Math 503: Complex Analysis

Frank Qiang

Rutgers University $^{\rm 1}$, Fall 2020

¹Disclaimer: I did not attend this class in person, nor do I go to this university.

Contents

1	Intr	oduction	3
	1.1	Historical Motivation	3
		1.1.1 Cardano's Story	4
		·	5
			8
2	Diff	erentiation	9
	2.1	Revisiting Multivariable Calculus	9
	2.2	Holomorphic Functions	10
		2.2.1 Classic Example: Smooth but Not Analytic	11
	2.3	The Cauchy-Riemann Equations	13

Chapter 1

Introduction

1.1 Historical Motivation

Lecture 1

What is "complex analysis"? The complex numbers are:

$$\mathbb{C} = \{ x + iy \mid x, y \in \mathbb{R} \}.$$

"Analysis" is a fancy way of saying "calculus".

So why do we want to study calculus over \mathbb{C} ? Why bother with \mathbb{C} at all?

To solve quadratics? For example, the equation

$$x^2 + 1 = 0$$

yields the solutions $x = \pm i = \pm \sqrt{-1}$. No! This is the same problem as asking where does the function

$$y = x^2 + 1$$

cross the x-axis. But, of course, the graph of this function doesn't intersect the x-axis at all! So there is no reason to expect a solution for x here.

Historically, mathematicians needed $i = \sqrt{-1}$ to solve cubic equations. For example, consider the equation

$$y = x^3 + 12x - 15.$$

 $y \to -\infty$ as $x \to -\infty$ and $y \to \infty$ as $x \to \infty$, so there must be a root somewhere by the intermediate value theorem!

1.1.1 Cardano's Story

c. 1495, Paciolli in Italy writes a textbook about all known mathematics at the time. Quadratics had already been solved everywhere, but cubics were still a mystery (Paciolli says "cubics are as unsolvable as squaring the circle").

c. 1510, del Ferro figures out how to solve the depressed cubic (no quadratic term):

$$ax^3 + cx + d = 0$$

At the time, mathematicians were employed by the rich, and to obtain such a position, one must win a *duel* against the current person holding the position. Each contestant would give the other a set of problems, and whoever solves more would win.

Thus, del Ferro doesn't tell anyone about his solution, so he can use it as a secret weapon to win duels, if necessary. Eventually, on his deathbed in the 1520s, he ends up telling his student Fior the secret. Fior then uses this to attack other mathematicians and win duels all over the place. That is, until he attacks Tartaglia, a renowned mathematician at the time. ¹

Tartaglia sends Fior a set of regular problems, whereas Fior sends him 20 depressed cubics. Tartaglia sees this and reasons that there must now exist a solution to the depressed cubic, contrary to common belief at the time (thus explaining Fior's choice of problems). Knowing this, he rediscovers the solution to the depressed cubic and proceeds to win the duel. The public, seeing this, makes the same conclusion that the depressed cubic has likely been solved.

c. 1530, Cardano visits Tartaglia and asks him for the solution, in the name of adding it to his textbook (an update to Paciolli's) and promising to credit Tartaglia. Tartaglia refuses, wanting to write his own book.

However, after inviting Tartaglia to dinner and lots of drinks, Cardano eventually convinces Tartaglia. Tartaglia makes Cardano solemnly swear to not reveal the solution to the public, and he does so.

Later on, Ferrari becomes a student of Cardano and eventually his collaborator. Ferrari eventually learns the secrets, and together Ferrari and

¹Tartaglia gave one of the first Latin translations of Euclid's *Elements*.

Cardano solves all cubics (and all quartics too)! But they are unable to publish their findings due to the oath.

They later go on a trip to Bologna, where they are shown del Ferro's notes. There they find his original solution to the depressed cubic, sitting in plain sight for the past 30 years (predating Tartaglia)!

Cardano proceeds to publish his book containing the solution, the *Ars Magna*, in 1545. Tartaglia is not happy, and challenges Cardano and Ferrari to a duel. Of course Tartaglia gets decimated as Ferrari already knows how to solve even quartics. They almost get into an actual duel, but Tartaglia manages to escape before that can happen.

Aside: Negative numbers

Interestingly, mathematicians cared about i even before they cared about negative numbers! How do we know this? On top of considering cubics geometrically (with actual cubes), Cardano considered the following cases:

$$x^{3} + c = dx^{2}$$
$$x^{3} = c + dx^{2}$$
$$x^{3} + dx^{2} = c$$

It's evident that these 3 cases are all the same if we take into account negative numbers, but he didn't see this!

1.1.2 Solving the Cubic

So, why were they forced to acknowledge i, if they didn't even use negative numbers? Consider the general cubic equation

$$ax^3 + bx^2 + cx + d = 0, \quad a \neq 0.$$

We can divide by a (or equivalently let a = 1) to make the equation monic. Then we *depress* the cubic by making the change of variables

$$x = y - \frac{b}{3}.$$

So we have

$$\left(y - \frac{b}{3}\right)^3 + b\left(y - \frac{b}{3}\right)^2 + c\left(y - \frac{b}{3}\right) + d = 0.$$

Notice that the y^2 term in this expansion is

$$\binom{3}{1}y^2\left(-\frac{b}{3}\right) + b\binom{2}{0}y^2 = -by^2 + by^2 = 0,$$

so we have eliminated the quadratic term.

Thus we need only consider cubics of the form

$$y^3 + Ay + B = 0.$$

Aside: Quadratic equations

How to solve the quadratic $ax^2 + bx + c = 0$?

First make it monic:

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Depress it by letting

$$x = y - \frac{b}{2a}.$$

Then we have

$$\left(y - \frac{b}{2a}\right)^2 + \frac{b}{a}\left(y - \frac{b}{2a}\right) + \frac{c}{a} = 0,$$

$$y^2 - 2\frac{b}{2a}y + \frac{b^2}{4a^2} + \frac{b}{a}y - \frac{b^2}{2a^2} + \frac{c}{a} = 0,$$

$$y^2 - \frac{1}{4}\frac{b^2}{a^2} + \frac{4ac}{4a^2} = 0,$$

$$y^2 = \frac{b^2 - 4ac}{4a^2}.$$

From here, taking square roots and shifting by $\frac{b}{2a}$ again yields the usual quadratic formula.

Although depressing the quadratic makes it trivial, the same is not true for cubics! At first sight, the depressed cubic is not any easier than the general cubic. But the key insight is actually to perform some seemingly unnecessary auxiliary calculations.

Notice that

$$(z+w)^3 = z^3 + 3z^2w + 3zw^2 + w^3 = 3wz(z+w) + z^3 + w^3,$$

$$(z+w)^3 - 3wz(z+w) - z^3 - w^3 = 0.$$

This looks awfully similar to the depressed cubic if we let y = z + w and pick carefully choose z and w so that

$$\begin{cases} A = -3wz \\ B = -z^3 - w^3. \end{cases}$$

To solve this, notice that

$$w = -\frac{A}{3z}$$

by the first equation. Substituting this into the second equation yields

$$z^{3} - \frac{A^{3}}{27z^{3}} = -B,$$
$$z^{6} + Bz^{3} - \frac{A^{3}}{27} = 0.$$

This equation is now quadratic in z^3 ! ² So by the quadratic formula,

$$z^3 = \frac{-B + \sqrt{B^2 + \frac{4A^3}{27}}}{2}.$$

Using $z^3 + w^3 = -B$, we also have

$$w^3 = \frac{-B - \sqrt{B^2 + \frac{4A^3}{27}}}{2}.$$

²This is a result of the symmetry group S_3 being *solvable*.

This means that ³

$$z = \sqrt[3]{-\frac{B}{2} + \sqrt{\frac{B^2}{4} + \frac{A^3}{27}}}$$
$$w = \sqrt[3]{-\frac{B}{2} - \sqrt{\frac{B^2}{4} + \frac{A^3}{27}}},$$

so finally y = z + w as defined above.

1.1.3 A Peculiar Example

Consider

$$x^3 - 15x - 4 = 0.$$

A = -15 and B = -4, so the discriminant is

$$\frac{B^2}{4} + \left(\frac{A}{3}\right)^3 = 4 - 125 = -121.$$

Now we need to take the square root of a negative number! For now, proceeding anyway gives

$$x = \sqrt[3]{2 + 11i} + \sqrt[3]{2 - 11i}$$
.

But soon people realized:

$$(2+i)^3 = 8 + 3(2^2)i - 3(2) - i = 2 + 11i.$$

Then we end up with

$$x = (2+i) + (2-i) = 4$$
,

a legitimate *real* solution. The +i and -i canceled!

So people were willing to deal with complex numbers here because they needed them to reach the real answer that they expected.

³The quantity $\frac{B^2}{4} + \frac{A^3}{27}$ is called the *discriminant* of the cubic.

Chapter 2

Differentiation

Lecture 2

Given a function $f : \mathbb{C} \to \mathbb{C}$, when is f differentiable?

2.1 Revisiting Multivariable Calculus

When is a function $f: \mathbb{R}^2 \to \mathbb{R}$ differentiable?

Recall that calculus is *linearization*. That is, given something complicated, zoom in close enough and it looks like a line.

Definition (Little-o)

We say E = o(|h|) if

$$\frac{E}{|h|} \to 0$$

as $|h| \rightarrow 0$.

Definition (Differentiability in \mathbb{R}^2)

 $f: \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable at z if

$$f(z+h) = f(z) + Lh + o(|h|),$$

where L is a linear map.

In other words, $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable if it is *locally affine*. If

$$f(x_1,\ldots,x_m)=(f_1(\vec{x}),\ldots,f_m(\vec{x})),$$

then

$$f(z+h) = f(z) + Lh + o(|h|).$$

Here *L* is the *total derivative*, given by

$$L = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.$$

2.2 Holomorphic Functions

We can identify a function f(x,y) = (u,v) with the complex valued function f(x+iy) = u+iv, where we say that $u = \Re f$ and $v = \operatorname{Im} f$. Here,

$$L = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}.$$

Using the additional structure of the complex numbers (instead of just 2D vectors), we can write

$$\frac{f(z+h)-f(z)}{h}=L+o(1).$$

Notice that dividing by h makes no sense in \mathbb{R}^n , but we can over \mathbb{C} .

Definition (Holomorphic)

 $f:\mathbb{C} \to \mathbb{C}$ is holomorphic at z if

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists. If it does, then we call this limit f'(z).

Definition (Continuity)

f is *continuous* if for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|h| < \delta$, we have

$$|f(z+h)-f(z)|<\epsilon.$$

How can we visualize these functions? To graph a function $f: \mathbb{R}^2 \to \mathbb{R}^2$, we would need \mathbb{R}^4 with 4 dimensions. This is hard. Instead, we show a "before" and "after" image.

2.2.1 Classic Example: Smooth but Not Analytic

Let

$$f(z) = \begin{cases} e^{-1/z^2}, & z \neq 0 \\ 0, & z = 0. \end{cases}$$

Over \mathbb{R} , as $z \to 0$, $-\frac{1}{z^2} \to -\infty$ and $f \to 0$. And as $|z| \to \infty$, $f \to e^0 = 1$. So f is continuous. f is also differentiable, with

$$f'(z) = 2z^{-3}e^{-\frac{1}{z^2}}.$$

Notice that as $z \to 0$, $f' \to 0$ as well. What about further derivatives?

$$f^{(n)}(z) = P_n(z^{-1})e^{-\frac{1}{z^2}},$$

so $f^{(n)} \to 0$ also as $z \to 0$. So $f \in C^{\infty}(\mathbb{R})$. ¹

Now take

$$g(z) = \begin{cases} e^{-1/z^2}, & z > 0 \\ 0, & z \le 0. \end{cases}$$

This is an example of a *smooth bump function*. ² All derivatives of g are 0 for z > 0 as before, and they are also 0 for $z \le 0$ by definition. So g is also smooth, with $f \equiv g$ on $z \ge 0$ and $f \ne g$ on z < 0.

¹Meaning f is *smooth*, or infinitely differentiable.

²These are used in real analysis, particularly for *partitions of unity*.

Notice that f and g both extend $e^{-1/z^2}\Big|_{\mathbb{R}^+}$ to all of \mathbb{R} , yet $f \neq g$. We will see later that this cannot happen for complex-analytic functions. ³

Definition (Analytic)

A function f is *analytic* at z if there exists an $\epsilon > 0$ and $a_0, a_1, a_2, ...$ such that for all $|h| < \epsilon$, the series

$$a_0 + a_1 h + a_2 h^2 + \dots = \sum_{i=0}^{\infty} a_i h^i$$

converges absolutely and is equal to f(z+h).

In simpler words, f is analytic at z if it has a locally convergent Taylor series expansion around z.

Now, is

$$f(z) = \begin{cases} e^{-1/z^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

analytic at 0? All the Taylor coefficients are zero:

$$a_0 = a_1 = a_2 = \cdots = 0.$$

Thus the series expansion of f converges to 0, but there is no ϵ -neighborhood of 0 where $f \equiv 0$. So f is *not* analytic. This also cannot happen for complex-valued functions. ⁴

What about $f(z) = e^{-1/z^2}$ for $z \in \mathbb{C}$? Now, f isn't even continuous! If $z \to 0$ from \mathbb{R} , $f \to 0$. But if z = iy with $y \to 0$,

$$f(z) = e^{-\frac{1}{(iy)^2}} = e^{1/y^2}$$

which approaches ∞ . The two paths give conflicting limits! ⁵

³This is the fact that *analytic continuations* are *unique*.

⁴This is why the terms *holomorphic* and *analytic* are often used interchangeably in complex analysis.

 $^{^{5}}$ In fact, you can actually make f converge to any value by picking some path. This is because f has an *essential singularity* at 0.

2.3 The Cauchy-Riemann Equations