1

Matrix-Optimization1

Kukunuri Sampath Govardhan

1

1

1

CONTENTS

I Problem Statement

II Construction

III Solution

IV Proof

I. PROBLEM STATEMENT

Let $\mathbf{f}(\mathbf{x}) = x^2 + \frac{1}{x^2}$ and $\mathbf{g}(\mathbf{x}) = x - \frac{1}{x}$, $\mathbf{x} \in \mathbf{R}$ -(-1,0,1). If $\mathbf{h}(\mathbf{x}) = \frac{f(x)}{g(x)}$, then local minimum value of $\mathbf{h}(\mathbf{x})$ is

II. CONSTRUCTION

Fig. 1. $\mathbf{h}(\mathbf{x}) = \frac{(x - \frac{1}{x})^2 + 2}{x - \frac{1}{x}}$

Symbol	Value
f(x)	$x^2 + \frac{1}{x^2}$
$\mathbf{g}(\mathbf{x})$	$x-\frac{1}{x}$
$\mathbf{h}(\mathbf{x})$	$\frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})}$
X	\in R-(-1,0,1)
TABLE I	

GIVEN PARAMETERS

III. SOLUTION

Using **Gradient descend Algorithm**, we get local minimum is 2.83

IV. PROOF

According to given conditions h(x) is expressed as,

$$\mathbf{h}(\mathbf{x}) = \frac{x^2 + \frac{1}{x^2}}{x - \frac{1}{x}} \tag{1}$$

Eq-1 can be expressed as

$$\mathbf{h}(\mathbf{x}) = \frac{(x - \frac{1}{x})^2 + 2}{x - \frac{1}{x}}$$
 (2)

i.e,

$$\mathbf{h}(\mathbf{x}) = x - \frac{1}{x} + \frac{2}{x - \frac{1}{x}} \tag{3}$$

Differentiating on both sides,

$$\mathbf{h}'(\mathbf{x}) = 1 + \frac{1}{x^2} - \frac{2}{(x - \frac{1}{x})^2} (1 + \frac{1}{x^2})$$
 (4)

Yielding,

$$\mathbf{h}'(\mathbf{x}) = \frac{1+x^2}{(x-\frac{1}{x})^2 x^4} (x^4 + 1 - 4x^2)$$
 (5)

 $\mathbf{h}(\mathbf{x})$ has a local minimum at $\mathbf{h}'(\mathbf{x}) = 0$

Therefore,

$$(1+x^2)(x^4+1-4x^2)=0$$
 (6)

Since, $x \in R-(-1,0,1)$

Yielding, $x = \pm 1.932$ Thus,

$$h(1.932) = 2.83$$

Therefore,

The minimum value of h(x) is 2.83