Math Camp 2025 - Problem Set 3

Read the following problems carefully and justify everything you do.

1. Limits. Find the following limits or show that they don't exist.

- 1. $\lim_{x \to +\infty} \frac{e}{x}$.
- $2. \lim_{x \to -\infty} \frac{e}{x}.$
- 3. $\lim_{x \to 3} \frac{x}{x^3 27}$.
- 4. $\lim_{x \to 3} \frac{x-3}{x^3-27}$.
- $5. \lim_{x \to \infty} \frac{x+1}{2x}.$
- 6. $\lim_{x\to\infty} \left(\frac{1}{2}\right)^x$.
- 7. $\lim_{x \to \infty} \frac{3x^3 + 2x^2 x + 3}{4x^4 + 3x^3 + 2x^2 + x + 4}.$
- 8. $\lim_{x \to 0} \frac{1}{x^2}$.
- 9. (a) $\lim_{x \to 1} f(x)$.
 - (b) $\lim_{x \to 2} f(x)$. (c) $\lim_{x \to 5} f(x)$.

where $f:[0,5]\to\mathbb{R}$ is given by the following graph.

2. Continuity.

1. Consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ x & \text{if } x \ge 1. \end{cases}$$

Is it continuous?

2. The following functions are defined for all $x \in \mathbb{R}$ except for one point x_0 . Find x_0 and determine if they can be defined at x_0 so that they are continuous on \mathbb{R} .

(a)
$$f(x) = \frac{x-3}{x^3-27}$$
.

(b)
$$f(x) = \frac{1}{x}$$
.

(c)
$$f(x) = \begin{cases} x^2 & \text{if } x < 1 \\ x & \text{if } x > 1. \end{cases}$$

(c)
$$f(x) = \begin{cases} x^2 & \text{if } x < 1 \\ x & \text{if } x > 1. \end{cases}$$

(d) $f(x) = \begin{cases} x^2 & \text{if } x < -1 \\ x & \text{if } x > -1. \end{cases}$