Improper integrals

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

December 18, 2020

Content

- 1 Improper integrals of type 1
 - Definition
 - Convergence criteria
- 2 Improper integrals of type 2
 - Definition
 - Convergence criteria

Last time: definite integrals $\int_a^b f(x)dx$ where $-\infty < a,b < +\infty$, f(x) is bounded on [a,b]. Extend the notion of integrals

- Infinite intervals (improper integrals of type 1)
- Functions with infinite discontinuity (improper integrals of type 2)

Content

- 1 Improper integrals of type 1
 - Definition
 - Convergence criteria

- 2 Improper integrals of type 2
 - Definition
 - Convergence criteria

Definition

Let f(x) be defined on $[a, +\infty)$ and **integrable** on the interval [a, A], $a \le A < \infty$.

The improper integral of f(x) on $[a, +\infty)$:

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx.$$

If the limit exists (as a finite number), we say the integral converges. Otherwise, we say it diverges.

Evaluate the improper integrals

a)
$$\int_{-1}^{+\infty} \frac{dx}{1+x^2}$$
 b) $\int_{0}^{+\infty} \sin x dx$ c) $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$.

Remark

$$\int\limits_{-\infty}^{+\infty} \frac{dx}{x^{\alpha}}, \ (a > 0), \ \text{converges} \Leftrightarrow \alpha > 1.$$

Definition

• If $\int_{A}^{a} f(x)dx$ exists for all $A' \leq a$, then:

$$\int_{-\infty}^{a} f(x)dx = \lim_{A' \to -\infty} \int_{A'}^{a} f(x)dx$$

if the limit exists as a finite number.

② If both $\int_{-\infty}^{a} f(x)dx$ and $\int_{a}^{\infty} f(x)dx$ are convergent, then we define

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx.$$

Evaluate the integrals

a)
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2}$$
 b)
$$\int_{-\infty}^{0} e^{2x}(x+2)dx$$
.

Geometric interpretation

$$\int_{a}^{+\infty} f(x)dx < \infty \Leftrightarrow S < \infty.$$

Comparison theorems

Assume that f(x) and g(x) are nonnegative continuous functions on $[a, +\infty)$.

Theorem (Comparison test 1)

If $f(x) \leq g(x)$ for $x \geq a$, then

- If $\int_{a}^{+\infty} g(x)dx$ converges, then $\int_{a}^{+\infty} f(x)dx$ also converges. If $\int_{a}^{+\infty} f(x)dx$ diverges, then $\int_{a}^{+\infty} g(x)dx$ also diverges.

Theorem (Comparison test 2)

Assume that
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k \in (0, \infty)$$
, then both $\int_a^{+\infty} f(x) dx$ and $\int_a^{+\infty} g(x) dx$ either converge or diverge.

We also write, $f(x) \sim kg(x)$ as $x \to +\infty$.

Proposition

i) If
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0$$
 and $\int_{a}^{+\infty} g(x) dx$ converges, then $\int_{a}^{+\infty} f(x) dx$ converges.

ii) If
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \infty$$
 and $\int_{a}^{+\infty} g(x) dx$ diverges, then $\int_{a}^{+\infty} f(x) dx$ diverges.

Test for convergence

a)
$$\int_{\pi}^{\infty} \frac{\sin^2 x}{x^2 + \ln x} dx$$
b)
$$\int_{1}^{+\infty} \frac{\ln(1 + 3x)}{\sqrt{x + 1}} dx$$
c)
$$\int_{2}^{+\infty} \frac{(1 + x)\sqrt{x}}{x^3 - 2x + 1} dx$$
d)
$$\int_{1}^{+\infty} (e^{-\frac{4}{x^2}} - 1) dx$$

Absolute and conditional convergence

Definition

If $\int_a^{+\infty} |f(x)| dx$ converges, then we say $\int_a^{+\infty} f(x) dx$ converges absolutely.

Note: $\int_{a}^{+\infty} f(x)dx$ converges absolutely \Rightarrow converges.

Definition

If
$$\int_{a}^{+\infty} |f(x)| dx$$
 diverges and $\int_{a}^{+\infty} f(x) dx$ converges, then we say $\int_{a}^{+\infty} f(x) dx$ converges conditionally.

Sign-changing functions

Example

Test for convergence

a)
$$\int_{2}^{+\infty} \frac{x \cos 2x}{x^3 + 3} dx$$
, b) $\int_{-\infty}^{+\infty} \frac{e^{-x^2} \cos x}{1 + x^2} dx$.

Example

Conditionally convergent integrals

a)
$$\int_{1}^{+\infty} \frac{\sin x}{x} dx$$

b)
$$\int_{1}^{\infty} \cos x^2 dx$$
.

Content

- Improper integrals of type :
 - Definition
 - Convergence criteria

- 2 Improper integrals of type 2
 - Definition
 - Convergence criteria

Definition

Let f(x) be continuous on [a,b) and $\lim_{x\to b^-} f(x) = \infty$. The improper integral of f(x) on [a,b):

$$\int_{a}^{b} f(x)dx = \lim_{A \to b^{-}} \int_{a}^{A} f(x)dx.$$

If the limit exists (as a finite number), we say the integral is convergent. Otherwise, we say it is divergent.

x = b: singular point of the integral.

Evaluate the integrals

a)
$$\int_{0}^{2} \frac{dx}{\sqrt{4-x^2}}$$

$$b) \int_0^1 \frac{dx}{(1-x)^{\alpha}}$$

Remark

$$\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} \text{ converges } \Leftrightarrow \alpha < 1.$$

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} \text{ converges } \Leftrightarrow \alpha < 1.$$

Definition

Let f(x) be continuous on (a, b] and $\lim_{x \to a^+} f(x) = \infty$. The improper integral of f(x) on (a, b]:

$$\int_a^b f(x)dx = \lim_{A \to a^+} \int_A^b f(x)dx.$$

Let f(x) be continuous on $[a,b]\setminus\{c\}$ and c is an infinite discontinuity. If both $\int_a^c f(x)dx$ and $\int_c^b f(x)dx$ are convergent, then the improper integral of f(x) on (a,b]:

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

Geometric interpretation

$$\int_a^b f(x)dx < \infty \Leftrightarrow S < \infty.$$

Nonnegative functions

Assume f(x) and g(x) are nonnegative continuous functions on [a,b) and $\int_a^b f(x)dx$, $\int_a^b g(x)dx$ have unique singular point x=b.

Theorem

If $0 \le f(x) \le g(x)$ for $x \in [a, b)$, then

- If $\int_a^b g(x)dx$ converges, then $\int_a^b f(x)dx$ also converges.
- If $\int_{a}^{b} f(x)dx$ diverges, then $\int_{a}^{b} g(x)dx$ also diverges.

00000

Theorem

If
$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = k$$
, $0 < k < \infty$, then both $\int_{a}^{b} f(x) dx$ and $\int_{a}^{b} g(x) dx$ are either convergent or divergent.

Proposition

- If $\lim_{\substack{x \to b^- \\ converges.}} \frac{f(x)}{g(x)} = 0$ and $\int_a^b g(x) dx$ converges $\int_a^b f(x) dx$
- If $\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \infty$ and $\int_{a}^{b} g(x) dx$ diverges $\int_{a}^{b} f(x) dx$ diverges.

Test for convergence

a)
$$\int_0^1 \frac{\ln(1+\sqrt{x})}{e^{\tan x} - 1} dx$$

c)
$$\int_0^\infty \frac{dx}{\sqrt{x+2x^3}}$$

$$b) \int_0^1 \frac{dx}{\sqrt[3]{x^2(1-x)}}$$

Absolute and conditional convergence

Definition

If $\int_a^b |f(x)| dx$ converges, then we say $\int_a^b f(x) dx$ converges absolutely.

Note: If $\int_a^b f(x)dx$ converges absolutely, then it also converges.

Definition

If
$$\int_a^b |f(x)| dx$$
 diverges and $\int_a^b f(x) dx$ converges then we say $\int_a^b f(x) dx$ converges conditionally.

Test for convergence $\int_0^\infty \frac{\sin 2x}{x\sqrt{x}} dx.$