Лабораторная работа №1

Простейшие вычисления и операции в среде MathCAD

Цель работы:

- 1. Получить представление о назначении и возможностях программного средства **MathCAD**.
- 2. Приобрести навыки простейших алгебраических вычислений в среде **MathCAD**.

1. Общие сведения

MathCAD (Mathematical Computer Aided Design – математическая система автоматизированного проектирования) – программное средство, предназначенное для решения математических задач, построения графиков функций и оформления полученных результатов. Документы (**WorkSheets**), созданные в среде **MathCAD**, могут содержать "работающие" математические формулы, записанные в естественном виде, разнообразные графики функций и различные иллюстративные материалы (рисунки, фотографии, анимацию).

Пользовательский интерфейс системы создан так, что пользователь, имеющий элементарные навыки работы с Windows-приложениями, может сразу начать работу с MathCAD. Интерфейс системы внешне напоминает интерфейс широко известных текстовых процессоров Word под Windows. Окно MathCAD с загруженным рабочим документом показано на рисунке 1.1.

Главной отличительной чертой систем класса **MathCAD** является то, что описание математических задач и результатов их вычислений производится при помощи привычных математических формул и знаков. Это делает документ, видимый на экране дисплея (см. рис. 1.1), чрезвычайно похожим на странички текста из математических книг и научных статей.

Чрезвычайная простота интерфейса **MathCAD** сделала его одним из самых популярных и, безусловно, самым распространённым в студенческой среде математическим пакетом.

В среде **MathCAD** доступны более двухсот операторов и логических функций, предназначенных для численного и символьного решения технических проблем различной сложности. **MathCAD** содержит:

- 1. обширную библиотеку встроенных математических функций;
- 2. инструменты построения разнообразных графиков;
- 3. средства создания текстовых комментариев и оформления отчётов;
- 4. конструкции, подобные конструкциям языков программирования, позволяющие писать программы для решения задач, которые невоз-

- можно или очень сложно решить стандартными инструментами пакета;
- 5. удобно организованную интерактивную систему получения справки и оперативной подсказки.

2. Графический интерфейс пользователя MathCAD

Под графическим интерфейсом пользователя подразумевается совокупность средств графической оболочки **MathCAD**, обеспечивающих легкое управление системой, как с клавиатуры, так и с помощью мыши. К элементам графического интерфейса пользователя относятся меню, кнопки инструментальных панелей, шаблоны различных математических операций, линейки прокрутки (скроллинга) и т. д.

Рассмотрим подробнее элементы графического интерфейса пользователя **MathCAD**.

Верхняя строка окна системы содержит указание на имя системы или текущего открытого окна. Следующая строка содержит позиции главного меню. Перечислим их:

File – работа с файлами, сетью Internet и электронной почтой;

Edit – редактирование документов;

View – изменение средств обзора и включения/выключения

элементов интерфейса;

Insert – вставка объектов и их шаблонов (включая графику);

Format – изменение формата (параметров) объекта;

Math − управление процессом вычислений;
Graphics − работа с графическим редактором;

Symbolic – выбор операций символьного процессора;

Window — управление окнами системы; Воокѕ — работа с электронными книгами;

Help – работа со справочной базой данных о системе.

Команды главного меню описаны в Приложении.

Если какая-либо позиция главного меню делается активной, она выводит ниспадающее подменю со списками доступных и недоступных (но возможных в дальнейшем) операций (команд). Доступные в данный момент операции даны чётким шрифтом, а недоступные — шрифтом с характерным затемнением, но позволяющим всё же прочесть название операций.

Работа с документами **MathCAD** обычно не требует обязательного использования возможностей главного меню, так как <u>основные из них дублируются кнопками быстрого управления</u>. Их можно выводить на экран или убирать с него с помощью соответствующих опций меню **View**.

Чаще всего используются три панели, содержащие такие кнопки: <u>панель инструментов</u> (дублирующая ряд наиболее распространённых команд и операций), <u>панель форматирования</u> (для выбора типа и размера шрифтов и способа выравнивания текстовых комментариев) и <u>панель математических операций</u> (для выбора палитр математических операций). Эти панели видны на рис. 1.1 под строкой главного меню.

На рис. 1.2 указано назначение кнопок панели инструментов:

Ниже панели форматирования расположена панель математических

Математические операции в **MathCAD** разделены на группы и щелчок на каждой кнопке панели математических операций открывает другую панель — палитру, на которой собственно и расположены кнопки математических операций соответствующей группы. Более подробно палитры математических операций описаны в последующих лабораторных работах.

3. Понятие о входном языке системы MathCAD

Общение пользователя с системой **MathCAD** происходит на некотором промежуточном математически ориентированном языке визуального программирования - входном языке. Многие математические записи в этом языке вводятся просто через шаблоны соответствующих операторов. Этот язык настолько приближен к математическому языку описания вычислительных задач, что практически не требует их программирования. Нужно лишь точное описание алгоритма решения задачи.

<u>Операторы</u> — это специальные символы (+, -, /, *, = и т. д.), указывающие на выполнение тех или иных операций над данными — <u>операндами</u>. Последние могут быть представлены константами или <u>переменными</u> — объектами с именами, хранящими данные определенного типа и значения.

 Φ ункция — объект входного языка, имеющий имя и параметры, указываемые в круглых скобках. Имя функции отождествляется с соответствующей математической функций, — например $\sin(x)$ — это функция вычисления синуса аргумента х. Отличительной чертой функции является возврат значения (результата вычисления функции) в ответ на обращение к ней.

Операторы и функции используются для создания **математических выражений** — формул, которые могут вычисляться в численном или символьном виде.

4. Работа с формульным редактором

Фактически система **MathCAD** интегрирует в себе три редактора: формульный, текстовый и графический. Для запуска формульного редактора достаточно установить курсор мыши в любом свободном месте окна редактирования и щелкнуть левой клавишей. Появится курсор в виде маленького красного крестика. Его можно перемещать клавишами перемещения курсора.

Курсор указывает место, с которого можно начинать набор формул – вычислительных блоков. В зависимости от места расположения курсор может менять свою форму. Так в области формул курсор превращается в синий уголок, указывающий направление и место ввода.

Примеры выполнения работы

- **I.** Вычислить значения арифметических выражений $49 + \frac{12}{4}$ и $49 + \frac{12}{5}$, для чего:
 - 1) Щёлкните мышью по любому месту в рабочем документе в поле появится крестик, обозначающий позицию, с которой начинается ввод.
 - 2) Введите с клавиатуры символы в следующей последовательности: 49 + 12 / 4 =. **MathCAD** вычислит значение выражения и выведет справа от знака равенства результат.

Необходимо запомнить правило: Нажатие клавиши = имеет двоякое действие. Если переменная используется впервые, то знак = будет автоматически заменён на := (знак присвоения, который также вызывается нажатием клавиши :). Если знак = ввести после выражения, либо уже существующей переменной, то будет выведено их значение.

- 3) Щёлкните мышью справа внизу возле цифры 4 и нажмите клавишу <**Backspace**>. Введите цифру 5 и щёлкните мышью вне выделяющей рамки.
- ІІ. Удаление выражения из рабочего документа.
 - 1) Щёлкните мышью по любому месту в выражении и нажимайте клавишу **Space**> до тех пор, пока всё выражение не будет выделено угловой синей рамкой.
 - 2) Нажмите клавишу <**Backspace**> (поле ввода окрасится в чёрный цвет) и, нажав клавишу <**Del**>, удалите выделенное.
- **III.** Вычислить длину вектора, если его проекции на координатные оси 0-X, 0-Y и 0-Z равны соответственно X=0.5 м., Y=1.3 м., Z=1 м. Расчётная формула $d=\sqrt{X^2+Y^2+Z^2}$.
 - 1) Щёлкните мышью по свободному месту в рабочем документе и введите с клавиатуры x:0.5* m и щёлкните по свободному месту вне поля ввода. Здесь m означает размерность величины в метрах.

<u>Необходимо запомнить правило</u>: Основные размерности обозначанотся в **MathCAD** следующим образом: m-метр, kg-килограмм, s-се-кунда, J-Джоуль, W-Ватт, K-Кельвин.

- 2) Аналогично введите значения проекций Y и Z.
- 3) Установите курсор в любом свободном месте документа ниже выражений для X Y и Z и нажмите клавишу с изображением обратного слеша (\), либо нажмите кнопку с изображением калькулятора, которая находится на панели инструментов, и выберите в раскрывшемся меню кнопку с изображением квадратного корня.
- 4) Введите в шаблон (чёрный прямоугольник) под знаком корня выражение $X ^2 <$ Space> + $Y ^2 <$ Space> + $Z ^2 =$.
- 5) Теперь сохраните созданный документ на жёстком магнитном диске, для чего выберите в меню **File** команду **Save** (Сохранить), либо нажмите клавишу [F6].

Совет: Удобнее всего сохранять файл в своей личной папке (предварительно создав её) под именем, соответствующим номеру лабораторной работы.

Задание для самостоятельной работы

Вычислить выражение $\sqrt{\frac{A+B}{C^3}}$, значения A, B и C которого взять из таблицы 1.1 согласно порядковому номеру студента по журналу.

Таблица 1.1 Варианты заданий для самостоятельной работы

№ вар.	X	Y	A	В	C	№ вар.	X	Y	A	В	C
1	-0.1	-3	$\frac{Y}{X}$	Y^2	$\sqrt{X \cdot Y}$	9	0.2	$\frac{1}{X}$	$\sqrt{5}$	$\frac{X}{A \cdot Y^2}$	\sqrt{Y}
2	1,4	X^2	-2	X^3	\sqrt{B}	10	5	-3	\sqrt{X}	A^3	$\frac{1}{X \cdot A}$
3	8	\sqrt{X}	X^2	$\sqrt{5}$	2,5	11	1,8	X^3	\sqrt{Y}	$\frac{X \cdot A}{y^2}$	87
4	4,5	X^3	\sqrt{Y}	$\frac{1}{X^4}$	\sqrt{B}	12	1	4,5	$\frac{1}{X^4}$	$\frac{1}{X \cdot Y}$	\sqrt{B}
5	3	0,9	$X \cdot \sqrt{Y}$	A^3	$\frac{1}{X \cdot A}$	13	4,3	3	\sqrt{Y}	$\frac{1}{X^4}$	$\frac{1}{X \cdot A}$
6	4	8,1	$\frac{1}{X \cdot Y}$	$\frac{X \cdot A}{Y^2}$	$\frac{X}{A \cdot B^2}$	14	7,2	\sqrt{X}	$X \cdot \sqrt{Y}$	$\frac{X \cdot A}{Y^2}$	$\frac{I}{X^4}$
7	3,2	X^3	$X \cdot Y$	A^3	$\frac{1}{X \cdot A}$	15	4	X^3	$X \cdot Y$	6,7	9,2
8	34	3,6	$\sqrt[3]{X}$	Y^3	$\sqrt{X \cdot Y}$	16	5,6	$\sqrt[3]{X}$	\sqrt{Y}	$\frac{X \cdot A}{Y^2}$	$\frac{1}{X \cdot A}$

Требования к отчёту

Отчет о лабораторной работе должен включать цель работы, кратко оформленный реферат разделов 1-4, описание команд меню **File** и **View** из **Приложения** и протокол действий, самостоятельно выполняемых студентом на компьютере. Рабочий документ выполнения лабораторной работы должен быть сохранён на ПЭВМ в личной папке студента.

При сдаче работы студент должен продемонстрировать практическое умение выполнять простейшие расчёты в среде **MathCAD** и ответить на следующие контрольные вопросы:

- 1. Назначение программного средства **MathCAD**?
- 2. Что называется графическим интерфейсом пользователя **MathCAD**? Из каких элементов он состоит?
- 3. Для чего предназначена панель инструментов? Какие кнопки она содержит?
- 4. Что представляет из себя входной язык системы MathCAD?
- 5. Что называется переменной, функцией? Как присвоить значение переменной?
- 6. Какие редакторы интегрирует в себе система MathCAD?
- 7. Как в среде **MathCAD** возвести число в степень, и вычислить значение квадратного корня?
- 8. Как удалить какое-либо выражение из рабочего документа?
- 9. Какие бывают формы курсора в **MathCAD**? Что они обозначают?
- 10. Какое действие вызывает нажатие клавиши = ?
- 11. Как указать размерность переменной? Как обозначаются основные размерности?
- 12. Как сохранить документ в файле на жёстком диске? Как открыть другой документ, хранящийся на жёстком диске?