§ 3 Messbare Funktionen

In diesem Paragraphen seien $\emptyset \neq X, Y, Z$ Mengen.

Definition

Ist \mathfrak{A} eine σ -Algebra auf X, so heißt (X,\mathfrak{A}) ein **messbarer Raum**.

Definition

Sei $\mathfrak A$ eine σ -Algebra auf X, $\mathfrak B$ eine σ -Algebra auf Y und $f:X\to Y$ eine Funktion. f heißt genau dann $\mathfrak A$ - $\mathfrak B$ -messbar, wenn gilt:

$$\forall B \in \mathfrak{B} : f^{-1}(B) \in \mathfrak{A}$$

Bemerkung: Seien die Bezeichnungen wie in obiger Definition, dann gilt:

- (1) f sei \mathfrak{A} - \mathfrak{B} -messbar, \mathfrak{A}' eine weitere σ -Algebra auf X mit $\mathfrak{A} \subseteq \mathfrak{A}'$ und \mathfrak{B}' sei eine σ -Algebra auf Y mit $\mathfrak{B}' \subseteq \mathfrak{B}$.

 Dann ist f \mathfrak{A}' - \mathfrak{B}' -messbar.
- (2) Sei $X_0 \in \mathfrak{A}$, dann gilt $\mathfrak{A}_{X_0} \subseteq \mathfrak{A}$ nach 1.5. Nun sei $f: X \to Y$ \mathfrak{A} - \mathfrak{B} -messbar, dann ist $f_{|X_0}: X_0 \to Y$ \mathfrak{A}_{X_0} - \mathfrak{B} -messbar.

Beispiel

- (1) Sei $\mathfrak A$ eine σ -Algebra auf X und $A \subseteq X$. $\mathbb 1_A : X \to \mathbb R$ ist genau dann $\mathfrak A$ - $\mathfrak B_1$ -messbar, wenn $A \in \mathfrak A$ ist.
- (2) Sei $X = \mathbb{R}^d$. Ist $A \in \mathfrak{B}_d$, so ist $\mathbb{1}_A \, \mathfrak{B}_d$ - \mathfrak{B}_1 -messbar.
- (3) Ist C wie in 2.11, so ist $\mathbb{1}_C$ nicht \mathfrak{B}_d - \mathfrak{B}_1 -messbar.
- (4) Es sei $f: X \to Y$ eine Funktion und \mathfrak{B} (\mathfrak{A}) eine σ -Algebra auf Y(X), dann ist $f \times (X)$ - \mathfrak{B} -messbar (\mathfrak{A} - $\{Y,\varnothing\}$ -messbar).

Satz 3 1

Seien $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ σ -Algebren auf X, Y bzw. Z. Weiter seien $f: X \to Y$ und $g: Y \to Z$ Funktionen.

- (1) Ist $f \mathfrak{A} \mathfrak{B}$ -messbar und ist $g \mathfrak{B} \mathfrak{C}$ -messbar, so ist $g \circ f : X \to Z \mathfrak{A} \mathfrak{C}$ -messbar.
- (2) Sei $\emptyset \neq \mathcal{E} \subseteq \times(Y)$ und $\sigma(\mathcal{E}) = \mathfrak{B}$. Dann:

$$f$$
 ist $\mathfrak{A} - \mathfrak{B}$ -messbar, genau dann, wenn gilt: $\forall E \in \mathcal{E} : f^{-1}(E) \in \mathfrak{A}$

Beweis

(1) Sei $C \in \mathfrak{C}$; g ist messbar, daraus folgt $g^{-1}(C) \in \mathfrak{B}$; f ist messbar, daraus folgt $f^{-1}(g^{-1}(C)) = (g \circ f)^{-1}(C) \in \mathfrak{A}$

$$(2) \Rightarrow \checkmark$$

$$\Leftarrow \mathfrak{D} := \{B \subseteq Y \mid f^{-1}(B) \in \mathfrak{A}\}$$
 Übung: \mathfrak{D} ist eine σ -Algebra auf Y .

Aus der Voraussetzung folgt: $\mathcal{E} \subseteq \mathfrak{D}$. Dann: $\mathfrak{B} = \sigma(\mathcal{E}) \subseteq \mathfrak{D}$. Ist $B \in \mathfrak{B}$, so ist $B \in \mathfrak{D}$, also $f^{-1}(B) \in \mathfrak{A}$.

Definition

Sei $X \in \mathfrak{B}_d$. Ist $f: X \to \mathbb{R}^k \mathfrak{B}(X) - \mathfrak{B}_k$ -messbar, so heißt f (Borel-)messbar.

Ab jetzt sei stets $X \in \mathfrak{B}_d$. (Erinnerung: $\mathfrak{B}(X) = \{A \in \mathfrak{B}_d \mid A \subseteq X\}$)

Satz 3.2

Seien $f, g: X \to \mathbb{R}^k$ und $\alpha, \beta \in \mathbb{R}$.

- (1) Ist f auf X stetig, so ist f messbar.
- (2) Ist $f = (f_1, \ldots, f_k)$, so gilt: f ist messbar \Leftrightarrow alle f_j sind messbar.
- (3) Sind f und g messbar, so ist $\alpha f + \beta g$ messbar.
- (4) Sei k = 1 und f und g seien messbar. Dann:
 - (i) fg ist messbar
 - (ii) Ist $f(x) \neq 0 \forall x \in X$, so ist $\frac{1}{f}$ messbar
 - (iii) $\{x \in X \mid f(x) \ge g(x)\} \in \mathfrak{B}(X)$

Beweis

(1) Sei $G \in \mathcal{O}(\mathbb{R}^k)$. Mit f stetig folgt: $f^{-1}(G) \in \mathcal{O}(X) \in \mathfrak{B}(X)$

 $\sigma(\mathcal{O}(\mathbb{R}^k)) = \mathfrak{B}_k$. Die Behauptung folgt aus 3.1.(2).

(2) \Leftarrow : Sei $I = (a, b] = \prod_{j=1}^{k} (a_j, b_j] \in I_k$ $(a = (a_1, \dots, a_k), b = (b_1, \dots, b_k), a \le b)$

Dann:
$$f^{-1}(I) = \bigcap_{j=1}^k f_j^{-1}(\underbrace{(a_j,b_j)}_{\in \mathfrak{B}_1} \in \mathfrak{B}(X)$$

Aus $\sigma(I_k) = \mathfrak{B}_k$ folgt mit 3.1.(2): f ist messbar.

 $\Rightarrow:$ Für j=1,...,k sei $p_j:\mathbb{R}^k\to\mathbb{R}$ definiert durch $p_j(x_1,\ldots,x_k):=x_j$

 p_j ist stetig, also messbar (nach (1)). Es ist $f_j = p_j \circ f$. Mit 3.1.(1) folgt: f_j ist messbar.

(3) $h := (f, g) : X \to \mathbb{R}^{2k}$; aus (2): h ist messbar.

$$\varphi(x,y) := \alpha x + \beta y \, (x,y \in \mathbb{R}^k)$$

 φ ist stetig, also messbar (nach (1)). Es ist $\alpha f + \beta g = \varphi \circ h$. Mit 3.1.(1) folgt: $\alpha f + \beta g$ ist messbar.

(4) (i) $h:=(f,g):X\to\mathbb{R}^{2k}$ ist messbar (nach (2)); $\varphi(x,y):=xy,\ \varphi$ ist stetig, also messbar.

Es ist $fg = \varphi \circ h$. Mit 3.1.(1) folgt: fg ist messbar.

(ii) $\varphi(x) := \frac{1}{x}$, φ ist stetig auf $\mathbb{R} \setminus \{0\}$, also messbar. $\frac{1}{f} = \varphi \circ f$. Mit 3.1.(1) folgt: $\frac{1}{f}$ ist messbar.

(iii)
$$A := \{x \in X \mid f(x) \ge g(x)\} = \{x \in X \mid f(x) - g(x) \in [0, \infty)\} = \underbrace{(f - g)}_{\text{messbar nach } (3)} \underbrace{([0, \infty))}_{\text{messbar nach } (3)} \in \mathfrak{B}(X)$$

Folgerungen 3.3

(1) Seien $A, B \in \mathfrak{B}(X), A \cap B = \emptyset$ und $X = A \cup B$. Weiter seien $f : A \to \mathbb{R}^k$ und $g : B \to \mathbb{R}^k$ messbar. Dann ist $h : X \to \mathbb{R}^k$, definiert durch

$$h(x) := \begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases},$$

messbar.

(2) Ist $f: X \to \mathbb{R}^k$ messbar und $g(x) := ||f(x)|| (x \in X)$, so ist g messbar.

Beweis

(1) Sei $C \in \mathfrak{B}_k$. Dann:

$$h^{-1}(C) = \underbrace{f^{-1}(C)}_{\in \mathfrak{B}(A) \subseteq \mathfrak{B}(X)} \cup \underbrace{g^{-1}(C)}_{\in \mathfrak{B}(B) \subseteq \mathfrak{B}(X)} \in \mathfrak{B}(X)$$

(2) Definiere $\varphi(z) = ||z|| \quad (z \in \mathbb{R}^k)$; φ ist stetig, also messbar.

Es ist $g = \varphi \circ f$. Mit 3.1 folgt: g ist messbar.

Beispiel
$$X = \mathbb{R}^2, f(x, y) := \begin{cases} \frac{\sin(y)}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

für $x \neq 0$: $f(x,x) = \frac{\sin(X)}{x} \xrightarrow{x \to 0} 1 \neq 0 = f(0,0)$, daraus folgt: f ist nicht stetig.

 $A:=\{(x,y)\in\mathbb{R}^2\mid x=0\},\,B:=\{(x,y)\in\mathbb{R}^2\mid x\neq 0\},\,X=A\cup B,\,A\cap B=\varnothing.$ A ist abgeschlossen, das heißt: $A\in\mathfrak{B}_2,\,B=A^C\in\mathfrak{B}_2$

$$f_1(x,y) := 0 \quad ((x,y) \in A)$$

 $f_2(x,y) := \frac{\sin(y)}{x} \quad ((x,y) \in B)$

 f_1 ist stetig auf A, f_2 ist stetig auf B. Also: f_1 , f_2 ist messbar; mit 3.3.(1) folgt: f ist messbar.

3. Messbare Funktionen

Ein neues Symbol kommt hinzu: $-\infty$

$$\overline{\mathbb{R}} := [-\infty, +\infty] := \mathbb{R} \cup \{-\infty, +\infty\}$$

In $\overline{\mathbb{R}}$ gelten folgende Regeln, wobei $a \in \mathbb{R}$:

- $(1) -\infty < a < +\infty$
- (2) $\pm \infty + (\pm \infty) = \pm \infty$
- (3) $\pm \infty + a := a + (\pm \infty) := \pm \infty$

(4)
$$a \cdot (\pm \infty) := (\pm \infty) \cdot a =$$

$$\begin{cases} \pm \infty & a > 0 \\ 0 & a = 0 \\ \mp \infty & a < 0 \end{cases}$$

 $(5) \frac{a}{+\infty} := 0$

Definition

- (1) Sei (x_n) eine Folge in $\overline{\mathbb{R}}$. $x_n \to +\infty : \Leftrightarrow \forall c \in \mathbb{R} \exists n_c \in \mathbb{N} : x_n \geq c \forall n \geq n_c$ Analog für $-\infty$.
- (2) Seien $f, g: X \to \overline{\mathbb{R}}$. Dann:

$$\{f \leq g\} := \{x \in X \mid f(x) \leq g(x)\}$$

$$\{f \geq g\} := \{x \in X \mid f(x) \geq g(x)\}$$

$$\{f \neq g\} := \{x \in X \mid f(x) \neq g(x)\}$$

$$\{f < g\} := \{x \in X \mid f(x) < g(x)\}$$

$$\{f > g\} := \{x \in X \mid f(x) > g(x)\}$$

(3) Sei $a \in \overline{\mathbb{R}}$ und $f: X \to \overline{\mathbb{R}}$. Dann:

$$\{f \le a\} := \{x \in X \mid f(x) \le a\}$$

$$\{f \ge a\} := \{x \in X \mid f(x) \ge a\}$$

$$\{f \ne a\} := \{x \in X \mid f(x) \ne a\}$$

$$\{f < a\} := \{x \in X \mid f(x) < a\}$$

$$\{f > a\} := \{x \in X \mid f(x) > a\}$$

Definition

 $\overline{\mathfrak{B}}_1 := \{B \cup E \mid B \in \mathfrak{B}_1, E \subseteq \{-\infty, +\infty\}\}. \text{ Dann: } \mathfrak{B}_1 \subseteq \overline{\mathfrak{B}}_1$

Übung: $\overline{\mathfrak{B}}_1$ ist eine σ -Algebra auf $\overline{\mathbb{R}}$.

 $\overline{\mathfrak{B}}_1$ heißt Borelsche σ -Algebra auf $\overline{\mathbb{R}}$. Sei $f: X \to \overline{\mathbb{R}}$. f heißt (Borel-)messbar (mb) : $\Leftrightarrow f$ ist $\mathfrak{B}(X) - \overline{\mathfrak{B}}_1$ messbar.

Beispiel

$$f(x) := +\infty \quad (x \in X), \text{ also: } f: X \to \overline{\mathbb{R}}$$

Sei
$$B \in \overline{\mathfrak{B}}_1$$
, $A := f^{-1}(B) = \{x \in X \mid f(x) \in B\}$

Fall 1: $+\infty \notin B$, dann: $A = \emptyset \in \mathfrak{B}(X)$

Fall 2: $+\infty \in B$, dann: $A = X \in \mathfrak{B}(X)$

f ist messbar.

Satz 3.4

(1) Definiere die Mengen:

$$\mathcal{E}_1 := \{ [-\infty, a] \mid a \in \mathbb{Q} \}$$

$$\mathcal{E}_2 := \{ [-\infty, a) \mid a \in \mathbb{Q} \}$$

$$\mathcal{E}_3 := \{ (a, \infty) \mid a \in \mathbb{Q} \}$$

$$\mathcal{E}_4 := \{ [a, \infty) \mid a \in \mathbb{Q} \}$$

Dann gilt:

$$\overline{\mathfrak{B}_1} = \sigma(\mathcal{E}_j)$$
 für $j \in \{1, 2, 3, 4\}$

- (2) Für $f:X\to\overline{\mathbb{R}}$ sind die folgenden Aussagen äquivalent:
 - (i) f ist messbar.
 - (ii) $\forall a \in \mathbb{Q} : \{ f \le a \} \in \mathfrak{B}(X).$
 - (iii) $\forall a \in \mathbb{Q} : \{ f \ge a \} \in \mathfrak{B}(X).$
 - (iv) $\forall a \in \mathbb{Q} : \{ f < a \} \in \mathfrak{B}(X).$
 - (v) $\forall a \in \mathbb{Q} : \{f > a\} \in \mathfrak{B}(X).$
- (3) Die Äquivalenzen in (2) gelten auch für Funktionen $f: X \to \mathbb{R}$.

Beweis

Die folgenden Beweise erfolgen exemplarisch für einen der Unterpunkte und funktionieren fast analog für die anderen.

(1) Für $a \in \mathbb{Q}$ gilt:

$$[-\infty, a]^c = (a, \infty] \in \sigma(\mathcal{E}_1)$$

D.h. es gilt $\mathcal{E}_3 \subseteq \sigma(\mathcal{E}_1)$ und damit auch $\sigma(\mathcal{E}_3) \subseteq \sigma(\mathcal{E}_1)$.

(2) Es gilt:

$$\{f \le a\} = \{x \in X \mid f(x) \le a\} = f^{-1}([-\infty, a])$$

Die Äquivalenz folgt dann aus (1) und 3.1.

(3) Die Funktion $f: X \to \overline{\mathbb{R}}$ kann aufgefasst werden als Funktion $\overline{f}: X \to \overline{\mathbb{R}}$. Es ist f genau dann $\mathfrak{B}(X)$ - \mathfrak{B}_1 -messbar wenn \overline{f} $\mathfrak{B}(X)$ - $\overline{\mathfrak{B}_1}$ -messbar ist.

Definition

Sei $M \subseteq \overline{\mathbb{R}}$.

(1) Ist $M = \emptyset$ oder $M = \{-\infty\}$, so sei

$$\sup M := -\infty$$

(2) Ist $M \setminus \{-\infty\} \neq \emptyset$ und nach oben beschränkt (also insbesondere $\infty \notin M$), so sei

$$\sup M := \sup (M \setminus \{-\infty\})$$

- 3. Messbare Funktionen
 - (3) Ist $M \setminus \{-\infty\}$ nicht nach oben beschränkt oder $\infty \in M$, so sei

$$\sup M := \infty$$

(4) Es sei inf $M := -\sup(-M)$, wobei $-M := \{-m \mid m \in M\}$.

Definition

Sei (f_n) eine Folge von Funktionen $f_n: X \to \overline{\mathbb{R}}$.

(1) Die Funktion $\sup_{n\in\mathbb{N}}(f_n):X\to\overline{\mathbb{R}}$ $(\inf_{n\in\mathbb{N}}(f_n):X\to\overline{\mathbb{R}})$ ist definiert durch:

$$(\sup_{n\in\mathbb{N}} f_n)(x) := \sup\{f_n(x) \mid n\in\mathbb{N}\} \quad x\in X$$

$$\left((\inf_{n \in \mathbb{N}} f_n)(x) := \inf \{ f_n(x) \mid n \in \mathbb{N} \} \quad x \in X \right)$$

(2) Die Funktion $\limsup_{n\to\infty} f_n: X\to \overline{\mathbb{R}}$ ($\liminf_{n\to\infty} f_n: X\to \overline{\mathbb{R}}$) ist definiert durch:

$$\limsup_{n \to \infty} f_n := \inf_{j \in \mathbb{N}} (\sup_{n \ge j} f_n)
\liminf_{n \to \infty} f_n := \sup_{j \in \mathbb{N}} (\inf_{n \ge j} f_n)$$
(*)

Erinnerung: Für eine beschränkte Folge (a_n) in \mathbb{R} war

$$\limsup_{n \to \infty} a_n := \inf \{ \sup \{ a_n \mid n \ge j \} \mid j \in \mathbb{N} \}$$

(3) Sei $N \in \mathbb{N}$ und $g_j := f_j$ (für $j = 1, \dots, N$), $g_j := f_N$ (für j > N). Definiere:

$$\max_{1 \le n \le N} f_n := \sup_{j \in \mathbb{N}} g_n$$

$$\min_{1 \le n \le N} f_n := \inf_{i \in \mathbb{N}} g_n$$

(4) Ist $f_n(x)$ für jedes $x \in \overline{\mathbb{R}}$ konvergent, so ist $\lim_{n \to \infty} f_n : X \to \overline{\mathbb{R}}$ definiert durch:

$$(\lim_{n\to\infty} f_n)(x) := \lim_{n\to\infty} f_n(x)$$

(In diesem Fall gilt $\lim_{n\to\infty} f_n = \lim \sup_{n\to\infty} f_n = \lim \inf_{n\to\infty} f_n$.)

Satz 3.5

Sei (f_n) eine Folge von Funktionen $f_n: X \to \overline{\mathbb{R}}$ und jedes f_n messbar.

(1) Dann sind ebenfalls messbar:

$$\sup_{n\in\mathbb{N}} f_n$$

$$\inf_{n\in\mathbb{N}}f_n$$

$$\sup_{n \in \mathbb{N}} f_n \qquad \qquad \inf_{n \in \mathbb{N}} f_n \qquad \qquad \limsup_{n \in \mathbb{N}} f_n$$

 $\liminf_{n \in \mathbb{N}} f_n$

(2) Ist $(f_n(x))$ für jedes $x \in X$ in \mathbb{R} konvergent, so ist $\lim_{n\to\infty} f_n$ messbar.

Beweis

(1) Sei $a \in \mathbb{Q}$, dann gilt (nach 3.4(2)):

$$\{\sup_{n\in\mathbb{N}} f_n \le a\} = \bigcap_{n\in\mathbb{N}} \{f_n \le a\} \in \mathfrak{B}(X)$$

Also ist $\sup_{n\in\mathbb{N}} f_n$ messbar. Analog lässt sich die Messbarkeit von $\inf_{n\in\mathbb{N}} f_n$ zeigen, der Rest folgt dann aus (*).

(2) Folgt aus (1) und obiger Bemerkung in der Definition.

Beispiel

Sei X = I ein Intervall in \mathbb{R} und $f: I \to \mathbb{R}$ sei auf I differenzierbar.

Für $x \in I, n \in \mathbb{N}$ sei $f_n := n(f(x - \frac{1}{n}) - f(x))$. Da f stetig ist, ist auch jedes f_n stetig, also insbesondere messbar und es gilt:

$$f_n(x) = \frac{f(x - \frac{1}{n}) - f(x)}{\frac{1}{n}} \stackrel{n \to \infty}{\to} f'(x)$$

Aus 3.5(2) folgt, dass f' messbar ist.

Definition

Sei $f: X \to \overline{\mathbb{R}}$ eine Funktion.

- (1) $f_+ := \max\{f, 0\}$ heißt **Positivteil** von f.
- (2) $f_{-} := \max\{-f, 0\}$ heißt **Negativteil** von f.

Es gilt $f_+, f_- \ge 0$, $f = f_+ - f_-$ und $|f| = f_+ + f_-$.

Satz 3.6

Seien $f, g: X \to \overline{\mathbb{R}}$ und $\alpha, \beta \in \mathbb{R}$.

- (1) Sind f, g messbar und ist $\alpha f(x) + \beta g(x)$ für jedes $x \in X$ definiert, so ist $\alpha f + \beta g$ messbar.
- (2) Sind f, g messbar und ist f(x)g(x) für jedes $x \in X$ definiert, so ist fg messbar.
- (3) f ist genau dann messbar, wenn f_+ und f_- messbar sind. In diesem Fall ist auch |f| messbar.

Beweis

(1)+(2) Für alle $n \in \mathbb{N}, x \in X$ seien f_n und g_n wie folgt definiert:

$$f_n(x) := \max\{-n, \min\{f(x), n\}\}\$$

$$g_n(x) := \max\{-n, \min\{g(x), n\}\}\$$

Dann sind $f_n(x), g_n(x) \in [-n, n]$ für alle $n \in \mathbb{N}, x \in X$. Nach 3.2(3) sind also $\alpha f_n + \beta g_n$ und $f_n g_n$ messbar. Außerdem gilt:

$$\alpha f_n(x) + \beta g_n(x) \stackrel{n \to \infty}{\to} \alpha f(x) + \beta g(x)$$

$$f_n(x)g_n(x) \stackrel{n \to \infty}{\to} f(x)g(x)$$

Die Behauptung folgt aus 3.5(2).

(3) Nach 3.5(1) sind f_+ und f_- messbar, wenn f messbar ist. Die umgekehrte Implikation folgt aus 3.6(1). Sind f_+ und f_- messbar, so folgt ebenfalls aus 3.6(1), dass $|f| = f_+ + f_-$ messbar ist.

Beispiel

Sei $C \subseteq \mathbb{R}^d$ wie in 2.11, also $C \notin \mathfrak{B}_d$. Definiere $f: \mathbb{R}^d \to \mathbb{R}$ wie folgt:

$$f(x) := \begin{cases} 1 & , x \in C \\ -1 & , x \notin C \end{cases}$$

Dann ist $\{f \geq 1\} = C$, also f nicht messbar. Aber für alle $x \in \mathbb{R}^d$ ist |f(x)| = 1, also $|f| = \mathbb{1}_{\mathbb{R}^d}$ und damit messbar.

Definition

 $f: X \to \mathbb{R}$ sei messbar.

- (1) f heißt einfach oder Treppenfunktion, genau dann wenn f(X) endlich ist.
- (2) f sei einfach und $f(X) = \{y_1, \dots, y_m\}$ mit $y_i \neq y_j$ für $i \neq j$. Sei weiter $A_j := f^{-1}(\{y_j\})$ für $j = 1, \dots, m$. Dann sind $A_1, \dots, A_m \in \mathfrak{B}(X)$ und $X = \bigcup_{j=1}^m A_j$ disjunkte Vereinigung.

$$f = \sum_{i=1}^{m} y_i \mathbb{1}_{A_j}$$

heißt **Normalform** von f.

Beispiel

Sei $A \in \mathfrak{B}(X)$. Definiere:

$$f := \mathbb{1}_A = 2 \cdot \mathbb{1}_A - \mathbb{1}_X + \mathbb{1}_{X \setminus A} = \mathbb{1}_A + 0 \cdot \mathbb{1}_{X \setminus A}$$

Wobei das letzte die Normalform von f ist. Man sieht also, dass einfache Funktionen mehrere Darstellungen haben können.

Satz 3.7

Linearkombinationen und Produkte, sowie endliche Maxima und Minima einfacher Funktionen, sind einfach.

Satz 3.8

Sei $f: X \to \overline{\mathbb{R}}$ messbar.

- (1) Ist $f \geq 0$ auf X, so existiert eine Folge (f_n) von einfachen Funktionen $f_n : X \to [0, \infty)$, sodass $0 \leq f_n \leq f_{n+1}$ auf X $(\forall n \in \mathbb{N})$ und $f_n(x) \stackrel{n \to \infty}{\to} f(x)$ $(\forall x \in X)$. In diesem Fall heißt (f_n) zulässig für f.
- (2) Es existiert eine Folge (f_n) von einfachen Funktionen $f_n: X \to \mathbb{R}$, sodass $|f_n| \le |f|$ auf X $(\forall n \in \mathbb{N})$ und $f_n(x) \stackrel{n \to \infty}{\to} f(x)$ $(\forall x \in X)$.
- (3) Ist f beschränkt auf X (also insbesondere $\pm \infty \notin f(X)$), so kommt in (2) noch hinzu, dass (f_n) auf X gleichmäßig gegen f konvergiert.

Folgerungen 3.9 ((Beweis mit 3.8(2) und 3.5))

Sei $f: X \to \overline{\mathbb{R}}$ eine Funktion, dann ist f genau dann messbar, wenn eine Folge einfacher Funktionen (f_n) mit $f_n: X \to \mathbb{R}$ und $f_n(x) \stackrel{n \to \infty}{\to} f(x)$ für alle $x \in X$ existiert.

Beweis

(1) Für $n\in\mathbb{N}$ definiere $\varphi_n:[0,\infty]\to[0,\infty)$ durch

$$\varphi_n(t) := \begin{cases} \frac{[2^n t]}{2^n} & , 0 \le t < n \\ n & , n \le t \le \infty \end{cases}$$

Dann ist φ_n $(\mathfrak{B}_1)_{[0,\infty]}$ - \mathfrak{B}_1 -messbar, außerdem gilt:

$$\forall t \in [0, \infty] \forall n \in \mathbb{N} : 0 \le \varphi_1 \le \dots \le t$$
$$\forall t \in [0, n] \forall n \in \mathbb{N} : t - \frac{1}{2^n} \le \varphi_n(t) \le t$$

und es ist $\varphi_n(t) \stackrel{n \to \infty}{\to} t$ für alle $t \in [0\infty]$. Setze $f_n := \varphi_n \circ f$. Dann leistet (f_n) das gewünschte.

(2) Es ist $f = f_+ - f_-$ und $f_+, f_- \ge 0$ auf X. Seien $(g_n), (h_n)$ zulässige Folgen für f_+ bzw. f_- . Definiere $f_n := g_n - h_n$. Dann ist klar, dass gilt:

$$\forall x \in X : f_n(x) = g_n(x) - h_n(x) \stackrel{n \to \infty}{\to} f_+(x) - f_-(x) = f(x)$$

Weiter gilt:

$$|f_n| \le g_n + h_n \le f_+ + f_- = |f|$$

(3) Ohne Beweis.