Security - Involution

Problem Statement

Consider a function $f: X \to X$ where X is any set and f is a bijection. Now, if $f = f^{-1}$ then f is called an involution. Or, to put it in simple terms, a function f is called involution if f(f(x)) = x

In this task you'll be given a permutation $f:\{1,2,3,\ldots,n\}\to\{1,2,3,\ldots,n\}$ and you have to output if f is an involution or not.

Constraints

Input Format

There are 2 lines in the input. The first line contains a single positive integer n. The second line contains n space separated integers, the values of $f(1), f(2), f(3), \ldots, f(n)$ respectively.

Output Format

Output "YES" if f is an involution, "NO" otherwise.

Sample Input

Sample Output

YES

2 1

Explanation

Since, f(1) = 2 and f(2) = 1, $f^{-1}(1) = 2$ and $f^{-1}(2) = 1$. Hence f is indeed an involution.