Laplacian

$\mathbf{1} \quad \nabla$

We assume you are familiar with the humble ∇ (del) vector and its physical interpretation, including in the operator form ∇ (scalar \rightarrow vector), ∇ · (vector \rightarrow scalar) and ∇ × (vector \rightarrow vector).

There are $9(3 \cdot 3)$ combinations of two del operators. Three of them have the correct type signature:

- 1. $\nabla \times \nabla \times$
- 2. $\nabla \times \nabla$
- 3. $\nabla \cdot \nabla \times$
- 4. $\nabla \cdot \nabla$
- 5. $\nabla\nabla$

Items 2 and 3 are always zero.

$\mathbf{2} \quad \nabla^2$

The ∇^2 operator, otherwise as the laplacian operator, is very important operator in physics. In cartesian coordinates it is

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Note that this value is necessarily a scalar, ie, independent of coordinates chosen. So what is its physical interpretation?

3 Concavity

In single-variable calculus the second derivative represents concavity, or the rate of change of the rate of change.

A slightly more useful way to think about this is in terms of average values; the concavity of a function f at a point x_0 measures much the average value of f(x) about x_0 exceeds $f(x_0)$. [pics]

This argument generalizes to higher dimensions too.

4 Poisonn's equation

$$\nabla^2 = 0$$