Bioinformatics Server Connexion

In a Terminal:

ssh -X etudiant1@172.20.9.115

Etudiant1 must be replaced by your own identifier (etudiant2, etudiant4 etc), the one that you have chosen !!!

- Do not forget the -X ... it's necessary for graphic interface (Rstudio)
- 172.20.9.115: is the IP address of our bioinformatics server

R package, library and Functions

I want to use Phyloseq for analysing my data!!

- 1- Download the package Phyloseq: Install.packages()/Bioconductor
- 2- load the package in your R session to use it library(Phyloseq)
- 3- Now I can use the functions of Phyloseq in your R session Taxa_sums()

functions of R packages

Function name

Argument

Possible options

Seqs = getSequences(seqtab.nochim, size=..., label=...)

<-

Variable containing the results

= same as <-

Complex command (optimization): function imbrication: from inside to outside

Result = function4(function3(function2(function1())))

Result = function4(function3(function2(function1())))

```
Res= prune_taxa(names(sort(taxa_sums(Final.TSS.log),TRUE)[1:50]), Final.TSS.log)
```

Can be Decomposed as:

```
A = taxa_sums(Final.TSS.log)
```

B = sort(A,TRUE)

C = names(B[1:50])

D = prune_taxa(C,Final.TSS.log)

Preparation fichiers, dossiers Appliquer les fonctions de Dada2 Include NJ tree **ASV_abundance_table Taxonomy table Objet Phyloseq** Tree Include sequences ASV_abundance_table **Taxonomy table Objet Phyloseq1** Tree **ASV** seq Alpha Diversité Beta diversité Graphs, statistiques

Common OTU/ASV table

> otu_table(Final2_rar) OTU Table: [229 taxa and 18 samples] taxa are columns ASV1 ASV2 ASV3 ASV4 ASV5 ASV6 ASV7 ASV8 ASV9 ASV10 ASV11 ASV12 ASV13 ASV14 ASV15 ASV16 S11B 109 24 79 78 89 24 66 31 46 0 69 S₁B 59 58 51 S2B 0 26 15 44 65 31 47 S2S 93 74 127 26 ASV17 ASV18 ASV19 ASV20 ASV21 ASV22 ASV23 ASV24 ASV25 ASV26 ASV27 ASV28 ASV29 ASV30 ASV31 22 S11B 69 24 31 25 S₁B 47 S2B 60 34 10 24 19 S2S

DADA2 by default gives you this

Α /	В	Ç	D	E	F	G	Н	I	J	K	L	M
	GGAATATTGCACAAT	GGAATCTTG	CGAAAACTTGACA	GGAATCTTGCACA	GGAATCTTGCACAA	GGAATATTG	GGAATATTG	GGAATATTG	GGAATTTTC	GGAATCTTG	GGAATCTTG	GGAATATTG A
S11B	131	32	97	85	98	41	63	35	0	0	0	45
S1B	73	0	25	0	54	54	0	0	66	59	65	29
S2B	54	0	40	17	45	66	0	0	66	34	45	0
S2S	120	101	83	14	124	47	41	82	0	0	0	50
S3B	65	0	33	24	54	62	0	0	74	64	61	0
S3S	89	10	0	0	44	32	0	0	57	115	54	0
S4B	13	7	44	38	45	47	0	10	45	70	40	0
S4S	79	8	42	0	65	0	0	11	165	140	51	34
S5B	199	18	80	128	0	39	67	15	0	0	48	0
S5S	213	0	39	114	53	0	44	0	37	0	44	30
S6B	187	113	62	31	84	37	78	69	0	0	0	45
S6S	84	378	38	26	0	22	50	84	0	0	0	29
S7B	60	128	83	94	0	34	27	101	0	0	0	0
S7S	91	50	65	119	0	49	84	43	0	0	0	0
S8B	66	81	64	85	0	48	69	73	0	0	0	31
S8S	77	13	99	105	56	48	64	25	0	0	18	45
S9B	86	90	53	68	85	43	66	61	0	0	0	36
S9S	106	86	70	31	38	75	66	77	0	0	47	58

- → Identifier is the sequence of 250 bp!!!
- → We will apply transformation to obtain common OTU_table with ASV names (more easy to manipulate)

Preprocessing: Dada2

- Avant de filtrer, correction des Erreurs, Derepliquer, assembler (Fonction dada2) ...
- → il y a une petite mise en place : gestions des fichiers, noms des samples

Preprocessing: Dada2

fnFs <- sort(list.files(path, pattern="_R1.fastq", full.names=TRUE))</pre>

lister les noms de fichiers (**list.files**) situés dans la variable **path** (à savoir répertoire ./data) et qui contiennent dans leurs noms la signature "_R1.fastq". full.names donne le chemin complet ("./data/S11B_R1.fastq"), sinon ça n'afficherait que "S11B_R1.fastq". Enfin les classer (**sort**).

Pourquoi faire ca?

On a besoin du chemin complet pour que les fonctions puissent savoir ou sont ces fichiers et les utiliser

- →fnFs stock simplement l'ensemble des chemins d'accès des fichiers fastq R1
- →fnFr stock simplement l'ensemble des chemins d'accès des fichiers fastq R2

sample.names <- sapply(strsplit(basename(fnFs), "_"), `[`, 1)</pre>

- FnFs stocke le chemin complet
- Basename(fnFs) permet de recupérer le nom après le dernier séparateur (/) Dans notre cas ./data/S11B_R1.fastq devient alors S11B_R1.fastq
- Ensuite strsplit(basename(fnFs), "_") permet de séparer le nom sur la base du "_" ca donne : S11B R1.fastq (equivalent à Excel séparateur de champ)
- sapply(strsplit(basename(fnFs), "_"), `[`, 1) permet de recupérer le premier élement de la ligne "S11B R1.fastq" à savoir S11B
- Pourquoi faire ca?

Pour récupérer les noms de vos samples : S11B, S1B, S2S,S2B, etc

filtFs <- file.path(path, "Filtered", basename(fnFs))

Construire un chemin (file.path) ici composé de "path" puis de "Filtered" et enfin du nom basename(fnFs)

- \rightarrow path = ./data
- → ./data/Filtered/S11B_R1.fastq

Etc pour chacun des fichiers

On a construit un Dossier Filtered dans le dossier ./data et qui contient des fichiers vides avec le nom S11B_R1.fastq etc

Pourquoi?

C'est le dossier qui va accueillir les fichiers filtrés sur la qualité de séquence (Préparation)

To avoid problems ...

1- Set your working directory to Project directory

- 2- put in your **Project** directory
- --> data directory with your sequences
- --> and files

Project directory

- data
- MapfileFA.txt
- ggrare.R
- Fonctions_dada2.R
- silva_nr_v132_train_set.fa
- silva_species_assignment_v132.fa.gz

Because In the script

path="./data"

```
MAP="mapfileFA.txt"

source("./ggrare.R")

source("./Fonctions_dada2.R")

taxa <- assignTaxonomy(seqtab.nochim, "silva_nr_v132_train_set.fa", ...)

taxa <- addSpecies(taxa, "silva_species_assignment_v132.fa.gz", ...)
```

Be careful: pattern="_R1.fastq"

Understanding the Phyloseq Object & class level: All is interconnected

Final2

```
phyloseq-class experiment-level object
otu_table() OTU Table: [ 229 taxa and 18 samples ]
sample_data() Sample Data: [ 18 samples by 23 sample variables ]
tax_table() Taxonomy Table: [ 229 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 229 tips and 227 internal nodes ]
refseq() DNAStringSet: [ 229 reference sequences ]
```

- OTU/ASV Abundance Table = otu_table()
- Metadata (groups, treatments, localisation, sample names, env data) = sample_data()
- Taxonomy classification = tax_table()
- Phylogenetic tree (i.e Unifract distance) = phy_tree()
- DNA sequences of ASV/OTU = refseq()

otu_table()

> otu_table(Final2_rar) OTU Table: [229 taxa and 18 samples] taxa are columns ASV1 ASV2 ASV3 ASV4 ASV5 ASV6 ASV7 ASV8 ASV9 ASV10 ASV11 ASV12 ASV13 ASV14 ASV15 ASV16 S11B S1B S2B S2S ASV17 ASV18 ASV19 ASV20 ASV21 ASV22 ASV23 ASV24 ASV25 ASV26 ASV27 ASV28 ASV29 ASV30 ASV31 S11B S₁B S2B S2S

tax_table()

> tax	_table(Fina	l2_rar)			
Taxono	my Table:	[229 taxa by 7 taxonomic ranks	s]:		
	Kingdom	Phylum	Class	Order	Family
ASV1	"Bacteria"	"Cyanobacteria"	"Oxyphotobacteria"	"Synechococcales"	"Cyanobiaceae"
ASV2	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	"Pseudoalteromonadaceae"
ASV3	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"SAR11_clade"	"Clade_I"
ASV4	"Archaea"	"Euryarchaeota"	"Thermoplasmata"	"Marine_Group_II"	NA
ASV5	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"SAR11_clade"	"Clade_I"
ASV6	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"SAR11_clade"	"Clade_II"
ASV7	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"Rhodospirillales"	"AEGEAN-169_marine_group"
ASV8	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	"Pseudoalteromonadaceae"
ASV9	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"Rhodospirillales"	"AEGEAN-169_marine_group"
ASV10	"Bacteria"	"Cyanobacteria"	"Oxyphotobacteria"	"Synechococcales"	"Cyanobiaceae"
ASV11	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"SAR11_clade"	"Clade_I"
ASV12	"Bacteria"	"Proteobacteria"	"Alphaproteobacteria"	"SAR11_clade"	"Clade_I"
ASV13	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	"Alteromonadaceae"

Sample_data()

> sample_data(Final2_rar)

Sampl	nple Data: [18 samples by 22			sample vari	iables]	:										
	X.SampleID	Description	${\tt Treatment}$	Treatment1	groupe	Pres	PicoEuk	Synec	Prochloro	NanoEuk	Crypto	SiOH4	N02	N03	NH4	P04
S11B	S11B	S11B	South	South5B	GGF	35	5370	46830	580	6010	1690	3.324	0.083	0.756	0.467	0.115
S1B	S1B	S1B	North	North1B	NBF	52	660	32195	10675	955	115	1.813	0.256	0.889	0.324	0.132
S2B	S2B	S2B	North	North2B	NBF	59	890	25480	16595	670	395	2.592	0.105	1.125	0.328	0.067
S2S	S2S	S2S	North	North2S	NBS	0	890	25480	16595	670	395	3.381	0.231	0.706	0.450	0.109
S3B	S3B	S3B	North	North3B	NBF	74	835	13340	25115	1115	165	1.438	0.057	1.159	0.369	0.174
S3S	S3S	S3S	North	North3S	NBS	0	715	26725	16860	890	200	1.656	0.098	0.794	0.367	0.095
S4B	S4B	S4B	North	North4B	NBF	78	2220	3130	29835	2120	235	2.457	0.099	1.087	0.349	0.137
S4S	S4S	S4S	North	North4S	NBS	78	2220	3130	29835	2120	235	2.457	0.099	1.087	0.349	0.137
S5B	S5B	S5B	North	North5B	NBF	42	1620	55780	23795	2555	1355	2.028	0.103	1.135	0.216	0.128
S5S	S5S	S5S	North	North5S	NBS	0	1620	56555	22835	2560	945	2.669	0.136	0.785	0.267	0.114
S6B	S6B	S6B	South	South1B	GGF	13	2520	39050	705	3630	1295	2.206	0.249	0.768	0.629	0.236
S6S	S6S	S6S	South	South1S	GGS	0	2435	35890	915	3735	1300	3.004	0.251	0.927	0.653	0.266
S7B	S7B	S7B	South	South2B	GGF	26	0	0	0	4005	1600	3.016	0.157	0.895	0.491	0.176
S7S	S7S	S7S	South	South2S	GGS	0	4535	26545	1340	6585	1355	1.198	0.165	1.099	0.432	0.180
S8B	S8B	S8B	South	South3B	GGF	33	0	0	0	5910	1590	3.868	0.253	0.567	0.533	0.169

```
Phy tree()
           > phy_tree(Final2_rar)
           Phylogenetic tree with 229 tips and 227 internal nodes.
           Tip labels:
                   ASV1, ASV2, ASV3, ASV4, ASV5, ASV6, ...
           Unrooted; includes branch lengths.
refseq()
> refsea(Final2_rar)
 A DNAStringSet instance of length 229
     width sea
                                                                                                                    names
        402 GGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTGAGGG...TGCTGGGCCATCACTGACGCTCATGGACGAAAGCCAGGGGAGCGAAAGG ASV1
  [17
        425 GGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTG...ACCTGGGTCAACACTGACGCTCATGTACGAAAGCGTGGGGAGCAAACAG ASV2
  [27
  [3]
        400 GGAATCTTGCACAATGGAGGAAACTCTGATGCAGCGATGCCGCGTGAGTG...TTCTGGATCATTACTGACACTGAGGAACGAAAGCATGGGTAGCGAAGAG ASV3
  [4]
        383 CGAAAACTTGACAATGCGAGCAATCGTGATCAGGGAACTCCAAGTGGCTG...CACTAGAACGGATCCGACGGTCAGGGACGAAGCCTAGGGGCACGAACCG ASV4
  [5]
        400 GGAATCTTGCACAATGGAGGAAACTCTGATGCAGCGATGCCGCGTGAGTG...TTCTGGATCATTACTGACACTGAGGAACGAAAGCATGGGTAGCGAAGAG ASV5
[225]
        425 GGAATATTGCGCAATGGGCGAAAGCCTGACGCAGCCATGCCGCGTGTGTG...ATCTGGGATACAACTGACGCTGAGGTACGAAAGCGTGGGGAGCAAACAG ASV226
[226]
        418 CGAATCATTCACAATGGGCGAAAGCCTGATGGTGCAATGCCGCGTGGGGG...TACTGGACAATTACTGACGCTCAGGCACGAAAGCATGGGGAGCGAAAGG ASV227
[227]
        404 GGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTG...ATACCGATGGCGAAGGCAGCCACCTGGGTCAACACTGACGCTCATGTAC ASV229
Γ2287
        360 CGAAAACTTCACACTGCAGGAAACTGTGATGAGGGAACTCCAAGTGCGCG...ACCACCAGTTGCGAAGGCGCCACACTGGAACGGATCCGACGGTCAGGGA ASV230
        400 GGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGAGTG...TTCTGGGCCATATCTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAG ASV231
[229]
,
```

Applied functions onto an Object creates a new object (with same type of classes)

Applied functions of an Object creates a new object (with same features)

Save table with abundance & taxonomic assignment: combine two tables but ...

What you want:

	S9B	S9S	Kingdom	Phylum	Class
ASV2	"8.686868686869"	"6.86868686868687"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV8	"6.26262626262626"	"8.08080808080808"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV32	"2.929292929293"	"0"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV58	"0.70707070707070707"	"0"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV77	"0.808080808080808"	"0"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV120	"0.404040404040404"	"0"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV175	"0.101010101010101"	"0"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
ASV229	"0.101010101010101"	"0"	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"
			_		

What you have:

> otu_table(Myselection2)

OTU Table: [8 taxa and 18 samples] taxa are columns ASV2 ASV32 ASV58 ASV77 ASV120 **ASV175** ASV229

> tax_table(Myselection2)

Taxonor	ny Table:	[8 taxa by 7 to	axonomic ranks]:		
	Kingdom	Phylum	Class	0rder	1
ASV2	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV8	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV32	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV58	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV77	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV120	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV175	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1
ASV229	"Bacteria"	"Proteobacteria"	"Gammaproteobacteria"	"Alteromonadales"	1

Need to transpose otu_table:

> t(otu_table(Myselection2)) OTU Table: [8 taxa and 18 samples]

```
taxa are rows
       S11B S1B S2B
                  S2S S3B
                           S3S
                                 S4B
                                        S4S
                                              S5B !
    2,424242
              0 9.393939
                      0 0.9090909 0.5050505 0.4040404 1.9191919
ASV2
    3.131313
              0 6.868687
                      0 0.0000000 1.1111111 0.8080808 0.9090909
ASV8
              0.000000
ASV32
    0.000000
                      ASV58
    0.000000
              0.000000
                      ASV77
    0.000000
              0.000000
                      ASV120 0.000000
              0.000000
                      ASV175 0.000000
              0.000000
                      ASV229 0.000000
              0.000000
                        .0000000 0.0000000 0.0000000 0.0000000
```

So:

tableau=cbind(t(otu_table(Myselection2)),tax_table(Myselection2))

- → is transpose otu_table & join the two tables
- -> Always doing this for getting your abundance-taxonomic assignment at any level
- -> next, write.table function (to save as file)

One exception

When you use aggregate_taxa (from microbiome)

```
→ Genus_glom=aggregate_taxa(pourcentS, "Genus")
```

You can directly save as file because:

```
> otu_table(Genus_glom)
OTU Table:
                     [36 taxa and 18 samples]
                      taxa are rows
                                   S11B
                                               S<sub>1</sub>B
                                                           S2B
                                                                     S<sub>2</sub>S
                                                                                 S3B
                                                                                            S3S
                                                    8.5858586
                                                               2.828283
Candidatus Actinomarina
                              2.424242
                                        8.6868687
                                                                          4.7474747
                                                                                      2.4242424
Sva0996_marine_group
                              0.000000
                                         0.6060606
                                                    1.2121212
                                                                0.000000
                                                                          0.8080808
                                                                                      1.1111111
Marinoscillum
                              0.000000
                                         0.0000000
                                                    0.5050505
                                                                0.000000
                                                                          0.0000000
                                                                                      0.4040404
NS2b_marine_group
                              0.000000
                                         0.3030303
                                                    0.0000000
                                                                0.000000
                                                                          0.2020202
                                                                                      0.0000000
NS4_marine_group
                                         0.0000000
                                                    2.0202020
                                                                2.828283
                                                                          0.0000000
                                                                                      0.0000000
                              2.525253
NS5_marine_group
                              0.000000
                                                    0.0000000
                                                                0.000000
                                        1.7171717
                                                                          1.7171717
                                                                                      0.7070707
Cyanobium_PCC-6307
                              0.000000
                                         0.0000000
                                                                0.000000
                                                                          0.0000000
                                                    0.0000000
                                                                                      0.0000000
Prochlorococcus_MIT9313
                              0.000000
                                         5.1515152
                                                    3.1313131
                                                                0.000000
                                                                          5.4545455
                                                                                      9.4949495
```

→ write.table(otu_table(Genus_glom),"./myfile.txt")

Understand complex command: Select the top 100 ASV mytaxa <- names(sort(taxa_sums(Final2_rar), TRUE)[1:100])</pre>

taxa_sums(Final2_rar) = Sum of abundance for each ASV

> taxa_sums(Final2_rar)

ASV1	ASV2	ASV3	ASV4	ASV5	ASV6	ASV7	ASV8	ASV9	ASV10	ASV11	ASV12	ASV13	ASV14
1614	949	905	914	770	667	663	611	461	409	455	374	292	289
ASV15	ASV16	ASV17	ASV18	ASV19	ASV20	ASV21	ASV22	ASV23	ASV24	ASV25	ASV26	ASV27	ASV28
245	218	233	201	241	209	195	221	191	183	192	186	181	160
ACV/20	VC//2W	A C\/21	AC\/22	AC1/22	V C / \ 7	A CV/2E	AC1/26	AC\/27	V C//30	VC//2U	ACVAA	AC\//1	AC\/A2

sort (taxa_sums(Final2_rar)) : sort ASV abundance → increasing

> sort(taxa_sums(Final2_rar))

sort (taxa_sums(Final2_rar), TRUE): sort ASV abundance → DEcreasing

> sort(taxa_sums(Final2_rar),TRUE)

ASV10	ASV11	ASV9	ASV8	ASV7	ASV6	ASV5	ASV3	ASV4	ASV2	ASV1
409	455	461	611	663	667	770	905	914	949	1614
ASV26	ASV23	ASV25	ASV21	ASV18	ASV20	ASV16	ASV22	ASV17	ASV19	ASV15
186	191	192	195	201	209	218	221	233	241	245

names(sort (taxa_sums(Final2_rar), TRUE)): get the names

> names(sort(taxa_sums(Final2_rar),TRUE))

```
"ASV2"
                      "ASV4"
                                                          "ASV7"
Γ17 "ASV1"
                               "ASV3"
                                        "ASV5"
                                                 "ASV6"
                                                                  "ASV8"
Γ117 "ASV10"
             "ASV12"
                      "ASV13"
                               "ASV14"
                                        "ASV15"
                                                 "ASV19"
                                                         "ASV17"
                                                                  "ASV22"
                               "ASV23"
                                        "ASV26"
                                                 "ASV24"
                                                         "ASV30"
[21] "ASV18"
             "ASV21" "ASV25"
                                                                  "ASV27"
Γ317 "ASV31"
             "ASV32" "ASV35"
                               "ASV33"
                                        "ASV37"
                                                 "ASV34"
                                                         "ASV39"
                                                                  "ASV41"
```

Mytop100= names(sort(taxa_sums(Final2_rar),TRUE)[1:100]): get only the top first 100 names

```
> names(sort(taxa_sums(Final2_rar),TRUE)[1:3])
```

```
[1] "ASV1" "ASV2" "ASV4"
```

Selection100= prune_taxa(mytop100, Final2_rar): KEEP the "mytop100" from Final2_rar and put it in the object selection100

```
> selection100
```