1 Grundlagen Elektrotechnik

1.1 Schaltelemente

Wiederstand R

$$u(t) = R \cdot i(t)$$

$$i(t) = \frac{1}{R} \cdot u(t)$$

$$\underline{Z}_R = R$$

Kapazität C

$$\begin{aligned} & - | - | \\ u(t) &= \frac{1}{C} \int_0^t i(\tilde{t}) d\tilde{t} \\ i(t) &= C \cdot \frac{du(t)}{dt} \\ &\underline{Z}_C = \frac{1}{j\omega C} \\ \text{Spanning springt nicht} \end{aligned}$$

Induktivität L

$$u(t) = L \cdot \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{0}^{t} u(\tilde{t}) d\tilde{t}$$

$$\underline{Z}_{C} = j\omega L$$
Strom springt nicht

1.2 Schaltvorgänge

$$u(t) = U_E + (U_A - U_E) \cdot e^{\frac{-t}{\tau}}$$
 $i(t) = I_E + (I_A - I_E) \cdot e^{\frac{-t}{\tau}}$ $\tau = CR = \frac{L}{R}$

Betrachte: Zur bestimmung von R alle Quellen ausschalten und Belastung aus der Sicht des Speicherelements betrachten.

2 Schwingkreise

2.1 Freie Schwingung

 $\omega_r\left[\frac{rad}{s}\right]$: Resonanzfrequenz $\omega_0\left[\frac{rad}{s}\right]$: Eigenfrequenz Q_P,Q_S : Güte $\xi=\frac{1}{2Q}$: Dämpfungsfaktor

 $\alpha_{1,2}$: Lösungen der Charakteristischen Gleichung

2.1.1 Ermittelung der Konstanten

- 1. Ermittelung der Anfangsbedingungen bei $t=0.\ u(t)$ durch den Ansatz, dass die Spannung an C und der Strom an L nicht springen kann.
- 2. $\dot{u}(0)$ bestimmen aus $i_L + i_R + i_C = 0$, wobei $i_C = C \cdot \dot{u}(0)$
- 3. Ermittelung der Konstanten $U_1, U_2, \beta_u, U_a, U_b, I_1, I_2, \beta_i, I_a, I_b$: Funktion u(t), bzw. i(t) bei t = 0 mit Anfangsbedingungen vergleichen. das selbe für $\dot{u}(t)$, bzw. $\dot{i}(t)$.

2.1.2 Formeln

Parallelschwingkreis

Fall $Q < \frac{1}{2}$: Aperiodisch $\alpha_1, \alpha_2 \in \mathbb{R}$

$$u(t) = U_1 \cdot e^{\alpha_1 t} + U_1 \cdot e^{\alpha_2 t}$$
$$\alpha_{1,2} = -\frac{\omega_r}{2Q_P} \pm \sqrt{\frac{1}{4Q_P^2} - 1}$$

Fall $Q = \frac{1}{2}$: Kritisch, $\alpha_1 = \alpha_2$ $u(t) = (U_1 + \beta_u) \cdot e^{\alpha t}$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_P} = -\omega_r$

Fall $Q > \frac{1}{2}$: Periodisch, $\alpha_1, \alpha_2 \in \mathbb{C}$ $u(t) = e^{\frac{-\omega_r}{2Q_P}t} (U_a \cos \omega_0 t + U_b \sin \omega_0 t)$ $\dot{u}(t=0) = -\frac{\omega_r}{2Q_P} U_a + \omega_0 U_b$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_P} \pm j\omega_0$ $\omega_0 = \omega_r \sqrt{1 - \frac{1}{4Q_P^2}}$

 $\omega_0 \approx \omega_r \text{ wenn } Q_P \gg \frac{1}{2})$

Seriellschwingkreis

$$\begin{split} \ddot{i} + \frac{R}{L}\dot{i} + \frac{1}{LC}i &= 0\\ \ddot{i} + \frac{\omega_r}{Q_S}\dot{u} + \omega_r^2 u &= 0\\ \omega_r &= \frac{1}{\sqrt{LC}} \quad Q_S = \frac{1}{R}\sqrt{\frac{L}{C}} \end{split}$$

Fall $Q < \frac{1}{2}$: Aperiodisch $\alpha_1, \alpha_2 \in \mathbb{R}$

$$i(t) = I_1 \cdot e^{\alpha_1 t} + I_2 \cdot e^{\alpha_2 t}$$

 $\alpha_{1,2} = -\frac{\omega_r}{2Q_S} \pm \sqrt{\frac{1}{4Q_S^2} - 1}$

Fall $Q = \frac{1}{2}$: Kritisch, $\alpha_1 = \alpha_2$ $i(t) = (I_1 + \beta_i) \cdot e^{\alpha t}$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_G} = -\omega_r$

Fall $Q > \frac{1}{2}$: Periodisch, $\alpha_1, \alpha_2 \in \mathbb{C}$ $i(t) = e^{\frac{-\omega_r}{2Q_S}t} (I_a \cos \omega_0 t + I_b \sin \omega_0 t)$ $\dot{i}(t=0) = -\frac{\omega_r}{2Q_S} I_a + \omega_0 I_b$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_S} \pm j\omega_0$ $\omega_0 = \omega_r \sqrt{1 - \frac{1}{4Q_S^2}}$ $\omega_0 \approx \omega_r \text{ wenn } Q_S \gg \frac{1}{2})$

2.1.3 Kurvendiskusion

im Folgenden wird der Faktor $y(t) = e^{-\frac{\omega_r}{2Q} \cdot t}$ untersucht.

•
$$y(t = \frac{2Q}{\omega_r}) = e^{-1} \approx 0.368 = 36.8\%$$

• nach Q Perioden:
$$t=Q\cdot T=\frac{2\pi Q}{\omega_r}, y(t=\frac{2\pi Q}{\omega_r})=e^{-\pi}\approx 0.0432=4.32\%$$

2.2erzwungene Schwingung

$$\omega_1\left[\frac{rad}{s}\right]$$
: untere 3dB Grenze $\omega_2\left[\frac{rad}{s}\right]$: obere 3dB Grenze $B\left[\frac{1}{s}\right]$: Bandbreite ν : Verstimmung Ω : Normierte Frequenz $\frac{Z}{R} \widehat{=} \frac{Y}{G}$: Normierter Frequenzgang

2.2.1 Formeln

$$\nu = \frac{\omega}{\omega_r} - \frac{\omega_r}{\omega} = \frac{f}{f_r} - \frac{f_r}{f}$$

$$\Omega = \nu \cdot Q = \left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right) \cdot Q$$

$$B = f_2 - f_1 = \frac{\omega_2 - \omega_1}{2\pi} = \frac{\omega_r}{2\pi Q}$$

$$\omega_{1,2} = \omega_r \cdot \left(\sqrt{\frac{1}{4Q^2} + 1} \mp \frac{1}{2Q}\right)$$

$$\frac{Z}{R} = \frac{1}{1+j\Omega} = \frac{1}{\sqrt{1+\Omega^2}} / -\arctan\Omega$$
bei $\omega = \omega_1 \to \Omega = -1$, bei $\omega = \omega_2 \to \Omega = +1$

Parallelschwingkreis

$$\underline{Z} = \frac{1}{1 + j\left(\omega C - \frac{1}{\omega L}\right) \cdot R}$$
$$\frac{\underline{Z}}{R} = \frac{1}{1 + j\Omega}$$

bei Resonanz $\omega = \omega_r$

$$\underline{Z} = \underline{Z}_{max} = R \; ; \; U = U_{max} = R \cdot I$$
 $P = P_{max} = RI^2 \; ; \; I_L = I_C = Q_P I$ $Q_L = -Q_C = Q_P \cdot P_{max}$ an 3dB-Grenzen

 $\frac{Z}{B} = \frac{1}{\sqrt{2}} = -3dB$

Seriellschwingkreis

$$\underline{Y} = \frac{G}{1 + j\left(\omega L - \frac{1}{\omega C} \cdot G\right)}$$
$$\frac{\underline{Y}}{G} = \frac{1}{1 + j\Omega}$$

bei Resonanz $\omega = \omega_r$

$$\underline{Z} = \underline{Z}_{max} = R \; ; \; U = U_{max} = R \cdot I$$

$$P = P_{max} = RI^2 \; ; \; I_L = I_C = Q_P I$$

$$Q_L = -Q_C = Q_P \cdot P_{max}$$

$$\underline{Y} = \underline{Y}_{max} = G \; ; \; I = I_{max} = G \cdot U$$

$$P = P_{max} = GU^2 \; ; U_L = U_C = Q_S U$$

$$Q_L = -Q_C = Q_S \cdot P_{max}$$

an 3dB-Grenzen

$$\frac{\underline{Y}}{\overline{G}} = \frac{1}{\sqrt{2}} \widehat{=} -3dB$$

Reaktanz-Eintore

Grundelemente

Eigenschaften

$$\underline{Z}(j\omega) = \frac{a_n(j\omega)^n + a_{n-2}(j\omega)^{n-2} + a_{n-4}(j\omega)^{n-4}}{b_m(j\omega)^m + b_{m-2}(j\omega)^{m-2} + b_{m-4}(j\omega)^{m-4}} = \frac{P_n(j\omega)}{Q_m(j\omega)}$$

- |n-m|=1: Im Zähler und im Nenner kommen nie dieselben Potenzen vor.
- Die Anzahl der Elemente entspicht der Anzahl endlicher Nullstellen und Polstellen.

• Die Ableitung der Funktion $\underline{Z}(j\omega)$ ist immer positiv, d.H \underline{Z} ist monoton Steigend.

Normierte Produktform: (Beispiel)
$$\underline{Z}(j\omega) = K \cdot \frac{\left[(j\omega)^2 + \omega_{r1}^2 \right] \left[(j\omega)^2 + \omega_{r2}^2 \right]}{j\omega \left[(j\omega)^2 + \omega_{r3}^2 \right]}$$

3.3 Minimum-Reaktanz-Eintore MRET

Wenn ein **Kreis** aus lauter L oder C vorhanden ist, kann ein L (bzw. C) weggelassen (unterbrochen) werden. klemmen bleiben geöffnet!

Ein **Trennbündel**, wie auf der Grafik angezeigt, darf nur L oder C-Elemente schneiden. Sobald ein Trennbündel gefunden wurde, ein Element kurzgeschlossen werden. Die Klemmen müssen geschlossen werden!

3.4 Bestimmung des RET-Types

Typ	$X(\omega)$	$\omega = 0$	$\omega \to \infty$	L-Kr.	L-Tb.	C-Kr.	C-Tb.
L	$X(\omega)$ ωL_{∞} ωL_{∞}	0	×	√	√	_	_
C	$X(\omega)$ $\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$	×	0			√	✓
\mathbf{s}	$X(\omega) \qquad \omega L_{\infty}$ $+ \frac{1}{\omega C_0}$ $+ \frac{1}{\omega C_0}$	×	×	_	√	_	✓
P	$X(\omega) \omega L_0 \qquad -\frac{1}{\omega C_{\infty}}$	0	0	√	_	√	_

3.5 RET-Synthese

3.5.1 Mittels Partialbruchzerlegung

1. Impedanz- oder Admitanzfunktion

$$\underline{F}(s) = \frac{2s^{5} + 22s^{5} + 36s^{5} + 46}{3s^{5} + 21s^{3} + 30s}$$

$$\underline{F}(s) = \frac{2s}{A} + \frac{Bs}{A} + \frac{Cs}{A}$$

2. PBZ bilden & koeffizienten ermitteln

$$\underline{F}(s) = \frac{2s}{3} + \frac{A}{3s} + \frac{Bs}{s^2 + 1} + \frac{Cs}{s^2 + 1}$$

3. Nach Netzwerkelementen umformen

$$\underline{F}(s) = \frac{2}{3}s + \frac{1}{\frac{15}{24}s} + \frac{1}{\frac{9}{8}s + \frac{1}{\frac{4}{9}s}} + \frac{1}{\frac{45}{8}s + \frac{8}{\frac{8}{255}s}}$$

3.5.2 Mittels Kettenbruchzerlegung

1. Voraussetzung: Unecht gebrochen

$$\underline{F}(s) = \frac{2s^6 + 22s^4 + 58s^2 + 48s^2}{3s^5 + 21s^3 + 30s}$$

2. Polynomdivision ausführen

$$\underline{F}(s) = \frac{2}{3}s + \frac{8s^4 + 48s^2 + 48}{3s^5 + 21s^3 + 30s}$$

3. mit Kehrwert des Rests bei 2. fortfahren

$$\underline{F}_1(s) = \frac{3s^5 + 21s^3 + 30s}{8s^4 + 48s^2 + 48}$$

4. Abgespaltete Werte Seriell und Parallel (je nach Bedeutung von \underline{F}_n) sind die Elemente.

3.6 Äquivalenz

- 1. Gegebenees RET übersichtlich aufzeichnen
- 2. In das RET zusätzlich L- bzw. C-Elemente so einfügen, dass L- bzw. C-Kreise oder Trennbündel entstehen.
- 3. Durch Weglassen / Kurzschliessen von alten RET-Eementen das erweiterte RET auf ein MRET zurückführen.
- 4. Impedanzfunktion des alten RET und des MRET berechnen und die unbekannten Elemente durch Koeffizientenvergleich bestimmen.

4 Zweitore

- Reziprok: Speist man ein reziprokes Zweitor aus einer Quelle mit Innenwiederstand <u>Z</u>₀ und belastet es am Ausgang mit der selben Impedanz <u>Z</u>₀, so ist es für die Kenngrössen gleichgültig, in welcher Richtung das Zweitor betrieben wird.
- Richtsymmetrie: Beide Tore können elektrisch beim Umtauschen nicht unterschieden werden.
- Erdsymmetrie: Werdem die beiden Eingangsanschlüsse, so wie die Ausgangsanschlüsse, separat vertauscht, ist kein Unterschied von Aussen erkennbar.

4.1 Matrizen

Form	Vierpolgleichung	Berechnung
Impedanz	$\left[\begin{array}{c} \underline{U}_1 \\ \underline{U}_2 \end{array}\right] = [Z] \left[\begin{array}{c} \underline{I}_1 \\ \underline{I}_2 \end{array}\right]$	
Admitanz	$\left[\begin{array}{c} \underline{I}_1 \\ \underline{I}_2 \end{array}\right] = [Y] \left[\begin{array}{c} \underline{U}_1 \\ \underline{U}_2 \end{array}\right]$	
Ketten	$\left[\begin{array}{c} \underline{U}_1 \\ \underline{I}_1 \end{array}\right] = [A] \left[\begin{array}{c} \underline{U}_2 \\ -\underline{I}_2 \end{array}\right]$	
Hybrid	$\left[\begin{array}{c} \underline{U}_1 \\ \underline{I}_2 \end{array}\right] = [H] \left[\begin{array}{c} \underline{I}_1 \\ \underline{U}_2 \end{array}\right]$	

Koeffizientenbeziehungen

reziprok	$\underline{Z}_{12} = \underline{Z}_{21},$	$\underline{Y}_{12} = \underline{Y}_{21},$	$\det[A] = 1,$	$\underline{H}_{12} = -\underline{H}_{21}$
symmetrisch	$\underline{Z}_{12} = \underline{Z}_{21},$	$\underline{Y}_{12} = \underline{Y}_{21},$	$\det[A] = 1,$	$\underline{H}_{12} = -\underline{H}_{21}$
	$\underline{Z}_{11} = \underline{Z}_{22},$	$\underline{Y}_{11} = \underline{Y}_{22},$	$\underline{A}_{11} = \underline{A}_{22},$	$\det[H] = 1$

4.2 Matrizen elementarer Zweitore

4.3 Zusammenschaltung von Zweitoren

5 Netzwerke und Systeme

5.1 Duale Netzwerke

- 1. Zählrichtung Festlegen (z.B. im Uhrzeigersinn \rightarrow Pfeile nach Innen).
- 2. In jede Netzwerkmasche einen Knoten für das duale Netzwerk setzen
- 3. Alle Elemente durchschneiden und mit dualen Elementen den benachbarten Knoten verbinden
- 4. Zählrichtungen übertragen (wie zuvor Festgelegt)
- 5. Dualfaktoren wählen:

$$R' = \frac{D^2}{R}, \quad L' = D^2 C, \quad C' = \frac{L}{D^2}, \quad \underline{U}' = D\underline{I}, \quad \underline{I}' = \frac{\underline{U}}{D}$$

Netzwerkfunktionen

Polynom-Darstellung:
$$\underline{F}(s) = K \cdot \frac{s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0}{s^m + b_{m-1}s^{m-1} + \ldots + b_1s + b_0} = K \frac{P_n(s)}{Q_m(s)}$$
Produktform
$$\underline{F}(s) = k \cdot \frac{(s - n_1)(s - n_2) \ldots (s - n_n)}{(s - p_1)(s - p_2) \ldots (s - p_m)}$$

Produktform
$$\underline{F}(s) = k \cdot \frac{(s - n_1)(s - n_2) \dots (s - n_n)}{(s - p_1)(s - p_2) \dots (s - p_m)}$$

Norm. Produktform — Es kommen nur Faktoren
$$(s)$$
 , $(1+as)$ und $(1+bs+cs^2)$ vor.

Partialbruchform:
$$\underline{F}(s) = B_0 + B_1 s + \frac{K_1}{s - p_1} + \frac{K_2}{s - p_2} + \ldots + \frac{K_n}{s - p_n}$$

Pol und Ortskurve des Parallelschwingkreis

$$\underline{Z}(s) = \frac{sL}{s^2LC + s\frac{L}{R} + 1} = \omega_r^2 \frac{sL}{s^2 + s\frac{\omega_r}{Q} + \omega_r^2}$$

$$Q \ll \frac{1}{2}$$
 $s_{1,2} \approx 0, -\infty$

$$Q < \frac{1}{2}$$
 $s_{1,2} = -\frac{\omega_r}{2Q} \pm \omega_r \sqrt{\frac{1}{4Q^2} - 1}$

$$Q = \frac{1}{2}$$
 $s_{1,2} = -\omega$

$$Q < \frac{1}{2} \qquad s_{1,2} = -\frac{\omega_r}{2Q} \pm \omega_r \sqrt{\frac{1}{4Q^2} - 1}$$

$$Q = \frac{1}{2} \qquad s_{1,2} = -\omega_r$$

$$Q > \frac{1}{2} \qquad s_{1,2} = -\frac{\omega_r}{2Q} \pm j\omega_r \sqrt{1 - \frac{1}{4Q^2}}$$

$$Q \gg \frac{1}{2}$$
 $s_{1,2} \approx \pm j\omega_r$

Freie Schwingung - Allgemeine Lösung

Von der Übertragungsfunktion H(s) lässt die freie Schwingung beim Ausschalten berechnen, wobei \underline{s}_n die Polstellen von H(s) sind:

$$u(t) = C_1 \cdot e^{\underline{s}_1 t} + C_2 \cdot e^{\underline{s}_2 t} + C_3 \cdot e^{\underline{s}_3 t} + \dots, \qquad \underline{s}_n = \sigma_n + j\omega_n$$

$$\text{Fallunterscheidung:} \left\{ \begin{array}{lll} \text{reeller Pol} & \rightarrow & C_i \cdot e^{\sigma_i t} \\ \\ \text{doppelter reeller Pol} & \rightarrow & C_{i1} \cdot e^{\sigma_i t} + C_{i2} \cdot t \cdot e^{\sigma_i t} \\ \\ \text{komplex konj. Poolpaar} & \rightarrow & \underline{C}_{i1} \cdot e^{(\sigma_{i1} + j\omega_{i1})t} + \underline{C}_{i2} \cdot e^{(\sigma_{i2} + j\omega_{i2})t} \\ \\ & & \underline{C}_{i1} \text{ und } \underline{C}_{i2} \text{ sind komplex konj.} \end{array} \right.$$

Leitungstheorie

Modell einer Leitung

$$C' = \frac{\Delta C}{\Delta z}$$
 Kapazitätsbelag $L' = \frac{\Delta L}{\Delta z}$ Induktivitätsbelag $R' = \frac{\Delta R}{\Delta z}$ Wiederstandsbelag $G' = \frac{\Delta G}{\Delta z}$ Leitwertbelag

Bei einer verlustlosen Leitung ist
$$R' = 0$$
 und $G' = 0$.

$$\underline{Z}_W$$
 Wellenimpedanz $\underline{Z}_W = \sqrt{\frac{R' + j\omega L'}{G' + i\omega C'}} \stackrel{\text{verlustlos}}{=} \sqrt{\frac{L'}{C'}}$

Wellengleichung

$$\begin{split} \frac{d^2\underline{U}}{dz^2} &= \underline{\gamma}^2 \cdot \underline{U} \qquad \frac{d^2\underline{I}}{dz^2} = \underline{\gamma}^2 \cdot \underline{I} \\ \underline{\gamma} &= \sqrt{(R' + j\omega L') \cdot (G' + j\omega C')} = \alpha + j\beta \\ \Rightarrow \underline{U}(z) &= \underline{U}_{v0} \cdot e^{-\underline{\gamma}z} + \underline{U}_{r0} \cdot e^{\underline{\gamma}z} \qquad \underline{I}(z) = \underline{I}_{v0} \cdot e^{-\underline{\gamma}z} - \underline{I}_{r0} \cdot e^{\underline{\gamma}z} \end{split}$$

$$u(t,z) = \underbrace{\hat{\underline{U}}_{v0} \cdot e^{-\alpha z} \cdot \cos(\omega t + \varphi_{v0} - \beta z)}_{\text{In z-Richtung laufende gedämpfte Welle}} + \underbrace{\hat{\underline{U}}_{r0} \cdot e^{\alpha z} \cdot \cos(\omega t + \varphi_{v0} + \beta z)}_{\text{Gegen z-Richtung laufende gedämpfte Welle}}$$

$$\lambda = \frac{2\pi}{\beta} = \frac{c_0}{f \cdot \sqrt{\varepsilon_r}} \qquad \beta = \frac{2\pi}{\lambda} \qquad v_{ph} = \frac{\omega}{\beta} = f \cdot \lambda \qquad \underline{\underline{U}}_{v2} = \underline{\underline{U}}_{v1} \cdot e^{-j\beta l}$$

Vorlaufende Welle (positive z-Richtung) Dämpfungsbelag Rücklaufende Welle (negative z-Richtung) Phasenbelag

Geschwindigkeit der Welle Distanz vom Anfang

Lichtgeschwindigkeit (= $299.29 \cdot 10^6$) Relative Permitivität

Dämpfungsbelag und Neper

Umrechnung von Neper zu Decibel:

$$L_{Np} = \ln \frac{P_2}{P_1}$$
 $L_{Np} = \frac{\ln(10)}{20} L_{dB}$ $L_{dB} = \frac{20}{\ln(10)} L_{Np}$

6.4 Reflexion

 \underline{r} Reflexionsfaktor

 \underline{r}_1 am Anfang der Leitung

 \underline{r}_2 am Ende der Leitung

 α_R Rückflussdämpfung [Np]

 \underline{Z}_1 Leitungswiederstand am Anfang

 \underline{Z}_2 Wiederstand nach der Leitung

 P_{in} Leistung an der Quelle

 P_{out} Leistung an der Last

Wenn $Z = Z_0$: r = 0

Leitungsende offen:

. ..

_ 1

Leitungsende kurzgeschlossen $\underline{r} = -1$

 $\underline{Z} = \underline{Z}_0 \cdot \frac{1 + \underline{r}}{1 - \underline{r}}$ $\underline{U}_r = \underline{r} \cdot \underline{U}_v \quad \underline{I}_r = \underline{r} \cdot \underline{I}_v$

 $\underline{r} = \frac{\underline{U}_r}{\underline{U}_v} = \frac{\underline{Z} - \underline{Z}_0}{\underline{Z} + \underline{Z}_0}$

 $\underline{r}_1 = \underline{r}_2 \cdot e^{-2\gamma l} = \frac{\underline{Z}_1 - \underline{Z}_0}{\underline{Z}_1 + \underline{Z}_0}$

 $\underline{r}_2 = \underline{r}_1 \cdot e^{2\gamma l} = \frac{\underline{Z}_2 - \underline{Z}_0}{Z_2 + Z_0}$

 $\alpha_B = -\ln(r) Np = -20 \log_{10}(r) dB$

 $\underline{U}_{v2} = \underline{U}_{v1} \cdot e^{-j\beta l}$

 $P_v = \frac{U_{v1}^2}{Z_0} \qquad P_r = \frac{U_{r1}^2}{Z_0}$

 $P_v = P_{in} \qquad P_{out} = P_v - P_r$

6.5 Quelle einer Leitung

6.6 Leitung als Zweitor

6.7 Verlustlose Leitung

$$\begin{split} R' &= G' = 0 \quad \alpha = 0, \quad \beta = \omega \sqrt{L'C'}, \quad \underline{Z}_0 = \sqrt{\frac{L'}{C'}} =: R_0, \quad \gamma = j\beta \quad v_{ph} = \frac{1}{\sqrt{L'C'}} \\ \underline{Z}_1 &= R_0 \cdot \frac{\underline{Z}_2 + jR_0 \cdot \tan \beta l}{R_0 + j\underline{Z}_2 \cdot \tan \beta l} \qquad P_r = P_v \cdot r_2^2 \qquad v_{ph} = \frac{c}{\sqrt{\varepsilon_r \cdot \mu_r}} \stackrel{\mu_r = 1}{=} \frac{c}{\sqrt{\varepsilon_r}} \end{split}$$

Verkürzungsfaktor:
$$VK = \frac{\lambda}{\lambda_0} = \frac{v_{ph}}{c_0}, \qquad \lambda = VK \cdot \frac{c_0}{f}$$

6.7.1 Stehwellenverhältnis

In der Leitung befindet sich ein Spannungsmaximum l_{Umax} und ein Spannungsminimum l_{Umin}

$$\underline{U}(l) = \underline{U}_v(l) \cdot (1 + \underline{r}(l)), \qquad \underline{r}(l) = \underline{r}_1 \cdot e^{-j2\beta l}, \qquad \underline{r}_1 = r \cdot e^{j\varphi_1}$$

$$l_{U_{max}} = \frac{\varphi_1}{2\beta}$$
 $l_{U_{min}} = \frac{\pi + \varphi_1}{2\beta}$ $\varphi_1 = l_{U_{max}} \cdot 2\beta$

Das Stehwellenverhältnis s (VSWR) ist das Verhältnis von Spannungsmaximum und -minimum.

$$s = \frac{U_{max}}{U_{min}} = \frac{1+r}{1-r} \qquad m = \frac{1}{s} = \frac{1-r}{1+r} \qquad r = \frac{s-1}{s+1} = \frac{1-m}{1+m}$$

6.7.2 Smith Chart

Füd das Smith Chart muss die Impedanz normiert werden: $Z_N = R_N + jX_N$

$$\underline{r} = \frac{\underline{Z}_N - 1}{\underline{Z}_N + 1} = \frac{R_N + jX_N - 1}{R_N + jX_N + 1} \qquad \underline{Z}_N = R_N + jX_N = \frac{\underline{Z}}{R_0} = \frac{\underline{r} + 1}{\underline{r} - 1}$$

Leitungstransformation: Zeiger \underline{r} um $\frac{l}{\lambda}$ drehen.

VSWR:
$$s = \sqrt{\frac{R_{max}}{R_{min}}}$$

Impedanz - Admittanz: Spiegelung am Kreismittelpunkt. $\underline{Y}_N = \frac{1}{\underline{Z}_N} \rightarrow$

$$\underline{r}_{Y_N} = -\underline{r}_{Z_N}$$

Serieschaltung: Grafische Addition beider (gleich) normierten Impedanzen.

Parallelschaltung: (Gleich) normierte Impedanzen am Zentrum spiegeln, grafisch Addieren (im Impedanzgitter) und zurückspiegeln.

Wellenwiederstandssprung: Wenn zwei verschiedene Wellenwiederstände zusammengeschaltet werden, müssen diese an der Stelle des Übergangs umoromiert werden: $\underline{Z}_{N_{R1}} = \underline{Z}_{N_{R0}} \cdot \frac{R_0}{R_1}$