Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (previously presented) A method of inhibiting cytokine or biological activity of MIF comprising contacting MIF with a cytokine or biological activity inhibiting effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or prodrug thereof

$$Z_2$$
 R_1
 R_2
 R_3
 R_3

wherein

X is selected from -O-, -S-, -C(R_5)(R_5)- or -N(R_6)-;

Y is selected from $-N(R_7)$ -, -O-, -S- or $-C(R_7)_2$ -;

Z is selected from -C(O)-, -C(S)-, -C(=NR₆)-, -S(O)- or -S(O)₂-;

 R_1 is selected from hydrogen, C_{1-3} alkyl, $(CR_5R_{5'})_nOR_7$, $(CR_5R_{5'})_nSR_7$, $(CR_5R_{5'})_nN(R_6)_2$ and $(CR_5R_{5'})_n$ halo;

 $R_2 \text{ is selected from } C_1\text{-}C_{20} \text{alkyl}, C_2\text{-}C_{20} \text{alkenyl}, C_2\text{-}C_{20} \text{alkynyl}, (CR_{12}R_{12'})_m C(O)R_8, \\ (CR_{12}R_{12'})_m C(S)R_8, (CR_{12}R_{12'})_m S(O)R_8, (CR_{12}R_{12'})_m S(O)_2 R_8, (CR_{12}R_{12'})_m OR_9, (CR_{12}R_{12'})_m SR_9, \\ (CR_{12}R_{12'})_m NR_{10}R_{11}, (CR_{12}R_{12'})_m C(=NR_{24})R_{22} \text{ and } (CR_{12}R_{12'})_m R_{13}; \\$

 R_3 is selected from hydrogen, C_1 - C_6 alkyl, $(CR_{16}R_{16'})_pNR_{14}R_{15}$, $(CR_{16}R_{16'})_pOR_{17}$, $(CR_{16}R_{16'})_pSR_{17}$, $(CR_{16}R_{16'})_pNO_2$, $(CR_{16}R_{16'})_nC(O)R_{28}$, $(CR_{16}R_{16'})_nC(=NR_{24})R_{22}$,

3639996

 $(CR_{16}R_{16})_nS(O)R_{17}, (CR_{16}R_{16})_nS(O)_2R_{17}, (CR_{16}R_{16})_nS(O)_3R_{17} \text{ and } (CR_{16}R_{16})_pC(R_{18})_3;$

 R_4 is selected from hydrogen, halogen C_1 - C_3 alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl and $(CR_{12}R_{12})_nC(R_{18})_3$;

Each R_5 and $R_{5'}$ is independently selected from hydrogen, C_1 - C_3 alkyl, halo, OR_7 , SR_7 and $N(R_6)_2$;

Each R₆ is independently selected from hydrogen, C₁-C₃alkyl and OR₇;

Each R₇ is independently selected from hydrogen and C₁-C₃alkyl;

 R_8 is selected from hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, OR_{19} , SR_{19} , $N(R_{20})_2$, $[NH-CH(R_{21})-C(O)]_q$ - OR_{29} , $[sugar]_q$ and $(CR_{12}R_{12})_tR_{13}$;

 R_9 is selected from hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, $(CR_{12}R_{12})_tR_{13}$, $C(O)R_{23}$, CO_2R_{23} , $C(S)R_{23}$, $C(S)OR_{23}$, $S(O)R_{23}$, $S(O)_2R_{23}$, $[C(O)CH(R_{21})NH]_q$ - R_{23} and $[sugar]_q$;

 R_{10} and R_{11} are independently selected from hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, $(CR_{12}R_{12'})_mR_{13}$, $C(O)R_{23}$, $C(S)R_{23}$, $S(O)R_{23}$, $S(O)_2R_{23}$, $[C(O)CH(R_{21})NH]_q$ - R_{23} , - [sugar]_q and NHC(=NR₂₅)-NH₂;

Each R_{12} and R_{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, OR_{24} , SR_{24} , halo, $N(R_{24})_2$, CO_2R_{24} , CN, NO_2 , aryl or heterocyclyl;

 R_{13} is selected from OR_{25} , SR_{25} , halo, $N(R_{25})_2$, $C(O)R_{31}$, CN, $C(R_{18})_3$, aryl or heterocyclyl;

 R_{14} and R_{15} are independently selected from hydrogen, C_1 - C_3 alkyl, OR_{17} , $(CR_{16}R_{16'})_pC(R_{18})_3$;

Each R_{16} and $R_{16'}$ is independently selected from hydrogen, C_1 - C_3 alkyl, halo, OR_{17} , SR_{17} and $N(R_{17})_2$;

Each R₁₇ is independently selected from hydrogen and C₁-C₃alkyl;

Each R₁₈ is independently selected from hydrogen and halo;

 R_{19} and each R_{20} are independently selected from hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, $(CR_{26}R_{26})_tR_{27}$;

 R_{21} is the characterising group of an amino acid;

R₂₂ is selected from C₁-C₆alkyl, NH₂, NH(C₁₋₆alkyl), N(C₁₋₆alkyl)₂, OR₂₉ or SR₂₉;

 R_{23} is selected from hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, aryl ($CR_{26}R_{26}$)_t R_{27} ;

Each R₂₄ is independently selected from hydrogen and C₁-C₆alkyl;

Each R₂₅ is independently selected from hydrogen, C₁-C₆alkyl, C₁₋₃alkoxyC₁₋₃alkyl, aryl and heterocyclyl;

Each R₂₆ and R_{26'} is independently selected from hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, OR₂₉, SR₂₉, halo, N(R₂₉)₂, CO₂R₂₉, CN, NO₂, aryl and heterocyclyl;

 R_{27} is selected from hydrogen, OR_{30} , SR_{30} , halo, $N(R_{30})_2$, CO_2R_{30} , aryl and heterocyclyl;

 R_{28} is selected from hydrogen, C_{1-6} alkyl, OR_{29} , SR_{29} or $N(R_{29})_2$;

Each R₂₉ is independently selected from hydrogen and C₁-C₃alkyl;

Each R₃₀ is independently selected from hydrogen, C₁-C₃alkyl, aryl and heterocyclyl;

R₃₁ is selected from C₁₋₃alkyl, OH, C₁₋₃alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

```
n is 0 or an integer from 1 to 3;
m is 0 or an integer from 1 to 20;
p is 0 or an integer from 1 to 6;
q is an integer from 1 to 5;
t is an integer from 1 to 10;
```

wherein alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

- 2. (previously presented) A method according to claim 1 wherein X is selected from the group consisting of -N(H)-, -N(C₁₋₃alkyl)-, -N(OH)-, -N(OC₁₋₃alkyl)-, -O-, -S-, -CH₂, -CH(OH)-, -CH(NH₂)-, -CH(C₁₋₃alkyl)-, -CH(halo)-, -CH(SH)-, -CH(OC₁₋₃alkyl), -CH(SC₁₋₃alkyl)-.
- 3. (previously presented) A method according to claim 1 wherein Y is selected from the group consisting of -NH-, -O-, -S-, -N(C₁₋₃alkyl)- or -CH₂-.
- 4. (previously presented) A method according to claim 1 wherein Z is selected from the group consisting of -C(O)-, -C(S)-, -C(=NH)-, -C(=NC₁₋₃alkyl)-, -C(=NOH)- or -C(=NOC₁₋₃alkyl).
- 5. (previously presented) A method according to claim 1 wherein R₁ is selected from the group consisting of hydrogen, CH₃, OH, SH, NH₂, NHCH₃, F, Cl or Br.
- 6. (previously presented) A method according to claim 1 wherein R_2 is selected from the group consisting of C_{1-20} alkyl, C_{1-20} alkenyl, $(CR_{12}R_{12})_m$ heterocyclyl, $(CR_{12}R_{12})_m$ aryl,

 $(CR_{12}R_{12'})_m$ halo, $(CR_{12}R_{12'})_{m}OH$, $(CR_{12}R_{12'})_mOC_{1-20}$ alkyl, $(CR_{12}R_{12})_mOC_{2-20}$ alkenyl, $(CR_{12}R_{12'})_mOC(O)C_{1-20}$ alkyl, $(CR_{12}R_{12})_mOC(O)C_{2-20}$ alkenyl, $(CR_{12}R_{12'})_mOC(O)$ aryl, $(CR_{12}R_{12})_mO[C(O)CH(R_{21})NH]_r-H$, $(CR_{12}R_{12})_mO[sugar]_r$, $(CR_{12}R_{12})_mNH_2$ $(CR_{12}R_{12})_mNHC_1$. $_{20}$ alkyl, $(CR_{12}R_{12})_{m}N(C_{1-20}$ alkyl)₂, $(CR_{12}R_{12})_{m}NHC_{2-20}$ alkenyl, $(CR_{12}R_{12})_{m}N(C_{2-20}$ alkenyl)₂, $(CR_{12}R_{12})_mN(C_{1-20}alkyl)(C_{2-20}alkenyl), (CR_{12}R_{12})_mNHC(O)C_{1-20}alkyl, (CR_{12}R_{12})_mNHC(O)C_{2-20}alkyl)$ $(CR_{12}R_{12'})_mNHC(O)$ aryl, $(CR_{12}R_{12'})_mNH[C(O)CH(R_{21})NH]_r-H$, $(CR_{12}R_{12'})_mNH-$ ₂₀alkenyl, [sugar]_r, $(CR_{12}R_{12'})_mSO_3H$, $(CR_{12}R_{12'})_mSO_3C_{1-20}$ alkyl, $(CR_{12}R_{12})_{m}SO_{3}C_{2-20}$ alkenyl, $_{20}$ alkyl, $(CR_{12}R_{12})_mCO_2C_{2-20}$ alkenyl, $(CR_{12}R_{12})_mC(O)NHC_{1-20}$ alkyl, $(CR_{12}R_{12})_mC(O)N(C_{1-20})_mC(O)N(C_{1-20})_m$ 20alkyl)2, $(CR_{12}R_{12})_mC(O)NHC_{2-20}$ alkenyl, $(CR_{12}R_{12'})_mC(O)N(C_{2-20}alkenyl)_2$, $(CR_{12}R_{12'})_mC(O)N(C_{1-20}alkyl)(C_{2-20}alkenyl),$ $(CR_{12}R_{12})_mC(O)[NHCH(R_{21})C(O)]_r-OH$, $(CR_{12}R_{12'})_mC(O)[NHCH(R_{21})C(O)]_r-OCH_3$ $(CR_{12}R_{12'})_mC(O)[sugar]_r$ $(CR_{12}R_{12'})_mSC_{1-6}alkyl$, C(=N)NHC₁₋₆alkyl; wherein each R₁₂ and R₁₂ is independently selected from hydrogen, C₁. 6alkyl, C2-6alkenyl, C2-6alkynyl, halogen, OH, hydroxyC1-6alkyl, OC1-6alkyl, CO2H, CO2C1-3alkyl, NH₂, NHC₁₋₃alkyl, N(C₁₋₃alkyl)₂, CN, NO₂, aryl or heterocyclyl; R₂₁ is the characterising group of an amino acid, m is 0 or an integer from 1 to 20 and r is an integer from 1 to 5.

- 7. (previously presented) A method according to claim 1 wherein R_3 is selected from the group consisting of hydrogen, halogen, C_1 - C_6 alkyl, - $(CH_2)_nNH_2$, - $(CH_2)_nNO_2$, - $(CH_2)_n-OH$, - $(CH_2)_n-CF_3$ or - $(CH_2)_n-SH$ wherein n is as defined in claim 1.
- 8. (previously presented) A method according to claim 1 wherein R₄ is selected from the group consisting of hydrogen, methyl, ethyl, -CH₂=CH₂, CH₂CF₃, fluoro, chloro or bromo.
- 9. (previously presented) A method according to claim 1 wherein at least one of R_5 and $R_{5'}$ in each ($CR_5R_{5'}$) is hydrogen.
- 10. (previously presented) A method according to claim 1 wherein at least one of R_{12} and R_{12} in each ($CR_{12}R_{12}$) is hydrogen.

- 11. (previously presented) A method according to claim 1 wherein at least one of R_{16} and R_{16} in each ($CR_{16}R_{16}$) is hydrogen.
- 12. (previously presented) A method according to claim 1 wherein at least one of R_{26} and R_{26} in each ($CR_{26}R_{26}$) is hydrogen.
- 13. (previously presented) A method according to claim 1 wherein

X is selected from the group consisting of -O-, -S-, $-C(R_5)_2$ - or $-N(R_6)$ -;

Y is selected from the group consisting of $-N(R_7)$, -O, -S, or $-C(R_7)_2$;

Z is selected from the group consisting of -C(O), -C(S), -S(O) or $-C(=NR_6)$;

R₁ is selected from the group consisting of hydrogen, CH₃, OH, SH, NH₂, NHCH₃, F, Cl or Br;

 $R_2 \text{ is selected from the group consisting of } C_1\text{-}C_{20}\text{alkyl}, C_2\text{-}C_{20}\text{alkenyl}, C_2\text{-}C_{20}\text{alkynyl}, \\ (CR_{12}R_{12})_mC(O)R_8, -(CR_{12}R_{12})_mC(S)R_8, -(CR_{12}R_{12})_mS(O)R_8, -(CR_{12}R_{12})_mS(O)_2R_8, -(CR_{12}R_{12})_mOR_9, -(CR_{12}R_{12})_mSR_9, -(CR_{12}R_{12})_mNR_{10}R_{11}, (CR_{12}R_{12})_mC(=NR_{24})R_{22} \text{ or } \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{13}, R_{22} \text{ and } R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{13}, R_{22} \text{ and } R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{13}, R_{22} \text{ and } R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{13}, R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{13}, R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{12}, R_{13}, R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{12}, R_{13}, R_{24} \text{ are as defined in claim } 1; \\ (CR_{12}R_{12})_mR_{13} \text{ where } m, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{12}, R_{12}, R_{13}, R_{14}, R_{14}, R_{15}, R_{15$

 R_3 is hydrogen, halogen, C_{1-6} alkyl, $-(CH_2)_nNH_2$, $-(CH_2)_nNO_2$, $-(CH_2)_nOH$, $-(CH_2)_nCF_3$ or $-(CH_2)_nSH$ where n is as defined in claim 1; and

R₄ is hydrogen, halogen, methyl, ethyl, CH₂CF₃ or -CH₂=CH₂.

14. (previously presented) A method according to claim 1 wherein X is $-N(R_6)$ -;

Preliminary Amendment Dated December 7, 2004 National Phase filing of PCT/AU2003/00717

Y is $-N(R_7)$ - or $-C(R_7)_2$ -;

Z is -C(O)-, -C(S)-, -S(O)- or -C(=NH);

R₁ is hydrogen, CH₃, NH₂, NHCH₃, F, Cl or Br;

R₂ is as defined in claim 1;

 R_3 is hydrogen, halogen, C_{1-3} alkyl, $(CH_2)_nNH_2$, $-(CH_2)_nNO_2$, $(CH_2)_nOH$ or $(CH_2)_nCF_3$ where n is defined in claim 1; and

R₄ is hydrogen, halogen, methyl, ethyl, CH₂CF₃ or -CH₂=CH₂.

15. (previously presented) A method according to claim 1 wherein the compound of formula (I) is a benzimidazole compounds having the formula (II):

$$O \longrightarrow \begin{matrix} H \\ N \\ R_1 \end{matrix} \qquad \qquad (II)$$

wherein

R₁ is hydrogen, CH₃, NHCH₃, F, Cl or Br;

R₂ is as defined in claim 1;

 R_3 is hydrogen, halogen, C_1 - C_3 alkyl, $(CH_2)_nNH_2$, - $(CH_2)_nNO_2$, $(CH_2)_nOH$, $CH_2C(O)CH_3$, or $(CH_2)_nCF_3$ where n is as defined in claim 1; and

R₄ is hydrogen, F, Cl or Br, methyl, ethyl, CH₂CF₃ or -CH₂=CH₂.

16. (previously presented) A method according to claim 1 wherein the compound of formula (I) is a compound of formula (III):

$$R_{102}$$
 R_{103}
 R_{104}
(III)

wherein

X is
$$-O$$
-, $-NH$ - or $-CH_2$ -;

Y is
$$-NH$$
-, $-O$ -, $-S$ - or $-CH_2$ -;

Z is
$$-C(O)$$
-, $-C(S)$ - or $-S(O)$ -;

R₁₀₁ is selected from hydrogen, C₁₋₃alkyl, OH, SH, NH₂, NHC₁₋₃alkyl, F, Cl or Br;

 R_{102} is selected from C_{1-20} alkyl, C_{2-20} alkenyl, CO_2H , CO_2R_{105} , -NH₂, F, Cl, Br, $(CH_2)_wR_{106}$, $C(O)N(R_{107})_2$, $C(=N)NHC_{1-6}$ alkyl, SO_2C_{1-6} alkyl, $C(O)[NHCH(R_{108})C(O)]_q$ -OR₁₀₉, C(O)sugar, $CONH(CH_2)_n$ aryl, $NHC(O)(CH_2)_n$ Sheterocyclyl, $C(O)SC_{1-6}$ alkyl, $C(O)(CH_2)_nCO_2H$, SO_2OC_{1-10} alkyl, and SO_2NHC_{1-10} alkyl;

 R_{103} is selected from hydrogen, F, Cl, Br, C_{1-6} alkyl, $-(CH_2)_nNH_2$, $-(CH_2)_nNO_2$, $-(CH_2)_n-OH$, $-(CH_2)_n-CF_3$, $-(CH_2)_nC(O)C_{1-3}$ alkyl or $-(CH_2)_n-SH$;

 R_{104} is selected from hydrogen, methyl, ethyl, $CH_2C(R_{110})_3$, $C(R_{110})_3$, $-CH_2=CH_2$, fluoro, chloro or bromo;

R₁₀₅ is selected from hydrogen, C₁₋₂₀alkyl, C₂₋₂₀alkenyl or (CH₂)_tOC₁₋₃alkyl;

R₁₀₆ is selected from SH, SC₁₋₆alkyl, OH, OC₁₋₆alkyl, sugar, CO₂H, NH₂, heterocyclyl or aryl;

Each R_{107} is independently selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, $(CH_2)_t$ aryl and $(CH_2)_t$ heterocyclyl;

 R_{108} is the characterising group of an amino acid;

R₁₀₉ is hydrogen, C₁₋₃alkyl;

Each R₁₁₀ is independently selected from hydrogen and halo; and

n is 0 or an integer from 1 to 3, q is an integer from 1 to 5, w is an integer from 1 to 6; t is an integer from 1 to 10; wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

17. (previously presented) A method according to claim 1 wherein the compound of formula 1 is a compound of formula (IV):

$$R_{102}$$
 R_{103}
 R_{103}
 R_{104}

wherein

R₁₀₁ is selected from hydrogen, CH₃, OH, SH, NH₂, NHCH₃, F, Cl or Br;

 R_{102} is selected from C_{1-20} alkyl, C_{2-20} alkenyl, CO_2H , CO_2R_{105} , -NH₂, F, Cl, Br, $(CH_2)_wR_{106}$, $C(O)N(R_{107})_2$, $C(=N)NHC_{1-6}$ alkyl, SO_2C_{1-6} alkyl, $C(O)[NHCH(R_{108})C(O)]_q$ -OR₁₀₉, C(O)sugar, $CONH(CH_2)_n$ aryl, $NHC(O)(CH_2)_n$ Sheterocyclyl, $C(O)SC_{1-6}$ alkyl, $C(O)(CH_2)_nCO_2H$, SO_2OC_{1-10} alkyl, and SO_2NHC_{1-10} alkyl;

 R_{103} is selected from hydrogen, F, Cl, Br, C_{1-6} alkyl, $(CH_2)_nNH_2$, $-(CH_2)_nNO_2$, $-(CH_2)_n-OH$, $-(CH_2)_n-CF_3$, $CH_2C(O)CH_3$ or $-(CH_2)_n-SH$;

R₁₀₄ is selected from hydrogen, methyl, ethyl, CH₂CF₃, -CH₂=CH₂ fluoro, chloro or bromo;

 R_{105} is selected from hydrogen, C_{1-10} alkyl, C_{2-10} alkenyl, $(CH_2)_tOC_{1-3}$ alkyl;

R₁₀₆ is selected from SH, SC₁₋₆alkyl, OH, OC₁₋₆alkyl, sugar, CO₂H, NH₂, heterocyclyl or aryl;

Each R_{107} is independently selected from hydrogen, C_{1-10} alkyl, C_{2-10} alkenyl, $(CH_2)_t$ aryl and $(CH_2)_t$ heterocyclyl;

R₁₀₈ is the characterising group of an amino acid;

R₁₀₉ is hydrogen, C₁₋₃alkyl;

Each R₁₁₀ is independently selected from hydrogen and halo; and

n is 0 or an integer from 1 to 3, q is an integer from 1 to 5, w is an integer from 1 to 6, t is an integer from 1 to 10; wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

18. (previously presented) A method according to claim 1 wherein the compound of formula 1 is selected from the group consisting of:

benzimidazole-2-one-5-n-pentanoate,

5-[2-(1-oxy-2-hydroxyethyl)ethyl]benzimidazol-2-one-5-carboxylate,

benzimidazole-2-one-5-methanoate,

benzimidazole-2-one-5-ethanoate,

3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]tetrahydro-2H-pyran-2-yl-benzimidazole-2-one-5-carboxylate,

5-bromo-6-methylbenzimidazol-2-one,

5-hydroxy-6-methylbenzimidazol-2-one,

5-dodecanylbenzoimidazol-2-one,

4,5,7-tribromo-6-methylbenzimidazol-2-one,

4,5,6,7-tetrabromobenzimidazol-2-one,

5-methyl-6-nitrobenzimidazol-2-one,

5-amino-6methylbenzimidazol-2-one,

N-(6-methylbenzimidazol-5-yl)-2-pyrimidin-2-yl-sulfanyl-acetamide,

pentyl-benzimidazol-2-one-5-carbothioate,

5-(benzimidazol-2(3H)-one-6-yl)-5-oxopentanoic acid,

2(3H)-benzimidazolone-5-sulfonic acid pentyl ester,

2(3H)-benzimidazolone-5-sulfonic acid pentyl amide,

N-butyl-2-oxo-2,3-dihydro-1H-1,3-benzimidazole-5-carboximidamide,

5-heptanoylbenzofuran-2(3H)-one,

methyl 3-hydroxy-2-{[(2-oxo-2,3-dihydro-1*H*-1,3-benzimidazol-5-

yl)carbonyl]amino}propanoate,

3-hydroxy-2-{[(2-oxo-2,3-dihydro-1*H*-1,3-benzimidazol-5-yl)carbonyl]amino}propanoic acid,

methyl $2-\{[(2-oxo-2,3-dihydro-1H-1,3-benzimidazol-5-yl)carbonyl]amino}-3-phenyl propanoate,$

 $2-\{[(2-oxo-2,3-dihydro-1H-1,3-benzimidazol-5-yl)carbonyl]amino\}-3-phenyl propanoic acid, and$

N-(3,4-dihydroxyphenethyl)-2-oxo-2,3-dihydro-1*H*-1,3-benzimidazole-5-carboxamide.

- 19. (previously presented) A method of treating, preventing or diagnosing a disease or condition wherein MIF cytokine or biological activity is implicated comprising the administration of a treatment, prevention or diagnostic effective amount of a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof to a subject in need thereof.
- 20. (previously presented) A method according to claim 19 wherein the disease or condition is selected from autoimmune diseases, solid or haemopoitic tumours and chronic or acute inflammatory diseases.
- 21. (previously presented) A method according to claim 19 wherein the disease or condition is selected from the group consisting of Rheumatic diseases, spondyloarthropathies, crystal arthropathies, Lyme disease, connective tissue diseases, vasculitides, glomerulonephritis, interstitial nephritis, inflammatory bowel disease, peptic ulceration, gastritis, oesophagitis, liver disease, autoimmune diseases, pulmonary diseases, cancers whether primary or metastatic, atherosclerosis, disorders of the hypothalamic-pituitary-adrenal axis, brain disorders, corneal disease, iritis, iridocyclitis, cataracts, uveitis, sarcoidosis, diseases characterised by modified

angiogenesis, endometrial function, psoriasis, endotoxic (septic) shock, exotoxic (septic) shock, infective (true septic) shock, other complications of infection, pelvic inflammatory disease, transplant rejection, allergies, allergic rhinitis, bone diseases, atopic dermatitis, UV(B)-induced dermal cell activation, malarial complications, diabetes mellitus, pain, inflammatory consequences of trauma or ischaemia, testicular dysfunctions and wound healing.

- 22. (previously presented) A method according to claim 21 wherein the disease or condition is selected from the group consisting of rheumatoid arthritis, osteoarthritis, psoriatic arthritis, ankylosing spondylitis, reactive arthritis, Reiter's syndrome, gout, pseudogout, calcium pyrophosphate deposition disease, systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, Sjögren's syndrome, polyarteritis nodosa, Wegener's granulomatosis, Churg-Strauss syndrome, ulcerative colitis, Crohn's disease, cirrhosis, hepatitis, diabetes mellitus, thyroiditis, myasthenia gravis, sclerosing cholangitis, primary biliary cirrhosis, diffuse interstitial lung diseases, pneumoconioses, fibrosing alveolitis, asthma, bronchitis, bronchiectasis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, colon cancer, lymphoma, lung cancer, melanoma, prostate cancer, breast cancer, stomach cancer, leukemia, cervical cancer and metastatic cancer, ischaemic heart disease, myocardial infarction, stroke, peripheral vascular disease, Alzheimer's disease, multiple sclerosis, diabetic retinopathy, parturition, endometriosis, osteoporosis, Paget's disease, sunburn and skin cancer.
- 23. (previously presented) A method of claim 19 wherein the subject is a human subject.
- 24. (currently amended) A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier, diluent or excipient.
- 25. (previously presented) A pharmaceutical composition according to claim 24 further comprising a glucocorticoid.

26. (previously presented) A method of treating or preventing a disease or condition wherein MIF cytokine or biological activity is implicated comprising:

administering to a mammal a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof and a second therapeutic agent.

- 27. (previously presented) A method according to claim 26 wherein the second therapeutic agent is a glucocorticoid.
- 28. (previously presented) A method of prophylaxis or treatment of a disease or condition for which treatment with a glucocorticoid is indicated, said method comprising:

administering to a mammal a glucocorticoid and a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof.

29. (previously presented) A method of treating a steroid-resistant disease or condition comprising:

administering to a mammal a glucocorticoid and a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof.

- 30. (previously presented) A method of enhancing the effect of a glucocorticoid in mammals comprising administering a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt or prodrug thereof simultaneously, separately or sequentially with said glucocorticoid.
- 31-38. (Cancelled)
- 39. (New) A compound of formula (III) or a pharmaceutically acceptable salt or prodrug

thereof:

wherein

X is -O-, or -NH-;

Y is -NH-;

Z is -C(O)--;

R₁₀₁ is selected from hydrogen or Br;

 R_{102} is selected from CO_2R_{105} , $C(O)N(R_{107})_2$, $C(=N)NHC_{1-6}$ alkyl, $C(O)[NHCH(R_{108})C(O)]_q$ - OR_{109} , C(O)sugar, $NHC(O)(CH_2)_n$ Sheterocyclyl, $C(O)SC_{1-6}$ alkyl, and SO_2NHC_{1-10} alkyl;

 R_{103} is selected from hydrogen, F, Cl, Br, C_{1-6} alkyl, NH₂, NO₂, OH, CF₃, C(O)C₁₋₃alkyl or SH;

 R_{104} is selected from hydrogen or bromo;

R₁₀₅ is selected from C₂₋₂₀alkenyl or (CH₂)_tOC₁₋₃alkyl;

Each R_{107} is independently selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, $(CH_2)_t$ aryl and $(CH_2)_t$ heterocyclyl;

Preliminary Amendment Dated December 7, 2004 National Phase filing of PCT/AU2003/00717

 R_{108} is the characterising group of an amino acid;

R₁₀₉ is hydrogen, C₁₋₃alkyl;

n is 0 or an integer from 1 to 3, q is an integer from 1 to 5; t is an integer from 1 to 10; wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

40. (New) The compound benzimidazole-2-one-5-n-pentanoate.