IMPLEMENTASI LVQ **DENGAN OPTIMASI ALGORITMA GENETIK** PADA KLASIFIKASI **DIAGNOSIS PENYAKIT** DIABETES

Komputasi Intelegensia Kelompok 4

ANGGOTA GRUP 4

CORNELIUS JUSTIN SATRYO HADI

2006529796

MUHAMMAD HANIF PRAMUDYA ZAMZAMI

2006487566

JAVIER BINTORO

2006572150

MUHAMMAD DAFFA

2006568626

DAFFA AL GHIFARY

2006463420

TULUS SETIAWAN

2006568802

RAFI ALUANZAH

2006528736

DAFTAR ISI

01

PENDAHULUAN

02

RUMUSAN MASALAH 03

TUJUAN

04

METODE

05

DESKRIPSI DATA 06

IMPLEMENTASI

PENDAHULUAN

+ PENDAHULUAN

Diabetes adalah penyakit jangka panjang atau kronis dan ditandai dengan kadar gula (glukosa) darah yang tinggi atau di atas nilai normal. Glukosa yang menumpuk di dalam darah akibat tidak diserap sel tubuh dengan baik dapat menyebabkan berbagai gangguan pada organ tubuh. Jika diabetes tidak dikontrol dengan baik, berbagai komplikasi yang dapat membahayakan nyawa pasien dapat muncul.

PENDAHULUAN

Kecerdasan buatan (AI) memberikan kemampuan untuk belajar dan meningkatkan secara otomatis dari pengalaman tanpa diprogram secara eksplisit. Teknik-teknik dari AI memungkinkan kita untuk memperoleh hasil akhir prediksi. [8]

PENDAHULUAN

Teknik klasifikasi dari Al dapat memperkirakan secara akurat kelas target untuk setiap kasus dalam data. Algoritma klasifikasi umumnya mensyaratkan label kelas yang didefinisikan berdasarkan nilai atribut data.

OZ RUMUSAN + MASALAH

RUMUSAN MASALAH

1.

Bagaimana implementasi Learning Vector Quantizer dengan optimasi Algoritma Genetik pada klasifikasi diagnosis penyakit diabetes?

2.

Bagaimana performa Learning Vector Quantizer dengan optimasi Algoritma Genetik terhadap masalah klasifikasi diagnosis penyakit diabetes berdasarkan akurasi, precision, recall, dan f1 score?

+ TUJUAN

TUJUAN

1.

Mengimplementasikan Learning Vector
Quantizer dengan optimasi Algoritma
Genetik pada klasifikasi diagnosis penyakit
diabetes.

2.

Menganalisis performa Learning Vector Quantizer dengan optimasi Algoritma Genetik terhadap masalah klasifikasi diagnosis penyakit diabetes berdasarkan akurasi, precision, recall, dan f1 score.

04 METODE

+ LVQ (LEARNING VECTOR QUANTIZER)

DEFINISI	adalah keluarga algoritma untuk teknik klasifikasi AI, yang bertujuan untuk mempelajari prototipe (<i>codebook vector</i>) yang mewakili wilayah kelas.					
SIFAT	bersifat heuristik dan menunjukkan kepekaan terhadap inisialisasi, masalah konvergensi lambat, dan ketidakstabilan.					
TUJUAN	untuk menentukan vektor bobot (prototipe), sehingga sampel data pelatihan dipetakan ke label kelas yang sesuai.					

ARSITEKTUR LVQ

Lapisan input, menerima informasi (input) terkait permasalahan.

Lapisan kompetitif, memproses jarak kedekatan input dengan bobot <u>v</u>ang berpadanan untuk setiap output. Jarak terdekat akan menentukan kelas suatu input.

Lapisan output, lapisan yang menampilkan output dari kelas yang sudah ditentukan di kelas kompetitif.

+ LANGKAH PROSES LVQ

 Penghitungan jarak terhadap masing-masing kelas: Euclidean Distance

$$D_{i,j} = \|X_i - W_j\| \qquad X_i = ext{Data atau input ke-}i \ W_j = ext{Bobot kelas ke-}j$$

2. Menentukan kelas dari data ke-i berdasarkan jarak minimum terhadap seluruh bobot:

$$C_i = egin{cases} 0 &, \min(D_{i,0}, D_{i,1}) = D_{i,0} \ 1 &, \min(D_{i,0}, D_{i,1}) = D_{i,1} \end{cases}$$

3. Perbarui Bobot

* LANGKAH PROSES LVQ

- Ulangi langkah (1-3) hingga tercapai epoch maksimum:
- Hitung Akurasi

$$Akurasi = \frac{jumlah\ data\ dengan\ kelas\ sesuai\ target}{jumlah\ seluruh\ data} \times 100$$

* GA (GENETIC ALGORITHM)

Genetic Algorithm (GA) adalah bagian dari Evolutionary Algorithm yaitu suatu algoritma yang mencontoh proses evolusi alami di mana konsep utamanya adalah individu-individu yang paling unggul akan bertahan hidup, sedangkan individu-individu yang lemah akan punah [2].

Pada masalah klasifikasi diagnosis penyakit diabetes ini, GA akan digunakan untuk mengoptimasi vektor bobot awal pada LVQ yang diharapkan dapat menghasilkan nilai fitness tertinggi.

+ LANGKAH PROSES GA

+

- 1. Membentuk populasi awal
- Menghitung fitness dari setiap kromosom:Fitness = Akurasi LVQ
- Memilih kromosom sebagai parent: Tournament Rank Selection
- 4. Melakukan crossover untuk membentuk kromosom baru: Two-point crossover
- 5. Melakukan mutasi pada kromosom untuk memberi variasi: Random mutation

+ PENJELASAN MATEMATIS

Seleksi Parent — Tournament Parent Selection

Ket.

Pilih K-kromosom dari populasi secara acak dan pilih yang terbaik dari ini untuk menjadi Parent. Proses yang sama diulangi untuk memilih parent berikutnya.

+

PENJELASAN MATEMATIS

Crossover — Two-Point Crossover

$$egin{aligned} O1 &= [P1(1), \dots, P1(p), P2(p+1), \dots, P2(q), P1(q+1), \dots, P1(n)] \ O2 &= [P2(1), \dots, P2(p), P1(p+1), \dots, P1(q), P2(q+1), \dots, P2(n)] \ 0 &$$

$$O1 = Offspring 1$$

n =Jumlah gen pada kromosom

O2 = Offspring 2

p = Nilai acak antara 0 dan n - 1

P1 = Parent 1

q =Nilai acak antara p dan n

P2 = Parent 2

+

PENJELASAN MATEMATIS '

Mutation — Random Mutation

$$G_n = G_n + r(\max_n - \min_n)$$

 $G_n = \operatorname{Gen} \operatorname{ke-}n$ $r = \operatorname{Nilai} \operatorname{acak} [-0.1, \ 0.1]$ $\operatorname{max}_n = \operatorname{Nilai} \operatorname{maksimal} \operatorname{pada} \operatorname{gen} \operatorname{ke-}n$ $\operatorname{min}_n = \operatorname{Nilai} \operatorname{minimal} \operatorname{pada} \operatorname{gen} \operatorname{ke-}n$

+ PENJELASAN MATEMATIS

Seleksi Fitness — Elitism

Kromosom	Fitness			
Kromosom 1	75			
Kromosom 2	50			
Kromosom 3	92			
Kromosom 4	60			
Kromosom 5	40			
Kromosom 6	33			

Kromosom	Fitness		
Kromosom 3	92		
Kromosom 1	75		
Kromosom 4	60		
Kromosom 2	50		

Ket.

Memilih K-kromosom terbaik untuk menjadi populasi di generasi berikutnya.

PENJELASAN METRICS

PRECISION

Merupakan rasio prediksi benar positif dibandingkan dengan keseluruhan hasil yang diprediksi positif.

Precision = (TP) / (TP+FP)

RECALL

Merupakan rasio prediksi benar positif dibandingkan dengan keseluruhan data yang benar positif.

Recall = (TP) / (TP + FN)

F1 SCORE

Mengukur keseimbangan antara Precision – Recall. Nilai terbaik F1-Score adalah 1.0 dan nilai terburuknya adalah 0

$$F1-Score = \frac{2 \times Recall \times Precision}{Recall + Precision}$$

AKURASI

 ${
m Akurasi} = rac{{
m jumlah\ data\ dengan\ kelas\ sesuai\ target}}{{
m jumlah\ seluruh\ data}} imes 100$

PENJELASAN PARAMETER

+

POPULASI

Sekumpulan individu yang menyimpan solusi. Setiap individu dalam populasi mewakili sebuah solusi dan setiap individu terdiri dari sekumpulan nilai atau variabel yang disebut gen.

GENERASI

Generasi pada *genetic algorithm* mengacu pada satu iterasi pada algoritma. Setiap generasi menghasilkan solusi berdasarkan generasi sebelumnya.

LEARNING RATE (α)

Learning Rate menentukan seberapa besar bobot pada neuron di ubah pada setiap iterasi.

CROSSOVER RATE (CR)

Tingkat kemungkinan terjadinya penggabungan dua individu sehingga terbentuk individu baru yang memiliki sifat-sifat dari kedua individu tersebut.

PENJELASAN PARAMETER

PROBABILITY CROSSOVER (PC)

Probability Crossover adalah parameter yang menentukan probabilitas dipilihnya dua solusi (parent solution) untuk menghasilkan solusi baru (child solution).

PROBABILITY MUTATION (PM)

Probability Mutation adalah parameter yang menentukan probabilitas solusi (chromosome) akan di modifikasi.

DECREASING LEARNING RATE

Laju penurunan learning rate pada setiap iterasi.

MINIMUM LEARNING RATE

Learning rate minimum. Jika tercapai learning rate minimum iterasi akan dihentikan.

PENJELASAN PARAMETER

+

EPOCH

Ketika seluruh dataset sudah melalui proses training pada Neural Network sampai dikembalikan ke awal untuk sekali putaran.

BOBOT (W)

Bobot dari setiap kriteria yang akan dijadikan perhitungan dalam penentuan label kelas data.

FLOWCHART TRAINING LUQ-GA PROCESS

FLOWCHART TESTING LVQ-GA PROCESS

05 DESKRIPSI DATA

29

DATASET DIABETES

Jumlah Sample: 768

Format dataset: CSV

Fitur pada dataset:

- 1. Pregnancies
- 2. Glucose
- 3. BloodPressure
- 4. SkinThickness
- 5. Insulin
- 6. BMI
- 7. DiabetesPedigreeFunction
- 8. Age
- 9. Outcome

PENJELASAN DATASET

2. Glucose : konsentrasi glukosa plasma

3. Blood Pressure : tekanan darah diastolik (mm/Hg)

4. Skin Thickness : ketebalan lipatan kulit trisep (mm)

5. Insulin : insulin (U/mL)

6. BMI : indeks berat badan (kg/m2)

7. Diabetes Pedigree Function : nilai kecenderungan diabetes berdasarkan

riwayat keluarga

8. Age : usia (tahun)

31

SAMPLE DATASET

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
369	1	133	102	28	140	32.8	0.234	45	1
316	3	99	80	11	64	19.3	0.284	30	0
396	3	96	56	34	115	24.7	0.944	39	0
542	10	90	85	32	0	34.9	0.825	56	1
480	3	158	70	30	328	35.5	0.344	35	1

TARGET CLASS

Dataset memiliki *target class* yang menyatakan apakah individu tersebut diabetes (1) atau tidak diabetes (0).

+

DISTRIBUSI DATA

IMPLEMENTASI

+

ALUR IMPLEMENTASI +

HYPERPARAMETER TUNING LVO +

Tuning dilakukan menggunakan Randomized Search dengan 5-fold cross validation dan iterasi sebanyak 200.

List kandidat Hyperparameter:

Hyperparameter	Nilai yang akan di- <i>tuning</i>
Learning rate (α)	Bilangan real dalam range (0.001, 1)
Decrease alpha (dec α)	Bilangan real dengan range (0.1, 0.9)
Minimum alpha (min α)	Bilangan real dengan range (10 ⁻¹⁰⁰ , 10 ⁻⁴)
Epochs	Bilangan bulat dengan range (50, 200)

HYPERPARAMETER TUNING LVO +

Hasil hyperparameter tuning dengan 5 akurasi terbaik pada data cross validation:

Rank	Alpha	dec alpha	min alpha	Epochs	Mean Akurasi
1	0.074589	0.1	0.0001	200	75.73%
2	0.05423	0.491641	0.000056	197	75.72%
3	0.067427	0.223951	0.000094	193	75.57%
4	0.06424	0.483451	0.000093	200	75.56%
5	0.136618	0.132077	0.000034	197	75.41%

HASIL TESTING LVQ

+

Dengan menggunakan *hyperparameter* teroptimal pada saat proses *tuning*, diperoleh metrik evaluasi pada data test sebagai berikut:

Akurasi	F1-Score	Precision	Recall
74%	62%	65%	60%

HASIL TESTING LVQ-GA

+

Menggunakan tiga kombinasi *hyperparameter* GA yang berbeda, diperoleh metrik evaluasi pada data test sebagai berikut:

Ukuran populasi	Max generasi	cr	рс	pm	Akurasi	F1- Score	Precision	Recall
50	100	0.5	0.9	0.5	75%	51%	79%	38%
30	20	0.9	0.9	0.1	76%	69%	64%	75%
100	100	0.9	0.9	0.5	79%	70%	70%	70%

ANALISIS

• Dapat dilihat berdasarkan proses tuning bahwa didapat parameter terbaik untuk model LVQ dengan performa model:

Г	Ц
Ĺ	Γ

Alpha	dec alpha	min alpha	Epochs
0.07458	0.1	0.0001	200

Akurasi	F1- Score	Precision	Recall
74%	62%	65%	60%

ANALISIS

• Dapat dilihat berdasarkan proses tuning bahwa didapat parameter terbaik untuk model LVQ-GA dengan performa model:

Ukuran populasi	Max generasi	cr	рс	pm	Alpha	dec alpha	min alpha	Epochs
100	100	0.9	0.9	0.5	0.07458	0.1	0.0001	200

Akurasi	F1- Score	Precision	Recall
79%	70%	70%	70%

ANALISIS

Perbandingan performa antara model LVQ dan LVQ-GA

LVQ				
Akurasi	F1- Precision Recall Score			
74%	62%	65%	60%	

LVQ-GA						
Akurasi	F1- Score	Precision	Recall			
79%	70%	70%	70%			

Ket.

Performa LVQ-GA mungkin saja dapat dikembangkan agar memperoleh metric yang lebih baik dengan mencoba metode *crossover, mutation, selection, serta hyperparameter* yang tidak digunakan pada penelitian ini.

KESIMPULAN

- Didapat konstruksi akhir model LVQ-GA yang dapat diimplementasikan untuk klasifikasi diagnosis penyakit diabetes.
- Penentuan Bobot Awal dalam proses training model LVQ sangatlah penting, sehingga dengan adanya GA dapat mengoptimasi bobot awal tersebut. Hal ini dibuktikan dengan Model LVQ-GA yang memiliki performa yang lebih baik dibanding model LVQ dari tabel akurasi, f1-score, precision, recall.

KESIMPULAN

- Didapat akurasi model maksimal 79%, yang berarti memprediksi baik penderita diabetes dan sehat dengan cukup baik
- Didapat F1-Score model maksimal 70%, yang berarti bahwa model klasifikasi kita punya precision dan recall yang cukup baik
- Didapat Precision model maksimal 70%, yang berarti dapat memprediksi penderita diabetes dari keseluruhan penderita diabetes dalam data dengan cukup baik
- Didapat Recall model maksimal 70%, yang berarti dapat memprediksi penderita diabetes dari keseluruhan data dengan cukup baik

Dengan begitu, didapat hasil akhir konstruksi model yang menjawab tujuan awal dari penelitian.

REFERENSI

[1] Pahlevi, R. (2021, November 22). *Jumlah Penderita Diabetes Indonesia Terbesar Kelima di Dunia*. Katadata.

https://databoks.katadata.co.id/datapublish/2021/11/22/jumlah-penderita-diabetes-indonesia-terbesar-kelima-di-dunia

[2] *Genetic Algorithm*. (2018, December 8). School of Computer Science. https://socs.binus.ac.id/2018/12/08/genetic-algorithm/

[3] Engelbrecht, A. (2006). Fundamentals of Computational Swarm Intelligence. John Wiley & Sons.

[4] Ariyawan, M. D., Wibawa, I. G., & Ayu, L. A. (2020). *Diagnosis of Heart Disease Using Generalized Learning Vector Quantization (GLVQ) and Genetic Algorithms*.

[5] Arniantya, R., Setiawan, B. D., & Adikara, P. P. (2018). *Optimasi Vektor Bobot Pada Learning Vector Quantization Menggunakan Algoritme Genetika Untuk Identifikasi Jenis Attention Deficit Hyperactivity Disorder Pada Anak.*

REFERENSI

[6] Sulistyawati, D. H., & Murtadho, A. (2020). Performance Accuration Method of Machine Learning for Diabetes Prediction. *Jurnal Mantik*. https://iocscience.org/ejournal/index.php/mantik/article/view/725/482

2 2

[7] Nova, D., & Estévez, P. A. (2013). A review of learning vector quantization classifiers. Neural Computing and Applications, 25(3–4), 511–524. https://doi.org/10.1007/s00521-013-1535-3

[8] Dwi Harini Sulistyawati, Ali Murtadho (2020). Performance Accuration Method of Machine Learning for Diabetes Prediction.

https://iocscience.org/ejournal/index.php/mantik/article/view/725/482

LVQ					
Akurasi	rasi F1- Precision Recall Score				
74%	62%	65%	60%		

LVQ-GA			
Akurasi	F1- Score	Precision	Recall
79%	70%	70%	70%

