Package 'DEBtoolAnimal'

		Decembe	r 9, 20)15			
Type Package							
Title DEB functions	for an animal						
Version 0.1							
Date 2015-09-30							
Author Goncalo M. I							
Maintainer Goncalo M. Marques < goncalo.marques@tecnico.ulisboa.pt>							
Description DEB based functions for the std (standard) and abj (with acceleration) models for animals.					S.		
License GPL							
LazyData TRUE							
NeedsCompilation n	10						
C2K dget_lbarb2 fnget_lbarb2 get_lb get_lbarb get_lbarb2 . get_ubarE0 get_ue0 initial_scaled K2C	mented:						
beta0	Particula	r incomplet	e beta f	unction			
Description							

particular incomplete beta function:

Usage

beta0(x0, x1)

2 C2K

Arguments

x0 scalar with lower boundary for integration

x1 scalar with upper boundary for integration

Details

Computes

$$B_{x_1}\left(\frac{4}{3},0\right) - B_{x_0}\left(\frac{4}{3},0\right) = \int_{x_0}^{x_1} t^{4/3-1} (1-t)^{-1} dt$$

To be used in the computation of the age at birth (or related quantities) for an egg.

Value

scalar with particular incomple beta function

See Also

Other miscellaneous functions: C2K; K2C

Examples

beta0(0.1, 0.2)

C2K

Conversion of Celsius to Kelvin

Description

Converts temperature in degrees Celsius to Kelvin

Usage

C2K(C)

Arguments

С

numeric temperature in degrees Celsius

Value

temperature in Kelvin

See Also

Other miscellaneous functions: K2C; beta0

Examples

C2K(20)

dget_lbarb2 3

dget_lbarb2

Computes derivative d delta/dx

Description

Obtains the derivative d delta/dx from lbarb, xb and k.

Usage

```
dget_lbarb2(x, delta, pars)
```

Arguments

```
x 	 scalar x = g/(g + e)
```

delta $scalar delta = x e_H/(1 - kap)g$

pars data.frame with lbarb, xb, xb3 (xb^1/3), k

Value

scalar with derivative value d delta/ dx

See Also

Other scaled get functions: fnget_lbarb2; get_lbarb2; get_lbarb; get_lb; initial_scaled_reserved

Examples

```
dget_1barb2(10^{(-6)}, 0, c(1barb = 0.003, xb = 10/11, xb3 = (10/11)^{(1/3)}, k = 1))
```

fnget_lbarb2

Computes f using the ode solver for delta(x), for finding lbarb

Description

Computes f using the ode solver for delta(x), for finding lbarb.

Usage

```
fnget_lbarb2(lbarb, pars)
```

Arguments

lbarb scalar with scaled length at birth (lbarb = lb/g) pars data.frame with lbarb, xb, xb3 (xb^1/3), k

Value

scalar with function f which when zero indicates lbarb

4 get_lb

See Also

Other scaled get functions: dget_lbarb2; get_lbarb2; get_lbarb; get_lb; initial_scaled_reserve

Examples

```
fnget_1barb2(0.03, c(xb = 10/11, xb3 = (10/11)^(1/3), vbarHb = 0.001, k = 1))
```

get_lb

Computes scaled length at birth

Description

Obtains scaled length at birth, given the scaled reserve density at birth.

Usage

```
get_lb(pars, eb = 1, lb0 = as.numeric(pars[3]^(1/3)))
```

Arguments

pars	3-vector with parameters: g, k, v_H^b
eb	optional scalar with scaled reserve density at birth (default eb = 1)
	optional scalar with initial estimate for scaled length at birth (default lb0: lb for $k = 1$)

Details

The theory behind get_lb, get_tb and get_ue0 is discussed in http://www.bio.vu.nl/thb/research/bib/Kooy2009b.html. Solves $y(x_b)=y_b$ for l_b with explicit solution for y(x)

$$y(x) = \frac{xe_H}{1 - kap} = xg\frac{u_H}{l^3}$$

and $y_b = x_b g u_H^b/((1-kap)l_b^3)$

$$\frac{d}{dx}y = r(x) - ys(x)$$

with solution $y(x) = v(x) \int_0^x r(x')/v(x') dx'$ and $v(x) = exp(-\int_0^x s(x') dx')$. A Newton Raphson scheme is used with Euler integration, starting from an optional initial value. Shooting method: get_lb2. In case of no convergence, get_lb2 is run automatically as backup. Consider the application of get_lb_foetus for an alternative initial value.

Value

scalar with scaled length at birth (lb) and indicator equals 1 if successful, 0 otherwise (info)

See Also

Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb; initial_scaled_reserve

```
get_lb(c(g = 10, k = 1, vHb = 0.5), 1)
```

get_lbarb 5

get_lbarb	Computes scaled length at birth lbarb
-----------	---------------------------------------

Description

Obtains scaled length at birth, given the scaled reserve density at birth.

Usage

```
get_lbarb(pars, eb = 1, lbarb0 = NA)
```

Arguments

pars 3-vector with parameters: g, k, vbar_H^b

eb optional scalar with scaled reserve density at birth (default eb = 1)

1barb0 optional scalar with initial estimate for scaled length at birth (default lbarb0:

lbarb for k = 1)

Value

scalar with scaled length at birth (lbarb) and indicator equals 1 if successful, 0 otherwise (info)

See Also

Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lb; initial_scaled_rese

Examples

```
get_lbarb(c(g = 10, k = 1, vbarHb = 0.0005), 1)
```

Description

Obtains scaled length at birth, given the scaled reserve density at birth. Like get_lbarb, but uses a shooting method in 1 variable.

Usage

```
get_lbarb2(pars, eb = NA)
```

Arguments

pars 3-vector with parameters: g, k, vbar_H^b
eb optional scalar with scaled reserve density at birth (default eb = 1)

Value

scalar with scaled length at birth (lbarb) and indicator equals 1 if successful, 0 otherwise (info)

6 get_ubarE0

See Also

 $Other scaled \ get \ functions: \ dget_lbarb2; \ fnget_lbarb2; \ get_lbarb; \ get_lb; \ initial_scaled_reserved \ get_lbarb2; \ fnget_lbarb2; \ get_lbarb2; \ get_lbarb2$

Examples

```
get_lbarb2(c(g = 10, k = 1, vbarHb = 0.01), 1)
```

get_ubarE0

Computes initial scaled reserve density at birth

Description

Obtains the initial scaled reserve given the scaled reserve density at birth. Function get_ue0 does so for eggs, get_ue0_foetus for foetuses. Specification of length at birth as third input by-passes its computation, so if you want to specify an initial value for this quantity, you should use get_lb directly.

Usage

```
get_ubarE0(g = NA, k = NA, vbarHb = NA, eb = 1, lbarb = NA)
```

Arguments

g energy investment ratio

k maintenance ratio

vbarHb rescaled maturity volume at birth

eb optional scalar with scaled reserbe density at birth

lbarb optional scalar with scaled length at birth

Value

scalar with particular incomple beta function

See Also

Other get functions: get_ue0

```
get_ubarE0(g = 10, lbarb = 0.01)

get_ubarE0(g = 10, k = 0.7, vbarHb = 5e-4)
```

get_ue0 7

aet	ue0

Computes initial scaled reserve

Description

Obtains the initial scaled reserve given the scaled reserve density at birth. Function get_ue0 does so for eggs, get_ue0_foetus for foetuses. Specification of length at birth as third input by-passes its computation, so if you want to specify an initial value for this quantity, you should use get_lb directly.

Usage

```
get_ue0(pars, eb = 1, lb0 = NA)
```

Arguments

pars	1 or 3 -vector with parameters g, k_J/ k_M, v_H^b, see get_lb
eb	optional scalar with scaled reserbe density at birth (default: eb = 1)
1b0	optional scalar with scaled length at birth (default: lb is optained from get lb)

Value

uE0 scalar with scaled reserve at t=0: $U_E^0 g^2 k_M^3/v^2$ with $U_E^0 = M_E^0/{J_EAm}$, lb scalar with scaled length at birth and info indicator equals 1 if successful, 0 otherwise

See Also

Other get functions: get_ubarE0

Examples

```
get_ue0(pars = c(0.42, 1, 0.066), eb = 1, 1b0 = 0.4042)
```

```
initial_scaled_reserve
```

Gets initial scaled reserve

Description

Gets initial scaled reserve.

Usage

```
initial_scaled_reserve(f, pars, Lb0 = NA)
```

Arguments

f	n-vector with scaled functional responses
pars	5-vector with parameters: VHb, g, kJ, kM, v
Lb0	optional n-vector with lengths at birth

8 K2C

Value

n-vector with initial scaled reserve: M_E^0/ J_EAm (U0), n-vector with length at birth (Lb) and n-vector with 1's if successful, 0's otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb; get_lb
```

Examples

```
initial_scaled_reserve(f = c(1, 0.9), pars = c(VHb = .8, g = .42, kJ = 1.7, kM = 1.7, v = .42)
```

K2C

Conversion of Kelvin to Celsius

Description

Converts temperature in Kelvin to degrees Celsius

Usage

K2C(K)

Arguments

K

numeric temperature in degrees Kelvin

Value

temperature in Kelvin

See Also

Other miscellaneous functions: C2K; beta0

```
K2C(293.15)
```

tempcorr 9

tempcorr

Temperature correction

Description

Calculates the factor with which physiological rates should be multiplied to go from a reference temperature to a given temperature

Usage

```
tempcorr(Temp, T_1, T_A, T_L = NA, T_AL = NA, T_H = NA, T_AH = NA)
```

Arguments

Temp	vector with temperatures (in Kelvin)
T_1	scalar with reference temperature (in Kelvin)
T_A	scalar with Arrhenius temperature (in Kelvin)
T_L	optional scalar with lower boundary of temperature range (in Kelvin)
T_AL	optional scalar with Arrhenius temperature for lower boundary of temperature range (in Kelvin)
T_H	optional scalar with upper boundary of temperature range (in Kelvin)
T_AH	optional scalar with Arrhenius temperature for upper boundary of temperature range (in Kelvin)

Details

Temperature impacts metabolic rates. This impact, in its most simplest way (1 parameter), is modeled by multiplying all the time-dependent parameters by a correction factor:

$$\exp\left(\frac{T_A}{T_1} - \frac{T_A}{T}\right)$$

For a more detailed modeling one can multiply with an extra fraction $s(T_1)/s(T)$ with (3 parameters):

$$s(T) = 1 + \exp\left(\frac{T_{AL}}{T} - \frac{T_{AL}}{T_L}\right)$$

or (5 parameters)

$$s(T) = 1 + \exp\left(\frac{T_{AL}}{T} - \frac{T_{AL}}{T_L}\right) + \exp\left(\frac{T_{AH}}{T_H} - \frac{T_{AH}}{T}\right)$$

Value

vector with temperature correction factors that affect all rates

```
tempcorr(c(330, 331, 332), 320, T_A = 12000, T_L = 277, T_H = 331, T_AL = 20000, T_AH = 1
```