FLP - examen 2024

FMI, Info, Anul II Semestrul II, 2023/2024 Fundamentele limbajelor de programare

Examen

1. Fie $I, N, P \in L$, distincte două câte două, și $K \in V$. Notăm

while
$$I * I \leq N$$
 do ((if $I * I = N$ then $P := 1$ else skip); $I := I + 1$))

cu Pgm.

- (a) (2 puncte) Să se descrie formal execuția lui Pgm, dintr-o stare inițială σ cu $\sigma(N) = 30$, $\sigma(I) = 5$, $\sigma(P) = 0$, folosind semantica operațională big-step SAU cea small-step.
- (b) (2 puncte) Să se arate că enunțul Hoare

$$\{I=0 \land \exists K(N=K*K)\}\mathbf{Pgm}\{P=1\}$$

1

este demonstrabil.

1. a) while I.I = N do ((if I.I. N they P:= 1 else skip); I:= I+1))
(1) = 5
Big step
er(I+I ∈N)=1 (i; [:=I+1, \(\bar{\tau}\)] \(\bar{\tau}\) \(\t
(i, v) y v3 (I:= I+1, v3) y v2
(i; I:= I+1, v) y vz => v3 = v
er (I+I=N) =0, (skip, 7) " v
(i, c) y c
$(I := I + 1, \nabla_3) \parallel \nabla_3 \Gamma_{-}, e_{\nabla_3}(\underline{\Gamma}_{+1}) = \nabla_2$
F2 (N) = 30
Γ ₂ (I) = 6 Γ ₂ (P) = 0
eg_([*I < N) = 0
(w, \(\sigma_2\) !! \(\sigma_2\)
=> V1 = V2 = stare finala -

Small step	
(w, r) -, (if I+I &N then ((i; I:=I+1); W) else stip, r)	
i'	
er(I*I < N) = 1	
(i', v) -> ((i ; [:= [+1); w, v)	
0-(N=I*I)79	
(i, v) ->(skip, v)	
(i. G.) - Acchie (G.)	
(i, \(\bar{\tau}\) -> (skip,\(\bar{\tau}\)) (i; \(\bar{\tau}\):= \(\bar{\tau}\)+1,\(\bar{\tau}\)	T1(N1=30
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	V1(N1= 6
(I:=I+1, V) -, (Skip, VI-, 60 (I+1))	V. (P) = 0
u v v	
71	
$(i;I:=I+1,\nabla) \rightarrow (Skip,\nabla_1)$ $((i;L:=I+1);W,\nabla) \rightarrow (Skip;w,\nabla_1)$	
$((1, L) = L(1), w, \sqrt{1 - 1}(3 \times 1), w, \sqrt{1})$	
(w, v1)	
(w, v1)-, (i', V1)	
ev1([*] = N) = 0	
$(i', \mathcal{V}_1) \longrightarrow (\mathcal{S}_{kip}, \mathcal{V}_1) \square$	
, , , , , , , , , , , , , , , , , , , ,	

 (2 puncte) Considerăm o signatură de ordinul I în care avem simbolurile de funcție f, g, h cu aritățile 2, 1 și 3, respectiv. Fie x, y variabile. Aplicați algoritmul de unificare din curs pentru mulțimea de ecuații

$${h(x, y, f(g(x), g(y)) = h(y, x, f(y, x))}.$$

Explicitați aplicarea fiecărui pas, menționând pasul, ecuația folosită și mulțimea nouă de ecuații obținută după aplicarea pasului.

3. (2 puncte) Găsiți o SLD-respingere pentru următorul program Prolog

shuffle(lit(X), lit(X)). shuffle(arb(X, Y, Z), arb(T, U, W)) := shuffle(X, U), shuffle(Y, W), shuffle(Z, T).

și ținta:

shuffle(X, arb(arb(lit(t),lit(c),lit(u)),arb(lit(i),lit(a),lit(t)),arb(lit(e),lit(t),lit(r))))
În plus, precizaţi valoarea lui X în substituţia calculată.

4. (2 puncte) Fie λ -termenul

$$t := \lambda r.(\lambda e.((\lambda d.d)(er))).$$

Să se găsească τ și o demonstrație că

+ t: τ.

(2 puncte) Fie b o expresie booleană şi c o instrucțiune. Să se arate că, pentru orice (σ, σ') ∈ Σ², (σ, σ') ∈ [while b do c] dacă şi numai dacă există n ≥ 0 şi un şir finit de stări (σ_i)_{i≤n} cu σ₀ = σ, σ_n = σ', [b](σ_n) = 0 şi, pentru orice i cu 0 ≤ i < n, [b](σ_i) = 1 şi (σ_i, σ_{i+1}) ∈ [c].

demonstratie cursul 3 (?)

 (bonus: 1 punct) Descrieți punctual, dacă există, un moment din curs care v-a schimbat modul cum priviți activitatea de a programa.

Din acest curs despre Fundamentele Limbajelor de Programare, un concept care poate schimba modul în care privești programarea este legat de tipurile de date abstracte și inductive.

Acesta este un moment revelator deoarece:

- Înțelegi că datele pe care le manipulezi în programare nu sunt doar simple valori, ci pot fi definite inductiv, într-un mod matematic riguros
- Vezi cum formulele şi expresiile pe care le foloseşti în programare sunt de fapt construite din reguli precise de formare, similar cu modul în care se construiesc formulele în logică
- Realizezi că există o fundamentare matematică solidă în spatele constructelor pe care le folosești în limbaje precum Haskell, unde definești tipuri de date cu constructori

Această perspectivă îți poate schimba radical modul în care privești programarea, trecând de la o abordare pur practică la înțelegerea fundamentelor teoretice care stau la baza limbajelor de programare.