

3D POINT CLOUDS ON EMBEDDED PLATFORMS

Presented by: Amur Pal - Junaid Ali - Sannan Zia

Advisor: Dr. Faisal Shafait

Co-advisor: Dr. Adnan Ul Hassan

May 17th, 2023

Problem Statement

IMPLEMENT A FRAMEWORK FOR EFFICIENT IMPLEMENTATION OF POINT CLOUD DEEP LEARNING MODELS ON FPGA

- DEMONSTRATING NOVEL HARDWARE RESULTS WITH SOTA
 3D POINT CLOUD MODEL POINTMLPELITE
- DEMONSTRATING FPGA ACCELERATION OVER CPU & GPU

State of the art: PointMLPElite

Models: PointMLP, PointMLPElite

Task: Classification, Segmentation

Dataset: ModelNet40

Model	Accuracy (%)	Parameters (M)	Layers	Size (MBs)	Throughput (samples/sec)	
PointMLP	94.1 0.5	12.6 %	40	50.49 1	112 L8.4x	
PointMLPElite	93.6	0.68	25	2.744	176	

POINTMLPELITE - TOPOLOGY

OVERVIEW & COMPONENTS

METHODOLOGY: SOFTWARE EXPLORATION

Precision	Geometric Parameters	Accuracy (%)	Size (KBs)	Precision	Geometric Parameters	Input Points	Accuracy (%)
FP32	α = FP32, β = FP32	93.07	2810	FP32	α = FP32, β = FP32	1024	93.07
W8A8	α = FP32, β = FP32	93.00	702.5	Fused W8A8	α = Q1.7, β = None	1024	92.75
W4A4	α = FP32, β = FP32	91.04	351.2	Fused W4A4	α = Q1.7, β = None	1024	92.34
Fused FP32	α = Q1.7, β = None	93.07	2,806.75	Fused W8A4	α = Q1.7, β = None	1024	92.18
Fused W8A8	α = Q1.7, β = None	93.23	702.0	Fused W6A2	α = Q1.7, β = None	1024	92.02
Fused W4A4	α = Q1.7, β = None	91.49	351.5	Fused W8A2	α = Q1.7, β = None	1024	88.57
Fused W8A4	α = Q1.7, β = None	92.79	702.0	Fused W8A8	α = Q1.7, β = None	512	91.98
Fused W6A2	α = Q1.7, β = None	90.70	527	Fused W8A8	α = Q1.7, β = None	256	91.69
Fused W8A2	α = Q1.7, β = None	90.64	702.0	Fused W8A8	α = Q1.7, β = None	128	74.07

Hardware Implementation

Local Grouper

Architecture

Block Design

Power & Placement

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.575 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 26.0°C

Thermal Margin: 59.0°C (32.5 W)

Effective 9JA: 1.8°C/W

Power supplied to off-chip devices: 0 W

Hardware Results

Timing & Resources

Design Timing Summary

Setup

Worst Negative Slack (WNS): 2.377 ns

Total Negative Slack (TNS): 0.000 ns

Number of Failing Endpoints: 0

Total Number of Endpoints: 25867

All user specified timing constraints are met.

Hardware Results

Latency, Throughput, Speedup

Demonstration

Inference on NVIDIA RTX A5000

```
Class: person
Average time cost per sample: 0.073 seconds
```

Inference on Xilinx ZC706

```
xilinx@pynq:~/hwCode$ g++ -w dev.cpp PointMLPElite_run.cpp -o PointMLPElite
xilinx@pynq:~/hwCode$ sudo ./PointMLPElite
Latency: 1.01123 ms
Throughput: 988.896 point clouds per second
Class: 31 - person
Probability: 0.968750
```


ModelNet40 sample point cloud

- In this project, we demonstrated that FPGAs are a suitable platform for the acceleration of 3D point cloud deep learning models.
- We also developed an HLS framework for deploying such models on FPGAs, with a set of common layers and algorithms.
- We learned a lot through the challenges, and we thank our supervisors for their help.
- Any questions?

Deliverables Upload Status Submission Status

Deliverables Submission Status

- Project Report Submitted
- Project Demo Submitted
- Plagiarism Report- **Submitted**
- Project Poster Submitted
- Project Presentation Submitted

