Differential Geometry

Spring term 2022

Exercise 3

- 1. Compute the evolute of the cycloid $\gamma(t) = (t \sin t, 1 \cos t)$. Show that the evolute is a congruent copy of the cycloid.
- 2. Show that the involute $\mathcal{I}_{\gamma,0}$ of the catenary $\gamma(t) = (t, \cosh t)$ is the tractrix.
- 3. Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a regular curve such that $\kappa(t) \neq 0$ and $\dot{\kappa}(t) \neq 0$ for all $t \in [a,b]$.
 - a) Show that for any $a \le t_1 < t_2 \le b$ the length of the curve $\gamma|_{[t_1,t_2]}$ is equal to $\left|\frac{1}{\kappa(t_1)} \frac{1}{\kappa(t_2)}\right|$.
 - b) Prove the Tait-Kneser theorem: the osculating circles of γ at t_1 and t_2 are nested.
- 4. Let $\gamma \colon I \to \mathbb{R}^2$ be a regular curve. A circle $\{p \in \mathbb{R}^2 \mid ||p-c|| = r\}$ is said to have contact of order at least two with γ at $t_0 \in I$ if the function

$$f(t) := \|\gamma(t) - c\|^2 - r^2$$

and its first and second derivative vanish at t_0 .

- a) Show that if $\kappa(t_0) \neq 0$, then the osculating circle to γ at t_0 has contact with γ of order at least two at t_0 .
- b) By studying the third derivative of f show that if $\dot{\kappa}(t_0) \neq 0$, then the osculating circle at t_0 locally separates γ around $\gamma(t_0)$.
- 5. * Let $\gamma: I \to \mathbb{R}^2$ be a regular space curve. The contact of order at least three with a sphere is defined similarly to the previous problem: the function $f(t) = ||\gamma(t) c||^2 r^2$ must vanish at t_0 together with its derivatives up to order three. Find the center and the radius of the sphere which has contact with γ of order at least three (the osculating sphere).
- 6. * Show that the osculating spheres of a space curve at sufficiently close points intersect each other.