7 The dominated convergence theorem

Theorem 7.1 (Dominated convergence theorem (D.C.T.)). Let $X, X_1, X_2, ... \in \mathcal{M}$ and $Y, Y_1, Y_2, ... \in \mathcal{L}^1(\mu)$ such that

- (i) $X_n \to X$ a.e.,
- (ii) $|X_n| \leq Y_n$ for all n,
- (iii) $Y_n \to Y$ a.e. and
- (iv) $\int Y_n d\mu \to \int Y d\mu$.

Then $X, X_1, X_2, \ldots \in \mathcal{L}^1(\mu)$ and $\int X_n d\mu \to \int X d\mu$.

Proof. It is clear that $X_1, X_2, \ldots \in \mathcal{L}^1(\mu)$; then $X \in \mathcal{L}^1(\mu)$. Indeed, by the Fatou's lemma,

$$\int |X| d\mu \le \int \liminf |X_n| d\mu$$

$$\le \liminf \int |X_n| d\mu$$

$$\le \liminf \int Y_n d\mu$$

$$\le \int Y d\mu.$$

On one hand, $Y_n + X_n \in \mathcal{M}^+$ for every n; by the Fatou's lemma,

$$\int Y d\mu + \int X d\mu \le \int (Y + X) d\mu$$

$$\le \int \liminf (Y_n + X_n) d\mu$$

$$\le \liminf \int (Y_n + X_n) d\mu$$

$$\le \liminf \int (Y_n d\mu + \int X_n d\mu)$$

$$\le \liminf \int (Y_n d\mu) + \liminf \int (X_n d\mu)$$

$$\le \int Y d\mu + \liminf \int (X_n d\mu),$$

hence,

$$\int X d\mu \le \liminf \int X_n d\mu. \tag{1}$$

On the other hand, $Y_n - X_n \in \mathcal{M}^+$ for every n; and by the Fatou's lemma, analogy, we have that

$$\limsup \int X_n d\mu \le \int X d\mu. \tag{2}$$

Finally, from (1) and (2), we conclude the desired limit.

Remark 7.2. This version of the D.C.T. is stronger than the classical one.

Property 7.3. Let $X, Y : \Omega \to \mathbb{R}$ be integrabel functions. Then X = Y a.e. iff for all $A \in \mathcal{A}$:

$$\int_{A} X d\mu = \int_{A} Y d\mu. \tag{3}$$

Proof. (\Rightarrow) Let $A \in \mathcal{A}$ and let $N \in \mathcal{A}$ be a null set such that X = Y on N^c . Then $\mathbf{1}_A X = \mathbf{1}_A Y$ on $N^c \cup A^c$; i.e., $\mathbf{1}_A X = \mathbf{1}_A Y$ a.e.; since, $\mu(N \cap A) = 0$. Hence, we have the equation (3).

(\Leftarrow) Since μ is σ -finite, let $A_1, A_2, \ldots \in \mathcal{A}$ be such that $A_n \uparrow \Omega$. For every n, let $X_n := \mathbf{1}_{A_n} X$ and $f_n := \mathbf{1}_{A_n} |X|$. Let f := |X|. Then we claim that

- (i) $X_n \to X$,
- (ii) $|X_n| \leq f_n$ for all n,
- (iii) $f_n \to f$ and
- (iv) $\int f_n d\mu \to \int f d\mu$,

where the last proposition follows from the D.C.T.; since, $f, f_1, f_2, \ldots \in \mathcal{M}^+$ and $f_n \uparrow f$. Hence, by the D.C.T.,

$$\int_{A_n} X d\mu \to \int X d\mu. \tag{4}$$

Analogously, we have that

$$\int_{A_n} Y d\mu \to \int Y d\mu. \tag{5}$$

Then from (3), (4) and (5), we conclude that

$$\int Xd\mu = \int Yd\mu.$$

Therefore, as $(X - Y) \in \mathcal{L}^1$, we have that

$$\int (X - Y)d\mu = 0.$$

Finally, we conclude that X = Y a.e.