Uniwersytet Warszawski

Wydział Fizyki

Marysia Nazarczuk

Nr albumu: 417755

WYZNACZANIE PRĘDKOŚCI DZWIĘKU METODĄ CZASU PRZELOTU

Streszczenie

Celem doświadczenia było wyznaczenie prędkości dźwięku w powietrzu metodą czasu przelotu. Oscyloskop ustawiony był w trybie YT – tryb z podstawą czasu. Uzyskano wynik $v=(341.93\pm7.49)$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$, co jest bardzo dokładnym wynikiem. Praca została przygotowana zgodnie z instrukcją [1].

Spis treści

1.	Wst	ęp tec	retyczny				 	•	 •	 •						 ٠	•	 Ę
2.			zenie .															
			doświadcz															
	2.2	Przep	rowadzenie	doświad	czenia	ι.	 											7
	2.3	Analiz	a pomiaróv	v			 											8
	2.4	Wynik	i, niepewno	ości i wn	ioski		 											8
		2.4.1	Wyniki .				 											8
		2.4.2	Niepewno	ści			 											Ć
		2.4.3	Wnioski				 											ć
3.	Pod	lsumov	vanie .				 								•			 11
Bi	bliog	grafia					 							 				 13

1. Wstęp teoretyczny

Dźwięk jest falą mechaniczną, która do rozprzestrzeniania się wykorzystuje drgania cząsteczek ośrodka. Fala dźwiękowa, emitowana przez głośnik i rozchodząca się w gazie wzdłuż osi x, jest opisana przez odchyłkę p(x,t) ciśnienia od ciśnienia panującego w ośrodku niezaburzonym przez falę:

$$\frac{1}{v^2} \cdot \frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 p}{\partial x^2} \tag{1.1}$$

Prędkość v, znana jako prędkość fali, jest określona przez właściwości ośrodka, przez który fala się rozprzestrzenia. Równanie falowe opisuje również wychylenie cząsteczek gazu z ich równowagowych pozycji, zgodnie z kierunkiem rozprzestrzeniania się fali, co czyni fale dźwiękowe falami podłużnymi. Dla fali dźwiękowej w gazie idealnym, prędkość v można obliczyć ze wzoru:

$$v = \sqrt{\frac{\kappa RT}{\mu}} \tag{1.2}$$

gdzie T jest temperaturą bezwzględną, κ jest stosunkiem ciepła właściwego przy stałym ciśnieniu do ciepła właściwego przy stałej objętości, R to stała gazowa, a μ to masa molowa gazu. Fala dźwiękowa spełnia klasyczne równanie falowe, które można zapisać w postaci:

$$p(x,t) = Ae^{i(kx - \omega t)} \tag{1.3}$$

$$p(x,t) = Be^{i(kx+\omega t)} \tag{1.4}$$

gdzie k jest liczbą falową, a ω jest częstością kołową fali. Równania te charakteryzuje się powtarzalnością dla obu zmiennych. Przy ustalonym t mamy powtarzalność fali dla $k\Delta x=2\pi n$. Najmniejsza wartość Δx , która spełnia ten warunek dla liczby całkowitej n, określa długość fali λ :

$$\lambda = \frac{2\pi}{k} \tag{1.5}$$

2. Doświadczenie

2.1. Układ doświadczalny

Poniżej znajduje się układ doświadczalny dla danego doświadczenia. Na szynie, z podziałką 1 mm, umieszczono głośnik i mikrofon. Głośnik podłączono do generatora napięcia sinusoidalnego, co pozwalało na pomiary dźwięku dla różnych częstotliwości sygnału. Generator oraz mikrofon połączone były do oscyloskopu.

Rysunek 2.1: Układ pomiarowy do pomiaru napięcia na próbce oraz natężenia w dwóch obwodach.

Oscyloskop ustawiony był w trybie YT, z podstawą czasu $\Delta t = 0.2 \ \mu s$.

2.2. Przeprowadzenie doświadczenia

Z uwagi na złe warunki w pracowni (brak odpowiednio dobrze działających przyrządów oraz chaos), analiza danych zostanie oparta na pomiarach przeprowadzonych przez kolegów z porannej zmiany.

Wykonano trzy serie pomiarów dla różnych częstotliwości: 37 kHz, 40 kHz oraz 43 kHz. Poniżej znajdują się tabele z pomiarami – dla każdej Δs zostały przeprowadzone trzy pomiary, a następnie wynik uśredniono. Za niepewność wyznaczenia Δs przyjmujemy 0.02 cm. Za niepewność Δt wzięto odchylenie standardowe biorąc pod uwagę niedokładność przyrządu równą 0.2 μ s.

Tabela 2.1: f = 37 kHz

Tabela 2.2: f = 40 kHz

Tabela 2.3: f = 43 kHz

$\Delta s [\mathrm{cm}]$	$\Delta t \; [\mu \mathrm{s}]$	$\Delta s \text{ [cm]}$	$\Delta t \; [\mu \mathrm{s}]$		$\Delta s \text{ [cm]}$	$\Delta t \; [\mu \mathrm{s}]$
20.0	12.3 ± 0.5	20.0	2.3 ± 0.3	•	15.0	15.5 ± 0.3
20.1	15.4 ± 0.2	20.1	4.7 ± 0.1		15.1	19.2 ± 0.1
20.2	18.7 ± 0.3	20.2	8.0 ± 0.6		15.2	22.4 ± 0.6
20.3	22.3 ± 0.3	20.3	11.9 ± 0.1		15.3	24.7 ± 0.1
20.4	25.0 ± 0.2	20.4	14.2 ± 0.2		15.4	27.3 ± 0.2
20.5	27.0 ± 0.2	20.5	16.4 ± 0.1		15.5	30.5 ± 0.1
20.6	29.9 ± 0.3	20.6	19.3 ± 0.1		15.6	34.1 ± 0.1
20.7	33.3 ± 0.1	20.7	22.9 ± 0.1		15.7	35.9 ± 0.1
20.8	36.9 ± 0.5	20.8	26.4 ± 0.6		15.8	38.3 ± 0.6
20.9	39.6 ± 0.8	20.9	28.3 ± 0.1		15.9	41.6 ± 0.1
21.0	42.3 ± 1.1	21.0	30.8 ± 0.4		16.0	45.3 ± 0.4

2.3. Analiza pomiarów

Na podstawie pomiarów z tabel 2.1, 2.2 oraz 2.3 tworzymy zależność liniową postaci

$$\Delta x = a \cdot \Delta t + b \tag{2.1}$$

Współczynniki wyznaczamy metodą najmniejszych kwadratów.

Rysunek 2.2: Wykres zależności Δx od Δt dla pomiarów trzech różnych częstotliwości.

Wówczas dla $f=37~\mathrm{kHz}$ otrzymujemy

$$v_1 = (334.44 \pm 4.79) \left[\frac{\text{m}}{\text{s}}\right]$$
 (2.2)

dla f = 40 kHz otrzymujemy

$$v_2 = (343.64 \pm 6.10) \left[\frac{\text{m}}{\text{s}} \right]$$
 (2.3)

dla $f=43~\mathrm{kHz}$ otrzymujemy

$$v_3 = (347.72 \pm 6.00) \left[\frac{\text{m}}{\text{s}}\right]$$
 (2.4)

2.4. Wyniki, niepewności i wnioski

2.4.1. Wyniki

Liczymy wartość oczekiwaną uzyskanych wyników

$$v = (341.93 \pm 7.49) \left[\frac{\text{m}}{\text{s}}\right]$$
 (2.5)

2.4.2. Niepewności

Na niepewność ma głównie wpływ niedokładność zebranych danych. Pomiar odległości miał rząd wielkości ten sam co dokładność urządzenia pomiarowego – odległość została ustawiona na oko, skąd niepewność wyznaczenia tej wielkości określiliśmy jako 0.02 cm. Niepewność pomiaru Δt jest trudna do oszacowania ze względu na metodę przeprowadzonego doświadczenia. Przyjęta niepewność jest zapewne dużo niższa niż rzeczywista. Innym dość ważnym aspektem jest to, że warunki w jakich przeprowadzone zostało doświadczenie, zapewne odbiegają od idealnych – brak idealnej ciszy.

Otrzymana w dopasowaniach wartość współczynnika b różna jest od zera i można potraktować ją jako stałą fenomenologiczną.

2.4.3. Wnioski

Uzyskana wartość prędkości jest bardzo bliska wartością tablicowym ($\approx 340 \, \frac{\text{m}}{\text{s}}$). Potwierdza to również przeprowadzony test 3σ .

3. Podsumowanie

W doświadczeniu wyznaczano prędkość dźwięku metodą czasu przelotu. Uzyskano wynik

$$v = (341.93 \pm 7.49) \left[\frac{\text{m}}{\text{s}}\right]$$
 (3.1)

co jest zgodne z przewidywaniami.

Wszelkie rachunki przeprowadziłam ręcznie, posługując się jedynie kalkulatorem prostym oraz arkuszem kalkulacyjnym Google. Na każdym etapie obliczeń zaokrąglałam wynik do dwóch miejsc znaczących. Ostateczne wyniki sprawdziłam przy użyciu programów napisanych w Pythonie i na podstawie tych wyników dopasowałam krzywą do danych na wykresach. Wszystkie dopasowania przeprowadziłam z użyciem metody najmniejszych kwadratów, zatem do policzenia niepewności dopasowanych parametrów użyłam metody obliczania niepewności pomiarowej za pomocą pierwiastków elementów na diagonali macierzy kowariancji.

Bibliografia

 $[1]\ {\rm Roman\ J.\ Nowak.}\ {\rm Instrukcja\ do\ zadania\ 104}$ - wyznaczanie prędkości dzwięku metodą czasu przelotu, 16.01.2017.