Calcolo delle Variazioni a.a. 2019-2020

Simone Secchi simone.secchi@unimib.it

http://elearning.unimib.it

Prerequisiti e strumenti

- Calcolo differenziale in spazi euclidei di dimensione finita
- Teoria della misura e dell'integrazione secondo Lebesgue
- Principi di Analisi Funzionale Lineare
- \bullet Teoria elementare degli spazi di Sobolev (almeno il caso hilbertiano p=2)

Strumenti: il calcolo differenziale in dimensione infinita

Notazione. Se X è uno spazio di Banach (reale), il suo duale topologico sarà denotato con il simbolo X^* . Se $A \in X^*$, il simbolo A[v] indicherà il valore di A nel punto v; talvolta semplificheremo la notazione e scriveremo Av al posto di A[v].

Definizione. Siano X uno spazio di Banach, e $U \subset X$ un suo aperto. Un funzionale su U è un'applicazione $I: U \to \mathbb{R}$. Si noti che i "nostri" funzionali **non** sono necessariamente **lineari**!

Definizione. Sia $I: U \to \mathbb{R}$ un funzionale. Diremo che I è derivabile secondo Fréchet nel punto $u \in U$ se esiste un elemento $A \in X^*$ tale che

$$\lim_{\|v\| \to 0} \frac{I(u+v) - I(u) - Av}{\|v\|} = 0,\tag{1}$$

o, equivalentemente, se

$$I(u+v) = I(u) + Av + o(||v||) \text{ per } v \to 0.$$

Si osservi che questa è la definizione di funzione differenziabile quando $X = \mathbb{R}^n$.

Lemma. Se I è derivabile nel punto $u \in U$, allora l'elemento A che soddisfa (1) è univocamente determinato.

Dim. Infatti, supponiamo che A e B siano due elementi di X^* che soddisfano (1). Per sottrazione,

$$\lim_{\|v\| \to 0} \frac{(A - B)v}{\|v\|} = 0.$$

Fissiamo $u \in X$ con ||u|| = 1, e scegliamo v = tu, $t \to 0^+$. Allora

$$(A - B)u = \lim_{t \to 0+} \frac{t(A - B)u}{t||u||} = 0.$$

Per l'arbitrarietà di u, concludiamo che A = B.

Definizione. Se I è un funzionale derivabile secondo Fréchet nel punto $u \in U$, la derivata (talvolta: il differenziale) di Fréchet di I in u è l'unico elemento $I'(u) \in X^*$ (talvolta: dI(u)) tale che

$$I(u + v) = I(u) + I'(u)[v] + o(||v||)$$

per $v \to 0$.

Definizione. Se $I: U \to \mathbb{R}$ è derivabile secondo Fréchet in ogni punto $u \in U$, diremo che I è Fréchet-derivabile in U. La derivata di Fréchet di I è allora la mappa $I': U \to X^*$ che ad $u \in U$ associa $I'(u) \in X^*$. Si tratta — in generale — di una mappa $non\ lineare$.

Se I' è una mappa continua da U in X^* , diremo che $I \in C^1(U)$.

Il caso hilbertiano

Se H è uno spazio di Hilbert (reale), è noto che gli elementi del duale H^* sono isometricamente identificati con vettori di H attraverso l'isomorfismo di Riesz. In particolare, un funzionale I definito su $U \subset H$ è derivabile in $u \in U$ se e solo esiste un vettore, detto d'ora in poi gradiente di I in u e denotato $\nabla I(u)$, tale che

$$I(u+v) = I(u) + \langle \nabla I(u) \mid v \rangle + o(\|v\|)$$

per $v \to 0$.

Proposizione. Siano I e J due funzionali derivabili nel punto $u \in X$. Allora valgono le seguenti affermazioni.

- 1. Se a e b sono numeri reali, allora aI + bJ è derivabile in u, e vale (aI + bJ)'(u) = aI'(u) + bJ'(u).
- 2. Il prodotto IJ è derivabile in u, e vale (IJ)'(u) = J(u)I'(u) + I(u)J'(u).
- 3. Se $\gamma: \mathbb{R} \to U$ è una curva derivabile in t_0 e $u = \gamma(t_0)$, allora la composizione $\eta: \mathbb{R} \to \mathbb{R}$ definita da $\eta(t) = I(\gamma(t))$ è derivabile in t_0 , e vale $\eta'(t_0) = I'(u)[\gamma'(t_0)]$.
- 4. Se $A \subset R$ è un aperto, $f: A \to R$ è derivabile in $I(u) \in A$, allora la composizione K(u) = f(I(u)) è definita in un intorno V di u, è derivabile in u e vale K'(u) = f'(I(u))I'(u).

Dim. La prima affermazione è banale (esercizio!). Per quanto riguarda la seconda, quando $v \to 0$ in X, abbiamo

$$\begin{split} I(u+v)J(u+v) &= \left(I(u) + I'(u)[v] + o(\|v\|)\right) \left(J(u) + J'(u)[v] + o(\|v\|)\right) \\ &= I(u)J(u) + J(u)I'(u)[v] + I(u)J'(u)[v] + I'(u)[v]J'(u)[v] \\ &+ o(\|v\|) \left(I(u) + I'(u)[v] + J(u) + J'(u)[v] + o(\|v\|)\right). \end{split}$$

Concludiamo osservando che

$$I'(u)[v]J'(u)[v] + o(||v||)(I(u) + I'(u)[v] + J(u) + J'(u)[v] + o(||v||))$$

è $o(\|v\|)$ per $v \to 0$. La terza affermazione è simile, infatti per $h \to 0$ in \mathbb{R}

$$\eta(t_0 + h) = I(\gamma(t_0 + h)) = I(\gamma(t_0) + \gamma'(t_0)h + o(|h|))
= I(u) + I'(u)[\gamma'(t_0)h + o(|h|)] + o(||\gamma'(t_0)h + o(|h|)||)
= \eta(t_0) + I'(u)[\gamma'(t_0)h] + I'(u)[o(|h|)] + o(||\gamma'(t_0)h + o(|h|)||).$$

Poiché gli ultimi due addendi sono o(|h|), otteniamo che

$$\eta(t_0 + h) = \eta(t_0) + I'(u)[\gamma'(t_0)h] + o(|h|).$$

Infine, quando $v \to 0$ in X, si verifica come prima che

$$K(u+v) = f(I(u+v)) = f(I(u) + I'(u)[v] + o(||v||))$$

= $f(I(u)) + f'(I(u))(I'(u)[v] + o(||v||)) + o(I'(u)[v] + o(||v||))$
= $f(I(u)) + f'(I(u))I'(u)[v] + o(||v||).$

Osservazione. È possibile introdurre il concetto di derivata per applicazioni tra due spazi di Banach X e Y. Solo in questo contesto può essere enunciata una formulazione completa della regola di derivazione delle funzioni composte.

Poiché non ne faremo uso in queste lezioni, rimandiamo al testo di Ambrosetti e Prodi per ulteriori approfondimenti. **Definizione.** Sia I un funzionale definito nell'aperto U di X, e sia $u \in U$. Diremo che I è derivabile secondo Gâteaux in u se esiste un elemento $A \in X^*$ tale che

$$\lim_{t \to 0} \frac{I(u+tv) - I(u)}{t} = Av \tag{2}$$

per ogni $v \in X$. In tal caso, l'unico (esercizio!) elemento siffatto prende il nome di derivata secondo Gâteaux di I in u, e si denota con $I'_G(u)$ o con $d_GI(u)$.

Osserviamo che questa nuova derivata riprende la cosiddetta derivata direzionale già nota nell'ambito del calcolo differenziale in dimensione finita.

In particolare, ricordando i "soliti" esempi in \mathbb{R}^2 , deduciamo che esistono funzionali (non lineari) derivabili secondo Gâteaux ma non derivabili secondo Fréchet.

Condizione sufficiente per la derivabilità secondo Fréchet

Proposizione. Supponiamo che $U \subset X$ sia un aperto, che I sia Gâteaux-derivabile in U, e che I'_G sia continua in un punto $u \in U$. Allora I è Fréchet-derivabile in u, e (ovviamente) $I'(u) = I'_G(u)$.

Omettiamo la dimostrazione, che è probabilmente stata proposta nel caso $X = \mathbb{R}^2$ nel corso di Analisi Matematica 2.

Punti critici

Definizione. Siano X uno spazio di Banach, U un aperto di X, e I un funzionale definito su U. Diremo che $u \in U$ è un punto critico di I se I è derivabile in u e

$$I'(u) = 0.$$

Più esplicitamente, questo significa che I'(u)[v] = 0 per ogni $v \in X$.

Se u è un punto critico di I e I(u)=c, diremo che u è un punto critico (di I) al livello c. Se, per qualche $c \in \mathbb{R}$, l'insieme $I^{-1}(\{c\}) \subset X$ contiene almeno un elemento, diremo che c è un valore critico per I.

L'equazione I'(u) = 0 è nota come equazione di Eulero (o di Eulero-Lagrange) associata al funzionale I.

Esempi

Esempio 1. Ogni $A \in X^*$ è derivabile. Infatti, basta scrivere

$$A[u+v] = Au + Av$$

per dedurre che A'(u) = A per qualsiasi $u \in X$.

Esempio 2. Sia X uno spazio di Banach, e sia $a: X \times X \to \mathbb{R}$ una forma bilineare continua. Denotiamo con $J: X \to \mathbb{R}$ il funzionale definito da J(u) = a(u, u) per ogni $u \in X$. Allora J è derivabile in X. Infatti

$$J(u+v) = a(u+v, u+v) = a(u, u) + a(u, v) + a(v, u) + a(v, v)$$

= $J(u) + a(u, u) + a(u, v) + a(v, u) + a(v, v)$.

Poiché $|a(v,v)| \leq M||v||^2$ per l'ipotesi di continuità di a come forma bilineare, deduciamo che a(v,v) = o(||v||) per $v \to 0$, e dunque che

$$J'(u)[v] = a(u, v) + a(v, u).$$

Esempio 3. (esercizio) Sia H uno spazio di Hilbert con norma $\|\cdot\|$. Il funzionale $J(u) = \|u\|$ è derivabile in ogni punto $u \neq 0$, e risulta

$$\nabla J(u) = \frac{u}{\|u\|}.$$

Esempio 4. Sia X uno spazio di Banach, e siano I, J due funzionali derivabili in X. Definiamo

$$Q(u) = \frac{I(u)}{J(u)}$$

sul sottoinsieme (aperto) $\{u \in X \mid J(u) \neq 0\}$. Per la Proposizione sulle regole di calcolo dimostrata sopra, possiamo affermare che Q è derivabile e che

$$Q'(u) = \frac{J(u)I'(u)[v] - I(u)J'(u)[v]}{J(u)^2}$$

per ogni u inX tale che $J(u) \neq 0$.

Esempi in spazi concreti

Esempio 5. Sia $\Omega \subset \mathbb{R}^N$, $N \geq 1$, un insieme aperto e limitato. Definiamo i funzionali

$$I: L^{2}(\Omega) \to \mathbb{R}, \quad I(u) = \int_{\Omega} |u(x)|^{2} dx,$$

$$J: H_{0}^{1}(\Omega) \to \mathbb{R}, \quad J(u) = \int_{\Omega} |\nabla u(x)|^{2} dx,$$

$$K: H^{1}(\Omega) \to \mathbb{R}, \quad K(u) = \int_{\Omega} |\nabla u(x)|^{2} dx,$$

$$L: H^{1}(\Omega) \to \mathbb{R}, \quad L(u) = \int_{\Omega} |\nabla u(x)|^{2} dx + \int_{\Omega} |u(x)|^{2} dx.$$

Trattandosi di forme quadratiche associate a forme bilineari continue, sappiamo già che i quattro funzionali sono derivabili.

Esplicitamente, valgono le relazioni

$$\nabla I(u) = 2u$$
$$\nabla L(u) = 2u$$
$$\nabla J(u) = 2u.$$

Un calcolo diretto mostra che

$$K'(u)[v] = 2 \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx$$

per ogni $u, v \in H^1(\Omega)$, ma non siamo autorizzati ad affermare che $\nabla K(u) = 2u$ (perché?)

Inversione della Convergenza Dominata

Teorema di Lebesgue. Sia Ω un aperto di \mathbb{R}^N , e sia $\{u_k\}_k$ una successione in $L^1(\Omega)$ tale che

- 1. $u_k(x) \to u(x)$ per q.o $x \in \Omega$;
- 2. esiste $v \in L^1(\Omega)$ tale che $|u_k(x)| \leq v(x)$ per q.o. $x \in \Omega$ e ogni k.

Allora $u \in L^1(\Omega)$ e $u_k \to u$ nella norma di $L^1(\Omega)$.

Questo risultato fondamentale di Teoria della Misura può essere *parzialmente* invertito, come mostra il seguente teorema. Per la dimostrazione, rimandiamo al libro di H. Brezis, Analisi funzionale.

Teorema. Sia Ω un aperto di \mathbb{R}^N , e sia $\{u_k\}_k$ una successione di $L^p(\Omega)$, $p \in [1, +\infty]$, tale che $u_k \to u$ in $L^p(\Omega)$. Allora esistono una sottosuccessione $\{u_{k_j}\}_j$ ed una funzione $v \in L^p(\Omega)$ tali che

- 1. $u_{k_j}(x) \to u(x)$ per q.o. $x \in \Omega$;
- 2. per ogni j, $|u_{k_i}(x)| \leq v(x)$ per q.o. $x \in \Omega$.

Questo teorema mostra che la convergenza forte in L^p implica — a meno di sottosuccessioni — l'esistenza di una funzione dominante.

Operatori di Nemitskii

Siano Ω un aperto limitato di \mathbb{R}^N , $N \geq 3$, con frontiera regolare, e sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua. Supponiamo che esistano a > 0 e b > 0 tali che

$$|f(t)| \le a + b|t|^{2^* - 1},$$

dove $2^* = 2N/(N-2)$ è l'esponente critico di Sobolev. Definiamo

$$F(t) = \int_0^t f(x) \, dx$$

e consideriamo il funzionale $J: H^1(\Omega) \to \mathbb{R}$ dato da

$$J(u) = \int_{\Omega} F(u(x)) \ dx.$$

Proposizione. Sotto le ipotesi precedenti, J è un funzionale derivabile in $H^1(\Omega)$, e vale

$$J'(u)[v] = \int_{\Omega} f(u(x))v(x) dx$$

per ogni $u, v \in H^1(\Omega)$.

La dimostrazione non è immediata: mostriamo prima che J è Gâteaux-derivabile, e poi che la derivata di Gâteaux è continua. Come abbiamo visto sopra, ciò implica che J è Fréchet-derivabile.

Derivata di Gâteaux

Per q.o. $x \in \Omega$, risulta

$$\lim_{t \to 0} \frac{F'(u(x) + t(v(x)) - F'(u(x))}{t} = f(u(x))v(x).$$

Per il teorema di Lagrange, esiste un numero reale θ tale che $|\theta| \leq |t|$ e

$$\left| \frac{F(u(x) + t(v(x)) - F(u(x))}{t} \right| = |f(u(x) + \theta v(x))v(x)|$$

$$\leq (a + b|u(x) + \theta v(x)|^{2^* - 1})|v(x)|$$

$$\leq C(|v(x)| + |u(x)|^{2^* - 1}|v(x)| + |v(x)|^{2^*}).$$

Per Convergenza Dominata,

$$\lim_{t \to 0} \int_{\Omega} \frac{F'(u(x) + t(v(x)) - F'(u(x))}{t} \, dx = \int_{\Omega} f(u(x))v(x) \, dx.$$

Poiché $v \mapsto \int_{\Omega} f(u(x))v(x) dx$ è un operatore lineare e continuo in $H^1(\Omega)$ (disuguaglianza di Hölder e di Sobolev), abbiamo individuato la derivata secondo Gâteaux di J:

$$J'_G(u)[v] = \int_{\Omega} f(u(x))v(x) dx.$$

Derivata di Fréchet

Mostriamo che $J'_G: H^1(\Omega) \to (H^1(\Omega))^*$ è un'applicazione continua. A tal fine, sia $\{u_k\}_k$ una successione che converge a u in $H^1(\Omega)$. Per il teorema di convergenza dominata inversa, possiamo supporre che — a meno di sottosuccessioni —

- $u_k \to u$ in $L^{2^*}(\Omega)$;
- $u_k(x) \to u(x)$ per q.o. $x \in \Omega$;
- esiste $w \in L^{2^*}(\Omega)$ tale che $|u_k(x)| \leq w(x)$ per q.o. $x \in \Omega$ e ogni k.

Usiamo la disuguaglianza di Hölder:

$$|(J'_{G}(u_{k}) - J'_{G}(u))[v]| \leq \int_{\Omega} |f(u_{k}(x)) - f(u(x))||v(x)| dx$$

$$\leq \left(\int_{\Omega} |f(u_{k}(x)) - f(u(x))|^{\frac{2^{*}}{2^{*}-1}} dx\right)^{\frac{2^{*}-1}{2^{*}}} \times \left(\int_{\Omega} |v(x)|^{2^{*}} dx\right)^{1/2^{*}}.$$

La continuità di f implica $\lim_{k\to+\infty} |f(u_k(x)) - f(u(x))| = 0$ per q.o. $x \in \Omega$, e inoltre

$$|f(u_k(x)) - f(u(x))|^{\frac{2^*}{2^*-1}} \le C \left(1 + |u_k(x)|^{2^*-1} + |u(x)|^{2^*-1}\right)^{\frac{2^*}{2^*-1}}$$

$$\le C \left(1 + |w(x)|^{2^*-1} + |w(x)|^{2^*-1}\right)^{\frac{2^*}{2^*-1}}$$

$$\le C \left(1 + |w(x)|^{2^*} + |w(x)|^{2^*}\right) \in L^1(\Omega).$$

Per Convergenza Dominata,

$$\lim_{k \to +\infty} \int_{\Omega} |f(u_k(x)) - f(u(x))|^{\frac{2^*}{2^*-1}} dx = 0.$$

Perciò

$$||J'_{G}(u_{k}) - J'_{G}(u)|| = \sup\{(J'_{G}(u_{k}) - J'_{G}(u))[v] \mid v \in H^{1}(\Omega), ||v|| = 1\}$$

$$\leq C\left(\int_{\Omega} |f(u_{k}(x)) - f(u(x))|^{\frac{2^{*}}{2^{*}-1}} dx\right)^{\frac{2^{*}-1}{2^{*}}} \to 0.$$

Riassumendo: abbiamo dimostrato che da ogni successione $\{u_k\}_k$ convergente a u è possibile estrarre una sottosuccessione tale che $J'_G(u_k) \to J'_G(u)$ in $(H^1(\Omega))^*$. È ora un esercizio di Topologia Generale dedurre che l'intera successione $\{u_k\}_k$ gode di questa proprietà (perché il limite è indipendente dalla sottosuccessione scelta).