Copying	DEFINITION
Flash Cards for the Book: "Representations and Characters of Groups" by Gordon James and Martin Liebeck	group
Representation Theory	Representation Theory
DEFINITION	DEFINITION
subgroup	dihedral group D_{2n}
Representation Theory	Representation Theory
Definition	DEFINITION
cyclic group C_n	quaternion group Q_8
Representation Theory	Representation Theory
Definition	DEFINITION
alternating group A_n	direct product
Representation Theory	Representation Theory
Representation Theory	Representation Theory

A group consists of a set G , together with a rule for combining any two elements $g, h \in G$ to form another element of G satisfying: 1. $\forall g, h, k \in G, (gh)k = g(hk)$ 2. $\exists e \in G$ such that $\forall g \in G, eg = ge = g$ 3. $\forall g \in G, \exists g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = e$	© 2017 Jason Underdown These flash cards and the accompanying LATEX source code are licensed under a Creative Commons Attribution—NonCommercial—ShareAlike 4.0 International License © ••••
$D_{2n} = \langle a, b : a^n = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle$	Let G be a group. A subset H of G is a subgroup if H is itself a group under the operation inherited from G . $H\leqslant G$
$Q_8 = \langle a, b : a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle$	$C_n = \{1, a, a^2, \dots, a^{n-1}\}$ $C_n = \langle a : a^n = 1 \rangle$
Let G and H be groups, consider $G\times H=\left\{(g,h):g\in G\text{ and }h\in H\right\}.$ Define a product operation on $G\times H$ by $(g,h)(g',h')=(gg',hh').$ The group $G\times H$ is called the direct product of G and G .	$A_n = \{g \in S_n : g \text{ is an even permutation}\}$ Recall that every permutation $g \in S_n$ can be expressed as a product of transpositions. An even permutation has an even number of transpositions, and an odd permutation has an odd number of transpositions.

Representation Theory	Representation Theory
Representation Theory	Representation Theory
Representation Theory	Representation Theory
Representation Theory	Representation Theory
Representation Theory	Representation Theory

Representation Theory	Representation Theory
Representation Theory	Representation Theory
Representation Theory	Representation Theory
Representation Theory	Representation Theory
Representation Theory	Representation Theory

