Loopy Belief Propagation TRIVA course, ENPC

Dhia Garbaya

Mai 2024

1 Question 1

• i. Formula for Computing the Vector of Messages:

In the Loopy Belief Propagation (LBP) algorithm, messages are passed between nodes in an iterative manner.

At each iteration t, every node p sends a message to its neighboring node q.

The message from node p to node q at iteration t can be computed using the following formula:

$$m_{p \to q}^{t}(l_{q}) = \min_{l_{p}} \left[D_{p}(l_{p}) + V(l_{p}, l_{q}) + \sum_{r \in N(p) \setminus q} m_{r \to p}^{t-1}(l_{p}) \right]$$

Where: $D_p(l_p)$ is the data cost of assigning label l_p to pixel p. $V(l_p, l_q)$ is the pairwise cost of assigning labels l_p and l_q to neighboring pixels p and q, respectively. And N(p) is the set of neighbors of pixel p.

• ii. Complexity of Computing the Vector:

The complexity of computing the message vector from node p to node q is primarily determined by the cost of evaluating the minimum operation over all possible label assignments l_p . Given that there are d_{max} possible disparities:

- 1. Data Cost Term $D_p(l_p)$: Evaluating this term is O(1).
- 2. Pairwise Cost Term $V(l_p, l_q)$: Evaluating this term is O(1).
- 3. Sum of Incoming Messages: There are up to 3 neighbors for each pixel (excluding q), and for each label l_p , we sum messages. This requires $3 \times d_{\text{max}}$ operations.
- 4. Minimization Over l_p : This requires d_{max} evaluations.

Therefore, the total complexity for computing the message $m_{p\to q}^t\left(l_q\right)$ is $O\left(d_{\max}^2\right)$ for each message.

• iii. Formula for Obtaining Beliefs and MAP Labels:

The belief at node q for label l_q at iteration t is obtained by summing the incoming messages from all its neighbors and adding the data cost:

$$b_{q}^{t}\left(l_{q}\right)=D_{q}\left(l_{q}\right)+\sum_{p\in N\left(q\right)}m_{p\rightarrow q}^{t}\left(l_{q}\right)$$

To obtain the MAP labels, we assign to each node q the label l_q that minimizes its belief:

$$l_{q}^{MAP} = \arg\min_{l_{q}} b_{q}^{t} \left(l_{q} \right)$$

Question 2 2

With the Potts model, the pairwise potential $V(l_p - l_q)$ can be either 0 or 1.

This allows us to optimize the computation by splitting it based on whether l_p equals l_q or not:

- If $l_p = l_q, V(l_p l_q) = 0$.
- If $l_p \neq l_q$, $V(l_p l_q) = 1$.

Given this, the message update formula becomes (see also P.S (*)): $m_{p \to q}^t(l_q) = \min \left(\min_{l_p = l_q} \left(D_p(l_p) + \sum_{s \in N(p) \setminus \{q\}} m_{s \to p}^{t-1}(l_p) \right), \min_{l_p \neq l_q} \left(D_p(l_p) + \sum_{s \in N(p) \setminus \{q\}} m_{s \to p}^{t-1}(l_p) + \lambda \right) \right).$

Simplification:

Given that the second term always includes the constant $1x\lambda$, we can simplify the computation as follows:

- Define $f_p^t\left(l_p\right) = D_p\left(l_p\right) + \sum_{s \in N(p) \setminus \{q\}} m_{s \to p}^{t-1}\left(l_p\right)$ for all l_p . Then, $m_{p \to q}^t\left(l_q\right) = \min\left(f_p^t\left(l_q\right), \lambda + \min_{l_p} f_p^t\left(l_p\right)\right)$.

Computational Complexity:

This efficient approach reduces the need to compute the pairwise potential for every label combination. Instead, we:

- Compute $f_p^t(l_p)$ for all l_p in O(d).
- Then find the minimum of $f_p^t(l_p)$ across all l_p also in O(d).
- Finally, for each l_q , compute $m_{p\to q}^t$ (l_q) in constant time O(1) using precomputed f_p^t .
- \rightarrow Therefore, the overall complexity per message is O(d) (linear) after this Potts model simplification, more efficient than $O(d^2)$ in the general case.

This improvement is especially beneficial for images with a large range of disparities.

3 Question 3

Remark: Let's clarify the meaning of messages in this code:

- $\mathbf{MsgUPrev}(y,x)$: message sent from (y,x) to the pixel above it $(Up) \uparrow$.
- $\mathbf{MsgRPrev}(y,x)$: message sent from (y,x) to the pixel to its Right \rightarrow .

So to get for each pixel (y,x) his **received messages**, we should encode that:

- $msg_from_U_neighbour$: MsgDPrev of pixel $(y-1,x) \downarrow$.
- msg_from_R_neighbour: MsgLPrev of pixel $(y,x+1) \leftarrow$.

Thus the np.roll calls in the function update_msg.

4 Question 4

The normalize_msg function in the Loopy Belief Propagation algorithm is critical for:

- 1. Maintaining Numerical Stability: It prevents numerical overflows or underflows by ensuring that message values do not grow too large or too small.
- 2. Improving Convergence: Normalization helps the algorithm converge more smoothly and uniformly by preventing any single message from becoming dominant (cf. [1] for details).
- 3. Reducing Computational Bias: It reduces bias towards certain disparity values by making adjustments that center the messages around zero.

Moreover, it ensures a **preservation of Minima**: Despite normalization, the relative ordering of beliefs for each pixel's disparity remains unchanged. This means that the disparity that minimizes the belief before normalization will continue to do so afterward.

5 Question 5

Here is the result for $\lambda = 10$.

And here are the results for respectively $\lambda = 1$. and $\lambda = 100$.

Observations on the Effect of λ :

• Disparity Maps:

- $-\lambda=1$: Shows more fine details and sharper edges but contains a lot of noise, indicating less regularization.
- $-\lambda=10$: Achieves a balance between detail and smoothness, keeping some detail with moderate regularization. I find it the best.
- $-\lambda = 100$: Very smooth maps with uniform regions, suggesting strong regularization and loss of fine details.

• Energy Plots:

– The energy drops sharply in the initial iterations across all λ values, indicating rapid convergence.

- Higher λ values result in higher starting energy due to stronger initial regularization effects.
- For λ =100, energy starts to increase in the last 20 iterations.

Defects in the Estimation:

- Over-smoothing: High λ values lead to over-smoothed maps, losing critical details, especially around edges and small features.
- Noise and smoothing: Low λ values show higher noise levels, potentially causing wrong disparity estimations. And high values lead to over-smoothing (as smoothness cost gets higher), loosing critical details
- Fast energy convergence: Rapid convergence (≈ 30 iterations) might indicate settling at a local minimum rather than a global minimum.

P.S:

In the formulas (and code) derived from the Potts Model, I add λ and not 1 because I consider λ as a part of the pairwise cost. Plus, code showed that there won't be any effect on disparity map if we deal with 1 instead of λ in update_msg.

References

[1] Victorin Martin, Jean-Marc Lasgouttes, and Cyril Furtlehner. The Role of Normalization in the Belief Propagation Algorithm. 2011. arXiv: 1101.4170 [cs.LG].