Chapter 3: Stoichiometry

Key Skills:

- ➤ Balance chemical equations
- ➤ Predict the products of simple combination, decomposition, and combustion reactions.
- ➤ Calculate formula weights
- ➤ Convert grams to moles and moles to grams using molar masses.
- ➤ Convert number of molecules to moles and moles to number of molecules using Avogadro's number
- Calculate the empirical and molecular formulas of a compound from percentage composition and molecular weight.
- Identify limiting reactants and calculate amounts, in grams or moles, or reactants consumed and products formed for a reaction.
- Calculate the percent yield of a reaction.

Stoichiometry is the study of the *quantitative* relationships in substances and their reactions

- -Chemical equations
- -The mole and molar mass
- -Chemical formulas
- -Mass relationships in equations
- -Limiting reactant

Definitions

- Reactants are the substances consumed
- Products are the substances formed
- Coefficients are numbers before the formula of a substance in an equation
- A balanced equation has the same number of atoms of each element on both sides of the equation

Chemical Equations

- A chemical equation is a shorthand notation to describe a chemical reaction
 - Just like a chemical formula, a chemical equation expresses quantitative relations
- Subscripts tell the number of atoms of each element in a molecule
- · Coefficients tell the number of molecules

Coefficients vs. Subscripts

Hydrogen and oxygen can make water or hydrogen peroxide

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$$

$$H_2(g) + O_2(g) \rightarrow H_2O_2(I)$$

Anatomy of a Chemical Equation

The *states* of the reactants and products are written in parentheses to the right of each element symbol or formula.

Writing Balanced Equations

• Write the *correct formula* for each substance

$$H_2 + Cl_2 \rightarrow HCl$$

 Add coefficients so the number of atoms of each element are the same on both sides of the equation

$$H_2 + Cl_2 \rightarrow 2HCl$$

Balancing Chemical Equations

Assume one molecule of the most complicated substance

$$C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$$

- Adjust the coefficient of CO_2 to balance C $C_5H_{12} + O_2 \rightarrow 5CO_2 + H_2O$
- Adjust the coefficient of H_2O to balance $H_2O + O_2 \rightarrow 5CO_2 + 6H_2O$
- Adjust the coefficient of O_2 to balance O_2 to balance O_2 + O_2 + O_2 + O_3 + O_4
- Check the balance by counting the number of atoms of each element.

Balancing Equations

Sometimes fractional coefficients are obtained

Multiply <u>all</u> coefficients by the denominator

$$2 C_5 H_{10} + 15 O_2 \rightarrow 10 CO_2 + 10 H_2 O_2$$

Combination

TABLE 3.1 Combination and Decomposition Reactions

Decomposition

One substance breaks down into two or more substances

$$2 \text{ NaN}_3(s) \longrightarrow 2 \text{ Na}(s) + 3 \text{ N}_2(g)$$

$$\text{CaCO}_3(s) \longrightarrow \text{CaO}(s) + \text{CO}_2(g)$$

$$2 \text{ KCIO}_3(s) \longrightarrow 2 \text{ KCI}(s) + \text{O}_2(g)$$

TABLE 3.1 Combination and Decomposition Reactions

Decomposition Reactions

$C \longrightarrow A + B$
$2 \text{ KClO}_3(s) \longrightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$
$PbCO_3(s) \longrightarrow PbO(s) + CO_2(g)$
$Cu(OH)_2(s) \longrightarrow CuO(s) + H_2O(g)$

A single reactant breaks apart to form two or more substances. Many compounds react this way when heated.

Combustion

Is the process of burning, the combination of an organic substance with oxygen to produce a flame.

 When an organic compound burns in oxygen, the carbon reacts with oxygen to form CO₂, and the hydrogen forms water, H₂O.

Balance the following combustion reactions:

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

 $(C_2H_5)_2O + O_2 \rightarrow CO_2 + H_2O$

Formula Weight (FW)

- Sum of the atomic weights for the atoms in a chemical formula
- The formula weight of calcium chloride, CaCl₂, would be

Ca: 1(40.08 amu) + Cl: 2(35.45 amu) 110.98 amu

 Formula weights are generally reported for *ionic* compounds

Molecular Weight (MW)

- Sum of the atomic weights of the atoms in a molecule
- For the molecule ethane, C₂H₆, the molecular weight would be

C: 2(12.01 amu) + H: 6(1.008 amu) 30.07 amu

Percent Composition

One can find the percentage of the mass of a compound that comes from each of the elements in the compound by using this equation:

% element =
$$\frac{\text{(number of atoms)(atomic weight)}}{\text{(FW of the compound)}} \times 100\%$$

Percent Composition

So the percentage by mass of carbon in ethane (C_2H_6) is...

%C =
$$\frac{(2)(12.01 \text{ amu})}{(30.068 \text{ amu})} \times 100$$
$$= \frac{24.02 \text{ amu}}{30.068 \text{ amu}} \times 100$$
$$= 79.89\%$$

The Mole

- One mole is the amount of substance that contains as many entities as the number of atoms in exactly 12 grams of the ¹²C isotope of carbon.
- Avogadro's number is the experimentally determined number of atoms in 12 g of isotopically pure ¹²C, and is equal to 6.022 x 10²³
- One mole of anything contains 6.022 x 10²³ entities
 - 1 mol H = 6.022×10^{23} atoms of H
 - 1 mol $H_2 = 6.022 \times 10^{23}$ molecules of H_2
 - 1 mol $CH_4 = 6.022 \times 10^{23}$ molecules of CH_4
 - 1 mol $CaCl_2 = 6.022 \times 10^{23}$ formula units of $CaCl_2$

Moles to Number of Entities

Example Calculations

- How many Na atoms are present in 0.35 mol of Na?
- How many moles of C_2H_6 are present in 3.00 x 10^{21} molecules of C_2H_6 ?

Single molecule

TABLE 3.2 Mole Relationships

Name of Substance	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	$6.02 \times 10^{23} \text{N} \text{atoms}$
Molecular nitrogen or "dinitrogen"	N_2	28.0	28.0	$\begin{cases} 6.02 \times 10^{23}N_2\text{molecules} \\ 2(6.02 \times 10^{23})\text{N atoms} \end{cases}$
Silver	Ag	107.9	107.9	$6.02 \times 10^{23} \mathrm{Ag} \mathrm{atoms}$
Silver ions	Ag^+	107.9 ^a	107.9	$6.02 imes 10^{23}\mathrm{Ag^+}$ ions
Barium chloride	BaCl ₂	208.2	208.2	$\begin{cases} 6.02 \times 10^{23} \text{ BaCl}_2 \text{ formula units} \\ 6.02 \times 10^{23} \text{ Ba}^{2+} \text{ ions} \\ 2(6.02 \times 10^{23}) \text{ Cl}^- \text{ ions} \end{cases}$

^aRecall that the mass of an electron is more than 1800 times smaller than the masses of the proton and the neutron; thus, ions and atoms have essentially the same mass.

Molar Mass

The **molar mass** (\mathcal{M}) of any atom, molecule or compound is the mass (in grams) of one mole of that substance.

The molar mass *in grams* is numerically equal to the atomic mass or molecular mass expressed *in u (or amu)*.

	Atomic So	Lab Scale	
Substance	Name	Mass	Molar Mass
Ar	atomic mass	39.95 u	39.95 g/mol
C_2H_6	molecular	30.07 u	30.07 g/mol
	mass		
NaF	formula mass	41.99 u	41.99 g/mol

What mass of compound must be weighed out, to have a 0.0223 mol sample of $H_2C_2O_4$ ($\mathcal{M}=90.04$ g/mol)?

Interconverting masses and number of formula units

Example Calculation

What is the mass of 0.25 moles of CH₄?

$$0.25 \text{ mol-CH}_4 \left(\frac{16.0 \text{ g CH}_4}{1 \text{ mol-CH}_4} \right) = 4.0 \text{ g CH}_4$$

Empirical formula

Example 1: What is the empirical formula of a compound that contains 0.799 g C and 0.201 g H in a 1.000 g sample?

Example 2: What is the empirical formula of a chromium oxide that is 68.4% Cr by mass?

Combustion Analysis

- Compounds containing C, H and O are routinely analyzed through combustion in a chamber like this
 - C is determined from the mass of CO₂ produced
 - H is determined from the mass of H₂O produced
 - O is determined by difference after the C and H have been determined

Finding C and H content

 A weighed sample of compound is burned, and the masses of H₂O and CO₂ formed is measured.

Calculating Empirical Formulas

Example: The compound *para*-aminobenzoic acid (you may have seen it listed as PABA on your bottle of sunscreen) is composed of carbon (61.31%), hydrogen (5.14%), nitrogen (10.21%), and oxygen (23.33%). Find the empirical formula of PABA.

Assuming 100.00 g of para-aminobenzoic acid,

C:
$$61.31 \text{ g x} \frac{1 \text{ mol}}{12.01 \text{ g}} = 5.105 \text{ mol C}$$

H: $5.14 \text{ g x} \frac{1 \text{ mol}}{1.01 \text{ g}} = 5.09 \text{ mol H}$

H:
$$5.14 \text{ g x} \frac{1 \text{ mol}}{1.01 \text{ g}} = 5.09 \text{ mol H}$$

N:
$$10.21 \text{ g x} \frac{1 \text{ mol}}{14.01 \text{ g}} = 0.7288 \text{ mol N}$$

O:
$$23.33 \text{ g x} \frac{1 \text{ mol}}{16.00 \text{ g}} = 1.456 \text{ mol O}$$

Calculating Empirical Formulas

Calculate the mole ratio by dividing by the smallest number of moles:

C:
$$\frac{5.105 \text{ mol}}{0.7288 \text{ mol}} = 7.005 \approx 7$$

H:
$$\frac{5.09 \text{ mol}}{0.7288 \text{ mol}} = 6.984 \approx 7$$

N:
$$\frac{0.7288 \text{ mol}}{0.7288 \text{ mol}} = 1.000$$

O:
$$\frac{1.458 \text{ mol}}{0.7288 \text{ mol}} = 2.001 \approx 2$$

Example Calculation

A compound contains only C, H, and O. A 0.1000 g-sample burns completely in oxygen to form 0.0930 g water and 0.2271 g $\rm CO_2$. Calculate the mass of each element in this sample. What is the empirical formula of the compound?

Comparison Formula to mass percent Mass percent to formula Subscripts in Composition formula (mass or mass %) Molar masses **Atomic masses** of elements Masses of Moles of elements and each element compound $\frac{\text{Mass of element}}{\text{Mass of compound}} \ x \ 100\%$ Divide by smallest number **Percent Empirical** formula composition

Mole Relationships in Equations

Guidelines for Reaction Stoichiometry

- · Write the balanced equation.
- Calculate the number of moles of the species for which the mass is given.
- Use the coefficients in the equation to convert the moles of the given substance into moles of the substance desired.
- Calculate the mass of the desired species.

Example Calculation

Given the reaction

$$4\text{FeS}_2 + 11 \text{ O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$$

What mass of SO_2 is produced from reaction of 3.8 g of FeS_2 and excess O_2 ?

Example Calculation

What mass of SO_3 forms from the reaction of 4.1 g of SO_2 with an excess of O_2 ?

Reaction Yields

Actual yield is found by measuring the quantity of product formed in the experiment.

Theoretical yield is calculated from reaction stoichiometry.

% yield =
$$\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100\%$$

Example: Calculating Percent Yield

A 10.0 g-sample of potassium bromide is treated with perchloric acid solution. The reaction mixture is cooled and solid $KClO_4$ is removed by filtering, then it is dried and weighed.

$$KBr (aq) + HClO_4 (aq) \rightarrow KClO_4 (s) + HBr (aq)$$

The product weighed 8.8 g. What was the percent yield?

Limiting Reactant

Limiting reactant: the reactant that is completely consumed in a reaction. When it is used up, the reaction stops, thus limiting the quantities of products formed.

Excess reactant: the other reactants present, not completely consumed

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

$$5[2H_2(g) + O_2(g) \rightarrow 2H_2O(g)]$$

 $10H_2(g) + 5O_2(g) \rightarrow 10H_2O(g)$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

$$5[2H_2(g) + O_2(g) \rightarrow 2H_2O(g)]$$

 $10H_2(g) + 5O_2(g) \rightarrow 10H_2O(g)$

	2 H ₂ (g)	+	$O_2(g)$ -	\rightarrow 2 H ₂ O(g)
Before reaction:	10 mol		7 mol	0 mol
Change (reaction):	$-10\mathrm{mol}$		-5 mol	+10 mol
After reaction:	0 mol		2 mol	10 mol

Strategy for Limiting Reactant

Example Calculation

Calculate the theoretical yield (g) when 7.0 g of N_2 reacts with 2.0 g of H_2 , forming NH_3 .

Example Calculation

One reaction step in the conversion of ammonia to nitric acid involves converting NH₃ to NO by the following reaction:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$$

If 1.50 g of NH_3 reacts with 2.75 g O_2 , then:

- 1. Which is the limiting reactant?
- 2. How many grams of NO and H₂O form?
- 3. How many grams of the excess reactant remain after the limiting reactant is completely consumed?
- 4. Is the law of conservation of mass obeyed?