10 주차 Home	work		
학번	32164420	이름	조정민

수업자료 10 주차에 있는 확인학습을 모두 풀어서 제출바랍니다.

확인 학습 1

- 1. 인덱스에 이름을 지정하시오. 첫번째 레벨은 key1, 두번째 레벨은 key2
- 2. 열 이름을 지정하시오. 첫번째 열은 city, 두번째 열은 color

	city	Daegu	Daejeon	Gangneung	Daegu
	color	Yellow	Yellow	Red	Blue
key1	key2				
С	1	0	1	2	3
d	2	4	5	6	7
	1	8	9	10	11

3. Deagu 열만 추출하세요.

```
df['Daegu']
```

	color	Yellow	Blue
key1	key2		
С	1	0	3
d	2	4	7
	1	8	11

4. city 별 평균값을 구하시오.

```
df.mean(level = 'city', axis = 1)
```

	city	Daegu	Daejeon	Gangneung
key1	key2			
С	1	1.5	1.0	2.0
d	2	5.5	5.0	6.0
	1	9.5	9.0	10.0

5. key2 별로 각 행의 합계를 구하시오.

df.sum(level = 'key2', axis = 0)							
city	Daegu	Daejeon	Gangneung	Daegu			
color	Yellow	Yellow	Red	Blue			
key2							
1	8	10	12	14			
2	4	5	6	7			

확인 학습 2

1. 두 데이터를 INNER JOIN 하시오.

```
dic1 = {
    'id':['0','1','2','3','4','6','8','11','12','13'],

'city':['Seoul','Pusan','Daegu','Gangneung','Seoul','Seoul','Pusan','Daegu','Gangneung','Seoul']

,'birth_year':[1990,1989,1992,1997,1982,1991,1988,1990,1995,1981],
    'name':['Junho','Heejin','Mijung','Minho','Steeve','Mina','Sumi','Minsu','Jinhee','Daeho']
}
dic2 = {
    'id':['70','80','90','120','150'],
    'city':['Ilsan','Gunpo','Seoul','Changwon','Jeju'],
    'birth_year':[1980,1999,1995,1994,1994],
    'name':['Jinhee','Yeongho','Jongho','Yeonghee','Hyejin']
}
data1=pd.DataFrame(dic1)
data2=pd.DataFrame(dic2)
pd.merge(data1, data2, how = 'inner', on = 'city')
```

	id_x	city	birth_year_x	name_x	id_y	birth_year_y	name_y
0	0	Seoul	1990	Junho	90	1995	Jongho
1	4	Seoul	1982	Steeve	90	1995	Jongho
2	6	Seoul	1991	Mina	90	1995	Jongho
3	13	Seoul	1981	Daeho	90	1995	Jongho

2. 두 데이터를 FULL JOIN 하시오.

pd.merge(data1, data2, how = 'outer')

	id	city	birth_year	name
0	0	Seoul	1990	Junho
1	1	Pusan	1989	Heejin
2	2	Daegu	1992	Mijung
3	3	Gangneung	1997	Minho
4	4	Seoul	1982	Steeve
5	6	Seoul	1991	Mina
6	8	Pusan	1988	Sumi
7	11	Daegu	1990	Minsu
8	12	Gangneung	1995	Jinhee
9	13	Seoul	1981	Daeho
10	70	Ilsan	1980	Jinhee
11	80	Gunpo	1999	Yeongho
12	90	Seoul	1995	Jongho
13	120	Changwon	1994	Yeonghee
14	150	Jeju	1994	Hyejin

3. 두 데이터를 수직방향으로 결합하시오.

pd.merge(data1, data2, how = 'outer', on = 'id') id city_x birth_year_x name_x city_y birth_year_y name_y 0 0 Seoul 1990.0 Junho NaN NaN NaN Pusan 1989.0 Heejin NaN NaN NaN 2 NaN Daegu 1992.0 Mijung NaN NaN 3 Gangneung 3 1997.0 Minho NaN NaN NaN 4 4 Seoul 1982.0 Steeve NaN NaN NaN 5 1991.0 NaN NaN NaN 6 Seoul Mina 6 8 Pusan 1988.0 Sumi NaN NaN NaN 1990.0 7 11 Daegu Minsu NaN NaN NaN 8 NaN NaN 12 Gangneung 1995.0 Jinhee NaN 1981.0 NaN NaN 9 13 Seoul Daeho NaN 10 70 NaN NaN NaN llsan 1980.0 Jinhee 80 NaN 1999.0 11 NaN NaN Gunpo Yeongho 12 90 NaN NaN NaN 1995.0 Seoul Jongho 13 120 NaN NaN NaN Changwon 1994.0 Yeonghee **14** 150 NaN NaN NaN 1994.0 Jeju Hyejin

확인 학습 3

1. 수학 성적 데이터 student-mat.csv 를 읽어 들여, 연력(age)에 2 를 곱한 새로운 컬럼을 마지막 열에 추가하시오.

```
import seaborn as sns
data = pd.read_csv('student-mat.csv', sep = ';')
data['age2'] = data['age'] * 2
data
```

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 freetime	goout	Dalc	Walc	health	absences	G1	G2	G3	age2
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 3	4	1	1	3	6	5	6	6	36
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 3	3	1	1	3	4	5	5	6	34
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 3	2	2	3	3	10	7	8	10	30
3	GP	F	15	U	GT3	Т	4	2	health	services	 2	2	1	1	5	2	15	14	15	30
4	GP	F	16	U	GT3	Т	3	3	other	other	 3	2	1	2	5	4	6	10	10	32
390	MS	М	20	U	LE3	Α	2	2	services	services	 5	4	4	5	4	11	9	9	9	40
391	MS	М	17	U	LE3	Т	3	1	services	services	 4	5	3	4	2	3	14	16	16	34
392	MS	М	21	R	GT3	Т	1	1	other	other	 5	3	3	3	3	3	10	8	7	42
393	MS	М	18	R	LE3	T	3	2	services	other	 4	1	3	4	5	0	11	12	10	36
394	MS	М	19	U	LE3	Т	1	1	other	at_home	 2	3	3	3	5	5	8	9	9	38

395 rows × 34 columns

2. absences 컬럼을 세 개의 구간으로 나누고 각 구간별 학생 수를 계산하시오.(구간 분할 간격 absences_bin = [0, 1, 5, 100])

```
absences_bin = pd.cut(data['absences'], [0, 1, 5, 100])
data.groupby(absences_bin)[['absences']].count()
```

absences

absences

(0, 1]	3
(1, 5]	131
(5, 100]	146

3. absences 컬럼을 qcut 함수로 세 개의 구간으로 분할하시오.

```
absences_bin = pd.qcut(data['absences'], 3)
data.groupby(absences_bin)[['absences']].count()
```

absences

absences

(-0.001, 2.0]	183
(2.0, 6.0]	97
(6.0, 75.0]	115

MS 10.673913

4. 학교(school) 변수를 기준으로 각 학교의 G1 평균 점수를 구하시오.

```
data.pivot_table(index = ['school'], aggfunc = {'G1' : 'mean'})

G1
school

GP 10.939828
```

5. 학교(school)와 성별(sex)를 기준으로 각 학교의 G1 평균 점수를 구하시오.

```
data.pivot_table(index = ['school', 'sex'], aggfunc = {'G1' : 'mean', 'G2' : 'mean', 'G3' : 'mean'})

G1 G2 G3

school sex

GP F 10.579235 10.398907 9.972678

M 11.337349 11.204819 11.060241

MS F 10.920000 10.320000 9.920000

M 10.380952 10.047619 9.761905
```

6. 학교(school)와 성별(sex)를 기준으로 G1, G2, G3 의 최댓값을 구하시오.

```
data.pivot_table(index = ['school', 'sex'], aggfunc = {'G1' : 'max', 'G2' : 'max', 'G3' : 'max'})

G1 G2 G3

school sex

GP F 18 18 19

M 19 19 20

MS F 19 18 19

M 15 16 16
```

확인 학습 4

1. 연령(age), 성별(sex)를 기준으로 G1 평균을 계산하고 세로 축이 연령(age), 가로 축이 성별(sex)인 표를 만드시오.

```
data.pivot_table(index = 'age', columns = 'sex', aggfunc = {'G1' : 'mean', 'G2' : 'mean',
'G3' : 'mean'})
     G1
                        G2
                                            G3
                        F
                                            F
sex F
              М
                                  Μ
                                                      Μ
age
 15 10.052632 12.250000 9.789474 12.727273 9.552632 12.727273
 16 10.203704 11.740000 10.722222 11.680000 10.537037 11.560000
 17 11.103448 10.600000 10.879310 9.900000 10.482759 9.975000
 18 10.883721 10.538462 9.976744 10.307692
                                             9.325581 9.794872
 19 10.642857 9.700000 9.714286 8.600000
                                            8.357143 8.000000
 20 15.000000 13.000000 14.000000 13.500000 15.000000 13.500000
                                  8.000000
                                                      7.000000
 21
         NaN 10.000000
                             NaN
                                                 NaN
```

2. 1 번에서 만든 표에서 NaN 인 행을 모두 제거한 결과를 출력하시오.

NaN 8.000000

NaN 6.000000

22

NaN 8.000000