RV UNIVERSIT	
an initiative of RV EDUCATIONAL INSTITUTI	

USN:										
------	--	--	--	--	--	--	--	--	--	--

School of Computer Science and Engineering

B.Tech (Hons.)
CIE - 2

Academic Year 2024 - 2025

Course: Calculus and Laplace Transform	Course Code: CS2802	Semester: IV
Date: 14 March 2025	Duration: 1.5hrs	Max Marks: 25 Marks

Instructions:

- All questions are compulsory.
- Do not answer any part of the answers in the question paper.
- For MCQs, write the letter choice and the answer.
- Non-programmable calculators are allowed.

Part-A (5 Marks)

S.No	Question	Marks	Level	CO
1	The area enclosed by the curve $f(x) = \sin(x)$ with the x-axis over $[-\pi, \pi]$ is	1	L2	CO2
	a) 0 c) 2			
	b) 1 d) π			
2	Evaluate the integral $\int_0^1 \int_0^x dx dy$.	2	L2	CO2
3	Calculate the volume of a cube of sides a located in the first octant with one corner at the origin using triple integration.	2	L3	CO2

Part-B (20 Marks)

S.No	Question	Marks	Level	CO
4	a) Find the first three terms of the Taylor series for the function $\sin(\pi x)$ centered at $a=1$. [3]	5	L3	CO2
	b) Use your answer to find an approximate value of $\sin \left(\pi + \frac{\pi}{10}\right)$. [2]			
5	For the function, $f(x) = x^3 - 2x^2 + x + 1$, over the interval $[-1, 3]$	5	L3	CO2
	a) Calculate the critical points and point(s) of inflection(s) (if any). [2]			
	b) Determine the concavity of the function at each critical points.[1]			
	c) Sketch a neat graph of the function using these information.[2]			
6	Apply double integration to calculate the area lying between the parabola, $y = 6 - x^2$ and the line $y = x$. [5]	5	L3	CO2
7	Given the surface, $f(x,y) = (x-2)^2 - (y-1)^2 + 2$	5	L3	CO3
	a) Evaluate: f_x, f_{xx}, f_y , and f_{yy} . [2]			
	b) Calculate the critical point of $f(x,y)$. [1]			
	c) Determine the nature of the critical point(s) using the Hessian.[2]			

	Course Outcomes						
CO1:	Understand foundational concepts of functions, limits, continuity and derivatives to solve various engineering problems.						
CO2:	Apply derivatives and integrations in problems including rate of change, surface areas, volumes, probabilities, and single variable optimization.						
CO3:	Solve linear approximations and unconstrained optimization problems related to engineering applications.						
CO4:	Apply Laplace transform to solve problems on time varying signals.						

Marks Distribution										
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	
-	3	22	-	-	-	-	20	5	-	

End

RV UNIVERSITY
an initiative of RV EDUCATIONAL INSTITUTIONS

USN:							
			l				

School of Computer Science and Engineering B.Tech (Hons.)

CIE - 2

Academic Year 2024 - 2025

Course: Calculus and Laplace Transform	Course Code: CS2802	Semester: IV
Date: 13 Mar. 2025	Duration: 1.5hrs	Max Marks: 10 Marks

Answer Keys:

Part-A (5 Marks)

S.No	Question	Marks	Level	CO
1	The area enclosed by the curve $f(x) = \sin(x)$ with the x-axis over $[-\pi, \pi]$ is	1	L2	CO2
	a) 0 c) 2			
	b) 1 d) π			
	Answer: a) 0			
2		2	L2	CO2
	$\int_0^1 \int_0^x dx dy = \int_0^1 dx \left[\int_0^x dy \right]$			
	$=\int_{0}^{1}dx \ [y]_{0}^{x}$			
	$= \int_0^1 x dx = \left[\frac{x^2}{2}\right]_0^1$			
	$= \ \frac{1}{2}$			
		, , ,		

Continued on next page...

S.No	Question	Marks	Level	CO
3	The volume of the cube in the first octant with one corner at the origin can be written as:	2	L3	CO2
	$V = \int_0^a \int_0^a \int_0^a dz dy dx$ $= \int_0^a \int_0^a [z]_0^a dy dx = \int_0^a \int_0^a a dy dx$ $= a \int_0^a [y]_0^a dx = a \int_0^a a dx = a^2 \int_0^a dx$ $= \mathbf{a}^3$			
	Note: The integration can be done in any order of dx , dy and dz .			

Part-B (20 Marks)

S.No	Question	Marks	Level	СО
4	a) The Taylor series of a function $f(x)$ centered at a is given by:	5	L3	CO2
	$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots$			
	We are asked to find the first three terms for $f(x) = \sin(\pi x)$ around $a = 1$.			
	• First derivative:			
	$f'(x) = \pi \cos(\pi x)$			
	• Second derivative:			
	$f''(x) = -\pi^2 \sin(\pi x)$			
	$\bullet \ f(1) = \sin(\pi) = 0$			
	• $f'(1) = \pi \cos(\pi) = \pi(-1) = -\pi$			
	• $f''(1) = -\pi^2 \sin(\pi) = 0$			
	$f(x) \approx f(1) + f'(1)(x - 1) + \frac{f''(1)}{2!}(x - 1)^2$			
	$f(x) \approx 0 - \pi(x - 1) + 0$			
	Thus, the first three terms of the Taylor series for $\sin(\pi x)$ centered at $a=1$ are:			
	$f(x) = \sin(\pi x) \approx -\pi(x-1)$			
	b) We know that:			
	$\sin\left(\pi + \frac{\pi}{10}\right) = \sin\left(\pi(1 + \frac{1}{10})\right) \approx -\pi(1 + \frac{1}{10} - 1)$			
	So, $\sin\left(\pi + \frac{\pi}{10}\right) \approx -\frac{\pi}{10}$			
	Cor	ntinued o	n next p	age

S.No	Question	Marks	Level	СО
5	For the function, $f(x) = x^3 - 2x^2 + x + 1$, over the interval $[-1, 3]$	5	L3	CO2
	a) Calculate the critical point(s) and point(s) of inflection(s) (if any). [2]			
	b) Determine the concavity of the function. [1]			
	c) Sketch a neat graph of the function using these informations.[2]			
	Answer: for critical points; $f'(x) = \frac{d}{dx}(x^3 - 2x^2 + x + 1) = 0$			
	$\implies 3x^2 - 4x + 1 = 0$ $\implies (x - 1)\left(x - \frac{1}{3}\right) = 0$			
	So, the critical points are $x=1$ and $x=\frac{1}{3}$. Moreover, $f(x)$ is increasing on $(-1,\frac{1}{3})$ and $(1,3)$ and decreasing on $(\frac{1}{3},1)$. At $x=\frac{1}{3}$ and at $x=1$, function will have maximum and minimum values respectively, and corresponding values are $(1,1)$ and $(\frac{1}{3},\frac{27}{31})$.			
	For inflection point, $f''(x) = \frac{d}{dx}(3x^2 - 4x + 1)$ $\implies 6x - 4 = 0$ $\implies x = \frac{2}{3}$			
	Corresponding point is: $\left(\frac{2}{3}, \frac{29}{27}\right)$			
	$f(x)$ is concave up where $f''(x) > 0$, and $f(x)$ is concave down where $f''(x) < 0$. So, $f(x)$ is concave down on $\left(-1, \frac{2}{3}\right)$ and concave up on $\left(\frac{2}{3}, 2\right)$.			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Cor	ntinued of	$n \ next \ p$	age

S.No	Question	Marks	Level	CO
6	Apply double integration and calculate the area lying between the curves, the parabola, $y = 6 - x^2$ and the line $y = x$. [5]	5	L3	CO2
	Answer: We need to find the area enclosed by the parabola $y = 6 - x^2$ and the line $y = x$. \implies First, find their points of intersection by solving:			
	$6 - x^2 = x$			
	$x^2 + x - 6 = 0$			
	(x+3)(x-2) = 0			
	So, the curves intersect at: $x = -3$ and $x = 2$			
	\implies The area can be computed using a double integral:			
	$A = \iint_R dA$			
	We describe the region R using the boundaries of the curves:			
	• x ranges from -3 to 2 .			
	• For a fixed x , y ranges from the line $y = x$ to the parabola $y = 6 - x^2$.			
	Thus, the area is:			
	$A = \int_{x=-3}^{2} \int_{y=x}^{6-x^2} dy dx$			
	$= \int_{x=-3}^{2} [y]_{y=x}^{6-x^2} dx = \int_{x=-3}^{2} [6-x^2-x] dx$			
	$= [6x - \frac{x^3}{3} - \frac{x^2}{2}]_{-3}^2 = [12 - \frac{8}{3} - \frac{4}{2}] - [-18 + \frac{27}{3} - \frac{9}{2}]$			
	$= [10 - \frac{8}{3}] - [-9 - \frac{9}{2}]$			
	$= \frac{125}{6} \text{ sq. unit}$			
	Continued on next page			

7 Given t			Level	CO
a) Eva	the surface, $f(x,y) = (x-2)^2 - (y-1)^2 + 2$ aluate: f_x, f_{xx}, f_y , and f_{yy} . [2] aswer:	5	L3	CO3
	$f(x,y) = (x-2)^{2} - (y-1)^{2} + 2$ $f_{x} = 2(x-2)$ $f_{x} = -2(y-1)$ $f_{xx} = 2$ $f_{yy} = -2$			
	lculate the critical point of $f(x,y)$. [1] aswer: At critical point:			
	$f_x = 0; f_y = 0$ $\Rightarrow 2(x-2) = 0; -2(y-1) = 0$ $\Rightarrow x = 2 ; y = 1$			
c) Det [2]	erefore the critical point is $(2,1)$ termine the concavity of the critical point from the Hessian. aswer: The Hessian matrix is given by:			
All	H = $\begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$ = $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$			
The	e determinant of the Hessian (symmetric matrix) is $H = \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = -4$			
	us, since the determinant of the Hessian is < 0 , at the critical nt, the critical point is a saddle point .			

Continued on next page...

S.No Question	Marks	Level	CO
Continued on next page			age

 \mathbf{End}