TARGET SQL Business Case Swati Singh

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - A) Data type of all columns in the "customers" table.

i)QUERY:

```
SELECT column_name, data_type
FROM `scaler-dsml-sql-465413.target.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';
```

ii)RESULT:

Row /	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

iii)INSIGHTS: NA

iv)RECOMMENDATIONS: NA

v)ASSUMPTIONS: NA

B) Get the time range between which the orders were placed.

i)QUERY

ii)RESULT

Row /	first_order ▼	/ last_order ▼	//
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	

iii)INSIGHTS:NA

iv)RECOMMENDATIONS:NA v)ASSUMPTIONS:NA

C) Count the Cities & States of customers who ordered during the given period.

i)QUERY:

ii)RESULT:

iii)INSIGHTS: There are 4119 cities and 27 states from where the customers have ordered.

iv)RECOMMENDATIONS:NA v)ASSUMPTIONS:NA

2. In-depth Exploration:

A) Is there a growing trend in the no. of orders placed over the past years?

Row / year ▼	num/	_of_orders ▼ // prev_	year_num_o
1	2016	329	null
2	2017	45101	329
3	2018	54011	45101

iii)INSIGHTS:

Year over Year growth: 2017 vs 2016= Massive spike—likely the first year of scaling or launch ,since the percentage growth is (45101 - 329)/(329)*100 approx 13,608%.

2018 vs 2017=Healthy growth, though much more stable since percentage growth is (54011-45101)/(45101)*100 approx 19.7%

iv)RECOMMENDATIONS:

The jump from 329 to 45,101 suggests a **major operational shift**—perhaps a product launch, marketing campaign, or platform expansion.

The 19.7% growth in 2018 indicates **continued momentum**, but the explosive phase may be stabilizing.

Therefore the same strategy must be continued.

v)ASSUMPTIONS: NA

B) Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Row //	year ▼	quarter ▼	num_of_orders ▼ //
1	2016	4	325
2	2016	3	4
3	2017	4	17848
4	2017	3	12642
5	2017	2	9349
6	2017	1	5262
7	2018	1	21208
8	2018	2	19979
9	2018	3	12820
10	2018	4	4

iii)INSIGHTS:

1.Rapid Growth in 2017

Orders jumped from **329 total in 2016** to **~45,101 in 2017**.

Growth was consistent across quarters:

Q1: 5,262 Q2: 9,349 Q3: 12,642 Q4: 17,848

This suggests strong **momentum and scaling**, possibly due to product-market fit or operational expansion.

2. Peak in Early 2018

Q1 2018: 21,208 orders — highest single quarter.

Q2: Still strong at **19,979**.

Q3: Drops to **12,820** — still solid, but a clear decline.

Q4: Just **4 orders** — a dramatic collapse.

3. Anomaly or Shutdown in Q4 2018

From 12,820 to 4 orders is a **99.97% drop**.

Possible causes:System outage or data error,Business closure or pivot,Seasonal shutdown (if applicable),Filtering issue in data extraction

4.Quarterly Trends

2017 showed **steady quarter-over-quarter growth**.

2018 started strong but declined each quarter, ending in a cliff.

iv)RECOMMENDATIONS:

- 1. **Investigate Q4 2018 Collapse.** Validate the data was this a reporting error, system failure, or real business event? If real: Conduct a **root cause analysis**: supply chain issues, customer churn, platform outage? Review **customer feedback**, support logs, and operational changes during Q3—Q4 2018.
- Use the strong 2017–Q2 2018 data to build a predictive model.
- 3. The 2017 growth suggests successful scaling replicate what worked.

v)ASSUMPTIONS:

Assumed one quarter as one season.

C) During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn
7-12 hrs: Mornings
13-18 hrs: Afternoon
19-23 hrs: Night

```
SELECT

CASE

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN
'Dawn'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN
'Morning'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN
'Afternoon'

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 23 THEN
'Night'

END AS time_interval,

COUNT(order_id) AS num_of_orders

FROM `target.orders`

GROUP BY 1

ORDER BY 2 DESC;
```

Row /	time_interval 🕶	// num_of_orders ▼ //
1	Afternoon	38135
2	Night	28331
3	Morning	27733
4	Dawn	5242

iii)INSIGHTS:

1. Afternoon Dominates

38,135 orders — the highest volume.

Suggests peak user activity or business transactions occur post-lunch. Could be ideal for promotions, staffing, or system optimization.

2. Night & Morning Are Competitive

Night: 28,331 Morning: 27,733

Very close — indicates **steady demand throughout the day**, possibly from different user segments (e.g., working professionals vs early risers).

3. Dawn Is Quiet

Only 5,242 orders — just 7% of total.

Could reflect:Low user engagement,Operational downtime,Natural sleep cycle alignment

iv)RECOMMENDATIONS:

1.Focus on Afternoon Peak

Run high-impact campaigns (ads, discounts, new launches) during afternoon hours.

Use this window for push notifications or email outreach — users are most responsive.

2.Leverage Night & Morning

These slots are nearly equal in volume — ideal for:

Segmented offers (e.g., breakfast deals in morning, late-night snacks or services at night)

A/B testing of promotions across time slots

3. Rethink Dawn Strategy

With only 5.3% of orders, consider:

Reducing ad spend or promotional efforts during this time.

Using it for **system maintenance**, backups, or low-priority tasks.

v)ASSUMPTIONS: NA

- 3. Evolution of E-commerce orders in the Brazil region:
 - A) Get the month on month no. of orders placed in each state.

i)QUERY:

ii)RESULT:

Row /	customer_state ▼	month_no ▼	num_orders ▼
1	AC	1	8
2	AC	2	6
3	AC	3	4
4	AC	4	9
5	AC	5	10
6	AC	6	7
7	AC	7	9
8	AC	8	7
9	AC	9	5
10	AC	10	6
11	AC	11	5

iii)INSIGHTS: NA

iv)RECOMMENDATIONS: NA

v)ASSUMPTIONS: NA

B) How are the customers distributed across all the states?

i)QUERY:

ii)RESULT:

Row /	customer_state ▼ //	num_customers ▼
1	SP	40302
2	RJ	12384
3	MG	11259
4	RS	5277
5	PR	4882
6	SC	3534
7	BA	3277
8	DF	2075
9	ES	1964
10	GO	1952
11	PE	1609

iii)INSIGHTS:

1. São Paulo (SP) Dominates

- 40,302 customers nearly half of total.
- Indicates strong brand presence, market penetration, or urban concentration.
- SP should be the primary focus for retention, upselling, and logistics.

2. Regional Clustering

- Top 5 states (SP, RJ, MG, RS, PR) account for \sim 72% of all customers.
- These are mostly southeastern and southern states suggests geographic bias or urban targeting.

3. North & Northeast Underrepresented

States like RR, AP, AC, AM, TO have <1% share each.

 Could reflect:Limited delivery coverage,Lower digital adoption,Untapped market potential

iv)RECOMMENDATIONS:

1.Double Down on High-Density States (SP, RJ, MG)

SP alone contributes ~44% of customers — make it your **core market**:

Launch exclusive loyalty programs

Offer same-day delivery or premium services

Prioritize **customer retention** and upselling

2.Expand in Underpenetrated Regions (North & Northeast)

States like RR, AP, AC, AM have <1% share — untapped potential:

Run localized awareness campaigns

Partner with regional influencers or delivery services

Offer first-time buyer discounts or free shipping

3. Optimize Logistics

Use customer density to:

Strategically place warehouses near SP, RJ, MG

Improve last-mile delivery in high-volume areas

Test **hub-and-spoke models** for remote regions

4. Regional Staffing

Scale support and fulfillment teams in high-demand states

Train regional teams to handle **local dialects**, **preferences**, **and cultural nuances**

5.Geo-Targeted Ads

Run state-specific campaigns.

v)ASSUMPTIONS: NA

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - A) Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

```
i)QUERY:
SELECT *,
ROUND(((Y.total_payment2018-Y.total_payment2017)/Y.total_payment2017)*100
,2) AS percent_inc
```


iii)INSIGHTS:

Massive Year-over-Year Growth:

Total Payment in 2017: ₹3,669,022 **Total Payment in 2018:** ₹8,694,734

Percent Increase: +136.98

This is **more than double** the previous year's value — a strong indicator of growth in either customer base, transaction volume, or pricing.

iv)RECOMMENDATIONS:

- 1.**Identify key growth drivers**: Was it a product launch, marketing campaign, or regional expansion?
- **2.Replicate success**: Scale the winning strategies to other regions or customer segments.
- **3.Retention focus**: Ensure new customers from 2018 are retained in 2019 and beyond.

v)ASSUMPTIONS: NA

B) Calculate the Total & Average value of order price for each state.

i)QUERY:

ii)RESULT:

1 PB 141545.72 248.33 2 AC 19680.62 234.29 3 RO 60866.2 233.2 4 AP 16262.8 232.33 5 AL 96962.06 227.08 6 RR 10064.62 218.8 7 PA 218295.85 215.92 8 SE 75246.25 208.44	Row /	customer_state ▼ //	total_price ▼	avg_price ▼
3 RO 60866.2 233.2 4 AP 16262.8 232.33 5 AL 96962.06 227.08 6 RR 10064.62 218.8 7 PA 218295.85 215.92 8 SE 75246.25 208.44	1	PB	141545.72	248.33
4 AP 16262.8 232.33 5 AL 96962.06 227.08 6 RR 10064.62 218.8 7 PA 218295.85 215.92 8 SE 75246.25 208.44	2	AC	19680.62	234.29
5 AL 96962.06 227.08 6 RR 10064.62 218.8 7 PA 218295.85 215.92 8 SE 75246.25 208.44	3	RO	60866.2	233.2
6 RR 10064.62 218.8 7 PA 218295.85 215.92 8 SE 75246.25 208.44	4	AP	16262.8	232.33
7 PA 218295.85 215.92 8 SE 75246.25 208.44	5	AL	96962.06	227.08
8 SE 75246.25 208.44	6	RR	10064.62	218.8
	7	PA	218295.85	215.92
0 DI 109523.07 207.11	8	SE	75246.25	208.44
9 F1 106523.97 207.11	9	PI	108523.97	207.11
10 TO 61485.33 204.27	10	ТО	61485.33	204.27
11 CE 279464.03 199.9	11	CE	279464.03	199.9

iii)INSIGHTS:

1. São Paulo (SP): Highest Total, Lowest Average

Total Price: 5.99M (highest by far) **Avg Price:** 137.50 (lowest in dataset)

SP likely has **high transaction volume** but **low-value orders** — possibly due to:Dense urban market with frequent small purchases,Strong logistics enabling micro-orders,Price-sensitive customer base.

2. Smaller States Show Higher Avg Prices

Top Avg Prices: PB (248.33), AC (234.29), RO (233.20)

These states have **lower total prices**, suggesting:

Fewer customers or orders

But **higher-value purchases per transaction.** These may be **niche markets** with specialized or bundled purchases.

iv)RECOMMENDATIONS:

1. Regional Pricing Strategy

High Avg Price States (e.g., PB, AC, RO, AP):Customers are willing to pay more per order.Introduce **premium products**, **bundled offers**, or **exclusive services**.

Consider **localized promotions** that emphasize quality or exclusivity.

Low Avg Price States (e.g., SP, RJ, MG):High volume, low-value orders.

Focus on **economies of scale**, **subscription models**, or **loyalty discounts** to increase retention and frequency.

2.Marketing Personalization by Region: Deploy **A/B tested ads** tailored to regional buying patterns.

v)ASSUMPTIONS: NA

C) Calculate the Total & Average value of order freight for each state.

Row /	customer_state ▼ //	total_freight ▼	avg_freight ▼ //
1	SP	718723.07	15.15
2	RJ	305589.31	20.96
3	MG	270853.46	20.63
4	RS	135522.74	21.74
5	PR	117851.68	20.53
6	BA	100156.68	26.36
7	SC	89660.26	21.47
8	PE	59449.66	32.92
9	GO	53114.98	22.77
10	DF	50625.5	21.04
11	ES	49764.6	22.06

iii)INSIGHTS:

São Paulo (SP): High Total, Lowest Average Total Freight: ₹718,723 — highest overall Avg Freight: ₹15.15 — lowest in dataset

SP benefits from:Dense infrastructure,Proximity to fulfillment centers,High order volume diluting per-order freight

iv)RECOMMENDATIONS:

Negotiate regional carrier contracts: Partner with local logistics firms for better rates. **Introduce freight subsidies or discounts**: Absorb part of the cost to boost order volume.

Consolidate shipments: Use batch delivery or regional hubs to reduce per-order cost.

Explore alternative transport modes: Rail or waterway options where feasible.

Set up micro-fulfillment centers: Even small warehouses can drastically cut last-mile costs.

Use drop-shipping or third-party logistics (3PL): Leverage existing networks to reduce overhead.

Analyze demand density: If pockets of high demand exist, prioritize those for infrastructure.

v)ASSUMPTIONS: NA

- 5. Analysis based on sales, freight and delivery time.
 - A) Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

```
i)QUERY:
```

SELECT order_id,

 $\label{eq:date_date} $$ $ DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) $$ AS $$ time_to_deliver, $$ $$

```
DATE_DIFF(order_delivered_customer_date,order_estimated_delivery_date,DAY
) AS diff_estimated_delivery
FROM `target.orders`
WHERE LOWER(order_status)='delivered'
ORDER BY order_id;
```

ii)RESULT:

Row /	order_id ▼	time_to_deliver ▼ //	diff_estimated_d
1	00010242fe8c5a6d1ba2dd792	7	-8
2	00018f77f2f0320c557190d7a1	16	-2
3	000229ec398224ef6ca0657da	7	-13
4	00024acbcdf0a6daa1e931b038	6	-5
5	00042b26cf59d7ce69dfabb4e5	25	-15
6	00048cc3ae777c65dbb7d2a06	6	-14
7	00054e8431b9d7675808bcb81	8	-16
8	000576fe39319847cbb9d288c	5	-15
9	0005a1a1728c9d785b8e2b08b	9	0
10	0005f50442cb953dcd1d21e1fb	2	-18
11	00061f2a7bc09da83e415a52d	4	-10

iii)INSIGHTS: NA

iv)RECOMMENDATIONS: NA v)ASSUMPTIONS: NA

B) Find out the top 5 states with the highest & lowest average freight value.

```
i)QUERY:
WITH freight_stats AS (
  SELECT
    c.customer_state,
   ROUND(AVG(oi.freight_value), 2) AS avg_freight
  FROM `target.order_items` AS oi
  JOIN `target.orders` AS o ON oi.order_id = o.order_id
  JOIN `target.customers` AS c ON o.customer_id = c.customer_id
  GROUP BY c.customer_state
),
top5 AS (
  SELECT customer_state AS top_state, avg_freight AS top_avg_freight,
         ROW_NUMBER() OVER (ORDER BY avg_freight DESC) AS rank
  FROM freight_stats
 LIMIT 5
),
bottom5 AS (
  SELECT customer_state AS bottom_state, avg_freight AS
bottom_avg_freight,
         ROW_NUMBER() OVER (ORDER BY avg_freight ASC) AS rank
 FROM freight_stats
 LIMIT 5
)
SELECT
 t.rank,
 t.top_state, t.top_avg_freight,
  b.bottom_state, b.bottom_avg_freight
FROM top5 t
JOIN bottom5 b ON t.rank = b.rank;
```

Row //	rank ▼	top_state ▼	top_avg_freight ▼ //	bottom_state ▼	bottom_avg_freight /
1	1	RR	42.98	SP	15.15
2	2	РВ	42.72	PR	20.53
3	3	RO	41.07	MG	20.63
4	4	AC	40.07	RJ	20.96
5	5	PI	39.15	DF	21.04

iii)INSIGHTS:

Freight Cost Disparity

- Top states have freight costs nearly 2x higher than bottom states.
- This suggests logistical challenges or remote delivery zones in RR, PB, RO, AC, and PI.

iv)RECOMMENDATIONS:

1. Operational Optimization

- High freight zones may benefit from:
- Regional warehouses or distribution centers
- Bulk shipping strategies or route optimization
- Carrier renegotiation for remote deliveries

2. Pricing Strategy

- Consider dynamic pricing or freight surcharges for high-cost states to maintain margins.
- Alternatively, subsidize shipping in strategic regions to boost customer acquisition.

3. Customer Segmentation

- If customer demand is strong in high-cost states, it may justify the expense.
- If demand is low, consider marketing efforts to increase volume and dilute freight cost per order.

v)ASSUMPTIONS: NA

C) Find out the top 5 states with the highest & lowest average delivery time.

```
FROM `target.orders` AS o
  JOIN `target.customers` AS c ON o.customer_id = c.customer_id
  WHERE o.order_delivered_customer_date IS NOT NULL
 GROUP BY c.customer_state
),
top5 AS (
  SELECT
    customer_state AS top_state,
    avg_delivery_days AS top_avg_days,
    ROW_NUMBER() OVER (ORDER BY avg_delivery_days DESC) AS rank
  FROM delivery_stats
 LIMIT 5
),
bottom5 AS (
 SELECT
    customer_state AS bottom_state,
    avg_delivery_days AS bottom_avg_days,
    ROW_NUMBER() OVER (ORDER BY avg_delivery_days ASC) AS rank
  FROM delivery_stats
 LIMIT 5
)
SELECT
 t.rank,
 t.top_state, t.top_avg_days,
 b.bottom_state, b.bottom_avg_days
FROM top5 t
JOIN bottom5 b ON t.rank = b.rank;
```

Row /	rank ▼	top_state ▼	top_avg_days ▼	bottom_state ▼	bottom_avg_days 🦴
1	1	RR	28.98	SP	8.3
2	2	AP	26.73	PR	11.53
3	3	AM	25.99	MG	11.54
4	4	AL	24.04	DF	12.51
5	5	PA	23.32	SC	14.48

iii)INSIGHTS:

1.RR (Roraima) stands out with nearly 29 days—suggesting serious delays, possibly due to limited transport routes or low delivery density.

- 2.High delivery times may correlate with **higher freight costs**, **lower customer satisfaction**, and **greater return risk**.
- 3.**SP (São Paulo)** leads with just **8.3 days**, likely due to its central role in Brazil's e-commerce and supply chain.
- 4. These regions may benefit from **same-day or next-day delivery pilots**, **lower operational costs**, and **higher customer retention**.

iv)RECOMMENDATIONS:

- 1. **Establish or expand warehouses** in Northern states like RR, AP, and AM.
- 2. Partner with **regional logistics providers** who specialize in remote deliveries.
- 3. Track average delivery time, variance, and on-time delivery rate.
- 4. For high-delay regions, offer **discounts**, **loyalty points**, or **free returns** to offset dissatisfaction.

v)ASSUMPTIONS: NA

D) Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
ROUND(AVG(DATE_DIFF(order_estimated_delivery_date,order_delivered_custome
r_date,DAY))) AS avg_diff_actual_vs_estimate
FROM `target.orders` AS o

JOIN
  `target.customers` AS c
USING(customer_id)
WHERE LOWER(order_status)='delivered'
GROUP BY 1
ORDER BY 2 DESC
LIMIT 5;
```

Row //	customer_state ▼	//	avg_diff_actual_vs_estimate •/
1	AC		20.0
2	AM		19.0
3	RO		19.0
4	AP		19.0
5	RR		16.0

iii)INSIGHTS:

- 1. Deliveries in these states are arriving 16-20 days earlier than promised.
- 2. Early deliveries can lead to **positive surprises**, boosting **customer satisfaction**, **trust**, and **brand perception**.

iv)RECOMMENDATIONS:

1. Refine Delivery Time Estimates

Use historical delivery data to **recalibrate estimates** per state.

2. Highlight Fast Delivery in Marketing

Promote these states as "fast delivery zones" to boost conversion. Offer express shipping upgrades or next-day delivery trials where feasible.

3. Optimize Inventory Allocation

Consider **regional demand forecasting** and **stock placement** to further reduce delivery time and cost.

4. Customer Communication

Update checkout messaging to reflect **more accurate delivery windows**, improving transparency and trust.

v)ASSUMPTIONS: NA

6. Analysis based on the payments:

A) Find the month on month no. of orders placed using different payment types.i)QUERY:

```
SELECT
```

```
EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
p.payment_type,
COUNT(*) AS num_of_orders
FROM `target.orders` AS o
```

```
JOIN
`target.payments` AS p
USING(order_id)
GROUP BY 1,2,3
ORDER BY 1,2,3;
```

Row /	year ▼ //	month ▼	payment_type ▼	num_of_orders ▼ //
1	2016	9	credit_card	3
2	2016	10	UPI	63
3	2016	10	credit_card	254
4	2016	10	debit_card	2
5	2016	10	voucher	23
6	2016	12	credit_card	1
7	2017	1	UPI	197
8	2017	1	credit_card	583
9	2017	1	debit_card	9
10	2017	1	voucher	61
11	2017	2	UPI	398

iii)INSIGHTS:

1. Credit Card Dominance:

Consistently the most used payment method across all months.

Indicates strong customer trust in card payments and possibly better integration with e-commerce platforms.

2. Rapid Growth of UPI:

Started modestly with **63 orders in Oct 2016**, then surged to **1,509 orders by Nov 2017**.

UPI is becoming a **strong secondary channel**, especially among mobile-first users.

3. Debit Card Usage Remains Low:

Orders range from **2 to 70 per month**, with no significant growth. May reflect **limited incentives**, **lower credit limits**, or **user preference for credit rewards**.

4. Voucher Usage is Steady but Niche:

Indicates use in **promotional campaigns**, **gift cards**, or **corporate purchases**.

Could be leveraged more aggressively for **customer acquisition or loyalty programs**.

iv)RECOMMENDATIONS:

- 1.Optimize checkout UX for credit card and UPI, as they dominate usage.
- 2. Promote UPI incentives to accelerate adoption among mobile users.
- 3. **Reevaluate debit card positioning**—consider bundling with offers or simplifying authentication.
- 4.Use **voucher campaigns** for targeted promotions, especially during festive seasons.

```
v)ASSUMPTIONS: NA
```

B) Find the no. of orders placed on the basis of the payment installments that have been paid.

Row /	payment_sequent	payment_installm	num_of_orders ▼ //
1	1	1	48236
2	1	2	12360
3	1	3	10422
4	1	4	7066
5	1	5	5221
6	1	6	3904
7	1	7	1619
8	1	8	4242
9	1	9	644
10	1	10	5305
11	1	11	23

iii)INSIGHTS:

1. Nearly half of all orders are paid in a single installment

(payment_installments = 1 and payment_sequential = 1).

Indicates strong preference for upfront payments, possibly due to:

Small ticket sizes

Lack of interest-free EMI offers

Customer aversion to debt

- 2. **2 to 6 installments** are common, suggesting customers are comfortable with **short-term EMIs**.
- 3. Very few customers opt for **12+ installments**, indicating:

Limited availability of long-term financing

Preference for faster payoff

Possibly higher interest rates or lack of awareness

iv)RECOMMENDATIONS:

1. Promote Short-Term EMI Options:

Focus on 2-6 installment plans with zero-interest offers.

Highlight these options during checkout for high-value items.

2. Analyze Product-Level EMI Adoption

Identify which categories drive longer installment usage.

Tailor financing offers accordingly.

3. Improve Installment Visibility

Ensure customers understand installment options clearly.

Consider **installment calculators** or **monthly breakdowns** on product pages.

4. Monitor Sequential Payment Behavior:

Investigate why payment_sequential > 1 drops off—could be due to
data gaps, customer drop-off, or payment failures

v)ASSUMPTIONS: NA