HW1

- ▼ 1. (9 points) Assume you have an empty stack, a sequence of operations are performed on it as shown below. Show all intermediate steps and the final stack.
 - push(a), pop(), push(b), push(c), pop, push(d), pop, push(e), pop

Solution:

Operation	Stack
push(a)	a
pop()	-
push(b)	b
push(c)	b,c
pop()	b
push(d)	b,d
pop()	b
push(e)	b,e
pop()	b

Final Stack: b

- **▼** 2. (8 points) Assume you have an empty queue, a sequence of operations are performed on it as shown below. Show all intermediate steps and the final queue.
 - enqueue(a), enqueue(b), dequeue, enqueue(c), enqueue(d), enqueue(e), dequeue, dequeue

Solution:

Operation	Queue
enqueue(a)	a
enqueue(b)	a,b
dequeue()	b
enqueue(c)	b,c
enqueue(d)	b,c,d
enqueue(e)	b,c,d,e
dequeue()	c,d,e
dequeue()	d,e

Final Queue: d,e

▼ 3. For the graphs in Figures-1 and 2,

\blacksquare (a) (4 X 7 = 28 points) Write the adjacency matrix and the adjacency lists for both graphs.

• Adjacency Matrix for Figure 1:

	a	b	С	d	е
a	0	0	1	1	0
b	0	0	1	0	1
С	1	1	0	1	1
d	1	0	1	0	0
е	0	1	1	0	0

• Adjacency List for Figure 1:

a	С	d		
b	С	е		
С	a	b	d	е
d	a	С		
е	b	С		

• Adjacency Matrix for Figure 2:

	a	b	С	d	е
a	0	∞	3	2	∞
b	∞	0	1	∞	7
С	∞	∞	0	5	4
d	∞	∞	∞	0	∞
е	∞	∞	∞	∞	0

• Adjacency List for Figure 2:

а	c,3	d,2
b	c,1	e,7
С	d,5	e,4
d		
е		

ightharpoonup (b) (5 points) Are there any cycles in each graph? If so, write down the corresponding paths.

- Cycles in Figure 1:
 - o a-c-d-a
 - o b-c-e-b
- No Cycles in Figure 2

HW1 3