1 | Precessional Velocity

Taking the setup, we can figure the sum of the angular momentums and leverage it to figure the spin angular

Let's first define a system: \hat{i} is "right" on the figure, \hat{j} "in" the page, \hat{k} "up" the figure.

We note that the normal spin of the flywheel gives us:

$$\vec{L}_s = I\vec{\omega}_s\hat{i}$$
 (1)

As the flywheel is rotating at a constant speed, we have actually no torque that this contributes to the net system — that is $\frac{d\vec{L}_s}{dt} = 0$.

Furthermore, we can figure torque—and subsequent angular momentum contribution—of gravity as follows:

$$\vec{\tau}_g = lmg\hat{j}$$
 (2)

The total net torque on the system, then:

$$ec{ au}_{net} = ec{ au}_g + 0$$
 (3)
= $ec{ au}_g$

$$=\vec{\tau}_{q} \tag{4}$$

We also have that:

$$\vec{ au}_{net} = rac{\vec{L}_{net}}{dt} = \Delta \vec{L}_s = lmg$$
 (5)

We see that, because of small-angle approximation, $\Delta \vec{L}_s = L_s \Omega$

Therefore, we can replace the values determined above and solve for Ω :

$$\Delta \vec{L}_s = L_s \Omega \tag{6}$$

$$\Rightarrow lmg = I\vec{\omega}_s\Omega \tag{7}$$

$$\Rightarrow \Omega = \frac{lmg}{I\vec{\omega}_s} \blacksquare \tag{8}$$

2 | Discussion Questions

2.1 | Gyro in the Opposite Direction

If ω_s was in the opposite direction, $\vec{L}_s = -\vec{L}_{sold}$ — by the right hand rule, it would be in the other direction.

The direction of procession would be in the same direction, "into" the page, by the \hat{j} direction.

Therefore, the direction of \vec{L}_s would be inching up and to the right—resulting in procession in the opposite ("clockwise") direction.

2.2 | Tilted Gyro

In our expressions above, the thing that will change is the fact that the value of $r \times F$ for $\vec{\tau}_g$ would change to account for the angle ϕ : $\vec{\tau}_g = l \sin \tau mg$.

Therefore, the final expression Ω becomes:

$$\Omega = \frac{lmg\sin\tau}{I\vec{\omega}_s} \tag{9}$$

2.3 | Biker

If a bicyclist leans towards the right, they are adding a small "forward" change to the angular momentum originally pointing strictly towards the left. This would orient the axis of rotation a little bit more towards the forward direction from being completely towards the left, which points the axis a little more towards the front.

The bike then responds to this axis change by turning to an angle orthogonal (per the right hand rule) to the location a little "more forward", which is a little "more right."

2.4 | Forces on the COM

2.4.1 | Normal Force and Torque

When the gyro is precessing, it performs uniform circular motion by a radius l. We see that, as determined above, it is precessing at a constant speed of $\frac{lmg}{I\vec{\omega}_s}$.

Therefore:

$$\frac{v^2}{R} = a = \frac{lm^2g^2}{I^2\vec{\omega}_s^2}$$
 (10)

The net horizontal force on the object can be modeled by:

$$\vec{F}_{net} = -T \tag{11}$$

Therefore:

$$ma = -T (12)$$

$$\Rightarrow T = -\frac{lm^3g^2}{I^2\vec{\omega}_s^2} \tag{13}$$

Given, though tension, the gyro is exerting this amount of force upon the stand, the stand's normal force in the opposite direction (i.e. horizontal, in the "negative" direction) would be: $\frac{lm^3g^2}{l^2z^{32}}$.

When the gyroscope is simply limp, it would hang with a weight of mg. Calculations with tension work in a similar manner, resulting in the fact that the normal force would be mg.

The gyroscope can't just fall, under this circumstance, when spinning as, per what we deduced above, there is a *large* tension which is applied to the flywheel due to its rotation.

Per the torque (prime frame) theorem, we can