What is claimed is:

- A propylene/1-butene random copolymer (PBR) characterized by containing
- (1) 60 to 90 mol% of units derived from propylene and 10 to 40 mol% of units derived from 1-butene, and having
 - (2) a triad isotacticity, as determined from a $^{13}C-NMR$ spectrum, of not less than 85% and not more than 97.5 %,
- (3) a molecular weight distribution (Mw/Mn), as
 10 determined by gel permeation chromatography (GPC), of from 1 to 3,
 - (4) an intrinsic viscosity, as measured in decalin at 135° C, of from 0.1 to 12 dl/g,
- (5) a melting point (Tm), as measured on a differential scanning calorimeter, of from 40 to 120°C, and satisfying
 - (6) the following relation

146 exp $(-0.022M) \ge Tm \ge 125$ exp (-0.032M) wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

20

- 2. A propylene elastomer (PBER) characterized by containing:
 - (1) (a) 50 to 85 mol% of units derived from propylene,
 - (b) 5 to 25 mol% of units derived from 1-butene

and

(c) 10 to 25 mol% of units derived from ethylene,
and having:

a molar ratio of propylene content to ethylene content of from 89/11 to 70/30, and

a modulus in tension (YM), as measured in accordance with JIS 6301, of not more than 40 Mpa.

- 3. A polypropylene composition comprising:
- 5 to 95 wt% of polypropylene (PP-A) and

95 to 5 wt% of a propylene/1-butene random copolymer (PBR) characterized by containing

- (1) 60 to 90 mol% of units derived from propylene and 15 10 to 40 mol% of units derived from 1-butene, and having
 - (2) a triad isotacticity, as determined from a $^{13}C-NMR$ spectrum, of not less than 85% and not more than 97.5 %,
- (3) a molecular weight distribution (Mw/Mn), as
 20 determined by gel permeation chromatography (GPC), of from 1 to 3,
 - (4) an intrinsic viscosity, as measured in decalin at 135° C, of from 0.1 to 12 dl/g,
 - (5) a melting point (Tm), as measured on a differential

scanning calorimeter, of from 40 to 120°C, and satisfying

(6) the following relation

 $146 \ \text{exp} \ (-0.022\text{M}) \ \geqq \ \text{Tm} \ \geqq \ 125 \ \text{exp} \ (-0.032\text{M})$ wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

- 4. A sheet or film comprising a polypropylene composition as claimed in claim 3.
- 5. A stretched film obtainable by stretching a sheet or film as claimed in claim 4 in at least one direction.
 - 6. A transition metal compound (2a) represented by the following formula (2a):

$$R^{1}$$
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
 R^{10}
 R^{10}

15

wherein each of R^1 and R^3 is hydrogen, R^2 and R^4 are identically or differently selected from a hydrocarbon group and

silicon-containing group, R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group, and adjacent substituent groups R^5 to R^{12} may be linked to form a ring, R^{14} is an aryl group, and R^{13} and R^{14} may be identical or different each other and may be linked to form a ring. M is a Group 4 transition metal, Y is a carbon atom, Q may identically or differently be selected from halogen, a hydrocarbon group, anion ligand or neutral ligand capable of coordination with a lone pair of electrons, and j is an integer of 1 to 4.

7. A transition metal compound (3a) according to claim 6, wherein each of R^{13} and R^{14} in the formula (2a) is simultaneously an aryl group.

15

10

5

- 8. An olefin polymerization catalyst comprising:
- (A) a transition metal compound (2a) or (3a) and
- (B) at least one compound selected from:
- (B-1) an organometallic compound,

20 (B-2) an organoaluminum oxy compound and

- (B-3) a compound capable of forming an ion pair by reacting with the transition metal compound (A).
 - 9. A polyolefin resin composition comprising:

100 parts by weight of a propylene polymer (PP-C) and not less than 10 parts by weight of at least one elastomer selected from elastomers (EL-1) to (EL-4) obtainable by a metallocene catalyst,

- 5 wherein the elastomer (EL-1)is
 - I) a propylene and ethylene random copolymer in a molar ratio of constituent units derived from propylene to constituent units derived from ethylene of from 80/20 to 20/80, and has
- II) an intrinsic viscosity $[\eta]$ of not less than 1.5 dl/g, III) a ratio (Mw/Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to 3.5, and
- IV) a ratio of an irregularly bonded propylene monomer based on 2,1-insertion to all the propylene constituent units, as determined from a ¹³C-NMR spectrum, of not more than 1.0 mol%; the elastomer (EL-2) is
- I) a random copolymer of ethylene and an α -olefin having 4 to 20 carbon atoms in a molar ratio of constituent units derived from ethylene to constituent units derived from α -olefin of from 80/20 to 20/80, and has
 - II) an intrinsic viscosity [η] of not less than 1.5 dl/g, III) a ratio (Mw/Mn) of a weight average molecular

weight (Mw) to a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to 3.5, and

IV) a ratio of an irregularly bonded α -olefin monomer based on 2,1-insertion to all the α -olefin constituent units, as determined from a $^{13}\text{C-NMR}$ spectrum, of not more than 1.0 mol%;

the elastomer (EL-3) is

10

15

20

- I) a random copolymer of propylene and an α -olefin having 4 to 20 carbon atoms in a molar ratio of constituent units derived from propylene to constituent units derived from α -olefin of from 80/20 to 20/80, and has
- II) an intrinsic viscosity $[\eta]$ of not less than 1.5 dl/g, III) a ratio (Mw/Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to 3.5,
- IV) a ratio of an irregularly bonded propylene monomer based on 2,1-insertion to all the propylene constituent units, as determined from a ¹³C-NMR spectrum, of not more than 1.0 mol%, and
- V) a melting point, as measured on DSC, of not higher than 150°C or not measured;

the lastomer (EL-4) is

I) a random copolymer of ethylene, propylene and an

 α -olefin having 4 to 20 carbon atoms in a molar ratio of constituent units derived from propylene to constituent units derived from α -olefin of from 80/20 to 20/80, and has

- II) a molar ratio [(EP) / (OL)] of constituent units (EP) derived from ethylene and propylene to constituent units (OL) derived from α -olefin having 4 to 20 carbon atoms of from 99/1 to 20/80,
- IV) a ratio of an irregularly bonded propylene monomer based on 2,1-insertion to all the propylene constituent units, as determined from a 13 C-NMR spectrum, of not more than 1.0 mol%, and a ratio of an irregularly bonded α -olefin monomer based on 2,1-insertion to all the α -olefin constituent units, as determined from a 13 C-NMR spectrum, of not more than 1.0 mol%; and
- - a transition metal compound (1a) represented by the following formula (1a)

$$R^{1}$$
 R^{14}
 R^{13}
 R^{12}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
 R^{10}
 R^{10}

5

10

in which R³ is selected from a hydrocarbon group and silicon-containing group; R¹, R² and R⁴ are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; adjacent substituent groups R⁵ to R¹² may be linked each other to form a ring; R¹³ and R¹⁴ may be the same or different each other and may be linked to form a ring; M is a Group 4 transition metal; Y is a carbon atom; Q may be identically or differently selected from halogen, a hydrocarbon group, anion ligand or neutral ligand capable of coordination with a lone pair of electrons, and j is an integer of 1 to 4,

an organoaluminum oxy-compound (lb) and/or a compound (2b) capable of forming an ion pair by reacting the transition metal compound (la) and optionally

5

10

15

an organoaluminum compound (c).

10. The propylene/1-butene copolymer according to claim 1 obtainable by polymerizing propylene and 1-butene in the presence of an olefin polymerization catalyst comprising:

a transition metal compound (1a) represented by the following formula (1a)

$$R^{1}$$
 R^{14}
 R^{13}
 R^{12}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
(1a)

in which R^3 is selected from a hydrocarbon group and silicon-containing group; R^1 , R^2 and R^4 are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} and R^{14} are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; adjacent substituent groups R^5 to R^{12} may be linked each other to form a ring; R^{13} and R^{14} may be the same or different each other and may be linked to form a ring; R^{13} and R^{14} may be identically or differently selected R^{12} .

5

10

20

from halogen, a hydrocarbon group, anion ligand or neutral ligand capable of coordination with a lone pair of electrons, and j is an integer of 1 to 4; and j is an integer of 1 to 4, an organoaluminum oxy-compound (1b) and/or

a compound (2b) capable of forming an ion pair by reacting the transition metal compound (1a) and optionally an organoaluminum compound (c).

- 11. A polypropylene composite film comprising:
- (I) a crystalline polypropylene layer and
- (II) a layer of a polypropylenen composition (II) laminated on at least one surface of the layer (I), wherein the polypropylene composition (CC-2) comprises:

0 to 95 % by weight of a crystalline polyproplylene (PP-A) and

5 to 100 % by weight of a propylene/1-butene random copolymer (PBR):

- (1) containing 60 to 90 mol% of units derived from propylene and 10 to 40 mol% of units derived from 1-butene, and having
- (2) a triad isotacticity, as determined from a $^{13}\text{C-NMR}$ spectrum, of not less than 85% and not more than 97.5 %,
- (3) a molecular weight distribution (Mw/Mn), as determined by gel permeation chromatography (GPC), of from 1

to 3,

- (4) an intrinsic viscosity, as measured in decalin at 135° C, of from 0.1 to 12 dl/g,
- (5) a melting point (Tm), as measured on a differential scanning calorimeter, of from 40 to 120°C, and satisfying
 - (6) the following relation
 - $146 \ \text{exp} \ (-0.022\text{M}) \ \ge \ \text{Tm} \ \ge \ 125 \ \text{exp} \ (-0.032\text{M})$ wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

10 .

12. A stretched film obtainable by stretching the laminate as claimed in claim 11 in at least one direction.