감정인식 모델 구축

박데이터 8기 에어컨좀 고쳐조 김영규, 이수민, 이현희

목차

- 01 타임스탬프 및 역할 분담
- 02 데이터 소개 및 데이터 전처리

03 모델 구축 1 (CNN)

04 모델 구축 2 (ResNet18)

05 결과

06 개선점

타임스탬프

역할분담

이현희

CNN 모델 구축 및 하이퍼파라미터 적용

이수민

Resnet18 모델 구축 및 하이퍼파라미터 적용

김영규

데이터 시각화와 데이터 전처리 및 모델 검증

목적및활용방안

감정분석 모델을 통해 표정변화를 확인 하여, 다양한 분야에서 활용할 수 있게 한다.

온라인 학습환경에서 학생들의 표정변화로 학습상태를 확인할 수 있다.

수업 및 교과서 내용에 대한 학생들의 관심과 지루함을 정량적으로 분석하여 효과적인 교육 도구 개발에 활용할 수 있다.

团0目47

	두려움	혐오	분노	중립	슬픔	놀람	행복	합계
Train data	4,097	436	3,995	4,965	4,830	3,171	7,215	25,849
Test data	1,024	111	958	1,233	1,247	831	1,774	7,178

데이터 소개

Sample Images from Training Set

disgusted

fearful

neutral

surprised

데이터 전처리

CNN-SGD 초71모델

- Stochastic Gradient Descent (SGD): 손실 함수를 최소화하기 위해 모델 파라미터를 반복적으로 업데이트하는 최적화 알고리즘
- 에폭 수 (epoch): 20

정규화	설명	사용된 값
평균, 표준편차	데이터의 범위를 일정하게 유지하고 학습 과정에서의 안정성을 높임	평균: 0.52 표준편차: 0.26
Batch Normalization (배치 정규화)	학습 속도가 불안정하거나, 속도가 느릴 때 비활성화. 각 배치에서 입력을 정규화하여 학습을 안정화 하고 가속화	각 레이어에 적용

하이퍼파라미터	설명	조정 방법 및 시기	사용된 값	
Learning Rate	파라미터 업데이트 시 사용되는 학습률	증가: 학습속도가 느릴 때, 학습 속도가 빨라지도록 높임	0.005	
(Ir)		감소: 손실이 진동 or 발산 할 때 수렴 개선을 위해서 낮춤		
Momentum	그래디언트 벡터의 방향을 가속화 하여 더 빠르게 수렴하도록 도움	학습이 느리거나, 지역 최솟값에 갇혔을 때 높이며, 수렴 속도가 빨라짐	0.5	

하이퍼파라미터	설명	조정 방법 및 시기	사용된 값
Weight Decay (가중치 감쇠)	과적합을 방지하기 위해 가중치에 L2 정규화 적용	증가: 과적합일 때 높임 감소: 과소적합 일 때 낮춤	0.001
Dropout	뉴런을 무작위로 비활성화하여 과적합을 방지	증가: 과적합일 때 높임 감소: 과소적합 일 때 낮춤	0.4

하이퍼파라미터	설명	조정 방법 및 시기	사용된 값	
Learning Rate	파라미터 업데이트 시 사용되는 학습률	증가: 학습속도가 느릴 때, 학습 속도가 빨라지도록 높임	0.01	
(Ir)		감소: 손실이 진동 or 발산 할 때 수렴 개선을 위해서 낮춤		
Momentum	그래디언트 벡터의 방향을 가속화 하여 더 빠르게 수렴하도록 도움	학습이 느리거나, 지역 최솟값에 갇혔을 때 높이며, 수렴 속도가 빨라짐	0.5	

하이퍼파라미터	설명	조정 방법 및 시기	사용된 값
Weight Decay (가중치 감쇠)	과적합을 방지하기 위해 가중치에 L2 정규화 적용	증가: 과적합일 때 높임 감소: 과소적합 일 때 낮춤	0.001
Dropout	뉴런을 무작위로 비활성화하여 과적합을 방지	증가: 과적합일 때 높임 감소: 과소적합 일 때 낮춤	0.2

Resnet18-Adam 초71모델

- Adam: 학습률을 자동으로 조정하고 모멘텀을 활용하여 손실 함수를 최소화하는 최적화 알고리즘
- Resnet18: 손실 함수의 기울기를 효율적으로 전달하기 위해 잔차 블록(residual block)을 사용하는 18층의 심층 신경망

(잔차 블록 : 스킵 연결(skip connection)을 통해 깊은 네트워크에서 발생하는 기울기 소실 문제를 해결

- 이미지 조정: 48x48 -> 224x224
- 에폭 수 (epoch): 20

하이퍼파라미터	설명	조정 방법 및 시기	사용된 값	
Learning Rate	파라미터 업데이트 시	증가: 학습 속도가 느릴 때, 학습 속도가 빨라지도록 높임	0.001	
(Ir)	사용되는 학습률	감소: 손실이 진동 or 발산할 때 수렴 개선을 위해 낮춤		
Weight Decay	과적합을 방지하기 위해	증가: 과적합일 때 높임	0.00001	
Weight Decay (가중치 감쇠)	가중치에 L2 정규화 적용	감소: 과소적합 일 때 낮춤	0.00001	
Dropout	뉴런을 무작위로	증가: 과적합일 때 높임	0.1	
Dropout	비활성화하여 과적합을 방지	감소: 과소적합 일 때 낮춤	0.1	

하이퍼파라미터 설명		조정 방법 및 시기	사용된 값	
Learning Rate	파라미터 업데이트 시	증가: 학습 속도가 느릴 때, 학습 속도가 빨라지도록 높임	0.0001	
(lr)	사용되는 학습률	감소: 손실이 진동 or 발산할 때 수렴 개선을 위해 낮춤	0.0001	
Weight Decay	과적합을 방지하기 위해	증가: 과적합일 때 높임	0.00001	
Weight Decay (가중치 감쇠)	가중치에 L2 정규화 적용	감소: 과소적합 일 때 낮춤	0.00001	
Dropout	뉴런을 무작위로	증가: 과적합일 때 높임	0.2	
Dropout	비활성화하여 과적합을 방지	감소: 과소적합 일 때 낮춤	0.2	

최종 모델 CNN-SGD 적용2

결과

사진	Original Class	Predicted Class
	Нарру	Нарру
	Neutral	Neutral
	Sad	Neutral

개선점

myCNN: 랜덤서치로 최적의 하이퍼파라미터를 찾지 못한게 아쉽다.

ResNet18: 과적합문제를 해결하지 못한점. 랜덤서치나 그리드 서치를 실행해서 최적의 하이퍼 파라미터를 찾을 수 있었다면 좋았을 것 같다.

전체적으로 모델을 검증하는데 시간이 많이 소요가 되어서, 여건상 다양한 모델과 하이퍼파라미터를 적용하지 못한점이 아쉽다.

컴퓨터 사양과 시간상의 여건이 확보가 된다면, 과적합 문제 해결과 더 성능이 뛰어난 모델에 최적의 하이퍼파라미터를 적용해보고 싶다.

Thank You O

