Solution Plan for Data Preprocessing

1. Data Loading and Initial Exploration

- Loaded dataset using pandas
- Checked dataset structure using:
 - \circ data.shape \rightarrow Dimensions of the dataset.
 - data.info() → Data types and non-null counts.
 - o data.head() → First few rows of the dataset.

2. Data Cleaning Steps

Step 1: Handling Missing Values

- Checked missing values using data.isnull().sum().
- Dropped rows where "Scrape Timestamp" had invalid dates.
- Converted "Scrape Timestamp" to datetime using: python
- Removed rows with missing timestamps using: python

Step 2: Handling Duplicates

- Checked duplicate rows.
- No explicit duplicate removal was performed.

Step 3: Feature Engineering

• Extracted "Date" from "Scrape Timestamp".

3. Data Visualization & Exploration

- Rating Distribution: Used sns.countplot() to analyze rating frequencies.
- Platform Analysis: Used sns.barplot() to analyze review sources.
- Word Frequency Analysis:
 - Tokenized and counted words from "Review Paragraph".
 - Visualized most common words using a bar chart.
- Word Cloud Generation: Created a word cloud from review texts

4. Text Preprocessing (for NLP Models)

- Tokenized review texts.
- Removed common stopwords (not explicitly mentioned but likely needed).
- Generated word clouds and frequency distributions.

Further Steps:

NLP Sentiment Scoring Methods

Lexicon-Based Sentiment Analysis:

- NLTK Opinion Lexicon
- VADER Sentiment Scoring

Transformer-Based Sentiment Analysis

- Sentiment Scoring using RoBERTa
- Sentiment Scoring using Transformers Pipeline

Evaluation Metrics

- Confusion Matrix (confusion_matrix(). Compares predicted vs. actual sentiment labels.
- **Accuracy** % of correctly classified reviews.
- **Precision & Recall** Important when class imbalance exists (e.g., more positive reviews than negative).
- **F1-Score** Balance between precision and recall.
- AUC-ROC