Jevy

výsledky opakovaných měření nebo pozorování

Ω prostor jevů (prostor událostí)

výsledek ω - elementární jev (elementární událost), $\omega \in \Omega$

 $A \subset \Omega$, jev (událost)

 $\omega \in A$, výsledek příznivý jevu A

Náhodná proměnná

Přiřazení reálného čísla výsledku experimentu (zobrazení)

· diskrétní náhodná proměnná

všechny možné výsledky lze seřadit do posloupnosti $x_1, x_2, ... x_N$

- konečná diskrétní náhodná proměnná: N je přirozené číslo

Příklad: házení kostkou – {1,2,3,4,5,6}

- nekonečná diskrétní náhodná proměnná: N je nekonečno

Příklad: počet rozpadů radioaktivního zářiče za jednotku času – {0,1,2,3,....}

• spojitá náhodná proměnná

všechny možné výsledky tvoří nespočetnou množinu

Příklad: měření hmotnosti vzorku – výsledek může být jakékoli kladné reálné číslo

Pravděpodobnost - Kolmogorovy axiomy

Nechť Ω je prostor jevů pro daný experiment. Potom **pravděpodobnost P** je každé zobrazení množiny všech podmnožin množiny Ω do množiny reálných čísel, které splňuje následující podmínky:

1.
$$P(\Omega) = 1$$

2.
$$A \subset \Omega \Rightarrow P(A) \ge 0$$

3.
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

Některé vlastnosti pravděpodobnosti:

$$(i)$$
 $P(\emptyset) = 0$

(ii)
$$P(\overline{A}) = 1 - P(A)$$

$$(iii)$$
 $0 \le P(A) \le 1$

$$(iv)$$
 $A \subset B \Rightarrow P(A) \leq P(B)$

$$(v) P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Pravděpodobnostní míra: příklad – $n \times$ házení korunou

prostor událostí: $\Omega = \{(a_1, a_2, K, a_n), a_i = p, o\}$ 2^n prvků

počet podmnožin prostoru událostí: 2^{2ⁿ}

pravděpodobnost:

$$P(\{0\}) = 0 \qquad P(\Omega) = 1$$

$$P((p,o,o,p,K,o,o)) = \frac{1}{2^n}$$

pravděpodobnost, že nejpozději ve čtvrtém pokusu padne panna

doplněk
$$(o,o,o,o,x,x,x,...,x)$$
: $P(\overline{A}) = \frac{2^{n-4}}{2^n} = \frac{1}{16} \implies P(A) = \frac{15}{16}$

Pravděpodobnost

náhodný výběr – každý z výsledků experimentu je stejně pravděpodobný

pravděpodobnost jevu A:
$$P(A) = \frac{n_A}{n}$$

 n_A – počet výsledků příznivých jevu A

n – celkový počet možných výsledků experimentu

Klasická definice pravděpodobnosti – limita relativních četností jevu A

- opakujeme N krát experiment
- N_A počet výsledků, kdy nastal jev A
- relativní četnost jevu $A: X_A = \frac{N_A}{N}$

pravděpodobnost jevu A: $P(A) = \lim_{N\to\infty} X_A$

Nezávislost

Jevy A, B jsou **nezávislé** pokud
$$P(A \cap B) = P(A)P(B)$$

Výsledek jevu A nijak neovlivní pravděpodobnost jevu B.

• příklad: opakujeme *N* – krát experiment ve většině případů jsou jednotlivá měření nezávislá

Hustota pravděpodobnosti, distribuční funkce

diskrétní náhodná proměnná

$$\Omega = \{x_1, x_2, x_3, ..., x_N\} \quad \text{konečná}$$

$$\Omega = \{x_1, x_2, x_3, ...\} \quad \text{nekonečná}$$

$$P(x = x_i) \equiv P_i$$
 pst. že nastane výsledek x_i

nornalizační podmínka

$$\sum_{i=1}^{N} P_i = 1 \quad \text{konečná}$$

$$\sum_{i=1}^{\infty} P_i = 1 \quad \text{nekonečná}$$

spojitá náhodná proměnná

Ω nespočetná

$$P(x \in \langle x_0, x_0 + dx \rangle) \equiv f(x_0) dx$$

pst. že nastane výsledek padne do intervalu $\langle x_0, x_0 + dx \rangle$

f(x) hustota pravděpodobnosti

$$F(x) \equiv \int_{-\infty}^{x} f(t) dt$$
 distribuční funkce

$$P(x \in \langle a, b \rangle) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

normalizační podmínka:
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Hustota pravděpodobnosti – normální rozdělení

měření tloušťky vzorku

 μ = 1.5 mm, σ = 0.1 mm

- prostor událostí $\Omega = \mathbf{R}$
- hustota pravděpodobnosti: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- distribuční funkce: $F(x) = \int_{-\infty}^{x} f(t) dt = \frac{1}{2} \left(1 + erf\left(\frac{x \mu}{\sigma\sqrt{2}}\right) \right)$

hustota pravděpodobnosti

distribuční funkce

Histogram

Histogram – způsob jak experimentálně zjistit hustotu pravděpodobnosti z experimentálních dat

šířka binu: $\Delta_i = x_{i+1} - x_i$

plocha histogramu:
$$\sum_{i=1}^{m} n_i \Delta_i$$
 $\downarrow \downarrow$

normalizovaný histogram:

$$\xi_i = \frac{n_i}{\Delta_i N}, \quad \text{kde} \quad N = \sum_{i=1}^m n_i$$

plocha normovaného histogramu: $\sum_{i=1}^{m} \xi_i \Delta_i = 1$

hustota pravděpodobnosti:

$$f(x_i) = \lim_{\frac{\Delta_i \to 0}{N \to \infty}} \xi_i = \lim_{\frac{\Delta_i \to 0}{N \to \infty}} \frac{n_i}{\Delta_i N}$$