Matting Introduction

Ivanov Ilya

xx.05.2021

Content

- Task Statement
- Applications
- Metrics
- Classical methods
- Modern methods

What is matting?

What is matting?

 Alpha matting refers to the problem of softly extracting the foreground from a given image

$$\mathbf{C}_i = \boldsymbol{\alpha}_i \mathbf{F}_i + (1 - \boldsymbol{\alpha}_i) \mathbf{B}_i$$

- C is the observed color
- F is the pixel color in the foreground
- B is the pixel color in the background
- α is the level of mixing between the two layers (α =0 means definite background, α =1 means definite foreground)
- 3 equations for RGB and 7 unknowns (matte, FG(3), BG(3))

Сложности

- Пример тень
- Сложности для мэттинга человека: Волосы, очки, прозрачная одежда, бутылки и т.д

What is matting?

• Typical input is trimap and image

Why we need fractions alphas

- Finite pixel size
- Finite shutter speed
- Motion blur
- Translucency

Hard segmentation vs soft segmentation

Hard segmentation vs soft segmentation

Matting ambiguity

Possible solutions

- Trimaps
- Strokes

Applications

- Used in movies
- Communication in Zoom
- Background editing
- Portrait mode in smarphone
- Bokeh effect
- Etc.

How to compare matting models?

- SAD
- MSE
- Grad
- Connectivity

Metrics

- SAD $=\sum_i |lpha_i \widehatlpha_i| \cdot [trimap_i == gray]/1000$
- MSE = $\frac{\sum_{i}(\alpha_{i}-\widehat{\alpha}_{i})^{2}\cdot[trimap_{i}==gray]}{\sum_{i}[trimap_{i}==gray]}$

+

- Gradient loss
- Connectivity error

Why we need gradient and connectivity?

(g) SAD: 1215 (h) SAD: 806

SAD and MSE not always correlate with visual quality

Gradient loss

• Gradient loss = $\sum_i (\nabla \alpha_i - \nabla \widehat{\alpha}_i)^2 [trimap_i == gray]$

• Gradient abla lpha is calculated by convolution of lpha with derivative of gaussian

kernel:

Connectivity Error

- $d_i = \alpha_i l_i$
- Degree of connectivity: $\varphi(\alpha)_i = 1 d_i$
 - Actually $\varphi(\alpha)_i = 1 d_i \cdot [d_i \ge 0.15]$ to neglect small variations
- Conn. error = $\sum_i |\varphi(\alpha)_i| \varphi(\widehat{\alpha})_i | \cdot [trimap_i] = gray$

Classical Methods

- Bluescreen matting
- Closed-form matting

Blue Screen Matting

• It's impossible to solve equations for one BG

• But it's possible for 2 BG

Closed-form matting: Gray-scale case

• I is gray-scale image

$$\alpha_i \approx aI_i + b$$
, $\forall i \in w$, where $a = \frac{1}{F - B}$, $b = -\frac{B}{F - B}$ and w is a small image window.

Optimization problem

$$J(\alpha, a, b) = \sum_{j \in I} \left(\sum_{i \in w_j} (\alpha_i - a_j I_i - b_j)^2 + \varepsilon a_j^2 \right)$$

Theorem 1 Define $J(\alpha)$ as

$$J(\alpha) = \min_{a,b} J(\alpha, a, b).$$

Then

$$J(\alpha) = \alpha^T L \alpha, \tag{4}$$

where L is an $N \times N$ matrix, whose (i, j)-th entry is:

$$\sum_{k|(i,j)\in w_k} \left(\delta_{ij} - \frac{1}{|w_k|} \left(1 + \frac{1}{\frac{\varepsilon}{|w_k|} + \sigma_k^2} (I_i - \mu_k) (I_j - \mu_k) \right) \right)$$
(5)

Here δ_{ij} is the Kronecker delta, μ_k and σ_k^2 are the mean and variance of the intensities in the window w_k around k, and $|w_k|$ is the number of pixels in this window.

Closed-form matting: Color case

Color line model

$$\alpha_i \approx \sum_c a^c I_i^c + b, \quad \forall i \in w$$

$$F_i = \beta_i F_1 + (1 - \beta_i) F_2$$

Using the 4D linear model (9) we define the following cost function for matting of RGB images:

$$J(\alpha, a, b) = \sum_{j \in I} \left(\sum_{i \in w_j} \left(\alpha_i - \sum_c a_j^c I_i^c - b_j \right)^2 + \varepsilon \sum_c a_j^{c^2} \right)$$
(10)

Similarly to the grayscale case, a^c and b can be eliminated from the cost function, yielding a quadratic cost in the α unknowns alone:

$$J(\alpha) = \alpha^T L \alpha. \tag{11}$$

Here *L* is an $N \times N$ matrix, whose (i, j)-th element is:

$$\sum_{k|(i,j)\in w_k} \left(\delta_{ij} - \frac{1}{|w_k|} \left(1 + (I_i - \mu_k) (\Sigma_k + \frac{\varepsilon}{|w_k|} I_3)^{-1} (I_j - \mu_k) \right) \right)$$
(12)

Theorem 3 Let I be an image formed from F and B according to (1), and let α^* denote the true alpha matte. If F and B satisfy the color line model in every local window w_k , and if the user-specified constraints S are consistent with α^* , then α^* is an optimal solution for the system (13), where L is constructed with $\epsilon = 0$.

Proof: Since $\varepsilon = 0$, if the color line model is satisfied in every window w_k , it follows from the definition (10) that $J(\alpha^*, a, b) = 0$, and therefore $J(\alpha^*) = \alpha^{*T} L \alpha^* = 0$.

Modern methods

- FBA
- Background matting
- Modnet

FBA Matting:Network architecture

- 9 input channels: 3 image, 6 definite foreground and background with Gaussian blurs at three different scales
- 7 output channels: 1 for alpha, 3 for F, 3 for B
- Encoder-decoder with Unet style
- Encoder Resnet50 with removed striding from layers 3 and 4, and increased the dilation to 2 and 4 respectively
- Decoder Pyramid Pooling layer and some convolutions
- Hardtanh activation to predict alpha, sigmoid for F and B

Batch normalization vs Group Normalization

Model Norm. Batch-Size Loss					MSE SAD GRAD CONN			
Training at 20 epochs:								
(1)	BN	6	\mathcal{L}_1^{lpha}	11.2	36.3	14.9	32.5	
(2)	BN	6	$\mathcal{L}_1^{lpha}+\mathcal{L}_c^{lpha}$	9.1	34.5	15.0	31.3	
(3)	BN	6	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha}$	7.4	33.5	12.9	28.5	
(4)	BN	6	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha} + \mathcal{L}_g^{lpha}$	8.1	36.3	13.8	32.0	
(5)	GN	6	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha} + \mathcal{L}_g^{lpha}$	10.3	36.2	15.1	32.0	
(6)	GN	1	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha} + \mathcal{L}_g^{lpha}$	7.2	32.8	13.3	28.6	
(7)	GN	1	$\mathcal{L}_{1}^{\alpha} + \mathcal{L}_{c}^{\alpha} + \mathcal{L}_{lap}^{\alpha} + \mathcal{L}_{g}^{\alpha} + \operatorname{clip}_{c}$	6.9	31.2	12.9	27.1	
Training at 45 epochs:								
\mathbf{Ours}_α	GN	1	$\mathcal{L}_{1}^{\alpha} + \mathcal{L}_{c}^{\alpha} + \mathcal{L}_{lap}^{\alpha} + \mathcal{L}_{g}^{\alpha} + \operatorname{clip}_{c}$	5.3	26.5	10.6	21.8	

F, B, α Losses

α Losses	\mathbf{F}, \mathbf{B} Losses
$\mathcal{L}_{1}^{lpha} = \sum_{i} \left\lVert oldsymbol{\hat{lpha}}_{i} - oldsymbol{lpha}_{i} ight Vert_{1}$	$\mathcal{L}_1^{ ext{FB}} = \sum_i \left\ \mathbf{\hat{F}}_i - \mathbf{F}_i ight\ _1 + \left\ \mathbf{\hat{B}}_i - \mathbf{B}_i ight\ _1$
$\mathcal{L}_{c}^{lpha} = \sum_{i} \left\ \mathbf{C}_{i} - \hat{oldsymbol{lpha}}_{i} \mathbf{F}_{i} - (1 - \hat{oldsymbol{lpha}}_{i}) \mathbf{B}_{i} ight\ _{1}$	$\mathcal{L}_{ ext{excl}}^{ ext{FB}} = \sum_{i}^{\iota} \left\ abla \mathbf{F}_{i} ight\ _{1} \left\ abla \mathbf{B}_{i} ight\ _{1}$
$\mathcal{L}_{\text{lap}}^{\alpha} = \sum_{s=1}^{s} 2^{s-1} \left\ L_{\text{pyr}}^{s}(\boldsymbol{\alpha}) - L_{\text{pyr}}^{s}(\boldsymbol{\hat{\alpha}}) \right\ _{1}$	$\mathcal{L}_c^{\mathrm{FB}} = \sum_i \left\ \mathbf{C}_i - \boldsymbol{\alpha}_i \hat{\mathbf{F}} - (1 - \boldsymbol{\alpha}_i) \hat{\mathbf{B}} \right) \right\ _1$
$\mathcal{L}_g^{lpha} = \sum_i \left\ abla \hat{oldsymbol{lpha}}_i - abla oldsymbol{lpha}_i ight\ _1$	$\mathcal{L}_{ ext{lap}}^{ ext{FB}} = \mathcal{L}_{ ext{lap}}^{ ext{F}} + \mathcal{L}_{ ext{lap}}^{ ext{B}}$

$$\mathcal{L}_{FB\alpha} = \mathcal{L}_1^{\alpha} + \mathcal{L}_c^{\alpha} + \mathcal{L}_g^{\alpha} + \mathcal{L}_{lap}^{\alpha} + 0.25 \left(\mathcal{L}_1^{FB} + \mathcal{L}_{lap}^{FB} + \mathcal{L}_{excl}^{FB} + \mathcal{L}_c^{FB} \right)$$

F, B, α Fusion

- We can improve the prediction $C_i = \alpha_i F_i + (1 \alpha_i) B_i$
- Simplified likelihood model:

$$p(\boldsymbol{\alpha}, \mathbf{F}, \mathbf{B} | \hat{\boldsymbol{\alpha}}, \hat{\mathbf{F}}, \hat{\mathbf{B}}) \propto p(\boldsymbol{\alpha} | \hat{\boldsymbol{\alpha}}) p(\mathbf{F} | \hat{\mathbf{F}}) p(\mathbf{B} | \hat{\mathbf{B}}) p(\boldsymbol{\alpha}, \mathbf{F}, \mathbf{B})$$

Assuming Gaussian distribution for errors:

$$p(\mathbf{F}|\hat{\mathbf{f}}) \propto \exp\left(-\frac{\|\mathbf{F} - \hat{\mathbf{f}}\|_{2}^{2}}{2\sigma_{FB}^{2}}\right) \qquad p(\mathbf{B}|\hat{\mathbf{B}}) \propto \exp\left(-\frac{\|\mathbf{B} - \hat{\mathbf{B}}\|_{2}^{2}}{2\sigma_{FB}^{2}}\right)$$
$$p(\boldsymbol{\alpha}|\hat{\boldsymbol{\alpha}}) \propto \exp\left(-\frac{(\boldsymbol{\alpha} - \hat{\boldsymbol{\alpha}})^{2}}{2\sigma_{\alpha}^{2}}\right) \qquad p(\boldsymbol{\alpha}, \mathbf{F}, \mathbf{B}) \propto \exp\left(-\frac{\|\mathbf{C} - \boldsymbol{\alpha}\mathbf{F} - (1 - \boldsymbol{\alpha})\mathbf{B}\|_{2}^{2}}{2\sigma_{C}^{2}}\right)$$

F, B, α Fusion

Update step (even one step is enough):

$$\begin{split} \hat{\mathbf{F}}^{(n+1)} &= \hat{\mathbf{F}} + \frac{\sigma_F^2}{\sigma_\mathbf{C}^2} \hat{\boldsymbol{\alpha}}^{(n)} \left(\mathbf{C} - \hat{\boldsymbol{\alpha}}^{(n)} \hat{\mathbf{F}}^{(n)} - (1 - \hat{\boldsymbol{\alpha}}^{(n)}) \hat{\mathbf{B}}^{(n)} \right) \\ \hat{\mathbf{B}}^{(n+1)} &= \hat{\mathbf{B}} + \frac{\sigma_B^2}{\sigma_\mathbf{C}^2} (1 - \hat{\boldsymbol{\alpha}}^{(n)}) \left(\mathbf{C} - \hat{\boldsymbol{\alpha}}^{(n)} \hat{\mathbf{F}}^{(n)} - (1 - \hat{\boldsymbol{\alpha}}^{(n)}) \hat{\mathbf{B}}^{(n)} \right) \\ \hat{\boldsymbol{\alpha}}^{(n+1)} &= \frac{\hat{\boldsymbol{\alpha}}^{(n)} + \frac{\sigma_\alpha^2}{\sigma_\mathbf{C}^2} (\mathbf{C} - \hat{\mathbf{B}}^{(n+1)})^\top (\hat{\mathbf{F}}^{(n+1)} - \hat{\mathbf{B}}^{(n+1)})}{1 + \frac{\sigma_\alpha^2}{\sigma_\mathbf{C}^2} (\hat{\mathbf{F}}^{(n+1)} - \hat{\mathbf{B}}^{(n+1)})^\top (\hat{\mathbf{F}}^{(n+1)} - \hat{\mathbf{B}}^{(n+1)})} \end{split}$$

Ablation study

Model	$+\mathcal{L}_{FB}$	$+\mathcal{L}_{\mathrm{excl}}$	output	$\alpha \mathbf{F}$		α	
			111174111	SAD	MSE	SAD	MSE
Closed-for	m Matt	ing [20]	251.67	22.96	161.3	85.3	
Context-A	ware M	atting [13]	70.00	11.49	38.1	8.9	
Training of	at 20 epo	ochs:					
(6)	N	N	sigmoid	-	-	32.8	7.2
(8)	Y	N	sigmoid	53.64	9.04	32.7	9.0
(9)	Y	Y	sigmoid	52.87	8.88	31.8	8.9
(7)	N	N	clip	-	-	31.2	6.9
(10)	Y	Y	clip	50.69	8.64	31.3	8.6
(11)	Y*	Y	clip	50.29	8.48	32.1	8.5
Training of	at 45 epe	ochs:					
(11)	Y*	Y	clip	42.19	6.50	26.5	5.4
$\mathbf{Ours}_{\mathrm{FB}lpha}$	Y^*	Y	clip +fusion	39.21	6.19	26.4	5.4
$\mathbf{Ours}_{\mathrm{FB}\alpha}$	Y^*	Y	${\rm clip}\ + {\rm fusion}\ + {\rm TTA}$	38.81	5.98	25.8	5.2

Ablation Study

Model Norm. Batch-Size Loss				MSE SAD GRAD CONN			
Training at 20 epochs:							
(1)	BN	6	\mathcal{L}_1^{lpha}	11.2	36.3	14.9	32.5
(2)	BN	6	$\mathcal{L}_1^{lpha}+\mathcal{L}_c^{lpha}$	9.1	34.5	15.0	31.3
(3)	BN	6	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha}$	7.4	33.5	12.9	28.5
(4)	BN	6	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha} + \mathcal{L}_g^{lpha}$	8.1	36.3	13.8	32.0
(5)	GN	6	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha} + \mathcal{L}_q^{lpha}$	10.3	36.2	15.1	32.0
(6)	GN	1	$\mathcal{L}_1^{lpha} + \mathcal{L}_c^{lpha} + \mathcal{L}_{ ext{lap}}^{lpha} + \mathcal{L}_g^{lpha}$	7.2	32.8	13.3	28.6
(7)	GN	1	$\mathcal{L}_1^{\alpha} + \mathcal{L}_c^{\alpha} + \mathcal{L}_{lap}^{\alpha} + \mathcal{L}_g^{\alpha} + clip_{\alpha}$	6.9	31.2	12.9	27.1
Training at 45 epochs:							
\mathbf{Ours}_α	GN	1	$\mathcal{L}_1^{\alpha} + \mathcal{L}_c^{\alpha} + \mathcal{L}_{lap}^{\alpha} + \mathcal{L}_g^{\alpha} + clip_{\alpha}$	5.3	26.5	10.6	21.8

Results_

Method	SAD	$\mathrm{MSE}\ \mathrm{x}10^3$	Gradient	Connectivity
Closed-Form Matting [20]	168.1	91.0	126.9	167.9
KNN-Matting [4]	175.4	103.0	124.1	176.4
DCNN Matting [5]	161.4	87.0	115.1	161.9
Information-flow Matting [1]	75.4	66.0	63.0	-
Deep Image Matting [37]	50.4	14.0	31.0	50.8
AlphaGan-Best [25]	52.4	30.0	38.0	-
IndexNet Matting [24]	45.8	13.0	25.9	43.7
VDRN Matting [33]	45.3	11.0	30.0	45.6
AdaMatting [3]	41.7	10.2	16.9	-
Learning Based Sampling [34]	40.4	9.9	-	-
Context Aware Matting [13]	35.8	8.2	17.3	33.2
GCA Matting [21]	35.3	9.1	16.9	32.5
\mathbf{Ours}_{lpha}	26.5	5.3	10.6	21.8
$\mathbf{Ours}_{\mathrm{FB}\alpha}$	26.4	5.4	10.6	21.5
$\mathbf{Ours}_{\mathrm{FB}lpha} \mathbf{TTA}$	25.8	5.2	10.6	20.8

Background Matting

https://grail.cs.washington.edu/projects/background-matting-v2/

ModNet

Figure 2. Architecture of MODNet. Given an input image I, MODNet predicts human semantics s_p , boundary details d_p , and final alpha matte α_p through three interdependent branches, S, D, and F, which are constrained by specific supervisions generated from the ground truth matte α_g . Since the decomposed sub-objectives are correlated and help strengthen each other, we can optimize MODNet end-to-end.