План первой недели

На этой неделе 6 основных уроков.

- Векторное пространство
- Линейное отображение
- Матрицы
- Матрицы и линейные отображения
- Линейные отображения на плоскости
- Умножение матриц.

качественные материалы для вашего развития

Как ясно из названий, на первых двух уроках мы определим векторные пространства и познакомимся с линейными отображениями. На следующих уроках мы поймём, как с линейными отображениями связаны матрицы. На последнем уроке мы научимся перемножать матрицы.

Важно. Последний урок наиболее сложный. Середина недели (по количеству усилий) располагается примерно в середине урока "Матрицы и линейные отображения".

Как обычно, в <u>конце недели</u> мы выложили файл, в котором собраны все условия "зелёных" задач первой недели. Там же будет файлшпаргалка по первой неделе.

Комментарий. Некоторые из этих уроков не поместились в один урок Степика. Поэтому мы разбили их на два урока Степика – например, у нас есть "Векторное пространство (1)" и "Векторное пространство (2)". В нашей терминологии мы называем обе этих сущности вместе уроком "Векторное пространство".

Векторное пространство

Линейная алгебра занимается векторами и операциями над векторами.

На этом уроке мы

- узнаем, что такое векторы и как они используются в машинном обучении
- введём понятие векторного пространства и обсудим, зачем оно нам нужно
- начнём изучать операции над векторами: научимся складывать векторы друг с другом и умножать вектор на число

качественные материалы для вашего развития

Определение. Вектор в \mathbb{R}^n это упорядоченный набор из n действительных чисел.

Напоминание: выражение "действительное число" это синоним выражения "элемент множества \mathbb{R}^n .

Пример 1. Вот упорядоченный набор из четырёх чисел: $(-10,\sqrt{2}+1,3,\frac{15}{7})$. Это вектор.

Комментарий. Слово "упорядоченный" означает, что порядок чисел важен. То есть, например, векторы (3,-7) и (-7,3) это два разных вектора (а не разные способы записать один и тот же вектор).

Пример 2. Любое действительное число можно воспринимать как вектор в \mathbb{R}^1 .

Выберите все верные утверждения.

Выберите все подходящие ответы из списка

```
2 — вектор в \mathbb{R}^1. Набор чисел (3,-5,\frac43,0.625) — вектор в \mathbb{R}^4. Набор чисел (\sqrt{5},\sqrt{10},7) — вектор в \mathbb{R}^3. (4,-1,3) и (4,3,-1) обозначают один и тот же вектор в \mathbb{R}^3.
```

Как векторы используются в машинном обучении?

Самое частое использование такое. Мы берём интересующие нас объекты и заменяем каждый объект на вектор признаков этого объекта. После этого мы работаем только с этими векторами признаков.

То есть ML модель на вход будет получать вектор, внутри себя что-то делать с этим вектором, и на выход выдавать интересующее нас предсказание. По сути, вся работа ML модели — это какие-то манипуляции с векторами. В начале курса по математическому анализу вы уже видели некоторые примеры представления объекта как вектора признаков. Вот ещё несколько.

Пример 1. Допустим, мы хотим предсказывать по конкретному пользователю, насколько вероятно, что он перестанет пользоваться нашим приложением-магазином в течение ближайшего месяца. Прежде всего, нужно определить, какими признаками мы будем описывать пользователей. Один из возможных вариантов:

- количество посещений приложения за последний месяц
- количество покупок в приложении за последний месяц
- суммарное число минут проведённых в приложении за последний месяц
- число дней с момента скачивания приложения

Если Васечкин скачал приложение 2 недели назад и ни разу туда не заходил, то его будет описывать вектор (0,0,0,14). А Петечкину, который скачал приложение 4 дня назад и уже 3 раза заходил туда, выбирал каждый раз по 2 часа товары и только на третий раз сделал заказ, будет соответствовать вектор (3,1,360,4).

Пример 2. Мы можем добавлять в сталь кремний, марганец и никель, чтобы увеличить её прочность. Сталь с добавками называется легированной сталью. Мы хотим уметь вычислять, как прочность легированной стали зависит от содержания этих добавок. Тогда нашими объектами будут образцы легированной стали с конкретными содержаниями добавок. Например, образцу с содержанием кремния 2%, марганца 0.5% и никеля 0.8%, мы сопоставим вектор (2,0.5,0.8). Наша модель на вход будет получать вектор, а на выход выдавать число, которое описывает прочность.

Пример 3. Допустим, мы хотим построить модель, которая будет предсказывать рыночную стоимость б/у автомобиля. В качестве признаков можно использовать:

- год выпуска
- пробег
- стоимость автомобиля, когда его в первый раз покупали

Численные и категориальные признаки

Ясно, что перечисленные выше признаки выражаются числами. Такие признаки называются численными. Из них можно составить вектор.

Но, например, марка или модель автомобиля тоже были бы полезными признаками – очевидно, цена автомобиля от них зависит. Эти признаки говорят, что автомобиль относится к некоторой категории, но не дают никакого конкретного числа. Такие признаки называются категориальными. Перед началом обучения категориальные признаки всё равно переводят в численный вид и вставляют в вектор объекта. В нашем курсе мы считаем, что все признаки численные.

Векторное пространство: мотивировка

Допустим, мы уже убедили вас, что в машинном обучении векторы встречаются везде. Давайте на следующем примере поймём, что если у нас есть сколько-то векторов длины n, то полезно рассмотреть множество <u>всех</u> векторов длины n.

Пусть у нас есть данные о 3000 машинах. Каждой машине сопоставлен вектор её признаков, например, длины 5, и цена машины. Мы хотим научиться предсказывать цену машины по вектору её признаков. То есть мы будем определять цену машины при помощи алгоритма, который на вход получает вектор признаков машины, а на выход выдаёт её цену.

Нужно, чтобы наш алгоритм работал на всех векторах длины 5, а не только на тех 3000 векторах, которые у нас уже есть. Почему? Потому что когда мы встретим следующую, 3001-ую машину, мы хотим, чтобы наш алгоритм смог вычислить её цену. И мы заранее не знаем, какой именно будет вектор признаков этой 3001-ой машины. Если мы сможем хорошо предсказать её цену, то это и будет значить, что наш алгоритм "научился предсказывать цену". А если наш алгоритм хорошо предсказывает цену только для 3000 машин, которые он уже видел, а для всех остальных машин предсказывает плохо, то он почти ничему не научился. Мы могли бы с тем же успехом не строить никакой алгоритм, а просто запомнить векторы признаков и цены этих 3000 машин.

Поэтому полезно рассматривать множество всех векторов длины 5, а не только множество из 3000 наших векторов длины 5.

Векторное пространство $\mathbb{R}^{\mathbf{n}}$

Определение. \mathbb{R}^n – это множество всех упорядоченных наборов вида (x_1, x_2, \dots, x_n) , таких что $\forall i: x_i \in \mathbb{R}$. Каждый такой набор называется вектором. Множество \mathbb{R}^n называется векторным пространством.

Обозначение. Мы будем обозначать вектор буквой со стрелочкой, а все его координаты – обычными буквами с индексами. Вот так:

$$\vec{x} = (x_1, x_2, \dots, x_n).$$

Пример 1. Векторное пространство \mathbb{R}^2 это множество упорядоченных пар (x_1,x_2) , таких что $x_1,x_2\in\mathbb{R}$. Например, $(1,1)\in\mathbb{R}^2$, $(3,-\sqrt{2})\in\mathbb{R}^2$. Вектор $(x_1,x_2)\in\mathbb{R}^2$ можно представлять себе как стрелку на координатной плоскости. Начало этой стрелки будет в точке (0,0), а конец в точке с координатой x_1 по оси OX и координатой x_2 по оси OY.

Пример 2. Аналогично, векторное пространство \mathbb{R}^3 это множество упорядоченных троек (x_1, x_2, x_3) , таких что $x_1, x_2, x_3 \in \mathbb{R}$. Множество \mathbb{R}^3 можно представлять себе как обычное трёхмерное пространство. Вектор из \mathbb{R}^3 также можно представлять себе в виде стрелки.

Нарисовать или визуально представить себе $\mathbb{R}^4, \mathbb{R}^5, \mathbb{R}^6, \dots$ довольно сложно. Векторы из этих пространств всё так же можно представлять себе как стрелки (уже не пытаясь представить себе пространство, в котором эти стрелки живут).

Важно понимать, что вектор это упорядоченный набор чисел, а "стрелка" это просто удобная визуализация вектора. Представлять себе стрелки иногда проще или удобнее, чем упорядоченные наборы чисел. Также взгляд на векторы как на стрелки иногда помогает объяснить, что мы делаем с векторами. Но все доказательства и строгие рассуждения проводятся не со стрелками, а с упорядоченными наборами чисел или векторами как символами.

Комментарий. На этом шаге мы лукавим. На самом деле \mathbb{R}^n это только частный случай векторного пространства. Но пока что давайте считать, что \mathbb{R}^n это синоним векторного пространства.

Выберите все верные утверждения

Выберите все подходящие ответы из списка

$$(7, -\sqrt{3}, \pi) \in \mathbb{R}^2$$
$$(1 + \sqrt{3}, 2) \in \mathbb{R}^3$$
$$(-1, 2, 1, -2) \in \mathbb{R}^4$$
$$(1\frac{1}{5}, 3) \in \mathbb{R}^3$$

Что можно делать с векторами?

Как мы уже поняли, наша ML модель занимается тем, что как-то манипулирует векторами. Вопрос: что вообще можно делать с векторами?

Наиболее часто встречающиеся операции такие:

- 1. Сложение двух векторов
- 2. Умножение вектора на число
- 3. Скалярное произведение двух векторов
- 4. Применение линейного отображения к вектору

Сложение векторов и умножение вектора на число мы будем изучать в оставшейся части этого урока.

А линейные отображения будем изучать всю первую неделю.

Комментарий. На самом деле, *умножение* вектора на число – частный случай *линейного* отображения. И скалярное произведение двух векторов в каком-то смысле частный случай *линейного* отображения. Но изучать эти частные случаи проще и полезнее отдельно, что мы и сделаем.

Сложение векторов из \mathbb{R}^n

Сложить можно любые два вектора из одного и того же векторного пространства \mathbb{R}^n . Результатом сложения также будет вектор из \mathbb{R}^n . Сумма векторов $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ определяется так:

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n.$$

Пример 1. Можно взять векторы (3.14,10) и (2,0.5) из \mathbb{R}^2 и сложить: (3.14,10)+(2,0.5)=(3.14+2,10+0.5)=(5.14,10.5), получив вектор $(5.14,10.5)\in\mathbb{R}^2$.

Нельзя складывать векторы из разных векторных пространств. Например, нельзя сложить вектор $(1,2) \in \mathbb{R}^2$ с вектором $(5,6,7) \in \mathbb{R}^3$.

На языке стрелок сложение векторов можно представлять себе так:

Чтобы сложить векторы \vec{x} и \vec{y} мы параллельно переносим стрелку \vec{y} так, чтобы её начало совпало с концом стрелки \vec{x} . Точка, в которой окажется после этого конец стрелки \vec{y} , соответствует вектору $\vec{x}+\vec{y}$.

Выберите все верные утверждения

Выберите все подходящие ответы из списка

$$(\sqrt{7},1)+(-\sqrt{7},8)=(0,9)$$

$$(1,2,3,4) + 2 = (3,4,5,6)$$

$$(5,3) + (-1,2) = (4,1)$$

$$(1,0,0) + (0,0,1) = (1,0,1)$$

