Chapter NLP:IV

IV. Words

- □ Morphology
- □ Word Classes
- Named Entities

Entities

An entity represents an object from the real world. They are a basic semantic concept in natural language processing.

Named entities are objects that can be denoted with a proper name.

```
Prof. Dr. Abdul Nachtigaller in Finsterberge at Nachtschule
```

Numeric entities are values, quantities, proportions, ranges, or similar.

```
in this year 2018-10-18 $ 100000
```

Named Entities

Named entities are the semantic equivalent of proper nouns: Everything that can be referred to by name is an entitiy.

The most common types of named entities are:

- □ **PER** (Person): people, characters, ...

 Turing is a giant of computer science.
- □ **LOC** (Location): regions, rivers, . . . The IIm is a small river.
- □ **ORG** (Organization): companies, sports teams, ...

 The IPCC warned about climate change.
- □ **GPE** (Geo-Political Entity): countries, states, ... Weimar lies in Thuringia.

[Deere and Co. ORG] said it reached a tentative agreement with the [machinists union ORG] at its [Horicon, Wis. LOC] plant, ending a month-old strike by workers at the facility.

Named Entities

A more complete set of entities is used by OntoNotes. [Weischedel et al]

Names, Named Entities		Values	
PERSON	People, including fictional	DATE	Dates or periods
NORP	Nationalities, parties,	TIME	Times smaller than a day
FACILITY	Buildings, highways,	PERCENT	Percentage (including "%")
ORGANIZATION	Companies, institutions,	MONEY	Monetary values, including unit
GPE	Countries, cities,	QUANTITY	weights, distances, /dots
LOCATION	mountains, rivers,	ORDINAL	"first", "second"
PRODUCT	Vehicles, foods,	CARDINAL	other numerals
EVENT	Hurricanes, sports events,		
WORK OF ART	Titles of books, songs,		
LAW	Named documents, laws		
LANGUAGE	Any named language		

Although there is a linguistic difference between *entities* and *values* they are often treated as equivalent in NLP.

Remarks:

Named entity tagsets vary by corpus and use case:

- Spacy uses the OntoNotes Tagset for its English models.
- □ 7 Entity types (NameType) are recognized by <u>Universal Dependencies</u> GEO (Geographical Name), GIV (Given Name), SUR (Surname), NAT (Nationality), COM (Company), PRO (product), OTH (other)
- □ 6 Entity types by WNUT Emerging Entity Recognition [Derczynski et al.]
 PERSON, LOCATION (GPE, facility), CORPORATION, PRODUCT (tangible goods, well-defined services), CREATIVE-WORK (song, movie, book), GROUP (music band, sports team, non-corporate organisations)
- □ 64 Entity types (incl. subtypes) by the <u>BBN Pronoun Coreference and Entity Type Corpus</u> BBN annotates <u>entity types</u> and <u>subtypes</u> from 3 groups of entities in XML:

<ENAMEX TYPE="ORGANIZATION:CORPORATION">Deere and Co.</ENAMEX> said it reached a tentative agreement with the<ENAMEX TYPE="PER_DESC"> machinists

</ENAMEX> <ENAMEX TYPE="ORG_DESC:OTHER"> union</ENAMEX> [...] ending a <TIMEX TYPE="DATE:AGE"> month-old </TIMEX> strike.

Named Entity Recognition

Finding and labeling entities in a text is called Named Entity Recognition. Alternative: Named Entity Tagging, Named Entity Resolution.

NER is a span recognition problem. Entities often span multiple tokens, so a tagger needs to:

Distinguish entities from non-entities.

```
apple vs. [apple ORG]
```

Find the boundaries of the entity.

```
the [brandenburg LOC] gate vs [the brandenburg gate LOC] on [Washington's LOC] [Capitol Hill LOC]
```

Disambiguate different entity types.

[Washington PER] vs [Washington LOC] vs [Washington GPE] vs [Washington ORG]

Span recognition problems are typically solved by BIO tagging.

BIO Tagging

Idea: Model NER as a sequence labeling problem and tag word-by-word. Encode boundary and entity type in each tag.

BIO tagging:

 Assign the first token in an entity a B for beginning and its tag. on Washington's/B-LOC Capitol/B-LOC Hill stands . . .

2. Assign all non-first tokens in an entity a I for inside and its tag.

on Washington's/B-LOC Capitol/B-LOC Hill/I-LOC stands ...

3. Assign all non-entity tokens an O for outside.

on/O Washington's/B-LOC Capitol/B-LOC Hill/I-LOC stands/O . . .

As span recognition problem: [Deere and Co. ORG] said it ...

As sequence labeling problem: Deere/B-ORG and/I-ORG Co./I-ORG said/O it/O . . .

Now we can solve NER with any sequence labeler.

Remarks:

- Two popular variations of BIO are IO and BIOES.
- □ IO is a generalization of BIO and encodes less information. Each B-TAG is instead tagges as I-TAG. It might be easier to fit models with IO if resources are scarse.
- □ BIOES is an extention of BIO and encode more information. The last token in an entity is tagges as E-TAG for ending. If entities consist of only one token, it is tagged as S-TAG for single.