MTH101: Tutorial 3

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

September 26, 2017

Show that $\cosh z = \cosh x \cos y + i \sinh x \sin y$.

Find the function value in the form u + iv.

$$\cosh(-1+2i), \quad \cos(-2-i)$$

Verify that $\cos x \sinh y$ is a harmonic function.

Find the path and sketch it.

1
$$z(t) = (1+2i)t$$
, $(2 \le t \le 5)$;

2
$$z(t) = 2 + 4e^{\pi it/2}$$
, $(0 \le t \le 2)$

Find a parametrization representation and sketch the path.

- 1 Upper half of |z-2+i|=2 from (4,-1) to (0,-1).
- 2 Parabola $y = 1 \frac{1}{4}x^2$, $(-2 \le x \le 2)$

Find a parametrization for the Counterclockwise oriented path $\gamma=\gamma_1\cup\gamma_2\cup\gamma_3$ where

 γ_1 is the segment joining z_1 to z_2 , γ_2 is the segment joining z_2 to z_3 ,

 γ_3 is the upper semicircle with center $z_0 = 0$ and radius R = 2,

and

$$z_1 = -2$$
, $z_2 = -3i$, $z_3 = 2$.

Compute the Integral

$$\oint_{\gamma} z dz$$
.

Figure: The path $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3$

Integrate the following complex functions using appropriate method.

1

$$\int_{\gamma} \operatorname{Re} z \ dz$$

 γ is the shortest path from 1+i to 3+3i.

2

$$\int_{\gamma} e^{z} dz$$

 γ is the shortest path from πi to $2\pi i$.

3

$$\int_{\gamma} \sec^2 z \ dz$$

 γ is any path from $\pi/4$ to $\pi i/4$.

4

$$\oint_{\gamma} \frac{\tan \frac{1}{2}z}{z^4 - 16}$$

 γ is the boundary of the square with vertices ± 1 , $\pm i$ clockwise.