$P\check{r}iklad$ (1. – Optimality of space $W^{1,2}(\Omega)$)

Consider $\Omega = B_1(0) \subset \mathbb{R}^2$ and $p \in (1,2)$ be arbitrary. Find an elliptic matrix $\mathbb{A}(x)$ and nontrivial $\hat{u} \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} \mathbb{A} \nabla \hat{u} \cdot \nabla \varphi = 0, \qquad \forall \varphi \in C_0^1(\Omega).$$

Řešení

Použijeme hint:

$$(\mathbb{A})_{ij} = \delta_{ij} + (a-1)\frac{x_i x_j}{|x|^2}, \qquad a > 1.$$

Toto je jistě matice eliptického problému, neboť:

$$\mathbb{A}\xi \cdot \xi = \sum_{ij} \mathbb{A}_{ij} \xi_j \xi_i = \sum_{ij} (\delta_{ij} + (a-1) \frac{x_i x_j}{|x|^2}) \cdot \xi_j \cdot \xi_i = \sum_i \xi_i^2 + (a-1) \sum_{ij} \frac{x_i \xi_i}{|x|} \cdot \frac{x_j \xi_j}{|x|} =$$

$$= |\xi|^2 + (a-1) \left(\sum_i \frac{x_i \xi_i}{|x|} \right) \left(\sum_j \frac{x_j \xi_j}{|x|} \right) = |\xi|^2 + (a-1) \left(\sum_i \frac{x_i \xi_i}{|x|} \right)^2 \geqslant |\xi|^2.$$

Dále $\overline{u}(x) := x_1 |x|^{-1-\varepsilon}$ pro $x \in \mathbb{R}^n$ a $\varepsilon \in (0,1)$. Tedy

$$\partial_1 \overline{u}(x) = |x|^{-1-\varepsilon} + x_1 \cdot (-1-\varepsilon)|x|^{-2-\varepsilon} \cdot \frac{1}{2}|x|^{-1} \cdot 2x_1 = |x|^{-1-\varepsilon} + (-1-\varepsilon)x_1^2|x|^{-3-\varepsilon},$$

$$\partial_2 \overline{u}(x) = x_1 \cdot (-1-\varepsilon)|x|^{-2-\varepsilon} \cdot \frac{1}{2}|x|^{-1} \cdot 2x_2 = (-1-\varepsilon)x_1x_2|x|^{-3-\varepsilon}.$$

Integrovatelnost těchto derivací můžeme zjistit například převedením do polárních souřadnic:

$$\int_{\Omega} (\partial_1 \overline{u}(x))^p dx_1 dx_2 = \int_{\Omega} (|x|^{-1-\varepsilon} + (-1-\varepsilon)x_1^2|x|^{-3-\varepsilon})^p dx_1 dx_2 =$$

$$= \int_{\Omega} (r^{-1-\varepsilon} + (-1-\varepsilon)\cos^2(\varphi)r^2 \cdot r^{-3-\varepsilon})^p r dr d\varphi = \int_{\Omega} r^{-p \cdot (1-\varepsilon)+1} \cdot h_1(\varphi) dr d\varphi,$$

$$\int_{\Omega} (\partial_2 \overline{u}(x))^p dx_1 dx_2 = \int_{\Omega} ((-1-\varepsilon)x_1 x_2|x|^{-3-\varepsilon})^p dx_1 dx_2 =$$

$$= \int_{\Omega} ((-1-\varepsilon)\cos(\varphi)r \cdot \sin(\varphi)r \cdot r^{-3-\varepsilon})^p r dr d\varphi = \int_{\Omega} r^{p \cdot (-1-\varepsilon)+1} \cdot h_2(\varphi) dr d\varphi,$$

kde h_i je nějaká omezená funkce, která "nevynuluje integrál". Z toho už je jasně vidět (nebot $0 \in \Omega$), že pro integrovatelnsot $p(-1-\varepsilon)+1>-1$, tj. $p<\frac{2}{1+\varepsilon}$, tj. $\overline{u}\in W^{1,\frac{2}{1+\varepsilon}}(\Omega)$. Tedy vhodnou volbou $\varepsilon\in(0,1)$ dokážeme zařídit $\overline{u}\in W^{1,p}(\Omega)$ pro libovolné $p\in(1,2)$.

Řešení

Nakonec zjistíme, že \overline{u} řeší problém pro naše \mathbb{A} :

$$\int_{\Omega} \mathbb{A} \nabla \overline{u}(x) \cdot \nabla \varphi dS = \int_{\Omega} \sum_{ij} \left(\delta_{ij} + (a-1) \frac{x_i x_j}{|x|^2} \right) \partial_j \overline{u}(x) \cdot \partial_i \varphi dS =$$

$$= \int_{\Omega} \sum_{ij} \left(\delta_{ij} + (a-1) x_i x_j |x|^{-2} \right) \left((-1-\varepsilon) \cdot x_1 x_j \cdot |x|^{-3-\varepsilon} \right) \partial_i \varphi +$$

$$+ \sum_{i} (\delta_{i1} + (a-1) x_i x_1 |x|^{-2}) (|x|^{-1-\varepsilon}) \cdot \partial_i \varphi dS =$$

$$= \int_{\Omega} \sum_{i} (-1-\varepsilon) \cdot x_1 x_i \cdot |x|^{-3-\varepsilon} \partial_i \varphi + \sum_{i} (a-1) (-1-\varepsilon) x_1 x_i \left(\sum_{j} x_j^2 \right) |x|^{-5-\varepsilon} \partial_i \varphi +$$

$$+ |x|^{-1-\varepsilon} \partial_1 \varphi + \sum_{i} (a-1) x_i x_1 |x|^{-3-\varepsilon} \partial_i \varphi dS =$$

$$= \int_{\Omega} \sum_{i} x_1 x_i |x|^{-3-\varepsilon} \left((-1-\varepsilon) + (a-1) (-1-\varepsilon) + (a-1) \right) \partial_i \varphi + |x|^{-1-\varepsilon} \partial_1 \varphi dS =$$

$$= -\int_{\Omega} \sum_{i} \partial_i \left(x_1 x_i |x|^{-3-\varepsilon} (-a\varepsilon - 1) \right) \varphi + \partial_1 \left(|x|^{-1-\varepsilon} \right) \varphi dS + \int_{\varepsilon_{\Omega}} \dots \varphi \dots =$$

$$= -\int_{\Omega} \sum_{i} \left(x_1 |x|^{-3-\varepsilon} + (-3-\varepsilon) x_1 x_i^2 |x|^{-5-\varepsilon} \right) \left(-a\varepsilon - 1 \right) \varphi + x_1 |x|^{-3-\varepsilon} (-a\varepsilon - 1) \varphi +$$

$$+ (-1-\varepsilon) x_1 |x|^{-3-\varepsilon} \varphi dS + 0 =$$

$$= -\int_{\Omega} 3(-a\varepsilon - 1) x_1 |x|^{-3-\varepsilon} \varphi + (-3-\varepsilon) (-a\varepsilon - 1) x_1 |x|^{-3-\varepsilon} \varphi + (-1-\varepsilon) x_1 |x|^{-3-\varepsilon} \varphi dS =$$

$$= -\int_{\Omega} (3(-a\varepsilon - 1) + (-3-\varepsilon) (-a\varepsilon - 1) + (-1-\varepsilon) x_1 |x|^{-3-\varepsilon} \varphi dS =$$

$$= -\int_{\Omega} (-1+a\varepsilon^2) x_1 |x|^{-3-\varepsilon} \varphi dS.$$

Tedy pokud dosadíme $a=\frac{1}{\varepsilon^2}$, tak pro naše A funkce \overline{u} řeší $\int A \nabla u \cdot \nabla \varphi$. Tím, že navíc dosadíme $\varepsilon < \frac{2}{p} - 1$ jsme splnili zadání.

Příklad (2.)

The goal is to show that maximal regularity cannot hold in Lipschitz domains or when changing the type of boundary conditions. Let $\varphi_0 \in (0, 2\pi)$ be arbitrary and consider $\Omega \subset \mathbb{R}^2$ given by

$$\Omega := \{(r, \varphi) | r \in (0, 1), \varphi \in (0, \varphi_0) \}.$$

Denote $\Gamma_i \subset \partial\Omega$ in the following way $\Gamma_1 := \{(r,0) | r \in (0,1)\}, \ \Gamma_2 := \{(r,\varphi_0) | r \in (0,1)\}$ a $\Gamma_3 := \{(1,\varphi) | \varphi \in (0,\varphi_0)\}.$

Consider two functions

$$u_1(r,\varphi) := r^{\alpha_1} \sin\left(\frac{\varphi\pi}{\varphi_0}\right), \qquad u_2(r,\varphi) := r^{\alpha_2} \sin\left(\frac{\varphi\pi}{2\varphi_0}\right).$$

• Find the condition on α_i so that $u_i \in W^{1,2}(\Omega)$ – find an explicit formula for ∇u_i – and prove that it is really the weak derivative.

Řešení

Běžné derivace těchto funkcí jsou:

$$\nabla u_i = \begin{pmatrix} \frac{\partial u_i}{\partial r} \\ \frac{1}{r} \frac{\partial u_i}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \alpha_i r^{\alpha_i - 1} \sin \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \\ \frac{\pi}{i \cdot \varphi_0} r^{\alpha_i - 1} \cos \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \end{pmatrix}$$

Jelikož tyto derivace jsou spojité, tak pro ně platí per-partes (používám jen supp ψ , abych se vyhnul $r=0, \psi$ i ψ' jsou na doplňku nulové, tedy i integrovaná funkce):

$$\int_{\Omega} u_i \partial_j \psi = \int_{\text{supp } \psi} u_i \partial_j \psi + 0 \stackrel{\text{p-p}}{=} - \int_{\text{supp } \psi} \psi \partial_j u_i + \int_{\partial \left(\overline{\text{supp } \psi}\right)} \psi u_i dS_j = - \int \dots + \int 0 = 0$$

$$= - \int_{\text{supp } \psi} \psi \partial_j u_i = - \int_{\Omega} \psi \partial_j u_i + 0.$$

Tedy jsou to slabé derivace. Že $u_i \in W^{1,2}(\Omega)$ platí, pokud jsou integrály druhých mocnin derivací konečné:

$$\int_{\Omega} \left(\alpha_{i} r^{\alpha_{i}-1} \sin \left(\frac{\varphi \pi}{i \cdot \varphi_{0}} \right) \right)^{2} = \int_{\Omega} \alpha_{i}^{2} r^{2\alpha_{i}-2} \left(\sin \left(\frac{\varphi \pi}{i \cdot \varphi_{0}} \right) \right)^{2} < \infty,$$

$$\int_{\Omega} \left(\frac{\pi}{i \cdot \varphi_{0}} r^{\alpha_{i}-1} \cos \left(\frac{\varphi \pi}{i \cdot \varphi_{0}} \right) \right)^{2} = \int_{\Omega} \left(\frac{\pi}{i \cdot \varphi_{0}} \right)^{2} r^{2\alpha_{i}-2} \left(\cos \left(\frac{\varphi \pi}{i \cdot \varphi_{0}} \right) \right)^{2} < \infty.$$

To bude zřejmě tehdy, když $\alpha_i > \frac{1}{2}$.

• Find the proper condition on α_i so that u_i solves the problem

a)
$$-\Delta u_1 = 0 \text{ in } \Omega$$
, b) $u_1 = 0 \text{ on } \Gamma_1 \cup \Gamma_2$, c) $u_1 = \sin\left(\frac{\varphi\pi}{\varphi_0}\right) \text{ on } \Gamma_3$,
d) $-\Delta u_2 = 0 \text{ in } \Omega$, e) $u_2 = 0 \text{ on } \Gamma_1$, f) $u_2 = \sin\left(\frac{\varphi\pi}{2\varphi_0}\right) \text{ on } \Gamma_3$,
g) $\nabla u_2 \cdot n = 0 \text{ on } \Gamma_2$.

Řešení

 Γ

Rovnice b, c, e, f) splňují funkce z definice (když dosadíme r=1, tak nám zbude pouze sin, když dosadíme $\varphi=0$ nebo $\varphi=\varphi_0$, tak bude sin nulový).

Norma n je v Γ_2 kolmá na poloměr, tedy

$$\nabla u_2 \cdot n = \frac{\pi}{2\varphi_0} r^{\alpha_2 - 1} \cos\left(\frac{\varphi \pi}{2\varphi_0}\right) = \frac{\pi}{2\varphi_0} r^{\alpha_2 - 1} \cos\left(\frac{\varphi_0 \pi}{2\varphi_0}\right) = \dots \cdot \cos\left(\frac{\pi}{2}\right) = \dots \cdot 0 = 0.$$

V polárních souřadnicích $\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r} \frac{\partial f}{\partial r}$. Tedy

$$\Delta u_i = \alpha_i \cdot (\alpha_i - 1) r^{\alpha_i - 2} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) - r^{-2} \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 r^{\alpha_i} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) +$$

$$+ r^{-1} \alpha_i r^{\alpha_i - 1} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) = r^{\alpha_i - 2} \cdot \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) \cdot \left(\alpha_i \cdot (\alpha_i - 1) - \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 + \alpha_i\right).$$

Výraz před závorkou je na vnitřku Ω nenulový, tedy musí být nulová závorka:

$$0 = \alpha_i \cdot (\alpha_i - 1) - \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 + \alpha_i = \alpha_i^2 - \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 \implies \alpha_i = \pm \frac{\pi}{i \cdot \varphi_0}.$$

• Find all p's for which $u_i \in W^{2,p}(\Omega)$. What is the criterium on α_i so that $u_i \in W^{2,2}(\Omega)$.

Řešení

Je to podobné jako v prvním bodě, jen chceme druhé derivace, tedy r bude v mocnině $p \cdot (\alpha_i - 2)$, tedy chceme, aby $p \cdot (\alpha_i - 2) > -1$. Tedy kritérium pro α_i je $\alpha_i > 1.5$.

• With the help of the above computation, find $f_i \in L^2(\Omega)$ such that the problems with homogeneous boundary conditions, i.e.,

$$-\Delta v_1 = f_1 \text{ in } \Omega, \qquad v_1 = 0 \text{ on } \partial \Omega,$$
$$-\Delta v_2 = f_2 \text{ in } \Omega, \qquad v_2 = 0 \text{ on } \Gamma_1 \cup \Gamma_3, \qquad \nabla v_2 \cdot n = 0 \text{ on } \Gamma_2$$

poses unique weak solutions $v_i \in W^{1,2}(\Omega)$ but $v_1 \notin W^{2,2}(\Omega)$ if $\varphi_0 > \pi$ and $v_2 \notin W^{2,2}(\Omega)$ for $\varphi_0 > \frac{\pi}{2}$.

Řešení

 \Box

Když zadefinujeme $v_i = u_i - \sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right)$, dostaneme splněné okrajové podmínky tohoto problému, neboť v Γ_3 jsme odečetli přesně hodnotu, v Γ_1 jsou právě tyto siny nulové a v Γ_2 je v prvním případě také nulový a v druhém chceme, aby byla druhá část gradientu, což je ale příslušný kosinus, který je přesně v $\nabla u_2 \cdot n$ a je též nulový.

Zbývají f_1 a f_2 :

$$f_i = -\Delta v_i = -\Delta u_i + \Delta \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) =$$

$$= 0 + \left(0 + \frac{1}{r^2} \cdot \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 \cdot \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) + \frac{1}{r} \cdot 0\right) = \left(\frac{\pi}{r \cdot i \cdot \varphi_0}\right)^2$$

 $P\check{r}iklad$ (3. – Fredholm alternative vs Lax-Milgram lemma vs minimum principe) Consider $\Omega \subset \mathbb{R}^d$ a Lipschitz domain. Let $\mathbb{A} : \Omega \to \mathbb{R}^d$ be an elliptic matrix. Assume that $\mathbf{c} \in L^{\infty}(\Omega, \mathbb{R}^d)$ and $b \geq 0$. Consider the problem

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = f \text{ in } \Omega, \qquad u = u_0 \text{ on } \partial\Omega.$$

a) Consider the case b=0, $\mathbf{c}=\mathbf{o}$ and $f\in L^2(\Omega)$ fulfilling $f\geqslant 0$. Let $u_0\in W^{1,2}(\Omega)$ and denote $m:=\mathrm{essinf}_{\partial\Omega}\,u_0$. Show that the unique weak solution u satisfies $u\geqslant m$ almost everywhere in Ω .

Důkaz

Jak nám napovídá hint, definujeme $\varphi(x):=(u(x)-m)_-$. Jelikož Ω je omezené a $u\in W^{1,2}$, tak

$$||\varphi||_2^2 = \int_{\Omega} (u(x) - m)_-^2 dx \le \int_{\Omega} (u(x) - m)^2 dx = ||u(x) - m||_2^2 \le (||u(x)||_2 + ||m||_2)^2 < \infty$$

TODO 0 u W!!!

$$\forall \psi \in C_0^\infty(\Omega): \int_{\Omega} (\nabla \varphi(x)) \psi(x) dx = \int_{\Omega} \nabla ((u(x) - m)_-) \psi(x) dx = \int_{u(x) > m} \nabla (u(x) - m) \psi(x) dx + \int_{u(x) \leqslant m} \nabla (u(x) - m) \psi(x) dx = \int_{\Omega} \nabla (u(x)$$

Tedy $\nabla \varphi = \nabla u \chi_{u(x)>m}$, tedy $||\nabla \varphi||_2 < ||\nabla u||_2 < \infty$, tj. $\varphi \in W_0^{1,2}$.

Nyní použijeme φ jako testovací funkci:

$$\int_{\Omega} -\operatorname{div}(\mathbb{A}\nabla u)\varphi = \int_{\Omega} f\varphi$$

$$\underbrace{\int_{\Omega} \mathbb{A}\nabla u\nabla\varphi}_{>0} = \int_{\Omega} \underbrace{f}_{>0} \underbrace{\varphi}_{\leq 0}$$

Tedy levá strana ≥ 0 , pravá ≤ 0 , tedy se rovnají nule. Aby se pravá strana rovnala nule (f je nenulové), tak musí být $\varphi = 0$ skoro všude, tedy $u \geq m$ skoro všude na Ω .

b) Consider b > 0 and **c** arbitrary. Prove that for any $u_0 \in W^{1,2}(\Omega)$ and any $f \in L^2(\Omega)$ there exists a weak solution.