Цель 15: Защита и восстановление экосистем суши и содействие их рациональному использованию, рациональное лесопользование, борьба с опустыниванием, прекращение и обращение вспять процесса деградации земель и прекращение процесса утраты биологического разнообразия

Задача 15.3: К 2030 году вести борьбу с опустыниванием, восстановить деградировавшие земли и почвы, включая земли, затронутые опустыниванием, засухами и наводнениями, и стремиться к тому, чтобы во всем мире не ухудшалось состояние земель

Показатель 15.3.1: Отношение площади деградировавших земель к общей площади земель

Институциональная информация

Организация (и):

Конвенция Организации Объединенных Наций по борьбе с опустыниванием (КБО ООН) и партнеры, включая Продовольственную и сельскохозяйственную организацию Объединенных Наций (ФАО), Статистический отдел Организации Объединенных Наций (СОООН), Организацию Объединенных Наций по окружающей среде (ЮНЕП), Рамочную конвенцию Организации Объединенных Наций об изменении климата (РКИК ООН) и Конвенцию о биологическом разнообразии (КБР).

Понятия и определения

Определения:

Деградирование земельозначает снижение или потерю биологической и экономической продуктивности и сложной структуры богарных пахотных земель, орошаемых пахотных земель или пастбищ, лесов и лесистых участков в засушливых, полузасушливых и сухих субгумидных районах в результате землепользования или действия одного или нескольких процессов. Это определение было принято и используется 196 странами-участницами КБО ООН. [1] (see also Figure 1)

Нейтрализация деградации земель (НДЗ) определяется как состояние, при котором количество и качество земельных ресурсов, необходимых для поддержки функций и услуг экосистем и повышения продовольственной безопасности, остаются стабильными или увеличиваются в определенных временных и пространственных масштабах и экосистемах. (решение 3 / COP12). [2]

Общая земельная площадь - это общая площадь страны, за исключением территории, покрытой внутренними водами, такими как крупные реки и озера. [3]

Тhe Единица измерения для этого показателя - это пространственная протяженность (гектары или км2), выраженная как доля (процент или %) деградированных земель от всей земельной площади.

Показатель 15.3.1 ЦУР представляет собой двойную количественную оценку (деградировавшая / не деградировавшая), основанную на анализе имеющихся данных по трем

субпоказателям, которые должны быть проверены и представлены национальными властями. Субпоказатели (тенденции в растительном покрове, продуктивность земель и накопления углерода) были приняты руководящим органом КБО ООН в 2013 году в рамках подхода, связанного с мониторингом и оценкой. [4]

Метод расчета этого показателя использует статистический метод исключения одного объекта, исключения всех объектов и основан на исходной оценке и оценке изменений субпоказателей для определения степени деградирования земель по всей земельной площади.

Метод исключения одного объекта, исключения всех объектов применяется с учетом изменений субпоказателей, которые обозначены как (i) положительные или улучшающиеся, (ii) отрицательные или снижающиеся, или (iii) стабильные или неизменные. Если один из субпоказателей является отрицательным (или стабильным при снижении в базовом или предыдущем году наблюдения) для конкретной земельной единицы, то она будет считаться деградированным субъектом, который необходимо подвергнуть проверке национальными властями.

Concepts:

Оценка и определение количества деградированных земель обычно считается зависящей от контекста, что затрудняет полное отражение качества или состояния земли с помощью одного показателя. Хотя эти субпоказатели необходимы, но недостаточны, они отражают изменения разными, но весьма актуальными способами: например, тенденции растительного покрова или продуктивности могут отражать относительно быстрые изменения, в то время как изменения в накоплениях углерода отражают более медленные изменения, которые предполагают траекторию движения или приближение к пороговым значениям. [6]

В качестве замещающего значения для мониторинга ключевых факторов и задающих переменных, которые отражают способность предоставлять наземные экосистемные услуги, субпоказатели согласованы на глобальном уровне с определением и методологией расчета и считаются технически и экономически целесообразными для систематического наблюдения в рамках Глобальной системы наблюдения за климатом (ГСНК) и интегрированной основы оценки Системы природно-экономического учета (СПЭУ). Окончательное определение степени деградирования земель, сделанное национальными властями, должно быть согласовано с другими показателями, данными и наземной информацией.

Оперативное определение деградирования земель вместе с описанием взаимосвязей между субпоказателями приведено на рисунке 1.

Рисунок 1: Оперативное определение деградирования земель и связи с субпоказателями.

Растительный покров относится к наблюдаемому физическому покрову поверхности Земли, который описывает распределение типов растительности, водоемов и созданную человеком инфраструктуру. [7]-Он также отражает использование земельных ресурсов (т. е. почвы, воды и биоразнообразия) для сельского хозяйства, лесного хозяйства, населенных пунктов и т. д. [8]-Этот субпоказатель выполняет две функции для показателя 15.3.1 ЦУР: (1) изменения растительного покрова могут указывать на деградацию земель, когда происходит потеря экосистемных услуг, которые считаются желательными в местном или национальном контексте; и (2) можно использовать систему классификации растительного покрова для дезагрегирования двух других субпоказателей, тем самым повышая актуальность показателя для стратегического планирования. Предполагается, что этот субпоказатель также будет использоваться для отчетности по показателям 6.6.1, 11.3.1 и 15.1.1 ЦУР.

Существует международный стандарт для субпоказателя растительного покрова [9], который включает Метаязык растительного покрова (LCML), общую справочную структуру (статистический стандарт) для сравнения и интеграции данных для любой типовой системы классификации растительного покрова. LCML также используется для определения функциональных единиц растительного покрова и экосистем, используемых в СПЭУ, и тесно связан с классификацией растительного покрова / землепользования Межправительственной группы экспертов по изменению климата (МГЭИК).

Продуктивность земель означает общую наземную чистую первичную продукцию (ЧПП), определяемую в качестве энергии, зафиксированной растениями за вычетом их выдоха, которая переводится в скорость накопления биомассы, обеспечивающей набор экосистемных услуг. sup> [10]_Этот субпоказатель указывает на изменения в состоянии здоровья и продуктивности земли и отражает чистое воздействие изменений в функционировании экосистемы на рост растений и биомассы, где тенденции к снижению часто являются определяющей характеристикой деградации земель. [11]

Международный стандарт для расчета ЧПП (гКл / м² / сутки) на основе данных дистанционного зондирования, многовременных данных отражения поверхности с учетом глобального диапазона типов климата и растительности, был установлен в 1999 г. Национальным управлением по аэронавтике и исследованию космического пространства США (НАСА) в ожидании запуска датчика сканирующего спектрорадиометра среднего разрешения (MODIS). [12]-Методология и набор данных «Динамика продуктивности земель» (LPD), разработанные Объединенным исследовательским центром Европейской комиссии [13]-и используемые в пилотной программе КБО ООН, используют этот международный стандарт для расчета тенденций временных рядов ЧПП и анализа изменений.

Накопление углерода - это количество углерода в & # x201C; накопителе& # x201D;: резервуаре, который способен накапливать или выделять углерод и состоит из наземной и подземной биомассы, мертвого органического вещества и почвенного органического углерода. [14]-В решении 22 / СОР.11 КБО ООН запасы почвенного органического углерода (ПОУ) были приняты в качестве критерия, который будет использоваться, исходя из предположения, что этот критерий будет заменен общей земной системой накопления углерода после ввода в эксплуатацию. ПОУ- это показатель общего качества почвы, связанной с круговоротом питательных веществ, ее совокупной стабильностью и структурой, имеющим прямые последствия для инфильтрации воды, биоразнообразия почвы, уязвимости к эрозии и, в конечном итоге, продуктивности растительности и урожайности в сельскохозяйственных условиях. Запасы ПОУ отражают баланс между приростом органических веществ, зависящим от продуктивности растений и методов управления, и потерями из-за разложения под действием почвенных организмов и природного выноса в результате выщелачивания и эрозии.sup>[15]

В отношении запасов углерода документ Межправительственной группы экспертов по изменению климата (МГЭИК)(2006) содержит наиболее актуальные определения и стандарты, особенно в отношении справочных значений, применимых для отчетности по выбросам парниковых газов уровней 2 и 3. [16]—В этом отношении техническая почвенная инфраструктура, передача данных и предоставление данных национальной отчетности также основаны на стандартах. [17].

x2191;

¹ Конвенция Организации Объединенных Наций по борьбе с опустыниванием. 1994. Статья 1 текста Конвенции
http://www2.unccd.int/sites/default/files/related-links/2017-01/UNCCD Convention ENG 0.pdf & #

² http://www2.unccd.int/sites/default/files/sessions/documents/ICCD_COP12_20_Add.1/20add1eng.pdf & # x2191;

^{3 4} В своем решении 22 / COP.11 Продовольственная и сельскохозяйственная организация Объединенных Наций <u>& # x2191;</u> Конференция Сторон установила подход к мониторингу и оценке, состоящий из: а) показателей; (б) концептуальной основы, позволяющей интегрировать показатели; и (с) механизмов поиска и управления показателями на национальном / местном уровне. http://www.unccd.int/en/programmes/Science/Monitoring-Assessment/Documents/Decision22-COP11.pdf ↑

^{5 &}lt;u>https://circabc.europa.eu/sd/a/06480e87-27a6-41e6-b165-0581c2b046ad/Guidance%20No%2013%20-</u> %20Classification%20of%20Ecological%20Status%20(WG%20A).pdf ↑

 $^{{\}color{blue} 6 \hspace{0.1cm} \underline{http://www2.unccd.int/sites/default/files/documents/2017-08/LDN_CF_report_web-english.pdf} \\ {\color{blue} 1 \hspace{0.1cm} \underline{http://www2.unccd.int/sites/default/files/documents/2017-08/LDN_CF_report_web-english.pdf} \\ {\color{blue} 2 \hspace{0.1cm} \underline{http://www2.unccd.int/sites/default/files/documents/2017-08/LDN_CF_report_web-english.pdf} \\ {\color{blue} 3 \hspace{0.1cm} \underline{http://www2.unccd.int/sites/default/files/documents/2017-08/LDN_CF_report_web-english.pdf} \\ {\color{blue} 4 \hspace{0.1cm} \underline{http://www2.unccd.int/sites/documents/2017-08/LDN_CF_report_web-english.pdf} \\ {\color{blue} 4 \hspace{0.1cm} \underline{http://www2.unccd.int/sites/documents/2017-08/LDN_CF_report_web-english.pdf} \\ {\color$

⁷ Di Gregorio, A. 2005. Land cover classification system (LCCS): classification concepts and user manual. Food and Agriculture Organization of the United Nations, Rome. <u>1</u>

- ⁸ FAO-GTOS. 2009. Land Cover: Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables. Global Terrestrial Observing System, Rome. 1
- 9 https://www.iso.org/standard/44342.html https://www.iso.org/standard/44342.html
- 10 Millennium Ecosystem Assessment. 2005. Ecosystems and human wellbeing: a framework for assessment. Island Press, Washington, DC. ⊥
- ¹¹ Joint Research Centre of the European Commission. 2017. World Atlas of Desertification, 3rd edition. JRC, Ispra.
 [⊥]
- 12 Running et al. 1999. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17): Algorithm Theoretical Basis Document https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod16.pdf
- 13 Ivits and Cherlet. 2013. Land-productivity dynamics towards integrated assessment of land degradation at global scales. European Commission JRC Technical Report. https://publication/1e2aceac-b20b-45ab-88d9-b3d187ae6375/language-en/format-PDF/source-49343336 ↑
- 14 IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories: Agriculture, Forestry and other Land Use. Prepared by the National Greenhouse Gas Inventories Programme: Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). IGES, Japan. 1
- 15 Smith, P., Fang, C., Dawson, J. J., & Moncrieff, J. B. 2008. Impact of global warming on soil organic carbon. Advances in agronomy, 97: 1-43. <u>↑</u>
- 16 IPCC. 2006. ibid 1
- 17 https://www.iso.org/standard/44595.html 1

Связанные показатели

2.4.1; 6.6.1; 11.3.1; 15.1.1; 15.2.1

Page: 5 of 5