Dr. Shashi Ranjan Kumar

Assistant Professor Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai, 400076 India

Selection of Sensor

- Factors affecting selection of sensors
- Environmental factors
 - ☐ Temperature change
 - ☐ Humidity effect
 - □ Size
 - ☐ Susceptibility to EM interference
 - □ Ruggedness
 - □ Power consumption
 - ☐ Self-test capability
- Economical factors
 - ☐ Cost
 - □ Availability
 - ☐ Lifetime

- Sensor characteristics
 - Sensitivity
 - ☐ Range
 - ☐ Stability
 - □ Repeatability□ Linearity
 - ☐ Error
 - ☐ Response time

Sensor Errors

•	Fixed bias : Sensor output even in the absence of an applied input rotation
	 □ Residual torques from flexible leads within the sensor □ Spurious magnetic fields and temperature gradients □ Acceleration-independent bias
•	Acceleration-dependent bias (g -dependent bias) : Biases proportional to the magnitude of applied acceleration.
	☐ Mass unbalance in the rotor suspension
	☐ Non-coincidence of the rotor centre of gravity and the centre of the suspension mechanism
	$\ \square$ Fixed bias in the measured rate for a steady acceleration
•	Anisoelastic bias (g^2 -dependent bias) : Biases proportional to product of acceleration along orthogonal pairs of axes
	 Unequal finite compliances of gyroscope rotor suspension structure in different directions.

Sensor Errors

•	Anisoinertia errors : Biases owing to inequalities in gyroscope moments of inertia about different axes
	 Proportional to the product of angular rates applied about pairs of orthogona axes
•	Scale-factor errors : Errors in the ratio relating the change in the output signal to a change in the input rate
	☐ Scale-factor non-linearity: deviations from the least-squares straight line or non-linear function fitted to the measurements
	 Scale-factor asymmetry: differences in the magnitude of the output signal for equal rotations of the sensor in opposite directions
•	Cross-coupling errors : Gyroscope sensitivity to turn rates about axes normato the input axis

☐ Non-orthogonality of the sensor axes

Sensor Errors Types

- ☐ Fixed or repeatable terms:
 - A bias component which is predictable
 - Always present whenever the sensor is switched on
 - Can therefore be corrected
- ☐ Temperature induced variations:
 - A temperature-dependent bias component
 - Can be corrected with suitable calibration
- ☐ Switch-on to switch-on variations:
 - A random bias which varies from gyroscope switch-on to switch-on
 - Constant for any one run
- □ In-run variations:
 - An in-run random bias which varies throughout a run
 - Precise form of this error varies from one type of sensor to another
- ☐ First two may be corrected to large extent, but later two types of errors persists.

Inertial Sensors

Ring Laser Gyro

- Optical sensor: Sensors using properties of EM radiation to sense rotation.
- Ring Laser Gyro (RLG): Principles of general relativity
 - ☐ A resonant optical cavity containing two oppositely directed traveling light waves generated by stimulated emission of radiation
 - An inherent capability to operate in the strapdown mode
 - $\ \square$ Scale factor linearity over the full dynamic range
 - ☐ Easy interface with digital systems
- Detection of rotation with light was demonstrated by Sagnac in 1913.
- Principle: Two light waves acquire a phase difference by propagating in opposite directions around a loop interferometer
- These beams travel the same path in opposite directions around a closed ring.
- Solid-state sensor with no moving parts.
- It detects and measures differential angular rotations by measuring the frequency difference between the two contrarotating beams.

Passive Sagnac Interferometer

Passive Sagnac Interferometer

- Consider a circular interferometer.
- Assume the light beam is splitted into two beams rotating in opposite directions.
- After one rotation they combine at the beamsplitter.
- In absence of rotation, transit time taken by light to complete rotation

$$t=\frac{2\pi R}{c}$$

where, c is the speed of light, and R is the radius of circular path.

- If the interferometer is rotated with constant angular velocity Ω then the travel time for both the beams will be different.
- ullet Note that the beamsplitter is moved to new location at B.
- With respect to inertial space, the light moving in the direction of rotation must travel a longer distance than the light traveling in the opposite direction.

Dr. Shashi Ranjan Kumar IITB-AE 410/641 Inertial Sensors 8 / 21

Passive Sagnac Interferometer

- Let X be the inertial space distance between points A and B.
- Positive (+) and negative (-) signs refer to the beam traveling in the direction of rotation and opposite to the direction of rotation, respectively.
- Total closed-path transit for the light

$$ct_{\pm} = 2\pi R \pm X_{\pm}, \quad X_{\pm} = R\Omega t_{\pm}$$

• On solving above equations,

$$t_{\pm} = \frac{2\pi R}{c} \pm \frac{R\Omega t_{\pm}}{c} \Rightarrow t_{\pm} = \frac{2\pi R}{c \mp R\Omega}$$

• Transit time Δt

$$\begin{split} \Delta t = & t_+ - t_- = \frac{2\pi R}{c - R\Omega} - \frac{2\pi R}{c + R\Omega} \\ = & 2\pi R \left[\frac{2R\Omega}{c^2 - R^2\Omega^2} \right] = \frac{4\pi R^2\Omega}{c^2 - R^2\Omega^2} \end{split}$$

• Transit time Δt

$$\Delta t = \frac{4\pi R^2 \Omega}{c^2 - R^2 \Omega^2} = \frac{\left(\frac{4\pi R}{c}\right) \left(\frac{R\Omega}{c}\right)}{1 - \left(\frac{R\Omega}{c}\right)^2}$$

• On neglecting smaller terms, we get equation called as "Sagnac effect"

$$\Delta t = \frac{4\pi R^2 \Omega}{c^2 - R^2 \Omega^2} = \left(\frac{4\pi R}{c}\right) \left(\frac{R\Omega}{c}\right) = \frac{4\pi \Omega R^2}{c^2} = \frac{4A\Omega}{c^2}$$

where, $A=4\pi R^2$ is the area of circular optical path.

ullet Optical path difference ΔL

$$\Delta L = c\Delta t = \frac{4c\pi\Omega R^2}{c^2} = \frac{4\Omega\pi R^2}{c} = \frac{4A\Omega}{c}$$

- This result holds in general for any geometric closed path.
- Issue: The path difference is small even with a large area.
- If Ω is very low then it is difficult to measure these angular rates as required closed area is very large.
- Ratio of total enclosed area to the wavelength must be large to sense low angular rate.
- Lack of sensitivity because the path difference for light traveling in the two directions is much less than wavelength.

Active Ring Laser Interferometer

- Improvement of sensitivity
 - ☐ By replacing the beamsplitter with a mirror
 - ☐ Form a resonant circuital optical cavity supporting traveling-wave modes for the counterrotating beams.
- These modes could be made self-sustaining by placing the lasing medium in the cavity.
- Laser frequency is dependent on the cavity length.
- Two oppositely directed traveling waves oscillate independently, each with its own frequency and amplitude.
- Fractional difference between these two frequencies corresponds to the fractional difference in optical path lengths traveled by each wave and, therefore, is proportional to the angular velocity.

Inertial Sensors

Active Ring Laser Interferometer

- To sustain oscillation, there must be enough gain in the medium to overcome losses in the cavity.
- Optical length of beam also need to satisfy

$$N\lambda_{\pm} = L_{\pm}$$

where, L_{\pm} is the optical length of each beam, λ_{\pm} is the wavelength, and N is large integer (10⁵ to 10⁶).

- Cavity geometry determines the wavelengths of a given mode.
- Fractional frequency shift equals the fractional path length

$$\frac{\Delta \nu}{\nu} = \frac{\Delta L}{L} \quad (Proof?)$$

• As $\lambda = c/\nu$, we have beat frequency Δt given by

$$\Delta \nu = \frac{\Delta L \nu}{L} = \frac{4A\Omega}{c} \frac{c}{\lambda L} = \left(\frac{4A}{L\lambda}\right) \Omega$$

Ideal RLG equation

$$\Delta
u = \underbrace{\left(\frac{4A}{L\lambda}\right)}_{\text{Geometric or ideal scale factor } S}$$

where, λ and L are the wavelength of laser light and optical path length or cavity length, respectively.

• On integration of ideal RLG equation

$$\int_{t_1}^{t_2} \Delta \nu dt = S \int_{t_1}^{t_2} \Omega dt \Rightarrow N = S\theta$$

where, N is total phase shift or beats counted during measurement time and θ is total angle of rotation.

ullet Laser gyro is rate integrating gyro as it gives N counts when turned through angle heta.

Dr. Shashi Ranjan Kumar IITB-AE 410/641 Inertial Sensors 14 / 21

Ring Laser Gyro

- RLG is a triangular or square cavity filled with gas, in which two oppositely traveling light waves are generated by stimulated emission of radiation.
- Active laser gyro: A two-mode, continuous wave (cw)
- Passive laser gyro: Lasing medium is external to the cavity.
- Laser gyro combines the properties of an optical oscillator and general relativity to produce the function of the conventional mechanical gyroscopes.
- Components of RLG
 - □ Block material
 - Mirrors
 - Gain medium (He-Ne plasma cavity)
 - Readout mechanism
 - Associated electronics

Ring Laser Gyro

RLG: Example

Consider an equilateral triangular RLG with its side length and height given by 7.239 and 6.2687 cm. Assume input angular velocity is 1 deg/h. The operating wavelength is assumed to be 0.6328 μ m. Compute measurable beat frequency.

- Total optical length = 3(7.29)=21.717 cm
- Area of triangle $A = (1/2)bh = 3.1695(6.2687) = 22.6895 \text{ cm}^2$
- $\bullet~\Omega=1~{\rm deg/h}=4.85{\times}10^{-6}~{\rm rad/s}$
- Measurable beat frequency

$$\Delta\nu = \left(\frac{4A}{L\lambda}\right)\Omega = \frac{4(2.27\times10^{-3})(4.85\times10^{-6})}{2.172\times10^{-1}(0.6328\times10^{-6})}$$
 = 0.32 Hz

Active Ring Laser Interferometer

- How can we increase scale factor sensitivity of RLG?
- Ideal RLG equation

$$\Delta \nu = S\Omega = \left(\frac{4A}{L\lambda}\right)\Omega$$

- Sensitivity of scale factor
 - \square Increase enclosed area A
 - \square Decrease wavelength λ or optical length L
- How does geometric form of the closed path affect scale factor?

Active Ring Laser Interferometer

• For equilateral triangle and square shape

$$\begin{split} S_{ET} = & \frac{4}{L\lambda} \frac{\sqrt{3}}{4} \left(\frac{L}{3} \right)^2 = \frac{1}{\lambda} \left(\frac{L}{3\sqrt{3}} \right) \\ S_{SQ} = & \frac{4}{L\lambda} \frac{L}{4} \frac{L}{4} = \frac{1}{\lambda} \left(\frac{L}{4} \right) \end{split}$$

For a general shape of closed path

$$S = \frac{1}{\lambda}$$
 (Diameter of inscribed circle)

- \bullet Accuracy of RLG \propto Area enclosed by the path and inversely proportional to path length.
- A square laser gyro encloses a greater area for a given path length than triangular one, thus having greater potential accuracy.
- Square configuration: package into a smaller-sized inertial navigation unit.

Dr. Shashi Ranjan Kumar IITB-AE 410/641 Inertial Sensors 19 / 21

Active Ring Laser Interferometer

Equivalent circular RLG: One that gives the same ideal scale factor as the actual polygonal ring laser.

Text/References

Reference

- G. M. Siouris, *Aerospace Avionics Systems: A Modern Synthesis*, Academic Press, Inc. 1993.
- ② D. H. Titterton and J. L. Weston, *Strapdown Inertial Navigation Technology*, Progress in Astronautics and Aeronautics, Vol. 207, ed. 2, ch. 4.

Thank you for your attention !!!