Green

1. A grindstone is rotating in the counter-clockwise sense as shown. If its speed is increasing, what direction is its angular acceleration?

2. Water molecules in food absorb energy from a microwave oven and begin to rotate about their center at $4 \, rev/s$. If a singe molecule of water has an angular momentum of $7.5 \times 10^{-46} \, kg \cdot nt/s^3$, what is the moment of inertia for water rotated about its center?

(a) $1.88 \times 10^{-46} kg \cdot m^2$	(b) $5.97 \times 10^{-47} kg \cdot m^2$
(c) $9.5 \times 10^{-48} kg \cdot m^2$	(d) $2.98 \times 10^{-47} kg \cdot m^2$

$$L = I \omega, \quad \omega = 4 \text{ red} \times 2 \text{ trad} = 8 \text{ trad} \times 5 \times 10^{40} \text{ kg·m²/s} = 2.98 \times 10^{47} \text{ kg·m²} \times 2 \text{ trad} \times 10^{47} \text{ kg·m²} \times 10^{4$$

3. The 50-mm radius motor at A of a clothes dryer rotates at $20 \, rad/s$ and causes the larger gear (and therefore your clothes) to rotate at $4 \, rad/s$. Assuming no slipping of the connecting belt, what is the radius of the larger gear?

Two Connected, Potating OBjects

3 SAME LINEAR VELOCITY

: WATA = WBTB + (20 road/s)(50mm) = (4 rod/s) TB

4. If the instant shown, the propeller has angular speeds and accelerations both in the clockwise sense and magnitudes given in the figure, what is the magnitude and direction of the *linear* acceleration at the point G? Assume the propeller is rotating about its center.

FOR BOTH $\Gamma = 375 \text{mm} \times \frac{1000 \text{mm}}{1000 \text{mm}}$

$$Q_{ten} = (5780|s^2)(.375m) = 1.875m|s^2$$

$$Q_{rad} = (6780|s)^2(.375m) = 13.5m|s^2$$

$$Q_{rad} = (6780|s)^2(.375m) = 13.5m|s^2$$

$$Q = \sqrt{94a_1 + Q_{rad}} = 13.603m|s^2$$

5. A hollow sphere rotated about its center has moment of Inertia, $I = \frac{2}{3}MR^2$. Which of the following expressions is the correct one for the kinetic energy of a hollow sphere that is rolling without slipping?

6. A wheel, starting from rest, rotates through 2.0 rev in 5.0 s. What is its constant angular acceleration?

$$\sqrt{(a) 1.0 \, rad/s^2}$$
 (b) $0.16 \, rad/s^2$ (c) $0.40 \, rad/s^2$ (d) $2.51 \, rad/s^2$

0-00 = Drev x 2 mrad = 4 mrad

FROM REST & WO = 0, +=55, X=?

0-00= Worl+ \$ x+2 + 4 Trad= \$ x (5s)2

 $\Rightarrow \alpha = \frac{2(4\pi rad)}{(53)^2} = 1.00 \text{ rad}(52)$

7. When a person stands on their "tip-toes", their tendons have to apply a force to prevent the foot from rotating. For the schematic foot shown below, find the magnitude of the tendon force $\overrightarrow{F_t}$ applied at 5° from the vertical necessary to make the sum of the torques about the point A zero. Ignore all other forces that would exist in reality besides the $N_f = 400 N$ normal force. (Which is why these forces won't sum to zero.)

 $4 = \frac{(-0.005 \text{m})}{(-0.005 \text{m})} = \frac{(-0.005 \text{m})}{(-0.005)} = \frac{(-0.005)}{(-0.005)} = \frac{(-0.005$

8. A uniform thin rod of length $l=2.00\,m$, free to rotate about one end, is started horizontally (at $\theta=0^{\circ}$) from rest. If friction can be ignored, what angular velocity (both speed and direction) will the rod have when it reaches the $\theta=30^{\circ}$ angle shown below? The moment of inertia for a thin rod rotated about one end is $I=\frac{1}{3}Ml^2$.

Moment of Indean I= ZMC=ZM(ZM)2 IN ItIAL GRAVITY ONLY FORCE Doing WORK, ROD IS ROTATING $\omega_1 = 0$, $\omega_2 = ?$ YI, YZ = CENTER OF MASS HEIGHT. UNIFORM ROD = CENTRE OF

MASS AT &= Im = Type THEN THEN IN YII : Mg/ = = = I W2 4= 1ms,230°=.5m M (9.8m/s) (.5m) = \frac{1}{2} \left[M. (\frac{4m^2}{3})] \omega_2 \rightarrow \omega_2 = \frac{(9.8m/s)(.5m)3}{2} of CUZ = 2.7/rad/s. RED IS ROTATING dockurse. RHR + 3 = (X) :/ (B) = 2.71 rad/s (X