1-7 Notes

Functions

Identify Functions Relations in which each element of the domain is paired with exactly one element of the range are called functions.

Example 1

Determine whether the relation $\{(6, -3),$ (4, 1), (7, -2), (-3, 1) is a function. Explain.

Example 2

Determine whether 3x - y = 6 is a function.

Exercises

Determine whether each relation is a function.

1.

2.

4.

5.

6.

7. {(4, 2), (2, 3), (6, 1)}

8. {(-3, -3), (-3, 4), (-2, 4)}

9. $\{(-1, 0), (1, 0)\}$

10. -2x + 4y = 0

11. $X^2 + v^2 = 8$

12. x = -4

1-7 Notes (continued)

Functions

Find Function Values Equations that are functions can be written in a form called **function notation**. For example, y = 2x - 1 can be written as f(x) = 2x - 1.

In the function, x represents the elements of the domain, and f(x) represents the elements of the range. Suppose you want to find the value in the range that corresponds to the element 2 in the domain. This is written f(2) and is read "f of 2." The value of f(2) is found by substituting 2 for x in the equation.

Example: If f(x) = 3x - 4, find each value. a. f(3)

b. f(-2)

Exercises

If f(x) = 2x - 4 and $g(x) = x^2 - 4x$, find each value.

1. *f*(4)

2. g(2)

3. *f*(-5)

7. f(3) - 1

8. $f\left(\frac{1}{4}\right)$

9. $g\left(\frac{1}{4}\right)$

10. $f(a^2)$

11. f(k+1)

12. g(2n)