning: Training and scaling

- Training
 - Initialization:
 - Real/high frequency words activation
 - Task relevant words | Classification labels
 - LM Head: Next Token/Class Label
- Results & discussion
 - \circ Finetuning $0.1\% \sim 3\%$ parameters, comparable or better performance
 - Optimal prefix length varies: longer for more complex tasks
 - Reparameterization works task-dependently

PrefixTuning: Optimizing Continuous Prompts for Generation, Stanford, 2021

PromptTuning: The Power of Scale for Parameter-Efficient Prompt Tuning, Google, 2021

LoRA

- Implementation & training notes
 - \circ Transformer: $W = W_0 + (BA)^T, A \in R^{r imes d}, B \in R^{d_h imes r}, r \ll \min\{d_h, d\}$
 - $\circ~W_Q$ and W_V considered, parameter scale: 2 imes2 imesdef 2 imes d imes r imes L
 - Modularized: Embedding , Linear , MergedLinear , Conv2D
 - \circ Initialization: A kaiming-random, B zeros
 - Weight merged for inference efficiency
- Results
 - o For 175B GPT-3 finetuning: 0.01% parameters, on par or better results
 - No additional inference computation and latency
 - Additivity for finetuning merge and incremental update

More on LoRA: which part to update and rank settings

	# of Trainable Parameters = 18M						
Weight Type Rank <i>r</i>	$\begin{bmatrix} W_q \\ 8 \end{bmatrix}$	$\frac{W_k}{8}$	$\frac{W_v}{8}$	W_o	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)					71.4 91.3	73.7 91.3	73.7 91.7

	Weight Type	r=1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	W_q	68.8	69.6	70.5	70.4	70.0
	W_q, W_v	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
	W_q	90.7	90.9	91.1	90.7	90.7
MultiNLI ($\pm 0.1\%$)	W_q, W_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

End of Parameter Efficient Finetuning

Steering the decoding process of LLM

- Decoding strategies
- Prompt enginneering

Decoding strategies

- ullet Temperature in decoding: $p_i = rac{\exp(o_i/T)}{\sum_j \exp(o_j/T)}$
- Maximization search
 - Greedy search
 - Beam search
- Sampling
 - top-K sampling
 - top-p(Nucleus) sampling
 - Repetition penalized sampling
- Guided decoding
 - o $score(x_{t+1},b_t) = score(b_t) + \log p(x_{t+1}) + \sum_i lpha_i f_i(x_{t+1})$

Prompting engineering

- Instruction/Zero-shot prompting
- Few-shot Prompting
- In-context Learning(Prompting)
- Chain-of-Thought

More on In-context Learning

Why it works?

- Interpretation from Topic Model
- Induction head
- View from gradient descent

Augmentation and Plugins

- Augmented Language Models
- Automatic prompting
- Plugins

Augmented Language Models

- Problems in vanilla LLMs
- Two augment aspects
 - Retrieval augmented language models
 - Tool augmented language models

Problems in vailla LLMs

Retrieval augmented language models

Tool augmented language models

End of Augmented Language Models

Automatic prompting

Plugins

- Plugins ecosystem
- Primary implementations
 - Langchain Agent/Tool
 - ChatGPT Plugins
 - Fixie
 - Other paradigm proposal

Plugins ecosystem

- Tool as a service
- From SEO to LMO
- Orchestration by LLM

Langchain Agent/Tool

ChatGPT Plugins

Fixie

Other paradigm proposal

End of Plugins

Thanks & QA?