# 고객의 행동을 예측하는 테크닉

파이썬을 이용한 실무 데이터 분석

## 데이터 가공

#### 분석의 전제조건

- 센터를 언제든 사용할 수 있는 종일 회원, 낮에만 사용할 수 있는 주간회원, 밤에만 사용할 수 있는 야간회원, 이렇게 3가지 종류의 회원 구분이 있다.
- 일반적으로 입회비가 들지만, 비정기적으로 입회비 반액 할인이나 무료 행사를 한다.
- 월말까지 탈퇴 신청을 하면 그 다음 달 말에 탈퇴가 된다.

|   | 파일 이름               | 개요                                   |
|---|---------------------|--------------------------------------|
| 1 | use_log.csv         | 센터의 이용 이력 데이터, 기간은 2018년 4월~2019년 3월 |
|   | customer_master.csv | 2019년 3월 말 시점의 회원 데이터                |
|   | class_master.csv    | 회원 구분 데이터(종일, 주간, 야간)                |
|   | campaign_master.csv | 행사 구분 데이터(입회비 유무 등)                  |
| 2 | customer_join.csv   | 앞에서 생성한 이용이력을 포함한 고객 데이터             |

# 데이터 불러오기

### 데이터 업로드

• 데이터 파일을 구글 드라이브 임시 공간에 업로드



### 데이터 불러오기

#### 데이터 불러오기

- pandas를 이용하여 use log.csv 파일을 데이터 프레임으로 불러온다.
- 결측치를 확인해 본다. usedate에 결측치가 1개 있다.

dtype: int64

usedate

### 데이터 불러오기

#### 데이터 불러오기

- pandas를 이용하여 customer join.csv 파일을 데이터 프레임으로 불러온다.
- 결측치를 확인한다. end\_date 외에는 결측치가 없다. (end\_date가 결측인 고객은 탈퇴 안 한 고객)

```
customer = pd.read_csv('customer_join.csv')
customer.isnull().sum()
```

| customer_id                       | 0    |
|-----------------------------------|------|
| name                              | 0    |
| class                             | 0    |
| gender                            | 0    |
| start_date                        | 0    |
| end_date                          | 2842 |
| campaign_id                       | 0    |
| is_deleted                        | 0    |
| class_name                        | 0    |
| price                             | 0    |
| campaign_name                     | 0    |
| mean                              | 0    |
| median                            | 0    |
| max                               | 0    |
| min                               | 0    |
| routine_flg                       | 0    |
| calc_date                         | 0    |
| membership_period<br>dtype: int64 | 0    |

### 회원 군집화

#### 군집화를 하기 위해 데이터 준비

- 비지도학습으로 군집화를 한다.
- [[mean, median, max, min, membership\_period만 사용하기 위해 필요한 값 추출

|   | mean     | median | max | min | membership_period |
|---|----------|--------|-----|-----|-------------------|
| 0 | 4.833333 | 5.0    | 8   | 2   | 47                |
| 1 | 5.083333 | 5.0    | 7   | 3   | 47                |
| 2 | 4.583333 | 5.0    | 6   | 3   | 47                |
| 3 | 4.833333 | 4.5    | 7   | 2   | 47                |
| 4 | 3.916667 | 4.0    | 6   | 1   | 47                |

### 회원 군집화

#### K-means 클러스터링으로 회원 군집화

- K-means 클러스터링을 사용한다. (K=4)
- 각 데이터의 크기가 크게 다르기 때문에 표준화를 한다. StandardScaler()

```
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
customer_clustering_sc = sc.fit_transform(customer_clustering)
```

kmeans = KMeans(n\_clusters=4, random\_state=0)
clusters = kmeans.fit(customer\_clustering\_sc)
customer\_clustering["cluster"] = clusters.labels\_
print(customer\_clustering["cluster"].unique())
customer\_clustering.head()

|   | mean     | median | max | min | membership_period | cluster |
|---|----------|--------|-----|-----|-------------------|---------|
| 0 | 4.833333 | 5.0    | 8   | 2   | 47                | 1       |
| 1 | 5.083333 | 5.0    | 7   | 3   | 47                | 1       |
| 2 | 4.583333 | 5.0    | 6   | 3   | 47                | 1       |
| 3 | 4.833333 | 4.5    | 7   | 2   | 47                | 1       |
| 4 | 3.916667 | 4.0    | 6   | 1   | 47                | 1       |

### 클러스터링 결과 분석

#### 데이터의 수와 평균값 집계

- mean→월평균값, median→월중앙값, max→월최댓값, min→월최솟값, membership\_period→회원기간
- 4개의 군집별로 집계

customer\_clustering.columns = ["월평균값","월중앙값", "월최댓값", "월최솟값", "회원기간", "cluster"]

customer\_clustering.groupby("cluster").count()

cluster

월평균값 월중앙값 월최댓값 월최솟값 회원기간

| Cluster |      |      |      |      |      |
|---------|------|------|------|------|------|
| 0       | 840  | 840  | 840  | 840  | 840  |
| 1       | 1249 | 1249 | 1249 | 1249 | 1249 |
| 2       | 771  | 771  | 771  | 771  | 771  |
| 3       | 1332 | 1332 | 1332 | 1332 | 1332 |

### 군집화 결과 분석

#### 데이터의 수와 평균값 집계

- 각 군집의 특징을 파악하기 위해 군집마다 평균값을 계산한다.
- 군집 0은 회원 기간은 짧지만 이용율이 높다.
- 군집 1은 회원 기간은 길지만 이용율이 낮다.

customer\_clustering.groupby("cluster").mean()

|         | 2000     | 200W     | ᆯᆈᆺᆹ      | ᆯᆈᆺᆹ     | 4270      |
|---------|----------|----------|-----------|----------|-----------|
| cluster |          |          |           |          |           |
| 0       | 8.061942 | 8.047024 | 10.014286 | 6.175000 | 7.019048  |
| 1       | 4.677561 | 4.670937 | 7.233787  | 2.153723 | 36.915933 |
| 2       | 3.065504 | 2.900130 | 4.783398  | 1.649805 | 9.276265  |
| 3       | 5.539535 | 5.391141 | 8.756006  | 2.702703 | 14.867868 |

원평규간 원주앙간 원치대간 원치소간 하뭐기가

### 클러스터링 결과 시각화

#### 시각화를 위한 차원 축소

- 5개의 변수를 2차원으로 그리기 위해 차원을 축소한다. 정보를 잃지 않게 하면서 새로운 축을 만든다.
- 앞에서 표준화한 데이터에 주성분 분석(PCA)을 실행한다.

```
from sklearn.decomposition import PCA

X = customer_clustering_sc

pca = PCA(n_components=2)

pca.fit(X)

x_pca = pca.transform(X)

pca_df = pd.DataFrame(x_pca)

pca_df["cluster"] = customer_clustering["cluster"]
```

### 클러스터링 결과 시각화

### 시각화

- matplotlib을 사용하여 시각화한다.
- 색상이 섞이지 않고 깔끔하게 나뉜 것을 보니 PCA가 잘 되었다.

```
import matplotlib.pyplot as plt
%matplotlib inline
for i in customer_clustering["cluster"].unique():
    tmp = pca_df.loc[pca_df["cluster"]==i]
    plt.scatter(tmp[0], tmp[1])
```



### 탈퇴 회원의 경향 파악

#### 탈퇴회원 집계

- is\_deleted 컬럼을 추가해서 군집별, is\_deleted별로 집계한다.
- 군집 0,1은 지속회원이 뚜렷하게 많고 군집 2는 모두 탈퇴회원이다. 군집 3은 지속회원이 더 많다.

군집 0은 회원 기간이 짧지만 초기에 의욕적이어서 전체적으로 이용률이 높고, 군집 1은 회원 기간이 길고 이용률이 군집 0보 다는 낮지만 지속 회원이 많은 것을 보면 이용이 안정적이다.

|   | Cluster | 13_0010100 | customer_ru |
|---|---------|------------|-------------|
| 0 | 0       | 0          | 821         |
| 1 | 0       | 1          | 19          |
| 2 | 1       | 0          | 1231        |
| 3 | 1       | 1          | 18          |
| 4 | 2       | 1          | 771         |
| 5 | 3       | 0          | 790         |
| 6 | 3       | 1          | 542         |
|   |         |            |             |

### 탈퇴 회원의 경향 파악

#### 정기적/비정기적 이용 여부 파악

• 군집 0, 1, 3은 정기적으로 이용한 회원이 많고, 군집 2는 비정기적으로 이용한 회원이 많습니다.

```
customer_clustering.groupby(["cluster","routine_flg"],as_index=False).cou
nt()[["cluster","routine_flg","customer_id"]]
```

cluster routing fla customer id

|   | cluster | routine_fig | customer_ra |
|---|---------|-------------|-------------|
| 0 | 0       | 0           | 52          |
| 1 | 0       | 1           | 788         |
| 2 | 1       | 0           | 2           |
| 3 | 1       | 1           | 1247        |
| 4 | 2       | 0           | 499         |
| 5 | 2       | 1           | 272         |
| 6 | 3       | 0           | 226         |
| 7 | 3       | 1           | 1106        |

#### 회귀분석을 위한 준비

- 과거 6개월의 이용 데이터를 사용해 다음 달의 이용 횟수를 예측하는 지도학습의 회귀분석을 합니다.
- 2018년 10월~2019년 3월까지의 6개월의 고객별 이용횟수를 목적변수 데이터로 사용합니다.

```
uselog["usedate"] = pd.to_datetime(uselog["usedate"])
uselog["연월"] = uselog["usedate"].dt.strftime("%Y%m")
uselog_months = uselog.groupby(["연월","customer_id"],as_index=False).count()
uselog_months.rename(columns={"log_id":"count"}, inplace=True)
del uselog_months["usedate"]
                                                                                 연월
                                                                                      customer_id count
uselog_months.head()
                                                                            0 201804
                                                                                         AS002855
                                                                              201804
                                                                                         AS009013
                                                                            2 201804
                                                                                         AS009373
                                                                                                       3
                                                                              201804
                                                                                         AS015315
```

**4** 201804

AS015739

#### 회귀분석을 위한 준비

```
year_months = list(uselog_months["연월"].unique())
predict_data = pd.DataFrame()
for i in range(6, len(year_months)):
  tmp = uselog_months.loc[uselog_months["연월"]==year_months[i]]
  tmp.rename(columns={"count":"count_pred"}, inplace=True)
  for j in range(1, 7):
     tmp_before = uselog_months.loc[uselog_months["연월"]==year_months[i-j]]
      del tmp_before["연월"]
     tmp_before.rename(columns={"count":"count_{}".format(j-1)}, inplace=True)
     tmp = pd.merge(tmp, tmp_before, on="customer_id", how="left")
   predict_data = pd.concat([predict_data, tmp], ignore_index=True)
predict_data.head()
```

#### 회귀분석을 위한 준비

- count\_pred는 학습을 위해 사용하려는 데이터
- count\_0은 1개월 전의 이용 데이터, count\_1은 2개월 전의 이용 데이터...
- NaN은 이용기간이 짧아 데이터가 존재하지 않는 경우

|   | 연월     | customer_id | count_pred | count_0 | count_1 | count_2 | count_3 | count_4 | count_5 |
|---|--------|-------------|------------|---------|---------|---------|---------|---------|---------|
| 0 | 201810 | AS002855    | 3          | 7.0     | 3.0     | 5.0     | 5.0     | 5.0     | 4.0     |
| 1 | 201810 | AS008805    | 2          | 2.0     | 5.0     | 7.0     | 8.0     | NaN     | NaN     |
| 2 | 201810 | AS009373    | 5          | 6.0     | 6.0     | 7.0     | 4.0     | 4.0     | 3.0     |
| 3 | 201810 | AS015233    | 7          | 9.0     | 11.0    | 5.0     | 7.0     | 7.0     | NaN     |
| 4 | 201810 | AS015315    | 4          | 7.0     | 3.0     | 6.0     | 3.0     | 3.0     | 6.0     |

#### 회귀분석을 위한 준비

- dropna()로 결측치를 포함하는 데이터를 삭제하고 index를 초기화 합니다.
- 6개월 이상 재적 중인 회원만 대상 회원이 되었습니다.

```
predict_data = predict_data.dropna()
predict_data = predict_data.reset_index(drop=True)
predict_data.head()
```

|   | 연월     | customer_id | count_pred | count_0 | count_1 | count_2 | count_3 | count_4 | count_5 |
|---|--------|-------------|------------|---------|---------|---------|---------|---------|---------|
| 0 | 201810 | AS002855    | 3          | 7.0     | 3.0     | 5.0     | 5.0     | 5.0     | 4.0     |
| 1 | 201810 | AS009373    | 5          | 6.0     | 6.0     | 7.0     | 4.0     | 4.0     | 3.0     |
| 2 | 201810 | AS015315    | 4          | 7.0     | 3.0     | 6.0     | 3.0     | 3.0     | 6.0     |
| 3 | 201810 | AS015739    | 5          | 6.0     | 5.0     | 8.0     | 6.0     | 5.0     | 7.0     |
| 4 | 201810 | AS019860    | 7          | 5.0     | 7.0     | 4.0     | 6.0     | 8.0     | 6.0     |

### 특성 추가

#### 회원 기간 추가

- 회원 기간은 시계열 변화를 볼 수 있기 때문에 지금과 같은 시계열 데이터에 유효할 가능성이 있습니다.
- 먼저 고객 데이터인 customer의 start\_date 컬럼을 앞에서 작성한 predict\_data에 결합합니다.

|   | 연월     | customer_id | count_pred | count_0 | count_1 | count_2 | count_3 | count_4 | count_5 | start_date |
|---|--------|-------------|------------|---------|---------|---------|---------|---------|---------|------------|
| 0 | 201810 | AS002855    | 3          | 7.0     | 3.0     | 5.0     | 5.0     | 5.0     | 4.0     | 2016-11-01 |
| 1 | 201810 | AS009373    | 5          | 6.0     | 6.0     | 7.0     | 4.0     | 4.0     | 3.0     | 2015-11-01 |
| 2 | 201810 | AS015315    | 4          | 7.0     | 3.0     | 6.0     | 3.0     | 3.0     | 6.0     | 2015-07-01 |
| 3 | 201810 | AS015739    | 5          | 6.0     | 5.0     | 8.0     | 6.0     | 5.0     | 7.0     | 2017-06-01 |
| 4 | 201810 | AS019860    | 7          | 5.0     | 7.0     | 4.0     | 6.0     | 8.0     | 6.0     | 2017-10-01 |

### 특성 추가

#### 회원 기간을 월 단위로 작성

```
predict_data["now_date"] = pd.to_datetime(predict_data["연월"], format="%Y%m")

predict_data["start_date"] = pd.to_datetime(predict_data["start_date"])

from dateutil.relativedelta import relativedelta

predict_data["period"] = None

for i in range(len(predict_data)):

    delta = relativedelta(predict_data["now_date"][i], predict_data["start_date"][i])

    predict_data["period"][i] = delta.years*12 + delta.months

predict_data.head()
```

|   | 건절     | customer_ru | count_prea | count_0 | count_1 | count_2 | count_3 | COUNT_4 | count_5 | start_date | now_date   | per rou |
|---|--------|-------------|------------|---------|---------|---------|---------|---------|---------|------------|------------|---------|
| 0 | 201810 | AS002855    | 3          | 7.0     | 3.0     | 5.0     | 5.0     | 5.0     | 4.0     | 2016-11-01 | 2018-10-01 | 23      |
| 1 | 201810 | AS009373    | 5          | 6.0     | 6.0     | 7.0     | 4.0     | 4.0     | 3.0     | 2015-11-01 | 2018-10-01 | 35      |
| 2 | 201810 | AS015315    | 4          | 7.0     | 3.0     | 6.0     | 3.0     | 3.0     | 6.0     | 2015-07-01 | 2018-10-01 | 39      |
| 3 | 201810 | AS015739    | 5          | 6.0     | 5.0     | 8.0     | 6.0     | 5.0     | 7.0     | 2017-06-01 | 2018-10-01 | 16      |
| 4 | 201810 | AS019860    | 7          | 5.0     | 7.0     | 4.0     | 6.0     | 8.0     | 6.0     | 2017-10-01 | 2018-10-01 | 12      |

### 다음 달 이용횟수 예측 모델 구축

#### 학습데이터와 평가데이터를 준비하고 학습

- 2018년 4월 이후에 새로 가입한 회원 데이터만 이용해서 모델을 작성한다.
- scikit-learn의 LinearRegression() 사용한다.
- 학습데이터(75%)와 평가데이터(25%)로 나누고 학습을 한다.

```
predict_data = predict_data.loc[predict_data["start_date"]>=pd.to_datetime("20180401")]
from sklearn import linear_model
import sklearn.model_selection
model = linear_model.LinearRegression()
X = predict_data[["count_0","count_1","count_2","count_3","count_4","count_5","period"]]
y = predict_data["count_pred"]
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X,y)
model.fit(X_train, y_train)
```

LinearRegression()

### 다음 달 이용횟수 예측 모델 구축

#### 성능 평가

- 0.6 정도의 정확도가 나왔다.
- 정확도를 높이기 위해 여러 가지 방법을 시도해보세요.

```
print (model.score(X_train, y_train))
print (model.score(X_test, y_test))
```

- 0.6132496248552759
- 0.5894013013679484

### 모델에 기여하는 특성 확인

#### 계수 출력

- 설명 변수마다 기여하는 계수를 출력해 봅시다.
- count\_0이 가장 크고 과거로 거슬러 올라갈수록 기여도가 작아지는 경향이 있음을 알 수 있습니다.

```
coef=pd.DataFrame({"feature_names":X.columns, "coefficient":model.coef_})
coef
```

|   | feature_names | coefficient |
|---|---------------|-------------|
| 0 | count_0       | 0.315385    |
| 1 | count_1       | 0.186596    |
| 2 | count_2       | 0.175341    |
| 3 | count_3       | 0.193020    |
| 4 | count_4       | 0.077035    |
| 5 | count_5       | 0.101716    |
| 6 | period        | 0.066524    |

### 다음 달의 이용횟수 예측

#### 예측

- x1, x2에 회원 두 명의 지난 6개월 간의 이용 횟수 데이터를 저장하고 다음 달 방문 횟수를 예측합니다.
- 회원 1(x1)은 3.8회, 회원 2(x2)는 1.9회로 예측되었습니다.

```
x1 = [3, 4, 4, 6, 8, 7, 8]
x2 = [2, 2, 3, 3, 4, 6, 8]
x_pred = [x1, x2]

model.predict(x_pred)
```

array([3.82492042, 1.97208737])

### 데이터 덤프

#### 데이터 덤프

• 데이터를 use log months.csv 파일로 덤프합니다.

uselog months.to csv("use log months.csv", index=False)

