Observables y Medidas

Luis Daniel Benavides Navarro 24-03-2020

Observables

- Los observables de un sistema se representan por operadores hermitianos.
- El resultado de una Observación es siempre un valor propio del operador hermitiano
- Para un sistema dado con un observable Ω y preparado en el estado $|\psi\rangle$ el valor esperado al preparar el experimento y observar Ω varias veces será $\langle\psi|\Omega|\psi\rangle$
- Los observables no conmutan, es decir el orden de observación importa.
- Si el conmutador de dos observable no es cero, hay un límite en nuestra capacidad de medirlos simultáneamente.

Medidas

- El observable define la pregunta que le podemos hacer al sistema
- La medida es el acto de hacer una observación en un sistema se denomina medida

Estado después de una medida

Postulado 1

- Suponga un sistema dado con un observable Ω y preparado en el estado $|\psi\rangle$.
- Suponga que usted realiza la medida de el Ω y obtiene el valor λ
- El estado después de la medida será siempre el vector propio correspondiente a λ
 - (Recordatorio: $\operatorname{si} A \in \mathbb{C}^{n \times n}$ y $AV = \lambda$. V, entonces λ es un valor propio y V es el vector propio de λ)

Probabilidad de transición

- Suponga un sistema dado con un observable Ω y preparado en el estado $|\psi\rangle$.
- $|e\rangle$ es un vector propio de Ω
- La probabilidad de transitar de $|\psi\rangle$ a $|e\rangle$ está dada por:
 - $|\langle e|\psi\rangle|^2$

Valor esperado

- El valor esperado es la media de la distribución de probabilidad
 - Suponga un sistema dado con un observable Ω y preparado en el estado $|\psi\rangle$ y se mide el observable Ω
 - Si usted repite el experimento muchas veces la media de la observación tenderá al valor esperado.
 - Es decir tiende a $\langle \psi | \Omega | \psi \rangle = \langle \Omega \rangle_{\psi}$

Simple experimento de medidas

Simple experimento de medidas

Dinámica del sistema

- La dinámica del sistema está dada por transformaciones unitarias (Matrices unitarias)
- Las transformaciones unitarias son invertible. Por lo tanto, la dinámica de un sistema cerrado se puede revertir en el tiempo.

Ensamblando sistemas

- El espacio vectorial de un sistema ensamblado está dado por el producto tensor de los espacios vectoriales de los sistemas individuales
- La dinámica de un sistema ensamblado está dado por el producto tensor de las matrices describiendo la dinámica del sistema.

Ejercicios

- Realice el quiz asignado en moodle
- Creo un proyecto de github nuevo denominado Observables y medidas.
- Modele en su librería los problemas
 - 4.3.1
 - 4.3.2
 - 4.4.1
 - 4.4.2
 - Desarrolle e incluya en el Github una discusión de los ejercicios 4.5.2 y 4.5.3