LITERATURE SURVEY ON REAL-TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

BY: NANDHITHAA B APARNA P PATHI SAI JAHNAVI SAI RAMYA R

S.No	Authors	Approach	Description	Pros	Cons
1.	D. Deora and	Following steps	Principal Component	The	Unlike other
1.	N. Bajaj	are used to find	Analysis is one of the	development of a	sign
		finger tips.	most popular tools for	natural input	languages
		Step 1: Thinning	high dimensional data		`
		using Distance	analysis where	creating sign	Sign
		Transform	dimensional reduction	language	Language,
		Step 2: Finding	is necessary to reduce	documents	German Sign
		perimeter pixels	the number of input		language)
		of the image	variables in order to		Indian Sign
		Step 3: Finding	simplify the problems.		language uses
		Corner points	Commonly, in PCA,	for deaf people.	
		Step 4:	one tries to find out a	Moreover	make signs.
		Eliminating	set of projections that	hearing people have difficulties	Some
		Clustering	maximize the variance		-
		Clustering Algorithm	of give data, or equivalently, that		overlapping of both the
		i. Calculating	minimize the residuals	likewise the	hands. This
		distance of each	of the projections.	majority of those	overlapping
		point from every	PCA is obtained by	, -	of hands
		other point and	calculating the Eigen	1 1	poses
		put these	vectors of the		•
		distances into a	covariance matrix of		segmentation
		matrix. If all the	the current frame; the		and
		cells have zero	Eigen vectors are	limited	recognition
		value but still we	stored according to	vocabulary of	
		have points, it	their corresponding	accordant	explained in
		means there is	Eigen values in	spoken language	steps later.
		only one cluster	decreasing order		Recognition
		i.e. only one	called as the feature	, -	for static
		finger tip is there.	vector	which they live.	
		There are some		Hence a system	-
		areas in the		of translating	
		image that are		sign language to	
		still satisfying the		spoken language	
		criteria for the		would be of	
		finger tip which		great help for	
		are not correct.		deaf as well as	
		To fix this		for hearing	
		problem we have		people. A second	
		proposed an		aspect is that sign language	
		algorithm. For this we find the		recognition	signs h, j, v,
		orientation of the		serves as a good	
		binary image.		basis for the	
		Using the		development of	
		orientation and		gestural human-	
		the centroid of		machine	
	<u> </u>	the centrola of		11140111110	

		the hand, a line is		interfaces	
		· ·		interraces	
		drawn, which			
		passes through			
		this centroid at an			
		angle that is			
		given by			
		orientation.			
2.	Stephan	They investigated	They approach to	They have	Limitations
	Liwicki and	the problem of	tackle these	demonstrated	of their work
	Mark	recognizing	challenges in the	that combining a	are that our
	Everingham	words from	following way: (i) we	state-of-the-art	data set
		video, finger	avoid attempts to	appearance	currently
		spelled using the	explicitly track the	descriptor with a	
		British Sign	individual hands,	simple HMM-	a single
		Language (BSL)	extracting a single	based lexicon	
		finger spelling	appearance descriptor	model can give	d signer, and
		alphabet. This is	for the pair of hands;	highly accurate	that the
		a challenging	(ii) the method bases	finger-spelling	imaging
		task since the	recognition on single	0 1 0	
				recognition on a	
		1	image features alone.	large lexicon. The proposed	are only
			This prevents the classifier exploiting	The proposed method has an	moderately
		hands occluding	classifier exploiting co-articulation		challenging,
		each other, and		advantage over	com pared
		contains signs	features which vary	previous work in	to . They
		which are	across letter pairs, and	not requiring	hope that
		ambiguous from	means that we require	word-level	expanding
		the observer's	only a small training	training, making	
		viewpoint. The	set; (iii) variation in	·	data with
		main	hand pose is	we showed that	
		contributions of	ı	pan grams are a	will remove
		our work include:	of robust descriptors	useful source of	
		(i) recognition		natural training	signer-
		based on hand	deformation, and by	signs. In	specific
		shape alone, not	training on short	improving the	J 2, 1
		requiring motion	continuously signed	method, our	aim to
		cues; (ii) robust	sequences; (iv)	results suggest	
		visual features	implicitly ambiguous	that work should	
		for hand shape	signs are disambiguate	focus on letter-	methods
		recognition; (iii)	by using a lexicon of	_	robust
		scalability to	words, while not	rather than prior	enough to
		large lexicon	requiring re-training	language	deal with
		recognition with	to expand the lexicon.	models. It seems	arbitrary and
		no re-training.		promising to	dynamic
		We report results		investigate	imaging
		on a data-set of		extracting cues	conditions.
		1,000 low quality		from multiple	
		web cam videos		frames full	
		of 100 words.		gesture modeling	
		The proposed		which	
		method achieves		compromises	
	ı		ı	1	

		a word		scalability	
		recognition		Souldonity	
		accuracy of			
		98.9%.			
3.	Dewinta	Finger-spelling is	User's hand is	This study finds	The
3.	Aryanie,	a term refers to a	captured using a	that performance	limitation of
	Yaya	finger gesture	Microsoft Kinect	of k-NN	the k-NN
	Heryadi	system where	sensor, which is a	classifier is	classifier is
	lielyaar	each alphabet of	motion sensing input		its
		a particular sign	devices produced by	spelling	computation
		language is	Microsoft designed	recognition	workload for
		represented by a	for Xbox 360 and	when finger	
		unique and	Xbox One video game	pattern is	especially
		discrete finger	consoles and	represented	when the
		pose.	Windows PCs.	using full	
		Fingerspelling is		dimensional	dataset size is
		a very interesting	sensor produces two	feature rather	large. On the
		research problem	types of images	than using	other hand, in
		in computer	namely color and		order to
		vision with many	depth images, for	dimensional	implement
		potential	computation	feature.	this method
		applications in	simplicity, only color	Reducing feature	into many
		various domains.	images provided by	dimension to	potential
		In sign language,	the Kinect are used as	only principal	applications
		for example,	training dataset.	components that	of intelligent
		finger-spelling is	In order to address the	explain 98% of	mobile
		used to explain a	curse of	data variation	electronic
		concept which	dimensionality,	decreases the k-	devices,
		lack of a specific	Principal Component		efficient
		sign, proper	Analysis (PCA) is	significantly.	classifier for
		nouns, signs	applied to reduce data		training and
		borrowed from	dimensions by	color histogram	
		other languages,	converting a set of		dance
		finger spelled	extracted feature into	1 0	
		compounds, and	a set of values of		very crucial.
		a sign is	linearly uncorrelated		
		ambiguous.	variables called	feature is	1
		Therefore,	principal components	sensitive to	investigation of other
		finger spelling is	1 ' /	lighting.	of other machine
		a complementary rather than	orthogonal transformation. The	Therefore,	
		substitute of sign	transformation. The principal components	1	learning classifiers
		language to	are then selected	other features	
		enhance or	based on its	involving texture	
		emphasize the	Eigenvalues that	and salient	future
		qualities of hand	reflect its contribution	points will be the	research. It is
		signs.	to explain variability	focus of future	also
		The main	of the original dataset.	research.	recommende
		contribution of	_	100001011.	d that the
		this research is	Eigenvectors that are		result of this
	<u> </u>	ding resourch is			result of this

mainly classifier	kept are those that	study is
for recognition	explain 98 % of the	validated
finger-spelling	total variance.	using variety
which can be	Therefore, the number	and larger
applied in early	of principal	number of
child education-	components is less	finger
based application	than or equal to the	spelling
such as self-	number of original	examples and
assessment of	dimension.	variety of
special need		image
student who learn		features.
sign language		
alphabet. In such		
application,		
accuracy of		
finger-spelling		
recognition is		
often more		
important than		
speed of		
recognition. The		
finger-spelling		
recognition		
system in this		
research can be		
characterized as		
follows:		
(1) Finger pose		
feature is a vector		
of normalized		
color histogram,		
and		
(2) Finger-		
spelling		
recognizer is k-		
Nearest		
Neighbors		

REFERENCES:

- D. Deora and N. Bajaj, "Indian sign language recognition," 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking, 2012, pp. 1-5, doi: 10.1109/ET2ECN.2012.6470093.
- S. Liwicki and M. Everingham, "Automatic recognition of finger spelled words in British Sign Language," 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2009, pp. 50-57, doi: 10.1109/CVPRW.2009.5204291.
- D. Aryanie and Y. Heryadi, "American sign language-based finger-spelling recognition using k-Nearest Neighbors classifier," 2015 3rd International Conference on Information and Communication Technology (ICoICT), 2015, pp. 533-536, doi: 10.1109/ICoICT.2015.7231481.

.