DEEP LEARNING CRASH COURSE

- Single Layer Perceptron
- Multiple Layer Perceptron
- Convolutional Neural Net

M.A. Nielsen. Neural Networks and Deep Learning, 2015 http://neuralnetworksanddeeplearning.com/

ARTIFICAL INTELLIGENCE

1997: Deep Blue beats chess World Champion

2016: AlphaGo beats go world champion

LINEAR CLASSIFICATION

$$f(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} + \mathbf{b} \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

SINGLE LAYER PERCEPTRON

MULTILAYER PERCEPTRON

The process can be repeated several times to create a vector h.

MULTILAYER PERCEPTRON

- The process can be repeated several times to create a vector h.
- It can then be done again to produce an output y.
- —> This output is a differentiable function of the weights.

BINARY CASE

Given a training set $\{\mathbf{x}_n, t_n\}_{1 \leq n \leq N}$ where $t_n \in \{0, 1\}$, minimize

$$E(\mathbf{W}, \mathbf{b}) = -\frac{1}{N} \sum_{1}^{N} \left[t_i \log(y_i) + (1 - t_i) \log(1 - y_i) \right],$$

$$y_i = f(\mathbf{x}_i)$$

$$= \sigma(\mathbf{W}_2(\sigma(\mathbf{W}_1 \mathbf{x}_i + \mathbf{b}_1)) + \mathbf{b}_2),$$

that is, minimize the number of misclassified samples.

Since E is a differentiable function of **W** and **b**, this can be done using a gradient-based technique, also known as back propagation.

MULTI-CLASS CASE

In the multi-class case, the probability that input vector \mathbf{x} belongs to class c is taken to be

$$P(\mathbf{x} \in c | \mathbf{W}, \mathbf{b}) = \frac{y^c(\mathbf{x}; \mathbf{W}, \mathbf{b})}{\sum_k y^k(\mathbf{x}; \mathbf{W}, \mathbf{b})}.$$

Given a training set $\{\mathbf{x}_n, t_n^1, \dots, t_n^C\}_{1 \leq n \leq N}$ where $t_n^c \in \{0, 1\}$, minimize

$$E(\mathbf{W}, \mathbf{b}) = -\sum_{n} \sum_{c} t_n^c \log(P(\mathbf{x}_n \in c | \mathbf{W}, \mathbf{b}))$$
.

Since E remains a differentiable function of **W** and **b**, this can also be done using a gradient-based technique, also known as back propagation.

HINGE LOSS OR RELU

$$\sigma(\mathbf{x}) = \max(0,\mathbf{x}).$$

- Each node defines a hyperplane.
- The resulting function is piecewise linear affine and continuous.

ONE SINGLE HYPERPLANE

TWO HYPERPLANES

THREE HYPERPLANES

SIGMOID AND TANH

- Each node defines a hyperplane.
- The resulting function is continuously differentiable.

INTERPOLATING A SURFACE

INTERPOLATING A SURFACE

3-node hidden layer

INTERPOLATING A SURFACE

4-node hidden layer

ADDING MORE NODES

ADDING MORE NODES

MORE COMPLEX SURFACE

ADDING MORE NODES

$$I = f(x, y)$$

UNIVERSAL APPROXIMATION THEOREM

A feedforward network with a linear output layer and at least one hidden layer with any 'squashing' activation function (e.g. logistic sigmoid) can approximate any Borel measurable function (from one finite-dimensional space to another) with any desired nonzero error.

Any continuous function on a closed and bounded set of Rⁿ is Borel-measurable.

—> In theory, any reasonable function can be approximated by a two-layer network as long as it is continuous.

IN PRACTICE

- It may take an exponentially large number of parameters for a good approximation.
- The optimization problem becomes increasingly difficult.
- —> The one hidden layer perceptron may not converge to the best solution!

DEEP LEARNING

- The descriptive power of the net increases with the number of layers.
- In the case of a 1D signal, it is roughly proportional to $\prod W_n$ where W_n represents the width of a layer.

TWO HYPERPLANES ONE SINGLE LAYER

TWO HYPERPLANES TWO LAYERS

BACK TO HYPERPLANES

ADDING A SECOND LAYER

1 Layer: 125 nodes -> loss 2.40e-01 2 Layers: 20 nodes -> loss 8.31e-02 501 weights in both cases

ADDING A THIRD LAYER

I = f(x, y)

2 Layers: 20 nodes -> loss 8.31e-02 3 Layers: 14 nodes -> loss 7.55e-02 501 weights 477 weights

ADDING A THIRD LAYER

3 Layers: 15 nodes -> loss 5.93e-02 3 Layers: 19 nodes -> loss 4.38e-02 541 weights 837 weights

MULTILAYER PERCEPTRONS

SIMPLER WAY TO INTERPOLATE

Original 51x51 image: 2601 gray level values.

Scaled 24x24 image: 576 gray level values.

MLP 10/20/10 Interpolation: 471 weights.

Simpler but not necessarily better!

MLP TO RESNET

Further improvements in the convergence properties have been obtained by adding a bypass, which allows the final layers to only compute residuals.

IMPROVING THE NETWORK

IMPROVING THE NETWORK

- Relatively small improvement in this case.
- The problem is probably too small.
- —> Networks can behave very differently for small and large problems!

TANH vs ReLU

TANH vs ReLU

- Tanh works better than ReLU in this case.
- ReLU is widely credited with eliminating the vanishing gradient problem in large networks.
- —> There is no substitute for experimentation!

MULTILAYER PERCEPTRONS

The function learned by a DNN using either the ReLU or Tanh operators is:

- piecewise affine or smooth;
- continuous because it is a composition of continuous functions.

Each region created by a layer is split into smaller regions:

- The equations for each one are correlated in a complex way.
- This may explain why deeper networks generalize better than larger networks for a given number of parameters.

STRENGTHS AND LIMITATIONS

- Powerful regressors but require many parameters, and therefore large training databases.
- Excellent at interpolation but less good at extrapolation. The training data must cover all cases of interest.

IMAGE SPECIFICITIES

- In a typical image, the values of neighboring pixels tend to be more highly correlated than those of distant ones.
- An image filter should be translation invariant.

—> These two properties can be exploited to drastically reduce the number of weights required by CNNs using so-called convolutional layers.

CONVOLUTIONAL LAYER

input neurons

first hidden layer

$$\sigma \left(b + \sum_{x=0}^{n_x} \sum_{y=0}^{n_y} w_{i,j} a_{i+x,j+y} \right)$$

FEATURE MAPS

POOLING LAYER

- Reduce the number of inputs by replacing all activations in a neighborhood by a single one.
- Can be thought as asking if a particular feature is present in that neighborhood while ignoring the exact location.

ADDING THE POOLING LAYERS

The output size is reduced by the pooling layers.

ADDING A FULLY CONNECTED LAYER

- Each neutron in the final fully connected layer is connected to all neurons in the preceding one.
- Deep architecture with many parameters to learn but still far fewer than an equivalent multilayer perceptron.

MNIST

- The network takes as input 28x28 images represented as 784D vectors.
- The output is a 10D vector giving the probability of the image representing any of the 10 digits.
- There are 50'000 training pairs of images and the corresponding label, 10'000 validation pairs, and 5'000 testing pairs.

LeNet (1989-1999)

IS MAX POOL REQUIRED?

Accuracy	Train	Test
Conv 5x5, stride 1 Max pool 2x3	99.58	98.77
Conv 5x5, stride 2	99.42	98.31
Conv 5x5, stride 1 Conv 3x3, stride 2		98.57

AlexNet (2012)

Task: Image classification

Training images: Large Scale Visual Recognition Challenge 2010

Training time: 2 weeks on 2 GPUs

Major Breakthrough: Training large networks has now been shown to be practical!!

AlexNet RESULTS

- At the 2012 ImageNet Large Scale Visual Recognition Challenge, AlexNet achieved a top-5 error of 15.3%, more than 10.8% lower than the runner up.
- Since 2015, networks outperform humans on this task.

FEATURE MAPS

First convolutional layer Second convolutional layer

- Some of the convolutional masks seem very similar to oriented Gaussian or Gabor filters!
- Much ongoing work to better understand this.

HIGHER ORDER DERIVATIVES

FILTER BANKS

Hand-Designed

Learned

SIZE AND DEPTH MATTER

VGG19, 3 weeks of training.

GoogleLeNet.

"It was demonstrated that the representation depth is beneficial for the classification accuracy, and that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a conventional ConvNet architecture."

Simonyan & Zisserman, ICLR'15

HAND POSE ESTIMATION (2015)

Input: Depth image.

Output: 3D pose vector.

Oberweger et al., ICCV'15

REGRESSION

Network parameters are found by minimizing an objective function of the form

$$\min_{\mathbf{W}_l, \mathbf{B}_l} \sum_i ||\mathbf{F}(\mathbf{x}_i, \mathbf{W}_1, \dots, \mathbf{W}_L, \mathbf{b}_1, \dots, \mathbf{b}_L) - \mathbf{y}_i||^2$$

using

- stochastic gradient descent on mini-batches,
- dropout,
- hard example mining,

•

ROC HUNTING

DeepFace Taigman et al. 2014

Deep Edge Detection Shen et al. 2015

DEEPER AND DEEPER

MONOCULAR POSE ESTIMATION

IMAGE CLASSIFICATION TAXONOMY

ANOTHER POINT OF VIEW

To summarize roughly the evolution of convnets for image classification:

- Standard ones are extensions of LeNet5.
- Everybody loves ReLU.
- Newer ones have 100s of channels and 10s of layers.
- They can (should?) be fully convolutional.
- Pass-through connections allow deeper "residual" nets.
- Bottleneck local structures reduce the number of parameters.
- Aggregated pathways reduce the number of parameters.

VISUAL CORTEX

AlphaGo

- Uses Deep Nets to find the most promising locations to focus on.
- Performs Tree based search when possible.
- Relies on reinforcement learning and other ML techniques to train.

ADVERSARIAL IMAGES

XKCD'S VIEW ON THE MATTER

https://xkcd.com/

IN SHORT

- Deep Belief Networks in general and Convolutional Neural Nets in particular outperform conventional Computer Vision algorithms on many benchmarks.
- It is not fully understood why and unexpected failure cases have been demonstrated.
- They require a lot of manual tuning to perform well and performance is hard to predict.

—> Many questions are still open and there is much work left to do.