

A relocatable lander to explore Titan's prebiotic chemistry and habitability

Dragonfly TPS Sizing and Analysis

AIAA SciTech: Dragonfly Entry and Descent at Titan

Eric Stern and Milad Mahzari

Outline

- TPS Overview and Sizing
 - System Overview
 - Sizing Methodology
- Dragonfly-specific TPS Design Considerations
 - Convective Cooling
 - Shoulder "Tooth" Conceptual Design
- Summary

Dragonfly TPS Sizing

- Two primary TPS materials: PICA-D and SLA-561V
 - High TRL and used well within tested limits
 - Arc jet testing confirms performance
 - PICA-D has been qualified as drop-in replacement for heritage PICA
- TPS sizing & margin analysis uses mature processes developed during MSL/Orion
 - Design thicknesses carry unallocated margin

Schematic of the Dragonfly aeroshell with sized TPS material thicknesses

TPS Sizing Methodology

Driving Aeroshell System Level Requirements:

- The aeroshell shall survive atmospheric entry and descent
- The aeroshell TPS shall passively maintain all component temperatures to within their specified limits
 - i.e. specified temperature at the TPS material-structure interface (bondline)

Sizing Points

Four points selected for sizing analysis

Structural stack-up at each sizing point provided by LM structural analysis

 Aftbody shoulder is maximum aftbody environment

Aftbody Shoulder

Forebody Shoulder

• Forebody shoulder represents maximum heat flux, and heat load, but also thickest structural stack-up

В

 Aft cover sizing point is maximum heating on the parachute cone, used for sizing all PCC elements

• 1.4x factor applied to convection, pending 3D simulations of DAC1b trajectory

Aft Cover

Stagnation Point

TPS Analysis Tool: FIAT

- Fully Implicit Ablation and Thermal response program (FIAT) version 3.2.0 used for all sizing calculations
- Standard within NASA (and largely in industry) for TPS response analysis and sizing
 - Used for several successful missions using Dragonfly TPS materials, such as MSL, Mars2020, Stardust, and many others
- One dimensional implementation of the governing equations for material response
 - Accurate for regions with low curvature and small gradients in the environment
 - Curvature can be simulated using cell volume construction according to SPHERICAL (nose tile) and CYLINDRICAL (shoulder tile) ratios
 - Multi-dimensional analysis, when required, performed using learns

Physical Boundary Condition:

- No thermochemical ablation expected for Dragonfly entry, due to lack of oxygen at Titan
- Direct heatflux boundary condition (FIAT option 3) used for sizing calculations

$$q_{conv} + \alpha q_{rad} - \sigma \epsilon_w \left(T_w^4 - T_\infty^4 \right) - q_{cond} = 0$$

- Use of ablating BC (option 1) results in negative heatflux contribution of GSI terms
- Current approach is conservative, given equilibrium assumption

TPS Analysis Tool: FIAT

Sizing Summary

PICA Sizing					
	Thickness (in)				
	Stagnation Point	Fore Shoulder			
Nominal	0.82	0.70			
Thermal	1.01	0.87			
Aerothermal	0.90	0.78			
RSS	1.03	0.88			
Manufacturing Tolerance	0.02	0.02			
	1.05	0.90			
Current Design Thickness	1.25	1.19			
Factor of Safety	17.6%	29.7%			

Result of greater thermal mass of shoulder structure

Tiled PICA heatshield of MSL

Sizing Summary

PICA Sizing					
	Thickness (in)				
	Stagnation Point	Fore Shoulder			
Nominal	0.82	0.70			
Thermal	1.01	0.87			
Aerothermal	0.90	0.78			
RSS	1.03	0.88			
Manufacturing Tolerance	0.02	0.02			
	1.05	0.90			
Current Design Thickness	1.25	1.19			
Factor of Safety	17.6%	29.7%			

- Stagnation point drives PICA sizing, despite higher heating at shoulder
 - Result of greater thermal mass of shoulder structure

Tiled PICA heatshield of MSL

SLA-561V coupon (not representative of flight configuration)

SLA-561V Sizing				
Aftbody Shoulder	Parachute Cone			
0.27	0.14			
0.30	0.20			
0.35	0.25			
0.36	0.27			
0.03	0.03			
0.39	0.30			

0.50	0.50	
21.9%	58.3%	

 Current backshell design thickness has ample unallocated margin

Outline

- TPS Overview and Sizing
 - System Overview
 - Sizing Methodology
- Dragonfly-specific TPS Design Considerations
 - Convective Cooling
 - Shoulder "Tooth" Conceptual Design
- Summary

Unique Challenges for Titan EDL

Convective Cooling During Descent

- **Problem**: *Very* long descent time under drogue, and enclosed MMRTG, results in complex thermal management problem
- Thermal analysis is very sensitive to assumed model for cooling from cryogenic atmosphere
- Empirical convection coefficients from literature have broad range (~5 - 200 W/m²-K)

Main Seal Environment:

- Problem: High radiative heating at shoulder exceeds main seal material performance limits
- Novel TPS designs being explored to mitigate

Simulations of Convective Cooling

- Constructing small database of US3D simulation to predict cooling coefficient:
 - Freestream conditions taken from CSR trajectory
 - Wall temperature set to stagnation point prediction from CSR
 - At least 500 flow times (D/V) simulated at each trajectory point
 - Grid: ~9 million elements

time	$ ho_{\infty}$	T_{∞}	u_{∞}	M_{∞}	T_w
S	kg/m ³	K	m/s		K
279	0.0029	165.8	1061.8	4.00	1225.6
317	0.0042	163.3	524.7	2.00	796.4
364	0.0054	161.2	260.8	1.00	660.4
534	0.0103	153.4	126.8	0.50	501.5

Convective Cooling Coefficient Profiles

Convective Cooling Effect on Heatshield

Surface Temperature

Bondline Temperature (IML temperature within 1-2K)

Unique Challenges for Titan EDL

Convective Cooling During Descent

- **Problem**: *Very* long descent time under drogue, and enclosed MMRTG, results in complex thermal management problem
- Thermal analysis is very sensitive to assumed model for cooling from cryogenic atmosphere
- Empirical convection coefficients from literature have broad range (~5–200 W/m²-K)

Main Seal Environment:

- **Problem**: High radiative heating at shoulder exceeds main seal material performance limits
- Novel TPS designs being explored to mitigate

The PICA "Tooth"

- One mitigation being explored entails extending the PICA shoulder tile over the main seal to shadow the seal from the radiative heating
- Requires detailed TPS analysis approach to analyze material response of this complex feature

Computational Set-up: Mesh

 Preliminary multidimensional analysis has been performed to examine notional PICA "tooth" design

- Icarus used for material response simulations
- Simplified TPS structure definition used for simulations
- Array of thermocouples placed at apex for comparison with 1D simulations

Computational Set-up: Boundary Conditions

Environment

distance from nose (m)

- For preliminary analysis, two environments are constructed using existing aerothermal solutions at TPS sizing locations
 - Currently, heating is uniform in space, but varying in time
 - 500s of trajectory simulated (end of charring)
 - "High" is the worst case environment, which has been used for TPS sizing
 - "Low" is closer to the tooth

Environment

Permeable Backward Facing Step ("high" condition)

Comparison of Predicted Charring

- Results for four cases span scenarios from essentially fully charred (high environment/ permeable), to less than half-charred (low environment/permeable)
- Red curve represents 98% charred contour

High Environment

Summary

TPS Overview and Sizing

- Approach taken to size Dragonfly heatshield and backshell was presented
- Current TPS design has ample conservatism to accommodate future design iterations

Dragonfly-specific TPS Design Considerations

- Modeling the convective cooling of the aeroshell in Titan's environment has a strong effect on its thermal performance
- Titan-specific models for convective cooling are currently being developed
- A multi-dimensional simulation methodology for analyzing candidate Dragonfly main seal designs has been developed and demonstrated

