Lógica Proposicional-3

Condicional e bicondicional

Provas informais e formais com condicionais

Referência: Language, Proof and Logic

Dave Barker-Plummer,

Jon Barwise e John Etchemendy, 2011

Capítulos: 7-8

Condicional

- ☐ Implicação ou condicional material: →
 - $P \rightarrow Q$

P é antecedente e Q consequente

- Linguagem natural
 - se P então Q
 Se a Ana está na sala então a Rita está na biblioteca
 NaSala(ana) → NaBiblioteca(rita)
 - P só se Q P → Q [condição necessária]
 O Nilton é aprovado só se assistir a 75% das aulas
 Aprovado(nilton) → Assiste75%(nilton)
 - P se Q Q → P [condição suficiente]
 O Luís é bom aluno se tiver média de 15
 Media15(luis) → BomAluno(luis)

Tradução

- Q sempre que P, Q quando P, Q dado P
 Chove sempre que vou à praia
 NaPraia(eu) → Chove
- P implica Q [valor de verdade, não causalidade]
 A Otília andar à chuva implica que fica molhada
 AndarChuva(otilia) → Molhada(otilia)
- \square Combinado com negação: $\neg P \rightarrow Q$
 - Q a menos que P; a não ser que P, Q
 A Clara vai à praia a menos que chova
 ¬Chove → NaPraia(clara) [se chover não se sabe...]
- ☐ Em fórmulas quantificadas: expressões mais naturais
 - Para todo o x $(A(x) \rightarrow B(x))$

→: Semântica e Regra do jogo

 \square P \rightarrow Q verdadeiro se e só se P é falso ou Q verdadeiro

<u>P</u>	Q	$P \rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

significado é ¬P∨ Q

- Quando é falso: antecedente verdadeiro e consequente falso
- Não aumenta a potência da linguagem mas torna-a mais natural e fácil de entender
- Tarski's World: P → Q é abreviatura de ¬P ∨ Q
 - no jogo: substitui e usa regra para ∨

Verdade lógica e consequência lógica

- ☐ Importância do condicional: reduzir consequência lógica a verdade lógica
- □ Q é consequência das premissas P₁, ... P_n se e só se é impossível todas serem verdadeiras e Q falso Então a fórmula

$$(P_1 \wedge ... \wedge P_n) \rightarrow Q$$

não pode ser falsa é logicamente verdadeira

Bicondicional

- □ Equivalência ou bicondicional material: ↔
- □ [condição necessária e suficiente]
- □ LN: se e só se... só no caso em que...
 - $n \notin par sse n^2 \notin par$ $Par(n) \leftrightarrow Par(n^2)$

$$\begin{array}{ccc}
SSE \\
P se Q & Q \rightarrow P \\
P so se Q & P \rightarrow Q
\end{array}$$

- □ Propriedades: P e Q são logicamente equivalentes se e só se o bicondicional P ↔ Q for logicamente verdadeiro
 - **P** ⇔ **Q** sse; abreviatura; não é símbolo da FOL
 - $P \leftrightarrow Q$ conetiva; logicamente verdadeiro; símbolo da FOL
- Exemplo: lei de DeMorgan
 - $\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$ é logicamente verdadeira

→: Semântica e Regra do jogo

 \blacksquare P \leftrightarrow Q verdadeiro se e só P e Q têm o mesmo valor de verdade

<u>P</u>	Q	$P \leftrightarrow Q$	
V	V	V	significado é $(P \land Q) \lor (\neg P \land \neg Q)$
V	F	F	
F	V	F	
F	F	V	

- Tarski's World:
 - $P \leftrightarrow Q$ é substituído por $(P \rightarrow Q) \land (Q \rightarrow P)$
 - no jogo: substitui e usa regra para →

LN: o que decorre de uma frase?

- Ao traduzir LN para LPO:
 - questão do que é ou não consequência da frase
 A Rita está na sala quando o Rui não está na sala
 - ? \neg NaSala(rui) \rightarrow NaSala(rita)
 - ? \neg NaSala(rui) \leftrightarrow NaSala(rita)
 - Na frase em LN: decorre de alguma maneira que se o Rui estiver na sala, então a Rita não estará
- □ Distinção a fazer:
 - condições de verdade de uma afirmação
 - outras coisas que decorrem da afirmação
- □ H.P. Grice: introduz noção de <u>decorrência conversacional</u>

Decorrência Conversacional

Frase F e conclusão C

- □ se C faz <u>parte do significado de F</u>: não pode ser cancelada por afirmações subsequentes
 - * A Rita e o Rui estão na sala ... mas o Rui não está na sala O Rui está na sala é parte do significado: não pode ser cancelado
- se C é mera <u>decorrência de F</u>: pode ser cancelada por afirmações subsequentes
 - ✓ A Rita está na sala quando o Rui não está na sala ... mas quando o Rui está na sala não sei onde está a Rita
 - NaSala(Rita) → ¬NaSala(Rui) não faz parte do significado da afirmação: pode ser cancelado na afirmação seguinte sem contradição

Equivalências

Condicional

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$
 contrapositiva
 $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
 $\neg (P \rightarrow Q) \Leftrightarrow P \land \neg Q$

Bicondicional

$$P \leftrightarrow Q$$
 $\Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$
 $P \leftrightarrow Q$ $\Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

Métodos de prova usando \rightarrow e \leftrightarrow

- □ Estritamente: podem usar-se só as regras para ¬, ∧ e ∨
- \square Provas mais naturais: usam regras próprias para \rightarrow e \leftrightarrow
- □ Passos de prova:
- Modus ponens ou eliminação do condicional
 - tendo estabelecido $P \rightarrow Q$ e P pode inferir-se Q
- □ Eliminação do bicondicional
 - tendo estabelecido $Q \leftrightarrow R$ ou $R \leftrightarrow Q$, tendo Q pode inferir-se R

Método de prova condicional

- \square Para provar $P \rightarrow Q$:
 - Subprova, assumir P como premissa
 - Provar Q
 - Concluir $P \rightarrow Q$
- \square Exemplo: A \rightarrow C é consequência de A \rightarrow B e B \rightarrow C
 - Assumindo A: de $A \rightarrow B$, por *modus ponens* infere-se B
 - De B e B→C , por *modus ponens* infere-se C
 - Provou-se C tendo assumido A, provou-se $A \rightarrow C$

Exemplo de prova condicional

- \square Provar: Par(n²) \rightarrow Par(n)
 - Assumindo Par(n²), e fazendo prova por contradição
 - o n é ímpar, n=2m+1
 - o $n^2 = (2m+1)^2 = 4 m^2 + 4m + 1 = 2 (2 m^2 + 2m) + 1$ donde n^2 é impar
 - o Contradiz a premissa, logo n é par
 - $Par(n^2) \rightarrow Par(n)$ infere-se por prova condicional

Provas com ↔

- \square Prova condicional: para provar $P \leftrightarrow Q$
 - Assumir P e provar Q
 - Assumir Q e provar P
- □ Para provar Q1, Q2, Q3 todos equivalentes:

Expressão em LPO:

$$Q1 \leftrightarrow Q2$$

$$Q2 \leftrightarrow Q3$$

$$Q1 \leftrightarrow Q3$$

Em vez de 6 provas condicionais: provar um ciclo

$$Q1 \rightarrow Q2$$

$$Q2 \rightarrow Q3$$

$$Q3 \rightarrow Q1$$

Exemplo

- ☐ As condições seguintes nos números naturais são todas equivalentes:
 - (1) n é par
 - (2) n^2 é par
 - (3) n² é divisível por 4
- \square Provando (3) \rightarrow (2) \rightarrow (1) \rightarrow (3)
 - Assumindo (3): se n² é divisível por 4, é divisível por 2, logo (2)
 - $(2) \rightarrow (1)$ por contrapositiva: se n é impar, pode escrever-se
 - \circ n= 2m + 1
 - o $n^2 = (2m+1)^2 = 4 m^2 + 4m + 1 = 2 (2 m^2 + 2m) + 1$ é impar
 - $(1) \rightarrow (3)$ é evidente

Regras de inferência para →

Eliminação do condicional $(\rightarrow \text{Elim})$ $| P \rightarrow Q |$:: P | Q |

Modus ponens

Prova condicional

→ nas provas formais

```
1. (A \lor B) \rightarrow C
  5. A \rightarrow C
                  \rightarrow Intro: 2-4
```

```
\rightarrow Intro: 1-4
```

 \perp Intro: 1,2 ¬ Intro: 2,3

Usar prova de ¬¬A a partir de A para provar o condicional $A \rightarrow \neg \neg A$ (sem premissas)

Regras de inferência para ↔

```
Introdução do bicondicional
                       (\leftrightarrow Intro)
```

Dupla prova condicional

→ nas provas formais

```
| 1. \neg(P \land Q)
| 2. \neg P \lor \neg Q | Teor Prev(Teorema 2): 1
| 3. \neg P \lor \neg Q
| 4. \neg(P \land Q) | Teor Prev(Teorema 3): 3
| 5. \neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q) \leftrightarrow \text{Intro: 1-2, 3-4}
```

Esquemas úteis

- Modus ponens
 - De $A \rightarrow Be A$
 - Inferir B
- Modus tollens
 - De A \rightarrow B e \neg B
 - Inferir ¬A
- Cancelamento
 - De A \vee B e \neg B
 - Inferir A

- Reforço do antecedente
 - De $B \rightarrow C$
 - Inferir $(A \land B) \rightarrow C$
- Enfraquecimento do consequente
 - De $A \rightarrow B$
 - Inferir A \rightarrow (B \vee C)
- Dilema construtivo
 - De A \vee B, A \rightarrow C, B \rightarrow D
 - Inferir C ∨ D