$$\therefore \quad \bar{\chi} \pm Z \left(\frac{\sigma}{\sqrt{m}} \right)$$

$$40.31 \pm 1.960 \left(\frac{8.5}{\sqrt{200}} \right)$$

40.31 ± 1.18

The marge is 39.13 the and 41.49.

7 = 200

Q2.

$$\frac{n=50}{X} = \frac{\Sigma x}{n} = 6.76$$

... Sample Flandard deviation
$$CD = \left[\frac{\sum (2-\bar{x})^2}{(n-1)}\right]^2$$

= 2.55

The confidence devel = 0.95
Significance devel = 0.05 (2)

$$\bar{\alpha} = 6.76$$

 $8 = 9.55$
 $D_f = m-1 = 49$

$$\mu = a \pm \frac{t \cdot s}{\sqrt{m}}$$

$$= 6.76 \pm \frac{2.01 \times 2.55}{\sqrt{50}}$$

$$\mu = 6.76 \pm 0.7249$$

$$\therefore Confidence External (6.41, 7.11)$$

$$Q4. ay$$
 $H_0: u = 2 hus$
 $H_a: u \neq 2 hus$

$$x = 0.05$$

b)
$$\alpha$$
-bar (near) = $\frac{\Sigma \alpha}{n} = 0.4$

d)
$$t = (2.2-2)/[0.5164/sqyt(10)]$$

= 1.2247

b) Sangle mear = 38.5

$$\sigma = 4.8$$

 $m = 112$
 $d = 0.05$

d)
$$Z = \frac{9.5 - 39.2}{5.5} = -1.5452$$

$$\geq for (-2.5.1) = -1.96$$

 $\geq for (-2.5.1) = 1.96$

.. Z = -1.5452 lies between -1.96 its 1.96 So , Nell hypothesis can't be rejected.

g p-value
$$z = -1.545 2 \approx -1.545$$
p-value is 0.612 on Which is guester than

- Therefore Can't reject rull hypothein

$$\bar{p} = \frac{189}{425} = 44.5$$

$$30 = \sqrt{\frac{97}{10}} = \sqrt{\frac{44.5 \times 55.5}{425}} = 0.0397 = 3.97.1.$$

$$A - statistics = Z = \frac{44.5 - 40}{38.47} = 1.133$$

86.
$$\mu : \mu = 75.1$$
.

$$\bar{p} = 78.1$$
,
 $\bar{q} = (1-\bar{p}) = 28.1$.
 $m = 300$

$$SB = \int \frac{p_{1}q}{n} = \sqrt{\frac{0.72 \times 0.28}{300}} = 2.59 - 1.$$

.. We fail to suject Ho.

Age 8 3 6 9 & 5 6 3 Prece 4r 210 100 33 267 134 109 235

012	164	9	36	81	14	25	136	19	1=284
42	2025	44100	(0000	(089)	71289	1746	11881	552287	= 213505
24	360	630	600	297	534	670	6 84	705	= 4450

$$\Sigma_{n} = 42$$
 $\Sigma_{y} = 1183$
 $\bar{n} = \frac{42}{8} = 5.25$ $\bar{y} = \frac{1133}{8} = 141.625$
 $S_{NN} = 284 - 42^{2} = 43.5$

$$S_{xy} = 4450 - \frac{42x1133}{8} = -1498.23$$

$$S_{ope} = \frac{5xy}{5x} = -\frac{1498.23}{43.5} = -34.44$$

Intercept = 141.621 + -34.44 > 5.20 = 322.49

.: equation Y = 322.45-34.42

e) x=7

y = 322.45 - 34.4(9)= 81.35

The prece of 17 year old car of this model will be 81.35

H a=18

 $y = 822.45 - 84.4 \times 18$ = -297.52

A 18-years old cover of the made does not exist.

Da a	, >					
go. Tene	GPA	1 4	d	(y- 9)2	(4-4)2	d2
44	3.92	2.85	0.37	1055-6	1079.75	0.14
6.2	2.21	2.37	-0.16	1122.2	1111.77	0.02
4.2	3.13	2.90	0.23	1061.4	1076.2	0.05
1.6	3.69	360	0.09	104-2	1030.8	0.01
4.7	2.7	2-77	-0.07	1089.6	1085.06	0.00
5-4	2.2	2.58	-0.38	11 22.9	1092.4	0.15
1.3	3.69	3.68	0.01	1021.2	1020.7	0.00
2.1	3.00	3.47	-0.22	1053.6	1039.52	0.05
6.1	2.66	2.89	0.27	1092.3	1109.98	0.67
3.3	2.89	3.15	-0.26	1077-15	1060.4	0.07
4.4	2.71	2.80	-0.14	1089	1029.75	0.07
35	3.36	3.09	0.27	1046.5	1663.92	0.07
Z = 42.2	35.71	35 .71		12861.08	12860.43	0.65

$$R^2 = \frac{89R}{38T} = 0.9999488$$

$$V = (Sign of b_1) \int H^2$$

$$V = -50.999 = -0.999$$

89.

50°C	60°C	70°C
34	80	230
24	31	28
36	84	20
89	23	80
82	27	31

$$f$$
-value = $(mean(m_1)+m_2+m_s)/3 = 83+29+28/3 = 30$
 $df = ng \cdot of column - 1$
= 31 = d

$$(83-80)^{9} + (29-80)^{9} + (28-80)^{9}$$

$$(81R = \sum_{i=1}^{3} (n; -kvalue)^{9} * n$$

$$SSE = \sum_{i=1}^{48} (n-i) + Variance; = 4x 32 + 4x17.5 + 4x9.5$$

(1		
X	V	10	
)		

Pait 1	laut &	Pait 3	Paint 4
128	144	133	150
137	133	143	142
185	142	137	1350
124	146	136	140
141	130	131	153
M = 665	695	680	720

$$Q_{1} = \frac{1}{m_{j}} \sum_{i=1}^{m_{j}} x_{ij} = \frac{1}{5} \times 665 = 183$$

$$Q_{2} = \frac{1}{5} \times 695 = 189$$

$$Q_{3} = \frac{1}{5} \times 680 = 186$$

$$Q_{4} = \frac{1}{5} \times 720 = 144$$

$$908 = \sum_{j=1}^{k} \sum_{i=1}^{m_{j}} (\gamma_{ij} - \bar{\chi})^{2}$$

$$= \left[(128 - 138)^{2} + (37 - 138)^{2} + \dots + (140 - 138)^{2} + (63 - 188)^{2} \right]$$

$$= 1029$$

$$dy = n-1 = 19$$

 $SSW = 7SS - SST$
 $= 1022 - 380$
 $= 692$

of within =
$$(N-1)$$
 - $(k-1)$ = $19-3=16$

$$Mg_{bg} = \frac{SBB}{Ofg} = \frac{880}{3} = 110$$

Ho:
$$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$$
 (near one equal)
 μ_1 : near one not equal

-. Will hypothesis is not to be rejected.