Chapitre 2

Probabilités conditionnelles et indépendance

I. Probabilités conditionnelles

1) <u>Définition et propriétés</u>

Définition:

Soit p une probabilité sur un univers Ω et A un événement tel que $p(A) \neq 0$. Pour tout événement B, on appelle **probabilité** de B sachant A le réel :

$$p_{A}(B) = \frac{p(A \cap B)}{p(A)}$$

Remarques:

- Un **univers**, souvent noté Ω , est l'ensemble de tous les résultats possibles (événements) qui peuvent être obtenus au cours d'une expérience aléatoire. On se limite ici à un univers fini.
- Une **probabilité** *p* est une application qui, à un événement *B* quelconque associe un nombre réel.

$$\begin{array}{ccc} p: & \Omega \to \mathbb{R} \\ & B \longmapsto & p(B) \end{array}$$

Une probabilité doit satisfaire trois axiomes :

- \circ $0 \le p(B) \le 1$
- $\circ p(\Omega)=1$
- \circ $\sum_{B_i \in \Omega} p(B_i) = 1$ (où les B_i sont les événements élémentaires)

Théorème:

L'application qui, à tout événement B associe le réel $p_A(B)$ définit une probabilité sur Ω , appelée **probabilité conditionnelle sachant** A.

Démonstration:

- p_A associe, à tout événement, un réel positif.
- Pour tout $B \in \Omega$, $(A \cap B) \subset A$ donc $0 \le p(A \cap B) \le p(A)$. Ainsi $0 \le \frac{p(A \cap B)}{p(A)} \le 1$ et $0 \le p_A(B) \le 1$
- $p_A(\Omega) = \frac{p(A \cap \Omega)}{p(A)} = \frac{p(A)}{p(A)} = 1$
- Si B_i est un événement élémentaire dans Ω , par définition de p_A , on a : si $B_i \not\subset A$, alors $p_A(B_i)=0$. Ainsi :

$$\sum_{B_{i} \subset \Omega} p_{A}(B_{i}) = \sum_{B_{i} \subset A} p_{A}(B_{i}) = \sum_{B_{i} \subset A} \frac{p(A \cap B_{i})}{p(A)} = \frac{\sum_{B_{i} \subset A} p(A \cap B_{i})}{p(A)} = \frac{p(A)}{p(A)} = 1$$

Exemples:

On lance un dé équilibré à six faces numérotées de 1 à 6.

• Si A est l'événement « le résultat est pair », on a :

$$p_{A}(\{2\}) = \frac{p(A \cap \{2\})}{p(A)} = \frac{p(\{2\})}{p(A)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3} \text{ et } p_{A}(\{5\}) = \frac{p(A \cap \{5\})}{p(A)} = \frac{p(\varnothing)}{p(A)} = \frac{0}{\frac{1}{2}} = 0$$

• Si B désigne l'événement « le résultat est un multiple de 3 », on a :

$$B=\{3;6\} \text{ et } p_A(B)=\frac{p(\{6\})}{p(A)}=\frac{1}{3}.$$

Propriétés:

Soient A un événement de probabilité non nulle et B un événement quelconque dans l'univers Ω , on a

•
$$p(A \cap B) = p(A) \times p_A(B)$$

•
$$p_A(A)=1$$

• Si A et B sont incompatibles,
$$p_A(B)=0$$

•
$$p_A(\bar{B})=1-p_A(B)$$

Remarques:

- Deux événements A et B sont incompatibles lorsque $A \cap B = \emptyset$
- Si A et B sont deux événements de probabilités non nulles :

$$p(A \cap B) = p(A) \times p_A(B) = p(B) \times p_B(A)$$

Interprétation:

Sur un arbre pondéré:

le chemin rouge représente l'événement $A \cap B$ et $p(A \cap B) = p(A) \times p_A(B)$.

Exemple:

Un sachet de 100 bonbons contient 40 bonbons acidulés ; les autres bonbons sont des guimauves. 18 guimauves sont parfumées à l'orange et 10 bonbons sont acidulés et parfumés à l'orange.

Les bonbons qui ne sont pas parfumés à l'orange sont parfumés à la fraise.

On choisit un bonbon au hasard dans ce sachet. On considère les événements :

A: « le bonbon est acidulé »

G: « le bonbon est une guimauve »

F : « le bonbon est parfumé à la fraise »

O : « le bonbon est parfumé à l'orange ».

À partir de l'énoncé, on obtient :

$$p(A) = \frac{40}{100} = 0.4$$
 ; $p(G) = p(\bar{A}) = 0.6$ et $p(A \cap O) = 0.1$

De plus
$$p_G(O) = \frac{18}{60} = 0.3$$
.

À partir de ces données, on peut en déduire d'autres probabilités :

- La probabilité qu'un bonbon choisi au hasard dans le sachet soit parfumé à l'orange sachant qu'il est acidulé est $p_A(O) = \frac{p(A \cap O)}{p(A)} = \frac{0.1}{0.4} = 0.25$.
- La probabilité qu'un bonbon choisi au hasard dans ce sachet soit une guimauve parfumée à l'orange est $p(G \cap O) = p_G(O) \times p(G) = 0.3 \times 0.6 = 0.18$

2) Formule des probabilités totales

Définition:

Les événements B_1 , ..., B_n , pour $n \ge 2$, forment une **partition** de l'univers Ω lorsque les trois conditions suivantes sont réalisées.

- Chacun de ces événements est non vide : pour tout entier i avec $1 \le i \le n$, $B_i \ne \emptyset$.
- Ces événements sont deux à deux disjoints :
 - pour tous entiers i et j, avec $1 \le i \le n$, $1 \le j \le n$ et $i \ne j$: $B_i \cap B_j = \emptyset$.
- Leur réunion est égale à Ω :

$$B_1 \cup B_2 \cup \ldots \cup B_n = \bigcup_{i=1}^n B_i = \Omega$$

Illustrations:

Cas particulier, N=2

Formule des probabilités totales

Propriété:

Si $B_1, ..., B_n$ sont des événements de probabilités non nulles et forment une partition de Ω , alors :

$$p(A) = p(A \cap B_1) + ... + p(A \cap B_n)$$
 ou
 $p(A) = p(B_1) \times p_{B_1}(A) + ... + p(B_n) \times p_{B_n}(A)$

Cas particulier:

Si B est un événement de probabilité non nulle, alors pour tout événement A de l'univers Ω :

$$p(A) = p(A \cap B) + p(A \cap \overline{B})$$
 ou $p(A) = p_B(A) \times p(B) + p_{\overline{B}}(A) \times p(\overline{B})$

Démonstration:

Comme $B \neq \emptyset$, B et \bar{B} forment une partition de l'univers Ω .

On a alors, pour tout événement A de Ω , $A = (A \cap \overline{B}) \cup (A \cap B)$, donc :

$$p(A) = p((A \cap \overline{B}) \cup (A \cap B))$$

De plus, $(A \cap B)$ et $(A \cap \overline{B})$ sont incompatibles alors $p(A) = p((A \cap \overline{B})) + p((A \cap B))$

II. Arbres de probabilité

Pour modéliser une situation de probabilités conditionnelles, on utilise souvent un « arbre pondéré », dans lequel s'applique certaines règles traduisant les propriétés du cours.

Règles	Illustrations
À l'origine d'un arbre, on place l'événement certain, c'est-à-dire l'univers Ω sur lequel on définit une probabilité p .	Ω
Une branche représente un lien probabiliste entre deux événements, par exemple <i>A</i> et <i>B</i> . La probabilité de cette branche est la probabilité de B sachant A .	$p_A(B)$
Pour les branches issues de Ω , on remarque que, quel que soit A : $p_{\Omega}(A) = \frac{p(A \cap \Omega)}{p(\Omega)} = \frac{p(A)}{1} = p(A)$	p(A) A
Une succession de plusieurs branches est appelé un chemin . Ce chemin représente l'intersection des événements rencontrés aux extrémités de ses branches et sa probabilité est égale au produit des probabilités notées sur ses branches. $p(A \cap B) = p(A) \times p_A(B)$	p(A) $p(A)$ $p(A)$
Sur un arbre, la somme des probabilités des branches issues d'un	D. (B)
même événement est toujours égale à 1.	$A \qquad \qquad$
Lorsque B_1 ,, B_n forment une partition de Ω , on a : $p_A(B_1) + + p_A(B_n) = 1$	$p_A(\bar{B})$ \bar{B}
La probabilité d'un événement est égale à la somme des probabilités des chemins qui mènent à celui-ci. $p\left(B\right) = p\left(A_{\scriptscriptstyle 1}\right) \times p_{\scriptscriptstyle A_{\scriptscriptstyle 1}}(B) + \ldots + p\left(A_{\scriptscriptstyle n}\right) \times p_{\scriptscriptstyle A_{\scriptscriptstyle n}}(B)$	$ \Omega \stackrel{p(A)}{\underset{\bar{A}}{\smile}} p_{\bar{A}}(B) \stackrel{-B}{\smile} $

Exemple:

L'expérience aléatoire de l'exemple des bonbons peut être modélisée par l'arbre pondéré suivant :

On a vu que
$$p_A(O) = \frac{p(A \cap O)}{p(A)} = \frac{0.1}{0.4} = 0.25$$
, donc $p_A(F) = 1 - p_A(O) = 1 - 0.25 = 0.75$ $p(A \cap F) = p_A(F) \times p(A) = 0.75 \times 0.4 = 0.3$ De même, $p_G(F) = 1 - p_G(O) = 1 - 0.3 = 0.7$ donc $p(G \cap F) = p_G(F) \times p(G) = 0.7 \times 0.6 = 0.42$

Pour déterminer la probabilité que le bonbon choisi au hasard dans le sachet soit parfumé à la fraise, on applique la formule des probabilités totales.

$$p(F) = p(A \cap F) + p(G \cap F) = p_A(F) \times p(A) + p_G(F) \times p(G) = 0.3 + 0.42 = 0.72$$

III. Indépendance

1) Indépendance de deux événements

Définition:

On dit que deux événements A et B sont **indépendants** si $p(A \cap B) = p(A) \times p(B)$

Remarques:

- L'indépendance de deux événements traduit l'idée suivante : « la réalisation (ou non) de l'un n'influence pas la réalisation (ou non) de l'autre »
- Ne pas confondre « A et B indépendants » et « A et B incompatibles ».

Exemple:

Pour le lancer d'un dé équilibré à six faces, les événements A « le résultat est pair » et B « le résultat est 2 » ne sont pas indépendants.

En effet,
$$p(A \cap B) = \frac{1}{6}$$
 et $p(A) \times p(B) = \frac{1}{2} \times \frac{1}{6}$

Si C est l'événement « le résultat est supérieur ou égal à 5 », alors les événements A et C sont indépendants.

Propriété:

Si
$$p(A) \neq 0$$
, on a:

A et B indépendants si, et seulement si,
$$p_A(B) = p(B)$$

Démonstration:

On suppose $p(A) \neq 0$. On a alors $p(A \cap B) = p(A) \times p_A(B)$.

Ainsi, A et B sont indépendants si, et seulement si :

$$p(A) \times p_A(B) = p(A) \times p(B)$$

c'est-à-dire $p_A(B) = p(B)$, en simplifiant par $p(A) \neq 0$.

Propriété:

Si A et B sont deux événements indépendants, alors A et \overline{B} sont indépendants.

Démonstration:

L'événement A est la réunion des deux événements incompatibles $A \cap B$ et $A \cap \bar{B}$, donc :

$$p(A) = p(A \cap B) + p(A \cap \overline{B})$$
.

On en déduit :

$$p(A \cap \overline{B}) = p(A) - p(A \cap B).$$

A et B étant indépendants, on a :

$$p(A \cap B) = p(A) \times p(B)$$

d'où:

$$p(A \cap \overline{B}) = p(A) - p(A) \times p(B)$$

$$p(A \cap \overline{B}) = p(A) \times (1 - p(B))$$

$$p(A \cap \overline{B}) = p(A) \times (p(\overline{B}))$$

Ainsi, par définition A et \overline{B} sont indépendants.

Remarque:

Supposons que $p(A) \neq 0$. Il découle de la propriété précédente que, si A et B sont indépendants alors $p_A(B) = p_{\overline{A}}(B)$.

Ce qui signifie que la réalisation ou non de l'événement A n'influe pas sur la réalisation de l'événement B.

Exemple:

Matthieu, élève de Seconde, possède son téléphone portable depuis qu'il est entré au collège. Il hésite à en changer. En se rendant chez son opérateur, il apprend que :

- La probabilité que « le téléphone tombe en panne à cause d'un défaut de composants » appelé événement *C*, est de 0,2.
- La probabilité que « le téléphone tombe en panne à cause de la carte SIM » appelé événement *S*, est de 0,4.

Ces deux événements sont supposés indépendants.

Matthieu évalue alors la probabilité « qu'au moins une des deux pannes se produise », c'est-à-dire l'événement $C \cup S$.

$$p(C \cup S) = p(C) + p(S) - p(C \cap S)$$

$$p(C \cup S) = p(C) + p(S) - p(C) \times p(S)$$

$$p(C \cup S) = 0.2 + 0.4 - 0.2 \times 0.4 = 0.52$$
(C et S sont supposés indépendants)

Cette probabilité étant élevée, Matthieu décide de changer de téléphone.

Dans cet exemple, l'événement contraire de « au moins une des deux pannes se produit » est l'événement « aucune panne ne se produit », noté $\bar{C} \cap \bar{S}$. Il en découle que.

$$p(C \cup S) = 1 - p(\bar{C} \cap \bar{S})$$

$$p(C \cup S) = 1 - p(\bar{C}) \times p(\bar{S})$$

$$p(C \cup S) = 1 - 0.8 \times 0.6 = 0.52$$
(\bar{C} et \bar{S} sont supposés indépendants)

On retrouve bien le même résultat.

2) <u>Indépendance de deux variables aléatoires discrètes</u>

Soit X et Y deux variables aléatoires discrètes définies sur i, avec :

$$X(\Omega) = \{ x_i, i \in \mathbb{N}, 1 \le i \le n \} \text{ et } Y(\Omega) = \{ y_i, j \in \mathbb{N}, 1 \le j \le n \}$$

Définition:

$$X$$
 et Y sont indépendantes lorsque, pour tout i dans \mathbb{N} , $1 \le i \le n$, et tout j dans \mathbb{N} , $1 \le j \le n$, on a : $p((X = x_i) \cap (Y = y_j)) = p(X = x_i) \times p(Y = y_j)$

Exemple:

On lance deux dés bien équilibrés. On désigne par S et D les deux variables aléatoires égales respectivement à la somme et au produit des deux dés.

On considère comme univers Ω l'ensemble des 36 couples $(x_i; y_j)$ avec x_i et y_j dans $\{1, 2, 3, 4, 5, 6\}$ et P la loi équirépartie sur Ω .

On remarque que les événements (S=2), (D=1) et $(S=2) \cap (D=1)$ sont tous égaux à $(\{1;1\})$.

Donc par équiprobabilité,
$$p(S=2)=p(D=1)=p((S=2)\cap(D=1))=\frac{1}{36}$$
.

Pour montrer la non-indépendance de S et D, il suffit de montrer qu'il existe deux réels s_i et d_j tels que $p(S=s_i) \times p(D=d_i) \neq p((S=s_i) \cap (D=d_i))$.

Or on a bien
$$p(S=2) \times p(D=1) = \frac{1}{36} \times \frac{1}{36}$$
 et $p((S=2) \cap (D=1)) = \frac{1}{36}$.

Donc les variables aléatoires S et D ne sont pas indépendantes.

Annexe : Table de mortalité

Une **table de mortalité** annuelle suit le cheminement d'une génération fictive de 100 000 nouveaunés à qui l'on fait subir aux divers âges les conditions de mortalité observées sur les diverses générations réelles, durant l'année étudiée. Pour éviter les aléas des tables annuelles et pour disposer d'une table détaillée par âge aussi précise que possible, on calcule également une table de mortalité couvrant une période de trois années.

Cet outil est surtout utilisé en démographie et en actuariat afin d'étudier le nombre de décès, les probabilités de décès ou de survie et l'espérance de vie selon l'âge et le sexe.

Table de mortalité

Présentation, sous forme de tableau, de l'espérance de vie et de la probabilité de décéder à chaque âge (ou groupe d'âge) d'une population donnée, en fonction des taux de mortalité par âge valable à l'époque. La table de mortalité présente une description structurée et complète de la mortalité d'une population.

Quotient de mortalité

Probabilité, pour les personnes survivantes à un âge, de décéder avant l'âge suivant.

Il se calcule en divisant les décès à un âge X par les survivants à un âge X. Les résultats sont consignés dans des tables de mortalité.

TABLE DE MORTALITÉ DES ANNÉES 2008 – 2010 pour le sexe masculin

Survivants S(x) à l'âge xQuotient de mortalité Q(x,x+1) pour 100 000 survivants à l'âge xEspérance de vie E(x) à l'âge x

Âge x	S(x)	Q(x,x+1)	E(x)	Âge x	S(x)	Q(x, x+1)	E(x)
	100.05	202			24.445	400	20.25
0	100 000	392	77,81	50	94 449	488	30,32
1	99 608	32	77,11	51	93 988	546	29,47
2	99 576	21	76,14	52	93 474	593	28,63
3	99 555	17	75,15	53	92 920	652	27,80
4	99 538	12	74,17	54	92 315	701	26,97
5	99 526	11	73,18	55	91 668	763	26,16
6	99 515	11	72,18	56	90 968	828	25,36
7	99 504	9	71,19	57	90 215	876	24,57
8	99 495	8	70,20	58	89 424	920	23,78
9	99 487	8	69,20	59	88 601	968	22,99
10	99 479	10	68,21	60	87 744	1 041	22,21
11	99 470	10	67,22	61	86 830	1 095	21,44
12	99 460	10	66,22	62	85 879	1 161	20,68
13	99 450	11	65,23	63	84 882	1 258	19,91
14	99 439	17	64,24	64	83 815	1 327	19,16
15	99 422	25	63,25	65	82 702	1 446	18,41
16	99 396	33	62,26	66	81 507	1 517	17.67
17	99 364	44	61,28	67	80 270	1 579	16,94
18	99 320	57	60,31	68	79 002	1 717	16,20
19	99 263	63	59,34	69	77 646	1 856	15,48
20	99 201	68	58,38	70	76 205	1 988	14,76
21	99 133	72	57,42	71	74 690	2 195	14,05
22	99 061	74	56,46	72	73 051	2 428	13,35
23	98 988	83	55,50	73	71 277	2 632	12,67
24	98 905	82	54,55	74	69 400	2 926	12,00
25	98 824	82	53,59	75	67 370	3 232	11,35
26	98 743	86	52,64	76	65 192	3 578	10,71
27	98 658	85	51,68	77	62 860	3 945	10,09
28	98 574	90	50,73	78	60 380	4 432	9,48
29	98 485	88	49,77	79	57 704	4 905	8,90
30	98 398	88	48,81	80	54 873	5 506	8,33
31	98 312	90	47,86	81	51 852	6 175	7,79
32	98 223	99	46,90	82	48 650	6 946	7,27
33	98 126	101	45,95	83	45 271	7 678	6.77
34	98 026	109	44,99	84	41 795	8 585	6,30
35	97 919	117	44,04	85	38 207	9 792	5,84
36	97 805	137	43,09	86	34 466	10 973	5,42
37	97 671	139	42,15	87	30 684	12 187	5,03
38	97 535	152	41,21	88	26 944	13 458	4,65
39	97 387	162	40,27	89	23 318	14 927	4,30
40	97 229	184	39,33	90	19 837	16 663	3,97
41	97 050	199	38,41	91	16 532	18 667	3,66
42	96 857	217	37,48	92	13 446	20 518	3,39
43	96 646	232	36,56	93	10 687	22 736	3,13
44	96 421	267	35,65	94	8 257	25 032	2,90
45	96 164	283	34,74	95	6 190	27 035	2,71
46	95 892	319	33,84	96	4 517	29 735	2,53
47	95 586	358	32,94	97	3 174	31 886	2,38
48	95 244	393	32,06	98	2 162	34 622	2,26
49	94 869	443	31,19	99	1 413	36 985	2,20
	1	1	1		1	1	

Champ : France métropolitaine, territoire au 31 décembre 2010

(Source : INSEE)