§ 2. Бинарные отношения

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение бинарного отношения

Определение

Пусть n — произвольное натуральное число. n-арным отношением на множестве S называется произвольное подмножество множества S^n . При n=2,3 n-арные отношения имеют специальные названия: 2-арные отношения называются бинарными, а 3-арные — тернарными.

 Из «теоретико-множественного» определения отображения из одного множества в другое (см. § 1) видно, что всякое отображение из множества S в себя является бинарным отношением на S.

В дальнейшем мы будем иметь дело почти исключительно с бинарными отношениями. Поэтому слово «бинарное» часто будет опускаться.

! Всюду в дальнейшем, кроме тех случаев, когда в явном виде оговорено противное, слово «отношение» означает «бинарное отношение».

Пусть S — произвольное множество, а α — бинарное отношение на S. По определению, α — это множество, элементами которого являются упорядоченные пары элементов из S. Если это множество содержит пару (x,y), то, наряду с записью $(x,y)\in \alpha$, мы часто будем писать $x\,\alpha\,y$.

Примеры бинарных отношений (1)

Пример 1. Пусть S — произвольное множество. Положим $\alpha=S^2$. В соответствии с определением, α — бинарное отношение на S. Оно содержит B се упорядоченные пары элементов из S и является самым большим (по включению) отношением на S. Это отношение называется универсальным отношением на S. Оно обозначается через Δ_S , а если из контекста ясно, какое множество выступает в качестве S, — то просто через Δ .

Пример 2. Пусть S — произвольное множество. Определим отношение α на S правилом: x α y тогда и только тогда, когда x = y. Это отношение называется *отношением равенства* на S. Оно обозначается через ∇_S , а если множество S ясно из контекста, — то просто через ∇ .

Пример 3. Пусть S — любое из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} и \mathbb{R} . Определим отношение α на S правилом: $x \alpha y$ тогда и только тогда, когда $x \leqslant y$. Это отношение называется $\mathit{стандартным}$ отношением порядка на S. Можно рассматривать также $\mathit{стандартноe}$ отношение $\mathit{строгого}$ порядка β на S: $x \beta y$ тогда и только тогда, когда x < y.

Пример 4. На любом из множеств \mathbb{Z} , \mathbb{Q} и \mathbb{R} определим отношение α равенства по модулю, полагая $x \alpha y$ тогда и только тогда, когда |x|=|y|.

Примеры бинарных отношений (2)

Пример 5. На любом из множеств $\mathbb N$ и $\mathbb Z$ определим отношение \prec правилом: $x \prec y$ тогда и только тогда, когда y = x + 1. Оно называется отношением предшествования.

Пример 6. Определим отношение α на любом из множестве $\mathbb N$ и $\mathbb Z$ правилом: $x\,\alpha\,y$ тогда и только тогда, когда x делит y нацело. Если это условие выполнено, то будем, как обычно, писать $x\mid y$. Это отношение называется *отношением делимости*.

Пример 7. Пусть S — любое из множеств $\mathbb N$ и $\mathbb Z$, а n — натуральное число такое, что n>1. Определим отношение α на множестве S правилом: $x\,\alpha\,y$ тогда и только тогда, когда x и y имеют одинаковые остатки при делении на n. Если это условие выполнено, то будем писать $x\equiv y\pmod{n}$. Это отношение называется отношением сравнимости по модулю n.

Пример 8. Пусть S — произвольное множество. Определим отношение α на множестве $\mathcal{B}(S)$ правилом: если $A,B\subseteq S$, то $A\alpha\,B$ тогда и только тогда, когда $A\subseteq B$. Это отношение называется *отношением включения* на булеане множества S. Представляет интерес и отношение *строгого включения* β на $\mathcal{B}(S)$, определяемое правилом: $A\,\beta\,B$ тогда и только тогда, когда $A\subset B$.

Примеры бинарных отношений (3)

Пример 9. На множестве всех множеств определим *отношение* равномощности α : $A \alpha B$ тогда и только тогда, когда A и B равномощны.

Пример 10. Определим *отношение подобия* α на множестве всех треугольников: если x и y — треугольники, то x α y тогда и только тогда, когда эти два треугольника подобны.

Пример 11. На множестве всех прямых можно определить *отношение перпендикулярности*: прямые ℓ_1 и ℓ_2 находятся в этом отношении тогда и только тогда, когда $\ell_1 \perp \ell_2$.

Пример 12. Если множество состоит из небольшого числа элементов, то бинарное отношение на нем можно задать, явно указав все упорядоченные пары, принадлежащие этому отношению. Например, на множестве $\{1,2,3,4,5\}$ можно ввести следующее бинарное отношение:

$$\alpha = \{(1,2), (1,4), (2,2), (2,3), (4,1), (5,3)\}.$$

Основные типы бинарных отношений: определения

Определим несколько важных типов бинарных отношений.

Определение

Бинарное отношение α на множестве S называется:

- **●** *рефлексивным*, если $x \, \alpha \, x$ для любого $x \in S$;
- ullet симметричным, если для любых $x,y\in S$ из того, что $x\,lpha\,y$ вытекает, что $y\,lpha\,x;$
- ullet антисимметричным, если для любых $x,y\in S$ из того, что $x\,lpha\,y$ и $y\,lpha\,x$ вытекает, что x=y;
- ullet транзитивным, если для любых $x,y,z\in S$ из того, что $x\,lpha\,y$ и $y\,lpha\,z$ вытекает, что $x\,lpha\,z$.

Основные типы бинарных отношений: примеры (таблица)

В табл. 1 указано, какие из отношений, упоминаемых в примерах 1–11, являются рефлексивными, симметричными, антисимметричными и транзитивными, а какие нет.

Табл. 1. Основные типы бинарных отношений: примеры

Отношение	Множество	Рефлек-	Симмет-	Антисиммет-	I ранзи-
		сивность	ричность	ричность	тивность
Δ_S	Любое	+	+	_	+
$\nabla_{\mathcal{S}}$	Любое	+	+	+	+
€	$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$	+	_	+	+
<	$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$	ı	_	+	+
Равенство по модулю	$\mathbb{Z},\mathbb{Q},\mathbb{R}$	+	+	1	+
\prec	\mathbb{N},\mathbb{Z}	ı	_	+	_
(делимость)	N	+	_	+	+
	$\mathbb Z$	+	_	1	+
$\equiv (mod\ n)$	\mathbb{N},\mathbb{Z}	+	+	-	+
\subseteq	$\mathcal{B}(S)$, S — любое	+	_	+	+
C	$\mathcal{B}(S)$, S — любое	_	_	+	+
Равномощность	Множество	+	+	_	+
	всех множеств				
Подобие	Множество	+	+	_	+
треугольников	всех треугольников				
Перпендикулярность	Множество	_	+	_	_
прямых	всех прямых				

Основные типы бинарных отношений: примеры (обоснование)

Почти все утверждения, содержащиеся в табл. 1, очевидны. В специальном обосновании нуждается лишь антисимметричность отношений строгого порядка, предшествования и строгого включения. Ясно, что чисел x и y, для которых одновременно выполнялись бы условия x < y и y < x, не существует. Но это означает, что о любой паре чисел с такими свойствами можно утверждать все, что угодно, в том числе и то, что x = y. Следовательно, отношение строгого порядка антисимметрично. Аналогично устанавливается антисимметричность отношений предшествования и строгого включения.

Теоретико-множественные операции над бинарными отношениями

Бинарное отношение на множестве S, по определению, — это множество (элементами которого являются пары элементов из S). Поэтому на множестве всех бинарных отношений на фиксированном множестве S определены все теоретико-множественные операции, рассматривавшиеся в $\S 1$, — объединение, пересечение и разность бинарных отношений и дополнение бинарного отношения. Свойства этих операций — те же самые, что и у теоретико-множественных операций на произвольном множестве, поэтому нет необходимости заново их перечислять. Надо только уточнить, что при определении дополнения бинарного отношения на множестве S в качестве универсального множества выступает множество S^2 .

Произведение бинарных отношений

Определение

Пусть α и β — бинарные отношения на множестве S. Произведением отношений α и β называется бинарное отношение на S, которое обозначается через $\alpha\beta$ и определяется следующим образом: $(x,y) \in \alpha\beta$ тогда и только тогда, когда найдется элемент $z \in S$ такой, что $x \alpha z$ и $z \beta y$.

Используя произведение бинарных отношений, можно определить произвольную натуральную степень отношения α : используя индукцию по n, полагаем $\alpha^1=\alpha$ и, для всякого n>1, $\alpha^n=\alpha^{n-1}\cdot\alpha$.

Легко привести примеры, показывающие, что произведение бинарных отношений не коммутативно, т. е. вообще говоря, не обладает свойством $\alpha\beta=\beta\alpha$. Пусть, например, α — стандартное отношение порядка на множестве \mathbb{R} , а β — отношение равенства по модулю на том же множестве. Тогда $(1,-2)\in\alpha\beta$, так как $1\,\alpha\,2\,\beta\,(-2)$. Но $(1,-2)\notin\beta\alpha$. В самом деле, предположив, что $(1,-2)\in\beta\alpha$, т. е. что $1\,\beta\,x\,\alpha\,(-2)$ для некоторого $x\in\mathbb{R}$ мы приходим к противоречию: из $1\,\beta\,x$ вытекает, что $x\in\{1,-1\}$, а из $x\,\alpha\,(-2)$ — что $x\leqslant-2$.

Ассоциативность произведения бинарных отношений

В то же время, произведение бинарных отношений *ассоциативно*. Другими словами, если α , β и γ — бинарные отношения на произвольном множестве S, то $(\alpha\beta)\gamma = \alpha(\beta\gamma)$. Докажем это утверждение. Иллюстрацией к дальнейшим рассуждениям служит рис. 1. Пусть $(x,y)\in (\alpha\beta)\gamma$ для некоторых $x,y\in S$. Тогда существует $z\in S$ такое, что $(x,z)\in \alpha\beta$ и z γ y. Первое из этих включений означает, что x α w β z для некоторого $w\in S$. Тогда $(w,y)\in \beta\gamma$, поскольку w β z γ y. Учитывая еще, что x α w, получаем, что $(x,y)\in \alpha(\beta\gamma)$. Следовательно, $(\alpha\beta)\gamma\subseteq \alpha(\beta\gamma)$. Обратное включение проверяется аналогично.

Рис. 1. Ассоциативность произведения бинарных отношений

Отношение, обратное к данному

Определение

Пусть α — бинарное отношение на множестве S. Обратным к α называется бинарное отношение на множестве S, обозначаемое через α^{-1} и определяемое правилом: $x\,\alpha^{-1}\,y$ тогда и только тогда, когда $y\,\alpha\,x$.

Например, очевидно, что отношением, обратным к \leqslant , является отношение \geqslant .

Свойства обратного отношения

Пусть α и β — бинарные отношения на множестве S. Тогда:

- 1) $(\alpha^{-1})^{-1} = \alpha$;
- 2) $(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$.

Доказательство. Свойство 1) легко вытекает из определения обратного отношения. Проверим свойство 2). Пусть $x,y\in S$ и $(x,y)\in \beta^{-1}\alpha^{-1}$. Тогда $x\,\beta^{-1}z\,\alpha^{-1}y$ для некоторого $z\in S$. Следовательно, $y\,\alpha\,z\,\beta\,x$, и потому $(y,x)\in \alpha\beta$. Но тогда $(x,y)\in (\alpha\beta)^{-1}$. Мы показали, что $\beta^{-1}\alpha^{-1}\subseteq (\alpha\beta)^{-1}$. Обратное включение проверяется повторением тех же рассуждений в обратном порядке.

Отметим еще, что если отношение α симметрично, то $\alpha_{\mathbb{R}}^{-1} = \underline{\alpha}$.

Определения

Пусть α — бинарное отношение на множестве S. Pефлексивным замыканием отношения α называется отношение $\alpha' = \alpha \cup \nabla_S$. Транзитивным замыканием отношения α называется бинарное отношение на S, которое обозначается через α^t и определяется следующим образом: $x \, \alpha^t \, y$ тогда и только тогда, когда найдутся элементы $x_0, x_1, \ldots, x_n \in S$ такие, что $x_0 = x$, $x_n = y$ и $x_i \, \alpha \, x_{i+1}$ для всех $i = 0, 1, \ldots, n-1$ (см. рис. 2). Peфлексивно-транзитивным замыканием отношения α называется рефлексивное замыкание отношения α^t .

Рис. 2. Транзитивное замыкание

Неформально говоря, пара (x, y) лежит в транзитивном замыкании отношения α , если от x до y можно дойти с помощью α «транзитом» через $x_1, x_2, \ldots, x_{n-1}$.

Рефлексивное, транзитивное и рефлексивно-транзитивное замыкания (2)

В качестве примеров отметим, что

- рефлексивным замыканием отношения строгого порядка < на любом из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} и \mathbb{R} является отношение \leqslant ;
- транзитивным замыканием отношения предшествования на любом из множеств $\mathbb N$ и $\mathbb Z$ является отношение строгого порядка;
- рефлексивно-транзитивным замыканием отношения предшествования на любом из множеств $\mathbb N$ и $\mathbb Z$ является отношение \leqslant .

Легко убедиться в том, что справедливо следующее

Замечание о рефлексивном и транзитивном замыканиях

Рефлексивное замыкание отношения α является наименьшим рефлексивным отношением, содержащим α , а транзитивное замыкание отношения α — это наименьшее транзитивное отношение, содержащее α .

В частности, если отношение α рефлексивно, то $\alpha^r = \alpha$, а если α транзитивно, то $\alpha^t = \alpha$. Отметим еще очевидные равенства $\alpha^t = \bigcup\limits_{n=1}^{\infty} \alpha^n$ и $(\alpha^t)^r = (\alpha^r)^t$.

Отношения эквивалентности

Определение

Бинарное отношение называется *отношением эквивалентности* или просто *эквивалентностью*, если оно рефлексивно, симметрично и транзитивно.

Из табл. 1 видно, что из отношений, упомянутых в примерах 1–11, отношениями эквивалентности являются шесть: универсальное отношение и отношения равенства, равенства по модулю, сравнимости по данному модулю, равномощности и подобия треугольников.

Определение

Пусть S — произвольное множество, α — эквивалентность на S и $x \in S$. Множество всех элементов $y \in S$ таких, что $x \alpha y$, называется α -классом элемента x и обозначается через x^{α} . Подмножество T в S называется классом эквивалентности отношения α , если $T = x^{\alpha}$ для некоторого $x \in S$.

Например, если α — отношение равенства по модулю на \mathbb{Z} , то $5^{\alpha}=\{5,-5\}$, если α — отношение сравнимости по модулю 3 на \mathbb{N} , то 8^{α} — множество всех натуральных чисел, имеющих остаток 2 при делении на 3, а если α — отношение равномощности на множестве всех конечных множеств, то $\{-1,0,1\}^{\alpha}$ — множество всех 3-элементных множеств.

Разбиения множества (1)

С понятием отношения эквивалентности тесно связано понятие разбиения множества.

Определение

Разбиением множества S называется семейство непустых подмножеств этого множества такое, что объединение всех множеств из этого семейства равно S, а пересечение любых двух различных множеств из семейства пусто. Множества из этого семейства называются классами разбиения.

Приведем несколько примеров разбиений.

- 1) Для любого множества S можно определить разбиение, состоящее из одного класса S.
- 2) Еще одно разбиение произвольного множества это его разбиение на всевозможные одноэлементные подмножества.
- 3) Семейство множеств $S_1=\{1,2,5\},\ S_2=\{3\},\ S_3=\{4,7,8\},\ S_4=\{6,9\}$ является разбиением множества $S=\{1,2,\ldots,9\}$ на четыре класса.
- 4) Множество $\mathbb N$ можно разбить на 3 класса: S_0 , S_1 и S_2 , где S_i это множество всех натуральных чисел, которые при делении на 3 дают остаток i (i=0,1,2).

Разбиения множества (2)

- 5) Множество всех непустых конечных множеств можно разбить в объединение бесконечного числа классов S_1, S_2, \ldots , где, для всякого $n \in \mathbb{N}, S_n$ это множество всех n-элементных множеств.
- 6) Множество всех треугольников на плоскости разбивается на бесконечное число классов, в каждый из которых входят все треугольники, подобные некоторому фиксированному треугольнику, и только они.
- 7) На рис. З приведен еще один пример разбиения: множество всех точек прямоугольника разбито на шесть подмножеств, раскрашенных в разные цвета.

Рис. 3. Разбиение прямоугольника на шесть частей

Связь между отношениями эквивалентности и разбиениями (1)

Теорема об отношениях эквивалентности

Пусть S — произвольное множество. Существует взаимно-однозначное соответствие между множеством всех отношений эквивалентности на множестве S и множеством всех разбиений этого множества.

Доказательство. Пусть S — произвольное множество, а α эквивалентность на S. Пусть $\{S_i \mid i \in I\}$ — совокупность всевозможных классов эквивалентности отношения α . Проверим, что этот набор подмножеств множества S образует разбиение S. В самом деле, пусть $S_i = x^{\alpha}$ — некоторый α -класс. Из рефлексивности отношения α вытекает, что $x \alpha x$. Следовательно, $x \in x^{\alpha}$, и потому $S_i = x^{\alpha} \neq \emptyset$. Из того, что $x \in x^{\alpha}$, вытекает, что $S \subseteq \bigcup_{i \in I} S_i$. Обратное включение очевидно, и потому $S=\mathop{\cup}\limits_{i\in I}S_i$. Осталось проверить, что пересечение любых двух различных α -классов пусто. Дальнейшие рассуждения иллюстрирует рис. 4. Пусть $S_i = x^{\alpha}$, $S_i = y^{\alpha}$, $S_i \neq S_i$ и $z \in S_i \cap S_i$. Тогда $x \alpha z$ и $y \alpha z$. Поскольку α симметрично, имеем $z \alpha y$. Тогда $x \alpha z \alpha y$. Поскольку α транзитивно, $x \alpha y$. Если $a \in S_i = x^{\alpha}$, то $a \alpha x \alpha y$, откуда $a \alpha y$, т. е. $a \in y^{\alpha} = S_i$. Следовательно, $S_i \subseteq S_i$. Аналогично проверяется, что $S_i \subseteq S_i$, и потому $S_i = S_i$ вопреки выбору S_i и S_i .

Связь между отношениями эквивалентности и разбиениями (2)

Рис. 4. К доказательству теоремы об отношениях эквивалентности

Связь между отношениями эквивалентности и разбиениями (3)

Обозначим через ${\sf Eq}(S)$ множество всех отношений эквивалентности на S, а через ${\sf Part}(S)$ — множество всех разбиений множества S. Из сказанного на предыдущем слайде вытекает, что отображение f, которое ставит в соответствие всякой эквивалентности α на S набор всевозможных α -классов, отображает ${\sf Eq}(S)$ в ${\sf Part}(S)$. Проверим, что это отображение биективно.

Убедимся сначала в том, что f взаимно однозначно. Пусть α и β — различные отношения эквивалентности на S. Без ограничения общности можно считать, что существуют элементы $x,y\in S$ такие, что $x\alpha y$, но $(x,y)\notin \beta$. Но тогда элементы x и y лежат в одном и том же классе разбиения $f(\alpha)$, но в разных классах разбиения $f(\beta)$. Следовательно, разбиения $f(\alpha)$ и $f(\beta)$ различны, и потому отображение f взаимно однозначно.

Осталось проверить, что f отображает $\operatorname{Eq}(S)$ на $\operatorname{Part}(S)$. Пусть $\Psi=\{S_i\mid i\in I\}\in\operatorname{Part}(S)$. Требуется указать эквивалентность α на S такую, что $f(\alpha)=\Psi$. Определим бинарное отношение α на S правилом: $x\,\alpha\,y$ тогда и только тогда, когда $x,y\in S_i$ для некоторого $i\in I$. Очевидно, что отношение α рефлексивно, симметрично и транзитивно, т. е. является отношением эквивалентности. А из построения отношения α и определения отображения f с очевидностью вытекает, что $f(\alpha)=\Psi$.

Фактор-множество

Определение

Пусть α — отношение эквивалентности на множестве S. Множество всех α -классов элементов множества S называется фактор-множеством множества S по отношению α и обозначается через S/α .

Например, если α — отношение сравнимости по модулю 2 на множестве \mathbb{Z} , то фактор-множество S/α состоит из двух элементов: множества всех четных чисел и множества всех нечетных чисел.

Отношения частичного порядка

Определение

Бинарное отношение называется *отношением частичного порядка* (а также *отношением порядка*, *частичным порядком* или просто *порядком*), если оно рефлексивно, антисимметрично и транзитивно. Множество, на котором задано отношение частичного порядка, будем называть *частично упорядоченным* (или просто *упорядоченным*) *множеством*, сокращенно — *чумом*. Если α — отношение частичного порядка на множестве S, то будем говорить, что S *частично упорядочено* (или просто *упорядочено*) отношением α .

С помощью табл. 1 легко установить, что из отношений, упомянутых в примерах 1–11, отношениями частичного порядка являются четыре: отношение равенства, отношение \leqslant на числовых множествах, отношение делимости на $\mathbb N$ (но не на $\mathbb Z!$) и отношение включения на булеане некоторого множества.

• Чум — это пара, состоящая из множества S и заданного на нем отношения частичного порядка α . Мы будем обозначать эту пару через $\langle S; \alpha \rangle$.

Договоренность об обозначениях. Строгий порядок. Линейный порядок

В дальнейшем мы часто будем использовать символ \leqslant для обозначения произвольного отношения частичного порядка на любом множестве (в тех случаях, когда этот символ будет означать обычное отношение порядка на числовом множестве, это будет оговариваться особо). При этом, если $x \leqslant y$ и $x \neq y$, то мы будем писать x < y или y > x. Отношение < на произвольном чуме называется отношением *отношением строгого порядка* или просто *строгим порядком*.

Определение

Пусть S — множество, упорядоченное отношением \leqslant . Элементы $x,y \in S$ называются *сравнимыми относительно* \leqslant , если либо $x \leqslant y$, либо $y \leqslant x$. Отношение \leqslant называется *отношением линейного порядка* (или просто *линейным порядком*), если любые два элемента из S сравнимы относительно \leqslant . Множество, на котором задано отношение линейного порядка, называется *линейно упорядоченным множеством* или *цепью*.

Например, стандартные отношения \leqslant и \geqslant на числовых множествах являются линейными порядками, а отношения равенства, делимости (на $\mathbb N$) и включения — не являются. На следующем слайде приведен еще один пример отношения линейного порядка, играющий важную роль в теоретической информатике.

Лексикографический порядок

Определение

Пусть $\langle X;\leqslant \rangle$ — непустое конечное линейно упорядоченное множество, а X^+ — множество всевозможных конечных последовательностей элементов из X. Распространим отношение \leqslant с X на X^+ следующим образом. Если $u=x_1x_2\cdots x_k$ и $v=y_1y_2\cdots y_m$, где $x_1,x_2,\ldots,x_k,y_1,y_2,\ldots,y_m\in X$, то $u\leqslant v$ тогда и только тогда, когда либо $k\leqslant m$ и $x_1=y_1,x_2=y_2,\ldots,x_k=y_k$, либо существует $j\leqslant \min\{k,m\}$ такой, что $x_1=y_1,x_2=y_2,\ldots,x_{j-1}=y_{j-1}$ и $x_j< y_j$. Отношение \leqslant называется *отношением* лексикографического порядка на X^+ .

- Рутинные выкладки показывают, что отношение лексикографического порядка является линейным порядком.
- Если отношение \leq , заданное на множестве X^+ , ограничить на множество X, то получится исходно заданное на X отношение линейного порядка \leq . Это и позволяет обозначать указанные отношения на X и на X^+ одним и тем же символом.
- Если X множество букв русского языка, упорядоченное в алфавитном порядке ($a \le 6 \le \cdots \le s$), то лексикографический порядок на множестве всех слов русского языка это именно тот порядок, в котором слова идут в словаре. Этим и объясняется термин «лексикографический порядок».

Отношение покрытия и диаграмма чума

Определение

Пусть $\langle S;\leqslant \rangle$ — произвольный чум и $x,y\in S$. Говорят, что y покрывает x, если x< y и не существует элемента z такого, что x< z< y.

Заметим, что если \leqslant — стандартное отношение порядка на одном из множеств $\mathbb N$ и $\mathbb Z$, то y покрывает x тогда и только тогда, когда $x \prec y$. Следующее замечание очевидно.

• Если чум $\langle S; \leqslant \rangle$ конечен, то отношение < является рефлексивным замыканием, а отношение \leqslant — рефлексивно-транзитивным замыканием отношения покрытия на S.

Чумы с небольшим числом элементов (а иногда и бесконечные, но просто устроенные чумы) удобно изображать с помощью так называемых диаграмм частично упорядоченных множеств. Диаграмма чума рисуется следующим образом: каждый элемент чума изображается точкой. Если при этом y покрывает x, то y рисуется выше, чем x, и соответствующие точки соединяют линией (как правило, отрезком прямой).

 Допуская вольность речи, часто говорят, что на рисунках изображаются не диаграммы чумов, а сами чумы.

Диаграммы чумов (примеры)

На рис. 5 изображены диаграммы следующих частично упорядоченных множеств: S_1 — множество $\mathcal{B}\big(\{1,2,3\}\big)$ с отношением включения, S_2 — множество $\{2,3,\ldots,12\}$ с отношением делимости, S_3 и S_4 — множества $\mathbb N$ и $\mathbb Z$ соответственно с естественным отношением порядка. Из этих диаграмм наглядно видно, что чумы S_3 и S_4 являются цепями, а чумы S_1 и S_2 — не являются.

Рис. 5. Диаграммы чумов

Минимальные, максимальные, наименьшие и наибольшие элементы (определения и примеры)

Определения

Элемент x частично упорядоченного множества $\langle S;\leqslant \rangle$ называется:

- минимальным, если не существует элемента $y \in S$ такого, что y < x;
- максимальным, если не существует элемента $y \in S$ такого, что x < y;
- наименьшим, если x ≤ y для любого y ∈ S;
- ullet наибольшим, если $y\leqslant x$ для любого $y\in S$.

Рассмотрим четыре чума, изображенных на рис. 5. В чуме S_1 есть ровно один минимальный элемент \varnothing , который к тому же является наименьшим, и ровно один максимальный элемент $\{1,2,3\}$, который к тому же является наибольшим. В чуме S_2 минимальными являются элементы 2,3,5,7 и 11, максимальными — элементы 7,8,9,10,11 и 12, а наименьших и наибольших элементов нет (отметим, что элементы 7 и 11 являются как минимальными, так и максимальными). В чуме S_3 есть ровно один минимальный элемент 1, являющийся к тому же наименьшим элементом, а максимальных и наибольших элементов нет. Наконец, в чуме S_4 нет ни минимальных, ни максимальных, ни наименьших, ни наибольших элементов.

Минимальные, максимальные, наименьшие и наибольшие элементы (свойства)

Замечание о наименьшем и наибольшем элементах

Если чум содержит наименьший [наибольший] элемент, то этот элемент является единственным минимальным [максимальным] элементом.

Доказательство. Докажем утверждение о минимальных элементах, утверждение о максимальных утверждениях проверяется аналогично. Пусть x — наименьший элемент чума S и $y \in S$. Тогда $x \leqslant y$. Следовательно, $y \not< x$, и потому элемент x минимален. Предположим, что x = x — другой минимальный элемент x = x. Тогда $x \leqslant x$ (так как x = x — наименьший элемент) и $x \not< x$ (в силу минимальности x = x). Следовательно, x = x.

Отношения квазипорядка

В заключение параграфа упомянем некоторое ослабление понятия частичного порядка.

Определение

Бинарное отношение на множестве S называется *отношением квазипорядка* или просто *квазипорядком*, если оно рефлексивно и транзитивно. Множество, на котором задано отношение квазипорядка, называется *квазиупорядоченным*.

Ясно, что любой порядок является квазипорядком. Обратное неверно. Естественный пример отношения квазипорядка, не являющегося отношением порядка, — это отношение делимости на множестве \mathbb{Z} . Очевидно, что оно рефлексивно и транзитивно. В то же время, оно не антисимметрично. В самом деле, $1\mid -1$ и $-1\mid 1$, но $1\neq -1$. В дальнейшем мы еще встретимся с примером отношения квазипорядка при изучении многочленов (см. § 18).

Ассоциированные элементы

Определение

Пусть $\langle S;\alpha \rangle$ — квазиупорядоченное множество. Элементы $x,y \in S$ называются accoциированными, если $x\,\alpha\,y$ и $y\,\alpha\,x$.

Например, как легко понять, элементы m и n квазиупорядоченного множества $\langle \mathbb{Z}; | \rangle$ ассоциированы тогда и только тогда, когда |m| = |n|.

Следующее утверждение очевидно.

Замечание о квазиупорядоченном множестве

Пусть $\langle S; \alpha \rangle$ — квазиупорядоченное множество, а σ — отношение ассоциированности на S. Тогда σ — отношение эквивалентности.

