第 13 次作业题

- 1. 求解下列常微分方程:

 - (1) $\frac{dy}{dx} + 5y = e^x$, (2) $y' + xy = x^3$, y(0) = 0, (3) (1-x) dy = (1+y) dx, (4) $\cos x \cos y dy \sin x \sin y dx = 0$, (5) $\frac{dy}{dx} = \sqrt{xy} (x > 0)$, (6) $(x+1) \frac{dy}{dx} = x(y^2+1)$, (7) $x dy + y dx = \sin x dx$, (8) $y' = (2-x+y)^2$, (9) $xy' + y = y \log(xy)$, (10) $y' = \frac{x^2+y^2}{2x^2}$, (11) $\frac{dy}{dx} = \frac{y-x+2}{2x^2}$, (12)

 - $(11) \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y x + 2}{x + y + 4},$ $(12) \quad y' + 2xy = 2x^3y^2.$
- 2. 求解下列常微分方程:
 - (1) $y'' = 2x \cos x$, $\not = \psi$ y(0) = 1, y'(0) = -1,
 - $(2) (1+x^2)y'' 2xy' = 0,$
 - (3) $(y''')^2 + (y'')^2 = 1$.
- 3. 假设 $f \in \mathcal{C}(\mathbb{R})$ 是一个以 T > 0 为周期的周期函数, 并且 $y = \varphi(x)$ 为方 程 $\frac{dy}{dx} + y = f(x)$ 的解使得 $\varphi(T) = \varphi(0)$, 求证: 解 $y = \varphi(x)$ 也是一个以 T 为 周期的周期函数.
- **4.** 对函数 $y = (C_1 + C_2 x)e^{-x}$, 求 y', y'', 并求以 y 为通解的常微分方程.
- 5. 已知三阶非齐次的线性常微分方程的特解为 $x^2 + x$, $x^2 + x^3$, 相应齐次常 微分方程的解为 1, x, 求上述非齐次线性常微分方程的通解.
- 6. 若 x, x^2, x^3 为三阶齐次线性常微分方程的解, 求证它们为基本解组, 并求 相应的三阶齐次线性常微分方程.
- 7. 求解下列常微分方程:
 - (1) y'' 6y' + 9y = 0, $\not = y(0) = y'(0) = 1$.
 - (2) y''' 3y'' 4y' = 0, $\not = y(0) = y'(0) = y''(0) = 1$,
 - (3) $y'' + 3y' + 2y = \sin x + x^2$,
 - (4) $y'' 2y' + y = xe^x + 4$, $\not = y(0) = y'(0) = 1$,
 - (5) $x^2y'' + 2xy' n(n+1)y = 0$,
 - (6) $xy'' + 2y' = 12 \log x$.
- 8. 求解下列齐次常微分方程组 $\frac{dY}{dx} = AY$, 其中

(1)
$$\mathbf{A} = \begin{pmatrix} -1 & -2 \\ 8 & -1 \end{pmatrix}$$
, $\mathbf{Y}(0) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \\ -1 & 1 & -1 \end{pmatrix}, \mathbf{Y}(0) = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

9. 求解下列非齐次常微分方程组:

(1)
$$\begin{cases} \frac{dy_1}{dx} + 2y_1 - 3y_2 = e^x \\ \frac{dy_2}{dx} - 2y_1 - 3y_2 = e^{2x} \end{cases};$$
(2)
$$\begin{cases} \frac{dy_1}{dx} + \frac{dy_2}{dx} = -y_1 + y_2 + 3 \\ \frac{dy_1}{dx} - \frac{dy_2}{dx} = y_1 + y_2 - 3 \end{cases};$$
(3)
$$\begin{cases} 4\frac{dy_1}{dx} - \frac{dy_2}{dx} = -3y_1 + \sin x \\ \frac{dy_1}{dx} = -y_2 + \cos x \end{cases}.$$