Introduction Boltzmann Machine

boltzmann machineの目的(1)

- 神経回路網を模した数理モデル
 - hopfield netなどのコネクショニストモデルの1つ
- 環境からの信号が入力素子 V へ
 この環境の確率構造Pを神経回路網Wへ写し取る

boltzmann machineの目的(2)

- 神経回路網が置かれている環境の中で事象は確率的に起こる
- 環境での確率的な構造を回路網に写し取りたい
- このとき事象は {0,1} の2値パターンの組合せで表現される

boltzmann machineの目的(3)

KL情報量
$$G = \sum_{\alpha} P(V_{\alpha}) \ln \frac{P(V_{\alpha})}{P'(V_{\alpha})}$$
 (8)

- KL情報量
 - 環境のもつ確率構造Pと神経回路網Wを実行したときの確率P'の近さを測る
- この値を微分して勾配法を用いることで修正する

確率構造を写し取れる仕組み

• 環境がもつ確率構造

pij

• 回路網を自由に走らせることでえられる

p'ij

- PとP'のKL情報量を目的関数Gとする
- 目的関数G(P||P')を結合係数wijで微分

$$\frac{\partial G}{\partial w_{ii}} = -\frac{1}{T}(p_{ij} - p_{ij}') \tag{9}$$

$$\Delta w_{ij} = \epsilon (p_{ij} - p_{ij}') \tag{10}$$

• 結合係数を少しずつ修正していく

$$W^{t+1} = W^{t} + \alpha_{t} \left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}^{n} (\mu^{n})^{\top} - \frac{1}{M} \sum_{m=1}^{M} \tilde{\mathbf{v}}^{t+1,m} (\tilde{\mathbf{h}}^{t+1,m})^{\top} \right)$$

神経回路網の状態

General Boltzmann Machine

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\frac{1}{2} \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v} - \frac{1}{2} \mathbf{h}^{\mathsf{T}} \mathbf{J} \mathbf{h} - \mathbf{v}^{\mathsf{T}} \mathbf{W} \mathbf{h}, \qquad (1)$$

• 回路状態はエネルギー関数で表される

エネルギー関数

- エネルギー関数
 - 重み付き総和
 - 回路W上の各素子sが同時に1になったとき減少

神経細胞の発火確率

$$\sigma(x) = 1/(1 + \exp(-x))$$

- 非線形関数では微分できない
- 閾値関数を近似する微分可能な関数が必要

$$p(\mathbf{v}; \theta) = \frac{p^*(\mathbf{v}; \theta)}{Z(\theta)} = \frac{1}{Z(\theta)} \sum_{h} \exp\left(-E(\mathbf{v}, \mathbf{h}; \theta)\right),$$

$$Z(\theta) = \sum_{\mathbf{v}} \sum_{\mathbf{h}} \exp\left(-E(\mathbf{v}, \mathbf{h}; \theta)\right), \quad (3)$$

General Boltzmann Machine

- 回路状態は状態数 2ⁿ 個のマルコフ連鎖
- 定常分布はユニークでボルツマン分布となる

マルコフ連鎖

- 回路状態は状態数 2^n 個のマルコフ連鎖
- ・ 定常分布はユニークに定まり、ボルツマン分布となる

神経回路網の更新則

結合状態の更新則

学習係数 データ依存期待値 モデル依存期待値

$$\Delta \mathbf{W} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v} \mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v} \mathbf{h}^{\top}] \right), \quad (6)$$

$$\Delta \mathbf{L} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v} \mathbf{v}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v} \mathbf{v}^{\top}] \right),$$

$$\Delta \mathbf{J} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{h} \mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{h} \mathbf{h}^{\top}] \right),$$

ここをどうやって推定するか?

Variational approach

Stochastic approximation procedure

Boltzmann machineのアルゴリズム

データ依存期待値 モデル依存期待値
$$W^{t+1} = W^t + \alpha_t \left(\frac{1}{N} \sum_{n=1}^N \mathbf{v}^n (\mu^n)^\top - \frac{1}{M} \sum_{m=1}^M \tilde{\mathbf{v}}^{t+1,m} (\tilde{\mathbf{h}}^{t+1,m})^\top \right)$$

- 訓練データ の期待値を求める
- モデルの期待値を求める
- 神経回路を更新

General Boltzmann Machine

$$\ln p(\mathbf{t}; \theta) \geq \sum_{\mathbf{h}} q(\mathbf{h}|\mathbf{v}; \mu) \ln p(\mathbf{v}, \mathbf{h}; \theta) + \mathcal{H}(q) \quad (7)$$

$$= \ln p(\mathbf{v}; \theta) - KL[q(\mathbf{h}|\mathbf{v}; \mu)||p(\mathbf{h}|\mathbf{v}; \theta)],$$

- 訓練データ の対数尤度を最大化
- 近似事後確率q(h;mu)と真の事後確率p(v; θ)
 を間のKL情報量を最小化
- パラメータは対数尤度上の下限の勾配により更新

General Boltzmann Machine

$$W^{t+1} = W^t + \alpha_t \left(\frac{1}{N} \sum_{n=1}^N \mathbf{v}^n [\underline{\boldsymbol{\mu}}^n]^\top - \frac{1}{M} \sum_{m=1}^M \tilde{\mathbf{v}}^{t+1,m} (\tilde{\mathbf{h}}^{t+1,m})^\top \right)$$

mean field fixed point equation

$$\mu_j \leftarrow \sigma \Big(\sum_i W_{ij} v_i + \sum_{m \setminus j} J_{mj} \mu_m \Big).$$

- データに依存する期待値
- 訓練データ \mathbf{v}^n から変分パラメータ μ^n を獲る

$$W^{t+1} = W^t + \alpha_t \left(\frac{1}{N} \sum_{n=1}^N \mathbf{v}^n [\boldsymbol{\mu}^n]^\top - \frac{1}{M} \sum_{m=1}^M \tilde{\mathbf{v}}^{t+1,m} (\tilde{\mathbf{h}}^{t+1,m})^\top \right)$$

• 訓練データ \mathbf{v}^n から変分パラメータ $\boldsymbol{\mu}^n$ を獲る

- naive mean-field approach
 - 完全に因数分解できるモデル
 - 単純な手続きで収束がはやい
 - 確率分布p(h)の近似値

結合状態の更新則

学習係数 データ依存期待値 モデル依存期待値

$$\Delta \mathbf{W} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v}\mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v}\mathbf{h}^{\top}] \right), \quad (6)$$

$$\Delta \mathbf{L} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v}\mathbf{v}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v}\mathbf{v}^{\top}] \right),$$

$$\Delta \mathbf{J} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{h}\mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{h}\mathbf{h}^{\top}] \right),$$

ここをどうやって推定するか?

variational approach

stochastic approximation procedure

stochastic approximation procedure

現在の状態(v̄^{t,m}, h̄^{t,m}) から次の状態(v̄^{t+1,m}, h̄^{t+1,m}) を獲る

結合状態の更新則

学習係数 データ依存期待値 モデル依存期待値

$$\Delta \mathbf{W} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v} \mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v} \mathbf{h}^{\top}] \right), \quad (6)$$

$$\Delta \mathbf{L} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v} \mathbf{v}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v} \mathbf{v}^{\top}] \right),$$

$$\Delta \mathbf{J} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{h} \mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{h} \mathbf{h}^{\top}] \right),$$

ここをどうやって推定するか?

Variational approach

Stochastic approximation procedure

stochastic approximation procedure

transition operator

k-step gibbs sampling

$$p(h_j = 1|\mathbf{v}, \mathbf{h}_{-j}) = \sigma\left(\sum_{i=1}^{D} W_{ij}v_i + \sum_{m=1\backslash j}^{P} J_{jm}h_j\right), (4)$$
$$p(v_i = 1|\mathbf{h}, \mathbf{v}_{-i}) = \sigma\left(\sum_{i=1}^{P} W_{ij}h_j + \sum_{k=1\backslash i}^{D} L_{ik}v_j\right), (5)$$

• 可視層vと隠れ層hを交互に遷移

k-step gibbs sampling (全結合可視素子のみの場合)

$$p(x_i = 1|x_{i-1}) = \frac{1}{1 + \exp(-u_i)}$$

- 1つの神経細胞を選択
- 確率にしたがい発火させる

k-step gibbs sampling (可視素子v,隠れ素子hを持つとき)

- 隠れ層hの素子をランダムに1つ選択。eq(4)の確率で発火
- 可視層vの素子をランダムに1つ選択。eq(5)で確率で発火

$$p(h_j = 1|\mathbf{v}, \mathbf{h}_{-j}) = \sigma\left(\sum_{i=1}^{D} W_{ij} v_i + \sum_{m=1 \setminus j}^{P} J_{jm} h_j\right), (4)$$

$$p(v_i = 1|\mathbf{h}, \mathbf{v}_{-i}) = \sigma\left(\sum_{j=1}^{P} W_{ij} h_j + \sum_{k=1 \setminus i}^{D} L_{ik} v_j\right), \quad (5)$$

stochastic approximation procedure

$$W^{t+1} = W^t + \alpha_t \left(\frac{1}{N} \sum_{n=1}^N \mathbf{v}^n (\mu^n)^\top - \frac{1}{M} \sum_{m=1}^M \tilde{\mathbf{v}}^{t+1,m} (\tilde{\mathbf{h}}^{t+1,m})^\top \right)$$

M fantasy particle

$$(\tilde{\mathbf{v}}^{t,m}, \tilde{\mathbf{h}}^{t,m}).$$

- Robbins-Monro型のアルゴリズム
- モデルパラメータの期待値をとる

Robbins-Monroアルゴリズム

神経回路網の更新

General Boltzmann Machine

$$W^{t+1} = W^t + \alpha_t \left(\frac{1}{N} \sum_{n=1}^N \mathbf{v}^n \left[\underline{\mu}^n \right]^\top - \frac{1}{M} \sum_{m=1}^M \tilde{\mathbf{v}}^{t+1,m} (\tilde{\mathbf{h}}^{t+1,m})^\top \right)$$