VoicePM: A Robust Privacy Measurement on Voice Anonymity

Shaohu Zhang

Zhouyu Li

Anupam Das

Department of Computer Science North Carolina State University

Data Harvesting of Sensitive Voice Data

Typical data flow in a voice assistant

Examples of Sensitive Data Harvesting

Source: https://shorturl.at/dKOZ2

How Is McDonald's AI System Really Faring At The Drive-Thru Window?

McDonald's had big goals when it first rolled out its voice-ordering technology on a trial basis at 10 Chicago outlets, per Restaurant Dive. The chain had been hoping that AI would help it find a way out of its labor shortage, an issue that has plagued many fast food companies as far back as 2018, per Business Insider. The company said it even offered the hope that – at least where U.S. corporate locations were concerned – AI would allow it to raise wages for entry-level workers from \$11 to \$17, per Restaurant Dive.

Source: https://shorturl.at/aBEN2

Voice Privacy Challenge in 2020 and 2022

- hide the speaker's identity (maximize speaker verification equal error rate)
- preserve the speech utility (minimize word error rate)

State-of-the-art Anonymization Models

 Signal processing (McAdams Interspeech'21
 VoiceMask/VTLN Sensys'18)

 Voice synthesis (HiFi-GAN NIPS'20)

Voice conversion
 (MaskCycleGAN ICASSP'21)

 Voice adversarial examples (V-CLOAK Security'23)

Limitations of Existing Voice Anonymization Approaches

- Limited to analyzing only one or two voice-based attributes
 - Lack a systematic framework to analyze multiple attributes (Aloufi et al., 2020 and Zhu et al., 2021)
- Do not consider the overall tradeoff between speech utility, speaker verification, and inference of voice attributes. (Tomashenko et al., 2022)

Aloufi et al., 2020, Privacy-preserving voice analysis via disentangled representations Zhu et al., 2021, Anti Leakage: Protecting Privacy Hidden in Our Speech Tomashenko et al., 2022, The VoicePrivacy 2020 Challenge: Results and findings

Our Design: VoicePM

VoicePM, a robust **Voice Privacy Measurement on the state-of-the-art** of voice anonymization solutions

- Incorporate into the operating system
- Provide flexibility to configure the privacy level
- Preserve transcription utility, hide speaker verification, and thwart voice attribute inference.

Research Objectives

 R1: Can we formulate privacy-utility tradeoff to consider speech utility, speaker verification, and inference of physical attributes?

 R2: Can we obtain practical level of privacyutility tradeoff for different voice anonymization techniques?

Shaohu Zhang 8

Threat Model

- Linkage Attack: similarity score to decide utterances are from the same speaker
- > Attributes Inference Attack: identify the speaker's accent, emotion, age, gender, etc.

Speech Utility Metric

Word Error Rate (WER)

WER =
$$\frac{N_{sub} + N_{del} + N_{ins}}{N_{ref}}$$

 N_{sub} : # of substitution

 N_{del} : # of deletion

 N_{ins} : # of insertion

 N_{ref} : # of ground truth

$$U = \frac{1 - WER_{model}}{1 - WER_{haseline}}$$

 $WER_{baseline}$ is the WER for the original speech in a database WER_{model} is for the anonymized speech Speech Utility $U \in [0, 1]$

Speech Privacy Metric

Speaker Verification: S

$$S = \frac{EER_{model} - EER_{baseline}}{EER_{model}}$$

Equal Error Rate (EER)

 $EER_{baseline}$: EER for the original database EER_{model} : EER between clean speech and sanitized speech generated by the anonymization model

Jaccard Similarity

$$J(A, A') = \frac{A \cap A'}{A \cup A'}$$
$$J = \frac{J_{model}(A, A')}{J_{baseline}(A, A')}$$

A: set of voice attributes of the original speaker

A': set of inferred voice attributes from the recorded audio

$$P = \gamma S + (1 - \gamma) (1 - J)$$
 $P \in [0, 1]$

where $\gamma \in (0, 1]$ and prioritizes the individual components within P

Privacy vs. Utility Tradeoff

The typical relationship between privacy and utility

Maximize the Tradeoff: T

$$U = \frac{1 - WER_{model}}{1 - WER_{baseline}} \qquad U \in [0, 1]$$

$$P = \gamma S + (1 - \gamma) (1 - J)$$
 $P \in [0, 1]$

$$T(S, J, U) = P \times U \qquad T \in [0, 1]$$

 $\gamma \in (0, 1]$ is the weight of S and J

Theorem:

Privacy increases while the utility decreases. There exists a point (U, P) where the P and U form a rectangle with the highest area/tradeoff T.

Evaluation Setup

Dataset

- Mozilla Common Voice (English, 83,242 samples, 7,499 speakers)
- IEMOCAP (Emotion, English, 5,531 samples, 10 speakers)
- AISHELL-1 (Mandarin Chinese, 7,176 samples, 400 speakers)

Accents	Alias	# of samples	# of speakers	Length (hrs)	
United States	US	10000	2683	13.78	
England	EN	10000	1343	13.17	
India and South Asia	INSA	10000	1450	13.26	
Canadian	CA	10000	649	13.28	
Australian	AU	10000	534	12.98	
New Zealand	NZ	8514	138	10.80	
Scottish	SC	7995	141	11.13	
Ireland	IE	6052	164	7.93	
Southern African	SA	5794	112	3.26	
Chinese	CN	4887	285	10.74	

Mozilla Common Voice English Dataset Summary

Baseline of Attribute Inference Models

Attributes	Test set (# of utterances)	wav2vec2 Base	ECAPA-TDNN
Emotion	happiness (167), anger (122) sadness (113), neutral (149)	77.31%	65.15%
Age	teens (876), twenties (2,799) thirties (1,703), forties (1,601) fifties (783), senior (563)	85.36%	80.95%
Accent	AU (969), NZ (872), CN (480), SA (609) INSA (1,006), CA (1,005), EN (1,013) IE (630), SC (797), US (944)	87.72%	82.10%
Gender	male (6,562), female (1,763)	99.06%	97.87%

- wav2vec2: 90.2 million parameters (emotion and accent model)
- ECAPA-TDNN: 5.5 million parameters (gender and age model)

ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in Time Delay Neural Network

Privacy vs. Utility Tradeoff Relationship

- McAdams: 0.5 ~ 0.9
- VoiceMask_α: VTLN Linear Warping Coefficient |α| ∈ [0.01, 0.2]
- VoiceMask_β: VTLN Quadratic function Warping Coefficient |β| ∈ [0, 1]

Privacy and utility form a non-linear pattern like an arc

Determining the Impact of γ on Tradeoff

$$T(S, J, U) = P \times U = [\gamma S + (1 - \gamma)(1 - J)] \times U$$

 γ changes the tradeoff T and the optimum coefficient

Controlling Voice Attribute: McAdams Coefficient

Sentence:

What are you talking about?

Attributes of an original speech: [thirties, male, Chinese, anger]

Attributes of anonymized speech (coefficient of 0.75): [thirties, male, New Zealand, anger]

- Gender inference changes slightly
- Accent varies significantly

Measurement of Different Voice Anonymity Systems

Model	Emotion	Age	Accent	Gender	Jaccard	EER	WER	U	Р	Т
Baseline	100	80.95	87.94	97.87	0.8534	2.28	14.5	1	0	0
McAdams	76.07	35.24	62.96	90.14	0.5386	18.39	26.42	0.8606	0.5872	0.4971
$VoiceMask_{\alpha}$	71.97	37.25	49.89	50.67	0.4038	20.58	27.92	0.8431	0.6717	0.5558
$VoiceMask_{eta}$	71.7	36.34	54.2	67.45	0.4534	20.85	28.15	0.8404	0.6432	0.5303
HiFi-GAN	40.5	19.39	12.13	24.28	0.1561	48.32	17.44	0.9656	0.8849	0.8545
MaskCycleGAN	36.18	24.21	19.32	40.25	0.2056	39.95	72.12	0.3261	0.8510	0.2775
V-CLOAK	60.54	25.13	51.08	81.26	0.4107	52.79	23.81	0.8911	0.7378	0.6574

Different anonymity systems hide the attributes in different levels

Optimum tradeoff from high to low:

HiFi-GAN → V-CLOAK → VoiceMask → McAdams → MaskCycleGAN

Privacy-Utility Tradeoff for Different Voice Anonymity Systems

"Right, it shouldn't be too difficult to rework them"

Attributes of an original speech: [forties, male, New Zealand, neutral]

HiFi-GAN: [thirties, female, Canadian, anger]

Generalizability Across Different English Dataset

Overall relative ranking does not change with English dataset

Include gender and emotion attributes

y = 0.5

Key Takeaway

VoicePM provides a voice privacy measurement framework:

- effectively measure the tradeoff of different anonymization models
- anonymization models with varying privacy levels can be pre-defined
- showcases the feasibility for attributes configuration

Limitations

- Accuracy of the emotion (77.31%) and age (80.95%) inference model is relatively low
- Lacks human perception verification of the altered audio

VoicePM: A Robust Privacy Measurement on Voice Anonymity.

Shaohu Zhang, Zhouyu Li, Anupam Das. 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks. ACM WiSec'23

Thank you!

VoicePM Project Website
(Code will be released soon)
https://github.com/zhangshaohu/VoicePM

Backup Slides

McAdams

where k is the harmonic index, A_k (t) is signal amplitude, ϕ_k is the phase, and α is the McAdams coefficient, which is usually in the range of [0.5, 1].

Patino et al., 2020. Speaker anonymization using the McAdams coefficient linear predictive coding (LPC)

Vocal Tract Length Normalization (VTLN)

• Bilinear warping function ($VoiceMask_{\alpha}$)

$$\varphi_{\alpha} = \omega + 2 \arctan^{-1} \left(\frac{(1-\alpha)\sin\omega}{1-(1-\alpha)\cos\omega} \right)$$

where $\omega \in [0, \pi]$ is the normalized frequency, and $\alpha \in (-1, 1)$ is a warping factor used to tune the strength of voice conversion.

• Quadratic function ($VoiceMask_{\beta}$)

$$\varphi_{\beta} = \omega + \beta \left(\frac{\omega}{\pi} - \left(\frac{\omega}{\pi}\right)^2\right)$$

where $\beta \in (-1, 1)$ is the warping factor.

HiFi-GAN

- synthesize high-fidelity waveforms from Mel-spectrograms
- convert the voice to a pre-defined speaker

MaskCycleGAN-VC

- non-parallel VC technique
- apply a temporal mask to the input Mel-spectrogram

V-CLOAK

- add imperceptible noises to audio
- generate adversarial examples to fool speaker verification system

Selection of Automatic Speech Recognition Systems

Model	Source	Language	Dataset	WER(%)
wav2vec2+CTC	SpeechBrain	English	CV	14.50
CRDNN + CTC/Attention	SpeechBrain	English	CV	25.90
DeepSpeech	DeepSpeech	English	CV	27.09
Google Speech2Text	Google Cloud	English	CV	28.19
wav2vec2+CTC	SpeechBrain	English	IEMOCAP	24.57
CRDNN + CTC/Attention	SpeechBrain	English	IEMOCAP	37.15
Google Speech2Text	Google Cloud	English	IEMOCAP	37.76
wav2vec2+CTC	SpeechBrain	Mandarin Chinese	AISHELL1-test	5.04
Transformer	SpeechBrain	Mandarin Chinese	AISHELL1-test	6.04
Google speech2text	Google Cloud	Mandarin Chinese	AISHELL1-test	7.69

Performance of Different ASR Systems

Feasibility for Attributes Configuration

Attributes	McAdams (U=0.8466)		VoiceMask $_{\alpha}$ (U=0.8274)		VocieMask _β (U=0.8245)		HiFi-GAN (U=0.9130)		MaskCycleGAN (U=0.3261)		V-CLOAK (U=0.8911)	
	P	Ť	P	Ť	P	Ť	P	Ť	P	Ť	P	Ť
basic privacy	0.4431	0.3752	0.4488	0.3714	0.4493	0.3704	0.4764	0.4350	0.4715	0.1538	0.4784	0.4263
emotion	0.5066	0.4289	0.5420	0.4484	0.5399	0.4451	0.7391	0.6748	0.7595	0.2477	0.6237	0.5557
age	0.7634	0.6463	0.7562	0.6257	0.7627	0.6288	0.8628	0.7878	0.8296	0.2706	0.8312	0.7406
accent	0.5878	0.4976	0.6798	0.5625	0.6529	0.5383	0.9053	0.8266	0.8583	0.2799	0.6791	0.6052
gender	0.4189	0.3547	0.6803	0.5628	0.5729	0.4723	0.8342	0.7616	0.7356	0.2399	0.5023	0.4476
emotion+accent	0.5900	0.4996	0.6609	0.5468	0.6436	0.5306	0.8638	0.7886	0.8445	0.2754	0.7015	0.6251
emotion+age	0.6936	0.5872	0.7040	0.5825	0.7081	0.5838	0.8438	0.7704	0.8373	0.2731	0.7835	0.6981
emotion+gender	0.4924	0.4169	0.6612	0.5471	0.5981	0.4931	0.8264	0.7545	0.7861	0.2564	0.6018	0.5363
age+accent	0.7265	0.6151	0.7651	0.6331	0.7566	0.6237	0.9105	0.8313	0.8744	0.2852	0.8024	0.7149
gender+accent	0.5428	0.4596	0.7286	0.6029	0.6579	0.5424	0.8985	0.8203	0.8363	0.2727	0.6386	0.5690
gender+age	0.6548	0.5544	0.7643	0.6324	0.7196	0.5933	0.8823	0.8056	0.8264	0.2695	0.7312	0.6515
emotion+age+accent	0.6889	0.5832	0.7275	0.6020	0.7208	0.5943	0.8825	0.8058	0.8624	0.2812	0.7797	0.6948
emotion+accent+gender	0.5577	0.4722	0.7013	0.5803	0.6503	0.5361	0.8731	0.7971	0.8337	0.2719	0.6655	0.5930
emotion+age+gender	0.6347	0.5373	0.7274	0.6019	0.6939	0.5721	0.8620	0.7871	0.8296	0.2706	0.7257	0.6466
gender+age+accent	0.6611	0.5597	0.7679	0.6354	0.7283	0.6005	0.9047	0.8260	0.8569	0.2795	0.7431	0.6622
emotion+age+accent+gender	0.6454	0.5464	0.7393	0.6117	0.7072	0.5830	0.8849	0.8080	0.8510	0.2775	0.7378	0.6574

Emotion Ranking: HiFi-GAN → V-CLOAK → VoiceMask → McAdams → MaskCycleGAN

Runtime

From low to high:

VoiceMask→ McAdams → V-CLOAK → MaskCycleGAN → HiFi-GAN