LEPTONS

е

$$J=\frac{1}{2}$$

Mass $m=(548.579909070\pm0.000000016)\times10^{-6}$ u Mass $m=0.5109989461\pm0.0000000031$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m<8\times10^{-9}, \ \mathrm{CL}=90\%\\ |q_{e^+}+q_{e^-}|/e<4\times10^{-8} \end{aligned}$ Magnetic moment anomaly $(g-2)/2=(1159.65218091\pm0.00000026)\times10^{-6}$ $(g_{e^+}-g_{e^-})$ / $g_{\mathrm{average}}=(-0.5\pm2.1)\times10^{-12}$ Electric dipole moment $d<0.87\times10^{-28}$ e cm, $\mathrm{CL}=90\%$ Mean life $\tau>6.6\times10^{28}$ yr, $\mathrm{CL}=90\%$ [a]

 μ

$$J=\frac{1}{2}$$

Mass $m=0.1134289257\pm0.0000000025$ u Mass $m=105.6583745\pm0.0000024$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659209\pm6)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $d=(-0.1\pm0.9)\times10^{-19}$ e cm

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho &= 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.98 \pm 0.04 \\ \alpha/A &= (0 \pm 4) \times 10^{-3} \\ \alpha'/A &= (-10 \pm 20) \times 10^{-3} \\ \beta/A &= (4 \pm 6) \times 10^{-3} \\ \beta'/A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
$e^-\overline{ u}_e u_\mu$	pprox 100%		53
$e^-\overline{ u}_e^{} u_\mu\gamma$	[d] $(6.0\pm0.5)\times10^{-6}$	-8	53
$e^-\overline{ u}_e u_\mu\dot{e}^+e^-$	[e] $(3.4\pm0.4)\times10^{-1}$	-5	53
Lepton Family n	umber (LF) violatin	g modes	
${ m e}^- u_{ m e}\overline{ u}_{\mu}$ LF	[f] < 1.2 %	90%	53
$e^-\gamma$	< 4.2 × 10	-13 90%	53
$e^-e^+e^-$ LF	< 1.0 × 10	-12 90%	53
$e^-2\gamma$	< 7.2 × 10	-11 90%	53

au

$$J=\frac{1}{2}$$

Mass
$$m=1776.86\pm0.12~{\rm MeV}$$
 $(m_{\tau^+}-m_{\tau^-})/m_{\rm average}<2.8\times10^{-4},~{\rm CL}=90\%$ Mean life $\tau=(290.3\pm0.5)\times10^{-15}~{\rm s}$ $c\tau=87.03~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and $<0.013,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})=-0.220~{\rm to}~0.45\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$ ${\rm Im}(d_{\tau})=-0.250~{\rm to}~0.0080\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

Weak dipole moment

$${\rm Re}(d_{\tau}^w) < 0.50 \times 10^{-17}~e\,{\rm cm},\,{\rm CL} = 95\%$$
 ${\rm Im}(d_{\tau}^w) < 1.1 \times 10^{-17}~e\,{\rm cm},\,{\rm CL} = 95\%$

Weak anomalous magnetic dipole moment

$$\begin{array}{l} {\rm Re}(\alpha_{\tau}^{\it w}) < \ 1.1 \times 10^{-3}, \ {\rm CL} = 95\% \\ {\rm Im}(\alpha_{\tau}^{\it w}) < \ 2.7 \times 10^{-3}, \ {\rm CL} = 95\% \\ \tau^{\pm} \rightarrow \ \pi^{\pm} \, {\it K}_{\it S}^{\it 0} \, \nu_{\tau} \ ({\rm RATE \ DIFFERENCE}) \ / \ ({\rm RATE \ SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$$

Decay parameters

See the τ Particle Listings for a note concerning τ -decay parameters.

$$ho(e ext{ or } \mu) = 0.745 \pm 0.008$$
 $ho(e) = 0.747 \pm 0.010$
 $ho(\mu) = 0.763 \pm 0.020$
 $ho(\mu) = 0.985 \pm 0.030$
 $ho(e) = 0.994 \pm 0.040$
 $ho(\mu) = 1.030 \pm 0.059$
 $ho(e ext{ or } \mu) = 0.013 \pm 0.020$
 $ho(\mu) = 0.094 \pm 0.073$

```
(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021

(\delta \xi)(e) = 0.734 \pm 0.028

(\delta \xi)(\mu) = 0.778 \pm 0.037

\xi(\pi) = 0.993 \pm 0.022

\xi(\rho) = 0.994 \pm 0.008

\xi(a_1) = 1.001 \pm 0.027

\xi(\text{all hadronic modes}) = 0.995 \pm 0.007
```

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

 au^- DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

				-1.1	
Modes with	n on	_		-	
particle ⁻ ≥ 0 neutrals $\geq 0K^0\nu_{\tau}$		(85.24	±	0.06) %	_
("1-prong")					
particle ⁻ \geq 0 neutrals \geq 0 $K_L^0 \nu_{\tau}$		`		0.06) %	_
$\mu^- \overline{ u}_\mu u_ au$	[g]	(17.39	\pm	0.04) %	885
$\mu^- \overline{ u}_\mu u_ au \gamma$	[e]	(3.68	\pm	$0.10) \times 10^{-3}$	885
$e^-\overline{ u}_e u_ au$	[g]	(17.82	\pm	0.04) %	888
$e^-\overline{ u}_e u_{ au}\gamma$	[e]	(1.84	\pm	0.05) %	888
$h^- \geq 0 K_L^0 \; u_ au$		(12.03	\pm	0.05) %	883
$h^- u_ au$		(11.51	\pm	0.05) %	883
$\pi^- u_{ au}$	[g]	(10.82	\pm	0.05) %	883
$\mathcal{K}^- u_ au$	[g]	(6.96	\pm	$0.10) \times 10^{-3}$	820
$h^- \geq 1$ neutrals $ u_ au$		(37.00	\pm	0.09) %	_
$h^- \geq 1\pi^0 u_{ au}(\operatorname{ex}.K^0)$		(36.51	\pm	0.09) %	_
$h^-\pi^0 u_{ au}$		(25.93	\pm	0.09) %	878
$\pi^-\pi^0_0 u_ au$	[g]	•		0.09) %	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		•		$3.2) \times 10^{-3}$	878
$K^-\pi^0 u_{\tau}$	[g]			$0.15) \times 10^{-3}$	814
$h^- \geq 2\pi^0 u_ au$		•		0.09) %	_
$h^{-}2\pi^{0}\nu_{\tau}$				0.10) %	862
$h^{-}2\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$		`		0.10) %	862
$\pi^{-}2\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$	[g]	•	\pm	0.10) %	862
$\pi^{-} 2\pi^{0} \nu_{ au} (ext{ex.} \mathcal{K}^{0})$,		< 9		\times 10 ⁻³ CL=95%	862
π^- scalar $\pi^ 2\pi^0$ $ u_ au$ (ex. K^0),		< 7		\times 10 ⁻³ CL=95%	862
$K^-2\pi^0 u_ au$ (ex. K^0)	[g]	(6.5	±	2.2) × 10 ⁻⁴	796
$h^- \geq 3\pi^0 u_ au$		•		0.07) %	_
$h^- \geq 3\pi^0 \nu_{ au} ({ m ex.} \ K^0)$				0.07) %	_
$h^{-}3\pi^{0}\nu_{\tau}$		(1.18	\pm	0.07) %	836
π^- 3 $\pi^0 u_ au$ (ex. K^0)	[g]	(1.04	\pm	0.07) %	836

$K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0} ,	[g]	(4.	8 =	⊢ 2.1) :	× 10 ⁻⁴	765
$h^{-} 4\pi^{0} u_{ au} (ext{ex.} K^{0}) \ h^{-} 4\pi^{0} u_{ au} (ext{ex.} K^{0}, \eta) \ a_{1} (1260) u_{ au} ightarrow \pi^{-} \gamma u_{ au} \ K^{-} \geq 0\pi^{0} \geq 0 K^{0} \geq 0 \gamma u_{ au} \ K^{-} \geq 1 (\pi^{0} ext{or} K^{0} ext{or} \gamma) u_{ au}$		(1. (3. (1.	1 = 8 = 552=	E 0.4 E 1.5 E 0.0) ; ; (29) ⁹	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-4}$ $\%$ $\times 10^{-3}$	800 800 - 820
Mod	des	with	Κ⁰ '	S			
K_S^0 (particles) $^-\nu_{ au}$					8)	× 10 ⁻³	_
$h^-\overline{K}{}^0 u_ au$		(9.	87 =	⊢ 0.1	4) :	× 10 ⁻³	812
$\pi^-\overline{K}^{\dot{0}} u_{ au}$	[g]					$\times 10^{-3}$	812
$\pi^-\overline{\mathcal{K}}{}^0$		(5.	4 =	E 2.1) :	× 10 ⁻⁴	812
$(non ext{-}K^*(892)^-) u_ au$							
$K^-K^0\nu_ au$	[g]					\times 10 ⁻³	737
$K^{-}K^{0} \geq 0\pi^{0}\nu_{\tau}$						× 10 ⁻³	737
$h^{-}\overline{K}^{0}\underline{\pi}^{0}\nu_{\tau}$						× 10 ⁻³	794
$\frac{\pi^- \overline{K}{}^0 \pi^{\dot{0}} \nu_{\tau}}{^{}}}$	[g]					$\times 10^{-3}$	794
$rac{\overline{\mathcal{K}}{}^0 ho^- u_ au}{\mathcal{K}^-\mathcal{K}{}^0\pi^0 u_ au}$						× 10 ⁻³	612
	[g]					× 10 ⁻³	685
$\pi^{-}\overline{K}^{0} \geq 1\pi^{0}\nu_{\tau}$						× 10 ⁻³	_
$\pi^- \overline{K}{}^0 \pi^0 \pi^0 u_ au (ext{ex.} K^0) K^- K^0 \pi^0 \pi^0 u_ au$	[g]					× 10 ⁻⁴	763
$\pi^- K^0 \overline{K^0} u_ au$						$\times 10^{-4}$ CL=95%	619
$\pi^- K_S^0 K_S^0 \nu_{ au}$	[4]					× 10 ⁻³ × 10 ⁻⁴	682 682
$\pi^- K_S^0 K_I^0 u_ au$						× 10 ⁻³	
π^{-} κ_{S}^{K} $\Gamma^{\nu_{\tau}}$	[g]						682
$\pi^ K_L^{ec{0}}$ $K_L^{ec{0}}$ $ u_ au^ u_ au^ u_ au^ u_ au^ u_ au^-$						× 10 ⁻⁴	682
$\pi^- K^0 K^0 \pi^0 \nu_{ au}$	[1					× 10 ⁻⁴	614
$K^{*-}K^{0}\pi^{0}\nu_{ au} \rightarrow$	[g]					× 10 ⁻⁵	614
$\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}$		(1.	08 =	E U.2	1);	× 10 ⁻⁵	_
$f_1(1285)\pi^-\nu_{\tau} \rightarrow$		(6	0	. 15	١.	× 10 ⁻⁶	
$\pi^- K^0_S K^0_S \pi^0 \nu_{\tau}$		(0.	0 =	E 1.5) >	× 10 °	_
$f_1(1420)\pi^- u_ au$ $ o$		()	1		١,	× 10 ⁻⁶	
$\pi^- K^0_{S} K^0_{S} \pi^0 \nu_{\tau}$		(2.	4 =	E U.6) /	x 10 °	
	[4]	(3	2 _	L 1 2) ,	× 10 ⁻⁴	614
$\pi^- {\mathcal K}_S^0 {\mathcal K}_L^0 \pi^0 u_ au$ $\pi^- {\mathcal K}_L^0 {\mathcal K}_L^0 \pi^0 u_ au$						× 10 × 10 ⁻⁵	614
$\kappa - \kappa_0 \kappa_0$		< 6.		L U.Z		× 10 ⁻⁷ CL=90%	466
$K^- K_S^0 K_S^0 u_ au$ $K^- K_S^0 K_S^0 \pi^0 u_ au$		< 0. < 4.				$\times 10^{-7} \text{CL} = 90\%$ $\times 10^{-7} \text{CL} = 90\%$	337
						$\times 10^{-7} \text{CL} = 90\%$ $\times 10^{-3} \text{CL} = 95\%$	
$K^0h^+h^-h^- \geq 0$ neutrals $ u_ au$ $K^0h^+h^-h^- u_ au$	[~]	< 1.				$\times 10^{-3} \text{CL} = 95\%$ $\times 10^{-4}$	760 760
κ ii ii ii $ u_{ au}$	[g]	(2.	ວ =	_ ∠.∪)	× 10	760

Modes with three charged particles

b = b = b + > 0		(15.01 + 0.06) 0/	061
$h^-h^-h^+ \geq 0$ neutrals $\geq 0K_L^0\nu_{\tau}$		$(15.21 \pm 0.06)\%$	861
$h^-h^-h^+ \geq 0$ neutrals ν_{τ}		$(14.55 \pm 0.06)\%$	861
(ex. $K_S^0 \rightarrow \pi^+\pi^-$)			
("3-prong")			
$h^-h^-h^+ u_ au$		(9.80 ± 0.05) %	861
$h^- h^- h^+ u_ au$ (ex. K^0)		(9.46 ± 0.05) %	861
$h^- h^- h^+ u_{ au} (ext{ex.} extit{K}^0, \omega)$		(9.43 ± 0.05) %	861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$		(9.31 ± 0.05) %	861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0})		(9.02 ± 0.05) %	861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0}),$		< 2.4 % CL=95%	861
non-axial vector			
$\pi^-\pi^+\pi^- u_ au$ (ex. K^0 , ω)	[g]	(8.99 ± 0.05) %	861
$\mathit{h^-h^-h^+} \geq 1$ neutrals $ u_{ au}$		$(5.29 \pm 0.05)\%$	_
$h^- h^- h^+ \geq 1 \pi^0 u_{ au} (ext{ex. } \dot{K}^0)$		(5.09 ± 0.05)%	_
$h^- h^- h^+ \pi^0 \nu_{\tau}$		(4.76 ± 0.05) %	834
$h^- h^- h^+ \pi^0 \nu_{\tau} (\text{ex.} K^0)$		(4.57 ± 0.05) %	834
$h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}(\text{ex. }K^{0},\omega)$		(2.79 ± 0.07) %	834
$\pi^-\pi^+\pi^-\pi^0 u_{ au}$		(4.62 ± 0.05) %	834
$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0})		(4.49 ± 0.05) %	834
$\pi^-\pi^+\pi^-\pi^0\nu_{\tau}(\mathrm{ex}.K^0,\omega)$	[~]	$(2.74 \pm 0.07)\%$	834
$h^-h^-h^+ \geq 2\pi^0 \nu_{\tau} (ex.$	[8]	•	034
K^0)		$(5.17 \pm 0.31) \times 10^{-3}$	_
$h^-h^-h^+2\pi^0 u_ au$		(5.05 0.21) \ 10=3	707
		$(5.05 \pm 0.31) \times 10^{-3}$	797
$h^-h^-h^+2\pi^0\nu_{\tau}(\text{ex}.K^0)$		$(4.95 \pm 0.31) \times 10^{-3}$	797
$h^-h^-h^+2\pi^0\nu_{\tau}(\text{ex.}K^0,\omega,\eta)$	[g]	· · · · · · · · · · · · · · · · · · ·	797
$h^-h^-h^+3\pi^0\nu_{\tau}$		$(2.12 \pm 0.30) \times 10^{-4}$	749
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$		$(1.94 \pm 0.30) \times 10^{-4}$	749
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0} , η ,		$(1.7 \pm 0.4) \times 10^{-4}$	_
$f_1(1285))$		_	
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{ au}$ (ex. K^{0} , η ,	[g]	$(1.4 \pm 2.7) \times 10^{-5}$	_
ω , $f_1(1285))$			
$K^-h^+h^-\geq0$ neutrals $ u_ au$		$(6.29 \pm 0.14) \times 10^{-3}$	794
$K^- h^+ \pi^- u_{ au} (ext{ex.} K^0)$		$(4.37 \pm 0.07) \times 10^{-3}$	794
$K^- h^+ \pi^- \pi^0 \nu_{\tau} (\text{ex.} K^0)$		$(8.6 \pm 1.2) \times 10^{-4}$	763
$\mathcal{K}^-\pi^+\pi^- \geq 0$ neutrals $ u_{ au}$		$(4.77 \pm 0.14) \times 10^{-3}$	794
$K^-\pi^+\pi^- >$		$(3.73 \pm 0.13) \times 10^{-3}$	794
$K^-\pi^+\pi^- \geq 0\pi^0 u_ au(ext{ex.}K^0)$,	
$K^-\pi^+\pi^- u_{\tau}$		$(3.45 \pm 0.07) \times 10^{-3}$	794
$K^{-}\pi^{+}\pi^{-}\nu_{\tau}^{'}(\text{ex}.K^{0})$		$(2.93 \pm 0.07) \times 10^{-3}$	794
$K^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0,\omega)$	[g]	$(2.93 \pm 0.07) \times 10^{-3}$	794
$\kappa^- \rho^0 \nu_{\tau} \rightarrow$	[0]	$(1.4 \pm 0.5) \times 10^{-3}$	_
$K^-\pi^+\pi^- u_ au$		(= : = : : : : : : : : : : : : : : : :	
$\mathcal{K}^-\pi^+\pi^-\pi^0 u_ au$		$(1.31 \pm 0.12) \times 10^{-3}$	763
$n n n \nu \tau$		(1.01 ± 0.12) ∧ 10	, 03

Modes with five charged particles

Miscellaneous other allowed modes

$K^*(892)^- \nu_{ au}$		(1.20	\pm	0.07) %	6	S=1.8	665
$K^*(892)^- \nu_{ au} ightarrow \pi^- \overline{K}{}^0 \nu_{ au}$		(7.83	\pm	0.26) >	10^{-3}		_
$K^*(892)^0K^- \geq 0$ neutrals $ u_ au$		(3.2	\pm	1.4) >	10^{-3}		542
$K^*(892)^0 K^- u_ au$		(2.1	\pm	0.4) >	10^{-3}		542
\overline{K}^* (892) $^0\pi^- \geq 0$ neutrals $ u_ au$		(3.8	\pm	1.7) >	10^{-3}		655
$\overline{K}^*(892)^0 \pi^- \nu_{ au}$		(10^{-3}		655
$(\overline{K}^*(892)\pi)^-\nu_{ au} ightarrow \pi^0\pi^0 u_{ au}$		(1.0	±	0.4) >	10^{-3}		_
$K_1(1270)^- \nu_{\tau}$		(4.7	\pm	1.1) ×	10^{-3}		433
$K_1(1400)^- u_ au$		(1.7	\pm	2.6) >	10 ⁻³	S=1.7	335
$K^*(1410)^- u_ au$							10-3		320
$K_0^*(1430)^- \nu_{ au}$		<	5			>	10 ⁻⁴ C	L=95%	317
$K_2^0(1430)^- \nu_{\tau}$		<	3			>	10 ⁻³ C	L=95%	317
$\eta \pi^- \nu_{ au}$		<	9.9			>	10 ⁻⁵ C	L=95%	797
$\stackrel{'}{\eta}\pi^-\pi^0_{}\nu_{\tau}$	[g]) ×	10^{-3}		778
$\eta\pi^-\pi^0\pi^0 u_ au$							10^{-4}		746
$\eta K^- \nu_{ au}$	[g]						10^{-4}		719
$\eta K^*(892)^- \nu_{ au}$		(1.38	\pm	0.15) ×	10^{-4}		511
$\etaK^-\pi^0 u_ au$	[g]	(4.8	\pm	1.2) >	10^{-5}		665
$\eta K^-\pi^0$ (non- K^* (892)) $ u_ au$		<	3.5			>	10 ⁻⁵ C	L=90%	_
$\eta \overline{K}^0 \pi^- \nu_{ au}$	[g]	(9.4	\pm	1.5) >	10^{-5}		661
$\eta \overline{K}{}^0 \pi^- \pi^0 \nu_{\tau}$		<	5.0				10 ⁻⁵ C		590
$\eta K^- K^0 \nu_ au$		<	9.0				10 ⁻⁶ C		430
$\eta \pi^+ \pi^- \pi^- \geq 0$ neutrals ν_{τ}			3				10 ⁻³ C	L=90%	744
$\eta \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0)$							10 ⁻⁴		744
$\eta \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0, f_1)$	5))	`		\pm	1.6	,	(10 ⁻⁵		_
$\eta a_1(1260)^- \nu_\tau \to \eta \pi^- \rho^0 \nu_\tau$			3.9				10 ⁻⁴ C		_
$\eta \eta \pi^- \nu_{\tau}$			7.4				10 ⁻⁶ C		637
$\eta \eta \pi^- \pi^0 \nu_{\tau}$			2.0				10 ⁻⁴ C		559
$\eta \eta K^- \nu_{\tau}$			3.0				10 ⁻⁶ C		382
$\eta'(958)\pi^-\nu_{\tau}$			4.0				(10 ⁻⁶ C		620
$\eta'(958)\pi^-\pi^0\nu_{\tau}$			1.2				10 ⁻⁵ C		591
$\eta'(958) K^- \nu_{\tau}$			2.4				10 ⁻⁶ C	L=90%	495
$\phi \pi^- \nu_{ au}$							10^{-5}		585
$\phi K^- \nu_{\tau}$	[g]						10^{-5}	6 10	445
$f_1(1285)\pi^-\nu_{\tau}$		•					10^{-4}		408
$f_1(1285)\pi^- u_ au ightarrow$		(1.18	土	0.07) >	10 ⁻⁴	S=1.3	_
$\eta \pi^- \pi^+ \pi^- u_ au$ $f_1(1285) \pi^- u_ au ightarrow$	[1	(ΕO		0.4	١,	. 10-5		
$3\pi^{-}2\pi^{+}\nu_{\tau}$	[g]	(5.2	土	0.4) ×	10 ⁻⁵		_
$\pi(1300)^- \nu_{\tau} \rightarrow (\rho \pi)^- \nu_{\tau} \rightarrow$		_	1.0			_	10 ⁻⁴ C	I —Q∩%	_
$(3\pi)^{-}\nu_{\tau} \rightarrow (\rho\pi)^{-}\nu_{\tau} \rightarrow$			1.0			×	, 10 C	L—9U/0	
$(S^n)^{\nu} \tau$									

$$\pi(1300)^{-}\nu_{\tau} \rightarrow \qquad < 1.9 \qquad \times 10^{-4} \text{CL} = 90\% \qquad - \\ ((\pi\pi)_{S-\text{wave}} \pi)^{-}\nu_{\tau} \rightarrow \\ (3\pi)^{-}\nu_{\tau} \qquad \qquad (2.40 \pm 0.08) \% \qquad 708 \\ h^{-}\omega \geq 0 \text{ neutrals } \nu_{\tau} \qquad \qquad (1.99 \pm 0.06) \% \qquad 708 \\ \pi^{-}\omega \nu_{\tau} \qquad \qquad [g] \quad (1.95 \pm 0.06) \% \qquad 708 \\ K^{-}\omega \nu_{\tau} \qquad \qquad [g] \quad (4.1 \pm 0.9) \times 10^{-4} \qquad 610 \\ h^{-}\omega \pi^{0}\nu_{\tau} \qquad \qquad [g] \quad (4.1 \pm 0.4) \times 10^{-3} \qquad 684 \\ h^{-}\omega 2\pi^{0}\nu_{\tau} \qquad \qquad (1.4 \pm 0.5) \times 10^{-4} \qquad 644 \\ \pi^{-}\omega 2\pi^{0}\nu_{\tau} \qquad \qquad [g] \quad (7.1 \pm 1.6) \times 10^{-5} \qquad 644 \\ h^{-}2\omega \nu_{\tau} \qquad \qquad < 5.4 \qquad \times 10^{-7} \text{CL} = 90\% \qquad 250 \\ 2h^{-}h^{+}\omega \nu_{\tau} \qquad \qquad (1.20 \pm 0.22) \times 10^{-4} \qquad 641 \\ 2\pi^{-}\pi^{+}\omega \nu_{\tau} (\text{ex.}K^{0}) \qquad [g] \quad (8.4 \pm 0.6) \times 10^{-5} \qquad 641$$

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+\pi^-\pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^-\pi^+\pi^-$). B means baryon number violation.

$e^-\gamma$	LF	< 3.3	$\times 10^{-8}$ CL=90%	888
$\mu^-\gamma$	LF	< 4.4	\times 10 ⁻⁸ CL=90%	885
$e^-\pi^0$	LF	< 8.0	\times 10 ⁻⁸ CL=90%	883
$\mu^-\pi^0$	LF	< 1.1	$\times 10^{-7} CL = 90\%$	880
$e^-K^0_S$	LF	< 2.6	\times 10 ⁻⁸ CL=90%	819
$\mu^- K_S^0$	LF	< 2.3	\times 10 ⁻⁸ CL=90%	815
$e^-\eta$	LF	< 9.2	$\times 10^{-8}$ CL=90%	804
$\mu^- \eta$	LF	< 6.5	\times 10 ⁻⁸ CL=90%	800
$e^- ho^0$	LF	< 1.8	\times 10 ⁻⁸ CL=90%	719
$\mu^- ho^0$	LF	< 1.2	\times 10 ⁻⁸ CL=90%	715
$e^-\omega$	LF	< 4.8	\times 10 ⁻⁸ CL=90%	716
$\mu^-\omega$	LF	< 4.7	\times 10 ⁻⁸ CL=90%	711
$e^{-}K^{*}(892)^{0}$	LF	< 3.2	$\times 10^{-8}$ CL=90%	665
$\mu^- K^* (892)^0$	LF	< 5.9	$\times 10^{-8}$ CL=90%	659
$e^{-}\overline{K}^{*}(892)^{0}$	LF	< 3.4	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	< 7.0	$\times 10^{-8}$ CL=90%	659
$e^-\eta'(958)$	LF	< 1.6	\times 10 ⁻⁷ CL=90%	630
$\mu^- \eta'(958)$	LF	< 1.3	\times 10 ⁻⁷ CL=90%	625
$e^- f_0(980) \to e^- \pi^+ \pi^-$	LF	< 3.2	$\times 10^{-8}$ CL=90%	_
$\mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-$	LF	< 3.4	$\times 10^{-8}$ CL=90%	_
$e^-\phi$	LF	< 3.1	$\times 10^{-8}$ CL=90%	596
$\mu^-\phi$	LF	< 8.4	$\times 10^{-8}$ CL=90%	590
$e^{-}e^{+}e^{-}$	LF	< 2.7	$\times 10^{-8}$ CL=90%	888
$e^{-}\mu^{+}\mu^{-}$	LF	< 2.7	$\times 10^{-8}$ CL=90%	882
$e^+\mu^-\mu^-$	LF	< 1.7	$\times 10^{-8}$ CL=90%	882

μ^- e $^+$ e $^-$	LF	< 1.8	$\times 10^{-8}$ CL=90%	885
$\mu^+e^-e^-$	LF	< 1.5	$\times 10^{-8}$ CL=90%	885
$\mu^-\mu^+\mu^-$	LF	< 2.1	$\times 10^{-8}$ CL=90%	873
$e^-\pi^+\pi^-$	LF	< 2.3	$\times 10^{-8}$ CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	< 2.0	$\times 10^{-8}$ CL=90%	877
$\mu^{-}\pi^{+}\pi^{-}$	LF	< 2.1	$\times 10^{-8}$ CL=90%	866
$\mu^{+}\pi^{-}\pi^{-}$	L	< 3.9	$\times 10^{-8}$ CL=90%	866
$e^-\pi^+K^-$	LF	< 3.7	$\times 10^{-8}$ CL=90%	813
$e^-\pi^-K^+$	LF	< 3.1	$\times 10^{-8}$ CL=90%	813
$e^+\pi^-K^-$	L	< 3.2	$\times 10^{-8}$ CL=90%	813
$e^{-}K_{S}^{0}K_{S}^{0}$	LF	< 7.1	$\times 10^{-8}$ CL=90%	736
$e^-K^+K^-$	LF	< 3.4	$\times 10^{-8} CL = 90\%$	738
$e^+ K^- K^-$	L	< 3.3	$\times 10^{-8} CL = 90\%$	738
$\mu^-\pi^+$ K $^-$	LF	< 8.6	$\times 10^{-8} CL = 90\%$	800
$\mu^{-}\pi^{-}K^{+}$	LF	< 4.5	$\times 10^{-8} CL = 90\%$	800
$\mu^{+}\pi^{-}K^{-}$	L	< 4.8	$\times 10^{-8} CL = 90\%$	800
$\mu^- K_S^0 K_S^0$	LF	< 8.0	$\times 10^{-8} CL = 90\%$	696
$\mu^- K^+ K^-$	LF	< 4.4	$\times 10^{-8}$ CL=90%	699
$\mu^+ K^- K^-$	L	< 4.7	$\times 10^{-8}$ CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	< 6.5	\times 10 ⁻⁶ CL=90%	878
$\mu^-\pi^0\pi^0$	LF	< 1.4	$\times 10^{-5} CL = 90\%$	867
$e^-\eta\eta$	LF	< 3.5	$\times 10^{-5}$ CL=90%	699
$\mu^- \eta \eta$	LF	< 6.0	$\times 10^{-5}$ CL=90%	653
$e^-\pi^0\eta$	LF	< 2.4	$\times 10^{-5}$ CL=90%	798
$\mu^-\pi^0\eta$	LF	< 2.2	$\times 10^{-5}$ CL=90%	784
$p\mu^-\mu^-$	L,B	< 4.4	$\times 10^{-7} CL = 90\%$	618
$\overline{p}\mu^+\mu^-$	L,B	< 3.3	$\times 10^{-7}$ CL=90%	618
$\overline{P}\gamma$	L,B	< 3.5	$\times 10^{-6}$ CL=90%	641
$\overline{p}\pi^0$	L,B	< 1.5	$\times 10^{-5}$ CL=90%	632
$\overline{p}2\pi^0$	L,B	< 3.3	$\times 10^{-5}$ CL=90%	604
$\overline{p}\eta$	L,B	< 8.9	$\times 10^{-6} CL = 90\%$	475
$\overline{p}\pi^0\eta$	L,B	< 2.7	$\times 10^{-5}$ CL=90%	360
$\Lambda\pi^-$	L,B	< 7.2	$\times 10^{-8} CL = 90\%$	525
$\overline{\Lambda}\pi^-$	L,B	< 1.4	$\times 10^{-7} CL = 90\%$	525
e−light boson	LF	< 2.7	\times 10 ⁻³ CL=95%	_
μ^- light boson	LF	< 5	\times 10 ⁻³ CL=95%	_

Heavy Charged Lepton Searches

 L^{\pm} – charged lepton

Mass m>100.8 GeV, CL =95% $^{[h]}$ Decay to $\nu\,W.$

 L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

```
Mass m < 2 eV (tritium decay)
Mean life/mass, \tau/m > 300 s/eV, CL = 90% (reactor)
Mean life/mass, \tau/m > 7 \times 10^9 s/eV (solar)
Mean life/mass, \tau/m > 15.4 s/eV, CL = 90% (accelerator)
Magnetic moment \mu < 0.29 \times 10^{-10}~\mu_B, CL = 90% (reactor)
```

Number of Neutrino Types

```
Number \it N=2.984\pm0.008 (Standard Model fits to LEP-SLC data) 
 Number \it N=2.92\pm0.05 (S = 1.2) (Direct measurement of invisible \it Z width)
```

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this *Review*.

$$\begin{array}{l} \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) = 0.51 \pm 0.04 \quad \text{(normal mass hierarchy)} \\ \sin^2(\theta_{23}) = 0.50 \pm 0.04 \quad \text{(inverted mass hierarchy)} \\ \Delta m_{32}^2 = (2.45 \pm 0.05) \times 10^{-3} \text{ eV}^2 \ [i] \quad \text{(normal mass hierarchy)} \\ \Delta m_{32}^2 = (2.52 \pm 0.05) \times 10^{-3} \text{ eV}^2 \ [i] \quad \text{(inverted mass hierarchy)} \\ \sin^2(\theta_{13}) = (2.10 \pm 0.11) \times 10^{-2} \end{array}$$

Stable Neutral Heavy Lepton Mass Limits

```
Mass m > 45.0 GeV, CL = 95\% (Dirac)
Mass m > 39.5 GeV, CL = 95\% (Majorana)
```

Neutral Heavy Lepton Mass Limits

```
Mass m>90.3 GeV, CL = 95%

(Dirac \nu_L coupling to e, \mu, \tau; conservative case(\tau))

Mass m>80.5 GeV, CL = 95%

(Majorana \nu_L coupling to e, \mu, \tau; conservative case(\tau))
```

NOTES

- [a] This is the best limit for the mode $e^- \rightarrow \nu \gamma$. The best limit for "electron disappearance" is 6.4×10^{24} yr.
- [b] See the "Note on Muon Decay Parameters" in the μ Particle Listings for definitions and details.
- [c] P_μ is the longitudinal polarization of the muon from pion decay. In standard V-A theory, $P_\mu=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with the γ energy > 10 MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.
- [i] The sign of Δm_{32}^2 is not known at this time. The range quoted is for the absolute value.