§2 Die Dimension eines Vektorraums

Sei V ein K-Vektorraum und $v_1, \ldots, v_r \in V$.

Definition: $v \in V$ heißt **Linearkombination** der Vektoren v_1, \ldots, v_r falls es Elemente $\lambda_1, \ldots, \lambda_r \in K$ gibt, so dass

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_r v_r$$

Sei $M \subseteq V$ eine nicht leere Menge von Vektoren.

Der von M aufgespannte Untervektorraum von V (die lineare Hülle von M) ist die Menge aller Linearkombinationen aus M. Schreibe dafür $K \cdot M$.

Es ist also $K \cdot M := \{ \sum_{i=1}^r \lambda_i v_i \mid r \in \mathbb{N} \setminus \{0\} \text{ und } v_1, \dots, v_r \in M \text{ und } \lambda_1, \dots, \lambda_r \in M \}$ K}.

Für die leere Menge setzen wir $K \cdot \phi = \{0\}.$

Für $M = \{v_1, \dots, v_r\}$ schreibe auch $Kv_1 + \dots + Kv_r$ für KM. Sind $v = \sum_{i=1}^r \lambda_i v_i$ und $w = \sum_{i=1}^s \mu_i w_i$ aus KM, so auch $v + w = \sum_{i=0}^r \lambda_i v_i + \sum_{i=1}^s \mu_i w_i$

und $\lambda v = \sum_{i=1}^{'} (\lambda \lambda_i) v_i$ für $\lambda \in K$.

Ferner ist für $v \in M$ auch $0 = 0 \cdot v$ und $v = 1 \cdot v$ aus KM. Also ist KMein Untervektorraum von V mit $M\subseteq KM.$ Ist $W\subseteq V$ ein Untervektorraum mit $M \subseteq W$, so ist auch jede Linearkombination $\sum_{i=1}^{r} \lambda_i v_i \in KM$ in W, also $KM \subseteq W$. Fazit:

(2.1) Bemerkung: KM ist der kleinste Untervektorraum von V, welcher M umfaßt.

Offensichtlich gilt: $K(N \cup M) = KN + KM$ und $KN \subseteq KM$, falls $N \subseteq M$.

Beispiele:

a) Betrachte in K^n die sog. Einheitsvektoren

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}. \text{ Für } x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in K^n \text{ gilt}$$

$$x = \begin{pmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \ldots + x_n e_n, \text{ also ist}$$

$$K^n = K \cdot e_1 + \ldots + K \cdot e_n.$$

b) Betrachte über K ein lineares Gleichungssystem

(*)
$$\sum_{j=1}^{n} a_{ij} x_j = 0, \ i = 1, \dots, m$$

von m Gleichungen in n Unbekannten x_1, \ldots, x_n .

Mit Hilfe des Gauß-Algorithmus erhält ein sog. Fundamentalsystem von Lösungen v_1, \ldots, v_{n-r} , so dass jede Lösung von der Form $v = \lambda_1 v_1 + \ldots + \lambda_{n-r} v_{n-r}$ ist. M.a.W.:

$$Kv_1 + \ldots + Kv_{n-r}$$
 ist der Lösungsraum von (*)

Rechenbeispiel: (*) $2x_1 + 4x_2 + 3x_3 = 0$ hat die freien Variablen x_2 und x_3 mit Fundamentallösungen

$$v_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix}$$
 und $v_2 = \begin{pmatrix} -\frac{3}{2}\\0\\1 \end{pmatrix}$ und $Kv_1 + Kv_2$ ist der

Lösungsraum von (*).

Definition: Ein r-Tupel (v_1, \ldots, v_r) von Vektoren aus V heißt linear unabhängig, falls gilt:

Aus
$$\lambda_1 v_1 + \ldots + \lambda_r v_r = 0$$
 folgt $\lambda_1 = \lambda_2 = \ldots = \lambda_r = 0$

 (v_1, \ldots, v_r) heißt **linear abhängig**, falls (v_1, \ldots, v_r) **nicht** linear unabhängig ist, d.h., wenn es $(\lambda_1, \ldots, \lambda_r) \in K^r$ gibt mit $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_r v_r = 0$, aber nicht alle λ_i sind gleich Null.

Das leere Tupel $\phi(r=0)$ soll linear unabhängig sein.

- (2.2) Bemerkung: Sei (v_1, \ldots, v_r) ein r-Tupel von Vektoren aus V.
 - a) Ist ein $v_i = 0$ so ist (v_1, \ldots, v_r) linear abhängig.

- b) Ist $r \geq 2$ und $v_i = v_j$ für ein Paar $i \neq j$, so ist (v_1, \ldots, v_r) linear abhängig.
- c) (v_1) ist genau dann linear abhängig, falls $v_1 = 0$.
- d) Ist (v_1, \ldots, v_r) linear abhängig und $r \geq 2$, so gibt es ein $k \in \{1, \ldots, r\}$ so dass v_k Linearkombination der übrigen v_i ist.

Es gilt dann

$$Kv_1 + \ldots + Kv_r = Kv_1 + \ldots + Kv_{k-1} + Kv_{k+1} + \ldots + Kv_r$$

Beweis:

- a) $0 = 0v_1 + \ldots + 0 \cdot v_{i-1} + 1 \cdot v_i + 0 \cdot v_{i+1} + \ldots + 0v_r$.
- b) Setze $\lambda_k=0$ für $k\not\in\{i,j\}, \lambda_i=1, \lambda_j=-1.$ Dann ist

$$\sum_{i=1}^{r} \lambda_i v_i = 1 \cdot v_i + (-1) \cdot v_j = v_i - v_j = v_i - v_i = 0$$

- c) Für $v_1 = 0$ ist (v_1) nach a) linear abhängig. Ist (v_1) linear abhängig, so ex. $\lambda_1 \neq 0$ mit $\lambda_1 \cdot v_1 = 0$. Es folgt $v_1 = \lambda_1^{-1}(\lambda_1 v_1) = \lambda_1^{-1} \cdot 0 = 0$.
- d) Sei $\sum_{i=1}^{r} \lambda_i v_i = 0$ und nicht alle $\lambda_j = 0$; o.B.d.A. sei $\lambda_1 \neq 0$.

Dann ist $(-\lambda_1)v_1 = \sum_{i=2}^r \lambda_i v_i$ und $v_1 = \sum_{i=2}^r \frac{-\lambda_i}{\lambda_1} v_i \in Kv_2 + \ldots + Kv_r$.

Damit ist nach obiger Bemerkung $\{v_1, v_2, \dots, v_r\} \subseteq Kv_2 + \dots + Kv_r$ und $Kv_1 + Kv_2 + \dots + Kv_r \subseteq Kv_2 + \dots + Kv_r$.

Die umgekehrte Inklusion gilt allgemein.

Beispiele:

a) Die Einheitsvektoren e_1, \ldots, e_n bilden ein n-Tupel (e_1, \ldots, e_n) linear unabhängiger Vektoren: Es ist $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_n = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$. Also folgt aus

$$\lambda_1 e_1 + \ldots + \lambda_n e_n = 0$$
 schon $\lambda_1 = 0, \lambda_2 = 0, \ldots, \lambda_n = 0.$

b) Im obigen Beispiel b) ist (v_1, \ldots, v_{n-r}) linear unabhängig: Sei $\lambda_1 v_1 + \ldots + \lambda_{n-r} v_{n-r} = 0$. Es ist auch $0 \cdot v_1 + \ldots + 0 \cdot v_{n-r} = 0$. Wegen der **Eindeutigkeit** der Darstellung in I, 4.1 folgt

$$\lambda_1 = 0, \ \lambda_2 = 0, \dots, \lambda_{n-r} = 0$$

c) Eine **Polynomfunktion** $p: \mathbb{R} \longrightarrow \mathbb{R}$ ist von der Form $p(t) = a_0 + a_1 t + \ldots + a_n t^n$ mit $n \in \mathbb{N}$ und Konstanten $a_0, \ldots, a_n \in \mathbb{R}$ (den **Koeffizienten** von p). Die Menge aller Polynomfunktionen bilden offenbar einen Untervektorraum der Menge aller Funktionen $f: \mathbb{R} \to \mathbb{R}$. Betrachte die Polynomfunktion $p_0(t) = 1, p_1(t) = t, p_2(t) = t^2, \ldots, p_n(t) = t^n, \ldots$ Dann ist (p_0, \ldots, p_m) linear unabhängig für alle $m \in \mathbb{N}$.

Beweis: In der Analysis werden wir lernen: Eine Polynomfunktion $(*)p(t) = a_0 + a_1t + \ldots + a_nt^n$ mit $a_n \neq 0$ hat höchstens n Nullstellen, ist also insbesondere **nicht die Nullfunktion**.

Aus
$$\lambda_0 p_0 + \ldots + \lambda_m p_m = 0$$
 = Nullfunktion - d.h.

$$\lambda_0 + \lambda_1 t + \ldots + \lambda_m t^m = 0$$
 für alle $t \in \mathbb{R}$ - folgt also:

- $\lambda_0 = 0, \lambda_1 = 0, \dots, \lambda_m = 0$. Für eine Polynomfunktion p(t) wie oben mit $a_n \neq 0$ heißt n der **Grad** von p(t).
- d) Die Vektoren

$$v_1 = \begin{pmatrix} -1 \\ -1 \\ 3 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} 4 \\ 10 \\ 3 \\ 5 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 7 \\ 1 \\ 2 \end{pmatrix}$$

sind linear abhängig in \mathbb{R}^4 .

Beweis: Die Tripel $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$ mit $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$ sind gerade die

Lösungen des Gleichungssystems

Die Lösungen findet man m.H. des Gauß-Algorithmus

$$\begin{pmatrix} -1 & 4 & 3 \\ -1 & 10 & 7 \\ 3 & 3 & 1 \\ 4 & 5 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & 4 & 3 \\ 0 & 6 & 4 \\ 0 & 15 & 10 \\ 0 & 21 & 14 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & 4 & 3 \\ 0 & 3 & 2 \\ 0 & 3 & 2 \\ 0 & 3 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & 4 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Setze die freie Variable $x_3=1: x_2=-\frac{2}{3},\ x_1=4x_2+3x_3=\frac{1}{3}$

Somit ist $\frac{1}{3}v_1 - \frac{2}{3}v_2 + 1 \cdot v_3 = 0$ und (v_1, v_2, v_3) ist linear abhängig.

(2.3) Bemerkung: Ein r-Tupel (v_1, \ldots, v_r) von Vektoren in V ist genau dann linear unabhängig, wenn gilt: Jeder Vektor v aus $Kv_1 + \ldots + Kv_r$ läßt sich nur auf eine Weise als Linearkombination von v_1, \ldots, v_r darstellen, d.h.:

Aus
$$\sum_{i=1}^{r} \lambda_i v_i = \sum_{i=1}^{r} \mu_i v_i$$
 folgt $\lambda_i = \mu_i$ für $i = 1, \dots, r$.

Beweis: Sei (v_1, \ldots, v_r) linear unabhängig und $\sum_{i=1}^r \lambda_i v_i = \sum_{i=1}^r \mu_i v_i$.

Dann ist $(\lambda_1 - \mu_1)v_1 + \ldots + (\lambda_r - \mu_r)v_r = 0$. Es folgt $\lambda_1 - \mu_1 = 0, \ldots, \lambda_r - \mu_r = 0$, da (v_1, \ldots, v_r) linear unabhängig ist.

Sei umgekehrt (v_1, \ldots, v_r) linear abhängig. Dann existiert ein r-Tupel $(\lambda_1, \ldots, \lambda_r) \neq (0, \ldots, 0)$ mit

$$\lambda_1 v_1 + \ldots + \lambda_r \cdot v_r = 0 = 0 \cdot v_1 + \ldots + 0 \cdot v_r$$

und die 0 hat zwei Darstellungen als Linearkombination von v_1, \ldots, v_r .

Der Begriff der Basis eines Vektorraums

Definition: Ein n-Tupel (v_1, \ldots, v_n) von Vektoren aus einem Vektorraum $V \neq \{0\}$ heißt **Basis** von V, wenn gilt:

- (1) $V = Kv_1 + \ldots + Kv_n$ (" (v_1, \ldots, v_n) spannt V auf".) Man sagt dann auch, (v_1, \ldots, v_n) sei ein Erzeugendensystem von V.
- (2) (v_1, \ldots, v_n) ist linear unabhängig.

Konvention: ϕ ist eine Basis von $V = \{0\}$.

In den Beispielen:

- a) $V = K^n$. Wir haben gesehen, dass (e_1, \ldots, e_n) linear unabhängig ist und $V = Ke_1 + \ldots + Ke_n$. Also ist (e_1, \ldots, e_n) eine Basis von K^n , die sog. kanonische Basis.
- b) Jedes System von Fundamentallösungen ist eine Basis des Lösungsraums eines linearen Gleichungssystems.
- c) Sie P_m die Menge der Polynomfunktionen vom Grad $\leq m$. Dann ist $P_m = \mathbb{R} \cdot 1 + \mathbb{R} \cdot t + \mathbb{R} t^2 + \ldots + \mathbb{R} \cdot t^m$ und $(1, t, t^2, \ldots, t^m)$ ist linear unabhängig. Also ist $(1, t, t^2, \ldots, t^m)$ eine Basis des \mathbb{R} -Vektorraums P_m , Ziel der folgenden Ausführungen ist, zu zeigen, dass alle Basen eines Vektorraums gleich lang sind.
- (2.4) Charakterisierungen des Begriffs "Basis": Sei $V \neq \{0\}$ ein K-Vektorraum und $v_1, \ldots, v_n \in V$. Folgende Aussagen sind äquivalent:
 - a) (v_1, \ldots, v_n) ist eine Basis von V.
 - b) (v_1, \ldots, v_n) ist ein **minimales Erzeugendensystem** von V, d.h.:
 - $\bullet \ V = Kv_1 + \ldots + Kv_n$
 - $V \neq Kv_1 + \ldots + Kv_{k-1} + Kv_{k+1} + \ldots + Kv_n$ für $k = 1, \ldots, n$
 - c) (v_1, \ldots, v_n) ist ein maximales System linear unabhängiger Vektoren aus V, d.h.
 - (v_1, \ldots, v_n) ist linear unabhängig,
 - (v_1, \ldots, v_n, w) ist linear abhängig für alle $w \in V$.
 - d) Jedes $v \in V$ läßt sich auf genau eine Weise aus den Vektoren v_1, \ldots, v_n linear kombinieren.

Beweis: a) \Rightarrow b) Nach Voraussetzung erzeugt (v_1, \ldots, v_n) den Vektorraum V. Angenommen $V = Kv_1 + \ldots + Kv_{k-1} + Kv_{k+1} + \ldots + Kv_n$. Dann ist $v_k = \lambda_1 v_1 + \ldots + \lambda_{k-1} v_{k-1} + \lambda_{k+1} v_{k+1} + \ldots + \lambda_n v_n$, d.h. $0 = \lambda_1 v_1 + \ldots + \lambda_{k-1} + (-1)v_k + \lambda_{k+1} v_{k+1} + \ldots + \lambda_n v_n$, d.h. (v_1, \ldots, v_n) ist linear unabhängig, Widerspruch.

b) \Rightarrow c) Sei (v_1, \ldots, v_n) ein minimales Erzeugendensystem von V. Zu zeigen:

- (i) (v_1, \ldots, v_n) ist linear unabhängig.
- (ii) (v_1, \ldots, v_n, w) ist linear abhängig für jedes $w \in V$
- **Zu** (i) n = 1 : $v_1 \neq 0$, da sonst $V = Kv_1 = \{0\}$, also ist (v_1) linear unabhängig.
- $n \geq 2$: Angenommen (v_1, \ldots, v_n) ist linear abhängig. Dann gibt es nach 2.2 ein $k \in \{1, \ldots, n\}$ mit $V = Kv_1 + \ldots + Kv_{k-1} + Kv_{k+1} + \ldots + Kv_n$, Widerspruch zur Minimalität.
- **Zu** (ii) Wegen $V = Kv_1 + \ldots + Kv_n$ ist $w = \lambda_1 v_1 + \ldots + \lambda_n v_n$ für jedes $w \in V$. Somit ist $0 = \lambda_1 v_1 + \ldots + \lambda_n v_n + (-1)w$ und (v_1, \ldots, v_n, w) linear abhängig.
- c) \Rightarrow a) Sei $w \in V$ beliebig. Nach Voraussetzung ist (v_1, \ldots, v_n, w) linear abhängig; also gibt es $\mu_1, \ldots, \mu_n, \mu$ in K mit $\mu_1 v_1 + \ldots + \mu_n v_n + \mu w = 0$ und $(\mu_1, \ldots, \mu_n, \mu) \neq (0, \ldots, 0)$
- Es ist $\mu \neq 0$, da sonst bereits (v_1, \ldots, v_n) linear abhängig wäre. Es folgt $w = \left(-\frac{\mu_1}{\mu}\right) v_1 + \ldots + \left(-\frac{\mu_n}{\mu}\right) v_n$ und somit $V = Kv_1 + \ldots Kv_n$.
- a) und d) sind nach (2.3) äquivalent.
- (2.5) Austauschsatz von Steinitz: Sei $V \neq \{0\}$ ein K-Vektorraum und (v_1, \ldots, v_n) eine Basis von V. Weiter sei (w_1, \ldots, w_r) ein System linear unabhängiger Vektoren aus V. Dann gilt:
 - a) $r \leq n$.
 - b) Es gibt Vektoren $u_1, \ldots, u_r \in \{v_1, \ldots, v_n\}$, so dass aus (v_1, \ldots, v_n) wieder eine Basis entsteht, wenn man darin u_1, \ldots, u_r durch w_1, \ldots, w_r ersetzt ("austauscht").

Beweis: erfolgt durch Induktion nach r. Der Fall r=1 ist Inhalt des folgenden Lemmas.

- (2.6) Austauschlemma: Sei (v_1, \ldots, v_n) eine Basis von V und $w \neq 0$ aus V. Dann gibt es ein $k \in \{1, \ldots, n\}$, so dass auch $(v_1, \ldots, v_{k-1}, w, v_{k+1}, \ldots, v_n)$ eine Basis von V ist. Genauer gilt:
- Ist $w = \sum_{i=1}^{n} \lambda_i v_i$ und $\lambda_k \neq 0$, so ist $(v_1, \dots, v_{k-1}, w, v_{k+1}, \dots, v_n)$ eine Basis von V.

Beweis: Sei $w = \sum_{i=1}^{n} \lambda_i v_i$ und $\lambda_k \neq 0$. Dann ist

$$v_{k} = \frac{1}{\lambda_{k}}w + (-\frac{\lambda_{1}}{\lambda_{k}})v_{1} + \dots + (\frac{-\lambda_{k-1}}{\lambda_{k}})v_{k-1} + (\frac{-\lambda_{k+1}}{\lambda_{k}})v_{k+1} + \dots + (\frac{-\lambda_{n}}{\lambda_{k}})v_{n}$$

Also ist $v_k \in W = K\{w, v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n\}$. Nach 2.1 ist dann $V = Kv_1 + \dots + Kv_n \subseteq W \subseteq V$, also V = W und $(w, v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n)$ ist ein Erzeugendensystem von V.

Noch z.z.: $(w, v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n)$ ist linear unabhängig.

Dazu sei $\lambda w + \sum_{\substack{i=1\\i\neq k}}^n \mu_i v_i = 0$. Setze $w = \sum_{i=1}^n \lambda_i v_i$ ein und erhalte

 $(\lambda \lambda_1 + \mu_1)v_1 + \dots + (\lambda \lambda_{k-1} + \mu_{k-1})v_{k-1} + \lambda \lambda_k v_k + (\lambda \lambda_{k+1} + \mu_{k+1})v_k + \dots + (\lambda \lambda_n + \mu_n)v_n = 0. \text{ Da } (v_1, \dots, v_n) \text{ linear unabhängig ist folgt}$

$$\lambda \lambda_i + \mu_i = 0 \text{ für alle } i \neq k$$
$$\lambda \lambda_k = 0$$

Wegen $\lambda_k \neq 0$ folgt $\lambda = 0$, also auch $\mu_i = 0$ für alle $i \neq k$.

Fortsetzung des Beweises von 2.5: Sei nun $r \geq 2$ und sei 1.5 schon bewiesen für r-1.

Nach Induktionsvoraussetzung ist wegen " (w_1, \ldots, w_{r-1}) linear unabhängig" $r-1 \leq n$ und nach geeigneter Umnummerierung der Vektoren v_1, \ldots, v_n kann man annehmen, dass $(w_1, \ldots, w_{r-1}, v_r, \ldots, v_n)$ eine Basis von V ist.

Schreibe w_r als Linearkombination dieser Basis:

$$w_r = \sum_{i=1}^{r-1} \mu_i w_i + \sum_{j=r}^n \lambda_j v_j$$

Da (w_1, \ldots, w_r) linear unabhängig ist, folgt:

- (i) (w_1, \ldots, w_{r-1}) ist (nach 2.4c)) keine Basis von V. Insbesondere ist $r-1 \neq n$, also $r \leq n$
- (ii) $\lambda_j \neq 0$ für wenigstens ein $j \geq r$ (sonst wäre $\sum_{i=1}^{r-1} \mu_i w_i + (-1)w_r = 0$ und (w_1, \ldots, w_r) linear abhängig.)

O.B.d.A. sei $\lambda_r \neq 0$

Mit dem Lemma folgt: $(w_1, \ldots, w_{r-1}, w_r, v_{r+1}, \ldots, v_n)$ ist eine Basis von V

(2.7) Korollar: Alle Basen von V haben die gleiche Länge.

Beweis: Sind (u_1, \ldots, u_r) und (v_1, \ldots, v_s) Basen von V, so gilt nach 2.5:

 $r \leq s$ da (u_1, \ldots, u_r) linear unabhängig und (v_1, \ldots, v_s) Basis von V.

 $s \leq r \operatorname{da}(v_1, \ldots, v_s)$ linear unabhängig und (u_1, \ldots, u_r) Basis von V.

Definition: Hat V eine Basis (v_1, \ldots, v_n) so heißt die Länge n dieser (und jeder anderen!) Basis die **Dimension** von V.

Schreibweise: $\dim_K V = n$ (oder $\dim V = n$, falls klar ist welcher Körper gemeint ist.)

Hat V keine Basis bestehend endlich vielen Elementen, so setzt man dim $V = \infty$. Unter einem **endlichen Vektorraum** versteht man einen Vektorraum mit endlicher Dimension.

(2.8) Basisergänzungssatz: In einem endlichen Vektorraum kann man jedes System linear unabhängiger Vektoren zu einer Basis ergänzen.

Beweis: Sei (w_1, \ldots, w_r) linear unabhängig und (v_1, \ldots, v_n) eine Basis von V. Dann ist nach 2.5 $r \leq n$ und bei geeigneter Anordnung der v_i ist $(w_1, \ldots, w_r, v_{r+1}, \ldots, v_n)$ eine Basis von V.

(2.9) Basisauswahlsatz: Ist $V = K \cdot M$ und M endlich, so kann man in M eine Basis von V wählen.

Beweis: Sei (v_1, \ldots, v_n) ein **innerhalb der Menge M** maximales System linear unabhängiger Vektoren, d.h.: $\{v_1, \ldots, v_n\} \subseteq M, (v_1, \ldots, v_n)$ ist linear unabhängig und für alle $w \in M$ ist (v_1, \ldots, v_n, w) linear abhängig.

Beh.: (v_1, \ldots, v_n) erzeugt V (und ist somit eine Basis von V)

Beweis: Zeige dass $M \subseteq Kv_1 + \ldots + Kv_n$. Nach 2.1 ist dann

$$V = KM \subseteq Kv_1 + \ldots + Kv_n \subseteq KM.$$

Sei also $w \in M$ beliebig. Dann ist nach Vor. (v_1, \ldots, v_n, w) linear abhängig, d.h.

$$\lambda w + \lambda_1 v_1 + \ldots + \lambda_n v_n = 0 \text{ mit } (\lambda, \lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$$

Wegen (v_1, \ldots, v_n) linear unabhängig folgt $\lambda \neq 0$ und daher

$$w = \left(-\frac{\lambda_1}{\lambda}\right) + \ldots + \left(-\frac{\lambda_n}{\lambda}\right) \in Kv_1 + \ldots + Kv_n.$$

- (2.10) Korollar: Sei dim $V = n < \infty$ Dann gilt:
 - a) n ist die Maximalzahl linear unabhängiger Vektoren in V (2.8)
 - b) Jedes System von n linear unabhängiger Vektoren ist eine Basis von V. (2.8)
 - c) n ist die minimale Erzeugendenanzahl von V. (2.9)
 - d) Jedes Erzeugendensystem der Länge n ist eine Basis von V. (2.9)
- (2.11) Satz: Sei dim $V = n < \infty$ und $W \subseteq V$ ein Untervektorraum. Dann gilt:
 - a) W ist endlich und dim $W \leq \dim V$.
 - b) Ist dim $W = \dim V$, so ist bereits W = V.

Beweis:

a) Nach (2.10) a) hat jedes System linear unabhängier Vektoren aus W höchstens die Länge n. Also gibt es ein System (w_1, \ldots, w_m) linear unabhängiger Vektoren aus W (mit $m \leq n$), welches **innerhalb W** nicht mehr verlängert werden kann, d.h.:

Für alle $w \in W$ ist (w_1, \ldots, w_m, w) linear abhängig.

Nach 2.4 ist dann (w_1, \ldots, w_m) eine Basis von W und dim $W = m \le n$.

b) Sei dim $W = \dim V = n$ und (w_1, \ldots, w_n) eine Basis von W. Dann ist (w_1, \ldots, w_n) linear unabhängig und nach 2.10 b) eine Basis von V. Insbesondere ist V = W.

Beispiele: dim $K^n = n$, da (e_1, \ldots, e_n) Basis von K^n . Für den \mathbb{R}^3 gilt insbesondere (siehe 2.10)

(1) 4 Vektoren im \mathbb{R}^3 sind linear abhängig.

- (2) Je 3 linear unabhängige Vektoren im \mathbb{R}^3 erzeugen den ganzen Raum.
- (3) 2 Vektoren erzeugen noch nicht den ganzen Raum.

(2.12) Die Dimensionsformel für Untervektorräume:

Seien V und W Untervektorräume eines endlichen Vektorraums. Dann gilt:

$$\dim(V+W) = \dim V + \dim W - \dim(V \cap W)$$

Beweis: Als Untervektorräume eines endlichen Vektorraums sind V, W, V + W und $V \cap W$ endlich. Wegen $V \cap W \subseteq V$ und $V \cap W \subseteq W$ gilt nach 2.11

$$r=\dim V\cap W\leq s=\dim V, r\leq t=\dim W$$

Sei (u_1, \ldots, u_r) eine Basis von $U = V \cap W$. Nach dem Basisergänzungssatz gibt es wegen $U \subseteq V$ bzw. $U \subseteq W$ Vektoren $v_{r+1}, \ldots, v_s \in V$, so dass $(u_1, \ldots, u_r, v_{r+1}, \ldots, v_s)$ Basis von V und $w_{r+1}, \ldots, w_t \in W$, so dass $(u_1, \ldots, u_r, w_{r+1}, \ldots, w_t)$ Basis von W ist.

Offenbar ist dann $\mathcal{B} = (u_1, \ldots, u_r, v_{r+1}, \ldots, v_s, w_{r+1}, \ldots, w_t)$ ein Erzeugendensystem von V + W; seine Länge ist $r + (s - r) + (t - r) = s + t - r = \dim V + \dim W - \dim V \cap W$.

Es ist noch zu zeigen, dass \mathcal{B} linear unabhängig ist, und somit eine Basis von V+W. Sei also

(*)
$$\alpha_1 u_1 + \ldots + \alpha_r u_r + \beta_{r+1} v_{r+1} + \ldots + \beta_s v_s + \gamma_{r+1} w_{r+1} + \ldots + \gamma_t w_t = 0$$

Dann ist
$$-\sum_{\substack{k=r+1\\ \in W}}^{t} \gamma_k w_k = \sum_{\substack{j=1\\ \in V \cap W \subseteq V}}^{r} \alpha_j u_j + \sum_{\substack{i=r+1\\ \in V}}^{s} \beta_i v_i$$

aus $V \cap W$. Da (u_1, \ldots, u_r) eine Basis von $V \cap W$ ist, gibt es $\delta_1, \ldots, \delta_r \in K$, so dass

$$-\sum_{k=r+1}^{t} \gamma_k w_k = \sum_{j=1}^{r} \delta_j u_j, \text{ d.h. } \sum_{j=1}^{r} \delta_j u_j + \sum_{k=r+1}^{t} \gamma_k w_k = 0$$

Da $(u_1, \ldots, u_r, w_{r+1}, \ldots, w_t)$ linear unabhängig ist, folgt $\delta_1 = \ldots = \delta_r = 0$ und $\gamma_{r+1} = \ldots = \gamma_t = 0$. Setze in (*) ein, erhalte

$$\alpha_1 u_1 + \ldots + \alpha_r u_r + \beta_{r+1} v_{r+1} + \ldots + \beta_x v_s = 0$$

Da $(u_1, \ldots, u_r, v_{r+1}, \ldots, v_s)$ ebenfalls linear unabhängig ist, folgt

$$\alpha_1 = \ldots = \alpha_r = \beta_{r+1} = \ldots = \beta_s = 0$$

Damit ist die lineare Unabhängigkeit von $\mathcal B$ nachgewiesen.

Wir wollen noch angeben, wie man die Dimension des Lösungsraums eines linearen Gleichungssystems bestimmt. Sei dazu A eine $m \times n$ –Matrix. Durch elementare Zeilenumformungen vom Typ I und II geht A über in eine Matrix B in Zeilenstufenform mit r von 0 verschiedenen Zeilen (siehe I §4).

n-r ist dann die Anzahl der freien Variablen und diese gleich der Anzahl der Fundamentallösungen, diese bilden eine Basis des Lösungsraums des zugehörigen Gleichungssystems. **Fazit:**

(2.13) Korollar: Für den Lösungsraum Lös (\mathbf{A}) des zuAgehörigen linearen Gleichungssystems gilt

$$\dim \operatorname{L\ddot{o}s}(A) = n - r$$

Insbesondere ist $r=n-\dim$ Lös A, und daher unabhängig von der Wahl der Umformungen.