Obsah

17 Vznik elektrického proud, elektrický proud v kovech	1
17.1 Elektrický proud	. 1
17.1.1 Podmínky vzniku	. 1
17.2 Elektrická vodivost kovů	. 1
17.3 Ohmův zákon	. 1
17.4 Elektrický odpor	. 1
17.4.1 Zapojení rezistorů	. 2
17.4.2 Supravodivost	. 3
17.4.3 Termoelektrický jev	. 3
17.5 Kirchhoffovy zákony	. 3
17.5.1 První Kirchhoffův zákon	. 3
17.5.2 Druhý Kirchhoffův zákon	. 3
17.6 Práce a výkon el. proudu	. 4
17.6.1 Elektrická práce	. 4
17.6.2 Elektrický výkon	. 5
17.6.3 Účinnost	. 5

17 Vznik elektrického proud, elektrický proud v kovech

17.1 Elektrický proud

- značka I, jednotky A (ampér)
- proud nabitých částic ze záporného konce (-) ke kladnému (+)
- domluvený směr od + k -

17.1.1 Podmínky vzniku

- přítomnost volných částic
 - volné elektrony
 - ionty
- přítomnost el. pole
 - udržení pomocí elektrického zdroje

17.2 Elektrická vodivost kovů

- přítomnost volných elektronů nesou el. proud
- el. pole (např. baterie) usměrňuje proud pohyb elektronů
- velikost el. proudu

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

17.3 Ohmův zákon

- pojmenován Georgem Ohmem
- vyjádření závislosti proudu na napětí pomocí veličiny odporu

$$I = \frac{U}{R}, \qquad U = IR, \qquad R = \frac{U}{I}$$

17.4 Elektrický odpor

- značka R, $[R] = \Omega$ (ohm)
- související veličina el. vodivost
 - značka G, $[R] = \Omega^{-1}$
 - $-G = 1/R \Rightarrow I = GU$
- impedance el. odpor v případě střídavého proudu
- výpočet
 - z proudu a napětí

$$R = \frac{U}{I}$$

- z fyzikálních vlastností vodiče

$$R = \rho \frac{l}{S}$$

 $*~\rho$ – měrný elektrický odpor, závislý na materiálu a teplotě

$$\rho = \rho_0 (1 + \alpha \Delta T)$$

- · α teplotní součinitel odporu
- $\ast \ l$ délka vodiče
- * S průřez vodiče
- rezistor el. součástka pro vytvoření el. odporu
- rezistor s proměnnou hodnotou odporu potenciometr nebo reostat
 - reostat měnitelný odpor, má 2 vývody jeden konec a jezdec
 - potenciometr dělič napětí, 3 vývody 2 konce a jezdec

Obr. 17.1: Voltapérová charakteristika kovů

17.4.1 Zapojení rezistorů

Sériově

- proud na všech rezistorech stejný
- celkové napětí rovno součtu parciálních napětí
- celkový odpor je součet parciálních odporů

•

$$U = U_1 + U_2 + \dots = IR_1 + IR_2 + \dots$$

 $\frac{U}{I} = R_1 + R_2 + \dots$
 $R = R_1 + R_2 + \dots$

Paralelně

- napětí na všech rezistorech stejné
- celkový proud roven součtu parciálních proudů
- převrácená hodnota odporu je součet převrácených hodnot parciálních odporů

.

$$I = I_1 + I_2 + \dots = \frac{U}{R_1} + \frac{U}{R_2} + \dots$$
$$\frac{I}{U} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

17.4.2 Supravodivost

- stav téměř nulového odporu
- při velmi nízké teplotě
- elektrony spojeny do párů, nesrážejí se s krystalickou mřížkou kovu
- využití silné magnety, přenos velmi vysoké energie, magnetická levitace

17.4.3 Termoelektrický jev

• vznik napětí při spojení dvou různých kovů a změně teploty spojů

$$U_e = \alpha \Delta T$$

 $-\alpha$ – termoelektrický koeficient, závislý na materiálech

- zdroj elektrického napětí termočlánek
- využití měření teplot, zdroj napětí

Obr. 17.2: Zapojení termočlánku

17.5 Kirchhoffovy zákony

- zákony popisující elektrický obvod
- na principu zachování náboje a energie

17.5.1 První Kirchhoffův zákon

• "Algebraický součet proudů v uzlu je roven nule."

$$\sum_{k=1}^{n} I_k = 0$$

- dohodnutý směr proudu
 - proud proudí do uzlu kladný směr
 - proud proudí z uzlu záporný směr

Obr. 17.3: Nákres proudů na uzlu

17.5.2 Druhý Kirchhoffův zákon

• "Algebraický součet napětí ve smyčce je roven nule." / "Součet elektromotorických napětí zdrojů ve smyčce je roven součtu úbytků napětí na spotřebičích"

$$\sum_{k=1}^{n} U_k = 0$$
$$\sum_{k=1}^{n} U_{e_n} = \sum_{k=1}^{m} \Delta U_k$$

• běžný případ – obvod se zdroji a rezistory

$$\sum_{k=1}^{n} U_{\mathbf{e}_n} = \sum_{k=1}^{m} R_k I_k$$

17.6 Práce a výkon el. proudu

17.6.1 Elektrická práce

- značka W, [W] = J (joule)
- práce vykonána elektrickým proudem
- náboj v čase

W = Qt = UIt = Pt

Obr. 17.4: Aplikace 2. KZ na část obvodu (na smyčku)

Obr. 17.5: Nákres KZ při řešení el. obvodů

17.6.2 Elektrický výkon

- značka P, [P] = W (watt)
- práce v čase
- okamžitá práce

•

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}UIt}{\mathrm{d}t} = UI$$

17.6.3 Účinnost

- značka η , $[\eta] = \%$
- podíl skutečně využité energie z dodané energie
- zbytek ztráty teplo, zvuk, světlo...

 $\eta = \frac{P}{P_0} = \frac{W}{W_0}$

- $-\ P,W$ vykonaná práce, výkon
- $-\ P_0, W_0$ dodána práce, příkon