

SDS 385: Stat Models for Big Data

Lecture 3: GD and SGD cont.

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Scalability concerns

- You have to calculate the gradient every iteration.
- Take ridge regression.
- You want to minimize $1/n\left((\mathbf{y} \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} \mathbf{X}\boldsymbol{\beta}) \lambda \boldsymbol{\beta}^T\boldsymbol{\beta}\right)$
- Take a derivative: $(-2\boldsymbol{X}^T(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})-2\lambda\boldsymbol{\beta})/n$
- Grad descent update takes $\boldsymbol{\beta}_{t+1} \leftarrow \boldsymbol{\beta}_t + \alpha (\boldsymbol{X}^T (\boldsymbol{y} \boldsymbol{X} \boldsymbol{\beta}_t) + \lambda \boldsymbol{\beta}_t)$
- What is the complexity?
 - Trick: first compute $y X\beta$.
 - np for matrix vector multiplication, nnz(X) for sparse matrix vector multiplication.
 - Remember the examples with humongous n and p?

What will you need for this class

- Stuff you should know from the last lecture.
- The knowledge of conditional expectation.
- Law of total expectation, which is also known as the tower property.

So what to do?

- For t = 1 : T
 - Draw σ_t with replacement from n
 - $\beta_{t+1} = \beta_t \alpha \nabla f(x_{\sigma_t}; \beta_t)$
- In expectation (over the randomness of the index you chose), for a fixed β ,

$$E[\nabla f(x_{\sigma_t};\beta)] = \frac{\sum_i \nabla f(x_i;\beta)}{n}$$

• Does this also converge?

Figure 1: Gradient descent vs Stochastic gradient descent

• Let $\nabla f(X; \beta)$ be the full derivative.

$$\beta_{t+1} - \beta^* = \beta_t - \beta^* - \alpha \nabla f(x_{\sigma_t}; \beta_t)$$

$$\|\beta_{t+1} - \beta^*\|^2$$

$$= \|\beta_t - \beta^*\|^2 + \alpha^2 \|\nabla f(x_{\sigma_t}; \beta_t)\|^2 - 2\alpha \langle \nabla f(x_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle$$

Take the expectation

$$E[\|\beta_{t+1} - \beta^*\|^2] = E[\|\beta_t - \beta^*\|^2] + \alpha^2 E\|\nabla f(x_{\sigma_t}; \beta_t)\|^2$$
$$-2\alpha E\langle\nabla f(x_{\sigma_t}; \beta_t), \beta_t - \beta^*\rangle$$

- Let $\nabla f(X; \beta)$ be the full derivative.
- How do we do expectation of the cross product

$$E\langle \nabla f(\mathbf{x}_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle = EE[\langle \nabla f(\mathbf{x}_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle | \sigma_1, \dots, \sigma_{t-1}]$$
$$= E\langle \nabla f(\mathbf{X}; \beta_t), \beta_t - \beta^* \rangle$$

- Let $\nabla f(X; \beta)$ be the full derivative.
- How do we do expectation of the cross product

$$E\langle \nabla f(\mathbf{x}_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle = EE[\langle \nabla f(\mathbf{x}_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle | \sigma_1, \dots, \sigma_{t-1}]$$
$$= E\langle \nabla f(\mathbf{X}; \beta_t), \beta_t - \beta^* \rangle$$

• Now we will use strong convexity. Recall:

$$\langle \beta - \beta', \nabla f(X; \beta) - \nabla f(X; \beta') \rangle \ge \mu \|\beta - \beta'\|^2$$

- Let $\nabla f(X; \beta)$ be the full derivative.
- How do we do expectation of the cross product

$$E\langle \nabla f(x_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle = EE[\langle \nabla f(x_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle | \sigma_1, \dots, \sigma_{t-1}]$$
$$= E\langle \nabla f(X; \beta_t), \beta_t - \beta^* \rangle$$

• Now we will use strong convexity. Recall:

$$\langle \beta - \beta', \nabla f(X; \beta) - \nabla f(X; \beta') \rangle \ge \mu \|\beta - \beta'\|^2$$

• Take $\beta = \beta_t$ and $\beta' = \beta^*$:

$$\langle \beta_t - \beta^*, \nabla f(X; \beta_t) - \underbrace{\nabla f(X; \beta^*)}_{0} \rangle \ge \mu \|\beta_t - \beta^*\|^2$$

- Let $\nabla f(X; \beta)$ be the full derivative.
- How do we do expectation of the cross product

$$\begin{split} E\langle \nabla f(\mathbf{x}_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle &= EE[\langle \nabla f(\mathbf{x}_{\sigma_t}; \beta_t), \beta_t - \beta^* \rangle | \sigma_1, \dots, \sigma_{t-1}] \\ &= E\langle \nabla f(X; \beta_t), \beta_t - \beta^* \rangle \\ &\geq \mu \|\beta_t - \beta^*\|^2 \end{split}$$

•

$$E\|\nabla f(x_{\sigma_t}; \beta_t)\|^2 = EE\left[\|\nabla f(x_{\sigma_t}; \beta_t)\|^2 \middle| \sigma_1, \dots, \sigma_{t-1}\right]$$
$$= \frac{1}{n} \sum_i E\left[\|\nabla f(x_i; \beta_t)\|^2\right]$$
$$\leq M \qquad \text{We assume this}$$

SGD cont.

• So by total expectation rule,

$$E[\|\beta_{t+1} - \beta^*\|^2] \le (1 - 2\alpha\mu)E[\|\beta_t - \beta^*\|^2] + \alpha^2 M$$

- So SGD is converging to a noise ball.
- How to remedy this?

SGD stepsize

- Assume you are far away from the noise ball.
- $\bullet \|\beta_t \beta^*\|^2 \ge \alpha M/\mu.$
- Then,

$$\begin{split} E[\|\beta_{t+1} - \beta^*\|^2 |\beta_t] &\leq (1 - 2\alpha\mu) \|\beta_t - \beta^*\|^2 + \alpha\mu \|\beta_t - \beta^*\|^2 \\ &\leq (1 - \alpha\mu) \|\beta_t - \beta^*\|^2 \quad \text{If } \alpha\mu < 1 \\ E[\|\beta_T - \beta^*\|^2] &\leq e^{-\alpha\mu T} C, \end{split}$$

- C is the initial loss
- It takes $1/\alpha\mu\log M$ steps to achieve M factor contraction.

Tradeoff

Recall that the size of the noise ball is

$$\lim_{t \to \infty} E[\|\beta_{t+1} - \beta^*\|^2] \le \frac{\alpha M}{2\mu}$$

- So the size is $O(\alpha)$, i.e. for larger α we converge to a larger noise ball.
- But convergence time inversely proportional to step size α .
- So there is a tradeoff.

What if we allow the step size to vary

• We will set the stepsize as 1/t, and check the following by induction.

Theorem

If we use $\alpha_t = a/(t+1)$, for $a > 1/2\mu$ we have:

$$E[\|\beta_t - \beta_0\|^2] \le \frac{\max(\|\beta_1 - \beta^*\|^2, Y)}{t+1}$$

where
$$Y = \frac{Ma^2}{2a\mu - 1}$$
.

Proof.

We will do this by induction. First note Step 1 is obviously true. Now assume that the above holds for t. We will show that it holds for t+1.

What if we allow the step size to vary

- Let $C = \max(\|\beta_1 \beta^*\|^2, Y)$
- Recall that we have:

$$E[\|\beta_{t+1} - \beta^*\|^2] \le (1 - 2\alpha_t \mu) E\|\beta_t - \beta^*\|^2 + \alpha_t^2 M$$

$$\le (1 - 2a\mu/(t+1))) \frac{Y}{t+1} + \frac{Ma^2}{(t+1)^2}$$

$$= \frac{Y}{t+1} - \frac{a}{(t+1)^2} (2\mu Y - Ma)$$

- Set $a(2Y\mu Ma) = Y$, i.e. $Y = \frac{Ma^2}{2a\mu 1}$
- So

$$E[\|\beta_{t+1} - \beta^*\|^2] \le Y\left(\frac{1}{t+1} - \frac{1}{(t+1)(t+2)}\right) = \frac{Y}{t+2}$$

Mini batch Stochastic Gradient Descent

- SGD uses one data-point at a time.
 - Number of iterations to reach ϵ error is $1/\epsilon$
 - Work per iteration O(p)
 - Total work p/ϵ
- GD uses all data-points at a time.
 - Number of iterations to reach ϵ error is $\log(1/\epsilon)$
 - Work per iteration O(np)
 - Total work $np \log(1/\epsilon)$

A compromise

- ullet Pick B_t without replacement from $\{1,\ldots,n\}$ with $|B_t|=b$
- $\bullet \ \beta_{t+1} = \frac{1}{b} \sum_{i \in B_t} \nabla f(x_i; \beta_t)$
- b ≪ N

Hope

- Takes b times more time than Stochastic Gradient Descent
- Hopefully converges **sooner**?

$$\beta_{t+1} - \beta^*$$

$$= \beta_t - \beta^* - \alpha \frac{1}{b} \sum_{i \in B_t} \nabla f(x_i; \beta_t)$$

$$= \beta_t - \beta^* - \alpha (\nabla f(X; \beta_t) - \nabla f(X; \beta^*)) + \alpha (\nabla f(X; \beta_t) - \nabla f(x_{\sigma_t}; \beta_t))$$

$$= \beta_t - \beta^* - \alpha (\nabla f(X; \beta_t) - \nabla f(X; \beta^*)) - \alpha \left(\frac{1}{b} \sum_{i \in B_t} \nabla f(x_i; \beta_t) - \nabla f(X; \beta_t) \right)$$

Lets look at the variance of

$$\operatorname{var}\left(\frac{1}{b}\sum_{i\in B_t}\nabla f(x_i;\beta_t) - \nabla f(X;\beta_t)\right)$$

Variance reduction

- Let $\Delta_i := f(x_i; \beta_t) \nabla f(X; \beta_t)$
- Let $Y_i \in \{0,1\}$ be a random variable that denotes whether $i \in B_t$ or not.
- Expectation:

$$E\left[\frac{1}{b}\sum_{i\in\mathcal{B}_t}\nabla f(x_i;\beta_t)-\nabla f(X;\beta_t)\right]=E\left[\frac{1}{b}\sum_{i}Y_i\nabla f(x_i;\beta_t)-\nabla f(X;\beta_t)\right]=0$$

- Let $\Delta_i = \nabla f(x_i; \beta_t) \nabla f(X; \beta_t)$
- Variance:

$$E\left[\frac{1}{b}\sum_{i\in\mathcal{B}_t}\nabla f(x_i;\beta_t) - \nabla f(X;\beta_t)\right]^2 = E\left[\frac{1}{b}\sum_i Y_i\Delta_i\right]^2$$
$$= \sum_{ij}\Delta_i\Delta_j E(Y_iY_j)/b^2$$

Variance

$$\sum_{ij} \Delta_i \Delta_j E(Y_i Y_j) = \sum_{i \neq j} \frac{b(b-1)}{n(n-1)} \Delta_i \Delta_j + \sum_i \frac{b}{n} \Delta_i^2$$

$$= \frac{b}{n} \left(\frac{b-1}{n-1} \sum_{i \neq j} \Delta_i \Delta_j + \sum_i \Delta_i^2 \right)$$

$$= \frac{b}{n} \left(\frac{b-1}{n-1} (\sum_i \Delta_i)^2 + \sum_i \Delta_i^2 (1 - \frac{b-1}{n-1}) \right)$$

$$= \frac{b}{n} \sum_i \Delta_i^2 (1 - \frac{b-1}{n-1})$$

So

$$E_{X,B_t} \left[\frac{1}{b} \sum_{i \in B_t} \nabla f(x_i; \beta_t) - \nabla f(X; \beta_t) | \beta_t \right]^2 \le \sum_i E_X[\Delta_i^2] / bn \le M/b$$

Acknowledgment

 ${\it Cho-Jui\ Hsieh\ and\ Christopher\ De\ Sa's\ large\ scale\ ML\ classes}.$