Implementazione di una Rete Convoluzionale in CUDA

Michele Valsesia Nicholas Aspes

Anno accademico 2018/2019

Introduzione

Obiettivi

► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale

Introduzione

Obiettivi

- ► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale
- ► Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto

Introduzione

Obiettivi

- ► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale
- Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto
- Valutare l'accuratezza e lo speed-up della rete rispetto ad una sua implementazione sequenziale

Scopo

► Le *Reti Neurali* vengono principalmente usate per la classificazione delle immagini

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione delle immagini
- ► Il processo di classificazione consiste nell'associare ad un'immagine un'etichetta che identifica nel miglior modo possibile il suo contenuto semantico

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione delle immagini
- ► Il processo di classificazione consiste nell'associare ad un'immagine un'etichetta che identifica nel miglior modo possibile il suo contenuto semantico
- ▶ Una *classe* non è altro che l'etichetta di un'immagine

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione delle immagini
- ► Il processo di classificazione consiste nell'associare ad un'immagine un'etichetta che identifica nel miglior modo possibile il suo contenuto semantico
- ▶ Una classe non è altro che l'etichetta di un'immagine
- ► Le reti neurali ricevono in input un'immagine e forniscono in output la relativa classe

Apprendimento

► Per poter classificare, una rete neurale deve *imparare* ad associare correttamente le immagini alle varie classi

Apprendimento

- ► Per poter classificare, una rete neurale deve *imparare* ad associare correttamente le immagini alle varie classi
- ▶ Il training set ed il test set sono due insiemi composti da coppie (immagini, etichette) chiamate esempi

Apprendimento

- ► Per poter classificare, una rete neurale deve *imparare* ad associare correttamente le immagini alle varie classi
- ► Il training set ed il test set sono due insiemi composti da coppie (immagini, etichette) chiamate esempi
- ► Le etichette di ciascun esempio vengono assegnate in maniera soggettiva da personale umano

Training Set

► Il training set viene usato durante la fase di apprendimento della rete

Training Set

► Il training set viene usato durante la fase di apprendimento della rete

► Per ognuno degli esempi del training set

Training Set

- ► Il training set viene usato durante la fase di apprendimento della rete
- ► Per ognuno degli esempi del training set
 - La rete riceve in input l'immagine dell'esempio considerato e l'associa ad una delle classi presenti

Training Set

- ► Il training set viene usato durante la fase di apprendimento della rete
- ► Per ognuno degli esempi del training set
 - La rete riceve in input l'immagine dell'esempio considerato e l'associa ad una delle classi presenti
 - Se la classe di output non corrisponde all'etichetta dell'esempio, la rete corregge i suoi parametri interni e passa all'immagine successiva

Test Set

► Il test set verifica che la rete abbia imparato a discriminare correttamente le immagini

- ▶ Il test set verifica che la rete abbia imparato a discriminare correttamente le immagini
- ► Viene valutata l'accuratezza della rete come il rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi

- ▶ Il test set verifica che la rete abbia imparato a discriminare correttamente le immagini
- ► Viene valutata l'accuratezza della rete come il rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi
- ► Per ognuno degli esempi del test set

- ► Il test set verifica che la rete abbia imparato a discriminare correttamente le immagini
- Viene valutata l'accuratezza della rete come il rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi
- ► Per ognuno degli esempi del test set
 - La rete riceve in input l'immagine dell'esempio considerato e l'associa ad una delle classi presenti

- ► Il test set verifica che la rete abbia imparato a discriminare correttamente le immagini
- ► Viene valutata l'accuratezza della rete come il rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi
- ► Per ognuno degli esempi del test set
 - La rete riceve in input l'immagine dell'esempio considerato e l'associa ad una delle classi presenti
 - Ogni volta che l'output della rete non corrisponde all'etichetta dell'esempio, viene incrementato un contatore, necessario al calcolo dell'accuratezza

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

Significato Biologico

- ► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica
- ► Una rete neurale biologica si compone di unità cellulari di base: i neuroni

Significato Biologico

- ► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica
- ► Una rete neurale biologica si compone di unità cellulari di base: i neuroni
- ▶ I neuroni sono collegati tra loro per mezzo di specifiche giunture chiamate *sinapsi*

Neurone

Modello matematico di un neurone

Funzionamento Neurone

► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri
- ▶ I segnali pesati dalle differenti sinapsi vengono trasportati dai dendriti all'interno del neurone e sommati tra loro

Funzionamento Neurone

- Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri
- ▶ I segnali pesati dalle differenti sinapsi vengono trasportati dai dendriti all'interno del neurone e sommati tra loro
- ► Se la somma supera una certa soglia, il neurone *spara* un segnale lungo l'assone

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri
- ▶ I segnali pesati dalle differenti sinapsi vengono trasportati dai dendriti all'interno del neurone e sommati tra loro
- ► Se la somma supera una certa soglia, il neurone *spara* un segnale lungo l'assone
- ► La *frequenza di sparo* del neurone viene modellata con una funzione di attivazione *f*

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

► Sigmoide

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

- ► Sigmoide
- ► Tangente Iperbolica

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

- ► Sigmoide
- ► Tangente Iperbolica
- ► Softplus

Sigmoide

Definizione

La Sigmoide $\sigma: \mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

Sigmoide

Definizione

La Sigmoide
$$\sigma:\mathbb{R}\to [0,1]$$
 è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto

Sigmoide

Definizione

La
$$Sigmoide\ \sigma: \mathbb{R} o [0,1]$$
 è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

- ► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ▶ Per elevati valori positivi di input la sigmoide restituisce 1: il neurone satura e spara con una frequenza di sparo pari a 1

Sigmoide

Definizione

La Sigmoide
$$\sigma:\mathbb{R} \to [0,1]$$
 è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

- ► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ► Per elevati valori positivi di input la sigmoide restituisce 1: il neurone satura e spara con una frequenza di sparo pari a 1
- ▶ La sua derivata è uguale a $\sigma'(x) = 1 \sigma(x)$

Sigmoide

Rappresentazione grafica Sigmoide

Tangente Iperbolica

Definizione

La Tangente Iperbolica $\tanh:\mathbb{R}\to[-1,1]$ è definita come $\tanh(x)=2\sigma(2x)-1$

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh : \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

► La tangente iperbolica è una sigmoide scalata

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh : \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

- ▶ La tangente iperbolica è una sigmoide scalata
- ► La sua derivata è uguale a $tanh'(x) = 1 tanh^2(x)$

Tangente Iperbolica

Rappresentazione grafica Tangente Iperbolica

Softplus

Definizione

La Softplus $s: \mathbb{R} \to [0, +\infty]$ è definita come $s(x) = \log(1 + e^x)$

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to [0, +\infty]$$
 è definita come $s(x) = \log(1 + e^x)$

► La softplus è un approssimazione della *Rectifier Linear Unit* (*ReLU*)

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to [0, +\infty]$$
 è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è un approssimazione della *Rectifier Linear Unit* (*ReLU*)
- Viene usata per sostituire la ReLU che presenta un punto di discontinuità in 0

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to [0, +\infty]$$
 è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è un approssimazione della *Rectifier Linear Unit* (*ReLU*)
- Viene usata per sostituire la ReLU che presenta un punto di discontinuità in 0
- ▶ La sua derivata è uguale a $s'(x) = \frac{1}{(1+e^{-x})}$

Softplus

Confronto grafico tra ReLU e Softplus

Rete Neurale

Definizione

Rete Neurale

Definizione

Una *Rete Neurale* è composta da un insieme di neuroni connessi tra loro in un grafo aciclico

▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli vengono posti uno di seguito all'altro in modo da formare una sequenza

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli vengono posti uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di *hidden*

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli vengono posti uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di *hidden*
- ► L'output dei neuroni di un livello diventano l'input dei neuroni del livello successivo

Rete Neurale

► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

Rete Neurale

- Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input
- ▶ Una rete a *singolo livello* non presenta livelli hidden

Rete Neurale

- Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input
- ▶ Una rete a singolo livello non presenta livelli hidden
- ▶ Per determinare la grandezza di una rete ci si concentra sul numero di neuroni e sui relativi pesi ad essi associati

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

▶ I pesi dei neuroni di un livello vengono salvati all'interno di matrici

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

- ► I pesi dei neuroni di un livello vengono salvati all'interno di matrici
- ► Le righe della matrice identificano i neuroni del livello mentre le colonne rappresentano i pesi di ciascun neurone

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

- ► I pesi dei neuroni di un livello vengono salvati all'interno di matrici
- ► Le righe della matrice identificano i neuroni del livello mentre le colonne rappresentano i pesi di ciascun neurone
- ► La struttura a livelli di una rete neurale consente di facilitare le varie operazioni sfruttando il calcolo matriciale

Livello Fully-Connected

hidden layer 1 hidden layer 2

Una rete neurale a 3 livelli

Funzionamento

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

► Inizializzazione dei pesi

Funzionamento

- ► Inizializzazione dei pesi
- ► Forward Propagation

Funzionamento

- ► Inizializzazione dei pesi
- ► Forward Propagation
- ► Funzione di perdita

Funzionamento

- ► Inizializzazione dei pesi
- ► Forward Propagation
- ► Funzione di perdita
- ► Back Propagation

Inizializzazione dei pesi

► Al momento della nascita gli esseri umani non sono in grado di discriminare nessun tipo di oggetto a causa del mancato addestramento della loro rete neurale biologica

Inizializzazione dei pesi

- ► Al momento della nascita gli esseri umani non sono in grado di discriminare nessun tipo di oggetto a causa del mancato addestramento della loro rete neurale biologica
- ▶ Per riprodurre questo comportamento, all'inizio della fase di training, i pesi sinaptici *w_i* di ciascun livello vengono inizializzati in maniera casuale

Forward Propagation

Definizione

Forward Propagation

Definizione

La Forward Propagation è il meccanismo utilizzato da una rete neurale per associare un'immagine ad una determinata classe

lackbox L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v

Forward Propagation

Definizione

- ightharpoonup L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- ▶ Al vettore v viene aggiunto il vettore dei bias del livello i+1

Forward Propagation

Definizione

- ightharpoonup L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- ▶ Al vettore v viene aggiunto il vettore dei bias del livello i+1
- lackbox L'output del livello i+1 si ottiene applicando la funzione di attivazione f ad ogni entry del vettore v

Forward Propagation

Definizione

- ▶ L'output dei neuroni del livello *i* viene moltiplicato per la matrice dei pesi del livello *i* + 1 ottenendo il vettore *v*
- ▶ Al vettore v viene aggiunto il vettore dei bias del livello i+1
- lackbox L'output del livello i+1 si ottiene applicando la funzione di attivazione f ad ogni entry del vettore v
- ► Le operazioni precedenti sono svolte per tutti i livelli ad eccezione dell'ultimo

Funzione di perdita

Definizione

Una *funzione di perdita L* serve per determinare l'errore di classificazione di una rete neurale

Funzione di perdita

Definizione

Una *funzione di perdita L* serve per determinare l'errore di classificazione di una rete neurale

▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (target - output)^2$

Funzione di perdita

Definizione

Una *funzione di perdita L* serve per determinare l'errore di classificazione di una rete neurale

- ► La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (target output)^2$
- ► Per ridurre l'errore di una rete neurale è necessario minimizzare la funzione *L*

Funzione di perdita

Definizione

Una *funzione di perdita L* serve per determinare l'errore di classificazione di una rete neurale

- ► La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (target output)^2$
- ► Per ridurre l'errore di una rete neurale è necessario minimizzare la funzione *L*
- ▶ Il valore minimo di *L* si ottiene calcolando la sua derivata rispetto ai pesi, il cosiddetto *gradiente*

Funzione di perdita

Mean Squared Error (MSE). I pesi w_1 e w_2 sono le variabili indipendenti mentre la variabile dipendente è la funzione di perdita L

Back Propagation

ightharpoonup Lo scopo della back propagation consiste nel trovare, per ogni livello, i pesi w che minimizzino una funzione di perdita L

Rete Neurale Convoluzionale

Una Rete Neurale Convoluzionale si differenzia da una più classica in quanto assume che l'input della rete sia un'immagine

Implementazione della Rete

Analisi dei Risultati