Transformer-Driven Visual Question Answering on Complex Datasets

Stage I - Dissertation Report

Submitted by

Saurabh Madake 712352023

in partial fulfillment for the award of the degree of

M. Tech. (Computer Engineering)/(Data Science)

Under the guidance of

Prof. Mrs. Archana Patil
COEP Tech, Pune

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING,
COEP TECHNOLOGICAL UNIVERSITY (COEP Tech)
PUNE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING,

COEP TECHNOLOGICAL UNIVERSITY (COEP Tech)

PUNE

CERTIFICATE

Certified that the Stage - I dissertation titled, "Transformer-Driven Visual Question Answering on Complex Datasets" has been successfully completed by

Saurabh Madake 712352023

and is approved for the partial fulfillment of the requirements for the degree of "M.Tech. Computer Engineering - Data Science".

SIGNATURE

Prof. Mrs. Archana Patil Dr. P.K. Deshmukh

Project Guide Head

Dept. of Computer Science Dept. of Computer Science

& Engineering & Engineering

COEP Technological University, COEP Technological University,

Shivajinagar, Pune - 5. Shivajinagar, Pune - 5.

Abstract

The project focuses on the development of a Visual Question Answering (VQA) system leveraging transformer architectures, particularly LXMERT (Learning Cross-Modality Encoder Representations from Transformers), to bridge the gap between visual and textual data. VQA is an AI-complete task that requires the system to answer questions based on the content of an input image, making it a challenging problem in the field of computer vision and natural language processing. The project employs the VQA v2.0 dataset and Visual Genome for training and evaluation, integrating question-answer pairs with scene graphs, relationships, and attribute data. This project contributes to the field by pushing the boundaries of multi-modal deep learning and explores the potential of transformers in addressing complex, AI-complete tasks.

Contents

1	Intr	troduction					
2 Literature Review							
	2.1	Curre	nt Trends	20			
		2.1.1	Multimodal Transformers	20			
		2.1.2	Attention Mechanisms	20			
		2.1.3	Data Augmentation and Synthetic Data	20			
	2.2	Gaps	and Challenges	20			
		2.2.1	Dataset Limitations	20			
		2.2.2	Model Generalizability	21			
		2.2.3	Computational Constraints	21			
		2.2.4	Bias and Fairness	21			
3	Mot	tivatio	n	22			
4	Pro	blem S	Statement	23			
5	App	oroach		24			
	5.1	SDLC	Phases	24			
	5.2	Datas	et Combination and Utilization:	26			
6	Res	earch	Objectives	27			

7	Hardware and Software Requirements 29							
	7.1 Hardware Requirements							
	7.2 Software Requirements							
	7.3	Datasets	30					
		7.3.1 VQA v2.0 Dataset	30					
		7.3.2 Visual Genome Dataset	31					
8	Proj	posed System Design Components	32					
9	9 Current Implementation Status							
10	0 Future Scope							
11	1 References							

Introduction

Visual Question Answering (VQA) is a field that bridges computer vision and natural language processing (NLP) to enable machines to understand and respond to questions about visual content. Hence it is also known as an AI Complete task. The significance of VQA lies in its potential applications, such as assisting visually impaired individuals, enhancing human computer interactions, etc. with this project I am aiming to explore the evolution, current state, and future directions of VQA, with a focus on transformer based model like LXMERT, the utilization of datasets such as VQA v2.0 and Visual Genome, and the implementation frameworks like PyTorch and Hugging Face. Unlike traditional methods which required a separate pipeline for textual and visual data, recent development in transformers like LXMERT have revolutionize this process. Transformers excel at integrating multimodal data. this helps in complex tasks like VQA.

Literature Review

Key Studies

Sr.	Author	Paper Title	Date of	Observations
No	Name		publish-	
			ing	

1	Tan and	LXMERT: Learning	2019	Introduced the LXMERT
	Bansal	Cross-Modality En-		model, showing signif-
		coder Representations		icant improvements in
		from Transformers		VQA tasks by integrating
				visual and textual infor-
				mation. LXMERT uses
				three types of encoders:
				object-relationship, lan-
				guage, and cross-modality.
				Evaluated on datasets like
				VQA, GQA, and NLVR2, it
				outperformed prior models,
				showing superior perfor-
				mance in cross-modality
				tasks compared to previous
				BERT-like models focused
				solely on language.

2	Liunian	VisualBERT: A Sim-	2019	VisualBERT integrates
	Harold Li	ple Model for Vision-		BERT with image features
	et.al	and-Language Tasks		extracted from object de-
				tectors, using Transformers
				to process text and im-
				age inputs. It undergoes
				task-agnostic pre-training,
				task-specific pre-training,
				and fine-tuning for spe-
				cific tasks. Pre-trained
				on COCO, it serves as an
				effective baseline for vision-
				language tasks, leveraging
				BERT's language modeling
				capabilities.

3	Lu et al.	ViLBERT: Pretrain-	2019	Vilbert extends Bert
		ing Task-Agnostic		with a two-stream ar-
		Vision-and-Language		chitecture that processes
		BERT		textual and visual inputs
				separately and then inter-
				acts through co-attentional
				transformers. Pretrained
				on Conceptual Captions
				dataset, it is optimized for
				vision-language tasks like
				visual question answering
				and visual commonsense
				reasoning, outperforming
				task-specific models by
				achieving state-of-the-art
				results.

4	Kaavya	Optimizing Visual	2024	This paper focuses on the
	Rekanar	Question Answering		attentional gap between
	et. al	Models for Driving:		humans and machines in
		Bridging the Gap		driving scenarios for VQA
		Between Human and		models. The proposed filter
		Machine Attention		enhances the attention
		Patterns		mechanism in LXMERT for
				driving-specific elements,
				such as roads and vehicles.
				The model's performance
				improves significantly in
				driving scenarios by align-
				ing attention more closely
				with human observation
				patterns.

5	Zhicheng	Pixel-BERT: Aligning	2020	Pixel-BERT introduces a
	Huang et.	Image Pixels with		deep multi-modal trans-
	al	Text by Deep Multi-		former architecture to
		Modal Transformers		improve alignment between
				text and image pixels. By
				using image-sentence pairs,
				it improves the semantic
				links between language and
				visual data beyond region-
				based features. It achieves
				state-of-the-art results
				across several tasks like
				VQA, showing a 2.17-point
				improvement compared to
				previous models.

6	Wang,	Image to Label to An-	2024	Med-VQA combines large
	Jianfeng	swer: An Efficient		language models and multi-
	et. al	Framework for En-		label learning to address
		hanced Clinical Appli-		data scarcity and complex-
		cations in Medical Vi-		ity in Medical VQA. The
		sual Question Answer-		Image to Label to An-
		ing		swer (ITLTA) framework
				reduces costs, improves in-
				terpretability, and enables
				zero-shot learning. Ex-
				periments on the VQA-
				Med 2019 dataset show that
				Med-VQA outperforms cur-
				rent approaches, enabling
				more effective clinical appli-
				cations.

7	Rub'en	Hierarchical multi-	2023	This paper extends Docu-
	Tito et. al	modal transform-		ment VQA to multi-page
		ers for Multi-Page		documents with the MP-
		DocVQA		DocVQA dataset and pro-
				poses Hi-VT5, a hierar-
				chical multimodal trans-
				former. Hi-VT5 processes
				multi-page documents effec-
				tively and outperforms ex-
				isting models in terms of
				performance and explain-
				ability, making it a better fit
				for real-world applications
				involving multi-page docu-
				ment contexts.

8	Aisha	MMFT-BERT: Multi-	2020	In order to tackle the
	Urooj	modal Fusion Trans-		problem of Visual Ques-
	Khan et.	former with BERT		tion Answering (VQA),
	al	Encodings for Visual		the MMFT-BERT model
		Question Answering		(Multimodal Fusion Trans-
				former with BERT en-
				codings) processes various
				modalities—text, video,
				and subtitles—individually
				and collaboratively. Each
				modality is given its own
				BERT encoder, and the
				outputs are then fused
				together using a brand-new
				transformer-based fusion
				method. On the TVQA
				dataset, the model per-
				forms better than earlier
				state-of-the-art models,
				demonstrating gains in
				accuracy.

9	Wonjae	ViLT: Vision and Lan-	2021	A vision-language pre-
	Kim et.al	guage Transformer		training paradigm called
		Without Convolution		ViLT (Vision and Language
		or Region Supervision		Transformer) removes the
				requirement for region
				supervision and convo-
				lutional neural networks
				(CNNs) to streamline
				visual processing. ViLT
				embeds picture patches
				using a linear projection,
				in contrast to typical mod-
				els that rely on object
				detectors and CNNs for
				image feature extraction.
				This architecture maintains
				competitive performance
				across vision-language tasks
				such as VQAv2 and image
				retrieval, while reducing
				computational complex-
				ity to make it up to ten
				times faster than previous
				models.

10	Tim	Multi-Modal Fu-	2022	The paper presents a new
	Siebert	sion Transformer		architecture for visual ques-
	et. al	for Visual Question		tion answering (VQA) in
		Answering in Remote		remote sensing (RS) called
		Sensing		VBFusion, which jointly
				learns image and text rep-
				resentations by using multi-
				modal transformer models.
				By utilizing a feature ex-
				traction module, a fusion
				module that combines mul-
				tiple VisualBERT layers,
				and a classification module,
				this approach overcomes the
				limitations of existing mod-
				els and can handle complex,
				non-specific questions that
				go beyond predefined ob-
				ject categories. The results
				of the experiment show no-
				table gains in performance
				on RS VQA datasets.

11	Jinmeng	Question-Driven	2022	The Question-Driven Mul-
	Wu et. al	Multiple Attention		tiple Attention (DQMA)
		(DQMA) Model		model is proposed in this
		for Visual Question		paper. It deals with the
		Answer		problem of extraneous vi-
				sual information influenc-
				ing VQA models' accuracy.
				The DQMA model uses
				LSTM for question features
				and Faster R-CNN for im-
				age feature extraction. Rel-
				evant image regions are cho-
				sen by a question-driven at-
				tention mechanism, which
				lowers noise. In order
				to improve the interac-
				tion between the question
				and image features, the
				model also incorporates co-
				attention networks. As-
				sessments conducted on the
				VQA 2.0 dataset reveal that
				the DQMA model surpasses
				alternative techniques, en-
				hancing overall precision.

12	Zekai Shao	Visual Explanation	2024	In order to clarify the
	et. al	for Open-Domain		decision-making process in
		Question Answering		Open-Domain Question An-
		With BERT		swering (OpenQA) models,
				especially those that use
				BERT, the paper suggests
				VEQA, a visual analyt-
				ics system. OpenQA ad-
				dresses issues with compli-
				cated data and models while
				providing answers to queries
				derived from lengthy un-
				structured text passages.
				In order to address these,
				VEQA provides visual ex-
				planations at three different
				levels: summary, instance,
				and module. This en-
				ables experts to examine the
				way in which models handle
				questions and extract per-
				tinent passages. By using
				visual aids such as ranking
				visualizations and compara-
				tive trees, VEQA enhances
				the interpretability of mod-
				els and identifies areas that

nood improve

13	Sahithya	VLC-BERT: Visual	2023	The VLC-BERT model is
	Ravi et. al	Question Answering		designed for Visual Ques-
		with Contextual-		tion Answering (VQA) with
		ized Commonsense		an emphasis on common-
		Knowledge		sense reasoning. It incorpo-
				rates contextualized knowl-
				edge using the COMET
				model, which is trained
				on human-curated knowl-
				edge bases like ConceptNet
				and ATOMIC. The model
				combines visual and textual
				inputs with commonsense
				inferences to answer ques-
				tions that require reason-
				ing beyond what is visible
				in the image. Through at-
				tention mechanisms, VLC-
				BERT selects the most rel-
				evant commonsense knowl-
				edge to enhance the VQA
				task.

	1			
14	Dhiraj	Visual Question An-	2022	The paper "Visual Question
	Amin et.	swering System for In-		Answering System for In-
	al	dian Regional Lan-		dian Regional Languages"
		guages		addresses the scarcity of
				datasets for Indian lan-
				guages like Hindi and
				Marathi in visual question
				answering (VQA) systems.
				The authors investigate the
				adaptation of the easy-VQA
				dataset for these languages,
				developing models that
				integrate natural language
				processing and computer
				vision to answer questions
				based on images. Various
				architectures, including
				CNNs and RNNs like
				LSTM, are explored for
				handling both image and
				text inputs. The paper
				demonstrates how trans-
				lated datasets and deep
				learning techniques can
				bridge the gap for regional
				language VQA tasks.

15	Venkat	Recent, Rapid Ad-	2022	The paper "Recent, Rapid
	Kodali et.	vancement in Visual		Advancement in Visual
	al	Question Answering:		Question Answering: a
		a Review		Review" provides a detailed
				overview of the rapid devel-
				opments in Visual Question
				Answering (VQA). It high-
				lights how VQA, combining
				computer vision and nat-
				ural language processing,
				has grown exponentially in
				research output since 2015.
				The review covers key VQA
				models and techniques,
				including attention-based
				and transformer architec-
				tures, particularly BERT,
				which have revolutionized
				VQA performance. It also
				discusses medical image
				datasets and their unique
				VQA challenges, such as
				data scarcity, and offers
				suggestions for future
				research directions.

2.1 Current Trends

2.1.1 Multimodal Transformers

Recent advancements emphasize the development of multimodal transformers that can seamlessly integrate and process information from both visual and textual modalities. Models like UNITER and ViLT have pushed the boundaries of VQA by enhancing cross-modal understanding and reasoning capabilities.

2.1.2 Attention Mechanisms

Attention mechanisms remain a cornerstone in VQA models, enabling them to focus on relevant parts of the image based on the question. Innovations in attention, such as self-attention and cross-attention layers, have improved the interpretability and accuracy of VQA systems.

2.1.3 Data Augmentation and Synthetic Data

To address data scarcity and enhance model robustness, researchers are increasingly using data augmentation techniques and synthetic data generation. Approaches like GAN-based image synthesis and question generation have been employed to expand existing datasets and introduce variability, thereby improving model generalization.

2.2 Gaps and Challenges

2.2.1 Dataset Limitations

While datasets like VQA v2.0 and Visual Genome provide extensive annotations, they still have limitations in diversity and complexity. Many existing datasets lack sufficient

diversity in visual scenes and question types, which can lead to overfitting and reduced generalization in real-world applications.

2.2.2 Model Generalizability

Transformer-based models, despite their impressive performance, often struggle with generalizing to unseen data or adapting to different domains. Ensuring that VQA models maintain high accuracy across diverse scenarios remains a significant challenge.

2.2.3 Computational Constraints

Training large transformer models requires substantial computational resources, which can be a barrier for researchers with limited access to high-performance hardware. Additionally, deploying these models in resource-constrained environments poses challenges related to efficiency and latency.

2.2.4 Bias and Fairness

VQA models can inadvertently learn and perpetuate biases present in training data, leading to unfair or inaccurate answers. Addressing biases and ensuring fairness in VQA systems is crucial for their ethical deployment.

Motivation

In today's world Artificial intelligence is developing at a rapid pace, which has increased demand for systems that can interact and understand visual and textual information. The challenge of Visual Question Answering (VQA) for models that can integrate natural language processing and vision, potentially resulting in more reliable and understandable artificial intelligence systems. Applications of VQA are found in many different fields, such as robotics, autonomous vehicles, assistance for the blind, and educational resources. The potential for AI to effectively interpret and react to language and visual queries can significantly improve human-computer interaction therefore, VQA is an AI-complete task with great potential for future technological advancement. The study intends to advance this field by investigating the efficacy of sophisticated models, like LXMERT, in solving VQA challenges, ultimately leading to more efficient and reliable AI solutions.

Problem Statement

Transformer-Driven Visual Question Answering on Complex Datasets

Visual Question Answering (VQA) poses a significant challenge in artificial intelligence due to the need for seamless integration of visual and textual data. Traditional models often struggle to establish connections between image content and associated queries, leading to suboptimal performance. Existing approaches also face difficulties in understanding complex image regions and providing accurate answers to diverse and nuanced questions. To address these challenges, recent advancements in transformer-based architectures, such as LXMERT, offer new possibilities by leveraging deep contextual understanding across modalities.

Despite their potential, there remains a need to evaluate their performance on large-scale datasets, such as VQA v2.0 and Visual Genome, to understand their limitations and capabilities in handling real-world questions.

This dissertation aims to develop a transformer-based VQA system that improves the interpretability and accuracy of responses by fusing image and textual representations more effectively. The goal is to assess whether transformers can bridge the gap in current VQA approaches and enhance overall system performance across complex queries.

Approach

This project focuses on using the LXMERT model, a transformer architecture specifically designed for multi-modal tasks, to address the challenges in Visual Question Answering (VQA). LXMERT excels at learning the alignment between visual data and text, making it well-suited for this task. The project integrates two large datasets—VQA v2.0 and Visual Genome—to enrich the visual and textual information available for model training.

5.1 SDLC Phases

1. Requirement Gathering:

The project aims to build a VQA system that leverages the LXMERT model to
fuse visual and textual features for generating accurate responses to image-based
questions. The datasets include VQA v2.0 for image-question-answer pairs and
Visual Genome for additional object relationships and attributes.

2. Dataset Combination:

• The images and question-answer pairs between VQA v2.0 and Visual Genome are combined and used to enrich the dataset. Also, objects and relationships

from Visual Genome are used to train the model. This combination helps improve the model's performance, particularly on more complex, relational queries.

3. Implementation:

- Data Preprocessing: Questions are tokenized, and object attributes and relationships from Visual Genome are appended to the corresponding image-question pairs. This creates a combined dataset that provides richer information for the LXMERT model.
- Model Training: The LXMERT model is fine-tuned using the combined dataset. Visual features and text embeddings are processed through LXMERT's cross-attention layers, which align the visual and textual modalities. This model is expected to handle both simple and complex queries by understanding the relational context provided by the Visual Genome dataset.

4. Testing:

 The model is evaluated using accuracy and other metrics like precision, recall, and F1-score on a test split of the VQA v2.0 dataset. The effectiveness of the dataset combination is measured by comparing the model's performance on the original VQA v2.0 dataset.

5. Deployment:

• The final trained model will be deployed locally using a web interface. This

UI allows users to upload images and ask a question about the image, with the

LXMERT model providing answers based on the visual and textual inputs.

5.2 Dataset Combination and Utilization:

1. VQA v2.0 Dataset:

VQA v2.0 provides image-question-answer triplets, which test the model's ability
to understand and reason about the contents of an image. This dataset is the
foundation for building the VQA system.

2. Visual Genome Dataset:

 Visual Genome offers scene graphs, which capture relationships between objects, attributes, and interactions within images. These relationships help in answering more nuanced questions that require relational understanding or contextual details.

3. Combining the Datasets:

 Images between VQA v2.0 and Visual Genome, the question-answer pairs from VQA v2.0 are enhanced with additional context from the Visual Genome dataset.
 This includes relationships between objects, their attributes, and spatial configurations, which help the model better understand complex scenarios.

4. Utilization:

• The LXMERT model processes both visual features and text embeddings using its cross-attention layers to create a fused representation of the image and the question. The combined dataset, enriched by Visual Genome's relational data, allows the model to improve its understanding and provide more accurate responses, particularly for complex questions involving spatial or relational reasoning.

Research Objectives

- 1. To develop a Visual Question Answering system utilizing the LXMERT model, which effectively integrates visual and textual data for answering image-based questions.
 - Focusing on building a system that efficiently processes both visual content from images and textual content from questions, using LXMERT's cross-attention mechanism to align the two modalities.
- 2. To evaluate the performance of the LXMERT model on the VQA v2.0 dataset and compare it with other baseline models in terms of accuracy and efficiency.
 - This involves benchmarking LXMERT against traditional VQA models, assessing its ability to answer a wide range of questions across diverse image types, and measuring its overall effectiveness.
- 3. To investigate the impact of combining VQA v2.0 with Visual Genome data, specifically focusing on how enriched object relationships and attributes from Visual Genome improve question-answering performance.
 - Exploring how the additional contextual and relational information from Visual Genome enhances the model's ability to tackle more complex queries that require understanding object interactions and spatial relationships.

- 4. To enhance the capabilities of visual question answering (VQA) systems ${\cal C}$
 - Improving their accuracy and efficiency through the exploration of advanced multimodal transformer architectures, while providing insights and guidelines for handling multimodal data that can inform future research in VQA and related fields.

Hardware and Software

Requirements

7.1 Hardware Requirements

- Primary GPU: NVIDIA GeForce GTX 1650 (for model training and inference).
 - CUDA cores: 1024
 - VRAM: 4 GB
- Secondary GPU: Intel Iris Xe (for lighter tasks and preprocessing).
- Processor: Intel Core i7 for handling large dataset preprocessing tasks.
- RAM: 16 GB for handling large datasets and model training.
- Storage: 500 GB SSD for datasets, checkpoints, and logs.

7.2 Software Requirements

- Operating System: Windows 10 or Linux
- Programming Language: Python 3.8+

• Development Environment: Visual Studio Code

• Libraries/Frameworks:

- PyTorch: PyTorch has become a preferred framework for implementing deep

learning models due to its dynamic computation graph and ease of use.

- Hugging Face: Hugging Face's Transformers library offers pre-trained models

and tools that streamline the development of transformer-based architectures.

- Transformer: LXMERT (Learning Cross-Modality Encoder Representations

from Transformers) is a VQA model with separate language and vision encoders,

followed by cross-modality encoders to capture complex relationships between

visual elements and textual queries, enhancing VQA performance.

- CUDA: For leveraging NVIDIA GPU during training.

- Flask/Streamlit: For building the user interface for image and question input.

7.3 **Datasets**

VQA v2.0 Dataset 7.3.1

• Number of Images: 204,721

- Training Set: 82,783 images

- Validation Set: 40,504 images

- Test Set: 81,434 images

• Number of QA Pairs: 1,105,904

- Training Set: 443,757 questions

- Validation Set: 214,354 questions

- Test Set: 447,793 questions

• Questions per Image: 3 questions per image (on average)

• Answers per Question: 10 answers per question (annotated by 10 human anno-

tators)

• Usage: Provides the primary image-question-answer pairs for training and testing

the model.

• Format: JSON (for question-answer pairs) and image files.

7.3.2 Visual Genome Dataset

• Number of Images: 108,249

• Number of QA Pairs: 1.7 million question-answer pairs

• Questions per Image: About 17 questions per image

• Types of QA Pairs:

- Region-based QA (localized to regions in the image)

- Attribute QA

- Relationship QA

- Scene Graphs: Available for all images, with objects, relationships, and at-

tributes annotated for each image.

• Usage: Enhances the VQA v2.0 dataset by providing additional object, relationship,

and attribute information.

• Format: Scene graphs, relationships, attributes (JSON) and image files.

Proposed System Design

Components

Image Preprocessing and Feature Extraction

Purpose: Extract object-level features from input images to feed into the LXMERT Object Encoder.

Steps:

- 1. Load images from the dataset (e.g., VQA v2.0 or Visual Genome).
- 2. Preprocess images (resize, normalize, convert to tensors).
- 3. Pass preprocessed images through a pre-trained Faster R-CNN model.
- 4. Extract features such as bounding boxes and region embeddings.
- 5. Save extracted features to .pkl files for faster access during training.

Question Preprocessing and Feature Extraction

 $\textbf{Purpose} \hbox{: } \textbf{Convert natural language questions into tokenized representations for the Text} \\$

Encoder.

Steps:

- 1. Tokenize questions using the LXMERT tokenizer (provided by Hugging Face).
- 2. Generate positional embeddings for question tokens.
- 3. Feed tokenized data to the LXMERT Text Encoder.

Object Encoder

Purpose: Encodes image features into latent representations suitable for cross-modal interactions.

Steps:

- 1. Receive image features (bounding boxes, region embeddings) as input.
- 2. Pass them through attention layers to encode object-level context.

Text Encoder

Purpose: Encodes tokenized questions into contextual representations.

Steps:

- 1. Input tokenized questions and positional embeddings.
- 2. Use transformer-based attention layers to capture linguistic context.

Cross-Modality Encoder

Purpose: Perform cross-modal attention between encoded image and question features.

Steps:

- 1. Use self-attention and cross-attention layers to combine object and text encodings.
- 2. Output joint representations of image and text modalities.

Prediction Head

Purpose: Predict the answer to the input question based on the cross-modal representation.

Steps:

- 1. Receive joint representations from the cross-modality encoder.
- 2. Pass through a classifier or fully connected layer.
- 3. Generate the predicted answer.

Evaluation and Fine-Tuning

Purpose: Assess model performance and adapt to different datasets.

Steps:

- 1. Evaluate using validation splits (e.g., VQA metrics like accuracy).
- 2. Fine-tune on domain-specific data if needed.

Current Implementation Status

Work Completed to Date

1. Literature Review

- Conducted a thorough review of research papers and existing implementations of LXMERT for VQA tasks.
- Explored the capabilities of scene graphs, object relationships, and attributes in Visual Genome to enrich question-answer pairs.
- Created a detailed survey paper that summarizes and analyzes existing research on the topic.

2. Environment Setup

- Configured a development environment using Visual Studio Code with CUDA support to accelerate model training on an NVIDIA GTX 1650 GPU.
- Resolved various configuration issues related to PowerShell script execution.

3. Dataset Preparation

• Downloaded and analyzed the VQA v2.0 dataset and Visual Genome datasets.

• Preprocessed the image features using a Faster R-CNN model, saved in a .pkl file to overcome memory and computational limitations.

Challenges Faced

- Hardware Constraints: Encountered memory crashes in Visual Studio Code due to the size of the datasets during loading.
- Model Complexity: LXMERT's architecture required fine-tuning to ensure compatibility with preprocessed inputs.
- Dataset Issues: Ensuring alignment of visual and textual modalities during preprocessing required additional debugging.

Decisions Made

- Opted for separate training loops for VQA v2.0 and Visual Genome datasets to better manage resource constraints and dataset complexity.
- Prioritized preprocessing to streamline training on limited hardware resources.

Work to be Done

1. Implementation of the Model Pipeline

• Integrate the Hugging Face transformers library and PyTorch framework to build and evaluate the LXMERT model.

2. Model Training

• Begin training the LXMERT model on the preprocessed VQA v2.0 data.

 Monitor training metrics such as loss and accuracy to identify any convergence issues.

3. Validation and Testing

- Validate the trained model on a reserved portion of the dataset.
- Test the model with real-world question-image pairs to evaluate its robustness and performance.

4. Integration with Visual Genome Dataset

- Preprocess and align the Visual Genome dataset using the existing pipeline.
- Train the model on Visual Genome data, leveraging the insights from VQA v2.0 training.

5. Optimization

- Experiment with hyperparameter tuning to improve performance.
- Optimize data loading and training to mitigate memory consumption issues.

6. UI Development

• Design a simple web-based interface for inputting images and questions, displaying answers generated by the model.

7. Documentation and Reporting

• Continue maintaining detailed documentation of challenges, decisions, and progress.

Future Scope

A concrete future plan for this Visual Question Answering (VQA) system is to scale it into a large-scale, real-time, multi-modal AI service capable of handling complex, domain-specific queries across a wide variety of image datasets. This would involve expanding the model's training on vast, heterogeneous datasets far beyond VQA v2.0 and Visual Genome, incorporating specialized datasets from diverse fields such as medical imaging, autonomous driving, and satellite imagery.

Additionally, this future iteration would require integration with large-scale cloud-based platforms, such as distributed GPU clusters or TPUs provided by companies like Google Cloud or Amazon Web Services, to manage the immense computational demand.

The aim would be to build a service that could be deployed as an API, serving industries that require advanced visual understanding and reasoning capabilities, such as healthcare, defense, and smart city infrastructures.

References

- [1] Tan, H. and Bansal, M., 2019. LXMERT: Learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490.
- [2] Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J. and Chang, K.W., 2019. VisualBERT: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557.
- [3] Lu, J., Batra, D., Parikh, D. and Lee, S., 2019. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. Advances in Neural Information Processing Systems, 32.
- [4] Rekanar, K., Hayes, M., Sistu, G. and Eising, C., 2024. Optimizing visual question answering models for driving: Bridging the gap between human and machine attention patterns. arXiv preprint arXiv:2406.09203.
- [5] Huang, Z., Zeng, Z., Liu, B., Fu, D. and Fu, J., 2020. Pixel-BERT: Aligning image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849.
- [6] Wang, Jianfeng, Seng, Kah, Shen, Yi, Ang, Li-Minn, and Huang, Difeng, 2024.
 Image to label to answer: An efficient framework for enhanced clinical applications in medical visual question answering. Electronics, 13, 2273.

- [7] Tito, R., Karatzas, D. and Valveny, E., 2023. Hierarchical multimodal transformers for multipage DocVQA. Pattern Recognition, 144, p.109834.
- [8] Khan, A.U., Mazaheri, A., Lobo, N.D.V. and Shah, M., 2020. MMFT-BERT: Multi-modal fusion transformer with BERT encodings for visual question answering. arXiv preprint arXiv:2010.14095.
- [9] Kim, W., Son, B. and Kim, I., 2021, July. ViLT: Vision-and-language transformer without convolution or region supervision. In International Conference on Machine Learning (pp. 5583-5594). PMLR.
- [10] Siebert, T., Clasen, K.N., Ravanbakhsh, M. and Demir, B., 2022, October. Multi-modal fusion transformer for visual question answering in remote sensing. In Image and Signal Processing for Remote Sensing XXVIII (Vol. 12267, pp. 162-170). SPIE.
- [11] Wu, J., Ge, F., Shu, P., Ma, L. and Hao, Y., 2022. Question-driven multiple attention(DQMA) model for visual question answer. 2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT), Yichang, China, pp. 1-4. https://doi.org/10.1109/AICIT55386.2022.9930294.
- [12] Shao, Z., et al., 2024. Visual explanation for open-domain question answering with BERT. IEEE Transactions on Visualization and Computer Graphics, 30(7), pp. 3779-3797. https://doi.org/10.1109/TVCG.2023.3243676.
- [13] Ravi, S., Chinchure, A., Sigal, L., Liao, R., and Shwartz, V., 2023. VLC-BERT: Visual question answering with contextualized commonsense knowledge. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, pp. 1155-1165. https://doi.org/10.1109/WACV56688.2023.00121.
- [14] Amin, D., Govilkar, S., and Kulkarni, S., 2022. Visual question answering system for Indian regional languages. 2022 5th International Conference on Advances in

- Science and Technology (ICAST), Mumbai, India, pp. 22-27.
- [15] Kodali, V. and Berleant, D., 2022, May. Recent, rapid advancement in visual question answering: A review. In 2022 IEEE International Conference on Electro Information Technology (EIT) (pp. 139-146). IEEE.
- [16] Chen, Y.C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Y., and Liu, J., 2020, August. UNITER: Universal image-text representation learning. In European Conference on Computer Vision (pp. 104-120). Cham: Springer International Publishing.
- [17] Kim, W., Son, B. and Kim, I., 2021, July. ViLT: Vision-and-language transformer without convolution or region supervision. In International Conference on Machine Learning (pp. 5583-5594). PMLR.