Отчет по лабораторной работе №4

Дисциплина: Компьютерный практикум по статистическому анализу данных

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выводы	35
Сп	исок литературы	36

Список иллюстраций

3.1	Примеры с поэлементными операциями над многомерными массивами	8
3.2	Примеры с поэлементными операциями над многомерными массивами	9
3.3	Примеры с поэлементными операциями над многомерными массивами	9
3.4	Примеры с транспонированием, следом, рангом, определителем и	
	инверсией матрицы	10
3.5	Примеры с транспонированием, следом, рангом, определителем и	
	инверсией матрицы	11
3.6	Примеры с транспонированием, следом, рангом, определителем и	
	инверсией матрицы	11
3.7	Примеры с вычислением нормы векторов и матриц, поворотами,	
	вращением	12
3.8	Примеры с вычислением нормы векторов и матриц, поворотами,	
0.0	вращением	12
3.9	Примеры с вычислением нормы векторов и матриц, поворотами,	
0. ,	вращением	13
3 10	Примеры с матричным умножением, единичной матрицей, скалярным	10
5.10	произведением	13
3 11	Примеры с матричным умножением, единичной матрицей, скалярным	10
J.11	произведением	14
3 12	Примеры с факторизацией	14
	Примеры с факторизацией	15
	Примеры с факторизацией	15
	Примеры с факторизацией	16
	Примеры с факторизацией	16
	Примеры с факторизацией	17
	Примеры с факторизацией	18
	Примеры с факторизацией	18
	Примеры с факторизацией	19
	Примеры с факторизацией	19
		20
		20
		21
		21
		22
		22
		23
		23

3.30	Системы линейных уравнений															24
3.31	Задание 3.1															24
3.32	Задание 3.1															25
3.33	Системы линейных уравнений															25
3.34	Системы линейных уравнений								•					•		26
3.35	Задание 3.2								•					•		27
3.36	Операции с матрицами							•								28
3.37	Задание 3.3			•					•					•		28
3.38	Операции с матрицами					•			•							29
3.39	Операции с матрицами							•								29
3.40	Задание 4.1					•			•							30
3.41	Линейные модели экономики .					•			•							31
3.42	Задание 4.2							•								32
	Линейные модели экономики .															32
	Задание 4.3															33
3.45	Линейные модели экономики .		•	•	•	•	•	•	•	•	•		•	•	•	34
3.46	Линейные модели экономики .															34

Список таблиц

1 Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

2 Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 4.2.
- 2. Выполните задания для самостоятельной работы (раздел 4.4)

3 Выполнение лабораторной работы

1. Повторила примеры с поэлементными операциями над многомерными массивами.

```
[4]: #Поэлементные операции над многомерными массивами
     # Массив 4х3 со случайными целыми числами (от 1 до 20):
    a = rand(1:20, (4,3))
[4]: 4×3 Matrix{Int64}:
      7 9 9
5 6 17
      13 2 9
3 2 6
[5]: # Поэлементная сумма:
     sum(a)
[6]: # Поэлементная сумма по столбцам:
     sum(a,dims=1)
[6]: 1×3 Matrix{Int64}:
      28 19 41
[7]: # Поэлементная сумма по строкам:
     sum(a,dims=2)
[7]: 4×1 Matrix{Int64}:
      25
      28
      24
```

Рис. 3.1: Примеры с поэлементными операциями над многомерными массивами

Рис. 3.2: Примеры с поэлементными операциями над многомерными массивами

```
[11]: # Подключение пакета Statistics:
     import Pkg
     Pkg.add("Statistics")
     using Statistics
       Updating registry at `C:\Users\Полина\.julia\registries\General.toml`
       Resolving package versions.
        Updating `C:\Users\Полина\.julia\environments\v1.11\Project.toml`
       [10745b16] + Statistics v1.11.1
       [12]: # Вычисление среднего значения массива:
     mean(a)
[12]: 7.3333333333333333
[13]: # Среднее по столбцам:
     mean(a,dims=1)
[13]: 1×3 Matrix{Float64}:
      7.0 4.75 10.25
[14]: # Среднее по строкам:
     mean(a,dims=2)
[14]: 4×1 Matrix{Float64}:
      8.333333333333334
      9.333333333333334
      8.0
      3.66666666666665
```

Рис. 3.3: Примеры с поэлементными операциями над многомерными массивами

2. Повторила примеры с транспонированием, следом, рангом, определителем и инверсией матрицы.

```
[15]: #Транспонирование, след, ранг, определитель и инверсия матрицы
       # Подключение пакета LinearAlgebra:
       import Pkg
       Pkg.add("LinearAlgebra")
       using LinearAlgebra
          Resolving package versions...
         Updating `C:\Users\Полина\.julia\environments\v1.11\Project.toml`
[37e2e46d] + LinearAlgebra v1.11.0
         No Changes to `C:\Users\Полина\.julia\environments\v1.11\Manifest.toml`
[16]: # Массив 4х4 со случайными целыми числами (от 1 до 20):
       b = rand(1:20,(4,4))
[16]: 4×4 Matrix{Int64}:
       2 14 2 20
12 3 15 9
5 11 12 12
        19 5 11 15
[17]: # Транспонирование:
       transpose(b)
[17]: 4\times4 transpose(::Matrix{Int64}) with eltype Int64:
       2 12 5 19
14 3 11 5
        20 9 12 15
[18]: b'
[18]: 4×4 adjoint(::Matrix{Int64}) with eltype Int64:
2 12 5 19
14 3 11 5
        2 15 12 11
        20 9 12 15
```

Рис. 3.4: Примеры с транспонированием, следом, рангом, определителем и инверсией матрицы

```
[19]: # След матрицы (сумма диагональных элементов):
        tr(b)
[19]: 32
[20]: # Извлечение диагональных элементов как массив:
        diag(b)
[20]: 4-element Vector{Int64}:
          12
         15
[21]: # Ранг матрицы:
        rank(b)
[21]: 4
[22]: # Инверсия матрицы (определение обратной матрицы):
       inv(b)
[22]: 4×4 Matrix{Float64}:
         444 Matrix{Float64}:
-0.0869308 -0.16578 0.0910704 0.142519
-0.129509 -0.3014 0.278533 0.130692
0.00620934 0.130889 -0.00650503 -0.0816085
0.148729 0.214469 -0.20343 -0.0975754
[23]: # Определитель матрицы:
       det(b)
[23]: 10145.99999999998
```

Рис. 3.5: Примеры с транспонированием, следом, рангом, определителем и инверсией матрицы

```
[24]: # Псевдобратная функция для прямоугольных матриц:
pinv(a)

[24]: 3x4 Matrix{Float64}:
0.0180046 -0.0551283 0.0896517 -0.00528759
0.158343 -0.0429604 -0.0642611 -0.0194021
-0.061237 0.0857328 -0.00551091 0.0238789
```

Рис. 3.6: Примеры с транспонированием, следом, рангом, определителем и инверсией матрицы

3. Повторила примеры с вычислением нормы векторов и матриц, поворотами, вращением.

```
[25]: #Вычисление нормы бекторов и матриц, повороты, бращения

# Создание вектора X:

X = [2, 4, -5]

[25]: 3-element Vector{Int64}:
2
4
-5

[26]: #Вычисление евклидовой нормы:
norm(X)

[26]: 6.708203932499369

[27]: #Вычисление р-нормы:
p = 1
norm(X,p)

[27]: 11.0

[28]: #Расстояние между двумя векторами X и Y:
X = [2, 4, -5];
Y = [1, -1, 3];
norm(X-Y)

[28]: 9.486832980505138

[29]: #Проверка по базовому определению:
sqrt(sum((X-Y).^2))

[29]: 9.486832980505138
```

Рис. 3.7: *Примеры с вычислением нормы векторов и матриц, поворотами, вращением*

```
[31]: # Угол между двумя векторами:
acos((X'*Y)/(norm(X)*norm(Y)))

[31]: 2.4404307889469252

[32]: # Создание матрицы:
d = [5 -4 2; -1 2 3; -2 1 0]

[32]: 3×3 Matrix[Int64]:
5 -4 2
-1 2 3
-2 1 0

[33]: # Вычисление Евклидовой нормы:
opnorm(d)

[33]: 7.147682841795258

[34]: # Вычисление р-нормы:
p=1
opnorm(d,p)

[34]: 8.0
```

Рис. 3.8: *Примеры с вычислением нормы векторов и матриц, поворотами, вращением*

```
[35]: # Поворот на 180 градусов:
rot180(d)

[35]: 3x3 Matrix{Int64}:
0 1 -2
3 2 -1
2 -4 5

[36]: # Переворачивание строк:
reverse(d,dims=1)

[36]: 3x3 Matrix{Int64}:
-2 1 0
-1 2 3
5 -4 2

[37]: # Переворачивание столбцов
reverse(d,dims=2)

[37]: 3x3 Matrix{Int64}:
2 -4 5
3 2 -1
0 1 -2
```

Рис. 3.9: *Примеры с вычислением нормы векторов и матриц, поворотами, вращением*

4. Повторила примеры с матричным умножением, единичной матрицей, скалярным произведением.

```
[38]: #Матричное умножение, единичная матрица, скалярное произведение
       # Матрица 2х3 со случайными целыми значениями от 1 до 10:
      A = rand(1:10,(2,3))
[38]: 2×3 Matrix{Int64}:
       3 2 9
[39]: # Матрица 3х4 со случайными целыми значениями от 1 до 10:
      B = rand(1:10,(3,4))
[39]: 3×4 Matrix{Int64}:
       9 1 2 1
5 1 3 7
       6 1 9 3
[40]: # Произведение матриц А и В:
      A*B
[40]: 2×4 Matrix{Int64}:
       91 14 93 44
93 15 53 73
[41]: # Единичная матрица 3х3:
      Matrix{Int}(I, 3, 3)
[41]: 3×3 Matrix{Int64}:
       1 0 0
0 1 0
```

Рис. 3.10: Примеры с матричным умножением, единичной матрицей, скалярным произведением

```
[42]: # Скалярное произведение векторов X и Y:
X = [2, 4, -5]
Y = [1,-1,3]
dot(X,Y)

[42]: -17

[43]: # тоже скалярное произведение:
X'Y

[43]: -17
```

Рис. 3.11: Примеры с матричным умножением, единичной матрицей, скалярным произведением

5. Повторила примеры с факторизацией.

```
[75]: #Факторизация. Специальные матричные структуры
# Задаём квадратную матрицу 3х3 со случайными значениями:
       A = rand(3, 3)
[75]: 3×3 Matrix{Float64}:
        0.551531 0.462932 0.529392
0.942454 0.777511 0.239333
0.702618 0.877552 0.15966
[76]: # Задаём единичный вектор:
       x = fill(1.0, 3)
[76]: 3-element Vector{Float64}:
        1.0
         1.0
[77]: # Задаём вектор b:
       b = A*x
[77]: 3-element Vector{Float64}:
        1.543855596934271
1.9592989439076152
         1.739830453013854
[78]: # Решение исходного уравнения получаем с помощью функции \
        # (убеждаемся, что х - единичный вектор):
       Α\b
[78]: 3-element Vector{Float64}:
         1.000000000000000000
         0.99999999999993
```

Рис. 3.12: Примеры с факторизацией

```
[79]: # LU-φακπορυσαιμα:
Alu = lu(A)

[79]: LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.74552 1.0 0.0
0.585207 0.0266086 1.0
U factor:
3×3 Matrix{Float64}:
0.942454 0.777511 0.239333
0.0 0.297903 -0.018768
0.0 0.0 0.389832

[80]: # Μαπριμα περεσπακοθοκ:
Alu.P

[80]: 3×3 Matrix{Float64}:
0.1.0 0.0
0.0 0.0 0.0
[81]: # Βεκπορ περεσπακοθοκ:
Alu.p

[81]: 3-element Vector{Int64}:
2
3
1
```

Рис. 3.13: Примеры с факторизацией

```
[82]: # Матрица L:
      Alu.L
[82]: 3×3 Matrix{Float64}:
       1.0 0.0 0.0
0.74552 1.0 0.0
0.585207 0.0266086 1.0
[83]: # Матрица U:
Alu.U
[84]: # Решение СЛАУ через матрицу А:
      A\b
[84]: 3-element Vector{Float64}:
       1.00000000000000000
       0.99999999999993
[85]: # Решение СЛАУ через объект факторизации:
[85]: 3-element Vector{Float64}:
       1.00000000000000000
       0.99999999999993
      det(A)
[86]: 0.10944902518719724
```

Рис. 3.14: Примеры с факторизацией

```
минант матрицы А через объект факторизации:
       det(Alu)
[87]: 0.10944902518719724
       Aqr = qr(A)
[88]: LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}, Matrix{Float64}}
       Q factor: 3%3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}}, Matrix{Float64}} R factor:
       3×3 Matrix{Float64}:
        -1.29849 -1.2358 -0.484961
0.0 0.248451 -0.112888
         0.0
                   0.0
                              -0.33926
[89]: # Mampuua Q:
       Aqr.Q
[89]: 3x3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}
       Aqr.R
[90]: 3×3 Matrix{Float64}:
        -1.29849 -1.2358
                0.248451 -0.112888
0.0 -0.33926
         0.0
[91]: # Проверка, что матрица Q - ортогональная:
       Aqr.Q'*Aqr.Q
[91]: 3×3 Matrix{Float64}:
        1.0 -8.32667e-17 -2.22045e-16
0.0 1.0 -1.11022e-16
-1.11022e-16 0.0 1.0
```

Рис. 3.15: Примеры с факторизацией

```
[92]: # Симметризация матрицы А:
      Asym = A + A'
[92]: 3×3 Matrix{Float64}:
      1.10306 1.40539 1.23201
1.40539 1.55502 1.11689
       1.23201 1.11689 0.31932
      AsymEig = eigen(Asym)
[93]: Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
      values:
      3-element Vector{Float64}:
      -0.5873869922610678
      -0.02297178677478906
       3.5877632318320987
      vectors:
3×3 Matrix{Float64}:
       [94]: # Собственные значения:
      AsymEig.values
[94]: 3-element Vector{Float64}:
       -0.5873869922610678
       -0.02297178677478906
       3.5877632318320987
[95]: #Собственные векторы:
      AsymEig.vectors
[95]: 3×3 Matrix{Float64}:
       0.835889
                 0.311884 -0.451683
```

Рис. 3.16: Примеры с факторизацией

```
[96]: # Проверяем, что получится единичная матрица:
       inv(AsymEig)*Asym
[96]: 3×3 Matrix{Float64}:
         1.0 -3.81917e-14 -5.77316e-15
3.90799e-14 1.0 1.28786e-14
-1.59872e-14 -2.13163e-14 1.0
[97]: # Матрица 1000 х 1000:
       n = 1000
A = randn(n,n)
[97]: 1000×1000 Matrix{Float64}:
         -2.21123
                                                       1.03644
                                                                     0.287116
                                                                                   0.489334
                                                      -0.340143
0.684426
                                                                                  -0.317155
-2.76429
         -1.61715
                      -1.19851
                                     -0.520879
                                                                     0.836955
         1.0039
                                      0.0386619
                                                                     0.485467
                                                                    -1.30953
-0.446
         -1.11308
                      -0.503773
                                      0.662727
                                                       1.69777
                                                                                  -0.778417
                       0.00782534
                                      0.320535
                                                                                  -0.0483074
         0.422197
                                                       -1.24173
         0.324208
0.78462
                      -0.469507
0.877493
                                     1.69774
-1.77879
                                                      0.832636
-2.06824
                                                                     0.894876
0.766819
                                                                                   0.696623
                                                                                   1.01932
         -0.0452582
                       0.0214964
                                                       -0.894698
                                                                     -0.284973
                                                                                   0.0288325
         1.68032
                       0.952413
                                      0.134991
                                                      -1.2106
                                                                     1.68641
                                                                                   0.955969
         -0.68542
                       0.730857
                                      -1.02571
                                                       -0.258665
                                                                    -1.09236
                                                                                  -1.57978
         1.88223
                       -0.028493
                                     -1.30407
                                                      -0.70995
                                                                     0.0860891
                                                                                  -1.39097
         1.37706
                       0.0634672
                                      0.502746
                                                       -0.383901
                                                                    -0.424257
                                                                                  -0.748692
         -0.463588
                      -2.28929
                                      1.28139
                                                       0.0356126
                                                                    -1.54675
                                                                                  -0.249698
         -1.62627
                      -1.22571
                                      0.837636
                                                       0.281486
                                                                                  -1.1722
         0.150812
                      -1.18037
-0.0905179
                                     -1.15633
                                                       -1.49511
                                                                     1.26137
                                                                                  0.576786
-0.898478
         -0.415434
                                     -1.49928
                                                       -0.643082
                                                                     0.88309
         -0.499404
                      -2.28215
                                      1.65194
                                                       0.520678
                                                                    -0.375621
                                                                                  -0.251754
         -1.31017
                       0.704631
                                      0.777236
                                                       0.0546234
                                                                    -0.443469
                                                                                   1.48167
         1.52842
                       -0.859274
                                      1.64819
                                                       0.986682
                                                                     0.597711
                                                                                   0.564677
                       0.315807
                                      0.661945
                                                       -0.373102
                                                                    -0.159406
                                                                                  -0.577015
         -1.58124
         -0.725211
                       -0.335825
                                      0.692725
                                                       1.68964
                                                                                   0.111309
         0.533782
                       0.942887
                                      -0.562174
                                                      -0.673415
                                                                    -0.763457
                                                                                  -0.263159
         0.5751
                       0.556507
                                     -0.612258
                                                       -0.245984
                                                                     0.495394
                                                                                   1.54353
          1.6237
                       1.30644
                                      3.2001
                                                       0.263866
                                                                     1.00224
                                                                                   -0.114302
```

Рис. 3.17: Примеры с факторизацией

```
[98]: # Симметризация матрицы:
      Asym = A + A'
      1000×1000 Matrix{Float64}:
        -4.42247
                    -0.121627
                                  0.923896
                                                  1.61154
                                                               1.91082
                                                                           0.0643163
        -0.121627
                                 -2.55845
                                                  0.216364
                                                               2.14339
                                                                          -0.786335
                    -2.39702
                                  0.0773238
                                                  0.0721682
                                                               3.68557
        0.923896
                    -2.55845
        -2.04304
                    -1.34501
                                  -0.689001
                                                  1.92147
                                                              -1.32493
                                                                          -1.4391
        -1.5396
                     -0.778088
                                  0.554126
                                                 -1.42853
                                                               0.0744139
                                                                           -0.540589
        0.205376
                     -0.447025
                                  3.65558
                                                 1.48534
                                                              -0.414697
                                                                           1.81156
                                 -1.29527
         0.154791
                     1.34348
                                                 -2.13208
                                                              -0.66017
                                                                           1.54498
         0.852045
                     3.13639
                                 -0.781097
                                                 -0.697632
                                                              -0.630185
                                                                           0.0521465
         3.3503
                     -0.237203
                                 -0.70463
                                                 -1.93532
                                                               2.35026
                                                                           -0.0314685
        -2.10326
                     -0.0592971
                                 -1.50522
                                                  0.416827
                                                              -2.06459
                                                                           -2.04976
         0.629218
                     1.10381
                                 -1.85902
                                                 -1.31295
                                                              -0.510115
                                                                           0.382771
                                 -0.288943
        0.763118
                     1.66157
                                                  1.75658
                                                              -1.1151
                                                                           -0.985488
        -1.74386
                     -0.738943
                                                 -0.265365
                                                                           0.0363151
        -3.00941
                    -1.37024
                                  2.39034
                                                  1.82314
                                                              -0.380292
                                                                          -1.79772
        -0.0551953
                    -0.899751
                                 -1.71652
                                                 -1.8575
                                                               1.74603
                                                                           0.463956
        -1.24547
                    -0.849534
                                 -2.47423
                                                 0.108653
                                                              0.940387
                                                                          -0.146214
        -0.772616
                    -2.07813
                                  3.09038
                                                  0.346363
                                                              0.960159
                                                                          -1.50093
        -2.64617
                    -2.04766
                                  1.08653
                                                  0.822263
                                                              0.0911967
                                                                           1.65553
        1.60719
                     -0.841101
                                  0.157655
                                                  1.96522
                                                               2.13915
                                                                           0.658992
        -0.55921
                    -1.16312
                                  0 901499
                                                 -0.867904
                                                              -1.78357
                                                                           -2 24253
        -0.496712
                                                 2.9909
                                                              0.653923
                                                                          -0.694089
                    -0.0442799
                                 -0.172507
        1.99153
                     -0.402386
                                 -0.436316
                                                  1.62488
                                                              -2.21985
                                                                           0.275544
         1.61154
                     0.216364
                                  0.0721682
                                                 -0.491969
                                                              0.75926
                                                                           4.27267
                                                               2.00448
        0.0643163 -0.786335
                                 -4.07451
                                                  4.27267
                                                              -0.342474
                                                                          -1.15349
      # Проверка, является ли матрица симметричной
      issymmetric(Asym)
      true
```

Рис. 3.18: Примеры с факторизацией

```
Asym_noisy = copy(Asym)
          Asym_noisy[1,2] += 5eps()
          -0.12162668870773974
[101]: # Проверка, является ли мо
          issymmetric(Asym_noisy)
          Asym_explicit = Symmetric(Asym_noisy)
[102]: 1000×1000 Symmetric{Float64, Matrix{Float64}}:
            -4.42247
                           -0.121627
                                            0.923896
                                                                1.61154
                                                                                1.91082
                                                                                                0.0643163
           -0.121627
0.923896
                           -2.39702
-2.55845
                                            -2.55845
                                                                0.216364
0.0721682
                                                                                2.14339
                                                                                               -0.786335
-4.07451
                                            0.0773238
            -2.04304
                            -1.34501
                                            -0.689001
                                                                1.92147
                                                                                1.32493
                                                                                               -1.4391
            -1.5396
0.205376
                            -0.778088
-0.447025
                                                                -1.42853
1.48534
                                                                                               -0.540589
1.81156
                                            0.554126
                                                                                0.0744139
                                            3.65558
                                                                                0.414697
             0.154791
                            1.34348
                                            -1.29527
                                                               -2.13208
                                                                               -0.66017
                                                                                                1.54498
                                           -0.781097
-0.70463
-1.50522
            0.852045
3.3503
                            3.13639
-0.237203
                                                                -0.697632
-1.93532
                                                                               -0.630185
2.35026
                                                                                                0.0521465
-0.0314685
            -2.10326
                            -0.0592971
                                                                0.416827
                                                                               -2.06459
                                                                                               -2.04976
            0.629218
0.763118
                            1.10381
1.66157
                                            -1.85902
-0.288943
                                                                -1.31295
1.75658
                                                                               -0.510115
-1.1151
                                                                                               0.382771
-0.985488
                                                                               -1.09749
            -1.74386
                            -0.738943
                                            0.307054
                                                               -0.265365
                                                                                                0.0363151
            -0.0551953
                            -0.899751
                                            -1.71652
                                                                -1.8575
                                                                                1.74603
                                                                                                0.463956
            -1.24547
-0.772616
                            -0 8/953/
                                            -2 /7/23
                                                                0.108653
                                                                                0 9/0387
                                                                                                -0.146214
                                            3.09038
            -2.64617
                            -2.04766
                                            1.08653
                                                                0.822263
                                                                                0.0911967
                                                                                                1.65553
            1.60719
-0.55921
-0.496712
                                            0.157655
0.901499
-0.172507
                                                                1.96522
-0.867904
                                                                               2.13915
-1.78357
                            -0.841101
                                                                                                0.658992
                                                                2.9909
                            -0.0442799
                                                                                0.653923
```

Рис. 3.19: Примеры с факторизацией

```
[103]: import Pkg
          Pkg.add("BenchmarkTools")
          using BenchmarkTools
               Resolving package versions...
            Resolving package versions...
Installed BenchmarkTools - v1.6.2
Updating `C:\Users\Полина\.julia\environments\v1.11\Project.toml`
[6e4b80f9] + BenchmarkTools v1.6.2
Updating `C:\Users\Полина\.julia\environments\v1.11\Manifest.toml`
[6e4b80f9] + BenchmarkTools v1.6.2
[9abbd945] + Profile v1.11.0
           Precompiling project...
3741.6 ms √ BenchmarkTools
1 dependency successfully precompiled in 6 seconds. 465 already precompiled.
[104]: # Оценка эффективности выполнения операции по нахождению
            # собственных значений симметризованной матрицы:
             41.776 ms (21 allocations: 7.99 MiB)
[105]: # Оценка эффективности выполнения операции по нахождению
           # собственных значений зашумлённой матрицы:
         @btime eigvals(Asym_noisy);
             359.688 ms (27 allocations: 7.93 MiB)
[106]: # Оценка эффективности выполнения операции по нахождению
          # собственных значений зашумлённой матрицы,
# для которой явно указано, что она симметричная:
          @btime eigvals(Asym_explicit);
             42.324 ms (21 allocations: 7.99 MiB)
```

Рис. 3.20: Примеры с факторизацией

Рис. 3.21: Примеры с факторизацией

6. Повторила примеры с общей линейной алгеброй.

Рис. 3.22: Примеры с общей линейной алгеброй

```
[115]: # LU-pasnowenue:
lu(Arational)

[115]: LU{Rational{BigInt}, Matrix{Rational{BigInt}}, Vector{Int64}}
L factor:
3x3 Matrix{Rational{BigInt}}:
1 0 0
3//4 1 0
7//8 15//46 1
U factor:
3x3 Matrix{Rational{BigInt}}:
4//5 9//10 2//5
0 -23//40 2//5
0 0 193//460
```

Рис. 3.23: Примеры с общей линейной алгеброй

- 7. Задала вектор v. Умножила вектор v скалярно сам на себя и сохранила результат в dot v.
- 8. Умножила v матрично на себя (внешнее произведение), присвоив результат переменной outer_v.

```
*[119]:

# 1
v = [25, 86, 36]
dot_v = v'v

[119]:
9317

[120]:

outer_v = v*v'

[120]:

3×3 Matrix{Int64}:
625 2150 900
2150 7396 3096
900 3096 1296
```

Рис. 3.24: Произведение векторов

9. Решила СЛАУ с двумя неизвестными.

a)
$$\begin{cases} x+y=2, \\ x-y=3. \end{cases}$$
 b)
$$\begin{cases} x+y=2, \\ 2x+2y=4. \end{cases}$$
 c)
$$\begin{cases} x+y=2, \\ 2x+2y=5. \end{cases}$$
 d)
$$\begin{cases} x+y=1, \\ 2x+2y=2, \\ 3x+3y=3. \end{cases}$$
 e)
$$\begin{cases} x+y=2, \\ 2x+y=1, \\ x-y=3. \end{cases}$$
 f)
$$\begin{cases} x+y=2, \\ 2x+y=1, \\ x-y=3. \end{cases}$$
 f)
$$\begin{cases} x+y=2, \\ 2x+y=3. \end{cases}$$

Рис. 3.25: Задание 2.1

```
#2.1
A1 = [1 1; 1 -1]
b1 = [2, 3]
x1 = A1\b1
[190]:
2-element Vector{Float64}:
2.5
-0.5
[191]:
A2 = [1 1; 2 2]
 b2 = [2, 4]
if det(A2) == 0
print("Нет решений")
else
  x2 = A2\b2
print(x2)
end
Нет решений
A3 = [1 1; 2 2]
b3 = [2, 5]
if det(A3) == 0
  print("Нет решений")
 else
    x3 = A3\b3
     print(x3)
Нет решений
```

Рис. 3.26: Системы линейных уравнений

```
A4 = [1 1; 2 2; 3 3]
b4 = [1, 2, 3]
0.5
[194]:
A5 = [1 1; 2 1; 1 -1]
b5 = [2, 1, 3]
x5 = A5\b5
[194]:
2-element Vector{Float64}:
 1.500000000000000004
-0.999999999999997
A6 = [1 1; 2 1; 3 2]
b6 = [2, 1, 3]
x6 = A6\b6
[195]:
2-element Vector{Float64}:
 -0.99999999999999
 2.999999999999982
```

Рис. 3.27: Системы линейных уравнений

10. Решила СЛАУ с тремя неизвестными.

a)
$$\begin{cases} x+y+z=2,\\ x-y-2z=3.\\ x+y+z=2,\\ 2x+2y-3z=4,\\ 3x+y+z=1.\\ \end{cases}$$
 c)
$$\begin{cases} x+y+z=1,\\ x+y+z=1,\\ x+y+2z=0,\\ 2x+2y+3z=1.\\ \end{cases}$$
 d)
$$\begin{cases} x+y+z=1,\\ x+y+z=0,\\ 2x+2y+3z=0.\\ \end{cases}$$

Рис. 3.28: Задание 2.2

```
#2.2
A7 = [1 1 1; 1 -1 -2]
b7 = [2, 3]
x7 = A7\b7
3-element Vector{Float64}:
 2.2142857142857144
0.35714285714285704
-0.5714285714285712
A8 = [1 1 1; 2 2 -3; 3 1 1]
b8 = [2, 4, 1]
x8 = A8\b8
3-element Vector{Float64}:
-0.5
2.5
[198]:
A9 = [1 1 1; 1 1 2; 2 2 3]
b9 = [1, 0, 1]
if det(A9) == 0
print("Нет решений")
else
    x9 = A9\b9
    print(x9)
Нет решений
```

Рис. 3.29: Системы линейных уравнений

```
[199]:

A10 = [1 1 1; 1 1 2; 2 2 3]

b10 = [1, 0, 0]

if det(A10) == 0

print("Нет решений")

else

x10 = A10\b10

print(x10)

end

Heт решений
```

Рис. 3.30: Системы линейных уравнений

11. Привела приведённые ниже матрицы к диагональному виду.

Рис. 3.31: Задание 3.1

b)
$$\begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$

c) $\begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix}$

Рис. 3.32: Задание 3.1

Рис. 3.33: Системы линейных уравнений

Рис. 3.34: Системы линейных уравнений

12. Вычислила

a)
$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}^{10}$$

b) $\sqrt{\begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix}}$
c) $\sqrt[3]{\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}}$
d) $\sqrt{\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}}$

Рис. 3.35: Задание 3.2

```
#3.2
a = [1 -2; -2 1]
a^10
[205]:
2×2 Matrix{Int64}:
 29525 -29524
-29524 29525
[206]:
b = [5 -2; -2 5]
sqrt(b)
[206]:
2×2 Matrix{Float64}:
 2.1889 -0.45685
-0.45685 2.1889
c = [1 -2; -2 1]
cbrt(c)
[207]:
2×2 Matrix{Float64}:
 0.221125 -1.22112
-1.22112 0.221125
[208]:
d = [1 2; 2 3]
sqrt(d)
[208]:
2×2 Matrix{ComplexF64}:
 0.568864+0.351578im 0.920442-0.217287im 0.920442-0.217287im 1.48931+0.134291im
```

Рис. 3.36: Операции с матрицами

13. Нашла собственные значения матрицы А, если

$$A = \begin{pmatrix} 140 & 97 & 74 & 168 & 131 \\ 97 & 106 & 89 & 131 & 36 \\ 74 & 89 & 152 & 144 & 71 \\ 168 & 131 & 144 & 54 & 142 \\ 131 & 36 & 71 & 142 & 36 \end{pmatrix}$$

Рис. 3.37: Задание 3.3

Создала диагональную матрицу из собственных значений матрицы А. Создала нижнедиагональную матрицу из матрица А. Оценила эффективность выполняемых операций.

```
[209]:
#3.3
A = [140 97 74 168 131;
    97 106 89 131 36;
    74 89 152 144 71;
    168 131 144 54 142;
    131 36 71 142 36]
A_diag = diagm(eigs.values)
5×5 Matrix{Float64}:
 0.0
                                542.468
LowerTriangular(A)
5×5 LowerTriangular{Int64, Matrix{Int64}}:
140 ·
97 106
 168 131 144 54
 131 36 71 142 36
```

Рис. 3.38: Операции с матрицами

Рис. 3.39: Операции с матрицами

14. Линейная модель экономики может быть записана как СЛАУ x - Ax = y, где элементы матрицы A и столбца y — неотрицательные числа. По своему смыслу в экономике элементы матрицы A и столбцов x, y не могут быть отрицательными числами.

Матрица A называется продуктивной, если решение x системы при любой неотрицательной правой части у имеет только неотрицательные элементы x_i. Используя это определение, проверила, являются ли матрицы продуктивными.

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

b) $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
c) $\frac{1}{10} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

Рис. 3.40: Задание 4.1

```
#4.1

E = Matrix{Int}{I, 2, 2}

A1 = [1 2; 3 4]
y1 = [1, 1]
x1 = y1'*((E-A1)^-1)
#матрица не продуктивная

[213]:

1×2 adjoint(::Vector{Float64}) with eltype Float64:
θ.θ -θ.333333

[214]:

A2 = 1/2*A1
x2 = y1'*((E-A2)^-1)
#матрица не продуктивная

[214]:

1×2 adjoint(::Vector{Float64}) with eltype Float64:
-θ.25 -θ.75

[215]:

A3 = 1/10*A1
x3 = y1'*((E-A3)^(-1))
#матрица не продуктивная

[215]:

1×2 adjoint(::Vector{Float64}) with eltype Float64:
1.875 2.29167
```

Рис. 3.41: Линейные модели экономики

15. Критерий продуктивности: матрица А является продуктивной тогда и только тогда, когда все элементы матрица (E-A)^-1 являются неотрицательными числами. Используя этот критерий, проверила, являются ли матрицы продуктивными.

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

b) $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
c) $\frac{1}{10} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$

Рис. 3.42: Задание 4.2

```
#4.2
A4 = [1 2; 3 1]
x4 = (E-A4)^{(-1)}
#матрица не продуктивная
[216]:
2×2 Matrix{Float64}:
-0.0 -0.333333
-0.5 0.0
A5 = 1/2*A4
x5 = (E-A5)^{(-1)}
#матрица не продуктивная
2×2 Matrix{Float64}:
-0.4 -0.8
-1.2 -0.4
[218]:
A6 = 1/10*A4
x6 = (E-A6)^(-1)
[218]:
2×2 Matrix{Float64}:
1.2 0.266667
0.4 1.2
```

Рис. 3.43: Линейные модели экономики

16. Спектральный критерий продуктивности: матрица А является продуктивной тогда и только тогда, когда все её собственные значения по модулю

меньше 1. Используя этот критерий, проверила, являются ли матрицы продуктивными.

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

b) $\frac{1}{2}\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
c) $\frac{1}{10}\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
d) $\begin{pmatrix} 0.1 & 0.2 & 0.3 \\ 0 & 0.1 & 0.2 \\ 0 & 0.1 & 0.3 \end{pmatrix}$

Рис. 3.44: Задание 4.3

Рис. 3.45: Линейные модели экономики

```
| 221]:
| A9 = 1/10*A7 | eigs = eigen(A9) | abs.(eigs.values) | #mampuua npodykmuβhaя |
| 221]:
| 2-element Vector{Float64}: 0.14494897427831785 | 0.34494897427831783 |
| 222]:
| A10 = [0.1 0.2 0.2; 0 0.1 0.2; 0 0.1 0.3] | eigs = eigen(A10) | abs.(eigs.values) | #mampuua npodykmuβhaя |
| 222]:
| 3-element Vector{Float64}: 0.02679491924311228 | 0.1 0.37320508075688774 |
| 0.37320508075688774 | |
```

Рис. 3.46: Линейные модели экономики

4 Выводы

Я изучила возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

Список литературы