

RAW SEQUENCE LISTING DATE: 04/02/2001 PATENT APPLICATION: US/09/020,743 TIME: 14:23:25

25/2

Input Set : A:\18547348.app

SEQUENCE LISTING

Output Set: N:\CRF3\04022001\I020743.raw

ENTERED

4 (1) GENERAL INFORMATION: (i) APPLICANT: Mack, David H. 8 (ii) TITLE OF INVENTION: COMPUTER-AIDED VISUALIZATION OF 9 EXPRESSION COMPARISON (iii) NUMBER OF SEQUENCES: 2 11 (iv) CORRESPONDENCE ADDRESS: 13 (A) ADDRESSEE: Joe Liebeschuetz of Townsend and Townsend and 14 15 Crew LLP (B) STREET: Two Embarcadero Center, Eighth Floor 16 17 (C) CITY: San Francisco 18 (D) STATE: CA (E) COUNTRY: USA 19 20 (F) ZIP: 94111-3834 22 (V) COMPUTER READABLE FORM: 23 (A) MEDIUM TYPE: Floppy disk 24 (B) COMPUTER: IBM PC compatible 25 (C) OPERATING SYSTEM: PC-DOS/MS-DOS 26 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: 28 C--> 29 (A) APPLICATION NUMBER: US/09/020,743 C-->30(B) FILING DATE: 09-Feb-1998 31 (C) CLASSIFICATION: 33 (viii) ATTORNEY/AGENT INFORMATION: 34 (A) NAME: Liebeschuetz, Joe 35 (B) REGISTRATION NUMBER: 37,505 36 (C) REFERENCE/DOCKET NUMBER: 018547034800US 38 (ix) TELECOMMUNICATION INFORMATION: 39 (A) TELEPHONE: (650) 326-2400 40 (B) TELEFAX: (650) 326-2422 43 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: 45 46 (A) LENGTH: 2691 base pairs 47 (B) TYPE: nucleic acid 48 (C) STRANDEDNESS: unknown W--> 49 (D) TOPOLOGY: not relevant 51 (ii) MOLECULE TYPE: DNA (genomic) 53 (vi) ORIGINAL SOURCE: 54 (A) ORGANISM: Homo sapiens 58 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: 60 60 GGAGACAGAC AGACAGCTGG CAAGAGGCAG CCTGGGGGCC ACAGCTGCTT CAGCAGACCT 62 CATGGCTGAG TGAGCCTCCC CTGGGCCCAG CACCCCACCT CAGCATGGTC CAAGCCCATG 120 64 GGGGGCGCTC CAGAGCACAG CCGTTGACCT TGTCTTTGGG GGCAGCCATG ACCCAGCCTC 180 66 CGCCTGAAAA AACGCCAGCC AAGAAGCATG TGCGACTGCA GGAGAGGCGG GGCTCCAATG 240 68 TGGCTCTGAT GCTGGACGTT CGGTCCCTGG GGGCCGTAGA ACCCATCTGC TCTGTGAACA 300 70 CACCCGGGA GGTCACCCTA CACTTTCTGC GCACTGCTGG ACACCCCCTT ACCCGCTGGG 360 72 CCCTTCAGCG CCAGCCACCC AGCCCCAAGC AACTGGAAGA AGAATTCTTG AAGATCCCTT 420

RAW SEQUENCE LISTINGPATENT APPLICATION: **US/09/020,743**DATE: 04/02/2001
TIME: 14:23:25

Input Set : A:\18547348.app

Output Set: N:\CRF3\04022001\I020743.raw

```
74 CAAACTTTGT CAGCCCCGAA GACCTGGACA TCCCTGGCCA CGCCTCCAAG GACCGATACA
                                                                               480
     76 AGACCATCTT GCCAAATCCC CAGAGCCGTG TCTGTCTAGG CCGGGCACAG AGCCAGGAGG
                                                                               540
     78 ACGGAGATTA CATCAATGCC AACTACATCC GAGGCTATGA CGGGAAGGAG AAGGTCTACA
                                                                               600
     80 TTGCCACCA GGGCCCCATG CCCAACACTG TGTCGGACTT CTGGGAGATG GTGTGGCAAG
                                                                               660
     82 AGGAAGTGTC CCTCATTGTC ATGCTCACTC AGCTCCGAGA GGGCAAGGAG AAATGTGTCC
                                                                               720
     84 ACTACTGGCC CACAGAAGAG GAAACCTATG GACCCTTCCA GATCCGCATC CAGGACATGA
                                                                               780
     86 AAGAGTGCCC AGAATACACT GTGCGGCAGC TCACCATCCA GTACCAGGAA GAGCGCCGGT
                                                                               840
     88 CAGTAAAGCA CATCCTCTTT TCGGCCTGGC CAGACCATCA GACACCAGAA TCAGCTGGGC
                                                                               900
     90 CCCTGCTGCG CCTAGTGGCA GAGGTGGAGG AGAGCCCGGA GACAGCCGCC CACCCCGGGC
                                                                               960
     92 CTATCGTAGT CCACTGCAGT GCAGGGATTG GCCGGACGGG CTGCTTCATC GCCACGCGAA
                                                                              1020
     94 TTGGCTGTCA ACAGCTGAAA GCCCGAGGAG AAGTGGACAT TCTGGGTATT GTGTGCCAAC
                                                                              1080
     96 TGCGGCTAGA CAGAGGGGGG ATGATCCAGA CGGACGAGCA GTACCAGTTC CTGCACCACA
                                                                              1140
     98 CTTTGGCCCT GTATGCAGGC CAGCTGCCTG AGGAACCCAG CCCCTGACCC CTGCCACCCT
                                                                              1200
     100 CCGGTGGCCC AGGTGCCTAC CTCCCTCAAG CCTGGGAAGT CACAGGAAGC AGCAGCAGTA
                                                                               1260
     102 AGGACAAGGG GCCGGATTCC AGGTCTTCAA CACTGGCCAC TCCTCTGCTT CCTCTGTTGG
                                                                               1320
     104 CCCCAGATGG ACAGTAAGGG GAACCTCCAA TGTCTCTCTG AACTTAAAGA CAGGAGCTGG
                                                                               1380
     106 CATTTATGAC AGACAAAGAA AGAAGCCCAG GTGTCCTGGT GTTCTCTGAG ACACTCTTTG
                                                                               1440
     108 TGAGCTTCAG TTTCCTGTTC TATAACATGA ACATAAGTGC TTAGCTGCCA TGAGGGAAAA
                                                                               1500
     110 GTAATGAGAG AAGTTTCTAG AAGCCACTCC AGCCACTCCT TCCTGGGGCT GACAAAAGGG
                                                                               1560
     112 TGATTCCAAG ATCATCCTTC ACCCGAGGTC CTGCCCAAGC ACAGGCCAGA TGCAAGAATG
                                                                               1620
     114 GGGAAAAGTC TGGTCCTGAT CTCCAAGTCT CAACATCCTA TCAGTGACTC TGCTCCCTGA
                                                                               1680
     116 CCACACATCG GAAGGGCTGG ATGACCCCAA TCAAAAGAAA GAACAAGGAC TCTGGTTACC
                                                                               1740
     118 CTTGCCCTCC ACCCATGTGT CATAAGAGTA GGCTACAGAG GTGACCAGGC CTGGCAGTTG
                                                                               1800
     120 AAATCTCTGG AAGAGGGAAC ATGTGGGGAC TACTCAGAGG CAAAGAGGAG CTGCTCCTGC
                                                                               1860
     122 CTCCATGGTT GCTGGCCACT CCCACCAACT ACTCTTAGGG AGGCTAAGCA GTCTCTGTTT
                                                                               1920
     124 TGCTTCCATG GCTCAAATAA TACCCTGGGT ATGCAGGACC CACTATACCT TGCATTTGCT
                                                                               1980
     126 GGTACACCTA GAGAGCTTGG CTGTTTCCAA AAACAATCAG GGTCATAACC ATCCATGCAG
                                                                               2040
     128 ACATGGAGGC TCGGCTGAAC CAGGACTCCT CACTGTCTAC CTGAGAGAAT GAGCACCCCT
                                                                               2100
     130 CATCCATCTC AGCATCAACA CAATTTCCAG GGGACCTCAG GTCTACCTCA GGACTGAACG
                                                                               2160
     132 CCACACCTCA GGATTCCTCC TCCTTGAATC TGAGACTGGC TGCCCATTCT GAGATGGGGA
                                                                               2220
     134 TGAAGGTAAG ATGCCGCATC ACCAGGCACG CCGCCCCTGA CAGCTGCCTT GATACCAGCT
                                                                               2280
     136 CTCTGTGGAA ACCCCCGAGG AGTTGGATCT GGAGAACAGC TGGGCCTCCT CACTCAGGAC
                                                                               2340
     138 TTCTCTCTG AAGAACACGC AGTGCTAAAA CTGAGGATGA TTTCCCTAAT GCTTCTGCTT
                                                                               2400
     140 GGCCTTATGG AGGAGCTGCT CCTTCCTTAC AGCCTTGGGG ATGGACTTGC CCACACCTCC
                                                                               2460
     142 ACCTCCCTG AGCCCTGTGA GAGGCACGAC TGTCTATGCC AATGAGGCTC GGTGGGGGGC
                                                                               2520
     144 TCTCAAGTGC CTGATCCTGC CCTGGGCTCA GAGCCAGCCC AGAGGGAAGC AACTGCACAG
                                                                               2580
     146 CCCCACAGGC CCTCCCTGGC ACTGTCCCCC CAACCCCATC TCAGAGCTCA GAGGGTACAA
                                                                               2640
     148 GCTCCAGAAC AGTAACCAAG TGGGAAAATA AAGACTTCTT GGATGACTGA C
                                                                               2691
     150 (2) INFORMATION FOR SEQ ID NO: 2:
     152
              (i) SEQUENCE CHARACTERISTICS:
     153
                   (A) LENGTH: 360 amino acids
     154
                   (B) TYPE: amino acid
     155
                   (C) STRANDEDNESS: not relevant
W--> 156
                   (D) TOPOLOGY: not relevant
     158
             (ii) MOLECULE TYPE: protein
     160
             (vi) ORIGINAL SOURCE:
     161
                   (A) ORGANISM: Homo sapiens
     165
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
     167
             Met Val Gln Ala His Gly Gly Arg Ser Arg Ala Gln Pro Leu Thr Leu
```

RAW SEQUENCE LISTING DATE: 04/02/2001 PATENT APPLICATION: US/09/020,743 TIME: 14:23:25

Input Set : A:\18547348.app

Output Set: N:\CRF3\04022001\I020743.raw

168	1				5					10					15	
170	Ser	Leu	Gly	Ala	Ala	Met	Thr	Gln	Pro	Pro	Pro	Glu	Lys	Thr	Pro	Ala
171			-	20					25				-	30		
173	Lys	Lys	His	Val	Arg	Leu	Gln	Glu	Arg	Arg	Gly	Ser	Asn	Val	Ala	Leu
174	_	-	35		_			40	-	_	_		45			
176	Met	Leu	Asp	Val	Arg	Ser	Leu	Gly	Ala	Val	Glu	Pro	Ile	Cys	Ser	Val
177		50			_		55	_				60				
179	Asn	Thr	Pro	Arg	Glu	Val	Thr	Leu	His	Phe	Leu	Arg	Thr	Ala	Gly	His
180	65					70					75					80
182	Pro	Leu	Thr	Arg	Trp	Ala	Leu	Gln	Arg	Gln	Pro	Pro	Ser	Pro	Lys	Gln
183					85					90					95	
185	Leu	Glu	Glu	Glu	Phe	Leu	Lys	Ile	Pro	Ser	Asn	Phe	Val	Ser	Pro	Glu
186				100					105					110		
188	Asp	Leu	Asp	Ile	Pro	Gly	His	Ala	Ser	Lys	Asp	Arg	Tyr	Lys	Thr	Ile
189			115					120					125			
191	Leu	Pro	Asn	Pro	Gln	Ser	Arg	Val	Cys	Leu	Gly	Arg	Ala	Gln	Ser	Gln
192		130					135					140				
194	Glu	Asp	Gly	Asp	Tyr	Ile	Asn	Ala	Asn	Tyr	Ile	Arg	Gly	Tyr	Asp	Gly
195	145					150					155					160
197	Lys	Glu	Lys	Val	Tyr	Ile	Ala	Thr	Gln	Gly	Pro	Met	Pro	Asn	Thr	Val
198					165					170					175	
200	Ser	Asp	Phe	${\tt Trp}$	Glu	Met	Val	${\tt Trp}$	Gln	Glu	Glu	Val	Ser	Leu	Ile	Val
201				180					185					190		
203	Met	Leu	Thr	Gln	Leu	Arg	Glu	Gly	Lys	Glu	Lys	Cys	Val	His	Tyr	${\tt Trp}$
204			195					200					205			
206	Pro	Thr	Glu	Glu	Glu	Thr		Gly	Pro	Phe	Gln	Ile	Arg	Ile	Gln	Asp
207		210					215					220				
209		Lys	Glu	Cys	Pro		Tyr	Thr	Val	Arg		Leu	Thr	Ile	Gln	_
210	225	_				230					235					240
212	Gln	Glu	Glu	Arg	_	Ser	Val	Lys	His		Leu	Phe	Ser	Ala	Trp	Pro
213	_	•			245		_			250	_			_	255	
215	Asp	His	GIn		Pro	GLu	Ser	Ala	_	Pro	Leu	Leu	Arg		Val	Ala
216	a 1		- 1	260	_	_	~ 7	_,	265		•	_		270		
218	Glu	Val		GLu	Ser	Pro	GLu		Ala	Ala	His	Pro	_	Pro	Ile	Val
219			275	~		~ 1	- 1	280	_	-1	-1	_	285	1		-1
221	Val		Cys	ser	Ala	GIY		СТА	Arg	Inr	GTĀ	_	Pne	ше	Ala	Thr
222	3	290	a 1	G	61	a 1	295	.			a 1	300	** . 1	•	- 1.	.
224	_	iie	GIY	Cys	GIN		Leu	гàг	Ата	Arg	-	GLU	vaı	Asp	Ile	
225	305	т1.	171	O	a1	310	7	T	3	7	315	01	17 a.h.	T1.	01 =	320
227	σтλ	тте	val	суѕ			arg	ьeu	ASP		стА	стА	мет	тте	Gln	THE
228	λ ~ ~	C1	C1-	m	325		т ~…	11.2	TT = ~	330	т с	A 7 -	T	M	335	C1
230 231	ASP	GIU	GTII	1yr 340	GTII	rue	ьeu	нта		THT.	ьeu	Ald	ьeu	_	Ala	ату
231	Clr	Ton	Dro		C1	Drc	Cor	Dro	345					350		
234	GIII	ьеи		GIU	Glu	PLO	ser									
234			355					360								

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/020,743

DATE: 04/02/2001 TIME: 14:23:26

Input Set : A:\18547348.app

Output Set: N:\CRF3\04022001\I020743.raw

L:29 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]

L:30 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]

L:49 M:246 W: Invalid value of Alpha Sequence Header Field, [TOPOLOGY:], SeqNo=1 L:156 M:246 W: Invalid value of Alpha Sequence Header Field, [TOPOLOGY:], SeqNo=2