

TRAVAUX DIRIGÉS Nº4 DE SIGNAUX PHYSIQUES

Exercice 1: Haut-parleur

On modélise la partie mécanique d'un haut-parleur comme une masse m, se déplaçant horizontalement le long d'un axe $(0, \overrightarrow{u_r})$.

Cette masse est reliée à un ressort de longueur à vide ℓ_0 et de raideur k et à un amortisseur fluide de constante $\vec{f} = -\alpha \vec{v}$. Elle est par ailleurs soumise à une force $\vec{F}(t)$, imposée par le courant i(t) entrant dans le hautparleur. On a la relation $\vec{F}(t) = Ki(t)\overrightarrow{u_x}$ où K est une constante. On travaille dans le référentiel du laboratoire $(0, \overrightarrow{u_x}, \overrightarrow{u_y})$. On suppose que le courant est de la forme $i(t) = I_m \cos(\omega t)$.

Données: m = 10 g; $k = 15.103 \text{ N} \cdot \text{m}^{-1}$; $K = 200 \text{ N} \cdot \text{A}^{-1}$; $I_m = 1, 0 \text{ A}$.

- 1. Écrire l'équation différentielle vérifiée par x, la position de la masse m. Soyez très rigoureux pour établir l'expression de la force de rappel élastique ! (Ne prenez pas de raccourcis, vous vous perdriez).
- **2.** La mettre sous forme canonique et identifier les expressions de ω_0 et Q.
- 3. Justifier que la réponse en régime forcée s'écrit sous la forme $x(t) = X_m \cos(\omega t + \varphi)$.
- 4. Déterminer l'expression de la réponse forcée x(t), c'est-à-dire l'amplitude X_m et la phase φ .
- 5. Déterminer les limites de X_m et l'existence ou non d'une résonance. Interpréter les résultats trouvés.
- **6.** On a tracé ci-dessous les courbes de $X_m(\omega)$ et de $\varphi(\omega)$.

Déterminer graphiquement la pulsation propre et le facteur de qualité. La réponse devra être proprement justifiée.

7. En déduire la valeur du coefficient d'amortissement α .

Exercice 2 : Résonance de l'oscillateur harmonique

On considère un ressort de raideur k horizontal dont une extrémité est attachée à une masse m, repérée par rapport à sa position d'équilibre au repos par sa coordonnée x(t) sur l'axe horizontal (0x), et dont l'autre extrémité est attaché à une paroi mobile. Un opérateur extérieur met en mouvement la paroi de manière sinusoïdale et on note $y(t) = y_0 \cos \omega t$ sa position. On néglige tous les frottements.

1. Établir l'équation différentielle du mouvement de la masse.

On se place en RSF. Dans ce cas $x(t) = x_0 \cos(\omega t + \varphi)$ et on introduit $\underline{x}(t) = x_0 e^{j\varphi} e^{j\omega t} = x_0 e^{j\omega t}$

- 2. Établir l'expression de l'amplitude complexe x_0 et en déduire l'amplitude réelle $x_0(\omega)$ et la phase $\varphi(\omega)$.
- 3. Représenter l'allure de $x_0(\omega)$ et $\varphi(\omega)$. Que se passe-t-il pour $\omega = \omega_0$?
- 4. Calculer la composante v_x de la vitesse puis en déduire l'expression de la puissance instantanée de la force de rappel élastique ainsi que la puissance moyenne.

Exercice 3: Équivalence entre deux dipôles série ou parallèle

On travaille en régime sinusoïdal de pulsation ω .

- 1. Pour quelles valeurs de R, L et ω a-t-on équivalence entre les deux montages ?
- 2. Pour quelle(s) valeur(s) de ω a-t-on $\frac{L}{R} = \frac{L'}{R'}$

Exercice 4 : Circuit bouchon et anti-résonance

On considère le circuit ci-dessous avec $e(t) = E_0 \cos(\omega t)$. On étudie la tension aux bornes de la résistance en régime sinusoïdal forcé : $u(t) = U_0 \cos(\omega t + \varphi)$.

1. Établir l'expression de $\underline{u}(t)$ à l'aide des impédances complexes. On introduira la pulsation caractéristique et le facteur de qualité. En déduire l'amplitude complexe $U_0(x)$ où $x = \omega/\omega_0$ est la pulsation réduite.

- 2. Étudier et tracer le module de $\underline{U_0}$ en fonction de x. Montrer qu'il existe une anti-résonance (pulsation pour laquelle l'amplitude U_0 est nulle).
- 3. Établir l'équation différentielle vérifiée par u(t) et en déduire la tension complexe u(t).

Exercice 5 : Existence d'une résonance en tension ?

On considère le circuit suivant.

On pose $e(t) = E_m \cos(\omega t)$, $u(t) = U_m \cos(\omega t + \varphi)$ la tension aux bornes de C_2 et $u_1(t)$ celle aux bornes de C_1 .

On définit les amplitudes complexes $\underline{E}, \underline{U}$ et $\underline{U_1}$ des tensions e(t), u(t) et $u_1(t)$. On pose $H = U_m/E_m$

1. Déterminer la valeur de u à basse et haute fréquences en utilisant uniquement les comportements asymptotiques des dipôles.

Dans la suite on considèrera que $R_1 = R_2 \equiv R$ et $C_1 = C_2 \equiv C$.

2. En utilisant les lois d'association des impédances et la notion de diviseur de tension, montrer qu'on peut écrire :

$$\underline{U} = \frac{1}{1 + 3RCj\omega - (RC\omega)^2} \underline{E}$$

- 3. En déduire les expressions de H et de φ , en fonction de R, C et ω .
- 4. Existe-t-il un phénomène de résonance en tension ? On tracera l'évolution de H et de φ avec ω .