立创EDA新建库参考规范

立创EDA新建库参考规范

初始版本: 2018.06.18 最近更新: 2019.08.06

起草/修订: 罗德松

中国自主研发的PCB设计工具 - 立创EDA: https://lceda.cn 中国领先的现货元器件交易平台 - 立创商城: https://szlcsc.com

> 立创商城版权所有 公开分发 免费使用 点击查看最新版本

1. 原理图库

1.1 属性

1、画布使用默认属性

2、自定义属性

名称:默认生成。

封装:看后面章节。

1.2 编号

编号:默认生成。需要根据实际情况修改,默认生成的不一定正确。

创建的原理图库需要根据元件类型指定对应预设编号:字母+问号

元件类型	编号	备注
电阻	R?	Resistor
电容	C?	Capacitor
电感	L?	Inductance
排阻	RN?	Resistor Network
热敏电阻	RT?	Resistor Thermistor
压敏电阻	RV?	Varistor
磁珠	FB?	Ferrite Bead
滤波器	FL?	Filter

通用二极管	D?	Diode
稳压(齐纳)二极管	ZD?	Zener Diode
发光二极管	LED?	Light-Emitting Diode
三极管	Q?	常用编号
整流桥	DB?	Diode Brige
MOS管	U?	用 U? 是为了和 Q? 区分开
芯片	U?	常用编号
有源晶振	OSC?	Oscillator
无源晶振	Х?	External Crystal Oscillator
保险丝	F?	Fuse
开关	SW?	Switch
按键	KEY?	Key
通用连接器 - 排针	Н?	Header
通用连接器 - 非排针	CN?	Connector
专用连接器	类型缩写?	如: USB?, LPC?, DC?, HDMI?, RJ?, FPC?, DP?, AUDIO?, SD?等
LED数码管	LEDS?	LED Segement
继电器	RLY?	Relay
扬声器	SPK?	Speaker
蜂鸣器	BUZ?	Buzzer
马达	M?	Motor
麦克风	MIC?	Microphone
电池	BAT?	Battery
天线	ANT?	Antenna
变压器	T?	Transformer
测试点	TP?	Test Point

1.3 引脚

1、引脚端点

引脚端点必须在网格格点上。否则当原理图放置在原理图上会导致无法正常连接。

2、引脚名称

- 1) 引脚名称需要和规格书的一致。如规格书标 GND 则不要写 VSS。
- 2) 引脚名称的斜线分隔需要保留。如 GPIO28/SCIRXDA/SDAA/TZ2#。
- 3) 引脚名称的低电平使用 # 表示。如 CS#, TRST#。立创EDA不支持在文字顶部加横线表示低电平。如下图, 第3脚:

4) 对于常用器件功能引脚名称必须填写,不能仅以数字代替,否则无法使用。如 USB 接口。

3、引脚编号

1) 引脚编号如果规格书没有定义,可以参照立创EDA公众号的"电子硬件助手"小程序里面的定义。或根据通常的使用习惯进行定义,或者找工程部确认具体的引脚定义。

2) 引脚编号默认以数字方式编号,其他的按照规格书或者通用编号进行编号。

4、引脚数

数量大于 100 的 GBA 暂时不绘制,将其提交到"不需要绘制",并做好备注"引脚大于 100,暂不绘制"。

5、隐藏显示

- 1) 引脚名称和编号可以根据具体情况是否隐藏,如电阻。
- 2) 引脚本身不能隐藏。

6、引脚位置

引脚数量少的元件,引脚顺序位置放置优先与规格书的封装焊盘编号位置一致。

7、定位脚

元件存在金属外壳的定位脚的,需要放置对应引脚与焊盘对应,需要单独的编号, 定位脚编号默认不重复,非金属的定位脚不需要绘制引脚。

1.4 样式

1、电阻用欧标样式;电感、电容用美标样式。

2、绘制的库(包括向导生成),中心不能有大的空白区域,避免过多占用空间。

- 3、手工绘制的图形与线条颜色请参考基础库或者向导生成的图形。
- 4、特殊功能的符号图形需要参照立创EDA公众号的"电子硬件助手"小程序。如压敏电阻等

5、形状不需要设置填充颜色。

6、图形样式需要和规格书封装的保持一致。如:继电器。

7、极性元件,原理图库与封装方向优先保持一致。如:二极管等

8、如果引脚过多,根据使用习惯依次绘制子库。比如门电路芯片、FPGA等。有子库的元件,父库不需要绘制图形,绘制了也不会被调用!子库不能出现重复的引脚编

号,避免在原理图里面出现异常(相同引脚编号却链接不同网络的情况,会导致PCB设计出错!)

9、如无特殊情况,绘制的原理图库图形默认竖直摆放,方便引脚连接。

10、有悬浮脚,无需焊接的脚,不需绘制,封装也不需要绘制对应的焊盘。如: C256461 的封装和原理图库 2 脚无需绘制,但是需要绘制MB脚。

1、检查

每个原理图库必须打开封装管理器检查是否存在错误。

2、编号

引脚编号必须和指定的封装焊盘编号一致,否则原理图无法转为PCB。

3、指定

系统自动分配给新原理图库生成的封装名称不一定正确,必须根据封装命名规则重 新指定。

4、库别

指定的封装必须是"立创商城库"或者"官方系统库"团队下的库,不能直接指定 其他库,否则无法提交完成绘制。

5、极性

具有极性的元件必须指定带极性标识的封装。如: LED, 二极管等

6、分类

电阻电容电感等,如果是标准尺寸的需要取带有明显区分开头的封装。命名规则详见《立创EDA封装库命名规范》。

7、方向

选取的封装需要优先按照规格书 0 度的封装,如果没有,则另存一个已有封装,修改 0 度方向,并重新命名,命名规则详见《立创EDA封装库命名规范》。 PCB 库 0 度绘制详情请查看下文规则。

1.6 原点

1、绘制完成后需要将原点设置在中心最近的格点,利于旋转。可通过:顶部工具栏 - 放置 - 设置画布原点 - 从图形中心格点。

2. PCB 库

2.1 属性

- 1、画布采用默认属性,单位 mm。
- 2、自定义属性
- 1) 封装: PCB库的标题。标题命名参考《立创EDA封装库命名规范》进行命名。
- 2)编号:默认U?,需要根据常用编号修改为其他编号,只修改字母。具体参考前文原理图库编号。

2.2 标题

2.3 丝印

1、宽度

使用默认宽度。10mi1/0.254mm。其他根据实际情况修改。

圆形的大面积丝印可以使用实心填充绘制。L键可以使走线形状为圆弧。

2、形状与尺寸

丝印形状、尺寸需要与规格书尺寸一致。用户会根据丝印大小准确摆放封装位置与 间隙。避免导致元件无法焊接和插件。

3、标识

对于会出现方向性混淆的封装,需要添加文本丝印标识标明首尾焊盘编号,避免复用时混淆极性。如排针,DSUB接口等。

4、裁剪

绘制的封装丝印不能盖在焊盘上,即丝印不能从焊盘/通孔中穿过。部分厂家会直接 把丝印印在焊盘上,PCB库设计阶段需要避免这个情况。绘制丝印导线时编辑器会自 动裁剪。

5、样式

标准的两脚贴片的电阻、电容、电感、保险丝、LED、晶振丝封装印样式要有明显区分,电阻(直角丝印),电容(圆角丝印),电感(45度角丝印)等。便于在 PCB 设计中

区分元件类型。如: R0805, C0603, L1210等。0805等尺寸取英制单位绘制。

2.4 焊盘

1、孔内径

接插件封装的过孔需要注意过孔内径,需要确保一定稍微大于规格尺寸,方形引脚还需要注意计算对角线长度(宽度*根号2)来设置孔内径。

孔内径需要比实际尺寸大 4 个阶度 (0.2 mm),因为机械钻头规格为 0.05 mm 为一 阶。例如:方形引脚宽 0.8 mm,对角宽度 1.13 mm,1.13 + 0.05 * 4 = 1.33 mm,所以钻孔 直径取 1.35 mm。

2、直径

焊盘直径需要比孔内径大至少0.8mm,以方便手工焊接。如内孔直径1.3mm,则焊盘直径2.1mm。

3、大小

- 1) 默认根据规格书提供的推荐尺寸绘制;
- 2) 若未提供,则根据尺寸标注,往外扩展延伸 1mm。

部分常用封装有大、中、小三种焊盘尺寸,大利于手动焊接、小利于机器贴片,立创EDA 绘制中等焊盘尺寸。

4、检查尺寸

绘制完成后,使用尺寸检查工具检查封装尺寸: `顶部工具栏 - 工具 - 检查尺寸

5、异形焊盘

对于异形焊盘,可通过修改焊盘类型为多边形焊盘,然后编辑坐标点完成。

也可以通过选中实心填充或导线右键转为焊盘。

6、焊盘重叠

避免多个焊盘重叠的封装,可以通过实心填充转为焊盘。

7、焊盘唯一

不能直接通过实心填充,导线,圆弧,矩形等非焊盘元素来代替焊盘。否则在PCB进行DRC检测时会报错,且无法修改网络属性。

8、散热焊盘

封装内部的散热焊盘(EP),需要根据规格书和实物图是否绘制。编号取原理图库对应引脚的编号,不能取0,默认最后一个编号。如果散热焊盘需要放置散热孔,则使用多层焊盘,并且设置相同的编号,不能使用过孔。

9、定位

- 1) 金属外壳的定位孔用焊盘表示,焊盘添加编号;
- 2) 非金属定位孔用通孔表示。
- 3) 不允许使用边框层挖孔,不允许使用过孔。

10、编号

- 1) 根据常用方向进行编号,例如USB接口,常用如上图,从左到右为 1到 5。具体依照规格书,若规格书无标注则根据立创EDA公众号绑定的"电子硬件助手"里面的定义进行绘制。
- 2) 定位焊盘默认编号唯一, 不重复

2.5 原点

PCB库绘制完成后需要将原点中心设置在封装中心处。以利于封装贴片定位和在画布上面的旋转。通过: `顶部工具栏 - 放置 - 设置原点 - 从焊盘中央`。 不设置原点为中心无法保存。

2.6 极性

1、有极性的封装必须绘制极性标识点。

2、PCB库绘制时摆放方向(0度方向,又称极性)需要根据规格书的方向。具体参考<u>《</u>PCB 封装库 0 度图形制作标准》。

3、所有标准两脚贴片封装需要横向绘制,不能纵向绘制,基本上没有纵向放置的编带,如 0805,0603,0402,SMA,SMB等。

4、SOT 类封装 0 度方向默认如下(绝大部分厂家的编带放置方向为该方向),如果规格书有其他方向则根据规格书的绘制,并根据规则命名:

5、SOP、QFP、BGA、LGA、LCC、QFN、DFN 类等封装的 0 度方向默认如下(第一脚在 左下角, 逆时针开始增序焊盘; 绝大部分厂家的编带放置方向为该方向), 如果规格 书的编带方向, 有其他方向则根据规格书的绘制, 并根据命名规则命名:

2.7 方向

- 1、如果有不同元件可以使用相同尺寸封装,但是封装 0 度方向不一样的,需要"另存为"新建一个封装并重新命名并做好描述用以区分。命名规则参见《立创E DA封装库命名规范》。
- 2、规格书上有注明 0 度的,根据规格书绘制。
- 3、如果规格书没有注明料带/料盘的零度方向,优先根据实物图上物料表面的文字和标识点来确定。

例如: 当文字为正,标识点在左下方,则封装 0 度时 1 脚在左下方。如果无法确定则默认根据左下角为第一脚,以逆时针方向编号。

4、如果规格书和实物图也没有标明零度方向,则需要按照规格书绘制的封装方向绘制0度。

2.8 保存

在保存对话框需要填对应的信息:

1、标题

前面描述的一致。参考封装命名规则命名。

2、标签

根据封装类型填写英文标签。默认是封装名前段部分。

SOP-8_L3. 0-W4. 9-P0. 65-BL 则标签是 SOIC-8; CAP-ARRAY-SMD_10P-L2. 5-W1. 2-P0. 50 填 CAP-ARRAY-SMD 具体根据命名规则《立创EDA封装库命名规范》

3、链接

复制商品详情地址(非pdf后缀地址)。因为商城的pdf地址会定期变更,所以只能填写商品详情页地址。

4、描述

选填,填入封装的规格说明。

3. 其他

- 1、原理图库和 PCB 库在立创EDA均不允许重名。当原理图库在保存时提示标题已存在,需要在原有标题添加下划线和商品编号以区分。如 1SS355_C8485。
- 2、规则的 IPC 封装(如 BGA 等多脚封装), 如果系统库和用户贡献库没有可以用来另存二次修改编辑的,可使用在线封装创建工具创建(需要注册登录)。创建后导出 lbr 文件(Eagle 的库文件),再从编辑器打开,设置原点,修改编号和标题后保存。

工具地址: https://editor-package.library.io

3、规格书尺寸标注异常、不明确的需要在商品详情页提交错误反馈, "欢迎纠错"入口,等待工程部确认,获取最新规格书。如果无法获取则让工程部直接测量。

4、不需要绘制的库,必须写明备注信息,以便后期复查再次进入绘制流程。