Markov Chain Monte Carlo Methods

Sherry Sarkar

Big O Meeting

A **Markov chain** is a sequence of random variables $X_0, X_1, ..., X_t$ over some state space \mathcal{X} such that

$$\mathbb{P}(X_t = x_t | X_{t-1} = x_{t-1}, ..., X_0 = x_0) = \mathbb{P}(X_t | X_{t-1} = x_{t-1}).$$

This just means that at any time t, the probability of moving to some state $x' \in \mathcal{X}$ is only dependent on the current state.

Most MCs are *time invariant* meaning that we can succinctly represent the MC as a transition matrix P where, at any time t, $P(x,x') = \mathbb{P}(X_{t+1} = x' | X_t = x)$. Note that the rows add up to 1.

Given an initial distribution across the states μ_0 , after one step of the MC, we have a new distribution across the states

$$\mu_1 = \mu_0 P$$
.

With one more step, we get

$$\mu_2 = \mu_1 P$$
.

Thus,

$$\mu_t = \mu_0 P^t$$

We call a MC **irreducible** if for all states $a, b \in \mathcal{X}$, there exists a t such that

$$P^t(a,b) > 0$$

Let T(x) be the set of times $\{t \ge 1 : P^t(x,x) > 0\}$. The **period** of a state x is the greatest common divisor of the set T(x).

Theorem

If a MC is irreducible, then the period of every state is the same.

To gain intuition of what a period is, consider a random walk on a cycle of even length. There are two types of states, even and odd.

Proof:

Say we have two states x and y. Since the MC is irreducible, we know there exits r,l>0 such that $P^r(x,y)>0$ and $P^l(y,x)>0$. Say m=r+l. Then $m\in T(x)$ and $b\in T(y)$. If we have an element $a\in T(x)$ then a can be represented as b-m where $b\in T(y)$. Thus $T(x)\in T(y)-m$ so the gcd of T(y) divides all elements of T(x). Therefore, gcd $T(y)\leq$ gcd T(x). We can do a parallel argument to get $T(x)\leq$ gcd T(y)

A **stationary distribution** of a MC is some probability vector such that

$$\pi = \pi P$$

Theorem

If a MC is irreducible and aperiodic, there exists a unique stationary distribution with all entries greater than 0.

 $Metropolis \ Hasting \ Algorithm \ - \ Motivation:$

Given that we are at state x,

- I Pick a neighbor y with probability $\frac{1}{\Delta}$ where Δ is the maximum degree of the graph G represented by the MC.
- 2 Move to y with probability $\min(1, \frac{\pi(y)}{\pi(x)})$
- 3 With all remaining probability, stay at x.

Theorem

The stationary distribution of this is π assuming the condition of detailed balance.

Three points of interest:

- 1 Is this even a valid transition matrix?
- **2** Is π the actual stationary distribution?
- 3 Is it a unique stationary distribution?

The counting problem : Number of matchings given some graph G

A randomized approximation scheme for a counting problem $f: \Sigma \to \mathbb{N}$ is a randomized algorithm that takes an input x, an error tolerance $\epsilon > 0$ and outputs a number N such that the probability that N is within bounds set by this error is greater than 0.5.

An **almost uniform sampler** for a solution set (like the set of matchings for a graph) is a randomized algorithm that takes an input (like a graph) and a sampling tolerance $\delta > 0$ outputs a solution W which is a random variable of the algorithm such that the distance between the distribution of W and a uniform distribution on the solution set is at most δ^3 .

Theorem

Let G be a graph with n vertices and m edges, where m > 1 to avoid trivialities. If there is an almost uniform sampler for M(G), then there is a randomized approximation scheme for |M(G)|.

Some points :

$$|M(G)| = (\alpha_1 \alpha_2 \alpha_m)^{-1}$$

where

$$\alpha = \frac{|M(G_{i-1})|}{|M(G_i)|}$$

Note that

$$M(G_{i-1})\subset M(G_i)$$

and that $M(G_i) - M(G_{i-1})$ can be mapped injectively into $M(G_{i-1})$ by sending M to M - ei. Thus,

$$\frac{1}{2} \le \alpha \le 1$$

Let Z_i be an indicator function of when $M_i \in M(G_i)$ is in $M(G_{i-1})$.

Markov chain with stationary distribution for an almost uniform sampler: Say you are at state / matching M.

- 1 With probability $\frac{1}{2}$, set the next state to M.
- 2 Select $e \in E(G)$ and set $M' = M \oplus e$.
- If $M' \in M(G)$ then choose M' as your next state. Else, choose next state as M.

- Why is it irreducible?
- 2 Why is aperiodic?
- 3 What is the stationary distribution?

