Cálculo Multivariable - Clases y apuntes de clase

David Gabriel Corzo Mcmath

2020-01-06

Índice general

1.	Clase - 2020-01-07 1.1. 12.1 Sistema tridimensional de coordenadas	5
2.	Clase - 2020-01-23 2.1. 12.4 Producto Cruz	9 10 10
3.	Clase - 2020-01-28 3.1. 12.5 Rectas y planos 3.1.1. Ejercicio 3: Encuentre las ecs. simétricas de la recta que pasa por los puntos dados. Encuentre en qué punto la recta interseca al plano xz. pg.41 3.2. Rectas paralelas 3.2.1. Ejercicio 4: Determine si los siguientes pares de rectas son paralelas, oblicuas o se intersecan. 3.3. La ecuación de un plano 3.3.1. Derivación de la e. plano 3.3.2. Ejercicio 1: pg45 Encuentre la ec. del plano que pasa por los 3 puntos dados. 3.4. Rectas paralelas v ₁ y v ₂ son paralelos	13 14 14 15 15 16 16 17 18
4.	Clase - 2020-01-30 4.1. Resolución de corto . 4.2. Rectas y planos . 4.2.1. Ejercicios .	19 20 20 20
5.	Clase - 2020-02-04 5.1. 13.1 Funciones vectoriales y curvas en el espacio 5.1.1. Ejercicios 5.2. Limites y continuidad 5.2.1. Ejercicios 5.3. Curvas en el espacio 5.3.1. Espirales	25 26 26 27 27 28 28
6.	Clase - 2020-02-06 6.1. 13.2 Cálculo con funciones vectoriales, pg.55 6.1.1. Deriviadas 6.1.2. Integrales 6.2. Ejercicios 6.3. Recordatorios & rectas tangentes de funciones vectoriales 6.4 Ejercicios	29 30 30 30 31 32

Clase - 2020-01-07

1.1. 12.1 Sistema tridimensional de coordenadas

- Para localizar un punto en un plano, se necesitan dos números.
- Los ejes de coordenadas son perpendiculares entre sí.
- En el sistema tridimensional de coordenadas rectangulares, cada punto en el espacio es una terna ordenada.

Espacio:
$$\mathbb{IR}^3$$
 { (x, y, z) Talque $x, y, z \in \mathbb{IR}$.

&

$$\mathbb{IR}^3 = \mathbb{IR}^2 \times \mathbb{IR}$$

 \blacksquare Sistema 2-D vs. 3-D:

Figura 1.1:

Las líneas punteadas se usan para simbolizar las partes debajo, izquierda y detrás.

Figura 1.2:

Clase - 2020-01-23

2.1. 12.4 Producto Cruz

■ Definición de "Determinantes": Matriz (arreglo rectangular de números).

■ Definición de "Cuadrada": Mismo número de filas y columnas.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Determinante de orden 2. Matriz de 2x2

■ pie:

$$\begin{vmatrix} 3 & 4 \\ -1 & 2 \end{vmatrix} = 6 - (-1)(4) = 6 + 4 = 10$$

■ Determinante de orden 3: Matriz 3x3 suma de tres determinantes de orden 2:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} + a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

3 matrices de 2x2.

■ p.e.

$$\begin{vmatrix} 2 & 0 & 2 \\ 1 & 3 & 0 \\ 1 & -1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 3 & 0 \\ -1 & 2 \end{vmatrix} - 0 \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & 3 \\ 1 & -1 \end{vmatrix}$$
$$2(6-0) - 0 + 2(-1-3) = 12 - 8 = 4$$

2.2. Producto Cruz

■ Dados dos vectores :

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

 $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

 \blacksquare Nos preguntamos: ¿Cómo se encuentra un vector \vec{c} que es perpendicular a \vec{a} y a \vec{b} ?

$$\vec{c} \cdot \vec{a} = 0$$

$$\vec{c} \cdot \vec{b} = 0$$

• Resuelva para c_1, c_2, c_3 :

$$c_1 a_1 + c_2 a_2 + c_3 a_3 = 0$$
$$c_1 b_1 + c_2 b_2 + c_3 b_3 = 0$$

■ El producto cruz $\vec{c} = \vec{a} \times \vec{b} = 0$ es un vector perpendicular a ambos vectores $\vec{a} \& \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{i}(a_2b_3 - a_3b_2) - \hat{j}(a_1b_3 - a_3b_1) + \hat{k}(a_1b_2 - a_2b_1)$$

- Observaciones:
 - El producto cruz es un vector, mientras que el producto es un número o escalar.
 - El producto cruz **no** es conmutativo $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$.

$$\vec{b} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = \hat{i}(b_2a_3 - a_2b_3) + \hat{j}(a_1b_3 - a_3b_1) + \hat{k}(a_2b_1 - a_1b_2)$$

■ Por ejemplo:

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 0 \\ 1 & 0 & 5 \end{vmatrix} = \hat{i} \begin{vmatrix} 3 & 0 \\ 0 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 0 \\ 1 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix}$$
$$\therefore \vec{a} \times \vec{b} = 15\hat{i} - 10\hat{j} - 3\hat{k}$$

• Verifique $\vec{a} \times \vec{b}$ es ortogonal a \vec{a} & a \vec{b} .

$$(\vec{a} \times \vec{b}) \cdot \vec{a} = \langle 15, -10, -3 \rangle \cdot \langle 2, 3, 0 \rangle = 30 - 30 + 0 = 0$$
: son ortogonales $(\vec{a} \times \vec{b}) \cdot \vec{b} = \langle 15, -10, -3 \rangle \cdot \langle 1, 0, 5 \rangle = 15 + 0 - 15 = 0$: son ortogonales

$$\vec{a} \times \vec{b} \perp a_1 b$$

- \blacksquare Aclaración: en dos dimensiones $\vec{a}\times\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}\\a_1&a_2\\b_1&b_2\end{vmatrix}$ No es posible evaluarlo.
- Existen en tres dimensiones pero si se intenta evaluar en cuatro dimensiones la siguiente matriz no es posible:

En 3-D:
$$\exists$$
 En 4-D: \sharp

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} & \hat{l} \\ 1 & 0 & 2 & 3 \\ 4 & 1 & 5 & -2 \end{vmatrix}$$

No es posible evaluarlo.

■ Ejemplo:

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 5 \\ 2 & 3 & 0 \end{vmatrix} = \hat{i} \begin{vmatrix} 0 & 5 \\ 3 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 5 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix}$$
$$= 15\hat{i} + 10\hat{j} + 3\hat{k}$$

Entonces... en general:

$$\vec{a}\times\vec{b}=-(\vec{b}\times\vec{a})$$

Clase - 2020-01-28

3.1. 12.5 Rectas y planos

- Ecuación de una recta
- Vector posición $\vec{r}_0 = \langle x_0, y, z_0 \rangle$
- Vector dirección $\vec{v}_0 = \langle a, b, c \rangle$
- Ecuación vectorial: $\vec{r} = \vec{r}_0 + t\vec{v}$ donde t es el parámetro.
- Ecuaciónes paramétricas:

$$x = x_0 + at$$
$$y = y_0 + at$$
$$z = z_0 + at$$

 \blacksquare Resuelva para t en las tres ecuaciones:

$$t = \frac{x - x_0}{a}t = \frac{y - y_0}{b}t = \frac{z - z_0}{c}$$

Estas son las ecuaciónes simétricas de la recta donde $a, b, c \neq 0$.

• Vector dirección $\vec{v} = \langle a, 0, c \rangle$ las ecuaciones en la recta cambian:

$$\vec{r} = \vec{r_0} + t\vec{v}$$
Vectorial
$$x = x_0 + at$$

$$y = y_0$$

$$z = z_0 + ct$$
Entonces queda así:
$$\frac{x - x_0}{a} = \frac{z - z_0}{c}$$

$$y = y_0$$
Simétrica

- 3.1.1. Ejercicio 3: Encuentre las ecs. simétricas de la recta que pasa por los puntos dados. Encuentre en qué punto la recta interseca al plano xz. pg.41
 - P(2,8,-2) & Q(2,6,4)

■ Nos preguntamos: ¿Cual es la intersección con el plano xz?

Use, y=0x = 2,
$$\frac{-8}{-2} = \frac{z+2}{6}$$

= $6 \cdot 4 = z + 2 \implies z = 22$

• La intersección con el plano xz es el punto (1,0,22):

$$\vec{r}_0 = \langle 4,6,10 \rangle$$

$$\vec{v} = \overrightarrow{PQ} = \langle 2,0,0 \rangle$$
 Vectorial: $\vec{r} = \langle 4,6,10 \rangle + t \langle 2,0,0 \rangle$ Paramétricas: $x = 4 + 2t, y = 6, z = 10$ Simétricas: $t = \frac{x-4}{2}, y = 6, z = 10$

• Nos preguntamos: ¿Cual es el punto de instersección con el plano xz?

Use:
$$y=0$$

Explicación: por la recta y=6 siempre será 6, nunca podrá ser 0, no puede intersecar con el plano xz, **No hay**.

3.2. Rectas paralelas

Dos rectas $\vec{r}_1 = \vec{r}_{01} + t\vec{v} \& \vec{r}_2 = \vec{r}_{02} + t\vec{v}_2$ son paralelas si y solo si sus vectores de dirección \vec{v}_1 y \vec{v}_2 son paralelas.

Figura 3.1:

Entones en el espacio tenemos 3 tipos de rectas:

- 1. Rectas paralelas
- 2. Rectas intersecan en un punto
- 3. Rectas Ublicuas (no paralelas & no intersecan)

3.2.1. Ejercicio 4: Determine si los siguientes pares de rectas son paralelas, oblicuas o se intersecan.

$$\frac{x-2}{8} = \frac{y-3}{24} = \frac{z-2}{16}, \frac{x-10}{-2} = \frac{y+15}{-6} = \frac{z+24}{-4}$$

$$\vec{v}_1 = \langle 8, 24, 16 \rangle, \vec{v}_2 = \langle -2, -6, -4 \rangle$$
Entoces..., $\left\langle \frac{8}{-2}, \frac{24}{-6}, \frac{16}{-4} \right\rangle$

$$\langle -4, -4, -4 \rangle, \therefore \text{ Son paralelas}$$

El vector dirección está en el denominador.

$$L_2: x=3+8s, y=-2s, z=8+2s, s\in IR$$
 Utilize una variable parámetro para cada recta
$$v_1=\langle -4,-2,0\rangle\,, v_2=\langle 8,-2,2\rangle \ \text{No son paralelas}$$
 Analice si las rectas se intersecan
$$x=x\to 5-4t=3+8s$$

 $L_1: x = 3 - 4t, y = 6 - 2t, z = 2 + 0t, t \in IR$

$$x = x \to 5 - 4t = 3 + 8s$$

$$y = y \to 6 - 2t = -2s$$

$$z = z \to 2 = 8 + 2s \to s = -3$$

$$5 - 4 = -22 \to 4t = -27 \to -4t = -27 \to = \frac{27}{4}$$

$$6 - 2t = 6 \to 2t = 0 \to t = 0$$

... Como no hay una túnica (no es posible $0 \neq \frac{27}{4}),$ las dos r
ctas no se intersecan.

 $L_1 \& L_2$ Son oblicuas Eliminación Gausiana

$$\begin{array}{c|cccc} 4t+8s=2 & |4&8&2\\ 2t+25=6&= \begin{vmatrix} 2&2&6\\ 0&2&-6 \end{vmatrix} 0,0, \text{ número} \implies \text{No hay solución}$$

3.3. La ecuación de un plano

Previamente en 12.1 ax + by + cz = 0. Para encontrar la ec. de un plano se necesita:

Figura 3.2:

- 1. Un punuto sobre el plano $P: \vec{r_0} = \overrightarrow{OP}$
- 2. Un vector normal u ortognoal al plano: $\hat{n}_0 \langle a, b, c \rangle$

3.3.1. Derivación de la e. plano

$$P(x_0, y_0, z_0), Q(x_1, y_1, z_1)$$
 Son dos puntos sobre el plano
$$\vec{r_0} == \overrightarrow{0P} = \langle x_0, y_0, z_0 \rangle$$

$$\vec{r} = \overrightarrow{0Q} = \langle x, y, z \rangle$$

El vector $\vec{RP} = \vec{r} + \vec{r} = 0$ está sobre el plano, por lo que tiene que ser ortogonal a \hat{n} .

$$\hat{n} \perp \vec{r} - \vec{r_0} \rightarrow \underbrace{\hat{n} \cdot (\vec{r} - \vec{r_0})}_{\text{Ec. vectorial de un plano}}$$

$$\underbrace{\langle a,b,c\rangle\cdot\langle x+x_0,y-y_0,z-z_0\rangle+c(z-z_0)=0}_{\text{Ecuación escalar de un plano}}$$

$$ax + by + cz = \underbrace{ax_0 + by_0 + cz_0}_{0}$$

Para encontrar la ec. de un plano se necesita 3 puntos P,Q,R: hay infinitas respuestas equivalentes $\hat{n} = \vec{\times} \vec{\cdot}$

$$\vec{r_0} = \overrightarrow{OP}, \overrightarrow{OQ}, \overrightarrow{OR}$$

$$\widehat{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$$

Tienen que empezar en el mismo punto

Hat infinitas respuestas:

$$\hat{n} = \overrightarrow{PR} \times \overrightarrow{PQ}$$

3.3.2. Ejercicio 1: pg45 Encuentre la ec. del plano que pasa por los 3 puntos dados.

1.
$$P(3,-1,3), Q(8,2,4), R(1,2,5)$$

Ecuación del plano : ,
$$\hat{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

Ecuación
n de la recta : ,
$$\vec{r} = \vec{r_0} + t\vec{v}$$

$$\vec{r_0} = \langle 8, 2, 4 \rangle$$

Encuentre dos vectores que están sobre el plano y que comiencen en el mismo punto.

$$\vec{u} = \overrightarrow{PQ} = \langle 5, 3, 1 \rangle, \vec{v} = \overrightarrow{PR} = \langle -2, 3, 2 \rangle$$

j
j \hat{n} es ortogonal a ambos vectores !!

$$\hat{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 3 & 1 \\ -2 & 3 & 2 \end{vmatrix} = 3\hat{i} - 12\hat{j} - +21\hat{k}$$

Ec. Plano ,
$$\hat{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

Ec. Vectorial ,
$$\langle 3, -12, 21 \rangle \cdot \langle x-8, y-2, z-4 \rangle = 0$$

Escalar,
$$3(x-8)$$

2.
$$P(0,0,0)$$
, $Q(1,0,2)$, y $R(0,2,3)$

Vector posición:
$$\vec{r_0} = \langle 0, 0, 0 \rangle$$

dos vectoes sobre el plano:
$$\vec{PQ} = \langle 1, 0, 2 \rangle$$

 $\vec{PR} = \langle 0, 2, 3 \rangle$

$$PR = \langle 0, 2, 3 \rangle$$

Vector normal:
$$\hat{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \text{terminar} \end{vmatrix}$$

3. Ecuación del plano:

$$-4x - 3y + 2z = 0$$

3.4. Rectas paralelas v_1 y v_2 son paralelos

Dos planos $\hat{n_1} \cdot (\vec{r} - \vec{r_1}) = 0$ y $\hat{n_2} \cdot (\vec{r} - \vec{r_2}) = 0$ son paralelas sí y sólo si $\hat{n_1}$ y $\hat{n_2}$ son paralelas. En caso que no sean paralelas, se puede encontrar el ángulos de intersección entre dos planos.

Clase - 2020-01-30

4.1. Resolución de corto

■ Determine el área del triángulo entre los puntos P(), Q(), R():

$$\vec{a} = \overrightarrow{PQ} = \langle 4, 3, -2 \rangle$$

$$\vec{b} = \overrightarrow{PR} = \langle 5, 5, 1 \rangle$$

$$\text{Área } = \frac{1}{2} \left| \vec{a} \times \vec{b} \right|$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & -2 \\ 3 & 5 & 1 \end{vmatrix} = 13\hat{i} - 14\hat{j} + 5\hat{k}$$

$$\text{Área } = \frac{1}{2} \checkmark$$

4.2. Rectas y planos

• Ecs. Rectas: $\vec{r} = \vec{r_0} + t\vec{v}$

si
$$a \neq b \neq c \neq 0$$
 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

■ Paramétricas:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

■ Ecuación de plano:

$$\hat{n} = \vec{r} - \vec{r_0}$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\hat{n} = \vec{a} \times \vec{b}$$

4.2.1. Ejercicios

- 1. Considere los planos x + y = 0 & x + 2y + z = 1.
 - a) Determine si los planos son paralelos so no lo son encuentre el ángulo entr ellos:

$$\hat{n_1} = \langle 1, 1, 0 \rangle$$
$$\hat{n_2} = \langle 1, 2, 1 \rangle$$

: Los dos planos no son paralelos

 \blacksquare El $\hat{n_1}$ & $\hat{n_2}$ no son necesariamente ortogonales.

$$\cos \theta = \frac{\hat{n}_1 \cdot \hat{n}_2}{|\hat{n}_1| |\hat{n}_2|} = \frac{3}{\sqrt{2}}$$
$$\cos \theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \qquad \theta = \frac{\pi}{2}$$

2. Encuentre la ec. de la recta que interseca a ambos planos x + y = 0 & x + 2y + z = 1:

$$r = \vec{r_0} + t\vec{v}$$

Dos puntos sobre la recta

Como la recta esta en ambos planos, se debe resolver el sig. sistema de ecuaciones

$$x + y = 0 \implies x = -y$$

 $x+2y+z=1 \implies y=z-1$ z tiene cualquier valor, ahora encontrar escogiendo cualquier punto sobre la recta, en este caso 0

Primer punto z = 0

y = 1

x = -1

 $\therefore \langle -1, 1, 0 \rangle$

Segundo punto z=1

y = 0

x = 0

 $\therefore \langle 0, 0, 1 \rangle$

3. Encuentre la ecuación de la recta que pasa por P(-1,1,0) y Q $\underbrace{(0,0,1)}_{r_0}$:

$$\vec{r_0} = \langle 0, 0, 1 \rangle \langle -1, 1, 0 \rangle$$

$$\vec{v} = \overrightarrow{QP}0 \langle -1, 1, -1 \rangle$$

Ecuaciones paramétricas de la recta:

$$x = 0 - t$$
 $y = 0 + t$ $z = 1 - t$

4. Solución alterna:

$$x = -y$$
 $y = 1 - z$ Más incognitas que ecuaciones.

x, y ó z pueden tener cualquier valor z = t

$$x = -1 + t$$

$$y = 1 - t :: v_2 = \langle 1, -1, 1 \rangle \quad \vec{r_0} = \langle -1, 1 - 0 \rangle$$

$$t = t$$

- 5. Solución geométrica:
 - Encuentre un punto en ambos planos (0,0,1).
 - L arecta está en el plano I, entonces la recta es perpendicular al vector normal del plano I.
 - Está en el plano z, entonces también es perpendicular al segundo vector normal.

■ ∴ la recta es perpendicular a ambos $\hat{n_1}$ & $\hat{n_2}$

$$\vec{v} = \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - \hat{j} + \hat{k}$$

Ecuación de la recta: $r = \langle 0, 0, 1 \rangle + t \langle 1, -1, 0 \rangle$

6. Ejercicio 3: Encuentre el punto en el que la línea recta $x=1+2t,\,y=4t,\,z=5t$ interseca al plano. x-y+2z=17.

$$x = 1 + 2t$$

$$y = 4t$$

$$z = 5t$$
Plano
$$x - y + 2z = 17 \quad 1 + 2t - 4t + 10t = 17$$

$$8t = 16 \implies \therefore t = 2$$

El punto de intersección es (5,8,10).

- 7. Ejercicio 4: Encuentre una ec. del plano que contiene la recta x=1+t, y=2-t, z=4-3t y es paralela a plano 5x+2y+z=1.
 - Cualquier punto sobre la recta que también esté sobre el plano, t= 0.

Evaluemos en t=0
$$x = 1, y = 2, z = 4$$

 $\vec{r_0} = \langle 1, 2, 4 \rangle$

- Nos preguntamos: ¿Cómo se encuentra \hat{n} ?
- El vectos de dirección de la recta $v = \langle 1, -1, -2 \rangle$ es paralelo al plano.
- Como es paralelo al seguno plano, entonces tiene que ser perpendicular $\hat{n}_2 = \langle 5, 2, 1 \rangle$
- Lo que ocurre entonces es:

$$\vec{r_0} = \langle 1,2,4 \rangle \quad \hat{n} = \langle 5,2,1 \rangle$$
 Ec. Plano: $\implies 5(x-1) + 2(y-2) + 1(z-4) = 0$

- 8. Ejercicio 5: Encuentre los números directores para la recta de intersección entre los planos x+y+z=1 & x+2y+3z=1.
 - Definición de "numeros directores": a,b,c del vector de dirección $\langle a,b,c \rangle$
 - La recta es ortogonal a ambos vectores normales:

$$\begin{split} \hat{n_1} &= \langle 1, 1, 1 \rangle \quad \textit{text} \& \hat{n_2} = \langle 1, 2, 3 \rangle \quad \text{ de ambos planos} \\ \vec{v} &= \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - 2\hat{j} + \hat{k} \end{split}$$

Los números directores: a = 1, b = 2, c = 1

9. Ejercicio 6: Encuentre las ecs. aparamétricas de la recta que pasa por el punto (0,1,2), que es paralelo al plano x+y+z=2 y es perpendicular a la recta $r=\langle -2t,0,3t\rangle$.

$$L_1 r = \vec{r_0} + t\vec{v}$$
 $r_0 = \langle 0, 1, 2 \rangle$

- \blacksquare Aclaraciones: L_1 es la incógnita que tenemos que encontrar.
- Nos preguntamos: ¿Cómo se encuentra r?
- Plano I: $\hat{n} = \langle 1, 1, 1 \rangle$ es perpendicular al plano, es paralelo a L_1 .
- Recta II: $\hat{v_2} = \langle -2, 0, 3 \rangle$ es perpendicular a L_1
- \blacksquare La recta es perpendiculae a \hat{n} y a $\vec{v_2}$

$$v = \hat{n} \times \vec{v_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -2 & 0 & 3 \end{vmatrix} = 3\hat{i} - 5\hat{j} + 2\hat{k}$$

$$r_0 = \langle 0, 1, 2 \rangle$$

 $v = \hat{v_2} \times \hat{n}$ Ecuaciones paramétricas:

$$x = 0 - 3t$$

$$y = 1 - 5t$$

$$z = 2 + 2t$$

Clase - 2020-02-04

5.1. 13.1 Funciones vectoriales y curvas en el espacio

• Una función vectorial $\vec{r}: R \implies V_3:$

$$\vec{r}(t) = \langle f(t), g(t), z(t) \rangle$$

La variable t es un parámetro.

■ Dominio: Números reales, Rango: vector 3D:

$$\vec{r}\mathbb{IR} \implies V_3 \quad \vec{r}(t) = \langle f(t), g(t), h(t) \rangle$$
t es un parámetro
$$\vec{r} = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$$

■ Ejemplo de una función vectorial:

$$\vec{r} = \langle a, b, c \rangle + t \langle d, e, f \rangle$$
$$\vec{r} = \langle a + td, b + et, c + tf \rangle$$
$$x = f(t), \quad y = g(t), \quad z = h(t)$$

- Ecs. Paramétricas de una función vectorial:
- Dominio de ina función vectorial: encuentre el dominio de cada función componente. El dominio de \vec{r} es la intersección de los dominios de cada función componente.

5.1.1. Ejercicios

1. Encuentre el dominio:

$$r(t) = \left\langle \sqrt{r^2 - 9}, e^{5ln(t)}, ln(t+5) \right\rangle$$
 Evadir raíces negativas, y ln(0)
$$\sqrt{t^2 - 9} \implies \text{Definida} \quad t^2 \geq 9$$

$$e^{\sin(t)} \quad \text{siempore definida}$$

$$ln(t+5) \quad \text{Definida cuando} \quad t+5 > 0 \quad (-5, \infty)$$

$$\therefore \text{ El dominio es de} \quad (-5, \infty) \cup (-5, -3) \cup (-3, 3) \cup [3, \infty)$$

Recordar: [a,b] el numero si es parte del dominio a,b son partes del dominio. (a,b) los puntos a,b no son parte del dominio.

2.

$$\vec{s}(t) = \left\langle \sin^3(t^2), \cosh(\frac{t}{t^2 + 1}), \frac{1}{e^t + 4} \right\rangle$$

$$sin^3(t^2), ID_{f(t)} = IR$$

$$\cosh(\frac{t}{t^2 + 1}), ID_{g(t)} = IR$$

$$\frac{1}{e^t + 4}, ID_{h(t)} = IR$$

$$\therefore \text{ Dominio de } \vec{s}(t) = (-\infty, \infty)$$

$$e^+ 4 \neq 0 \implies e^t = -4 \implies t = \underbrace{ln(-4)}_{\text{indefinido}}$$

5.2. Limites y continuidad

•

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

- Evalúe el límite de cada función componente.
- \blacksquare Si no existe por lo menos un límite de una función componente, entonces lím $_{t\to a}\,\vec{r}(t)$ no existe.
- f(t) está definida en t=a

$$\lim_{t \to a} f(t) = f(a)$$

 \blacksquare Si se indefine y tiene forma de $\frac{0}{0},\,\frac{\infty}{\infty}$ usar L'Hôpital.

$$\lim_{t \to a} \frac{f(t)}{g(t)} \underbrace{=}_{\underbrace{0}} \lim_{t \to a} \frac{f'(t)}{g'(t)} \quad \text{L'Hopital}$$

- \bullet Contínua en t=a si $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$
- Evite asíntotas verticales, saltos y agujeros. Ejemplo:

$$\lim_{t \to a} \frac{\sin(x)}{x} \underbrace{=}_{t \to a} \lim_{t \to a} \frac{\cos(x)}{1} = 1$$

5.2.1. Ejercicios

- Sea $\vec{r}(t) = \left\langle \frac{\tan(\pi t)}{t}, e^{t-2}, \frac{\ln(t-1)}{t^2-1} \right\rangle$.
- Analice si la función $\vec{r}(t)$ es contínua en t=2.

$$\begin{split} \vec{r}(t) &= \left\langle \frac{\tan 2\pi}{2}, e^0, \frac{ln(1)}{3} \right\rangle \\ &\lim_{t \to 2} \underbrace{\frac{\tan \pi t}{t}}_{\underbrace{\frac{0}{2}}} = 0 \\ &\lim_{t \to 2} \frac{ln(t-1)}{t^2-1} = 0 \end{split}$$

 $\therefore \vec{r}$ si es contínua en t=2 $\lim_{t \to 1} \vec{r}(t) = \vec{r}(2)$

ullet Encuentre $\lim_{t\to 1} \vec{r}(t)$ analice el límite de cada función componente por separado.

$$f: \lim_{t \to 1} \frac{\tan 2\pi}{2} = \frac{0}{1}$$
$$g: \lim_{t \to 1} e^{t-2} = e^{-1}$$

 $h: \lim_{t\to 1} \frac{\ln(t-1)}{t^2-1} = \text{No existe, por } \ln(0) \text{ estar indefinido.}$

■ Analice si $\vec{r}(t)$ es contínua e t=1.

$$\underbrace{\lim_{t\to 1} \vec{r}(t) = \vec{r}(1)}_{\text{No es contínua en t=1, r(1) está indefinida}}.$$

■ Agujero $\vec{s}(t) = \left\langle \frac{\tan \pi t}{t-1}, e^{t-2}, \frac{\ln(2t-1)}{t^2-1} \right\rangle$ No es contínua en t=1, pero su límite existe.

$$\lim_{t \to 1} \frac{\tan \pi t}{t - 1} \underbrace{= \lim_{t \to 1} \frac{\pi \sec^2 \pi t}{1}}_{LH} = \frac{\pi}{(\cos \pi)^2} = \pi$$

$$\lim_{t \to 1} e^{t - 2} = e^{-1} = \frac{1}{e}$$

$$\lim_{t \to 1} \frac{\ln(2t - 1)}{t^2 - 1} \underbrace{= \lim_{0 \to 1} \frac{\frac{2}{2t - 1}}{2t}}_{0} = \lim_{t \to 1} \frac{2}{2t(2t - 1)} = \frac{1}{1(2 - 1)} = 1$$

$$\therefore \lim_{t \to 1} \left\langle \pi, \frac{1}{e}, 1 \right\rangle \quad \text{es un agujero } \vec{s}(1) \text{ está indefinido}$$

5.3. Curvas en el espacio

$$x = f(t)$$
$$y = g(t)$$
$$z = h(t)$$

Figura 5.1: Curvas paramétricas en el espacio

5.3.1. Espirales

• Grafique la curva $\vec{r}(t)$:

$$\vec{r}(t) = \underbrace{2\hat{i}\sin(t)}_{x} + \underbrace{2\hat{j}\cos(t)}_{y} + \underbrace{\hat{k}\frac{t}{\pi}}_{z}$$

$$t \quad x \quad y \quad z$$

$$0 \quad 0 \quad 2 \quad 0,5$$

$$\frac{\pi}{2} \quad 2 \quad 0 \quad 0,5$$

$$\pi \quad 0 \quad -2 \quad 1$$

$$\frac{3\pi}{2} \quad 2 \quad 0 \quad 1,5$$

$$2\pi \quad 0 \quad 2 \quad 2$$

Figura 5.2: Curva paramétrica

• Grafique:

$$\vec{r}(t) = \langle \sin \pi t, t, \cos \pi t \rangle$$
 Graficar la circumferencia $x^2 + z^2 = 1, y = 0$
$$\vec{r}(0) = \langle 0, 0, 1 \rangle \quad \text{El vector que nos servirá para delimitar la gráfica del espiral}$$
 Por ejemplo: $\vec{s}(t) = \langle \sin t, t^2, \cos t \rangle$

Clase - 2020-02-06

6.1. 13.2 Cálculo con funciones vectoriales, pg.55

Derivadas:

$$\vec{r}'(t)$$
 Respecto a t

■ Integrales:

$$\int \vec{r}'(t)dt \quad \text{Respecto a t}$$

6.1.1. Deriviadas

.

$$\vec{r}'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$$

• Como la fucnión $\vec{r}(t)$ está definida por tres funciones componentes se puede hacer:

$$\vec{r}'(t) = \lim_{h \to 0} \left\langle \underbrace{\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}}_{f'(t)}, \underbrace{\lim_{h \to 0} \frac{g(t+h) - g(t)}{h}}_{g'(t)}, \underbrace{\lim_{h \to 0} \frac{h(t+h) - h(t)}{h}}_{h('t)} \right\rangle$$

■ Derivada entonces es :

$$\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

6.1.2. Integrales

■ Integral:

$$\int \vec{r}(t)dt = \int (f\hat{i} + g\hat{j} + h\hat{k})dt$$
$$\hat{i} \int fdt + \hat{j} \int gdt + \hat{k} \int hdt$$

Integrar la función componente.

6.2. Ejercicios

1. Encuentre la 1era y segunda derivada de las siguientes funciones:

$$\vec{r}'(t) = \left\langle \sin(4t), t^2, \ln(\sin(t)) \right\rangle$$
$$\vec{r}'(t) = \left\langle 4\cos(4t), 2t, \frac{\cos(t)}{\sin(t)} \right\rangle$$
$$\vec{r}'(t) = \left\langle 4\cos(4t), 2t, \cot(t) \right\rangle$$

$$\vec{r}''(t) = \langle f''(t), g''(t), h''(t) \rangle$$

$$\vec{r}''(t) = \langle -16\sin(4t), 2, -\csc^2(t) \rangle$$

2. Derive: $\vec{s}(t) = \hat{i} \tan(4t) + hat j \ln(4t+1) + \hat{k}(5-2t)^{\frac{1}{2}}$

$$\vec{s}'(t) = 4\hat{i}(\sec(4t))^2 + \hat{j}4(4t+1)^{-1} - \hat{k}(5-2t)^{-\frac{1}{2}}$$

$$\vec{s}''(t) = 8\hat{i} \times \sec(4t) \times \sec(4t) \times \tan(4t) \times 4 - 16\hat{j}(4t-1)^{-2} - \frac{\hat{k}}{2}(5-2t)^{-\frac{3}{2}} \times (-2)$$

$$\vec{s}''(t) = 32\hat{i} \times \sec^2(4t) \times \tan(4t) - 16\hat{j}(4t-1)^{-2} - \frac{\hat{k}}{2}(5-2t)^{-\frac{3}{2}} \times (-2)$$

6.3. Recordatorios & rectas tangentes de funciones vectoriales

- Recordar lo siguiente: f'(a) es igual a la pendiente de la drecta tangeente a f(x) en x = a.
- Recordar lo siguiente: La recta tangente.

$$L_1: y = f(a) + f'(a)(x - a)$$
 Ec. Recta Tangente

• Con una función vectorial:

$$\vec{r} = \langle f,g,h\rangle\,, \qquad x = f(t),\, y = g(t),\, z = h(t)$$
 Hay ecuaciones paramétricas para cada variable:
$$\vec{r}'(a) = \langle f'(a),g'(a),h'(a)\rangle$$

Vector de pendientes de rectas tangentes a la curva $\vec{r}(t)$.

- La derivada de una función vectorial se le da elnombre de "vector tangente" $\vec{r}(t) : \vec{r}'(a)$.
- Recta tangente: es ahora una función vectorial.

$$\vec{r}(t) = \vec{r}(a) + \vec{r}'(a)t$$

■ Ecs. Paramétricas:

$$x = f(a) + f'(a)t$$

$$y = g(a) + g'(a)t$$

$$z = h(a) + h'(t)t$$

- Vector tangente: r'(a) en t = a
- \bullet Vector tangente unitario: $\frac{r'(a)}{|r'(a)|} = \vec{T}(a)$

6.4. Ejercicios

■ Encuentre las ecs. paramétricas de la recta tangente a la curva : $s(t) = \langle 2\cos(t), 2\sin(t), 4\cos(2t) \rangle$ en el punto $(\sqrt{3}, 1, 2)$:

Recta tangente:
$$\vec{r}_T(t) = \vec{r}(a) + t\vec{r}'(a)$$

$$\vec{r}_T(a) = \left\langle \sqrt{3}, 1, 2 \right\rangle$$
Derivada: $\vec{r}'(t) = \left\langle -2\sin(t), 2\cos(t), -8\sin(2t) \right\rangle$

Nos preguntamos: ¿Cómo encuentro "a" ? igualamos $r(t) = \left\langle \sqrt{3}, 1, 2 \right\rangle$

$$2\cos(t) = \sqrt{3} \implies \cos(t) = \frac{\sqrt{3}}{2} \implies t = \frac{\pi}{6}$$

$$2\sin(t) = 1 \implies 2\sin(\frac{\pi}{6}) = 2 \times \frac{1}{2} = 1$$

$$4\cos(2t) = 2 \implies 4\cos(\frac{\pi}{3}) = 4 \times \frac{1}{2} = 2$$
Vector tangente: $\vec{r}'(\frac{\pi}{6}) = \left\langle -2\sin(\frac{\pi}{6}), 2\cos(\frac{\pi}{6}), -8\sin(\frac{\pi}{3}) \right\rangle$

$$\vec{r}_T(t) = \left\langle \sqrt{3}, 1, 2 \right\rangle + t \left\langle -1, \sqrt{3}, -4\sqrt{3} \right\rangle$$

$$\therefore$$

$$x = \sqrt{3} - 1$$

$$y = 1 + \sqrt{3}t$$

$$z = 2 - 4\sqrt{3}t$$