Weighted Visibly Pushdown Automata and Automated Music Transcription

April 28, 2021

Abstract

. . .

Symbolic Weighted (SW) extension of symbolic automata where...

Semirings. We shall consider semiring domains for weight values. A *semiring* $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ is a structure with a domain \mathbb{S} , equipped with two associative binary operators \oplus and \otimes with respective neutral elements \mathbb{O} and $\mathbb{1}$ and such that: \oplus is commutative, \otimes distributes over \oplus : $\forall x, y, z \in \mathbb{S}$, $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$, and \mathbb{O} is absorbing for \otimes : $\forall x \in \mathbb{S}$, $\mathbb{O} \otimes x = x \otimes \mathbb{O} = \mathbb{O}$. In the application presented in this paper, intuitively, \oplus selects an optimal value amongst two values and \otimes combines two values into a single value.

and let $(\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ be a semiring,

A semiring $\mathbb S$ is *monotonic wrt* a partial ordering \le iff for all $x,y,z\in\mathbb S, \ x\le y$ implies $x\oplus z\le y\oplus z, \ x\otimes z\le y\otimes z$ and $z\otimes x\le z\otimes y$, and it is *superior wrt* \le iff for all $x,y\in\mathbb S, \ x\le x\otimes y$ and $y\le x\otimes y$ [4]. The latter property corresponds to the *non-negative weights* condition in shortest-path algorithms [2]. Intuitively, it means that combining elements always increase their weight. Note that when $\mathbb S$ is superior $wrt\le$, then $\mathbb 1\le \mathbb 0$ and moreover, for all $x\in\mathbb S, \ \mathbb 1\le x\le \mathbb 0$.

Every idempotent semiring \mathbb{S} induces a partial ordering $\leq_{\mathbb{S}}$ called the *natural ordering* of \mathbb{S} and defined by: for all x and y, $x \leq_{\mathbb{S}} y$ iff $x \oplus y = x$. This ordering is sometimes defined in the opposite direction [3]; The above definition follows [5], and coincides than the usual ordering on the Tropical semiring (*min-plus*). It holds that \mathbb{S} is monotonic $wrt \leq_{\mathbb{S}}$. An idempotent Semiring \mathbb{S} is called *total* if it $\leq_{\mathbb{S}}$ is total *i.e.* when for all $x, y \in \mathbb{S}$, either $x \oplus y = x$ or $x \oplus y = y$.

We shall consider below infinite sums with \oplus . A semiring $\mathbb S$ is called *complete* if for every family $(x_i)_{i\in I}$ of elements of $dom(\mathbb S)$ over an index set $I\subset \mathbb N$, the infinite sum $\bigoplus_{i\in I} x_i$ is well-defined and in $dom(\mathbb S)$, and the following properties hold:

$$\begin{split} i. \ \ & \textit{infinite sums extend finite sums:} \ \bigoplus_{i \in \emptyset} x_i = \mathbb{O}, \quad \forall j \in \mathbb{N}, \ \bigoplus_{i \in \{j\}} x_i = x_j, \\ \forall j, k \in \mathbb{N}, j \neq k, \bigoplus_{i \in \{j,k\}} x_i = x_j \oplus x_k, \end{split}$$

 $ii. \ associativity \ and \ commutativity: \ \text{for all} \ I\subseteq \mathbb{N} \ \text{and all partition} \\ (I_j)_{j\in J} \ \text{of} \ I, \bigoplus_{j\in J} \bigoplus_{i\in I_j} x_i = \bigoplus_{i\in I} x_i,$

iii. distributivity of product over infinite sum: for all
$$I \subseteq \mathbb{N}$$
, $\bigoplus_{i \in I} (x \otimes y_i) = x \otimes \bigoplus_{i \in I} y_i$, and $\bigoplus_{i \in I} (x_i \otimes y) = (\bigoplus_{i \in I} x_i) \otimes y$.

1 SW Automata and Transducers

We follow the approach of [6] for the computation of distances between words with transducers.

The following definition of weighted transducers over infinite alphabets generalizes weighted transducers over finite alphabets, see e.g. [6], by considering weight functions generalizing the guards of symbolic automata

Let Σ and Δ be respectively an input and output alphabets, which are finite or infinite sets of symbols, and let S be a semiring. A label theory is a 4-uplet of recursively enumerable sets: Φ_0 containing constant functions valued in \mathbb{S} , Φ_{Σ} and Φ_{Δ} , containing unary functions in $\Sigma \to \mathbb{S}$, resp. $\Delta \to \mathbb{S}$, and $\Phi_{\Sigma,\Delta}$ containing binary functions in $\Sigma \times \Delta \to \mathbb{S}$. Moreover, we assume that each of these sets is closed under \oplus and \otimes , and all partial applications of functions $\Phi_{\Sigma,\Delta}$, resp. $f_a: y \mapsto f(a,y)$ for $a \in \Sigma$ and $y \in \Delta$ and $f_b: x \mapsto f(x,b)$ for $b \in \Delta$ and $x \in \Sigma$, belong resp. to Φ_{Σ} and Φ_{Δ} .

Definition 1 A symbolic-weighted transducer T over the input and output alphabet Σ and Δ and the semiring $\mathbb S$ is a tuple $T=\langle Q,\mathsf{in},\mathsf{w},\mathsf{out}\rangle$, where Q is a finite set of states, in $: Q \to \mathbb{S}$, respectively out $: Q \to \mathbb{S}$, are functions defining the weight for entering, respectively leaving, a state, and w is a transition function from $Q \times Q$ into $\langle \Phi_0, \Phi_{\Sigma}, \Phi_{\Delta}, \Phi_{\Sigma, \Delta} \rangle$.

We extend the above transition function into a function from $Q \times (\Sigma \cup \mathbb{Z})$ $\{\epsilon\}$) × $(\Delta \cup \{\epsilon\})$ × Q into S, also called w for simplicity, such that for all $q, q' \in Q$, $a \in \Sigma$, $b \in \Delta$, and with $\langle \phi_{\epsilon}, \phi_{\Sigma}, \phi_{\Delta}, \phi_{\Sigma, \Delta} \rangle = \mathsf{w}(q, q')$,

$$\begin{array}{rcl} \mathsf{w}(q,\epsilon,\epsilon,q') & = & \phi_{\epsilon} \\ \mathsf{w}(q,a,\epsilon,q') & = & \phi_{\Sigma}(a) \\ \mathsf{w}(q,\epsilon,b,q') & = & \phi_{\Delta}(b) \\ \mathsf{w}(q,a,b,q') & = & \phi_{\Sigma,\Delta}(a,b) \end{array}$$

These functions ϕ act as guards for the transducer's transitions, preventing a transition when they return the absorbing \mathbb{O} of \mathbb{S} .

The symbolic-weighted transducer T defines a mapping from the pairs of strings of $\Sigma^* \times \Delta^*$ into the weights of \mathbb{S} , based on the following intermediate function weight_T defined recursively for every $q, q' \in Q$, for every strings of $s \in \Sigma^*$, $t \in \Delta^*$:

$$\begin{split} \operatorname{weight}_T(q,s,t,q') &= & \operatorname{w}(q,\epsilon,\epsilon,q') \\ &\oplus \bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma}} \operatorname{w}(q,a,\epsilon,q'') \otimes \operatorname{weight}_T(q'',u,t,q') \\ &\oplus \bigoplus_{\substack{q'' \in Q \\ t = bv, b \in \Delta}} \operatorname{w}(q,\epsilon,b,q'') \otimes \operatorname{weight}_T(q'',s,v,q') \\ &\oplus \bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma \\ t = bv, b \in \Delta}} \operatorname{w}(q,a,b,q'') \otimes \operatorname{weight}_A(q'',u,v,q') \end{split}$$

Recall that by convention, an empty sum with \oplus is \mathbb{O} . The weight associated by T to $\langle s,t\rangle\in\Sigma^*\times\Delta^*$ is then defined as follows:

$$T(s,t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_T(q,s,t,q') \otimes \operatorname{out}(q').$$

A symbolic weighted automata (SWA) $A = \langle Q, \text{in}, \text{weight}, \text{out} \rangle$ over Σ and $\mathbb S$ is defined in a similar way by simply omitting the output symbols, *i.e.* w is a function of $Q \times Q$ into $\langle \Phi_0, \Phi_{\Sigma} \rangle$, or equivalently from $Q \times (\Sigma \cup \{\epsilon\}) \times Q$ into $\mathbb S$.

Proposition 2 Given a SWT T over Σ , Δ and S, and a word $s \in \Sigma^*$, one can construct a SWA $A_{s,T}$ such that for all $t \in \Delta^*$, $A_{s,T}(t) = T(s,t)$.

The construction time and size of $A_{s,T}$ are O(|s|.||T||).

2 SW Visibly Pushdown Automata

The following model generalizes Symbolic VPA [1] from Boolean semirings to arbitrary semiring weight domains.

Let Σ be an input alphabet, finite (large) or infinite, that we assume partitioned into :

- a set Σ_i of internal symbols denoted a,
- a set Σ_{c} of call symbols denoted $\langle a, \rangle$
- a set Σ_r of return symbols denoted $a\rangle$.

In order to simplify notations, and following the definition of Section 1, we shall write respectively $\Phi_{\mathsf{i}}, \ \Phi_{\mathsf{c}}, \ \Phi_{\mathsf{r}}$ and Φ_{cr} for $\Phi_{\Sigma_{\mathsf{i}}}, \ \Phi_{\Sigma_{\mathsf{c}}}, \Phi_{\Sigma_{\mathsf{c}}}$, and $\Phi_{\Sigma_{\mathsf{c}},\Sigma_{\mathsf{r}}}$,

Definition 3 A Symbolic Weighted Visibly Pushdown Automata (SWVPA) A over the input $\Sigma = \Sigma_i \uplus \Sigma_c \uplus \Sigma_r$ and the semiring $\mathbb S$ is a tuple $T = \langle Q, P, \mathsf{in}, \mathsf{w_i}, \mathsf{w_c}, \mathsf{w_r}, \mathsf{w_e}, \mathsf{out} \rangle$, where Q is a finite set of states, P is a finite set of stack symbols, $\mathsf{in}: Q \to \mathbb S$, respectively $\mathsf{out}: Q \to \mathbb S$, are

functions defining the weight for entering, respectively leaving, a state, and $w_i: Q \times Q \to \Phi_i$, $w_c: Q \times Q \times P \to \Phi_c$, $w_r: Q \times P \times Q \to \Phi_{cr}$, $w_e: Q \times Q \to \Phi_r$, are transition functions.

Similarly as in Section 1, we extend the above transition functions as follows for all $q, q' \in Q, p \in P, a \in \Sigma_{\mathsf{i}}, \langle_c \in \Sigma_{\mathsf{c}}, r \rangle \in \Sigma_{\mathsf{r}}$, overloading the names for simplicity:

$$\begin{array}{lll} \mathsf{w_i}: Q \times \Sigma_\mathsf{i} \times Q \to \mathbb{S} & \mathsf{w_i}(q,a,q') = \phi_\mathsf{i}(a) & \text{where } \phi_\mathsf{i} = \mathsf{w_i}(q,q') \\ \mathsf{w_c}: Q \times \Sigma_\mathsf{c} \times Q \times P \to \mathbb{S} & \mathsf{w_c}(q,\langle_c,q',p) = \phi_\mathsf{c}(\langle_c) & \text{where } \phi_\mathsf{c} = \mathsf{w_c}(q,q',p) \\ \mathsf{w_r}: Q \times \Sigma_\mathsf{c} \times P \times \Sigma_\mathsf{r} \times Q \to \mathbb{S} & \mathsf{w_r}(q,\langle_c,p,_r\rangle,q') = \phi_\mathsf{r}(\langle_c,r\rangle) & \text{where } \phi_\mathsf{r} = \mathsf{w_r}(q,p,q') \\ \mathsf{w_e}: Q \times \Sigma_\mathsf{r} \times Q \to \mathbb{S} & \mathsf{w_e}(q,_r\rangle,q') = \phi_\mathsf{e}(_r\rangle) & \text{where } \phi_\mathsf{e} = \mathsf{w_e}(q,q') \end{array}$$

The intuition is the following for the above transitions.

 w_i : read the input internal symbol a, change state to q'.

 w_c : read the input symbol $\langle c, push it to the stack along with <math>p$, change state to q'.

 w_r : when the stack is not empty, read and pop from stack a pair made of $\langle c \rangle$ and p, read the input symbol p, change state to p. In this case, the weight function p checks a matching between the call and return symbols.

 w_e : when the stack is empty, read the input symbol $\langle r,$ change state to q'.

We give now a formal definition of these transitions of the automaton A in term of a weight value computed by an intermediate function weight A. In the case of a pushdown automaton, a configuration is composed of a state $q \in Q$ and a stack content $\theta \in \Theta^*$, where $\Theta = \Sigma_{\mathsf{c}} \times P$. Therefore, weight A is a function from $Q \times \Theta^* \times \Sigma^* \times Q \times \Theta^*$ into S.

$$\begin{split} \operatorname{weight}_A\left(\left[\begin{smallmatrix}q\\\theta\end{smallmatrix}\right],au,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) &= \bigoplus_{q''\in Q} \operatorname{w_i}(q,a,q'') \otimes \operatorname{weight}_A\left(\left[\begin{smallmatrix}q''\\\theta\end{smallmatrix}\right],u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) \\ \operatorname{weight}_A\left(\left[\begin{smallmatrix}q\\\theta'\end{smallmatrix}\right],\langle_c u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) &= \bigoplus_{q''\in Q} \operatorname{w_c}\left(q,\langle_c,q'',p\right) \otimes \operatorname{weight}_A\left(\left[\begin{smallmatrix}q''\\\zeta_c\,p\cdot\theta\end{smallmatrix}\right],u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) \\ \operatorname{weight}_A\left(\left[\begin{smallmatrix}q\\\zeta_c\,p\cdot\theta\end{smallmatrix}\right],r\rangle u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) &= \bigoplus_{q''\in Q} \operatorname{w_r}\left(q,\langle_c,p,_r\rangle,q''\right) \otimes \operatorname{weight}_A\left(\left[\begin{smallmatrix}q''\\\theta\end{smallmatrix}\right],u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) \\ \operatorname{weight}_A\left(\left[\begin{smallmatrix}q\\L\right\end{bmatrix},r\rangle u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) &= \bigoplus_{q''\in Q} \operatorname{w_e}(q,r\rangle,q'') \otimes \operatorname{weight}_A\left(\left[\begin{smallmatrix}q''\\L\right\end{bmatrix},u,\left[\begin{smallmatrix}q'\\\theta'\end{smallmatrix}\right]\right) \end{split}$$

where \bot denotes the empty stack and $\langle_c p \cdot \theta \rangle$ denotes a stack with the pair made of $\langle_c \rangle$ and $p \rangle$ on its top and $\theta \rangle$ as the rest of stack. The weight associated by $A \rangle$ to $S \in \Sigma^*$ is then defined as follows by empty stack computation:

$$A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_A \left(\left[\begin{smallmatrix} q \\ \bot \end{smallmatrix} \right], s, \left[\begin{smallmatrix} q' \\ \bot \end{smallmatrix} \right] \right) \otimes \operatorname{out}(q').$$

3 Application

Symbolic Automated Music Transcription

3.1 Representations

Performance.

Score.

3.2 Transducer for Distance Computation

References

- [1] L. D'Antoni and R. Alur. Symbolic visibly pushdown automata. In *International Conference on Computer Aided Verification*, pages 209–225. Springer, 2014.
- [2] E. W. Dijkstra. A note on two problems in connexion with graphs. *NUMERISCHE MATHEMATIK*, 1(1):269–271, 1959.
- [3] M. Droste and W. Kuich. Semirings and formal power series. In *Handbook of Weighted Automata*, pages 3–28. Springer, 2009.
- [4] L. Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In *In COLING*, 2008.
- [5] M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. *Journal of Automata, Languages and Combinatorics*, 7(3):321–350, 2002.
- [6] M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.

A Edit-Distance

...algebraic definition of edit-distance of Mohri, in [6] distance d over $\Sigma^* \times \Sigma^*$ into a semiring $\mathbb{S} = (\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$.

Let $\Omega = \Sigma \cup \{\epsilon\} \times \Sigma \cup \{\epsilon\} \setminus \{(\epsilon, \epsilon)\}$, and let h be the morphism from Ω^* into $\Sigma^* \times \Sigma^*$ defined over the concatenation of strings of Σ^* (that removes the ϵ 's). An alignment between 2 strings $s, t \in \Sigma^*$ is an element $\omega \in \Omega^*$ such that $h(\omega) = (s, t)$. We assume a base cost function $\Omega: \delta: \Omega \to S$, extended to Ω^* as follows (for $\omega \in \Omega^*$): $\delta(\omega) = \bigotimes_{0 \le i < |\omega|} \delta(\omega_i)$.

Definition 4 For $s, t \in \Sigma^*$, the edit-distance between s and t is $d(s, t) = \bigoplus_{\omega \in \Omega^* \ h(\omega) = (s, t)} \delta(\omega)$.

e.g. Levenstein edit-distance: S is min-plus and $\delta(a,b)=1$ for all $(a,b)\in\Omega.$