Package 'betaclust'

June 8, 2022

Type Package

for Clustering and Density Estimation
Version 1.0.0
Author Koyel Majumdar [aut] <koyel.majumdar@ucdconnect.ie>,</koyel.majumdar@ucdconnect.ie>
Maintainer Koyel Majumdar <koyel.majumdar@ucdconnect.ie></koyel.majumdar@ucdconnect.ie>
Description A family of novel beta mixture models (BMMs) is proposed to appositely model the innate beta valued data, objectively identify methylation state thresholds and identify the differentially methylated CpG (DMC) sites using a model-based clustering approach. The family of BMMs employs different parameter constraints applicable to different study settings. Parameter estimation proceeds via the EM algorithm, with a novel approximation during the M-step providing tractability and ensuring computational feasibility.
License GPL-3
Depends R (>= $3.5.0$)
Imports foreach, doParallel, stats, utils, ggplot2, plotly
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
NeedsCompilation no
R topics documented:
betaclust beta_c beta_c beta_cn beta_cr ecdf.betaclust em_aic em_bic em_bic em_icl legacy.data pca.methylation.data plot.betaclust
cummary betaclust

2 betaclust

betaclust

The betaclust wrapper function

Description

A family of model based clustering techniques to identify the methylation profiles of the beta valued DNA methylation data

Usage

```
betaclust(
  data,
  K = 3,
  patients,
  samples,
  model_names = "C..",
  model_selection = "BIC",
  seed,
  register = NULL
)
```

Arguments

K number of methylation groups to be identified (default=3)

patients number of patients in the study

samples number of samples collected from each patient for study model_names mixture model to run (Models= c(C..,CN.,C.R), default=C..)

model_selection

optimal model selection based on information criterion. (Methods=AIC,BIC,ICL,default=BIC)

seed seed for reproducible work register setting for parallelization

X methylation values for CpG sites frpm R samples collected from N patients

Details

This is a wrapper function which can be used to run all three models (C.., CN., C.R) together. The C.. and CN. models are used to analyse a single DNA sample and cluster the CpG sites into the 3 methylation profiles (hypomethylation, hemimethylation, hypermethylation). The thresholds can be objectively identified from the clustering solution. The C. R model is used to analyse R samples to the differentially methylated CpG sites between R DNA samples.

Value

The function returns an object of "betaclust" class. The class object contains following values:

- Information_criterion The information criterion used to select the optimal model.
- ic_output This stores the information criterion value calculated for each model.
- optimal_model The model selected as optimal.
- function_call The parameters passed as arguments to the function betaclust.

betaclust 3

- CpG_sites The number of CpG sites analysed using the beta mixture models.
- patients The number of patients analysed using the beta mixture models.
- samples The number of samples analysed using the beta mixture models.
- best_model This contains the final results for the optimal model selected. Thus this contains the following values:
 - cluster count The total number of CpG sites identified in each cluster.
 - Ilk The vector containing log-likelihood values calculated for each step of parameter estimation.
 - data This contains the methylation dataset along with the cluster label as determined by the mixture model.
 - alpha This contains the shape parameter 1 for the beta mixtures for K^R groups.
 - beta This contains the shape parameter 2 for the beta mixtures for ${\cal K}^R$ groups.
 - tau The proportion of CpG sites in each cluster.
 - z The matrix contains the probability calculated for each CpG site belonging to the ${\cal K}^R$ clusters.
 - uncertainty The uncertainty of a CpG site belonging to the identified cluster.

References

Silva, R., Moran, B., Russell, N.M., Fahey, C., Vlajnic, T., Manecksha, R.P., Finn, S.P., Brennan, D.J., Gallagher, W.M., Perry, A.S.: Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics 15(6-7), 715-727 (2020). doi:10.1080/15592294.2020.1712876.

Fraley, C., Raftery, A.E.: How many clusters? which clustering method? answers via model-based cluster analysis. The computer journal 41, 578-588 (1998). doi: 10.1093/comjnl/41.8.578.

Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society 39(1), 1-38 (1977). doi:10.1111/j.2517-6161.1977.tb01600.x.

Diamond, H.G., Straub, A.: Bounds for the logarithm of the euler gamma function and its derivatives. Journal of mathematical analysis and applications 433(2), 1072-1083 (2016).doi:10.1016/j.jmaa.2015.08.034.

See Also

```
beta_c
beta_cn
beta_cr
pca.methylation.data
plot.betaclust
summary.betaclust
```

Examples

4 beta_c

End(Not run)

beta_c The C.. model

Description

The C.. model from the family of beta mixture models for DNA methylation data. This model analyses a single DNA sample and identify the thresholds for the different methylation profiles.

Usage

```
beta_c(data, K = 3, seed, register = NULL)
```

Arguments

K number of methylation groups to be identified (default=3)

seed seed for reproducible work register setting for parallelization

X methylation values for CpG sites frpm R samples collected from N patients

Details

This model clusters each of the C CpG sites into one of K = M methylation states, based on data from N patients where R = 1. The default value for M = 3 as a CpG site can be either hypomethylated, hemimethylated or hypermethylated. Under the C.. model the shape parameters of each cluster are constrained to be equal for each patient.

Value

A list of clustering solution results.

- cluster_count The total number of CpG sites identified in each cluster.
- llk The vector containing log-likelihood values calculated for each step of parameter estimation.
- data This contains the methylation dataset along with the cluster label as determined by the mixture model.
- alpha This contains the shape parameter 1 for the beta mixtures for K^R groups.
- beta This contains the shape parameter 2 for the beta mixtures for K^R groups.
- tau The proportion of CpG sites in each cluster.
- \bullet z The matrix contains the probability calculated for each CpG site belonging to the K^R clusters.
- uncertainty The uncertainty of a CpG site belonging to the identified cluster.

See Also

beta_cn
betaclust

beta_cn 5

Examples

```
## Not run:
data(pca.methylation.data)
my.seed=190
K=3
data_output=beta_c(pca.methylation.data[,2:5],K,seed=my.seed)
## End(Not run)
```

beta_cn

The CN. model

Description

The CN. model from the family of beta mixture models for DNA methylation data. This model analyses a single DNA sample and identify the thresholds for the different methylation profiles.

Usage

```
beta_cn(data, K = 3, seed, register = NULL)
```

Arguments

K number of methylation groups to be identified (default=3)

seed seed for reproducible work register setting for parallelization

X methylation values for CpG sites frpm R samples collected from N patients

Details

This model clusters each of the C CpG sites into one of K = M methylation states, based on data from N patients where R = 1. The default value for M = 3 as a CpG site can be either hypomethylated, hemimethylated or hypermethylated. The CN. model differs from the C.. model as it is less parsimonious, allowing cluster and patient-specific shape parameters.

Value

A list of clustering solution results.

- cluster_count The total number of CpG sites identified in each cluster.
- 1lk The vector containing log-likelihood values calculated for each step of parameter estimation.
- data This contains the methylation dataset along with the cluster label as determined by the mixture model.
- alpha This contains the shape parameter 1 for the beta mixtures for K^R groups.
- beta This contains the shape parameter 2 for the beta mixtures for K^R groups.
- tau The proportion of CpG sites in each cluster.
- ullet z The matrix contains the probability calculated for each CpG site belonging to the K^R clusters.
- uncertainty The uncertainty of a CpG site belonging to the identified cluster.

6 beta_cr

See Also

```
beta_c
betaclust
```

Examples

```
## Not run:
data(pca.methylation.data)
my.seed=190
K=3
data_output=beta_cn(pca.methylation.data[,2:5],K,seed=my.seed)
## End(Not run)
```

beta_cr

The C. R Model

Description

Beta mixture model for identifying differentially methylated CpG sites between R DNA samples collected from N patients.

Usage

```
beta_cr(data, K = 3, patients, samples, seed, register = NULL)
```

Arguments

K number of methylation groups to be identified (default=3)

patients number of patients in the study

samples number of samples collected from each patient for study

seed seed for reproducible work register setting for parallelization

X methylation values for CpG sites frpm R samples collected from N patients

Details

The C. R model allows identification of the differentially methylated CpG sites between the R DNA samples collected from each of the N patients. The model attempts to identify $K=M^R$ clusters identifying each possible combination of the M = 3 methylation profiles for R samples. The parameters vary for each sample type but are constrained to be equal for each patient.

An initial clustering using K-means is performed to identify K^R cluster. These values are provided as starting values to the Expectation-Maximisation algorithm. A digamma approximation is used to obtain the maximised parameters in the M-step instead of the computationally inefficient numerical optimisation step.

ecdf.betaclust 7

Value

A list of clustering solution results.

- cluster_count The total number of CpG sites identified in each cluster.
- Ilk The vector containing log-likelihood values calculated for each step of parameter estimation.
- data This contains the methylation dataset along with the cluster label as determined by the mixture model.
- alpha This contains the shape parameter 1 for the beta mixtures for K^R groups.
- beta This contains the shape parameter 2 for the beta mixtures for K^R groups.
- tau The proportion of CpG sites in each cluster.
- ullet z The matrix contains the probability calculated for each CpG site belonging to the K^R clusters.
- uncertainty The uncertainty of a CpG site belonging to the identified cluster.

See Also

betaclust

Examples

```
## Not run:
data(pca.methylation.data)
my.seed=190
K=3
patients=4
samples=2
data_output=beta_cr(pca.methylation.data[,2:5],K,patients,samples,seed=my.seed)
## End(Not run)
```

ecdf.betaclust

The empirical cumulative distribution function

Description

Empirical Cumulative Distribution Function (ECDF) plot for betaclust object

Usage

```
ecdf.betaclust(x, samples = 2, sample_name = c("Sample 1", "Sample 2"))
```

Arguments

х	Methylation values of Identified Differentially methylated regions related to a gene. Group each sample together in the dataframe such that the columns are ordered as -> Sample1_P1, Sample1_P2, Sample2_P1, Sample2_P2
samples	number of tissue samples from where DNA methylation data is collected (default samples=2)
sample_name	The order in which the samples are grouped in the dataframe (default = $c("Sample 1","Sample 2"))$

8 em_aic

Details

This function plots the ECDF graphs of the differentially methylated CpG sites identified using the C.R model for all patient samples. The graph can help visualise the methylation state changes between the different patient samples.

Value

The ECDF plot for the selected CpG sites for all patients and samples.

See Also

```
betaclust
beta_cr
```

em_aic

Akaike Information Criterion

Description

The AIC value used to select the optimal model.

Usage

```
em_aic(llk, C, K, patients = 4, samples = 1, model_names = "C..")
```

Arguments

```
11k     log-likelihood value
C     number of CpG sites
K     number of clusters
patients     number of patients
samples     no. of samples
model_names     mixture model (method=c("C..","CN.","C.R"))
```

Details

Computes the AIC for the beta mixture models given the loglikelihood, the dimension of the data, and the mixture model names.

Value

The AIC value for the selected model.

See Also

```
em_bic
em_icl
```

em_bic 9

em_bic

Bayesian Information Criterion

Description

The BIC value used to select the optimal model.

Usage

```
em_bic(llk, C, K, patients = 4, samples = 1, model_names = "C..")
```

Arguments

11k	log-likelihood value
С	number of CpG sites
K	number of clusters
patients	number of patients
samples	no. of samples
model_names	mixture model (method=c("C","CN.","C.R"))

Details

Computes the BIC for the beta mixture models given the loglikelihood, the dimension of the data, and the mixture model names.

Value

The BIC value for the selected model.

See Also

```
em_aic
em_icl
```

 em_icl

Integrated Complete-data Likelihood (ICL) Criterion

Description

The ICL value used to select the optimal model.

Usage

```
em_icl(11k, C, K, patients = 4, samples = 1, model_names = "C..", z)
```

10 legacy.data

Arguments

11k	log-likelihood value
С	number of CpG sites
K	number of clusters
patients	number of patients
samples	no. of samples
model names	mixture model (method-c("C " "CN "

model_names mixture model (method=c("C..","CN.","C.R"))

z z matrix for each output

Details

Computes the ICL for the beta mixture models given the loglikelihood, the dimension of the data, and the mixture model names. This criterion penalises the BIC by including the entropy term favouring the well separated clusters.

Value

The ICL value for the selected model.

See Also

```
em_aic
em_bic
```

legacy.data

MethylationEPIC manifest data.

Description

The dataset contains the manifest data from the Illumina MethylationEPIC beadchip array

Usage

```
data(legacy.data)
```

Format

A data frame with 867525 rows and 6 columns.

IlmnID This contains the Unique identifier from the Illumina CG database. (The probe ID).

Genome_Build Genome Build referenced by the manifest.

CHR Chromosome containing the CpG (Build 37).

MAPINFO This contains the methylation values from benign prostate tissue collected from patient 3.

UCSC_RefGene_Name Target gene name(s), from the UCSC database. *Note: multiple listings of the same gene name indicate splice variants

UCSC_CpG_Islands_Name Chromosomal coordinates of the CpG Island from UCSC.

See Also

```
pca.methylation.data
```

pca.methylation.data 11

pca.methylation.data DNA methylation dataset of patients suffering from prostate cancer disease.

Description

The dataset contains pre-processed beta methylation values of R=2 samples which are collected from N=4 patients suffering from prostate cancer disease.

Usage

data(pca.methylation.data)

Format

A data frame with 694820 rows and 9 columns. The data contains no missing values.

IlmnID This contains the Unique identifier from the Illumina CG database. (The probe ID).

Patient_benign_1 This contains the methylation values from benign prostate tissue collected from patient 1.

Patient_benign_2 This contains the methylation values from benign prostate tissue collected from patient 2.

Patient_benign_3 This contains the methylation values from benign prostate tissue collected from patient 3.

Patient_benign_4 This contains the methylation values from benign prostate tissue collected from patient 4.

Patient_benign_1 This contains the methylation values from tumor prostate tissue collected from patient 1.

Patient_benign_2 This contains the methylation values from tumor prostate tissue collected from patient 2.

Patient_benign_3 This contains the methylation values from tumor prostate tissue collected from patient 3.

Patient_benign_4 This contains the methylation values from tumor prostate tissue collected from patient 4.

Details

The raw methylation array data was first quality controlled and preprocessed using RnBeads package. The array data was then normalized and and probes located outside of CpG sites and on the sex chromosome were filtered out. The CpG sites with missing values were removed from the resulting dataset.

See Also

legacy.data

12 summary.betaclust

plot.betaclust Plots for visualizing the betaclust class object	
---	--

Description

This function helps visualise the clustering solution by plotting the density estimates, the uncertainty and the information criterion.

Usage

```
## S3 method for class 'betaclust'
plot(object, what = "density", plot_type = "ggplot", scale_param = "free_y")
```

Arguments

object betaclust object

what The different plots that can be obtained from the object (default="density")

(what=c("density","uncertainty","InformationCriterion"))

plot_type The plot type to be displayed (default="ggplot")(plot_type="ggplot" or "plotly")

scale_param The axis that needs to be fixed or not for facet plot (scales=c("free_y", "free_x", "free"),

default is "free_y")

Details

The density estimates of the clustering solution of the optimal model can be plotted by passing the parameter what="density" in the function. Apart from static plots interactive plots can also be plotted using the parameter plot_type = "plotly". The uncertainty in the clustering soluting can be plotted using what="uncertainty". The information criterion values for all models can be plotted using what="InformationCriterion" for selecting the optimal model.

See Also

betaclust

summary.betaclust Summarizing the Beta Mixture Model Fits

Description

Summary method for class "betaclust" object containing the results of the optimal model selected.

Usage

```
## S3 method for class 'betaclust'
summary(object)
```

Arguments

x betaclust object

summary.betaclust 13

Value

An object of class "summary.betaclust". The object returns the following list of values:

- CpG_sites The number of CpG sites analysed using the beta mixture models.
- patients The number of patients analysed using the beta mixture models.
- samples The numder of samples analysed using the beta mixture models.
- cluster_count The number of groups, the data is clustered into.
- modelName The optimal model selected.
- loglik The log-likelihood value for the selected optimal model.
- Information_criterion The information criterion used to select the optimal model.
- ic_output This stores the information criterion value calculated for each model.
- classification The total number of CpG sites identified in each cluster.

See Also

betaclust

Examples