

alth external "disturbance" input to the system: Not under our direct control, and cannot be predicted or measured during operation of the system.

What affect will this have on stability or accuracy?

rejection": ability to maintain Ess(1) small even when d(t) # Ø.

Re-derive feedback loop equations:

$$=G(s)H(s)E(s)+G(s)D(s)$$

or
$$Y(s) = \frac{L(s)}{1 + L(s)}Y_{d}(s) + \frac{G(s)}{1 + L(s)}D(s)$$

$$T(s)$$

Si(s) "input sensitivity" Tf.

Added term due to disturbance

Note: poles of Si(s) same as T(s) => Si(s) is stable

19 T(s) is.

=> Disturbance Cannot destabilize system!

Distribunce can however, worsen tracking:

$$Y(s) = T(s)Y_{d}(s) + S_{i}(s)D(s)$$

$$E(s) = Y_{d}(s) - Y(s) = (1 - T(s))Y_{d}(s) - S_{c}(s)D(s)$$

Want to quantify the added errors due to distribunce

Can analyze similarly to above, but need a bit more core:

$$\int_{c} (s) = \frac{G(s)}{1 + L(s)}$$

Let
$$G(s) = \frac{N_G(s)}{D_G(s)}$$
, $H(s) = \frac{N_H(s)}{D_H(s)}$ so $L(s) = \frac{N_G(s) N_H(s)}{D_G(s) D_H(s)}$

Dist-rejection Want |5:(jw) | << 1 for win freq range of d(E) i.e. if d(t) has sig. freg consent in [W, W2] want | Si(jw) | << 1 for WE [W,, W2] Note $S_i(s) = \frac{G(s)}{1+L(s)} = \frac{G'(s)+H(s)}{G''(s)+H(s)}$ So $S_i(j\omega)/4=1$ = 1 ether · 16(jw1/<< 1, or · /H(jw) >> 1 (Can design for this! Note: 16(jull-10 As W-20 for physical systems => /5, GW/ -10 AS W>20

But usually 16(jw) 121 for mid/low freq.

Dust rejection, cont 15, (ju) (->0 As was But freq. band where dist. is significant [W., Ww] typically at mid-low freqs when 161jw)121 = 1 Need | H(jw)| >>1 at these fregs! Thus, good dist. rejection typically Requires

[H(jw)| >> 1 for WE LWI, WZ]

Note: regt on H(s) only! Iregs. where dist

15 significant As with tracking error and SCSI, the IMP providES Add'l insights.

$$S_{c}(s) = \frac{G(s)}{1 + L(s)} = \frac{N_{c}(s)D_{H}(s)}{D_{c}(s)D_{H}(s) + N_{c}(s)N_{H}(s)}$$

Then additional error:

$$S_{i}(s)D(s) = \left[\frac{N_{c}(s)D_{H}(s)}{D_{c}(s)D_{H}(s) + N_{c}(s)N_{H}(s)}\right] \left[\frac{\alpha(s)}{b(s)}\right]$$

Internal model principle again!

If $N_6(s)D_H(s)$ cancels non-stable roots of b(s)then in steady-state $J''\{5;D\}=\emptyset$

i.e. distribance creates No additional error!

Implications:

If $N_6(s)D_H(s)$ cancels non-stable roots of b(s), then cancellation is either due to:

=> NG(s) cancelling (extremely rare)

=> DH(s) cancelling (can design for this)

Sepanerally, external disturbances create NO Add'l error if compensator contains an internal model of disturbance.

That is, if Compensator H(s) has some non-stable

Poles as the disturbance. "perfect rejection" of distr

i.e. if d(t)=do (constant), No add'l tracking error
if H(s) has Pole at origin.

Summary of error analysis

For perfect tracking of "typep" desired behaviors

in Both cases, P Poles at organ

(one less) will

L(s) must have pri poles at origin

For perfect rejection of type p disturbances d(4), but nonzero H(s) must have p+1 poles at origin

ensure finite,
ensure finit

Note: tracking objectives can be satisfied if required poles come from plant, compensator, or a combination of both

But dist. rejection regt's can be satisfied only by poles in the compensator.

=> Above are special cases of IMP.

Good accuracy thus often requires H(s) to have at least one pole at origin.

- => This pole adds 90° of phase at all frequencies!
- => Works against our stability/performance guidelines of increasing phase margin.
- => Even adding a LHP zero doesn't help here:

$$H(s) = K\left[\frac{s - \epsilon c}{s}\right]$$
 $\frac{2c}{\phi}$

has ≠H(jw)<ذ for all w≥o.

=) May be acceptable if $\angle G(j\omega)$ already has "adequate"

positive phase, so $\angle L = \angle G + \angle H$ contolerate a

Small reduction.

More generally, we'd require extra LHP zero(s)
More generally, we'd require extra LHP zero(s) to still provide positive phase changes to L(s) despite required pole at origin
despite required Dole at origin
M = a
Implementability requires an additional LHP pole:
$H(s) = K \frac{(s-2c_1)(s-2c_2)}{S(s-P_e)}$ H degrees of freedom total!
11 1 5 5 5 7
degrees of freedom total:
Things get even more complicated if H(s) needs 2 poles at origin to achive tracking objectives!
2 poles at origin to achive tracking
Objectives!
Remember: Tracking of Ya(+) depends on properties of L(s)

Disturbance rejection depends on proporties of H(s)

More go to still despite	enerally,	me, 9	Pequire	exta	LHP	Ze ro(s)
to \$711	Provide	Position	e Phase	cha	nges t	6 L(s)
despite	required	Doke o	forigin			
	7		· 7			

Implementability requires an additional LHP pole:

$$H(s) = \left\{ \frac{(s-2c_1)(s-2c_2)}{5(s-2c_1)} \right\}$$

4 degrees of freedom total!

Things get even more complicated if H(s) needs

2 poles at origin to achive bracking
objectives!

Remember: Tracking of Ya(+) depends on properties of L(s)

Disturbance rejection depends on proporties of H(s)