Chapter 5.1: L'Hôpital's Rule & Indeterminate Forms

Expected Skills:

- Know how to use L'Hôpital's Rule to help compute limits involving indeterminate forms of $\frac{0}{0}$ and $\frac{\infty}{\infty}$
- Be able to compute limits involving indeterminate forms $\infty \infty$, $0 \cdot \infty$, 0^0 , ∞^0 , and 1^∞ by manipulating the limits into a form where L'Hôpital's Rule is applicable.

Practice Problems:

For problems 1-27, calculate the indicated limit. If a limit does not exist, write $+\infty$, $-\infty$, or DNE (whichever is most appropriate). Make sure that L'Hôpital's rule applies before using it. And, whenever you apply L'Hôpital's rule, indicate that you are doing so.

1.
$$\lim_{x \to 3} \frac{x^2 + 4x - 21}{x^2 - 7x + 12}$$

$$2. \lim_{x \to 0} \frac{\tan 3x}{\ln (1+x)}$$

3

$$3. \lim_{x \to 0} \frac{\sin x - x}{x^2}$$

$$4. \lim_{x \to 0} \frac{\sin(6x)}{\sin(3x)}$$

2

5.
$$\lim_{x \to 1^{-}} \frac{x-1}{x^2 - 2x + 1}$$
$$\boxed{-\infty}$$

6.
$$\lim_{x \to \infty} \frac{e^{-x}}{x^{-2}}$$

- 7. $\lim_{x \to 0} \frac{\ln(\cos 3x)}{5x^2}$ $-\frac{9}{10}$
- 8. $\lim_{x \to 1} \frac{\tan^{-1} x \frac{\pi}{4}}{x 1}$ $\boxed{\frac{1}{2}}$
- 9. $\lim_{x \to 0^{+}} \frac{8^{\sqrt{x}} 1}{1 5^{\sqrt{x}}}$ $-\frac{3\ln 2}{\ln 5}$
- 10. $\lim_{x \to 0^+} \frac{5 \sin x}{\sqrt{x}}$
- 11. $\lim_{x \to -\infty} \frac{x^3 + 4x 5}{5x^2 5x 89}$
- 12. $\lim_{x \to 0} \frac{\sin^{-1}(2x)}{\tan^{-1}(3x)}$ $\boxed{\frac{2}{3}}$
- 13. $\lim_{x \to 1} \frac{\ln x^2}{x^2 9}$
- 14. $\lim_{x \to \infty} \frac{e^x e^{-x}}{e^x + e^{-x}}$
- 15. $\lim_{x \to \frac{\pi}{2}^+} \frac{\ln\left(x \frac{\pi}{2}\right)}{\tan x}$

- 16. $\lim_{x \to 1^{-}} \frac{x 1}{\arccos x}$
- 17. $\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$ $\boxed{+\infty}$
- 18. $\lim_{x \to +\infty} xe^{-6x}$
- 19. $\lim_{x \to +\infty} \frac{\sqrt{4+3x^2}}{2+2x}$ $\boxed{\frac{\sqrt{3}}{2}}$
- $20. \lim_{x \to 0^+} x \csc 3x$ $\boxed{\frac{1}{3}}$
- 21. $\lim_{x \to +\infty} \left[\ln (x+2) \ln (3x+5) \right]$ $\left[\ln \left(\frac{1}{3} \right) \right]$
- $22. \lim_{x \to \infty} 3^x 7^{-x}$
- 23. $\lim_{x \to \infty} \left(\sqrt{x^2 x} x \right)$ $-\frac{1}{2}$
- 24. $\lim_{x \to 0^+} \tan x \sec x$
- $\begin{array}{ccc}
 25. & \lim_{x \to 0^+} x^{1/x} \\
 \hline
 0
 \end{array}$

26.
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{5x}$$
$$e^{10}$$

$$27. \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{-x}$$

28. Which of the following are indeterminate forms?

$$\begin{array}{ccccc} \frac{0}{0} & \frac{0}{\infty} & \frac{\infty}{0} & \frac{\infty}{\infty} \\ \\ \infty - \infty & \infty + \infty & 0 \cdot \infty & \infty \cdot \infty \\ \\ 0^0 & \infty^0 & 0^\infty & 1^\infty & \infty^\infty & \infty^1 \end{array}$$

$$\boxed{\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \cdot \infty, 0^0, \infty^0, 1^\infty}$$

29. Calculate each of the following limits:

(a)
$$\lim_{x \to 0^+} (1+3^x)^{1/x}$$
 $+\infty$

(b)
$$\lim_{x \to 0^{-}} (1+3^{x})^{1/x}$$

(c)
$$\lim_{x \to +\infty} (1+3^x)^{1/x}$$

(d)
$$\lim_{x \to -\infty} (1+3^x)^{1/x}$$
1

30. Show that $\lim_{x\to\infty} \frac{x^n}{e^x} = 0$ for any positive integer n.

 $\lim_{x\to\infty}\frac{x^n}{e^x}$ is of the indeterminate form $\frac{\infty}{\infty}$, so, we may apply L'Hopital's Rule:

$$\lim_{x \to \infty} \frac{x^n}{e^x} = \lim_{x \to \infty} \frac{nx^{n-1}}{e^x}$$

This new limit is also of the indeterminate form $\frac{\infty}{\infty}$, so, we may again apply L'Hopital's Rule:

$$\lim_{x\to\infty}\frac{nx^{n-1}}{e^x}=\lim_{x\to\infty}\frac{n(n-1)x^{n-2}}{e^x}$$

In fact, we repeat the process until we end up with the following limit:

$$\lim_{x \to \infty} \frac{n(n-1)(n-2)\dots(2)(1)}{e^x}$$

which equals 0. Thus, $\lim_{x \to \infty} \frac{x^n}{e^x} = 0$

- 31. Find the value(s) of of the constant k which make $f(x) = \begin{cases} \frac{\sin x 1}{x \frac{\pi}{2}} & \text{if } x \neq \frac{\pi}{2} \\ k & \text{if } x = \frac{\pi}{2} \end{cases}$ continuous at $x = \frac{\pi}{2}$.
- 32. Find all values of k and m such that $\lim_{x \to 1} \frac{k + m \ln x}{x 1} = 5$ $\boxed{k = 0 \text{ and } m = 5}$
- 33. Multiple Choice: What is $\lim_{x\to 1^+} \frac{x}{\ln(x)}$?
 - (a) 0
 - (b) 1
 - (c) e
 - (d) e^{-1}
 - (e) $+\infty$

- 34. Multiple Choice: What is $\lim_{x\to 0} \frac{e^x 1}{\tan(x)}$?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) 2
 - (e) The limit does not exist.

|C|

- 35. Multiple Choice: If $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = +\infty$ and f'(x) = 1 and $g'(x) = e^x$, what is $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) *e*
 - (e) The limit does not exist.

В