Análisis combinatorio > Estudia la enumeración, construcción y existencia de propieda des de configuraciones que satisfacen ciertas condiciones establecidas

Factorial de un número

Para todo ne INo definimos n! (n factorial) recorsivamente

$$0! = 1$$
 $1! = 1$ $(n+1)! = (n+1) n!$

En definitiva

$$0 \cdot = 0 \cdot (0-1) \cdot (0-2) \cdot \cdot \cdot 1$$

El Factorial coincide con la cantidad de permutaciones de n elementos.

La permutación es la variación del orden de los elementos de un cierto conjunto

Si tenemus el congunto $A = \{1,2\}$, hay somo des maneras de cambiarle el orden de los elementos (12, 21).

5: tenemus el congunto $B = \{1,2,3\}$, hay 3! (6) maneras de cambiarle el orden de los elementos (123,132,213,231,312,321)

· ¿Cuantos numeros puedo formar?

4 = 256 minueros

• Lo mismes que el anterior pero Sin repetición de dígitos 4 = 1.2.3.4 = 24 números

Número combinatorio (O coeficiente binomia)

Es el número combinatorio asociado al par (n, m) $\binom{m}{0} = 1$ $\binom{m}{m} = 1$

El combinatorio (m) cuenta la cantidad de subconyuntos de n elementos que se pueden tomar de un conjunto

de m elementos

Si tenemus el congunto $B=\{1,2,3\}$, y quiero poner estos elementos en conyuntos de dos, por lo tanto

 $\{1,2\}$, $\{2,3\}$ \rightarrow No imports el orden. No se repiten y sono imports que estén

Estos conjuntos $\{3,3\}$ = 3

Fórmula de Pascal

$$\begin{pmatrix} n+1 \\ K \end{pmatrix} = \begin{pmatrix} n \\ k-1 \end{pmatrix} + \begin{pmatrix} n \\ k \end{pmatrix} \qquad K, n \in \mathbb{N}, K \leq n$$

Fórmia del Bimmio

Dados a, b EIR y no wwos y n EIN