

PGM522 – ANÁLISE DE EXPERIMENTOS EM GENÉTICA E MELHORAMENTO DE PLANTAS

Ricardo Antonio Ruiz Cardozo

4ª LISTA DE EXERCÍCIOS

Esperança de quadrados médios e estimação de componentes da variância

1. Os dados que se seguem referem-se à altura de plantas de milho (em metros) obtidos da avaliação de 14 famílias de meios-irmãos. O experimento foi em blocos casualizados com seis repetições.

Progênie	B 1	B2	В3	B4	B5	B6
1	1,3	1,5	1,55	1,7	1,4	1,35
2	1,3	1,3	1,3	1,5	1,4	1,2
3	1,8	1,75	2	1,6	1,5	1,55
4	1,4	1,5	1,75	1,6	1,55	1,85
5	1,2	1,2	1,25	1,45	1,6	1,25
6	1,55	1,5	1,65	1,55	1,7	1,6
7	1,3	1,15	1,3	1,6	1,6	1,6
8	1,7	1,3	1,8	1,6	1,7	1,3
9	2,1	2,1	2,1	1,85	1,7	1,9
10	1,55	1,55	1,3	1,6	1,4	1,5
11	1,75	1,55	1,65	1,7	1,5	1,65
12	1,35	1,6	1,25	1,4	1,45	1,65
13	1,85	1,95	1,95	1,6	1,5	1,75
14	1,6	1,4	1,7	1,5	1,3	1,75

a) Estabelecer adequadamente o modelo estatístico e detalhe os termos e pressuposições. Assuma um modelo aleatório.

$$Y_{ij} = \mu + f_i + b_j + \mathcal{E}_{ij}$$

 Y_{ij} : Altura da planta de milho que recebeu a família i na repetição j (i = 1, 2, 3, 4, ..., 14; j = 1, 2, ..., 6)

μ: Constante associada a todas as observações – Efeito fixo;

 f_i : efeito da família i, sendo $f_i \sim N(0, \sigma^2_f)$ – Efeito aleatório;

 b_i : efeito do bloco j, sendo $b_i \sim N(0, \sigma^2_b)$ – Efeito aleatório;

 e_{ij} : efeito do erro experimental associado à parcela ij, sendo $e_{ij} \sim N(0, \sigma^2_e)$ – Efeito aleatório;

b) Obtenha as esperanças de quadrados médios pelo método de Hicks.

$$Y_{ij} = \mu + f_i + b_j + e$$

Efeito	I (i)	J (j)	E(QM)
f_i	1	J	$\sigma_{\varepsilon}^2 + J\sigma_f^2$
b _j	I	1	$\sigma_{\varepsilon}^2 + I \sigma_b^2$
e _(ij)	1	1	$\sigma_{arepsilon}^{2}$

c) Apresente as hipóteses nula e alternativa acerca dos efeitos de interesse. Proceda à análise de variância e os testes F a 5% de probabilidade e interprete.

H0: Não existe variância genética entre a altura das plantas das famílias de meios-irmãos

$$H_0$$
: $\sigma_f^2 = 0$

H1: Existe variância genética entre a altura das plantas das famílias de meiosirmãos

$$H_0: \sigma_f^2 \neq 0$$

H0: Não existe diferenças na variância dos blocos

$$H_0: \sigma_b^2 = 0$$

H1: Existe diferença na variância dos blocos
$$H_0: \sigma_b^2 \neq 0$$

Tabela 1 . Tabela de análise de variância (ANAVA) da altura das plantas de milho
obtida da avaliação de 14 famílias de meios-irmãos.

	GL	SQ	QM	F value	p-value(>F)
Bloco	5	0,08679	0,017357	0,6760	0,6432
Linhagem	13	2,28952	0,176117	6,8588	4,342e ⁻⁰⁸ ***
Residuals	65	1,66905	0,025678		

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Rejeita-se a hipótese nula onde a variância da altura das plantas de milho provenientes de 14 famílias de meios-irmaos é igual a zero ao um nível de significância de 5%, portanto, existe variância genética entre a altura das plantas das famílias de meios-irmãos.

d) Obtenha os estimadores e, em seguida, estime todos os componentes da variância do modelo.

E(QM)	QM	Estimadores
$\sigma_{\varepsilon}^2 + J\sigma_f^2$	QMP	$\sigma_{\varepsilon}^2 + J\sigma_f^2 = QMP \rightarrow \sigma_f^2 = \frac{QMP - QME}{J}$
$\sigma_{\varepsilon}^2 + I\sigma_b^2$	QMB	$\sigma_{\varepsilon}^{2} + I\sigma_{b}^{2} = QMB \rightarrow \sigma_{b}^{2} = \frac{QMB - QME}{I}$
$\sigma_{arepsilon}^2$	QME	$\sigma_{arepsilon}^2 = QME$

$$\sigma_{\varepsilon}^2 = QME = 0.02567766$$

$$\sigma_f^2 = \frac{QMP - \sigma_{\varepsilon}^2}{I} = \frac{0.1761172 - 0.02567766}{6} = 0.02507326$$

$$\sigma_b^2 = \frac{QMB - \sigma_\varepsilon^2}{I} = \frac{0.1761172 - 0.02567766}{14} = -0.0005943223$$

- e) Obtenha os limites de confiança da variância associada ao efeito de progênies a 95% de probabilidade baseados nas distribuições t-Student e qui-quadrado. Interprete.
 - Determinação graus de liberdade Satterthwaite:

$$v_f = \frac{(QMP - QME)^2}{\frac{QMP^2}{GLF} + \frac{QME^2}{GLE}} = 9.445422$$

- Intervalo de Confiança da variância distribuição qui-Quadrado:

Qui-Quadrado primeiro valor= 2.940892 Qui-Quadrado segundo valor= 19.67642

$$IC\left[\sigma_f^2, (1-\alpha)\right] = \left(\frac{\nu_f * \sigma_f^2}{\chi^2_{\left(\nu_f, \frac{\alpha}{2}\right)}}; \frac{\nu_f * \sigma_f^2}{\chi^2_{\left(\nu_f, 1-\frac{\alpha}{2}\right)}}\right) = (0.01203611; \ 0.08052915)$$

- Intervalo de Confiança da variância distribuição t-Student:

$$\sigma^{2}(\sigma_{f}^{2}) = \frac{2}{r^{2}} \left(\frac{QMP^{2}}{(t-1)+2}; \frac{QME^{2}}{t(r-1)+2} \right) = 0.0001153875$$

$$\sigma^{2}(\sigma_{f}^{2}) = \frac{2}{r^{2}} \left(\frac{QMP^{2}}{(t-1)+2}; \frac{QME^{2}}{t(r-1)+2} \right) = 0.0001153875$$

$$IC\left[\sigma_f^2, (1-\alpha)\right] = \sigma_f^2 \pm t_{(\nu_f, \frac{\alpha}{2})} \sqrt{\sigma^2(\sigma_f^2)} = (0.0009470476; \ 0.04919947)$$

Pode-se interpretar que para a 95% de confiança, o parâmetro da variância está entre os limites estabelecidos de acordo com a distribuição de qui-quadrado e t-Student, pois a variância da altura das plantas foi de 0.0251 aproximadamente. Mas se o número de ν for inferior a 30 o teste de t-Student, não é um teste recomendável, pois o intervalo poderia considerar o zero (0) e se está incluso no intervalo, o valor do parâmetro é igual a 0.

f) Estime a herdabilidade para seleção na média de progênie usando o estimador padrão e, logo após, calcule os limites de confiança a 95% a partir da expressão proposta por Knapp et al (1985) apresentada a seguir. Interprete o resultado.

$$IC\left[h^{2},(1-\alpha)\right] = \left\{1 - \left[\left(\frac{QMP}{QME}\right)F_{\left(1-\frac{\alpha}{2}:GLE:GLP\right)}\right]^{-1};1 - \left[\left(\frac{QMP}{QME}\right)F_{\left(\frac{\alpha}{2}:GLE:GLP\right)}\right]^{-1}\right\}$$

$$h^2 = \frac{\sigma_f^2}{\sigma_f^2 + \frac{QME}{6}} = 0.8542013$$

IC
$$[h^2, (1-\alpha)] = [0.6922733; 0.9462207]$$

A herdabilidade da altura das plantas de milho provenientes de 14 famílias se encontra entre 0.69 e 0.94 ao nível de significância do 95%, e em esse caso, a herdabilidade foi de 0.85 aproximadamente.

- 2. A partir dos enunciados a seguir e assumindo a natureza dos efeitos especificados, pede-se:
 - i. Estabeleça o modelo estatístico e especifique a natureza dos efeitos dos fatores presentes (fixo ou aleatório).
 - Apresente o esquema da análise de variância listando as fontes de variação, os graus de liberdade, os quadrados médios e as esperanças dos quadrados médios pelo método de Hicks.
 - iii. Apresente as hipóteses estatísticas de nulidade e alternativa e os estimadores adequados da estatística F inerentes a cada hipótese nula formulada.
 - iv. Apresente os estimadores dos componentes de variância.
 - 2.1.Um melhorista planeja um experimento para avaliação de 100 híbridos de milho provenientes de um cruzamento fatorial entre 10 linhagens do grupo heterótico A com outras 10 linhagens do grupo heterótico B. O delineamento será o de blocos casualizados com três repetições. Assuma o efeito de híbridos aleatórios e linhagens aleatórios e de blocos fixos.

$$Y_{ijk} = \mu + l_i + h_k + b_i + lh_{ik} + \varepsilon_{ijk}$$

Y_{ijk}: Efeito observado na parcela que recebeu do i-ésima híbrido no j-ésima bloco; μ:média experimental;

 l_i : Efeito aleatório do i-ésima linhagem do grupo A; $l_i \sim N \ (0, \sigma^2 \ l_i)$

 h_k : Efeito aleatório do k-ésima linhagem do grupo B; $h_k \sim N \; (0, \, \sigma^2 \; h_k)$

lh_{ik}: Efeito aleatório da interação da i-ésima linhagem do grupo A com o k-ésima linhagem do grupo B; lh_{ik} \sim N (0, σ^2 lh_{ik});

B_j: Efeito fixo do j-ésimo bloco

 E_{ijk} : Erro aleatório experimental associado ao Y_{ijk} ; $E_{ijk} \sim N (0, \sigma^2 E_{ij})$

ii.

Efeito	GL	QM	I a	K a	$\mathbf{R}_{\mathbf{f}}(\mathbf{k})$	E(QM)
			(i)	(k)		
Li	9	QML	1	J	R	$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2 + JR\sigma_l^2$
H_k	9	QMH	I	1	R	$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2 + IR\sigma_h^2$
LxH _{ij}	81	QM_{LxH}	1	1	R	$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2$
B_{j}	2	QMB	I	J	0	$\sigma_{\varepsilon}^2 + IJ\phi_b$
$e_{(ijk)}$	198	QME	1	1	1	$\sigma_{arepsilon}^2$

TOTAL	299			
				1

iii.

H0: Não existe variância genética entre as linhagens do grupo heterótico A

$$H_0$$
: $\sigma_l^2 = 0$

$$Fc = \frac{QML}{QM_{l*h}}$$

H0: Não existe variância genética entre as linhagens do grupo heterótico B

$$H_0$$
: $\sigma_h^2 = 0$

$$Fc = \frac{QMH}{QM_{l*h}}$$

H0: Não existe variância entre a interação das linhagens do grupo heterótico A e grupo heterótico B

$$H_0$$
: $\sigma_{lh}^2 = 0$

$$Fc = \frac{QM_{l*h}}{QME}$$

H0: Não existe diferenças significativas entre blocos

$$H_0$$
: b1 = b2 = b3

$$Fc = \frac{QMB}{QME}$$

iv.

E(QM)	QM	Estimadores
$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2 + JR\sigma_l^2$	QML	$\sigma_{\varepsilon}^{2} + R\sigma_{lh}^{2} + JR\sigma_{l}^{2} = QML \rightarrow \sigma_{l}^{2} = \frac{QML - R\sigma_{li}^{2} - \sigma_{\varepsilon}^{2}}{JR}$
$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2 + IR\sigma_h^2$	QMH	$\sigma_{\varepsilon}^{2} + R\sigma_{lh}^{2} + IR\sigma_{h}^{2} = QMH \rightarrow \sigma_{h}^{2} = \frac{QMH - R\sigma_{lh}^{2} - \sigma_{\varepsilon}^{2}}{IR}$
$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2$	QMlxi	$\sigma_{\varepsilon}^2 + R\sigma_{lh}^2 = QM_{lxh} \rightarrow \sigma_{li}^2 = \frac{QM_{lxh} - \sigma_{\varepsilon}^2}{R}$
$\sigma_{\varepsilon}^2 + IJ\phi_b$	QMB	$\sigma_{\varepsilon}^{2} + IJ\phi_{b} = QMB \rightarrow \phi_{b} = \frac{QMB - \sigma_{\varepsilon}^{2}}{IJ}$
$\sigma_{arepsilon}^2$	QME	$\sigma_{\varepsilon}^2 = QME$

Estimadores
$$\sigma_{\varepsilon}^{2} + R\sigma_{lh}^{2} + JR\sigma_{l}^{2} = QML \rightarrow \sigma_{l}^{2} = \frac{QML - QM_{lxh}}{JR}$$

$$\sigma_{\varepsilon}^{2} + R\sigma_{lh}^{2} + IR\sigma_{h}^{2} = QMH \rightarrow \sigma_{h}^{2} = \frac{QMH - QM_{lxh}}{IR}$$

$$\sigma_{\varepsilon}^{2} + R\sigma_{lh}^{2} = QM_{lxi} \rightarrow \sigma_{li}^{2} = \frac{QM_{lxh} - QME}{R}$$

$$\sigma_{\varepsilon}^{2} + IJ\phi_{b} = QMB \rightarrow \phi_{b} = \frac{QMB - QME}{IJ}$$

$$\sigma_{\varepsilon}^{2} = QME$$

2.2.Um melhorista realizou um cruzamento biparental em feijoeiro obtendo a geração F1. A partir da autofecundação da F1 obteve-se 64 plantas F2 que deram origem a 64 progênies F2:3. A partir de cada progênie F2:3 foram tomadas aleatoriamente duas plantas, gerando 128 progênies F3:4. O processo foi repetido de modo a obter 256 progênies F4:5. Esta condução da população segregante constitui-se no método genealógico (Figura 1). As 256 progênies F4:5 foram avaliadas quanto produção de grãos em experimento conduzido no DBC com três repetições. Assuma progênies aleatórias e blocos fixos.

FIGURA 1 - Esquema de condução pelo método genealógico.

i. A única geração com repetição foi a F4:5 onde foram avaliadas a produção de grãos em DBC com três repetições as outras gerações só foram utilizadas para fazer o método de condução de população segregante (Genealógico). Precisa de repetições para determinar o erro experimental.

$$Y_{ij} = \mu + p_i + b_j + \varepsilon_{ij}$$

 Y_{ij} : Efeito observado na parcela que recebeu a i-ésima progênie no j-ésima bloco; μ :média experimental;

 P_{i} : Efeito aleatório da i-ésima progênie; $P_{i} \sim N \; (0, \, \sigma^{2} \; P_{i})$

B_i: Efeito fixo do j-ésimo bloco;

 E_{ij} : Erro aleatório experimental associado ao Y_{ij} ; $E_{ij} \sim N \ (0, \, \sigma^2 \, E_{ij})$

ii.

E(QM)	GL	QM	I a (i)	J _a (j)	E(QM)
Li	255	QMP	1	J	$\sigma_{\varepsilon}^2 + J\sigma_l^2$
$B_{\rm j}$	2	QMB	I	0	$\sigma_{\varepsilon}^2 + I\phi_b$
e _(ij)	510	QME	1	1	$\sigma_{arepsilon}^2$
TOTAL	767				

iii.

H0: Não existe variância genética entre as progênies H_0 : $\sigma_l^2=0$

$$H_0: \sigma_1^2 = 0$$

$$Fc = \frac{QMP}{QME}$$

H0: Não existe diferenças significativas entre blocos

$$H_0$$
: b1 = b2 = b3

$$Fc = \frac{QMB}{QME}$$

iv.

E(QM)	QM	Estimadores
$\sigma_{\varepsilon}^2 + J\sigma_l^2$	QMP	$\sigma_{\varepsilon}^{2} + J\sigma_{l}^{2} = QMP \rightarrow \sigma_{l}^{2} = \frac{QMP - \sigma_{\varepsilon}^{2}}{J}$
$\sigma_{\varepsilon}^2 + I\phi_b$	QMB	$\sigma_{\varepsilon}^{2} + I\phi_{b} = QMB \rightarrow \phi_{b} = \frac{QMB - \sigma_{\varepsilon}^{2}}{I}$
$\sigma_{arepsilon}^2$	QME	$\sigma_{\varepsilon}^2 = QME$

Estimadores
$$\sigma_{\varepsilon}^{2} + J\sigma_{l}^{2} = QMP \rightarrow \sigma_{l}^{2} = \frac{QMP - QME}{J}$$

$$\sigma_{\varepsilon}^{2} + I\phi_{b} = QMB \rightarrow \phi_{b} = \frac{QMB - QME}{I}$$

$$\sigma_{\varepsilon}^{2} = QME$$

2.3. Para a caracterização citogenética de uma dada espécie foram coletados 160 acessos, sendo 60 acessos da 1ª procedência, 70 da 2ª e 30 da 3ª procedência. De cada acesso foram coletadas quatro folhas. A partir de lâminas confeccionadas em laboratórios com cada folha coletada de cada acesso serão realizados estudos citogenéticos para avaliar a variabilidade entre e dentro de procedências. Assuma os efeitos de procedência e acessos aleatórios.

i.

$$Y_{ij} = \mu + p_i + a_{j(i)} + \mathcal{E}_{ij}$$

Y_{ij}: Efeito observado do j-ésimo acesso dentro da i-ésima procedência; μ:média experimental;

 P_i : Efeito aleatório da i-ésima procedência; $P_i \sim N (0, \sigma^2 P_i)$;

 $A_{j(i)}$: Efeito aleatório do j-ésimo acesso dentro da i-ésima procedência; $A_{j(i)} \sim N$ (0, $\sigma^2 A_{j(i)}$);

 E_{ij} : Erro aleatório experimental associado ao Y_{ij} ; $E_{ij} \sim N \ (0, \sigma^2 \ E_{ij})$

ii.

E(QM)	QM	Estimadores	I _a (i)	J _a (j)	E(QM)
Pi	2	QMP	1	J	$\sigma_{\varepsilon}^2 + \sigma_a^2 + J\sigma_p^2$
A _{j(i)}	157	QMA	1	1	$\sigma_{\varepsilon}^2 + \sigma_a^2$
e _(ij)	480	QME	1	1	$\sigma_{arepsilon}^2$
TOTAL	639				

iii.

H0: Não existe variância entre as procedências

$$H_0$$
: $\sigma_p^2 = 0$

$$Fc = \frac{QMP}{QMA}$$

H0: Não existe variância entre os acessos

$$H_0$$
: $\sigma_l^2 = 0$

$$H_0: \sigma_l^2 = 0$$

$$Fc = \frac{QMA}{QME}$$

iv.

E(QM)	QM	Estimadores
$\sigma_{\varepsilon}^2 + \sigma_a^2 + J\sigma_p^2$	QML	$\sigma_{\varepsilon}^2 + \sigma_a^2 + J\sigma_p^2 = QMP \rightarrow \sigma_l^2 = \frac{QMP - \sigma_a^2 - \sigma_{\varepsilon}^2}{J}$
$\sigma_{\varepsilon}^2 + \sigma_a^2$	QMA	$\sigma_{\varepsilon}^2 + \sigma_a^2 = QMA \to \sigma_a^2 = QMA - \sigma_{\varepsilon}^2$
$\sigma_{arepsilon}^2$	QME	$\sigma_{arepsilon}^2 = QME$

Estimadores
$\sigma_{\varepsilon}^{2} + J\sigma_{l}^{2} = QML \rightarrow \sigma_{l}^{2} = \frac{QML - QMA}{J}$
$\sigma_{\varepsilon}^2 + \sigma_a^2 = QMA \rightarrow \sigma_a^2 = QMA - QME$
$\sigma_{\varepsilon}^2 = QME$

2.4.Um melhorista planeja avaliar a reação de resistência de 30 linhagens de trigo a 10 isolados de brusone. O delineamento será o de blocos casualizados com três repetições. Assuma o efeito de linhagens e isolados aleatórios e de blocos fixos.

i.
$$Y_{ijk} = \mu + l_i + i_j + b_k + li_{ij} + \varepsilon_{ijk}$$

ii.

Efeito	GL	QM	I a	J _a	R f (k)	E(QM)
			(i)	(j)		
Li	29	QML	1	J	R	$\sigma_{\varepsilon}^2 + R\sigma_{li}^2 + JR\sigma_l^2$
I_{j}	9	QMI	Ι	1	R	$\sigma_{\varepsilon}^2 + R\sigma_{li}^2 + IR\sigma_i^2$
LxI _{ij}	261	QM_{LxH}	1	1	R	$\sigma_{\varepsilon}^2 + R\sigma_{li}^2$
B_k	2	QMB	I	J	0	$\sigma_{\varepsilon}^2 + IJ\phi_b$
e _(ijk)	598	QME	1	1	1	$\sigma_{arepsilon}^2$
TOTAL	899			•	•	

iii.

H0: Não existe variância genética entre as linhagens

$$H_0$$
: $\sigma_l^2 = 0$

$$Fc = \frac{QML}{QM_{L*I}}$$

H0: Não existe variância genética entre os isolados

$$H_0: \sigma_i^2 = 0$$

$$Fc = \frac{QMI}{QM_{L*I}}$$

H0: Não existe variância entre a interação das linhagens e os isolados

$$H_0$$
: $\sigma_{lh}^2 = 0$

$$Fc = \frac{QM_{L*I}}{QME}$$

H0: Não existe diferenças significativas entre blocos

$$H_0$$
: b1 = b2 = b3

$$Fc = \frac{QMB}{QME}$$

iv.

E(QM)	QM	Estimadores
$\sigma_{\varepsilon}^2 + R\sigma_{li}^2 + JR\sigma_l^2$	QML	$\sigma_{\varepsilon}^{2} + R\sigma_{li}^{2} + JR\sigma_{l}^{2} = QML \rightarrow \sigma_{l}^{2} = \frac{QML - R\sigma_{li}^{2} - \sigma_{\varepsilon}^{2}}{JR}$
$\sigma_{\varepsilon}^2 + R\sigma_{li}^2 + IR\sigma_i^2$	QMI	$\sigma_{\varepsilon}^{2} + R\sigma_{li}^{2} + IR\sigma_{i}^{2} = QMI \rightarrow \sigma_{l}^{2} = \frac{QMI - R\sigma_{li}^{2} - \sigma_{\varepsilon}^{2}}{IR}$
$\sigma_{\varepsilon}^2 + R\sigma_{li}^2$	QMlxi	$\sigma_{\varepsilon}^{2} + R\sigma_{li}^{2} = QM_{lxi} \rightarrow \sigma_{li}^{2} = \frac{QM_{lxi} - \sigma_{\varepsilon}^{2}}{R}$
$\sigma_{\varepsilon}^2 + IJ\phi_b$	QMB	$\sigma_{\varepsilon}^{2} + IJ\phi_{b} = QMB \rightarrow \phi_{b} = \frac{QMB - \sigma_{\varepsilon}^{2}}{IJ}$
$\sigma_{arepsilon}^2$	QME	$\sigma_{\varepsilon}^2 = QME$

Estimadores

$$\sigma_{\varepsilon}^{2} + R\sigma_{li}^{2} + JR\sigma_{l}^{2} = QML \rightarrow \sigma_{l}^{2} = \frac{QML - QM_{lxi}}{JR}$$

$$\sigma_{\varepsilon}^{2} + R\sigma_{li}^{2} + IR\sigma_{i}^{2} = QMI \Rightarrow \sigma_{i}^{2} = \frac{QMI - QM_{lxi}}{IR}$$

$$\sigma_{\varepsilon}^{2} + R\sigma_{li}^{2} = QM_{lxi} \Rightarrow \sigma_{li}^{2} = \frac{QM_{lxi} - QME}{R}$$

$$\sigma_{\varepsilon}^{2} + IJ\phi_{b} = QMB \Rightarrow \phi_{b} = \frac{QMB - QME}{IJ}$$

$$\sigma_{\varepsilon}^{2} = QME$$