Algorithm:

Input: A connected weighted graph which contained with positive weight.

output: L(Z), the length of a sortest path from a to Z.

step1: set L(a) = 0

step 2: For all vertices + + a, do L(x) = 00

step 3: set T=V, where T= vset of ventices having temporary verter.

and v = wet of venter of Cr.

Step 4: Let 'v' be a venten in'T'. i.e (VET) for which L(V) is minimum L hence the permanent latel of V.

step5: T = T - {v}

step6: for every edge, e= (v, u) ads'acent tov, change L(N) to min { obl'L(N), L(N) + w(e)} step7: It V=Z istop, otherwise go to istep2. stet 8 Fend.

solution: It's initial labelling is given by: verten V A B C D L(v) 0 00 00 00 § A, B, C, D, E} Iteration 1: Let U= A has L(U) = 0 .. T = T - fa} since there are three edgers adjacent with A. i.e., AB, AC, AE where B, C, FET :. L(B) = min Sold L(B), L(A) + w(AB) f = min & 00, 0+9 } :. L(c) = min gold L(c), L(A) + w(Ac) } = min of 00,0+5 } : L(E) = min { old L(E), L(A) + w(AE) } = min { \in , 0 + 2 } Hence the minimum label is L(E) = 2 have to modify the table, Verter V A B C D L(V) 0 9 5 0

S B C D

EB

Iteration 2: Let
$$U = E$$
 has $L(U) = 2$

Therefore are two edges adjacent with E

i.e., EC and ED where $C/d \in T$

L(C) = min G old $L(C)$, $H(E) + W(EC)$

= min G 5, G + 12 G

= min G old G + G + G = G =

Hence the minimum label is L(c) = 5Now we have to modify the table.

A	В	C	D	E
0	9	5	6	2
18	B	C	D	3
	A 0 {	A B 0 9 8	A B C O S S	A B C D O 9 5 6 E B C D

Iteration 3: Let
$$U=C$$
 have $L(U)=5$

Therefore are two edges adjacent with C .

I.e. CB , CD where B , $D \in T$

L(B) = min $\{0 \text{ old } L(B), L(C) + \omega(CB)\}$

= min $\{g, 5+3\}$

= 8

L(D) = min $\{0 \text{ old } L(D), L(C) + \omega(CD)\}$

= min $\{6, 5+6\}$

Hence the minimum label is $L(D)=6$

Now we have to modify the table:

vertex $(V) = A = C = D = C$

L(N) $= C = C$
 $= C$
 $=$

Iteration 4: Let
$$U = D$$
 has $L(U) = 5$

$$T = T - \{D\}$$

Since D doesn't have any non visited neighbours, so, we don't need to check anything. We mark it as visited and modify the table:

vertex(v)	A	B	C	D	E
L(V)	0	8	5	6	2
T	2	B			7

Iterations: Let U = B has L(U) = 8 $T = T - \{B\}$

Since B doesn't have any non-visited neighbours, so we don't need to check anything therefore we istop the iteration. Finally we get the following whortest path tree.

