Finite Elemente

Pascal Kraft

24. Oktober 2013

Inhaltsverzeichnis

Inl	haltsverzeichnis	3
	Vorwort 0.1. Über dieses Skript 0.2. Wer 0.3. Und sonst so?	5
1.	Variationsgleichung 1.1. Modellierung mit Partiellen Dfferentialgleichungen	7
Α.	Sätze	9
St	ichwortverzeichnis	9

0. Vorwort

0.1. Über dieses Skript

Dieses Skript ist als Mitschrieb der Vorlesung Finite Elemente im Wintersemester 2013/14 von Prof. Dr. Willy Dörfler entstanden.

Es wird versucht, das Skript möglichst aktuell zu halten, während die Vorlesung stattfindet.

0.2. Wer

Dieses Skript wurde erstellt von Pascal Kraft. Ihr erreicht mich mit Verbesserungsvorschlägen etc. unter pascal.kraft@web.de.

0.3. Und sonst so?

Dieses Skriptum darf frei weitergegeben werden. Als Grundlage dienen einige Style-Definitionen, die für die Analysis-Skripte auf http://mitschriebwiki.nomeata.de/ verwendet werden. Ich habe mich dafür entschlossen, weil mir die Style-Definitionen in den Schmoeger-Skripten sehr gut gefallen.

1. Variationsgleichung

1.1. Modellierung mit partiellen Dfferentialgleichungen

Wärmeleitungsgleichung

Wir betrachten einen Wärmeleiter, der am einen Ende die Temperatur T_1 und am anderen Ende die Temperatur T_2 hat. O.B.d.A. $T_1 > T_2$. Dann fließt Wärme von 1 nach 2. Sei weiter Ω ein Gebiet,

$$u:(0,T)\times\overline{\Omega}\to\mathbb{R}_{>0}$$

sei die Temperatur abhängig von Zeit und Ort. Eine Temperaturdifferenz erzeugt einen Wärmefluss $q=-a\nabla u$ (a>0 Materialkonstante Wärmeleitfähigkeit). Es ergibt sich die Bilanzgleichung

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \rho = \int_{\partial V} q \cdot n$$

wobei V das Volumen, ρ die Dichte, q der Wärmefluss und n die äußere Normale ist. Es folgt

$$\int_{V} (\partial_t \rho + \nabla \cdot q) = 0 \quad \forall V \subset \Omega$$

und daraus, da das Integral für beliebige Gebiete V gilt, auch

$$\partial_t \rho + \nabla \cdot q = 0$$

In oben beschriebenen Fall gelten $\rho=u$ und $q=-a\operatorname{grad} u$ also

$$\partial_t u - \nabla \cdot (a\nabla u) = 0$$

in Ω . Wir erwarten einen Temperaturausgleich für große Zeiten, also einen stationären Zustand für $t \to \infty$, d.h. $\partial_t u \to 0$. Eingesetzt finden wir

$$\begin{array}{rcl} -\nabla(a\nabla u) &= 0 & \text{ in } \Omega \\ & u &= u^D & \text{ auf } \partial\Omega \\ & -a\Delta u &= 0 & \text{ (falls } a\equiv \text{const)} \end{array}$$

'Quantity of Interest': $\int_W q \cdot n$ wobei $W \subset \partial \Omega$ das Randstück mit interessantem Wärmefluss ist. Die 'Quantity of Interest' beschreibt einen Wärmestrom über einen Teil des Randes.

1.1.1. Elektrostatik

Wir bezeichnen mit ρ die Ladungsdichte, die ein elektrisches Feld E verursacht. Aus den Maxwellgleichungen folgt:

$$-\nabla \cdot (aE) = \rho$$

1. Variationsgleichung

wobei a (in der Physik ϵ) die Permittivität darstellt. Oft fordert man ein "Wirbelfreies" elektrisches Feld, also $rot(E) = \nabla \times E = 0$. Daraus ergibt sich

$$\exists u : E = -\nabla u \tag{1.1}$$

$$-\nabla \cdot (a\nabla u) = \rho \text{ in } \Omega \tag{1.2}$$

$$u = u^D \text{ auf } \partial\Omega \tag{1.3}$$

Im Fall $\partial \Omega = \Gamma^D \dot{\cup} \Gamma^N$ setzen wir

$$\begin{cases} u^D & \text{auf } \Gamma^D \\ an \cdot \nabla u \equiv a \cdot \partial_n u = 0 & \text{auf } \Gamma^N \end{cases}$$

A. Sätze