Analyse Factorielle de Données Mixtes AFDM

Principes et pratique de l'AFDM

Ricco RAKOTOMALALA

Université Lumière Lyon 2

PLAN

- 1. Position du problème
- 2. AFDM Calculs Equivalences
- 3. Pratique de l'AFDM
- 4. Solution alternative: discrétisation + ACM
- 5. Les logiciels (R et Tanagra)
- 6. Bibliographie

Position du problème

Construire un nouveau système de représentation

(facteurs, axes factoriels : combinaisons linéaires des variables quantitatives et des

indicatrices des variables qualitatives)

qui permet synthétiser l'information

Extrait des données « autos 2005 »

(Gonzalez, Cours STA101, CNAM)

$$i:1,...,n=10$$
Individus actifs

Variables « actives » quantitatives et /ou qualitatives

D = 3 qualitatives

			Α						
Modele	puissand	Iongueu	hauteur	poids	CO2	origine	carburant	4X4	
GOLF	75	421	149	1217	143	Europe	Diesel	non	
CITRONC4	138	426	146	1381	142	France	Diesel	non	
P607	204	491	145	1723	223	France	Diesel	non	
VELSATIS	150	486	158	1735	188	France	Diesel	non	
CITRONC2	61	367	147	932	141	France	Essence	non	
CHRYS300	340	502	148	1835	291	Autres	Essence	non	
AUDIA3	102	421	143	1205	168	Europe	Essence	non	
OUTLAND	202	455	167	1595	237	Autres	Diesel	oui	
PTCRUISER	223	429	154	1595	235	Autres	Essence	non	
SANTA FF	125	450	173	1757	197	Autres	Diesel	Oui	

C = 5 quantitatives

Questions:

- (1) Quelles sont les automobiles qui se ressemblent ? (proximité entre les individus)
- (2) Sur quelles caractéristiques sont fondées les ressemblances / dissemblances ?
- (3) Quelles sont les relations entre les variables ?
- (4) Et les relations entre les modalités, entre les modalités et les variables quantitatives ?

Objectif de

l'analyse factorielle

- 1. Trouver un facteur F₁ qui soit le plus liée possible avec les variables originelles
- 2. Si la liaison n'est pas parfaite, trouver un second facteur qui explique l'information résiduelle (non prise en compte en 1.)
- 3. Etc. jusqu'au Hème facteur

ACP

(Toutes les variables actives quantitatives)

$$\lambda_1 = \sum_j r^2 \left(F_1, X_j \right)$$

r² est le carré du coefficient de corrélation. C'est pour cela que dans le cercle des corrélations, on se concentre sur les variables proches du bord.

ACM

(Toutes les variables actives qualitatives)

$$\lambda_1 = \sum_j \eta^2 (F_1, X_j)$$

 η^2 est le carré du rapport de corrélation. On veut que les modalités d'une variable soient le plus écartés possible les unes des autres.

AFDM

(Variables actives quantitatives et qualitatives)

$$\lambda_1 = \sum_{j=1}^{C} r^2(F_1, X_j) + \sum_{j=C+1}^{D} \eta^2(F_1, X_j)$$

 $(0 \le r^2 \le 1)$ et $(0 \le \eta^2 \le 1)$: les deux types de variables jouent un rôle équilibré dans l'analyse !!! C'est un aspect primordial.

Comment parvenir à ce résultat ?

(en exploitant les outils usuels de l'analyse factorielle)

AFDM via un programme d'ACP

On peut obtenir les résultats de l'AFDM avec un programme réalisant une ACP Il faut simplement passer par une transformation judicieuse des données

Equivalences avec l'ACP et l'ACM

Transformation des données

Etape 1 – Codage disjonctif complet des variables qualitatives

Modele	puissance	longueur	hauteur	poids	CO2
GOLF	75	421	149	1217	143
CITRONC4	138	426	146	1381	142
P607	204	491	145	1723	223
VELSATIS	150	486	158	1735	188
CITRONC2	61	367	147	932	141
CHRYS300	340	502	148	1835	291
AUDIA3	102	421	143	1205	168
OUTLAND	202	455	167	1595	237
PTCRUISER	223	429	154	1595	235
SANTA_FE	125	450	173	1757	197
		·		•	

orig_Autres	orig_Europ	orig_France	carb_Diese	carb_Essen	4X4_non	4X4_oui
0	1	0	1	0	1	0
0	0	1	1	0	1	0
0	0	1	1	0	1	0
0	0	1	1	0	1	0
0	0	1	0	1	1	0
1	0	0	0	1	1	0
0	1	0	0	1	1	0
1	0	0	1	0	0	1
1	0	0	0	1	1	0
1	0	0	1	0	0	1

Moyenne	162	444.8	153	1497.5	196.5	N_k	4	2	4	6	4	8	2
Ecart-Type	78.9	38.8	9.5	283.7	47.5	p_k	0.4	0.2	0.4	0.6	0.4	0.8	0.2

 μ_k : moyenne de la variable

 σ_k : écart-type

n_k : Effectif de la modalité

 p_k : proportion = n_k/n

Transformation des données

Etape 2 – Standardisation différenciée des colonnes

Modele	puissance	longueur	hauteur	poids	CO2	orig_Autres	orig_Europe	orig_France	carb_Diesel	carb_Essend	4X4_non	4X4_oui
GOLF	-1.103	-0.614	-0.419	-0.989	-1.127	0.000	2.236	0.000	1.291	0.000	1.118	0.000
CITRONC4	-0.304	-0.485	-0.733	-0.411	-1.148	0.000	0.000	1.581	1.291	0.000	1.118	0.000
P607	0.532	1.192	-0.838	0.795	0.558	0.000	0.000	1.581	1.291	0.000	1.118	0.000
VELSATIS	-0.152	1.063	0.524	0.837	-0.179	0.000	0.000	1.581	1.291	0.000	1.118	0.000
CITRONC2	-1.280	-2.007	-0.628	-1.993	-1.169	0.000	0.000	1.581	0.000	1.581	1.118	0.000
CHRYS300	2.256	1.476	-0.524	1.189	1.990	1.581	0.000	0.000	0.000	1.581	1.118	0.000
AUDIA3	-0.761	-0.614	-1.047	-1.031	-0.600	0.000	2.236	0.000	0.000	1.581	1.118	0.000
OUTLAND	0.507	0.263	1.466	0.344	0.853	1.581	0.000	0.000	1.291	0.000	0.000	2.236
PTCRUISER	0.773	-0.408	0.105	0.344	0.811	1.581	0.000	0.000	0.000	1.581	1.118	0.000
SANTA_FE	-0.469	0.134	2.094	0.915	0.011	1.581	0.000	0.000	1.291	0.000	0.000	2.236

$$z_{ik} = \frac{x_{ik} - \mu_k}{\sigma_k} ; k = 1, \dots, C$$

$$z_{ik} = \frac{x_{ik}}{\sqrt{p_k}} ; k = C+1, \dots, P$$

Et on peut lancer une ACP (non normée puisque les données sont déjà réduites) sur ces données transformées > on obtient les résultats de l'AFDM

$$I(Variable) = 1$$

→ Comme en ACP normée

Si toutes les variables sont quantitatives : AFDM = ACP

$$I(Modalité) = 1-p_k$$

 $I(Variable) = m_i-1$

→ Comme en ACM (à un facteur près)

Si toutes les variables sont qualitatives : AFDM = ACM

L'AFDM est une « vraie » généralisation

(dans le sens où l'ACP et l'ACM en sont des cas particuliers)

```
#chargement du fichier
                                                                                                                       Détails des calculs sous R (1/3)
autos <- read.table(file="AUTOS2005subset.txt",row.names=1,header=T,sep="\t")</pre>
print(summary(autos)) _ _ _
                                                                                                        poids
                                                                                                                           C02
                                                puissance
                                                                    longueur
                                                                                      hauteur
                                                                                                                                         origine
                                                                                                                                                      carburant X4X4
                                                                                                                                                   Diesel:6
                                                                Min.
                                                                        :367.0
                                                                                                    Min.
                                                                                                                     Min.
                                                                                                                             :141.0
                                                                                                                                       Autres:4
                                                      : 61.0
                                                                                  Min.
                                                                                          :143.0
                                                                                                            : 932
                                                                                                                                                                 non:8
#fonction pour centrage-réduction
                                              1st Qu.:107.8
                                                                1st Qu.:422.2
                                                                                  1st Qu.:146.2
                                                                                                    1st Qu.:1258
                                                                                                                     1st Qu.:149.2
                                                                                                                                       Europe:2
                                                                                                                                                   Essence:4
                                                                                                                                                                 oui:2
CR <- function(x){</pre>
                                              Median :144.0
                                                                Median :439.5
                                                                                  Median :148.5
                                                                                                    Median :1595
                                                                                                                     Median :192.5
                                                                                                                                       France:4
                                                      :162.0
                                                                        :444.8
                                                                                                                             :196.5
                                              Mean
                                                                Mean
                                                                                  Mean
                                                                                          :153.0
                                                                                                    Mean
                                                                                                            :1498
                                                                                                                     Mean
  n \leftarrow length(x)
                                              3rd Ou.:203.5
                                                                3rd Qu.:478.2
                                                                                  3rd Qu.:157.0
                                                                                                    3rd Ou.:1732
                                                                                                                     3rd Ou.:232.0
  m \leftarrow mean(x)
                                                      :340.0
                                                                Max.
                                                                        :502.0
                                                                                  Max.
                                                                                          :173.0
                                                                                                    Max.
                                                                                                            :1835
                                                                                                                             :291.0
                                              Max.
                                                                                                                     Max.
  v <- (n-1)/n*var(x)
  return((x-m)/sqrt(v))
                                                                                                 puissance
                                                                                                             longueur
                                                                                                                         hauteur
                                                                                                                                      poids
                                                                                                -1.1028751 -0.6140305 -0.4188539 -0.9885623 -1.12656547
#appliquer la fonction sur les variables continues
                                                                                                -0.3042414 -0.4850325 -0.7329943 -0.4105793 -1.14762277
autos.cont <- data.frame(lapply(subset(autos, select=1:5), CR))</pre>
                                                                                                 0.5324225
                                                                                                           1.1919416 -0.8377078
                                                                                                                                 0.7947266 0.55801841
                                                                                                -0.1521207
                                                                                                            1.0629436
                                                                                                                      0.5235674
                                                                                                                                 0.8370180 -0.17898704
print(autos.cont)
                                                                                                -1.2803493 -2.0072090 -0.6282809 -1.9929839 -1.16868007
                                                                                                 2.2564571 1.4757372 -0.5235674 1.1894466
                                                                                                -0.7606035 -0.6140305
                                                                                                                     -1.0471348 -1.0308537 -0.60013301
#codage disjonctif complet
                                                                                                 0.5070690
                                                                                                            0.2631559
                                                                                                                      1.4659887
                                                                                                                                  0.3436179
                                                                                                 0.7732802 -0.4076337
                                                                                                                      0.1047135
                                                                                                                                 0.3436179
library(ade4)
                                                                                             10 -0.4690388 0.1341579
                                                                                                                      2.0942695
                                                                                                                                 0.9145523
autos.disc <- acm.disjonctif(subset(autos,select=6:8))</pre>
                                                                                             origine.Autres origine.Europe origine.France carburant.Diesel carburant.Essence X4X4.non X4X4.oui
                                                                                   GOLF
                                                                                                                                                               1
#fonction pour pondération des indicatrices
                                                                                   CITRONC4
                                                                                                                                                               1
                                                                                   P607
PF <- function(x){
                                                                                   VELSATIS
                                                                                                                                                               1
                                                                                   CITRONC2
  m \leftarrow mean(x)
                                                                                   CHRYS300
                                                                                   AUDIA3
  return(x/sqrt(m))
                                                                                   OUTLAND
                                                                                   PTCRUISER
                                                                                   SANTA FE
#appliquer la pondération sur les indicatrices
autos.disc.pond <- data.frame(lapply(autos.disc,PF))</pre>
#données transformées envoyées à l'ACP
autos.pour.acp <- cbind(autos.cont,autos.disc.pond)</pre>
rownames(autos.pour.acp) <- rownames(autos)</pre>
print(round(autos.pour.acp,3)) _
                                                          puissance longueur hauteur
                                                                                poids
                                                                                       CO2 origine.Autres origine.Europe origine.France carburant.Diesel carburant.Essence X4X4.non X4X4.oui
                                                                    -0.614
                                                                                                  0.000
                                                                                                              2.236
                                                                                                                         0.000
                                                                                                                                       1.291
                                                                                                                                                     0.000
                                                                                                                                                             1.118
                                            CITRONC4
                                                             -0.304
                                                                          -0.733 -0.411
                                                                                                              0.000
                                                                                                                         1.581
                                                                                                                                       1.291
                                                                                                                                                     0.000
                                                                                                                                                            1.118
                                                                                                  0.000
                                                                                                              0.000
                                                                                                                         1.581
                                                                                                                                       1.291
                                                                                                                                                             1.118
                                                             0.532
                                                                    1.192
                                                                                                                                                     0.000
                                                VELSATIS
                                                             -0.152
                                                                    1.063
                                                                                                  0.000
                                                                                                              0.000
                                                                                                                         1.581
                                                                                                                                       1.291
                                                                                                                                                            1.118
                                                CITRONC2
                                                             -1.280
                                                                    -2.007
                                                                          -0.628
                                                                                -1.993
                                                                                                  0.000
                                                                                                              0.000
                                                                                                                         1.581
                                                                                                                                       0.000
                                                                                                                                                     1.581
                                                                                                                                                            1.118
                                                CHRYS300
                                                             2.256
                                                                    1.476
                                                                          -0.524
                                                                                                  1.581
                                                                                                              0.000
                                                                                                                          0.000
                                                                                                                                       0.000
                                                                                                                                                     1.581
                                                                                                                                                             1.118
                                                AUDIA3
                                                             -0.761
                                                                    -0.614
                                                                                -1.031
                                                                                                              2.236
                                                                                                                          0.000
                                                                                                                                       0.000
                                                                                                                                                     1.581
                                                                                                                                                             1.118
                                                                                                                                                                    0.000
     Ricco Rakotomalala
                                                             0.507
                                                                                                  1.581
                                                                                                                          0.000
                                                                                                                                                             0.000
                                                                                                                                                                    2.236
                                                                    0.263
                                                                                                                                       1,291
                                                PTCRUISER
                                                             0.773
                                                                    -0.408
                                                                           0.105
                                                                                0.344
                                                                                      0.811
                                                                                                  1.581
                                                                                                              0.000
                                                                                                                          0.000
                                                                                                                                                     1.581
                                                                                                                                                            1.118
                                                                                                                                                                    0.000
```

-0.469

0.134

2.094

0.915

0.011

1.581

0.000

0.000

1.291

0.000

0.000

2.236

Tutoriels Tanagra - http://tutoriels-da santa_fe


```
#carré des corrélations 1er facteur
                                                                   r^{2}(F_{h}, X_{i}) = G_{ih}^{2}; j = 1,...,C
r2 \leftarrow acp.autos co[1:5,1]^2
#carré du rapport de corrélation, var. qualitatives
eta2 <- NULL
                                                                  \eta^{2}(F_{h}, X_{j}) = \sum_{k \in X_{j}} G_{kh}^{2}; j = C+1, ..., C+D
eta2[1] \leftarrow sum(acp.autos$co[6:8,1]^2)
eta2[2] <- sum(acp.autos$co[9:10,1]^2)
eta2[3] <- sum(acp.autos$co[11:12,1]^2)
#valeurs à sommer
                                                               r^2()
                                                                                                        \eta^2()
criteres <- c(r2,eta2)</pre>
names(criteres) <- colnames(autos)</pre>
                                                                                              origine carburant
print(criteres)
#critère de l'AFDM - 1er facteur
lambda1 <- sum(criteres)</pre>
print(lambda1)
#confrontation avec résultat (v.p.) de l'ACP
                                                                     > print(acp.autos$eig[1])
#sur variables transformées - 1er facteur
print(acp.autos$eig[1])
```

L'inertie projetée sur le 1^{er} facteur (ACP sur variables transformées) correspond bien au critère de l'AFDM. CQFD.

Pratique de l'AFDM

Que lire et comment lire les résultats de l'AFDM?

13

Détermination du nombre de facteurs à retenir

Tableau des valeurs propres

Détermination du nombre de facteurs « H » à retenir (1/2)

2

3

4

Tot.

 H_{max} (nombre max T_{max} (nombre max T_{max} 0.03363 de facteurs) = T_{max} 8 0.01581 T_{max} 9 0.00196

Part d'information restituée par le hème facteur : qualité (fidélité) de représentation sur le facteur

Part d'information restituée par les « h » premiers facteurs

% cumulé

23.58%

15.99%

9.29%

1.82%

1.27%

0.37%

0.18%

0.02%

2.12189

1.43872

0.83637

47.48%

71.06%

87.04%

96.33%

98.16%

99.43%

99.80%

99.98%

100.00%

Règle 1 : Kaiser - Guttman

Sélectionner les facteurs pour lesquels $\lambda_h > 1$ (« 1 » peut être vue également comme la moyenne des v.p.)

- \rightarrow H = 3 facteurs ici
- → Mais ce critère est trop permissif, H est souvent trop grand

Règle 2 : Karlis – Saporta - Spinaki

Sélectionner les facteurs pour lesquels

$$\lambda_h > 1 + 2\sqrt{\frac{P-1}{n-1}} = 1 + 2\sqrt{\frac{12-1}{10-1}} = 3.211$$

- \rightarrow H = 1 facteur ici
- → Mais P est surévalué, certaines colonnes sont liées entres elles
- → Ce critère est trop restrictif dans l'AFDM

15

Eboulis des valeurs propres (scree plot) – Règle du coude

Détermination du nombre de facteurs « H » à retenir (2/2)

C'est ici que ça se passe!

H = 1 ou H = 2: inclure le coude dans la sélection ou pas ?

Tout dépend de la v.p. associée au coude. Ici : λ_2 = 2.12189 # 23.58% de l'inertie. C'est beaucoup. On intègre le coude dans la sélection c.-à-d. H = 2

(ça nous arrange aussi pour les graphiques...)

Caractérisation des facteurs par les variables Analyse des relations entre les variables via les facteurs

17

Tableau des carrés des corrélations et de rapports de corrélation – Les « squared loadings »

Importance du lien des variables avec les facteurs – Contribution et qualité de représentation

On sait que le premier facteur est déterminé par un lien entre (puissance, longueur, poids, CO2 et origine). Mais on ne sait pas dans quel sens s'établissent les liens.

Toutes les variables sont assez bien représentées sur les 2 premiers facteurs, sauf « origine » et « carburant » c.-à-d. une partie des informations véhiculées par ces variables ne sont pas restituées sur ces facteurs.

Graphique des « squared loadings »

Jauger en un coup d'œil l'impact des variables sur les facteurs

Mis à part « puissance », le rattachement des variables aux facteurs est relativement tranché.

DIM 1 (47.48°	%)						
	Attribute		Facteur 1			Facteur 2	
	-	Coord.	CTR (%)	QLT % (Cumul %)	Coord.	CTR (%)	QLT % (Cumul %)
	puissance (*)	0.67133	15.7%	67 % (67 %)	0.29072	13.7%	29 % (96 %)
	longueur (*)	0.63391	14.8%	63 % (63 %)	0.05997	2.8%	6 % (69 %)
	hauteur (*)	0.33452	7.8%	33 % (33 %)	0.58306	27.5%	58 % (92 %)
	poids (*)	0.86400	20.2%	86 % (86 %)	0.00374	0.2%	0 % (87 %)
	CO2 (*)	0.79328	18.6%	79 % (79 %)	0.14363	6.8%	14 % (94 %)
	origine (**)	0.69657	16.3%	35 % (35 %)	0.01601	0.8%	1 % (36 %)
	carburant (**)	0.02826	0.7%	3 % (3 %)	0.40464	19.1%	40 % (43 %)
Ricco Rakotomalala	4X4 (**)	0.25128	5.9%	25 % (25 %)	0.62012	29.2%	62 % (87 %)
Tutoriels Tanagra - http://tutoriels-data-mining	.blc Var. Expl.	4.27314		47 % (47 %)	2.12189		24 % (71 %)

Cercle des corrélations – Variables quantitatives

Sens du lien des variables avec les facteurs

Variables quantitatives - Corrélations

Attribute	Fact.1	Fact.2						
puissance	-0.81935	0.53919						
longueur	-0.79618	0.24489						
hauteur	-0.57838	-0.76359						
poids	-0.92952	0.06113						
CO2	-0.89066	0.37898						

- 1. (Puissance, longueur, CO2, poids) vont ensemble.
- A «Facteur 1 » égal [c.-à-d. à « taille » égale], opposition (puissance) vs. (hauteur)

Est-ce vrai ? Voyons les corrélations calculées sur les données originelles.

(1) OUI, corrélation brute

(2) OUI, corrélation partielle

Υ	Х	r	r²	t	Pr(> t)
puissance	CO2	0.941	0.886	7.889	0.000
longueur	poids	0.911	0.829	6.227	0.000
poids	CO2	0.777	0.604	3.496	0.008
puissance	poids	0.754	0.569	3.248	0.012
puissance	longueur	0.742	0.551	3.130	0.014
longueur	CO2	0.727	0.529	2.994	0.017
hauteur	poids	0.465	0.216	1.486	0.176
hauteur	CO2	0.243	0.059	0.709	0.499
longueur	hauteur	0.193	0.037	0.555	0.594
puissance	hauteur	0.042	0.002	0.119	0.908

Variables qualitatives : coordonnées modalités = Moyennes conditionnelles μ_{kh} Sens du lien des modalités avec les facteurs

Opposition « origine = Europe » vs. « origine =

Autres ». Surreprésentation des « 4x4 = oui » parmi

les « origine = autres »

Opposition « carburant = essence » vs. « 4x4 = oui »

Discrete Attributes -	Conditional	means and	contributions

Disci ete Ati	ti ibutes - Coi	iuitional m	calls all	u Contin	Dutions
Attr	ibute	Y Fact.	1	Fac	t.2
	-	Mean	CTR (%)	Mean	CTR (%)
origine	Europe	2.3170	5.9	0.0540	0.0
	France	0.8501	1.6	0.1903	0.3
	Autres	-2.0086	8.8	-0.2174	9.4
	Tot.	-	16.3	-	0.8
	Diesel	-0.2837	0.3	-0.7566	7.6
carburant	Essence	0.4256	0.4	1.1349	11.4
	Tot.	-	0.7	•	19.1
	non	0.5181	1.2	0.5735	5.8
4X4	oui	-2.0724	4.7	-2.2942	23.4
	Tot.	-	5.9	-	29.2

Les contributions des modalités s'additionnent → contribution des variables (qui est cohérent avec le tableau des « squared loadings »).

Variables quantitatives - Corrélations

Attribute	Fact.1	Fact.2					
puissance	-0.81935	0.53919					
longueur	-0.79618	0.24489					
hauteur	-0.57838	-0.76359					
poids	-0.92952	0.06113					
CO2	-0.89066	0.37898					

Les valeurs des corrélations (variables quantitatives) ne peuvent pas être rapprochées directement avec les moyennes conditionnelles : il faut raisonner en termes de **directions**.

(<u>Remarque</u>: ADE4, après transformation des moyennes conditionnelles, place les modalités dans le même repère que les coordonnées des variables quantitatives – Voir plus loin).

Caractérisation des facteurs par les individus Analyse des proximités entre les individus

22

Coordonnées des individus

Contribution et qualité de représentation

Contribution: influence de

l'individu « i » dans la

construction du facteur « h »

Coordonnée de l'individu « i » sur le facteur « h »

 F_{ih}

$$CTR_{ih} = \frac{F_{ih}^2}{n \times \lambda_h}$$

	7			oution	Qualité		
Modele	Coord.1	Coord.2	CTR.1	CTR.2	COS2.1	COS2.2	
GOLF	2.32	-0.69	12.57	2.23	0.60	0.05	
CITRONC4	1.45	-0.12	4.89	0.07	0.44	0.00	
P607	-0.78	1.02	1.42	4.89	0.11	0.18	
VELSATIS	-0.54	-0.16	0.69	0.12	0.06	0.01	
CITRONC2	3.28	0.03	25.11	0.00	0.73	0.00	
CHRYS300	-2.96	2.63	20.47	32.55	0.54	0.43	
AUDIA3	2.32	0.80	12.55	2.98	0.58	0.07	
OUTLAND	-2.26	-1.84	11.91	15.96	0.54	0.36	
PTCRUISER	-0.93	1.09	2.03	5.61	0.18	0.25	
SANTA_FE	-1.89	-2.75	8.35	35.59	0.31	0.65	

2.12189

4.27314

COS²: qualité de représentation de l'individu « i » sur le facteur « h » (cumulable sur « h »)

$$\lambda_h = \frac{\sum_{i=1}^{n} F_{ih}^2}{n}$$

$$\lambda_1 = \frac{2.32^2 + 1.45^2 + \dots + (-1.89)^2}{10} = 4.27314$$

 $COS_{ih}^{2} = \frac{F_{ih}^{2}}{\sum_{k=1}^{p} (z_{ik} - \bar{z}_{k})^{2}} = \frac{F_{ih}^{2}}{\sum_{k=1}^{H_{max}} F_{ih}^{2}}$ L'écart au

Carré de l'écart au barycentre du point « i »

Que l'on peut reproduire si on prend tous les facteurs (H_{max})

Coordonnées des individus

Représentation graphique

Variables illustratives

Non utilisées pour la construction des facteurs, mais permettent de renforcer leur interprétation

Variables illustratives

Variables non utilisées lors de la construction des facteurs. Mais exploitées après coup pour mieux comprendre / commenter les résultats.

Ex. « Prix » est une caractéristique qui intègre des éléments subjectifs (marketing, etc.). Comment la situer par rapport aux caractéristiques objectives des véhicules.

Ex. « Surtaxe » est liée à la politique fiscale de l'administration. Comment la situer ?

Modele	prix	surtaxe
GOLF	19140	non
CITRONC4	23400	non
P607	40550	oui
VELSATIS	38250	oui
CITRONC2	10700	non
CHRYS300	54900	oui
AUDIA3	21630	non
OUTLAND	29990	oui
PTCRUISER	27400	oui
SANTA_FE	27990	oui

26

Variables illustratives quantitatives

$$r_{y}(F_{h}) = \frac{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y}) (F_{ih} - \overline{F}_{h})}{s_{y} \times s_{F_{h}}} = \frac{\frac{1}{n} \sum_{i=1}^{n} F_{ih} (y_{i} - \overline{y})}{s_{y} \times \sqrt{\lambda_{h}}}$$

Calculer les corrélations des variables supplémentaires avec les facteurs, c.-à-d, calculer le coefficient de corrélation entre les coordonnées des « n » individus sur les facteurs et les valeurs prises par la variable illustrative. Il est possible de les placer dans le cercle des corrélations.

CORR	Fact.1	Fact.2
Prix	-0.804	0.455

Tester la « significativité » du lien avec la statistique basée sur la transformation de Fisher

$$u_{y} = \sqrt{n-3} \times \left(\frac{1}{2} \ln \frac{1+r}{1-r}\right)$$

Lien significatif à (~) 5% si

$$|u_y| \ge 2$$

U.Fisher	Fact.1	Fact.2
Prix	-2.937	1.299

Le « prix » est surtout liée à la « taille » (longueur, puissance, etc. c.-à-d. ce qui caractérise le 1er facteur) de la voiture.

11	_	1	$\sum F$	
μ_{gh}	_	$n_{_{o}}$	$i: y_i = g$ ih	

	,	N Fa	act.1	Fa	act.2
surtaxe	n_g	Moyenne	Valeur.Test	Moyenne	Valeur.Test
non	4	2.339	2.771	0.003	0.005
oui	6	-1.559	-2.771	-0.002	-0.005

Comparer les moyennes des composantes conditionnellement aux groupes définis par les modalités de la variable illustrative qualitative.

Possibilité de tester la significativité de l'écart par rapport à l'origine (moyenne des composantes = 0) avec la « valeur test » (Morineau, 1984).

$$VT_{gh} = \frac{\mu_{gh} - \overline{F}_h}{\sqrt{\frac{n - n_g}{n - 1} \times \frac{s_{F_h}^2}{n_g}}} = \frac{\mu_{gh} - 0}{\sqrt{\frac{n - n_g}{n - 1} \times \frac{\lambda_h}{n_g}}}$$

Ecart significatif à (~) 5% si
$$\left|VT_{gh}\right| \ge 2$$

Remarque: On pourrait également s'appuyer sur l'ANOVA pour comparer les moyennes, et/ou calculer le rapport de corrélation.

Conclusion : Les « grosses voitures » (au sens du 1^{er} facteur) sont surtaxées.

28

Individus illustratifs (supplémentaires)

Par opposition aux individus « actifs » utilisés pour la construction des facteurs

29

Plusieurs raisons possibles :

- 1. Des individus collectés après coup que l'on aimerait situer par rapport à ceux de l'échantillon d'apprentissage (les individus actifs).
- 2. Des individus appartenant à une population différente (ou spécifique) que l'on souhaite positionner.
- 3. Des observations s'avérant atypiques ou trop influentes dans l'AFDM que l'on a préféré écarter. On veut maintenant pouvoir juger de leur positionnement par rapport aux individus actifs.

Modele	puissance	longueur	hauteur	poids	CO2	origine	carburant	4X4
X-TRAIL	136	446	168	1520	190	Autres	Diesel	oui

Plutôt cas n°1 ici, on souhaite situer un véhicule supplémentaire.

Calculs pour un individu supplémentaire

(1)	Modele	puissance	longueur	hauteur	poids	CO2	orig_Autres	orig_Europe	orig_France	carb_Diesel	carb_Essence	4X4_non	4X4_oui
(')	X-TRAIL	136	446	168	1520	190	1	0	0	1	0	0	1

	Variable	puissance	longueur	hauteur	poids	CO2	orig_Autres	orig_Europe	orig_France	carb_Diesel	carb_Essence	4X4_non	4X4_oui
(2)	Fact.1	-0.396	-0.385	-0.280	-0.450	-0.431	-0.297	0.242	0.126	-0.051	0.063	0.108	-0.217
•	Fact.2	0.370	0.168	-0.524	0.042	0.260	-0.065	0.011	0.057	-0.276	0.338	0.242	-0.484

	Variable	puissance	longueur	hauteur	poids	CO2	orig_Autres	orig_Europe	orig_France	carb_Diesel	carb_Essence	4X4_non	4X4_oui
(3)	Moyenne	162	444.8	153	1497.5	196.5	0.4	0.2	0.4	0.6	0.4	8.0	0.2
•	Ecart-type	78.88	38.76	9.55	283.75	47.49	0.63	0.45	0.63	0.77	0.63	0.89	0.45

Etapes:

- 1. Coder en 0/1 les variables qualitatives
- Appliquer les coefficients fournis par l'analyse (vecteurs propres)
- 3. Non sans avoir centré (moyenne) et réduit (écart-type) les valeurs

$$F_{x-trail,1} = -0.396 \times \left(\frac{136 - 162}{78.88}\right) + \dots - 0.217 \times \left(\frac{1 - 0.2}{0.45}\right) = -1.32$$

$$F_{x-trail,2} = 0.370 \times \left(\frac{136-162}{78.88}\right) + \dots - 0.484 \times \left(\frac{1-0.2}{0.45}\right) = -2.51$$

Solution alternative

Discrétisation + ACM

Une solution souvent citée dans la littérature

Traitement en 2 étapes :

- 1. Découper en classes (discrétiser) les variables quantitatives
- 2. Lancer une ACM sur les variables ainsi homogénéisées

Avantages:

- 1. Possibilité de prise en compte des relations non linéaires
- 2. Forme de « nettoyage » des données en éliminant les valeurs extrêmes par ex.
- 3. On a le choix du nombre de classes pour équilibrer les influences avec les autres variables qualitatives
- 4. L'ACM est bien maîtrisée et disponible dans de très nombreux logiciels

Inconvénients:

- Découpage en classes → perte d'information : dommageable si les variables quantitatives sont nombreuses par rapport aux qualitatives (C >> D)
- 2. La discrétisation en elle-même est un problème : combien de classes ? comment choisir les bornes de découpage ?

uteur	poias	CO2	origine	carburant	4X4
В	Α	Α	Europe	Diesel	non
Α	Α	Α	France	Diesel	non
Α	В	В	France	Diesel	non
В	В	В	France	Diesel	non
Α	Α	Α	France	Essence	non
В	В	В	Autres	Essence	non
Α	Α	Α	Europe	Essence	non
В	В	В	Autres	Diesel	oui
В	В	В	Autres	Essence	non
В	В	В	Autres	Diesel	oui

Tableau de données après transformation

Ex. de traitement : découpage en 2 classes de fréquence égales Seuil de découpage = médiane

Seuil (médiane)	144	439.5	148.5	1595	192.5	
-----------------	-----	-------	-------	------	-------	--

В

В

Résultats de l'ACM

puissance longueur

В

В

В

Α

В

Α

В

В

Facteur 1 : opposition basée sur la « taille » (poids, longueur, CO2) → OU Facteur 2: moins évident, opposition « Europe » vs. « France » basée sur la puissance?

Factors characte	rization	ı (acti	ve var	iables)									
Values		Overall			Factor 1				Factor 2				
Attribute = Value	Mass	Sq.Dist	Inertia	coord	v.test	cos2	ctr (%)	coord	v.test	cos2	ctr (%)		
CO2 = A	0.0500	1.5000	0.0750	1.18891	2.912	0.9423	12.05	0.11150	0.273	0.0083	0.29		
CO2 = B	0.0750	0.6667	0.0500	-0.79261	-2.912	0.9423	8.03	-0.07434	-0.273	0.0083	0.19		
-	-	-	-	-	-	Tot.ctr.	20.09	-	-	Tot.ctr.	0.48		
poids = A	0.0500	1.5000	0.0750	1.18891	2.912	0.9423	12.05	0.11150	0.273	0.0083	0.29		
poids = B	0.0750	0.6667	0.0500	-0.79261	-2.912	0.9423	8.03	-0.07434	-0.273	0.0083	0.19		
-	-	-		-	-	Tot.ctr.	20.09	-	-	Tot.ctr.	0.48		
longueur = A	0.0500	1.5000	0.0750	1.18891	2.912	0.9423	12.05	0.11150	0.273	0.0083	0.29		
longueur = B	0.0750	0.6667	0.0500	-0.79261	-2.912	0.9423	8.03	-0.07434	-0.273	0.0083	0.19		
-	-	-	-	-	-	Tot.ctr.	20.09	-	-	Tot.ctr.	0.48		
origine = Europe	0.0250	4.0000	0.1000	1.28529	1.928	0.4130	7.04	1.05160	1.577	0.2765	12.73		
origine = France	0.0500	1.5000	0.0750	0.29577	0.724	0.0583	0.75	-1.06064	-2.598	0.7500	25.91		
origine = Autres	0.0500	1.5000	0.0750	-0.93841	-2.299	0.5871	7.51	0.53484	1.310	0.1907	6.59		
-	-	-	-	-	-	Tot.ctr.	15.30	-	-	Tot.ctr.	45.23		
puissance = A	0.0500	1.5000	0.0750	0.72629	1.779	0.3517	4.50	0.77907	1.908	0.4046	13.98		
puissance = B	0.0750	0.6667	0.0500	-0.48419	-1.779	0.3517	3.00	-0.51938	-1.908	0.4046	9.32		
-	-	-	-	-	-	Tot.ctr.	7.50	-	-	Tot.ctr.	23.30		
4X4 = non	0.1000	0.2500	0.0250	0.26657	1.599	0.2842	1.21	-0.25865	-1.552	0.2676	3.08		
4X4 = oui	0.0250	4.0000	0.1000	-1.06629	-1.599	0.2842	4.85	1.03460	1.552	0.2676	12.33		
-	-	-	-	-	-	Tot.ctr.	6.06	-	-	Tot.ctr.	15.41		
hauteur = B	0.0750	0.6667	0.0500	-0.55234	-2.029	0.4576	3.90	0.40320	1.481	0.2439	5.62		
hauteur = A	0.0500	1.5000	0.0750	0.82850	2.029	0.4576	5.85	-0.60480	-1.481	0.2439	8.42		
-	-	-	-	-	-	Tot.ctr.	9.75	-	-	Tot.ctr.	14.04		
carburant = Diesel	0.0750	0.6667	0.0500	-0.18893	-0.694	0.0535	0.46	-0.08262	-0.304	0.0102	0.24		
carburant = Essence	0.0500	1.5000	0.0750	0.28340	0.694	0.0535	0.68	0.12393	0.304	0.0102	0.35		
-	-	-	-	-	-	Tot.ctr.	1.14	-		Tot.ctr.	0.59		

Modele

CITROEN.C4

CITROEN.C2

VELSATIS

CHRYS300

OUTLAND

PTCRUISER

SANTA_FE

AUDIA3

GOLF

P607

Logiciels

Les signes des vecteurs propres sont fixés arbitrairement, ils peuvent être différents d'un logiciel à l'autre. Ce n'est pas un problème. Le plus important est que les positions relatives entre les individus (proximités) et les liaisons entre variables/modalités soient préservées.

#chargement du package
library(FactoMineR)
#lancement de la procédure
afdm.autos <- FAMD(autos,ncp=2)
#affichage des résultats
print(summary(afdm.autos))</pre>

Avec quelques graphiques, dont « les squared loadings » (influence des variables sur les facteurs).

R – Package « FactoMineR »

Article de référence : Pagès (2004)

36

```
Call:
FAMD(autos, ncp = 2)
Eigenvalues
                       Dim.1
                               Dim.2
                                       Dim.3
                                                Dim.4
                                                        Dim.5
                                                                Dim.6
                                                                        Dim.7
                                                                                Dim.8
                                                                                         Dim.9
Variance
                       4.273
                               2.122
                                       1.439
                                                0.836
                                                        0.164
                                                                0.114
                                                                        0.034
                                                                                0.016
                                                                                         0.002
% of var.
                              23.577
                                      15.986
                                               9.293
                                                        1.823
                                                                1.272
                                                                        0.374
                                                                                0.176
                                                                                         0.022
Cumulative % of var.
                      47.479
                              71.056
                                      87.042
                                              96.335
                                                      98.157
                                                               99.429
                                                                       99.803
                                                                               99.978 100.000
Individuals
                  Dim.1
                           ctr
                                 cos2
                                         Dim.2
                                                   ctr
                                                         cos2
GOLF
                 -2.318 12.572
                                0.601
                                         -0.687
                                                2.226
CITROEN.C4
                        4.889
                                0.438
                                         -0.122 0.070
                                                       0.003
                                0.105
P607
                  0.780 1.423
                                         1.019
                                                4.889
                                                       0.180
VELSATIS
                        0.685
                                0.064
                  0.541
                                         -0.160
                                                0.121
                                                       0.006
CITROEN.C2
                 -3.276 25.113 0.732
                                         0.025 0.003
                                                       0.000
CHRYS300
                                0.541
                  2.958 20.472
                                         2.628 32.551
                                                       0.427
AUDIA3
                                0.582
                 -2.316 12.554
                                         0.795 2.981
OUTLAND
                  2.256 11.910
                                0.536
                                         -1.840 15.963
                                                       0.357
PTCRUISER
                        2.032
                                0.181
                                         1.091 5.608
                  0.932
                                                       0.248
SANTA_FE
                  1.889 8.350 0.307
                                        -2.748 35.587 0.649
Continuous variables
                  Dim.1
                           ctr
                                 cos2
                                          Dim.2
                                                         cos2
puissance
                  0.819 15.710
                                0.671
                                         0.539 13.701
                                                       0.291
longueur
                  0.796 14.835
                                0.634
                                         0.245 2.826
hauteur
                  0.578 7.828
                                0.335
                                         -0.764 27.478
                                                       0.583
                                0.864
poids
                  0.930 20.219
                                         0.061 0.176
                                                       0.004
C02
                  0.891 18.564
                                0.793
                                         0.379 6.769 0.144
Categories
                  Dim.1
                           ctr
                                 cos2 v.test
                                                 Dim.2
                                                          ctr
                                                                cos2 v.test
Autres
                         8.838
                                                -0.217
                                                               0.010 -0.365
                  2.009
                                0.846
                                       2.380
                                                       0.420
Europe
                         5.880
                                0.685 -1.681
                                                 0.054 0.013
                                                               0.000
                                                                     0.056
                 -2.317
France
                 -0.850
                         1.583
                                0.303 -1.007
                                                 0.190
                                                       0.322
                                                               0.015 0.320
Diesel
                         0.265
                                0.071 0.504
                                                -0.757 7.628
                                                               0.508 -1.908
Essence
                        0.397 0.071 -0.504
                                                 1.135 11.442
                                                               0.508
                                                                     1.908
non
                        1.176
                                0.431 -1.504
                                                 0.574 5.845
                                                               0.529
oui
                  2.072 4.704 0.431 1.504
                                                -2.294 23.380
                                                              0.529 -2.362
```

R – Package « ade4 »

S'appuie sur une référence plus ancienne : Hill & Smith, 1976

Mais les résultats sont cohérents avec ceux de FactoMineR (ou l'inverse)

```
#chargement du package
library(ade4)
#lancement de la procédure
dudi.autos <- dudi.mix(autos,scannf=F,nf=2)</pre>
#affichage des v.p.
print(round(dudi.autos$eig,5))
#coordonnées factorielles var./moda.
print(round(dudi.autos$co,5))
#graphique des variables/modalités
scatter(dudi.autos,posieig="top",clab.row=0)
```


Ade4 place les modalités dans le même tableau de coordonnées (et dans le graphique - cf. ci-contre) après transformation des moyennes conditionnelles

$$G_{kh}^* = rac{\mu_{kh}}{\sqrt{\lambda_h}}$$

Plus que les proximités, il faut surtout raisonner en termes de direction.

R – Package « PCAmixdata » (1/2)

S'appuie sur une autre référence : Kiers, 1991 ; mais résultats identiques aux deux autres packages

```
#chargement de la librairie
library(PCAmixdata)
#lancement de la procédure
pcamix.autos <- PCAmix(autos[1:5],autos[6:8],ndim=2,graph=T)
#valeurs propres
print(round(pcamix.autos$eig,5))
#corrélations
print(round(pcamix.autos$quanti.cor,5))
#coord. des modalités ⇔ dudi.mix de ADE4
print(round(pcamix.autos$categ.coord,5))</pre>
```

Avec quelques graphiques, dont les « squared loadings ».

> #valeurs propres > print(round(pcamix.autos\$eig,5)) Eigenvalue Proportion Cumulative 47.47928 dim 1 4.27314 47.47928 dim 2 2.12189 23.57653 71.05581 15.98575 dim 3 1.43872 87.04156 dim 4 0.83637 9.29297 96.33453 dim 5 0.16403 1.82256 98.15709 0.11447 99.42898 dim 6 1.27189 0.37361 dim 7 0.03363 99.80259 dim 8 0.01581 0.17561 99.97821 dim 9 0.00196 0.02179 100.00000 > #corrélations > print(round(pcamix.autos\$quanti.cor,5)) dim1 dim2 puissance -0.81934 0.53919 longueur -0.79618 0.24489 hauteur -0.57838 -0.76358 poids -0.92952 0.06113 C02 -0.89066 0.37898 > #coord. modalités > print(round(pcamix.autos\$categ.coord,5)) dim2 dim1 Autres -0.97167 -0.14921 Europe 1.12085 0.03710 France 0.41125 0.13066 Diesel -0.13726 -0.51938 0.20590 0.77908 Essence 0.25064 0.39374 non oui -1.00255 -1.57495

```
R - Package « PCAmixdata » (2/2)
Rotation varimax des facteurs : Chavent et al., 2011.

#rotation varimax
| rot.autos <- PCArot(pcamix.autos,dim=2,graph=T)
| #valeurs propres
| print(round(rot.autos$eig,5))
| #corrélations</pre>
```

print(round(rot.autos\$quanti.cor,5))

print(round(rot.autos\$categ.coord,5))

#coord. modalités

```
> #corrélations
                                       > #corrélations
 print(round(pcamix.autos$qu
                                        print(round(rot.autos$quan
              dim1
                       dim2
                                                 dim1.rot dim2.rot
puissance -0.81934
                   0.53919
                                       puissance -0.97484 0.10831
                                      longueur -0.82056 -0.14337
longueur
         -0.79618
                    0.24489
hauteur
          -0.57838 -0.76358
                                       hauteur
                                                 -0.16855 -0.94296
poids
                                      poids
                                                 -0.85591 -0.36764
          -0.92952
                    0.06113
C02
          -0.89066 0.37898
                                       CO2
                                                 -0.96563 -0.06681
> #coord. modalités
                                       > #coord. modalités
> print(round(pcamix.autos$ca
                                        print(round(rot.autos$cate
            dim1
                     dim2
                                               dim1.rot dim2.rot
        -0.97167 -0.14921
Autres
                                       Autres
                                               -0.79795 -0.57419
                                      Europe
Europe
         1.12085 0.03710
                                                0.98177 0.54204
France
         0.41125 0.13066
                                       France
                                                0.30706
                                                         0.30317
Diesel
        -0.13726 -0.51938
                                      Diesel
                                                0.11356 -0.52508
                                      Essence -0.17035 0.78761
Essence 0.20590
                  0.77908
                                                0.04450 0.46462
         0.25064 0.39374
                                       non
non
                                               -0.17801 |-1.85847
oui
        -1.00255 -1.57495
                                       oui
```

APRES

Ricco Rakotomalala
Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/

Tanagra

Axé sur la simplicité d'utilisation et de lecture des résultats

Squared Correlation (Communalities)

Attribute	Axis_1		Axis_2		
-	Coord.	% (Tot. %)	Coord.	% (Tot. %)	
puissance (*)	0.671326	67 % (67 %)	0.290722	29 % (96 %)	
longueur (*)	0.633905	63 % (63 %)	0.059971	6 % (69 %)	
hauteur (*)	0.334520	33 % (33 %)	0.583062	58 % (92 %)	
poids (*)	0.864000	86 % (86 %)	0.003737	0 % (87 %)	
CO2 (*)	0.793278	79 % (79 %)	0.143629	14 % (94 %)	
origine (**)	0.696567	35 % (35 %)	0.016010	1 % (36 %)	
carburant (**)	0.028262	3 % (3 %)	0.404639	40 % (43 %)	
4X4 (**)	0.251277	25 % (25 %)	0.620118	62 % (87 %)	
Var. Expl.	4.273136	47 % (47 %)	2.121887	24 % (71 %)	

^(*) Square of correlation coefficient

Continuous Attributes - Correlation (Factor Loadings)

Attribute	Axis_1	Axis_2	
puissance	-0.819345	0.539186	
longueur	-0.796182	0.244889	
hauteur	-0.578377	-0.763585	
poids	-0.929516	0.061131	
CO2	-0.890662	0.378984	

Discrete Attributes - Conditional means and contributions

Attribute		Axis_1		Axis_2	
-		Mean	CTR	Mean	CTR
origine	Europe	2.3170	5.8800	0.0540	0.0130
	France	0.8501	1.5831	0.1903	0.3218
	Autres	-2.0086	8.8379	-0.2174	0.4197
	Tot.	-	16.3011	-	0.7545
carburant	Diesel	-0.2837	0.2646	-0.7566	7.6279
	Essence	0.4256	0.3968	1.1349	11.4419
	Tot.	-	0.6614	-	19.0698
4X4	non	0.5181	1.1761	0.5735	5.8450
	oui	-2.0724	4.7043	-2.2942	23.3799
	Tot.		5.8804	-	29.2248

^(**) Correlation ratio

Bibliographie

Notre article de référence

(FactoMineR) Pagès, J., « Analyse Factorielle de Données Mixtes », Revue de Statistique Appliquée, Vol : 52, Issue : 4, pp. 93-111, **2004**.

D'autres articles à l'origine de packages pour R

(ADE4) Hill, M., Smith, A., « Principal Component Analysis of taxonomic data withmulti-state discrete characters », Taxon, 25, pp. 249-255, **1976**.

(PCAmixdata) Kiers, H.A.L., « Simple structure in Component Analysis Techniques for mixtures of qualitative and quantitative variables », Psychometrika, 56, pp. 197-212, 1991.

Tutoriels accessible en ligne

Champelly, S., « <u>Introduction à l'analyse multivariée (factorielle) sous R</u> », Sept. 2005, pp. 37-42. Tutoriel Tanagra, « <u>Analyse Factorielle de données mixtes</u> », Sept. 2012.

Husson, F., « Analyse factorielle de données mixtes avec FactoMineR (YouTube) », Avril 2013.