

A Low-Cost High-Speed Inspection System for Pharmaceutical Capsules

Neil Scott Anthony Karloff

November 09, 2007

Introduction

- Project in collaboration with Pharmaphil Inc. and the Ontario Centre of Excellence
- Solution to fix poor quality control of manufacturing process
- Retrofitting of existing capsule inspection system, Optisorter

Current Quality Control

- Manual inspection performed on random samples from each run.
- Pre-packing inspection performed manually at high speed.
- Defective product is being shipped

State of the Art

- Few capsule inspection systems exist
 - Very Expensive
 - Most use existing vision systems such as Cognex

Optisorter

- German designed system that inspects capsules
- Highly dated system but provides good mechanical base
- Electronics must be replaced
 - Analog PAL cameras
 - Equivalent 80286 CPUs
- Many controls and instrumentation can be reused
 - Electronic pneumatic valves
 - Stepper Motor / Controller
 - Power Supplies
 - Switches / Lamps

Optisorter

Optisorter

System Summary

- Four quadrants work in parallel to inspect 1000 caps/min.
- Each quadrant has 3 cameras to capture a 360° view of the circumference of the capsule (120° separation).

Fig 2. Optisorter Top View

Fig 3. Quadrant 1 detail: Operational Flow

Proposed System – Requirements

- Target Inspection rate of 1000 capsules per minute
- Detect flaws including
 - Incorrect Size / Colour
 - Dents
 - Cracks / Surface flaws
 - Holes
 - Missing Cap
 - Closed Capsule

Proposed System – Solution

- Full Custom solution
- Development of custom hardware
 - Cameras
 - System controller
- Development of custom firmware and software
- Use of PCs to acquire image data and perform inspection

Proposed System – Overview

- Four stations each with one host PC and 3 cameras.
- Stations communicate to System controller for triggers and accept and reject conditions
- System controller interfaces with Optisorter to control motor, actuators and switches.
- System controller also interfaces with Single board PC for external communication ie. Ethernet.

Proposed System – USB2.0 Camera

- Custom design phases
 - Hardware design
 - PCB layout
 - PCB fabrication and population
 - Testing and verification
- USB 2.0 Interface for image transfer
 - Reliable and Fast (480Mbps)
 - Abundant

Proposed System – Host PC

- Runs Linux distribution with 2.6 kernel
- Dedicated software running
 - Retrieves image data from USB cameras (using POSIX threads)
 - Performs inspection on all images acquired
 - Responds to the system with a pass / fail inspection result
- On system startup
 - Load firmware to all cameras

Proposed System – System Controller

- Operates system controls
 - Motor Control
 - Capsule Accept / Reject Controls
 - Illumination / Camera Triggering
 - Emergency Stop Control
 - Communication interface to cameras
 - Provides a user interface
 - UART module to communicate with PC
 - Provides expansion module

Proposed System – Camera

Custom USB Camera

- Fully customized hardware
- Fully customized operation

PROS

- Flexible
- Application optimized
- Low Cost

CONS

Long development time

Proposed System – Camera

- FX2 to handle data transfer to PC
- Micron CMOS captures image data
- Xilinx FPGA for image processing and construction
- EEPROM for ID information

Proposed System – Camera

Custom USB Camera – FPGA Functions

- Image synchronization
- Image interpolation (demosaicing)

Color conversion and image enhancement

FIFO to buffer data to FX2

