Lecture 4: CMOS Inverter Fabrication (and Layout)

Acknowledgements

All class materials (lectures, assignments, etc.) based on material prepared by Prof. Visvesh S. Sathe, and reproduced with his permission

Visvesh S. Sathe
Associate Professor
Georgia Institute of Technology
https://psylab.ece.uw.edu

UW (2013-2022) GaTech (2022-present)

The Design Process

- High-level design → Schematic → Layout → Fabrication
- Layout (or Mask layout) is the exchange format to specify exactly how you want each transistor in your design to look
- CMOS inverter layout (step by step), and how it determines the fabrication process
- Design Rule Checks (DRCs) and their importance
 - Metal-metal
 - Via enclosure
 - Poly past active
 - Active within nwell, away from nwell
 - Min width rules/Min area rules
 - Minimum overlap
- Some aspects of modern fabrication process tech.

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

Z=~X

→ Production

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

- Schematic is converted to "mask-layout" for fabrication
 - Actual 2D geometrical description of how the inverter is to be fabricated
 - Polygons of different "layers" describe construction of the inverter
 - "Mask" term due to use of these shapes as masks during photolithography (and eventually etch) to define the target shapes in each layer
- Starting point: Clean silicon wafer with an epitaxially-grown doped, P-type substrate

1: Simplified CMOS Inverter Fabrication

1.1: Create Nwell region

1.2: Create Nwell region

Grow oxide-layer to serve as a barrier

1.3: Create Nwell region

Deposit photoresist

1.4: Create Nwell region

Use N-Well Mask to allow light to selectively soften photoresist

1.5: Create Nwell region

Wash away softened photoresist

1.6: Create Nwell region

Etch away SiO₂

1.7: Create Nwell region

Deposit N-type dopants and anneal for formation of N-well

2.1: Grow Field Oxide Outside Diffusion

Grow field-oxide over regions outside transistor and contact areas

First form a Si₃N₄ layer over silicon (prevent oxidation)

2.2: Grow Field Oxide Outside Diffusion

Use OD* mask to selectively soften deposited photoresist

2.3: Grow Field Oxide Outside Diffusion

Wash off softened photoresist

2.4: Grow Field Oxide Outside Diffusion

Piranha etch photoresist

2.5: Grow Field Oxide Outside Diffusion

P-type Substrate

Grow field-oxide over regions outside transistor and contact area ELECTRICAL & COMPUTE
ENGINEERING

3:Build Polysilicon Gate

Build the gate using polycrystalline silicon (or Polysilicon, or poly)

3.1:Build Polysilicon Gate

Grow gate-oxide

3.1:Build Polysilicon Gate

Great, but why do I need field oxide in the first place??!

Grow gate-oxide

3.2:Build Polysilicon Gate

Deposit Poly

3.3:Build Polysilicon Gate

Develop photoresist using PO mask

3.4:Build Polysilicon Gate

Etch away softened photoresist

3.5:Build Polysilicon Gate

Etch away softened photoresist

3.6:Build Polysilicon Gate

Etch away exposed polysilicon

4:Build PMOS, Substrate Contact

4.1:Build PMOS, Substrate Contact

Deposit photoresist

4.2:Build PMOS, Substrate Contact

Use PP mask to develop photoresist

4.2:Build PMOS, Substrate Contact

Use PP mask to develop photoresist

4.2:Build PMOS, Substrate Contact

Use PP mask to develop photoresist

4.3:Build PMOS, Substrate Contact

Self-aligned gate:
Implant n+/p+ after
gate to automatically
form gate exactly
where it is needed

Ion Implantation to create P+ regions for S/D and substrate contact

 ELECTRICAL & COMPUTER

 ENGINEERING

4.4:Build PMOS, Substrate Contact

Wash off photoresist

5:Build NMOS, Body Contact

Next, we deposit N+ to form the Nmos S/D and body contacts

5.1:Build NMOS, Body Contact

Photoresist

5.2:Build NMOS, Body Contact

Use NP mask to develop photoresist

5.2:Build NMOS, Body Contact

Use NP mask to develop photoresist

5.2:Build NMOS, Body Contact

Use NP mask to develop photoresist

5.3:Build NMOS, Body Contact

Etch photoresist

5.4:Build NMOS, Body Contact

Deposit N+, wash photoresist

6: Contacts to metal

Deposit N+, wash photoresist

6.1: Contacts to metal

Deposit oxide layer (metal-oxide-metal-oxide.... from here on)

6.2: Contacts to metal

What happened to PO contact?

6.2: Contacts to metal

What happened to PO contact?

6.2: Contacts to metal

What happened to PO contact?

6.3: Contacts to metal

6.4: Contacts to metal

Polish to even out topography

6.5: Contacts to metal

Deposit contact material

7: Metal

Key Fabrication Steps

- Depositing material
 - Epitaxial growth (Si)
 - CVD (Chemical-Vapor Deposition), used for via/metals
 - Diffusion/Ion-implantation (For dopants to create N-Well, N+, P+)
 - Reaction
 - SiO₂: Used for form field-oxide, gate-oxide, barrier for ion-implantation
 - Si₃N₄: Inert, used as a means to prevent oxidation during formation of field-oxide
- Patterning (Lithography)
 - Apply photoresist
 - Use mask to selectively soften photoresist (for + photoresist)
 - Remove softened photoresist (photoresist, expose->soluble to developer, wash it off)
 - Perform selective deposition/etch step
 - Etch away remainder of the photoresist using a *piranha* etch
- Maintain even topography Chemical Mechanical Polish (CMP)
- Etching (SiO₂, Si₃N₄, Metal, Photoresist and many more...)

Additional Notes

- LOCOS no longer used in scaled processes
 - "Birds-beak" requires too much separation, area hit
 - Use Shallow Trench Isolation instead
- "Poly" is now done using Metal Gate
 - Avoid effective oxide thickness increase seen with poly
 - Lower gate resistance
- Oxides
 - Gate oxide is a High-K material*
 - Inter-layer dielectric (ILD), between metals use low-K dielectrics
- Latest CMOS technologies use a tri-gate (finfet) structure. No planar MOSFETs
 - Better short channel effects
 - Restrictive in device widths
- Modern processes use many more masks and stages than shown here

Design Rule Checks (DRCs)

- Modern microprocessors have >4billion transistors
- Every one of them, and their connecting wires needs to work
- Design Rule Checks
 - Enforce constraints that must be met by mask geometries
 - Min-spacing (Avoid shorts, leak-paths)
 - Min-width (Avoid pinch-off)
 - Overlap (Ensure sufficient intersection, enclosure)
 - Density checks (Global and Local)
 - Violation causes shorts, opens, parametric yield loss

Layout vs. Schematics (LVS)

- Complex design environments → Design is entered and evaluated at a higher level of abstraction
 - C/C++
 - HDL
 - At least schematics
- Layout then created. Mask must match required functionality
- Problem of checking whether Layout = Schematic essentially a check for graph isomorphism

Quick de-tour: Graph Isomorphism

- "A one-on-one and onto" mapping between nodes, f
 - f: $V(G_1) \rightarrow V(G_2)$
 - G_1 and G_2 are isomorphic: a,b adjacent in $G_1 \Leftrightarrow f(a)$, f(b) adjacent in G_2
- LVS seeks to determine if there is an isomorphism between the schematic graph and the layout graph.
 - Include edge properties (fetWidth etc.) in addition to just connections

Quick de-tour: Graph Isomorphism

- "A one-on-one and onto" mapping between nodes, f
 - f: $V(G_1) \rightarrow V(G_2)$
 - G_1 and G_2 are isomorphic: a,b adjacent in $G_1 \Leftrightarrow f(a)$, f(b) adjacent in G_2
- LVS seeks to determine if there is an isomorphism between the schematic graph and the layout graph.
 - Include edge properties (fetWidth etc.) in addition to just connections

LVS operation

- Read-in schematic netlist
- Generate internal graph representation
- Reduce (if directed) parallel, series components
- Read-in layout netlist (as a gdsII file)
- Use geometry and layer rules (specified in your calibre.lvs file) to generate graph representation
- Reduce if necessary
- Perform equivalence checking between the 2 graphs
- If check fails, report the points of mismatch (careful here!)

Stick Diagrams: A Quick Introduction

- Moderately complex CMOS gates have non-unique (and other inefficient) ways
 of being built
- An informal means to sketch out and plan your layout ahead of time
- Part of required reading: W&H Section 1.5.5 (2 pages)

Parting notes on efficient layout: Euler Paths

- Euler path: A traversal of a graph which visits every edge exactly once
- Draw the pullup/pulldown graph (or sub-graph) and identify an euler path
- Identify whether the dual graph has an euler path with the same path sequence. If yes, gate connections are made a lot simpler

Leveraging Dual Eulerian Graphs

- Effective means to reduce the parasitic junction, and wiring capacitance
- Use stick diagrams to plan layout accordingly

- Effective means to reduce the parasitic junction, and wiring capacitance
- Use stick diagrams to plan layout accordingly

- Effective means to reduce the parasitic junction, and wiring capacitance
- Use stick diagrams to plan layout accordingly

- Effective means to reduce the parasitic junction, and wiring capacitance
- Use stick diagrams to plan layout accordingly

OK. Given a choice,

which is better layout?

Reading assignment

- Required reading
 - W&H Section 1.5*
- Optional Reading
 - W&H Chapter 3