PSALTer results panel

 $S = \iiint \left(\frac{1}{6} \left(6 \ \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 6 \ f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} - 3 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\ \theta}_{\ \theta} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} - 3 \ r_{3} \ \partial_{\alpha} \mathcal{A}^{\alpha\betai} \ \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \ \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \ \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \ \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\ \theta}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\theta} \mathcal{A}^{\alpha\betai}_{\ \alpha} + 4 \ r_{3} \ \partial_{\alpha} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \beta} + 6 \ r_{3} \ \partial_{\alpha} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\alpha} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\beta} \mathcal{A}^{\alpha\betai}_{\ \alpha} - 6 \ r_{3} \ \partial_{\alpha} \mathcal{A}^{\alpha\betai}_{\ \alpha} \partial_{\alpha} \mathcal{$

Wave operator

	${}^{0,^{+}}\mathcal{R}^{\parallel}$	$0.^+f^{\parallel}$	0.+ f [⊥]	$0^{-}\mathcal{F}^{\parallel}$										
$^{0\overset{+}{.}}\mathcal{A}^{\parallel}$ †		0	0	0										
^{0,+} <i>f</i> [∥] †		0	0	0										
0.+f ⁺ †	0	0	0	0										
^{0.⁻} Æ [∥] †	0	0	0	t. 2	${}^{1,^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$\overset{1^{+}}{\cdot} \mathscr{R}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$\overset{1^+}{\cdot}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{\alpha}$	$^{1}\mathcal{A}^{\perp}{}_{\alpha}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{f}f_{\alpha}$			
				$^{1^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$k^2 (2r. + r.) + \frac{2t_2}{3}$			0	0	0	0			
				$^{1^+}\mathcal{F}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	3	t. 2 3	$\frac{ikt.}{2}$	0	0	0	0			
				$1.^+f^{\parallel}$ † $^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt.$	$-\frac{1}{3}ikt$.	,	0	0	0	0			
				${}^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{1}{2}k^2(r_1 + 2r_1)$	0	0	0			
				$\frac{1}{2}\mathcal{H}^{\perp} \dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$2.^+f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
											$^{2\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$-\frac{3k^2r}{2}$	0	0
											$2^+ f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0
											${}^{2}\mathcal{A}^{\parallel} + {}^{\alpha\beta\chi}$	0	0	0

Saturated propagator

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$1^{+} \frac{1}{3} + \frac{1}{3} = \frac{\sqrt{2}}{3} = \frac{3k^{2}(2r.+r.) + 2t.}{3 + 5} = \frac{i(3k^{2}(2r.+r.) + 2t.)}{3 + 5} = 0$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$1^{+}\tau^{\parallel} + \frac{i\sqrt{2}}{k(1+k^{2})(2r_{3}+r_{5})} - \frac{i(3k^{2}(2r_{3}+r_{5})+2t_{3})}{k(1+k^{2})^{2}(2r_{3}+r_{5})t_{2}} - \frac{3k^{2}(2r_{3}+r_{5})+2t_{3}}{(1+k^{2})^{2}(2r_{3}+r_{5})t_{2}} = 0 \qquad 0 \qquad 0$	
$\frac{1}{k^2} \sigma^{\parallel} + \sigma^{\alpha} = 0 \qquad 0 \qquad 0 \qquad \frac{2}{k^2 (r_3 + 2r_5)} = 0 \qquad 0 \qquad 0$	
$\frac{1}{2}\sigma^{\perp} + \frac{\sigma^{\perp}}{2}$ 0 0 0 0 0	
$\frac{1}{2} \tau^{\parallel} + \frac{\alpha}{2} = 0$ 0 0 0 0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{\parallel}_{\alpha\beta\chi}$
$2^{+}\sigma^{\parallel}+^{\alpha\beta}-\frac{2}{3k^{2}r_{3}}=0$	0
2^+ , τ^{\parallel} $\tau^{\alpha\beta}$ 0 0	0
$2^{-}\sigma^{\parallel} + \alpha^{\beta\chi} = 0$	0

Source constraints

Spin-parity form	Covariant form	Multiplicities		
$0^{+}.\sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\ \alpha}^{\ \beta} == 0$	1		
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==\partial_{\beta}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha}_{\ \alpha}$	1		
0 ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1		
1 r = 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3		
1. T == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$1.\sigma^{\perp}$ == 0	$\partial_{\chi}\partial_{eta}\sigma^{etalpha\chi}$ == 0	3		
$i k 1^{+}_{0} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{0} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3		
$2 \cdot \sigma^{\parallel \alpha \beta \chi} == 0$	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^$	5		
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial^{\lambda} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\lambda} \partial^{\lambda} \partial^{\lambda} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\lambda} \partial^{\lambda}$			
2^+_{τ} $\eta^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\gamma $	5		
Total expected gauge generators:				

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{2}{r_{.3}}$ +	$\frac{7}{2r.+r.}$	$-\frac{24}{r.+2r.}$	> 0
Polarisations:	2			

Unitarity conditions

 $(r_{.} < 0 \&\& (r_{.} < -\frac{r_{.}}{3} || r_{.} > -2 r_{.})) || (r_{.} > 0 \&\& -2 r_{.} < r_{.} < r_{.} < -\frac{r_{.}}{3})$