1.	(000061) 填空题:
	(1) 若点 $(2,\sqrt{2})$ 在幂函数 $y=x^a$ 的图像上,则该幂函数的表达式为; 若点 $(2,\sqrt{2})$ 在指数函
	数 $y=a^x(a>0$ 且 $a\neq 1)$ 的图像上,则该指数函数的表达式为; 若点 $(\sqrt{2},2)$ 在对数函数
	$y = \log_a x (a > 0$ 且 $a \neq 1)$ 的图像上,则该对数函数的表达式为
	(2) 若幂函数 $y=x^k$ 在区间 $(0,+\infty)$ 上是严格减函数, 则实数 k 的取值范围为
	(3) 已知常数 $a>0$ 且 $a\neq 1$,假设无论 a 为何值,函数 $y=a^{x-2}+1$ 的图像恒经过一个定点. 则这个点的坐
	标为
2	(001340) 在下列幂函数 (1) $y = x^{-\frac{3}{2}}$, (2) $y = x^{\frac{5}{4}}$, (3) $y = x^{-\frac{4}{3}}$, (4) $y = x^{4}$, (5) $y = x^{\frac{3}{7}}$, (6) $y = x^{-6}$ 中, 定义域
۷.	关于原点对称的有
	义域上单调递增的有
	人员工中间还有时行,国家行一时为在布二家队时行。
3.	(001491) 判断下列命题的真假, 真命题用 "T" 表示, 假命题用 "F" 表示.
	(1) 设函数 $y=f(x)$ 的定义域为 \mathbf{R} , 若 1 是它的一个周期, 则 2 也是它的一个周期;
	(2) 设函数 $y=f(x)$ 的定义域为 D , 若 1 是它的一个周期, 则 2 也是它的一个周期;
	(3) 设函数 $y = f(x)$ 的定义域为 \mathbf{R} , 若 1 是它的一个周期, 则 -1 也是它的一个周期;
	(4) 设函数 $y = f(x)$ 的定义域为 D , 若 1 是它的一个周期, 则 -1 也是它的一个周期;
	(5) 设函数 $f(x)$ 的定义域为 \mathbf{R} , 若 1 是它的一个周期, 则 $\sqrt{2}$ 一定不是它的周期;
	(6) 设函数 $f(x)$ 的定义域为 \mathbf{R} , 且 $f(x)$ 不是常数函数, 若 1 是它的一个周期, 则 $\sqrt{2}$ 一定不是它的周
	期;
	(7) 定义在 R 上的常数函数是周期函数;
	(I)
	(8) 奇函数一定是周期函数;
	(\^/ 月四 级
	(0) 太远粉,宁不且国彻远粉。
	(9) 奇函数一定不是周期函数;
	(10) 偶函数一定是周期函数;

- ____(11) 偶函数一定不是周期函数;
- ____(12) 单调函数一定不是周期函数;
- (13) 一定不存在正实数 M, 使得周期函数 y = f(x) 的定义域包含于区间 [-M, M];
- _(14) 如果 1 是函数 y = f(x), y = g(x) 的周期, 且 f(x) 与 g(x) 定义域的交集非空, 那么 1 也是 y = f(x) + g(x) 的周期;
- ____(15) 设 f(x), g(x) 的定义域均为 R, 若 1 是函数 y = f(x) 的周期, 则 1 是函数 y = f(g(x)) 的周期;
- ___(16) 设 f(x), g(x) 的定义域均为 R, 若 1 是函数 y = g(x) 的周期, 则 1 是函数 y = f(g(x)) 的周期;
- (17) $y = \sin x, x \in (-\infty, 0) \cup (0, +\infty)$ 是周期函数;
- ___(18) $y = \sin x, x \in (0, +\infty)$ 是周期函数;
- _(19) 周期函数一定有最大值和最小值;
- _(20) 定义域为 R 的周期函数一定有最大值和最小值.
- 4. (002909) 图中曲线是幂函数 $y=x^n$ 在第一象限的图像,已知 n 取 ± 2 , $\pm \frac{1}{2}$ 四个值,则相应于曲线 c_1,c_2,c_3,c_4 的 n 依次为 ().

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, 2$$

B.
$$2, \frac{1}{2}, -\frac{1}{2}, -2$$

C.
$$-\frac{1}{2}$$
, -2 , 2 , $\frac{1}{2}$

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, 2$$
 B. $2, \frac{1}{2}, -\frac{1}{2}, -2$ C. $-\frac{1}{2}, -2, 2, \frac{1}{2}$ D. $2, \frac{1}{2}, -2, -\frac{1}{2}$

5. (002925) 已知幂函数 $y=x^{\frac{q}{p}}(p\in \mathbf{N}^*,\; q\in \mathbf{N}^*,\; p,q\; 互质)$ 的图像如图所示, 则 ().

A. p,q 均为奇数

B. p 是奇数, q 是偶数, 且 $0 < \frac{q}{p} < 1$

C. p 是偶数, q 是奇数

D. p 是奇数, q 是偶数, 且 $\frac{q}{p} > 1$

- 6. (000069) 填空题:
 - (1) 已知 $m \in {\bf Z}$, 设幂函数 $y = x^{m^2 4m}$ 的图像关于原点成中心对称, 且与 x 轴及 y 轴均无交点, 则 m 的值为______.
 - (2) 设 a、b 为常数, 若 0 < a < 1, b < -1, 则函数 $y = a^x + b$ 的图像必定不经过第______ 象限.
- $7. \ {}_{\scriptscriptstyle{(002911)}}$ 已知 $\alpha \in \{-2,-1,-\frac{1}{2},\frac{1}{2},1,2,3\},$ 若幂函数 $f(x)=x^{\alpha}$ 为奇函数, 且在 $(0,+\infty)$ 上递减, 则 $\alpha =$ ______.
- 8. (002918) 设常数 $t \in \mathbf{Z}$. 已知幂函数 $y = (t^3 t + 1)x^{\frac{1}{3}(1 + 2t t^2)}$ 是偶函数, 且在区间 $(0, +\infty)$ 上是增函数, 求整数 t 的值, 并作出相应的幂函数的大致图像.
- 10. (010137) 下列命题中, 正确的是 ().
 - A. 当 n=0 时, 函数 $y=x^n$ 的图像是一条直线
 - B. 幂函数 $y = x^n$ 的图像都经过 (0,0) 和 (1,1) 两个点
 - C. 若幂函数 $y=x^n$ 的图像关于原点成中心对称, 则 $y=x^n$ 在区间 $(-\infty,0)$ 上是严格增函数
 - D. 幂函数的图像不可能在第四象限
- 11. (002914) 设常数 $m \in \mathbb{R}$. 若幂函数 $y = (m^2 m 1)x^{m^2 2m 1}$ 在 $(0, +\infty)$ 上是增函数, 则 m 的值为______
- 12. (005464) 若实数 a 满足 $2.4^a > 2.5^a$, 求 a 的取值范围.
- 13. (005568) 若 a > b 且 $ab \neq 0$. 则在① $a^2 > b^2$,② $2^a > 2^b$,③ $\frac{1}{a} < \frac{1}{b}$,④ $a^{\frac{1}{3}} > b^{\frac{1}{3}}$,⑤ $(\frac{1}{3})^a < (\frac{1}{3})^b$ 这五个关系式中,恒成立的有().

A. 1 个

B. 2 个

C. 3 个

D. 4 个

- 14. (009488)(1) 已知函数 $y=x^{\frac{2}{3}}$ 和 $y=(x-1)^{\frac{2}{3}}$, 说明这两个函数图像之间的关系, 并在同一平面直角坐标系中作出它们的大致图像;
 - (2) 已知函数 $y = x^{\frac{2}{3}}$ 和 $y = x^{\frac{2}{3}} + 1$, 说明这两个函数图像之间的关系, 并在同一平面直角坐标系中作出它们的大致图像.

- 15. (009490) 作出函数 $y = \frac{-x-1}{x+2}$ 的大致图像.
- 16. (003815) 在同一坐标系中画出函数 $y = \log_a x, \ y = a^x, y = x + a$ 的图像, 可能正确的是_____.

17. (005569) 在同一平面直角坐标系中, 函数 f(x)=ax 与 $g(x)=a^x$ 的图像可能是 ().

- 18. (005592) 若 0.9 < a < 1, 则 a, a^a , a^{a^a} 从小到大的排列顺序是_______.
- 19. (000062) 选择题:
 - $(1) \ \mbox{ 若指数函数 } y = a^x (a > 0 \ \mbox{且} \ a \neq 1) \ \mbox{c} \ \mbox{R} \ \mbox{L是严格减函数, 则下列不等式中, 一定能成立的是 } (\hspace{1cm}).$

A. a > 1

- B. a < 0
- C. a(a-1) < 0
- D. a(a-1) > 0
- (2) 在同一平面直角坐标系中,一次函数 y=x+a 与对数函数 $y=\log_a x (a>0$ 且 $a\neq 1)$ 的图像关系可能是 ().

- 20. (000738) 函数 $f(x) = \lg(3^x 2^x)$ 的定义域为_____
- 21. (000954) 函数 $y = \sqrt{2^x 1}$ 的定义域是_____(用区间表示).
- 22. (001345) **解方程**: $3^x + 4^x = 5^x$.
- 23. (001343) 方程 $9^x + 4^x = \frac{5}{2} \cdot 6^x$ 的解集为______.
- 24. (001324) 函数 $y = \log_{x^2+x-1} 2$ 的定义域是______.
- 25. (001326) 函数 $y = \log_2(x^2 + x 1)$ 的定义域是_______,值域是_______
- 26. (001329) 已知函数 $f(x) = \lg(kx^2 6x + k + 3)$ 的定义域为 \mathbf{R} , 则 k 的取值范围为______.
- 27. (002871) 设常数 $a \in \mathbf{R}$. 若直线 x = 2 是函数 $f(x) = \log_3 |2x + a|$ 的图像的一条对称轴, 则 a =_____.

- 28. (003041) 已知实数 ab 满足等式 $(\frac{1}{2})^a = (\frac{1}{3})^b$,下列五个关系式: ① 0 < b < a; ② a < b < 0; ③ 0 < a < b; ④ b < a < 0; ⑤ a = b = 0. 其中不可能成立的关系式的序号 为_____ 29. (002874) 函数 $y = \log_2 \frac{2-x}{2+x}$ 的图像关于 (C. 直线 y = x 对称 D. 直线 y = -x 对称 A. 原点对称 B. y 轴对称 30. (002875) 函数 $y = \log_2(2 - 2^x)$ 的图像关于 (). C. 直线 y = x 对称 D. 直线 y = -x 对称 A. 原点对称 B. y 轴对称 31. (002878) 设函数 $y = \log_2(x+3)$ 的图像与函数 y = f(x) 的图像关于直线 x = 1 对称. ① f(1) =______; ② 若 f(a) 有意义,则 f(a) = _____(结果用 a 的表达式表示). 32. (005720) 若函数 $f(x) = |\log_a x|$, 其中 0 < a < 1, 则下列各式中成立的是 (A. $f(\frac{1}{3}) > f(2) > f(\frac{1}{4})$ B. $f(\frac{1}{4}) > f(\frac{1}{3}) > f(2)$ C. $f(2) > f(\frac{1}{3}) > f(\frac{1}{4})$ D. $f(\frac{1}{4}) > f(2) > f(\frac{1}{3})$ 33. (001325) 函数 $y = \log_2(x^2 + x - 1)$ 的递增区间是_ 34. (002898) 函数 $y = \log_{0.7}(x^2 - 3x + 2)$ 的单调减区间为_____. 35. (002905) 设常数 $a \in \mathbb{R}$. 若函数 $f(x) = \log_a(2 - ax)$ 在 [0, 1] 上是减函数, 求 a 的取值范围. 36. (000063) 求下列函数的的定义域: (1) $y = (x-1)^{\frac{5}{2}}$; (2) $y = 3^{\sqrt{x-1}}$; (3) $y = \lg \frac{1+x}{1-x}$ 37. (001330) 已知函数 $f(x) = \lg(kx^2 - 6x + k + 3)$ 的值域为 \mathbf{R} , 则 k 的取值范围为______ 38. (000362) 方程 $\log_2(9^x - 5) = 2 + \log_2(3^x - 2)$ 的解 x =____ 39. $_{(004902)}$ 若 $a=\log_{0.2}0.3,\,b=\log_{0.3}0.2,\,c=1,\,$ 则 a,b,c 的大小关系是 (C. b > c > a D. c > b > aA. a > b > cB. b > a > c
- 40. (004907) 若 x > y > 1, 0 < a < 1, 则下列各式中正确的一个是 ().
- A. $x^{-a} > y^{-a}$ B. $(\sin a)^x > (\sin a)^y$ C. $\log_{\frac{1}{a}} x < \log_{\frac{1}{a}} y$ D. $1 + a^{x+y} > a^x + a^y$
- 41. (000075) 仅利用对数函数的单调性和计算器上的乘方功能来确定对数 $\log_2 3$ 第二位小数的值.
- 42. (000567) 函数 $f(x) = \sqrt{1 \lg x}$ 的定义域为 .
- 43. (000795) 若函数 $f(x) = \log_a(x^2 ax + 1)$ $(a > 0, a \neq 1)$ 没有最小值, 则 a 的取值范围是______.
- 44. (001328) 不等式 $\log_{\frac{1}{2}}(x^2+x+1) < \log_{\frac{1}{2}}(4x-1)$ 的解集为______.

- 45. (001351) 若函数 $f(x) = \log_a x$ 在区间 [a, 2a] 上的最大值与最小值之差为 $\frac{1}{2}$, 则 a =_______
- 46. (001352) 解方程: $\log_x(x^2 x) \le \log_x 2$.
- 47. (003747) 若 $\log_a \frac{2}{3} < 1 \ (a > 0, \ a \neq 1)$, 则实数 a 的取值范围为______.
- 48. (005199) 解关于 x 的不等式: $\log_{\frac{1}{2}}(3x-2) > \log_{\frac{1}{2}}(x+1)$.
- 49. (005723) 若 $a>a^2>b>0$,并记 $p=\log_a b,\ q=\log_b a,\ r=\log_a \frac{a}{b},\ s=\log_b \frac{b}{a},\ 则\ p,q,r,s$ 的大小关系是
 - A. r < q < p < s

- $B. \ r$
- 50. (005724) 若 $\log_a \frac{1}{3} > \log_b \frac{1}{3} > 0$,则 a,b 的关系是 ().
 - A. 1 < b < a B. 1 < a < b
- C. 0 < a < b < 1 D. 0 < b < a < 1
- 51. ${}_{(010162)}$ 若 a>b>c>1,则下列不等式不成立的是_____. (填写所有不成立的不等式的序号)
 - $\textcircled{1} \ \log_a b > \log_a c; \ \textcircled{2} \ \log_a \frac{1}{b} > \log_a \frac{1}{c}; \ \textcircled{3} \ \log_{\frac{1}{a}} b > \log_{\frac{1}{a}} c; \ \textcircled{4} \ \log_{\frac{1}{a}} \frac{1}{b} > \log_{\frac{1}{a}} \frac{1}{c}.$