

Designing Phase I Single Agent Dose-Escalation Studies

Lecture 2: Model-based dose-escalation designs

Pavel Mozgunov & Thomas Jaki

MRC Biostatistics Unit September 2023

Single-Agent Dose-Finding Study

k increasing doses : $d_1 < d_2 < \cdots < d_k$

Response: $x = \begin{cases} 1 & \text{if a patient experienced a DLT} \\ 0 & \text{otherwise} \end{cases}$

Structure: treat successive cohorts of *c* subjects

Objective: find the "highest safe dose"

Based on the monotonicity assumption: "the more the better":

Both toxicity and efficacy increase with the dose.

Phase I in-patient trials

Typically implemented as adaptive designs:

Dose (mg)	1	2.5	5	10	15	20	25
# patients	3	3	3				
# DLT	0	0	1				

- What dose should be selected for the next cohort?
 - 1. More patients on the same dose (5mg)
 - 2. More patients on a lower dose (2.5mg)?
 - 3. Patients on a higher dose (10mg)?
- A good design will achieve
 - a high probability of the true MTD selection
 - most patients being treated on the MTD
 - few patients being overdosed

Phase I designs for in-patient trials

Rule-based designs

- No statistical inference
- Popular among clinicians
- Poor statistical properties ("operating characteristics")

Model-based designs

- Use a simple model for the dose-toxicity relationship
- Good operating characteristics
- Might lead to non-intuitive escalations/de-escalations

Model-assisted designs

- Do not impose a particular "shape" on the dose-response
- Use a statistical model
- Still based on the monotonicity and a set of up-and-down rules

Seeking a quantile

- MTD maximal dose acceptably tolerated by a particular patient population
 - \rightarrow vague
- $TD100\theta$ dose at which the probability of toxicity is θ (for $0 < \theta < 1$), e.g. TD20 \rightarrow more specific

TD20

A Bayesian inference for Phase I trials

- Due to a small sample size, it is common to use Bayesian inference in early phase dose-escalation trials;
- Bayesian paradigm: Posterior \propto Data \times Prior
- Let α be the parameter of interest with prior distribution $f_0(\alpha)$.
- The observations are $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$;
- The likelihood function $L(\mathbf{x}|\alpha)$ is the distribution of \mathbf{x} conditional on specific values of α .

Then:

$$f(\alpha|\mathbf{x}) = \frac{f(\mathbf{x}|\alpha)f_0(\alpha)}{f(\mathbf{x})}$$

A Bayesian model-based design

Planning a trial:

- 1. Choose doses d_1, \ldots, d_k ;
- 2. Choose a form of dose-response relationship $p(d_i, \alpha)$ where α are model parameters;
- 3. Impose a prior distribution for α ;
- Choose a criterion to allocate patients;
- 5. Choose stopping rules

A Bayesian model-based design

Planning a trial:

- 1. Choose doses d_1, \ldots, d_k ;
- 2. Choose a form of dose-response relationship $p(d_i, \alpha)$ where α are model parameters;
- 3. Impose a prior distribution for α ;
- 4. Choose a criterion to allocate patients;
- 5. Choose stopping rules

Conducting a trial:

- 1. Sequentially update estimates of α ;
- 2. Select the dose for the next cohort using the criterion;
- 3. Stop if at least one of the stopping rules is met.

Continual Reassessment Method (CRM)

Response:
$$x = \begin{cases} 1 \text{ if a patient experienced a DLT} \\ 0 \text{ otherwise} \end{cases}$$

Model:
$$p(\pi_i, \alpha) = \pi_i^{exp(\alpha)}$$

Skeleton: π_i is a prior guess of the DLT risk

Prior on α : Normal $\alpha \sim \mathcal{N}(\mu, \sigma^2)$

Allocation Rule: $\min |p(\pi_i, \hat{\alpha}) - \theta|$ where $\hat{\alpha} = \mathbb{E}(\alpha)$

Bayesian updating

- 1. Specify the prior distribution of α
- 2. Assign the first cohort to the starting dose (e.g. prior MTD)
- 3. Given the data, update the distribution of α

Posterior
$$\propto$$
 Prior \times Data

- 4. Find the estimate of α : $\hat{\alpha}$
- 5. Find estimates of toxicity probabilities as $\hat{p}_i = \pi_i^{\exp(\hat{\alpha})}$
- 6. Allocate the next cohort to the dose having the estimated toxicity closest to the target level θ .
- 7. Repeat steps 3-6

Representation of the model

Values for π_i

Example

Assign values for π_i

π_1	π_2	π_3	π_{4}	π_5	π_{6}
0.05	0.10	0.20	0.30	0.50	0.70

Thus first subject receives d₃

Simulated data

Criticisms of the original CRM

Criticisms:

- Starting dose is usually high;
- Treats too many subjects on high doses (too aggressive);
- Doses can be skipped;
- No appropriate stopping rule.

Modifications:

- Start at the lowest dose;
- Safety constraints;
- Alternative allocation rules;
- No dose skipping;
- Formal stopping rules.

Choice of the model

- Pre-defined skeleton π_i , i = 1, ..., k
 - could be elicited from the clinicians on the trial;
 - could be chosen by statisticians (operational skeleton);
- For CRM, prior for $\alpha \sim \mathcal{N}(0, 1.34^2)$ often leads to good OC;
- CRM is very quick to evaluate and run
- Although, the one-parameter model might not reflect the true dose-toxicity relationship...
- we are interested in the single point, the MTD, and the one-parameter model is rich enough for this goal
- If questions beyond the MTD identification to be considered alternative models can provide a better answer.

Bayesian Logistic Regression Model (BLRM)

Model (Version 1):

- $d_{(1)} < \cdots < d_{(k)}$ are doses;
- *D_{ref}* is a reference dose;

$$p(d_{(j)}, \alpha_1, \alpha_2) = \frac{\exp\{\alpha_1 + \alpha_2 \log \frac{d_{(j)}}{D_{ref}}\}}{1 + \exp\{\alpha_1 + \alpha_2 \log \frac{d_{(j)}}{D_{ref}}\}}$$

- (α_1, α_2) are parameters to be estimated
- requires **prior** distribution on (α_1, α_2)

Bayesian Logistic Regression Model (BLRM)

Model (Version 2):

• \tilde{d}_j are standardised doses (skeleton) obtained from the prior guesses of the DLT risk at each dose;

$$p(\tilde{d}_j, \alpha_1, \alpha_2) = \frac{\exp\{\alpha_1 + \alpha_2 d_j\}}{1 + \exp\{\alpha_1 + \alpha_2 \tilde{d}_j\}}$$

• $\hat{p}_{j}^{(0)}$ are prior estimates of the DLT probabilities associated with doses d_{j} $j=0,\ldots,m$

$$ilde{d}_j = rac{ ext{logit}(\hat{m{p}}_j^{(0)}) - \hat{lpha}_1^{(0)}}{\hat{lpha}_2^{(0)}}$$

• $\hat{\alpha}_{1}^{(0)}$, $\hat{\alpha}_{2}^{(0)}$ are prior point estimates of the model parameters;

Ways to include prior information (I)

Approach 1 by Neuenschwander et al. (2008)

- Specify two quantiles for toxicity probabilities at all doses
- Define prior distribution for $(\alpha_1; \alpha_2)$ such that they are in close agreement with the above

Ways to include prior information (II)

Approach 3 by Whitehead & Williamson (1998)

- Specify two dose levels (the lowest and the highest)
- Illicit probability of toxicity at these levels from experts and determine how many patients this information is worth
- Include "pseudo-patients" in analysis based on above no need in specifying the prior for $(\alpha_1; \alpha_2)$

For example, the clinicians' believe that

- Toxicity risk at the lowest dose is 20%;
- Confidence in this response rate is equivalent to having 5 patients at the lowest dose;
- Toxicity risk at the highest dose is 40%;
- Confidence in this response rate is equivalent to having 1 patient at the highest dose;

Allocation Criteria

Escalation with Overdose Control (EWOC) and modifications:

$$\mathbb{E}\left(\nu(\theta-p_i)^+ + (1-\nu)(p_i-\theta)^+\right) \quad \mathrm{e.g.} \quad \nu = 0.25$$

Convex Bounds Penalization (CIBP) Criterion:

$$\mathbb{E}\left(\frac{(p-\theta)^2}{p^{\lambda}(1-p)^{2-\lambda}}\right), \quad \lambda \quad - \text{ asymmetry parameter}$$
 (1)

Loss function

$$L = \begin{cases} 1 & \text{if } p \in (0.00, 0.20); & 0 & \text{if } p \in (0.20, 0.33) \\ 1 & \text{if } p \in (0.33, 0.50); & 2 & \text{if } p \in (0.50, 1.00) \end{cases}$$

 Maximising the probability of being in the target interval while safeguarding the patients

Interval Probability Criterion

Recommend dose such that

- probability of overdosing
 P(p > 0.33 | d) < 0.25
- probability of target toxicity $P(p \in (0.20; 0.33) \mid d) \rightarrow max$

Interval Probabilities by Dose

Example

- open-label, multicenter, dose-escalation cancer trial
- Find dose that has 30% risk of toxicity, the TD30.
- Use CRM but do not allow for skipping dose levels
- After 4 cohorts (4 dose levels) no DLTs
- Team decides to skip 2 dose levels
- Two DLTs in two patients

Example

	Dose in mg									
	1	2.5	5	10	15	20	25	30	40	50
No. of patients	3	4	5	4	_	_	2	_	_	_
No. of DLTs	0	0	0	0	_	_	2	_	_	_
Posterior summa	aries:									
Mean	0.069	0.085	0.099	0.111	0.123	0.144	0.163	0.242	0.330	0.465
Std. dev.	0.055	0.062	0.068	0.072	0.076	0.082	0.087	0.101	0.109	0.108

Dose recommendation for next cohort:

• 3+3: Unclear

CRM: 40mg

• BLRM: 15mg (from previous figure)

Comments

- BLRM is widely used in industry now;
- Specifying priors can be time consuming
- Running/Evaluating requires MCMC

One-parameter or Two-parameter model

- It depends...
- One needs to decide what question they are trying to answer.
 - MTD estimation only?
 - Does one want to know more about the dose-toxicity shape?
 - Are there any further research questions to be answered?
- These all will affect the choice of the model.

Simulation study: setting

- 6 dose levels; target toxicity level of 33%;
- Compare various model-based designs:
 - Original CRM;
 - CRM with modified criteria (asymmetry = 0.5,0.25,0.10);
 - BLRM with loss function;
 - ► EWOC:
 - Modified EWOC (TDFB & TR);
- Assessed in terms of
 - Accuracy Index;

$$\mathcal{A} = 1 - m \frac{\sum_{i=1}^{m} (p_i - TTL)^2 \times Selection \ Proportion_i}{\sum_{i=1}^{m} (p_i - TTL)^2}$$

Safety (average number of DLTs)

Simulation study: scenarios

Simulation study: Results. Accuracy

Simulation study: Results. Safety

