Universidade de Lisboa - Instituto Superior Técnico Licenciatura em Engenharia Informática e de Computadores Inteligência Artificial

1º Projeto

Gonçalo Marques, 84719 Manuel Sousa, 84740

Introdução

Todas as complexidades indicadas são referentes à procura numa árvore, visto que alguns valores podem ser diferentes no caso específico de uma procura num grafo.

Descrição do problema

sdfsdffdsfsd

Procura em Profundidade Primeiro

sdfdssdfdsf

Tabela 1: Desempenho da Procura em Profundidade Primeiro

	Exemplo 1	Exemplo 2	Exemplo 3	Exemplo 4	Exemplo 5
Tempo de Execução (s)	0.000291	0.001387	18.795010	0.027842	795.923310
Nº de nós expandidos	0	7	74701	85	3123363
N^{o} de nós gerados	1	4	74702	54	3123308

Procura Gananciosa

asdadsadsasd

Tabela 2: Desempenho da Procura Gananciosa

	Exemplo 1	Exemplo 2	Exemplo 3	Exemplo 4	Exemplo 5
Tempo de Execução (s)	0.000331	0.001410	26.159087	0.016135	0.119890
N^{o} de nós expandidos	0	6	74701	59	319
N^{o} de nós gerados	1	3	74702	42	256

A*

A procura por A* é um algoritmo de procura que oferece optimalizade. No entanto isso apenas acontece se garantirmos que a heuristica utilizada é admissivel. Um dos principais problemas da utilização desta procura é que é necessário guardar todos os nós em memória, tornando a complexidade espacial exponencial.

Tabela 3: Desempenho do A*

	Exemplo 1	Exemplo 2	Exemplo 3	Exemplo 4	Exemplo 5
Tempo de Execução (s)	0.000266	0.001522	25.653358	0.015687	0.040954
Nº de nós expandidos	0	7	74701	43	91
Nº de nós gerados	1	4	74702	24	16

Conclusão

Sendo b o fator de ramificação, e m a profundidade máxima, podemos concluir resumidamente numa tabela, as várias propriedades dos algoritmos aqui testados:

Tabela 4: Propriedades das várias procuras

	C. Temporal	C. Espacial	Completo	Ótimo
Profundidade Primeiro	$O(b^m)$	O(b*m)	Não	Não
Procura Gananciosa	$O(b^m)$	$O(b^m)$	Não	Não
A*	Exponencial	Exponencial	Sim	Sim

My Note.

My Other Note.

Numa conclusão geral, verificamos que todos os algoritmos computam de forma bastante rápida os testes mais básicos (Exemplo 1 e 2). Ao aplicar um tabuleiro de 10x4, composto por 3 cores e sem solução, verificamos que a Procura em profundidade Primeiro é quem leva a melhor ao nivel do tempo de execução, em relação ás restantes procuras. No entanto, o mesmo algoritmo de procura teve pior desempenho na execução do Exemplo 5, demorando mais de 13 minutos a chegar a uma solução.

A heurística usada (nº de grupos restantes) não é admissível, porque em certos casos vai sobrestimar o custo de atingir o objetivo. Como o problema é NP-Completo, podemos garantir pela conjetura de $P \neq NP$, que não existe uma heuristica admissivel.