

COURSE PROJECT PROPOSAL **COMPUTER VISION**

OUR TEAM - salt_and_pepper_noise

RAJASEKHAR REDDY

2018122010

AMITESH SINGH

20171131

TANMAI MUKKU

20171145

REFERENCE PAPER -

Context Encoders: Feature Learning by Inpainting

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell Alexei A. Efros, University of California, Berkeley

Link - https://arxiv.org/pdf/1604.07379.pdf

ABOUT THE PROJECT

- 1) We will present an unsupervised visual feature learning algorithm driven by context-based pixel prediction.
- 2) By analogy with auto-encoders, we will propose Context Encoders a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings.
- 3) In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s).
- 4) We will quantitatively demonstrate the effectiveness of our learned features for CNN pre-training on classification, detection, and segmentation tasks.

TIMELINE

15-02-2021

PRE-FINAL REVIEW

4

15-04-2021

PROJECT TOPIC ALLOTMENT

05-02-2021

MID-EVALUATION

15-03-2021

FINAL PRESENTATION

20-04-2021

RAJASEKHAR

ENCODER

DECODER PIPELINE

- 1) Introduce context encoders: CNNs that predict missing parts of a scene from their surroundings.
- 2) Give an overview of the general architecture
- 3) Provide details on the learning procedure
- 4) Present various strategies for image region removal.

NOTE: MODEL WILL BE TRAINED BEFORE MID EVALS, HOWEVER THE EVALUATION WILL BE DONE AFTER MID EVALS

PROJECT GOALS

GOAL 1

Write a working code on Context Encoders for learning deep feature representation in an unsupervised manner by image inpainting.

GOAL 2

Present a presentation with our results and compare them to other methods of image inpainting.

RESOURCES

PAPER

https://arxiv.org/pdf/1604.07379.pdf

DATASET FOR TRAINING

C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros. What makes paris look like paris?
ACM Transactions on Graphics, 2012.

DATASET FOR VERIFICATION

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 2015.