Домашние задания по Матлогу.

Чепелин Вячеслав

Содержание

1 ,	омашнее задание 1.	2
1.1	Задача 1	3
1.2	Задача 2	3
1.3	Задача 3	3
1.4	Задача 4)
2	омашнее задание 2.	1
2.1	Задача 1	1
2.2	Задача 2	2
3,	омашнее задание 3.	3
4 ,	омашнее задание 4.	5
4.1	Задача № 1	ŏ
4.2	Задача № 2	5
5 ,	омашнее задание 5.	7
5.1	Задание № 3	3
5.2	Задание № 5	9
6 ,	омашнее задание 7.	O
6.1	N_{2} 5	J
6.2	Nº 6	3
6.3	Nº 7	5
6.4	Nº 2	
7 1	нформация о курсе	8

Домашнее задание 1. 1

Во всех задачах буду пользоваться данной таблицей:

- $\alpha \to \beta \to \alpha$ (1)
- $(\alpha \xrightarrow{\beta}) \xrightarrow{} (\alpha \xrightarrow{} \beta \xrightarrow{} \gamma) \xrightarrow{} (\alpha \xrightarrow{} \gamma)$ $\alpha \xrightarrow{} \beta \xrightarrow{} \alpha \& \beta$ (2)
- (3)
- (4) $\alpha \& \beta \to \alpha$
- $\alpha \& \beta \to \beta$ (5)
- $\alpha \to \alpha \vee \beta$ (6)
- $\beta \to \alpha \vee \beta$ (7)
- $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$ $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ (8)
- (9)
- (10) $\neg \neg \alpha \rightarrow \alpha$

1.1 Задача 1.

$$\vdash (A \to A \to B) \to (A \to B) \tag{a}$$

Доказательство:

- $(1) \quad (A \to A) \to (A \to A \to B) \to (A \to B) \quad (A9)$
- (2)
- : copy-paste from lection
- $(8) \quad A \to A$
- (9) $(A \to A \to B) \to (A \to B)$ (MP (8,1))

$$\vdash \neg (A \& \neg A)$$
 (b)

- (1) $((A\&\neg A)\to A)\to ((A\&\neg A)\to \neg A)\to \neg (A\&\neg A)$ Аксиома 9 $[\alpha:=(A\&\neg A),\beta=A]$
- (2) $(A \& \neg A) \to A$ Аксиома $4 \ [\alpha := A, \beta = \neg A]$
- (3) $(A \& \neg A) \to \neg A$ Аксиома $5 \ [\alpha := A, \beta = \neg A]$
- (4) $((A \& \neg A) \to \neg A) \to \neg (A \& \neg A)$ Moduse Ponens 2, 1
- (5) $\neg (A \& \neg A)$ Moduse Ponens 3, 4

$$\vdash (A\&B) \to (B\&A) \tag{c}$$

Для доказательство этого воспользуемся Теоремой о дедукции и докажем:

$$(A\&B) \vdash (B\&A)$$

Доказательство:

- (1) $A\&B \to A$ Аксиома $4 [\alpha := A, \beta := B]$
- (2) $A\&B \to B$ Аксиома $5 [\alpha := A, \beta := B]$
- (3) (А&В) Гипотеза
- (4) A Moduse Ponuns 3, 1
- (5) B Moduse Ponuns 3, 2
- (6) $B \to A \to B\&A$ Аксиома 3 $[\alpha := B, \beta := A]$
- (7) $A \rightarrow B \& A$ Moduse Ponuns 5, 6
- (8) B&A Moduse Ponuns 4, 7

$$\vdash (A \lor B) \to (B \lor A) \tag{d}$$

(1) $(A \to A \lor B) \to (B \to A \lor B) \to (A \lor B \to A \lor B)$ Аксиома 8 $[\alpha := A, \beta := B, \gamma := A \lor B]$

Аксиома 6 $[\alpha := A, \beta := B]$ (2) $A \rightarrow A \vee B$

(3) $B \to A \lor B$ Аксиома 7 $[\alpha := B, \beta := A]$

Moduse Ponuns 2, 1

 $(4) \quad (B \to A \lor B) \to ((A \lor B) \to (B \lor A))$ $(5) \quad (A \lor B) \to (B \lor A)$ Moduse Ponuns 3, 4

$$A\& \neg A \vdash B$$
 (e)

(1)	$A\& \neg A \to A$	Аксиома 4 $[\alpha := A, \beta := \neg A]$
(2)	$A \& \neg A \rightarrow \neg A$	Аксиома 5 $[\alpha := A, \beta := \neg A]$
(3)	$A \& \neg A$	Гипотеза
(4)	A	Moduse Ponuns 3, 1
(5)	$\neg A$	Moduse Ponuns 3, 2
(6)	$(B \to A) \to (B \to \neg A) \to \neg B$	Аксиома 9 [$\alpha := B, \beta := A$]
(7)	$A \to B \to A$	Аксиома 1 [$\alpha := A, \beta := B$]
(8)	$\neg A \to B \to \neg A$	Аксиома 1 [$\alpha := \neg A, \beta := B$]
(9)	$A \to \neg B \to A$	Аксиома 1 [$\alpha := A, \beta := \neg B$]
(10)	$\neg A \to \neg B \to \neg A$	Аксиома 1 $[\alpha := \neg A, \beta := \neg B]$
(11)	$B \to A$	Moduse Ponuns 4, 7
(12)	$B \to \neg A$	Moduse Ponuns 5, 8
(13)	$\neg B \to A$	Moduse Ponuns 4, 9
(14)	$\neg B \to \neg A$	Moduse Ponuns 5, 10
(15)	$(B \to \neg A) \to \neg B$	Moduse Ponuns 11, 6
(16)	$\neg B$	Moduse Ponuns 12, 15
(17)	$(\neg B \to A) \to (\neg B \to \neg A) \to \neg \neg B$	Аксиома 9 [$\alpha := \neg B, \beta := A$]
(18)	$(\neg B \to \neg A) \to \neg \neg B$	Moduse Ponuns 13, 17
(19)	$\neg \neg B$	Moduse Ponuns 14, 18
(20)	$\neg \neg B \to B$	Аксиома 10 [$\alpha := B$]
(21)	B	Moduse Ponuns 19, 20

1.2 Задача 2.

а) Докажем, что $\vdash \alpha \to \neg \neg \alpha$. Для этого воспользуемся Теоремой о дедукции и докажем:

$$\alpha \vdash \neg \neg \alpha$$

Доказательство:

- (1) $\alpha \to \neg \alpha \to \alpha$ Akchoma 1 $[\alpha := \alpha, \beta := \neg \alpha]$
- (2) α Γ ипотеза
- (3) $\neg \alpha \rightarrow \alpha$ Moduse Ponens 2, 1
- (4) $(\neg \alpha \to \alpha) \to (\neg \alpha \to \neg \alpha) \to \neg \neg \alpha$ Аксиома 9 $[\alpha := \neg \alpha, \beta := \alpha]$
- (5)
- : copy-paste from lection
- (12) $\neg \alpha \rightarrow \neg \alpha$
- (13) $(\neg \alpha \rightarrow \neg \alpha) \rightarrow \neg \neg \alpha$ Moduse Ponens 3, 4
- (14) $\neg \neg \alpha$ Moduse Ponens 12, 13

$$\neg A, B \vdash \neg (A \& B) \tag{b}$$

 $(1) \quad ((A\&B) \to A) \to ((A\&B) \to \neg A) \to \neg (A\&B) \quad \text{Аксиома 9 } [\alpha := (A\&B), \beta := A]$

(2) $A\&B \to A$ Akcuoma $4 \left[\alpha := A, \beta := B\right]$

(2) 7ReB 771 (3) ¬A Γ ипотеза

(4) B Γ ипотеза

(5) $\neg A \rightarrow (A\&B) \rightarrow \neg A$ Аксиома 1 $[\alpha := \neg A, \beta := (A\&B)]$

(6) $(A\&B) \rightarrow \neg A$ Moduse Ponuns 3, 5

(7) $((A\&B) \to \neg A) \to \neg (A\&B)$ Moduse Ponuns 2, 1

(8) $\neg (A \& B)$ Moduse Ponuns 6, 7

$$\neg A, \neg B \vdash \neg (A \lor B)$$
 (c)

Докажем, что $\neg A \vdash A \to \neg (A \lor B)$. Для этого по теореме о дедукции, надо доказать $\neg A, A \to \neg (A \lor B)$. Для этого воспользуемся доказательством 1e. Откуда есть доказательство вышесказанного. Аналогично есть доказательство $\neg B \vdash B \to \neg (A \lor B)$. Назовем эти доказательства Леммой 1 и Леммой 2 соответственно.

Вернемся к исходному доказательству:

- ¬А
 Гипотеза
- (2) ¬*B* Гипотеза
- (3) $((A \lor B) \to A) \to ((A \lor B) \to \neg A) \to \neg (A \lor B)$ Аксиома 9 $[\alpha := (A \lor B), \beta := A]$
- (4) $(A \to \neg (A \lor B)) \to (B \to \neg (A \lor B)) \to (A \lor B \to \neg (A \lor B))$ Аксиома 8 $[\alpha := A, \beta := B, \gamma := \neg (A \lor B)]$
- (5) $\neg A \rightarrow \neg A \rightarrow \neg A$

Теперь воспользуемся нашими предположениями:

```
(6)
                 copy-paste from lemma 1
                 A \to \neg (A \lor B)
(5+n)
(6+n)
                 copy-paste from lemma 2
(5 + n + m)
                 B \to \neg (A \lor B)
                (B \to \neg (A \lor B)) \to (A \lor B \to \neg (A \lor B))
(6 + n + m)
                 Moduse Ponuns (5+n), 4
(7 + n + m)
                 A \vee B \rightarrow \neg (A \vee B)
                 Moduse Ponuns (5+n+m), (6+n+m)
                                                                                                Q.E.D
(8 + n + m)
                 copy-paste from lection
(15 + n + m)
                 A \vee B \rightarrow A \vee B
                ((A \lor B) \to (A \lor B)) \to ((A \lor B) \to \neg(A \lor B)) \to \neg(A \lor B)
(16 + n + m)
                 Аксиома 9 [\alpha := A \lor B, \beta := A \lor B]
                ((A \lor B) \to \neg(A \lor B)) \to \neg(A \lor B)
(17 + n + m)
                 Moduse Ponuns (15+n+m), (16+n+m)
(18 + n + m)
                \neg (A \lor B)
                 Moduse Ponuns (7+n+m), (17+n+m)
```

$$A, \neg B \vdash \neg (A \to B) \tag{d}$$

(1) (2) (3) (4) (5) (6) (7)	A $\neg B$ $\neg B \to (A \to B) \to \neg B$ $(A \to B) \to \neg B$ $A \to (A \to B) \to A$ $(A \to B) \to A$	Гипотеза Гипотеза Аксиома 1 $[\alpha := \neg B, \beta := (A \to B)]$ Moduse Ponuns 2, 3 Аксиома 1 $[\alpha := A, \beta := (A \to B)]$ Moduse Ponuns 1, 5
: (15) (16) (17) (18) (19) (20) (21)	$ \begin{array}{l} \text{copy-paste from lection} \\ (A \to B) \to (A \to B) \\ ((A \to B) \to A) \to ((A \to B) \to A \to B) \to ((A \to B) \to B) \\ ((A \to B) \to A \to B) \to ((A \to B) \to A) \\ (A \to B) \to B \\ ((A \to B) \to B) \to ((A \to B) \to \neg B) \to \neg (A \to B) \\ ((A \to B) \to \neg B) \to \neg (A \to B) \\ \neg (A \to B) \end{array} $	Аксиома 2 $[\alpha:=A\to B,\beta:=A,\gamma:=B]$ Moduse Ponuns 6, 16 Moduse Ponuns 15, 17 Аксиома 9 $[\alpha:=A\to B,\beta:=B]$ Moduse Ponuns 18, 19 Moduse Ponuns 4, 20

$$\neg A, B \vdash A \to B \tag{e}$$

 $(1) \neg A$ Гипотеза

(2) BГипотеза

(3) $B \to A \to B$ Akchoma 1 $[\alpha := B, \beta := A]$ (4) $A \to B$ Moduse Ponuns 2, 3

1.3 Задача 3.

$$\vdash (A \to B) \to (B \to C) \to (A \to C)$$
 (a)

Воспользуемся теоремой о дедукции и будем доказывать:

$$(A \to B), (B \to C) \vdash (A \to C)$$

Доказательство:

(1)	$(A \to B)$	Гипотеза
(2)	$(B \to C)$	Гипотеза
(3)	$(A \to B) \to (A \to B \to C) \to (A \to C)$	Аксиома 2 $[\alpha := A, \beta := B, \gamma := C]$
(4)	$(B \to C) \to A \to (B \to C)$	Аксиома 1 [$\alpha := B \to C, \beta := A$]
(5)	$A \to B \to C$	Moduse Ponuns 2, 4
(6)	$(A \to B \to C) \to (A \to C)$	Moduse Ponuns 1, 3
(7)	$A \to C$	Moduse Ponuns 5, 6

$$\vdash (A \to B) \to (\neg B \to \neg A) \tag{b}$$

Воспользуемся теоремой о дедукции и будем доказывать:

$$(A \to B), \neg B \vdash \neg A$$

$$\vdash \neg(\neg A \& \neg B) \to (A \lor B) \tag{c}$$

Воспользуемся теоремой о дедукции и будем доказывать:

$$\neg(\neg A\&\neg B)\vdash(A\lor B)$$

(1) (2) (3)	$\neg(\neg A\&\neg B)$ $\neg A \to \neg B \to \neg A\&\neg B$ $A \to A \lor B$	Гипотеза Аксиома 3 $[\alpha := \neg A, \beta := \neg B]$ Аксиома 6 $[\alpha := A, \beta := B]$	
` ,	copy-paste from 3b $ (A \to A \lor B) \to (\neg (A \lor B) \to \neg A) \\ \neg (A \lor B) \to \neg A \\ B \to A \lor B $	Moduse Ponuns 3, 3+n Аксиома 7 [$\alpha:=B,\beta:=A$]	
$ \begin{array}{l} \vdots \\ (5+2n) \\ (6+2n) \end{array} $	copy-paste from 3b $(B \to A \lor B) \to (\neg(A \lor B) \to \neg B)$ $\neg(A \lor B) \to \neg B$	Moduse Ponuns $5 + n$, $5 + 2n$	
(7+2n)	Хотим получить: $\neg(A \lor B) \to (\neg A \& \neg B)$ $((\neg(A \lor B)) \to \neg B) \to ((\neg(A \lor B)) \to \neg B \to (\neg A \& \neg B)) \to ((\neg(A \lor B)) \to (\neg A \& \neg B))$ Аксиома 2 $[\alpha := (\neg(A \lor B)), \beta := \neg B, \gamma := (\neg A \& \neg B)]$		
(8+2n)	$(\neg(A \lor B) \to \neg A) \to (\neg(A \lor B) \to \neg A \to (\neg B \to (\neg A \& \neg B))) \to (\neg(A \lor B) \to (\neg B \to (\neg A \& \neg B)))$		
(9+2n)	помогите, оно не влезает Аксиома 2 $[\alpha := \neg(A \lor B), \beta := \neg A, \gamma := (\neg B \to (\neg A \& \neg B))]$ $(\neg(A \lor B) \to \neg A \to (\neg B \to (\neg A \& \neg B))) \to (\neg(A \lor B) \to (\neg A \& \neg B)))$		
(10+2n)			
(11+2n)	Аксиома 1 $[\alpha := (\neg A \to \neg B \to \neg A \& \neg B), \beta := \neg (A \lor B)]$ $\neg (A \lor B) \to \neg A \to (\neg B \to (\neg A \& \neg B))$ Moduse Ponuns 2, $10 + 2n$		
(12+2n)	$(+2n) \neg (A \lor B) \to \neg B \to (\neg A \& \neg B)$		
(13+2n)			
(14+2n)	Moduse Ponuns $6 + 2n$, $7 + 2n$ $\neg (A \lor B) \to (\neg A \& \neg B)$ Moduse Ponuns $12 + 2n$, $13 + 2n$		
(15+2n)	$(\neg(A \lor B) \to (\neg A \& \neg B)) \to (\neg(A \lor B) \to \neg(\neg A \& \neg B)) \to \neg\neg(A \lor B)$		
(16+2n)	Аксиома 9 $[\alpha := \neg (A \lor B), \beta := \neg A \& \neg B]$ $\neg (\neg A \& \neg B) \to \neg (A \lor B) \to \neg (\neg A \& \neg B)$		
(17+2n)	Аксиома 1 $[\alpha := \neg(\neg A\& \neg B), \beta := \neg(A \lor B)]$ $\neg \neg(A \lor B) \to (A \lor B)$ Аксиома 10 $[\alpha := (A \lor B)]$		

$$\begin{array}{ll} (18+2n) & \neg(A\vee B)\to \neg(\neg A\&B)\\ & \text{Moduse Ponuns 1, } 16+2n\\ (19+2n) & (\neg(A\vee B)\to \neg(\neg A\&\neg B))\to \neg\neg(A\vee B)\\ & \text{Moduse Ponuns } 14+2n,\, 15+2n\\ (20+2n) & \neg\neg(A\vee B)\\ & \text{Moduse Ponuns } 18+2n,\, 19+2n\\ (21+2n) & (A\vee B)\\ & \text{Moduse Ponuns } 20+2n,\, 17+2n\\ \end{array}$$

Q.E.D.

Моя психика травмирована

$$\vdash A \lor B \to \neg(\neg A \& \neg B) \tag{d}$$

Сперва докажем, что:

$$\vdash A \rightarrow \neg(\neg A \& \neg B))$$

Буду пользоваться теоремой о дедукции и докажу:

$$A \vdash \neg(\neg A \& \neg B)$$

(1) AГипотеза

 $((\neg A \& \neg B) \to A) \to ((\neg A \& \neg B) \to \neg A) \to \neg(\neg A \& \neg B)$ (2)Аксиома 9 $[\alpha := (\neg A \& \neg B), \beta := A]$

 $A \to (\neg A \& \neg B) \to A$ (3)Аксиома 1 $[\alpha := A, \beta := (\neg A \& \neg B)]$

 $\neg A\& \neg B \rightarrow \neg A$ (4)Аксиома 4 $[\alpha := \neg A, \beta := \neg B]$

 $(\neg A \& \neg B) \to A$ (5)Moduse Ponuns 1, 3

 $((\neg A \& \neg B) \to \neg A) \to \neg(\neg A \& \neg B)$ Moduse Ponuns 5, 2

(7) $\neg(\neg A\&\neg B)$ Moduse Ponuns 4, 6

Q.E.D.

Аналогично докажем

$$\vdash B \rightarrow \neg(\neg A\&B))$$

Назовем это Леммой 1 и Леммой 2 соответственно. Докажем искомое:

(1) $A \vee B$ Гипотеза

(2)
$$(A \to \neg(\neg A\& \neg B)) \to (B \to \neg(\neg A\& \neg B)) \to (A \lor B \to \neg(\neg A\& \neg B))$$
 Аксиома 8 [$\alpha := A, \beta := B, \gamma := \neg(\neg A\& \neg B)$]

(2 + n) $B \to \neg(\neg A\&B)$ copy-paste from lemma 2

(2 + 2n) $A \rightarrow \neg(\neg A\&B)$ copy-paste from lemma 1

 $(3+2n) \quad (B \to \neg(\neg A \& \neg B)) \to (A \lor B \to \neg(\neg A \& \neg B))$ Moduse Ponuns (2 + 2n, 2

(4 + 2n) $A \lor B \to \neg(\neg A \& \neg B)$ Moduse Ponuns (2 + n, 3 + 2n)

$$\vdash (\neg A \lor \neg B) \to \neg (A \& B) \tag{e}$$

Сперва докажем, что:

$$\vdash \neg A \rightarrow \neg (A \& B)$$

Для этого по теореме о дедукции докажем, что:

$$\neg A \vdash \neg (A \& B)$$

- (1) $\neg A$ Γ ипотеза
- (3) $((A\&B) \to A) \to ((A\&B) \to \neg A) \to \neg (A\&B)$ Akchoma 9 $[\alpha := (A\&B), \beta := A]$
- (4) $\neg A \rightarrow (A \& B) \rightarrow \neg A$ Аксиома 1 $[\alpha := \neg A, \beta := (A \& B)]$
- (5) $A\&B \rightarrow \neg A$ Moduse Ponuns 1, 4
- (6) $(A\&B \to \neg A) \to \neg (A\&B)$ Moduse Ponuns 2, 3
- (7) $\neg (A \& B)$ Moduse Ponuns 5, 6

Q.E.D.

Аналогично докажем, что

$$\vdash \neg B \rightarrow \neg (A\&B)$$

Назовем это Леммой 1 и Леммой 2 соответственно.

Теперь докажем искомое:

$$\begin{array}{ll} (1) & (\neg A \rightarrow \neg (A\&B)) \rightarrow (\neg B \rightarrow \neg (A\&B)) \rightarrow (\neg A \vee \neg B \rightarrow \neg (A\&B)) \\ \text{Аксиома 8 } [\alpha := \neg A \ , \beta := \neg B, \gamma := \neg (A\&B)] \\ \vdots & \\ (1+n) & \neg A \rightarrow \neg (A\&B) \\ \text{copy-paste from lemma 1} \\ \vdots & \\ (1+2n) & \neg B \rightarrow \neg (A\&B) \\ \text{copy-paste from lemma 2} \\ (2+2n) & (\neg B \rightarrow \neg (A\&B)) \rightarrow ((\neg A \vee \neg B) \rightarrow \neg (A\&B)) \\ \text{Moduse Ponuns } 1+n, 1 \\ (3+2n) & (\neg A \vee \neg B) \rightarrow \neg (A\&B) \\ \text{Moduse Ponuns } 1+2n, 2+2n \\ \end{array}$$

$$\vdash (A \to B) \to (\neg A \lor B) \tag{f}$$

<u>Соглашение:</u> В дальнейшем доказательстве буду пользоваться раннее доказанными фактами, они будут как бы вставляться в доказательство, а снизу будет подписано, чем я пользовался (иначе это займет бесконечность времени)

Используем теорему о дедукции и будем доказывать

$$(A \rightarrow B) \vdash (\neg A \lor B)$$

- $\begin{array}{cc} (1) & A \to B \\ & \Gamma \text{ипотеза} \end{array}$
- (2) $B \to \neg A \lor B$ Аксиома 7 $[\alpha := B, \beta := \neg A]$
- (3) $(A \to B) \to (A \to B \to \neg A \lor B) \to (A \to \neg A \lor B)$ Akchoma 2 $[\alpha := A, \beta := B, \gamma := \neg A \lor B]$
- (4) $(A \to B \to \neg A \lor B) \to (A \to \neg A \lor B)$ Moduse Ponuns 1, 3
- (5) $(B \to \neg A \lor B) \to A \to (B \to \neg A \lor B)$ Аксиома 1 $[\alpha := (B \to \neg A \lor B), \beta := A]$
- (6) $A \to B \to \neg A \lor B$ Moduse Ponuns 2, 5
- (7) $A \rightarrow \neg A \lor B$ Moduse Ponuns 6, 4
- (8) $\neg A \rightarrow \neg A \lor B$ Аксиома 6 $[\alpha := \neg A, \beta := B]$
- (9) $(A \to (A \lor \neg A)) \to (\neg A \to (A \lor \neg A)) \to (A \lor \neg A \to (A \lor \neg A))$ Аксиома 9 $[\alpha := A, \beta := \neg A, \gamma := (A \lor \neg A)]$
- (10) $(\neg A \rightarrow \neg A \lor B) \rightarrow (A \lor \neg A \rightarrow \neg A \lor B)$ Moduse Ponuns 7, 9
- (11) $A \lor \neg A \to \neg A \lor B$ Moduse Ponuns 8, 10
- (12) $A \lor \neg A$ $\alpha \lor \neg \alpha \text{ по 3i}$
- (13) $\neg A \lor B$ Moduse Ponuns 12, 11

$$\vdash A\&B \to A \lor B \tag{g}$$

Используем теорему о дедукции и будем доказывать

$$A\&B \vdash A \lor B$$

- (1) *А&В* <u>Гипотеза</u>
- (2) $A\&B \to A$ Аксиома 4 [$\alpha:=A,\beta:=B$]
- (3) $A \rightarrow A \lor B$ Аксиома 6 [$\alpha := A, \beta := B$]
- (4) A Moduse Ponuns 1, 2
- (5) $A \lor B$ Moduse Ponuns 4, 3

$$\vdash ((A \to B) \to A) \to A \tag{h}$$

<u>Соглашение:</u> В дальнейшем доказательстве буду пользоваться раннее доказанными фактами, они будут как бы вставляться в доказательство, а снизу будет подписано, чем я пользовался (иначе это займет бесконечность времени)

Используем теорему о дедукции и будем доказывать:

$$(A \to B) \to A \vdash A$$

- $(1) \qquad (A \to B) \to A$ Гипотеза
- (2) $(\neg A \to A) \to (\neg A \to \neg A) \to \neg \neg A$ Akchoma 9 $[\alpha := \neg A, \beta := A]$
- (3) $(\neg A \to (A \to B)) \to (\neg A \to (A \to B) \to A) \to (\neg A \to A)$ Аксиома 2 $[\alpha := \neg A, \beta := (A \to B), \gamma := A]$
- (4) $\neg A \rightarrow A \rightarrow B$ $A, \neg A \vdash B$ по заданию 1e
- (5) $((A \to B) \to A) \to \neg A \to ((A \to B) \to A)$ Akchoma 1 $[\alpha := ((A \to B) \to A), \beta := \neg A]$
- (6) $\neg A \rightarrow (A \rightarrow B) \rightarrow A$ Moduse Ponuns 1, 5
- (7) $(\neg A \rightarrow (A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow A)$ Moduse Ponuns 4, 3
- (8) $\neg A \rightarrow A$ Moduse Ponuns 6, 7
- (9) $\neg A \rightarrow \neg A$ $\alpha \rightarrow \alpha$, доказано на лекции
- (10) $(\neg A \rightarrow \neg A) \rightarrow \neg \neg A$ Moduse Ponuns 8, 2
- (11) $\neg \neg A$ Moduse Ponuns 9, 10
- (12) $\neg \neg A \rightarrow A$ Akcuoma 10 $[\alpha := A]$
- (13) *A*Moduse Ponuns 11, 12

$$\vdash A \lor \neg A$$
 (i)

<u>Соглашение:</u> В дальнейшем доказательстве буду пользоваться раннее доказанными фактами, они будут как бы вставляться в доказательство, а снизу будет подписано, чем я пользовался (иначе это займет бесконечность времени)

Доказательство:

- (1) $A \to A \lor \neg A$ Аксиома 6 $[\alpha := A, \beta := \neg A]$
- (2) $\neg \neg (A \lor \neg A) \to (A \lor \neg A)$ Akchoma 10 $[\alpha := A \lor \neg A]$
- (3) $(\neg(A \lor \neg A) \to (A \lor \neg A)) \to (\neg(A \lor \neg A) \to \neg(A \lor \neg A)) \to \neg\neg(A \lor \neg A)$ Akchoma 9 $[\alpha := \neg(A \lor \neg A), \beta := A \lor \neg A]$
- (4) $\neg (A \lor \neg A) \to \neg (A \lor \neg A)$ $\alpha \to \alpha$, доказано на лекции
- (5) $(\neg(A \lor \neg A) \to \neg A) \to (\neg(A \lor \neg A) \to \neg A \to (A \lor \neg A)) \to (\neg(A \lor \neg A) \to (A \lor \neg A))$ Akchoma 2 $[\alpha := \neg(A \lor \neg A), \beta := \neg A, \gamma := A \lor \neg A]$
- (6) $\neg A \rightarrow A \lor \neg A$ AKCHOMA 7 $[\alpha := \neg A, \beta := A]$
- (7) $(\neg A \to A \lor \neg A) \to \neg(A \lor \neg A) \to (\neg A \to A \lor \neg A)$ AKCHOMA 1 $[\alpha := \neg A \to A \lor \neg A, \beta := \neg(A \lor \neg A)]$
- (8) $\neg (A \lor \neg A) \rightarrow (\neg A \rightarrow A \lor \neg A)$ Moduse Ponuns 6, 7
- (9) $(A \to A \lor \neg A) \to (\neg (A \lor \neg A) \to \neg A)$ $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$, доказано в 3b
- (10) $\neg (A \lor \neg A) \to \neg A$ Moduse Ponuns 1, 9
- (11) $(\neg(A \lor \neg A) \to (\neg A \to A \lor \neg A)) \to (\neg(A \lor \neg A) \to (A \lor \neg A))$ Moduse Ponuns 10, 5
- (12) $\neg (A \lor \neg A) \to (A \lor \neg A)$ Moduse Ponuns 8, 11
- (13) $(\neg(A \lor \neg A) \to \neg(A \lor \neg A)) \to \neg\neg(A \lor \neg A)$ Moduse Ponuns 12, 3
- (14) $\neg \neg (A \lor \neg A)$ Moduse Ponuns 4, 13
- (15) $A \lor \neg A$ Moduse Ponuns 14, 2

$$\vdash (A\&B \to C) \to (A \to B \to C) \tag{j}$$

Если я докажу:

$$(A\&B \rightarrow C), A, B \vdash C$$

То воспользуясь теоремой о дедукции получу искомое.

Докажем:

- (1) $(A\&B) \to C$ Гипотеза
- (2) *А* Гипотеза
- (3) *В* Гипотеза
- (4) $A \rightarrow B \rightarrow A\&B$ Аксиома 3 [$\alpha := A, \beta := B$]
- (5) $B \rightarrow A \& B$ Moduse Ponuns 2, 4
- (6) A&B Moduse Ponuns 3, 5
- (7) C Moduse Ponuns 6, 1

$$\vdash A\&(B\lor C)\to (A\&B)\lor (A\&C) \tag{k}$$

Воспользуемся теоремой о дедукции, надо доказать:

$$A\&(B\lor C)\vdash (A\&B)\lor (A\&C)$$

- (1) $A\&(B\lor C)$ Гипотеза
- (2) $A\&(B\lor C)\to A$ Аксиома 4 $[\alpha:=A,\beta:=B\lor C]$
- (3) $A\&(B\lor C)\to (B\lor C)$ Аксиома $5\ [\alpha:=A,\beta:=B\lor C]$
- $\begin{array}{cc} \text{(4)} & A \\ & \text{Moduse Ponuns 1, 2} \end{array}$
- (5) $B \lor C$ Moduse Ponuns 1, 3
- (6) $A \to B \to A\&B$ Аксиома 3 $[\alpha := A, \beta := B]$
- (7) $A \to C \to A\&C$ Akcuoma 3 $[\alpha := A, \beta := C]$
- (8) $(B \to (A\&B) \lor (A\&C)) \to (C \to (A\&B) \lor (A\&C)) \to (B \lor C \to (A\&B) \lor (A\&C))$ Аксиома 8 $[\alpha := B, \beta := C, \gamma := (A\&B) \lor (A\&C)]$
- (9) $(B \to A\&B) \to (B \to A\&B \to (A\&B) \lor (A\&C)) \to (B \to (A\&B) \lor (A\&C))$ Аксиома 2 $[\alpha := B, \beta := A\&B, \gamma := (A\&B) \lor (A\&C)]$
- (10) $B \to A \& B$ Moduse Ponuns 4, 6
- (11) $(B \to A \& B \to (A \& B) \lor (A \& C)) \to (B \to (A \& B) \lor (A \& C))$ Moduse Ponuns 10, 9
- (12) $(A\&B) \to (A\&B) \lor (A\&C)$ Аксиома 6 $[\alpha := (A\&B), \beta := (A\&C)]$
- (13) $(A\&B \to (A\&B) \lor (A\&C)) \to B \to (A\&B \to (A\&B) \lor (A\&C))$ $AKCHOMA 1 [\alpha := A\&B \to (A\&B) \lor (A\&C), \beta := B]$
- (14) $(B \rightarrow A\&B \rightarrow (A\&B) \lor (A\&C))$ Moduse Ponuns 12, 13
- (15) $B \rightarrow (A\&B) \lor (A\&C)$ Moduse Ponuns 14, 11

- (16) $(C \to A\&C) \to (C \to A\&C \to (A\&B) \lor (A\&C)) \to (C \to (A\&B) \lor (A\&C))$ Аксиома 2 $[\alpha := C, \beta := A\&C, \gamma := (A\&B) \lor (A\&C)]$
- (17) $B \to A \& B$ Moduse Ponuns 4, 7
- (18) $(C \to A\&C \to (A\&B) \lor (A\&C)) \to (C \to (A\&B) \lor (A\&C))$ Moduse Ponuns 17, 16
- (19) $(A\&C) \to (A\&B) \lor (A\&C)$ AKCHOMA $7 \ [\alpha := (A\&C), \beta := (A\&B)]$
- (20) $(A\&C \to (A\&B) \lor (A\&C)) \to C \to (A\&C \to (A\&B) \lor (A\&C))$ Аксиома 1 $[\alpha := A\&C \to (A\&B) \lor (A\&C), \beta := C]$
- (21) $(C \to A\& \to (A\&B) \lor (A\&C))$ Moduse Ponuns 19, 20
- (22) $C \rightarrow (A\&B) \lor (A\&C)$ Moduse Ponuns 21, 18
- (23) $(C \to (A \& B) \lor (A \& C)) \to (B \lor C \to (A \& B) \lor (A \& C))$ Moduse Ponuns 15, 8
- (24) $B \lor C \rightarrow (A\&B) \lor (A\&C)$ Moduse Ponuns 22, 23
- (25) $(A\&B) \lor (A\&C)$ Moduse Ponuns 5, 24

$$\vdash (A \to B \to C) \to (A \& B \to C) \tag{1}$$

По теореме о дедукции:

$$(A \rightarrow B \rightarrow C), A\&B \vdash C$$

- $\begin{array}{cc} (1) & A \to B \to C \\ & \Gamma \text{ипотеза} \end{array}$
- (2) *А&В* Гипотеза
- (3) $A\&B \to A$ Аксиома 4 [$\alpha:=A,\beta:=B$]
- (4) $A\&B \to B$ Аксиома 5 [$\alpha:=A,\beta:=B$]
- (5) A Moduse Ponuns 2, 3
- (6) B Moduse Ponuns 2, 4
- (7) $B \to C$ Moduse Ponuns 5, 1
- (8) CModuse Ponuns 6, 7

$$\vdash (A \to B) \lor (B \to A) \tag{m}$$

- $(1) \qquad (A \to (A \to B) \lor (B \to A)) \to (\neg A \to (A \to B) \lor (B \to A)) \to (A \lor \neg A \to (A \to B) \lor (B \to A))$ Аксиома 7 [$\alpha := A, \beta := \neg A, \gamma := (A \to B) \lor (B \to A)$]
- (2) $(A \to (B \to A)) \to (A \to (B \to A) \to (A \to B) \lor (B \to A)) \to (A \to (A \to B) \lor (B \to A))$ Akcuoma 2 $[\alpha := A, \beta := B \to A, \gamma := (A \to B) \lor (B \to A)]$
- (3) $A \to B \to A$ Akchoma 1 $[\alpha :=A, \beta :=B]$
- (4) $(A \to (B \to A) \to (A \to B) \lor (B \to A)) \to (A \to (A \to B) \lor (B \to A))$ Moduse Ponuns 3, 2
- (5) $(B \to A) \to (A \to B) \lor (B \to A)$ Аксиома $7 \ [\alpha := (B \to A), \beta := (A \to B)]$
- (6) $((B \to A) \to (A \to B) \lor (B \to A)) \to A \to ((B \to A) \to (A \to B) \lor (B \to A))$ Аксиома 1 $[\alpha := (B \to A) \to (A \to B) \lor (B \to A), \beta := A]$
- (7) $A \to (B \to A) \to (A \to B) \lor (B \to A)$ Moduse Ponuns 5, 6
- (8) $A \rightarrow (A \rightarrow B) \lor (B \rightarrow A)$ Moduse Ponuns 7, 4
- (9) $(\neg A \to (A \to B) \lor (B \to A)) \to (A \lor \neg A \to (A \to B) \lor (B \to A))$ Moduse Ponuns 8, 1
- (10) $(\neg A \to A \to B) \to (\neg A \to A \to B \to (A \to B) \lor (B \to A)) \to (\neg A \to (A \to B) \lor (B \to A))$ Аксиома 2 $[\alpha := \neg A, \beta := (A \to B), \gamma := (A \to B) \lor (B \to A)]$
- (11) $\neg A \rightarrow A \rightarrow B$ $A, \neg A \vdash B$ по заданию 1e
- (12) $(\neg A \to (A \to B) \to (A \to B) \lor (B \to A)) \to (\neg A \to (A \to B) \lor (B \to A))$ Moduse Ponuns 11, 10
- (13) $(A \to B) \to (A \to B) \lor (B \to A)$ Аксиома 6 $[\alpha := (A \to B), \beta := (B \to A)]$
- (14) $((A \to B) \to (A \to B) \lor (B \to A)) \to A \to ((A \to B) \to (A \to B) \lor (B \to A))$ Аксиома 1 $[\alpha := (B \to A) \to (A \to B) \lor (B \to A), \beta := \neg A]$
- (15) $\neg A \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow B) \lor (B \rightarrow A)$ Moduse Ponuns 13, 14
- (16) $\neg A \rightarrow (A \rightarrow B) \lor (B \rightarrow A)$ Moduse Ponuns 15, 12
- (17) $A \lor \neg A \to (A \to B) \lor (B \to A)$ Moduse Ponuns 16, 9
- (18) $(A \rightarrow B) \lor (B \rightarrow A)$ no 3i
- (19) $A \lor \neg A$ Moduse Ponuns 18, 17

$$\vdash (A \to B) \lor (B \to C) \lor (C \to A) \tag{n}$$

Временно обозначу за $F := (A \to B) \lor (B \to C)$

- $(1) \qquad (A \to F \lor (C \to A)) \to (\neg A \to F \lor (C \to A)) \to (A \lor \neg A \to F \lor (C \to A))$ Аксиома 8 [$\alpha := A, \beta := \neg A, \gamma := F \lor (C \to A)$]
- (2) $(A \to (C \to A)) \to (A \to (C \to A) \to F \lor (C \to A)) \to (A \to F \lor (C \to A))$ Аксиома 2 $[\alpha := A, \beta := C \to A, \gamma := F \lor (C \to A)]$
- (3) $A \to C \to A$ Аксиома 1 $[\alpha := A, \beta := C]$
- (4) $(A \to (C \to A) \to F \lor (C \to A)) \to (A \to F \lor (C \to A))$ Moduse Ponuns 3, 2
- (5) $(C \to A) \to F \lor (C \to A)$ Аксиома $7 [\alpha := (C \to A), \beta := F]$
- (6) $((C \to A) \to F \lor (C \to A)) \to A \to ((C \to A) \to F \lor (C \to A))$ Аксиома 1 $[\alpha := ((C \to A) \to F \lor (C \to A)), \beta := A]$
- (7) $A \to (C \to A) \to F \lor (C \to A)$ Moduse Ponuns 5, 6
- (8) $A \to F \lor (C \to A)$ Moduse Ponuns 7, 4
- (9) $(\neg A \to F \lor (C \to A)) \to (A \lor \neg A \to F \lor (C \to A))$ Moduse Ponuns 8, 1
- (10) $\neg A \rightarrow A \rightarrow B$ $A, \neg A \vdash B$ по заданию 1e
- (11) $(\neg A \to (A \to B)) \to (\neg A \to (A \to B) \to F) \to (\neg A \to F)$ Аксиома 2 $[\alpha := \neg A, \beta := (A \to B), \gamma := F]$
- (12) $(\neg A \rightarrow (A \rightarrow B) \rightarrow F) \rightarrow (\neg A \rightarrow F)$ Moduse Ponuns 10, 11
- (13) $(A \to B) \to (A \to B) \lor (B \to C)$ AKCHOMA 6 $[\alpha := (A \to B), \beta := (B \to C)]$
- (14) $((A \to B) \to F) \to \neg A \to ((A \to B) \to F)$ Аксиома 1 $[\alpha := (A \to B) \to F, \beta := \neg A]$
- (15) $(\neg A \rightarrow (A \rightarrow B) \rightarrow F)$ Moduse Ponuns 13, 14
- (16) $\neg A \rightarrow F$ Moduse Ponuns 15, 12

- (17) $(\neg A \to F) \to (\neg A \to F \to F \lor (C \to A)) \to (\neg A \to F \lor (C \to A))$ Akchoma 2 $[\alpha := \neg A, \beta := F, \gamma := F \lor (C \to A)]$
- (18) $(\neg A \to F \to F \lor (C \to A)) \to (\neg A \to F \lor (C \to A))$ Moduse Ponuns 16, 17
- (19) $F \to F \lor (C \to A)$ Аксиома 7 $[\alpha := F, \beta := (C \to A)]$
- (20) $(F \to F \lor (C \to A)) \to \neg A \to (F \to F \lor (C \to A))$ Аксиома 1 $[\alpha := (F \to F \lor (C \to A)), \beta := \neg A]$
- (21) $\neg A \rightarrow F \rightarrow F \lor (C \rightarrow A)$ Moduse Ponuns 19, 20
- (22) $\neg A \rightarrow F \lor (C \rightarrow A)$ Moduse Ponuns 21, 18
- (23) $A \lor \neg A \to F \lor (C \to A)$ Moduse Ponuns 22, 9
- $\begin{array}{ccc} (24) & A \vee \neg A \\ & \Pi \text{о пукнту 3i} \end{array}$
- (25) $F \lor (C \to A)$ Moduse Ponuns 24, 23

1.4 Задача 4.

Будем пользоваться фактом из $3i :\vdash \alpha \lor \neg \alpha$

По теореме о дедукции $\alpha \vdash \beta \Leftrightarrow \vdash \alpha \to \beta$.

По теореме о дедукции $\neg \alpha \vdash \beta \Leftrightarrow \vdash \neg \alpha \to \beta$

Докажем, что $\vdash \beta$:

Доказательство

```
(n)
                        \alpha \to \beta
                        по вышесказанному
(n+m)
                        \neg \alpha \rightarrow \beta
                        по вышесказанному
                        (\alpha \to \beta) \to (\neg \alpha \to \beta) \to (\alpha \vee \neg \alpha \to \beta)
(n + m + 1)
                        Аксиома 8 [\alpha := \alpha, \beta := \neg \alpha, \gamma := \beta]
                        (\neg \alpha \to \beta) \to (\alpha \lor \neg \alpha \to \beta)
(n + m + 2)
                        Moduse Ponuns n, (n+m+1)
(n + m + 3)
                        (\alpha \vee \neg \alpha \rightarrow \beta)
                         Moduse Ponuns (n+m), (n+m+2)
(n+m+k+3)
                        \alpha \vee \neg \alpha
                        По 3і
(n+m+k+4)
                        β
                        Moduse Ponuns (n+m+k+3), (n+m+3)
```

2 Домашнее задание 2.

2.1 Задача 1.

Покажите, что в классическом исчислении высказываний $\Gamma \models \alpha \Rightarrow \Gamma \vdash \alpha$.

Решение:

Пусть X_1, \ldots, X_n - пропозициональные переменные, которые участвуют в формуле α , их конечное количество.

Посмотрю на таблицу истинности (2^n строк оценки), для α .

Для каждой выполненной строчки выполнено:

$$T_1 \wedge \ldots \wedge T_n \models \alpha$$
, где $T_i = X_i$ или $T_i = \neg X_i$, в зависимости

Это эквивалентно тому, что формула верна $\models (T_1 \land \dots \land T_n) \rightarrow \alpha$. Откуда по теореме о полноте из лекции:

$$\vdash (T_1 \land T_2 \land \cdots \land T_n) \to \alpha$$

Используем теорему о дедукции и получим:

$$(T_1 \wedge T_2 \wedge \cdots \wedge T_n) \vdash \alpha$$

Заметим, что $\Gamma \models (T_1 \land T_2 \land \dots \land T_n) \lor (Q_1 \dots) \lor \dots$ —выводит какое-то конечное количество множество строк нашей таблицы истинности

Осталось показать, что

$$\Gamma \vdash (T_1 \land T_2 \land \cdots \land T_n) \lor (Q_1 \ldots) \lor \ldots$$

И тогда будет выполнено $\Gamma \vdash \alpha$

Обозначу
$$(T_1 \wedge T_2 \wedge \cdots \wedge T_n) \vee (Q_1 \ldots) \vee \ldots = D$$

Формула D построена так, что она "перечисляет"все возможные строки Γ . В классической логике это эквивалентно тому, что Γ эквивалентно D (в плане таблицы истинности)

2.2 Задача 2.

- а) Возьмем открытое множество из R, по определению вокруг каждой точки открытого множества есть шар, возьмем объедение и победим (будем рассматривать только \mathbb{Q} , а так как Qплотно в \mathbb{R} и так как \mathbb{Q} - счетно, то покрытие будет счетно и по определению мы сможем взять объединение) TODO: расписать
- б) нет
- в) нет

3 Домашнее задание 3.

3f

4 Домашнее задание 4.

4.1 Задача № 1

Докажем

- 1. 1 \Rightarrow 2. Выполнена формула $A \& \neg A$.
- 2. 2 \Rightarrow 3. Используем аксиому 4, 5, чтобы получить α и $\neg \alpha$ и используем принцип Взрыва, чтобы доказать $A\& \neg A$. Воз
- 3. $3 \Rightarrow 4$. Используем аксиому 4, 5, получим, что для $\alpha = A$ выполнено
- $4.\ 4 \Rightarrow 1.\$ Используем принцип Взрыва и получим то, что надо

4.2 Задача № 2

а. 2 мира w_0, w_1 . Связаны $w_0 \le w_1$

Для первого мира:

$$\not\Vdash A, \not\Vdash B$$

Для второго мира:

$$\Vdash A, \not\Vdash B$$

Покажем, что $((A \to B) \to A) \to A$ не выполнено в данной модели Крипке:

В w_0 не выполнено:

$$A \to B$$

При этом тогда $\vdash (A \to B) \to A$ выполнено и в w_0 и w_1 . Заметим, что тогда не может быть выполнено:

$$((A \to B) \to A) \to A$$

Потому что тогда $w_0 \Vdash A$, что не так

b. 2 мира w_0, w_1 . Связаны $w_0 \le w_1$

Для первого мира:

$$\not\Vdash A, \not\Vdash B$$

Для второго мира:

$$\Vdash A. \Vdash B$$

Покажем, что $(A \to B) \to \neg A \lor B$ не выполнено в данной модели Крипке:

В w_0 и w_1 выполнено:

$$A \rightarrow B$$

Поймем выполнено ли $\neg A \lor B$ в w_0 :

$$w_0 \not\Vdash B, w_0 \not\Vdash \neg A \Rightarrow w_0 \not\Vdash \neg A \lor B$$

Заметим, что тогда в w_0 не выполняется наше условие

с. 5 миров: $w_1, \dots w_5$. Отношение порядка задается таким графом:

 $w_1 \Vdash A, w_4 \Vdash B, w_3 \Vdash A, w_3 \Vdash B$

Проверим $B \vee \neg B$ для каждого мира:

$$w_0 \not w_0 \not \Vdash \neg B, w_0 \not \Vdash B \Rightarrow w_0 \not \Vdash B \lor \neg B$$

$$w_1 \not w_1 \not \Vdash \neg B, w_1 \not \Vdash B \Rightarrow w_1 \not \Vdash B \lor \neg B$$

$$w_2 \ w_2 \not\Vdash \neg B, w_2 \not\Vdash B \Rightarrow w_2 \not\Vdash B \lor \neg B$$

$$w_3 \ w_3 \Vdash B \Rightarrow w_3 \Vdash B \lor \neg B$$

$$w_4 \ w_4 \Vdash B \Rightarrow w_4 \Vdash B \lor \neg B$$

Проверим $A \to (B \vee \neg B)$ в w_0 . Если $\Vdash A \to (B \vee \neg B)$, то в $w_0 \Vdash B \vee \neg B$, что не так.

Откуда в $w_0 \not\Vdash A \to (B \vee \neg B)$.

Проверим $\neg A \to (B \lor \neg B)$ в w_0 . Если $\Vdash \neg A \to (B \lor \neg B)$, то в $w_2 \Vdash B \lor \neg B$, что не так.

Откуда в $w_0 \not\Vdash \neg A \to (B \vee \neg B)$.

Отсюда очевидно, что в w_0 не выполнено искомое утверждение, что и надо доказать.

5 Домашнее задание 5.

5.1 Задание № 3.

Утверждение:

Все Саши любят матлог Все Саши - люди (человеки)

Существует человек, который любит матлог

Все единороги имеют рога Все единороги млекопитающие

Существует млекопитающее с рогом

В предикатах:

$$\exists x: M(x), \forall x: M(x) \to P(x), \forall x: M(x) \to S(x) \vdash \exists x: S(x) \& P(x)$$

Доказательство:

(1)	$\forall x. M(x) \to P(x)$	Гипотеза
(2)	$\forall x. M(x) \to S(x)$	Гипотеза
(3)	$\exists x. M(x)$	Гипотеза (условие существования)
(3.5)	$\exists x. M(x) \to M(a)$	Аксиома 12
(4)	M(a)	Modus Ponens из 3 и (3.5)
(5)	$M(a) \to P(a)$	см замечание
(6)	$M(a) \to S(a)$	см замечание
(7)	P(a)	Modus ponens из (4) и (5)
(8)	S(a)	Modus ponens из (4) и (6)
(9)	S(a)&P(a)	Введение конъюнкции из (7) и (8)
(10)	$S(a)\&P(a) \to \exists x.S(x)\&P(x)$	(12) аксиома
(11)	$\exists x. S(x) \& P(x)$	Modus ponens из (9) и (10)

Замечание: 5,6 пункт следуют из 11 аксиомы при подстановке a вместо x и modus ponens.

Контрпример с существованием:

$$D = \{0, 1\}$$

$$M(x) = (x == 0) \& (x == 1), \, S(x) = (x == 0), \, P(x) = (x == 1)$$

Задание № 5. 5.2

Докажите или опровергните следующие формулы:

1. $(\forall x.\phi) \rightarrow (\forall y.\phi[x:=y])$, если есть свобода для подстановки y вместо x в ϕ и y не входит свободно в ϕ .

Решение:

- $\begin{array}{ll} (1) & (\forall x.\varphi) \to \varphi[x:=y] \\ (2) & (\forall x.\varphi) \to \forall y.\varphi[x:=y] \end{array} \quad \begin{array}{ll} (\mathrm{A}11) \\ \Pi \mathrm{равило\ выводa\ } \forall \end{array}$
- 2. $(\forall x.\phi) \rightarrow (\exists x.\phi)$ и $(\forall x.\forall x.\phi) \rightarrow (\forall x.\phi)$

Решение:

x свободно для подстановки в φ вместо x,

(1)	$(\forall x.\phi) \to \phi[x := x]$	(A11)
(2)	$\phi \to (\exists x. \phi[x := x])$	(A12)
(3)	$((\forall x.\phi) \to \phi) \to ((\forall x.\phi) \to \phi \to (\exists x.\phi)) \to ((\forall x.\phi) \to (\exists x.\phi))$	(A2)
(4)	$((\forall x.\phi) \to \phi \to (\exists x.\phi)) \to ((\forall x.\phi) \to (\exists x.\phi))$	Moduse Ponuns 1, 3
(5)	$(\phi \to (\exists x.\phi)) \to (\forall x.\phi) \to (\phi \to (\exists x.\phi))$	(A1)
(6)	$(\forall x.\phi) \to \phi \to (\exists x.\phi)$	Moduse Ponuns 1, 5
(7)	$(\forall x.\phi) \to (\exists x.\phi)$	Moduse Ponuns 6, 4

Второе:

- $\begin{array}{ll}
 (1) & (\forall x.\varphi) \to (\forall x.\varphi) & \alpha \to \alpha \\
 (2) & (\forall x.(\forall x.\varphi)) \to (\forall x.\varphi) & (A11)
 \end{array}$
- 3. $(\forall x.\phi) \rightarrow (\neg \exists x.\neg \phi)$ и $(\exists x.\neg \phi) \rightarrow (\neg \forall x.\phi)$
- 4. $(\forall x.\alpha \lor \beta) \to (\neg \exists x. \neg \alpha) \& (\neg \exists x. \neg \beta)$
- 5. $((\forall x.\alpha) \lor (\forall y.\beta)) \to \forall x.\forall y.\alpha \lor \beta$. Какие условия надо наложить на переменные и формулы? Приведите контрпримеры, поясняющие необходимость условий.
- 6. $(\alpha \to \beta) \to \forall x.(\alpha \to \beta)$. Возможно, нужно наложить какие-то условия на переменные и формулы? Приведите контрпримеры, поясняющие необходимость условий (если условия требуются).
- 7. $(\alpha \to \forall x.\beta) \to (\forall x.\alpha \to \beta)$ при условии, что x не входит свободно в α .

6 Домашнее задание 7.

6.1 N_{2} 5

Рассмотрим аксиоматику Пеано. Пусть

$$a^b = \begin{cases} 1, & b = 0 \\ a^c \cdot a, & b = c' \end{cases}$$

Сложение:

$$\begin{cases} a+0=a\\ a+b'=(a+b)' \end{cases}$$

Умножение:

$$\begin{cases} a \cdot 0 = 0 \\ a \cdot b' = a \cdot b + a \end{cases}$$

Докажите, что:

1.
$$a \cdot b = b \cdot a$$

$$2. (a+b) \cdot c = a \cdot c + b \cdot c$$

3.
$$a^{b+c} = a^b \cdot a^c$$

4.
$$(a^b)^c = a^{b \cdot c}$$

5.
$$(a+b) + c = a + (b+c)$$

Доказательство

$$5.(a+b) + c = a + (b+c)$$

Доказательство индукцией по с:

База: c = 0

$$(a+b) + 0 = a+b = a + (b+0)$$

Предположение индукции:

$$(a+b) + c = a + (b+c)$$

Шаг индукции: $c \rightarrow c'$

$$(a+b) + c' = ((a+b) + c)' = (a+(b+c))'$$
$$a + (b+c') = a + (b+c)' = (a+(b+c))'$$

1. $a \cdot b = b \cdot a$

Докажем вспомогательное утверждение

$$b' \cdot a = b \cdot a + a$$

База: a = 0

$$b' \cdot 0 = 0$$

очевидно

Предположение: $b' \cdot a = b \cdot a + a$

Шаг: $a \rightarrow a'$

$$b' \cdot a' = b' \cdot a + b' = b \cdot a + a + b' =$$

$$= b \cdot a + (a+b)' = b \cdot a + (b+a)' = b \cdot a + b + a' = b \cdot a' + a'$$

Доказано вернемся к искомой задаче

База: b = 0

$$a \cdot 0 = 0 = 0 \cdot a$$

очевидно

Предположение: $a \cdot b = b \cdot a$

Шаг: $b \rightarrow b'$

$$a \cdot b' = a \cdot b + a = b \cdot a + a = b' \cdot a$$

 $2.(a+b) \cdot c = a \cdot c + b \cdot c$

База: c = 0

$$(a+b) \cdot 0 = 0 = 0 + 0 = a \cdot 0 + b \cdot 0$$

Предположение:

$$(a+b)\cdot c = a\cdot c + b\cdot c$$

Шаг: $c \rightarrow c'$

$$(a + b) \cdot c' = (a + b) \cdot c + (a + b) = (a \cdot c + b \cdot c) + (a + b)$$

 $a \cdot c' + b \cdot c' = (a \cdot c + a) + (b \cdot c + b) = a \cdot c + b \cdot c + a + b$

3. $a^{b+c} = a^b \cdot a^c$

База: c = 0

$$a^{b+0} = a^b = a^b \cdot 1 = a^b \cdot a^0$$

Предположение:

$$a^{b+c} = a^b \cdot a^c$$

Шаг: $c \rightarrow c'$

$$a^{b+c'} = a^{(b+c)'} = a^{b+c} \cdot a = (a^b \cdot a^c) \cdot a$$
$$a^b \cdot a^{c'} = a^b \cdot (a^c \cdot a) = (a^b \cdot a^c) \cdot a$$

4. $(a^b)^c = a^{b \cdot c}$

База: c = 0

$$(a^b)^0 = 1 = a^0 = a^{b \cdot 0}$$

Предположение:

$$(a^b)^c = a^{b \cdot c}$$

Шаг: $c \to c'$

$$(a^b)^{c'} = (a^b)^c \cdot a^b = a^{b \cdot c} \cdot a^b$$
$$a^{b \cdot c'} = a^{b \cdot c + b} = a^{b \cdot c} \cdot a^b$$

6.2 № 6

Определим отношение «меньше или равно» так: $0 \le a$ и $a' \le b'$, если $a \le b$. Докажите, что:

- 1. $x \le x + y$;
- 2. $x \le x \cdot y$ (укажите, когда это так в остальных случаях приведите контрпримеры);
- 3. Если $a \leq b$ и $m \leq n$, то $a \cdot m \leq b \cdot n$;
- 4. $x \le y$ тогда и только тогда, когда существует n, что x + n = y;
- 5. Будем говорить, что a делится на b с остатком, если существуют такие p и q, что $a = b \cdot p + q$ и $0 \le q < b$. Покажите, что p и q всегда существуют и единственны, если b > 0.

 $a \leq a'$ - очевидно

1. x < x + y

База: y = 0 x + 0 = x, очевидно $x \le x$.

Предположение индукции: $x \le x + y$

Шаг индукции: $y \to y'$

$$x + y' = (x + y)'$$

Из предположения $x \le x + y$ и $a \le a'$:

$$x + y \le (x + y)' = x + y'$$

 $2. x \leq x \cdot y$

 $x \leq x \cdot y$ выполняется тогда и только тогда, когда x = 0или $y \geq 1.$

Доказательство:

Если x=0: $0 \cdot y = 0$, и $0 \le 0$.

Если y = 1: $x \cdot 1 = x$, и $x \le x$.

Если $y \ge 1$:

База: y = 1 — уже проверено.

Предположение: $x \leq x \cdot y$

Шаг: $y \to y'$

$$x \cdot y' = x \cdot y + x$$
$$x \le x \cdot y$$

По пункту 1.

$$x \le x \cdot y + x = x \cdot y'$$

Контрпример:

При x = a, y = 0: $a \cdot 0 = 0$, но $a \nleq 0$.

3. Если $a \leq b$ и $m \leq n$, то $a \cdot m \leq b \cdot n$

Доказательство:

Из пункта 4:

$$a \le b \Leftrightarrow \exists k : b = a + k$$

 $m < n \Leftrightarrow \exists l : n = m + l$

Тогда:

$$b \cdot n = (a+k)(m+l)$$
$$a \cdot m + a \cdot l + k \cdot m + k \cdot l$$

Следовательно,

$$b \cdot n = a \cdot m + (a \cdot l + k \cdot m + k \cdot l)$$

По пункту 4: $a \cdot m \leq b \cdot n$.

$$4. \ x \le y \iff \exists n : x + n = y$$

Доказательство:

⇒:

- 1. База: Если x = 0, то n = y.
- 2. Если $x=a',\,y=b'$ и $a\leq b,$ то по предположению $\exists n:a+n=b.$ Тогда:

$$b' = (a+n)' = a' + n \Rightarrow x + n = y$$

 \Leftarrow

1. База:

$$n = 0: x + 0 = x \Rightarrow x \le x$$

2. По предположению: $x \leq x + n$. Так как $x \leq x + n, x \leq x + n' = y$ по пункту 1

6.3 № 7

Обозначим за \overline{n} представление числа n в формальной арифметике:

$$\overline{n} = \begin{cases} 0, & n = 0\\ (\overline{k})', & n = k + 1 \end{cases}$$

Например, $\overline{5} = 0'''''$. Докажите в формальной арифметике (доказательства могут использовать метаязык, но при этом из текста должно быть понятно, как выстроить полное доказательство):

- $1. \vdash \overline{2} \cdot \overline{2} = \overline{4};$
- $2. \vdash \forall a.a \cdot 0 = 0 \cdot a;$
- $3. \vdash \forall a.a \cdot \overline{2} = a + a$:
- 4. $\vdash \forall p.(\exists q.q'=p) \lor p=0$ (единственность нуля);
- $1. \vdash \overline{2} \cdot \overline{2} = \overline{4}$

Используем аксиомы умножения и сложения:

- 1. $\overline{2} = 0''$, $\overline{1} = 0'$, $\overline{0} = 0$.
- 2. По аксиоме умножения: $a \cdot b' = a \cdot b + a$.
- 3. По аксиоме сложения: a + b' = (a + b)'.

Вычисляем:

- $1.\ \overline{2}\cdot\overline{1}=\overline{2}\cdot\overline{0}'=\overline{2}\cdot\overline{0}+\overline{2}=0+\overline{2}=\overline{2}$ (так как 0+a=a ранее доказанное свойство).
- 2. $\overline{2} \cdot \overline{2} = \overline{2} \cdot \overline{1}' = \overline{2} \cdot \overline{1} + \overline{2} = \overline{2} + \overline{2}$.
- 3. $\overline{2} + \overline{2} = \overline{2} + \overline{1}' = (\overline{2} + \overline{1})' = \overline{3}' = \overline{4}$.

Таким образом, $\overline{2} \cdot \overline{2} = \overline{4}$.

 $2. \vdash \forall a.a \cdot 0 = 0 \cdot a;$

Лемма 2: $a = b \vdash b = a$

- (1) a=b Гипотеза
- (2) a=a из лекции
- (3) $a = b \rightarrow a = a \rightarrow b = a$ A1
- (4) b = a MP (1,2),3

Лемма 2: $0 \cdot a = 0$

(1)	$0 \cdot 0 = 0$	A7
(2)	$0 \cdot a' = 0 \cdot a + 0$	A8
(3)	$0 \cdot a + 0 = 0 \cdot a$	A7
(4)	$0 \cdot a' = 0 \cdot a$	Из аксиомы 1, см доказательство(транзитивность =)
(5)	$0 \cdot a = 0 \cdot a'$	по Лемме 1
(6)	$0 \cdot a = 0 \cdot a' \to 0 \cdot a = 0 \to 0 = 0 \cdot a'$	A1
(7)	$0 \cdot a = 0 \to 0 = 0 \cdot a'$	MP 5,6
(7.5)	$\forall a.0 \cdot a = 0 \to 0 = 0 \cdot a'$	MP 5,6, обозначим это за T
(8)	$\varphi[a := 0] \& (\forall a. \varphi \to \varphi[a := a']) \to \varphi$	по схеме индукции, где $\varphi(a) := 0 \cdot a = 0$
(9)	$0 \cdot 0 = 0 \to T \to 0 \& T$	А4 из исчисления предикатов
(10)	$T \to 0 \& T$	MP 9,1
(11)	0&T	MP 7.5,10
(12)	arphi	MP 11,8

Доказательство

(1)	$0 = a \cdot 0 \to 0 = 0 \cdot a \to a \cdot 0 = 0 \cdot a$	A1
(2)	$a \cdot 0 = 0 \to a \cdot 0 = a \cdot 0 \to 0 = a \cdot 0$	A1
(3)	$a \cdot 0 = 0$	A7
(4)	$a \cdot 0 = a \cdot 0$	из лекции
(5)	$a \cdot a \cdot 0 \to 0 = a \cdot 0$	MP 3,2
(6)	$0 = a \cdot 0$	MP 4,5
(7)	$0 \cdot a = 0$	по Лемме 2
(8)	$0 = 0 \cdot a$	из Лемме 1
(9)	$0 = 0 \cdot a \to a \cdot 0 = 0 \cdot a$	MP 7,1
(10)	$a \cdot 0 = 0 \cdot a$	MP 8,9

6.4 $N_{\underline{0}}$ 2

7 Информация о курсе

Поток — у2024. Группы М3132-М3139.

